A general non-Markovian master equation for time-dependent Hamiltonians with coupling that is weak, strong, or anything in between

Nike Dattani* Harvard-Smithsonian Center for Astrophysics

> Camilo Chaparro Sogamoso[†] National University of Colombia

I. THE HAMILTONIAN

We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1)

$$H_{S}(t) = \varepsilon_{0}(t) |0\rangle\langle 0| + \varepsilon_{1}(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| + V_{01}(t) |0\rangle\langle 1|,$$
(2)

$$H_I = |0\rangle\langle 0| \sum_{\mathbf{k}} \left(g_{0\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^* b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{1\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^* b_{\mathbf{k}} \right), \tag{3}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{4}$$

For the states $|0\rangle, |1\rangle$ we have the ortonormal condition:

$$\langle i|j\rangle = \delta_{ij}.\tag{5}$$

II. UNITARY TRANSFORMATION INTO THE VARIATIONALLY OPTIMIZABLE FRAME

We will apply to $H\left(t\right)$, the unitary transformation defined by $e^{\pm V\left(t\right)}$ where is the variationally optimizable anti-Hermitian operator:

$$V(t) \equiv |0\rangle\langle 0| \sum_{\mathbf{k}} \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right) + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right).$$
 (6)

in terms of the variational scalar parameters $v_{i\mathbf{k}}(t)$ defined as:

$$v_{i\mathbf{k}}(t) = \omega_{\mathbf{k}} \alpha_{i\mathbf{k}}(t). \tag{7}$$

which will soon be optimized in order to give the most accurate possible master equation for the system's dynamics in the presence of this bath. We define the following notation for the function (6):

$$\hat{\varphi}_{i}\left(t\right) \equiv \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}\right),\tag{8}$$

$$V(t) = |0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t). \tag{9}$$

Here * denotes the complex conjugate. Expanding $e^{\pm V(t)}$ using the notation (6) will give us the following result:

$$e^{\pm V(t)} = e^{\pm (|0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t))}$$
(10)

$$= \mathbb{I} \pm (|0\rangle\langle 0|\hat{\varphi}_{0}(t) + |1\rangle\langle 1|\hat{\varphi}_{1}(t)) + \frac{(\pm (|0\rangle\langle 0|\hat{\varphi}_{0}(t) + |1\rangle\langle 1|\hat{\varphi}_{1}(t)))^{2}}{2!} + \dots$$
(11)

$$= |0\rangle\langle 0| + |1\rangle\langle 1| \pm (|0\rangle\langle 0|\hat{\varphi}_0(t) + |1\rangle\langle 1|\hat{\varphi}_1(t)) + \frac{|0\rangle\langle 0|\hat{\varphi}_0^2(t)}{2!} + \frac{|1\rangle\langle 1|\hat{\varphi}_1^2(t)}{2!} + \dots$$
 (12)

$$= |0\rangle\langle 0| \left(\mathbb{I} \pm \hat{\varphi}_0(t) + \frac{\hat{\varphi}_0^2(t)}{2!} \pm \ldots \right) + |1\rangle\langle 1| \left(\mathbb{I} \pm \hat{\varphi}_1(t) + \frac{\hat{\varphi}_1^2(t)}{2!} \pm \ldots \right)$$
(13)

$$= |0\rangle\langle 0|e^{\pm\hat{\varphi}_0(t)} + |1\rangle\langle 1|e^{\pm\hat{\varphi}_1(t)} \tag{14}$$

$$= |0\rangle\langle 0|e^{\pm\sum_{\mathbf{k}}\left(\alpha_{0\mathbf{k}}(t)b_{\mathbf{k}}^{\dagger} - \alpha_{0\mathbf{k}}^{*}(t)b_{\mathbf{k}}\right)} + |1\rangle\langle 1|e^{\pm\sum_{\mathbf{k}}\left(\alpha_{1\mathbf{k}}(t)b_{\mathbf{k}}^{\dagger} - \alpha_{1\mathbf{k}}^{*}(t)b_{\mathbf{k}}\right)}$$

$$\tag{15}$$

$$= |0\rangle\langle 0|B_0^{\pm}(t) + |1\rangle\langle 1|B_1^{\pm}(t), \qquad (16)$$

$$B_i^{\pm}(t) \equiv e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)}. \tag{17}$$

Let's recall the Zassenhaus formula:

$$e^{r(X+Y)} = e^{rX} e^{rY} e^{-\frac{r^2}{2}[X,Y]} e^{\frac{r^3}{6}(2[Y,[X,Y]] + [X,[X,Y]])} e^{\frac{-r^4}{24}([[[X,Y],X],X] + 3[[[X,Y],X],Y] + 3[[[X,Y],Y],Y])} \cdots$$
(18)

Since $\left[\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}, \frac{v_{j\mathbf{k}'}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger} - \frac{v_{j\mathbf{k}'}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger} - \frac{v_{j\mathbf{k}'}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}'}^{\dagger}\right] = 0$ for all \mathbf{k}' , \mathbf{k} and i,j we can show making r=1 in (18) the following result:

$$e^{\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right) + \left(\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)} = e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}}{$$

$$=e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{-\frac{1}{2}0}\cdots$$
(20)

$$=e^{\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}}e^{\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}.$$
(21)

By induction of this result we can write an expresion of $B_i^{\pm}(t)$ (shown in equation (17)) as a product of exponentials, which we will call "displacement" operators $D(\pm v_{i\mathbf{k}}(t))$:

$$D\left(\pm v_{i\mathbf{k}}\left(t\right)\right) \equiv e^{\pm \left(\frac{v_{i\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)},\tag{22}$$

$$B_i^{\pm}(t) = \prod_{\mathbf{k}} D\left(\pm \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right). \tag{23}$$

this will help us to write operators O(t) transformed in the variational frame as:

$$\overline{O(t)} \equiv e^{V(t)} O(t) e^{-V(t)}. \tag{24}$$

We will use the following identities:

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

```
= |1\rangle\langle 1|B_1^+(t) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (33)
                                = |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)|B_0^-(t) + B_1^+(t)|1\rangle\langle 1|1\rangle\langle 1|B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (34)
                                = B_1^+(t) |1\rangle\langle 1|1\rangle\langle 1|B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (35)
                                = |1\rangle\langle 1|,
                                                                                                                                                                                                                                                                                                                                                                                                                                    (36)
\overline{|0\rangle\langle 1|(t)} = e^{V(t)}|0\rangle\langle 1|e^{-V(t)}
                                                                                                                                                                                                                                                                                                                                                                                                                                    (37)
                                = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|0\rangle\langle 1|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (38)
                                = (|0\rangle\langle 0|0\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)|0\rangle\langle 1|) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (39)
                                = (|0\rangle\langle 0|0\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|0\rangle\langle 1|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (40)
                                = |0\rangle 1|B_0^+(t) (|0\rangle 0|B_0^-(t) + |1\rangle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (41)
                                = |0\rangle\langle 1|0\rangle\langle 0|B_0^+(t)B_0^-(t) + |0\rangle\langle 1|1\rangle\langle 1|B_0^+(t)B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (42)
                                = |0\rangle\langle 1|B_0^+(t)B_1^-(t),
                                                                                                                                                                                                                                                                                                                                                                                                                                    (43)
\overline{|1\rangle\langle 0|(t)|} = e^{V(t)}|1\rangle\langle 0|e^{-V(t)}|
                                                                                                                                                                                                                                                                                                                                                                                                                                    (44)
                                = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|1\rangle\langle 0|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (45)
                                = (|0\rangle\langle 0|1\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)|1\rangle\langle 0|) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (46)
                                = (|0\rangle\langle 0|1\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|1\rangle\langle 0|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (47)
                                = |1\rangle\langle 0|B_1^+(t) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (48)
                                = |1\rangle\langle 0|0\rangle\langle 0|B_1^+(t) B_0^-(t) + |1\rangle\langle 0|1\rangle\langle 1|B_1^+(t) B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (49)
                                =|1\rangle\langle 0|B_1^+(t)B_0^-(t),
                                                                                                                                                                                                                                                                                                                                                                                                                                    (50)
          \overline{b_{\mathbf{k}}(t)} = e^{V(t)} b_{\mathbf{k}} e^{-V(t)}
                                                                                                                                                                                                                                                                                                                                                                                                                                    (51)
                                = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))) b_{\mathbf{k}} (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (52)
                                = |0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}B_0^-(t)|0\rangle\langle 0| + |0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}|1\rangle\langle 1|B_1^-(t) + |1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}B_1^-(t)|1\rangle\langle 1|
                                                                                                                                                                                                                                                                                                                                                                                                                                   (53)
                                = |0\rangle\langle 0|0\rangle\langle 0|B_0^+(t)\,b_{\mathbf{k}}B_0^-(t) + |0\rangle\langle 0|1\rangle\langle 1|B_0^+(t)\,b_{\mathbf{k}}B_1^-(t) + |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)\,b_{\mathbf{k}}B_0^-(t) + |1\rangle\langle 1|B_1^+(t)\,b_{\mathbf{k}}B_1^-(t)
                                                                                                                                                                                                                                                                                                                                                                                                                                   (54)
                               = |0\rangle\langle 0| \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1| \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (55)
                               = \left( |0\rangle\!\langle 0| + |1\rangle\!\langle 1| \right) b_{\mathbf{k}} - |1\rangle\!\langle 1| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - |0\rangle\!\langle 0| \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}
                                                                                                                                                                                                                                                                                                                                                                                                                                    (56)
                               =b_{\mathbf{k}}-|1\rangle\langle 1|\frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}-|0\rangle\langle 0|\frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}
                                                                                                                                                                                                                                                                                                                                                                                                                                    (57)
      \overline{b_{\mathbf{k}}(t)}^{\dagger} = e^{V(t)} b_{\mathbf{k}}^{\dagger} e^{-V(t)}
                                                                                                                                                                                                                                                                                                                                                                                                                                    (58)
                                = (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)) b_{\mathbf{k}}^{\dagger} (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))
                                                                                                                                                                                                                                                                                                                                                                                                                                    (59)
                               =|0\rangle\!\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t)|0\rangle\!\langle 0|+|0\rangle\!\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}|1\rangle\!\langle 1|B_1^-(t)+|1\rangle\!\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}|0\rangle\!\langle 0|B_0^-(t)+|1\rangle\!\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t)|1\rangle\!\langle 1|B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)B_1^+(t)
                               = |0\rangle\langle 0|0\rangle\langle 0|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t) + |0\rangle\langle 0|1\rangle\langle 1|B_0^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t) + |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_0^-(t) + |1\rangle\langle 1|1\rangle\langle 1|B_1^+(t)b_{\mathbf{k}}^{\dagger}B_1^-(t) (61)
                               =|0\rangle\!\langle 0|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)+|1\rangle\!\langle 1|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)
                                                                                                                                                                                                                                                                                                                                                                                                                                    (62)
                               =b_{\mathbf{k}}^{\dagger}-|1\rangle\langle 1|\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}-|0\rangle\langle 0|\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}.
                                                                                                                                                                                                                                                                                                                                                                                                                                    (63)
```

 $\overline{|0\rangle\langle 0|(t)|} = e^{V(t)}|0\rangle\langle 0|e^{-V(t)}$

 $= |0\rangle\langle 0|,$

 $= (|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t))|0\rangle\langle 0|(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))$

 $= |0\rangle\langle 0|B_0^+(t) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))$

 $= |0\rangle\langle 0|0\rangle\langle 0|B_0^+(t) B_0^-(t) + |0\rangle\langle 0|1\rangle\langle 1|B_0^+(t) B_1^-(t)$

 $\overline{|1\rangle\langle 1|(t)|} = \left(|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|B_1^+(t)\right)|1\rangle\langle 1|\left(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t)\right)$

 $= (|0\rangle\langle 0|0\rangle\langle 0|B_0^+(t) + |1\rangle\langle 1|0\rangle\langle 0|B_1^+(t)) (|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))$

 $= (|0\rangle\langle 0|1\rangle\langle 1|B_0^+(t) + |1\rangle\langle 1|1\rangle\langle 1|B_1^+(t)))(|0\rangle\langle 0|B_0^-(t) + |1\rangle\langle 1|B_1^-(t))$

We have used the following results as well to obtain the transformed $b_{\mathbf{k}}$ and $b_{\mathbf{k}}^{\dagger}$:

$$B_i^+(t) b_{\mathbf{k}} B_i^-(t) = b_{\mathbf{k}} - \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}, \tag{64}$$

$$B_i^+(t) b_{\mathbf{k}}^{\dagger} B_i^-(t) = b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}}.$$
 (65)

We therefore have the following relationships:

$$\overline{\varepsilon_0(t)|0\rangle\langle 0|(t)} = \varepsilon_0(t)|0\rangle\langle 0|, \tag{66}$$

$$\overline{\varepsilon_1(t)|1\rangle\langle 1|(t)|} = \varepsilon_1(t)|1\rangle\langle 1|, \tag{67}$$

$$\overline{V_{10}(t)|1\rangle\langle 0|(t)|} = V_{10}(t)|1\rangle\langle 0|B_1^+(t)B_0^-(t), \tag{68}$$

$$\overline{V_{01}(t)|0\rangle\langle 1|(t)} = V_{01}(t)|0\rangle\langle 1|B_0^+(t)B_1^-(t), \tag{69}$$

$$\overline{\left(g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}\right)(t)} = g_{i\mathbf{k}}\left(|0\rangle\langle 0|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1|\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}\right)\right) + g_{i\mathbf{k}}^{*}\left(|0\rangle\langle 0|\left(b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) + |1\rangle\langle 1|\left(b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)\right)\right)$$

$$(70)$$

$$=g_{i\mathbf{k}}\Big((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\Big)+g_{i\mathbf{k}}^{*}\Big((|0\rangle\langle 0|+|1\rangle\langle 1|)b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|\Big)$$
(71)

$$=g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}-g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|0\rangle\langle 0|-g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|-g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}|1\rangle\langle 1|$$
(72)

$$=g_{i\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{i\mathbf{k}}^{*}b_{\mathbf{k}}-\left(g_{i\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}+g_{i\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)|0\rangle\langle 0|-\left(g_{i\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}+g_{i\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)|1\rangle\langle 1|,\tag{73}$$

$$\overline{|0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)(t)} = \left(|0\rangle\langle 0|B_{0}^{+}(t) + |1\rangle\langle 1|B_{1}^{+}(t)\right)|0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right) \left(|0\rangle\langle 0|B_{0}^{-}(t) + |1\rangle\langle 1|B_{1}^{-}(t)\right)$$
(74)

$$= |0\rangle\langle 0|B_0^+(t)|0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right) |0\rangle\langle 0|B_0^-(t)$$
(75)

$$= |0\rangle\langle 0|B_0^+(t) \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right)B_0^-(t)$$

$$\tag{76}$$

$$=|0\rangle\langle 0|\left(g_{0\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)+g_{0\mathbf{k}}^{*}\left(b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)\right),\tag{77}$$

$$\overline{|1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^{*}b_{\mathbf{k}}\right)(t)} = \left(|0\rangle\langle 0|B_{0}^{+}(t) + |1\rangle\langle 1|B_{1}^{+}(t)\right)|1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^{*}b_{\mathbf{k}}\right) \left(|0\rangle\langle 0|B_{0}^{-}(t) + |1\rangle\langle 1|B_{1}^{-}(t)\right) \tag{78}$$

$$= |1\rangle\langle 1|B_1^+(t)|1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1k}^*b_{\mathbf{k}}\right)|1\rangle\langle 1|B_1^-(t)$$
(79)

$$=|1\rangle\langle 1|B_1^+(t)\left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger}+g_{1\mathbf{k}}^*b_{\mathbf{k}}\right)B_1^-(t)$$
(80)

$$=|1\rangle\langle 1|\left(g_{1\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger}-\frac{v_{1\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}\right)+g_{1\mathbf{k}}^{*}\left(b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right)\right),\tag{81}$$

$$\overline{\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}(t)} = \omega_{\mathbf{k}}\left(|0\rangle\langle 0|B_{0}^{+}(t) + |1\rangle\langle 1|B_{1}^{+}(t)\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\left(|0\rangle\langle 0|B_{0}^{-}(t) + |1\rangle\langle 1|B_{1}^{-}(t)\right)$$
(82)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \prod_{\mathbf{k}'} D\left(\frac{v_{0\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) + |1\rangle\langle 1| \prod_{\mathbf{k}'} D\left(\frac{v_{1\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \left(|0\rangle\langle 0| \prod_{\mathbf{k}'} D\left(-\frac{v_{0\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) + |1\rangle\langle 1| \prod_{\mathbf{k}'} D\left(-\frac{v_{1\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) \right)$$
(83)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0|B_0^+(t) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} B_0^-(t) + |1\rangle\langle 1|B_1^+(t) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} B_1^-(t) \right)$$
(84)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| D\left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D\left(-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}' \neq \mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) D\left(-\frac{v_{0\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right) \right)$$
(85)

$$+|1\rangle\langle 1|D\left(\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}D\left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right)\prod_{\mathbf{k}'\neq\mathbf{k}}\left(D\left(\frac{v_{1\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right)D\left(-\frac{v_{1\mathbf{k}'}(t)}{\omega_{\mathbf{k}'}}\right)\right)\right)$$
(86)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| D \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D \left(-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \mathbb{I} + |1\rangle\langle 1| D \left(\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} D \left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \mathbb{I} \right)$$
(87)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$
(88)

$$= \omega_{\mathbf{k}} \left(|0\rangle\langle 0| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \right) + |1\rangle\langle 1| \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} + \left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \right) \right)$$
(89)

$$=\omega_{\mathbf{k}}\left(|0\rangle\langle 0|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+|1\rangle\langle 1|\left(\left|\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)+|0\rangle\langle 0|\left(\left|\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right|^{2}-\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}-\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)\right) (90)$$

$$= \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} \right) \right)$$
(91)

$$=\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \omega_{\mathbf{k}}\left(\left|1\right\rangle\left(\left|\frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right|^{2} - \frac{v_{1\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right) + \left|0\right\rangle\left(\left|\frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right|^{2} - \frac{v_{0\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}\right)\right)$$
(92)

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - v_{1\mathbf{k}}^*(t) b_{\mathbf{k}} - v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - v_{0\mathbf{k}}^*(t) b_{\mathbf{k}} - v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right)$$

$$(93)$$

$$= \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^{2}}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^{*}(t) b_{\mathbf{k}} + v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^{2}}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^{*}(t) b_{\mathbf{k}} + v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right). \tag{94}$$

So all parts of $H\left(t\right)$ can be written in the variationally optimizable frame now:

$$\overline{H_S(t)} = \overline{\varepsilon_0(t)|0\rangle\langle 0|} + \overline{\varepsilon_1(t)|1\rangle\langle 1|} + \overline{V_{10}(t)|1\rangle\langle 0|} + \overline{V_{01}(t)|0\rangle\langle 1|}$$

$$(95)$$

$$= \varepsilon_0(t) |0\rangle\langle 0| + \varepsilon_1(t) |1\rangle\langle 1| + V_{10}(t) |1\rangle\langle 0| B_1^+(t) B_0^-(t) + V_{01}(t) |0\rangle\langle 1| B_0^+(t) B_1^-(t),$$
(96)

$$\overline{H_I} = \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^*b_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^*b_{\mathbf{k}}\right)}$$
(97)

$$= \overline{\sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right)} + \overline{\sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right)}$$
(98)

$$= \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) + g_{0\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} \right) + g_{1\mathbf{k}}^{*} \left(b_{\mathbf{k}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$
(99)

$$= \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{0\mathbf{k}}^{*}b_{\mathbf{k}}\right) + \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}b_{\mathbf{k}}^{\dagger} + g_{1\mathbf{k}}^{*}b_{\mathbf{k}}\right) - \sum_{\mathbf{k}} |0\rangle\langle 0| \left(g_{0\mathbf{k}}\frac{v_{0\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{0\mathbf{k}}^{*}\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) - \sum_{\mathbf{k}} |1\rangle\langle 1| \left(g_{1\mathbf{k}}\frac{v_{1\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{1\mathbf{k}}^{*}\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right), \tag{100}$$

$$\overline{H_B} = \overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}}$$

$$= \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) \right)$$

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{\mathbf{k}} \left(|1\rangle\langle 1| \left(\frac{|v_{1\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{1\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{1\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) + |0\rangle\langle 0| \left(\frac{|v_{0\mathbf{k}}(t)|^2}{\omega_{\mathbf{k}}} - \left(v_{0\mathbf{k}}^*(t) b_{\mathbf{k}} + v_{0\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \right) \right) .$$

$$(101)$$

Finally merging these expressions gives the transformed Hamiltonian:

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{j}^{+}(t) B_{j'}^{-}(t) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left((g_{j\mathbf{k}} - v_{j\mathbf{k}}(t)) b_{\mathbf{k}}^{\dagger} + (g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))^{*} b_{\mathbf{k}} + \frac{\left| v_{j\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$(104)$$

Also we may write this transformed Hamiltonian as a sum of the form:

$$\overline{H\left(t\right)} = \overline{H_{\bar{S}}} + \overline{H_{\bar{I}}} + \overline{H_{\bar{B}}}.\tag{105}$$

Let's define:

$$R_{i}(t) \equiv \sum_{\mathbf{k}} \left(\frac{\left| v_{i\mathbf{k}}(t) \right|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right), \tag{106}$$

$$B_{iz}(t) \equiv \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} \right), \tag{107}$$

$$\chi_{ij}(t) \equiv \sum_{\mathbf{k}} \frac{1}{2} \left(\frac{v_{i\mathbf{k}}^{*}(t) v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t) v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}^{2}} \right).$$
 (108)

 $\chi_{ij}(t)$ is an imaginary number so $e^{\chi_{ij}(t)}$ is the phase associated to $B_{ij}(t)$ as we'll will show. We can summarize these definitions with other that we will proof later and use from now in the following matrix:

$$\begin{pmatrix}
B_{iz}(t) & B_{i\pm}(t) \\
B_{x}(t) & B_{ij}(t) \\
B_{y}(t) & R_{i}(t)
\end{pmatrix} \equiv \begin{pmatrix}
\sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^{*} b_{\mathbf{k}} \right) & e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{i\mathbf{k}}^{\dagger}(t)}{\omega_{\mathbf{k}}} b_{\mathbf{k}} \right)} \\
\frac{B_{1}^{+}(t)B_{0}^{-}(t) + B_{0}^{+}(t)B_{1}^{-}(t) - B_{10}(t) - B_{10}^{*}(t)}{2} & e^{\chi_{ij}(t)} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2} \right) \right) \\
\frac{B_{0}^{+}(t)B_{1}^{-}(t) - B_{1}^{+}(t)B_{0}^{-}(t) + B_{10}(t) - B_{10}^{*}(t)}{2i} & \sum_{\mathbf{k}} \left(\frac{|v_{i\mathbf{k}}(t)|^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}} \frac{v_{i\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*} \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \\
(109)$$

$$(\cdot)^{\Re} \equiv \Re(\cdot),\tag{110}$$

$$(\cdot)^{\Im} \equiv \Im(\cdot). \tag{111}$$

We reduced the lenght of the expression for the real and imaginary part as shown before. We assume that the bath is at equilibrium with inverse temperature $\beta = \frac{1}{k_{\rm B}T}$, considering the stationary bath state as reference written in the following way:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)}.\tag{112}$$

We can show using the coherence representation of the creation and annihilation operators that:

$$b^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & \sqrt{n} & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

$$(113)$$

$$b = \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots & 0 & \dots \\ 0 & 0 & 0 & 0 & \ddots & \vdots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \sqrt{n} & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

$$(114)$$

So the product of the matrix representation of b^{\dagger} and b with $-\beta$ is:

$$-\beta \omega b^{\dagger} b = -\beta \omega \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & \dots \\ 0 & 1 & 0 & \dots & 0 & \dots \\ 0 & 0 & 2 & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \dots \\ 0 & 0 & 0 & \dots & n & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
(115)

$$=\sum_{j=0}^{\infty} -j\beta\omega |j\rangle\langle j|, \qquad (116)$$

So the density matrix ρ_B written in the coherence representation can be obtained using the Zassenhaus formula and the fact that $[|j\rangle\langle j|, |i\rangle\langle i|] = 0$ for all i, j.

$$\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right) = \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right) |j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|, \tag{117}$$

$$\exp\left(-\beta \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}\right) = \prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|. \tag{118}$$

The value of Tr $\left(\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right)$ is:

$$\operatorname{Tr}\left(\exp\left(-\beta\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right) = \operatorname{Tr}\left(\sum_{j_{\mathbf{k}}}\exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(119)

$$= \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) \tag{120}$$

$$= \sum_{j_{\mathbf{k}}} \exp\left(-\beta \omega_{\mathbf{k}}\right)^{j_{\mathbf{k}}} \tag{121}$$

$$= \frac{1}{1 - \exp(-\beta \omega_{\mathbf{k}})}$$
 (by geometric series) (122)

$$\equiv f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right), \tag{123}$$

$$\operatorname{Tr}\left(\exp\left(-\beta\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}\right)\right) = \operatorname{Tr}\left(\prod_{\mathbf{k}}\sum_{j_{\mathbf{k}}}\exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}|\right)$$
(124)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}| \right)$$
 (125)

$$= \prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}} \right). \tag{126}$$

So the density matrix of the bath is:

$$\rho_B = \frac{e^{-\beta H_B}}{\text{Tr}\left(e^{-\beta H_B}\right)} \tag{127}$$

$$= \frac{\prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{\prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}}\right)}$$
(128)

$$= \frac{\prod_{\mathbf{k}} \sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{\prod_{\mathbf{k}} f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}}\right)}$$

$$= \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}\right) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}} \left(-\beta \omega_{\mathbf{k}}\right)}.$$
(128)

Now, given that creation and annihilation satisfy:

$$b_{\mathbf{k}} \mid j_{\mathbf{k}} \rangle = \sqrt{j_{\mathbf{k}}} \mid j_{\mathbf{k}} - 1 \rangle, \tag{130}$$

$$b_{\mathbf{k}}^{\dagger} | j_{\mathbf{k}} \rangle = \sqrt{j_{\mathbf{k}} + 1} | j_{\mathbf{k}} + 1 \rangle. \tag{131}$$

Then we can prove that $\langle B_{iz}\rangle_{\overline{H}_{\bar{B}}}=0$ using the following property based on (130)-(131):

$$\langle B_{iz}(t)\rangle_{\overline{H_B}} = \operatorname{Tr}\left(\rho_B B_{iz}(t)\right) = \operatorname{Tr}\left(B_{iz}(t)\rho_B\right)$$
 (132)

$$= \operatorname{Tr}\left(\left(\sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)\right)b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)\right)^{*}b_{\mathbf{k}}\right)\right)\rho_{B}\right)$$
(133)

$$= \sum_{\mathbf{k}} \operatorname{Tr}\left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)\right) b_{\mathbf{k}}^{\dagger} \rho_{B}\right) + \sum_{\mathbf{k}} \operatorname{Tr}\left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)\right)^{*} b_{\mathbf{k}} \rho_{B}\right)$$
(134)

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}(t)) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \rho_B \right) + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}(t))^* \operatorname{Tr} \left(b_{\mathbf{k}} \rho_B \right)$$
(135)

$$= \sum_{\mathbf{k}} \operatorname{Tr} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} \operatorname{Tr} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\text{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right)$$

$$(136)$$

$$= \sum_{\mathbf{k}} (\mathbf{g_{i\mathbf{k}}} - \mathbf{v_{i\mathbf{k}}}(\mathbf{t})) \operatorname{Tr} \left(b_{\mathbf{k}}^{\dagger} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right) + \sum_{\mathbf{k}} (\mathbf{g_{i\mathbf{k}}} - \mathbf{v_{i\mathbf{k}}}(\mathbf{t}))^* \operatorname{Tr} \left(b_{\mathbf{k}} \prod_{\mathbf{k}} \frac{\sum_{j_{\mathbf{k}}} \exp(-j_{\mathbf{k}} \beta \omega_{\mathbf{k}}) |j_{\mathbf{k}} \rangle \langle j_{\mathbf{k}}|}{f_{\operatorname{Bose-Einstein}}(-\beta \omega_{\mathbf{k}})} \right),$$

$$(137)$$

$$\operatorname{Tr}\left(b_{\mathbf{k}}^{\dagger}\sum_{j_{\mathbf{k}}}\exp(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}})|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}\right) = \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}}\exp(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}})\right)b_{\mathbf{k}}^{\dagger}|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}\right) \quad \text{(by cyclic permutivity of trace, move } b_{\mathbf{k}}^{\dagger}) \quad (138)$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)\right) \sqrt{j_{\mathbf{k}} + 1} \left|j_{\mathbf{k}} + 1\right\rangle \langle j_{\mathbf{k}}\right|\right)$$
(139)

$$=0, (140)$$

$$\operatorname{Tr}\left(b_{\mathbf{k}}\sum_{j_{\mathbf{k}}}\exp(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}})|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}\right) = \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}}\exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)\right)b_{\mathbf{k}}|j_{\mathbf{k}}\rangle\langle j_{\mathbf{k}}\right) \quad \text{(by cyclic permutivity of trace, move } b_{\mathbf{k}}) \quad (141)$$

$$= \operatorname{Tr}\left(\left(\sum_{j_{\mathbf{k}}} \exp\left(-j_{\mathbf{k}}\beta\omega_{\mathbf{k}}\right)\right) \sqrt{j_{\mathbf{k}}} \left|j_{\mathbf{k}} - 1\rangle\langle j_{\mathbf{k}}\right|\right)$$
(142)

$$=0. (143)$$

we therefore find that:

$$\langle B_{iz}\left(t\right)\rangle_{\overline{H_{R}}}=0. \tag{144}$$

Another important expected value is $B\left(t\right)=\langle B^{\pm}\left(t\right)\rangle_{\overline{H_{\bar{B}}}}$, where $B^{\pm}\left(t\right)=e^{\pm\sum_{\mathbf{k}}\left(\frac{v_{\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}^{\dagger}-\frac{v_{\mathbf{k}}^{*}\left(t\right)}{\omega_{\mathbf{k}}}b_{\mathbf{k}}\right)}$ is given by:

$$\langle B^{\pm} \rangle_{H_B} = \text{Tr} \left(\rho_B B^{\pm} \right) = \text{Tr} \left(B^{\pm} \rho_B \right)$$
 (145)

$$= \operatorname{Tr}\left(e^{\pm \sum_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} b_{\mathbf{k}}\right)} \rho_{B}\right)$$
(146)

$$= \prod_{\mathbf{k}} \operatorname{Tr} \left(D \left(\pm \alpha_{\mathbf{k}} \right) \rho_{B} \right)$$

$$= \prod_{\mathbf{k}} \left\langle D \left(\pm \alpha_{\mathbf{k}} \right) \right\rangle.$$
(147)

$$= \prod_{\mathbf{k}} \langle D(\pm \alpha_{\mathbf{k}}) \rangle. \tag{148}$$

Given that we can write a density operator as:

$$\rho = \int P(\alpha) |\alpha\rangle \langle \alpha| d^2 \alpha. \tag{149}$$

where $P(\alpha)$ satisfies $\int P(\alpha) d^2\alpha = 1$ and describes the state. It follows that the expectation value of an operator A with respect to the density operator described by $P(\alpha)$ is given by:

$$\langle A \rangle = \text{Tr} (A\rho)$$
 (150)

$$= \int P(\alpha) \langle \alpha | A | \alpha \rangle d^2 \alpha. \tag{151}$$

We are typically interested in thermal state density operators, for which it can be shown that $P\left(\alpha\right) = \frac{1}{\pi N} \exp\left(-\frac{|\alpha|^2}{N}\right)$ where $N = (e^{\beta \omega} - 1)^{-1}$ is the average number of excitations in an oscillator of frequency ω at inverse temperature $\beta = 1/k_BT$.

Using the integral representation (151) we could obtain that the expected value for the displacement operator D(h) with $h \in \mathbb{C}$ is equal to:

$$\langle D(h) \rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle \alpha | D(h) | \alpha \rangle d^2 \alpha$$
 (152)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle 0|D(-\alpha)D(h)D(\alpha)|0\rangle d^2\alpha, \tag{153}$$

$$D(h)D(\alpha) = D(h+\alpha)e^{\frac{1}{2}(h\alpha^*-h^*\alpha)},$$
(154)

$$D(-\alpha)(D(h)D(\alpha)) = D(-\alpha)D(h+\alpha)e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(155)

$$= D(h) e^{\frac{1}{2}(-\alpha(h+\alpha)^* + \alpha^*(h+\alpha))} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(156)

$$= D(\alpha) e^{\frac{1}{2}(-\alpha h^* - |\alpha|^2 + \alpha^* h + |\alpha|^2)} e^{\frac{1}{2}(h\alpha^* - h^*\alpha)}$$
(157)

$$= D(\alpha) e^{(h\alpha^* - h^*\alpha)}, \tag{158}$$

$$\langle D(h) \rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \langle 0|D(h) \exp(h\alpha^* - h^*\alpha) |0\rangle d^2\alpha$$
 (159)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0|D(h)|0\rangle d^2\alpha \tag{160}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0|h\rangle d^2\alpha, \tag{161}$$

$$|\alpha\rangle = \exp\left(-\frac{|\alpha|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle,$$
 (162)

$$\langle D(h) \rangle = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0| \exp\left(-\frac{|h|^2}{2}\right) \sum_{n=0}^{\infty} \frac{h^n}{\sqrt{n!}} |n\rangle d^2\alpha \tag{163}$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) d^2\alpha \tag{164}$$

$$= \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int \exp\left(-\frac{|\alpha|^2}{N} + h\alpha^* - h^*\alpha\right) d^2\alpha, \tag{165}$$

$$\alpha = x + iy, \tag{166}$$

$$\langle D(h) \rangle = \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2 + y^2}{N} + h\left(x - iy\right) - h^*\left(x + iy\right)\right) dxdy \tag{167}$$

$$= \frac{\exp\left(-\frac{|h|^2}{2}\right)}{\pi N} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{N} + hx - h^*x\right) dx \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{N} - ihy - ih^*y\right) dy, \tag{168}$$

$$-\frac{x^2}{N} + hx - h^*x = -\frac{1}{N} \left(x^2 - Nhx + Nh^*x \right)$$
 (169)

$$= -\frac{1}{N} \left(x + \frac{(Nh^* - Nh)}{2} \right)^2 + \frac{N(h^* - h)^2}{4}, \tag{170}$$

$$\frac{y^2}{N} - ihy - ih^*y = -\frac{1}{N} \left(y^2 + iNhy + iNh^*y \right)$$
 (171)

$$= -\frac{1}{N} \left(y^2 + \frac{iN(h+h^*)}{2} \right) - \frac{N(h+h^*)^2}{4}, \tag{172}$$

$$\langle D(h) \rangle = \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{N}\left(x + \frac{(Nh^* - Nh)}{2}\right)^2 - \frac{1}{N}\left(y^2 + \frac{iN(h + h^*)}{2}\right)\right) dx dy, \quad (173)$$

$$\sqrt{2\pi}\sigma = \int_{-\infty}^{\infty} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx,\tag{174}$$

$$\langle D\left(h\right)\rangle = \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \int_{-\infty}^{\infty} \exp\left(-\frac{\left(x + \frac{(Nh^* - Nh)}{2}\right)^2}{2\left(\sqrt{\frac{N}{2}}\right)^2}\right) dx \int_{-\infty}^{\infty} \exp\left(-\frac{\left(y^2 + \frac{iN(h + h^*)}{2}\right)}{2\left(\sqrt{\frac{N}{2}}\right)^2}\right) dy \quad (175)$$

$$= \frac{\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)}{\pi N} \left(\sqrt{2\pi}\sqrt{\frac{N}{2}}\right)^2 \tag{176}$$

$$=\exp\left(-\frac{|h|^2}{2} + \frac{N(h^* - h)^2}{4} - \frac{N(h + h^*)^2}{4}\right)$$
(177)

$$= \exp\left(-\frac{|h|^2}{2} + \frac{N\left(h^{*2} - 2hh^* + h^2\right) - N\left(h^2 + 2hh^* + h^{*2}\right)}{4}\right)$$
(178)

$$=\exp\left(-|h|^2\left(N+\frac{1}{2}\right)\right) \tag{179}$$

$$=\exp\left(-|h|^2\left(\frac{1}{e^{\beta\omega}-1}+\frac{1}{2}\right)\right) \tag{180}$$

$$= \exp\left(-\frac{|h|^2}{2} \left(\frac{e^{\beta\omega} + 1}{e^{\beta\omega} - 1}\right)\right) \tag{181}$$

$$= \exp\left(-\frac{|h|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right). \tag{182}$$

In the last line we used $\frac{e^{\beta\omega}+1}{e^{\beta\omega}-1}=\coth\left(\frac{\beta\omega}{2}\right)$. So the value of (147) using (182) is given by:

$$B = \exp\left(-\sum_{\mathbf{k}} \frac{|\alpha_{\mathbf{k}}|^2}{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right). \tag{183}$$

We will now force $\langle \overline{H_{\bar{I}}} \rangle_{\overline{H_{\bar{B}}}} = 0$. We will also introduce the bath renormalizing driving in $\overline{H_S}$ to treat it non-perturbatively in the subsequent formalism, we associate the terms related with $B^+\sigma^+$ and $B^-\sigma^-$ with the interaction part of the Hamiltonian $\overline{H_I}$ and we subtract their expected value in order to satisfy $\langle \overline{H_{\bar{I}}} \rangle_{\overline{H_{\bar{B}}}} = 0$.

(186)

A final form of the terms of the Hamiltonian \overline{H} is:

 $\equiv \overline{H_{\bar{S}}(t)} + \overline{H_{\bar{I}}} + \overline{H_{\bar{B}}}.$

$$\overline{H(t)} = \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{j}^{+}(t) B_{j'}^{-}(t) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{j\mathbf{k}} |j\rangle\langle j| \left(g_{j\mathbf{k}} - v_{j\mathbf{k}}(t) b_{\mathbf{k}}^{\dagger} + (g_{j\mathbf{k}} - v_{j\mathbf{k}}(t))^{*} b_{\mathbf{k}} + \frac{|v_{j\mathbf{k}}(t)|^{2}}{\omega_{\mathbf{k}}} - \left(g_{j\mathbf{k}} \frac{v_{j\mathbf{k}}^{*}(t)}{\omega_{\mathbf{k}}} + g_{j\mathbf{k}}^{*} \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \\
= \sum_{j} \varepsilon_{j}(t) |j\rangle\langle j| + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| B_{jj'}(t) + \sum_{j} |j\rangle\langle j| B_{jz}(t) + \sum_{j \neq j'} V_{jj'}(t) |j\rangle\langle j'| \left(B_{j}^{+}(t) B_{j'}^{-}(t) - B_{jj'}(t) \right) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}$$

$$(185)$$

The parts of the Hamiltonian splitted are obtained using the following expected value:

$$\langle B_i^+(t) B_j^-(t) \rangle = B_{ij}(t) \tag{187}$$

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle$$
(188)

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) D\left(-\frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle \tag{189}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) \right\rangle$$
(190)

$$= \prod_{\mathbf{k}} \left\langle D\left(\frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}$$
(191)

$$= \prod_{\mathbf{k}} \exp \left(-\frac{1}{2} \left| \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) e^{\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t) - v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)}$$
(192)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{i\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{j\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{i\mathbf{k}}^*(t)v_{j\mathbf{k}}(t)-v_{i\mathbf{k}}(t)v_{j\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}.$$
(193)

From the definition $B_{01}\left(t\right)=\left\langle B_{0}^{+}\left(t\right)B_{1}^{-}\left(t\right)\right\rangle$ using the displacement operator we have:

$$\langle B_0^+(t) B_1^-(t) \rangle = B_{01}(t)$$
 (194)

$$= \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \prod_{\mathbf{k}} D\left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\right) \right\rangle \tag{195}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) D\left(-\frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right) \right\rangle \tag{196}$$

$$= \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right) \right\rangle$$
(197)

$$= \prod_{\mathbf{k}} \left(\left\langle D \left(\frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right) \right\rangle e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right)$$
(198)

$$= \prod_{\mathbf{k}} \left(\exp \left(-\frac{1}{2} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2} \right)} \right)$$
(199)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}. \tag{200}$$

(214)

(215)

We can check:

= 0.

$$\langle B_0^+(t) B_1^-(t) \rangle = B_{01}(t)$$
 (201)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^*(t)v_{1\mathbf{k}}(t) - v_{0\mathbf{k}}(t)v_{1\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)}$$
(202)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}(t)}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}(t)}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \prod_{\mathbf{k}} e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^*(t)v_{0\mathbf{k}}(t) - v_{1\mathbf{k}}(t)v_{0\mathbf{k}}^*(t)}{\omega_{\mathbf{k}}^2}\right)^*}$$
(203)

$$= \langle B_1^+(t) B_0^-(t) \rangle^* \tag{204}$$

$$=B_{10}^{*}(t). (205)$$

The parts of the splitted Hamiltonian are:

$$\overline{H_{\bar{S}}(t)} \equiv (\varepsilon_0(t) + R_0(t)) |0\rangle\langle 0| + (\varepsilon_1(t) + R_1(t)) |1\rangle\langle 1| + V_{10}(t) B_{10}\sigma^+ + V_{01}(t) B_{01}\sigma^-, \tag{206}$$

$$\overline{H_{\bar{I}}} \equiv V_{10}(t) \left(B_1^+(t) B_0^-(t) - B_{10}(t) \right) \sigma^+ + V_{01}(t) \left(B_0^+(t) B_1^-(t) - B_{01}(t) \right) \sigma^- + |0\rangle\langle 0| B_{0z}(t) + |1\rangle\langle 1| B_{1z}(t),$$
(207)

$$\overline{H_{\bar{B}}} \equiv \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{208}$$

$$=H_{B}. (209)$$

Note that $\overline{H_B}$, which is the bath acting on the effective "system" \overline{S} in the variational frame, is just the original bath, H_B , before transforming to the variational frame.

For the Hamiltonian (207) we can verify the condition $\langle \overline{H_I} \rangle_{\overline{H_R}} = 0$ in the following way:

$$\langle \overline{H_{I}} \rangle_{\overline{H_{B}}} = \left\langle \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} b_{\mathbf{k}} \right) |n\rangle\langle n| + \sum_{j \neq j'} V_{jj'} \left(t \right) |j\rangle\langle j'| \left(B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) - B_{jj'} \left(t \right) \right) \right) \right\rangle_{\overline{H_{B}}} \tag{210}$$

$$= \left\langle \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} b_{\mathbf{k}} \right) |n\rangle\langle n| \right\rangle_{\overline{H_{B}}} + \left\langle \sum_{j \neq j'} V_{jj'} \left(t \right) |j\rangle\langle j'| \left(B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) - B_{jj'} \left(t \right) \right) \right\rangle_{\overline{H_{B}}} \tag{211}$$

$$= \sum_{n\mathbf{k}} \left(\left\langle \left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{B}}} + \left\langle \left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} b_{\mathbf{k}} \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| \left\langle \left(V_{jj'} \left(t \right) B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right) \right\rangle_{\overline{H_{B}}} - \left\langle V_{jj'} \left(t \right) B_{jj'} \left(t \right) \right\rangle_{\overline{H_{B}}}$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{B}}} + \left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left(\left\langle B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right\rangle_{\overline{H_{B}}} - \left\langle B_{jj'} \left(t \right) \right\rangle_{\overline{H_{B}}} \right)$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{B}}} + \left\langle g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left(\left\langle B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right\rangle_{\overline{H_{B}}} - \left\langle B_{jj'} \left(t \right) \right\rangle_{\overline{H_{B}}}$$

$$= \sum_{n\mathbf{k}} \left(\left(g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right) \left\langle b_{\mathbf{k}}^{\dagger} \right\rangle_{\overline{H_{B}}} + \left\langle g_{n\mathbf{k}} - v_{n\mathbf{k}} \left(t \right) \right)^{*} \left\langle b_{\mathbf{k}} \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left(\left\langle B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left(\left\langle B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left(\left\langle B_{j}^{\dagger} \left(t \right) B_{j'}^{-} \left(t \right) \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'} |j\rangle\langle j'| V_{jj'} \left(t \right) \left\langle B_{j}^{\dagger} \left(t \right) B_{j'} \left(t \right) \right\rangle_{\overline{H_{B}}} \right) |n\rangle\langle n| + \sum_{j \neq j'}$$

We used (144) and (193) to evaluate the expression. Let's consider the following Hermitian combinations:

$$B_x(t) = B_x^{\dagger}(t) \tag{216}$$

$$=\frac{B_{1}^{+}(t)B_{0}^{-}(t)+B_{0}^{+}(t)B_{1}^{-}(t)-B_{10}(t)-B_{01}(t)}{2},$$
(217)

$$B_y(t) = B_y^{\dagger}(t) \tag{218}$$

$$=\frac{B_{0}^{+}(t)B_{1}^{-}(t)-B_{1}^{+}(t)B_{0}^{-}(t)+B_{10}(t)-B_{01}(t)}{2i},$$
(219)

$$B_{iz}\left(t\right) = B_{iz}^{\dagger}\left(t\right) \tag{220}$$

$$= \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}(t) \right)^* b_{\mathbf{k}} \right). \tag{221}$$

Writing the equations (206) and (207) using the previous combinations we obtain that:

$$\begin{split} & \overline{H_S}(\theta) = \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + V_{10}(t) B_{10}(t) \sigma^* + V_{01}(t) B_{01}(t) \sigma^- \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + V_{10}(t) B_{10}(t) \frac{\sigma_s + i\sigma_g}{2} + V_{01}(t) B_{01}(t) \frac{\sigma_s - i\sigma_g}{2} \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + V_{10}(t) [R_{10}^{20}(t) + B_{10}^{20}(t)] \frac{\sigma_s + i\sigma_g}{2} + V_{01}(t) (B_{10}^{20}(t) - B_{10}^{20}(t)) \frac{\sigma_s - i\sigma_g}{2} \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + V_{10}(t) [R_{10}^{20}(t) - B_{10}^{20}(t)] \frac{\sigma_s + i\sigma_g}{2} + V_{01}(t) (B_{10}^{20}(t) - B_{10}^{20}(t)) \frac{\sigma_s - i\sigma_g}{2} \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(V_{10}(t) \frac{\sigma_s + i\sigma_g}{2} + V_{01}(t) \frac{\sigma_s - i\sigma_g}{2}\right) + iB_{10}^{20}(t) \left(V_{10}(t) \frac{\sigma_s + i\sigma_g}{2} - V_{01}(t) \frac{\sigma_s - i\sigma_g}{2}\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - \sigma_g V_{10}^{20}(t)\right) + iB_{10}^{20}(t) \left(v_s V_{10}^{20}(t) - V_{01}(t) + i\sigma_g V_{10}^{20}(t) + i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - \sigma_g V_{10}^{20}(t)\right) + iB_{10}^{20}(t) \left(v_s V_{10}^{20}(t) - V_{10}^{20}(t) + i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - \sigma_g V_{10}^{20}(t)\right) + iB_{10}^{20}(t) \left(v_s V_{10}^{20}(t) - V_{10}^{20}(t) + i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - \sigma_g V_{10}^{20}(t)\right) + iB_{10}^{20}(t) \left(v_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + R_j(t)) [j][j] + R_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - \sigma_g V_{10}^{20}(t)\right) + iB_{10}^{20}(t) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) + i\sigma_g V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \\ & - \sum_{j \in \{0,1\}} (\varepsilon_j(t) - i\sigma_g V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{10}^{20}(t)\right) \left(\sigma_s V_{10}^{20}(t) - i\sigma_g V_{$$

 $=\sum\!B_{iz}\left(t\right)|i\rangle\!\langle i| + V_{10}^{\Re}(t)\!\left(\!\sigma_{x}B_{x}\left(t\right)\!+\!\sigma_{y}B_{y}\left(t\right)\!\right) + V_{10}^{\Im}(t)\!\left(\!\mathrm{i}^{2}\sigma_{x}\frac{B_{1}^{+}B_{0}^{-}\left(t\right)\!-\!B_{0}^{+}B_{1}^{-}\left(t\right)\!-\!B_{10}\left(t\right)\!+\!B_{01}\left(t\right)}{2\mathrm{i}}\!-\!\sigma_{y}\frac{B_{1}^{+}\left(t\right)B_{0}^{-}\left(t\right)\!+\!B_{0}^{+}\left(t\right)B_{1}^{-}\left(t\right$

III. FREE-ENERGY MINIMIZATION

The true free energy A is bounded by the Bogoliubov inequality:

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}} \right)} \right) \right) + \left\langle \overline{H_{\bar{I}}} \right\rangle_{\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}}} + O \left(\left\langle \overline{H_{\bar{I}}}^2 \right\rangle_{\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}}} \right). \tag{245}$$

We will optimize the set of variational parameters $\{v_{i\mathbf{k}}(t)\}$ in order to minimize A_{B} (i.e. to make it as close to the true free energy A as possible). Neglecting the higher order terms and using $\langle \overline{H_{\bar{I}}} \rangle_{\overline{H_{\bar{S}}}(t)+\overline{H_{\bar{B}}}} = 0$ we can obtain the following condition to obtain the set $\{v_{i\mathbf{k}}(t)\}$:

$$\frac{\partial A_{\rm B}}{\partial v_{i\mathbf{k}}(t)} = 0. \tag{246}$$

Using this condition and given that $\overline{|H_{\bar{B}}(t), \overline{H_{\bar{B}}}|} = 0$, we have:

$$e^{-\beta\left(\overline{H}_{\bar{S}}(t) + \overline{H}_{\bar{B}}\right)} = e^{-\beta\overline{H}_{\bar{S}}(t)}e^{-\beta\overline{H}_{\bar{B}}}.$$
(247)

Then using the fact that $\overline{H_{\bar{S}}}(t)$ and $\overline{H_{\bar{B}}}$ relate to different Hilbert spaces, we obtain:

$$\operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{S}}}(t)}e^{-\beta \overline{H_{\bar{B}}}}\right) = \operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{S}}}(t)}\right)\operatorname{Tr}\left(e^{-\beta \overline{H_{\bar{B}}}}\right). \tag{248}$$

So Eq. (246) becomes:

$$\frac{\partial A_{\rm B}}{\partial v_{i\mathbf{k}}(t)} = -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \left(\overline{H_{\bar{S}}}(t) + \overline{H_{\bar{B}}} \right)} \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
(249)

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\text{Tr} \left(e^{-\beta \overline{H_{\bar{S}}}(t)} \right) \text{Tr} \left(e^{-\beta \overline{H_{\bar{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
 (250)

$$= -\frac{1}{\beta} \frac{\partial \left(\ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \right) + \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{B}}}} \right) \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
(251)

$$= -\frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\bar{S}}}(t)} \right) \right)}{\partial v_{i\mathbf{k}}(t)} - \frac{1}{\beta} \frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\bar{B}}}} \right) \right)}{\partial v_{i\mathbf{k}}(t)}$$
(252)

$$= 0$$
 (by Eq. (246)). (253)

But since $\bar{H}_{\bar{B}} = H_B$ which doesn't contain any $v_{i\mathbf{k}}(t)$, a derivative of any function of H_B that does not introduce new $v_{i\mathbf{k}}(t)$ will be zero. We therefore require the following:

$$\frac{\partial \ln \left(\operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right) \right)}{\partial v_{i\mathbf{k}}(t)} = \frac{1}{e^{-\beta \overline{H_{\overline{S}}}(t)}} \frac{\partial \operatorname{Tr} \left(e^{-\beta \overline{H_{\overline{S}}}(t)} \right)}{\partial v_{i\mathbf{k}}(t)} = 0.$$
(254)

This means we need to impose:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)}{\partial v_{i\mathbf{k}}\left(t\right)} = 0. \tag{256}$$

First we look at:

$$-\beta \overline{H_{\bar{S}}}(t) = -\beta \left((\varepsilon_{0}(t) + R_{0}(t)) |0\rangle\langle 0| + (\varepsilon_{1}(t) + R_{1}(t)) |1\rangle\langle 1| + V_{10}(t) B_{10}(t) \sigma^{+} + V_{01}(t) B_{01}(t) \sigma^{-} \right). \tag{257}$$

Then the eigenvalues of $-\beta \overline{H_{\bar{S}}}(t)$ satisfy the following relationship deduced from the Caley-Hamilton theorem:

$$\lambda^{2} - \operatorname{Tr}\left(-\beta \overline{H_{\bar{S}}}(t)\right) + \operatorname{Det}\left(-\beta \overline{H_{\bar{S}}}(t)\right) = 0.$$
(258)

Let's define:

$$\varepsilon(t) \equiv \text{Tr}\left(\overline{H_{\bar{S}}}(t)\right),$$
 (259)

$$\eta \equiv \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}}\left(t\right)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}}\left(t\right)\right)}.$$
(260)

The solutions of the equation (258) are:

$$\lambda = \beta \frac{-\operatorname{Tr}\left(\overline{H_{\bar{S}}}(t)\right) \pm \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}}(t)\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}}(t)\right)}}{2}$$
(261)

$$=\beta \frac{-\varepsilon \left(t\right) \pm \eta \left(t\right) }{2}\tag{262}$$

$$= -\beta \frac{\varepsilon(t) \mp \eta(t)}{2}.$$
 (263)

The value of $\text{Tr}\left(e^{-\beta \overline{H_S}(t)}\right)$ can be written in terms of this eigenvalues as (since there's only 2 eigenvalues of a 2×2 matrix):

$$\operatorname{Tr}\left(e^{-\beta \overline{H_S}(t)}\right) = \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(\frac{\eta\left(t\right)\beta}{2}\right) + \exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right) \exp\left(-\frac{\eta\left(t\right)\beta}{2}\right) \tag{264}$$

$$=2\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right). \tag{265}$$

Given that $v_{i\mathbf{k}}(t)$ is a complex number then we will optimize in the real and complex parts of this element, this can be seen in the following reasoning.

Using the chain rule on the function $\operatorname{Tr}\left(e^{-\beta\overline{H_{S}}\left(t\right)}\right)=A\left(\varepsilon\left(t\right),\eta\left(t\right)\right)$ to calculate $\frac{\partial\operatorname{Tr}\left(e^{-\beta\overline{H_{S}}\left(t\right)}\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}$ can lead to:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} = \frac{\partial \left(2\exp\left(-\frac{\varepsilon(t)\beta}{2}\right)\cosh\left(\frac{\eta(t)\beta}{2}\right)\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)} \\
= 2\left(-\frac{\beta}{2}\frac{\partial\varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\right)\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right) + 2\left(\frac{\beta}{2}\frac{\partial\eta\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\right)\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\sinh\left(\frac{\eta\left(t\right)\beta}{2}\right) \\
= -\beta\exp\left(-\frac{\varepsilon\left(t\right)\beta}{2}\right)\left(\frac{\partial\varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right) - \frac{\partial\eta\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\sinh\left(\frac{\eta\left(t\right)\beta}{2}\right)\right). \tag{268}$$

Making the derivate equal to zero make us suitable to write:

$$\frac{\partial \varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\cosh\left(\frac{\eta\left(t\right)\beta}{2}\right) - \frac{\partial \eta\left(t\right)}{\partial v_{i\mathbf{k}}^{\Re}\left(t\right)}\sinh\left(\frac{\eta\left(t\right)\beta}{2}\right) = 0. \tag{269}$$

The derivates included in the expression given are related to:

$$\langle B_{0}^{+}(t) B_{1}^{-}(t) \rangle = \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{0k}^{+}(t) v_{1k}(t) - v_{0k}(t) v_{1k}^{+}(t)}{\omega_{\mathbf{k}}^{+}} \right)} \right) \left(\exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{0k}(t)}{\omega_{\mathbf{k}}} - \frac{v_{1k}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right)$$

$$= \left(\prod_{\mathbf{k}} e^{\frac{1}{2} \left(\frac{v_{1k}(t) v_{0k}(t) - v_{1k}(t) v_{0k}^{+}(t)}{\omega_{\mathbf{k}}^{+}} \right)} \right)^{*} \left(\exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{1k}(t)}{\omega_{\mathbf{k}}} - \frac{v_{0k}(t)}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right)$$

$$= \langle B_{1}^{+}(t) B_{0}^{-}(t) \rangle^{*},$$

$$(272)$$

$$R_{i}(t) = \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - \left(g_{ik} \frac{v_{ik}^{*}(t)}{\omega_{\mathbf{k}}} + g_{ik}^{*} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}^{*}(t)}{\omega_{\mathbf{k}}} - g_{ik}^{*} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} - g_{ik}^{*} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} - g_{ik}^{*} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} - g_{ik}^{*} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - g_{ik} \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}(t)|^{2}}{\omega_{\mathbf{k}}} - \frac{v_{ik}(t)}{\omega_{\mathbf{k}}} \right) \right)$$

$$= \sum_{\mathbf{k}} \left(\frac{|v_{0k}$$

(289)

Rewriting in terms of real and imaginary parts.

$$R_{i}\left(t\right) = \sum_{\mathbf{k}} \left(\frac{\left(v_{i\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}} - \left(g_{i\mathbf{k}}\frac{v_{i\mathbf{k}}^{\Re}\left(t\right) - iv_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}} + g_{i\mathbf{k}}^{*}\frac{v_{i\mathbf{k}}^{\Re}\left(t\right) + iv_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}}\right)\right)$$

$$= \sum_{\mathbf{k}} \left(\frac{\left(v_{i\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{i\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}} - v_{i\mathbf{k}}^{\Re}\left(t\right)\frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} - iv_{i\mathbf{k}}^{\Im}\left(t\right)\frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right),$$

$$(286)$$

$$\langle B_{0}^{+}\left(t\right)B_{1}^{-}\left(t\right)\rangle = \left(\prod_{\mathbf{k}} \exp\left(\frac{v_{0\mathbf{k}}^{*}\left(t\right)v_{1\mathbf{k}}\left(t\right) - v_{0\mathbf{k}}\left(t\right)v_{1\mathbf{k}}^{*}\left(t\right)}{2\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{v_{0\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}} - \frac{v_{1\mathbf{k}}\left(t\right)}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)$$

$$= \left(\prod_{\mathbf{k}} \exp\left(\frac{2i\left(v_{0\mathbf{k}}^{\Re}\left(t\right)v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)v_{1\mathbf{k}}^{\Re}\left(t\right)\right)}{2\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{0\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-\frac{\beta\omega_{\mathbf{k}}^{2}}{\omega_{\mathbf{k}}^{2}}\right)\right) \left(\exp\left(-$$

$$\frac{\partial \mathcal{E}(t)}{\partial v_{ik}^{p}(t)} = \frac{\partial \left(\left(\frac{(v_{ik}^{p}(t))^{2} + (v_{ik}^{p}(t))^{2}}{v_{ik}} - v_{ik}^{p}(t) \right) \frac{\partial v_{ik}^{p}(t)}{\partial v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)} \right) \\
&= \frac{\partial \left(\left(\frac{(v_{ik}^{p}(t))^{2} + (v_{ik}^{p}(t))^{2}}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)} \right) \\
&= \frac{\partial \left(\exp \left(-\sum_{k} \frac{(v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2} + (v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2}}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \right)}{\partial v_{ik}^{p}(t)} \\
&= \frac{\partial \left(\exp \left(-\sum_{k} \frac{(v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2} + (v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2}}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \right)} \\
&= \frac{\partial \left(\exp \left(-\sum_{k} \frac{(v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2} + (v_{ik}^{p}(t) - v_{ik}^{p}(t))^{2}}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \frac{\partial v_{ik}^{p}(t)}{v_{ik}^{p}(t)} - v_{ik}^{p}(t) \right)} \\
&= \frac{2 \left(v_{ik}^{p}(t) - v_{ik}^{p}(t) \right) \partial \left(v_{ik}^{p}(t) - v_{ik}^{p}(t) \right)}{\partial v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)} \left[B_{10}(t) \right]^{2}} \\
&= \frac{\partial \sqrt{\left(\operatorname{Tr} \left(\overline{H_{S}(t)} \right) \partial \left(v_{ik}^{p}(t) - v_{ik}^{p}(t) \right)}}{\partial v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)}} \\
&= \frac{2 \operatorname{Tr} \left(\overline{H_{S}(t)} \right) \frac{\partial v_{ik}^{p}(t)}{\partial v_{ik}^{p}(t)} - 4 \frac{\partial v_{ik}(t)}{\partial v_{ik}^{p}(t)}}}{\partial v_{ik}^{p}(t)}}{\partial v_{ik}^{p}(t)}} \right)}{\partial v_{ik}^{p}(t)} \\
&= \frac{\varepsilon(t) \left(\frac{2 v_{ik}^{p}(t)}{v_{ik}} - \frac{2 v_{ik} + v_{ik}^{p}(t)}{v_{ik}} \right) - 2 \frac{\partial \left((\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)) \left(\frac{2 v_{ik}^{p}(t)}{v_{ik}} - \frac{2 v_{ik} + v_{ik}^{p}(t)}{v_{ik}}} \right) - \frac{2 v_{ik}^{p}(t)}{\partial v_{ik}^{p}(t)}}}{\partial v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)} \\
&= \frac{\varepsilon(t) \left(\frac{2 v_{ik}^{p}(t)}{v_{ik}} - \frac{2 v_{ik} + v_{ik}^{p}(t)}{v_{ik}} \right) - 2 \frac{\partial \left((\varepsilon(t) - \varepsilon_{i}(t) - \varepsilon_{i}(t) - R_{i}(t)) \left(\frac{2 v_{ik}^{p}(t)}{v_{ik}} - \frac{2 v_{ik} + v_{ik}^{p}(t)}{v_{ik}} \right) - \frac{2 v_{ik}^{p}(t)}{\partial v_{ik}^{p}(t)}}{\partial v_{ik}^{p}(t)} \right)}{\partial v_{ik}^{p}(t)} \\
&= \frac{\varepsilon(t) \left(\frac$$

From the equation (269) and replacing the derivates obtained we have:

$$tanh\left(\frac{\beta\eta\left(t\right)}{2}\right) = \frac{\frac{\partial\varepsilon(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}}{\frac{\partial\eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)}} = \frac{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}} = \frac{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2g_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}}{\frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}} - \frac{2v_{i$$

Rearrannging this equation will lead to:

$$\tanh\left(\frac{\beta\eta(t)}{2}\right) = \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - g_{i\mathbf{k}} - g_{i\mathbf{k}}^{*}\right)\eta(t)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}\right)\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right)\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{(305)}$$

$$= \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - 2g_{i\mathbf{k}}^{\Re}\right)\eta(t)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right)\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{(306)}$$

$$= \frac{\left(2v_{i\mathbf{k}}^{\Re}(t) - 2g_{i\mathbf{k}}^{\Re}\right)\eta(t)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cos\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - 2g_{i\mathbf{k}}^{\Re}(\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 4\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Re}(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon(t)\right) + 2\frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Re}(t)\left[2\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{v_{i\mathbf{k}}^{\Re}(t)}{\omega_{\mathbf{k}}}\right] - \frac{v_{i\mathbf{k}}^{\Re}(t)}{v_{i\mathbf{k}}^{\Re}(t)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cos\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)$$

$$= \frac{v_{i\mathbf{k}}^{\Re}(t) - 2\left(\varepsilon(t) - 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{v_{i\mathbf{k}}^{\Re}(t)}{$$

Separating (307) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\frac{\left(v_{i\mathbf{k}}^{(k)}(t)-g_{i\mathbf{k}}^{(k)}\right)\eta(t)}{\tanh\left(\frac{\beta\eta(t)}{2}\right)} = v_{i\mathbf{k}}^{(k)}(t)\left(\varepsilon(t)-2(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t))-\frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{(k)}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+2\frac{v_{i\mathbf{k}}^{(k)}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right),$$

$$(309)$$

$$v_{i\mathbf{k}}^{(k)}(t)-g_{i\mathbf{k}}^{(k)} = v_{i\mathbf{k}}^{(k)}(t)\frac{\tanh(\frac{\beta\eta(0)}{2})}{\eta(t)}\left(\varepsilon(t)-2\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t))-\frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \frac{\tanh(\frac{\beta\eta(0)}{2})}{\eta(t)}g_{i\mathbf{k}}^{(k)}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+2\frac{\tanh(\frac{\beta\eta(0)}{2})}{\eta(t)}v_{i\mathbf{k}}^{(k)}(t)-\varepsilon(t)+2\frac{\tanh(\frac{\beta\eta(0)}{2})}{\eta(t)}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)$$

$$v_{i\mathbf{k}}^{(k)}(t) = \frac{g_{i\mathbf{k}}^{(k)}\left(1-\frac{\tanh(\frac{\beta\eta(t)}{2})}{\eta(t)}\left(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t)\right)+2\frac{\tanh(\frac{\beta\eta(t)}{2})}{\eta(t)}v_{i\mathbf{k}}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}v_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{(k)}}v_{i\mathbf{k}}^{(k)}|B_{10}(t)|^{2}|V_{10}(t)|^{2}v_{$$

The imaginary part can be found in the following way:

$$\frac{\partial \varepsilon\left(t\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} = \frac{\partial\left(\varepsilon_{1}\left(t\right) + R_{1}\left(t\right) + \varepsilon_{0}\left(t\right) + R_{0}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \tag{313}$$

$$= \frac{\partial \left(\left(\frac{\left(v_{i\mathbf{k}}^{\Re}(t) \right)^{2} + \left(v_{i\mathbf{k}}^{\Im}(t) \right)^{2}}{\omega_{\mathbf{k}}} - v_{i\mathbf{k}}^{\Re}\left(t \right) \frac{g_{i\mathbf{k}} + g_{i\mathbf{k}}^{*}}{\omega_{\mathbf{k}}} - \mathrm{i}v_{i\mathbf{k}}^{\Im}\left(t \right) \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t \right)}$$
(314)

$$=2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-\mathrm{i}\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}},\tag{315}$$

$$\frac{\partial \left|B_{10}\left(t\right)\right|^{2}}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} = \frac{\partial \left(\exp\left(-\sum_{\mathbf{k}} \frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right) - v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2} + \left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)}$$
(316)

$$=-\frac{2\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}}\frac{\partial\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)}\exp\left(-\sum_{\mathbf{k}}\frac{\left(v_{1\mathbf{k}}^{\Re}\left(t\right)-v_{0\mathbf{k}}^{\Re}\left(t\right)\right)^{2}+\left(v_{1\mathbf{k}}^{\Im}\left(t\right)-v_{0\mathbf{k}}^{\Im}\left(t\right)\right)^{2}}{\omega_{\mathbf{k}}^{2}}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$

(317)

(326)

$$= -\frac{2\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\omega_{\mathbf{k}}^{2}} \frac{\partial\left(v_{1\mathbf{k}}^{\Im}\left(t\right) - v_{0\mathbf{k}}^{\Im}\left(t\right)\right)}{\partial v_{i\mathbf{k}}^{\Im}\left(t\right)} \left|B_{10}\left(t\right)\right|^{2},\tag{318}$$

$$\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\Re}(t)} = \frac{\partial \sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}}{\partial v_{i\mathbf{k}}^{\Re}(t)} \tag{319}$$

$$= \frac{2\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right) \frac{\partial \operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Im}(t)} - 4\frac{\partial \operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}{\partial v_{i\mathbf{k}}^{\Im}(t)}}{2\sqrt{\left(\operatorname{Tr}\left(\overline{H_{\bar{S}}(t)}\right)\right)^{2} - 4\operatorname{Det}\left(\overline{H_{\bar{S}}(t)}\right)}}$$
(320)

$$= \frac{\varepsilon\left(t\right)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} - i\frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - 2\frac{\partial\left((\varepsilon_{1}(t) + R_{1}(t))(\varepsilon_{0}(t) + R_{0}(t)) - |V_{10}(t)|^{2}|B_{10}(t)|^{2}\right)}{\partial v_{i\mathbf{k}}^{\Im}(t)}}{\eta\left(t\right)}$$
(321)

$$=\frac{\varepsilon(t)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)+\frac{2\left(v_{1\mathbf{k}}^{\Im}(t)-v_{0\mathbf{k}}^{\Im}(t)\right)}{\omega_{\mathbf{k}}^{2}}\frac{\partial\left(v_{1\mathbf{k}}^{\Im}(t)-v_{0\mathbf{k}}^{\Im}(t)\right)}{\partial v_{i\mathbf{k}}^{\Im}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\eta(t)}$$
(322)

$$=\frac{\varepsilon(t)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)\left(2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}-i\frac{g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}\right)+\frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-v_{i'\mathbf{k}}^{\Im}(t)\right)}{\omega_{\mathbf{k}}^{2}}\left|B_{10}(t)\right|^{2}\left|V_{10}(t)\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)}{\eta(t)}$$
(323)

$$= \frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}} \left(\frac{2\varepsilon(t) - 4\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{4}{\omega_{\mathbf{k}}} |B_{10}(t)|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\eta(t)} \right) + \frac{1}{\eta(t)} \left(-\mathrm{i} \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} \varepsilon(t) + 2\left(\varepsilon(t) - \varepsilon_{i}(t) - R_{i}(t)\right) \mathrm{i} \frac{g_{i\mathbf{k}}^{*} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}} + 4 \frac{v_{i'\mathbf{k}}^{\Im}(\mathbf{k})}{\omega_{\mathbf{k}}^{2}} |B_{10}(t)|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right).$$

$$(324)$$

From the equation (269) and replacing the derivates obtained we have:

$$tanh\left(\frac{\beta\eta(t)}{2}\right) = \frac{\frac{\partial \varepsilon(t)}{\partial v_{i\mathbf{k}}^{\mathfrak{S}}(t)}}{\frac{\partial \eta(t)}{\partial v_{i\mathbf{k}}^{\mathfrak{S}}(t)}} = \frac{2^{\frac{v_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\partial v_{i\mathbf{k}}^{\mathfrak{S}}(t)} - \frac{1}{2}\frac{g_{i\mathbf{k}}^{\mathfrak{S}} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}}{\frac{v_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}} - \frac{1}{2}\frac{g_{i\mathbf{k}}^{\mathfrak{S}} - g_{i\mathbf{k}}}{\omega_{\mathbf{k}}}}{\frac{v_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}} - \frac{1}{2}\frac{g_{i\mathbf{k}}^{\mathfrak{S}}(t)}{\omega_{\mathbf{k}}} - \frac{1}$$

Rearranging this equation will lead to:

$$\frac{(2v_{i\mathbf{k}}^{\Im}(t)-i(g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}))\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-i\left(g_{i\mathbf{k}}^{*}-g_{i\mathbf{k}}\right)\left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{*})}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}\right)}$$

$$=\frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{*})}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}\right)}$$

$$=\frac{2\left(v_{i\mathbf{k}}^{\Im}(t)-g_{i\mathbf{k}}^{\Im}\right)\eta(t)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(\varepsilon\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{*})}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-4\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{4|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-2g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+4\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{*})}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+2\frac{v_{i\mathbf{k}}^{\Im}(\mathbf{k}^{*})}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Im}(t)\left(2\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)-g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t))+2\frac{v_{i\mathbf{k}}^{\Im}(t)}{\omega_{\mathbf{k}}}|B_{10}(t)|^{2}|V_{10}(t)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{v_{i\mathbf{k}}^{\Im}(t)}\right)}$$
(329)

Separating (330) such that the terms with v_{ik} are located at one side of the equation permit us to write

$$\begin{split} \frac{\left\langle v_{i\mathbf{k}}^{\Im}\left(t\right)-g_{i\mathbf{k}}^{\Im}\right)\eta(b)}{\tanh\left(\frac{\beta\eta(b)}{2}\right)} &= v_{i\mathbf{k}}^{\Im}\left(t\right) \left(\varepsilon(b)-2(\varepsilon(b)-\varepsilon_{i}(b)-R_{i}\left(t\right)) - \frac{2|V_{10}(b)B_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(b)+2R_{i}\left(t\right)-\varepsilon(b)+2\frac{v_{i^{\prime}\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}}|B_{10}\left(t\right)V_{10}(b)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{3311} \\ v_{i\mathbf{k}}^{\Im}-g_{i\mathbf{k}}^{\Im}=v_{i\mathbf{k}}^{\Im}\left(t\right) \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)} \left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}\left(t\right)\right) - \frac{2|V_{10}(t)B_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right) - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}g_{i\mathbf{k}}^{\Im}(2\varepsilon_{i}(t)+2R_{i}\left(t\right)-\varepsilon(t)\right) \\ +2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}v_{i\mathbf{k}}^{\Im}\left(t\right) \left|B_{10}\left(t\right)V_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ +2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}v_{i\mathbf{k}}^{\Im}\left(t\right)}{\eta\left(t\right)} \left(2\varepsilon_{i}\left(t\right)+2R_{i}\left(t\right)-\varepsilon(t)\right)\right) +2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}v_{i\mathbf{k}}^{\Im}\left(t\right)}{\omega_{\mathbf{k}}}\left|B_{10}\left(t\right)|^{2}\left|V_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ -\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}}{\eta\left(t\right)}v_{i\mathbf{k}}^{\Im}\left(t\right)} \left(\varepsilon(t)-2\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)-\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}\left|V_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ -\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}}{\omega_{\mathbf{k}}}\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}\left(\varepsilon(t)-2\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)-\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}\left|V_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ -\frac{2|V_{10}\left(t\right)|B_{10}\left(t\right)}{u_{\mathbf{k}}}\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}\left(\varepsilon(t)-2\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)-\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}\left|V_{10}\left(t\right)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ -\frac{2|V_{10}\left(t\right)|B_{10}\left(t\right)}{u_{\mathbf{k}}}\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta\left(t\right)}\left(\varepsilon(t)-2\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)-\frac{2|V_{10}\left(t\right)|B_{10}\left(t\right)|^{2}\left|V_{10}\left(t\right)|^{2}\cot\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \\ -\frac{2|V_{10}\left(t\right)|B_{10}\left(t\right)}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left(1-\frac{\Delta^{2}}{u_{\mathbf{k}}}\left$$

The variational parameters are:

$$v_{i\mathbf{k}}(t) = v_{i\mathbf{k}}^{\Re}(t) + \mathrm{i}v_{i\mathbf{k}}^{\Im}(t) \tag{336}$$

$$= \frac{g_{i\mathbf{k}}^{\Re} \left(1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(2\varepsilon_{i}(t) + 2R_{i}(t) - \varepsilon\left(t\right)\right) + 2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)v_{i'\mathbf{k}}^{\Re}(t)}{\eta(t)} |B_{10}(t)|^{2} |V_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{1 - \frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)} \left(\varepsilon\left(t\right) - 2\left(\varepsilon\left(t\right) - \varepsilon_{i}(t) - R_{i}(t)\right) - \frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}$$
(337)

$$+i\frac{g_{i\mathbf{k}}^{\Im}\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}(2\varepsilon_{i}(t)+2R_{i}(t)-\varepsilon(t)\right)+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{v_{i'\mathbf{k}}^{\Im}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}}|B_{10}|^{2}|V_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon(t)-2\left(\varepsilon(t)-\varepsilon_{i}(t)-R_{i}(t)\right)-\frac{2|V_{10}(t)|^{2}|B_{10}(t)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}$$
(338)

$$=\frac{g_{i\mathbf{k}}\left(1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(2\varepsilon_{i}\left(t\right)+2R_{i}\left(t\right)-\varepsilon\left(t\right)\right)\right)+2\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\frac{v_{i'\mathbf{k}}(t)}{\omega_{\mathbf{k}}}\left|B_{10}\left(t\right)\right|^{2}\left|V_{10}\left(t\right)\right|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{1-\frac{\tanh\left(\frac{\beta\eta(t)}{2}\right)}{\eta(t)}\left(\varepsilon\left(t\right)-2\left(\varepsilon\left(t\right)-\varepsilon_{i}\left(t\right)-R_{i}\left(t\right)\right)-\frac{2|V_{10}\left(t\right)|^{2}|B_{10}\left(t\right)|^{2}\coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)}{\omega_{\mathbf{k}}}\right)}{\omega_{\mathbf{k}}}.$$
(339)

IV. MASTER EQUATION

In order to describe the dynamics of the QD under the influence of the phonon environment, we use the timeconvolutionless projection operator technique. The initial density operator is $\rho_T(0) = \rho_S(0) \otimes \rho_B^{\text{Thermal}}$, where $\rho_B^{\text{Thermal}} \equiv \rho_B(0) \equiv \rho_B$, so the transformed density operator is equal to:

$$\overline{\rho_T(0)} \equiv e^{V(0)} \rho_T(0) e^{-V(0)} \tag{340}$$

$$= (|0\rangle\langle 0|B_0^+(0) + |1\rangle\langle 1|B_1^+(0)) (\rho_S(0) \otimes \rho_B) (|0\rangle\langle 0|B_0^-(0) + |1\rangle\langle 1|B_1^-(0)), \tag{341}$$

for
$$\rho_S(0) = |0\rangle\langle 0|: |0\rangle\langle 0|0\rangle B_0^+(0)\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
 (342)

$$= |0\rangle B_0^+(0)\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
(343)

$$= |0\rangle\langle 0| \otimes B_0^+(0) \rho_B B_0^-(0),$$
 (344)

for
$$\rho_S(0) = |1\rangle\langle 1|: |1\rangle\langle 1|B_1^+(0)|1\rangle\langle 1|\rho_B|1\rangle\langle 1|B_1^-(0)$$
 (345)

$$= |1\rangle\langle 1|B_1^+(0)\rho_B B_1^-(0)$$
(346)

$$= |1\rangle\langle 1| \otimes B_1^+(0) \rho_B B_1^-(0), \tag{347}$$

for
$$\rho_S(0) = |0\rangle\langle 1| : |0\rangle\langle 0|B_0^+(0)|0\rangle\langle 1|\rho_B|1\rangle\langle 1|B_1^-(0)$$
 (348)

$$0) = |0\rangle\langle 1| : |0\rangle\langle 0|B_0^+(0)|0\rangle\langle 1|\rho_B|1\rangle\langle 1|B_1^-(0)$$
(348)

$$= |0\rangle\langle 1|B_0^+(0)\,\rho_B|1\rangle\langle 1|B_1^-(0) \tag{349}$$

$$= |0\rangle 1 |1\rangle 1 |B_0^+(0) \rho_B B_1^-(0) \tag{350}$$

$$= |0\rangle 1 \otimes B_0^+(0) \rho_B B_1^-(0), \tag{351}$$

for
$$\rho_S(0) = |1\rangle\langle 0| : |1\rangle\langle 1|B_1^+(0)|1\rangle\langle 0|\rho_B|0\rangle\langle 0|B_0^-(0)$$
 (352)

$$= |1\rangle\langle 0| \otimes B_1^+(0) \rho_B B_0^-(0). \tag{353}$$

We transform any operator *O* into the interaction picture in the following way:

 $= |0\rangle\langle 1|B_0^+(0) \rho_B|1\rangle\langle 1|B_1^-(0)$

$$\widetilde{O}(t) \equiv U^{\dagger}(t) O(t) U(t), \qquad (354)$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_{\bar{S}}}(t')\right). \tag{355}$$

Here ${\mathcal T}$ denotes a time ordering operator. Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (356)

$$\overline{\rho_S}(t) = \text{Tr}_B(\overline{\rho}_T(t)). \tag{357}$$

. In order to separate the Hamiltonian we define the matrix $\Lambda(t)$ such that $\Lambda_{1i}(t) = A_i$, $\Lambda_{2i}(t) = B_i$ and $\Lambda_{3i}(t) = C_i(t)$ written as:

$$\begin{pmatrix} A(t) \\ B(t) \\ C(t) \end{pmatrix} = \begin{pmatrix} \sigma_x & \sigma_y & \frac{I - \sigma_z}{2} & \sigma_x & \sigma_y & \frac{I + \sigma_z}{2} \\ B_x & B_y & B_{1z} & B_y & B_x & B_{0z} \\ V_{10}^{\Re}(t) & V_{10}^{\Re}(t) & 1 & V_{10}^{\Im}(t) & -V_{10}^{\Im}(t) & 1 \end{pmatrix}.$$
(358)

In this case $|1\rangle\langle 1| = \frac{I - \sigma_z}{2}$ and $|0\rangle\langle 0| = \frac{I + \sigma_z}{2}$ with $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = |0\rangle\langle 0| - |1\rangle\langle 1|$.

The previous notation allows us to write the interaction Hamiltonian $\overline{H_{\bar{I}}}(t)$ as pointed in the equation (236):

$$\overline{H_{\bar{I}}}(t) = \sum_{i} B_{iz}(t) |i\rangle\langle i| + V_{10}^{\Re}(t) \left(\sigma_{x} B_{x}(t) + \sigma_{y} B_{y}(t)\right) + V_{10}^{\Im}(t) \left(\sigma_{x} B_{y}(t) - \sigma_{y} B_{x}(t)\right)$$

$$(359)$$

$$=B_{0z}(t)|0\rangle\langle 0|+B_{1z}(t)|1\rangle\langle 1|+V_{10}^{\Re}(t)\sigma_{x}B_{x}(t)+V_{10}^{\Re}(t)\sigma_{y}B_{y}(t)+V_{10}^{\Im}(t)\sigma_{x}B_{y}(t)-V_{10}^{\Im}(t)\sigma_{y}B_{x}(t)$$
(360)

$$=\sum_{i}C_{i}\left(t\right)\left(A_{i}\otimes B_{i}\left(t\right)\right). \tag{361}$$

As the combined system and environment is closed, within the interaction picture the system-environment density operator evolves according to:

$$\frac{\mathrm{d}\widetilde{\widetilde{\rho_T}}(t)}{\mathrm{d}t} = -\mathrm{i}[\widetilde{\overline{H_{\bar{I}}}}(t), \widetilde{\widetilde{\rho_T}}(t)]. \tag{362}$$

This equation has the formal solution

$$\widetilde{\overline{\rho_T}}(t) = \overline{\rho_T}(0) - i \int_0^t [\widetilde{\overline{H_I}}(s), \widetilde{\overline{\rho_T}}(s)] ds.$$
(363)

Replacing the equation (363) in the equation (362) gives us:

$$\frac{\mathrm{d}\widetilde{\overline{\rho_{T}}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\widetilde{\overline{H_{\bar{I}}}}\left(t\right), \overline{\rho_{T}}\left(0\right)\right] - \int_{0}^{t} \left[\widetilde{\overline{H_{\bar{I}}}}\left(t\right), \left[\widetilde{\overline{H_{\bar{I}}}}\left(s\right), \widetilde{\overline{\rho_{T}}}\left(s\right)\right]\right] \mathrm{d}s. \tag{364}$$

This equation allow us to iterate and write in terms of a series expansion with $\overline{\rho_T}$ (0) the solution as:

$$\widetilde{\overline{\rho_T}}(t) = \overline{\rho_T}(0) + \sum_{n=0}^{\infty} (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \left[\widetilde{\overline{H_I}}(t_1), \left[\widetilde{\overline{H_I}}(t_2), \cdots, \left[\widetilde{\overline{H_I}}(t_n), \overline{\rho_T}(0)\right]\right] \cdots\right].$$
(365)

Taking the trace over the environmental degrees of freedom, we find

$$\widetilde{\overline{\rho_S}}(t) = \overline{\rho_S}(0) + \sum_{n=1}^{\infty} (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 \dots \int_0^{t_{n-1}} dt_n \operatorname{Tr}_B[\widetilde{\overline{H_I}}(t_1), [\widetilde{\overline{H_I}}(t_2), \cdots [\widetilde{\overline{H_I}}(t_n), \overline{\rho_S}(0) \rho_B]] \dots].$$
(366)

here we have assumed that $\overline{\rho_T}(0) = \overline{\rho_S}(0) \otimes \rho_B$. Consider the following notation:

$$\widetilde{\overline{\rho_S}}(t) = (1 + W_1(t) + W_2(t) + \dots) \overline{\rho_S}(0)$$
(367)

$$=W\left(t\right)\overline{\rho_{S}}\left(0\right).\tag{368}$$

in this case

$$W_n(t) = (-\mathrm{i})^n \int_0^t \mathrm{d}t_1 \int_0^{t_1} \mathrm{d}t_2 \dots \int_0^{t_{n-1}} \mathrm{d}t_n \operatorname{Tr}_B[\widetilde{\overline{H}_{\bar{I}}}(t_1), [\widetilde{\overline{H}_{\bar{I}}}(t_2), \dots [\widetilde{\overline{H}_{\bar{I}}}(t_n), (\cdot) \rho_B]] \dots]. \tag{369}$$

are superoperators acting on the initial system density operator. Differentiating with respect to time, we have:

$$\frac{\mathrm{d}\widetilde{\rho_{S}}\left(t\right)}{\mathrm{d}t} = \left(\dot{W}_{1}\left(t\right) + \dot{W}_{2}\left(t\right) + \ldots\right)\overline{\rho_{S}}\left(0\right) \tag{370}$$

$$= (\dot{W}_1(t) + \dot{W}_2(t) + ...) W(t)^{-1} W(t) \overline{\rho_S}(0)$$
(371)

$$= \left(\dot{W}_{1}(t) + \dot{W}_{2}(t) + ...\right) W(t)^{-1} \widetilde{\rho_{S}}(t).$$
(372)

where we assumed that W(t) is invertible. Usually, it is convenient (and possible) to define the interaction Hamiltonian such that $\mathrm{Tr}_B[\widetilde{\overline{H}_I}(t)\,\rho_B]=0$ so $W_1(t)=0$. Thus, to second order and approximating $W(t)\approx\mathbb{I}$ then the equation (370) becomes:

$$\frac{\mathrm{d}\widetilde{\rho_S}(t)}{\mathrm{d}t} = \dot{W_2}(t)\,\widetilde{\rho_S}(t) \tag{373}$$

$$= -\int_{0}^{t} dt_{1} \operatorname{Tr}_{B} \left[\widetilde{\overline{H}_{\bar{I}}}(t), \left[\widetilde{\overline{H}_{\bar{I}}}(t_{1}), \widetilde{\overline{\rho_{S}}}(t) \rho_{B} \right] \right]. \tag{374}$$

Replacing $t_1 \rightarrow t - \tau$

$$\frac{\mathrm{d}\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}\left(t\right), \overline{\rho_{S}}\left(t\right)\right] - \int_{0}^{t} \mathrm{d}\tau \mathrm{Tr}_{B}\left[\overline{H_{\bar{I}}}\left(t\right), \left[\widetilde{\overline{H_{\bar{I}}}}\left(-\tau\right), \overline{\rho_{S}}\left(t\right)\rho_{B}\right]\right]. \tag{375}$$

From the interaction picture applied on $\overline{H_{\bar{I}}}(t)$ we find:

$$\widetilde{\overline{H_{\bar{I}}}}(t) = U^{\dagger}(t) e^{iH_B t} \overline{H_{\bar{I}}}(t) e^{-iH_B t} U(t).$$
(376)

we use the time-ordering operator \mathcal{T} because in general $\overline{H}_{\overline{S}}(t)$ doesn't conmute with itself at two different times. We write the interaction Hamiltonian as:

$$\widetilde{\overline{H}_{\overline{I}}}(t) = \sum_{i} C_{i}(t) \left(\widetilde{A}_{i}(t) \otimes \widetilde{B}_{i}(t) \right), \tag{377}$$

$$\widetilde{A_{i}}(t) = U^{\dagger}(t) e^{iH_{B}t} A_{i} e^{-iH_{B}t} U(t)$$
(378)

$$=U^{\dagger}(t)A_{i}U(t)e^{iH_{B}t}e^{-iH_{B}t}$$
(379)

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) \mathbb{I} \tag{380}$$

$$=U^{\dagger}\left(t\right) A_{i}U\left(t\right) , \tag{381}$$

$$\widetilde{B_i}(t) = U^{\dagger}(t) e^{iH_B t} B_i(t) e^{-iH_B t} U(t)$$
(382)

$$= U^{\dagger}(t) U(t) e^{iH_B t} B_i(t) e^{-iH_B t}$$
(383)

$$= \mathbb{I}e^{iH_B t} B_i(t) e^{-iH_B t} \tag{384}$$

$$= e^{iH_B t} B_i(t) e^{-iH_B t}$$
 (385)

Here we have used the fact that $\left[\overline{H}_{\overline{S}}\left(t\right),H_{B}\right]=0$ because these operators belong to different Hilbert spaces, so $\left[U\left(t\right),\mathrm{e}^{\mathrm{i}H_{B}t}\right]=0$.

Using the expression (377) to replace it in the equation (374)

$$\frac{\mathrm{d}\widetilde{\rho_{S}}(t)}{\mathrm{d}t} = -\int_{0}^{t} \mathrm{Tr}_{B} \left[\widetilde{\overline{H_{I}}}(t), \left[\widetilde{\overline{H_{I}}}(s), \widetilde{\rho_{S}}(t) \rho_{B} \right] \right] \mathrm{d}s \tag{386}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j} C_{j}\left(t\right) \left(\widetilde{A}_{j}\left(t\right) \otimes \widetilde{B}_{j}\left(t\right)\right), \left[\sum_{i} C_{i}\left(s\right) \left(\widetilde{A}_{i}\left(s\right) \otimes \widetilde{B}_{i}\left(s\right)\right), \widetilde{\overline{\rho_{S}}}\left(t\right) \rho_{B}\right]\right] ds \tag{387}$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B} \left[\sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t) \right), \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s) \right) \widetilde{\rho_{S}}(t) \rho_{B} - \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s) \right) \right] ds$$
(388)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right) \widetilde{\rho_{S}}(t) \rho_{B} - \sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right) \right)$$

$$(389)$$

$$-\sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right) \widetilde{\rho_{S}}(t) \rho_{B} \sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) + \widetilde{\rho_{S}}(t) \rho_{B} \sum_{i} C_{i}(s) \left(\widetilde{A_{i}}(s) \otimes \widetilde{B_{i}}(s)\right) \sum_{j} C_{j}(t) \left(\widetilde{A_{j}}(t) \otimes \widetilde{B_{j}}(t)\right) \right) \mathrm{d}s. \tag{390}$$

In order to calculate the correlation functions we define:

$$\mathscr{B}_{ij}(t,s) = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}(t)\widetilde{B}_{j}(s)\rho_{B}\right) \tag{391}$$

An useful property

$$\mathscr{B}_{ji}^{*}\left(t,s\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\rho_{B}\right)^{\dagger} \tag{392}$$

$$=\operatorname{Tr}_{B}\left(\rho_{B}^{\dagger}\widetilde{B}_{i}^{\dagger}\left(s\right)\widetilde{B}_{j}^{\dagger}\left(t\right)\right)\tag{393}$$

$$=\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\right)\tag{394}$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B}_{i}\left(s\right)\widetilde{B}_{j}\left(t\right)\rho_{B}\right)\tag{395}$$

$$=\mathscr{B}_{ij}\left(s,t\right)\tag{396}$$

The correlation functions relevant that appear in the equation (390) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\rho_{B}\right) = \left\langle \widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\right\rangle_{B} \tag{397}$$

$$=\mathscr{B}_{ii}\left(t,s\right)\tag{398}$$

$$=\mathscr{B}_{ij}^{*}\left(s,t\right) \tag{399}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\rho_{B}\widetilde{B_{i}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\rho_{B}\right) \tag{400}$$

$$= \mathcal{B}_{ij}(s,t) \tag{401}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(s\right)\rho_{B}\widetilde{B_{j}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j}}\left(t\right)\widetilde{B_{i}}\left(s\right)\rho_{B}\right) \tag{402}$$

$$=\mathscr{B}_{ij}^{*}\left(s,t\right) \tag{403}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(s\right)\widetilde{B_{j}}\left(t\right)\rho_{B}\right) \tag{404}$$

$$=\mathcal{B}_{ij}\left(s,t\right)\tag{405}$$

The cyclic property of the trace was use widely in the development of equations (397) and (405). Replacing in (390)

$$\begin{split} &\frac{\mathrm{d}\widetilde{\overline{\rho_S}}(t)}{\mathrm{d}t} = -\int_0^t \mathrm{Tr}_B \left(\sum_j C_j(t) \left(\widetilde{A}_j(t) \otimes \widetilde{B}_j(t) \right) \sum_i C_i(s) \left(\widetilde{A}_i(s) \otimes \widetilde{B}_i(s) \right) \widetilde{\overline{\rho_S}}(t) \rho_B - \sum_j C_j(t) \left(\widetilde{A}_j(t) \otimes \widetilde{B}_j(t) \right) \widetilde{\overline{\rho_S}}(t) \rho_B \sum_i C_i(s) \left(\widetilde{A}_i(s) \otimes \widetilde{B}_i(s) \right) \widetilde{\overline{\rho_S}}(t) \rho_B \sum_j C_j(t) \left(\widetilde{A}_j(t) \otimes \widetilde{B}_j(t) \right) + \widetilde{\overline{\rho_S}}(t) \rho_B \sum_i C_i(s) \left(\widetilde{A}_i(s) \otimes \widetilde{B}_i(s) \right) \sum_j C_j(t) \left(\widetilde{A}_j(t) \otimes \widetilde{B}_j(t) \right) \mathrm{d}s. \end{aligned} \tag{407} \\ &= -\int_0^t \mathrm{Tr}_B \left(\sum_{ji} C_j(t) C_i(s) \left(\widetilde{A}_j(t) \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{B}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \\ &+ \sum_{ij} C_i(s) C_j(t) \left(\widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{A}_j(t) \rho_B \widetilde{B}_i(s) \widetilde{B}_j(t) - \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \\ &= -\int_0^t \mathrm{Tr}_B \left(\sum_{ji} C_j(t) C_i(s) \left(\widetilde{A}_j(t) \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{B}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \\ &+ \sum_{ij} C_i(s) C_j(t) \left(\widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{A}_j(t) \rho_B \widetilde{B}_i(s) \widetilde{B}_j(t) - \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \end{aligned} \tag{410} \\ &+ \sum_{ij} C_i(s) C_j(t) \left(\widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{A}_j(t) \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{B}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \end{aligned} \tag{412} \\ &+ \sum_{ij} C_i(s) C_j(t) \left(\widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{A}_j(t) \rho_B \widetilde{B}_i(s) \widetilde{B}_j(t) \widetilde{B}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_j(t) \widetilde{B}_i(s) \rho_B \widetilde{B}_j(t) \right) \right) \mathrm{d}s} \tag{413} \\ &= -\int_0^t \mathrm{Tr}_B \left(\sum_{ij} C_j(t) C_i(s) \left(\widetilde{A}_j(t) \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{B}_j(t) \widetilde{B}_j(t) \widetilde{B}_i(s) \rho_B - \widetilde{A}_j(t) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{B}_j(t) \rho_B \widetilde{B}_i(s) \right) \right) \mathrm{d}s} \tag{414} \\ &+ \widetilde{\overline{\rho_S}}(t) \widetilde{A}_i(s) \widetilde{A}_j(t) \rho_B \widetilde{B}_i(s) \widetilde{B}_j(t) - \widetilde{A}_i(s) \widetilde{\overline{\rho_S}}(t) \widetilde{A}_j(t) \widetilde{B}_i(s) \rho_B \widetilde{B}_j(t) \right) \right) \mathrm{d}s} \tag{415}$$

$$+\widetilde{\widetilde{\rho_S}}(t)\widetilde{A_i}(s)\widetilde{A_j}(t)\rho_B\widetilde{B_i}(s)\widetilde{B_j}(t)-\widetilde{A_i}(s)\widetilde{\widetilde{\rho_S}}(t)\widetilde{A_j}(t)\widetilde{B_i}(s)\rho_B\widetilde{B_j}(t)\Big)\Big)\mathrm{d}s$$

$$(415)$$

$$= -\int_0^t \left(\sum_{ij} C_j(t) C_i(s) \left(\widetilde{A_j}(t) \widetilde{A_i}(s) \widetilde{\rho_S}(t) \mathscr{B}_{ji}(t,s) - \widetilde{A_j}(t) \widetilde{\rho_S}(t) \widetilde{A_i}(s) \mathscr{B}_{ij}(s,t) \right) \right)$$

$$\tag{416}$$

$$+\widetilde{\rho_S}(t)\widetilde{A_i}(s)\widetilde{A_j}(t)\mathscr{B}_{ij}(s,t) - \widetilde{A_i}(s)\widetilde{\rho_S}(t)\widetilde{A_j}(t)\mathscr{B}_{ji}(t,s)))\mathrm{d}s \tag{417}$$

$$= -\int_{0}^{t} \left(\sum_{ij} C_{j}(t) C_{i}(s) \left(\mathscr{B}_{ji}(t,s) \left[\widetilde{A}_{j}(t), \widetilde{A}_{i}(s) \widetilde{\rho}_{S}(t) \right] + \mathscr{B}_{ij}(s,t) \left[\widetilde{\rho}_{S}(t) \widetilde{A}_{i}(s), \widetilde{A}_{j}(t) \right] \right) \right) ds$$
(418)

$$=-\int_0^t \left(\sum_{ij} C_i(t) C_j(s) \left(\mathscr{B}_{ij}(t,s) \left[\widetilde{A_i}(t), \widetilde{A_j}(s) \widetilde{\widetilde{\rho_S}}(t)\right] + \mathscr{B}_{ji}(s,t) \left[\widetilde{\widetilde{\rho_S}}(t) \widetilde{A_j}(s), \widetilde{A_i}(t)\right]\right)\right) \mathrm{d}s \text{ (exchanging i and j)} \tag{419}$$

$$= -\int_{0}^{t} \left(\sum_{ij} C_{i}(t) C_{j}(s) \left(\mathscr{B}_{ij}(t,s) \left[\widetilde{A}_{i}(t), \widetilde{A}_{j}(s) \widetilde{\rho_{S}}(t) \right] + \mathscr{B}_{ij}^{*}(t,s) \left[\widetilde{\rho_{S}}(t) \widetilde{A}_{j}(s), \widetilde{A}_{i}(t) \right] \right) \right) ds$$

$$(420)$$

$$= -\int_{0}^{t} \left(\sum_{ij} C_{i}(t) C_{j}(s) \left(\mathscr{B}_{ij}(t,s) \left[\widetilde{A}_{i}(t), \widetilde{A}_{j}(s) \widetilde{\rho_{S}}(t) \right] - \mathscr{B}_{ij}^{*}(t,s) \left[\widetilde{A}_{i}(t), \widetilde{\rho_{S}}(t) \widetilde{A}_{j}(s) \right] \right) \right) ds$$

$$(421)$$

We could identify the following commutators in the equation deduced:

$$\mathscr{B}_{ij}\left(t,s\right)\widetilde{A_{i}}\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)-\mathscr{B}_{ij}\left(t,s\right)\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{i}}\left(t\right)=\mathscr{B}_{ij}\left(t,s\right)\left[\widetilde{A_{i}}\left(t\right),\widetilde{A_{j}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right],\tag{422}$$

$$\mathscr{B}_{ij}^{*}\left(t,s\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(s\right)\widetilde{A_{i}}\left(t\right)-\mathscr{B}_{ij}^{*}\left(t,s\right)\widetilde{A_{i}}\left(t\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}}\left(s\right)=\mathscr{B}_{ij}^{*}\left(t,s\right)\left[\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j}},\widetilde{A_{i}}\left(t\right)\right].$$
(423)

Returning to the Schroedinger picture we have:

$$U(t)\widetilde{A_{i}}(t)\widetilde{A_{j}}(s)\widetilde{\overline{\rho_{S}}}(t)U^{\dagger}(t) = U(t)\widetilde{A_{i}}(t)U^{\dagger}(t)U(t)\widetilde{A_{j}}(s)U^{\dagger}(t)U(t)\widetilde{\overline{\rho_{S}}}(t)U^{\dagger}(t), \qquad (424)$$

$$= \left(U(t)\widetilde{A_{i}}(t)U^{\dagger}(t)\right)\left(U(t)\widetilde{A_{j}}(s)U^{\dagger}(t)\right)\left(U(t)\widetilde{\overline{\rho_{S}}}(t)U^{\dagger}(t)\right), \qquad (425)$$

$$= A_{i}(t)\widetilde{A_{j}}(s,t)\overline{\rho_{S}}(t). \qquad (426)$$

This procedure applying to the relevant commutators give us:

$$U(t)\left[\widetilde{A_{i}}(t),\widetilde{A_{j}}(s)\widetilde{\widetilde{\rho_{S}}}(t)\right]U^{\dagger}(t) = \left(U(t)\widetilde{A_{i}}(t)\widetilde{A_{j}}(s)\widetilde{\widetilde{\rho_{S}}}(t)U^{\dagger}(t) - U(t)\widetilde{A_{j}}(s)\widetilde{\widetilde{\rho_{S}}}(t)\widetilde{A_{i}}(t)U^{\dagger}(t)\right)$$
(427)

$$=A_{i}\left(t\right)\widetilde{A_{j}}\left(s,t\right)\overline{\rho_{S}}\left(t\right)-\widetilde{A_{j}}\left(s,t\right)\overline{\rho_{S}}\left(t\right)A_{i}$$
(428)

$$= \left[A_i(t), \widetilde{A_j}(s, t) \overline{\rho_S}(t) \right]. \tag{429}$$

Introducing this transformed commutators in the equation (421) allow us to obtain the master equation of the system written as an integro-differential equation with the correlation functions $\mathscr{B}_{ij}(\tau)$ as defined before, this equations has the following form:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}s C_{i}(t) C_{j}(s) \left(\mathscr{B}_{ij}(t,s) \left[A_{i}(t), \widetilde{A_{j}}(s,t) \overline{\rho_{S}}(t)\right] + \mathscr{B}_{ij}^{*}(t,s) \left[\overline{\rho_{S}}(t) \widetilde{A_{j}}(s,t), A_{i}\right]\right)$$
(430)

$$s = t - \tau$$
 (Change of variables in the integration process) (431)

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{S}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}\tau C_{i}(t) C_{j}(t-\tau) \left(\mathcal{B}_{ij}(t,t-\tau)\left[A_{i}(t), \widetilde{A_{j}}(t-\tau,t)\,\overline{\rho_{S}}(t)\right] + \mathcal{B}_{ij}^{*}(t,t-\tau)\left[\overline{\rho_{S}}(t)\widetilde{A_{j}}(t-\tau,t), A_{i}(t)\right]\right)$$

$$(432)$$

where $i, j \in \{1, 2, 3, 4, 5.6\}$.

Here $\widetilde{A_j}(t-\tau,t)=U(t)\,U^\dagger(t-\tau)\,A_j(t)\,U(t-\tau)\,U^\dagger(t)$ where U(t) is given by (355). The equation obtained is a non-Markovian master equation which describes the QD exciton dynamics in the variational frame with a general time-dependent Hamiltonian, and valid at second order in $H_I(t)$. In order to write in a simplified way we define the following notation:

$$\mathscr{B}_{ij}(t,s) = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}(t)\widetilde{B}_{j}(s)\rho_{B}\right) \tag{433}$$

$$= \operatorname{Tr}_{B} \left(e^{iH_{B}t} B_{i} \left(t \right) e^{-iH_{B}t} e^{iH_{B}s} B_{j} \left(s \right) e^{-iH_{B}s} \rho_{B} \right) \tag{434}$$

$$=\operatorname{Tr}_{B}\left(e^{-iH_{B}s}e^{iH_{B}t}B_{i}\left(t\right)e^{-iH_{B}t}e^{iH_{B}s}B_{j}\left(s\right)\rho_{B}\right)$$
(435)

$$B_i(t,r) \equiv e^{iH_B r} B_i(t) e^{-iH_B r} \tag{436}$$

$$\mathscr{B}_{ij}(t,s) = \operatorname{Tr}_{B}\left(e^{iH_{B}(t-s)}B_{i}(t)e^{-iH_{B}(t-s)}B_{j}(s)\rho_{B}\right)$$
(437)

$$=\operatorname{Tr}_{B}\left(e^{iH_{B}\tau}B_{i}\left(t\right)e^{-iH_{B}\tau}B_{j}\left(s\right)\rho_{B}\right)\tag{438}$$

$$=\operatorname{Tr}_{B}\left(B_{i}\left(t,\tau\right)B_{j}\left(s,0\right)\rho_{B}\right)\tag{439}$$

Calculating the correlation functions allow us to obtain:

$$\frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle \alpha_{\mathbf{k}} | b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} | \alpha_{\mathbf{k}} \rangle d^2 \alpha_{\mathbf{k}} = \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \langle 0 | D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}} D(\alpha_{\mathbf{k}}) D(-\alpha_{\mathbf{k}}) b_{\mathbf{k}}^{\dagger} D(\alpha_{\mathbf{k}}) | 0 \rangle d^2 \alpha_{\mathbf{k}}$$

$$(445)$$

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left| (b_{\mathbf{k}} + \alpha_{\mathbf{k}}) \left(b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^{*}\right) \right| 0 \right\rangle d^{2} \alpha_{\mathbf{k}}$$
(446)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\alpha_{\mathbf{k}}^{*} + \left|\alpha_{\mathbf{k}}\right|^{2} \left|0\right\rangle d^{2}\alpha_{\mathbf{k}} \right.$$
(447)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{|\alpha_{\mathbf{k}}|^2}{N}\right) \left\langle 0 \left| b_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + |\alpha_{\mathbf{k}}|^2 \right| 0 \right\rangle d^2 \alpha_{\mathbf{k}}$$
(448)

$$= \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left|\alpha_{\mathbf{k}}\right|^{2} \right| 0 d^{2} \alpha_{\mathbf{k}} + \frac{1}{\pi N} \int \exp\left(-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{N}\right) \left\langle 0 \left|b_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}\right| 0 d^{2} \alpha_{\mathbf{k}} \right)$$
(449)

$$=N+1, (450)$$

$$\left\langle \widetilde{B_{jz}} \left(\tau \right) \widetilde{B_{j'z}} \left(0 \right) \right\rangle_{B} = \sum_{\mathbf{k}} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right) \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right)^{*} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N + \sum_{\mathbf{k}} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^{*} \left(g_{j'\mathbf{k}} - v_{j'\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N + 1 \right)$$
 (451)

$$= \sum_{\mathbf{k}} (g_{j\mathbf{k}} - v_{j\mathbf{k}})^* (g_{j'\mathbf{k}} - v_{j'\mathbf{k}}) e^{-i\omega_{\mathbf{k}^{\tau}}} + N(g_{j\mathbf{k}} - v_{j\mathbf{k}}) (g_{j'\mathbf{k}} - v_{j'\mathbf{k}})^* e^{i\omega_{\mathbf{k}^{\tau}}} + (g_{j\mathbf{k}} - v_{j\mathbf{k}})^* (g_{j'\mathbf{k}} - v_{j'\mathbf{k}}) e^{-i\omega_{\mathbf{k}^{\tau}}})), \tag{452}$$

$$D(h') D(h) = \exp\left(\frac{1}{2} (h'h^* - h'^*h)\right) D(h' + h), \tag{453}$$

$$\langle D(h') D(h) \rangle_B = \operatorname{Tr}_B \left(\exp \left(\frac{1}{2} \left(h' h^* - h'^* h \right) \right) D(h' + h) \rho_B \right)$$
(454)

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \operatorname{Tr}_B\left(D\left(h' + h\right)\rho_B\right) \tag{455}$$

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \frac{1}{\pi N} \int d^2 \alpha P\left(\alpha\right) \left\langle \alpha \left| D\left(h' + h\right) \right| \alpha \right\rangle \tag{456}$$

$$= \exp\left(\frac{1}{2}\left(h'h^* - h'^*h\right)\right) \exp\left(-\frac{|h + h'|^2}{2}\coth\left(\frac{\beta\omega}{2}\right)\right),\tag{457}$$

$$h' = h\exp(i\omega\tau), \tag{458}$$

$$\langle D\left(h \exp\left(\mathrm{i}\omega\tau\right)\right) D\left(h\right)\rangle_{B} = \exp\left(\frac{1}{2}(hh^{*} \exp\left(\mathrm{i}\omega\tau\right) - h^{*} h \exp\left(-\mathrm{i}\omega\tau\right)\right)\right) \exp\left(-\frac{|h + h \exp\left(\mathrm{i}\omega\tau\right)|^{2}}{2} \coth\left(\frac{\beta\omega}{2}\right)\right), \quad (459)$$

$$\frac{1}{2}|h|^2(\exp(i\omega\tau) - \exp(-i\omega\tau)) = \frac{1}{2}(hh^*\exp(i\omega\tau) - h^*h\exp(-i\omega\tau))$$
(460)

$$= \frac{1}{2} |h|^2 \left(\cos(\omega \tau) + i\sin(\omega \tau) - \cos(\omega \tau) + i\sin(\omega \tau)\right)$$
(461)

$$= \frac{1}{2} |h|^2 (2i \sin(\omega \tau))$$
 (462)

$$= i \left| h \right|^2 \sin \left(\omega \tau \right), \tag{463}$$

$$-\frac{|h + h\exp(i\omega\tau)|^2}{2} = -|h|^2 \frac{|1 + \exp(i\omega\tau)|^2}{2}$$
 (464)

$$= -\left|h\right|^2 \frac{\left(1 + 2\cos\left(\omega\tau\right) + \cos^2\left(\omega\tau\right)\right) + \sin^2\left(\omega\tau\right)}{2} \tag{465}$$

$$= -\left|h\right|^2 \frac{2 + 2\cos\left(\omega\tau\right)}{2} \tag{466}$$

$$=-\left|h\right|^{2}\left(1+\cos\left(\omega\tau\right)\right),\tag{467}$$

$$\langle D(h\exp(\mathrm{i}\omega\tau))D(h)\rangle_B = \exp\left(\mathrm{i}|h|^2\sin(\omega\tau)\right)\exp\left(-|h|^2(1+\cos(\omega\tau))\coth\left(\frac{\beta\omega}{2}\right)\right) \tag{468}$$

$$= \exp\left(i \left|h\right|^2 \sin\left(\omega \tau\right) - \left|h\right|^2 \left(1 + \cos\left(\omega \tau\right)\right) \coth\left(\frac{\beta \omega}{2}\right)\right) \tag{469}$$

$$= \exp\left(-\left|h\right|^2 \left(-i\sin\left(\omega\tau\right) + \cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right)\right)\right) \exp\left(-\left|h\right|^2 \coth\left(\frac{\beta\omega}{2}\right)\right)$$
(470)

$$= \langle D(h) \rangle_{B} \exp(-\phi(\tau)), \qquad (471)$$

$$\exp\left(-\phi\left(\tau\right)\right) = \exp\left(-\left|h\right|^{2} \left(\cos\left(\omega\tau\right) \coth\left(\frac{\beta\omega}{2}\right) - i\sin\left(\omega\tau\right)\right)\right),\tag{472}$$

$$\phi(\tau) = |h|^2 \left(\cos(\omega \tau) \coth\left(\frac{\beta \omega}{2}\right) - i \sin(\omega \tau) \right), \tag{473}$$

$$\langle D(h')D(h)\rangle_{B} = \exp\left(\frac{1}{2}\left(h'h^{*} - h'^{*}h\right)\right) \exp\left(-\frac{|h+h'|^{2}}{2}\coth\left(\frac{\beta\omega}{2}\right)\right),\tag{474}$$

$$h' = v \exp(i\omega\tau), \tag{475}$$

$$\left\langle \widetilde{B_1^+ B_0^-}(\tau) \widetilde{B_1^+ B_0^-}(0) \right\rangle_B = \operatorname{Tr}_B \left(\widetilde{B_1^+ B_0^-}(\tau) \widetilde{B_1^+ B_0^-}(0) \rho_B \right)$$

$$(476)$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{1}^{+}B_{0}^{-}}\left(\tau\right)\widetilde{B_{1}^{+}B_{0}^{-}}\left(0\right)\rho_{B}\right)\tag{477}$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right)} \prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right)} \rho_{B} \right)$$
(478)

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)} \right) \rho_{B} \right)$$
(479)

$$= \prod_{\mathbf{k}} \left(\exp \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \operatorname{Tr}_B \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \rho_B \right)$$
(480)

$$= \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^*} \right) \right) \prod_{\mathbf{k}} \left(\exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \right)$$
(481)

$$= \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{1}^{*} \mathbf{k} \frac{v_{0} \mathbf{k} - v_{1} \mathbf{k} v_{0}^{*} \mathbf{k}}{\omega_{\mathbf{k}}^{2}} \right) \exp\left(-\left| \frac{v_{1} \mathbf{k} - v_{0} \mathbf{k}}{\omega_{\mathbf{k}}} \right|^{2} \left(-i \sin(\omega_{\mathbf{k}} \tau) + \cos(\omega_{\mathbf{k}} \tau) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right) \exp\left(-\left| \frac{v_{1} \mathbf{k} - v_{0} \mathbf{k}}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right), \quad (482)$$

$$\left\langle \widetilde{B_0^+ B_1^-}(\tau) \widetilde{B_0^+ B_1^-}(0) \right\rangle_B = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{\mathbf{0k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-\operatorname{i} \sin(\omega_{\mathbf{k}} \tau) + \cos(\omega_{\mathbf{k}} \tau) \operatorname{coth}\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right) \exp\left(-\left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \operatorname{coth}\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right), \quad (483)$$

$$\left\langle \widetilde{B_{1}^{+}B_{0}^{-}}(\tau)\widetilde{B_{0}^{+}B_{1}^{-}}(0)\right\rangle_{B} = \operatorname{Tr}_{B}\left(\prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}e^{\mathrm{i}\omega\tau}\right) e^{\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}}-v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right)} \right) \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}}-v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right) e^{\frac{1}{2}\left(\frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}}-v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right)} \right) \rho_{B}\right)$$

$$(484)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right)} \prod_{\mathbf{k}} \left(D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^{*}v_{1\mathbf{k}} - v_{0\mathbf{k}}v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right)} \rho_{B} \right) (485)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*} v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right)} e^{\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^{*} v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right) \prod_{\mathbf{k}} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}} \tau} \right) \prod_{\mathbf{k}} D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B} \right) (486)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \prod_{\mathbf{k}} D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B} \right)$$

$$(487)$$

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(\left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \rho_{B} \right)$$

$$(488)$$

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(\left(D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}(\omega_{\mathbf{k}}\tau + \pi)} \right) D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \right) \rho_{B} \right)$$
(489)

$$= \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_0 \mathbf{k} - v_1 \mathbf{k}}{\omega_{\mathbf{k}}}\right|^2 \left(-i \sin(\omega_{\mathbf{k}} \tau + \pi) + \cos(\omega_{\mathbf{k}} \tau + \pi) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_0 \mathbf{k} - v_1 \mathbf{k}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right)\right)$$
(490)

$$= \prod_{\mathbf{k}} \exp \left(-\left|\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \left(i\sin(\omega_{\mathbf{k}}\tau) - \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp \left(-\left|\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right), \quad (491)$$

$$\left\langle \widetilde{B_0^+ B_1^-(\tau)} \widetilde{B_1^+ B_0^-(0)} \right\rangle_B = \operatorname{Tr}_B \left(\prod_{\mathbf{k}} \left(D\left(\frac{v_0 \mathbf{k}^{-v_1} \mathbf{k}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}} \tau} \right) e^{\frac{1}{2} \left(\frac{v_0^* \mathbf{k}^{-v_1} \mathbf{k}^{-v_0} \mathbf{k}}{\omega_{\mathbf{k}}^2} \right)} \right) \prod_{\mathbf{k}} \left(D\left(\frac{v_1 \mathbf{k}^{-v_0} \mathbf{k}}{\omega_{\mathbf{k}}} \right) e^{\frac{1}{2} \left(\frac{v_1^* \mathbf{k}^{-v_0} \mathbf{k}^{-v_1} \mathbf{k}^{-v_0} \mathbf{k}}{\omega_{\mathbf{k}}^2} \right)} \right) \rho_B \right)$$

$$(492)$$

$$= \operatorname{Tr}_{B} \left(\prod_{\mathbf{k}} D \left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) \prod_{\mathbf{k}} D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B} \right)$$

$$(493)$$

$$= \prod_{\mathbf{k}} \operatorname{Tr}_{B} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}(\omega_{\mathbf{k}}\tau + \pi)} \right) D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \rho_{B} \right)$$
(494)

$$= \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \left(-i\sin(\omega_{\mathbf{k}}\tau + \pi) + \cos(\omega_{\mathbf{k}}\tau + \pi) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)\right) \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right)$$
(495)

$$= \left\langle |\widetilde{B_1^+ B_0^-}(\tau) \, \widetilde{B_0^+ B_1^-}(0) \right\rangle_B, \tag{496}$$

$$\left\langle \widetilde{B_0^+ B_1^-}(\tau) \widetilde{B_{jz}}(0) \right\rangle_B = \operatorname{Tr}_B \left(\prod_{\mathbf{k}} \left(D\left(\frac{v_0 \mathbf{k}^{-v_1} \mathbf{k}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}} \tau} \right) e^{\frac{1}{2} \left(\frac{v_0^* \mathbf{k}^{-v_1} \mathbf{k}}{\omega_{\mathbf{k}}^2} \right)} \right) \sum_{\mathbf{k}'} \left(\left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'} \right) b_{\mathbf{k}'}^{\dagger} + \left(g_{j\mathbf{k}'} - v_{j\mathbf{k}'} \right)^* b_{\mathbf{k}'} \right) \rho_B \right), \tag{497}$$

$$\langle D(h) b \rangle_{B} = \frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | D(h) b | \alpha \rangle$$
(498)

$$= \frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | D(-\alpha) D(h) b D(\alpha) | \alpha \rangle$$
(499)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle 0 | D(-\alpha) D(h) b D(\alpha) | 0 \rangle$$
(500)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \langle 0 | D(-\alpha) D(h) D(\alpha) D(-\alpha) b D(\alpha) | 0 \rangle$$
(501)

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)\left(b+\alpha\right)\right|0\right\rangle \tag{502}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0 | D(h)(b+\alpha) | 0 \rangle$$
(503)

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)b|0\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)\alpha|0\rangle \tag{504}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \langle 0 | D(h) \alpha | 0 \rangle$$
(505)

$$= \frac{1}{\pi N} \int \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \exp\left(-\frac{|h|^2}{2}\right) d^2\alpha \tag{506}$$

$$=hN\left\langle D\left(h\right) \right\rangle _{B}, \tag{507}$$

$$\left\langle D\left(h\right)b^{\dagger}\right\rangle _{B}=\frac{1}{\pi N}\int\mathrm{d}^{2}\alpha\mathrm{exp}\left(-\frac{\left|\alpha\right|^{2}}{2}\right)\left\langle \alpha\left|D\left(h\right)b^{\dagger}\right|\alpha\right\rangle \tag{508}$$

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0 \left|D\left(-\alpha\right)D\left(h\right)b^{\dagger}D\left(\alpha\right)\right| 0 \right\rangle \tag{509}$$

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)b^{\dagger}D\left(\alpha\right)\right|0\right\rangle \tag{510}$$

$$= \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)D\left(-\alpha\right)b^{\dagger}D\left(\alpha\right)\right|0\right\rangle \tag{511}$$

$$=\frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{\left|\alpha\right|^{2}}{2}\right) \left\langle 0\left|D\left(-\alpha\right)D\left(h\right)D\left(\alpha\right)\left(b^{\dagger}+\alpha^{*}\right)\right|0\right\rangle \tag{512}$$

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp\left(h\alpha^* - h^*\alpha\right) \left\langle 0 \left| D\left(h\right) \left(b^{\dagger} + \alpha^*\right) \right| 0 \right\rangle \tag{513}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \left\langle 0 \left| D(h)b^\dagger \right| 0 \right\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \left\langle 0 \left| D(h)\alpha^* \right| 0 \right\rangle \tag{514}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle 0|D(h)|1\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha^* \langle 0|D(h)|0\rangle \tag{515}$$

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \langle -h|1\rangle + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha^* \langle 0|D(h)|0\rangle, \tag{516}$$

$$\langle -h| = \exp\left(-\frac{|-h^*|^2}{2}\right) \sum_{n} \frac{(-h^*)^n}{\sqrt{n!}} \langle n|, \qquad (517)$$

$$\langle -h|1\rangle = \exp\left(-\frac{\left|-h^*\right|^2}{2}\right)(-h^*)\,,\tag{518}$$

$$\left\langle D(h)b^{\dagger}\right\rangle_{B}=\tfrac{1}{\pi N}\int\mathrm{d}^{2}\alpha\exp\left(-\tfrac{|\alpha|^{2}}{2}\right)\exp(h\alpha^{*}-h^{*}\alpha)\exp\left(-\tfrac{\left|-h^{*}\right|^{2}}{2}\right)\!(-h^{*})+\tfrac{1}{\pi N}\int\mathrm{d}^{2}\alpha\exp\left(-\tfrac{|\alpha|^{2}}{2}\right)\!\exp(h\alpha^{*}-h^{*}\alpha)\alpha^{*}\!\exp\left(-\tfrac{\left|-h^{*}\right|^{2}}{2}\right) \tag{519}$$

$$=-h^{*}\left\langle D\left(h\right) \right\rangle _{B}\left(N+1\right) , \tag{520}$$

$$\langle bD(h)\rangle_{B} = \frac{1}{\pi N} \int d^{2}\alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | bD(h) | \alpha \rangle$$
(521)

$$= \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int d^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha \exp\left(-\frac{|h|^2}{2}\right)$$
 (522)

$$=h\left\langle D\left(h\right) \right\rangle _{B}\left(N+1\right) , \tag{523}$$

$$\langle b^{\dagger} D(h) \rangle_{B} = \frac{1}{\pi N} \int d^{2} \alpha \exp\left(-\frac{|\alpha|^{2}}{2}\right) \langle \alpha | b^{\dagger} D(h) | \alpha \rangle$$
(524)

$$= \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \exp\left(-\frac{|h|^2}{2}\right) h + \frac{1}{\pi N} \int \mathrm{d}^2 \alpha \exp\left(-\frac{|\alpha|^2}{2}\right) \exp(h\alpha^* - h^*\alpha) \alpha \exp\left(-\frac{|h|^2}{2}\right) \tag{525}$$

$$=-h^{*}\left\langle D\left(h\right) \right\rangle _{B}N, \tag{526}$$

$$\left\langle \widetilde{B_1^+ B_0^-} (\tau) \right\rangle_B = \left\langle \prod_{\mathbf{k}} \left(D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \right) e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right)} \right) \right\rangle_B$$
(527)

$$= \prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right)} \right) \prod_{\mathbf{k}} \left\langle D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) \right\rangle_{B}$$
 (528)

$$= \prod_{\mathbf{k}} \left(e^{\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right)} \right) \prod_{\mathbf{k}} \left\langle D \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau} \right) \right\rangle_{B}$$
(529)

$$= \prod_{\mathbf{k}} \left(\exp \left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \right) \prod_{\mathbf{k}} \exp \left(-\frac{1}{2} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth \left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right)$$
(530)

$$=B_{10}.$$
 (531)

The correlation functions can be found readily as:

$$\widetilde{B_1^+ B_0^-}(\tau) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{i\omega_{\mathbf{k}}\tau}\right) \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right), \tag{532}$$

$$\widetilde{B_0^+ B_1^-}(\tau) = \prod_{\mathbf{k}} \left(D\left(\frac{v_{0\mathbf{k}} - v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \exp\left(\frac{1}{2} \left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right), \tag{533}$$

$$\widetilde{B_x}(0) = \frac{B_1^+ B_0^- + B_0^+ B_1^- - B_{10} - B_{01}}{2},\tag{534}$$

$$\widetilde{B_y}(0) = \frac{B_0^+ B_1^- - B_1^+ B_0^- + B_{10} - B_{01}}{2i},\tag{535}$$

$$B_{10} = \left(\prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \right) \left(\exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right) \right), \tag{536}$$

$$B_{iz} = \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) b_{\mathbf{k}}^{\dagger} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* b_{\mathbf{k}} \right), \tag{537}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{jz}}(0)\right\rangle_{B} = \left\langle \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger}e^{\mathrm{i}\omega_{\mathbf{k}}\tau} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)^{*}b_{\mathbf{k}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\right) \sum_{\mathbf{k}} \left(\left(g_{j\mathbf{k}} - v_{j\mathbf{k}}\right)b_{\mathbf{k}}^{\dagger} + \left(g_{j\mathbf{k}} - v_{jk}\right)^{*}b_{\mathbf{k}}\right) \right\rangle_{B}$$
(538)

$$= \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}}) (g_{j\mathbf{k}} - v_{j\mathbf{k}})^* e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \sum_{\mathbf{k}} (g_{i\mathbf{k}} - v_{i\mathbf{k}})^* (g_{j\mathbf{k}} - v_{j\mathbf{k}}) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1), \qquad (539)$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_x}(0)\right\rangle_B = \left\langle \frac{B_1^+ B_0^-(\tau) + B_0^+ B_1^-(\tau) - B_{10} - B_{01}}{2} \frac{B_1^+ B_0^- + B_0^+ B_1^- - B_{10} - B_{01}}{2} \right\rangle_B \tag{540}$$

$$= \frac{1}{4} \left\langle \left(B_1^+ B_0^- (\tau) + B_0^+ B_1^- (\tau) - B_{10} - B_{01} \right) \left(B_1^+ B_0^- + B_0^+ B_1^- - B_{10} - B_{01} \right) \right\rangle_B \tag{541}$$

$$= \frac{1}{4} \left\langle B_{1}^{+} B_{0}^{-}(\tau) B_{1}^{+} B_{0}^{-} + B_{1}^{+} B_{0}^{-}(\tau) B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-}(\tau) B_{10} - B_{1}^{+} B_{0}^{-}(\tau) B_{01} + B_{0}^{+} B_{1}^{-}(\tau) B_{1}^{+} B_{0}^{-} + B_{0}^{+} B_{1}^{-}(\tau) B_{0}^{+} B_{1}^{-} \right. \tag{542}$$

$$-B_{0}^{+}B_{1}^{-}(\tau)B_{10} - B_{0}^{+}B_{1}^{-}(\tau)B_{01} - B_{10}B_{1}^{+}B_{0}^{-} - B_{10}B_{0}^{+}B_{1}^{-} + B_{10}B_{10} + B_{10}B_{01} - B_{01}B_{1}^{+}B_{0}^{-} - B_{01}B_{0}^{+}B_{1}^{-} + B_{01}B_{10} + B_{01}B_{01} +$$

$$= \frac{1}{4} \langle B_1^+ B_0^-(\tau) B_1^+ B_0^- + B_1^+ B_0^-(\tau) B_0^+ B_1^- - B_1^+ B_0^-(\tau) B_{10} - B_1^+ B_0^-(\tau) B_{01} + B_0^+ B_1^-(\tau) B_1^+ B_0^-$$
(544)

$$+B_0^+B_1^-(\tau)B_0^+B_1^- - B_0^+B_1^-(\tau)B_{10} - B_0^+B_1^-(\tau)B_{01}\rangle, \qquad (545)$$

$$\left\langle \widetilde{B_0^+ B_1^-}(\tau) \widetilde{B_0^+ B_1^-}(0) \right\rangle_{\mathcal{B}} = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_0^* \mathbf{k}^v \mathbf{1}_{\mathbf{k}} - v_0 \mathbf{k} v_1^* \mathbf{k}}{\omega_{\mathbf{k}}^2} \right) \exp\left(-\left| \frac{v_1 \mathbf{k} - v_0 \mathbf{k}}{\omega_{\mathbf{k}}} \right|^2 \left(-i \sin(\omega_{\mathbf{k}} \tau) + \cos(\omega_{\mathbf{k}} \tau) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right) \exp\left(-\left| \frac{v_1 \mathbf{k} - v_0 \mathbf{k}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2} \right) \right) \right), \quad (546)$$

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \right), \tag{547}$$

$$\phi(\tau) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right), \tag{548}$$

$$S = \prod_{\mathbf{k}} \exp\left(-\left|\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right),\tag{549}$$

$$\left\langle \widetilde{B_0^+ B_1^-}(\tau) \widetilde{B_0^+ B_1^-}(0) \right\rangle_B = U \exp(-\phi(\tau)) S, \tag{550}$$

$$\left\langle \widetilde{B_1^+ B_0^-}(\tau) \widetilde{B_1^+ B_0^-}(0) \right\rangle_B = U^* \exp(-\phi(\tau)) S,$$
 (551)

$$\left\langle \widetilde{B_1^+ B_0^-}(\tau) \widetilde{B_0^+ B_1^-}(0) \right\rangle_B = \exp(\phi(\tau)) S, \tag{552}$$

$$\left\langle \widetilde{B_0^+ B_1^-}(\tau) \widetilde{B_1^+ B_0^-}(0) \right\rangle_B = \left\langle \widetilde{B_1^+ B_0^-}(\tau) \widetilde{B_0^+ B_1^-}(0) \right\rangle_B, \tag{553}$$

$$\left\langle \widetilde{B_{1}^{+}B_{0}^{-}}(\tau) \right\rangle_{B} = \prod_{\mathbf{k}} \left(\exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}} \right) \right) \right) \prod_{\mathbf{k}} \exp\left(-\frac{1}{2} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right)$$
(554)

$$=U^{*1/2}S^{1/2}, (555)$$

$$\left\langle \widetilde{B_x} \left(\tau \right) \widetilde{B_x} \left(0 \right) \right\rangle_B = \frac{1}{4} \left\langle B_1^+ B_0^- \left(\tau \right) B_1^+ B_0^- + B_1^+ B_0^- \left(\tau \right) B_0^+ B_1^- - B_1^+ B_0^- \left(\tau \right) B_{10} - B_1^+ B_0^- \left(\tau \right) B_{01} + B_0^+ B_1^- \left(\tau \right) B_1^+ B_0^- \right)$$
(556)

$$+B_0^+B_1^-(\tau)B_0^+B_1^- - B_0^+B_1^-(\tau)B_{10} - B_0^+B_1^-(\tau)B_{01}\rangle,$$
 (557)

$$\left\langle \widetilde{B_x} \left(\tau \right) \widetilde{B_x} \left(0 \right) \right\rangle_B = \frac{1}{4} \left\langle B_1^+ B_0^- \left(\tau \right) B_1^+ B_0^- + B_1^+ B_0^- \left(\tau \right) B_0^+ B_1^- - B_1^+ B_0^- \left(\tau \right) B_{10} - B_1^+ B_0^- \left(\tau \right) B_{01} \right. \tag{558}$$

$$+B_{0}^{+}B_{1}^{-}(\tau)B_{1}^{+}B_{0}^{-}+B_{0}^{+}B_{1}^{-}(\tau)B_{0}^{+}B_{1}^{-}-B_{0}^{+}B_{1}^{-}(\tau)B_{10}-B_{0}^{+}B_{1}^{-}(\tau)B_{01}\rangle$$

$$(559)$$

$$=\frac{1}{4}\left(U^{*}\exp\left(-\phi\left(\tau\right)\right)S+\exp(\phi\left(\tau\right))S-B_{10}^{2}-\left|B_{10}\right|^{2}+\exp(\phi\left(\tau\right))S+U\exp(-\phi\left(\tau\right))S-B_{10}^{*2}-\left|B_{10}\right|^{2}\right)$$
(560)

$$\begin{aligned}
&= \frac{1}{4} \left(2U^{\Re} \exp\left(-\phi\left(\tau\right) \right) S + 2 \exp\left(\phi\left(\tau\right) \right) S - 2 \left(B_{10}^{2} \right)^{\Re} - 2 \left| B_{10} \right|^{2} \right) \\
&= \frac{1}{4} \left(2U^{\Re} \exp\left(-\phi\left(\tau\right) \right) S + 2 \exp\left(\phi\left(\tau\right) \right) S - 2 \left(U^{*} \right)^{\Re} S - 2 S \right) \\
&= \frac{S}{2} \left(U^{\Re} \exp\left(-\phi\left(\tau\right) \right) + \exp\left(\phi\left(\tau\right) \right) - \left(U^{*} \right)^{\Re} - 1 \right), \\
\left\langle \widetilde{B}_{y}(\tau) \widetilde{B}_{y}(0) \right\rangle_{B} &= \left\langle \frac{B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{1}^{+} B_{0}^{-}\left(\tau\right) + B_{10} - B_{01}}{2 \mathrm{i}} \frac{B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-} + B_{10} - B_{01}}{2 \mathrm{i}} \right)_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{1}^{+} B_{0}^{-}\left(\tau\right) + B_{10} - B_{01} \right) \left(B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-} + B_{10} - B_{01} \right) \right\rangle_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{1}^{+} B_{0}^{-}\left(\tau\right) + B_{10} - B_{01} \right) \left(B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-} + B_{10} - B_{01} \right) \right\rangle_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{1}^{+} B_{0}^{-}\left(\tau\right) + B_{10} - B_{01} \right) \left(B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-}\left(\tau\right) B_{01} + B_{10}^{+} B_{0}^{-}\left(\tau\right) B_{01} + B_{10}^{+} B_{01}^{-} \right) \right\rangle_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{1}^{+} B_{0}^{-}\left(\tau\right) + B_{10} - B_{01} \right) \left(B_{0}^{+} B_{1}^{-} - B_{1}^{+} B_{0}^{-}\left(\tau\right) B_{01}^{+} B_{0}^{-}\left(\tau\right) B_{01}^{+} B_{01}^{-} \right) \right\rangle_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) - B_{0}^{+} B_{1}^{-}\left(\tau\right) B_{10}^{+} B_{0}^{-}\left(\tau\right) B_{10} - B_{01}^{+} B_{0}^{-}\left(\tau\right) B_{01}^{+} B_{0}^{-}\left(\tau\right) B_{01}^{+} B_{01}^{-} \right) \right\rangle_{B} \\
&= -\frac{1}{4} \left\langle \left(B_{0}^{+} B_{1}^{-}\left(\tau\right) B_{01}^{+} B_{0}^{-}\left(\tau\right) B_{01}^{+} B_{0}^{-}\left(\tau\right) B_{10}^{+} B_{01}^{-}\left(\tau\right) B_{01}^{+} B_{01}^{$$

$$= -\frac{1}{4} \langle B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_0^+ B_1^-(\tau) B_{10} - B_0^+ B_1^-(\tau) B_{01}$$
 (568)

$$-B_{1}^{+}B_{0}^{-}(\tau)B_{0}^{+}B_{1}^{-} + B_{1}^{+}B_{0}^{-}(\tau)B_{1}^{+}B_{0}^{-} - B_{1}^{+}B_{0}^{-}(\tau)B_{10} + B_{1}^{+}B_{0}^{-}(\tau)B_{01}\rangle$$

$$(569)$$

$$= -\frac{1}{4} \langle B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_{01} B_{10} - B_{01} B_{01} - B_1^+ B_0^-(\tau) B_0^+ B_1^- + B_1^+ B_0^-(\tau) B_1^+ B_0^- - B_{10} B_{10} + B_{10} B_{01} \rangle$$

$$(570)$$

$$= -\frac{1}{4} \left(U \exp(-\phi(\tau)) S - \exp(\phi(\tau)) S - \exp(\phi(\tau)) S + U^* \exp(-\phi(\tau)) S + 2S - 2(U^*)^{\Re} S \right)$$
 (571)

$$= -\frac{S}{4} \left(2U^{\Re} \exp\left(-\phi\left(\tau\right) \right) - 2\exp\left(\phi\left(\tau\right) \right) + 2 - 2U^{\Re} \right)$$
(572)

$$=\frac{S}{2}\left(\exp\left(\phi\left(\tau\right)\right)-U^{\Re}\exp\left(-\phi\left(\tau\right)\right)-1+U^{\Re}\right),\tag{573}$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_y}(0) \right\rangle_B = \left\langle \frac{B_1^+ B_0^-(\tau) + B_0^+ B_1^-(\tau) - B_{10} - B_{01}}{2} \frac{B_0^+ B_1^- - B_1^+ B_0^- + B_{10} - B_{01}}{2i} \right\rangle_B \tag{574}$$

$$= \frac{1}{4i} \left\langle \left(B_1^+ B_0^- (\tau) + B_0^+ B_1^- (\tau) - B_{10} - B_{01} \right) \left(B_0^+ B_1^- - B_1^+ B_0^- + B_{10} - B_{01} \right) \right\rangle_B \tag{575}$$

$$= {\textstyle\frac{1}{4\mathrm{i}}} \left\langle {\scriptstyle B_{1}^{+}B_{0}^{-}(\tau)B_{0}^{+}B_{1}^{-} - B_{1}^{+}B_{0}^{-}(\tau)B_{1}^{+}B_{0}^{-} + B_{1}^{+}B_{0}^{-}(\tau)B_{10} - B_{1}^{+}B_{0}^{-}(\tau)B_{01} + B_{0}^{+}B_{1}^{-}(\tau)B_{0}^{+}B_{1}^{-} - B_{0}^{+}B_{1}^{-}(\tau)B_{1}^{+}B_{0}^{-} + B_{0}^{+}B_{1}^{-}(\tau)B_{10}} \right. \\ \left. \left(576 \right) \right. \\ \left. \left. \left(576 \right) \right. \\ \left.$$

$$-B_0^+B_1^-(\tau)B_{01}-B_{10}B_0^+B_1^-+B_{10}B_1^+B_0^--B_{10}B_{10}+B_{10}B_{01}-B_{01}B_0^+B_1^-+B_{01}B_1^+B_0^--B_{01}B_{10}+B_{01}B_{01}$$

$$(577)$$

$$= \frac{1}{4i} \left\langle B_1^+ B_0^-(\tau) B_0^+ B_1^- - B_1^+ B_0^-(\tau) B_1^+ B_0^- + B_1^+ B_0^-(\tau) B_{10} - B_1^+ B_0^-(\tau) B_{01} + B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_0^+ B_1^-(\tau) B_{10} \right\rangle$$
(578)

$$-B_0^+B_1^-(\tau)B_{01}$$
 (579)

$$= \frac{1}{4i} \left\langle B_1^+ B_0^-(\tau) B_0^+ B_1^- - B_1^+ B_0^-(\tau) B_1^+ B_0^- + B_{10} B_{10} - B_{10} B_{01} + B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_{01} B_{10} - B_{01} B_{01} \right\rangle \tag{580}$$

$$=\frac{1}{4\mathrm{i}}\langle B_{1}^{+}B_{0}^{-}(\tau)B_{0}^{+}B_{1}^{-}-B_{1}^{+}B_{0}^{-}(\tau)B_{1}^{+}B_{0}^{-}+B_{10}B_{10}+B_{0}^{+}B_{1}^{-}(\tau)B_{0}^{+}B_{1}^{-}-B_{0}^{+}B_{1}^{-}(\tau)B_{1}^{+}B_{0}^{-}-B_{01}B_{01}\rangle$$
 (581)

$$=\frac{1}{4i}\left(\exp\left(\phi\left(\tau\right)\right)S - U^*\exp\left(-\phi\left(\tau\right)\right)S + U\exp\left(-\phi\left(\tau\right)\right)S - \exp\left(\phi\left(\tau\right)\right)S + U^*S - US\right)$$
(582)

$$= \frac{1}{4i} \left(-U^* \exp(-\phi(\tau)) S + U \exp(-\phi(\tau)) S + U^* S - U S \right)$$
 (583)

$$= \frac{S}{4i} \left(-U^* \exp(-\phi(\tau)) + U \exp(-\phi(\tau)) + U^* - U \right)$$
 (584)

$$= \frac{S(U - U^*)}{4i} \left(\exp(-\phi(\tau)) - 1 \right)$$
 (585)

$$=\frac{2\mathrm{i}U^{\Im}S}{4\mathrm{i}}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right)\tag{586}$$

$$=\frac{U^{\Im}S}{2}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right),\tag{587}$$

$$\left\langle \widetilde{B}_{y}(\tau) \widetilde{B}_{x}(0) \right\rangle_{B} = \left\langle \frac{B_{0}^{+} B_{1}^{-}(\tau) - B_{1}^{+} B_{0}^{-}(\tau) + B_{10} - B_{01}}{2i} \frac{B_{1}^{+} B_{0}^{-} + B_{0}^{+} B_{1}^{-} - B_{10} - B_{01}}{2} \right\rangle_{B}$$

$$(588)$$

$$= \frac{1}{4i} \left\langle \left(B_0^+ B_1^- (\tau) - B_1^+ B_0^- (\tau) + B_{10} - B_{01} \right) \left(B_1^+ B_0^- + B_0^+ B_1^- - B_{10} - B_{01} \right) \right\rangle_B$$
 (589)

$$= \frac{1}{4i} \langle B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_0^+ B_1^-(\tau) B_{10} - B_0^+ B_1^-(\tau) B_{01} - B_1^+ B_0^-(\tau) B_1^+ B_0^- - B_1^+ B_0^-(\tau) B_0^+ B_1^-$$
(590)

$$+B_{1}^{+}B_{0}^{-}(\tau)B_{10}+B_{1}^{+}B_{0}^{-}(\tau)B_{01}+B_{10}B_{1}^{+}B_{0}^{-}+B_{10}B_{0}^{+}B_{1}^{-}-B_{10}B_{10}-B_{10}B_{01}-B_{01}B_{1}^{+}B_{0}^{-}-B_{01}B_{0}^{+}B_{1}^{-}+B_{01}B_{10}+B_{01}B_{01}\right\rangle \tag{591}$$

$$= \frac{1}{4i} \langle B_0^+ B_1^- (\tau) B_1^+ B_0^- + B_0^+ B_1^- (\tau) B_0^+ B_1^- - B_0^+ B_1^- (\tau) B_{10} - B_0^+ B_1^- (\tau) B_{01}$$
 (592)

$$-B_{1}^{+}B_{0}^{-}(\tau)B_{1}^{+}B_{0}^{-} - B_{1}^{+}B_{0}^{-}(\tau)B_{0}^{+}B_{1}^{-} + B_{1}^{+}B_{0}^{-}(\tau)B_{10} + B_{1}^{+}B_{0}^{-}(\tau)B_{01}\rangle$$

$$(593)$$

$$= \frac{1}{4i} \left\langle B_0^+ B_1^- (\tau) B_1^+ B_0^- + B_0^+ B_1^- (\tau) B_0^+ B_1^- - B_{01} B_{10} - B_{01} B_{01} - B_1^+ B_0^- (\tau) B_1^+ B_0^- \right\rangle$$
(594)

$$-B_1^+ B_0^- (\tau) B_0^+ B_1^- + B_{10} B_{10} + B_{10} B_{01} \rangle$$
 (595)

$$= \frac{1}{4i} \left\langle B_0^+ B_1^- (\tau) B_1^+ B_0^- + B_0^+ B_1^- (\tau) B_0^+ B_1^- - B_{01} B_{10} - B_{01} B_{01} - B_1^+ B_0^- (\tau) B_1^+ B_0^- \right\rangle$$
(596)

$$-B_1^+ B_0^- (\tau) B_0^+ B_1^- + B_{10} B_{10} + B_{10} B_{01} \rangle$$
 (597)

$$= \frac{1}{4\mathrm{i}} \left\langle B_0^+ B_1^-(\tau) B_1^+ B_0^- + B_0^+ B_1^-(\tau) B_0^+ B_1^- - B_{01} B_{01} - B_1^+ B_0^-(\tau) B_1^+ B_0^- - B_1^+ B_0^-(\tau) B_0^+ B_1^- + B_{10} B_{10} \right\rangle \tag{598}$$

$$= \frac{1}{4i} \left(U \exp\left(-\phi(\tau)\right) S - U^* \exp\left(-\phi(\tau)\right) S + B_{10}^2 - B_{10}^{*2} \right)$$
 (599)

$$= \frac{1}{4i} (U \exp(-\phi(\tau)) S - U^* \exp(-\phi(\tau)) S + U^* S - U S)$$
(600)

$$=\frac{S\left(U-U^{*}\right)}{4\mathrm{i}}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right)\tag{601}$$

$$=\frac{2\mathrm{i}U^{\Im}S}{4\mathrm{i}}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right)\tag{602}$$

$$= -\left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right) \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)^* \left(N_{\mathbf{k}'} + 1\right) B_{10},\tag{603}$$

$$\left\langle B_{1}^{+}B_{0}^{-}(\tau)(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^{*}b_{\mathbf{k'}}\right\rangle _{B} = \left. (g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^{*}\prod_{\mathbf{k}}\exp\left(\frac{1}{2}\left(\frac{v_{1}^{*}\mathbf{k}^{v_{0}}\mathbf{k}-v_{1}\mathbf{k}^{v_{0}^{*}}}{\omega_{\mathbf{k}}^{2}}\right)\right)\left(\frac{v_{1}\mathbf{k'}-v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}\left\langle \prod_{\mathbf{k}}\left(D\left(\frac{v_{1}\mathbf{k}-v_{0}\mathbf{k}}{\omega_{\mathbf{k}}}e^{i\omega_{\mathbf{k}}\tau}\right)\right)\right\rangle$$
 (604)

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'}\tau}\right) N_{\mathbf{k}'} B_{10}, \tag{605}$$

$$\left\langle B_0^+ B_1^- (\tau) (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^\dagger \right\rangle_B = -(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{01}. \tag{606}$$

$$\langle B_0^+ B_1^- (\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* b_{\mathbf{k}'} \rangle_B = (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* \left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'} \tau} \right) N_{\mathbf{k}'} B_{01},$$
 (607)

$$\left\langle \widetilde{B_{x}}(\tau)\widetilde{B_{iz}}(0)\right\rangle_{B} = \frac{1}{2} \sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right)^{*} (N_{\mathbf{k'}} + 1)B_{10} - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right)^{*} (N_{\mathbf{k'}} + 1)B_{01} \right)$$

$$(608)$$

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{10} + (g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{01}\right) \tag{609}$$

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{i\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{10} - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{01}$$

$$(610)$$

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^*\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10}+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^*\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{01}\right) \tag{611}$$

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(N_{\mathbf{k'}} + 1\right) \left(\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} \right)^* B_{10} + \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} \right)^* B_{01} \right)$$
(612)

$$+\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}N_{\mathbf{k}'}\left(\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)B_{10}+\left(\frac{v_{0\mathbf{k}'}-v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)B_{01}\right)\right)$$
(613)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(N_{\mathbf{k'}} + 1\right) \left(\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^* B_{10} - \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right)^* B_{01} \right)$$
(614)

$$+\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^*N_{\mathbf{k}'}\left(\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)B_{10}-\left(\frac{v_{1\mathbf{k}'}-v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}e^{\mathrm{i}\omega_{\mathbf{k}'}\tau}\right)B_{01}\right)\right)$$
(615)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}})(N_{\mathbf{k'}} + 1) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (B_{10} - B_{01}) + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* N_{\mathbf{k'}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right) (B_{10} - B_{01}) \right)$$
(616)

$$=\frac{1}{2}\sum_{\mathbf{k}'}2\mathrm{i}B_{10}^{\mathfrak{F}}\left(\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}N_{\mathbf{k'}}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}^{\prime}}}\right)-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(N_{\mathbf{k'}}+1\right)\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}^{\prime}}}\right)^{*}\right)$$
(617)

$$= i \sum_{\mathbf{k'}} B_{10}^{\Im} \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* N_{\mathbf{k'}} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right) - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) (N_{\mathbf{k'}} + 1) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}}\tau} \right)^* \right)$$
(618)

$$=\mathrm{i}\sum_{\mathbf{k'}}B_{10}^{\Im}\left(\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}N_{\mathbf{k'}}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)e^{\mathrm{i}\omega_{\mathbf{k''}}}-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(N_{\mathbf{k'}}+1\right)\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^{*}e^{-\mathrm{i}\omega_{\mathbf{k''}}}\right),\quad(619)$$

$$\left\langle \widetilde{B}_{iz} (\tau) \widetilde{B}_{x} (0) \right\rangle_{B} = \left\langle \sum_{\mathbf{k}'} \left((g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'}\tau} + (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^{*} b_{\mathbf{k}'} e^{-i\omega_{\mathbf{k}'}\tau} \right) \left\langle \left(\frac{B_{1}^{+} B_{0}^{-} + B_{0}^{+} B_{1}^{-} - B_{10} - B_{01}}{2} \right) \right\rangle_{B} (620)$$

$$= \sum_{\mathbf{k}'} \left\langle \left((g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'}\tau} + (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^{*} b_{\mathbf{k}'} e^{-i\omega_{\mathbf{k}'}\tau} \right) \left(\frac{B_{1}^{+} B_{0}^{-} + B_{0}^{+} B_{1}^{-} - B_{10} - B_{01}}{2} \right) \right\rangle_{B} (621)$$

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left\langle \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) \left(B_1^+ B_0^- + B_0^+ B_1^- - B_{10} - B_{01} \right) \right\rangle_B$$
(622)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left\langle \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) \left(B_1^+ B_0^- + B_0^+ B_1^- \right) \right\rangle_B$$
(623)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \langle (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} B_1^{\dagger} B_0^{-} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} B_0^{+} B_1^{-} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} B_1^{+} B_0^{-}$$
(624)

$$+\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}b_{\mathbf{k}'}e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}B_{0}^{+}B_{1}^{-}\rangle,\tag{625}$$

$$\left\langle \left\langle g_{i\mathbf{k'}^{-v}i\mathbf{k'}}\right\rangle b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau_{B_{1}^{+}B_{0}}} \right\rangle_{B} = \left\langle g_{i\mathbf{k'}^{-v}i\mathbf{k'}}\right\rangle \left\langle b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau_{B_{1}^{+}B_{0}}} \right\rangle_{B}$$

$$(626)$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \left\langle b_{\mathbf{k}'}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right) \right\rangle_{D}$$
(627)

$$= {\scriptstyle (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} \left(D\left(\frac{v_{1}\mathbf{k'} - v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}}\right) \exp\left(\frac{1}{2}\left(\frac{v_{1}^{*}\mathbf{k'} v_{0}\mathbf{k'} - v_{1}\mathbf{k'} v_{0}^{*}\mathbf{k'}}{\omega_{\mathbf{k'}}^{*}}\right)\right)\right)\right\rangle_{B}} \left\langle \Pi_{\mathbf{k} \neq \mathbf{k'}} \left(D\left(\frac{v_{1}\mathbf{k} - v_{0}\mathbf{k}}{\omega_{\mathbf{k}}}\right) \exp\left(\frac{1}{2}\left(\frac{v_{1}^{*}\mathbf{k} v_{0}\mathbf{k} - v_{1}\mathbf{k} v_{0}^{*}\mathbf{k'}}{\omega_{\mathbf{k'}}^{*}}\right)\right)\right)\right\rangle_{B}} \right\rangle_{B}$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k}'} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_B \left\langle b_{\mathbf{k}'}^\dagger e^{i\omega_{\mathbf{k}'} \tau} D\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)\right\rangle_B$$
(629)

$$= (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k'}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_B \left\langle b_{\mathbf{k'}}^\dagger e^{\mathrm{i}\omega_{\mathbf{k'}} \tau} D\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\right\rangle_B$$
(630)

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k}'} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle_B \left\langle b_{\mathbf{k}'}^\dagger D\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right) \right\rangle_B e^{i\omega_{\mathbf{k}'}\tau}$$

$$(631)$$

$$= (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \prod_{\mathbf{k}} \exp \left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k} \neq \mathbf{k'}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)\right\rangle_B \left(-\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* \left\langle D\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\right\rangle_B D_{\mathbf{k'}}\right) e^{\mathrm{i}\omega_{\mathbf{k'}}}$$
(632)

$$= -\left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \left\langle \prod_{\mathbf{k}} D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \right\rangle_B N_{\mathbf{k'}} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau}$$

$$(633)$$

$$= -\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^* \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right) B_{10} N_{\mathbf{k}'} e^{i\omega_{\mathbf{k}'}\tau},\tag{634}$$

$$\left\langle \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger} e^{i\omega}\mathbf{k'}^{\tau_B} + B_0^{-}\right\rangle_B = -\left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)B_{01}N_{\mathbf{k'}}e^{i\omega}\mathbf{k'}^{\tau},\tag{635}$$

$$\langle g_{i\mathbf{k'}^{-v}i\mathbf{k}} \rangle^* b_{\mathbf{k'}^{e}}^{-i\omega} \mathbf{k'}^{\tau_B} + b_0^- \rangle_B = (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* e^{-i\omega} \mathbf{k'}^{\tau} \langle b_{\mathbf{k'}} B_1^+ B_0^- \rangle_B$$

$$(636)$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau} \left\langle b_{\mathbf{k}'} \prod_{\mathbf{k}} \left(D\left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \exp\left(\frac{1}{2}\left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right) \right) \right\rangle_{\mathcal{D}}$$
(637)

$$= \left(g_{i\mathbf{k'}^{-v}i\mathbf{k'}}\right)^{*e^{-\mathrm{i}\omega_{\mathbf{k'}^{\prime}}}} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{1}^{*}\mathbf{k}^{v_{0}}\mathbf{k}^{-v_{1}}\mathbf{k}^{v_{0}^{*}}}{\omega_{\mathbf{k}^{\prime}}^{2}}\right)\right) \left\langle b_{\mathbf{k'}}D\left(\frac{v_{1}\mathbf{k'}^{-v_{0}}\mathbf{k'}}{\omega_{\mathbf{k'}^{\prime}}}\right)\right\rangle_{R} \left\langle \prod_{\mathbf{k}\neq\mathbf{k'}} \left(D\left(\frac{v_{1}\mathbf{k}^{-v_{0}}\mathbf{k}}{\omega_{\mathbf{k}}}\right)\right)\right\rangle_{R}$$
(638)

$$= (g_{i\mathbf{k'}^{-v}i\mathbf{k'}})^* e^{-i\omega_{\mathbf{k'}^{\prime}}} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(v_{1\mathbf{k}}^* v_{0\mathbf{k}^{-v}1\mathbf{k}} v_{0\mathbf{k}}^* \right)\right) \frac{v_{1\mathbf{k'}^{-v}0\mathbf{k'}}}{\omega_{\mathbf{k'}^{\prime}}} (N_{\mathbf{k'}^{\prime}} + 1) \left\langle D\left(v_{1\mathbf{k'}^{-v}0\mathbf{k'}} \right)\right\rangle_{P} \left\langle \prod_{\mathbf{k} \neq \mathbf{k'}^{\prime}} \left(D\left(v_{1\mathbf{k}^{-v}0\mathbf{k}} \right)\right)\right\rangle_{P}$$
(639)

$$= (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* e^{-\mathrm{i}\omega} \mathbf{k'}^{\tau} \prod_{\mathbf{k}} \exp\left(\frac{1}{2} \left(\frac{v_{i\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2} \right) \right) \frac{v_{1} \mathbf{k'}^{-v_{0}} \mathbf{k'}}{\omega_{\mathbf{k'}}} (N_{\mathbf{k'}} + 1) \left\langle D\left(\frac{v_{1} \mathbf{k'}^{-v_{0}} \mathbf{k'}}{\omega_{\mathbf{k'}}} \right) \right\rangle_{B} \left\langle \Pi_{\mathbf{k} \neq \mathbf{k'}} \left(D\left(\frac{v_{1} \mathbf{k}^{-v_{0}} \mathbf{k}}{\omega_{\mathbf{k}}} \right) \right) \right\rangle_{B}$$

$$(640)$$

$$= (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* e^{-i\omega_{\mathbf{k}'}\tau} \frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} (N_{\mathbf{k}'} + 1) B_{10},$$
(641)

$$\langle g_{i\mathbf{k'}^{-v}i\mathbf{k'}} \rangle^* b_{\mathbf{k'}^{e}} e^{-i\omega} \mathbf{k'}^{\tau} B_{0+} B_{1}^{-} \rangle_{B} = (g_{i\mathbf{k'}^{-v}i\mathbf{k'}})^* e^{-i\omega} \mathbf{k'}^{\tau} \frac{v_{0}\mathbf{k'}^{-v}i\mathbf{k'}}{\omega_{\mathbf{k'}}} (N_{\mathbf{k'}^{+}} + 1) B_{01},$$
 (642)

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{x}} \left(0 \right) \right\rangle_{B} = \frac{1}{2} \sum_{\mathbf{k}'} \left(-\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) B_{10} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} - \left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) B_{01} N_{\mathbf{k}'} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} \right)$$
(643)

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^*e^{-i\omega_{\mathbf{k''}}}\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}(N_{\mathbf{k'}}+1)B_{10}+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^*e^{-i\omega_{\mathbf{k''}}}\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}(N_{\mathbf{k'}}+1)B_{01}$$
(644)

$$= \frac{1}{2} \sum_{\mathbf{k'}} \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}} \tau} \left(\frac{v_1 \mathbf{k'} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} \right)^* (B_{01} - B_{10}) + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* \frac{v_1 \mathbf{k'} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{-i\omega_{\mathbf{k'}} \tau} (N_{\mathbf{k'}} + 1) (B_{10} - B_{01}) \right)$$
(645)

$$= {\textstyle \frac{1}{2} \sum_{\mathbf{k'}} \! \left(\! \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) N_{\mathbf{k'}} e^{\mathrm{i}\omega} \mathbf{k'}^{\, \tau} \! \left(\frac{v_1 \mathbf{k'}^{\, \prime} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} \right)^* \! (B_{01} - B_{10}) - \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \frac{v_1 \mathbf{k'}^{\, \prime} - v_0 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{-\mathrm{i}\omega} \mathbf{k'}^{\, \tau} \left(N_{\mathbf{k'}} + 1 \right) \! (B_{01} - B_{10}) \right)} \tag{646}$$

$$= i \sum_{\mathbf{k'}} B_{10}^{\Im} \left((g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) N_{\mathbf{k'}} e^{i\omega_{\mathbf{k'}} \tau} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* \frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{-i\omega_{\mathbf{k'}} \tau} (N_{\mathbf{k'}} + 1) \right), \tag{647}$$

$$\left\langle \widetilde{B}_{y}\left(\tau\right)\widetilde{B}_{iz}\left(0\right)\right\rangle _{B}=\left\langle \left(\frac{B_{0}^{+}B_{1}^{-}\left(\tau\right)-B_{1}^{+}B_{0}^{-}\left(\tau\right)+B_{10}-B_{01}}{2\mathrm{i}}\right)\sum_{\mathbf{k}'}\left(\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)b_{\mathbf{k}'}^{\dagger}+\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^{*}b_{\mathbf{k}'}\right)\right\rangle _{B}$$
(648)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle \left(B_0^+ B_1^-(\tau) - B_1^+ B_0^-(\tau) + B_{10} - B_{01} \right) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^\dagger + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} \right) \right\rangle_B$$
(649)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle \left(B_0^+ B_1^- (\tau) - B_1^+ B_0^- (\tau) \right) \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} \right) \right\rangle_B$$
 (650)

$$= \frac{1}{2!} \sum_{\mathbf{k}'} \langle b_0^{\dagger} b_1^{-}(\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} - B_1^{\dagger} B_0^{-}(\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} + B_0^{\dagger} B_1^{-}(\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} - B_1^{\dagger} B_0^{-}(\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) b_{\mathbf{k}'}^{\dagger} \rangle, \tag{651}$$

$$\left\langle B_0^+ B_1^-(\tau) \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} \right\rangle_B = -\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_0 \mathbf{k'} - v_1 \mathbf{k'}}{\omega_{\mathbf{k'}}} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{01}, \tag{652}$$

$$\left\langle B_0^+ B_1^-(\tau) (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* b_{\mathbf{k}'} \right\rangle_B = (g_{i\mathbf{k}'} - v_{i\mathbf{k}'})^* \left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} e^{i\omega_{\mathbf{k}'} \tau} \right) N_{\mathbf{k}'} B_{01}, \tag{653}$$

$$\left\langle B_{1}^{+}B_{0}^{-}(\tau)\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)b_{\mathbf{k'}}^{\dagger}\right\rangle_{B} = -\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)^{*}\left(N_{\mathbf{k'}}+1\right)B_{10},\tag{654}$$

$$\left\langle B_{1}^{+}B_{0}^{-}(\tau)\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}b_{\mathbf{k'}}\right\rangle _{B}=\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1}\mathbf{k'}-v_{0}\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)N_{\mathbf{k'}}B_{10},\tag{655}$$

$$\langle \widetilde{B_{y}}(\tau)\widetilde{B_{iz}}(0)\rangle_{B} = \frac{1}{2i}\sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}})\left(\frac{v_0\mathbf{k'} - v_1\mathbf{k'}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right)^*(N_{\mathbf{k'}} + 1)B_{01} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})\left(\frac{v_1\mathbf{k'} - v_0\mathbf{k'}}{\omega_{\mathbf{k'}}\tau}e^{i\omega_{\mathbf{k'}}\tau}\right)^*(N_{\mathbf{k'}} + 1)B_{10}$$

$$(656)$$

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{01} - (g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{10}\right) \tag{657}$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(-(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{01} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} e^{i\omega_{\mathbf{k'}} \tau} \right)^* (N_{\mathbf{k'}} + 1) B_{10}$$

$$(658)$$

$$+(g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{01} - (g_{i\mathbf{k'}}-v_{i\mathbf{k'}})^* \left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}e^{i\omega_{\mathbf{k'}}\tau}\right) N_{\mathbf{k'}} B_{10}\right) \tag{659}$$

$$= \tfrac{1}{2\mathrm{i}} \sum_{\mathbf{k'}} \! \left(\! \left(\! g_{i\mathbf{k'}} \! - \! v_{i\mathbf{k'}} \! \right) \! \left(\! N_{\mathbf{k'}} \! + \! 1 \! \right) e^{-\mathrm{i}\omega_{\mathbf{k'}} \tau} \! \left(\! \frac{v_{1\mathbf{k'}} \! - \! v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \! \left(\! B_{10} \! + \! B_{01} \! \right) + \left(g_{i\mathbf{k'}} \! - \! v_{i\mathbf{k'}} \! \right)^* \! N_{\mathbf{k'}} e^{\mathrm{i}\omega_{\mathbf{k'}} \tau} \! \left(\! \frac{v_{1\mathbf{k'}} \! - \! v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \! \right) \! \left(\! - \! B_{10} \! - \! B_{01} \! \right) \right) \quad \textbf{(660)}$$

$$= \frac{1}{2\mathrm{i}} \sum_{\mathbf{k'}} \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) (N_{\mathbf{k'}} + 1) e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* (B_{10} + B_{01}) - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* N_{\mathbf{k'}} e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) (B_{10} + B_{01}) \right), \tag{661}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{y}}(0)\right\rangle_{B} = \left\langle \sum_{\mathbf{k}'} \left(\left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right) b_{\mathbf{k}'}^{\dagger} e^{\mathrm{i}\omega_{\mathbf{k}'}\tau} + \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'}\right)^{*} b_{\mathbf{k}'} e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau} \right) \left(\frac{B_{0}^{+}B_{1}^{-} - B_{1}^{+}B_{0}^{-} + B_{10} - B_{01}}{2\mathrm{i}} \right) \right\rangle_{B}$$
(662)

$$= \frac{1}{2i} \left\langle \sum_{\mathbf{k}'} \left(\left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) b_{\mathbf{k}'}^{\dagger} e^{i\omega_{\mathbf{k}'}\tau} + \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right)^* b_{\mathbf{k}'} e^{-i\omega_{\mathbf{k}'}\tau} \right) \left(B_0^+ B_1^- - B_1^+ B_0^- + B_{10} - B_{01} \right) \right\rangle_B$$
 (663)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle \left(\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}}\tau} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}}\tau} \right) \left(B_0^+ B_1^- - B_1^+ B_0^- \right) \right\rangle_B$$
 (664)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left\langle (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}} \tau} B_0^{\dagger} B_1^{-} - (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) b_{\mathbf{k'}}^{\dagger} e^{i\omega_{\mathbf{k'}} \tau} B_1^{+} B_0^{-} + (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* b_{\mathbf{k'}} e^{-i\omega_{\mathbf{k'}} \tau} B_0^{+} B_1^{-} \right.$$

$$(665)$$

$$-(g_{i\mathbf{k}'}-v_{i\mathbf{k}'})^*b_{\mathbf{k}'}e^{-i\omega_{\mathbf{k}'}\tau}B_1^+B_0^-\rangle \tag{666}$$

$$= \frac{1}{2i} \sum_{\mathbf{k}'} \left\langle e^{i\omega_{\mathbf{k}'}\tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) \left\langle b_{\mathbf{k}'}^{\dagger} B_0^+ B_1^- \right\rangle - e^{i\omega_{\mathbf{k}'}\tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) \left\langle b_{\mathbf{k}'}^{\dagger} B_1^+ B_0^- \right\rangle$$

$$(667)$$

$$+e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^*\left\langle b_{\mathbf{k}'}B_0^+B_1^-\right\rangle - e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}\left(g_{i\mathbf{k}'}-v_{i\mathbf{k}'}\right)^*\left\langle b_{\mathbf{k}'}B_1^+B_0^-\right\rangle \rangle \tag{668}$$

$$= \frac{1}{2\mathrm{i}} \sum_{\mathbf{k'}} \left\langle e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_0^+ B_1^- \right\rangle - e^{\mathrm{i}\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_1^+ B_0^- \right\rangle + e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* \left\langle b_{\mathbf{k'}} B_0^+ B_1^- \right\rangle \tag{669}$$

$$-e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}(g_{i\mathbf{k}'}-v_{i\mathbf{k}'})^*\langle b_{\mathbf{k}'}B_1^+B_0^-\rangle\rangle \tag{670}$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_0^{\dagger} B_1^{-} \right\rangle - e^{i\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}}) \left\langle b_{\mathbf{k'}}^{\dagger} B_1^{\dagger} B_0^{-} \right\rangle + e^{-i\omega_{\mathbf{k'}}\tau} (g_{i\mathbf{k'}} - v_{i\mathbf{k'}})^* \left\langle b_{\mathbf{k'}} B_0^{\dagger} B_1^{-} \right\rangle$$

$$(671)$$

$$-e^{-\mathrm{i}\omega_{\mathbf{k}'}\tau}(g_{i\mathbf{k}'}-v_{i\mathbf{k}'})^*\langle b_{\mathbf{k}'}B_1^+B_0^-\rangle) \tag{672}$$

$$\left\langle b_{\mathbf{k}'}^{\dagger} B_1^{\dagger} B_0^{-} \right\rangle_B = -\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^* B_{10} N_{\mathbf{k}'},\tag{673}$$

$$\left\langle b_{\mathbf{k}'}^{\dagger} B_0^{\dagger} B_1^{-} \right\rangle_B = -\left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}}\right)^* B_{01} N_{\mathbf{k}'},\tag{674}$$

$$\left\langle b_{\mathbf{k}'} B_1^+ B_0^- \right\rangle_B = \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right) \left(N_{\mathbf{k}'} + 1 \right) B_{10}, \tag{675}$$

$$\langle b_{\mathbf{k}'} B_0^+ B_1^- \rangle_B = \left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right) (N_{\mathbf{k}'} + 1) B_{01},$$
 (676)

$$\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{y}}(0)\rangle_{B} = \frac{1}{2i} \sum_{\mathbf{k}'} \left(e^{i\omega_{\mathbf{k}'}\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \left(-\left(\frac{v_{0\mathbf{k}'} - v_{1\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} B_{10}^{*} N_{\mathbf{k}'} \right) - e^{i\omega_{\mathbf{k}'}\tau} (g_{i\mathbf{k}'} - v_{i\mathbf{k}'}) \left(-\left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^{*} B_{10} N_{\mathbf{k}'} \right)$$

$$(677)$$

$$+e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}\right)-e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}\right)\right) (678)$$

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}}\tau} \left(-\left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{0\mathbf{k'}} - v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* B_{10}^* N_{\mathbf{k'}} + \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^* B_{10} N_{\mathbf{k'}} \right)$$

$$(679)$$

$$+e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\left(\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{0\mathbf{k'}}-v_{1\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}^{*}\right)\right)-\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)\left(N_{\mathbf{k'}}+1\right)B_{10}\right)\right)$$
(680)

$$= \frac{1}{2i} \sum_{\mathbf{k'}} \left(e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* \left(B_{10} + B_{10}^* \right) N_{\mathbf{k'}}$$
(681)

$$-e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}}\right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right) \left(B_{10} + B_{10}^*\right) \left(N_{\mathbf{k'}} + 1\right)$$
(682)

$$=\frac{1}{\mathrm{i}}\sum_{\mathbf{k'}}\left(e^{\mathrm{i}\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)^{*}B_{10}^{\Re}N_{\mathbf{k'}}-e^{-\mathrm{i}\omega_{\mathbf{k'}}\tau}\left(g_{i\mathbf{k'}}-v_{i\mathbf{k'}}\right)^{*}\left(\frac{v_{1\mathbf{k'}}-v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}}\right)B_{10}^{\Re}\left(N_{\mathbf{k'}}+1\right)\right)$$
(683)

$$= i \sum_{\mathbf{k}'} \left(e^{-i\omega_{\mathbf{k}'}\tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right)^* \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right) B_{10}^{\Re} \left(N_{\mathbf{k}'} + 1 \right) - e^{i\omega_{\mathbf{k}'}\tau} \left(g_{i\mathbf{k}'} - v_{i\mathbf{k}'} \right) \left(\frac{v_{1\mathbf{k}'} - v_{0\mathbf{k}'}}{\omega_{\mathbf{k}'}} \right)^* B_{10}^{\Re} N_{\mathbf{k}'} \right)$$
(684)

$$= i \sum_{\mathbf{k'}} \left(e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) B_{10}^{\Re} \left(N_{\mathbf{k'}} + 1 \right) - e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* B_{10}^{\Re} N_{\mathbf{k'}} \right)$$
(685)

$$= iB_{10}^{\Re} \sum_{\mathbf{k'}} \left(e^{-i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right)^* \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right) \left(N_{\mathbf{k'}} + 1 \right) - e^{i\omega_{\mathbf{k'}}\tau} \left(g_{i\mathbf{k'}} - v_{i\mathbf{k'}} \right) \left(\frac{v_{1\mathbf{k'}} - v_{0\mathbf{k'}}}{\omega_{\mathbf{k'}}} \right)^* N_{\mathbf{k'}} \right)$$
(686)

The correlation functions are equal to:

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{jz}} \left(0 \right) \right\rangle_{B} = \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right)^{*} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \left(g_{j\mathbf{k}} - v_{j\mathbf{k}} \right) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right), \tag{687}$$

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \right), \tag{688}$$

$$\phi(\tau) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin(\omega_{\mathbf{k}}\tau) + \cos(\omega_{\mathbf{k}}\tau) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right), \tag{689}$$

$$\left\langle \widetilde{B_{x}}\left(\tau\right)\widetilde{B_{x}}\left(0\right)\right\rangle _{B}=\frac{\left|B_{10}\right|^{2}}{2}\left(U^{\Re }\exp \left(-\phi \left(\tau\right)\right)+\exp \left(\phi \left(\tau\right)\right)-U^{\Re }-1\right),\tag{690}$$

$$\left\langle \widetilde{B_{y}}\left(\tau\right)\widetilde{B_{y}}\left(0\right)\right\rangle _{B}=\frac{\left|B_{10}\right|^{2}}{2}\left(\exp\left(\phi\left(\tau\right)\right)-U^{\Re}\exp\left(-\phi\left(\tau\right)\right)-1+U^{\Re}\right),\tag{691}$$

$$\left\langle \widetilde{B}_{x}\left(\tau\right)\widetilde{B}_{y}\left(0\right)\right\rangle _{B}=\frac{U^{\Im}\left|B_{10}\right|^{2}}{2}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right),\tag{692}$$

$$\left\langle \widetilde{B_y} \left(\tau \right) \widetilde{B_x} \left(0 \right) \right\rangle_B = \frac{U^{\Im} \left| B_{10} \right|^2}{2} \left(\exp\left(-\phi \left(\tau \right) \right) - 1 \right), \tag{693}$$

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{x}} \left(0 \right) \right\rangle_{B} = \mathrm{i} B_{10}^{\Im} \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^{*} - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right), \quad (694)$$

$$\left\langle \widetilde{B_x} \left(\tau \right) \widetilde{B_{iz}} \left(0 \right) \right\rangle_B = i B_{10}^{\Im} \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^* N_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^* e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1 \right) \right), (695)$$

$$\left\langle \widetilde{B_{iz}} \left(\tau \right) \widetilde{B_{y}} \left(0 \right) \right\rangle_{B} = \mathrm{i}B_{10}^{\Re} \sum_{\mathbf{k}} \left(e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right)^{*} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(N_{\mathbf{k}} + 1 \right) - e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}} \right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^{*} N_{\mathbf{k}} \right), (696)$$

$$\left\langle \widetilde{B_{y}}\left(\tau\right)\widetilde{B_{iz}}\left(0\right)\right\rangle _{B}=\mathrm{i}B_{10}^{\Re}\sum_{\mathbf{k}}\left(\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)^{*}N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)-\left(g_{i\mathbf{k}}-v_{i\mathbf{k}}\right)\left(N_{\mathbf{k}}+1\right)e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}\right). (697)$$

The spectral density is defined in the usual way:

$$J_i(\omega) \equiv \sum_{\mathbf{k}} |g_{i\mathbf{k}}|^2 \delta(\omega - \omega_{\mathbf{k}}), \qquad (698)$$

$$v_{i\mathbf{k}} = g_{i\mathbf{k}} F_i\left(\omega_{\mathbf{k}}\right). \tag{699}$$

it takes account of the density of states, dispersion relation and interaction mechanism with the environment. In the continuous case a way to measure the strength of the system-environment coupling is:

$$\lambda_i = \int_0^\infty \frac{J_i(\omega)}{\omega} d\omega. \tag{700}$$

The integral version of the correlation functions are given by:

$$\langle \widetilde{B}_{iz}(\tau)\widetilde{B}_{jz}(0)\rangle_{B} = \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}})(g_{j\mathbf{k}} - v_{j\mathbf{k}})^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + (g_{i\mathbf{k}} - v_{i\mathbf{k}})^{*} (g_{j\mathbf{k}} - v_{j\mathbf{k}}) e^{-i\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$= \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}))(g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}}))^{*} e^{i\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + (g_{i\mathbf{k}} - g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}))^{*} (g_{j\mathbf{k}} - g_{j\mathbf{k}}F_{j}(\omega_{\mathbf{k}})) e^{-i\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$(701)$$

$$= \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) g_{j\mathbf{k}}^* (1 - F_j(\omega_{\mathbf{k}}))^* e^{\mathrm{i}\omega_{\mathbf{k}}\tau} N_{\mathbf{k}} + g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}}))^* g_{j\mathbf{k}} (1 - F_j(\omega_{\mathbf{k}})) e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$
(703)

$$\approx \int_{0}^{\infty} \left(\sqrt{J_{i}(\omega)J_{j}^{*}(\omega)} (1 - F_{i}(\omega)) \left(1 - F_{j}^{*}(\omega) \right) e^{\mathrm{i}\omega\tau} N(\omega) + \sqrt{J_{i}^{*}(\omega)J_{j}(\omega)} (1 - F_{i}^{*}(\omega)) (1 - F_{j}(\omega)) e^{-\mathrm{i}\omega\tau} (N(\omega) + 1) \right) \mathrm{d}\omega, \tag{704}$$

$$U = \prod_{\mathbf{k}} \left(\exp\left(\frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \right)$$
 (705)

$$= \exp\left(\sum_{\mathbf{k}} \frac{v_{0\mathbf{k}}^* v_{1\mathbf{k}} - v_{0\mathbf{k}} v_{1\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right) \tag{706}$$

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* F_0^* (\omega_{\mathbf{k}}) g_{1\mathbf{k}} F_1 (\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0 (\omega_{\mathbf{k}}) g_{1\mathbf{k}}^* F_1^* (\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}^2}\right)$$
(707)

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* F_0^* \left(\omega_{\mathbf{k}}\right) g_{1\mathbf{k}} F_1 \left(\omega_{\mathbf{k}}\right) - g_{0\mathbf{k}} F_0 \left(\omega_{\mathbf{k}}\right) g_{1\mathbf{k}}^* F_1^* \left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}^2}\right)$$
(708)

$$= \exp\left(\sum_{\mathbf{k}} \frac{g_{0\mathbf{k}}^* g_{1\mathbf{k}} F_0^* (\omega_{\mathbf{k}}) F_1 (\omega_{\mathbf{k}}) - g_{0\mathbf{k}} g_{1\mathbf{k}}^* F_0 (\omega_{\mathbf{k}}) F_1^* (\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}^2}\right)$$
(709)

$$\approx \exp\left(\int_0^\infty \frac{\sqrt{J_0^*(\omega)J_1(\omega)}F_0^*(\omega)F_1(\omega) - \sqrt{J_0(\omega)J_1^*(\omega)}F_0(\omega)F_1^*(\omega)}{\omega^2}d\omega\right),\tag{710}$$

$$\phi\left(\tau\right) = \sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \left(-i\sin\left(\omega_{\mathbf{k}}\tau\right) + \cos\left(\omega_{\mathbf{k}}\tau\right) \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \tag{711}$$

$$= \sum_{\mathbf{k}} \left| \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} \right|^2 \left(-i \sin(\omega_{\mathbf{k}} \tau) + \cos(\omega_{\mathbf{k}} \tau) \coth\left(\frac{\beta \omega_{\mathbf{k}}}{2}\right) \right)$$
(712)

$$\approx \int_{0}^{\infty} \left| \frac{\sqrt{J_{1}(\omega)} F_{1}(\omega) - \sqrt{J_{0}(\omega)} F_{0}(\omega)}{\omega} \right|^{2} \left(-i \sin(\omega \tau) + \cos(\omega \tau) \coth\left(\frac{\beta \omega}{2}\right) \right) d\omega, \tag{713}$$

$$B_{10} = \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{v_{1\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right|^2 \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \exp\left(\sum_{\mathbf{k}} \frac{1}{2} \left(\frac{v_{1\mathbf{k}}^* v_{0\mathbf{k}} - v_{1\mathbf{k}} v_{0\mathbf{k}}^*}{\omega_{\mathbf{k}}^2}\right)\right)$$
(714)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \left| \frac{g_{1\mathbf{k}}F_{1}\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}} - \frac{g_{0\mathbf{k}}F_{0}\left(\omega_{\mathbf{k}}\right)}{\omega_{\mathbf{k}}} \right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right) \right) \exp\left(\sum_{\mathbf{k}} \frac{1}{2} \left(\frac{v_{1\mathbf{k}}^{*}v_{0\mathbf{k}} - v_{1\mathbf{k}}v_{0\mathbf{k}}^{*}}{\omega_{\mathbf{k}}^{2}}\right)\right)$$
(715)

$$= \exp\left(-\frac{1}{2}\sum_{\mathbf{k}}\left|\frac{g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} - \frac{g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}}\right|^{2} \coth\left(\frac{\beta\omega_{\mathbf{k}}}{2}\right)\right) \exp\left(\sum_{\mathbf{k}}\frac{1}{2}\left(\frac{g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})g_{1\mathbf{k}}^{*}F_{1}^{*}(\omega_{\mathbf{k}}) - g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})g_{0\mathbf{k}}^{*}F_{0}^{*}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}^{2}}\right)\right)$$
(716)

$$\approx \exp\left(-\frac{1}{2}\int_{0}^{\infty}\left|\frac{\sqrt{J_{1}(\omega)}F_{1}(\omega)-\sqrt{J_{0}(\omega)}F_{0}(\omega)}{\omega}\right|^{2} \coth\left(\frac{\beta\omega}{2}\right) \mathrm{d}\omega\right) \exp\left(\int_{0}^{\infty}\frac{1}{2}\left(\frac{\sqrt{J_{0}(\omega)J_{1}^{*}(\omega)}F_{0}(\omega)F_{1}^{*}(\omega)-\sqrt{J_{0}^{*}(\omega)J_{1}(\omega)}F_{0}^{*}(\omega)F_{1}(\omega)}{\omega^{2}}\right) \mathrm{d}\omega\right), \tag{717}$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_x}(0)\right\rangle_B = \frac{\left|B_{10}\right|^2}{2} \left(U^{\Re}\exp\left(-\phi\left(\tau\right)\right) + \exp\left(\phi\left(\tau\right)\right) - U^{\Re} - 1\right),\tag{718}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{y}}(0)\right\rangle _{B}=\frac{\left|B_{10}\right|^{2}}{2}\left(\exp\left(\phi\left(\tau\right)\right)-U^{\Re}\exp\left(-\phi\left(\tau\right)\right)-1+U^{\Re}\right),\tag{719}$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_y}(0)\right\rangle_B = \frac{U^{\Im} \left|B_{10}\right|^2}{2} \left(\exp\left(-\phi\left(\tau\right)\right) - 1\right),\tag{720}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{x}}(0)\right\rangle _{B}=\frac{U^{\Im}\left|B_{10}\right|^{2}}{2}\left(\exp\left(-\phi\left(\tau\right)\right)-1\right),\tag{721}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{x}}(0)\right\rangle_{B} = \mathrm{i}B_{10}^{\Im} \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right) N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*} - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)^{*} \frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1\right) \right)$$
(722)

$$=iB_{10}^{\Im}\sum_{\mathbf{k}}\left((g_{i\mathbf{k}}-g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}))N_{\mathbf{k}}e^{\mathrm{i}\omega_{\mathbf{k}}\tau}\left(\frac{g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})-g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}}\right)^{*}-(g_{i\mathbf{k}}-g_{i\mathbf{k}}F_{i}(\omega_{\mathbf{k}}))^{*}\frac{g_{1\mathbf{k}}F_{1}(\omega_{\mathbf{k}})-g_{0\mathbf{k}}F_{0}(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}}e^{-\mathrm{i}\omega_{\mathbf{k}}\tau}(N_{\mathbf{k}}+1)\right)$$

$$(723)$$

$$= {}_{1}B_{10}^{\Im} \sum_{\mathbf{k}} \left(g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} \left(\frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} \right)^* - g_{i\mathbf{k}}^* (1 - F_i(\omega_{\mathbf{k}}))^* \frac{g_{1\mathbf{k}} F_1(\omega_{\mathbf{k}}) - g_{0\mathbf{k}} F_0(\omega_{\mathbf{k}})}{\omega_{\mathbf{k}}} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right), \tag{724}$$

$$Q(\omega) = \sqrt{J_i(\omega)} \left(1 - F_i(\omega)\right) \left(\frac{\sqrt{J_1(\omega)}F_1(\omega) - \sqrt{J_0(\omega)}F_0(\omega)}{\omega}\right)^*, \tag{725}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{x}}(0)\right\rangle_{B} \approx \mathrm{i}B_{10}^{\Im} \int_{0}^{\infty} \left(Q\left(\omega\right)N\left(\omega\right)e^{\mathrm{i}\omega\tau} - Q^{*}\left(\omega\right)\left(N\left(\omega\right) + 1\right)e^{-\mathrm{i}\omega\tau}\right) \mathrm{d}\omega,\tag{726}$$

$$\left\langle \widetilde{B_x}(\tau)\widetilde{B_{iz}}(0)\right\rangle_B = iB_{10}^{\Im} \sum_{\mathbf{k}} \left(\left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)^* N_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) - \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^* e^{-i\omega_{\mathbf{k}}\tau} \left(N_{\mathbf{k}} + 1\right) \right)$$
(727)

$$= {}_{i}B_{10}^{\Im} \sum_{\mathbf{k}} \left(g_{i\mathbf{k}}^{*} (1 - F_{i}^{*}(\omega_{\mathbf{k}})) \frac{v_{1}\mathbf{k} - v_{0}\mathbf{k}}{\omega_{\mathbf{k}}} N_{\mathbf{k}} e^{\mathrm{i}\omega_{\mathbf{k}}\tau} - g_{i\mathbf{k}} (1 - F_{i}(\omega)) \left(\frac{v_{1}\mathbf{k} - v_{0}\mathbf{k}}{\omega_{\mathbf{k}}} \right)^{*} e^{-\mathrm{i}\omega_{\mathbf{k}}\tau} (N_{\mathbf{k}} + 1) \right)$$

$$(728)$$

$$\approx iB_{10}^{\Im} \int_{0}^{\infty} \left(Q^* \left(\omega \right) N \left(\omega \right) e^{i\omega \tau} - Q \left(\omega \right) \left(N \left(\omega \right) + 1 \right) e^{-i\omega \tau} \right) d\omega, \tag{729}$$

$$\left\langle \widetilde{B_{iz}}(\tau)\widetilde{B_{y}}(0)\right\rangle_{B} = iB_{10}^{\Re} \sum_{\mathbf{k}} \left(e^{-i\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right)^{*} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \left(N_{\mathbf{k}} + 1\right) - e^{i\omega_{\mathbf{k}}\tau} \left(g_{i\mathbf{k}} - v_{i\mathbf{k}}\right) \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*} N_{\mathbf{k}} \right)$$
(730)

$$=iB_{10}^{\Re}\sum_{\mathbf{k}}\left(e^{-i\omega_{\mathbf{k}}\tau}g_{i\mathbf{k}}^{*}(1-F_{i}^{*}(\omega_{\mathbf{k}}))\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)(N_{\mathbf{k}}+1)-e^{i\omega_{\mathbf{k}}\tau}g_{i\mathbf{k}}(1-F_{i}(\omega_{\mathbf{k}}))\left(\frac{v_{1\mathbf{k}}-v_{0\mathbf{k}}}{\omega_{\mathbf{k}}}\right)^{*}N_{\mathbf{k}}\right) \quad (731)$$

$$\approx iB_{10}^{\Re} \int_{0}^{\infty} \left(e^{-i\omega\tau} Q^{*} \left(\omega \right) \left(N \left(\omega \right) + 1 \right) - e^{i\omega\tau} Q \left(\omega \right) N \left(\omega \right) \right) d\omega, \tag{732}$$

$$\left\langle \widetilde{B_{y}}(\tau)\widetilde{B_{iz}}(0)\right\rangle_{B} = iB_{10}^{\Re} \sum_{\mathbf{k}} \left((g_{i\mathbf{k}} - v_{i\mathbf{k}})^{*} N_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) - (g_{i\mathbf{k}} - v_{i\mathbf{k}})(N_{\mathbf{k}} + 1) e^{-i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^{*} \right)$$
(733)

$$= iB_{10}^{\Re} \sum_{\mathbf{k}} \left(g_{i\mathbf{k}}^* (1 - F_i^*(\omega_{\mathbf{k}})) N_{\mathbf{k}} e^{i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right) - g_{i\mathbf{k}} (1 - F_i(\omega_{\mathbf{k}})) (N_{\mathbf{k}} + 1) e^{-i\omega_{\mathbf{k}}\tau} \left(\frac{v_{1\mathbf{k}} - v_{0\mathbf{k}}}{\omega_{\mathbf{k}}} \right)^* \right)$$
(734)

$$=iB_{10}^{\Re}\int_{0}^{\infty}\left(e^{i\omega\tau}Q^{*}\left(\omega\right)N\left(\omega\right)-e^{-i\omega\tau}Q\left(\omega\right)\left(N\left(\omega\right)+1\right)\right)d\omega.\tag{735}$$

The eigenvalues of the Hamiltonian $\overline{H}_{\bar{S}}$ are given by the solution of the following algebraic equation:

$$\lambda^{2} - \operatorname{Tr}\left(\overline{H_{\bar{S}}}\right)\lambda + \operatorname{Det}\left(\overline{H_{\bar{S}}}\right) = 0.$$
(736)

The solutions of this equation written in terms of η and ξ as defined in the previous section are given by $\lambda_{\pm} = \frac{\xi \pm \eta}{2}$ and they satisfy $H_S |\pm\rangle = \lambda_{\pm} |\pm\rangle$. Using this notation is possible to write $H_{\bar{S}} = \lambda_{+} |+\rangle + |+\lambda_{-}|-\rangle - |$.

The time-dependence of the system operators $\widetilde{A}_i(t)$ may be made explicit using the Fourier decomposition, in the case for time-independent $\overline{H}_{\overline{S}}$ we will obtain:

$$\widetilde{A_i}(\tau) = e^{i\overline{H_S}\tau} A_i e^{-i\overline{H_S}\tau} \tag{737}$$

$$=\sum_{w}e^{-\mathrm{i}\mathrm{w}\tau}\mathscr{A}_{i}\left(w\right).\tag{738}$$

Where the sum is defined on the set of all the differences between the eigenvalues of the system, in our case $w \in \{0, \pm \eta\}$.

In order to use the equation (738) to descompose the equation (355) we need to consider the time ordering operator \mathcal{T} , it's possible to write using the Dyson series or the expansion of the operator of the form $U(t) \equiv \mathcal{T} \exp\left(-\mathrm{i} \int_0^t \mathrm{d}t' \overline{H_{\bar{S}}}\left(t'\right)\right)$ like:

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_{0}^{t} dt' \overline{H_{\bar{S}}}(t')\right)$$
(739)

$$= \mathbb{I} + \sum_{n=1}^{\infty} (-i)^n \int_0^t dt_1 \int_0^{t_1} dt_2 ... \int_0^{t_{n-1}} dt_n H(t_1) H(t_2) ... H(t_n).$$
 (740)

Here $0 < t_1 < t_2 < ... < t_{n-1} < t_n = t$ is a partition of the set [0,t]. We will use a perturbative solution to the exponential of a time-varying operator, this can be done if we write an effective hamiltonian $H_E(t)$ such that $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t \mathrm{d}t' \overline{H_{\bar{S}}}\left(t'\right)\right) \equiv \exp\left(-\mathrm{i}tH_E(t)\right)$. The effective Hamiltonian is expanded in a series of terms of increasing order in time $H_E(t) = H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + ...$ so we can write:

$$U(t) = \exp\left(-it\left(H_E^{(0)}(t) + H_E^{(1)}(t) + H_E^{(2)}(t) + \dots\right)\right). \tag{741}$$

The terms can be found expanding $\mathcal{T}\exp\left(-\mathrm{i}\int_0^t\mathrm{d}t'\overline{H_{\bar{S}}}\left(t'\right)\right)$ and $U\left(t\right)$ then equating the terms of the same power. The lowest terms are:

$$H_E^{(0)}(t) = \frac{1}{t} \int_0^t \overline{H_{\bar{S}}}(t') \, \mathrm{d}t', \tag{742}$$

$$H_E^{(1)}(t) = -\frac{i}{2t} \int_0^t dt' \int_0^{t'} dt'' \left[\overline{H_{\bar{S}}}(t'), \overline{H_{\bar{S}}}(t'') \right], \tag{743}$$

$$H_{E}^{(2)}(t) = \frac{1}{6t} \int_{0}^{t} dt' \int_{0}^{t'} dt'' \int_{0}^{t''} dt''' \left(\left[\left[\overline{H_{\bar{S}}}(t'), \overline{H_{\bar{S}}}(t'') \right], \overline{H_{\bar{S}}}(t''') \right] + \left[\left[\overline{H_{\bar{S}}}(t'''), \overline{H_{\bar{S}}}(t''') \right], \overline{H_{\bar{S}}}(t'') \right] \right). \tag{744}$$

In this case the Fourier decomposition using the Magnus expansion is

$$\widetilde{A_{i}}(t) = U^{\dagger}(t) A_{i}(t) U(t)$$
(745)

$$= e^{iH_E(t)t} A_i(t) e^{-iH_E(t)t}$$
(746)

$$= \sum_{w(t)} e^{-\mathrm{i}w(t)t} \mathscr{A}_i(w(t)). \tag{747}$$

 $w\left(t\right)$ belongs to the set of differences of eigenvalues of $H_{E}\left(t\right)$ that depends of the time. As we can see the decomposition matrices are time-dependent as well.

Extending the Fourier decomposition to the matrix $\widetilde{A}_i(t-\tau,t)$ using the Magnus expansion generates:

$$\widetilde{A_{j}}(t-\tau,t) = U(t)U^{\dagger}(t-\tau)A_{j}(t)U(t-\tau)U^{\dagger}(t)$$
(748)

$$= e^{-itH_E(t)}e^{i(t-\tau)H_E(t-\tau)}A_i(t)e^{-i(t-\tau)H_E(t-\tau)}e^{itH_E(t)}$$
(749)

$$= e^{-itH_E(t)} \left(\sum_{w'(t-\tau)} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_j \left(w \left(t - \tau \right) \right) \right) e^{itH_E(t)}$$
 (750)

$$=\sum_{w(t),w'(t-\tau)}e^{\mathrm{i}w'(t)t}e^{-\mathrm{i}(t-\tau)w(t-\tau)}\mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)\tag{751}$$

$$= \sum_{w(t),w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_{j} (w(t-\tau),w'(t))$$

$$= \sum_{w(t),w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_{j} (w(t-\tau),w'(t))$$
(751)
$$= \sum_{w(t),w'(t-\tau)} e^{iw'(t)t} e^{-i(t-\tau)w(t-\tau)} \mathscr{A}_{j} (w(t-\tau),w'(t))$$

$$= \sum_{w(t),w'(t-\tau)} e^{i\tau w(t-\tau)} e^{-it\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)$$

$$(753)$$

where $w'\left(t- au\right)$ and $w\left(t\right)$ belongs to the set of the differences of the eigenvalues of the Hamiltonian $\overline{H_{E}}\left(t- au\right)$ and $\overline{H_E}(t)$ respectively.

In order to show the explicit form of the matrices present in the RHS of the equation (738) for a general 2×2 matrix in a given time let's write the matrix A_i in the base $V = \{ |+\rangle, |-\rangle \}$ in the following way:

$$A_i = \sum_{\alpha, \beta \in V} \langle \alpha | A_i | \beta \rangle | \alpha \rangle \langle \beta |. \tag{754}$$

Given that $[|+\chi+|, |-\chi-|] = 0$, then using the Zassenhaus formula we obtain:

$$e^{i\overline{H_E}\tau} = e^{i(\lambda_+|+\lambda_+|+\lambda_-|-\lambda_-|)\tau} \tag{755}$$

$$=e^{i\lambda_{+}|+|\lambda|+|\tau}e^{i\lambda_{-}|-|\lambda|-|\tau} \tag{756}$$

$$= \left(\left| - \left| - \right| + e^{i\lambda_{+}\tau} \right| + \left| + \right| \right) \left(\left| + \right| + \left| + e^{i\lambda_{-}\tau} \right| - \left| - \right| \right)$$
 (757)

$$=e^{\mathrm{i}\lambda_{+}\tau}|+\chi+|+e^{\mathrm{i}\lambda_{-}\tau}|-\chi-|. \tag{758}$$

Calculating the transformation (738) directly using the previous relationship we find that:

$$U^{\dagger}\left(\tau\right)A_{i}\left(\tau\right)U\left(\tau\right) = \left(e^{\mathrm{i}\lambda_{+}\tau}|+\rangle + |+e^{\mathrm{i}\lambda_{-}\tau}|-\rangle - |\right)\left(\sum_{\alpha,\beta\in\mathsf{V}}\langle\alpha|A_{i}\left(\tau\right)|\beta\rangle|\alpha\rangle\beta|\right)\left(e^{-\mathrm{i}\lambda_{+}\tau}|+\rangle + |+e^{-\mathrm{i}\lambda_{-}\tau}|-\rangle - |\right) \tag{759}$$

$$=\mathscr{A}_{i}\left(0\right)+\mathscr{A}_{i}\left(-w\right)e^{\mathrm{i}w\tau}+\mathscr{A}_{i}\left(w\right)e^{-\mathrm{i}w\tau}\tag{761}$$

Here $w = \lambda_+ - \lambda_-$. Comparing the RHS of the equations (738) and the explicit expression for $\widetilde{A}_i(\tau)$ in (746), we obtain the form of the expansion matrices of the Fourier decomposition for a general 2×2 matrix:

$$\mathscr{A}_{i}(0) = \langle +|A_{i}(\tau)|+\rangle + |+\rangle + |+\langle -|A_{i}(\tau)|-\rangle - |-\rangle - |, \tag{762}$$

$$\mathscr{A}_{i}(-w) = \langle +|A_{i}(\tau)|-\rangle |+\rangle -|, \tag{763}$$

$$\mathscr{A}_{i}(w) = \langle -|A_{i}(\tau)|+\rangle |-\rangle +|. \tag{764}$$

For a decomposition of the interaction Hamiltonian in terms of Hermitian operators, i.e. $\widetilde{A_i}(\tau) = \widetilde{A_i}^{\dagger}(\tau)$ and $\widetilde{B_i}(\tau) = \widetilde{A_i}^{\dagger}(\tau)$ $\widehat{B_i}^\dagger(au)$ we can use the equation (738) to write the master equation in the following neater form:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right] - \sum_{ij} \int_{0}^{t} \mathrm{d}\tau C_{i}(t)C_{j}(t-\tau) \left(\mathcal{B}_{ij}(\tau)\left[A_{i},\widetilde{A_{j}}(t-\tau,t)\,\overline{\rho_{S}}(t)\right] + \mathcal{B}_{ji}(-\tau)\left[\overline{\rho_{S}}(t)\widetilde{A_{j}}(t-\tau,t),A_{i}\right]\right)$$
(765)

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\!\!\left(\mathcal{B}_{ij}(\tau)\!\!\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}\!\!e^{-\mathrm{i}t\!\left(w(t-\tau)-w'(t)\right)}\!\!\mathcal{A}_{j}(w(t-\tau),w'(t))\overline{\rho_{S}}(t)\right]\right]$$
(766)

$$-\mathcal{B}_{ji}\left(-\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{\mathrm{i}\tau w\left(t-\tau\right)}e^{-\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathcal{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)\right]\right)\tag{767}$$

Given that $\mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)=\mathscr{A}_{j}^{\dagger}\left(-w\left(t-\tau\right),-w'\left(t\right)\right)$ from the Fourier decomposition (738) then we can re-arrange the precedent sum in the following way with the trace respect to the bath:

$$\mathscr{B}_{ij}\left(\tau\right) = \operatorname{Tr}_{B}\left(\widetilde{B}_{i}\left(t\right)\widetilde{B}_{j}\left(s\right)\rho_{B}\right) \tag{768}$$

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(\tau\right)\widetilde{B_{j}}\left(0\right)\rho_{B}\right).\tag{769}$$

Let's define:

$$\mathscr{A}_{j}\left(w\left(t-\tau\right),w'\left(t\right)\right)=\mathscr{A}_{jww'}\left(t-\tau,t\right)\tag{770}$$

The master equation can be re-written in the following form:

$$\frac{\mathrm{d}\overline{\rho_S}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_S}(t),\overline{\rho_S}(t)\right] - \sum_{ijww'} \int_0^t \mathrm{d}\tau C_i(t)C_j(t-\tau)\mathscr{B}_{ij}(\tau) \left[A_i,e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\overline{\rho_S}(t)\right]$$
(771)

$$+\sum_{ijww'} \mathscr{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{\mathrm{i}\tau w(t-\tau)} e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{jww'}\left(t-\tau,t\right) \right]$$
(772)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}(t),\overline{\rho_{\overline{S}}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}\left(t-\tau,t\right)\overline{\rho_{\overline{S}}}(t)\right] \quad (773)$$

$$+\sum_{ijww'} \mathscr{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{-i\tau w(t-\tau)} e^{it\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{jww'}\left(t-\tau,t\right) \right]$$
(774)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{ijww'}\int_{0}^{t}\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}\left(t-\tau,t\right)\overline{\rho_{S}}(t)\right] \quad (775)$$

$$+\sum_{ijww'} \mathcal{B}_{ji}\left(-\tau\right) \left[A_i, \overline{\rho_S}\left(t\right) e^{-i\tau w(t-\tau)} e^{it\left(w(t-\tau)-w'(t)\right)} \mathcal{A}_{jww'}\left(t-\tau,t\right) \right]$$
(776)

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_{S}}(t)\right]-\sum_{i,j,w,w'}\int_{0}^{t}\!\!\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathscr{B}_{ij}(\tau)\left[A_{i},e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}\left(t-\tau,t\right)\overline{\rho_{S}}(t)\right]$$
(777)

$$-\mathcal{B}_{ji}\left(-\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{-\mathrm{i}\tau w\left(t-\tau\right)}e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathcal{A}_{jww'}\left(t-\tau,t\right)\right]\right)\tag{778}$$

$$=-\mathrm{i}\big[\overline{H_{\widetilde{S}}}(t),\overline{\rho_{S}}(t)\big]-\sum_{ijww'}\int_{0}^{t}\mathrm{d}\tau C_{i}(t)C_{j}(t-\tau)\mathrm{Tr}_{B}\left(\left[A_{i},\widetilde{B_{i}}(\tau)\widetilde{B_{j}}(0)\rho_{B}e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\overline{\rho_{S}}(t)\right]$$

$$-\left[A_{i},\widetilde{B_{j}}(-\tau)\widetilde{B_{i}}(0)\rho_{B}\overline{\rho_{S}}(t)e^{-\mathrm{i}\tau w(t-\tau)}e^{\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathscr{A}_{jww'}(t-\tau,t)\right]\right) \tag{780}$$

Given that if we define:

$$D_{ijww'}(t-\tau,t) = C_i(t) C_j(t-\tau) \mathcal{B}_{ij}(\tau) e^{i\tau w(t-\tau)} e^{-it(w(t-\tau)-w'(t))} \mathcal{A}_{jww'}(t-\tau,t)$$
(781)

then

$$D_{ijww'}^{\dagger}(t-\tau,t) = \left(C_i(t)C_j(t-\tau)\mathcal{B}_{ij}(\tau)e^{i\tau w(t-\tau)}e^{-it\left(w(t-\tau)-w'(t)\right)}\mathcal{A}_{jww'}(t-\tau,t)\right)^{\dagger}$$
(782)

$$= \mathscr{B}_{ij}^{*}\left(\tau\right) C_{i}\left(t\right) C_{j}\left(t-\tau\right) e^{-\mathrm{i}\tau w\left(t-\tau\right)} e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)} \mathscr{A}_{jww'}^{\dagger}\left(t-\tau,t\right)$$

$$(783)$$

We used the fact that $C_i(t)$, $C_j(t-\tau)$ are real. Now let's consider the following trace recalling that $\text{Tr}(A)^* = \text{Tr}(A^{\dagger})$ so:

$$\operatorname{Tr}_{B}\left(\widetilde{B}_{j}\left(-\tau\right)\widetilde{B}_{i}\left(0\right)\rho_{B}\right) = \operatorname{Tr}_{B}\left(e^{-\mathrm{i}\tau H_{B}\left(\tau\right)}B_{j}e^{\mathrm{i}\tau H_{B}\left(\tau\right)}B_{i}\rho_{B}\right) \tag{784}$$

$$= \operatorname{Tr}_{B} \left(B_{j} e^{i\tau H_{B}(\tau)} B_{i} \rho_{B} e^{-i\tau H_{B}(\tau)} \right)$$
 (by cyclic permutivity of trace) (785)

$$= \operatorname{Tr}_{B} \left(B_{j} e^{i\tau H_{B}(\tau)} B_{i} e^{-i\tau H_{B}(\tau)} \rho_{B} \right) \text{ (by commutativity of } e^{-i\tau H_{B}(\tau)} \text{ and } \rho_{B})$$
 (786)

$$= \operatorname{Tr}_{B} \left(B_{j} \widetilde{B_{i}} \left(\tau \right) \rho_{B} \right)$$
 (by definition of time evolution) (787)

$$=\operatorname{Tr}_{B}\left(B_{j}\widetilde{B_{i}}\left(\tau\right)\rho_{B}\right)\tag{788}$$

$$=\operatorname{Tr}_{B}\left(\rho_{B}B_{j}\widetilde{B}_{i}\left(\tau\right)\right)\tag{789}$$

$$= \operatorname{Tr}_{B} \left(\left(\widetilde{B}_{i} \left(\tau \right) B_{j} \rho_{B} \right)^{\dagger} \right)$$
 (by definition of adjoint) (790)

$$=\operatorname{Tr}_{B}\left(\widetilde{B_{i}}\left(\tau\right)B_{j}\rho_{B}\right)^{*}\tag{791}$$

$$=\mathscr{B}_{ij}^{*}\left(\tau\right)\tag{792}$$

So we can write the master equation like:

$$\frac{\mathrm{d}\overline{\rho_S}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t),\overline{\rho_S}(t)\right] - \sum_{ijww'} \int_0^t \mathrm{d}\tau C_i(t)C_j(t-\tau) \left(\mathcal{B}_{ij}(\tau)\left[A_i,e^{\mathrm{i}\tau w(t-\tau)}e^{-\mathrm{i}t\left(w(t-\tau)-w'(t)\right)}\mathcal{A}_j(w(t-\tau),w'(t))\overline{\rho_S}(t)\right]\right)$$
(793)

$$-\mathscr{B}_{ij}^{*}\left(\tau\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)e^{-\mathrm{i}\tau w\left(t-\tau\right)}e^{\mathrm{i}t\left(w\left(t-\tau\right)-w'\left(t\right)\right)}\mathscr{A}_{j}^{\dagger}\left(w\left(t-\tau\right),w'\left(t\right)\right)\right]\right)\tag{794}$$

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]-\sum_{ijww'}\int_{0}^{t}\mathrm{d}\tau\left(\left[A_{i},D_{ijww'}\left(t-\tau,t\right)\overline{\rho_{S}}\left(t\right)\right]-\left[A_{i},\overline{\rho_{S}}\left(t\right)D_{ijww'}^{\dagger}\left(t-\tau,t\right)\right]\right)$$
(795)

Let's define the response matrix in the following way.

$$\mathscr{D}_{ijww'}(t) = \int_0^t d\tau D_{ijww'}(t - \tau, t)$$
(796)

Then the master equation can be written as:

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}(t)\,\overline{\rho_{S}}(t)\right] - \left[A_{i}, \overline{\rho_{S}}(t)\,\mathcal{D}_{ijww'}^{\dagger}(t)\right]\right)$$
(797)

If we extend the upper limit of integration to ∞ in the equation (796) then the system will be independent of any preparation at t = 0, so the evolution of the system will depend only on its present state as expected in the Markovian approximation.

Applying the inverse transformation we will obtain that:

$$e^{-V}\frac{\mathrm{d}\overline{\rho}_{S}(t)}{\mathrm{d}t}e^{V} = \frac{\mathrm{d}\left(e^{-V}\overline{\rho}_{S}e^{V}\right)}{\mathrm{d}t} \tag{798}$$

$$=\frac{\mathrm{d}\rho_S}{\mathrm{d}t}\tag{799}$$

$$=-\mathrm{i}\mathrm{e}^{-\mathrm{V}}\left[\overline{H_{S}}(t),\overline{\rho_{S}}(t)\right]e^{V}-\sum_{i,i,w,w'}\int_{0}^{t}\mathrm{d}\tau\left(e^{-V}[A_{i},D_{ijww'}(t-\tau,t)\overline{\rho_{S}}(t)]e^{V}-e^{-V}\left[A_{i},\overline{\rho_{S}}(t)D_{ijww'}^{\dagger}(t-\tau,t)\right]e^{V}\right). \tag{800}$$

For a product we have the following:

$$e^{-V}\overline{AB}e^{V} = e^{-V}\overline{A}\overline{\mathbb{I}B}e^{V} \tag{801}$$

$$= e^{-V} \overline{A} e^{V} e^{-V} \overline{B} e^{V} \tag{802}$$

$$= \left(e^{-V}\overline{A}e^{V}\right)\left(e^{-V}\overline{B}e^{V}\right) \tag{803}$$

$$=AB. (804)$$

We can use this to prove the following property for the inverse transformation of a commutator:

$$e^{-V}\overline{[A,B]}e^{V} = e^{-V}\overline{(AB-BA)}e^{V}$$
(805)

$$= e^{-V} \overline{AB} e^{V} - e^{-V} \overline{BA} e^{V} \tag{806}$$

$$= AB - BA \tag{807}$$

$$= [A, B]. \tag{808}$$

So we will obtain that

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}e^{-V} \left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t) \right] e^{V} - e^{-V} \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}(t) \overline{\rho_{S}}(t) \right] - \left[A_{i}, \overline{\rho_{S}}(t) \mathcal{D}_{ijww'}^{\dagger}(t) \right] \right) e^{V}$$

$$(809)$$

$$=-\mathrm{i}e^{-V}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]e^{V}-\sum_{ijww'}\left(e^{-V}\left[A_{i},\mathscr{D}_{ijww'}\left(t\right)\overline{\rho_{S}}\left(t\right)\right]e^{V}-e^{-V}\left[A_{i},\overline{\rho_{S}}\left(t\right)\mathscr{D}_{ijww'}^{\dagger}\left(t\right)\right]e^{V}\right)\tag{810}$$

$$=-\mathrm{i}\left[H_{\bar{S}}\left(t\right),\rho_{S}\left(t\right)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathscr{D}_{ijww'}\left(t\right)\overline{\rho_{S}}\left(t\right)e^{V}\right]-\left[e^{-V}A_{i}e^{V},e^{-V}\overline{\rho_{S}}\left(t\right)\mathscr{D}_{ijww'}^{\dagger}\left(t\right)e^{V}\right]\right) \tag{811}$$

$$=-\mathrm{i}\left[H_{\bar{S}}(t),\rho_{S}(t)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathcal{D}_{ijww'}(t)\,e^{V}\,e^{-V}\overline{\rho_{S}}(t)e^{V}\right]-\left[e^{-V}A_{i}e^{V},e^{-V}\overline{\rho_{S}}(t)e^{V}e^{-V}\mathcal{D}_{ijww'}^{\dagger}(t)e^{V}\right]\right) \quad (812)$$

$$=-\mathrm{i}\left[H_{\bar{S}}\left(t\right),\rho_{S}\left(t\right)\right]-\sum_{ijww'}\left(\left[e^{-V}A_{i}e^{V},e^{-V}\mathcal{D}_{ijww'}\left(t\right)e^{V}\rho_{S}\left(t\right)\right]-\left[e^{-V}A_{i}e^{V},\rho_{S}\left(t\right)e^{-V}\mathcal{D}_{ijww'}^{\dagger}\left(t\right)e^{V}\right]\right). \tag{813}$$

V. LIMIT CASES

In order to show the plausibility of the master equation (797) for a time-dependent Hamiltonian we will show that this equation reproduces the following cases under certain limits conditions that will be pointed in each subsection.

A. Time-independent variational quantum master equation

At first let's show that the master equation (797) reproduces the results of the reference [1], for the latter case we have that $i, j \in \{1, 2, 3\}$ and $\omega \in (0, \pm \eta)$. The Hamiltonian of the system considered in this reference written in the same basis than the Hamiltonian (1) is given by:

$$H = \left(\delta + \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right) |1\rangle\langle 1| + \frac{\Omega}{2} \sigma_x + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}.$$
(814)

After performing the transformation (24) on the Hamiltonian (814) it's possible to split that result in the following set of Hamiltonians:

$$\overline{H_S} = (\delta + R)|1\rangle\langle 1| + \frac{\Omega_r}{2}\sigma_x, \tag{815}$$

$$\overline{H_I} = B_z |1\rangle\langle 1| + \frac{\Omega}{2} \left(B_x \sigma_x + B_y \sigma_y \right), \tag{816}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{817}$$

The Hamiltonian (815) differs from the transformed Hamiltonian H_S of the reference written like $H_S = \frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z + \frac{\Omega_r}{2}\sigma_x$ by a term proportional to the identity, this can be seen in the following way taking $\epsilon = \delta + R$

$$(\delta + R)|1\rangle\langle 1| - \frac{\delta}{2}\mathbb{I} = \left(\frac{\delta}{2} + R\right)|1\rangle\langle 1| - \frac{\delta}{2}|0\rangle\langle 0| \tag{818}$$

$$=\frac{R}{2}\mathbb{I} + \frac{\delta + R}{2}\sigma_z \tag{819}$$

$$=\frac{R}{2}\mathbb{I}+\frac{\epsilon}{2}\sigma_z. \tag{820}$$

In this Hamiltonian we can write $A_i = \sigma_x$, $A_2 = \sigma_y$ and $A_3 = \frac{I+\sigma_z}{2} = |1\rangle\langle 1|$ with $\sigma_z = |1\rangle\langle 1| - |0\rangle\langle 0|$. In order to find the decomposition matrices of the Fourier decomposition let's obtain the eigenvalues and eigenvectors of the matrix $\overline{H_{\bar{S}}}$. Given that $\overline{H_{\bar{S}}} = \frac{R}{2}\mathbb{I} + \frac{\epsilon}{2}\sigma_z + \frac{\Omega_r}{2}\sigma_x$ then $\mathrm{Tr}\left(\overline{H_{\bar{S}}}\right) = R$ and $\mathrm{Det}\left(\overline{H_{\bar{S}}}\right) = \frac{R^2-\epsilon^2}{4} - \frac{\Omega_r^2}{4}$ then by the Caley-Hamilton theorem then we will have that the equations of the eigenvalues and it's values are given by::

$$0 = \lambda^2 - R\lambda + \frac{R^2 - \epsilon^2 - \Omega_r^2}{4},\tag{821}$$

$$\lambda_{\pm} = \frac{R \pm \sqrt{(-R)^2 - 4\left(\frac{R^2 - \epsilon^2 - \Omega_r^2}{4}\right)}}{2}$$
 (822)

$$= \frac{R \pm \sqrt{R^2 - (R^2 - \epsilon^2 - \Omega_r^2)}}{2}$$
 (823)

$$=\frac{R\pm\sqrt{\epsilon^2+\Omega_r^2}}{2}\tag{824}$$

$$\eta = \sqrt{\epsilon^2 + \Omega_r^2},\tag{825}$$

$$\lambda_{\pm} = \frac{R \pm \eta}{2}.\tag{826}$$

For $\lambda_+=\frac{R+\eta}{2}$ we will obtain the associated eigenvector like:

$$\begin{pmatrix} \frac{R}{2} - \frac{\epsilon}{2} - \frac{R+\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{R}{2} + \frac{\epsilon}{2} - \frac{R+\eta}{2} \end{pmatrix} = \begin{pmatrix} -\frac{\epsilon}{2} - \frac{\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{\epsilon}{2} - \frac{\eta}{2} \end{pmatrix}. \tag{827}$$

so the eigenvector $|+\rangle=a\,|0\rangle+b\,|1\rangle$ satisfies $-\frac{\epsilon+\eta}{2}a+\frac{\Omega_r}{2}b=0$, so $a=\frac{\Omega_r}{\epsilon+\eta}b$ then the normalized eigenvector is $|+\rangle=\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|0\rangle+\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|1\rangle$ with $\sin{(\theta)}=\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$ and $\cos{(\theta)}=\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$. The vector is written in reduced way like $|+\rangle=\sin{(\theta)}\,|0\rangle+\cos{(\theta)}\,|1\rangle$.

For $\lambda_{-} = \frac{R-\eta}{2}$ we will obtain the associated eigenvector like:

$$\begin{pmatrix} \frac{R}{2} - \frac{\epsilon}{2} - \frac{R-\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{R}{2} + \frac{\epsilon}{2} - \frac{R-\eta}{2} \end{pmatrix} = \begin{pmatrix} -\frac{\epsilon}{2} + \frac{\eta}{2} & \frac{\Omega_r}{2} \\ \frac{\Omega_r}{2} & \frac{\epsilon}{2} + \frac{\eta}{2} \end{pmatrix}. \tag{828}$$

so the eigenvector $|+\rangle=a\,|0\rangle+b\,|1\rangle$ satisfies $\frac{\Omega_r}{2}a+\frac{\epsilon+\eta}{2}b=0$, so $a=-\frac{\epsilon+\eta}{\Omega_r}b$ then the normalized eigenvector is $|-\rangle=\frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|0\rangle-\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}\,|1\rangle$. The vector is written in reduced way like $|-\rangle=\cos{(\theta)}\,|0\rangle-\sin{(\theta)}\,|1\rangle$. Summarizing these results we can write:

$$\lambda_{+} = \frac{\epsilon + \eta}{2},\tag{829}$$

$$\lambda_{-} = \frac{\epsilon - \eta}{2},\tag{830}$$

$$|+\rangle = \sin(\theta)|0\rangle + \cos(\theta)|1\rangle,$$
 (831)

$$|-\rangle = \cos(\theta) |0\rangle - \sin(\theta) |1\rangle,$$
 (832)

$$\sin\left(\theta\right) = \frac{\Omega_r}{\sqrt{\left(\epsilon + \eta\right)^2 + \Omega_r^2}},\tag{833}$$

$$\cos(\theta) = \frac{\epsilon + \eta}{\sqrt{(\epsilon + \eta)^2 + \Omega_r^2}}.$$
(834)

This result is plausible because in the paper [1] we have that:

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{\Omega_r}{\epsilon} \right). \tag{835}$$

We can obtain the value of $\tan{(\theta)}$ through the following trigonometry identity for $x = \tan^{-1}\left(\frac{\Omega_r}{\epsilon}\right)$.

$$\tan\left(\frac{x}{2}\right) = \frac{\sin\left(x\right)}{\cos\left(x\right) + 1}.\tag{836}$$

So the value of $tan(\theta)$ using (836) is equal to:

$$\tan\left(\theta\right) = \frac{\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}{\frac{\epsilon}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}} + 1} \tag{837}$$

$$= \frac{\frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}{\frac{\epsilon + \sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}{\sqrt{(\epsilon+\eta)^2 + \Omega_r^2}}}$$
(838)

$$=\frac{\Omega_r}{\epsilon+\eta}. (839)$$

This proves our assertion.

Using this basis we can find the decomposition matrices using the equations (763)-(764) and the fact that $|+\rangle = \sin{(\theta)} |0\rangle + \cos{(\theta)} |1\rangle = \begin{pmatrix} \sin{(\theta)} \\ \cos{(\theta)} \end{pmatrix}$ and $|-\rangle = \cos{(\theta)} |0\rangle - \sin{(\theta)} |1\rangle = \begin{pmatrix} \cos{(\theta)} \\ -\sin{(\theta)} \end{pmatrix}$ with $\sin{(\theta)} = \frac{\Omega_r}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$ and $\cos{(\theta)} = \frac{\epsilon+\eta}{\sqrt{(\epsilon+\eta)^2+\Omega_r^2}}$:

$$\langle +|\sigma_x|+\rangle = \left(\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \tag{840}$$

$$= 2\sin\left(\theta\right)\cos\left(\theta\right) \tag{841}$$

$$= \sin\left(2\theta\right), \tag{842}$$

$$\langle -|\sigma_x|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \tag{843}$$

$$= -2\sin\left(\theta\right)\cos\left(\theta\right) \tag{844}$$

$$= -\sin\left(2\theta\right), \tag{845}$$

$$\langle -|\sigma_x|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \tag{846}$$

$$= \cos^2\left(\theta\right) - \sin^2\left(\theta\right) \tag{847}$$

$$= \cos\left(2\theta\right), \tag{848}$$

$$\langle +|\sigma_y|+\rangle = \left(\sin\left(\theta\right)\cos\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ \cos\left(\theta\right) \end{pmatrix} \tag{849}$$

$$= i\sin\left(\theta\right)\cos\left(\theta\right) - i\sin\left(\theta\right)\cos\left(\theta\right) \tag{850}$$

$$= 0, \tag{851}$$

$$\langle -|\sigma_y|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \tag{855}$$

$$= i\sin\left(\theta\right)\cos\left(\theta\right) - i\sin\left(\theta\right)\cos\left(\theta\right) \tag{855}$$

$$= 0, \tag{854}$$

$$\langle -|\sigma_y|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right) \\ -\sin\left(\theta\right) \end{pmatrix} \tag{855}$$

$$= i\cos^2\left(\theta\right) + i\sin^2\left(\theta\right) \tag{856}$$

$$= i\cos^2\left(\theta\right) + i\sin^2\left(\theta\right) \tag{856}$$

$$= i. \tag{857}$$

$$\langle +|\frac{1+\sigma_z}{2}|+\rangle = \left(\sin\left(\theta\right) \cos\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix} \tag{858}$$

$$=\cos\left(\theta\right)\cos\left(\theta\right)\tag{859}$$

$$=\cos^2\left(\theta\right),\tag{860}$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\left(\theta\right)\\ -\sin\left(\theta\right) \end{pmatrix} \tag{861}$$

$$=\sin\left(\theta\right)\sin\left(\theta\right)\tag{862}$$

$$=\sin^2\left(\theta\right),\tag{863}$$

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \left(\cos\left(\theta\right) - \sin\left(\theta\right)\right) \begin{pmatrix} 0 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sin\left(\theta\right)\\ \cos\left(\theta\right) \end{pmatrix} \tag{864}$$

$$= -\sin(\theta)\cos(\theta) \tag{865}$$

$$= -\sin(\theta)\cos(\theta). \tag{866}$$

Composing the parts shown give us the Fourier decomposition matrices for this case:

$$A_1(0) = \sin(2\theta) (|+|+|-|-|-|), \tag{867}$$

$$A_1(\eta) = \cos(2\theta) \left| - \right| + \left|, \tag{868}$$

$$A_2(0) = 0,$$
 (869)

$$A_2(\eta) = i|-\chi + |, \tag{870}$$

$$A_3(0) = \cos^2(\theta) |+|+| + \sin^2(\theta) |-|-|, \tag{871}$$

$$A_3(\eta) = -\sin(\theta)\cos(\theta) |-\rangle + |. \tag{872}$$

Now to prove the fact that the model of the "Time-independent variational quantum master equation" is a special case the master equation (800) we need to take account of the time-independence of the hamiltonian of this system. From this perspective is possible to show that for the equation (781) is equivalent to:

$$\mathscr{D}_{ijww'}(t) = \int_0^t d\tau D_{ijww'}(t - \tau, t) \tag{873}$$

$$= \int_{0}^{t} d\tau C_{i}(t) C_{j}(t-\tau) \Lambda_{ij}(\tau) e^{i\tau w(t-\tau)} e^{-it\left(w(t-\tau)-w'(t)\right)} \mathscr{A}_{j}\left(w(t-\tau), w'(t)\right)$$

$$(874)$$

$$= \int_{0}^{t} d\tau C_{i}(t) C_{j}(t-\tau) \Lambda_{ij}(\tau) e^{i\tau w} e^{-it(w-w')} \mathscr{A}_{j}(w,w').$$

$$(875)$$

Now to make comparisons between the model obtained and the model of the system under discussion we will define that the correlation functions of the reference [1] denoted by $\Lambda'_{ij}(\tau)$ relate with the correlation functions defined in the equation (396) in the following way:

$$\Lambda'_{ij}(\tau) = C_i(t) C_j(t - \tau) \Lambda_{ij}(\tau). \tag{876}$$

So the response matrix can be rewritten as:

$$\mathscr{D}_{ijww'}(t) = \left(\int_0^t d\tau \Lambda'_{ij}(\tau) e^{i\tau w} e^{-it(w-w')}\right) \mathscr{A}_j(w, w')$$
(877)

Let's define the response function like:

$$K_{ij}\left(w,w',t\right) = \int_{0}^{t} C_{i}\left(t\right) C_{j}\left(t-\tau\right) \Lambda_{ij}\left(\tau\right) e^{\mathrm{i}w\tau} e^{-\mathrm{i}t\left(w-w'\right)} d\tau \tag{878}$$

$$= \int_0^t \Lambda'_{ij}(\tau) e^{\mathrm{i}w\tau} e^{-\mathrm{i}t(w-w')} d\tau$$
(879)

$$=K_{ijww'}\left(t\right). \tag{880}$$

Then we have the following equivalence:

$$\mathscr{D}_{ijww'}(t) = K_{ijww'}(t) \mathscr{A}_{j}(w, w')$$
(881)

$$=K_{ijww'}(t)\,\mathscr{A}_{iww'} \tag{882}$$

We can proof that

$$\frac{\mathrm{d}\overline{\rho_{S}}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_{\bar{S}}}(t), \overline{\rho_{S}}(t)\right] - \sum_{ijww'} \left(\left[A_{i}, \mathcal{D}_{ijww'}(t)\,\overline{\rho_{S}}(t)\right] - \left[A_{i}, \overline{\rho_{S}}(t)\,\mathcal{D}_{ijww'}^{\dagger}(t)\right]\right)$$
(883)

$$=-\mathrm{i}\left[\overline{H_{\bar{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]-\sum_{ijww'}\left(\left[A_{i},K_{ijww'}\left(t\right)\mathscr{A}_{jww'}\overline{\rho_{S}}\left(t\right)\right]-\left[A_{i},\overline{\rho_{S}}\left(t\right)K_{ijww'}^{*}\left(t\right)\mathscr{A}_{jww'}^{\dagger}\right]\right)$$
(884)

$$=-\mathrm{i}\left[\overline{H_{\overline{S}}}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]-\sum_{ijww'}\left(K_{ijww'}\left(t\right)\left[A_{i},\mathscr{A}_{jww'}\overline{\rho_{S}}\left(t\right)\right]-K_{ijww'}^{*}\left(t\right)\left[A_{i},\overline{\rho_{S}}\left(t\right)\mathscr{A}_{jww'}^{\dagger}\right]\right)$$
(885)

$$=-\mathrm{i}\big[\overline{H_{\overline{S}}}(t),\overline{\rho_{\overline{S}}}(t)\big]-\sum_{ijww'}\left(\left(K_{ijww'}^{\Re}(t)+\mathrm{i}K_{ijww'}^{\Im}(t)\right)\big[A_{i},\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)\big]-\left(K_{ijww'}^{\Re}(t)-\mathrm{i}K_{ijww'}^{\Im}(t)\right)\big[A_{i},\overline{\rho_{\overline{S}}}(t)\mathscr{A}_{jww'}^{\dagger}\big]\right) \tag{886}$$

$$=-\mathrm{i}\big[\overline{H_{\overline{S}}}(t),\!\overline{\rho_{S}}(t)\big]-\sum_{ijww'}K_{ijww'}^{\Re}(t)\Big[A_{i},\!\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)-\overline{\rho_{S}}(t)\mathscr{A}_{jww'}^{\dagger}\Big]-\mathrm{i}\sum_{ijww'}K_{ijww'}^{\Im}(t)\Big[A_{i},\!\mathscr{A}_{jww'}\overline{\rho_{\overline{S}}}(t)+\overline{\rho_{\overline{S}}}(t)\mathscr{A}_{jww'}^{\dagger}\Big] \qquad \textbf{(887)}$$

Using the notation of the master equation (797), we can say that $C_1(t) = \frac{\Omega}{2} = C_2(t)$ and $C_3(t) = 1$, being Ω a constant. Furthermore given that $\overline{H_S}$ is time-independent then B(t) = B. Taking the equations(687)-(697) we find that the correlation functions of the reference [1] written in terms of the RHS of the equation (396) are equal to:

$$\Lambda'_{11}(\tau) = \left(\frac{\Omega}{2}\right)^2 \operatorname{Tr}_B\left(\widetilde{B}_1(\tau)\,\widetilde{B}_1(0)\,\rho_B\right) \tag{888}$$

$$= \frac{\Omega_r^2}{8} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right), \tag{889}$$

$$\Lambda_{22}'\left(\tau\right) = \left(\frac{\Omega}{2}\right)^{2} \operatorname{Tr}_{B}\left(\widetilde{B}_{2}\left(\tau\right)\widetilde{B}_{2}\left(0\right)\rho_{B}\right) \tag{890}$$

$$= \frac{\Omega_r^2}{8} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} \right), \tag{891}$$

$$\Lambda'_{33}(\tau) = \int_0^\infty d\omega J(\omega) (1 - F(\omega))^2 G_+(\tau), \qquad (892)$$

$$\Lambda_{32}'(\tau) = \frac{\Omega_r}{2} \int_0^\infty d\omega \frac{J(\omega)}{\omega} F(\omega) (1 - F(\omega)) iG_-(\tau), \qquad (893)$$

$$\Lambda_{32}'(\tau) = -\Lambda_{23}'(\tau), \tag{894}$$

$$\Lambda'_{12}\left(\tau\right) = \Lambda'_{21}\left(\tau\right) \tag{895}$$

$$=\Lambda'_{13}\left(\tau\right) \tag{896}$$

$$=\Lambda_{31}'(\tau) \tag{897}$$

$$= 0. (898)$$

Finally taking the Hamiltonian (814) and given that to reproduce this Hamiltonian we need to impose in (5) that $V_{10}(t) = \frac{\Omega}{2}$, $\varepsilon_0(t) = 0$ and $\varepsilon_1(t) = \delta$, then we obtain that $\operatorname{Det}\left(\overline{H_S}\right) = -\frac{\Omega_r^2}{4}$, $\operatorname{Tr}\left(\overline{H_S}\right) = \epsilon$. Now $\eta = \sqrt{\epsilon^2 + \Omega_r^2}$ and using the equation (336) we have that:

$$f_k = \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \right)}{1 - \frac{\tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(\epsilon - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\omega_k} \right)}$$
(899)

$$= \frac{g_k \left(1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta}\right)}{1 - \frac{\epsilon \tanh\left(\frac{\beta\eta}{2}\right)}{\eta} \left(1 - \frac{\Omega_r^2 \coth\left(\frac{\beta\omega_k}{2}\right)}{2\epsilon\omega_k}\right)}.$$
 (900)

This shows that the expression obtained reproduces the variational parameters of the time-independent model of the reference. In general we can see that the time-independent model studied can be reproduced using the master equation (432) under a time-independent approach providing similar results.

Given that the Hamiltonian of this system is time-independent, then $U(t)U^{\dagger}(t-\tau)=U(\tau)$. From the equation (797) and using the fact that

$$\widetilde{A_{j}}(t-\tau,t) = U(\tau) A_{j}U(-\tau)$$
(901)

$$=\sum_{m}e^{\mathrm{i}w\tau}\mathscr{A}_{j}\left(-w\right)\tag{902}$$

$$=\sum_{w}e^{-\mathrm{i}w\tau}\mathcal{A}_{j}\left(w\right).\tag{903}$$

because the matrices $U\left(t\right)$ and $U\left(t-\tau\right)$ commute from the fact that $H_S\left(t\right)$ and $H_S\left(t-\tau\right)$ commute as well for time independent Hamiltonians. The master equation is equal to:

$$\frac{\mathrm{d}\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right] - \frac{1}{2}\sum_{ij}\sum_{w}\gamma_{ij}\left(w,t\right)\left[A_{i},\mathscr{A}_{j}\left(w\right)\overline{\rho}_{S}\left(t\right) - \overline{\rho}_{S}\left(t\right)\mathscr{A}_{j}^{\dagger}\left(w\right)\right]$$
(904)

$$-\sum_{ij}\sum_{w}S_{ij}\left(w,t\right)\left[A_{i},\mathscr{A}_{j}\left(w\right)\overline{\rho}_{S}\left(t\right)+\overline{\rho}_{S}\left(t\right)\mathscr{A}_{j}^{\dagger}\left(w\right)\right].$$
(905)

where $\mathscr{A}_{j}^{\dagger}(w)=\mathscr{A}_{j}(-w)$, as we can see the equation (905) contains the rates and energy shifts $\gamma_{ij}(w,t)=2K_{ij}^{\Re}(w,t)$ and $S_{ij}(w,t)=K_{ij}^{\Im}(w,t)$, respectively, defined in terms of the response functions

$$K_{ij}^{\Im}\left(w,t\right) = \int_{0}^{t} \Lambda'_{ij}\left(\tau\right) e^{\mathrm{i}w\tau} \mathrm{d}\tau.$$

The fact $\mathscr{A}_{j}^{\dagger}(w)=\mathscr{A}_{j}(-w)$ can be verified directly for a 2×2 matrix. given that \overline{H}_{S} is independent of time then we have that:

$$e^{i\overline{H_S}(t-\tau)} = e^{i(\lambda_+|+|\lambda_+|-|-|-|)(t-\tau)}$$
(906)

$$=e^{\mathrm{i}\lambda_{+}|+|\cdot|+|(t-\tau)}e^{\mathrm{i}\lambda_{-}|-|\cdot|-|(t-\tau)}$$
(907)

$$= \left(\left| -\chi - \right| + e^{i\lambda_{+}(t-\tau)} \left| +\chi + \right| \right) \left(\left| +\chi + \right| + e^{i\lambda_{-}(t-\tau)} \left| -\chi - \right| \right) \tag{908}$$

$$=e^{\mathrm{i}\lambda_{+}(t-\tau)}|+\rangle+|+e^{\mathrm{i}\lambda_{-}(t-\tau)}|-\rangle-|. \tag{909}$$

Where λ_+, λ_- are the eigenvalues associated to the eigenvectors $|+\rangle\langle+|, |-\rangle\langle-|$ of $\overline{H_S}$. Calculating the transformation (738) of (762)-(764) directly using the previous relationship we find that:

$$\widetilde{A_i(0)}(t-\tau) = \left(e^{\mathrm{i}\lambda_+(t-\tau)}|+\chi+|+e^{\mathrm{i}\lambda_-(t-\tau)}|-\chi-|.\right) \left(\langle+|A_i|+\rangle|+\chi+|+\langle-|A_i|-\rangle|-\chi-|\right) \left(e^{-\mathrm{i}\lambda_+(t-\tau)}|+\chi+|+e^{-\mathrm{i}\lambda_-(t-\tau)}|-\chi-|\right) \tag{910}$$

$$= \langle +|A_i|+\rangle |+\rangle + |+\langle -|A_i|-\rangle |-\rangle -|, \tag{911}$$

$$\widetilde{A_{i}\left(w\right)}\left(t-\tau\right) = \left(e^{\mathrm{i}\lambda_{+}\left(t-\tau\right)}|+\rangle + |+e^{\mathrm{i}\lambda_{-}\left(t-\tau\right)}|-\rangle - |.\right)\left(\langle +|A_{i}|-\rangle |+\rangle - |)\left(e^{-\mathrm{i}\lambda_{+}\left(t-\tau\right)}|+\rangle + |+e^{-\mathrm{i}\lambda_{-}\left(t-\tau\right)}|-\rangle - |\right) \tag{912}$$

$$= \langle +|A_i|-\rangle|+\rangle -|e^{\mathrm{i}w(t-\tau)}, \tag{913}$$

$$\widetilde{A_{i}(-w)}(t-\tau) = \left(e^{\mathrm{i}\lambda_{+}(t-\tau)}|+\langle+|+e^{\mathrm{i}\lambda_{-}(t-\tau)}|-\langle-|.\right)(\langle-|A_{i}|+\rangle|-\langle+|)\left(e^{-\mathrm{i}\lambda_{+}(t-\tau)}|+\langle+|+e^{-\mathrm{i}\lambda_{-}(t-\tau)}|-\langle-|\right) \right)$$

$$= \langle-|A_{i}|+\rangle|-\langle+|e^{-\mathrm{i}w(t-\tau)}.$$
(915)

Here $w = \lambda_+ - \lambda_-$. So we can see that for the equation (748) it's possible to deduce for this case of time-independent matrix $\overline{H_S}$ if $w \neq w'$ then $A'_i(w, w') = 0$ so:

$$\widetilde{A_{j}}(t-\tau,t) = U(t)U^{\dagger}(t-\tau)A_{j}(t)U(t-\tau)U^{\dagger}(t)$$
(916)

$$= U(t) \left(\sum_{w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} A_j(w(t-\tau)) \right) U^{\dagger}(t)$$
(917)

$$= \sum_{w(t-\tau)} e^{-\mathrm{i}(t-\tau)w(t-\tau)} U(t) A_j(w(t-\tau)) U^{\dagger}(t)$$
(918)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_j (w(t-\tau), w'(t))$$
(919)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_{jww'}$$
(920)

$$= \sum_{w'(t), w(t-\tau)} e^{-i(t-\tau)w(t-\tau)} e^{itw'(t)} A_j(w) \, \delta_{ww'}$$
(921)

$$=\sum_{w}e^{-\mathrm{i}(t-\tau)w}e^{\mathrm{i}tw}A_{j}\left(w\right)\tag{922}$$

$$=\sum_{w}e^{\mathrm{i}\tau w}A_{j}\left(w\right)\tag{923}$$

$$=U^{\dagger}\left(-\tau\right)A_{i}U\left(-\tau\right)\tag{924}$$

So using now as reference the equation (887) and $A'_{i}(w, w') = 0$ we can deduce that:

$$\frac{\mathrm{d}\overline{\rho_S}(t)}{\mathrm{d}t} = -\mathrm{i}\left[\overline{H_S}(t),\overline{\rho_S}(t)\right] - \sum_{ijw} K_{ij}^{\Re}(w,t) \left[A_i,A_j(w)\overline{\rho_S}(t) - \overline{\rho_S}(t)A_j^{\dagger}(w)\right] - \mathrm{i}\sum_{ijw} K_{ij}^{\Im}(w,t) \left[A_i,A_j(w)\overline{\rho_S}(t) + \overline{\rho_S}(t)A_j^{\dagger}(w)\right]$$
(925)

B. Time-dependent polaron quantum master equation

Following the reference [1], when $\Omega_k \ll \omega_k$ then $f_k \approx g_k$ so we recover the full polaron transformation. It means from the equation (107) that $B_z = 0$. The Hamiltonian studied is given by:

$$H = \left(\delta + \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}}\right)\right) |1\rangle\langle 1| + \frac{\Omega(t)}{2} \sigma_{x} + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}.$$
(926)

If $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then $B(\tau) = B$, so B is independent of the time. In order to reproduce the Hamiltonian of the equation (926) using the Hamiltonian of the equation (1) we can say that $\delta = \varepsilon_1(t)$, $\varepsilon_0(t) = 0$, $V_{10}(t) = \frac{\Omega(t)}{2}$. Now given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ then, in this case and using the equation (225) and (236) we obtain the following transformed Hamiltonians:

$$\overline{H_S} = (\delta + R_1) |1\rangle\langle 1| + \frac{B\sigma_x}{2} \Omega(t), \qquad (927)$$

$$\overline{H_{\rm I}} = \frac{\Omega(t)}{2} \left(B_x \sigma_x + B_y \sigma_y \right). \tag{928}$$

In this case $R_1 = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} g_{\mathbf{k}} \right)$ from (27) and given that $v_{\mathbf{k}} \approx g_{\mathbf{k}}$ and $\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} = g_{\mathbf{k}}/\omega_{\mathbf{k}}$ then $R_1 = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}}^{-1} |g_{\mathbf{k}}|^2 \right) = \sum_{\mathbf{k}} \left(-\omega_{\mathbf{k}} |\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}|^2 \right)$ as expected, take $\delta + R_1 = \delta'$. If $F(\omega_{\mathbf{k}}) = 1$ and using the equations (888)-(895) we can deduce that the only terms that survive are $\Lambda_{11}(\tau)$ and $\Lambda_{22}(\tau)$. The phonon propagator for this case is:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} G_+(\tau) d\omega. \tag{929}$$

Writing $G_+\left(\tau\right)=\coth\left(\frac{\beta\omega}{2}\right)\cos\left(\omega\tau\right)-i\sin\left(\omega\tau\right)$ so (929) can be written as:

$$\phi(\tau) = \int_0^\infty \frac{J(\omega)}{\omega^2} \left(\coth\left(\frac{\beta\omega}{2}\right) \cos(\omega\tau) - i\sin(\omega\tau) \right) d\omega. \tag{930}$$

Writing the interaction Hamiltonian (928) in the similar way to the equation (236) allow us to to write $A_1 = \sigma_x$, $A_2 = \sigma_y$, $B_1(t) = B_x$, $B_2(t) = B_y$ and $C_1(t) = \frac{\Omega(t)}{2} = C_2(t)$. Now taking the equation (225) with $\delta'|1\rangle\langle 1| = \frac{\delta'}{2}\sigma_z + \frac{\delta'}{2}\mathbb{I}$ help us to reproduce the hamiltonian of the reference [2]. Then $\overline{H_S}$ is equal to:

$$\overline{H_S} = \frac{\delta'}{2}\sigma_z + \frac{B\sigma_x}{2}\Omega(t). \tag{931}$$

As we can see the function B is a time-independent function because we consider that g_k doesn't depend of the time. In this case the relevant correlation functions are given by:

$$\Lambda_{11}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B}_{1}(\tau)\widetilde{B}_{1}(0)\rho_{B}\right) \tag{932}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} - 2 \right), \tag{933}$$

$$\Lambda_{22}(\tau) = \operatorname{Tr}_{B}\left(\widetilde{B}_{2}(\tau)\widetilde{B}_{2}(0)\rho_{B}\right) \tag{934}$$

$$= \frac{B^2}{2} \left(e^{\phi(\tau)} + e^{-\phi(\tau)} \right). \tag{935}$$

These functions match with the equations $\Lambda_x(\tau)$ and $\Lambda_y(\tau)$ of the reference [2] and $\Lambda_i(\tau) = \Lambda_i(-\tau)$ for $i \in \{x, y\}$ respectively. The master equation for this section based on the equation (432) is:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\left[\frac{\delta'}{2}\sigma_{z} + \frac{\Omega_{r}\left(t\right)\sigma_{x}}{2}, \rho_{S}\left(t\right)\right] - \sum_{i=1}^{2} \int_{0}^{t} \mathrm{d}\tau \left(C_{i}\left(t\right)C_{i}\left(t - \tau\right)\Lambda_{ii}\left(\tau\right)\left[A_{i}, \widetilde{A_{i}}\left(t - \tau, t\right)\rho_{S}\left(t\right)\right]\right)$$
(936)

$$+C_{i}\left(t\right)C_{i}\left(t-\tau\right)\Lambda_{ii}\left(-\tau\right)\left[\rho_{S}\left(t\right)\widetilde{A_{i}}\left(t-\tau,t\right),A_{i}\right]\right).$$

$$(937)$$

Replacing $C_i(t) = \frac{\Omega(t)}{2}$ and $\widetilde{A}_i(t-\tau,t) = \widetilde{\sigma}_i(t-\tau,t)$, also using the equations (932) and (935) on the equation (937) we obtain that:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\frac{\mathrm{i}}{2}\left[\delta'\sigma_{z} + \Omega_{r}\left(t\right)\sigma_{x}, \rho_{S}\left(t\right)\right] - \frac{\Omega\left(t\right)}{4}\int_{0}^{t} \mathrm{d}\tau\Omega\left(t - \tau\right)\left(\left[\sigma_{x}, \widetilde{\sigma_{x}}\left(t - \tau, t\right)\rho_{S}\left(t\right)\right]\Lambda_{x}\left(\tau\right)\right)$$
(938)

$$+\left[\sigma_{y},\widetilde{\sigma_{y}}\left(t-\tau,t\right)\rho_{S}\left(t\right)\right]\Lambda_{y}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{x}}\left(t-\tau,t\right),\sigma_{x}\right]\Lambda_{x}\left(\tau\right)+\left[\rho_{S}\left(t\right)\widetilde{\sigma_{y}}\left(t-\tau,t\right),\sigma_{y}\right]\Lambda_{y}\left(\tau\right)\right).\tag{939}$$

As we can see $\left[A_j,\widetilde{A_i}\left(t-\tau,t\right)\rho_S\left(t\right)\right]^\dagger=\left[\rho_S\left(t\right)\widetilde{A_i}\left(t-\tau,t\right),A_j\right]$, $\Lambda_x\left(\tau\right)=\Lambda_x\left(-\tau\right)$ and $\Lambda_y\left(\tau\right)=\Lambda_y\left(-\tau\right)$, so the result obtained is the same master equation (21) of the reference [2] extended in the hermitian conjugate.

C. Time-Dependent Weak-Coupling Limit

In order to prove that the master equation deduced reproduces the equation (S17) of the reference [3] we will impose that $F(\omega)=0$, so there is no transformation in this case. As we can see from the definition (396) the only term that survives is Λ_{33} (τ) . Taking $\bar{h}=1$ the Hamiltonian of the reference can be written in the form:

$$H = \Delta |1\rangle\langle 1| + \frac{\Omega(t)}{2}(|1\rangle\langle 0| + |0\rangle\langle 1|) + \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + |1\rangle\langle 1| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} + g_{\mathbf{k}}^{*} b_{\mathbf{k}} \right). \tag{940}$$

Using the equation (797), from the fact that the Hamiltonian is time-independent in the evolution time allow us to write:

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \rho_{S}(t)\right] - \frac{1}{2}\sum_{w}\gamma_{33}(w, t)\left[A_{3}, A_{3}(w)\rho_{S}(t) - \rho_{S}(t)A_{3}^{\dagger}(w)\right]$$
(941)

$$-\sum_{w} S_{33}(w,t) \left[A_3, A_3(w) \rho_S(t) + \rho_S(t) A_3^{\dagger}(w) \right] \right). \tag{942}$$

The correlation functions are relevant if $F(\omega) = 0$ for the weak-coupling approximation are:

$$\Lambda_{33}(\tau) = \int_0^\infty d\omega J(\omega) G_+(\tau), \qquad (943)$$

$$\Lambda_{33}(-\tau) = \int_0^\infty d\omega J(\omega) G_+(-\tau). \tag{944}$$

In our case $A_3 = \frac{\mathbb{I} + \sigma_z}{2}$, the equation (942) can be transformed in

$$\frac{\mathrm{d}\rho_{S}}{\mathrm{d}t} = -\mathrm{i}\left[H_{S}(t), \rho_{S}(t)\right] - \sum_{w} \left(K_{33}(w, t)\left[A_{3}, A_{3}(w)\rho_{S}(t)\right] + K_{33}^{*}(w, t)\left[\rho_{S}(t)A_{3}(w), A_{3}\right]\right). \tag{945}$$

As the paper suggest we will consider that the quantum system is in resonance, so $\Delta=0$ and furthemore, the relaxation time of the bath is less than the evolution time to be considered, so the frequency of the Rabi frequency of the laser can be taken as constant and equal to $\widetilde{\Omega}$ To find the matrices $A_3(w)$, we have to remember that $H_S=\frac{\Omega(t)}{2}\left(|1\rangle\langle 0|+|0\rangle\langle 1|\right)$, this Hamiltonian using the approximation $\widetilde{\Omega}$ have the following eigenvalues and eigenvectors:

$$\lambda_{+} = \frac{\widetilde{\Omega}}{2},\tag{946}$$

$$|+\rangle = \frac{1}{\sqrt{2}} \left(|1\rangle + |0\rangle \right),\tag{947}$$

$$\lambda_{-} = -\frac{\widetilde{\Omega}}{2},\tag{948}$$

$$|-\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right). \tag{949}$$

The elements of the decomposition matrices are:

$$\langle +|\frac{1+\sigma_z}{2}|+\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{950}$$

$$=\frac{1}{2},\tag{951}$$

$$\langle -|\frac{1+\sigma_z}{2}|-\rangle = \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 (952)

$$=\frac{1}{2},\tag{953}$$

$$\langle -|\frac{1+\sigma_z}{2}|+\rangle = \frac{1}{2} \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{954}$$

$$= -\frac{1}{2}. (955)$$

The decomposition matrices are

$$A_3(0) = \frac{1}{2} |+|+| + \frac{1}{2} |-|-|$$
 (956)

$$=\frac{\mathbb{I}}{2},\tag{957}$$

$$A_3(\eta) = -\frac{1}{2}|-\chi+| \tag{958}$$

$$=\frac{1}{4}\left(\sigma_{z}+i\sigma_{y}\right),\tag{959}$$

$$A_3(-\eta) = -\frac{1}{2}|+\chi-| \tag{960}$$

$$=\frac{1}{4}\left(\sigma_z-\mathrm{i}\sigma_y\right). \tag{961}$$

Neglecting the term proportional to the identity in the Hamiltonian we obtain that:

$$\frac{\mathrm{d}\rho_{S}\left(t\right)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2}\left[\sigma_{x},\rho_{S}\left(t\right)\right)\left[-K_{33}\left(\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right] - K_{33}\left(-\widetilde{\Omega},t\right)\left[\frac{\sigma_{z}}{2},\frac{1}{4}\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right)\rho_{S}\left(t\right)\right]$$
(962)

$$-K_{33}^{*}\left(\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}+\mathrm{i}\sigma_{y}\right),\frac{\sigma_{z}}{2}\right]-K_{33}^{*}\left(-\widetilde{\Omega},t\right)\left[\rho_{S}\left(t\right)\frac{1}{4}\left(\sigma_{z}-\mathrm{i}\sigma_{y}\right),\frac{\sigma_{z}}{2}\right].\tag{963}$$

Calculating the response functions extending the upper limit of τ to ∞ , we obtain:

$$K_{33}\left(\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{i\widetilde{\Omega}\tau} d\tau d\omega \tag{964}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (965)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{i\widetilde{\Omega}\tau} (n(\omega) + 1) e^{-i\tau\omega} d\tau d\omega$$
 (966)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) (n(\omega) + 1) e^{i\widetilde{\Omega}\tau - i\tau\omega} d\tau d\omega$$
 (967)

$$= \int_{0}^{\infty} J(\omega) (n(\omega) + 1) \pi \delta \left(\widetilde{\Omega} - \omega \right) d\omega$$
 (968)

$$= \pi J\left(\widetilde{\Omega}\right) \left(n\left(\widetilde{\Omega}\right) + 1\right),\tag{969}$$

$$K_{33}\left(-\widetilde{\Omega}\right) = \int_{0}^{\infty} \int_{0}^{\infty} J\left(\omega\right) G_{+}\left(\tau\right) e^{-\mathrm{i}\widetilde{\Omega}\tau} \mathrm{d}\tau \mathrm{d}\omega \tag{970}$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} \left((n(\omega) + 1) e^{-i\tau\omega} + n(\omega) e^{i\tau\omega} \right) d\tau d\omega$$
 (971)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) e^{-i\widetilde{\Omega}\tau} n(\omega) e^{i\tau\omega} d\tau d\omega$$
 (972)

$$= \int_{0}^{\infty} \int_{0}^{\infty} J(\omega) n(\omega) e^{-i\tilde{\Omega}\tau + i\tau\omega} d\tau d\omega$$
 (973)

$$= \int_{0}^{\infty} J(\omega) \, n(\omega) \, \pi \delta \left(-\widetilde{\Omega} + \omega \right) d\omega \tag{974}$$

$$= \pi J\left(\widetilde{\Omega}\right) n\left(\widetilde{\Omega}\right). \tag{975}$$

Here we have used $\int_0^\infty \mathrm{d}s \ e^{\pm i\varepsilon s} = \pi \delta\left(\varepsilon\right) \pm \mathrm{i} \frac{\mathrm{V.P.}}{\varepsilon}$, where $\mathrm{V.P.}$ denotes the Cauchy's principal value. Theses principal values are ignored because they lead to small renormalizations of the Hamiltonian. Furthermore we don't take

account of value associated to the matrix $A_3(0)$ because the spectral density $J(\omega)$ is equal to zero when $\omega=0$. Replacing in the equation (962) lead us to obtain:

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\widetilde{\Omega}}{2}\left[\sigma_{x},\rho_{S}(t)\right] - \frac{\pi}{8}J\left(\widetilde{\Omega}\right)\left(\left(n\left(\widetilde{\Omega}\right) + 1\right)\left[\sigma_{z},\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right] + n\left(\widetilde{\Omega}\right)\left[\sigma_{z},\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right]\right) - \frac{\pi}{8}J\left(\widetilde{\Omega}\right)\left(\left(n\left(\widetilde{\Omega}\right) + 1\right)\left[\rho_{S}(t)\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right),\sigma_{z}\right] + n\left(\widetilde{\Omega}\right)\left[\rho_{S}(t)\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right),\sigma_{z}\right]\right).$$
(976)

This is the same result than the equation (S17), so we have proved that our general master equation allows to reproduce the results of the weak-coupling time-dependent. Now the master equation in the evolution time is given by

$$\frac{\mathrm{d}\rho_{S}(t)}{\mathrm{d}t} = -\mathrm{i}\frac{\Omega(t)}{2} \left[\sigma_{x}, \rho_{S}(t)\right] - \frac{\pi}{8} J\left(\Omega(t)\right) \left(\left(n\left(\Omega(t)\right) + 1\right)\left[\sigma_{z}, \left(\sigma_{z} + \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right] + n\left(\Omega(t)\right)\left[\sigma_{z}, \left(\sigma_{z} - \mathrm{i}\sigma_{y}\right)\rho_{S}(t)\right]\right) - \frac{\pi}{8} J\left(\Omega(t)\right) \left(\left(n\left(\Omega(t)\right) + 1\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} + \mathrm{i}\sigma_{y}\right), \sigma_{z}\right] + n\left(\Omega(t)\right)\left[\rho_{S}\left(t\right)\left(\sigma_{z} - \mathrm{i}\sigma_{y}\right), \sigma_{z}\right]\right).$$
(978)

VI. TIME-DEPENDENT MULTI-SITE MODEL WITH V BATHS COUPLING

Let's consider the following Hamiltonian for a system of m-level system coupled to v-baths. We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (980)

$$H_S(t) = \sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|,$$
(981)

$$H_I = \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right), \tag{982}$$

$$H_B = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}}.$$
 (983)

A. Variational Transformation

We consider the following operator:

$$V = \sum_{nu\mathbf{k}} |n\rangle \langle n|\omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$$
(984)

At first let's obtain $e^{\pm V}$ under the transformation (984), consider $\hat{\varphi}_n = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)$, so the equation (984) can be written as $V = \sum_n |n\rangle\langle n|\hat{\varphi}_n$, then we have:

$$e^{\pm V} = e^{\pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}} \tag{985}$$

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\left(\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}\right)^{2}}{2!} + \dots$$
 (986)

$$= \mathbb{I} \pm \sum_{n} |n\rangle\langle n|\hat{\varphi}_{n} + \frac{\sum_{n} |n\rangle\langle n|\hat{\varphi}_{n}^{2}}{2!} + \dots$$
 (987)

$$= \sum_{n} |n\langle n| \pm \sum_{n} |n\langle n| \hat{\varphi}_n + \frac{\sum_{n} |n\langle n| \hat{\varphi}_n^2}{2!} + \dots$$
 (988)

$$= \sum_{n} |n\rangle\langle n| \left(\mathbb{I} \pm \hat{\varphi}_n + \frac{\hat{\varphi}_n^2}{2!} + \dots \right)$$
 (989)

$$=\sum_{n}|n\rangle\langle n|e^{\pm\hat{\varphi}_{n}}\tag{990}$$

Given that $\left[f_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}, f_{nu'\mathbf{k}'}b_{u'\mathbf{k}'}^{\dagger} - f_{nu'\mathbf{k}'}^{*}b_{u'\mathbf{k}'}\right] = 0$ for all \mathbf{k}' , \mathbf{k} and u, u' then we can proof using the Zassenhaus formula and defining $D\left(\pm\alpha_{nu\mathbf{k}}\right) = e^{\pm\left(\alpha_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger} - \alpha_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}\right)}$ in the same way than (23) with $\alpha_{nu\mathbf{k}} = \frac{f_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}$:

$$e^{\pm \sum_{u\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} = \prod_{u} e^{\pm \sum_{\mathbf{k}} \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)}$$
(991)

$$= \prod_{u} \left(\prod_{\mathbf{k}} e^{\pm \omega_{u\mathbf{k}}^{-1} \left(f_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} - f_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right)} \right)$$
(992)

$$= \prod_{u} \left(\prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}} \right) \right) \tag{993}$$

$$= \prod_{u\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{994}$$

$$=\prod_{u}B_{nu\pm} \tag{995}$$

$$B_{nu\pm} \equiv \prod_{\mathbf{k}} D\left(\pm \alpha_{nu\mathbf{k}}\right) \tag{996}$$

As we can see $e^{-V}=\sum_n|n\rangle\!\langle n|\prod_u B_{nu-}$ and $e^V=\sum_n|n\rangle\!\langle n|\prod_u B_{nu+}$ this implies that $e^{-V}e^V=\mathbb{I}$. This allows us to write the canonical transformation in the following explicit way:

$$e^{V} A e^{-V} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) A \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(997)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (980):

The transformed Hamiltonians of the equations (981) to (983) written in terms of (998) to (1022) are:

$$\overline{H_S(t)} = \overline{\sum_{n} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1025)

$$= \overline{\sum_{n} \varepsilon_{n}(t) |n\rangle\langle n|} + \overline{\sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1026)

$$=\sum_{n}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle\left|m\right\rangle\left|\prod_{u}\left(B_{mu+}B_{nu-}\right)$$
(1027)

$$\overline{H_I} = \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}}\right)\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(1028)

$$= \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu+}\right) \left(\sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*} b_{u\mathbf{k}}\right) + \dots\right) \left(\sum_{n} |n\rangle\langle n| \prod_{u} B_{nu-}\right)$$
(1029)

$$= \prod_{u} B_{0u+} \sum_{u\mathbf{k}} |0\rangle\langle 0| \left(g_{0u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{0u\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \prod_{u} B_{0u-} + \prod_{u} B_{1u+} \sum_{u\mathbf{k}} |1\rangle\langle 1| \left(g_{1u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{1u\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \prod_{u} B_{1u-} + \dots$$
(1030)

$$=\sum_{u\mathbf{k}}|0\rangle\langle 0\left(g_{0u\mathbf{k}}\prod_{u}B_{0u+}b_{u\mathbf{k}}^{\dagger}\prod_{u}B_{0u-}+g_{0u\mathbf{k}}^{*}\prod_{u}B_{0u+}b_{u\mathbf{k}}\prod_{u}B_{0u-}\right)+\sum_{u\mathbf{k}}|1\rangle\langle 1|\left(g_{1u\mathbf{k}}\prod_{u}B_{1u+}b_{u\mathbf{k}}^{\dagger}\prod_{u}B_{1u-}+g_{1u\mathbf{k}}^{*}\prod_{u}B_{1u+}b_{u\mathbf{k}}\prod_{u}B_{1u-}\right)+\dots$$

$$(1031)$$

$$=\sum_{u\mathbf{k}}|0\rangle\langle 0|\left(g_{0u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{0u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{0u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{0u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\sum_{u\mathbf{k}}|1\rangle\langle 1|\left(g_{1u\mathbf{k}}\left(b_{u\mathbf{k}}^{\dagger}-\frac{v_{1u\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}\right)+g_{1u\mathbf{k}}^{*}\left(b_{u\mathbf{k}}-\frac{v_{1u\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)+\dots$$

$$(1032)$$

$$= \sum_{nu\mathbf{k}} |n\rangle n \left(g_{nu\mathbf{k}} \left(b_{u\mathbf{k}}^{\dagger} - \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} \right) + g_{nu\mathbf{k}}^{*} \left(b_{u\mathbf{k}} - \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1033)

$$= \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(g_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + g_{nu\mathbf{k}}^* b_{u\mathbf{k}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1034)

$$\overline{H_B} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^* b_{u\mathbf{k}} \right) \right)$$
(1035)

Joining this terms allow us to write the transformed Hamiltonian as:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{nu\mathbf{k}} |n\rangle\langle n| \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(v_{nu\mathbf{k}} b_{u\mathbf{k}}^{\dagger} + v_{nu\mathbf{k}}^{*} b_{u\mathbf{k}} \right) \right)$$

$$(1036)$$

$$+\sum_{nu\mathbf{k}}|n\rangle\langle n|\left(g_{nu\mathbf{k}}b_{u\mathbf{k}}^{\dagger}+g_{nu\mathbf{k}}^{*}b_{u\mathbf{k}}-\left(g_{nu\mathbf{k}}\frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}}+g_{nu\mathbf{k}}^{*}\frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}}\right)\right)$$

$$\tag{1037}$$

Let's define the following functions:

$$R_n(t) = \sum_{n\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{n\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{n\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{n\mathbf{k}}} \right) \right)$$
(1038)

$$B_{z,n}(t) = \sum_{u\mathbf{k}} \left(\left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right) b_{u\mathbf{k}}^{\dagger} + \left(g_{nu\mathbf{k}} - v_{nu\mathbf{k}} \right)^* b_{u\mathbf{k}} \right)$$
(1039)

Using the previous functions we have that (1036) can be re-written in the following way:

$$\overline{H} = \sum_{n} \varepsilon_{n}(t) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| \prod_{u} (B_{mu} + B_{nu}) + \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} + \sum_{n} R_{n}(t) |n\rangle\langle n| + \sum_{n} B_{z,n}(t) |n\rangle\langle n|$$
(1040)

Now in order to separate the elements of the hamiltonian (1041) let's follow the references of the equations (225) and (236) to separate the hamiltonian, before proceding to do this we need to consider the term of the form:

$$\left\langle \prod_{u} (B_{mu} + B_{nu}) \right\rangle_{\overline{H_0}} = \left\langle \prod_{u\mathbf{k}} \left(D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}}) \exp\left(\frac{1}{2} \left(-\alpha_{mu\mathbf{k}} \alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}} \right) \right) \right) \right\rangle_{\overline{H_0}}$$
(1042)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{1}{2}(-\alpha_{mu\mathbf{k}}\alpha_{nu\mathbf{k}}^* + \alpha_{mu\mathbf{k}}^* \alpha_{nu\mathbf{k}})\right)\right) \left\langle\prod_{u\mathbf{k}} D(\alpha_{mu\mathbf{k}} - \alpha_{nu\mathbf{k}})\right\rangle_{\overline{H_0}}$$
(1043)

$$= \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2}{\omega_{n\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(1044)

$$\equiv B_{nm} \tag{1045}$$

$$\left\langle \prod_{u} (B_{nu+} B_{mu-}) \right\rangle_{\overline{H_0}} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{nu\mathbf{k}}^* v_{mu\mathbf{k}} - v_{nu\mathbf{k}} v_{mu\mathbf{k}}^*\right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta \omega_{u\mathbf{k}}}{2} \right) \right)$$
(1046)

$$=B_{nm}^* \tag{1047}$$

Following the reference [4] we define:

$$J_{nm} = \prod_{u} (B_{mu} + B_{nu}) - B_{nm} \tag{1048}$$

As we can see:

$$J_{nm}^{\dagger} = \left(\prod_{u} \left(B_{mu+}B_{nu-}\right) - B_{nm}\right)^{\dagger} \tag{1049}$$

$$= \prod (B_{nu} + B_{mu}) - B_{nm}^* \tag{1050}$$

$$= \prod_{u} (B_{nu} + B_{mu}) - B_{mn} \tag{1051}$$

$$=J_{mn} \tag{1052}$$

We can separate the Hamiltonian (1041) on the following way using similar arguments to the precedent sections to obtain:

$$\overline{H_{\bar{S}}(t)} = \sum_{n} (\varepsilon_n(t) + R_n) |n\rangle\langle n| + \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| B_{nm}$$
(1053)

$$\overline{H_{\bar{I}}} = \sum_{n \neq m} V_{nm}(t) |n\rangle\langle m| J_{nm} + \sum_{n} B_{z,n}(t) |n\rangle\langle n|, \qquad (1054)$$

$$\overline{H_{\bar{B}}} = \sum_{u\mathbf{k}} \omega_{u\mathbf{k}} b_{u\mathbf{k}}^{\dagger} b_{u\mathbf{k}} \tag{1055}$$

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\operatorname{Tr} \left(e^{-\beta (\overline{H_{\bar{S}}(t) + H_{\bar{B}}})} \right) \right) + \left\langle \overline{H_{\bar{I}}} \right\rangle_{\overline{H_{\bar{S}}(t) + H_{\bar{B}}}} + O\left(\left\langle \overline{H_{\bar{I}}^2} \right\rangle_{\overline{H_{\bar{S}}(t) + H_{\bar{B}}}} \right). \tag{1056}$$

Taking the equations (246)-(254) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_{\overline{S}}(t)}}\right) = C\left(R_0, R_1, ..., R_{d-1}, B_{01}, ..., B_{0(d-1)}, ..., B_{(d-2)(d-1)}\right)$, where each R_i and B_{kj} depend of the set of variational parameters $\{v_{nu\mathbf{k}}\}$. Given that the numbers $v_{nu\mathbf{k}}$ are complex then we can separate them as $v_{nu\mathbf{k}} = v_{nu\mathbf{k}}^{\Re} + \mathrm{i}v_{nu\mathbf{k}}^{\Im}$. So our approach will be based on the derivation respect to $v_{nu\mathbf{k}}^{\Re}$ and $v_{nu\mathbf{k}}^{\Im}$. The Hamiltonian $\overline{H_{\overline{S}}(t)}$ can be written like:

$$\overline{H_{S}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^{*}}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^{*} \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$

$$+ \sum_{n \neq m} V_{nm}(t)|n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^{*} v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^{*}}{2\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth}\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}} - \frac{g_{nu\mathbf{k}} v_{nu\mathbf{k}}^{*} + g_{nu\mathbf{k}}^{*} v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$

$$+ \sum_{n \neq m} V_{nm}(t)|n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^{*} v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^{*} \right)}{2\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth}\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$= \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{*} \right)^{2} + \left(v_{nu\mathbf{k}}^{*} \right)}{\omega_{u\mathbf{k}}} \right) - \frac{\left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*} \right) v_{nu\mathbf{k}}^{*} + i v_{nu\mathbf{k}}^{*} \left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}} \right)}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$

$$+ \sum_{n \neq m} V_{nm}(t)|n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^{*} v_{nu\mathbf{k}} - v_{nu\mathbf{k}} v_{nu\mathbf{k}}^{*} \right)}{2\omega_{u\mathbf{k}}^{*}} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{*}} \operatorname{coth}\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$
(1062)

$$v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* = \left(v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}\right) \left(v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\right) - \left(v_{mu\mathbf{k}}^{\Re} + iv_{mu\mathbf{k}}^{\Im}\right) \left(v_{nu\mathbf{k}}^{\Re} - iv_{nu\mathbf{k}}^{\Im}\right)$$

$$(1063)$$

$$= \left(v_{mu\mathbf{k}}^{\Re}v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Re}\right) \tag{1064}$$

$$-\left(v_{muk}^{\Re}v_{nuk}^{\Re}-iv_{nuk}^{\Im}v_{muk}^{\Re}+iv_{muk}^{\Im}v_{nuk}^{\Re}+v_{muk}^{\Im}v_{nuk}^{\Re}\right) \tag{1065}$$

$$= 2i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)$$
 (1066)

$$\overline{H_{\widetilde{S}}(t)} = \sum_{n} \left(\varepsilon_{n}(t) + \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2}}{\omega_{u\mathbf{k}}} - \frac{\left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right) \right) |n\rangle\langle n|$$
(1067)

$$+\sum_{n\neq m} V_{nm}(t)|n\rangle\langle m| \left(\prod_{u\mathbf{k}} \exp\left(\frac{i\left(v_{nu\mathbf{k}}^{\Im}v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Re}\right)}{\omega_{u\mathbf{k}}^{2}}\right) \right) \prod_{u} \exp\left(-\frac{1}{2}\sum_{\mathbf{k}} \frac{|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^{2}}{\omega_{u\mathbf{k}}^{2}} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)$$

$$(1068)$$

$$|v_{mu\mathbf{k}} - v_{nu\mathbf{k}}|^2 = (v_{mu\mathbf{k}} - v_{nu\mathbf{k}})(v_{mu\mathbf{k}} - v_{nu\mathbf{k}})^* \tag{1069}$$

$$= |v_{muk}|^2 + |v_{nuk}|^2 - (v_{nuk}v_{muk}^* + v_{nuk}^*v_{muk})$$
(1070)

$$= \left(v_{mu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{mu\mathbf{k}}^{\Im}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - \left(v_{nu\mathbf{k}}^{\Re} + iv_{nu\mathbf{k}}^{\Im}\right)\left(v_{mu\mathbf{k}}^{\Re} - iv_{mu\mathbf{k}}^{\Im}\right)$$

$$(1071)$$

$$-\left(v_{nu\mathbf{k}}^{\Re}-iv_{nu\mathbf{k}}^{\Im}\right)\left(v_{mu\mathbf{k}}^{\Re}+iv_{mu\mathbf{k}}^{\Im}\right) \tag{1072}$$

$$= \left(v_{mu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{mu\mathbf{k}}^{\Im}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2\left(v_{nu\mathbf{k}}^{\Re}v_{mu\mathbf{k}}^{\Re} + v_{nu\mathbf{k}}^{\Im}v_{mu\mathbf{k}}^{\Im}\right)$$

$$(1073)$$

$$= \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im}\right)^{2} \tag{1074}$$

$$R_n(t) = \sum_{u\mathbf{k}} \left(\frac{|v_{nu\mathbf{k}}|^2}{\omega_{u\mathbf{k}}} - \left(g_{nu\mathbf{k}} \frac{v_{nu\mathbf{k}}^*}{\omega_{u\mathbf{k}}} + g_{nu\mathbf{k}}^* \frac{v_{nu\mathbf{k}}}{\omega_{u\mathbf{k}}} \right) \right)$$
(1075)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - \left(g_{nu\mathbf{k}} + g_{nu\mathbf{k}}^{*}\right)v_{nu\mathbf{k}}^{\Re} - iv_{nu\mathbf{k}}^{\Im}\left(g_{nu\mathbf{k}}^{*} - g_{nu\mathbf{k}}\right)}{\omega_{u\mathbf{k}}} \right)$$
(1076)

$$= \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re}v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im}v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$
(1077)

$$B_{mn} = \left(\prod_{u\mathbf{k}} \exp\left(\frac{\left(v_{mu\mathbf{k}}^* v_{nu\mathbf{k}} - v_{mu\mathbf{k}} v_{nu\mathbf{k}}^* \right)}{2\omega_{u\mathbf{k}}^2} \right) \right) \prod_{u} \exp\left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left| v_{mu\mathbf{k}} - v_{nu\mathbf{k}} \right|^2}{\omega_{u\mathbf{k}}^2} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1078)$$

$$= \left(\Pi_{u\mathbf{k}} \exp \left(\frac{\mathrm{i} \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) \right) \Pi_{u} \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u} \omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1079)$$

Then we can obtain using the chain rule that:

$$\frac{\partial R_{n'}}{\partial v_{nu\mathbf{k}}^{\Re}} = \frac{\partial}{\partial v_{nu\mathbf{k}}^{\Re}} \sum_{u\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re} v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$
(1080)

$$=\frac{2v_{nu\mathbf{k}}^{\Re}-2g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}}\delta_{nn'}$$
(1081)

$$= \frac{2v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} \delta_{nn'}$$

$$= 2\frac{v_{nu\mathbf{k}}^{\Re} - g_{nu\mathbf{k}}^{\Re}}{\omega_{u\mathbf{k}}} \delta_{nn'}$$
(1081)

$$\frac{\partial R_{n'}}{\partial v_{nu\mathbf{k}}^{\Im}} = \frac{\partial}{\partial v_{nu\mathbf{k}}^{\Im}} \sum_{n\mathbf{k}} \left(\frac{\left(v_{nu\mathbf{k}}^{\Re}\right)^{2} + \left(v_{nu\mathbf{k}}^{\Im}\right)^{2} - 2g_{nu\mathbf{k}}^{\Re} v_{nu\mathbf{k}}^{\Re} - 2g_{nu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} \right)$$
(1083)

$$=\frac{2v_{nu\mathbf{k}}^{\Im}-2g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}}\delta_{nn'}\tag{1084}$$

$$=2\frac{v_{nu\mathbf{k}}^{\Im}-g_{nu\mathbf{k}}^{\Im}}{\omega_{n\mathbf{k}}}\delta_{nn'}$$
(1085)

Given that:

$$\ln B_{mn} = \ln \left(\left(\prod_{u\mathbf{k}} \exp \left(\frac{i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) \right) \prod_{u} \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right) \right)$$

$$(1086)$$

$$= \sum_{u\mathbf{k}} \ln \exp \left(\frac{\mathrm{i} \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u} \ln \exp \left(-\frac{1}{2} \sum_{\mathbf{k}} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \operatorname{coth} \left(\frac{\beta_{u} \omega_{u}\mathbf{k}}{2} \right) \right)$$

$$(1087)$$

$$= \sum_{u\mathbf{k}} \left(\frac{i \left(v_{nu\mathbf{k}}^{\Im} v_{mu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Im} v_{nu\mathbf{k}}^{\Re} \right)}{\omega_{u\mathbf{k}}^{2}} \right) + \sum_{u\mathbf{k}} \left(-\frac{1}{2} \frac{\left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re} \right)^{2} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im} \right)^{2}}{\omega_{u\mathbf{k}}^{2}} \coth \left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2} \right) \right)$$

$$(1088)$$

$$\frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} = \frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Im} - \left(v_{nu\mathbf{k}}^{\Re} - v_{mu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}$$
(1089)

$$\frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} = \frac{iv_{mu\mathbf{k}}^{\Re} - \left(v_{nu\mathbf{k}}^{\Im} - v_{mu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2}$$
(1090)

$$\frac{\partial \ln B_{mn}}{\partial a} = \frac{1}{B_{mn}} \frac{\partial B_{mn}}{\partial a} \tag{1091}$$

$$\frac{\partial B_{mn}}{\partial a} = B_{mn} \frac{\partial \ln B_{mn}}{\partial a} \tag{1092}$$

$$\frac{\partial B_{mn}}{\partial a} = \frac{\partial \left(B_{nm}\right)^{\dagger}}{\partial a} \tag{1093}$$

Then the principal derivates are given by:

$$\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} = B_{mn} \frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}} \tag{1094}$$

$$= B_{mn} \left(\frac{-iv_{muk}^{\Re} - \left(v_{nuk}^{\Re} - v_{muk}^{\Re}\right) \coth\left(\frac{\beta_u \omega_{uk}}{2}\right)}{\omega_{uk}^2} \right)$$
(1095)

$$= B_{mn} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1096)

$$\frac{\partial B_{nm}}{\partial v_{nu\mathbf{k}}^{\Re}} = \left(\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Re}}\right)^{\dagger} \tag{1097}$$

$$= \left(B_{mn} \left(\frac{-iv_{muk}^{\Re} + \left(v_{muk}^{\Re} - v_{nuk}^{\Re} \right) \coth\left(\frac{\beta_u \omega_{uk}}{2} \right)}{\omega_{uk}^2} \right) \right)^{\dagger}$$
 (1098)

$$=B_{nm}\left(\frac{\mathrm{i}v_{mu\mathbf{k}}^{\Re}+\left(v_{mu\mathbf{k}}^{\Re}-v_{nu\mathbf{k}}^{\Re}\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1099)

$$\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} = B_{mn} \frac{\partial \ln B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}} \tag{1100}$$

$$= B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} - \left(v_{nu\mathbf{k}}^{\Im} - v_{mu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1101)

$$= B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Im} - v_{nu\mathbf{k}}^{\Im}\right) \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right)$$
(1102)

$$\frac{\partial B_{nm}}{\partial v_{nu\mathbf{k}}^{\Im}} = \left(\frac{\partial B_{mn}}{\partial v_{nu\mathbf{k}}^{\Im}}\right)^{\dagger} \tag{1103}$$

$$= (B_{mn})^{\dagger} \tag{1104}$$

$$=B_{nm}\left(\frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Re}+\left(v_{mu\mathbf{k}}^{\Im}-v_{nu\mathbf{k}}^{\Im}\right)\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}}\right)$$
(1105)

Introducing this derivates in the equation (1080) give us:

$$\frac{\partial A_{\rm B}}{\partial v_{nuk}^{\Re}} = \frac{\partial A_{\rm B}}{\partial R_n} \left(2 \frac{v_{nuk}^{\Re} - g_{nuk}^{\Re}}{\omega_{uk}} \right) + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{i v_{muk}^{\Im} + \left(v_{muk}^{\Re} - v_{nuk}^{\Re} \right) \coth \left(\frac{\beta_u \omega_{uk}}{2} \right)}{\omega_{uk}^2} \right) \right)$$

$$(1106)$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + \left(v_{mu\mathbf{k}}^{\Re} - v_{nu\mathbf{k}}^{\Re}\right) \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right)$$

$$(1107)$$

$$=0 (1108)$$

We can obtain the variational parameters:

$$-2\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{v_{nuk}^{\Re}}{\omega_{uk}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{v_{nuk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{v_{nuk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right)$$

$$= -\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{2g_{nuk}^{\Re}}{\omega_{uk}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{iv_{muk}^{\Re} + v_{muk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{-iv_{muk}^{\Re} + v_{muk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) \right)$$

$$(1110)$$

$$v_{nuk}^{\Re} = \frac{\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{2g_{nuk}^{\Re}}{\omega_{uk}} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{iv_{muk}^{\Re} + v_{muk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{-iv_{muk}^{\Re} + v_{muk}^{\Re} \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \sum_{n \neq m} \left(\frac{\partial A_{\rm B}}{\partial R_{n}} B_{nm} \frac{\cot\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} \frac{\cot\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right) }{2\frac{\partial A_{\rm B}}{\partial R_{n}} \frac{1}{\omega_{uk}} - \frac{1}{\omega_{uk}} \frac{1}{\omega_{uk}} - \frac{1}{\omega_{uk}} \frac{1}{\omega_{u$$

$$= \frac{2g_{nu\mathbf{k}}^{\Re}\omega_{uk}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Im} + v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right)\right)}{2\omega_{uk}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n \neq m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)\right)}$$
(1112)

Let's consider the imaginary part of the variation parameters

$$\frac{\partial A_{\rm B}}{\partial v_{nu\mathbf{k}}^{\mathfrak{I}}} = \frac{\partial A_{\rm B}}{\partial R_{n}} \left(2^{\frac{v_{nu\mathbf{k}}^{\mathfrak{I}} - g_{nu\mathbf{k}}^{\mathfrak{I}}}{\omega_{u}\mathbf{k}}} \right) + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{-iv_{nu\mathbf{k}}^{\mathfrak{R}} - \left(v_{nu\mathbf{k}}^{\mathfrak{I}} - v_{nu\mathbf{k}}^{\mathfrak{I}}\right) \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u}^{2}\mathbf{k}} \right) \right)$$

$$(1113)$$

$$+\frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{iv_{muk}^{\Re} - \left(v_{nuk}^{\Im} - v_{muk}^{\Im}\right) \coth\left(\frac{\beta_{u}\omega_{uk}}{2}\right)}{\omega_{uk}^{2}} \right)$$
(1114)

$$=0 (1115)$$

$$-2\frac{\partial A_{\rm B}}{\partial R_{n}}\frac{v_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \frac{v_{nu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \frac{v_{nu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right)$$

$$(1116)$$

$$=-2\frac{\partial A_{\rm B}}{\partial R_n}\frac{g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} + \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(\frac{-\mathrm{i}v_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(\frac{\mathrm{i}v_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_u \omega_{u\mathbf{k}}}{2}\right)}{\omega_{u\mathbf{k}}^2} \right) \right)$$
(1117)

$$v_{nu\mathbf{k}}^{\Im} = \frac{2\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{g_{nu\mathbf{k}}^{\Im}}{\omega_{u\mathbf{k}}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \left(\frac{-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \left(\frac{iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right) \right)}{2\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} \frac{1}{\omega_{u\mathbf{k}}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}} B_{nm} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}} B_{mn} \frac{\coth\left(\frac{\beta_{u}\omega_{u}\mathbf{k}}{2}\right)}{\omega_{u\mathbf{k}}^{2}} \right)}{\omega_{u\mathbf{k}}^{2}} \right)}$$

$$(1118)$$

$$=\frac{2g_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Re}+v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Re}+v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1119)

$$v_{nu\mathbf{k}} = v_{nu\mathbf{k}}^{\Re} + \mathrm{i}v_{nu\mathbf{k}}^{\Im} \tag{1120}$$

$$=\frac{2g_{nu\mathbf{k}}^{\Re}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-\mathrm{i}v_{mu\mathbf{k}}^{\Im}+v_{mu\mathbf{k}}^{\Re}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}-\sum_{n< m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)+\frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1121)

$$i\frac{2g_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1122)

$$= \frac{2g_{nu\mathbf{k}}^{\Re}\omega_{u\mathbf{k}}\frac{\partial A_{\mathbf{B}}}{\partial R_{n}} + 2ig_{nu\mathbf{k}}^{\Im}\omega_{u\mathbf{k}}\frac{\partial A_{\mathbf{B}}}{\partial R_{n}}}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathbf{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathbf{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathbf{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1123)

$$-\frac{\sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(iv_{muk}^{\Im} + v_{muk}^{\Re} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(-iv_{muk}^{\Im} + v_{muk}^{\Re} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) \right) \right)}{2\omega_{uk} \frac{\partial A_{\rm B}}{\partial R_n} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth \left(\frac{\beta_u \omega_{uk}}{2} \right) \right)}$$
(1124)

$$-i\frac{\sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(-iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(iv_{mu\mathbf{k}}^{\Re} + v_{mu\mathbf{k}}^{\Im} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}} \frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1125)

$$= \frac{2g_{nu\mathbf{k}}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}}}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1126)

$$-\frac{\sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \left(v_{mu\mathbf{k}} + v_{mu\mathbf{k}} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \left(-v_{mu\mathbf{k}} + v_{mu\mathbf{k}} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}} \frac{\partial A_{\rm B}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\rm B}}{\partial B_{nm}} B_{nm} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\rm B}}{\partial B_{mn}} B_{mn} \coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1127)

$$= \frac{2g_{nu\mathbf{k}}\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m} \left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\left(v_{mu\mathbf{k}} + v_{mu\mathbf{k}}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\left(-v_{mu\mathbf{k}} + v_{mu\mathbf{k}}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)\right)}{2\omega_{u\mathbf{k}}\frac{\partial A_{\mathrm{B}}}{\partial R_{n}} - \sum_{n < m}\left(\frac{\partial A_{\mathrm{B}}}{\partial B_{nm}}B_{nm}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right) + \frac{\partial A_{\mathrm{B}}}{\partial B_{mn}}B_{mn}\coth\left(\frac{\beta_{u}\omega_{u\mathbf{k}}}{2}\right)\right)}$$
(1128)

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variation transformation:

$$e^{V}\rho\left(0\right)e^{-V} = \left(\sum_{n} |n\rangle\langle n|B_{n+}\right)\left(|0\rangle\langle 0|\otimes\rho_{B}\right)\left(\sum_{n} |n\rangle\langle n|B_{n+}\right)$$
(1129)

$$0 = \left(B_0^+ |0\rangle\langle 0|B_0^-\right) \otimes \rho_B \tag{1130}$$

$$0 = \rho\left(0\right) \tag{1131}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t) OU(t) \tag{1132}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1133}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (1134)

$$\overline{\rho_S}(t) = \text{Tr}_B(\bar{\rho}(t)) \tag{1135}$$

We can re-write the transformed interaction Hamiltonian operator using the following matrices:

$$\sigma_{nm,x} = |n\rangle m| + |m\rangle n| \tag{1136}$$

$$\sigma_{nm,y} = \mathrm{i}\left(|n\rangle\!\langle m| - |m\rangle\!\langle n|\right) \tag{1137}$$

$$B_{nm,x} = \frac{B_{nm} + B_{mn}}{2} \tag{1138}$$

$$B_{nm,x} = \frac{B_{nm} - B_{mn}}{2i} \tag{1139}$$

We can proof that $B_{nm} = B_{mn}^{\dagger}$

$$B_{mn}^{\dagger} = (B_{m+}B_{n-} - B_m B_n)^{\dagger} \tag{1140}$$

$$=B_{n-}^{\dagger}B_{m+}^{\dagger}-B_{n}B_{m} \tag{1141}$$

$$=B_{n+}B_{m-}-B_{n}B_{m} (1142)$$

$$=B_{nm} \tag{1143}$$

So we can say that the set of matrices (1136) are hermetic. Re-writing the transformed interaction Hamiltonian using the set (1136) give us.

$$\overline{H_I} = \sum_{n \neq m} V_{nm}(t) |n\rangle m |B_{nm} + \sum_n B_{z,n}(t) |n\rangle n|, \tag{1144}$$

$$= \sum_{n} B_{z,n}(t) |n\rangle\langle n| + \sum_{n < m} \left(V_{nm}(t) |n\rangle\langle m| B_{nm} + V_{mn}(t) |m\rangle\langle n| B_{mn} \right)$$

$$(1145)$$

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle\left|n\right\rangle+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)+\mathrm{i}V_{nm}^{\Im}\left(t\right)B_{nm}\left(\frac{\sigma_{nm,x}-\mathrm{i}\sigma_{nm,y}}{2}\right)\right)\tag{1146}$$

$$+\Re\left(V_{nm}\left(t\right)\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)-\mathrm{i}V_{nm}^{\Im}\left(t\right)B_{mn}\left(\frac{\sigma_{nm,x}+\mathrm{i}\sigma_{nm,y}}{2}\right)\right) \tag{1147}$$

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle\left|n\right|+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}\left(\frac{B_{nm}+B_{mn}}{2}\right)+\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}\frac{\mathrm{i}\left(B_{mn}-B_{nm}\right)}{2}\right)$$
(1148)

$$+i\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}\left(\frac{B_{nm}-B_{mn}}{2}\right)+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}\left(\frac{B_{nm}+B_{mn}}{2}\right)\right)\tag{1149}$$

$$=\sum_{n}B_{z,n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n\leq m}\left(\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}B_{nm,x}-\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,x}B_{nm,y}+\Re\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}B_{nm,y}\right)$$
(1150)

$$+\Im\left(V_{nm}\left(t\right)\right)\sigma_{nm,y}B_{nm,x}\right)\tag{1151}$$

Let's define the set

$$P = \{(n, m) \in \mathbb{N}^2 | 0 \le n, m \le d - 1 \land (n = m \lor n < m) \}$$
(1152)

Now consider the following set of operators,

$$A_{1,nm}(t) = \sigma_{nm,x}(1 - \delta_{mn})$$

$$A_{2,nm}(t) = \sigma_{nm,y}(1 - \delta_{mn})$$

$$A_{3,nm}(t) = \delta_{mn}|n\rangle\langle m|$$

$$A_{4,nm}(t) = A_{2,mn}(t)$$

$$A_{5,nm}(t) = A_{1,nm}(t)$$

$$B_{1,nm}(t) = B_{nm,x}$$

$$B_{2,nm}(t) = B_{nm,y}$$

$$B_{3,nm}(t) = B_{2,n}(t)$$

$$B_{4,nm}(t) = B_{1,nm}(t)$$

$$B_{5,nm}(t) = B_{2,nm}(t)$$

$$B_{5,nm}(t) = B_{2,nm}(t)$$

$$C_{1,nm}(t) = \Re(V_{nm}(t))$$

$$C_{2,nm}(t) = C_{1,nm}(t)$$

$$C_{3,nm}(t) = 1$$

$$C_{4,nm}(t) = \Im(V_{nm}(t))$$

$$C_{5,nm}(t) = -\Im(V_{nm}(t))$$

$$C_{5,nm}(t) = -\Im(V_{nm}(t))$$

$$C_{1,nm}(t) = -\Im(V_{nm}(t))$$

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J, p \in P} C_{jp}(t) \left(A_{jp} \otimes B_{jp}(t) \right)$$
(1168)

Here $J = \{1, 2, 3, 4, 5\}$ and P the set defined in (1152).

We write the interaction Hamiltonian transformed under (1132) as:

$$\widetilde{H}_{I}\left(t\right) = \sum_{j \in J, p \in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \tag{1169}$$

$$\widetilde{A_{jp}}(t) = U^{\dagger}(t) A_{jp} U(t)$$
(1170)

$$\widetilde{B_{jp}}(t) = e^{iH_B t} B_{jp}(t)(t) e^{-iH_B t}$$
(1171)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$, we obtain our master equation in the interaction picture:

$$\frac{\mathrm{d}\widetilde{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \mathrm{Tr}_{B}\left[\widetilde{H}_{I}\left(t\right), \left[\widetilde{H}_{I}\left(s\right), \widetilde{\rho_{S}}\left(t\right)\rho_{B}\right]\right] \mathrm{d}s \tag{1172}$$

Replacing the equation (1169) in (1172) we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H}_{I}(t), \left[\widetilde{H}_{I}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J, p \in P} C_{jp}(t) \left(\widetilde{A_{jp}}(t) \otimes \widetilde{B_{jp}}(t)\right), \left[\sum_{j' \in J, p' \in P} C_{j'p'}(s) \left(\widetilde{A_{j'p'}}(s) \otimes \widetilde{B_{j'p'}}(s)\right), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$
(1174)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j\in J,p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right),\sum_{j'\in J,p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\right]\right]$$
(1175)

$$-\widetilde{\overline{\rho_S}}(t)\,\rho_B \sum_{j'\in J, p'\in P} C_{j'p'}(s) \left(\widetilde{A_{j'p'}}(s)\otimes \widetilde{B_{j'p'}}(s)\right) \right] ds \tag{1176}$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J, p\in P} C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right) \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right) \widetilde{\rho_{S}}\left(t\right)\rho_{B}$$
(1177)

$$-\sum_{j\in J, p\in P} C_{jp}\left(t\right) \left(\widetilde{A_{jp}}\left(t\right) \otimes \widetilde{B_{jp}}\left(t\right)\right) \widetilde{\rho_{S}}\left(t\right) \rho_{B} \sum_{j'\in J, p'\in P} C_{j'p'}\left(s\right) \left(\widetilde{A_{j'p'}}\left(s\right) \otimes \widetilde{B_{j'p'}}\left(s\right)\right)$$

$$(1178)$$

$$-\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{S}\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)$$
(1179)

$$+\widetilde{\rho_{S}}\left(t\right)\rho_{B}\sum_{j'\in J,p'\in P}C_{j'p'}\left(s\right)\left(\widetilde{A_{j'p'}}\left(s\right)\otimes\widetilde{B_{j'p'}}\left(s\right)\right)\sum_{j\in J,p\in P}C_{jp}\left(t\right)\left(\widetilde{A_{jp}}\left(t\right)\otimes\widetilde{B_{jp}}\left(t\right)\right)\right)ds\tag{1180}$$

In order to calculate the correlation functions we define:

$$\Lambda_{jpj'p'}(\tau) = \left\langle \widetilde{B_{jp}}(t)\,\widetilde{B_{j'p'}}(s) \right\rangle_{B} \tag{1181}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{B} \tag{1182}$$

Here $s \to t - \tau$ and $\mathrm{Tr}_B\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right) = \left\langle \widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jp}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jp}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\mathrm{Tr}\left(\widetilde{A_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(t\right)\right) = \mathrm{Tr}\left(\widetilde{A_{jp}}\left(t\right)\right)\mathrm{Tr}\left(\widetilde{B_{j'p'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1180) are:

(1200)

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\rho_{B}\right) = \left\langle\widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_{B} \tag{1183}$$

$$= \left\langle \widetilde{B_{jp}} \left(0 \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{\mathcal{B}} \tag{1184}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1185}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jp}}\left(t\right)\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right)$$
(1186)

$$= \left\langle \widetilde{B_{j'p'}}(s) \, \widetilde{B_{jp}}(t) \right\rangle_{R} \tag{1187}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{R} \tag{1188}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1189}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}(s)\,\rho_{B}\widetilde{B_{jp}}(t)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jp}}(t)\,\widetilde{B_{j'p'}}(s)\,\rho_{B}\right) \tag{1190}$$

$$= \left\langle \widetilde{B_{jp}}\left(t\right)\widetilde{B_{j'p'}}\left(s\right)\right\rangle_{B} \tag{1191}$$

$$= \left\langle \widetilde{B_{jp}} \left(\tau \right) \widetilde{B_{j'p'}} \left(0 \right) \right\rangle_{R} \tag{1192}$$

$$=\Lambda_{jpj'p'}\left(\tau\right)\tag{1193}$$

$$\operatorname{Tr}_{B}\left(\rho_{B}\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'p'}}\left(s\right)\widetilde{B_{jp}}\left(t\right)\rho_{B}\right) \tag{1194}$$

$$= \left\langle \widetilde{B_{j'p'}}(s)\,\widetilde{B_{jp}}(t) \right\rangle_{B} \tag{1195}$$

$$= \left\langle \widetilde{B_{j'p'}} \left(-\tau \right) \widetilde{B_{jp}} \left(0 \right) \right\rangle_{B} \tag{1196}$$

$$=\Lambda_{j'p'jp}\left(-\tau\right)\tag{1197}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1173) and (1180) and using the equations (1183)-(1197) we can re-write:

$$\frac{d\overline{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \sum_{j,j',p,p'} \left(C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{jpj'p'}(\tau) \widetilde{A_{jp}}(t) \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) - \Lambda_{j'p'jp}(-\tau) \widetilde{A_{jp}}(t) \widetilde{\rho_{S}}(t) \widetilde{A_{j'p'}}(s) \right) \right)$$

$$+ C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{j'p'jp}(-\tau) \widetilde{\rho_{S}}(t) \widetilde{A_{j'p'}}(s) \widetilde{A_{jp}}(t) - \Lambda_{jpj'p'}(\tau) \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) \widetilde{A_{jp}}(t) \right) ds \qquad (1199)$$

$$= -\int_{0}^{t} \sum_{jj'pp'} \left(C_{jp}(t) C_{j'p'}(s) \left(\Lambda_{jpj'p'}(\tau) \left[\widetilde{A_{jp}}(t), \widetilde{A_{j'p'}}(s) \widetilde{\rho_{S}}(t) \right] + \Lambda_{j'p'jp}(-\tau) \left[\widetilde{\rho_{S}}(t) \widetilde{A_{j'p'}}(s), \widetilde{A_{jp}}(t) \right] \right) \right)$$

Rearranging and identofying the commutators allow us to write a more simplified version

$$\frac{\mathrm{d}\,\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{jj'pp'} \left(C_{jp}\left(t\right)C_{j'p'}\left(t-\tau\right)\left(\Lambda_{jpj'p'}\left(\tau\right)\left[A_{jp}\left(t\right),A_{j'p'}\left(t-\tau,t\right)\overline{\rho_{S}}\left(t\right)\right] + \Lambda_{j'p'jp}\left(-\tau\right)\left[\overline{\rho_{S}}\left(t\right)A_{j'p'}\left(t-\tau,t\right),A_{jp}\left(t\right)\right]\right)\right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]$$
(1201)

For this case we used that $A_{jp}\left(t-\tau,t\right)=U\left(t\right)U^{\dagger}\left(t-\tau\right)A_{jp}\left(t\right)U\left(t-\tau\right)U^{\dagger}\left(t\right)$. This is a non-Markovian equation.

VII. TIME-DEPENDENT MULTI-SITE MODEL WITH ONE BATH COUPLING

Let's consider the following Hamiltonian for a system of d-levels (qudit). We start with a time-dependent Hamiltonian of the form:

$$H(t) = H_S(t) + H_I + H_B,$$
 (1202)

$$H_S(t) = \sum_{n=0} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|, \qquad (1203)$$

$$H_{I} = \left(\sum_{n=0} \mu_{n}(t) |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right), \tag{1204}$$

$$H_B = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}. \tag{1205}$$

We will start with a system-bath coupling operator of the form $\sum_{n=0} \mu_n(t) |n\rangle\langle n|$.

A. Variational Transformation

We consider the following operator:

$$V = \left(\sum_{n=1} |n\rangle\langle n|\right) \left(\sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}}\right)\right)$$
(1206)

At first let's obtain e^V under the transformation (1206), consider $\hat{\varphi} = \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)$:

$$e^{V} = e^{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}} \tag{1207}$$

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\left(\sum_{n=1} |n\rangle\langle n|\hat{\varphi}\right)^2}{2!} + \dots$$
 (1208)

$$= \mathbb{I} + \sum_{n=1} |n\rangle\langle n|\hat{\varphi} + \frac{\sum_{n=1} |n\rangle\langle n|\hat{\varphi}^2}{2!} + \dots$$
 (1209)

$$= \mathbb{I} - \sum_{n=1} |n\rangle\langle n| + \sum_{n=1} |n\rangle\langle n| \left(\mathbb{I} + \hat{\varphi} + \frac{\hat{\varphi}^2}{2!} + \dots \right)$$
 (1210)

$$=|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|e^{\hat{\varphi}} \tag{1211}$$

$$=|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+} \tag{1212}$$

Given that $\left[b_{\mathbf{k'}}^{\dagger}-b_{\mathbf{k'}},b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right]=0$ if $\mathbf{k'}\neq\mathbf{k}$ then we can proof using the Zassenhaus formula and defining $D\left(\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right)=e^{\pm\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger}-b_{\mathbf{k}}\right)}$ in the same way than (23):

$$e^{\sum_{\mathbf{k}} \pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)} = \prod_{\mathbf{k}} e^{\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} - b_{\mathbf{k}} \right)}$$
(1213)

$$= \prod_{\mathbf{k}} D\left(\pm \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) \tag{1214}$$

$$=B_{\pm} \tag{1215}$$

As we can see $e^{-V}=|0\rangle\langle 0|+\sum_{n=1}|n\rangle\langle n|B$. because this form imposes that $e^{-V}e^{V}=\mathbb{I}$ and the inverse of a operator is unique. This allows us to write the canonical transformation in the following explicit way:

$$e^{V}Ae^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+}\right)A\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{-}\right)$$
(1216)

Now let's obtain the canonical transformation of the principal elements of the Hamiltonian (1202):

$$\overline{|0\rangle\langle0|} = \left(|0\rangle\langle0| + \sum_{n=1} |n\rangle\langle n|B^+\right)|0\rangle\langle0| \left(|0\rangle\langle0| + \sum_{n=1} |n\rangle\langle n|B^-\right),\tag{1217}$$

$$=|0\rangle\langle 0|,\tag{1218}$$

$$\overline{|m\rangle\langle n|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^+\right) |m\rangle\langle n| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^-\right), \tag{1219}$$

$$= |m\langle m|B^{+}|m\langle n|n\langle n|B^{-}, \tag{1220}$$

$$=|m\rangle\langle n|, \ m\neq 0, \ n\neq 0, \tag{1221}$$

$$\overline{|0\rangle\!\langle m|} = \left(|0\rangle\!\langle 0| + \sum_{n=1} |n\rangle\!\langle n|B^+\right) |0\rangle\!\langle m| \left(|0\rangle\!\langle 0| + \sum_{n=1} |n\rangle\!\langle n|B^-\right), \tag{1222}$$

$$=|0\rangle m|B^{-}m\neq 0, \tag{1223}$$

$$\overline{|m\rangle\langle 0|} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{+}\right) |m\rangle\langle 0| \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^{-}\right)$$
(1224)

$$=|0\rangle m|B^{+} m \neq 0, \tag{1225}$$

$$\overline{\sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}}} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n| B^{+} \right) \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n| B^{-} \right)$$
(1226)

$$=|0\rangle\langle 0|\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+\sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}B^{+}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}B^{-}$$
(1227)

$$=|0\rangle\langle 0|\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}}+\sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}\left(B^{+}b_{\mathbf{k}}^{\dagger}B^{-}\right)\left(B^{+}b_{\mathbf{k}}B^{-}\right)$$
(1228)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1229)

$$= |0\rangle\langle 0| \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1230)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \left(\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \right)$$
(1231)

$$= \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1232)

$$\overline{H_{\bar{S}}(t)} = \overline{\sum_{n=0} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1233)

$$= \overline{\sum_{n=0} \varepsilon_n(t) |n\rangle\langle n|} + \overline{\sum_{n\neq m} V_{nm}(t) |n\rangle\langle m|}$$
(1234)

$$=\sum_{n=0}\varepsilon_{n}\left(t\right)\left|n\right\rangle\left|n\right\rangle+\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\left|n\right\rangle+V_{n0}\left(t\right)\left|n\right\rangle\left|0\right\rangle+\sum_{m,n\neq0}V_{mn}\left(t\right)\left|m\right\rangle\left|n\right\rangle$$
(1235)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle |n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) B^- |0\rangle |n| + V_{n0}(t) B^+ |n\rangle |0| \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle |n|$$
(1237)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+ \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1238)

$$\overline{H_I} = \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^+ \right) \left(\left(\sum_{n=0} \mu_n(t) |n\rangle\langle n| \right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \right) \right) \left(|0\rangle\langle 0| + \sum_{n=1} |n\rangle\langle n|B^- \right)$$
(1239)

$$= \left(\mu_0\left(t\right)|0\rangle\langle 0| + \sum_{n=1}\mu_n\left(t\right)|n\rangle\langle n|B^+\right) \left(\sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)\right) \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^-\right)$$
(1240)

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} B^{+} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) B^{-}$$

$$(1241)$$

$$= \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} - 2 \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$

$$(1242)$$

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} + \sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1} |n\rangle\langle n| \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1243)

Joining this terms allow us to write:

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+ \right) + \sum_{m,n\neq 0} V_{mn}(t) |m\rangle\langle n|$$
(1244)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - \sum_{n=1}|n\rangle\langle n|\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1245)

$$+\sum_{n=0} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) - \sum_{n=1} \mu_n(t) |n\rangle\langle n| \sum_{\mathbf{k}} 2g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}$$
(1246)

$$= \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} (V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1247)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}|n\rangle\langle n|\sum_{\mathbf{k}}\left(\omega_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_{n}\left(t\right)g_{\mathbf{k}}\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}}\right) + \mu_{0}\left(t\right)|0\rangle\langle 0|\sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$
(1248)

$$+\sum_{n=1} |n\rangle\langle n| \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1249)

Let's define the following functions:

$$R_n(t) = \sum_{\mathbf{k}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right)$$
(1250)

$$= \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \left(\omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} - 2\mu_n(t) g_{\mathbf{k}} \right)$$
(1251)

$$B_{z,n}(t) = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n(t) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1252)

Using the previous functions we have that (1249) can be re-written in the following way:

$$\overline{H} = \sum_{n=0}^{\infty} \varepsilon_n(t) |n\rangle\langle n| + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n|B^- + V_{n0}(t) |n\rangle\langle 0|B^+ \right) + \sum_{m,n\neq 0}^{\infty} V_{mn}(t) |m\rangle\langle n|$$
(1253)

$$+\sum_{\mathbf{k}}\omega_{\mathbf{k}}b_{\mathbf{k}}^{\dagger}b_{\mathbf{k}} + \sum_{n=1}R_{n}|n\rangle\langle n| + \sum_{n=1}B_{z,n}|n\rangle\langle n| + \mu_{0}(t)|0\rangle\langle 0| \sum_{\mathbf{k}}g_{\mathbf{k}}\left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}}\right)$$

$$(1254)$$

Now in order to separate the elements of the hamiltonian (1254) let's follow the references of the equations (236) and (225) to separate the hamiltonian like:

$$\overline{H_S\left(t\right)} = \sum_{n=0}^{\infty} \varepsilon_n\left(t\right) |n\rangle\langle n| + B \sum_{n=1}^{\infty} \left(V_{0n}\left(t\right) |0\rangle\langle n| + V_{n0}\left(t\right) |n\rangle\langle 0|\right) + \sum_{m,n\neq 0}^{\infty} V_{mn}\left(t\right) |m\rangle\langle n| + \sum_{n=1}^{\infty} R_n |n\rangle\langle n|$$
(1255)

$$\overline{H_{I}} = \sum_{n=1}^{\infty} B_{z,n} |n\rangle\langle n| + \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1}^{\infty} \left(V_{0n}(t) |0\rangle\langle n| \left(B^{-} - B \right) + V_{n0}(t) |n\rangle\langle 0| \left(B^{+} - B \right) \right),$$
(1256)

$$\overline{H_B} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \tag{1257}$$

Here B is given by:

$$B = \langle B^+ \rangle$$
$$= \langle B^- \rangle$$

The transformed Hamiltonian can be written in function of the following set of hermitian operators:

$$\sigma_{nm,x} = |n\rangle\langle m| + |m\rangle\langle n| \tag{1258}$$

$$\sigma_{nm,y} = i\left(|n\rangle\langle m| - |m\rangle\langle n|\right) \tag{1259}$$

$$B_x = \frac{B^+ + B^- - 2B}{2} \tag{1260}$$

$$B_y = \frac{B^- - B^+}{2i} \tag{1261}$$

Using this set of hermitian operators to write the Hamiltonians (1203)-(1205)

(1271)

$$\overline{H_S\left(t\right)} = \varepsilon_0\left(t\right)\left|0\right\rangle\!\left(0\right| + \sum_{n=1}\left(\varepsilon_n\left(t\right) + R_n\right)\left|n\right\rangle\!\left(n\right| + B\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\!\left(n\right| + V_{n0}\left(t\right)\left|n\right\rangle\!\left(0\right|\right) + \sum_{m,n\neq 0}V_{mn}\left(t\right)\left|m\right\rangle\!\left(n\right| + C\left(n\right)\left|n\right\rangle\!\left(n\right| + C\left(n\right)\left|n\right\rangle\right| + C\left(n\right)\left|n\right\rangle\!\left(n\right$$

$$= \varepsilon_{0}(t) |0\rangle\langle 0| + B \sum_{n=1} (V_{0n}(t) |0\rangle\langle n| + V_{n0}(t) |n\rangle\langle 0|) + \sum_{0 < m < n} (V_{mn}(t) |m\rangle\langle n| + V_{nm}(t) |n\rangle\langle m|)$$
(1263)

$$+\sum_{n=1}^{\infty} \left(\varepsilon_n\left(t\right) + R_n\right) |n\rangle\langle n| \tag{1264}$$

$$= \sum_{0 \le m \le n} \left(\left(\Re \left(V_{mn} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) |m\rangle\langle n| + \left(\Re \left(V_{mn} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) |n\rangle\langle m| \right) + \varepsilon_0 \left(t \right) |0\rangle\langle 0|$$
(1265)

$$+B\sum_{n=1}\left(V_{0n}\left(t\right)\left|0\right\rangle\left(n\right|+V_{n0}\left(t\right)\left|n\right\rangle\left(0\right|\right)+\sum_{n=1}\left(\varepsilon_{n}\left(t\right)+R_{n}\right)\left|n\right\rangle\left(n\right|$$
(1266)

$$= \sum_{0 < m < n} \left(\left(\Re \left(V_{nm} \left(t \right) \right) + i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} - i \sigma_{nm,y}}{2} + \left(\Re \left(V_{nm} \left(t \right) \right) - i \Im \left(V_{mn} \left(t \right) \right) \right) \frac{\sigma_{nm,x} + i \sigma_{nm,y}}{2} \right)$$

$$(1267)$$

$$+B\sum_{n=1} \left(V_{0n}(t) \frac{\sigma_{0n,x} - i\sigma_{0n,y}}{2} + V_{n0}(t) \frac{\sigma_{0n,x} + i\sigma_{0n,y}}{2} \right) + \varepsilon_0(t) |0\rangle\langle 0| + \sum_{n=1} \left(\varepsilon_n(t) + R_n \right) |n\rangle\langle n|$$
 (1268)

$$= \sum_{0 \le m \le n} (\Re(V_{nm}(t)) \sigma_{nm,x} + \Im(V_{nm}(t)) \sigma_{nm,y}) + B \sum_{n=1} (\Re(V_{0n}(t)) \sigma_{0n,x} + \Im(V_{mn}(t)) \sigma_{0n,y})$$
(1269)

$$+ \varepsilon_0(t) |0\rangle\langle 0| + \sum_{n=1} (\varepsilon_n(t) + R_n) |n\rangle\langle n|$$
(1270)

$$\overline{H_{I}(t)} = \sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(V_{0n}(t) |0\rangle\langle n| \left(B^{-} - B \right) + V_{n0}(t) |n\rangle\langle 0| \left(B^{+} - B \right) \right)$$

$$= \sum_{n=1} \left(\left(\Re \left(V_{0n} \left(t \right) \right) + i \Im \left(V_{0n} \left(t \right) \right) \right) \left(B^{-} - B \right) \frac{\sigma_{0n,x} - i \sigma_{0n,y}}{2} + \left(\Re \left(V_{0n} \left(t \right) \right) - i \Im \left(V_{0n} \left(t \right) \right) \right) \left(B^{+} - B \right) \frac{\sigma_{0n,x} + i \sigma_{0n,y}}{2} \right)$$
(1272)

$$+\sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right)$$
(1273)

$$= \sum_{n=1} B_{z,n} |n\rangle\langle n| + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left(\left(B^{-} - B \right) \left(\Re \left(V_{0n} \left(t \right) \right) + i\Im \left(V_{0n} \left(t \right) \right) \right) + \left(B^{+} - B \right) \left(\Re \left(V_{0n} \left(t \right) \right) - i\Im \left(V_{0n} \left(t \right) \right) \right) \right) \right)$$
(1274)

$$+\frac{i\sigma_{0n,y}}{2}\left(\left(B^{+}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)-i\Im\left(V_{0n}\left(t\right)\right)\right)-\left(B^{-}-B\right)\left(\Re\left(V_{0n}\left(t\right)\right)+i\Im\left(V_{0n}\left(t\right)\right)\right)\right)\right)$$
(1275)

$$+ \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \tag{1276}$$

$$= \mu_{0}(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(\frac{\sigma_{0n,x}}{2} \left(B^{+} + B^{-} - 2B \right) \Re \left(V_{0n}(t) \right) + i \left(B^{-} - B - B^{+} + B \right) \Im \left(V_{0n}(t) \right) \right)$$
(1277)

 $+\frac{i\sigma_{0n,y}}{2}\left(\left(B^{+}-B-B^{-}+B\right)\Re\left(V_{0n}\left(t\right)\right)+i\left(B-B^{-}+B-B^{+}\right)\Im\left(V_{0n}\left(t\right)\right)\right)\right)+\sum_{n}B_{z,n}|n\rangle\langle n|\tag{1278}$

$$= \sum_{n=1} B_{z,n} |n\rangle\langle n| + \mu_0(t) |0\rangle\langle 0| \sum_{\mathbf{k}} g_{\mathbf{k}} \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) + \sum_{n=1} \left(\sigma_{0n,x} \left(B_x \Re \left(V_{0n}(t) \right) - B_y \Im \left(V_{0n}(t) \right) \right) \right)$$
(1279)

$$+\sigma_{0n,y}\left(B_{y}\Re\left(V_{0n}\left(t\right)\right)+B_{x}\Im\left(V_{0n}\left(t\right)\right)\right)\right)$$
 (1280)

B. Free-energy minimization

As first approach let's consider the minimization of the free-energy through the Feynman-Bogoliubov inequality

(1289)

$$A \le A_{\rm B} \equiv -\frac{1}{\beta} \ln \left(\text{Tr} \left(e^{-\beta (\overline{H_S} + \overline{H_B})} \right) \right) + \left\langle \overline{H_I} \right\rangle_{\overline{H_S} + \overline{H_B}} + O\left(\left\langle \overline{H_I^2} \right\rangle_{\overline{H_S} + \overline{H_B}} \right). \tag{1281}$$

Taking the equations (246)-(254) and given that $\operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right) = C\left(R_1, R_2, ..., R_{d-1}, B\right)$, where each R_i and B depend of the set of variational parameters $\{v_k\}$. From (254) and using the chain rule we obtain that:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial B} \frac{\partial B}{\partial v_{\mathbf{k}}} + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_S(t)}}\right)}{\partial R_n} \frac{\partial R_n}{\partial v_{\mathbf{k}}},\tag{1282}$$

$$=0 (1283)$$

Let's recall the equations (1250) and (1252), we can write them in terms of the variational parameters

$$B = \exp\left(-\left(1/2\right) \sum_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right)\right)$$
(1284)

$$R_n = \sum_{\mathbf{k}} \omega_{\mathbf{k}}^{-1} \left(v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} v_{\mathbf{k}} \right)$$
(1285)

The derivates needed to obtain the set of variational parameter are given by:

$$\frac{\partial B}{\partial v_{\mathbf{k}}} = -\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^2} \coth(\beta \omega_{\mathbf{k}}/2) B \tag{1286}$$

$$\frac{\partial R_n}{\partial v_{\mathbf{k}}} = \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_n \left(t \right) g_{\mathbf{k}} \right) \tag{1287}$$

Introducing this derivates in the equation (1282) give us:

$$\frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial v_{\mathbf{k}}} = \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial B} \left(-\frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}^{2}} \coth\left(\beta \omega_{\mathbf{k}}/2\right) B\right) + \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} \omega_{\mathbf{k}}^{-1} \left(2v_{\mathbf{k}} - 2\mu_{n}\left(t\right) g_{\mathbf{k}}\right) \tag{1288}$$

$$= v_{\mathbf{k}} \left(\frac{2}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} - \frac{\coth\left(\beta \omega_{\mathbf{k}}/2\right) B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial B}\right) - \frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \operatorname{Tr}\left(e^{-\beta \overline{H_{S}(t)}}\right)}{\partial R_{n}} \mu_{n}\left(t\right)$$

We can obtain the variational parameters:

$$v_{\mathbf{k}} = \frac{\frac{2g_{\mathbf{k}}}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta H_{S}(t)}\right)}{\partial R_{n}} \mu_{n}\left(t\right)}{\frac{2}{\omega_{\mathbf{k}}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} - \frac{\coth(\beta \omega_{\mathbf{k}}/2)B}{\omega_{\mathbf{k}}^{2}} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B}}$$
(1290)

$$= \frac{2g_{\mathbf{k}}\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}}\mu_{n}\left(t\right)}{2\omega_{\mathbf{k}}\sum_{n=1}\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial R_{n}} - B\coth\left(\beta\omega_{\mathbf{k}}/2\right)\frac{\partial \text{Tr}\left(e^{-\beta\overline{H}_{S}(t)}\right)}{\partial B}}$$
(1291)

Now taking $v_{\mathbf{k}} = g_{\mathbf{k}}v_{\mathbf{k}}$ then we can obtain $v_{\mathbf{k}}$ like:

$$v_{\mathbf{k}} = \frac{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} \mu_{n}(t)}{2\omega_{\mathbf{k}} \sum_{n=1} \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial R_{n}} - B \coth\left(\beta \omega_{\mathbf{k}}/2\right) \frac{\partial \text{Tr}\left(e^{-\beta \overline{H}_{S}(t)}\right)}{\partial B}}.$$
(1292)

C. Master Equation

Let's consider that the initial state of the system is given by $\rho(0) = |0\rangle\langle 0| \otimes \rho_B$, as we can see this state is independent of the variational transformation:

$$e^{V}\rho(0)e^{-V} = \left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{+}\right)(|0\rangle\langle 0|\otimes\rho_{B})\left(|0\rangle\langle 0| + \sum_{n=1}|n\rangle\langle n|B^{-}\right)$$
(1293)

$$0 = |0\rangle\langle 0| \otimes \rho_B \tag{1294}$$

$$0 = \rho\left(0\right) \tag{1295}$$

We transform any operator *O* into the interaction picture in the following way:

$$\widetilde{O} \equiv U^{\dagger}(t) OU(t) \tag{1296}$$

$$U(t) \equiv \mathcal{T}\exp\left(-i\int_0^t dt' \overline{H_S}(t')\right). \tag{1297}$$

Therefore:

$$\widetilde{\overline{\rho_S}}(t) = U^{\dagger}(t) \, \overline{\rho_S}(t) \, U(t)$$
, where (1298)

$$\overline{\rho_S}(t) = \text{Tr}_B(\bar{\rho}(t)) \tag{1299}$$

We can re-write the transformed interaction Hamiltonian operator like:

$$\overline{H_{I}(t)} = B_{z,0}|0\rangle\langle 0| + \sum_{n=1} (\Re(V_{0n}(t))) B_{x}\sigma_{0n,x} + \Re(V_{0n}(t)) B_{y}\sigma_{0n,y} + B_{z,n}|n\rangle\langle n|$$
(1300)

$$+\Im\left(V_{0n}\left(t\right)\right)B_{x}\sigma_{0n,y}-\Im\left(V_{0n}\left(t\right)\right)B_{y}\sigma_{0n,x}$$
(1301)

where

$$B_{z,0} = \sum_{\mathbf{k}} g_{\mathbf{k}} \mu_0 \left(t \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \tag{1302}$$

$$B_{z,n} = \sum_{\mathbf{k}} \left(g_{\mathbf{k}} \mu_n \left(t \right) - \omega_{\mathbf{k}} \frac{v_{\mathbf{k}}}{\omega_{\mathbf{k}}} \right) \left(b_{\mathbf{k}}^{\dagger} + b_{\mathbf{k}} \right) \text{ if } n \neq 0$$
(1303)

Now consider the following set of operators:

$$A_{1n}(t) = \sigma_{0n,x}$$

$$A_{2n}(t) = \sigma_{0n,y}$$

$$A_{3n}(t) = |n| |n|$$

$$A_{4n}(t) = A_{2n}(t)$$

$$A_{5n}(t) = A_{1n}(t)$$

$$B_{1n}(t) = B_x$$

$$B_{2n}(t) = B_y$$

$$B_{2n}(t) = B_{2n}(t)$$

$$B_{3n}(t) = B_{2n}(t)$$

$$B_{5n}(t) = B_{2n}(t)$$

$$C_{10}(t) = 0$$

$$C_{20}(t) = 0$$

$$C_{30}(t) = 1$$

$$C_{1n}(t) = \Re(V_{0n}(t))$$

$$C_{3n}(t) = 1$$

$$C_{4n}(t) = \Im(V_{0n}(t))$$

$$C_{5n}(t) = \Im(V_{0n}(t))$$

$$C_{5n}(t) = -\Im(V_{0n}(t))$$

$$C_{1323}$$

$$C_{1322}$$

The previous notation allows us to write the interaction Hamiltonian in $\overline{H_I}(t)$ as:

$$\overline{H_I} = \sum_{j \in J} \sum_{n=1} C_{jn} \left(t \right) \left(A_{jn} \otimes B_{jn} \left(t \right) \right) \tag{1324}$$

Here $J = \{1, 2, 3, 4, 5\}.$

We write the interaction Hamiltonian transformed under (1296) as:

$$\widetilde{H_{I}}(t) = \sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t) \right)$$
(1325)

$$\widetilde{A_{i}}(t) = U^{\dagger}(t) A_{i}U(t)$$
(1326)

$$\widetilde{B_i}(t) = e^{iH_B t} B_i(t) e^{-iH_B t}$$
(1327)

Taking as reference state ρ_B and truncating at second order in $H_I(t)$), we obtain our master equation in the interaction picture:

$$\frac{\widetilde{d\widetilde{\rho_S}}(t)}{dt} = -\int_0^t \operatorname{Tr}_B\left[\widetilde{H_I}(t), \left[\widetilde{H_I}(s), \widetilde{\rho_S}(t)\rho_B\right]\right] ds$$
(1328)

Replacing the equation (1325)in (1328)we can obtain:

$$\frac{d\widetilde{\rho_{S}}(t)}{dt} = -\int_{0}^{t} \operatorname{Tr}_{B}\left[\widetilde{H}_{I}(t), \left[\widetilde{H}_{I}(s), \widetilde{\rho_{S}}(t)\rho_{B}\right]\right] ds$$

$$= -\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j \in J} \sum_{n=1} C_{jn}(t) \left(\widetilde{A_{jn}}(t) \otimes \widetilde{B_{jn}}(t)\right), \left[\sum_{j' \in J} \sum_{n'=1} C_{j'n'}(s) \left(\widetilde{A_{j'n'}}(s) \otimes \widetilde{B_{j'n'}}(s)\right), \widetilde{\overline{\rho_{S}}}(t)\rho_{B}\right]\right] ds$$
(1329)

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left[\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right),\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\right]\right]$$
(1331)

$$-\widetilde{\rho_{S}}(t) \rho_{B} \sum_{j' \in J} \sum_{n'=1} C_{j'n'}(s) \left(\widetilde{A_{j'n'}}(s) \otimes \widetilde{B_{j'n'}}(s) \right) ds$$

$$(1332)$$

$$=-\int_{0}^{t} \operatorname{Tr}_{B}\left(\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}$$
 (1333)

$$-\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)$$
(1334)

$$-\sum_{j'\in J}\sum_{n'=1}C_{j'n'}\left(s\right)\left(\widetilde{A_{j'n'}}\left(s\right)\otimes\widetilde{B_{j'n'}}\left(s\right)\right)\widetilde{\rho_{S}}\left(t\right)\rho_{B}\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)$$
(1335)

$$+\widetilde{\rho_{S}}(t)\,\rho_{B}\sum_{j'\in J}\sum_{n'=1}C_{j'n'}(s)\left(\widetilde{A_{j'n'}}(s)\otimes\widetilde{B_{j'n'}}(s)\right)\sum_{j\in J}\sum_{n=1}C_{jn}\left(t\right)\left(\widetilde{A_{jn}}\left(t\right)\otimes\widetilde{B_{jn}}\left(t\right)\right)\right)ds\tag{1336}$$

In order to calculate the correlation functions we define:

$$\Lambda_{jnj'n'}\left(\tau\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\left(t\right)\widetilde{B_{j'n'}}\left(t\right)\left(s\right)\right\rangle_{B} \tag{1337}$$

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{B} \tag{1338}$$

Here $s \to t - \tau$ and $\mathrm{Tr}_B\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_B\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_B$. To evaluate the trace respect to the bath we need to recall that our master equation depends of elements related to the bath and represented by the operators $\widetilde{B_{jn}}\left(t\right)$ and elements related to the system given by $\widetilde{A_{jn}}\left(t\right)$. The systems considered are in different Hilbert spaces so $\mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(t\right)\right) = \mathrm{Tr}\left(\widetilde{A_{jn}}\left(t\right)\right)\mathrm{Tr}\left(\widetilde{B_{j'n'}}\left(t\right)\right)$. The correlation functions relevant of the master equation (1336) are:

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) = \left\langle \widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\right\rangle_{B} \tag{1339}$$

$$= \left\langle \widetilde{B_{jn}}(0) \, \widetilde{B_{j'n'}}(0) \right\rangle_{R} \tag{1340}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1341}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\rho_{B}\widetilde{B_{j'n'}}\left(s\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\rho_{B}\right) \tag{1342}$$

$$= \left\langle \widetilde{B_{j'n'}}(s)\widetilde{B_{jn}}(t) \right\rangle_{P} \tag{1343}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{R} \tag{1344}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1345}$$

$$\operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{jn}}\left(t\right)\widetilde{B_{j'n'}}\left(s\right)\rho_{B}\right) \tag{1346}$$

$$= \left\langle \widetilde{B_{jn}}(t) \, \widetilde{B_{j'n'}}(s) \right\rangle_{\mathcal{D}} \tag{1347}$$

$$= \left\langle \widetilde{B_{jn}} \left(\tau \right) \widetilde{B_{j'n'}} \left(0 \right) \right\rangle_{R} \tag{1348}$$

$$=\Lambda_{jnj'n'}\left(\tau\right)\tag{1349}$$

$$\operatorname{Tr}_{B}\left(\widetilde{\rho_{B}B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\right) = \operatorname{Tr}_{B}\left(\widetilde{B_{j'n'}}\left(s\right)\widetilde{B_{jn}}\left(t\right)\widetilde{\rho_{B}}\right)$$
(1350)

$$= \left\langle \widetilde{B_{j'n'}}(s)\,\widetilde{B_{jn}}(t) \right\rangle_{B} \tag{1351}$$

$$= \left\langle \widetilde{B_{j'n'}} \left(-\tau \right) \widetilde{B_{jn}} \left(0 \right) \right\rangle_{B} \tag{1352}$$

$$=\Lambda_{j'n'jn}\left(-\tau\right)\tag{1353}$$

We made use of the cyclic property for the trace to evaluate the correlation functions, from the equations obtained in (1329) and (1336) and using the equations (1339)-(1353) we can re-write:

$$\frac{\widetilde{d\widetilde{\rho_{S}}}(t)}{dt} = -\int_{0}^{t} \sum_{j,j',n,n'} \left(C_{jn}(t) C_{j'n'}(s) \left(\Lambda_{jnj'n'}(\tau) \widetilde{A_{jn}}(t) \widetilde{A_{j'n'}}(s) \widetilde{\rho_{S}}(t) - \Lambda_{j'n'jn}(-\tau) \widetilde{A_{jn}}(t) \widetilde{\rho_{S}}(t) \widetilde{A_{j'n'}}(s) \right) \right)$$

$$(1354)$$

$$+C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{j'n'jn}\left(-\tau\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{A_{jn}}\left(t\right)-\Lambda_{jnj'n'}\left(\tau\right)\widetilde{A_{j'n'}}\left(s\right)\widetilde{\rho_{S}}\left(t\right)\widetilde{A_{jn}}\left(t\right)\right)\right)ds\tag{1355}$$

$$=-\int_{0}^{t}\sum_{j,j',n,n'}\left(C_{jn}\left(t\right)C_{j'n'}\left(s\right)\left(\Lambda_{jnj'n'}\left(\tau\right)\left[\widetilde{A_{jn}}\left(t\right),\widetilde{A_{j'n'}}\left(s\right)\widetilde{\widetilde{\rho_{S}}}\left(t\right)\right]+\Lambda_{j'n'jn}\left(-\tau\right)\left[\widetilde{\widetilde{\rho_{S}}}\left(t\right)\widetilde{A_{j'n'}}\left(s\right),\widetilde{A_{jn}}\left(t\right)\right]\right)\right)$$
(1356)

$$\frac{\mathrm{d}\,\overline{\rho_{S}}\left(t\right)}{\mathrm{d}t} = -\int_{0}^{t} \sum_{j,j',n,n'} \left(C_{jn}\left(t\right)C_{j'n'}\left(t-\tau\right)\left(\Lambda_{jnj'n'}\left(\tau\right)\left[A_{jn}\left(t\right),A_{j'n'}\left(t-\tau,t\right)\overline{\rho_{S}}\left(t\right)\right] + \Lambda_{j'n'jn}\left(-\tau\right)\left[\overline{\rho_{S}}\left(t\right)A_{j'n'}\left(t-\tau,t\right),A_{jn}\left(t\right)\right]\right)\right) \mathrm{d}\tau - \mathrm{i}\left[H_{S}\left(t\right),\overline{\rho_{S}}\left(t\right)\right]$$

$$(1357)$$

For this case we used that A_{jn} $(t - \tau, t) = U(t) U^{\dagger}(t - \tau) A_{jn}(t) U(t - \tau) U^{\dagger}(t)$. This is a non-Markovian equation and if we take n = 2 (two sites), $\mu_0(t) = 0$, $\mu_1(t) = 1$ then we can reproduce a similar expression to (432) as expected.

VIII. BIBLIOGRAPHY

- [1] McCutcheon D P S, Dattani N S, Gauger E M, Lovett B W and Nazir A 2011 Phys. Rev. B 84 081305
- [2] Dara P S McCutcheon and Ahsan Nazir 2010 New J. Phys. 12 113042
- [3] Supplement: Theoretical model of phonon induced dephasing. A.J. Ramsay ey al 2009.
- [4] Felix A Pollock et al 2013 New J. Phys. 15 075018

^{*} n.dattani@cfa.harvard.edu † edcchaparroso@unal.edu.co