Persamaan Differensial

Uzumaki Sang Raja Kucing

Institut Teknologi Bandung
nagato.uzumaki17@yahoo.com

January 18, 2021

PD Linier Homogen

Persamaan differensial biasa berorde-n memiliki bentuk umum

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = \phi(x)$$

Persamaan ini **linear** karena jika f(x) dan g(x) solusi dari persamaan diferensial tersebut maka kf(x) dan f(x) + g(x) juga merupakan solusi.

Untuk $\phi(x) = 0$ kita sebut persamaan diferensial tersebut adalah persamaan diferensial **homogen**.

Persamaan Diferensial Homogen Orde 2

Misalkan persamaan diferensial berbentuk $y'' + a_1y + a_2y = 0$.

Persamaan Diferensial Homogen Orde 2

Misalkan persamaan diferensial berbentuk $y'' + a_1y + a_2y = 0$. Didefinisikan **persamaan karakteristik** dari persamaan diferensial tersebut adalah $r^2 + a_1r + a_2 = 0$.

Persamaan Diferensial Homogen Orde 2

Misalkan persamaan diferensial berbentuk $y'' + a_1y + a_2y = 0$. Didefinisikan **persamaan karakteristik** dari persamaan diferensial tersebut adalah $r^2 + a_1r + a_2 = 0$.

Teorema

Jika r_1 dan r_2 adalah akar-akar real berbeda dari persamaan karakteristik dari persamaan diferensial $y'' + a_1 y' + a_2 y = 0$ maka solusi umum dari persamaan diferensial tersebut adalah

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}.$$

Persamaan Diferensial Homogen Orde yang Lebih Tinggi

Persamaan karakteristik dari persamaan diferenaial

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = 0$$

adalah

$$r^{n} + a_{1}r^{n-1} + a_{2}r^{n-2} + \cdots + a_{n-1}r + a_{n} = 0.$$

Contoh

Misalkan persamaan karakteristik dari suatu persamaan diferensial adalah

$$(r-r_1)(r-r_2)^3(r-(\alpha+i\beta))(r-(\alpha-i\beta))=0$$

maka solusi dari persamaan diferensial tersebut adalah

$$y(x) = c_1 e^{r_1 x} + (c_2 + c_3 x + c_4 x^2) e^{r_2 x} + (e^{\alpha x} (c_5 \cos x + c_6 \sin x))$$

990

Persamaan Diferensial Linier Non Homogen

Bentuk umum persamaan linier non homogen.

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = \phi(x)$$

dengan $\phi(x) \neq 0$.

Kasus 1. Jika $E^2-4B^2<0$ maka diperoleh akar-akarnya adalah $r_{1,2}=-\alpha\pm i\beta$. Solusi persamaan diferensialnya adalah

$$y(t) = c_1 e^{-\alpha t} \cos(\beta t) + c_2 e^{-\alpha t} \sin(\beta t).$$

Kasus 2. Jika $E^2-4B^2=0$ maka diperoleh akarnya kembar $r_{1,2}=-\alpha$ dimana $\alpha=\frac{E}{2}$. Solusi persamaan diferensialnya adalah

$$y(t) = c_1 e^{-\alpha t} + c_2 t e^{-\alpha t}$$

Daftar Pustaka

- Verberg, Purcell and Ridgon, (2007). *Calculus*(9th edition). Southern illinois university edwardsville.
- Soal-soal Tutorial MAC 2019/2020

This is a text in second frame. For the sake of showing an example.

Text visible on slide 1

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 3

This is a text in second frame. For the sake of showing an example.

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".