Self-Attention

自注意力机制 发表于2016年 用在了LSTM上

Shusen Wang

Self-Attention

- Self-Attention [2]: attention [1] beyond Seq2Seq models.
- The original self-attention paper uses LSTM.
- To make teaching easy, I replace LSTM by SimpleRNN.

Original paper:

- 1. Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate. In *ICLR*, 2015.
- Cheng, Dong, & Lapata. Long Short-Term Memory-Networks for Machine Reading. In EMNLP, 2016.

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

 \mathbf{c}_0

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

SimpleRNN + Self-Attention:

$$\mathbf{h_1} = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X_1} \\ \mathbf{c_0} \end{bmatrix} + \mathbf{b}\right)$$

更新状态时,直接把h0 换成了 C0

当然也可以 把 x1 c0 h0 一起concat

 \mathbf{c}_1

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{h}_2)$. 参照第9_8中的内容

计算出结果

这里可以看到 : 注意力机制是添加在编码器上的 align 中标红的 h 是和相同的状态进行比较

Weights: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{h}_3)$.

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{h}_4)$. 状态之间 算相关性权重

 $\mathbf{c}_1 \qquad \mathbf{c}_2 \qquad \mathbf{c}_3 \qquad \mathbf{c}_4 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3 + \alpha_4 \mathbf{h}_4.$

Weights: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{h}_5)$.

 $\mathbf{c_1}$ $\mathbf{c_2}$ $\mathbf{c_3}$ $\mathbf{c_4}$ $\mathbf{c_5} = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \dots + \alpha_5 \mathbf{h}_5.$

Summary

• With self-attention, RNN is less likely to forget.

Summary

- With self-attention, RNN is less likely to forget. 有了自我关注, RNN就不太可能忘记了
- Pay attention to the context relevant to the new input. 注意与新输入相关的上下文

```
The
The FBI
    FBI is
The
    FBI is chasing
The
The
    FBI is
            chasing a
The
    FBI is
            chasing a criminal
    FBI is
The
            chasing a
                       criminal on
    FBI is
             chasing a
                       criminal on the
The
                       criminal on the run
    FBI is
             chasing a
The
             chasing a
The
    FBI
                       criminal
                                on
                                   the run .
```

Figure is from the paper "Long Short-Term Memory-Networks for Machine Reading."

Thank you!