Does CSOK subsidy affect housing market?

Empirical Strategy

Danila Pankov

Magyar Nemzeti Bank

March 12, 2018

Introduction

Motivation

Hungarian Expenditures on Housing Grants

- 1. 226 bln HUF in 2018
 - ▶ 1.2% of the budget
 - ▶ 0.7% of GDP
- 2. Second largest among 35 OECD countries
 - ▶ 16 have grant programs
 - ► Australia 1st (0.74%) and 3rd Chile (0.45%)

Introduction

Housing Grants as GPD Share, Selected OECD countries

OECD Affordable Housing Database (2015)

Introduction

Median Property Prices in Hungary

Micro data from Hungarian Statistical Office (2017Q3)

Introduction

Average Property Prices in Hungary

Micro data from Hungarian Statistical Office (2017Q3)

Introduction

00000

Research Questions

- 1. Does CSOK affect housing market?
- 2. Who benefits from the subsidy?
 - Buyers
 - Households with kids
 - Supply side
 - Home Owners
 - Developers

CSOK Subsidy

Details

Family Housing Allowance (CSOK)

- from July 2015 to 2020
- supports households with children
 - age < 25 + enrolled in school/university</p>

Empirical Strategy

- applies to certain properties
- favors new construction
 - \blacktriangleright + VAT reduction in Jan 2016 (27% \rightarrow 5%)
- other issues
 - policy counts promised (not actual) kids
 - no criminal/tax arrears record
 - up to date with social insurance contributions
 - policy requirements changed several times

CSOK Subsidy

Subsidy Amount

Subsidy — function of HH size and property characteristics

	New Pro	perties	Old Properties*		
Child	Area	Subsidy, M	Area	Subsidy, M	
		HUF		HUF	
1^{st}	N/A	0.6	40m ²	0.6	
2^{nd}	N/A	2.6	50m ²	1.43	
3 rd	Apart.: 60m ²	10 -	60m ²	2.2	
$4^{th}+$	House: 90m ²	2 10 -	$70m^2$	2.75	

^{*}Applies only to used properties priced below 35 M HUF

Nice notches \rightarrow bunching or. regression discontinuity design

Data

House Price Index Microdata

Census of all property transactions from 2009 to 2017

Empirical Strategy

- 1. property characteristics
 - indicator for new (not precise)
 - net property area
 - number of rooms (for a subset of properties)
 - etc.
- 2. two buyer's characteristics (starting from 2015)
 - citizenship
 - age

Bunching

Consider 35 M HUF restriction for used properties:

$$\max(\mathsf{CSOK}_h) = \begin{cases} 2.75 \text{ M HUF}, & \text{if price} = 34.9 \text{M HUF} \\ 0 \text{ M HUF}, & \text{if price} = 35 \text{M HUF} \end{cases}$$
 (1)

Empirical Strategy

•0000

Proposition 1

If CSOK is effective, we should observe relatively more properties purchased right below the kink and less properties — right above.

Bunching

More Properties Sold Just Below 35 M HUF Notch

Empirical Strategy ○●○○○

RDD

Consider $50m^2$ area restriction for used properties:

$$\max(\mathsf{CSOK}_h) = \begin{cases} 1.43 \ \mathsf{M} \ \mathsf{HUF}, & \text{if area} = 49m^2 \\ 2.2 \ \mathsf{M} \ \mathsf{HUF}, & \text{if area} = 50m^2 \end{cases} \tag{2}$$

Empirical Strategy

00000

Proposition 2

If sellers appropriate part of CSOK, they should increase prices for $50m^2$ apartments relatively more than for $49m^2$ after CSOK implementation.

RDD First Stage

No Bunching to the Right of 50 Square Meters Notch

00000

Empirical Strategy

RDD Second Stage

Higher Prices to the Right of 50 Square Meters Notch

Next Steps

Next Steps

- 1. Implementing Bunching and RDD Estimation
 - ▶ 35 M HUF cutoff
 - ightharpoonup old properties m^2 cutoffs
- 2. Obtain precise data on the addresses of new properties
 - ► Tulajdoni lap? industry newspaper? magazine?
- 3. Linking data on the property and buyers characteristics
 - \blacktriangleright (where) do 2-kids families buy 49 vs 50 m^2 properties?

Accounts for 1st endogeneity concern:

► State tax policy responds to price levels

but creates another one:

- Incentives for bunching
 - Example: NYC exemption
 - Retail price: $$110 \rightarrow \text{consumer price: } 119
 - ightharpoonup Retail price: \$109.99 ightharpoonup consumer price: \$109.99
 - Solution instrument from taxable income elasticity literature

Empirical Strategy - Instrument

Instrument: would-be tax rate applied to predicted item price p_{im} :

$$p_{im} = \alpha + \gamma_{\text{category}} + \gamma_{\text{region}} + \mu_m + season_{im} + \epsilon_{im}$$

- Prediction sample: treatment states before 2000 and control states
- ► Category example: men's sweaters and vests

Back to return.

Robustness Checks

No. of Items

63,995

This result is true for most subsamples: Dependent Variable: Logarithm of Pre-tax Price (1)(2)(3)(4) < 2008 > 2008 Tax↓ Tax↑ Tax Rate -0.070*0.060 -0.0030.074 (0.037)(0.167)(0.086)(0.057)F-statistic Sales Tax 0.634 0.366 0.467 0.571 Holiday (0.630)(3.18)(0.967)(0.293)Item and month fixed effects are in all columns No. of Obs. 367,192 122,487 188,051 88,936 R^2 0.067 0.057 0.069 0.082

24,350

*** p<0.01, ** p<0.05, * p<0.1

34,466

16,916

Robustness Checks 2

Except for some apparel groups for which demand is presumably more elastic:							
Dependent Variable: Logarithm of Pre-tax Price							
	(1)	(2)	(3)	(4)			
	Men	Women	Non-	Seasonal			
			Seasonal				
Tax Rate	- 0.04 (0.077)	0.01 (0.124)	- 0.21*** (0.050)	0.00 (0.077)			
F-statistic							
Sales Tax	-0.729	-0.36	-0.302	-0.254			
Holiday	(1.92)	(0.551)	(0.891)	(1.10)			
Item and month fixed effects are in all columns							
No. of Obs.	141,911	164,016	184,579	324,193			
R^2	0.036	0.121	0.010	0.075			
No. of Items	11,780	27,306	15,466	7,651			
*** p<0.01, ** p<0.05, * p<0.1							

Back to return.

- ▶ Tax incidence (Empirics)
 - Apparel market: Besley and Rosen, 1999; Poterba, 1996
 - Other markets: Kosonen, 2015; DeCicca et al., 2013; Kopczuk et al., 2013; Harding et al., 2012; Doyle and Samphantharak, 2008
- Tax incidence (Theory)
 - Fabinger and Weyl, 2014; Anderson et al., 2001
- Elasticity of apparel expenditures:
 - Einav et al., 2014; Hu and Tang, 2014; Agarwal et al., 2013
- Sales tax and employment:
 - Burnes et al., 2013; Rohlin and Thompson, 2012; Billings, 2009; O'Keefe, 2004