Toronto death registry*

Yunzhao Li

2024-01-22

In Toronto, there are many people died each year. The data of death registry supports the City's operational requirements and business functions. In this project we will make a table of number of death in Toronto for each month in 2023. By analyzing this, we can find months with high number of death and make conjectures with factors like weather, poicies or incidents of that particular month.

Introduction

You can and should cross-reference sections and sub-sections.

The remainder of this paper is structured as follows. Section

Data

^{*}Code and data are available at: https://github.com/yunzhaol/Paper.git.

The output of that code is Table 1

Table 1: Number of death in Toronto for each month in 2023

Month	Number of death
January	1083
February	485
March	1012
April	1677
May	2008
June	1928
July	417
August	912
September	1268
October	1182
November	1458
December	611

Data

Some of our data is of penguins (?@fig-bills), from (palmerpenguins?).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

References

- R Core Team (2022) Alexander (2024) Gelfand (2022) Wickham et al. (2019) Xie (2022) Grolemund and Wickham (2011) Firke (2023) Ushey and Wickham (2023) Hester et al. (2023) Müller and Walthert (2023) Angelis (2023)
- Alexander, Rohan. 2024. Telling Stories with Data. Chapman; Hall/CRC. https://tellingstorieswithdata.com.
- Angelis, Inessa De. 2023. "Do More Subdivisions in Wards Increase Voter Turnout? An Analysis of the 2022 Toronto Municipal Election*." https://github.com/InessaDeAngelis/Toronto Elections.
- Firke, Sam. 2023. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://github.com/sfirke/janitor.
- Gelfand, Sharla. 2022. Opendatatoronto: Access the City of Toronto Open Data Portal. https://sharlagelfand.github.io/opendatatoronto/.
- Grolemund, Garrett, and Hadley Wickham. 2011. "Dates and Times Made Easy with lubridate." *Journal of Statistical Software* 40 (3): 1–25. https://www.jstatsoft.org/v40/i03/.
- Hester, Jim, Florent Angly, Russ Hyde, Michael Chirico, Kun Ren, Alexander Rosenstock, and Indrajeet Patil. 2023. *Lintr: A 'Linter' for r Code*. https://github.com/r-lib/lintr.
- Müller, Kirill, and Lorenz Walthert. 2023. Styler: Non-Invasive Pretty Printing of r Code. https://github.com/r-lib/styler.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Ushey, Kevin, and Hadley Wickham. 2023. Renv: Project Environments. https://rstudio.gi thub.io/renv/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Xie, Yihui. 2022. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://cran.r-project.org/package=knitr.