Assessment schedule – 2023

Chemistry: Demonstrate understanding of aspects of chemical reactions (90934)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i)	Potassium carbonate / sodium carbonate	Correct solution named.		Correct reaction types.
(ii)	Precipitation reaction. Potassium carbonate / sodium carbonate are soluble solutions so can be added to the hard water. Both magnesium and calcium carbonate are insoluble, so when the Mg ²⁺ and Ca ²⁺ ions come into contact with the CO ₃ ²⁻ ions, a solid white precipitate will form (of MgCO ₃ / CaCO ₃).	Correct reaction type.	Reaction type explained with reference to solubility.	AND Reaction type justified with reference to solubility and all observations given. AND
(iii)	$Ca^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CaCO_3(s)$ $Mg^{2+}(aq) + CO_3^{2-}(aq) \rightarrow MgCO_3(s)$	Reactants / products correct for ONE equation.	ONE unbalanced equation.	ONE correct balanced equation (states not necessary).
(b)	This is a displacement (oxidation-reduction) reaction; the Fe displaces the lead ions from the solution as iron is higher on the reactivity series / more reactive than lead. A grey coating may be visible on the surface of the iron as the solid lead forms. The solution will slowly change from colourless to pale green as Fe^{2+} ions form. This method may allow removal of some lead ions, but will put iron ions into solution so probably not a good method. $Pb^{2+}(aq) + Fe(s) \rightarrow Pb(s) + Fe^{2+}(aq)$ Both calcium and magnesium ions remain in solution, as they are higher up the activity series than iron, so it cannot displace them from solution.	Correct reaction type. OR Describes TWO observations. Reactants / products correct.	 Links the observations to TWO of the reactants and products. Explains why Pb²⁺ will react OR why Ca²⁺ / Mg²⁺ will not react, with reference to the activity series. 	 Comprehensively links ALL observations to the reactants and products, and comments on suitability of lead ion removal method. AND Correct balanced equation. Explains why Pb²⁺ will react, while Ca²⁺ and Mg²⁺ will not, with clear, specific reference to the activity series.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e	3e

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i)	Combination reaction.	Correct reaction type.		Correct reaction type. AND
(ii)	Yellow sulfur powder and grey iron wool react with an orange glow to form black iron sulfide. (Black solid is no longer attracted to a magnet – acceptable observation.)	Describes an observation.	Links formation of iron sulfide to TWO observations.	Elaborates on the iron sulfide formation linking ALL observations to the reactants and products.
(iii)	$Fe(s) + S(s) \rightarrow FeS(s)$		Gives the correct equation.	
(b)(i)	Thermal decomposition. When the compound is heated with a Bunsen burner, black copper oxide forms, and either carbon dioxide or water is released (as a gas). A limewater test is used to confirm the CO ₂ gas. If the limewater turns cloudy, it indicates the compound is copper carbonate. Cobalt chloride paper is used to confirm if H ₂ O is released. It will turn from blue to pink which would indicate the compound is copper hydroxide.	Correct reaction type. Describes an observation. OR ONE of the tests.	 Explains how to test for H₂O, and gives the correct corresponding equation. Explains how to test for CO₂, and gives the correct corresponding equation. 	Correct reaction type. AND Comprehensive explanation of how the thermal decomposition reaction occurs, including positive tests for CO ₂ and H ₂ O, and what that indicates (in terms of what compound it must have been).
(ii)	$CuCO3(s) \rightarrow CO2(g) + CuO(s)$ $Cu(OH)2(s) \rightarrow H2O(g) + CuO(s)$	Gives correct reactants / products for equations.		THREE correct equations (part (a)(iii) and (b)(ii) of question).

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e	3e

Q	Evidence			Achievement	Merit	Excellence	
THREE	Solution	Example		THREE correct	FOUR correct solutions.	• FOUR correct solutions.	
(a)(i)	A	Na ₂ CO ₃ or K ₂ CO ₃		solutions.			
	В	any iodide except AgI or PbI ₂					
	С	lead nitrate					
	D	silver nitrate or silver sulfate				AND	
(ii)	when the two OR because substance a (precipitate Clear colou to form a y lead carbon 2Ag ⁺ (aq) + e		ons from each abstance for (a)) combine	Precipitation reaction described. Products in ionic equations correct.	Reaction type explained (with TWO observations). Unbalanced equations.	Reaction type explained (all observations).	
(b)	Reaction type: combination. Grey sodium metal will react with the yellow green chlorine gas, which glows / burns with a bright orange / yellow colour flame during the process. A white solid sodium chloride is formed. Electrons are transferred from the sodium atoms to the chlorine atoms. $2Na + Cl_2 \rightarrow 2NaCl$		Correct reaction type. A correct observation. OR Electron transfer described.	Reaction type explained (with TWO observations) Unbalanced equation. OR Electron transfer explained. OR Unbalanced equation.	Correct reaction type. AND Reaction type explained (all observations) including electron transfer. All balanced equations correct (from part (a)(iii) and (b)).		

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	3m	4m	2e	3e

Cut Scores

Not Achieved	Not Achieved Achievement		Achievement with Excellence	
0 – 7	8 – 13	14 – 19	20 – 24	