Contents

5. Polytropic processesAn example (compares processes)

Objectives:

Follows last lectures discussion of constant volume/ temperature/ pressure processes. Feeds into **Non-Flow Energy Eqn**

Applications:

Processes listed here apply to engine cycles (Topic 5)

Topic III - Energy Balances

Polytropic Processes (Lecture 2/4)

5 Polytropic Processes

By observation:

$$pV^n = constant ... = p_1 V_1^n = p_2 V_2^n$$
 (5)

Term n is an index of expansion or compression

- Constant pressure, n = 0
- Constant volume, n = infinity
- Constant temperature, n = 1
- Frictionless and adiabatic, n→γ=c_p/c_v
 (Lecture 4.4)

Slope of path

$$\frac{dp}{dV} = -\frac{n \operatorname{const} V^{-n}}{V} = -\frac{n p}{V} \tag{6}$$

Plot of p-versus-V

If p V ⁿ = constant, and we add the ideal gas law pV = m R T

<u>Also</u>

p
$$V^n = (pV) V^{n-1} = (mRT) V^{n-1} = constant$$

T $V^{n-1} = constant$
Also p = constant T $^{n/(n-1)}$

Topic III - Energy Balances

Polytropic Processes (Lecture 2/4)

5 Polytropic Processes

Note that in writing

no gas laws are used. Can integrate p w.r.t. V to get work.

$$W_b = \frac{p_2 V_2 - p_1 V_1}{n - 1} = \frac{mR(T_2 - T_1)}{n - 1}$$
 (7)

Isothermal case, n = 1 is a special case: both the denominator and numerator are zero. Redo integration, referring back to last week.

Topic III - Energy Balances

Polytropic Processes (Lecture 2/4)

<u>Proof</u>

Rewrite (5) as
$$p = CV^{-n}$$
 (6)

$$W_b = -\int_{1}^{2} p \, dV = -\int_{1}^{2} CV^{-n} \, dV \dots$$

$$= -\frac{\left[C V^{-n+1}\right]_{1}^{2}}{1-n} = \frac{\left[(CV^{-n})V\right]_{1}^{2}}{n-1}$$

Term in [] is p = C V⁻ⁿ . pV = m RT gives final part of Eqn (6)

$$W_b = \frac{p_2 V_2 - p_1 V_1}{n-1} = \frac{mR(T_2 - T_1)}{n-1}$$
 Q.E.D.

5a Isentropic Expansion

... frictionless and adiabatic, one can show

$$pV^{\gamma} = const$$
 ; $\gamma = \frac{c_p}{c_v}$ (topic notes)

Example: Consider a piston-cylinder for which the start conditions are $V_1 = 250$ cm³, $p_1 = 6$ bar and the end volume is $V_2 = 1000$ cm³. What is the boundary work for (a) constant pressure expansion (b) isothermal expansion (c) polytropic expansion (n = 1.3)? (See notes for solution)

Conclusions:

Remember form, p V n = constant Can integrate –p dV to get work Thereupon, Q = ΔU – W Limits

> n = 0; constant pressure n = infinity: constant volume n = 1: constant temperature n $\rightarrow \gamma = c_p/c_v = 1.4$ (air): isentropic

(Lecture 4.4 deals more with isentropic processes)