EXPT.NO: 3	EDA-DATA CLEANING
DATE: 06/08/2025	

AIM

To clean data by handling missing values, duplicates, data types, and normalization.

PROBLEM STATEMENT

Clean a dataset by removing nulls, duplicates, and normalizing numeric fields.

ALGORITHM

- Load dataset.
- Detect missing values (isnull).
- Fill or drop missing values.
- Remove duplicates.
- Convert data types.
- Normalize numeric columns.

SAMPLE CODE

```
import pandas as pd
from sklearn.preprocessing import StandardScaler, MinMaxScaler import
matplotlib.pyplot as plt

# Step 1: Load dataset
df = pd.read_csv('StudentsPerformance.csv') df.head()

df.shape (1005, 8)
# Step 2: Handle Missing Values # Detect
missing_info = df.isnull().sum() print("Missing values:\n", missing_info)

# Fill or Drop (based on context) df.fillna({
```

```
'parental level of education': df['parental level of education'].mode()[0],
'lunch': df['lunch'].mode()[0]
}, inplace=True)
missing info = df.isnull().sum() missing info
duplicates = df[df.duplicated()] duplicates
duplicates.shape (5, 8)
# Drop duplicates df.drop_duplicates(inplace=True) df.shape
# Step 4: Convert Data Types (if needed)
# For consistency, make sure string columns are lowercase
categorical_cols = ['gender', 'race/ethnicity', 'parental level of
education', 'lunch', 'test preparation course']
for col in categorical_cols:
df[col] = df[col].astype(str).str.lower().str.strip() categorical cols
['gender', 'race/ethnicity',
'parental level of education', 'lunch',
'test preparation course']
numeric cols = ['math score', 'reading score', 'writing score'] numeric cols
['math score', 'reading score', 'writing score']
plt.figure(figsize=(15, 4))
for i, col in enumerate(numeric_cols): plt.subplot(1, 3, i+1)
sns.histplot(df[col], kde=True, bins=20) plt.title(f'Before Normalization:
{col}')
plt.tight layout() plt.show()
minmax_scaler = MinMaxScaler() df_minmax = df.copy()
df_minmax[numeric_cols] = minmax_scaler.fit_transform(df[numeric_cols])
plt.figure(figsize=(15, 4))
for i, col in enumerate(numeric_cols): plt.subplot(1, 3, i+1)
sns.histplot(df_minmax[col], kde=True, bins=20, color='green')
plt.title(f'Min-Max Normalized: {col}')
plt.tight_layout() plt.show()
# Standard Scaling (Z-score) zscore_scaler = StandardScaler() df_zscore =
df.copy()
df_zscore[numeric_cols] = zscore_scaler.fit_transform(df[numeric_cols])
```

```
plt.figure(figsize=(15, 4))
for i, col in enumerate(numeric_cols): plt.subplot(1, 3, i+1)
sns.histplot(df_zscore[col], kde=True, bins=20, color='orange')
plt.title(f'Z-score Normalized: {col}')
plt.tight_layout() plt.show()
```

OUTPUT:

	gender	race/ethnicity	level of education	lunch	preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

Missing values:	
gender	0
race/ethnicity	0
parental level of education	7
lunch	0
test preparation course	0
math score	0
reading score	0
writing score	0
dtype: int64	
gender	0
race/ethnicity	Ø
parental level of education	Ø
lunch	0
test preparation course	0
math score	0
reading score	0
writing score	0
dtype: int64	

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
1000	male	group D	some college	standard	none	76	64	66
1001	male	group C	associate's degree	standard	none	46	43	42
1002	female	group B	bachelor's degree	standard	none	67	86	83
1003	male	group E	some high school	standard	none	92	87	78
1004	male	group C	bachelor's degree	standard	completed	83	82	84

RESULT:

Thus, the program successfully created a **Jupyter Notebook** showcasing Python code handling missing values, removing duplicates and unnecessary data, Data type conversion & Normalizing data.