| $\bigcirc$ | The formula to compute the work $W$ done on a body if the force $F$ is        |
|------------|-------------------------------------------------------------------------------|
|            | parallel to the displacement $d$ , as in figure 1 at the end of the text, is: |

$$\boxed{\mathbf{A}} \ W = F \cdot d.$$

$$\boxed{\mathbf{B}} \ W = 2F.$$

$$\boxed{\mathbf{C}} W = m \cdot v.$$

$$\boxed{\mathbf{D}} \ W = 2d.$$

(2) The formula  $W = F \cdot d$  can be used only if the force F is parallel to the displacement d.

(3) The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

$$\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$$

$$\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$$

$$\boxed{\mathbf{C}} \ W = F \cdot d.$$

D None of the other answers.

(4) The unit for work is J·m.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

- D None of the other answers.
- (6) If a force of 3 N is applied to an object that moves for 3 m, the work done is:
  - A 9 J.
  - B 3 J.
  - C 1 J.
  - D 0 J.



Figura 1

| $\bigcirc$ | When a weight<br>lifter holds a 200 $\ensuremath{\mathrm{kg}}$ | g barbell above his head for 3 seconds |
|------------|----------------------------------------------------------------|----------------------------------------|
|            | before dropping it, the done work                              | is:                                    |

A 600 J.

B None of the other answers.

C 200 J.

D 0 J.

(2) The formula  $W = F \cdot d$  can be used only if the force F is parallel to the displacement d.

A True.

B False.

 $\bigcirc$  The formula to compute the work W done on a body if the force F is parallel to the displacement d, as in figure 1 at the end of the text, is:

 $\boxed{\mathbf{A}} \ W = 2F.$ 

 $\boxed{\mathbf{B}} \ W = F \cdot d.$ 

 $\boxed{\mathbf{C}} W = 2d.$ 

 $\boxed{\mathbf{D}} \ W = m \cdot v.$ 

 $\overbrace{4}$  The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

 $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$ 

 $\boxed{\mathbf{B}} \ W = F \cdot d.$ 

 $\boxed{\mathbf{C}} \ W = F \cdot d \cdot \sin x.$ 

D None of the other answers.

(5) If a force of 3 N is applied to an object that moves for 3 m, the work done is:

A 3 J.

- B 0 J.
- C 1 J.
- D 9 J.
- $\bigcirc$  The unit for work is J·m.
  - A False.
  - B True.



Figura 1

 $\bigcirc$  The unit for work is J·m.

A False.

|            | B True.                                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2          | The formula to compute the work $W$ done on a body when the force $F$ makes an angle with the displacement $d$ is:                                   |
|            | $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$                                                                                                   |
|            | B None of the other answers.                                                                                                                         |
|            | $\boxed{\mathrm{C}} \ W = F \cdot d.$                                                                                                                |
|            | $\boxed{\mathbf{D}} \ W = F \cdot d \cdot \sin x.$                                                                                                   |
| 3          | The formula $W = F \cdot d$ can be used only if the force $F$ is parallel to the displacement $d$ .                                                  |
|            | A True.                                                                                                                                              |
|            | B False.                                                                                                                                             |
| 4          | If a force of 3 N is applied to an object that moves for 3 m, the work done is:                                                                      |
|            | A 1 J.                                                                                                                                               |
|            | B 3 J.                                                                                                                                               |
|            | C 9 J.                                                                                                                                               |
|            | D 0 J.                                                                                                                                               |
| <b>(5)</b> | The formula to compute the work $W$ done on a body if the force $F$ is parallel to the displacement $d$ , as in figure 1 at the end of the text, is: |
|            | $\boxed{\mathbf{A}} \ W = 2d.$                                                                                                                       |

 $\boxed{\mathbf{D}} \ W = 2F.$ 

(6) When a weight lifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

A 200 J.

B 600 J.

C None of the other answers.

D 0 J.



Figura 1

| 1 | If a force of 3 N is applied to an done is: | object that | moves for | 3 m, the | e work |
|---|---------------------------------------------|-------------|-----------|----------|--------|
|   | A 9 J.                                      |             |           |          |        |

B 1 J.C 0 J.D 3 J.

 $\bigcirc$  The formula to compute the work W done on a body if the force F is parallel to the displacement d, as in figure 1 at the end of the text, is:

 $\begin{bmatrix} \mathbf{C} \end{bmatrix} W = 2d.$ 

 $\boxed{\mathbf{D}} \ W = F \cdot d.$ 

(3) The formula  $W = F \cdot d$  can be used only if the force F is parallel to the displacement d.

A False.

B True.

 $\overbrace{4}$  The formula to compute the work W done on a body when the force F makes an angle with the displacement d is:

 $\boxed{\mathbf{A}} \ W = F \cdot d \cdot \cos x.$ 

 $\boxed{\mathbf{B}} \ W = F \cdot d \cdot \sin x.$ 

 $\boxed{\mathbf{C}} W = F \cdot d.$ 

D None of the other answers.

(5) When a weightlifter holds a 200 kg barbell above his head for 3 seconds before dropping it, the done work is:

A 200 J.

- B None of the other answers.
- C 0 J.
- D 600 J.
- $\bigcirc$  The unit for work is J·m.
  - A True.
  - B False.



Figura 1