Plant Biotechnology:

the genetic manipulation of plants

Second edition

Adrian Slater

Nigel W. Scott

Mark R. Fowler

De Montfort University

Contents

List of abbreviations xix 1 Plant genomes: the organization and expression of plant genes Introduction 1 DNA, chromatin, and chromosome structure 1 Chromatin An introduction to gene structure and gene expression 6 Gene structure and expression in a eukaryotic protein-coding gene Translation 10 Regulation of gene expression 16 Chromatin conformation 16 Gene transcription 16 RNA modification, splicing, turnover, and transport 18 Translation 20 Post-translational modification 21 Localization 21 Protein turnover 21 Conclusions 22 Implications for plant transformation 22 Examples of promoter elements used to drive transgene expression 26 **Protein targeting** 26 Heterologous promoters 26 Genome size and organization 27 Arabidopsis and the new technologies 28 Genome-sequencing projects—technology, findings, and applications 28 Biotechnological implications of the AGI 31 Crop plant genome sequencing 31 Summary 33 Further reading 34

. 2	Plant tissue culture	37
	Introduction	37
	Plant tissue culture	37
	Plasticity and totipotency	37
	The culture environment	38
	Plant cell culture media	39
	Plant growth regulators	41
	Culture types	44
	Callus	44
	Cell-suspension cultures	45
	Protoplasts O	46 46
	Root cultures Shoot tip and meristem culture	46
	Embryo culture	46
	Microspore culture	47
	Plant regeneration	48
	Somatic embryogenesis	48
	· ·	10
	CASE STUDY 2.1 Cereal regeneration via somatic embryogenesis from immature or mature embryos	50
	Organogenesis	51
	Integration of plant tissue culture into plant transformation protocols	51
	Summary	52
	Further reading	53
3	Techniques for plant transformation	54
	Introduction	54
	Agrobacterium-mediated gene transfer	54
	The biology of Agrobacterium	54
	The Ti plasmid	56
	Ti-plasmid features	56
	The process of T-DNA transfer and integration	59
	Step 1. Signal recognition by Agrobacterium	60
	Step 2. Attachment to plant cells	60
	Step 3. Induction of vir genes	60
	Step 4. T-strand production	60
	Step 5. Transfer of T-DNA out of the bacterial cell	60
	Step 6. Transfer of the T-DNA and Vir proteins into the plant cell and nuclear localization	60
	IOCANZALIOI I	00

	Practical applications of Agrobacterium-mediated plant transformation	61
	CASE STUDY 3.1 Agrobacterium-mediated transformation of tobacco	62
	Transformation	64
	Direct gene-transfer methods Particle bombardment	66 67
	CASE STUDY 3.2 Biolistic transformation of rice Polyethylene glycol-mediated transformation Electroporation Silicon carbide fibres: WHISKERS TM	68 72 73 73
	Summary	74
	Further reading	74
	0	
4	Vectors for plant transformation	77
	Introduction	77
	Desirable features of any plasmid vector	77
	Development of plant transformation vectors	79
	Basic features of vectors for plant transformation Promoters and terminators Selectable markers	79 79 86
	Reporter genes	87
	Origins of replication	91
	Co-integrative and binary vectors Families of binary vectors	91 91
	Optimization	92
	Arrangement of genes in the vector	95
	Transgene copy number	98
	Transgene position Transgene features	98 98
	Clean-gene technology	100
	Summary	100
	Further reading	101
A second		with the same of t
5	The genetic manipulation of herbicide tolerance	105
	Introduction	105
	The use of herbicides in modern agriculture	106
	What types of compounds are herbicides?	107

	Strategies for engineering herbicide tolerance	11
	CASE STUDY 5.1 Glyphosate tolerance	11
	CASE STUDY 5.2 Phosphinothricin	12
	Prospects for plant detoxification systems	123
	Commercialization of herbicide-tolerant plants to date	124
	CASE STUDY 5.3 Engineering imidazolinone tolerance by targeted modification of endogenous plant genes	120
	The environmental impact of herbicide-tolerant crops	127
	The development of super-weeds	129
	Summary	130
	Further reading	13
	0	
6	The genetic manipulation of pest resistance	133
	Introduction	133
	The nature and scale of insect pest damage to crops	134
	GM strategies for insect resistance: the Bacillus thuringiensis	
	approach	134
	The use of <i>B. thuringiensis</i> as a biopesticide Bt-based genetic modification of plants	138 138
	CASE STUDY 6.1 Resistance of <i>Bt</i> maize to the European corn borer	
	and other pests	140
	The problem of insect resistance to Bt	141
	The environmental impact of Bt crops	145
	The Copy Nature strategy	146
	CASE STUDY 6.2 Cowpea trypsin inhibitor	149
	Insect-resistant crops and food safety	153
	Summary	153
	Further reading	153
7	Plant disease resistance	156
	Introduction	156
	Plant–pathogen interactions	157
	Prokaryotes	158
_	Fungi and water moulds	158
	Viruses	160
	Tyleting approaches to compating disease	140

	Natural disease-resistance pathways: overlap between pests and diseases	162
	Anatomical defences	162
	Pre-existing protein and chemical protection	162
	Inducible systems	163
	Systemic responses	170
	Biotechnological approaches to disease resistance	172
	Protection against pathogens Antimicrobial proteins	· 173
	Transgenic crops for food safety	174
	Induction of HR and SAR in transgenic plants	177
	CASE STUDY 7.1 The BASF potato	178
	Developments for the future	179
	Other transgenic approaches	179
	Future prospects for breeding	179
	CASE STUDY 7.2 Xanthomonas spp.	180
	Summary	181
	Further reading	182
8	Reducing the effects of viral disease	184
John State (State State St	Introduction	184
	Types of plant virus	184
	RNA viruses	186
	Entry and replication: points of inhibition	188
	How has the agricultural community dealt with viruses?	189
	CASE STUDY 8.1 Developments in the sugar beet industry	. 190
	The transgenic approach: PDR	192
	Interactions involving viral proteins	192
	CASE STUDY 8.2 Arabis mosaic virus	194
	RNA effects	197
	Some non-PDR approaches	202
	CASE STUDY 8.3 DNA viruses	203
	What has been commercialized in Western agriculture?	204
	Yellow squash and zucchini	204
	Papaya	205
	Potato	205
	Risk	206
	Summary	208
	Further reading	209

9	Strategies for engineering stress tolerance	212
And the second s	Introduction	212
	The nature of abiotic stress	214
	The nature of water-deficit stress	214
	Different abiotic stresses create a water deficit	215
	CASE STUDY 9.1 Glycine betaine production	218
	Targeted approaches to manipulating tolerance to specific water-deficit stresses	222
	Alternative approaches to salt stress	222
	CASE STUDY 9.2°Na*/H* antiporters improve salt tolerance in	
	transgenic plants Alternative approaches to cold stress	22 3
	CASE STUDY 9.3 The COR regulon	224
	Tolerance to heat stress	228
	Secondary effects of abiotic stress: the production of ROS	229
	Strategy 1: Expression of enzymes involved in scavenging ROS Strategy 2: Production of antioxidants	232 234
	Summary	234
	Further reading	234
10	The improvement of crop yield and quality	237
	Introduction	237
	The genetic manipulation of fruit ripening	238
	CASE STUDY 10.1 The genetic manipulation of fruit softening	240
	CASE STUDY 10.2 The genetic modification of ethylene biosynthesis	243
	CASE STUDY 10.3 Modification of colour	247
	CASE STUDY 10.4 Golden Rice	251
	Engineering plant protein composition for improved nutrition	256
	The genetic manipulation of crop yield by enhancement of	
	photosynthesis	258
	Manipulation of light harvesting and the assimilate distribution: phytochromes Direct manipulation of photosynthesis: enhancement of dark reactions	258 261
	Summary	263
	Further reading	263

11	Molecular farming	267
and the second s	Introduction	267
	Carbohydrates and lipids	267
	Carbohydrate production	267
	CASE STUDY 11.1 Starch	. 268
	CASE STUDY 11.2 Polyfructans Metabolic engineering of lipids	272 276
	CASE STUDY 11.3 Bioplastics	282
	Molecular farming of proteins Production systems	285 286
	CASE STUDY 11.4 The oleosin system: hirudin and insulin production Medically related proteins	289 296
	CASE STUDY 11.5 Custom-made antibodies	300
	CASE STUDY 11.6 Edible vaccines	304
	Economic and regulatory considerations for molecular farming	307
	Summary	311
	Further reading	312
1880-1853 F TO 1871 (F		
12	Science and society: public acceptance of genetically modified crops	316
	Introduction	316
	Public concerns -	316
	The current state of transgenic crops Who has benefited from these first-generation GM crops? What will drive the development of the future generations of GM crops?	318 318 322
	Concerns about GM crops Antibiotic-resistance genes Herbicide resistance and super-weeds	323 323 324
	Gene containment Big business Food safety	325 328 330
	Gene containment Big business	328
	Gene containment Big business Food safety The regulation of GM crops and products The EU	328 330 331 331

13	Beyond genetically modified crops	343
	Introduction	343
	'Greener' genetic engineering	343
	Genetic manipulation of complex agronomic traits	345
	Identification of genes associated with desirable traits Genetic mapping Quantitative trait loci	348 348 352
	Investigating gene function by reverse genetics Insertional mutagenesis TILLING	35 4 354 355
	Understanding gene function within the genomic context: functional genomics Transcriptomics Proteomics Interactomics Metabolomics Systems biology	357 357 360 362 362 362
	Summary	363
	Further reading	363
	Index	367

plant transformation 52, 54-5, 61-7, 79, 91 ABA, see abscisic acid strains 60, 64 abscisic acid 6-7 super-virulent 64 disease resistance 166 T-DNA 55-67, 79-80, 91-4, regulation of gene expression 98-100, 139, 158, 354 25-6,227Ti plasmid 55-9, 63, 80, 91-2, 148, response elements 25-6 stress resistance 226 Vir proteins 56-60, 79, 91-2 Agrobacterium-mediated synthesis 245 in tissue culture 42-3 transformation 52, 54-5, ACC oxidase 238-9 61-7, 79, 91 ACC synthase 243-5 agrochemical industry 106, 121, 127 ACC 243 albumin ACCase, see acetyl CoA carboxylase engineering endosperm proteins 257 acclimation, cold 224-6 human serum 305–6 acetohydroxyacid synthase (AHAS), Alcaligenes eutrophus 113, 268, 282-4 see acetolactate synthase alfalfa (ALS) defensin gene 175 acetolactate synthase (ALS) 88, economics of antibody production 108-10, 125-6 herbicide tolerance 125 acetosyringone 60 acetyl CoA carboxylase (ACCase) insect resistance 151 108 - 9,277oxidative stress 232-4 ACNFP, see Advisory Committee on somatic embryogenesis 48-9 Novel Food and Processes vaccine production 295 ACRE, see Advisory Committee on yield 281 Release into the Environment alternative splicing 18-19 ADP-glucose 268-71; see also starch amino acid 10-15, 21, 38-42, 256-8; synthesis see also specific named amino Advisory Committee on Novel Foods acids and Processes 323, 333 essential 107-8 Advisory Committee on Releases to aromatic 111, 114, 116 the Environment 101, 333 branched chain, 108, 113, 126 Affymetrix GeneChip 358 polymers 285-6 AFLP, see amplification fragment aminocyclopropane, see ACC length polymorphism aminomethylphosphonic acid African cassava mosaic virus 159 (AMPA) 119-20 agar 41, 47 ammonia 24, 107, 122 AgrEvo 121, 123, 141120, 124, 139 AMPA, see aminomethylphosphonic Agrobacterium rhizogenes 65, 161, 194 Agrobacterium tumefaciens 55-8 amplification fragment length CP4 gene 117, 120-1, 125 polymorphism (AFLP) crown gall disease 54-6, 158, 161 in plant breeding 179, 351-2

 α -amylase 20, 25

ocs gene 119

signal peptide 300-1 anatomical defence 162 Animal and Plant Health Inspection Service 309, 338 anthocyanins, and flower colour 246, 248 - 9anthranilate 115 antibiotic resistance concerns about selectable marker genes 323-4, 334, 337, 343-4 as selectable marker 68–9, 86–8 antibodies custom-made antibodies 300-3 disease resistance 179, 202 medically related proteins 296-300, 309-10 plantibodies 261 production systems 279-80 protein arrays 361 starch modification 271 anticodon 12-16 antimicrobial proteins 163-4 disease resistance 174 in transgenic plants 174-6 see also defensin proteins, PR proteins antioxidant 230-4 antisense RNA 96-7, 197-204, 240-7, 271, 280 APETALA 346 APHIS, see Animal and Plant Health Inspection Service apomixis 326, 329 apple trees, disease resistance and transgenic plants 173, 175 Arabidopsis genome 28-32, 357-60 transformation in planta 64 arabis mosaic virus (ArMV), coat protein-mediated resistance 190 - 2arachidonic acid 281 arginine vasopressin 307 Argonaute 7-8

inhibitor 150-1, 165

4 00 110	1	0.1 107.000 10
aroA gene 88, 119	beet necrotic yellow vein virus	Calgene 125, 238–42
arogenate 115, 255	(BNYVV)	callus 44–52 ,
Arthrobacter globiformis 218–20	bait test 189–90	Calvin cycle 259–62
ascorbate 230-4, 243, 256	coat protein-mediated resistance 193	manipulation of enzymes 262
monodehydroascorbate 231–2	molecular techniques for detection	cancer
dehydroascorbate 230–2	191	anticancer antibodies 300
peroxidase 230–4	rhizomania 189	anticancer biopharmaceuticals
ascorbic acid, see ascorbate, vitamin C	rhizomania resistant crops 191	305
asters yellow 158; see also	risk of recombination 208	canola, see oilseed rape
phytoplasma, plant diseases	structure 188	carbohydrate
asulam 108	Bellagio Apomixis Declaration 329	crop yield 258–62
atrazine 108, 110, 123–5	betaine aldehyde dehydrogenase	molecular farming 267–76
autoimmune disease 310	218–20	in tissue culture 41
auxin; see also indoleacetic acid	selectable marker for chloroplast	β -carotene 230–2, 246–52
classification of 42	transformation 72, 89	carotenoid
herbicide action 109, 116	betaine, see glycine betaine	biosynthesis 107–8, 232, 246–7,
in crown gall disease 55–7	betalains, and flower colour 248	347
regulation of gene expression 19,	Bialaphos 86, 108, 121-2; see also	flower colour 248
25, 85	glufosinate, phosphinothricin	fruit 247
response elements 19, 25	binary vectors 91–101, 195–6	Golden Rice 251–5
in tissue culture 42–5, 51	basic features 91–3	carrot 49–50, 310; see also somatic
in tobacco transformation 63, 65	evolution of 93	embryogenesis
	families of 92–5	
T-DNA biosynthetic genes 56–7,		CAT, see chloramphenicol
245, 247	optimization of components 92–9	acetyltransferase
Aventis 121, 139–41	biofortified rice 255	catalase 230
avidin, production in genetically	biolistics 66–71	cauliflower mosaic virus (CaMV)
engineered plants 294–5, 309	gene rearrangement 67	classification and structure 185
avirulence 164–5, 168–9; see also	transformation of rice 68–71	35S promoter 23, 69, 80, 103, 117,
gene-to-gene interactions, HR	see also direct gene transfer,	119, 139, 144, 147–9, 152, 240,
response	particle bombardment	273
-	biopesticide 138	structure/activity relationship
	biopharmaceuticals 286, 305-7	80-1
В	bioplastics 282–5	virus resistance 194–5
	biotrophs 157	CBF transcription factor 225–7, 360
Bacillus amyloliquifaciens 273, 275	Bipolaris maydis, and leaf blight 156,	celery 218
Bacillus anthracis 310	159	CEL-1 nuclease 355
Bacillus subtilis 120, 221, 268, 272–3	blight 156–161, 175–80	cell culture 37–43
Bacillus thuringiensis 134–8, 142,	Bollgard 139, 142–5	cell suspension culture 66, 74
321, 344; see also Bt	Borlaug, Norman E. 250, 345	cellulases, production in genetically
bacterial pathogens of plants 158-9;	Botrytis spp 173	engineered plants 242
see also specific names	Brassica napus (canola, oilseed rape)	chalcone synthase 25, 199, 248
bait test 190	220, 290–1; see also oilseed rape	chicory 272–4
bar gene 88, 123, 125	Brazil nuts 257	chilling 220–2, 224–7; see also cold
barley	bromoxynil 88, 108, 113, 123–5	stress
codon usage 14	Bt cotton 138, 141, 144-5; see also	chitinase 164
diseases of 158–9	Bollgard, cotton	PR proteins 164–5
genome 27, 33	Bt crops 138-46, 306; see also	in transgenic plants 173–4
PR proteins in transgenic plants	individual crops	chloramphenicol acetyltransferase
165, 173–4	Bt genes 135–9; see also cry genes	81, 87, 91
RIP 174	Bt maize 140-6; see also maize	chloroplast 107–8
stress resistance 213, 220, 223	bulk enzymes 285	genetic engineering 310, 325–6,
tissue culture 47	bunk chizymes 205	344
α-thionin 174	C	genome 1–4
barley yellow dwarf virus (BYDV) 159	С	proteins produced in chloroplasts
coat protein-mediated resistance	11 1 (22-22)	310
193	cacoa swollen shoot virus (CSVV)	starch 268, 270
Basta 110, 112, 121–2, 125	159	transformation of 71–2

transgeme proteins expression	COIII, see maize	in manipulating senescence 201
levels 300	Corynebacterium spp. 158	in plant tissue culture 44-5, 51
transit peptide 22, 26, 117–9	co-suppression 197–9, 241–2, 263,	in tobacco transformation 63
see also photosynthesis	280	selectable marker 87, 89
chlorophyll 107, 232	cotton	T-DNA biosynthetic genes 55, 57
chlorsulphuron 108, 110, 125-7	herbicide resistant 117, 119, 125,	cytoplasmic male sterility (CMS) 156,
choline 217–20	127	159
dehydrogenáse (CDH) 218–20	insect damage 134, 139, 141–5,	CMS-T 156
monooxygenase (CMO) 218-20	149, 153	01/10 1 150
		•
oxidase (COD) 218–20	see also Bt cotton, Bollgard,	D
-O-sulphate 217	bollworm, leafworm	D
chorismate 114–5	cowpea mosaic virus (CPMV)	
chromatin 1, 4-5, 16, 58, 61, 98; see	capsid structure 187, 195	dark reaction 258–63
also gene expression	genome structure and translation	manipulation 261
chromoplast 107	strategy 187–8	De Kalb 140
cis elements 16–7, 24–6	movement proteins 188	defective interfering RNAs 198
citrus tristeza virus (CTV)	vector for protein synthesis 293,	defensins 162–5, 175
coat protein-mediated resistance	302	elicitor response 163
193	cowpea trypsin inhibitor (CpTI)	PR proteins 164–5, 172–4, 181
cross protection 189	148–51	DEFRA, see Department for
Cladosporium fulvum 177	Cre-lox 100	Environment, Food and Rural
clean-gene technology 95, 100–1,	crown gall disease 55–6	Affairs
310, 324–5	CRT/DRE 225-7	dental caries 298, 300
coat protein-mediated resistance	<i>cry</i> gene 134–48	deoxyribonucleic acid 1
(CPMR) 193-4	cry1Aa 135, 136–7	chloroplast 2–4
arabis mosaic nepovirus case study	cry1Ab 135, 136, 139-40, 142, 146,	genomic 1–10
194–97	148	mitochondrial 2–4
multiple pathogen-derived	cry1Ac 135, 136, 139-40, 142,	promiscuous 2
resistance strategies 198	144-5, 148	structure of 4–5
risk of transcapsidation 206	cry1F 135, 140	transcription of, see transcription
virus-like particles (VLPs) 193	cry2A 135	Department for Environment, Food
see also genome structure	cry3A 135, 137, 139	and Rural Affairs 333, 338
codon 11–21	cry3Bb 135, 139–40, 142	detoxification 111–2, 116, 119–21,
codon usage 14, 99, 276, 290	cry9C 135, 139, 140–1	122-5, 130-1, 231
	•	
co-integrative vectors 91	Cry protein 134–48; see also cry gene,	DHFR, see dihydrofolate reductase
cold stress 213, 224–7; see also	and individual <i>cry</i> genes	Dicamba 42, 109
chilling	Crystalline protein (ICP), see Cry	Dicer RNase 7–9, 200–1
Coleoptera 134–5, 138, 140, 142,	protein	2,4-dichlorophenoxyacetic acid
151	cucumber mosaic virus (CMV)	(2,4-D) 42, 109, 113, 125;
co-linearity 32	coat protein-mediated resistance	see also auxin
Colorado beetle 134, 139, 142	193	dihydrofolate reductase (DHFR) 88,
comovirus	commercialization of resistance	116
movement proteins 187–8	204	dihydropteroate synthesis 88, 108
structure and translation strategy	non-PDR approaches 202	Diptera 134–5, 138
187-8	post-transcriptional gene silencing	direct gene transfer 54, 64, 66–71,
compatible solute 216-8, 221-2; see	201–2	74
also osmolyte, osmoprotectant	risk studies of transgenic plants	see also biolistics, electroporation,
concerns about GM crops	207	protoplasts, silicon carbide
antibiotic resistance 101, 323–4	satellite RNA 189, 198	fibres
Golden Rice 253	- ·	directed evolution, see molecular
	cucumber, PR proteins in transgenic	
herbicide resistance 128–30,	plants 165	evolution
324–5	C-value paradox 27	disease resistance pathways
pest resistance 145–6	cyclodextrin 269–72	162–72
Copy Nature strategy, and insect	cytochrome P450 123, 281	DNA, see deoxyribonucleic acid
resistance 146-8, 152	cytokinin(s)	drought 170, 213–33, 274, 276,
COR regulon 224–227	classification 42–3	360-3
corn rootworm 139, 142	in inducible gene expression 84	DuPont 120, 125, 139

dwarfing	ERA, see Environmental Risk	gelling agents 41
cereal 247–9, 346	Assessment	gene
potato 261	erucic acid 277–80	amplification 116
tomato 247	Erwinia spp. 158, 174–5, 251, 274	duplication 30, 116
	fireblight 158, 175–6, 181	structure 6–10
E	target for antimicrobial proteins	gene containment 325–8
-	174–5	gene expression 10–22
E. coli, aroA gene 88, 119	EST, see expressed sequence tag ethylene 170–1, 178, 238–47, 263	chromatin 4–5, 58, 61, 98
economics of molecular farming 281,	in tissue culture 42–3	codon usage 14, 90, 140, 276, 290 control of 6–22
286, 307–9	European corn borer (ECB) 134,	gene-for-gene hypothesis 168
edible vaccines 303–5	139–42, 321	gene shuffling 120
electroporation 66, 73, 92	exon 9–10, 30	gene silencing 6–9, 67, 80, 95, 101,
elicitors	expressed sequence tag (EST) 357	272
inducible 163–6	1 0 ,	chalcone synthase 199
endogenous 163–5	·	plastid transformation 71–2, 344
exogenous 163–6	F o	RNAi 96–7
embryo culture 46		small RNAs 6–9
mbryogenic callus 46, 50, 68–70,	fatty acid, synthesis 279-81	virus and PDR 197–202
74	FCA 19	see also transcriptional gene
endoplasmic reticulum 21–2, 99, 117,	FDA, see Food and Drug	silencing, post transcriptional
257, 277	Administration	gene silencing
modification of fatty acids 277	field trials 319, 337	gene stacking, see pyramiding
modification of proteins 257	fungal resistance 175, 178	genetic code 14
endosperm 31, 44	herbicide-resistant crops 321–2	genetic mapping 348
biofortified cereals 255–7	insect-resistant crops 139, 148	genetic markers 348
Golden rice 251–3	fireblight 158, 175–6, 181	genetically modified crops
polyfructans 275	transgenic resistance in fruit trees 175–6	area cultivated 318–21 benefits 318–22
starch 269 endotoxin-δ, see Cry protein	flavonoids 115–6, 248, 284	concerns 323–31
enhancers	FlavrSavr tomato 238, 242	antibiotic resistance 323–4
gene 17	flax 125, 158, 168, 267, 285	herbicide resistance 324–5
increased transcription 111, 195	flowering, acceleration of 345, 354	see also concerns about GM
35S promoter 80–1	flowers	crops
Ti-plasmid 56–7	ornamentals and flower colour 245	future developments in 322–3
Translational 273	FLP-frt 100	gene transfer, horizontal 129–30
enolpyruvylshikimate 3-phosphate	Food and Drug Administration	genome sequencing 27–34, 179, 181,
(EPSP) 114	(FDA) 302, 339	343, 348, 357
nolpyruvylshikimate 3-phosphate	free radical, see reactive oxygen	genome sizes 27–8
synthase (EPSPS) 88, 109–14,	species (ROS)	GFP, see green fluorescent protein
116–20, 121	scavenger 231	gibberellin(s) 42–3, 246–7, 346
environmental impact 100	freezing stress 212–5, 220–7, 233	β-glucanase
herbicide-resistant plants 109,	fructan 217, 221, 267-81, 311; see	PR proteins 164–5, 173–4
127–31	also oligofructan, polyfructan	induction by elicitors 164–7
Bt crops 145–6	fruit ripening 43, 238–9	use in transgenic plants 173-4
insect resistance to Bt 141–5	functional genomics 29, 124, 357–63	glucocerebrosidase 306
Copy Nature strategy 146	fungal pathogens of plants 159, 164, 173–4	β-glucuronidase 87–90, 205, 228,
Environmental Protection Agency	fungicides, use in USA 160	290, 294–5 glufosinate ammonia, <i>see</i> Basta,
(EPA) 141, 144–5, 339 Environmental Risk Assessment	Fusarium spp. 159, 174–5, 176	phosphinothricin
(ERA) 331–3	mycotoxins 176	glutamate 115, 122
EPA, see Environmental Protection	in cocomic in a	glutamine 12, 41, 108, 221
Agency		glutamine synthetase (GS) 108,
EPSP, see enolpyruvylshikimate 3-	G	110, 122–3, 221
phosphate	40	glutathione 49, 230-1, 234, 256
EPSPS, see enolpyruvylshikimate 3-	gai/GAI 247–9, 346	conjugation 124
phosphate synthase	Gateway [™] vectors 94–5, 97	peroxidase 233-4

reductase 233–4	hypersensitive response (HR) 157,	K
synthetase 233	163–5, 167–72, 177–8	
-S-transferase 123-4, 233	induction in transgenic plants	kanamycin 63-4, 86, 93, 123, 195,
glycine 4–2	177-8	337
group of herbicides 108, 110-1,	protein interactions 168	Klebsiella ozaenae 113
120, 125	r	Klebsiella pneumoniae 268, 272
glycine betaine 218–21		Telegosistis pricuritoristic 200, 272
	1	
glycosylation 21, 287–300	•	L
glyoxylate, breakdown product of	:1	
glyphosate 119–20	identity preservation 280, 308	
glyphosate	idiotype vaccine 300–2	LEAFY 345-6, 354,
acetyltransferase 120–1	imazapyr 108, 126	lectin 150–3, 164, 274–5
mode of action 110–15	imazathapyr 110, 126	legislation
oxidoreductase (GOX) 119–21	imidazolinone 108, 109–10, 125, 126	EU 323, 331–8
structure 110	immunoglobulins, see antibodies	UK 332–3
tolerance 116–21, 124–5	inclusion bodies; see also Cry protein,	USA 338-9
usage 128	crystabprotein	legumin box 26
GNA, see snowdrop lectin	indole-3-acetic acid (IAA) 42, 57,	legumin mRNA 20
Golden Rice 65, 249, 251–5	109, 116, see also auxin	Lepidoptera 134, 135, 138, 142, 149,
Humanitarian Board 254	inducible disease resistance 163–70	151
IPR 254–5	insect	LibertyLink 121, 123, 125; see also
green fluorescent protein (GFP)	larva 134–5, 138–9	phosphinothricin
	larva midgut 136–8	light-regulated gene expression 26
reporter gene 87, 90	•	
selectable marker 89	resistance to Bt 141–4	Lightning herbicide 126
sequence optimization 99	see also Coleoptera, Diptera,	lignin 115–6, 121
Green Revolution 250	Homoptera, Lepidoptera,	linoleic acid 278–9, 281
guard hypothesis 167, 177	Orthoptera	linolenic acid 278–9, 281
GUS, see β-glucuronidase	insecticidal crystal protein (ICP), see	lipid, biosynthesis 107, 109, 276–281
	Cry protein	localization, protein 16, 22, 117–9,
	Integrated Pest Management (IPM)	225-6, 274 - 5
Н	142	luciferase 87, 90
	intellectual property rights (IPR) 254	lycopene 238–9, 241, 246–7, 251–2
HASTY 7–8	interactomics 362	lymphoma 300, 302
heat shock 225–6	International Rice Genome	lysine 12, 89, 256-8, 286
heat-shock protein (HSP) 226, 228	Sequencing Project 32	•
heat-shock element (HSE) 84, 226,	International Service for the	
228	Acquisition of Agri-biotech	M
heat-shock factor (HSF) 228	Applications 318, 321,	
heat stress 228	inter-simple sequence repeat (ISSR)	macronutrients 39-40
tolerance 228	352	maize 40
HEN1 7–8	intron 9–10, 19–20, 27, 30, 87,	chloroplast genome 2–4
herbicide	cryptic 90, 97–9	
	7.4	diseases of 156, 159, 176
broad spectrum 107, 111, 121	IRGSP; see International Rice	herbicide resistant 119, 120, 123,
super-weeds 324–5	Genome Sequencing Project	125, 126, 130
tolerance 105–31	ISAAA, see International Service for	insect resistance 134, 139, 140, 141,
toxicity 109, 122-3, 128	the Acquisition of Agri-	142, 145, 146, 148, 151
see also individual herbicides	biotech Applications	mitochondrial genome 2–4
heterologous encapsidation 206		molecular farming 268, 271, 273,
high dose/refuge management	_	275, 276, 287, 294–5, 309, 311
scheme 143–5	J	relative genome size 27
hirudin, production in B. napus		maltose 41, 49-50
287–90	jasmonic acid 170–1, 178, see also	mannitol 217-8, 221, 269-70
histone 4–5, 16, 61	methyl jasmonate	MARs, see matrix attachment regions
Hoechst 121, 123	sequence elements 25	massively parallel signature
Homoptera 134, 151	Jerusalem artichoke 268, 272–3, 275	sequencing (MPSS) 358
hydrogen peroxide 178, 218, 229–34	Joint Regulatory Authority (JRA) 333	material transfer agreement (MTA)
hydroxyl radical 229–32	JRA, see Joint Regulatory Authority	95, 254
	,, ,, , , , , , , , , , , , , , ,	

matrix attachment regions (MARs) 98 media 39-41 Medicago falcata, see alfalfa meristem culture 46 messenger ribonucleic acid (mRNA) 6, 9-13, 18-21, 96-8, 185-7,239-41, 357-60; see also ribonucleic acid turnover 18-20 see also transcription, translation; metabolomics 362-3 methionine 11-12, 14, 21, 243, 256 - 8methyl bromide 161 methyl jasmonate 22-3, 84, 170 microarray 358, 361 micronutrients 39-41, 255 microsatellites, in breeding 179, 349 microspore culture 47 microRNA 6-8, 200-2miRNA, see microRNA mitochondria, genome of 2-4 molecular breeding 346 molecular evolution 120 Monarch butterfly 145-6, 344 monoculture 133, 156, 170, 325 disease resistance 1568 Monsanto 111, 119-20, 125, 139-40, 142, 144, 204-5, 283, 321, 327 - 8movement protein virus encoded 185-7, 203, 292, MPSS, see massively parallel signature sequencing mRNA, see messenger ribonucleic acid MS, see Murashige and Skoog Murashige and Skoog (MS) 40, 49, 50,63 mutant 29, 117, 119, 124-5, 193-4, 202-4, 247-9, 271, 275, 280, mutation 28-9, 111, 112, 126-7, 249, 107, 123, 354-7 Mycogen 139-40

N

Na⁺/H⁺ antiport 223 NaturGard 140 necrotrophs 157 nematodes 30, 135, 142, 161, 168, 188, 194 nepovirus genome structure 195; *see* also arabis mosaic virus Nicotiana tabacum, see tobacco nitrate reductase 38 nitrilase 88, 113, 125 nitrile 108, 125 nopaline 55–7, 80, 195 Novartis 140, 323 nptII gene 86, 88, 92, 324

0

Ochrabactrum anthropi 112 octopine 55-7 oil bodies 277; also see oleosin oilseed rape genome 27-8 GM concerns 325 herbicide resistance 119-25, 130 insecticidal genes 151 molecular farming 268, 276-89 salt tolerance 223 see also Brassica napus, canola oleic acid 278-81 oleosin 277, 289-99, production system 282-5, 296 oligofructan 268-9, 275; see also fructan oncogenes, T-DNA 57, 79, 101, 179 D-ononitol 217, 221 organogenesis 46, 48-52, 63 Orthoptera 134, 149–51 Oryza sativa, see rice oryzalin 108 osmolyte 216–22, 226, 269; see also compatible solute, osmoprotectant osmoprotectant 217–22, 274; see also compatible solute, osmolyte osmotic adjustment 215, 217, 220-21 osmotic potential 38, 46, 215-8 osmotic stress 23, 215-22, 227, 276 osmotin 142, 165, 221 overexpression 111–7, 177, 223–6, 247, 255, 261, 271

P

palmitic acid 278
papaya ringspot virus (PRSV)
coat protein-mediated resistance
193
commercialized resistance 205
disease of citrus plants 189
paraquat 108, 233–4
particle bombardment 66–71, 73,
140, 285

gene rearrangement 68 transformation of rice 68-71 see also direct gene transfer, biolistics pat gene 88, 122-3 pathogen-associated molecular pattern (PAMP) 166-72 pathogenesis-related proteins (PR proteins) 148, 168 pear 175, 242 pectin methylesterase (PME) 239, 241-2 PEG-mediated transformation 72-3 pest resistance 31-3, 133-55, 345; see also insect resistance petroselenic acid 280-1, 307-8 petunia 88, 116-9, 151, 199, 249 PGRs, see plant growth regulators phenylalanine 12, 111-5 phosphinic acid 108, 110, 125 phosphinothricin 88, 110, 112, 121-5 phosphoenolpyruvate (PEP) 111, 114, 140, 148, 259, 262 photosynthesis 107–8, 110, 122, 215-7, 222, 258-63; see also dark reaction, Rubisco, phytochromes phytase 255, 295-6 phytochromes 258-61 phytoene synthase 238-9, 246-7, 251-2, 263 phytoplasmas 158 aster yellow 158 *Phytophthora* spp. 158–61, 174–8 picloram 42, 109 pinitol 217, 269-70 pink bollworm 139, 144-5 Pioneer Hi-Bred 120, 125-6, 139 plant-derived vaccines 302-5 Plant Genetic Systems (PGS) 123 plant growth regulators (PGRs) 41-4, 47, 51, 65, 245 plant pathogens 66, 157–9, 164–70, 178, 180 - 1plant regeneration, see regeneration plant tissue culture, see tissue culture plant transformation, see transformation plant viruses 160, 184-209, 287, 292-3, 338 plasmid vectors Gateway™ 94-5, 97 pBIN19 91-3, 149, 195 pBluescript 78 pGreen 93

plant transformation 62-5, 77-104

pROK 2 149	commercialized resistance 161, 205	TOM alamas 228 0
see also binary vectors	post-transcriptional gene silencing	pTOM clones 238–9 pTOM5 247
plasticity, developmental 37–8, 41,	199–200	pTOM6 240, 243
51, 214	reduction in tuber yield 189	pTOM13 233-4
plastid 2, 23, 71–2, 107, 117–9, 232,	risk 207	Puccinia graminis 159
251, 268	Potrykus, Ingo 253	Pusztai, A. 152, 242, 330
plastid transformation 71–2	precautionary principle 334–5	pyramiding 141, 180–1, 225, 347
pleiotropic effects of transgenes 121	proline 12, 14, 41, 217–8, 221, 223,	F)
pollen 44, 47–8, 129–30, 140, 145–6,	226	
148, 310, 326, 344, 362	promoter analysis 24–6, 87	Q ·
polyadenylation 9-10, 19, 98-9, 304,	promoter structure 2, 9–11, 16–7,	
310	promoter	quantitative trait locus (QTL) 352-4
polyfructan 272–81; see also fructan	35S 23, 67, 80–5, 96, 117, 119, 123,	•
polygalacturonase (PG) 238–9	144, 147–9, 152, 173–4, 177,	
polyhydroxyalkanoate (PHA) 282	194, 225, 240, 247, 251–2, 273,	R
polyhydroxybutyrate (PHB) 268,	282, 285–6, 288–9, 298, 306	
282–3	for Bt genes 139, 144, 147–9, 152	random amplified polymorphic DNA
polymerase chain reaction (PCR) 95,	inducible 81, 83–4, 89, 97	(RAPD), in plant breeding
100, 355	abscisic acid 26, 85, 226,	179-80, 350
plant breeding 179	alcohol 82–3	rape, see oilseed rape
virus detection 191, 195–6	auxin 85	reactive oxygen species (ROS) 165,
polymorphic DNA 350	copper 83,	172, 212-4, 221, 229-334
Polymyxa betae, fungal vector for	heat-shock 84	receptor, Cry protein 137-8, 141, 148
BNYVV 185	senescence 84	recombinases, site-specific 95, 98,
post-transcriptional gene silencing	steroid 83	100, 327
(PTGS) 6-8, 199-209	tetracycline 82	refuge, pest management 143–5
coat protein-mediated resistance	wound 84, 147, 173, 177	regeneration 37–8, 46–8, 50–3,
193–5	tissue-specific 26, 69, 80, 83, 147,	61–3, 70–4, 87, 123, 325
post-translational modification 16,	194, 288	importance of genotype 50
21–2, 287, 289, 310, 312, 360–1	endosperm-specific 251–2, 255 oleosin 289, 292	plant transformation 48–52
potato	virus vectors, subgenomic 294, 301	replicase complex virus proteins 187
antimicrobial proteins 174–6	protease 149, 151, 153, 200, 290–1,	function 188
biopharmaceuticals 305–9	348	target for ribozymes 198
breeding 161	protease inhibitor 149–51, 164–5	reporter genes 22, 24, 68, 79, 80, 87,
disease resistance 158–81	protein domains 7, 18, 136–7, 142,	90, 93, 101
herbicide resistance 125	289	resistance genes, disease 84, 86, 100,
insect resistance 134, 139, 142,	protein stability 21, 303	131, 144-8, 150, 181, 191-2
148-53	protein storage	HR and inducible systems 164,
molecular farming 268–309	prolamins 257	170, 172
vaccines 302-4	protein bodies 257	pyramid breeding 179
viruses 205–8	vacuole 21–2, 257, 273–5	transgenic plants 178, 180, 202–3,
virus-free plants 189	see also albumin	209
wound-inducible promoter 173	proteomics 29, 95, 360, 362	restriction fragment length
yield 261	protoplasts 46, 52, 66, 72–3, 218, 225	polymorphisms (RFLP), in
potato leafroll virus (Polerovirus)	PEG 72	plant breeding 179–80, 350–1
coat protein-mediated resistance	in transformation 72	reverse genetics 354
205, 207	provitamin A 230, 249–55; see also	Rhizobium spp. 66, 157
potato virus X (PVX)	Golden Rice, vitamin A, β-	Rhizoctonia spp. 157, 159
coat protein-mediated resistance	carotene	transgenic resistance 174
192–4 post-transcriptional gene silencing	Pseudomonas spp. 158–9, 180, 285	rhizomania 190–1; see also BNYVV ribonucleic acid 1, 6–22; see also
199	antimicrobial proteins 166 R protein interactions 166–7	messenger ribonucleic acid
vectors for protein production 292	transgenic resistance 166	alternative splicing 18–9
potato virus Y (PVY)	typeIII proteins 168,	antisense 8, 96–7, 197–201, 204,
coat protein-mediated resistance	PTGS, see post transcriptional gene	240-7, 263, 271, 280
192–3	silencing	processing 10, 20, 98
	v	

synthesis 6–10, 197, 208	manipulation in C3/C4 systems	altalta 49
translation 6, 10–16	259, 262	carrot 49
ribosome-inactivating protein (RIP)	Rubisco activase 19	cereal 50
174		somatotrophin 305
rice		expression levels in chloroplasts
biolistics 68–71	S	310
C3 photosynthesis 262		sorbitol 41, 217, 221–2
	SAC promotor (conceense related)	
chitinases and glucanases 173	SAG promoter (senescence-related)	Southern corn leaf blight 156, 159
coat protein-mediated resistance	261; see also promoter,	spinach 218, 220, 309
183	inducible	splicing 7, 10, 16, 18–20
engineering nutritional qualities	SAGE, see serial analysis of gene	squash
251–6	expression	coat protein-mediated resistance
gene rearrangement 67	salinity 170; see also salt stress	193
insect resistance 132, 148-9, 151-3	salt stress 212-4, 233-4	commercialized virus resistance 204
secondary products 163	saprophytes 158	SSR, see simple sequence repeat
signal sequence 300	satellites, RNA 185	stable expression systems for protein
virus diseases 159–60	cross-protection 189	production 139, 288
yield 287	RNA protection 197–8	starch 263
see also Golden Rice	virus genome component 185	modified 268, 270–2
rice genome sequencing 32–3	scab 159, 161	plastids 107
		-
rice stripe virus (RSV)	resistant potato 161	synthesis 267–8
coat protein-mediated resistance	secondary products as antimicrobials	starch branching enzyme (SBE) 270,
193	163	271
rice tungro virus complex 153,	secretory antibodies, IgA 298–9,	starch synthase 269, 271
159-60, 193	303	StarLink 139-41, 330
rice yellow mottle virus (RYMV)	selectable markers 64, 68, 79, 86–7,	stearic acid 280
coat protein-mediated resistance	92-3, 101, 323-4, 337, 344	Streptococcus mutans
193	for plastids 72	secretory antibodies and dental
ricolenic acid 281	sequence tagged sites (STS), in plant	carries 298
Ri plasmid 65	breeding 179	Streptomyces 88-9, 112, 123, 158
RISC, see RNA-induced silencing	serial analysis of gene expression	stress
complex	(SAGE) 357	abiotic 131, 212-5, 229, 231, 234,
risk assessment 130, 331–5	Serratia marcescens, source of	276, 362
risk; see also concern	chitinase gene 173	biotic 106, 212–4, 366
effect of satellite sequences 198		
	shikimate pathway, shikimate 3-	oxidative 212–3, 221, 229, 231–4
transcapsidation and	phosphate 114, 116	temperature 212–5, 224–7,
recombination 206–8	shoot tip culture 46	water deficit 212-8, 220-2, 229, 276
RITS, see RNA-induced	signal sequences	stress tolerance 212–36; see also
transcriptional silencing	human serum albumin 306	` stress, individual stress
complex	immunoglobulin 298	tolerances
RNA, see ribonucleic acid	targeting to ER 298	S-triazine 110, 125
RNA-directed methylation 9	vacuolar 273	subgenomic promoter, TMV 186-7,
RNAi, see RNA interference	signal transduction cascades, map	195, 301
RNA-induced silencing complex	kinases 166-7	substantial equivalence 331, 334-6
(RISC) 7-9, 200-1	silicon carbide fibres (Whiskers™)	subunit vaccines, plant derived 286
RNA-induced transcriptional	66, 73	sucrose, in tissue culture 39-41, 50
silencing complex 9	simple sequence repeat (SSR) 349	sugar alcohol 217, 268-70, 283, 296
RNA interference 6, 96–7, 179	single chain antibodies 286, 297, 300	sugar beet 45, 125, 130, 190-1, 193,
RNA viruses	single-nucleotide polymorphism	208, 213, 221, 268, 273-5
structure, classification and	(SNP) 349, 352	see also beet necrotic yellow vein
		virus
expression systems 166, 186	siRNA, see small interfering RNA	
root culture 46	small interfering RNA 8, 200–2	sulphonylureas 88, 109, 126
Roundup 110–2	snowdrop lectin (GNA) 151–3	super weeds 86, 129, 324–5
Roundup Ready crops 117, 119, 121,	SNP, see single-nucleotide	superoxide 229–34,
125, 128	polymorphism	dismutase (SOD) 229-30, 233
R-RS 100	somatic embryogenesis 43, 46,	sweet potato 151, 189, 256, 271,
Rubisco 4, 25, 258–9, 282, 284	48-52, 362	274-5

synteny 32–3 systemic acquired resistance 170–1 systemic response 162, 170	tobacco mosaic virus (TMV) antibody production 300–2 coat protein-mediated resistance
transgenic plants 178 systems biology 363	192–5, 203, 208–9 movement protein 188, 194 N gene 209
т	structure and expression systems
T	186 translation enhancer 195
ta-siRNA, see <i>trans</i> -acting small interfering RNA	vectors for protein synthesis 292, 294
TATA box 11, 16–7, 81–2, 228	α-tocopherol 230, 231–2, 255–6
taxonomy, virus 184	tolerance
T-DNA	virus infections 197
border sequences 56-7, 59-60,	tomato 125
62–3	diseases 159–60,
clean gene technology 100	edible vaccines and
structure 55–9	biopharmaceuticals 287,
transfer 59–61	301–5
technology property rights (TPR)	genome 27
254, 327; see also Material	insect resistance 134, 139, 148,
Transfer Agreement (MTA)	151–2
terminator technology 318, 326, 329	resistance proteins 165
tetracycline inducible promoter 82,	ripening 237, 251
327	virus resistance 199, 202
tetracycline repressable promoter 82 TGS, <i>see</i> transcriptional gene	tomato spotted wilt virus (TSWV) 159
silencing	coat protein-mediated resistance
Ti plasmid 55–61	193, 199
TILLING 355–7	post-transcriptional gene silencing
tissue culture 37–53	202
tobacco	totipotency 37–8
Agrobacterium-mediated	trans-acting small interfering RNA
transformation of 62–3	8–9
Calvin cycle and photosynthesis	transcapsidation 195, 206–7
261–2	transcription 4-6, 9-11 16-8, 20, 23
chloroplast map 3	transcription factor(s) 11, 16–8, 192,
chloroplast expression 310	197, 199, 201, 331, 357, 360
budworm 134, 139, 144–5, 149	transcriptional gene silencing 6, 9, 97,
herbicide resistance 119–20, 127 hornworm 134, 142	197, 199, 201
	transcriptomics 29, 179, 181 transfer RNA 6
insect resistance 1134, 139, 142, 144, 148–51	transformation 20, 22, 25, 32–3, 37,
molecular farming 268, 273–4,	44-6, 48, 50-3, 54-76
276, 281, 284, 286–7	*·· · · · · · · · · · · ·
organogenesis 51	copy number 61, 67, 71, 73, 98
pharmaceutical production in 287,	position 98, 192
289, 298, 300–7, 311	features 98
phytochromes 260	transgenic crops, see genetically
resistance to bacteria 174, 176	modified crops
resistance to fungi 165, 173–7	transient expression, protein
resistance to viruses 192–3, 195–9,	synthesis 66, 100, 204, 288
202, 209	idiotype vaccine 301
yield 287	plant derive vaccines 302
tobacco etch virus (TEV)	translation 4, 6–7, 10–6, 20–1, 23,

post-transcriptional gene silencing

199

trehalose 89, 217, 221–2, 268–70, 276 triacylglycerol (TAG) 277–8

Trichoderma spp., source of chitinase gene 173

trichosanthin 305–6

tRNA, see transfer RNA

trypsin 149, 290, 292, 295, 309

trypsin inhibitor 149–51, 165, 305

tryptophan 12, 111, 115–6

turgor potential 215

tyrosine 111, 115, 255

U

United States Department of Agriculture (USDA) 309, 311, 327–9

٧

vaccines 285-310 vacuolar targeting 22, 273-6 vacuole 21-2, 123, 218, 222-3, 257, 268, 270-5, 282, 284-5 vectors, binary, see binary vectors Venturia spp., scab in fruit trees 173 Verticillium spp. 175 virulence genes 60-4 virus classification and structure 185 virus-like particles (VLPs) coat protein-mediated resistance 193 arabis mosaic virus 195 TMV resistance 193-4 virus replication antisense 198 effect of satellite RNA 197 viscosity, tomato paste 241-2 vitamin A 230, 249 deficiency 251 see also Golden Rice, β carotene, provitamin A vitamin biosynthesis 107 vitamin C, 230-1; see also ascorbic acid vitamin E, 230; see also α-tocopherol vitamins, in tissue culture 38-9, 41,

W

29, 99, 107, 117, 195, 201, 273

repression by uORFs 20

water deficit, see stress, water deficit water potential 214–5 water shell 216

watermelon mosaic 2 virus (WMV2) coat protein-mediated resistance 193 commercialization of resistance 204 PTGS 202 weedkiller, see herbicide weeds 106-7, 111, 121-2 hérbicide resistant 123, 129; see also super weeds volunteer 121, 129 wheat 47, 149, 151, 165, 174, 176, 178, 223, 249-50, 256, 272, 287 electroporation 73-4 coat protein-mediated resistance 193, 209 diseases 158-9 genome 27, 33 global warming 322 photosynthesis 362

soil-borne wheat mosaic virus (SBWMV) 193 yield 212–3 Whiskers™ 73

X

Xanthomonas spp. 158–9, 169, 177 resistance to 180 xenobiotic 123, 229 xylanases 295

Y

yield antibodies 299 crop 106, 133, 148, 222, 234, 237 biomass 287, 295, 309, economics of biopharmaceuticals 286, 307–9 hirudin 289–90, 305 protein yield from engineered plants 288–9, 292–4, 306, 309 YieldGard 139–42

Ζ

Zea mays, see maize
zeaxanthin 230
Zeneca 238, 241–2
zucchini yellow mosaic virus
(ZYMV)
coat protein-mediated resistance
193
commercialization of resistance 204
cross-protection 189
risk studies 207
zwitterion 217