

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

MOSFET Parasitics & Delay Estimation

Nishith N. Chakraborty

October, 2024

MOSFET CAPACITANCE

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

CAPACITANCE COMPONENTS

GATE CAPACITANCE

- Approximate channel as connected to source
- $C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- C_{permicron} is typically about 2 fF/μm

GATE CAPACITANCE

Capacitance	Cutoff	Linear	Saturation
$C_{gb(total)}$ $C_{gs(total)}$ $C_{gd(total)}$	$C_{ox}WL_{actual}$ C_{GSO} C_{GDO}	$0 \\ \frac{1}{2}C_{ox}WL_{actual} + C_{GSO} \\ \frac{1}{2}C_{ox}WL_{actual} + C_{GDO}$	

$$L_{actual} = L - 2L_D$$

Most important regions in digital design: Saturation and Cut-off

GATE CAPACITANCE

Operation Region	C _{GCB}	C _{GCS}	C_{GCD}	C_{GC}	C_G
Cutoff	$\leq C_{ox}WL$	0	0	$\leq C_{ox}WL$	$\leq C_{ox}WL + 2C_{o}W$
Resistive	0	$C_{ox}WL/2$	$C_{ox}WL/2$	$C_{ox}WL$	$C_{ox}WL + 2C_{o}W$
Saturation	0	$(2/3)C_{ox}WL$	0	$(2/3)C_{ox}WL$	$(2/3)C_{ox}WL + 2C_{o}W$

DIFFUSION CAPACITANCE

- C_{sb}, C_{db}
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - > Use small diffusion nodes
 - ➤ Comparable to C_g for contacted diffusion
 - > ½ C_g for uncontacted
 - Varies with process

DIFFUSION CAPACITANCE

$$\begin{split} C_{diff} &= C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER \\ &= C_{j}L_{S}W + C_{jsw}(2L_{S} + W) \end{split}$$

Higher capacitance in FinFETs compared to bulk MOSFETs (due to 3D structure)

RC EQUIVALENT DELAY MODEL

FAN-OUT, FAN-IN AND DELAY

DELAY DEFINITIONS

- t_{pdr}: rising propagation delay
 - \triangleright From input to rising output crossing $V_{DD}/2$
- t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- t_{pd}: average propagation delay

$$\rightarrow$$
 t_{pd} = (t_{pdr} + t_{pdf})/2

- t_r: rise time
 - > From output crossing 0.1 V_{DD} to 0.9 V_{DD}
- t_f: fall time
 - From output crossing 0.9 V_{DD} to 0.1 V_{DD}

SIMULATED INVERTER DELAY

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
 - -Uses more accurate I-V models too! But simulations take time to write

DELAY ESTIMATION

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - \triangleright So that t_{pd} = RC In 2, lets just replace R In 2 with R, so t_{pd} = RC
- Characterize transistors by finding their effective R
 - Depends on average current as gate switches

RC DELAY MODEL

- Use equivalent circuits for MOS transistors
 - ➤ Ideal switch + capacitance and ON resistance
 - Unit sized NMOS has resistance R, capacitance C
 - ➤ Unit sized PMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

RC VALUES

Capacitance

- $ightharpoonup C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m of gate width}$
- ➤ Values similar across many processes

Resistance

- \triangleright R ~ 6 KΩ*µm in 0.6um process
- > Improves with shorter channel lengths

Unit transistors

- May refer to minimum contacted device
- Or maybe 1 μm wide device
- > Doesn't matter as long as you are consistent

INVERTER DELAY ESTIMATION

Estimate the delay of a "fanout-of-1" inverter

INVERTER DELAY ESTIMATION

Estimate the delay of a "fanout-of-1" inverter

INVERTER DELAY ESTIMATION

Estimate the delay of a "fanout-of-1" inverter

d = 6RC

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

 Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Annotate the 3-input NAND gate with gate and diffusion capacitance.

 Annotate the 3-input NAND gate with gate and diffusion capacitance. Show the rise and fall paths.

EXAMPLE: Y=A(B+C) + DE

PMOS sizing: For a unit PMOS transistor, the effective resistance with the width k is given by 2R/k.

By looking at the pull-up network in the above circuit, we should find out the worst-case or the longest path to VDD. In the above network, the path E-C-B is the longest path. So we can write the equation (2R/k)+(2R/k)+(2R/k)=R, where R is the effective resistance. The equation gives the value of k=6. Therefore the k value transistors E, C, and B will be 6.

One more path D-C-B also contributes to the worst-case or longest path, So the k value of the transistor D also becomes 6. The transistor A is equivalent to two transistors B and C (by looking at the circuit). Therefore we can write 2R/k = 2 * 2R/6 Since we know the k values of B and C transistors. So k for A is 3.

NMOS sizing:

For a unit NMOS transistor, the effective resistance with the width k is given by R/k.

In the above network, the worst-case or the longest path can be seen is with two transistors. (The paths A-B, A-C, and D-E). So we can write the relation 2 * R/k = R, So the value of k of all the NMOS transistors will be 2 since all are in the longest path.

ELMORE DELAY

- ON transistors look like resistors
- Pullup or pulldown network modeled as RC ladder
- Elmore delay of RC ladder

$$t_{pd} \approx \sum_{\text{nodes } i} R_{i\text{-}to\text{-}source} C_{i}$$

$$= R_{1}C_{1} + (R_{1} + R_{2}) C_{2} + \dots + (R_{1} + R_{2} + \dots + R_{N}) C_{N}$$

$$\downarrow C_{1} \qquad \downarrow C_{2} \qquad \downarrow C_{3}$$

$$\downarrow C_{N}$$

$$t_{pdf} = (2C)(\frac{R}{2}) + \left\lfloor (6+4h)C \right\rfloor(\frac{R}{2} + \frac{R}{2})$$

$$= (7+4h)RC$$

DELAY COMPONENTS

- Delay has two parts
 - Parasitic delay
 - 6 or 7 RC
 - Independent of load
 - > Effort delay
 - 4h RC
 - Proportional to load capacitance

CONTAMINATION DELAY

- Best-case (contamination) delay can be substantially less than propagation delay.
- Ex: If both inputs fall simultaneously

DIFFUSION CAPACITANCE

- We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

Thank you!