

Limites et asymptotes

Les tableaux ci-dessous résument les résultats à connaître.

Ces tableaux sont valables dans les trois situations étudiées:

- Lorsque la variable $xarrow + \infty$.
- Lorsque la variable $xarrow \infty$.
- Lorsque la variable xarrow a où a $\in R$.

Mais il va de soi que, pour les deux fonctions f et g concernées, les limites sont prises au même endroit! Dans le cas particulier où les fonctions sont des suites numériques, on peut utiliser ces résultats en remplaçant f par (U_p) et g par (V_p) avec le seul cas envisageable la variable $narrow + \infty$.

Les conventions utilisées dans ces tableaux, sont:

- \cdot l et l' désignent des nombres réels (limites finies).
- · ? indique que dans la situation concernée, on n'a pas de conclusion générale.

On dit parfois qu'il s'agit d'une « forme indéterminée » notée F.I.

Il faudra dans ces cas, mettre au point d'autres méthodes de résolution.

I. Limite d'une somme de deux fonctions

lim f	l	l	l	+ ∞	- ∞	+ ∞
lim g	ℓ'	$+\infty$	- ∞	+ ∞	- ∞	- 8
$\lim_{f \to g} f + g$	$\ell + \ell$ '	$+\infty$	- ∞	+ ∞	- ∞	?

En $+\infty$ ou en $-\infty$, la limite d'une fonction polynôme est la limite de son terme de plus haut degré.

II. Limite d'une différence de deux fonctions

Utiliser : f - g = f + (-g) et le tableau précédent.

III. Limite d'un produit de deux fonctions

lim f	l	<i>l</i> > 0	<i>l</i> > 0	ℓ < 0	ℓ < 0	0	0	+ ∞	$-\infty$	+ ∞
lim g	ℓ'	+ ∞	$-\infty$	+ ∞	$-\infty$	$+\infty$	- 8	$+\infty$	- ∞	- ∞
$\lim_{t \to \infty} f \times g$	ℓℓ'	+ ∞	- 8	- 8	+ ∞	?	?	+ &	+ &	- ∞

IV. Limite de l'inverse d'une fonction

Dans le tableau ci-dessous, la limite de f égale à 0^+ , signifie, qu'à l'endroit où la limite est prise, cette limite est zéro et que, pour tout x suffisamment proche de cet endroit, on a f(x) > 0. Définition analogue pour 0^- , mais avec f(x) < 0.

lim f	ℓ ≠ 0	0+	0-	+ ∞	- ∞
lim 1/ f	$1/\ell$	+ ∞	- 8	0	0

V. Limite d'un quotient de deux fonctions

On peut utiliser: $\frac{f}{g} = f \times \frac{1}{g}$ et avec les deux tableaux précédents, il est possible de conclure.

En $+\infty$ ou en $-\infty$, la limite d'une fonction rationnelle est la limite du quotient des termes de plus haut degré du numérateur et du dénominateur.

On peut aussi retenir les résultats suivants :

lim f	l	ℓ	ℓ ≠ 0	±∞	0	±∞
lim g	ℓ'≠0	±α	0	l	0	±∞
lim f/	ℓ /ℓ'	0	± α	±∞	?	?
g						

Ce tableau est simplifié: $\pm \infty$ signifie $+ \infty$ ou bien $- \infty$.

Pour décider, on applique la règle du signe du quotient selon les signes de f et de g au voisinage de l'endroit où la limite est cherchée.

VI. Limite des fonctions de références.

limite en:	Valeurs de la limite:						
milite en:	1	0	+ 00	−œ			
0	$x \mapsto \frac{\sin x}{x}$	$x \mapsto x^n \text{ où } n \in \mathbb{N}^*$ $x \mapsto x $	$x \mapsto \frac{1}{x^n}$ où $n \in \mathbb{N}^*$ avec n pair $x \mapsto \frac{1}{ x }$				
0 à droite		$x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{x^n}$ où $n \in \mathbb{N}^*$				
0 à gauche				$x \mapsto \frac{1}{x^n}$ où $n \in N^*$ avec n impair			
+ 00		$x \mapsto \frac{1}{x^n} \text{ où } n \in N^*$ $x \mapsto \frac{1}{ x }$ $x \mapsto \frac{1}{\sqrt{x}}$	$x \mapsto x^{n} \text{ où } n \in \mathbb{N}^{*}$ $x \mapsto x $ $x \mapsto \sqrt{x}$				
− ∞		$x \mapsto \frac{1}{x^n} \text{ où } n \in N^*$ $x \mapsto \frac{1}{ x }$	$x \mapsto x^n$ où $n \in \mathbb{N}^*$ avec n pair $x \mapsto x $	$x \mapsto x^n$ où $n \in N^*$ avec n impair			

VII. Le théorèmes de comparaison

Théorème:

Pour les fonctions, dans les propriétés ci-dessous, la lettre a désigne aussi bien un réel que $+\infty$ ou $-\infty$.

Lorsque a = $+\infty$, les fonctions sont définies sur R ou un intervalle I de la forme [A ; $+\infty$ [où A est un réel.

Lorsque a = - ∞ , les fonctions sont définies sur R ou un intervalle I de la forme] - ∞ ; A] où A est un réel.

Lorsque $a \in R$, les fonctions sont définies sur R ou un intervalle I de la forme [A ; B] où A et B sont des réels et $a \in [A; B]$.

Si la limite concernée est la limite à gauche de a, les fonctions sont définies sur un intervalle I de la forme] - ∞ ; a [ou [A ; a [où A est un réel.

Si la limite concernée est la limite à droite de a, les fonctions sont définies sur un intervalle I de la forme] a ; $+\infty$ [ou] a ; A] où A est un réel.

Pour les suites, l'indice n est un entier naturel supérieur ou égal à un certain rang n_0 (qui sera souvent 0).