Verification Logics for Quantum Programs WPE-II

Robert Rand

University of Pennsylvania

Saturday 7th May, 2016

A Rough Outline

Preliminaries: Quantum Computing

The Deutsch Problem

We have a function

$$f:\{0,1\}\to\{0,1\}$$

Is f constant?

The Deutsch Problem

Let
$$f'(x,y) = (x, f(x) \oplus y)$$

This allows us to represent f' as a *unitary* matrix U_f , such that $U_f^{\dagger}U_f = I$.

qubits

$$|0
angle = egin{pmatrix} 1 \ 0 \end{pmatrix} \qquad |1
angle = egin{pmatrix} 0 \ 1 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$

Unitaries

$$\begin{vmatrix} 0 \rangle & - \boxed{H} - \\ \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Unitaries

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Multiqubit States

$$|0
angle - H - |$$
 $|1
angle - H - |$
 $(H \otimes H)(|0
angle \otimes |1
angle)$

Multiqubit States

$$egin{aligned} |0
angle & -H - \ & |1
angle & -H - \ & |1
angle & -H - \ & |1
angle &$$

Our Goal

Where
$$f(0)=f(1)=1$$
 derive the following:
$$\{\mathsf{True}\}$$
 $\mathbf{q}_0, \mathbf{q}_1:=\ket{0}, \ket{1};$ $\mathbf{q}_0, \mathbf{q}_1:=\ket{0}, \ket{1};$ $\mathbf{q}_0, \mathbf{q}_1:=H\otimes H;$ $\mathbf{q}_0, \mathbf{q}_1:=H$; $\mathbf{q}_0:=H;$ $\mathbf{b}:=\mathsf{measure}(\mathbf{q}_0)$ $\{b=0\}$

Our Goal

Where
$$f(0) = f(1) = 1$$
 derive the following:
$$\begin{cases} Pr(\mathsf{True}) = 1 \} \\ \mathbf{q}_0, \mathbf{q}_1 := |0\rangle, |1\rangle; \\ \mathbf{q}_0, \mathbf{q}_1 *= H \otimes H; \\ \mathbf{q}_0, \mathbf{q}_1 *= U_f; \\ \mathbf{q}_0 *= H; \\ \mathbf{b} := \mathsf{measure}(\mathbf{q}_0) \\ \{Pr(\mathbf{b} = 0) = 1\} \end{cases}$$

$$\{P\}\ c\ \{Q\}$$

$$\{P\}\ c\ \{Q\}$$

$$P(\sigma) \quad c\ /\ \sigma \Downarrow \sigma'$$

$$\begin{cases}
P \\ c \\ Q \\
\hline
Q(\sigma')
\end{cases}$$

Classical Hoare Logic

$$\{even(x)\}\ x := x + 1\ \{odd(x)\}$$

Classical Hoare Logic

$$\{even(x)\} \ x := x + 1 \ \{odd(x)\}$$
$$even(\sigma(x)) \quad x := x + 1 \ / \ \sigma \Downarrow \sigma'$$

Classical Hoare Logic

$$\{even(x)\} \ x := x + 1 \ \{odd(x)\}$$

$$\underline{even(\sigma(x)) \quad x := x + 1 \ / \ \sigma \Downarrow \sigma'}$$

$$\underline{odd(\sigma'(x))}$$

$$\{P\}$$
 c $\{Q\}$

Truth Functional Probabilistic Logic

termination?

$$\{P\} \ c \ \{Q\}$$

$$Pr(X) = p \qquad c \ / \ \mathcal{D}(\sigma) \Downarrow \mathcal{D}(\sigma)'$$

probabilistic propositions

Truth Functional Probabilistic Logic

almost-sure termination

$$\{P\} \ c \ \{Q\}$$

$$Pr(X) = p \qquad c \ / \ \mathcal{D}(\sigma) \Downarrow \mathcal{D}(\sigma)'$$

probabilistic propositions

Truth Functional Probabilistic Logic

{
$$Pr(even(x)) = \frac{1}{3}$$
 }
 $x := x + 1$ { $Pr(odd(x)) = \frac{1}{3}$ }

$$\{ even(x) \}$$

 $x := x + 1$
 $\{ odd(x) \}$

$$\{ even(x) \}$$

 $x := x + 1$
 $\{ odd(x) \}$

$$\forall \mathcal{D}, |\mathit{even}(x)|(\mathcal{D}) \leq |\mathit{odd}(x)|(\llbracket x := x + 1 \rrbracket \mathcal{D})$$

$$\{ even(x) \}$$

 $x := x + 1$
 $\{ odd(x) \}$

$$\forall \mathcal{D}, |even(x)|(\mathcal{D}) \leq |odd(x)|([x := x + 1]]\mathcal{D}) + probability of non-termination$$

$$\mathbf{b} := toss(p)$$

$$\overline{\{P_b^p\} \mathbf{b} := \mathsf{toss}(p) \{P\}}$$

$$\overline{\{P_b^p\} \mathbf{b} := \operatorname{toss}(p) \{P\}}$$

$$P_b^p = P[Pr(X) \mapsto p * Pr(X[\mathbf{b} \mapsto \mathtt{f}]) + (1-p) * Pr(X[\mathbf{b} \mapsto \mathtt{f}])]$$

$$\left\{\frac{2}{3} * Pr(t) + \frac{1}{3} * Pr(f) = \frac{2}{3}\right\}$$

$$\mathbf{b} := toss(\frac{2}{3})$$

$$\left\{Pr(\mathbf{b}) = \frac{2}{3}\right\}$$

Chadha

¹Complete version in Chadha et al. 2007

	Chadha	
Probability	b := toss(p)	

¹Complete version in Chadha et al. 2007

	Chadha	
Probability	b := toss(p)	
While Loops	None	

¹Complete version in Chadha et al. 2007

	Chadha	
Probability	b := toss(p)	
While Loops	None	
WP-form	Yes	

¹Complete version in Chadha et al. 2007

	Chadha	
Probability	b := toss(p)	
While Loops	None	
WP-form	Yes	
Complete	$Almost^1$	

¹Complete version in Chadha et al. 2007

$$c_1 \oplus_{\frac{1}{3}} c_2$$

$$\frac{\{P\}\ c_1\ \{Q_1\}\quad \{P\}\ c_2\ \{Q_2\}}{\{P\}\ c_1\ \oplus_p\ c_2\ \{Q_1\ \oplus_p\ Q_2\}}$$

$$\frac{\{P\} \ c_1 \ \{Q_1\} \quad \{P\} \ c_2 \ \{Q_2\}}{\{P\} \ c_1 \ \oplus_{p} \ c_2 \ \{p*Q_1+(1-p)*Q_2\}}$$

$$\begin{array}{c|c} \{P\} \ c_1 \ \{Q_1\} & \{P\} \ c_2 \ \{Q_2\} \\ \hline \{P\} \ c_1 \ \oplus_p \ c_2 \ \{p*Q_1+(1-p)*Q_2\} \\ \\ \mathcal{D} \models p*Q_1+(1-p)*Q_2 \\ \\ \equiv \\ \mathcal{D} = p*\mathcal{D}_1+(1-p)*\mathcal{D}_2 \text{ s.t.} \\ \\ \mathcal{D}_1 \models Q_1 \text{ and } \mathcal{D}_2 \models Q_2 \end{array}$$

$$\frac{\{b?P\} \ c_1 \ \{Q_1\} \quad \{\neg b?P\} \ c_2 \ \{Q_2\}}{\{P\} \ \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{Q_1+Q_2\}}$$

$$\frac{\{b?P\} \ c_1 \ \{Q_1\} \quad \{\neg b?P\} \ c_2 \ \{Q_2\}}{\{P\} \ \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \ \{Q_1+Q_2\}}$$

$$\mathcal{D} \models b$$
? P
 \equiv
 $\mathcal{D} = b$? \mathcal{D}^+ s.t. $\mathcal{D}^+ \models P$

$$\frac{P \text{ invariant for } \langle b, c \rangle}{\{P\} \text{ while } b \text{ do } c \text{ } \{P \land Pr(b) = 0\}}$$

	Chadha	Den Hartog
Probability	b := toss(p)	
While Loops	None	
WP-form	Yes	
Complete	$Almost^2$	

²Complete version in Chadha et al. 2007

	Chadha	Den Hartog
Probability	b := toss(p)	$c_1 \oplus_p c_2$
While Loops	None	
WP-form	Yes	
Complete	$Almost^2$	

²Complete version in Chadha et al. 2007

	Chadha	Den Hartog
Probability	b := toss(p)	$c_1 \oplus_p c_2$
While Loops	None	Yes
WP-form	Yes	
Complete	$Almost^2$	

⁽A)

²Complete version in Chadha et al. 2007

	Chadha	Den Hartog
Probability	b := toss(p)	$c_1 \oplus_p c_2$
While Loops	None	Yes
WP-form	Yes	No
Complete	$Almost^2$	

⁽A)

²Complete version in Chadha et al. 2007

	Chadha	Den Hartog
Probability	b := toss(p)	$c_1 \oplus_p c_2$
While Loops	None	Yes
WP-form	Yes	No
Complete	$Almost^2$	No

²Complete version in Chadha et al. 2007

Quantum Hoare Logic

Problems of Measurement

Problems of Measurement

$$b := measure(q)$$

Problems of Measurement

$$Pr(\mathbf{q}) = \frac{1}{2}$$

$$Pr(\mathbf{q}) = \frac{1}{2}$$

• Could correspond to the amplitude $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$

$$Pr(\mathbf{q}) = \frac{1}{2}$$

- \bullet Could correspond to the amplitude $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
- Could also correspond to a distribution over q

$$Pr(\mathbf{q}) = \frac{1}{2}$$

- \bullet Could correspond to the amplitude $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
- Could also correspond to a distribution over q
- Neglects entanglement

$$Pr(\mathbf{q}) = \frac{1}{2}$$

- \bullet Could correspond to the amplitude $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
- Could also correspond to a distribution over q
- Neglects entanglement
- Really want to describe vectors or matrices

Solution 1: Ensembles!

$$\mathcal{D}(\sigma, |\psi\rangle)$$

 σ : map from identifiers to $\mathbb N$

 $|\psi
angle$: pure state

EEQPL Language

Quantum Commands

$$U ::= I \mid H : \mathbf{q} \mid H : \mathbf{qn} \mid \sigma_{\mathsf{x}} : \mathbf{q} \mid \sigma_{\mathsf{x}} : \mathbf{qn}(e, e) \mid$$

qif **q** then U else $U \mid UU$

Classical Commands

$$c ::= U \mid \text{skip} \mid \mathbf{b} := b \mid \mathbf{n} := e \mid c ; c \mid$$

if **b** then c else $c \mid \mathbf{b} := \text{measure}(\mathbf{qn})$

EEQPL Assertions

$$Pr(\mathbf{n}=4)=\frac{1}{2}$$

EEQPL Assertions

$$Pr(\mathbf{n}=4)=rac{1}{2}$$
 $Pr(\langle \mathbf{q}_1:0,\mathbf{q}_2:1|\,\mathrm{t}\rangle=rac{1}{\sqrt{2}})=rac{1}{3}$

$$\overline{\{P[P(x)\mapsto m_1^{\mathbf{b},\mathbf{q}}(x)+m_0^{\mathbf{b},\mathbf{q}}(x)]\}\;\mathbf{b}\;:=\mathtt{measure}(\mathbf{q})\;\{P\}}$$

$$\{P[P(x)\mapsto m_1^{\mathbf{b},\mathbf{q}}(x)+m_0^{\mathbf{b},\mathbf{q}}(x)]\}\ \mathbf{b}:=\mathtt{measure}(\mathbf{q})\ \{P\}$$

Where $m_1^{\mathbf{b},\mathbf{q}}(x)$:

Scales by the probability of the outcome 1

$$\{P[P(x)\mapsto m_1^{\mathbf{b},\mathbf{q}}(x)+m_0^{\mathbf{b},\mathbf{q}}(x)]\}\ \mathbf{b}:=\mathtt{measure}(\mathbf{q})\ \{P\}$$

- Scales by the probability of the outcome 1
- Sets the amplitudes of all q : 0 valuations to 0

$$\{P[P(x)\mapsto m_1^{\mathbf{b},\mathbf{q}}(x)+m_0^{\mathbf{b},\mathbf{q}}(x)]\}\ \mathbf{b}:=\mathtt{measure}(\mathbf{q})\ \{P\}$$

- Scales by the probability of the outcome 1
- Sets the amplitudes of all q : 0 valuations to 0
- Scales up the amplitudes of all q: 0 valuations

$$\{P[P(x)\mapsto m_1^{\mathbf{b},\mathbf{q}}(x)+m_0^{\mathbf{b},\mathbf{q}}(x)]\}\ \mathbf{b}:=\mathtt{measure}(\mathbf{q})\ \{P\}$$

- Scales by the probability of the outcome 1
- Sets the amplitudes of all q : 0 valuations to 0
- Scales up the amplitudes of all q: 0 valuations
- Replaces all instances of b with t

$$\overline{\{P[\langle\omega|t\rangle\mapsto\langle U\omega|t\rangle]\}\ U\ \{P\}}$$

$$\{\Box(\langle 0|\, \mathtt{t}
angle = 1)
ightarrow \} \ \{\Box(rac{1}{2}\,\langle 0|\, \mathtt{t}
angle + rac{1}{2}\,\langle 0|\, \mathtt{t}
angle = 1)\}
ightarrow \{\Box(rac{1}{2}\,\langle 0|\, \mathtt{t}
angle + rac{1}{2}\,\langle 0|\, \mathtt{t}
angle - rac{1}{2}\,\langle 1|\, \mathtt{t}
angle = 1)\} \ H: q \ \{\Box(rac{1}{\sqrt{2}}\,\langle 0|\, \mathtt{t}
angle + rac{1}{\sqrt{2}}\,\langle 1|\, \mathtt{t}
angle = 1)\} \ H: q \ \{\Box(\langle 0|\, \mathtt{t}
angle = 1)\}$$


```
\{\Box(\langle 01|t\rangle=1)\}
H_2: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2+|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2=1))\}
U_f: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2+|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2=1))\}
H: \mathbf{q}_{\cap};
\{\Box(|\langle 00|\mathbf{t}\rangle|^2+|\langle 01|\mathbf{t}\rangle|^2=1)\}
\{1 * Pr((0 = 0) \land 1 * |\langle 00| t \rangle|^2 + 1 * |\langle 01| t \rangle|^2 = 1) + Pr(...) = 1\}
\mathbf{b} := \text{measure}(\mathbf{q}_0);
\{Pr((\mathbf{b}=0) \land |\langle 00| \mathbf{t} \rangle|^2 + |\langle 01| \mathbf{t} \rangle|^2 = 1) = 1\} \rightarrow
\{\Box(\mathbf{b} = 0)\}
```

```
\{\Box(\langle 01|t\rangle=1)\}
H_2: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2+|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2=1))\}
U_f: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2+|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2=1))\}
H: \mathbf{q}_0;
\{\Box(|\langle 00|\mathbf{t}\rangle|^2+|\langle 01|\mathbf{t}\rangle|^2=1)\}
\{1 * Pr((0 = 0) \land 1 * |\langle 00| t \rangle|^2 + 1 * |\langle 01| t \rangle|^2 = 1) + Pr(\dots) = 1\}
\mathbf{b} := \text{measure}(\mathbf{q}_0);
\{Pr((\mathbf{b} = 0) \land |\langle 00| \mathbf{t} \rangle|^2 + |\langle 01| \mathbf{t} \rangle|^2 = 1) = 1\} \rightarrow
\{\Box(\mathbf{b} = 0)\}
```

```
\{\Box(\langle 01|t\rangle=1)\}
H_2: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2+|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2=1))\}
U_f: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 00|\mathbf{t}\rangle + \langle 10|\mathbf{t}\rangle|^2 + |\langle 01|\mathbf{t}\rangle + \langle 11|\mathbf{t}\rangle|^2 = 1))\}
H: \mathbf{q}_{\cap};
\{ \Box (|\langle 00| \mathbf{t} \rangle|^2 + |\langle 01| \mathbf{t} \rangle|^2 = 1) \} \rightarrow
\{1 * Pr((0 = 0) \land 1 * |\langle 00| t \rangle|^2 + 1 * |\langle 01| t \rangle|^2 = 1) + Pr(...) = 1\}
\mathbf{b} := \text{measure}(\mathbf{q}_0);
\{Pr((\mathbf{b}=0) \land |\langle 00| \mathbf{t} \rangle|^2 + |\langle 01| \mathbf{t} \rangle|^2 = 1) = 1\} \rightarrow
\{\Box(\mathbf{b} = 0)\}
```

```
\{\Box(\langle 01|t\rangle=1)\}
H_2: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 01|\,\mathtt{t}\rangle+\langle 11|\,\mathtt{t}\rangle|^2+|\langle 00|\,\mathtt{t}\rangle+\langle 10|\,\mathtt{t}\rangle|^2=1))\}
U_f: (\mathbf{q}_0, \mathbf{q}_1);
\{\Box(\frac{1}{2}(|\langle 00|\mathbf{t}\rangle + \langle 10|\mathbf{t}\rangle|^2 + |\langle 01|\mathbf{t}\rangle + \langle 11|\mathbf{t}\rangle|^2 = 1))\}
H: \mathbf{q}_{\cap};
\{\Box(|\langle 00|\mathbf{t}\rangle|^2+|\langle 01|\mathbf{t}\rangle|^2=1)\}
\{1 * Pr((0 = 0) \land 1 * |\langle 00| t \rangle|^2 + 1 * |\langle 01| t \rangle|^2 = 1) + Pr(...) = 1\}
\mathbf{b} := \text{measure}(\mathbf{q}_0);
\{Pr((\mathbf{b}=0) \land |\langle 00| \mathbf{t} \rangle|^2 + |\langle 01| \mathbf{t} \rangle|^2 = 1) = 1\} \rightarrow
\{\Box(\mathbf{b} = 0)\}
```

	EEQPL	
Language		
Assertions		
Objects		
While Rule		
WP-form		
Complete		

	EEQPL	
Language	Classical	
Assertions		
Objects		
While Rule		
WP-form		
Complete		

	EEQPL	
Language	Classical	
Assertions	Truth Functional	
Objects		
While Rule		
WP-form		
Complete		

	EEQPL	
Language	Classical	
Assertions	Truth Functional	
Objects	Ensembles	
While Rule		
WP-form		
Complete		

	i .	
	EEQPL	
Language	Classical	
Assertions	Truth Functional	
Objects	Ensembles	
While Rule	None	
WP-form		
Complete		

1		i e	I .
	EEQPL		
Language	Classical		
Assertions	Truth Functional		
Objects	Ensembles		
While Rule	None		
WP-form	Yes		
Complete			

	EEQPL	
Language	Classical	
Assertions	Truth Functional	
Objects	Ensembles	
While Rule	None	
WP-form	Yes	
Complete	No	

QPL

$$c ::= \text{skip} \mid c ; c \mid \text{bit } \mathbf{b} \mid \text{qbit } \mathbf{q} \mid \text{discard } \mathbf{q}$$

$$\mid \mathbf{b} := 0 \mid \mathbf{b} := 1 \mid \vec{\mathbf{q}} *= U \mid \text{while } \mathbf{b} \text{ do } c$$
if \mathbf{b} then c else $c \mid \text{measure } \mathbf{q}$ then c else c

QPL

$$c ::= \text{skip} \mid c ; c \mid \text{bit } \mathbf{b} \mid \text{qbit } \mathbf{q} \mid \text{discard } \mathbf{q}$$

$$\mid \mathbf{b} := 0 \mid \mathbf{b} := 1 \mid \vec{\mathbf{q}} *= U \mid \text{while } \mathbf{b} \text{ do } c$$
if \mathbf{b} then c else $c \mid \text{measure } \mathbf{q}$ then c else c

$$\llbracket c \rrbracket : A \to A$$

Density Matrices

$$|\psi\rangle\langle\psi| = |\psi\rangle \times |\psi\rangle^{\dagger}$$

Density Matrices

$$|\psi\rangle\langle\psi| = |\psi\rangle \times |\psi\rangle^{\dagger}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Density Matrices

$$|\psi\rangle\langle\psi| = |\psi\rangle \times |\psi\rangle^{\dagger}$$

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \Rightarrow \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Mixed States

$$\sum_i p_i |\psi_i
angle \langle \psi_i|$$
 where $Pr(|\psi_i
angle) = p_i \ \& \ \sum_i p_i = 1$

Partial Mixed States

$$\sum_i p_i |\psi_i
angle \langle \psi_i|$$
 where $Pr(|\psi_i
angle) = p_i \ \& \ \sum_i p_i \le 1$

QHL Assertions

$$Pr(\mathbf{q}) = p$$

QHL Rules: Unitary

$$\overline{\{\vec{\mathbf{q}}U^{\dagger}P\}\;\vec{\mathbf{q}}*=U\;\{P\}}$$

QHL Rules: Unitary

$$\begin{cases} \vec{\mathbf{q}} U^{\dagger} P \} \vec{\mathbf{q}} *= U \{P\} \\
A \models UP \\
\equiv \\
A = (U \otimes I)A'(U^{\dagger} \otimes I) \text{ s.t. } A' \models P
\end{cases}$$

QHL Rules: Measure

$$\frac{\{^q|1\rangle\langle 0|P\}\ c_1\ \{Q_1\}\qquad \{^q|1\rangle\langle 1|P\}\ c_2\ \{Q_2\}}{\{P\}\ \text{measure}\ q\ \text{then}\ c_1\ \text{else}\ c_2\ \{Q_1+Q_2\}}$$

QHL Rules: Measure

$$\frac{\{^{q}|1\rangle\langle 0|P\}\;c_{1}\;\{Q_{1}\}\qquad \{^{q}|1\rangle\langle 1|P\}\;c_{2}\;\{Q_{2}\}}{\{P\}\;\text{if}\;q\;\text{then}\;c_{1}\;\text{else}\;c_{2}\;\{Q_{1}+Q_{2}\}}$$

QHL Rules: While

$$\frac{\{P \land Pr(b=1)=1\} \ c \ \{P\}}{\{P \land Pr(t)=1\} \ \text{while} \ b \ \text{do} \ c \ \{P \land Pr(b=0)=1\}}$$

$$\frac{\{P \land Pr(b=1)=1\} \ c \ \{P\}}{\{P \land Pr(\texttt{t})=1\} \ \texttt{while} \ b \ \texttt{do} \ c \ \{P \land Pr(b=0)=1\}}$$

Subject to the following conditions:

$$\frac{\{P \land Pr(b=1)=1\} \ c \ \{P\}}{\{P \land Pr(t)=1\} \ \text{while} \ b \ \text{do} \ c \ \{P \land Pr(b=0)=1\}}$$

Subject to the following conditions:

• The invariant *P* has no negation, disjunction or existentials.

$$\frac{\{P \land Pr(b=1)=1\} \ c \ \{P\}}{\{P \land Pr(t)=1\} \ \text{while} \ b \ \text{do} \ c \ \{P \land Pr(b=0)=1\}}$$

Subject to the following conditions:

- The invariant *P* has no negation, disjunction or existentials.
- The program always terminates.

$$\frac{\{P \land Pr(b=1)=1\} \ c \ \{P\}}{\{P \land Pr(t)=1\} \ \text{while} \ b \ \text{do} \ c \ \{P \land Pr(b=0)=1\}}$$

Subject to the following conditions:

- The invariant *P* has no negation, disjunction or existentials.
- The program always terminates.
- The guard is independent of all other variables.

Verifying Deutsch in QHL

```
\{Pr(\mathsf{True}) = 1\}
qbit \mathbf{q}_0, \mathbf{q}_1;
\{Pr(q_0 = 0 \land q_1 = 0) = 1\} \rightarrow
\{(H \otimes I)U_fH_2(I \otimes N)Pr(\mathbf{q}_0 = 0) = 1\}
\mathbf{q}_1 *= N;
\mathbf{q}_{0}, \mathbf{q}_{1} *= H_{2};
{\bf q}_0, {\bf q}_1 *= U_f;
\mathbf{q}_0 *= H;
\{Pr(\mathbf{q}_0=0)=1\}
measure \mathbf{q}_0 then \mathbf{b} := 1 else \mathbf{b} := 0
\{Pr(\mathbf{b}=0)=1\}
```


	EEQPL	QHL	
Language	Classical + Quantum		
Objects	Ensembles		
Assertions	Truth Functional		
While Rule	None		
WP-form	Yes		
Complete	No		

	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles		
Assertions	Truth Functional		
While Rule	None		
WP-form	Yes		
Complete	No		

	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional		
While Rule	None		
WP-form	Yes		
Complete	No		

	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None		
WP-form	Yes		
Complete	No		

	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes		
Complete	No		

	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No		

	1		1
	EEQPL	QHL	
Language	Classical + Quantum	"Classical" + Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No	No	

Truth Functional

Propositions over states.

Arithmetic

Propositions over states.

Truth Functional

- Propositions over states.
- Propositions about probabilities over states.

- Propositions over states.
- Measurable functions over distributions.

Truth Functional

- Propositions over states.
- Propositions about probabilities over states.
- Propositions about probabilities over quantum (and classical) states.

- Propositions over states.
- Measurable functions over distributions.

Truth Functional

- Propositions over states.
- Propositions about probabilities over states.
- Propositions about probabilities over quantum (and classical) states.

- Propositions over states.
- Measurable functions over distributions.

Truth Functional

- Propositions over states.
- Propositions about probabilities over states.
- Propositions about probabilities over quantum (and classical) states.

- Propositions over states.
- Measurable functions over distributions.
- Bounded positive operators over density matrices³

Bounded Positive Operators

Defined via the Löwner partial order:

$$\begin{array}{ccc}
0_{H_{x}} \sqsubseteq & M & \sqsubseteq I_{H_{x}} \\
& \equiv \\
tr(0\rho) \leq & tr(M\rho) & \leq tr(I\rho)
\end{array}$$

for all density matrices ρ over H_x .

Bounded Positive Operators

Defined via the Löwner partial order:

$$\begin{array}{ccc}
0_{H_x} \sqsubseteq & M & \sqsubseteq I_{H_x} \\
& \equiv \\
0 \le & tr(M\rho) & \le tr(\rho)
\end{array}$$

for all density matrices ρ over H_x .

Arithmetic Triples

Propositional $\{P\}$ c $\{Q\}$:

$$\forall \sigma, P(\sigma) \rightarrow Q(\llbracket c \rrbracket \sigma)$$

Probabilistic $\{P\}$ c $\{Q\}$:

$$\forall \mathcal{D}, P(\mathcal{D}) \leq Q(\llbracket c \rrbracket \mathcal{D})$$

Quantum $\{P\}$ c $\{Q\}$:

$$\forall \rho, tr(P\rho) \leq tr(Q[\![c]\!]\rho)$$

Arithmetic Triples

Propositional $\{P\}$ c $\{Q\}$:

$$\forall \sigma, P(\sigma) \rightarrow Q(\llbracket c \rrbracket \sigma) \lor \uparrow$$

Probabilistic $\{P\}$ c $\{Q\}$:

$$\forall \mathcal{D}, P(\mathcal{D}) \leq Q(\llbracket c \rrbracket \mathcal{D}) + Pr(\uparrow)$$

Quantum $\{P\}$ c $\{Q\}$:

$$\forall \rho, tr(P\rho) \leq tr(Q[[c]]\rho) + tr(\uparrow)$$

qPD Language

$$c ::= \text{skip} \mid c ; c \mid \mathbf{q} := 0 \mid \vec{\mathbf{q}} *= U \mid$$

$$\text{measure } M[\vec{\mathbf{q}}] : \vec{c} \mid \text{while } M[\vec{\mathbf{q}}] \text{ do } c$$

qPD Unitary Rule

$$\overline{\{U^{\dagger}PU\}\;\vec{\mathbf{q}}\;*=\;U\;\{P\}}$$

qPD Measure Rule

$$\frac{\forall m, \ \{P_m\} \ c_m \ \{Q\}}{\{\sum_m M_m^\dagger P_m M_m\} \ \texttt{measure} \ M[\mathbf{q}] \ : \ \vec{c} \ \{Q\}}$$

qPD While Rule

$$\frac{\{Q\}\;c\;\{\textit{M}_0^\dagger\textit{PM}_0+\textit{M}_1^\dagger\textit{QM}_1\}}{\{\textit{M}_0^\dagger\textit{PM}_0+\textit{M}_1^\dagger\textit{QM}_1\}\;\text{while}\;\textit{M}[\vec{\mathbf{q}}]\;\text{do}\;c\;\{\textit{P}\}}$$

qPD While Semantics

```
While End: \langle \text{while } M[\vec{\mathbf{q}}] \text{ do } \vec{c}, \rho \rangle \rightarrow \langle \text{skip}, M_0 \rho M_0^{\dagger} \rangle
While Loop: \langle \text{while } M[\vec{\mathbf{q}}] \text{ do } \vec{c}, \rho \rangle \rightarrow \langle c \text{ ; while } M[\vec{\mathbf{q}}] \text{ do } \vec{c}, M_1 \rho M_1^{\dagger} \rangle
```


We want to show that:

$$\forall \rho, \llbracket deutsch \rrbracket \rho = |0\rangle\langle 0| \otimes \rho'$$

for some 2×2 matrix ρ' , hence:

$$\forall \rho, tr(I_4\rho) \leq tr((|0\rangle\langle 0| \otimes I_2)[\![c]\!]\rho)$$

We want to show that:

$$\forall \rho, \llbracket deutsch \rrbracket \rho = |0\rangle\langle 0| \otimes \rho'$$

for some 2×2 matrix ρ' , hence:

$$\forall \rho, tr(I_4\rho) \leq tr((|0\rangle\langle 0| \otimes I_2)[\![c]\!]\rho)$$

$$P = I_4$$
 $Q = |0\rangle\langle 0| \otimes I_2$

```
\{I_{4}\} \rightarrow
\{|0\rangle_1 \langle 0| |0\rangle_2 \langle 0| (|0\rangle\langle 0| \otimes I_2) |0\rangle_2 \langle 0| |0\rangle_1 + \dots \}
\mathbf{q}_0 := 0; \mathbf{q}_1 := 0
\{(|0\rangle\langle 0|\otimes I_2)\} \rightarrow \{(I_4\otimes N)|0\rangle\langle 0|\otimes I_2(I_4\otimes N)\}
\mathbf{q}_1 *= N
\{(|0\rangle\langle 0|\otimes I_2)\}\rightarrow
\{H_2(I_2 \otimes N)(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)(I_2 \otimes N)H_2\}
\mathbf{q}_{0}, \mathbf{q}_{1} *= H_{2};
\{(I_2 \otimes N)(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)(I_2 \otimes N)\}
{\bf q}_0, {\bf q}_1 *= U_f;
\{(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)\}
\mathbf{q}_0 *= H
\{|0\rangle\langle 0|\otimes I_2\}
```

```
\{I_{4}\} \rightarrow
\{|0\rangle_1 \langle 0| |0\rangle_2 \langle 0| (|0\rangle\langle 0| \otimes I_2) |0\rangle_2 \langle 0| |0\rangle_1 + \dots \}
\mathbf{q}_0 := 0; \mathbf{q}_1 := 0
\{(|0\rangle\langle 0|\otimes I_2)\} \rightarrow \{(I_4\otimes N)|0\rangle\langle 0|\otimes I_2(I_4\otimes N)\}
\mathbf{q}_1 *= N
\{(|0\rangle\langle 0|\otimes I_2)\}\rightarrow
\{H_2(I_2 \otimes N)(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)(I_2 \otimes N)H_2\}
\mathbf{q}_{0}, \mathbf{q}_{1} *= H_{2};
\{(I_2 \otimes N)(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)(I_2 \otimes N)\}
{\bf q}_0, {\bf q}_1 *= U_f;
\{(H \otimes I_2)(|0\rangle\langle 0| \otimes I_2)(H \otimes I_2)\}
\mathbf{q}_0 *= H
\{|0\rangle\langle 0|\otimes I_2\}
```

	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No	No	

	1	ı	
	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No	No	

	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	Density Matrices
Assertions	Truth Functional	Truth Functional	
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No	No	

	ı		
	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	Density Matrices
Assertions	Truth Functional	Truth Functional	Arithmetic
While Rule	None	Limited	
WP-form	Yes	No	
Complete	No	No	

	I	ı	1
	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	Density Matrices
Assertions	Truth Functional	Truth Functional	Arithmetic
While Rule	None	Limited	Yes
WP-form	Yes	No	
Complete	No	No	

	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	Density Matrices
Assertions	Truth Functional	Truth Functional	Arithmetic
While Rule	None	Limited	Yes
WP-form	Yes	No	Yes
Complete	No	No	

Comparison

	EEQPL	QHL	qPD
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum
Objects	Ensembles	Density Matrices	Density Matrices
Assertions	Truth Functional	Truth Functional	Arithmetic
While Rule	None	Limited	Yes
WP-form	Yes	No	Yes
Complete	No	No	Yes

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	
Objects	Ensembles	Density Matrices	Density Matrices	
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density Matrices + ?
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density Matrices + ?
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	Yes
Complete	No	No	Yes	

	EEQPL	QHL	qPD	qPD+
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	Yes
Complete	No	No	Yes	Yes

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	
Objects	Ensembles	Density Matrices	Density Matrices	
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	1	1	1	
	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density Matrices + ?
Assertions	Truth Functional	Truth Functional	Arithmetic	
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density Matrices + ?
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	
Complete	No	No	Yes	

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	Yes
Complete	No	No	Yes	

	EEQPL	QHL	qPD	QLNext
Language	Classical + Quantum	\sim Classical $+$ Quantum	Quantum	Classical + Quantum
Objects	Ensembles	Density Matrices	Density Matrices	Density $Matrices + ?$
Assertions	Truth Functional	Truth Functional	Arithmetic	Truth Functional?
While Rule	None	Limited	Yes	Yes
WP-form	Yes	No	Yes	Yes
Complete	No	No	Yes	Yes

Thank You

