An overview of deep learning methods for genomics

Matthew Ploenzke

BST261 Harvard University

May 7, 2018

Snapshot

- 1. Case study #1: Discriminative learning
 - Overview of ChIP-seq
 - Model formulation
 - Architecture variants
 - Model interpretations
 - Example
- 2. Case study #2: Generative learning
 - Review of GANs and VAEs
 - Overview of scRNA-seq
 - Model interpretations

Problem Formulation: The Epigenome

Problem Formulation: ChIP-seq

- Chromatin Immunoprecipitation Sequencing (ChIP-seq) technology used to crosslink and sequence segments of the genome bound by protein/transcription factor (TF)
- Output from an experiment is a long list of nucleotide sequences
- ► Computational tools (e.g. MACS¹) may then be used to call peaks (i.e. predicted binding sites defined by high count locations)

How do these regions vary between cell type? Condition?

¹Zhang, Yong, et al. "Model-based analysis of ChIP-Seq (MACS)." Genome biology 9.9 (2008): R137.

Problem Formulation: The Model

Problem Formulation: The Model

Problem Formulation: Notation

Consider observations $X_i \in [A, C, G, T]^P$ for i = 1, ..., N with corresponding labels $Y_i \in \{0, 1\}^K$. Taken together, X is a $N \times P$ matrix and Y is a $N \times K$ matrix.

We wish to learn a function $\mathcal{G}(\cdot)$ mapping $X \to Y$ through empirical risk minimization. For example, the logistic loss function under K=1:

$$\min_{\omega}(R_{\mathcal{G}}) = \min_{\omega} \left(-Y \left[\log \left(\frac{1}{1 + e^{-\mathcal{G}_{\omega}(X)}} \right) \right] - (1 - Y) \left[\log \left(\frac{e^{-\mathcal{G}_{\omega}(X)}}{1 + e^{-\mathcal{G}_{\omega}(X)}} \right) \right] \right)$$

As long as $R_{\mathcal{G}}$ is differentiable we may use the chain rule (backpropagation) to calculate the derivative and perform gradient descent to update parameter values ω and in turn minimize empirical risk. Penalties (e.g. L1) may simply be tacked on the loss.

7

Problem Formulation: Notation

We consider $\mathcal{G}(\cdot)$ to be composed of M compositional functions (*layers*) such that:

$$\mathcal{G}(S_i) = g_M(g_{M-1}(\dots(g_2(g_1(S_i))))$$

and require $g_1(S_i)$ to be a convolutional layer such that for convolutional filter f of length I_f at sequence position index J:

$$g_1^f(S_{i,J}) = \sum_{j=J}^{J+I_f} \sum_{n \in \{A,C,G,T\}} \omega_{1,j,n}^f \mathbb{1}_{S_{i,j}=n}$$

8

Problem Formulation: Visualization

For example, our CNN may look like this:

We then train our model for several epochs and obtain model weights from the iteration with lowest test set accuracy.

Model Architectures in Genomics

- ▶ DeepSEA²
- ► DeepBind ³
- ▶ Basset ⁴

²Zhou, Jian, and Olga G. Troyanskaya. "Predicting effects of noncoding variants with deep learningbased sequence model." Nature methods 12.10 (2015): 931.

³Alipanahi, Babak, et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." Nature biotechnology 33.8 (2015): 831.

⁴Kelley, David R., Jasper Snoek, and John L. Rinn. "Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks." Genome research 26.7 (2016): 990-999.

Model Architectures in Genomics

- ▶ DanQ ⁵
- Separable fully connected layers ⁶
- ▶ Reverse complement parameter sharing ⁷

⁵Quang, Daniel, and Xiaohui Xie. "DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences." Nucleic acids research 44.11 (2016): e107-e107.

⁶Alexandari, A. M., Shrikumar, A., & Kundaje, A. (2017). Separable Fully Connected Layers Improve Deep Learning Models For Genomics. BioRxiv, 146431. https://doi.org/10.1101/146431

⁷Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Reverse-complement parameter sharing improves deep learning models for genomics. BioRxiv, 103663. https://doi.org/10.1101/103663

Model Interpretation: Overview

Understanding model rationale is an active field of research.

What has my black box learned?

A first and easy distinction to make is between:

- 1. encouraging intepretable learning while training a model
 - ▶ L1/L2 regularization, weight constraints, etc.
- 2. interpreting learned knowledge with a trained model

Model Interpretation: Importance Scores

<u>Given a trained model</u>, model intepretation may be performed by computing **importance scores**.

How important is nucleotide n in contributing to the final model prediction?

There are two methodological approaches for computing such scores, or rather, *visualizing learning*:

- 1. Forward- or *perturbation*-based
- 2. Backward- or backpropagation/gradient-based⁸

⁸Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning Important Features Through Propagating Activation Differences. ArXiv:1704.02685 [Cs]. Retrieved from http://arxiv.org/abs/1704.02685

Model Interpretation: Forward-based

Forward-based approaches are quite simple:

- 1. For a given observation, obtain a predicted value
- 2. Modify the value of a single feature (e.g. nucleotide A \rightarrow C)
- 3. Obtain a new prediction
- 4. Calculate the difference, either at the network level or node level

Model Interpretation: Learning Motifs

Alternatively, given the trained network, which observations maximize network activations (either individual network nodes or final network output)?

What sequence(s) has the network learned to recognize?

- 1. Pass test observations through the first convolutional layer
- 2. Per filter, zero out low values below threshold (noise)
- 3. Extract motif-length sequences around non-zero activations
- 4. Use sequences to compute position-weight matrix (PWM)

Model Interpretation: Learning Motifs

For motif m of length I, define the **information** (height) at position $j \in \{1, I\}$ as:

$$R_j = \log_2 4 - H_{j.}$$

with $H_{j.} = \sum_{n \in \{A,C,G,T\}} H_{j,n}$ defined as the total **entropy** at position j over nucleotides $n \in \{A,C,G,T\}$.

Write the entropy at position j for nucleotide n as:

$$H_{j,n} = \bar{f}_{j,n} \log_2 \bar{f}_{j,n}$$

for **relative frequency**, $\bar{f}_{j,n}$, of nucleotide n at position j. $\bar{f}_{j,n}$ is calculated from the sequences surrounding the non-zero activations.

Example: Learning Motifs

Consider a set of genomic reads S in which half of the set contains some motif (Y=1) and half of the set does not contain the given motif (Y=0).

The motif in our example will be a very simple string of seven C nucleotides.

The goal is to train a binary classifier on the genomic sequences and understand to what extent the classifier has learned the inserted motif.

Data such as these could come from peak sequences called from a ChIP-seq experiment.

Problem Formulation: Generative Learning

Problem Formulation: Autoencoders

X encoded to L ⇒ L decoded to X'

Problem Formulation: Adversarial Learning 9

⁹Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

Problem Formulation: single-cell RNA-seq

- ► In traditional RNA sequencing, one typically measures differential bulk gene expression across condition
 - Gene X is active in cancer types but inactive in healthy types.
 - It provides a picture of the average transcriptional activity in a tissue
- scRNA-seq, on the other hand, measures individual cells
 - ▶ It offers a snapshot of the transcripts at the *single cell* level
 - ▶ Cell type A differentiates from cell type B due to gene X.

Which cells belong to which cell type? Can we model these cell types with latent classes?

Problem Formulation: The Model

10

¹⁰Lopez, Romain, et al. "A deep generative model for gene expression profiles from single-cell RNA sequencing." arXiv preprint arXiv:1709.02082 (2017). 22

Model Interpretation: t-SNE clustering

11

¹¹tSNE plot created with Seurat: Butler, Andrew, et al. "Integrating single-cell transcriptomic data across different conditions, technologies, and species." Nature biotechnology (2018).

Summary

- Deep learning for genomics is gaining increasing attention as the models continue to show improvements in predictive accuracy over past techniques
- Unfortunately model interpretation is still difficult and hinders applicability and adoption
- We saw how CNNs can learn the TF-binding profiles of cells
- Also discussed how deep generative modeling may be used to learn latent cell types
- Please remember this was just an overview and there is much that I glossed over or left out entirely
- ▶ If questions, you may email me at ploenzke@g.harvard.edu.