Apellidos	FIGUEREDO	RENDÓN
Nombre	TEREST	

Preguntas sobre grupos:

1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $\mathrm{GL}(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2

(a) (½ punto) En el conjunto de vectores no nulos $X = (\mathbb{F}_3 \times \mathbb{F}_3) \setminus \{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.

(b) ($\frac{1}{2}$ punto) Dada $A \in GL(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A: \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

(c) ($\frac{1}{2}$ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.

(d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

$$A \longmapsto \sigma_A$$

es un homomorfismo de grupos.

(e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.

(f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $\mathrm{GL}(2,\mathbb{F}_3)$, describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

Toresa Figueredo Rendon Tema 2. $F_3 = \frac{2}{23} \times 3 \qquad GL(2, F_3) = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \middle| a_1b_1c_1d \in F_3 \right\}$ $\left\{ \begin{pmatrix} \bar{0}_1\bar{1}_1\bar{2}_1 \end{pmatrix} \right\}$ a) X_1 N relation $\bar{V} \times \bar{W} \Leftrightarrow \bar{V} = \pm \bar{W}$ $reflexiva: \bar{V} \times \bar{W} \Rightarrow \bar{V} = \pm \bar{W} \Rightarrow \bar{W} = \pm \bar{V} \Rightarrow \bar{W} = \bar{W} \Rightarrow \bar{W} \Rightarrow \bar{W} = \bar{W} \Rightarrow \bar{W} \Rightarrow \bar{W} = \bar{W} \Rightarrow \bar{W} \Rightarrow$

 $X/_{\sim} = \mathbb{P}^{2}(\mathbb{F}_{3}) = \{ (\overline{1},\overline{1}), (\overline{1},\overline{2}), (\overline{2},\overline{1}), (\overline{2},\overline{2}) \}$ (elementer) $X = \mathbb{F}_{3} \times \mathbb{F}_{3} \setminus \{0,0\}$