MATH 239 Tutorial 3 Problems

- 1. A house with 9 students have collectively bought n apples. Among the students, Lucas is required to eat an odd number of apples, Ariel is required to eat between 5 to 10 apples, and each of the remaining students is required to eat at least 3 apples. How many ways can all the apples be eaten by the students?
- 2. How many compositions of n with k parts are there where no part is divisible by 3?
- 3. Let $\{a_n\}$ be the sequence with the corresponding power series

$$\sum_{n\geq 0} a_n x^n = \frac{1 - x + 2x^2}{1 - x - 2x^3}.$$

Determine a recurrence relation that $\{a_n\}$ satisfies, together with sufficient initial conditions. Use this recurrence to find a_5 .

- 4. (a) How many compositions of n are there where each part is greater than 1?
 - (b) Let a_n be the answer to part (a). Derive a recurrence relation for $\{a_n\}$ with sufficient initial conditions.
 - (c) Give a combinatorial interpretation of the recurrence relation from part (b) through a bijection.
- 5. How many k-tuples (a_1, \ldots, a_k) of positive integers satisfy the inequality $a_1 + \cdots + a_k < n$?

Additional exercises

- 1. How many compositions of n are there where the i-th part is congruent to $i \pmod{2}$?
- 2. This question asks you to reverse engineer the process of finding a recurrence relation from a rational function. Suppose a sequence $\{a_n\}$ satisfies $a_0=1$, $a_1=2$, $a_2=2$, and for $n\geq 3$, $a_n=2a_{n-1}-a_{n-2}+a_{n-3}$. Find a rational function whose power series representation is $\sum_{n\geq 0}a_nx^n$.
- 3. Prove that for $n \ge 2$, the number of compositions of n with even number of even parts is equal to the number of compositions of n with odd number of even parts.
- 4. Let S be the set of all compositions of n. In class, you have learned that for $n \ge 1$, $|S| = 2^{n-1}$, which is also the number of subsets of [n-1]. Let T be the set of all subsets of [n-1]. Find a bijection between S and T, and provide its inverse. Illustrate your bijection by writing down the subset of [13] that corresponds to the composition (3,1,4,1,5) of [14].
- 5. Let a_n be the set of all compositions of n. Give a combinatorial proof that for $n \ge 1$,

$$a_n = a_{n-1} + a_{n-2} + \dots + a_1 + a_0.$$

Note: In particular, this proves that

$$2^{n-1} = 1 + \sum_{i=0}^{n-2} 2^i.$$

1