NLP with Classification and Vector Spaces

Week 2. Sentiment Analysis with Naïve Bayes

Introduction

Corpus on tweets

Tweets containing the word "happy"

Probabilities

Corpus of tweets

 $A \rightarrow Positive tweet$

$$P(A) = N_{pos} / N = 13 / 20 = 0.65$$

Probabilities

Tweets containing the word "happy"

 $B \rightarrow tweet contains "happy".$

$$P(B) = P(happy) = N_{happy} / N$$

$$P(B) = 4 / 20 = 0.2$$

Probability of the Intersection

- *To compute the probability of 2 events happening
 - Ex. "happy" and "positive"

$$P(A \cap B) = P(A, B) = \frac{3}{20} = 0.15$$

02 Bayes' Rule

Conditional Probabilities

- *Probability of <u>B</u>, given <u>A</u> happened
- *Looking at the elements of set \underline{A} , the chance that one also belongs to set \underline{B}

$$P(\text{Positive}|\text{"happy"}) =$$

$$P(\text{Positive} \cap \text{"happy"})$$

$$P(\text{"happy"})$$

02 Bayes' Rule

Bayes' Rule

$$P(\text{Positive} | \text{``happy''}) = \frac{|P(\text{Positive} \cap \text{``happy''})|}{P(\text{``happy''})}$$

$$P(\text{"happy"}|\text{Positive}) = \frac{|P(\text{"happy"} \cap \text{Positive})|}{P(\text{Positive})}$$

$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

02 Bayes' Rule

Bayes' Rule

$$*P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

03 Naïve Bayes Introduction

Naïve Bayes for Sentiment Analysis

Positive tweets

I am happy because I am learning NLP I am happy, not sad.

Negative tweets

I am sad, I am not learning NLP I am sad, not happy

word	Pos	Neg
I	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

03 Naïve Bayes Introduction

Naïve Bayes for Sentiment Analysis

 $*P(w_i|class)$

word	Pos	Neg
	3	3
am	3	3
happy	2	1
because	1	0
learning	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	13	12

$$P(I|Pos) = \frac{3}{13}$$

$$P(I|Pos) = \frac{3}{13} \qquad P(I|Neg) = \frac{3}{12} \qquad \Rightarrow$$

Pos	Neg
0.24	0.25
0.24	0.25
0.15	0.08
0.08	0
0.08	0.08
0.08	0.08
0.08	0.17
0.08	0.17
	0.24 0.24 0.15 0.08 0.08 0.08

03 Naïve Bayes Introduction

- Naïve Bayes for Sentiment Analysis
 - *Compute the likelihood score

Tweet: I am happy today; I am learning.

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} = \frac{0.14}{0.10} = 1.4 > 1$$

$$\frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.14}{0.10} * \frac{0.20}{0.20} * \frac{0.20}{0.20} * \frac{0.10}{0.10}$$

word	Pos	Neg
	0.20	0.20
am	0.20	0.20
happy	0.14	0.10
because	0.10	0.05
learning	0.10	0.10
NLP	0.10	0.10
sad	0.10	0.15
not	0.10	0.15

04 Laplacian Smoothing

Laplacian Smoothing

*The probability of a word given a class

*To avoid $P(w_i|class) = 0$

$$OP(w_i|class) = \frac{freq(w_i,class)+1}{N_{class}+V}$$

- N_{class} : frequency of all words in class
- *V*: number of unique words in vocabulary

04 Laplacian Smoothing

 $\square P(w_i|class)$ with Laplacian Smoothing

word	Pos	Neg			-	word	Pos	Neg
] 3	3	$P(I Pos) = \frac{3+1}{12+0}$	$P(I Neg) = \frac{3+1}{12+8}$	•	1	0.19	0.20
am	3	3	13 + 8	12 + 8		am	0.19	0.20
happy	2	1		!		happy	0.14	0.10
because	1	0				because	0.10	0.05
learning	1	1				learning	0.10	0.10
NLP	1	1				NLP	0.10	0.10
sad	1	2				sad	0.10	0.15
not	1	2				not	0.10	0.15
Nclass	13	12			-	Sun	1	1

Ratio of Probabilities

- *To compute the log likelihood, we need to get the ratios
- *The higher the ratio, the more positive the word is

word	Pos	Neg	ratio
	0.20	0.20	1
am	0.20	0.20	1
happy	0.14	0.10	1.4
because	0.10	0.10	1
learning	0.10	0.10	1
NLP	0.10	0.10	1
sad	0.10	0.15	0.6
not	0.10	0.15	0.6

$$ratio(w_i) = \frac{P(w_i | Pos)}{P(w_i | Neg)}$$

$$\frac{\text{freq(w}_{i}, 1) + 1}{\text{freq(w}_{i}, 0) + 1}$$

□ Naïve Bayes' Inference

$$\stackrel{P(pos)}{=} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

- *A simple, fast, and powerful baseline
- *A probabilistic model used for classification

Log Likelihood

- Products bring risk of underflow
 - > to reduce the risk of numerical underflow

$$\log(\frac{P(pos)}{P(neg)} \prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)}) \Longrightarrow \log \frac{P(pos)}{P(neg)} + \sum_{i=1}^{n} \log \frac{P(w_i|pos)}{P(w_i|neg)}$$

Summing the Lambdas

doc: I am happy because I am learning.

$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$

$$\lambda(\text{happy}) = log \frac{0.09}{0.01} \approx 2.2$$

word	Pos	Neg	λ
	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Inference with Log Likelihood

doc: I am happy because I am learning.

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^{m} \lambda(w_i)$$

log likelihood = 0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3

word	Pos	Neg	λ
I	0.05	0.05	0
am	0.04	0.04	0
happy	0.09	0.01	2.2
because	0.01	0.01	0
learning	0.03	0.01	1.1
NLP	0.02	0.02	0
sad	0.01	0.09	-2.2
not	0.02	0.03	-0.4

Summary of Log Likelihood

*It makes many things simpler and helps with numerical stability

$$\prod_{i=1}^{m} \frac{P(w_i|pos)}{P(w_i|neg)} > 1$$

$$\sum_{i=1}^{m} log \frac{P(w_i|pos)}{P(w_i|neg)} > 0$$

Step 0 & 1

Step 0: Collect and annotate corpus

Positive tweets

I am happy because I am learning NLP I am happy, not sad. @NLP

Negative tweets

Step 1:

Preprocess

I am sad, I am not learning NLP
I am sad, not happy!!

- Lowercase
- Remove punctuation, urls, names
- Remove stop words
- Stemming
- Tokenize sentences

Positive tweets

[happi, because, learn, NLP] [happi, not, sad]

Negative tweets

[sad, not, learn, NLP] [sad, not, happi]

□Step 2

Training Naïve Bayes

word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
N _{class}	7	7

freq(w, class)

□Step 3 & 4

Training Naïve Bayes

freq(w, class)

word	Pos	Neg
happi	2	1
because	1	0
learn	1	1
NLP	1	1
sad	1	2
not	1	2
$N_{\rm class}$	7	7

Step 3: $P(w class)$
$V_{\rm class} = 6$

$$\frac{\text{freq(w, class)} + 1}{N_{\text{class}} + V_{\text{class}}}$$

$\lambda(w)$	_	loa	$P(\mathbf{w})$	pos	
$\lambda(w)$		iog	$P(\mathbf{w})$	neg	

Step 4: Get lambda

word	Pos	Neg
happy	0.23	0.15
because	0.15	0.07
learning	0.08	80.0
NLP	80.0	80.0
sad	80.0	0.17
not	0.08	0.17

Steps

- O. Get or annotate a dataset with positive and negative tweets
- 1. Preprocess the tweets: $process_tweet(tweet) \rightarrow [w_1, w_2, w_3, \cdots]$
- 2. Compute freq(w, class)
- 3. Get P(w|pos), P(w|neg)
- 4. Get $\lambda(w)$
- 5. Compute logprior = log(P(pos)/P(neg))

07 Testing Naïve Bayes

Predict using Naïve Bayes

• log-likelihood dictionary
$$\lambda(w) = log \frac{P(w|pos)}{P(w|neg)}$$
 —

•
$$logprior = log \frac{D_{pos}}{D_{neg}} = 0$$

• Tweet: [I, pass, the NLP interview]

$$score = -0.01 + 0.5 - 0.01 + 0 + logprior = 0.48$$

$$pred = score > 0$$

word	λ
	-0.01
the	-0.01
happi	0.63
because	0.01
pass	0.5
NLP	0
sad	-0.75
not	-0.75

07 Testing Naïve Bayes

Testing Naïve Bayes

- *Given X_{val} , Y_{val} , λ , logprior
 - \circ score = predict(X_{val} , λ , logprior)
 - opred = score > 0
- *Accuracy

$$\circ \frac{1}{m} \sum_{i=1}^{m} (pred_i == Y_{val_i})$$

$$\begin{bmatrix} 0.5 \\ -1 \\ 1.3 \\ \vdots \\ score_m \end{bmatrix} > 0 = \begin{bmatrix} 0.5 > 0 \\ -1 > 0 \\ 1.3 > 0 \\ \vdots \\ score_m > 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ \vdots \\ pred_m == Y_{val_i} \end{bmatrix}$$

08 Applications of Naïve Bayes

Applications

- Sentiment analysis
- *Author identification
- Information retrieval
- *Word disambiguation

Naïve Bayes

*Simple, fast and robust

09 Naïve Bayes Assumptions

Independence

*Assume independence throughout

"It is sunny and hot in the Sahara desert."

"It's always cold and snowy in ___."

*Very difficult to guarantee → not true in NLP

09 Naïve Bayes Assumptions

- Relative Frequencies in Corpus
 - *On Twitter
 - There are usually more positive tweets than negative ones
 - *Some "clean" datasets
 - Artificially balanced to have to the same amount of positive and negative tweets

*Affect the model

10 Error Analysis

- Processing as a Source of Errors
 - *Removing punctuation

Tweet: My beloved grandmother:(

processed_tweet: [belov, grandmoth]

*Removing words

Tweet: This is not good, because your attitude is not even close to being nice.

processed_tweet: [good, attitude, close, nice]

10 Error Analysis

- Processing as a Source of Errors
 - *Word order

Tweet: I am happy because I did not go.

Tweet: I am not happy because I did go.

10 Error Analysis

- Adversarial attacks
 - *Sarcasm
 - *Irony
 - *****Euphemisms

Tweet: This is a ridiculously powerful movie. The plot was gripping and I cried right through until the ending!

processed_tweet: [ridicul, power, movi, plot, grip, cry, end]