# Zusammenfassung HM I — Übungsklausur 2

Paul Nykiel

8. Februar 2017

# Inhaltsverzeichnis

| Ι | Gı                 | renzwerte                                              | 4  |  |  |  |  |  |  |
|---|--------------------|--------------------------------------------------------|----|--|--|--|--|--|--|
| 1 | Gruppen und Körper |                                                        |    |  |  |  |  |  |  |
|   | 1.1                | Gruppen                                                | 4  |  |  |  |  |  |  |
|   | 1.2                | Körper                                                 | 4  |  |  |  |  |  |  |
|   | 1.3                | Angeordnete Körper                                     | ţ  |  |  |  |  |  |  |
|   |                    | 1.3.1 Gebräuchliche Definition zu angeordenten Körpern | ļ  |  |  |  |  |  |  |
|   |                    | 1.3.2 Vollständig Angeordnete Körper                   | ļ  |  |  |  |  |  |  |
|   | 1.4                | Minimum und Maximum                                    | ţ  |  |  |  |  |  |  |
|   | 1.5                | Obere und untere Schranke                              | (  |  |  |  |  |  |  |
|   | 1.6                | Supremum und Infimum                                   | (  |  |  |  |  |  |  |
| 2 | Folg               | gen                                                    | (  |  |  |  |  |  |  |
|   | 2.1                | Konvergenz                                             | 7  |  |  |  |  |  |  |
|   |                    | 2.1.1 Schreibweise                                     | 7  |  |  |  |  |  |  |
|   | 2.2                | Bestimmte Divergenz                                    | 7  |  |  |  |  |  |  |
|   | 2.3                | Beschränktheit                                         | 7  |  |  |  |  |  |  |
|   |                    | 2.3.1 Beschränktheit nach oben/unten                   | -  |  |  |  |  |  |  |
|   | 2.4                | Zusammenhang Konvergenz — Beschränktheit               | ,  |  |  |  |  |  |  |
|   | 2.5                | Grenzwertrechenregeln                                  | 7  |  |  |  |  |  |  |
|   | 2.6                | Sandwich Theorem u.a.                                  | 8  |  |  |  |  |  |  |
|   | 2.7                | Monotonie                                              | 8  |  |  |  |  |  |  |
|   | 2.8                | Zusammenhang Monotonie und Beschränktheit              | 8  |  |  |  |  |  |  |
| 3 | Häi                | ufungswerte                                            | 8  |  |  |  |  |  |  |
| - | 3.1                | Teilfolgen                                             | 8  |  |  |  |  |  |  |
|   | 3.2                | Teilfolgen einer Konvergenten Folge                    | ç  |  |  |  |  |  |  |
|   | 3.3                | Häufungswerte                                          | (  |  |  |  |  |  |  |
|   | 3.4                | Limes superior/inferior                                | ç  |  |  |  |  |  |  |
|   | 3.5                | Konvergenz und limsup/liminf                           | Ç  |  |  |  |  |  |  |
|   | 3.6                | Satz von Bolzano-Weierstraß                            | (  |  |  |  |  |  |  |
|   | 3.7                | Cauchy-Kriterium                                       | ć  |  |  |  |  |  |  |
| 4 | Une                | endliche Reihen                                        | ç  |  |  |  |  |  |  |
| _ | 4.1                | Definition                                             | (  |  |  |  |  |  |  |
|   | 4.2                | Cauchy-Kriterium für unendliche Reihen                 | 10 |  |  |  |  |  |  |
|   | 4.3                | Grenzwertrechenregeln für unendliche Reihen            | 10 |  |  |  |  |  |  |
|   | 4.4                | Positive Folgen                                        | 11 |  |  |  |  |  |  |
|   | 4.5                | Leibniz-Kriterium                                      | 11 |  |  |  |  |  |  |
|   | 4.6                | Absolute Konvergenz                                    | 11 |  |  |  |  |  |  |
|   | 4.7                | Majorantenkriterium                                    | 11 |  |  |  |  |  |  |
|   | 4.8                | Minorantenkriterium                                    | 11 |  |  |  |  |  |  |
|   | 4.0                | Wurzel- und Quotientenkriterium                        | 11 |  |  |  |  |  |  |

|   | 4.1  | 0 Umordnung einer Reihe                            | 12 |
|---|------|----------------------------------------------------|----|
|   | 4.1  | 1 Cauchy-Produkt                                   | 12 |
|   | 4.1  | 2 Cauchy-Verdichtungssatz                          | 12 |
| ! | 5 Po | tenzreihen                                         | 13 |
|   | 5.1  | Definition                                         | 13 |
|   | 5.2  | ( )                                                | 13 |
|   | 5.3  | Konvergenzradius mit Quotientenkriterium           |    |
|   | 5.4  |                                                    | 13 |
|   | 5.5  | Integration und Differentiation von Potenzreihen   | 13 |
|   | 5.6  | Cauchy-Produkt für Potenzreihen                    | 14 |
|   | 5.7  | Wichtige Potenzreihen                              | 14 |
|   | 5.8  | Alternative Definiton der Exponentialfunktion      | 14 |
| ( | 6 Fu | nktionsgrenzwerte                                  | 14 |
|   | 6.1  | Bemerkung                                          | 14 |
|   | 6.2  | Epsilon-Umgebung                                   | 15 |
|   | 6.3  | Funktionsgrenzwerte (über Delta-Epsilon-Kriterium) | 15 |
|   | 6.4  | Folgenkriterium                                    | 15 |
|   | 6.5  | Rechenregeln für Funktionsgrenzwerte               | 16 |
|   | 6.6  | Cauchy-Kriterium für Funktionsgrenzwerte           | 16 |
|   | 6.7  | Bestimmte Divergenz                                | 16 |
|   | 6.8  | Monotone Funktionen                                | 16 |
|   | 6.9  | Grenzwerte an Intervallgrenzen                     | 17 |
| , | 7 St | etigkeit                                           | 17 |
|   | 7.1  | Anschaulich                                        | 17 |
|   | 7.2  | Stetigkeit: Delta-Epsilon-Kriterium                | 17 |
|   | 7.3  | Bemerkungen                                        | 17 |
|   | 7.4  | Rechenregeln für Stetigkeit                        | 18 |
|   | 7.5  | Stetigkeit von Potenzreihen                        | 18 |
|   | 7.6  | Umgebung positiver Funktionswerte                  | 18 |
|   | 7.7  | Zwischenwertsatz                                   | 18 |
| 1 | II 4 | $oldsymbol{	ext{Appendix}}$                        | 19 |
|   |      |                                                    |    |
| 8 | 8 Ko | onvergenzkriterien                                 | 19 |
|   | ) Be | oweis-Ansätze                                      | 20 |

#### Teil I

# Grenzwerte

# 1 Gruppen und Körper

#### 1.1 Gruppen

Eine Gruppe ist definiert als ein Tuppel aus einer (nicht-leeren) Menge und einer Verknüpfung. Eine Gruppe erfüllt die folgenden Axiome (seien  $a, b, c \in \mathbb{G}$ ):

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 (Assoziativität)  
 $a \circ \varepsilon = a$  (Rechtsneutrales Element)  
 $a \circ a' = \varepsilon$  (Rechtsinverses Element)

Eine abelsche Gruppe erfüllt des weiteren:

$$a \circ b = b \circ a$$
 (Kommutativität)

#### 1.2 Körper

Ein Körper ist definiert als eine Menge mit mindestens zwei Elementen (0 und 1) und zwei Verknüfungen.

$$\begin{array}{cccc} + : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \\ & \cdot : \mathbb{K} \times \mathbb{K} & \to & \mathbb{K} \end{array}$$

 $\mathbb{K}$  ist bezüglich der Addition und der Multiplikation (genauer:  $\mathbb{K}\setminus\{0\}$ ) ein abelscher Körper, das heißt es gilt (seien  $a,b,c\in\mathbb{K}$ ):

$$\begin{array}{ll} a+(b+c)=(a+b)+c & \text{(Assoziativit"at bez. der Addit"on)} \\ a+0=a & \text{(Existenz einer 0)} \\ a+(-a)=0 & \text{(Existenz eines Inversen bez. der Addit"on)} \\ a+b=b+a & \text{(Kommutativit"at bez. der Addit"on)} \\ a\cdot(b\cdot c)=(a\cdot b)\cdot c & \text{(Assoziativit"at bez. der Multiplikat"on)} \\ a\cdot 1=a & \text{(Existenz einer 1)} \\ a\cdot a^-1=1 & \forall a\neq 0 & \text{(Existenz eines Inversen bez. der Multiplikat"on)} \\ a\cdot b=b\cdot a & \text{(Kommutativit"at bez"uglich der Multiplikat"on)} \\ \end{array}$$

außerdem gilt:

$$a\cdot (b+c) = (a\cdot b) + (a\cdot c) \qquad \qquad \text{(Distributivgesetz)}$$

**Bem.:**  $\mathbb{Q}$ ,  $\mathbb{R}$  und  $\mathbb{C}$  sind Körper.  $\mathbb{Z}$  und  $\mathbb{N}$  nicht (kein additiv inverses bei  $\mathbb{N}$ , kein multiplikativ inverses bei beiden).

#### 1.3 Angeordnete Körper

Ein Körper heißt angeordent wenn folgende Axiome erfüllt sind (seien  $a,b,c\in\mathbb{K}$ ):

$$\begin{array}{ccc} a < b \lor & b < a & \lor a = b \\ \\ a < b \land b < c & \Rightarrow & a < c \\ \\ a < b & \Rightarrow & a + c < b + c \\ \\ a < b \land c > 0 & \Rightarrow & a * c < b * c \end{array}$$

**Bem.:**  $\mathbb{Q}$  und  $\mathbb{R}$  sind angeordnete Körper. Für  $\mathbb{C}$  kann keine Ordnungsrelation definiert werden so das alle Axiome erfüllt sind.

#### 1.3.1 Gebräuchliche Definition zu angeordenten Körpern

Für gewöhnlich gilt 0 < 1.

Die Ordnungsrelation wird dann definiert durch:

$$\begin{array}{rcl} 2 & := & 1+1 \\ 3 & := & 2+1 \\ 4 & := & 3+1 \\ & \vdots \end{array}$$

Die Natürlichen Zahlen werden Induktiv definiert:

- 1.  $1 \in \mathbb{N}$
- 2.  $n \in \mathbb{N} \Rightarrow (n+1) \in \mathbb{N}$

**Bem:** Aus 2. lässt sich direkt ableiten das  $\mathbb{N}$  nach oben unbeschränkt ist (Archimedisches Prinzip).

#### 1.3.2 Vollständig Angeordnete Körper

Ein Körper heißt Vollständig, falls jede nach oben beschränkte, nicht-leere Teilmenge ein Supremum besitzt.

 $\Rightarrow \mathbb{R}$ ist der einzige Vollständig angeordnete Körper.

**Bem:**  $\mathbb{Q}$  ist nicht vollständig angeordnet, da  $A := \{x | x^2 \leq 2\} \subset \mathbb{Q}$  kein obere Schrank besitzt (obere Schranke ist  $\sqrt{2} \notin \mathbb{Q}$ ).

#### 1.4 Minimum und Maximum

Sei  $\mathbb{K}$  ein angeordnter Körper und  $A \subset \mathbb{K}$  dann heißt m Minimum falls gilt:

- 1.  $m \in \mathbb{K}$
- $2. \ a \geq m \ \forall a \in A$

Analog ist das Maximum definiert: Sei  $\mathbb K$  ein angeord<br/>nter Körper und  $A\subset \mathbb K$  dann heißt m Maximum falls gilt:

- 1.  $m \in \mathbb{K}$
- 2.  $a \le m \ \forall a \in A$

Schreibweisen:  $m = \min(A)$  bzw.  $m = \max(A)$ 

Bem.: Minimum und Maximum exisitieren nicht immer.

**Beispiel:**  $A:=\{x|x>0\}\subset\mathbb{R}$  hat nicht 0 als Minimum da  $0\notin A$  und kein beliebiges m da  $\tilde{m}:=\frac{m}{2}< m\ \forall m\in A$ 

#### 1.5 Obere und untere Schranke

Sei  $\mathbb{K}$  ein angeordenter Körper und  $A \subset \mathbb{K}$  dann ist s untere Schranke falls gilt:

•  $s \le a \ \forall a \in A$ 

Analog ist die obere Schranke definiert: Sei  $\mathbb K$  ein angeordenter Körper und  $A \subset \mathbb K$  dann ist s obere Schranke falls gilt:

•  $s \ge a \ \forall a \in A$ 

Bem.: Hat eine Menge eine obere (bzw. untere) Schranke heißt er nach oben (bzw. unten) beschränkt. Ist eine Menge nach unten und oben beschränkt bezeichnet man sie als beschränkt.

#### 1.6 Supremum und Infimum

s heißt Infimum (größte untere Schranke) falls gilt:

- $\bullet$  s ist untere Schranke
- Falls  $\tilde{s}$ ebenfalls untere Schranke ist gilt  $s \geq \tilde{s}$

Analog ist das Supremum definiert: s heißt Supremum (kleinste obere Schranke) falls gilt:

- s ist obere Schranke
- $\bullet$  Falls  $\tilde{s}$ ebenfalls obere Schranke ist gilt  $s \leq \tilde{s}$

Bem.: Wenn Minimum (bzw. Maximum) existieren sind diese gleich dem Infimum (bzw. Supremum).

Schreibweise:  $s = \inf(A)$  bzw.  $s = \sup(A)$ 

# 2 Folgen

Eine Folge  $a_n$  ist definiert als eine Funktion:

$$a_n := \varphi : \mathbb{N} \to \mathbb{M} \subset \mathbb{R}$$

oder auch  $(a_n)_{n=1}^{\infty}$ .

#### 2.1 Konvergenz

Eine Folge  $a_n$  heißt konvergent wenn gilt:

$$\forall \varepsilon > 0 \ \exists \ n_0(\varepsilon) : \ |a_n - a| < \varepsilon \ \forall n > n_0(\varepsilon)$$

Bem.: Der Grenzwert ist eindeutig, d.h. es existiert nur ein Grenzwert.

#### 2.1.1 Schreibweise

Falls  $a_n$  gegen a konvergiert schreibt man:

$$\lim_{n \to \infty} a_n = a$$

### 2.2 Bestimmte Divergenz

Eine Folge  $a_n$  heißt bestimmt Divergent wenn gilt

$$\forall x \in \mathbb{R} \ \exists n(x): \ a_n > x \text{ bzw. } a_n < x$$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \text{ bzw. } -\infty$$

#### 2.3 Beschränktheit

Eine Folge heißt beschränkt wenn gilt:

$$|a_n| < c \ \forall n$$

#### 2.3.1 Beschränktheit nach oben/unten

Eine Folge heißt nach oben (bzw. unten) beschränkt wenn gilt:

$$a_n < c \ \forall n \in \mathbb{N}$$
 bzw.  $a_n > c \ \forall n \in \mathbb{N}$ 

# 2.4 Zusammenhang Konvergenz — Beschränktheit

Jede konvergente Folge ist beschränkt.

### 2.5 Grenzwertrechenregeln

Seien  $(a_n)_{n=1}^{\infty}$ ,  $(b_n)_{n=1}^{\infty}$ ,  $(c_n)_{n=1}^{\infty}$  Folgen in  $\mathbb C$  mit:

$$\lim_{n \to \infty} a_n = a \text{ und } \lim_{n \to \infty} b_n = b$$

Dann gilt:

$$\bullet \lim_{n \to \infty} |a_n| = |a|$$

- $\bullet \lim_{n \to \infty} (a_n + b_n) = a + b$
- $\bullet \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- Falls  $b \neq 0$ :  $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$

#### 2.6 Sandwich Theorem u.a.

Seien  $(a_n)_{n=1}^{\infty}$ ,  $(b_n)_{n=1}^{\infty}$ ,  $(c_n)_{n=1}^{\infty}$  Folgen in  $\mathbb{R}$  mit:

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b \text{ und } \gamma \in \mathbb{R}$$

Dann gilt:

- $a_n \le \gamma \ \forall n \in \mathbb{N} \Rightarrow a \le \gamma$
- $a_n \ge \gamma \ \forall n \in \mathbb{N} \Rightarrow a \ge \gamma$
- $a_n \le b_n \ \forall n \in \mathbb{N} \Rightarrow a \le b$
- $a_n \le c_n \le b_n \ \forall n \in \mathbb{N} \land a = b \Rightarrow c = \lim_{n \to \infty} c_n = a = b$

#### 2.7 Monotonie

Eine Folge  $(a_n)_{n=1}^{\infty}$  in  $\mathbb{R}$  heißt:

- Monoton wachsend falls:  $a_{n+1} \ge a_n \ \forall n \in \mathbb{N}$  (Schreibweise:  $a_n \nearrow$ )
- Monoton fallend falls:  $a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$  (Schreibweise:  $a_n \searrow$ )
- Streng monoton wachsend falls:  $a_{n+1} > a_n \ \forall n \in \mathbb{N}$  (Schreibweise:  $a_n \uparrow$ )
- Streng monoton fallend falls:  $a_{n+1} < a_n \ \forall n \in \mathbb{N}$  (Schreibweise:  $a_n \downarrow$ )

#### 2.8 Zusammenhang Monotonie und Beschränktheit

Jede Monotone und beschränkte Folge konvergiert.

# 3 Häufungswerte

Häufungswerte sind Grenzwerte einer Teilfolge.

### 3.1 Teilfolgen

Eine Folge  $(b_n)_{n=1}^{\infty}$  heißt Teilfolge von  $(a_n)_{n=1}^{\infty}$ , wenn eine streng monotone Funktion  $\varphi: \mathbb{N} \to \mathbb{N}$  existiert mit  $b_n = a_{\varphi(n)}$ .

#### 3.2 Teilfolgen einer Konvergenten Folge

Sei  $(a_n)_{n=1}^{\infty}$  eine konvergente Folge in  $\mathbb{C}$  mit:  $\lim_{n\to\infty} a_n = a$  und  $(b_n)_{n=1}^{\infty}$  sei eine Teilfolge. Dann gilt  $\lim_{n\to\infty} b_n = a$ .

#### 3.3 Häufungswerte

Sei  $(a_n)_{n=1}^{\infty}$  eine Folge in  $\mathbb{C}$ . Dann heißt  $a \in \mathbb{C}$  ein Häufungswert einer Folge, falls eine Teilfolge gegen a konvergiert.

# 3.4 Limes superior/inferior

Sei  $(a_n)_{n=1}^{\infty}$  eine reele Folge, dann heißt:

$$\lim_{n \to \infty} \sup a_n := \overline{\lim}_{n \to \infty} a_n := \sup \{ x \in \mathbb{R}, a_n > x \text{ } \infty\text{-oft} \}$$

der Limes superior von  $(a_n)_{n=1}^{\infty}$  und

$$\lim_{n \to \infty} \inf a_n := \underline{\lim}_{n \to \infty} a_n := \inf \{ x \in \mathbb{R}, a_n < x \text{ } \infty\text{-oft} \}$$

der Limes inferior von  $(a_n)_{n=1}^{\infty}$ .

# 3.5 Konvergenz und limsup/liminf

Eine beschränkte Folge  $(a_n)_{n=1}^{\infty}$  in  $\mathbb{R}$  konvergiert  $\Leftrightarrow$ 

$$\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$$

#### 3.6 Satz von Bolzano-Weierstraß

Jede beschränkte Folge in  $\mathbb C$  besitzt eine konvergente Teilfolge.

#### 3.7 Cauchy-Kriterium

Sei  $(a_n)_{n=1}^{\infty}$  eine Folge in  $\mathbb{C}$ , dann gilt

$$(a_n)_{n=1}^{\infty}$$
 konv.  $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : |a_n - a_m| < \varepsilon \ \forall n, m > n_0(\varepsilon)$ 

**Bem.:** Im Gegensatz zur Definition der Folgenkonvergenz muss der Grenzwert nicht bekannt sein.

# 4 Unendliche Reihen

#### 4.1 Definition

Sei  $(a_n)_{n=1}^{\infty}$  eine Folge in  $\mathbb{C}$ , dan heißt die durch

$$s_n = \sum_{k=1}^n a_k$$

definiert Folge  $(s_n)_{n=1}^{\infty}$  eine Folge von Partialsummen der unendlichen Reihe:

$$\sum_{k=1}^{\infty} a_k$$

Falls die Folge  $(s_n)_{n=1}^{\infty}$  konvergiert setzten wir:

$$\lim_{n \to \infty} s_n =: \sum_{k=1}^{\infty} a_k$$

# 4.2 Cauchy-Kriterium für unendliche Reihen

Sei  $\sum_{k=1}^{\infty} a_k$ eine <br/>  $\infty\text{-Reihe},$  dann gilt:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \left| \sum_{k=m}^n a_k \right| < \varepsilon \ \forall n, m > n_0(\varepsilon)$$

und:

$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Rightarrow \lim_{n \to \infty} a_n = 0$$

# 4.3 Grenzwertrechenregeln für unendliche Reihen

Seien

$$\sum_{k=1}^{\infty} a_k \text{ und } \sum_{k=1}^{\infty} b_k \text{ gegeben und } \alpha, \beta \in \mathbb{C}$$

dann gilt:

(a)

$$\sum_{n=1}^{\infty} a_k \text{ und } \sum_{n=1}^{\infty} b_k \text{ konv.:}$$

$$\Rightarrow \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) \text{ konv.}$$

$$\text{und: } \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{n=1}^{\infty} a_k + \beta \sum_{n=1}^{\infty} b_k$$

(b) 
$$\sum_{k=1}^{\infty} a_k \text{ konv.} \Leftrightarrow \sum_{k=1}^{\infty} \operatorname{Re}(a_k) \text{ und } \sum_{k=1}^{\infty} \operatorname{Im}(a_k) \text{ konv.}$$

(c) 
$$\sum_{k=1}^\infty a_k \text{ konv.} \Leftrightarrow \text{ die Restreihe } R_n := \sum_{k=n}^\infty a_k \text{ konv. gegen } 0 \Rightarrow \lim_{n\to\infty} R_n = 0$$

# 4.4 Positive Folgen

Es sei  $(a_n)_{n=1}^{\infty}$  eine Folge mit  $(a_n)_{n=1}^{\infty} \in [0, \infty)$  dann gilt:

$$\sum_{k=1}^{\infty} a_k$$
konv.  $\Leftrightarrow$  Folge der Partialsummen  $\sum_{k=1}^n a_k$  ist beschr.

#### 4.5 Leibniz-Kriterium

Sei  $(a_n)_{n=1}^{\infty}$  eine monoton fallende, stetige Folge. Dann gilt falls  $\lim_{n\to\infty}a_n=0$  ist, konv. die sogennante alternierende Reihe

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

## 4.6 Absolute Konvergenz

Eine Reihe  $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, wenn

$$\sum_{k=1}^{\infty} |a_k|$$

konvergiert.

Bem.: Jede absolut konvergente Reihe ist auch konvergent.

#### 4.7 Majorantenkriterium

Seien  $\sum_{k=1}^{\infty} a_k$  und  $\sum_{k=1}^{\infty} b_k$  mit  $b_k \geq 0$  gegeben. Wenn  $\sum_{k=1}^{\infty} b_k$  konv. und ein c>0 ex. mit

$$|a_k| \le c \cdot |b_k|$$

für fast alle k<br/>, dann konv. $\sum_{k=1}^{\infty}a_k$  absolut.

#### 4.8 Minorantenkriterium

Falls ein c > 0 ex. mit  $a_k \ge c \cdot b_k > 0$  für fast alle k, dann:

$$\sum_{k=1}^{\infty} b_k \text{ div. } \Rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

# 4.9 Wurzel- und Quotientenkriterium

Sei  $\sum_{k=1}^{\infty} a_k$  gegeben. Dann gilt:

(a) Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} < 1$$

gilt, dann konv.  $\sum_{k=1}^{\infty} a_k$  absolut.

Wenn

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} > 1$$

gilt, dann div.  $\sum_{k=1}^{\infty} a_k$ .

(b) Wenn  $a_n \neq 0 \ \forall n \ \text{und}$ 

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$

gilt, dann konv. $\sum_{k=1}^{\infty} a_k$  absolut.

Wenn  $a_n \neq 0 \ \forall n \ \text{und}$ 

$$\overline{\lim}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$

gilt, dann divergiert.  $\sum_{k=1}^{\infty} a_k$ .

Bem.: Wenn das Wurzelkriterium keine Aussage macht, kann das Quotienten-kriterium trotzdem eine Aussage machen.

# 4.10 Umordnung einer Reihe

Eine Reihe  $\sum_{k=1}^{\infty} b_k$  heißt Umordnung der Reihe  $\sum_{k=1}^{\infty} a_k$ , wenn eine bij. Abb  $\varphi: \mathbb{N} \to \mathbb{N}$  ex. mit  $b_k = a_{\varphi(k)}$ .

**Bem.:** Die Reihe konvergiert nur gegen den selben Wert, wenn  $\sum_{k=1}^{\infty} a_k$  absolut konvergent ist.

#### 4.11 Cauchy-Produkt

Die Reihen  $\sum_{k=1}^\infty b_k$  und  $\sum_{k=1}^\infty a_k$ seien absolut konv.. Dann gilt:

$$\left(\sum_{k=0}^{\infty} a_k\right) \cdot \left(\sum_{k=0}^{\infty} b_k\right) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j \cdot b_{k-j}\right) = \sum_{k=0}^{\infty} c_k$$

und  $\sum_{k=0}^{\infty} c_k$  konv. ebenfalls absolut.

#### 4.12 Cauchy-Verdichtungssatz

$$\sum_{n=1}^{\infty} a_n \text{ konv. } \Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k} \text{ konv.}$$

#### Potenzreihen 5

#### Definition

Sei  $(a_n)_{n=1}^{\infty}$  eine Folge in  $\mathbb{C}$  und  $z_0 \in \mathbb{C}$ . Dann heißt

$$\sum_{k=0}^{\infty} a_k \cdot (z - z_0)^k$$

eine Potenzreihe mit Entwicklungspunkt  $z_0$  und Koeffizienten  $a_n$ .

Bem.: Viele wichtige Funktionen können als Potenzreihen dargestellt werden.

# Hadamard (Konvergenzradius mit Wurzelkriterium)

Sei  $\sum_{k=0}^{\infty} a_k (z-z_o)^k$  eine PR. Definiere

$$R := \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}$$

Dabei sei  $R := \infty$ , falls  $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = 0$  und R = 0 falls  $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \infty$ . Dann konv. die PR absolut, falls  $|z - z_0| < R$  und divergiert falls  $|z - z_0| > R$ .

**Bem. I:** Für  $|z-z_0|=R$  wird keine Aussage gemacht.

**Bem. II:** R heißt der Konvergenzradius der Potenzreihe.

# Konvergenzradius mit Quotientenkriterium

Sei  $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ eine PR. Der Potenzradius kann ebenfalls berechnet werden durch:

$$R = \overline{\lim}_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

#### 5.4Hinweis

Es gilt:

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

# Integration und Differentiation von Potenzreihen

Sei  $\sum_{k=0}^{\infty}a_k(z-z_0)^k$ mit Konvergenzradius R. Dann besitzen auch die Potenzreihen

$$\sum_{k=0}^{\infty} k \, a_k (z - z_0)^{k-1} \text{ und } \sum_{k=0}^{\infty} \frac{a_k}{k+1} (z - z_0)^{k+1}$$

den Konvergenzradius R.

#### 5.6 Cauchy-Produkt für Potenzreihen

Seien  $\sum_{k=0}^{\infty}a_k(z-z_0)^k$  und  $\sum_{k=0}^{\infty}b_k(z-z_0)^k$  Potenzreihen, die den Konvergenzradius  $R_1$  bzw.  $R_2$  besitzen. Dann besitzt

$$\sum_{k=0}^{\infty} c_k (z - z_0)^k \text{ mit } c_k = \sum_{l=0}^k a_l \cdot b_{k-l}$$

den Konvergenzradius  $R = \min\{R_1, R_2\}.$ 

#### 5.7 Wichtige Potenzreihen

(a) Die Expontentialfunktion ist definiert durch:

$$\exp: \mathbb{C} \to \mathbb{C} \quad z \mapsto \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

(b) Die Trigonometrischen Funktionen sind definiert durch:

$$\sin: \mathbb{C} \to \mathbb{C} \quad z \mapsto \sin(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1}$$
$$\cos: \mathbb{C} \to \mathbb{C} \quad z \mapsto \cos(z) \quad := \quad \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}$$

(c) Tangens und Cotangens sind dann definiert als:

$$\tan : \{ z \in \mathbb{C} : \cos(z) \neq 0 \} \to \mathbb{C} \quad z \mapsto \tan(z) := \frac{\sin(z)}{\cos(z)}$$
$$\cot : \{ z \in \mathbb{C} : \sin(z) \neq 0 \} \to \mathbb{C} \quad z \mapsto \cot(z) := \frac{\cos(z)}{\sin(z)}$$

#### 5.8 Alternative Definiton der Exponentialfunktion

$$\forall z \in \mathbb{C} \text{ gilt } \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = \exp\left(z\right)$$

# 6 Funktionsgrenzwerte

#### 6.1 Bemerkung

In diesem Intervall bezeichnet I stets ein offenes Intervall und  $\overline{I}$  dessen sog. Abschluss z.B.:

- (a) I = (a, b) und  $\overline{I} = [a, b]$
- (b)  $I = (-\infty, b)$  und  $\overline{I} = (-\infty, b]$
- (c)  $I = (a, \infty)$  und  $\overline{I} = [a, \infty)$
- (d)  $I = (\infty, \infty)$  und  $\overline{I} = (\infty, \infty)$

#### 6.2 Epsilon-Umgebung

Für  $x_0 \in \mathbb{R}$  und  $\varepsilon > 0$  heißt

$$U_e(x_0) := \{x \in \mathbb{R} : |x - x_0| < \varepsilon\} = (x_0 - \varepsilon, x_0 + \varepsilon)$$

die  $\varepsilon$ -Umgebung von  $x_0$ . Und

$$\dot{U}_e(x_0) := U_e(x_0) \setminus \{0\} = (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon)$$

die punktierte  $\varepsilon$ -Umgebung von  $x_0$ .

# 6.3 Funktionsgrenzwerte (über Delta-Epsilon-Kriterium)

Sei  $f: I \to \mathbb{R}$  und  $x_0 \in I$ 

(a) fkonv. gegen ein  $a\in\mathbb{R}$  für  $x\to x_0$  (kurz:  $\lim_{x\to x_0}f(x)=a)$  wenn gilt

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : \ |f(x) - a| < \varepsilon \ \forall x \ \mathrm{mit} \ |x - x_0| < \delta(\varepsilon) \ \mathrm{und} \ x \neq x_0$$

Schreibweise:

$$\lim_{x \to x_0} f(x) = a \text{ oder } f(x) = a \text{ für } x \to x_0$$

(b) Sei  $x_o \in I$ , dann konv. f einseitig von links gegen  $a \in \mathbb{R}$  wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0 - \delta \varepsilon, x_0)$$

Schreibweise:

$$\lim_{x \to x_{0^-}} f(x) = a$$

(c) Sei  $x_o \in I$ , dann konv. f einseitig von rechts gegen  $a \in \mathbb{R}$  wenn gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in (x_0, x_0 + \delta \varepsilon)$$

Schreibweise:

$$\lim_{x \to x_{0^+}} f(x) = a$$

(d) Sei  $I=(\alpha,\infty)$  (bzw.  $I=(-\infty,\beta)$ ) dann konv. f gegen a für  $x\to\infty$  (bzw.  $x\to-\infty$ ) wenn gilt:

$$\forall \varepsilon > 0 \ \exists x_1(\varepsilon) : |f(x) - a| < \varepsilon \ \forall x \in I : x > x_1(\varepsilon) \ (bzw. x < x_1(\varepsilon))$$

#### 6.4 Folgenkriterium

Sei  $f:I\to\mathbb{R}$  und  $x_0\in\overline{I},u\in\mathbb{R}$  dann gilt  $\lim_{x\to\infty}f(x)=a\Leftrightarrow$ 

Für eine beliebe Folge 
$$(x_n)_{n=1}^{\infty}$$
 mit  $(i)x_n \neq x_0 \forall n$   $(ii) \lim_{n \to \infty} x_n = x_0$  gilt stets:  $\lim_{n \to \infty} f(x_n) = a$ 

# 6.5 Rechenregeln für Funktionsgrenzwerte

Seien  $f, g: I \to \mathbb{R}$  und  $x_0 \in I$  und gelte

$$\lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} g(x) = b$$

Dann gilt:

(a) 
$$\lim_{x \to x_0} (\alpha \cdot f(x)) = \alpha \cdot a$$

$$\lim_{x \to x_0} (g(x) + f(x)) = a + b$$

(c) 
$$\lim_{x \to x_0} (g(x) \cdot f(x)) = a \cdot b$$

(d) 
$$\lim_{x \to x_0} \left( \frac{f(x)}{g(x)} \right) = \frac{a}{b} \quad \text{falls } b \neq 0$$

#### 6.6 Cauchy-Kriterium für Funktionsgrenzwerte

Sei  $f: I \to \mathbb{R}$  und  $x_0 \in I$  dann ex.  $\lim_{x \to x_0} f(x) \Leftrightarrow$ 

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - f(y)| < \varepsilon \ \forall x, y \in I \ \text{mit} \ 0 < |x - x_o| < \delta(\varepsilon) \ \text{und} \ 0 < |y - x_0| < \delta(\varepsilon)$$

# 6.7 Bestimmte Divergenz

Sei  $f: I \to \mathbb{R}, \ x_0 \in I$  dann definieren wir die bestimmte Divergenz (uneigentliche Konvergenz) von  $(f \to \infty)$  durch

$$\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall c > 0 \ \exists \delta(c) : f(x) > c \ \forall x \ \text{mit} \ 0 < |x - x_0| < \delta(c)$$

Analog definieren man links- und rechtsseitig Divergenz gegen  $\infty$  bzw.  $-\infty$ .

#### 6.8 Monotone Funktionen

Sei  $f: I \to \mathbb{R}$  dann heißt (auf I)

(a) monoton wachsend  $(f \nearrow)$ , falls gilt

$$x < y \Rightarrow f(x) \le f(y)$$

(b) streng monoton wachsend  $(f \uparrow)$ , falls gilt

$$x < y \Rightarrow f(x) < f(y)$$

(c) monoton fallend  $(f \searrow)$ , falls gilt

$$x < y \Rightarrow f(x) \ge f(y)$$

(d) streng monoton fallend  $(f \downarrow)$ 

$$x < y \Rightarrow f(x) > f(y)$$

- (e) monoton fallend falls f monoton fallend oder monoton steigend ist
- (f) streng monoton falls f streng monoton fallend oder streng monoton steigend ist
- (g) Beschränkt falls gilt:

$$\exists c : |f(x)| < c \ \forall x \in I$$

#### 6.9 Grenzwerte an Intervallgrenzen

Sei  $a \leq b$  und  $f:(a,b) \to \mathbb{R}$  monoton und beschränkt, dann ex.

$$\lim_{x \to b^-} f(x) \text{ und } \lim_{x \to a^+} f(x)$$

# 7 Stetigkeit

#### 7.1 Anschaulich

Graph einer Funktion kann ohne Absetzen gezeichnet werden  $\Leftrightarrow$ Es gibt keine Sprünge  $\Leftrightarrow$ 

 $f: I \to \mathbb{R}$  an keiner Stelle  $x_0 \in I$  ist ein Sprung  $\Leftrightarrow \forall x_0 \in I: \lim_{x \to x_0} f(x) = f(x_0)$ 

## 7.2 Stetigkeit: Delta-Epsilon-Kriterium

Sei  $f: I \to \mathbb{R}$  und  $x_0 \in I$ , dann ist f in  $x_0$  stetig falls gilt:

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) : |f(x) - f(x_0)| < \varepsilon \ \forall x \in I \ \text{mit} \ |x - x_0| < \delta(\varepsilon)$$

Und f ist stetig (auf I), wenn f in jedem  $x_0 \in I$  stetig ist.

#### 7.3 Bemerkungen

(a) f ist stetig in  $x_0 \Leftrightarrow$ 

$$\lim_{x \to x_0} f(x) = f(x_0)$$

gilt.

(b) f ist stetig in  $x_0$  dann gilt:

$$\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$

#### 7.4 Rechenregeln für Stetigkeit

Sind  $f, g: I \to \mathbb{R}$  stetig, dann sind auch die Funktionen

- (a)  $c \cdot f$  (für  $c \in \mathbb{R}$ )
- (b) f + g
- (c)  $f \cdot g$
- (d) und falls  $g(x) \neq 0 \forall x \in I_{\frac{f}{g}}$

stetig

Ist  $f: I \to J, g: I \to \mathbb{R}$  und beide stetig dann ist auch  $g \circ f$  stetig.

# 7.5 Stetigkeit von Potenzreihen

Sei  $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$  eine Potenzereihe mit Konvergenzradius R > 0, dann gilt für  $x_1 \in U_R(x_0)$ , dass  $\lim_{x \to x_1} f(x) = f(x_1)$  (d.h. Potenzreihen sind innerhalb des Konvergenzradius stetig).

# 7.6 Umgebung positiver Funktionswerte

Sei  $f: I \to \mathbb{R}$  stetig in  $x_0$ , dann gilt:

$$f(x_0) > 0 \Rightarrow \exists \delta > 0: \ f(x) > 0 \ \forall x \in I \text{ mit } |x - x_0| < \delta$$

#### 7.7 Zwischenwertsatz

Sei D=[a,b] (also abgeschlossen) und  $f:D\to\mathbb{R}$  stetig dann ex. zu jedem y zwischen f(a) und f(b) ein  $x\in[a,b]$  mit f(x)=y.

Genauer:

$$\forall y \in [m, M] \ \exists x \in [a, b] \ \text{mit} \ f(x) = y$$

Wobei  $m = \min\{f(a), f(b)\}\$ und  $M = \max\{f(a), f(b)\}.$ 

Bem.: Bei einer Funktion ist das Bild eines Intervals wieder ein Interval. D.h.

$$f([a,b]) = [c,d]$$

 $egin{array}{l} ext{Teil II} \ ext{Appendix} \end{array}$ 

# 8 Konvergenzkriterien

Zusammenfassung verschiedener Konvergenzkriterien nach Wikipedia (Seite: Konvergenzkriterium):

| Kriterium           | nur f. mon. F. | Konv. | Div. | abs. Konv. | Absch. | Fehlerabsch. |
|---------------------|----------------|-------|------|------------|--------|--------------|
| Nullfolgenkriterium |                |       | x    |            |        |              |
| Monotoniekriterium  |                | x     |      | X          |        |              |
| Leibniz-Kriterium   | X              | X     |      |            | X      | X            |
| Cauchy-Kriterium    |                | X     | x    |            |        |              |
| Abel-Kriterium      | X              | X     |      |            |        |              |
| Dirichlet-Kriterium | X              | X     |      |            |        |              |
| Majorantenkriterium |                | X     |      | X          |        |              |
| Minorantenkriterium |                |       | X    |            |        |              |
| Wurzelkriterium     |                | X     | X    | x          |        | X            |
| Integralkriterium   | X              | X     | X    | x          | X      |              |
| Cauchy-Kriterium    | X              | X     | X    | x          |        |              |
| Grenzwertkriterium  |                | X     | X    |            |        |              |
| Quotientenkriterium |                | X     | X    | x          |        | X            |
| Gauß-Kriterium      |                | X     | X    | X          |        |              |
| Raabe-Kriterium     |                | X     | X    | X          |        |              |
| Kummer-Kriterium    |                | X     | X    | X          |        |              |
| Bertrand-Kriterium  |                | X     | x    | X          |        |              |
| Ermakoff-Kriterium  | X              | X     | x    | X          |        |              |

# 9 Beweis-Ansätze

Ansatz für die einzelnen Beweise.

| Lemma / Satz                                           | Beweisansatz                                                                                                       |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Eindeutigkeit des GW einer Folge                       | Zeige, dass GW a = GW b, nahrhafte $0$                                                                             |
| Konvergente Folgen sind beschränkt                     | Nahrhafte 0, Dreiecks-ugl.                                                                                         |
| Grenzwertrechenregeln                                  | Nahrhafte 0, Dreiecks-ugl.                                                                                         |
| $a_n < \gamma \ \forall n \Rightarrow a < \gamma$      | Ausgehend von a über nahrh. 0<br>zu Def Konvergenz                                                                 |
| $a_n < b_n \ \forall n \Rightarrow a < b$              | Definiere Hilfsfolge, argumentiere nach s.o                                                                        |
| SWT                                                    | Zeige, dass $-\varepsilon < c_n < \varepsilon$ (Quasi Epsilon-Schlauch)                                            |
| Monotoniekriterium                                     | Da $ a_n  < c \forall n$ , argumentiere über das Supremum der Menge, die aus besteht                               |
| GW einer konv. Folge = GW jeder Teilfolge              | Def. Konvergenz + Def Teilfolge                                                                                    |
| Charakterisierung limSup und limInf                    | Argumentiere über Eigneschaften sup und inf                                                                        |
| Folge konv $\lim_{x \to 0} \sup = \lim_{x \to 0} \inf$ | Hin: Eindeutigkeit des<br>GW;Rück: Charakterisierung<br>limSup und limInf                                          |
| Bolzano-Weierstraß                                     | Zunächst für reelle Folge (trivial), dann für komplex: Realteil ist klar, Imaginärteil: Teilfolge konstruieren     |
| Cauchykriterium                                        | Hin: nahrhafte 0; Rück: zeige Beschränktheit, dann folge daraus, dass ein HW ex und benutze diesen als GW-Kandidat |
| Reihe konv. Folge ist Nullfolge                        | Cauchy für Reihen                                                                                                  |
| GWRR für Reihen                                        | GWRR für Folgen                                                                                                    |
| Reihe konv 0                                           | Restreihe als Differenz darstellen                                                                                 |
| Leibniz                                                | Cauchy für Reihen                                                                                                  |
| Absolut konv. konv.                                    | Cauchy und Dreiecks-ugl.                                                                                           |
| MajorantenkritKriterium                                | Cauchy                                                                                                             |
| Minorantenkrit.                                        | Kontradiktion von Majoranten-<br>krit.                                                                             |
| Wurzelkriterium                                        | Majorantenkrit: geom. Summe über $Q := q + \varepsilon < 1$ , in $q$ das Wurzelkrit einsetzen, Char. Lim-Sup       |

Quotientenkrit. Majorantenkrit: setze in q das

Quotientenkrit ein u. arg. über

 $\operatorname{LimSup}$ 

Hadamard Wurzelkrit + Fallunterscheidung

für Sonderfälle

Differenzieren / Integrieren von PR Wurzelkriterium

Lemma zu sin, cos und exp $e^z \neq 0 \text{ und } e^{-z} = \frac{1}{z}$ Cauchy-Produkt + Definitionen Inverses Element der Multiplika-

tion

Pythagoras 3. binomische Formel

Betrachte  $x \geq 0$ , angeordneter

Körper Bernoulli nahrhafte 0

 $e^x > 0 \forall x \in \mathbb{R}$  $1 + x \le e^x \forall x \in \mathbb{R}$ 

 $x < y \Rightarrow e^x < e^y$