Introduction à l'apprentissage automatique

Les bases du machine learning

Nicolas Audebert nicolas.audebert@ign.fr

École nationale des sciences géographiques

22 avril 2024

Apprentissage automatique, IA, informatique

Historique de l'apprentissage automatique

Objectif: automatiser une prédiction à partir de valeurs observées, uniquement à partir d'exemples (méta-heuristique)

Deux grandes familles d'approche :

- Symbolique : systèmes experts, arbres de décision, logique floue, ontologies
 - Formalisation de connaissances expertes encodées dans le système
 - Application de règles de logiques, par ex. déductives pour tirer des inférences
 - Interprétable et permet d'intégrer des connaissances humaines
 - Mais limité à des tâches pour lesquelles on peut encoder beaucoup d'informations existantes
- Connexionniste : réseaux de neurones, inférence bayésienne
 - Modélisation d'une distribution statistique entre entrées et sorties
 - Nécessite beaucoup d'exemples
 - Pas facilement interprétable
 - Mais flexible et adaptable à de nombreux problèmes

En pratique, on s'intéressera ici à l'apprentissage automatique avec une vision connexioniste.

Quelques exemples d'application

- Perception visuelle :
 - Reconnaissance/détection d'objets
 - Cartographie automatisée
 - Reconstruction 3D
 - Reconnaissance de caractères
- Perception auditive :
 - Transcription automatisée
 - Séparation de sources
 - Reconnaissance musicale
 - Synthèse vocale
- Analyse du langage :
 - Traduction de texte
 - Génération de texte
 - Analyse de sentiments
- Traitement du signal :
 - Prédictions météorologiques
 - Débruitage

- Cartographie d'occupation des sols à partir d'images satellitaires
- Sémantisation de nuages de points massifs
- Numérisation/vectorisation de cartes historiques
- Reconnaissances des espèces d'arbres
- et bien d'autres

https:

//geoservices.ign.fr/ressources-ia-de-couverture-du-sol

- Cartographie d'occupation des sols à partir d'images satellitaires
- Sémantisation de nuages de points massifs
- Numérisation/vectorisation de cartes historiques
- Reconnaissances des espèces d'arbres
- et bien d'autres

https://github.com/IGNF/myria3d

- Cartographie d'occupation des sols à partir d'images satellitaires
- Sémantisation de nuages de points massifs
- Numérisation/vectorisation de cartes historiques
- Reconnaissances des espèces d'arbres
- et bien d'autres

https://icdar21-mapseg.github.io/

- Cartographie d'occupation des sols à partir d'images satellitaires
- Sémantisation de nuages de points massifs
- Numérisation/vectorisation de cartes historiques
- Reconnaissances des espèces d'arbres
- et hien d'autres

https://huggingface.co/datasets/IGNF/PureForest

- Cartographie d'occupation des sols à partir d'images satellitaires
- Sémantisation de nuages de points massifs
- Numérisation/vectorisation de cartes historiques
- Reconnaissances des espèces d'arbres
- et bien d'autres
 - Reconstruction 3D par photogrammétrie
 - Classification de parcelles agricoles
 - Transfert de styles pour la cartographie
 - Localisation de personnes perdues en montagne
 - ...

Plan du cours

- 1 Qu'est-ce que l'apprentissage automatique?
 - Types de problèmes de décision
 - Modélisation à partir de données
 - Choix d'une fonction de perte
 - Choix des familles paramétriques
 - Estimation du modèle
 - Comment mesurer la capacité
 - comment mesurer la capacite
 - Validation croisée
 - Métriques d'évaluation
 - Méthodes de base
 - kNN
 - Arbres et forêts
 - CV/V4
 - Régression
 - Clustering
 - Apprentissage profond

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- 4 Quel sera le débit de la Loire à Tours dans 48h?
- **5** Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations. » ?
- Quelle est la région d'une image correspondant aux routes?

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- 4 Quel sera le débit de la Loire à Tours dans 48h?
- **5** Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations » ?
- 6 Quelle est la région d'une image correspondant aux routes?

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- 4 Quel sera le débit de la Loire à Tours dans 48h?
- Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations. » ?
- Quelle est la région d'une image correspondant aux routes ?

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- 3 Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- 4 Quel sera le débit de la Loire à Tours dans 48h?
- **5** Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations. » ?
- 6 Quelle est la région d'une image correspondant aux routes ?

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- 4 Quel sera le débit de la Loire à Tours dans 48h?
- **5** Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations. » ?
- 6 Quelle est la région d'une image correspondant aux routes

- Observations décrites par les valeurs prises par un ensemble de variables
- → Objectif: prédire, pour chaque donnée, la valeur d'une variable (expliquée ou « dépendante » ou « de sortie ») à partir des valeurs des autres variables (explicatives ou « d'entrée »)

- 1 Une région d'une image représente un visage ou non?
- Les symptômes correspondent à la maladie A ou B ou C ou aucune?
- 3 Quel est le volume d'algues vertes attendu en mai sur les plages de Vannes?
- Quel sera le débit de la Loire à Tours dans 48h?
- **5** Quelle est l'entité nommée dans « La Maison Blanche a démenti ces informations. » ?
- © Quelle est la région d'une image correspondant aux routes?

Types de problèmes de décision

- Classification la variable expliquée est une variable nominale, chaque observation possède une modalité (appelée en général classe)
 - ightarrow quel est le chiffre représenté par cette image?
- Régression : la variable expliquée est une variable quantitative (domaine $\subset \mathbb{R}$)
 - → combien vaudra le CAC 40 dans une semaine?
- Prédiction structurée : la variable expliquée prend des valeurs dans un domaine de données structurées (les relations entre parties comptent)
 - ightarrow quelle est la forme de la protéine compte-tenu des molécules qui la composent ?

Qu'est-ce qu'un modèle?

- Modèle = règle de décision
- Exemple : frontière de discrimination pour une classification à 2 classes

- Construction analytique à partir des connaissances du phénomène
 - Exemples
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Néglige souvent l'impact de variables non contrôlables!
- À partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - → Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Concentration de produit de réaction ← concentration de réactif et température
 - Néglige souvent l'impact de variables non contrôlables!
- A partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - → Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Concentration de produit de réaction ← concentration de réactif et température
 - Néglige souvent l'impact de variables non contrôlables!
- A partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - → Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Concentration de produit de réaction ← concentration de réactif et température
 - Néglige souvent l'impact de variables non contrôlables!
- A partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - \blacksquare Concentration de produit de réaction \leftarrow concentration de réactif et température
 - Néglige souvent l'impact de variables non contrôlables!
- A partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Néglige souvent l'impact de variables non contrôlables!
- À partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - → Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

- Construction analytique à partir des connaissances du phénomène
 - Exemples :
 - Temps de vol $t \leftarrow$ distance d et vitesse v, $t = v \cdot d$
 - Concentration de produit de réaction ← concentration de réactif et température
 - Néglige souvent l'impact de variables non contrôlables!
- À partir de données : ensemble d'observations pour lesquelles les valeurs des variables explicatives et des variables expliquées sont en général connues
 - → Apprentissage supervisé : à partir d'observations pour lesquelles les valeurs des variables explicatives et de la variable expliquée sont connues

Construction d'un modèle

- x_1, x_2, \dots, x_n des observations $x \in \mathcal{X}$
 - Typiquement, les observations $x \in \mathbb{R}^d$
- y_1, y_2, \ldots, y_n des vérités terrain, $y \in \mathcal{Y}$
- lacksquare une famille paramétrique de fonctions $f_ heta \in \mathcal{F}$
 - lacksquare représente les paramètres du modèle
- une fonction de perte $\ell(y, \hat{y})$

Problème d'optimisation

Formellement, on cherche à modéliser la fonction f qui permet de passer d'une observation x à la variable expliquée y:

$$\min_{f_{\theta} \in \mathcal{F}} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}(x_{i})\right)$$

Apprendre un modèle = résoudre ce problème d'optimisation

Apprentissage et généralisation

- Le modèle permet de prendre des décisions pour de futures (nouvelles) données
- Erreur du modèle sur ces futures données = erreur de généralisation

Erreur d'entraînement/erreur de généralisation

En pratique, on veut minimiser l'erreur de généralisation mais on ne peut calculer que l'erreur d'entraînement!

- Erreur d'apprentissage (facilement) mesurable car ces données sont disponibles
- Données futures inconnues ⇒ erreur de généralisation ne peut pas être mesurée
- Hypothèse importante : la distribution des données d'apprentissage est représentative de celle des données futures!
- \rightarrow Minimiser l'erreur d'apprentissage permet de minimiser l'erreur de généralisation ?

Classification

- Modèle : règle de classement, par ex. frontière de discrimination (trait bleu foncé)
- Exemple : (2 var. explicatives pour chaque observation : abscisse X et ordonnée Y)
- $\mathbf{v} \in [\![1, k]\!]$ pour k classes

Fonction de coût :

$$\ell_{01}(y_i, f_{\theta}(x_i)) = \begin{cases} 1 & \text{si } y_i = f_{\theta}(x_i) \\ 0 & \text{sinon} \end{cases}$$

Régression

- Modèle : règle de prédiction (trait noir dans la figure)
 - Par ex. y = Ax + b pour modèle linéaire
- Exemple : (variable explicative X en abscisse, variable expliquée Y en ordonnée)
 - $y \in \mathbb{R}$ ou \mathbb{R}^p

Fonction de coût :

$$\ell_{\mathsf{MSE}}(y_i, f_{\theta}(x_i)) = \|y_i - f_{\theta}(x_i)\|$$

Modélisation à partir de données : un cadre plus précis

- **E** Espace d'entrée (variables explicatives) : \mathcal{X} (par ex. \mathbb{R}^p)
- Espace de sortie (variable expliquée) : \mathcal{Y} (par ex. $\{-1;1\}$, \mathbb{R})
- Données à modéliser décrites par variables aléatoires $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ suivant la distribution inconnue P
- Exemples

Classement :
$$\mathcal{X} \subset \mathbb{R}^2$$
 $\mathcal{Y} = \{c_1, c_2\}$

Modélisation à partir de données : un cadre plus précis (2)

Jeu de données

Observations avec information de supervision : $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$

- **Hypothèses** : ces observations sont des tirages identiquement distribués suivant *P*
- Sauf cas particuliers (par ex. séries temporelles) les tirages indépendants

Objectif

Trouver, dans une famille \mathcal{F} , une fonction $f:\mathcal{X}\to\mathcal{Y}$ qui prédit y à partir de \mathbf{x}

- Avec l'erreur de généralisation $R(f) = \mathbb{E}_P[\ell(X, Y, f)]$ la plus faible
- lacksquare $\ell()$ est la fonction de perte (ou d'erreur ou de coût)
- \blacksquare \mathbb{E}_P est l'espérance par rapport à la distribution inconnue F

Modélisation à partir de données : un cadre plus précis (2)

Jeu de données

Observations avec information de supervision : $\mathcal{D}_{N} = \{(\mathbf{x}_{i}, y_{i})\}_{1 \leq i \leq N}$

- **Hypothèses** : ces observations sont des tirages identiquement distribués suivant *P*
- Sauf cas particuliers (par ex. séries temporelles) les tirages indépendants

Objectif

Trouver, dans une famille \mathcal{F} , une fonction $f \colon \mathcal{X} \to \mathcal{Y}$ qui prédit y à partir de \mathbf{x}

- Avec l'erreur de généralisation $R(f) = \mathbb{E}_P[\ell(X, Y, f)]$ la plus faible
- $\ell()$ est la fonction de perte (ou d'erreur ou de coût)
- \blacksquare \mathbb{E}_P est l'espérance par rapport à la distribution inconnue P

Fonctions de perte pour problèmes de classement

- Perte 0-1 : $L_{01}(\mathbf{x}, y, f) = \mathbf{1}_{f(\mathbf{x}) \neq y}$
 - $f(\mathbf{x}), y \in \mathcal{Y}$ ensemble fini
 - Perte nulle si prédiction correcte, perte unitaire si prédiction incorrecte
 - Si $f(\mathbf{x}) \in \mathbb{R}$ alors $L_{01}(\mathbf{x}, y, f) = \mathbf{1}_{H(f(\mathbf{x})) \neq y}$, avec H() fonction échelon

Les flèches bleues indiquent quelques données mal classées par le modèle (frontière de discrimination linéaire, dans ce cas)

Fonctions de perte pour problèmes de régression

- Perte quadratique : $L_q(\mathbf{x}, y, f) = [f(\mathbf{x}) y]^2$
 - $lacksquare f(\mathbf{x})$ est la prédiction du modèle f pour l'entrée \mathbf{x}
 - lacktriangle y est l'information de supervision (prédiction désirée) pour l'entrée x

Les traits rouges représentent des écarts entre trois prédictions d'un modèle (linéaire, dans ce cas) et les prédictions désirées correspondantes

Familles paramétriques

- Modèles linéaires : prédiction = combinaison linéaire des variables
 - Exemples :

- Peuvent s'avérer insuffisants (voir ci-dessus l'ex. de classes non linéairement séparables)
- Utile de commencer par un modèle linéaire, ne serait-ce que pour pouvoir comparer
- Modèles polynomiaux de degré borné : la capacité d'approximation (d'une frontière pour le classement, d'une dépendance pour la régression) augmente avec le degré
- Diverses familles de modèles non linéaires, par ex. réseaux de neurones d'architecture donnée, etc.

Comment choisir la famille paramétrique?

■ Modèles linéaires souvent insuffisants → pourquoi ne pas choisir systématiquement une famille de capacité d'approximation aussi grande que possible?

- \rightarrow Risque de sur-apprentissage (overfitting) : erreur d'apprentissage très faible mais erreur de test comparativement élevée
- ⇒ Ce n'est pas avec la capacité la plus grande qu'on obtient la meilleure généralisation
 - → Quel lien entre capacité et généralisation ?

Comment choisir la famille paramétrique?

■ Modèles linéaires souvent insuffisants → pourquoi ne pas choisir systématiquement une famille de capacité d'approximation aussi grande que possible?

- → Risque de sur-apprentissage (*overfitting*) : erreur d'apprentissage très faible mais erreur de test comparativement élevée
- ⇒ Ce n'est pas avec la capacité la plus grande qu'on obtient la meilleure généralisation
 - → Quel lien entre capacité et généralisation ?

Comment choisir la famille paramétrique?

■ Modèles linéaires souvent insuffisants → pourquoi ne pas choisir systématiquement une famille de capacité d'approximation aussi grande que possible?

- \rightarrow Risque de sur-apprentissage (overfitting) : erreur d'apprentissage très faible mais erreur de test comparativement élevée
- \Rightarrow Ce n'est pas avec la capacité la plus grande qu'on obtient la meilleure généralisation
 - → Quel lien entre capacité et généralisation?

Comment estimer le modèle?

Objectif

Trouver, dans une famille $\mathcal F$ choisie, une fonction (un modèle) $f\colon \mathcal X\to \mathcal Y$ qui prédit y à partir de $\mathbf x$ et présente l'erreur de généralisation $R(f)=\mathbb E_P[\ell(X,Y,f)]$ la plus faible

- \blacksquare R(f) ne peut pas être évalué car on ne connaît pas la distribution des données P
- Mais on peut mesurer l'erreur d'apprentissage empirique $R_{\mathcal{D}_N}(f) = \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, y_i, f)$
- Quels liens y-a-t-il entre ces deux erreurs?

Comment estimer le modèle?

Objectif

Trouver, dans une famille \mathcal{F} choisie, une fonction (un modèle) $f: \mathcal{X} \to \mathcal{Y}$ qui prédit y à partir de x et présente l'erreur de généralisation $R(f) = \mathbb{E}_{P}[\ell(X, Y, f)]$ la plus faible

- \blacksquare R(f) ne peut pas être évalué car on ne connaît pas la distribution des données P
- Mais on peut mesurer l'erreur d'apprentissage empirique $R_{\mathcal{D}_N}(f) = \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, y_i, f)$

Comment estimer le modèle?

Objectif

Trouver, dans une famille $\mathcal F$ choisie, une fonction (un modèle) $f\colon \mathcal X\to \mathcal Y$ qui prédit y à partir de x et présente l'erreur de généralisation $R(f)=\mathbb E_P[\ell(X,Y,f)]$ la plus faible

- \blacksquare R(f) ne peut pas être évalué car on ne connaît pas la distribution des données P
- Mais on peut mesurer l'erreur d'apprentissage empirique $R_{\mathcal{D}_N}(f) = \frac{1}{N} \sum_{i=1}^N \ell(\mathbf{x}_i, y_i, f)$
- Quels liens y-a-t-il entre ces deux erreurs?

Analyse des composantes de l'erreur de généralisation

- Considérons
 - lacksquare $f_{\mathcal{D}_{N}}^{*}$ la fonction de \mathcal{F} qui minimise l'erreur empirique $R_{\mathcal{D}_{N}}$
 - lacksquare la fonction de $\mathcal F$ qui minimise l'erreur de généralisation R, alors

$$R(f_{\mathcal{D}_{N}}^{*}) = R^{*} + [R(f^{*}) - R^{*}] + [R(f_{\mathcal{D}_{N}}^{*}) - R(f^{*})]$$

- \blacksquare R^* est l'erreur résiduelle (ou erreur de Bayes), borne inférieure
 - Strictement positive en présence de bruit : suivant le bruit, à un même x peuvent correspondre plusieurs valeurs de y
- $[R(f^*) R^*]$ est l'erreur d'approximation (≥ 0) car $\mathcal F$ ne contient pas nécessairement la "vraie" fonction de décision
 - lacksquare Nulle seulement si R^* peut être atteint par une fonction de $\mathcal F$
- $[R(f_{\mathcal{D}_N}^*) R(f^*)]$ est l'erreur d'estimation (≥ 0)
 - La fonction de \mathcal{F} qui minimise l'erreur d'apprentissage n'est pas nécessairement celle qui minimise l'erreur de généralisation

 \blacksquare Résultats obtenus à partir de 3 familles sur 3 échantillons \neq de \mathcal{D}_N :

 \blacksquare Résultats obtenus à partir de 3 familles sur 3 échantillons \neq de \mathcal{D}_N :

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - \Rightarrow Erreur d'estimation élevée
- \blacksquare Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissagget

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - f m Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- \blacksquare Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - \Rightarrow Erreur d'approximation élevée (fort biais)
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - \Rightarrow Erreur d estimation elevee
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissagge

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - \blacksquare Erreur d'approximation probablement faible car erreur d'apprentissage faible \Rightarrow capacité suffisante
 - $lue{}$ Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - \blacksquare Erreur d'approximation probablement faible car erreur d'apprentissage faible \Rightarrow capacité suffisante
 - \blacksquare Erreur de test bien plus élevée, variance supérieure à PMC $\alpha=1$
 - \Rightarrow Erreur d'estimation élevée
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - \Rightarrow Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - \blacksquare Erreur d'approximation probablement faible car erreur d'apprentissage faible \Rightarrow capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissagge

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - lacktriangle Erreur d'approximation probablement faible car erreur d'apprentissage faible \Rightarrow capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- \blacksquare Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\,$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- \blacksquare Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

- Famille linéaire (modèles obtenus ici par AFD)
 - Erreur d'apprentissage élevée donc capacité insuffisante pour ce problème
 - ⇒ Erreur d'approximation élevée (fort biais)
- $\bf 2$ Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=10^{-5}$
 - Erreur d'approximation probablement faible car erreur d'apprentissage faible ⇒ capacité suffisante
 - lacktriangle Erreur de test bien plus élevée, variance supérieure à PMC lpha=1
 - ⇒ Erreur d'estimation élevée
- Famille définie par PMC 1 couche cachée de 100 neurones, avec coefficient « d'oubli » $\alpha=1$
 - Somme assez faible entre erreur d'approximation et erreur d'estimation, meilleure généralisation que les deux autres familles
 - Erreur de test assez faible et proche de l'erreur d'apprentissage

Comment mesurer la capacité?

- Considérons un ensemble de N vecteurs $\{\mathbf{x}_i\}_{1 \leq i \leq N} \in \mathbb{R}^p \to \text{il y a } 2^N$ façons différentes de le séparer en 2 parties
- **Définition**: la famille $\mathcal F$ de fonctions $f\colon \mathbb R^p \to \{-1,1\}$ pulvérise $\{\mathbf x_i\}_{1\leq i\leq N}$ si toutes les 2^N séparations peuvent être construites avec des fonctions de $\mathcal F$
- **Définition** (Vapnik-Chervonenkis) : l'ensemble \mathcal{F} est de VC-dimension h s'il pulvérise au moins un ensemble de h vecteurs et aucun ensemble de h+1 vecteurs
- **Exemple** : la VC-dimension des hyperplans de \mathbb{R}^p est h=p+1
 - \blacksquare Dans $\mathbb{R}^2,$ les droites pulvérisent le triplet de points à gauche mais aucun quadruplet

Lien entre capacité et généralisation

La VC-dimension est une mesure intéressante de la capacité car elle permet d'obtenir une borne pour l'écart les erreurs empirique et de généralisation.

Théorème

Soit $R_{\mathcal{D}_N}(f)$ le risque empirique défini par la fonction de perte $L_{01}(\mathbf{x},y,f)=\mathbf{1}_{f(\mathbf{x})\neq y}$; si la VC-dimension de \mathcal{F} est $h<\infty$ alors pour toute $f\in\mathcal{F}$, avec une probabilité au mois égale à $1-\delta$ $(0<\delta<1)$, on a

$$R(f) \le R_{\mathcal{D}_N}(f) + \underbrace{\sqrt{\frac{h\left(\log \frac{2N}{h} + 1\right) - \log \frac{\delta}{4}}{N}}}_{B(N,\mathcal{F})} \quad \text{pour} \quad N > h$$

- $B(N, \mathcal{F})$ diminue quand $N \uparrow$, quand $h \downarrow$ et quand $\delta \uparrow$
- $B(N, \mathcal{F})$ ne fait pas intervenir le nombre de variables
- $B(N, \mathcal{F})$ ne fait pas intervenir la loi conjointe P
- → résultat dans le pire des cas, intéressant d'un point de vue théorique

Lien entre capacité et généralisation (2)

Conséquences de l'existence d'une borne :

$$R(f) \leq R_{\mathcal{D}_{N}}(f) + B(N, \mathcal{F})$$

et compte-tenu l'expression de la borne $\mathcal{B}(\mathcal{N},\mathcal{F})$:

- Famille \mathcal{F} de capacité trop faible (par ex. ici modèles linéaires)
 - \Rightarrow $B(N, \mathcal{F})$ faible mais $R_{\mathcal{D}_N}(f)$ (erreur d'apprentissage) élevé(e)
 - \Rightarrow absence de garantie intéressante pour R(f)
- lacktriangle Famille ${\cal F}$ de capacité trop élevée (par ex. ici PMC $lpha=10^-5$)
 - \Rightarrow $R_{\mathcal{D}_{\mathcal{N}}}(f)$ probablement faible mais $B(\mathcal{N},\mathcal{F})$ élevée
 - \Rightarrow absence de garantie intéressante pour R(f)
- lacksquare Famille ${\mathcal F}$ de capacité «adéquate» (par ex. ici PMC lpha=1)
 - $\Rightarrow R_{\mathcal{D}_N}(f)$ probablement faible et $B(N, \mathcal{F})$ plutôt faible
 - \Rightarrow garantie intéressante pour R(f)!

Comment minimiser l'erreur d'apprentissage?

- Dans une famille paramétrique \mathcal{F} , un modèle est défini par les valeurs d'un ensemble de paramètres, par ex.
 - Modèle linéaire pour la régression y = ax + b: a et b
 - Arbre de décision : seuils des tests et choix des variables
 - Réseaux de neurones : poids des connexions
- ightarrow Optimisation pour trouver les valeurs qui minimisent l'erreur
 - Solution analytique directe : cas assez rare, par ex. certains modèles linéaires
 - Algorithmes itératifs, par ex.
 - Optimisation quadratique sous contraintes d'inégalité : SVM
 - Optimisation non linéaire plus générale : PMC, réseaux profonds

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - **WRE**: Ferreur quadratique totale $\sum_{i=1}^{n}(y_i-y_i)^2$ sur \mathcal{D}_N
 - MRER: la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{k=1}^N (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$

→ Solution w' = (X 'X → 1_{p,11})⁻¹ X 'y, où 1_{p,11} est la matrice unité de la fail y -1.

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - **MRE**: l'erreur quadratique totale $\sum_{i=1}^{n} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov),
 - → Solution $\mathbf{w}^* = (\mathbf{X}^T\mathbf{X} + \mathbf{I}_{p+1})^{-1}\mathbf{X}^T\mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - lacksquare MRE : l'erreur quadratique totale $\sum_{i=1}^n (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - m MRER: la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov),
 - $\sum_{i=1}^{n} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{\infty} (\hat{y}_i y_i)^2 \text{ sur } \mathcal{D}_N$ → Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X}^+ Si $\mathbf{X}^T \mathbf{X}$ est inversible, alors $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$
 - ightarrow Solution ${f w}^*=({f X}^T{f X}+{f I}_{p+1})^{-1}{f X}^T{f y},$ où ${f I}_{p+1}$ est la matrice unité de rang p+1

- lacksquare Problème de régression avec $\mathcal{X}=\mathbb{R}^p$, $\mathcal{Y}=\mathbb{R}$, $\mathcal{D}_{\textit{N}}=\{(\mathbf{x}_{\textit{i}},\textit{y}_{\textit{i}})\}_{1\leq \textit{i}\leq \textit{N}}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{N} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - \rightarrow Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X} \blacksquare Si $\mathbf{X}^T \mathbf{X}$ est inversible, alors $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{v}_i v_i)^2 + \|\mathbf{w}\|_2^2$
 - \rightarrow Solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \mathbf{I}_{p+1})^{-1} \mathbf{X}^T \mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de rang p+1

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{N} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - \rightarrow Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X}^+
 - \blacksquare Si X'X est inversible, alors $X^+ = (X'X)^{-1}X'$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$
 - \rightarrow Solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \mathbf{I}_{p+1})^{-1} \mathbf{X}^T \mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{N} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - \rightarrow Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X}^+
 - Si $\mathbf{X}^T \mathbf{X}$ est inversible, alors $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$
 - ightarrow Solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \mathbf{I}_{p+1})^{-1} \mathbf{X}^T \mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de rang p+1

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^{p} w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{N} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - \rightarrow Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X}^+
 - Si $\mathbf{X}^T \mathbf{X}$ est inversible, alors $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$
 - \rightarrow Solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \mathbf{I}_{p+1})^{-1} \mathbf{X}^T \mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de rang p+1

- Problème de régression avec $\mathcal{X} = \mathbb{R}^p$, $\mathcal{Y} = \mathbb{R}$, $\mathcal{D}_N = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq N}$
- Famille de modèles linéaires $\hat{y} = w_0 + \sum_{j=1}^p w_j x_{ji}$, où \hat{y} est la prédiction du modèle
- Sous forme matricielle : $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, où \mathbf{X} est la matrice $N \times (p+1)$ dont les lignes sont les observations de \mathcal{D}_N et les colonnes correspondent aux variables (sauf pour la dernière qui est une colonne de 1 et permet d'inclure w_0 dans \mathbf{w})
- On cherche le modèle (défini par le vecteur de paramètres w*) qui minimise
 - MRE : l'erreur quadratique totale $\sum_{i=1}^{N} (\hat{y}_i y_i)^2$ sur \mathcal{D}_N
 - ightarrow Solution $\mathbf{w}^* = \mathbf{X}^+ \mathbf{y}$, où \mathbf{X}^+ est la pseudo-inverse Moore-Penrose de \mathbf{X}
 - Si $\mathbf{X}^T \mathbf{X}$ est inversible, alors $\mathbf{X}^+ = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
 - MRER : la somme entre l'erreur quadratique sur \mathcal{D}_N et un terme de régularisation, par ex. (cas particulier de régularisation Tikhonov), $\sum_{i=1}^{N} (\hat{y}_i y_i)^2 + \|\mathbf{w}\|_2^2$
 - \rightarrow Solution $\mathbf{w}^* = (\mathbf{X}^T\mathbf{X} + \mathbf{I}_{p+1})^{-1}\mathbf{X}^T\mathbf{y}$, où \mathbf{I}_{p+1} est la matrice unité de rang p+1

Modélisation décisionnelle : que faut-il retenir?

- Construire un modèle décisionnel à partir de données : supervision nécessaire
- Objectif : obtenir le modèle qui présente la meilleure généralisation
- Estimer la généralisation : non à partir de l'erreur d'apprentissage
- Chercher le bon compromis entre minimisation de la capacité de la famille de modèles et minimisation de l'erreur d'apprentissage

Plan du cours

- 1 Qu'est-ce que l'apprentissage automatique?
 - Types de problèmes de décision
 - Modélisation à partir de données
 - Choix d'une fonction de perte
 - Choix des familles paramétriques
 - Estimation du modèle
 - Comment mesurer la capacité î

2 Évaluation de modèles

- Validation croisee
- Métriques d'évaluation
- Méthodes de base
- kNN
 - Arbres et forêts
 - C\/\/
 - Régression
 - Clustering
 - Apprentissage profond

30 / 48

Comment estimer l'erreur de généralisation

Données de test

Par l'erreur sur des données de test, non utilisées pour l'apprentissage (par ex., 30% des données sont mises à l'écart pour le test)

- Apprentissage (estimation) du modèle sur les données d'apprentissage
- Estimation de l'erreur de généralisation sur les données de test
- \rightarrow Difficultés de cette approche :
 - Réduit le nombre de données utilisées pour l'apprentissage
 - lacktriangle Variance élevée : autre partitionnement \Longrightarrow estimation différente

Validation croisée

Cross-validation: plusieurs partitions apprentissage | test

- ⇒ estimateur de variance plus faible,
- ... tout en utilisant mieux les données disponibles!
 - mais plusieurs modèles à entraîner

Comment estimer l'erreur de généralisation

Données de test

Par l'erreur sur des données de test, non utilisées pour l'apprentissage (par ex., 30% des données sont mises à l'écart pour le test)

- Apprentissage (estimation) du modèle sur les données d'apprentissage
- Estimation de l'erreur de généralisation sur les données de test
- \rightarrow Difficultés de cette approche :
 - Réduit le nombre de données utilisées pour l'apprentissage
 - Variance élevée : autre partitionnement ⇒ estimation différente

Validation croisée

Cross-validation: plusieurs partitions apprentissage | test

- ⇒ estimateur de variance plus faible,
- ... tout en utilisant mieux les données disponibles!
 - mais plusieurs modèles à entraîner

Validation croisée

- Méthodes exhaustives :
 - Leave p out (LPO) : N-p données pour l'apprentissage et p pour la validation $\Rightarrow C_N^p$ découpages donc C_N^p modèles \Rightarrow coût excessif
 - Leave one out (LOO) : N-1 données pour l'apprentissage et 1 pour la validation $\Rightarrow C_N^1 = N$ découpages (donc N modèles) \Rightarrow coût élevé
- Méthodes non exhaustives :
 - k-fold: partitionnement fixé des N données en k parties, apprentissage sur k-1 parties et validation sur la k-ême $\Rightarrow k$ modèles seulement (souvent k=5 ou k=10)

■ Échantillonnage répété (shuffle and split) : échantillon aléatoire de p données pour le test (les autres N-p pour l'apprentissage), on répète cela k fois $\Rightarrow k$ modèles

Validation croisée : quelle méthode préférer?

- LPO très rarement employée car excessivement coûteuse
- LOO *vs k-fold* : *k-fold* préférée en général
 - LOO plus coûteuse car $N \gg k$
 - Variance en général supérieure pour LOO
 - Estimation k-fold pessimiste car chaque modèle apprend sur $\frac{k-1}{k}N < N-1$ données
- Shuffle and split vs k-fold
 - Pour k-fold le nombre de modèles (k) est lié à la proportion de données de test (1/k), shuffle and split moins contraignante
 - Pour shuffle and split certaines données ne sont dans aucun échantillon alors que d'autres sont dans plusieurs échantillons
- Quelle que soit la méthode, tous les partitionnements peuvent être explorés en parallèle (sur processeurs multi-cœur ou plateformes distribuées)

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes ; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes ; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex. StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes ; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage.

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex. StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes ; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex. StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes ; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex. StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles

- Classification avec classes déséquilibrées : pour s'assurer de conserver les rapports entre les classes dans tous les découpages, utiliser
 - Un partitionnement adapté pour k-fold (par ex. StratifiedKFold dans Scikit-learn)
 - Un échantillonnage stratifié pour shuffle and split (par ex. StratifiedShuffleSplit dans Scikit-learn)
 - LOO peut être employée telle quelle
- Observations qui ne sont pas indépendantes
 - Séries temporelles : les observations successives sont corrélées, le découpage doit être fait par séquences sur les observations ordonnées et non après shuffle sur les observations individuelles
 - Données groupées : dans un même groupe, les observations ne sont pas indépendantes; les données de test doivent provenir de groupes différents de ceux dont sont issues les données d'apprentissage

Évaluation pour la classification : matrice de confusion

Prédiction\Vérité terrain	Classe 1	Classe 2	Classe 3
Classe 1	10	2	3
Classe 2	7	15	0
Classe 3	3	5	10

■ k^eligne, lecolonne : combien d'observations de la classe l ont été

- prédites comme étant de la classe k?

Exactitude (overall accuracy)

% d'observations correctement prédites :

$$OA = \frac{\sum_{k=1}^{K} C[k, k]}{\sum_{k=1}^{K} \sum_{l=1}^{k} C[k, l]}$$

où K est le nombre de classes.

Évaluation pour la classification : matrice de confusion

Prédiction\Vérité terrain	Classe 1	Classe 2	Classe 3
Classe 1	10	2	3
Classe 2	7	15	0
Classe 3	3	5	10

Précision et rappel

- Précision : fraction de prédictions correctes pour la classe *k*
- Rappel : fraction de la classe k correctement prédite

$$P[k] = \frac{C[k, k]}{\sum_{i=1}^{K} C[l, k]}, R[k] = \frac{C[k, k]}{\sum_{i=1}^{K} C[k, l]}$$

Évaluation pour la classification : matrice de confusion

Prédiction\Vérité terrain	Classe 1	Classe 2	Classe 3
Classe 1	10	2	3
Classe 2	7	15	0
Classe 3	3	5	10

Score F1

Moyenne harmonique entre précision et rappel

$$F1[k] = 2 \cdot \frac{P[k]R[k]}{P[k] + R[k]}$$

$$\mathsf{Macro-F1} = \frac{1}{K} \sum_{i=1}^{K} F1[k]$$

Matrice de confusion binaire

Dans le cas spécifique d'un problème à seulement deux classes (les positifs et les négatifs) :

Prédiction\Vérité terrain	Classe \oplus	$Classe \; \ominus$
Classe ⊕ Classe ⊖	•	Faux positifs Vrais négatifs

Précision et rappel

En notant tp les vrais positifs, fp les faux positifs et fn les faux négatifs :

$$P = \frac{tp}{tp + fp}, R = \frac{tp}{tp + fn}$$

Évaluation pour la régression

Coefficient de détermination linéaire R^2

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - f_{\theta}(x_{i}))^{2}}{(y_{i} - \bar{y})^{2}}$$

où $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ est la moyenne des vérités terrain.

Erreur quadratique moyenne

RMSE =
$$\frac{1}{n} \sum_{i=1}^{n} \sqrt{(y_i - f_{\theta}(x_i))^2}$$

Plan du cours

- 1 Qu'est-ce que l'apprentissage automatique?
 - Types de problèmes de décision
 - Modélisation à partir de données
 - Choix d'une fonction de perte
 - Choix des familles paramétriques
 - Estimation du modèle
 - Comment mesurer la capacité
 - Émploration de mandèles
 - = Mátriques d'ávaluation
 - Métriques d'évaluation
 - Méthodes de base
 - KIVI
 - Arbres et forêts
 - SVM
 - Regression
 - Clustering
 - Apprentissage profond

k plus proches voisins

Classification :

On associe à x la classe y majoritaire parmi ses k voisins les plus proches. Pour k = 1:

$$f(x) = y_i$$
 avec $i = \underset{j \in [\![1,n]\!]}{\arg\min} \|x_j - x\|$

Régression :

• On associe à x la moyenne \hat{y} des valeurs \hat{y}_i de ses k voisins les plus proches :

$$f(x) = \frac{1}{k} \sum_{i \in i_1, \dots, i_k} y_i$$

avec
$$(i_1, i_2, \dots, i_k) = \arg\min_{j \in [1, n]}^k ||x_j - x||$$

 $\mathsf{Variante}$: pondérer les voisins selon leur distance à x

Arbre de décision

Cascade de décisions binaires sur x : la variable x[i] est-elle supérieure ou inférieure à un certain seuil?

$$x[i] > ? \tau$$

- Possible de l'implémenter à la main à partir de connaissances expertes, ou de l'apprendre automatiquement
 - On détermine le seuil τ du test de sorte à maximiser la séparation dans l'enfant gauche et l'enfant droite de l'arbre
 - ⇒ augmenter la pureté d'un noeud → maximiser le nombre d'observations x qui ont la même classe y
 - Lorsque un noeud ne représente plus que quelques observations, on s'arrête → feuille

Forêt aléatoire

- Ensemble de *m* arbres de décision appris sur des sous-ensembles aléatoires du jeu de données
- Prédiction de la forêt aléatoire = classe prédite par la majorité des arbres individuels
- Principe de l'apprentissage *par ensemble* : de nombreux classifieurs faibles peuvent former un classifieur fort

SVM linéaire

- On cherche un hyperplan séparateur entre deux classes = frontière linéaire
- Contrainte : maximiser la marge entre le plan séparateur et les observations les plus proches du plan
- Le plan de séparation est déterminé uniquement par les points les plus proches de la frontière de décision : ce sont les *vecteurs de support*
- Hyperparamètre C : pénalise la présence d'observations mal classées, c'est-à-dire du mauvais côté de la frontière

SVM à noyau

- Extension des SVM au cas où les données ne sont pas linéairement séparables
- Noyau : fonction de comparaison (\sim produit scalaire)

•
$$K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$$

Régression linéaire

- Cherche un (hyper)plan qui minimise l'erreur aux moindres carrés lorsque l'on projette les observations sur ce plan
- En notant $\theta \in \mathbb{R}^d$ les paramètres du plan en dimension d et b le biais :

$$\theta^*, b^* = \underset{\theta \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{arg \, min}} \sum_{i=1}^n \|\theta x_i + b - y_i\|$$

Régression linéaire

- Cherche un (hyper)plan qui minimise l'erreur aux moindres carrés lorsque l'on projette les observations sur ce plan
- lacksquare En notant $heta \in \mathbb{R}^d$ les paramètres du plan en dimension d et b le biais :

$$\theta^*, b^* = \underset{\theta \in \mathbb{R}^d, b \in \mathbb{R}}{\arg \min} \sum_{i=1}^n \|\theta x_i + b - y_i\|$$

Possibilité de l'étendre en incluant des variables additionnelles, par exemple les monômes des variables existantes pour la régression polynomiale

k-moyennes

- K-means est un algorithme de classification automatique non-supervisé ("clustering")
- À partir d'observations $\mathcal{D} = (x_1, x_2, \dots, x_n)$, l'objectif est de déterminer k groupes C_p tels que :
- les groupes sont des sous-ensemble du jeu de données

$$\forall p \in [1; k], \quad C_p \subset \mathcal{D}$$

les groupes sont mutuellement exclusifs

$$\forall (p,q) \in [1;k]^2, \quad p \neq q \implies C_p \cap C_q = \varnothing$$

si deux observations appartiennent au même groupe, alors elles sont proches

$$\forall (x_i, x_j) \in \mathcal{D}^2, \qquad x_i \in C_p \text{ et } x_j \in C_p \implies ||x_i - x_j|| \le \tau$$

k-moyennes: algorithme

On cherche à minimiser la somme des variances intra-groupe, c'est-à-dire :

$$C_1, \ldots, C_k = \arg\min \sum_{i=1}^k \sum_{x_j \in C_i} ||x_j - m_i||^2$$

avec m_i le barycentre (centroïde) du groupe C_i .

- Pour ce faire, l'algorithme des k-moyennes agit de la façon suivante :
 - 1 tirer k observations au hasard qui représentent $m_1^{(0)},\ldots,m_k^{(0)}$ les centres initiaux
 - 2 Jusqu'à ce que les centres ne se déplacent plus :
 - Ajouter chaque observation au groupe dont le centroïde est le plus proche : groupe $(x_i) = \arg\min_i ||x_i m_i||^2$
 - 2 Mettre à jour les centres : $m_i^{(t+1)} = \frac{1}{|C_i^{(t)}|} \sum_{x_j \in C_i} x_j$

k-means: illustration

Réseaux de neurones

- On écrit $f_{\theta}(x)$ comme une suite d'opérations élémentaires (multiplications matricielles, convolutions, fonctions de transfert) différentiables paramétrées par θ
- Sous réserve que la fonction de coût ℓ soit différentiable par rapport aux paramètres θ , optimisation par descente de gradient :

$$\theta_{t+1} \leftarrow \theta_t + \nabla_{\theta_t} \ell(y_i, f_{\theta_t}(x_i))$$

■ Coûteux en calcul mais très grande capacité d'approximation!

$$b = w_1 \cdot a$$

$$c = w_2 \cdot a$$

$$d = w_3 \cdot b + w_4 + c$$

$$L = 10-d$$

Conclusion 47 / 48

En résumé

- Ai-je besoin de l'apprentissage automatique?
- Mon problème se prête-t-il à l'apprentissage automatique?
- Ai-je des données?
- De quelle tâche s'agit-il? Classification, régression? Autre chose?
- Quelle fonction de perte puis-je utiliser? Quelle métrique d'évaluation? Quelles familles de modèles?
- Entraîner les modèles
- Évaluer les modèles sur un ensemble de test séparé pour évaluer l'erreur de généralisation, idéalement par validation croisée

Conclusion 48 / 48

Quelques références bibliographiques

- C.-A. Azencott, Introduction au Machine Learning, Éditions Eyrolles, 2018.
- A. Géron, Machine Learning avec scikit-learn; Deep Learning avec Keras, Éditions Dunod, 2021.
- I. Goodfellow, Y. Bengio, A. Courville. *Deep Learning*. MIT Press, 2016. http://www.deeplearningbook.org. [?]
- A. Amor, L. Estève, O. Grisel, G. Lemaître, G. Varoquaux, T. Schmitt, MOOC Machine learning with scikit-learn, France Université Numérique, https://www.fun-mooc.fr/fr/cours/machine-learning-python-scikit-learn/.