

Consider a system of linear recurrences a_1, a_2, \ldots, a_t where

$$a_i(n) = b_{i,1}a_1(n-1) + b_{i,2}a_2(n-1) + \ldots + b_{i,t}a_t(n-1).$$

$$\begin{array}{lll} a_1(1)=0 & a_1(n)=a_1(n-1)+a_2(n-1)+a_4(n-1)+2a_5(n-1)+a_7(n-1)\\ a_2(1)=0 & a_2(n)=a_4(n-1)+a_5(n-1)+a_6(n-1)\\ a_3(1)=0 & a_3(n)=a_2(n-1)+a_3(n-1)+a_5(n-1)\\ a_4(1)=0 & a_4(n)=a_2(n-1)+a_3(n-1)+a_5(n-1)\\ a_5(1)=0 & a_5(n)=a_1(n-1)+a_2(n-1)+a_4(n-1)+a_5(n-1)\\ a_6(1)=0 & a_6(n)=a_4(n-1)+a_5(n-1)\\ a_7(1)=1 & a_7(n)=a_5(n-1)+a_7(n-1) \end{array}$$

Figure 1: In this system of equations, the function $f(n) = a_5(n) + a_7(n)$ (which counts no-leaf subgraphs of the $2 \times n$ grid.) satisfies the recursion f(n) = 5f(n-1) - 5f(n-2) for n > 2.

Question. Can any linear combination of these recurrences be turned into a single linear recurrence? If not, how far can it be "simplified"?

Related.

- 1. What are the number of terms in such a linear recurrence? (i.e. how "deep" does it go? In the example, it has a depth of 2.)
- 2. What if the initial recurrences have depth greater than 1? For example:

$$a_{i}(n) = b_{i,1,1}a_{1}(n-1) + b_{i,1,2}a_{1}(n-2) + \dots + b_{i,1,k_{1}}a_{1}(n-k_{1}) + b_{i,2,1}a_{2}(n-1) + b_{i,2,2}a_{2}(n-2) + \dots + b_{i,2,k_{2}}a_{2}(n-k_{2}) + \dots + b_{i,t,1}a_{t}(n-1) + b_{i,t,2}a_{t}(n-2) + \dots + b_{i,t,k_{t}}a_{t}(n-k_{t})$$

References.

A special case of Problem 56 is counted in the example.