Оглавление

Лекция 2. Методы интерполяции кубическими сплайнами	2
2.1 Эрмитовы кубические сплайны	2
2.2 Поверхности Эрмита	4
2.3 Естественные кубические сплайны	7
2.4 Алгоритм построения естественного кубического сплайна	8
2.5 Матрицы СЛАУ для нахождения вторых производных	10
2.6 Интерполяция естественными бикубическими сплайнами	12
2.7 Алгоритм построения естественного бикубического сплайна	15

Лекция 2. Методы интерполяции кубическими сплайнами

2.1 Эрмитовы кубические сплайны

Рассмотрим задачу нахождения функций кубического сплайна $\mathbf{r}(t) = \begin{bmatrix} x(t), y(t), z(t) \end{bmatrix}$ на заданном отрезке $\begin{bmatrix} t_0, t_n \end{bmatrix}$ по набору значений $(t_i, \mathbf{p}_i, \mathbf{p}_i')$, $i = 0, 1, 2, \ldots, n$. Будем строить функцию кубических сплайнов по одной из координат (x, y) или z, обозначая ее как S(t), а заданные значения как (t_i, p_i, p_i') .

Эрмитовым кубическим интерполяционным сплайном будем называть функцию, удовлетворяющую условиям:

1. На каждом из промежутков $[t_i, t_{i+1}]$:

$$S(t) \equiv S_i(t) = a_i(t-t_i)^3 + b_i(t-t_i)^2 + c_i(t-t_i) + d_i$$
.

2. Условия интерполяции для функции и ее производной:

$$S(t_i) = p_i,$$

$$S'(t_i) = p'_i,$$

где i = 0, ..., n.

Точки стыковки t_i , $i=1,\dots,n-1$ будем называть узлами сплайна. Очевидно, что $S\in C^1$.

Для вычисления коэффициентов a_i , b_i , c_i , d_i , i=0,...,n-1 имеем систему уравнений:

$$\begin{cases}
S(t_{i}) = p_{i}, \\
S(t_{i+1}) = p_{i+1}, \\
S'(t_{i}) = p'_{i}, \\
S'(t_{i+1}) = p'_{i+1}.
\end{cases}$$
(1)

Запишем вид функции S(t)и S'(t) в матричном виде:

$$S(t) = \left[(t - t_i)^3 \quad (t - t_i)^2 \quad (t - t_i) \quad 1 \right] \begin{bmatrix} a_i \\ b_i \\ c_i \\ d_i \end{bmatrix},$$

$$S'(t) = \left[3(t - t_i)^2 \quad 2(t - t_i) \quad 1 \quad 0 \right] \begin{bmatrix} a_i \\ b_i \\ c_i \\ d_i \end{bmatrix}.$$
(2)

Подставляя в (1) и (2) условия (3) получаем СЛАУ:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ h_i^3 & h_i^2 & h_i & 1 \\ 0 & 0 & 1 & 0 \\ 3h_i^2 & 2h_i & 1 & 0 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \\ d_i \end{bmatrix} = \begin{bmatrix} p_i \\ p_{i+1} \\ p'_i \\ p'_{i+1} \end{bmatrix},$$

где $h_i = t_{i+1} - t_i$.

Решая это СЛАУ, получаем:

$$\begin{bmatrix} a_i \\ b_i \\ c_i \\ d_i \end{bmatrix} = \begin{bmatrix} \frac{2}{h_i^3} & -\frac{2}{h_i^3} & \frac{1}{h_i^2} & \frac{1}{h_i^2} \\ -\frac{3}{h_i^2} & \frac{3}{h_i^2} & -\frac{2}{h_i} & -\frac{1}{h_i} \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_i \\ p_{i+1} \\ p'_i \\ p'_{i+1} \end{bmatrix}.$$
 (3)

Подставляя (3) в (2) получаем:

$$S(t) = \varphi_1(\omega) p_i + \varphi_2(\omega) p_{i+1} + \varphi_3(\omega) h_i p_i' + \varphi_4(\omega) h_i p_{i+1}',$$
(4)

где

$$\varphi_{1}(\omega) = (1-\omega)^{2} (1+2\omega),$$

$$\varphi_{2}(\omega) = \omega^{2} (3-2\omega),$$

$$\varphi_{3}(\omega) = \omega (1-\omega)^{2},$$

$$\varphi_{4}(\omega) = -\omega^{2} (1-\omega),$$

$$\omega = \frac{t-t_{i}}{h_{i}}.$$

Формула (4) удобна для теоретических исследований, для практического вычисления сплайна в точке $t \in [t_i, t_{i+1}]$ выгоднее с точки зрения вычисления арифметических операций, использовать следующие формулы:

$$S(t) = p_i + (t - t_i) [p'_i + \omega(B + \omega A)],$$

где

$$A = -\frac{2(p_{i+1} - p_i)}{h_i} + (p'_i + p'_{i+1}),$$

$$B = -A + \frac{(p_{i+1} - p_i)}{h_i} - p'_i.$$

2.2 Поверхности Эрмита

Пусть на прямоугольной области $\Omega = \left\{ (t, \tau) \middle| t_{\min} \le t \le t_{\max}, \tau_{\min} \le \tau \le \tau_{\max} \right\}$ задана сетка $\Delta = \Delta_t \times \Delta_\tau$, где $\Delta_t : t_{\min} = t_0 < t_1 < \ldots < t_n = t_{\max}$, $\Delta_\tau : \tau_{\min} = \tau_0 < \tau_1 < \ldots < \tau_m = \tau_{\max}$.

Сетка Δ делит область Ω на прямоугольные участки $\Omega_{ij} = \left\{ \left(t, \tau\right) \middle| t_i \leq t \leq t_{i+1}, \tau_j \leq \tau \leq \tau_{j+1} \right\}, \ i = 0, \dots, n-1, \ j = 0, \dots, m-1.$

Пусть в узлах $\left(t_i,t_j\right)$ заданы значения $p_{ij}^{(k,l)},\ k,l=0,1,\ i=0,\dots,n\,,\ j=0,\dots,m\,.$

Функция S называется интерполяционным эрмитовым кубическим сплайном двух переменных, если:

1. В каждой ячейке Ω_{ij} функция S является многочленом отдельно по t и τ :

$$S(t,\tau) = \sum_{k=0}^{3} \sum_{l=0}^{3} a_{kl}^{ij} (t-t_i)^k (\tau-\tau_j)^l = S_{ij}(t,\tau),$$

ДЛЯ
$$\forall (t,\tau) \in \Omega_{ii}, i = 0,...,n-1, j = 0,...,m-1.$$

2. *S* удовлетворяет условиям интерполяции:

$$S^{(k,l)}(t_i,\tau_j)=p_{ij}^{(k,l)}, \ k,l=0,1; \ i=0,\ldots,n, \ j=0,\ldots,m.$$

Во всякой ячейке Ω_{ij} бикубический сплайн S может быть записан в виде:

$$S(t,\tau) = \sum_{l=0}^{3} \left(\sum_{k=0}^{3} a_{kl}^{ij} (t - t_i)^k \right) (\tau - \tau_j)^l = \sum_{l=0}^{3} b_l^{ij} (t) (\tau - \tau_j)^l$$
 (5)

или

$$S(t,\tau) = \sum_{k=0}^{3} \left(\sum_{l=0}^{3} a_{kl}^{ij} \left(\tau - \tau_{j} \right)^{l} \right) (t - t_{i})^{k} = \sum_{k=0}^{3} c_{k}^{ij} \left(\tau \right) (t - t_{i})^{k} . \tag{6}$$

Используя вид (6) при фиксированном значении τ построим эрмитов сплайн пользуясь формулой (4) находим выражения для S и его производной по τ на нижней и верхней границе ячейки Ω_{ij} :

$$S(t,\tau_{l}) = \varphi_{1}(\omega) p_{il} + \varphi_{2}(\omega) p_{i+1,l} + \varphi_{3}(\omega) h_{i} p_{i,l}^{(1,0)} + \varphi_{4}(\omega) h_{i} p_{i+1,l}^{(1,0)},$$

$$S^{(0,1)}(t,\tau_{l}) = \varphi_{1}(\omega) p_{il}^{(0,1)} + \varphi_{2}(\omega) p_{i+1,l}^{(0,1)} + \varphi_{3}(\omega) h_{i} p_{i,l}^{(1,1)} + \varphi_{4}(\omega) h_{i} p_{i+1,l}^{(1,1)},$$

$$(7)$$

где l = j, j + 1.

Аналогично при фиксированном t в силу формулы (5) имеем:

$$S(t,\tau) = \varphi_{1}(\xi)S(t,\tau_{j}) + \varphi_{2}(\xi)S(t,\tau_{j+1}) + \varphi_{3}(\xi)d_{j}S^{(0,1)}(t,\tau_{j}) + \varphi_{4}(\xi)d_{j}S^{(0,1)}(t,\tau_{j+1}),$$

где
$$d_j = \tau_{j+1} - \tau_j$$
, $\xi = \frac{\tau - \tau_j}{d_j}$.

Подставляя сюда выражения для $S^{(0,b)}(t,\tau_l),\ b=0,1,\ l=j,j+1$ из формул (7) приходим к формуле:

$$S(t,\tau) = \varphi(\omega) \cdot \mathbf{F} \cdot \varphi^{T}(\xi), \qquad (8)$$

где

$$\mathbf{\varphi}(\omega) = \left[\varphi_1(\omega), \varphi_2(\omega), h_i \varphi_3(\omega), h_i \varphi_4(\omega) \right],$$

$$\mathbf{F} = egin{bmatrix} p_{ij} & p_{i,j+1} & p_{ij}^{(0,1)} & p_{i,j+1}^{(0,1)} \ p_{i+1,j} & p_{i+1,j+1} & p_{i+1,j}^{(0,1)} & p_{i+1,j+1}^{(0,1)} \ p_{ij}^{(1,0)} & p_{i,j+1}^{(1,0)} & p_{ij}^{(1,1)} & p_{i,j+1}^{(1,1)} \ p_{i+1,j}^{(1,0)} & p_{i+1,j+1}^{(1,0)} & p_{i+1,j+1}^{(1,1)} & p_{i+1,j+1}^{(1,1)} \ \end{pmatrix},$$

$$\mathbf{\phi}^{T}(\xi) = \begin{bmatrix} \varphi_{1}(\xi) \\ \varphi_{2}(\xi) \\ d_{j}\varphi_{3}(\xi) \\ d_{j}\varphi_{4}(\xi) \end{bmatrix}.$$

Формулу (8) можно также переписать в виде:

$$S(t,\tau) = \mathbf{\varphi}(\xi) \cdot \mathbf{F} \cdot \mathbf{\varphi}^{T}(\omega).$$

2.3 Естественные кубические сплайны

Рассмотрим задачу нахождения функций кубических сплайнов $\mathbf{r}(t) = [x(t), y(t), z(t)]$ на заданном отрезке $[t_0, t_n]$ по таблице значений (t_i, \mathbf{p}_i) , i = 0, ..., n. Будем искать функцию кубического сплайна для каждой координаты x(t), y(t) или z(t) которую будем обозначать как S(t) в виде следующего многочлена $S(t) \equiv S_i(t) = a_i(t-t_i)^3 + b_i(t-t_i)^2 + c_i(t-t_i) + d_i$ для $t \in [t_i, t_{i+1}]$, i = 0, ..., n-1. Соседние сплайны должны быть гладко состыкованы между собой:

$$S_{i-1}^k(t_i-0)=S_i^k(t_i+0), i=1,\ldots,n-1, k=0,1,2.$$

Условия интерполяции $S(t_i) = p_i$, i = 0,...,n.

После записи условий гладкой стыковки и интерполяции остаются 2 свободных параметра, которые обычно определяются с помощью ограничений на значения сплайна и его производных на концах отрезка (или вблизи концов). Эти значения будем называть краевыми условиями. Существует несколько различных видов краевых условий из которых наиболее распространёнными являются следующие типы:

- 1. Ограничения на значения 1-ых производных сплайна: $S'(t_0) = p_0'$ и $S'(t_n) = p_n'$.
- 2. Ограничения на значения 2-ых производных сплайна: $S''(t_0) = p_0''$ и $S''(t_n) = p_n''$.
- 3. Периодические краевые условия: $S^k\left(t_0\right) = S^k\left(t_n\right), \ k=0,1,2$. Выполнения периодических краевых условий естественно требовать в предположении, что интерполяционная функция является периодической с периодом t_n-t_0 .
- 4. Совпадение ближайших к концам отрезка соседних многочленов: $S_0(t) \equiv S_1(t) \text{ и } S_{n-2}(t) \equiv S_{n-1}(t), \text{ т.e. } S'''(t_i-0) \equiv S'''(t_i+0), \ i=1,n-1.$

2.4 Алгоритм построения естественного кубического сплайна

Вторая производная кубического сплайна S'' является непрерывной кусочно-линейной функцией. Поэтому, полагая $M_i = S''(t_i)$, i = 0,...,n, можно записать:

$$S''(t) = S_i''(t) = M_i \frac{t_{i+1} - t}{h_i} + M_{i+1} \frac{t - t_i}{h_i}, \quad t \in [t_i, t_{i+1}],$$
(9)

где $h_i = t_{i+1} - t_i$, i = 0, ..., n-1.

Повторное интегрирование формулы (9) даёт выражение для кубического многочлена S_i , содержащее две произвольных постоянных:

$$S_{i}(t) = M_{i} \frac{\left(t_{i+1} - t\right)^{3}}{6h_{i}} + M_{i+1} \frac{\left(t - t_{i}\right)^{3}}{6h_{i}} + C_{i,1}\left(t_{i+1} - t\right) + C_{i,2}\left(t - t_{i}\right). \tag{10}$$

Подставляя сюда $t = t_i$ и $t = t_{i+1}$, а также используя условия интерполяции $S_i(t_i) = p_i$ и $S_i(t_{i+1}) = p_{i+1}$, находим:

$$\begin{split} M_i \frac{h_i^2}{6} + C_{i,1} h_i &= p_i, \\ M_{i+1} \frac{h_i^2}{6} + C_{i,2} h_i &= p_{i+1}. \end{split}$$

Выражая из этих уравнений постоянные $C_{i,1}$ и $C_{i,2}$, подставляя их в формулу (10), получаем формулу бикубического сплайна на подотрезке $[t_i, t_{i+1}]$:

$$S_{i}(t) = M_{i} \frac{\left(t_{i+1} - t\right)^{3}}{6h_{i}} + M_{i+1} \frac{\left(t - t_{i}\right)^{3}}{6h_{i}} + \left(p_{i} - M_{i} \frac{h_{i}^{2}}{6}\right) \frac{t_{i+1} - t}{h_{i}} + \left(p_{i+1} - M_{i+1} \frac{h_{i}^{2}}{6}\right) \frac{t - t_{i}}{h_{i}}.$$
 (11)

Для нахождения неизвестных коэффициентов M_i , i = 0,...,n используем непрерывность первой производной сплайна S'. Согласно формуле (11), имеем:

$$S_{i}'(t) = -M_{i} \frac{\left(t_{i+1} - t\right)^{2}}{2h_{i}} + M_{i+1} \frac{\left(t - t_{i}\right)^{2}}{2h_{i}} - \left(\frac{p_{i}}{h_{i}} - M_{i} \frac{h_{i}}{6}\right) + \left(\frac{p_{i+1}}{h_{i}} - M_{i+1} \frac{h_{i}}{6}\right). \tag{12}$$

Подставляя сюда $t = t_i$, находим:

$$S'_{i}(t_{i}+0) = -M_{i}\frac{h_{i}}{3} - M_{i+1}\frac{h_{i}}{6} + p[t_{i},t_{i+1}],$$

где $p[t_0,...,t_i]$ – разделенная разность порядка i:

$$p[t_0] = p_0,$$

$$p[t_0, ..., t_i] = \frac{p[t_1, ..., t_i] - p[t_0, ..., t_{i-1}]}{t_i - t_0}.$$

Отсюда получаем, что

$$p[t_i, t_{i+1}] = \frac{p[t_{i+1}] - p[t_i]}{t_{i+1} - t_i} = \frac{p_{i+1} - p_i}{h_i}.$$

Выражение для S'_{i-1} получим, заменяя в формуле (12) i на i-1. Подставляя в него $t=t_i$, имеем:

$$S'_{i-1}(t_i-0) = M_{i-1}\frac{h_{i-1}}{6} + M_i\frac{h_{i-1}}{3} + p[t_{i-1},t_i].$$

Теперь из условия $S'_{i-1}(t_i-0)=S'_i(t_i+0)$, i=1,...,n-1, получаем систему линейных уравнений:

$$h_{i-1}M_{i-1} + 2(h_{i-1} + h_i)M_i + h_iM_{i+1} = 6\delta_i p, \quad i = 1,...,n-1,$$
 (13)

где $\delta_i p = p[t_i, t_{i+1}] - p[t_{i-1}, t_i].$

Система (13) является недоопределенной, так как содержит n-1 уравнений для нахождения n+1 неизвестных. Для замыкания этой системы используем приведенные ранее краевые условия и формулы (9), (12):

1.
$$2M_0 + M_1 = \frac{6}{h_0} (p[t_0, t_1] - p'_0);$$

2.
$$M_{n-1} + 2M_n = \frac{6}{h_{n-1}} (p'_n - p[t_{n-1}, t_n]);$$

3.
$$M_0 = p_0''$$
 и $M_n = p_n''$;

4.
$$p_{n+i} = p_i$$
, $M_{n+i} = M_i$, $h_{n+i} = h_i$ для всех i ;

5.
$$\frac{M_{i+1}-M_i}{h_i} = \frac{M_i-M_{i-1}}{h_{i-1}}, i=1, n-1.$$

Найдя решение системы (13) с краевыми условиями типов 1–4, подставляем его в формулу (11) для вычисления точек сплайна.

2.5 Матрицы СЛАУ для нахождения вторых производных

Рассмотрим более подробно результирующие системы линейных уравнений для вычисления неизвестных $M_i,\ i=0,...,n$.

1. Для краевых условий первого типа получаем следующую систему:

$$\begin{bmatrix}
2h_{0} & h_{0} & 0 & \dots & 0 \\
h_{0} & 2(h_{0} + h_{1}) & h_{1} & \dots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\
0 & \dots & 0 & h_{n-1} & 2h_{n-1}
\end{bmatrix}
\begin{bmatrix}
M_{0} \\
M_{1} \\
\vdots \\
M_{n-1} \\
M_{n}
\end{bmatrix} =
\begin{bmatrix}
6(p[t_{0}, t_{1}] - p'_{0}) \\
6\delta_{1}p \\
\vdots \\
6\delta_{n-1}p \\
6(p'_{n} - p[t_{n-1}, t_{n}])
\end{bmatrix}.$$
(14)

2. Для краевых условий второго типа система отличается лишь первым и последним уравнениями:

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & \dots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \dots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} M_0 \\ M_1 \\ \vdots \\ M_{n-1} \\ M_n \end{bmatrix} = \begin{bmatrix} p_0'' \\ 6\delta_1 p \\ \vdots \\ 6\delta_{n-1} p \\ p_n'' \end{bmatrix}.$$
(15)

3. Для периодических краевых условий уравнения (13) можно записать также для i = n (или i = 0), т.е.

$$h_{n-1}M_{n-1} + 2(h_{n-1} + h_n)M_n + h_nM_{n+1} = 6\delta_n p.$$
(16)

Так как $p_{n+1}=p_i$, $M_{n+i}=M_i$, i=0,1 и $h_n=h_0$, то $p\left[t_n,t_{n+1}\right]=\frac{p_{n+1}-p_n}{h_n}=\frac{p_1-p_0}{h_0}=p\left[t_0,t_1\right]$ и уравнение (16) примет вид:

$$h_0 M_1 + h_{n-1} M_{n-1} + 2(h_{n-1} + h_0) M_n = 6(p[t_0, t_1] - p[t_{n-1}, t_n]).$$

В результате приходим к следующей системе линейных уравнений:

$$\begin{bmatrix}
2(h_{0} + h_{1}) & h_{1} & \dots & \dots & h_{0} \\
h_{1} & 2(h_{1} + h_{2}) & h_{2} & \dots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\
h_{0} & \dots & 0 & h_{n-1} & 2(h_{0} + h_{n-1})
\end{bmatrix}
\begin{bmatrix}
M_{1} \\
\vdots \\
M_{n-1} \\
M_{n}
\end{bmatrix} = \begin{bmatrix}
6\delta_{1}p \\
\vdots \\
6\delta_{n-1}p \\
6(p[t_{0}, t_{1}] - p[t_{n-1}, t_{n}])
\end{bmatrix}.$$
(17)

4. Для краевых условий четвертого типа получаем следующую систему:

$$\begin{bmatrix} h_{1} & -(h_{0} + h_{1}) & h_{0} & \dots & 0 \\ h_{0} & 2(h_{0} + h_{1}) & h_{1} & \dots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \dots & h_{n-1} & -(h_{n-2} + h_{n-1}) & h_{n-2} \end{bmatrix} \begin{bmatrix} M_{0} \\ M_{1} \\ \vdots \\ M_{n-1} \\ M_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 6\delta_{1}p \\ \vdots \\ 6\delta_{n-1}p \\ 0 \end{bmatrix}.$$

$$(18)$$

Системы (14), (15) и (17) имеют трехдиагональные или «почти» трехдиагональные матрицы. Чтобы получить систему с трехдиагональной матрицей в случае краевых условий типа 4, следует предварительно исключить из системы (18) неизвестные M_0 и M_n .

Если из второго уравнения системы (18), умноженного на h_1 , вычесть первое уравнение, умноженное на h_0 , то результирующее уравнение принимает вид:

$$(h_0 + 2h_1)(h_0 + h_1)M_1 + (h_1^2 - h_0^2)M_2 = 6h_1\delta_1 p.$$

Аналогично, если из предпоследнего уравнения системы (18), умноженного на h_{n-2} , вычесть последнее уравнение, умноженное на h_{n-1} , то получаем уравнение:

$$\left(h_{n-2}^2 - h_{n-1}^2\right) M_{n-2} + \left(2h_{n-2} + h_{n-1}\right) \left(h_{n-2} + h_{n-1}\right) M_{n-1} = 6h_{n-2} \delta_{n-1} p.$$

В результате приходим к системе линейных уравнений с трехдиагональной матрицей:

$$\begin{bmatrix} h_{0} + 2h_{1} & h_{1} - h_{0} & \dots & 0 \\ h_{1} & 2(h_{1} + h_{2}) & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & h_{n-2} - h_{n-1} & 2h_{n-2} + h_{n-1} \end{bmatrix} \begin{bmatrix} M_{1} \\ M_{2} \\ \vdots \\ M_{n-1} \end{bmatrix} = \begin{bmatrix} 6\lambda_{0}\delta_{1} \\ 6\delta_{2}p \\ \vdots \\ 6\mu_{n-1}\delta_{n-1}p \end{bmatrix},$$
(20)

где
$$\lambda_0 = \frac{h_1}{h_0 + h_1}$$
, $\mu_{n-1} = \frac{h_{n-2}}{h_{n-2} + h_{n-1}}$.

2.6 Интерполяция естественными бикубическими сплайнами

Пусть как и в пункте 2.2 нам задана прямоугольная область Ω и сетка Δ . Требуется восстановить функцию $\mathbf{r}(t,\tau)$ по таблице чисел $\left(t_i,\tau_j,\mathbf{p}_i\right),\ i=0,\dots,n$, $j=0,\dots,m$. Сетка Δ делит область Ω на прямоугольные ячейки $\Omega_{ij}=\left\{\left(t,\tau\right)\middle|t_i\leq t\leq t_{i+1},\tau_j\leq \tau\leq \tau_{j+1}\right\},\ i=0,\dots,n-1,\ j=0,\dots,m-1$.

Через $C^{2,2}[\Omega]$ обозначим множество всех непрерывных на Ω функций f, имеющих непрерывные частные и смешанные производные до 2-го порядка включительно по переменным t и τ :

$$f^{(k,l)}(t,\tau) = \frac{\partial^{k+1} f(t,\tau)}{\partial^k t \partial^l \tau}, \quad k,l = 0,1,2.$$

Функция S называется естественным кубическим сплайном, если:

1. В каждой ячейке Ω_{ij} функция S является многочленом отдельно по t и τ :

$$S(t,\tau) \equiv S_{ij}(t,\tau) = \sum_{k=0}^{3} \sum_{l=0}^{3} a_{kl}^{ij} (t-t_i)^k (\tau-\tau_j)^l,$$

где для $\forall (t,\tau) \in \Omega_{ij}, i = 0,...,n-1, j = 0,...,m-1.$

2. $S \in C^{2,2}[\Omega]$.

Бикубический сплайн является интерполяционным, если он удовлетворяет условиям:

$$S(t_i, \tau_j) = p_{ij}, \quad i = 0, ..., m.$$
 (21)

Точки сетки Δ разделяются на

внутренние:

$$(t_i, \tau_j), i = 1, ..., m-1, j = 1, ..., m-1;$$

граничные:

$$(t_i, \tau_0), (t_i, \tau_m), i = 0, ..., n;$$

 $(t_0, \tau_j), (t_n, \tau_j), j = 0, ..., m;$

и угловые:

$$(t_0, \tau_0), (t_0, \tau_m), (t_n, \tau_0), (t_n, \tau_m).$$

1) Краевые условия типа 1. Для однозначного определения интерполяционного сплайна в дополнение к условиям (21) в граничных и угловых точках сетки Δ следует задавать условия вида:

$$S^{(1,0)}(t_i, \tau_j) = p_{ij}^{(1,0)}; \quad i = 0, n; \quad j = 0, ..., m;$$

$$S^{(0,1)}(t_i, \tau_j) = p_{ij}^{(0,1)}; \quad i = 0, ..., n; \quad j = 0, m;$$

$$S^{(1,1)}(t_i, \tau_j) = p_{ij}^{(1,1)}; \quad i = 0, n; \quad j = 0, m.$$

2) Краевые условия типа 2. Краевые условия в этом случае вводятся также, как и краевые условия типа 1:

$$S^{(2,0)}(t_i, \tau_j) = p_{ij}^{(2,0)}; \quad i = 0, n; \quad j = 0, ..., m;$$

$$S^{(0,2)}(t_i, \tau_j) = p_{ij}^{(0,2)}; \quad i = 0, ..., n; \quad j = 0, m;$$

$$S^{(2,2)}(t_i, \tau_j) = p_{ij}^{(2,2)}; \quad i = 0, n; \quad j = 0, m.$$

- 3) Тип 3. Все производные сплайна $S^{(k,l)}$, k,l=0,1,2 будут периодическими функциями с периодом (t_n-t_0) по t и периодом $(\tau_m-\tau_0)$ по τ .
- 4) Тип 4. На линиях $t=t_1$ и $t=t_{n-1}$ непрерывны все производные сплайна до $S^{(3,2)}$ включительно, а на линиях $\tau=\tau_1$ и $\tau=\tau_{m-1}$ до $S^{(2,3)}$ включительно. Кроме того, в областях $\left[t_i,t_{i+1}\right]\times\left[\tau_j,\tau_{j+1}\right],\ i=0,n-2\,;\ j=0,m-2\,;$ прилежащих к вершинам прямоугольника Ω , непрерывны все производные , включая $S^{(3,3)}$. То есть в этом случае бикубические многочлены совпадают.

Кроме перечисленных, возможны и смешанные краевые условия, когда по разным переменным задаются краевые условия разных типов.

2.7 Алгоритм построения естественного бикубического сплайна

Воспользуемся представлением (11) для естественного кубического сплайна и перепишем его в следующем виде:

$$S(t) = \psi_1(\omega) p_i + \psi_2(\omega) p_{i+1} + \psi_3(\omega) h_i^2 \overline{M}_i + \psi_4(\omega) h_i^2 \overline{M}_{i+1},$$
 (22)

где

$$\psi_{1}(\omega) = 1 - \omega,$$

$$\psi_{2}(\omega) = \omega,$$

$$\psi_{3}(\omega) = \omega(\omega - 1)(2 - \omega),$$

$$\psi_{4}(\omega) = \omega(\omega^{2} - 1),$$

$$\omega = \frac{t - t_{i}}{h_{i}},$$

$$\bar{M}_{i} = \frac{M_{i}}{6}.$$

Тогда по аналогии с получением вида (7) для эрмитового кубического поверхностного сплайна и его производной по τ , запишем представление для естественного кубического поверхностного сплайна и его второй производной по τ :

$$S(t,\tau_{l}) = \psi_{1}(\omega) p_{il} + \psi_{2}(\omega) p_{i+1,l} + \psi_{3}(\omega) h_{i}^{2} \overline{M}_{il}^{(2,0)} + \psi_{4}(\omega) h_{i}^{2} \overline{M}_{i+1,l}^{(2,0)},$$

$$\overline{M}^{(0,2)}(t,\tau_{l}) = \psi_{1}(\omega) \overline{M}_{il}^{(0,2)} + \psi_{2}(\omega) \overline{M}_{i+1,l}^{(0,2)} + \psi_{3}(\omega) h_{i}^{2} \overline{M}_{il}^{(2,2)} + \psi_{4}(\omega) h_{i}^{2} \overline{M}_{i+1,l}^{(2,2)},$$
(23)

где l = j, j + 1.

При фиксированном t в силу формулы (5) получаем:

$$S(t,\tau) = \psi_1(\xi)S(t,\tau_i) + \psi_2(\xi)S(t,\tau_{i+1}) + \psi_3(\xi)d_i^2\overline{M}^{(0,2)}(t,\tau_i) + \psi_4(\xi)d_i^2\overline{M}^{(0,2)}(t,\tau_{i+1}),$$

где
$$d_j = au_{j+1} - au_j$$
, $\xi = \frac{ au - au_j}{d_i}$.

Подставляя сюда выражения для $S^{(0,b)}(t,\tau_l), b=0,1, l=j,j+1$ из формул (23) приходим к формуле:

$$S(t,\tau) = \mathbf{\Psi}(\omega) \cdot \mathbf{F} \cdot \mathbf{\Psi}^{T}(\xi) , \qquad (24)$$

где

$$\mathbf{\Psi}(\omega) = \left[\psi_1(\omega), \psi_2(\omega), h_i^2 \psi_3(\omega), h_i^2 \psi_4(\omega) \right],$$

$$\mathbf{F} = \begin{bmatrix} p_{ij} & p_{i,j+1} & \overline{M}_{ij}^{(0,2)} & \overline{M}_{i,j+1}^{(0,2)} \\ p_{i+1,j} & p_{i+1,j+1} & \overline{M}_{i+1,j}^{(0,2)} & \overline{M}_{i+1,j+1}^{(0,2)} \\ \overline{M}_{ij}^{(2,0)} & \overline{M}_{i,j+1}^{(2,0)} & \overline{M}_{ij}^{(2,2)} & \overline{M}_{i,j+1}^{(2,2)} \\ \overline{M}_{i+1,j}^{(2,0)} & \overline{M}_{i+1,j+1}^{(2,0)} & \overline{M}_{i+1,j}^{(2,2)} & \overline{M}_{i+1,j+1}^{(2,2)} \end{bmatrix},$$

$$\overline{M}_{ij}^{(2,0)} = \frac{1}{6} M_{ij}^{(2,0)}, \ \overline{M}_{ij}^{(0,2)} = \frac{1}{6} M_{ij}^{(0,2)}, \ \overline{M}_{ij}^{(2,2)} = \frac{1}{36} M_{ij}^{(2,2)},$$

$$\mathbf{\psi}^{T}(\xi) = \begin{bmatrix} \psi_{1}(\xi) \\ \psi_{2}(\xi) \\ d_{j}^{2}\psi_{3}(\xi) \\ d_{j}^{2}\psi_{4}(\xi) \end{bmatrix}.$$

Таким образом, если в узлах сетки Δ известны величины $M_{ij}^{(k,l)}$, k,l=0,2, то формула (24) позволяет легко найти значение интерполяционного бикубического сплайна в любой точке ячейки Ω_{ij} . Обратимся теперь к вычислению величин $M_{ij}^{(k,l)}$, k,l=0,2.

Исходные данные удобно расположить в виде таблицы. Во внутренней части таблицы размещаются значения функции. Окаймляющие строки и столбцы заполняются только в случае краевых условий типов 1 и 2.

Если краевые условия смешанные, например, по переменной t типа 1 или 2, а по τ типа 3 или 4, то свободными остаются граничные строки.

Табл. 1. Данные для выполнения шагов 1 и 2

$p_{\scriptscriptstyle 0,m}^{\scriptscriptstyle (k,l)}$	$p_{\scriptscriptstyle 0,m}^{\scriptscriptstyle (0,l)}$	$p_{\scriptscriptstyle 1,m}^{(\scriptscriptstyle 0,l)}$	•••	$p_{\scriptscriptstyle n-1,m}^{(0,l)}$	$p_{\scriptscriptstyle n,m}^{(0,l)}$	$p_{n,m}^{(k,l)}$
$p_{\scriptscriptstyle 0,m}^{(k,0)}$	$p_{\scriptscriptstyle 0,m}$	$p_{_{1,m}}$	•••	$p_{n-1,m}$	$p_{n,m}$	$p_{\scriptscriptstyle n,m}^{(k,0)}$
$p_{\scriptscriptstyle 0,m-1}^{(k,0)}$	$p_{0,m-1}$	$p_{1,m-1}$	•••	$p_{n-1,m-1}$	$p_{n,m-1}$	$p_{\scriptscriptstyle n,m-1}^{(k,0)}$
:	÷	÷	÷	:	÷	÷
$p_{0,1}^{(k,0)}$	$p_{0,1}$	$p_{1,1}$	•••	$p_{n-1,1}$	$p_{n,1}$	$p_{\scriptscriptstyle n,1}^{(k,0)}$
$p_{0,0}^{(k,0)}$	$p_{0,0}$	$p_{1,0}$	•••	$p_{n-1,0}$	$p_{n,0}$	$p_{\scriptscriptstyle n,0}^{(k,0)}$
$p_{\scriptscriptstyle 0,0}^{(k,l)}$	$p_{\scriptscriptstyle 0,0}^{(\scriptscriptstyle 0,l)}$	$p_{\scriptscriptstyle 1,0}^{(\scriptscriptstyle 0,l)}$	•••	$p_{\scriptscriptstyle n-1,0}^{(0,l)}$	$p_{\scriptscriptstyle n,0}^{(0,l)}$	$p_{\scriptscriptstyle n,0}^{(k,l)}$

Алгоритм решения задачи интерполяции строится с учетом того, что при фиксированном значении одной из переменных, например, τ , сплайн и его частные производные по τ являются кубическими сплайнами от переменной t. Каждая строка или столбец таблицы содержит данные, достаточные для построения кубического сплайна вдоль одной из линий $t=t_i$ или $\tau=\tau_j$.

Шаг 1.

Строятся кубические сплайны от переменных t, $S(t,\tau_j)$, j=0,...,m по строкам табл. 1 включая граничные, если они имеются, с краевыми условиями из граничных столбцов. Дело сводится к решению трехдиагональных систем уравнений число которых зависит от вида краевых условий по τ и равно m+3 (тип 1 или 2), m (тип 3), m+1 (тип 4).

В результате находятся значения:

$$M_{ij}^{(2,0)} = S^{(2,0)}(t_i, \tau_j).$$

Шаг 2.

По столбцам табл.1, **не** включая граничные, строятся сплайны $S(t_i, \tau)$, i = 0, ..., n, в результате чего находятся значения:

$$M_{ij}^{(0,2)} = S^{(0,2)}(t_i, \tau_j).$$

На этом шаге решается n+1 одномерная задача в непериодическом случае и n задач в периодическом.

Шаг 3.

Значения, полученные на шаге 1, снова располагаем в виде таблицы, но без граничных столбцов. В граничных строках при условиях типов 1 или 2 по τ помещаются значения:

$$M_{ij}^{(2,l)} = S^{(2,l)} \left(t_i, au_j
ight), \quad l = 1$$
 или $2, \quad i = 0, \dots n, \quad j = 0, \dots, m$.

$M_{0,m}^{(2,l)}$	$M_{1,m}^{(2,l)}$		$M_{\scriptscriptstyle n-1,m}^{(2,l)}$	$M_{n,m}^{(2,l)}$
$M_{0,m}^{(2,0)}$	$M_{1,m}^{(2,0)}$		$M_{n-1,m}^{(2,0)}$	$M_{n,m}^{(2,0)}$
$M_{0,m-1}^{(2,0)}$	$M_{1,m-1}^{(2,0)}$		$M_{n-1,m-1}^{(2,0)}$	$M_{n,m-1}^{(2,0)}$
:	:	:	:	÷
$M_{0,1}^{(2,0)}$	$M_{1,1}^{(2,0)}$		$M_{n-1,1}^{(2,0)}$	$M_{n,1}^{(2,0)}$
$M_{0,0}^{(2,0)}$	$M_{1,0}^{(2,0)}$		$M_{n-1,0}^{(2,0)}$	$M_{n,0}^{(2,0)}$
$M_{0,0}^{(2,l)}$	$M_{1,0}^{(2,l)}$		${M}_{n-1,0}^{(2,l)}$	$M_{n,0}^{(2,l)}$

Табл. 2. Таблица значений, полученных после выполнения шага 1

Построим кубические сплайны по переменной τ , $\tilde{S}(t_i,\tau)$, i=0,...,n по столбцам табл. 2. Число решаемых задач такое же как на втором шаге. Полученные значения будут, очевидно, частными производными по τ : $\tilde{S}^{(0,2)}(t_i,\tau)$, которые соответствуют смешанным производным искомого сплайна в узлах сетки Δ , то есть $M_{ij}^{(2,2)} = S^{(2,2)}(t_i,\tau_j)$.

В итоге получаем значения величин p_{ij} , $M_{ij}^{(2,0)}$, $M_{ij}^{(0,2)}$, $M_{ij}^{(2,2)}$ в узлах сетки Δ . Подставляя эти значения в формулы (24) получим искомый интерполяционный бикубический сплайн, который по построению удовлетворяет условиям интерполяции (21) и заданным краевым условиям.

Построение двумерного сплайна свелось к решению 2n+m+5 (не менее 2n+m) одномерных задач.

Можно пользоваться и другими вариантами описанного алгоритма, поменяв ролями переменные t и τ . В этом случае нужно будет решить n+2m+5 (не менее n+2m) одномерных задач.

Последние будем решать методом прогонки. В этом случае при решении задач интерполяции по одной из переменных, коэффициенты левых частей уравнений в СЛАУ будут одинаковы, что избавит нас от повторения некоторой части вычислений.