Walmart-Case-study

Problem Statement

Walmart is an American multinational retail corporation that operates a chain of supercenters, discount departmental stores, and grocery stores from the United States. Walmart has more than 100 million customers worldwide.

Business Problem The Management team at Walmart Inc. wants to analyze the customer purchase behavior (specifically, purchase amount) against the customer's gender and the various other factors to help the business make better decisions. They want to understand if the spending habits differ between male and female customers: Do women spend more on Black Friday than men? (Assume 50 million customers are male and 50 million are female).

Dataset The company collected the transactional data of customers who purchased products from the Walmart Stores during Black Friday. The dataset has the following features: Dataset link:

Walmart data.csv

User_ID: User ID

Product ID: Product ID

Gender: Sex of User

Age: Age in bins

Occupation: Occupation(Masked)

City_Category: Category of the City (A,B,C)

StayInCurrentCityYears: Number of years stay in current city

Marital_Status: Marital Status

ProductCategory: Product Category (Masked)

Purchase: Purchase Amount

Problems-

- 1. Import the dataset and do usual data analysis steps like checking the structure & characteristics of the dataset.
- 2. Detect Null values & Outliers (using boxplot, "describe" method by checking the difference between mean and median, isnull etc.)
- 3. Do some data exploration steps like: o Tracking the amount spent per transaction of all the 50 million female customers, and all the 50 million male customers, calculate the average, and conclude the results. o Inference after computing the average female and

male expenses. o Use the sample average to find out an interval within which the population average will lie. o Using the sample of female customers you will calculate the interval within which the average spending of 50 million male and female customers may lie.

- 4. Use the Central limit theorem to compute the interval. Change the sample size to observe the distribution of the mean of the expenses by female and male customers. o The interval that you calculated is called Confidence Interval. The width of the interval is mostly decided by the business: Typically 90%, 95%, or 99%. Play around with the width parameter and report the observations.
- 5. Conclude the results and check if the confidence intervals of average male and female spends are overlapping or not overlapping. How can Walmart leverage this conclusion to make changes or improvements?
- 6. Perform the same activity for Married vs Unmarried and Age o For Age, you can try bins based on life stages: 0-17, 18-25, 26-35, 36-50, 51+ years.
- 7. Give recommendations and action items to Walmart.

```
In [ ]: import pandas as pd
    import numpy as np
    from scipy.stats import norm

In [ ]: !gdown https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/293/origi
    Downloading...
    From: https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/293/origi
    nal/walmart_data.csv?1641285094
    To: /content/walmart_data.csv?1641285094
    100% 23.0M/23.0M [00:00<00:00, 100MB/s]

In [ ]: data = pd.read_csv("walmart_data.csv?1641285094")

In [ ]: data</pre>
```

	O3EI_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years
	0 1000001	P00069042	F	0- 17	10	А	2
	1 1000001	P00248942	F	0- 17	10	А	2
	2 1000001	P00087842	F	0- 17	10	А	2
	3 1000001	P00085442	F	0- 17	10	А	2
	4 1000002	P00285442	М	55+	16	С	4+
55000	1006033	P00372445	М	51- 55	13	В	1
55000	1006035	P00375436	F	26- 35	1	С	3
55000	1 006036	P00375436	F	26- 35	15	В	4+
5500	1 006038	P00375436	F	55+	1	С	2
55000	57 1006039	P00371644	F	46- 50	0	В	4+
55006	8 rows × 10) columns					
		columns					>
[]: data	shape	columns					>
[]: data	shape 068, 10)		e 550068	rows	and 10 colui	mns in Data	•
[]: data t[]: (5500	shape 068, 10)		e 550068	rows	and 10 colui	mns in Data	
[]: data t[]: (5500 From []: data <class range<="" th=""><th>shape 068, 10) above anal info() ss 'pandas.</th><th></th><th>.DataFra</th><th>ame'> 55000</th><th></th><th>mns in Data</th><th></th></class>	shape 068, 10) above anal info() ss 'pandas.		.DataFra	ame'> 55000		mns in Data	

From above analysis it is clear there is no null value available in the given dataset as all non-Null value are equal and same

Treatment of Data type

The column 'Stay_IN_Current_City_Years' need to be treated and its data type need to be changed

```
In [ ]: data['Stay_In_Current_City_Years'].unique()
Out[ ]: array(['2', '4+', '3', '1', '0'], dtype=object)
```

from its unique value and data type we can see it is string data type also it include one non-number value i.e 4+ which we can assume 4 for our reference further

from above process we change data type and aslo **converted the string notation into numerical integer format**

[]:	data							
[]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years
	0	1000001	P00069042	F	0- 17	10	А	2
	1	1000001	P00248942	F	0- 17	10	А	2
	2	1000001	P00087842	F	0- 17	10	А	2
	3	1000001	P00085442	F	0- 17	10	А	2
	4	1000002	P00285442	М	55+	16	С	4
	•••							
	550063	1006033	P00372445	М	51- 55	13	В	1
	550064	1006035	P00375436	F	26- 35	1	С	3
	550065	1006036	P00375436	F	26- 35	15	В	4
	550066	1006038	P00375436	F	55+	1	С	2
	550067	1006039	P00371644	F	46- 50	0	В	4
	550068 r	ows × 10	columns					
								+

data.describe().drop('User_ID',axis =1)

Out[]

:		Occupation	Stay_In_Current_City_Years	Marital_Status	Product_Category	Purchase
	count	550068.000000	550068.000000	550068.000000	550068.000000	550068.000000
	mean	8.076707	1.858418	0.409653	5.404270	9263.968713
	std	6.522660	1.289443	0.491770	3.936211	5023.065394
	min	0.000000	0.000000	0.000000	1.000000	12.000000
	25%	2.000000	1.000000	0.000000	1.000000	5823.000000
	50%	7.000000	2.000000	0.000000	5.000000	8047.000000
	75%	14.000000	3.000000	1.000000	8.000000	12054.000000
	max	20.000000	4.000000	1.000000	20.000000	23961.000000

Importing visualisation and Stats library for our further calculation

```
In [ ]: import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
import numpy as np
```

Checking Correlation among different factor in data and making heatplot for visualisation

Correlation

In []:	data.corr()								
	<pre><ipython-input-90-c44ded798807>:1: FutureWarning: The default value of numeric_ y in DataFrame.corr is deprecated. In a future version, it will default to Fals Select only valid columns or specify the value of numeric_only to silence this ning. data.corr()</ipython-input-90-c44ded798807></pre>								
Out[]:		User_ID	Occupation	Stay_In_Current_City_Years	Marital_Status	Produ			
	User_ID	1.000000	-0.023971	-0.030737	0.020443				
	Occupation	-0.023971	1.000000	0.030005	0.024280				
	Stay_In_Current_City_Years	-0.030737	0.030005	1.000000	-0.012819				
	Marital_Status	0.020443	0.024280	-0.012819	1.000000				
	Product_Category	0.003825	-0.007618	-0.004213	0.019888				
	Purchase	0.004716	0.020833	0.005422	-0.000463				

Heatmap

```
[n [ ]: sns.heatmap(data=data.corr(),annot=True,cmap='Blues')
```

<ipython-input-92-4744123c13fc>:1: FutureWarning: The default value of numeric_onl
y in DataFrame.corr is deprecated. In a future version, it will default to False.
Select only valid columns or specify the value of numeric_only to silence this war
ning.

sns.heatmap(data=data.corr(),annot=True,cmap='Blues')

Out[]: <Axes: >

Insights:

From the above graph it is clear that columns are **not strongly correlated** with each other even there are some variables which are negatively correlated so it is better to analyse the variables individually for better consideration

Checking and Treating outlier

```
In [ ]: plt.figure(figsize=(12,8))
    plt.subplot(2,3,1)
    sns.boxplot(data=data,x='Gender',y='Occupation')
    plt.subplot(2,3,3)
    sns.boxplot(data=data,x='Gender',y='Stay_In_Current_City_Years')
    plt.subplot(2,3,5)
    sns.boxplot(data=data,x='Gender',y='Purchase')
Out[ ]: <Axes: xlabel='Gender', ylabel='Purchase'>
```


Insights: from above Box plot it is clear that only **Purchase** have outlier in it for both male and female

Treating Outlier - Purchase column

1.Male (Outlier)

```
In [ ]: data_m = data.loc[data['Gender']== 'M']
    data_m
```

Out[]:		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years
	4	1000002	P00285442	М	55+	16	С	4
	5	1000003	P00193542	М	26- 35	15	А	3
	6	1000004	P00184942	М	46- 50	7	В	2
	7	1000004	P00346142	М	46- 50	7	В	2
	8	1000004	P0097242	М	46- 50	7	В	2
	550057	1006023	P00370853	М	26- 35	0	С	2
	550058	1006024	P00372445	М	26- 35	12	А	0
	550060	1006026	P00371644	М	36- 45	6	С	1
	550062	1006032	P00372445	М	46- 50	7	А	3
	550063	1006033	P00372445	М	51- 55	13	В	1

414259 rows × 10 columns

```
In []: m_p_25 = np.percentile(data_m['Purchase'],25)
    ## it is 25% percentile value of purchase for male similary for 50 percentile and 7
    m_p_50 = np.percentile(data_m['Purchase'],50)
    m_p_75 = np.percentile(data_m['Purchase'],75)
    m_p_25,m_p_50,m_p_75
Out[]: (5863.0, 8098.0, 12454.0)
```

so we got 25,50,75 percentile value of purchase made by male further we will calculate IQR

IQR

Upper_Whisker = Q3 + 1.5 X IQR || Lower_Whisker = Q1 - 1.5 X IQR

```
In [ ]: upper_line = m_p_75 + 1.5 * IQR
    lower_line = max(m_p_25 - 1.5 * IQR,0)
    lower_line,upper_line

Out[ ]: (0, 22340.5)
```

Checking how many outlier are there For purchase by Male

```
In [ ]: data_outlier_Male = data_m[data_m['Purchase'] > upper_line]
    data_outlier_Male['Purchase'].count()

Out[ ]: 1812
```

There are **1812 outliers** in purchase for *male buyers*

2.Female (Outlier in Purchase)

```
In []: data_f = data.loc[data['Gender']== 'F']
f_p_25 = np.percentile(data_f['Purchase'],25)
## it is 25% percentile value of purchase for male similary for 50 percentile and 7
f_p_50 = np.percentile(data_f['Purchase'],50)
f_p_75 = np.percentile(data_f['Purchase'],75)
f_p_25,f_p_50,f_p_75
Out[]: (5433.0, 7914.0, 11400.0)
```



```
In [ ]: upper_line = f_p_75 + 1.5 * IQR
lower_line = max(f_p_25 - 1.5 * IQR,0)
lower_line,upper_line
Out[ ]: (0, 20350.5)
```

Checking how many outlier are there For purchase by Male

```
In [ ]: data_outlier_Female = data_f[data_f['Purchase'] > upper_line]
    data_outlier_Female['Purchase'].count()

Out[ ]: 2065
```

There are **2065 outliers** in purchase for *Female*

Q-3 Data exploration:

1.Tracking the amount spent per transaction of all the 50 million female customers, and all the 50 million male customers, calculate the average, and conclude the results.

Male

Out[]:		User_ID	Purchase
		0	1000002	10525.610390
		1	1000003	11780.517241
		2	1000004	14747.714286
		3	1000005	7745.292453
		4	1000007	13804.000000
		•••		
		4220	1006030	12497.644068
		4221	1006032	9404.745455
		4222	1006033	13940.083333
		4223	1006034	16423.833333
		4224	1006040	9184.994444

4225 rows × 2 columns

```
In [ ]: sns.histplot(x=data_m_t['Purchase'],data=data_m_t)
    plt.title('Male Purchase')
Out[ ]: Text(0.5, 1.0, 'Male Purchase')
```



```
np.mean(data_m_t['Purchase'])
In [ ]:
         9806.867524226629
Out[]:
         data_m_t['Purchase'].describe()
In [ ]:
         count
                   4225.000000
Out[]:
         mean
                   9806.867524
                   1906.396106
         std
        min
                   2318.733333
         25%
                   8552.733333
         50%
                   9681.895604
         75%
                  10933.852459
                  18577.893617
        Name: Purchase, dtype: float64
```

Insights:

- 1. The graph clearly shows majority of transaction amount lies between 8000 -12000 and the calculated mean is 9806.865
- 2. Mean != Median {9806 != 9681) from above analysis so it can be concluded that the curve doesn't follow gaussian distribution property

Gaussian distribution property:

- 1. In a normal distribution, the mean, median and mode are equal.(i.e., Mean = Median = Mode).
- 2. The total area under the curve should be equal to 1.
- 3. The normally distributed curve should be symmetric at the centre, etc.

Female

```
In [ ]: data_f_t = data_f.groupby('User_ID')[['User_ID','Purchase']].agg({'Purchase':'mean'
    data_f_t = data_f_t.reset_index()
    data_f_t
```

Out[]:		User_ID	Purchase
	0	1000001	9545.514286
	1	1000006	8083.617021
	2	1000010	9728.744395
	3	1000011	7957.471429
	4	1000016	6840.454545
	•••		
	1661	1006035	6293.717105
	1662	1006036	8007.894942
	1663	1006037	9176.540984
	1664	1006038	7502.833333
	1665	1006039	7977.283784

1666 rows × 2 columns

```
In [ ]: sns.histplot(x=data_f_t['Purchase'],data=data_f_t)
plt.title('Female Purchase')
Out[ ]: Text(0.5, 1.0, 'Female Purchase')
```


Average Female

```
np.mean(data_f_t['Purchase'])
In [ ]:
         8965.19846393646
Out[ ]:
         data_f_t['Purchase'].describe()
In [ ]:
         count
                   1666.000000
Out[ ]:
         mean
                   8965.198464
         std
                   1705.615508
         min
                   3599.733333
         25%
                   7857.252965
         50%
                   8818.059311
         75%
                   9859.887613
                  18490.166667
        max
        Name: Purchase, dtype: float64
```

Insights:

- 1. The graph clearly shows majority of transaction amount For female lies between 7000 -10000 and the calculated mean is 8965.19
- 2. though Mean \sim Median (8965 \sim 8818) but there are factor which doesnt make data distribution eligible for normal distribution from above analysis so it can be concluded that the curve doesn't follow gaussian distribution property

Q) - 1. Are women spending more money per transaction than men? Why or Why not?

to attempt this question we will do Hypothesis testing ttest-independent as purchase behaviour of male and female are entirely different aand for that we would use scipy.stats library, we will do as follows

```
In [ ]: data_f_t['Purchase'].sum()
Out[ ]: 14936020.640918143

In [ ]: data_m_t['Purchase'].sum()
Out[ ]: 41434015.28985751

In [ ]: female_mean = np.mean(data_f_t['Purchase'])
    male_mean = np.mean(data_m_t['Purchase'])
    print("female_mean",female_mean)
    print("male_mean",male_mean)
    female_mean 8965.19846393646
    male_mean 9806.867524226629
```

Null

Hypothesis

Ho: Women mean spend < men mean spend

Alternative

Hypothesis

Ha: Women mean spend > men mean spend

```
In []: from scipy.stats import ttest_ind
    Female_data = data_f_t['Purchase']

Male_data = data_m_t['Purchase']

In []: t_stats,p_value = ttest_ind(Female_data,Male_data,alternative='greater')
    print("t_stats:",t_stats)
    print("p_value:",p_value)

    t_stats: -15.710670799370236
    p_value: 1.0

In []: alpha = 0.05 # Since checking for 95 % confidence Level
    if p_value < alpha:
        print(" Reject the Null hypothesis ")
    else:
        print(" Fail to reject the Null Hypothesis")</pre>
```

Fail to reject the Null Hypothesis

from Above results we can say that The null hypothesis Failed to be rejected: that women spend more than men is rejected as **pvalue is greater than alpha**

Insights: Women spends less than man

Q-3- C) Use the sample average to find out an interval within which the population average will lie. Using the sample of female customers you will calculate the interval within which the average spending of 50 million male and female customers may lie.

Male:

Taking a 100 sample from male data purchase set and experimenting it for 1000 times

In []: sns.histplot(data_m_t['Purchase'])

Out[]: <Axes: xlabel='Purchase', ylabel='Count'>

Inferences

Male

100 Sample

mean: 9810.24275323138

standard deviation: 190.98121429369385

Population - (M)

mean: 9806.867524226629

standard deviation: 1906.3961057186173

mean of sample mean ~ Population mean

sample distribution follows normal distribution

on taking Samples for 1000 times when calculated mean we get sample mean = poplation mean

finding range where Population average lies from sample average by checking with 95% confidence interval

Taking 100 Male sample to fetch out population mean interval

```
In [ ]: data_100_m = np.mean(data_m_t['Purchase'].sample(100))
data_100_m

Out[ ]: 9959.531350702759

In [ ]: range_m_95 = norm.interval(confidence=0.95, loc= data_100_m, scale = (data['Purchas range_m_95

Out[ ]: (8975.028624314975, 10944.034077090542)

In [ ]: range_m_95

Out[ ]: (9035.230853753315, 11004.236306528883)
```

Insights:

1. From sample average of Male with 95% confidence interval The population average will lie between the range as calculated in just above process for Male and Femalem buyers the range is - range_m_95

Taking Female sample for calculating Population mean Interval range

```
In [ ]: data_100_f = np.mean(data_f_t['Purchase'].sample(100))
data_100_f

Out[ ]: 9152.372808851947

In [ ]: range_f_95 = norm.interval(confidence=0.95, loc= data_100_f, scale = (data['Purchas range_f_95])

Out[ ]: (8167.870082464163, 10136.875535239731)
```

Insights:

From sample average with 95% confidence interval The population average will lie between the range as calculated in just above process for Female buyers the range is **range_f_95**

- 4. Use the Central limit theorem to compute the interval. Change the sample size to observe the distribution of the mean of the expenses by female and male customers.
 - The interval that you calculated is called Confidence Interval. The width of the interval is mostly decided by the business: Typically 90%, 95%, or 99%. Play around with the width parameter and report the observations.

Male

Confidence Interval - 90%

Taking Sample size = 10

```
data 10 m = np.mean(data m t['Purchase'].sample(10))
In [ ]: |
         range_m_90 = norm.interval(confidence=0.9, loc= data_10_m, scale = (data_m_t['Purch'])
         range_m_90
        (7743.229874235231, 9726.44759631879)
Out[ ]:
        Sample size = 50
         data_50_m = np.mean(data_m_t['Purchase'].sample(50))
In [ ]:
         range_m_90 = norm.interval(confidence=0.9, loc= data_50_m, scale = (data_m_t['Purch
         range_m_90
         (9739.72842843745, 10626.650356589673)
Out[]:
        Sample size = 100
         data 100 m = np.mean(data m t['Purchase'].sample(100))
         range_m_90 = norm.interval(confidence=0.9, loc= data_100_m, scale = (data_m_t['Purc
```

```
range_m_90

Out[]: (9706.159325251356, 10333.307835030842)
```

Confidence Interval = 95%

below i have created a function for easing the process of deriving the interval range with respect to different sample size

Sample size = 10

```
In [ ]: def ci_95(sample_size):
           data_n_m = np.mean(data_m_t['Purchase'].sample(sample_size))
           range_m_95 = norm.interval(confidence=0.95, loc= data_n_m, scale = (data_m_t['Pur
          return range_m_95
         ci_95(10)
         (8929.241297491502, 11292.390969349824)
Out[ ]:
        Sample Size = 50
         ci_95(50)
In [ ]:
         (9304.362698384848, 10361.195359841153)
Out[ ]:
        Sample Size = 100
         ci_95(100)
In [ ]:
         (9373.22162196726, 10120.515163462438)
Out[ ]:
```

Confidence Interval = 99%

Using the function we can derive the interval range with respect to different sample size for confidence interval = 99%

Sample Size = 10

```
In []:     def ci_99(sample_size):
          data_n_m = np.mean(data_m_t['Purchase'].sample(sample_size))
          range_m_99 = norm.interval(confidence=0.99, loc= data_n_m, scale = (data_m_t['Pur
          return range_m_95
          ci_99(10)

Out[]:     (9384.314903059323, 10131.608444554502)

In []:     ci_99(50)

Out[]:     (9384.314903059323, 10131.608444554502)

Sample Size = 100
```

```
In [ ]: ci_99(100)
Out[ ]: (9384.314903059323, 10131.608444554502)
```

understanding the above process through graph

considering sample size and confidence percentage:

```
sample_list = [5,10,50,100,250,500]
confidence_list = [0.9,0.95,0.99]
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size
	0	7526.510084	10331.203484	90.0	5
	1	9062.417302	11045.635024	90.0	10
	2	9464.174922	10351.096850	90.0	50
	3	9387.943489	10015.091999	90.0	100
	4	9618.387839	10015.031383	90.0	250
	5	9779.782886	10060.252226	90.0	500
	6	10042.464962	13384.463278	95.0	5
	7	8581.715983	10944.865655	95.0	10
	8	9636.094808	10692.927469	95.0	50
	9	9478.528282	10225.821823	95.0	100
	10	9514.920026	9987.549960	95.0	250
	11	9505.659015	9839.858847	95.0	500
	12	9535.930975	13928.061270	99.0	5
	13	7905.562175	11011.267291	99.0	10
	14	9413.375866	10802.289418	99.0	50
	15	9668.669701	10650.779891	99.0	100
	16	9596.467197	10217.608220	99.0	250
	17	9702.861968	10142.074998	99.0	500

```
In [ ]: df['Interval_length'] = df['Upper_bound'] -df['Lower_bound']
    df
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size	Interval_length
	0	7526.510084	10331.203484	90.0	5	2804.693400
	1	9062.417302	11045.635024	90.0	10	1983.217722
	2	9464.174922	10351.096850	90.0	50	886.921928
	3	9387.943489	10015.091999	90.0	100	627.148510
	4	9618.387839	10015.031383	90.0	250	396.643544
	5	9779.782886	10060.252226	90.0	500	280.469340
	6	10042.464962	13384.463278	95.0	5	3341.998316
	7	8581.715983	10944.865655	95.0	10	2363.149672
	8	9636.094808	10692.927469	95.0	50	1056.832661
	9	9478.528282	10225.821823	95.0	100	747.293541
	10	9514.920026	9987.549960	95.0	250	472.629934
	11	9505.659015	9839.858847	95.0	500	334.199832
	12	9535.930975	13928.061270	99.0	5	4392.130295
	13	7905.562175	11011.267291	99.0	10	3105.705116
	14	9413.375866	10802.289418	99.0	50	1388.913551
	15	9668.669701	10650.779891	99.0	100	982.110191
	16	9596.467197	10217.608220	99.0	250	621.141023
	17	9702.861968	10142.074998	99.0	500	439.213030

90% Confidence

```
In [ ]: df[df['Confidence_percent'] == 90.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('90% Confidence')

Out[ ]: Text(0.5, 1.0, '90% Confidence')
```


As sample size increases the the confidence intervals narrow down from graph and we can get better approximation of population mean

95% confidence

```
In [ ]: df[df['Confidence_percent'] == 95.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('95% Confidence')
Out[ ]: Text(0.5, 1.0, '95% Confidence')
```


99% Confidence

```
In [ ]: df[df['Confidence_percent'] == 99.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('99% Confidence ')

Out[ ]: Text(0.5, 1.0, '99% Confidence ')
```


In []: sns.barplot(x='Sample_Size',y='Interval_length',data=df,hue='Confidence_percent')
 plt.title("Interval Length vs Confidence Percent & Sample size distribution For Mal
 plt.show()

Insights:

- 1. From the above plot we can infer that **interval length [Upper_bound- Lower_bound] is very high** when **sample size is less** around 5,10,50 then **it decreases significantly** for all confidence interval 90%,95%,99 %
- 2. The Interval length Difference between 90 95- 99 % confidence **keep on decreasing** as the sample size increases and it **is least for sample size 250 and 500**

Similarly for Females

we can understand it through graphs

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size	Interval_length
	0	7860.419993	10369.724613	90.0	5	2509.304620
	1	7603.651033	9377.997346	90.0	10	1774.346313
	2	8106.645753	8900.157548	90.0	50	793.511794
	3	8751.897908	9312.995478	90.0	100	561.097571
	4	8685.361802	9040.231064	90.0	250	354.869263
	5	8740.091181	8991.021643	90.0	500	250.930462
	6	6663.254025	9653.274901	95.0	5	2990.020876
	7	8145.002714	10259.266751	95.0	10	2114.264037
	8	8341.438816	9286.966437	95.0	50	945.527622
	9	8501.212727	9169.801720	95.0	100	668.588993
	10	8759.188761	9182.041568	95.0	250	422.852807
	11	8678.414612	8977.416699	95.0	500	299.002088
	12	8208.730107	12138.283635	99.0	5	3929.553528
	13	7167.164076	9945.778023	99.0	10	2778.613947
	14	8604.809959	9847.443893	99.0	50	1242.633934
	15	8388.615222	9267.290103	99.0	100	878.674881
	16	8876.313555	9432.036344	99.0	250	555.722789
	17	8764.459291	9157.414644	99.0	500	392.955353

In []: sns.barplot(x='Sample_Size',y='Interval_length',data=dm,hue='Confidence_percent')
 plt.title("Interval Length vs Confidence Percent & Sample size distribution For Fem
 plt.show()

Interval Length vs Confidence Percent & Sample size distribution For Female

Insights:

- 1. From the above plot we can infer that **interval length [Upper_bound- Lower_bound] is very high** when **sample size is less** around 5,10,50 then **it decreases significantly** close to around 500 and less than 1000 for 100,250 and 500 sample for all confidence interval 90%,95%,99 %
- 2. The Interval length Difference between 90 95- 99 % confidence **keep on decreasing** as the sample size increases and it **is least for sample size 250 and 500**

90% Confidence interval

```
In [ ]: dm[dm['Confidence_percent'] == 90.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('90% Confidence')
Out[ ]: Text(0.5, 1.0, '90% Confidence')
```


95% Confidence Interval

```
In [ ]: df[df['Confidence_percent'] == 95.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('95% Confidence')
Out[ ]: Text(0.5, 1.0, '95% Confidence')
```


99% confidence interval

```
In [ ]: df[df['Confidence_percent'] == 99.0].plot(x='Sample_Size',y = ['Lower_bound','Upper
plt.title('99% Confidence')
Out[ ]: Text(0.5, 1.0, '99% Confidence')
```


Q5. Conclude the results and check if the confidence intervals of average male and female spends are overlapping or not overlapping. How can Walmart leverage this conclusion to make changes or improvements?

To deal with this question we can use 2sample ttest hypothesis testing over the male and female Confidence intervals:

```
In [ ]: ci_male = df  #df is data of Male having confidence interval with differnt sample
    ci_female = dm #df is data of Femmale having confidence interval with differnt samp
In [ ]: ci_male
In [ ]: ci_female
```

As from Above data the confidence interval are in two columns upper bound and lower bound we have to check seperately for lower and upper bound for overlapping test here we would use: **ttest_2sample with ttest_ind and alternative should be two_sided**

our null hypothesis would be that mean of confidence interval lower and upper bound doesn't overlaps w=and through alternative hypothesis we have to prove that they overlap each other

Checking Overlapping lower bound (confidence interval) with ttest_ind

Null

Hypothesis

Ho: Male confidence interval mean (lower_bound) != Female confidence interval mean(lower_bound) {not overlap}

Alternative

Hypothesis

Ha: Male confidence mean(lower_bound) = Female confidence interval mean(lower bound) {overlap}

```
In []: ci_male_1 =ci_male['Lower_bound']
ci_female_1 = ci_female['Lower_bound']

In []: t_stats,p_value = ttest_ind(ci_female_1 ,ci_male_1,alternative='two-sided')
    print("t_stats:",t_stats)
    print("p_value:",p_value)

    t_stats: -4.903565116619648
    p_value: 2.289890062495615e-05
    checking for standard 95% confidence level or alpha = 0.05

In []: alpha = 0.05 # Since checking for 95 % confidence Level
    if p_value < alpha:
        print(" Reject the Null hypothesis ")
    else:
        print(" Fail to reject the Null Hypothesis")</pre>
```

Reject the Null hypothesis

Insights: Null hypothesis is rejected it means lower bounds ci of male overlapp with lower bound ci of female

checking for Upper Bound

Null

Hypothesis

Ho: Male confidence interval mean (upper_bound) != Female confidence interval mean(upper_bound) {not overlap}

Alternative

Hypothesis

Ha: Male confidence mean(upper_bound) = Female confidence interval mean(upper_bound) {overlap}

```
In [ ]: ci_male_u =ci_male['Upper_bound']
        ci_female_u = ci_female['Upper_bound']
        t_stats,p_value = ttest_ind(ci_female_u ,ci_male_u,alternative='two-sided')
        print("t_stats:",t_stats)
        print("p_value:",p_value)
        t_stats: -3.688532455641945
        p_value: 0.0007828343018336092
In [ ]: alpha = 0.05 # Since checking for 95 % confidence Level
        if p_value < alpha:</pre>
          print(" Reject the Null hypothesis ")
        else:
          print(" Fail to reject the Null Hypothesis")
```

Reject the Null hypothesis

Insights: Null hypothesis is rejected it means Upper bounds ci of male overlapp with Upper bound ci of female

Insights: overall we can say that as Mean of male lower bound overlaps with mean of female lower bound of confidence interval and mean male upper bound overlaps with mean of female upper bound of confidence interval from above ttest 2 sample independent hypothesis testing we can conclude

that Male confidence interval overlaps with female confidence interval

Recommendation: mean average purchase of male lies in same confidence interval as female purchase mean lies which concludes that population mean of male or female averages could be predicted through either from the sample of male or female

In []:

Q.6 Perform the same activity for Married vs Unmarried and Age

Male Married

considering 1 - married || 0 - unmarried in Marital_status

```
In [ ]: Male_M = data_m.loc[data_m['Marital_Status'] == 1]
        Male_M_t = Male_M.groupby('User_ID')[['User_ID','Purchase']].agg({'Purchase':'mean
        Male M t
```

Out[]:		User_ID	Purchase
		0	1000004	14747.714286
		1	1000005	7745.292453
		2	1000007	13804.000000
		3	1000008	10345.363636
		4	1000013	11898.783333
		•••		
		1750	1006024	13792.833333
		1751	1006026	10441.872340
		1752	1006027	11530.478261
		1753	1006030	12497.644068
		1754	1006033	13940.083333

1755 rows × 2 columns

```
In [ ]: sns.histplot(x=Male_M_t['Purchase'],data=Male_M_t,color ='Plum')
   plt.title('Number of Married Male Vs purchases')
```

Outfold Text(0.5, 1.0, 'Number of Married Male Vs purchases')

Now changing the sample size and % confidence to understand the confidence

interval where the population means of Married male purchase amount lies

considering sample size and confidence percentage:

```
sample_list = [5,10,50,100,250,500]
confidence_list = [0.9,0.95,0.99]
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size
	0	8304.244507	11128.566607	90.0	5
	1	8777.545944	10774.643253	90.0	10
	2	9381.723787	10274.852855	90.0	50
	3	9573.127163	10204.664784	90.0	100
	4	9780.294947	10179.714409	90.0	250
	5	9684.446488	9966.878698	90.0	500
	6	7117.388314	10482.775669	95.0	5
	7	8420.806918	10800.495138	95.0	10
	8	9263.726695	10327.955621	95.0	50
	9	9251.972434	10004.495923	95.0	100
	10	9527.381426	10003.319070	95.0	250
	11	9635.620738	9972.159473	95.0	500
	12	9598.654884	14021.523588	99.0	5
	13	7581.588487	10709.028940	99.0	10
	14	9100.078611	10498.712501	99.0	50
	15	9804.094646	10793.078154	99.0	100
	16	9398.458155	10023.946245	99.0	250
	17	9517.693912	9959.980783	99.0	500

```
In [ ]: dmm['Interval_length'] = dmm['Upper_bound'] -dmm['Lower_bound']
dmm
sns.barplot(x='Sample_Size',y='Interval_length',data=dmm,hue='Confidence_percent')
plt.title("Interval Length vs Confidence Percent & Sample size distribution For Mal
plt.show()
```

Interval Length vs Confidence Percent & Sample size distribution For Male_Married

90% Confidence interval { Male Married }

```
In [ ]: dmm[dmm['Confidence_percent'] == 90.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
    plt.title(' Male Married 90% Confidence')
Out[ ]: Text(0.5, 1.0, ' Male Married 90% Confidence')
```

Male Married 90% Confidence

95% Confidence Interval { Male Married }

```
In [ ]: dmm[dmm['Confidence_percent'] == 95.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
    plt.title(' Male Married 95% Confidence')
Out[ ]: Text(0.5, 1.0, ' Male Married 95% Confidence')
```

Male Married 95% Confidence

99% Confidence Interval { Male Married }bold text

```
In [ ]: dmm[dmm['Confidence_percent'] == 99.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
plt.title('99% Confidence')
Out[ ]: Text(0.5, 1.0, '99% Confidence')
```


Male unmarried

```
In [ ]: Male_u = data_m.loc[data_m['Marital_Status'] == 0]
    Male_u_t = Male_u.groupby('User_ID')[['User_ID','Purchase']].agg({'Purchase':'mean'
    Male_u_t
```

Out[]:		User_ID	Purchase
	0	1000002	10525.610390
	1	1000003	11780.517241
	2	1000009	10243.086207
	3	1000012	10981.909091
	4	1000014	9817.615385
	•••		
	2465	1006022	10305.814815
	2466	1006028	12963.285714
	2467	1006032	9404.745455
	2468	1006034	16423.833333
	2469	1006040	9184.994444

2470 rows × 2 columns

```
In [ ]: sns.histplot(x=Male_u_t['Purchase'],data=Male_u_t,color ='lime')
plt.title('Number of Unmarried Male Vs purchases')
Out[ ]: Text(0.5, 1.0, 'Number of Unmarried Male Vs purchases')
```

Number of Unmarried Male Vs purchases

Now changing the sample size and % confidence to understand the confidence interval where the population means of Unmarried male purchase amount lies

considering sample size and confidence percentage:

```
sample_list = [5,10,50,100,250,500]
confidence_list = [0.9,0.95,0.99]
```

```
dum = pd.DataFrame(result)
dum.columns = ['Lower_bound','Upper_bound','Confidence_percent','Sample_Size']
dum
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size
	0	7833.448883	10624.642088	90.0	5
	1	9230.895374	11204.567017	90.0	10
	2	9288.845559	10171.498351	90.0	50
	3	9391.629880	10015.759654	90.0	100
	4	9526.363946	9921.098274	90.0	250
	5	9538.100098	9817.219419	90.0	500
	6	8455.595605	11781.507447	95.0	5
	7	8089.921549	10441.696366	95.0	10
	8	9329.640204	10381.385876	95.0	50
	9	9791.939291	10535.635787	95.0	100
	10	9609.075410	10079.430373	95.0	250
	11	9655.182199	9987.773383	95.0	500
	12	8976.530853	13347.519938	99.0	5
	13	8114.946769	11205.702791	99.0	10
	14	9335.277340	10717.505453	99.0	50
	15	9173.837895	10151.220767	99.0	100
	16	9594.157990	10212.309194	99.0	250
	17	9731.296714	10168.395623	99.0	500

```
In [ ]: dum['Interval_length'] = dum['Upper_bound'] -dum['Lower_bound']
dum
sns.barplot(x='Sample_Size',y='Interval_length',data=dum,hue='Confidence_percent')
plt.title("Interval Length vs Confidence Percent & Sample size distribution For Mal
plt.show()
```

Interval Length vs Confidence Percent & Sample size distribution For Male_Unmarried

Insights: Interval Length keep on decreasing as sample size increases and as confidence percent increases for all sample the interval length increases for sample

In []:	dun	1				
Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size	Interval_length
	0	7833.448883	10624.642088	90.0	5	2791.193205
	1	9230.895374	11204.567017	90.0	10	1973.671643
	2	9288.845559	10171.498351	90.0	50	882.652792
	3	9391.629880	10015.759654	90.0	100	624.129775
	4	9526.363946	9921.098274	90.0	250	394.734329
	5	9538.100098	9817.219419	90.0	500	279.119321
	6	8455.595605	11781.507447	95.0	5	3325.911842
	7	8089.921549	10441.696366	95.0	10	2351.774817
	8	9329.640204	10381.385876	95.0	50	1051.745672
	9	9791.939291	10535.635787	95.0	100	743.696497
	10	9609.075410	10079.430373	95.0	250	470.354963
	11	9655.182199	9987.773383	95.0	500	332.591184
	12	8976.530853	13347.519938	99.0	5	4370.989085
	13	8114.946769	11205.702791	99.0	10	3090.756022
	14	9335.277340	10717.505453	99.0	50	1382.228114
	15	9173.837895	10151.220767	99.0	100	977.382872
	16	9594.157990	10212.309194	99.0	250	618.151204
	17	9731.296714	10168.395623	99.0	500	437.098908

90% Confidence (Unmarried Male)

```
dum[dum['Confidence_percent'] == 90.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
plt.title(' Male Married 90% Confidence')
Text(0.5, 1.0, ' Male Married 90% Confidence')
```

Out[]:

Male Married 90% Confidence

95 % Confidence Interval

```
dum[dum['Confidence\_percent'] == 95.0].plot(x='Sample\_Size',y = ['Lower\_bound','Upprox = 0.0].plot(x='Sample\_Size',y = ['Lower\_bound','Upprox = 0.0].plot(x='Sample\_Size',y = 0.0].plot(
                                                                                                             plt.title(' Male Married 95% Confidence')
                                                                                                           Text(0.5, 1.0, ' Male Married 95% Confidence')
Out[ ]:
```

Male Married 95% Confidence

99% Confidence Interval

```
In [ ]: dum[dum['Confidence_percent'] == 99.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
plt.title(' Male Married 99% Confidence')
Out[ ]: Text(0.5, 1.0, ' Male Married 99% Confidence')
```


Female Married

considering 1 - married || 0 - unmarried in Marital_status

ut[]:		User_ID	Purchase
		0	1000010	9728.744395
		1	1000016	6840.454545
		2	1000024	9362.324675
		3	1000028	9062.456140
		4	1000032	9543.708333
		•••		
		714	1006001	10477.741667
		715	1006005	7398.300000
		716	1006029	9260.941176
		717	1006036	8007.894942
		718	1006039	7977.283784

719 rows × 2 columns

```
In [ ]: sns.histplot(x=Female_m_t['Purchase'],data=Female_m_t,color ='Gray')
   plt.title('Number of Married Female Vs purchases')
```

Out[]. Text(0.5, 1.0, 'Number of Married Female Vs purchases')

Now changing the sample size and % confidence to understand the confidence

interval where the population means of Married Female purchase amount lies

considering sample size and confidence percentage:

```
sample_list = [5,10,50,100,250,500]
confidence_list = [0.9,0.95,0.99]
```

```
In []: def ci(sample_size,confidence_interval):
    data_n_fm = np.mean(Female_m_t['Purchase'].sample(sample_size))
    range_fm = norm.interval(confidence=confidence_interval, loc= data_n_fm, scale =
    return range_fm

##Lets assume sample size from list
sample_list = [5,10,50,100,250,500]
confidence_list =[0.9,0.95,0.99]

result = list()
for i in confidence_list:
    for j in sample_list:
    lower_bound,upper_bound = ci(j,i)
        result.append([lower_bound,upper_bound,i*100,j])
dfm = pd.DataFrame(result)
dfm.columns = ['Lower_bound','Upper_bound','Confidence_percent','Sample_Size']
dfm
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size
	0	7201.312647	9799.496363	90.0	5
	1	7806.937446	9644.130771	90.0	10
	2	8790.995436	9612.613268	90.0	50
	3	8800.114102	9381.085643	90.0	100
	4	8923.036597	9290.475262	90.0	250
	5	8968.765484	9228.583856	90.0	500
	6	7817.852000	10913.778851	95.0	5
	7	7470.304896	9659.455766	95.0	10
	8	8647.925051	9626.943082	95.0	50
	9	8490.278750	9182.549040	95.0	100
	10	8728.587681	9166.417855	95.0	250
	11	8851.830784	9161.423469	95.0	500
	12	8054.642391	12123.379963	99.0	5
	13	8302.497738	11179.529666	99.0	10
	14	8589.774214	9876.422007	99.0	50

9241.753699

9385.211232

9222.002999

99.0

99.0

99.0

100

250

500

Lower hound Unner hound Confidence percent Sample Size

16

8331.956320

8809.804847

8815.129242

Ou+[].

In []: dfm['Interval_length'] = dfm['Upper_bound'] -dfm['Lower_bound']
 dfm

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size	Interval_length
	0	7201.312647	9799.496363	90.0	5	2598.183716
	1	7806.937446	9644.130771	90.0	10	1837.193325
	2	8790.995436	9612.613268	90.0	50	821.617832
	3	8800.114102	9381.085643	90.0	100	580.971541
	4	8923.036597	9290.475262	90.0	250	367.438665
	5	8968.765484	9228.583856	90.0	500	259.818372
	6	7817.852000	10913.778851	95.0	5	3095.926851
	7	7470.304896	9659.455766	95.0	10	2189.150870
	8	8647.925051	9626.943082	95.0	50	979.018032
	9	8490.278750	9182.549040	95.0	100	692.270289
	10	8728.587681	9166.417855	95.0	250	437.830174
	11	8851.830784	9161.423469	95.0	500	309.592685
	12	8054.642391	12123.379963	99.0	5	4068.737572
	13	8302.497738	11179.529666	99.0	10	2877.031928
	14	8589.774214	9876.422007	99.0	50	1286.647793
	15	8331.956320	9241.753699	99.0	100	909.797379
	16	8809.804847	9385.211232	99.0	250	575.406386
	17	8815.129242	9222.002999	99.0	500	406.873757

In []: sns.barplot(x='Sample_Size',y='Interval_length',data=dfm,hue='Confidence_percent')
 plt.title("Interval Length vs Confidence Percent & Sample size distribution For Fem
 plt.show()

Interval Length vs Confidence Percent & Sample size distribution For Female Married

We get the similar trait as usual for female Married

90%,95%,99% Confidence Percent {Female Married}

```
In [ ]: dfm[dfm['Confidence_percent'] == 90.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
plt.title(' Female Married 90% Confidence')
    dfm[dfm['Confidence_percent'] == 95.0].plot(x='Sample_Size',y = ['Lower_bound','Upr
plt.title(' Female Married 95% Confidence')
Out[ ]: Text(0.5, 1.0, ' Female Married 95% Confidence')
```

Female Married 90% Confidence

Female Married 95% Confidence

In []: dfm[dfm['Confidence_percent'] == 99.0].plot(x='Sample_Size',y = ['Lower_bound','Upr plt.title(' Female Married 99% Confidence')

Out[]: Text(0.5, 1.0, 'Female Married 99% Confidence')

Female Married 99% Confidence

In []:

AGE

Out[]:		User_ID	Age	Purchase
	0	1000001	0-17	9545.514286
	1	1000002	55+	10525.610390
	2	1000003	26-35	11780.517241
	3	1000004	46-50	14747.714286
	4	1000005	26-35	7745.292453
	•••			
	5886	1006036	26-35	8007.894942
	5887	1006037	46-50	9176.540984
	5888	1006038	55+	7502.833333
	5889	1006039	46-50	7977.283784
	5890	1006040	26-35	9184.994444

5891 rows \times 3 columns

```
In [ ]: sns.histplot(data = A, x= A['Age'])
Out[ ]: <Axes: xlabel='Age', ylabel='Count'>
```


Insights:

From the above graph we can understand that 26-35 age are highest in number and like wise 0-17 are the lowest one: since the data is limited so we can check mean value for 0-17 and 26-35 age range purchase amount

```
In [ ]: A['Age'] = A['Age'].str.split("-")
A1 = A.explode('Age')
A1['Age'] = A1['Age'].str[:2].apply(lambda x: int(x))
A1
```

ut[]:		User_ID	Age	Purchase
	0	1000001	0	9545.514286
	0	1000001	17	9545.514286
	1	1000002	55	10525.610390
	2	1000003	26	11780.517241
	2	1000003	35	11780.517241
	•••			
	5888	1006038	55	7502.833333
	5889	1006039	46	7977.283784
	5889	1006039	50	7977.283784
	5890	1006040	26	9184.994444
	5890	1006040	35	9184.994444

11410 rows × 3 columns

Insights:

Maximum purchase is done from people of around 26-35 year of age

SO we can check age by bins an thier mean purchase check using confidence interval for better understanding

```
In [ ]: A1['Age'].unique()
Out[ ]: array([ 0, 17, 55, 26, 35, 46, 50, 51, 36, 45, 18, 25])
```

Taking Age: 0-17

```
In [ ]: A1_b = A1[(A1['Age'] == 0) | (A1['Age'] == 17)]
A1_b
```

Out[]:		User_ID	Age	Purchase
	0	1000001	0	9545.514286
	0	1000001	17	9545.514286
	18	1000019	0	10055.648276
	18	1000019	17	10055.648276
	48	1000051	0	8030.880000
	•••			
	5823	1005973	17	13523.750000
	5839	1005989	0	9323.900000
	5839	1005989	17	9323.900000
	5856	1006006	0	7462.594203
	5856	1006006	17	7462.594203

436 rows × 3 columns

```
sns.histplot(x=A1_b['Purchase'],data=A1_b,color ='Teal')
plt.title('Age:[0-17] Vs purchases')
```

Text(0.5, 1.0, 'Age:[0-17] Vs purchases') Out[]:

Inference: From above graph the dataset is not large enough to analyse the mean value from sampling and Central limit theoram, we can predict the mean value by mere inference and using mean value

Taking Age: 26 - 35 { taking this age range as they are highest in number of purchaser}

```
In [ ]: A1_a = A1[(A1['Age'] == 26) | (A1['Age'] == 35)]
A1_a
```

Out[]:		User_ID	Age	Purchase
	2	1000003	26	11780.517241
	2	1000003	35	11780.517241
	4	1000005	26	7745.292453
	4	1000005	35	7745.292453
	7	1000008	26	10345.363636
	•••			
	5885	1006035	35	6293.717105
	5886	1006036	26	8007.894942
	5886	1006036	35	8007.894942
	5890	1006040	26	9184.994444
	5890	1006040	35	9184.994444

4106 rows × 3 columns

```
In [ ]: sns.histplot(x=A1_a['Purchase'],data=A1_a,color ='Teal')
plt.title('Age:[26-35] Vs purchases')
Out[ ]: Text(0.5, 1.0, 'Age:[26-35] Vs purchases')
```



```
def ci(sample_size,confidence_interval):
In [ ]:
          data_A1_a = np.mean(A1_a['Purchase'].sample(sample_size))
          range_A1_a = norm.interval(confidence=confidence_interval, loc= data_A1_a, scale
          return range_A1_a
         ##Lets assume sample size from list
         sample_list = [5,10,50,100,250]
         confidence_list =[0.9, 0.95, 0.99]
         result = list()
         for i in confidence_list:
          for j in sample list:
             lower_bound,upper_bound = ci(j,i)
             result.append([lower_bound,upper_bound,i*100,j])
         dA1_a = pd.DataFrame(result)
         dA1_a.columns = ['Lower_bound','Upper_bound','Confidence_percent','Sample_Size']
         dA1_a
```

Out[]:		Lower_bound	Upper_bound	Confidence_percent	Sample_Size
	0	7692.844486	10376.805232	90.0	5
	1	8785.240418	10683.087262	90.0	10
	2	9162.520343	10011.263254	90.0	50
	3	9300.146264	9900.298132	90.0	100
	4	9347.208203	9726.777572	90.0	250
	5	7302.895448	10501.031934	95.0	5
	6	8637.464127	10898.888124	95.0	10
	7	9249.393110	10260.732667	95.0	50
	8	9338.928003	10054.053062	95.0	100
	9	9410.115162	9862.399961	95.0	250
	10	9637.446044	13840.509848	99.0	5
	11	7405.936503	10377.951421	99.0	10
	12	9018.020900	10347.146377	99.0	50
	13	8947.566116	9887.399754	99.0	100
	14	8993.700569	9588.103552	99.0	250

In []: sns.barplot(x='Sample_Size',y='Interval_length',data=dA1_a,hue='Confidence_percent'
 plt.title("Interval Length vs Confidence Percent & Sample size distribution For Age
 plt.show()

Interval Length vs Confidence Percent & Sample size distribution For Age:[26-35]

Inference: For less sample there is more interval length were mean purchase for that age range[26-35] will lie and as we increase the sample size uptill 250 we can predict the mean purchase with more precision

Insights and Recommedation

Insights

1.the features of data given are not correlated enough so all data needs to be treated independently and needs to be look upon individually for fetching insights

- 1. shows majority of transaction amount lies between 8000 -12000 and the calculated mean is 9806.865 3.majority of transaction amount For female lies between 7000 -10000 and the calculated mean is 8965.19 4.Women spends less than man {inferenced from hypothesis ttest} 5.Male purchase confidence interval overlaps with female 6.From the above graph we can understand that 26-35 age are highest in number and like wise 0-17 are the lowest one
- 2. for 100 sample checking and 95 % confidence level the mean of purchse for age [26-35] lies in interval (9338.928003 10054.053062)

{ i took because 95% is considered standard and 100 sample is decent choice for predicting interval where population mean value will lies}

Recommendation:

- 1. on Black friday women spend less than men so womens should be given incentives on that particular day through offers etc.
- 2. 26-35 year of age persons need to be adressed in particular as they are the most buyers among all age group the marketing startegy and products availability should be around these age group interest so that these people get retained . further theother age group should also be take care off by provising them incentives or 3.smoother amount transaction systems need to be provided to females as the mean purchase amount range lies in 7000- 10000 , such big amount could be made possible through credit card or debit cards transaction furthermore walmart should provide the financial transactions incentives through cashbacks and offers or prize for these purchase range 7000 10000 female it also applies for males within thr transaction 0f 8000-12000 buying we can categories these users attract them for more high purchase so as firm could earn more profit
- 3. as women spends less than men so womens good items need to be updated for more choices of purchase so that women could buy more