Power-Recycled Fabry-Perot Michelson Sensing Matrix

Anarytical Calculation v.s. Finesse

Keiko Kokeyama 2020 July 31st

Power Recycling Cavity Parameters

Parameters	Design Values	Simulation
Power Recycling Gain	$G = \frac{t_R^2}{(1 - r_R r_{com})^2} = 32.9$ rcom: complex reflectivity of the FPMI part	33.9
PRC Length	66.591	
PRC FSR	2.25 MHz	
PRC Finesse for carrier	55	
PRC cutoff frequency	20 kHz	

Kokeyama

PRFPMI Sensing Matrix (Analytical Calculation)

	Φ- アーム差動 DARM	Φ- マイケルソン MICH	Φ+ アーム同相 CARM	Φp PRC長 PRCL
AS Q1	$g_0 g_1 r'_{\rm reso} r_{\rm anti} \sin \alpha$	$g_0 g_1 r_{\rm reso} r_{\rm anti} \sin \alpha$	0	0
REFL I1	0	0 –	$g_0^2 r'_{\text{reso}} r_{\text{rec}1} + g_1^2 r_{\text{rec}0} r'_{\text{anti}} c$	$\cos \alpha$ $-g_0^2 r_{\text{reso}} r_{\text{rec}1} - g_1^2 r_{\text{rec}0} r_{\text{anti}} \cos \alpha$
REFL Q1	$g_1^2 r_{ m rec0} r'_{ m anti} \sin \alpha$	$-g_1^2 r_{\rm rec0} r_{\rm anti} \sin \alpha$	0	0
POP I1	0	$0 g_0g_1\frac{r_{\rm P}^2}{t_{\rm R}}$	$(g_0 r'_{\text{reso}} r_{\text{anti}} + g_1r_{\text{reso}} r'_{\text{anti}})$ co	$s \alpha g_0 g_1 \frac{r_{\rm P}^2}{t_{\rm R}} (g_0 - g_1) r_{\rm reso} r_{\rm anti} \cos r$
POP Q1				

$$g_0 = \frac{t_{\rm R}}{1 - r_{\rm R} t_{\rm P}^2 r_{\rm reso}} \qquad r_{\rm rec0} = -r_{\rm R} + \frac{t_{\rm R}^2 t_{\rm P}^2 r_{\rm reso}}{1 - r_{\rm R} t_{\rm P}^2 r_{\rm reso}}$$

$$g_1 = \frac{t_{\rm R}}{1 + r_{\rm R} t_{\rm P}^2 r_{\rm anti} \cos \alpha} \qquad r_{\rm rec1} = -r_{\rm R} - \frac{t_{\rm R}^2 t_{\rm P}^2 r_{\rm anti} \cos \alpha}{1 + r_{\rm R} t_{\rm P}^2 r_{\rm anti} \cos \alpha}$$

M. Ando PhD thesis

PRFPMI Sensing Matrix (Analytical Calculation for f1)

	Φ- アーム差動 DARM	Φ- マイケルソン MICH	Φ+ アーム同相 CARM	Φp PRC長 PRCL
AS Q1	-2670	-2.67	0	0
REFL I1	0	0	30200	30.3
REFL Q1	0.0010	0.203	0	0
POP I1	0	0	-10	-0.0093
POP Q1				

$$g_0 = \frac{t_{\rm R}}{1 - r_{\rm R} t_{\rm P}^2 r_{\rm reso}}$$
$$g_1 = \frac{t_{\rm R}}{1 + r_{\rm R} t_{\rm P}^2 r_{\rm anti} \cos \alpha}$$

g0=5.8 g1=0.50 r_reso = 0.998 r_reso' = -996i

r_anti ~ -1 r_anti′ ~ 0.001i

r_rec0 ~ 0.89 r_rec1 ~ -0.89

 $\cos \alpha \sim 0.38$ $\sin \alpha \sim 0.92$

 $\textbf{Demodulation phase}^{\text{Kokeyama}}$

AS: Q = 213

REFL: I = 0, Q = 90

POP: I = 119, Q=209

PRFPMI Sensing Matrix (demodulated at 16.88MHz)

	Φ- アーム差動 DARM	Φ- マイケルソン MICH	Φ+ アーム同相 CARM	Φp PRC長 PRCL
AS Q1	-13	-0.013	0	0
REFL I1 Finess	-145 e diff gives wrong ans	-0.14 wer	-290 Sign doesn't agree	0.3
REFL Q1	-0.0028	0.0010	0	0
POP I1	-0.05	-4.5e-5	-0.1	9e-5 Sign doesn't agree
POP Q1	0	-1e-5	0	0

Error signals are 0 and correct but diff results are wrong

Factor of 2 larger than the analyic formulae

PRFPMI Sensing Matrix (Analytical Calculation for f2)

	Φ- アーム差動 DARM	Φ- マイケルソン MICH	Φ+ アーム同相 CARM	Φp PRC長 PRCL
AS Q2	-0.045	-4.5e-5	1/1000	0
REFL 12	0	0	33900	34.0
REFL Q2	1.1e-9	1.1e-6	0	0 0.00025
POP I2	0	0	8.7	0.0085
POP Q2			1/1000	

g0=5.8g1=0.16 r reso = 0.998

r_anti ~ -1 $r_reso' = -996i$ $r_anti' \sim 0.0001i$ $r_rec1 \sim -1$

r_rec0 ~ 0.89

 $\cos \alpha \sim -1$ $\sin \alpha \sim 4.8e-5 \sim 0$

PRFPMI Sensing Matrix (demodulated at 45MHz)

Demodulation phase

AS: Q = 178

REFL: I = 0, Q = 90

POP: I = 78, Q= 168

	Φ- アーム差動 DARM	Φ- マイケルソン MICH	Φ+ アーム同相 CARM	Φp PRC長 PRCL
AS Q2	0.008	8.1e-6	-3.8e-6	0
REFL I2 Finess	160 e diff gives wrong ans	0.00055 wer	318	-0.0012 Sign doesn't agree
REFL Q2	0	-2.1e-5	0	0 0.12
POP I2	1.6	-7e-5	3.2	0.00014
POP Q2	0	1.5e-7	0 4.4e-5	0

Error signals are 0 and correct but diff results are wrong

Totally disagreed?
Checked that the assumption r_SB ~= r_antiwas not the problem

DARM diff at REFL/POP something wrong

Fri Jul 31 12:29:03 2020

