MAT237: Lecture Notes

Tianyu Du

September 6, 2018

Contents

1	Lect	ture 1 September 6 2018	2
	1.1	The Geometry of Euclidean Space	2
	1.2	Subspaces of \mathbb{R}^n	3
	1.3	Cross Product	3
	1.4	Functions of Several Variables	4

1 Lecture 1 September 6 2018

1.1 The Geometry of Euclidean Space

Example 1.1. Consider $(1,2) \in \mathbb{R}^2$ as a point or a vector.

Remark 1.1. All vectors in this course are considered as <u>column vectors</u>. Reasoning: suppose a linear function $f: \mathbb{R}^n \to \mathbb{R}^m$, then the transformation can be implemented as

$$f(\vec{x}) = A\vec{x}, \ A \in mn$$

if \vec{x} is a column vector.

Let $\vec{a}, \vec{b} \in \mathbb{R}^n$, the **dot product** $\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is defined as,

$$ab = \sum_{i} a_i b_i$$

Let $\vec{a} \in \mathbb{R}^n$, the **Euclidean norm** $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$ is defined as

$$||\vec{a}|| = \sqrt{ab}$$

Interpretation the Euclidean norm of \vec{a} , $||\vec{a}||$ is the <u>length</u> of \vec{a} , or the <u>distance</u> of \vec{a} from the origin. And $||\vec{a} - \vec{b}||$ is the distance from \vec{a} to \vec{b} .

Two vectors $\vec{a}, \vec{b} \in \mathbb{R}^n$ is **orthogonal** if and only if

$$ab = 0$$

Theorem 1.1. (Cauchy Schwarz inequality)

$$|ab| \leq ||\vec{a}||||\vec{b}||$$

Theorem 1.2. (Triangle inequality)

$$||\vec{a} + \vec{b}|| \le ||\vec{a}|| + ||\vec{b}||$$

Theorem 1.3.

$$ab = ||\vec{a}||||\vec{b}||\cos\theta$$

where θ is the angle between \vec{a} and \vec{b}

If $\vec{u} \in \text{is a unit vector if}$

$$||\vec{u}|| = 1$$

The **projection** of \vec{a} onto the line through \vec{u} is defined as

$$(ua)\vec{u}$$

1.2 Subspaces of \mathbb{R}^n

A subspace V if \mathbb{R}^n is a subset of \mathbb{R}^n such that

$$\vec{a}, \vec{b} \in V \land c_1, c_2 \in \mathbb{R} \implies c_1 \vec{a} + c_2 \vec{b} \in V$$

Example 1.2. Suppose

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 7 \\ -1 & 0 \end{pmatrix}$$

And consider

$$V = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$$

V is a subspace with dimension 2.

Theorem 1.4. Let $A \in mn$ with m > n and columns are independent then $V = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\}$ is a n-dimensional subspace of \mathbb{R}^n .

Example 1.3. Consider

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 9 & -2 \end{pmatrix}$$

and

$$V = \{ \vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{0} \}$$

Then V is a 1-dimensional subspace of \mathbb{R}^3 .

Theorem 1.5. $A \in mn$ and m < n and rows are linearly independent, then $\{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}\}$ is a (n - m) dimensional subspace.

1.3 Cross Product

(Only available in \mathbb{R}^3) is a way to multiplying two vectors in \mathbb{R}^3 to get another vector in \mathbb{R}^3 . Let $\vec{a}, \vec{b} \in \mathbb{R}^3$ then the cross product $\times : \mathbb{R}^6 \to \mathbb{R}^3$ is defined as

$$\vec{a} \times \vec{b} := det(\begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix})$$
 where $\vec{i} = (1,0,0), \ \vec{j} = (0,1,0), \ \vec{k} = (0,0,1)$

Remark 1.2. $\vec{a} \times \vec{b}$ is the vector such that

- 1. orthogonal to both \vec{a} and \vec{b} .
- 2. it's length is $||\vec{a}|| ||\vec{b}|| \sin \theta$.

Let $\vec{a}, \vec{b} \in \mathbb{R}^3$, then

1.
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$

$$2. \ \vec{a} \times \vec{a} = \vec{0}$$

3.
$$(c_1\vec{a_1} + c_2\vec{a_2}) \times \vec{b} = c_1(\vec{a_1} \times \vec{b_1}) + c_2(\vec{a_2} \times \vec{b_2})$$

4.
$$(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$$

1.4 Functions of Several Variables

Remark 1.3. Idea of differential calculus: more general general functions can then be approximated by linear functions.

Consider function $f: \mathbb{R}^2 \to \mathbb{R}$, the graph of f is

$$\{(x,y,z): z=f(x,y)\}\subseteq \mathbb{R}^3$$