Please insert the paragraph heading on page 21 of the subject application, line 4, as follows:

--Detailed Description of the Invention--.

Please delete the paragraph heading on page 35 of the subject application, line 1, and insert in place thereof the paragraph heading as follows:

--CLAIMS--

Please insert the paragraph heading on page 35 of the subject application, before claim 1, the following:

-- What is claimed is: --.

IN THE CLAIMS:

Please amend the claims as follows:

- 1. (Currently Amended) A circuit arrangement for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector $(a_1', b_1'; a_n, b_n')$, comprising:
- [[-]] (a) a multiplicity of first adder circuits (18, 19; 18-1, 19-1), the multiplicity of first adder circuits (18, 19; 18-1, 19-1) being supplied with a first error signal vector and the multiplicity of first adder circuits (18, 19; 18-1, 19-1) adding the first error signal vector to at least one first signal vector (an', bn'; a1', b1') in order to generate an error-corrected first signal vector (an', bn'; an'-1, bn'-1; a1', b1'); and
- [[-]] (b) a multiplicity of first multiplier circuits (14, 15, 16, 17; 14-1, 15-1, 16-1, 17-1) which precede the multiplicity of first adder circuits (18, 19; 18-1, 19-1) and multiply the first error signal vector by adjustable coefficients $(C_{aa}^{(n)}, C_{ba}^{(n)}, C_{bb}^{(n)}, C_{ab}^{(n)}; C_{aa}^{(1,n)}, C_{ba}^{(1,n)}, C_{bb}^{(1,n)}, C_{ab}^{(1,n)}; C_{aa}^{(1)}, C_{ba}^{(1)}; C_{ba}^{(1)}, C_{ba}^{(1)}; C_{ab}^{(n,1)}, C_{bb}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)})$, wherein the first error signal vector is a signal vector $(a_r, b_r; a_{1r}, b_{1r}; a_r, 1, b_r, 1)$ of a carrier frequency which is not used for transmitting data via the transmission channel.
- 2. (Currently Amended) The circuit arrangement as claimed in claim 1, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, is adjacent to a carrier frequency which is used for transmitting data via the transmission channel.
- 3. (Currently Amended) The circuit arrangement as claimed in claim 1 or 2, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, immediately precedes a carrier frequency which is used for transmitting data via the transmission channel.
- 4. (Currently Amended) The circuit arrangement as claimed in claim 1 or 2, wherein the circuit arrangement also exhibits the following features:

- [[-]] (a) at least one further multiplicity of first adder circuits (18-2, 19-2 to 18-m, 19-m) which follow the multiplicity of first adder circuits (18-1, 19-1), the at least one further multiplicity of first adder circuits (18-2, 19-2 to 18-m, 19-m) in each case being supplied with a further error signal vector (a_{2r}, b_{2r} to a_{mr}, b_{mr}; a_r 2, b_r 2, a_r 3, b_r 3) and the at least one further multiplicity of first adder circuits (18-2, 19-2 to 18-m, 19-m) adding the respective further error signal vector (a_{2r}, b_{2r} to a_{mr}, b_{mr}; a_r 2, b_r 2, a_r 3, b_r 3) to the at least one signal vector (a_n; b_n; b_n; and a_n; b_n; and
- at least one further multiplicity of first multiplier circuits (14-2, 15-2, 16-2, 17-2 to 14-m, 15-m, 16-m, 17-m) which precede the at least one further multiplicity of first adder circuits (18-2, 19-2 to 18-m, 19-m) and multiply the respective further error signal vector (a_{2r} , b_{2r} to a_{mr} , b_{mr} ; a_{r} 2, b_{r} 2, a_{r} 3, b_{r} 3) by adjustable coefficients (G_{aa} (2,n), G_{ba} (2,n),
- 5. (Currently Amended) The circuit arrangement as claimed in claim 4, wherein the respective further error signal vector is in each case a signal vector $(a_{2rr}, b_{2rr}, b_{mr})$ of a carrier frequency which is not used for transmitting data via the transmission channel.
- 6. (Currently Amended) The circuit arrangement as claimed in claim 4 or 5, wherein the respective further error signal vector $(a_r-2, b_r-2, a_r-3, b_r-3)$ is in each case a previous version of a particular error signal vector (a_r-1, b_r-1) .
- 7. (Currently Amended) The circuit arrangement as claimed in claim 6, wherein the circuit arrangement has at least one buffer circuit (20-1, 20-2) for storing a previous version of an error signal vector $(a_r 1, b_r 1)$.
- 8. (Currently Amended) The circuit arrangement as claimed in claim 1, 2 or 3, wherein the circuit arrangement also exhibits the following features:
- [[-]] (a) a decision circuit (4-1) which maps the error-corrected first signal vector $(a_4^{\frac{1}{2}}, b_4^{\frac{1}{2}})$ into a value-discrete first signal vector $(a_4^{\frac{1}{2}}, b_4^{\frac{1}{2}})$; and
- [[-]] (b) a subtracting circuit (6-1, 7-1) for forming a second error signal vector (Δα₁, Δb₄) which subtracts the first signal vector (α₁', b₁') and the value-discrete first signal vector (α₄", b₄") from one another, the second error

signal vector $(\Delta a_1, \Delta b_1)$ being used for generating an error-corrected second signal vector (a_2, b_2, b_2) of a second signal vector (a_2, b_2) of a carrier frequency which is immediately adjacent to the carrier frequency of the first signal vector (a_1, b_1) .

- 9. (Currently Amended) The circuit arrangement as claimed in claim 8, wherein the circuit arrangement also exhibits the following features:
- [[-]] (a) a multiplicity of second adder circuits (12-1, 13-1), the multiplicity of second adder circuits (12-1, 13-1) being supplied with the second error signal vector (Δa₁, Δb₁) and the multiplicity of second adder circuits (12-1, 13-1) adding the second error signal vector (Δa₁, Δb₁) to the second signal vector (a₂, b₂); in order to generate the error-corrected second signal vector (a₂, b₂); and
- [[-]] (b) a multiplicity of second multiplier circuits (8-1, 9-1, 10-1, 11-1) which precede the multiplicity of second adder circuits (12-1, 13-1) and multiply the second error signal vector (Δa_4 , Δb_4) by adjustable coefficients (C_{aa}), C_{ba}).
- 10. (Currently Amended) The circuit arrangement as claimed in claim 9, wherein the circuit arrangement also exhibits the following features:
- [[-]] (a) a further decision circuit (4-2) which maps the error-corrected second signal vector $(a_2^{\frac{1}{2}}, b_2^{\frac{1}{2}})$ into a value-discrete second signal vector $(a_2^{\frac{1}{2}}, b_2^{\frac{1}{2}})$; and
- [[-]] (b) a further subtracting circuit (6-2, 7-2) for forming a third error signal vector (Δa₂, Δb₂) which subtracts the second signal vector (a₂', b₂') and the value-discrete second signal vector (a₂", b₂") from one another, the third error signal vector (Δa₂, Δb₂) being used for generating an error-corrected third signal vector (a₃*, b₃*) of a third signal vector (a₃*, b₃*) of a carrier frequency which is immediately adjacent to the carrier frequency of the second signal vector (a₂*, b₂*).
- 11. (Currently Amended) A circuit arrangement for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector (a₁', b₁'; a_n', b_n'), comprising:

- [[-]] (a) decision circuits which are in each case supplied with a reference signal vector (a_{1r}, b_{1r} to a_{mr}, b_{mr}) and which map the respective reference signal vector (a_{1r}, b_{1r} to a_{mr}, b_{mr}) into a respective value-discrete reference signal vector;
- [[-]] (b) subtracting circuits for forming a respective error signal vector which subtract the respective reference signal vector (a_{1r}, b_{1r} to a_{mr}, b_{mr}) and the respective value-discrete reference signal vector from one another;
- [[-]] (c) groups of first adder circuits (18-1, 19-1 to 18-m, 19-m), each group of first adder circuits (18-1, 19-1 to 18-m, 19-m) in each case being supplied with an error signal vector and the groups of first adder circuits (18-1, 19-1 to 18-m, 19-m) adding the respective error signal vector to at least one signal vector (a_n', b_n'; a₁', b₁') in order to generate a progressively error-corrected signal vector (a_n[±]-1, b_n[±]-1 to a_n*-m, b_n*-m); and
- [[-]] (d) groups of first multiplier circuits (14-1, 15-1, 16-1, 17-1 to 14-m, 15-m, 16-m, 17-m) which in each case precede a group of first adder circuits (18-1, 19-1 to 18-m, 19-m) and multiply the respective error signal vector by adjustable coefficients (C_{aa} (1,n), C_{ba} (1,n), C_{bb} (1,n), C_{ab} (1,n), C_{bb} (1,n), C_{ab} (1,n), C_{ab}
- 12. (Currently Amended) The circuit arrangement as claimed in one of the preceding claims claim 1, wherein the adjustable coefficients can be adjusted by means of a correcting variable.
- 13. (Original) The circuit arrangement as claimed in claim 12, wherein a power of 2 is selected for the correcting variable.
- 14. (Currently Amended) A method for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector $(a_4', b_4'; a_n', b_n')$, comprising the following steps:
- [[-]] (a) multiplying at least one error signal vector by adjustable coefficients $(C_{aa}^{(n)}, C_{ba}^{(n)}, C_{bb}^{(n)}, C_{ab}^{(n)}; C_{aa}^{(n)}, C_{ba}^{(n)}, C_{bb}^{(n)}; C_{ab}^{(n)}, C_{bb}^{(n)}; C_{ab}^{(n)}; C$

- [[-]] (b) adding the at least one error signal vector multiplied by the adjustable coefficients to at least one signal vector (an', bn'; a1', b1') in order to generate an error-corrected signal vector (an', bn'; an'-1, bn'-1; a1', b1'), wherein the at least one error signal vector is a signal vector (an, bn; a1n; b1n; ar-1, br-1) of a carrier frequency which is not used for transmitting data via the transmission channel.
- 15. (Currently Amended) The method as claimed in claim 14, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, is adjacent to a carrier frequency which is used for transmitting data via the transmission channel.
- 16. (Currently Amended) The method as claimed in claim 14 or 15, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, immediately precedes a carrier frequency which is used for transmitting data via the transmission channel.
- 17. (Currently Amended) The method as claimed in claim 14 or 15, wherein the method also exhibits the following steps:
- [[-]] (a) multiplying a respective further error signal vector $(a_{2cr}, b_{2c}, to a_{mr}, b_{mr}; a_{cr})$ $(a_{2cr}, b_{2c}, a_{cr}, a_{cr}, b_{cr})$ by adjustable coefficients $(C_{aa}^{(2,n)}, C_{ba}^{(2,n)}, C_{ba}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(n,2)}, C_{bb}$
- [[-]] (b) adding the respective further error signal vector (a_{2r}, b_{2r}) to $a_{mr}, b_{mr}; a_{r}, a_{r},$
- 18. (Currently Amended) The method as claimed in claim 17, wherein the respective further error signal vector is in each case a signal vector $(a_{2r}, b_{2r}, b_{2r$
- 19. (Currently Amended) The method as claimed in claim 17 or 18, wherein the respective further error signal vector $(a_r 2, b_r 2, a_r 3, b_r 3)$ is in each case a previous version of a particular error signal vector $(a_r 1, b_r 1)$.

- 20. (Currently Amended) The method as claimed in claim 14, 15 or 16, wherein the method also exhibits the following steps:
- [[-]] (a) mapping the error-corrected first signal vector $(a_1^{\frac{1}{2}}, b_4^{\frac{1}{2}})$ into a value-discrete first signal vector $(a_4^{\frac{1}{2}}, b_4^{\frac{1}{2}})$; and
- subtracting the first signal vector (a_4'', b_4'') and the value-discrete first signal vector (a_4'', b_4'') from one another in order to form a second error signal vector $(\Delta a_1, \Delta b_4)$, the second error signal vector $(\Delta a_1, \Delta b_4)$ being used for generating an error-corrected second signal vector (a_2^2, b_2^2) of a second signal vector (a_2^2, b_2^2) of a carrier frequency which is immediately adjacent to the carrier frequency of the first signal vector (a_1', b_4') .
- 21. (Currently Amended) The method as claimed in claim 20, wherein the method also exhibits the following steps:
- [[-]] (a) multiplying the second error signal vector $(\Delta a_4, \Delta b_4)$ by adjustable coefficients $(C_{aa}^{(2)}, C_{ba}^{(2)}, C_{bb}^{(2)}, C_{ab}^{(2)})$; and
- [[-]] (b) adding the second error signal vector $(\Delta a_1, \Delta b_1)$ multiplied by the adjustable coefficients $(C_{aa}^{(2)}, C_{ba}^{(2)}, C_{bb}^{(2)}, C_{ab}^{(2)})$ to the second signal vector (a_2^i, b_2^i) in order to generate the error-corrected second signal vector (a_2^i, b_2^i) .
- 22. (Currently Amended) The method as claimed in claim 21, wherein the method also exhibits the following steps:
- [[-]] (a) mapping the error-corrected second signal vector $(a_2^{\frac{1}{2}}, b_2^{\frac{1}{2}})$ into a value-discrete second signal vector $(a_2^{\frac{1}{2}}, b_2^{\frac{1}{2}})$; and
- [[-]] (b) subtracting the second signal vector (a_2'', b_2') and the value-discrete second signal vector (a_2'', b_2'') from one another in order to form a third error signal vector $(\Delta a_2, \Delta b_2)$, the third error signal vector $(\Delta a_2, \Delta b_2)$ being used for generating an error-corrected third signal vector $(a_3^{\frac{1}{2}}, b_3^{\frac{1}{2}})$ of a carrier frequency which is immediately adjacent to the carrier frequency of the second signal vector (a_2'', b_2') .
- 23. (Currently Amended) A method for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a

transmission channel, and each carrier frequency exhibiting a signal vector $(a_4', b_4'; a_n', b_n')$, comprising the following steps:

- [[-]] (a) mapping a respective reference signal vector (a_{1r}, b_{1r} to a_{mr}, b_{mr}) into a respective value-discrete reference signal vector;
- [[-]] (b) subtracting the respective reference signal vector (a_{1r}, b_{1r} to a_{mr}, b_{mr}) and the respective value-discrete reference signal vector from one another in order to form a respective error signal vector;
- [[-]] (c) multiplying the respective error signal vector by adjustable coefficients $(C_{aa}^{(1,n)}, C_{bb}^{(1,n)}, C_{bb}^{(1,n)}, C_{ab}^{(1,n)}, C_{bb}^{(1,n)}, C_{ba}^{(m,n)}, C_{ba}^{(m,n)}, C_{bb}^{(m,n)}, C_{ab}^{(m,n)})$; and
- adding the respective error signal vector multiplied by the adjustable coefficients $(G_{aa}^{(1,n)}, G_{ba}^{(1,n)}, G_{bb}^{(1,n)}, G_{ab}^{(1,n)}, G_{ab}^{(1,n)}, G_{ba}^{(m,n)}, G_{ba}^{(m,n)}, G_{bb}^{(m,n)}, G_{bb}^$
- 24. (Currently Amended) The method as claimed in one of claims 14 to 23 claim 14, wherein the adjustable coefficients can be adjusted by means of a correcting variable.
- 25. (Original) The method as claimed in claim 24, wherein a power of 2 is selected for the correcting variable.