G H PATEL COLLEGE OF ENGINEERING & TECHNOLOGY, V V NAGAR A.Y.2019-20: EVEN SEMESTER

3140708: DISCRETE MATHEMATICS

Assignment 1: Set Theory

1.	List	the	members	of	these sets.	
----	------	-----	---------	----	-------------	--

- (a) $\{x \mid x \text{ is a real number such that } x^2 = 1\}$
- (b) $\{x \mid x \text{ is a positive integer less than } 12\}$
- (c) $\{x \mid x \text{ is the square of an integer and } x < 100 \}$
- (d) $\{x \mid x \text{ is an integer such that } x^2 = 2\}$

(d)
$$\{-1, \pm \}$$
 (b) $\{0, \pm, 2, 3, \pm, 5, 6, 7, 8, 9, \pm 0, \pm 11\}$

Use set builder notation to give a description of each of these sets.

(a)
$$\{0, 3, 6, 9, 12\}$$
 (b) $\{-3, -2, -1, 0, 1, 2, 3\}$

(a)
$$\{\chi/\chi = 3n, n = 0, 1, 2, 3, 4\}$$

For each of the following sets, determine whether 2 is an element of that set.

(a)
$$\{x \in R \mid x \text{ is an integer greater than } 1\}$$
 (b) $\{x \in R \mid x \text{ is the square of an integer } \}$

- (c) {2,{2}}
- (d) $\{\{2\},\{\{2\}\}\}$
- (e) $\{\{2\},\{2,\{2\}\}\}$
- $(f) \{\{\{2\}\}\}$

- (4) 485 (b) NO (c) Jes (D) NO (e) NO

Determine whether each of these statements is true or false.

- (a) $0 \in \varphi$
- (b) $\varphi \subset \{0\}$ (c) $\{\varphi\} \subseteq \{\varphi\}$
- $(d) \{0\} \in \{0\}$
- $(e)\;\varphi\in\{\varphi\}$ $(f) \{\varphi\} \in \{\{\varphi\}\}\$
- $(g)\{\{\varphi\}\}\subset\{\varphi,\{\varphi\}\}$
- (b) fulse cal salse
- (1) Fulse (C) TRYE

(9) Toue (F) TRUE TRUP

Use a Venn diagram to illustrate the following relationships: 5.

Find two sets A and B such that $A \in B$ and $A \subseteq B$.

is an empty -) A CB, we can easily see that is a subset of B.

-) AEB, since we can ousily see that

7.	What is the cardinality of each of these sets? (a) φ (b) $\{\varphi\}$ (c) $\{\{a\}\}$ (d) $\{\varphi, \{\varphi\}\}$ (e) $\{\varphi, \{\varphi\}, \{\varphi, \{\varphi\}\}\}\}$.
	(d) 0 (h) 1 (c) 1 (d) 2 (e) 3
8.	Find the power set of $\{\varphi, \{\varphi\}\}\$.
	= { ø , < ø , < < ø } , < < ø , < ø } }
9.	How many elements does each of these sets have where a and b are distinct elements? (a) $P(\{a, b, \{a, b\}\})$ (b) $P(\{\varphi, a, \{a\}, \{\{a\}\}\})$ (c) $P(P(\varphi))$.
	(a) $2^{n} = 2^{3} = 8$ (b) $2^{1} = 16$ (c) $2^{0} = 1$
10.	Determine whether each of these sets is the power set of a set, where a and b are distinct elements.
	(a) φ (b) $\{\varphi, \{a\}\}$ (c) $\{\varphi, \{a\}, \{\varphi, \{a\}, \{\varphi, a\}\}\}\}$ (d) $\{\varphi, \{a\}, \{b\}, \{a, b\}\}\}$
	(c) No (d) Yes
11. ->	A = 0 or $B = 0$ as it any one the sets is empty. the constant
	product of the taxo sets becomes B.
12.	Explain why $A \times B \times C$ and $(A \times B) \times C$ are not the same. If $A \times B \times C = \{(u,b,c) \mid u \in A, b \in B, c \in C\}$ is the set of all taiplets cheques $(A \times A) \times C = \{((u,b),c) \mid u \in A, b \in B, c \in C\}$ is the set all Badead pairs in which the first element is itself an ordered pair.
13.	
	(a) for every real number x , nc^2 is not equal to -1> True (b) There exists an integer x such that $x^2 = 2$, -) false
	cc) for every integer number 1, such that x2>0 -) rane
	(d) for every seed number x such that x2=x + false
	(e) There exists an seed number x such that x23=-1 -> True
	(f) there exists an integer x such that x+1>21 -) True
	(1) for every integer x such that x-1 = z -> Trave
	(h) for every integer number x , such that $x^2 \in \mathbb{Z} \to \tau_{Aue}$ Find the truth set of each of these predicates where the domain is the set of integers.
14.	Find the truth set of each of these predicates where the domain is the set of integers. (a) $P(x)$: " $x^2 < 3$ " (b) $Q(x)$: " $x^2 > x$ " (c) $R(x)$: " $2x + 1 = 0$ " (d) $P(x)$: " $x^3 \ge 1$ " (e) $Q(x)$: " $x^2 = 2$ " (f) $R(x)$: " $x^2 < x$ "
	(a) $\{-1,0,1\}$ (b) $\{-1,\pm 2,\pm 3,\dots\}$ (c) $\{-1,\pm 2,\pm 3,\dots\}$
,	$= \mathbf{Z} + \{0, 1\} $
	a) {1,1,3,} (e) \$\phi\$ (4) \$\phi\$
	= N (Natural Mumber)

Try to understand the following proof of a distributive law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and then prove it using membership table. First we show that $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Let $x \in A \cup (B \cap C)$. $x \in A \text{ or } x \in B \cap C$ Case 1: If $x \in A$, then $x \in A \cup B$ as well as $x \in A \cup C$. $\therefore x \in (A \cup B) \cap (A \cup C).$ This proves that, in this case, $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. Case 2: If $x \notin A$, then x must belong to $B \cap C$. $x \in B$ as well as $x \in C$. $x \in A \cup B$ as well as $x \in A \cup C$. This proves that, in this case also, $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$. (1)Thus, it is proved that $AU(B\cap C) \subset (AUB)\cap (AUC)$. Next, we have to show that $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. Let $x \in (A \cup B) \cap (A \cup C)$. $x \in A \cup B$ as well as $x \in A \cup C$. Case 1: If $x \in A$, then $x \in A \cup (B \cap C)$. This proves that, in this case, $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. Case 2: If $x \notin A$, then x must belong to B as well as C. So, $x \in B \cap C$ and hence must belong to $A \cup (B \cap C)$. This proves that, in this case also, $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. (2)Thus, it is proved that $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$. From (1) and (2), we can conclude that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. -) diast are show that , AU(Bnc) C (AUB) n (Anc) TEA OR XEBAC -) Let x e AU(BOC) x, = AUB as well us x = AUC. 2 x ∈ (AUB) ∩ (AUC) proves that, in this case, Au(Bnc) = (AUB) n (Anc) -) Case 2: If r & A, then x must belong to BnC. : xeB us well as x ec. . Re AUB as well as x e Auc. This proves that, in this case also, Au(Bnc) C(AUB) n(Auc) Thus, it is proved that Au(Bnc) = CAUB) n(AUC) __ _ D Next, we have to show that (AUB) n(AUC) a AU(Bnc) Mow, continue in file puge Draw the Venn diagrams for each of these combinations: $(c) (A \cap \overline{B}) \cup (A \cap \overline{C})$ (b) $(A-B)\cup(A-C)\cup(B-C)$ 16. (a) $\bar{A} \cap \bar{B} \cap \bar{C}$ (e) $A - (B \cap C \cap D)$ $(d) (A \cap B) \cup (C \cap D)$ Use separate sheet of paper to answer this question. æ) U P)

(a)

17. In a recent survey, people were asked if they took a vacation in the summer, winter or spring in the last year. The results were: 73 took a vacation in the summer, 51 took a vacation in the winter, 27 took a vacation in the spring, and 2 had taken no vacation. Also, 10 had taken vacations at all three times, 33 had taken both a summer and a winter vacation, 18 had taken only a winter vacation and 5 had taken both a summer and a spring but not a winter vacation.

(e)

- (a) How many people had been surveyed?
- (b) How many people had taken vacations at exactly two times of the year?
- (c) How many people had taken vacations during at most one time of the year?
- (d) What percentage had taken vacations during both summer and winter but not spring?

(a)
$$35 + 23 + 18 + 10 + 5 + 12 + 2 = 105$$

(c)
$$35 + 18 + 12 + 2 = 67$$

$$\frac{23 \times 10^{0}}{105} \approx 21.9048 \%$$

Find the sets A and B if $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$.

$$A = \{1,3,5,6,7,8,9\}$$

 $B = \{2,3,6,9,10\}$

- Can you conclude that A = B if A, B and C are sets such that (C) $A \cup C = B \cup C$ and $A \cap C = B \cap C$?
 - (a) AUC = BUC? (b) $A \cap C = B \cap C$? Give examples to justify your answer.

$$C = \{1, 7, 3, 4\}$$

(b) The answer is No.

$$\beta = \{1, 2, 3, 3, \dots, 6\}$$

- (c) suppose AUC = BUC and Anc=Bn(
 - + Let x = A, Then
 - KEAUC, so by ressumption.
- xe BUC. Thus, xe B og x e C. -
- as significant the se as a done.
 - + If xEC, then we have xEAN(
 - By assumption, this means
 - regne which movens xeB. Su, in every case A = B. A Similar argument will show
 - that BCA, so A= B
- What can you say about the sets A and B if we know that 20.
 - (a) $A \cup B = A$
- (b) $A \cap B = A$
- (c) A B = A

- $(d) A \cap B = B \cap A$
- (e) A B = B A
- (c) Anb = \emptyset (a) B C A (b) A = B
- (d) The given statement is the (D) A=B commutative law

21. Show that if A is a subset of a universal set
$$U$$
, then

$$(a) A \oplus A = \varphi$$

(b)
$$A \oplus \varphi = A$$

$$(c) A \oplus U = \bar{A}$$

$$(d) A \oplus \bar{A} = U.$$

(c)
$$A \oplus V = (A \cup U) - (A \cap U) = U - A = \overline{A}$$

22. Show that if A and B are sets, then
$$(A \oplus B) \oplus B = A$$
.

23. What can you say about the sets A and B if
$$A \oplus B = A$$
?

at can you say about the sets A and B if
$$A \oplus B = A$$
?
 \Rightarrow If $B = \emptyset$ then $A \oplus B = (A \cup B) - (A \cap B) = (A \cup \emptyset) - (A \cap \emptyset)$

$$= A - \emptyset = A$$

24. If
$$A, B$$
 and C are sets such that $A \oplus C = B \oplus C$, can we conclude that $A = B$?

$$A \oplus C = B \oplus C$$

$$(A \oplus C) \oplus C = (B \oplus C) \oplus C \Rightarrow A \oplus (C \oplus C) = B \oplus (C \oplus C) \Rightarrow A \oplus \emptyset = B \oplus \emptyset$$
5. Find

$$(A \oplus c) \oplus C = (B$$
25. Find

(a)
$$\bigcup_{i=1}^n A_i \qquad (b)$$

$$\bigcap_{i=1}^{n} A_{i} \qquad (c) \qquad \bigcup_{i=1}^{\infty} A_{i} \qquad (d)$$

$$i=1$$

$$(d) \qquad \bigcap_{i=1}^{\infty} A_i$$

if for every positive integer
$$i$$
,

f for every positive integer (a)
$$A_i = \{1, 2, 3, ..., i\}$$

(d)
$$A_i = \{i, i+1, i+2, ...\}$$

(a)
$$A_i = \{i, i+1, i+2, ...\}$$
 (b) $A_i = \{i, i+1, i+2, ...\}$ (c) $A_i = \{i, i+1, i+2, ...\}$

(b)
$$A_i = \{..., -2, -1, 0, 1, ..., i\}$$
 (c) $A_i = \{0, i\}$
(e) $A_i = \{0, i\}$ (f) $A_i = \{-i, i\}$
(i) $A_i = [i, \infty]$

(b)
$$A_i = \{..., -2, -1, 0, 1, ..., v\}$$

(c) $A_i = \{0, i\}$
(d) $A_i = \{i, \infty\}$
(e) $A_i = \{i, \infty\}$
(f) $A_i = \{-i, i\}$
(i) $A_i = [i, \infty]$

(g)
$$A_i = [-i, i]$$
 (h) $A_i = \{i, \infty\}$
(j) $A_i = \{-i, -i+1, \dots, -1, 0, 1, \dots, i-1, i\}$

(a)
$$A_i = \{-i, -i+1, ..., -1, 0, 1, ..., t-1, t\}$$

(a) $A_i = \{1, 2, 3, ..., t\}$
(b) $A_i = \{-2, -1, 0, 1, ..., t-1, t\}$
(c) $A_i = \{1, 2, 3, ..., t\}$
(d) $A_i = \{1, 2, 3, ..., t\}$
(e) $A_i = \{-1, 0, 1, ..., t-1, t\}$

$$A_2 = \{1,2\}$$
 $A_3 = \{1,2,3\}$

$$A_3 = \{1, 2, 3\}$$
 $A_1 = \{1, 2, 3, --1\}$

(c)
$$\Delta s = \{1, 1, 3, \dots\}$$

(c)
$$A_1^c = \{1, 1, 3, \dots \}$$

$$A_{i} = (o, i)$$

$$A_1 = \{1, 2, 3, -\frac{1}{2}, A_2 = \{2, 3, \mu, ---\}$$

(9)
$$A_1 = \{1, 2, 3, 4, 5 - 1\}$$

(b)
$$A_i^* = A_i n \{n, n+1, \dots \}$$

= $A_i n \{n, n+1, \dots \}$

(c)
$$A_{1} = \{1, 2, 3, 4 \}$$

$$A_2 = (0,2)$$
(a) $A_1 = (0,n)$

(b)
$$A_1^* = A(0,1) = A_1$$

(b)
$$A_{i} = (0, 1) \ge A_{1}$$

(b) AT = 403

(0) A= = 10}

$$A_1 = \{-1, 1\}$$
 $A_2 = \{-2, 2\}$

(4) A; = {0,1,2,3,-- n}

(c) 8; = {0,1,7,3__ b

(8)
$$A_1 = [-1, 1]$$
 $A_2 = [-2, 2]$

(h)
$$A_1^* = [-1, 1]$$

= A_1

(P)
$$Ai = [-1, 1]$$

= A_1

$$A_1 = (1, \infty)$$
 $A_2 = (2, \infty)$

$$A_1 = [1, \infty]$$
 $A_2 = [2, \infty]$

(c)
$$A_i = [1, \infty]$$

(b)
$$Ai = \{-1, -1, -1, 0, 1, -1, i\}$$

$$A_1 = \{-1, 0, 1\}$$

$$A_2 = \{-2, -1, 0, 1, 2\}$$

$$(a) Ai = \{-1, 0, 1\}$$

$$(b) Ai = \{-1, 0, 1\}$$

(C) A; = {-00---7,0,1,--0}

Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Express the sets **26.** (c) {2, 3, 4, 7, 8, 9} (b) {1, 3, 6, 10} (a) $\{3, 4, 5\}$ with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise. Also, find the set specified by each of the bit strings

(a) 11 1100 1111

(b) 01 0111 1000

(c) 10 0000 0001

(b) 10100 1000 TO 0111001110

What subsets of a finite universal set do these bit strings represent? (b) the string with all ones (a) the string with all zeros

(a) A is the empty set

A = ()

- How can the union and intersection of n sets that all are subsets of the universal set U be 28. found using bit strings?
 -) If day towo sets A and B are have to do union operation are have to do the process like if ith bit of both set are other only it will be 0 in staing bit otherwise 1
 - day Intersection operation, if the ith bit of A and B both are I then only the regultarit bit will be one, if unyons at it is 0 then it will be or
 - Similar don n sets, union can be done through like it 1+h bit of nexts have anyone of the set 1 than the Resulteent string bit will be one.
 - Similar for intersection operation, if the it bit of all sets are 1. then only the resultant string bit will be 1 otherwise 0.

Page	No.					
Date						

> Let x = (AUB) n (AUC)

1. x ∈ AUB us well us x ∈ AUC.

Cuse 1: If XEA, then XE AU(BAC)

This proves that, in this ease, (AUB) n (AUC) C AU (Bn()

Cuse 2: If x & A, then x must belong to B as well as C

So, x EBAC and hence must belong to Au(BAC)

This proves that, in this case also (AUB)n(AUC) CAU(BNC)
Thus, it is proved that (AUB)n(AUC) CAU(BNC) ~2

from @ and @, we can conclude that AU(Binc)

=(AUB) n (AUC)

- membership table

+		В	c	BUC	A n(BUC)	AAB	AAC	CAUB) O (AUC)
_	A	<u> </u>						
	,	1	1	1	1	1	'	
	1)	0	1	1	1	0	1
	1	ð	1	1	1	ರಿ	1	1 /
_	1	O	0	0	0	0	0	0
_	0	1	1	1	0	0	0	O
	0	1	0	1	0	0	0	O
_	0	0	1	1	0	, O	0	O
	0	0	0	0	0	Ø	0	0

above table