Skriftlig eksamen på Økonomistudiet Vinteren 2016 - 2017

MATEMATIK B

Tirsdag den 10. januar 2017

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet og blive registeret som syg af vedkommende eksamensvagt. Derefter afleverer du en blank besvarelse i systemet og forlader eksamen. Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitet. Økonomisk Institut

1. årsprøve 2017 V-1B ex

Skriftlig eksamen i Matematik B

Tirsdag den 10. januar 2017

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \left(\begin{array}{ccc} s & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & s \end{array}\right).$$

- (1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.
- (2) Vis, at matricen A(s) er indefinit for ethvert $s \in \mathbf{R}$.
- (3) Bestem egenværdierne for matricen A(0). (Her er s = 0.)
- (4) Bestem egenrummene for matricen A(0).
- (5) Vis, at vektorerne $v_1 = (-1, 1, 0), v_2 = (-\frac{1}{2}, -\frac{1}{2}, 1)$ og $v_3 = (1, 1, 1)$ er egenvektorer for matricen A(0), og angiv de tilhørende egenværdier.
- (6) Bestem en diagonalmatrix D og en ortogonal matrix Q, så

$$D = Q^{-1}A(0)Q.$$

Opgave 2. Vi betragter den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + xy + x + y^2 + y.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

- (2) Bestem eventuelle stationære punkter for funktionen f.
- (3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Vis dernæst, at f er strengt konveks overalt på definitionsmængden \mathbf{R}^2 .

(4) Bestem værdimængden for funktionen f.

Vi betragter nu funktionerne $\phi, \psi : \mathbf{R}^2 \to \mathbf{R}$, som har forskrifterne

$$\forall (x,y) \in \mathbf{R}^2 : \phi(x,y) = \sqrt{f(x,y) + 1} \land \psi(x,y) = \sqrt[3]{f(x,y)}.$$

(5) Vis, at funktionerne ϕ og ψ er kvasikonvekse.

For ethvert v>0 betragter vi den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le v \land 0 \le y \le 1\}.$$

(6) Udregn integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y).$$

(7) Bestem grænseværdien

$$\lim_{v \to 0+} \frac{I(v)}{\sin\left(\frac{v}{6}\right)}.$$

Opgave 3. Vi betragter differentialligningen

$$\frac{dx}{dt} = \frac{2t}{1+t^2}x^4.$$

(1) Bestem den fuldstændige løsning til differentialligningen (*).

(2) Bestem den specielle løsning $\tilde{x}=\tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(0)=1$ er opfyldt.

Opgave 4. Betragt den hyperplan H_0 i vektorrummet \mathbf{R}^4 , som er givet ved ligningen

$$H_0: x_1 + 2x_2 - 5x_3 + x_4 = 0,$$

idet \mathbf{R}^4 er forsynet med det sædvanlige indre produkt (prikproduktet), og mængden

$$U = \{x = (x_1, x_2, x_3, x_4) \in \mathbf{R}^4 \mid x_2 = x_1\}.$$

(1) Begrund, at hyperplanen H_0 er et underrum af \mathbf{R}^4 , og bestem tre vektorer v_1, v_2 og v_3 , så

$$H_0 = \operatorname{span}\{v_1, v_2, v_3\}.$$

- (2) Vis, at mængden U er et underrum af \mathbf{R}^4 .
- (3) Bestem fællesmængden $V=H_0\cap U,$ og godtgør, at V er et underrum af ${\bf R}^4.$