Tarea 1 Probabilidad II

Prof. Rafael Miranda Cordero

Aydte. Fernando Avitúa Varela

12 de febrero del 2024

Entrega: 20 de febrero

- 1. Dé un ejemplo de un espacio de probabilidad $(\Omega, \mathcal{F}, \mathbf{P})$ y una función $\mathbf{X} : \Omega \longrightarrow \mathbf{R}^n$ que no sea un vector aleatorio $(n \ge 2)$.
- 2. Suponga que elegimos un punto de forma aleatoria y uniforme sobre la circunferencia de radio R > 0 con centro en el origen. Sea $\mathbf{X} = (X, Y)$ las coordenadas cartesianas del punto elegido y sea D la distancia de dicho punto al origen. ¿Cuál es la distribución de D?. ¿Cuál es la esperanza de D?.
- 3. Considere una sucesión de ensayos Bernoulli independientes cada uno con probabilidad de éxito p > 0. Sea X_1 el número de fracasos que preceden al primer éxito y sea X_2 el número de fracasos entre el primer y el segundo éxito. Dé un modelo de probabilidad para este problema. Calcule la función de probabilidad conjunta de X_1 y X_2 y las funciones de probabilidad marginales.
- 4. Dos dados balanceados son lanzados. Dé un modelo de probabilidad para este experimento. Encuentre la función de probabilidad conjunta de X y Y cuando
 - a) X es la mayor de los valores obtenidos y Y es la suma de los valores,
 - b) X es el valor del primer dado y Y es el mayor de los valores obtenidos,
 - c) X es el menor de los valores obtenidos y Y es el mayor de los valores obtenidos.
- 5. Suponga que 3 bolas son elegidas sin remplazo de una urna que contiene 5 bolas blancas y 8 rojas. Sea X_i igual a 1 si la i-ésima bola elegida es blanca y 0 en otro caso. Dé un modelo de probabilidad para este problema (explique detalladamente como serían la función de probabilidad y el espacio muestral). Calcula la función de probabilidad conjunta de
 - $a) X_1 y X_2,$
 - b) $X_1, X_2 y X_3$.
- 6. Un contenedor con 5 transistores se sabe que contiene 2 que están defectuosos. Los transistores se deben probar, uno a la vez, hasta que se identifiquen los defectuosos.

Denotemos por N_1 el número de pruebas realizadas hasta que se identifica el primero defectuoso y por N_2 el número de pruebas adicionales hasta que se identifica el segundo defectuoso. Encuentra la función de masa de probabilidad conjunta de N_1 y N_2 .

Complemento Teórico

En teoría de la probabilidad, una sigma-álgebra generada por un conjunto A, denotada por $\sigma(A)$, es la colección más pequeña de subconjuntos de un espacio muestral que contiene a A y es cerrada bajo la operación de complemento y uniones numerables. En otras palabras, $\sigma(A)$ tiene a A y todos los conjuntos que pueden ser obtenidos de A mediante operaciones de complemento y uniones numerables.

Formalmente, sea Ω un espacio muestral y $A \subset \Omega$. La sigma-álgebra generada por A, $\sigma(A)$, es la mínima bajo la contención (\subseteq) que satisface:

- 1. $A \in \sigma(A)$.
- 2. Si $B \in \sigma(A)$, entonces $B^c \in \sigma(A)$, donde B^c es el complemento de B en Ω .
- 3. Si $B_1, B_2, \ldots \in \sigma(A)$, entonces $\bigcup_{i=1}^{\infty} B_i \in \sigma(A)$, es decir, $\sigma(A)$ es cerrada bajo uniones numerables.

En resumen, la sigma-álgebra generada por un conjunto A es la colección más pequeña de subconjuntos de Ω que contiene a A y es cerrada bajo complementos y uniones numerables.

La sigma-álgebra de Borel sobre \mathbf{R} se define como la sigma-álgebra generada por lo rayos $(-\infty, c]$, es decir,

$$\mathcal{B}(\mathbf{R}) = \sigma\left(\left\{(-\infty, c] : c \in \mathbf{R}\right\}\right)$$

del mismo modo, la sigma-álgebra de Borel sobre \mathbb{R}^2 se define como:

$$\mathcal{B}(\mathbf{R}^2) = \sigma\left(\left\{(-\infty, c] \times (-\infty, d] : (c, d) \in \mathbf{R}^2\right\}\right).$$

Dado $\Omega \in \mathcal{B}(\mathbf{R}^n)$ (puede pensar que n=1,2) definimos la sigma-álgebra de Borel de Ω como:

$$\mathcal{B}(\Omega) = \{\Omega \cap B : B \in \mathcal{B}(\mathbf{R}^n)\}.$$

- 7. ¿Como definiría $\mathcal{B}(\mathbf{R}^n)$ para n > 2?
- 8. Demuestre que la definición de $\mathcal{B}(\Omega)$ esta bien hecha, es decir, que en efecto es una sigma-álgebra.
- 9. Demuestre que

$$\mathcal{B}\left(\mathbf{R}^{2}\right) = \sigma\left(\left\{(a,b) \times (c,d) : (a,b), (c,d) \in \mathbf{R}^{2}\right\}\right).$$

Sugerencia: Demuestre que $A \subseteq \sigma(B)$ y que $B \subseteq \sigma(A)$ con $A = \{(a,b) \times (c,d) : (a,b), (c,d) \in \mathbf{R}^2\}$ y $B = \{(-\infty,c] \times (-\infty,d] : (c,d) \in \mathbf{R}^2\}$. Concluya la igualdad usando la propiedad de minimalidad bajo la contención (\subseteq) de la sigma-álgebra generada.

10. Demuestre que si $(\Omega, \mathcal{B}(\Omega), \mathbf{P})$ es un espacio de probabilidad con $\Omega \in \mathcal{B}(\mathbf{R}^2)$ y $\mathbf{X} : \Omega \longrightarrow \mathbf{R}^2$ es una función continua entonces \mathbf{X} es un vector aleatorio.