UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

ANÁLISIS NUMÉRICO

ANS115

UNIDAD II

MÉTODOS ITERATIVOS PARA LA SOLUCIÓN DE ECUACIONES NO LINEALES Y ACELERACIÓN DE LA CONVERGENCIA

UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

ANÁLISIS NUMÉRICO

ANS115

TEMA

- El Método de la Secante

Agenda

- Método de la Secante
 - Teorema
 - Algoritmo
 - Grafica
 - Ejemplos

Objetivos

- Estudiar el métodos de la Secante en base a los criterios de eficiencia, precisión y tolerancia.
- Analizar una muestra de datos empleando cada uno de los métodos matemáticos del Método de la Secante

El involucrar la derivada es un problema en el método de <u>Newton-Raphson</u> ya que en algunos casos no se puede calcular con facilidad.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

La derivada de f(x) en un punto x_n puede aproximarse usando el método de los elementos finitos, por:

$$f'(x_n) \approx \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}$$

Entonces, remplazando:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$= x_n - \frac{f(x_n)}{\frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}}$$

$$= x_n - \frac{f(x_n)(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$

$$f'(x_n) \approx \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}$$

De esta manera, obtenemos el proceso iterativo que nos da el método de la secante

Es un método en que, para aproximarse a la raíz, en cada iteración se evalúa la función y no la derivada.

$$x_{n+1} = x_n - \frac{f(x_n)(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$
 $n = 0,1,2,3...$

Elegir dos puntos iniciales cualquiera x_0 , x_1 para los cuales se evalúan los valores de la función: $f(x_0)$ y $f(x_1)$

2

Se traza una recta secante por esos dos puntos

3

El punto de intersección de esta recta con el eje de las abscisas $(x_2, 0)$ constituye una segunda aproximación de la raíz

Se reemplazan los subíndices: $x_i = x_{i+1}$, de manera que x_1 pasa a ser x_0 y x_2 pasa a ser x_1

5

Se traza una <u>segunda</u> secante por los nuevos puntos x_0 , x_1 , obteniendo una segunda aproximación con x_2

El proceso se repite n veces hasta que el punto de intersección x_{2} , coincide con el valor exacto de la raíz

NEWTON Y SECANTE

<u>CONVERGEN</u>

<u>CUADRÁTICAMENTE</u>

AL VALOR DE LA RAÍZ

EL <u>ERROR RELATIVO</u> ES
PROPORCIONAL AL
CUADRADO DEL ERROR
CORRESPONDIENTE DE
LA ITERACIÓN
ANTERIOR

CUANDO EL ERROR
RELATIVO EN UNA
ITERACIÓN ES MENOR
QUE 1 (INFERIOR AL
100%), LA <u>CONVERGENCIA</u>
ESTÁ GARANTIZADA

CUANDO EL ERROR
RELATIVO EN UNA
ITERACIÓN ES MAYOR
QUE 1, LA <u>DIVERGENCIA</u>
ESTÁ GARANTIZADA

ALGORITMO

ENTRADA: Las aproximaciones iniciales p_0 y p_1 . La Tolerancia (*TOL*) y el Número Máximo de Iteraciones N_0)

SALIDA: Solución aproximada *p* o mensaje de error

- 1) Hacer i=2; $q_0=f(p_0)$; $q_1=f(p_1)$
- 2) Mientras $i \le N_0$ Hacer pasos 3 a 6
 - 3) Hacer $p = p_1 q_1 (p_1 p_0)/(q_1 q_0)$.
 - 4) Si $|p-p_1| < TOL$ entonces SALIDA(p); PARAR
 - 5) Hacer *i=i+1*
 - 6) Hacer $p_0 = p_1$; $q_0 = q_1$; $p_1 = p$; $q_1 = f(p)$
- 7) SALIDA ('El método falló'); PARAR

Ejemplo 1

Estimar el valor de la raíz de la ecuación $x^3 + 4x - 2 = 0$ aplicando el método de la secante con valores iniciales

Completamos nuestra tabla y continuamos las iteraciones hasta encontrar la aproximación más cercana

x_{n-1}	x_n	x_{n+1}
1	0	0.4

Ejemplo 2

Estimar el valor de la raíz de la ecuación aplicando el método de la secante con valores iniciales

x_{n-1}	x_n	x_{n+1}
3	2	? ·

$$x^2 - 5 = 0$$
 $x_{-1} = 3, x_0 = 2$

$$x_{n+1} = x_n - \frac{f(x_n)(x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$$

$$x_{n+1} = 2 - \frac{f(2)(3-2)}{f(3) - f(2)}$$

Se toma los nuevos valores iniciales y continuamos con la siguiente iteración:

x_{n-1}	x_n	x_{n+1}
3	2	2.2
2	2.2	?

Haciendo los cálculos desde Excel, la tabla tendría lo siguientes valores:

n	xn-1	xn	xn+1
0	3,0000	2,0000	2,2000
1	2,0000	2,2000	2,2381
2	2,2000	2,2381	2,2361
3	2,2381	2,2361	2,2361
4	2,2361	2,2361	2,2361

Como resultado, tenemos que la aproximación a la raíz

es: **2.2361**

Feliz día!!