REPORT-

Topic-Advances in supercritical carbon dioxide technologies

Team Members-(Group 2)

- 1. Butle Vedika Ashirwad [230008012]
- 2. Mannan Milind Mahajan [230008020]
- 3. Mohak Dadhich [230008023]

INTRODUCTION

The increasing demand for ultrapure bioactive compounds in the pharmaceutical, nutraceutical, and food industries has led to the exploration of advanced separation techniques. Traditional solvent-based extraction methods often result in product contamination, high energy consumption, and environmental concerns. Supercritical fluid extraction (SFE) using supercritical carbon dioxide (SC-CO₂) presents a sustainable alternative, offering high selectivity, faster mass transfer, and solvent-free product recovery

KEY EQUATIONS

1. Equation of State (EOS) for Supercritical Fluids-

Peng-Robinson EOS- $P=(R*T/(V-b))-(a/(V^2+2bV-b^2))$

Where: P = pressure; T = temperature; V = molar volume; a,b = substance-specific parameters

2. Solubility of Solutes in Supercritical CO₂-

Chrastil's Solubility Correlation-

 $S=k \cdot \rho \land m \exp(-c/T)$

Where: S = solubility; ρ = fluid density; k,m,c = empirical constants

3. Mass Transfer in Supercritical Extraction-

Fick's Law of Diffusion-

J=-D*dc/dx

Where: J = diffusive flux; D = diffusion coefficient; C = concentration; x = distance

4. Reynolds & Sherwood Number for Mass Transfer Coefficients-

Reynold's No.- Re= (ρvd)/μ

Sherwood's No.- Sh= Kd/D

Where: K = mass transfer coefficient; d = particle diameter; D = diffusion coefficient

PROCESS SIMULATION

The process includes two primary stages: **extraction and separation**.

The simulation section involves implementing and analyzing a separation process using Python in Google Colab. (<u>reference</u>)

It primarily focuses on **liquid-liquid extraction using supercritical CO2 as a solvent** and utilizes **the Kremser equation** to determine stage-wise solute transfer and efficiency.

Objectives

- To simulate a counter-current liquid-liquid extraction system.
- To analyze the number of ideal stages required for a specified separation.
- To explore the effect of parameters like distribution coefficient, flow rates, and extraction efficiency

Kremser Equation-Based Approach:

• The Kremser equation is used to calculate the number of theoretical stages required.

Conclusions from the Simulation

- **Impact of Stripping Factor and Tray Efficiency:** The simulation demonstrates how the stripping factor (A) and tray efficiency (E) influence the performance of the separation process.
- A higher stripping factor improves separation, allowing for fewer stages or better separation at constant stages.
- **Higher tray efficiency improves separation** and allows for a **reduction in the number of actual trays** required.

SENSITIVITY ANALYSIS

The sensitivity analysis evaluates how changes in key operational parameters influence the performance of a counter-current liquid-liquid extraction system. **The focus is on how these variations affect:**

- Number of ideal and real stages
- Solute removal efficiency
- System design considerations [T, P]

Sr No.	Parameters Analyzed	Effect
1.	Distribution Coefficient	As KD increases, solute prefers the extract phase, and fewer stages are needed. The curve flattens at high KD, showing diminishing returns.
2.	Solvent-to-Feed Ratio (S/F)	Higher S/F significantly improves separation, reducing stage requirements; however, the effect levels off due to solvent saturation.
3.	Stage Efficiency:	As efficiency decreases, more actual stages are required. Shows the importance of good equipment design and mixing.
4.	Temperature (T):	Temperature slightly affects solubility and mass transfer. Within typical operating ranges, it causes moderate changes in stage count. Its influence is secondary compared to pressure.
5.	Pressure (P)	Pressure significantly impacts phase behaviour and solvent stability, especially with volatile or compressible components. Deviations from optimal pressure lead to phase instability and increased stage count.

Animation of CO₂-Based Coffee Decaffeination-

Objective

To visually represent the process of supercritical CO₂ decaffeination of coffee, highlighting mass transfer, solvent interaction, and operational parameters.

Process Overview

The animation depicts the removal of caffeine from coffee beans using supercritical carbon dioxide (scCO₂)—a selective, non-toxic, and environmentally friendly solvent.

Extraction with Supercritical CO2:

- CO₂ is pressurized (~100–300 bar) and heated (~31–80°C) to reach its supercritical state.
- In this state, CO₂ exhibits gas-like diffusivity and liquid-like solvating power, selectively dissolving caffeine.

Caffeine Solubilization and Transport:

- Caffeine diffuses out of the beans and into the flowing supercritical CO₂ stream.
- The animation shows mass transfer gradients and the role of operating conditions (T, P) in extraction efficiency.

Caffeine Recovery (Separation Unit):

- CO₂-caffeine mixture is depressurized or cooled in a separator.
- Caffeine precipitates and is collected; CO₂ is often recycled.

Overall Conclusion-

- **Pressure (P)** has the **strongest direct effect** on extraction yield. Because solubility is directly proportional to pressure, increasing P significantly boosts CO₂'s ability to dissolve solutes.
- (Mass Transfer Coefficient) has a moderate impact. Influences the rate at which equilibrium is approached, affecting yield.
- **Temperature (T)** has the **least direct influence**. Though it affects solubility, its effect is weaker in a selected range.
- A well-controlled pressure environment ensures optimal extraction with minimal stage requirements.

REFERENCES

- 1. Advances in supercritical carbon dioxide technologies
- 2. Decaffeination Process Using CO2

- 3. Colab Link for simulation and sensitivity analysis
- 4. Colab Link for decaffeination animation.