Projet de fin d'année

Reconnaissance des émotions en temps réel à partir des expressions faciales

Mohamed EL MAADOUDI & Yassin BOUFNICHEL

Encadré par: Abderrahim MESBAH

Membres de Jury: A.Mesbah, A.Berrahou, H.Berbia

ENSIAS, Université Mohammed V, Rabat

June 14, 2022

PLAN

- 1. Introduction
- 2. Problèmatique
- 3. Analyse et Conception
- 3.1 Analyse
- 3.2 Conception
- 4. Réalisation du projet
- 4.1 Reconnaissance des émotions faciales par CNN
- 4.2 Evaluation des performances
- 4.3 Output
- 5. Conclusion & Perspectives
- 5.1 Conclusion
- 5.2 Perspectives
- 6. Webographie

Introduction

 La motivation derrière le choix de ce sujet spécifiquement, c'est à cause des accidents de la route qui comptent parmi les plus importants problèmes de santé publique des dernières décennies.

Problèmatique

Problèmatique

Comment éviter les accidents causés par la tristesse, ou de la colère?

Solution proposée

- Détecter automatiquement de la colère ou de la tristesse du chauffeur,et aider à éviter les accidents de la route en réagissant avant qu'ils ne se produisent.
- Propose une application mobile pour reconnaitre automatiquement les émotions du visage du conducteur base sur un modèle trainé sur une base de donnée appelée FER-2013.

Analyse

Besoin fonctionnels

- La détection des émotions dans un cadre réel.
- La connection de notre application avec le système de sécurité de la voiture.
- Temps de réponse élèvé.

Analyse

Besoins non-fonctionnels

- Exigences d'ergonomie.
- La Sécurité.

Conception

Digrammes SysMI

• Diagramme des cas d'utilisations:

Reconnaissance des émotions faciales par CNN

- Prétraitement des données.
- 2 Augmentation d'image.
- Se Extraction des points caractéristiques.
- Entraînement.
- Validation.

•0

Evaluation des performances

Evaluation des performances

Le modèle donne une précision de 65 à 66% sur l'ensemble de validation lors de la formation du modèle, Le modèle CNN apprend les caractéristiques de représentation des émotions à partir des images d'entraînement. Vous trouverez ci-dessous quelques époques de processus de formation avec une batch size = 128.

Evaluation des performances

• Courbes de précision et erreur:

duction Problèmatique Analyse et Conception **Réalisation du projet** Conclusion & Perspectives Webographie

Output

Application Windows

• Tester la validation de logiciel sur notre machine:

oduction Problèmatique Analyse et Conception **Réalisation du projet** Conclusion & Perspectives Webographie

Output

Application Mobile

• Tester le fonctionnement de l'application mobile:

Conclusion

- La réalisation de ce projet nous a offert une excellente opportunité d'appliquer et d'approfondir les connaissances qui nous ont été inculquées au cours de ce semestre et d'augmenter en compétence.
- Notre objectif est de former un application mobile qui reconnait automatiquement les émotions du chauffeur et réagir lorsque il détécte la colère ou la tristesse, à pour but d'éviter les accidents de la route en réagissant avant qu'ils ne se produisent.

Perspectives

Perspectives

 Notre vision dans un avenir proche est de mettre dans chaque voiture une caméra connectée à l'ensemble du système de sécurité de la voiture avec un taux de reaction entre les composants très élèvé, pour assurer une bonne sécurité au chauffeur.

- [1] https://www.slideshare.net/Doozyg/facial-expression-recognition-via-python.
- [2] https://www.slideshare.net/AshwinRachha/facial-emotion-recognition-a-deep-learning-approach.
- [3] https://www.youtube.com/watch?v=R-zgTJCBfDu0.
- [4] https://www.youtube.com/watch?v=fkgpvkqcoJct=318s.

