

Problem Set 5

Big data analysis:

- How do we analyze a big database?
- Solve a simple data mining problem as fast as you can!

Problem Set 5

Speed Demon Competition

- How do we analyze a big database?
- Solve a simple data mining problem as fast as you can!

Fastest solutions will win... eternal glory.

Problem Set 5

Speed Demon Competition

- Due: Thursday, March 17, midnight.

Today: Hash Tables (continued)

- Table (re)sizing
 - Proper hash table size
 - Amortized analysis
- Sets
 - Hash table sets
 - Bloom Filters

Application: DNA analysis

Quick Review

Symbol Table

public interface	SymbolTable <key, th="" value<=""><th>></th></key,>	>
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Note: no successor / predecessor queries.

Quick Review

Hash Table

- Implements a symbol table.
- Goal:
 - O(1) insert
 - O(1) lookup

- Idea:
 - Store data in a large array.
 - Hash function maps key to slot in the array.
 - Challenge: choosing a good hash function.

Quick Review

Hash Table with Chaining

- Each array slots stores a linked list.
- All items mapped to the same slot are stored in the linked list.

Open addressing:

- Each array slot stores one element.
- On collision, continue probing.
- Probe sequence specifies order in which cells are examined.

Table Size

How large should the table be?

- Assume: <u>Hashing with Chaining</u>
- Assume: Simple Uniform Hashing
- Expected search time: O(1 + n/m)
- Optimal size: $m = \Theta(n)$
 - if (m < 2n): too many collisions.
 - if (m > 10n): too much wasted space.

- Problem: we don't know *n* in advance.

Table Size

Idea:

- Start with small (constant) table size.
- Grow (and shrink) table as necessary.

Example:

- Initially, m = 10.
- After inserting 6 items, table too small! Grow...
- After deleting *n*-1 items, table too big! Shrink...

Table Size

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.
- Costs:
 - Scanning old hash table: $O(m_1)$
 - Creating new hash table: $O(m_2)$
 - Inserting each element in new hash table: O(1)
 - Total: $O(m_1 + m_2 + n)$

Idea 1: Increment table size by 1

$$- if (n == m): m = m+1$$

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = n + 1$.

Idea 1: Increment table size by 1

- When (n == m): m = m+1
- Cost of each resize: O(n)

Table size	8	8	9	10	11	12	•••	n+1
Number of items	0	7	8	9	10	11	•••	n
Number of inserts		7	1	1	1	1	• • •	1
Cost		7	8	9	10	11		n

- Total cost:
$$(7 + 8 + 9 + 10 + 11 + ... + n) = O(n^2)$$

Idea 2: Double table size

- if (n == m): m = 2m

– Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = 2n$.
- Total: O(n)

Idea 2: Double table size

- When (n == m): m = 2m
- Cost of each resize: O(n)

Table size	8	8	16	16	16	16	16	16	16	16	32	32	32	•••	2n
# of items	0	7	8	9	10	11	12	13	14	15	16	17	18	• • •	n
# of inserts		7	1	1	1	1	1	1	1	1	1	1	1	•••	1
Cost		7	8	1	1	1	1	1	1	1	16	1	1		n

- Total cost:
$$(8 + 16 + 32 + ... + n) = O(n)$$

Idea 2: Double table size

Cost of Resizing:

Table size	Total Resizing Cost
8	8
16	(8 + 16)
32	(8+16+32)
64	(8+16+32+64)
128	(8+16+32+64+128)
• • •	• • •
m	$<(1+2+4+8++m) \le 2m$

Idea 2: Double table size

- if (n == m): m = 2m

- Cost of resize: O(n)
- Cost of inserting n items + resizing: O(n)

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Average cost: O(1)

Idea 3: Square table size

- When (n == m): $m = m^2$

Table size	Total Resizing Cost
8	?
64	?
4,096	?
16,777,216	?
• • •	• • •
m	?

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

- Cost of resize:
 - Total: $O(n^2)$

- Cost of inserts:
 - Total: O(n)

Basic procedure: (chained hash tables)

Delete(key)

- 1. Calculate hash of *key*.
- 2. Let *L* be the linked list in the specified bucket.
- 3. Search for item in linked list L.
- 4. Delete item from linked list *L*.

Cost:

- Total: O(1 + n/m)

What happens if too many items are deleted?

- Table is too big!
- Shrink the table...

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

Rules for shrinking and growing:

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

- Example problem:
 - Start: n=100, m=200
 - Delete: n=99, $m=200 \rightarrow$ shrink to m=100
 - Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Example execution:

- Start: n=100, m=200
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

- Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Example execution:

- Start: n=100, m=200
- cost=350 Delete 50: n=50, $m=200 \rightarrow$ shrink to m=100
- cost=350 Insert 50: n=100, $m=100 \rightarrow \text{grow to } m=200$

- cost=20 Delete 20: n=80, $m=200 \rightarrow$ unchanged
- cost=720 Insert 120: n=200, $m=200 \rightarrow \text{grow to } m=400$
- cost=100 Insert 100: n=300, $m=400 \rightarrow$ unchanged

Technique for analyzing "average" cost:

- Common in data structure analysis
- Like paying rent:
 - You don't pay rent every day!
 - Pay 900/month = 30/day.

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost = 7

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost **NOT** 7

```
    insert: 13
    insert: 5
    insert: 7
    insert: 7
```

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: (Hash Tables)

- Inserting k elements into a hash table takes time O(k).
- Conclusion:

The insert operation has amortized cost O(1).

Accounting Method (paying rent)

- Imagine a bank account B.
- Each operation adds money to the bank account.
- Every step of the algorithm spends money:
 - Immediate money: to perform the operation.
 - Deferred money: from the bank account.
- Total cost execution = total money
 - Average time / operation = money / num. ops

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account, uses O(1) dollars to insert element.
- A table with k new elements since
 last resize has k dollars in bank.

Bank account
\$2 dollars

0	null
1	null
2	(k ₁ , A)
3	null
4	null
56	null
6	null
7	null
8	(k ₂ , B)
9	null

Accounting Method Example (Hash Table)

- The table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

- Claim:

- Growing a table of size m: (m + m + 2m) = O(m) time.
- Shrinking a table of size m: (m + m/4 + m/2) = O(m) time.
- If you resize a table of size m, then:
 - at least m/2 added OR m/4 deleted since last resize.
 - bank account has $\Theta(m)$ dollars.

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.
- Pay for resizing from the bank account!
- Strategy:
 - Analyze inserts ignoring cost of resizing.
 - Ensure that bank account always is big enough to pay for resizing.

Total cost: Inserting k elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Amortized Analysis

Total cost: Inserting *k* elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Average cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Counter ADT:

- increment()
- read()

Counter ADT:

- increment()
- read()

increment()

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 1 0

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 1 1

What is the worst-case cost of incrementing the counter?

- 1. O(1)
- **✓**2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. I have no idea.

Counter ADT:

- increment()
- read()

Some increments are expensive...

Question: If we increment the counter to *n*, what is the average cost per operation?

- Easy answer: $O(\log n)$
- More careful analysis....

Observation:

During each increment, only <u>one</u> bit is changed from: $0 \rightarrow 1$

Observation:

During each increment, many bits may be changed from: $1 \rightarrow 0$

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar.

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar. Whenever you change it from $1 \rightarrow 0$, pay one dollar.

Counter ADT

Counter ADT

increment()

Counter ADT

increment(), increment()

Counter ADT

increment(), increment()

Counter ADT

increment()

Observation:

Average cost of increment: 2

- One operation to switch one $0 \rightarrow 1$
- One dollar (for bank account of switched bit).

(All switches from $1 \rightarrow 0$ paid for by bank account.)

Today: Hash Tables (continued)

- Table (re)sizing
 - Proper hash table size
 - Amortized analysis
- Sets
 - Hash table sets
 - Bloom Filters

Facebook:

- I have a list of (names) of friends:
 - John
 - Mary
 - Bob
- Some are online, some are offline.
- How do I determine which are on-line and which are off-line?

Spam filter:

- I have a list bad e-mail addresses:
 - @ mxkp322ochat.com
 - @ info.dhml212oblackboard.net
 - (a) transformationalwellness.com
- I have a list of good e-mail addresses:
 - My mom.
 - *.nus.edu.sg

– How do I quickly check for spam?

Denial of Service Attack:

Attacker floods network with packets.

Router tries to filter attack packets.

Denial of Service Attack:

- Attacker floods network with packets.
- Router tries to filter attack packets.

1. Keep list of bad IP addresses. (Same as spam solution.)

2. Only allow 100 packets/second from each IP address.

Set

Properties:

- No defined ordering.
- Speed is critical.
- Space is critical.

Set

Java: HashSet<...> implements Set<...>

Set

public class	Set <key></key>	
void	insert(Key k)	Insert k into set
boolean	contains(Key k)	Is k in the set?
void	delete(Key k)	Remove key k from the set
void	intersect(Set <key> s)</key>	Take the intersection.
void	union(Set <key> s)</key>	Take the union.

Solution 1: Implement using a Hash Table

Which problem does a hash table not solve?

- 1. Fast insertion
- 2. Fast deletion
- 3. Fast lookup
- 4. Small space
- 5. All of the above
- 6. None of the above

A hash table takes more special a simple list!

Counter

21

Set

public class	Set <key></key>	
void	insert(Key k)	Insert k into set
boolean	contains(Key k)	Is k in the set?
void	delete(Key k)	Remove key k from the set
void	intersect(Set <key> s)</key>	Take the intersection.
void	union(Set <key> s)</key>	Take the union.

Solution 2: Implement using a Fingerprint Hash Table

```
Use a fingerprint:

    Only store/send m bits!

                                0
hash("www.apple.com")
                                0
hash("www.microsoft.com")
                                0
hash("www.nytimes.com")
                              9
```

Fingerprints

Set Abstract Data Type

Maintain a vector of 0/1 bits.

```
insert(key)
1. h = hash(key);
2. m_table[h] = 1;

lookup(key)
1. h = hash(key);
2. return (m_table[h] == 1);
```

The key difference of a Fingerprint Hash Table (FHT) is:

- 1. A FHT prevents collisions.
- 2. A FHT does not store the key in the table.
- 3. A FHT works with simpler hash functions.
- 4. A FHT saves time calculating hashes.
- 5. I don't understand how an FHT is different.


```
Use a fingerprint:
                           0
hash("www.apple.com")
                           0
hash("www.microsoft.com")
                           0
hash("www.nytimes.com")"
                         9
```

```
What happens on collision?
                                   0
hash("www.gmail.com")"
hash("www.apple.com")
                                   0
hash("www.microsoft.com")
                                   0
hash("www.nytimes.com")
                                 9
```

Lookup operation: 0 0 0 0 If the URL is in the web cache, it will always report true. 9 (No false negatives.)

Fingerprint Hash Table

```
Insert operation:
hash("www.microsoft.com"):
                                             0
                                             0
Lookup operation:
hash("www.rugby.com")
                                             0
Even if the URL is NOT in the set,
it may sometimes report true.
                                          9
(False positives.)
```

Facebook example: if the FHT stores the set of online users, then you might:

31

- 1. Believe Fred is on-line, when he is not.
- 2. Believe Fred is offline, when is not.
- 3. Never make any mistakes.

Spam example: it is better to store in the Fingerprint Hash Table:

- 1. The set of **good** e-mail addresses.
 - 2. The set of **bad** e-mail addresses
 - 3. It does not matter.

I think it is better to mistakenly accept a few SPAM e-mails than to accidently reject an e-mail rom my mother!

Probability of a false negative: 0

Probability of a false negative: 0

On lookup in a table of size m with n elements, Probability of **no** false positive:

$$\left(1 - \frac{1}{m}\right)^n \approx \left(\frac{1}{e}\right)^{n/m}$$

chance of no collision

Probability of collision?

hash("www.gmail.com")

What is the probability that no other URL is in slot 3?

	0	0
	1	0
	2	0
·····>	3	1
	4	0
	5	0
	4567	1
	7	0
	8	1
	9	0
	'	

Probability of a false negative: 0

Probability of **no** false positive: (simple uniform hashing assumption)

$$\left(1 - \frac{1}{m}\right)^n \approx \left(\frac{1}{e}\right)^{n/m}$$

Probability of a false positive, at most:

$$1-\left(\frac{1}{e}\right)^{n/m}$$

Assume you want:

- probability of false positives < p
 - Example: at most 1% of queries return false positive.

$$p = .01$$

- Need:
$$\frac{n}{m} \le \log\left(\frac{1}{1-p}\right)$$

• Example: $m \ge (68.97)n$

probability of false positive vs (m/n)

Summary So Far

Fingerprint Hash Functions

- Don't store the key.
- Only store 0/1 vector.

Summary So Far

Fingerprint Hash Functions

- Don't store the key.
- Only store 0/1 vector.
- Trade-off:
 - Reduced space: only 1-bit per slot
 - Increase space: bigger table to avoid collisions

Fingerprint Hash Table

Can we do better?

Idea: use 2 hash functions! 0 hash("www.gmail.com") :: 0 hash("www.microsoft.com"): 9

```
Idea: use 2 hash functions!
                                                           0
                                                           0
hash("www.gmail.com") ....
                                                           0
insert(URL)
     k_1 = \text{hash}_1(\text{URL});
                                                           0
     k_2 = \text{hash}_2(\text{URL});
     T[k_1] = 1;
                                                       9
     T[k_2] = 1;
```

Idea: use 2 hash functions!

```
query(URL)
k_1 = \text{hash}_1(\text{URL});
k_2 = \text{hash}_2(\text{URL});
\text{if } (\text{T}[k_1] \&\& \text{T}[k_2])
\text{return true;}
\text{else return false;}
```


A Bloom Filter can have:

- ✓ 1. Only false positives.
 - 2. Only false negatives.
 - 3. Both false positives and negatives.
 - 4. Wait, which is which again?

Idea: use 2 hash functions!

```
query(URL)
k_1 = \text{hash}_1(\text{URL});
k_2 = \text{hash}_2(\text{URL});
\text{if } (\text{T}[k_1] \&\& \text{T}[k_2])
\text{return true;}
\text{else return false;}
```


Idea: use 2 hash functions!

Trade-off:

- Each item takes more "space" in the table.
- Requires <u>two</u> collisions for a false positive.

0	0
1	0
2	1
3	1
4	0
5	0
6	1
7	0
8	1
9	0

Probability a given bit is 0:

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{2n} \approx \left(\frac{1}{e}\right)^{2n/m}$$

Probability of a false positive: (1 set in both slots)

$$\left(1-\left(\frac{1}{e}\right)^{2n/m}\right)^2$$

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{2n} \approx \left(\frac{1}{e}\right)^{2n/m}$$

Probability of a false positive: (1 set in both slots)

$$\left(1-\left(\frac{1}{e}\right)^{2n/m}\right)^2$$

^{*} Assuming BOGUS fact that each table slot is independent...

Assume you want:

- probability of false positives < p
 - Example: at most 1% of queries return false positive.

$$p = .01$$

- Need:
$$\frac{n}{m} \le \frac{1}{2} \log \left(\frac{1}{1 - p^{1/2}} \right)$$

• Example: $m \ge 19n$

* Assuming BOGUS fact that each table slot is independent...

False positives rate vs. (m/n)

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$$

Probability a given bit is 0:

$$\left(1 - \frac{1}{m}\right)^{kn} \approx e^{-kn/m}$$

Probability of a collision at one spot:

$$1 - e^{-kn/m}$$

* Assuming BOGUS fact that each table slot is independent...

Probability of a collision at one spot:

$$1 - e^{-kn/m}$$

Probability of a collision at all *k* spots:

$$(1 - e^{-kn/m})^k$$

* Assuming BOGUS fact that each table slot is independent...

false positive rate vs. (m/n)

false positive rate vs k

$$m = 10n$$

false positive rate vs k

$$m = 18n$$

What is the optimal value of k?

Probability of false positive:

$$(1-e^{-kn/m})^k$$

- Choose:
$$k = \frac{m}{n} \ln 2$$

- Error probability: 2^{-k}

Summary So Far

- Fingerprint Hash Functions
 - Don't store the key.
 - Only store 0/1 vector.
- Bloom Filter
 - Use more than one hash function.
 - Redundancy reduces collisions.
- Probability of Error
 - False positives
 - False negatives

Fingerprint Hash Table

```
What about deletion?
                                           0
                                           0
insert("www.gmail.com")~
                                           0
                                        3
                                           0
                                        4
insert("www.apple.com")"
                                           0
delete("www.gmail.com")
                                           0
                                        9
```

What about deleting an element?

- Store counter instead of 1 bit.
- On insert: increment.
- On delete: decrement.

Beware:

- If counter is big, then no space saving.
- If collisions are rare, counter is small: only a few bits.

Implementation of Set ADT:

- insert: O(k)
- delete: O(k)
- query: O(k)

Implementation of Set ADT:

- intersection
 - Bitwise AND of two Bloom filters
 - Time: O(m)

0	0	&	0
1	0	&	1
2	0	&	0
3	1	&	1
4	0	&	0
5	0	&	0
6	1	&	0
7	0	&	0
8	1	&	1
9	0	&	0

Bloom Filters

Implementation of Set ADT:

- intersection
 - Bitwise AND of two Bloom filters: O(m)

- union
 - Bitwise OR of two Bloom filters: O(m)

Other applications

- Chrome browser safe-browsing
 - Maintains list of "bad" websites.
 - Occasionally retrieves updates from google server.

- Spell-checkers
 - Storing all words takes a lot of space.
 - Instead, store a Bloom filter of the words.

Weak password dictionaries

Summary

When to use Bloom Filters?

- Storing a set of data.
- Space is important.
- False positives are ok.

Interesting trade-offs:

- Space
- Time
- Error probability

Today: Hash Tables (continued)

- Table (re)sizing
 - Proper hash table size
 - Amortized analysis
- Sets
 - Hash table sets
 - Bloom Filters

Application: DNA Analysis

How similar is Chimpanzee DNA to Human DNA?

- 1. 20-50%
- 2. 70-79%
- 3.80-90%
- **✓**4. 80-95%
 - 5. 96-99%
 - 6. Who are you calling a chimp,

Response Counter

Question:

- How similar is chimp DNA to human DNA?
- Problem:
 - Given human DNA string: ACAAGCGGTAA
 - Given chimp DNA string: CCAAGGGGTAA
 - How similar are they?

- Similarity = longest common substring
 - Implies a gene that is shared by both.
 - Count genes that are shared by both.

How similar is Chimp and Human DNA?

Longest common substring (text):

Naïve Algorithm: strings A and B

L = length(A);

for (L = n down to 1):

for every substring X1 of A of length L:

for every substring X2 of B of length L:

if (X1==X2) then return X1;

Example: ALGORITHM ARITHMETIC

- L=3 : X1= ALG → compare to ARI, RIT, ITH, ...

What is the running time?

- 1. O(log n)
- 2. O(n)
- 3. O(n log n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(n^4)$

Naïve Algorithm: strings *A* and *B* L = length(A);Loop *n* times. for $(L = n \text{ down to } 1) \leftarrow$ *n-L* substrings for every substring X1 of A of length L: for every substring X2 of B of length L: if (X1==X2) then return X1; comparison costs: O(

Total cost: $O(n^4)$

How similar is Chimp and Human DNA?

Longest common substring (text):

- Another idea:
 - Binary search!
 - Don't search every length L.
 - Start with L = length(A) / 2.
 - Search until you find a match for some length L.

Binary Search Algorithm: strings *A* and *B*

```
L = length(A) / 2;
```

repeat until done:

for every substring X1 of A of length L:

for every substring X2 of B of length L:

if (X1==X2) then found=true;

if (found) then increase L

else decrease L

Binary Search Algorithm: strings *A* and *B*

```
low = 0;
high = length(A)+1;
repeat until (low \geq high-1):
         L = low + (high-low)/2;
         found = substring(A, B, L);
         if (found) then low = L;
         else high = L;
return low;
```

What is the running time?

- 1. O(n)
- 2. O(n log n)
- 3. $O(n^2)$
- 4. $O(n^2 \log n)$
- 5. $O(n^3)$
- 6. $O(n^3 \log n)$
- 7. $O(n^4)$

Cost: $O(n^3)$

Binary Search Algorithm: strings *A* and *B*

```
substring(A, B, L)

for every substring X1 of A of length L:

for every substring X2 of B of length L:

if (X1==X2) then return true;

return false

n-L substrings

comparison costs: O(L)
```

```
Binary Search Algorithm: strings A and B
  low = 0;
  high = length(A)+1;
  repeat until (low \geq high-1):
           L = low + (high-low)/2;
           found = substring(A, B, L);
           if (found) then low = L;
           else high = L;
  return low;
Cost: O(n^3 \log n)
```

How similar is Chimp and Human DNA?

Longest common substring (text):

- Another idea:
 - Put every substring from first string into a symbol table.
 - Lookup every substring from second string in the symbol table.

How similar is Chimp and Human DNA?

Long common substring (text):

- Add to symbol table:
 - A, AL, ALG, ALGO, ALGOR, ALGORI, ALGORIT, ALGORITH, ...
 - L, LG, LGO, LGOR, LGORI, LGORIT, LGORITH, LGORITHM
 - G, GO, GOR, GORI, GORITH, GORITHM
 - •

How similar is Chimp and Human DNA?

Long common substring (text):

- Search in symbol table:
 - A, AR, ARI, ARIT, ARITH, ARITHM, ARITHME, ARITHMET, ...
 - R, RI, RIT, RITH, RITHM, RITHME, RITHMET, RITHMETI, ...
 - I, IT, ITH, ITHM, ITHME, ITHMET, ITHMETI, ITHMETIC
 - •

How similar is Chimp and Human DNA?

Long common substring (text):

- Search in symbol table:
 - A, AR, ARI, ARIT, ARITH, ARITHM, ARITHME, ARITHMET, ...
 - R, RI, RITH, RITHM, RITHME, RITHMET, RITHMETI, ...
 - I, IT, ITH, ITHM, ITHME, ITHMET, ITHMETI, ITHMETIC
 - •

Assume insert/search are O(1). What is the running time of this algorithm?

- 1. O(1)
- 2. $O(\log n)$
- 3. $O(n \log n)$
- 4. $O(n^2)$
- 5. $O(n^2 \log n)$
- **✓** 6. $O(n^3)$
 - 7. $O(n^3 \log n)$

How similar is Chimp and Human DNA?

Long common substring (text):

- There are $O(n^2)$ substrings.
- To add a substring of length k takes time O(k):
 - To add the substring to the symbol table, you have to at least read the whole string!
- Total running time: $O(n^3)$

How similar is Chimp and Human DNA?

Longest common substring (text):

ALGORITHM vs. ARITHMETIC

Focus on one length at a time:

For a given length L:

- Put every substring from first string into a symbol table.
- Lookup every substring from second string in the symbol table.

Binary search on length L.

Binary Search Algorithm: strings *A* and *B*

substring(A, B, L)

for every substring X1 of A of length L:

Add X1 to the symbol table.

for every substring X2 of B of length L:

if X2 is in the symbol table then return true;

return false;

The performance of substring (X1, X2, L) on strings of length n is:

- 1. O(1)
- 2. $O(\log n)$
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^2 \log(n))$
- 6. $O(n^3)$

Binary Search Algorithm: strings *A* and *B*

```
substring(A, B, L)
for every substring X1 of A of length L:  n substrings
    Add X1 to the symbol table. cost to add: n
for every substring X2 of B of length L:  n substrings
    if X2 is in the symbol table then return true;
return false;
    cost to search: n
```

Cost: $O(Ln) = O(n^2)$

How similar is Chimp and Human DNA?

Longest common substring (text):

- Now, binary search again:
 - For log *n* values of length L:
 - Add all O(n) substrings of length L from A.
 - Search all O(n) substrings of length L from B.
 - − Adjust *L* and continue.
 - Running time: $O(n^2 \log n)$.

Two problems:

- 1. Calculating hash of string of length L:
 - Takes O(L) time.
 - There are n-L substrings of length L.
 - Time: O(nL)

Two problems:

- 2. Searching for string of length L in hash table:
 - Entry e = T.lookup(X2)
 - Is entry e for string X2?
 - Or is entry e for a string X3 where h(X2) = h(X3)?
 - Verifying Entry e takes O(L) time.

Each false positive costs O(L)!

In order to speed up substring:

1. Reduce false positives

If the hash is in the table, then it is very likely that the string is in the hash table.

2. Compute hash faster

It is too slow to re-compute the hash function (n − L) times.

Reduce false positives:

- Use two different hash functions.
 - $h_1: U \to \{1..m\}, m < 4n$.
 - $h_2: U \to \{1..n^2\}.$

- Using a hash function as a signature.
 - A hash of a large data structure gives a small signature.
 - Example:
 - Are two databases identical?
 - Compare hash!
 - A hash as a fingerprint.

Reduce false positives:

- Use two different hash functions.
 - $h_1: U \to \{1..m\}, m < 4n$.
 - $h_2: U \to \{1..n^2\}.$

hash-insert(s):

Table[$h_1(s)$].LinkListInsert($h_2(s)$, s)

Reduce false positives:

- Use two different hash functions.
 - $h_1: U \to \{1..m\}, m < 4n$.
 - $h_2: U \to \{1..n^2\}.$

hash-lookup(s): if (Table[$h_1(s)$] != null) then (sig, t) = Table[$h_1(s)$] if ($h_2(s) == sig$) then if (s == t) then return true;

```
Analysis: hash-lookup(s)
  - Case 1: string s is in table: O(L)
  - Case 2: Table [h_1(s)] == null: O(1)
  - Case 3: Table [h_1(s)]!= null: ??
  hash-lookup(s):
     if (Table[h_1(s)] != null) then
            (sig, t) = Table[h_1(s)]
            if (h_2(s) == sig) then
                   if (s == t) then return true;
```

Let $h_2: U \rightarrow \{1..n^2\}$ be a hash function. For strings s and t, what is the probability that $h_2(s) == h_2(t)$?

- 1. 1/n
- $2. \ 2/n$
- 3. $1/n^2$
- 4. $1/\sqrt{n}$
- 5. 1/2
- 6. None of the above.

Response Counter

Analysis: hash-lookup(s)

(Assume SUHA.)

- $h_2 : U \rightarrow \{1..n^2\}$
- For two strings s and t:

Probability($h_2(s) == h_2(t)$): $1/n^2$


```
Analysis: hash-lookup(s) (Assume SUHA.)
- h_2: U \rightarrow \{1..n^2\}
```

– For string s:

Probability($h_2(s) == h_2(t)$ for any string t): $n/n^2 \le 1/n$


```
Analysis: hash-lookup(s)
  - Case 1: string s is in table: O(L)
  - Case 2: Table [h_1(s)] == null: O(1)
  - Case 3: Table [h_1(s)] != null: O(1 + L/n)
  hash-lookup(s):
     if (Table[h_1(s)] != null) then
            (sig, t) = Table[h_1(s)]
                                           with probability ≤ 1/n
            if (h_2(s) == sig) then
                                                  Cost: O(L).
                   if (s == t) then return true;
```

```
Analysis: hash-lookup(s)
  - Case 1: string s is in table: O(L)
  - Case 2: Table [h_1(s)] == null: O(1)
  - Case 3: Table [h_1(s)]! = null: O(1 + L/n) = O(1)
  hash-lookup(s):
     if (Table[h_1(s)] != null) then
            (sig, t) = Table[h_1(s)]
                                               E[cost] = n/L = O(1)
            if (h_2(s) == sig) then
                   if (s == t) then return true;
```

Analysis:

- Size of signature.
 - $h_2: U \to \{1..n^2\}.$
 - $\log(n^2) = 2\log(n)$

- Assume that we can read/write/compare log(n) bits in time O(1).
 - Why? A machine word is $> \log(n)$.

- Cost of comparing two signatures = O(1).

DNA Analysis

Cost: $O(Ln) = O(n^2)$

Binary Search Algorithm: strings *A* and *B*

```
substring(A, B, L)
for every substring X1 of A of length L:  n substrings
    Add X1 to the symbol table. cost to add: n
for every substring X2 of B of length L:  n substrings
    if X2 is in the symbol table then return true;
return false;
    cost to search: n
```

DNA Analysis

In order to speed up substring:

- 1. Reduce false positives
 - Use second hash function as a signature.
 - Reduce cost of collisions.

- 2. Compute hash faster
 - It is too slow to re-compute the hash function (n − L) times.

Abstract data type:

- insert(s): sets string equal to string s
- delete-first-letter()
- append-letter(c)
- hash(): returns hash of current string

Example:

```
- insert("arith")
           string == "arith"
- \text{ hash()} \rightarrow 17
delete-first-letter()
           string == "rith"
- \text{ hash()} \rightarrow 47
append-letter('m')
           string == "rithm"
- hash() \rightarrow 4
```

Costs:

- insert(s) : O(|S|)
- delete-first-letter() : O(1)
- append-letter(c): O(1)
- hash() : O(1)

Example: arithmetic - insert("arith") : 5 – delete-first-letter(), append-letter(m): O(1) string == "rithm" – delete-first-letter(), append-letter(e): O(1) string == "ithme" – delete-first-letter(), append-letter(t): O(1) string == "thmet" – delete-first-letter(), append-letter(i): O(1) string == "hmeti" – delete-first-letter(), append-letter(c): O(1) string == "metic"

Conclusion: n - L = 6 hashes for cost 10 = O(n).

```
substring(X1, X2, L)
  1. rollhash.insert(X1[0:L-1])
  2. for (i = 0 \text{ to } n - L - 1) do:
          T.hash-insert(rollhash.hash(), i))
  3.
  4.
          rollhash.delete-first-letter()
          rollhash.append-letter(X1[i + L])
  5.
  6. ...
```

```
substring(X1, X2, L)
                                              Loop n - L times.
  1. rollhash.insert(X1[0:L-1])
  2. for (i = 0 \text{ to } n - L - 1) \text{ do: } '
                                                     Insert: O(1)
           T.hash-insert(rollhash.hash(), i))
  4.
           rollhash.delete-first-letter()
           rollhash.append-letter(X1[i + L])
  5.
                                               Update hash: O(1).
```

Total cost:
$$O(n - L + L) = O(n)$$

```
substring(X1, X2, L)
  2. rollhash.insert(X2[0:L])
  3. for (i = 0 \text{ to } n - L - 1) do:
          if (T.hash-lookup(rollhash.hash(), s)) then
  4.
  5.
                 return true.
  6.
          rollhash.delete-first-letter()
          rollhash.append-letter(X1[i + L])
  7.
```

```
substring(X1, X2, L)
  2. rollhash.insert(X2[0 : L])
                                            Loop n - L times.
  3. for (i = 0 \text{ to } n - L - 1) \text{ do:}
                                     Lookup: E[cost] = 1 + L/n
           if (T.hash-lookup(rollhash.hash(), s)) then
  5.
                 return true.
                                            Update hash: O(1).
          rollhash.delete-first-letter()
  6.
           rollhash.append-letter(X1[i + L])
  7.
Total cost: O((n - L)(1 + L/n) + L) = O(n)
```

Abstract data type:

- insert(s): sets string equal to string s
- delete-first-letter()
- append-letter(c)
- hash(): returns hash of current string

Basic idea:

- Initially (on "insert"), calculate hash of string.
- Whenever the string is updated, update the hash.
- When a hash() is requested, output the pre-computed hash.

Step 1: Represent a string as a number

- Assume all letters in a string are 8-bit chars.
- Given a sequence of letters:

$$c_{L-1} c_{L-2} \dots c_1 c_0$$

Define: 8L bit integer

$$s = 00101001, 10110111, \dots 10010000, 10010000$$

$$\mathbf{c}_{L-1} \quad \mathbf{c}_{L-2} \quad \mathbf{c}_{1} \quad \mathbf{c}_{0}$$

Step 1: Represent a string as a number

- Assume all letters in a string are 8-bit chars.
- Given a sequence of letters:

$$c_{L-1} c_{L-2} \dots c_1 c_0$$

Define: 8L bit integer

$$s = \underbrace{00101001}_{\mathbf{c}_{L-1}} \underbrace{10110111}_{\mathbf{c}_{L-2}} \dots \underbrace{10010000}_{\mathbf{c}_{0}} \underbrace{10010000}_{\mathbf{c}_{0}}$$

$$s = \sum_{i=0}^{L-1} c_{i} \cdot 2^{8i}$$

Step 1: Represent a string as a number

- Assume all letters in a string are 8-bit chars.
- Given a sequence of letters:

$$c_{L-1} c_{L-2} \dots c_1 c_0$$

Define: 8L bit integer

$$s = \underbrace{00101001}_{\mathbf{C_{L-1}}} \underbrace{10110111}_{\mathbf{C_{L-2}}} \dots \underbrace{10010000}_{\mathbf{10010000}} \underbrace{10010000}_{\mathbf{C_{0}}}$$

$$s = \underbrace{\sum_{i=0}^{L-1} c_{i} \cdot 2^{8i}}_{i=0} = \underbrace{\sum_{i=0}^{L-1} c_{i}}_{i=0} \ll 8i$$

Step 2: Updating the string

Deleting character c_{L-1} :

```
s = 00101001 10110111 ... 10010000 10010000 -00101001 000000000 ... 00000000 00000000 10110111 ... 10010000 10010000
```

Step 2: Updating the string

Deleting character c_{L-1} :

$$s = 00101001 \ 10110111 \ \dots \ 10010000 \ 10010000$$
 $-00101001 \ 00000000 \ \dots \ 00000000 \ 00000000$
 $10110111 \ \dots \ 10010000 \ 10010000$

Step 2: Updating the string

Appending character c:

```
s = 00000000 \ 10110111 \ \dots \ 10010000 \ 10010000
```

10110111 ... 10010000 10010000 00000000

Step 2: Updating the string

Appending character c:

```
      s = 000000000
      101101111
      ...
      10010000
      10010000

      *
      1 000000000

      +
      10101101

      10110111
      ...
      10010000
      10010000
      10101101
```

Step 2: Updating the string

Appending character c:

$$s = s * 2^8 + c$$

$$= (s \ll 8) + c \iff Shift, addition: O(1)$$

Step 3: The Hash Function

The Division Method

$$h(s) = s \mod p$$

Step 3: The Hash Function

The Division Method

$$h(s) = s \mod p$$

Appending a character:

$$h(s \ll 8 + c)$$

Step 3: The Hash Function

The Division Method

$$h(s) = s \mod p$$

Appending a character: O(1)

$$h(s \ll 8 + c)$$

$$= [(s \ll 8) + c] \mod p$$

$$= [(s \mod p) \ll 8) \mod p + c] \mod p$$

$$= [h(s) \ll 8 + c] \mod p$$

Step 3: The Hash Function

The Division Method

$$h(s) = s \mod p$$

Deleting the first character:

$$h\left(s-\left(c_{L-1}\ll 8(L-1)\right)\right)$$

Step 3: The Hash Function

The Division Method

$$h(s) = s \mod p$$

Deleting the first character: O(1)

$$h\left(s-\left(c_{L-1}\ll 8(L-1)\right)\right)$$

$$= [h(s) - (c_{L-1} \ll 8(L-1) \mod p)] \mod p$$

Costs:

- insert(s) : O(|S|)
- delete-first-letter() : O(1)
- append-letter(c): O(1)
- hash() : O(1)

DNA Analysis

Longest Common Substring

For any length L:

substring(X1, X2, L)

has cost O(n).

Using binary search to find maximum value of L, we find the longest common substring in time:

 $O(n \log n)$

DNA Analysis

Longest Common Substring

For any length L:

substring(X1, X2, L)

has cost O(n).

Using binary search to find maximum value of L, we find the longest common substring in time:

 $O(n \log n)$

The story continues... suffix-trees... O(n)....

DNA Analysis Summary

Using Hash Tables

- To get efficient algorithms, you have to be careful!
- Signatures...
 - Hash functions are useful as a "summary" of a longer / bigger document.
- Rolling hashes...
 - Fast way to calculate hashes in an incremental fashion.

Today: Hash Tables (continued)

- Table (re)sizing
 - Proper hash table size
 - Amortized analysis
- Sets
 - Hash table sets
 - Bloom Filters
- Application: DNA analysis
 - Longest Common Substring
 - Rolling hashes