Chapitre 3 : Polynômes et Fractions rationnelles

1 Rappels et compléments sur les polynômes

Définition :

Une fonction f est dite **polynomiale** s'il existe un entier $n \ge 0$ et des nombres réels a_0, a_1, \ldots, a_n tels que, pour tout $x \in \mathbb{R}$ nous ayons

$$f(x) = a_0 + a_1 x + \ldots + a_n x^n .$$

Proposition:

Soit f une fonction polynomiale. Soit (a_0, a_1, \ldots, a_n) et (b_0, b_1, \ldots, b_n) deux familles de nombres réels telles que nous ayons pour tout $x \in \mathbb{R}$ $f(x) = a_0 + a_1x + \ldots + a_nx^n$ et $f(x) = b_0 + b_1x + \ldots + b_nx^n$. Alors

$$a_0 = b_0, a_1 = b_1, \dots, a_n = b_n$$
.

Les nombres a_k sont bien déterminés, et sont appelés les **coefficients** de la fonction polynomiale f.

Cependant l'écriture de f n'est pas unique, car nous pouvons toujours par exemple rajouter à l'expression $f(x) = a_0 + a_1 x + \dots a_n x^n$ le terme $0.x^{n+1}$. Nous conviendrons donc que le coefficient de x^k dans f est a_k , si l'indice k figure explicitement dans l'écriture de f, et 0 sinon. Ainsi les coefficients de la fonction polynomiale f forment une suite infinie $(a_0, a_1, \dots, a_k, \dots)$ dont tous les termes sont nuls à partir d'un certain rang.

$D\'{e}finition:$

Nous appelons **polynôme sur** \mathbb{R} la donnée d'une suite de nombres <u>réels</u> (a_0, a_1, \ldots) telle que $a_k = 0$ à partir d'un certain rang.

Nous voyons que nous pouvons sans peine remplacer dans la définition les nombres réels par des nombres complexes et définir ainsi des polynômes sur \mathbb{C} .

Extension:

Nous appelons **polynôme sur** \mathbb{C} la donnée d'une suite de nombres <u>complexes</u> (a_0, a_1, \ldots) telle que $a_k = 0$ à partir d'un certain rang. À tout polynôme sur \mathbb{C} , $(a_0, a_1, \ldots a_n)$, nous pouvons associer la fonction polynomiale définie pour tout $z \in \mathbb{C}$ par

$$f(z) = a_0 + a_1 z + \ldots + a_n z^n .$$

Définitions :

- L'ensemble des polynômes à coefficients réels est noté $\mathbb{R}[X]$.
- L'ensemble des polynômes à coefficients complexes est noté $\mathbb{C}[X]$.
- Un polynôme sera désigné (en règle générale) par une lettre majuscule (P par exemple).
- Les nombres $a_0, a_1, \ldots, a_k, \ldots$ sont appelés les **coefficients** du polynôme P.

Proposition:

Deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients.

Remarque:

Dans ce qui suit l'ensemble de nombres considérés sera soit l'ensemble $\mathbb R$ des nombres réels, soit l'ensemble $\mathbb C$ des nombres complexes. Sauf lorsque la situation l'exige, nous ne préciserons pas la

nature des nombres utilisés et nous noterons par K cet ensemble (i.e. $K=\mathbb{R}$ ou \mathbb{C}). Ainsi K[X] désignera indifféremment $\mathbb{R}[X]$ ou $\mathbb{C}[X]$.

Définitions :

Soit $a \in K$. Le polynôme associé à la suite $(a, 0, 0, \ldots, 0, \ldots)$ s'appelle le **polynôme constant** égal à a. Nous le désignons simplement par la lettre a. La fonction polynomiale qui lui est associée est la fonction constante égale en tout point à a. En particulier 0 désigne le polynôme nul (dont tous les coefficients sont nuls).

Le polynôme correspondant à la suite $(0,1,0,\ldots,0,\ldots)$ est noté X. La fonction polynomiale correspondante est la fonction définie par X(x)=x pour tout $x\in K$.

Définitions :

- Soit P un polynôme, différent du polynôme nul alors le **degré** de P est défini comme le plus grand entier k tel que le coefficient a_k soit non nul.
- Si P est le polynôme nul, par convention son degré vaut $-\infty$.
- Le degré d'un polynôme P est noté deg P.

Exemples:

- un polynôme constant (non nul) est de degré 0.
- le polynôme X est de degré 1.

2 Opérations sur les polynômes

2.1 Somme de deux polynômes

Soit P et Q deux polynômes, soient $(a_0, \ldots, a_k \ldots)$ les coefficients de P, et $(b_0, b_1, \ldots, b_k, \ldots)$ les coefficients de Q, alors le polynôme de coefficients $(a_0 + b_0, a_1 + b_1, \ldots, a_k + b_k, \ldots)$ est appelé le **polynôme somme** de P et Q. Il est noté P + Q.

Remarque:

— La définition est faite de sorte que la fonction polynomiale associée à P + Q soit la somme des fonctions polynomiales associées à P et Q, c'est-à-dire que nous avons

$$\forall x \in K \qquad (P+Q)(x) = P(x) + Q(x) .$$

— La somme des polynômes satisfait aux règles habituelles du calcul.

Proposition:

Soient P et Q deux polynômes. Alors

$$\boxed{\deg(P+Q) \leq \max(\deg P, \deg Q)}$$

Nous avons égalité si et seulement si une des deux situations suivantes a lieu

- $\operatorname{deg} P \neq \operatorname{deg} Q$,
- $-- \deg P = \deg Q = p \text{ et } a_p + b_p \neq 0.$

Remarque:

La formule ci-dessus s'applique également lorsque P ou Q est le polynôme 0.

2.2 Produit de deux polynômes

Soient P de coefficients $(a_0, a_1, \ldots, a_k \ldots)$ et Q de coefficients $(b_0, b_1, \ldots, b_k, \ldots)$ deux polynômes. Nous posons

$$c_0 = a_0 b_0,$$

$$c_1 = a_0 b_1 + a_1 b_0,$$

$$\vdots$$

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots + a_{k-1} b_1 + a_k b_0,$$

$$\vdots$$

Alors la suite $(c_0, c_1, \ldots, c_k, \ldots)$ ainsi définie est nulle à partir d'un certain rang. Elle définit ainsi un polynôme appelé le **polynôme produit de** P **et** Q. Il est noté PQ.

Remarque:

— là encore, la définition du produit est faite pour que la fonction polynomiale associée au produit soit le produit des fonctions polynomiales. En effet, nous vérifions que pour tout $x \in K$, nous avons

$$P(x)Q(x) = (a_0 + a_1x + a_2x^2 + \dots + a_nx^n)(b_0 + b_1x + b_2x^2 + \dots + a_mx^m)$$
$$= c_0 + c_1x + c_2x^2 + \dots + c_{m+n}x^{m+n}$$

— Le produit des polynômes satisfait aux règles habituelles du calcul.

Proposition:

Soient P et Q deux polynômes. Alors

$$deg(PQ) = deg P + deg Q.$$

Corollaire

Soient P et Q deux polynômes. Alors

$$PQ = 0$$
 si et seulement si $P = 0$ ou $Q = 0$.

Corollaire (Règle de simplification)

Soient P, Q_1, Q_2 trois polynômes.

Si
$$(P \neq 0 \text{ et } PQ_1 = PQ_2) \text{ alors } Q_1 = Q_2.$$

Notation usuelle

- Le polynôme XX (produit de X par X) est noté X^2 . C'est le polynôme dont les coefficients sont $(0,0,1,0,\ldots)$.
- Nous définissons par récurrence sur l'entier n le polynôme X^n par la formule $X^n = X^{n-1}X$. Les coefficients du polynôme X^n sont tous nuls sauf le n+1-ème (attention au décalage) qui vaut 1.
- Le polynôme P de coefficients $(a_0, a_1, \ldots a_n, 0, 0, \ldots)$ est donc égal au polynôme $a_0 + a_1X + a_2X^2 + \ldots a_nX^n$. C'est cette écriture qui est la plus souvent utilisée en pratique. On écrira

$$P(X) = a_0 + a_1 X + a_2 X^2 \dots + a_n X^n$$

ou encore

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

Rappelons que la fonction polynomiale associée à P s'écrit

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_o$$

2.3 Polynôme dérivé

Soit $P(X) = a_0 + a_1 X + \dots + a_n X^n$ un polynôme. Nous appelons **polynôme dérivé de** P le polynôme (noté P') défini par

$$P'(X) = \begin{cases} a_1 + 2a_2X^2 + \ldots + (n-1)a_{n-1}X^{n-2} + na_nX^{n-1} & \text{si} \quad n \ge 1\\ 0 & \text{si} \quad n \le 0 \end{cases}$$

Remarque:

Cette définition est faite pour que, là encore, la fonction polynomiale associée à P' soit la dérivée (au sens des fonctions) de la fonction polynomiale associée à P.

Nous constatons donc que

$$deg P' = \begin{cases} deg P - 1 & si & deg P \ge 1 \\ -\infty & si & deg P \le 0 \end{cases}$$

Proposition:

Soient P et Q deux polynômes. Alors

i)
$$(P+Q)' = P' + Q'$$

ii) $(PQ)' = P'Q + PQ'$

Démonstration

Vérifions la deuxième formule. Soit

$$P(X) = a_0 + a_1 X + \dots a_n X^n$$
$$Q(X) = b_0 + b_1 X + \dots b_m X^m$$

Nous avons

$$(PQ)(X) = c_0 + c_1 X + \dots c_{m+n} X^{m+n}$$

avec

$$c_k = a_0 b_k + a_1 b_{k-1} + \dots a_{k-1} b_1 + a_k b_0$$

de sorte que

$$(PQ)'(X) = c_1 + 2c_2X + \dots + (k+1)c_{k+1}X^k + \dots + (n+m)c_{n+m}X^{n+m-1}$$

Par ailleurs

$$P'(X) = a_1 + 2a_2X + \ldots + na_nX^{n-1}.$$

de sorte que

$$P'(X)Q(X) = d_0 + \ldots + d_k X^k + \ldots d_{n-1+m} X^{n+m-1}$$

avec

$$d_k = a_1b_k + 2a_2b_{k-1} + \ldots + (k+1)a_{k+1}b_0.$$

De même

$$P(X)Q'(X) = e_0 + e_1X + \dots + e_kX^k + \dots + e_{n+m-1}X^{n+m-1}$$

avec

$$e_k = a_0(k+1)b_{k+1} + a_1kb_k + \ldots + a_kb_1$$
.

Par suite, le coefficient de X^k dans le polynôme P'Q + PQ' est égal à

$$d_k + e_k = (k+1) \Big(a_0 b_{k+1} + a_1 b_k + \ldots + a_{k+1} b_0 \Big) = (k+1) c_{k+1}$$
.

D'où l'égalité (PQ)' = P'Q + PQ' par comparaison des coefficients.

Remarque:

La formule pour la dérivée d'un produit de polynômes est, comme nous pouvions nous y attendre la même que pour la dérivation d'un produit de deux fonctions.

Nous pouvons maintenant définir par récurrence les dérivées d'ordre supérieur d'un polynôme. La **dérivée seconde** d'un polynôme P (notée P'') est par définition la dérivée du polynôme P', c'est-à-dire P'' = (P')', et plus généralement **la dérivée d'ordre** k (notée $P^{(k)}$) est définie par récurrence sur l'entier k par la formule $P^{(k)} = (P^{(k-1)})'$.

Exemple : Si $P(X) = X^n$ alors

$$P^{(k)}(X) = \begin{cases} n(n-1)\cdots(n-k+1)X^{n-k} & \text{si } 1 \le k \le n, \\ 0 & \text{si } k > n. \end{cases}$$

Il existe une formule, due à Leibnitz pour calculer la dérivée d'ordre quelconque d'un produit de polynômes.

Théorème : Formule de Leibnitz

Soient P et Q deux polynômes, et n un entier. La dérivée d'ordre n de PQ est donnée par

$$(PQ)^{(n)} = P^{(n)}Q + nP^{(n-1)}Q' + \dots + C_n^k P^{(n-k)}Q^{(k)} + \dots + PQ^{(n)}.$$

Démonstration

Nous allons démontrer cette formule par récurrence sur l'entier n.

Elle est vraie pour l'entier n = 1, puisqu'elle n'est autre que la formule (PQ)' = P'Q + PQ'. Supposons que la formule ait été démontrée à l'ordre n - 1, et montrons la à l'ordre n. Nous avons

donc par hypothèse

$$(PQ)^{(n-1)} = P^{(n-1)}Q + \ldots + C_{n-1}^k P^{(n-1-k)}Q^{(k)} + \ldots + PQ^{(n-1)}.$$

Dérivons cette formule terme à terme. La dérivée du terme $C_{n-1}^k P^{(n-1-k)}Q^{(k)}$ est

$$C_{n-1}^k P^{(n-k)} Q^{(k)} + C_{n-1}^k P^{(n-k-1)} Q^{(k+1)}$$
.

Lorsque l'on somme toutes ces contributions, le terme $P^{(n-k)}Q^{(k)}$ apparaît deux fois, une fois dans la dérivée de $P^{(n-1-k)}Q^{(k)}$ et une fois dans la dérivée de $P^{(n-k)}Q^{(k-1)}$ avec au total le coefficient

$$C_{n-1}^k + C_{n-1}^{k-1} = C_n^k$$
.

D'où la formule cherchée.

Par exemple, nous voyons que

$$(PQ)'' = P''Q + 2P'Q' + PQ''$$

et que

$$(PQ)^{(3)} = P^{(3)}Q + 3P''Q' + 3P'Q'' + Q^{(3)}P.$$

3 Division euclidienne des polynômes

Lorsque l'on cherche à diviser des polynômes, nous nous heurtons à la même difficulté qu'avec la division des nombres entiers : la division "exacte" n'est pas possible en général. Si on veut diviser 22 (dividende) par 7 (diviseur), le mieux que l'on puisse faire est d'écrire $22 = 7 \times 3 + 1$. Le nombre 3 est appelé le quotient, et le nombre 1 le reste de la division de 22 par 7.

Théorème:

Soit A, B deux polynômes, avec $B \neq 0$. Il existe un **unique** couple de polynômes (Q, R) tels que

$$i) \quad A = BQ + R$$

$$ii) \quad \deg R < \deg B.$$

Le polynôme Q s'appelle le **quotient** et R le **reste** dans la division euclidienne de A par B. Démonstration

Unicité : Montrons d'abord l'unicité du couple (Q, R).

Supposons qu'il y ait un autre couple (Q_1, R_1) qui satisfasse les deux conditions i) et ii).

D'après i), nous avons

$$A = BQ + R = BQ_1 + R_1$$

et donc

$$B(Q - Q_1) = R_1 - R.$$

Supposons que $Q-Q_1$ ne soit pas le polynôme 0 et examinons les degrés des deux membres. Dans le membre de gauche, alors

$$\deg B(Q - Q_1) = \deg B + \deg(Q - Q_1) \ge \deg B.$$

Pour le membre de droite, nous avons

$$\deg(R_1 - R) \le \max(\deg R_1, \deg R_2) < \deg B.$$

Nous obtenons donc

$$\deg B < \deg B$$

ce qui est absurde. La seule possibilité est donc que $Q - Q_1 = 0$, c'est-à-dire que $Q_1 = Q$, et par conséquent aussi $R_1 = R$, ce qui démontre l'unicité.

Existence: Montrons maintenant l'existence d'un tel couple de polynômes.

Pour cela nous utilisons un algorithme, dit algorithme d'Euclide, inspiré de l'algorithme usuel de division des nombres entiers.

Soient

$$A(X) = a_p X^p + a_{p-1} X^{p-1} + \dots + a_1 X + a_0,$$

$$B(X) = b_q X^q + b_{q-1} X^{q-1} + \dots + b_1 X + b_0.$$

Si $\deg A < \deg B$ alors le couple Q = 0 et R = A convient (et c'est le seul possible)

Si deg $A \ge \deg B$ le procédé consiste à multiplier B(X) par un monôme pour faire disparaître le terme de plus haut degré de A(X), puis à réitérer le procédé.

Comme deg $A \ge \deg B$, le polynôme A est donc non nul et $a_p \ne 0$. De même puisque nous avons supposé B non nul $b_q \ne 0$. Nous posons alors

$$Q_1(X) = \frac{a_p}{b_q} X^{p-q}$$

et

$$A_1(X) = A(X) - B(X)Q_1(X).$$

Comme le coefficient dominant de BQ_1 est a_p et $deg(BQ_1) = q + p - q = p$ alors

$$\deg A_1 < \deg A$$
.

Deux cas se présentent : soit $\deg A_1 < \deg B$ et alors nous nous arrêtons, soit $\deg A_1 \ge \deg B$ et alors nous construisons comme précédemment un monôme Q_2 et un polynôme A_2 tels que

$$A_2(X) = A_1(X) - B(X)Q_2(X)$$
 et $\deg A_2 < \deg A_1$.

Dans ce cas deux nouveaux cas se présentent soit soit deg $A_2 < \deg B$ et alors nous nous arrêtons, soit deg $A_2 \ge \deg B \dots$ et ainsi de suite.

Par construction, nous avons

$$\deg A_{i+1} < \deg A_i, \quad \forall i \ge 1,$$

par conséquent nous finirons obligatoirement par arriver à une égalité

$$A_r(X) = A_{r-1}(X) - B(X)Q_r(X)$$
 avec $\deg A_r < \deg B$.

En sommant les égalités, nous obtenons alors

$$A - B(Q_1 + Q_2 + \dots + Q_r) = A_r.$$

Par conséquent (Q, R) avec $Q = Q_1 + Q_2 + \cdots + Q_r$ et $R = A_r$ est un couple qui vérifie les relations i) et ii) du théorème.

Exemple : Mettons en oeuvre le principe de cet algorithme sur un exemple. Effectuons la division euclidienne du polynôme $A(X) = 2X^3 - X^2 + 4X$ par le polynôme $B(X) = X^2 + 2X + 2$. 1ère étape

Comme $\deg A_1 \ge \deg B$ nous recommençons 2ème étape

Comme $\deg A_2 < \deg B$ nous pouvons arrêter l'algorithme. Nous obtenons

Finalement, nous avons

$$2X^3 - X^2 + 4 = (X^2 + 2X + 2)(2X - 5) + (6X + 14).$$

Soit A un polynôme, et B un polynôme non nul. Nous disons que B divise A si le reste de la division de A par B est nul, c'est-à-dire encore s'il existe un polynôme Q tel que A = BQ.

Le fait que B divise A est souvent noté B|A. Avec cette notation, nous voyons facilement que si $B|A_1$ et $B|A_2$, alors $B|(A_1 + A_2)$. De même, si B|C, et C|A, alors B|A.

Il est important de comprendre qu'il est parfois possible de déterminer le reste d'une division de polynômes sans appliquer l'algorithme de division. L'exercice résolu suivant nous en donne un exemple.

Exercice résolu :. Soit n un entier supérieur ou égal à 2. Déterminer le reste de la division de $X^n + X + 1$ par $X^2 - 1$.

Comme n n'est pas explicitement connu, il est impossible de réellement écrire l'algorithme de division. Mais écrivons a priori l'identité de division. Le reste est un polynôme de degré inférieur ou égal à 1, donc de la forme aX + b, où a et b sont des nombres réels à déterminer. L'identité de division s'écrit

$$X^{n} + X + 1 = (X^{2} - 1)Q(X) + aX + b.$$

Dans cette égalité de polynômes, faisons X = 1. Nous obtenons la relation nécessaire

$$3 = a + b$$
.

Faisons maintenant X = -1, nous obtenons une autre relation nécessaire

$$(-1)^n = b - a.$$

En combinant les deux relations obtenues, nous voyons que nécessairement

$$a = \frac{3 - (-1)^n}{2} = \begin{cases} 1 & \text{si } n \text{ pair} \\ 2 & \text{si } n \text{ impair} \end{cases}$$

$$b = \frac{3 + (-1)^n}{2} = \begin{cases} 2 & \text{si } n \text{ pair} \\ 1 & \text{si } n \text{ impair} \end{cases}$$

Il est possible de généraliser l'exemple précédent par le résultat suivant :

Proposition:

Soient P un polynôme et $(\alpha, \beta) \in K$, $\alpha \neq \beta$.

Le reste de la division euclidienne de P par le polynôme $(X - \alpha)(X - \beta)$ est

$$R(X) = \frac{P(\alpha)(X - \beta) - P(\beta)(X - \alpha)}{\alpha - \beta}.$$

Le reste de la division euclidienne de P par le polynôme $(X - \alpha)^2$ est

$$R(X) = P'(\alpha)(X - \alpha) + P(\alpha)$$

Démonstration

Dans les deux cas le reste est un polynôme de degré inférieur ou égal à 1, donc de la forme aX + b, où a et b sont des nombres à déterminer.

1er cas

L'identité de division s'écrit

$$P(X) = Q(X)(X - \alpha)(X - \beta) + aX + b.$$

Dans cette égalité de polynômes, faisons $X = \alpha$ et $X = \beta$. Nous obtenons ainsi les relations

$$\begin{cases} P(\alpha) = a\alpha + b \\ P(\beta) = a\beta + b \end{cases}$$

La résolution de ce système linéaire de deux équations à deux inconnues (a et b) nous donne le résultat annoncé.

2ème cas

L'identité de division s'écrit

$$P(X) = Q(X)(X - \alpha)^2 + aX + b.$$

Dans cette égalité de polynômes, faisons $X=\alpha.$ Nous obtenons une première relation

$$P(\alpha) = a\alpha + b.$$

Pour déterminer les deux inconnues, il nous faut une seconde relation. Pour obtenir cette seconde relation, nous pouvons dériver l'identité de la division

$$P'(X) = Q'(X)(X - \alpha)^{2} + 2Q(X)(X - \alpha) + a.$$

Faisons maintenant, $X = \alpha$ dans cette égalité et nous obtenons le seconde relation :

$$P'(\alpha) = a.$$

D'où le résultat.

4 Formule de Taylor (pas vraiment au programme...)

Théorème:

Soit P un polynôme de degré n. Nous avons pour tout $a \in K$

$$P(X) = P(a) + \dots + \frac{P^{(k)}(a)}{k!} (X - a)^k + \dots + \frac{P^{(n)}(a)}{n!} (X - a)^n$$

Formule de Taylor

<u>Démonstration</u>

Si P s'écrit

$$P(X) = a_0 + a_1 X + \dots + a_n X^n = \sum_{i=0}^n a_i X^i$$

alors pour tout $0 \le k \le n$ la dérivée k-ième de P est

$$P^{(k)}(X) = \sum_{i=k}^{n} i(i-1)\cdots(i-k+1)a_i X^{i-k}$$
$$= \sum_{i=k}^{n} \frac{i!}{(i-k)!} a_i X^{i-k}.$$

Si nous faisons X = a dans cette égalité, nous obtenons

$$P^{(k)}(a) = \sum_{i=k}^{n} \frac{i!}{(i-k)!} a_i a^{i-k}.$$

Maintenant, à l'aide de la formule du binôme nous avons

$$X^{i} = ((X - a) + a)^{i} = \sum_{k=0}^{i} \frac{i!}{k!(i-k)!} (X - a)^{k} a^{i-k}.$$

Par conséquent

$$P(X) = \sum_{i=0}^{n} a_{i} X^{i}$$

$$= \sum_{i=0}^{n} a_{i} \sum_{k=0}^{i} \frac{i!}{k!(i-k)!} (X-a)^{k} a^{i-k}$$

$$= \sum_{k=0}^{n} \sum_{i=k}^{n} a_{i} \frac{i!}{k!(i-k)!} (X-a)^{k} a^{i-k}$$

$$= \sum_{k=0}^{n} \frac{1}{k!} (X-a)^{k} \sum_{i=k}^{n} a_{i} \frac{i!}{(i-k)!} a^{i-k}$$

$$= \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X-a)^{k}$$

ce qui démontre le résultat.

5 Racines d'un polynôme

Soit P un polynôme et $a \in K$. Nous disons que a est racine de P si le polynôme (X - a) divise P.

Cette définition entièrement algébrique, ne fait pas appel à la fonction polynomiale associée. Toutefois le lien avec la notion classique de racine est facile.

Théorème:

Soit P un polynôme et $a \in K$. Pour que a soit racine de P, il faut et il suffit que P(a) = 0. Démonstration

Supposons que a soit racine de P, c'est-à-dire que le polynôme (X - a) divise P. Il existe donc un polynôme Q tel que l'on ait

$$P(X) = (X - a)Q(X) .$$

Faisons X = a dans cette égalité de polynômes. Il vient P(a) = 0. Donc cette condition est nécessaire.

Réciproquement, supposons que P(a) = 0. Faisons la division de P par X - a. Le reste va être un polynôme de degré strictement inférieur à deg(X - a) = 1, donc le reste est un polynôme constant égal à (disons) r. L'identité de division s'écrit donc

$$P(X) = (X - a)Q(X) + r.$$

Dans cette égalité de polynômes, faisons X = a. Il vient 0 = r, et par conséquent X - a divise P. D'où le théorème.

Théorème:

Soit P un polynôme. Les nombres $a_1, a_2, \ldots a_k$ sont k racines <u>distinctes</u> de P si et seulement si P est divisible par $(X - a_1)(X - a_2) \cdots (X - a_k)$.

Démonstration

Supposons que P soit divisible par $(X-a_1)(X-a_2)\cdots(X-a_k)$, c'est-à-dire qu'il existe un polynôme Q tel que

$$P(X) = (X - a_1)(X - a_2) \cdots (X - a_k)Q(X).$$

Il est immédiat que P est divisible par $(X - a_i)$ pour tout $1 \le i \le k$.

Réciproquement, montrons par une récurrence finie que P est divisible par $(X - a_1)(X - a_2) \cdots (X - a_k)$.

Par définition $(X - a_1)$ divise P.

Soit maintenant i tel que $1 \le i \le k - i$ et supposons par hypothèse de récurrence que $(X - a_1)(X - a_2) \cdots (X - a_i)$ divise P. Il existe donc un polynôme Q_i tel que

$$P(X) = (X - a_1)(X - a_2) \cdots (X - a_i)Q_i(X).$$

Dans cette égalité, nous faisons $X = a_{i+1}$. Il vient alors, comme a_{i+1} est racine de P,

$$0 = P(a_{i+1}) = (a_{i+1} - a_1)(a_{i+1} - a_2) \cdots (a_{i+1} - a_i)Q_i(a_{i+1}).$$

Or, $a_{i+1} - a_j \neq 0$ pour tout $1 \leq j \leq i$, puisque nous avons supposé les racines distinctes. Il en résulte que $Q_i(a_{i+1}) = 0$ et donc a_{i+1} est racine de Q_i d'après le théorème 5. Par conséquent il existe un polynôme Q_{i+1} tel que $Q_i(X) = (X - a_{i+1})Q_{i+1}(X)$ d'où

$$P(X) = (X - a_1)(X - a_2) \cdots (X - a_{i+1})Q_{i+1}(X).$$

Corollaire

Le nombre de racines <u>distinctes</u> d'un polynôme <u>non nul</u> de degré p est au plus p.

Démonstration

Si $a_1, a_2, \dots a_k$ sont k racines distinctes du polynôme P, alors, d'après le théorème 5, il existe un polynôme Q tel que

$$P(X) = (X - a_1)(X - a_2) \cdots (X - a_k)Q(X).$$

Par conséquent

$$\deg P = k + \deg Q$$
.

Comme nous avons supposé le polynôme P non nul, le polynôme Q est lui aussi non nul et son degré est donc positif ou nul. Par conséquent $k \leq \deg P$.

Nous pouvons reformuler ce corollaire et obtenir le résultat suivant qui s'avère parfois très utile lorsque nous souhaitons montrer qu'un polynôme est le polynôme nul.

Corollaire

Corollaire : Un polynôme P dont le nombre de racines distinctes est supérieur ou égal à $\deg P+1$ est nécessairement le polynôme nul.

Soit P un polynôme et a une racine de P. La **multiplicité** de la racine a est le plus grand entier m tel que $(X-a)^m$ divise P.

Soit m un entier. Si $(X-a)^m$ divise P, la multiplicité de a de P est supérieure ou égale à m. Dire que a est racine de multiplicité m revient à dire que $(X-a)^m$ divise P et que $(X-a)^{m+1}$ ne divise pas P.

La multiplicité d'une racine vaut au moins 1.

Si la multiplicité de la racine vaut 1, la racine est dite **simple**, si elle vaut 2 la racine est dite **double**, si elle vaut 3 la racine est dite **triple**, etc···

Proposition:

Soit P un polynôme et soit a une racine de P. La multiplicité de la racine a est égale à l'entier m si et seulement si il existe un polynôme Q tel que

$$P(X) = (X - a)^m Q(X)$$
 avec $Q(a) \neq 0$.

Démonstration

Supposons d'abord que a soit de multiplicité m. Alors d'abord $(X-a)^m$ divise P. Donc il existe un polynôme Q tel que $P(X) = (X-a)^m Q(X)$. Montrons que $Q(a) \neq 0$. Supposons le contraire. Alors Q est divisible par (X-a), et donc nous pouvons écrire $Q(X) = Q_1(X)(X-a)$, ce qui entraîne l'égalité $P(X) = (X-a)^{m+1}Q_1(X)$. Autrement dit $(X-a)^{m+1}$ divise P, et donc la multiplicité de a est au moins m+1, ce qui est contradictoire avec l'hypothèse.

Réciproquement, supposons que $P(X) = (X-a)^m Q(X)$ pour un certain polynôme Q, avec $Q(a) \neq 0$. Alors clairement, $(X-a)^m$ divise P. Supposons que $(X-a)^{m+1}$ divise P, et soit Q_1 le quotient correspondant. Alors nous aurions

$$P(X) = (X - a)^m Q(X) = (X - a)^{m+1} Q_1(X) .$$

En simplifiant par $(X - a)^m$, nous obtenons $Q(X) = (X - a)Q_1(X)$. Faisant X = a dans cette égalité, nous voyons que Q(a) = 0. Contradiction.

Il existe une caractérisation de la multiplicité d'une racine à l'aide des dérivées successives de P au point a, qui est souvent utile en pratique.

Théorème : Caractérisation de la multiplicité d'une racine

Soit P un polynôme. Les trois propriétés suivantes sont équivalentes :

- i) a est racine de multiplicité m du polynôme P.
- ii) $P(a) = 0, P'(a) = 0, \dots, P^{(m-1)}(a) = 0 \text{ et } P^{(m)}(a) \neq 0.$
- iii) P(a) = 0 et a est racine de multiplicité m 1 du polynôme P'.

Démonstration

Montrons d'abord que i) $\Leftrightarrow iii$).

Supposons d'abord que a soit racine de multiplicité m de P. D'après la proposition 5 nous pouvons écrire $P(X) = (X-a)^m Q(X)$, où Q est un polynôme tel que $Q(a) \neq 0$. Par dérivation, nous obtenons

$$P'(X) = m(X - a)^{m-1}Q(X) + (X - a)^{m}Q'(X)$$
$$= (X - a)^{m-1}(mQ(X) + (X - a)Q'(X))$$

Posons S(X) = mQ(X) + (X - a)Q'(X). Nous avons $P'(X) = (X - a)^{m-1}S(X)$, avec $S(a) = mQ(a) \neq 0$. Donc d'après la proposition 5, cela garantit que a est racine d'ordre m-1 de P'. La réciproque est une conséquence facile (quoique assez subtile) de la partie directe. En effet supposons que P(a) = 0, et que a soit racine de multiplicité m-1 de P'. La première condition montre que a est racine de P. Soit μ sa multiplicité. D'après la partie directe du théorème (déjà démontrée) cela implique que a est racine de P' de multiplicité $\mu-1$. Nous en déduisons que $\mu-1=m-1$, et donc $\mu=m$. D'où le résultat.

Montrons maintenant que i) $\Rightarrow ii$) par récurrence sur m.

Le résultat est vrai pour m = 1. En effet si a est racine simple de P, d'après la proposition 5, nous

pouvons écrire P(X) = (X - a)Q(X), avec $Q(a) \neq 0$. Nous avons P(a) = 0. Ensuite P'(X) = Q(X) + (X - a)Q'(X). En faisant X = a dans cette égalité, nous avons P'(a) = Q(a), et donc $P'(a) \neq 0$.

Supposons le résultat vrai pour l'entier m-1, avec $m \geq 2$, et cherchons à le démontrer pour l'entier m.

Supposons donc que a soit racine de multiplicité m de P. Alors d'après iii), a est racine de multiplicité m-1 de P'. D'après l'hypothèse de récurrence, cela entraı̂ne que

$$P'(a) = 0, (P')'(a) = 0, \dots, (P')^{(m-2)}(a) = 0, (P')^{(m-1)}(a) \neq 0$$
.

Mais comme $(P')^{(k)} = P^{(k+1)}$, cela peut s'écrire encore

$$P'(a) = 0, P''(a) = 0, ..., P^{(m-1)}(a) = 0, P^{m}(a) \neq 0$$

et nous pouvons ajouter que P(a) = 0. Ce qui démontre le résultat pour l'entier m.

Montrons enfin que ii) $\Rightarrow i$)

Ceci résulte directement de la formule de Taylor. En effet d'après le théorème 4 nous avons

$$P(X) = P(a) + \dots + \frac{P^{(k)}(a)}{k!} (X - a)^k + \dots + \frac{P^{(n)}(a)}{n!} (X - a)^n.$$

Par conséquent, puisque nous avons supposé que $P(a)=0,\ P'(a)=0,\ldots,\ P^{(m-1)}(a)=0,$ nous obtenons que

$$P(X) = (X - a)^m Q(X)$$

avec

$$Q(X) = \frac{P^{(m)}(a)}{m!} + \frac{P^{(m+1)}(a)}{(m+1)!}(X-a) + \dots + \frac{P^{(n)}(a)}{n!}(X-a)^{m-n}$$

De plus, comme $P^m(a) \neq 0$, nous avons aussi $Q(a) \neq 0$ et nous pouvons conclure à l'aide de la proposition 5.

6 Factorisation des polynômes

6.1 Factorisation des polynômes sur ${\mathbb C}$

Théorème fondamental de l'algèbre :

Soit P un polynôme à coefficients complexes, non constant. Alors P possède au <u>moins</u> une racine complexe.

Ce théorème est un résultat très important, démontré au début du XIXème siècle, et qui porte le nom de **théorème fondamental de l'algèbre**. Sa démonstration ne peut pas vous être présentée cette année, car elle réclame des résultats mathématiques assez profonds. En particulier, il n'y a pas (en général) de "formule" permettant de trouver une telle racine.

Théorème de factorisation sur $\mathbb C$:

Soit P un polynôme à coefficients complexes non constant

$$P(X) = a_n X^n + \dots + a_1 X + a_0, \quad (a_n \neq 0).$$

Alors le polynôme P admet p racines complexes distinctes $(1 \le p \le n) \ z_1, z_2, \dots z_p$, de multiplicités respectives m_1, m_2, \dots, m_p telles que $m_1 + \dots + m_p = n$ et

$$P(X) = a_n(X - z_1)^{m_1}(X - z_2)^{m_2} \dots (X - z_p)^{m_p}.$$

Cette factorisation est unique à l'ordre des facteurs près.

Démonstration

La démonstration se fait par récurrence sur n le degré du polynôme.

Si P est de degré 1 alors il existe deux nombres a_0 et $a_1 \neq 0$ tels que $P(X) = a_1X + a_0$. Il est évident que $\frac{a_0}{a_1}$ est racine simple de P et nous avons

$$P(X) = a_1 \left(X + \frac{a_0}{a_1} \right).$$

Faisons maintenant l'hypothèse de récurrence que le résultat est vrai pour tout polynôme de degré n et montrons qu'il reste vrai pour tout polynôme de degré n + 1.

Soit P un polynôme de degré n+1 de coefficient dominant a_{n+1} . Le théorème 6.1 nous donne l'existence d'une racine α de P. Nous pouvons donc écrire que

$$P(X) = (X - \alpha)Q(X)$$

où Q est un polynôme de degré n de coefficient dominant a_{n+1} . Par hypothèse de récurrence, Q admet p racines complexes distinctes $(1 \le p \le n)$ $z_1, z_2, \ldots z_p$, de multiplicités respectives m_1, m_2, \ldots, m_p telles que $m_1 + \cdots + m_p = n$ et

$$Q(X) = a_{n+1}(X - z_1)^{m_1}(X - z_2)^{m_2} \dots (X - z_p)^{m_p}.$$

Il nous faut maintenant distinguer deux cas, suivant que α est ou n'est pas une des racines de Q. Si $\alpha \neq z_i$ pour tout $1 \leq i \leq p$, alors α est racine simple de P. De plus pour tout $1 \leq i \leq p$, z_i est racine de P d'ordre de multiplicité m_i . Par conséquent P admet p+1 racines distinctes. En posant $z_{p+1} = \alpha$ et $m_{p+1} = 1$ nous obtenons que

$$P(X) = a_{n+1}(X - z_1)^{m_1}(X - z_2)^{m_2} \dots (X - z_p)^{m_p}(X - z_{p+1})^{m_{p+1}}$$

avec $m_1 + \cdots + m_p + m_{p+1} = n + 1$.

S'il existe $1 \le i \le p$ tel que $\alpha = z_i$, alors z_i est une racine de P d'ordre de multiplicité $m'_i = m_i + 1$. De plus pour tout $1 \le j \le p$, $j \ne i$, z_j est racine de P d'ordre de multiplicité $m'_j = m_j$. Par conséquent P admet p racines distinctes et nous avons

$$P(X) = a_{n+1}(X - z_1)^{m'_1}(X - z_2)^{m'_2} \dots (X - z_p)^{m'_p}$$

avec $m'_1 + \dots + m'_p = n + 1$.

Exercice résolu : Factoriser sur \mathbb{C} le polynôme $P(X) = X^6 - 1$.

Les racines de P se déterminent en résolvant l'équation $z^6 - 1 = 0$. Cette équation, équivalant à $z^6 = 1 = e^{i2\pi}$, admet donc les solutions

$$1, e^{i\frac{\pi}{3}}, e^{i\frac{2\pi}{3}}, -1, e^{i\frac{4\pi}{3}}, e^{i\frac{5\pi}{3}}$$
.

Comme $P'(X) = 6X^5$, nous voyons que ces racines sont simples. Nous obtenons donc la factorisation sur $\mathbb C$

$$X^{6} - 1 = (X - 1)(X - e^{i\frac{\pi}{3}})(X - e^{i\frac{2\pi}{3}})(X + 1)(X - e^{i\frac{4\pi}{3}})(X - e^{i\frac{5\pi}{3}})$$

Exemples: $X^4 - 1 = (X - 1)(X + 1)(X + i)(X - i)$, $X^4 + 2X^2 + 1 = (X - i)^2(X + i)^2$, $X^3 - X^2 - X + 1 = (X + 1)(X - 1)^2$.

6.2 Factorisation des polynômes sur \mathbb{R}

Les nombres réels sont un sous-ensemble des nombres complexes. Par conséquent, tout polynôme sur \mathbb{R} peut être regardé comme un polynôme sur \mathbb{C} (il suffit en quelque sorte d'"oublier" que ses coefficients sont réels). Nous pouvons en particulier considérer les racines complexes d'un polynôme à coefficients réels et par suite, le théorème 6.1 de factorisation sur \mathbb{C} s'applique aux polynômes à coefficients réels (voir les exemples ci-dessus).

Néanmoins, il n'est pas satisfaisant de factoriser un polynôme en produit de facteur a priori non réels.

Proposition:

Proposition : Soit P un polynôme à coefficients réels. Soit α une racine complexe de P, de multiplicité m. Alors $\overline{\alpha}$ est aussi racine de P, de multiplicité m.

Remarque:

Si α est une racine réelle, la proposition 6.2 est sans intérêt. Par contre, cette proposition montre que les racines complexes d'un polynôme à coefficients réels se présentent par paires de nombres complexes conjugués.

Attention il n'en est pas de même (en général) si le polynôme P est à coefficients complexes.

<u>Démonstration</u>

Soit

$$P(X) = a_n X^n + \dots + a_1 X + a_0.$$

Montrons en premier lieu que si α est racine de P alors $\overline{\alpha}$ l'est aussi.

Comme α est supposée être racine de P, nous avons

$$a_n\alpha^n + \dots + a_1\alpha + a_0 = 0.$$

En prenant les complexes conjugués et en tenant compte de ce que les a_i sont réels, nous obtenons

$$a_n \overline{\alpha}^n + \dots + a_1 \overline{\alpha} + a_0 = 0$$
,

ce qui montre que $\overline{\alpha}$ est bien racine de P.

Montrons maintenant que ces deux racines ont la même multiplicité. Soit m' la multiplicité de $\overline{\alpha}$. D'après la proposition 5 il existe un polynôme Q tel que

$$P(X) = (X - \overline{\alpha})^{m'} Q(X), \text{ avec } Q(\overline{\alpha}) \neq 0.$$

Le polynôme Q est (en général) à coefficients complexes, et s'écrit

$$Q(X) = b_p X^p + \dots + b_1 X + b_0$$

avec $b_0, b_1, \dots b_p \in \mathbb{C}$.

Introduisons le polynôme \overline{Q} , dont les coefficients sont les complexes conjugués des coefficients de Q, c'est-à-dire

$$\overline{Q}(X) = \overline{b_p}X^p + \dots + \overline{b_1}X + \overline{b_0}.$$

Nous vérifions alors (se rappeler que P est à coefficients réels) que nous avons l'égalité de polynômes

$$P(X) = (X - \alpha)^{m'} \overline{Q}(X), \text{ avec } \overline{Q}(\alpha) \neq 0.$$

Ceci montre que α est de multiplicité m'. Or la multiplicité de α est m. Donc m=m'.

Théorème de factorisation sur $\mathbb R$:

Soit P un polynôme à coefficients <u>réels</u> non constant

$$P(X) = a_n X^n + \dots + a_1 X + a_0, \quad (a_n \neq 0).$$

Soient $\alpha_1, \ldots, \alpha_p$ ses racines réelles de multiplicités respectives m_1, \ldots, m_p et $(z_1\overline{z}_1), \ldots, (z_q\overline{z}_q)$ ses paires de racines complexes conjuguées de multiplicités respectives n_1, \ldots, n_q . Alors

$$P(X) = a_n (X - \alpha_1)^{m_1} \dots (X - \alpha_p)^{m_p} (X^2 - 2\operatorname{Re}(z_1)X + |z_1|^2)^{n_1} \dots (X^2 - 2\operatorname{Re}(z_q)X + |z_q|^2)^{n_q}.$$

Cette factorisation est unique à l'ordre des facteurs près.

Démonstration

On factorise le polynôme P sur \mathbb{C} , puis nous observons que

$$(X - zj)(X - \overline{zj}) = X2 - 2\operatorname{Re}(zj)X + |zj|2$$

est un polynôme à coefficients réels. D'où le résultat.

Corollaire

Tout polynôme à coefficient réels se factorise en produit du coefficient dominant, de facteurs réels de degré 1 (de la forme $(X - \alpha)$) et de facteurs réels de degré 2 sans racines réelles (de la forme $(X^2 + aX + b)$ avec $a^2 - 4b < 0$).

Exercice résolu : Factoriser sur \mathbb{R} le polynôme $P(X) = X^6 - 1$.

Nous utilisons le résultat de l'exercice précédent :

$$X^{6} - 1 = (X - 1)(X - e^{i\frac{\pi}{3}})(X - e^{i\frac{2\pi}{3}})(X + 1)(X - e^{i\frac{4\pi}{3}})(X - e^{i\frac{5\pi}{3}}).$$

Nous remarquons que

$$e^{i\frac{4\pi}{3}} = e^{i\frac{-2\pi}{3}} = e^{i\frac{2\pi}{3}},$$
$$e^{i\frac{5\pi}{3}} = e^{i\frac{-\pi}{3}} = e^{i\frac{\pi}{3}}.$$

Ce polynôme admet donc deux racines réelles distinctes de multiplicité 1 ainsi que deux paires de racines complexes conjuguées de multiplicité 1.

Rappelons que

$$\operatorname{Re}(e^{i\frac{2\pi}{3}}) = -\frac{1}{2}, \quad |e^{i\frac{2\pi}{3}}| = 1,$$

$$\operatorname{Re}(e^{i\frac{\pi}{3}}) = \frac{1}{2}, \quad |e^{i\frac{\pi}{3}}| = 1.$$

Nous obtenons ainsi la factorisation sur \mathbb{R}

$$X^{6} - 1 = (X - 1)(X + 1)(X^{2} - X + 1)(X^{2} + X + 1).$$

7 Fractions rationnelles

Une fraction rationnelle est par définition le quotient de deux polynômes

$$R(x) = \frac{P(x)}{Q(x)}$$

où le dénominateur Q est supposé différent du polynôme 0. Nous nous assurerons en pratique que l'expression est réduite, c'est-à-dire que P et Q ne sont pas tous deux divisibles par un même polynôme (de degré supérieur ou égal à 1), auquel cas nous effectuerions la simplification. Nous considérerons R(x) comme une fonction définie sur \mathbb{R} privé des racines réelles éventuelles du polynôme Q.

Décomposition en éléments simples d'une fraction rationnelle

La décomposition en éléments simples admet deux versions, l'une sur \mathbb{C} , l'autre sur \mathbb{R} . Exposons d'abord la version sur \mathbb{C} .

Définition :

On appelle élément simple (sur C) toute fraction rationnelle qui peut s'écrire sous la forme $\frac{A}{(x-a)^m}$, où a et A sont des nombres complexes et m un entier supérieur ou égal à 1.

Exemple : $\frac{2}{x+i}$, $\frac{1}{(x-1)^2}$ sont des éléments simples (sur \mathbb{C}).

Théorème .

Soit $R(x) = \frac{P(x)}{O(x)}$ une fraction rationnelle réduite à coefficients complexes. Alors R peut s'écrire de façon unique comme somme d'un polynôme $S \in \mathbb{C}[X]$ et d'éléments simples sur \mathbb{C} . Plus précisément, S est le quotient de la division euclidienne de P par Q, et si

$$Q(x) = (x - a_1)^{m_1} (x - a_2)^{m_2} \dots (x - a_r)^{m_r}$$

est la factorisation (sur \mathbb{C}) de Q, alors, il existe une (unique) famille de complexes $A_{j,m}, 1 \leq j \leq 1$ $r, 1 \leq m \leq m_i$ telles que

$$R(x) = S(x)$$

$$+ \frac{A_{1,m_1}}{(x-a_1)^{m_1}} + \frac{A_{1,m_1-1}}{(x-a_1)^{(m_1-1)}} + \dots + \frac{A_{1,1}}{(x-a_1)}$$

$$+ \frac{A_{2,m_2}}{(x-a_2)^{m_2}} + \frac{A_{2,m_2-1}}{(x-a_2)^{(m_2-1)}} + \dots + \frac{A_{2,1}}{(x-a_2)}$$

$$\vdots$$

$$+ \frac{A_{r,m_r}}{(x-a_r)^{m_r}} + \frac{A_{r,m_r-1}}{(x-a_r)^{(m_r-1)}} + \dots + \frac{A_{r,1}}{(x-a_r)} .$$

Remarque : Le nombre de constantes $A_{j,m}$ est $m_1 + m_2 + \ldots + m_r = \deg Q$. La démonstration de ce théorème ne sera pas exposée ici.

Donnons maintenant la version réelle du même résultat.

$D\acute{e}finition:$

On appelle élément simple sur R toute fraction rationnelle qui peut s'écrire sous l'une des deux formes suivantes:

$$\frac{A}{(x-a)^m} \quad ou \quad \frac{Bx+C}{(x^2+px+q)^n}$$

où a, p, q, A, B, C sont des nombres réels avec $p^2 - 4q < 0$, m et n des entiers positifs. Les éléments de la forme $\frac{A}{(x-a)^m}$ sont dits de première espèce, ceux de la forme $\frac{Bx + C}{(x^2 + px + q)^n}$ sont dits de deuxième espèce

 $\text{Exemple}: \frac{1}{x+4}, \frac{3}{x^2+x+1}, \frac{x}{(x^2+1)^2} \text{ sont des \'el\'ements simples sur } \mathbb{R}. \text{ Par contre } \frac{1}{x^2-1}, \frac{x^2}{x^2-x+1}$ ne sont pas des éléments simples.

Théorème:

Soit $R(x) = \frac{P(x)}{Q(x)}$ une fraction rationnelle réduite à coefficients réels. Alors R peut s'écrire de façon unique comme somme d'un polynôme $S \in \mathbb{R}[X]$ et d'éléments simples sur \mathbb{R} . Plus précisément, Sest le quotient de la division euclidienne de P par Q, et si

$$Q(x) = (x - a_1)^{m_1} \dots (x - a_r)^{m_r} (x^2 + p_1 x + q_1)^{n_1} \dots (x^2 + p_s x + q_s)^{n_s}$$

est la factorisation de Q sur \mathbb{R} , alors il existe des constantes (uniquement déterminées) $A_{j,m}, 1 \leq j \leq r, 1 \leq m \leq m_j, B_{k,n}$ et $C_{k,n}, 1 \leq k \leq s, 1 \leq n \leq n_j$ telles que

$$\begin{array}{lll} R(x) & = & S(x) \\ & + & \frac{A_{1,m_1}}{(x-a_1)^{m_1}} + \frac{A_{1,m_1-1}}{(x-a_1)^{(m_1-1)}} + \ldots + \frac{A_{1,1}}{(x-a_1)} \\ & + & \frac{A_{2,m_2}}{(x-a_2)^{m_2}} + \frac{A_{2,m_2-1}}{(x-a_2)^{(m_2-1)}} + \ldots + \frac{A_{2,1}}{(x-a_2)} \\ & \vdots \\ & + & \frac{A_{r,m_r}}{(x-a_r)^{m_r}} + \frac{A_{r,m_r-1}}{(x-a_r)^{(m_r-1)}} + \ldots + \frac{A_{r,1}}{(x-a_r)} \\ & + & \frac{B_{1,n_1}x + C_{1,n_1}}{(x^2 + p_1x + q_1)^{n_1}} + \frac{B_{1,n_1-1}x + C_{1,n_1-1}}{(x^2 + p_1x + q_1)^{(n_1-1)}} + \ldots + \frac{B_{1,1}x + C_{1,1}}{(x^2 + p_1x + q_1)} \\ & \vdots \\ & + & \frac{B_{s,n_s}x + C_{s,n_s}}{(x^2 + p_sx + q_s)^{n_s}} + \frac{B_{s,n_s-1}x + C_{s,n_s-1}}{(x^2 + p_sx + q_s)^{(n_s-1)}} + \ldots + \frac{B_{s,1}x + C_{s,1}}{(x^2 + p_sx + q_s)} \,. \end{array}$$

Remarque:

Le nombre de constantes $A_{i,m}, B_{k,n}, C_{k,n}$ vaut

$$m_1 + m_2 + \ldots + m_r + 2n_1 + 2n_2 + \ldots + 2n_s = \deg Q$$
.

Comment en pratique trouver ces décompositions?

On vérifie d'abord que le degré du numérateur P est strictement plus petit que le degré du dénominateur Q (sinon nous effectuons la division euclidienne). Ensuite nous factorisons Q sur \mathbb{R} (ou sur \mathbb{C} suivant le cas). Nous écrivons alors a priori une décomposition en éléments simples, avec des constantes inconnues $A_{j,m}$, $B_{k,n}$ et $C_{k,n}$. Nous remarquons qu'il y a autant de constantes inconnues que le degré de Q. Nous obtenons ainsi une identité valable pour pour x réel ou complexe (différent d'une racine de Q). De cette identité, nous déduisons des relations entre les constantes à déterminer.

Exercice. Décomposer en éléments simples sur \mathbb{R} la fraction rationnelle

$$R(x) = \frac{x}{(x-1)(x+1)^2(x^2-x+1)} .$$

On a bien $\deg P < \deg Q$. Le polynôme Q est déjà factorisé sur \mathbb{R} . Nous écrivons une décomposition a priori

(*)
$$\frac{x}{(x-1)(x+1)^2(x^2-x+1)} = \frac{A}{x-1} + \frac{B}{(x+1)^2} + \frac{C}{x+1} + \frac{Dx+E}{x^2-x+1} .$$

Nous vérifions qu'elle introduit $5 (= \deg Q)$ constantes inconnues.

Pour déterminer A, voici ce qu'on fait : nous multiplions les deux membres de l'égalité (*) par (x-1). Le membre de gauche devient une fraction rationnelle qui est bien définie pour x=1, et qui pour x=1 vaut $\frac{1}{(1+1)^2(1-1+1)^2}=\frac{1}{4}$. Quant au membre de droite, il vaut A plus une somme de fractions rationnelles bien définies pour x=1, et même s'annulant pour x=1. D'où $\frac{1}{4}=A$. Montrons qu'on peut déterminer B de manière analogue. En multipliant (*) par $(x+1)^2$, puis en faisant x=-1 nous obtenons

$$(x+1)^2 R(x)_{|x=-1} = \frac{x}{(x-1)(x^2-x+1)_{|x=-1}} = \frac{-1}{(-2)(3)} = \frac{1}{6} = B$$
.

Nous reviendrons ultérieurement sur le calcul de C. Montrons maintenant comment calculer D et E. Multiplions l'identité (*) par $(x^2 - x + 1)$, puis donnons à x une valeur complexe telle que $x^2 - x + 1 = 0$. Il est inutile de chercher à résoudre explicitement l'équation du second degré correspondante. Il suffit de calculer en utilisant la relation $x^2 - x + 1 = 0$. Pour le membre de droite, nous obtenons simplement Dx + E. Pour le membre de gauche, nous obtenons

$$\left((x^2 - x + 1)R(x) \right)_{|x^2 - x + 1 = 0} = \left(\frac{x}{(x - 1)(x + 1)^2} \right)_{|x^2 - x + 1 = 0}$$

qui grâce à la relation $x^2 - x + 1 = 0$, nous voyons que sous la condition $x^2 - x + 1 = 0$, nous avons

$$(x+1)^2 = x^2 + 2x + 1 = (x^2 - x + 1) + 3x = 3x$$
.

D'où

$$\left((x^2 - x + 1)R(x) \right)_{|x^2 - x + 1 = 0} = \left(\frac{x}{3x(x - 1)} \right)_{|x^2 - x + 1 = 0} = \frac{1}{3(x - 1)}_{|x^2 - x + 1 = 0}.$$

Finalement, pour les deux racines complexes de $x^2 - x + 1 = 0$, nous obtenons la relation

$$\frac{1}{3(x-1)} = Dx + E \ .$$

D'où aussi

$$\frac{1}{3} = (Dx + E)(x - 1) = Dx^2 + (-D + E)x - E.$$

Utilisant une nouvelle fois la relation $x^2 - x + 1 = 0$, nous obtenons

$$\frac{1}{3} = D(x-1) + (-D+E)x - E = Ex - D - E.$$

Maintenant, rappelons que D et E sont des constantes réelles, et que l'égalité ci-dessus est valable pour les deux racines complexes (non réelles) de l'équation $x^2-x+1=0$. En prenant la partie imaginaire et la partie réelle, nous voyons facilement que l'égalité (entre nombres complexes) $\frac{1}{3}=Ex-E-D$ est équivalente aux deux équations (entre nombres réels) E=0 et $-E-D=\frac{1}{3}$. D'où finalement $D=-\frac{1}{3}$ et E=0. Reste à déterminer C. Nous pouvons par exemple multiplier l'égalité

(*) par x, puis faire tendre x vers l'infini. Nous obtenons

$$\lim_{x \to +\infty} xR(x) = 0 = A + C + D.$$

Comme nous savons déjà que $A=\frac{1}{4}$ et que $D=-\frac{1}{3}$, nous obtenons $C=\frac{1}{12}$.

On peut donner à x une valeur particulière pour laquelle les calculs sont simples, par exemple x=0. Nous obtenons l'égalité 0=-A+B+C d'où nous déduisons que $C=A-B=\frac{1}{12}$.