Isótopos PET y P-PET naturales del cuerpo humano								
Tipo	Isotope β^+	Nuclear reaction channels	E. Threshold (MeV)	Half-life				
PET	¹¹ C	$^{12}{\rm C(p,pn)^{11}C}$	17.88	20.33 min				
		$^{14}N(p,2p2n)^{11}C$	31.32					
		$^{16}O(p,3p3n)^{11}C$	23.58					
PET	$^{13}\mathrm{N}$	$^{14}N(p,pn)^{13}N$	8.9	9.96 min				
		$^{16}O(p,2p2n)^{13}N$	5.54					
PET	^{14}O	$^{16}O(p,p2n)^{14}O$	21.69	$70.61~\mathrm{s}$				
PET	^{15}O	$^{16}{\rm O(p,pn)^{15}O}$	14.28	$122.24~\mathrm{s}$				
PET	^{30}P	$^{31}P(p,pn)^{30}P$	10.41	$2.50 \min$				
PET	$^{38g}\mathrm{K}$	${}^{40}{\rm Ca(p, {}^{3}{\rm He})}{}^{38g}{\rm K}$	14.039	7.6 min				
		40 Ca(p,pd) 38g K	19.664					
		40 Ca(p,n2p) 38g K	21.945					
PET	$^{44}\mathrm{Sc}$	$^{44}Ca(p,n)^{44}Sc$	4.54	3.97 h				
P-PET	$^{10}\mathrm{C}$	$^{12}{\rm C}({\rm p,p2n})^{10}{\rm C}$	25.32	$19.29~\mathrm{s}$				
		$^{16}O(p,3p4n)^{10}C$	29.82					
P-PET	^{12}N	$^{12}C(p,n)^{12}N$	19.641	$11.00~\mathrm{ms}$				
P-PET	^{29}P	$^{31}P(p,^{3}He)$ ^{29}P	15.641	$4.142~\mathrm{s}$				
P-PET	$^{31}\mathrm{S}$	$^{31}P(p,n)^{31}P$	19.860	$2.5534~\mathrm{s}$				
P-PET	$^{37}\mathrm{K}$	$^{40}\mathrm{Ca}(\mathrm{p},\alpha)^{37}\mathrm{K}$	5.312	$1.22 \mathrm{\ s}$				
P-PET	$^{38m}\mathrm{K}$	${}^{40}{\rm Ca(p, {}^{3}{\rm He})}{}^{38m}{\rm K}$	14.039	$925~\mathrm{ms}$				
		40 Ca(p,pd) 38m K	19.664					
		$^{40}\text{Ca}(p,n2p)^{38m}\text{K}$	21.945					

Tabla 1: —

PG naturales del cuerpo humano								
Tipo	Rayo γ	Nuclear reaction channels	Targets	Half-life				
PG	1.635	$^{14}N(p,2p2n)^{14}N^*$	^{14}N	4.8 fs				
PG	2.312	$^{14}N(p,2p2n)^{14}N^*$	^{14}N	68 fs				
PG	4.438	$^{12}C(p,p')^{12}C^*$	$^{12}C, ^{16}O$					
		$^{16}O(p,X)^{12}C^{*}$	^{16}O					
PG	6.13	$^{16}O(p,p')^{16}O^*$	^{16}O	18.4 ps				

Tabla 2: —

Isótopos β^+ del Zinc Natural								
Tipo	Isótopo β^+	Nuclear reaction channels	Energía Umbral (MeV)	Half-life				
PET	⁶⁴ Ga	64 Zn(p,n) 64 Ga	8.078	156 s				
PET	$^{65}\mathrm{Ga}$	$^{66}{\rm Zn}({\rm p},{\rm 2n})^{65}{\rm Ga}$	15.326	15.2 min				
PET	66 Ga	$^{66}Zn(p,n)^{66}Ga$	6.048	9.5 h				
		$^{67}{\rm Zn}({\rm p},{\rm 2n})^{66}{\rm Ga}$	13.206					
PET	$^{67}\mathrm{Ga}$	$^{67}\mathrm{Zn}(\mathrm{p,n})^{67}\mathrm{Ga}$	1.81	3.2 d				
		$^{68}{ m Zn}({ m p,2n})^{67}{ m Ga}$	12.159					
PET	$^{68}\mathrm{Ga}$	$^{68}{\rm Zn}({\rm p,n})^{68}{\rm Ga}$	3.758	$67 \min$				

Tabla 3: —

Isótopos β^+ del 127 Iodo									
Tipo	Isótopo β^+	Nuclear reaction channels	Energía Umbral (MeV)	Half-life					
PET	$^{127}\mathrm{Xe}$	$^{127}I(p,n)^{127}Xe$	1.456	124.8 min					
PET	$^{125}\mathrm{Xe}$	$^{127}I(p,3n)^{125}Xe$	18.864	101 min					
PET	$^{123}\mathrm{Xe}$	$^{127}I(p,5n)^{123}Xe$	37.095	$36.46~\mathrm{d}$					

Tabla 4: —

Isótopos β^+ del ¹⁸ O								
Tipo	Isótopo β^+	Nuclear reaction channels	Energía Umbral (MeV)	Half-life				
PET	¹⁸ F	$^{18}{\rm O(p,n)^{18}F}$	2.574	109.77 min				

Tabla 5: —

		88	%	88	%	%	8	88	88	88	%	%	%
Gammas (keV)		199.92 %	100 %	199.534 %	199.607 %	199.76 %	99.380 %	199.8 %	199.07 %	99.858 %	199.710 %	188.54 %	99.9 %
Gamm	Energía	511	718.353	511	511	511	2312.593	511	511	2167.5	511	511	1157.020
		%		%	%	%		%	%	%	%	%	
V)		98.500 %		% 6992.96	99.8036 %	99.249		% 6.66	99.33 %	0.133~%	99.803 %	$94.27\ \%$	
Positrones (keV)	E. Media E. Máxima	1907.6		960.4	1198.5	1808.24		1732	2727.4	955.9	3210.4	1473.5	
	E. Media	814.26		385.7	491.82	22.022		735.28	1212.08	398.78	1441.13	632.0	
$T_{1/2}$ (s)		19.29		1982.4	298	70.606		122.24	458		150	$3.97~\mathrm{h}$	
Q (keV)		3648		1221	2220.49	5143		2754	5913.86		4232.4	3652	
Isótopo Isótopo Hijo		10B		N^{11}	^{13}C	14N		N^{21}	$^{38}\mathrm{Ar}$		$^{10}\mathrm{Si}$	$^{44}\mathrm{Ca}$	
Isótopo		10 C		11C	N^{13} N	140		150	$ m M_{8E}$		$^{30}\mathrm{P}$	$^{44}\mathrm{Sc}$	

Tabla 6: