

Functions and Algebra 5ii

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Challenge 1	

The function f is defined by

$$f(x)=rac{1}{\sqrt{x}}\,+2,\;\;x>0.$$

The function g is defined for all real values of x by

$$g(x) = 10 - (x+3)^2$$
.

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x

Part C

${\bf Range\ of}\ g$

State the range of g(x) as an inequality.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, g(x), x, y

Part D

$\ \, \hbox{Compound function of } g$

Find the value of g(g(-1)).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Inverse Quadratic Function

Subject & topics

Maths | Functions | Graph Sketching

Status

Not started

Stage & difficulty

A Level Practice 2

Figure 1 shows the graph of y=f(x), where

$$f(x)=2-x^2,\quad x\leq 0$$

Figure 1: The graph of y=f(x), for $x\leq 0$.

Part A $f^2(-3)$			
Evaluate $f^2(-3)$.			

Part B $f^{-1}(x)$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, x, y

Part C

Graph of $f^{-1}(x)$

Sketch the graph of $y=f^{-1}(x)$.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck

Function Types and Inverses

Figure 1 shows five different graphs, A, B, C, D and E, each for values of x such that $-a \le x \le a$ where a is a constant.

Figure 1: The set of five graphs, labelled A, B, C, D and E

2025, 14.11 Turicular Types and inverses — isaac Science	
Part A Function	
Which diagram does not show the graph of a function?	
A	
ОВ	
○ c	
D	
E	
Part B One-to-one Function	
Which diagram shows the graph of a function that is not one-to-one?	
A	
В	
C	
D	
E E	

Part C

Inverses

It is given that two of the diagrams illustrate functions that are inverses of each other. Identify one of these two diagrams.

- () A
- _____B
- D
- () E

Part D

Sketch

The graph in E has equation y=f(x). Sketch the graph of $y=\left|f(x)\right|$.

To prevent any sharp changes in your curve from being smoothed out, sketch your curve as two sections.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Functions and Algebra 3i

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 2	

The functions f and g are defined for all real values of x by

$$f(x)=ig|2x+aig|+3a \quad ext{ and }\quad g(x)=5x-4a,$$

where a is a positive constant.

Part A Range
Find the range of $f(x)$.
Fill in the inequality below.
Items:
$egin{array}{ c c c c c c c c c c c c c c c c c c c$
$egin{array}{cccccccccccccccccccccccccccccccccccc$

Part B
Inverse function of $f(\boldsymbol{x})$

Fill in the blanks to explain why the function f(x) has no inverse.

Items:

one-to-one

one)(many-to-many)

many-to-one

 $\left[-a\right]$

a one-to-many

2a

Part C

Inverse function of g(x)

Find an expression for $g^{-1}(x)$.

The following symbols may be useful: a, x

Part D

Solve for x

Solve for x the equation gig(f(x)ig)=31a. Give your solutions in ascending order.

$$x = [$$

$$x = |$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Modulus 3ii

Solve the inequality $\big|\,2x-5\,\big|>\big|\,x+1\,\big|.$

Construct your answer from the items below.
Items:
$\boxed{-1} \boxed{-\frac{1}{2}} \boxed{0} \boxed{\frac{1}{2}} \boxed{1} \boxed{\frac{4}{3}} \boxed{\frac{3}{2}} \boxed{2} \boxed{4} \boxed{6}$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Modulus Functions 2

Subject & topics

Maths | Functions | General Functions

Status

Not started

Stage & difficulty

A Level Practice 2 Further A Practice 1

Part A

Divergence of $y=|rac{1}{x}|$

Does the function $y = \left| \frac{1}{x} \right|$ diverge anywhere? Where?

The following symbols may be useful: x

Part B

Graph of
$$y=|rac{1}{x}|$$

Sketch the graph of $y = \left| \frac{1}{x} \right|$.

Part C

Divergence of $y = \left| rac{1}{x^2-4} \right|$

Does the function $y=\left|\dfrac{1}{x^2-4}\right|$ diverge anywhere? Where?

The following symbols may be useful: x, ±

Part D

Graph of
$$y=\left|rac{1}{x^2-4}
ight|$$

Sketch the graph of $y=\left|rac{1}{x^2-4}
ight|.$

Part E

Solve equation graphically

Solve the equation $|x|=\left|rac{1}{x}
ight|$ graphically and give the solution as a single expression.

The following symbols may be useful: x, ±

Created for isaacphysics.org for Julia Riley

Question deck:

Curve Sketching and Combined Transformations 3i

Subject & topics Maths		
Status Not started	Stage & difficulty A Level Practice 2	

The function f is defined for all real values of \boldsymbol{x} by

$$f(x) = k(x^2 + 4x)$$

where k is a positive constant. Figure 1 shows the curve with equation y=f(x).

Figure 1: The graph of y=f(x)

Part A

Transformations

Give a sequence of transformations that will transform the curve $y=x^2$ to the curve y=f(x).

Available items

Translate the curve 2 units in the negative y direction.

Stretch the curve in the \boldsymbol{x} direction by a factor of \boldsymbol{k} .

Translate the curve 4 units in the positive y direction.

Translate the curve 2 units in the positive y direction.

Translate the curve 4 units in the negative y direction.

Translate the curve 2 units in the positive x direction.

Stretch the curve in the x direction by a factor of $\frac{1}{k}$.

Translate the curve 4 units in the negative \boldsymbol{x} direction.

Translate the curve 2 units in the negative \boldsymbol{x} direction.

Stretch the curve in the y direction by a factor of $\frac{1}{k}$.

Translate the curve 4 units in the positive \boldsymbol{x} direction.

Stretch the curve in the y direction by a factor of k.

Part B

Range

Find the range of f(x) as a single inequality in terms of k.

The following symbols may be useful: <, <=, >, >=, f(x), k, x, y

Part C
Find k

It is given that there are three distinct values of x which satisfy the equation $\big|f(x)\big|=20.$

Find the value of k.

Part D Solve ig|f(x)ig|=20

Using the value of k from part C, find the three distinct values of x which satisfy the equation $\big|f(x)\big|=20$. Give any irrational values to 3 sf.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Question deck:

Combined Transformations

The function f is defined by $f(x)=\sqrt{mx+7}-4$, where $x\geqslant -\frac{7}{m}$ and m is a positive constant. Figure 1 shows the curve y=f(x).

Figure 1: The curve y=f(x)

Part A

Translation of the curve $y=\sqrt{x}$

ence of transformations maps the curve $y=\sqrt{x}$ to the curve y=f(x). Give details of these transformations.

ıble items

tch the curve in the x direction by a factor of m.

islate the curve 7 units in the negative y direction.

tch the curve in the y direction by a factor of $\frac{1}{m}$.

islate the curve 4 units in the positive y direction.

is late the curve 4 units in the negative x direction.

tch the curve in the x direction by a factor of $\frac{1}{m}$.

is late the curve 7 units in the negative x direction.

islate the curve 7 units in the positive \boldsymbol{x} direction.

is late the curve 4 units in the negative y direction.

Part B

$$f^{-1}(x)$$

Find an expression for $f^{-1}(x)$.

The following symbols may be useful: f, $\, m$, $\, x$

Part C

$\quad \text{Values of } m$

It is given that the curves y=f(x) and $y=f^{-1}(x)$ do not meet. Thus it can be deduced that neither curve meets the line y=x. Hence determine the possible values of m.

Construct your answer from the items below.

Items:

Used with permission from UCLES A-level Maths papers, 2003-2017.