

# Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability

**Enhanced Product** 

# ADuM3400-EP/ADuM3401-EP/ADuM3402-EP

### **FEATURES**

Enhanced system-level ESD performance per IEC 61000-4-x Low power operation

- 5 V operation
  - 1.4 mA per channel maximum at 0 Mbps to 2 Mbps
  - 4.3 mA per channel maximum at 10 Mbps
- 3.3 V operation
  - 0.9 mA per channel maximum at 0 Mbps to 2 Mbps
  - 2.4 mA per channel maximum at 10 Mbps

High common-mode transient immunity: >25 kV/ $\mu s$ 

Safety and regulatory approvals (pending)

UL recognition: 2500 V rms for 1 minute per UL 1577

**CSA Component Acceptance Notice 5A** 

**VDE** certificate of conformity

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

 $V_{IORM} = 560 V peak$ 

### **ENHANCED FEATURES**

Supports defense and aerospace applications (AQEC standard)
Military temperature range (-55°C to +125°C)
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

### **APPLICATIONS**

General-purpose multichannel isolation SPI/data converter isolation RS-232/RS-422/RS-485 transceivers Industrial field bus isolation

### **GENERAL DESCRIPTION**

The ADuM3400-EP/ADuM3401-EP/ADuM3402-EP¹ are 4-channel digital isolators based on the Analog Devices, Inc., *i*Coupler® technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.

The ADuM3400-EP/ADuM3401-EP/ADuM3402-EP isolators provide four independent isolation channels in a variety of channel configurations and data rates (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 3.135 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier.

Protected by US Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

### **FUNCTIONAL BLOCK DIAGRAMS**



Figure 1. ADuM3400-EP Functional Block Diagram



Figure 2. ADuM3401-EP Functional Block Diagram



Figure 3. ADuM3402-EP Functional Block Diagram

The ADuM3400-EP/ADuM3401-EP/ADuM3402-EP isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions.

The ADuM3400-EP/ADuM3401-EP/ADuM3402-EP isolators contain various circuit and layout changes to provide increased capability relative to system-level IEC 61000-4-x testing (ESD/burst/surge). The precise capability in these tests is determined by the design and layout of the user's board or module. For more information, see the AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

Additional application and technical information can be found in the ADuM3400/ADuM3401/ADuM3402 data sheet.

# **Enhanced Product**

# **TABLE OF CONTENTS**

| Features                                                             | I |
|----------------------------------------------------------------------|---|
| Enhanced Features                                                    | 1 |
| Applications                                                         | 1 |
| General Description                                                  | 1 |
| Functional Block Diagrams                                            | 1 |
| Revision History                                                     | 2 |
| Specifications                                                       | 3 |
| Electrical Characteristics—5 V Operation                             | 3 |
| Electrical Characteristics—3.3 V Operation                           | 4 |
| Electrical Characteristics—Mixed 5 V/3.3 V or 3.3 V/5 V<br>Operation | 6 |
| Package Characteristics                                              | 9 |

| Regulatory Information                                            | ٠۶ |
|-------------------------------------------------------------------|----|
| Insulation and Safety-Related Specifications                      | 9  |
| DIN V VDE V 0884-10 (VDE V 0884-10) Insulation<br>Characteristics | 10 |
| Recommended Operating Conditions                                  | 10 |
| Absolute Maximum Ratings                                          | 11 |
| ESD Caution                                                       | 11 |
| Pin Configurations and Function Descriptions                      | 12 |
| Typical Performance Characteristics                               | 15 |
| Outline Dimensions                                                | 17 |
| Ordering Guide                                                    | 17 |

### **REVISION HISTORY**

7/15—Revision 0: Initial Version

**Test Conditions/Comments** 

Max Unit

٧

0.1

0.0

 $I_{Ox}^2 = 20 \mu A$ ,  $V_{Ix} = V_{IxL}^4$ 

Тур

## **SPECIFICATIONS**

**Logic Low Output Voltages** 

Table 1.

Parameter

### **ELECTRICAL CHARACTERISTICS—5 V OPERATION**

All voltages are relative to their respective ground. 4.5 V  $\leq$  V<sub>DD1</sub>  $\leq$  5.5 V and 4.5 V  $\leq$  V<sub>DD2</sub>  $\leq$  5.5 V. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at T<sub>A</sub> = 25°C, V<sub>DD1</sub> = V<sub>DD2</sub> = 5 V.

Min

Symbol

| DC SPECIFICATIONS                                   |                                               |                                               |       |      |    |                                                |
|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------|------|----|------------------------------------------------|
| Input Supply Current per Channel, Quiescent         | I <sub>DDI (Q)</sub>                          |                                               | 0.57  | 0.83 | mA |                                                |
| Output Supply Current per Channel, Quiescent        | I <sub>DDO (Q)</sub>                          |                                               | 0.29  | 0.35 | mA |                                                |
| ADuM3400-EP, Total Supply Current <sup>1</sup>      |                                               |                                               |       |      |    |                                                |
| DC to 2 Mbps                                        |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (Q)</sub>                          |                                               | 2.9   | 3.5  | mA | DC to 1 MHz logic signal frequency             |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (Q)</sub>                          |                                               | 1.2   | 1.9  | mA | DC to 1 MHz logic signal frequency             |
| 10 Mbps                                             |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (10)</sub>                         |                                               | 9.0   | 11.6 | mA | 5 MHz logic signal frequency                   |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (10)</sub>                         |                                               | 3.0   | 5.5  | mA | 5 MHz logic signal frequency                   |
| ADuM3401-EP, Total Supply Current <sup>1</sup>      |                                               |                                               |       |      |    |                                                |
| DC to 2 Mbps                                        |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (Q)</sub>                          |                                               | 2.5   | 3.2  | mA | DC to 1 MHz logic signal frequency             |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (Q)</sub>                          |                                               | 1.6   | 2.4  | mA | DC to 1 MHz logic signal frequency             |
| 10 Mbps                                             |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (10)</sub>                         |                                               | 7.4   | 10.6 | mA | 5 MHz logic signal frequency                   |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (10)</sub>                         |                                               | 4.4   | 6.5  | mA | 5 MHz logic signal frequency                   |
| ADuM3402-EP, Total Supply Current <sup>1</sup>      |                                               |                                               |       |      |    |                                                |
| DC to 2 Mbps                                        |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current | I <sub>DD1 (Q)</sub> , I <sub>DD2 (Q)</sub>   |                                               | 2.0   | 2.8  | mA | DC to 1 MHz logic signal frequency             |
| 10 Mbps                                             |                                               |                                               |       |      |    |                                                |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current | I <sub>DD1 (10)</sub> , I <sub>DD2 (10)</sub> |                                               | 6.0   | 7.5  | mA | 5 MHz logic signal frequency                   |
| For All Models                                      |                                               |                                               |       |      |    |                                                |
| Input Leakage per Channel                           | I <sub>I</sub>                                | -10                                           | +0.01 | +10  | μΑ | $0 \text{ V} \leq V_{lx} \leq V_{DDx}$         |
| V <sub>Ex</sub> Input Pull-Up Current               | I <sub>PU</sub>                               | -10                                           | -3    |      |    | $V_{Ex} = 0 V$                                 |
| Tristate Leakage Current per Channel                | loz                                           | -10                                           | +0.01 | +10  | μΑ |                                                |
| Logic High Input Threshold                          | $V_{\text{IH}}$ , $V_{\text{EH}}$             | 2.0                                           |       |      | V  |                                                |
| Logic Low Input Threshold                           | $V_{\text{IL}}, V_{\text{EL}}$                |                                               |       | 8.0  | V  |                                                |
| Logic High Output Voltages                          | V <sub>OAH</sub> , V <sub>OBH</sub>           | (V <sub>DD1</sub> or V <sub>DD2</sub> ) – 0.1 | 5.0   |      | V  | $I_{Ox}^2 = -20 \ \mu A, V_{Ix} = V_{IxH}^3$   |
|                                                     | $V_{\text{OCH}}$ , $V_{\text{ODH}}$           | $(V_{DD1} \text{ or } V_{DD2}) -$             | 4.8   |      | V  | $I_{0x}^2 = -4 \text{ mA}, V_{1x} = V_{1xH}^3$ |
|                                                     |                                               |                                               |       |      |    |                                                |

|                                               | $V_{\text{OCL}}, V_{\text{ODL}}$    |    | 0.04 | 0.1 | V     | $I_{Ox}^2 = 400 \ \mu A, V_{Ix} = V_{IxL}^4$  |
|-----------------------------------------------|-------------------------------------|----|------|-----|-------|-----------------------------------------------|
|                                               |                                     |    | 0.2  | 0.4 | V     | $I_{Ox}^2 = 4 \text{ mA}, V_{Ix} = V_{IxL}^4$ |
| SWITCHING SPECIFICATIONS                      |                                     |    |      |     |       |                                               |
| Minimum Pulse Width                           | PW                                  |    |      | 100 | ns    | $C_L = 15$ pF, CMOS signal levels             |
| Maximum Data Rate                             |                                     | 10 |      |     | Mbps  | $C_L = 15$ pF, CMOS signal levels             |
| Propagation Delay                             | t <sub>PHL</sub> , t <sub>PLH</sub> | 20 | 32   | 50  | ns    | $C_L = 15$ pF, CMOS signal levels             |
| Pulse Width Distortion, $ t_{PLH} - t_{PHL} $ | PWD                                 |    |      | 3   | ns    | $C_L = 15$ pF, CMOS signal levels             |
| Change vs. Temperature                        |                                     |    | 5    |     | ps/°C | $C_L = 15$ pF, CMOS signal levels             |
| Propagation Delay Skew                        | t <sub>PSK</sub>                    |    |      | 15  | ns    | $C_L = 15$ pF, CMOS signal levels             |
| Channel to Channel Matching                   |                                     |    |      |     |       |                                               |
| Codirectional Channels                        | t <sub>PSKCD</sub>                  |    |      | 3   | ns    | $C_L = 15$ pF, CMOS signal levels             |
| Opposing Directional Channels                 | <b>t</b> <sub>PSKOD</sub>           |    |      | 6   | ns    | $C_L = 15$ pF, CMOS signal levels             |
|                                               | <u>.</u>                            |    |      |     |       |                                               |

0.4

 $V_{OAL}$ ,  $V_{OBL}$ 

| Parameter                                       | Symbol                              | Min | Тур  | Max | Unit    | Test Conditions/Comments                                                            |
|-------------------------------------------------|-------------------------------------|-----|------|-----|---------|-------------------------------------------------------------------------------------|
| For All Models                                  |                                     |     |      |     |         |                                                                                     |
| Output Propagation Delay                        |                                     |     |      |     |         |                                                                                     |
| Disable (High/Low to High Impedance)            | t <sub>PHZ</sub> , t <sub>PLH</sub> |     | 6    | 8   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Enable (High Impedance to High/Low)             | t <sub>PZH</sub> , t <sub>PZL</sub> |     | 6    | 8   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Output Rise/Fall Time (10% to 90%)              | t <sub>R</sub> /t <sub>F</sub>      |     | 2.5  |     | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Common-Mode Transient Immunity                  |                                     |     |      |     |         |                                                                                     |
| Logic High Output⁵                              | CM <sub>H</sub>                     | 25  | 35   |     | kV/μs   | $V_{lx} = V_{DD1}/V_{DD2}, V_{CM} = 1000 \text{ V},$<br>transient magnitude = 800 V |
| Logic Low Output <sup>5</sup>                   | CM <sub>L</sub>                     | 25  | 35   |     | kV/μs   | $V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$<br>transient magnitude = 800 V     |
| Refresh Rate                                    | $f_r$                               |     | 1.2  |     | Mbps    | _                                                                                   |
| Dynamic Supply Current per Channel <sup>6</sup> |                                     |     |      |     |         |                                                                                     |
| Input                                           | I <sub>DDI (D)</sub>                |     | 0.20 |     | mA/Mbps |                                                                                     |
| Output                                          | I <sub>DDO (D)</sub>                |     | 0.05 |     | mA/Mbps |                                                                                     |

<sup>&</sup>lt;sup>1</sup> The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V<sub>DD1</sub> and V<sub>DD2</sub> supply currents as a function of data rate for ADuM3400-EP/ADuM3401-EP/ADuM3402-EP channel configurations.

### **ELECTRICAL CHARACTERISTICS—3.3 V OPERATION**

All voltages are relative to their respective ground.  $3.135 \text{ V} \le \text{V}_{\text{DD1}} \le 3.6 \text{ V}$  and  $3.135 \text{ V} \le \text{V}_{\text{DD2}} \le 3.6 \text{ V}$ . All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at  $T_A = 25^{\circ}\text{C}$ ,  $V_{\text{DD1}} = V_{\text{DD2}} = 3.3 \text{ V}$ .

Table 2.

| Parameter                                           | Symbol                                        | Min | Тур  | Max  | Unit | Test Conditions/Comments           |
|-----------------------------------------------------|-----------------------------------------------|-----|------|------|------|------------------------------------|
| DC SPECIFICATIONS                                   |                                               |     |      |      |      |                                    |
| Input Supply Current per Channel, Quiescent         | I <sub>DDI (Q)</sub>                          |     | 0.31 | 0.49 | mA   |                                    |
| Output Supply Current per Channel, Quiescent        | I <sub>DDO (Q)</sub>                          |     | 0.19 | 0.27 | mA   |                                    |
| ADuM3400-EP, Total Supply Current <sup>1</sup>      |                                               |     |      |      |      |                                    |
| DC to 2 Mbps                                        |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (Q)</sub>                          |     | 1.6  | 2.1  | mA   | DC to 1 MHz logic signal frequency |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (Q)</sub>                          |     | 0.7  | 1.2  | mA   | DC to 1 MHz logic signal frequency |
| 10 Mbps                                             |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (10)</sub>                         |     | 4.8  | 7.1  | mA   | 5 MHz logic signal frequency       |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (10)</sub>                         |     | 1.8  | 2.3  | mA   | 5 MHz logic signal frequency       |
| ADuM3401-EP, Total Supply Current <sup>1</sup>      |                                               |     |      |      |      |                                    |
| DC to 2 Mbps                                        |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (Q)</sub>                          |     | 1.4  | 1.9  | mA   | DC to 1 MHz logic signal frequency |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (Q)</sub>                          |     | 0.9  | 1.5  | mA   | DC to 1 MHz logic signal frequency |
| 10 Mbps                                             |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                     | I <sub>DD1 (10)</sub>                         |     | 4.1  | 5.6  | mA   | 5 MHz logic signal frequency       |
| V <sub>DD2</sub> Supply Current                     | I <sub>DD2 (10)</sub>                         |     | 2.5  | 3.3  | mA   | 5 MHz logic signal frequency       |
| ADuM3402-EP, Total Supply Current <sup>1</sup>      |                                               |     |      |      |      |                                    |
| DC to 2 Mbps                                        |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current | I <sub>DD1 (Q)</sub> , I <sub>DD2 (Q)</sub>   |     | 1.2  | 1.7  | mA   | DC to 1 MHz logic signal frequency |
| 10 Mbps                                             |                                               |     |      |      |      |                                    |
| V <sub>DD1</sub> or V <sub>DD2</sub> Supply Current | I <sub>DD1 (10)</sub> , I <sub>DD2 (10)</sub> |     | 3.3  | 4.4  | mA   | 5 MHz logic signal frequency       |

 $<sup>^{2}</sup>$  I<sub>Ox</sub> is the Channel x output current, where x = A, B, C, or D.

 $<sup>^3</sup>$  V<sub>IxH</sub> is the input side logic high.

<sup>&</sup>lt;sup>4</sup> V<sub>lxL</sub> is the input side logic low.

 $<sup>^5</sup>$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining the output voltage ( $V_{OUT}$ ) > 0.8  $V_{DD2}$ . CM<sub>L</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining  $V_{OUT}$  < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

<sup>&</sup>lt;sup>6</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions.

# **Enhanced Product**

# ADuM3400-EP/ADuM3401-EP/ADuM3402-EP

| Parameter                                                    | Symbol                              | Min                                           | Тур   | Max | Unit    | Test Conditions/Comments                                                            |
|--------------------------------------------------------------|-------------------------------------|-----------------------------------------------|-------|-----|---------|-------------------------------------------------------------------------------------|
| For All Models                                               |                                     |                                               | ·     |     |         |                                                                                     |
| Input Leakage per Channel                                    | l <sub>1</sub>                      | -10                                           | +0.01 | +10 | μΑ      | $0 \text{ V} \leq V_{lx} \leq V_{DDx}$                                              |
| V <sub>Ex</sub> Input Pull-Up Current                        | I <sub>PU</sub>                     | -10                                           | -3    |     |         | $V_{Ex} = 0 V$                                                                      |
| Tristate Leakage Current per Channel                         | loz                                 | -10                                           | +0.01 | +10 | μΑ      |                                                                                     |
| Logic High Input Threshold                                   | $V_{\text{IH}}, V_{\text{EH}}$      | 1.6                                           |       |     | V       |                                                                                     |
| Logic Low Input Threshold                                    | VIL, VEL                            |                                               |       | 0.4 | V       |                                                                                     |
| Logic High Output Voltages                                   | V <sub>OAH</sub> , V <sub>OBH</sub> | (V <sub>DD1</sub> or V <sub>DD2</sub> ) – 0.1 | 3.3   |     | V       | $I_{0x}^2 = -20 \ \mu A, V_{Ix} = V_{IxH}^3$                                        |
|                                                              | V <sub>OCH</sub> , V <sub>ODH</sub> | (V <sub>DD1</sub> or V <sub>DD2</sub> ) – 0.4 | 2.8   |     | V       | $I_{Ox}^2 = -4 \text{ mA}, V_{Ix} = V_{IxH}^3$                                      |
| Logic Low Output Voltages                                    | Voal, Vobl                          |                                               | 0.0   | 0.1 | V       | $I_{Ox}^2 = 20 \mu A, V_{Ix} = V_{IxL}^4$                                           |
|                                                              | $V_{\text{OCL}}$ , $V_{\text{ODL}}$ |                                               | 0.04  | 0.1 | V       | $I_{Ox}^2 = 400  \mu A, V_{Ix} = V_{IxL}^4$                                         |
|                                                              |                                     |                                               | 0.2   | 0.4 | V       | $I_{Ox}^2 = 4 \text{ mA}, V_{Ix} = V_{IxL}^4$                                       |
| SWITCHING SPECIFICATIONS                                     |                                     |                                               |       |     |         |                                                                                     |
| Minimum Pulse Width                                          | PW                                  |                                               |       | 100 | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Maximum Data Rate                                            |                                     | 10                                            |       |     | Mbps    | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Propagation Delay                                            | t <sub>PHL</sub> , t <sub>PLH</sub> | 20                                            | 38    | 50  | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Pulse Width Distortion,  t <sub>PLH</sub> - t <sub>PHL</sub> | PWD                                 |                                               |       | 3   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Change vs. Temperature                                       |                                     |                                               | 5     |     | ps/°C   | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Propagation Delay Skew                                       | t <sub>PSK</sub>                    |                                               |       | 22  | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Channel to Channel Matching                                  |                                     |                                               |       |     |         |                                                                                     |
| Codirectional Channels                                       | t <sub>PSKCD</sub>                  |                                               |       | 3   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Opposing Directional Channels                                | <b>t</b> <sub>PSKOD</sub>           |                                               |       | 6   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| For All Models                                               |                                     |                                               |       |     |         |                                                                                     |
| Output Propagation Delay                                     |                                     |                                               |       |     |         |                                                                                     |
| Disable (High/Low to High Impedance)                         | t <sub>PHZ</sub> , t <sub>PLH</sub> |                                               | 6     | 8   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Enable (High Impedance to High/Low)                          | t <sub>PZH</sub> , t <sub>PZL</sub> |                                               | 6     | 8   | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Output Rise/Fall Time (10% to 90%)                           | t <sub>R</sub> /t <sub>F</sub>      |                                               | 3     |     | ns      | $C_L = 15 \text{ pF, CMOS signal levels}$                                           |
| Common-Mode Transient Immunity <sup>5</sup>                  |                                     |                                               |       |     |         |                                                                                     |
| Logic High Output                                            | СМн                                 | 25                                            | 35    |     | kV/μs   | $V_{lx} = V_{DD1}/V_{DD2}, V_{CM} = 1000 \text{ V},$<br>transient magnitude = 800 V |
| Logic Low Output                                             | CM <sub>L</sub>                     | 25                                            | 35    |     | kV/μs   | $V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$<br>transient magnitude = 800 V     |
| Refresh Rate                                                 | fr                                  |                                               | 1.1   |     | Mbps    |                                                                                     |
| Dynamic Supply Current per Channel <sup>6</sup>              |                                     |                                               |       |     |         |                                                                                     |
| Input                                                        | I <sub>DDI (D)</sub>                |                                               | 0.10  |     | mA/Mbps |                                                                                     |
| Output                                                       | I <sub>DDO (D)</sub>                |                                               | 0.03  |     | mA/Mbps |                                                                                     |

<sup>&</sup>lt;sup>1</sup> The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V<sub>DD1</sub> and V<sub>DD2</sub> supply currents as a function of data rate for ADuM3400-EP/ADuM3401-EP/ADuM3402-EP channel configurations.

 $<sup>^{2}</sup>$  l<sub>ox</sub> is the Channel x output current, where x = A, B, C, or D.

 $<sup>^3</sup>$   $V_{IxH}$  is the input side logic high.

 $<sup>^4\,</sup>V_{lxL}$  is the input side logic low.

 $<sup>^5</sup>$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining  $V_{OUT} > 0.8 \ V_{DD2}$ . CM<sub>L</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining  $V_{OUT} < 0.8 \ V$ . The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

<sup>&</sup>lt;sup>6</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per channel supply current for unloaded and loaded conditions.

### **ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OR 3.3 V/5 V OPERATION**

All voltages are relative to their respective ground. For 5 V/3.3 V operation,  $4.5 \text{ V} \le V_{DD1} \le 5.5 \text{ V}$  and  $3.135 \text{ V} \le V_{DD2} \le 3.6 \text{ V}$ , and for 3.3 V/5 V operation,  $3.135 \text{ V} \le V_{DD1} \le 3.6 \text{ V}$  and  $4.5 \text{ V} \le V_{DD2} \le 5.5 \text{ V}$ . All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at  $T_A = 25^{\circ}\text{C}$ ;  $V_{DD1} = 3.3 \text{ V}$ ,  $V_{DD2} = 5 \text{ V}$  or  $V_{DD1} = 5 \text{ V}$ ,  $V_{DD2} = 3.3 \text{ V}$ .

Table 3.

| Parameter                                      | Symbol                | Min | Тур  | Max  | Unit | <b>Test Conditions/Comments</b>    |
|------------------------------------------------|-----------------------|-----|------|------|------|------------------------------------|
| DC SPECIFICATIONS                              |                       |     |      |      |      |                                    |
| Input Supply Current per Channel, Quiescent    | I <sub>DDI (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 0.57 | 0.83 | mA   |                                    |
| 3.3 V/5 V Operation                            |                       |     | 0.31 | 0.49 | mA   |                                    |
| Output Supply Current per Channel, Quiescent   | I <sub>DDO (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 0.29 | 0.27 | mA   |                                    |
| 3.3 V/5 V Operation                            |                       |     | 0.19 | 0.35 | mA   |                                    |
| ADuM3400-EP, Total Supply Current <sup>1</sup> |                       |     |      |      |      |                                    |
| DC to 2 Mbps                                   |                       |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                | I <sub>DD1 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 2.9  | 3.5  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 1.6  | 2.1  | mA   | DC to 1 MHz logic signal frequency |
| V <sub>DD2</sub> Supply Current                | I <sub>DD2 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 0.7  | 1.2  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 1.2  | 1.9  | mA   | DC to 1 MHz logic signal frequency |
| 10 Mbps                                        |                       |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                | I <sub>DD1 (10)</sub> |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 9.0  | 11.6 | mA   | 5 MHz logic signal frequency       |
| 3.3 V/5 V Operation                            |                       |     | 4.8  | 7.1  | mA   | 5 MHz logic signal frequency       |
| V <sub>DD2</sub> Supply Current                | I <sub>DD2 (10)</sub> |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 1.8  | 2.3  | mA   | 5 MHz logic signal frequency       |
| 3.3 V/5 V Operation                            |                       |     | 3.0  | 5.5  | mA   | 5 MHz logic signal frequency       |
| ADuM3401-EP, Total Supply Current <sup>1</sup> |                       |     |      |      |      |                                    |
| DC to 2 Mbps                                   |                       |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                | I <sub>DD1 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 2.5  | 3.2  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 1.4  | 1.9  | mA   | DC to 1 MHz logic signal frequency |
| V <sub>DD2</sub> Supply Current                | I <sub>DD2 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 0.9  | 1.5  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 1.6  | 2.4  | mA   | DC to 1 MHz logic signal frequency |
| 10 Mbps                                        |                       |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                | I <sub>DD1 (10)</sub> |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 7.4  | 10.6 | mA   | 5 MHz logic signal frequency       |
| 3.3 V/5 V Operation                            |                       |     | 4.1  | 5.6  | mA   | 5 MHz logic signal frequency       |
| V <sub>DD2</sub> Supply Current                | I <sub>DD2 (10)</sub> |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 2.5  | 3.3  | mA   | 5 MHz logic signal frequency       |
| 3.3 V/5 V Operation                            |                       |     | 4.4  | 6.5  | mA   | 5 MHz logic signal frequency       |
| ADuM3402-EP, Total Supply Current <sup>1</sup> |                       |     |      |      |      |                                    |
| DC to 2 Mbps                                   |                       |     |      |      |      |                                    |
| V <sub>DD1</sub> Supply Current                | I <sub>DD1 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 2.0  | 2.8  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 1.2  | 1.7  | mA   | DC to 1 MHz logic signal frequency |
| V <sub>DD2</sub> Supply Current                | I <sub>DD2 (Q)</sub>  |     |      |      |      |                                    |
| 5 V/3.3 V Operation                            |                       |     | 1.2  | 1.7  | mA   | DC to 1 MHz logic signal frequency |
| 3.3 V/5 V Operation                            |                       |     | 2.0  | 2.8  | mA   | DC to 1 MHz logic signal frequency |

| Parameter                             | Symbol                                     | Min                                           | Тур              | Max | Unit        | Test Conditions/Comments                                                               |
|---------------------------------------|--------------------------------------------|-----------------------------------------------|------------------|-----|-------------|----------------------------------------------------------------------------------------|
| 10 Mbps                               |                                            |                                               |                  |     |             |                                                                                        |
| V <sub>DD1</sub> Supply Current       | I <sub>DD1 (10)</sub>                      |                                               |                  |     |             |                                                                                        |
| 5 V/3.3 V Operation                   |                                            |                                               | 6.0              | 7.5 | mA          | 5 MHz logic signal frequency                                                           |
| 3.3 V/5 V Operation                   |                                            |                                               | 3.3              | 4.4 | mA          | 5 MHz logic signal frequency                                                           |
| V <sub>DD2</sub> Supply Current       | I <sub>DD2 (10)</sub>                      |                                               |                  |     |             |                                                                                        |
| 5 V/3.3 V Operation                   | (,,                                        |                                               | 3.3              | 4.4 | mA          | 5 MHz logic signal frequency                                                           |
| 3.3 V/5 V Operation                   |                                            |                                               | 6.0              | 7.5 | mA          | 5 MHz logic signal frequency                                                           |
| For All Models                        |                                            |                                               |                  |     |             |                                                                                        |
| Input Leakage per Channel             | I <sub>I</sub>                             | -10                                           | +0.01            | +10 | μA          | $0 \text{ V} \leq V_{\text{lx}} \leq V_{\text{DDx}}$                                   |
| V <sub>Ex</sub> Input Pull-Up Current | I <sub>PU</sub>                            | -10                                           | -3               |     | μ, ,        | $V_{Ex} = 0 V$                                                                         |
| Tristate Leakage Current per Channel  | loz                                        | -10                                           | +0.01            | +10 | μA          |                                                                                        |
| Logic High Input Threshold            | V <sub>IH</sub> , V <sub>EH</sub>          | 10                                            | 10.01            |     | p/ t        |                                                                                        |
| 5 V/3.3 V Operation                   | VIII, VEII                                 | 2.0                                           |                  |     | v           |                                                                                        |
| 3.3 V/5 V Operation                   |                                            | 1.6                                           |                  |     | v           |                                                                                        |
| Logic Low Input Threshold             | V <sub>IL</sub> , V <sub>EL</sub>          | 1                                             |                  |     | *           |                                                                                        |
| 5 V/3.3 V Operation                   | VIL, VEL                                   |                                               |                  | 0.8 | v           |                                                                                        |
| 3.3 V/5 V Operation                   |                                            |                                               |                  | 0.6 | V           |                                                                                        |
|                                       | V V                                        | (\\ 05\\ )                                    | (\\ 0*\\ )       | 0.4 |             | 1 2 - 20 - 4 1/ - 1/ 3                                                                 |
| Logic High Output Voltages            | V <sub>OAH</sub> , V <sub>OBH</sub>        | (V <sub>DD1</sub> or V <sub>DD2</sub> ) – 0.1 | (VDD1 Of VDD2)   |     | V           | $I_{Ox}^2 = -20 \mu A, V_{Ix} = V_{IxH}^3$                                             |
|                                       | Vocu Vopu                                  | $(V_{DD1} \text{ or } V_{DD2}) -$             | (Voos or Voos) – |     | v           | $I_{Ox}^2 = -4 \text{ mA}, V_{Ix} = V_{IxH}^3$                                         |
|                                       | VOCH, VODH                                 | 0.4                                           | 0.2              |     | V           |                                                                                        |
| Logic Low Output Voltages             | V <sub>OAL</sub> , V <sub>OBL</sub>        | 0.1                                           | 0.0              | 0.1 | V           | $I_{Ox}^2 = 20 \mu A, V_{Ix} = V_{IxL}^4$                                              |
| Logic Low Output Voltages             | V <sub>OCL</sub> , V <sub>ODL</sub>        |                                               | 0.04             | 0.1 | v           | $I_{Ox}^2 = 400  \mu A, V_{Ix} = V_{IxL}^4$                                            |
|                                       | VOCE/ VODE                                 |                                               | 0.2              | 0.4 | v           | $I_{Ox}^2 = 4 \text{ mA}, V_{Ix} = V_{IxL}^4$                                          |
| SWITCHING SPECIFICATIONS              |                                            |                                               | 0.2              | 0.1 | •           | IOX — I IIII V, V IX — V IXL                                                           |
| Minimum Pulse Width                   | PW                                         |                                               |                  | 100 | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| Maximum Data Rate                     | 1 VV                                       | 10                                            |                  | 100 | Mbps        | $C_L = 15 \text{ pF, CMOS signal levels}$<br>$C_L = 15 \text{ pF, CMOS signal levels}$ |
| Propagation Delay                     | + +                                        | 15                                            | 35               | 50  | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$<br>$C_L = 15 \text{ pF, CMOS signal levels}$ |
| · -                                   | t <sub>PHL</sub> , t <sub>PLH</sub><br>PWD | 13                                            | 33               |     |             | $C_L = 15 \text{ pF, CMOS signal levels}$<br>$C_L = 15 \text{ pF, CMOS signal levels}$ |
| Pulse Width Distortion,  tplh - tphl  | PWD                                        |                                               | _                | 3   | ns<br>ps/°C | $C_L = 15 \text{ pF, CMOS signal levels}$<br>$C_L = 15 \text{ pF, CMOS signal levels}$ |
| Change vs. Temperature                | _                                          |                                               | 5                | 22  |             | -                                                                                      |
| Propagation Delay Skew                | <b>t</b> <sub>PSK</sub>                    |                                               |                  | 22  | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| Channel to Channel Matching           |                                            |                                               |                  | _   |             | 6 45 5 61406 : 11 1                                                                    |
| Codirectional Channels                | <b>t</b> PSKCD                             |                                               |                  | 3   | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| Opposing Directional Channels         | <b>t</b> PSKOD                             |                                               |                  | 6   | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| For All Models                        |                                            |                                               |                  |     |             |                                                                                        |
| Output Propagation Delay              |                                            |                                               |                  | _   |             |                                                                                        |
| Disable (High/Low-to-High Impedance)  | t <sub>PHZ</sub> , t <sub>PLH</sub>        |                                               | 6                | 8   | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| Enable (High Impedance-to-High/Low)   | t <sub>PZH</sub> , t <sub>PZL</sub>        | 1                                             | 6                | 8   | ns          | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| Output Rise/Fall Time (10% to 90%)    | $t_R/t_f$                                  | 1                                             |                  |     |             | $C_L = 15 \text{ pF, CMOS signal levels}$                                              |
| 5 V/3.3 V Operation                   |                                            |                                               | 3.0              |     | ns          |                                                                                        |
| 3.3 V/5 V Operation                   |                                            |                                               | 2.5              |     | ns          |                                                                                        |
| Common-Mode Transient Immunity        |                                            |                                               |                  |     |             |                                                                                        |
| Logic High Output⁵                    | CM <sub>H</sub>                            | 25                                            | 35               |     | kV/μs       | $V_{lx} = V_{DD1}/V_{DD2}$ , $V_{CM} = 1000 \text{ V}$ , transient magnitude = 800 V   |
| Logic Low Output <sup>5</sup>         | CM <sub>L</sub>                            | 25                                            | 35               |     | kV/μs       | $V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V},$<br>transient magnitude = 800 V        |
| Refresh Rate                          | $f_r$                                      |                                               |                  |     |             |                                                                                        |
|                                       | 1                                          |                                               |                  |     | l           |                                                                                        |
| 5 V/3.3 V Operation                   |                                            |                                               | 1.2              |     | Mbps        |                                                                                        |

| Parameter                                       | Symbol               | Min | Тур  | Max | Unit    | <b>Test Conditions/Comments</b> |
|-------------------------------------------------|----------------------|-----|------|-----|---------|---------------------------------|
| Dynamic Supply Current per Channel <sup>6</sup> | I <sub>DDI (D)</sub> |     |      |     |         |                                 |
| Input                                           |                      |     |      |     |         |                                 |
| 5 V/3.3 V Operation                             |                      |     | 0.20 |     | mA/Mbps |                                 |
| 3.3 V/5 V Operation                             |                      |     | 0.10 |     | mA/Mbps |                                 |
| Output                                          | I <sub>DDO (D)</sub> |     |      |     |         |                                 |
| 5 V/3.3 V Operation                             |                      |     | 0.03 |     | mA/Mbps |                                 |
| 3.3 V/5 V Operation                             |                      |     | 0.05 |     | mA/Mbps |                                 |

<sup>&</sup>lt;sup>1</sup> The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. See Figure 8 through Figure 10 for information on per channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V<sub>DD1</sub> and V<sub>DD2</sub> supply currents as a function of data rate for ADuM3400-EP/ADuM3401-EP/ADuM3402-EP channel configurations.

 $^{2}$  I<sub>Ox</sub> is the Channel x output current, where x = A, B, C, or D.

<sup>&</sup>lt;sup>3</sup> V<sub>lxH</sub> is the input side logic high.

<sup>&</sup>lt;sup>4</sup> V<sub>lxL</sub> is the input side logic low.

 $<sup>^5</sup>$  CM<sub>H</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining  $V_{OUT} > 0.8 \ V_{DD2}$ . CM<sub>L</sub> is the maximum common-mode voltage slew rate that can be sustained while maintaining  $V_{OUT} < 0.8 \ V$ . The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.

<sup>&</sup>lt;sup>6</sup> Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions.

### **PACKAGE CHARACTERISTICS**

Table 4.

| Parameter                                  | Symbol           | Min | Тур              | Max | Unit | Test Conditions/Comments                            |
|--------------------------------------------|------------------|-----|------------------|-----|------|-----------------------------------------------------|
| Resistance (Input to Output) <sup>1</sup>  | Rio              |     | 10 <sup>12</sup> |     | Ω    |                                                     |
| Capacitance (Input to Output) <sup>1</sup> | C <sub>IO</sub>  |     | 2.2              |     | рF   | f = 1 MHz                                           |
| Input Capacitance <sup>2</sup>             | Cı               |     | 4.0              |     | рF   |                                                     |
| IC Junction to Case Thermal Resistance     |                  |     |                  |     |      |                                                     |
| Side 1                                     | Өлсі             |     | 33               |     | °C/W | Thermocouple located at center of package underside |
| Side 2                                     | θ <sub>JCO</sub> |     | 28               |     | °C/W | Thermocouple located at center of package underside |

<sup>&</sup>lt;sup>1</sup> Device considered a 2-terminal device; Pin 1 to Pin 8 are shorted together, and Pin 9 to Pin 16 are shorted together.

### **REGULATORY INFORMATION**

The ADuM3400-EP/ADuM3401-EP/ADuM3402-EP are pending approval by the organizations listed in Table 5.

Table 5.

| UL (Pending)                                                        | CSA (Pending)                                                                                            | VDE (Pending)                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Recognized under 1577 Component<br>Recognition Program <sup>1</sup> | Approved under CSA Component Acceptance Notice 5A                                                        | Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 <sup>2</sup> |
| Single Protection, 2500 V rms<br>Isolation Voltage                  | Basic insulation per CSA 60950-1-03 and IEC 60950-1,<br>800 V rms (1131 V peak) maximum working voltage  | Reinforced insulation, 560 V peak                                               |
|                                                                     | Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage |                                                                                 |
| File E214100                                                        | File 205078                                                                                              | File 2471900-4880-0001                                                          |

¹ In accordance with UL 1577, each ADuM3400-EP/ADuM3401-EP/ADuM3402-EP is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).

### **INSULATION AND SAFETY-RELATED SPECIFICATIONS**

Table 6.

| Parameter                                                                      | Symbol | Value     | Unit  | Test Conditions/Comments                                                                                                   |
|--------------------------------------------------------------------------------|--------|-----------|-------|----------------------------------------------------------------------------------------------------------------------------|
| Rated Dielectric Insulation Voltage                                            |        | 2500      | V rms | 1 minute duration                                                                                                          |
| Minimum External Air Gap (Clearance)                                           | L(I01) | 7.8 min   | mm    | Measured from input terminals to output terminals, shortest distance through air                                           |
| Minimum External Tracking (Creepage)                                           | L(102) | 7.8 min   | mm    | Measured from input terminals to output terminals, shortest distance path along body                                       |
| Minimum Clearance in the Plane of the<br>Printed Circuit Board (PCB Clearance) | L(PCB) | 8.1 min   | mm    | Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane |
| Minimum Internal Gap (Internal Clearance)                                      |        | 0.017 min | mm    | Insulation distance through insulation                                                                                     |
| Tracking Resistance (Comparative Tracking Index)                               | CTI    | >400      | V     | DIN IEC 112/VDE 0303 Part 1                                                                                                |
| Isolation Group                                                                |        | II        |       | Material Group (DIN VDE 0110, 1/89, Table 1)                                                                               |

<sup>&</sup>lt;sup>2</sup> Input capacitance is from any input data pin to ground.

<sup>&</sup>lt;sup>2</sup> In accordance with DIN V VDE V 0884-10, each ADuM3400-EP/ADuM3401-EP/ADuM3402-EP is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The \* marking branded on the component designates DIN V VDE V 0884-10 approval.

### DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The \* marking on packages denotes DIN V VDE V 0884-10 approval.

Table 7.

| Description                                              | Test Conditions/Comments                                                                            | Symbol            | Characteristic | Unit   |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------|--------|
| Installation Classification per DIN VDE 0110             |                                                                                                     |                   |                |        |
| For Rated Mains Voltage ≤ 150 V rms                      |                                                                                                     |                   | I to IV        |        |
| For Rated Mains Voltage ≤ 300 V rms                      |                                                                                                     |                   | l to III       |        |
| For Rated Mains Voltage ≤ 400 V rms                      |                                                                                                     |                   | l to II        |        |
| Climatic Classification                                  |                                                                                                     |                   | 40/105/21      |        |
| Pollution Degree per DIN VDE 0110, Table 1               |                                                                                                     |                   | 2              |        |
| Maximum Working Insulation Voltage                       |                                                                                                     | V <sub>IORM</sub> | 560            | V peak |
| Input-to-Output Test Voltage, Method B1                  | $V_{IORM} \times 1.875 = V_{PR}$ , 100% production test,<br>$t_m = 1$ sec, partial discharge < 5 pC | $V_{PR}$          | 1050           | V peak |
| Input-to-Output Test Voltage, Method A                   | $V_{IORM} \times 1.6 = V_{PR}$ , $t_m = 60$ sec, partial discharge < 5 pC                           | V <sub>PR</sub>   |                |        |
| After Environmental Tests Subgroup 1                     |                                                                                                     |                   | 896            | V peak |
| After Input and/or Safety Test Subgroup 2 and Subgroup 3 | $V_{IORM} \times 1.2 = V_{PR}$ , $t_m = 60$ sec, partial discharge < 5 pC                           |                   | 672            | V peak |
| Highest Allowable Overvoltage                            | Transient overvoltage, t <sub>TR</sub> = 10 seconds                                                 | $V_{TR}$          | 4000           | V peak |
| Safety-Limiting Values                                   | Maximum value allowed in the event of a failure (see Figure 4)                                      |                   |                |        |
| Case Temperature                                         |                                                                                                     | Ts                | 150            | °C     |
| Side 1 Current                                           |                                                                                                     | I <sub>S1</sub>   | 265            | mA     |
| Side 2 Current                                           |                                                                                                     | I <sub>S2</sub>   | 335            | mA     |
| Insulation Resistance at T <sub>S</sub>                  | $V_{IO} = 500 \text{ V}$                                                                            | Rs                | >109           | Ω      |



Figure 4. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10

### **RECOMMENDED OPERATING CONDITIONS**

Table 8.

| Parameter                                                           | Rating           |
|---------------------------------------------------------------------|------------------|
| Operating Temperature Range (T <sub>A</sub> )                       | −55°C to +125°C  |
| Supply Voltages (V <sub>DD1</sub> , V <sub>DD2</sub> ) <sup>1</sup> | 3.135 V to 5.5 V |
| Input Signal Rise and Fall Times                                    | 1.0 ms           |

<sup>&</sup>lt;sup>1</sup> All voltages are relative to their respective ground.

### ABSOLUTE MAXIMUM RATINGS

Ambient temperature = 25°C, unless otherwise noted.

Table 9.

| 14010 71                                                                                                |                                                                   |  |  |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Parameter                                                                                               | Rating                                                            |  |  |
| Storage Temperature Range (T <sub>ST</sub> )                                                            | −65°C to +150°C                                                   |  |  |
| Ambient Operating Temperature Range (T <sub>A</sub> )                                                   | −55°C to +125°C                                                   |  |  |
| Supply Voltages (V <sub>DD1</sub> , V <sub>DD2</sub> ) <sup>1</sup>                                     | −0.5 V to +7.0 V                                                  |  |  |
| Input Voltage $(V_{IA}, V_{IB}, V_{IC}, V_{ID}, V_{E1}, V_{E2})^{1, 2}$                                 | $-0.5 \mathrm{V}$ to $\mathrm{V}_{\mathrm{DD1}} + 0.5 \mathrm{V}$ |  |  |
| Output Voltage (V <sub>OA</sub> , V <sub>OB</sub> , V <sub>OC</sub> , V <sub>OD</sub> ) <sup>1, 2</sup> | $-0.5 \mathrm{V}$ to $\mathrm{V}_{\mathrm{DDO}} + 0.5 \mathrm{V}$ |  |  |
| Average Output Current per Pin <sup>3</sup>                                                             |                                                                   |  |  |
| Side 1 (I <sub>01</sub> )                                                                               | –18 mA to +18 mA                                                  |  |  |
| Side 2 (I <sub>02</sub> )                                                                               | −22 mA to +22 mA                                                  |  |  |
| Common-Mode Transients (CM <sub>H</sub> , CM <sub>L</sub> ) <sup>4</sup>                                | −100 kV/µs to                                                     |  |  |
|                                                                                                         | +100 kV/μs                                                        |  |  |

<sup>&</sup>lt;sup>1</sup> All voltages are relative to their respective ground.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage<sup>1</sup>

| Parameter             | Max  | Unit   | Constraint                                                         |
|-----------------------|------|--------|--------------------------------------------------------------------|
| AC Voltage            |      |        |                                                                    |
| Bipolar Waveform      | 565  | V peak | 50-year minimum lifetime                                           |
| Unipolar Waveform     |      |        |                                                                    |
| Basic Insulation      | 1131 | V peak | Maximum approved working voltage per IEC 60950-1                   |
| Reinforced Insulation | 560  | V peak | Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 |
| DC Voltage            |      |        |                                                                    |
| Basic Insulation      | 1131 | V peak | Maximum approved working voltage per IEC 60950-1                   |
| Reinforced Insulation | 560  | V peak | Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10 |

 $<sup>^{\</sup>rm 1}$  Refers to continuous voltage magnitude imposed across the isolation barrier.

Table 11. Truth Table (Positive Logic)

| V <sub>lx</sub> Input <sup>1, 2</sup> | V <sub>Ex</sub> Input <sup>3,2</sup> | V <sub>DDI</sub> State <sup>1</sup> | V <sub>DDO</sub> State <sup>1</sup> | Vox Output <sup>1</sup> | Notes                                                                                                                                                                                                                     |
|---------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н                                     | H or NC                              | Powered                             | Powered                             | Н                       |                                                                                                                                                                                                                           |
| L                                     | H or NC                              | Powered                             | Powered                             | L                       |                                                                                                                                                                                                                           |
| Χ                                     | L                                    | Powered                             | Powered                             | Z                       |                                                                                                                                                                                                                           |
| Χ                                     | H or NC                              | Unpowered                           | Powered                             | Н                       | Outputs return to the input state within 1 $\mu$ s of $V_{DDI}$ power restoration.                                                                                                                                        |
| Χ                                     | L                                    | Unpowered                           | Powered                             | Z                       |                                                                                                                                                                                                                           |
| X                                     | Х                                    | Powered                             | Unpowered                           | Indeterminate           | Outputs return to the input state within 1 $\mu$ s of $V_{DDO}$ power restoration if $V_{Ex}$ state is H or NC. Outputs return to high impedance state within 8 ns of $V_{DDO}$ power restoration if $V_{Ex}$ state is L. |

 $<sup>^{1}</sup>$   $V_{lx}$  and  $V_{Ox}$  refer to the input and output signals of a given channel (A, B, C, or D).  $V_{fx}$  refers to the output enable signal on the same side as the  $V_{Ox}$  outputs.  $V_{DDO}$  and  $V_{DDO}$  refer to the supply voltages on the input and output sides of the given channel, respectively.

 $<sup>^2</sup>$   $V_{\text{DDI}}$  and  $V_{\text{DDO}}$  refer to the supply voltages on the input and output sides of a given channel, respectively.

<sup>&</sup>lt;sup>3</sup> See Figure 4 for maximum rated current values for various temperatures.

<sup>&</sup>lt;sup>4</sup> Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings can cause latchup or permanent damage.

<sup>&</sup>lt;sup>2</sup> H is high, L is low, X is don't care, and NC is no connect.

<sup>&</sup>lt;sup>3</sup> In noisy environments, connecting V<sub>Ex</sub> to an external logic high or low is recommended.

13271-005

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



\*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND 2 IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401-EP/ADuM3402-EP AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 5. ADuM3400-EP Pin Configuration

Table 12. ADuM3400-EP Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                                             |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | $V_{DD1}$        | Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.                                                                                                                                                                                                                                                                                   |
| 2, 8    | GND <sub>1</sub> | Ground 1. Ground reference for Isolator Side 1.                                                                                                                                                                                                                                                                                         |
| 3       | VIA              | Logic Input A.                                                                                                                                                                                                                                                                                                                          |
| 4       | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                                          |
| 5       | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                                          |
| 6       | $V_{\text{ID}}$  | Logic Input D.                                                                                                                                                                                                                                                                                                                          |
| 7       | NC               | No Connect.                                                                                                                                                                                                                                                                                                                             |
| 9, 15   | GND <sub>2</sub> | Ground 2. Ground reference for Isolator Side 2.                                                                                                                                                                                                                                                                                         |
| 10      | V <sub>E2</sub>  | Output Enable 2. Active high logic input. $V_{OA}$ , $V_{OB}$ , $V_{OC}$ , and $V_{OD}$ outputs are enabled when $V_{E2}$ is high or disconnected. $V_{OA}$ , $V_{OB}$ , $V_{OC}$ , and $V_{OD}$ outputs are disabled when $V_{E2}$ is low. In noisy environments, connecting $V_{E2}$ to an external logic high or low is recommended. |
| 11      | $V_{\text{OD}}$  | Logic Output D.                                                                                                                                                                                                                                                                                                                         |
| 12      | Voc              | Logic Output C.                                                                                                                                                                                                                                                                                                                         |
| 13      | $V_{OB}$         | Logic Output B.                                                                                                                                                                                                                                                                                                                         |
| 14      | $V_{OA}$         | Logic Output A.                                                                                                                                                                                                                                                                                                                         |
| 16      | $V_{\text{DD2}}$ | Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.                                                                                                                                                                                                                                                                                   |



\*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADUM3401-EP/ADUM3402-EP AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 6. ADuM3401-EP Pin Configuration

Table 13. ADuM3401-EP Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                                                       |
|---------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | $V_{DD1}$        | Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.                                                                                                                                                                                                                                                             |
| 2, 8    | GND₁             | Ground 1. Ground reference for Isolator Side 1.                                                                                                                                                                                                                                                                   |
| 3       | VIA              | Logic Input A.                                                                                                                                                                                                                                                                                                    |
| 4       | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                                                    |
| 5       | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                                                    |
| 6       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                                                   |
| 7       | V <sub>E1</sub>  | Output Enable 1. Active high logic input. $V_{\text{OD}}$ output is enabled when $V_{\text{E1}}$ is high or disconnected. $V_{\text{OD}}$ is disabled when $V_{\text{E1}}$ is low. In noisy environments, connecting $V_{\text{E1}}$ to an external logic high or low is recommended.                             |
| 9, 15   | GND <sub>2</sub> | Ground 2. Ground reference for Isolator Side 2.                                                                                                                                                                                                                                                                   |
| 10      | V <sub>E2</sub>  | Output Enable 2. Active high logic input. $V_{OA}$ , $V_{OB}$ , and $V_{OC}$ outputs are enabled when $V_{E2}$ is high or disconnected. $V_{OA}$ , $V_{OB}$ , and $V_{OC}$ outputs are disabled when $V_{E2}$ is low. In noisy environments, connecting $V_{E2}$ to an external logic high or low is recommended. |
| 11      | $V_{\text{ID}}$  | Logic Input D.                                                                                                                                                                                                                                                                                                    |
| 12      | Voc              | Logic Output C.                                                                                                                                                                                                                                                                                                   |
| 13      | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                                                   |
| 14      | Voa              | Logic Output A.                                                                                                                                                                                                                                                                                                   |
| 16      | $V_{DD2}$        | Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.                                                                                                                                                                                                                                                             |



\*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO  $\mbox{\rm GND}_1$  IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO  $\mbox{\rm GND}_2$  IS RECOMMENDED. IN NOISY ENVIRONMENTS, CONNECTING OUTPUT ENABLES (PIN 7 FOR ADuM3401-EP/ADUM3402-EP AND PIN 10 FOR ALL MODELS) TO AN EXTERNAL LOGIC HIGH OR LOW IS RECOMMENDED.

Figure 7. ADuM3402-EP Pin Configuration

Table 14. ADuM3402-EP Pin Function Descriptions

| Pin No. | Mnemonic         | Description                                                                                                                                                                                                                                                                             |
|---------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | $V_{DD1}$        | Supply Voltage for Isolator Side 1, 3.135 V to 5.5 V.                                                                                                                                                                                                                                   |
| 2, 8    | GND <sub>1</sub> | Ground 1. Ground reference for Isolator Side 1.                                                                                                                                                                                                                                         |
| 3       | VIA              | Logic Input A.                                                                                                                                                                                                                                                                          |
| 4       | V <sub>IB</sub>  | Logic Input B.                                                                                                                                                                                                                                                                          |
| 5       | Voc              | Logic Output C.                                                                                                                                                                                                                                                                         |
| 6       | V <sub>OD</sub>  | Logic Output D.                                                                                                                                                                                                                                                                         |
| 7       | V <sub>E1</sub>  | Output Enable 1. Active high logic input. $V_{OC}$ and $V_{OD}$ outputs are enabled when $V_{E1}$ is high or disconnected. $V_{OC}$ and $V_{OD}$ outputs are disabled when $V_{E1}$ is low. In noisy environments, connecting $V_{E1}$ to an external logic high or low is recommended. |
| 9, 15   | GND <sub>2</sub> | Ground 2. Ground reference for Isolator Side 2.                                                                                                                                                                                                                                         |
| 10      | V <sub>E2</sub>  | Output Enable 2. Active high logic input. $V_{OA}$ and $V_{OB}$ outputs are enabled when $V_{E2}$ is high or disconnected. $V_{OA}$ and $V_{OB}$ outputs are disabled when $V_{E2}$ is low. In noisy environments, connecting $V_{E2}$ to an external logic high or low is recommended. |
| 11      | V <sub>ID</sub>  | Logic Input D.                                                                                                                                                                                                                                                                          |
| 12      | V <sub>IC</sub>  | Logic Input C.                                                                                                                                                                                                                                                                          |
| 13      | V <sub>OB</sub>  | Logic Output B.                                                                                                                                                                                                                                                                         |
| 14      | Voa              | Logic Output A.                                                                                                                                                                                                                                                                         |
| 16      | $V_{\text{DD2}}$ | Supply Voltage for Isolator Side 2, 3.135 V to 5.5 V.                                                                                                                                                                                                                                   |

# TYPICAL PERFORMANCE CHARACTERISTICS



Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)



Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)



Figure 10. Typical Output Supply Current per Channel vs. Data Rate (15 pF Output Load)



Figure 11. Typical ADuM3400-EP V<sub>DD1</sub> Supply Current vs. Data Rate for 5 V and 3.3 V Operation



Figure 12. Typical ADuM3400-EP V<sub>DD2</sub> Supply Current vs. Data Rate for 5 V and 3.3 V Operation



Figure 13. Typical ADuM3401-EP V<sub>DD1</sub> Supply Current vs. Data Rate for 5 V and 3.3 V Operation



Figure 14. Typical ADuM3401-EP V<sub>DD2</sub> Supply Current vs. Data Rate for 5 V and 3.3 V Operation



Figure 15. Typical ADuM3402-EP  $V_{DD1}$  or  $V_{DD2}$  Supply Current vs. Data Rate for 5 V and 3.3 V Operation



Figure 16. Propagation Delay vs. Temperature

### **OUTLINE DIMENSIONS**



COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 17. 16-Lead Standard Small Outline Package [SOIC\_W] Wide Body (RW-16) Dimensions shown in millimeters and (inches)

### **ORDERING GUIDE**

|                    | Number of Inputs,     | Number of Inputs,     | Maximum<br>Data Rate | Maximum<br>Propagation |                   | Package        | Package |
|--------------------|-----------------------|-----------------------|----------------------|------------------------|-------------------|----------------|---------|
| Model <sup>1</sup> | V <sub>DD1</sub> Side | V <sub>DD2</sub> Side | (Mbps)               | Delay, 5 V (ns)        | Temperature Range | Description    | Option  |
| ADUM3400TRWZ-EP    | 4                     | 0                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |
| ADUM3400TRWZ-EP-RL | 4                     | 0                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |
| ADUM3401TRWZ-EP    | 3                     | 1                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |
| ADUM3401TRWZ-EP-RL | 3                     | 1                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |
| ADUM3402TRWZ-EP    | 2                     | 2                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |
| ADUM3402TRWZ-EP-RL | 2                     | 2                     | 10                   | 50                     | −55°C to +125°C   | 16-Lead SOIC_W | RW-16   |

<sup>&</sup>lt;sup>1</sup> Z = RoHS Compliant Part.

