

Al5090/EE5817: PROBABILITY AND STOCHASTIC PROCESSES

Quiz 03

DATE: 12 SEPTEMBER 2025

Question	1	2	Total
Marks Scored			

1. Let $(p_n)_{n\in\mathbb{N}}$ be non-negative numbers with $\sum_{n\in\mathbb{N}}p_n=1$. Let $\mathbb{P}:\mathscr{B}(\mathbb{R})\to[0,1]$ be defined as

$$\mathbb{P}(A) \coloneqq \sum_{n \in \mathbb{N}} p_n \, \delta_n(A), \qquad \text{where for any } n \in \mathbb{N}, \quad \delta_n(A) = \begin{cases} 1, & n \in A, \\ 0, & n \notin A. \end{cases}$$

- (a) **(2 Marks)** Verify that $\mathbb P$ is a valid probability measure on $\mathscr B(\mathbb R)$.
- (b) (1 Mark) Let $p_n=\frac{1}{4}\cdot\left(\frac{3}{4}\right)^{n-1}$ for all $n\in\mathbb{N}$. If E is the set of even natural numbers, compute $\mathbb{P}(E)$.

Name:

Roll Number: Department:

Program: BTech / MTech TA / MTech RA / PhD (Tick one)

2. Let $(\Omega,\mathscr{F})=(\mathbb{N},2^{\mathbb{N}}).$ For each $n\in\mathbb{N},$ let $P_n:\mathscr{F}\to[0,1]$ be defined as

$$P_n(A) := \frac{|A \cap \{1, 2, \dots, n\}|}{n}, \quad A \in \mathscr{F}.$$

Given a set $A\in \mathscr{F}$, its density D(A) is defined as

$$D(A):=\lim_{n\to\infty}P_n(A),\quad \text{ provided the limit exists.}$$

Let ${\mathscr D}$ be the collection of all sets whose density is well-defined.

(a) **(1 Mark)** Show that $\mathscr D$ is closed under complements, i.e., if $A\in\mathscr D$, then $A^\complement\in\mathscr D$.

(b) (1 Mark) Let
$$M=\{3k: k=1,2,\ldots\}.$$
 Find $D(M).$