Homework 5

Jarett Smith

2023 - 11 - 06

Questions

1. In the following, we have five data points and three cluster centers:

Table 1: Points

p1	0	0	6	2	5
p2	0	6	6	2	1
p3	2	4	6	0	3
p4	1	3	7	0	6
p5	3	3	4	0	0

Table 2: Clusters

_					
c1	0	0	1	1	1
c2	0	1	1	1	0
c3	1	1	1	0	0

a. Please for each data point find the closest cluster center, based on Euclidean distance.

```
# Cluster 1
ed1<- sqrt(sum((p1-c1)^2))
# Cluster 2
ed2<- sqrt(sum((p1-c2)^2))
# Cluster 3
ed3<- sqrt(sum((p1-c3)^2))
ed1;ed2;ed3

## [1] 6.480741

## [1] 7.211103

## [1] 7.483315

# Result: Point 1 will be grouped with Cluster 1</pre>
```

```
# Cluster 1
ed1<- sqrt(sum((p2-c1)^2))
# Cluster 2
ed2<- sqrt(sum((p2-c2)^2))
# Cluster 3
ed3<- sqrt(sum((p2-c3)^2))
ed1;ed2;ed3
## [1] 7.874008
## [1] 7.211103
## [1] 7.483315
# Result: Point 2 will be grouped with Cluster 2
# Cluster 1
ed1<- sqrt(sum((p3-c1)^2))
# Cluster 2
ed2<- sqrt(sum((p3-c2)^2))
# Cluster 3
ed3<- sqrt(sum((p3-c3)^2))
ed1;ed2;ed3
## [1] 7.071068
## [1] 6.928203
## [1] 6.63325
# Result: Point 3 will be grouped with Cluster 3
# Cluster 1
ed1<- sqrt(sum((p4-c1)^2))
# Cluster 2
ed2<- sqrt(sum((p4-c2)^2))
# Cluster 3
ed3<- sqrt(sum((p4-c3)^2))
ed1;ed2;ed3
## [1] 8.485281
## [1] 8.831761
## [1] 8.717798
# Result: Point 4 will be grouped with Cluster 1
```

```
# Cluster 1
ed1<- sqrt(sum((p5-c1)^2))
# Cluster 2
ed2<- sqrt(sum((p5-c2)^2))
# Cluster 3
ed3<- sqrt(sum((p5-c3)^2))
ed1;ed2;ed3

## [1] 5.385165
## [1] 4.795832

## [1] 4.123106
# Result: Point 5 will be grouped with Cluster 3</pre>
```

b. Please for each cluster center find the associated points, based on the above results.

```
Q1<- data.frame(point = c(1,2,3,4,5), "grouped with cluster" = c(1,2,3,1,3)) kable(Q1)
```

point	grouped.with.cluster
1	1
2	2
3	3
4	1
5	3

c. Please for each cluster compute the new center, based on the above results.

```
# Cluster 1 -> Includes point 1 and point 4
newc1<- (p1+p4)/2
# Cluster 2 -> Includes point 2
newc2<- (p2)
# Cluster 3 -> Includes point 3 and point 5
newc3<- (p3+p5)/2
kable(data.frame(cluster = c(1,2,3), coordinates = unname(rbind(newc1, newc2, newc3))))</pre>
```

cluster	coordinates.1	coordinates.2	coordinates.3	coordinates.4	coordinates.5
1	0.5	1.5	6.5	1	5.5
2	0.0	6.0	6.0	2	1.0
3	2.5	3.5	5.0	0	1.5