Assignment 3

Question 1. [16 MARKS]

Given a list L, a contiguous sublist M of L is a sublist of L whose elements occur in immediate succession in L. For instance, [4,7,2] is a contiguous sublist of [0,4,7,2,4] but [4,7,2] is not a contiguous sublist of [0,4,7,1,2,4].

We consider the problem of computing, for a list of integers L, a contiguous sublist M of L with maximum possible sum.

Algorithm 1 MaxSublist(L)

iprecondition: L is a list of integers.

 $ipostcondition_{\delta}$: Return a contiguous sublist of L with maximum possible sum.

Part (1) [5 MARKS]

Using a divide-and-conquer approach, devise a recursive algorithm which meets the requirements of MaxSublist.

Solution:

Our algorithm will rely on the following subprocess.

$\overline{\textbf{Algorithm 2} \ MaxSublistCrossing}(L, i)$

iprecondition ::

L is a list of integers and i is an integer index, $0 \le i < |L| - 1$.

postcondition:

Return a contiguous sublist of L which crosses index i and achieves maximum possible sum subject to this requirement.

```
1: r \leftarrow i + 1
 2: S \leftarrow 0
 3: r_{max} \leftarrow i + 1
 4: S_{max} \leftarrow 0
 5: while r < |L| do
          S \leftarrow S + L[r]
          r \leftarrow r + 1
 7:
          if S > S_{max} then
 8:
               S_{max} \leftarrow S
 9:
               r_{max} \leftarrow r
10:
          end if
11:
12: end while
13:
14: \ell \leftarrow i-1
15: S \leftarrow 0
16: \ell_{max} \leftarrow i - 1
17: S_{max} \leftarrow 0
18: while \ell > 0 do
          S \leftarrow S + L[\ell - 1]
19:
          \ell \leftarrow \ell - 1
20:
          if S > S_{max} then
21:
               S_{max} \leftarrow S
22:
               \ell_{max} \leftarrow k
23:
24:
          end if
25: end while
26:
27: return L[\ell_{max}:r_{max}]
```

Then our main algorithm may be defined as follows.

Algorithm 3 MaxSublist(L)

 $iprecondition_{\partial}$: L is a list of integers.

 $ipostcondition_{\delta}$: Return a contiguous sublist of L with maximum possible sum.

```
1: if |L| = 0 then
          return L
 3: else if |L| = 1 and L[0] > 0 then
          return L
 5: else if |L| = 1 and L[0] \leq 0 then
          return []
 7: else
 8:
          n \leftarrow |L|
          L_1 \leftarrow MaxSublist\left(L\left[0:\left\lceil\frac{n}{2}\right\rceil\right]\right)
          L_2 \leftarrow MaxSublist\left(L\left\lceil \left\lceil \frac{n}{2} \right\rceil : n\right\rceil\right)
10:
          L_3 \leftarrow MaxSublistCrossing(L, \lceil \frac{n}{2} \rceil)
11:
12:
          return L_i which has maximum sum
13: end if
```

Part (2) [8 MARKS]

Give a complete proof of correctness for your algorithm. If you use an iterative subprocess, prove the correctness of this also.

Solution:

First, we prove the correctness of the iterative subprocess MaxSublistCrossing.

We will handle each of the loops separately.

LOOP 1.

Define a loop invariant

$LI_1(r, S, r_{max}, S_{max})$:

- $r \in \mathbb{N}$ satisfies $r \leq |L|$
- S = sum(L[i+1:r])
- $r_{max} = \arg\max_{t:i+1 \le t \le r} \operatorname{sum}(L[i+1:t])$
- $S_{max} = \operatorname{sum}(L[i+1:r_{max}])$

Establish loop invariant

At the start of the first iteration of the first loop, r = i + 1, S = 0 and $r_{max} \leftarrow i + 1$. Hence,

- $S = 0 = \operatorname{sum}(L[i+1:i+1]) = \operatorname{sum}(L[i+1:r])$
- $r_{max} = i + 1 = \arg\max_{t:i+1 \le t \le i+1} \operatorname{sum}(L[i+1:t]) = \arg\max_{t:i+1 \le t \le r} \operatorname{sum}(L[i+1:t])$
- $S_{max} = 0 = \text{sum}(L[i+1:i+1]) = \text{sum}(L[i+1:r_{max}])$

Therefore, $LI_1(r, S, r_{max}, S_{max})$ holds.

Maintain loop invariant

Now let $r^0, S^0, r^0_{max}, S^0_{max}$ be the values of r, S, r_{max}, S_{max} at the start of an arbitrary iteration.

Let $r^1, S^1, r^1_{max}, S^1_{max}$ be the values of r, S, r_{max}, S_{max} at the end of that iteration.

Assume $LI_1(r^0, S^0, r_{max}^0, S_{max}^0)$. Note:

- Since r^0 did not satisfy the exit condition, then $r^0 < |L|$ and hence $r^1 = r^0 + 1$ satisfies $r^1 \le 1$.
- Since $S^1 = S^0 + L[r^0]$ and $S^0 = \text{sum}(L[i+1:r^0])$, we have that

$$S^1 = \text{sum}(L[i+1:r^0+1]) = \text{sum}(L[i+1:r^1])$$

• Since

$$r_{max}^0 = \mathop{\arg\max}_{t:i+1 < t < r^0} \mathop{\mathrm{sum}}(L[i+1:t])$$

then

$$\mathop{\arg\max}_{t:i+1 \le t \le r^1} \mathop{\mathrm{sum}}(L[i+1:t])$$

is either r_{max}^0 or r^1 according to which of sum $(L[i+1:r_{max}^0])$ or sum $(L[i+1:r^1])$ is greater. MaxSublistCrossing identifies these cases appropriately so that

$$r_{max}^{1} = \underset{t:i+1 \le t \le r^{1}}{\arg \max} \operatorname{sum}(L[i+1:t])$$

• If $r_{max}^1 = r_{max}^0$, then $\text{sum}(L[i+1:r_{max}^1]) = \text{sum}(L[i+1:r_{max}^0])$ which agrees with the fact that S_{max}^1 is taken to be S_{max}^0 . If $r_{max}^1 \neq r_{max}^0$, then S_{max}^1 is taken to be

$$S^1 = \text{sum}(L[i+1:r^1]) = \text{sum}(L[i+1:r^1_{max}])$$

Loop invariant and exit condition

The exit condition is $r \ge |L|$. Since r is an index of L, this is satisfied when r = |L| - 1. Assuming this together with $LI(r, S, r_{max}, S_{max})$, we get that

$$r_{max} = \underset{t:i+1 \le t \le |L|-1}{\arg\max} \sup(L[i+1:t])$$
 (1)

Termination

Define the measure of progress as r. Since r increases by 1 with each iteration, and the algorithm terminates when r > |L| - 2, we may conclude that the algorithm terminates.

LOOP 2.

Following a similar argument, we may show that the second loop terminates at which point

$$\ell_{max} = \underset{t:0 < t < i}{\arg\max} \operatorname{sum}(L[t:i]) \tag{2}$$

POSTCONDITION

Putting together (1) and (2), we get that $L[\ell_{max} : r_{max}]$ is the maximum-sum sublist of L which includes index i. Since this is what is returned, the postcondition is obtained.

It remains to show the correctness of MaxSublist.

Base case

The base cases are where |L| = 0 or |L| = 1. It is easy to check that, on these inputs, the output satisfies the postcondition.

Recursive step

Consider the recursive case where $|L| \geq 2$.

Then recursive calls are made on inputs $L\left[0:\left\lceil\frac{n}{2}\right\rceil\right]$ and $L\left[\left\lceil\frac{n}{2}\right\rceil:n\right]$ which both satisfy the algorithms precondition. Thereby, we may assume that L_1 and L_2 satisfy the postconditions of $MaxSublist\left(L\left[0:\left\lceil\frac{n}{2}\right\rceil\right]\right)$ and $MaxSublist\left(L\left[\left\lceil\frac{n}{2}\right\rceil:n\right]\right)$ respectively.

Furthermore, we have already shown the correctness of MaxSublistCrossing so, because $(L, \lceil \frac{n}{2} \rceil)$ satisfies the precondition of MaxSublistCrossing, then L_3 satisfies the postcondition of $MaxSublistCrossing(L, \lceil \frac{n}{2} \rceil)$.

It follows that

- L_1 is the maximum-sum contiguous sublist of $L\left[0:\left[\frac{n}{2}\right]\right]$
- L_2 is the maximum-sum contiguous sublist of $L\left[\left\lceil\frac{n}{2}\right\rceil:n\right]$
- L_3 is the maximum-sum contiguous sublist of L which includes index $\left\lceil \frac{n}{2} \right\rceil$.

Since the maximum-sum contiguous sublist of L must be one of these, returning whichever of L_1 , L_2 or L_3 has maximum sum meets the postcondition.

Termination

- i. Take the measure of input size to be |L|.
- ii. Recursive calls are made when |L| is at least 2 and are made on sublists of length at most $\lceil \frac{|L|}{2} \rceil$. Since $|L| \geq 2$, then $\lceil \frac{|L|}{2} \rceil < |L|$. Thus, the measure of input size goes down by at least one with each recursive call.
- iii. When $|L| \leq 1$, then a base case is executed.

Part (3) [3 MARKS]

Analyze the running time of your algorithm.

Solution:

Treating each addition as a constant-time operation, we have that MaxSublistCrossing(L) runs in linear time O(n) where n is the length of L.

Then the running time of MaxSublist on a list of length n may be given by the recurrence

$$T(n) = T\left(\left\lceil \frac{n}{2}\right\rceil\right) + T\left(\left\lfloor \frac{n}{2}\right\rfloor\right) + O(n)$$

Hence, the appropriate parameters for application of the Master Theorem are a=2, b=2 and k=1. Since $\log_b a = \log_2 2 = 1 = k$ we may conclude that $T(n) = O(n \cdot \log n)$.

Question 2. [18 MARKS]

For a point $x \in \mathbb{Q}$ and a closed interval I = [a, b], $a, b \in \mathbb{Q}$, we say that I covers x if $a \le x \le b$. Given a set of points $S = \{x_1, \ldots, x_n\}$ and a set of closed intervals $Y = \{I_1, \ldots, I_k\}$ we say that Y covers S if every point x_i in S is covered by some interval I_j in Y.

In the "Interval Point Cover" problem, we are given a set of points S and a set of closed intervals Y. The goal is to produce a minimum-size subset $Y' \subseteq Y$ such that Y' covers S.

Consider the following greedy strategy for the problem.

Algorithm 4 Cover(S, Y)

iprecondition ::

S is a finite collection of points in \mathbb{Q} . Y is finite set of closed intervals which covers S. $ipostcondition_{\dot{s}}$:

Return a subset Z of Y such that Z is the smallest subset of Y which covers S.

```
1: L = \{x_1, \dots, x_n\} \leftarrow S sorted in nondecreasing order

2: Z \leftarrow \emptyset

3: i \leftarrow 0

4: while i < n do

5: if x_{i+1} is not covered by some interval in Z then

6: I \leftarrow \text{interval } [a, b] \text{ in } Y \text{ which maximizes } b \text{ subject to } [a, b] \text{ containing } x_{i+1}

7: Z.\text{append}(I)

8: end if

9: i \leftarrow i + 1

10: end while

11: return Z
```

Give a complete proof of correctness for *Cover* subject to its precondition and postcondition.

Solution:

Define the loop invariant

LI(Z,i):

- Z covers $\{x_1,\ldots,x_i\}$.
- There exists a set $W, Z \subseteq W \subseteq Y$, where W is a minimum-size subset of Y which covers S.

Establish loop invariant

At the start of the first iteration, $Z = \emptyset$ and i = 0. In this case, the first bullet of the loop invariant says that Z covers \emptyset . This is vacuously true. Furthermore, since Y covers S, there must exist some set minimum-size $W \subseteq$ which covers S. Since $Z = \emptyset$, then $Z \subseteq W$. Therefore, LI(Z, i).

Maintain the loop invariant

Let Z_0 , i_0 be the values of Z and i at the start of of an arbitrary iteration.

Let Z_1, i_1 be the values of Z and i at the end of of that iteration.

Assume $LI(Z_0, i_0)$.

Then Z_0 covers $\{x_1, \ldots, x_{i_0}\}$ and there exists $W_0, Z \subseteq W_0 \subseteq Y$, which is a minimum-size subset of Y which covers S.

Case 1.

If Z_0 already covers x_{i_0+1} , then $Z_1 = Z_0$. In this case, Z_1 covers $\{x_1, \ldots, x_{i_0+1}\}$ and $Z_1 \subseteq W_0$, from which $LI(Z_1, i_1)$ follows.

Case 2.

If Z_0 does not cover x_{i_0+1} , then Z_1 is obtained from Z_0 by adding an interval $I = [a, b] \in Y$ which maximizes b subject to being an interval which covers x_{i_0+1} .

 W_0 must cover x_{i_0+1} by some interval J = [c, d]. Let $W_1 = (W_0 \setminus \{J\}) \cup \{I\}$ so that $Z_1 \subseteq W_1 \subseteq Y$. We want to show that W_1 covers S.

Note:

- $Z_0 \subseteq W_1$ implies that W_1 covers $\{x_1, \ldots, x_{i_0}\}$.
- Everything not covered by J is covered by $W_0 \setminus \{J\}$.
- Since I = [a, b] was chosen to maximize b, then J = [c, d] must satisfy $d \leq b$. Thus, for $k \geq i_0 + 1$, if x_k is covered by J, then x_k is covered by I.

Putting these facts together, we may conclude that W_1 covers S. Also, since W_1 contains the same number of intervals as W_0 , and W_0 is a minimum subset which covers S, then W_1 is a minimum set which covers S.

Using the fact that $i_1 = i_0 + 1$, we may conclude that $LI(Z_1, i_1)$ holds.

Loop invariant and exit condition imply post-condition

Assume LI(Z, i) and that the exit condition $i \geq n$ holds.

Then,

- Z covers $S = \{x_1, \ldots, x_n\}$;
- There exists a set $W, Z \subseteq W \subseteq Y$, where W is a minimum-size subset of Y which covers S.

Since W is a minimum-size subset of Y which covers S, then $Z \subseteq W$ implies that Z is a minimum-size subset of Y which covers S.

Since Z is what is returned by the algorithm, the postcondition is obtained.

Termination

- i. Let i be the measure of progress.
- ii. i increases by at least 1 with each iteration.

iii. When $i \geq |S|$, the loop terminates.

Question 3. [10 MARKS]

The first three parts of this question deals with properties of regular expressions (this is question 4 from section 7.7 of Vassos' textbook). Two regular expressions R and S are equivalent, written $R \equiv S$ if their underlying language is the same i.e. $\mathcal{L}(R) = \mathcal{L}(S)$. Let R, S, and T be arbitrary regular expression. For each assertion, state whether it is true or false and justify your answer.

Due: August 3rd, 2018

Part (1) [2 MARKS]

If
$$RS \equiv SR$$
 then $R \equiv S$.

Solution: This assertion is false. Consider the following counter example where the underlying alphabet is $\Sigma = \{0, 1\}$: let $R = \epsilon$ and S = 1. Then RS = 1 = SR, but clearly $\mathcal{L}(R) = \{\epsilon\} \neq \{1\} = \mathcal{L}(S)$.

Part (2) [2 MARKS]

If
$$RS \equiv RT$$
 and $R \not\equiv \emptyset$ then $S \equiv T$.

Solution: This assertion is also false. Consider the following counter example (again the underlying alphabet is $\Sigma = \{0, 1\}$). Let $R = 0^*$, $S = \epsilon$, and $T = 0^*$. Observe that RS = R = RT. $\mathcal{L}(S) \neq \mathcal{L}(T)$ so $S \not\equiv T$.

Part (3) [2 MARKS]

$$(RS+R)^*R \equiv R(SR+R)^*.$$

Solution: This is true! Consider any string w that is in $\mathcal{L}((RS+R)^*R)$. $w=a_1a_2\cdots a_{n-1}b_{n,1}$ where $a_i\in\mathcal{L}(RS+R)$ for $i\in[n-1]$ and $b_{n,1}\in\mathcal{L}(R)$. We can further decompose each a_i as follows:

$$a_i = \begin{cases} b_{i,1}b_{i,2} & \text{where } b_{i,1} \in R, b_{i,2} \in S \text{ if } a_i \in RS \\ b_{i_1} & \text{where } b_{i,1} \in R \text{ if } a_i \in \mathcal{L}(R) \end{cases}$$

We show that $w \in \mathcal{L}(R(SR+R)^*)$ by considering an alternate decomposition of w. Note that $b_{1,1} \in R$. If a_i has block $b_{i,2}$, then $b_{i,2}b_{i+1,1} \in \mathcal{L}(SR)$ remark $b_{i+1,1}$ exists since $i \in [n-1]$. Thus $w \in \mathcal{L}(R(SR+R)^*)$ demonstrating that $(RS+R)^*R \equiv R(SR+R)^*$.

Part (4) [4 MARKS]

Prove or disprove the following statement: for every regular expression R, there exists a FA M such that $\mathcal{L}(R) = \mathcal{L}(M)$. Note: even if you find the proof of this somewhere else, please try to write up the proof in your own words. Just citing the proof is NOT enough.

Solution: This statement is true. Observe that a regular expression is defined recursively, so it is natural that We will prove this using structural induction. Our predicate is

$$P(R) :=$$
 "there exists an FA M such that $\mathcal{L}(R) = \mathcal{L}(M)$ ".

We will show that P(R) is true for all regular expressions R.

Suppose the underlying alphabet is In the base case we need to come up with DFAs M_0, M_1, M_2 for regular expressions $R_0 = \emptyset$, $R_1 = \{\epsilon\}$, and $R_2 = \{a\}$. These can be seen in Figure 1, Figure 2, and 3 respectively.

Figure 1: M_0 .

Figure 2: M_1 .

Figure 3: M_2 .

Next, for the inductive hypothesis, we will suppose that for regular expressions S, T, P(S) and P(T) are true. That is there exists finite automaton M_S and M_T such that $\mathcal{L}(S) = \mathcal{L}(M_S)$ and $\mathcal{L}(T) = \mathcal{L}(M_T)$. We will show that for regular expressions S + T, ST, and S^* we can find equivalent FA $M_{(S+T)}$, $M_{(ST)}$, and M_{S^*} . You might find it easer to use the formal definition of finite automaton. Suppose M_S and M_T are defined as follows:

$$M_S = (Q_S, \Sigma, \delta_S, b_S, F_S)$$
 and $M_T = (Q_T, \Sigma, \delta_T, b_T, F_T)$.

 $M_{(S+T)}$: Let $\delta_+: (Q_S \cup Q_T \cup \{q_0\}) \times \Sigma \to (Q_S \cup Q_T)$ such that

$$\delta_{+}(q, a) = \begin{cases} \{b_S, b_T\} & \text{if } q = q_0\\ \delta_s(q, a) & \text{if } q \in Q_S\\ \delta_t(q, a) & \text{if } q \in Q_T \end{cases}$$

Then $M_{(S+T)}$ can be defined as

$$M_{(S+T)} = (Q_S \cup Q_T \cup \{q_0\}, \Sigma, \delta_+, q_0, F_S \cup F_T).$$

See Figure 4 for the state diagram.

 $M_{(ST)}$: Let $\delta_{\cdot}: (Q_S \cup Q_T) \times \Sigma \to (Q_S \cup Q_T)$ such that

$$\delta(q, a) = \begin{cases} b_T & \text{if } q = f_S \\ \delta_s(q, a) & \text{if } q \in Q_S \\ \delta_t(q, a) & \text{if } q \in Q_T \end{cases}$$

Due: August 3rd, 2018

Then ${\cal M}_{(ST)}$ can be defined as

$$M_{(ST)} = (Q_S \cup Q_T, \Sigma, \delta_{\cdot}, b_S, F_T).$$

See Figure 5 for the state diagram.

 M_{S^*} : Let $\delta_*: (Q_S \cup \{q_0\}) \times \Sigma \to (Q_S \cup \{q_0\})$ such that

$$\delta_*(q, a) = \begin{cases} q_0 & \text{if } q = f_S, \text{ and} \\ \delta_s(q, a) & \text{if } q \in Q_S \end{cases}$$

Then M_{S^*} can be defined as

$$M_{S^*} = (Q_S \cup \{q_0\}, \Sigma, \delta_*, q_0, F_S).$$

See Figure 6 for the state diagram.

Figure 4: $M_{(S+T)}$.

Figure 5: $M_{(ST)}$.

Figure 6: M_{S^*} .

Note: this is actually part of the proof to show the equivalence of regular expressions and finite automaton. In particular we will show DFA \rightarrow regular expression \rightarrow NDFA \rightarrow DFA. If you see that a student did not do this part well, can you please put a comment to the effect of: please look at the solution quide, this is important for an in-class proof.

Due: August 3rd, 2018

Question 4. [16 MARKS]

In the following, for each language L over the alphabet $\Sigma = \{0, 1\}$ construct a regular expression R and a DFA M such that $\mathcal{L}(R) = \mathcal{L}(M) = L$. Prove the correctness of your DFA.

Part (1) [8 MARKS]

Let $L_1 = \{x \in \{0,1\}^* : \text{ the first and last charactes of } x \text{ are the same} \}$. Note: $\epsilon \notin L$ since ϵ does not have a first or last character.

Solution: Let R_1 be the following regular expression:

$$R_1 = 0 + 1 + 0(0+1)^*0 + 1(0+1)^*1$$

and M_1 be the DFA shown in Figure 7. We claim that $L_1 = \mathcal{L}(M_1)$.

Figure 7: Solution DFA for L_1 .

Claim 1. $L_1 = \mathcal{L}(M_1)$.

Proof. We will prove the claim by structural induction. First we definite our predicate:

$$P(x) := \delta^*(q_0, x) = \begin{cases} q_0, & \text{if } x = \epsilon \\ q_1, & \text{if } x \text{ starts and ends with a one} \\ q_2, & \text{if } x \text{ starts and ends with a zero} \\ q_3, & \text{if } x \text{ starts with a one and ends with a zero} \\ q_4, & \text{if } x \text{ starts with a zero and ends with a one} \end{cases}$$

We claim that P(x) is true for all $x \in \{0, 1\}^*$.

In the base case $x = \epsilon$. By inspection, P(x) holds. In the Inductive step x = ya for some $y \in \{0, 1\}^*$ and $a \in \{0, 1\}$. We assume that P(y) holds. There are two cases to consider:

a=0 We need to consider every possible value of $\delta^*(q_0,y)$. Observe that

$$\delta^*(q_0, x) = \delta(\delta^*(q_0, y), 0) = \begin{cases} q_2, & \text{if } \delta^*(q_0, y) \in \{q_0, q_2, q_4\} \\ q_3, & \text{if } \delta^*(q_0, y) \in \{q_1, q_3\} \end{cases}$$

By the induction hypothesis we know that $y \in \{q_0, q_2, q_4\}$ if and only if $y = \epsilon$ or y starts with a 0 and $y \in \{q_1, q_3\}$ if and only if y starts with a 1. Thus $\delta^*(q_0, x) \in q_2$ if and only if x starts with a zero and ends in a zero and $\delta^*(q_0, x) \in q_3$ if and only if x starts with a one (and ends in a zero).

a=1 Again we need to consider all possible values of $\delta^*(q_0,y)$. The details will be omitted since this is similar to the previous case.

Since the state invariants are disjoint and exhaustive, we have shown that $L_1 = \mathcal{L}(M_1)$ as required.

Part (2) [8 MARKS]

Let a *block* be a maximal sequence of identical characters in a finite string. For example, the string 0010101111 can be broken up into blocks: 00, 1, 0, 1, 0, 1111. Let $L_2 = \{x \in \{0,1\}^* : x \text{ only contains blocks of length at least three}\}$.

Solution: Let R_2 be the regular expression:

$$R_2 = (000(0)^* + 111(1)^*)^*$$

and M_2 be the DFA shown in Figure 8. We claim that $L_2 = \mathcal{L}(M_2)$.

Claim 2. $L_2 = \mathcal{L}(M_2)$.

Proof. We will prove the claim by structural induction. First we definite our predicate:

$$P(x) := \delta^*(q_0, x) = \begin{cases} q_0, & \text{if } x = \epsilon \\ q_1, & \text{if the last block of } x \text{ consists of one zero} \\ q_2, & \text{if the last block of } x \text{ consists of two zeros} \\ q_3, & \text{if the last block of } x \text{ consists of at least three zeros} \\ q_4, & \text{if the last block of } x \text{ consists of one one} \\ q_5, & \text{if the last block of } x \text{ consists of two ones} \\ q_6, & \text{if the last block of } x \text{ consists of at least three ones} \\ q_6, & \text{otherwise} \end{cases}$$

We claim that P(x) is true for all $x \in \{0, 1\}^*$.

In the base case $x = \epsilon$. By inspection, P(x) holds. In the Inductive step x = ya for some $y \in \{0, 1\}^*$ and $a \in \{0, 1\}$. We assume that P(y) holds. There are two cases to consider:

Figure 8: Solution DFA for L_2 .

a=0 We need to consider every possible value of $\delta^*(q_0,y)$. Observe that

$$\delta^*(q_0, x) = \delta(\delta^*(q_0, y), 0) = \begin{cases} q_1, & \text{if } \delta^*(q_0, y) \in \{q_0, q_6\} \\ q_2, & \text{if } \delta^*(q_0, y) = q_1 \\ q_3, & \text{if } \delta^*(q_0, y) \in \{q_2, q_3\} \\ g, & \text{otherwise} \end{cases}$$

By the induction hypothesis $y \in \{q_0, q_6\}$ if and only if $y = \epsilon$ or y ends with a block of at least three 0. Thus x = y0 in this case is a string whose only/last block consists of one 0. Similarly $\delta^*(q_0, y) = q_1$ and $\delta^*(q_0, y) \in \{q_2, q_3\}$ if and only if y ends with a block of one 0, two 0s and at least three 0s respectively. Thus x = y0 ends with a block of two 0s or at least three 0s respectively. In all other cases x = y0 will either contain a block of 1s of size at most two or a block of 0s of size at most two.

a=1 This is identical to the previous case except that all instances of one and zero swap places.

Since the state invariants are disjoint and exhaustive (garbage state g covers all cases not previously specified), we have shown that $L_2 = \mathcal{L}(M_2)$ as required.