Wednesday, 19 January 2022 09:11

> Struktura současných procesorů (x86/64). Techniky optimalizace provádění instrukcí, snižování spotřeby. Rozšířené instrukční sady.

• CPU

- o architektury:
 - i. CISC (Complete Instruction Set Computing)
 - □ ve většina PC
 - □ plná instrukční sada
 - instrukce v mikrokódu a paměti CPU
 - □ pomalejší, jednodušší
 - □ x86
 - ii. RISC (Reduced Instruction Set Computing)
 - □ jen pár základních instrukcí
 - □ instrukce realizovány obvodově
 - □ práce s pamětí pouze pomocí Load a Store
 - □ ostatní instrukce vyhodnoceny v registrech
 - □ ARM
- o řadič
 - aktivní část procesoru
 - zahajuje a řídí všechny procesy
 - pořadí instrukcí, dekódování instrukcí, vysílání signálů
- o ALU
 - aritmeticko-logická jednotka
 - matematické a logické operace s daty
 - řízena řadičem
- registry
 - paměti SRAM
 - uvnitř jádra
 - zachovávání adres, aktuálních instrukcí, operandů, (mezi)výsledků
- optimalizace provádění instrukcí
 - o techniky zvýšení výkonu:
 - i. zvýšení počtu tranzistorů
 - ii. zvýšení taktovacích frekvencí
 - iii. snížení šířky spojů
 - o rozšíření bitové šířky zpracovávaných dat
 - bitová šířka
 - □ počet bitů, které cpu dokážou v jedné instrukci zpracovat
 - o zvýšení počtu pracovních registrů
 - registry jsou nejrychlejší úroveň paměti
 - o fronta instrukcí
 - o pipelining (zřetězené provádění instrukcí)
 - současné zpracování většího množství instrukcí
 - každá instrukce se nachází v jiné fázi zpracování
 - současně 14 etap
 - o VLIW (Very Long Instruction Word)
 - explicitní paralelní zpracování instrukcí
 - ALU umístěny paralelně vedle sebe
 - možnost vykonávat operace současně
 - speciální formát operačních kódů
 - u v jedné instrukci uloženy operační kódy pro všechny ALU
 - o superskalární architektura
 - v jednom taktu více než jedna instrukce
 - např. dvě ALU, dvě jednotky pro adresaci, dvě jednotky pro provádění skoků
 - SMT/hyper-threading
 - spouštění více nezávislých vláken
 - o prediktory skoků
 - 1/2bit
 - odhadování provedení skoku
 - o SIMD (Single Instruction Multiple Data)
 - jedna instrukce může zpracovat větší množství dat
- snižování spotřeby
 - o snížení hluku, spotřeby, provozní teploty
 - o ovlivněno softwarem, množstvím běžících úloh, podsvícením
 - o ACPI (Advanced Configuration and Power Interface)
 - řízení spotřeby pomocí OS bez BIOSu
 - ASL
 - □ jazyk umožňující programovat obsluhu událostí
 - o CPU
 - vliv výrobní technologie a efektivity výpočtů
 - možnosti snížení spotřeby:
 - 1) snížení napájecího napětí
 - 2) snížení frekvence 3) zmenšení datové šířky
- rozšířené instrukční sady
 - skupiny instrukcí rozšiřující instrukční sadu dané architektury cpu
 - o lze rozdělit podle cílové architektury (RISC, CISC)
 - a. SIMD (Single Instruction Multiple Data)
 - jedna instrukce může zpracovat větší množství dat
 - b. MMX (Multi Media Extension)

 - Intel audio, video kodeky, 2D a 3D grafické operace
 - pouze integer
 - c. 3DNow!
 - AMD
 - i plovoucí řádová čárka
 - všechny datové typy MMX + 64bit skalární hodnoty

Harvardská architektura

- možnost do 64bit reg uložit dvě 32bit čísla d. SSE
 Intel
 8 nových 128b reg, rozděleno dál do 4 32bit