Math 971 Algebraic Topology

April 7, 2005

Homology on "small" chains = singular homology: The point to all of these calculations was that if $\{U_{\alpha}\}$ is an open cover of X, then the inclusions $i_n: C_n^{\mathcal{U}}(X) \to C_n(X)$ induce isomorphisms on homology. This gives us two big theorems. The first is

Mayer-Vietoris Sequence: If $X = \mathcal{U} \cup \mathcal{V}$ is the union of two open sets, then the short exact sequences $0 \to C_n(\mathcal{U} \cap \mathcal{V}) \to C_n(\mathcal{U}) \oplus C_n(\mathcal{V}) \to C_n^{\{\mathcal{U},\mathcal{V}\}}(X) \to 0$, together with the isomorphism above, give the long exact sequence

$$\cdots \to H_n(\mathcal{U} \cap \mathcal{V}) \overset{(i_{\mathcal{U}_*}, -i_{\mathcal{V}_*})}{\to} H_n(\mathcal{U}) \oplus H_n(\mathcal{V}) \overset{j_{\mathcal{U}_*} + j_{\mathcal{V}_*}}{\to} H_n(X) \overset{\partial}{\to} H_{n-1}(\mathcal{U} \cap \mathcal{V}) \to \cdots$$

And just like Seifert - van Kampen, we can replace open sets by sets A, B having neighborhoods which deformation retract to them, and whose intersection deformation retracts to $A \cap B$. For example, subcomplexes $A, B \subseteq X$ of a CW-complex, with $A \cup B = X$ have homology satisfying a long exact sequence

$$\cdots \to H_n(A \cap B) \xrightarrow{(i_{A*}, -i_{B*})} H_n(A) \oplus H_n(B) \xrightarrow{j_{A*} + j_{B*}} H_n(X) \xrightarrow{\partial} H_{n-1}(A \cap B) \to \cdots$$

And this is also true for reduced homology; we just augment the chain complexes used above with the short exact sequence $0 \to \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \to 0$, where the first non-trivial map is $a \mapsto (a, -a)$ and the second is $(a, b) \mapsto a + b$.

And now we can do some meaningful calculations! The basic idea is that if we know the homology of the pieces $A, B, A \cap B$, and something about the inclusion-induced homomorphisms in the long exact sequence, then we can deduce information abut the homology of X. A few examples will probably illustrate this best.

An *n*-sphere S^n is the union $S^n_+ \cup S^n_-$ of its upper and lower hemispheres, each of which is contractible, and have intersection $S^n_+ \cap S^n_- = S^{n-1}_0$ the equatorial (n-1)-sphere. So Mayer-Vietoris gives us the exact sequence

$$\cdots \to \widetilde{H}_k(S_+^n) \oplus \widetilde{H}_k(S_-^n) \to \widetilde{H}_k(S^n) \to \widetilde{H}_{k-1}(S_0^{n-1}) \to \widetilde{H}_{k-1}(S_+^n) \oplus \widetilde{H}_{k-1}(S_-^n) \to \cdots , \text{ i.e,}$$

$$0 \to \widetilde{H}_k(S^n) \to \widetilde{H}_{k-1}(S_0^{n-1}) \to 0 \quad \text{ i.e., } \widetilde{H}_k(S^n) \cong \widetilde{H}_{k-1}(S^{n-1}) \text{ for every } k \text{ and } n. \text{ So by induction,}$$

$$\widetilde{H}_k(S^n) \cong \widetilde{H}_{k-n}(S^0) \cong \begin{cases} \mathbb{Z}, & \text{if } k = n \\ 0, & \text{otherwise} \end{cases}$$

The 2-torus $T^2 = S^1 \times S^1$ can be thought of as the union of two copies of an annulus $S^1 \times I$, glued together along their (pair of) boundary circles. The resulting long exact homology sequence

$$\cdots \to \widetilde{H}_2(S^1 \times I) \oplus \widetilde{H}_2(S^1 \times I) \to \widetilde{H}_2(T^2) \to \widetilde{H}_1(S^1 \coprod S^1) \to \widetilde{H}_1(S^1 \times I) \oplus \widetilde{H}_1(S^1 \times I) \to \widetilde{H}_1(T^2) \to \widetilde{H}_0(S^1 \coprod S^1) \to \widetilde{H}_0(S^1 \times I) \oplus \widetilde{H}_0(S^1 \times I) \to \cdots$$

which renders as

$$0 \to \widetilde{H}_2(T^2) \to \mathbb{Z} \oplus \mathbb{Z} \overset{\varphi}{\to} \mathbb{Z} \oplus \mathbb{Z} \to \widetilde{H}_1(T^2) \to \mathbb{Z} \to 0$$

In order to determine the unknown homology groups, we need to know more about the first map $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$. The first group has generators consisting of the generators of each of the S^1 path components of $A \cap B$ (represented by the singular 1-simplex wrapping exactly once around the circle), and are each mapped to a generator for each of the $S^1 \times I$. Remembering that φ was chosen to be $(i_{A*}, -i_{B*})$, we find that φ is represented by the matrix $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$, which has image spanned by $[1,1]^T$ and kernel spanned by $[1,1]^T$. By using exactness and a few Noether isomorphism theorems, we can cut up our LES above as

$$0 \to \widetilde{H}_2(T^2) \to \ker \varphi \to 0 \text{ and } 0 \to (\mathbb{Z} \oplus \mathbb{Z})/\mathrm{i} m \ \varphi \to \widetilde{H}_1(T^2) \to \mathbb{Z} \to 0$$

(since the first map is onto its image, and the second to last map is injective, once we mod out by its kernel). The first implies that $\widetilde{H}_2(T^2) \cong \mathbb{Z}$, and the second (since our basis for the image extends to a basis for \mathbb{Z}^2) becomes $0 \to \mathbb{Z} \to \widetilde{H}_1(T^2) \to \mathbb{Z} \to 0$. This implies that $\widetilde{H}_2(T^2) \cong \mathbb{Z}^2$, because of the

Fact: if $0 \to K \xrightarrow{\varphi} G \xrightarrow{\psi} H \to 0$ is exact and there is a homomorphism $\rho: H \to G$ with $\psi \rho = \mathrm{Id}$, then $G \cong K \times H$. The **proof** consists of defining $\sigma: K \times H \to G$ by $\sigma(k,h) = \varphi(k) + \rho(h)$. As the sum of two homomorphisms it is a homomorphism. If $\sigma(k,h) = \varphi(k) + \rho(h) = 0$ then $0 = \psi \sigma(k,h) = \psi \varphi(k) + \psi \rho(h) = 0 + h = h$, so $0 = \sigma(k,h) = \varphi(k) + \rho(h) = \varphi(k)$, so k - 0 by the injectivity of φ . So (k,h) = (0,0). For surjectivity, given $g \in G$, let $h = \psi(g)$; then $\psi(g - \rho h) = \psi g - \psi \rho h = h - h = 0$, so there is a $k \in K$ with $\varphi k = g - \rho h$, so $\sigma(k,h) = \varphi k + \rho h = g$.

[This is just on of a set of results like this; in this instance we say that the short exact sequence *splits* or is *split exact*; this existence of the map ρ is one sufficient condition.

Consequently, $\widetilde{H}_i(T^2) = \mathbb{Z}$ for i = 2, \mathbb{Z}^2 for i = 1, and 0 for all other i (since T^2 is path-connected, and for $i \geq 3$, our LES reads $\to \widetilde{H}_i(T^2) \to 0$).

The computation for the Klein bottle K^2 is similar; it can be expressed as a pair of annuli $S^1 \times I$ glued along their boundaries, but one of the gluings is by a reflection. The associated inclusion-induced homomorphism, in exactly one case, is $-\mathrm{Id}$, not Id ; and so the resulting matrix, for one choice of generators, is $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. After row and column reducton, this becomes $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. This matrix has no kernel, so, using the same cutting up process, $0 \to \widetilde{H}_2(K^2) \to \ker \varphi \to 0$ and $0 \to (\mathbb{Z} \oplus \mathbb{Z})/\mathrm{im}\varphi \to \widetilde{H}_1(K^2) \to \mathbb{Z} \to 0$ becomes $0 \to \widetilde{H}_2(K^2) \to 0$ and $0 \to \mathbb{Z}_2 \to \widetilde{H}_1(K^2) \to \mathbb{Z} \to 0$ so $\widetilde{H}_2(K^2) = 0$ and $\widetilde{H}_1(K^2) \cong bbz \oplus \mathbb{Z}_2$. As before, all other (reduced) homology groups are 0.

For the real projective plane P^2 , we can express it as a Möbius band M with a disk D glued to its boundary. Their intersection is a circle S^1 . Writing the Mayer-Vietoris sequence in this situation gives

$$0 \to \widetilde{H}_2(P^2) \to \mathbb{Z} \to 0 \oplus \mathbb{Z} \to \widetilde{H}_1(P^2) \to 0$$

Again we need to know more about the middle map $i_*: \widetilde{H}_1(S^1) \to \widetilde{H}_1(M)$ in order to determine the unknown groups. M deformation retracts to its central circle, and the generator for $wtih_1(\partial M)$, wrapping once around ∂M , is sent to a map wrapping twice around the core circle, and so represents twice the generator of $\widetilde{H}_1(M)$. So the middle map is injective, with image $2\mathbb{Z}$. And so $\widetilde{H}_2(P^2) = 0$, and $\widetilde{H}(P^2) \cong \mathbb{Z}/\text{im}(i_*) \cong \mathbb{Z}_2$. All other groups, as before, are 0.