Subjectul A. MECANICĂ

Nr. item	Soluţie/Rezolvare
III.a.	
	aplicarea teoremei variației energiei cinetice la mișcarea pe pantă și pe drumul orizontal:
	$\frac{m \cdot v^2}{2} = m \cdot g \cdot h - \mu \cdot m \cdot g \cdot d \cdot \cos \alpha ; \frac{m \cdot v^2}{2} = \mu \cdot m \cdot g \cdot d$
	$h = d \cdot \sin \alpha$
	Rezultat final: $\mu = \frac{\sin \alpha}{1 + \cos \alpha} \cong 0,268$
b.	
	exprimarea lucrului mecanic al forței de frecare pe pantă și pe drumul orizontal:
	$L_1 = -\mu \cdot m \cdot g \cdot d \cdot \cos \alpha \; ; \; L_2 = -\mu \cdot m \cdot g \cdot d$
	Rezultat final: $L = L_1 + L_2 = -\mu \cdot m \cdot g \cdot d \cdot (1 + \cos \alpha) = -m \cdot g \cdot d \cdot \sin \alpha = -1500J$
C.	aplicarea legii conservării energiei mecanice: $E_i = E_f$
	$E_i = m \cdot g \cdot h; \ E_f = m \cdot v^2 / 2$
	Rezultat final: $v = 10 \cdot \sqrt{2} m / s \cong 14,1 m / s$
d.	
	$E = mgh = mgd \sin \alpha$
	Rezultat final: $E = 1500 J$