|   | (Ciensoried and Truncated Data                                                           |
|---|------------------------------------------------------------------------------------------|
|   | Goals:                                                                                   |
|   | to mediate the model of the                                                              |
|   | to understand the whole population by                                                    |
|   | accounting for bias in the missing data and using what is known about the                |
|   | missing data to form better conclusions                                                  |
|   | 7711381714 0.0110 10 70777 001107 001100                                                 |
|   | Definitions:                                                                             |
| 4 | Truncated: only some of the Objects have a                                               |
|   | value because values outside a certain                                                   |
|   | range are not observable (like a star is<br>too dim) so you're not sure how many objects |
|   | too dim) so you're not sure how many objects                                             |
|   | Censored: an object is known to exist                                                    |
|   | and some observation has been made, but                                                  |
|   | it is unditected at a certain property                                                   |
|   | or time frame                                                                            |
|   | Upnex-Limit (left-consored): the maximum value                                           |
|   | to which an object may have. The value is too low to be detected.                        |
|   | low to be detected.                                                                      |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |

## Functions Frequently used:

## Survival Function:

## Hazard Rate:

$$h(x) = \frac{f(x)}{5(x)} = -\frac{d \ln f(x)}{d x}$$

f(x) - is the probability density distribution 5(x) - survival function

"what is the chance that a person will die at a certain age"

|                                                                  | Methods:                                                              |                |                  |                |                                                   |   |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|------------------|----------------|---------------------------------------------------|---|--|--|--|
|                                                                  | Cox Regr                                                              | ession (prop   | ortional haza    | uds)           |                                                   |   |  |  |  |
|                                                                  | used to determine the effects of different                            |                |                  |                |                                                   |   |  |  |  |
| variables on "survival timu".                                    |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  | time between a start                                                  |                |                  |                |                                                   |   |  |  |  |
| if the 'went' doesn't occur in time, that data point is consored |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  |                                                                       |                |                  |                |                                                   | · |  |  |  |
|                                                                  |                                                                       |                |                  |                | $h(x) = h_0 e^{-\beta x}$ is the proportional haz |   |  |  |  |
| B estimates are the cox regression                               |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  | $h(x) = h_0 e^{(\beta_1 \times + \beta_2 \times + \beta_3 \times +)}$ |                |                  |                |                                                   |   |  |  |  |
|                                                                  |                                                                       | <b>F</b>       |                  |                |                                                   |   |  |  |  |
|                                                                  | the                                                                   | se B values ar | e for each varia | bleori         |                                                   |   |  |  |  |
|                                                                  |                                                                       |                | log hazard ra    | to for         |                                                   |   |  |  |  |
| the voiriable                                                    |                                                                       |                |                  |                |                                                   |   |  |  |  |
| interpreting results:                                            |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  |                                                                       | 0              |                  |                |                                                   |   |  |  |  |
|                                                                  | Covariate                                                             | coefficient    | hazard ration    | interpretation |                                                   |   |  |  |  |
|                                                                  |                                                                       |                |                  | A              |                                                   |   |  |  |  |
|                                                                  | X                                                                     | 2              | 7. 4             | frish          |                                                   |   |  |  |  |
|                                                                  |                                                                       |                |                  |                |                                                   |   |  |  |  |
|                                                                  | Υ                                                                     | 0.01           | 1.01             | - risk         |                                                   |   |  |  |  |
|                                                                  |                                                                       | -              |                  | 1 -1-24        |                                                   |   |  |  |  |
|                                                                  | 7                                                                     | - 5            | 0.007            | + risk         |                                                   |   |  |  |  |
|                                                                  |                                                                       | ^              |                  | • •            |                                                   |   |  |  |  |
|                                                                  |                                                                       |                | icate no chan    |                |                                                   |   |  |  |  |
|                                                                  |                                                                       |                | d "risk" and     | lower          |                                                   |   |  |  |  |
|                                                                  | than 0                                                                | 15 less r.     | SK.              |                |                                                   |   |  |  |  |



| 011.10 | 4 | ï | m | ć |
|--------|---|---|---|---|
|--------|---|---|---|---|

| C             | 4 |
|---------------|---|
| $\mathcal{L}$ |   |

| 0 | 9/a = 1                   |                                  |
|---|---------------------------|----------------------------------|
| 3 | 8/a x 1 = 0.89            | /                                |
| 4 | 6/8 x 0.89 = 0.6675       | { these are now                  |
| 6 | $4/5 \times 0.66 = 0.528$ | the survival times               |
| 7 | 2/4 × 0.528 = 0.264       | accounting for                   |
| 8 | 1/2 x 0.264 = 0.132       | censoring as a function of time. |
|   |                           | TOUTO TOUT                       |

For KM to be effective censoring must be random.

## Gehan's Test

used to see if 2 survival curves are significantly different. It is very similar to will wish on test.

|   | Sample 1 | Sample 2   |                  |
|---|----------|------------|------------------|
| - |          | •          | This test looks  |
|   | X,       | <b>X</b> , | at the values    |
|   | X -      | Xz         | of the samples   |
|   | X.       | Xz         | to see which are |
|   | •        | ;          | larger/smaller   |
|   | :        |            | Data can be      |
|   | Xn       | Xn         | censored.        |
|   |          |            |                  |

$$U_{ij} = \begin{cases} +1 & \text{if } X_{i}^{1} < X_{i}^{2} \\ -1 & \text{if } X_{i}^{1} > X_{i}^{2} \end{cases}$$

$$0 & \text{if } X_{i}^{1} = X_{i}^{2} \text{ or if ill-determined}$$

$$due to censoring$$

WE CONSTRUCT

|                                         | The to                                                                                   | est statistic                   | 15 !                 |                         |                    |
|-----------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------------|--------------------|
|                                         |                                                                                          |                                 |                      |                         |                    |
|                                         | WG                                                                                       | $=\sum_{i=1}^{N}\sum_{j=1}^{N}$ | Uij ,+               | o compar                | e to<br>stribution |
|                                         |                                                                                          | 1=1 1=1                         | , / n                | ormal di                | stribution         |
|                                         | F                                                                                        |                                 |                      | Λ/                      |                    |
|                                         | ror s                                                                                    | significance                    | use Z = V            | Gehan                   |                    |
|                                         |                                                                                          |                                 | √-v                  | VGehan                  |                    |
|                                         |                                                                                          | V TOST                          |                      |                         |                    |
|                                         | Logrank Test                                                                             |                                 |                      |                         |                    |
|                                         | this te                                                                                  | est is commo                    | only used to         | determi                 | ne                 |
|                                         | if 2 s                                                                                   | survival cur                    | ves are sign         | ificantly               | different.         |
|                                         | this test is commonly used to determine if 2 survival curves are significantly different |                                 |                      |                         |                    |
|                                         | 1                                                                                        |                                 | Ho: 6                | oth grou                | os have            |
|                                         |                                                                                          |                                 | inder                | oth group<br>Itical sur | rival              |
|                                         |                                                                                          | L                               |                      | tions                   |                    |
| -                                       |                                                                                          |                                 |                      |                         |                    |
| >                                       |                                                                                          |                                 | H,: +                | he group<br>event su    | o have             |
| = = = = = = = = = = = = = = = = = = = = |                                                                                          |                                 | \ diff               | event su                | uviva!             |
| 2                                       |                                                                                          |                                 | z fun                | ctions                  |                    |
|                                         |                                                                                          |                                 | $\rightarrow$ L      |                         |                    |
|                                         |                                                                                          |                                 |                      |                         |                    |
| time                                    |                                                                                          |                                 |                      |                         |                    |
|                                         |                                                                                          |                                 | 1.10.                |                         |                    |
|                                         | You could make a chart that looks like Group 1 Group 2, Group 1 Group 2                  |                                 |                      |                         |                    |
|                                         |                                                                                          | # at risk                       | Group 2<br># at risk | Observed                | Observed           |
|                                         | time                                                                                     | Nıj                             | Nzj                  | Ouj                     | 02, j              |
|                                         |                                                                                          |                                 | 1                    |                         |                    |
|                                         |                                                                                          |                                 |                      |                         |                    |
|                                         |                                                                                          |                                 |                      |                         |                    |
|                                         |                                                                                          | -                               |                      |                         |                    |
| ***                                     |                                                                                          |                                 | Ψ                    | 7                       | 4                  |

For each event times you can calculate the expected value for the group:

$$E_{ij} = O_{j} \frac{N_{i,j}}{N_{j}}$$
 or like  $E_{i,j} = O_{j} \frac{N_{i,j}}{N_{j}}$ 

N; 15 total from both

from hear you can calculate the variance:

$$V_{i,j} = E_{i,j} \left( \frac{N_j - O_j}{N_j} \right) \times \left( \frac{N_j - N_{i,j}}{N_{j-1}} \right)$$

test statistic:

$$\chi_{i}^{2} = \frac{\left(\mathcal{E}_{j=1}^{3} O_{i,j} - \mathcal{E}_{j=1}^{3} E_{i,j}\right)^{2}}{\mathcal{E}_{i,j}}$$

Correlation

Correlation can be measured with methods like spearman p or Kendall T (discussed in non-parametrics), but w/ censoring the tests change slightly.

$$T_{H} = \frac{n_{c} - n_{d}}{\sqrt{\frac{n(n-1)}{2} - n_{t,x}(\frac{n(n-1)}{2} - n_{t,y})}}$$

where Me are the points with unknown relationships.

Lynden - Bell - Woodroofe (LBW) Estimator

used for getting the survival curve for truncated data

 $\frac{S(x)}{S(u_{min})} = P(X \ge x | X \ge u_{min})$ 

we can only do the survival corre of a specific range where U; is the sensitivity limit

 $S_{LBW} = \prod_{i: x_i \neq x} \left(1 - \frac{di}{n_i}\right)$ 

n: is number of points in the set u: Ex & X; d; # of points at n;

This is very similar to the KM estimator

Other potential Regression Moduls

- · Accelerated failure-time
- · Iterative least squares
- · Buckley James
- · Tob:+
- ·Akritas-Thiel-Sen