Spolšna topologija

30. november 2024

Metrični prostori

0.1 Metrični prostori

Definicija 0.1. *Metrični prostor* je množica X skupaj z preslikavo $d: X \times X \to \mathbb{R}$, za katero velja:

- $d(x, x') = 0 \Leftrightarrow x = x'$,
- d(x, x') = d(x', x),
- $d(x, x'') \le d(x, x') + d(x', x'')$.

Definicija 0.2. Naj bo (X, d) metrični prostor.

- Odprta krogla s središčem v a in polmerom r je množica $K(a,r) = \{x \in X; \ d(a,x) < r\}.$
- Zaprta krogla s središčem v a in polmerom r je množica $K(a,r) = \{x \in X; d(a,x) \le r\}.$
- Okolica točke a je vsaka taka množica, ki vsebuje odprto kroglo K(a,r) za nek r>0.

Definicija 0.3. Naj bo (X, d) metrični prostor in $A \subset X$.

- Točka $x \in X$ je notranja točka množice A, če obstaja r > 0, da $K(a,r) \subset A$.
- Točka $a \in X$ je zunanja točka množice A, če obstaja r > 0, da $K(a, r) \cap A = \emptyset$.
- Točka $a \in X$ je robna točka množice A, če vsaka njena okolica seka A in A^c .

Množico Int A vseh notranjih točk množice A imenujemo notranjost od A.

Množico Cl A vseh točk, za katere za vsak r > 0, krogla K(a,r) seka A, imenujemo zaprtje množice A.

Množico ∂A vseh robnih točk množice A imenujemo meja množice A.

Trditev 0.1. Naj bo (X, d) metrični prostor in $A \subset X$. Velja:

- $\partial A = \operatorname{Cl} A \setminus \operatorname{Int} A$.
- $\operatorname{Cl} A = \operatorname{Int} A \cup \partial A$.
- Int $A = \operatorname{Cl} A \setminus \partial A$.

Definicija 0.4. Naj bo (X, d) metrični prostor in $A \subset X$.

- Množica A je odprta v metričnem prostoru X, če je vsaka njena točka notranja.
- Množica A je zaprta v metričnem prostoru X, če vsebuje vse svoje robne točke.

Trditev 0.2. Naj bo (X,d) metrični prostor in $A \subset X$, potem

$$A$$
 je odprta $\Leftrightarrow A^c$ je zaprt.

Izrek 0.3. Naj bo O družina vseh odprtih množic metričnega prostora (X, d). Potem

- $X \in O, \emptyset \in O$.
- Če je $A_{\lambda} \in O$ za vsak $\lambda \in \Lambda$, potem $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in O$.
- Če je $n \in \mathbb{N}$ in $A_j \in O$ za vsak $j = 1, 2, \ldots, n$, potem $\bigcap_{i=1}^n A_i \in O$.

Trditev 0.4. Vsaka odprta krogla je odprta množica in vsaka zaprta krogla je zaprta množica.

Trditev 0.5. Naj bo (X, d) metrični prostor in $A \subset X$, potem

A je odprta \Leftrightarrow A lahko predstavimo kot unijo odprtih krogel.

Definicija 0.5. Naj bo (X, d) metrični prostor in $A \subset X$. Točka $a \in X$ je stekališče množice A, če vsaka okolica točke a vsebuje neskončno mnogo točk iz množice A.

Trditev 0.6. Naj bo (X,d) metrični prostor in $A \subset X$. Potem

A je zaprta $\Leftrightarrow A$ vsebuje vsa svoja stekališča.

0.2 Zaporedja v metričnih prostorih

Definicija 0.6. Naj bo (X,d) metrični prostor. Zaporedje v metričnem prostoru X je preslikava $\mathbb{N} \to X$.

Definicija 0.7. Naj bo (X, d) metrični prostor. Pravimo, da zaporedje $(a_n)_n$ v X konvergira proti $a \in X$, če

$$\forall \epsilon > 0 . \exists n_0 \in \mathbb{N} . \forall n \in \mathbb{N} . n \geq n_0 \Rightarrow d(a_n, a) < \epsilon.$$

V tem primeru a imenujemo limita zaporedja.

Definicija 0.8. Naj bo (X,d) metrični prostor. Pravimo, da zaporedje $(a_n)_n$ v X izpolnjuje Cauchyjev pogoj, če

$$\forall \epsilon > 0 . \exists n_0 \in \mathbb{N} . \forall n, m \in \mathbb{N} . n, m > n_0 \Rightarrow d(a_n, a_m) < \epsilon.$$

Izrek 0.7. Vsako konvergentno zaporedje v metričnem prostoru (X, d) izpolnjuje Cauchyjev pogoj.

Definicija 0.9. Pravimo, da je metrični prostor (X, d) poln, ce je vsako Cauchyjevo zaporedje iz X tudi konvergentno v X.

Izrek 0.8. Naj bo C[a,b] z običajno (supremum) metriko. Tedaj

 $(f_n)_n$ v C[a,b] konvergira proti $f \in C[a,b] \Leftrightarrow (f_n)_n$ enakomerno konvergira proti f na [a,b].

Izrek 0.9. Metrični prostor $(C[a,b],d_{\infty})$ je poln metrični prostor.

0.3 Preslikave med metričnimi prostori

Naj bosta (X,d) in (X',d') metrična prostora. Naj bo $D \subset X$, $D \neq \emptyset$. Obravnamo preslikave $f: D \to X'$.

Definicija 0.10. Preslikava $f: D \to X'$ je zvezna v točki $a \in X$, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . d(x, a) < \delta \Rightarrow d'(f(x), f(a)) < \epsilon.$$

Izrek 0.10. Preslikava $f: D \to X'$ je zvezna v točki $a \in D$ natanko tedaj, ko za vsako zaporedje $(x_n)_n$ v D, ki konvergira proti $a \in D$, zaporedje $(f(x_n))_n$ v X' konvergira proti $f(a) \in X'$.

Definicija 0.11. Pravimo, da je preslikava $f: D \to X'$ je zvezna, če je zvezna v vsaki točki iz D.

Izrek 0.11. Dana je preslikava $f:D\to X'$. Preslikava f je zvezna natanko tedaj, ko praslika vsake odprte množice v X' je odprta v D.

Definicija 0.12. Preslikava $f: D \to X'$ je enakomerno zvezna, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x, x' \in D . d(x, x') < \delta \Rightarrow d'(f(x), f(x')) < \epsilon.$$

Definicija 0.13. Preslikava $f: D \to X'$ je C-lipschitzova, če

$$\forall x, x' \in D \cdot d'(f(x), f(x')) < Cd(x, x').$$

Trditev 0.12. Za preslikavo $f: D \to X'$ velja:

f je $C\text{-lipschitzova}\ \Rightarrow f$ je enakomerno zvezna $\ \Rightarrow f$ je zvezna.

1 Prostori in preslikave

1.1 Topološki prostori

Definicija 1.1. Naj bo X množica. **Topologija** na množici X je družina $\mathcal{T} \subseteq P(X)$, ki zadošča naslednjim pogojem:

- (T0) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- (T1) Poljubna unija elementov \mathcal{T} je element \mathcal{T} .
- (T2) Poljuben končen presek elementov \mathcal{T} je element \mathcal{T} .

Elemente \mathcal{T} razglasimo za **odprte množice** v X.

Opomba. Aksiom (T2) zadošča preveriti za poljubne dve množice in uporabit indukcijo.

Definicija 1.2. Topološki prostor je množica X z neko topologijo \mathcal{T} . Pišemo: (X, \mathcal{T}) .

Primer (Topologija iz metrike). Naj bo (X, d) metrični prostor. Definiramo $\mathcal{T}_d = \{\text{vse možne unije odprtih krogel}\}$. \mathcal{T}_d je topologija, ki je **porojena (inducirana)** z metriko d.

Definicija 1.3. Topološki prostor je metrizabilen, če je porojen z neko metriko.

Primer (Trivialna topologija). Naj bo X poljubna množica. Definiramo $\mathcal{T} = \{\emptyset, X\}$. \mathcal{T} je topologija, rečemo ji **trivialna topologija**.

Trivialna topologija ni metrizabilna, če ima X vsaj 2 elementa, ker v metričnem prostoru z množico z vsaj 2 elementoma vedno lahko najdemo disjunktne odprte krogle.

Primer (Diskretna topologija). Definiramo $\mathcal{T} = P(x)$. \mathcal{T} je topologija, rečemo ji **diskretna topologija**.

Je metrizabilna, ker inducirana z metriko $d(x,x')=\begin{cases} 0, & x=x'\\ 1, & x\neq x' \end{cases}$. Ker krogle s polmerom manj kot 1 vsebujejo le središče, sklepamo, da so vse enoelementne množice odprte. Potem so pa vse podmnožice X odprte, saj jih lahko

predstavimo kot unije enoelementnih.

Opomba. Topologija poda pojem bližine na implicitni način z pomočjo okolic.

Definicija 1.4. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. **Notranjost množice** A je največji element topolgije \mathcal{T} , ki je vsebovan v A. Oznaka: Int A.

Opomba. Zakaj je definicija smiselna?

- Pogoj za notranjo točko: $x \in U \subseteq A$, kjer $U \in \mathcal{T}$.
- Int A je unija vseh odprtih množic, ki so vsebovane v A, torej Int $A = \bigcup \{U \in \mathcal{T}; U \subseteq A\}$. Sledi, da je Int A največja odprta podmnožica A.

Definicija 1.5. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. Množica A je **zaprta**, če je $A^c = X - A \in \mathcal{T}$.

Opomba. Lahko topologijo vpeljemo tudi tako, da predpišemo, katere množice so zaprte.

Denimo, da je dana družina Z podmnožic X, za katero velja:

- (T0) $\emptyset \in Z, X \in Z$.
- (T1) Poljuben presek elementov Z je element Z.
- (T2) Poljubena končna unija elementov Z je element Z.

Potem komplementi množic iz Z tvorijo topologijo na X in Z je ravno družina zaprtih množic v tej topologiji.

Primer. Če zahtevamo, da so točke X zaprte množice, potem so tudi končne podmnožice X so zaprte. Torej družina

$$\{\text{končme podmnožice X}\} \cup \{X\}$$

zadošča zahtevam (T1) in (T2). Torej komplementi

$$\mathcal{T} = \{ U \subset X; X - U \text{ končna} \} \cup \{\emptyset\}$$

so topologija na X. Tej topologiji rečemo topologija končnih komplementov \mathcal{T}_{kk} .

Topologija končnih komplementov je najmanjša topologija v kateri vse točke zaprte.

Če je X končna, potem $\mathcal{T}_{kk} = \mathcal{T}_{disk}$ na X.

Definicija 1.6. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. **Zaprtje množice** A je presek vseh zaprtih množic, ki vsebujejo A. Torej zaprtje množice A je najmanjša zaprta množica v X, ki vsebuje A. Oznaka: $\operatorname{Cl} A = \overline{A}$.

Primer. Velja:

- $\overline{A \cup B} = \overline{A} \cup \overline{B}$. **Dokaz.** Definicija zaprtja.
- $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. **Dokaz.** Definicija zaprtja in $(\mathbb{N}, \mathcal{T}_{kk})$.

Definicija 1.7. Naj bo (X, \mathcal{T}) topološki prostor in $A \subseteq X$. **Meja množice** A je Fr $A = \operatorname{Cl} A - \operatorname{Int} A$.

Opomba. Meja A je vedno zaprta množica, saj Fr $A = \operatorname{Cl} A - \operatorname{Int} A = \operatorname{Cl} A \cap (\operatorname{Int} A)^c$.

1.2 Zvezne preslikave

Definicija 1.8. Naj bosta (X, \mathcal{T}_X) in (Y, \mathcal{T}_Y) topološka prostora. Preslikava $f:(X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ je **zvezna**, če je praslika vsake odprte množice odprta, tj. če iz $V \in \mathcal{T}_Y$ sledi $f^*(V) \in \mathcal{T}_X$.

Primer. Primeri zveznih preslikav.

- 1. Vse zvezne funkcije v smislu metričnih prostorov so zvezne kot funkcije med porojenimi topologijami.
- 2. Naj bo $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$.
 - 2.1 Naj bo \mathcal{T}_Y trivilna topologija, potem f je vedno zvezna.
 - 2.2 Naj bo \mathcal{T}_X diskretna topologija, potem f je vedno zvezna.
- 3. Naj bosta (X, \mathcal{T}) in (X, \mathcal{T}') topološka prostora. Funkcija id : $X \to X'$ je zvezna natanko tedaj, ko $\mathcal{T}' \subseteq \mathcal{T}$.
- 4. Če je $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ konstanta, tj. $\exists y_0\in Y \ \forall x\in X \ f(x)=y_0$, potem je f zvezna.
- 5. Naj bo $f:(\mathbb{R},\mathcal{T}_{kk})\to(\mathbb{R},\mathcal{T}_{evkl})$. Potem konstante so edine zvezne funkcije.

Dokaz. V (X, \mathcal{T}_{kk}) ni disjunktnih nepraznih odprtih množic, če je X neskončna.

Splošneje. Naj bosta X, Y neskončni množici, d metrika na Y. Naj bo $f: (X, \mathcal{T}_{kk}) \to (Y, \mathcal{T}_d)$. Potem

f je zvezna $\Leftrightarrow f$ je konstanta.

Uvedemo neke oznake in okrajšave:

• Naj bosta $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ topološka prostota. Označimo z $C((X, \mathcal{T}_X), (Y, \mathcal{T}_Y))$ množico vseh zveznih preslikav C(X, Y). Tudi $C(X) = C(X, \mathbb{R})$.

- Prostor X je množica z neko topologijo.
- Preslikava je zvezna funkcija.

Trditev 1.1. Kompozitun preslikav je preslikava.

Dokaz. Definicija zveznosti.

Trditev 1.2. Naj bosta X, Y prostora. Ekvivalentne so izjave za $f: X \to Y$:

- 1. f je zvezna.
- 2. Praslika z f vsake zaprte množice je zaprta.
- 3. $f(\overline{A}) \subseteq \overline{f(A)}$.

 $Dokaz. \ (1) \Leftrightarrow (2). \ f^*(A^c) = (f^*(A))^c.$

(2) \Leftrightarrow (3). LMN: $A \subseteq f^*(f(A)), f(f^*(B)) \subseteq B$. Monotonost f_*, f^* . STOP: $f^*(B)$ je zaprta $\Leftrightarrow f^*(B) = \overline{f^*(B)}$.

1.3 Homeomorfizmi

Definicija 1.9. Naj bo $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ funkcija. Funkcija f je homeomorfizem, če:

- f je bijekcija.
- f_* je bijekcija med \mathcal{T}_X in \mathcal{T}_Y , tj. $\forall U \in \mathcal{T}_X \cdot f_*(U) \in \mathcal{T}_Y \wedge \forall V \in \mathcal{T}_Y \cdot f^*(V) \in \mathcal{T}_X$.

Opomba. Pogoj $\forall V \in \mathcal{T}_Y$. $f^*(V) \in \mathcal{T}_X$ je ravno zveznost funkcije f.

Definicija 1.10. Če obstaja homeomorfizem $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$, potem rečemo, da sta prostora X in Y homeomorfna. Oznaka: $X\approx Y$.

Opomba. Homeomorfizem je ekvivalenčna relacija. To pomeni, da lahko dokažemo, da sta dva prostora homeomorfna, če pokažemo, da sta vsak od njih homeomorfen nekemu drugemu.

Definicija 1.11. Funkcija $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je **odprta**, če je slika vsake odprte množice odprta. Funkcija f je **zaprta**, če je slika vsake zaprte množice zaprta.

Trditev 1.3. Naslednje izjave o funkciji $f: X \to Y$ so ekvivalentne:

- 1. $f: X \to Y$ je homeomorfizem.
- 2. f je bijektivna, f in f^{-1} sta zvezni.
- 3. f je bijektivna, zvezna in odprta.
- 4. f je bijektivna, zvezna in zaprta.

Dokaz. Očitne implikacije.

Primer. Ali sta prostora $[0,1) \cup \{2\}$ in [0,1] homeomorfna? Ali inverz zvezne bijekcije vedno zvezen?

Trditev 1.4. Nekatere zvezne funkcije so avtomatično zaprte (oz. odprte):

- $f^{\text{zv}}: X^{\text{komp}} \to Y^{\text{metr}}$ je vedno zaprta.
- Projekcija $X \times Y \to X$ je vedno odprta.
- Preslikave $f: \mathbb{R}^n \to \mathbb{R}^n$, ki so gladke in imajo neničelni odvod, so vedno odprte.

Primer. Pokaži, da vsak interval (končen ali neskončen) homeomorfen enemu izmed [0,1], [0,1), (0,1). Pokaži, da intervali [0,1], [0,1), (0,1) niso paroma homeomorfni.

Definicija 1.12. Topološka lastnost je katerakoli lastnost prostora, ki se ohranja pri homeomorfizmih.

Primer. Ali je kompaktnost/omejenost/polnost topološka lastnost?

Upeljamo oznake:

- $B^n := \{\vec{x} \in \mathbb{R}^n; ||\vec{x}|| \le 1\}$ je enotska *n*-krogla.
- $\mathring{B}^n := \{ \vec{x} \in \mathbb{R}^n; \ ||\vec{x}|| < 1 \}$ je odprta enotska *n*-krogla.
- $S^{n-1}:=\{\vec{x}\in\mathbb{R}^n;\;||\vec{x}||=1\}$ je enotska (n-1)-sfera.

Homeomorfizem med (0,1) in \mathbb{R} lahko posplošimo do homeomorfizma med odprto kroglo \mathring{B}^n in \mathbb{R}^n . Navaden homeomorfizem je

$$f: \mathring{B}^n \to \mathbb{R}^n, \ f(\vec{x}) := \frac{\vec{x}}{1 - ||\vec{x}||}, \ f^{-1}(\vec{x}) := \frac{\vec{x}}{1 + ||\vec{x}||},$$

tj, raztegnimo vsak poltrak od 0 do ∞ .

Sfera v \mathbb{R}^n topološko bolj podobna \mathbb{R}^{n-1} kot \mathbb{R}^n .

Naj bo $N=(0,\ldots,0,1)\in\mathbb{R}^n$ severni tečaj sfere. Navaden homeomorfizem med $S^{n-1}-\{N\}$ in \mathbb{R}^{n-1} je

$$f: S^{n-1} - \{N\} \to \mathbb{R}^{n-1}, \ f(x_1, \dots, x_n) = \frac{1}{1 - x_n} (x_1, \dots, x_{n-1}),$$

tj. gledamo presek premic skozi točki N in $T \in S^{n-1}$ z ravnino \mathbb{R}^{n-1} .

Njen inverz je dan z

$$\mathbb{R}^{n-1} \to S^{n-1} - \{N\}, \ g(\vec{x}) = \left(\frac{2\vec{x}}{||\vec{x}||^2 + 1}, \frac{||\vec{x}||^2 - 1}{||\vec{x}||^2 + 1}\right).$$

Bijekcijo f imenujemo **stereografska projekcija**.

Sledi, da $S^{n-1} - \{N\} \approx \mathbb{R}^{n-1}$. Jasno je, da bi enak rezultat dobili, če bi iz sfere izrezali katerokoli točko. Sklepamo, da ima vsaka točka S^{n-1} okolico, ki je homeomorfna \mathbb{R}^{n-1} . Pravimo, da je S^{n-1} lokalno homeomorfna prostoru \mathbb{R}^{n-1} .

Definicija 1.13. Prostore, ki so lokalno homeomorfne kakemu evklidskemu prostoru, imenujemo mnogoterosti.

1.4 Baze in predbaze

Definicija 1.14. Naj bo (X, \mathcal{T}) prostor. Družina $B \subseteq \mathcal{T}$ je **baza topologije** \mathcal{T} , če lahko vse elemente \mathcal{T} zapišemo kot unije elementov B.

Primer. Primeri baz. Ali so lahko baze majhne?

- Naj bo (X,d) metrični prostor. Krogle so baza metrične topologije \mathcal{T}_d . Še več: Dovolj je, če vzamemo samo majhne krogle, npr. z radijem $\frac{1}{n}$.
- Če vzemimo (X, \mathcal{T}_{disk}) , potem vsaka baza vsebuje vse enojčke.
- Ali bi v $(\mathbb{R}^n, \mathcal{T}_{\text{evkl}})$ lahko za bazo vzeli le krogle s središči v \mathbb{Q}^n ?

Trditev 1.5. Naj bo (X, \mathcal{T}_X) prostor, B_x baza \mathcal{T}_X . Naj bo (Y, \mathcal{T}_Y) prostor, B_Y baza \mathcal{T}_Y . Velja:

- 1. $A \subseteq X$ je odprta $\Leftrightarrow \forall a \in A . \exists B \in B_x . a \in B \subseteq A$.
- 2. Naj bo $f: X \to Y$ funkcija. Potem
 - f je zvezna $\Leftrightarrow \forall B \in B_Y . f^*(B) \in \mathcal{T}_X$.
 - f je odprta $\Leftrightarrow \forall B \in B_X . f_*(B) \in \mathcal{T}_Y$.

Dokaz. Slike in praslike ohranjajo unije.

Primer. Ali je $f: S^1 \to S^1 \subseteq \mathbb{C}$ (enotska kompleksna števila), $f(z) = z^2$ odprta?

Definicija 1.15. Naj bo X prostor, $x \in X$. Družina $B_X \subseteq \mathcal{T}$ je **lokalna baza okolic** X, če za vsako odprto okolico U, ki vsebuje x, obstaja $B \in B_X$, da $x \in B \subseteq U$.

Opomba. Običajno prevzamemo, da so B_X okolice x.

Trditev 1.6. Če je \mathcal{B} baza topologije \mathcal{T} , potem je $B_x = \{B \in \mathcal{B}; x \in B\}$ je lokalna baza okolic x.

Obratno: $\mathcal{B} := \bigcup_{x \in X} B_x$ je baza topologije X.

Primer. V metričnem prostoru (X,d) je $\{K(x,r); r \in \mathbb{Q}\}$ lokalna baza pri x.

Vzemimo neko družino B. Definiramo $\mathcal{T} = \{\text{unije elementov } B\}$. Ali je \mathcal{T} topologija?

Trditev 1.7. Naj bo \mathcal{B} družina podmnožic X. Definiramo $\mathcal{T} = \{\text{unije elementov } \mathcal{B}\}$. Potem \mathcal{T} je topologija na X natanko tedaj, ko

- 1. \mathcal{B} je pokritje X,
- 2. za vse $B, B' \in \mathcal{B}$, za vse $x \in B \cap B'$, obstaja $B'' \in \mathcal{B}$, da $x \in B'' \subseteq B \cap B'$.

Rečemo, da je topologija \mathcal{T} generirana z bazo \mathcal{B} .

Dokaz. Enostavno preverimo lastnosti.

Naj bosta $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ topologiji. Radi bi definirali topologijo na množici $X \times Y$.

Definicija 1.16. Produktna topologija $\mathcal{T}_{X\times Y}$ je topologija, ki je generirana z bazo $\{U\times V;\ U\in\mathcal{T}_X,V\in\mathcal{T}_Y\}.$

Zgled. Projekciji.

Dokaz. Enostavno.

- Naj bo $(X \times Y, \mathcal{T}_{X \times Y})$ produktna topologija. Projekciji $\operatorname{pr}_x : X \times Y \to X$, pr_y sta zvezni in odprti.
- Naj bo $\operatorname{pr}_1:\mathbb{R}^2\to\mathbb{R}.$ Ali je pr_1 zaprta?

Naj bo \mathcal{P} poljubna družina podmnožic X. Kaj je najmanjša topologija \mathcal{T} na X, ki vsebuje \mathcal{P} ?

Trditev 1.8. Naj bo \mathcal{P} poljubna družina podmnožic X. Če je \mathcal{P} pokritje X, potem je \mathcal{T} topologija, ki jo kot baza generirajo končni preseki elementov \mathcal{P} . Pravimo, da je \mathcal{P} **predbaza topologije** \mathcal{T} .

Dokaz. Družina vseh končnih presekov elementov \mathcal{P} ustreza pogoju (2) iz trditve 1.7

Primer. Produktna topologia na $X \times Y$ je najmanjša topologija za katero sta projekciji pr $_X$ in pr $_Y$ zvezni.

Množica $\mathcal{P} = \{\operatorname{pr}_X^*(U), \ U \in \mathcal{T}_X\} \cup \{\operatorname{pr}_Y^*(V), \ V \in \mathcal{T}_Y\}$ je predbaza.

S pomočjo predbaze \mathcal{P} lahko definiramo produktno topologijo za poljubno mnogo faktorjev.

Trditev 1.9. Naj bosta $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ prostora. Naj bo \mathcal{P} predbaza \mathcal{T}_Y . Velja:

Funkcija $f: X \to Y$ je zvezna $\Leftrightarrow \forall B \in \mathcal{P} . f^*(B) \in \mathcal{T}_X$.

Pozor! Odprtost funkcije f v splošnem ne moremo testirati na predbaze.

Trditev 1.10. Naj bodo X, Y, Z prostori. Velja:

Funkcija $f: X \to Y \times Z$, $f = (f_Y, f_Z)$ je zvezna $\Leftrightarrow f_Y, f_Z$ sta zvezni.

 $Dokaz. (\Rightarrow)$ Komponenti sta kompozitum zveznih funkcij.

(⇐) Poglejmo prasliko predbaznih množic.

Baze lahko uporabimo za neko grobo oceno velikosti topološkega prostora in bogatstva njegove topologie.

Aksiom 1.11 (1. aksiom števnosti). Naj bo (X, \mathcal{T}) prostor. Vsaka točka $x \in X$ ima števno bazo okolic. Rečemo, da je prostor (X, \mathcal{T}) 1-števen.

Aksiom 1.12 (2. aksiom števnosti). Naj bo (X, \mathcal{T}) prostor. Obstaja kaka števna baza za topologijo \mathcal{T} . Rečemo, da je prostor (X, \mathcal{T}) 2-števen.

Primer. 1-števni in 2-števni prostori.

- Metrični prostori so 1-števni.
- Neštevna množica z diskretno topologijo je 1-števna (metrizabilna), ni pa 2-števna, ker vsaka baza mora vsebovati vsi enojci.

Trditev 1.13. Očitno velja: 2-števnost \Rightarrow 1-števnost. Obrat ne velja.

Trditev 1.14. Naj bo prostor (X, \mathcal{T}) 1-števen. Velja:

- 1. Za vsako množico $A \subseteq X$ je $\operatorname{Cl} A = L(A) = \{x; x \text{ je limita zaporedja v } A\}.$
- 2. Funkcija $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ je zvezna $\Leftrightarrow f(L(A))\subseteq L(f(A))$.

Dokaz. (1) Konstruiramo zaporedje s pomočjo števne baze okolic. (2) TODO.

Primer. $(\mathbb{R}, \mathcal{T}_{\text{evkl}})$ je 2-števna.

Definicija 1.17. Prostor (X, \mathcal{T}) je **separabilen**, če v X obstaja števna gosta podmnožica.

Primer. \mathbb{Q} v \mathbb{R} ali \mathbb{Q}^n v \mathbb{R}^n .

Ali separabilnost in 1-števnost implicira 2-števnost? Ne. Očitno: 2-števnost implicira separabilnost.

Trditev 1.15. V metričnih prostorih je separabilnost ekvivalentna 2-števnosti.

Dokaz. TODO

Primer. Opazujemo množico C([0,1]).

Weierstrassov izrek pravi, da vsako zvezno funkcijo na poljubnem zaprtem intervalu lahko enakomerno aproksimiramo z polinomi. Vsak polinom pa lahko enakomerno aproksimiramo z polinomi z racionalnimi koeficienti. Slida, da je množica polinomov z racionalnimi koeficienti je števna gosta v C([0,1]). Torej C([0,1]) je separabilen (in metričen) sledi, da je 2-števen.

1.5 Podprostori

Naj bo (X, \mathcal{T}) prostor, $A \subseteq X$. Definiramo $\mathcal{T}_A := \{A \cap U \mid U \in T\}$. Trdimo, da je \mathcal{T}_A topologija na A.

Definicija 1.18. Topologija \mathcal{T}_A je **inducirana** (oz. **podedovana**) topologija na A. Prostor (A, \mathcal{T}_A) je **podprostor** prostora (X, \mathcal{T}) .

Primer. Podprostori.

- Evklidska topologija na \mathbb{R} je inducirana z evklidsko topologijo na \mathbb{R}^2 .
- Naj bo d metrika na X. Velja:

- Naj bo $B \subseteq A \subseteq (X, \mathcal{T})$. Velja: $\mathcal{T}_B = (\mathcal{T}_A)_B$ (podprostor podprostor spet podprostor).
- Opazujemo ($\mathbb{R}, \mathcal{T}_{evkl}$). Vzemimo $\mathbb{N} \subseteq \mathbb{R}.$ Inducirana topologija je diskretna.

Trditev 1.16. Zaprte množice v \mathcal{T}_A so preseki A z zaprtimi podmnožicamo v X.

Dokaz. TODO

Velja:

- Če je B baza \mathcal{T} , potem $B_A := \{A \cap U \mid U \in B\}$ je baza \mathcal{T}_A .
- Če je (X, \mathcal{T}) je 1-števen/2-števen, potem (A, \mathcal{T}_A) je 1-števen/2-števen.

Definicija 1.19. Topološka lastnost je **dedna**, če iz prevzetka, da (X, \mathcal{T}) ima to lastnost sledi, da jo imajo tudi vsi podprostori.

Primer. Dedni lastnosti.

- Diskretnost in trivialnost topologije sta dedni.
- 1-števnost in 2-števnost sta dedni.
- Metrizabilnost je dedsna.
- Separabilnost ni dedna.

Naj bo X neštevna množica, $a \in X$. Definiramo $\mathcal{T} := \{U \subseteq X \mid a \in U\} \cup \{\emptyset\}$. Topologija, ki je inducirana na $X - \{a\}$ je diskretna, ki ni separabilna.

Velja: odpr
t podprostor separabilnega podprostora je separabilen. Očitno $\{a\}$ je gosta
vX.

2 Dodatek

TODO. Lastnosti uniji in preseka.

TODO. Lastnosti slike in praslike.

TODO. Lastnosti metričnih prostorov (kompaktnost, polnost). Kaj ohranjajo zvezne funkcije med m. prostoroma? (kompaktnost).