Complex Numbers Vectors Problem Set I

Tadhg XG

2024

- **Q1.** The curve of many loci can be found algebraically using the substitution z = x + iy. However, it is essential and oftentimes easier to consider the geometric conditions and properties, as opposed to algebra. For the following questions, consider some fixed $z_1, z_2 \in \mathbb{C}$.
 - a. It can be shown that the locus represented by $|z-z_1|=|z-z_2|$ is a linear curve.
 - i. Explain geometrically why, detailing the position and nature of the curve in relation to the numbers z_1 and z_2 .
 - ii. Plot the locus represented by |z+3+2i| = |z-1+4i|.
 - b. It can be shown that the locus of the form $\arg(z-z_1)=\theta$, for some $\theta\in(-\theta,\theta]$ is a ray.
 - i. Explain geometrically why, making specific note why there is an 'open circle' in our ray.
 - ii. Sketch $\arg(z + 3 2i) = \frac{\pi}{4}$.
 - c. It can be shown that the locus of the form $|z-z_1|=r$, for some $r\in\mathbb{R}$, is a circle.
 - i. Explain geometrically why, making specific reference to what the values z_1 and r represent.
 - ii. Sketch |z 3 + 2i| = 3.
 - d. It can be shown that the locus represented by $\arg(\frac{z-z_1}{z-z_2})=\theta$ represents an arc, for some $\theta\in(-\pi,\pi]\setminus\{0,\pi\}^1$.
 - i. Explain why, and note when the curve is a minor arc, a major arc, and a semicircle, noting whether the points z_1 and z_2 are open or closed 'circles.'
 - ii. Sketch $\arg(\frac{z-3+2i}{z+2+i}) = \frac{\pi}{2}, \arg(\frac{z-2+i}{z+4+3i}) = \frac{\pi}{6}$ and $\arg(\frac{z-1-i}{z+1+i}) = \frac{2\pi}{2}$.
 - e. Nearly there! We have two special cases for the above; when $\theta \in \{0, \pi\}$.
 - i. Explain what the the curve will be when $\theta = 0$. Then, sketch $\arg(\frac{z+2-3i}{z-3+2i}) = 0$.
 - ii. Explain what the the curve will be when $\theta = \pi$. Then, sketch $\arg(\frac{z+2-3i}{z-3+2i}) = \pi$.
 - **Q2.** Consider $z \in \mathbb{C}$.
 - a. Plot the set of points that satisfy the equation |z 3 + 2i| = 1.
 - b. Find the maximum and minimum value of |z|.
 - c. Find the maximum and minimum value of |z + 4 3i|.
 - d. Find the maximum and minimum value of arg(z).
 - e. Find the maximum and minimum value of $\arg(z+4-3i)$.
 - Q3. (Cambridge)
 - a. Consider $z_1, z_2, z_3 \in \mathbb{C}$. Prove that z_1, z_2 and z_3 are collinear if,

$$\frac{z_3 - z_1}{z_2 - z_1} \in \mathbb{R}.$$

¹Scary notation!!! This is just any principal argument for θ , not including 0 and π (why?).

- b. Thus, show that the points represented by the complex numbers 5+8i, 13+20i and 19+29i are collinear.
- **Q4.** Consider some $z \in \mathbb{C}$ that satisfies the equations, $\arg(\frac{z-3}{z-3i}) = \frac{\pi}{2}$ and $\arg(z) = \frac{\pi}{4}$. Using geometrical methods, find z.
 - **Q5.**² Let $z = e^{i\theta}$, where $\theta \in (-\pi, \pi]$. Show that,

$$\frac{z^2 - 1}{2iz} = \sin\left(\theta\right).$$

Q6. Suppose $z \in \mathbb{C}$ satisfies the equation,

$$\arg\left(\frac{z-1+i}{z-1-i}\right) = \frac{\pi}{2}.$$

Find the maximum and minimum values of both |z| and arg(z).

Q7. Suppose $z \in \mathbb{C}$ satisfies the equation,

$$|z - 5 + 4i| \le 3,$$

Find the possible values arg(z) can take (leave your answer in exact form).

Q8. (HSC 2011) On an Argand diagram, sketch the region described by the inequality,

$$\left|1 + \frac{1}{z}\right| \le 1.$$

Q9. On the Argand diagram, sketch the region defined by the inequalities,

$$\operatorname{Re}(z) \geq 0, \quad 0 \leq \operatorname{Im}(z) \leq 1, \quad |z| \leq 1, \quad -\frac{\pi}{4} \leq \arg(z) \leq \frac{\pi}{4}.$$

Ensure you are explicit with the boundaries of the region (open and closed circles!).

- **Q10.** Let $z_1, z_2, z_3 \in \mathbb{C}$ be complex numbers that are equally spaced apart on the unit circle and ordered anticlockwise in the Argand diagram.
 - a. If the points represented by each complex number are the vertexes of a shape, describe the shape formed by z_1, z_2, z_3 .
 - b. Explain why $z_2 = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)z_1$.
 - c. Hence, show that

$$\frac{z_1 - z_2}{z_2 - z_2} = \frac{1}{2} + \frac{\sqrt{3}}{2}i.$$

d. Explain geometrically why the result in part c is holds. You may find drawing a diagram to be helpful.

²This is hardly a vectors question but oh well still a good question!