ANALYSIS I EXTENSION LECTURE 2. CONSTRUCTION OF \mathbb{N}

ASILATA BAPAT

Remark. Remember: In this world, everything is strictly a set.

Start with 0. We define $0 := \emptyset$. Recall $\operatorname{succ}(x) := x \cup \{x\}$. Accordingly,

$$\begin{aligned} &1 := \varnothing \cup \Set{\varnothing} = \operatorname{succ}(\varnothing) = \Set{\varnothing} \\ &2 := \operatorname{succ}(1) = \operatorname{succ}(\Set{\varnothing}) = \Set{\varnothing} \cup \Set{\Set{\varnothing}} = \Set{\varnothing}, \Set{\varnothing} \end{aligned}$$

$$&3 := \operatorname{succ}(2) = \Set{\varnothing}, \Set{\varnothing} \cup \Set{\Set{\varnothing}, \Set{\varnothing}} = \Set{\varnothing}, \Set{\varnothing}, \Set{\varnothing}, \Set{\varnothing} \end{aligned}$$

$$\vdots$$

But what is \mathbb{N} ? We can define \mathbb{N} by using the Axiom of Infinity — We want \mathbb{N} to contain $0 = \emptyset$, successor of 0, the successor of that, and so on, and nothing else.

Let S be a set such that $\emptyset \in S$ and if $x \in S$ then $success(x) \in S$. However, S <u>could</u> be a lot bigger than \mathbb{N} , so we have to do some more work.

Definition.

$$I_S = \{ T \in \mathbb{P}(S) \mid \varnothing \in T \text{ and } x \in T, \operatorname{succ}(x) \in S \}$$

$$\mathbb{N} = \{ x \in S \mid \forall T \in I_S, x \in T \} = \bigcup_{u \in I_S} u$$

That is I_S is set of all inductive subset of S. $I_S \neq \emptyset$ because $S \in I_S$.

Theorem (Principle of Mathmetical Induction). Let p be a predicate (function that returns TRUE/FALSE defined on \mathbb{N} . Assume that p(0) is true and $\forall k \in \mathbb{N}$, $p(k) \Longrightarrow p(\operatorname{succ}(k))$, then p(n) holds for all $n \in \mathbb{N}$.

Proof. Fix p, with the above properties, and set $S := \{ n \in \mathbb{N} \mid p(n) \}$. We want to show $S = \mathbb{N}$. i.e. the element of S are exactly the element of \mathbb{N} . We observe that S is inductive. Specifically,

- (1) $0 \in S$ because $p(0) = p(\emptyset)$ holds.
- (2) If $x \in S$, it means p(x) holds. But p has the property that $p(x) \implies p(x^+)$. Then by definition of $S, x^+ \in S$.

By (1) and (2), S is inductive, and therefore $\mathbb{N} \subseteq S$. By the definition of S, it is a subset of \mathbb{N} , therefore $S \subseteq \mathbb{N}$.

$$\therefore S = N$$

Theorem. If m, n are two natural numbers such that $m^+ = n^+$, then m = n.

Lemma. Let $x, n \in \mathbb{N}$. If $x \in n$, then $x \subset n$.

Proof. Define
$$p(n)$$
 as $p(n) = \forall x (x \in n \implies x \subset n)$