

Censoring machanism

- ► Censoring is a common mechanism to result in missing data for time-to-event outcome.
- ► One of the most common censoring is called right-censoring, where the event is known to be larger than an observed time for whoever drops out, e.g., time-to-death (cancer survival), time-to-relapse.
- Censored data can be considered as partially missing data: the missing values are not completely unknown, but are known partially.
- Survival analysis is a well-developed research area for analyzing censored data.

Objectives in survival analysis

- ► Prediction: what is the chance that a cancer patient can survive more than 10 years?
- ► Comparison: does treatment A improve survival in patients with liver cancer than treatment B?
- Association/causaility: are patients who ever smoke more likely to develop lung cancer than non-smokers?

Example: prediction and comparison

Figure 1. Estimated Conditional Survival Probabilities for the Diabetic Retinopathy Patients. The "—" curve represents the point estimate of the survival function for the adult-onset diabetics; the "....." curves represent the corresponding 95% confidence limits; the "....." curve represents the point estimate of the survival function for the juvenile-onset diabetics; and the "....." curves represent the corresponding 95% confidence limits.

Why time-to-event outcome should be treated differently?

- ► It is positive.
- ► Its distribution is often skewed.
- ► However, the most unique is due to censoring!

What is censoring?

- ► Let's follow one patient till he dies (time-to-death)...
 - ► Case 1: patient dies at year 15;
 - ► Case 2: patient drops out of the study at year 10;
 - ► Case 3: patient dies between year 10 and 15 (I faked this).
 - ► Case 4: ...
- ► Questions: for Case 2 and 3, do we discard this patient's data from analysis?

More complex data in survival analysis

- ► Multivariate survival
 - ► the same patient can experience multiple types of time-to-events: cancer relapse and death
 - the same patient can experience the same type of time-to-event over multiple times: cancer recurrence
 - ► the patients in the same cluster can experience the same time-to-event similarly
- ► Different types of outcome present
 - longitudinal biomarkers
 - competing risks
 - ► informative censoring

Complex designs

- ► Different study designs
 - Clinical trial design
 - Case-cohort design
 - ► Nested case-control design
 - ► Multiple stage designs

A number of methods or tools developed for survival analysis

- ► Nonparametric methods: Kaplan-Meier estimator ...
- Semiparametric models: accelerated failure time model, proportional hazards model, proportional odds model, linear transformation models, gamma frailty model, and more.
- ► Machine learning methods: survival tree
- ► Advanced mathematical tools: martingales, empirical processes

Current research topics in survival analysis

- Joint analysis of survival outcomes and other non-survival outcomes
- ► High-dimensional analysis for survival outcomes
- ► Personalized medicine for survival outcomes

- ► Let *T* denote the time-to-event outcome and *C* the potential censoring time.
- ► Full data consist of *T* can *C*.
- ▶ Observed data consist of (Y, Δ) where $Y = \min(T, C)$ and $\Delta = I(T \le C)$. Thus, missing observations occur for those with $\Delta = 0$.
- ▶ For a one-sample problem, we are interested to estimate the survival function $S(t) = P(T \ge t)$ (the corresponding density is f(t)).

▶ Let $S_C(\cdot, t)$ be the censoring survival function given T = t. The observed likelihood function for $(Y = y, \Delta = \delta)$ is

$$\{f(y)S_C(y,y)\}^{\delta}\left\{\int_y^{\infty}f(t)f_C(y;t)dt\right\}^{1-\delta}.$$

- ► Assume *C* and *T* are independent; then $S_C(\cdot, t) \equiv S_C(\cdot)$ is independent of *t*.
- ► The likelihood function becomes

$$f(y)^{\delta}S(y)^{1-\delta}S_C(y)^{\delta}f_C(y)^{1-\delta}$$
.

► Therefore, we only need to consider maximizing the observed likelihood

$$\prod_{i=1}^{n} f(Y_i)^{\Delta_i} (S(Y_i))^{1-\Delta_i}$$

from *n* observations $(Y_i, \Delta_i), i = 1, ..., n$ to estimate S(t).

NPMLE for survival function

- ▶ It assumes that the estimator for S(t) (equivalently, F(t) = 1 S(t)) has jumps at the observed times.
- ▶ Let p_i be the jump size of F at Y_i . The likelihood to be maximized is given by

$$\prod_{i=1}^{n} p_i^{\Delta_i} (1 - \sum_{Y_j \le Y_i} p_j)^{1 - \Delta_i}.$$

► EM algorithm or iterative algorithms can be used to find p_i , resulting in the Kaplan-Meier estimator

$$\hat{S}(t) = \prod_{Y_i < t} \left\{ 1 - \frac{\Delta_i}{\sum_{Y_j \ge Y_i} 1} \right\}.$$

NPMLE for hazards function

► Hazards rate function is commonly used to reparameterize the model:

$$\lambda(t) = f(t)/S(t) = \lim_{\epsilon \to 0+} P(T \in [t, t + \epsilon)|T \ge t)/\epsilon.$$

► Relationship between the hazards and the survival function:

$$S(t) = \exp\{-\Lambda(t)\}, \ \Lambda(t) = \int_0^t \lambda(s)ds.$$

► The likelihood function in terms of the hazards rate:

$$\prod_{i=1}^n \lambda(Y_i)^{\Delta_i} \exp\{-\Lambda(Y_i)\}.$$

- ▶ NPMLE assumes Λ to jump at the observed times with jump size λ_i at Y_i .
- ▶ It gives the Breslow estimator for S(t) as

Cox proportional hazards model

► This is the most common model to model the relationship between *T* and covariate *X* by assuming

$$\lambda(t|X) = \lambda(t) \exp\{X^T \beta\},\,$$

where $\lambda(t|X)$ is the conditional hazards rate of T given X.

- ▶ In the model, $\lambda(t)$ is completely unknown, and β is the unknown parameter describing the log-hazards ratio of X on the outcome T.
- ► Under the conditional independent censoring assumption, i.e., *T* and *C* are independent given *X*, the observed likelihood function is

$$\prod_{i=1}^{n} \left\{ \lambda(Y_i) e^{X_i^T \beta} \right\}^{\Delta_i} \exp \left\{ -\Lambda(Y_i) e^{X_i^T \beta} \right\}.$$

Cox partial likelihood

- ▶ NPMLE assumes that the estimator for Λ has jumps at the observed time points.
- ► For given β , NPMLE for Λ has jump size at Y_i as

$$\frac{\Delta_i}{\sum_{Y_j \geq Y_i} e^{X_j^T \beta}}.$$

► Plugging it back into the likelihood function gives

$$\prod_{i=1}^{n} \left\{ \frac{e^{X_i^T \beta}}{\sum_{Y_j \ge Y_i} e^{X_j^T \beta}} \right\}^{\Delta_i},$$

which is the famous Cox partial likelihood function.

- Event history data: survival data, recurrent event time data
- ► Counting process: $N^*(t)$ —the number of events that have occurred by time t
- ► Classical models
 - the proportional hazards model for survival data
 - the Andersen-Gill intensity model for recurrent event time data
- ► A general form of hazard rate/intensity rate

$$\lambda_Z(t) = Y^*(t) \exp{\{\beta^T Z(t)\}} \lambda(t)$$

- -Z(t) is a vector of possibly time-varying covariates;
- $Y^*(t)$ is the at-risk process;

- ► Estimation based on the partial likelihood principle (Cox, 1972, 1975)
- ► Large-sample theory developed via the counting process martingale theory (Andersen & Gill, 1982)
- ► The proportional hazards model may be violated in certain applications; other alternatives include
 - the proportional odds model (Bennett, 1983; Pettitt, 1984)
 - the linear transformation models (Dabroska & Doksum, 1988, Cheng, Wei & Ying, 1995, 1997, Chen, Jin & Ying, 2002)

 We consider transformation models for general counting process

$$\Lambda_Z(t) = G\left\{\int_0^t Y^*(s)e^{eta^TZ(s)}d\Lambda(s)
ight\}.$$

- G(x) is a strictly increasing function; G(0) = 0 and $G(\infty) = \infty$.
- G(x) = x reduces to the Andersen-Gill intensity model.
- For survival data, it becomes

$$\int_0^T e^{\beta^T Z(s)} d\Lambda(s) = G^{-1}(-\log \epsilon_0), \ \epsilon_0 \sim \text{Unif}(0,1).$$

- ightharpoonup Choices of transformation G(x)
 - the Box-Cox transformations

$$G(x) = \{(1+x)^{\rho} - 1\} / \rho$$

- the logarithmic transformations

$$G(x) = \log(1 + rx)/r.$$

- plots of these transformations

Figure: Plots of the ratios $\Lambda_z(t)/\Lambda_{z=0}(t)$ against $\Lambda(t)$ with $e^{\beta z}=2$ under the Box-Cox and logarithmic transformations

Our work aims to

- propose inference procedure for general transformation models;
- ▶ give the asymptotic properties of the MLE;
- ▶ analyze two data sets using the proposed method.

Inference Procedure

► Observed data

$$\{N_i(t), Y_i(t), Z_i(t); t \in [0, \tau]\}$$

- $N_i(t) = N_i^*(t \wedge C_i)$ where C_i is independent censoring time;
- $Y_i(t) = I(C_i \ge t)Y_i^*(t)$ is the observed at-risk process;
- τ is the duration of the study.
- ▶ Parameters of interest: β and $\Lambda(t)$
- ► The observed log-likelihood function

$$\sum_{i=1}^{n} \left[\int_{0}^{\tau} \log \lambda(t) dN_{i}(t) + \int_{0}^{\tau} \log G' \left\{ \int_{0}^{t} Y_{i}(s) e^{\beta^{T} Z_{i}(s)} d\Lambda(s) \right\} dN_{i}(t) + \int_{0}^{\tau} \beta^{T} Z_{i}(t) dN_{i}(t) - G \left\{ \int_{0}^{\tau} Y_{i}(t) e^{\beta^{T} Z_{i}(t)} d\Lambda(t) \right\} \right].$$

- ► Nonparametric maximum likelihood estimation (NPMLE)
 - the maximum is ∞ ;
 - we restrict Λ to be a right-continuous step-function with jumps at the observed events;
 - we maximize the following objective function

$$\sum_{i=1}^{n} \left[\int_{0}^{\tau} \log \Lambda\{t\} dN_{i}(t) + \int_{0}^{\tau} \log G' \left\{ \int_{0}^{t} Y_{i}(s) e^{\beta^{T} Z_{i}(s)} d\Lambda(s) \right\} dN_{i}(t) + \int_{0}^{\tau} \beta^{T} Z_{i}(t) dN_{i}(t) - G \left\{ \int_{0}^{\tau} Y_{i}(t) e^{\beta^{T} Z_{i}(t)} d\Lambda(t) \right\} \right],$$

$$- \Lambda\{t\} = \Lambda(t) - \Lambda(t-)$$

- ► Computation algorithm
 - it is an optimum search based on the quasi-Newton method;
 - gradient and hessian of the objective function are provided;
 - an approximate quadratic function is maximized locally;
 - algorithm stops when either search step or the length of search direction is small.
- Optimization can be implemented using *fminunc* in MatLab.
- We recommend starting values $\beta = 0$ and $\Lambda\{X_{ij}\} = 1/n$.

► Variance estimation

- We treat the jump sizes of Λ as classical parameters.
- The inverse of the observed information matrix for β and these jump sizes approximate the asymptotic covariance in a "non-rigorous" way.
- The Delta method can be used to estimate the asymptotic variance of $F(\hat{\Lambda}_n, \hat{\beta}_n)$ for any differentiable functional $F(\cdot, \cdot)$.
- When $\hat{\Lambda}_n$ is not of interest, the profile likelihood function can be used to estimate the asymptotic variance of $\hat{\beta}_n$.

Asymptotic Properties

► Technical assumptions

- $-\gamma_0(t) + \gamma^T Z(t) = 0$ a.s implies $\gamma_0(t) = 0$ and $\gamma = 0$.
- The probability of observing the whole event process in $[0, \tau]$ is positive.
- The true β is in a compact set and $\Lambda'_0(x) > 0$.
- -G(x) arises from either the Box-Cox transformations or the logarithmic transformations.

► Summary of results

- Parameters (β_0, Λ_0) are identifiable.
- With probability one,

$$|\hat{\beta}_n - \beta_0| + \sup_{t \in [0,\tau]} |\hat{\Lambda}_n(t) - \Lambda_0(t)| \to 0.$$

- $-\sqrt{n}(\hat{\beta}_n \beta_0, \hat{\Lambda}_n \Lambda_0)$ converges in distribution to a Gaussian process in $R^d \times l^{\infty}([0, \tau])$.
- The variance estimators based on the observed information matrix or the profile likelihood functions are consistent.

Simulation Studies

Simulation setting

- $Z_1 \sim \text{Bernoulli}(0, 1, 0.5);$
- $Z_2 = Z_1 + \epsilon I(|\epsilon| \le 3), \ \epsilon \sim N(0, 1);$
- $-\Lambda(t) = t$, $\beta_1 = -1$ and $\beta_2 = 0.2$;
- -G(t) comes from either the Box-Cox transformations or the logarithmic transformations;
- Sample sizes n = 100 or n = 200.

- ► Results from the Box-Cox transformations
 - The average number of events for $\rho = 0.5$ is 1.41.
 - The average number of events for $\rho = 2$ is 4.38.

- ► Results from the logarithmic transformations
 - The average number of events for r = 0.5 is 0.76.
 - The average number of events for r = 1 is 1.05.
 - The average number of events for r = 2 is 1.32.

	Parameter	n = 100				n = 200			
Model		Bias	SE	SEE	CP	Bias	SE	SEE	CP
r = 0.5	β_1	-0.007	0.268	0.277	0.961	-0.006	0.190	0.195	0.951
	β_2	0.007	0.123	0.125	0.961	-0.001	0.086	0.087	0.945
	$\Lambda(\tau/4)$	-0.009	0.141	0.143	0.961	-0.004	0.101	0.101	0.958
	$\Lambda(\tau/2)$	-0.001	0.249	0.253	0.955	-0.004	0.175	0.179	0.962
	$\stackrel{\circ}{\Lambda}(au)$	-0.014	0.471	0.497	0.966	0.010	0.350	0.351	0.950
r = 1	β_1	-0.008	0.355	0.355	0.955	0.003	0.253	0.249	0.943
	β_2	0.005	0.161	0.161	0.948	-0.002	0.112	0.112	0.955
	$\Lambda(\tau/4)$	-0.007	0.177	0.175	0.948	-0.001	0.125	0.124	0.947
	$\Lambda(\tau/2)$	-0.004	0.338	0.331	0.952	0.002	0.237	0.234	0.950
	$\Lambda(au)$	0.023	0.710	0.682	0.941	0.009	0.483	0.477	0.940
r=2	β_1	0.006	0.467	0.479	0.961	0.003	0.325	0.335	0.949
	β_2	-0.001	0.227	0.217	0.952	-0.008	0.151	0.151	0.946
	$\Lambda(\tau/4)$	-0.011	0.230	0.229	0.952	-0.002	0.171	0.163	0.945
	$\Lambda(\tau/2)$	0.005	0.459	0.462	0.955	0.007	0.341	0.326	0.947
	$\Lambda(\tau)$	0.044	0.975	0.977	0.950	0.026	0.707	0.683	0.951

n = 100

n = 200

► Conclusions from simulation studies

- Estimates are virtually unbiased;
- The variance estimates reflect the true variations;
- The confidence intervals achieve proper coverages.
- It took 3 hours on an IBM BladeCenter HS20 machine to complete all the simulations.
- No convergence problem was encountered in any of 10,000 simulated data sets.

► Efficiency gain over other approaches

- Chen, Jin & Ying (2002) studies transformation models for survival data based on estimating equations.
- A simulation study is conducted with $\Lambda(t) = 3t$, $\beta_1 = -1$ and $\beta_2 = 0.2$; sample size is 100.

			Proposed estimator				Chen et al. estimator			
C%	r	Par.	Bias	SE	SEE	CP	Bias	SE	SEE	CP
25%	0.5	$_{\beta_{2}}^{\beta_{1}}$	-0.026 0.005	0.378 0.165	0.358 0.159	0.937 0.949	-0.035 0.006	0.393 0.172	0.366 0.164	0.947 0.940
	1	$_{\beta_{2}}^{\beta_{1}}$	-0.022 0.005	0.440 0.193	0.420 0.187	0.941 0.956	-0.032 0.007	0.482 0.210	0.446 0.203	0.941 0.949
	2	$_{\beta_{2}}^{\beta_{1}}$	-0.023 0.005	0.545 0.242	0.523 0.234	0.944 0.939	-0.029 0.005	0.655 0.286	0.602 0.279	0.949 0.943
50%	0.5	$_{\beta_{2}}^{\beta_{1}}$	-0.029 0.006	0.437 0.187	0.413 0.183	0.951 0.951	-0.051 0.006	0.444 0.191	0.410 0.184	0.945 0.947
	1	$_{\beta_{2}}^{\beta_{1}}$	-0.031 0.007	0.488 0.213	0.463 0.207	0.944 0.955	-0.054 0.008	0.512 0.225	0.469 0.214	0.940 0.948
	2	β_1 β_2	-0.025 0.006	0.579 0.257	0.555 0.249	0.942 0.956	-0.045 0.009	0.644 0.284	0.588 0.274	0.938 0.949

► Conclusions from efficiency comparison

- The asymptotic approximation works well for both approaches.
- Chen et al. estimators are less efficient, especially when r is large and censoring is low.
- Our algorithm always converged.
- Chen et al.'s failed to converge in about 2% of simulated data sets.

Data Applications

- ▶ Data set I
 - the Veteran'a Administration lung cancer trial
 - 97 patients without prior therapy were studied;
 - covariates included performance status and tumor types;
 - the data has been analyzed by Bennett (1983), Pettitt (1984),
 Cheng et al. (1995), Murphy et al. (1997) and Chen et al. (2002).
- ► We analyze data using transformation models.
- ► The log-likelihood function is used as the criterion of choosing the best fit.

Figure: log-likelihood function in fitting VA lung cancer data

► Estimates in analyzing the VA lung cancer data

	r = 0	r = 1	r = 1.5	r = 2
Performance status	-0.024 (0.006)	-0.053 (0.010)	-0.063 (0.012)	-0.072 (0.014
Adeno vs large tumor	0.851 (0.348)	1.314 (0.554)	1.497 (0.636)	1.679 (0.712)
Small vs large tumor	0.547 (0.321)	1.383 (0.524)	1.605 (0.596)	1.814 (0.661)
Squam vs large tumor	-0.215 (0.347)	-0.181 (0.588)	-0.075 (0.675)	0.045 (0.749)

► Comparison with other work

- The results differ appreciably from those of Chen et al. (2002).
- For r = 0, the numbers agree with the standard software output.
- For r = 1, the results are similar to those of Murphy et al. (1997).

Figure: Estimated survival curves for the lung cancer patients: the upper three curves pertain to the point estimate and 95% confidence limits for a patient with large tumor and performance status of 80, and the lower three curves to those of a patient with small tumor and performance status of 40.

Data set II

- the recurrent bladder tumor data
- 86 patients were on the placebo or thiotepa;
- other covariates included number of tumors and tumor sizes;
- the data has been analyzed by Wei, Lin & Weissfeld (1989) and Therneau & Grambsch (2000).
- ▶ We analyze data using transformation models.
- ► The log-likelihood function is used as the criterion of choosing the best fit.

Figure: log-likelihood function in fitting bladder tumor data

► Estimates in analyzing the bladder tumor data

▶ Prediction of the survival function of X_2 given $X_1 = x_1$ for subjects with covariate values z:

$$\exp\left[G\left\{\hat{\Lambda}_n(x_1)e^{\hat{\beta}_n^Tz}\right\}-G\left\{\hat{\Lambda}_n(t)e^{\hat{\beta}_n^Tz}\right\}\right].$$

- ► The delta method is used to calculate the point-wise standard error.
- ▶ We plot the predicted curves for $x_1 = 20$ and $\rho = 2$.

Figure: Estimated conditional survival curves for the bladder tumor patients: the upper three curves correspond to the point estimate and 95% confidence limits for a thiotepa patient with one initial tumor, and the lower three curves to those of a placebo patient with four initial tumors.

Concluding Remarks

- ► The transformation models provide a flexible choice for fitting complicated event time data.
- ► The NPMLEs have the advantage of being asymptotic efficient and good small-sample performance.
- ► The likelihood-based approach implies many model selection methods, such as the AIC and the likelihood-based cross validation.
- ► The observed information matrix yields reliable estimates of the variances in this semiparametric context.

- ▶ Other generalizations can be possible, including
 - recurrent event time data with subject-specific random effects,
 - clustered failure times,
 - data with truncation and other censoring patterns.