BEST AVAILABLE COPY

Docket No.: FUJO 18.314 Mailed: February 14, 2001
For: MOBILE COMMUNICATIONS SERVICE PROVIDING SYSTEM AND MOBILE
COMMUNICATIONS SERVICE PROVIDING METHOD
Enclosures:
[X] Transmittal Sheet (in duplicate) MAR[X] 8-7124 pgs. of spec.
[X] 76Sbeets of Drawings (FIGS.: 1-27,28A-B, 29-30,31A-B,32A-B,33-61
[X] Sub-Power of Attornov Samplesan Samplesan Company
[X] Sub-Power of Attorney 62A-B,63C-D,64A-B,65-68,69A,69B,69C
[X]Original Signed Decl. 70-73)
[]Preliminary Amendment [X]Form PTO-1619A,B& Assignment
[X] Cert. Copies of Japanese Appln.No.(s) 2000-43408
[]Small Entity Statement [X]Check for \$990.00
[X] Info. Disc. Statement, PTO-1449, Copy(ies) of 10 ref
[]Other
Filed Via Express Mail No.EL522394161US
Stamp of USPTO
JC996 U.S. PTO
09/783185

THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of : Yoichiro IGARASHI, et al.

Filed : Concurrently herewith

For : MOBILE COMMUNICATIONS SERVICE....

Serial No. : Concurrently herewith

February 14, 2001

Assistant Commissioner of Patents Washington, D.C. 20231

SUBMISSION OF PRIORITY DOCUMENT

S I R:

Attached herewith are Japanese patent application No. 2000-43408 of February 21, 2000 whose priority has been claimed

in the present application.

submitted

Samson Helfgott Reg. No. 23,072

HELFGOTT & KARAS, P.C. 60th FLOOR EMPIRE STATE BUILDING NEW YORK, NY 10118 DOCKET NO.:FUJO 18.314 BHU:priority

Filed Via Express Mail Rec. No.: EL522394161US

On: February 14, 2001

By: Brendy Lynn Belony

Any fee due as a result of this paper, not covered by an enclosed check may be charged on Deposit Acct. No. 08-1634.

日本国特許庁

PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed th this Office.

出 願 年 月 日 Pate of Application:

2000年 2月21日

願 番 号

Splication Number: 特願2000-043408

類 人 Bilicant (s):

富士通株式会社

2000年 9月29日

特許庁長官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

9951510

【提出日】

平成12年 2月21日

【あて先】

特許庁長官殿

【国際特許分類】

H04L 12/46

H04L 12/28

H04L 12/56

【発明の名称】

移動通信サービス提供システム、および移動通信サービ

ス提供方法

【請求項の数】

15

【発明者】

【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

五十嵐 洋一郎

【発明者】

【住所又は居所】 福岡県福岡市早良区百道浜2丁目2番1号 富士通九州

通信システム株式会社内

【氏名】

山村 新也

【発明者】

【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】

掛水 光明

【発明者】

【住所又は居所】 福岡県福岡市早良区百道浜2丁目2番1号 富士通九州

通信システム株式会社内

【氏名】

村田 一徳

【発明者】

【住所又は居所】 神奈川県川崎市中原区上小田中4丁目1番1号 富士通

株式会社内

【氏名】 若本 雅晶

【特許出願人】

【識別番号】 000005223

【氏名又は名称】 富士通株式会社

【代理人】

【識別番号】 100074099

【住所又は居所】 東京都千代田区二番町8番地20 二番町ビル3F

【弁理士】

【氏名又は名称】 大菅 義之

【電話番号】 03-3238-0031

【選任した代理人】

【識別番号】 100067987

【住所又は居所】 神奈川県横浜市鶴見区北寺尾7-25-28-503

【弁理士】

【氏名又は名称】 久木元 彰

【電話番号】 045-573-3683

【手数料の表示】

【予納台帳番号】 012542

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】 図面 1

【物件名】

要約書 1

【包括委任状番号】 9705047

【プルーフの要否】 要

(書類名) 明細書

【発明の名称】 移動通信サービス提供システム、および移動通信サービス提供 方法

【特許請求の範囲】

【請求項1】 移動ノードから送出される位置登録要求情報が外部エージェント、サーバシステムを介してホームエージェントに通知されると共に、その位置登録要求情報に対応する応答情報が上記ホームエージェントからサーバシステム、外部エージェントを介して上記移動ノードへ返送されることにより、上記ホームエージェントおよび外部エージェントに上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供する移動通信サービス提供システムであって、

上記ホームエージェントおよび外部エージェントは、パケットの転送先を決定 するための制御手段を備え、

上記サーバシステムは、

移動ノードが要求するサービスを提供するための情報を含むサービスプロファイルを管理するデータベースから、上記移動ノードに対応するサービスプロファイルを抽出する抽出手段と、

その抽出手段により抽出されたサービスプロファイルを、上記制御手段が 使用できる形式に編集するサービス管理手段と、

そのサービス管理手段により編集されたサービスプロファイルを上記ホームエージェントおよび外部エージェントに配付する配付手段とを備え、

上記ホームエージェントおよび外部エージェントが、上記サーバシステムから配付されたサービスプロファイルに従って上記制御手段を利用することによりサービスを提供する移動通信サービス提供システム。

【請求項2】 請求項1に記載のシステムであって、

上記移動ノードが付加価値サービスを要求していないときは、上記サーバシステムは、上記ホームエージェントおよび外部エージェントに対してサービスプロファイルを配付せず、

上記ホームエージェントおよび外部エージェントは、自ら生成する情報に従っ

て基本サービスを提供する。

【請求項3】 請求項1に記載のシステムであって、

予め決められたサービスに対して使用可能なアドレスの範囲が予め指定されて おり、

受信パケットの中から特定のパケットを抽出するための条件として上記予め指定されたアドレスの範囲を表す情報を含むサービスプロファイルが上記ホームエージェントおよび外部エージェントに予め設定されており、

上記サーバシステムは、上記予め決められたサービスを要求する移動ノードに 対して上記予め指定されたアドレスの範囲内のアドレスを割り当てる。

【請求項4】 請求項1に記載のシステムであって、

上記サーバシステムは、上記移動ノードに係わるサービスプロファイルを抽出 するために上記データベースにアクセスする権利を有するホームサーバ装置、お よびそのようなアクセス権利を有していない外部サーバ装置を含み、

上記ホームサーバ装置は、上記ホームエージェントおよび上記外部サーバ装置 へ上記サービスプロファイルを配付し、その外部サーバ装置が上記外部エージェ ントへそのサービスプロファイルを回送する。

【請求項5】 請求項1に記載のシステムであって、

上記サーバシステムは、上記移動ノードに係わるサービスプロファイルを抽出 するために上記データベースにアクセスする権利を有するホームサーバ装置、お よびそのようなアクセス権利を有していない外部サーバ装置を含み、

上記ホームサーバ装置は、上記外部サーバ装置へ上記サービスプロファイルを配付し、その外部サーバ装置が上記ホームエージェントおよび外部エージェントへそのサービスプロファイルを回送する。

【請求項6】 請求項1に記載のシステムであって、

上記サーバシステムは、上記移動ノードに係わるサービスプロファイルを抽出 するために上記データベースにアクセスする権利を有するホームサーバ装置、お よびそのようなアクセス権利を有していない外部サーバ装置を含み、

上記移動ノードは、第1の外部エージェントの通信エリアから第2の外部エー ジェントの通信エリアに移動したときに、その第2の外部エージェントを介して ト記ホームエージェントへ位置登録要求情報を通知し、

上記ホームエージェントは、上記移動ノード宛てのパケットが上記第2の外部 エージェントへ転送されるように、パケットをルーティングするために設けられ ている情報を更新し、

上記外部サーバ装置は、上記第2の外部エージェントへサービスプロファイル を配付する。

【請求項7】 請求項1に記載のシステムであって、

上記サーバシステムは、上記移動ノードに係わるサービスプロファイルを抽出 するために上記データベースにアクセスする権利を有するホームサーバ装置、お よびそのようなアクセス権利を有していない第1および第2の外部サーバ装置を 含み、

上記移動ノードは、第1の外部サーバ装置により管理される第1の外部エージェントの通信エリアから第2の外部サーバ装置により管理される第2の外部エージェントの通信エリアに移動したときに、その第2の外部エージェント、第2の外部サーバ装置、ホームサーバ装置を介して上記ホームエージェントへ位置登録要求情報を通知し、

上記ホームエージェントは、上記移動ノード宛てのパケットが上記第2の外部 エージェントへ転送されるように、パケットをルーティングするために設けられ ている情報を更新し、

上記ホームサーバ装置は、上記外部サーバ装置へサービスプロファイルを配付し、その外部サーバ装置が上記第2の外部エージェントへそのサービスプロファイルを回送する。

【請求項8】 請求項1に記載のシステムであって、

上記サーバシステムは、上記移動ノードに係わるサービスプロファイルを抽出 するために上記データベースにアクセスする権利を有するホームサーバ装置、お よびそのようなアクセス権利を有していない第1および第2の外部サーバ装置を 含み、

上記移動ノードは、第1の外部サーバ装置により管理される第1の外部エージェントの通信エリアから第2の外部サーバ装置により管理される第2の外部エー

ジェントの通信エリアに移動したときに、その第2の外部エージェント、第2の 外部サーバ装置、ホームサーバ装置、第1の外部サーバ装置を介して上記ホーム エージェントへ位置登録要求情報を通知し、

上記ホームエージェントは、上記移動ノード宛てのパケットが上記第2の外部 エージェントへ転送されるように、パケットをルーティングするために設けられ ている情報を更新し、

上記ホームサーバ装置は、上記外部サーバ装置へサービスプロファイルを配付し、その外部サーバ装置が上記第2の外部エージェントへそのサービスプロファイルを回送する。

【請求項9】 請求項1に記載のシステムであって、

上記ホームエージェントは、通信ノードから上記移動ノード宛てのパケットを 受信すると、受信先として上記移動ノードが設定されているパケットを抽出する ためのサービスプロファイルをその通信ノードへ配付し、

その通信ノードは、その配付されたサービスプロファイルに従って抽出された パケットを上記外部エージェントへ送出するための情報を生成する。

【請求項10】 請求項1に記載のシステムであって、

複数の移動ノードに対して割り当てられた1つの仮想的なアドレスを受信先と するパケットをそれら複数の移動ノードの中の任意の移動ノードへ転送するサー ビスを提供するにあたって、

上記仮想的なアドレスが設定されたパケットを受信するアドレスプロキシサーバが設けられ、

上記サーバシステムは、上記仮想的なアドレスが設定されたパケットを抽出して上記複数の移動ノードの中の特定の移動ノードへ転送するためのサービスプロファイルを上記アドレスプロキシサーバへ配付すると共に、上記特定の移動ノードを収容する外部エージェント宛てのパケットをその特定の移動ノードへ転送するためのサービスプロファイルをその外部エージェントへ配付する。

【請求項11】 移動ノードから送出される位置登録要求情報が外部エージェント、サーバシステムを介してホームエージェントに通知されると共に、その 位置登録要求情報に対応する応答情報が上記ホームエージェントからサーバシス テム、外部エージェントを介して上記移動ノードへ返送されることによって、上 ヒホームエージェントおよび外部エージェントに上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供する移動通信サービス提供方法であって、

上記ホームエージェントおよび外部エージェントは、パケットの転送先を決定 するための制御手段を備えており、

上記サーバシステムが、

移動ノードが要求するサービスを提供するための情報を含むサービスプロファイルを管理するデータベースから、上記移動ノードに対応するサービスプロファイルを抽出し、

その抽出したサービスプロファイルを、上記制御手段が使用できる形式に 編集し、

その編集されたサービスプロファイルを上記ホームエージェントおよび外 部エージェントに配付し、

上記ホームエージェントおよび外部エージェントが、上記サーバシステムから 配付されたサービスプロファイルに従って上記制御手段を利用することによりサ ービスを提供する移動通信サービス提供方法。

【請求項12】 移動ノードから送出される位置登録要求情報が外部エージェント、サーバシステムを介してホームエージェントに通知されると共に、その位置登録要求情報に対応する応答情報が上記ホームエージェントからサーバシステム、外部エージェントを介して上記移動ノードへ返送されることによって、上記ホームエージェントおよび外部エージェントに上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供する移動通信サービス提供方法であって、

上記サーバシステムが、

移動ノードが要求するサービスを提供するための情報を含むサービスプロファイルを管理するデータベースから、上記移動ノードに対応するサービスプロファイルを抽出し、

その抽出したサービスプロファイルを、サービスの種別には依存しない形

式に編集し、

その編集されたサービスプロファイルを上記ホームエージェントおよび外 _{都エー}ジェントに配付し、

上記ホームエージェントおよび外部エージェントが、上記サーバシステムから 配付されたサービスプロファイルに従ってサービスを提供する移動通信サービス 提供方法。

【請求項13】 移動ノードが要求するサービスを提供するための情報を含むサービスプロファイルを管理するデータベースと、それぞれ移動ノードを収容することができる複数のエージェントと、移動ノードに対応するサービスプロファイルを上記データベースから抽出して上記移動ノードを収容しているエージェントへ配付するサーバとを備えて移動通信サービスを提供する移動通信サービス提供方法であって、

上記複数のエージェントは、それぞれ、パケットの転送先を決定するための制 御手段を備えており、

上記サーバが、上記データベースから抽出したサービスプロファイルを、上記 各エージェントに設けられている制御手段が使用できる形式に編集し、上記移動 ノードを収容しているエージェントに対してその編集したサービスプロファイル を配付し、

上記移動ノードを収容しているエージェントが、上記サーバにより編集された サービスプロファイルに従って上記制御手段を利用することによりサービスを提 供する移動通信サービス提供方法。

【請求項14】 移動ノードから送出される位置登録要求情報が外部エージェント、サーバシステムを介してホームエージェントに通知されると共に、その位置登録要求情報に対応する応答情報が上記ホームエージェントからサーバシステム、外部エージェントを介して上記移動ノードへ返送されることによって、上記ホームエージェントおよび外部エージェントに上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供する移動通信サービス提供システムにおいて使用されるサーバシステムであって、

移動ノードが要求するサービスを提供するための情報を含むサービスプロファ

イルを管理するデータベースから、上記移動ノードに対応するサービスプロファ イルを抽出する抽出手段と、

その抽出手段により抽出されたサービスプロファイルを、上記ホームエージェントおよび外部エージェントにおいてパケットの転送先を決定するための制御手 段が使用できる形式に編集するサービス管理手段と、

上記ホームエージェントおよび外部エージェントが上記サービス管理手段により編集されたサービスプロファイルに従って上記制御手段を利用することによりサービスを提供するように、上記ホームエージェントおよび外部エージェントに上記編集されたサービスプロファイルを配付する配付手段と

を備えるサーバシステム。

【請求項15】 移動ノードから送出される位置登録要求情報が外部エージェント、サーバシステムを介してホームエージェントに通知されると共に、その位置登録要求情報に対応する応答情報が上記ホームエージェントからサーバシステム、外部エージェントを介して上記移動ノードへ返送されることによって、上記ホームエージェントおよび外部エージェントに上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供する移動通信サービス提供システムにおいて使用される上記ホームエージェントまたは外部エージェントとしてのエージェント装置であって、

受信パケットのヘッダ情報に従ってそのパケットの処理方法を決定するサービス非依存部と、

上記サーバシステムにおいて上記制御手段が使用できる形式に編集されたサービスプロファイルに従ってその制御手段を利用する個別サービス制御部と、

上記個別サービス制御部による上記サービス非依存部の利用結果に従ってパケットを処理するパケット制御部と

を有するエージェント装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、ネットワークにおいてサービス情報を配付する方法に係わる。特

c. 移動ノードを収容するネットワークにおいてそのネットワークが提供するサ - ビスに係わる情報をネットワーク機器に配付する方法に係わる。

[0.002]

【従来の技術】

インターネットの急速な発展により、IPパケットトラヒックが急増してきている。また、携帯電話の普及に伴い、IMT-2000 (International Mobile Telecommunications 2000) における標準化が進んできており、モバイル環境下での高速IP通信が普及すると考えられる。しかし、IP通信の高機能化(例えば、端末毎のQoS (Quality of Service) や、WWWサーバのネットワークワイドな負荷分散などの付加価値サービス)を実現する技術は、大きな需要が見込まれているにもかかわらず、十分に成熟しているとは言えない。

[0003]

IPネットワークを制御する方法の1つとして、主に米国のベンダを中心に、PBN(Policy-Based Networking)が提案されている。PBNでは、ネットワーク上に設けられているネットワーク機器に「運用ポリシー」が設定され、各ネットワーク機器がそのポリシーに従って動作することにより様々な付加価値サービスが提供される。付加価値サービスとしては、例えば、帯域の保証、遅延時間の保証、パケットフィルタリング、アクセス制限などが実施されている。また、これらのサービスを提供する場合には、しばしばRSVP(Resource Reservation Protocol)や、DiffーServ(Differentiated Services)などが利用されている。なお、DiffーServは、各パケットに設定された優先順位に基づいて特定のパケットを優先的に転送するためのプロトコルである。

[0004]

しかし、通常のPBNは、モバイル環境の考慮が十分でなかったため、以下のような問題が生じる。すなわち、PBNにおいて、移動端末毎にポリシー(上述のQoSなど)を設定する場合は、各移動端末を収容する可能性のあるすべてのネットワーク機器にそれぞれ対応するポリシーを設定しなければならない。これにより、ネットワーク全体でのポリシー設定処理量が増加する。また、各移動端末を収容する可能性のあるネットワーク機器は膨大であり、そのそれぞれに各移

が場末に係わるポリシーを設定することは非現実的である。さらに、PBNにおいて通知される情報をモバイルIP等の個々に規定される基本サービスに適用するためには、それぞれのサービスに適用させるための仕様化と実装検討が必要であった。

[0005]

なお、移動端末をネットワーク機器に収容するためのプロトコルとして、RF C2002により、IP Mobility Support (以下、「モバイルIP」或いは「M IP」と呼ぶ。)が発行されている。

[0006]

ところで、音声とデータ通信が統合され、多様な種類の端末が接続されるIP ネットワークでは、遅延に敏感なトラフィックやビジネス上優先度の高いトラフィックを保護するために、QoS機能の実現は必須である。QoS機能を実現する方法としては、Int-ServやDiff-Serv等が提案されている。これらのうち、キャリア網やバックボーン網としては、オーバヘッドが少ないDiff-Servが有力視されている。

[0007]

ただし、Diff-Servは、経路上のすべてのネットワーク機器にポリシー設定しておく必要があり、Diff-Serv単独ではネットワーク管理が煩雑であった。このため、ネットワーク上にポリシーサーバを設け、そのポリシーサーバが各ネットワーク機器にポリシーを設定することによりネットワーク全体を一決的に管理する概念(この概念を、PBNを呼ぶことがある。)が提案された。

[0008]

ところが、移動端末を収容する様々なプロバイダ、キャリアから構成されるシームレスなグローバルネットワークでは、全てのローカルネットワークが接続可能性のあるユーザに対するポリシーの決定とネットワーク機器への情報設定が可能でなければならない。そして、PBNにおいてこれを実現しようとすると、各ローカルネットワークが全てのユーザのポリシー情報を保持するか、ユーザが接続される可能性のある全てのネットワーク機器に対して予めポリシー情報を設定

する必要がある。しかし、ユーザ数は膨大であるため、この方式に実現は極めて 非効率的であり、また、現実的ではない。

[0009]

また、すべてのユーザのポリシー情報を常に各ネットワーク機器に保持させると、ネットワーク機器のメモリ量を大きくしなければならず、処理能力を劣化させる。逆に、各ネットワーク機器にはポリシー情報を常駐させず、必要に応じてポリシーサーバへ問い合わせる方法を採用すると、その問合せのオーバヘッドが大きく、SLA (Service Level Agreement)を遵守できない可能性が増大してしまう。

[0010]

これらの問題を解決するために、本願特許出願の出願人は、先に、モバイルIPに類似/関連するプロトコルを利用して付加価値サービスに係わる情報をネットワーク機器に配付する方法を提案している。そして、その方法は、特許出願済みである(特願平11-276703号)。以下、モバイルIPおよび上記特許出願において提案している方法について簡単に説明する。

[0011]

図73は、モバイルIPおよび先に特許出願した発明ついて説明するための図である。AAAH (Authentication, Authorization and Accounting Home) 1 およびAAAF (Authentication, Authorization and Accounting Foreign) 2 は、移動ノード (MN: Mobile Node) 11を認証し、移動ノード11へのアクセスまたは移動ノード11からのアクセスを許可するか否かを判断し、移動ノード11に対する課金を行う。サービス制御データベース3は、各移動ノード11に提供すべきサービスに係わる情報(サービス制御情報)を格納する。

[0012]

HA (Home Agent) 4 およびFA (Foreign Agent) 5 は、移動ノード11を 収容するルータであり、AAAH1またはAAAF2から配付されるサービス制 御情報に従ってIPパケットを中継する。

[0013]

このネットワークは、(1) 移動ノード11の位置を検出する機能、(2) 移動ノ

ード11の位置を登録する機能、(3)移動先の移動ノード11へパケットを転送 する機能を備える。

[0014]

各FA5は、それぞれ定期的に広告メッセージを同報する。この広告メッセージには、当該FAのIPアドレスが設定されている。したがって、移動ノード11があるFAの通信エリアから他のFAの通信エリアに移動すると、その移動ノード11が受信する広告メッセージに設定されているIPアドレスがある時点で変化することになる。そして、移動ノード11は、広告メッセージに設定されているIPアドレスが変化したことを検出すると、異なるFAの通信エリアに入ったものとみなし、その新たなFAおよびHA4に対して、その移動ノード11のIPアドレスを通知する。このとき、その新たなFAは、そのFAのIPアドレスをHA4に通知する。これにより、移動ノード11を新たに収容することとなったFAがHA4に登録され、また、移動ノード11のIPアドレスがその新たなFAがHA4に登録され、また、移動ノード11のIPアドレスがその新たなFAに登録される。

[0015]

通信ノード(CN:Corrspondent Node) 1 2から移動ノード11へのパケットの転送は、以下のように行われる。すなわち、送信先アドレスとして移動ノード11のIPアドレスが設定されているパケットは、いったんHA4に転送される。HA4は、移動ノード11宛てのパケットを受信すると、その移動ノード11を現在収容しているFAに対してそのパケットを転送する。ここでは、FA5が、現在、移動ノード11を収容しているものとする。この場合、FA5がHA4からパケットを受け取り、それを移動端末11へ送る。このようにして、移動先のノードにパケットが転送される。

[0016]

上記方法において、移動ノード毎のサービス制御情報は、上記位置登録に従って移動ノード11を収容しているFAに配付される。例えば、移動ノード11がFA5の通信エリアに入ってきたとすると、AAAH1は、サービス制御データベース3から移動ノード11のサービス制御情報を取り出し、それをHA4およびFA5に配付する。そして、HA4およびFA5が、そのサービス制御情報に

♥って、移動ノード11が要求する付加価値サービス(QoSやパケットフィル ♥リングなど)を実行する。

[0017]

これにより、モバイル環境下において、既存のPBNと同等なサービスが受けられる。このとき、サービス制御情報(PBNのポリシーに相当する)は、すべてのFAに設定されるのではなく、移動ノード11を実際に収容しているFAのみに配付される。

[0018]

【発明が解決しようとする課題】

しかしながら、本願特許出願の出願人が先に出願した発明の方法においても、 以下の問題が残っていた。

[0019]

- (1) サービス制御情報がサービス毎に異なるフォーマットで構成されていたため、HAおよびFAは、サービスを意識する必要があった。
- (2) 付加価値サービスの提供を受ける契約をしているか否かに係わらず、全ての移動端末についてサービス制御情報が作成されてHA及びFAに配付される。 したがって、オーバヘッドが大きくなっていた。

[0020]

(3) モバイルIPに特有の処理をルータの本来的な機能に対応する処理に置き 換えるための機能が必要であった。したがって、モバイルIPの機能が拡張され ると、各HAおよびFAのプログラムを修正する必要が生じることあった。 サービス制御方式自体の変更が必要となる可能性があった。

[0021]

(4) 1つの仮想アドレスに対して複数のハードウェアが割り当てられているシステムにおいてその仮想アドレスにパケットを転送する際、複数のハードウェアの中から1つを選択するための手順が、HAとFAとの間で同期が確立されていなかった。

[0022]

本発明は、モバイル環境を含むIPネットワークにおいて、端末単位での付加

「値サービスを定義し、よりスケーラブルに付加価値サービスの追加、拡張を可能とする方法を提供する。

[0023]

Żć

')

【課題を解決するための手段】

★発明の移動通信サービス提供システムは、移動ノードから送出される位置登 ■要求情報が外部エージェントおよびサーバシステムを介してホームエージェン トに通知されると共に、その位置登録要求情報に対応する応答情報が上記ホーム ェージェントからサーバシステムおよび外部エージェントを介して上記移動ノー ドへ返送されることにより、上記ホームエージェントおよび外部エージェントに 上記移動ノードの位置が登録され、その登録に基づいて移動通信サービスを提供 する構成を前提とする。そして、上記ホームエージェントおよび外部エージェン トは、パケットの転送先を決定するための制御手段を備える。また、上記サーバ システムは、移動ノードが要求するサービスを提供するための情報を含むサービ スプロファイルを管理するデータベースから上記移動ノードに対応するサービス プロファイルを抽出する抽出手段と、その抽出手段により抽出されたサービスプ ロファイルを上記制御手段が使用できる形式に編集するサービス管理手段と、そ のサービス管理手段により編集されたサービスプロファイルを上記ホームエージ ェントおよび外部エージェントに配付する配付手段とを備える。そして、上記ホ ームエージェントおよび外部エージェントが、上記サーバシステムから配付され たサービスプロファイルに従って上記制御手段を利用することによりサービスを 提供する。

[0024]

本発明によれば、サービスプロファイルは、サーバシステムによりホームエージェントおよび外部エージェントがそのまま利用できる形式に編集されている。このため、ホームエージェントおよび外部エージェントは、移動ノード毎に要求されるサービスを提供する際、そのサービスの種別を意識する必要がない。よって、サービスを追加/変更する際、ホームエージェントおよび外部エージェントが使用するプログラムまたはデータの修正が少なくなる。

[0025]

[0026]

この構成においては、サーバシステムとホームエージェントおよび外部エージェントとの間で伝送される情報量が減少する。また、各ホームエージェントおよび外部エージェントにおいては、サービスプロファイルを格納するためのメモリ
容量を小さくすることができ、処理速度の向上に寄与する。

[0027]

また、上記構成において、予め決められたサービスに対して使用可能なアドレスの範囲が予め指定されていることを前提とし、受信パケットの中から特定のパケットを抽出するための条件として上記予め指定されたアドレスの範囲を表す情報を含むサービスプロファイルを上記ホームエージェントおよび外部エージェントに予め設定しておき、上記サーバシステムが、上記予め決められたサービスを要求する移動ノードに対して上記予め指定されたアドレスの範囲内のアドレスを割り当てるようにしてもよい。

[0028]

この構成においては、上記移動ノードから送出されるパケットおよび上記移動ノードへ転送されるパケットは、上記ホームエージェントまたは外部エージェントにおいて上記サービスプロファイルに従って抽出され、そのサービスプロファイルに対応するサービス(すなわち、上記予め決められたサービス)で実行される。したがって、この構成においても、上述のケースと同様に、サーバシステムとホームエージェントおよび外部エージェントとの間で伝送される情報量が減少する。また、各ホームエージェントおよび外部エージェントにおいては、サービスプロファイルを格納するためのメモリ容量を小さくすることができ、処理速度の向上に寄与する。

[0029]

まらに、上記構成において、複数の移動ノードに対して割り当てられた1つの を想的なアドレスを受信先とするパケットをそれら複数の移動ノードの中の任意 の移動ノードへ転送するサービスを提供するにあたって、上記仮想的なアドレス が設定されたパケットを受信するアドレスプロキシサーバが設けておき、上記サーバシステムが、上記仮想的なアドレスが設定されたパケットを抽出して上記複数の移動ノードの中の特定の移動ノードへ転送するためのサービスプロファイル を上記アドレスプロキシサーバへ配付すると共に、上記特定の移動ノードを収容する外部エージェント宛てのパケットをその特定の移動ノードへ転送するためのサービスプロファイルをその外部エージェントへ配付するようにしてもよい。

[0030]

この構成においては、仮想的なアドレスが付与されているパケットの転送は、 上記サーバシステムにより統一的に制御される。よって、上記仮想的なアドレス を受信先とするパケットは、サーバシステムにより決定される特定に移動ノード へ確実に転送されることになる。

[0031]

Ŧ

【発明の実施の形態】

以下、本発明の実施形態について、図面を参照しながら以下の順番に説明をする。

- 1. 本発明の背景
- 2. 本発明の概要
- 3.全体システムの構成
- 4. AAAHの構成
- 5. AAAFの構成
- 6. HA、FA、CNの構成
- 7. サービスプロファイルを配付するシーケンス
 - 7A. AAAHがHAを指定する場合
 - 7B. AAAFがHAを指定する場合
 - 7C. 各エンティティのフローチャート
 - 7 D. サービスプロファイルの管理

7E. ルート最適化 8. ANYCASTサービス

1. 本発明の背景

はじめに、図1を参照しながら、本発明の背景を説明する。ここでは、ホーム エージェントに収容されている移動ノードが外部エージェントの通信エリアに移 動する場合を示している。

[0032]

手順1:ホームエージェント (HA: Home Agent) 200および外部エージェント (FA: Foreign Agent) 500は、それぞれ定期的に自分のIPアドレスが設定されたエージェント広告メッセージを発信する。そして、移動ノード600は、エージェント広告メッセージを受信することにより、ホームエージェント200の通信エリアに位置しているのか、外部エージェント500の通信エリアに位置しているのかを認識する。現在、移動ノード600は、ホームエージェント200の通信エリアに位置しているものとする。

[0033]

手順2:移動ノード600は、ホームエージェント200の通信エリアから外部エージェント500の通信エリアに移動すると、外部エージェント500からエージェント広告メッセージを受信する。このメッセージを受信すると、移動ノード600は、位置登録要求(Registration Request)メッセージを外部エージェント500に送る。このメッセージには、移動ノード600を識別する情報が設定されている。

[0034]

手順3:外部エージェント500は、移動ノード600から位置登録要求メッセージを受信すると、認証(Authentication)、認可(Authorization)及び課金(Accounting)等を行うために、IPネットワーク80を介してAMR(認証要求)メッセージをAAAF(Authentication, Authorization and Accounting Foreign) 400に送出する。このメッセージには、移動ノード600および外

あエージェント500を識別する情報が設定されている。

[0035]

手順4:AAAF400は、受信メッセージを解析することにより移動ノード 600の認証を行うAAAH (Authentication, Authorization and Accounting Home) 100を特定する。そして、IPネットワーク80を介して、AMRメッセージをAAAH100に送る。

[0036]

手順5:AAAH100は、受信したAMRメッセージから必要な情報を取り出し、移動ノード600の認証を実行する。AAAH100は、たとえば、AMRメッセージから移動ノード識別子(NAI:Network Access Identifier)を抽出し、その識別子をキーとしてサービス制御データベース300にアクセスする。これにより、移動ノード600に対応するユーザプロファイル(サービスプロファイル情報)が抽出される。そして、AAAH100は、AMRメッセージの認証に成功すると、HAR(登録要求)メッセージに上述のサービスプロファイル情報を付加し、IPネットワーク80を介して、そのメッセージをホームエージェント200に送る。

[0037]

手順6:ホームエージェント200は、受信したHARメッセージからセッションID、ライフタイム等の情報を取り出し、移動ノード600の位置登録を実行する。すなわち、移動ノード600宛てのパケットを移動先に回送するための情報をHARメッセージから取り出し、サービス制御情報(サービス制御トランザクション230のサービスプロファイルテーブル)を作成する。この結果は、HAA(登録応答:Home-Agent-MIP Answer)メッセージを利用してAAAH100に通知される。このとき、HAAメッセージには、移動ノード600のサービスプロファイル情報が含まれていてもよい。

[0038]

手順7:AAAH100は、HAAメッセージを受信すると、前述のAMRメッセージまたはユーザプロファイルから必要な情報を抽出し、サービス制御情報 (サービス制御トランザクション120のサービスプロファイルテーブル)を作

はする。また、AAAF400に対して、AMRメッセージに対する応答メッセージとしてAMA(認証応答:AA-Mobile-Node Answer)メッセージを送る。このとき、このAMAメッセージには上述のサービスプロファイル情報が付加されている。

[0039]

3

30

The Hardward Harry

D

手順8:AAAF400は、AMAメッセージから必要な情報を抽出してサービス制御情報(サービス制御トランザクション420のサービスプロファイルテーブル)を作成する。また、上記AMAメッセージを外部エージェント500に送る。

[0040]

手順9:外部エージェント500は、AMAメッセージから必要な情報を抽出してサービス制御情報(サービス制御トランザクション530のサービスプロファイルテーブル)を作成する。また、そのAMAメッセージに基づいて登録応答メッセージを作成して移動ノード600に送る。これにより、位置登録手順が終了する。以降、外部エージェント500は、受信したサービス制御情報を利用して移動ノード600に対してサービスを提供する。

[0041]

このように、移動ノード600の位置は、常に、ホームエージェント200により管理される。また、移動ノード600を収容することになった外部エージェント500に、移動ノード600のためのサービス制御情報が設定されるので、移動ノード600は、移動先においてもPBNと同等なサービスを受けることができる。

[0042]

なお、上記ネットワークにおいて、移動ノード600宛てのパケットは、通常いったんホームエージェント200へ転送される。ここで、ホームエージェント200は、移動ノード600が外部エージェント500に収容されていることを認識している。したがって、ホームエージェント200は、受信したパケットを外部エージェント500に回送する。そして、外部エージェント500がそのパケットを移動ノード600へ送る。

2. 本発明の概要

受明の理解のために、予め言葉の定義を行う。以下の記載において「個別サービス」とは、ユーザ毎にカスタマイズされたサービスの集合をいう。また、個別サービスを構成するサービス実体(例えば、Diff-ServやANYCASTなど)は、単に「サービス」と呼ぶ。一方、ユーザ単位にカスタマイズされないサービス(例えば、IETF (Internet Engineering Task Force)で規定されているモバイルIPなど)は、「基本サービス」と呼ぶ。

[0043]

※図2は、本発明の一実施形態のネットワーク構成図である。

を参照しながら説明したように、AAAH100は、移動ノード600に対応するサービス制御情報をサービス制御データベース300から抽出する。なお、サービス制御データベース300には、各ユーザが要求する個別サービスを提供するための情報(サービスプロファイル)がユーザ毎に格納されている。そして、AAAH100は、抽出したサービスプロファイルを外部エージェント500に配付する。このサービスプロファイルは、サービスの種別によらず、その形式が統一されている。すなわち、このサービスプロファイルは、サービスに依存する情報を含んでいない。

[0044]

AAAH100から外部エージェント500(および、ホームエージェント200)に配付されるサービスプロファイルは、外部エージェント500およびホームエージェント200が本来的に備えている機能により処理可能な形式に統一されている。ここで、外部エージェント500およびホームエージェント200は、たとえば、ルータにより実現される。この場合、外部エージェント500およびホームエージェント200が本来的に備えている機能は、例えば、(1)パケットをルーティングする機能、(2)受信したパケットの中から特定のパケットを抽出する機能、(3)受信したパケットの一部の情報を書き換える編集機能などで

36. そして、これらの機能は、たとえば、ルーティング情報が格納されている テーブルを参照する処理や、予め設定されているデータと受信パケットのヘッダ とのマッチングを行う処理などにより実現されている。従って、AAAH100 は、各ユーザに個別サービスを提供するための情報を、上記処理が実行される際 に使用される情報(たとえば、参照すべきテーブルを指定する情報やマッチング キーを指定する情報など)に編集した後にそれを外部エージェント500(およ びホームエージェント200)に配付する。

[0045]

各外部エージェント500およびホームエージェント200は、基本的に同じ 構成であり、それぞれ基本サービスを制御するためのサービス非依存機能および 個別サービス制御機能(SCF)を備える。そして、AAAH100から配付さ れたサービスプロファイルは、個別サービス制御機能により処理される。このと き、サービスプロファイルは、外部エージェント500が本来的に備えている機 能により処理可能な形式で記述されている。したがって、外部エージェント50 0は、受信したサービスプロファイルを編集することなくそのまま使用できる。 そして、外部エージェント500は、サービス非依存機能および個別サービス制 御機能が互いに連携をとりながら、サービスプロファイルに従ってサービスを提 供する。

[0046]

なお、モバイルIPにおける位置登録手順、移動ノードのハンドオフ(ハンドオーバ)手順、或いはルート最適化手順と上記機能とを連携させれば、モバイルIPの固有機能を生かしながら、個別サービスを制御することが可能になる。

システム構成の概要

図3は、本発明の実施形態の機能ブロックである。以下、図3を参照しながら **各機**能について説明する。

[0047]

サービスプロバイダ(ホームネットワーク)50、アクセスプロバイダ(外部

・トワーク)60、通信ノード700は、IPネットワーク80(または、モ ・イルIP)を介して互いに接続されている。

[0048]

サービスプロバイダ50は、AAAH100、サービス制御データベース300.ホームエージェント(HA)200を含む。AAAH100とHA200との関は、例えばAAAプロトコルを利用して接続される。また、AAAH100は、所定のデータベース検索プロトコルを利用してサービス制御データベース300にアクセスする。データベース検索プロトコルは、特に限定されるものではないが、例えばLDAP(Light Directory Access Protocol)である。

[0049]

アクセスプロバイダ60は、AAAF400および外部エージェント (FA) **50**0を含む。AAAF400とFA500との間は、例えばAAAプロトコル**を利**用して接続される。なお、図3においては、現在、移動ノード (MN) 60 **0が**モバイル I PによりFA500に収容されている。また、AAAH100と **AA**AF400との間は、AAAプロトコルにより接続されている。

[0050]

AAA(AAAH100およびAAAF400)は、認証、認可、課金を行うサーバである。AAAHおよびAAAFは、基本的に同じ構成であるが、あるユーザに注目したときに、そのユーザの加入者データが登録されているデータベースにアクセスできるAAAのことをAAAHと呼び、他のAAAのことをAAAFと呼んでいる。

[0051]

AAAH100は、HA200およびFA500に対してサービスプロファイル情報を通知する機能を有する。サービスプロファイル情報は、サービス管理部によりサービス制御データベース300から抽出される。すなわち、AAAH100のサービス管理部は、サービス制御データベース300から認証要求ユーザのサービスプロファイルを抽出し、パケット制御情報を設定することができる汎用フォーマットを持つサービスプロファイルを生成する。なお、サービスプロファイルは、HA200に対してはHA登録要求メッセージ(HAR)を用いて通

知され、FA500に対しては認証応答メッセージ(AMA)を用いて通知される。また、AAAHは、後述説明するANYCASTサービスのためのANYCASTアドレス管理テーブルを備える。一方、AAAFは、ユーザのNAI(Network Access Identifier)によりAAAHを特定し、FAとAAAHとの間のメッセージ交換を代理する。

[0052]

14

.0

10

. 1

And the second s

さらに、本発明のAAAは、IETFでは詳細が定まっていないISP間のハンドオフを実行し、また、サービス制御の一貫性を保つために、ユーザが接続されている期間、他のエンティティとの関係を保持するための拡張したセッショントランザクションを維持する。なお、プロトコル制御部は、それぞれAAAプロトコルのためのインタフェースである。

[0053]

HAおよびFAは、基本的に同じ構成であり、それぞれRFC2002において定義されている機能エンティティである。ただし、ある移動ノードに注目したときに、その移動ノードに割り付けられたホームアドレスを所有するエージェントがHAであり、その移動ノードに割り付けられるホームアドレスを所有しないエージェントがFAである。

[0054]

HAは、送信先として移動ノードのホームアドレストが設定されているパケットを受信すると、そのパケットをカプセル化してそのホームアドレスに対応するFAの気付アドレス(Care-of-Address)へ送出する。このアドレスの対応関係は、「移動性結合」と呼ばれるテーブルで管理される。また、HAは、AAAプロトコルクライアントである。さらに、HAは、上記機能を実行するためのサービス非依存部、AAAHからの登録要求(HAR)情報に設定されているサービスプロファイルを格納するためのサービスプロファイルキャッシュ、およびサービスプロファイルキャッシュの検索ポリシーを定義する検索ポリシ管理テーブルを参照してパケット制御を行う個別サービス個別部を備える。

[0055]

FAは、カプセル化されて転送されてきたパケットをデカプセル化し、そのパ

ケットをホームアドレスに対応したリンクレイヤアドレスへ回送する。このアドレスの対応関係は「訪問者リスト」と呼ばれるテーブルで管理される。また、FAは、移動端末のアクセスルータであり、かつAAAプロトコルクライアントでもある。さらに、FAは、上記機能を実行するためのサービス非依存部、AAAからの認証応答(AMA)メッセージに設定されているサービスプロファイルを保持するサービスプロファイルキャッシュ、サービスプロファイルキャッシュの検索ポリシーを定義する検索ポリシ管理テーブルを参照してパケット制御を行う個別サービス制御部、およびANYCASTサービスのための情報を格納するために拡張された訪問者リストであるANYCASTテーブルを備える。

[0056]

×

34

341

1

1

なお、HAおよびFAは、それぞれDIAMETERセッションを管理するためのセッショントランザクションを有する。また、プロトコル制御部は、それぞれAAAプロトコルおよびモバイルIPのためのインタフェースである。更に、パケット制御部は、それぞれパケットのルーティング、フィルタリング、ヘッダの書換えなどを実行する。

[0057]

移動ノード(MN: Mobile Node) 600は、モバイルIPを利用してパケットを送受信する機能を有する移動端末である。また、通信ノード(CN: Corrspondent Node) 700は、移動ノード600との間でパケットを送受信する。なお、通信ノード700にも、サービス非依存制御部、個別サービス制御部、プロトコル制御部、パケット制御部が設けられている。

[0058]

モバイルIP(MIP)は、RFC2002において規定されているプロトコルである。なお、ここでいうモバイルIPは、将来、規定されるであろう拡張も含むものとする。モバイルIPのフォーマットを図60~図65に示す。

[0059]

図 60 は、モバイル I P メッセージのフォーマットを示す図である。このメッセージの I P ヘッダおよび U D P ヘッダをそれぞれ図 61 (a) および図 61 (b) に示す。I P ヘッダには、T O S (Type of Service)、送信元アドレス、受信

先アドレスなどが設定される。また、UDPヘッダには、送信元ポートおよび受信先ポートなどが設定される。

[0060]

14

ૻહ

#

1

8

#

\$

t,

1

3

Control of the party of the land

これでは日本の日本の日本の一本教の日本のでは、「これのないない」

図62(a) は、モバイルIPの登録要求メッセージのフォーマットである。このメッセージは、移動ノードと外部エージェントとの間で使用される。また、図62(b) は、登録要求メッセージ内のRegistration Requestのフォーマットである。このRegistration Requestは、ライフタイム(Lifetime)、ホームアドレス (Home Address)、ホームエージェント(Home Agent)、気付アドレス(Care-of Address)、識別子(Identifier)などを含み、更に拡張エリアを有する。

[0061]

図62(c) は、図62(b) の拡張エリアのフォーマット (Mobile Node NAI Extension) である。この拡張エリアには、移動ノードのNAIが設定される。また、図62(d) は、図62(b) の拡張エリアのフォーマット (Previous Foreign Agent Notification Extension) である。この拡張エリアには、キャッシュのライフタイム、旧外部エージェントのアドレス、新気付アドレスなどが設定される。

[0062]

図63(a) は、モバイルIPの登録応答メッセージのフォーマットである。このメッセージは、移動ノードと外部エージェントとの間で使用される。また、図63(b) は登録要求メッセージ内のRegistration Replyのフォーマットである。このRegistration Replyは、ライフタイム、ホームアドレス、ホームエージェント、識別子などを含み、更に拡張エリアを有する。

[0063]

図64は、モバイルIPのMBU (Mobile IP Binding Update) メッセージのフォーマットである。このメッセージは、外部エージェント間、およびホームエージェントエージェントと通信ノード間で使用される。また、図65は、モバイルIPのMBA (Mobile IP Binding Acknowledge) メッセージのフォーマットである。このメッセージも、外部エージェント間、およびホームエージェントエージェントと通信ノード間で使用される。

[0064]

AAAプロトコルは、特に限定されるものではないが、実施例では、現在IETFで検討中のDIAMETERプロトコルを使用するものとする。AAAプロトコルは、認証、認可、課金、ポリシーに関する情報を伝達可能なあらゆるプロトコルに実装できる。そして、本発明のサービスプロファイル情報は、DIAMETERプロトコルにおいて定義されるAVP (Attribute Value Pair) と呼ばれる拡張可能な属性パラメータを用いて伝送される。なお、拡張される属性は、サービスプロファイル情報である。

[0065]

図66は、DIAMETERメッセージのフォーマットを示す図である。この メッセージの共通ヘッダを図67に示す。ここで、識別子(Identifier)は、Registration Replyとを一意に対応付ける。

[0066]

図68(a) は、DIAMETERのAVP (Attribute Value Pair) の基本フォーマットである。この基本フォーマットにおいて、「AVPコード=256」とすると、DIAMETERコマンドが生成される。DIAMETERコマンドのフォーマットを図68(b) に示す。なお、コマンドコードには、メッセージに対応する値が設定される。また、図68(c) は、DIAMETERコマンド以外の一般的なAVPのフォーマットである。

[0067]

図69は、DIAMETERプロトコルのAMRメッセージのフォーマットである。このメッセージは、外部エージェントとAAAHサーバとの間で使用される。また、図70は、DIAMETERプロトコルのHARメッセージのフォーマットである。このメッセージは、AAAHサーバとホームエージェントとの間で使用される。

[0068]

図71は、DIAMETERプロトコルのAMAメッセージのフォーマットである。このメッセージは、外部エージェントとAAAHサーバとの間で使用される。また、図72は、DIAMETERプロトコルのHAAメッセージのフォー

マットである。このメッセージは、AAAHサーバとホームエージェントとの間 で使用される。

4. AAAHの構成

7

図4は、AAAHの機能ブロック図である。ここでは、認証機能、認可機能お よび課金機能については省略する。

[0069]

AAAH100は、たとえば、認証要求(AMR)メッセージを受信したとき に、サービス制御データベースから認証要求ユーザに対応するサービスプロファ イルを抽出し、それをHAおよびFAに配付する。すなわち、AAAHは、移動 遺信サービスを提供するシステムにおいて、「サーバ」として機能する。

[0070]

AAAH100は、サービス管理部102およびプロトコル制御部101を備える。プロトコル制御部101は、DIAMETERセッションを管理するためのセッショントランザクションを生成する。サービス管理部102は、サービス制御データベース300を参照してサービスプロファイルを生成する。また、サービス管理部102は、サービスを提供するためにある特定のグループを管理するための管理テーブルを有する。ここでは、そのような管理テーブルの例としてANYCASTアドレス管理テーブルを有する。

[0071]

図5は、サービス制御データベース300に格納されているサービスプロファイル原本の例である。サービス制御データベース300には、各ユーザの加入者情報(サービスプロファイルを含む)がユーザのNAI(Network Access Ident if ier)をキーとして格納されている。 SLA(加入者の契約条件: Service Le vel Agreement)としては、例えば、図6に示すサービス品質、図7に示す課金方式、図8に示す規制条件などが設定される。また、個別サービスとしては、例えば、Diff-Serv、パケットフィルタリング、ANYCAST、マルチキャストなどが設定可能である。ここでは、Diff-Servサービスのため

のブロファイルを図9に示し、ANYCASTサービスのためのプロファイルを ■10に示す。

[0072]

No.

U

図11は、AAAH100のサービス管理部101により作成されるサービス **プロ**ファイルの例である。このサービスプロファイルは、サービス制御データベース300から抽出したデータを編集することにより得られ、HAおよびFAに配付される。

[0073]

サービスプロファイルは、プロファイル識別子、制御対象パケット情報、ルーティング/パケット編集情報、および個別制御情報から構成される。プロファイル識別子は、サービスプロファイルをネットワークで一意に識別する値である。 動御対象パケット情報は、受信したパケットを索引するためのフィルタ情報である。ルーティング/パケット編集情報は、制御対象パケット情報にヒットしたパケットに対して適用されるIPヘッダの編集情報と、そのパケットの回送先を示す情報である。個別制御情報は、制御対象パケット情報にヒットしたパケットについて次に検索すべきサービス非依存部が有するサービス固有の制御テーブルを示す。

(1) プロファイル識別子

プロファイル識別子は、セッション識別子およびプロファイル番号から構成される。セッション識別子は、セッションIDであり、プロファイル番号は、セッション毎に一意に割り当てられた値である。このプロファイル識別子は、各エンティティ(AAAH、AAAF、HA、FAなど)で共用され、ユーザセッションに関係するサービスプロファイルの特定と、ユーザセッション内の固有サービスを識別するために用いられる。なお、セッションIDとしては、例えば、DIAMETERのセッションID-AVPで用いられる「セッションID」が用いられる。セッションIDは、この実施例では、下記のように、移動ノードのNAIを用いて表される。

[0074]

<MNのNAI><32ビット値><オプション>

(2) 制御対象パケット情報

●倒却象パケット情報は、送信元のIPアドレス、受信先のIPアドレス、送 ●元のポート番号、および受信先のポート番号から構成される。IPアドレスの 一部のビットの値を「don't care」とする場合には、下記のように、ワイルドカード*で表される。

[0075]

172.27.180.*

172.27. *. *

なお、これらの4つの値は、必ずしもすべて設定される必要はない。また、この制御対象パケット情報に従って受信パケットを抽出す際には、例えば、設定されているすべての値を受信パケットに設定する各対応する値がすべて一致したと 会に「ヒット」とみなされる。

(3) ルーティング/パケット編集情報

カプセル化(暗号化)手法は、パケットをサービス非依存機能によらずにカプ セル化する場合に実行すべきカプセル化方法を指定する。なお、パケットをサー ビス非依存機能によりカプセル化するための情報は、HAまたはFAに設定され ている。

[0076]

転送先アドレスは、パケットをサービス非依存機能によらずに転送する場合の 転送先アドレスを指定する。なお、この転送先アドレスとして複数のアドレスを 指定することもできる。また、パケットを移動ノードの気付アドレスへ転送する 場合は、後述する移動性結合テーブルに従う。

[0077]

TOSは、HAまたはFAが受信したパケットのTOSフィールドに書き込むべき値を指定する。この値が指定されているときは、上記制御対象パケット情報にヒットしたパケット、およびサービス非依存機能で編集されたパケット(例えば、移動性結合参照によるカプセル化)の双方において、そのIPヘッダが書き換えられる。

[0078]

デカプセル指示は、上記制御対象パケット情報にヒットしたパケットがカプセル化されていた場合、そのパケットをデカプセル化するかどうかを指定する。な ま、デカプセル化処理は、個別制御テーブルを検索する前に実行される。

(4) 個別制御情報

個別制御情報は、サービス制御種別情報および制御情報識別子から構成されている。サービス制御種別情報は、HAまたはFAにおいてアクセスすべき制御テーブルを指示する。HAまたはFAに設けられる制御テーブルは、例えば、サービスプロファイルキャッシュ、モバイルIP固有制御データ(結合キャッシュ、多動性結合、訪問者リスト)、ルーティングテーブル、サービス固有制御データ(ANYCASTテーブル等)である。また、制御情報識別子は、サービス制御制制情報によりアクセスされる制御テーブルのリンク先を示す。この制御情報識別子は、例えば、各制御テーブルのエントリを識別する識別子またはポインタである。

[0079]

AAAH100は、図5~図10に示したサービスプロファイル原本に基づいて図11に示すサービスプロファイルを作成する。サービスプロファイルを作成する方法は、特に限定されるものではないが、ユーザが要求するサービスの種別 およびそのサービスの内容に基づいて作成することができる。例えば、ユーザが DiffーServサービスを要求している場合には、図9に示すIPアドレス やポート番号などを制御対象パケット情報に設定してもよい。また、DiffーServポリシーの検索式およびサービスクラスなどに基づいてTOSを設定してもよい。あるいは、ANYCASTサービスが要求されている場合は、サービス制御種別情報においてANYCASTテーブルを指定すると共に、ANYCASTアドレスに基づいて制御対象パケット情報を設定してもよい。

[0080]

このように、サービスプロファイルは、ユーザに提供すべきサービスの種別によらず、常に同じフォーマットである。すなわち、各個別サービスを提供するための情報は、すべて、図11に示すフォーマットに格納されてHAまたはFAに配付される。

[0081]

図12は、AAAH100に設けられるANYCASTアドレス管理テーブルの例である。このテーブルは、ANYCASTアドレス単位のブロックから構成 をれる。そして、各ブロックには、ANYCASTアドレス、そのANYCAS Tアドレスに対応する1以上のNAI、各NAIにより識別される端末のホーム アドレス、および各NAIにより識別される端末の状態を含む。端末の状態は、 聞えば、オンライン、オフライン、保留中、障害、輻輳等である。

[0082]

図13は、AAAHのセッショントランザクションの例である。セッショントランザクションは、DIAMETERメッセージの送受信と、サービスプロファイルとのリンクを維持するために生成され、保持される。AAAHのセッショントランザクションは、セッションID、HAアドレス、現在のAAAFのアドレス、AMRメッセージを送ってきたAAAFのアドレス、セキュリティ情報、セッションタイマ、サービスプロファイルを含む。

5. AAAFの構成

図14は、AAAFの機能ブロック図である。AAAF400は、移動ノードから認証要求(AMR)メッセージを受信すると、そのメッセージをAAAH1 00へ転送する。また、AAAF400は、AAAH100からサービスプロファイルを受信すると、それをFA500へ配付する。なお、AAAF400は、HAを指定することもできる。この場合、AAAF400は、AAAH100からサービスプロファイルを受信すると、それをHA200およびFA500へ配付する。

[0083]

AAAF400は、プロトコル制御部401を備える。プロトコル制御部40 1は、DIAMETERセッションを管理するためのセッショントランザクションを生成する。AAAFのセッショントランザクションを図15に示すように、 セッションID、AAAHアドレス、HAアドレス、旧FAのNAI、現在のF AのNAI、セキュリティ情報、セッションタイマ、サービスプロファイル、ト ランザクション状態を含む。

[0084]

なお、AAAFは、基本的に、AAAHと同じ構成である。従って、AAAF も、AAAHと同様に、移動通信サービスを提供するシステムにおいて、「サー パ」として機能する。

6. HA、FA、CNの構成

図16は、HA、FA、CNの機能ブロックである。HA、FA、CNは、基本的に同じ構成であり、それぞれパケット制御部201、プロトコル制御部20 2、個別サービス制御部203およびサービス非依存機能部204を備える。

[0085]

パケット制御部201は、パケットをフィルタリングする機能を有し、パケットのヘッダを解読することにより受信パケットをプロトコルパケットとデータパケットの切り分ける。そして、プロトコルパケットを受信したときは、プロトコル制御部に処理を依頼する。また、データパケットを受信したときは、個別サービス制御部203にそのデータパケットを処理するために必要な情報を個別サービス制御部203に渡す。そして、個別サービス制御部203およびサービス非依存機能部204の指示に従い、パケットの編集(ヘッダの書換え等)、およびパケットの回送を行う。

[0086]

プロトコル制御部202は、モバイルIPおよびDIAMETERプロトコル を処理するユニットであり、プロトコルの規定に従って必要な情報(例えば、位 量登録に係わる情報など)をサービス非依存機能部204に設定する。また、D IAMETERセッションを管理するためのセッショントランザクションを生成 する。HAおよびFAのセッショントランザクションを図17に示す。 さらに、 プロトコル制御部202は、AAAからサービスプロファイルが通知された場合 は、それを個別サービス制御部203のサービスプロファイルキャッシュへ蓄積 \$ \$5.

3

17

1

.

1/1

N

大工工作を表示を含まるのでは、

[0087]

個別サービス制御部203は、サービス制御情報の集合であるサービスプロファイルキャッシュ211およびそのサービスプロファイルキャッシュ211を検索するためのポリシーが設定された検索ポリシ管理テーブル212を有する。

[0088]

図18は、サービスプロファイルキャッシュ211の例である。サービスプロファイルキャッシュは、ノード個別SPC(NSPC)およびAAA通知SPC(ASPC)から構成される。ノード個別SPCは、HA、FA、CNが予め備えるサービスプロファイルキャッシュであり、送信元サービスプロファイル(NSPCsrc)、送信元デフォルトサービスプロファイル(NDSPsrc)、受信先サービスプロファイル(NSPCdst)、受信先デフォルトサービスプロファイル(NDSP)から構成されている。一方、AAA通知SPCは、AAAHから配布されたきたサービスプロファイルキャッシュであり、送信元サービスプロファイル(ASPCsrc)および受信先サービスプロファイル(ASPCsrc)および受信先サービスプロファイル(ASPCdst)から構成される。各サービスプロファイルは、互いに独立している。

[0089]

各サービスプロファイルは、図11に示したフォーマットで記述されている。
すなわち、各サービスプロファイルは、(1) 受信パケットの中から特定のパケットを抽出するための情報(制御対象パケット情報)、(2) 抽出したパケットを編集するための情報(ルーティング情報/パケット編集情報)、および(3) サービス非依存部204に設けられている各種テーブルを参照するための情報(個別制制情報)を含んでいる。なお、図11は、AAAからHAまたはFAへ配布されるサービスプロファイルを示しているが、ノード個別SPCとしてHAまたはFAに予め設けられているサービスプロファイルも同じ構成である。換言すれば、AAAHは、サービス制御データベースからサービスプロファイル原本を抽出すると、それをHAまたはFAに予め設けられているサービスプロファイルと同じフォーマットに編集してHAまたはFAに配布している。

[0090]

Ŋ.

31

1

14

2

を引起するできる。 を引起するできる。 はいればない。 はいない。 はいな。 はいない。 はいない。 はいない。 はいな。 はいない。 はいない。 はいない。 はいな。 は

1

は Berns PC(NSPCsrc およびASPCsrc)および送信元デフォルトSP(NDSPsrc)の制御対象パケット情報には、送信元アドレスまたは送信元メート番号の少なくとも一方が設定されている。従って、特定の送信元または特定の送信元ポートから送出されたパケットは、これらのサービスプロファイルに使って処理される。また、受信先SPC(NSPCdst およびASPCdst)および受信先デフォルトSP(NDSPdst)の制御対象パケット情報には、受信先アドレスまたは受信先ポート番号の少なくとも一方が設定されている。したがって、特定の受信先または特定の受信先ポートへ向かうパケットは、これらのサービスプロファイルに従って処理される。尚、デフォルトSP(NDSP)は、他のいずれのサービスプロファイルによっても処理されなかったパケットを処理するために設けられている。

[0091]

個別サービス制御部203は、パケット制御部201にデータパケットが到着 すると、そのパケットを処理するためのサービスプロファイルを決定する。サー ピスプロファイルキャッシュ211から所定のサービスプロファイルを選択する 方法は、検索ポリシー管理テーブル212に記述されている。

[0092]

図19は、検索ポリシー管理テーブル212の例である。検索ポリシー管理テーブル212は、サービスプロファイルキャッシュ211を検索するための検索ポリシー(検索順序)を管理する。検索ポリシーは、特に限定されるものではないが、例えば、固有サービスプロファイルから共通サービスプロファイルへと検索範囲が広くなるように記述される。

[0093]

図19に示す検索ポリシー管理テーブル212を用いてサービスプロファイルキャッシュ211を検索する場合は、まず最初に、AAAから配布された送信元SPC(ASPCsrc)の制御対象パケット情報が抽出される。そして、その制御対象パケット情報の中に設定されている送信元アドレスおよび送信元ポート番号とがそれぞれ比較さ

このとき、これらのアドレスおよびポート番号がそれぞれ互いに一致して れば、その送信元SPC(ASPCsrc)に従ってサービス非依存部204の ブルが参照される。そして、参照されたテーブルにおいて対応する情報が登 されていれば、その情報に従ってその受信パケットを処理する。なお、参照さ まナーブルにおいて対応する情報が登録されていなければ、異常が発生したも のとみなし、処理は終了する。一方、上記送信元アドレスおよび送信元ポート番 の少なくとも一方が互いに一致しなかった場合は、HA、FA、CNに予め設 けられている送信元SPC(NSPCsrc)が抽出される。

[0094]

★送信元SPC(NSPCsrc)が抽出された場合の処理は、基本的に、AAA から配布された送信元SPC(ASPCsrc)が抽出されたときと同じである。 すなわち、送信元アドレスおよび送信元ポート番号がそれぞれ互いに一致していれば、その送信元SPC(ASPCsrc)に従ってサービス非依存部204のテーブルが参照され、受信パケットが処理される。ただし、送信元アドレスおよび 送信元ポート番号がそれぞれ互いに一致しているのもかかわらず、サービス非依 存部204のテーブルに対応する情報が登録されていなかった場合には、送信元 デフォルトSP(NDSPsrc)が抽出される。

[0095]

以下同様に、検索ポリシー管理テーブル212に従って、受信パケットのアドレスおよびポート番号と同じアドレスおよびポート番号が設定されているサービスプロファイルが見つかるまで上記処理が繰り返される。なお、図19に示す検索ポリシー管理テーブル212の手順1~手順4を実行したにもかかわらず対応するサービスプロファイルを選択できなかったときは、手順5において、デフォルトSP(NDSP)が抽出される。そして、そのデフォルトSP(NDSP)に従ってパケットが処理される。

[0096]

このように、データパケットが到着すると、そのパケットのアドレスおよびポート番号と同じアドレスおよびポート番号が設定されているサービスプロファイルが抽出され、そのサービスプロファイルに従ってそのパケットが処理される。

大学 一大学 一大学

\$ C.

đ t

112

12

このとき、HA、FA、CNは、AAAから配布されたサービスプロファイルあるいは予め設けられているサービスプロファイルに従ってサービス非依存部204のテーブルを参照するだけで受信パケットを処理することができる。即ち、HA、FA、CNは、AAAから配布されたサービスプロファイルをそのまま利用することにより、サービス制御データベース300に登録されている各ユーザ毎の個別サービスを提供できる。

[0097]

サービス非依存部204は、訪問者リスト、移動性結合、結合キャッシュ、ANYCASTテーブル、およびルーティングテーブルを有する。このうち、訪問者リスト、移動性結合、結合キャッシュは、モバイルIPを管理するための制御テーブルである。一方、ルーティングテーブルは、ルータが本来的に備えるパケット制御テーブルである。また、ANYCASTテーブルは、付加価値サービスであるANYCASTを実行するために設けられた制御テーブルである。

[0098]

図20は、訪問者リストの例である。訪問者リストは、FAに設けられ、移動 ノードのIPアドレス(ホームアドレス)とその移動ノードのリンクレイヤアド レス(たとえば、MACアドレス)とを対応づけるテーブルである。

[0099]

図21は、移動性結合の例である。移動性結合は、HAに設けられ、移動ノードのIPアドレス(ホームアドレス)とその移動ノードを収容しているFAのアドレス(気付アドレス)とを対応づけるテーブルである。この移動性結合は、HAが移動ノード宛のパケットを受信したときに参照される。この場合、そのパケットのIPアドレスに対応する気付アドレスが抽出され、そのパケットは、カプセル化されてその気付アドレスのFAへ回送される。なお、移動性結合は、例えば、移動ノードがあるFAの通信エリアから他のFAの通信エリアに移動したときに更新される。

[0100]

図22は、結合キャッシュの例である。結合キャッシュは、FAおよびCNに 設けられ、パケットの転送効率を向上させるために一時的に使用されるルーティ yガテーブルである。この結合キャッシュは、ルーティングテーブルよりも優先 Bに参照される。

[0101]

10

31

10

! K

11

では、日本のでは、日

図23は、ANYCASTテーブルの例である。ANYCASTテーブルは、 FAに設けられ、ANYCASTサービスを提供するために必要な情報を格納する。なお、このANYCASTテーブルは、例えば、訪問者リストに「ANYCASTアドレス」および「ANYCASTアドレスを保有するアドレスプロキシのアドレス」を追加的に登録することにより得られる。

[0102]

図24は、ルーティングテーブルの例である。このルーティングテーブルは、 HA、FA、CNに設けられ、受信パケットのヘッダに格納されている受信先ア ドレスに基づいて、転送先(例えば、次のルータ)に転送すべき「次のホップア ドレス」を求めるために使用される。

7. サービスプロファイルを配付するシーケンス

IPサービスの本質は、対象とするパケットの選別、パケットの編集およびルーティング先の決定に集約される。本発明では、サービス毎のサービス制御情報の編集処理はAAAHによって実行され、移動性エージェント(例えば、FA)へは、汎用化されたパケット編集情報が配付される。これにより、移動性エージェントは、配付されたサービスプロファイルをパケット制御情報としてそのまま使用でき、処理の高速化が可能になる。

[0103]

また、本発明では、サービスプロファイルの集合であるサービスプロファイルキャッシュの構成、およびそのキャッシュの検索方法が体系化されている。そして、本発明のHAおよびFAにおいては、モバイルIPに基づくパケット制御を行うサービス非依存部と、ユーザごとに設定されたサービスに基づいてサービス非依存部を利用する個別サービス制御部とが分離されている。このため、たとえば、サービスを追加/変更する場合には、基本的に、サービス非依存部のプログ

・ よった からまき換える必要はなく、個別サービス制御部の設定を更新すれば まい。 すなわち、サービスの追加/変更/実装などが容易になることが期待され

[0104]

さらに、本発明では、既存モバイルIPで規定されたメッセージの枠組みの中で、サービス制御を可能とするサービスプロファイルの管理方法を考案する。 INF、実施例として、Diff-ServサービスをモバイルIPへ適用する 場合を採り上げる。

[0105]

よなお、本発明の実施形態において、HAは、AAAHによって指定されてもよいし、FAによって指定されてもよい。以下では、(A)AAAHがHAを指定する場合、および(B)AAAFがHAを指定する場合をそれぞれ説明する。

7A. AAAHがHAを指定する場合

より下の実施例では、(1) 初期登録時のシーケンス、(2) 移動ノードがあるAAAF内のあるFAの通信エリアから他のFAの通信エリアに移動した場合のシーケンス、(3) 移動ノードがあるAAAF内のFAの通信エリアから他のAAAF内のFAの通信エリアに移動した場合のシーケンスを説明する。

7A(1) 初期登録時のシーケンス

図25は、サービスプロファイルを配付するシーケンスを示す図である。ここでは、FA500が定期的に出力する広告メッセージが移動ノード600によって受信された後のシーケンスを示す。なお、図中、「*」が付与されているメッセージは、サービスプロファイルが添付されていることを表す。

[0106]

移動ノード600は、FA500に対して登録要求(Reg-Req)メッセージを 送る。FA500は、この登録要求(Reg-Req)メッセージを受け取ると、AA AF400に対して認証要求(AMR)メッセージを送る。AAAF400は、 20日記要求 (AMR) メッセージを受け取ると、移動ノード600のAAAH 100に対して認証要求 (AMR) メッセージを送る。AAAH100は、認証 (AMR) メッセージを受け取ると、サービス制御データベース300から (AMR) メッセージを受け取ると、サービス制御データベース300から (AMR) メッセージを受け取ると、サービス制御データベース300から (AMR) ノード600のサービスプロファイル原本を取り出し、それをHA200およびFA500が直接的に使用できるフォーマットに編集する。そして、AAA H100は、HA200に対して、登録要求 (HAR) メッセージを用いてその (場別ノード600がFA500に収容されていることを表す情報を含む) を生ますると共に、受信したサービスプロファイルをサービスプロファイルキャッシュに追加する。

[0107]

この後、HA200は、AAAH100に対して登録応答(HAA)メッセージを送る。AAAH100は、登録応答(HAA)メッセージを受け取ると、AAAF400に対して、認証応答(AMA)メッセージを用いてサービスプロファイルを送る。AAAF400は、その認証応答(AMA)メッセージを受け取ると、FA500に対して、認証応答(AMA)メッセージを用いてサービスプロファイルを送る。これにより、FA500は、訪問者リスト(移動ノード600がFA500に収容されていることを表す情報を含む)を生成すると共に、受信したサービスプロファイルをサービスプロファイルキャッシュに追加する。そして、FA500は、移動ノード600に対して登録応答(Reg-Resp)メッセージを送る。

[0108]

このように、移動ノードの600の位置登録シーケンスが実行される際に、移動ノード600に係わる個別サービスを表すサービスプロファイルがHA200 およびFA500に配付される。したがって、以降、移動ノード600は、FA 500に収容された状態で予め契約した個別サービスを受けることができる。

[0109]

次に、上記シーケンスを詳細に説明する。以下では、まずはじめに、図26に 示すように、HAおよびFAの初期構成時に、それぞれサービスプロファイルが ★成され、サービスプロファイルキャッシュに格納されるものとする。また、ルーティングテーブルは、ネットワーク管理システムまたはルーティングプロトコルにより設定される。なお、ルーティングテーブルの生成方法は、本発明とは直供的には係わりがないの説明を省略する。

[0110]

1

31

Li

2

11:

F

THE PARTY OF THE P

図27は、初期構成時にFAにおいて生成されるサービスプロファイルの例である。図27(a) に示すサービスプロファイルは、「受信したパケットのルートを決定する際に、ルーティングテーブルを参照する」を表している。また、図27(b) に示すサービスプロファイルは、「受信先アドレスとしてFA500が設定されているパケットを受信したときに、デカプセル化処理を実行し、その後に図27(a) に示すキャッシュを参照する」を表している。

[0111]

図28は、初期構成時にHAにおいて生成されるサービスプロファイルの例で ある。このサービスプロファイルは、「受信したパケットのルートを決定する際 に、ルーティングテーブルを参照する」を表している。

[0112]

図29は、AAAHにおいてサービスプロファイルが生成される手順を示す図である。

(1) FA500は、移動ノード600から送出された登録要求メッセージを受信すると、DIAMETERセッショントランザクションおよび訪問者リストを生成する。DIAMETERセッショントランザクション及び訪問者リストは、それぞれ、例えば、図17および図20に示した通りである。そして、FA500は、AAAF400に対して、登録要求(AMR:AA-Mobile-Node-Request)メッセージを送出する。

[0113]

(2) AAAF400は、DIAMETERセッショントランザクションを生成 する。このトランザクションは、例えば、図15に示した通りである。そして、 AAAF400は、AMRメッセージにより通知されたユーザのネットワーク識 別子(NAI) に基づいて移動ノード600のユーザの認証ホームサーバ(AA AH100) を特定し、そのAAAH100へAMRメッセージを回送する。 【0114】

(3) AAAH100は、DIAMETERセッショントランザクションを生成する。このトランザクションは、例えば、図13に示した通りである。そして、AAAH100は、AMRメッセージにより通知されたユーザのNAIをキーとしてでサービス制御データベースを検索し、そのユーザのサービスプロファイル原本を抽出する。さらに、AAAH100は、サービスプロファイル原本に設定されている情報、およびサービスプロファイルを編集するために予め決められているポリシーに基づいて、HA200およびFA500に設定すべきサービスプロファイルを生成する。

[0115]

7

7

よなお、サービスプロファイルは、受信先情報(例えば、受信先アドレス、受信 先ポート番号)を検索条件とする「受信先サービスプロファイル」、および送信 元情報(例えば、送信元アドレス、送信元ポート番号)を検索条件とする「送信 元サービスプロファイル」の2種類がある。また、各サービスプロファイルの識 別子としては、セッションIDおよび任意のプロファイル番号が設定される。さらに、サービスプロファイルは、例えば、以下の条件下で管理されるようにしてもよい。すなわち、(1) 受信先情報および送信元情報の双方を検索情報とする場合は、送信元サービスプロファイルに設定する。(2) 送信元サービスプロファイルは、提供するサービスタイプ毎に生成される。(3) 送信元サービスプロファイルは、受信先サービスプロファイルより優先して適用される。

[0116]

図30は、HAに配付すべきサービスプロファイルの例である。検索条件として受信先情報が設定されているサービスプロファイルを図30(a)に示し、検索条件として送信元情報が設定されているサービスプロファイルを図30(b)に示す。

[0117]

図31は、FAに配付すべきサービスプロファイルの例である。検索条件とし

[0118]

(3)

. .

これらのサービスプロファイルは、上述したように、サービスプロファイル原 に設定されている情報、およびサービスプロファイルを編集するために予め決られているポリシーに基づいて生成される。例えば、Diff-Servサー スを要求しているユーザについてHAに配付すべきサービスプロファイル(図 0(a)参照)を生成する場合には、まず、そのユーザが使用している移動ノーのアドレスおよびポート番号をそれぞれ「受信先アドレス」および「受信先ポート番号」として設定する。また、Diff-Servサービス加入時に決めらているTOS値を「TOS」に設定する。さらに、上記移動ノード宛てのパケートをその移動ノードを収容しているFAへ回送するために、移動性結合テーブを「個別制御情報」に設定する。

[0119]

図32は、HAへサービスプロファイルを設定する手順を示す図である。

(1) AAAH100は、登録要求(HAR: Home-Agent-MIP-Request)メッセジに受信先サービスプロファイル(MN-HA dest)および送信元サービスプロフィル(MN-HA src)を添付し、そのメッセージをHA200に送る。

[0120]

(2) HA200は、DIAMETERセッショントランザクションを生成する 共に、通知されたサービスプロファイルをサービスプロファイルキャッシュに 加する。このトランザクションは、例えば図17に示した通りである。また、 A200は、HARメッセージに設定されている情報に基づいて移動性結合を 成する。移動性結合は、例えば、図21に示した通りである。そして、受信先 ービスプロファイル(MN-HA dest)の「制御情報識別子」として、生成した移 性結合へリンクするための情報を設定する。

[0121]

図33は、AAAFヘサービスプロファイルを転送する手順の例を示す図であ

8.

33

(1) HA200は、サービスプロファイルキャッシュの設定、及びHARメッセージに係わる処理の終了後、登録応答(HAA: Home-Agent-MIP-Answer)をAAAH100に返す。

[0122]

(2) AAAH100は、認証応答(AMA: AA-Mobile-Node-Answer)に受信 先サービスプロファイル(MN-FA dest)および送信元サービスプロファイル(MN -FA src)を添付し、そのメッセージをAAAF400に送る。

[0123]

(3) AAAF400は、AMAメッセージを利用して送られてきたサービスプロファイルを、同一ドメイン内のハンドオフ処理のためセッショントランザクションとリンクさせて保持する。

[0124]

霽図34は、FAヘサービスプロファイルを設定する手順を示す図である。

(1) AAAF400は、認証応答(AMA:AA-Mobile-Node-Answer)に受信 先サービスプロファイル(MN-FA dest)および送信元サービスプロファイル(MN -FA src)を添付し、そのメッセージをFA500に送る。

[0125]

(2) FA500は、通知されたサービスプロファイルをサービスプロファイルキャッシュに追加する。このとき、受信先サービスプロファイル(MN-FA dest) および送信元サービスプロファイル(MN-FA src)は、例えば、それぞれ、図1 8に示したAAA通知SPCの「受信先SPC(ASPCdst)」および「送信元S PC(ASPCsrc)」に追加される。また、AMAメッセージにより送られてきた 情報(ホームアドレス、HA200のアドレス)を訪問者リストに設定する。さ 5に、受信先サービスプロファイル(MN-FA dest)とその訪問者リストとをリン クさせる

[0126]

(3) FA500は、サービスプロファイルキャッシュの生成およびAMAメッ **-ジに係わる処理を終了すると、移動ノード600へ登録応答を返す。 上記シーケンスにより、HA200およびFA500のサービスプロファイル ・ソシュにそれぞれサービスプロファイルが設定される。そして、以降、移動 ・ド600から任意の端末(通信ノードCN700)へ送られるパケット、お ・び通信ノードCN700から移動ノード600へ送られるパケットは、それら ・サービスプロファイルに従って処理されることになる。

[0127]

図35は、移動ノードから通信ノードへパケットを転送する手順を示す図である。ここでは、DiffーServサービスが提供されるものとする。また、F **A50**0には、図31に示したサービスプロファイルが設定されているものとす

[0128]

[0129]

■36は、通信ノードから移動ノードへパケットを転送する手順を示す図である。ここでも、DiffーServサービスが提供されるものとする。また、H ▲200に図30に示したサービスプロファイルが設定されており、FA500 で図31に示したサービスプロファイルが設定されているものとする。

[0130]

(1) 移動ノード600宛てのデータパケットは、その移動ノード600のアド

レスがHA200のセグメントに属するので、HA200へ回送される。

(2) HA200は、通信ノードCN700から上記データパケットを受信する と、まず、図19に示した検索ポリシ管理テーブルに従って、サービスプロファ イル (ASPCsrc)を検索する。ここでは、移動ノードが任意の端末からパケット を受信できることを前提とし、サービスプロファイル (ASPCsrc)の制御対象パ ケット情報には何も設定されていないものとする。この場合、図19に示した検 ポリシ管理テーブルに従ってサービスプロファイル (NSPCsrc)が検索される が、同様の理由によりここでも「ヒット」はないものとする。

[0131]

(3) HA200は、上記(2) に続いて、サービスプロファイル(ASPCdst)を検索する。ここでは、図30(a) に示したサービスプロファイル(ASPCdst)が検索されるものとする。この場合、上記データパケットの受信先アドレスと制御対象パケット情報に設定されている受信先アドレスとが互いに一致するので、このサービスプロファイルに従って処理が実行されることになる。ここで、サービスプロファイル(ASPCdst)には、TOS値が設定されており、また、リンク先として移動性結合が指定されている。

[0132]

(4) HA200は、移動性結合を参照し、モバイルIP手順に従ってFA50 0へ回送すべきパケットをカプセル化する。また、そのカプセル化したパケット CTOS値を設定する。

[0133]

(5) FA500は、データパケットを受信すると、サービスプロファイルキャッシュを検索する。ここでは、そのカプセル化されたパケットの受信先アドレスが「FA500」であるので、そのパケットは、図図27(b) に示したモバイル【P用デフォルトサービスプロファイルにヒットする。このサービスプロファイルには、デカプセル化指示が設定されており、さらに、リンク先としてサービスプロファイルキャッシュが設定されている。従って、FA500は、受信パケットをデカプセル化した後、再度サービスプロファイルキャッシュを検索する。

[0134]

(6) デカプセル化したパケットの受信先アドレスには、「移動ノード600」 が設定されている。したがって、このデカプセル化したパケットは、図31(a) にかしたサービスプロファイル(ASPCdst)にヒットする。そして、このサービ スプロファイルには、リンク先として訪問者リストが指定されている。したがっ て、FA500は、モバイルIPの手順に従い、訪問者リストに登録されている 動ノード600のリンクレイヤアドレスへデータパケットを回送する。

7A(2) 移動ノードがあるAAAF内のあるFAの通信エリアから他のFAの通 はエリアに移動した場合のシーケンス

図37は、サービスプロファイルを配付するシーケンスを示す図である。ここでは、移動ノード600が、FA500pの通信エリアからFA500nの通信エリアに移動した場合を示す。なお、FA500pおよびFA500nは、共にTAAAF400に属するものとする。

[0135]

(1) 移動ノード600がFA500nの通信エリアに入ると、移動ノード60 **0**は、FA500nからSビット(スムースハンドオフビット)が設定されたエ **-**ジェント広告を受信する。

[0136]

(2) 移動ノード600は、エージェント広告を送出したFAのアドレスを抽出 し、FAのNAIのドメイン部分が変化しているか否かを判断する。ここでは、 FA500pおよびFA500nが共にAAAF400に属しているので、ドメ インは変化していない。したがって、移動ノード600は、登録要求メッセージ に「旧FA通知拡張」を設定してFA500nへ送る。「旧FA通知拡張」は、 図62(d) に示した通りである。

[0137]

(3) FA500nは、「旧FA通知拡張」を含む登録要求メッセージを受信すると、訪問者リストを生成し、AAAF400からセッション鍵を入手するために、図69に示すAMRメッセージを利用して「Previous-FA-NAI-AVP」および「MN-FA-SPI-AVP」をAAAF400へ通知する。「Previous-FA-NAI-AVP」は

こではFA500pを識別する。

[0138]

遊

1

27

14

學

(4) AAAF400は、「MN-FA-SPI-AVP」によりセッションを特定する。そして、セッションにより特定されたセッション鍵群とサービスプロファイルを設 ★したAMAメッセージをFA500nに送る。

[0139]

(5) FA500nは、AMAメッセージによりセッション鍵を受信すると、その鍵で移動ノード600を認証する。そして、正しく認証されたときは、サービス制御トランザクションを生成し、結合更新メッセージをFA500pに送る。ここで、結合更新メッセージの「Aビット」は必ず設定しなければならない。また、ルート最適化認証は、FAがルート最適化を認証するために用いられる。そして、サービスプロファイルは、FA500nの訪問者リストとリンクするものを設定する。但し、リンク先は結合キャッシュに変更される。

[0140]

(6) FA500pは、結合更新メッセージを受信すると、移動ノード600に係わる訪問者リストを削除し、結合キャッシュを作成する。また、サービスプロファイルのリンク先として結合キャッシュを設定する。そして、FA500pは移動ノード600に対して結合承認メッセージを送出する。結合承認メッセージは、カプセル化されてFA500nに送出され、そのFA500nがデカプセル化して移動ノードへ回送される。この後、登録キャッシュのライフタイムが満了すると、FA500pは、移動ノード600に対してサービスを提供することを終了する。

[0141]

- (7) FA500nは、通常の手順でHA200に対して登録要求メッセージを **そ**る。

[0142]

(g) FA500nは、移動ノード600へ登録応答メッセージを返送する。

(10)通信ノード700から移動ノード600へのパケットは、カプセル化されてFA500pへ回送される。そして、FA500pにおいていったんデカプセルされた後、再度カプセル化されてFA500nに回送される。FA500nはパケットをデカプセル化して移動ノード600へ回送する。

7A(3) 移動ノードがあるAAAF内のFAの通信エリアから他のAAAF内の FAの通信エリアに移動した場合のシーケンス

図38は、サービスプロファイルを配付するシーケンスを示す図である。ここでは、移動ノード600が、AAAF400pの配下のFA500pの通信エリアからAAAF400nの配下のFA500nの通信エリアに移動した場合を示す。

[0143]

(1) 移動ノード600がFA500pの通信エリアからFA500nの通信エリアに移動すると、移動ノード600は、Sビットが設定されたエージェント広 **86** をFA500nから受信する。

[0144]

(2) 移動ノード600は、エージェント広告を送出したFAのアドレスを抽出 し、FAのNAIのドメイン部分が変化しているか否かを判断する。ここでは、 FA500pおよびFA500nが互いに異なるAAAFに属しているので、ド メインは変化している。したがって、移動ノード600は、登録要求メッセージ に「MN-AAA認証」を設定してFA500nに送る。

[0145]

(3) FA500nは、訪問者リストを生成する。このとき、該当するセッショントランザクションはそんざいしない。よって、FA500nは、AMRメッセージに「セッションID=0」を設定し、それをAAAF400nへ送る。

[0146]

【AMRメッセージをAAAH100へ回送する。

(5) AAAH100は、AMRメッセージを受信すると以下の処理を行う。す

・セッションマージ処理:「セッションID=0」が設定されているAMRメッセージを受信すると、移動ノード600のNAIを用いてセッショントランザクションを検索する。この検索においてヒットがあった場合は、以降のシーケンスでは、そのセッションのセッションIDを用いる。一方、ヒットがなかった場合は、新たにセッショントランザクションを生成し、それにセッションIDを割りは、新たにセッションIDが設定されているAMRメッセージを受信した場合は、そのセッションIDでセッショントランザクションを索引する。

★群生成:全てのセキュリティ鍵を再生成し、また、セッションタイマを更新する。

HA200へHARメッセージを送出する(セッショントランザクション非生 は時のサービスプロファイル送出は任意)。

[0147]

- **(6)** HA200は、移動性結合を更新し、AAAH100へAMAメッセージ **(2) 返送**する。
- (7) AAAH100は、AMRメッセージを送出したAAAFとセッショントンザクション内のAAAFとを比較する。そして、もし、これらが互いに異なっていたときは、AMAメッセージに「旧FA-NAI」を設定して送出する。このと、「旧FA-NAI」は、FA500pを識別する。

[0148]

(8) AAAF400nは、サービスプロファイルをセッショントランザクション に設定し、AMAメッセージを用いてそのサービスプロファイルをFA500 へ送る。

[0149]

(9) FA500nは、「旧FA-NAI」が設定されたAMAメッセージを受信するサービスプロファイルをサービスプロファイルキャッシュに追加する。そしFA500nは、「旧FA-NAI」に基づいてFA500pを認識し、AMAメージにより通知されたRO認証およびサービスプロファイルを設定した結合

¶新をFA500pに送る。

[0150]

(10) FA500 pは、移動ノード600の訪問者リストを削除すると共に、結合キャッシュを作成する。そして、サービスプロファイルキャッシュに格納されているサービスプロファイルを結合更新により通知されたサービスプロファイル に置き換え、結合キャッシュにリンク付ける。この後、FA500 pは、結合承 電メッセージを移動ノード600へ返す。

[0151]

(11) FA500nは、移動ノード600に登録応答メッセージを返す。FA5 00pのサービスプロファイルおよび結合キャッシュは、キャッシュの満了に伴 て削除され、AAAF400pのサービスプロファイルキャッシュおよびセッ ショントランザクションは、セッションタイムアウトに伴って削除される。

B. AAAFがHAを指定する場合

以下の実施例では、(1) 初期登録時のシーケンス、(2) 移動ノードがあるAA 「P内のあるFAの通信エリアから他のFAの通信エリアに移動した場合のシー 「ンス、(3) 移動ノードがあるAAAF内のFAの通信エリアから他のAAAF 「OFAの通信エリアに移動した場合のシーケンスを説明する。

B(1) 初期登録時のシーケンス

[0152]

AAAH100は、AMA(AA-Mobile-Node-Answer)メッセージに受信 --ビスプロファイル(MN-HA dest)、送信元サービスプロファイル(MN-HA grc)、受信先サービスプロファイル(MN-FA dest)、送信元サービスプロファ イル(MN-FA src)を添付してAAAF400へ送る。

[0153]

()

- (2) AAAF400は、通知されたサービスプロファイルを同一ドメイン内の nyドオフ処理のためセッショントランザクションとリンクさせて保持する。
- (3) AAAF400は、HAR (Home-Agent-MIP-Request) メッセージに受信 先サービスプロファイル (MN-HA dest) および送信元サービスプロファイル (MN-HA src) を添付してHA200に送る。

[0154]

(4) HA200は、DIAMETERセッショントランザクションを生成し、 遺知されたサービスプロファイルを自分のサービスプロファイルキャッシュに追 切する。また、HARメッセージにより通知された登録要求の情報に基づいて移 動性結合を生成する。さらに、受信先サービスプロファイル(MN-HA dest)の制 関情報識別子として、生成した移動性結合のエントリーへのリンク情報を設定す る。

[0155]

(5) AAAF400は、AMAメッセージに受信先サービスプロファイル(MN-FA dest)および送信元サービスプロファイル(MN-FA src)を添付してFA5

[0156]

[0157]

(7) サービスプロファイルキャッシュの生成およびAMAメッセージの処理が

上記シーケンスにより、HA200およびFA500のサービスプロファイル イッシュにそれぞれサービスプロファイルが設定される。そして、以降、移動 ード600から通信ノードCN700へ送られるパケット、および通信ノード CN700から移動ノード600へ送られるパケットは、それらのサービスプロファイルに従って処理されることになる。なお、サービスプロファイルキャッシュを無してデータパケットを処理する際の動作は、AAAH100がHAを指する場合(上記7A(1)参照)と同じである。よって、その部分のシーケンス こっいては説明を省略する。

7B(2) 移動ノードがあるAAAF内のあるFAの通信エリアから他のFAの通 電エリアに移動した場合のシーケンス

家このシーケンスはAAAH100がHAを指定する場合(上記7A(1)参照) と同じである。よって、説明を省略する。

7B(3) 移動ノードがあるAAAF内のFAの通信エリアから他のAAAF内の FAの通信エリアに移動した場合のシーケンス

図40は、サービスプロファイルを配付するシーケンスを示す図である。ここでは、図38に示した例と同様に、移動ノード600が、AAAF400pの配下のFA500nの通常エリアからAAAF400nの配下のFA500nの通いでは、1000でである。ここのシーケンスにおいて、移動ノード600がFA500nからエージェント広告を受信してからAAAH100がトランチクションを生成するまでの処理は、AAAH100がHA200を指定する場合と同じなので(上記7A(3)参照)、この部分についての説明は省略する。

[0158]

(1) セッショントランザクションの中でHAに対して割り当てられているアド ^{しス}を参照し、「0000」または「FFFF」であったときは、HA200を ^{毎定}したAAAF(すなわち、AAAF400p)に対してAMRメッセージを ^選出する。 [0159]

- (2) AAAF400pは、HA200へHARメッセージを送出する。
- (3) は200は、HARメッセージに従って移動性結合を更新し、HAAメッセージをAAAF400pに返す。

[0160]

CN

(4) AAAH100は、AMRメッセージを送出してきたAAAF(AAAF 400n)とセッショントランザクション内のAAAFとを比較し、それらが互いに異なっていたときには、「旧FA-NAI」を設定したAMAメッセージをAAA F400nに対して送出する。なお、このAMAメッセージには、サービスプロファイルが添付されている。

[0161]

- (5) AAAF400nは、FA500nへAMAメッセージを回送する。これ により、FA500nにサービスプロファイルが配付される。
- (6) FA500nは、「旧FA-NAI」が設定されたAMAメッセージを受信する と、そのメッセージに添付されているサービスプロファイルをキャッシュに追加 する。また、上記メッセージに設定されている「旧FA-NAI」に基づいてFA50 りを認識する。そして、AMAメッセージにより通知されたRO認証およびサ とよプロファイルを設定した結合更新をFA500pへ送る。

[0162]

(7) FA500pは、移動ノード600の訪問者リストを削除すると共に、結 キャッシュを作成する。そして、現在のサービスプロファイルを結合更新によ 知道知されたサービスプロファイルに置き換え、結合キャッシュとリンクする。 の後、FA500pは、結合承認メッセージを移動ノード600へ返す。

[0163]

1C. 各エンティティのフローチャート

図41は、AAAH100の動作を説明するフローチャートである。この処理 は、例えば、DIAMETERプロトコルのパケットを受信したときに実行され

[0164]

:)

:)

-4

(-)

3 1

74

3)

· 33

31

20.

03

ステップS1では、受信パケットのメッセージの種別を調べる。AMRメッセ **しゞであればステップS2へ進み、AMAメッセージまたはHAAメッセージで** AnはステップS8へ進み、SFRメッセージであればステップS13へ進む。 3テップS2では、セッショントランザクションが既に生成されているか否かを ■べる。セッショントランザクションが既に生成されている場合には、ステップ ⟨₫▓▋\$9へ進み、そうでない場合には、ステップS3においてセッショントランザク りョンを生成する。

[0165]

ステップS4では、AMRメッセージに設定されているNAIをキーとしてサ |-ビス制御データベースを検索し、その検索結果に基づいてサービスプロファイ №を生成する。ステップS5では、生成したサービスプロファイルをセッション Yamal トランザクションに設定する。

[0166]

7) ステップS6では、AAAHがHAを指定する必要があるか否かを調べる。な **■6、AAAHまたはAAAFのいずれがHAを指定するのかは、予め決められて** 五世 ┗┗でもよいし、動的に変更されてもよい。そして、AAAHがHAを指定する必 ┗がある場合は、ステップS7において、サービスプロファイルを添付したHA |『メッセージをHAへ送出する。一方、AAAHがHAを指定する必要がない場 ^{|乳は}、ステップS8において、サービスプロファイルを添付したAMAメッセー ^{5を}AAAFへ送出する。

[0167]

ステップS9では、AAAFが変更されているか否かを調べる。AAAFが変 ^{くさ}れていた場合にはステップS10へ進み、変更されていなかった場合には、

プラップS8へ進んでAMAメッセージを送出する。ステップS10では、HA プロに指定されているか否かを調べる。HAが既に指定されている場合には、ステップS11において、HAに対してHARメッセージを送出する。一方、HA プルだ指定されていない場合には、ステップS12において、移動ノードを先に で表していたAAAFに対してAMRメッセージを送出する。

[0168]

ステップS13では、SFRメッセージの送出元に対してSFAメッセージを 選送する。ステップS14では、セッショントランザクションを解放する。

SUT、具体的な態様についてAAAHの動作をそれぞれ説明する。

[0169]

- (1) AAAFがHAを指定する場合の初期位置登録手順(図39参照) この処理は、例えば、移動ノードからFAに登録要求メッセージが送られ、そ OFAからAAAFを介してAAAHへ認証要求メッセージが送られてきたとき に実行される。
- **S1**:AAAFからAMR (AA-Mobile-Node-Request) メッセージを受信するの **₹、**ステップS2へ進む。
- **S2**:AMRメッセージにより通知される移動ノードのNAIをキーとしてセッショントランザクションを検索する。なお、初回位置登録においては、セッショントランザクションは未だ生成されていない。よってステップS3へ進む。
- **§\$3**:セッショントランザクションを生成する。
- \$4:移動ノードのNAIをキーとしてサービス制御データベース300を検索 b、その検索により得られる情報およびサービスプロファイルを生成するための オリシーに基づいてサービスプロファイルを生成する。これにより、図11に示したサービスプロファイルが生成される。なお、サービスプロファイルを生成す bためのポリシーおよび具体的な構成方法については、特に限定されるものでは ないが、いくつかの例を前述したので、ここでは省略する。
 - \$5:セッショントランザクションにサービスプロファイルを設定する。
 - **\$6**:AMRメッセージのHAアドレスとして「0000」または「FFFF」 ***設**定されていた場合、AAAHまたはAAAFのどちらがHAを指定するのか

「対析する。判定条件は、プロバイダにより与えられているものとする。ここで AAAFがHAを指定するものとしてステップS8に進む。

58:AMAメッセージにステップS4で生成したサービスプロファイルを添付 てAAAFへ送出する。

[0170]

- (2) AAAHがHAを指定する場合の初期位置登録手順(図25参照)
- ★1~S5:上記(1) のケースと同じである。
- **86:**ここではAAAHがHAを指定するものとしてステップS7に進む。
- **57:** HAを指定し、サービスプロファイルを添付したHARメッセージをその HAへ送出する。

[0171]

(3) AAAHがHAを指定した場合において、ISP間を移動した移動ノード
●位置登録手順(図38参照)

この処理は、例えば、ある移動ノードがあるAAAFの配下にあるFAの通信 エリアから他のAAAFの配下にある他のFAの通信エリアへ移動したときに実 行される。

\$1:AAAFからAMRメッセージを受信するので、ステップS2へ進む。

\$2:AMRメッセージにより通知される移動ノードのNAIをキーとしてセックョントランザクション(図13参照)を検索する。ここでは、先に認証処理が **業7**しているので、セッショントランザクションが存在する。従って、ステップ **\$9**へ進む

\$10:セッショントランザクションのHAアドレスを参照し、HAがAAAH 自身により既に指定されているのか否かを調べる。ここでは、HAはAAAHに より既に指定されているものとする。なお、HAがAAAHにより指定されてい ないときは、例えば、HAアドレスとして「0000」または「FFFF」が設 食されているものとする。

§11:先に指定されているHAに対してHARメッセージを送出する。

[0172]

(4) AAAFがHAを指定した場合において、ISP間を移動した移動ノード の位置登録手順(図40参照)

\$1~S9:上記(3) のケースと同じである。

\$10: ここでは、HAはAAAFにより指定されているので、ステップS12 \wedge 進む。なお、HAがAAAFにより指定されている場合は、例えば、HAアド Vスとして「0000」または「FFFF」が設定されている。

\$12:セッショントランザクションを参照し(図13のHA割り付けAAAF **7ド**レス)、HAを指定したAAAFへAMRメッセージを回送する。

[0173]

(5) セッションタイマの満了による位置登録更新手順

この処理は、例えば、移動ノードがあるFAの通信エリア内に滞在している期間にセッションタイマが満了したときに実行される。セッションタイマが満了すると、AAAHに対して位置登録を更新するためのAMRメッセージが転送されてくる。

\$1~S2:上記(3) のケースと同じである。

\$9:ここでは、移動ノードの移動に起因する位置登録はないので、AAAFは ▼更されていない。よって、ステップS8へ進む。

\$8:AMAメッセージにステップS4で生成したサービスプロファイルを添付 **し**TAAAFへ送出する。

[0174]

(6) HAへの位置登録が終了したときに手順処理

この処理は、HAからHAAメッセージを受信したとき、あるいはHAを指定 したAAAFからAMAメッセージを受信したときに実行される。なお、AAA Hは、ステップS11においてHAにHARメッセージを送ったときに、HAか らHAAメッセージを受信する。また、AAAHは、ステップS12において旧 AAAFにAMRメッセージを送ったときに、その旧AAAFからAMAメッセ ジを受信する。

51: HAAメッセージまたはAMAメッセージを受信すると、ステップS8へ

v.

S8:AMAメッセージにステップS4で生成したサービスプロファイルを添付 LTAAAFへ送出する。なお、旧AAAFからAMAメッセージを受信したと gは、サービスプロファイルが添付されたAMAメッセージは新AAAFへ送出 enる。

[0175]

(7) セッション解放手順

この処理は、SFR (Session Free Request) メッセージを受信したときに実 でされる。なお、SFRメッセージは、この発明とは直接的には関わりのないサ により生成される。例えば、課金サーバが課金停止メッセージを受信したと にSFRメッセージを生成する。

31:SFRメッセージを受信すると、ステップS13へ進む。

■13:SFRメッセージを送出してきたサーバに対してSFA (Session Free Laswer) メッセージを返送する。

■**\$14**:セッショントランザクションを解放する。

[0176]

■42および図43は、AAAF400の動作を説明するフローチャートであ ■ この処理は、例えば、DIAMETERプロトコルのパケットを受信したと ■に実行される。

[0177]

ステップS21では、受信パケットのメッセージの種別を調べる。AMRメッセージであればステップS22へ進み、AMAメッセージであればステップS4
「本連み、HAAメッセージであればステップS51へ進み、SFAメッセージであればステップS61へ進む。ステップS22では、AMRメッセージにより「旧FA-NAI」が通知されてきたか否かを調べる。通知があった場合にはステップS31へ進み、通知が無かった場合にはステップS23へ進む。

[0178]

ステップS23では、AMRメッセージに設定されているNAIをキーとして セッショントランザクションを検索する。ステップS24では、セッショントラ ンザクションが既に生成されているか否かを調べる。そして、未だ生成されてい なかった場合には、ステップS25においてそれを生成する。

[0179]

J

73

HI

ステップS26では、HAがAAAF自身により既に指定されているか否かを ■べる。そして、HAが既に指定されている場合は、ステップS27において、 HARメッセージをHAに送る。一方、HAが未だ指定されていない場合には、 ステップS28において、AMRメッセージに設定されているNAIに基づいて AAAHを特定し、そのAAAHへAMRメッセージを回送する。そして、ステ ップS29において、動作状態として「HA要求中」を設定する。

[0180]

を検索する。ステップS31では、セキュリティ情報を用いてセッショントランザクションを検索する。ステップS32では、AMAメッセージにサービスプロファイルを MITOTFAへ送出する。ステップS33では、動作状態として「処理待ち」を DDでする。

[0181]

ステップS41では、セッショントランザクションにサービスプロファイルを 設定する。ステップS42では、HAがAAAF自身により既に指定されている か否かを調べる。HAが未だ指定されていない場合には、ステップS43におい て、HAを指定すると共に、サービスプロファイルを添付したHARメッセージ その指定したHAに送出する。そして、ステップS44において、動作状態と して「AMA処理中」を設定する。一方、HAが既に指定されている場合には、 ステップS45において、AMAメッセージをFAへ回送した後にステップS3 3へ進む。

[0182]

ステップS51では、動作状態を調べる。そして、動作状態として「HA要求 中」が設定されたいた場合には、ステップS52においてAAAHへAMAメッ セージを送出した後にステップS33へ進む。一方、動作状態として「AMA処 ☑中」が設定されたいた場合には、ステップS53においてFAへAMAメッセ ☑・シを回送した後にステップS33へ進む。

[0183]

44

A

ステップS61では、AAAHに対してSFAメッセージを送る。そして、ス チップS62において、セッショントランザクションを解放する。

以下、具体的な態様についてAAAFの動作をそれぞれ説明する。

[0184]

(1) 初期位置登録手順(図25、図39参照)

\$21:FAからAMRメッセージを受信するので、ステップS22へ進む。

S22:初期位置登録なので、AMRメッセージに「旧FA-NAI AVP」は含まれな

い、よって、ステップS23へ進む。

\$23:AMRメッセージで通知されるNAIをキーとしてセッショントランザ

クションを検索する。

\$24:初期位置登録なので、ステップS23で検索対象となっているセッショ

シトランザクションはAAAFには存在しない。したがって、ステップS25へ

量む。

S25:セッショントランザクションを生成する。

S26:初期位置登録においては、HAは未だ指定されていない。よって、ステ

*ソプS28へ進む。なお、HAが指定されているか否かは、セッショントランザ

ẫ **ク**ションのHAアドレスにより判定される。例えば、セッショントランザクショ

>生成直後は、HAアドレスとして「0000」が設定される。

■\$28:AMRメッセージに設定されている移動ノードのNAIのドメイン部分

に基づいて、移動端末が属する I S P の A A A H を特定し、その A A A H に A M

Rメッセージを回送する。

\$29:動作状態として「HA要求中」を設定する。

[0185]

(2) AAAFがHAを指定した場合において、ISP間を移動した移動ノード の位置登録手順(図40参照)

ここでは、移動ノードが移動する前にその移動ノードを収容していたFAが属

AAAF (図40に示すAAAF400pに相当し、ここでは、「旧AAA と呼ぶ。)の動作を説明する。

1:旧AAAFは、AAAHからAMRを受信するので、ステップS22へ

22:移動ノードが異なるドメインに移動したので、AMRメッセージに「旧 ALL AVP」は含まれない。よって、ステップS23へ進む。

323:AMRメッセージにより通知されるNAIをキーとしてセッショントラ 47ションを検索する。

24:旧AAAFには、そのようなセッショントランザクションが存在する。

きって、ステップS25をスキップする。

326:セッショントランザクションのHAアドレスとして当該AAAFが設定 LeHAのアドレスが設定されている。よって、ステップS27へ進む。

第27:HAにHAR(Home-Agent-MIP-Request)メッセージを送出する。

829:動作状態として「HA要求中」を設定する。

[0186]

(3) ISP内を移動した移動ノードの位置登録手順(図37参照) ここでは、移動ノードが移動する前に収容されていたFAを「旧FA」、移動 ノードが移動した後に収容されるFAを「新FA」と呼ぶことにする。

\$21:AAAFは、新FAからAMRメッセージを受信するので、ステップS **22**へ進む。

\$22:移動ノードの移動先は同一ドメイン内の異なるFAなので、移動ノード は登録要求メッセージの「旧FA-NAI拡張」を設定し、FAはAMRメッセージ の「旧FA-NAI AVP」を設定する。

\$31:セキュリティ情報 (MN-FA-SPI) でセッショントランザクションを検索する。

\$32:そのセッショントランザクションに設定されたサービスプロファイル及びセキュリティ情報をAMA(AA-Mobile-Node-Answer)メッセージに添付し、そのメッセージを新FAに送出する。

S33:動作状態として「処理待ち」を設定する。

[0187]

(4) AAAFがHAを割り当てる場合の位置登録処理(図39参照)

521:AAAFは、AMRメッセージに対する応答として、AAAHからAM Aメッセージを受信する。よって、ステップS41へ進む。

541:DIAMETERの識別子フィールドを参照し、セッショントランザク 9ョンを特定する。そして、そのセッショントランザクションにAMAメッセー Wにより通知されたサービスプロファイルを設定する。

\$42:ここでは、未だHAが指定されておらず、ステップS43へ進むものと **する**。なお、HAが当該AAAFにより指定されている場合には、例えば、AM **▲メッ**セージに設定されているHAアドレスとして「0000」または「FFF **F**」されている。

S43: HAを指定し、サービスプロファイルを添付したHAR(Home-Agent-M → P-Request)メッセージをそのHAへ送出する。

S44:動作状態として「AMA処理中」を設定する。

[0188]

(5) AAAHがHAを指定する際の位置登録処理(図25、図40参照)ここでは、例えば、図25に示したAAAF400または図40に示したAAAF400nの動作が説明される。

\$21、S41:上記(4) と同じである。

\$42:ここでは、当該AAAFにより既にHAが指定されているものとし、ステップS45へ進む。

§45:セッショントランザクションの「現FA-NAI」に基づいてFAを特定し、 そのFAにAMAメッセージを回送する。

§33:動作状態として「処理待ち」を設定する。

[0189]

(6) AAAFがHAを指定する場合において、ISP間を移動した移動ノード の位置登録手順(図40参照)

ここでは、例えば、図40に示したAAAF400pの動作が説明される。

\$21:HARメッセージに対する応答としてHAからHAA(Home-Agent-MIP

yesmer) メッセージを受信すると、ステップS51へ進む。

g51:セッションIDに基づいてセッショントランザクションを特定し、その

・ ランザクションの動作状態を調べる。ここでは、動作状態として、「HA要求

が設定されているものとし、ステップS52へ進む。

■52:セッショントランザクションからAAAHを特定し、そのAAAHへA

MAメッセージを送出する。

§\$33:動作状態として「処理待ち」を設定する。

[0190]

(7) AAAFがHAを指定した場合の登録応答処理(図39参照)

※821:HARメッセージに対する応答としてHAからHAAメッセージを受信

まると、ステップS51へ進む。

▒651:セッションⅠDに基づいてセッショントランザクションを特定し、その

※トランザクションの動作状態を調べる。 A A A F が H A を指定した場合には、先

『【ステップS43およびS44が実行されているはずなので、動作状態として、

MAMA処理中」が設定されている。よってステップS53へ進む。

\$53:セッショントランザクションからFAを特定し、サービスプロファイル

፟፟፟፟፟፟፟を添付したAMAメッセージをそのFAへ送出する。

S33:動作状態として「処理待ち」を設定する。

[0191]

(8) セッション解放処理

\$21:AAAHからSFRメッセージを受信するとステップS61へ進む。な

8、SFRメッセージは、課金処理の停止、あるいは障害等の要因により生成さ

no.

№61:セッションIDに基づいてセッショントランザクションを特定する。そ

して、そのトランザクションから特定されるAAAHに対してSFAメッセージ

を送出する。

\$62:セッショントランザクションを解放する。

[0192]

図44は、HA200、FA500、またはCN700の動作を説明するフロ

チャートである。この処理は、パケットを受信したときに実行される。

3.ステップS71では、受信パケットのIPヘッダ情報を抽出する。IPヘッダ B. 図61(a) に示した通りである。なお、この処理は、パケット制御部201 Lより実行される。ステップS72では、ヘッダ情報の受信先アドレスおよびポート番号を参照し、受信パケットがデータパケットであるかプロトコルパケットを判定する。そして、(1) プロトコルパケットを受信したときはステップS73~S75が実行され、(2) データパケットを受信したときはステップS76~ S79が実行される。

[0193]

(1) プロトコルパケットを受信したときの動作

§73:プロトコル制御部202は、パケット制御部201からプロトコル処理 **夏**求を受け取ると、UDPヘッダのポート番号を解析し、モバイルIPに係わる **処理**が要求されているのか、DIAMETERに係わる処理が要求されているの かを調べる。

\$74:DIAMETERプロトコルによりサービスプロファイルが配付されて **き**たときは、そのサービスプロファイルを用いて個別サービス制御部203のサ **ービ**スプロファイルキャッシュを更新する。

\$75:モバイルIPによるメッセージに従って、サービス非依存部204のテーブルを生成し、また、そのテーブルに必要な情報を設定する。さらに、モバイルIPに従って必要なメッセージを送出する。

[0194]

(2) データパケットを受信したときの動作

§76:検索ポリシ管理テーブルに設定されているポリシーに従って、パケット 割御部201により抽出されたヘッダ情報をキーとしてサービスプロファイルキャッシュを検索する。そして、抽出されたサービスプロファイルの「ルーティン グ/パケット編集情報」に従って受信パケットを編集する。この処理は、個別サービス制御部203により実行される。

§77:ステップS76において抽出されたサービスプロファイルによりサービス非依存部204の所定の機能が指定されてたときは、サービス非依存部204

を渡し、ステップS78へ進む。

~79:必要に応じてパケットを編集した後、そのパケットを回送する。

D. サービスプロファイルの管理

この実施形態のシステムでは、各ユーザは、それぞれ利用したいサービスを選ばすることができる。このため、様々な付加価値サービスを要求するユーザもいば、付加価値サービスを全く要求しないユーザや、ある特定の基本付加価値サビスのみを要求するユーザもいる。そして、各ユーザが要求するサービスに係りる情報は、サービス制御データベース300にユーザ毎に格納されている。

[0195]

以下では、付加価値サービスが全く要求されていない場合、および特定の基本 ♥加価値サービスのみが要求されている場合を想定し、サービスプロファイルを ★率的に利用する方法を説明する。

[0196]

(1) 付加価値サービスを全く要求しないユーザに対するサービスプロファイル の管理

HAおよびFAは、初期構成時に、それぞれ図45および図46に示すサービスプロファイルを生成する。これらのサービスプロファイルは、それぞれモバイルIPをサポートするために最低限必要な情報が設定されている。

[0197]

AAAHは、付加価値サービスを要求しないユーザに対しては、その移動ノードの登録要求時にサービスプロファイルを作成しない。登録要求メッセージを送出した移動ノードのユーザが付加価値サービスを要求しているか否かの判断は、例えば、登録要求に伴って送られてくるAMRメッセージに設定されているNAIをキーとしてサービス制御データベースを検索すればよい。なお、「移動ノー

●0登録要求時にサービスプロファイルを生成しない」は、図41のステップS *cおけるサービスプロファイル構成ポリシーの一例である。

[0198]

■Lたがって、この場合、AAAHからHAおよびFAに対して新たに付加価値 **ルービスのためのサービスプロファイルが配付されることはない。また、HAお** ▼びFAにおいて、このユーザに係わるサービスプロファイルキャッシュは、図 ▲5および図46に示すように、AAA通知SPCには何も設定されない。

[0199]

MacL記構成において、移動ノードから通信ノードCN宛てのデータパケットが送 nanaと、そのパケットは、上記移動ノードを収容しているFAにより受信さ Ma。FAは、このデータパケットを受信すると、図46に示したサービスプロ 約ァイルキャッシュを検索する。ここで、このデータパケットの送信元アドレス Maよび受信先アドレスとして「移動ノード」および「通信ノードCN」が設定さ **ヒれている。従って、図19に示す検索ポリシーに従って図46に示すサービスプ ロファイルキャッシュを検索すると、デフォルトサービスプロファイル(NDSP)** ▇が参照されることになる。このデフォルトサービスプロファイル(NDSP)では、リ **※ソク**先として、ルータが本来的に管理しているルーティングテーブルが指示され **尽てい**る。従って、受信したデータパケットは、ルーティングテーブルに従って通 **層間ノードCNへ回送される。**

[0200]

また、通信ノードCNから移動ノード宛てのデータパケットが送出されると、 **その**パケットは、上記移動ノードのホームエージェントエージェントであるHA **に転送される。HAは、このデータパケットを受信すると、図45に示すサービ** ^{スプ}ロファイルキャッシュを検索する。ここで、このデータパケットの送信元ア ドレスおよび受信先アドレスとして「通信ノードCN」および「移動ノード」が **設定**されている。従って、図19に示す検索ポリシーに従って図45に示すサー **ビ**スプロファイルキャッシュを検索すると、受信先サービスプロファイル(NSPC **dst**)が参照されることになる。そして、この受信先サービスプロファイル(NS Ptdst)のリンク先は移動性結合なので、受信したデータパケットは、その移動

6 5

合に従ってFAへ回送される。このとき、このパケットは、カプセル化され いる。

[0201]

FAは、上記カプセル化されたパケットを受信すると、図46に示すサービス 10ファイルをを検索する。ここで、このデータパケットの送信元アドレスおよりを信先アドレスとして「HA」および「FA(気付アドレス)」が設定されている。従って、図19に示す検索ポリシーに従って図46に示すサービスプロファイルキャッシュを検索すると、受信先サービスプロファイル(NSPCdst)が参しまれる。これにより、そのパケットはデカプセル化される。また、受信先サービスプロファイル(NSPCdst)のリンク先としてサービスプロファイルキャッシュを検索する。

[0202]

デカプセル化されたパケットの送信元アドレス及び受信先アドレスとして「HA」および「移動ノード」が設定されている。従って、図19に示す検索ポリシーに従って図46に示すサービスプロファイルキャッシュを検索すると、受信先デフォルトサービスプロファイル(NDSPdst)が参照されることになる。したがって、デカプセル化されたパケットは、訪問者リストに従って移動ノードに回送される。

[0203]

(2) 特定の基本付加価値サービスのみを要求しているユーザに対するサービスプロファイルの管理

木目細かなサービスを望むユーザがいる反面、大多数のユーザは、インターネットサービスプロバイダが提供する付加価値サービスの基本セット(例えば、図6に示した品質保証サービス)をそのまま利用するものと思われる。このような状況においては、サービスプロファイルのパターンは数パターンに収束されるので、ユーザ毎にそれぞれサービスプロファイルを設定することは資源の無駄遣いである。

[0204]

この問題を解決するための方法として、提供すべきサービスクラスとAAAませHAにより割り当てられるIPアドレスとを予め対応付けておく方法が考える。例えば、インターネットサービスプロバイダは、サービスクラス毎に移ノードに割り当てるIPアドレスの範囲を予め決めておき、それを他のプロバイダに通知する。そして、通知を受けたプロバイダは、その通知に従って、各HまよびFAのサービスプロファイルキャッシュに必要な情報を設定する。

[0205]

AAAHは、例えばダイヤルアップ手順により移動ノードにIPアドレスを割り当てるときは、その移動ノードのユーザが付加価値サービスの基本セットのみを要求しているのか否かを調べる。なお、各ユーザが付加価値サービスの基本セットのみを要求しているのか否か、及び基本セットを要求している場合にどのサービスクラスを選択しているのかは、サービス制御データベース300を参照することにより知ることができる。そして、AAAHは、ユーザが付加価値サービスの基本セットのみを要求している場合には、そのユーザが選択しているサービスクラスに対応するIPアドレスをその移動ノードに割り当てる。このとき、AAAHは、HAおよびFAへサービスプロファイルを配付しない。なお「IPアドレスを割り当てる際にサービスプロファイルを生成しない」は、図41のステップS4におけるサービスプロファイル構成ポリシーの一例である。

[0206]

HAおよびFAは、サービスプロファイルキャッシュを参照することにより、 付加価値サービスの基本セットを提供する。これにより、サービスプロファイル キャッシュの容量が削減される。また、サービスプロファイルキャッシュを検索 する際に、IPアドレスの上位部分のみを調べればよいので、検索の高速化が可 能になる。

[0207]

図47は、サービスクラスに対して使用するIPアドレスの範囲を予め決めて ちく方法の実施例である。この実施例においては、サービスクラスA、B、Cに 対して、IPアドレスの範囲としてそれぞれ「172.27.180.*」「1 72.27.185.*」および「172.27.190.*」が割り当てられ 3. ここで、「*」はワイルドカードである。そして、HAおよびFAに配けるサービスプロファイルは、例えば、制御対象パケット情報として「1727、180. *」が設定され、ルーティング/パケット編集方法および個情報としてサービスクラスAを提供するための情報が設定される。したがHAおよびFAは、送信元アドレスまたは受信先アドレスとして、その上分が「172.27、180」であるパケットを受信すると、そのパケットしてサービスクラスAをサポートするための処理を行う。

18. ルート最適化

温信ノードCN700から移動ノード600宛てのパケットは、通常、その移 フノード600のアドレスに従っていったんHA200に転送される。そして、 そのパケットは、HA200からFA500に回送された後に移動ノード600 **みま**られる。

[0208]

ルート最適化処理は、上述のケースにおいて、移動ノード600宛てのパケットがHA200を経由することなく直接的にFA500へ転送されるようにする とめの手順である。以下、上記最適化を実現するために必要なサービスプロファ イルの配付を図48を参照しながら説明する。

[0209]

(1) HA200は、通信ノードCN700から移動ノード600宛てのデータ パケットを受信する。この場合、そのパケットは、受信先アドレスに係わるフィルタ情報として移動ノード600のアドレスが設定されているサービスプロファイルにヒットする。したがって、HA200は、そのヒットしたサービスプロファイルの情報に従ってパケットを編集すると共にカプセル化し、移動ノード600を収容しているFA500へそのカプセル化したパケットを送出する。FA500は、受信パケットをデカプセル化して移動ノード600へ回送する。

[0210]

(2) HA200は、通信ノードCN700から送出されたデータパケットを受

[0211]

(3) 結合更新メッセージの「A(応答)ビット」は、結合承認メッセージを要する場合に用いる。また、「ルート最適化認証拡張(RO認証)」は、通信ノーFCN700がルート最適化要求を認証する際に用いられる。なお、サービスプファイルは、サービス制御のための拡張である。

[0212]

(4) 通信ノードCN700は、結合更新メッセージを受信すると、サービスプロファイルおよび結合キャッシュを生成し、「Aビット」が設定されていたときには、結合承認メッセージをHA200に返送する。なお、結合キャッシュのライフタイムは、登録要求メッセージにより設定されたライフタイムの現在の残り即間である。

[0213]

結合キャッシュは、例えば、図22に示す構成である。そして、上述の例においては、送信元アドレスとして「通信ノードCN700」、受信先アドレスとして「移動ノード600」、気付アドレスとして「FA500」が設定される。この場合、サービスプロファイルにおいて、制御対象パケット情報の受信先アドレスとして「移動ノード600のアドレス」が設定され、そのリンク先として上記 結合キャッシュが指定される。

[0214]

(5) 通信ノードCN 7 0 0 は、移動ノード 6 0 0 宛てのパケットを送出する際には、上記(4) で生成したサービスプロファイルを参照する。ここで、移動ノード 6 0 0 は、A A A から通知されたサービスプロファイルの受信先サービスプロファイル (ASPCdst) に登録されているので、結合キャッシュが参照される。これにより、上記パケットはカプセル化され、気付アドレスとして指定されているFA 5 0 0 ヘトンネリングされる。そのとき、サービスプロファイルに従いカプ

化されたパケットに対して必要な編集が実行される。

[0215]

このように、HAから通信ノードCNにサービスプロファイルを配付すること よって、ルート最適化を用いたサービスプロファイルの配付が簡単に実現され なお、ルート最適化処理を必要としない場合には、通信ノードCNに個別サ とス制御部203およびサービス非依存部204を設ける必要はない。

ANYCASTサービス

1人のユーザが複数の端末を所有し、状況に応じてその中の任意の1つを使用 Lをい場合がある。また、複数のサーバを含むシステムにおいて、各サーバの負 電を分散させるために、そのシステムへのアクセスを任意のサーバに振り分ける 電域が知られている。

[0216]

前者の場合には、複数の端末が共有する1つの仮想的なアドレスを設定する。 そして、その仮想的なアドレスにパケットが送られたときに、上記複数の端末の 中の所定の1つのそのパケットが回送される。また、後者の場合には、複数のサ ーバが共有する1つの仮想的なアドレスを設定する。そして、その仮想的なアド レスにアクセスがあったときに、上記サーバの中の所定の1つのそのアクセスが 送られる。

[0217]

本実施形態では、上述のようなサービスを、「ANYCASTサービス」と呼ぶことにする。また、上述の例において、仮想的なアドレスを「ANYCAST アドレス」と呼ぶことにする。

[0218]

図49は、ANYCASTサービスを説明する図である。ここでは、複数のサーバ $\#1\sim\#4$ に対してANYCASTアドレス(IP#A1)が割り当てられている。ここで、ANYCASTアドレスは、後述するアドレスプロキシサーバ(AP)800のサブネットである。また、サーバ $\#1\sim\#4$ の実際のIPアド

は、それぞれ「IP#H1」~「IP#H4」である。さらに、サーバ#10#2はFA500(#1)に収容されており、サーバ<math>#3および#4はF00(#2)に収容されている。

[0219]

Fレスプロキシサーバ800は、基本的には、HAと同じ構成である。ただ アドレスプロキシサーバ800は、ANYCASTアドレスが設定されてい ルケットをそのANYCASTアドレスに対応する複数のアドレスの中の1ま は複数のアドレスに転送する。図49に示す例では、ANYCASTアドレス IP#A1)が設定されているパケットを受信すると、それをサーバ#1~# の中の1つに転送する。パケットをいずれのサーバに対して転送するのかは、 AAHにより生成されて配付されるサービスプロファイルにおいて記述されている。

[0220]

ANYCASTサービスは、AAAHにおいて、図12に示したANYCAS

Tアドレス管理テーブルにより管理される。このテーブルは、ANYCASTアドレス毎に、ANYCASTアドレスに対応する1以上のNAI、各NAIにより識別される端末のホームアドレス、および各NAIにより識別される端末の状態を含む。端末の状態は、たとえば、オンライン、オフライン、保留中、障害、個後等である。図49に示す例では、ANYCASTアドレス(IP#A1)に対して、サーバ#1~#4のIPアドレス(IP#H1~IP#H4)およびサーバ#1~#4の状態などが設定されることになる。

[0221]

AAAHは、ANYCASTアドレスが設定されているパケットをそのANY CASTアドレスに対応する複数のアドレスの中の1または複数のアドレスに転送するためのサービスプロファイルを生成し、それをアドレスプロキシサーバ80に配付する。アドレスプロキシサーバに配付されるサービスプロファイルの例を図50に示す。

[0222]

このサービスプロファイルの「転送先アドレス」には、サーバ#1~#4のI

アドレス(IP#H1~IP#H4)の中の1または複数のアドレスが設定さる。ここで、いずれのアドレスを設定すべきかは、図10に示したプロファイのアドレス選択ポリシーに従う。選択ポリシーは、主に端末状態に依存する。 かわち、例えば、「オンライン状態の端末を選択する」或いは「オフライン、 2000年、 2000年

[0223]

アドレスプロキシサーバ800は、上述のサービスプロファイルが配付されると、そのサービスプロファイルにより指定されている転送先へパケットを送出する。なお、サービスプロファイルにより複数の転送先が指定されていた場合は、アドレスプロキシサーバ800は、その中から転送先を1つずつ順番に選択することができる。

[0224]

30

3 2

3

HA200には、図51に示すサービスプロファイルが配付される。このサービスプロファイルでは、リンク先として移動性結合が指定されている。そして、 移動性結合では、図49に示すように、サーバ#1および#2のIPアドレスに 対してFA500(#1)が割り当てられており、サーバ#3および#4のIP アドレスに対してFA500(#2)が割り当てられている。

[0225]

FA500には、図52に示すサービスプロファイルが配付される。このサービスプロファイルは、ANYCASTサービスに加入している端末に対して生成されたものである。そして、このサービスプロファイルでは、リンク先として図23に示したANYCASTテーブルが指定されている。ANYCASTテーブルは、通常の訪問者リストに対して「ANYCASTアドレス」および「アドレスプロキシサーバのアドレス」を設定することにより得られる。

[0226]

なお、FA500は、図53に示すサービスプロファイルを生成する。このサービスプロファイルは、モバイルIPの基本機能を提供するための情報が設定されている。また、FA500には、図54に示すサービスプロファイルも配付される。このサービスプロファイルは、ANYCASTサービスに加入していない

ただ対して生成されたものである。

[0227]

上記システムにおいて、ANYCASTアドレスが設定されたパケットが端末 1から送出されると、そのパケットは、アドレスプロキシサーバ800へ転送 れる。アドレスプロキシサーバ800は、AAAHから配付されたサービスプ ファイルに従ってそのパケットを所定のサーバへ転送する。実施例では、その パケットは、サーバ#2のIPアドレス(IP#H2)が設定されている。

[0228]

7

このパケットは、サーバ#2のホームエージェントエージェントであるHA2 00に転送される。HA200は、移動性結合に従って、そのパケットをFA5 00(#1)へ転送する。このパケットは、2重にカプセル化されている。

[0229]

FA500(#1)は、このパケットを受信すると、図53および図52に示したサービスプロファイルを参照することにより、ANYCASTテーブルを呼び出す。そして、そのANYCASTテーブルに基づいて、サーバ#2のIPアドレスからサーバ#2のリンクレイヤアドレスを検出すると共に、ANYCASTアドレスおよびアドレスプロキシサーバ800を認識することにより、そのパケットをデカプセル化する。これにより、サーバ#2にデカプセル化されたパケットが届けられる。同様に、端末#2から送出されたパケットは、サーバ#3へ気送される。

[0230]

このように、アドレスプロキシサーバ、HA、FAは、AAAHにより生成されたサービスプロファイルに従ってANYCASTサービスを実行する。このとき、ANYCASTサービスに加入する端末は、AAAHにより一元的に管理されている。したがって、ANYCASTサービスを使用して転送されるパケットは、適切な移動ノードへ確実に転送されることになる。

[0231]

図55及び図56は、ANYCAST情報を設定するシーケンスの例である。 このシーケンスは、移動ノード600が登録要求メッセージをFA500へ送出 た際に開始される。なお、AAAH100は、認証サーバおよび認可サーバを いものとする。

[0232]

- (1) FA500は、登録要求メッセージを受信すると、訪問者リストを作成す ると共に、AMRメッセージを送出する。
- (2) AMRメッセージを受信したAAAH100の認証サーバは、サービス制 ■データベース300からユーザの認証情報を抽出する。

[0233]

(3) 認証に成功したときは、認可サーバに対してサービス制御を要求する。そして、この認可サーバは、サービス制御データベース300から対応するサービスプロファイルを読み出し、ANYCASTアドレスを抽出する。

[0234]

(4) 認可サーバは、アドレスプロキシサーバ800に対してANYCAST登 世界大ツセージを送る。このメッセージには、サービスプロファイルが添付されている。

[0235]

(5) アドレスプロキシサーバ800は、移動ノード600のホームエージェントエージェントとして機能するHA200を指定すると共に、移動ノードのホームエージェントアドレスを指定する。これにより、図50に示すようなサービスプロファイルキャッシュが生成される。

[0236]

(6) アドレスプロキシサーバ800は、ANYCAST登録応答メッセージを **用い**て、認可サーバに対してHA200のアドレス、および移動ノード600の **ホ**ームアドレスを通知する。

[0237]

(7) 認可サーバは、図12に示すアドレス管理テーブルを生成する。また、登 なまままである。 4ルを生成する。

[0238]

- (8) 認可サーバは、生成したサービスプロファイルをサービス制御応答メッセ りを用いて認証サーバに通知する。
- (9) 通常の手順で登録要求処理が実行される。

[0239]

(10)FA500は、AMAメッセージを受信すると、訪問者リストおよびAM メッセージにより通知された情報に基づいてANYCASTテーブル(拡張訪 プロスト)を作成する。そして、移動ノード600に対してANYCASTアルスを通知する。

[0240]

図57は、ANYCASTサービスを利用してパケットを転送するシーケンスの例である。なお、図57に示す各パケットは、紙面の左側から順番に「送信元 アドレス」「受信先アドレス」「ペイロード」を表す。また、図57において矢 Pにより指示されているアドレスは、ルーティング処理において参照されるアドレスである。

[0241]

以下では、移動ノード600からデータパケットを受信した通信ノードCN700が、移動ノード600ヘパケットを返送する際のシーケンスを示す。なお、 動ノード600は、上述の処理により、ANYCASTアドレスが与えられて いるものとする。

[0242]

(1) 通信ノードCN700は、移動ノード600に対して割り当てられている ANYCASTアドレスを受信先とするパケットを送出する。ここで、ANYC ASTアドレスは、アドレスプロキシサーバ800のサブネットのアドレスである。よって、このパケットは、アドレスプロキシサーバ800へ回送される。

[0243]

(2) アドレスプロキシサーバ800は、上記パケットを受信すると、そのパケットに設定されているANYCASTアドレスに対応するサービスプロファイル *******を照し、そのサービスプロファイルから移動ノード600のホームアドレスを 1つ選択する。複数のホームアドレスの中から1つを選択する方法は、特に限定 **ぬる**ものではないが、例えば、シーケンシャルに選択する。

[0244]

(3) アドレスプロキシサーバ800は、選択した移動ノード600のホームア waと通信ノードCN700のアドレスとを結合するため、サービスプロファ FCN700へ送る。このメッセージにより通知されるアドレスは、移動ノー ■600の気付アドレス(移動ノード600を収容するFAのアドレス)ではな *・移動ノード600のホームアドレスである。

[0245]

🌉 (4) アドレスプロキシサーバ800は、通信ノードCN700から受信したパ 「july トをカプセル化し、上記(2) において選択したホームアドレスへそのカプセ ■A化したパケットを送出する。このパケットは、移動ノード600のホームアド **選Vスに従って、HA200に転送される。**

[0246]

13

7

0.0

8

📴 (5) HA200は、このカプセル化されているパケットを受信すると、それを きらにカプセル化する。そして、その2重にカプセル化されたパケットを、移動 ◉ ノード600の気付アドレス宛てに送出する。これにより、この2重にカプセル **然化されたパケットは、FA500へ転送される。**

[0247]

(6) FA500は、上記パケットを受信すると、ANYCASTテーブルまた は訪問者リストを参照して、受信パケットを移動ノード600へ送る。具体的に は、まず、FA500のアドレス(気付アドレス)をキーとしてサービスプロフ アイルキャッシュを検索することにより、図53に示したデフォルトサービスプ ロファイルキャッシュがヒットする。したがって、そのサービスプロファイルに **従って受信パケットをデカプセル化する。続いて、移動ノード600のホームア** ドレスをキーとしてもう一度サービスプロファイルキャッシュを検索する。この **検索においては、図52に示すサービスプロファイルキャッシュがヒットする。** そして、そのサービスプロファイルに従って受信パケットをもう一度デカプセル 化する。そして、そのデカプセル化されたパケットを移動ノードへ届ける。

[0248]

ま、通信ノードCN700は、上記(3) により結合更新メッセージを受け取ませ、受信先アドレスとしてANYCASTアドレスを設定したパケットをでカプセル化した後に、そのカプセル化したパケットを網へ送出する。

[0249]

■58および図59は、ANYCASTサービスへの登録を解除する際のシー プンスの例である。なお、AAAH100は、認証サーバ、認可サーバ、および ■全サーバを含むものとする。

[0250]

- (1) 移動ノード600は通信を終了する際に「タイマ=0」を設定した登録要 (2) お動ノード600に送出する。
- (2) FA500は、登録要求メッセージををHA200に回送する。 【0251】
- (3) HA200は、「タイマ=0」が設定されている登録要求メッセージを受 はすると、サービスプロファイルが配付された通信ノードCN700に対して、 「タイマ=0」を設定した結合更新メッセージを送出する。

[0252]

(4) 通信ノードCN700は、「タイマ=0」が設定されている結合更新メッセージを受信すると、移動ノード600のサービスプロファイルキャッシュを削除すると共に、結合承認メッセージをHA200に返送する。

[0253]

- (5) HA200は、移動ノード600のサービスプロファイルキャッシュを削除すると共に、登録応答メッセージをFA500に返す。
- (6) FA500は、移動ノード600へ登録応答メッセージを送る。そして、**ア**クセスネットワークのリンクを切断すると共に、AAAH100の課金サーバ**へ**課金停止メッセージを送出する。

[0254]

(7) 課金サーバは、課金処理を停止すると共に、認可サーバに対してセッショ ^{ン解}放を要求する。認可サーバは、アドレスプロキシサーバ800に対して、サ LAプロファイルから移動ノード600のアドレス情報を削除する旨を要求す

[0255]

- (8) 認可サーバは、AAAH100の認証サーバに対してセッション解放を要 ★する。
- (9) AAAH100は、AAAF400の認証サーバに対してセッション解放 食要求する。

[0256]

2

- (10) A A A F 4 O O は、サービスプロファイルを削除すると共に、 A A A H 1 0 O へセッション解放応答を返す。
- (11)AAAH100は、サービスプロファイルを削除すると共に、認可サーバ (Aセッション解放応答を返す。

[0257]

- (12) 認可サーバは、課金サーバへセッション解放応答を返す。
- (13)課金サーバは、FA500に対して課金停止応答メッセージを返す。
- (14) FA500は、サービスキャッシュを削除する。

[0258]

【発明の効果】

本発明によれば、サービスを制御する機能がAAAに集中しているので、HA およびFAの負荷が軽くなり、また、HAおよびFAの保守(機能追加の追加や 削除を含む)が容易になる。

[0259]

同じサービスセットを要求する複数の移動ノードに対してサービスを提供する 際に参照するサービスプロファイルが共用化されるので、サービスプロファイル の管理が容易になると共に、検索データが圧縮されることによって検索の高速化 が図れる。

[0260]

サービスに依存しない基本機能(ルーティング処理、モバイルIPを含む)を

まずるサービス非依存部と、各サービスを提供するための情報に基づいてサービス非依存部を利用する個別サービス部とが分離されているので、容易にサービスを追加/変更できる。

[0261]

複数の端末に対して1つの仮想的なアドレスが割り当てられるサービスにおいて、特定の端末をネットワークワイドで正確に指定できる。

図面の簡単な説明】

[図1]

01 本発明の背景を説明する図である。

【図2】

VALUE OF THE PARTY OF THE PARTY

1 本発明の実施形態のネットワーク構成図である。

【図3】

本発明の実施形態の機能ブロックである。

【図4】

👫 AAAHの機能ブロック図である。

【図5】

サービス制御データベースに格納されているサービスプロファイル原本の例で **ある**。

【図6】

サービス制御データベースに登録されるサービス品質の例である。

【図7】

サービス制御データベースに登録される課金方式の例である。

【図8】

サービス制御データベースに登録される規制条件の例である。

【図9]

Diff-Servサービスのためのプロファイルの例である。

【図10】

ANYCASTサービスのためのプロファイルの例である。

【図11】

AAAHにより作成されるサービスプロファイルの例である。

图12]

ANYCASTアドレス管理テーブルの例である。

[図13]

AAAHのセッショントランザクションの例である。

[図14]

▮ ▲AAFの機能ブロック図である。

【図15】

AAAFのセッショントランザクションの例である。

【図16】

🎉 HA、FA、CNの機能ブロックである。

【図17】

MAおよびFAのセッショントランザクションの例である。

【図18】

サービスプロファイルキャッシュの例である。

【図19】

検索ポリシー管理テーブルの例である。

【図20】

訪問者リストの例である。

【図21】

移動性結合の例である。

【図22】

結合キャッシュの例である。

【図23】

ANYCASTテーブルの例である。

【図24】

ルーティングテーブルの例である。

【図25】

サービスプロファイルを配付するシーケンス(その1)である。

[图26]

17日状態を示す図である。

[图27]

卸期構成時にFAにおいて生成されるサービスプロファイルの例である。

[図28]

初期構成時にHAにおいて生成されるサービスプロファイルの例である。

[図29]

AAAHにおいてサービスプロファイルが生成される手順を示す図である。

【図30】

HAに配付すべきサービスプロファイルの例である。

【図31】

FAに配付すべきサービスプロファイルの例である。

【図32】

HAヘサービスプロファイルを設定する手順を示す図である。

【図33】

AAAFへサービスプロファイルを転送する手順を示す図である。

【図34】

FAヘサービスプロファイルを設定する手順を示す図である。

【図35】

移動ノードから通信ノードへパケットを転送する手順を示す図である。

【図36】

通信ノードから移動ノードへパケットを転送する手順を示す図である。

【図37】

サービスプロファイルを配付するシーケンス(その2)である。

【図38】

サービスプロファイルを配付するシーケンス(その3)である。

【図39】

サービスプロファイルを配付するシーケンス(その4)である。

【図40】

-ビスプロファイルを配付するシーケンス(その5)である。 [図41] AAA Hの動作を説明するフローチャートである。 [図42] AAAFの動作を説明するフローチャート(その1)である。 . (図43) 3 【▲AAFの動作を説明するフローチャート(その2)である。 [図44] I HA、FA、CNの動作を説明するフローチャートである。 图 45] プラス HAに設定されるサービスプロファイルの例である。 [図46] **隊FAに設定されるサービスプロファイルの例である。 【図47】 **慶サービ**スクラスに対して使用するIPアドレスの範囲を予め決めておく方法の 実施例である。 【図48】 **※ルート最適化手順においてサービスプロファイルを設定するシーケンスの例で 3**5. 【図49】 ■ ΑΝΥCASTサービスを説明する図である。 【図50】 アドレスプロキシサーバに配付されるサービスプロファイルの例である。 【図51】 HAに配付されるサービスプロファイルの例である。 【図52】 FAに配付されるサービスプロファイルの例(その1)である。 [図53]

FAにおいて生成されるサービスプロファイルの例である。

[図54] FAに配付されるサービスプロファイルの例(その2)である。 [図55] ANYCAST情報を設定するシーケンス(その1)である。 [図56] ANYCAST情報を設定するシーケンス(その2)である。 题 [図57] WANYCASTサービスを利用してパケットを転送するシーケンスである。 (図58) **WANYCASTサービスへの登録を解除するシーケンス(その1)である。** [図59] A ANYCASTサービスへの登録を解除するシーケンス(その2)である。 7 [図60] 羅モバイルIPのフォーマットである。 Z. (図61) 🐉(a) はIPヘッダ、(b) はUDPヘッダのフォーマットである。 ② 【図62】 3) **翼モバイルIPの登録要求メッセージのフォーマットである。** 🎉:【図63】 醪 モバイルIPの登録応答メッセージのフォーマットである。 図64] 鼷モバイルIPのMBUメッセージのフォーマットである。 【図65】 モバイルIPのMBAメッセージのフォーマットである。 【図66】 DIAMETERメッセージのフォーマットである。 【図67] DIAMETERメッセージの共通ヘッダのフォーマットである。

【図68】

₹AMETERメッセージのAVPのフォーマットである。 [869] ■ AMETERプロトコルのAMRメッセージのフォーマットである。 [图70] **□IAM**ETERプロトコルのHARメッセージのフォーマットである。 图71] **DIAMETERプロトコルのAMAメッセージのフォーマットである。** [図72] **DIAMETERプロトコルのHAAメッセージのフォーマットである。** Y [図73] **たバイルIPおよび先に特許出願した発明について説明するための図である。** 3 【符号の説明】 Y 100 AAAH 2 102 サービス管理部 1 **20**0 HA (ホームエージェント) 引繼 203 個別制御部 -1 204 サービス非依存部 713 211 サービスプロファイルキャッシュ 212 検索ポリシー管理テーブル **劉30**0 サービス制御データベース 400 AAAF § 500 FA (外部エージェント) **6**00 MN (移動ノード)

700 CN (通信ノード)

800 アドレスプロキシサーバ

類名

図面

11

本発明の背景を説明する図

【図2】

本発明の実施形態のネットワーク構成図

图3]

本発明の実施形態の機能ブロック図

AAAHの機能ブロック図

[5]

サービス制御データベースに格納されている サービスプロファイル原本の例

州 紀 中 神	
情 似 安 杀	ьс
NAI	ユーザのNAI(Network Acsess Identifier)
ューザプロファイル	ューザの名前、住所、電話番号等
ユーザ認証情報	MN-AAA認証鍵、SPI、ユーザID、パスワード
SLA(Servce Level Aagreement)	加入者の契約条件
サービス個別プロファイル	Diff-Serve、パケットフィルタリング、ANYCAST、マルチキャスト等の個別サービスに関するプロファイル情報

61

サービス制御データベースに 登録されるサービス品質の例

安安	伝送遅延が許容範囲内であることを保証する。	Diff-ServでクラスAに影響を与えない範囲内で、優先度の高い キューヘキューイングする。このクラスはDiff-Servのタイプにより 幾つかのクラスに分割されるかもしれない。	ベストエフォート。クラスBより優先度の低いキューヘキューイングする。
サービスクラス	クラスA	クラスB	55xc

サービス制御データベースに 登録される課金方式の例

謀金方式	好 松
定額課金	
(一定時間まで定額、超過時間分	サービスクラスに対応して重み付けをした基本料金
・については加算課金)	+サービスクラスに対応して重み付けをした単位時間料金×超過時間
從量課金	Σ(サービスクラスに対応して重み付けした単位料金×エッジノード(FA)
(パケット量で課金)	の上り、下りのパケット量の総和)

サービス制御データベースに 登録される規制条件の例

規制条件	4 公
金額	課金がユーザが指定した一定の金額を超えた場合、ユーザに警告を発し、 通信を続けるか選択させる。
国 组	通信の多い時間帯のアクセスを禁止することで、 より安価な課金サービスを提供する。時間帯に応じてサービスクラスを変更する。
パケットの種類による サービスクラスの変更	アプリケーションの種類により、サービスクラスを指定する事で、 従量課金の合計金額を抑制する。
ローミング	ローミングサービスを許容することによる追加料金。 又はローミングサービスを不許容にすることによる料金の値引き。

Diff-Servサービスのためのプロファイルの例

+`	サービスタイプ	Diff—Serv
付加情報	Diff-Serv適用ポリシ	条件式(ポリシ記述宮語と同様)
(複数回)	サービス適用クラス	クラスA クラスB
77.7		クラスC
	上り/下り識別	上り:MNから送信されるパケットを対象 下り:MNが受信するパケットを対象
	IPアドレス	条件式で指定された場合の送信元アドレス
	ポート番号	条件式で指定された場合の送信元ポート番号

图10]

ANYCASTサービスのための プロファイルの例

ANYCAST	条件式(ポリン記述言語と同様)	ANYCASTサービスを適用するアドレス
サービスタイプ	アドレス選択ポリシ	ANYCAST7FLZ
#	付加情報	

[11]

AAAHにより作成されるサービスプロファイルの例

構成結果	詳細構成情報	說明
プロファイル識別子	セッション識別子	セッションID
	プロファイル番号	セッション毎に一意につけられた値
制御対象パケット情報	送信元アドレス	パケットの送信元アドレス
	送信元ポート番号	パケットの送信元ポート番号
	受信先アドレス	パケットの受信先アドレス
	受信先ポート番号	パケットの受信先ポート番号
ルードイング/	カブセル化(暗号化)手法	転送パケットのカプセル化手法
ハケット艦米二数	転送先アドレス(複数指定可能)	パケットの転送先アドレス
	T0S	パケットに付与するTOS値
	デカブセル指示	デカプセル要求
個別制御情報	サービス制御種別	次に検索する制御テーブル サービスプロファイルキャッシュ
		結合キャッシュ MIPホーム(移動性結合) MID対型(特闘者)コニ
		MILTYFB/MINTコンペド/ ANYCASTテーブル(拡張訪問者リスト) ルーティングテーブル
و المراجع المر	制御情報識別子	個別制御テーブルの参照識別子

ANYCASTアドレス管理テーブルの例

	ANYCASTTFLZ	
NAI	ホームアドレス	端末状態

AAAHの セッショントランザクションの 例

構成要素	說明
セッションID	<mnのnai><32ビット値><オプション></mnのnai>
HATFUX	AAAHが割り付けたHAアドレス
HA割り付けAAAFアドレス	AAAHがHA割り付けを依頼したAAAFのアドレス
現AAAFアドレス	AMRを要求してきたAAAFのアドレス
セキュリティ情報	HA, AAAFとの関係を認証するための情報
セッションタイマ	このトランザクションの有効期間
FAサービスプロファイル	図11参照
HAサービスプロファイル	図11参照

[14]

A A A F の 機 能 ブ ロ ッ ク 図

【図15】

AAAFの セッショントランザクションの 例

構成要素	新 · 新
セッションID	<mnのnai><32ビット値><オプション></mnのnai>
AAAHTKLZ	MNのNAIで特定されたAAAHアドレス
HATFUZ	AAAFが割り付けたHAアドレス
IBFA-NAI	MNが新FAに移動した場合のIBFAのNAI
現FA-NAI	MNが現在接続しているFAのNAI
セキュリティ情報	FA, AAAH, HA(AAAFが割り付けた場合)との関係を認証するための情報
セッションタイマ	このトランザクションの有効期間
FAサービスプロファイル	図11参照
HAサービスプロファイル	図11参照
状態	処理待ち中、HA要求中、AMA処理中

图16]

H A 、 F A 、 C N の 機 能 ブ ロ ッ ク

[17]

HAおよびFAの セッショントランザクションの例

構成要素	新 · · · · · · · · · · · · · · · · · · ·
ロンミンID	<mnのnai><32ビット値><オプション></mnのnai>
セッションタイマ	このトランザクションの有効期間

【图18】

サービスプロファイルキャッシュの例

F	サービスプロファイルキ	イルキャッシュ	数明
SPC	SPC /-ド商型SPC (NSPC)	送信元SPC (NSPCsrc)	移動性エージェンが初期構成時に、ネッワーク機器のHD等に蓄積された静的な情報から 生成するデータバケットの送信元情報を検索条件とするサービスプロファイルの集合。 主にユーザに依存しない共通サービス制御を行う目的に使用される。
		送信元デフォルSP (NDSPsrc)	NSPCsrcのいずれかのサービスプロファイルに一致し、 個別制御テーブルで一致しなかった場合に適用されるサービスプロファイル。
		受信先SPC (NSPCdst)	移動性エージェントが初期構成時に、ネッワーク機器のHD等に蓄積された静的な情報から 生成するデータパケッの受債先情報を検索条件とするサービスプロファイルの集合。 主にユーザに依存しない共通サービス制御を行う目的に使用される。
		受信先于'フォルトSP (NDSPdst)	NSPCdspのいずれかのサービスプロファイルに一致し、 個別制御テーブルで一致しなかった場合に適用されるサービスプロファイル。
		Ŧ'7411\SP (NDSP)	全てのサービスプロファイルに一致しなかった場合に、ネットワーク機器固有の制御テープル (ルーティングテーブル)を索引するためのサービスプロファイル。
		送信元SPC (ASPCsrc)	MNのネッケークへのログイン時に、AAAジステムより通知されるデータバケッの送信元情報を検索条件とするユーザ固有のサービスプロファイルの集合。
	AAA通知SPC (ASPC)	受信先SPC (ASPCdst)	MNのネットワークへのログイン時に、AAAシステムより通知されるデータバケットの受信先情報を検索条件とするユーザ固有のサービスプロファイルの集合。

19]

検索ポリシー管理テーブルの例

一致 正常終了 不一数 正常終了 不一数 ASPCast 不一数 正常終了	高番	検索キャッシュ	キャッシュ後家結果	國空衛衛子	沙姑你和田
不一数 不一数 一数 NSPCsrc 一数 一数 不一数 一数 一数 ASPCdst 一数 一数 NSPCdst 一数 一数 A一数 一数 一数 A一数 一数 一数 A一数 一数 一型 NDSP 一数 一数 A一数 一数 一型 A一数 一数 一数 A一数 一数 一数 A一数 一数 一数 A一数 一数 一数	-	ASPCsrc	發		1.
不一数 不一数 NSPCsrc 一数 一数 不一数 一数 一数 ASPCdst 一数 一数 NSPCdst 一数 一数 水一数 一数 一数				~	
NSPCsrc 一致 一致 一致 不一致 不一致 一数 一数 一数 一数 一数 一数 不一数 不一数 不一数 不一数 不一数 不一数 不一数 不一数 不一数 一数				不一致	異常終了
NSPCsrc 一致 一致 ASPCdst 一数 一数 ASPCdst 一数 一数 NSPCdst 一数 一数 NDSP 一数 一数 NDSP 一数 一数 NDSP 一数 一数 NDSP 一数 一数			不一致		NSPCsrc檢索
不一致 不一数 ASPCdst 一数 ASPCdst 一数 不一数 不一数 NSPCdst 一数 AT-数 一数 AT-数 一数 AT-数 一数 NDSP 一数 AT-数 AT-数	8	NSPCsrc	雄一	薩 一	正常終了
ASPCdst 一致 ASPCdst 一致 不一致 一致 NSPCdst 一致 A一数 一数 A一数 不一致 NDSP 一数 A一数 一数				不一致	NDSPsrc参照
ASPCdst 一数 一数 不一致 一数 不一数 NSPCdst 一数 不一数 NDSP 一数 不一数 NDSP 一数 一数 不一数 一数 一数 NDSP 一数 一数			不一致		ASPCdst檢索
不一致 不一数 NSPCdst 一数 不一数 不一数 不一数 不一数 NDSP 一数 NDSP 一数 不一数 不一数 不一数 一数 不一数 一数	ო	ASPCdst	一一	一致	正常終了
水一数 一数 NSPCdst 一数 木一数 木一数 水一数 一数 NDSP 一数 木一数 一数 ボー数 一数				不一致	異常終了
NSPCdst 一数 一致			不一致		NSPCdst檢索
不一致 NDSP 一致 不一致 不一致	4	NSPCdst	A	数	正常終了
不一数 一数 NDSP 一数 不一致 不一致				不一致	NDSPdst檢察
NDSP —数 —数 不一数			不一数		NDSP參照
	က	NDSP	一教	一致	正常終了
				不一致	異常終了

訪問者リストの例

構成要素	铂 舜
IP送信元アドレス(ホームアドレス)	登録要求又はAMAで通知されたMNのホームアドレス
MNのリンクレイヤソースアドレス	MNのリンクレイヤ(MAC)アドレス
UDP送信元ポート	MNのUDP送信元ポート
ホームエージェントアドレス	登録要求を回送するHAのアドレス。登録要求又はAMAで通知される
登録要求の識別子フィールド	要求と応答を対応づけるための識別子
ライフタイム	登録要求の有効期間
認証情報	FAがMNを認証するための認証情報

移動性結合の例

構成要素	16 36
ホームアドレス	MNIC割り当てられたホームアドレス
移動端末の気付アドレス	MNが現在接続されているFAのIPアドレス
登録要求の識別子フィールド	要求と応答を対応づけるための歳別子
ライフタイム	登録要求の有効期間
認証情報	FAがMNを認証するための情報

結合キャッシュの例

送信元アドレス	进信元木ト	達信元ホート 受信先アドレス	受信先示。卜	カプセルに	発信先ホート カプセル化 気付アドレス	TOS
111, 100, 100, 101		222, 200, 100, 123	•	х×	333. 300. 100. 0 XX	×
•	•	222, 200, 100, 133	•	××	333.300, 100.0	٨٨

[23]

ANYCASTテーブルの例

構成要素	6
IPプロキシアドレス	MNのホームアドレス
IP送信元アドレス	ANYCASTアドレス
リンクレイヤソースアドレス	MNØMACTFLZ
UDP発信元ポート	MNのUDP発信ポート
ホームエージェントアドレス	MNのホームアドレスを保有するホームエージェントアドレス
アドレスプロキシアドレス	ANYCASTアドレスを保有するアドレスプロキシのアドレス
登録要求の識別子フィールド	要求と応答を対応づける識別子
ライフタイム	登錄期間

24]

ルーティングテーブルの例

受信 先アドレス	次ホップアドレス
111. *. *. *	111.100.100.0
222. *. *. *	222. 200. 200. 0
333. * . * . *	333. 300. 300. 0

25]

サービスプロファイルを配布する シーケンス(その1)

初期状態を示す図

[图27]

初期構成時にFAにおいて生成されるサービスプロファイルの例

構成情報	詳細構成情報	数の信
制御対象パケット情報	送信元アドレス	111111111111111111111111111111111111111
	送信元ポート番号	*
	受信先アドレス	*
	受信先ポート番号	+
ルーテイングノバケ小福集情報	カプセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	•
	TOS	+
	デカプセル化格示	第
個別制御情報	次サービス制御種別	ルーティングテーブル
構成情報	詳細構成情報	設定値
制御対象パケット情報	送信元アドレス	*
	送信元ポート番号	#
	受信先アドレス	FAのIPアドレス(気付アドレス)
	受債先ポート番号	*
ルーティングノバケッ・編集情報	カプセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	#
	TOS	*
	デカプセル化指示	色の
個別制御情報	次サービス制御種別	ナーゴスを哲チャシツリ

(B)

9

图28]

初期構成時にHAにおいて生成される サービスプロファイルの例

構成情報	詳細構成情報	設定値
制御対象パケット情報	送信元アドレス	*
	送信元ポート番号	*
	受信先アドレス	#
	受信先ポート番号	#
ルーティングノバケット福集情報	カブセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	*
	TOS	#
	デカブセル化指示	無し
個別制御情報	次サービス制御種別	ルーティングテーブル

[29]

AAAHにおいてサービスプロファイルが生成される手順を示す図

[图30]

HAに配布すべきサービスプロファイルの例

	24 41 4 41 11 XX	45.04
構成情報	菲础得似情報	放 定個
何御対象パケット情報	※ 情元アドレス	*
	送信元ポート番号	#
	受信先アドレス	MNのホームアドレス
	受信先术一卜善号	MNのポート番号(オプション)
ルーティングノバ・ケット編集情報	カプセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	*
,	TOS	Diff-Serv実行時指定(オブション)
	デカブセル化指示	着し
個別制御情報	次サービス制御種別	移動性結合
構成情報	詳細構成情報	設定値
制御対象パケット情報	送信元アドレス	CNのホームアドレス
	送信元ポート番号	CNのポート番号(オプション)
	受信先アドレス	*
	受信先ポート番号	*
ルーティング/パケット福集情報	カブセル化(暗号化)手法	+
	転送先アドレス(複数指定可能)	パケットフィルタリング実行時0を指定
	TOS	#
	デカプセル化精示	書し
個別制御情報	次サービス制御種別	#

a

図31]

FAに配布すべきサービスプロファイルの例

辞学せ舞	性細構的情報	設定値
48年40年4年4日	は値げったいス	*
	日村二十二年ま	4
	达信九小一个番号	•
	受信先アドレス	MNのホームアドレス
	受信先ポート番号	MNのポート番号(オブション)
ルーテングノバケ小福集情報	カプセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	#
	TOS	*
	デカプセル化指示	無し
個別制御情報	次サービス制御種別	訪問者リスト
構成情報	詳細構成情報	設定値
制御対象パケット情報	送信元アドレス	MNのホームアドレス
	送信元ポート番号	MNのポート番号(オプション)
	受信先アドレス	*
	受信先ポート番号	*
ルーティングノバッツ・福集情報	カプセル化(暗号化)手法	*
	転送先アドレス(複数指定可能)	*
	108	Diff-Serv実行時指定(オブション)
	デカプセル化指示	無し
個別色質在表	次サービス制御種別	ルーティングテーブル

(a)

[图32]

HAへサービスプロファイルを設定する手順を示す図

图33]

AAAFへサービスプロファイルを設定する手順を示す図

図34]

31

移動ノードから通信ノードへパケットを転送する手順を示す図

图35]

移動ノードから通信ノードへパケットを転送する手順を示す図

通信ノードから移動ノードへパケットを転送する手順を示す図

サービスプロファイルを配布するシーケンス(その2)

图38]

サービスプロファイルを配布するシーケンス(その3)

サービスプロファイルを 配布するシーケンス(その4)

[图40]

サービスプロファイルを配布するシーケンス(その5)

图41]

AAAHの動作を説明するフローチャート

AAAFの動作を説明するフローチャート(その1)

图43]

AAAFの動作を説明するフローチャート(その2)

[図44]

21

HA, FA, CNの動作を説明するフローチャート

图45]

HAに設定されるサービスプロファイルの例

1	いいいれた。ことのしていた。ま	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000年	毎50年一プル
`	してくせくと	ナノノノー	AT DI NEXT	
SPC	ノード個別SPC (NSPC)	送信元SPC (NSPCsrc)		
		送信元于74ルSP (NDSPsrc)		
		受信先SPC (NSPCdst)	HAセグメントアドレス	移動性結合
		受信先于74ルトSP (NDSPdst)	÷τ	ルーティングテーブル
		ŦĴŦŀŀSP (NDSP)	全て	ルーティングテーブル
	AAA通知SPC (ASPC)	送信元SPC (ASPCsrc)		
		受信先SPC (ASPCdst)		

图46]

FAに設定されるサービスプロファイルの例

+	サービスプロファイルキャッシュ	ハルキャッシュ	檢索情報	個別制御デーブル
SPC	ノード商列SPC (NSPC)	送信元SPC (NSPCsrc)		
		送信元于7才ルトSP (NDSPsrc)		
		受信先SPC (NSPCdst)	気付アドレス (ヒット時デカプセル化)	サービスプロファイルキャッシュ
		受信先デフォルトSP (NDSPdst)	2等	訪問者リスト
		ŦĴ7#ILħSP (NDSP)	全て	ルーティングテーブル
	AAA通知SPC (ASPC)	送信元SPC (ASPCsrc)		
		受信先SPC (ASPCdst)		

[図47]

サービスクラスに対して使用が IPアドレスの 範囲を予め決めておく方法の実施例

[图48]

ルート最適化手順において サービスプロファイルも設定するシーケンスの例

[図49]

- 2 }

ANYCAST サービスを説明する図

アドレスプロキシサーバに配布される サービスプロファイルの例

構成要素	詳細構成情報	数定值
制御対象パケット情報	送傷元アドレス	*
	送信元ポート番号	*
	受信先アドレス	ANYCASTTFLA
	受信先ポート番号	*
ルーティングノパケット	カプセル化(暗号化)手法	IP in IP
看来古我	転送先アドレス	MNのホームアドレス1
	(複数指定可能)	MNのホームアドレス2
	TOS	Diff-Serv併用時指定
	デカプセル指示	一番
個別制御情報	次サービス制御種別	*

[図51]

FAに配布される サービスプロファイルの例

詳細構成情報	なりま
	部人上面
送信元アドレス	*
送僖元ポート番号	*
受信先アドレス	MNのホームアドレス
受信先ポート番号	#
カプセル化(暗号化)手法	*
転送先アドレス(複数指定可能)	*
	Diff-Serv併用時指定
デカプセル指示	無し
次サービス制御種別	移動性結合
1561315151 14141	アドレス ポート番号 レ化(暗号化)手法 アドレス(複数指定可能) アドレス(複数指定可能)

[図52]

FAに配布される サービスプロファイルの例(その1)

構成要素	詳細構成情報	散定值
制御対象パケット情報	送信元アドレス	*
	送信元ポート番号	*
	受債先アドレス	MNの木ームアドレス
	受信先ポート番号	*
ルーティング/パケット	カプセル化(暗号化)手法	*
看来二枚	転送先アドレス (複数指定可能)	*
	TOS	*
	デカプセル指示	無し
個別制御情報	次サービス制御種別	ANYCACT

[図53]

FAにおいて生成される サービスプロファイルの例

構成要素	詳細構成情報	散定値
制御対象パケット情報	送信元アドレス	*
	送信元ポート番号	#
	受信先アドレス	自ノード気付アドレス
	受信先ポート番号	*
ルーティングノパケット	カプセル化(暗号化)手法	*
	転送先アドレス (複数指定可能)	*
	TOS	*
	デカプセル指示	1单
個別制御情報	次サービス制御種別	サービスキャッシュ

図54]

FAに配布される サービスプロファイルの例(その2)

構成要素	詳細構成情報	設定値
制御対象パケット情報 送	送信元アドレス	*
**************************************	送債元ポート番号	*
1884	受信先アドレス	MNのホームアドレス
ELX.	受信先ポート番号	*
ルーティングノパケット カ	カプセル化(暗号化)手法	*
	転送先アドレス (複数指定可能)	*
-	T0S	*
ir	デカプセル指示	無し
個別制御情報	次サービス制御種別	訪問者リスト

[図55]

ANYCAST情報を設定するシーケンス(その1)

[図56]

ANYCAST情報を設定するシーケンス(その2)

[図57]

ANYCASTサ-ビスを利用して パケット転送するシ-ケンス

出証特2000-3079670

図58]

·'**4**

ANYCASTサービスへの登録を解除するシーケンス(その1)

[図59]

9

ANYCASTサービスへの登録を解除するシーケンス(その2)

[図60]

ェ バ イ ル IP の フ ォ ー マ ット

[Mobile-IPメッセージ]

IP UDP Mobile-IP Mobile-IPの拡張エリア ヘッダ ヘッダ ヘッダ	1 100		Mobile-IPの拡張エリア
--	-------	--	-----------------

[図61]

(a) はIPヘッダ、(b) はUDPヘッダのフォーマット

図62]

- 3]

モバイルIPの登録要求メッセージのフォーマット

(a) 移動端末~外部エージェント間 (Mobile-IPの登録要求メッセージ構成)

< Registration Request >
< Mobile Node NAT Extension >
< Previous Foreign Agent Notification Extension >

(b) Registration Requestのフォーマット

(c) 拡張エリアその1(Mobile Node NAI Extension)

(d) 拡張エリアその2(Previous Foreign Agent Notification Extension)

[図63]

モバイルIPの登録応答メッセージのフォーマット

(a) 移動端末~外部エージェント間 (Mobile-IPの登録応答メッセージ構成)

< Registration Reply >

< Mobile Node NAI Extension >

(b) Registration Replyのフォーマット
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type | Code | Lifetime | Home Address | Home Agent | Lifetime | Lif

[図64]

モバイルIPのMBUメッセージのフォーマット

Binding Updateのフォーマット

【図65】

モバイルIPのMBUメッセージのフォーマット

Binding Acknowledgeのフォーマット

[図66]

DIAMETERメッセージのフォーマット

[DIAMETERメッセージ]

IP UDP DIAMETER ヘッダ ヘッダ	DIAMETERのAVP群
-------------------------	---------------

[図67]

DIAMETER メッセージのフォーマット

【図68】

DIAMETERメッセージのAVPのフォーマット

AVP Format AVP の基本的フォーマット

コマンド(メッセージ担当)の場合、AVP Gode=256を指定する。

Attribute Name

Attribute Code

DIAMETER-Command

·├┈╂┈┠┈┠┈┠┈┠┈┞┈

256

DIAMETER-Command AVP コマンドコードはメッセージタイプに相当する。

コマンド以外のAVPの一般的フォーマット

DIAMETERコマンド以外のAVPのフォーマットは下記にTFのドラフトを参照している。 draft-calhour-diameter~07.txt

draft-calhoun-diameter-mobileip-01.txt

[図69]

DIAMETERプロトコルのAMRメッセージのフォーマット

外部エージェント~AAAHサーバ間

	< DIAMETER Header >
	< AA-Mobile-Node-Request Command AVP >
	くセッション ID AVP >
	< User-Name AVP >
-	< MIP-Registration-Request AVP >
	< MN-FA-Challenge AVP >
	< MN-FA-Response AVP >
	< Mobile-Node-Address AVP >
	< Home-Agent-Address AVP >
	< Previous-FA-NAI AVP >
	< MN-FA-SPI AVP >
	< Timestamp AVP >
	< Initialization-Vector AVP >
< inte	egrity-Check-Vector AVP > 又はく Digital-Signature AVP >

DIAMETERプロトコルのHARメッセージのフォーマット

AAAHサーバ~ホームエージェント間

< DIAMETER Header >
< Home-Aagent-MIP-Request Command AVP >
くセッション ld AVP >
< User-Name AVP >
< MIP-Registration-Request AVP >
< MN-HA-SPI AVP >
< HA-to-MN-Key AVP >
< MN-to-HA-Key AVP >
< FA-HA-SPI AVP >
< HA-to-FA-Key AVP >
< MN-FA-SPI AVP >
< MN-to-FA-Key AVP >
< Home-Agent-Address AVP >
< Mobile-Node-Address AVP >
< Session-Timeout AVP >
< Timestamp AVP >
< Initialization-Vector AVP >
〈Integrity-Check-Vector AVP > 又はくDigital-Signature AVP >

【図71】

DIAMETERプロトコルのAMAメッセージのフォーマット

外部エージェント~AAAHサーバ間

< DIAMETER Header >
< AA-Mobile-Node-Answer Command AVP >
くセッション ld AVP >
< Result-Code AVP >
[< Error-Code AVP >]
< MIP-Registration-Reply AVP >
< MN-FA-SPI AVP >
< FA-to-MN-Key AVP >
< FA-HA-SPI AVP >
< FA-to-HA-Key AVP >
< Home-Agent-Address AVP >
< Mobile-Node-Address AVP >
< Session-Timeout AVP >
< Timestamp AVP >
< Initialization-Vector AVP >
{< Integrity-Check-Vector AVP > 又はく Digital-Signature AVP >}

[図72]

DIAMETERプロトコルのHAAメッセージのフォーマット

AAAHサーバ~ホームエージェント間

< DIAMETER Header >
< Home-Agent-MIP-Answer Command AVP >
くセッション id AVP >
< Result-Code AVP >
[< Error-Code AVP >]
< MIP-Registration-Reply AVP >
< Mobile=Node=Address AVP >
< Home-Agent-Address AVP >
< Timestamp AVP >
< Initialization-Vector AVP >
{< Integrity-Check-Vector AVP > 又はく Digital-Signature AVP >}

【図73】

モバイルIPおよび先に特許出願した 発明について説明するための図

【書類名】 要約書

【要約】

【課題】 モバイル環境を含むネットワークにおいて、移動ノード毎に提供する 付加価値サービスの追加、拡張を容易にする。

【解決手段】 移動ノード600から送出された位置登録情報は、外部エージェント500、AAAF400、AAAH100を介してホームエージェント200に通知される。AAAH100は、位置登録情報を受け取ると、移動ノード600に対応するサービスプロファイルをサービス制御データベース300から抽出し、それをサービス種別に依存しない形式に編集する。AAAH100は、その編集したサービスプロファイルをホームエージェント200および外部エージェント500に配付する。ホームエージェント200および外部エージェント500は、配付されたサービスプロファイルに従って移動ノード600が要求するサービスを提供する。

【選択図】 図2

出願人履歴情報

識別番号

[000005223]

1. 変更年月日

1996年 3月26日

[変更理由]

住所変更

住 所

神奈川県川崎市中原区上小田中4丁目1番1号

氏 名

富士通株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.