Recitation 7 MLE

Colin

Spring 2022

Mar 9

Maximum Likelihood Estimation

Set up

Suppose $\mathcal{D} = (y_1, \dots, y_n)$ is an i.i.d. sample from some distribution.

Definition

A maximum likelihood estimator (MLE) for θ in the model $\{p(y;\theta) \mid \theta \in \Theta\}$ is

$$\hat{\theta} = rg \max_{\theta \in \Theta} p(\mathcal{D}, \hat{\theta}) = rg \max_{\theta \in \Theta} \prod_{i=1}^{n} p(y_i; \theta)$$

$$= rg \max_{\theta \in \Theta} \log p(\mathcal{D}, \hat{\theta}) = rg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log p(y_i; \theta).$$

Relation to Statistical Learning

- Previously, we are minimizing a loss between f(x) and y. e.g. $||\cdot||_2^2$
- Now, we are maximizing the probably between p(y|x) or p(y|f(x)).
 - For LR, the previous set up is equivalent to when
 - $y \sim \mathcal{N}(f(x), \sigma^2)$
 - Now, we are allowing for distributions other than normal.
- You can think of it as different loss instead of MSE that depends on the distance.

Maximum Likelihood Estimation

- Finding the MLE is an optimization problem.
- For some model families, calculus gives a closed form for the MLE.
- Can also use numerical methods we know (e.g. SGD).
- Preparing you for Bayesian Modeling. (Next week)

Bernoulli Regression

- ullet Setting: $\mathcal{X}=\mathbb{R}^d$, $\mathcal{Y}=\{0,1\}$
- For each x, we predict a distribution on $\mathcal{Y} = \{0, 1\}$.
- We specify the **Bernoulli parameter** $\theta = p(y = 1)$.
- We use transfer function to map a predictor (e.g. Linear Predictor) to $\{0,1\}$, referring to the Bernoulli distribution Bernoulli (θ) .
- Linear Probabilistic Classifier:

$$\underbrace{x}_{\in \mathbb{R}^d} \mapsto \underbrace{w^T x}_{\in \mathbb{R}} \mapsto \underbrace{f(w^T x)}_{\in [0,1]} = \theta,$$

• $w^T x$: the linear predictor; f: the **transfer** function.

Bernoulli Regression: MLE

• It will be convenient to write likelihood of w for (x, y) as this as

$$p(y \mid x; w) = [f(w^T x)]^y [1 - f(w^T x)]^{1-y}.$$

• With data \mathcal{D} : $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \{0, 1\}$, we have log-likelihood:

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left(y_i \log f(w^T x_i) + (1 - y_i) \log \left[1 - f(w^T x_i) \right] \right)$$

which is the negative of the **negative log-likelihood** objective J(w).

• Then just optimize. (Note: J(w) is convex.)

Poisson Regression

- Input space $\mathcal{X} = \mathbb{R}^d$, Output space $\mathcal{Y} = \{0, 1, 2, 3, 4, \dots\}$, Action space $\mathcal{A} = (0, \infty)$.
- In Poisson regression, prediction functions produce a Poisson distribution with mean parameter $\lambda \in (0, \infty)$.
- In Poisson regression, x enters **linearly:** $x \mapsto \underbrace{w^T x}_{\mathbb{R}} \mapsto \lambda = \underbrace{f(w^T x)}_{(0,\infty)}$.
 - standard transfer function: $f(w^Tx) = \exp(w^Tx)$.

Poisson Regression: MLE

• The likelihood for w on the full dataset \lceil is

$$\log p(\mathcal{D}; w) = \sum_{i=1}^{n} \left[y_i w^T x_i - \exp \left(w^T x_i \right) - \log \left(y_i ! \right) \right]$$

• To get MLE, need to maximize

$$J(w) = \log p(\mathcal{D}; w)$$

over $w \in \mathbb{R}^d$.

No closed form for optimum, but it's concave, so easy to optimize.

Gaussian Linear Regression

- Input space $\mathcal{X} = \mathbb{R}^d$, Output space $\mathcal{Y} = \mathbb{R}$, Action space $\mathcal{A} = \mathbb{R}$.
- In Gaussian regression, prediction functions produce a distribution $\mathcal{N}(\mu, \sigma^2)$.
 - Assume σ^2 is known.
 - We predict $\mu \in \mathbb{R}$.
- In Gaussian linear regression, x enters linearly:

$$x \mapsto \underbrace{w^T x}_{\mathbb{R}} \mapsto \mu = \underbrace{f(w^T x)}_{\mathbb{R}}.$$

• If we choose the identity transfer function: $f(w^Tx) = w^Tx$.

Gaussian Regression: MLE

- We assume data as i.i.d. samples.
- The conditional log-likelihood is:

$$\sum_{i=1}^{n} \log p(y_i \mid x_i; w) = constant + \sum_{i=1}^{n} \left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2} \right)$$

The MIE is

$$w = \arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (y_i - w^T x_i)^2$$

• This is exactly the objective function for least squares.

Multinomial Logistic Regression

- Setting: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{1, \dots, k\}$
- Represent categorical distribution by probability vector $\theta = (\theta_1, \dots, \theta_k) \in \mathbb{R}^k$:
 - $\sum_{i=1}^{k} \theta_i = 1$ and $\theta_i \ge 0$ for i = 1, ..., k (i.e. θ represents a **distribution**)
- We follow the same steps as binominal logistic regression, except for the transfer function.
 - Softmax Transfer Function:

$$(s_1,\ldots,s_k)\mapsto heta=\left(rac{e^{s_1}}{\sum_{i=1}^k e^{s_i}},\ldots,rac{e^{s_k}}{\sum_{i=1}^k e^{s_i}}
ight).$$

• **Question 1**: Suppose we have samples x_1, \ldots, x_n i.i.d drawn from Bernoulli(p). Find the maximum likelihood estimator of p.

 Colin (Spring 2022)
 Recitation 7
 Mar 9
 12 / 23

Solution:

• The likelihood is:

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)}.$$

Solution:

The likelihood is:

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)}.$$

• The log-likelihood is:

$$\ell(p) = \log p \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i).$$

Solution:

• The likelihood is:

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{(1-x_i)}.$$

• The log-likelihood is:

$$\ell(p) = \log p \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i).$$

• Set the derivative of log-likelihood w.r.t. p to zero:

$$\frac{\partial \ell(p)}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - p} = 0.$$

• **Question 2**: Suppose we have samples x_1, \ldots, x_n i.i.d drawn from uniform distribution $\mathcal{U}(a, b)$. Find the maximum likelihood estimator of a and b.

 Colin (Spring 2022)
 Recitation 7
 Mar 9
 14 / 23

Solution:

• The likelihood is:

$$L(a,b) = \prod_{i=1}^{n} \left(\frac{1}{b-a} 1_{[a,b]}(x_i) \right)$$

- Let $x_{(1)}, \ldots, x_{(n)}$ be the order statistics.
- The likelihood is greater than zero if and only $a < x_{(1)}$ and $b > x_{(n)}$.
- When $a < x_{(1)}$ and $b > x_{(n)}$, the likelihood is a monotonically decreasing function of (b a).
- And the smallest (b-a) will be attained when $b=x_{(n)}$ and $a=x_{(1)}$.
- Therefore, $b = x_{(n)}$ and $a = x_{(1)}$ give us the MLE.

• Question 3: We want to fit a regression model where $Y|X=x\sim \mathcal{U}([0,e^{w^Tx}])$ for some $w\in\mathbb{R}^d$. Given i.i.d. data points $(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathbb{R}^d\times\mathbb{R}$, give a convex optimization problem that finds the MLE for w.

 Colin (Spring 2022)
 Recitation 7
 Mar 9
 16 / 23

Solution: The likelihood *L* is given by

$$L(w; x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^n \frac{1(y_i \leq e^{w^T x_i})}{e^{w^T x_i}}.$$

Solution: The likelihood *L* is given by

$$L(w; x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^n \frac{1(y_i \le e^{w^T x_i})}{e^{w^T x_i}}.$$

Taking logs we get

$$-\sum_{i=1}^{n} w^{T} x_{i} = -w^{T} \left(\sum_{i=1}^{n} x_{i} \right)$$

if $y_i \leq \exp(w^T x_i)$ for all i, or $-\infty$ otherwise.

Solution: The likelihood *L* is given by

$$L(w; x_1, y_1, \dots, x_n, y_n) = \prod_{i=1}^n \frac{1(y_i \leq e^{w^T x_i})}{e^{w^T x_i}}.$$

Taking logs we get

$$-\sum_{i=1}^{n} w^{T} x_{i} = -w^{T} \left(\sum_{i=1}^{n} x_{i} \right)$$

if $y_i \leq \exp(w^T x_i)$ for all i, or $-\infty$ otherwise. Thus we obtain the linear program

minimize
$$w^T \left(\sum_{i=1}^n x_i \right)$$

subject to $\log(y_i) \leq w^T x_i$ for $i = 1, \dots, n$.

- **Question 4**: Suppose we have input-output pairs $\{(x_1, y_1), \dots, (x_n, y_n)\}$, where $x_i \in \mathbb{R}^p$ and $y_i \in N = \{0, 1, 2, 3, \dots\}$ for $i = 1, \dots, n$. Our task is to train a Poisson regression to model the data. Assume the linear coefficients in the model is w.
 - **1** Suppose a test point x^* is orthogonal to the space generated by the training data. What is the prediction ℓ_2 regularized Poisson GLM make on the test point?
 - ② Will the solution of the parameters \hat{w} still be sparse when we use ℓ_1 regularization?

• Suppose a test point x^* is orthogonal to the space generated by the training data. What is the prediction ℓ_2 regularized Poisson GLM make on the test point?

Solution: ℓ_2 penalized Poisson regression objective:

$$\hat{J}(w) = -\sum_{i=1}^{n} \left[y_i w^T x_i - \exp\left(w^T x_i\right) - \log\left(y_i\right) \right] + \lambda \|w\|_2^2$$

• Suppose a test point x^* is orthogonal to the space generated by the training data. What is the prediction ℓ_2 regularized Poisson GLM make on the test point?

Solution: ℓ_2 penalized Poisson regression objective:

$$\hat{J}(w) = -\sum_{i=1}^{n} \left[y_i w^T x_i - \exp\left(w^T x_i\right) - \log\left(y_i\right) \right] + \lambda \|w\|_2^2$$

From Representer Theorem, the minimizer $\hat{w} = \sum_{i=1}^{n} \alpha_i x_i$. The prediction is

$$\exp(\mathbf{w}^T \mathbf{x}^*) = \exp(\sum_{i=1}^n \alpha_i \mathbf{x}_i^T \mathbf{x}^*) = \exp(\mathbf{0}) = 1$$

Generative Models

- Previously, we have been working with discriminative models.
 - We focus on given x, what is the corresponding y
 - p(y|x)
- Generative models looks at the problem from another perspective
 - What is the probably of x and y occurring together?
 - p(x,y)

Generative Models

Generative Models

- Instead of solving for
 - arg min_{$f \in \mathcal{F}$} L(f(x), y)
 - $arg \max_{f \in \mathcal{F}} p(y|f(x))$
- We are solving for
 - $arg \max_{f \in \mathcal{F}} p(x, y) = arg \max_{f \in \mathcal{F}} p(x|y)p(y)$
 - p(y) is the prior
- In training, we are maximizing
 - p(x|y)p(y)
- In testing, we are selecting
 - $arg max_v p(x|y)p(y)$
- Note we are just changing the problem setup, nothing else.
 - We can use the same optimization methods.

References

• DS-GA 1003 Machine Learning Spring 2021