CLAIMS

1	1. A method for determining a correct amount of fuel to be
2	delivered to an engine to accomplish efficient combustion wherein the engine
3	is being re-started after a long or short shut-off period, said method comprising
4	the steps of:
5	providing a computer controller for controlling the delivery of fuel into
6	the engine via a fuel injection system;
7	providing at least one air/fuel sensor heater in communication with the
8	computer controller;
9	using the computer controller to determine a value of conductance of
10	said air/fuel sensor heater;
11	determining an amount of fuel that should be delivered to the engine
12	based on the value of conductance of the air/fuel sensor heater and at least one
13	other engine parameter; and
14	using the computer controller to cause the fuel injection system to
15	deliver the determined amount of fuel to the engine.
1	2. The method of claim 1 wherein the step of using the computer
2	controller to determine the value of conductance is accomplished by direct
3	measurement at the air/fuel sensor heater.

1	5. The method of claim I wherein the step of determining the
2	value of conductance comprises using the computer controller to calculate
3	conductance from measured impedance values at the air/fuel sensor heater.
1	4. The method of claim 1 wherein the value of conductance
2	decreases as the shut-off period increases.
3	
4	5. The method of claim 1 wherein the at least one other engine
5	parameter is engine coolant temperature and intake air temperature.
6	
7	6. An apparatus for controlling an amount of fuel to be delivered
8	to an engine at restart, said system comprising:
9	at least one air/fuel sensor heater;
10	a fuel injection system; and
11	a computer controller in communication with said fuel
12	injection system and said at least one air/fuel sensor heater, said computer
13	controller operative to:
14	a) determine a value of conductance of said at least one air/fuel sensor
15	heater;
16	b) determine an amount of fuel that should be delivered to the engine
17	based on the value of conductance of the at least one air/fuel sensor heater and
18	at least one other engine parameter; and

TTC-13402/08 30811gs

19	c) cause the fuel injection system to deliver the determined amount of
20	fuel to the engine.
21	
1	