Работа 4.3.2Б ДИФРАКЦИЯ СВЕТА НА УЛЬТРАЗВУКОВОЙ ВОЛНЕ В ЖИДКОСТИ

Подлесный Артём группа 827

4 марта 2020 г.

Цель работы: изучение дифракции света на синусоидальной акустической решётке и наблюдение фазовой решётки методом тёмного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Краткая теория

В работе изучается дифракция света на фазовой решётке. Фазовая решётка создаётся в жидкости ультразвуковыми волнами и наблюдается методом тёмного поля.

Рис. 1: Дифракция световых волн на акустической решётке

При прохождении ультразвуковой (УЗ) волны через жидкость в ней возникают периодические оптические неоднородности, обусловленные разницей значений коэффициента преломления в областях сжатия и разрежения. Эти периодические неоднородности играют роль своеобразной дифракционной решётки для проходящего сквозь жидкость света. При небольших амплитудах звуковой волны показатель преломления жидкости п меняется по закону:

$$n = n_0(1 = m\cos\Omega x),\tag{1}$$

где Ω — волновое число для УЗ-волны ($\Omega = 2\pi/\Lambda$),

 Λ — длина УЗволны, m — глубина модуляции показателя преломления, определяемая интенсивностью ультразвуковой волны ($m \ll 1$).

Пусть фаза световых колебаний на передней поверхности жидкости равна нулю. Тогда на задней поверхности (т.е. в плоскости z=0) она равна

$$\varphi = knL = \varphi_0(1 + m\cos\Omega x),\tag{2}$$

где L — толщина слоя жидкости в кювете, k — волновое число для света $(k=2\pi/\lambda)$, λ — длина световой волны, $\varphi_0=kn_0L$. Таким образом, в плоскости z=0 фаза световых колебаний является периодической функцией координаты x, иными словами — УЗ-волна в жидкости создаёт фазовую дифракционную решётку. Условие, при котором можно рассматривать решетку как чисто фазовую, можно записать так:

$$m \ll \frac{\Lambda}{L} \sqrt{\frac{\lambda}{L}}.$$
 (3)

Таким образом, чисто фазовая акустическая решётка реализуется лишь на достаточно слабой УЗ-волне. При повышении мощности ультразвука акустическая волна начинает работать как сложная амплитуднофазовая решётка. В общем случае после прохождения через кювету световое поле представляет совокупность не трёх, а большого числа плоских волн, распространяющихся под углами, определяемыми условием

$$\Lambda \sin \theta_m = m\lambda, \ (m = 0, \pm 1, \ldots). \tag{4}$$

Каждая из этих волн соответствует одному из максимумов в дифракционной картине Фраунгофера. Определяя на опыте положение дифракционных максимумов различного порядка, можно по формуле найти длину Λ УЗ-волны и вычислить скорость v распространения ультразвуковых волн в жидкости, если известна частота ν колебаний кварцевого излучателя:

$$v = \Lambda \nu. \tag{5}$$

Экспериментальная установка

В силу малости углов θ_m окончательное выражение может быть представлено в виде

$$l_m = mf \frac{\lambda}{\Lambda},\tag{6}$$

где l_m — измеренное на опыте линейное расстояние между m-м и нулевым максимумами, а f — фокусное расстояние объектива O2.

Рис. 2: Схема для наблюдения дифракции на акустической решётке.

1 Определение скорости ультразвука по дифракционной картине

В работе предлагается измерить координаты дифракционных полос, образующихся при дифракции света на акустической решётке, а также определить период этой решётки методом тёмного поля. По результатам измерений рассчитывается скорость ультразвука в воде. Все измерения ведутся на стоячей волне.

После настройки оборудования, была получена дифракционная картина. По ней, измерив по порядку длину УЗ-волны, как удвоенное расстояние между соседними дифракционными картинами, по (5) была измерена приблизительная скорость звука в воде. Результаты на таблице 1.

λ , mkm	f, MHz	v, м/с
690	1.111	1533

Таблина 1

Как видно, приближенное значение соответствует действительности, так как скорость звука в воде колеблется в районе 1500 м/с.

После этого была проведена основная работа этого пункта, были определены положения дифракционных полос при разной рабочей частоте. Эти данные показаны на таблице 2:

Как видно, полос довольно мало, что связано с недостаточно хорошей настройкой установки. Для каждой из частот построен график, по которому можно определить рнасстояние между дифракционными полосами. График показан на рис 3.

Таким образом получена зависимость длины УЗ волны Λ от частоты с помощью формулы (6). На основе нее, с помощью формулы (5) получена зависимость скорости звука от рабочей частоты. Обе зависимости представлены

f, MHz	Y, дел	m
1.023	76	2
	47	1
	19	0
	-16	-1
	-49	-2
2.161	83	1
	19	0
	-54	-1
4.477	153	1
	19	0
	-124	-1
0.862	43	1
	19	0
	-11	-1
	-40	-2

Таблица 2: Координаты дифракционных полос. Отмерены с помощью винта В. Один оборот - 100 делений, так что обороты так же учитывались. Все необходимые данные по цене деления представлены на установке.

на таблице 3.

f, MHz	l, mkm	σ_l , mkm	Λ , cm	σ_{Λ} , cm	<i>v</i> , м/с	σ_v , м/с
0.862	112	4	160.00	10.71	1379.20	92.36
1.023	125	3	143.36	7.92	1466.20	81.01
2.161	274	10	65.40	4.43	1413.63	95.77
4.477	554	10	32.35	1.59	1448.25	71.40

Таблица 3: Зависимости длин волн и скоростей звука в воде от частоты генератора.

Данные вполне достоверны, тк близки к табличным значениям. Средняя скорость звука в воде, полученная в работе, равна:

$$v_{\scriptscriptstyle 3B} = 1427 \pm 86 \; \mathrm{m/c}.$$

Определение скорости ультразвука методом тёмного поля

После настройки оборудования, когда был затемнен первый максимум, и была получена звуковая дифракционная картина, был проведен эксперимент. В

Рис. 3: График зависимости Y(m). Разными цветами обозначены графики для разных рабочих частот.

зависимости от частоты измерялись координаты первой и последней хорошо видимых темных полос, а так же кол-во светлых между ними. На основании этого можно определить Λ . Данные на таблице 4.

f MHz	Y1	Y2	N	l
2.168	5	150	18	64.44
4.430	23	125	26	31.38
1.552	20	120	9	88.89
1.178	30	105	5	120.00

Таблица 4: Экспериментально, при помощи метода темного поля, определенная длина УЗ волны в зависимости от частоты.

Осталось лишь определить скорость звука из соответствующего графика, представленного на рис 4.

Из коэффициента наклона находим значение для скорости ультразвука в воде:

$$v = 1414 \pm 25 \text{ m/c}.$$

Рис. 4: График зависимости $\Lambda(\frac{1}{\nu})$. Хоть он и построен по 4 точкам, но я им горжусь. Так, в целом, выглядят все графики в этой работе.

Однако погрешность этого значения не до конца соответствует действительности, так как при непосредственном измерении кол-ва светлых полос можно было легко обсчитаться. К тому же границы дифр решетки были достаточно размыты, так что не было четкого критерия для определения Y_1 и Y_2 . Тем не менее результаты двух методов вполне согласуются.

Вывод

Была изучена дифракция света на синусоидальной акустической решетке, и фазовая решетка наблюдалась методом темного поля. В ходе работы скорость ультразвука в воде была определена двумя способами: по дифракционной картине и методом темного поля. Полученные этими способами результаты совпали с хорошей точностью. Недостаток возможности получения большего кол-ва данных связан прежде всего с не совсем точной настройкой оборудования, что, в свою очередь, связано с недостатком опыта у студентов в работе с оптикой.