Deep Learning for Mesenchymal Stem Cell Characterization

July 1, 2019

David Gray

Deep Learning is Broadly Applicable

Object Detection with Deep Learning

Faces Can Be Classified by Neural Networks

David Gray screenshot.png

Classify Mesenchymal Stem Cells (MSCs) as Done with Faces

Black-and-white	78%
Darkness	78%
Font	69%
Monochrome	64%
Illustration	60%
Monochrome Photography	58%
Graphics	56%

Untitled.jpg

- Proliferation?
- Senescent?
- Identification?

Images were Collected from MSCs Grown in Monolayer and from Flow Cytometry

Monolayer

Cells were Segmented by Staining Nuclei

Flow Cytometry

Brightfield with Fluorescence Imaging of Cells in Flow

Technology – Finding Patterns

Neural Network Training and Classification

Brightfield images are labeled according to their fluorescence brightness and input into the CNN
Additional brightfield images that have not been processed are input into the CNN for classification.

The uniqueness of this technology is the ability to determine cell phenotype rapidly and maintain viability

We Try to Predict Ki67 (Proliferation Marker) Expression from Brightfield Images Alone

Processing Images from Flow Cytometer Yielded Higher Accuracy than Monoloayer

Dataset 1, 2, and 1 + 2 were from a different donor than Flow Dataset 1

Training on Images from Flow Cytometry Gave 96% Accuracy

Accuracy and Validation Accuracy

The Following are the Recommended Next Steps

- Verify Higher Accuracy of Flow Cytometry with Cells from More Donors
- Try to Improve Accuracy with More Training Images