Contents

Day 27	1
Multiple Linear Regression	2
ANOVA for Multiple Linear Regression ANOVA Table	3
t-Test for Slope in Multiple Linear Regression	4
Model Selection	5

Day 27

Multiple Linear Regression

Model

$$\mu_{\mathbf{y}|\mathbf{x}} = \beta_{\mathbf{o}} + \beta_{1}x_{1} + \dots + \beta_{\mathbf{p}}x_{\mathbf{p}}$$

$$y = \mu_{y|x} + \epsilon_1, \epsilon \sim N(0, \sigma)$$

Least Squares Line:

$$\hat{y} = b_{\rm o} + b_1 x_1 + \dots + b_{\rm p} x_{\rm p}$$

$$y_{\rm i} = \hat{y}_{\rm i} + e_{\rm i}$$

Assumptions

- Linear relationship
 - Between y and each x_i in the model*
- Normally distributed residuals
 - Normal q-q plot
- Residuals have mean of 0 and standard deviation $\sigma = 0$
 - Independent of \hat{y}
- Independent residuals
 - Residual plot: e_i vs \hat{y}_i
- All the variables in the model are independent (usually settle for <u>uncorrelated</u>)*

Assumptions 2-4 are for inference

* check with scatter plot matrix

Simplified multiple linear regression model:

- $\mu_{y|x} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$
- $\hat{y} = b_0 + b_1 x_1 + b_2 x_2$

Interpreting b_o and β_o :

• Average value of y when <u>all</u> x-variables are 0

Interpreting b_1 and β_1 :

- Average change in y for a 1 unit increase in x_1
 - Both are the same, pick one
 - Holding (the effect of) x_2 constant. Think of a partial derivative (∂)
 - After accounting for the other variables in the model

ANOVA for Multiple Linear Regression

Hypothesis:

- Population mean is the same and is unaffected by anything.
- ANOVA for Linear Regression: population mean is estimated well by null model, $\mu_{x_1...x_p}$
- Equivalent: $\beta_1 = 0 \dots \beta_p = 0$

ANOVA Table

try to fill in

Interpretation:

 $F_{\text{observed}} \sim F(P, n-P-1)$

- If p-value \leq significance level \implies reject H_o
 - -: Our model is significantly better than the null model at explaining changes in y

IMPORTANT!!!!!

- This means <u>one or more</u> x-variables in the model are required for the better model. It <u>DOES NOT</u> tell us which one(s), and it <u>CERTAINLY DOES NOT</u> mean they are all important!
- If p-value > significance level \implies fail to reject H_o
 - : our model is <u>not significantly better</u> than the null model at explaining changes in y. We prefer the null model.

<u>Important</u>: some x-variables may still be important predictors. However, we may not see their effect if "more important predictors" are left out of the model.

t-Test for Slope in Multiple Linear Regression

Model:

$$\mu_{\mathbf{y}|\mathbf{x}_1...\mathbf{x}_{\mathbf{p}}} = \beta_{\mathbf{o}} + \beta_1 x_1 + ... + \beta_{\mathbf{p}} x_{\mathbf{p}}$$

- H_o: In this model, $\beta_j = 0$ $\frac{\beta_j \text{ is the slope multiplying } x_j, 1 \leq j \leq p$
- H_a : In this model: $\beta_o \neq 0$

$$t = \frac{\text{stat - parameter}}{\text{SE}} = \frac{b_{\text{j}} - \beta_{\text{j}}}{SE_{\text{b}_{\text{j}}}}$$

$$t_{\text{observed}} \sim t(n-p-1)$$

Interpretation:

- If p-value \leq significance level \implies reject H_o
 - : x_j is a significant predictor of y, even after accounting for the effect of the other variables in the model
- If p-value > significance level \implies fail to reject H_o
 - : x_j is not a significant predictor of y in this model. We <u>CANNOT</u> distinguish between two competing explanations.
 - 1. x_i does not have a linear relationship with y
 - 2. The effect of x_j on y is already accounted for by other variables in the model. It is redundant.

Model Selection

General question: which model is the best?

- Step 1: Feature engineering
 - Common sense & explanatory analysis
 - Goal: identify important variables
- Step 2: Decide on a model selection algorithm and a selection criterion
 - Our algorithm: backward selection
 - Our criterion: Stop when all explanatory variables are significant (at 5 % level)
 - DO NOT use \mathbb{R}^2 as a selection criterion in multiple linear regression
- Step 3: Implement the algorithm

Collinearity: $x_1 \& x_2$ are highly correlated. This is bad!

• Remove least significant predictor. This means removing the variable with the highest p-value. ONLY REMOVE ONE VARIABLE AT A TIME.