Methodology, Ethics and Practice of Data Privacy Course Exercise #2

May 2021

1 Concept of DP(15')

1.1

Prove that the Laplace mechanism preserves $(\epsilon, 0)$ -DP.

1.2

Please explain the difference between $(\epsilon, 0)$ -DP and (ϵ, δ) -DP. Typically, what range of δ we're interested in? Explain the reason.

1.3

Please explain the difference between DP and Local DP.

2 Basics of DP(30')

ID	Sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
2000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 1 is the database records scores of students in School A in the final exam. We need to help teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{Male, Female\} \times \{Male, Female\}$

 $\{0,1,2,...,100\}^6$. In this question, assume that two inputs X and Y are neighbouring inputs if X can be obtained from Y by removing or adding one element. Answer the following questions.

2.1

What is the sensitivity of the following queries:

- (1) $q_1 = \frac{1}{2000} \sum_{ID=1}^{2000} Mathematics_{ID}$
- (2) $q_2 = max_{ID \in [1,2000]} English_{ID}$

2.2

Design ϵ -differential privacy mechanisms corresponding to the two queries in 2.1 where $\epsilon = 0.1$. (Using Laplace mechanism for q_1 , Exponential mechanism for q_2 .)

2.3

Let $M_1, M_2, ..., M_{100}$ be 100 Gaussian mechanisms that satisfy (ϵ_0, δ_0) -DP, respectively, with respect to the database. Given $(\epsilon, \delta) = (1.25, 10^{-5})$, calculate σ for every query with the composition theorem (Theorem 3.16 in the textbook) and the advanced composition theorem (Theorem 3.20 in the textbook, choose $\delta' = \delta$) such that the total query satisfies (ϵ, δ) - DP.

3 Local DP(30')

This question focuses on the problem of estimating the mean value of a numeric attributes by collecting data from individuals under ϵ -LDP. Assume that each user u_i 's data record t_i contains a single numeric attribute whose value lies in range [-1,1]. Answer the following questions.

3.1

Prove that Algorithm 1 satisfies ϵ -LDP.

3.2

Prove that given an input value t_i , Algorithm 1 returns a noisy value t_i^* with $\mathbb{E}[t_i^*] = t_i$ and $Var[t_i^*] = \frac{t_i^2}{e^{\epsilon/2} - 1} + \frac{e^{\epsilon/2} + 3}{3(e^{\epsilon/2} - 1)^2}$.

Algorithm 1

```
Input: tuple t_i \in [-1, 1] and privacy parameter \epsilon.

Output: tuple t_i^* \in [-C, C];

1: Sample x uniformly at random from [0,1];

2: C = \frac{exp(\epsilon/2)+1}{exp(\epsilon/2)-1};

3: l(t_i) = \frac{C+1}{2} \cdot t_i - \frac{C-1}{2};

4: r(t_i) = l(t_i) + C - 1;

5: if x < \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1} then

6: Sample t_i^* uniformly at random from [l(t_i), r(t_i)];

7: else

8: Sample t_i^* uniformly at random from [-C, l(t_i)] \cup [r(t_i), C];

9: end if

10: return t_i^*;
```

4 Random Subsampling(25')

Given a dataset $x \in \mathcal{X}^n$, and $m \in \{0, 1, ..., n\}$, a random m-sumsample of x is a new (random) dataset $x' \in \mathcal{X}^m$ formed by keeping a random subset of m rows from x and throwing out the remaining n - m rows.

4.1

Show that for every $n \in \mathbb{N}$, $\mathcal{X} \geq 2$, $m \in \{1,...,n\}$, $\epsilon > 0$ and $\delta < m/n$, the mechanism M(x) that outputs a random m-subsample of $x \in \mathcal{X}^n$ is not (ϵ, δ) -DP.

4.2

Although random subsamples do not ensure differential privacy on their own, a random subsample dose have the effect of "amplifying" differential privacy. Let $M: \mathcal{X}^m \to \mathcal{R}$ be any algorithm. We define the algorithm $M': \mathcal{X}^n \to \mathcal{R}$ as follows: choose x' to be a random m-subsample of x, then output M(x').

Prove that if M is (ϵ, δ) -DP, then M' is $((e^{\epsilon} - 1) \cdot m/n, \delta m/n)$ -DP. Thus, if we have an algorithm with the relatively weak guarantee of 1-DP, we can get an algorithm with ϵ -DP by using a random subsample of a database that is larger by a factor of $1/(e^{\epsilon} - 1) = O(1/\epsilon)$.