Multi-Tier Drone Architecture for 5G/B5G Celullar Networks: Challenges, Trends, and Prospects

Silvia Sekander, Hina Tabassum, and Ekram Hossain (University of Manitoba)

Presented by Jan H. Dahlhues, Daniel S. Zakamulin (KTH Royal Institute of Technology) – equal contribution

Definition: Multi-Tier drone architectures are aerial systems consisting of multiple layers or types of drones

Prospects of (Multi-Tier) Drone Architectures

- Operations in dangerous environments
- Assisting overloaded / damaged base stations (BSs)
- **Replacing BSs** to reduce power consumption (low number of users)
- Flexibility: on demand services to meet QoS requirements by
 - Easy relocation
 - Adjustable height

Challenges of Multi-Tier Drone Architectures

- Different size, weight and power (SWAP) constraints impact operational altitude, coverage, computation and endurance capabilities
- Low Altitude Platforms (LAPs, small drones)
 - Increase signal strength by reducing path loss
 - Low endurance, payload, autonomy, coverage, costs
- High Altitude Platforms (HAPs, big drones)
 - Increase coverage and power (higher load)
 - High endurance, payload, autonomy, coverage, costs

Research Questions:

- I. Does a drone deployment benefit terrestrial networks?
- II. What is the impact of different configurations?
- III. In what scenarios can multi-tier systems improve networks?

System Model

 $h_k \triangleq altitude \ of \ drone \ k$

 $N_0 \triangleq noise power$

 $d \triangleq dist.between user and BS$

 $\eta_{\epsilon} \triangleq \text{env. loss variables with}$ $\epsilon \in \{LoS, NLoS\}$

 $r_i = \sqrt{(x_D - x_i)^2 + (y_D - y_i)^2}$

 $a, b \triangleq \text{env. LoS prob. variables}$

≜ horizontal dist. between user and drone

Path Loss Model

$$PL_{\epsilon} = FPSL + \eta_{\epsilon}$$
 Air-to-Ground (AtG) free space path loss
based on Friis equation and the environment (simulation parameters!)

LoS probability: (given by ITU-R)
$$P_{\text{LoS}}(h_k, r_i) = \left(1 + a \exp\left(-b\left(\arctan\left(\frac{h_k}{r_i}\right) - a\right)\right)\right)^{-1}$$

Path loss (expression): —

Distance component

- $L(h_k, r_i) = 20 \log \left(\sqrt{h_k^2 + r_i^2} \right) + AP_{LoS}(h_k, r_i) + B,$
- <u>Decreases</u> with A and LoS probability
- $A = \eta_{\text{LoS}} \eta_{\text{NLoS}}, B = 20 \log \left(\frac{4 \pi f_c}{c} \right) + \eta_{\text{NLoS}},$
- B is constant path loss based on carrier and non-LoS components

Spectral Efficiency (SE)

$$SINR = \frac{P_k L(h_k, r_i)}{N_0 + \sum_{j \in \Phi_t, j \neq j} P_t L(i, j) + \sum_{l \in \Phi_l, l \neq k} P_l L_k(h_{l,r})}$$

With **Shnannon**: $SE_i = \log_2(1 + SINR)$

Simulation Parameters

System parameter		Value	Noise power (N ₀)	10 ⁻¹⁷ W/Hz
		$(a, b, \eta_{LoS}, \eta_{NLoS})$	Intensity of terrestrial BSs (λ_t)	20
	Dense urban	(12.08, 0.11, 1.6, 23)	Intensity of drones (λ)	10
Environment	Suburban	(4.88, 0.43, 0.1, 21)	Altitude of big drones (h_m)	3000 m
	High-rise urban	(27.23, 0.08, 2.3, 34)	Altitude of small drones (h_s)	150 m
Carrier frequency (f_c)		2.5 GHz	Power of big drones (P _m)	40 W
Speed of light (c)		3 × 10 ⁸ m/s	Power of small drones (P_s)	5 W
Path-loss exponent (α)		4	Power of terrestrial BSs (P_t)	2 W

Spectral Efficiency: Multi-Tier vs. Single-Tier Drones

- → High complexity of efficient deployment
- → For both environments at least 2x increase of SE/ user for all altitudes

Spectral Efficiency: Multi-Tier Drone-Assisted Terrestrial Cellular Networks

- For high number of users SE can be enhanced immensely
- Highly complex system design choices (specific drone types and ratio) due to different environments and scenarios

Conclusions

- Multi-tier drone architectures **improve performance** in comparison to
 - Homogenous systems: under any circumstances
 - Terrestrial-only systems: for high number of users
- High complexity in optimal deployment depending on environment
- Requires high level of flexibility to improve service efficiently
- Future directions:
 - Investigation of heterogenous systems (more than 2 types)
 - Realistic air-to-ground channel modelling
 - Drone sharing among providers / third parties
 - Introduction of IoT applications