МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут»

Кафедра систем управління літальними апаратами

Лабораторна робота № 2

з дисципліни «Об'єктно-орієнтоване проєктування систем управлінн»

Тема: "Розробка структурованих програм з розгалуженням та повтореннями"

ХАІ.301. Інженерія мобільних додатків. 312ст.1 ЛР

Виконав студе	энт гр312ст
	Васильєв Б.А
(підпис, дата)	(П.І.Б.)
Перевірив	
	к.т.н., доц. О. В. Гавриленко
	ас. В.О.Білозерський
(підпис, дата)	(П.І.Б.)

МЕТА РОБОТИ

Вивчити теоретичний матеріал щодо синтаксису на мові Python і поданняму вигляді UML діаграм діяльності алгоритмів з розгалуження та циклами, атакож навчитися використовувати функції, інструкції умовного переходу іциклів для реалізації інженерних обчислень.

ПОСТАНОВКА ЗАДАЧІ

Завдання 1. Вирішити завдання на алгоритми з розгалуженням. If20. [На числової осі розташовані три точки: A, B, C. Визначити, яка з двох останніх точок (В або С) розташована ближче до A, і вивести цю точку і її відстань від точки A.

Завдання 2. Дано дійсні числа (хі, уі), i = 1,2, ... n, - координати точок на площині. Визначити кількість точок, що потрапляють в геометричну область заданого кольору (або групу областей).

Рис.1 Завдання 2

Завдання 3. Дослідити ряд на збіжність. Умова закінчення циклу обчислення суми прийняти у вигляді: | un | <E або | un | > G де е — мала величина для переривання циклу обчислення суми сходиться ряду (е = 10-5... 10-20); g — величина для переривання циклу обчислення суми розходиться ряду (g = 102...105). Варіанти представлено в табл.3.

10	$\sum_{n=1}^{\infty} \frac{n! - 3^n}{n^n}$
----	--

Рис.2 Завдання 3

Завдання 4. Для багаторазового виконання будь-якого з трьох зазначених вище завдань на вибір розробити циклічний алгоритм організації меню в командному вікні.

ВИКОНАННЯ РОБОТИ

Завдання 1: Визначення останньої та середньої цифри тризначного числа.

Вхідні дані: Тризначне ціле число, яке лежить в діапазоні від 100 до 999.

Вихідні дані: Остання та середня цифри цього числа.

Рис. 3 діаграма Завдання 1: Визначення найближчої точки до А

Завдання 2: Обчислення математичного виразу.

Вхідні дані: Дійсне число х, яке не повинно дорівнювати нулю.

Результат: Обчислене значення виразу.

Рис. 4 діаграма Завдання 2: Визначення кількості точок в зеленій області

Завдання 3: Перевірка, чи всі введені числа ϵ додатними.

Вхідні дані: Три цілі числа.

Результат: Логічне значення (істина або хибність), яке вказує на те, чи всі числа ϵ додатними.

Рис. 4 діаграма Завдання 3: Дослідження збіжності ряду

Завдання 4: Циклічний алгоритм організації меню для вибору завдань Вхідні дані:

Номер завдання: Користувач вводить число від 0 до 3 для вибору відповідного завдання:

Додаткові вхідні дані для кожного завдання:

Для завдання 1: Координати точок А, В, С.

Для завдання 2: Кількість точок та їх координати.

Для завдання 3: Значення для завершення обчислень.

ДОДАТОК А

Лістинг коду програми до завдання 1-3

import math

```
# Завдання 1: Визначення найближчої точки до А
    def task_if20():
      # Визначає, яка з точок В або С знаходиться ближче до точки А.
       try:
         A = float(input("Введіть координату точки A: "))
         B = float(input("Введіть координату точки В: "))
         C = float(input("Введіть координату точки <math>C: "))
         distance B = abs(A - B)
         distance_C = abs(A - C)
         if distance_B < distance_C:
           print(f"Точка В ближча до точки А. Відстань: {distance В}")
         elif distance C < distance B:
           print(f"Точка С ближча до точки А. Відстань: {distance C}")
         else:
           print(f"Точки В і С однаково віддалені від точки А. Відстань:
{distance_B}")
      except ValueError:
         print("введіть правильні числа.")
    # Завдання 2: Визначення кількості точок в зеленій області (варіант 11)
    def task_geometry11(points):
       #Підраховує кількість точок, що потрапляють в зелену область.
       #points - список точок (кожна точка має координати (x, y)).
```

```
count = 0
  r = 1
  for x, y in points:
    # Умова для попадання точки в зелену область
    if (x - r) ** 2 + (y - r) ** 2 <= r ** 2:
       count += 1
  return count
# Завдання 3: Дослідження збіжності ряду
def task_series10(epsilon=1e-10, g=1e10):
  # epsilon - маленька величина для завершення циклу при збіжності.
  n = 1
  s = 0
  while True:
    term = (math.factorial(n) - 3 ** n) / n ** n
    s += term
    if abs(term) < epsilon:
       print(f"Ряд збігається. Сума: {s}")
       break
    elif abs(term) > g:
       print(f"Ряд розбігається. Сума: {s}")
       break
    n += 1
```

ДОДАТОК Б

Лістинг коду програми до завдання 4

```
import sys
     from lab_2_oop import task_if20, task_geometry11, task_series10
    # Завдання 4: Меню для вибору завдань
     def menu():
       while True:
         print("\nВиберіть завдання:")
         print("1. Визначити, яка точка ближче до А.")
         print("2. Порахувати кількість точок в зеленій області.")
         print("3. Дослідити збіжність ряду.")
         print("0. Вихід")
         try:
            choice = int(input("Ваш вибір (0-3): "))
            if choice == 1:
              task_if20()
            elif choice == 2:
              points = [(float(input("x: ")), float(input("y: "))) for _ in
range(int(input("Кількість точок: ")))]
              print(f"Кількість
                                                                           області:
                                                            зеленій
                                      точок
                                                   У
{task_geometry11(points)}")
            elif choice == 3:
              task_series10()
            elif choice == 0:
              sys.exit(0)
            else:
              print("Невірний вибір.")
         except ValueError:
            print("Помилка введення.")
```

```
# Викликати головне меню: if __name__ == "__main__": menu()
```

ВИСНОВКИ

У результаті виконання завдань було реалізовано три функції, які визначають найближчу точку до А, підраховують кількість точок у геометричній області та досліджують збіжність математичного ряду.

ДОДАТОК Б

Скрін-шоти вікна виконання програми

```
Введіть координату точки А: 5
Введіть координату точки В: 3
Введіть координату точки С: 8
Точка В ближча до точки А. Відстань: 2.0
```

Рисунок Б.5 – Екран виконання програми для вирішення завдання 1

```
Кількість точок: 5

x: 0.5

y: 0.5

x: 1.5

y: 1.5

x: 0.2

y: 0.2

x: 1.0

y: 0.8

x: 2.0

y: 2.0

Кількість точок у зеленій області: 3
```

Рисунок Б.6 – Екран виконання програми для вирішення завдання 2

```
Ряд збігається. Сума: -4.783041449365289
```

Рисунок Б.7 – Екран виконання програми для вирішення завдання 3