Punctul Fermat-Torricelli

Prezentăm aici o problemă celebră de geometrie plană, și anume cea propusă spre rezolvare, pe la 1650, de Pierre de Fermat lui Evangelista Torricelli, care a rezolvat-o prin mai multe metode.

Problema lui Fermat. Fiind dat un triunghi $\triangle ABC$ într-un plan π , să se determine un punct Q în plan pentru care suma distanțelor la vâfurile triunghiului este minimă:

$$QA + QB + QC = \min_{P \in \pi} \{PA + PB + PC\}.$$

Figure 1: Punctul lui Fermat

Soluție. Vom da o rezolvare folosind numere complexe. Amintim definiția și proprietățile produsului scalar în \mathbb{C} : dacă $z_1 = x_1 + iy_1$ și $z_2 = x_2 + iy_2$, atunci

$$\langle z_1, z_2 \rangle = x_1 x_2 + y_1 y_2 = \operatorname{Re} z_1 \overline{z}_2 = \frac{1}{2} (z_1 \overline{z}_2 + \overline{z}_1 z_2) = |z_1| |z_2| \cos \widehat{z_1 O z_2}.$$

Pentru orice $z \neq 0$ vom nota cu u_z versorul său, dat de relația

$$u_z = \frac{1}{|z|}z.$$

Este evident că u_z este un număr complex de modul unu, fiind chiar punctul de intersecție al razei vectoare Oz cu cercul trigonometric. Din definiție avem $z = |z|u_z$, prin urmare

$$\langle z, u_z \rangle = \langle |z|u_z, u_z \rangle = |z| \langle u_z, u_z \rangle = |z||u_z|^2 = |z|.$$

Fie P şi Q două puncte oarecare în plan, cu afixele notate z_P şi z_Q . Notăm cu u_{QA} versorul diferenței z_A-z_Q . Avem

$$QA = |z_A - z_Q| = \langle z_A - z_Q, u_{QA} \rangle = \langle z_A - z_P, u_{QA} \rangle + \langle z_P - z_Q, u_{QA} \rangle$$

$$\leq |z_A - z_P||u_{QA}| + \langle z_P - z_Q, u_{QA} \rangle$$

Am arătat că

$$QA \leq PA + \langle z_P - z_Q, u_{QA} \rangle$$

şi, analog pentru celelalte vârfuri, avem

$$QB \leq PB + < z_P - z_Q, u_{QB} >$$

$$QC \le PC + \langle z_P - z_Q, u_{QC} \rangle.$$

Aşadar, pentru un Q fixat arbitrar, avem inegalitatea

$$QA + QB + QC \le PA + PB + PC + \langle z_P - z_Q, u_{QA} + u_{QB} + u_{QC} \rangle$$

pentru orice P din plan. Este clar că, dacă

$$u_{OA} + u_{OB} + u_{OC} = 0,$$

atunci

$$QA + QB + QC = \min_{P \in \pi} \{PA + PB + PC\}.$$

Este uşor de văzut că suma a trei numere complexe de modul unu este zero numai dacă împart cercul trigonometric în trei arce de 120° , rezultă că versorii segmentelor QA, QB şi QC fac între ei unghiuri de 120° , prin urmare am demonstrat că punctul de minim căutat, punctul lui Fermat, este chiar centrul izogonal al triunghiului, adică punctul Q cu proprietatea

$$\widehat{BQC} = \widehat{CQA} = \widehat{AQB} = 120^{\circ}.$$

Figure 2: Punctul lui Torricelli.

Existența centrului izogonal este stabilită de următoarea problemă:

Problema lui Torricelli. Fiind dat un triunghi ΔABC , se construiesc în exterior triunghiurile echilaterale $\Delta AC'B$, $\Delta BA'C$ și $\Delta CB'A$. Arătați că dreptele AA', BB' și CC' sunt concurente într-un punct (numit punctul lui Torricelli) care este chiar centrul izogonal al triunghiului dat.

Soluție. Vom da, pentru eleganța ei, o rezolvare geometrică. Notăm cu $\mathscr{C}(\Delta AC'B)$, $\mathscr{C}(\Delta BA'C)$ și $\mathscr{C}(\Delta CB'A)$ cercurile circumscrise celor trei triunghiuri echilaterale, și notăm cu O_C , O_A și, respectiv, O_B centrele lor.

Cercurile $\mathscr{C}(\Delta AC'B)$ și $\mathscr{C}(\Delta CB'A)$ se intersectează în două puncte, unul este A iar pe celălalt îl notăm cu Q. Vom arăta, pentru început, că punctul Q, astfel definit, este centrul izogonal.

Patrulaterul AC'BQ este inscriptibil cu $\widehat{C'}=60^\circ$, rezultă că $\widehat{AQB}=120^\circ$. Analog, din patrulaterul inscriptibil AB'CQ rezultă $\widehat{AQC}=120^\circ$. Prin urmare $\widehat{BQC}=360^\circ-120^\circ-120^\circ=120^\circ$, deci

$$\widehat{BQC} = \widehat{CQA} = \widehat{AQB} = 120^{\circ}.$$

Mai mult, să observăm că $\widehat{BQC} + \widehat{BA'C} = 120^{\circ} + 60^{\circ} = 180^{\circ}$, deci şi

patrulaterul BA'CQ este inscriptibil, prin urmare Q aparține și cercului $\mathscr{C}(\Delta BCA')$.

Vom arăta acum că punctele $A,\ Q$ și A' sunt coliniare. Pentru aceasta este suficient să observăm că

$$\widehat{AQA'} = \widehat{AQB} + \widehat{BQA'} = 120^{\circ} + 60^{\circ} = 180^{\circ}.$$

Aici am folosit faptul că Q se află pe cercul circumscris triunghiului echilateral $\Delta BCA'$

Analog se arată și coliniaritățile B - Q - B' și C - Q - C'.

Observație. Este ușor de văzut că triunghiul $\Delta A'BA$, rotit cu 60° în jurul lui B, se suprapune peste $\Delta CBC'$. Urmează că segmentele AA' și CC' au aceeași lungime, egală și cu lungimea lui BB', desigur.

In final, să rezolvăm și

Problema lui Napoleon. Arătaţi că triunghiul $\Delta O_A O_B O_C$, format de centrele celor trei triunghiuri echilaterale, este la rândul său un triunghi echilateral.

Soluție. Rezolvarea este imediată¹: latura O_AO_B , de exemplu, este *linia* centrelor cercurilor $\mathcal{C}(\Delta BA'C)$ și $\mathcal{C}(\Delta CB'A)$, iar linia centrelor este perpendiculară pe secanta comună, CQ. Am arătat astfel că laturile triunghiului $\Delta O_AO_BO_C$ sunt perpendiculare pe dreptele QA, QB, și QC, iar cum acestea fac între ele unghiuri de 120° urmează că laturile lui $\Delta O_AO_BO_C$ fac între ele unghiuri de 60°.

 $^{^{1}\}mathrm{cu}$ numere complexe: https://ro.wikipedia.org/wiki/Teorema_lui_Napoleon