CSE578: Computer Vision

Spring 2019:

Feature Learning with Deep Learning

Avinash Sharma & Anoop M. Namboodiri

Center for Visual Information Technology
IIIT Hyderabad, INDIA

[Content Generously Borrowed from CS231n]

Convolutional Neural Networks

- Course on CNN in Computer Vision at Stanford
 - o Fei-Fei Li, Justin Johnson and Serena Yeung
 - 2017 edition on YouTube: https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv

Convolutional Neural Networks: History

 LeNet: Digit / Character Recognition, LeCun, Bottou, Bengio, Haffner 1998.

Convolutional Neural Networks: History

- The Mark 1 Perceptron machine (Frank Rosenblatt, ~1957)
- Connected to a camera that used 20×20 cadmium sulfide photocells to produce a 400pixel image.
- Recognized letters of the alphabet
- Used gradient descent update rule for learning

Convolutional Neural Networks: History

Several other efforts

- Adaline/Madaline: Widrow and Hoff, 1960
- Backpropagation: Rumelhart et al. 1986
- RBMs: Pretraining: Hinton and Salakhutdinov 2006
- The watershed moment: "Imagenet Classification with Deep Convolutional Neural Networks": Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Classification

Retrieval

Object Detection

Semantic/Instance Segmentation

Self Driving

Street Sign Recognition

Human Pose Estimation; Video game play

- Medical Diagnosis
- Street Detection

Whale Recognition (Kaggle)

- Person Recognition
- Spoof Detection
- Video Activity Recognition
- Image Captioning
- Image Generation
- Style Transfer
- Image Super-resolution
- Image Coloring

- Lip Reading
- Visual QA
- Video Captioning
- Video Highlight Detection
- Single/few Image 3D Reconstruction
- And many others
 - Just see Kaggle

Deeper into Neural Networks

Linear Classifier

- A linear boundary separates two classes.
- Learning the classifier means learning the weights, $\alpha_{\rm i}$.

Perceptron Learning

- Randomly Initialize the weights
- For each sample:
 - Feed a sample and find the output (forward pass)
 - Find the difference between actual and desired outputs (cost function)
 - Find the effect of each weight on the cost (derivative)
 - Update the weights with a learning rate (GD)

Multi-layer Perceptron

MLP in Computer Vision

- 30x32 "Input Retina"
- 5 hidden units
- 10 output units
 - Sharp Left to Sharp Right

Fully Connected Layer

32x32x3 image → stretch to 3072 x 1

1 number: The result of taking a dot product of a row of W with the input (a 3072-dim. dot product)

Fully connected layer

- Image of size 200 X 200 and 3 colours (RGB)
- #Hidden Units: 120,000 (= 200X200X3)
- #Params: 14.4 billion (= 120K X 120K)
- Need huge training data to prevent over-fitting!

Locally connected layer

- #Params: 3.2 Million (= 120K X 27)
- Useful when the image is highly registered

 Convolutional layer with single feature map.

- #Params: 27 x #Feature Maps
- Sharing parameters
- Exploiting the stationarity property and preserves locality of pixel dependencies

Convolutional layer with **multiple** feature maps

• 32 x 32 x 3 image → Preserve spatial structure

Filters always extend the full depth of the input volume

• 32 x 32 x 3 image

5 x 5 x 3 filter

Convolve the filter with the image. i.e. "Slide over the image spatially, computing dot products"

1 number: The result of taking a dot product of the filter and a small 5x5x3 chunk of the image (i.e., 5*5*3 = 75-dim. dot product + bias)

$$\mathbf{w}^T\mathbf{x} + b$$

Consider a second, green filter

For example, if we had 6 5x5 filters, we will get 6 separate activation maps

We stack these up to get a "new image" of size 28x28x6!

Convolutional Neural Net

Is a sequence of Conv. Layers, interspersed with activation functions

Understanding a Conv. Net.

Understanding a Conv. Net.

7x7 input (spatially) assume 3x3 filter

 \rightarrow 5x5 output

7x7 input (spatially) assume 3x3 filter applied with stride 2

 \rightarrow 3x3 output

7x7 input (spatially) assume 3x3 filter applied with stride 3?

Doesn't fit!
Cannot apply 3x3 filter
on a 7x7 input with
stride 3

Output Dimensions:

N

	F		
F			

Output Size: (N-F)/stride + 1

e.g.,
$$N = 7$$
, $F = 3$

• stride 1: (7-3)/1 + 1 = 5

• stride 2: (7-3)/2 + 1 = 3

• stride 3: (7-3)/3 + 1 = 2.33!

Common to Zero-pad the border in practice

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

e.g., input 7x7
3x3 filter applied with stride 1
pad with 1 pixel border

What is the output size?

$$Size = 7x7$$

Note: output Size: (N-F+2P)/stride + 1

Common to Zero-pad the border in practice

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output Size = 7x7

In general, it is common to have conv layers with **stride 1**, **filter size FxF**, and **zero padding (F-1)/2**, preserving spatial size

- $F=3 \rightarrow zero pad with 1$
- $F=5 \rightarrow zero pad with 2$
- $F=7 \rightarrow zero pad with 3$

Recollect:

A 32x32 input convolved repeatedly with 5x5 filters shrinks volumes. (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

•

Example:

- Input Volume: 32 x 32 x 3
- 10 **5x5** filters with stride 1, pad 2

Output volume size?

32 x 32 x 10

Example:

- Input Volume: 32 x 32 x 3
- 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (1 for bias)

 \rightarrow 76*10 = 760 parameters in the layer

Note: 1x1 convolutions are perfectly fine

Pooling Layer

- Makes representations smaller and manageable
- Later filters have larger support
- Operates over each activation map independently

Max Pooling (2D)

max pool with 2x2 filters and stride 2

Summary

- CNNs are a series of CONV, ReLU, Pool, FC layers
- CNNs are computationally efficient and compact
- Parallels to human/animal visual system.
- Learnt features can be used for classification
- Recent Trends:
 - Stick with 3x3 filters, make the network deeper
 - Improve connectivity
 - Several innovations for specific applications