

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁵ : C12N 15/52, 15/31, C12Q 1/25 C12Q 1/32, 1/68, C12P 21/02 C07K 13/00, C12P 21/08		A1	(11) Numéro de publication internationale: WO 92/07942 (43) Date de publication internationale: 14 mai 1992 (14.05.92)
(21) Numéro de la demande internationale: PCT/FR91/00855 (22) Date de dépôt international: 29 octobre 1991 (29.10.91)		(74) Mandataires: GUTMANN, Ernest etc. ; Ernest Gutmann-Yves Plasseraud S.A., 67, boulevard Haussmann, F-75008 Paris (FR).	
(30) Données relatives à la priorité: 90/13579 31 octobre 1990 (31.10.90) FR		(81) Etats désignés: AT (brevet européen), BE (brevet européen), CA, CH (brevet européen), DE (brevet européen), DK (brevet européen), ES (brevet européen), FR (brevet européen), GB (brevet européen), GR (brevet européen), IT (brevet européen), JP, LU (brevet européen), NL (brevet européen), SE (brevet européen), US.	
(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): INSTITUT PASTEUR [FR/FR]; 25-28, rue du Dr.-Roux, F-75724 Paris Cédex 15 (FR).		Publiée <i>Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.</i>	
(72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>) : ARTHUR, Michel [CH/FR]; 9, rue du Faubourg-S.-Martin, F-75010 Paris (FR). DUKTA-MALEN, Sylvie [FR/FR]; 1, sentier des Rossignols, F-94260 Fresnes (FR). MOLINAS, Catherine [FR/FR]; 118, rue Marcadet, F-75018 Paris (FR). COURVALIN, Patrice [FR/FR]; 13, rue Emile-Duclaux, F-75015 Paris (FR).			

(54) Title: POLYPEPTIDES INVOLVED IN THE EXPRESSION OF RESISTANCE TO GLYCOPEPTIDIC ANTIBIOTICS

(54) Titre: POLYPEPTIDES IMPLIQUES DANS L'EXPRESSION DE LA RESISTANCE AUX ANTIBIOTIQUES GLYCOPEPTIDIQUES

V1 : GGX GAA GAT GGX TCX TTX CAA GGX
 G C AG C G
 A

V2 : AAT ACX ATX CCX GGX TTT AC
 C T C
 C

(57) Abstract

Polypeptide composition characterized in that it comprises at least one protein or protein or part thereof chosen from amino acid sequences identified in the list of sequences by SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX) or SEQ ID NO 19 (VanC), or any protein or part thereof recognized by the antibodies directed against VanH, VanA, VanX or VanC, or protein or part thereof coded by a sequence hybridizing with one of the nucleotide concatenations identified in the list of sequences by SEQ ID NO 8, SEQ ID NO 9 or SEQ ID NO 10 or with one of V1 or V2 sequences in stringent or slightly stringent conditions. The invention also concerns nucleotide sequences coding for these polypeptides and their use in the diagnosis of resistance to glycopeptides.

(57) Abrégé

L'invention concerne une composition de polypeptides, caractérisée en ce qu'elle comprend au moins une protéine ou partie de protéine choisie parmi les séquences d'acides aminés identifiées dans la liste des séquences par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX) ou SEQ ID NO 19 (VanC), ou toute protéine ou partie de protéine reconnue par les anticorps dirigés contre VanH, VanA, VanX ou VanC, ou toute protéine ou partie de protéine codée par une séquence hybride avec l'un des enchaînements nucléotidiques identifiés dans la liste des séquences par SEQ ID NO 8, SEQ ID NO 9 ou SEQ ID NO 10 ou avec l'une des séquences V1 ou V2 dans des conditions stringentes ou peu stringentes. L'invention concerne également les séquences nucléotidiques codant pour ces polypeptides ainsi que leur utilisation pour le diagnostic à une résistance aux glycopeptides.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	ES	Espagne	MG	Madagascar
AU	Australie	FI	Finlande	ML	Mali
BB	Barbade	FR	France	MN	Mongolie
BE	Belgique	GA	Gabon	MR	Mauritanie
BF	Burkina Faso	GB	Royaume-Uni	MW	Malawi
BG	Bulgarie	GN	Guinée	NL	Pays-Bas
BJ	Bénin	CR	Grèce	NO	Norvège
BR	Brésil	HU	Hongrie	PL	Pologne
CA	Canada	IT	Italie	RO	Roumanie
CF	République Centrafricaine	JP	Japon	SD	Soudan
CG	Congo	KP	République populaire démocratique de Corée	SE	Suède
CH	Suisse	KR	République de Corée	SN	Sénégal
CI	Côte d'Ivoire	LI	Lichtenstein	SU+	Union soviétique
CM	Cameroun	LK	Sri Lanka	TD	Tchad
CS	Tchécoslovaquie	LU	Luxembourg	TG	Togo
DE	Allemagne	MC	Monaco	US	Etats-Unis d'Amérique

+ Toute désignation de "SU" produit ses effets dans la Fédération de Russie. On ignore encore si une telle désignation produit ses effets dans les autres Etats de l'ancienne Union soviétique .

POLYPEPTIDES IMPLIQUES DANS L'EXPRESSION DE LA
RESISTANCE AUX ANTIBIOTIQUES GLYCOPEPTIDES.

L'invention concerne les polypeptides associés à l'expression de la résistance à des antibiotiques de la famille des glycopeptides, notamment chez des bactéries à Gram-positif, en particulier de la famille des cocci à Gram-positif. L'invention vise également une séquence nucléotidique codant pour ces polypeptides. Elle concerne aussi l'utilisation de ces polypeptides et de leur séquence nucléotidique en tant que moyens de détection in vitro d'une résistance à des glycopeptides. Parmi les cocci à Gram-positif, l'invention vise tout particulièrement les entérocoques, les streptocoques et les staphylocoques qui présentent un intérêt particulier pour la mise en oeuvre de l'invention.

Les glycopeptides, parmi lesquels la vancomycine et la teicoplanine, sont des antibiotiques inhibiteurs de la synthèse de la paroi bactérienne. Ces antibiotiques sont très utilisés pour le traitement des infections sévères dues à des cocci à Gram-positif (entérocoques, streptocoques et staphylocoques), en particulier dans les cas d'allergie et de résistance aux pénicillines. Malgré un long usage clinique de la vancomycine, cet antibiotique est resté actif sur la quasi totalité des souches jusqu'en 1986, date à laquelle ont été isolées les premières souches résistantes. Depuis, la résistance aux glycopeptides a été détectée par de nombreux microbiologistes en Europe et aux Etats Unis, notamment chez des souches isolées de malades immunodéprimés, rendant nécessaire une

évaluation systématique de la sensibilité des germes en milieu hospitalier.

L'activité des glycopeptides dépend de la formation d'un complexe entre l'antibiotique et les précurseurs du peptidoglycane, plus que de l'interaction directe avec des enzymes du métabolisme de la paroi cellulaire. En particulier on a constaté que les glycopeptides se fixent aux résidus terminaux D-alanyl-D-alanine (D-ala-D-ala) des précurseurs du peptidoglycane.

L'émergence récente d'une résistance aux glycopeptides notamment chez des entérocoques, a conduit à l'obtention de certains résultats au niveau de la connaissance des facteurs conférant cette résistance.

On a par exemple constaté dans une souche d'entérocoque particulière, Enteroccus faecium BM4147, que le déterminant de la résistance aux glycopeptides était localisé sur un plasmide de 34 kb, le plasmide pIP816. Ce déterminant a été cloné dans E.coli (Brisson Noël et al, 1990, *Antimicrob Agents Chemother* 34, 924-927).

D'après les résultats obtenus jusqu'à présent, la résistance aux glycopeptides était associée avec la production d'une protéine de poids moléculaire d'environ 40 kDa, la synthèse de cette protéine étant induite par des concentrations sous-inhibitrices de certains glycopeptides comme la vancomycine.

En réalisant une étude plus approfondie de la résistance de certaines souches de cocci à Gram-positif vis à vis de glycopeptides notamment de la vancomycine ou de la teicoplanine, les inventeurs ont constaté que cette résistance serait liée à l'expression de plusieurs protéines ou polypeptides codés par des

séquences généralement portées par des plasmides chez les souches résistantes. Les nouveaux résultats obtenus par les inventeurs permettent en outre de distinguer les gènes codant pour deux phénotypes de résistance, d'une part les souches hautement résistantes aux glycopeptides, d'autre part des souches résistantes à un bas niveau.

Par souche résistante à un haut niveau, on entend une souche de bactérie en particulier une souche de cocci à Gram-positif pour laquelle les concentrations minimales inhibitrices (CMI) de vancomycine et de teicoplanine sont respectivement supérieures à 32 et 8 µg/ml. Les CMI de la vancomycine vis à vis des souches résistantes à bas niveau sont comprises entre 16 et 32 µg/ml. Ces souches sont apparemment sensibles à la teicoplanine.

Les inventeurs ont isolé et purifié, parmi les composants nécessaires à l'expression de la résistance aux glycopeptides, une protéine particulière dénommée VAN A ou VanA présentant une certaine homologie avec des D-alanine-D-alanine ligases. VanA est néanmoins fonctionnellement distincte des ligases.

On désignera en principe par "van..." une séquence de gène et par "Van..." une séquence d'acides aminés.

L'invention concerne des polypeptides ou protéines impliqués dans l'expression d'une résistance à des antibiotiques de la famille des glycopeptides et notamment à la vancomycine et/ou à la teicoplanine, ainsi que les séquences nucléotidiques codant pour de tels complexes.

L'invention vise également des sondes nucléotidiques utilisables pour la détection d'une résistance aux glycopeptides, notamment par la réaction

de polymérisation en chaîne (PCR), ou par des tests faisant intervenir des anticorps.

L'invention concerne une composition de polypeptides, caractérisée en ce qu'elle comprend au moins une protéine ou partie de protéine choisie parmi les séquences d'acides aminés identifiées dans la liste des séquences par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX) ou SEQ ID NO 19 (VanC), ou toute protéine ou partie de protéine reconnue par les anticorps dirigés contre VanH, VanA, VanX ou VanC, ou toute protéine ou partie de protéine codée par une séquence hybride avec l'un des enchaînements nucléotidiques identifiés dans la liste des séquences par SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10 ou SEQ ID NO 21 ou avec l'une des séquences V1 ou V2 suivantes dans des conditions stringentes ou peu stringentes :

V1 : GGX GAA GAT GGX TCX TTX CAA GGX

G C AG C G

V2 : AAT ACX ATX CCX GGX TTT AC

C T C

Une première composition particulière selon l'invention impliquée dans l'expression de la résistance aux glycopeptides est caractérisée en ce qu'elle comprend au moins 3 protéines ou toute partie de l'une ou plusieurs de ces protéines nécessaires pour conférer à des bactéries à Gram-positif, la résistance à des antibiotiques de la famille des glycopeptides, notamment à la vancomycine et/ou à la teicoplanine, ou de favoriser cette résistance, en particulier dans des souches de la famille des cocci à Gram-positif, ces protéines ou parties de protéines étant

- a) reconnues par des anticorps dirigés contre l'une des séquences identifiées dans la liste des séquences par SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3,
- b) soit codées par des gènes comportant une séquence identifiée par SEQ ID NO 8, SEQ ID NO 9 ou SEQ ID NO 10 ou hybridant avec l'une de ces séquences ou sa séquence complémentaire, dans des conditions stringentes ou peu stringentes ou avec les séquences V1 ou V2.

Ces séquences sont encore désignées respectivement par ORF3, ORF1 contenant le gène vanH, vanA (ou ORF2) ; elles caractérisent les protéines de résistance telles qu'obtenues à partir de la souche Enterococcus faecium BM4147 décrite par Leclercq et al (N Engl J Med 319:157-161).

Une autre protéine, VanC, apparentée à des D-Ala-D-Ala ligases mais de spécificité différente a été caractérisée chez Enterococcus gallinarum BM4173 ; le gène vanC présente des domaines ayant une homologie suffisante avec le gène vanA, pour que des sondes correspondant à des régions déterminées de vanA permettent sa détection.

E. gallinarum est un isolat résistant de façon constitutive à de faibles niveaux de vancomycine (Dutka-Malen et al, Antimicrob. Agents Chemother 34 (1990b) 1875-1879).

Par l'expression "polypeptides" on entend tout enchaînement d'acides aminés pouvant contenir des protéines, ou d'une taille inférieure à celle d'une protéine.

Les conditions de stringence dont il est question ci-dessus sont déterminées selon les modalités habituelles s'agissant de l'hybridation de séquences

nucléotidiques. A titre d'exemple, s'agissant des séquences hybridant avec la séquence du gène vanA (SEQ ID NO 8) on pourra appliquer les conditions suivantes :

- pour une hybridation dans de conditions de forte stringence :
 - * température de la réaction 65°C pendant une nuit dans une solution contenant 0,1% de SDS, 0,7% de lait en poudre écrémé, 6xSSC (1xSSC=0,15M NaCl et 0,015M de citrate de sodium à pH=7,0)
 - * lavages à 65°C dans 2xSSC-0,1% SDS ;
- pour une hybridation dans des conditions peu stringentes, la température d'hybridation est 60°C pendant une nuit et la température des lavages 45°C.

L'expression d'une résistance à des glycopeptides peut se traduire par la persistance d'une infection due à des germes habituellement sensibles aux glycopeptides.

Un polypeptide ou une protéine est nécessaire à l'expression d'une résistance aux glycopeptides, dès lors que son absence rend la souche qui contient ce polypeptide ou cette protéine, plus sensible aux glycopeptides et que ce polypeptide ou protéine n'est pas présent chez les souches sensibles.

Différents niveaux de résistance aux glycopeptides existent parmi les souches de cocci à Gram-positif notamment.

Selon un mode de réalisation préféré de l'invention, les polypeptides entrant dans la composition ci-dessus définie, correspond à l'association des protéines indentifiées dans la liste des séquences par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX).

Les inventeurs ont donc constaté que l'expression d'une résistance aux glycopeptides chez des bactéries à Gram-positif, nécessite l'expression d'au moins trois protéines ou de polypeptides issus de ces protéines.

Selon un premier mode de réalisation particulier de l'invention, les polypeptides de la composition sont encore caractérisés en ce que les séquences d'acides aminés nécessaires à l'expression de la résistance à des antibiotiques de la famille des glycopeptides sont sous le contrôle d'éléments de régulation, notamment des protéines correspondant aux séquences désignées par SEQ ID NO 4 ou SEQ ID NO 5 dans la liste des séquences, et qui correspondent respectivement à une séquence R de régulation, et à une séquence S senseur.

Vans et VanR constituent un système de régulation à deux composants, VanR étant un activateur de transcription et Vans stimulant la transcription dépendante de VanR. Vans est susceptible de moduler le niveau de phosphorylation de VanR en réponse à la vancomycine présente dans le milieu externe et intervient ainsi dans le contrôle de la transcription des gènes à résistance à la vancomycine.

Ces séquences de régulation sont notamment capables d'augmenter le niveau de résistance, dans la mesure où elles favorisent l'expression des protéines de résistance comprises dans les polypeptides de l'invention.

Selon un autre mode de réalisation avantageux de l'invention, les polypeptides de la composition ci-dessus sont codés par la séquence SEQ ID NO 6 identifiée dans la liste des séquences, qui représente la séquence codante des 5 protéines décrites précédemment.

Une autre séquence selon l'invention est désignée par SEQ ID NO 11 qui contient la séquence SEQ ID NO 6 ainsi qu'un enchaînement en amont de SEQ ID NO 6 codant pour une transposase (codée par le brin (-) de la séquence, et un enchaînement en aval de SEQ ID NO 6 correspondant à des gènes vanY et vanZ et à chaque extrémité, des séquences inversées répétées de 38 pb. SEQ ID NO 11 constitue un transposon dont les gènes interviennent à des niveaux différents dans l'établissement de la résistance aux glycopeptides.

L'invention vise également les protéines purifiées appartenant à la composition et aux polypeptides décrits précédemment. En particulier l'invention vise la protéine purifiée VanA, caractérisée en ce qu'elle correspond à la séquence d'acides aminés SEQ ID NO 2 dans la liste des séquences ou une protéine VanC, codée par un gène capable d'hybrider avec le gène vanA.

La protéine VanA comporte 343 acides aminés et a une masse moléculaire calculée de 37400 Da. La protéine VanC comporte 343 acides aminés et a une masse moléculaire calculée de 37504 Da.

D'autres protéines intéressantes dans le cadre de l'invention correspondent aux séquences identifiées par SEQ ID NO 1 (VanH), SEQ ID NO 3 (VanX), SEQ ID NO 4 (VanR), SEQ ID NO 5 (VanS) dans la liste des séquences.

La séquence identifiée par l'abréviation SEQ ID NO 1 contient la protéine VanH codée par le gène vanH, cette protéine comporte 322 acides aminés et commence par une méthionine. Cette protéine est une enzyme impliquée la synthèse du peptidoglycane et a une masse moléculaire de 35,754 kDa. VanH présente certaines similitudes avec des déhydrogénases qui catalysent l'oxydation dépendante de NAD⁺ des acides 2-hydroxy-

carboxyliques pour former les acides 2-keto-carboxyliques correspondants. En fait la protéine VanH pourrait mettre en oeuvre le NADP⁺ plutôt que le NAD⁺. La protéine VanH contient également plusieurs résidus de sites réactifs qui participent probablement directement dans la liaison du substrat et à la catalyse. VanH serait impliquée dans la synthèse d'un substrat de la ligase VanA. Ce substrat de VanA serait un acide D- α -hydroxy-carboxylique, qui serait condensé par VanA avec la D-alanine à la place d'un acide aminé D, ce qui affecterait la liaison du précurseur du peptidoglycane, avec la vancomycine, par perte d'une liaison hydrogène parce que l'une des liaisons hydrogène formées entre la vancomycine et le N-acétyl-D-Ala-D-Ala est réalisée avec le groupement NH du résidu D-alanine-terminal. Rappelons que "Ala" est l'abréviation de "alanine".

Les inventeurs ont pu mettre en évidence certaines interactions entre les protéines VanA et VanH et ont pu notamment décrire ceci : la nature de la protéine VanA (ligase D-alanine:D-alanine de spécificité altérée pour son substrat) qui a permis la résistance à des glycopeptides implique la biosynthèse d'un nouveau composé différent de D-Ala-D-Ala par VanA, peptide qui peut être incorporé aux peptidoglycanes mais n'est pas reconnu par la vancomycine. En particulier l'observation des similitudes entre le produit du gène vanH avec les α -céto-acides réductases D spécifiques a permis de déterminer que ce composé pouvait ne pas être un acide aminé D mais un acide hydroxy D, qui lorsqu'il était lié avec la D-alanine par VanH pouvait générer un nouveau depsipeptide précurseur du peptidoglycane.

L'invention vise aussi toute combinaison de ces différentes protéines dans un complexe de résistance,

ainsi que des protéines hybrides comprenant une ou plusieurs des protéines ci-dessus, ou partie de ces protéines, en association avec une séquence d'acides aminés déterminée.

Entrent également dans le cadre de l'invention, les séquences nucléotidiques codant pour l'une des séquences d'acides aminés décrites ci-dessus.

Une séquence particulière est la séquence nucléotidique de 7,3 kb environ, correspondant au fragment de restriction HindIII-EcoRI, tel qu'obtenu à partir du plasmide pIP816 décrit dans la publication de Leclercq et al - 1988, précitée.

Cette séquence de 7,3 kb comprend l'enchaînement nucléotidique codant pour les 3 protéines de résistance et les 2 protéines de régulation dont il est question ci-dessus. Cette séquence codante est inclue dans un fragment interne BglIII-XbaI. Elle comprend aussi une partie des séquences codantes de la transposase et de la résolvase.

L'invention vise aussi tout fragment nucléotidique comprenant le susdit fragment de restriction ainsi que toute partie du fragment HindIII-EcoRI, en particulier le fragment de 3,4 kb environ EcoRI-XbaI codant pour les 3 protéines de résistance ou le fragment de 1,7 kb environ EcoRV-SacII codant pour VanA ou encore le fragment de 3,3 kb environ HindIII-EcoRI codant pour les 2 protéines de régulation VanR et VanS.

Une autre définition d'une séquence nucléotidique de l'invention correspond à un fragment nucléotidique comportant dans l'ordre les sites de restriction suivants, tel qu'obtenu à partir de pIP816 précité :

HindIII, BglIII, BglIII, EcoRI, BamHI, XbaI, EcoRI

Une autre séquence nucléotidique selon l'invention est caractérisée en ce qu'elle correspond à

l'enchaînement choisi parmi les séquences identifiées par SEQ ID NO 7, SEQ ID NO 6, SEQ ID NO 11 ou SEQ ID NO 22, ou en ce qu'elle comprend cet enchaînement ou toute partie de cet enchaînement, ou encore tout enchaînement ou partie d'enchaînement d'ADN complémentaire ou tout enchaînement d'ARN correspondant à l'un de ces ADN, susceptible,

- soit de constituer une sonde d'hybridation pour la détection d'une résistance à des antibiotiques de la famille des glycopeptides, notamment à la vancomycine et/ou à la teicoplanine, en particulier dans des souches de la famille des cocci à Gram-positif,
- soit de coder pour une séquence nécessaire ou associée à l'expression de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine et/ou la teicoplanine, en particulier dans des souches de la famille des cocci à Gram-positif.

La séquence SEQ ID NO 7 code pour les 3 protéines de résistance VanH, VanA et VanX.

La séquence SEQ ID NO 22 et la séquence SEQ ID NO 11 comprennent un transposon représenté à la figure 7a; ce transposon contient les gènes nécessaires à l'expression de la résistance aux glycopeptides, ainsi que les gènes associés à cette résistance impliqués par exemple dans la régulation de l'expression des gènes nécessaires pour obtenir le phénotype de résistance ou impliqués dans la quantité de polypeptide de résistance obtenue.

Une séquence particulière répondant à la définition ci-dessus est l'une des séquences suivantes :

12

V1 : GGX GAA GAT GGX TCX TTX CAA GGX
G C AG C G
A

ou

V2 : AAT ACX ATX CCX GGX TTT AC
C T C
C

V1 et V2 permettent la constitution de sondes le cas échéant en association avec d'autres nucléotides, selon le degré de spécificité recherché pour détecter vanA et vanC et peuvent aussi être utilisées comme amorces dans des réactions de polymérisation en chaîne.

D'autres enchaînements nucléotidiques préférés sont les enchaînements SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 21, SEQ ID NO 12(transposase), SEQ ID NO 13(résolvase), SEQ ID NO 14(vanY), SEQ ID NO 15(vanZ), SEQ ID NO 23(vanR), SEQ ID NO 24(vanS) ou d'une variante de l'un de ces enchaînements dès lors qu'elle code pour une protéine ayant des propriétés immunologiques et/ou fonctionnelles similaires à celles des protéines codées par les enchaînements SEQ ID NO 8 SEQ (vanA), ID NO 9 (vanH), SEQ ID NO 10 (vanX), ou SEQ ID NO 21(vanC), SEQ ID NO 12(transposase), SEQ ID NO 13(résolvase), SEQ ID NO 14(vanY), SEQ ID NO 15(vanZ), SEQ ID NO 23(vanR), SEQ ID NO 24(vanS) ou en ce qu'elle permet la détection de souches résistantes à des antibiotiques de la famille des glycopeptides.

Des variantes englobent tous les fragments des séquences ayant les propriétés suivantes.

Ces séquences codent pour les protéines de résistance VanH, VanA et VanX.

La séquence nucléotidique désignée par SEQ ID NO 8 correspond à un fragment d'ADN de 1029 pb situé entre

le codon ATG en position 377 et le codon TGA en position 1406 sur le plasmide pAT214 (Fig. 6).

L'invention vise également une séquence nucléotidique correspondant à l'enchaînement SEQ ID NO 6 correspondant à la séquence codante des 5 protéines (2 protéines de régulation et 3 protéines de résistance), et comprenant également les séquences flanquantes associées à ces séquences codantes, ou comprenant cet enchaînement.

Entre aussi dans le cadre de l'invention une séquence modifiée par rapport à SEQ ID NO 6, caractérisée en ce qu'elle est dépourvue des séquences flanquantes. Ces séquences flanquantes sont les enchainements représentés dans les pages suivantes et délimitées comme suit:

- enchaînement en amont de la séquence codant pour R: entre les bases 1 et 1476 de la séquence de la figure 5,
- enchaînement entre la séquence codant pour la protéine senseur S et ORF1: entre les bases 3347 et 3500 de la séquence de la figure 5,
- enchaînement en aval de la séquence codante ORF3: entre les bases 6168 et 7227 de la séquence de la figure 5.

La séquence désignée par SEQ ID NO 6 est encore caractérisée par le fragment comportant les sites de restriction dans l'ordre suivant :

BglIII - EcoRI - BamHI - EcoRI

La localisation des protéines de régulation et de résistance est illustrée figure 3.

Les inventeurs ont identifié en amont et en aval des gènes vanR, vanS, vanH, vanA et vanX nécessaires ou associés à l'expression de la résistance à des glycopeptides à un niveau donné, dès gènes codant pour

une transposase et une résolvase (en amont du groupe précité) et des gènes vanY et vanZ, en aval de ce groupe. Les gènes de transposase et de résolvase seraient impliqués dans des fonctions de transposition et le gène vanY codant pour une D,D-carboxy peptidase serait impliqué dans le métabolisme du peptidoglycane, et pourrait contribuer à la résistance aux glycopeptides chez E. faecium BM4147 même si vanR, vanS, vanH, vanA et vanX portés par un plasmide à nombre élevé de copies, confèrent seuls une résistance de haut niveau.

Notons que la séquence codante de la transposase est localisée sur le brin (-) de la séquence ID NO 22 qui code pour vanR, vanS, vanH, vanA, vanX, vanY, vanZ et la résolvase.

L'invention vise non seulement les séquences d'ADN identifiées dans la liste des séquences mais aussi les séquences d'ADN complémentaires et les séquences d'ARN correspondantes. L'invention concerne en outre les séquences équivalentes des précédentes, soit en terme d'expression de protéines, de polypeptides ou de leurs fragments décrits plus haut, soit en terme de capacité à détecter, par exemple par les techniques de polymérisation en chaîne ,des souches de bactéries à Gram-positif, présentant une résistance aux antibiotiques de la famille des glycopeptides tels que la vancomycine ou la teicoplanine.

Font également partie de l'invention, des séquences recombinantes caractérisées en ce qu'elles comprennent l'une des séquences nucléotidiques ci-dessus.

L'invention concerne aussi un vecteur recombinant caractérisé en ce qu'il comprend l'une des séquences nucléotidiques ci-dessus, en un site non essentiel pour

sa réPLICATION, sous le contrôle d'éléments de régulation susceptibles d'intervenir dans l'expression, de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine ou la teicoplanine, chez un hôte déterminé.

Des vecteurs recombinants particulièrement avantageux pour la mise en oeuvre de l'invention sont les vecteurs suivants : pAT214 contenant le fragment EcoRV-SacII de 1761 bp contenant une séquence nucléotidique codant pour la protéine VanA ; dans ces vecteurs les séquences de l'invention sont avantageusement placées sous le contrôle de promoteurs tels que le promoteur lac.

L'invention vise aussi un hôte cellulaire recombinant comprenant une séquence nucléotidique telle que décrite précédemment ou un vecteur décrit ci-dessus, dans des conditions permettant l'expression de la résistance à des antibiotiques de la famille des glycopeptides, notamment la résistance à la vancomycine ou/et à la teicoplanine, cet hôte étant par exemple choisi parmi les bactéries, notamment les cocci à Gram-positif.

Pour certaines applications on peut aussi utiliser les levures, les champignons, les cellules d'insectes ou de mammifères.

L'invention vise également une sonde nucléotidique caractérisée en ce qu'elle est capable d'hybrider avec une séquence décrite précédemment, cette sonde étant le cas échéant marquée. Ces sondes peuvent être ou non, spécifiques des protéines de résistance aux glycopeptides.

Des marqueurs utilisables pour les besoins de l'invention sont les marqueurs radioactifs connus ainsi

que d'autres marqueurs tels que les marqueurs enzymatiques ou des marqueurs chémoluminescents.

Des sondes ainsi marquées peuvent être utilisées dans des tests d'hybridation pour détecter une résistance aux glycopeptides chez des bactéries à Gram-positif. Dans ce cas, on pourra mettre en oeuvre des conditions de faible stringence.

Des sondes nucléotidiques selon l'invention peuvent être caractérisées en ce qu'elles sont spécifiques chez des bactéries à Gram-positif des séquences codant pour une protéine de résistance à des glycopeptides notamment à la vancomycine et/ou à la teicoplanine, ces sondes pouvant en outre être universelles parmi ces séquences.

Par ces sondes spécifiques, on entend tout oligonucléotide hybrideant avec une séquence nucléotidique codant pour l'une des protéines selon l'invention, telle que décrite dans les pages précédentes, et ne présentant pas de réaction d'hybridation croisée ou d'amplification (PCR) avec des séquences présentes chez l'ensemble des souches sensibles.

Le caractère universel des oligonucléotides utilisables en PCR, est déterminé par leur capacité de promouvoir spécifiquement l'amplification d'une séquence nucléotidique impliquée dans la résistance chez une souche quelconque de bactérie à Gram-positif, résistante aux antibiotiques de la famille des glycopeptides.

La taille des sondes nucléotidiques selon l'invention peut varier en fonction de l'utilisation recherchée. Pour les oligonucléotides utilisables en PCR on aura recours à des fragments de longueur usuelle dans cette technique. Pour réaliser des sondes, on peut

prendre toute partie des séquences de l'invention, par exemple des sondes fragments de 200 nucléotides.

Selon un mode de réalisation particulier de l'invention, une sonde nucléotidique est choisie pour sa spécificité vis à vis d'une séquence nucléotidique codant pour une protéine nécessaire à l'expression chez des bactéries à Gram-positif d'un haut niveau de résistance à des antibiotiques de la famille des glycopeptides, en particulier à la vancomycine et à la teicoplanine.

A titre d'exemple des sondes intéressantes pourront être choisies dans la partie intragénique du gène vanA.

D'autres sondes avantageuses pour la réalisation de l'invention, sont caractérisées par leur caractère universel, selon la définition précédente, mais non spécifique des gènes de résistance. Elles peuvent être utilisées aussi comme amorces de PCR, et sont par exemple :

V1 : GGX GAA GAT GGX TCX TTX CAA GGX

G C AG C G
 A

V2 : AAT ACX ATX CCX GGX TTT AC

C T C
 C

V1 et V2 hybrident avec vanA et vanC et sont susceptibles de conduire à la détection chez d'autres micro-organismes, de protéines associées à la résistance aux glycopeptides.

D'autres sondes particulières de l'invention ont le caractère spécifique d'une séquence nucléotidique codant pour une protéine nécessaire à l'expression chez des bactéries à Gram-positif d'un bas niveau de résistance à des antibiotiques de la famille des

glycopeptides, en particulier à la vancomycine chez des bactéries à Gram-positif.

On mentionne également que des sondes oligonucléotidiques qui seraient issues de la séquence du gène vanA codant pour la protéine VanA peuvent être utilisées pour rechercher indifféremment une résistance de haut niveau ou de bas niveau.

D'une façon particulièrement préférée, on caractérise une sonde de l'invention en ce qu'elle hybride, avec une séquence nucléotidique chromosomique ou non chromosomique d'une souche à Gram-positif résistante à des glycopeptides, notamment la vancomycine et/ou la teicoplanine, en particulier en ce qu'elle hybride avec une séquence nucléotidique chromosomique ou non chromosomique d'une souche de cocci à Gram-positif, par exemple une souche d'entérocoque et de préférence E. faecium 4147 ou E. gallinarum.

Pour différencier des souches à haut niveau de résistance, de souches à bas niveau de résistance on pourra réaliser un test d'hybridation en mettant en œuvre des conditions de forte stringence.

Les oligonucléotides de l'invention peuvent être obtenus à partir des séquences de l'invention, par coupure avec des enzymes de restriction, ou par synthèse chimique selon les méthodes classiques.

L'invention vise par ailleurs des anticorps polyclonaux ou monoclonaux, caractérisés en ce qu'ils reconnaissent le ou les polypeptides décrits ci-dessus ou une séquence d'acides aminés décrite ci-dessus.

Ces anticorps peuvent être obtenus selon les méthodes classiques de production d'anticorps. En particulier pour la préparation des anticorps monoclonaux on aura recours à la méthode de Kolher et

Milstein selon laquelle on prépare des anticorps monoclonaux par fusion cellulaire entre des cellules de myélome et des cellules spléniques de souris préalablement immunisées avec un polypeptide ou une composition selon l'invention, conformément au procédé classique.

Les anticorps de l'invention sont avantageusement utilisables pour la détection de la présence de protéines caractéristiques d'une résistance aux glycopeptides, en particulier à la vancomycine et à la teicoplanine.

Des anticorps particulièrement intéressants sont les anticorps polyclonaux ou monoclonaux dirigés contre la protéine VanA ou VanC. De tels anticorps permettent avantageusement de détecter des souches de bactéries, en particulier des cocci à Gram-positif présentant une résistance à haut niveau vis à vis des antibiotiques de la famille des glycopeptides. Le cas échéant, une étape de lyse préalable des cellules de l'échantillon soumis à la détection, est mise en oeuvre préalablement à la mise en contact de l'échantillon avec les anticorps.

Pour réaliser cette détection, on aura avantageusement recours à des anticorps marqués par exemple par une substance radioactive ou autre.

Entrent donc dans le cadre de l'invention, des tests pour la détection chez les bactéries à Gram-positif, d'une résistance aux glycopeptides, notamment des tests mettant en oeuvre les techniques ELISA.

Un kit pour le diagnostic in vitro de la présence de souches à Gram-positif, résistantes aux glycopeptides, en particulier à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier aux cocci à Gram-positif par exemple des entérocoques,

par exemple E. faecium ou E. gallinarum, caractérisé en ce qu'il comprend :

- des anticorps répondant à la définition ci-dessus, le cas échéant marqués,
- un réactif pour la détection d'une réaction immunologique du type anticorps-antigène,
- le cas échéant des réactifs pour effectuer la lyse de cellules de l'échantillon testé.

Les moyens mis au point par les inventeurs présentent par ailleurs l'avantage tout à fait intéressant d'être adaptés pour la réalisation d'un test ou d'un kit rapide et fiable de détection de souches à Gram-positif, résistantes aux glycopeptides par la réaction de polymérisation en chaîne (PCR). Un tel test permet d'améliorer la sensibilité des tests existants qui restent peu fiables et peut permettre dans certains cas la détection de l'ensemble des représentants de la famille des gènes codant pour des protéines de résistance aux glycopeptides chez des bactéries à Gram-positif.

La réalisation d'un test par la méthode d'amplification des gènes de ces protéines est faite par la technique PCR ou par la technique IPCR (IPCR : abréviation de réaction de polymérisation en chaîne inverse).

La technique IPCR permet l'amplification des régions NH₂ et COOH terminales des gènes que l'on souhaite détecter.

Certaines amorces particulières permettent d'amplifier les gènes des souches résistantes à bas niveau. Ces amorces sont par exemple choisies dans la séquence codant pour la protéine de résistance VanA.

A titre d'exemple les séquences suivantes sont utilisables comme amorces pour la préparation de sondes

21

pour la détection d'une amplification par la méthode
PCR ou IPCR.

V1 : GGX GAA GAT GGX TCX TTX CAA GGX

G C AG C G
 A

V2 : AAT ACX ATX CCX GGX TTT AC

C T C
C

X représente l'une des bases A,T,C ou G ou encore correspond dans tous les cas à l'inosine.

L'invention vise naturellement les sondes complémentaires des oligonucléotides précédemment décrits ainsi que éventuellement les sondes ARN qui leur correspondent.

Un kit pour le diagnostic in vitro de la présence de souches de bactéries à Gram-positif, résistantes aux glycopeptides, en particulier résistantes à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier aux cocci à Gram-positif, notamment en ce qu'il s'agit de souches d'entérocoques, par exemple E. faecium ou E. gallinarum, est caractérisé en ce qu'il comprend :

- une sonde nucléotidique répondant aux définitions ci-dessus et le cas échéant,
- des oligonucléosides triphosphates en quantité suffisante pour permettre l'amplification de la séquence recherchée,
- un tampon d'hybridation,
- un agent de polymérisation d'ADN.

L'invention vise aussi un procédé de détection in vitro de la présence de souches à Gram-positif, résistantes aux glycopeptides, en particulier à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier à la famille des cocci à Gram-positif, notamment en ce qu'il s'agit de souches d'entérocoques, par exemple E. faecium ou E. gallinarum, caractérisé en ce qu'il comprend :

- a) la mise en contact d'un échantillon biologique susceptible de contenir les souches résistantes,

avec une amorce constituée par une séquence nucléotidique ci-dessus décrite, ou toute partie d'une séquence précédemment décrite, capable d'hybrider, avec une séquence nucléotidique recherchée nécessaire à l'expression de la résistance aux glycopeptides, cette séquence étant utilisée comme matrice, en présence des 4 différents nucléosides triphosphates, et d'un agent de polymérisation, dans des conditions d'hybridation telles que pour chaque séquence nucléotidique ayant hybridé avec une amorce, un produit d'elongation de chaque amorce complémentaire de la matrice est synthétisé,

- b) la séparation de la matrice et du produit d'elongation obtenu, ce dernier pouvant alors également se comporter comme une matrice,
- c) la répétition de l'étape a) de façon à obtenir une quantité détectable des séquences nucléotidiques recherchées,
- d) la détection du produit d'amplification des séquences nucléotidiques.

La détection des produits d'elongation de la séquence recherchée peut être réalisée par une sonde identique aux amorces mises en oeuvre pour effectuer la technique PCR ou IPCR, ou encore par une sonde différente de ces amorces, cette sonde étant le cas échéant marquée.

Des détails concernant la mise en oeuvre des techniques PCR, peuvent être obtenus à partir des demandes de brevets EP 0229701 et EP 0200362.

D'autres avantages et caractéristiques de l'invention apparaissent dans les exemples qui suivent et dans les figures.

FIGURES

- Figure 1 : électrophorèse sur gel de polyacrylamide SDS (SDS-PAGE) des protéines des fractions membranaires lignes 1 et 4, standards de poids moléculaires ; ligne 2, E. faecium BM4147 mis en culture en l'absence de vancomycine; ligne 3, BM4147 mis en culture avec 10 µg/ml de vancomycine. La tête de flèche indique la position de la protéine VANA.

- Figure 2 :

A : Cartes de restriction des insérats des plasmides pAT213 et pAT214. Le vecteur et l'insérat d'ADN sont distingués par des segments clairs et sombres respectivement. La flèche ouverte représente le gène vanA.

B : Stratégie pour le séquençage nucléotidique pour l'insérat de 1761 bp dans le plasmide pAT214. Les flèches indiquent la direction et l'étendue des réactions de séquençage par la méthode didéoxy. L'amorce synthétique d'oligonucléotides (5' ATGCTCCTGTCTCCCTTC 3' OH) est complémentaire de la séquence entre les positions 361 et 378. Seuls les sites de restriction pertinents sont donnés.

- Figure 3 : position des séquences R,S,ORF1,ORF2,ORF3.

- Figure 4 : représentation de SEQ ID N° 6

- Figure 5 : représentation de SEQ ID N° 6 et de la protéine correspondante.

- Figure 6 : séquence du gène vanA et la protéine correspondante.

- Figure 7 :

(a) : Localisation des g`nes vanR, vanS, vanH, vanA, vanX, vanY, vanZ, du gène de la transposase et du gène de la résolvase, ainsi que des séquences terminales inversées répétées de 38 bp à l'extrémité du transposon.

(b) : Cartographie des plasmides (A) Polylinker d pAT29 et des dérivés construits dans cette étude. La flèche marquée P2 indique la position et l'orientation du promoteur P2 de aphA-3 (Caillaud et al, 1987, Mol. Gen. Genet. 207:509-513). (B) Insérat de pAT80. Les rectangles blancs indiquent l'ADN de pAT29 mais ne sont pas représentés à l'échelle. Les rectangles se terminant par une flèche indiquent les séquences codantes. Les flèches en traits pleins, verticales et horizontales indiquent respectivement la position et l'orientation du gène apha-1 dans les dérivés de pAT80. Sites de restriction : Ac, AccI ; B, BamHI ; Bg, BglII ; Bs, BssHII ; E, EcoRI ; H, HindIII ; Hc, HincII ; K, KpnI ; P, PstI ; S, SmaI ; SI, SacI, SII, SacII ; Sa, SalI ; Sp, SphI ; Xb, XbaI. (C) Insérats dans pAT86, pAT87, pAT88 et pAT89. Les insérats sont représentés par des traits pleins et les vecteurs correspondants sont indiqués entre parenthèses.

- Figure 8 : séquence nucléotidique du transposon représenté à la figure 7 et séquence d'acides aminés des protéines correspondantes. La séquence nucléotidique est présentée pour le brin (+) et pour le brin (-) (correspondant à la séquence complémentaire du brin (+) des positions 1 à 3189) sur lequel est localisée la séquence codante de la transposase.

- Figure 9 : séquence nucléotidique du fragment de 1347 bp SacI-PstI du plasmide pAT216 contenant le gène vanC. La numérotation commence à la première base G du

site de restriction SacI. La séquence RBS potentielle en amont du codon d'initiation de traduction ATG à la position 215 est soulignée. Le codon STOP (TGA) est indiqué par *. La région codante de vanC et la séquence d'acides aminés déduite sont indiquées en caractères gras. Des clones séquentiels se chevauchant ont été générés par des fragments de restriction de sous-clonage de pAT216 dans le bactériophage M13mp10 (Amersham, Angleterre). L'amorce universelle (New England Biolabs Beverly MA) a été utilisée pour séquencer l'insérat des phages recombinants. Le séquençage a été réalisé par la méthode enzymatique de di-desoxy nucléotide (Sanger et al, 1977 PNAS 74: 5463-5467) en utilisant la polymérase d'ADN T7 (Sequenase US B CORP, Cleveland, OH) et le [α -³⁵S]dATP (Amersham, England). Les produits des réactions ont été chargés sur des gels de polyacrylamide dénaturant à 6%.

- Figure 10 : alignement des séquences d'acides aminés de VanC, VanA, DdlA et DdlB. Les acides aminés identiques (I) et les substitutions conservatives (C) dans les 4 séquences sont indiqués dans l'alignement. Pour classifier les substitutions conservatives, les acides aminés ont été groupés comme suit : RK, LFPMVI, STQNC, AGW, H, ED et Y. Les régions de forte homologie correspondant aux domaines 1, 2, 3 et 4 sont soulignées. Les séquences correspondant aux peptides 1 et 2 sont indiquées par les flèches.

- Figure 11 : description des oligonucléotides V1 et V2 (A) : Séquence d'acides aminés des peptides 1 et 2 de VanA et des D-Ala-D-Ala ligases. Le nombre d'acides aminés entre l'extrémité N-terminale et le peptide 1, entre les peptides 1 et 2 et le peptide 2 et

l'extrémité C-terminale est indiqué. Les acides aminés identiques entre au moins 2 des 3 séquences, sont représentés en caractères gras.

(B) : Peptides cible et séquence nucléotidique déduite. X représente une base quelconque de l'ADN. Le peptide 2 dans Dd1B diffère du peptide cible au niveau de 2 positions (*).

(C) : Séquence nucléotidique de V1 et de V2. Des nucléotides alternés et la déoxyinosine (I) qui peuvent correspondre à toute base d'ADN, ont été utilisés aux positions pour lesquelles les séquences nucléotidiques codant pour les peptides cible varient. Les flèches donnent la direction de la synthèse d'ADN. Les oligonucléotides ont été synthétisés par la méthode au méthoxy-phosphoramidite avec un appareil Biosystem ADN 380B (Applied Biosystem, Foster City, Ca). L'ADN a été isolé à partir de lysats bactériens par extraction avec le bromure d'hexadécylique triméthyl ammonium (Inst. Biotechnologies, Inc, New Haven, CO) (Le Bouguénec et al, 1990, J. Bacteriol. 172:727-734) et utilisé comme matrice pour l'amplification par PCR avec un système de chauffage contrôlé "Intelligent Heating Block" IBH101 (Hybarid ltd, GB), selon la description de Mabilat et al (1990, Plasmid 23:27-34). Les produits d'amplification ont été révélés par électrophorèse sur gel à 0,8%, après coloration au bromure d'éthidium.

- Figure 12 : inactivation par insertion de vanC. Le gène vanC est représenté par une flèche ouverte et le fragment interne de 690 bp EcoRI-HinCII est hachuré. En trait fin on a représenté l'ADN de pAT114 ; en trait gras l'ADN chromosomique de PM4174 ; les flèches indiquent les gènes de résistance aux antibiotiques : aphA-3 est le gène codant pour la 3'-aminoglycoside

phosphotransférase ; erm est le gène codant pour la ER^R méthyl transférase.

(A) : Le plasmide pAT217 a été construit par ligature du fragment EcoRI-HincII de pAT216 avec le vecteur suicide pAT114 (Trieu-Cuot et al, 1991, Gene 106:21-27) digéré avec EcoRI et SmaI.

(B) : Région vanC de l'ADN chromosomique de BM4174.

(C) : Région vanC après intégration de pAT217.

- Figure 13 : analyse Southern blot de l'intégration de pAT217 dans le gène vanC de BM4174.

(partie gauche) : ADN total de BM4175 (ligne 2) et BM4174 (ligne 3) digéré avec EcoRI et résolu par électrophorèse sur gel d'agarose à 1%. L'ADN du bactériophage lambda digéré avec PstI a été utilisé comme standard de masse moléculaire (ligne 1). L'ADN a été transféré sous vide sur une membrane Nytran (Schleicher et Schül, Allemagne) en utilisant un appareil Trans-Vac TE80 (Höfer Scientific Instruments, San Francisco, CA) et lié à la membrane par l'intermédiaire d'une lumière UV. L'hybridation a été réalisée avec la sonde C (Middle) ou la sonde aphA-3 spécifique de pAT114 (Lambert et al, 1985, Annales de l'Institut Pasteur/Microbiol. 136(b): 135-150).

(partie droite) : les sondes ont été marquées avec le ³²P par translation de coupure. Les masses moléculaires (kb) sont indiquées.

- Figure 14 : alignement des séquences d'acides aminés déduites de VanS à partir de E. faecium BM4147 et de PhoR et EnvZ de E.coli. Les nombres sur la gauche se réfèrent à la position du premier acide aminé dans l'alignement. Les nombres sur la droite se réfèrent à la position du dernier acide aminé de la ligne

correspondante. Les acides aminés identiques sont encadrés. Les pointillés indiquent des trous introduits pour optimiser la similitude. Les traits indiquent les positions des motifs conservés d'acides aminés dans d'autres HPK. Les résidus histidine en gras dans le motif 1 sont des sites potentiels d'autophosphorylation.

- Figure 15 : alignement des séquences d'acides aminés déduites de VanR de E. faecium BM4147, OmpR et PhoB de E.coli ainsi que de CheY de Salmonella typhimurium. Les nombres sur la droite indiquent la position du dernier acide aminé de la ligne correspondante. Les acides aminés indentiques sont encadrés. Les pointillés indiquent les trous introduits pour optimiser les similitudes. Les résidus en caractère gras correspondent aux acides aminés fortement conservés dans les domaines effecteurs, d'autres RR. Le résidu aspartique 57 de CheY est phosphorylé par la HPK associée CheA.

I - IDENTIFICATION DE vanAMatériels et méthodes pour l'indentification et la caractérisation du gène vanASouches bactériennes et plasmides

L'origine des plasmides utilisés est donnée dans le tableau ci-après.

<u>Souche ou plasmide</u>	<u>Source ou Référence</u>
<i>Escherichia Coli</i>	
JM83	Messing (1979)
AR1062	Rambach et Hogness (1977)
JM103	Hannshan (1983)
ST640	Lugtenberg et van Schijndel van-Dam (1973)
<i>Enterococcus faecium</i>	
BM4147	Leclercq et al (1988)
Plasmide pUC18	Norrander et al (1983)
pAT213	Brisson-Noël et al (1990)
pAT214	Décrit dans ce texte

Préparation des membranes d'enterocoque

Enterococcus faecium BM4147 a été cultivé jusqu'à l'obtention d'une densité optique (DO_{600}) de 0,7 dans 500ml de bouillon cœur-cervelle (milieu broth BHI). L'induction a été réalisée avec 10 μ g/ml de vancomycine (Eli Lilly Indianapolis Ind). Les étapes ultérieures ont été réalisées à 4°C. Les cellules ont été récupérées par centrifugation pendant 10 minutes à 6000g, lavées dans un tampon TE (0,01 M TRIS-HCl, 0,002 M EDTA, pH 7,0) et lysées avec des billes de verre (100

μm de diamètre) dans un appareil Braun pendant 2 minutes. Les débris cellulaires ont été separés par centrifugation pendant 10 minutes à 6000g. Les membranes ont été collectées par centrifugation pendant 1 heure à 65000g et resuspendues dans 0,5ml de tampon TE.

Préparation des minicellules

Des plasmides ont été introduits par transformation dans la souche E.coli AR1062 préparée sous forme de sac bactérien. Les sacs bactériens ont été récupérés sur des gradients de sucrose et les protéines ont été marquées avec 50 μCi de [^{35}S]L-methionine (Amersham, Grande-Bretagne) selon la méthode de Rambach et Hogness (1977, P.N.A.S. USA, 74; 5041-5045).

Préparation des fractions membranaires et des fractions cytoplasmiques de E.coli

E.coli JM83 et des souches dérivées ont été mises en culture dans un milieu BHI jusqu'à l'obtention d'une densité optique (DO_{600}) de 0,7, lavées et suspendues dans un tampon TE. La suspension cellulaire a été traitée par ultrasons (phonolysée) pendant 20 secondes avec des doses de 50 W dans un appareil de fragmentation de cellules dans un appareil à ultrasons Branson B7 et les cellules intactes ont été éliminées par centrifugation pendant 10 minutes à 6000g. Le surnageant a été fractionné en fractions membranaire et cytoplasmique par centrifugation pendant 1 heure à 100000g.

Electrophorèse sur gel de polyacrylamide SDS
(SDS-PAGE)

Les protéines des fractions bactériennes ont été séparées par SDS-PAGE dans des gels à gradient linéaire de polyacrylamide (7,5% - 15%) (Laemmli 1970, Nature 227 : 680-685). L'electrophorèse a été réalisée pendant 1 heure à 200 V puis 3 heures à 350 V. Les gels ont été colorés avec du bleu de Coomassie. Les protéines des extraits ont été séparées dans des gels de 10% de polyacrylamide et visualisées par autoradiographie.

Purification de la bande protéique et
détermination de la séquence N-terminale

Les protéines des fractions membranaires d'une culture induite de E.faecium BM4147 ont été séparées par SDS-PAGE. Le gel a été electrotransféré pendant 1 heure à 200 mA sur une membrane de polyvinylidène difluorure (Immobilon Transfer, Millipore) en utilisant un appareil de transfert (Electrophoresis Unit LKB 2117 Multiphor II) selon les recommandations du fabricant. Les protéines transférées ont été colorées avec le rouge de Ponceau. La portion de membrane portant la protéine intéressante a été coupée, centrée sur un filtre en teflon et placée dans la cartouche du bloc d'un séquenceur (Séquenceur Applied Biosystems modèle 470A). La protéine a été séquencée par la dégradation automatisée de Edman (1967, Eur. J.Biochem 1; 80-81).

Construction de plasmides

Le plasmide pAT213 (Brisson-Noël et al, 1990, Antimicrob Agents chemother, 34; 924-927) consiste en un fragment d'ADN EcoRI de 4,0 kb du plasmide pIP816

d'entérocoque cloné au site EcoRI d'un vecteur navette gram-positif-gram-négatif pAT187 (Trieu-Cuot et al, 1987, FEMS Microbiol Lett 48; 289-294). Pour construire pAT214, le fragment d'ADN de 1761 bp EcoRV-SacII de pAT213 a été purifié, traité avec le fragment de Klenow de l'ADN polymérase I de E.coli et ligué à l'ADN de pUC18 préalablement digéré avec SmaI et déphosphorylé (figure 2). Le clonage (Maniatis et al, 1982 Cold Spring Harbor Laboratory Press) a été réalisé avec des endonucléases de restriction (Boehringer Mannheim et Pharmacia) avec la ligase ADN T4 (Pharmacia) et la phosphatase alcaline (Pharmacia) selon les recommandations du fabricant.

Sous-clonage dans M13 et séquence nucléotidique

Les fragments d'ADN de restriction ont été sous-clonés dans le polylinker des formes de réPLICATION des dérivés mp18 et mp19 du bactériophage M13 (Norrrander et al, 1983, Gene 26; 101-106), obtenus auprès de Pharmacia P-L Biochemicals. E.coli JM103 a été transfecté avec des phages recombinants et de l'ADN simple brin a été préparé. Le séquençage nucléotidique a été réalisé par la méthode enzymatique des di-desoxy nucléotides (Sanger et al, 1977, P.N.A.S USA 74; 5463-5467) en utilisant une ADN T7 polymérase (Sequenase, United States Biochemical Corporation, Cleveland Ohio) et de l' $[\alpha^{35}S]dATP$ (Amersham, Grande-Bretagne). Les produits des réactions ont été révélés dans des gels de polyacrylamide contenant un tampon dénaturant à 6%.

Analyse informatique et données sur la séquence

La séquence d'ADN complète a été assemblée en utilisant les programmes d'ordinateur DBCOMP et DBUTIL (Staden, 1980, Nucleic Acids Res 8; 3673-3694). La banque de données de protéines, PSEQIP de l'Institut Pasteur a été criblée en utilisant un algorithme développé par Claverie (1984, Nucleic Acids Res 12; 397-407). Les alignements entre des paires de séquences d'acides aminés ont été construits en utilisant l'algorithme de Wilbur et al (1983, P.N.A.S USA 80; 726-730). La signification statistique de l'homologie a été évaluée avec l'algorithme de Lipman et Pearson (1985, Science 227; 1435-1440).

Pour chaque comparaison 20 séquences d'acides aminés ont été utilisées pour calculer les moyennes et les déviations standard des résultats aléatoires.

Tests de complémentation génétique

Les plasmides ont été introduits par transformation dans E.coli ST640, un mutant sensible à la température avec une ligase non modifiée D-ala-D-ala (Lugtenberg et al 1973, J. Bacteriol 110; 26-34). Les transformants ont été sélectionnés à 30°C sur des plaques contenant 100 µg/ml d'ampicilline et la présence de l'ADN plasmidique de la taille recherchée et les cartes de restriction ont été vérifiés. Des colonies uniques poussées à 30°C dans un milieu BHI broth contenant de l'ampicilline ont été placées à la fois sur un milieu agar BHI contenant 100 µg/ml d'ampicilline et dans 50 µM d'isopropyle-1-thio-β-D-glacto-pyranoside (IPTG) et les plaques ont été incubées à une température permissive de 30°C ou non permissive de 42°C. Le test de complémentation était

considér' comme positif si les colonies étaient présentes après 18 heures d'incubation à 42°C.

RESULTATS

Identification de la protéine VanA et séquence N-terminale

Les fractions membranaires des E. faecium BM4147 mis en culture d'une part dans des conditions d'induction, et d'autre part en l'absence d'induction, ont été analysées par SDS-PAGE. La seule différence détectable associée avec l'exposition à des concentrations sous-inhibitrices de vancomycine a été l'intensification marquée d'une bande qui correspondait à une protéine de poids moléculaire estimé d'environ 40 kDa. Dans les cellules induites et dans les cellules non induites, la bande protéique représente la même protéine puisque cette bande est absente des membranes d'un dérivé de BM4147 qui a perdu le plasmide pIP816. La protéine inductible, désignée par VanA a été purifiée après SDS-PAGE et une dégradation automatisée de Edman a été réalisée sur un échantillon de 50 pmol. Neuf acides aminés de la séquence N-terminale de VanA ont été identifiés : Met Asn Arg Ile Lys Val Ala Ile Leu.

Sous-clonage du gène vanA

L'insérat de 4,0 kb du plasmide pAT213 porte le déterminant de la résistance aux glycopeptides de E. faecium BM4147. Divers fragments de restriction de cet insérat ont été sous-clonés dans pUC18 et les

plasmides recombinants spécifiques de vanA dans E.coli ont été identifiés par analyse SDS-PAGE des protéines des fractions cytoplasmique et membranaire ou des extraits de sacs bactériens. Cette approche a été utilisée car E.coli est intrinsèquement résistant au glycopeptide. L'insérat EcoRV-SacII du plasmide pAT214 (figure 2) code pour un polypeptide unique de 40 kDa qui migre conjointement avec VanA, issu des préparations membranaires de E. faecium BM4147.

Séquence nucléotidique de l'insérat dans pAT214 et identification de la séquence codante vanA

La séquence nucléotidique de l'insérat EcoRV-SacII de 1761 bp dans pAT214 a été déterminée sur les deux brins de l'ADN selon la stratégie décrite à la figure 2. La localisation des codons de terminaison (TGA, TAA, TAG) dans trois cadres de lecture sur chaque brin d'ADN a montré la présence d'un unique cadre de lecture ouvert (ORF) ayant une taille suffisante pour coder pour la protéine VanA. Ce cadre de lecture ORF est localisé entre le codon TAA en position 281 et le codon TAG en position 1406. La séquence d'acides aminés déduite de ORF a été comparée avec celle de l'extrémité N-terminale de VanA. Les neufs acides aminés identifiés par le séquençage protéique sont codés par la séquence nucléotidique débutant avec le codon ATG (méthionine) en position 377 (figure 3). Ce codon d'initiation de traduction est précédé par une séquence (TGAAAGGAGA), caractéristique d'un site de liaison au ribosome (RBS) de bactéries à Gram-positif qui est complémentaire pour les 8 bases de l'ARNr de la sous-unité 16S de Bacillus subtilis dans sa partie (3'OH UCUUUCCUCC 5') (Moran et al., 1982, Mol. Gen. Genet. 186; 339-346). Dans ce cadre

ORF, il n'y a pas d'autre codon d'initiation ATG ou GTG entre les positions 281 et 377. La séquence de 1029 bp qui s'étend du codon ATG en position 377 au codon TGA en position 1406 code pour une protéine contenant 343 résidus d'acides aminés. Le poids moléculaire calculé de cette protéine est 37400 Da ce qui est en accord avec l'estimation de 40 kDa obtenue par l'analyse SDS-PAGE.

Homologie des séquences d'acides aminés de VanA et des enzymes ligases D-ala-D-ala

Le criblage de la banque de données de protéines, PSEQIP a montré l'existence d'une homologie de séquences entre VanA et les ligases D-ala-D-ala de *E.coli* (ECOALA, Robinson et al, 1986, J. Bacteriol 167; 809-817) et de *Salomella typhimurium* (DALIG, Daub et al, 1988, Biochemistry 27; 3701-3708). Le pourcentage de similarité calculé par paires de protéines était compris entre 28% et 36% pour les acides aminés identiques et entre 48% et 55% en tenant compte des acides aminés homologues. VanA et DALIG sont plus étroitement liées. La signification statistique de ces similarités a été évaluée en alignant VANA et des séquences contenant la même composition en acides aminés que DALIG ou ECOALA (Lipman et Pearson, 1985, Science 227; 1435-1440).

Test de complémentation génétique pour l'activité de ligase D-ala-D-ala

La souche *E.coli* ST640 est un mutant thermosensible présentant une activité ligase D-ala-D-ala déficiente (Lugtenberg et al, 1973, J. Bacteriol

113 : 96-104). Les plasmides pUC18 et pAT214 ont été introduits par transformation dans *E.coli* ST640. Les souches ST640 et ST640 (pUC18) ont poussé normalement uniquement à la température permissive (30°C) alors que *E.coli* ST640 (pAT214) a poussé à la fois à la température permissive et à la température non permissive (42°C).

Ce test montre que VANA est fonctionnellement apparentée aux D-Ala-D-Ala ligases dans *E.coli* et est probablement capable de catalyser la même réaction de ligation que DALIG.

II - Système de régulation à deux composants VanS-VanR, pour le contrôle de la synthèse de depsipeptides de précurseur de peptidoglycans

MATERIELS ET METHODES

Souches, plasmides et conditions de culture

Les fragments de restriction de pIP816 (Tra-, Mob⁺, Vm') ont été clonés dans des dérivés du vecteur pAT29 qui constitue un vecteur navette entre les bactéries gram-positives et gram-négatives (oriR pAMβ1, oriR pUC, oriT RK2, spc, lacZα) (Trieu-Cuot et al, 1990, Nucleic Acids Res. 18:4296). Ce vecteur a été construit par les inventeurs et utilisé pour transformer la souche *E.coli* JM103 (Δ(lac-proAB), supE, thi, strA, sbcB15, endA, hspR4, F traD36, proAB, LacI^q, lacZΔM15) (Messing et al, 1983, Methods Enzymol. 101:20-78). L'ADN plasmidique a été préparé par un protocole de lyse alcaline à petite échelle (Sambrook et al, 1982, Molecular cloning, a laboratory manual.

Cold Spring Harbor Laboratory, Cold Spring Harbor NY) et introduit par électrotransformation (Cruz-Rodz A.L. et al, 1990, Mol. Gen. Genet. 224: 152-154) dans E. faecalis JH2-2 (Fus^R, Rif^R) (Jacob A.E. et al, 1974, J. Bacteriol. 117:360-372), en utilisant un appareil Gene Pulser (Bio-Rad Laboratories, Richmond, Californie). Les profils de restriction des plasmides purifiés à partir de E. faecalis et de E. coli ont été comparés pour détecter d'éventuels réarrangements d'ADN.

Le plasmide intégratif pAT113 (Mob⁺, Em^R, Km^R, oriR PACYC184, attTn1545, LacZα) (Trieu-Cuot et al, Gene 106:21-27) porte les extrémités jointes du transposon Tn1545. Ce vecteur ne se réplique pas dans les bactéries gram-positives mais s'intègre au chromosome de l'hôte par recombinaison illégitime médiée par l'intégrase de Tn1545 ou de Tn916 (Trieu-Cuot et al précité). Les plasmides intégratifs ont été introduits par électrotransformation dans E. faecalis BM4148 (souche JH2-2::Tn916). Cette souche est modifiée par le transposon Tn916 décrit par Franque A.E. et al (1981, J. Bacteriol. 145: 494-502).

Les cultures ont été réalisées dans un bouillon coeur-cervelle (BHI - Brain Heart Infusion Broth) ou sur agar à 37°C. La méthode de Steers et al (Antibiot. Chemother. Basel. 9:307-311) a été utilisée pour déterminer les concentrations minimales d'inhibition (MICs) des antibiotiques sur un milieu gélosé Mueller-Hinton agar.

Techniques d'ADN recombinant

Le clivage de l'ADN avec des endonucléases de restriction (Boehringer Manheim and Pharmacia), la

purification des fragments d'ADN de restriction à partir des gels d'agarose, la conversion des extrémités cohésives en extrémités franches avec le fragment de Klenow de l'ADN polymérase I de E.coli (Boehringer Manheim), la déphosphorylation des extrémités de l'ADN avec la phosphatase intestine de veau (Boehringer Manheim), la ligature des fragments d'ADN avec la T4 DNA ligase (Amersham) ont été réalisés selon les méthodes standard de Sambrook et al (1982, Molecular Cloning, a laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor NY).

Construction de plasmide

L'origine des vecteurs et des insérats utilisés pour les plasmides recombinants construits ici est la suivante :

(i) vecteur pAT78 pour la reconnaissance de promoteur : l'ADN amplifié du gène cat de chloramphénicol acétyltransférase du plasmide pC194 de Staphylococcus aureus (Horinouchi et al, 1982, J. Bacteriol. 150:815-825) a été inséré entre les sites de restriction PstI et SphI du vecteur navette pAT29. L'amplification par la réaction de polymérisation en chaîne a été effectuée au moyen des amorces A1 et A2 qui ont été synthétisées par la méthode au méthoxy phosphoramidite (Mabilat et al, 1990, Plasmid 23:27-34). La séquence de l'amorce A1 (5'GCTGCAGATAAAATTAGGAGG) est composée d'un site de reconnaissance PstI (souligné) et de 18 bases (positions 6 à 23) de pC194 qui incluent le site de liaison au ribosome (RBS ; AGGAGG positions 18 à 23) du gène cat. La séquence de l'amorce

A2 (5' CGCATGCTATTATAAAA GCCAGTC) contient le site de clivage SphI (souligné) et est complémentaire (positions 8 à 24) à 17 bases de l'extrémité 3' du gène cat. Le triplet ATT aux positions 9 à 11 correspond au codon stop TAA de cat. Les fragments d'ADN amplifiés avec les amorces A1 et A2 consistent donc en une phase ouverte de lecture (orf) et en un site de liaison au ribosome pour CAT (positions 1234 à 1912 selon la numérotation de Horinouchi et al (1982, J. Bacteriol. 150:815-825) flanqués par les sites PstI et SphI. La position 1234 est localisée à l'intérieur de la boucle de la structure secondaire de l'ARNm qui bloque la traduction en l'absence de chloramphénicol. Ainsi la séquence amplifiée ne contient pas le promoteur cat ni la séquence complémentaire du RBS qui est essentielle pour la régulation de traduction Ambulos, N.P et al, 1984, Gene 28:171-176).

(ii) vecteur d'expression pAT79 : le fragment de 243 bp ClaI-BssHII portant le promoteur P2 du gène aphA-3 du plasmide d'entérocoque pJH1 (Caillaud et al, 1987, Mol. Gen. Genet. 207: 509-513) a été inséré entre les sites de restriction EcoRI et SacI de pAT78.

(iii) plasmide pAT80 et ses dérivés : le fragment de 5,5 kb BglIII-XbaI de pIP816 a été inséré entre les sites BamHI et XbaI de pAT78. Le plasmide résultant dénommé par pAT80 a été partiellement digéré avec HincII et ligaturé avec le fragment EcoRV contenant un gène apparenté au gène apha-I du transposon Tn903 (Oka A. et al, 1981, J. Mol. Biol. 147:217-226). Ce fragment contient le gène

aphA-I qui code pour la 3'aminoglycoside phosphotransf'rase de type I conférant la résistance à la kanamycine. L'insertion de aphA-I a été réalisée à trois sites différents dans pAT80, générant les plasmides pAT81, pAT83 et pAT85. Les cassettes BamHI et EcoRI contenant aphA-I ont été insérées aux sites BamHI (pour former le plasmide pAT84) et EcoRI (pour former le plasmide pAT82) de pAT80.

(iv) plasmide pAT86, pAT87, pAT88 et pAT89 : le plasmide pAT86 a été construit par clonage du fragment de 2,803 bp, EcoRI-SacII de pAT80 codant pour VanH et VanA, au niveau d'un site SmaI de pAT79. pAT87 a été obtenu en insérant le fragment de 3,4 kb EcoRI-XbaI de pAT80 en amont du gène cat du vecteur de détection de promoteur pAT78. Le plasmide pAT88 résultait de la ligature de pAT78 digéré avec EcoRI et BamHI avec le fragment EcoRI-BamHI de 1,731 bp de pAT80. Le fragment BglIII-AccI (positions 1 à 2356) de pAT80 a été inséré dans le polylinker du vecteur intégratif pAT113, générant pAT89.

Sous-clonage dans M13 et séquençage

Les fragments d'ADN de restriction ont été sous-clonés dans un polylinker de dérivés réplicatifs du bactériophage M13, ces dérivés étant appelés mp18 et mp19 (Norlander et al, 1983, Gene 26:101-106). E.coli JM103 a été transfecté avec les phages recombinants et un ADN simple brin a été préparé. Le séquençage des nucléotides a été réalisé selon les conditions décrites par Sanger et al (Proc. Natl. Acad. Sci. USA, 1977, 74: 5463-5467) en utilisant la polymérase d'ADN T7 modifiée

(Sequenase, United States, Biochemical Corporation Clleveland OH) et [α -35S]dATP (Amersham). Les produits des réactions ont été résolus sur des gels de gradients dans un tampon de polyacrylamide à 6%.

Test enzymatique

Les dérivés JH2-2 de E. faecalis ont été cultivés à une densité optique OD₆₀₀ de 0,7 dans un milieu BHI broth complété avec de la spectinomycine (300 µg/ml). Les cellules ont été traitées avec une lysozyme, lysée par sonication et les débris cellulaires ont été centrifugés pendant 45 minutes à 100000g selon la description de Courvalin et al (1978, Antimicrob. Agents Chemother. 13:716-725). La formation de 5-thio-2-nitrobenzoate a été mesurée à 37°C en présence et en l'absence de chloramphénicol et l'activité CAT spécifique a été exprimée en micromole par minute et par milligramme de protéines (Shaw et al, 1975, Methods Enzymol. 43:737-755).

RESULTATS

Les gènes vanH et vanA de pIP816 ont été clonés dans un plasmide pAT79 sous le contrôle du promoteur hétérologue P2 (Caillaud et al, 1987, Mol. Gen. Genet. 207:509-513) et le plasmide pAT86 formé ne conférait pas à la souche E. faecalis JH2-2 la résistance à la vancomycine. Ces gènes ne sont donc pas suffisants pour la synthèse de peptidoglycane en l'absence de l'antibiotique. Différents fragments de restriction de pIP816 ont été clonés dans le vecteur pAT78. Le fragment BglII-XbaI de 5,5 kb de pAT80 est le plus

petit fragment obtenu qui conférait la résistance à la vancomycine.

Séquence nucléotidique des gènes vanR et vans

La séquence de l'insérat dans pAT80 a été déterminée sur les deux brins de l'ADN à partir du site BglII jusqu'au codon d'initiation de traduction ATG de VanH. Deux phases ouvertes de lecture (orf) ont été mises en évidence à l'intérieur de la séquence de 2475 bp : la première phase ouverte de lecture s'étend du nucléotide 386 au nucléotide 1123 ; en position 431 on trouve une séquence caractéristique des séquences RBS de bactéries gram-positives, 6 paires de base en amont du codon d'initiation de traduction ATG (TGAAAGGGTG) ; les autres codons d'initiation de traduction dans cette orf ne sont pas précédés de ce type de séquence. La séquence de 693 bp à partir du codon ATG au niveau 431 jusqu'au codon TAA à la position 1124 est susceptible de coder pour une protéine de 231 acides aminés avec une masse moléculaire de 26,612 Da et qui est désignée par VanR.

Pour la deuxième phase ouverte de lecture (du nucléotide 1089 au nucléotide 2255) la séquence d'acides aminés déduite à partir du premier codon d'initiation en phase (TTG en position 1104) coderait pour une protéine de 384 acides aminés ayant une masse moléculaire de 43,847 Da et désignée par VanS. Les codons TTG en position 1116 et ATG en position 1164 sont des codons d'initiation de traduction en phase précédée par des séquences avec une faible complémentarité avec la terminaison 3'OH de la sous-unité 16S de l'ARN de B. subtilis (GGGGGGTTGG-N8-TTG et AGAACGAAAA-N6-ATG respectivement).

Entre le dernier codon de vanS et le codon d'initiation de traduction ATG de vanH on remarque une séquence de 217 bp qui contient une séquence inversée répétée de 17 bp. Cette séquence ne fonctionne pas comme un terminateur de transcription fort.

La comparaison des séquences obtenues avec des bases de données a montré que les motifs d'acides aminés conservés identifiés par Stock et al (1989, Microbiol. Rev. 53:450-490) dans le domaine kinase de 16 HPK (Histidine Protein Kinase) étaient détectés dans la partie C-terminale de VanS. VanS présente deux groupes d'acides aminés hydrophobes dans la région N-terminale. Le résidu Histidine 164 de VanS est aligné avec le résidu His216 de PhoR (Makino et al, 1986, J. Mol. Biol. 192:549-556) et His 243 de EnvZ (Comeau et al, 1985, 164:578-584) qui sont des sites présumés d'autophosphorylation chez ces protéines.

De même les acides aminés 1 à 122 de VanR présentent des similitudes avec les domaines effecteurs de régulateurs de réponse RR (Response Regulators). L'acide aspartique 53 de VanR pourrait être un site de phosphorylation puisque ce résidu est aligné avec Asp 57 de Che Y qui est phosphorylé par HPK associé à CheA et correspond à une position invariante dans d'autres protéines de type RR (Stock et al précité). VanR pourrait appartenir à la sous-classe OmpR-PhoB de RR qui active l'initiation de transcription médiée par l'ARN polymérase comportant le facteur σ70S de E.coli (Stock et al précité).

Inactivation par insertion des gènes van

Des cassettes de résistance à la kanamycine insérées dans le groupe de gènes van, dans le plasmide pAT80 ont montré ceci : l'insertion dans vanR supprime la résistance à la vancomycine et au chloramphénicol ; VanR est un activateur de transcription nécessaire pour l'expression des gènes de résistance à la vancomycine. L'inactivation de vanS conduit à une réduction de deux fois la concentration minimale inhibitrice (MIC) de chloramphénicol et à une réduction de trois fois de l'activité CAT spécifique mais la concentration minimale inhibitrice de vancomycine reste inchangée. Donc VanS est nécessaire pour obtenir un fort niveau de transcription des gènes de résistance à la vancomycine bien qu'il ne soit pas requis pour l'expression du phénotype de résistance à la vancomycine.

Des dérivés de pAT80 portant des insertions dans vanH (pAT83), vanA (pAT84) ou dans la région de 1,0 kb en aval de vanA (pAT85), ont permis d'obtenir une résistance au chloramphénicol mais pas à la vancomycine. Ce phénotype dissocié correspond à l'inactivation de gènes codant pour des enzymes qui synthétisent les précurseurs depsipeptidiques nécessaires pour l'assemblage des parois bactériennes en présence de vancomycine.

En aval du gène vanA, on a mis en évidence au niveau d'une séquence de 365 bp après le codon TGA de vanA et avant le site SacII, la présence d'un orf inactivé dans pAT85 et qui contient un codon d'initiation ATG en phase, précédé d'une séquence RBS-like. Cette séquence code pour une protéine nécessaire

à la résistance au glycopeptide, désigné par VanX et qui comprend au maximum 330 acides aminés environ.

Trans-activation de la transcription des gènes van

Le plasmide intégratif pAT89 codant pour VanR et VanS a été introduit dans le chromosome de E. faecalis BM4138. Le plasmide pAT87 portant les gènes vanH, vanA et vanX clonés en amont du gène cat dépourvu de promoteur de pAT78, a conféré la résistance à la vancomycine à cette souche mais pas à E. faecalis JH2-2. Le niveau d'expression du gène cat de pAT87 dans les souches BM4138::pAT89 et JH2-2 a indiqué que VanR active la transcription du gène reporteur localisé à l'extrémité 3' du groupe de gènes van. Des niveaux similaires de synthèse CAT ont été observés pour pAT88 qui porte une fusion de transcription entre les parties 5' de vanA et le gène cat. Ces résultats montrent que dans E. faecalis BM4138::pAT89 (pAT87) VanR et VanS codés par le chromosome activent en trans la transcription de vanA, vanH et vanX de pAT87 permettant l'obtention d'une résistance à la vancomycine.

On a par ailleurs remarqué que l'expression du gène était essentiellement constitutive lorsque vanR et vanS étaient portés par un plasmide multicopie pAT80 et faiblement inducible par la vancomycine lorsque les gènes pour les protéines de régulation étaient présents sur le chromosome de l'hôte.

III- Caractérisation d la séquence du gène vanC
d'Entrococcus gallinarum BM4174

Définition et utilisation d'amorces universelles pour l'amplification de gènes codant pour des ligases D-Ala-D-Ala et des protéines apparentées impliquées dans la résistance à la vancomycine

La protéine VanA nécessaire à l'expression d'un haut niveau de résistance aux glycopeptides dans E. faecium BM4147 partage environ 28 à 36% de similitude en acides aminés avec les ligases D-Ala-D-Ala de E.coli mais possède une spécificité de substrats différente de celle de ces ligases. Des peptides désignés par 1 et 2 qui sont conservés dans les séquences des ligases DdlA et DdlB (Zawadzke, 1991 Biochemistry 30:1673-1682) de E.coli et dans la protéine VanA ont été sélectionnés pour synthétiser les amorces universelles destinées à amplifier des fragments internes de gènes codant pour des D-Ala-D-Ala ligases ou enzymes apparentées. Les peptides cibles GEDG(S/T) (I/L)QG et NT(I/L)PGFT ont été traduits en retour comme le montre la figure IV.1, pour obtenir des oligonucléotides dégénérés V1 et V2. Comme les peptides 1 et 2 de VanA, DdlA et DdlB sont séparés par des séquences d'acides aminés de longueur similaire, la taille prédictive pour le produit d'amplification était d'environ 640 bp.

Une amplification par PCR avec l'ADN de E.coli JM83 et de E. faecium BM4147 a conduit à amplifier des produits correspondant à la taille attendue, qui ont ensuite été purifiés et clonés dans le bactériophage M13mp10 (Norlander et al, 1983, Gene 26:101-106). Le séquençage de l'insérat obtenu avec E.coli JM83 a

indiqué que le produit de PCR était un fragment interne de ddIA. Une sonde générée à partir d'un phage recombinant obtenu avec le fragment d'amplification de BM4147 a été utilisée pour l'analyse Southern d'un ADN de BM4147 et de BM4147-1 qui est un dérivé de BM4147 sensible à la vancomycine et qui est dépourvu du plasmide pIP816 (Leclercq et al, 1988, N. Engl. J. Med. 319:157-161). La sonde hybridaient avec le fragment d'ADN EcoRI de 4 kb de BM4147 mais pas avec l'ADN de E. faecium BM4147-1. Comme le gène vanA est porté par le fragment EcoRI de 4 kb de pIP816, ces résultats indiquent que les amorces permettent également l'amplification d'une partie de vanA. Ainsi les oligonucléotides V1 et V2 peuvent amplifier des fragments de gènes codant pour des différentes protéines apparentées aux D-Ala-D-Ala ligases, et ce dans des espèces différentes.

Amplification, clonage et séquençage du gène vanC

Une amplification par PCR a été réalisée sur l'ADN total de E. gallinarum BM4174 et le produit d'amplification obtenu, d'environ 640 bp a été cloné dans le bactériophage M13mp10. L'ADN simple brin isolé à partir du phage recombinant a été utilisé pour construire une sonde C (Hu et al, 1982, Gene 17:2171-2177). En analyse Southern la sonde hybridaient avec un fragment PstI de 1,7 kb de BM4174 mais pas avec l'ADN de BM4147 et BM4147-1.

L'ADN de BM4174 a été digéré avec PstI et des fragments de 1,5 et 2 kb ont été purifiés par électrophorèse sur gel d'agarose et clonés dans pUC18 (Norlander et al, 1983, précité). Les plasmides recombinants ont été introduits dans E.coli JM83 par

transformation et criblés par hybridation sur colonies (Sambrook et al, 1989, Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) en utilisant la sonde C. Une homologie a été détectée avec un transformant hébergeant un plasmide, appelé pAT216, qui contenait un insérat PstI de 1,7 kb. La séquence de la partie de 1347 bp SacI-PstI de l'insérat de pAT216 a été mise en évidence sur les deux brins d'ADN. La localisation des codons de terminaison dans les trois cadres de lecture de chaque brin d'ADN a révélé la présence d'une phase ORF localisée entre les codons TGA aux positions 47 et 1244. Le codon d'initiation de transcription ATG en position 215 est précédé par une séquence GAAAGGAAGA caractéristique des séquences RBS complémentaire de l'ARN de la sous-unité 16S de B. subtilis (Moran et al, 1982, Mol. Gen. Genet. 186:339-346). La séquence de 1029 bp qui s'étend du codon ATG en position 215 au codon TGA en position 1244 pourrait coder une protéine de 343 acides aminés ayant une masse moléculaire calculée de 37504Da désignée par VanC. Une similitude de séquence a été détectée entre VanC, VanA et les ligases D-Ala-D-Ala de E.coli. En particulier quatre domaines de forte homologie préalablement trouvés entre VanA et les D-Ala-D-Ala ligases d'entérobactéries sont également présents dans VanC. Le pourcentage d'acides aminés identiques calculé pour ces protéines prises deux à deux était entre 29 et 38%. L'alignement des quatre séquences a révélé la présence de 57 acides aminés invariants qui incluent les résidus conservés des peptides 1 et 2 utilisés pour définir les sondes oligonucléotidiques V1 et V2.

Inactivation par insertion du gène vanC

Pour évaluer la contribution de vanC à la résistance à la vancomycine chez E. gallinarum BM4174, le gène vanC a été inactivé par insertion. Un fragment de 690 bp EcoRI-HincII, interne à vanC a été cloné dans pAT114 qui ne se réplique pas dans les bactéries gram-positives. Le plasmide pAT217 résultant a été introduit dans BM4174 par électrotransformation (Cruz-Rodz et al., 1990, Mol. Gen. Genet. 224:152-154) et les clones supposés résulter d'une recombinaison homologue conduisant à l'intégration de pAT217 dans vanC ont été sélectionnés sur de l'érythromycine. Le clone BM4175 a été comparé à BM4174 par hybridation Southern en utilisant la sonde C et aphA-3 spécifique de pAT114. Les deux sondes hybridaient avec le fragment EcoRI de 8,6 kb de BM4175. La sonde C hybridaient avec un fragment de 2,5 kb de BM4174 alors qu'aucun signal n'était observé avec la sonde aphA-3. Les résultats indiquent que le plasmide pAT217 de 6,1 kb était intégré dans le gène vanC. La détermination de la concentration minimum inhibitrice de vancomycine pour BM4174 (16 mg/l) et BM4175 (2 mg/l) a indiqué que l'inactivation par insertion dans vanC abolit la résistance à la vancomycine.

VanC est donc requise pour la résistance à la vancomycine. On peut donc penser que cette protéine synthétise un dipeptide ou un depsipeptide qui est incorporé dans les précurseurs de peptidoglycane et n'est pas reconnu par la vancomycine.

Les séquences qui font l'objet de l'invention sont données dans les pages suivantes après la liste des séquences contenant la description de ces séquences.

52

Dans la liste des séquences, les protéines sont repérées par rapport à la position des bases nucléotidiques correspondant aux acides aminés des extrémités des protéines.

List d'sequences

(contenues dans les séquences I (Ia, Ib), II présentées ci-après ou dans la séquence de la figure 5).

Séquences d'acides aminés

SEQ ID NO 1 (VanH) : séquence de la première protéine de résistance, correspondant à la séquence d'acides aminés de la phase de lecture ouverte n° 3, commençant à la base 3501 et se terminant à la base 4529, contenant la séquence codante du gène vanH entre les bases 3564 et 4529, par rapport à la séquence de la figure 5 ou correspondant à la séquence entre les positions des nucléotides 6018 et 6983 de la séquence Ia.

SEQ ID NO 2 (VanA) : séquence de la protéine VanA, correspondant à la séquence d'acides aminés de la phase de lecture ouverte n°1, commençant à la base 4429 et se terminant à la base 5553, par rapport à la séquence de la figure 5 ou correspondant à la séquence entre les positions des nucléotides 6977 et 7807 de la séquence Ia.

SEQ ID NO 3 (VanX) : séquence de la troisième protéine de résistance, correspondant à la séquence d'acides aminés de la phase de lecture ouverte n° 3, commençant à la base 5526 et se terminant à la base 6167, par rapport à la séquence de la figure 5 ou correspondant à la séquence entre les positions des nucléotides 7816 et 8621 de la séquence Ia.

SEQ ID NO 4 (VanR) : séquence de la protéine de régulation R, correspondant à la séquence d'acides aminés de la phase de lecture n°1, commençant à la base

1477 et se terminant à la base 2214, par rapport à la séquence de la figure 5 ou correspondant à la séquence entre les positions des nucléotides 3976 et 4668 de la séquence Ia.

SEQ ID NO 5 (VanS) : séquence de la protéine senseur S, correspondant à la séquence d'acides aminés de la phase de lecture ouverte n°2, commençant à la base 2180 et se terminant à la base 3346, par rapport à la séquence de la figure 5 ou correspondant à la séquence entre les positions des nucléotides 4648 et 5800 de la séquence Ia.

SEQ ID NO 16 : séquence de la transposase correspondant aux acides aminés compris entre les nucléotides 150 et 3112 de la séquence Ib.

SEQ ID NO 17 : séquence de la résolvase comprenant les acides aminés situés entre les positions de nucléotides 3187 et 3759 de la séquence Ia.

SEQ ID NO 18 : séquence VanY comprenant les acides aminés situés entre les positions des nucléotides 9046 à 9960 dans la séquence Ia.

SEQ ID NO 19 : séquence VanZ comprenant les acides aminés situés entre les positions des nucléotides 10116 et 10598 dans la séquence Ia.

SEQ ID NO 20 : séquence VanC d'acides aminés représentée sur la liste II.

- Séquences nucléotidiques

SEQ ID NO 6 : séquence nucléotidique contenant la séquence codant pour les 5 protéines, ainsi que les séquences flanquantes, représentée à la figure 5.

SEQ ID NO 7 : séquence contenant la séquence codant pour les 3 protéines de résistance, ainsi que les séquences flanquantes et commençant à la base 3501 et se terminant à la base 6167, représentée à la figure 5.

SEQ ID NO 8 : séquence du gène van A, commençant à la base 4429 et se terminant à la base 5553, de la séquence présentée à la figure 5, ou correspondant à la séquence nucléotidique située entre les nucléotides 6977 et 7807 de la séquence Ia.

SEQ ID NO 9 : séquence codant pour la première protéine de résistance appelée VanH, commençant à la base 3501 et se terminant à la base 4529, en particulier la séquence vanH dont la séquence codante est localisée entre les bases 3564 et 4529, de la séquence présentée à la figure 5, ou correspondant à la séquence nucléotidique située entre les nucléotides 6018 et 6983 de la séquence Ia.

SEQ ID NO 10 : séquence codant pour la troisième protéine de résistance VanX, commençant à la base 5526 et se terminant à la base 6167, de la séquence présentée à la figure 5, ou correspondant à la séquence nucléotidique située entre les nucléotides 7816 et 8621 de la séquence Ia.

SEQ ID NO 11 : séquence du transposon codant pour la transposase, la résolvase, VanR, VanS, VanH, VanA, VanX, VanY et VanZ et contenant la séquence inversée

répétée de 38 pb à ses extrémités N- et C-terminales, et correspondant à la séquence Ia.

SEQ ID NO 12 : séquence codant pour la transposase, commençant à la base 150 et se terminant à la base 3112 de la séquence Ib.

SEQ ID NO 13 : séquence codant pour la résolvase, commençant à la base 3187 et se terminant à la base 3759 de la séquence Ia.

SEQ ID NO 14 : séquence codant pour VanY commençant à la base 9046 et se terminant à la base 9960 de la séquence Ia.

SEQ ID NO 15 : séquence codant pour VanZ commençant à la base 10116 et se terminant à la base 10598 de la séquence Ia.

SEQ ID NO 21 : séquence codant pour VanC, représentée sur la liste II en correspondance avec la protéine VanC.

SEQ ID NO 22 : séquence complète Ia du transposon de E. faecium commençant à la base 1 et se terminant à la base 10851.

SEQ ID NO 23 : séquence codant pour la protéine VanR, commençant à la base 3976 et se terminant à la base 4668 de la séquence Ia.

SEQ ID NO 24 : séquence codant pour la protéine Vans, commençant à la base 4648 et se terminant à la base 5800 de la séquence Ia.

I. Séquence nucléotidique du transposon et traduction.

Ia. brin "+"

1 GGG GTA GCG TCA GGA AAA TGC GGA TTT ACA ACG CTA AGC CTA TTT TCC TGA CGA ATC CCT
 61 CGT TTT TAA CAA CGT TAA GAA AGT TTT AGT GGT CTT AAA GAA TTT AAT GAG ACT ACT TTC
 121 TCT GAG TTA AAA TGG TAT TCT CCT AGT AAA TTA ATA TGT TCC CAA CCT AAG GGC GAC ATA
 181 TGG TGT AAC AAA TCT TCA TTA AAG CTA CCT GTC CGT TTT TTA TAT TCA ACT GCT GTT GTT
 241 AGG TGG AGA GTA TTC CAA ATA CTT ATA GCA TGT ATA ATT ATG TTT AAA GCA CTG GCT CTT
 301 TGC AAT TGA TGC TGT ATG GTG CGT TCT CTA AGC TCA CCT TGT TTT CCG AAG AAA ATA GCT
 361 CTT GCC AAT CCA TTC ATG GCT TCT CCT TTA TTC AAT CCT CTT TGT ATT TTT CTT CTT AAT
 421 GAT TCA TCC GAT ATA TAA TTC AAA ATA AAG ATC GTT TTT TCT ATT CGG CCC ATC TCA CGT
 481 AAG GCT GTA GCT AAG CTG TTT TGT CTT GAA TAG GAA CCT AGC TTC CCC ATA ATA AGG GAT
 541 GCT GAA ACT GTT CCC CTT ATA GAA TGA GCT AAT CGC AAA ACA TCC TCA TAA TTT TCT
 601 TTA ATG ACC TTT GTA TTT ATT TGT CCT CGT AAA ATG GCT TCT AGT TTT GGA TAC TCA CTT

FEUILLE DE REMPLACEMENT

GCT TTA TCT ATC GTA AAT AAT TTT GAG TCC GAT AAA TCC CTT ATT CTT GGG GCA AAT TTA
 661
 721 AAT CCT AAT AAA TGA GTC AGT CCG AAT ATT TGG TCA GTG TAA CCG GCA GTG TCT GTA TAA
 781 TGT TCC TCT ATG TTT AGA TCC GTC TCA TGA TGT AAC AAA CCA TCC AAA ACA TGA ATC GCA
 841 TCT CTT GAA TTA GTA ATA ATC ATT GTG TAG TAA GAA GAG AAT TGA TCA CTT GTA AAT
 901 CGG TAG ATG GTG GCT CCT TTT CCA GTT CCA TAA TGT GGA TTT GCA TCT GCA TGT AGT GAT
 961 GAA ACA CCT AGC TGC ATT CTC ATA CCA TCT GAC GAA GAT GTT GTA CCG TCG CCC CAA TAG
 1021 AAA GGC AAT TGT AAT TTA TGA TGA AAG TTT ACT ATT ATG GCT TGG GCT TTA TTC ATG GCA
 1081 TCT TCA TAC ATG CGC CAT TGA GAT ACA TTG GCT AGT TGC TTA TAT GTA AGT CCG GGT GTG
 1141 GCT TCG GCC ATC TTG CTC MAG CCA ATA TTC ATT CCC ATT CCT AAA AGG GCA GCC ATG ATA
 1201 ATG ATT GTT TCT TCC TTA TCT GGT TTT CGA TTA TTG GAA GCA TGA GTG AAT TGC TCA TGA
 1261 AAT CCT GTT ATA TGG GCC ACA TCC ATG AGT AAA TCA GTT AAT TTT ATT CTT GGT AGC ATC
 1321 TGA TAA AGG CTT GCA CTA AAT TTT GCT TCT GGA ACA TCT TTT TCT AAG CGT GCA
 1381 AGT GAT AGC TTT CCT TTT TCA AGA GAA ACC CCA TCT AAC TTA TTG GAA TTG GCA GCT AAC
 1441 CAC TTT AAC CTT TCA TTA AAG CTG CTG GTT CTC TCC GTT ATA TAA TCT TCG AAT GAT AAA

FEUILLE DE REMPLACEMENT

1501 CTA ACT GAT AAT CTC GTC TTC CCC TCC GAT TGA TTC CAT GTA TCT TCC GAA AAC AAC AAA TAT
1561 TCC TCA AAA TCC CTA TAT TGT CTG CTG CCA ACA ATG GAA ACA TCT CCT GCC CGC CGA ACA TGC
1621 TCC CGA AGT TCT GTT AAA ACA GCC ATT TCA TAG TAA TGA CGA TTA ATT GTT GTA CCA TCA
1681 TCC TCG TAT AAA TGT CTT TTC CAT CGT TTT GAA ATA AAA TCC ACA GGT GAG TCA TCA GGC
1741 ACT TTT CGC TTT CCA GAT TCG TTC ATT CCT CGG ATA ATC TCA ACA GCT TGT AAA AGT GGC
1801 TCA TTT GCC TTT GTA GAA TGA AAT TCC AAT ACT CTT AAT AGC GTT GGC GTA TAT TTT CTT
1861 AGT GAA TAA AAC CGT TTT TGC AGT AAG TCT AAA TAA TCA TAG TCG GCA GGA CGT GCA AGT
1921 TCC TGA GCC TCT TCT ACT GAA GAG ACA AAG GTA TTC CAT TCA ATA ACC GAT TCT AAA ACC
1981 TTA AAA ACG TCT AAT TTT TCC TCT CTT GCT TTA ATT AAT GCT TGT CCG ATG TTC GTA AAG
2041 TGT ATA ACT TTC TCA TTT AGC TTT TTA CCG TTT TGT TTC TGG ATT TCC TCT TGA GCC TTA
2101 CGA CCT TTT GAT AAC AAA CTA AGT ATT TGC CTA TCA TGA ATT, TCA AAC GCT TTA TCC GTT
2161 AGC TCC TGA GTC AGT TGT AAT AAA TAG ATG GTT ATT ATC GAA TAA CGT TTA TTT TCT TGA
2221 AAG TCA CGG AAT GCA TAC GGC TCG TAT GAG CCT AAG CGA GAC AGC TGC AAC AGG CGG
2281 TTA CGG TGC AAA TGA CTA ATT TGC ACT GTT TCT AAA TCC ATT CCT CGT ATG TAT TCG AGT
2341 CGT TCT ATT ATT TTT AGA AAA GTT TCG GGT GAA GGA TGA CCC GGT GGC TCT TTT AAC CAA

2401 CCC AAT ATC GTT TTA TTG GAT TCG GAT GGA TGC TGC GAG GTA ATA ATC CCT TCA AGC TTT
2461 TCT TTT TGC TCA TTT GTT AGA GAT TTA CTA ACC GTC TAA AAT AGC TTC TTT TCA GCC ATT
2521 GCC CTT GCT TCC CAC ACC ATT CTT TCA AGT GTA GTG ATA GCA GGC AGT ATA ATT TTG TTT
2581 TTT CTT AGA AAA TCT ATG CAT TCA TGC AGT AGA TGA ATG GCA TCA CCA TTT TCC AAA GCT
2641 AAT TGA TGA AGG TAC TTA AAT GTC ATT CGA TAT TCA CTC AGG GTA AAA GTT ACA AAG TCG
2701 TAT TCA CTT CGA ATT TCT TTC AAA TGA TCC CAA AGT GTA TTT TCC CTT TGA GGA TAA TGA
2761 TCA AGC GAG GAT GGA CTA ACA CCA ATC TTC GAT ATA TAT TGT ATG ACC GAA TCT GGG
2821 ATG CTT TTG ATA TGA GTG TAT GGC CAA CCG GGA TAC CGA AGA ACA GCA GCT AAT TGA ACA GCA
2881 AAT CCT AAA CGG TTT TCT TCC CTC CTT CGC TTA TTA ACT ATT TCT AAA TCC CGT TTG GAA
2941 AAA GTG AAG TAG GTC CCC AGT ATC CAT TCA TCT TCA GGG ATT TGC ATA AAA GCC TGT CTC
3001 TGT TCC GGT GTA AGC AAT TCT CTA CCT CTC GCA ATT TTC ATT CAG TAT CAT TCC ATT TCT
3061 GTA TTT TCA ATT TAT TAG TTC AAT TAT ATA TCA ATA GAG TGT ACT CTA TTG ATA CAA ATG
3121 TAG TAG ACT GAT AAA ATC ATA GTT AAG AGC GTC TCA TAA GAC TTG TCT CAA AAA TGA GGT

60

FEUILLE DE REMPLACEMENT

3181 résolvase ARG VAL SER THR ASN GLN ASN PRO SER ARG
 LEU ARG LYS ILE GLY TYR ILE ARG VAL SER SER THR ASN GLN ASN PRO SER ARG
 GAT ATT TTG CGG AAA ATC GGT TAT ATT CGT GTC AGT TCG ACT AAC CAG AAT CCT TCA AGA
 3241 GLN PHE GLN GLN LEU ASN GLU ILE GLY MET ASP ILE ILE TYR GLU GLU LYS VAL SER GLY
 CAA TTT CAG CAG TTG AAC GAG ATC GGA ATG GAT ATT ATA TAT GAA GAG AAA GTT TCA GGA
 3301 GCA ACA AAG GAT CGC GAG CAA CTT CAA AAA GTG TTA GAC GAT TTA CAG GAA GAT GAC ATC
 GCA ACA AAG GAT CGC GAG CAA CTT CAA AAA GTG TTA GAC GAT TTA CAG GAA GAT GAC ATC
 3361 ILE THR VAL THR ASP LEU THR ARG ILE THR ARG SER THR GLN ASP LEU PHE GLU LEU ILE
 ATT TAT GTT ACA GAC TTA ACT CGA ATC ACT CGT AGT ACA CAA GAT CTA TTT GAA TTA ATC
 3421 ASP ASN ILE ARG ASP LYS ALA SER LEU LYS SER LEU LYS ASP THR TRP LEU ASP LEU
 GAT AAC ATA CGA GAT AAA AAG GCA AGT TTA AAA TCA CTA AAA GAT ACA TGG CTT GAT TTA
 3481 SER GLU ASP ASN PRO TYR SER GLN PHE LEU ILE THR VAL MET ALA GLY VAL ASN GLN LEU
 TCA GAA GAT AAT CCA TAC AGC CAA TTC TTA ATT ACT GTA ATG GCT GGT GTT AAC CAA TTA
 3541 GLU ARG ASP LEU ILE ARG MET ARG GLN ARG GLU GLY ILE GLU LEU ALA LYS LYS GLU GLY
 GAG CGA GAT CTT ATT CGG ATG AGA CAA CGT GAA GGG ATT GAA TTG GCT AAG AAA GAA GGA
 3601 LYS PHE LYS GLY ARG LEU LYS TYR HIS LYS ASN HIS ALA GLY MET ASN TYR ALA VAL
 AAG TTT AAA GGT CGA TTA AAG AAG TAT CAT AAA AAT CAC GCA GGA ATG AAT TAT GCC GTA
 3661 LYS LEU TYR LYS GLU GLY ASN MET THR VAL ASN GLN ILE CYS GLU ILE THR ASN VAL SER
 AAG CTA TAT AAA GAA GGA AAT ATG ACT GTA AAT CAA ATT TGT GAA ATT ACT AAT GTA TCT
 3721 ARG ALA SER LEU TYR ARG LYS LEU SER GLU VAL ASN ASN
 AGG GCT TCA TTA TAC AGG AAA TTA TCA GAA GTG AAT AAT TAG CCA TTC TGT ATT CCG CTA

3781 ATG GGC AAT ATT TTT AAA GAA GAA AAG GAA ACT ATA AAA TAT TAA CAG CCT CCT AGC GAT
 3841 GCC GAA AAG CCC TTT GAT AAA AAA AGA ATC ATC ATC TTA AGA AAT TCT TAG TCA TTT ATT
 3901 ATG TAA ATG CTT ATA AAT TCG GCC CTA TAA TCT GAT AAA TTA TTA AGG GCA AAC TTA TGT
 3961 Val MET SER ASP LYS ILE LEU ILE VAL ASP ASP GLU HIS GLU ILE ALA
 GAA AGG GTG ATA ACT ATG AGC GAT AAA ATA CTT ATT GTG GAT GAA CAT GAA ATT GCC
 4021 ASP LEU VAL GLU LEU TYR LEU LYS ASN GLU ASN TYR THR VAL PHE LYS TYR TYR THR ALA
 GAT TTG GTT GAA TTA TAC TTA AAA AAC GAG AAT TAT ACG GTT TTC AAA TAC TAT ACC GCC
 4081 LYS GLU ALA LEU GLU CYS ILE ASP LYS SER GLU ILE ASP LEU ALA ILE LEU ASP ILE MET
 AAA GAA GCA TTG GAA TGT ATA GAC AAG TCT GAG ATT GAC CTT GCC ATA TTG GAC ATC ATG
 4141 LEU PRO GLY THR SER GLY LEU THR ILE CYS GLN LYS ILE ARG ASP LYS HIS THR TYR PRO
 CTT CCC GGC ACA AGC GGC CTT ACT ATC TGT CAA AAA ATA AGG GAC AAG CAC ACC TAT CCG
 4201 ILE ILE MET LEU THR GLY LYS ASP THR GLU VAL ASP LYS ILE THR GLY LEU THR ILE GLY
 ATT ATC ATG CTG ACC GGG AAA GAT ACA GAG GTA GAT AAA ATT ACA GGG TTA ACA ATC ATC GGC
 4261 ALA ASP ASP TYR ILE THR LYS PRO PHE ARG PRO LEU GLU LEU ILE ALA ARG VAL LYS ALA
 GCG GAT GAT TAT ATA ACG AAG CCC TTT CGC CCA CTG GAG TTA ATT GCT CGG GTA AAG GCC
 4321 GLN LEU ARG ARG TYR LYS LYS PHE SER GLY VAL LYS GLN ASN GLU ASN VAL ILE VAL
 CAG TTG CGC CGA CGA TAC AAA AAA TTC AGT GGA GTA AAG GAG CAG AAC GAA ATT GTT ATC GTC

62

FEUILLE DE REMplacement

4381 HIS SER GLY LEU VAL ILE ASN VAL ASN THR HIS GLU CYS TYR LEU ASN GLU LYS GLN LEU
 CAC TCC GGC CTT GTC ATT AAT GTT AAC ACC CAT GAG TGT TAT CTG AAC 'GAG AAG CAG TTA
 4441 SER LEU THR PRO THR GLU PHE SER ILE LEU ARG ILE LEU CYS GLU ASN LYS GLY ASN VAL
 TCC CTT ACT CCC ACC GAG TTT TCA ATA CTG CGA ATC CTC TGT GAA AAC AAG GGG AAT GTG
 4501 VAL SER SER GLU LEU LEU PHE HIS GLU ILE TRP GLY ASP GLU TYR PHE SER LYS SER ASN
 GTT AGC TCC GAG CTG CTA TTT CAT GAG ATA TGG GGC GAC GAA TAT TTC AGC AAG AGC AAC
 4561 ASN THR ILE THR VAL HIS ILE ARG HIS LEU ARG GLU LYS MET ASN ASP THR ILE ASP ASN
 AAC ACC ATC ACC GTG CAT ATC CGG CAT TTG CGC GAA AAA ATG AAC GAC ACC ATT GAT AAT
 4621 PRO LYS TYR ILE LYS THR VAL TRP GLY VAL GLY TYR LYS ILE GLULULYS
 CCG AAA TAT ATA AAA ACG GTA TGG GGG GTT GGT TATAATTGAAAAAT AAA AAA AAC GAC
 Vans LEUVALLILELYSLEULYSASN LYS LYS ASN ASP

4682 TYR SER LYS LEU GLU ARG LYS LEU TYR MET TYR ILE VAL ALA ILE VAL VAL ALA ILE
 TAT TCC AAA CTA GAA CGA AAA CTT TAC ATG TAT ATC GTT GCA ATT GTT GTG GTA GCA ATT
 4742 VAL PHE VAL LEU TYR ILE ARG SER MET ILE ARG GLY LYS LEU GLY ASP TRP ILE LEU SER
 GTA TTC GTG TTG TAT ATT CGT TCA ATG ATC CGA GGG AAA CTT GGG GAT TGG ATC TTA AGT
 4802 ILE LEU GLU ASN LYS TYR ASP LEU ASN HIS LEU ASP ALA MET LYS LEU TYR GLN TYR SER
 ATT TTG GAA AAC AAA TAT GAC TTA ATT CAC CTG GAC GCG ATG AAA TTA TAT CAA TAT TCC

4862 ILE ARG ASN ASN ILE ASP ILE PHE ILE TYR VAL ALA ILE SER ILE LEU ILE LEU
 ATA CGG AAC AAT ATA GAT ATC ATT TAT GTG GCG ATT GTC ATT AGT ATT CTT ATT CTA

4922 CYS ARG VAL MET LEU SER LYS PHE ALA LYS THR GLU ILE ASN THR GLY ILE ASP
 TGT CGC GTC ATG CTT TCA AAA TTC GCA AAA TAC TTT GAC GAG ATA AAT ACC GGC ATT GAT

FEUILLE DE REMPLACEMENT

VAL LEU ILE GLN ASN GLU ASP LYS GLN ILE GLU LEU SER ALA GLU MET ASP VAL MET GLU
 GTA CTT ATT CAG AAC GAA GAT AAA CAA ATT GAG CTT TCT GCG GAA ATG GAT GTT ATG GAA
 5042
 GLN LYS LEU ASN THR LEU LYS ARG THR LEU GLU LYS ARG GLU GLN ASP ALA LYS LEU ALA
 CAA AAG CTC AAC ACA TTA AAA CGG ACT CTG GAA AAG CGA GAG CAG GAT GCA AAG CTG GCC
 5102
 GLU GLN ARG LYS ASN ASP VAL VAL MET TYR LEU ALA HIS ASP ILE LYS THR PRO LEU THR
 GAA CAA AGA AAA AAT GAC GTT ATT TAC TTG GCG CAC GAT ATT AAA ACG CCC CTT ACA
 5162
 SER ILE ILE GLY TYR LEU SER LEU LEU ASP GLU ALA PRO ASP MET PRO VAL ASP GLN LYS
 TCC ATT ATC GGT TAT TTG AGC CTG CTT GAC GAG GCT CCA GAC ATG CCG GTA GAT CAA AAG
 5222
 ALA LYS TYR VAL HIS ILE THR LEU ASP LYS ALA TYR ARG LEU GLU GLN LEU ILE ASP GLU
 GCA AAG TAT GTG CAT ATC ACG TTG GAC AAA GCG TAT CGA CTC GAA CAG CTA ATC GAC GAG
 5282
 PHE PHE GLU ILE THR ARG TYR ASN LEU GLN THR ILE THR LEU THR LYS THR HIS ILE ASP
 TTT TTT GAG ATT ACA CGG TAT AAC CAA ACG ATA ACG CTA ACA AAA ACG CAC ATA GAC
 5342
 LEU TYR TYR MET LEU VAL GLN MET THR ASP GLU PHE TYR PRO GLN LEU SER ALA HIS GLY
 CTA TAC TAT ATG CTG GTG CAG ATT ACC GAT GAA ATT TAT CCT CAG CTT TCC GCA CAT GGA
 5402
 LYS GLN ALA VAL ILE HIS ALA PRO GLU ASP LEU THR VAL SER GLY ASP PRO ASP LYS LEU
 AAA CAG GCG GTT ATT CAC GCC CCC CAG GAT CTG ACC GTG TCC GGC GAC CCT GAT AAA CTC
 5462
 ALA ARG VAL PHE ASN ASN ILE LEU LYS ASN ALA ALA ALA TYR SER GLU ASP ASN SER ILE
 GCG AGA GTC TTT AAC AAC ATT TTG AAA AAC GCC GCT GCA TAC AGT GAG GAT AAC AGC ATC

5522 ILE ASP ILE THR ALA GLY LEU SER GLY ASP VAL VAL SER ILE GLU PHE LYS ASN THR GLY
 ATT GAC ATT ACC GCG GGC CTC TCC GGG GAT GTG GTG TCA ATC GAA TTC AAG AAC ACT GGA
 5582 SER ILE PRO LYS ASP LYS LEU ALA ALA ILE PHE GLU LYS PHE TYR ARG LEU ASP ASN ALA
 AGC ATC CCA AAA GAT AAG CTA GCT GCC ATA TTT GAA AAG TTC TAT AGG CTG GAC AAT GCT
 5642 ARG SER SER ASP THR GLY GLY ALA GLY LEU GLY LEU ALA ILE ALA LYS GLU ILE ILE VAL
 CGT TCT TCC GAT ACG GGT GGC GCG GGA CTT GGA TTG GCG ATT GCA AAA GAA ATT ATT GTT
 5702 GLN HIS GLY GLY GLN ILE TYR ALA GLU SER ASN ASP ASN TYR THR PHE ARG VAL GLU
 CAG CAT GGA GGG CAG ATT TAC GCG GAA AGC AAT GAT AAC TAT ACG ACG TTT AGG GTA GAG
 5762 LEU PRO ALA MET PRO ASP LEU VAL ASP LYS ARG ARG SER
 CTT CCA GCG ATG CCA GAC TTG GTT GAT AAA AGG AGG TCC TAA GA GAT GTA TAT ATT TTT
 5821 TTA GGA AAA TCT CAA GGT TAT CTT TAC TTT TTC TTA GGA AAT TAA CAA TTT ATT ATT AAG
 5881 AAA CGG CTC GTT CTT ACA CGG TAG ACT TAA TAC CGT AAG AAC GAG CCG TTT TCG TTC TTC
 5941 AGA GAA AGA TTT GAC AAG ATT ACC ATT GGC ATC CCC GTT TTA TTT GGT GCC TTT CAC AGA
 6001

VanH MET ASN ASN ILE GLY ILE THR VAL TYR GLY CYS GLU GLN ASP GLU
 AAGGGTGG TCT TAA TT ATG AAT AAC ATC GGC ATT ACT GTT TAT GGA TGT GAG CAG GAT GAG
 6063 ALA ASP ALA PHE HIS ALA LEU SER PRO ARG PHE GLY VAL MET ALA THR ILE ILE ASN ALA
 GCA GAT GCA TTC CAT GCT CTT TCG CCT CGC GTT GGC ATT GCA ACG ATA ATT AAC GCC

FEUILLE DE REMPLACEMENT

6123 ASN VAL SER GLU SER ASN ALA LYS SER ALA PRO PHE ASN GLN CYS ILE SER VAL GLY HIS
 AAC GTG TCG GAA TCC AAC GCC AAA TCC CCT TTC AAT CAA TGT ATC AGT GTG GGA CAT
 6183 LYS SER GLU ILE SER ALA SER ILE LEU ALA LEU LYS ARG ALA GLY VAL LYS TYR ILE
 AAA TCA GAG ATT TCC GCC TCT ATT CTT CTT GCG CTG AAG AGA GCC GGT GTG AAA TAT ATT
 6243 SER THR ARG SER ILE GLY CYS ASN HIS ILE ASP THR THR ALA ALA LYS ARG MET GLY ILE
 TCT ACC CGA AGC ATC GGC TGC AAT CAT ATA GAT ACA ACT GCT GCT AAG AGA ATG GGC ATC
 6303 THR VAL ASP ASN VAL ALA TYR SER PRO ASP SER VAL ALA ASP TYR THR MET MET LEU ILE
 ACT GTC GAC AAT GTG GCG TAC TCG CCG GAT AGC GTC GCC GAT TAT ACT ATG ATG CTA ATT
 6363 LEU MET ALA VAL ARG ASN VAL LYS SER ILE VAL ARG SER VAL GLU LYS HIS ASP PHE ARG
 CTT ATG GCA GTA CGC AAC GTA AAA TCG ATT GTG CCG TCT GTG GAA AAA CAT GAT TTC AGG
 6423 LEU ASP SER ASP ARG GLY LYS VAL LEU SER ASP MET THR VAL GLY VAL VAL GLY THR GLY
 TTG GAC AGC GAC CGT GGC AAG GTA CTC AGC GAC ATG ACA GTT GGT GTG GGA AGC GGC
 6483 GLN ILE GLY LYS ALA VAL ILE GLU ARG LEU ARG GLY PHE GLY CYS LYS VAL LEU ALA TYR
 CAG ATA GGC AAA GCG GTT ATT GAG CGG CTG CGA GGA TTT GGA TGT AAA GTG TTG GCT ATT
 6543 SER ARG SER ARG SER ILE GLU VAL ASN TYR VAL PRO PHE ASP GLU LEU LEU GLN ASN SER
 AGT CGC AGC CGA AGT ATA GAG GTA AAC TAT GTA CCG TTT GAT GAG TTG CTG CAA AAT AGC
 6603 ASP ILE VAL THR LEU HIS VAL PRO LEU ASN THR HIS TYR ILE ILE SER HIS GLU
 GAT ATC GTT ACG CTT CAT GTG CCG CTC AAT ACG GAT ACG CAC TAT ATT ATC AGC CAC GAA
 6663 GLN ILE GLN ARG MET LYS GLN GLY ALA PHE LEU ILE ASN THR GLY ARG GLY PRO LEU VAL
 CAA ATA CAG AGA ATG AAG CAA GCA TTT CTT ATC AAT ACT GGG CGC GGT CCA CTT GTA

FEUILLE DE REMPLACEMENT

6723 ASP THR TYR GLU LEU VAL LYS ALA LEU GLU ASN GLY LYS LEU GLY GLY ALA ALA LEU ASP
 GAT ACC TAT GAG TTG GAA AAA GCA TTA GAA AAC GGG AAA CTG GGC GGT GCC GCA TTG GAT
 6783 VAL LEU GLU GLY GLU GLU PHE PHE TYR SER ASP CYS THR GLN LYS PRO ILE ASP ASN
 GTA TTG GAA GGA GAG GAA GAG TTT TTC TAC TCT GAT TGC ACC CAA AAA CCA ATT GAT ATT
 6843 GLN PHE LEU LEU LYS LEU GLN ARG MET PRO ASN VAL ILE THR PRO HIS THR ALA TYR
 CAA TTT TTA CTT AAA CTT CAA AGA ATG CCT AAC GTG ATA ATC ACA CCG CAT ACG GCC TAT
 6903 TYR THR GLU GLN ALA LEU ARG ASP THR VAL GLU LYS THR ILE LYS ASN CYS LEU ASP PHE
 TAT ACC GAG CAA GCG TTG CGT GAT ACC GTT GAA AAA ACC ATT AAA AAC TGT TTG GAT TTT
 6963 VanA METASN ARG ILE LYS VAL ALA ILE LEU PHE GLY GLY CYS SER
 GAA AGG AGA CAG GAG CATGAAT AGA ATA AAA GTT GCA ATA CTG TTT GGG GGT TGC TCA
 GLU ARG ARG GLN GLU HISGLU
 7021 GLU GLU HIS ASP VAL SER VAL LYS SER ALA ILE GLU ILE ALA ALA ASN ILE ASN LYS GLU
 GAG GAG CAT GAC GTA TCG GTA AAA TCT GCA ATA GAG ATA GAG ATA GCA ATT AAC ATT AAA GAA
 7081 LYS TYR GLU PRO LEU TYR ILE GLY ILE THR LYS SER GLY VAL TRP LYS MET CYS GLU LYS
 AAA TAC GAG CCG TTA TAC ATT GGA ATT ACG AAA TCT GGT GTA TGG AAA ATG TGC GAA AAA
 7141 PRO CYS ALA GLU TRP GLU ASN ASP ASN CYS TYR SER ALA VAL LEU SER PRO ASP LYS LYS
 CCT TGC GCG GAA TGG GAA AAC GAC AAT TGC TAT TCA GCT GTA CTC TCG CCG GAT AAA AAA
 7201 MET HIS GLY LEU LEU VAL LYS LYS ASN HIS GLU TYR GLU ILE ASN HIS VAL ASP VAL ALA
 ATG CAC GGA TTA CTT GTT AAA AAG AAC CAT GAA TAT GAA ATC AAC CAT GTT GAT GTA GCA

FEUILLE DE REMPLACEMENT

PHE SER ALA LEU HIS GLY LYS SER GLY GLU ASP GLY SER ILE GLN GLY LEU PHE GLU LEU
 7261 TTT TCA GCT TTG CAT GGC AAG TCA GGT GAA GAT GGA TCC ATA CAA GGT CTG TTT GAA TTG
 7321 SER GLY ILE PRO PHE VAL GLY CYS ASP ILE GLN SER SER ALA ILE CYS MET ASP LYS SER
 TCC GGT ATC CCT TTT GTA GGC TGC GAT ATT CAA AGC TCA GCA ATT TGT ATG GAC AAA TCG
 7381 LEU THR TYR ILE VAL ALA LYS ASN ALA GLY ILE ALA THR PRO ALA PHE TRP VAL ILE ASN
 TTG ACA TAC ATC GTT GCG AAA AAT GCT GGG ATA GCT ACT CCC GCC TTT TGG GTT ATT AAT
 7441 LYS ASP ASP ARG PRO VAL ALA ALA THR PHE THR TYR PRO VAL PHE VAL LYS PRO ALA ARG
 AAA GAT GAT AGG CCG GTG GCA GCT ACG TTT ACC TAT CCT GTC ATT CCG TAC GCA ATT
 7501 SER GLY SER SER PHE GLY VAL LYS VAL ASN SER ALA ASP GLU LEU ASP TYR ALA ILE
 TCA GGC TCA TCC TTC GGT GTG AAA AAA GTC AAT AGC GCG GAC GAA TTG GAC TAC GCA ATT
 7561 GLU SER ALA ARG GLN TYR ASP SER LYS ILE LEU ILE GLU GLN ALA VAL SER GLY CYS GLU
 GAA TCG GCA AGA CAA TAT GAC AGC AAA ATC TTA ATT GAG CAG GCT GTC TCG GGC TGT GAG
 7621 VAL GLY CYS ALA VAL LEU GLY ASN SER ALA ALA LEU VAL VAL GLY GLU VAL ASP GLN ILE
 GTC GGT TGT GCG GTC TTG GGA AAC AGT GCC GCG TTA GTT GTC GGC GAG GTG GAC CAA ATC
 7681 ARG LEU GLN TYR GLY ILE PHE ARG ILE HIS GLN GLU VAL GLU PRO GLU LYS GLY SER GLU
 AGG CTG CAG TAC GGA ATC TTT CGT ATT CAT CAG GAA GTC GAG CCG GAA AAA GGC TCT GAA
 7741 ASN ALA VAL ILE THR VAL PRO ALA ASP LEU SER ALA GLU GLU ARG GLY ARG ILE GLN GLU
 AAC GCA GTT ATA ACC GTT CCC GCA GAC CTT TCA GCA GAG GAG CGA CGG ATA CAG GAA
 7801 THR ALA LYS ILE TYR LYS ALA LEU GLY CYS ARG GLY LEU ALA ARG VAL ASP MET PHE
 ACG GCA AAA AAA ATA TAT AAA GCG CTC GGC TGT AGA GGT CTA GCC CGT GTG GAT ATG TTT

FEUILLE DE REMPLACEMENT

7861 LEU GLN ASP ASN GLY ARG ILE VAL LEU ASN GLU VAL ASN THR LEU PRO GLY PHE THR SER
TTA CAA GAT AAC GGC CGC ATT GTA CTG AAC GAA GTC AAT ACT CTG CCC GGT TTC ACG TCA

7921 TYR SER ARG TYR PRO ARG MET MET ALA ALA GLY ILE ALA LEU PRO GLU LEU ILE ASP
TAC AGT CGT TAT CCC CGT ATG ATG GCC GCT GCA GGT ATT GCA CTT CCC GAA CTG ATT GAC

7981 ARG LEU ILE VAL LEU ALA LEU LYS GLY
CGC TTG ATC GTA TTA GCG TTA AAG GGG TGATAAGC ATG GAA ATA GGA TTT ACT TTT TTA GAT
VanX MET GLU ILE GLY PHE THR PHE LEU ASP

8043 GLU ILE VAL HIS GLY VAL ARG TRP ASP ALA LYS TYR ALA THR TRP ASP ASN PHE THR GLY
GAA ATA GTA CAC GGT GRT CGT TGG GAC GCT AAA TAT GCC ACT TGG GAT AAT TTC ACC GGA

8103 LYS PRO VAL ASP GLY TYR GLU VAL ASN ARG ILE VAL GLY THR TYR GLU LEU ALA GLU SER
AAA CCG GTT GAC GGT TAT GAA GTA ATT CGC ATT GAA GGG ACA TAC GAG TTG GCT GAA TCG

8163 LEU LEU LYS ALA LYS GLU LEU ALA ALA THR GLN GLY TYR GLY LEU LEU TRP ASP GLY
CTT TTG AAG GCA AAA GAA CTG GCT GCT ACC CAA GGG TAC GGA TTG CTT CTA TGG GAC GGT

8223 TYR ARG PRO LYS ARG ALA VAL ASN CYS PHE MET GLN TRP ALA ALA GLN PRO GLU ASN ASN
TAC CGT CCT AAG CGT GCT GTA AAC TGT TTT ATG CAA TGG GCT GCA CAG CCG GAA AAT AAC

8283 LEU THR LYS GLU SER TYR TYR PRO ASN ILE ASP ARG THR GLU MET ILE SER LYS GLY TYR
CTG ACA AAG GAA AGT TAT CCC ATT GAC CGA ACT GAG ATG ATT TCA AAA GGA TAC

8343 VAL ALA SER LYS SER SER HIS SER ARG GLY SER ALA ILE ASP LEU THR LEU TYR ARG LEU
GTC GCT TCA AAA TCA AGC CAT AGC CGC GGC AGT GCC ATT GAT CTT ATG ATT CGA TTA

FEUILLE DE REMPLACEMENT

8403 ASP THR GLY GLU LEU VAL PRO MET GLY SER ARG PHE ASP PHE MET ASP GLU ARG SER HIS
 GAC ACG GGT GAG CTT GTC CCA ATA CGA ATG GGG AGC CGA TTT GAT TTT ATG GAT GAA CGC TCT CAT
 8463 HIS ALA ALA ASN GLY ILE SER CYS ASN GLU ALA GLN ASN ARG ARG ARG LEU ARG SER ILE
 CAT GCG GCA AAT GGA ATA TCA TGC AAT GAA GCG CAA AAT CGC AGA CGT TTG CGC TCC TCC ATC
 8523 MET GLU ASN SER GLY PHE GLU ALA TYR SER LEU GLU TRP TRP HIS TYR VAL LEU ARG ASP
 ATG GAA AAC AGT GGG TTT GAA GCA TAT AGC CTC GAA TGG TGG CAC TAT GTA TTA AGA GAC
 8583 GLU PRO TYR PRO ASN SER TYR PHE ASP PHE PRO VAL LYS
 GAA CCA TAC CCC AAT AGC TAT TTT GAT TTC CCC GTT AAA TAAA CTT TTA ACC GTT GCA
 8641 CGG ACA AAC TAT ATA AGC TAA CTC TTT CGG CAG GAA ACC CGA CGT ATG TAA CTG GTT CTT
 AGG GAA TTT ATA TAT AGT AGA TAG TAT TGA AGA TGT AAG GCA GAG CGA TAT TGC GGT CAT
 8761 TAT CTG CGT GCG CTG CGG CAA GAT AGC CTG ATA ATA AGA CTG ATC GCA TAG AGG GGT GGT
 8821 ATT TCA CAC CGC CCA TTG TCA ACA GGC AGT TCA GCC TCG TTA AAT TCA GCA TGG GTA TCA
 8881 CTT ATG AAA ATT CAT CTA CAT TGG TGA TAA TAG TAA ATC CAG TAG GGC GAA ATA ATT GAC
 8941 TGT AAT TTA CGG GGC AAA ACG GCA CAA TCT CAA ACG AGA TTG TGC CGT TTA AGG GGA AGA
 9001 VanY MET LYS LYS
 TTC TAG AAA TAT TTC ATA CTT CCA ACT ATA TAG TTA AGG AGG AGA CTG AAA ATG AAG AAG
 9061 LEU PHE PHE LEU LEU LEU PHE LEU ILE TYR LEU GLY TYR ASP TYR VAL ASN GLU
 TTG TTT TTA TTG TTA TTG TTA ATA TAC TTA GGT TAT GAC TAC TAC GTT AAT GAA

9121 ALA LEU PHE SER GLN GLU LYS VAL GLU PHE GLN ASN TYR ASP GLN ASN PRO LYS GLU HIS
 GCA CTG TTT TCT CAG GAA AAA GTC GAA ATT CCT GAA ATT CCC AAT TAT GAT CAA ATT CCA AAT CCC AAA GAA CAT
 9181 LEU GLU ASN SER GLY THR SER GLU ASN THR GLN GLU LYS THR ILE THR GLU GLU GLN VAL
 TTA GAA ATT AGT GGG ACT TCT GAA ATT ACC CAA GAG AAA ACA ATT ACA GAA GAA CAG GTT
 9241 TYR GLN GLX ASN LEU LEU ILE ASN SER LYS TYR PRO VAL ARG GLN GLU SER VAL LYS
 TAT CAA GGA ATT CTG CTA TTA ATC ATT AGT AAA ATT CCT GTT CGC CAA GAA AGT GTG AAG
 9301 SER ASP ILE VAL ASN LEU SER LYS HIS ASP GLU LEU ILE ASN GLY TYR GLY LEU LEU ASP
 TCA GAT ATC GTG ATT TTA TCT AAA CAT GAC GAA ATT ATA ATT GGA TAC GGG TTG CTT GAT
 9361 SER ASN ILE TYR MET SER LYS GLU ILE ALA GLN LYS PHE SER GLU MET VAL ASN ASP ALA
 AGT ATT ATT ATT ATG TCA AAA GAA ATA GCA CAA AAA ATT TCA GAG ATT GTC ATT GAT GCT
 9421 VAL LYS GLY GLY VAL SER HIS PHE ILE ILE ASN SER GLY TYR ARG ASP PHE ASP GLU GLN
 GTA AAG GGT GGC GTT AGT CAT ATT ATT ATT AGT AGT GGC ATT CGA GAC ATT GAT GAG CAA
 9481 SER VAL LEU TYR GLN GLU MET GLY ALA GLU TYR ALA LEU PRO ALA GLY TYR SER GLU HIS
 AGT GTG CTT TAC CAA GAA ATT GGG GCT GAG ATT GCC ATT CCA GCA GGT ATT AGT GAG CAT
 9541 ASN SER GLY LEU SER LEU ASP VAL GLY SER SER LEU THR LYS MET GLU ARG ALA PRO GLU
 ATT TCA GGT TTA TCA CTA GAT GTA GGA TCA AGC ATT ACG AAA ATT GAA CGA GCC CCT GAA
 9601 GLY LYS TRP ILE GLU GLU ASN ALA TRP LYS TYR GLY PHE ILE ILE ARG TYR PRO GLU ASP
 GGA AAG TGG ATA GAA GAA ATT GCT TGG AAA ATT TCA GGG TTC ATT TTA CGT ATT CCA GAG GAC
 9661 LYS THR GLU LEU THR GLY ILE GLN TYR GLU PRO TRP HIS ILE ARG TYR VAL GLY LEU PRO
 AAA ACA GAG TTA ACA GGA ATT CAA ATT GAA CCA TGG CAT ATT CGC ATT GTT GGT TTA CCA

FEUILLE DE REMplacement

9721 HIS SER ALA ILE MET LYS GLU LYS ASN PHE VAL LEU GLU GLU TYR MET ASP TYR LEU LYS
 CAT AGT GCG ATT ATG AAA GAA AAG AAT TTC GTT CTC GAG GAA TAT ATG GAT TAC CTA AAA
 9781 GLU GLU LYS THR ILE SER VAL SER VAL ASN GLY GLU LYS TYR GLU ILE PHE TYR TYR PRO
 GAA GAA AAA ACC ATT TCT GTT AGT GTA AAT GGG GAA AAA TAT GAG ATC TTT TAT TAT CCT
 9841 VAL THR LYS ASN THR THR ILE HIS VAL PRO THR ASN LEU ARG TYR GLU ILE SER GLY ASN
 GTT ACT AAA AAT ACC ACC ATT CAT GTG CCG ACT ATT CTT CGT TAT GAG ATA TCA GGA AAC
 9901 ASN ILE ASP GLY VAL ILE VAL THR VAL PHE PRO GLY SER THR HIS THR ASN SER ARG ARG
 AAT ATA GAC GGT GTA ATT GTG ACA GTG CCC GGA TCA ACA CAT ACT ATT TCA AGG AGG
 9961 TAA GGA TGG CGG AAT GAA ACC AAC GAA ATT ATT GAA CAG CAT TAT TGT ACT AGC ACT TTT
 10021 GGG GTA ACG TTA GCT TTT TAA TTT AAA ACC CAC CAC GTT AAC TAG GAC ATT GCT ATA CTA ATG
 10081 *Vanz* LEU GLY LYS ILE LEU SER ARG GLY LEU
 ATA CAA CTT AAA CAA AAG ATTAGAGG AAA TTA TA TTG GGA AAA ATA TTA TCT AGA GGA TTG
 10143 LEU ALA LEU TYR LEU VAL THR LEU ILE TRP LEU VAL LEU PHE LYS LEU GLN TYR ASN ILE
 CTA GCT TTA TAT TTA GTG ACA CTA ATC TGG TTA GTG TTA TTC AAA TTA CAA TAC ATT ATT
 10203 LEU SER VAL PHE ASN TYR HIS GLN ARG SER LEU ASN LEU THR PRO PHE THR ALA THR GLY
 TTA TCA GTA TTT AAT TAT CAT CAA AGA AGT CTT AAC TTG ACT CCA TTT ACT GCT ACT GGG
 10263 ASN PHE ARG GLU MET ILE ASP ASN VAL ILE ILE PHE GLY LEU LEU LEU ASN
 ATT TTC AGA GAG ATG ATA GAT ATT CCA TTT GGC TTG CTT TTG ATT CCA TTT GGC TTG ATT

FEUILLE DE REMPLACEMENT

10323 VAL ASN PHE LYS GLU ILE GLY PHE LEU PRO LYS PHE ALA PHE VAL LEU SER LEU
 GTC AAT TTT AAA GAA ATC GGA TTT TTA CCT AAG TTT GCT TTT GTA CTG GTT TTA AGT CTT
 10383 THR PHE GLU ILE ILE GLN PHE ILE PHE ALA ILE GLY ALA THR ASP ILE THR ASP VAL ILE
 ACT TTT GAA ATA ATT CAA TTT ATC TTC GCT ATT GGA GCG ACA GAC ATA ACA GAT GTA ATT
 10443 THR ASN THR VAL GLY GLY PHE LEU GLY LEU LYS LEU TYR GLY LEU SER ASN LYS HIS MET
 ACA AAT ACT GTT GGA GGC TTT CTT GGA CTG AAA TTA TAT GGT TTA AGC AAT AAG CAT ATG
 10503 ASN GLN LYS LYS LEU ASP ARG VAL ILE ILE PHE VAL GLY ILE LEU LEU VAL LEU LEU
 AAT CAA AAA AAA TTA GAC AGA GTT ATT ATT TTT GTA GGT ATA CTT TTG CTC GTA TTA TTG
 10563 LEU VAL TYR ARG THR HIS LEU ARG ILE ASN TYR VAL
 CTC GTT TAC CGT ACC CAT TTA AGA ATA AAT TAC GTG TAAG ATG TCT TCA AGC AAT
 10621 CTG ATC TTT CAT ACA CAT AAA GAT ATT GAA TGA ATT GGA TTA GAT GGA AAA CGG GAT GTG
 10681 GGG AAA CTC GCC CGT AGG TGT GAA GTG AGG GGA AAA CCG GTG ATA AAG TAA AAA GCT TAC
 10741 CTA ACA CTA TAG TAA CAA AGA AAG CCC AAT TAT CAA TTT TAG TGC TGA GGA ATT GGT CTC
 10801 TTT AAT AAA TTT CCT TAA CGT TGT AAA TCC GCA TTT TCC TGA CGG TAC CCC

FEUILLE DE REMPLACEMENT

lb brin(-)

(correspond à la séquence du brin complémentaire du brin (+) de la position 1 à 3189

CAA AAT ATC ACC TCA TTT TTG AGA CAA GTC TTA TGA GAC GCT CTT AAC TAT GAT TTT ATC
 61
 AGT CTA CTA CAT TTG TAT CAA TAG AGT ACA CTC TAT TGA TAT ATA ATT GAA CTA ATA AAT
 121
transposase
 TGA AAA TAC AGA AAT GGA ATGATACTG AA ATG AAA ATT GCG AGA GGT AGA GAA TTG CTT ACA
 182
 PRO GLU GLN ARG GLN ALA PHE MET GLN ILE PRO GLU ASP GLU TRP ILE LEU GLY THR TYR
 CCG GAA CAG AGA CAG GCT TTT ATG CAA ATC CCT GAA GAT GAA TGG ATA CTG GGG ACC TAC
 242
 PHE THR PHE SER LYS ARG ASP LEU GLU ILE VAL ASN LYS ARG ARG GLU ASN ARG
 TTC ACT TTT TCC AAA CGG GAT TTA GAA ATA GTT AAT AAG CGA AGG AGG GAA AAC CGT
 302
 LEU GLY PHE ALA VAL GLN LEU ALA VAL LEU ARG TYR PRO GLY TRP PRO TYR THR HIS ILE
 TTA GGA TTT GCT GTT CAA TTA GCT CTT CGG TAT CCC GGT TGG CCA TAC ACT CAT ATC
 362
 LYS SER ILE PRO ASP SER VAL ILE GLN TYR ILE SER LYS GLN ILE GLY VAL SER PRO SER
 AAA AGC ATC CCA GAT TCG GTC ATA CAA TAT ATA TCG AAA CAG ATT GGT GTT AGT CCA TCC
 422
 SER LEU ASP HIS TYR PRO GLN ARG GLU ASN THR LEU LYS GLU ILE ARG
 TCG CTT GAT CAT TAT CCT CAA AGG GAA AAT ACA CTT TGG GAT CAT TTG AAA GAA ATT CGA

FEUILLE DE REMPLACEMENT

482 SER GLU TYR ASP PHE VAL THR PHE THR LEU SER GLU TYR ARG MET THR PHE LYS TYR LEU
 AGT GAA TAC GAC TTT GTA ACT TTT ACC CTG AGT GAA TAT CGA ATG ACA TTT AAG TAC CTT
 542 HIS GLN LEU ALA LEU GLU ASN GLY ASP ALA ILE HIS LEU LEU HIS GLU CYS ILE ASP PHE
 CAT CAA TTA GCT TTG GAA AAT GGT GAT GCC ATT CAT CTA CTG CAT GAA TGC ATA GAT TTT
 602 LEU ARG LYS ASN LYS ILE ILE LEU PRO ALA ILE THR THR LEU GLU ARG MET VAL TRP GLU
 CTA AGA AAA AAC AAA ATT ATA CTG CCT GCT ATC ACT ACA CTT GAA AGA ATG GTG TGG GAA
 662 ALA ARG ALA MET ALA GLU LYS LYS LEU PHE ASN THR VAL SER LYS SER LEU THR ASN GLU
 GCA AGG GCA ATG GCT GAA AAG AAG CTA TTT ATT ACC GTT AGT AAA TCT CTA ACA AAT GAG
 722 GLN LYS GLU LYS LEU GLU GLY ILE ILE THR SER GLN HIS PRO SER GLU SER ASN LYS THR
 CAA AAA GAA AAG CTT GAA GGG ATT ATT ACC TCG CAG CAT CCA TCC GAA TCC ATT AAA ACG
 782 ILE LEU GLY TRP LEU LYS GLU PRO PRO GLY HIS PRO SER PRO GLU THR PHE LEU LYS ILE
 ATA TTG GGT TGG TTA AAA GAG CCA CCG GGT CAT CCT TCA CCC GAA ACT TTT CTA AAA ATA
 842 ILE GLU ARG LEU GLU TYR ILE ARG GLY MET ASP LEU GLU THR VAL GLN ILE SER HIS LEU
 ATA GAA CGA CTC GAA TAC ATA CGA GGA ATG GAT TTA GAA ACA GTG CAA ATT AGT CAT TTG
 902 HIS ARG ASN ARG LEU LEU GLN LEU SER ARG LEU GLY SER ARG TYR GLU PRO TYR ALA PHE
 CAC CGT AAC CGC CGC TTG CAG CTG TCT CGC TTA GGC TCA AGA TAC GAG CCG TAT GCA TTC
 962 ARG ASP PHE GLN GLU ASN LYS ARG TYR SER ILE LEU THR ILE TYR LEU LEU GLN LEU THR
 CGT GAC TTT CAA GAA AAT AAA CGT TAT TCG ATA ACC ATC TAT TTA TCA CTT ACT

FEUILLE DE REMPLACEMENT

1022 GLN GLU LEU THR ASP LYS ALA PHE GLU ILE HIS ASP ARG GLN ILE LEU SER LEU LEU SER
 CAG GAG CTA ACG GAT AAA GCG TTT GAA ATT CAT GAT AGG CAA ATA CTT AGT TTG TTA TCA
 1082 LYS GLY ARG LYS ALA GLN GLU ILE GLN LYS GLN ASN GLY LYS LEU ASN GLU LYS
 AAA GGT CGT AAG GCT CAA GAG GAA ATC CAG AAA CAA AAC GGT AAA AAG CTA AAT GAG AAA
 1142 VAL ILE HIS PHE THR ASN ILE GLY GLN ALA LEU ILE LYS ALA ARG GLU GLU LYS LEU ASP
 GTT ATA CAC TTT ACG AAC ATC GGA CAA GCA TTA ATT AAA GCA AGA GAG GAA AAA TTA GAC
 1202 VAL PHE LYS VAL LEU GLU SER VAL ILE GLU TRP ASN THR PHE VAL SER SER VAL GLU GLU
 GTT TTT AAG GTT TTA GAA TCG GTT ATT GAA TGG AAT ACC TTT GTC TCT TCA GTA GAA GAG
 1262 ALA GLN GLU LEU ALA ARG PRO ALA ASP TYR ASP TYR LEU ASP LEU LEU GLN LYS ARG PHE
 GCT CAG GAA CTT GCA CGT CCT GCC GAC TAT GAT TAT TTA GAC TTA CTG CAA AAA CGG TTT
 1322 TYR SER LEU ARG LYS TYR THR PRO THR LEU LEU ARG VAL LEU GLU PHE HIS SER THR LYS
 TAT TCA CTA AGA AAA TAT ACG CCA ACG CTA TTA AGA GTA TTG GAA TTT CAT TCT ACA AAG
 1382 ALA ASN GLU PRO LEU LEU GLN ALA VAL GLU ILE ILE ARG GLY MET ASN GLU SER GLY LYS
 GCA AAT GAG CCA CTT TTA CAA GCT GTT GAG ATT ATC CGA CGA ATG AAC GAA TCT GGA AAG
 1442 ARG LYS VAL PRO ASP ASP SER PRO VAL ASP PHE ILE SER LYS ARG TRP LYS ARG HIS LEU
 CGA AAA GTG CCT GAT GAC TCA CCT GTG GAT TTT ATT TCA AAA CGA TGG AAA AGA CAT TTA
 1502 TYR GLU ASP ASP GLY THR THR ILE ASN ARG HIS TYR TYR GLU MET ALA VAL LEU THR GLU
 TAC GAG GAT GAT GGT ACA ACA ATT AAT CGT CAT TAC TAT GAA ATG GCT GTT TTA ACA GAA
 1562 LEU ARG GLU HIS VAL ARG ALA GLY ASP VAL SER ILE VAL GLY SER ARG GLN TYR ARG ASP
 CTT CGG GAG CAT GTT CGG GCA GGA GAT GTT TCC ATT GTT GGC AGC AGA CAA TAT AGG GAT

FEUILLE DE REMPLACEMENT

1622 PHE GLU GLU TYR LEU PHE SER GLU ASP THR TRP ASN GLN SER LYS GLY ASN THR ARG LEU
 TTT GAG GAA TAT TTG TTT TCG GAA GAT ACA TGG AAT CAA TCG AAG GGG AAT ACG AGA TTA
 1682 SER VAL SER LEU SER PHE GLU ASP TYR ILE THR GLU ARG THR SER SER PHE ASN GLU ARG
 TCA GTT AGT TTA TCA TTC GAA GAT TAT ATA ACG GAG AGA ACC ACC AGC AGC TTT ATT GAA AGG
 1742 LEU LYS TRP LEU ALA ALA ASN SER ASN LYS LEU ASP GLY VAL SER LEU GLU LYS GLY LYS
 TTA AAG TGG TTA GCT GCC AAT TCC AAT AAG TTA GAT GGG GTT TCT CTT GAA AAA GGA AAG
 1802 LEU SER LEU ALA ARG LEU GLU LYS ASP VAL PRO GLU GLU ALA LYS LYS PHE SER ALA SER
 CTA TCA CTT GCA CGC TTA GAA AAA GAT GTT CCA GAA GCA AAA AAA TTT AGT GCA AGC
 1862 LEU TYR GLN MET LEU PRO ARG ILE LYS LEU THR ASP LEU LEU MET ASP VAL ALA HIS ILE
 CTT TAT CAG ATG CTA CCA AGA ATA AAA TTA ACT GAT TTA CTC ATG GAT GTG GCC CAT ATA
 1922 THR GLY PHE HIS GLU GLN PHE THR HIS ALA SER ASN ASN ARG LYS PRO ASP LYS GLU GLU
 ACA GGA TTT CAT GAG CAA TTC ACT CAT GCT TCC AAT AAT CGA AAA CCA GAT AAG GAA GAA
 1982 THR ILE ILE MET ALA ALA LEU GLY MET GLY MET ASN ILE GLY LEU SER LYS MET
 ACA ATC ATT ATC ATG GCT GCC CTT TTA GGA ATG GGA ATG AAT ATT GGC TTG AGC AAG ATG
 2042 ALA GLU ALA THR PRO GLY LEU THR TYR LYS GLN LEU ALA ASN VAL SER GLN TRP ARG MET
 GCC GAA GCC ACA CCC GGA CTT ACA TAT AAG CAA CTA GCC AAT GTA TCT CAA TGG CGC ATG
 2102 TYR GLU ASP ALA MET ASN LYS ALA GLN ALA ILE LEU VAL ASN PHE HIS HIS LYS LEU GLN
 TAT GAA GAT GCC ATG AAT AAA GCC CAA AAC ATA TTA GTA AAC TTT CAT CAT AAA TTA CAA
 2162 LEU PRO PHE TYR TRP GLY ASP GLY THR SER SER ASP GLY MET ARG MET GLN LEU
 TTG CCT CCT TAT TTG GGC GAC GGT ACA ACA TCT TCG TCA GAT GGT AGA ATG CAG CTA

FEUILLE DE REMPLACEMENT

GLY VAL SER SER LEU HIS ALA ASP ALA ASN PRO HIS TYR GLY THR GLY LYS GLY ALA THR
 GGT GTT TCA TCA CTA CAT GCA GAT GCA AAT CCA CAT TAT GGA ACT GGA ACT GGA AAA GGA GCC ACC
 2282
 ILE TYR ARG PHE THR SER ASP GLN PHE SER SER TYR TYR THR THR LYS ILE ILE HIS THR ASN
 ATC TAC CGA TTT ACA AGT GAT CAA TTC TCT TAC TAC ACA AAG ATT ATT CAT ACT AAT
 2342
 SER ARG ASP ALA ILE HIS VAL LEU ASP GLY LEU LEU HIS GLU THR ASP LEU ASN ILE
 TCA AGA GAT GCG ATT CAT GTT TTG GAT GGT TTG TTA CAT CAT GAG ACG GAT CTA AAC ATA
 2402
 GLU GLU HIS TYR ASP THR ALA GLY TYR THR ASP GLN ILE PHE GLY LEU THR HIS LEU
 GAG GAA CAT TAT ACA GAC ACT GCC GGT TAC ACT GAC CAA ATA TTC GGA CTG ACT CAT TTA
 2462
 LEU GLY PHE LYS PHE ALA PRO ARG ILE ARG ASP LEU SER ASP SER LYS LEU PHE THR ILE
 TTA GGA TTT AAA TTT GCC CCA AGA ATA AGG GAT TTA TCG GAC TCA AAA TTA TTT ACG ATA
 2522
 ASP LYS ALA SER GLU TYR PRO LYS LEU GLU ALA ILE LEU ARG GLY GLN ILE ASN THR LYS
 GAT AAA GCA AGT GAG TAT CCA AAA CTA GAA GCC ATT TTA CGT GGA CAA ATA AAT ACA AAG
 2582
 VAL ILE LYS GLU ASN TYR GGU ASP VAL LEU ARG LEU ALA HIS SER ILE ARG GLU GLY THR
 GTC ATT AAA GAA ATT TAT GAG GAT GTT TTG CGA TTA GCT CAT TCT ATA AGG GAG GGA ACA
 2642
 AGT TTC AGC ATC CCT TAT TAT GGG GAA GCT AGG TTC CTA TTC AAG ACA AAA CAG CTT AGC
 VAL SER ALA SER LEU ILE MET GLY LYS LEU GLY SER TYR SER ARG GLN ASN SER LEU ALA
 GTT TCA GCA TCC CTT ATT ATG GGG AAG CTA GGT TCC TAT TCA AGA CAA AAC AGC TTA GCT
 2702
 THR ALA LEU ARG GLU MET GLY ARG ILE GLU LYS THR ILE PHE ILE LEU ASN TYR ILE SER
 ACA GCC TTA CGT GAG ATG GGC CGA ATA GAA AAA AGG ATC TTT ATT TTG AAT TAT ATA TCG

2762 ASP GLU SER LEU ARG ARG LYS ILE GLN ARG GLY LEU ASN LYS GLY GLU ALA MET ASN GLX
 GAT GAA TCA TTA AGA AGA AAA ATA CAA AGA GGA TTG AAT AAA GGA GAA GCC ATG AAT GGA
 2822 LEU ALA ARG ALA ILE PHE PHE GLY LYS GLN GLY GLU LEU ARG GLU ARG THR ILE GLN HIS
 TTG GCA AGA GCT ATT TTC TTC GGA AAA CAA GGT GAG CTT AGA GAA CGC ACC ATA CAG CAT
 2882 GLN LEU GLN ARG ALA SER ALA LEU ASN ILE ILE ASN ALA ILE SER ILE TRP ASN THR
 CAA TTG CAA AGA GCC AGT GCT TTA AAC ATA ATT ATC AAT GCT ATA AGT ATT TGG AAT ACT
 2942 TCT CCT AAC AAC AGC AGC AGT TGA ATA TAA AAA ACG GAC AGG TAG CTT TAA TGA AGA TTT
 LEU HIS LEU THR ALA VAL GLU TYR LYS LYS ARG THR GLY SER PHE ASN GLU ASP LEU
 CTC CAC CTA ACA ACA GCA GTT GAA TAT AAA AAA CGG ACA GGT AGC TTT AAT GAA GAT TTG
 3002 LEU HIS HIS MET SER PRO LEU GLY TRP GLU HIS ILE ASN LEU LEU GLY GLU TYR HIS PHE
 TTA CAC CAT ATG TCG CCC TTA GGT TGG GAA CAT ATT AAT TTA CTA GGA GAA TAC CAT TTT
 3062 ASN SER GLU LYS VAL VAL SER LEU ASN SER LEU ARG PRO LEU LYS LEU SER
 AAC TCA GAG AAA GTA GTC TCA TTA ATT TCT TTA AGA CCA CTA AAA CTT TCT TAA CGT TG
 3121 TTA AAA ACG AGG GAT TCG TCA GGA AAA TAG GCT TAG CGT TGT AAA TCC GCA TTT TCC TGA
 3181 CGC TAC CCC

FEUILLE DE REMPLACEMENT

LISTE DES SEQUENCES : II

SacI

GAGGCTCTTCCCTAACGGCACTTCTGTACCAAGAGACTTGTGTC
 CATTGATCACTAACATACTGCCTTCTCAAGCCCTTGTCTAAATCCTTTCTTTCTTAGATTTC
 TCATAAAAATACGAGAAAGACAACAGGAAGACCCAAATTTCCTTAGGTACACTGAATG
 TAACCTTAAAGAAAAAGGAAGAAAATGATGAAAGAAATTGGCTTTATTGGAGCC
 RBS M K K I A V L F G G
 N S P E Y S V S L T S A A S V I Q A I D 42
 ATTCTCCAGAATACTCAGTGTCACTAACCTCAGCAGCAACTGGCATTCGCAAGCTATTC
 P L X Y E V M T I G I A P T M D W Y W Y 111
 CCGCTGAAATATGAACTTAATGACCATTGGCATTCGCAACAAATGGCATTCGCTATTC
 Q G N L A N V R N D T W L E D H K N C H 180
 CAAGGAAACCTCGGAATGTTGCCAATGATCACTTGCTAGAAGATCACAAAAACTGTCA
 Q L T F S S Q G F I L G E K R I V P D V 244
 CAGCTGACTTTCTAGCCAAAGGATTATAGGACAAAMCGAATCCTGATGTC
 L F P V L H C K Y G E D G C I Q G L L E 304
 CTCTTCCAGTCTTGCATGGAGTATGCCCAAGGATTGCCCTGCTATCCAGGACTGCT
 I M N L P Y V G C H V A A S A L C M N K 364
 CTAAATGAAACCTGCCCTTATGCTGCCATGCTCCCTGCCATTATGCTATGAA
 W L L H Q I A D T M G I A S A P T L L L 484
 TGCGCTCTGGCATCAACTTGCTGATCCATGGAAATGGCTAGTGCCTCCCACTTGCT
 S R Y E N D P A T I D R F I Q D H G F P 544
 TCCCCCTATGAAACGATCCTGCCACAAATGATGCTTATTCAAGACCATGCGATTC
 724

I F I K P N E A C S S K G I T K V T D K
 ATCTTATCAAGCCCAATTCAAGGCCATTCTTCMAGGATCACAAACTGACAAA 784
 T A L Q S A L T T A F A Y G S T V L I Q
 ACAGGGCTCCAAATCTGCATTAACTGCCTTTGCTTACGGTTACTCTGTGATCCAA 844
 K A I A C I E I G C G I L G N E Q L T I
 AACGGCATAGGGCTATTGAAATTGCTGGGCAATCTTAGGAAATGACCAATTGACGATT 904
 G A C D A I S L V D G F F D F E E K Y Q
 GGTGCTTGATGGCATTTCCTCTGTGGCGTTTTGATTGAAACGAAATAACCA 964
 L I S A T I T V P A P L P L A L E S Q I
 TTAATCAGGCCAACGATCACTCTCCCAGCACCATTGGCTCTCGCCCTGAATCACAGATC 1024
 K E Q A Q I L Y R N L G L T G L A R I D
 AGGAGCCACACCCATTGAAACTTGGCATTCGGCTCTGGCTCGGAATCCAT 1084
 F F V T N Q G A I Y L N E I N T M P G F
 TTTTCCCTCAACCAATTCAAGGAGCCATTATTAAACGAAATCAACACCATGCCCCGGATT 1144
 T G H S R Y P A M M A E V G L S Y E I L
 ACTGGCCACTCCGGCTACCCAGCTATGATGGGAAAGTCCGGTTATCCTACGAAATATA 1204
 V E Q L E A L A E D K R *
 GTAGAGCAATTGATGGCACTGGCAAGGGACAAACGATGAAACACATTGATCAATA 1267
 AAAACCATCCATTGAAAAAATCAAGAGCCCCGGCACTTAGCTTAGCTTACGGATCACGATG 1336
 TTACCTGCAG
 PstI 1347

REVENDEICATIONS

1/ Composition de polypeptides, caractérisée en ce qu'elle comprend au moins une protéine ou partie de protéine choisie parmi les séquences d'acides aminés identifiées dans la liste des séquences par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX) ou SEQ ID NO 19 (VanC), ou toute protéine ou partie de protéine reconnue par les anticorps dirigés contre VanH, VanA, VanX ou VanC, ou toute protéine ou partie de protéine codée par une séquence hybride avec l'un des enchaînements nucléotidiques identifiés dans la liste des séquences par SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10 ou SEQ ID NO 21 ou avec l'une des séquences V1 ou V2 suivantes dans des conditions stringentes ou peu stringentes :

V1 : GGX GAA GAT GGX TCX TTX CAA GGX

G	C	AG	C	G
A				

V2 : AAT ACX ATX CCX GGX TTT AC

C	T	C
C		

2/ Composition de polypeptides selon la revendication 1, caractérisée en ce qu'elle comprend au moins 3 protéines ou toute partie de l'une ou plusieurs de ces protéines nécessaires pour conférer à des bactéries à Gram-positif, la résistance à des antibiotiques de la famille des glycopeptides, notamment à la vancomycine et/ou à la teicoplanine, ou de favoriser cette résistance, en particulier dans des souches de la famille des cocci à Gram-positif, ces protéines ou parties de protéines étant

a) soit reconnues par des anticorps dirigés contre l'une des séquences identifiées dans la liste des

FEUILLE DE REMPLACEMENT

séquences par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX),

- b) soit codées par des gènes comportant une séquence identifiée par SEQ ID NO 8, SEQ ID NO 9 ou SEQ ID NO 10 ou hybridant avec l'une de ces séquences ou sa séquence complémentaire, dans des conditions stringentes ou peu stringentes ou avec les séquences V1 ou V2.

3/ Composition de polypeptides selon la revendication 1 ou 2, caractérisée en ce qu'elle correspond à l'association des protéines désignées par SEQ ID NO 1 (VanH), SEQ ID NO 2 (VanA), SEQ ID NO 3 (VanX).

4/ Composition de polypeptides selon la revendication 2 ou la revendication 3, caractérisée en ce que la protéine VanC correspondant à la séquence SEQ ID NO 19 remplace la protéine VanA correspondant à la séquence SEQ ID NO 2.

5/ Composition de polypeptides selon l'une quelconque des revendications 1 à 4, caractérisée en ce que les séquences d'acides aminés nécessaires à l'expression de la résistance à des antibiotiques de la famille des glycopeptides, en particulier à la vancomycine et/ou à la teicoplanine, sont sous le contrôle d'éléments de régulation, notamment des protéines correspondant aux séquences désignées par SEQ ID NO 4 (VanR) ou SEQ ID NO 5 (VanS) dans la liste des séquences.

6/ Composition selon l'une quelconque des revendications 1 à 5, caractérisée en ce qu'elle est codée par l'une des séquences SEQ ID NO 6, SEQ ID NO 11, SEQ ID NO 22 identifiées dans la liste des séquences.

7/ Protéine purifiée caractérisée en ce qu'elle correspond à la séquence SEQ ID NO 2 (VanA) ou à la séquence SEQ ID NO 19 (VanC), contenues dans la

composition selon l'une quelconque des revendications 1 à 3.

8/ Protéine caractérisée en ce qu'elle correspond à l'une des séquences identifiées par SEQ ID NO 1 (VanH), SEQ ID NO 3 (VanX), SEQ ID NO 4 (VanR), SEQ ID NO 5 (VanS).

9/ Séquence nucléotidique caractérisée en ce qu'elle code pour une séquence d'acides aminés selon l'une quelconque des revendications 1 à 8, ou en ce qu'il s'agit d'une séquence d'ADN complémentaire ou d'une séquence d'ARN correspondante.

10/ Séquence nucléotidique de 7,3 kb environ, correspondant au fragment de restriction HindIII-EcoRI tel qu'obtenu à partir du plasmide pIP816, comprenant ce fragment HindIII-EcoRI ou toute partie de ce fragment, en particulier le fragment de 3,4 kb EcoRI-XbaI, le fragment d'environ 1,7 kb EcoRV-SacII et le fragment de 3,3 kb HindIII-EcoRI.

11/ Séquence nucléotidique selon la revendication 10, caractérisée en ce qu'elle comporte dans l'ordre les sites de restriction suivants tel qu'obtenus à partir du plasmide pIP816 :

HindIII, BglII, BglII, EcoRI, BamHI, XbaI, EcoRI

12/ Séquence nucléotidique selon l'une quelconque des revendications 8 à 10, caractérisée en ce qu'elle correspond à l'un des enchaînements identifiés par SEQ ID NO 6, SEQ ID NO 7 ou SEQ ID NO 22, ou en ce qu'elle comprend un de ces enchaînements ou toute partie de l'un de ces enchaînements, ou encore tout enchaînement ou partie d'enchaînement d'ADN complémentaire, ou tout enchaînement d'ARN correspondant à l'un de ces ADN, susceptible

- soit de constituer une sonde d'hybridation ou une amorce, pour la détection d'une résistance à des

FEUILLE DE REMPLACEMENT

antibiotiques de la famille des glycopeptides, notamment à la vancomycine et/ou à la teicoplanine, en particulier dans des souches de la famille des cocci à Gram-positif,

- soit de coder pour une séquence nécessaire à l'expression ou la régulation de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine et/ou la teicoplanine, en particulier dans des souches de la famille des cocci à Gram-positif.

13/ Séquence nucléotidique selon la revendication 12, caractérisée en ce qu'elle comprend ou en ce qu'elle correspond à l'un des enchaînements suivants :

V1 : GGX GAA GAT GGX TCX TTX CAA GGX

G C AG C G
 A

V2 : AAT ACX ATX CCX GGX TTT AC

C T C
 C

14/ Séquence nucléotidique selon l'une quelconque des revendications 10 à 12, caractérisée en ce qu'il s'agit de l'un des enchaînements SEQ ID NO 8 (vanA), SEQ ID NO 9 (vanH), SEQ ID NO 10 (vanX), SEQ ID NO 21 (vanC), SEQ ID NO 12(transposase), SEQ ID NO 13(résolvase), SEQ ID NO 14(vanY), SEQ ID NO 15(vanZ), SEQ ID NO 23(vanR), SEQ ID NO 24(vanS) ou d'une variante de l'un de ces enchaînements dès lors qu'elle code pour une protéine ayant des propriétés immunologiques et/ou fonctionnelles similaires à celles des protéines codées par les enchaînements SEQ ID NO 8 (vanA), SEQ ID NO 9 (vanH), SEQ ID NO 10 (vanX), SEQ ID NO 21 (vanC) SEQ ID NO 12(transposase), SEQ ID NO 13(résolvase), SEQ ID NO 14(vanY), SEQ ID NO 15(vanZ), SEQ ID NO 23(vanR), SEQ ID NO 24(vanS) , ou dès lors qu'elle permet la

détection de souches résistantes à des antibiotiques de la famille des glycopeptides.

15/ Séquence nucléotidique selon l'une quelconque des revendications 9 à 12, caractérisée en ce qu'elle correspond à l'enchaînement SEQ ID NO 6 ou à l'enchaînement SEQ ID NO 22 ou en ce qu'elle comprend cet enchaînement.

16/ Séquence recombinante, caractérisée en ce qu'elle comprend une séquence de nucléotides selon l'une quelconque des revendications 9 à 14, sous le contrôle d'éléments de régulation susceptibles d'intervenir dans l'expression, de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine ou la teicoplanine, chez un hôte déterminé.

17/ Vecteur recombinant, caractérisé en ce qu'il comprend une séquence nucléotidique selon l'une quelconque des revendications 9 à 16, en un site non essentiel pour sa réPLICATION, sous le contrôle d'éléments de régulation susceptibles d'intervenir dans l'expression, de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine ou la teicoplanine, chez un hôte déterminé.

18/ Vecteur recombinant selon la revendication 17, caractérisé en ce qu'il s'agit du plasmide pAT214.

19/ Hôte cellulaire recombinant, caractérisé en ce qu'il comprend une séquence nucléotidique selon l'une quelconque des revendications 9 à 16 ou un vecteur selon la revendication 17 ou la revendication 18, dans des conditions permettant l'expression de la résistance à des antibiotiques de la famille des glycopeptides, notamment la vancomycine ou la teicoplanine, cet hôte étant par exemple choisi parmi les bactéries, notamment les cocci à Gram-positif.

FEUILLE DE REMPLACEMENT

20/ Sonde nucléotidique, caractérisée en ce qu'il s'agit d'ADN ou d'ARN et n ce qu'elle est capable d'hybrider avec une séquence selon l'une quelconque des revendications 9 à 15, cette sonde étant le cas échéant marquée, par exemple en ce qu'il s'agit de l'un des nucléotides :

V1 : GGX GAA GAT GGX TCX TTX CAA GGX
 G C AG C G
 A

ou

V2 : AAT ACX ATX CCX GGX TTT AC
 C T C
 C

21/ Sonde nucléotidique selon la revendication 19, caractérisée en ce qu'elle est spécifique chez des bactéries à Gram-positif, des séquences codant pour une protéine de résistance à des glycopeptides notamment à la vancomycine et/ou à la teicoplanine et universelle parmi ces séquences.

22/ Sonde nucléotidique selon la revendication 20, caractérisée en ce qu'elle est spécifique d'une séquence nucléotidique codant pour une protéine nécessaire à l'expression d'un haut niveau de résistance à des antibiotiques de la famille des glycopeptides, en particulier à la vancomycine et à la teicoplanine, chez des bactéries à Gram-positif.

23/ Sonde nucléotidique selon la revendication 20, caractérisée en ce qu'elle est spécifique d'une séquence nucléotidique codant pour une protéine nécessaire à l'expression d'un bas niveau de résistance à des antibiotiques de la famille des glycopeptides, en particulier à la vancomycine, chez des bactéries à Gram-positif.

FEUILLE DE REMPLACEMENT

24/ Sonde nucléotidique selon l'une quelconque des revendications 20 à 23, caractérisée en ce qu'elle hybride avec une séquence nucléotidique non chromosomique d'une souche résistante à des glycopeptides, notamment la vancomycine et/ou la teicoplanine, en particulier en ce qu'elle hybride avec une séquence nucléotidique non chromosomique d'une souche de cocci Gram-positif, par exemple une souche d'entérocoque et de préférence E. faecium 4147.

25/ Anticorps polyclonaux ou monoclonaux, caractérisés en ce qu'ils reconnaissent la composition selon l'une quelconque des revendications 1 à 6 ou une séquence d'acides aminés selon l'une quelconque des revendications 7 ou 8.

26/ Kit pour le diagnostic in vitro sur un échantillon biologique, de la présence de souches résistantes aux glycopeptides, en particulier à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier aux cocci à Gram-positif, notamment en ce qu'il s'agit des souches d'entérocoques, par exemple E. faecium, caractérisé en ce qu'il comprend :

- des anticorps selon la revendication 25, le cas échéant marqués,
- un réactif pour la détection d'une réaction immunologique du type anticorps-antigène,
- le cas échéant des réactifs pour effectuer la lyse des cellules de l'échantillon testé.

27/ Kit pour le diagnostic in vitro de la présence de souches résistantes aux glycopeptides, en particulier résistantes à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier aux cocci à Gram-positif notamment en ce qu'il s'agit de souches d'entérocoques, par exemple E. faecium, caractérisé en ce qu'il comprend :

FEUILLE DE REMPLACEMENT

- une sonde nucléotidique selon l'une quelconque des revendications 20 à 24, et le cas échéant,
- des oligonucléosides triphosphates dATP, dCTP, dTTP, dGTP,
- un agent de polymérisation d'ADN.

28/ Procédé de détection in vitro de la présence de souches résistantes aux glycopeptides, en particulier à la vancomycine et/ou à la teicoplanine, ces souches appartenant en particulier à la famille des cocci Gram-positif, notamment en ce qu'il s'agit de souches d'entérocoques, par exemple E. faecium ou E.gallinarum, caractérisé en ce qu'il comprend :

- a) la mise en contact d'un échantillon biologique susceptible de contenir les souches résistantes, avec une amorce constituée par une séquence nucléotidique selon l'une quelconque des revendications 20 à 24, capable d'hybrider avec une séquence nucléotidique recherchée, nécessaire à l'expression de la résistance, cette séquence étant utilisée comme matrice, en présence des 4 différents nucléosides triphosphates, et d'un agent de polymérisation, dans des conditions d'hybridation telles que pour chaque séquence nucléotidique ayant hybridé avec une amorce, un produit d'elongation de chaque amorce complémentaire de la matrice est synthétisé,
- b) la séparation de la matrice et du produit d'elongation obtenu, ce dernier pouvant alors également se comporter comme une matrice,
- c) la répétition de l'étape a) de façon à obtenir une quantité détectable des séquences nucléotidiques recherchées,
- d) la détection du produit d'amplification des séquences nucléotidiques.

FEUILLE DE REMPLACEMENT

FIGURE 1

1 2 3 4

FEUILLE DE REMplacement

FEUILLE DE REMplacement

FIGURE 3 (2/2)

FEUILLE DE REMplacement

AAGCTTTTCTTGTCTATTGAGATTACTAACCGTATTAAATAGCTTCTTTTC
AGCCATTGCCCTTGCTTCCCACCAATTCTTAGAAATCTATGCATTCTAAGTGTAGTGTAGCAGGCA
TTTGGTTTTCTTAGAAATCTATGCATTCTGCACTGAGGTACTAAATGCTTAC
CAAAGCTATTGATGAAGGTACTAAATGCTTCAATGATCCCACGGTAAAGTTAC
AAAGTCGTATTCACTTCGAATTTCGAATTGATCCCACGGTAAAGTTAC
ATAATGATCAAGCAGGACTAACCAATTCTGATTTGATTAATGATCCCACGG
ATCTGGGATGCTTTGATTAATGAGGTCTCCGATTCATTCACTCTACCTCG
AACAGCAAAATCCTAAACGGTTTCAATTGATTTCAATTGAGGTCTCCG
TTTGGAAAAGTGAAGTAGGTAGGTTCAATTGATTTCAATTGAGGTCTCCG
CTGTCTGTCTGTTCCGGTGTAAAGCAATTCTACCTCTACCTCGACT
CATTCTGTATTTCATTATTAGTCAATTGATTTCAATTGAGGTCTCCG
ACAATGTTAGTAGACTGATAAAATCACTGCTTAAAGTGTAGCAGGAA
ATGAGGTGATAATTGCGGAAACTCAAAAGTGTAGCAGGAA
TTCAAGACAAATTGCGGAAACTCAAGGACTTAACTCGAATCACTCGA
CAGGAGCAACAAAGGATCGCGGAAACTCAAGGACTTAACTCGAATCA
ACATCATTATGTTACAGACTTAACTCGAATCACTCGAATCACTCGA
TAATCGATAAACATACAGGATAAAAGGCAATTCAAGGCAATTCAAGG
ATTATCAGAAGATAATTCAAGGCAATTCAAGGCAATTCAAGG
AATTAGAGCGAGATCTTATTGGATGAGACAAACGTGAAGGGATTGAAT
AAGGAAAGTTAAGGTCGATTAAAGAAGGAAATTGACTGTAATCAAA
CGGXXAAGCTATAAGAAGGAAATTGACTGTAATCAAAATTGTAATT
GTATCTAGGGCTTCAATTACAGGAATTATCAGAAGTGAATAATTAGG
CCGCTTAATGGCAATTTCAGGAAACTAAATAAAATTAAACAGCCT
AGCGCATTTGCGAAAGGCGTTGATAAAAAGGAAATTCAAGGAA
TTTATTGTAATTGCTTAAATTGGCAATTCAAGGAAATTCAAGGAA

Fig. 4 (1/5)

FEUILLE DE REMPLACEMENT

TTATGTGAAAGGGATAACTATGAGCCATAAAATACCTATTGGAATTACGGTTTCAAAACTAT
 ATTGCCGATTGGTTGAATTACTTAAGGAAATTGACCTGCCATTGGCAACTGGAC
 ACCGCCAAAGGCAATTGGATTGAAAGTCAGGTTAAGGAAAGCACC
 ATCATGGCTTCCCAGGACAAAGGGCTTACATGAAAGTCAAAATTACGGGTTAACAA
 TATCGGATTATCATGCTGACGGGAAAGTAGATAAGGGTTAATTGCTCGGGTA
 TATCGGATTATAACGGAAAGCCCTTGCGGAGTAAGGGAGCAGAAAG
 ATCGGGCGGAGTGCAGGATACAAAATTCAATTGTTCAATACCTGGAAATTGAGCA
 AAGGGCCAGTTGGCTTACGGAGTTGCTTCAATTGAGATACCGGAATTCAGCAA
 ATCGGCTCCACTCCGGCTTACGGCTGGCTTCAATTGAGATGGGAAACTGGGAA
 CAGTTGGTTAGCTCCGGCTTACGGTGCATATGGGGCATTCGGGCAATTGAGA
 AATGTTGGGTAAACTAGAACGAAACTTACATGAGATGGGGTATAAAATTGAA
 AGCAACAAAGGCAATTATAACGGGTTGGGATGGGTTGGGTATAAAATTGAGA
 GATAATCCGAAATTAAACGAAACTAGAACGAAATTAGATAACTGGGAAATTGGAT
 AACGGAACTATTCCAAACTAGAACAAATTAGATAACTGGGAAATTGGGAAATGGG
 AGCAATTGTTGGTGTGTTGAAATTAAACGAAATTAGATAACTGGGAAATTGGG
 CTTAAGTATTGGAAACAAATTAGAACAAATTAGAACAAATTAGAACAAATTGGG
 ATATCCCATACGGAAACAAATTAGAACAAATTAGAACAAATTAGAACAAATTGGG
 TATTCTATGCGGCTCATGGCTTCAAAATTGCAAAATTGACGTTGTTATGIA
 CATTGATGTTACTTACGAAACATTAACACATTAACGAAACTGGGCTTGGCT
 TATGGAAACAAAGGCTAACACATTAACGAAACTGGGCTTGGCTTGGCT
 GCTGGCCGAAACAAAGGAAATTGACGTTGTTATGAGCTTGGCTTGGCT
 CCTTACATCCATTGCTGCTTACGAAAGGCTAACGAAACTGGGCTTGGCT
 TCAAAAGGCAAGTATTGAGATTACACGGTAAACGGTAAACGGTAAACGG
 CGACGAGTTTGGCTGGCTGAGGATGACGGATTTGAGATTACACGGTAAACGG
 CATAGACCTATACTATGCTGGCTGGCTGAGGATCTGACGCCGGTTTACGCC
 ACATGGAAACGGGTTTACGCCGGTTTACGCCGGTTTACGCCGGTTTACGCC

Fig. 4 (2/5)

FEUILLE DE REMplacement

7 / 69

TAAC TCGGAGGTCTTACAACATTGAAACGCCATACAGTGAGGATAA
CAGCATTCATTGACATTACCGGGCTCTCGGATGTGGTCAATTCAAAGAA
CAC TGGAGCATCCCACAAAGATAAGCTAGCTGGGATTTGAAAGTCTATAGGCTGGA
CAATTCTCGTTCTCCGATACGGGTGGGACTTGGATTGGCAATTGCAAAAGAAAT
TAT TGTAGCATGGGAGATTACGGGAAAGCTATGATACTACGACGTTAG
GGTAGAGCTTCCAGGCATGGGAGACTTGGTTACGGTTACGGTAACTAACCGTAAGAACGAGC
AATT TTAGGAAAATCTCAAGGTTATCTTACGGTAACTAACCGTAACTAACCGTAAGAACGAGC
TTCTTCAAGAGAAAGATTGACAAAGATTGAAATAACATGGCATTACGTTATGGATGTGAGC
CACAGAAAGGGTTGGCTTAAATTGAAATTGAAATAACATGGCCTTGGCTTCAATGCTGAGC
AGGATGAGGCAAGTGGCATTCATGCTTCCATGGCTTAAATGCAACGTTGGCTTCAATGCTGAGC
TTAACGCCAACGTTGGATGTGGTACTGCCCTCTTGGCTTCAATGCTGAGC
TGGGACATAAAATCAGAGATTCCGGATTGGGATAGCGTAAACTTGGCTTCAATGCTGAGC
AATATATTCTACCCGAAAGCATGGGACTTGGCAAGGTACTCAGCGACATGACAGTTGGCTGAGC
TGGGCATCACTGTCACAAATGGCAAGTACGGTAAACTTGGGACTTGGCTGAGC
TGCTAATCTTATGGCAAGTACGGTAAACTTGGGACTTGGCTGAGC
ATTTCAGGTTGGACAGGCAAGGATTGGCAAGGCAAGGTTATGGCAGGTTGGCTGAGC
GAACCGGGCCAGATAGGCAAGGCAAGGAGGATTGGTAAAGCATTAGAAAGTGAAGGCAAGG
TGGCTTATAGTCGAGCCGAAGTATGGGACTTGGCTGAGC
AAAAATAGCGATACTCGCTACGCTTCAATGTGCCGCTCAATA
GCCACGAACAAATACAGAGAATGAAAGGAGGAGGTTGGTAAAGCATTAGAAAGTGAAGGCAAGG
CACTTGTAGATACTTGGATGTGAGTTGGAGAGGAGGAAACTTCAAGAATGGCTACTCTGATT
CAT TGGATGTGAGTTGGAGAGGAGGAAACTTCAAGAATGGCTACTCTGATT
TTGATAATCAATTGGCTGAGTTGGCTGAGCTGAGGAAACTTCAACCGCATA
CGGCTTATTACCGAGCAAGGCTTGGCTGAGCTGAGGAAACTTCAACCGCATA

Fig. 4 (3/5)

FEUILLE DE REMPLACEMENT

TGGATTGAAAGGAGACAGGGCATGAATAAGTTGCAATAACTGTTTGGGGT
 TGCTCAGAGGACATGACGTATCGGTAGAAATCTGCAATACTGGAAATGTC
 AAAAGAAAATGAGGAAATTACGGAAATTACGGAAATTACGGAAATTACGGAA
 AAAAAGAACCTTGCGGATTACGGATTACTGGATTACGGAAATTACGGAA
 GTAGCATTCAAGCTTCAAGCTTCAAGCTTCAAGCTTCAAGCTTCAAGCT
 GAAATTGTCGGTATCCCTTCGGTGTGAAAGAAATGCTGGGATAAGCTAC
 AAATCGTTGACATACATCCTGGCAAGGAACTACGGCAAGGAAATGACAG
 ATTAAATAAGATGATAAGGCGGGTAAAGGAAACAGTGCCTGGGACGAA
 GCGCGTTCAAGGCTCATCGCTGGGATTCGGGAAATCTTCGGTATTCA
 GCAATTGAAATTGGCAAGAACATGGGAAATGGGAAATGGGAAATGGGAA
 TGTGAGGTGGTTGGGTTGGGAAATGGGAAATGGGAAATGGGAAATGGGAA
 CAAATCAGGGCTGCAGSTACGGAAATGGGAAATGGGAAATGGGAAATGG
 TCTGAAACGGCAGTTAACGGTTAACGGTTAACGGTTAACGGTTAACGG
 CAGGAAACGGCAAAAGGAAATGGGAAATGGGAAATGGGAAATGGGAAATGG
 ATGTTTACAAGATAACGGGCTGGGAAATGGGAAATGGGAAATGGGAAATGG
 ACGTCATACAGTCGTTAACGGTTAACGGTTAACGGTTAACGGTTAACGG
 ATTGACCGCTTGTGATCGTATTAGGCGTTGGGAAATGGGAAATGGGAAATGG
 TTTTAGATGAAATAGTACACGGTGTGAAATGGGAAATGGGAAATGGGAAATGG
 TCACCGGGAAACGGTTGGGAAAGGCAAAAGGAAATGGGAAATGGGAAATGG
 CTGAAATCGCTTGTGAAAGGCAAAAGGAAATGGGAAATGGGAAATGGGAAATGG
 GGGACGGTTACCGTCCCTAACGGTGTGAAACTGGCTAACGGAAACTGGGAAATGG
 AAAATAACCTGACAAAGGAAATTGGCTTCAAAATCAAGCCATAGGCCGATTGG
 AAGGATAACCTGACAAAGGAAATTGGCTTCAAAATCAAGCCATAGGCCGATTGG
 ATCGATTAGACACGGGTGACCTTGGGAAATGGGAAATGGGAAATGGGAAAC

Fig. 4 (4/5)

FEUILLE DE REMplacement

9 / 69

GCTCTCATGGCAAAATGGAATAATGCAATGAAGGCCAAATGGGTTCGAAATTGGCAGCTATGCT
 TAAGAGACGACCAACTTCCGTTAACCTGGCTTAAATAACTTTAACCTTAACC
 GTTGCACGGAAACTATAAGCTAACTCTTGGCAAGGAAACCCGACGTATGTAACCTG
 GGTCTTAGGAAATTATAAGCTAAGCTGCTGCGCTGCGTGGCAAGGATAAGCTGATTAAGG
 GGTGGTATTCAACGGCCATTGTCAACGGCAGTTGATAATAGTAATCCAGTAGG
 GSTATCATTTAGAAATTCACTACATTGGTACAATCTAACACATCTAACCGAGATTG
 ATTGACTGTAAATTACGGGCAAAACGGCACAACTTAAACTATAAGGAGAGCTGAAATG
 GGAAGATTCTAGAAATAATTCAACTTCAACTTAAACTTAAACTAGTTAAAGGAGAGCTGAAATG
 AAGAAGTTGTTTTTCTCAGGAAAATTCGAATTCTGAAATTCTGAAATTACAGAAGAA
 AATGAGGCACTGTTCTCAGGAAAATACCCAAAGAGAAATTAGCACA
 GAACATTAGAAATAAGGAAATTCTGCTATTAACTAGTAAATGAAATTAAACATGAGGA
 CAGGTTTATCAAGGAATCTGCTATTAACTAGTAAATGAAATTAAACATGAGGA
 TGAAGTCAGATATCGTGAATTCTAAACATGAGGAATTCTAAAGGAATTAAACATGAGGA
 TTGATAGTAATTTATGTCAGGAAATTCTGCTATTAACTAGTAAATGAAATTAAACATGAGGA
 ATGCTGTAAGGGTGGCTTAGTCATTAACTAGTAAATGAAATTAAACATGAGGA
 AGCAAAAGTGTGCTTACCAAGAAATGGGGCTGAGTATGCTTACAGDAGGTATAAGT
 AGCATAATTCAAGGTTTATCAAGTAGGATGAGTAAAGCTTGACGAAATGGAAACGAGCCC
 AGTGAAGGAAAGTGGATAAGAAATGCTTGGAAATACGGGTTCAATTACGTTACGT
 AGGACAAAACAGAGTTAACAGGAATT

Fig. 4 (5/5)

FEUILLE DE REMplacement

10/69

LysLeuPhePheLeuLeuIleCys***ArgPheThrAsnArgIleLys***LeuLeuPhe
 SerPheSerPheCysSerPheValArgAspLeuLeuThrValLeuAsnSerPhePheSer
 AlaPheLeuPheAlaHisLeuLeuGluIleTyr***ProTyr***IleAlaSerPheGln
 AAGCTTTCTTTGCTCATTGTTAGAGATTTACTAACCGTATTAAATAGCTTCTTTTC

SerHisCysProCysPheProHisHisSerPheLysCysSerAspSerArgGlnTyrAsn
 AlaIleAlaLeuAlaSerHisThrIleLeuSerSerValValIleAlaGlySerIleIle
 ProLeuProLeuLeuProThrProPhePheGlnVal*****GlnAlaVal***Phe
 AGCCATTGCCCTTGCTCCCCACACCATTCTTCAAGTGTAGTAGCAGGCAGTATAAT

100

PheValPheSer***LysIleTyrAlaPheMetGln***MetAsnGlyIleThrIlePhe
 LeuPhePheLeuArgLysSerMetHisSerCysSerArg***MetAlaSerProPheSer
 CysPhePheLeuGluAsnLeuCysIleHisAlaValAspGluTrpHisHisPhePro
 TTTGTTTTCTTAGAAAATCTATGCATTGCAGTAGATGATGGCATCACCATTTTC

GlnSer***LeuMetLysValLeuLysCysHisSerIlePheThrGlnGlyLysSerTyr
 LysAlaAsn*****ArgTyrLeuAsnValIleArgTyrSerLeuArgValLysValThr
 LysLeuIleAspGluGlyThr***MetSerPheAspIleHisSerGly***LysLeuGln
 CAAAGCTAATTGATGAAGGTACTTAAATGTCATTGATATTCACTCAGGGTAAAGTTAC

200

LysValValPheThrSerAsnPhePheGlnMetIleProLysCysIlePheProLeuArg
 LysSerTyrSerLeuArgIleSerPheLys***SerGlnSerValPheSerLeu***Gly
 SerArgIleHisPheGluPheLeuSerAsnAspProLysValTyrPheProPheGluAsp
 AAAGTCGTATTCACTTCGAATTCTTCAAATGATCCCAGGTGTATTTCCCTTGAGG

300

Fig. 5 (1/25)

FEUILLE DE REMplacement

11/69

IleMetIleLysArgGlyTrpThrAsnThrAsnLeuPheArgTyrIleLeuTyrAspArg
 *****SerSerGluAspGlyLeuThrProIleCysPheAspIleTyrCysMetThrGlu
 AsnAspGlnAlaArgMetAsp***HisGlnSerValSerIleTyrIleVal***ProAsn
 ATAATGATCAAGCGAGGATGGACTAACACCAATCTGTTCGAATATATTGTATGACCGA

IleTrpAspAlaPheAspMetSerValTrpProThrGlyIleProLysAsnSer***Leu
 SerGlyMetLeuLeuIle***ValTyrGlyGlnProGlyTyArgArgThrAlaAsn***
 LeuGlyCysPhe***TyrGluCysMetAlaAsnArgAspThrGluGluGlnLeuIleGlu
 ATCTGGGATGCTTTGATATGAGTGTATGCCAACCGGGATACGAAGAACAGCTAATTG

400

AsnSerLysSer***ThrValPhePheProProSerLeuIleAsnTyrPhe***IlePro
 ThrAlaAsnProLysArgPheSerSerLeuLeuArgLeuLeuThrIleSerLysSerArg
 GlnGlnIleLeuAsnGlyPheLeuProSerPheAlaTyr***LeuPheLeuAsnProVal
 AACAGCAAATCCTAAACGGTTTCTTCCTCCTCGCTTATTACTATTCTAAATCCCG

PheGlyLysSerGluValGlyProGlnTyrProPheIlePheArgAspLeuHisLysSer
 LeuGluLysValLys***ValProSerIleHisSerSerSerGlyIleCysIleLysAla
 TrpLysLys***SerArgSerProValSerIleHisLeuGlnGlyPheAla***LysPro
 TTTGGAAAAAGTGAAGTAGGTCCCCAGTATCCATTCTTCAGGGATTGCATAAAAGC

500

LeuSerLeuPheArgCysLysGlnPheSerThrSerArgAsnPheHisSerValSerPhe
 CysLeuCysSerGlyValSerAsnSerLeuProLeuAlaIlePheIleGlnTyrHisSer
 ValSerValProVal***AlaIleLeuTyrLeuSerGlnPheSerPheSerIleIlePro
 CTGTCTCTGTTCCGGTGTAAGCAATTCTACCTCTCGCAATTTCATTCAAGTATCATTC

600

Fig. 5 (2/25)

FEUILLE DE REMPLACEMENT

12 / 69

HisPheCysIlePheAsnLeuLeuValGlnLeuTyrIleAsnArgValTyrSerIleAsp
 IleSerValPheSerIleTyr***PheAsnTyrIleSerIleGluCysThrLeuLeuIle
 PheLeuTyrPheGlnPheIleSerSerIleIleTyrGln***SerValLeuTyr***Tyr
 CATTCTGTATTTCAATTATTAGTTCAATTATATCAATAAGAGTGTACTCTATTGAT

ThrAsnValValAsp*****AsnHisSer***GluArgLeuIleArgLeuValSerLys
 GlnMet*****ThrAspLysIleIleValLysSerValSer***AspLeuSerGlnLys
 LysCysSerArgLeuIleLysSer***LeuArgAlaSerHisLysThrCysLeuLysAsn
 ACAAAATGTAGTAGACTGATAAAATCATAGTTAACGGCGTCTCATAGACTTGTCATAA

700

MetArg***TyrPheAlaGluAsnArgLeuTyrSerCysGlnPheAsp***ProGluSer
 ***GlyAspIleLeuArgLysIleGlyTyrIleArgValSerSerThrAsnGlnAsnPro
 GluValIlePheCysGlyLysSerValIlePheValSerValArgLeuThrArgIleLeu
 ATGAGGTGATATTTGCGGAAAATCGTTATATTCTGTGTCAGTCGACTAACCAAGAATCC

PheLysThrIleSerAlaValGluArgAspArgAsnGlyTyrTyrIleLysArgLysPhe
 SerArgGlnPheGlnGlnLeuAsnGluIleGlyMetAspIleIle***ArgGluSerPhe
 GlnAspAsnPheSerSer***ThrArgSerGluTrpIleLeuTyrLysGluLysValSer
 TTCAAGACAATTCAGCAGTTAACGAGATCGGAATGGATATTATATAAGAGAAAGTTT

800

GlnGluGlnGlnArgIleAlaSerAsnPheLysLysCys***ThrIleTyrArgLysMet
 ArgSerAsnLysGlySerArgAlaThrSerLysSerValArgArgPheThrGlyArg***
 GlyAlaThrLysAspArgGluGlnLeuGlnLysValLeuAspAspLeuGlnGluAspAsp
 CAGGAGCAACAAAGGATCGCGAGCAACTCAAAAGTGTAGACGATTACAGGAAGATG

900

Fig. 5 (3/25)

FEUILLE DE REMplacement

13/ 69

ThrSerPheMetLeuGlnThr***LeuGluSerLeuValValHisLysIleTyrLeuAsn
 HisHisLeuCysTyrArgLeuAsnSerAsnHisSer***TyrThrArgSerIle***Ile
 IleIleTyrValThrAspLeuThrArgIleThrArgSerThrGlnAspLeuPheGluLeu
 ACATCATTTATGTTACAGACTTAACACTGAATCACTCGTAGTACACAAGATCTATTGAAT

SerIleThrTyrGluIleLysArgGlnValAsnHis***LysIleHisGlyLeu
 AsnArg***HisThrArg***LysGlyLysPheLysIleThrLysArgTyrMetAla***
 IleAspAsnIleArgAspLysLysAlaSerLeuLysSerLeuLysAspThrTrpLeuAsp
 TAATCGATAACATACGAGATAAAAAGGCCAAGTTAAATCACTAAAGATAACATGGCTTG

1000

IleTyrGlnLysIleIleHisThrAlaAsnSer***LeuLeu***TrpLeuValLeuThr
 PheIleArgArg***SerIleGlnProIleLeuAsnTyrCysAsnGlyTrpCys***Pro
 LeuSerGluAspAsnProTyrSerGlnPheLeuIleThrValMetAlaGlyValAsnGln
 ATTTATCAGAAGATAATCCATACAGCCAATTCTTATTACTGTAATGGCTGGTGTAAACC

Asn***SerGluIleLeuPheGly***AspAsnValLysGlyLeuAsnTrpLeuArgLys
 IleArgAlaArgSerTyrSerAspGluThrThr***ArgAsp***IleGly***GluArg
 LeuGluArgAspLeuIleArgMetArgGlnArgGluGlyIleGluLeuAlaLysLysGlu
 AATTAGAGCGAGATCTTATTGGATGAGACAACGTGAAGGGATTGAATTGGCTAAGAAAG

1100

LysGluSerLeuLysValAsp***ArgSerIleIleLysIleThrGlnGlu***IleMet
 ArgLysVal***ArgSerIleLysGluValSer***LysSerArgArgAsnGluLeuCys
 GlyLysPheLysGlyArgLeuLysLysTyrHisLysAsnHisAlaGlyMetAsnTyrAla
 AAGGAAAAGTTAAAGGTCGATTAAAGAAGTATCATAAAAATCACGCAGGAATGAATTATG

1200

Fig. 5 (4/25)

FEUILLE DE REMPLACEMENT

ArgArgLysLeuTyrLysGluGlyAsnMetThrValAsnGlnIleCysGluIleThrAsn
 GlyGluSerTyrIleLysLysGluIle***Leu***IleLysPheValLysLeuLeuMet
 AlaLysAlaIle***ArgArgLysTyrAspCysLysSerAsnLeu***AsnTyr***Cys
 CGGXXAAAGCTATATAAGAAGGAAATATGACTGTAAATCAATTGTGAAATTACTAAT

ValSerArgAlaSerLeuTyrArgLysLeuSerGluValAsnAsn***ProPheCysIle
 TyrLeuGlyLeuHisTyrThrGlyAsnTyrGlnLys***IleIleSerHisSerValPhe
 Ile***GlyPheIleIleGlnGluIleIleArgSerGlu***LeuAlaIleLeuTyrSer
 GTATCTAGGGCTTCATTATACAGGAAATTATCAGAAGTGAATAATTAGCCATTCTGTATT

1300

ProLeuMetGlyAsnIlePheLysGluGluLysGluThrIleLysTyr***GlnProPro
 Arg***TrpAlaIlePheLeuLysLysLysArgLysLeu***AsnIleAsnSerLeuLeu
 AlaAsnGlyGlnTyrPhe***ArgArgLysGlyAsnTyrLysIleLeuThrAlaSer***
 CCGCTAACGGCAATATTTTAAAGAAGAAAAGGAAACTATAAATATTAAACAGCCTCCT

SerAspAlaGluLysProPheAspLysLysArgIleIleIleLeuArgAsnSer***Ser
 AlaMetProLysSerProLeuIleLysLysGluSerSerSer***GluIleLeuSerHis
 ArgCysArgLysAlaLeu*****LysLysAsnHisHisLeuLysLysPheLeuValIle
 AGCGATGCCGAAAAGCCCTTGATAAAAAAGAACATCATCTTAAGAAATTCTTAGTCA

1400

PheIleMet***MetLeuIleAsnSerAlaLeu***SerAspLysLeuLeuArgAlaAsn
 LeuLeuCysLysCysLeu***IleArgProTyrAsnLeuIleAsnTyr***GlyGlnThr
 TyrTyrValAsnAlaTyrLysPheGlyProIleIle*****IleIleLysGlyLysLeu
 TTTATTATGTAAATGCTTATAAAATTGCCCTATAATCTGATAAAATTATTAAGGGCAAAC

1500

Fig. 5 (5/25)

FEUILLE DE REMplacement

15 / 69

LeuCysGluArgValIleThrMetSerAspLysIleLeuIleValAspAspGluHisGlu
 TyrValLysGly*****Leu***AlaIleLysTyrLeuLeuTrpMetMetAsnMetLys
 Met***LysGlyAspAsnTyrGluArg***AsnThrTyrCysGly*****Thr***Asn
 TTATGTGAAAGGGTGATAACTATGAGCGATAAAACTTATTGTGGATGATGAACATGAA

IleAlaAspLeuValGluLeuTyrLeuLysAsnGluAsnTyrThrValPheLysTyrTyr
 LeuProIleTrpLeuAsnTyrThr***LysThrArgIleIleArgPheSerAsnThrIle
 CysArgPheGly***IleIleLeuLysLysArgGluLeuTyrGlyPheGlnIleLeuTyr
 ATTGCCGATTGGTTGAATTACTTAAAAACGAGAATTACGGTTTCAAATACTAT

1600

ThrAlaLysGluAlaLeuGluCysIleAspLysSerGluIleAspLeuAlaIleLeuAsp
 ProProLysLysHisTrpAsnVal***ThrSerLeuArgLeuThrLeuProTyrTrpThr
 ArgGlnArgSerIleGlyMetTyrArgGlnVal***Asp***ProCysHisIleGlyHis
 ACCGCCAAAGAACATTGGAATGTATAGACAGTCTGAGATTGACCTTGCCATATTGGAC

IleMetLeuProGlyThrSerGlyLeuThrIleCysGlnLysIleArgAspLysHisThr
 SerCysPheProAlaGlnAlaAlaLeuLeuSerValLysLys***GlyThrSerThrPro
 HisAlaSerArgHisLysArgProTyrTyrLeuSerLysAsnLysGlyGlnAlaHisLeu
 ATCATGCTTCCCGGCACAAGCGGCCTACTATCTGTAAAAATAAGGGACAAGCACACC

1700

TyrProIleIleMetLeuThrGlyLysAspThrGluValAspLysIleThrGlyLeuThr
 IleArgLeuSerCys***ProGlyLysIleGlnArg***IleLysLeuGlnGly***Gln
 SerAspTyrHisAlaAspArgGluArgTyrArgGlyArg***AsnTyrArgValAsnAsn
 TATCCGATTATCATGCTGACCGGGAAAGATACAGAGGTAGATAAAATTACAGGGTTAACCA

1800

Fig. 5 (6/25)

FEUILLE DE REMplacement

16 / 69

IleGlyAlaAspAspTyrIleThrLysProPheArgProLeuGluLeuIleAlaArgVal
SerAlaArgMetIleIle***ArgSerProPheAlaHisTrpSer***LeuLeuGly***
ArgArgGly***LeuTyrAsnGluAlaLeuSerProThrGlyValAsnCysSerGlyLys
ATCGGCGCGGATGATTATATAACGAAGCCCTTCGCCCACTGGAGTTAATTGCTCGGGTA

LysAlaGlnLeuArgArgTyrLysLysPheSerGlyValLysGluGlnAsnGluAsnVal
ArgProSerCysAlaAspThrLysAsnSerValGlu***ArgSerArgThrLysMetLeu
GlyProValAlaProIleGlnLysIleGlnTrpSerLysGlyAlaGluArgLysCysTyr
AAGGCCAGTTGCGCCGATACAAAAATTCACTGGAGTAAAGGAGCAGAACGAAAATGTT

1900

IleValHisSerGlyLeuValIleAsnValAsnThrHisGluCysTyrLeuAsnGluLys
SerSerThrProAlaLeuSerLeuMetLeuThrProMetSerValIle***ThrArgSer
ArgProLeuArgProCysHis***Cys***HisPro***ValLeuSerGluArgGluAla
ATCGTCCACTCCGGCCTTGTCAATTAACTGTTAACACCCATGAGTGTTATCTGAACGAGAAG

GlnLeuSerLeuThrProThrGluPheSerIleLeuArgIleLeuCysGluAsnLysGly
SerTyrProLeuLeuProProSerPheGlnTyrCysGluSerSerValLysThrArgGly
ValIleProTyrSerHisArgValPheAsnThrAlaAsnProLeu***LysGlnGlyGlu
CAGTTATCCCTTACTCCCACCGAGTTTCAATACTGCGAATCCTCTGTGAAAACAAGGGG

2000

AsnValValSerSerGluLeuLeuPheHisGluIleTrpGlyAspGluTyrPheSerLys
MetTrpLeuAlaProSerCysTyrPheMetArgTyrGlyAlaThrAsnIleSerAlaArg
CysGly***LeuArgAlaAlaIleSer***AspMetGlyArgArgIlePheGlnGlnGlu
AATGTGGTTAGCTCCGAGCTGCTATTCATGAGATATGGGGCGACGAATATTCAGCAAG

2100

Fig. 5 (7/25)

FEUILLE DE REMPLACEMENT

SerAsnAsnThrIleThrValHisIleArgHisLeuArgGluLysMetAsnAspThrIle
 AlaThrThrProSerProCysIleSerGlyIleCysAlaLysLys***ThrThrProLeu
 GlnGlnHisHisHisArgAlaTyrProAlaPheAlaArgLysAsnGluArgHisHis***
 AGCAACAAACACCATCACCGTCATATCCGGCATTTGCGCGAAATAATGAACGACACCATT

AspAsnProLysTyrIleLysThrValTrpGlyValGlyTyrLysIleGluLys***Lys
 IleIleArgAsnIle***LysArgTyrGlyGlyLeuValIleLysLeuLysAsnLysLys
 SerGluIleTyrLysAsnGlyMetGlyGlyTrpLeuAsn***LysIleLysLys
 GATAATCCGAAATATATAAAACGGTATGGGGGGTTGGTTATAAAATTGAAAAATAAAA

2200

LysArgLeuPheGlnThrArgThrLysThrLeuHisValTyrArgCysAsnCysCysGly
 AsnAspTyrSerLysLeuGluArgLysLeuTyrMetTyrIleValAlaIleValValVal
 ThrThrIleProAsn***AsnGluAsnPheThrCysIleSerLeuGlnLeuLeuTrp***
 AACCGACTATTCCAAACTAGAACGAAACTTACATGTATATCGTTGCAATTGTTGTGGT

SerAsnCysIleArgValValTyrSerPheAsnAspProArgGluThrTrpGlyLeuAsp
 AlaIleValPheValLeuTyrIleArgSerMetIleArgGlyLysLeuGlyAspTrpIle
 GlnLeuTyrSerCysCysIlePheValGln***SerGluGlyAsnLeuGlyIleGlySer
 AGCAATTGTATTCGTGTTGTATATCGTTCAATGATCCGAGGGAAACTGGGGATTGGAT

2300

LeuLysTyrPheGlyLysGlnIle***LeuLysSerProGlyArgAspGluIleIleSer
 LeuSerIleLeuGluAsnLysTyrAspLeuAsnHisLeuAspAlaMetLysLeuTyrGln
 ValPheTrpLysThrAsnMetThrIleThrTrpThrArg***AsnTyrIleAsn
 CTTAAGTATTTGGAAAACAAATATGACTAAATCACCTGGACGCGATGAAATTATATCA

2400

Fig. 5 (8/25)

FEUILLE DE REMplacement

IlePheHisThrGluGlnTyrArgTyrLeuTyrLeuCysGlyAspCysHis***TyrSer
 TyrSerIleArgAsnAsnIleAspIlePheIleTyrValAlaIleValIleSerIleLeu
 IleProTyrGlyThrIle***IleSerLeuPheMetTrpArgLeuSerLeuValPheLeu
 ATATTCCATACGGAACAATATAGATATCTTATTTATGTGGCGATTGTCATTAGTATTCT

TyrSerMetSerArgHisAlaPheLysIleArgLysIleLeu***ArgAspLysTyrArg
 IleLeuCysArgValMetLeuSerLysPheAlaLysTyrPheAspGluIleAsnThrGly
 PheTyrValAlaSerCysPheGlnAsnSerGlnAsnThrLeuThrArg***IleProAla
 TATTCTATGTCGCGTCATGCTTCAAAATTGCAAAACTTGACGAGATAAATACCGG

2500

His***CysThrTyrSerGluArgArg***ThrAsn***AlaPheCysGlyAsnGlyCys
 IleAspValLeuIleGlnAsnGluAspLysGlnIleGluLeuSerAlaGluMetAspVal
 LeuMetTyrLeuPheArgThrLysIleAsnLysLeuSerPheLeuArgLysTrpMetLeu
 CATTGATGTACTTATTCAAGAACGAAAGATAAACAAATTGAGCTTCTGCGGAAATGGATGT

TyrGlyThrLysAlaGlnHisIleLysThrAspSerGlyLysAlaArgAlaGlyCysLys
 MetGluGlnLysLeuAsnThrLeuLysArgThrLeuGluLysArgGluGlnAspAlaLys
 TrpAsnLysSerSerThrHis***AsnGlyLeuTrpLysSerGluSerArgMetGlnSer
 TATGGAACAAAAGCTAACACATTAAAACGGACTCTGGAAAAGCGAGAGCAGGATGCCAA

2600

AlaGlyArgThrLysLysLys***ArgCysTyrValLeuGlyAlaArgTyr***AsnAla
 LeuAlaGluGlnArgLysAsnAspValValMetTyrLeuAlaHisAspIleLysThrPro
 TrpProAsnLysGluLysMetThrLeuLeuCysThrTrpArgThrIleLeuLysArgPro
 GCTGGCCGAACAAAGAAAAATGACGTTATGTACTTGGCGCACGATATTAAACGCC

2700

Fig. 5 (9/25)

FEUILLE DE REMplacement

19 / 69

ProTyrIleHisTyrArgLeuPheGluProAla***ArgGlySerArgHisAlaGlyArg
 LeuThrSerIleIleGlyTyrLeuSerLeuLeuAspGluAlaProAspMetProValAsp
 LeuHisProLeuSerValIle***AlaCysLeuThrArgLeuGlnThrCysArg***Ile
 CCTTACATCCATTATCGGTTATTGAGCCTGCTTGACGAGGCTCCAGACATGCCGGTAGA

SerLysGlyLysValCysAlaTyrHisValGlyGlnSerValSerThrArgThrAlaAsn
 GlnLysAlaLysTyrValHisIleThrLeuAspLysAlaTyrArgLeuGluGlnLeuIle
 LysArgGlnSerMetCysIleSerArgTrpThrLysArgIleAspSerAsnSer***Ser
 TCAAAAGGCAAAGTATGTGCATATCACGTTGGACAAAGCGTATCGACTCGAACAGCTAAT

2800

ArgArgValPhe***AspTyrThrVal***ProThrAsnAspAsnAlaAsnLysAsnAla
 AspGluPhePheGluIleThrArgTyrAsnLeuGlnThrIleThrLeuThrLysThrHis
 ThrSerPheLeuArgLeuHisGlyIleThrTyrLysArg***Arg***GlnLysArgThr
 CGACGAGTTTGAGATTACACGGTATAACCTACAAACGATACGCTAACAAAAACGCA

HisArgProIleLeuTyrAlaGlyAlaAspAspArg***IleIeuSerSerAlaPheArg
 IleAspLeuTyrTyrMetLeuValGlnMetThrAspGluPheTyrProGlnLeuSerAla
 ThrTyrThrIleCysTrpCysArgProMetAsnPheIleLeuSerPheProHis
 CATAGACCTATACTATATGCTGGTGCAGATGACCGATGAATTTCATCCTCAGCTTCCGC

2900

ThrTrpLysThrGlyGlyTyrSerArgProArgGlySerAspArgValArgArgPro***
 HisGlyLysGlnAlaValIleHisAlaProGluAspLeuThrValSerGlyAspProAsp
 MetGluAsnArgArgLeuPheThrProProArgIle***ProCysProAlaThrLeuIle
 ACATGGAAAACAGGCAGGTTATTCACGCCCGAGGATCTGACCGTGTCCGGCGACCCTGA

3000

Fig. 5 (10/25)

FEUILLE DE REMPLACEMENT

20 / 69

ThrArgGluSerLeuGlnHisPheGluLysArgArgCysIleGln***Gly***
 LysLeuAlaArgValPheAsnAsnIleLeuLysAsnAlaAlaTyrSerGluAspAsn
 AsnSerArgGluSerLeuThrThrPhe***LysThrProLeuHisThrValArgIleThr
 TAAACTCGCGAGAGTCTTAACAAACATTTGAAAAACGCCGCTGCATAACAGTGAGGATAA

GlnHisHis***HisTyrArgGlyProLeuArgGlyCysGlyValAsnArgIleGlnGlu
 SerIleIleAspIleThrAlaGlyLeuSerGlyAspValValSerIleGluPheLysAsn
 AlaSerLeuThrLeuProArgAlaSerProGlyMetTrpCysGlnSerAsnSerArgThr
 CAGCATCATTGACATTACCGCGGGCCTCTCCGGGGATGTGGTGTCAATCGAATTCAAGAA

3100

HisTrpLysHisProLysArg***AlaSerCysHisIle***LysValLeu***AlaGly
 ThrGlySerIleProLysAspLysLeuAlaAlaIlePheGluLysPheTyrArgLeuAsp
 LeuGluAlaSerGlnLysIleSer***LeuProTyrLeuLysSerSerIleGlyTrpThr
 CACTGGAAGCATCCCAAAAGATAAGCTAGCTGCCATATTGAAAGTTCTATAGGCTGGA

GlnPheSerPhePheArgTyrGlyTrpArgGlyThrTrpIleGlyAspCysLysArgAsn
 AsnSerArgSerSerAspThrGlyGlyAlaGlyLeuGlyLeuAlaIleAlaLysGluIle
 IleLeuValLeuProIleArgValAlaArgAspLeuAspTrpArgLeuGlnLysLysLeu
 CAATTCTCGTCTTCGATACGGGTGGCGCGGGACTTGGATTGGCGATTGCAAAGAAAT

3200

TyrCysSerAlaTrpArgAlaAspLeuArgGlyLysLeu*****LeuTyrAspVal***
 IleValGlnHisGlyGlyGlnIleTyrAlaGluSerTyrAspAsnTyrThrThrPheArg
 LeuPheSerMetGluGlyArgPheThrArgLysAlaMetIleThrIleArgArgLeuGly
 TATTGTTCAGCATGGAGGGCAGATTACGCGGAAAGCTATGAAACTATACGACGTTAG

3300

Fig. 5 (11/25)

FEUILLE DE REMplacement

21/69

GlyArgAlaSerSerAspAlaArgLeuGly*****LysGluValLeuArgAspValTyr
 ValGluLeuProAlaMetProAspLeuValAspLysArgArgSer***GluMetTyrIle
 SerPheGlnArgCysGlnThrTrpLeuIleLysGlyGlyProLysArgCysIle
 GGTAGAGCTTCCAGCGATGCCAGACTTGGTTGATAAAAGGAGGTCTAAGAGATGTATAT

AsnPheLeuGlyLysSerGlnGlyTyrLeuTyrPhePheLeuGlyAsn***GlnPheAsn
 IlePhe***GluAsnLeuLysValIlePheThrPheSer***GluIleAsnAsnLeuIle
 PhePheArgLysIleSerArgLeuSerLeuLeuPheLeuArgLysLeuThrIle***Tyr
 AATTAGGAAATCTCAAGGTTATCTTACTTTCTTAGGAAATTAACAATTAAAT

3400

IleLysLysArgLeuValLeuThrArg***Thr***TyrArgLysAsnGluProPheSer
 LeuArgAsnGlySerPheLeuHisGlyArgLeuAsnThrValArgThrSerArgPheArg
 GluThrAlaArgSerTyrThrValAspLeuIleProGluArgAlaValPheVal
 ATTAAGAAACGGCTCGTCTTACACGGTAGACTTAATACCGTAGAACGAGCCGTTTCG

PhePheArgGluArgPheAspLysIleThrIleGlyIleProValLeuPheGlyAlaPhe
 SerSerGluLysAspLeuThrArgLeuProLeuAlaSerProPheTyrLeuValProPhe
 LeuGlnArgLysIle***GlnAspTyrHisTrpHisProArgPheIleTrpCysLeuSer
 TTCTTCAGAGAAAGATTGACAAGATTACCATTGGCATCCCCGTTTATTTGGTGCCTT

3500

HisArgLysGlyTrpSer***Leu***IleThrSerAlaLeuLeuPheMetAspValSer
 ThrGluArgValGlyLeuAsnTyrGlu***HisArgHisTyrCysLeuTrpMet***Ala
 GlnLysGlyLeuValLeuIleMetAsnAsnIleGlyIleThrValTyrGlyCysGluGln
 CACAGAAAGGGTTGGTCTTAATTATGAATAACATCGGCATTACTGTTATGGATGTGAGC

3600

Fig. 5 (12/25)

FEUILLE DE REMPLACEMENT

22/69

ArgMetArgGlnMetHisSerMetLeuPheArgLeuAlaLeuAlaLeuTrpGlnArg***
 Gly***GlyArgCysIleProCysSerPheAlaSerLeuTrpArgTyrGlyAsnAspAsn
 AspGluAlaAspAlaPheHisAlaLeuSerProArgPheGlyValMetAlaThrIleIle
 AGGATGAGGCAGATGCATTCCATGCTTTGCCCGCTGGCGTTATGGCAACGATAA

LeuThrProThrCysArgAsnProThrProAsnProArgLeuSerIleAsnValSerVal
 ***ArgGlnArgValGlyIleGlnArgGlnIleArgAlaPteGlnSerMetTyrGlnCys
 AsnAlaAsnValSerGluSerAsnAlaLysSerAlaProPheAsnGlnCysIleSerVal
 TTAACGCCAACGTGTCGGAATCCAACGCCAAATCCGCGCCTTCAATCAATGTATCAGTG

3700

TrpAspIleAsnGlnArgPheProProLeuPhePheLeuArg***ArgGluProVal***
 GlyThr***IleArgAspPheArgLeuTyrSerSerCysAlaGluGluSerArgCysGlu
 GlyHisLysSerGluIleSerAlaSerIleLeuLeuAlaLeuLysArgAlaGlyValLys
 TGGGACATAAATCAGAGATTCCGCCTCTATTCTTGCCTGAAGAGAGCCGGTGTGA

AsnIlePheLeuProGluAlaSerAlaAlaIleIle***IleGlnLeuLeuLeuArgGlu
 IleTyrPheTyrProLysHisArgLeuGlnSerTyrArgTyrAsnCysCys***GluAsn
 TyrIleSerThrArgSerIleGlyCysAsnHisIleAspThrThrAlaAlaLysArgMet
 AATATATTTCTACCCGAAGCATCGGCTGCAATCATAGATAACAATGCTGCTAAGAGAA

3800

TrpAlaSerLeuSerThrMetTrpArgThrArgArgIleAlaLeuProIleIleLeu**
 GlyHisHisCysArgGlnCysGlyValLeuAlaGly***ArgCysArgLeuTyrTyrAsp
 GlyIleThrValAspAsnValAlaTyrSerProAspSerValAlaAspTyrThrMetMet
 TGGGCATCACTGTCGACAATGTGGCGTACTGCCGGATAGCGTTGCCGATTACTATGA

3900

Fig. 5 (13/25)

FEUILLE DE REMPLACEMENT

23 / 69

Cys***PheLeuTrpGlnTyrAlaThr***AsnArgLeuCysAlaLeuTrpLysAsnMet
 AlaAsnSerTyrGlySerThrGlnArgLysIleAspCysAlaLeuCysGlyLysThr***
 LeuIleLeuMetAlaValArgAsnValLysSerIleValArgSerValGluLysHisAsp
 TGCTAATTCTTATGGCAGTACGCAACGTAAAATCGATTGTGCGCTCTGTGGAAAAACATG

IleSerGlyTrpThrAlaThrValAlaArgTyrSerAlaThr***GlnLeuValTrpTrp
 PheGlnValGlyGlnArgProTrpGlnGlyThrGlnArgHisAspSerTrpCysGlyGly
 PheArgLeuAspSerAspArgGlyLysValLeuSerAspMetThrValGlyValValGly
 ATTCAGGTTGGACAGCGACCGTGGCAAGGTACTCAGCGACATGACAGTTGGTGTGGTGG

4000

GluArgAlaArg***AlaLysArgLeuLeuSerGlyCysGluAspLeuAspValLysCys
 AsnGlyProAspArgGlnSerGlyTyr***AlaAlaAlaArgIleTrpMet***SerVal
 ThrGlyGlnIleGlyLysAlaValIleGluArgLeuArgGlyPheGlyCysLysValLeu
 GAACGGGCCAGATAGGCAAAGCGGTTATTGAGCGGCTGCGAGGATTGGATGTAAAGTGT

TrpLeuIleValAlaAlaGluVal***Arg***ThrMetTyrArgLeuMetSerCysCys
 GlyLeu***SerGlnProLysTyrArgGlyLysLeuCysThrVal*****ValAlaAla
 AlaTyrSerArgSerArgSerIleGluValAsnTyrValProPheAspGluLeuLeuGln
 TGGCTTATAGTCGCAGCCGAAGTATAGAGGTAAACTATGTACCGTTGATGAGTTGCTGC

4100

LysIleAlaIleSerLeuArgPheMetCysArgSerIleArgIleArgThrIleLeuSer
 Lys***ArgTyrArgTyrAlaSerCysAlaAlaGlnTyrGlyTyrAlaLeuTyrTyrGln
 AsnSerAspIleValThrLeuHisValProLeuAsnThrAspThrHisTyrIleIleSer
 AAAATAGCGATATCGTTACGCTTCATGTGCCGCTCAATACGGATAACGCACTATATTATCA

4200

Fig. 5-(14/25)

FEUILLE DE REMplacement

24/69

AlaThrAsnLysTyrArgGlu***SerLysGluHisPheLeuSerIleLeuGlyAlaVal
 ProArgThrAsnThrGluAsnGluAlaArgSerIleSerTy=GlnTyrTrpAlaArgSer
 HisGluGlnIleGlnArgMetLysGlnGlyAlaPheLeuIleAsnThrGlyArgGlyPro
 GCCACGAACAAATACAGAGAATGAAGCAAGGAGCATTCTATCAATACTGGCGCGTC

HisLeu***IleProMetSerTrpLeuLysHis***LysThrGlyAsnTrpAlaValPro
 ThrCysArgTyrLeu***ValGly***SerIleArgLysAr=GluThrGlyArgCysArg
 LeuValAspThrTyrGluLeuValLysAlaLeuGluAsnGlyLysLeuGlyGlyAlaAla
 CACTTGTAGATACTTATGAGTTGGTAAAGCATTAGAAAACGGAAACTGGCGGTGCCG

4300

HisTrpMetTyrTrpLysGluArgLysSerPheSerThrLeuIleAlaProLysAsnGln
 IleGlyCysIleGlyArgArgGlyArgValPheLeuLeu***LeuHisProLysThrAsn
 LeuAspValLeuGluGlyGluGluGluPhePheTyrSerAspCysThrGlnLysProIle
 CATTGGATGTATTGGAAGGAGAGGAAGAGTTTCTACTCTGTTGCACCCAAAAACCAA

LeuIleIleAsnPheTyrLeuAsnPheLysGluCysLeuThr*****SerHisArgIle
 *****SerIlePheThr***ThrSerLysAsnAla***ArgAspAsnHisThrAlaTyr
 AspAsnGlnPheLeuLeuLysLeuGlnArgMetProAsnValIleIleThrProHisThr
 TTGATAATCAATTTTACTTAAACTCAAAGAACGCTAACGTGATAATCACACCGCATA

4400

ArgProIleIleProSerLysArgCysValIleProLeuLysLysProLeuLysThrVal
 GlyLeuLeuTyrArgAlaSerValAla***TyrArg***LysAsnHis***LysLeuPhe
 AlaTyrTyrThrGluGlnAlaLeuArgAspThrValGluLysThrIleLysAsnCysLeu
 CGGCCTATTATACCGAGCAAGCGTTGCGTGATACCGTTGAAACCATTAAAAACTGTT

4500

Fig. 5 (15/25)

FEUILLE DE REMplacement

25 / 69

TrpIleLeuLysGlyAspArgSerMetAsnArgIleLysValAlaIleLeuPheGlyGly
 GlyPhe***LysGluThrGlyAla***IleGlu***LysLeuGlnTyrCysLeuGlyVal
 AspPheGluArgArgGlnGluHisGlu***AsnLysSerCysAsnThrValTrpGlyLeu
 TGGATTTGAAAGGAGACAGGAGCATGAATAGAATAAAAGTTGCAATACTGTTGGGGT

CysSerGluGluHisAspValSerValLysSerAlaIleGluIleAlaAlaAsnIleAsn
 AlaGlnArgSerMetThrTyrArg***AsnLeuGln***Arg***ProLeuThrLeuIle
 LeuArgGlyAla***ArgIleGlyLysIleCysAsnArgAspSerArg***His*****
 TGCTCAGAGGAGGCATGACGTATCGGTAAAATCTGCAATAGAGATAGCCGCTAACATTAAT

4600

LysGluLysTyrGluProLeuTyrIleGlyIleThrLysSerGlyValTrpLysMetCys
 LysLysAsnThrSerArgTyrThrLeuGluLeuArgAsnLeuValTyrGlyLysCysAla
 ArgLysIleArgAlaValIleHisTrpAsnTyrGluIleTrpCysMetGluAsnValArg
 AAAGAAAAATACGAGGCCGTTATACATTGGAATTACGAAATCTGGTGTATGGAAAATGTGC

GluLysProCysAlaGluTrpGluAsnAspAsnCysTyrSerAlaValLeuSerProAsp
 LysAsnLeuAlaArgAsnGlyLysThrThrIleAlaIleGlnLeuTyrSerArgArgIle
 LysThrLeuArgGlyMetGlyLysArgGlnLeuLeuPheSerCysThrLeuAlaGly***
 GAAAAACCTTGCACGGAAATGGGAAAACGACAATTGCTATTAGCTGTACTCTGCCGGAT

4700

LysLysMetHisGlyLeuLeuValLysLysAsnHisGluTyrGluIleAsnHisValAsp
 LysLysCysThrAspTyrLeuLeuLysArgThrMetAsnMetLysSerThrMetLeuMet
 LysAsnAlaArgIleThrCys***LysGluPro***Ile***AsnGlnProCys***Cys
 AAAAAAAATGCACGGATTACTTGTAAAAAGAACCATGAATATGAAATCAACCATGTTGAT

4800

Fig. 5 (16/25)

FEUILLE DE REMplacement

26 / 69

Val Ala Phe Ser Ala Leu His Gly Lys Ser Gly Glu Asp Gly Ser Ile Gln Gly Leu Phe
 *** His Phe Gln Leu Cys Met Ala Ser Gln Val Lys Met Asp Pro Tyr Lys Val Cys Leu
 Ser Ile Phe Ser Phe Ala Trp Gln Val Arg *** Arg Trp Ile His Thr Arg Ser Val ***
 GTAGCATTTCAGCTTGCATGGCAAGTCAGGTGAAGATGGATCCATACAAGGTCTGTTT

Glu Leu Ser Gly Ile Pro Phe Val Gly Cys Asp Ile Gln Ser Ser Ala Ile Cys Met Asp
 Asn Cys Pro Val Ser Leu Leu *** Ala Ala Ile Phe Lys Ala Gln Gln Phe Val Trp Thr
 Ile Val Arg Tyr Pro Phe Cys Arg Leu Arg Tyr Ser Lys Leu Ser Asn Leu Tyr Gly Gln
 GAATTGTCCGGTATCCCTTTGAGGCTGCGATATTCAAAGCTCAGCAATTGTATGGAC

4900

Lys Ser Leu Thr Tyr Ile Val Ala Lys Asn Ala Gly Ile Ala Thr Pro Ala Phe Trp Val
 Asn Arg *** His Thr Ser Leu Arg Lys Met Leu Gly *** Leu Leu Pro Pro Phe Gly Leu
 Ile Val Asp Ile His Arg Cys Glu Lys Cys Trp Asp Ser Tyr Ser Arg Leu Leu Gly Tyr
 AAATCGTTGACATACATCGTTGCGAAAAATGCTGGGATAGCTACTCCGCCTTTGGGTT

Ile Asn Lys Asp Asp Arg Pro Val Ala Ala Thr Phe Thr Tyr Pro Val Phe Val Lys Pro
 Leu Ile Lys Met Ile Gly Arg Trp Gln Leu Arg Leu Pro Ile Leu Phe Leu Leu Ser Arg
 ***** Arg ***** Ala Gly Gly Ser Tyr Val Tyr Leu Ser Cys Phe Cys *** Ala Gly
 ATTAATAAAGATGATAGGCCGGTGGCAGCTACGTTACCTATCCTGTTTTGTTAACCGC

5000

Ala Arg Ser Gly Ser Ser Phe Gly Val Lys Lys Val Asn Ser Ala Asp Glu Leu Asp Tyr
 Arg Val Gln Ala His Pro Ser Val *** Lys Lys Ser Ile Ala Arg Thr Asn Trp Thr Thr
 Ala Phe Arg Leu Ile Leu Arg Cys Glu Lys Ser Gln *** Arg Gly Arg Ile Gly Leu Arg
 GCGCGTTCAGGCTCATCCTCGGTGTGAAAAAAAGTCAATAGCGCGGACGAATTGGACTAC

5100

Fig: 5 (17/25)

FEUILLE DE REMplacement

27 / 69

AlaIleGluSerAlaArgGlnTyrAspSerLysIleLeuIleGluGlnAlaValSerGly
 GlnLeuAsnArgGlnAspAsnMetThrAlaLysSer***LeuSerArgLeuPheArgAla
 Asn***IleGlyLysThrIle***GlnGlnAsnLeuAsn***AlaGlyCysPheGlyLeu
 GCAATTGAATCGGCAAGACAATATGACAGCAAAATCTTAATTGAGCAGGCTTTGGGC

CysGluValGlyCysAlaValLeuGlyAsnSerAlaAlaLeuValValGlyGluValAsp
 ValArgSerValValArgTyrTrpGluThrValProArg***LeuLeuAlaArgTrpThr
 ***GlyArgLeuCysGlyIleGlyLysGlnCysArgValSerCysTrpArgGlyGlyPro
 TGTGAGGTGGTTGTGCGGTATTGGGAAACAGTGCCCGCTTAGTTGGCGAGGTGGAC

5200

GlnIleArgLeuGlnTyrGlyIlePheArgIleHisGlnGluValGluProGluLysGly
 LysSerGlyCysSerThrGluSerPheValPheIleArgLysSerSerArgLysLysAla
 AsnGlnAlaAlaValArgAsnLeuSerTyrSerSerGlySerArgAlaGlyLysArgLeu
 CAAATCAGGCTGCAGTACGGAATCTTCGTATTCAGGAAGTCGAGGCCGGAAAAGGC

SerGluAsnAlaValIleThrValProAlaAspLeuSerAlaGluGluArgGlyArgIle
 LeuLysThrGlnLeu***ProPheProGlnThrPheGlnGlnArgSerGluAspGlyTyr
 ***LysArgSerTyrAsnArgSerArgArgProPheSerArgGlyAlaArgThrAspThr
 TCTGAAAACGCAGTTATAACCGTTCCCGCAGACCTTCAGCAGAGGAGCGAGGACGGATA

5300

GlnGluThrAlaLysLysIleTyrLysAlaLeuGlyCysArgGlyLeuAlaArgValAsp
 ArgLysArgGlnLysLysTyrIleLysArgSerAlaValGluVal***ProValTrpIle
 GlyAsnGlyLysLysAsnIle***SerAlaArgLeu***ArgSerSerProCysGlyTyr
 CAGGAAACGGCAAAAAAAATATAAGCGCTGGCTGTAGAGGTCTAGCCC GTGGAT

5400

Fig. 5 (18/25)

FEUILLE DE REMplacement

28 / 69

MetPheLeuGlnAspAsnGlyArgIleValLeuAsnGluValAsnThrLeuProGlyPhe
 CysPheTyrLysIleThrAlaAlaLeuTyr***ThrLysSerIleLeuCysProValSer
 ValPheThrArg***ArgProHisCysThrGluArgSerGlnTyrSerAlaArgPheHis
 ATGTTTTACAAGATAACGGCCGCATTGTACTGAACGAAGTCATACTCTGCCCGGTTTC

ThrSerTyrSerArgTyrProArgMetMetAlaAlaAlaGlyIleAlaLeuProGluLeu
 ArgHisThrValValIleProVal***TrpProLeuGlnValLeuHisPheProAsn***
 ValIleGlnSerLeuSerProTyrAspGlyArgCysArgTyrCysThrSerArgThrAsp
 ACGTCATACAGTCGTTATCCCCGTATGGCCGCTGCAGGTATTGCACTTCCCGAACTG

5500

IleAspArgLeuIleValLeuAlaLeuLysGly*****AlaTrpLys***AspLeuLeu
 LeuThrAla***SerTyr***Arg***ArgGlyAspLysHisGlyAsnArgIleTyrPhe
 ***ProLeuAspArgIleSerValLysGlyValIleSerMetGluIleGlyPheThrPhe
 ATTGACCGCTTGATCGTATTAGCGTTAAGGGGTGATAAGCATGGAAATAGGATTACTT

Phe***MetLys***TyrThrValPheValGlyThrLeuAsnMetProLeuGlyIleIle
 PheArg***AsnSerThrArgCysSerLeuGlyArg***IleCysHisLeuGly***Phe
 LeuAspGluIleValHisGlyValArgTrpAspAlaLysTyrAlaThrTrpAspAsnPhe
 TTTAGATGAAATAGTACACGGTGTTCGTTGGGACGCTAAATATGCCACTTGGGATAATT

5600

SerProGluAsnArgLeuThrValMetLys***IleAlaLeu***GlyHisThrSerTrp
 HisArgLysThrGly***ArgLeu***SerLysSerHisCysArgAspIleArgValGly
 ThrGlyLysProValAspGlyTyrGluValAsnArgIleValGlyThrTyrGluLeuAla
 TCACCGGAAAACCGGTTGACGGTTATGAAGTAAATCGCATTGTAGGGACATACGAGTTGG

5700

Fig. 5 (19/25)

FEUILLE DE REMplacement

29/69

LeuAsnArgPhe***ArgGlnLysAsnTrpLeuLeuProLysGlyThrAspCysPheTyr
 ***IleAlaPheGluGlyLysArgThrGlyCysTyrProArgValArgIleAlaSerMet
 GluSerLeuLeuLysAlaLysGluLeuAlaAlaThrGlnGlyTyrGlyLeuLeuLeuTrp
 CTGAATCGCTTTGAAGGCAAAAGAACTGGCTGCTACCCAAGGGTACGGATTGCTTCTAT

GlyThrValThrValLeuSerValLeu***ThrValLeuCysAsnGlyLeuHisSerArg
 GlyArgLeuProSer***AlaCysCysLysLeuPheTyrAlaMetGlyCysThrAlaGly
 AspGlyTyrArgProLysArgAlaValAsnCysPheMetGlnTrpAlaAlaGlnProGlu
 GGGACGGTTACCGTCCTAACGCGTGCTGTAAGACTGTTTATGCAATGGGCTGCACAGCCGG

5800

LysIleThr***GlnArgLysValIleIleProIleLeuThrGluLeuArg***PheGln
 Lys***ProAspLysGlyLysLeuLeuSerGlnTyr***PrcAsn***AspAspPheLys
 AsnAsnLeuThrLysGluSerTyrTyrProAsnIleAspArgThrGluMetIleSerLys
 AAAATAACCTGACAAAGGAAAGTTATTATCCAATATTGACCGAACTGAGATGATTCAA

LysAspThrTrpLeuGlnAsnGlnAlaIleAlaAlaAlaValProLeuIleLeuArgPhe
 ArgIleArgGlyPheLysIleLysPro***ProArgGlnCysHis***SerTyrAlaLeu
 GlyTyrValAlaSerLysSerSerHisSerArgGlySerAlaIleAspLeuThrLeuTyr
 AAGGATACGTGGCTTCAAAATCAAGCCATAGCCGGCAGTGCCATTGATCTTACGCTTT

5900

IleAsp***ThrArgValSerLeuTyrGlnTrpGlyAlaAspLeuIleLeuTrpMetAsn
 SerIleArgHisGly***AlaCysThrAsnGlyGluProIle***PheTyrGly***Thr
 ArgLeuAspThrGlyGluLeuValProMetGlySerArgPheAspPheMetAspGluArg
 ATCGATTAGACACGGGTGAGCTTGTACCAATGGGGAGCCGATITGATTTATGGATGAAC

6000

Fig. 5 (20/25)

FEUILLE DE REMplacement

30 / 69

AlaLeuIleMetArgGlnMetGluTyrHisAlaMetLysArgLysIleAlaAspValCys
 LeuSerSerCysGlyLysTrpAsnIleMetGln***SerAlaLysSerGlnThrPheAla
 SerHisHisAlaAlaAsnGlyIleSerCysAsnGluAlaGlnAsnArgArgArgLeuArg
 GCTCTCATCATGCGCAAATGGAATATCATGCAATGAAGCGCAAATCGCAGACGTTGC

AlaProSerTrpLysThrValGlyLeuLysHisIleAlaSerAsnGlyGlyThrMetTyr
 LeuHisHisGlyLysGlnTrpVal***SerIle***ProArgMetValAlaLeuCysIle
 SerIleMetGluAsnSerGlyPheGluAlaTyrSerLeuGluTrpTrpHisTyrValLeu
 GCTCCATCATGGAAAACAGTGGGTTGAAGCATATAGCCTGATGGTGGCACTATGTAT

6100

***GluThrAsnHisThrProIleAlaIleLeuIleSerProLeuAsnLysLeuLeuThr
 LysArgArgThrIleProGln***LeuPhe***PheProArg***IleAsnPhe***Pro
 ArgAspGluProTyrProAsnSerTyrPheAspPheProValLys***ThrPheAsnArg
 TAAGAGACGAACCATAACCCAAAGCTATTGATTCGGGTTAAATAACTTTAACCC

valAlaArgThrAsnTyrIleSer***LeuPheArgGlnGluThrArgArgMet***Leu
 LeuHisGlyGlnThrIle***AlaAsnSerPheGlyArgLysProAspValCysAsnTrp
 CysThrAspLysLeuTyrLysLeuThrLeuSerAlaGlyAsnProThrTyrValThrGly
 GTTGCACGGACAAACTATATAAGCTAACTCTTCGGCAGGAAACCGACGTATGTAAGT

6200

valLeuArgGluPheIleTyrSerArg***Tyr***ArgCysLysAlaGluArgTyrCys
 PheLeuGlyAsnLeuTyrIleValAspSerIleGluAspValArgGlnSerAspIleAla
 Ser***GlyIleTyrIle*****IleValLeuLysMet***GlyArgAlaIleLeuArg
 GTTCTTAGGAAATTATATAGTAGATAGTATTGAAGATGTAGGCAGAGCGATATTGC

6300

Fig. 5 (21/25)

FEUILLE DE REMplacement

31/69

GlyHisTyrLeuArgAlaLeuArgGlnAspSerLeuIleIleArgLeuIleAla***Arg
 ValIleIleCysValArgCysGlyLysIleAla*****Asp***SerHisArgGly
 SerLeuSerAlaCysAlaAlaAlaArg***ProAspAsnLysThrAspArgIleGluGly
 GGTCAATTATCTGCGTGCCTGCAGCAAGATAGCCTGATAATAAGACTGATCGCATAGAGG

GlyGlyIleSerHisArgProLeuSerThrGlySerSerAlaSerLeuAsnSerAlaTrp
 ValValPheHisThrAlaHisCysGlnGlnAlaValGlnPrcArg***IleGlnHisGly
 TrpTyrPheThrProProIleValAsnArgGlnPheSerLeuValLysPheSerMetGly
 GGTGGTATTCACACCGCCCATTGTCAACAGGCAGTTCAAGCCCTCGTTAAATTCAAGCATGG

6400

ValSerLeuMetLysIleHisLeuHisTrp*****IleGln***GlyGluIle
 TyrHisLeu***LysPheIleTyrIleGlyAspAsnSerLysSerSerArgAlaLys***
 IleThrTyrGluAsnSerSerThrLeuValIleIleValAsnProValGlyArgAsnAsn
 GTATCACTTATGAAAATTCTACATTGGTGATAATAGTAATCCAGTAGGGCGAAATA

IleAspCysAsnLeuArgGlyLysThrAlaGlnSerGlnThrArgLeuCysArgLeuArg
 LeuThrValIleTyrGlyAlaLysArgHisAsnLeuLysArgAspCysAlaVal***Gly
 LeuPheThrGlyGlnAsnGlyThrIleSerAsnGluIleValProPheLysGly
 ATTGACTGTAATTACGGGGCAAAACGGCACAACTCAAACGAGATTGTGCCGTTAAGG

6500

GlyArgPhe***LysTyrPheIleLeuProThrIle***LeuArgArgArgLeuLysMet
 GluAspSerArgAsnIleSerTyrPheGlnLeuTyrSer***GlyGlyAsp***Lys***
 LysIleLeuGluIlePheHisThrSerAsnTyrIleValLysGluGluThrGluAsnGlu
 GGAAGATTCTAGAAATATTCATACTTCCAATATAGTTAAGGAGGAGACTGAAAATG

6600

Fig. 5 (22/25)

FEUILLE DE REMplacement

32 / 69

LysLysLeuPhePheLeuLeuL uLeuLeuPheLeuIleTyrLeuGlyTyrAspTyrVal
 ArgSerCysPhePheTyrCysTyrCysTyrSer***TyrThr***ValMetThrThrLeu
 GluValValPhePheIleValIleValIleLeuAsnIleLeuArgLeu***LeuArg***
 AAGAAGTTGTTTTTTATTGTTATTGTTATTCTTAATATACTTAGTTATGACTACGTT

AsnGluAlaLeuPheSerGlnGluLysValGluPheGlnAsnTyrAspGlnAsnProLys
 MetLysHisCysPheLeuArgLysLysSerAsnPheLysIleMetIleLysIleProLys
 SerThrValPheSerGlyLysSerArgIleSerLysLeuSerLysSerGlnArg
 AATGAAGCACTGTTCTCAGGAAAAAGTCGAATTCAAAATTATGATCAAAATCCAAA

6700

GluHisLeuGluAsnSerGlyThrSerGluAsnThrGlnGluLysThrIleThrGluGlu
 AsnIle***LysIleValGlyLeuLeuLysIleProLysArgLysGlnLeuGlnLysAsn
 ThrPheArgLys***TrpAspPhe***LysTyrProArgGluAsnAsnTyrArgArgThr
 GAACATTTAGAAAATAGTGGGACTTCTGAAAATACCCAAGAGAAAACAATTACAGAAGAA

GlnValTyrGlnGlyAsnLeuLeuIleAsnSerLysTyrProValArgGlnGluVal
 ArgPheIleLysGluIleCysTyr***SerIleValAsnIleLeuPheAlaLysLysCys
 GlyLeuSerArgLysSerAlaIleAsnGln*****IleSerCysSerProArgSerVal
 CAGGTTTATCAAGGAAATCTGCTATTAAATCAATAGTAAATATCCTGTTGCCAAGAAGTG

6800

SerGlnIleSerIleTyrLeuAsnMetThrAsn*****MetAspThrGlyCys
 GluValArgTyrArgGluPheIle***Thr***ArgIleAsnLysTrpIleArgValAla
 LysSerAspIleValAsnLeuSerLysHisAspGluLeuIleAsnGlyTyrGlyLeuLeu
 TGAAGTCAGATATCGTGAATTATCTAACATGACGAATTAATAATGGATACGGGTTGC

6900

Fig. 5 (23/25)

FEUILLE DE REMplacement

33/69

LeuIleValIlePheIleCysGlnLysLys***HisLysAspPheGlnArgTrpSerMet
 *****TyrLeuTyrValLysArgAsnSerThrLysIlePheArgAspGlyGln***
 AspSerAsnIleTyrMetSerLysGluIleAlaGlnLysPheSerGluMetValAsnAsp
 TTGATAGTAATATTATGTCAAAAGAAATAGCACAAAAATTTCAGAGATGGTCAATG

MetLeu***ArgValAlaLeuValIleLeuLeuLeuIleValAlaIleGluThrLeuMet
 CysCysLysGlyTrpArg***SerPheTyrTyr*****TrpLeuSerArgLeu*****
 AlaValLysGlyGlyValSerHisPheIleIleAsnSerGlyTyrArgAspPheAspGlu
 ATGCTGTAAAGGGTGGCGTTAGTCATTTATTATTAATAGTGCTATCGAGACTTGATG

7000

SerLysValCysPheThrLysLysTrpGlyLeuSerMetPrcTyrGlnGlnValIleVal
 AlaLysCysAlaLeuProArgAsnGlyGly***ValCysLeuThrSerArgLeu*****
 GlnSerValLeuTyrGlnGluMetGlyAlaGluTyrAlaLeuProAlaGlyTyrSerGlu
 AGCAAAGTGTGCTTACCAAGAAATGGGGCTGAGTATGCCTTACCAAGCAGGTTATAGTG

SerIleIleGlnValTyrHis***Met***AspGlnAla***ArgLysTrpAsnGluPro
 Ala***PheArgPheIleThrArgCysArgIleLysLeuAspGluAsnGlyThrSerPro
 HisAsnSerGlyLeuSerLeuAspValGlySerSerLeuThrLysMetGluArgAlaPro
 AGCATAATTCAAGGTTATCACTAGATGTAGGATCAAGCTTGACGAAAATGGAACGAGCCC

7100

LeuLysGluSerGly***LysLysMetLeuGlyAsnThrGlySerPheTyrValIleGln
 ***ArgLysValAspArgArgLysCysLeuGluIleArgValHisPheThrLeuSerArg
 GluGlyLysTrpIleGluGluAsnAlaTrpLysTyrGlyPheIleLeuArgTyrProGlu
 CTGAAGGAAAGTGGATAGAAGAAATGCTGGAAATACGGGTTACGGTTACGGTTATCCAG

7200

Fig. 5 (24/25)

FEUILLE DE REMplacement

34/69

ArgThrLysGlnSer***GlnGluPhe
GlyGlnAsnArgValAsnArgAsnSer
AspLysThrGluLeuThrGlyIleGln
AGGACAAAACAGAGTTAACAGGAATTG

7227

Fig. 5 (25/25)

FEUILLE DE REMPLACEMENT

35/69

FIGURE 6 (1/2)

ECORV

TACAGAGAAATGAAAGCAAGGAGCATTCTTATCAATACTGGCGGGTCCACTTGTAGATACCGCACTATATTACGCCACGAAACAAA 64
 GAAACTGGGGCGGTGCCTCATGGATGTATTGGAGAGGAAGAGTTCTACTCTGATTGCACCCAAACCAATTGATAATCAATTTC 155
 TTACTTAACCTCAAGAATGCTAACGTGATAATTACCCGATACCCGCTATTACCCGATACCCGCTATTACCCGATACCCGTTGAAAAAA 246
 RBS HaeIII
 CCATTAAAACACTGGATTTGAAGGAGACAGGAGC ATG AAT AGA ATA AAA GTT GCA ATA CGT ATT AAT AAA GAA AAA TAC 337
 SER GLU GLU HIS ASP VAL SER VAL LYS SER ALA ILE GLU ILE ALA ASN ILE ASN LYS GLU LYS TYR 415
 TCA GAG GAG AAT GAC GTA TCG GTA AAA TCT GCA ATA GAG ATA GCC GCT AAC ATT AAT AAA GAA AAA TAC 484
 GLU PRO LEU TYR ILE GLY ILE THR LYS SER GLY VAL TRP LYS MET CYS GLU LYS PRO CYS ALA GLU TRP 553
 GAG CCG TTA TAC ATT GGA ATT ACG AAA TCT GGT GTA TGG AAA ATG TGC GAA AAA CCT TGC GCG GAA TGG
 GLU ASN ASP ASN CYS TYR SER ALA VAL LEU SER PRO ASP LYS LYS MET HIS GLY LEU LEU VAL LYS LYS 553
 GAA AAC GAC AAT TGC TAT TCA GCT GTA CTC TCG CCG GAT AAA AAA ATG CAC GGA TTA CTT GTT AAA AAG 622
 ASN HIS GLU TYR GLU ILE ASN HIS VAL ASP VAL ALA PHE SER ALA LEU HIS GLY LYS SER GLY GLU ASP
 AAC CAT GAA TAT GAA ATC AAC CAT GTT GAT GTA GCA TTT TCA GCT TTG CAT GGC AAG TCA GGT GAA GAT 691
 GLY SER ILE GLN GLY LEU PHE GLU LEU SER GLY ILE PRO PHE VAL GLY CYS ASP ILE GLN SER SER ALA
 GGA TCC ATA CAA GGT CTG TTT GAA TTG TCC GGT ATC CCT TTT GTA GGC TGC GAT ATT CAA AGC TCA GCA 760
 ILE CYS MET ASP LYS SER LEU THR TYR ILE VAL ALA LYS ASN ALA GLY ILE ALA THR PRO ALA PHE TRP
 ATT TGT ATG GAC AAA TCG TTG ACA TAC ATC GTC GCG AAA AAT GCT GGG ATA GCT ACT CCC GCC TTT TGG 829
 VAL ILE ASN LYS ASP ASP ARG PRO VAL ALA ALA PHE THR TYR PRO VAL PHE VAL LYS PRO ALA ARG
 GTT ATT AAT AAA GAT GAT AGG CCG GTG GCA GCT ACG TTT ACC TAT CCT GTT TTT GTT AAG CCG GCG CGT 898

FIGURE 6 (2/2)

SER GLY SER SER PHE GLY VAL LYS LYS VAL ASN SER ALA ASP GLU LEU ASP TYR ALA ILE GLU SER ALA
TCA GGC TCA TCC TTC GGT GTC AAA AAA GTC AAT AGC GCG GAC GAA TTG GAC TAC GCA ATT GAA TCG GCA 967

ARG GLN TYR ASP SER LYS ILE LEU ILE GLU GIN ALA VAL SER GLY CYS GLU VAL GLY CYS ALA VAL LEU
AGA CAA TAT GAC AGC AAA ATC TTA ATT GAG CAG GCT GTT TCG GGC TGT GAG GTC GTC GGT TGT GCG GTC TTG 1036

GLY ASN SER ALA ALA LEU VAL VAL GLY GLU VAL ASP GLN ILE ARG LEU GLN TYR GLY ILE PHE ARG ILE
GGG AAC AGT GCC GCG TTA GTT GTT GGC GAG GTG GAC CAA ATC AGG CTG CAG TAC GGA ATC TTT CGT ATT 1105

HIS GLN GLU VAL GLU PRO GLU LYS GLY SER GLU ASN ALA VAL ILE THR VAL PRO ALA ASP LEU SER ALA
CAT CAG GAA GTC GAG CCG GAA AAA GGC TCT GAA AAC GCA GTT ATA ACC GTT CCC GCA GAC CTT TCA GCA 1174

GLU GLU ARG GLY ARG ILE GLN GLU THR ALA LYS ILE TYR LYS ALA LEU GLY CYS ARG GLY LEU ALA
GAG GAG CGA CGA CGG ATA CAG GAA ACG GCA AAA AAA ATA TAT AAA GCG CTC GGC TGT AGA GGT CTA GCC 1243

ARG VAL ASP MET PHE ILE GLN ASP ASN GLY ARG ILE VAL ILE ASN GLU VAL ASN THR LEU PRO GLY PHE
CGT GTG GAT ATG TTT TTA CAA GAT AAC GGC CGC ATT GTA CTG AAC GAA GTC AAT ACT CTG CCC GGT TTC 1312

THR SER TYR SER ARG TYR PRO ARG MET MET ALA ALA GLY ILE ALA LEU PRO GLU LEU ILE ASP ARG
ACG TCA TAC AGT CGT TAT CCC CGT ATG GCC GCT GCA GGT ATT GCA CTT CCC GAA CTG ATT GAC CGC 1381

LEU ILE VAL LEU ALA LEU LYS GLY *** ***
TTG ATC GTC TTA GCG TTA AAG GGG TGA TAA GCATGGAAATAGGATTACTTTTAGATGAAATAGTACACGGTTCTGTT 1462

NlaIII
GGGACGGCTAAATATGCCACTGGGATAATTTCACCGGAAACCGGTTATGAACTAAATGGCATTTGAGTGGACATAACGAGTTGGC 1553

TGAATCGCTTTGAAAGGCAAAGAACGGTACGGATTGCTTAACGGTACGGCTGCTTCTATGGACGGTTACCGTCTTAAGGGTCTAAAC 1644

TGTGTTTATGCAATGGCTGCACAGCCGAAATAACCTGACAAAGGAAGTTATTATCCCAATATGACCGAACTGAGATGATTCAAAG 1735

SacII
GGATACGGTGGCTCAAAATCAAGCCATAGCCGGG 1769

FIG. 7 a

FEUILLE DE REMPLACEMENT

FIG. 7 b

FEUILLE DE REMPLACEMENT

Ia. brin "+"

FIGURE 8 (1/23)

1 GGG GTA GCG TCA GGA AAA TGC GGA TTT ACA ACG CTA AGC CTA TTT TCC TGA CGA ATC CCT
 61 CGT TTT TAA CAA CGT TAA GAA AGT TTT AGT GGT CTT AAA GAA TTT AAT GAG ACT ACT ACT TTC
 121 TCT GAG TTA AAA TGG TAT TCT CCT AGT AAA TTA ATA TGT TCC CAA CCT AAG GGC GAC ATA
 181 TGG TGT AAC AAA TCT TCA TTA AAG CTA CCT GTC CGT TTT TTA TAT TCA ACT GCT GTT GTT
 241 AGG TGG AGA GTC CAA ATA CTT ATA GCA TTG ATA ATT ATG TTT AAA GCA CTG GCT CTT
 301 TGC AAT TGA TGC TGT ATG GTG CGT TCT CTA AGC TCA CCT TGT TTT CCG AAG AAA ATA GCT
 361 CTT GCC AAT CCA TTC ATG GCT TCT CCT TTA TTC AAT CCT CTT TGT ATT TTT CTT CTT ATT
 421 GAT TCA TCC GAT ATA TAA TTC AAA ATA AAG ATC GTT TTT TCT ATT CGG CCC ATC TCA CGT
 481 AAG GCT GTA GCT AAG CTG TTT TGT CTT GAA TAG GAA CCT AGC TTC CCC ATA ATA AGG GAT
 541 GCT GAA ACT GTT CCC TCC CTT ATA GAA TGA GCT AAT CGC AAA ACA TCC TCA TAA TTT TCT
 601 TTA ATG ACC TTT GTA TTT ATT TGT CCA CGT AAA ATG GCT TCT AGT TTT GGA TAC TCA CTT

FEUILLE DE REMplacement

FIGURE 8 (2/23)

661 GCT TTA TCT ATC GTA AAT AAT TTT GAG TCC GAT AAA TCC CTT ATT CTT GGG GCA AAT TTA
 721 AAT CCT AAT AAA TGA GTC AGT CCG AAT ATT TGG TCA GTG TAA CCG GCA GTG TCT GTA TAA
 781 TGT TCC TCT ATG TTT AGA TCC GTC TCA TGA TGT AAC AAA CCA TCC AAA ACA TGA ATC GCA
 841 TCT CTT GAA TTA GTA TGA ATA ATC TTT GTG TAG TAA GAA GAG AAT TGA TCA CTT GTA AAT
 901 CGG TAG ATG GTG GCT CCT TTT CCA GTT CCA TAA TGT GGA ATT GCA TCT GCA TGT AGT GAT
 961 GAA ACA CCT AGC TGC ATT CTC ATA CCA TCT GAC GAA GAT GTT GTA CCG TCG CCC CAA TAG
 1021 AAA GGC AAT TGT AAT TTA TGA TGA AAG ATT ACT AAT ATG GCT TGG GCT TTA TTC ATG GCA
 1081 TCT TCA TAC ATG CGC CAT TGA GAT ACA TTG GCT AGT TGC TTA TAT GTA AGT CCG GGT GTG
 1141 GCT TCG GCC ATC TTG CTC AAG CCA ATA TTC ATT CCC ATT CCT AAA AGG GCA GCC ATG ATA
 1201 ATG ATT GTT TCT TCC TTA TCT GGT TTT CGA TTA TTG GAA GCA TGA GTG ATT TGC TCA TGA
 1261 AAT CCT GTT ATA TGG GCC ACA TCC ATG AGT AAA TCA GTT AAT TTT ATT CTT GGT AGC ATC
 1321 TGA TAA AGG CTT GCA CTA AAT TTT GCT TCT TCT GGA ACA TCT TTT TCT AAG CGT GCA
 1381 AGT GAT AGC TTT CCT TTT TCA AGA GAA ACC CCA TCT AAC TTA TTG GAA TTG GCA GCT AAC
 1441 CAC TTT AAC CTT TCA TTA AAG CTG CTG GTT CTC TCC GTT ATA TAA TCT TCG AAT GAT AAA

FEUILLE DE REMPLACEMENT

41/69

FIGURE 8 (3/23)

1501

CTA ACT GAT AAT CTC GTA TTC CCC TTC GAT TGA TTC CAT GAA TCT TCC GAA AAC AAC AAA TAT
 1561
 TCC TCA AAA TCC CTA TAT TGT CTG CTG CCA ACA ATG GAA ACA TCT CCT GCC CGC CGA ACA TGC
 1621
 TCC CGA AGT TCT GTT AAA ACA GCC ATT TCA TAG TAA TGA CGA TTA ATT GTT GTA CCA TCA
 1681
 TCC TCG TAT AAA TGT CTT RTC CAT CGT TTT GAA ATA AAA TCC ACA GGT GAG TCA TCA TCA GGC
 1741
 ACT TTT CGC TTT CCA GAT TCG TTC ATT CCT CGG ATA ATC TCA ACA GCT TGT AAA AGT GGC
 1801
 TCA TTT GCC TTT GTA GAA TGA AAT TCC AAT ACT CTT AAT AGC GTT GGC GTA TAT TTT CTT
 1861
 AGT GAA TAA AAC CGT TTT TGC AGT AAG TCT AAA TAA TCA TAG TCG GCA GGA CGT GCA AGT
 1921
 TCC TGA GCC TCT TCT ACT GAA GAG ACA AAG GAA TTC CAT TCA ATA ACC GAT TCT AAA ACC
 1981
 TTA AAA ACG TCT AAT TTT TCC TCT GCT TTA ATT AAT GCT TGT CCG ATG TTC GTA AAG
 2041
 TGT ATA ACT TTC TCA TTT AGC TTT TTA CCG TTT TGT TTC TGG ATT TCC TCT TGA GCC TTA
 2101
 CGA CCT TTT GAT AAC AAA CTA AGT ATT TGC CTA TCA TGA ATT TCA AAC GCT TTA TCC GTT
 2161
 AGC TCC TGA GTA AGT TGT AAT AAA TAG ATG GTT AAT ATC GAA TAA CGT TTA TTT TCT TGA
 2221
 AAG TCA CGG AAT GCA TAC GGC TCG TAT CCT GAG CCT AAG CGA GAC AGC TGC AAC AGG CGG
 2281
 TTA CGG TGC AAA TGA CTA ATT TGC ACT GTT TCT AAA TCC ATT CCT CGT ATG TAT TCG AGT
 2341

FEUILLE DE REMplacement

FIGURE 8 (4/23)

CGT TCT ATT ATT TTT AGA AAA GTT TCG GGT GAA GGA TGA CCC GGT GGC TCT TTT AAC CAA
2401 CCC AAT ATC GTT TTA TTG GAT TCG GAT GGA TGC TGC GAG GAA ATA ATC CCT TCA AGC TTT
2461 TCT TTT TGC TCA TTT GTT AGA GAT TTA CTA ACC GTA TTA AAT AGC TTC TTT TCA GCC ATT
2521 GCC CTT GCT TCC CAC ACC ATT CTT TCA AGT GTA GTG ATA GCA GGC AGT ATA ATT TTG TTT
2581 TTT CTT AGA AAA TCT ATG CAT TCA TGC AGT AGA TGA ATG GCA TCA CCA TTT TCC AAA GCT
2641 AAT TGA TGA AGG TAC TTA AAT GTC ATT CGA TAT TCA CTC AGG GTA AAA GTT ACA AAG TCG
2701 TAT TCA CTT CGA ATT TCT TTC AAA TGA TCC CAA AGT GAA TTT TCC CTT TGA GGA TAA TGA
2761 TCA AGC GAG GAT GGA CTA ACA CCA ATC TGT TTC GAT ATA TAT TGT ATG ACC GAA TCT GGG
2821 ATG CTT TTG ATA TGA GTG TAT GGC CAA CCG GGA TAC CGA AGA ACA GCT AAT TGA ACA GCA
2881 AAT CCT AAA CGG TTT TCT TCC CTC CTT CGC TTA ACT ATT TCT AAA TCC CGT TTG GAA
2941 AAA GTG AAG TAG GTC CCC AGT ATC CAT TCA TCT TCA GGG ATT TGC ATA AAA GCC TGT CTC
3001 TGT TCC GGT GTA AGC AAT TCT CTA CCT CTC GCA ATT TTC ATT CAG TAT CAT TCC ATT TCT
3061 GTA TTT TCA ATT TAT TAG TTC AAT ATA TCA ATA GAG TGT ACT CTA TTG ATA CAA ATG
3121 TAG TAG ACT GAT AAA ATC ATA GTT AAG AGC GTC TCA TAA GAC TTG TCT CAA AAA TGA GGT

FEUILLE DE REMplacement

43/69

FIGURE 8 (5/23)

3181 résolvase

LEU ARG LYS ILE GLY TYR ILE ARG VAL SER SER THR ASN GLN ASN PRO SER ARG
 GAT ATT TTG CCG AAA ATC GGT TAT ATT CGT GTC AGT TCG ACT AAC CAG AAT CCT TCA AGA
 3241
 GLN PHE GLN GIN LEU ASN GLU ILE GLY MET ASP ILE ILE TYR GLU GLU LYS VAL SER GLY
 CAA TTT CAG CAG TTG AAC GAG ATC GGA ATG GAT ATT ATA TAT GAA GAG AAA GTT TCA GGA
 3301
 ALA THR LYS ASP ARG GLU GIN LEU GLN LYS VAL LEU ASP ASP LEU GLN GLU ASP ASP ILE
 GCA ACA AAG GAT CGC GAG CAA CTT CAA AAA GTG TTA GAC GAT TTA CAG GAA GAT GAC ATC
 3361
 ILE TYR VAL THR ASP LEU THR ARG ILE THR ARG SER THR GLN ASP LEU PHE GLU LEU ILE
 ATT TAT GTT ACA GAC TTA ACT CGA ATC ACT CGT AGT ACA CAA GAT CTA TTT GAA TTA ATC
 3421
 ASP ASN ILE ARG ASP LYS LYS ALA SER LEU LYS SER LEU LYS ASP THR TRP LEU ASP LEU
 GAT AAC ATA CGA GAT AAA AAG GCA AGT TTA AAA TCA CTA AAA GAT ACA TGG CTT GAT TTA
 3481
 SER GLU ASP ASN PRO TYR SER GLN PHE LEU ILE THR VAL MET ALA GLY VAL ASN GLN LEU
 TCA GAA GAT AAT CCA TAC AGC CAA TTC TTA ATT ACT GTA ATG GCT GGT GTT AAC CAA TTA
 3541
 GLU ARG ASP LEU ILE ARG MET ARG GLN ARG GLU GLY ILE GLU LEU ALA LYS GLU GLY
 GAG CGA GAT CTT ATT CGG ATG AGA CAA CGT GAA GGG ATT GAA TTG GCT AAG AAA GAA GGA
 3601
 LYS PHE LYS GLY ARG LEU LYS TYR HIS LYS ASN HIS ALA GLY MET ASN TYR ALA VAL
 AAG TTT AAA GGT CGA TTA AAG AAG TAT CAT AAA AAT CAC GCA GGA ATG AAT TAT GCG GTA
 3661
 LYS LEU TYR LYS GLU GLY ASN MET THR VAL ASN GLN ILE CYS GLU ILE THR ASN VAL SER
 AAG CTA TAT AAA GAA GGA AAT ATG ACT GTA AAT CAA ATT TGT GAA ATT ACT AAT GTA TCT
 3721
 ARG ALA SER LEU TYR ARG LYS LEU SER GLU VAL ASN ASN
 AGG GCT TCA TTA TAC AGG AAA TTA TCA GAA GTG AAT TAG CCA TTC TGT ATT CCG CTA

FEUILLE DE REMplacement

FIGURE 8 (6/23)

3781 ATG GGC AAT ATT TTT AAA GAA GAA AAG GAA ACT ATA AAA TAT TAA CAG CCT CCT AGC GAT
 3841 GCC GAA AAG CCC TTT GAT AAA AAA AGA ATC ATC ATC TTA AGA AAT TCT TAG TCA TTT ATT
 3901 ATG TAA ATG CTT ATA AAT TCG GCC CTA TAA TCT GAT AAA TTA AGG GCA AAC TTA TGT
 3961 VanR MET SER ASP LYS ILE LEU ILE VAL ASP ASP GLU HIS GLU ILE ALA
 GAA AGG GTG ATA ACT ATG AGC GAT AAA ATA CTT ATT GTG GAT GAT GAA CAT GAA ATT GCC
 4021 ASP LEU VAL GLU LEU TYR LEU LYS ASN GLU ASN TYR THR VAL PHE LYS TYR TYR THR ALA
 GAT TTG GAA TTA TAC TTA AAA AAC GAG ATT TAT ACG GTT TTC AAA TAC TAT ACC GCC
 4081 LYS GLU ALA LEU GLU CYS ILE ASP LYS SER GLU ILE ASP LEU ALA ILE LEU ASP ILE MET
 AAA GAA GCA TTG GAA TGT ATA GAC AAG TCT GAG ATT GAC CTT GCC ATA TTG GAC ATC ATG
 4141 LEU PRO GLY THR SER GLY LEU THR ILE CYS GLN LYS ILE ARG ASP LYS HIS THR TYR PRO
 CTT CCC GGC ACA AGC GGC CTT ACT ATC TGT CAA AAA ATA AGG GAC AAG CAC ACC TAT CCG
 4201 ILE ILE MET LEU THR GLY LYS ASP THR GLU VAL ASP LYS ILE THR GLY LEU THR ILE GLY
 ATT ATC ATG CTG ACC GGG AAA GAT ACA GAG GTA GAT AAA ATT ACA GGG TTA ACA ATC ATC GGC
 4261 GCG GAT GAT ATA ACG AAG CCC TTT CGC CCA CTG GAG TTA ATT GCT CGG GTA AAG GCC
 4321 GLN LEU ARG ARG TYR LYS LYS SER GLY VAL LYS GLU GLN ASN VAL ILE VAL
 CAG TTG CGC CGA TAC AAA AAA TTC AGT GGA GTA AAG GAG CAG AAC GAA AAT GTT ATC GTC

FEUILLE DE REMplacement

FIGURE 8 (7/23)

4381 HIS SER GLY LEU VAL ILE ASN VAL ASN THR HIS GLU CYS TYR LEU ASN GLU LYS GLN LEU
 CAC TCC GGC CTT GTC ATT AAT GTT AAC ACC CAT GAG TGT TAT CTG AAC GAG AAG CAG TTA
 4441
 SER LEU THR PRO THR GLU PHE SER ILE LEU ARG ILE LEU CYS GLU ASN LYS GLY ASN VAL
 TCC CTT ACT CCC ACC GAG TTT TCA ATA CTG CGA ATC CTC TGT GAA AAC AAC GAG GGG ATT GTG
 4501
 VAL SER SER GLU LEU LEU PHE HIS GLU ILE TRP GLY ASP GLU TYR PHE SER LYS SER ASN
 GTT AGC TCC GAG CTG CTA TTT CAT GAG ATA TGG GGC GAC GAA TAT TTC AGC AAG AGC AAC
 4561
 ASN THR ILE THR VAL HIS ILE ARG HIS LEU ARG GLU LYS MET ASN ASP THR ILE ASP ASN
 AAC ACC ATC ACC GTG CAT ATC CGG CAT TTG CGC GAA AAA ATG AAC GAC ACC ATT GAT ATT
 4621
 PRO LYS TYR ILE LYS THR VAL TRP GLY VAL GLY TYR LYS ILE GLY LYS
 CCG AAA TAT ATA AAA ACG GTA TGG GGG GTTGGTTATAAAAATTGAAAAAT AAA AAA AAC GAC
 Vans LEUVAILILELYSLEULYSASN LYS LYS ASN ASP
 4682
 TYR SER LYS LEU GLU ARG LYS LEU TYR MET TYR ILE VAL ALA ILE VAL VAL ALA ILE
 TAT TCC AAA CTA GAA CGA AAA CTT TAC ATG TAT ATC GTT GCA ATT GTT GTG GTA GCA ATT
 4742
 VAL PHE VAL LEU TYR ILE ARG SER MET ILE ARG GLY LYS LEU GLY ASP TRP ILE LEU SER
 GTA TTC GTG TTG TAT ATT CGT TCA ATG ATC CGA GGG AAA CTT GGG GAT TGG ATC TTA AGT
 4802
 ILE LEU GLU ASN LYS TYR ASP LEU ASN HIS LEU ASP ALA MET LYS LEU TYR GLN TYR SER
 ATT TTG GAA AAC AAA TAT GAC TTA ATT CAC CTG GAC GCG ATG AAA TTA ATT CAA ATT TCC
 4862
 ILE ARG ASN ASN ILE ASP ILE PHE ILE TYR VAL ALA ILE VAL ILE SER ILE LEU ILE LEU
 ATA CGG AAC ATT ATA GAT ATC ATT TAT GTG GCG ATT GTC ATT AGT ATT CTT ATT CTA
 4922
 CYT ARG VAL MET LEU SER LYS PHE ALA LYS TYR PHE ASP GLU ILE ASN THR GLY ILE ASP
 TGT CGC GTC ATG CTT TCA AAA TTC GCA AAA TAC TTT GAC GAG ATA AAT ACC GGC ATT GAT

FEUILLE DE REMPLACEMENT

FIGURE 8 (8/23)

4982 VAL LEU ILE GLN ASN GLU ASP LYS GLN ILE GLU LEU SER ALA GLU MET ASP VAL MET GLU
 GTA CTT ATT CAG AAC GAA GAT AAA CAA ATT GAG CTT TCT GCG GAA ATG GAT GTT ATG GAA
 5042 GLN LYS LEU ASN THR LEU LYS ARG THR LEU GLU LYS ARG GLU GLN ASP ALA LYS LEU ALA
 CAA AAG CTC AAC ACA TTA AAA CGG ACT CTG GAA AAG CGA GAG CAG GAT GCA AAG CTG GCC
 5102 GLU GLN ARG LYS ASN ASP VAL VAL MET TYR LEU ALA HIS ASP ILE LYS THR PRO LEU THR
 GAA CAA AGA AAA AAT GAC GTT GTT ATG TAC TTG GCG CAC GAT ATT AAA ACG CCC CCT ACA
 5162 SER ILE ILE GLY TYR LEU SER LEU LEU ASP GLU ALA PRO ASP MET PRO VAL ASP GLN LYS
 TCC ATT ATC GGT TAT TTG AGC CTG CTT GAC GAG GCT CCA GAC ATG CCG GTC GAT CAA AAG
 5222 ALA LYS TYR VAL HIS ILE THR LEU ASP LYS ALA TYR ARG LEU GLU GLN LEU ILE ASP GLU
 GCA AAG TAT GTG CAT ATC ACG TTG GAC AAA GCG TAT CGA CTC GAA CAG CTA ATC GAC GAG
 5282 PHE PHE GLU ILE THR ARG TYR ASN LEU GLN THR ILE THR LEU THR LYS THR HIS ILE ASP
 TTT TTT GAG ATT ACA CGG TAT AAC CAA ACG ATA ACG CTA ACA AAA ACG CAC ATA GAC
 5342 LEU TYR TYR MET LEU VAL GLN MET THR ASP GLU PHE TYR PRO GLN LEU SER ALA HIS GLY
 CTA TAC TAT ATG CTG GTG CAG ATG ACC GAT GAA TTT TAT CCT CAG CTT TCC GCA CAT GGA
 5402 LYS GLN ALA VAL ILE HIS ALA PRO GLU ASP LEU THR VAL SER GLY ASP PRO ASP LYS LEU
 AAA CAG GCG GTT ATT CAC GCC CCC GAG GAT CTG ACC GTG TCC GGC GAC CCT GAT AAA CTC
 5462 ALA ARG VAL PHE ASN ASN ILE LEU LYS ASN ALA ALA TYR SER GLU ASP ASN SER ILE
 GCG AGA GTC TTT AAC AAC ATT TTG AAA AAC GGC GCT GCA TAC AGT GAG GAT AAC AGC ATC

FEUILLE DE REMPLACEMENT

FIGURE 8 (9/23)

5522 ILE ASP ILE THR ALA GLY LEU SER GLY ASP VAL VAL SER ILE GLU PHE LYS ASN THR GLY
ATT GAC ATT ACC CTC TCC GGG GAT GTG GTG TCA ATC GAA TTC AAG AAC ACT GGA
5582 SER ILE PRO LYS ASP LYS LEU ALA ILE PHE GLU LYS PHE TYR ARG LEU ASP ASN ALA
AGC ATC CCA AAA GAT AAG CTA GCT GCC ATA TTT GAA AAG TTC TAT AGG CTG GAC AAT GCT
5642 ARG SER SER ASP THR GLY GLY ALA GLY LEU GLY LEU ALA ILE ALA LYS GLU ILE ILE VAL
CGT TCT TCC GAT ACG GGT GGC GCG GGA CTT GGA TTG GCG ATT GCA AAA GAA ATT ATT GTT
5702 GLN HIS GLY GLY GLN ILE TYR ALA GLU SER ASN ASP ASN TYR THR PHE ARG VAL GLU
CAG CAT GGA GGG CAG ATT TAC GCG GAA AGC ATT AAC TAT ACG ACG TTT AGG GTA GAG
5762 LEU PRO ALA MET PRO ASP LEU VAL ASP LYS ARG ARG SER
CTT CCA GCG ATG CCA GAC TTG GTT GAT AAA AGG AGG TCC TAA GA GAT GTA TAT AAT TTT
5821 TTA GGA AAA TCT CAA GGT TAT CTT TAC TTT TTC TTA GGA ATT TAA CAA TTT AAT ATT AAG
5881 AAA CGG CTC GTT CTT ACA CGG TAG ACT TAA TAC CGT AAG AAC GAG CCG TTT TCG TTC TTC
5941 AGA GAA AGA TTT GAC AAG ATT ACC ATT GGC ATC CCC GTT TTA TTT GGT GCC TTT CAC AGA
6001

VanH MET ASN ASN ILE GLY ILE THR VAL TYR GLY CYS GLU GLN ASP GLU
6063 AAGGGTGG TCT TAA TT ATG AAT AAC ATC GGC ATT ACT GTT TAT GGA TGT GAG CAG GAT GAG
ALA ASP ALA PHE HIS ALA LEU SER PRO ARG PHE GLY VAL MET ALA THR ILE ILE ASN ALA
GCA GAT GCA TTC CAT GCT CTT TCG CCT CGC TTT GGC GTT ATG GCA ACG ATA ATT AAC GCC
6123

FIGURE 8 (10/23)

ASN VAL SER GLU SER ASN ALA LYS SER ALA PRO PHE ASN GLN CYS ILE SER VAL GLY HIS
 AAC TCG TCG GAA TCC AAC GCC AAA TCC GCG CCT RTC AAT CAA TGT ATC AGT TGT GGA CAT
 6183 LYS SER GLU ILE SER ALA SER ILE LEU LEU ALA LEU LYS ARG ALA GLY VAL LYS TYR ILE
 AAA TCA GAG ATT TCC GCC TCT ATT CTT CTT GCG CTG AAG AGA GCC GGT GTG AAA TAT ATT
 6243 SER THR ARG SER ILE GLY CYS ASN HIS ILE ASP THR THR ALA ALA LYS ARG MET GLY ILE
 TCT ACC CGA AGC ATC GGC TGC ATT CAT ATA GAT ACA ACT GCT GCT AAG AGA ATG GGC ATC
 6303 THR VAL ASP ASN VAL ALA TYR SER PRO ASP SER VAL ALA ASP TYR THR MET MET LEU ILE
 ACT GTC GAC ATT GTG GCG TAC TCG CCG GAT AGC GTT GCC GAT TAT ACT ATG ATG CTA ATT
 6363 LEU MET ALA VAL ARG ASN VAL LYS SER ILE VAL ARG SER VAL GLU LYS HIS ASP PHE ARG
 CTT ATG GCA GTA CGC AAC GTA AAA TCG ATT GTG CGC TCT GTG GAA AAA CAT GAT TTC AGG
 6423 LEU ASP SER ASP ARG GLY LYS VAL LEU SER ASP MET THR VAL GLY VAL VAL GLY THR GLY
 TTG GAC AGC GAC CGT GGC AAG GTA CTC AGC GAC ATG ACA GTT GGT GTG GTG GGA ACG GGC
 6483 GLN ILE GLY LYS ALA VAL ILE GLU ARG LEU ARG GLY PHE GLY CYS LYS VAL LEU ALA TYR
 CAG ATA GGC AAA GCG GTT ATT GAG CGG CTG CGA GGA TTT GGA TGT AAA GTG TTG GCT TAT
 6543 SER ARG SER ARG SER ILE GLU VAL ASN TYR VAL PRO PHE ASP GLU LEU LEU GLN ASN SER
 AGT CGC AGC CGA AGT ATA GAG GTA AAC TAT GTA CCG TTT GAT GAG TTG CTG CAA ATT AGC
 6603 ASP ILE VAL THR LEU HIS VAL PRO LEU ASN THR ASP THR HIS TYR ILE ILE SER HIS GLU
 GAT ATC GTT ACG CTT CAT GTG CCG CTC AAT ACG GAT AGC CAC TAT ATT ATC AGC CAC GAA
 6663 GLN ILE GLN ARG MET LYS GLN GLY ALA PHE LEU ILE ASN THR GLY ARG GLY PRO LEU VAL
 CAA ATA CAG AGA ATG AAG CAA GGA GOA TTT CTT ATC AAT ACT GGG CGC GGT CCA CTT GTA

FEUILLE DE REMPLACEMENT

FIGURE 8 (11/23)

6723 ASP THR TYR GLU LEU VAL LYS ALA LEU GLU ASN GLY LYS LEU GLY GLY ALA ALA LEU ASP
 GAT ACC TAT GAG TTG GTT AAA GCA TTA GAA AAC GGG AAA CTG GGC GGT GCC GCA TTG GAT
 6783 VAL LEU GLU GLY GLU GLU PHE PHE TYR SER ASP CYS THR GLN LYS PRO ILE ASP ASN
 GTA TTG GAA GGA GAG GAA GAG TTT TTC TAC TCT GAT TGC ACC CAA AAA CCA ATT GAT AAT
 6843 GLN PHE LEU LEU LYS LEU GLN ARG MET PRO ASN VAL ILE ILE THR PRO HIS THR ALA TYR
 CAA TTT TTA CTT AAA CTT CAA AGA ATG CCT AAC GTG ATA ATC ACA CCG CAT ACG GCC TAT
 6903 TYR THR GLU GLN ALA LEU ARG ASP THR VAL GLU LYS THR ILE LYS ASN CYS LEU ASP PHE
 TAT ACC GAG CAA GCG TTG CGT GAT ACC GTT GAA AAA ACC ATT AAA AAC TGT TTG GAT TTT
 6963 *Vana* MET ASN ARG ILE LYS VAL ALA ILE LEU PHE GLY GLY CYS SER
 GAA AGG AGA CAG GAG CAT GAA ATA AAA GTT GCA ATA CTG TTT GGG GGT TGC TCA
 GLU ARG ARG GLN GLU HIS GLU
 7021 GLU GLU HIS ASP VAL SER VAL LYS SER ALA ILE GLU ILE ALA ALA ASN ILE ASN LYS GLU
 GAG GAG CAT GAC GTC GTC AAA TCT GCA ATA GAG ATA GCC GCT AAC ATT AAT AAA GAA
 7081 LYS TYR GLU PRO LEU TYR ILE GLY ILE THR LYS SER GLY VAL TRP LYS MET CYS GLU LYS
 AAA TAC GAG CCG TTA TAC ATT GGA ATT ACG AAA TCT GGT GTA TGG AAA ATG TGC GAA AAA
 7141 PRO CYS ALA GLU TRP GLU ASN ASP ASN CYS TYR SER ALA VAL LEU SER PRO ASP LYS LYS
 CCT TGC GCG GAA TGG GAA AAC GAC AAT TGC TAT TCA GCT GTA CTC TCG CCG GAT AAA AAA
 7201 MET HIS GLY LEU LEU VAL LYS ASN HIS GLU TYR GLU ILE ASN HIS VAL ASP VAL ALA
 ATG CAC GCA TTA CTT GTT AAA AAG AAC CAT GAA ATT GAA ATC AAC CAT GTT GAT GTA GCA
 7261

FEUILLE DE REMPLACEMENT

FIGURE 8 (12/23)

PHE SER ALA LEU HIS GLY LYS SER GLY GLU ASP GLY SER ILE GLN GLY LEU PHE GLU LEU
 TTT TCA GCT TTG CAT GGC AAG TCA GGT GAA GAT GGA TCC ATA CAA GGT CTG TTT GAA TTG
 7321 SER GLY ILE PRO PHE VAL GLY CYS ASP ILE GLN SER SER ALA ILE CYS MET ASP LYS SER
 TCC GGT ATC CCT TTG GTA GGC TGC GAT ATT CAA AGC TCA GCA ATT TGT ATG GAC AAA TCG
 7381 LEU THR TYR ILE VAL ALA LYS ASN ALA GLY ILE ALA THR PRO ALA PHE TRP VAL ILE ASN
 TTG ACA TAC ATC GTT GCG AAA ATT GCT GGG ATA GCT ACT CCC GCC TTT TGG GTT ATT ATT
 7441 LYS ASP ASP ARG PRO VAL ALA ALA PHE THR TYR PRO VAL PHE VAL LYS PRO ALA ARG
 AAA GAT GAT AGG CCG GTG GCA GCT ACG TTT ACC TAT CCT GTT ATT CTT AAG CCG GCG CGT
 7501 SER GLY SER SER PHE GLY VAL LYS VAL ASN SER ALA ASP GLU LEU ASP TYR ALA ILE
 TCA GGC TCA TCC TTC GGT GTG AAA AAA GTC ATT AGC GCG GAC TAC GCA ATT
 7561 GLU SER ALA ARG GLN TYR ASP SER LYS ILE LEU ILE GLU GLN ALA VAL SER GLY CYS GLU
 GAA TCG GCA AGA CAA TAT GAC AGC AAA ATC TTA ATT GAG CAG GCT GTT TCG GGC TGT GAG
 7621 VAL GLY CYS ALA VAL LEU GLY ASN SER ALA ALA LEU VAL VAL GLY GLU VAL ASP GLN ILE
 GTC GGT GCG GTA TTG GGA AAC AGT GCC GCG TTA GTT GTC GAG GTG GAC CAA ATC
 7681 ARG LEU GLN TYR GLY ILE PHE ARG ILE HIS GLN GLU VAL GLU PRO GLU LYS GLY SER GLU
 AGG CTG CAG TAC GGA ATC TTT CGT ATT CAT CAG GAA GTC GAG CCG GAA AAA GGC TCT GAA
 7741 ASN ALA VAL ILE THR VAL PRO ALA ASP LEU SER ALA GLU GLU ARG GLY LEU ALA ARG VAL ASP MET PHE
 AAC GCA GTT ATA ACC GTT CCC GCA GAC CTT TCA GCA GAG GAG CGA GGA CGG ATA CAG GAA
 7801 THR ALA LYS ILE TYR LYS ALA LEU GLY CYS ARG GLY LEU ALA ARG VAL ASP MET PHE
 ACG GCA AAA ATA ATT AAA TAT AAA GCG CTC GGC TGT AGA GGT CTA GCC CGT GTG GAT ATG ATT

FEUILLE DE REMPLACEMENT

51 / 69

FIGURE 8 (13/23)

7861 LEU GLN ASP ASN GLY ARG ILE VAL LEU ASN GLU VAL ASN THR LEU PRO GLY PHE THR SER
 TTA CAA GAT AAC CGC CGG ATT GTA CTG AAC GAA GTC AAT ACT CTG CCC GGT TTC ACG TCA
 7921 TYR SER ARG TYR PRO ARG MET MET ALA ALA GLY ILE ALA LEU PRO GLU LEU ILE ASP
 TAC AGT CGT TAT CCC CGT ATG ATG GCC GCT GCA GGT ATT GCA CTT CCC GAA CTG ATT GAC
 7981 ARG LEU ILE VAL LEU ALA LEU LYS GLY
 CGC TTG ATC GTA TTA GCG TTA AAG GGG TGATAAGC ATG GAA ATA GGA TTT ACT TTT TTA GAT
 vanX MET GLU ILE GLY PHE THR PHE LEU ASP

8043 GLU ILE VAL HIS GLY VAL ARG TRP ASP ALA LYS TYR ALA THR TRP ASP ASN PHE THR GLY
 GAA ATA GTA CAC CGT GTT CGT GAC GCT AAA TAT GCC ACT TGG GAT AAT TTC ACC CGA
 8103 LYS PRO VAL ASP GLY TYR GLU VAL ASN ARG ILE VAL GLY THR TYR GLU LEU ALA GLU SER
 AAA CCG GTT GAC GGT TAT GAA GTA AAT CGC ATT GTA GGG ACA TAC GAG TTG GCT GAA TCG
 8163 LEU LEU LYS ALA LYS GLU LEU ALA ALA THR GLN GLY TYR GLY LEU LEU TRP ASP GLY
 CCT TTG AAG GCA AAA GAA CTG GCT ACC CAA GGG TAC GGA TTG CTT CTA TGG GAC GGT

8223 TYR ARG PRO LYS ARG ALA VAL ASN CYS PHE MET GLN TRP ALA ALA GLN PRO GLU ASN ASN
 TAC CGT CCT AAG CGT GCT GTA AAC TGT TTT ATG CAA TGG GCT GCA CAG CCG GAA AAT AAC
 8283 LEU THR LYS GLU SER TYR TYR PRO ASN ILE ASP ARG THR GLU MET ILE SER LYS GLY TYR
 CTG ACA AAG GAA AGT TAT TAT CCC AAT ATT GAC CGA ACT GAG ATG ATT TCA AAA GGA TAC
 8343 VAL ALA SER LYS SER SER HIS SER ARG GLY SER ALA ILE ASP LEU THR LEU TYR ARG LEU
 GTG GCT TCA AAA TCA AGC CAT AGC CGC GGC AGT GCC ATT GAT CTT ACG CTT TAT CGA TTA
 8403 ASP THR GLY GLU LEU VAL PRO MET GLY SER ARG PHE ASP PHE MET ASP GLU ARG SER HIS
 GAC ACG GGT GAG CTT GTA CCA ATG GGG AGC CGA TTT GAT TTT ATG GAT GAA CGC TCT CAT

FEUILLE DE REMplacement

FIGURE 8 (14/23)

8463 HIS ALA ALA ASN GLY ILE SER CYS ASN GLU ALA GLN ASN ARG ARG LEU ARG SER ILE
 CAT GCG GCA AAT GGA ATA TCA TGC AAT GAA GCG CAA AAT CGC AGA CGT TGT CGC TCC ATC
 8523 MET GLU ASN SER GLY PHE GLU ALA TYR SER LEU GLU TRP TRP HIS TYR VAL LEU ARG ASP
 ATG GAA AAC AGT GGG TTT GAA GCA TAT AGC CTC GAA TGG TGG CAC TAT GTA TTA AGA GAC
 8583 GLU PRO TYR PRO ASN SER TYR PHE ASP PHE PRO VAL LYS
 GAA CCA TAC CCC AAT AGC TAT TTT GAT TTC CCC GTT AAA TAA CTG TTA ACC GTT GCA
 8641 CGG ACA AAC TAT ATA AGC TAA CTC TTT CGG CAG GAA ACC CGA CGT ATG TAA CTG GTT CTT
 8701 AGG GAA TTT ATA TAT AGT AGA TAG TAT TGA AGA TGT AAG GCA GAG CGA TAT TGC GGT CAT
 8761 TAT CTG CGT GCG CTG CGG CAA GAT AGC CTG ATA ATA AGA CTG ATC GCA TAG AGG GGT GGT
 8821 ATT TCA CAC CGC CCA TTG TCA ACA GGC AGT TCA GCC TCG TTA ATT TCA GCA TGG GTA TCA
 8881 CTT ATG AAA ATT CAT CTA CAT TGG TGA TAA TAG TAA ATC CAG TAG GGC GAA ATA ATT GAC
 8941 TGT ATT TTA CGG GGC AAA ACG GCA CAA TCT CAA ACC AGA TTG TGC CGT TTA AGG GGA AGA
 9001
 TTC TAG AAA TAT TTC ATA CTT CCA ACT ATA TAG TTA AGG AGG AGA CTG AAA ATG AAG AAG
 9061 MET LYS LYS
 LEU PHE PHE LEU LEU LEU PHE LEU ILE TYR LEU GLY TYR ASP TYR VAL ASN GLU
 TTG TTT TTA TTA TTG TTA TTC TTA ATA TAC TTA GGT TAT GAC TAC TAC GTT ATT GAA

FEUILLE DE REMPLACEMENT

FIGURE 8 (15/23)

9121 ALA LEU PHE SER GLN GLU LYS VAL GLU PHE GLN ASN TYR ASP GLN ASN PRO LYS GLU HIS
 GCA CTG TTT TCT CAG GAA AAA GTC GAA TTT CAA AAT TAT GAT CAA ATT CCC AAA GAA GAA CAT
 9181
 LEU GLU ASN SER GLY THR SER GLU ASN THR GLN GLU LYS THR ILE THR GLU GLU GLN VAL
 TTA GAA AAT AGT GGG ACT TCT GAA AAT ACC CAA GAG AAA ACA ATT ACA GAA GAA CAG CAG GTT
 9241
 TYR GLN GLY ASN LEU LEU ILE ASN SER LYS TYR PRO VAL ARG GLN GLU SER VAL LYS
 TAT CAA GGA AAT CTG CTA TTA ATC AAT AGT AAA TAT CCT GTT CGC CAA GAA AGT GTG AAG
 9301
 SER ASP ILE VAL ASN LEU SER LYS HIS ASP GLU LEU ILE ASN GLY TYR GLY LEU LEU ASP
 TCA GAT ATC GTG AAT TTA TCT AAA CAT GAC GAA TTA ATA ATT GGA TAC GGG TTG CTT GAT
 9361
 SER ASN ILE TYR MET SER LYS GLU ILE ALA GLN LYS PHE SER GLU MET VAL ASN ASP ALA
 AGT AAT ATT TAT ATG TCA AAA GAA ATA GCA CAA AAA TTT TCA GAG ATG GTC ATT GAT GCT
 9421
 VAL LYS GLY GLY VAL SER HIS PHE ILE ASN SER GLY TYR ARG ASP PHE ASP GLU GLN
 GTA AAG GGT GGC GTT AGT CAT ATT ATT ATT AAT AGT GGC ATT CGA GAC ATT GAT GAG CAA
 9481
 SER VAL LEU TYR GLN GLU MET GLY ALA GLU TYR ALA LEU PRO ALA GLY TYR SER GLU HIS
 AGT GTG CTT TAC CAA GAA ATT GGG GCT GAG ATT GCC ATT CCA GCA GGT ATT AGT GAG CAT
 9541
 ASN SER GLY LEU SER LEU ASP VAL GLY SER SER LEU THR LYS MET GLU ARG ALA PRO GLU
 ATT TCA GGT TTA TCA CTA GAT GTA GGA TCA AGC TTG ACG ATT GAA CGA CGC CCT GAA
 9601
 GLY LYS TRP ILE GLU GLU ASN ALA TRP LYS TYR GLY PHE ILE LEU ARG TYR PRO GLU ASP
 GGA AAG TGG ATA GAA GAA ATT GCT TGG AAA TAC GGG TTC ATT TTA CGT ATT CCA GAG GAC
 9661
 LYS THR GLU LEU THR GLY ILE GLN TYR GLU PRO TRP HIS ILE ARG TYR VAL GLY LEU PRO
 AAA ACA GAG TTA ACA GGA ATT CAA ATT GAA CGA TGG CAT ATT CGC ATT GGT TTA CCA
 9721

FIGURE 8 (16/23)

HIS SER ALA ILE MET LYS GLU LYS ASN PHE VAL LEU GLU GLU TYR MET ASP TYR LEU LYS
 CAT AGT GCG ATT ATG AAA GAA AAG AAT TTC GTT CTC GAG GAA TAT ATG GAT TAC CTA AAA
 9781 GLU GLU LYS THR ILE SER VAL SER. VAL ASN GLY GLU LYS TYR GLU ILE PHE TYR TYR PRO
 GAA GAA AAA ACC ATT TCT GTT AGT GTA AAT GGG GAA AAA TAT GAG ATC TTT TAT TAT CCT
 9841 VAL THR LYS ASN THR THR ILE HIS VAL PRO THR ASN LEU ARG TYR GLU ILE SER GLY ASN
 GTT ACT AAA AAT ACC ACC ATT CAT GTG CCG ACT AAT CTT CGT TAT GAG ATA TCA GGA AAC
 9901 ASN ILE ASP GLY VAL ILE VAL THR VAL PHE PRO GLY SER THR HIS THR ASN SER ARG ARG
 AAT ATA GAC GGT GTA ATT GTG ACA GTG TTT CCC GGA TCA ACA CAT ACT AAT TCA AGG AGG
 9961 TAA GGA TGG CGG AAT GAA ACC AAC GAA ATT ATA GAA CAG CAT TAT TGT ACT AGC ACT TTT
 10021 GGG GTA ACG TTA GCT TTT TAA TTT AAA ACC CAC GTT AAC TAG GAC ATT GCT ATA CTA ATG
 10081 ATA CAA CTT AAA CAA AAG ATTAGAGG AAA TTA TA TTG GGA AAA ATA TTA TCT AGA GGA TTG
 10143 LEU ALA LEU TYR LEU VAL THR ILE TRP LEU VAL LEU PHE LYS LEU GLN TYR ASN ILE
 CTA GCT TTA TAT TTA GTG ACA CTA ATC TGG TTA TTC AAA TTA CAA TAC AAT ATT
 10203 LEU SER VAL PHE ASN TYR HIS GLN ARG SER LEU ASN LEU THR PRO PHE THR ALA THR GLY
 TTA TCA GTA TTT ATT TAT CAT CAA AGA AGT CTT AAC TTG ACT CCA TTT ACT GCT ACT GGG
 10263 ASN PHE ARG GLU MET ILE ASP ASN VAL ILE ILE PHE ILE PRO PHE GLY LEU LEU ASN
 AAT TTC AGA GAG ATG ATA GAT AAT GTT ATA ATC TTT ATT CCA TTT GGC TTG CTT TTG AAT

FEUILLE DE REMPLACEMENT

FIGURE8(17/23)

10323 VAL ASN PHE LYS GLU ILE GLY PHE LEU PRO LYS PHE ALA PHE VAL LEU SER LEU
GTC AAT TTT AAA GAA ATC GGA TTT CCT TTA CCG ATT GAA GGT TTT GCA CTG GTT TTA AGT CTT
10383 THR PHE GLU ILE ILE GLN PHE ILE PHE ALA ILE GLY ALA THR ASP ILE THR ASP VAL ILE
ACT TTT GAA ATA ATT CAA TTT ATC TTC GCT ATT GGA GCG ACA GAC ATA ACA GAT GTA ATT
10443 THR ASN THR VAL GLY GLY PHE LEU GLY LEU LYS LEU TYR GLY LEU SER ASN LYS HIS MET
ACA AAT ACT GTT GGA GGC TTT CTT GGA CTG AAA TTA TAT GGT TTA AGC AAT AAG CAT ATG
10503 ASN GLN LYS LEU ASP ARG VAL ILE ILE PHE VAL GLY ILE LEU LEU LEU VAL LEU LEU
AAT CAA AAA AAA TTA GAC AGA GGT ATT ATT TTT GCA GGT ATA CTT TTG CTC GTC TTA TGA TTG
10563 LEU VAL TYR ARG THR HIS LEU ARG ILE ASN TYR VAL
CTC GTT TAC CGT ACC CAT TTA AGA ATA AAT TAC GTG TAAG ATG TCT AAA TCA AGC AAT
10621 CTG ATC TTT CAT ACA CAT AAA GAT ATT GAA TGA ATT GGA TTA GAT GGA AAA CGG GAT GTG
10681 GGG AAA CTC GCC CGT AGG TGT GAA GTG AGG GGA AAA CCG GTG ATA AAG TAA AAA GCT TAC
10741 CTA ACA CTA TAG TAA CAA AGA AAG CCC AAT TAT CAA TTT TAG TGC TGA GGA ATT GGT CTC
10801 TTT AAT AAA TTT CCT TAA CGT TGT AAA TCC GCA TTT TCC TGA CGG TAC CCC

FEUILLE DE REMplacement

Ib brin(-)

FIGURE 8 (18/23)

1 CAA AAT ATC ACC TCA TTT TTG AGA CAA GTC TTA TGA GAC GCT CTC AAC TAT GAT TTT ATC
 61 AGT CTA CTA CAT TTG TAT CAA TAG AGT ACA CTC TAT TGA TAT ATA ATT GAA CTA ATA AAT
 121 TGA AAA TAC AGA AAT GGA ATT GCG AGA GGT AGA GAA TTG CTT ACA
 182 PRO GLU GLN ARG GLN ALA PHE MET GLN ILE PRO GLU ASP GLU TRP ILE LEU GLY THR TYR
 CCG GAA CAG AGA CAG GCT TTT ATG CAA ATC CCT GAA GAT GAA TGG ATA CTG GGG ACC TAC
 242 PHE THR PHE SER LYS ARG ASP LEU GLU ILE VAL ASN LYS ARG ARG ARG GLU GLU ASN ARG
 TTC ACT TTT TCC AAA CGG GAT TTA GAA ATA GTT AAT AAG CGA AGG AGG GAA AAC CGT
 302 LEU GLY PHE ALA VAL GLN LEU ALA VAL LEU ARG TYR PRO GLY TRP PRO TYR THR HIS ILE
 TTA GGA TTT GCT GTT CAA TTA GCT GTT CTT CGG TAT CCC GGT TGG CCA TAC ACT CAT ATC
 362 LYS SER ILE PRO ASP SER VAL ILE GLN TYR ILE SER LYS GLN ILE GLY VAL SER PRO SER
 AAA AGC ATC CCA GAT TCG GTC ATA CAA TAT ATA TCG AAA CAG ATT GGT GTT AGT CCA TCC
 422 SER LEU ASP HIS TYR PRO GLN ARG GLU ASN THR LEU TRP ASP HIS LEU LYS GLU ILE ARG
 TCG CTT GAT CAT TAT CCT CAA AGG GAA AAT ACA CTT TGG GAT CAT TTG AAA GAA ATT CGA

Transposase

FEUILLE DE REMPLACEMENT

FIGURE 8 (19/23)

482 SER GLU TYR ASP PHE VAL THR PHE THR LEU SER GLU TYR ARG MET THR PHE LYS TYR LEU
 AGT GAA TAC GAC TTT GTA ACT TTT ACC CTG AGT GAA TAT CGA ATG ACA TTT AAG TAC CTT
 542 HIS GLN LEU ALA LEU GLU ASN GLY ASP ALA ILE HIS LEU LEU HIS GLU CYS ILE ASP PHE
 CAT CAA TTA GCT TTG GAA ATT GGT GAT GCC ATT CAT CTA CTG CAT GAA TGC ATA GAT TTT
 602 LEU ARG LYS ASN LYS ILE ILE LEU PRO ALA ILE THR THR LEU GLU ARG MET VAL TRP GLU
 CTA AGA AAA AAC AAA ATT ATA CTG CCT GCT ATC ACT ACA CTT GAA AGA ATG GTG TGG GAA
 662 ALA ARG ALA MET ALA GLU LYS LYS LEU PHE ASN THR VAL SER LYS SER LEU THR ASN GLU
 GCA AGG GCA ATG GCT GAA AAG CTA ATT ACG GTC ATT AGT AAA TCT CTA ACA AAT GAG
 722 GLN LYS GLU LYS LEU GLU GLY ILE ILE THR SER GLN HIS PRO SER GLU SER ASN LYS THR
 CAA AAA GAA AAG CTT GAA GGG ATT ATT ACC TCG CAG CAT CCA TCC ATT AAA ACG
 782 ILE LEU GLY TRP LEU LYS GLU PRO PRO GLY HIS PRO SER PRO GLU THR PHE LEU LYS ILE
 ATA TTG GGT TGG TTA AAA GAG CCA CCG GGT CAT CCT TCA CCC GAA ACT TTT CTA AAA ATA
 842 ILE GLU ARG LEU GLU TYR ILE ARG GLY MET ASP LEU GLU THR VAL GLN ILE SER HIS LEU
 ATA GAA CGA CTC GAA TAC ATA CGA CGA ATT GAT TTA GAA ACA GTG CAA ATT AGT CAT TTG
 902 HIS ARG ASN ARG LEU LEU GLN LEU SER ARG LEU GLY SER ARG TYR GLU PRO TYR ALA PHE
 CAC CGT AAC CGC CTG TTG CAG CTG TCT CGC TTA GGC TCA AGA TAC GAG CCG TAT GCA TTC
 962 ARG ASP PHE GLN GLU ASN LYS ARG TYR SER ILE LEU THR ILE TYR LEU LEU GLN LEU THR
 CGT GAC TTT CAA GAA ATT AAA CGT TAT TCG ATA TTA ACC ATC TAT TTA TTA CAA CTT ACT
 1022 GLN GLU LEU THR ASP LYS ALA PHE GLU ILE HIS ASP ARG GLN ILE LEU SER LEU LEU SER
 CAG GAG CTA ACG GAT AAA GCG ATT CAT GAT AGG CAA ATA CTT AGT TTG TTA TCA

FEUILLE DE REMPLACEMENT

FIGURE 8 (20/23)

1082 LYS GLY ARG LYS ALA GLN GLU ILE GLN LYS GLN ASN GLY LYS LEU ASN GLU LYS
AAA GGT CGT AAG GCT CAA GAG GAA ATC CAG AAA CAA AAC GGT AAA AAG CTA ATT GAG AAA
11142 VAL ILE HIS PHE THR ASN ILE GLY GLN ALA LEU ILE LYS ALA ARG GLU GLU LYS LEU ASP
GTT ATA CAC TTT ACG AAC ATC GCA CAA GCA TTA ATT AAA GCA AGA GAG GAA AAA TTA GAC
1202 VAL PHE LYS VAL LEU GLU SER VAL ILE GLU TRP ASN THR PHE VAL SER SER VAL GLU GLU
GTT TTT AAG GTT TTA GAA TCG GTT ATT GAA TGG AAT ACC TTT GTC TCT TCA GTA GAA GAG
1262 ALA GLN GLU LEU ALA ARG PRO ALA ASP TYR ASP TYR LEU ASP LEU LEU GLN LYS ARG PHE
GCT CAG GAA CTT GCA CGT CCT GCC GAC TAT GAT TAT TTA GAC TTA CTG CAA AAA CGG TTT
1322 TYR SER LEU ARG LYS TYR THR PRO THR LEU LEU ARG VAL LEU GLU PHE HIS SER THR LYS
TAT TCA CTA AGA AAA TAT ACG CCA ACG CTA TTA AGA GTA TTG GAA TTT CAT TCT ACA AAG
1382 ALA ASN GLU PRO LEU LEU GLN ALA VAL GLU ILE ILE ARG GLY MET ASN GLU SER GLY LYS
GCA ATT GAG CCA CTT TTA CAA GCT GTT GAG ATT ATC CGA GGA ATG AAC GAA TCT GGA AAG
1442 ARG LYS VAL PRO ASP SER PRO VAL ASP PHE ILE SER LYS ARG TRP LYS ARG HIS LEU
CGA AAA GTG CCT GAT GAC TCA CCT GTG GAT TTT ATT TCA AAA CGA TGG AAA AGA CAT TTA
1502 TYR GLU ASP ASP GLY THR THR ILE ASN ARG HIS TYR TYR GLU MET ALA VAL LEU THR GLU
TAC GAG GAT GAT GGT ACA ACA ATT ATT CGT CAT TAC TAT GAA ATG GCT GTT TTA ACA GAA
1562 LEU ARG GLU HIS VAL ARG ALA GLY ASP VAL SER ILE VAL GLY SER ARG GLN TYR ARG ASP
CTT CGG GAG CAT GTT CGG GCA GGA GAT GTC ATT GTT TCC ATT GTT GGC AGC AGA CAA TAT AGG GAT

FEUILLE DE REMPLACEMENT

FIGURE 8 (21/23)

1622

PHE GLU GLU TYR LEU PHE SER GLU ASP THR TRP ASN GLN SER LYS GLY ASN THR ARG LEU
 TTT GAG GAA TAT TTG TTT TCG GAA GAT ACA TGG AAT CAA TCG AAG GGG AAT ACG AGA TTA
 1682
 SER VAL SER LEU SER PHE GLU ASP TYR ILE THR GLU ARG THR SER SER PHE ASN GLU ARG
 TCA GTT AGT TTA TCA TTC GAA GAT TAT ATA ACG GAG AGA ACC AGC AGC TTT AAT GAA AGG
 1742
 LEU LYS TRP LEU ALA ALA ASN SER ASN LYS LEU ASP GLY VAL SER LEU GLU LYS GLY LYS
 TTA AAG TGG TTA GCT GCC AAT TCC AAT AAG TTA GAT GGG GTT TCT CTT GAA AAA GGA AAG
 1802
 LEU SER LEU ALA ARG LEU GLU LYS ASP VAL PRO GLU GLU ALA LYS PHE SER ALA SER
 CTA TCA CTT GCA CGC TTA GAA AAA GAT GTT CCA GAA GAA GCA AAA AAA TTT AGT GCA AGC
 1862
 LEU TYR GLN MET LEU PRO ARG ILE LYS LEU THR ASP LEU LEU MET ASP VAL ALA HIS ILE
 CTT TAT CAG ATG CTA CCA AGA ATA AAA TTA ACT GAT TTA CTC ATG GAT GTG GCC CAT ATA
 1922
 THR GLY PHE HIS GLU GLN PHE THR HIS ALA SER ASN ASN ARG LYS PRO ASP LYS GLU GLU
 ACA GGA TTT CAT GAG CAA TTC ACT CAT GCT TCC AAT AAT CGA AAA CCA GAT AAG GAA GAA
 1982
 THR ILE ILE ILE MET ALA ALA LEU LEU GLY MET GLY MET ASN ILE GLY LEU SER LYS MET
 ACA ATC ATT ATC ATG GCT GCC CTT TTA GGA ATG GGA ATG ATT GGC TTG AGC AAG ATG
 2042
 ALA GLU ALA THR PRO GLY LEU THR TYR ILY GLN LEU ALA ASN VAL SER GLN TRP ARG MET
 GCC GAA GCC ACA CCC GGA CTT ACA TAT AAG CAA CTA GCC AAT GTA TCT CAA TGG CGC ATG
 2102
 TYR GLU ASP ALA MET ASN LYS ALA GLN ALA ILE LEU VAL ASN PHE HIS HIS LYS LEU GLN
 TAT GAA GAT GCC ATG AAT AAA GCC CAA AAC TTA GTA AAC TTT CAT CAT AAA TTA CAA
 2162
 LEU PRO PHE TYR TRP GLY ASP GLY THR THR SER SER ASP GLY MET ARG MET GLN LEU
 TTG CCT TTC TAT TGG GGC GAC GGT ACA ACA TCG TCA GAT GGT ATG AGA ATG CAG CTA

FEUILLE DE REMPLACEMENT

FIGURE 8 (22/23)

2222 GLY VAL SER SER LEU HIS ALA ASP ALA ASN PRO HIS TYR GLY THR GLX LYS GLY ALA THR
 GGT GTT TCA CTA CAT GCA GAT CCA AAT CCA CAT TAT GGA ACT GGA AAA GGA GCC ACC ACC
 2282 ILE TYR ARG PHE THR SER ASP GLN PHE SER SER TYR TYR THR LYS ILE HIS THR ASN
 ATC TAC CGA TTT ACA AGT GAT CAA TTC TCT TAC TAC ACA AAG ATT ATT CAT ACT ATA
 2342 SER ARG ASP ALA ILE HIS VAL LEU ASP GLY LEU LEU HIS HIS GLU THR ASP LEU ASN ILE
 TCA AGA GAT GCG ATT CAT GTT TTG GAT GGT TTG TTA CAT CAT GAG ACG GAT CTA AAC ATA
 2402 GLU GLU HIS TYR THR ASP THR ALA GLY TYR THR ASP GLN ILE PHE GLY LEU THR HIS LEU
 GAG GAA CAT TAT ACA GAC ACT GCC GGT TAC ACT GAC CAA ATA TTC GGA CTG ACT CAT TTA
 2462 LEU GLY PHE LYS PHE ALA PRO ARG ILE ARG ASP LEU SER ASP SER LYS LEU PHE THR ILE
 TTA GGA TTT AAA TTT GCC CCA AGA ATA AGG GAT TTA TCG GAC TCA AAA TTA TTT ACG ATA
 2522 ASP LYS ALA SER GLU TYR PRO LYS LEU GLU ALA ILE LEU ARG GLY GLN ILE ASN THR LYS
 GAT AAA GCA AGT GAG TAT CCA AAA CTA GAA GCC ATT TTA CGT GGA CAA ATA AAT ACA AAG
 2582 VAL ILE LYS GLU ASN TYR GLU ASP VAL LEU ARG LEU ALA HIS SER ILE ARG GLU GLY THR
 GTC ATT AAA GAA ATT TAT GAG GAT GTT TTG CGA TTA GCT CAT TCT ATA AGG GAG GGA ACA
 2642 AGT TTC AGC ATC CCT TAT TAT GGG GAA GCT AGG TTC CTA TTC AAG ACA AAA CAG CTT AGC
 VAL SER ALA SER LEU ILE MET GLY LYS LEU GLY SER TYR SER ARG GLN ASN SER LEU ALA
 GTT TCA GCA TCC ATT ATG GGG AAG CTA GGT TCC TAT TCA AGA CAA AAC AGC TTA GCT
 2702 THR ALA LEU ARG GLU MET GLY ARG ILE GLU LYS THR ILE PHE ILE LEU ASN TYR ILE SER
 ACA GCC TTA CGT GAG ATG GGC CGA ATA GAA AAA AGG ATC TTT ATT TTG AAT TAT ATA TCG

FEUILLE DE REMPLACEMENT

FIGURE 8 (23/23)

2762 ASP GLU SER LEU ARG ARG LYS ILE GLN ARG GLY LEU ASN LYS GLY GLU ALA MET ASN GLY
 GAT GAA TCA TTA AGA AGA AAA ATA CAA AGA TTG AAT AAA GGA GAA GCC ATG AAT GGA
 2822 LEU ALA ARG ALA ILE PHE PHE GLY LYS GLN GLY GLU LEU ARG GLU ARG THR ILE GLN HIS
 TTG GCA AGA GCT ATT TTC TTC GGA AAA CAA GGT GAG CTT AGA GAA CGC ACC ATA CAG CAT
 2882 GLN LEU GLN ARG ALA SER ALA LEU ASN ILE ILE ASN ALA ILE SER ILE TRP ASN THR
 CAA TTG CAA AGA GCC AGT GCT TTA AAC ATA ATT ATC AAT GCT ATA AGT ATT TGG AAT ACT
 2942 TCT CCA CCT AAC AAC AGC AGT TGA ATA TAA AAA ACG GAC AGG TAG CTT TAA TGA AGA TTT
 LEU HIS LEU THR THR ALA VAL GLU TYR LYS LYS ARG THR GLY SER PHE ASN GLU ASP LEU
 CTC CAC CTA ACA ACA GCA GTT GAA TAT AAA AAA CGG ACA GGT AGC TTT AAT GAA GAT TTG
 3002 LEU HIS HIS MET SER PRO LEU GLY TRP GLU HIS ILE ASN LEU LEU GLY GLU TYR HIS PHE
 TTA CAC CAT ATG TCG CCC TTA GGT TGG GAA CAT ATT AAT TTA CTA GGA GAA TAC CAT TTT
 3062 ASN SER GLU LYS VAL VAL SER LEU ASN SER LEU ARG PRO LEU LYS LEU SER
 AAC TCA GAG AAA GTA GTC TCA TTA AAT TCT TTA AGA CCA CTA AAA CTT TCT TAA CGT TG
 3121 TTA AAA ACG AGG GAT TCG TCA GGA AAA TAG GCT TAG CGT TGT AAA TCC GCA TTT TCC TGA
 3181 CGC TAC CCC

FEUILLE DE REMPLACEMENT

SacI	GAGCTCTTCCCTCAACCGCACTTCTGTACCAAGAGTGTTCGTC	42
	CATTGATCACTAACATAAGCTTCCCCCTGCTTCTCAAGGCCCTTGTCATAAATCGTAGATTTCA	111
	TCAATAAAATACGAGAAAGACAACAGGAAGACCCAAATTCTTTCTCTAGGTACACTGAATC	180
RBS	M K K I A V L F G G	244
	TAACCTTAAAGAAMAGGAAAGAAAGACAACAGGAAGACCCAAATTGCCGTTTATTGGAGGC	
N S P E Y S V S L T S A A S V I Q A I D	304	
AATTCTCCAGAAATACTCACTGTCACAACTAACCTCAGCAGCAACTGTCATCCAGCTATTGCTAC		
P L K Y L V M T I G I A P T M D W Y W X	364	
CGGCTGAATATGAACTTAATGACCATTTGCCATGCCACCAATGCCATTGCTATTGGTAT		
Q G N L A N V R N D T W L E D H K N C H	424	
CAAGGAAACCTCGCGAATGTTCCAAATGATACTGGCTAGAGATCACAAAAACTGTCAC		
Q L T F S S Q G F I L G E K R I V P D V	484	
CAGCTGACTTTCTAGCCAAAGGATTATTAGGAGAAACGAATCGTCCCTGATGTC		
L F P V L H G K Y G E D C C I Q G L L E	544	
CTCTTCCACTCTGGCATGGCAACTATGGCTGATGGCATGGCAACTGCTTC		
L M N L P Y V G C H V A A S A L C M N K	604	
CTAATGAAACCTGCCTTATGTTGCCATGTCGCTGCCATGTCATGCTATGAAACAAA		
W L L H Q L A D T M G I A S A P T L L L	66	
TGGCTCTGGCATCACTGCTGATACCATGCCAAATGCCATTATGCTATGCTTTA		
S R Y E N D P A T I D R F I Q D H G F P	72	
TCCCGCTATGAAACGCACTGCCACAAATCGATTCGCTTTTATTCAAGACCCATGGCATTCGG		

FIGURE 9(1/2)

FEUILLE DE REMPLACEMENT

63/69

I	F	I	K	P	N	E	A	G	S	S	K	G	I	T	K	V	T	D	K
ATCTTTATCAAGCCGAATTGAAACCCGTCTTCAAAAGGGATCACAAACTGACAA																			
T	A	L	Q	S	A	L	T	T	A	F	A	Y	G	S	T	V	L	I	Q
ACAGGCCCAATTCTGCATTAAACCACTGCTTTGCTTACGGGTACTGTGTGATCCAA																			
K	A	I	A	G	I	E	I	C	C	C	I	L	G	N	E	Q	L	T	I
AAGGGATAACGGCTATTCGAATTGGCTCGGGCATCTAGGAATTGACCAATTGACGATT																			
G	A	C	D	A	I	S	L	V	D	G	F	F	D	F	E	E	K	Y	Q
GGTGCCTTGCTGATGCCGATTTCCTCTGTCGACCGGTTTTGATTGAGAGAAATAACAA																			
L	I	S	A	T	I	T	V	P	A	P	L	P	L	A	L	E	S	Q	I
TTAATGCCAACCGATCACTGTCACCATTGCCCCTCTGCTGAAATCACAGATC																			
K	E	Q	A	Q	L	L	Y	R	N	L	G	L	T	G	L	A	R	I	D
AAGGAGCAGGCCACGGCTGGCTTATCGAAACTTGGCATTGACGGGTCTGGCTCGAATCGAT																			
F	F	V	T	N	Q	G	A	I	Y	I	N	E	I	N	T	M	P	G	F
TTTTGCTCACCAATCAAGGACCCATTATTAAACGAATTCAACACCATTGGGGATT																			
T	G	H	S	R	Y	P	A	M	M	A	E	V	G	L	S	Y	E	I	L
ACTGGCCACTCCCGCTACCCAGCTATGATGGCAAAGTGGGTATCCTACGAATATA																			
V	E	Q	L	E	A	L	A	E	E	D	K	R	*						
GTAGGCAATTGATTGCACTGGCAAGGAGCACACATTACAAATTGATCAATA																			
AAAACCATCCATTGAAAAAAATCAAGAGCCCCGGACTTACTGGTAGCTCCTTTAGCGATCACGATG																			
TTTACCTGGCAG																			
PstI																			

FIGURE 9 (2/2)

Vanc --MKKIAVLF GGNPEYSVS LTSAAVQIA IDPLKVEVT IGIAPTMWY WYQGNLANVR NDTWLEDHN CHQLTFSQG FILGEKRVIP -----D
VarA MNRIKAVAILF GGCSEEHDS VSAEIEAAN INKEKYEPY IGITKGWVK MCERCAEWE NDNCYSAVLS PDKRMHGLIV KKNHEYEINH -----VD
Dd1A MEKLRGVIFV GKSAEHEVS IGSAKNIVDA IDKSREFDVL LGIDKQGWH VSDASHYLL ADDPAHIALR PSATSLAQVP GKHEQLIDA QNGOPLPTVD
Dd1B -MTDKIAVLL GTSAEREVS IMSGAVLAG IREGGIDAYP VDPKEVDVTQ LKSMGPQKV -----
ccccccccc_11_11_11_C_IC_C_C_C_C
domaine 1

Vanc <--1--> VLPVHLGKV GEDGCCIQGLL EIMNLPPVGCG HVAASALCMN KWLLHQALDT MGIASAPTLL LSRYEND--- PATIDRFIQC HGFPIFIKPNA EAGSSRGTK
VarA VAFSALHGKS GEDGSIQGLF ELSGIPFVGCG DIQSSAICMD KSLTYIVAKN AGIATPAFWV INKDPRP-----VAAT FTYPVFVKPA RSGSSFGVKK
Dd1A VIFPIVHGTL GEDGSLQGML RVANLPFGS DVLAASACMD KDVTKRLLRD AGLNIAFFIT LTRANRHNI FAE---VESK LGPLIFVKPA NGSSVGVK
Dd1B --FIAHGRG GEDGTLQGML EMLGLPYTG SGMASALSMD KIRSKLLWQG AGLPVAPWA LTRAEFKGL SDKOLAEISA LGLPVIVKPS REGSSVMSK
I_CII_111CCUCC_CI_IC_C_11_C1_I_C_IC_CCC_
domaine 2

Vanc VTDKTALQSA LTTFAYGST VIIQKIAJGI EIGCGILGNE -QLTIGCDA ISLVDFFFDF EEKYQOLIS--- --ATITVPAP IPLLASEQIK EQAQQLYRN
VarA VNSADELDYA IESARQYDSK IIIEQAVSGC EVGCAVLGNS AALVVGEDQ IRLOQYIFRI HQEVEPERGS ENAVITVPAD LSAEERGRQ ETAKKIYKAL
Dd1A VTSEEQYATA VALAFEDHK VIVEQGIKGR EIECAVLGND NP----QAST CGEIVLTSDF YADTKYIDE DGAKVUVPAIA IAIVQAYQTL
Dd1B VVAENALQDA IRLAQHDEE VLIKEWLSP EFTVAILGEE IL-----P SIRIQPSGTF YDYEAKYLSD ETQYFC-BAG LEASQEANLQ ALVKAWTTL
I_C_I_CCC_11_C1_IC_CCC_
domaine 3

Vanc <--2--> GLTGLARIDF FVTNQGAIYL NEINTMPGFT GHSHRPYAMMA EVGLSYEILV EQILIAEED KR
VarA GCRGLARVDM FLQDNGRIVL NEVNTLPGFT SYSHRPYAMMA AANGIAPELI DRLIVLALKG
Dd1A GCAGMARVDV FLTPENEVVI NEINTLPGFT NSMYPKLWQ ASGLGYTDLI TRIELALER HANNALKTT M
Dd1B GCKGWGRIDV MLDSDGFYI LEANTSPGMI SHISLVPMAAR QAGMSFSQLV VRILELAD
I_1_CICIC_CC_C_C_111JIC_1_I_IC_IC_CCC_
domaine 4

FIGURE 10

FEUILLE DE REMPLACEMENT

FEUILLE DE REMPLACEMENT**FIGURE 11**

FIGURE 12

FEUILLE DE REMplacement

67/69

FIGURE 13

FEUILLE DE REMPLACEMENT

69/69

VanR	-[M]SD[KIL]-	-IVDDEHEIADLVELYLKNENYT[VK-Y	YTAKEALEC	IIDLAIIDIMI	56
OmpR	MQENYKIL--	[VDDDMRLRAILLERYLT[QGFOVRS-VANA	QMDRL[LTRESEF	ELMVLDLML	58
PhoB	-MARRIL--	-VV[EDEAPIREMVCFVLEQ[QVE-	AEDYDSAV[NOLNEPW	PDLILLDWM	56
Chey	--MADKELKFL	VVRNLLKELGFNNVEEAEDGV	DALNKLQAGGF	GFIISDWNM	60
					115
VanR	PGTSGLTICQKIRDKHTY---	[PIIMLFGKDTEVDKITGLTIGADDYITKPF	RPLELIA	ARYKA	116
OmpR	PGEDGLSICRRLRSQS	NPM--PIIMVTAKEEVDRIVGLEIGADDYIPKPF	NPRELLARI	ERA	118
PhoB	PGGSGLIQFIKHLKRESMTRDIPVVM	LIPVVMLTARGEEEDRVRCLETGADDYITKPF	SPKELVAR	RIKA	118
Chey	PNMDGIELLKTIRADSMASALPVVLM	TAKEAKKENIIAAAQAGASG	TYVVKPF	TAATLEEKLNK	122
					176
VanR	QLRRYKK-FSGVKEQEN	IVHSGLVINVNTHECYLNEKO	SLTPTEFSILRIL	CENKGNVV	176
OmpR	VLRRQANEELPGAPSQE	EAVIAFGKFKLNLGTRE	DPMPREDPMLTS	PREPL	180
PhoB	PhobVMRRISP---	EMQGLSLDPTSHRVMA	GEPELEMGPTEF	KLLHEFFMTHPERY	174
Chey	IFEEKLGM	129			
					231
VanR	SSELLFHEIWGD	DEYFSKSNNNTITVHIRHLREK	MNDTIDNPKYIK	TVMGVGYKIEK	
OmpR	SRDKLMMNLA	R-SAMER-SIDVQISRLRMVEEDPA	HPRYIQTW	VFPDGSKA	239
PhoB	SREQLLNH	GREYSAMER-TVDVHIRRLR-KALEP	GHDRMVQTVRG	TFSTRF	229

FIGURE 15

FEUILLE DE REMPLACEMENT

Vans	126 [EMDVM]EQQLN[T]KRTLEKRE[QDAKLA]EQR[KNDVVVMYLAHDIKTPLT[S]I[G]YISLLDEA[P]	184
Phor	176 [EIRVMPYTHKQ][L]M[VA]RDVT[QMHQ]LEGARR[N-FFANVSH]ELRTPLT[V]LQGYLEMMEQ[P]	233
Envz	210 A SEVRSVT[RAFNHMA][---GVKQLADDRTL-LMAGVSHDLRTPLT[R]IRLATEMMSEQ[D]	263
<hr/> I <hr/>		
Vans	DMPV DQKAKYV[HITLDKAY[R]LEQ[L]DEFEEITRYN[Q]TITLTKTHIDLYYMLVQMTDEF	243
Phor	LEGAV - REKA[H]TMREQTQRMEGLV[KQLLTLSKIEAAPTHLLNE[KV]DVPMMLRVVEREA	291
Envz	GYLAESINK[---DIEECNAIEQEIDYLRTGQEMPM- -EMADLN]AVLGEVIAAE	312
<hr/> II <hr/>		
Vans	YPQLSAHGKQAVIHA[PE]DLTVSGD[PD]DKLARV[FNN]ILKNAAYSEDNS[I]DITA[G]LSG--	300
Phor	- QTLSQKKQTF[TFEIDNGLK]VSGNED[DLRSAI]SNNLVYNAVNHTPEGTHIT[V]RWQRVPHG	349
Envz	-- SGYEREIETALY[PGSIEV]KMHP[LSIKRAV]NMVVA[ARYG- -NGWIKVSS[G]TEPNR	366
<hr/> III <hr/>		
Vans	DVSIEEKNTGSIPKD[KLA]AIE[EKE[YRLD]NARSSTDTGGAGGLGLIAKE[EIIVQHGGQIYA	359
Phor	[AEFSVEDNGPGIAPEHI-PRI[TERFYRVDKARSRQ]TGGSGLGLIAIVKHAVNHHESRILN	407
Envz	AWEQVEDDGPGIAPEQR-KHLEQPE[VRGDSART--ISGTGLGLIAIVQRIVDNHN]NGMLEL	422
<hr/> IIIa <hr/>		
Vans	ESNDNYIT-[FR]VELPAAMPDLVDKRRS	384
Phor	ESTV[GKTRESFVIPERLIAKNSD	432
Envz	GTSERGG[LSIRAWLPV]PVTRAQGTTKEG	450
<hr/> IIIb <hr/>		

FIGURE 14**FEUILLE DE REMPLACEMENT**

VanS	126 [EMDVMEQKLNTLKRTLEKREQDAKLAEQRKNDVVMYLAHDIKTPPLTSIIGYLSLDEAF	184
PhoR	176 [EIRVMPYTHKQLLMVARDVTQWMHOLEGARRN-FFAVANVSHEILRTPLTVLQGYLEMNNEQP	233
EnvZ	210 ASEVRSVTTRAFNHNMAA-[GVKQLADDRL-LMAGSHDLRTPLTIRILATEMMSEQD	263
<hr/> I <hr/>		
VanS	DMPVVDQKAKYVHITLDKAYRLEQOLIDEEFETTRYNLQTITLTKTHIDLYYMLVQMTDEF	243
PhoR	LEGAV-REKALHTMREQTQRMEGLVKQLLTISKIEAAPTHLLNEKVDVPMMLRVVEREA	291
EnvZ	GYLAESINK---DIEECNAIEQEIDYLRTGOEMPMDNAVLGEVIAAE	312
<hr/> II <hr/>		
VanS	YPQLSAHGKQAVIHAPEDLTSGDPDKLARYFNNILKNAAYSEDNSIIDITAGLSSG-	300
PhoR	-QTLSQKQTFETEIDNGLKVSGNEDOLRSAISNLVYNAVNHTPEGTHITVWQRVPHG	349
EnvZ	--SGYEREREIETALYPGSIEVKMHESIKRAVANMVNVNAARYG--NGWIKVSSGTEPNR	366
<hr/> IIIa <hr/>		
VanS	DVVSIEFKNTGSIPKDQLAAIFEKFYRLDNARSSDTGGAGLGLAIAKEIIIVQHCGQIYA	359
PhoR	AEFSVEDNGPGGIAPEHI-PRILTERFYRVDKARSRSQTGGSGLGLAIIVKHAVNHHESRIN	407
EnvZ	AWEQVEDDGPGGIAPEQR-KHLEQFOPENVRGDSART--ISGTGLGLAIIVQRIVDNHNGMLEL	422
<hr/> IIIb <hr/>		
VanS	ESNDNYTT-FRVELPAMPDLVDKRRS	384
PhoR	ESTVGKGTRFSSFVIPERLIAKNSD	432
EnvZ	GTSERGGGLSIRAWLPPVTRAQGTTKEG	450

FIGURE 14

FEUILLE DE REMPLACEMENT

69/69

VanR	-	[M]SD[K]T	--	[I]V[D]DEHEIA	[D]LVELYL	KNENYT	VFK	-Y	YTAKEALE	CIDKSE	IDLA	[I]LD	[I]M	56								
OmpR	M	QEN[Y]K	I	L--	[V]D	DD[DMR]L	R[ALL]E	RYL	T[Q]GF	QVRS	-VANA	E	QMDRL	[I]LT	RESE	[F]HL	M	58				
PhoB	-	[M]ARR	I	L--	[V]E	[D]EAP	[I]REM	VCF	VLE	QNGF	QPVE	-A	EDY	DSAVN	QNLNE	PWPDL	LLDWM	56				
Chey	-	[M]ADK	E	ELK	[K]	F	FLUVDD	FSTM	R	IVRN	LLK	E	GNN	VE	A	EDGVDALNK	LQAGGE	GFI	ISDN	WNM	60	
VanR	P	GTSG	GLT	TICK	QK	IRDKHTY	--	P	PI	MLT	GKD	TEVD	DKI	T	GLT	IGADDY	IT	TKP	PERPIE	JARVKA	115	
OmpR	P	GED	GLS	ICR	RLRSQ	SNPM	--	P	PI	ML	V	AKGE	EV	DRI	IVGLE	IGADDY	I	P	KPF	NPRE	LLARI	118
PhoB	P	GG	GGI	QFI	KHLKRE	SMTRDIPV	V	MLT	ARGE	E	DRVR	RGLET	GADDY	IT	TKP	SPKEL	VARI	KA	118			
Chey	P	NMD	GLI	ELL	KTIRAD	SAMSA	PEVLM	MTAEAK	KEN	II	AAQAGA	SGYV	V	KPF	TAATE	EKL	NK	122				
VanR	Q	LRRYKK	-FS	GVKE	Q	ENV	IVHSG	LV	INVNT	THE	CYLINE	KQ	LS	LTPT	EF	SIL	LRIL	CEN	GNNVV	176		
OmpR	V	LRRQ	ANELP	GAPSQ	EAVIA	IAFGKF	KLN	LGTR	EM	FRED	PMPLTS	GEFA	V	V	V	V	V	V	V	V	180	
PhoB	V	MRR	RIS	P	---	---	---	MAVE	EVI	EMQGLS	LDPT	SHRMAGE	EPLEMGP	TEF	KLLHFF	MTHPER	V	V	V	V	174	
Chey	I	FEKLGM	129																			
VanR	S	SEL	[L]F	HEI	[W]G	DEY	FSKNNT	ITV	HIR	HIL	REKMND	TIDNP	KYIK	T	VWGV	GYKIEK					231	
OmpR	S	RD	KLM	N	LAR	GREY	SAMER	-	SIDV	Q	ISRLRR	MVEEDPA	HPRYIOTV	WGLGYV	F	VPDGSKA					239	
PhoB	S	RE	Q	OLLN	H	VWGT	NVYVEDR	-	T	V	DVHIRRLR	-KALEP	GHD	RMVQT	V	RGTYREFSTRF					229	

FEUILLE DE REMplacement

FIGURE 15

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/FR 91/00855

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.C1.5	C 12 N 15/52	C 12 N 15/31	C 12 Q 1/25	C 12 Q 1/32
	C 12 Q 1/68	C 12 P 21/02	C 07 K 13/00	C 12 P 21/08

II. FIELDS SEARCHED

Minimum Documentation Searched ⁷

Classification System	Classification Symbols		
Int.C1.5	C 07 K C 12 P	C 12 N	C 12 Q

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	Antimicrobial Agents and Chemotherapy, vol. 34, No.5 , May 1990, American Society for Microbiology; A. Brisson-Noel et al.: "Cloning and heterospecific expression of the resistance determinant vanA encoding high-level resistance to glycopeptides in enterococcus faecium BM4147", pages 924-927, see the whole document (cited in the application)	7-17,19
A		1-6
Y		20-22, 24,27- 28

-/-

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

18 February 1992 (18.02.92)

Date of Mailing of this International Search Report

4 March 1992 (04.03.92)

International Searching Authority

European Patent Office

Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
X	Antimicrobial Agents and Chemotherapy, vol. 34, No. 10, October 1990, American Society for Microbiology; S. Dutka-Malen et al.: "Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in Gram-positive bacteria", pages 1875-1879, see the whole document	8-14, 20-22, 24
Y	---	20-22, 24
Y	EP, A, 0229701 (CETUS CORPORATION) 22 July 1987, see the whole document (cited in the application) ---	27-28
A	Antimicrobial Agents and Chemotherapy, vol. 33, No. 1, January 1989, American Society for Microbiology; R. Leclercq et al.: "Transferable vancomycin and teicoplanin resistance in enterococcus faecium", pages 10-15, see particularly page 13, left hand column, last paragraph to right hand column, paragraph 2 -----	
P, X	Mol. Gen. Genet., vol. 224, No. 3, December 1990, Springer Verlag, S. Dutka-Malen et al.: "The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes", pages 364-372, see the whole document	7, 9, 13-14, 16-19
P, X	Biochemistry, vol. 30, No. 8, 26 February 1991, American Chemical Society; T.D.H. Bugg et al.: "Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity", pages 2017-2021, see the whole document -----	7, 9, 13-14, 16-19

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

FR 9100855
SA 53696

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.
The members are as contained in the European Patent Office EDP file on 26/02/92
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A- 0229701	22-07-87	AU-B-	606043	31-01-91
		AU-A-	6710987	16-07-87
		CA-A-	1279244	22-01-91
		JP-A-	62217161	24-09-87
		US-A-	5008182	16-04-91

EPO FORM P079

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No PCT/FR 91/00855

I. CLASSEMENT DE L'INVENTION (plusieurs symboles de classification sont applicables, les indicateurs tous) 7

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

Int.C1.5	C 12 N 15/52	C 12 N 15/31	C 12 Q 1/25
C 12 Q 1/32	C 12 Q 1/68	C 12 P 21/02	C 07 K 13/00
C 12 P 21/08			

II. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée⁸

Système de classification	Symboles de classification		
Int.C1.5	C 07 K C 12 P	C 12 N	C 12 Q

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté⁹

III. DOCUMENTS CONSIDERES COMME PERTINENTS¹⁰

Catégorie ¹¹	Identification des documents cités, avec indication, si nécessaire, ¹² des passages pertinents ¹³	No. des revendications visées ¹⁴
X	Antimicrobial Agents and Chemotherapy, volume 34, no. 5, mai 1990, American Society for Microbiology; A. Brisson-Noel et al.: "Cloning and heterospecific expression of the resistance determinant vanA encoding high-level resistance to glycopeptides in enterococcus faecium BM4147", pages 924-927, voir le document en entier (cité dans la demande)	7-17,19
A		1-6
Y		20-22, 24,27- 28 -/-

• Catégories spéciales de documents cités¹¹

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier.
- "&" document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée
18-02-1992

Date d'expédition du présent rapport de recherche internationale
04.03.92

Administration chargée de la recherche internationale
OFFICE EUROPEEN DES BREVETS

Signature du fonctionnaire autorisé
Nicole De Bié

III. DOCUMENTS CONSIDERES COMME PERTINENTS¹⁴

(SUITE DES SEIGNEMENTS INDIQUES SUR LA DEUXIEME FEUILLE)

Catégorie ^o	Identification des documents cités, ¹⁶ avec indication, si nécessaire des passages pertinents ¹⁷	No. des revendications visées ¹⁸
X	Antimicrobial Agents and Chemotherapy, volume 34, no. 10, octobre 1990, American Society for Microbiology; S. Dutka-Malen et al.: "Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in Gram-positive bacteria", pages 1875-1879, voir le document en entier	8-14, 20-22, 24
Y	---	20-22, 24
Y	EP,A,0229701 (CETUS CORPORATION) 22 juillet 1987, voir le document en entier (cité dans la demande)	27-28
A	Antimicrobial Agents and Chemotherapy, volume 33, no. 1, janvier 1989, American Society for Microbiology; R. Leclercq et al.: "Transferable vancomycin and teicoplanin resistance in enterococcus faecium", pages 10-15, voir particulièrement page 13, colonne de gauche, dernier paragraphe à colonne de droite, paragraphe 2	---
P,X	Mol. Gen. Genet., volume 224, no. 3, décembre 1990, Springer Verlag, S. Dutka-Malen et al.: "The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes", pages 364-372, voir le document en entier	7, 9, 13-14, 16-19
P,X	Biochemistry, volume 30, no. 8, 26 février 1991, American Chemical Society; T.D.H. Bugg et al.: "Identification of vancomycin resistance protein VanA as a D-alanine:D-alanine ligase of altered substrate specificity", pages 2017-2021, voir le document en entier	7, 9, 13-14, 16-19

**ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF A LA DEMANDE INTERNATIONALE NO.**

FR 9100855
SA 53696

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche internationale visé ci-dessus.

Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 26/02/92.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP-A- 0229701	22-07-87	AU-B- 606043 AU-A- 6710987 CA-A- 1279244 JP-A- 62217161 US-A- 5008182	31-01-91 16-07-87 22-01-91 24-09-87 16-04-91

EPO FORM PM72

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82