- 1. Use Galois theory to prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
- 2. Determine the Galois group of the splitting field of $(x^2-2)(x^2-3)(x^2-5)$ over \mathbb{Q} . Determine all the subfields of the splitting field of this polynomial.
- 3. Determine the Galois group of the splitting field over \mathbb{Q} of $x^4 14x^2 + 9$.
- 4. Prove that if the degree of the splitting field of p(x) over \mathbb{Q} is odd, then all the roots of p(x) are real. (Do not assume p(x) is irreducible.)
- 5. Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e., is a Galois extension of \mathbb{Q} of degree 4 with cyclic Galois group.

:ng:

- 6. This exercise determines $Aut(\mathbb{R}/\mathbb{Q})$.
 - (a) Prove that any $\sigma \in \operatorname{Aut}(\mathbb{R}/\mathbb{Q})$ takes squares to squares and takes positive reals to positive reals. Conclude that a < b implies $\sigma a < \sigma b$ for every $a, b \in \mathbb{R}$.
 - (b) Prove that $-\frac{1}{m} < a b < \frac{1}{m}$ implies $-\frac{1}{m} < \sigma a \sigma b < \frac{1}{m}$ for every positive integer m. Conclude that σ is a continuous map on \mathbb{R} .
 - (c) Prove that any continuous map on \mathbb{R} which is the identity on \mathbb{Q} is the identity map, hence $\operatorname{Aut}(\mathbb{R}/\mathbb{Q})=1$.
- 7. (a) Prove that $x^4 2x^2 2$ is irreducible over \mathbb{Q} .
 - (b) Show the roots of this quartic are

$$\alpha_1 = \sqrt{1 + \sqrt{3}} \qquad \alpha_3 = -\sqrt{1 + \sqrt{3}}$$

$$\alpha_2 = \sqrt{1 - \sqrt{3}} \qquad \alpha_4 = -\sqrt{1 - \sqrt{3}}.$$

- (c) Let $K_1 = \mathbb{Q}(\alpha_1)$ and $K_2 = \mathbb{Q}(\alpha_2)$. Show that $K_1 \neq K_2$, and $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3}) = F$.
- (d) Prove that K_1 , K_2 and K_1K_2 are Galois over F with $Gal(K_1K_2/F)$ the Klein 4-group. Write out the elements of $Gal(K_1K_2/F)$ explicitly. Determine all the subgroups of the Galois group and give their corresponding fixed subfields of K_1K_2 containing F.
- (e) Prove that the splitting field of $x^4 2x^2 2$ over $\mathbb Q$ is of degree 8 with dihedral Galois group.