FCC Test Report

Application Purpose : Original grant

: AMobile Intelligent Corp. Applicant Name:

FCC ID : 2ACC5-HM800

Equipment Type : 8 Risc-based Panel PC

Model Name : IOT-800

: FCC16023446-5 Report Number

Standard(S) : FCC Part 15 Subpart C

Date Of Receipt : February 01, 2016

: June 14, 2016 Date Of Issue

Fall Ma) **Test By**

Reviewed By

Robie Chen)

Authorized by

(Michal Ling)

Prepared by

Shenzhen WST Testing Technology Co., Ltd.

1F, No. 9 Building, TGK Science & Technology Park Yangtian

Rd., NO.72 Bao'an Dist., Guang Dong, China

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May 30, 2016	Valid	Original Report
V1.1	20160614	June 14, 2016	Valid	Revised Report
V1.2	20160623	June 23, 2016	Valid	Revised Report

	1 agc 5 61 7
Table of Contents	Page
1. GENERAL INFORMATION	5
2. TEST DESCRIPTION	7
2.1 MEASUREMENT UNCERTAINTY	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 CONFIGURATION OF SYSTEM UNDER TEST	9
2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
•	-
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP 5.1.5 EUT OPERATING CONDITIONS	13 13
5.1.6 TEST RESULTS	13 14
5.2 RADIATED EMISSION MEASUREMENT	16
5.2.1 RADIATED EMISSION LIMITS	16
5.2.2 TEST PROCEDURE	16
5.2.3 DEVIATION FROM TEST STANDARD	17
5.2.4 TEST SETUP	18
5.2.5 EUT OPERATING CONDITIONS 5.2.5.1 RESULTS (BELOW 30 MHZ)	19 20
5.2.5.1 RESULTS (BELOW 30 MHZ) 5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	21
5.2.5.3 TEST RESULTS (1GHZ TO 25GHZ)	23
6. ANTENNA APPLICATION	29
7. 6DB BANDWIDTH MEASUREMENT	42
7.1 TEST SETUP	42
7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT	42
7.3 TEST PROCEDURE	42
8. MAXIMUM PEAK OUTPUT POWER	50
8.1 TEST SETUP	50
8.2 LIMITS OF MAXIMUM PEAK OUTPUT POWER	50
8.3 TEST PROCEDURE	50
8.2 LIMITS OF MAXIMUM PEAK OUTPUT POWER	50

Page 4 of 71

Table of Contents	Page	
9. POWER SPECTRAL DENSITY MEASUREMENT	56	
9.1 TEST SETUP	56	
9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	56	
9.3 TEST PROCEDURE	56	
9.4 TEST RESULT	57	
10. OUT OF BAND MEASUREMENT	64	
10.1 TEST SETUP FOR BAND EDGE	64	
10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT	64	
10.4 TEST RESULT	64	
11. EUT TEST PHOTO	73	
12. PHOTOGRAPHS OF EUT	75	

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

NERAL DESCRIP	11014 01 201
Test Model	IOT-800
Applicant	AMobile Intelligent Corp.
Address	8F-1., No.700, Zhongzheng Rd., Zhonghe Dist., New Taipei City 235, Taiwan.
Manufacturer	Shenzhen JOYHONG Technology Co., Ltd.
Address	Building A2, Zhengfeng Industrial Park, Fengtang Road, Fuyong, Baoan, Shenzhen ,China.
Equipment Type	8 Risc-based Panel PC
Brand Name	AMobile
Hardware version:	MB.HMI8_ REV 0.3
Software version:	1.0.0
Extreme Temp. Tolerance	-10℃ to +55℃
Battery information:	N/A
Adapter Information:	DC power 12V 2A
Operating Frequency	2412-2472MHz
Channels	13
Channel Spacing	5MHz
Modulation Type	CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20/n HT-40
Antenna Type:	Integral Antenna
Antenna gain:	2dBi
Data of receipt	February 01, 2016
Date of test	February 05, 2016 to March 11, 2016
Deviation	None
Condition of Test Sample	Normal

Note: WIFI & BT can not simultaneous work.

We hereby certify that:				
The above equipment was tested by Shenzhen WST Testing Technology Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.4:2009 and TIA/EIA 603. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart C. The test results of this report relate only to the tested sample identified in this report.				

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11b
Mode 2	802.11g
Mode 3	802.11n20
Mode 4	802.11n40

For Conducted Emission				
Final Test Mode Description				
Mode 1	802.11b			

For Radiated Emission			
Final Test Mode	Description		
Mode 1	802.11b		
Mode 2	802.11g		
Mode 3	802.11n20		
Mode 4	802.11n40		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.
- (3) The data rate was set in 1Mbps, 6 Mbps, 6.5 Mbps and 13.5M for radiated emission due to the highest RF output power.
- (4) Record the worst case of each test item in this report, for the radiated emission test, the worst case is transmit antenna Perpendicular to the pannel of EUT.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	N/A
Test program	*#3646633#

Frequency(802.11b/g/n20)	2412 MHz	2437 MHz	2462 MHz
Frequency(802.11n40)	2422 MHz	2437 MHz	2452 MHz

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: 8 Risc-based Panel PC)

I/O Port of EUT					
I/O Port Type Q'TY Cable Tested with					
USB port	1	1m USB cable, unshielded	1		
Adapter	1	1m	1		

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	1	1	1	1	1

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.107 & 15.207	Conducted Emission Test	PASS	Complies	
15.247(a)(2) Limit	Spectrum bandwidth of a Orthogonal Frequency Division Multiplex System Limit: 6dB bandwidth>500kHz	PASS	Complies	
15.247(b)	Maximum peak outputpower Limit: max. 30dBm	PASS	Complies	
15.109,15.205 & 15.209	Transmitter Radiated Emission Limit: Table 15.209	PASS	Complies	
15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Complies	
15.247(d)	Out of Band Emission and Restricted Band Radiation Limit: 20dB less than peak value of fundamental frequency Restricted band limit: Table 15.209	PASS	Complies	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until
EMI Test Receiver	R&S	ESCI	100005	2015-08-18	2016-08-17
Ultra Broadband ANT	R&S	HL562	100157	2015-08-18	2016-08-17
pre-amplifier	CDSI	PAP-1G18-38	1	2015-08-18	2016-08-17
System Controller	СТ	SC100	-	2015-08-18	2016-08-17
Bi-log Antenna	Chase	CBIOT-800111C	2576	2015-08-18	2016-08-17
Spectrum analyzer	R&S	FSU26	200409	2015-08-18	2016-08-17
Horn Antenna	SCHWARZBECK	9120D	1141	2015-08-18	2016-08-17
Bi-log Antenna	Schwarebeck	VULB9163	9163/340	2015-08-18	2016-08-17
Loop Antenna	EMCO	6502	00042960	2015-08-21	2016-08-20
Pre Amplifier	H.P.	HP8447E	2945A02715	10/12/2015	10/11/2016
Pre-Amplifier	CDSI	PAP-1G18-38		10/12/2015	10/11/2016
9*6*6 Anechoic				08/20/2015	08/19/2016
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/12/2015	09/11/2016
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/22/2015	08/21/2016
Power meter	Anritsu	ML2487A	6K00003613	08/22/2015	08/21/2016
Power meter	Anritsu	MA2491A	32263	08/22/2015	08/21/2016
H & T Chamber	Guangzhou gongwen	GDJS-500-40	0329	08/18/2015	08/17/2016
EXA Signal Analyzer	Aglient	N9020A		08/18/2015	08/17/2016
USB Wideband Power Sensor	Aglient	U2021XA		08/18/2015	08/17/2016
RF cable	H+S			08/18/2015	08/17/2016

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)		Class A (dBuV)		Class B (dBuV)		
PREQUENCY (MHZ)	Quasi-peak	Average	Quasi-peak	Average	Standard	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	73.00	60.00	56.00	46.00	FCC	
5.0 -30.0	73.00	60.00	60.00	50.00	FCC	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	February 25, 2016	Test Mode	Keep WIFI Transmitting

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1	*	0.5260	38.04	10.40	48.44	56.00	-7.56	peak
2		0.5581	21.37	10.39	31.76	46.00	-14.24	AVG
3		1.0339	17.98	10.34	28.32	46.00	-17.68	AVG
4		1.0500	37.39	10.34	47.73	56.00	-8.27	peak
5		2.2179	35.30	10.29	45.59	56.00	-10.41	peak
6		2.2700	15.45	10.28	25.73	46.00	-20.27	AVG
7		3.5380	13.05	10.26	23.31	46.00	-22.69	AVG
8		3.5900	30.97	10.26	41.23	56.00	-14.77	peak
9		5.5179	11.90	10.23	22.13	50.00	-27.87	AVG
10		5.7259	29.91	10.22	40.13	60.00	-19.87	peak
11		13.2819	36.97	10.16	47.13	60.00	-12.87	peak
12		15.9339	17.73	10.14	27.87	50.00	-22.13	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

EUT	8 Risc-based Panel PC			Model Name		IOT-800		
Temperature	emperature 26 °C		F	Relative Humidity 54%				
Pressure	Pressure 1010hPa		F	Phase N				
Test Date	Februar	y 25, 2016	T	est Mode		Keep V	VIFI Transr	nitting
80.0 dBuV								
40				Haday Wall of the Control of the Con	S A A A A A A A A A A A A A A A A A A A	What was		mit: — /G: — Per
0.0								
0.150		0.5	(MHz	:)	5			30.000
No. Mk.		Reading	Correct			_imit	Over	
NO. IVIK.	Freq.	Level	Factor	ment	•			
	MHz	dBu∨	dB	dBu∨		dBu∀	dB	Detector
	.5460	35.91	10.39	46.30		6.00	-9.70	peak
	.5500	27.96	10.39	38.35		6.00	-7.65	AVG
3 1	.0180	19.10	10.34	29.44		6.00	-16.56	AVG
4 1	.0780	31.93	10.34	42.27	5	6.00	-13.73	peak
5 1	.9260	19.01	10.29	29.30		6.00	-16.70	AVG
6 1	.9340	33.93	10.29	44.22		6.00	-11.78	peak
7 3	.7660	15.76	10.25	26.01	4	6.00	-19.99	AVG
8 4	.2738	30.94	10.24	41.18	5	6.00	-14.82	peak
9 13	.1939	12.72	10.16	22.88	5	50.00	-27.12	AVG
10 13	.4179	35.68	10.16	45.84	. 6	0.00	-14.16	peak
11 19	.2499	32.40	10.12	42.52	: 6	0.00	-17.48	peak
12 19	.2499	17.21	10.12	27.33	5	0.00	-22.67	AVG
Remark: All the m	odes have	e been investiga	ated, and onl	y worst mod	e is pre	sented	in this repo	rt.

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	4 Mile / 4 Mile for Dook 4 Mile / 401 le for Averson
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported 5.2.3 DEVIATION FROM TEST STANDARD No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 RESULTS (BELOW 30 MHZ)

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization	
Test Mode	Keep WIFI Transmitting	Test Date	February 25, 2016

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

5.2.5.2 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization :	Horizontal
Test Mode	Keep WIFI Transmitting	Test Date	February 25, 2016

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	,
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1		30.5304	26.56	3.13	29.69	40.00	-10.31	peak
2	*	80.3619	39.38	-7.76	31.62	40.00	-8.38	peak
3		140.8351	36.02	-3.13	32.89	43.50	-10.61	peak
4		205.6750	38.95	-5.03	33.92	43.50	-9.58	peak
5		404.6664	36.43	-2.17	34.26	46.00	-11.74	peak
6		768.7481	29.50	3.67	33.17	46.00	-12.83	peak

Remark: All the modes have been investigated, and only worst mode is presented in this report.

						Г	ige 22 01 7 1
	EUT	8 Risc-based Panel F	PC I	Model Name	IOT-8	300	
	Temperature	20 ℃	F	Relative Humidity	48%		
	Pressure	1010 hPa	F	Polarization :	Verti	cal	
	Test Mode	Keep WIFI Transmitti	ing	Test Date	Febr	uary 25, 201	16
80.	0 dBuV/m						
						Limit1:	
30	1	2	3 1	*	5	6	
-20	A SHIP WAS A SHIP OF THE SHIP	Man					5. ⁷ 4. — •Vi
	0.000 40 50	60 70 80	(MHz)	300	400 50	0 600 700	1000.000
		Reading	Correct	Measure-			
N	o. Mk. Fre		Factor	ment	Limit	Over	
	MH	lz dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
	1 30.42	37 29.28	3.20	32.48	40.00	-7.52	peak
	2 95.42	70 40.37	-7.26	33.11	43.50	-10.39	peak
	3 128.56	29 38.02	-2.17	35.85	43.50	-7.65	peak
	4 * 191.74	50 41.53	-5.29	36.24	43.50	-7.26	peak
	5 425.02	80 40.37	-2.42	37.95	46.00	-8.05	peak
	6 793.39	58 33.27	4.09	37.36	46.00	-8.64	peak

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2.5.3 TEST RESULTS (1GHZ TO 25GHZ)

Note: the worst case is 1Mbps(CCK)mode as result in this part.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	120 (*)	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	February 25, 2016	Frequency	2412MHz

Freq.	Ant.	Emis	ssion	Limit		Limit Over(r(dB)
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)				
	H/V	PK	AV	PK	AV	PK	AV	
4824	V	59.78	40.67	74	54	-14.22	-13.33	
7236	V	59.03	39.29	74	54	-14.97	-14.71	
4824	Н	59.21	39.11	74	54	-14.79	-14.89	
7236	Н	59.29	40.29	74	54	-14.71	-13.71	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	February 25, 2016	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		,		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4874	V	59.49	40.14	74	54	-14.51	-13.86
7311	V	59.18	39.25	74	54	-14.82	-14.75
4874	Н	58.18	40.06	74	54	-15.82	-13.94
7311	Н	58.93	39.93	74	54	-15.07	-14.07

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	February 25, 2016	Frequency	2462MHz

Freq.	Ant.Pol.	Emission Level(dBuV				Over(dB)	
(MHz)				3m(dB	3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
4924	V	58.22	40.44	74	54	-15.78	-13.56
7386	V	58.06	40.90	74	54	-15.94	-13.10
4924	Н	58.32	40.70	74	54	-15.68	-13.30
7386	Н	59.01	40.01	74	54	-14.99	-13.99

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode2 TX
Test Date	February 25, 2016	Frequency	2412MHz

Freq.	Ant. Pol.	Emission		Limit 3m(dBuV/m)		Over(dB)	
(MHz)		Level(dBuV)					
	H/V	PK	AV	PK	AV	PK	AV
4824	V	58.60	39.34	74	54	-15.40	-14.66
7236	V	58.67	39.80	74	54	-15.33	-14.20
4824	Н	58.81	39.73	74	54	-15.19	-14.27
7236	Н	58.74	39.74	74	54	-15.26	-14.26

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	February 25, 2016	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4874	V	58.95	41.61	74	54	-15.05	-12.39
7311	V	59.92	39.09	74	54	-14.08	-14.91
4874	Н	58.18	39.73	74	54	-15.82	-14.27
7311	Н	59.10	40.10	74	54	-14.90	-13.90

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	February 25, 2016	Frequency	2462MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)			Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4924	V	59.34	39.73	74	54	-14.66	-14.27	
7386	V	58.73	40.45	74	54	-15.27	-13.55	
4924	Н	59.27	39.83	74	54	-14.73	-14.17	
7386	Н	59.56	40.56	74	54	-14.44	-13.44	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode3 TX
Test Date	February 25, 2016	Frequency	2412MHz

Freq.	Ant. Pol.	Emission		Limit		Over(dB)	
(MHz)		Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4824	V	60.13	40.37	74	54	-13.87	-13.63
7236	V	58.40	40.60	74	54	-15.60	-13.40
4824	Н	59.41	39.02	74	54	-14.59	-14.98
7236	Н	59.32	40.32	74	54	-14.68	-13.68

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	February 25, 2016	Frequency	2437MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)			Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4874	V	60.25	41.60	74	54	-13.75	-12.40	
7311	V	59.78	40.73	74	54	-14.22	-13.27	
4874	Н	59.15	39.95	74	54	-14.85	-14.05	
7311	Н	58.45	39.45	74	54	-15.55	-14.55	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	February 25, 2016	Frequency	2462MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4924	V	58.43	39.78	74	54	-15.57	-14.22
7386	V	59.21	40.01	74	54	-14.79	-13.99
4924	Н	58.63	40.53	74	54	-15.37	-13.47
7386	Н	59.67	40.67	74	54	-14.33	-13.33

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	12() ('	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode4 TX
Test Date	February 25, 2016	Frequency	2422MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(Level(dBuV)		3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
4844	V	59.32	40.08	74	54	-14.68	-13.92
7266	V	59.38	39.67	74	54	-14.62	-14.33
4844	Н	59.37	39.14	74	54	-14.63	-14.86
7266	Н	58.12	39.12	74	54	-15.88	-14.88

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	February 25, 2016	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)		
(MHz)				3m(dE	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
4874	V	60.75	40.40	74	54	-13.25	-13.60	
7311	V	58.94	39.42	74	54	-15.06	-14.58	
4874	Н	59.80	39.74	74	54	-14.20	-14.26	
7311	Н	59.29	40.29	74	54	-14.71	-13.71	

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	8 Risc-based Panel PC	Model Name	IOT-800
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4 TX
Test Date	February 25, 2016	Frequency	2452MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
, ,	H/V	PK	AV	PK	ΑÝ	PK	AV
4904	V	59.63	40.14	74	54	-14.37	-13.86
7356	V	58.03	40.18	74	54	-15.97	-13.82
4904	Н	58.13	39.62	74	54	-15.87	-14.38
7356	Н	59.50	40.50	74	54	-14.50	-13.50

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

6. ANTENNA APPLICATION

6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247

FCC part 15C section 15.247 requirements: Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain

greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. 6.2 Result The EUT's antenna is Detachable Antenna and the type of conencetion is RP-SMA connector, The antenna's gain is 2 dBi and meets the requirement. Report No.: FCC16023446-5

Page 40 of 71

7.0. 6DB BANDWIDTH MEASUREMENT

7.1 TEST SETUP

7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is >500 kHz

7.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two

outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured

in the fundamental emission.

7.4 TEST RESULT

6dB Occupied Bandwidth

EUT		8 Ris	c-based Panel PC	Model		IOT-800		
Mode		802.1	11b	Humidity		56% RH		
Temperat	ure	24 de	eg. C,	•				
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MH:	it	Pass/ Fail	
1	2412		1	8910.3	0.5		Pass	
6	2437		1	8910.3	0.5		Pass	
11	2462		1	9807.7	0.5		Pass	

EUT		8 Ris	c-based Panel PC	Model		IOT-800	
Mode		802.1	11g	Humidity		56% RH	
Temperat	perature 24 deg. C,						
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MHz	t	Pass/ Fail
1	2412		6	13141.0	0.5		Pass
6	2437		6	15705.1	0.5		Pass
11	2462		6	16382.1	0.5		Pass

EUT		8 Ris	c-based Panel PC	Model		IOT-	800	
Mode		802.	11n20	Humidity		56%	RH	
Temperat	ure	24 de	eg. C,					
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MH:	t	Pass/ Fail	
1	2412		6.5	13525.6	0.5		Pass	
6	2437		6.5	15897.4	0.5		Pass	
11	2462	•	6.5	17564.1	0.5		Pass	

EUT		8 Ris	c-based Panel PC	Model		IOT-800		
Mode		802.	11n40	Humidity		56%	RH	
Temperat	ure	24 de	eg. C,		•			
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MH:	t	Pass/ Fail	
3	2422		13.5	33333.3	0.5		Pass	
6	2437		13.5	35128.2	0.5		Pass	
9	2452		13.5	36153.8	0.5		Pass	

802.11b at 1Mbps of CH1

Date: 19.MAR.2016 10:46:14

802.11b at 1Mbps of CH6

Date: 19.MAR.2016 10:47:30

802.11g at 6Mbps of CH6

802.11g at 6Mbps of CH11

802.11n at HT20 of CH6

802.11n at HT40 of CH3

802.11n at HT40 of CH6

802.11n at HT40 of CH9

8.0. MAXIMUM PEAK OUTPUT POWER 8.1 TEST SETUP

8.2 LIMITS OF MAXIMUM PEAK OUTPUT POWER

The Maximum Peak Output Power Measurement is 30dBm.

8.3 TEST PROCEDURE

The RF power output was measured with a Power meter connected to the RF Antenna connector measurement while EUT was operating in transmit mode at the appropriate centre frequency.

Note: the peak power was measured.

8.4 TEST RESULTS

EUT			Model		IOT-	800
Mode 802.11b		Humidity 5		56%	56% RH	
Temperature	24 deg. C,					
Channel	Channel Frequency (MHz)	Channel Peak F Frequency Out		Peak Power Limit (dBm)		Pass/ Fail
1	2412	14	.32	30		Pass
6	2437	15	.78	30		Pass
11	2462			30		Pass

Note: 1. At finial test to get the worst-case emission at 1Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

3. The worse case was recorded

EUT	8 Risc-based F	8 Risc-based Panel PC		TOI		T-800	
Mode	802.11g	802.11g			56%	RH	
Temperature	24 deg. C,						
Channel	Channel	Peak Power		Peak Power Limit		Pass/ Fail	
	Frequency	Ou	tput	(dBm)			
	(MHz)	(dE	Bm)				
1	2412	16	.62	30		Pass	
6	2437	18	.88	30		Pass	
11	2462	17	.05	30		Pass	

Note: 1. At finial test to get the worst-case emission at 6 Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

3. The worse case was recorded

EUT	8 Risc-based F	8 Risc-based Panel PC		Model IC		IOT-800	
Mode	802.11n(HT20)	802.11n(HT20)		Humidity		RH	
Temperature	24 deg. C,						
Channel	Channel	Peak Power		Peak Power Limit		Pass/ Fail	
	Frequency	Out	tput	(dBm)			
	(MHz)	(dE	3m)				
1	2412	15	.58	30		Pass	
6	2437	17	.17	30	30		
11	2462	16	.94	30		Pass	

Note: 1. At finial test to get the worst-case emission at 6.5Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

3. The worse case was recorded

EUT	8 Risc-based Panel PC		Model	Model IC		IOT-800	
Mode	Mode 802.11n (HT40)		Humidity 5		56%	RH	
Temperature	24 deg. C,						
Channel	Channel Frequency (MHz)	Ou	Power tput 3m)	Peak Power L (dBm)	imit	Pass/ Fail	
3	2422	15	.82	30		Pass	
6	2437	16	.68	30		Pass	
9	2452	16	.72	30		Pass	

Note: 1. At finial test to get the worst-case emission at 13.5Mbps for CH3, CH6 and CH9

2. The result basic equation calculation as follow:

Peak Power Output = Peak Power Reading + Cable loss + Attenuator

3. The worse case was recorded.

802.11b at 1Mbps of CH1

802.11b at 1Mbps of CH6

802.11b at 1Mbps of CH11

Page 53 of 71

802.11g at 6Mbps of CH6

802.11n at HT20 of CH1

802.11n at HT20 of CH6

802.11n at HT20 of CH11

Page 55 of 71

802.11n at HT40 of CH6

802.11n at HT40 of CH9

9. POWER SPECTRAL DENSITY MEASUREMENT 9.1 TEST SETUP

9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum Power Spectral Density Measurement is 8dBm.

9.3 TEST PROCEDURE

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used todemonstrate compliance.
- 2. Set the RBW = 3 kHz.
- 3. Set the VBW = 10 kHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be ≤ 8 dBm.

9.4 TEST RESULT

EUT	EUT 8 Risc-based Panel PC		Model IC		IOT-	OT-800	
Mode	802.11b	802.11b		nidity		RH	
Temperature	24 deg. C,						
Channel	Channel Frequency (MHz)	_	Power n (dBm)	Maximum Limit (dBm)		Pass/ Fail	
		•	1Mbps				
1	2412	-11	.86	8		Pass	
6	2437	-10	.62	8		Pass	
11	2462	-11	.13	8		Pass	

EUT	8 Risc-based F	Panel PC	Model		IOT-800	
Mode	802.11g		Humidity	ımidity		RH
Temperature	24 deg. C,					
Channel	Channel Frequency (MHz)		Power n (dBm)	Maximum Limit (dBm)		Pass/ Fail
		(6Mbps			
1	2412	-12	.82	8		Pass
6	2437	-12	.01	8		Pass
11	2462	-12	.19	8		Pass

EUT	8 Risc-based F	Panel PC	Model		IOT-8	800
Mode	802.11n HT20	802.11n HT20		Humidity		RH
Temperature	24 deg. C,					
Channel	Channel	Final R	Power	Maximum Limit		Pass/ Fail
	Frequency	Level ir	n (dBm)	(dBm)		
	(MHz)					
		6	.5Mbps			
1	2412	-12	.29	8		Pass
6	2437	-12	.24	8		Pass
11	2462	-12	.42	8		Pass

EUT	8 Risc-based F	Panel PC	Model		IOT-800	
Mode	802.11n HT40		Humidity		56%	RH
Temperature	24 deg. C,		_			
Channel	Channel Frequency (MHz)		F Power Maximum L n (dBm) (dBm)		nit	Pass/ Fail
•	,	13	3.5Mbps	1		
3	2422	-15	.90	8		Pass
6	2437	-13	.84	8		Pass
9	2452	-15	.33	8		Pass

Remark: All of the modes have been investigated, and only worst mode is presented in this report.

Page 58 of 71

802.11g at 6Mbps of CH1

Page 60 of 71

802.11n HT40 at 13.5Mbps of CH9

10. OUT OF BAND MEASUREMENT 10.1 TEST SETUP FOR BAND EDGE

The restricted band requirement based on radiated emission test; please see the clause 6 for the test setup

10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT

- 1. Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

10.3 TEST PROCEDURE

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of radiated emission test. (Peak values with RBW=VBW=1MHz and PK detector. AV value with RBW=1MHz,VBW=10Hz and PK detector)

For bandage test, the spectrum set as follows: RBW=100 kHz, VBW=100 kHz. A conducted measurement used

10.4 TEST RESULT

Please see next pages

Note: This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

Radiated measurement:

802.11b

Indicated			Antenna	Correction Factor			FCC Part 15.247		
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dB _µ V/m)	Limit (dBμV/m)	Margin (dB)
	Low Channel (2412MHz)								
2390	31.23	AV	V	30.3	4.1	33.1	32.53	54	21.47
2390	30.55	AV	Н	30.3	4.1	33.1	31.85	54	22.15
2390	41.17	PK	V	30.3	4.1	33.1	42.47	74	31.53
2390	40.11	PK	Н	30.3	4.1	33.1	41.41	74	32.59
2400	37.85	AV	V	30.5	4.2	33	39.55	54	14.45
2400	37.93	AV	Н	30.5	4.2	33	39.63	54	14.37
2400	54.14	PK	V	30.5	4.2	33	55.84	74	18.16
2400	52.37	PK	Н	30.5	4.2	33	54.07	74	19.93
	<u>+ </u>		Hi	gh Channel	(2462MH	z)			
2480	32.71	AV	V	30.8	4.3	32.6	35.21	54	18.79
2480	31.49	AV	Н	30.8	4.3	32.6	33.99	54	20.01
2480	44.45	PK	V	30.8	4.3	32.6	46.95	74	27.05
2480	47.10	PK	Н	30.8	4.3	32.6	49.60	74	24.40
2483.5	30.85	AV	V	31	4.4	32.7	33.55	54	20.45
2483.5	31.52	AV	Н	31	4.4	32.7	34.22	54	19.78
2483.5	41.82	PK	V	31	4.4	32.7	44.52	74	29.48
2483.5	41.92	PK	Н	31	4.4	32.7	44.62	74	29.38

802.11g

Indicated			Antenna	Correction Factor			FCC Part 15.247		
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
Low Channel (2412MHz)									
2390	33.35	AV	V	30.3	4.1	33.1	34.65	54	19.35
2390	34.42	AV	Н	30.3	4.1	33.1	35.72	54	18.28
2390	49.35	PK	V	30.3	4.1	33.1	50.65	74	23.35
2390	51.34	PK	Н	30.3	4.1	33.1	52.64	74	21.36
2400	37.39	AV	V	30.5	4.2	33	39.09	54	14.91
2400	37.31	AV	Н	30.5	4.2	33	39.01	54	14.99
2400	54.20	PK	V	30.5	4.2	33	55.90	74	18.10
2400	52.77	PK	Н	30.5	4.2	33	54.47	74	19.53
		1	Hi	gh Channel	(2462MH	z)		1	
2480	32.04	AV	V	30.8	4.3	32.6	34.54	54	19.46
2480	32.88	AV	Н	30.8	4.3	32.6	35.38	54	18.62
2480	45.62	PK	V	30.8	4.3	32.6	48.12	74	25.88
2480	46.73	PK	Н	30.8	4.3	32.6	49.23	74	24.77
2483.5	31.55	AV	V	31	4.4	32.7	34.25	54	19.75
2483.5	31.08	AV	Н	31	4.4	32.7	33.78	54	20.22
2483.5	40.70	PK	V	31	4.4	32.7	43.40	74	30.60
2483.5	39.77	PK	Н	31	4.4	32.7	42.47	74	31.53

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

802.11n HT20

Indicated			Antenna	Correction Factor			FCC Part 15.247				
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	result	result Polar	Polar	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
	Low Channel (2412MHz)										
2390	38.12	AV	V	30.3	4.1	33.1	39.42	54	14.58		
2390	37.61	AV	Н	30.3	4.1	33.1	38.91	54	15.09		
2390	52.71	PK	V	30.3	4.1	33.1	54.01	74	19.99		
2390	54.70	PK	Н	30.3	4.1	33.1	56.00	74	18.00		
2400	37.49	AV	AV	30.5	4.2	33	39.19	54	14.81		
2400	36.85	AV	AV	30.5	4.2	33	38.55	54	15.45		
2400	53.44	PK	PK	30.5	4.2	33	55.14	74	18.86		
2400	53.55	PK	PK	30.5	4.2	33	55.25	74	18.75		
			Hi	gh Channel	(2462MH	z)					
2480	31.83	AV	AV	30.8	4.3	32.6	34.33	54	19.67		
2480	32.94	AV	AV	30.8	4.3	32.6	35.44	54	18.56		
2480	44.61	PK	PK	30.8	4.3	32.6	47.11	74	26.89		
2480	45.77	PK	PK	30.8	4.3	32.6	48.27	74	25.73		
2483.5	33.43	AV	V	31	4.4	32.7	36.13	54	17.87		
2483.5	32.25	AV	Н	31	4.4	32.7	34.95	54	19.05		
2483.5	46.08	PK	V	31	4.4	32.7	48.78	74	25.22		
2483.5	47.00	PK	Н	31	4.4	32.7	49.70	74	24.30		

802.11n HT40

Indicated			Antonno	Corre	ection Fa	ctor	FCC Part 15.247			
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	result	Antenna Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
	Low Channel (2422MHz)									
2390	33.28	AV	V	30.3	4.1	33.1	34.58	54	19.42	
2390	33.29	AV	Н	30.3	4.1	33.1	34.59	54	19.41	
2390	51.40	PK	V	30.3	4.1	33.1	52.70	74	21.30	
2390	49.91	PK	Н	30.3	4.1	33.1	51.21	74	22.79	
2400	36.82	AV	V	30.5	4.2	33	38.52	54	15.48	
2400	36.68	AV	Н	30.5	4.2	33	38.38	54	15.62	
2400	55.24	PK	V	30.5	4.2	33	56.94	74	17.06	
2400	53.86	PK	Н	30.5	4.2	33	55.56	74	18.44	
			Hi	gh Channel	(2452MH	z)				
2480	31.83	AV	V	30.8	4.3	32.6	34.33	54	19.67	
2480	33.78	AV	Н	30.8	4.3	32.6	36.28	54	17.72	
2480	45.60	PK	V	30.8	4.3	32.6	48.10	74	25.90	
2480	45.42	PK	Н	30.8	4.3	32.6	47.92	74	26.08	
2483.5	31.86	AV	V	31	4.4	32.7	34.56	54	19.44	
2483.5	31.38	AV	Н	31	4.4	32.7	34.08	54	19.92	
2483.5	39.90	PK	V	31	4.4	32.7	42.60	74	31.40	
2483.5	39.92	PK	Н	31	4.4	32.7	42.62	74	31.38	

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

Page 72 of 71

11. EUT TEST PHOTO

RADIATED EMISSION TEST

12. PHOTOGRAPHS OF EUT

---END OF REPORT---