

Amateur Television

Compiled and Presented by

Stanley Grixti – 9H1LO

What exactly is ATV?

 Amateur Television is the transmission of either Slow Scan pictures (SSTV) or Fast Scan pictures (FSTV).

Scan meaning the "drawing" of the picture on the screen.

SSTV

- *Slow Scan* is normally used on the narrow bandwidths of *HF* and *VHF*.
- Usually *SSB* and *FM*.
- The pictures are converted into audio and sent one at a time.
- Each *frame* takes about *3 mins* to be sent!
- Very noisy and unreliable.
- Nowadays sent / received using a PC
- MIR Space Station used to Transmit SSTV!

FSTV

- FSTV is generally termed ATV.
- 25 frames per second can be sent (Live Video).
- Audio channels can be used as sub-carriers.
- Same as broadcast TV standard (PAL B).
- Mode is Wide Band FM.
- Used on Microwave bands:
 - 1.2GHz, 2.4GHz, 5.7GHz, 10GHz, 24GHz
- Normally Analog but Digital (DVB-S) transmitters are available.

Who uses? & Why ATV?

ATV is one of the for-fronts in amateur radio technology.

• It is used in contests, DX-Peditions, Ham-Fairs ect

There is an fortnightly ATV "magazine" transmitted from Sweden via the commercial broadcast satellite Sirius. This is receivable with a digital satellite TV System. Just turn the dish to the Sirius satellite and set the right frequency!!

Who uses? & Why ATV?

- With the help of 9H1ATV local field days and other events can be broadcast live, also construction projects and lectures can be given "on the air"
- Unfortunately an amateur satellite with an ATV repeater payload is not yet in orbit, however there are plans of having one as Phase 4 (Geo-stationary).
- Many Sicilians are active on ATV which will surely be of advantage to local 9H stations!

ATV Transmitters / Receivers

Transmitters / Antennas

- Can be built.
- Can be purchased from G1MFG (1.2GHz 65mW Transmitter about Lm30.00)
- TVRO LNBs can be modified into 100mW 10GHz transmitters.
- Normal antennas for the given band can be used however consideration must be taken for higher bandwidths
 - Yagi, Dipole, Dish, Horn, or any suitable antenna.

ATV Transmitters

Homebrew 10GHz ATV Transmitter with Audio/Video modulator. 65mW Output.

1.2GHz ATV Transmitter from G1MFG.

Receivers

- Amateur receivers available for 1.2GHz and 2.4GHz from G1MFG.
- Surplus domestic analogue TVRO Receivers can be used for 1.2GHz and also 10GHz using a normal LNB.
- For 1.2GHz a pre-amplifier might be needed.
- The same as in the transmitter applies for antennas.
- Reception at 10GHz would normally be an LNB mounted on a small Dish or a Horn.

Receivers

1.2GHz Receivers from G1MFG. They can also be used for 10GHz with A cheap satellite TV LNB.

Other Equipment

- Video Camera
- Computer with video out
- Test Card Generator
- PAL TV / Monitor

9H1ATV

A microwave amateur television repeater

The Idea Behind 9H1ATV

- The idea of having a local ATV repeater is to encourage and educate interested amateurs to equip themselves to operate this mode.
- It will also help to increase the distance of contacts, and will also serve as the mid-med ATV hub, when eventually it will be linked to the ever expanding ATV repeater network in Sicily.
- It will provide easy setup access, I.E. stations will only need a minimum amount of equipment and power to access the repeater.
- It will provide interesting contacts especially from /M & /P stations!!

The Repeater

10GHz Slotted Waveguide

9H1ATV - Facts

- 9H1ATV was designed and built by 9H1LO
- The 1.2 GHz receive antennas was built by 9H1ES
- The 10GHz transmit antenna was built by 9H1PF
- It was installed in Mdina in March 2004 by 9H1LO & 9H1ES

9H1ATV - Facts

- Funding was from MARL, 9H1LO and 9H1ES
- It transmits a test card when no signal is received
- Output frequency is 10.475GHz
- Input frequency is 1255MHz
- It will switch to the received signal upon detecting VIDEO and not just a carrier
- If video ceases it will return to the test card after 8seconds

9H1ATV 1.2 GHz Receive antenna

Transmit & Receive Antennas

9H1LO & 9H1ES Just after switching 9H1ATV on the Air

Receiving 9H1ATV

- Stations will need to have the ability to receive an analog video/audio signal at 10.475GHz
- This is done with an analog satellite receiver and a modified LNB
- Antenna should be a horn or preferably a dish

Analog Satellite Receivers

- These are the old type of TVRO receivers
- Frequency range is normally 900MHz 2000MHz
- They are to be used as an IF with an LNB
- They normally have a SCART or Phono output that connects to your TV or monitor
- PC Card tuners can be used but not advisable as they are slow when it comes to synchronizing
- CRT monitors or TV's are better than TFT monitors as TFT's are slow at synchronizing and difficult to find a weak signal

Receiver

Coverage is 900MHz – 2000MHz so an LNB (down converter) must to used to convert 10GHz to about 1GHz

LNB (Low Noise Block)

 The LNB is a down converter from about 10.7GHz - 12GHz to 900MHz - 2GHz

They have a built in horn and transition that is mounted on the dish to receive the signal from the satellite

 They have 2 Local Oscillators: 9.75GHz and 10.6GHz

Mathematics!

To receive 10.475GHz the LNB's 9.75GHz LO has to be tuned to 9.4GHz as:

10.475 GHz - 9.75 GHz = 725 MHz

725MHz is below the range of the receiver So if the LO is changed to 9.4GHz then:

10.475GHz - 9.4GHz = 1.075GHz

The Oscillator in the LNB

- The LO is simply a DRO (dielectric resonant oscillator) which works similarly to a normal crystal oscillator but at GHZ frequencies!
- It can be tuned down 350MHz by raising it 1mm above the PCB with some super glue and re-tuning with the tuning screw.
- It can be aligned on a satellite signal...such as RAI 1 on the Hotbird Satellite...simple re-tune the DRO until you find RAI 1 350MHz below it's original frequency!

An normal TVRO LNB

The DRO tuning screws

Anatomy of an LNB

DRO "Pucks"

Receiving 9H1ATV

- Once the DRO is tuned to 9.4GHZ you should be able to receive from 10.3GHz to about 11.7GHz
- Once the LNB is mounted on the dish and pointed at Mdina you should receive 9H1ATV on 10.475GHz
- The IF should be 1.075GHz 10.475GHz - 9.4GHz = 1.075GHz

