EMNLP Sequence Tagging II – Linear Models

韩喆

fengyansong@pku.edu.cn

Institute of Computer Science and Technology Peking University

2014年12月4日

Recap: The HMM POS Tagger

- We represent
 - a sentence of any length $n: x_1, x_2, x_3, ... x_n$
 - its corresponding POS tag sequence; $y_1, y_2, y_3, ... y_n$
- We care the joint probability of a sentence and its POS tag sequence:

$$p(x_1, x_2, x_3, ...x_n, y_1, y_2, y_3, ...y_n)$$

(Generative Model)

• Then the most likely POS tag sequence for $x_1, x_2, x_3, ... x_n$:

$$\arg\max_{y_1...y_n} p(y_1,y_2,y_3,...y_n) p(x_1,x_2,x_3,...x_n|y_1,y_2,y_3,...y_n)$$

• Make Markov Assumptions (e.g., Trigram)

$$\arg \max_{y_1...y_n} \prod_{i} p(y_i|y_{i-2}, y_{i-1}) \prod_{i} p(x_i|y_i)$$

Elements in Our HMM POS Tagger

- Elements
 - a sequence of words
 - a sequence of POS tags
 - the beginning and end of a sentence
- Parameters
 - Sequences of POS tags
 - Co-occurrences of words and POS tags

Elements in Our HMM POS Tagger

- Elements
 - a sequence of words
 - a sequence of POS tags
 - the beginning and end of a sentence
- Parameters
 - Sequences of POS tags o transition probabilities ($p(y_n|y_{n-2},y_{n-1})$)
 - Co-occurrences of words and POS tags o emission probabilities $(p(x_n|y_n))$

Elements in Our HMM POS Tagger

- Elements
 - a sequence of words
 - a sequence of POS tags
 - the beginning and end of a sentence
- Parameters
 - Sequences of POS tags o transition probabilities ($p(y_n|y_{n-2},y_{n-1}))$
 - Co-occurrences of words and POS tags o emission probabilities $(p(x_n|y_n))$

Anything else useful?

- if the current word ending with ing, ed, se, ly, ical, or
- if the previous word is the
- if the next word is .
- ...

A Naive Way to Incorporate

..... many p_{ML} s

- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ing)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ed)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } se)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } \textit{ly})$
- $p_{ML}(POS_{w_i} = VBw_i \text{ ending with } ical)$
- $\bullet \ p_{\mathit{ML}}(\mathit{POS}_{w_i} = \mathsf{VB}w_{i+1} = \ . \ (\mathsf{a} \ \mathsf{period}))$
- ...

A Naive Way to Incorporate

..... many p_{ML} s

- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ing)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } ed)$
- $p_{ML}(POS_{w_i} = VB|w_i \text{ ending with } se)$
- $\bullet \ p_{ML}(POS_{w_i} = \mathsf{VB}|w_i \ \mathsf{ending} \ \mathsf{with} \ \mathit{ly})$
- $p_{ML}(POS_{w_i} = VBw_i \text{ ending with } ical)$
- $p_{ML}(POS_{w_i} = VBw_{i-1} = the)$
- $\bullet \ p_{\mathit{ML}}(\mathit{POS}_{w_i} = \mathsf{VB}w_{i+1} = \ . \ (\mathsf{a} \ \mathsf{period})) \\$
- ...

This gives you lots of λ s to tune.

Another View: Features

Features: pieces of evidences describing some aspects of observed data x, usually with respect to the predicted label y

- computer vision
 - the shape, color, texture, size.....of an object
 - other objects nearby, relative postions
 - number of objects available
 - ...
- natural language process, e.g., POS tagging
 - the target word itself, prefix, suffix, capital or not, ...
 - context: words before/after the target, their morphology
 - number of those indications

Features in NLP: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability p(y|x)

Features in NLP: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability p(y|x)

→ discriminative models

Features in NLP: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability p(y|x)

→ discriminative models

Often

- A feature is a function $f_i(x, y) \in \mathcal{R}$
- more often , it is a binary or indicator function
- for example,

$$f_i(x,y) = \begin{cases} 1 & \text{if } x = \text{Beijing and } y = \text{NNP} \\ 0 & \text{otherwise} \end{cases}$$

Features in NLP: pieces of evidences describing some aspects of observed data x with respect to the predicted label y, usually with the purpose of providing a conditional probability p(y|x)

→ discriminative models

Often

- A feature is a function $f_i(x,y) \in \mathcal{R}$
- more often , it is a binary or indicator function
- for example,

$$f_i(x, y) = \begin{cases} 1 & \text{if } x = \text{Beijing and } y = \text{NNP} \\ 0 & \text{otherwise} \end{cases}$$

ullet if we have m aspects to describe an instance, i.e., m features:

Features based Linear Models

Linear classifiers with the form like, $\lambda_i f_i(x, y)$

- need a linear function to map $f_i(x, y)$ to lable y
- possibly need a weight λ_i for each feature $f_i(x, y)$
- ullet then, for each possible label y of instance x, we can compute a score:

$$score(x, y) = \sum_{i} \lambda_{i} f_{i}(x, y)$$

the classifier should choose y*:

$$y^* = \arg\max_{y} \sum_{i} \lambda_i f_i(x, y)$$

Features based Linear Models: An Example

Tagging Beijing with a trained model:

I love Beijing.

- \bullet aspects: the target word, previous words, suffix, prefix, capitalized, \dots
- curwd_Beijing_NNP, pre1word_love_NNP, pref_Be_NNP, cap_1_NNP, curwd_Beijing_VB, pref_Be_VB...
- for each possible labels (NNP, VB, DT, ...), coupled aspects with lables
- obtain λ s using some algorithm, $\lambda_{curwd_Beijing_NNP}=10$, $\lambda_{pref_Be_NNP}=5,\ \lambda_{cap_1_DT}=-10,\ \dots$
- compute score(Beijing, NNP), score(Beijing, VB), score(Beijing, DT),
- choose the largest one: score(Beijing, NNP)

Features based Linear Models: Algorithms

The key is to choose proper weights λs for features

- the Perceptron algorithm
- Margin-based models (the Support Vector Machines, SVM)
- Exponential Models:
 - log-linear models, maximum entropy models, logistic models, ...
 - ullet basically, produce a probabilistic model according to score(x,y)

$$p(y|x) = \frac{\exp score(x, y)}{\sum_{y'} \exp score(x, y')} = \frac{\exp \sum_{i} \lambda_{i} f_{i}(x, y)}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(x, y')}$$

- ullet numerator: positive score for label y
- denominator: normalization

Features based Linear Models: Algorithms

The key is to choose proper weights λs for features

- the Perceptron algorithm(covered in this lecture)
- Margin-based models (the Support Vector Machines, SVM)
- Exponential Models:
 - log-linear models, maximum entropy models, logistic models, ...
 - ullet basically, produce a probabilistic model according to score(x,y)

$$p(y|x) = \frac{\exp score(x, y)}{\sum_{y'} \exp score(x, y')} = \frac{\exp \sum_{i} \lambda_{i} f_{i}(x, y)}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(x, y')}$$

- ullet numerator: positive score for label y
- denominator: normalization

Features based Linear Models: Algorithms

The key is to choose proper weights λs for features

- the Perceptron algorithm(covered in this lecture)
- Margin-based models (the Support Vector Machines, SVM)
- Exponential Models:
 - log-linear models, maximum entropy models, logistic models, ...
 - ullet basically, produce a probabilistic model according to score(x,y)

$$p(y|x) = \frac{\exp score(x, y)}{\sum_{y'} \exp score(x, y')} = \frac{\exp \sum_{i} \lambda_{i} f_{i}(x, y)}{\sum_{y'} \exp \sum_{i} \lambda_{i} f_{i}(x, y')}$$

- ullet numerator: positive score for label y
- denominator: normalization
- a powerful tool! (covered in later lectures)

The Perceptron Algorithm

- Classic: Rosenblatt 1958
- Modern: Freund and Schapire 1999
 - proof for convergence
 - very competitive performances in classifications
- NLP: Michael Collins 2002, 2004,
 - modifications with respect to NLP applications
 - serves as alternative parameter estimation methods for many ML models
 - You SHOULD read at least the 2002 paper

A Variant of The Perceptron Algorithm

- Inputs:
 - Training set (x_k, y_k) for k = 1, 2, ..., n
 - x_k the data, and y_k the label
- Initialization:
 - $\lambda = [0, 0, 0....], T$
- Define:
 - ullet follow Collins: GEN enumerates possible candidate lable ys for data x
 - $z = \arg\max_{y \in GEN(x)} \sum_{i} \lambda_i f_i(x, y)$
- Loop:
 - For t=1,2,3...,T, k=1,2,3,...,n compute $z_k=\arg\max_{y\in GEN(x_k)}\sum_i \lambda_i f_i(x_k,y)$ update λ s
 - if $z_k \neq y_k$: $\lambda = \lambda + f(x_k, y_k) f(x_k, z_k)$
- Output:

A Variant of The Perceptron Algorithm

- Inputs:
 - Training set (x_k, y_k) for k = 1, 2, ..., n
 - x_k the data, and y_k the label
- Initialization:
 - $\lambda = [0, 0, 0....], T$
- Define:
 - ullet follow Collins: GEN enumerates possible candidate lable ys for data x
 - $z = \arg\max_{y \in GEN(x)} \sum_{i} \lambda_i f_i(x, y)$
- Loop:
 - For $t=1,2,3...,T,\ k=1,2,3,...,n$ compute $z_k=\arg\max_{y\in GEN(x_k)}\sum_i \lambda_i f_i(x_k,y)$ (Key: decode z) update λ s
 - if $z_k \neq y_k$: $\lambda = \lambda + f(x_k, y_k) f(x_k, z_k)$
- Output:

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- in a step during training:
 China/N Mobile/N ... communication/N giant/?? in east Asia
 - word giant may have many choices of tags : N, V, DT, P, ADJ, ...

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- in a step during training:
 - China/N Mobile/N ... communication/N giant/?? in east Asia
 - word giant may have many choices of tags: N, V, DT, P, ADJ, ...
 - ullet for each choice, .e.g, N, we extract m features :
 - $f_1(x,y)=1$ if current word is giant and y=N. $\to f_1(x,y)=1$
 - $f_{11}(x,y)=1$ if current word is giant and y=ADJ. $\rightarrow f_{11}(x,y)=0$
 - $f_2(x,y)=1$ if previous word is the and y=N. $\to f_2(x,y)=0$
 - $f_{22}(x,y)=1$ if previous word is the and y=ADJ. $\rightarrow f_{22}(x,y)=0$
 - $f_3(x,y)=1$ if sufix of current word is ant and y=N. $\to f_3(x,y)=1$
 - $f_{33}(x,y) = 1$ if sufix of current word is ant and y = ADJ. $\rightarrow f_{33}(x,y) = 0$
 - ...
 - compute score(giant, N) = $\sum_{i} \lambda_{i} f_{i}(giant, N)$, score(giant, ADJ), ...

training data: China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- in a step during training:
 - China/N Mobile/N ... communication/N giant/?? in east Asia
 - word giant may have many choices of tags: N, V, DT, P, ADJ, ...
 - ullet for each choice, .e.g, N, we extract m features :
 - $f_1(x,y)=1$ if current word is giant and y=N. $\to f_1(x,y)=1$
 - $f_{11}(x,y)=1$ if current word is giant and y=ADJ. $\rightarrow f_{11}(x,y)=0$
 - $f_2(x,y)=1$ if previous word is the and y=N. $\to f_2(x,y)=0$
 - $f_{22}(x,y)=1$ if previous word is the and y=ADJ. $\rightarrow f_{22}(x,y)=0$
 - $f_3(x,y)=1$ if sufix of current word is ant and y=N. $\to f_3(x,y)=1$
 - $f_{33}(x,y) = 1$ if sufix of current word is ant and y = ADJ. $\rightarrow f_{33}(x,y) = 0$
 - ...
 - compute score(giant, N) = $\sum_{i} \lambda_{i} f_{i}(giant, N)$, score(giant, ADJ), ...

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one China/N Mobile/N is/V a/DT communication/N giant/N in/P east/ADJ Asia/N
- we compare them, and find the differences:

- the resulting sequence is China/N Mobile/N is/V a/DT communication/N giant/ADJ in/DT east/ADJ Asia/N
- the gold-standard one
 China/N Mobile/N is/V a/DT communication/N giant/N in/P
 east/ADJ Asia/N
- we compare them, and find the differences:
- if necessary, we update the features related to the correct/wrong predictions
 - $\lambda_{f_1(x,y)}^* = \lambda_{f_1(x,y)} + 1$
 - $\lambda_{f_3(x,y)}^* = \lambda_{f_3(x,y)} + 1$
 - $\lambda_{f_{11}(x,y)}^* = \lambda_{f_{11}(x,y)} 1$
 - $\lambda_{f_{33}(x,y)}^* = \lambda_{f_{33}(x,y)} 1$

A Bit Complex

If we want to include features like

- $f_{100}(x,y)=1$ if previous tag is N and $y=N. \rightarrow f_100(giant,N)=1$
- $f_{101}(x,y)=1$ if the previous two tags are DT_N and $y=N. \rightarrow f_{101}(giant,N)=1$
- ...
- ullet we can not directly compute $score(\mathit{giant},\mathit{N})$, $score(\mathit{giant},\mathit{ADJ})$, ...

A Bit Complex

If we want to include features like

- $f_{100}(x,y)=1$ if previous tag is N and y=N. $\rightarrow f_100(giant,N)=1$
- $f_{101}(x,y)=1$ if the previous two tags are DT_N and $y=N. \to f_{101}(giant,N)=1$
- ...
- ullet we can not directly compute $\mathrm{score}(\mathit{giant}, \mathit{N})$, $\mathrm{score}(\mathit{giant}, \mathit{ADJ})$, ...
- we need to decode the best tag sequence for the whole sentence using Dynamic Programming

A Bit Complex

If we want to include features like

- $f_{100}(x,y)=1$ if previous tag is N and $y=N. \rightarrow f_{1}00(giant,N)=1$
- $f_{101}(x,y)=1$ if the previous two tags are DT_N and y=N. \to $f_{101}(giant,N)=1$
- ...
- we can not directly compute score(giant, N), score(giant, ADJ), ...
- we need to decode the best tag sequence for the whole sentence using Dynamic Programming
 - → the Viterbi Algorithm

•

$$\arg \max_{y \in GEN(x)} \sum_{w \in x} \sum_{i} \lambda_{i} f_{i}(\mathsf{history}(w), y)$$

Decoding: the Viterbi Algorithm

- ullet for sentence of length n
- define the score of tag sequence $t_1,t_2,...t_j$: $score(t_1,t_2,...t_j) = \sum_{w \in x} \sum_i \lambda_i f_i(w,t_{w-2},t_{w-1},t_w)$
- define the dynamic programming table $\pi(j,u,v) = \text{maximum probability of a tag sequence ending with tags}$ u,v at position j
- so,

$$\pi(j, u, v) = \max_{\substack{< t_1, t_2, \dots t_{i-2} >}} \mathsf{score}(t_1, t_2, \dots t_{j-2}, u, v)$$

• Recursively: base with $\pi(0, \mathsf{START}, \mathsf{START}) = 0$ for any $j \in 1, 2, ..., n$, for possible u and v:

$$\pi(j, u, v) = \max_{t} (\pi(j-1, t, u) + \sum_{t} \lambda_{i} f_{i}(word_{v}, t, u, v))$$

More about Perceptron

- Voted Perceptron (Collins 2002)
- Averaged Perceptron (Collins 2002)
- Early Update (Collins and Roak 2004)

Questions

can this model take features like: how many times we see a verb in this sentence?

Readings

- **1999** Large Margin Classification using the Perceptron Algorithm, Machine Learning, 1999
- 2002 Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms. Michael Collins, EMNLP, 2002