Laboratorium 11

Metody Numeryczne

Wydział Fizyki i Informatyki Stosowanej

Akademia Górniczo-Hutnicza im. Stanisława Staszica

w Krakowie

Maciej Piwek

25 maja 2021

1 Wstęp

Na laboratoriach zapoznano się z metodą odszumiania sygnału przy użyciu FFT.

2 Opis metody

Splot dwóch funkcji definiujemy jako:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau \tag{1}$$

Funkcję f(t) potraktowano jako sygnał a funkcję g(t) jako wagę oraz splot obu funkcji potraktowano jako uśrednienie funkcji f pewną ustaloną funkcją wagową g. Wykorzystano ten fakt do wygładzenia zaszumionego sygnału. Aby przeprowadzić efektywnie obliczenia, do obliczenia splotu wykorzystano FFT:

$$FFTf(t) * q(t) = FFTf \cdot FFTq = f(k) \cdot q(k)$$
(2)

$$f(t) * q(t) = FFT^{-1}f(k) \cdot q(k)$$
(3)

Jako sygnał przyjęto:

$$f(t) = f_0(t) + \Delta \tag{4}$$

gdzie:

$$f_0(t) = \sin 1 \cdot \omega t + \sin 2 \cdot \omega t + \sin 3 \cdot \omega t \tag{5}$$

jest sygnałem niezaburzonym, $\omega=2\pi/T$ - pulsacja, T - okres, Δ jest liczbą pseudolosową z zakresu [-1/2,1/2]. Jako funkcję wagową przyjęto funkcje gaussowską:

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{t^2}{2\sigma^2}\right) \tag{6}$$

3 Opis Problemu

Przyjęto parametry: $N_k=2k$, k=8,10,12 - liczba węzłów, $T=1.0,\,t_{max}=3T$ - maksymalny okres czasu trwania sygnału, $dt=t_{max}/Nk$ - krok czasowy, $\sigma=T/20$. Utworzono pętlę zewnętrzną po k=8,10,12, wyznaczano w niej N_k , i tworzono tablice:

• f_0 - dla sygnału bez szumu

- ullet f dla sygnału z szumem
- $\bullet \ g_1,g_2$ dla funkcji wagowej

Następnie:

- 1. Wypełniono tablice odpowiednimi wartościami.
- 2. Obliczono transformaty: $f_k = FFTf, g_1(k) = FFTg_1, g_2(k) = FFT^{-1}g_2.$
- 3. Obliczono transformatę spłotu czyli iloczyn: $f_k \cdot (g_1(k) + g_2(k))$.
- 4. Obliczono: $FFT^{-1}f(k)$.
- 5. Dla $fg_{inverseFourier}$ znaleziono element o maksymalnym module $f_{max} = max |f[2 \cdot i 1]|, i = 1, ..., n.$
- 6. Zapisano do pliku sygnał niezaburzony.

4 Wyniki

Po zaimplementowaniu algorytmu dla wygenerowanych plików z danymi dla każdego N_k wygenerowano wykres: sygnału niezaburzonego i znormalizowanego spłotu. Wyniki przedstawiają się następująco:

Rysunek 1: Wykres przedstawiający: zaszumiony sygnał, sygnał oryginalny oraz sygnał odszumiony dla $k=8\,$

Rysunek 2: Wykres przedstawiający: zaszumiony sygnał, sygnał oryginalny oraz sygnał odszumiony dla k=10

Rysunek 3: Wykres przedstawiający: zaszumiony sygnał, sygnał oryginalny oraz sygnał odszumiony dla $k=12\,$

5 Wnioski

- \bullet Wykresy nie pokrywają się dla każdego $t_i,$ ponieważ nasza funkcja gaussowska jest wyraźnie przesunięta.
- ullet Jakość wygładzenia zależy od ilości elementów w tablicy dla k=12 wykres jest o zauważalnie gładszy i bardziej przypomina sygnał oryginalny niż dla k=8.