확률 개념

- I. 불확실한 상황에서 액션 취하기
- Ⅱ. 확률 모델
- Ⅲ. 확률 분포

I. 불확실한 상황에서 액션 취하기

신념 상태(Belief State)의 단점

신념 상태 추적 작업의 단점:

♣ Belief State의 규모가 커짐: 감지된 각 정보에 대해 가능한 모든 해석을 고려해야 하기 때문에, 발생 가능성이 낮은 수많은 상태가 Belief State에 포함됨

올바른 비상 계획: 모든 상황에 대처할 올바른 비상 계획이 필요하므로 그 크가 임의의 크기로 커질 수 있음

♣ 성공적인 계획의 부재: 성공을 보장하는 계획이 존재하지 않더라도 무조건 액션은 취해야 함

성공이 보장되지 않는 계획 들 간에 상호 장점을 비교할 수 있는 방법 필요

합리적인 결정 기준:

- ◆ 다양한 목표 간 상대적 중요도
- ◆ 목표가 달성될 가능성을 말해주는 가능도(likelihood)

범주적 신념에서 불확실성 신념으로

- ◆ 지능적인 행동을 취하기 위해서는 세상(환경)에 대한 지식 필요
- ◆ 명제 논리와 1차 논리는 세상에 대한 범주적 신념을 표현하고 추론하는 데 효과적
- ♣ 불확실성을 내포하는 경우 논리적 문장은 참, 거짓을 알 수 없는 경우도 존재

♣ 불확실성으로 인해 논리학적 접근 방법은 한계에 부딪힘

치과 진단

// 치통이 있는 일부 환자는 충치가 아닌 잇몸 질환이나 농양 등의 문제가 원인인 경우도 있음

치통 ⇒ 충치∨ 잇몸문제∨ 농양∨…

// 치통을 유발하는 잠재적인 문제의 목록을 거의 무한하게 추가해야 함

충치가 치통을 일으키기 위해 필요한 모든 조건으로 LHS에 추가하여 규칙을 수정해야 함!

- ▲ 작업 양이 너무 많음
- ▲ 의학은 모든 질병의 원인을 완전히 밝혀내지는 못했음
- ♠ 현장에서 환자마다 필요한 모든 테스트를 시행할 수는 없음

불확실성 하에서의 추론 예시

Beliefs

- 환자가 폐암에 걸렸을 경우, X-레이 검사에서 양성 반응이 나올 확률은 60%이고, 음성 반응이 나올 확률은 40%
- 환자가 폐암에 걸리지 않았을 경우, X-레이 검사에서 양성 반응이 나올 확률은 2%이고, 음성 반응이 나올 확률은 98%
- 전체 인구 중 폐암 발생률은 1/1000

Observation 엑스레이 검사 결과 양성 반응

Inference task 환자가 폐암에 걸렸을 확률은?

확률 이론은 정황이 불확실한 경우에도 사건이나 상황을 표현하고 추론할 수 있는 프레임워크를 제공

Ⅱ. 확률 기초

확률은 고유한 결과 또는 가능한 세계의 집합 Ω 을 갖는 확률 실험을 다룸(Ω 은 Ξ 본 공간(Sample Space)이라고 부름).

- 주사위 굴리기: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- 주사위 2개 던지기: $\Omega = \{(1,1), (1,2), ..., (1,6), ..., (6,1), ..., (6,6)\}$
- $\omega \in \Omega$: 샘플 포인트, 가능한 세상, 원자 사건
 - ♣ 상호 배타적: 두 개 이상의 사건이 동시에 일어날 수 없음
 - ♣ exhaustive(완전성): 나올 수 있는 모든 결과를 포함

확률 모델

 $<u>확률</u> 공간은 가능한 모든 세계 <math>\omega$ 마다 확률 $P(\omega)$ 를 연결

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega \in \Omega} P(\omega) = 1$$

- 주사위 2개 던지기: $\Omega = \{(1,1), (1,2), ..., (6,6)\}$
 - ◆ 두 개의 주사위가 모두 공정하다면, 각각의 가능한 결과는 1/36의 확률
 - ◆ 주사위에 조작이 가해졌다면, 결과들은 불균형한 확률을 갖으며, 최종 합계는 여전히 1이 됨

 $\frac{\mathcal{N}}{\mathcal{N}}$ (또는 $\frac{\mathcal{G}}{\mathcal{M}}$) ϕ 는 Ω 의 부분 집합

$$P(\phi) = \sum_{\omega \in \phi} P(\omega)$$

- $a = \{2,4,6\} = \{ 주사위를 던져서 짝수가 나오는 경우\}$ P(a) = P(2) + P(4) + P(6) = 1/2
- $b = \{ \text{주사위 2개를 던져서 합이 10이 되는 경우}$ P(Total = 10) = P(b) = P((4,6)) + P((5,5)) + P((6,4)) = 1/12

사전 확률과 사후 확률

사전 확률 또는 무조건적 확률: 다른 정보를 고려하지 않은 확률(기존 지식이나 다른 관련 사건을 기반으로 추론하지 않고, 해당 사건 자체의 일반적인 발생가능성에만 의존)

$$P(\text{Total} = 10) = 1/12$$

대부분 어떤 사건이나 상황에 대해 추가적인 정보가 미리 주어짐

사건 b가 발생확률 P(b) > 0 로 주어진 상태에서 사건 a, 즉 명제 a가 발생할 확률을 $\frac{1}{2}$ 사후 확률, 또는 $\frac{2}{2}$ 또는 $\frac{2}{2}$ 이라고 부르며 다음 식으로 계산함

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

• 예) a는 주사위에서 숫자 4가 나오는 사건, b는 짝수가 나오는 사건 (b가 발생했다는 걸 확인 한 상황에서 최종적으로 그게 4일 확률)

$$P(a \mid b) = \frac{1/6}{1/2} = \frac{1}{3}$$

a의 사전 확률은 1/6, b가 주어졌을 때 a의 사후 확률은 1/3

사전 확률과 사후 확률 (계속)

• 정기 검진을 위해 치과를 방문한 경우, 사전 확률:

$$P(cavity) = 0.2$$

• 치통 때문에 치과에 간 경우, 사후 확률:

$$P(cavity | toothache) = 0.6$$

• 치과 의사가 충치를 발견하지 못한 경우, 위와는 다른 사후 확률:

$$P(cavity | toothache \land \neg cavity) = 0$$

곱셈 규칙

$$P(a \wedge b) = P(a \mid b)P(b)$$

확률 변수(Random Variable)

확률 변수($random\ variable,\ RV$): 표본 공간 Ω 로 부터 특정 $\frac{범 \, \mathcal{P}}{\mathcal{P}}$, 즉 취할 수 있는 값의 집합(예: 실수 또는 부울값)으로의 매핑을 정의하는 함수

- 주사위 한 개의 값 범위: {1, ..., 6}
- 주사위 2개의 값 범위: {2,...,12}
- 날씨의 범위: { sun, rain, cloud, snow }.
- 레지스터가 갖는 저항값 X 의 범위: (0,∞)
- 부등호를 이용한 범위 표현: NumberOfAtomsInUniverse $\geq 10^{70}$.

확률 공간 P는 특정 확률 변수 X에 대해 확률 분포를 유도함

$$P(X = x) = \sum_{\omega: X(\omega) = x} P(\omega)$$

$$P(\text{Even} = true) = P(2) + P(4) + P(6) = 1/2$$

명제 논리의 사용

부울 확률 변수 A에 대해, 명제 A = true 와 A = false 는 a와 $\neg a$ 로 각각 간략히 표현함

// 치통이 없는 10대 환자가 충치를 가질 확률은 0.1이다.

 $P(cavity \mid \neg toothache \land teen) = 0.1$

 $P(cavity \mid \neg toothache, teen) = 0.1$

확률 변수는 AI 애플리케이션에서 기본 요소로 자주 사용됨

- ◆ 샘플 포인트는 *확률 변수 집합*의 값들임
- ◆ 가능한 세계는 모든 확률 변수에 정확히 하나의 값을 할당한 것

Example 4가지 고유한 원자 사건(또는 4가지 가능한 세계):

cavity ∧ toothache
¬cavity ∧ toothache
cavity ∧ ¬ toothache
¬ cavity ∧ ¬ toothache

Ⅲ. 확률 분포

• 확률 변수가 취할 수 있는 모든 값에 대한 확률

$$P(Weather = sun) = 0.6$$
 $P(Weather = rain) = 0.1$ $P(Weather = cloud) = 0.29$ $P(Weather = snow) = 0.01$ 간략히 표현하면 $확률 분포$: $\mathbf{P}(Weather) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$

확률 분포 $P(X \mid Y)$ 는 모든 i,j.에 대해 $P(X = x_i \mid Y = y_j)$ 값을 제공

결합 확률 분포

결합 확률 분포는 <u>확률 변수 집합</u>에 대한 모든 원자 사건의 확률, 즉 <u>각 값의</u> 조합에 대한 확률을 제공

결합 확률 분포 P(Weather, Cavity) 는 다음과 같이 4×2 행렬로 표현됨

Weather Cavity	sun	rain	cloud	snow	
true	0.144	0.02	0.016	0.02	
false	0.576	0.08	0.064	0.08	

간결한 P 표기법

P(Weather, Cavity) = P(Weather | Cavity) P(Cavity)

{ sun, rain, cloud, snow } { true, false }

8개의 가능한 세계에 해당하는 아래의 8개의 방정식을 대체

```
P(W = sun \land C = true) = P(W = sun \mid C = true)P(C = true)

P(W = rain \land C = true) = P(W = rain \mid C = true)P(C = true)

P(W = cloud \land C = true) = P(W = cloud \mid C = true)P(C = true)

P(W = snow \land C = true) = P(W = snow \mid C = true)P(C = true)

P(W = sun \land C = false) = P(W = sun \mid C = false)P(C = false)

P(W = rain \land C = false) = P(W = rain \mid C = false)P(C = false)

P(W = cloud \land C = false) = P(W = cloud \mid C = false)P(C = false)

P(W = snow \land C = false) = P(W = snow \mid C = false)P(C = false)
```

콜모고로프(Kolmogorov) 공리

- 1. $0 \le P(\omega) \le 1$ 모든 세계 $\omega \in \Omega$ 에 대해
- $2. \qquad \sum_{\omega \in \Omega} P(\omega) = 1$
- 3. $P(a \lor b) = P(a) + P(b) P(a \land b)$ 임의의 두 명제 a, b에 대해 $a \land b$ 부분이 2번 카운트 됨

확률 이론의 나머지 부분은 이 공리를 기반으로 구축됨

신념(Belief)의 불일치

Agent 2 will lose \$4 if ¬a		Agent 1 will lose \$6 if $\neg \neg a = a$;				
Proposition	Agent 1's belief	Agent 2 bets	Agent 1 bets				each outon $\neg a, \neg b$	come
$egin{array}{c} a \ b \ a ee b \end{array}$	0.4 0.3 0.8	\$4 on a \$3 on b \$2 on $\neg(a \lor b)$	\$6 on $\neg a$ \$7 on $\neg b$ \$8 on $a \lor b$	-\$6 -\$7 \$2 -\$11	-\$6 \$3 \$2 -\$1	\$4 -\$7 \$2 -\$1	\$4 \$3 -\$8 -\$1	

• 에이전트 1은 아래와 같이 불일치 신념(belief)를 갖게 됨

$$0.8 = P(a \lor b) > P(a) + P(b) = 0.7$$

• 이 경우 에이전트 2는 반드시 승리할 수 있는 일련의 베팅 방법을 갖게 됨

어떤 합리적인 에이전트도 확률의 공리를 위반하는 신념을 가질 수 없음 (De Finetti의 정리에 따라).

(*) De Finetti의 <mark>정리:</mark> 주관적 확률을 지닌 사람 또는 시스템이 확률 공리를 위반한다면, 일관된 도박 전략을 통해 그 사람이나 시스템을 상대로 지속적으로 이익을 볼 수 있다는 정리