FloodGuard: A DoS Attack Prevention Extension in Software-Defined Networks

DSN 2015

Haopei Wang, Lei Xu, Guofei Gu SUCCESS Lab Texas A&M University

- This paper address on data-to-control plane saturation attack, which overloads the infrastructure of SDN networks.
 - amount of table-miss packets
 - consume resources

- This paper address on data-to-control plane saturation attack, which overloads the infrastructure of SDN networks.
 - amount of table-miss packets
 - consume resources

FLOODGUARD

FLOODGUARD

- Proactive Flow Rule Analyzer
- Packet Migration

FLOODGUARD

- Proactive Flow Rule Analyzer
- Packet Migration

• If we can pre-install all flow rules into the data plane that the problem can be solved.

 If we can pre-install all flow rules into the data plane that the problem can be solved.

HOW CAN WE ADDRESS THIS CHALLENGE??

 Proactive flow rule analyzer dynamically derives proactive flow rules.

 Proactive flow rule analyzer dynamically derives proactive flow rules.

Proactive flow rule analyzer which covers all the possible rules.

 Proactive flow rule analyzer dynamically derives proactive flow rules.

Proactive flow rule analyzer which covers all the possible rules.

Symbolic Execution

Symbolic Execution is a program analysis approach, which symbolizes the input of a program and then execute all the feasible paths at the beginning of the program.

A sample symbolic execution

A sample symbolic execution

Symbolic Execution

Symbolic Execution

OFFLINE

Symbolic Execution

OFFLINE

For the sake of reducing runtime overhead.

Symbolic Execution

OFFLINE

For the sake of reducing runtime overhead.

RUNTIME

Symbolic Execution

OFFLINE

For the sake of reducing runtime overhead.

RUNTIME

For the sake of solving the dynamical change.

Installing proactive flow rules during the attack will preserve major functionality of SDN.

Installing proactive flow rules during the attack will preserve major functionality of SDN.

However, there are some table-miss packets.

Installing proactive flow rules during the attack will preserve major functionality of SDN.

However, there are some table-miss packets.

It is unacceptable that drop the table-miss packets.

Installing proactive flow rules during the attack will preserve major functionality of SDN.

However, there are some table-miss packets.

It is unacceptable that drop the table-miss packets.

- 1. Some events are not processed.
- 2. The new packets cannot be learned by analyzer.

Migration Agent

Migration Agent

- 1. Detect the saturation attack
- 2. Migrate table-miss packets
- 3. Rate limit

Migration Agent

- 1. Detect the saturation attack
- 2. Migrate table-miss packets
- 3. Rate limit

Data plane cache

Data plane cache

- 1. Packet classifier
- 2. Buffer queue
- 3. Packet-in generator

Data plane cache

- 1. Packet classifier
- 2. Buffer queue
- 3. Packet-in generator

Evaluation

- 1. Software
 - -MININET
- 2. Hardware

-OpenFlow-enabled commercial LinkSys WRT54GL switch

1. Software

-MININET

2. Hardware

-OpenFlow-enabled commercial LinkSys WRT54GL switch

Controller: POX

1. Software

-MININET

2. Hardware

-OpenFlow-enabled commercial LinkSys WRT54GL switch

Controller: POX

Topology:

1. Software

-MININET

2. Hardware

-OpenFlow-enabled commercial LinkSys WRT54GL switch

Controller: POX

Topology:

Software

Software

Defense Effects

Software

Hardware

Defense Effects

Saturation attack: 100PPS

Defense Effects

Saturation attack: 100PPS

- 1. L2_learning
- 2. L3_learning
- 3. LoadBalancing
- 4. Firewall
- 5. MAC_blocker

Defense Effects

Saturation attack: 100PPS

- 1. L2_learning
- 2. L3_learning
- 3. LoadBalancing
- 4. Firewall
- 5. MAC_blocker

Overhead

Overhead

Overhead

Overhead

AVERAGE DELAY OF THE FIRST PACKET IN EACH NEW FLOW

Overhead

AVERAGE DELAY OF THE FIRST PACKET IN EACH NEW FLOW

OpenFlow	OpenFlow+FLOODGUARD		
Total	Total	Data Plane Cache	Packet Migration
130ms	157ms	30ms	127ms