Talk 2 - Gradient Ricci Soliton equation and

consequences.

The GRS equation is

$$R_{ij} + \nabla_i \nabla_j f = \frac{\lambda}{2} g_{ij}. \qquad \longrightarrow \bigcirc$$

 $\lambda > 0$ shunking, $\lambda = 0$ steady, $\lambda < 0$ expanding.

f is called the potential function.

We expect relations blue geometry of g and properties of f.

Jemma: - Suppose (M,g, λ,f) is a GRS and (M,g) \(\frac{1}{1},g, \) x

 $(M_2^{n_2}, g_2)$. Then for any $z \in M_2^{n_2}$, $(M_1^{n_1}, g_1, f_1, \lambda)$ is a GRS ω /

 $f: \Pi_{1}^{n_{1}} \longrightarrow \mathbb{R}$ is the restriction of f to $\Pi_{1}^{n_{1}} \times \{x_{2}\} \cong \Pi_{1}^{n_{1}}$.

i.e., if a GRS is a metric product them it is a product of GRSs.

proof:- $g = g_1 + g_2$, if $X \cdot Y \in \Gamma(TM_1) \cong \Gamma(T(M_1^n \mid x \mid x \mid x \mid x \mid x \mid x))$ $\subseteq \Gamma(TM)$

Picg + $\nabla_g^2 f_1 = \frac{1}{2}g_1$ by taking the components of $\text{Rig} + \nabla_g^2 f = \frac{1}{2}g_1$ in the $M_1^{n_1}$ direction.

* Tracing ① gives
$$R + \Delta J = \frac{n\lambda}{2}.$$

Divergence of 1 gives

$$\nabla^i R_{ij} + \nabla^i \nabla_i \nabla_j f = 0$$

$$= 0 \qquad \frac{1}{2} \nabla_{j} R + \nabla^{i} \nabla_{j} \nabla_{i} f = 0 = 0 \qquad \frac{1}{2} \nabla_{j} R + \nabla_{j} \nabla^{i} \nabla_{j} f - R^{i}_{j i m} \nabla^{m} f = 0$$

$$= \delta \qquad \frac{1}{2} \nabla_{j} R + \nabla_{j} (\Delta f) + R_{jm} \nabla^{m} f = 0$$

$$= \delta \qquad \frac{1}{2} \nabla_{j} R + \nabla_{j} \left(\frac{n\lambda}{2} - R \right) + R_{jm} \nabla^{m} f = 0$$

$$2\left(\frac{\lambda}{2}g_{jm}-\nabla_{j}\nabla_{m}f\right)\nabla^{m}f=\nabla_{j}R$$

$$\Rightarrow \nabla_j(R + |\nabla f|^2 - \lambda f) = 0$$

2. We get the following fundamental and important violentity obtained by Namilton

$$R + |\nabla f|^2 - \lambda f = Constant$$

If N= ±1 then adding a constant to the potential function of we

may assume
$$C=0=0$$

$$(2+17f1^2=4f)$$
 (for shinking or expanding GRS)

for d=0 by scaling the metric we may assume C=1 so

Det " (Bakry - Emory Ricci tensor). The Bakry - Emery Ricci tensor or

the f-Rieu linsor is defined as

So the GRS becomes $Ric_{\frac{1}{2}} = \frac{1}{2}g$.

Detⁿ: The
$$f$$
-Laplaceian is gener by
$$\Delta f = \Delta - \langle \nabla f, \nabla \cdot \rangle.$$

This is the natural Laplacian for computations regarding GRS.

note that if 9, ps: Mn-1R then

$$\int \alpha \Delta_f \beta e^{-f} dn = \int \alpha (\Delta \beta - \nabla \beta \nabla f) e^{-f} dn$$

$$= \int -\nabla^i \beta \nabla_i (\alpha e^{-f}) dn - \int \alpha \nabla \beta \nabla f e^{-f} dn$$

 $^{\circ}$. Δ_{f} is formally self-adjoint on $L^{2}(e^{-\frac{1}{2}}du)$.

We also have the following 3 copes:-

1) If (M^n, g, λ, f) is a shrinking GRS, then $R + |\nabla f|^2 = f = D \quad R \leq f.$

Also, $\Delta_f f = \Delta_f - \nabla_f \cdot \nabla_f = \Delta_f - |\nabla_f|^2 = \frac{n}{2} - f$

- :. $f \frac{n}{2}$ is an eigenfunction of $-\Delta_f \omega$ eigenvalue 1.
- To expanding GRS, $R+17f|^2=-1=0$ $R\leq -f$ and $\Delta_f f=f-\frac{n}{2}$.

Thm I B.1. Chen. 09, Z.-H. Zhang, 09 Pigola-Rimoldi-Setti 2011] (Sharp R bounds for GRS) If (M^n, g, χ, A) is a complete Ricci soliton then a) $R \ge 0$ if $A \ge 0$.

b) $R \ge \frac{\lambda n}{a}$ if $\lambda < 0$.

moreour, if equality holds at any point $\in M^n$ then (M^n,g) is Einstein. If A>0 and the shrinker is gradient, i.e. $X=\nabla f$. then if R=0 at some point then (M^n,g,f) is a Gramssian strinker.

Com:- (potential function estimates) for (M,g,f, 1) GRS w/ p + M?

1) on a shrinking GRS w/ d=1

 $|\nabla f|^2 \leq f$, $R \leq f$, $\Delta f \leq \frac{n}{2}$ and $\sqrt{f}(x) \leq \sqrt{f}(f) + \frac{1}{2}d(x, p)$ where d(x, p) = Riemannian distance b) is a and <math>p.

If $0 \in M^n$ is a point where f attains its minima (such a point always exist by a result to be seen later) then $0 \le R(0) = f(0) \le \frac{n}{2}$ and $f(m) \le \frac{1}{4} \left(d(n_{10}) + J_{2n} \right)^2$.

a) On a steady GRS
$$(d=0)$$

$$|\nabla f|^2 \leq 1, R \leq 1, Af \leq 0 \text{ and } |f(n)-f(f)| \leq d(n,f).$$

$$|\nabla f|^2 \leq \frac{n}{a} - f$$
, $\Delta f \leq 0$ and $\sqrt{\frac{n}{a}} - f(n) \leq \sqrt{\frac{n}{a}} - d(p) + \frac{1}{a} d(m, p)$.
 $f \leq \frac{n}{a}$.

9000,
$$R+1\nabla H^{2}=\lambda f=0$$
 for $\lambda=1$, $R=f$, and $R+1\nabla H^{2}=1$ for $\lambda=0$, $R\leq 1$

Similarly for
$$\lambda=1$$
, $R\geq 0$, $|\nabla f|^2 \leq f$.

$$d=-1$$
, $R \ge \frac{1}{2}$, we get $|\nabla f|^2 = -\frac{1}{2} - R$

$$\leq -j + \frac{\eta}{\alpha}$$
.

now let's book at the shrinking soliton case: $-\mathbb{R} \ge 0 = 0 = 17f1^2 \le f$

or $|\nabla Jf| \leq \frac{1}{2}$ whenever $f > 0 \Rightarrow Jf$ is hipschitz (bounded derivative $\Rightarrow f$ Lipschitz). and: true.

$$\left| \int f(x) - \int f(b) \right| \leq \frac{1}{2} d(x, b)$$

$$\sqrt{f(w)} \leq \frac{1}{2} d(x, b) + \sqrt{f(b)}$$

now suppose f attains its minima at $o \in M^n$. Then

$$f(0) - R(0) = |\nabla f|^2(0) = 0$$

$$0 \leq \Delta_{1} + (0) = \frac{N}{2} - f(0) = 0 \leq f(0) \leq \frac{N}{2}$$

obone inequality
$$\omega \mid p = 0$$
 quies

$$\sqrt{f(n)} \leq \frac{1}{2} d(n_0) + \sqrt{\frac{n}{2}}$$

$$= D \qquad f(n) \leq \frac{1}{4} \left(d(n_0) + \sqrt{2n}\right)^2.$$

for steady GRS, $|\nabla f|^2 \le L = D$, Lipschitz = $|f(u) - f(p)| \le d(mp)$.

Similarly for the expanding case.