Introducción a la geometría simpléctica y los sistemas integrables

Guillermo Gallego Sánchez

Departamento de Álgebra, Geometría y Topología

12 de julio de 2018

Geometría simpléctica

- ▶ Una *variedad simpléctica* es un par (M, ω) , donde M es una variedad diferenciable y ω es una 2-forma diferencial no degenerada y cerrada, es decir, tal que d $\omega = 0$.
- ▶ El teorema de Darboux garantiza que localmente es posible encontrar unas coordenadas (q,p) (llamadas de Darboux) en las que la forma toma el aspecto $\omega = \sum_i dp_i \wedge dq_i$.
- ▶ Sea una función $H \in \mathcal{C}^\infty(M)$. Se define el *campo hamiltoniano asociado a* H, como el campo X^H tal que $i_{X^H}\omega = -dH$. En coordenadas de Darboux el campo X^H se expresa

$$X^{H} = \sum_{i} \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}} - \frac{\partial H}{\partial q_{i}} \frac{\partial}{\partial p_{i}}.$$

Corchete de Poisson

Sea (M, ω) una variedad simpléctcia y F, $G \in \mathcal{C}^{\infty}(M)$. Se define el *corchete de Poisson de* F y G como la función

$$\{F, G\} = X^F G.$$

Propiedades:

- $\blacktriangleright \{F,G\} = dG(X^F) = \omega(X^F,X^G).$
- $[X^F, X^G] = X^{\{F,G\}}.$
- ▶ $(\mathcal{C}^{\infty}(M), \{\bullet, \bullet\})$ es un álgebra de Lie.
- ▶ Regla de Leibniz: {F, •} es una derivación.
- ► En coordenadas de Darboux se expresa

$$\{F, G\} = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} - \frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} \right)$$

Mecánica hamiltoniana

Un sistema mecánico hamiltoniano (M, H) con $\mathfrak n$ grados de libertad consiste en:

- ► **Estados**: Una variedad simpléctica M de dimensión 2n. M se le suele llamar *espacio de fases*. Los puntos de M se llaman *estados* del sistema.
- ▶ **Observables**: Las funciones del álgebra de Poisson $\mathcal{C}^{\infty}(M)$.
- ▶ Evolución temporal: Viene dictada por el hamiltoniano $H \in \mathcal{C}^{\infty}(M)$. La evolución temporal de los estados que vendrá dada por las curvas integrales del campo hamiltoniano X^H . En coordenadas de Darboux, siguen las ecuaciones de Hamilton

$$\begin{cases} \dot{q_i(t)} = \frac{\partial H}{\partial p_i}, \\ \dot{p_i(t)} = -\frac{\partial H}{\partial q_i}. \end{cases}$$

Sistemas integrables

Sea (M, H) un sistema hamiltoniano con $\mathfrak n$ grados de libertad. Diremos que (M, H) es *integrable en el sentido de Liouville* si existen $F_1 = H, F_2, \ldots, F_{\mathfrak n} \in \mathcal C^\infty(M)$ que

- 1. son funcionalmente independientes (d $F_{1,x} \wedge \cdots \wedge dF_{n,x} \neq 0$), y
- 2. están en involución ($\{F_i, F_j\} = 0$ para cada i, j = 1, ..., n).

Ejemplos:

- Sistemas con 1 grado de libertad.
- Sistemas con 2 grados de libertad y una cantidad conservada independiente de H (e.g. el momento angular).
- El potencial central.
- El trompo simétrico.

Teorema de Arnold-Liouville

Teorema

Sea (M,H) un sistema integrable en el sentido de Liouville con $F_1=H,F_2,\ldots,F_n$ las integrales en involución y $F=(F_1,\ldots,F_n):M\to\mathbb{R}.$ Sea α un valor regular de F y el conjunto de nivel $M_\alpha=F^{-1}(\alpha).$ Entonces:

- 1. M_{α} es una subvariedad de M invariante bajo el flujo ϕ^H de X^H .
- 2. Si Ma es compacta y conexa:
 - 2.1 $M_{\alpha} \cong \mathbb{T}^n$. (Toro de Liouville)
 - 2.2 Para cada $x \in M_{\alpha}$ se puede dar una parametrización ψ de M_{α} y unas frecuencias constantes ν tales que $\phi_t^H(x) = \psi(\nu t)$.

Ejemplo: El péndulo

Demostración (1)

- ▶ $F_1, ..., F_n$ funcionalmente independientes $\implies M_a$ subvariedad regular de M.
- $\blacktriangleright \ \left\{ F_i, F_j \right\} = 0 \implies \omega(X^{F_i}, X^{F_j}) = 0.$

Por tanto:

- ▶ $dF_j(X^{F_i}) = 0 \implies$ Campos tangentes a $M_a \implies M_a$ invariante.
- $\blacktriangleright \ \text{Además, } \left[X^{F_{\mathfrak{i}}}, X^{F_{\mathfrak{j}}} \right] = 0.$

Teorema de Arnold-Liouville

Teorema

Sea (M,H) un sistema integrable en el sentido de Liouville con $F_1=H,F_2,\ldots,F_n$ las integrales en involución y $F=(F_1,\ldots,F_n):M\to\mathbb{R}.$ Sea α un valor regular de F y el conjunto de nivel $M_\alpha=F^{-1}(\alpha).$ Entonces:

- 1. M_{α} es una subvariedad de M invariante bajo el flujo ϕ^H de X^H .
- 2. Si Ma es compacta y conexa:
 - 2.1 $M_{\alpha} \cong \mathbb{T}^n$. (Toro de Liouville)
 - 2.2 Para cada $x \in M_{\alpha}$ se puede dar una parametrización ψ de M_{α} y unas frecuencias constantes ν tales que $\phi_t^H(x) = \psi(\nu t)$.

Demostración (2.1)

Vamos a aplicar el siguiente lema con $N = M_a$, $X_i = X^{F_i}$.

Lema

Sea N una variedad diferenciable de dimensión $\mathfrak n$ conexa y compacta tal que existen campos X_1,\ldots,X_n linealmente independientes y $\left[X_i,X_j\right]=0$. Entonces $N\cong\mathbb T^n$.

Demostración del Lema (1)

- ▶ Fijo $x_0 \in N$.
- ▶ $X_i \rightsquigarrow \text{flujo } g_i$.
- ▶ $[X_i, X_j] \implies$ flujos conmutan.
- Puedo definir

$$\begin{split} g:\mathbb{R}^n &\longrightarrow N \\ t = (t_1, \dots, t_n) &\longmapsto g_t(x_0) = g_{1,t_1} \circ g_{2,t_2} \circ \dots \circ g_{n,t_n}(x_0). \end{split}$$

g es un difeomorfismo local sobreyectivo.

Idea de que g es sobreyectiva

Demostración del Lema (2)

Sea

$$\Gamma = \{ \mathbf{t} \in \mathbb{R}^n | g_{\mathbf{t}}(\mathbf{x}_0) = \mathbf{x}_0 \}.$$

- ightharpoonup Γ es un subgrupo cerrado y discreto de (\mathbb{R}^n , +).
- La aplicación g dada por el siguiente diagrama es un difeomorfismo

Demostración del Lema (3)

Lema

Existen $e_1, \ldots, e_k \in \Gamma$ linealmente independientes tales que

$$\Gamma = \{n_1e_1 + \cdots + n_ke_k | n_1, \dots, n_k \in \mathbb{Z}\} \cong \mathbb{Z}^k.$$

Demostración del Lema (4)

Sea

$$\varpi : \mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k} \longrightarrow \mathbb{T}^k \times \mathbb{R}^{n-k}$$
$$(\theta, y) \longmapsto (\exp(\theta), y),$$

con

$$\begin{split} \exp: \mathbb{R}^k &\longrightarrow \mathbb{T}^k = \mathbb{S}^1 \times \overset{(\mathfrak{n})}{\cdots} \times \mathbb{S}^1 \\ (\theta_1, \dots, \theta_k) &\longmapsto (e^{\mathfrak{i}\theta_1}, \dots, e^{\mathfrak{i}\theta_k}). \end{split}$$

Y sea el isomorfismo lineal

$$\zeta: \mathbb{R}^k \times \mathbb{R}^{n-k} \longrightarrow \mathbb{R}^n$$

$$(\theta, 0) \longmapsto \frac{\theta_1}{2\pi} e_1 + \dots + \frac{\theta_k}{2\pi} e_k.$$

Demostración del Lema (5 y última)

Teorema de Arnold-Liouville

Teorema

Sea (M,H) un sistema integrable en el sentido de Liouville con $F_1=H,F_2,\ldots,F_n$ las integrales en involución y $F=(F_1,\ldots,F_n):M\to\mathbb{R}.$ Sea α un valor regular de F y el conjunto de nivel $M_\alpha=F^{-1}(\alpha).$ Entonces:

- 1. M_{α} es una subvariedad de M invariante bajo el flujo ϕ^H de χ^H .
- 2. Si Ma es compacta y conexa:
 - 2.1 $M_{\alpha} \cong \mathbb{T}^n$. (Toro de Liouville)
 - 2.2 Para cada $x \in M_{\alpha}$ se puede dar una parametrización ψ de M_{α} y unas frecuencias constantes ν tales que $\phi_t^H(x) = \psi(\nu t)$.

Demostración (2.2)

Sea
$$\nu \in \mathbb{R}^n$$
 tal que $\zeta(\nu) = (1,0,\ldots,0).$ Entonces

$$\psi(\nu t) = \phi^F_{\zeta(\nu t)}(x) = \phi^F_{(t,0,\ldots,0)}(x) = \phi^{F_1}_t(x) = \phi^H_t(x).$$

Variables de acción-ángulo

Teorema

En torno a cada toro de Liouville hay un entorno $U \cong \mathbb{R}^n \times \mathbb{T}^n$ y un sistema de coordenadas de Darboux (φ,J) en U tales que en cada toro de U las φ_i son coordenadas angulares y las J_i son constantes.

Integrabilidad por cuadraturas (1)

En el entorno U con las coordenadas (ϕ, J) las ecuaciones de Hamilton quedan resueltas. En efecto,

$$\begin{cases} \dot{\varphi}_i = \frac{\partial H}{\partial J_i}, \\ \dot{J}_i = -\frac{\partial H}{\partial \varphi_i}. \end{cases}$$

 $\begin{array}{l} J_i \text{ constantes en cada toro de Liouville} \implies \dot{J_i} = 0 \implies \frac{\partial H}{\partial \varphi_i} = 0 \\ \implies \text{ el hamiltoniano no depende de las } \varphi \implies \text{ las frecuencias} \\ \nu_i = \dot{\varphi}_i = \frac{\partial H}{\partial J_i} \text{ sólo dependen de las coordenadas } J \implies \nu_i \text{ son constantes en cada toro.} \end{array}$

Integrabilidad por cuadraturas (2)

Las ecuaciones quedan integradas en la forma

$$\begin{cases} J_i(t) = J_i(0) \\ \varphi_i(t) = \varphi_i(0) + \nu_i(J(0))t. \end{cases}$$

Este tipo de flujo en el toro se conoce como *movimiento* condicionalmente periódico. En particular, las trayectorias son densas en el toro si y sólo si las frecuencias ν_1, \ldots, ν_n son inconmesurables.

Figuras de Lissajous

Referencias

R. Abraham and J. E. Marsden. Foundations of Mechanics.
Benjamin/Cummings, 1978.

V. I. Arnold. *Mathematical Methods of Classical Mechanics*.

Springer-Verlag, 1989.

Michèle Audin.

Torus actions on Symplectic Manifolds.
Birkhäuser, 2012.

John M. Lee.

Introduction to Smooth Manifolds.

Springer, 2003.

Michael Spivak.
Physics for Mathematicians: Mechanics I.
Publish or Perish, 2010.

¿PREGUNTAS?

