Proposed Solution to #5779 SSMJ

Solution proposed by Prakash Pant, The University of Vermont, Bardiya, Nepal.

Proposed by Daniel Sitaru, National Economic College "Theodor Costescu," Drobeta Turnu-Severin, Romania.

Statement of the Problem:

If
$$0 < a \le b$$
 then:

$$e^{ab} + e^{(\frac{a+b}{2})^2} \le e^{(\frac{2ab}{a+b})^2} + e^{(\sqrt{ab} + \frac{a+b}{2} - \frac{2ab}{a+b})^2}$$

Solution of the Problem: Let

$$x = \frac{a+b}{2}, y = \sqrt{ab}, \&z = \frac{2ab}{a+b}$$

Since a and b are positive numbers, x(A.M), y(G.M.) & z(H.M) will be positive numbers. Also notice that since $A.M. \geq G.M. \geq H.M.$, thus $x \geq$ $y \geq z$.

Rewriting the original problem in terms of x,y & z,

$$e^{y^2} + e^{x^2} \le e^{z^2} + e^{(x+y-z)^2}$$

$$Or, e^{(x+y-z)^2} + e^{z^2} \ge e^{x^2} + e^{y^2}$$

which is what we will prove.

d Here, the sequence $\{x+y-z,z\} \succ \{x,y\}$ because

i)
$$x + y - z \ge z$$
 and $x \ge y$

ii)
$$(x+y-z)+(z)=(x)+(y)$$

iii)
$$x + y - z > x$$
 and $(x + y - z) + z > x + y$

iii) $x+y-z \ge x$ and $(x+y-z)+z \ge x+y$ And, for $f(t)=e^{t^2}$, $f''(t)=e^{t^2}(4t^2+2)$ is always positive. Now,

Karamata Inequality states that if sequence (a_i) majorizes sequence (b_i) and f(x) is a convex for all a_i and b_i then $\sum_{i=1}^n f(a_i) \ge \sum_{i=1}^n f(b_i)$. Thus,

$$e^{(x+y-z)^2} + e^{z^2} \ge e^{x^2} + e^{y^2}$$

which proves the original problem.