from google.colab import drive drive.mount('/content/drive')

→ Mounted at /content/drive

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

data= pd.read_csv('/content/drive/MyDrive/Amazon Sales data.csv') data= pd.DataFrame(data= data)

data

	Region	Country	Item Type	Sales Channel	Order Priority	Order Date	Order ID	Ship Date	Units Sold	Unit Price	Unit Cost	Total Revenue	Total Cost	
0	Australia and Oceania	Tuvalu	Baby Food	Offline	Н	5/28/2010	669165933	6/27/2010	9925	255.28	159.42	2533654.00	1582243.50	95^
1	Central America and the Caribbean	Grenada	Cereal	Online	С	8/22/2012	963881480	9/15/2012	2804	205.70	117.11	576782.80	328376.44	248
2	Europe	Russia	Office Supplies	Offline	L	05-02- 2014	341417157	05-08- 2014	1779	651.21	524.96	1158502.59	933903.84	224
3	Sub- Saharan Africa	Sao Tome and Principe	Fruits	Online	С	6/20/2014	514321792	07-05- 2014	8102	9.33	6.92	75591.66	56065.84	19
4	Sub- Saharan Africa	Rwanda	Office Supplies	Offline	L	02-01- 2013	115456712	02-06- 2013	5062	651.21	524.96	3296425.02	2657347.52	639
95	Sub- Saharan Africa	Mali	Clothes	Online	М	7/26/2011	512878119	09-03- 2011	888	109.28	35.84	97040.64	31825.92	65
96	Asia	Malaysia	Fruits	Offline	L	11-11- 2011	810711038	12/28/2011	6267	9.33	6.92	58471.11	43367.64	15
97	Sub- Saharan Africa	Sierra Leone	Vegetables	Offline	С	06-01- 2016	728815257	6/29/2016	1485	154.06	90.93	228779.10	135031.05	93
98	North America	Mexico	Personal Care	Offline	М	7/30/2015	559427106	08-08- 2015	5767	81.73	56.67	471336.91	326815.89	144
99	Sub- Saharan Africa	Mozambique	Household	Offline	L	02-10- 2012	665095412	2/15/2012	5367	668.27	502.54	3586605.09	2697132.18	889

Next steps: Generate code with data View recommended plots New interactive sheet

data.head()

4

data.describe()

8

11

12

Ship Date

Units Sold

Unit Price

Total Cost

memory usage: 11.1+ KB

13 Total Profit

Total Revenue

10 Unit Cost

100 non-null

dtypes: float64(5), int64(2), object(7)

object

int64

float64

float64

float64

float64

float64

Total

Cost

328376.44 248406.36

933903.84 224598.75

19525.82

56065.84

Total

Profit

data.isna().sum()

data.dtypes

dtype: object

data = data.astype({'Ship Date': 'datetime64[ns]','Order Date':'datetime64[ns]'})

data.dtypes

dtype: object

plt.figure(figsize=(10,20))

sns.heatmap(data.isnull()) # NO ANY NULL VALUE PRESENT IN OUR DATASET.

test = data.iloc[0, 12] = np.nan $\quad \mbox{\# ADDING NULL VALUE JUST FOR DEMO test}$

→ nan

plt.figure(figsize=(10,20))
sns.heatmap(data.isnull(),annot= True) #NULL VALUE FOUND IN 'TOTAL COST' COLUMN

→ <Axes: >


```
94
95
96
97
98
99
                                                      000000
                                                                                                            000000
                                                                                                                                                                 000000
                                                                                                                                                                                                                        00000
                                                                                                                                                                                                                                                  000000
                                                                                                                                                                                                                                                                                                        000000
                                                                                                                                                                                                                                                                                                                                                              000000
                                                                                                                                                                                                                                                                                                                                                                                       00000
                                                   Country -
                                                                                                       Sales Channel -
                                                                                                                                                              Order Date -
                                                                                                                                                                                                                                                                                                                                                         Total Cost -
                                                                                                                                  Order Priority -
                                                                                                                                                                                                                                                                                                                               Total Revenue -
                                                                             Item Type -
                                                                                                                                                                                         Order ID -
                                                                                                                                                                                                                   Ship Date -
                                                                                                                                                                                                                                              Units Sold
                                                                                                                                                                                                                                                                                                   Unit Cost
                                                                                                                                                                                                                                                                                                                                                                                      Total Profit
                                                                                                                                                                                                                                                                          Unit Price
```

 $\ensuremath{\mathtt{\#}}$ Instead of calculating the mean across the entire DataFrame,

calculate it only for numeric columns.

numeric_data = data.select_dtypes(include=['number'])

data[numeric_data.columns] = data[numeric_data.columns].fillna(numeric_data.mean())

data['Total Cost']= data['Total Cost'].astype('Float64')
data

	Region	Country	Item Type	Sales Channel	Order Priority	Order Date	Order ID	Ship Date	Units Sold	Unit Price	Unit Cost	Total Revenue	Total Cost	Tota Profi
0	Australia and Oceania	Tuvalu	Baby Food	Offline	Н	2010- 05-28	669165933	2010- 06-27	9925	255.28	159.42	2533654.00	925235.620303	951410.5
1	Central America and the Caribbean	Grenada	Cereal	Online	С	2012- 08-22	963881480	2012- 09-15	2804	205.70	117.11	576782.80	328376.44	248406.3
2	Europe	Russia	Office Supplies	Offline	L	2014- 05-02	341417157	2014- 05-08	1779	651.21	524.96	1158502.59	933903.84	224598.7
3	Sub- Saharan Africa	Sao Tome and Principe	Fruits	Online	С	2014- 06-20	514321792	2014- 07-05	8102	9.33	6.92	75591.66	56065.84	19525.8
4	Sub- Saharan Africa	Rwanda	Office Supplies	Offline	L	2013- 02-01	115456712	2013- 02-06	5062	651.21	524.96	3296425.02	2657347.52	639077.5
95	Sub- Saharan Africa	Mali	Clothes	Online	М	2011- 07-26	512878119	2011- 09-03	888	109.28	35.84	97040.64	31825.92	65214.7
96	Asia	Malaysia	Fruits	Offline	L	2011- 11-11	810711038	2011- 12-28	6267	9.33	6.92	58471.11	43367.64	15103.4
97	Sub- Saharan Africa	Sierra Leone	Vegetables	Offline	С	2016- 06-01	728815257	2016- 06-29	1485	154.06	90.93	228779.10	135031.05	93748.(
98	North America	Mexico	Personal Care	Offline	М	2015- 07-30	559427106	2015- 08-08	5767	81.73	56.67	471336.91	326815.89	144521.(
99	Sub- Saharan Africa	Mozambique	Household	Offline	L	2012- 02-10	665095412	2012- 02-15	5367	668.27	502.54	3586605.09	2697132.18	889472.9

Next steps:

Generate code with data

View recommended plots

New interactive sheet

plt.figure(figsize=(10,20))

sns.heatmap(data.isnull(),annot= True) # NO NULL VALUES

- 0.100 - 0.075 0.050 0.025 0.000 -0.025- -0.050 84 85 86 87 88 89 90 91 - -0.075

data.head(3)

₹		Region	Country	Item Type	Sales Channel		Order Date	Order ID	Ship Date	Units Sold	Unit Price	Unit Cost	Total Revenue	Total Cost	Total Profit	
	0	Australia and Oceania	Tuvalu	Baby Food	Offline	Н	2010- 05-28	669165933	2010- 06-27	9925	255.28	159.42	2533654.00	925235.620303	951410.50	ш
	1	Central America and the Caribbean	Grenada	Cereal	Online	С	2012- 08-22	963881480	2012- 09-15	2804	205.70	117.11	576782.80	328376.44	248406.36	
	4 ■	_		Office			2014-		2014-							>
Next	ste	eps: Gene	rate code w	r ith data		/iew recomn	nended p	lots Ne	w intera	ctive she	et					

Data Analysis:

Queries:

Which regions have the highest total sales revenue?

What is the average unit price and unit cost for each item type?

Which country has the highest total profit?

How does the sales channel affect the order priority distribution?

What is the average order processing time (duration between order and ship dates) for each sales channel?

Which item types have the highest and lowest total sales?

How does the order priority vary across different regions?

What is the correlation between unit price and total profit?

Are there any seasonal trends or patterns in the sales data?

How does the number of units sold vary across different countries?

1- Which regions have the highest total sales revenue?

```
Highest_Total_Revenue= data.groupby(data['Region'])['Total Revenue'].sum()
Highest_Total_Revenue.idxmax()
```

→ 'Sub-Saharan Africa'

1e7 is scientific form. it means 1*10**7=10,000,000

2- What is the average unit price and unit cost for each item type?

Avg_Unit_Price= data.groupby(data['Item Type'])['Unit Price'].mean() Avg_Unit_Cost= data.groupby(data['Item Type'])['Unit Cost'].mean()

Avg_Price_Cost= pd.DataFrame({'Average Unit Price': Avg_Unit_Price, 'Average Unit Cost': Avg_Unit_Cost})

	Average Unit Price	Average Unit Cost
Item Type		
Baby Food	255.28	159.42
Beverages	47.45	31.79
Cereal	205.70	117.11
Clothes	109.28	35.84
Cosmetics	437.20	263.33
Fruits	9.33	6.92
Household	668.27	502.54
Meat	421.89	364.69
Office Supplies	651.21	524.96
Personal Care	81.73	56.67
Snacks	152.58	97.44
Vegetables	154.06	90.93

Next steps: Generate code with Avg_Price_Cost View recommended plots

New interactive sheet

3- Which country has the highest total profit?

```
Total_Profit_By_Comapany= data.groupby(data['Country']) ['Total Profit'].sum()
Highest_Total_Profit_County= Total_Profit_By_Comapany.idxmax()

print("Country with the highest total profit:",Highest_Total_Profit_County)

Total_Profit_Country with the highest total profit: Djibouti

group_data= data.groupby(data['Country']) ['Total Profit'].sum()

sns.set_style('darkgrid')

plt.figure(figsize=(15,5))

sns.barplot(x= group_data.index, y= group_data )

plt.xticks(rotation= 90)

plt.xticks(rotation= 90)

plt.xtlabel('Country With Highest Total Profit', fontsize= 20, color= 'Blue')

plt.xlabel('Country', fontsize= 20, color= 'red')

plt.ylabel('Profit', fontsize= 20, color= 'c')

plt.show()

County With Highest Country With Highest Country
```


4- How does the sales channel affect the order priority distribution?

Sales_Channel_Order_Priority_Distribution= data.groupby(data['Sales Channel']) ['Order Priority'].value_counts() Sales_Channel_Order_Priority_Distribution

Sales Channel	Order Priority	
Offline	Н	17
	С	13
	L	12
	М	8
Online	L	15

М

С

count

13

13

9

dtype: int64

```
Sales_Channel_Order_Priority_Distribution = data.groupby(['Sales Channel', 'Order Priority'])['Order Priority'].count()
# Reset the index to convert the grouped data into a DataFrame
Sales_Channel_Order_Priority_Distribution = Sales_Channel_Order_Priority_Distribution.reset_index(name='Count')
# Set the style
sns.set_style('darkgrid')
# Create the bar plot
plt.figure(figsize=(10, 6))
sns.barplot(x='Sales Channel', y='Count', hue='Order Priority', data=Sales_Channel_Order_Priority_Distribution)
# Add labels and title
plt.xlabel('Sales Channel')
plt.ylabel('Count')
plt.title('Sales Channel Order Priority Distribution')
# Display the plot
```


5- What is the average order processing time (duration between order and ship dates) for each sales channel?

```
data['Processing Time'] = data['Ship Date'] - data['Order Date']
Avg_Processing_Time= data.groupby(data['Sales Channel'])['Processing Time'].mean()
Avg_Processing_Time
<del>_</del>_
                      Processing Time
      Sales Channel
          Offline
                       23 days 04:48:00
          Online
                       23 days 12:28:48
     dtype: timedelta64[ns]
plt.figure(figsize=(7, 6))
sns.barplot(data= data, x= data['Sales Channel'], y=data['Processing Time'].dt.days, width= 0.4 )
plt.title('Average Processing Time by Sales Channel')
plt.xlabel('Sales Channel')
plt.yticks(np.arange(0,25,1))
plt.ylabel('Average Processing Time(Days)')
plt.show()
```

₹

Average Processing Time by Sales Channel

6- Which item types have the highest and lowest total sales?

```
plt.scatter(x=max_index, y=group_item_type[max_index], s=200, color='Green', edgecolor='black')
# Highlight the minimum value
min_index = group_item_type.idxmin()
plt.scatter(x=min_index, y=group_item_type[min_index], s=200, color='RED', edgecolor='black')
plt.yticks(rotation= 0)
plt.xticks(rotation= 45)
plt.show()
```


7- How does the order priority vary across different regions?

Diff_regions_by_order_priority= data.groupby(data['Region'])['Order Priority'].value_counts() Diff_regions_by_order_priority

count

Region	Order Priority	
Asia	L	4
	Н	3
	С	2
	М	2
Australia and Oceania	н	5
	С	4
	L	1
	М	1
Central America and the Caribbean	С	2
	н	2
	L	2
	М	1
Europe	н	7
	L	6
	С	5
	М	4
Middle East and North Africa	L	4
	М	4
	н	2
North America	С	1
	L	1
	М	1
Sub-Saharan Africa	н	11
	L	9
	С	8
	М	8

dtype: int64

```
Diff_regions_by_order_priority= data.groupby(data['Region'])['Order Priority'].value_counts().reset_index(name='Order Priority Count')
plt.figure(figsize= (10,5))
sns.barplot(data= Diff_regions_by_order_priority, x= 'Region', y= 'Order Priority Count', hue= 'Order Priority')
plt.xticks(rotation= 90)
plt.yticks(np.arange(1,12,1))
plt.show()
```


8- What is the correlation between unit price and total profit?

```
Correlation_Unit_Price_Total_Profit= data['Unit Price'].corr(data['Total Profit'])
print("Correlation between Unit Price and Total Profit:", Correlation_Unit_Price_Total_Profit)
Correlation between Unit Price and Total Profit: 0.5573652488121267
plt.figure(figsize=(4,2))
plt.scatter(x= Correlation_Unit_Price_Total_Profit, y= Correlation_Unit_Price_Total_Profit, s= 200, color= 'RED' )
plt.xticks(np.arange(-1,2,0.5))
plt.yticks(np.arange(-1,2,0.5))
plt.title('Correlation_Unit_Price_Total_Profit')
plt.show
₹
       matplotlib.pyplot.show
      def show(*args, **kwargs)
       /usr/local/lib/python3.10/dist-packages/matplotlib/pyplot.py
      Display all open figures.
      Parameters
      block : bool, optional
```

9- Are there any seasonal trends or patterns in the sales data?

```
month_names= {1: 'JAN',
             2: 'FEB',
             3: 'MAR',
             4: 'APR',
             5: 'MAY',
             6: 'JUN',
             7: 'JUL',
             8: 'AUG',
             9: 'SEPT',
            10: 'OCT',
            11: 'NOV',
            12: 'DEC'}
monthly_sales = data.groupby(data['Order Date'].dt.month)['Total Revenue'].sum()
monthly_sales.index= monthly_sales.index.map(month_names)
monthly_sales
```


Total Revenue

Order Date	
JAN	10482467.12
FEB	24740517.77
MAR	2274823.87
APR	16187186.33
MAY	13215739.99
JUN	5230325.77
JUL	15669518.50
AUG	1128164.91
SEPT	5314762.56
ОСТ	15287576.61
NOV	20568222.76
DEC	7249462.12

dtype: float64

```
sns.barplot(x= monthly_sales.index, y= monthly_sales)
plt.title('Month Wise Total Revenue')
plt.xlabel('Month')
plt.ylabel('Total Revenue')
plt.show()
```


10- How does the number of units sold vary across different countries?

Diff_countries_by_unit_sold= data.groupby(data['Country'])['Units Sold'].sum().reset_index(name= 'Unit Sold')
pd.set_option('display.max_rows',None)
Diff_countries_by_unit_sold

 \blacksquare

} ▼	Country	Unit Sold
0	Albania	2269
1	Angola	4187
2	Australia	12995
3	Austria	2847
4	Azerbaijan	9255
5	Bangladesh	8263
6	Belize	5498
7	Brunei	6708
8	Bulgaria	5660
9	Burkina Faso	8082
10	Cameroon	10948
11	Cape Verde	4168
12	Comoros	962
13	Costa Rica	6409
14	Cote d'Ivoire	3482
15	Democratic Republic of the Congo	5741
16	Djibouti	23198
17	East Timor	5908
18	Federated States of Micronesia	9379
19	Fiji	9905
20	France	1815
21	Gabon	8656
22	Grenada	2804
23	Haiti	1705
24	Honduras	11199
25	Iceland	8867
26	Iran	6489
27	Kenya	6457
28	Kiribati	5398
29	Kuwait	522
30	Kyrgyzstan	124
31	Laos	3732
32	Lebanon	7884
33	Lesotho	9606
34	Libya	6789
35	Lithuania	8287
36	Macedonia	7842
37	Madagascar	7342
38	Malaysia	6267
39	Mali	6710
40	Mauritania	1266
41	Mexico	19143
42	Moldova	5070
43	Monaco	8614
44	Mongolia	4901
45	Mozambique	5367

.,		
46	Myanmar	14180
47	New Zealand	2187
48	Nicaragua	8156
49	Niger	3015
50	Norway	12574
51	Pakistan	9892
52	Portugal	1273
53	Republic of the Congo	6070
54	Romania	7910
55	Russia	1779
56	Rwanda	9539
57	Samoa	9654
58	San Marino	4750
59	Sao Tome and Principe	24568
60	Saudi Arabia	4063
61	Senegal	6593
62	Sierra Leone	5890
63	Slovakia	171
64	Slovenia	4660
65	Solomon Islands	2974
66	South Sudan	2125
67	Spain	4513
68	Sri Lanka	6952
69	Switzerland	8934
70	Syria	3784
71	The Gambia	14813
72	Turkmenistan	8840
73	Tuvalu	9925
74	United Kingdom	282
75	Zambia	4085

Next steps: Generate code with Diff_countries_by_unit_sold

View recommended plots

New interactive sheet

```
plt.figure(figsize= (18,7))
sns.barplot( data= Diff_countries_by_unit_sold, x= 'Country', y= 'Unit Sold')
plt.xticks(rotation= 90)
plt.yticks(np.arange(0,26000,1000))
plt.show()
```


Other Queries:

How does the total sales revenue vary across different countries?

What is the distribution of unit prices for each item type?

Which sales channel has the highest average unit price?

Are there any outliers in the total cost distribution?

How does the total profit vary across different item types?

What is the average order processing time for each country?

Which region has the highest average total revenue per order?

Is there a relationship between the number of units sold and the total profit?

How does the order priority vary based on the item type?

Are there any trends or patterns in the order dates?

11- How does the total sales revenue vary across different countries?

```
sales_revenue_by_countries= data.groupby(data['Country']) ['Total Revenue'].sum().reset_index(name= 'Total Revenue')
sales_revenue_by_countries
```