Rajalakshmi Engineering College

Name: Rithesh Madhav S

Email: 240701428@rajalakshmi.edu.in

Roll no: 240701428 Phone: 9884267696

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

Refer to the sample output for formatting specifications.

```
Sample Test Case
Input: 5
1051527
15
Output: 2 5 7 10
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
struct TreeNode* left;
  struct TreeNode* right;
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
}
// You are using GCC
struct TreeNode* insert(struct TreeNode* root, int key) {
  if(root == NULL)
```

```
240707428
   return createNode(key);
\if(key < root->data)
    root->left = insert(root->left,key);
  else if (key > root->data)
    root->right = insert(root->right,key);
  return root;
}
struct TreeNode* findMin(struct TreeNode* root) {
  while(root->left !=NULL)
    root = root->left:
   return root;
}
struct TreeNode* deleteNode(struct TreeNode* root, int key) {
  if(root == NULL)
    return root;
  if(key<root->data)
    root->left = deleteNode(root->left,key);
  else if(key>root->data)
    root->right = deleteNode(root->right,key);
  else{
    if(root->left == NULL){
       struct TreeNode* temp = root->right;
      free(root);
       return temp;
   } else if (root->right == NULL){
       struct TreeNode* temp = root->left;
       free(root);
       return temp;
    struct TreeNode* temp = findMin(root->right);
    root->data = temp->data;
    root->right = deleteNode(root->right, temp->data);
  return root;
}
void inorderTraversal(struct TreeNode* root) {
  if(root != NULL){
    inorderTraversal(root->left);
    printf("%d ",root->data);
```

```
inorderTraversal(root->right);
                                                                                       240701428
                                                          240701428
     int main()
        int N, rootValue, V;
        scanf("%d", &N);
        struct TreeNode* root = NULL;
        for (int i = 0; i < N; i++) {
          int key;
          scanf("%d", &key);
          if (i == 0) rootValue = key;
                                                                                       240701428
| oot = insert(r
| scanf("%d", &V);
| root = delect
          root = insert(root, key);
        root = deleteNode(root, V);
        inorderTraversal(root);
        return 0;
     }
```

240701428

Status: Correct

240707428

240701428

040101428

Marks: 10/10

240707428

240101428

240101428

240101428