Lecture 1 – Multivariate linear models

Al in Genetics ZOO6927 / BOT6935 / ZOO4926

Vectors, matrices, and tensors

Matrix: Rectangular array of numbers:

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 & 1448 \end{bmatrix}$$

Dimension of matrix: number of rows x number of columns

$$Dim(A) = 4 \times 2$$

Matrix Elements (entries of matrix)

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 & 1448 \end{bmatrix}$$

$$A_{ij} =$$
 "i,j entry" in the i^{th} row, j^{th} column.

Vector: An n x 1 matrix.

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y_i = i^{th}$$
 element

1-indexed vs 0-indexed:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \qquad y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Tensor: High-dimensional array

Basic matrix algebra

Scalar Multiplication

If A =
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

then for any scaler 'k'

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \vdots & \vdots & & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}_{m \times n}$$

$$\begin{bmatrix}
1 & 0 \\
2 & 5 \\
3 & 1
\end{bmatrix} =$$

Matrix Addition is element-wise

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{b}_{13} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \mathbf{b}_{23} \\ \mathbf{b}_{31} & \mathbf{b}_{32} & \mathbf{b}_{33} \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} \mathbf{a}_{11} + \mathbf{b}_{11} & \mathbf{a}_{12} + \mathbf{b}_{12} & \mathbf{a}_{13} + \mathbf{b}_{13} \\ \mathbf{a}_{21} + \mathbf{b}_{21} & \mathbf{a}_{22} + \mathbf{b}_{22} & \mathbf{a}_{23} + \mathbf{b}_{23} \\ \mathbf{a}_{31} + \mathbf{b}_{31} & \mathbf{a}_{32} + \mathbf{b}_{32} & \mathbf{a}_{33} + \mathbf{b}_{33} \end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 \\
2 & 5 \\
3 & 1
\end{bmatrix} + \begin{bmatrix}
4 & 0.5 \\
2 & 5 \\
0 & 1
\end{bmatrix} =$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \end{bmatrix} =$$

Matrix transpose

$$A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}_{2 \times 3}$$

$$A^{T} = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}_{3 \times 2}$$

$$(\mathbf{A}^{\top})_{ij} = A_{ji}$$

Transposing a column vector results in a row vector, and vice versa

$$v = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \rightarrow v^T = \begin{bmatrix} a & b & c \end{bmatrix}$$

OKPEDIA.ORG

Vector-Vector Product

"Inner product" or "dot product"
$$\langle \mathbf{x}, \mathbf{y} \rangle \triangleq \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{n} x_i y_i$$
.

$$\langle \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \begin{bmatrix} e \\ f \\ g \end{bmatrix} \rangle = \begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} e \\ f \\ g \end{bmatrix} = a \cdot e + b \cdot f + c \cdot g$$

Matrix-vector multiplication

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} =$$

Example

$$\begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 4 \\ -1 & -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} =$$

Matrix-Matrix Product

Matrix-Matrix Product

The *i*-th column of the matrix *C* is obtained by multiplying *A* with the *i* column of *B*

Example

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} - & \mathbf{a}_1^\top & - \\ - & \mathbf{a}_2^\top & - \\ & \vdots & \\ - & \mathbf{a}_m^\top & - \end{bmatrix} \begin{bmatrix} \mid & \mid & & \mid \\ \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \\ \mid & \mid & & \mid \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^\top \mathbf{b}_1 & \mathbf{a}_1^\top \mathbf{b}_2 & \cdots & \mathbf{a}_1^\top \mathbf{b}_p \\ \mathbf{a}_2^\top \mathbf{b}_1 & \mathbf{a}_2^\top \mathbf{b}_2 & \cdots & \mathbf{a}_2^\top \mathbf{b}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_m^\top \mathbf{b}_1 & \mathbf{a}_m^\top \mathbf{b}_2 & \cdots & \mathbf{a}_m^\top \mathbf{b}_p \end{bmatrix}$$

The *I,j*-th element of the matrix *C* is the dot product of the *i*-th row of *A* with the *j*-th column of *B*

A and B must have conforming dimensions!

 $Dim(A) = m \times n$ $Dim(B) = n \times p$ $Dim(AB) = m \times p$

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \left[egin{array}{ccccc} ert & ert & ert & artheta_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \ ert & ert & ert & artheta_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \ ert & ert & artheta_1 & artheta_1 & \mathbf{a}_2 & ert & artheta_1 \end{array}
ight] \left[egin{array}{ccccc} - & \mathbf{b}_1^\top & - \ - & \mathbf{b}_2^\top & - \ ert & artheta_1 & artheta_1 \end{array}
ight] = \sum_{i=1}^n \mathbf{a}_i \mathbf{b}_i^\top \ .$$

^{*}The matrix **C** is the sum of outer product of **i**-th column of A and **i**-th row of B

Back to the simple linear regression example

House sizes:

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function (MSE):

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

House sizes:

Size in	Price (\$) in
feet ² (x)	1000's (y)
2104	460
1416	232
1534	315
852	178

Hypothesis:

$$h_{\theta}(x) = -40 + 0.25x$$

Use matrix-vector multiplication:

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \cdot \begin{bmatrix} -40 \\ 0.25 \end{bmatrix} = \begin{bmatrix} 486.0 \\ 314.0 \\ 343.5 \\ 173.0 \end{bmatrix}$$

X

 θ

House sizes:

Size in	Price (\$) in
feet ² (x)	1000's (y)
2104	460
1416	232
1534	315
852	178

Model prediction

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \cdot \begin{bmatrix} -40 \\ 0.25 \end{bmatrix} = \begin{bmatrix} 486.0 \\ 314.0 \\ 343.5 \\ 173.0 \end{bmatrix}$$

X

 θ

Cost

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\boldsymbol{\theta}) = \frac{1}{2m} (\widehat{\mathbf{y}} - \mathbf{y})^T (\widehat{\mathbf{y}} - \mathbf{y}) = \frac{1}{2m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

Model prediction

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \cdot \begin{bmatrix} -40 \\ 0.25 \end{bmatrix} = \begin{bmatrix} 486.0 \\ 314.0 \\ 343.5 \\ 173.0 \end{bmatrix}$$

X

 θ

Goal: minimize $J(\theta_0, \theta_1)$

Solution

<u>Cost</u>

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\boldsymbol{\theta}) = \frac{1}{2m} (\widehat{\mathbf{y}} - \mathbf{y})^T (\widehat{\mathbf{y}} - \mathbf{y}) = \frac{1}{2m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$\hat{\boldsymbol{\theta}} = \operatorname{argmin}_{\boldsymbol{\theta}} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

How to find the solution - calculus

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

How to find the solution – gradient descent

Broadcasting

- Broadcasting: how NumPy (torch, tensorflow) treats arrays with different shapes during arithmetic operations.
- When performing operations between two arrays, broadcasting automatically expands one or both arrays so they have compatible shapes. This allows element-wise operations without the need for explicitly reshaping arrays.

Generalized tensor operation: Broadcasting

Concise Code: It reduces the need for explicit loops and reshaping, making the code more concise and easier to read.

Performance: Broadcasting is implemented in a memory-efficient manner, avoiding unnecessary copies of data.

Flexibility: It allows operations on arrays of different shapes without needing them to be exactly the same size.