Lightweight Image Super-Resolution

with Enhanced CNN

김도완, 임채연

SISR

Single Image Super Resolution

SISR aims at recovering a High-Resolution image from a Low-Resolution

mutiple HR images can be downsampled to the same LR image

ill-posed problem

one which doesn't have a unique solution

Prior knowledge methods were developed by constraining the solution space

SRCNN(Super Resolution Convolution Neural Network)

Proposed a pioneering three-layer

Obtain the SR image in a pixel mapping manner

Development of Big Data and GPU

Deep CNN applied in SISR

SR techniques based on Deep CNNs

1. Based in High-Frequency features

Higher computational cost & memory consumption

2. Based in Low-Frequency features

Ignore detailed High-Frequency features

3. Combination High-Frequency and Low-Frequency

High-Quality Image

Combination High-Frequency and Low Frequency Method

SR: Performance

Coarse-to-fine CNN

CDN(Cascading Dense Network)

SR: Efficiency

CARN(Cascading Residual Network)

Coarse-to-fine CNN [Performance]

CDN(Cascading Dense Network) [Performance]

- 1. Extract hierarchical features from each convolution layer
- 2. Residual dense block can eliminate Vanishing Gradient

CARN(Cascading Residual Network) [Efficiency]

- 1. Cascading Block improved the performance of SR
- 2. 1x1 Convolution reduce number of parameter
- 3. Efficient using Group convolution, can learn new feature

(b) Cascading Residual Network (CARN)

1x1 Convolution

• CSAR(Channel-wise & Spatial Attention Residual) [Performance]

Combined Channel-wise and Spatial features

Dilated Convolution [Performance]

Dilated Convolution can get multi-scale information

IDN(Information Distillation Network) [Low Computational Cost]

Group Convolution

1x1 Convolution

Laplacian Pyramid Network [Low Computational Cost]

Use Parameter sharing

Decrease Parameter

LESRCNN(Lightweight enhanced super-resolution CNN)

IEEB(Information Extraction and Enhancement Block)

Extract Low-frequency features

- Total 17 Convolution layers
- Two type of Convolutions
 - Odd layers: 3x3 Conv
 - Even layers: 1x1 Conv

 $* O_i$: output of i-th layer

$$O_c^i = \left\{ \begin{array}{ll} C_3(O_{i-1}) & i \text{ is odd} \\ C_1(O_{i-1}) & i \text{ is even} \end{array} \right. \qquad \qquad \bullet O_j = \left\{ \begin{array}{ll} R(O_c^j + \sum\limits_{j=1}^{j-2} O_c^j) & j \text{ is odd} \\ R(O_c^j) & j \text{ is even} \end{array} \right.$$

IEEB(Information Extraction and Enhancement Block)

```
x = self.sub_mean(x) -----Mean shift
c0 = x
x1 = self.conv1(x) ----- 3x3 Conv
x1_1 = self.ReLU(x1)
x2 = self.conv2(x1_1) ---- 1x1 Conv+ReLU
x3 = self.conv3(x2)
x2_3 = x1+x3 ----- Residual
x2_4 = self.ReLU(x2_3)
x4 = self.conv4(x2_4)
x5 = self.conv5(x4)
x3_5 = x2_3 + x5
```


RB(Reconstruction Block)

Upsampling Low-frequency Feature

• Upsample global & local features

Low-frequency -> High-frequency

• Integrate sub-pixels output

Enhance memory ability

 $*S(\cdot)$: sub-pixel Conv

$$O_{RB} = R(S(O_1) + S(O_{17}))$$

RB(Reconstruction Block)

Sub-pixel Conv

Divided into three types depending on scale

RB(Reconstruction Block)

```
temp = self.upsample(x17_3, scale=scale) -- Sub-pixel Conv
 x1111 = self.upsample(x1_1, scale=scale) #tcw
temp1 = x1111 + temp #tcw
 temp2 = self.ReLU(temp1)
                                                                                                                                RB
                                                                                                             IEEB
                                                                                                                                       IRB
                                                                                       3 × 3 Convolution ReLU Sub-pixel Convolution 3 × 3 Conv+ReLU
if scale == 2 or scale == 4 or scale == 8:
   for _ in range(int(math.log(scale, 2))):
       #modules += [nn.Conv2d(n channels, 4*n channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)]
                                                                                                                          Conv
                                                                                                                        Shuffle x2
       modules += [nn.Conv2d(n_channels, 4*n_channels, 3, 1, 1, groups=group)]
                                                                                                           Conv
                                                                                                                                         Conv
                                                                                                         Shuffle x2
                                                                                                                                       Shuffle x3
       modules += [nn.PixelShuffle(2)]
                                                                                                                          Conv
                                                                                                                                                 Sub-pixel
elif scale == 3:
                                                                                                                        Shuffle x2
                                                                                                                                                Convolution
                                                                                                                             x4
   #modules += [nn.Conv2d(n_channels, 9*n_channels, 3, 1, 1, groups=group), nn.ReLU(inplace=True)]
   modules += [nn.Conv2d(n_channels, 9*n_channels, 3, 1, 1, groups=group)]
   modules += [nn.PixelShuffle(3)]
```

IRB(Information Refinement Block)

Learn more accuracy SR features

3x3x64 Conv

3x3x3 Conv

$$O_{SR} = C_3(R(C_3(R(C_3(R(C_3(R(C_3(R(C_3(O_{RB}))))))))))$$

IRB(Information Refinement Block)

```
temp3 = self.conv17_1(temp2)
temp4 = self.conv17_2(temp3)
temp5 = self.conv17_3(temp4)
temp6 = self.conv17_4(temp5)
x18 = self.conv18(temp6)----- Output channel: 3
out = self.add_mean(x18)
```


Loss function

MSE(Mean Squared Error)

 I^i_{LR} : i-th low resolution image

 $I_{HR}^{i}\,$: i-th high resolution image

T : total number of training image

$$l(p) = \frac{1}{2T} \sum_{i=1}^{T} \| f_{LESRCNN}(I_{LR}^{i}) - I_{HR}^{i} \|^{2}$$

DataSet

Туре	Name	Explanation	
Train	DIV2K	800 training, 100 validation, 100 test color images. (x2, x3, x4) Cropped 64 x 64	
Test	Set5	5 color images (x2, x3, x4)	
	Set14	14 color Images (x2, x3, x4)	Convert t
	BSD100	100 color images (x2, x3, x4)	Y channe
	Urban100	100 color images (x2, x3, x4)	

to el(YCbCr)

Evaluation Formula

PSNR(Peak Signal-to-Noise Ratio)

R: maximum value of pixel

$$PSNR = 10 \log_{10} \left(\frac{R^2}{MSE} \right)$$

Evaluation Formula

SSIM(Structural Similarity Index Map)

I: Luminance

C: Contrast

S: Structural

$$SSIM(x, y) = [l(x, y)]^{\alpha} \cdot [c(x, y)]^{\beta} \cdot [s(x, y)]^{\gamma}$$

Expressing human visual quality

Training

Hyper Parameter	Value			
Batch size	64			
Epoch	6e+5(600000)			
		Beta1	0.9	
Optimizer	Adam	Beta2	0.999	
		epsilon	1e-8(0.000001)	
LR Scheduler	Initial 1e-4(0.0001) -> Halved every 4e+5(400000) steps			

Scale	Methods	Set5	
	Methods	PSNR/SSIM	
	SN	31.64/0.8864	
	HN	31.62/0.8852	
$\times 4$	IEEB	31.73/0.8877	
	IEEB+RB	31.76/0.8881	
	LESRCNN	31.88/0.8903	

	Methods		
Sizes	SN	HN	
	$\times 4$		
256×256	0.00669	0.00651	
512×512	0.00879	0.00869	
1024×1024	0.01672	0.01651	

Methods	Parameters	Flops
SN	630K	3.06G
HN	368K	1.38G

(1). Average PSNR and SSIM of different methods

(2). Running time of two methods at different image size

(3). Complexity of two comparative methods

Dataset	Model	×2	×3	$\times 4$
Dataset	Wiodei	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
	Bicubic	26.88/0.8403	24.46/0.7349	23.14/0.6577
	A+ [54]	29.20/0.8938	26.03/0.7973	24.32/0.7183
	JOR [10]	29.25/0.8951	25.97/0.7972	24.29/0.7181
	RFL [41]	29.11/0.8904	25.86/0.7900	24.19/0.7096
	SelfEx [19]	29.54/0.8967	26.44/0.8088	24.79/0.7374
	DnCNN [69]	30.74/0.9139	27.15/0.8276	25.20/0.7521
	TNRD [8]	29.70/0.8994	26.42/0.8076	24.61/0.7291
	FDSR [33]	30.91/0.9088	27.23/0.8190	25.27/0.7417
U100	SRCNN [11]	29.50/0.8946	26.24/0.7989	24.52/0.7221
0100	FSRCNN [12]	29.88/0.9020	26.43/0.8080	24.62/0.7280
	VDSR [22]	30.76/0.9140	27.14/0.8279	25.18/0.7524
	DRCN [23]	30.75/0.9133	27.15/0.8276	25.14/0.7510
	LapSRN [26]	30.41/0.9100	-	25.21/0.7560
	MemNet [47]	31.31/0.9195	27.56/0.8376	25.50/0.7630
	CARN-M [2]	31.23/0.9193	27.55/0.8385	25.62/0.7694
	WaveResNet [5]	30.96/0.9169	27.28/0.8334	25.36/0.7614
	CPCA [59]	28.17/0.8990	25.61/0.8123	23.62/0.7257
_	NDRCN [7]	31.06/0.9175	27.23/0.8312	25.16/0.7546
	LESRCNN (Ours)	31.45/0.9206	27.70/0.8415	25.77/0.7732
	LESRCNN-S (Ours)	31.45/0.9207	27.76/0.8424	25.78/0.7739

(PSNR and SSIM of different techniques on U100)

Single Image Super-Resolution						
Size VDSR [22] MemNet [47] CARN-M [2] LESRCNN (Ours)						
256×256	0.0172	0.8774	0.0159	0.0102		
512×512	0.0575	3.605	0.0199	0.0129		
1024×1024	0.2126	14.69	0.0320	0.0222		

Methods	Parameters	Flops
VDSR [22]	665K	10.90G
DnCNN [69]	556K	9.18G
DRCN [23]	1774K	29.07G
MemNet [47]	677K	11.09G
LESRCNN (Ours)	516K	3.08G

(1). Running time of four networks at different image size

(2). Complexity of five networks

(1). HR image (PSNR/SSIM)

(2). Bicubic (25.26/0.7539)

(3). SelfEx (25.83/0.7852)

(4). SRCNN (25.78/0.7767)

(5). CARN-M (26.39/0.8046)

(6). LESRCMM (26.46/0.8061)

Visual effects of different methods (X4 scale)

(LESRCNN Example)

Conclusion

• IEEB: Extract low-frequency features, reduce the number of parameters

- RB: Convert low-frequency features into high-frequency features
- IRB: high-frequency features -> more accurate SR features

Low parameters & High performance

Current Situation

Train byper parameter	Urban100 (PSNR/SSIM)		
Train hyper parameter	Original	Upgrade	
Epochs: 200000, Decay: 150000	31.14/0.9171	31.30/0.9191	
Epochs: 600000, Decay: 400000	31.45/0.9206	31.61/0.9226	

Current Situation

31.45/0.9206 31.61/0.9226 516K 707K

김도완, 임채연

Result

		Urban 100	
모델	x2	x3	X4
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM
LESRCNN	31.45/0.9206	27.70/0.8415	25.77/07732
제안한 LESRCNN	31.61/0.9226	27.84/0.8442	25.81/0.7756

감사합니다!

질문이 있으신가요?