Aditya Rohan Sengupta

Email: aditya.sengupta@berkeley.edu Website: aditya-sengupta.github.io

Research Interests

Sparse statistical inference methods for exoplanet population studies

Time-series light curve analysis and detrending, information-theoretic methods

Noise characterization and optimal control in adaptive optics

Education

University of California, Berkeley; Bachelor of Science

Aug 2017-May 2021

B.S., Engineering Physics, B.S., Engineering Mathematics and Statistics; GPA 3.815

Relevant Coursework (*graduate-level)

Math/Stat - Probability & Random Processes, Differentiable Manifolds*, Abstract Algebra, Analysis <u>EECS</u> - Information Theory*, Machine Learning, Feedback Control Systems, Signals, Optical Engineering <u>Physics</u> - Quantum Mechanics, Analytic Mechanics, Electromagnetism and Optics, Relativistic Astrophysics and Cosmology, Statistical Mechanics

Research and Projects

Exoplanet Probabilistic Modeling with TESS

2020-present

Advisor: Prof. Courtney Dressing

Senior year project: analyzing exoplanet populations using TESS data products and time-series analysis.

- Improved models and optimization framework to fit the *TESS* point-spread-function to light curves in the *eleanor* Python package.
- Developing methods for probabilistic inference from *TESS* full-frame images, through Markov chain Monte Carlo analysis of injection/recovery testing results.
- Assessing impact on occurrence rates using Approximate Bayesian Computing.

Coding and Information Analysis for the SPRIGHT Algorithm

2020

Advisor: Prof. Kannan Ramchandran, Orhan Ocal

Final project for EECS 229A: Information Theory and Coding.

- Implemented the SPRIGHT sparse Walsh-Hadamard transform algorithm in Python and Julia.
- Created information-theoretic extensions for improved time and sample efficiency.
- Registered implementation as the SparseTransforms.jl Julia package.

Optimal Tip-Tilt Correction for Adaptive Optics

2019

Advisor: Dr. Rebecca Jensen-Clem (now Assistant Prof., UC Santa Cruz)

- Simulated control schemes for the tip and tilt modes of aberrations in an adaptive optics system.
- Demonstrated improved correction through model predictive control using a Kalman filter.
- Analyzed telemetry and outlined plans for future lab testing to adapt to Keck II.

Pyramid Wavefront Sensor Simulation for the Keck Telescopes

2018

Advisor: Dr. Rebecca Jensen-Clem

- Simulated an adaptive optics loop with a pyramid wavefront sensor, newly installed at Keck II.
- Demonstrated imaging quality improvements due to predictive control algorithms.
- Conducted testing and QA for the *hcipy* Python package.

Publications, Talks, and Posters

- 6. Aditya R. Sengupta, Benjamin T. Montet, Kaiming Cui, Adina D. Feinstein, Courtney D. Dressing, 2021. "Improved PSF Fits for TESS Lightcurve Detrending." Poster, AAS 237, Virtual.
- 5. Aditya R. Sengupta and Rebecca Jensen-Clem, 2020. "Kalman Filtering for Tip-Tilt Correction in Adaptive Optics." Research Notes of the American Astronomical Society, DOI 10.3847/2515-5172/abd47a.
- 4. Samantha Guzmán, Jesus Martinez and 5 others including **Aditya R. Sengupta**, 2020. "Accessible Balloon RAdiometer: Detecting the Cosmic Microwave Background." Poster, *Undergraduate Lab at Berkeley Final Presentations*.
- 3. Aditya R. Sengupta and Rebecca Jensen-Clem, 2019. "Optimal Filtering for Tip-Tilt Correction in Adaptive Optics." Talk to Dressing research group.
- 2. Aditya R. Sengupta and Rebecca Jensen-Clem, 2019. "Optimal Filtering for Tip-Tilt Correction in Adaptive Optics." Poster, *Center for Adaptive Optics Fall Retreat*, 2019.
- Aditya R. Sengupta, Eden McEwen, Shide Dehghani, Rebecca Jensen-Clem, "Demonstrating Predictive Wavefront Control at Keck II: Simulating a Pyramid Wavefront Sensor." Poster, UC Berkeley Astronomy Poster Summer Intern Symposium, 2018.

Teaching and Mentorship

Instruction and Tutoring

Jan 2018-present

- Instructor, Democratic Education at Cal, Spring 2021. *Physics 198: Physics-based High-Performance and Scientific Computing and Technology (physcat-decal.com)*. (sponsor: Yury Kolomensky.)
- Undergraduate Student Instructor, Fall 2020 and Spring 2021. *EECS 126: Probability and Random Processes* (instructors: Shyam Parekh, Thomas Courtade). Developed new Jupyter notebook lab assignment on the Kalman filter; wrote new official course notes.
- Study Group Facilitator, UC Berkeley Student Learning Center, Spring 2020. *Math 53: Multivariable Calculus*, (instructor: Emiliano Gomez, supervisor: Michael J. Wong). Developed and taught twiceweekly problem solving worksheets.
- Tutor, Spring 2018-present, UC Berkeley Student Learning Center (SLC), for Mathematics 1A, 1B, 16A, 16B (single-variable calculus), 53 (multivariable calculus), 54 (linear algebra).
- Tutor/Reader, Summer 2019-Spring 2020, for Data Structures, Control Systems, Probability.
- Personal expository papers and course notes available at aditya-sengupta.github.io/notes.html.

Curriculum Chair, Undergraduate Lab at Berkeley

May 2020-present

Created instructional modules, gave lectures, oversaw content development to introduce new researchers to essential skills: programming/Git, research literacy, communication, statistics.

Mentor, Undergraduate Lab at Berkeley

Aug 2019-May 2020

Led an independent research team of freshman/sophomore-level physics students to construct a Cosmic Microwave Background detector. Ran subgroups for detector printed-circuit-board design, mechanical construction, data denoising and inference algorithms. Progress halted due to COVID-19.

Simulations Co-Lead, STAR at Berkeley

June 2018-April 2019

Established Simulations subteam of UC Berkeley's high-powered rocketry team. Ran structural finiteelement and computational fluid analyses, established standard tools, wrote internal club documentation.

Technical Skills

Python, Julia, Java, Matlab, LaTeX, SQL, ANSYS Structural, ANSYS CFD, Solidworks, Zemax, KiCAD; MCMC, open-source software, high-performance computing, amateur radio.