

# SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla, Senior Member, IEEE, Conference

Davide Bartoletti
Domenico Bulfamante
Giovanni Sciortino

MLDL A.A 2021/2022

#### Introduction

#### Semantic Segmentation:

Process of linking each pixel in an image to a class label.



SegNet predictions on road scenes and indoor scenes

### SegNet

- Encoder Network : VGG16 with no fully connected layers
- Decoder Network : hierarchy of decoders
- Trade off between memory and accuracy

Max-pooling Indices



### Why the usage of max-indices in the decoder phase?

- 1) Improves boundary delineation
- 2) Reduces the number of parameters enabling end-to-end training
- 3) This form of upsampling can be incorporated into any encoder-decoder architecture



#### Related Work



### Architecture



13 convolutional layers

#### Two similar architectures:

#### DeconvNet:

- Larger parameterization and computational resources
- Usage of fully connected layers



#### U-Net:

- No reuse of pooling indices
- Transfering of the entire feature map to the decoders



### SegNet vs Fully Convolutional Network



### Training

CamVid road scenes

Benchmark performance

Local contrast normalization

Local subtraction and division normalizations

Stochastic gradient descent

Learning rate: 0.1 Momentum: 0.9

balancing





## **Analysis**

- Global accuracy
- Class average accuracy
- Mean intersection over union mIoU
- Semantic contour measure BF



### Table of comparison of decoder variants

|                                      |            |          | Infer time (ms) | Median frequency balancing |       |          |         |      |       |      |      | Natural frequency balancing |      |       |       |      |      |
|--------------------------------------|------------|----------|-----------------|----------------------------|-------|----------|---------|------|-------|------|------|-----------------------------|------|-------|-------|------|------|
|                                      |            | Storage  |                 |                            |       | Test     | est     |      | Train |      |      | Test                        |      |       | Train |      |      |
| Variant                              | Params (M) |          |                 | G                          | С     | mIoU     | BF      | G    | С     | mIoU | G    | С                           | mIoU | BF    | G     | С    | mIoU |
|                                      |            |          | Fixed u         | psan                       | pling | 3        |         |      |       |      |      |                             |      |       |       |      |      |
| Bilinear-Interpolation               | 0.625      | 0        | 24.2            | 77.9                       | 61.1  | 43.3     | 20.83   | 89.1 | 90.2  | 82.7 | 82.7 | 52.5                        | 43.8 | 23.08 | 93.5  | 74.1 | 59.9 |
|                                      |            | Upsam    | pling using     | g max                      | -poo  | ling inc | lices   |      |       |      |      |                             |      |       |       |      |      |
| SegNet-Basic                         | 1.425      | 1        | 52.6            | 82.7                       | 62.0  | 47.7     | 35.78   | 94.7 | 96. 2 | 92.7 | 84.0 | 54.6                        | 46.3 | 36.67 | 96.1  | 83.9 | 73.3 |
| SegNet-Basic-EncoderAddition         | 1.425      | 64       | 53.0            | 83.4                       | 63.6  | 48.5     | 35.92   | 94.3 | 95.8  | 92.0 | 84.2 | 56.5                        | 47.7 | 36.27 | 95.3  | 80.9 | 68.9 |
| SegNet-Basic-SingleChannelDecoder    | 0.625      | 1        | 33.1            | 81.2                       | 60.7  | 46.1     | 31.62   | 93.2 | 94.8  | 90.3 | 83.5 | 53.9                        | 45.2 | 32.45 | 92.6  | 68.4 | 52.8 |
|                                      |            | Learning | to upsamp       | le (bil                    | inear | initiali | sation) | )    |       |      |      |                             |      |       |       |      |      |
| FCN-Basic                            | 0.65       | 11       | 24.2            | 81.7                       | 62.4  | 47.3     | 38.11   | 92.8 | 93.6  | 88.1 | 83.9 | 55.6                        | 45.0 | 37.33 | 92.0  | 66.8 | 50.7 |
| FCN-Basic-NoAddition                 | 0.65       | n/a      | 23.8            | 80.5                       | 58.6  | 44.1     | 31.96   | 92.5 | 93.0  | 87.2 | 82.3 | 53.9                        | 44.2 | 29.43 | 93.1  | 72.8 | 57.6 |
| FCN-Basic-NoDimReduction             | 1.625      | 64       | 44.8            | 84.1                       | 63.4  | 50.1     | 37.37   | 95.1 | 96.5  | 93.2 | 83.5 | 57.3                        | 47.0 | 37.13 | 97.2  | 91.7 | 84.8 |
| FCN-Basic-NoAddition-NoDim Reduction | 1.625      | 0        | 43.9            | 80.5                       | 61.6  | 45.9     | 30.47   | 92.5 | 94.6  | 89.9 | 83.7 | 54.8                        | 45.5 | 33.17 | 95.0  | 80.2 | 67.8 |

G: global average

C: class average

mloU: mean of intersection over union

BF: semantic contour measure

### **Analysis Summary**



- The best performance is achieved when encoder feature maps are stored in full. This is reflected in the semantic contour delineation metric (BF) most clearly.
- When memory during inference is constrained, then compressed forms of encoder feature maps can be stored and used with an appropriate decoder to improve performance.
- Larger decoders increase performance for a given encoder network.

### Benchmarking

We quantify the performance of SegNet on two scene segmentation benchmarks:



Road scene segmentation



Indoor scene segmentation

### Road Scene Segmentation



| Method                                | Building | Tree | Sky  | Car   | Sign-Symbol | Road    | Pedestrian | Fence | Column-Pole | Side-walk | Bicyclist | Class avg. | Global avg. | mloU  | BF    |
|---------------------------------------|----------|------|------|-------|-------------|---------|------------|-------|-------------|-----------|-----------|------------|-------------|-------|-------|
| SfM+Appearance [28]                   | 46.2     | 61.9 | 89.7 | 68.6  | 42.9        | 89.5    | 53.6       | 46.6  | 0.7         | 60.5      | 22.5      | 53.0       | 69.1        | n/    | /a*   |
| Boosting [29]                         | 61.9     | 67.3 | 91.1 | 71.1  | 58.5        | 92.9    | 49.5       | 37.6  | 25.8        | 77.8      | 24.7      | 59.8       | 76.4        | n/    | a*    |
| Dense Depth Maps [32]                 | 85.3     | 57.3 | 95.4 | 69.2  | 46.5        | 98.5    | 23.8       | 44.3  | 22.0        | 38.1      | 28.7      | 55.4       | 82.1        | n/    | a*    |
| Structured Random Forests [31]        |          |      |      |       |             | n/a     |            |       |             |           |           | 51.4       | 72.5        | n/    | a*    |
| Neural Decision Forests [64]          |          |      |      |       |             | n/a     |            |       |             |           |           | 56.1       | 82.1        | n/    | a*    |
| Local Label Descriptors [65]          | 80.7     | 61.5 | 88.8 | 16.4  | n/a         | 98.0    | 1.09       | 0.05  | 4.13        | 12.4      | 0.07      | 36.3       | 73.6        | n/    | a*    |
| Super Parsing [33]                    | 87.0     | 67.1 | 96.9 | 62.7  | 30.1        | 95.9    | 14.7       | 17.9  | 1.7         | 70.0      | 19.4      | 51.2       | 83.3        | n/    | a*    |
| SegNet (3.5K dataset training - 140K) | 89.6     | 83.4 | 96.1 | 87.7  | 52.7        | 96.4    | 62.2       | 53.45 | 32.1        | 93.3      | 36.5      | 71.20      | 90.40       | 60.10 | 46.84 |
|                                       |          |      |      | CRF b | ased ap     | proache | s          |       |             |           |           |            |             |       |       |
| Boosting + pairwise CRF [29]          | 70.7     | 70.8 | 94.7 | 74.4  | 55.9        | 94.1    | 45.7       | 37.2  | 13.0        | 79.3      | 23.1      | 59.9       | 79.8        | n/    | a*    |
| Boosting+Higher order [29]            | 84.5     | 72.6 | 97.5 | 72.7  | 34.1        | 95.3    | 34.2       | 45.7  | 8.1         | 77.6      | 28.5      | 59.2       | 83.8        | n/    | a*    |
| Boosting+Detectors+CRF [30]           | 81.5     | 76.6 | 96.2 | 78.7  | 40.2        | 93.9    | 43.0       | 47.6  | 14.3        | 81.5      | 33.9      | 62.5       | 83.8        | n/    | a*    |

Quantitative comparisons of SegNet with traditional methods on the CamVid 11 road class segmentation problem.

#### **SUN RGB-D Indoor Scenes**

#### **Test samples**























Qualitative assessment of SegNet predictions on RGB indoor test scenes from the recently released SUN RGB-D dataset



| Wall  | Floor          | Cabinet | Bed        | Chair  | Sofa        | Table     | Door    | Window  | Bookshelf | Picture | Counter | Blinds |
|-------|----------------|---------|------------|--------|-------------|-----------|---------|---------|-----------|---------|---------|--------|
| 83.42 | 93.43          | 63.37   | 73.18      | 75.92  | 59.57       | 64.18     | 52.50   | 57.51   | 42.05     | 56.17   | 37.66   | 40.29  |
| Desk  | Shelves        | Curtain | Dresser    | Pillow | Mirror      | Floor mat | Clothes | Ceiling | Books     | Fridge  | TV      | Paper  |
| 11.92 | 11.45          | 66.56   | 52.73      | 43.80  | 26.30       | 0.00      | 34.31   | 74.11   | 53.77     | 29.85   | 33.76   | 22.73  |
| Towel | Shower curtain | Box     | Whiteboard | Person | Night stand | Toilet    | Sink    | Lamp    | Bathtub   | Bag     |         |        |
| 19.83 | 0.03           | 23.14   | 60.25      | 27.27  | 29.88       | 76.00     | 58.10   | 35.27   | 48.86     | 16.76   |         |        |

Class average accuracies of SegNet predictions for the 37 indoor scene classes in the SUN RGB-D benchmark dataset

#### CamVid segmentation vs SUNRGB-D segmentation

| Network/Iterations            |       | 40    | )K    |        |        | 80    | )K    |       |       | Max iter |       |       |      |
|-------------------------------|-------|-------|-------|--------|--------|-------|-------|-------|-------|----------|-------|-------|------|
|                               | G     | С     | mIoU  | BF     | G      | С     | mIoU  | BF    | G     | С        | mIoU  | BF    |      |
| SegNet                        | 88.81 | 59.93 | 50.02 | 35.78  | 89.68  | 69.82 | 57.18 | 42.08 | 90.40 | 71.20    | 60.10 | 46.84 | 140K |
| DeepLab-LargeFOV [3]          | 85.95 | 60.41 | 50.18 | 26.25  | 87.76  | 62.57 | 53.34 | 32.04 | 88.20 | 62.53    | 53.88 | 32.77 | 140K |
| DeepLab-LargeFOV-denseCRF [3] |       |       |       | not co | mputed |       |       |       | 89.71 | 60.67    | 54.74 | 40.79 | 140K |
| FCN                           | 81.97 | 54.38 | 46.59 | 22.86  | 82.71  | 56.22 | 47.95 | 24.76 | 83.27 | 59.56    | 49.83 | 27.99 | 200K |
| FCN (learnt deconv) [2]       | 83.21 | 56.05 | 48.68 | 27.40  | 83.71  | 59.64 | 50.80 | 31.01 | 83.14 | 64.21    | 51.96 | 33.18 | 160K |
| DeconvNet [4]                 | 85.26 | 46.40 | 39.69 | 27.36  | 85.19  | 54.08 | 43.74 | 29.33 | 89.58 | 70.24    | 59.77 | 52.23 | 260K |

### Quantitative comparison of deep networks for semantic segmentation on the CamVid test set when trained on a corpus of 3433 road scenes without class balancing.

| Network/Iterations            | 80K   |       |       |        |        | 14    | 0 <b>K</b> |       |       | Max iter |       |       |      |
|-------------------------------|-------|-------|-------|--------|--------|-------|------------|-------|-------|----------|-------|-------|------|
|                               | G     | С     | mIoU  | BF     | G      | С     | mIoU       | BF    | G     | С        | mIoU  | BF    |      |
| SegNet                        | 70.73 | 30.82 | 22.52 | 9.16   | 71.66  | 37.60 | 27.46      | 11.33 | 72.63 | 44.76    | 31.84 | 12.66 | 240K |
| DeepLab-LargeFOV [3]          | 70.70 | 41.75 | 30.67 | 7.28   | 71.16  | 42.71 | 31.29      | 7.57  | 71.90 | 42.21    | 32.08 | 8.26  | 240K |
| DeepLab-LargeFOV-denseCRF [3] |       |       |       | not co | mputed | 1     |            |       | 66.96 | 33.06    | 24.13 | 9.41  | 240K |
| FCN (learnt deconv) [2]       | 67.31 | 34.32 |       |        | 68.04  | ı     |            | 9.0   | 68.18 | 38.41    | 27.39 | 9.68  | 200K |
| DeconvNet [4]                 | 59.62 | 12.93 | 8.35  | 6.50   | 63.28  | 22.53 | 15.14      | 7.86  | 66.13 | 32.28    | 22.57 | 10.47 | 380K |

Quantitative comparison of deep architectures on the SUNRGB-D dataset when trained on a corpus of 5250 indoor scenes

#### Conclusion

#### SegNet:

- Born from the need to design an efficient architecture for road and indoor scene understanding which is efficient both in terms of memory and computational time
- Stores the max-pooling indices of the feature maps and uses them in its decoder network to achieve good performance.

