ДЗ к семинару 26

 $\mathbf 3$ адача $\mathbf 1$. Доказать линейную независимость над $\mathbb R$ системы функций

 $1, \sin x, \cos x.$

 $\mathbf 3$ адача $\mathbf 2$. Доказать линейную независимость над $\mathbb R$ системы функций

$$1, \cos x, \cos(2x), \ldots, \cos(nx).$$

Указание. Рассмотреть производную и воспользоваться задачей из семинара.

Задача 3. Пусть $\alpha_1, \ldots, \alpha_n$ – попарно различные вещественные числа. Доказать линейную независимость над $\mathbb R$ системы функций

$$x^{\alpha_1}, x^{\alpha_2}, \ldots, x^{\alpha_n}.$$

Задача 4. Пусть F – поле, $n \in \mathbb{N}$ и $A, B \in \mathrm{M}_n(F)$. Какие из следующих функций двух аргументов являются билинейными функциями на $\mathrm{M}_n(F)$:

- 1. f(A, B) = tr(AB BA);
- 2. f(A, B) = tr(A + B);
- 3. $f(A,B) = \operatorname{tr}(A^T B)$.

Задача 5. Найти матрицу билинейной функции f в новом базисе, если заданы её матрица в старом базисе и формулы перехода:

$$\begin{pmatrix} 0 & 2 & 1 \\ -2 & 2 & 0 \\ -1 & 0 & 3 \end{pmatrix}, \quad \begin{cases} e'_1 &= e_1 + 2e_2 - e_3 \\ e'_2 &= e_2 - e_3 \\ e'_3 &= -e_1 + e_2 - 3e_3 \end{cases}.$$

Задача 6. Пусть билинейная функция f задана в некотором базисе матрицей F. Найти f(x,y), если:

$$F = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 3 & -1 \end{pmatrix}, \quad x = (1, 1, 1) \\ y = (-2, 0, 3).$$