Protein Covariance:

Predicting Phenotypes Based On Amino Acid Sequences

Lara Gokcelioglu

Institute For Computing In Research Santa Fe

July 30, 2024

Project Overview

Mix of biology and computing
Phenotypes of proteins based on their amino acid
sequences.

6 different models for 3 different phenotypes and 2 representations each.

Dataset

The dataset consists of **227 proteins** and each protein's **amino acid sequence**—which later gets **fixed to 512 positions**.

division	organism_id	ex_max	em_max	pdb_0	seq_length	seq
other sequences	32630	342	382	NaN	30	ELSKETALKKSFKFLVLIILWNNTVDAIHI
hydrozoans	6100	355	424	NaN	239	MVSKGEELFTGVVPILVELDGDVNGHRFSVSGEGEGDATYGKLTLK
sea anemones	475174	375	458	NaN	227	MAGLLKESMRIKMDMEGTVNGHYFKCEGEGDGNPFTGTQSMRIHVT
hydrozoans	6100	379	446	NaN	239	MVSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLK
hydrozoans	6100	380	446	NaN	239	MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLK
bacteria	1299	697	720	NaN	320	MSRDPLPFFPPLYLGGPEITTENCEREPIHIPGSIQPHGALLTADG
a- proteobacteria	1076	700	719	NaN	316	MAEGSVARQPDLLTCDDEPIHIPGAIQPHGLLLALAADMTIVAGSD
bacteria	1299	701	719	3S7Q	335	MASMTGGQQMGRGSMSRDPLPFFPPLYLGGPEITTENCEREPIHIP
a- proteobacteria	1076	701	720	NaN	316	MAEGSVARQPDLLTCDDEPIHIPGAIQPHGLLLALAADMTIVAGSD
a- proteobacteria	1076	702	720	NaN	316	MAEGSVARQPDLLTCDDEPIHIPGAIQPHGLLLALAADMTIVAGSD

Figure: Partial Dataset

Phenotypes

The first phenotype is **em_max**

The second phenotype is **ex_max**

The third and last phenotype is states_0_brightness

Representations

There are two representations of the data:

pc_coords

proteins_projected_pc_coords

Data Manipulation

aminoacids leftjustified segs match aminoacids **Singular Value Decomposition**

Aminoacids

Figure: aminoacids Variable

leftjustified_seqs

```
### generating matrices
                         add termination char left justify split all chars to numpy array
   leftjustified segs = (df.seg.astype(str) + "*").str.ljust(512, " ").apply(list).apply(np.array)
   # vertically concatenate all proteins
   leftiustified segs = np.vstack(leftjustified segs)
   ###left justified segs are fixed to the size of 512 with this function
   leftjustified segs
 ✓ 0.1s
                                                                                                            Python
array([['E', 'L', 'S', ..., ' ', ' ', ' '],
      ['M', 'V', 'S', ..., ' ', ' ', ' '],
      ['M', 'A', 'G', ..., ' ', ' ', ' '],
      ['M', 'A', 'S', ..., ' ', ' ', ' '],
      ['M', 'A', 'E', ..., ' ', ' ', ' '],
      ['M', 'A', 'E', ..., ' ', ' ', ' ']], dtype='<U1')
```

Figure: leftjustified_seqs variable

match_amoinoacids Function

Figure: match_aminoacids function

Singular Value Decomposition

Figure: Application Of SVD

Training The Model

K-Fold Validation

splits k=10

90% train set vs. 10% test set


```
import numpy as np
from sklearn.model selection import KFold
X = pc coords
v = (df["states 0 brightness"])
kf = KFold(n splits=10)
for train index, test index in kf.split(X):
   print("TRAIN:", train index, "TEST:", test index)
   X train, X test = X[train index], X[test index]
   y train, y test = y[train index], y[test index]
```

```
###predicting r2 values

from sklearn import datasets, linear_model
from sklearn.model_selection import cross_val_predict

lasso = linear_model.Lasso()
lasso.fit(X_train,y_train)
y_pred = lasso.predict(X_test)
rsq = r2_score(y_test, y_pred)
print("test set:",rsq)
score = lasso.score(X_train,y_train)
```

print("training sate" sages

K-Fold Cross Validation

Increased accuracy

More data for both sets

Reduces variance

The strength of the relationship between the model and the dependent variable

$$R^2 = \frac{\text{Variance explained by the model}}{\text{Total variance}}$$

Coefficient of determination

Analysis Of Em_Max

Figure: Analysis Of Most Efficient Emission Wavelength

Analysis Of Projected Em_Max

Figure: Analysis Of Most Efficient Emission Wavelength In Projected Representation

Analysis Of Ex_Max

Analysis Of Projected Ex_Max

Figure: Analysis Of Most Efficient Excitation Wavelength In Projected Representation

Analysis Of States_O_Brightness

Figure: Analysis of Brightness

Analysis Of Projected States_O_Brightness

Figure: Analysis of Brightness In Projected Representation

pc_coords **R**² Values

proteins_projected_pc_coords R² Values

Future Path

Considering more folds in analysis

Moving beyond linear models

Including more parameters

Challenges

Choosing the best method to train a model on

Lack of answers

Inaccurate results

References

(N.d.). Statisticsbyjim.com. Retrieved July 28, 2024, from https://statisticsbyjim.com/regression/