

# Adatbázisok előadás 04

Fizikai adatbázisterv Adatbázisok fejlesztése





# A tervezés lépései



Logikai adatmodell



Fizikai adatmodell

Egyed – kapcsolat modell (ER-modell)



Adatbázisterv



Implementálás terve



# Logikai adatmodell



# Logikai adatmodell\* (Dvd adatbázis)



\* Barker-fél jelölésrendszer



### Fizikai adatmodell



#### Fizikai adatmodell

A fizikai adatmodell a konkrét hardver- és szoftverkörnyezetben történő implementálás tervét jelenti

- A fizikai adatmodell kötelezően tartalmazza ...
- ☐ A táblákat, kapcsolatokat, attribútumokat
- Az egyes attribútumok típusát, méretét, elsődleges és idegen kulcsokat
- ☐ A kényszereket
- + tartalmazhat minden olyan információt, amely az implementáshoz szükséges lehet (nézetek, indexek, partíciók, klaszterek, replikáció, tömörítés, titkosítás stb.)



#### **CASE-eszköz**

# Adatmodellezés esetén olyan szoftver, amely segíti a modellezés teljes folyamatát

- Tipikus funkciók
- Vizuális modellezés
- □ Adatstruktúrák tervezése
- ☐ Kódgenerálás
- ☐ Reverse engineering
- Dokumentáció
- □ Verziókezelés



### Pl: Oracle SQL Data Modeler

# A meglévő logikai modellből relációs modellt, abból pedig fizikait modellt generálni LOGIKAI > RELÁCIÓS > FIZIKAI





Fizikai modell + a Dvd tábla kódja



## Adatbázisok fejlesztése

Készen van az adatbázis, mit kell még csinálni?



# CORVINUS Fejlesztési és konfigurálási feladatok





# Adatbetöltés, adatbevitel



### Adatbetöltés, adatbevitel

Hogyan kerülhetnek adatok az adatbázisba?

- Manuális adatbevitel
- ☐ Adatok importálása
- □ Adatok migrálása
- Adatok felvitele alkalmazásból
- □ ETL-folyamat
- ☐ Batch fájl futtatása



### Nézetek



#### A nézet egy elmentett, névvel ellátott lekérdezés.

- A nézetekből ugyanúgy lehet lekérdezni, mint táblákból
- A nézetek segítségével meghatározhatjuk a megjelenítendő adatok körét
- A nézetekhez adhatunk jogosultságokat az alaptáblákhoz való jogosultságok nélkül is
- A DML-műveletek nem mindig megengedettek nézeteken keresztül



## A Nézetek előnyei

Korlátozható az adatok elérése

A bonyolultabb lekérdezések egyszerűbb formára hozhatók

Az adatokat többféle nézőpontból szemlélhetjük

Az adatfüggetlenség biztosítása



#### CORVINUS A Nézetek két fő típusa

#### Virtuális

 Csak a lekérdezés tárolódik

#### Materializált

 Az adatok is tárolásra kerülnek

# CORVINUS Nézetek – Azure Data Studio





# corvinus egyetem Nézetek – Példa

| TANULÓ   |               |            |
|----------|---------------|------------|
| Tko<br>d | Tnev          | Tszulido   |
| T01      | Kiss<br>Béla  | 1999.01.01 |
| T02      | Nagy<br>Ilona | 2003.02.12 |

| OSZTÁLYZAT |        |      |  |
|------------|--------|------|--|
| Tkod       | Tankód | Jegy |  |
| T01        | Tan01  | 5    |  |
| T01        | Tan02  | 3    |  |
| T02        | Tan01  | 4    |  |

| TANTARGY |             |  |  |
|----------|-------------|--|--|
| Tankod   | Tannév      |  |  |
| Tan01    | Algebra     |  |  |
| Tan02    | Analízis    |  |  |
| Tan03    | Programozás |  |  |

| V_OSZTALYZAT |          |      |  |  |
|--------------|----------|------|--|--|
| Tnév         | Tannév   | Jegy |  |  |
| Kiss Béla    | Algebra  | 5    |  |  |
| Kiss Béla    | Analízis | 3    |  |  |
| Nagy Ilona   | Algebra  | 4    |  |  |

```
CREATE VIEW V_OSZTALYZAT AS
SELECT t.tnev AS 'TNév',
       tt.tannev AS 'Tannév',
       o.jegy
FROM Osztalyzat o
     JOIN Tanulo t ON o.tkod = t.tkod
     JOIN Tantargy tt ON o.tankod = tt.tankod
```



# Tárolt eljárások

### SQL kód vs. Alkalmazások

Mi a hátránya annak, ha az SQL kódot beépítjük a kliens alkalmazásba?

```
In [2]: import pymssql
In [3]: conn = pymssql.connect(server='sqlgyak.database.windows.net', user='hallgato', password='Password123', database='tanulmanyi')
In [5]: cursor = conn.cursor()
        cursor.execute('SELECT * FROM Termek')
In [9]: row = cursor.fetchone()
        while row:
               print (str(row[0]) + " " + str(row[1]))
               row = cursor.fetchone()
        1 117
        2 118
        3 119
        4 120
        5 217
                                                              Tesztelés?
        6 218
        7 219
                                                              Karbantartás?
        8 220
        9 E.fsz.IV.
                                                              Server-kliens kapcsolatok száma?
        10 S.Asor.S3
                                                              SQL kód újra felhasználása?
        11 E.fsz.I
        12 116
                                                              Jogosultságok?
        13 VP 203.
        14 E.2.238
        15 E.3.332
        16 116
```



# A tárolt eljárások működése



A kép forrása: Bina Nusantara University



## Tárolt eljárás (Stored procedure)

A tárolt eljárás olyan adatbázis objektumként tárolt program, amely SQL-utasításokat is tartalmazhat.

#### A tárolt eljárások főbb jellemzői

- Input és output paramétereket, valamint különböző algoritmikus szerkezeteket is tartalmazhatnak (elágazás, ciklus)
- Az adatbázis szerveren tárolódnak
- Futtatásuk jogosultságokhoz köthető



# A tárolt eljárások előnyei

#### Hatékonyság

- Egyszerre több alkalmazás is használhatja őket
- Csökken a szerver-kliens üzenetek száma

#### Fenntarthatóság

- A kódok egy központi helyen találhatók
- A módosítás, tesztelés elkülönülhet a tárolt eljárást hívó alkalmazástól

#### Biztonság

- Használatukkal korlátozható a táblákhoz való hozzáférés
- A hozzáférés biztosítása így nem a tárolt eljárást hívó alkalmazás feladata

#### Üzleti logika elkülönítése

- Az üzleti logika elkülönül a tárolt eljárást hívó alkalmazástól
- Csökkenhet a kliens programok miatti adathibák száma



# CORVINUS Tárolt eljárások az MS SQL-ben

```
bit.uni-corvinus.hu, dvd_magyar (...
  bit.uni-corvinus.hu, diakmunka (ha...
  bit.uni-corvinus.hu, szallashely (hal...
  bit.uni-corvinus.hu, tanulmanyi (h...
 bit.uni-corvinus.hu, webshop (hall...
> Tables
> Views
> Synonyms
Programmability
    Stored Procedures
      ■ dbo.spAru
      dbo.spProduct
```

```
CREATE OR ALTER PROC spTermekRendelesek
     @termekkod NVARCHAR(255)
      AS
      BEGIN
         SELECT *
        FROM Rendeles_tetel
         WHERE TERMEKKOD = @termekkod
11
     END
```

```
CREATE PROCEDURE procedure_name
-- paraméterek megadása
AS
BEGIN
-- SQL utasítások
END
```



# Függvények



## CORVINUS Függvény (UDF-User defined function)

A (felhasználó által definiált) függvény olyan adatbázis objektum, amely végrehajt egy tevékenységet, majd annak eredményét visszaadja egy érték vagy egy tábla formájában

#### A függvények főbb jellemzői

- Input paramétereket, SQL-utasításokat, valamint különböző algoritmikus szerkezeteket is tartalmazhatnak (elágazás, ciklus)
- Az adatbázis szerveren tárolódnak
- Futtatásuk jogosultságokhoz köthető
- Felhasználhatók SQL-utasításokban, pl: SELECT utasításban



# CORVINUS Függvények vs. Tárolt eljárások

A függvények sok tekintetben a tárolt eljárásokhoz hasonló tulajdonságokkal rendelkeznek, de van közöttük néhány fontos különbség

| Függvények                           | Tárolt eljárások                            |
|--------------------------------------|---------------------------------------------|
| Csak input paraméterek               | Input és output paraméterek                 |
| Tranzakciók nem használhatók         | Tranzakciók is használhatók                 |
| A SELECT utasításban<br>használhatók | A SELECT utasításban nem használhatók       |
| Kivételkezelés nem<br>használható    | Kivételkezelés használható                  |
| Nem hívhat meg tárolt eljárást       | Függvényhívás lehetséges                    |
| Mindig egy értéket ad vissza         | Visszaadhat nulla, egy vagy<br>több értéket |



# CORVINUS Függvények az MS SQL-ben



```
CREATE FUNCTION function_name
-- paraméterek megadása
RETURNS adattípus
AS
BEGIN
-- SQL utasítások
RETURN érték
END
```



# Triggerek



Olyan speciális eljárások, amelyek bizonyos események bekövetkezéséhez köthetően automatikusan végrehajtódnak.

- Típusai:
  - DML triggerek\* adatmanipuláció esetén futnak le (pl. INSERT, DELETE)
  - DDL triggerek adatdefiníció esetén futnak le (pl. CREATE, DROP)
  - Logon triggerek bejelentkezéskor futnak le
- Alkalmazásuk:
  - Kényszerek, üzleti szabályok definiálása
  - Hivatkozási integritás biztosítása
  - Logolás, nyomkövetés

<sup>\*</sup>Csak a DML triggerekkel foglalkozunk



#### DML Triggerek létrehozása MS SQL-ben

CREATE TRIGGER triggernév

ON táblanév

FOR | AFTER | INSTEAD OF

INSERT | UPDATE | DELETE

AS

BEGIN

-- SQL utasítások

**END** 

Pl: egy oktatónak maximum 10 órája lehet



# CORVINUS EGYETEM Triggerek - példa

```
bit.uni-corvinus.hu, dvd_magyar (hallgato)
  bit.uni-corvinus.hu, diakmunka (hallgato)
  bit.uni-corvinus.hu, szallashely (hallgato)
  bit.uni-corvinus.hu, tanulmanyi (hallgato)
∨ ■ Tables
     ## dbo.Beosztasok

    ■ dbo.Napok

     dbo.Oktatok
 ∨ ⊞ dbo.Orak
   Columns Columns
   > Keys
   > Constraints
     Triggers
    > Indexes
   > Statistics
```

```
CREATE TRIGGER tg max ora
ON ORAK
INSTEAD OF INSERT
AS
BEGIN
  DECLARE @tanar int
  DECLARE @oraszam int
  DECLARE @maxoraszam int = 10
    SELECT @tanar = tanar
  FROM inserted
  SELECT @oraszam = COUNT(*)
  FROM Orak
  WHERE tanar = @tanar
  IF @oraszam >= @maxoraszam
      PRINT 'Nem lehet több órája'
  ELSE
    INSERT INTO Orak
    SELECT i.*
    FROM inserted i
END
```

Az inserted tábla tartalmazza az új vagy módosult sorok másolatát



#### Triggerek – előnyök és hátrányok

- Viszonylag egyszerű kód
- Sokoldalú felhasználás
- Meghívhatnak tárolt eljárásokat, függvényeket
- Meghívhatnak külső kódot
- Támogatják a rekurziót
- Egymásba ágyazhatók

- 😊 Performancia
- Nehézkes tesztelés és hibakeresés
- Biztonsági problémák
- A kliens alkalmazások számára nem láthatók



### Tranzakciók





#### Az átutalás két fő lépése:

- Levonni az összeget az 1. számláról
- Jóváírni az összeget a 2. számlán

Mi történhet, ha ezt a két lépést egyesével (egymás után és egymástól függetlenül) hajtjuk végre?



# CORVINUS Probléma – átutalás (folytatás)

Az átutalás folyamata megszakadhat pl. az első lépés után



A folyamat megszakadása esetén inkonzisztens adatok lehetnek az adatbázisban



## CORVINUS Probléma – átutalás (megoldás)

Kezeljük egyetlen logikai egységként az átutalás 2 fő lépését!

Számla1 Egyenleg: 250 000 Ft Változás: - 50 000 Ft Új egyenleg: 200 000 Ft Átutalás: 50 000 Ft Számla2 Egyenleg: 300 000 Ft Változás: +50 000 Ft Új egyenleg: 350 000 Ft

Számla1 Számla1 Egyenleg: 250 000 Ft Egyenleg: 250 000 Ft Változás: - 50 000 Ft Változás: -0 Ft Új egyenleg: 200 000 Ft Új egyenleg: 250 000 Ft Átutalás: 50 000 Ft Számla2 Számla2 300 000 Ft Egyenleg: Változás: Egyenleg: 300 000 Ft +0 Ft Új egyenleg: 300 000 Ft Változás: +0 Ft Új egyenleg: 300 000 Ft

Ha nem lép fel hiba, akkor az összetett lépéssorozat rendben végrehajtódik



## corvinus probléma2 – átutalás

Mi történik, ha egyszerre több átutalás indul, amely érinti valamelyik számlát?





## CORVINUS Probléma2 – átutalás (megoldás)

Korlátozni (szabályozni) kell az egyidejű hozzáférést!





A tranzakció DML-utasítások olyan sorozata, amelyet egyetlen logikai egységként kezelhetünk.

#### A tranzakció végén

- vagy minden változást érvényesítünk (COMMIT)
- vagy minden egyes lépést visszavonunk (ROLLBACK)





#### CORVINUS Tranzakció tulajdonságok - ACID



A kép forrása: https://dev.to/princessanjana1996/acid-properties-in-databases-43aa

#### **Atomicity**

Nem valósulhat meg részlegesen

#### **Consistency**

Végrehajtása után az állapot konzisztens marad (pl. kényszerek teljesülnek)

#### **Isolation**

A párhuzamosan futó tranzakciók nem zavarhatják egymást

#### **Durability**

Sikeres lefutás után a változás tartósan megmarad



#### Zárolás (lock) fogalma

A zárolás olyan eszköz, amely segítségével az adatbáziskezelő rendszer korlátozza az adatok egyidejű elérését a tranzakciók számára.

- A zárolásnak fontos szerepe van a tranzakciók izolálásában
- Amikor egy tranzakció elkezdi az adatok módosítását, akkor az érintett adatok zárolódnak, így a többi tranzakció nem tudja módosítani őket
- A zárolás megvalósulhat több szinten (pl: sor, tábla) és többféle módon (pl: kizárólagos, megosztott)



### Zárolás az MS SQL-ben

#### Fontosabb zárolható erőforrások

| Erőforrás   | Leírás                              |
|-------------|-------------------------------------|
| RID         | Egy sor                             |
| Key         | Az indextábla egy sora              |
| Page        | Egy oldal (fizikai tárolási egység) |
| Extent      | Több (8 db) oldal                   |
| Table       | Egy tábla                           |
| DB          | Az egész adatbázis                  |
| Application | Alkalmazás-specifikus erőforrások   |
| File        | Adatbázis fájl                      |
| Metadata    | Katalógus információk               |
| Object      | Adatbázis objektumok                |
| Xact        | Tranzakció erőforrásai              |

#### Zárolási módok

| Mód       | Betűjel     |
|-----------|-------------|
| Shared    | S           |
| Update    | U           |
| Exclusive | X           |
| Intent    | ľ           |
| Schema    | Sch         |
| BU        | Bulk Update |



#### Zárolási kompatibilitás az MS SQL-ben

| Existing granted mode              | IS  | S   | U   | IX  | SIX | Х  |
|------------------------------------|-----|-----|-----|-----|-----|----|
| Requested mode                     |     |     |     |     |     |    |
| Intent shared (IS)                 | Yes | Yes | Yes | Yes | Yes | No |
| Shared (S)                         | Yes | Yes | Yes | No  | No  | No |
| Update (U)                         | Yes | Yes | No  | No  | No  | No |
| Intent exclusive (IX)              | Yes | No  | No  | Yes | No  | No |
| Shared with intent exclusive (SIX) | Yes | No  | No  | No  | No  | No |
| Exclusive (X)                      | No  | No  | No  | No  | No  | No |

Meglévő zárolás esetén egy új tranzakció zárolási igénye csak akkor teljesülhet, ha az kompatibilis a meglévő zárolással. Ellenkező esetben az új tranzakciónak várakoznia kell.



#### Egyidejű (konkurens) tranzakciók kezelése

Módosítások elvesztése (lost updates) Amennyiben egy sor módosítását egyszerre végzi két tranzakció, akkor amelyik később menti el a módosítást, az felülírja az előzőleg módosított adatokat.

|    | KÉSZLET      |     |
|----|--------------|-----|
| ID | Termék       | DB  |
| 1  | Tégla        | 350 |
| 2  | Cement 50 kg | 50  |

Tranzakció1

Olvas: DB=350

Eladás: 10 DB

Módosítás: DB=340

Idő

Tranzakció2

Olvas: DB=350

Eladás: 20 DB

Módosítás: DB=330



#### Egyidejű tranzakciók kezelése (folyt.)

"Piszkos" adatok olvasása (dirty reads) Egy nem véglegesített tranzakció adatait olvassuk. Az adat azonban még változhat a tranzakció végrehajtása során.

|    | KÉSZLET      |     |
|----|--------------|-----|
| ID | Termék       | DB  |
| 1  | Tégla        | 350 |
| 2  | Cement 50 kg | 50  |





#### Egyidejű tranzakciók kezelése (folyt.)

Nem megismételhető" olvasás (non-repetable reads) Ugyanazt az adatot többször olvassuk, és mindig más eredményt kapunk, mert egy másik tranzakció közben változtatja az adatot.

|    | KÉSZLET      |     |  |
|----|--------------|-----|--|
| ID | Termék       | DB  |  |
| 1  | Tégla        | 350 |  |
| 2  | Cement 50 kg | 50  |  |





#### Egyidejű tranzakciók kezelése (folyt.)

Fantom adatok olvasása (phantom reads)
Többször megismételt olvasás közben a korábban meglévő sorok
elvesznek, vagy újak kerülne be az eredménybe, mivel egy közben egy
másik tranzakció "INSERT" vagy "DELETE" műveletet hajtott végre

|    | KÉSZLET      |     |  |
|----|--------------|-----|--|
| ID | Termék       | DB  |  |
| 1  | Tégla        | 350 |  |
| 2  | Cement 50 kg | 50  |  |







### Elkülönítési (Izolációs) szintek

Az izolációs szintek azt szabályozzák, hogy milyen módon kezeljük a konkurencia-problémákat.

Az izolációs szintek szigorúság\* szerint növekvő sorrendben

- ☐ Read uncommitted: minden adat olvasható (a nem véglegesítettek is)
- Read committed: csak a véglegesített (COMMITTED) adatok olvashatók (alapértelmezett szint)
- ☐ Repetable read: az olvasott adatot nem módosíthatja más tranzakció
- ☐ Seriazable: az olvasott adathalmazra nem engedélyezett az új adat beszúrása sem

<sup>\*</sup>A szigorúbb izolációs szint csökkenti a konkurenciából adódó problémák valószínűségét, viszont növeli a zárolások miatti várakozási időt. A szigorúbb szint mindig tartalmazza a felette lévők (kevésbé szigorú szintek) korlátozásait is.



#### Konkurencia problémák és izolációs szintek

| Levels/ Solved problems | Lost updates | Dirty reads | Nonrepeatable<br>reads | Phantom reads |
|-------------------------|--------------|-------------|------------------------|---------------|
| Read uncommitted        | +            | -           | -                      | -             |
| Read committed          | +            | +           | -                      | _             |
| Repeatable Read         | +            | +           | +                      | -             |
| Serializable            | +            | +           | +                      | +             |



#### CORVINUS SQL SERVER tranzakciós módok EGYETEM

#### Autocommit tranzakciók:

Minden utasítás egy külön tranzakció (alapértelmezett), láthatatlan BEGIN TRANSACTION utasítással (ld. később)

#### Explicit tranzakciók:

- Mi magunk definiáljuk a BEGIN TRANSACTION utasítással (ld. később).
- Az explicit tranzakciók egymásba is ágyazhatók. Ilyenkor a @@TRANCOUNT változó mondja meg, hogy hányadik szinten vagyunk\*
- Kezdetben, illetve ROLLBACK után a @ @TRANCOUNT értéke 0
- Minden BEGIN TRANSACTION 1-gyel növeli, minden COMMIT 1-gyel csökkenti a @@TRANCOUNT értékét

<sup>\*</sup> A @ @TRANCOUNT jelentése nem beágyazott tranzakció esetén: adott session-ban futó, nyitott tranzakciók száma. A nyitott tranzakciók megtekinthetők pl: a DBCC OPENTRAN parancs segítségével



#### SQL Server tranzakciós módok (folyt)

#### Implicit tranzakciók:

- Ha @ @TRANCOUNT = 0, akkor a legelső tranzakciót kiváltó utasítás hatására (ld. Köv. dia) elindul egy új tranzakció, így a @ @TRANCOUNT értéke 1 lesz
- Ha @@TRANCOUNT > 0, akkor már nem indul el láthatatlan BEGIN TRANSACTION
- Az implicit tranzakció befejeződik, ha @@TRANCOUNT 0 lesz (pl. COMMIT vagy ROLLBACK hatására – ezt nekünk kell kiadni)
- Az implicit tranzakciós mód az SQL server-en a SET IMPLICIT\_ TRANSACTIONS ON utasítással aktiváltható



## CORVINUS EGYETEM Tranzakciót kiváltó SQL-utasítások

SELECT (ha táblát is CREATE **INSERT UPDATE** érint) DROP TRUNCATE ALTER DELETE **TABLE** TABLE **FETCH MERGE** REVOKE **GRANT** 

#### Explicit tranzakciók megvalósítása SQL-ben

```
SELECT COUNT(*) --16
FROM Termek
BEGIN TRANSACTION t1
INSERT INTO Termek VALUES(20, 'Húszas terem')
SAVE TRANSACTION s1
INSERT INTO Termek VALUES(30, 'Harmincas terem')
ROLLBACK TRANSACTION s1
SELECT COUNT(*) --17
FROM Termek
INSERT INTO Termek VALUES(30, 'Harmincas terem')
COMMIT
SELECT COUNT(*) --18
FROM Termek
```

## CORVINUS Implicit tranzakciók megvalósítása SQL-ben

```
SET IMPLICIT TRANSACTIONS ON
SELECT COUNT(*) --16
FROM Termek
INSERT INTO Termek VALUES(20, 'Húszas terem')
ROLLBACK
SELECT COUNT(*) --16
FROM Termek
INSERT INTO Termek VALUES(20, 'Húszas terem')
COMMIT
SELECT COUNT(*) --17
FROM Termek
```



## Jogosultságok



#### Jogosultságokkal kapcsolatos fogalmak

- Azokat az felhasználói fiókokat, amelyekkel a felhasználók hozzáférhetnek az SQL-szerverhez, LOGIN-oknak nevezzük
- Azokat az identitásokat, akik számára jogosultságok megadhatók,
   SECURITY PRINCIPAL-oknak ("biztonsági résztvevő") nevezzük, pl: felhasználó, szerepkör akik kapják a jogosultságokat
- Azokat az objektumokat, amelyekhez a jogosultságok rendelhetők,
   SECURABLE-knek ("biztosítandó") nevezzük, pl: szerver, adatbázis amihez jogok rendelhetők
- Azokat a rekordokat, amelyek az SQL-szerveren kívüli erőforrásokhoz való csatlakozáshoz szükséges hitelesítési információkat tartalmazzák,
   CREDENTIAL-oknak ("meghatalmazás") nevezzük. Egy ilyen rekord általában nevet és jelszót tartalmaz.



## CORVINUS Jogosultságok adása, visszavonása és EGYETEM megtagadás (SQL-szerver)

#### AUTHORIZATION PERMISSION ON SECURABLE TO PRINCIPAL;

- AUTHORIZATION (engedély) lehet GRANT, REVOKE és DENY (jog adása, visszavonása és megtagadása)
- PERMISSION (a konkrét jogosultság), több, mint 200 féle, pl: SELECT, EXECUTE, UPDATE
- SECURABLE lehet szerver, szerver objektum, adatbázis, adatbázis objektum
- PRINCIPAL lehet LOGIN, felhasználó vagy szerepkör

PI: GRANT UPDATE ON OBJECT::Product TO Ted; (UPDATE jog adása Ted felhasználó számára a Product táblához)



#### Jogosultságok (SQL-szerver)

# Az SQL-szerver jogosultságok megadhatók

- Szerver szinten –
   Login-ok és szerver szerepkörök által
   (logins, server roles)
- Adatbázis szinten –
   Adatbázis felhasználók és adatbázis szerepkörök által (database users, database roles)





## Szerver-szintű szerepkörök

| Jogosultság   | Rövid leírás                                                                                                                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sysadmin      | Teljes joggal rendelkezik a szerveren                                                                                                                    |
| Serveradmin   | Módosíthatja a szerver konfigurációt                                                                                                                     |
| Securityadmin | Szerver-szintű jogosultságokat kezelhet. Ha van<br>hozzáférése adatbázisokhoz, akkor ott adatbázis-szintű<br>jogokat is adhat vagy megtagadhat, elvehet. |
| Processadmin  | Leállíthatja a futó folyamatokat (processzeket)                                                                                                          |
| Setupadmin    | Linked szervereket adhat hozzá, vagy törölhet                                                                                                            |
| Diskadmin     | A lemezen lévő adatbázis-fájlokat menedzselheti                                                                                                          |
| Dbcreator     | Adatbázisokat hozhat létre, módosíthat, törölhet                                                                                                         |
| Public        | Alapértelmezett jog                                                                                                                                      |



## Adatbázis-szintű szerepkörök

| Jogosultság       | Rövid leírás                                                                   |
|-------------------|--------------------------------------------------------------------------------|
| Db_owner          | (Majdnem) teljes joggal rendelkezik az adatbázison                             |
| Db_securityadmin  | Módosíthatja az egyedi szerepkörök (custom role)<br>tagságát és jogosultságait |
| Db_accessadmin    | Az adatbázis elérését engedélyezheti vagy visszavonhatja a LOGIN-ok számára    |
| Db_backupoperator | Biztonsági mentést készíthet az adatbázisról                                   |
| Db_ddladmin       | Tetszőleges DDL parancsot kiadhat                                              |
| Db_datawriter     | Módosíthatja a felhasználói táblákat                                           |
| Db_datareader     | Olvashatja a felhasználói táblákat                                             |
| Db_denydatawriter | Nem módosíthatja a felhasználói tábákat                                        |
| Db_denydatareader | Nem olvashatja a felhasználói táblákat                                         |



#### Adatbázis-szintű szerepkörök

DATABASE LEVEL ROLES AND PERMISSIONS: 11 fixed database roles, 77 database permissions





#### CORVINUS Tábla jellegű objektumok jellemző jogosultságai

(táblák, nézetek, tábla-értékű függvények)

| Jogosultság | Elvégezhető művelet (korlátozható oszlopokra is) |
|-------------|--------------------------------------------------|
| SELECT      | olvasás táblázatból, nézetből                    |
| INSERT      | adatbevitel táblázatba, nézetbe                  |
| DELETE      | Sor(ok) törlése táblázatból, nézetből            |
| UPDATE      | adatok módosítása táblázatban, nézetben          |
| REFERENCES  | idegen kulccsal való hivatkozás táblázatra       |
| ALL         | minden művelet                                   |



#### Jogosultság-hierarchia





## CORVINUS Jogosultságok lekérdezése – szerver-szinten

```
USE master
-- szerver-szinten
SELECT pr.principal_id,
   pr.name, pr.type_desc,
       pe.state desc,
   pe.permission_name
FROM sys.server_principals AS pr
JOIN sys.server_permissions AS pe
ON pe.grantee_principal_id = pr.principal_id
```

|    | principal_id | name                                    | type_desc                | state_desc | permission_name     |
|----|--------------|-----------------------------------------|--------------------------|------------|---------------------|
| 1  | 1            | sa                                      | SQL_LOGIN                | GRANT      | CONNECT SQL         |
| 2  | 2            | public                                  | SERVER_ROLE              | GRANT      | VIEW ANY DATABASE   |
| 3  | 101          | ##MS_SQLResourceSigningCertificate##    | CERTIFICATE_MAPPED_LOGIN | GRANT      | VIEW ANY DEFINITION |
| 4  | 102          | ##MS_SQLReplicationSigningCertificate## | CERTIFICATE_MAPPED_LOGIN | GRANT      | AUTHENTICATE SERVER |
| 5  | 102          | ##MS_SQLReplicationSigningCertificate## | CERTIFICATE_MAPPED_LOGIN | GRANT      | VIEW ANY DEFINITION |
| 6  | 102          | ##MS_SQLReplicationSigningCertificate## | CERTIFICATE_MAPPED_LOGIN | GRANT      | VIEW SERVER STATE   |
| 7  | 103          | ##MS_SQLAuthenticatorCertificate##      | CERTIFICATE_MAPPED_LOGIN | GRANT      | AUTHENTICATE SERVER |
| 8  | 105          | ##MS_PolicySigningCertificate##         | CERTIFICATE_MAPPED_LOGIN | GRANT      | CONTROL SERVER      |
| 9  | 105          | ##MS_PolicySigningCertificate##         | CERTIFICATE_MAPPED_LOGIN | GRANT      | VIEW ANY DEFINITION |
| 10 | 106          | ##MS_SmoExtendedSigningCertificate##    | CERTIFICATE_MAPPED_LOGIN | GRANT      | VIEW ANY DEFINITION |
| 11 | 257          | ##MS_PolicyTsqlExecutionLogin##         | SQL_LOGIN                | GRANT      | CONNECT SQL         |
| 12 | 257          | ##MS_PolicyTsalExecutionLoain##         | SOL LOGIN                | GRANT      | VIEW ANY DEFINITION |

## CORVINUS Jogosultságok lekérdezése – adatbázis-szinten

```
USE master
--adatbázis-szinten
```

```
SELECT DISTINCT pr.principal id, pr.name, pr.type desc,
    pr.authentication_type_desc, pe.state_desc,
pe.permission name
FROM sys.database_principals AS pr
JOIN sys.database permissions AS pe
    ON pe.grantee_principal_id = pr.principal_id;
```

|    | principal_id | name                              | type_desc               | authentication_type_desc | state_desc | permission_name            |
|----|--------------|-----------------------------------|-------------------------|--------------------------|------------|----------------------------|
| 1  | 0            | public                            | DATABASE_ROLE           | NONE                     | GRANT      | EXECUTE                    |
| 2  | 0            | public                            | DATABASE_ROLE           | NONE                     | GRANT      | SELECT                     |
| 3  | 0            | public                            | DATABASE_ROLE           | NONE                     | GRANT      | VIEW ANY COLUMN ENCRYPTION |
| 4  | 0            | public                            | DATABASE_ROLE           | NONE                     | GRANT      | VIEW ANY COLUMN MASTER KEY |
| 5  | 1            | dbo                               | SQL_USER                | INSTANCE                 | GRANT      | CONNECT                    |
| 6  | 2            | guest                             | SQL_USER                | NONE                     | GRANT      | CONNECT                    |
| 7  | 5            | ##MS_PolicyEventProcessingLogin## | SQL_USER                | INSTANCE                 | GRANT      | CONNECT                    |
| 8  | 5            | ##MS_PolicyEventProcessingLogin## | SQL_USER                | INSTANCE                 | GRANT      | EXECUTE                    |
| 9  | 6            | ##MS_AgentSigningCertificate##    | CERTIFICATE_MAPPED_USER | NONE                     | GRANT      | CONNECT                    |
| 10 | 6            | ##MS_AgentSigningCertificate##    | CERTIFICATE MAPPED USER | NONE                     | GRANT      | EXECUTE                    |



# Köszönöm a figyelmet!