Theorem (3.2.20c). Let f be the function defined by $f(n) = (n^n + n2^n + 5^n)(n! + 5^n)$. f(n) is $\mathcal{O}(n!n^n)$.

Proof. f is the product of functions (f_1f_2) where $f_1(n) = n^n + n2^n + 5^n$ and $f_2(n) = n! + 5^n$. If $n \ge 5$, then

$$f_1(n) = n^n + n2^n + 5^n \le n^n + n^n + n^n = 3n^n.$$

Thus, $f_1(n)$ is $\mathcal{O}(n^n)$ with constant witnesses C=3 and k=5. Now, if $n\geq 12$, then

$$f_2(n) = n! + 5^n \le n! + n! = 2n!.$$

So, $f_2(n)$ is $\mathcal{O}(n!)$ with constant witnesses C=2, and k=12. Since the bounding function for the product of functions is the product of those functions bounding functions, f(n) is $\mathcal{O}(n!n^n)$.