Avaliação de superpixels para segementação e detecção de contorno de imagens

Felipe Augusto Lima Reis¹

¹PUC Minas - Pontifícia Universidade Católica de Minas Gerais

falreis@sqa.pucminas.br

Abstract. Superpixels are structures that group similar pixels into sets that reflect aspects of the image. This paper evaluates the use of SLIC and EGB superpixels for segmentation. It's also evaluates the combination of both methods. Finally, this paper shows an hierarchical method implementation, using SLINK (single-linkage) clusterization, applied for the superpixels methods. For evaluation, this paper uses the Berkeley Segmentation Data Set (BSDS500). The results were compared to the dataset groundtruth, using precision and recall.

Resumo. Superpixels são estruturas que agrupam pixels semelhantes em conjuntos que refletem aspectos da imagem. Este artigo avalia a utilização de superpixels SLIC e EGB para segmentação. Avalia também os benefícios da combinação dos métodos para produção de segmentação. Por fim, o artigo mostra uma implementação de método hierárquico, utilizando clusterização SLINK (single-linkage), para os métodos estudados nesse trabalho. Para avaliação dos resultados, foram utilizadas as imagens do conjunto de validação do Berkeley Segmentation Data Set (BSDS500). Os resultados foram com comparadas em relação ao groundtruth, utilizando o método de precisão e revocação.

1. Introdução

A segmentação de imagens consiste em dividir uma imagem em um conjunto de regiões logicamente agrupadas, de modo a reunir áreas que contém informação relevante dentro dos grupos [?]. Nessa tarefa, tomamos os *pixels* como unidades básicas de processamento [?]. O agrupamento de pixels em unidades maiores permite um tipo de segmentação chamado de *oversegmentation* [?], ilustrado na figura 1. O uso de superpixels possibilita o aumento da velocidade de processamento posterior, uma vez que a quantidade de pixels diminui consideravelmente em relação a imagem original.

A utilização de superpixels possibilita a redução de itens a serem processados, entretanto pode causar perda de informação importante. No entanto, para alguns casos, a perda de qualidade pode se justificar em relação ao ganho de velocidade obtido utilizando esse tipo de operação. Essa relação consiste então em um *trade-off* entre ambas as características, sendo viáveis em alguns cenários de processamento em tempo real ou para dispositivos com baixo desempenho.

Alguns métodos de geração de superpixels são utilizados para segmentação de imagens e detecção de bordas, como os métodos EGB [?] e SLIC [?]. Esse trabalho investiga se a utilização de métodos segmentação e detecção de contornos baseados em superpixels.

Figura 1. Imagens segmentadas utilizando superpixels SLIC e EGB

O presente trabalho apresenta a seguinte estrutura: a Seção 2 mostra o referencial teórico para construção do trabalho, a Seção 3, exibe os materiais e métodos utilizados nos testes; a Seção 4 mostra os resultados obtidos nos testes realizados e a discussões dos mesmos; a Seção 5 contém a conclusão do artigo, com as considerações finais.

2. Referencial Teórico

2.1. Superpixels

Superpixels são estruturas que agrupam pixels semelhantes em conjuntos. O agrupamento possibilita a redução de complexidade das tarefas de processamento [?], ao reduzir a quantidade de itens a serem processados. Os superpixels são utilizados na área de visão computacional para solução de vasto número de problemas, como detecção de contorno [?], segmentação [?] e localização de objetos [?].

Superpixels, segundo [?], devem capturar importante grupos ou regiões, refletindo aspectos da imagem. Devem também ser executados em tempo próximo ao linear em relação a quantidade de pixels. Existem diversas abordagens para a geração de superpixels [?]. Dentre elas, podemos classificá-las, segundo o método de agrupamento em:

- Algoritmos baseados em grafos: utilizam abordagem baseadas em grafos para correlação entre pixels e criação dos conjuntos. Dentre os algoritmos baseados em grafos podemos citar o Efficient Graph-Based Image Segmentation (EGB) [?];
- Algoritmos baseados em gradiente ascendente: utilizam métodos de gradiente ascendente iterativamente até que os critérios de convergência correspondam a forma de um superpixel. Nesse conjunto, podemos citar as abordagens watersheds [?] [?]
- Algoritmos de clusterização iterativo: utilizam métodos de clusterização, como o *k-means*, para produção de superpixels. Um exemplo desse algoritmo é o SLIC (Simple Linear Iteravite Clustering) [?]

2.1.1. Superpixels SLIC

O algoritmo SLIC utiliza um único parâmetro k, correspondente a quantidade aproximada de superpixels, gerados em formato regular [?]. A figura 3 ilustra o algoritmo SLIC para

diferentes números de superpixels. A fim de produzir tamanhos semelhantes, o intervalo analisado é $S=\sqrt{N/k}$, onde N é o número de pixels da imagem [?].

A definição do centro dos superpixels é feita utilizando sementes, que são movidas para locais de geração. Esses locais corresponem a posição mais baixa do gradiente em uma vizinhança de 3x3 [?]. Esse passo evita que superpixels sejam centrados nas bordas ou em um posição de ruído [?]. Cada pixel, então, é associado com o centro do cluster mais próximo, de modo que as regiões de busca se sobreponham [?]. A fim de aumentar o desempenho do algoritmo, a região de busca é limitada em 2 vezes o tamanho aproximado do superpixel S, gerando busca em uma área $2S \times 2S$ [?]. Em seguida, um passo de atualiza os centros dos clusters e computa o erro residual E [?]. O algoritmo disponível na figura 2, resume as informações descrita nesse parágrafo.

```
SLIC superpixel segmentation
/* Initialization */
Initialize cluster centers C_k = [l_k, a_k, b_k, x_k, y_k]^T by
sampling pixels at regular grid steps S.
Move cluster centers to the lowest gradient position in a
3 × 3 neighborhood.
Set label l(i) = -1 for each pixel i.
Set distance d(i) = \infty for each pixel i.
repeat
  /* Assignment */
  for each cluster center C_k do
     for each pixel i in a 2S \times 2S region around C_k do
       Compute the distance D between C_k and i.
       if D < d(i) then
          set d(i) = D
          set l(i) = k
       end if
     end for
  end for
  /* Update */
  Compute new cluster centers.
  Compute residual error E.
until E \leq \text{threshold}
```

Figura 2. Algoritmo SLIC - Adaptado de [?]

Para o algoritmo descrito na figura 2, é necessário compreender o método para cálculo da medida de distância D entre os conjuntos. Devido ao algoritmo trabalhar no colorspace CIELAB, com o espaço-plano labxy, a posição do pixel pode assumir um intervalo de valores. Com isso, o cálculo da distância não pode ser feito utilizando uma distância euclidiana, sendo necessária uma prévia normalização da proximidade espacial e de cor. Para isso é utilizado a fórmula $D = \sqrt{d_c^2 + (d_s/S)^2 \cdot m^2}$, onde D corresponde a distância em 5 dimensões do espaço labxy, d_c e d_s correspondem à proximidade de cores e proximidade espacial; e m^2 corresponde a distância máxima entre cores no cluster [?]. Para o cálculo da distância em imagens em escala cinza, é utilizada a distância Euclidiana [?].

Uma etapa extra no processo de pós processamento é a união de *pixels orfãos*. Esses pixels são adicionados ao cluster mais próximo usando o algoritmo de componentes conexos [?].

Devido a limitação do espaço de pesquisa do algoritmo SLIC, a complexidade do algoritmo é O(n), enquanto outros algoritmos que utilizam k-means para segmentação tem custo $O(k^N)$ [?].

Figura 3. Fronteiras e coloração pelo valor médio dos superpixels SLIC/SLICO, para diferentes quantidades de superpixels

2.1.2. Superpixels EGB

Os superpixels EGB (*Efficient Graph-Based Image Segmentation*) utilizam uma abordagem baseadas em grafos não direcionados. Nessa abordagem, cada *pixel* corresponde a um nó do grafo e a ligação entre eles ocorre por meio de arestas, com pesos não negativos, correspondente a medida de dissimilaridade [?].

Na abordagem baseada em grafos, a segmentação S é uma partição dos vértices V em componentes, no qual cada região $C \in S$ corresponde a um componente conectado em um grafo G' = (V, E'), onde $E' \subseteq E$, ou seja, a segmentação é induzida por um conjuntos de vértices em arestas E [?].

No algoritmo foi definido um predicado D para avaliação da evidência de bordas entre dois componentes de uma segmentação. O algoritmo avalia a dissimilaridade entre elementos de dois componentes e os compara com elementos vizinhos em um mesmo componente, de modo que o algoritmo possa se adaptar em relação as características dos dados [?].

Para a comparação entre as regiões é utilizada uma função de corte (threshold) τ , a fim de medir o grau de diferença entre os componentes. Esse grau deve ser superior a diferença interna mínima, evidenciando uma borda [?]. A função de corte, no algoritmo, é utilizada baseado no tamanho do componente $\tau = k/|C|$, onde |C| corresponde ao tamanho do componente C e k corresponde a um parâmetro do algoritmo [?].

O algoritmo EGB, utilizando pesos inteiros e ordenação por contagem, pode ser executado com custo linear, com complexidade O(nlogn), para qualquer método de ordenação [?].

Figura 4. Fronteiras e coloração pelo valor médio dos superpixels EGB, para diferentes quantidades de superpixels

2.2. Clusters

Análise de cluster é a tarefa de agrupar um conjunto de objetos de forma que um grupo (*cluster*) tenha características em comum [?]. *Clusters* hierárquicos correspondem a análise de *clusters* a fim de buscar hierarquias entre eles. As estratégias para hierarquização de cluster se dividem em dois grupos [?]:

- Aglomerativo abordagem "bottom up", em que a observação inicia-se no próprio cluster e os pares de clusters são unidos na medida em que se sobe na hierarquia.
- Divisivo abordagem "top down" onde as observações iniciam-se em um cluster e são realizadas recursivamente a medida em que se desce na hierarquia.

Os algoritmos originais de cluster possuem complexidade $O(n^3)$. Alguns algoritmos, entretanto, como o SLINK, ou *single-linkage*, possuem complexidade $O(n^2)$ [?]. O SLINK utiliza a distância mínima como critério de ligação (*linkage*) entre os *clusters*. A fórmula $min\{d(a,b): a \in A, b \in B\}$, corresponde a distância mínima para dois pares de clusters A e B observados, onde d é a métrica de distância escolhida [?].

A partir da aglomeração de clusters é possivel construir uma árvore hierarquica, onde os clusters são agrupados por sua similaridade. Um método de visualização dessas características é o dendrograma.

2.3. Detecção de Contornos e Segmentação de Imagens

Segmentação de imagens consiste em separar uma imagem em regiões, idealmente correspondente a objetos reais [?]. Esse passo é utilizado no processamento de imagens, vídeos e aplicações de visão computacional. Também consiste em um importante passo na tentativa de explicar uma imagem por meio de algoritmos [?].

Extensiva pesquisa é realizada e muitas abordagens e algoritmos são utilizados, com bons resultados para um conjunto ou classes de imagens [?]. A fim de facilitar a pesquisa, alguns trabalhos foram desenvolvidos para criação de um conjunto de imagens com suas respectivas segmentações manuais. A base BSDS500 (*Berkeley Segmentation Data Set and Benchmarks 500*) provê uma base de imagens para pesquisa de segmentação e detecção de bordas. [?]. Essa base de dados é uma extensão da base BSDS300, com 200 novas imagens para avaliação [?].

A fim de avaliar a efetividade das segmentações, tradicionalmente são utilizados métodos subjetivos, como a visualização humana, responsável por comparar a qualidade da segmentação ou métodos supervisionados, onde uma segmentação é comparada em relação a uma imagem manualmente segmentada [?]. Projetos de detecção automática, como o SEISM (Supervised Evaluation of Image Segmentation Methods) permitem a avaliação da segmentação, usando a recuperação de precisão para bordas e a recuperação de precisão para objetos e peças [?].

3. Materiais e Métodos

Para confecção do trabalho foram escolhidos os algoritmos de SLIC e EGB. Os algoritmos possuem características diferentes: o SLIC é capaz de produzir *superpixels* em formas regulares, porém não é tão preciso ao separar os conjuntos por similaridade; por outro lado, o EGB, produz *superpixels* irregulares, porém é mais aderente às diferenças de cores entre *pixels*.

Nos testes realizados foi realizada hierarquização dos resultados obtidos após a geração de superpixels SLIC, EGB e também sobre a composição SLIC+EGB. A composição SLIC+EGB corresponde a aplicação do algoritmo SLIC, seguido pela recoloração utilizando o valor médio de cores do *superpixel* e, por fim, a aplicação do método EGB. A partir dessa seção, o método SLIC+EGB passará a ser chamado SEGB, para facilitar a nomenclatura.

Os resultados das hierarquizações foram comparados aos melhores resultados de segmentação obtidos pela segmentação SLIC, EGB e SEGB sem hierarquização. O método de hierarquização está descrito na seção 3.1, enquanto o método de avaliação de resultados está descrito na seção 3.3. Os resultados dos testes estão disponíveis na seção 4.

3.1. Hierarquia de Segmentações

A hierarquização das segmentações tem como objetivo possibilitar a utilização dos algoritmos para produzir segmentação em diferentes níveis de detalhamento: desde um nível mais aprofundado até um nível macro. Os diferentes níveis hierárquicos podem ser combinados em termos do contorno das hierárquias, permitindo a representação das hierarquias indexadas como bordas suaves, chamadas Mapas de Contorno Ultramétrico (UCM - *Ultrametric Contour Map*) [?].

Para construção das hierarquias foram gerados *clusters* com as correlações entre os grupos de *superpixels* adjcentes, após a segmentação inicial. Foi utilizado o algoritmo SLINK (*single-linkage*) para agrupamento dos *superpixels* próximos, gerando uma árvore com as correlações entre os *superpixels*.

Para verificação da estrutura da árvore foi utilizado um dendrograma, como representado na figura 5. O dendrograma é um tipo de árvore utilizado para ilustração de uma clusterização hierarquica [?]. Frequentemente é utilizado nas áreas de biologia para indicar a mudanças evolucionárias entre ancestrais e descendentes, baseados em suas características [?].

Em um árvore de estrutura semelhante à representada por um dendrograma é possível realizar cortes horizontais ou verticais na hierarquia, a fim de obter tipos de agru-

Figura 5. Dendrograma com a correlação entre os superpixels

pamentos diferentes. No trabalho realizado somente foram realizados cortes horizontais, em diversos níveis.

Devido às características da segmentação, quando comparados ao *groundtruth*, não foram validados todos os níveis hierárquicos. A fim de reduzir o número de comparações, somente foram avaliados níveis hierárquicos intermediários que apresentaram melhores resultados em testes empíricos. Com isso, foi estabelecido um limite máximo e mínimo para os cortes na hierarquia, de modo que os cortes foram feitos dentro de um intervalo, evitando avalição de níveis com baixa probabilidade adequação ao *groundtruth*.

3.2. Análise Multiescala

Para que os níveis hierarquicos possam garantir a manutenção da informação, agrupando apenas características semelhantes, as hierarquias devem seguir os princípios de análise multiescala [?]. Esses princípios asseguram manutenção de duas características principais [?]:

- Causalidade um contorno presente em uma escala k1 deve estar presente em qualquer escala k2 < k1 [?];
- Localidade a medida em que o número de regiões diminui, os contornos devem ser estáveis (não devem se mover). A união corresponde a manutenção das bordas dos grupos que se fundiram [?].

O método de hierarquização descrito nesse trabalho manteve as características da análise multiescala. A figura 6 mostra os possíveis cortes na hierarquia de uma segmentação SEGB, sem recoloração da imagem. Nesse modelo, a segmentação é capaz de unir pixels por similaridade.

É importante salientar que os métodos originais (SLIC e EGB), quando apenas variados os parâmetros de criação de superpixels não mantém as características de análise multiescala, conforme podemos ver nas figuras 3 e 4; essas características somente são obtidas pelos processos hierárquicos aplicados aos métodos após a criação dos superpixels.

Figura 6. Hierarquia de partições utilizando superpixel SLIC+EGB.

3.3. Avaliação de Resultados

Para avaliação das imagens, foi primeiramente utilizada a classificação visual, comparando a qualidade dos resultados. Em seguida utilizou-se um método de comparação de precisão e revocação, para detecção de contornos e bordas.

O método de precisão é um método de classificação binária, onde a precisão (*prediction*) corresponde à "fração de instâncias recuperadas que são relevantes", enquanto revocação (*recall*), corresponde "a fração de instâncias relevantes que são recuperadas" [?]. Ambos os métodos são avaliados juntos para que possam identificar 4 tipos de dados possíveis:

- Verdadeiros Positivos correspondem aos valores que foram corretamente classificados como positivos;
- Falsos Negativos correspondem aos valores que foram classificados incorretamente como negativos;
- Falsos Positivos correspondem aos valores que foram classificados incorretamente como positivos;

• Verdadeiros Negativos - correspondem aos valores que foram classificados corretamente como negativos [?];

A classificação descrita acima está ilustrada na figura 7.

Figura 7. Precisão e revocação. Adaptado de [?]

A classificação de precisão e revocação pode ser dada por uma média harmônica, chamada de *F-measure* ou *F-score* balanceada. Essa medida é dada pela fórmula [?]:

$$F = 2 \cdot \frac{precis \cdot revoc}{precis + revoc} \tag{1}$$

A medida é aproximadamente a média quando seus valores estão próximos, porém o valor é baixo quando as médias estão distantes, favorecendo métodos com baixo número de falsos positivos e verdadeiros negativos [?]

3.4. Código Fonte e Bibliotecas Utilizados

Os códigos fontes gerados, realizando as segmentações, hierarquias, geração de mapas ultramétricos, avaliação dos resultados e os gráficos presentes nesse trabalhos estão disponíveis publicamente na página pessoal do autor no Github ¹.

Os algoritmos SLIC e EGB utilizados para realização desse trabalho foram obtidos pela biblioteca Scikit-Image². Os algoritmos de geração de cluster SLINK e representação

¹https://github.com/falreis/image-segm

²http://scikit-image.org/docs/dev/api/skimage.segmentation.html

	Algoritmos		
	SLIC	EGB	SEGB
k	300	-	1408
scale	-	300	1408
sigma	-	0.8	0.8
min_size	-	30	30

Tabela 1. Parametrização dos algoritmos.

de dendrogramas foram obtido na biblioteca Scipy.org³. O algoritmo de avaliação do resultado foi obtido no projeto Image-Segmentation, no Github⁴.

4. Testes, Resultados e Discussões

Para avaliação do desempenho dos algoritmos foi executada a segmentação das imagens do conjunto de validação da base de dados BSDB500 (*Berkeley Segmentation Data Set*). O conjunto possui 100 imagens naturais com seus respectivos *groundtruths* feito por anotações humanas [?].

Os algoritmos foram aplicados a base de testes e comparados com os *groundtruths* disponíveis na base de dados. A adequação do algoritmo em relação ao *ground-truth* foi feita por meio do mecanismo de precisão e revocação, utilizando a medida *F-measure*, conforme descrito na seção 3.3.

A fim de obter a melhor parametrização possível, foram executados diversos testes para cada algoritmo. Somente o algoritmo EGB não foi extensamente executado a fim de obter a melhor parametrização, uma vez que os valores obtidos pelos autores estão disponíveis no artigo *Efficient Graph-Based Image Segmentation* [?]. A parametrização dos algoritmos está detalhada na Tabela 1.

Os algoritmos hierárquicos foram executados e a melhor partição obtida para todo o conjunto de imagens (ODS - *Optimal Data Set Scale*) [?] foi utilizada. Em seguida os valores foram comparados aos demais algoritmos utilizando com métrica a medida *F-measure*. A eficiência média dos algoritmos está ilustrada na figura 8.

Conforme observamos na figura 8, o valor médio do algoritmo SEGB teve valores próximois aos obtidos pelo algoritmo EGB. O algoritmo EGB teve valor superior ao algoritmo SLIC, em todos os casos.

Os algoritmos hierárquicos, conforme figura 8, resultaram em valores superiores aos algoritmos sem hierarquização. O resultado observado é superior àqueles sem hierarquização. Esse resultado é previsível devido a possibilidade de melhor adequação a base de dados.

Outra análise possível para os algoritmos são os valores máximos de *F-measure*. Esses valores estão ilustrados na figura 9. A figura mostra mais uma vez que as melhores hierarquias obtiveram resultados superiores às versões sem hierarquização. Por fim, vemos que o resultado máximo do algoritmo EGB é superior ao algoritmo SEGB, diferindo do valor médio das amostras.

³https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.cluster.hierarchy.linkage.html

⁴https://github.com/Htiango/Image-Segmentation/blob/master/main/eval_boundary.py

Figura 8. Valor médio de *F-measure* para os algoritmos avaliados.

Figura 9. Valor máximo de *F-measure* para os algoritmos avaliados.

5. Conclusão

Os algoritmos de geração de superpixels avaliados nesse trabalho tiveram resultados baixos para tarefas de segmentação e detecção de contornos, mesmo quando combinados. As versões hierárquicas dos algoritmos apresentaram resultados superiores àqueles obtidos sem hieraquias.

O algoritmo SLIC, apesar das vantagens de produzir superpixels de tamanhos regulares, apresentou a menor eficiência para segmentação de imagens, em relação aos demais algoritmos estudados. A combinação dos algoritmos SEGB para detecção de contornos não apresentou resultado superior ao algoritmo EGB. Além disso, o custo computacional para execução dos dois algoritmos em sequência, bem como os custos para recoloração da imagens mostraram-se injustificáveis frente aos ganhos obtidos.

A utilização de hierarquias após a aplicação dos métodos de geração de superpi-

xels aumentou consideravelmente os resultados de alguns métodos. Apesar da utilização não resultar em alto grau de desempenho na detecção de bordas e segmentação, justificase a utilização das versões hierárquias em relação às versões originais dos algoritmos quando houver necessidade ampliação e redução de contornos, para efeito de agrupamento de informações. Os parâmetros descritos nesse trabalho podem ser utilizados como passo inicial para refinamento dos parâmetros em trabalhos futuros.

Os métodos hierarquicos apresentados no trabalho também permitem a utilização em diferentes cenários, principalmente para redução e agrupamento de informação relevante em imagens, atendendo aos preceitos de análise multiescala.

Como trabalho futuro sugere-se a utilização dos algoritmos mostrados nesse trabalho como passo de pré processamento de outras técnicas de segmentação, como redes neurais convolucionais. Esses passos de segmentação iniciais podem permitir treinamento mais rápido e menor quantidade de informação a ser processadas, além de identificação mais rápida de bordas e contornos.

Referências

- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(11):2274–2282.
- Arbelaez, P. (2006). Boundary extraction in natural images using ultrametric contour maps. In 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), pages 182–182.
- Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2009). From contours to regions: An empirical evaluation. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 2294–2301.
- Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchical image segmentation. *IEEE Trans. Pattern Anal. Mach. Intell.*, 33(5):898–916.
- Domínguez, D. and Morales, R. R. (2016). *Image Segmentation: Advances*, volume 1.
- Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. *International Journal of Computer Vision*, 59(2):167–181.
- Fulkerson, B., Vedaldi, A., and Soatto, S. (2009). Class segmentation and object localization with superpixel neighborhoods. In 2009 IEEE 12th International Conference on Computer Vision, pages 670–677.
- Guimarães, S. J. F. and Patrocínio, Z. K. G. (2013). A graph-based hierarchical image segmentation method based on a statistical merging predicate. In Petrosino, A., editor, *Image Analysis and Processing ICIAP 2013*, pages 11–20, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Liu, T., Seyedhosseini, M., and Tasdizen, T. (2016). Image segmentation using hierarchical merge tree. *IEEE Transactions on Image Processing*, 25(10):4596–4607.
- Pont-Tuset, J. and Marques, F. (2016). Supervised evaluation of image segmentation and object proposal techniques. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 38(7):1465–1478.

Rokach, L. and Maimon, O. (2005). *Clustering Methods*, pages 321–352. Springer US, Boston, MA.

Science-Dictionary (2018). What is dendrogram?

Sibson, R. (1973). Slink: An optimally efficient algorithm for the single-link cluster method. *Comput. J.*, 16:30–34.

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(6):583–598.

Wang, M., Liu, X., Gao, Y., Ma, X., and Soomro, N. Q. (2017a). Superpixel segmentation: A benchmark. *Signal Processing: Image Communication*, 56:28 – 39.

Wang, X.-Y., Wu, C.-W., Xiang, K., and Chen, W. (2017b). Efficient local and global contour detection based on superpixels. *Journal of Visual Communication and Image Representation*, 48:77 – 87.

Wikipedia (2018a). Cluster analysis.

Wikipedia (2018b). Dendrogram.

Wikipedia (2018c). Hierarchical clustering.

Wikipedia (2018d). Precision and recall.

Zhang, H., Fritts, J. E., and Goldman, S. A. (2008). Image segmentation evaluation: A survey of unsupervised methods. *Computer Vision and Image Understanding*, 110(2):260 – 280.