Diseño y Análisis de Algoritmos

TEMA 3. ALGORITMOS VORACES

Introducción

- Motivación: Problema de la devolución del cambio
- Esquema de la técnica
- Aspectos de diseño
- Aplicaciones de los algoritmos voraces
 - Minimización del tiempo en el sistema
 - Problema de la Mochila
 - Planificación con plazo fijo
 - Problemas en grafos (árboles de recubrimiento y caminos más cortos)

Motivación

 Greedy (adj.): voraz, avaricioso, ávido, codicioso, glotón, ...

Dado un problema con n entradas, el objetivo es obtener un subconjunto de estas, de tal forma que se satisfaga una determinada restricción de forma óptimo

- · La forma habitual de resolverlo es:
 - Escoger las mejores entradas que verifiquen las restricciones hasta que se encuentra la solución que se busca

Motivación

•Supongamos un país cuyo sistema monetario tiene monedas con valores v_1, v_2, \ldots, v_n . El **problema del cambio** se pueden enunciar como.

"Descomponer una cantidad dada M, en monedas de valores v_1, v_2, \ldots, v_n , de forma que el número de monedas utilizados sea mínimo"

Motivación

Datos relevantes

- Candidatos: Monedas $C = \{v_1, v_2, ..., v_n\}$
- Solución: La suma de las monedas elegidas son igual al cambio
- Factibilidad: la suma de monedas no puede superar al cambio
- Objetivo: minimizar las monedas devueltas
- •¿Selección? Moneda de mayor valor mientras sea factible

Motivación

```
funcion cambioVoraz (M: entero, Valor: conjunto):vector
//M: cantidad a devolver;
//Valor: conjunto de valores de las monedas
var
moneda: Valor; Cambio: vector solución;
para moneda desde prim (Valor) hasta ult (Valor) hacer
   Cambio [moneda] \leftarrow 0
fin para
para moneda desde prim (Valor) hasta ult (Valor) hacer
   mientras (Valor[moneda] <= M) hacer</pre>
      Cambio [moneda] ← Cambio [moneda] + 1
      M \leftarrow M - Valor (moneda)
   fin mientras
fin para
devolver Cambio
fin funcion
```


Esquema de la técnica

Identificar

- Conjunto de candidatos y conjuntos de seleccionados
- Función de selección: elige el candidato idóneo en cada etapa
- Función solución: determina si los candidatos seleccionados son una solución
- Función de **factibilidad**: determina si el conjunto de seleccionados es prometedor
- Función objetivo: determina el valor de la solución

Esquema de la técnica

```
funcion voraz (C: conjunto):conjunto
{C es el conjunto de candidatos y S la solución}
S \leftarrow \emptyset
mientras C \neq \emptyset y no solucion(S) hacer
    x \leftarrow selectionar(C)
    C \leftarrow C \setminus \{x\}
    si factible (S \cup {x}) entonces
        S \leftarrow S \cup \{x\}
    fin si
fin mientras
si solucion(S) entonces
   devolver S
si no
  devolver \varnothing
fin si
fin funcion
```

Esquema de la técnica

Características del esquema

- · Se construye una solución iterativamente
- ·Se toma la decisión óptima en cada iteración
- Una vez analizado un candidato (introducir o excluir), no se reconsidera la decisión
- •Son voraces porque en cada etapa toman la mejor decisión sin preocuparse de mañana

Aspectos de diseño

Ventajas

- La implementación de este tipo de algoritmos suele ser sencilla
- Producen soluciones de forma muy eficiente (complejidad polinómica)
- Encuentran la solución **óptima** para un número **determinado** de problemas

Aspectos de diseño

Desventajas

- No siempre se encuentra la **solución óptima** (por ejemplo, cambio con monedas de 11,5 y 1)
- No reconsiderar decisiones pasadas puede conducir a no obtener el óptimo global (por ejemplo, el problema del viajante)
- Encontrar la función de selección que garantice la optimalidad (por ejemplo, prob. de la mochila)
- **Demostración** formal de la optimalidad (encuentra el óptimo global)

Aplicaciones de AV. Min. del tiempo de espera en el sistema

Supongamos un servidor que tiene que dar servicio a n clientes (procesador, cajero, ...). El tiempo requerido por cada cliente t_i es conocido. Se desea **minimizar el tiempo medio de cada cliente en el sistema**

$$T_{med} = \frac{\sum_{i=1}^{n} t_i}{n}$$

Como *n* es conocido, equivale a minimizar el tiempo total invertido pro cada cliente en el sistema

$$T = \sum_{i=1}^{n} t_i$$

Aplicaciones de AV. Min. del tiempo de espera en el sistema

- Conjunto de candidatos: los n clientes
- Función solución: todos los clientes han sido ordenados
- Función de **factibilidad**: si han sido ordenados los clientes o no
- Función objetivo: minimizar T
- Función de selección:¿?

Aplicaciones de AV. Min. del tiempo de espera en el sistema

Ejemplo con 3 clientes

n = 3					
	1	2	3		
t	5	10	3		

Orden	Т	T_{med}
1,2,3	5+(5+10)+(5+10+3) 38	12.67
1,3,2	5+(5+3)+(5+3+10) = 31	10.33
2,1,3	10+(10+5)+(10+5+3) = 43	14.33
2,3,1	10+(10+3)+(10+3+5) = 41	13.67
<mark>3,1,2</mark>	<mark>3+(3+5)+(3+5+10) = 29</mark>	<mark>9.67</mark>
3,2,1	3+(3+10)+(3+5+10) = 34	11.33

Aplicaciones de AV. Min. del tiempo de espera en el sistema

- Función de **selección**: Elegir los candidatos por orden creciente de t_i
- El algoritmo voraz se reduce a **ordenar** de forma no decreciente en t_i los n clientes
- En pseudo-código

```
procedimiento tiempoEspera(t[1..n], VAR sol[1..n]);
{bucle voraz}
    para i ← 1 hasta n hacer
        sol[i]←j del cliente no inc. con menor t[j]
        fin_para
fin_ procedimiento
```


Aplicaciones de AV. Problema de la mochila

Supongamos que tenemos n objetos y una mochila. Cada objeto i tiene un peso $w_i > 0$ y un valor $v_i > 0$. La mochila puede llevar un peso que no sobrepase W. Se desea llenar la mochila **maximizando** el valor de los objetos transportados

$$\max \sum_{i=1}^{n} x_i v_i$$

con las estricciones

$$\sum_{i=1}^{n} x_i w_i \le W$$

$$0 \le x_i \le 1 \text{ con } 1 \le i \le n$$

Aplicaciones de AV. Problema de la mochila

- Conjunto de candidatos: los n objetos
- Función **solución**: cuando no puedan añasirse más fracciones de objetos a la mochila
- Función de **factibilidad**: $\sum_{i=1}^{n} x_i w_i \leq W$
- Función **objetivo**: maximizar $\sum_{i=1}^{n} x_i v_i$
- Función de selección:¿?

Aplicaciones de AV. Problema de la mochila

Ejemplo con 5 objetos

<i>n</i> = 5, W = 100						
W	10	20	30	40	50	
V	20	30	66	40	60	
v/w 2.0 1.5 2.2 1.0 1.2						

Función	X _i	Valor
$Max v_i$	0, 0, 1, 0.5, 1	146
Min w_i	1, 1, 1, 1, 0	156
$\text{Max } v_i/w_i$	1, 1, 1, 0, 0.8	164

Aplicaciones de AV. Problema de la mochila

```
procedimiento mochila(w[1..n], v[1..n], W, VAR x[1..n]);
   {Inicialización}
   para i desde 1 hasta n hacer
       x[i] \leftarrow 0
   fin para
   peso ← 0
   {bucle voraz}
   mientras peso < W hacer
       i \leftarrow el mejor objeto restante {mejor tasa <math>v_i/w_i }
       si peso + w[i] ≤ W entonces
          x[i] \leftarrow 1
          peso ← peso + w[i]
       sino
          x[i] \leftarrow (W - peso)/w[i]
          peso ← W
       fin si
   fin mientras
fin_procedimiento
```

Aplicaciones de AV. Planificación con plazo fijo

Supongamos que tenemos n trabajos, donde cada trabajo i tiene una fecha tope de realización $f_i > 0$ y un beneficio $b_i > 0$

- Para cualquier trabajo i, el beneficio b_i se gana si y sólo sí se realiza antes (o coincidiendo) con su fecha tope f_i
- El trabajo se realiza en una máquina que consume una unidad de tiempo y sólo hay una máquina disponible (i.e., en un instante de tiempo sólo se puede ejecutar una tarea)

Aplicaciones de AV. Planificación con plazo fijo

Ejemplo con 5 objetos

<i>n</i> = 4	1	2	3	4
Beneficio	50	10	15	30
Fecha tope	2	1	2	1

Secuencia (T)	Beneficio	Secuencia (T)	Beneficio
<1>	50	<2,1>	60
<2>	10	<2,3>	25
<3>	30	<3,1>	65
<4>	30	<mark><4,1></mark>	<mark>80</mark>
<1,3>	65	<4,3>	45

Aplicaciones de AV. Planificación con plazo fijo

- Conjunto de candidatos: los n trabajos a realizar
- Función solución: cuando se haya planificado todas las tareas
- Función de **factibilidad**: conjunto *T* de trabajos que todavía se pueden completar antes de su tope
- Función **objetivo**: maximizar $\sum_{i \in T} b_i$
- Función de **selección**: Considerar trabajos en orden decreciente de los beneficios

Aplicaciones de AV. Planificación con plazo fijo

Ordenar por beneficio

n = 4	1	2	3	4
Beneficio	50	10	15	30
Fecha tope	2	1	2	1

n = 4	1	4	3	2
Beneficio	50	30	15	10
Fecha tope	2	1	2	1

Paso	Tarea sel.	Factible?	Т
0			Ø
2	1	<1>	<1>
3	4	<1,4>,<4,1>	<4,1>
4	3	<3,4,1>,<4,3,1>,<4,1,3>	<4,1>
1,3	2	<2,4,1>,<4,2,1>,<4,1,2>	<4,1>