# Genericity and efficiency in exact linear algebra with the FFLAS-FFPACK and LinBox libraries

Clément Pernet & the LinBox group

U. Joseph Fourier (Grenoble 1, Inria/LIP AriC)

Sage Days 66 Liège, 11 Mars 2015

#### Introduction

#### Computer Algebra



Computing **exactly** over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}, \mathsf{GF}(q), \mathsf{K}[X]$ .

- Symbolic manipulations.
- Applications where all digits matter:

- breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al. 14],
- building modular form databases to test the BSD conjecture [Stein 12],
- formal verification of Hales' proof of Kepler conjecture [Hales 05].

Efficiency mostly rely on linear algebra over  $\mathbb{Z}$  and  $\mathbb{Z}/p\mathbb{Z}$ .

### Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

### Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

#### Coefficient domains:

Word size: ▶ integers with a priori bounds

•  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 32$  bits

Multi-precision:  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 100, 200, 1000, 2000, \dots$  bits

Arbitrary precision:  $\mathbb{Z}, \mathbb{Q}$ 

Polynomials: K[X] for K any of the above

### Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

### Coefficient domains:

Word size: ▶ integers with a priori bounds

▶  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 32$  bits

Multi-precision:  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 100, 200, 1000, 2000, \dots$  bits

Arbitrary precision:  $\mathbb{Z}, \mathbb{Q}$ 

Polynomials: K[X] for K any of the above

Several implemenations for the same domain: better fits FFT, LinAlg, etc

#### Matrices can be

Dense: store all coefficients

Sparse: store the non-zero coefficients only

Black-box: no access to the storage, only apply to a vector

#### Coefficient domains:

Word size: ▶ integers with a priori bounds

▶  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 32$  bits

Multi-precision:  $\mathbb{Z}/p\mathbb{Z}$  for p of  $\approx 100, 200, 1000, 2000, \dots$  bits

Arbitrary precision:  $\mathbb{Z}, \mathbb{Q}$ 

Polynomials: K[X] for K any of the above

Several implemenations for the same domain: better fits FFT, LinAlg, etc

Requires genericity.

### Which computation?

Comp. Number Theory: CharPoly, LinSys, Echelon, over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$ , Dense

Graph Theory: MatMul, CharPoly, Det, over  $\mathbb{Z}$ , Sparse

Discrete log.: LinSys, over  $\mathbb{Z}/p\mathbb{Z}$ ,  $p \approx 120$  bits, Sparse

Integer Factorization: NullSpace, over  $\mathbb{Z}/2\mathbb{Z}$ , Sparse

Algebraic Attacks: Echelon, LinSys, over  $\mathbb{Z}/p\mathbb{Z}$ ,  $p\approx 20$  bits, Sparse & Dense

List decoding of RS codes: Lattice reduction, over  $\mathsf{GF}(q)[X]$ , Structured

### Which computation?

Comp. Number Theory: CharPoly, LinSys, Echelon, over  $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$ , Dense

Graph Theory: MatMul, CharPoly, Det, over  $\mathbb{Z}$ , Sparse

Discrete log.: LinSys, over  $\mathbb{Z}/p\mathbb{Z}$ ,  $p\approx 120$  bits, Sparse

Integer Factorization: NullSpace, over  $\mathbb{Z}/2\mathbb{Z}$ , Sparse

Algebraic Attacks: Echelon, LinSys, over  $\mathbb{Z}/p\mathbb{Z}$ ,  $p\approx 20$  bits, Sparse & Dense

List decoding of RS codes: Lattice reduction, over  $\mathsf{GF}(q)[X]$ , Structured

Requires high performance.

## Software stack for exact linear algebra

#### Arithmetic

GMP, MPIR: multiprecision integers and rationals

YGGOO, NTL: finite fields and polynomials



### Software stack for exact linear algebra

#### Arithmetic

GMP, MPIR: multiprecision integers and rationals

YGGOO, NTL: finite fields and polynomials

BLAS: Basic Linear Algebra
Subroutines (floating point)

FFLAS-FFPACK: Basic Exact Linear Algebra over  $\mathbb{Z}/p\mathbb{Z}$ ,

 $\begin{array}{ll} {\sf LinBox: \ Linear \ Algebra \ over \ } \mathbb{Z}, \mathbb{Z}/p\mathbb{Z} \\ {\sf \ and \ } {\sf \ K}[X] \end{array}$ 



### Software stack for exact linear algebra

#### Arithmetic

GMP, MPIR: multiprecision integers and rationals

PGIO, NTL: finite fields and polynomials

BLAS: Basic Linear Algebra
Subroutines (floating point)

FFLAS-FFPACK: Basic Exact Linear Algebra over  $\mathbb{Z}/p\mathbb{Z}$ ,

 $\begin{array}{c} {\sf LinBox: \ Linear \ Algebra \ over \ } \mathbb{Z}, \mathbb{Z}/p\mathbb{Z} \\ {\sf \ and \ } {\sf \ K}[X] \end{array}$ 



### Outline

- The LinBox library

### The LinBox project

- International collaboration: Canada, USA, France
- Strongly generic C++ code, focus on efficiency
- ► Free software (LGPL 2.1+)
- $\triangleright \approx 200 \text{ K loc}$
- http://linalg.org/

### The LinBox project

- International collaboration: Canada, USA, France
- Strongly generic C++ code, focus on efficiency
- ▶ Free software (LGPL 2.1+)
- $\approx 200 \text{ K loc}$
- http://linalg.org/

#### Milestones

```
1998 First design: Black box and sparse matrices
```

- 2003 Dense linear algebra using BLAS → FFLAS-FFPACK
- 2005 LinBox-1.0
- 2008 Integration in Sage
- 2012-.. Parallelization
  - 2014 SIMD & Sparse BLAS in FFLAS-FFPACK (Brice's talk)





#### Genericity w.r.t the domain

- modular arithmetic
- finite fields
- integers, rationals
- polynomials



### Genericity w.r.t the matrix type

- Dense
- Structured
- ▶ Blackbox  $(x \to Ax \text{ or block } X \to AX)$
- Sparse



#### Various algorithms

- Blackbox (Lanczos, Wiedemann, block variants)
- Gaussian elimination...
- BLAS modular linear algebra (FFPACK)
- ▶ p−adic, CRA, early termination...



#### Solutions

- solve
- ▶ det
- ▶ rank
- charpoly

# Architecture (Genericity)

```
Domain % element:
template <class Element>
class Modular<Element>; // Z/pZ
```

# Architecture (Genericity)

```
Domain % element:
template <class Element>
class Modular<Element>; // Z/pZ
Matrix % domain:
```

```
template <class Field>
class BlasMatrix<Field>; // dense matrix
```

# Architecture (Genericity)

```
Domain % element:

template <class Element>
class Modular<Element>; // Z/pZ
```

#### Matrix % domain:

```
template <class Field>
class BlasMatrix<Field>; // dense matrix
```

### Solutions % matrix:

# Architecture (Example)

```
Example: det.h
#include "linbox/integer.h"
#include "linbox/blackbox/blas-blackbox.h"
#include "linbox/solutions/det.h"
#include "linbox/util/matrix-stream.h"
typedef PID_integer
                        Domain;
Domain ZZ;
MatrixStream<Domain> ms( ZZ, input );
BlasBlackbox<Domain> A(ms);
Domain::Element det_A;
det(det_A, A);
```

# Architecture (Example)

```
Example: det.h
#include "linbox/field/modular.h"
#include "linbox/blackbox/sparse.h"
#include "linbox/solutions/det.h"
#include "linbox/util/matrix-stream.h"
typedef Modular < double > Domain;
Domain F(65537);
MatrixStream<Domain> ms( F , input );
SparseMatrix<Domain> A(ms);
Domain::Element det_A:
det(det_A, A);
```

### Outline

- The LinBox library
- Blackbox linear algebra
- 3 Dense linear algebra
- Parallelization



- Matrices viewed as linear operators
- ▶ algorithms based on matrix-vector apply only  $\leadsto$  cost E(n)



- Matrices viewed as linear operators
- ▶ algorithms based on matrix-vector apply only  $\leadsto$  cost E(n)



Structured matrices: Fast apply (e.g.  $E(n) = O(n \log n)$ )

Sparse matrices: Fast apply and no fill-in

- Matrices viewed as linear operators
- ▶ algorithms based on matrix-vector apply only  $\leadsto$  cost E(n)



Structured matrices: Fast apply (e.g.  $E(n) = O(n \log n)$ )

Sparse matrices: Fast apply and no fill-in

**~**→

- Iterative methods
- No access to coefficients, trace, no elimination
- ► Matrix multiplication ⇒ Black-box composition

### Example: blackbox composition

```
template <class Mat1, class Mat2>
class Compose {
  protected:
    Mat1 _A;
    Mat2 _B:
  public:
    Compose(Mat1& A, Mat2& B) : A(A), B(B) {}
    template < class InVec, class OutVec>
    OutVec& apply (const InVec& x) {
      return _A.apply(_B.apply(x));
```

```
Matrix-Vector Product: building block, \rightsquigarrow costs E(n)
Minimal polynomial: [Wiedemann 86] \rightsquigarrow iterative Krylov/Lanczos methods \rightsquigarrow O(nE(n)+n^2)
```

```
Matrix-Vector Product: building block, \rightarrow costs E(n)

Minimal polynomial: [Wiedemann 86] \rightarrow iterative Krylov/Lanczos methods \rightarrow O(nE(n)+n^2)

Rank, Det, Solve: [ Chen& Al. 02] \rightarrow reduces to MinPoly + preconditioners \rightarrow O(nE(n)+n^2)
```

```
Matrix-Vector Product: building block,
  \rightsquigarrow costs E(n)
Minimal polynomial: [Wiedemann 86]

→ iterative Krylov/Lanczos methods

  \rightsquigarrow O(nE(n) + n^2)
Rank, Det, Solve: [Chen& Al. 02]

→ reduces to MinPoly + preconditioners

  \rightsquigarrow O(nE(n) + n^2)
Characteristic Poly.: [Dumas P. Saunders 09]

→ reduces to MinPoly, Rank, . . .
```

Matrix-Vector Product: building block,  $\rightarrow$  costs E(n)

Minimal polynomial: [Wiedemann 86]

→ iterative Krylov/Lanczos methods

$$\leadsto O(nE(n) + n^2)$$

Rank, Det, Solve: [Chen& Al. 02]

 $\rightsquigarrow$  reduces to MinPoly + preconditioners

$$\leadsto O(nE(n) + n^2)$$

Characteristic Poly.: [Dumas P. Saunders 09]

→ reduces to MinPoly, Rank, . . .



### Outline

- The LinBox library
- 2 Blackbox linear algebra
- Oense linear algebra
- Parallelization

### Reductions: linear algebra's arithmetic complexity

< 1969:  $O(n^3)$  for everyone (Gauss, Householder, Danilevskii, etc)

# Reductions: linear algebra's arithmetic complexity

< 1969:  $O(n^3)$  for everyone (Gauss, Householder, Danilevskii, etc)

```
Matrix Product
                                       O(n^{2.807})
[Strassen 69]:
                                        O(n^{2.52})
[Schönhage 81]
                                       O(n^{2.375})
[Coppersmith, Winograd 90]
                                  O(n^{2.3728639})
  [Le Gall 14]
\rightsquigarrow \mathsf{MM}(n) = O(n^{\omega})
```

# Reductions: linear algebra's arithmetic complexity

< 1969:  $O(n^3)$  for everyone (Gauss, Householder, Danilevskii, etc)

```
Matrix Product
                                       O(n^{2.807})
[Strassen 69]:
                                        O(n^{2.52})
[Schönhage 81]
                                       O(n^{2.375})
[Coppersmith, Winograd 90]
  [Le Gall 14]
\rightsquigarrow \mathsf{MM}(n) = O(n^{\omega})
```

```
Other operations  [Strassen 69]: \qquad Inverse in \ O(n^\omega) \\ [Schönhage 72]: \qquad QR \ in \ O(n^\omega) \\ [Bunch, Hopcroft 74]: \qquad LU \ in \ O(n^\omega) \\ [Ibarra \& al. 82]: \qquad Rank \ in \ O(n^\omega) \\ [Keller-Gehrig 85]: \ CharPoly \ in \\ \qquad O(n^\omega \log n)
```

### Reductions





### Common mistrust

Fast linear algebra is

x never faster

numerically unstable

### Common mistrust

Fast linear algebra is

- never faster
- numerically unstable

### Lucky coincidence

- ✓ building blocks in theory happen to be the most efficient routines in practice
- → reduction trees are still relevant

### Common mistrust

Fast linear algebra is

- never faster
- numerically unstable

### Lucky coincidence

- ✓ building blocks in theory happen to be the most efficient routines in practice
- → reduction trees are still relevant

### Roadmap

- Tune building blocks
  - Improve existing reductions
    - ▶ leading constants
    - memory footprint
- Produce new reduction schemes

(CharPoly)

(MatMul)

(LU, Echelon)

### Ingedients [Dumas, Gautier and P. 02]

lacktriangle Compute over  $\mathbb Z$  and delay modular reductions

$$\rightarrow k \left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

### Ingedients [Dumas, Gautier and P. 02]

lacktriangle Compute over  $\mathbb Z$  and delay modular reductions

$$\rightarrow k \left(\frac{p-1}{2}\right)^2 < 2^{\text{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- ► Cache optimizations

→ numerical BLAS

### Ingedients [Dumas, Gautier and P. 02]

ightharpoonup Compute over  $\mathbb Z$  and delay modular reductions

$$\rightsquigarrow 9^{\ell} \left\lfloor \frac{k}{2^{\ell}} \right\rfloor \left( \frac{p-1}{2} \right)^2 < 2^{\mathsf{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- Cache optimizations

→ numerical BLAS

▶ Strassen-Winograd  $6n^{2.807} + \dots$ 

### Ingedients [Dumas, Gautier and P. 02]

ightharpoonup Compute over  $\mathbb{Z}$  and delay modular reductions

$$\rightsquigarrow 9^{\ell} \left\lfloor \frac{k}{2^{\ell}} \right\rfloor \left( \frac{p-1}{2} \right)^2 < 2^{\mathsf{mantissa}}$$

- Fastest integer arithmetic: double, float (SIMD and pipeline)
- Cache optimizations

→ numerical BLAS

▶ Strassen-Winograd  $6n^{2.807} + \dots$ 

### with memory efficient schedules [Boyer, Dumas, P. and Zhou 09]

Tradeoffs:



Fully in-place in  $7.2n^{2.807} + \dots$ 

Leading constant





p = 83,  $\rightsquigarrow 1 \mod / 10000$  mul.



p=83,  $\leadsto 1 \mod / 10000$  mul. p=821,  $\leadsto 1 \mod / 100$  mul.



 $p = 83, \rightsquigarrow 1 \mod / 10000 \text{ mul.}$   $p = 1898131, \rightsquigarrow 1 \mod / 10000 \text{ mul.}$  $p = 821, \rightsquigarrow 1 \mod / 100 \text{ mul.}$   $p = 18981307, \rightsquigarrow 1 \mod / 100 \text{ mul.}$ 

### Other routines

### LU decomposition

▶ Block recursive algorithm  $\leadsto$  reduces to MatMul  $\leadsto$   $O(n^{\omega})$ 

| n                             | 1000 | 5000 | 10000 | 15000 | 20000                     |
|-------------------------------|------|------|-------|-------|---------------------------|
| LAPACK-dgetrf<br>fflas-ffpack |      |      |       |       | 113.66<br><b>105.96</b> s |

Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

### Other routines

### LU decomposition

▶ Block recursive algorithm  $\leadsto$  reduces to MatMul  $\leadsto O(n^{\omega})$ 

| n                             | 1000 | 5000 | 10000 | 15000                   | 20000                     |
|-------------------------------|------|------|-------|-------------------------|---------------------------|
| LAPACK-dgetrf<br>fflas-ffpack |      |      |       | 48.78s<br><b>47.47s</b> | 113.66<br><b>105.96</b> s |

Intel Haswell E3-1270 3.0Ghz using OpenBLAS-0.2.9

### Characteristic Polynomial

▶ A new reduction to matrix multiplication in  $O(n^{\omega})$ .

| n             | 1000          | 2000          | 5000          | 10000          |
|---------------|---------------|---------------|---------------|----------------|
| magma-v2.19-9 | 1.38s         | 24.28s        | 332.7s        | 2497s          |
| fflas-ffpack  | <b>0.532s</b> | <b>2.936s</b> | <b>32.71s</b> | <b>219.2</b> s |

Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9

### Other routines

### LU decomposition

▶ Block recursive algorithm  $\leadsto$  reduces to MatMul  $\leadsto O(n^{\omega})$ 

| n                             | 1000       | 5000      | 10000    | 15000   | 20000 | ×7.63 |
|-------------------------------|------------|-----------|----------|---------|-------|-------|
| LAPACK-dgetrf<br>fflas-ffpack |            |           |          |         |       | ×6.59 |
| Intel Haswell E3-12           | 270 3.0Ghz | z using C | )penBLAS | 5-0.2.9 |       |       |

### Characteristic Polynomial

▶ A new reduction to matrix multiplication in  $O(n^{\omega})$ .

| n                                                    | 1000                   | 2000                    | 5000                    | 10000                  |
|------------------------------------------------------|------------------------|-------------------------|-------------------------|------------------------|
| magma-v2.19-9<br>fflas-ffpack                        | 1.38s<br><b>0.532s</b> | 24.28s<br><b>2.936s</b> | 332.7s<br><b>32.71s</b> | 2497s<br><b>219.2s</b> |
| Intel Ivy-Bridge i5-3320 2.6Ghz using OpenBLAS-0.2.9 |                        |                         |                         |                        |



### Outline

- The LinBox library
- 2 Blackbox linear algebra
- 3 Dense linear algebra
- Parallelization

### ANR HPAC project:

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

### ANR HPAC project:

### Ziad Sultan PhD. Thesis

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

### ANR HPAC project:

### Ziad Sultan PhD. Thesis

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

### ANR HPAC project:

### Ziad Sultan PhD. Thesis

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

### Parallel numerical linear algebra

- cost invariant wrt. splitting
  - $\triangleright O(n^3)$
  - → fine grain
  - → block iterative algorithms
- regular task load
- Numerical stability constraints

### ANR HPAC project:

### Ziad Sultan PhD. Thesis

- efficient kernels for exact linear algebra on SMP
- OSL, runtime as a plugin and composition
- attacking large scale challenges from cryptography

### Parallel numerical linear algebra

- cost invariant wrt. splitting
  - $\triangleright O(n^3)$
  - → fine grain
  - → block iterative algorithms
- regular task load
- Numerical stability constraints

### Exact linear algebra specificities

- cost affected by the splitting
  - $\triangleright O(n^{\omega})$  for  $\omega < 3$
  - modular reductions

  - → recursive algorithms
- rank deficiencies

# Ingredients for the parallelization

### Criteria

- good performances
- portability across architectures
- abstraction for simplicity

### Challenging key point: scheduling as a plugin

Program: only describes where the parallelism lies

Runtime: scheduling & mapping, depending on the context of execution

### 3 main models:

- Parallel loop [data parallelism]
- Fork-Join (independent tasks) [task parallelism]
- Opendent tasks with data flow dependencies [task parallelism]

### Data Parallelism

### **OMP**

```
for (int step = 0; step < 2; ++step){
#pragma omp parallel for
    for (int i = 0; i < count; ++i)
        A[i] = (B[i+1] + B[i-1] + 2.0*B[i])*0.25;
}</pre>
```

### Limitation: very un-efficient with recursive parallel regions

- Limited to iterative algorithms
- ▶ No composition of routines

## Task parallelism with fork-Join

- ► Task based program: **spawn** + **sync**
- Especially suited for recursive programs

```
OMP (since v3)
void fibonacci(long* result, long n) {
  if (n < 2)
    *result = n;
  else {
    long x, y;
#pragma omp task
    fibonacci (\&x, n-1);
    fibonacci (\&y, n-2);
#pragma omp taskwait
    *result = x + y;
```

# Task parallelism with fork-join

- ► Task based program: spawn + sync
- Especially suited for recursive programs

# Cilk+ long fibonacci(long n) { if (n < 2) return (n); else { long x, y; x = cilk\_spawn fibonacci(n - 1); y = fibonacci(n - 2); cilk\_sync; return (x + y); } }</pre>

# Task parallelism with fork Join

- ► Task based program: **spawn** + **sync**
- Especially suited for recursive programs

# Void fibonacci(long\* result, long n) { if (n<2) \*result = n; else { long x,y; #pragma kaapi task fibonacci(&x, n-1); fibonacci(&y, n-2); #pragma kaapi sync \*result = x + y; } }</pre>

# Tasks with dataflow dependencies

- Task based model
- remove explicit synchronizations
- deduce synchronizations from the read/write specifications
- Basic definition:
  - A task is ready for execution when all its inputs variables are ready
  - A variable is ready when it has been written
- Old languages: ID, SISAL...
- ▶ New languages/libraries: Athapascan [96], Kaapi [06], StarSs [07], StarPU [08], Quark [10], OMP since v4 [14]...

# Data flow graph: Cholesky factorization



### $\mathsf{SmpSS}$

```
#pragma smpss task write(array)
extern void compute( double* array, int count);
#pragma smpss task read(array)
extern void print( double* array, int count);
int main() {
    #pragma smpss start
        compute( array, count);
        print( array, count);
        // Read after write dependency
#pragma smpss sync
#pragma smpss finish
}
```

### Kaapi

# Existing solutions

|                                              | $//\ prog\ model$                                                    | Architecture                                                               | Target app.                          |
|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| OMP 1.0 [97]<br>OMP 3.0 [08]<br>OMP 4.0 [14] | Parallel loop<br>Fork-join<br>Rec. Data Flow                         | Multi-CPUs<br>Multi-CPUs<br>Multi-CPUs                                     | ForEach<br>+ Divide&Conquer          |
| Cilk[96]                                     | Fork-join                                                            | Multi-CPUs                                                                 | Divide&Conquer                       |
| Athapascan[98]                               | Rec. Data flow                                                       | ${\sf Clusters+multi-CPU}$                                                 | D&C, LinAlg                          |
| TBB[06]                                      | Parallel loop<br>Fork-join                                           | Multi-CPU                                                                  | D&C, LinAlg                          |
| Kaapi[06-12]                                 | Rec. Data flow<br>Parallel loop                                      | Multi-CPUs & GPUs                                                          | D&C, LinAlg<br>ForEach,              |
| StarSs [07]                                  | Flat data flow<br>Flat data flow<br>Flat data flow<br>Flat data flow | multi-CPUs (SMPSs)<br>multi-CPUs (SMPSs)<br>Cell (CellSs)<br>Grid (GridSs) | LinAlg<br>LinAlg<br>LinAlg<br>LinAlg |
| StarPU [09]                                  | Flat data flow                                                       | multi-CPUs&GPUs                                                            | LinAlg                               |
| Quark[10]                                    | Flat data flow                                                       | Multi-CPUs                                                                 | LinAlg                               |

# Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
  for (size_t k=0; k < N; k += NB)
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB; m < N; m += NB)
      cblas_dtrsm ( CblasRowMajor . CblasLeft . CblasLower . CblasNoTrans . CblasUnit .
       NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);
    for (size_t m=k+ NB; m < N; m += NB)
      cblas_dsvrk ( CblasRowMajor . CblasLower . CblasNoTrans .
       NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N);
      for (size_t n=k+NB: n < m: n += NB)
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
         NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
```

# Illustration: Cholesky factorization

```
void Cholesky( double* A, int N, size_t NB ) {
#pragma omp parallel
#pragma omp single nowait
  for (size_t k=0; k < N; k += NB)
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB; m < N; m += NB)
#pragma omp task firstprivate(k, m) shared(A)
      cblas_dtrsm ( CblasRowMajor . CblasLeft . CblasLower . CblasNoTrans . CblasUnit .
        NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);
#pragma omp taskwait // Barrier: no concurrency with next tasks
    for (size_t m=k+ NB: m < N: m += NB)
#pragma omp task firstprivate(k, m) shared(A)
      cblas_dsvrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB. NB. -1.0. &A[m*N+k]. N. 1.0. &A[m*N+m]. N ):
      for (size_t n=k+NB: n < m: n += NB)
#pragma omp task firstprivate(k, m) shared(A)
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
          NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
#pragma omp taskwait // Barrier: no concurrency with tasks at iteration k+1
```













SYNC.



# Illustration: Cholesky factorization

```
void Cholesky ( double * A, int N, size_t NB ){
#pragma kaapi parallel
  for (size_t k=0; k < N; k += NB)
#pragma kaapi task readwrite(&A[k*N+k]{Id=N; [NB][NB]})
    clapack_dpotrf( CblasRowMajor, CblasLower, NB, &A[k*N+k], N );
    for (size_t m=k+ NB; m < N; m += NB)
\#pragma kaapi task read(&A[k*N+k]{Id=N;[NB][NB]}) readwrite(&A[m*N+k]{Id=N;[NB][NB]})
      cblas_dtrsm ( CblasRowMajor, CblasLeft, CblasLower, CblasNoTrans, CblasUnit,
        NB, NB, 1., &A[k*N+k], N, &A[m*N+k], N);
    for (size_t m=k+ NB: m < N: m += NB)
\#pragma kaapi task read(&A[m*N+k]{Id=N;[NB][NB]}) readwrite(&A[m*N+m]{Id=N; [NB][NB]})
      cblas_dsvrk ( CblasRowMajor, CblasLower, CblasNoTrans,
        NB, NB, -1.0, &A[m*N+k], N, 1.0, &A[m*N+m], N);
      for (size_t n=k+NB: n < m: n += NB)
#pragma kaapi task read(&A[m*N+k]{Id=N; [NB][NB]}, &A[n*N+k]{Id=N; [NB][NB]})\
                         readwrite(&A[m*N+n]{Id=N; [NB][NB]})
        cblas_dgemm ( CblasRowMajor, CblasNoTrans, CblasTrans,
          NB, NB, NB, -1.0, &A[m*N+k], N, &A[n*N+k], N, 1.0, &A[m*N+n], N);
  // Implicit barrier only at the end of Kaapi parallel region
```















## A DSL for parallel FFLAS-FFPACK

### Difficult choice for a parallel language and runtime

### OpenMP:

- Data parallelism (limited: no composition nor recursion)
- Fork-Join model satisfactory (was slow until v4.0)
- ▶ Dataflow dependencies: only recently (v4.0). Limited language for LinAlg data.

#### Cilk, TBB:

▶ Fork-join task model

### Kaapi:

- Efficient tasks (lightweight)
- Replacement implementation for OMPv3 (libkomp).
- Better dataflow semantic, but still not accessible through OMP
- still protypical

### DSL for FFLAS-FFPACK

### A unique programming language for parallelization

- Annotation (using macros)
- Supporting tasks with data flow dependencies
- fall back to fork-join model
- addresses: OMP v3,4, Kaapi, Cilk

```
// G = P3 [ L3 ] [ U3 V3 ] Q3
      [ M3 ]
TASK (MODE (CONSTREFERENCE (Fi, G, Q3, P3, R3)
            WRITE (R3, P3, Q3) READWRITE(G[0])),
      R3 = pPLUQ (Fi. Diag. M-M2, N2-R1, G. Ida. P3, Q3, nt/2)):
// H <- A4 - ED
TASK ( MODE (CONSTREFERENCE (Fi, A3, A2, A4, pWH)
            READ (M2. N2. R1. A3[0]. A2[0])
            READWRITE(A4[0])),
      fgemm (Fi, FFLAS:: FflasNoTrans, FFLAS:: FflasNoTrans, M-M2, N-N2, R1,
             Fi.mOne, A3, Ida, A2, Ida, Fi.one, A4, Ida, pWH));
CHECK_DEPENDENCIES:
   [ H1 H2 ] <- P3^T H Q2^T
// [ H3 H4 ]
TASK( MODE(READ(P3, Q2)
           CONSTREFERENCE (Fi, A4, Q2, P3)
           READWRITE (A4[0])),
      papplyP (Fi, FFLAS:: FflasRight, FFLAS:: FflasTrans, M-M2, 0, N-N2, A4, Ida, Q2);
      papplyP (Fi, FFLAS:: FflasLeft, FFLAS:: FflasNoTrans, N-N2, 0, M-M2, A4, Ida, P3););
CHECK_DEPENDENCIES;
```

## Parallel matrix multiplication



#### Dumas, Gautier, P. and Sultan 14





## Parallel matrix multiplication



#### Dumas, Gautier, P. and Sultan 14





## Parallel matrix multiplication



#### Dumas, Gautier, P. and Sultan 14





### Gaussian elimination



### Gaussian elimination



Slab recursive FFLAS-FFPACK



Tile recursive FFLAS-FFPACK

▶ Prefer recursive algorithms

## Gaussian elimination



Tile recursive FFLAS-FFPACK

- ▶ Prefer recursive algorithms
- ▶ Better data locality

Dumas, Gautier, P. and Sultan 14

Comparing numerical efficiency (no modulo)



Dumas, Gautier, P. and Sultan 14

Comparing numerical efficiency (no modulo)



Dumas, Gautier, P. and Sultan 14

Comparing numerical efficiency (no modulo)





Dumas, Gautier, P. and Sultan 14

Over the finite field  $\mathbb{Z}/131071\mathbb{Z}$ 





#### Dumas, Gautier, P. and Sultan 14

Over the finite field  $\mathbb{Z}/131071\mathbb{Z}$ 



Thank You.