University of New South Wales

MATH 2221

HIGHER THEORY AND APPLICATIONS OF DIFFERENTIAL EQUATIONS

Assignment 2

October 12, 2018

1. Consider the following ODEs

$$\frac{du}{dx}=\left|u\right|,x\in\mathbb{R}\dots(1)\text{ and }\frac{dv}{dt}=v^{1/2}\text{ },t\in\left[0,\infty\right]\dots(2)$$

(a) Show that these permit solutions of the form $u = Ae^x$ and $v = Bt^2$ respectively.

Let $u = Ae^x$, then, considering (1),

$$\begin{aligned} \mathsf{LHS} &= \frac{du}{dx} = Ae^x \\ \mathsf{RHS} &= |u| = |A|e^x \quad \text{ as } e^x > 0, \ \forall x \in \mathbb{R} \end{aligned}$$

Thus, (1) permits solutions of the form u for $A \ge 0$.

Let $v = Bt^2$, then, considering (2),

$$\begin{aligned} \mathsf{LHS} &= \frac{dv}{dt} = 2Bt \\ \mathsf{RHS} &= v^{1/2} = \sqrt{B}|t| \\ &= \sqrt{B}t \quad \text{ as } t \in [0,\infty] \end{aligned}$$

Thus, (2) permits solutions of the form v, when $2B = \sqrt{B}$, that is, B = 0 or $B = \frac{1}{4}$.

(b) Solve these for the cases u(0) = 0 and v(0) = 0.

Considering (1) and u(0) = 0, we require $Ae^0 = 0$, that is, A = 0. So the solution is u = 0.

Considering (2) and v(0)=0, we require $B(0)^2=0$, which is satisfied $\forall B\in\mathbb{R}.$ So the solutions are v=0 and $v=\frac{1}{4}t^2.$

(c) Is the solution unique in either case? Explain your answer.

Considering the solution to (1) and u(0)=0, we get u=0 as the only satisfactory solution, and thus it is unique.

Considering the solution to (2) and v(0)=0, we get v=0 and $v=\frac{1}{4}t^2$ as the satisfactory solutions, and as there is more than one satisfactory solution, the solution is not unique.

1

2. Consider the function

$$f(x) = 1 - x$$
 for $0 < x < 1$

(a) Find both the Fourier Sine and Fourier–Bessel series describing f.

To find the Fourier Sine series for f, f must first be an odd function. Thus, we define g,

$$g(x) = \begin{cases} f(x) & 0 < x < 1 \\ -f(-x) & -1 < x \le 0 \end{cases}$$
$$= \begin{cases} 1 - x & 0 < x < 1 \\ -1 - x & -1 < x \le 0 \end{cases}$$

where g is an odd function (the odd extension of f), on -1 < x < 1. As a result, g admits a Fourier series of the form $\sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right)$. Thus, using the formulas for Fourier coeffecients, for functions of 2L-periodicity, with L=1,

$$B_n = \frac{2}{L} \int_0^L g(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

$$= \frac{2}{1} \int_0^1 g(x) \sin\left(\frac{n\pi x}{1}\right) dx$$

$$= 2 \int_0^1 (1-x) \sin\left(n\pi x\right) dx$$

$$= 2 \left[(1-x) \left(\frac{-1}{n\pi} \cos(n\pi x)\right) \Big|_0^1 - \int_0^1 \frac{\cos\left(n\pi x\right)}{n\pi} dx \right]$$

$$= 2 \left[(1-x) \left(\frac{-1}{n\pi} \cos(n\pi x)\right) \Big|_0^1 - \frac{1}{n^2 \pi^2} \sin\left(n\pi x\right) \Big|_0^1 \right]$$

$$= 2 \left[\frac{1}{n\pi} - 0 \right]$$

$$= \frac{2}{n\pi}$$

$$\therefore g(x) = \sum_{n=1}^\infty \frac{2}{n\pi} \sin\left(n\pi x\right)$$

$$\therefore f(x) = \sum_{n=1}^\infty \frac{2}{n\pi} \sin\left(n\pi x\right)$$

2

as f(x) = g(x) on the interval 0 < x < 1.

Now, we determine the Fourier Bessel series for f using the general Fourier Bessel form, $\sum_{n=1}^{\infty}A_{n}J_{\nu}(k_{n}x)$.

Firstly, the interval of definition is 0 < x < 1, and thus l=1. Secondly, k_n is defined as the n-th solution to $J_{\nu}(k_n)=0$. Lastly, to uniformly fit the Fourier Bessel series to the function f=1-x, we require, at x=0, the Fourier Bessel series to be equal to 1, as f(0)=1. Therefore, $\nu=0$ is the only ν that satisifies the restriction. Thus, the general Fourier Bessel form used is instead

 $\sum_{n=1}^{\infty} A_n J_0(k_n x).$ Using the formula for Fourier Bessel coefficients to derive A_n ,

$$\begin{split} A_n &= \frac{2}{l^2 J_{\nu+1}(k_n l)^2} \int_0^l f(x) J_{\nu}(k_n x) x dx \\ &= \frac{2}{J_1(k_n)^2} \int_0^1 x (1-x) J_0(k_n x) dx \\ &= \frac{2}{J_1(k_n)^2} \left[\int_0^1 x J_0(k_n x) dx - \int_0^1 x^2 J_0(k_n x) dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\frac{1}{k_n} \int_0^1 (k_n x) J_0(k_n x) dx - \frac{1}{k_n} \int_0^1 x (k_n x) J_0(k_n x) dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\frac{1}{k_n} (k_n x) J_1(k_n x) \Big|_0^1 - \left(\frac{x}{k_n} (k_n x) J_1(k_n x) \Big|_0^1 - \frac{1}{k_n} \int_0^1 (k_n x) J_1(k_n x) dx \right] \right] \\ &= \frac{2}{J_1(k_n)^2} \left[x J_1(k_n x) \Big|_0^1 - \left(x^2 J_1(k_n x) \Big|_0^1 - \int_0^1 x J_1(k_n x) dx \right) \right] \\ &= \frac{2}{J_1(k_n)^2} \left[J_1(k_n) - J_1(k_n) + \int_0^1 x J_1(k_n x) dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\int_0^1 x \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+1+1)} \left(\frac{k_n x}{2} \right)^{2m+1} dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\int_0^1 \sum_{m=0}^{\infty} \frac{(-1)^m}{m! (m+1)!} \left(\frac{k_n}{2} \right)^{2m+1} x^{2m+2} dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\sum_{m=0}^{\infty} \int_0^1 \frac{(-1)^m}{m! (m+1)!} \left(\frac{k_n}{2} \right)^{2m+1} \int_0^1 x^{2m+2} dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{m! (m+1)!} \left(\frac{k_n}{2} \right)^{2m+1} \int_0^1 x^{2m+2} dx \right] \\ &= \frac{2}{J_1(k_n)^2} \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{m! (m+1)!} \left(\frac{k_n}{2} \right)^{2m+1} \left(\frac{x^{2m+3}}{2m+3} \right) \right]_0^1 \\ &= \frac{2}{J_1(k_n)^2} \sum_{m=0}^{\infty} \frac{(-1)^m}{m! (m+1)!} \left(\frac{1}{2m+3} \right) \left(\frac{k_n}{2} \right)^{2m+1} \right] \end{aligned}$$

we get $f(x) = \sum_{n=1}^{\infty} A_n J_0(k_n x)$, where A_n is given by the above calculations.

(b) Which has the smallest mean square error when the first 3 terms of each series are used?

To answer this question, the formula $\|e_n\|^2 = \sum_{n=N+1}^\infty A_n^2 \|\phi_n\|^2$ will be used.

Considering now the Fourier Sine series for f, where $\phi_n = \sin n\pi x$, and $\|\phi_n\|^2 = \frac{1}{2}$. The mean square error for the first three terms of the Fourier Sine series is then as follows.

$$\|e_n\|^2 = \sum_{n=N+1}^{\infty} A_n^2 \|\phi_n\|^2$$

$$= \sum_{n=3+1}^{\infty} \left(\frac{2}{n\pi}\right)^2 \cdot \frac{1}{2}$$

$$= \frac{2}{\pi^2} \sum_{n=4}^{\infty} \frac{1}{n^2}$$

$$= \frac{2}{\pi^2} \left[\sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{n=1}^{3} \frac{1}{n^2}\right]$$

$$= \frac{2}{\pi^2} \left[\frac{\pi^2}{6} - \left(1 + \frac{1}{4} + \frac{1}{9}\right)\right]$$

$$= \frac{1}{3} - \frac{2}{\pi^2} \left(1 + \frac{1}{4} + \frac{1}{9}\right)$$

$$\approx 0.0575$$

Considering now the Fourier Bessel series for f, where $\phi_n=J_0k_nx$, and $\|\phi_n\|^2=J_1(k_n)^2$. From WolphramAlpha, we get $k_1\approx 2.4048,\ k_2\approx 5.5201$, and $k_3\approx 8.6531$. From WolframAlpha, we get $A_1\approx 0.943296057,\ A_2\approx 0.189572523$, and $A_3\approx 0.229550582$.

The mean square error for the first three terms of the Fourier Bessel series is then as follows.

$$\begin{aligned} \|e_n\|^2 &= \sum_{n=N+1}^{\infty} A_n^2 \|\phi_n\|^2 \\ &= \|f\|^2 - \sum_{n=1}^{N} A_n^2 \|\phi_n\|^2 \\ &= \int_0^1 (1-x)^2 dx - \sum_{n=1}^{N} \left(\frac{\langle f, \phi_n \rangle}{\|\phi_n\|^2}\right)^2 \|\phi_n\|^2 \\ &\therefore \|e_3\|^2 = -\frac{(1-x)^3}{3} \Big|_0^1 - \sum_{n=1}^3 \frac{\langle f, \phi_n \rangle^2}{\|\phi_n\|^2} \\ &= \frac{1}{3} - 2 \left(0.0239820615 + 0.004160952 + 0.003883353\right) \\ &\approx 0.2693 \end{aligned}$$

(c) In either case, as each additional term, n, is added and as $n \to \infty$, can a point $0 < a_n < 1$ always be found such that the series Sf differs from f by more than 1/2 (i.e. $|Sf(a_n) - f(a_n)| > 1/2$)? Explain your answer.

Consider first the Fourier Sine series for f. Set up the sequence $=\frac{1}{N}$, which will be used as we take $N\to\infty$. As a result, the Fourier Sine series can be written as $\sum_{n=1}^N\frac{2}{n\pi}\sin\left(\frac{n\pi}{N}\right)$.

$$\begin{split} L_1 &= \lim_{N \to \infty} \sum_{n=1}^N \frac{2}{n\pi} \sin\left(\frac{n\pi}{N}\right) \\ &= \lim_{N \to \infty} \sum_{n=1}^N \frac{2N}{n\pi N} \sin\left(\frac{n\pi}{N}\right) \\ &= \lim_{N \to \infty} \frac{2}{N} \sum_{n=1}^N \frac{N}{n\pi} \sin\left(\frac{n\pi}{N}\right) \\ &= \lim_{N \to \infty} \frac{2}{N} \sum_{n=1}^N \frac{\sin\left(\frac{n\pi}{N}\right)}{\frac{n\pi}{N}} \\ &= \lim_{N \to \infty} \frac{2}{N} \sum_{n=1}^N 1 \\ &= \lim_{N \to \infty} \frac{2}{N} N \\ &= \lim_{N \to \infty} 2 \\ \therefore L_1 &= 2 \quad \text{ when } \frac{n}{N} \notin \mathbb{Z} \\ \therefore L_1 &= 0 \quad \text{ when } \frac{n}{N} \in \mathbb{Z} \end{split}$$

Applying the same sequence to f = 1 - x we get the following result.

$$\begin{split} L_2 &= \lim_{N \to \infty} 1 - \frac{1}{N} \\ &= 1 - 0 \\ \therefore L_2 &= 1 \end{split}$$

Consider now $a_n \in (0,1)$ such that $|a_n-0|<\delta$, for $\delta>0$. As δ approaches 0, a_n also approaches 0, and is not an integer, as it can never reach 0 as a consequence of the strict inequalities establishing the domain of a_n . As a result, $Sf_n(a_n) \to 2$, and thus $|Sf_n(a_n) - f(a_n)| = |2-1| > 1/2$. This confirms that such an a_n exists to satisfy the constraints.

Consider now the Fourier Bessel series for f. Due to the selection of $\nu=0$, the Fourier Bessel series uniformly converges to f for all x and for all $n\geq N$. By the uniform convergence theorem,

$$|Sf(x) - f(x)| < \epsilon$$
 $0 < x < 1$

select $\epsilon > 0$, then for some positive integer M, for all n > M we get,

$$|Sf(x) - f(x)| < \frac{1}{2}$$
 $0 < x < 1$

which suggests there is not an a_n that exists such that $|Sf(a_n) - f(a_n)| > 1/2$, whenever n > M, but not for all n.

3. You are working in collaboration with glaciologists who are storing ice cores. The cores are long and thin and perfectly insulated save a small amount of heating at a rate α at one end. The glaciologist hope to balance this warming with cooling at a rate β at the other end. You have determined that the ice core obeys the following boundary value problem

$$u_t - u_{xx} = 0 \dots (*), \ u_x(0) = \beta, \ u_x(l) = \alpha$$

where u is temperature, t is time and l is the length of the core.

For this question, the method of separation of variables will need to be used, as such, the solution u(x,t)=X(x)T(t). Therefore, the above conditions can be rewritten as

$$u_t = u_{xx}$$

$$\therefore XT' = TX''$$

$$\therefore \frac{T'}{T} = \frac{X''}{X} \dots (**)$$

$$u_x(0) = \beta \iff TX'(0) = \beta$$

$$u_x(l) = \alpha \iff TX'(l) = \alpha$$

(a) What should β be such that the ice core's temperature remains stable $(u_t = 0)$?

If $u_t = 0$, then XT' = 0, and thus T = C, for C constant.

Further, $u_t - u_{xx} = 0$ becomes $u_{xx} = 0$.

Therefore, TX'' = 0, and thus, X = Ax + B, for A, B constants.

Therefore, u = X(x)T(t) = (Ax + B)C...(1).

Applying the boundary conditions to (1), from $u_x(0) = TX'(0) = CX'(0) = \beta$, we get $\beta = A$.

From $u_x(l) = TX'(l) = CX'(l) = \alpha$, we get $\alpha = A$.

As a result, $\beta=\alpha$ in order to keep the temperature of the ice core stable, that is, the rate of heating should equal the rate of cooling.

(b) Assuming $\alpha = 1$, l = 10 and the average temperature of the core is -15, what is the solution for u in the stable case?

To find the solution for u=(Ax+B)C for the average temperature of the core as -15, firstly we must apply any given conditions. As $\alpha=A=1,\ u=(x+B)C$. Furthermore, with $u_x(0)=1$, we get C=1. Thus, u=x+B. These results are also a consequence of the stable temperature condition. Now, using the simple average value integral formula,

$$u_{\text{avg}}(x,t) = \frac{1}{b-a} \int_a^b u(x,t) dx$$
 we get,

$$f_{\text{avg}}(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

$$= \frac{1}{10-0} \int_{0}^{10} (x+B) dx$$

$$\therefore -15 = \frac{1}{10} \int_{0}^{10} (x+B) dx$$

$$-150 = \left[\frac{x^{2}}{2} + Bx \right] \Big|_{0}^{10}$$

$$= \left[\frac{100}{2} + 10B - 0 \right]$$

$$\therefore 10B = -200$$

$$\therefore B = -20$$

In the stable case, u = x - 20.

(c) If the cooling mechanism were to fail $(\beta = 0)$ how long would it take before the ice core started to melt (i.e. when would u rise above 0 at any point)?

Firstly, to arrive at the solution, we need to solve equation (*). Using the separation of variables method and equation (**), we start with $\frac{T'}{T} = \frac{X''}{X}$, which becomes $\frac{T'}{T} = -\lambda = \frac{X''}{X}$, and can be broken into $\frac{T'}{T} = -\lambda \dots (1*)$ and $\frac{X''}{X} = -\lambda \dots (2*)$, for $\lambda \geq 0$.

In the following equations, solutions will be of the form Ce^{kx} or Ce^{kt} . This provides the justification for the use of the characteristic polynomial. Considering first equation (1*),

$$\frac{T'}{T} = -\lambda$$

$$T' + \lambda T = 0$$

$$k + \lambda = 0$$
 considering the characteristic polynomial
$$k = -\lambda$$

$$\therefore T(t) = Ae^{-\lambda t}$$

Considering now equation (2*). Set $\lambda=w^2$. Further, from the boundary conditions, $u_x(0)=0$, so X'(0)=0. Also, $u_x(10)=\alpha=1$, so X'(10)=1, as T(t)=C=1. Consider a solution of the form u=U+V. U solves the inhomogeneous boundary problem, $u_t-u_{xx}=0$, $u_x(0)=0$, and $u_x(l)=\alpha$. V solves the homogeneous boundary value problem, $u_t-u_{xx}=0$, $u_x(0)=0$, and $u_x(l)=0$.

In order to solve this equation, 3 cases must be considered; $\lambda > 0$, $\lambda = 0$, and $\lambda < 0$. Considering the first case of the homogeneous problem, $\lambda > 0$,

$$\frac{X''}{X} = -w^2$$

$$X'' + w^2X = 0$$

$$k^2 + w^2 = 0 \quad \text{considering the characteristic polynomial}$$

$$\therefore k = \pm iw$$

$$X(x) = C_1 e^{iwx} + C_2 e^{-iwx}$$

$$\therefore X(x) = D_1 \cos(wx) + D_2 \sin(wx) \quad \text{using the complex trigonometric identities}$$

$$X'(x) = -wD_1 \sin(wx) + wD_2 \cos(wx)$$

$$\therefore 0 = wD_2 \implies D_2 = 0 \quad \text{from } X'(0) = 0$$

$$\therefore X(x) = D_1 \cos(wx)$$

$$\therefore 0 = -wD_1 \sin(10w) \quad \text{from } X'(10) = 0$$

$$\therefore 10w = n\pi \quad n \in \mathbb{Z}$$

$$\therefore w = \frac{n\pi}{10} \quad n \in \mathbb{Z}$$

$$\therefore x(x) = D_1 \cos\left(\frac{n\pi x}{10}x\right)$$

Considering the case $\lambda = 0$,

$$\frac{X''}{X} = 0$$

$$X'' = 0$$

$$\therefore X(x) = Ax + B$$

$$\therefore 0 = A \quad \text{from } X'(0) = 0$$

$$\therefore X(x) = B$$

Considering the case $\lambda < 0$,

$$\frac{X''}{X} = w^2$$

$$X'' - w^2X = 0$$

$$k^2 - w^2 = 0 \quad \text{considering the characteristic polynomial}$$

$$\therefore k = \pm w$$

$$X(x) = C_1 e^{wx} + C_2 e^{-wx}$$

$$\therefore X(x) = D_1 \cosh(wx) + D_2 \sinh(wx) \quad \text{using the complex hyperbolic trigonometric identities}$$

$$X'(x) = wD_1 \sinh(wx) + wD_2 \cosh(wx)$$

$$\therefore 0 = wD_2 \implies D_2 = 0 \quad \text{from } X'(0) = 0$$

$$\therefore X(x) = D_1 \cosh(wx)$$

$$\therefore 0 = wD_1 \sinh(10w) \quad \text{from } X'(10) = 0$$

$$\therefore D_1 = 0 \quad \text{as } w > 0 \implies \sinh(10w) > 0$$

$$\therefore X(x) = 0$$

By definition, the homogeneous solution $V=\sum_{n=1}^\infty V_n$, where $V_n(x,t)=X_n(x)T_n(t)$. Using the results for the three cases on λ , $V_n(x,t)=\left[0+B+D_n\cos\left(\frac{n\pi x}{10}x\right)\right]e^{-\left(\frac{n\pi}{10}\right)^2t}$. Thus, $V(x,t)=\frac{D_0}{2}+\sum_{n=1}^\infty D_n\cos\left(\frac{n\pi x}{10}\right)e^{-\left(\frac{n\pi}{10}\right)^2t}$

From lectures, U is given by $U=\frac{\alpha}{l}\left(t+\frac{x^2}{2}\right)=\frac{1}{10}\left(t+\frac{x^2}{2}\right).$ From this, $u(x,t)=U+V=\frac{1}{10}\left(t+\frac{x^2}{2}\right)+\frac{D_0}{2}+\sum_{n=1}^{\infty}D_n\cos\left(\frac{n\pi x}{10}\right)e^{-\left(\frac{n\pi}{10}\right)^2t}.$ Applying the initial condition u(x,0)=x-20, we get the result,

$$x - \frac{x^2}{20} - 20 = \frac{D_0}{2} + \sum_{n=1}^{\infty} D_n \cos\left(\frac{n\pi x}{10}\right)$$

Treating this as a Fourier Cosine series for the function $f(x) = x - \frac{x^2}{20} - 20$, we solve for the coefficients using the appropriate formulas.

$$\begin{split} D_0 &= \frac{2}{10} \int_0^{10} \left(x - \frac{x^2}{20} - 20 \right) dx \\ &= \frac{1}{5} \left(\frac{x^2}{2} - \frac{x^3}{60} - 20x \right) \Big|_0^{10} \\ &= -\frac{100}{3} \\ D_n &= \frac{2}{10} \int_0^{10} \left(x - \frac{x^2}{20} - 20 \right) \cos \left(\frac{n\pi x}{10} \right) dx \\ &= \frac{1}{5} \left[\left(x - \frac{x^2}{20} - 20 \right) \frac{10}{n\pi} \sin \left(\frac{n\pi x}{10} \right) \Big|_0^{10} - \frac{10}{n\pi} \int_0^{10} \left(1 - \frac{x}{10} \right) \sin \left(\frac{n\pi x}{10} \right) dx \right] \\ &= -\frac{1}{5} \left[\frac{10}{n\pi} \int_0^{10} \left(1 - \frac{x}{10} \right) \sin \left(\frac{n\pi x}{10} \right) dx \right] \\ &= -\frac{2}{n\pi} \left[\frac{10}{n\pi} \left(\frac{x}{10} - 1 \right) \cos \left(\frac{n\pi x}{10} \right) \Big|_0^{10} + \frac{1}{n\pi} \int_0^{10} \cos \left(\frac{n\pi x}{10} \right) dx \right] \\ &= -\frac{20}{n^2 \pi^2} \end{split}$$

$$\text{Therefore } u(x,t) = \frac{1}{10} \left(t + \frac{x^2}{2} \right) - \frac{100}{6} - \sum_{n=1}^{\infty} \frac{20}{n^2 \pi^2} \cos \left(\frac{n \pi x}{10} \right) e^{-\left(\frac{n \pi}{10} \right)^2 t}.$$

Now in order to solve for when the temperature is first greater than 0, we look at the warmest part of the rod, that is x=10, where the heating is occurring, and solve for t such that u(10,t)>0. Using desmos to graph the function,

$$u(10,t) = \frac{1}{10} (t+50) - \frac{100}{6} - \sum_{n=1}^{\infty} \frac{20}{n^2 \pi^2} (-1)^n e^{-\left(\frac{n\pi}{10}\right)^2 t}$$

we get $t = \frac{350}{3}$, as the time for when the temperature of one part of the rod rises above 0, that is, the rod begins to melt.