به نام او

مدت زمان: ۲ ساعت شماره دانشجویی:

میانترم درس سیگنالها و سیستم ها نام و نام خانوادگی:

سوال ۱) برای هر یک از سیستم های زیر، خواص خطی بودن، علی بودن، معکوس پذیری، پایداری و مستقل از زمان بودن را بررسی کنید.

$$y(t) = \begin{cases} x(t) + x(2)\delta(t-1) &, & x(t) \ge 0 \\ x^2(t-1) &, & x(t) < 0 \end{cases}$$
 بن $y[n] = x[n-2] + x[2-n]$ بن با

١

سوال ۲) اطلاعات زیر در مورد یک سیگنال متناوب x(t) با دوره تناوب و ضرایب سری فوریه a_k داده شده است:

- سیگنال x(t) حقیقی و دارای ۵ ضریب سری فوریه است.
- پاسخ سیستم ای LTI با پاسخ ضربه ی $\frac{\sin\frac{3}{2}t}{\pi t}$ به ورودی x(t)، برابر x(t) است.
 - $\sum_{k=-2}^{2} |a_k|^2 = \frac{7}{2} \bullet$

در این صورت، سیگنال x(t) را بیابید.

سوال $^{\circ}$) سیگنال x(t) به صورت زیر است:

اگر تبدیل فوریهی این سیگنال برابر $X(j\omega)$ باشد،

الف) $(X(j\omega))$ را بیابید.

ب) X(j0) را بیابید. X(j0) را بیابید. Y(j0) را بیابید. $Y(j\omega)$ $= \sum_{-\infty}^{\infty} X(j\omega)^2 \frac{2\sin\omega}{\omega} e^{j\omega} d\omega$ (ت) عکس تبدیل فوریهی $X(j\omega)$ را رسم کنید.

سوال *) اطلاعات زیر در خصوص یک سیستم خطی، مستقل از زمان و حقیقی با تابع انتقال H(s) داده شده است:

- تابع انتقال سیستم دارای ۳ قطب محدود و ۱ صفر محدود است.
 - و یکی از قطب ها در s=-1+j است.
- پاسخ سیستم به ورودی e^{2t} برابر صفر و به ورودی e^{2t} برابر e^{2t} است.
 - . $\int_{-\infty}^{\infty} h(t)dt = -1$ برای این سیستم داریم •

الف) پاسخ ضربهی این سیستم و سیستم معکوس را بیابید.

ب) پایداری و علی بودن سیستم معکوس را بررسی کنید.

 $X(j\omega)$ سوال α) فرض کنید حداقل فرکانس نمونه برداری از سیگنال $\alpha(t)$ با تبدیل فوریهی طبق قضیه ω نمونه برداری بر ابر ω_0 باشد. در این صورت، حداقل فرکانس نمونه برداری هر یک از سیگنال های زیر را (به گونه ای که طبق قضیهی نمونه برداری، همپوشانی رخ ندهد) به دست آورید.

$$x^2(t)\cos\omega_0 t$$
 (الف

$$x(\frac{t}{2})$$
 (\leftarrow

$$x(t) + x(t - 1)$$
 ($-$

$$x(\frac{t}{2})$$
 (\because
 $x(t) + x(t-1)$ (\because
 $x(t) * \frac{\sin \frac{\omega_0}{6}t}{\omega_0 t}$ (\because