

Computationally Hard Problems – Fall 2016 Assignment 7

Date: 08.11.2016, Due date: 14.11.2016, 21:00

— ı			•			1 .	
I he	t∩l	l∩w/ing	exercises	are	not	mandator	٧.
1110	101		CACICISCS	uı c	1100	manaator	у.

Exercise 7.1: Let $\mathbf{x} = x_1 x_2 \dots x_n \in \{0,1\}^n$ be a bit string, and let $m \leq n$. Let $\mathbf{x}_j = x_j x_{j+1} \cdots x_{j+m-1}$ be the substring of length m starting at position j. Let $X_j = \sum_{i=0}^{m-1} x_{j+i} 2^i$ be the natural number represented by \mathbf{x}_j . Show how to compute the numbers $X_1, X_2, \dots, X_{n-m+1}$ in this order with only O(n+m) arithmetic operations.

_____ End of Exercise 1 _____

Exercise 7.2: Suppose you have a deterministic primality test that, given a natural number r, checks the number error-free for primality in time bounded by a polynomial in the input length $\log(r)$, say time at most $(\log(r))^c$ for some c > 0.

Given a natural number $t \geq 3$, your aim is to select a prime number **uniformly** over all prime numbers in the interval [2,t]. Describe a randomized algorithm that returns an output of the desired kind with probability at least 1/2. The algorithm should have a running time that is polynomial in $\log t$ and be Las Vegas, i.e., if it fails to solve its task it should output "FAILED". Give arguments for the correctness and prove a bound on the running time.

Hint: Use

- the bound $\pi(t) \geq t/(2 \ln t)$ on the prime number function for $t \geq 3$,
- Lemma B.3 from the lecture notes.

_____ End of Exercise 2 _____

Exercise 7.3: Consider Algorithm 5.9 from the lecture notes. Suppose it is run on the following 3-SAT instance with variable set $\{x_1, \ldots, x_3\}$ and clause set

$$x_1 \lor x_2 \lor x_3$$

$$\overline{x_1} \lor x_2 \lor x_3$$

$$x_1 \lor \overline{x_2} \lor x_3$$

$$x_1 \lor x_2 \lor \overline{x_3}$$

$$\overline{x_1} \lor \overline{x_2} \lor x_3$$

$$\overline{x_1} \lor x_2 \lor \overline{x_3}$$

$$x_1 \lor x_2 \lor \overline{x_3}$$

$$x_1 \lor \overline{x_2} \lor \overline{x_3}$$

- a) Suppose the algorithm is run with T=1. Find a choice of S such that the algorithm terminates with a satisfying assignment with probability at least 1/2.
- b) Suppose now S=1 and that the random choice of the initial assignment in the algorithm results in $x_i = 0$ for $i \in \{1, ..., 3\}$. Find a choice of T such that the algorithm terminates with a satisfying assignment with probability at least 1/2.

Justify your choice in both parts. You need not find the smallest possible S and T.

Hint: Lemma A 2 and Inequality (A 10) from the lecture notes may be useful. In

part b) you may define a pessimistic sequence of events that is guaranteed to lead to a satisfying assignment.
End of Exercise 3
The following exercise is mandatory :
Exercise 7.4: Show the computation of $\left[\frac{1543}{799}\right]$ (the Jacobi symbol of the two numbers) using the rules shown in the lecture notes. You may use that $\gcd(1543,799) = 1$.
End of Exercise 4