HIGH-LEVEL PROGRAMMING I

Outline

- What is an Algorithm?
- Algorithm characteristics
- Elements of an algorithm
- Expressing algorithms
- Pseudocode
- Flowcharting
- Examples

What is an Algorithm?

- Step-by-step method for solving a problem
- □ Similar in concept to a <u>cook's recipe</u>

Algorithm Example: Recipe for Brownies

½ cup butter1 cup sugar2 eggs

1 tsp vanilla extract

½ cup cocoa ½ cup flour

- 1. If butter not soft, then melt butter
- Blend melted buffer and sugar until mixture has creamy consistency
- 3. Add eggs and vanilla; stir
- 4. Add cocoa and flour; mix until well blended
- 5. Pour into greased round glass cake pan
- Microwave for 9-10 minutes

Examples of Algorithms

- □ Putting together **IKEA** furniture
- Going from airport to hotel in new city
- □ Solving Rubik's cube
- □ Playing board games such as Chess, Go, ...
- Solving a maze
- Choosing a TV cable plan
- Choosing a cell phone subscription plan

Oldest Algorithm?

- First documented algorithm was presented by Greek mathematician Euclid in 300 B.C. to compute Greatest Common Divisor (GCD)
 - 1. Let A and B be integers such that $A > B \ge 0$
 - 2. If A = 0, then GCD is B and algorithm ends
 - 3. If B = 0, then GCD is A and algorithm ends
 - 4. Write quotient remainder format: $A \leftarrow B \cdot Q + R$
 - 5. Set $A \leftarrow B$ and $B \leftarrow R$
 - 6. Go to 2

Formal Definition

- Procedure to solve well-specified problem
- Must have following characteristics
 - Input
 - Output
 - Precision
 - Finiteness
 - Uniqueness
 - Generality

Algorithm Elements (1/4)

- Mid-60s, mathematicians proved that any logic problem, no matter how complicated, can be constructed using one or more of only three structures or elements
 - Think of an element as basic unit of logic
- What are these three elements?
 - Sequence
 - Selection
 - Iteration

Algorithm Elements (2/4)

- Euclid's Greatest Common Divisor (GCD) algorithm
 - 1. Let A and B be integers such that $A > B \ge 0$
 - 2. If A = 0, then GCD is B and algorithm ends
 - 3. If B = 0, then GCD is A and algorithm ends
 - 4. Write quotient remainder format: $A \leftarrow B \cdot Q + R$
 - 5. Set $A \leftarrow B$ and $B \leftarrow R$
 - 6. Go to 2

Algorithm Elements (3/4)

- Elements an be combined in infinite ways
 - Every element has single entry and single exit point
 - Elements can be stacked or connected to one another only at their entry or exit points
 - Any element can be nested within another element

Algorithm Elements (3/3)

- We'll add two additional elements
 - Input
 - Sequence
 - Selection
 - Iteration
 - Output

Expressing Algorithms

- Need notation for expressing algorithms
- Options range from natural to programming languages
- Two tools commonly used
 - Pseudocode
 - Flowchart

Pseudocode

- □ Pseudo means false
- Code a problem means to put it into programming language
- □ Pseudocode means false code
- Sentences that appear to be written in programming language but don't necessarily follow syntax rules of any specific language

Flowcharting

 Combination of graphical symbols that represent logical flow of data thro' solution

Pseudocode: Input

Can write reading of input from user as:

1: read x input x

1: read a, b, c input a, b, c

Pseudocode: Output

Writing of output to user represented as:

1: print x output x

1: print "your speed is: ", x "your speed is: ", x

Sequence (1/2)

- Computational statements executed in order, one after another
- Once you start series of steps in sequence, you must continue step by step until sequence ends

Sequence (2/2)

1: x = 10

2: $y = ax^2 + bx + c$

3: z = y

Statements, Expressions, ... (1/4)

- □ Statement made up one or more expressions
- Expression consists of one or more operands
 and zero or more operators
- Operand can be constant or variable

Statements, Expressions, ... (2/4)

How many expressions in following statements?

$$3 \leftarrow 1: x = 10$$

 $5 \leftarrow 2: y = x*x$
 $7 \leftarrow 3: z = x + y*y$

Statements, Expressions, ... (3/4)

- Every expression evaluates to a value of certain type
- Type represents set of values and set of operations that can be applied on these values

1: z is integer

2: z = 10

Statements, Expressions, ... (4/4)

- Numbers without fractions (such as 10, 33, ...)
 are called *integers*
- Digital systems cannot represent infinite set of fractional values on real number-line
- Instead, they represent a finite set of floatingpoint values with each floating-point value being an approximation of real values

Assignment Operator

variable = *expression*

- Copy value of expression into variable, or
- Replace current value of variable by value of expression

Arithmetic Operators

 $variable = operand_1 operator operand_2$

Relational Operators

- Used to compare two operands or values or expressions
- □ ==,!=,>,>=,<,<=
- Expression involving relational operators
 always evaluates to either 1 (true) or 0 (false)
 - Value 0 means false
 - Any non-zero value means true

Logical Operators

- Used to control sequencing of steps; combine simple relational expressions into more complex expressions
- □ &&, ||, !
- Expression involving logical operators always evaluates to either 1 (true) or 0 (false)
- \Box a = x < y || x > z
- \Box b = x >= y && x <= z

Selection Element (1/4)

- Alters sequential flow of control
- One of two courses of action is taken based on result of evaluation of condition
- □ How to assign letter grades?
- Should I take an umbrella?
- Overtime pay?
- Cable billing

Selection Structure (2/4)

```
28
         condition
                                        condition
                                                      false
                                true
 true
                       false
                              action 1
                                                   action 2
action
   if (condition) then
                                  if (condition) then
     action
                                    action 1
   endif
                                  else
                                    action 2
                                  endif
```

Selection Structure (3/4)

<i>a</i> %	Letter Grade
$a \ge 93$	A
$90 \le a < 93$	A —
$87 \le a < 90$	B +
$83 \le a < 87$	В
$80 \le a < 83$	В —
$77 \le a < 80$	C +
$73 \le a < 77$	С
$70 \le a < 73$	C —
$60 \le a < 70$	D
a < 60	F

Selection Structure (4/4)

Iteration Element

□ Repeat actions while a condition remains true

First Algorithm

- □ Compute $\sum x^2 \ \forall \ x \in [1, N]$
 - 1: read *N*
 - $\square 2: sum = 0$
 - $\Box 3: x = 1$
 - \blacksquare 4: while (x <= N)

 - \Box 6: x = x + 1
 - 7: endwhile
 - ■8: print *sum*

Traveling on a Subway

Algorithm: Subway

```
Input: Source station A and destination station B
   Output: Directions to go from A to B using maximum of single transfer
   if A and B are on same line L then
     travel on line L from A to B
   else [A and B are on different lines]
      find all pairs of lines (L_i, L_i) s.t A is on L_i \& B is on L_i
                    and two lines have common station
      if there is only one such pair then
take L_i to a station also on L_i, get off, and then take L_i to station B
else [more than one possible pair of them]
use pair (L_i, L_j) which requires fewest stops
      endif
   endif
```

Summary

- What is an Algorithm?
- Algorithm characteristics: inputs, outputs, precision, finiteness, uniqueness, generality
- Elements of an algorithm: sequence, selection, iteration
- Expressing algorithms: Pseudocode, flowcharting
- Sequence: operator, operand, expression, variable, constant, type, integer and floating-point values, assignment operator, arithmetic operator, relational operators
- Examples
- Things to do: Read handout, complete assignment