# MAC21



(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

Duration

### SEMESTER END EXAMINATIONS - SEPTEMBER / OCTOBER 2023

Program

B.E:-Common to CSE/ISE/CSE(CY)/ AI & DS/BT/AI & ML/CSE (AI&ML)

Course Name

Numerical Techniques and Differential Equations

Course Code : MAC21

Semester : II

Max. Marks: 100

3 Hrs

### **Instructions to the Candidates:**

· Answer one full question from each unit.

#### UNIT - I

- 1. a) Give the geometrical interpretation of Newton-Raphson iteration formula. CO1 (02)
  - b) Expand  $\sin^{-1} x$  in powers of x up to second degree term. CO1 (04) c) Solve the following system of non-linear equations using Newton-Raphson CO1 (07)
  - Solve the following system of non-linear equations using Newton-Raphson CO1 (07) method (Carry out two iterations)  $x^2 + y^2 = x$ ,  $x^2 y^2 = y$ , given that  $x_0 = 0.8$  and  $y_0 = 0.4$ .
  - d) The temperature T at any point (x, y, z) in space is  $T = 400 \, xyz^2$ . Find the CO1 (07) highest temperature on the surface of the unit sphere  $x^2 + y^2 + z^2 = 1$ .
- 2. a) Write Taylor's series for the function of one variable. CO1 (02)
  - b) Examine  $x^3 + y^3 3axy$  for extreme values.
  - c) Expand the function  $xy^2 + \cos(xy)$  about the point  $\left(1, \frac{\pi}{2}\right)$  upto second CO1 (07) degree terms.
  - d) A rectangular box open at the top is to have volume of 108 cubic ft. Find CO1 (07) the dimension of the box if its total surface area is minimum.

#### **UNIT - II**

- 3. a) Write the steps involved in finding the orthogonal trajectories of the curve CO2 (02) f(x,y,c)=0.
  - b) Suppose that an object is heated to 300° F and allowed to cool in a room CO2 (04) whose air temperature is 80° F. After 10 minutes the temperature of the object is 250° F. What will be its temperature after 20 minutes?
  - c) Using Taylor's series method, find the particular solution of CO2 (07)  $\frac{dy}{dx} 2y = 3e^x; y(0) = 0 \text{ at } x = 0.2, \text{ considering terms up to fourth degree.}$
  - Compare the result with the exact solution.
    d) Solve the initial value problem,  $y' = 0.25y^2 + x^2$ , y(0) = -1 at x = 0.2 by CO2 (07) taking h = 0.2 using Runge Kutta method of fourth order.
- 4. a) Write any two differences between analytical and numerical methods. CO2 (02)
  - b) A bungee jumper with a mass of 68.1 Kgs leaps from a stationary hot air CO2 (04) balloon. Use  $\frac{dv}{dt} = g \frac{cv^2}{m}$  where  $g = 9.8m/s^2, c = 0.25kg/m$  to compute velocity for the first three seconds of free fall by Euler's method in steps of 1 second.

## MAC21

- Solve the initial value problem  $\frac{dy}{dx} = \frac{2xy + e^x}{x^2 + xe^x}$ , y(1) = 0 at x = 1.2 by taking CO2 (07) step length of 0.2, using Modified Euler's method. Carry out 2 iterations.
- d) Show that the family of curves  $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$  is self-orthogonal, CO2 (07) where  $\lambda$  is the parameter.

### UNIT - III

- 5. a) Write the steps involved in solving Cauchy's LDE. CO3 (02)
  - b) If  $D = \frac{d}{dx}$  and X = X(x), then prove that  $\frac{1}{D-a}X = e^{ax}\int Xe^{-ax}dx$ . CO3 (04)
  - c) Solve  $(D^2 4D + 4)y = 8x^2e^{2x}\sin 2x$ . CO3 (07)
  - d) Solve  $y'' + 2y' + 2y = e^{-x} \sec^3 x$  by the method of variation of parameters. CO3 (07)
- 6. a) Define linear and non-linear differential equations with example. CO3 (02)
  - b) If k > 0, then show that the general solution of  $y'' k^4 y = 0$  can be CO3 (04) expressed as  $y = C_1 \cos kx + C_2 \sin kx + C_3 \cosh kx + C_4 \sinh kx$ .
  - c) Solve  $(3x+2)^2y'' + 3(3x+2)y' 36y = 8x^2 + 4x + 1$ .
  - d) Solve  $(D^2 + D)y = 2 + 2x + x^2$ , y(0) = 8, y'(0) = -1.

#### UNIT-IV

- 7. a) Obtain the expression for  $\Delta^2 y_n$  in terms of y values. CO4 (02)
  - b) Construct the backward difference table representing the function CO4 (04)  $y = \cos x + x^2 + 2$  over the interval (2,3) with step length h = 0.2 and hence write the value of  $\nabla^2 y_3$ .
  - c) Use Simpson's  $1/3^{rd}$  rule to evaluate  $\int_{0}^{1} \frac{1}{1+x^2} dx$  considering seven CO4 (07)
    - equidistant ordinates and hence find an approximate value of  $\pi$  .
  - d) Use an appropriate interpolation formula to find the radius of curvature at CO4 (07) x = 3.0 from the following data:

| x | 3     | 5     | 7      | 9      | 11     |
|---|-------|-------|--------|--------|--------|
| y | 28.27 | 78.54 | 153.93 | 254.47 | 380.13 |

- 8. a) Given two points  $(x_0, y_0)$  and  $(x_1, y_1)$ , write Lagrange's inverse interpolation CO4 (02) formula.
  - b) Evaluate  $\int_{x}^{1} e^{x} dx$  approximately in steps of 0.2 by using trapezoidal rule. CO4 (04)
  - c) Using Newton's divided difference formula find an interpolating polynomial CO4 (07) for the following data and hence find f(1).

|      |    | 2 ( ) |   |    |  |  |
|------|----|-------|---|----|--|--|
| x    | -1 | 0     | 2 | 3  |  |  |
| f(x) | -8 | 3     | 1 | 12 |  |  |

d) A survey conducted in a factory reveals the following information. Estimate CO4 (07) the probable number of persons in the income group 20 to 25.

| Income per hour (Rs.) | <10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
|-----------------------|-----|---------|---------|---------|---------|
| No. of persons        | 20  | 45      | 115     | 210     | 115     |
|                       |     |         |         |         | TIJ     |

# MAC21

UNIT-V

9. a) Define row echelon form of a matrix.

CO5 (02)

b) Use Gauss Seidel method to solve the system of equations: 2x+17y+4z=35; x+3y+10z=24; 28x+4y-z=32

CO5 (04)

Use (0, 0, 0) as the initial approximation and carry out 2 iterations.

c) If the characteristic equation of the matrix  $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$  is CO5 (07)

 $(\lambda-7)^2(\lambda+2)=0$  , find its non-singular modal matrix.

d) Write the system of linear equations from the following electrical network. CO5 (07) Use Gauss-elimination method to find currents in various branches.



- 10. a) Explain the geometrical interpretation of infinitely many solutions for the CO5 (02) system of linear equations 2x + y = 3 and 4x + 2y = 6.
  - b) Use Rayleigh's power method to find the largest eigenvalue and the CO5 (04

corresponding eigenvector of the matrix  $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$  by taking  $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ 

as the initial approximation to the eigenvector. Carry out two iterations.

- c) Find the conditions for a, b, c so that the system is solvable: CO5 (07) -2x + y + z = a; x 2y + z = b; x + y 2z = c Find all possible solutions if a = 1, b = 1, c = -2.
- d) Suppose the rabbit population r and the wolf population w are governed by CO5 (07)  $\frac{dr}{dt} = 4r w, \quad \frac{dw}{dt} = 2r + w. \quad \text{If initially } r = 240 \text{ and } w = 300 \text{ ,what are the populations at time } t$ ?