Predict future sales

JiLin University

2021-04-19

Overview

Problem Definition

Predict future sales

	a challenging time-series dataset consisting of daily sales data,
given	kindly provided by one of the largest Russian software firms - 1C
	Company.
target	predict total sales for every product and store in the next month
evaluate	Submissions are evaluated by root mean squared error (RMSE)

Data Cleaning

Date

File	filed1	filed2	filed3	filed4	filed5	filed6
item_categories	item_category_name	item_category_id				
items	item_id	item_category_id				
sales_train	date	date_block_num	shop_id	item_id	item_price	item_cnt_day
shops	shop_name	${f shop_id}$				
test	shop_id	item_id				

Table 1: Data Infomation

Data Information

	 2935849 rows,6 columns 21807 items,60 shops data_type
sales_train	 data: object date_block_num: int shop_id:int item_id:int item_price:float item_cnt_day:float

Data Information

test	 214200 rows,3 columns 5100 items,40 shops data_type ID:int shop_id:int item_id:int From here you can see a lot of stores, goods in training set are not in the test set
------	--

Missing Value and Non Value

target	Find out whether there are empty values or missing values in the data	
result	missing value:0nan value:0	

Cartesian product

rongon	The training set contains only the items that the store actually sold
reason	that month
	for items not sold during the month, you should add them and set
target	them to 0(Find out all the stores and merchandise, and make carte-
	sian product with sales_trainz)

Data leakages

target	delete stores, goods in training set but not in the test set
result	 sales_train: rows:1224439 items:4716 shops:42

Data duplication

target	See if duplicate items exist in the dataset
result	sales_train:6test:0

Outliers

Outliers

outdated items and Negative

target	Analyze how many products have not been sold in the last six consecutive months. How many of these products appear in the test set.
result	There are 12391 training sets, which have not been sold in the last six months. There are 164 test sets, which have not been sold in the last six months

Negative Change item whose commodity price is negative to median

outdated items and Negative

Negative Change item whose commodity price is negative to median

Data analysis

Monthly sales of goods

Figure 1 month_total_count.

Explain that the month is related to the sales volume of goods: the sales volume at the end of the year is increasing

Shop sales

Figure 2 shop_count.

Sales of different category

Figure 3 item_category_count.

Item and Shop Information

categorie	large categories, small categories, we separate them, and code
of items	them separately to facilitate subsequent feature extraction
Shop	the city where the store is located, the type of store, which we sep-
informa-	arate and encode separately for subsequent feature extraction
tion	arate and encode separately for subsequent feature extraction

Model

decision tree

Dicision tree

In machine learning, decision tree is a prediction model, which represents a mapping relationship between object attributes and object values. Each node in the tree represents an object, and each branch path represents a possible attribute value, while each leaf node corresponds to the value of the object represented by the path from the root node to the leaf node. The decision tree has only a single output, if you want to have complex output, you can establish an independent decision tree to deal with different outputs. Decision tree is a frequently used technology in data mining, which can be used to analyze data, and also can be used for prediction.

Model selection

- GBDT
- Xgboost
- lightgbm
- neural network

Method One

Method	The sales of the 34th month are regarded as the sales of the 35th
	month
operation	Count the sales volume of each item in each store in the 33rd
	month and merge it with test
Result	RMSE=1.16777

Method Two

Features	 shop_id item_id item_cnt_month
Method	lightgbm
Result	RMSE=

Method Three

Data feature	'date_block_num', 'shop_id', 'item_id', 'item_category_id', 'cat_type_code', 'cat_subtype_code', 'shop_type_code' 'shop_type_code'
Monthly sales feature	 item_cnt_month date_avg_item_cnt date_item_avg_item_cnt date_shop_avg_item_cnt date_cat_avg_item_cnt date_cat_shop_avg_item_cnt date_type_avg_item_cnt date_type_avg_item_cnt date_item_type_avg_item_cnt date_city_avg_item_cnt
Historica	delay:1,2,3,6,12

Method Three

print([column for column in X_train])

['date_block_num', 'shop_id', 'item_id', 'item_category_id', 'cat_type_code', 'cat_subtype_code', 'shop_city_code', 'shop_type_tem_cnt_month_lag_1', 'item_cnt_month_lag_2', 'item_cnt_month_lag_3', 'item_cnt_month_lag_6', 'item_cnt_month_lag_12', 'date_at_lag_1', 'date_avg_item_cnt_lag_2', 'date_avg_item_cnt_lag_6', 'date_avg_item_cnt_lag_12', 'date_iem_avg_item_cnt_lag_1', 'date_item_avg_item_cnt_lag_2', 'date_item_avg_item_cnt_lag_6', 'date_item_avg_item_cnt_lag_6', 'date_shop_avg_item_cnt_lag_1', 'date_shop_avg_item_cnt_lag_2', 'date_shop_avg_item_cnt_lag_3', 'date_shop_avg_item_cnt_lag_1', 'date_cat_avg_item_cnt_lag_1', 'date_cat_avg_item_cnt_lag_2', 'date_cat_avg_item_cnt_lag_2', 'date_cat_avg_item_cnt_lag_2', 'date_cat_avg_item_cnt_lag_1', 'date_cat_shop_avg_item_cnt_lag_1', 'date_cat_shop_avg_item_cnt_lag_2', 'hop_avg_item_cnt_lag_3', 'date_cat_shop_avg_item_cnt_lag_1', 'date_cat_shop_avg_item_cnt_lag_1', 'date_type_avg_item_cnt_lag_2', 'date_type_avg_item_cnt_lag_2', 'date_type_avg_item_cnt_lag_1', 'date_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_type_avg_item_cnt_lag_1', 'date_item_cnt_lag_1', 'date_item_cnt_lag_1'

Method Three

Result

training's rmse: 0.664209

• valid_1's rmse: 0.880256

Lightgbm

