Precalculus

Compute the trigonometric functions in a right angle triangle, part 2

Todor Milev

2019

$$\sin \theta = \tan \theta =$$
 $\csc \theta = \sec \theta =$

$$\cot \theta =$$

If $\cos\theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$, find the other five trigonometric functions of θ .

 Label the hypotenuse with length 5 and the adjacent side with length 2.

$$\sin\theta = \qquad \qquad \tan\theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.

$$\sin\theta = \qquad \qquad \tan\theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = ?$, so x = ?.

$$\sin \theta = \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta =$$
? $\tan \theta =$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta =$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin\theta = \frac{\sqrt{21}}{5} \quad \tan\theta = ?$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta =$$
? $\sec \theta =$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}} \sec \theta =$$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}} \sec \theta =$$
?

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}}$$
 $\sec \theta = \frac{5}{2}$

$$\cot \theta =$$

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}} \quad \sec \theta = \frac{5}{2}$$

$$\cot \theta =$$
?

- Label the hypotenuse with length 5 and the adjacent side with length 2.
- Pythagorean theorem: $x^2 + 2^2 = 5^2$.
- Therefore $x^2 = 21$, so $x = \sqrt{21}$.

$$\sin \theta = \frac{\sqrt{21}}{5} \quad \tan \theta = \frac{\sqrt{21}}{2}$$

$$\csc \theta = \frac{5}{\sqrt{21}} \quad \sec \theta = \frac{5}{2}$$

$$\cot \theta = \frac{2}{\sqrt{21}}$$