

Rethinking College Admissions: Can Test-Optional Policies Even the Playing Field?

Zijin Zhang, Yao Cui, and Stefanus Jasin

MOTIVATION

- Selective U.S. colleges reinstate standardized testing, e.g., Harvard, Yale, etc.
- However, over 80% of colleges remain testoptional for 2025 admissions
- There are heated debates around:
 - Do SAT and ACT help schools better predict academic success and make informed admission decisions?
 - Are these tests unfair to students from socioeconomically disadvantaged backgrounds?

RESEARCH QUESTION

How do test-optional (TO) policies affect academic merit and socioeconomic representation in college admissions, compared to test-required (TR) policies?

School announces testing policy ∈ {test-required, test-optional}

Students **strategically choose** whether to take and report standardized test scores

School forms **Bayesian beliefs** about student ability and make admission decisions accordingly

MODEL & INSIGHTS

Perfect Bayesian Equilibrium:
students take the test if
latent ability ≥ SES-specific
threshold

[Insight 1] A larger share of **middle-class** students is disadvantaged under TO due to two forces:

- pool expansion of low-ability students
- signal enhancement of high scores

[Insight 2] TO can raise academic merit depending on target demographic; TO can reduce low-income representation when school already favors them

[Insight 3] As societal pressure increases for schools to admit more low-SES students, TO results in lower merit but TR yields win-win

EMPIRICAL FINDINGS

	Completion Rate		Log(Avg Family Income)	
	(1)	(2)	(3)	(4)
TestOptional	-0.017***	-0.014	-0.018***	-0.018
	(0.003)	(0.014)	(0.005)	(0.015)
$TestOptional \times TargetLow$		-0.030**		-0.031**
		(0.013)		(0.014)
$TestOptional \times TargetMid$		0.017**		0.005
		(0.009)		(0.010)
$TestOptional \times TargetHigh$		-0.000		0.038***
		(0.014)		(0.014)
Log(Undergraduate Enrollment)	-0.006	-0.007	-0.015**	-0.014**
	(0.005)	(0.005)	(0.007)	(0.006)
Percentage of Science, Liberal & Arts Degrees	-0.011	-0.028	0.017	$0.015^{'}$
	(0.022)	(0.024)	(0.023)	(0.023)
Log(Avg Faculty Salary)	$0.010^{'}$	0.009	0.069***	0.067***
	(0.008)	(0.009)	(0.011)	(0.011)
Institution FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
N	30,952	30,262	34,163	34,070
Adjusted R^2	0.812	0.819	0.949	0.949

Test-Optional (TO) Policy Effects

	academic merit	socioeconomic representation
schools targeting low-income	decrease	improve
schools targeting middle-income	increase	
schools targeting high-income		worsen

"The poor to get poorer, the rich to get richer"

CONTRIBUTION

- 1. We challenge common beliefs about test-optional admissions: TO does not always improve access for disadvantaged groups by sacrificing merit
- 2. We offer a unifying framework explaining when and why test-optional policies lead to varying outcomes
- 3. We test model predictions with data from 3,701 U.S. colleges during 2000-2019