MTH 100: Lecture 27

Coordinate Systems:

Let V be a finite dimensional vector space and $B = \{V_1, \dots, V_n\}$ be an ordered basis of V. Then any vector $u \in V$ can be uniquely whiten as $u = x, v, + x_2 v_2 + \dots + x_n v_n$.

The vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is called the Coordinate vector of u (selective to u) and is denoted by u

- Now the mapping or correspondence between V and Fn given by: $u \mapsto [u]_B$ is called the coordinate mapping determined by B
- · It is an one-to-one correspondence.

 ie. each vector has a unique corresponding
 n-tuble and each n-tuble has a unique
 coveresponding vector.
 - · The sum of two vectors corresponds to the sum of the two n-tuples.
 - The scalar multiple of a vector corresponds to a scalar multiple of the n-tuple.

Therefore the coordinate mapping is actually an isomorphism from an n-dimensional vector space V over the field F to F^n . Note that ever get a different isomerphism for each choice of an ordered basis for V. (Recall proposition of Last class).

Ex: Let $V = \mathbb{R}^3$ Now, $E = \begin{cases} e_1, e_2, e_3 \end{cases}$ where $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an ordered and $e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Let $9 = \begin{bmatrix} 14 \\ 11 \\ 7 \end{bmatrix} \in V \in \mathbb{R}^3$ $\begin{bmatrix} 14 \\ 11 \\ 7 \end{bmatrix} = \begin{bmatrix} 14e_1 + 11e_2 + 7e_3 \\ 11 \\ 7 \end{bmatrix} = \begin{bmatrix} 14e_1 + 11e_2 + 7e_3 \\ 11 \\ 7 \end{bmatrix}$ Coordinates

Now $B = \{2, 2, 23\}$ be another ordered Basis of Vwhere $V_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $V_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $V_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Now
$$y = \begin{bmatrix} 14 \\ 11 \\ 7 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 4\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + 7\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

So, $\begin{bmatrix} 12 \\ 15 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix}_{B}$

Similarly

Since $W = \begin{bmatrix} 12 \\ 15 \\ 9 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix}_{B}$

We have $\begin{bmatrix} 12 \\ 15 \end{bmatrix} = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix}_{B}$

In general if $z \in V = \mathbb{R}^3$, then to find $[Z]_B$, we need to find coefficients x_1, x_2, x_3 Such that $x_1, y_1 + x_2, y_2 + x_3y_3 = Z$ $\Rightarrow \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = Z$

$$\Rightarrow A \times = Z \quad \text{there } A = \begin{bmatrix} 29 & 192 & 193 \end{bmatrix}$$
and
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow X = A^{-1}Z \quad \begin{cases} \text{Note that } A \text{ is invertible as its columns are linearly independent} \end{cases}$$
Here
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Then
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 (Please Calculate and check!!)

Now for
$$z = v = \begin{bmatrix} 14 \\ 11 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} z \end{bmatrix}_{B} = A^{1}z = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 \\ 7 \end{bmatrix} \begin{bmatrix} 14 \\ 11 \\ 7 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix}_{B} \text{ (as expected)}$$

$$\frac{\mathcal{E}_{X}}{\text{If}} \quad \overline{\mathcal{I}}_{1} = \begin{bmatrix} 2 \\ 4 \\ 9 \end{bmatrix}, \text{ check that } \begin{bmatrix} z_{1} \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 9 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ 9 \end{bmatrix}_{B}$$

Matrix Of a Linear Transformation

Suppose V and W are finite dimensional vector spaces over the field F and T: V -> W is a linear transformation.

Suppose dim V = n and dim W = m

Let $B = \{v_1, ..., v_n\}$ be an ordered basis of V and $C = \{w_1, ..., w_m\}$ be an ordered basis of W.

Since $Tv_1, Tv_2, ..., Tv_n \in W$, We can express them uniquely as linear Combinations of $\omega_1, ..., \omega_m$.

Thus we can write $Tv_1 = A_{11} \omega_1 + A_{21} \omega_2 + \cdots + A_{m_1} \omega_m$ $Tv_2 = A_{12} \omega_1 + A_{22} \omega_2 + \cdots + A_{m_2} \omega_m$

Tren = $A_{1n}\omega_1 + A_{2n}\omega_2 + \cdots + A_{mn}\omega_m$

We now form the mxn matrix A with these coefficients as Columns.

ie.
$$A_{m \times n} = \begin{bmatrix} A_{11} & A_{12} & ... & A_{1m} \\ A_{21} & A_{22} & ... & A_{2n} \\ ... & ... & ... & ... & ... \\ A_{m_1} & A_{m_2} & ... & ... & A_{m_n} \end{bmatrix}$$

- · The matrix A is called the matrix of T with respect to the bases B and C and is denoted by [T] B -> C
- For any vector $v \in V$, we can find the coordinates of Tv in W by left multiplying the coordinate vector of 20 by the matrix

$$A = [T]_{B \rightarrow C}$$

In terms of coordinate vectors, we can write: $[T(v)]_c = [T]_{B \to c}[v]_B$

• In the special case of a linear operator, i.e. a linear transformation from V into itself, the bases B and C are usually taken as the same, and the matrix A is called the B-matrix for T, evsitten [T] B.

Then the above equation becomes:

 $\frac{2}{2x}$: Let $T:\mathbb{R}^3$ $\longrightarrow \mathbb{R}^2$ be given by T(x,y,z) = (x+y+z, x+2y+3z)

Let
$$B = \{e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\}$$

and
$$C = \begin{cases} e_1' = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, e_2' = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{cases}$$

Then B is an ordered basis of \mathbb{R}^3
and C is an ordered basis of \mathbb{R}^2

$$Te_1 = T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1e_1' + 1e_2'$$

$$Te_2 = T \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1e_1' + 2e_2'$$

$$Te_3 = T \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 1e_1' + 3e_2'$$

$$50, \text{ the matrix of } T: \\ [T]_{B \to C} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1e_1' + 3e_2'$$

If $V = \begin{bmatrix} x \\ y \\ 2 \end{bmatrix} \in \mathbb{R}^3$,

then $[T(v)] = [T]_{B \to C} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$= \begin{bmatrix} x + y + z \\ z + 2y + 3z \end{bmatrix} = [Tv]_{C}$$

Ex: Let D:
$$\mathbb{R}_3[t]$$
 $\longrightarrow \mathbb{R}_2[t]$
be defined by $\mathbb{D}[b(t)] = b'(t)$ for any $b(t) \in \mathbb{R}_3(t)$

Note that
$$\dim(\mathbb{R}_3[t])=4$$
 and $\dim(\mathbb{R}_2[t])=3$ and

B =
$$\{1, t, t^2, t^3\}$$
 is an ordered basis of $\mathbb{R}_3[t]$ and C = $\{1, t, t^2\}$ is an ordered basis of $\mathbb{R}_2[t]$

Now
$$D(1) = 0 = 0.1 + 0.t + 0.t^{2}$$

$$D(t) = 1 = 1.1 + 0.t + 0.t^{2}$$

$$D(t^{2}) = 2t = 0.1 + 2.t + 0.t^{2}$$

$$D(t^{2}) = 2t = 0.1 + 2.t + 0.t^{2}$$

$$D(t) = 2t^{2}$$

$$D(t^{3}) = 3t^{2} = 0.1 + 0.t + 3.t^{2}$$

Therefore
$$[D] = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Now let us take a fasticular folynomial $f_1(t) = 4 + 5t + 2t^2 + 3t^3$

Then
$$\begin{bmatrix} P_1(t) \end{bmatrix}_B = \begin{bmatrix} 4 \\ 5 \\ 2 \\ 3 \end{bmatrix}$$

Now
$$\begin{bmatrix} \uparrow \\ B \rightarrow C \end{bmatrix} \begin{bmatrix} h_1(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}_{c}$$
Note that $D[P_{1}(t)] = 5 + 4t + 9t^{2}$
whose coordinate vector ceith respect to C is
$$\begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}_{c}$$