e-Funktionen

- 1. Exponentielles Wachstum
- 2. e-Funktion
- 3. Beschränktes Wachstum

1. Exponentielles Wachstum:

Synonyme:

• Exponentialfunktion

Anwendung:

 Dient zur Modellierung von Wachstum durch die eulersche Zahl

Herleitung:

 Eine Exponentialfunktion ist eine Funktion, mit mindestens einem x als Exponenten. Dadurch lässt sich Wachstum in Abhängigkeit von Zeit als Funktion darstellen.

Berechnung:

Allgemeine Form: $f(x) = a \cdot b^x$

Anfangswert: *a*

Wachstumsfaktor: b

(Meistens) Zeit: x

Bakterienkultur mit 1000 Bakterien verdoppelt sich jede Stunde: $f(t) = 1000 \cdot 2^t$

2. e-Funktion:

Synonyme:

• Eulersche Zahl

Anwendung:

• Eine Funktion, mit der sich leicht arbeiten lässt

Herleitung:

• Die Form $a \cdot e^{k \cdot x}$ ist in dem Maße besonders, dass sie keine Nullstellen, Extrema, Wendepunkte, Symmetrie oder abweichende Ableitungen besitzt.

Berechnung:

- 1. Umschreibung von Exponenten auf die Basis e:
 - $f(x) = a \cdot b^x \Rightarrow \ln(b)$
 - $f(x) = a \cdot e^{b \cdot x}$
- 2. Eigenschaften von *e*-Funktionen:
 - i. Keine Nullstellen
 - ii. Keine Extrempunkte
 - iii. Keine Wendepunkte
 - iv. Keine Symmetrie

3. Beschränktes Wachstum

Synonyme:

• Grenzfunktion, Schrankenfunktion

Anwendung:

• Eine Wachstumsfunktion bestimmen, die ab einer bestimmten Grenze aufhört.

Herleitung:

Berechnung:

Allgemeine Form: $f(x) = G - c \cdot e^{-k \cdot x}$

Grenzwert: G

Anfangswert abzüglich Grenzwert: $G - f(0) \Rightarrow c$

Wachstumsfaktor: k (Meistens) Zeit: x

Bakterienkultur mit 1000 Bakterien verdoppelt sich jede Stunde. Nach 5000 Bakterien gehen jedoch die Nährstoffe aus: $f(t) = 5000 - 4000 \cdot e^{\ln{(2)}t}$