Отчёт по лабораторной работе 6

Модель хищник-жертва

Наталья Андреевна Сидорова

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	16
Список литературы		17

Список иллюстраций

3.1	Дифференциальные уравнения	7
4.1	Установка контекста	8
4.2	Простая схема	9
4.3	Изначальное число жертв	9
4.4	Изначальное число хищников	10
4.5	Фазовый портрет	10
4.6	График изменения численности	11
4.7	Инициализация переменных	11
4.8	Код на языке Modelica	12
4.9	модель Modelica	13
4.10	Графики	13
4.11	OpenModelica	14
4.12	График	14
4.13	График	15

Список таблиц

1 Цель работы

Изучить данную модель.

2 Задание

Смоделировать систему уравнений в программе xcos с использованием блока Modelica и без, смоделировать также в программе OpenModelica. Построить график изменения численности жертв и хищников, построить фазовый портрет системы.

3 Теоретическое введение

Система уравнений, описывающая изменение численности жертв и хищников (рис. 3.1).

$$\begin{cases} \dot{x} = ax - bxy; \\ \dot{y} = cxy - dy, \end{cases}$$
(6.1)

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

Рис. 3.1: Дифференциальные уравнения

4 Выполнение лабораторной работы

В программе xcos установила коэффициенты рождаемости и смертности для жертв и хищников (рис. 4.1).

Рис. 4.1: Установка контекста

Схема дифференциальных уравнений с использованием блоков суммирования, интегрирования, умножения, и других (рис. 4.2).

Рис. 4.2: Простая схема

Установка изначального числа жертв в блоке интегрирования (рис. 4.3).

Рис. 4.3: Изначальное число жертв

Установка изначального числа хищников в блоке интегрирования (рис. 4.4).

Рис. 4.4: Изначальное число хищников

Получившийся фазовый портрет (рис. 4.5).

Рис. 4.5: Фазовый портрет

График изменения численности жертв и хищников (рис. 4.6).

Рис. 4.6: График изменения численности

При создании модели с помощью Modelica generic добавила переменные в блок (рис. 4.7).

Рис. 4.7: Инициализация переменных

Написала в этом же блоке код для уравнений (рис. 4.8).

Рис. 4.8: Код на языке Modelica

Сама модель с блоком Modelica generic (рис. 4.9).

Рис. 4.9: модель Modelica

Получившиеся графики совпадают с графиками модели хсоз (рис. 4.10).

Рис. 4.10: Графики

Код для моделирования в OpenModelica (рис. 4.11).

Рис. 4.11: OpenModelica

График изменения численности (рис. 4.12).

Рис. 4.12: График

Фазовый портрет (рис. 4.13).

Рис. 4.13: График

5 Выводы

Изменения численности жертв и хищников колеблется в некотором промежутке, то снимаясь до 1 особи, то повышаясь до некторого количества. Изменения периодичны.

Список литературы