通讯协议

2019年3月4日 9:25

核心板通信协议 2019年3月12日

所有通信协议中的数据均以16进制发送或者接收,通信设置如下;

- (1) 使用网络通信通信时, IP地址及端口号可根据当前使用情况自定;
- (2) 使用串口通信时,波特率都选择为115200;、

三、下位机主控板与JETSON之间的通信协议

3.1 下位机主控板向PC发送数据通信协议

表3-1 下位机主控板向PC发送报文格式

起始字节	说明	数据类型	示例数据
0	报文头	2个BYTE	FE EF
2	三轴角度	12个 BYTE	A8 02 93 C1 roll 81 24 6E 41 pitch DC 0D 18 C2 yaw
14	导航输出坐标	16个 BYTE	1B 31 D6 3D 1B 31 D6 3D 单位°, double型 2F 65 A1 1B 31 D6 3D 3C,这里的经 度已经根据纬度换算过了
30	推位导航坐标	8个BYTE	X,Y float
38	深度传感器数据	4个BYTE	00 00 00 00 float 单位m
42	高度数据	4 个BYTE	00 00 00 00 float 单位m
46	避碰数据	4 个BYTE	
50-61	预留数据	12个 BYTE	
62	当前运行模式	1 个BYTE	
63	温度监测数据	2个BYTE	OE D8

	(°)		
65	控制电电压	2个BYTE	原始数据*100 原始数据单位V
67	动力电电压	2个BYTE	原始数据*100 原始数据单位V
69	漏水报警数据	1个BYTE	01 00不漏, 01漏
70	USBL获得的6个相 位差结果	12个 BYTE	2个byte一个相位差,扩大了10倍
82	传感器状态	1个BYTE	00 INS未对准,01对准完毕
83-86	预留	4个BYTE	
87	校验和	1个BYTE	D7
88	数据尾	2个BYTE	FA AF

3.2 PC向下位机发送数据通信协议 表3-2 PC向下位机主控发送报文格式

起始字节	说明	数据类型	示例数据	备注
0	报文头	2个BYTE	FE EF	
2	坐标点设置	16个 BYTE	X: 00 00 00 00 00 00 00 00 m Y: 00 00 00 00 00 00 00 00 m	GPS经纬度 (double)
18	相对于启动推位导 航原点的相对坐标 点设置	8个BYTE	X: 00 00 00 00 m Y: 00 00 00 00 m	点坐标(float)
26	期望深度设置	4个BYTE	Z: 00 00 00 00 m	深度 (float)
30	航向角设置	4个BYTE	Float 单位°	航向角(float)
34	导航方法设置与开 关	1个BYTE	00 关闭一切导航方 式,坐标维持不变 01 推位导航 02 推位EKF 03 VO 04 VO EKF	00代表初始状态 01代表开启惯导开始 积分
35	6个自由度上的力	6BYTE	6个自由度的遥控力 格式: TX,TY,TZ,MX,MY,MZ (0	开环或ROV模式下向机器人发力和力矩,大于100代表正向

			-200)	
41	运动模式设置	1BYTE	ROV,DPROV	
42	开环闭环	1BYTE	0开环, 1闭环	
43	电源控制	3个BYTE	00 00美,01开	顺序: 惯导,DVL, USBL
46	USBL频率设置	1个BYTE	30 单位k	
47	INS/DVL坐标系角度 误差	1个BYTE	Float 单位°	
48-58	预留,会透传给 sensor处理	11个 BYTE	包括舵机,机械手,发射等控制参数	
59	校验和	1个BYTE	D7	
60	数据尾	2个BYTE	FA AF	

以上数据均为16进制,省略了0x,总共由8个字节构成

FE EF: 报文头

02: 采用坐标系设置,这里区分主要是坐标形式是GPS形式还是推位坐标点格式,在室内条件下

01: DVL电源开关 00 关 01开

01: 测扫声呐电源 00 关 01开

01: 前视声呐电源 00 关 01开

01: 抛载电源 00 关 01开

00: led电源控制 0 到 100,0为灭,100为最亮,占空比100%

C9: 校验和, 把报文头到报文校验和前一个字节按位异或所得到的一个字节数据

FD DF: 数据包尾。

举例说明上位机向下位机发送一包有效数据为: (数据包大小为8个字节)

FE EF 05 DC 01 C9 FD DF

四、下位机主控板与传感器解算板之间的通信协议

下位机主控板与传感器解算板之间主要利用<mark>串口</mark>进行通信,通讯速率为115200传感器解算板主要进行航向、深度等传感器数据的融合,主控板主要任务是对机器人数据进行融合、解算和决策。

- 4.1 下位机主控板向传感器解算板发送数据通信协议
- 表4-1 下位机主控板向传感器解算板发送报文格式
 - 4.1 下位机主控板向传感器解算板发送数据通信协议

表4-1 下位机主控板向传感器解算板发送报文格式

起始字节 说明 数据类型 示例数据

0	报文头	2个BYTE	FE EF
2	惯导电源控制	1个BYTE	00
3	DVL电源控制	1个BYTE	01
4	USBL	1个BYTE	00
5	声通机	1个BYTE	00
6	高度计	1个BYTE	00
7	深度计	1个BYTE	00
8	测扫声呐电源控制	1个BYTE	00
9	前视声呐电源控制	1 个BYTE	00
10	ADCP	1个BYTE	00
11	CTD	1个BYTE	00
12	抛载电源控制	1 个BYTE	00
13	LED电源控制	4 个BYTE	00 00 00 00
17	云台	1个BYTE	00
18-33	预留, 主控接收后不做处理进行透传	16个ВҮТЕ	00
34	校验和	1个ВҮТЕ	C9
35	数据尾	2 ↑ BYTE	FD DF

以上数据均为16进制,省略了0x,总共由8个字节构成

FE EF: 报文头

00: 惯导电源开关,有惯导才考虑 00 关 01开

01: DVL电源开关 00 关 01开

01: 测扫声呐电源 00 关 01开

01: 前视声呐电源 00 关 01开

01: 抛载电源 00 关 01开

00: led电源控制 0 到 100, 0为灭, 100为最亮, 占空比100%

C9: 校验和,把报文头到报文校验和前一个字节按位异或所得到的一个字节数据

FD DF: 数据包尾。

举例说明上位机向下位机发送一包有效数据为: (数据包大小为8个字节)

FE EF 05 DC 01 C9 FD DF

4.2传感器解算板向下位机主控板发送协议 表4-2 传感器解算板向下位机主控板发送报文格式

起始字节i	说明	数据类型	示例数据	
地州于 17 1	Nr 47	数加天至	八、1/21 多人3/16	

0	报文头	2个BYTE	FE EF
2	温度监测数据(゜)	2个BYTE	OE D8
4	4路AD数据	8个BYTE	
14	深度传感器数据	4个BYTE	00 00 00 00
23	漏水报警数据	1个BYTE	01
24	三轴角度	12个ВҮТЕ	A8 02 93 C1
			81 24 6E 41
			DC OD 18 C2
36	三轴角速度	12个ВҮТЕ	94 48 9C 3E
			1B 31 D6 3D
			2F 65 A1 3C
48	三轴加速度	12个BYTE	94 48 9C 3E
			1B 31 D6 3D
			2F 65 A1 3C
60	三轴磁场数据	12个BYTE	94 48 9C 3E
			1B 31 D6 3D
			2F 65 A1 3C
72	DVL三轴线速度	12个ВҮТЕ	94 48 9C 3E
			1B 31 D6 3D
			2F 65 A1 3C
84	经纬度坐标	16个BYTE	1B 31 D6 3D
			2F 65 A1 3C
			1B 31 D6 3D
			2F 65 A1 3C
100	视觉里程计三轴速度	12个BYTE	1B 31 D6 3D
			2F 65 A1 3C
			2F 65 A1 3C
112	USBL获得的相对位置	8个BYTE	1B 31 D6 3D
			2F 65 A1 3C
120	DVL或者高度计获得的高度	4 个BYTE	2F 65 A1 3C
124-126	预留		
127	温度监测数据(゜)	2个BYTE	OE D8
	1		

129	控制电电压	2个BYTE	原始数据*100 原始数据单位V
131	动力电电压	2个BYTE	原始数据*100 原始数据单位V
133	漏水报警数据	1个BYTE	01 00不漏, 01漏
134	USBL获得的6个相位差结果	12个BYTE	2个byte一个相位差,扩大了10倍
146	传感器状态	1 ↑ BYTE	00 INS未对准,01对准完毕
146 147-150	传感器状态 传感器透传给PC的BUF	1个BYTE 4个BYTE	00 INS未对准,01对准完毕
	7, 5	,	00 INS未对准,01对准完毕
147-150	传感器透传给PC的BUF	4个BYTE	00 INS未对准, 01对准完毕 D7

FE EF: 数据包头

0E D8: 温度监测数据(°) 2个BYTE; 从右至左两个字节测量温度, 在数据传输过程中扩大100倍, 计算时除以100即可, 如0E D8 对应的十进制数据为3800,则实际温度值为3800/100=38.00(℃)。

00 00 00 00: 深度传感器数据 , float类型浮点数, 高位在前, 需要把四个字节合到一块后进行强制转换成浮点型, 单位m

01: 漏水报警数据 01正常, 00漏水

A8 02 93 C1 81 24 6E 41 DC 0D 18 C2: 三轴角度,顺序为ROLL PITCH YAW, ROLL,-18. 3679295 float类型浮点数,高位在前,需要把四个字节合到一块后进行强制转换成浮点型,单位°, Pitch与yaw同上

94 48 9C 3E 1B 31 D6 3D 2F 65 A1 3C: 三轴角速度, 顺序为p q r, 对应绕x, y, z轴角速度, 解算方法同ROLL。

94 48 9C 3E 1B 31 D6 3D: 两轴线速度,顺序为u w,对应为沿着x轴(北速)和v轴(东速)的速度,解算方法同ROLL。

94 48 9C 3E 1B 31 D6 3D 94 48 9C 3E 1B 31 D6 3D: 纬度,经度,各八个字节,都是double类型的数据。

94 48 9C 3E 1B 31 D6 3D: 视觉里程计两轴线速度, u, v 94 48 9C 3E 1B 31 D6 3D: USBL测量获得的相对位置, X, Y

01:数据有效位,最低位为DVL有效位,次低为GPS,接着为INS对准状态,接着为视觉里程计状态,USBL状态。数据为1表示有效

D7: 1个字节的校验和,把报文头到报文校验和前一个字节按位异或所得到的一个字节数据。

FA AF: 数据结尾

举例说明下位机向上位机发送一包数据为: (数据包大小为155个字

节)

FE EF 0E D8 00 00 00 00 01 A8 02 93 C1 81 24 6E 41 DC 0D 18 C2 94 48 9C 3E 1B 31 D6 3D 2F 65 A1 3C 00 *116 D7 FA AF

五、下位机主控板与电机驱动板之间的通信协议

下位机主控板与电源驱动舱电机驱动板之间主要利用CAN进行通信, 电机驱动板主要进行推进器等设备的最后执行端,主控板主要任务是 对机器人数据进行融合、解算和决策。

表5-1 下位机主控板向左电源驱动舱电机驱动板机发送报文格式

5.1 下位机主控板向两个电机驱动板广播发送数据协议(力)

起始字节	说明	数据类型	示例数据
0	报文头	1个BYTE	FF
1	X轴方向的力	2个BYTE	00 10
3	Y轴方向的力	2个BYTE	00 20
5	Z轴方向的力	2个BYTE	00 30

以上数据均为16进制,省略了0x,总共由7个字节构成

FF: 报文头

00 10: X轴方向的力, 16g, 先发送高位, 单位g

00 20: Y轴方向的力,先发送高位,单位g 00 30: Z轴方向的力,先发送高位,单位g

举例说明上位机向下位机发送一包有效数据为: (数据包大小为7个字节)

FF 00 10 00 20 00 30

发送CANID为0x01

表5-2下位机主控板向电机驱动板机发送报文格式(扭矩)

5.2下位机主控板向两个电机驱动板广播发送数据协议(扭矩)

起始字节	说明	数据类型	示例数据
0	报文头	1个BYTE	FE
1	绕X轴方向的力矩	2个BYTE	00 10
3	绕Y轴方向的力矩	2个BYTE	00 20
5	绕Z轴方向的力矩	2个BYTE	00 30

以上数据均为16进制,省略了0x,总共由7个字节构成

FE: 报文头

00 10: 绕X轴方向的力矩, 先发送高位16N.m单位N.m

00 20: 绕Y轴方向的力矩,先发送高位,单位N.m

00 30: 绕Z轴方向的力矩,先发送高位,单位N.m

举例说明上位机向下位机发送一包有效数据为: (数据包大小为7个

字节) FE 00 10 00 20 00 30

发送CANID为0x02