Analyse

Suites de fonctions

Question 1/14

Primitivation d'une limite uniforme

Réponse 1/14

Si
$$\forall n \in \mathbb{N}, u_n \text{ est continue sur un intervalle } I$$

et $u_n \xrightarrow[n \to +\infty]{\text{CVU}} u \text{ sur } I$, alors
$$\int_a^x (u_n(t)) dt \xrightarrow[n \to +\infty]{\text{CVU}} \int_a^x (u(t)) dt$$

Question 2/14

$$||f||_{\infty}$$

Réponse 2/14

```
\sup(\{|f(x)|, x \in A\})\|\cdot\|_{\infty} \text{ est une norme}
```

Question 3/14

Polynôme trigonométrique complexe

Réponse 3/14

$$\operatorname{Vect}(\{e^{int}, n \in \mathbb{Z}\})$$

Question 4/14

$$u_n \xrightarrow[n \to +\infty]{\text{CVU}} u$$
Caractérisation par ε

Réponse 4/14

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N$$

 $\forall x \in \mathbb{R}, \ |u_n(x) - u(x)| \leqslant \varepsilon$

Question 5/14

Propriétés conservées par convergence simple

Réponse 5/14

Paricité T-périodicité
Monotonie
Caractère k-lipsichtzien

Question 6/14

Théorème de la double limite

Réponse 6/14

Si
$$\forall n \in \mathbb{N}, u_n(x) \xrightarrow[x \to a]{} \ell_n \in \mathbb{C} \text{ et } u_n \xrightarrow[n \to +\infty]{} U$$

alors (ℓ_n) converge vers $\ell \in \mathbb{C} \text{ et } u(x) \xrightarrow[n \to +\infty]{} \ell$

Question 7/14

$$u_n \xrightarrow[n \to +\infty]{\text{CVU}} u$$

 $u_n \xrightarrow[n \to +\infty]{\text{CVU}} u$ Caractérisation par les limites

Réponse 7/14

$$||u_n - u||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

Question 8/14

$$u_n \xrightarrow[n \to +\infty]{\text{CVS}} u$$
Caractérisation par ε

Réponse 8/14

$$\forall x \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}$$

 $\forall n \geqslant N, \ |u_n(x) - u(x)| \leqslant \varepsilon$

Question 9/14

Convergence uniforme à partir des dérivées

Réponse 9/14

Si
$$\forall n \in \mathbb{N}$$
, u_n est C^k sur un intervalle I

$$\forall j \in [0, k-1], u_n^{(j)} \xrightarrow[n \to +\infty]{\text{CVU}} v_j \text{ sur } I$$

$$u_n^{(k)} \xrightarrow[n \to +\infty]{\text{CVU}} v_k$$

$$u_n^{(k)} \xrightarrow[n \to +\infty]{\text{CVU}} v_k$$

$$\text{alors } v_0 \text{ est de classe } \mathcal{C}^k$$

$$\forall j \in \llbracket 0, k \rrbracket, v_0^{(j)} = v_j$$

 $\forall j \in [0, k-1], u_n^{(j)} \xrightarrow{\text{CVU}} v_j$

Question 10/14

Polynôme trigonométrique réel

Réponse 10/14

$$\operatorname{Vect}(\{\cos(nt), n \in \mathbb{N}\} \uplus \{\sin(nt), n \in \mathbb{N}^*\})$$

Question 11/14

Conservation de la continuité par passage à la limite uniforme

Réponse 11/14

Si $\forall n \in \mathbb{N}$, u_n est continue en a et $u_n \xrightarrow[n \to +\infty]{\text{CVU}} u$ sur un voisinage de a, alors u est continue en a

Question 12/14

Théorème de Weierstrass

Réponse 12/14

Toute fonction continue sur un segment y est limite uniforme d'une suite de fonctions polynomiales

Question 13/14

$$u_n \xrightarrow[n \to +\infty]{\text{CVS}} u$$
Caractérisation par les limites

Réponse 13/14

$$\forall x \in \mathbb{R}, \ u_n(x) \xrightarrow[n \to +\infty]{} u(x)$$

Question 14/14

Théorème de Weierstrass trigonométrique

Réponse 14/14

Toute fonction complexe (ou réelle), continue et 2π -périodique est limite uniforme sur \mathbb{R} d'une suite de polynômes trigonométriques complexes (ou réels)