LECTURER: TAI LE QUY

MACHINE LEARNING SUPERVISED LEARNING

Introduction to Machine Learning	1
Regression	2
Basic Classification Techniques	3
Support Vector Machines	4
Decision & Regression Trees	5

SUMMARY

OVERALL WRAP UP

Overlook the entire course structure

Explain the main concepts and key findings

Discuss some big data processing solutions

1. What are the six phases of the Cross-Industry Standard Process for Data Mining (CRISP-DM) design cycle?

2. Explain in one sentence what the kernel trick is.

3. What is meant by the term "ensemble model"?

MACHINE LEARNING AND PATTERN RECOGNITION TYPES

Tab. 1: Supervised and unsupervised machine learning

Feature 1 Feature 2 Label

Sampe 1	X _{1,1}	X _{2,1}	y ₁
Sample 2	X _{1,2}	X _{2,2}	У ₂
Sample 3	X _{1,3}	X _{2,3}	y ₃

THE MACHINE LEARNING DESIGN CYCLE

Training Validation

Train/validate

Train/validate

Train/validate

Train/validate

UNDER- AND OVERFITTING

Source of image 3: Christian Müller-Kett, 2022

Img. 3: Under- and overfitting Good fit Overfitting Underfitting High bias Very low bias Low bias Training Variance slightly High variance High variance higher than bias Testing

LINEAR REGRESSION

$$y = \omega_0 + \sum_{i=1}^n \omega_i * x_i + \varepsilon$$

$$Residual = R_i = y_i - \hat{y}_i$$

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$R^{2} = 1 - \frac{RSS}{\sum_{i=1}^{n} (y_{i} - \overline{y}_{i})^{2}}$$

LOGISTIC REGRESSION

MODEL PERFORMANCE METRICS

$$- Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

-
$$Sensitivity = Recall = \frac{TP}{TP+FN}$$

-
$$Specificity = \frac{TN}{TN+FP}$$

-
$$Precision = \frac{TP}{TP+FP}$$

- ROC curve: Sensitivy vs. 1-Specificity
- Area Under the Curve (AUC)

HARD & SOFT MARGIN MAXIMIZATION

1. Margin (dotted lines) are described by $y_i(\vec{w} \cdot \vec{x} - b) = 1$

2. Maximize
$$\frac{2}{\|w\|}$$

Margin maximization depends on $x_i \cdot x_j$

DECISION TREES

Tab. 3: Training data

Outlook	Humidity	Wind	Label
Rainy	High	20 km/h	Stay
Sunny	Normal	4 km/h	Walk
Sunny	Low	18 km/h	Walk
•••	•••	•••	•••

—Overlook the entire course structure

-Explain the main concepts and key findings

Discuss some big data processing solutions

ENSEMBLE METHODS

Combine weak estimator to form one strong estimator

Bagging

- Several decision trees trained by varying data subsets
- The final prediction as the majority or average of individual predictions

Boosting

- Several decision trees trained sequentially
- Each tree is trained with a dataset exaggerating the misclassified
 samples from the previous tree

SESSION 1

TRANSFER TASK

TRANSFER TASKS

A start-up that sells **sustainable products in smaller stores** has been very successful in recent years. As a result, more stores are to be opened worldwide.

As a Data Scientist, you and your team are tasked with training a **machine learning model predicting product demand** one week ahead. Eventually, this model is supposed to be connected to the **company's ordering system**, giving well-informed advice about how many products should be ordered per store.

Create a rough **project plan** and briefly describe the **work items for each of the project's phases**.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

LIST OF SOURCES

Breiman, L., Friedman, J., Olshen, R. A., & Stone, J. S. (1984). *Classification and regression trees*. Chapman & Hall. https://doi.org/10.1201/9781315139470 Boehmke, B., & Greenwell, B. (2019). *Hands-on machine learning with R*. Chapman & Hall.

Hastie, T., Tibshirani, R., Friedman, J. H. (2017). *The elements of statistical learning. Data mining, inference, and prediction*. Second edition. New York, NY: Springer.

Jensen, K. (2012). CRISP-DM process diagram (CRISP-DM_process_diagram.png) [Illustration]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png

Mitchell, T. M. (1997). *Machine learning*. McGraw-Hill.

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (pp. 29—39). Springer.

How did you like the course?

