Homework 1

 $CMPSC\ 465$

Kinner Parikh September 8, 2022

Problem 1:

I did not work in a group I did not consult without anyone my group member I did not consult any non-class materials

Problem 2: In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$). Give a one sentence justification for each of your answers.

- a) $f(n) = n^{1.5}$, $g(n) = n^{1.3} \to \underline{f = \Omega(g)}$ and not O(g) because the exponent of f is greater than the exponent in g.
- b) $f(n) = 2^{n-1}$, $g(n) = 2^n \to \underline{f} = \Theta(g)$ because $f(n) = \frac{1}{2} \cdot 2^n$, and since we disregard the coefficient, we know that asymptotically f is 2^n , which is equivalent to g.
- c) $f(n) = n^{1.3\log(n)}$, $g(n) = n^{1.5} \to \underline{f} = \Omega(\underline{g})$ because simply comparing the exponents shows that f's exponent will grow faster than g's because f's exponent grows based on n while g's is constant.
- d) $f(n) = 3^n$, $g(n) = n \cdot 2^n \to f = \Omega(g)$ because based on the rule of exponential functions for asymptotic growth, the larger the base of the exponent, the faster it will grow. Since 3 > 2, f will grow faster than g.
- e) $f(n) = (\log n)^{100}$, $g(n) = n^{0.1} \to \underline{f} = O(g)$ because $\log(n)$ grows slower than n, and since the function is dependent on the base of the exponent, g will grow faster than f.
- f) f(n) = n, $g(n) = (\log n)^{\log \log n} \to \underline{f} = O(g)$ because g is an exponential function and f is linear, thus g will grow faster than \overline{f} .
- g) $f(n) = 2^n$, $g(n) = n! \rightarrow \underline{f} = O(g)$ because factorial grows much faster than any exponential function.
- h) $f(n) = \log(e^n)$, $g(n) = n\log n \to \underline{f} = O(g)$ because we can simplify f down to $n\log(e)$. Since $\log(e)$ is a numerical value, we can drop it and see that f is a linear function, thus grows slower than $n\log n$.
- i) $f(n) = n + \log n$, $g(n) = n + (\log n)^2 \to \underline{f = \Theta(g)}$ because $(\log n)^2$ grows slower than n, thus both f and g exhibit linear growth.
- j) $f(n) = 5n + \sqrt{n}$, $g(n) = \log n + n \to \underline{f} = \Theta(\underline{g})$ because both \sqrt{n} and $\log n$ grow slower than linear growth, thus, both f and g exhibit linear growth.

Problem 3:

a) Prove that $R(i) \ge 3^{i/2} \ \forall i \ge 2$ where R(i) = R(i-1) + R(i-2) + R(i-3)

Proof:

We proceed by induction on the variable i.

Base Case (i = 2, 3, 4):

R(2) = 3 and $3^{2/2} = 3$, thus the case holds

R(3) = R(2) + R(1) + R(0) = 3 + 2 + 1 = 6 and $3^{3/2} \approx 5.196$, thus the case holds

R(4) = R(3) + R(2) + R(1) = 6 + 3 + 2 = 11 and $3^{4/2} = 9$, thus the case holds

Inductive Hypothesis (i = n):

For any arbitrary positive integer i = n where $n \ge 2$, assume that $R(n) \ge 3^{n/2}$. This means that $R(n-1) + R(n-2) + R(n-3) \ge 3^{n/2}$.

Inductive Step (i = n + 1):

We have to show that $R(n+1) \ge 3^{(n+1)/2}$

Expanding this, we get $R(n) + R(n-1) + R(n-2) \ge 3^{(n+1)/2}$

From the inductive hypothesis, we know that R(n), R(n-1), R(n-2) holds.

Plugging this in, we can say that $R(n+1) \ge 3^{0.5n} + 3^{0.5n-0.5} + 3^{0.5n-1}$

$$= 3^{0.5n} (1 + 3^{-0.5} + 3^{-1})$$

$$= 3^{0.5n} (\frac{3+4\sqrt{3}}{3\sqrt{3}})$$

$$= 3^{0.5n} (1.911)$$

So, $R(n+1) \ge 3^{0.5n}(1.911) \ge 3^{0.5n}(\sqrt{3})$

Since $1.911 > \sqrt{3}$, the statement $R(n+1) \ge 3^{(n+1)/2}$ holds.

Therefore, $R(i) \geq 3^{i/2} \ \forall i \geq 2$. \square

b) Recursion Tree

Problem 4: Prove that $O_1(g(n)) = O_2(g(n)) \ \forall g$

$$\begin{aligned} O_1(g(n)) &= \{f(n): \exists c_1, n_0 > 0 \text{ s.t. } f(n) \leq c_1 g(n), \forall n \geq n_0 \} \\ O_2(g(n)) &= \{f(n): \exists c_2 > 0 \text{ s.t. } f(n) \leq c_2 g(n), \forall n > 0 \} \end{aligned}$$

Proof:

In O_1 , we have that $\exists n_0 > 0$. We also know that $\forall n \geq n_0$, so we can say that $\forall n \geq n_0 > 0$. Thus, we can conclude n > 0. Substituting this to the definition of O_1 , we can say that: $O_1(g(n)) = \{f(n) : \exists c_1, n_0 > 0 \text{ s.t. } f(n) \leq c_1g(n), \forall n > 0\}$. Furthermore, since both set builders state that $\exists c_1, c_2 > 0$, we can say that $c_1 = c_2 = c_{all}$. Thus, the set builders will be: $O_1(g(n)) = \{f(n) : \exists c_{all} > 0 \text{ s.t. } f(n) \leq c_{all}g(n), \forall n > 0\}$ $O_2(g(n)) = \{f(n) : \exists c_{all} > 0 \text{ s.t. } f(n) \leq c_{all}g(n), \forall n > 0\}$ Thus, we can conclude that $O_1 = O_2 \square$