計量経済 II: 宿題 10

村澤 康友

提出期限: 2022年12月13日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl で AR(1) 過程を生成する手順は以下の通り.
 - (a) y, w を正規乱数として作成.
 - (b) 例えば $\phi := 0.5$ なら y = 0.5 * y(-1) + w として y を作り直す.

観測数 1000 の時系列データセットを作成し, $\phi:=0.99$ と $\phi:=1$ の AR(1) 過程を同じ乱数から生成して,両者の時系列プロットを重ねて比較しなさい.

- 2. gretl のサンプル・データ nysewk は、ニューヨーク証券取引所の株価指数(NYSE 総合指数)の 1965 \sim 2006 年の週次データである。正規乱数からランダム・ウォークを生成し、「見せかけの回帰」現象を以下の分析で確認しなさい。
 - (a) 株価指数の対数系列とランダム・ウォークの時系列プロットを重ねて比較しなさい. (y 軸が自動で左右に分かれない場合は、右クリック \rightarrow 「編集」で「線」のタブを選び、線ごとに y 軸の左右を設定する.)
 - (b) 株価指数の対数系列とランダム・ウォークの関係を散布図で示しなさい.
 - (c) 株価指数の対数系列をランダム・ウォークに回帰し、回帰係数の OLS 推定値の統計的有意性を確認しなさい.
 - (d) 株価指数の対数階差系列をランダム・ウォークの階差に回帰し、回帰係数の OLS 推定値の統計的 有意性を確認しなさい.
- 3. gretl で ADF 検定を実行する手順は以下の通り.*1
 - (a) メニューから「変数」 \rightarrow 「単位根検定」 \rightarrow 「Augmented Dickey–Fuller 検定」を選択.
 - (b)「ADF 検定のラグ次数」を入力(デフォルト値のままでよい).
 - (c)「判定基準」を選択(デフォルト値のままでよい).
 - (d) 定数項とトレンド項の有無を設定(デフォルト値のままでよい).
 - (e) 階差に変換するかどうかを選択.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g) $\lceil OK \rfloor$ $\rangle \delta D \cup \delta D \cup \delta D$.

前問の株価指数の対数系列と対数階差系列の単位根について, ADF 検定を実行しなさい.

^{*1} 日本語版 gretl がクラッシュする場合は英語版を使用する.言語設定の変更方法は配付資料「gretl 入門」を参照.

- 4. gretlで ADF-GLS 検定を実行する手順は以下の通り.
 - (a) メニューから「変数」→「単位根検定」→「ADF-GLS 検定」を選択.
 - (b)「ADF-GLS 検定のラグ次数」を入力(デフォルト値のままでよい).
 - (c)「判定基準」を選択(デフォルト値のままでよい).
 - (d) トレンド項の有無を設定.
 - (e) 階差に変換するかどうかを選択.
 - (f) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (g) $\lceil OK \rfloor$ をクリック.

前問の株価指数の対数系列と対数階差系列の単位根について、ADF-GLS 検定を実行しなさい(トレンド項の有無は時系列プロットを見て判断する).

- 5. gretl で KPSS 検定を実行する手順は以下の通り.
 - (a) メニューから「変数」→「単位根検定」→「KPSS 検定」を選択.
 - (b)「KPSS 検定のラグ次数」を入力(デフォルト値のままでよい).
 - (c) トレンド項と季節ダミーの有無を設定.
 - (d) 階差に変換するかどうかを選択.
 - (e) その他は必要に応じて設定(基本的にデフォルト値のままでよい).
 - (f)「OK」をクリック.

前問の株価指数の対数系列と対数階差系列の定常性について、KPSS 検定を実行しなさい(トレンド項と季節ダミーの有無は時系列プロットを見て判断する).

解答例

1. 共分散定常過程($\phi := 0.99$)とランダム・ウォーク($\phi := 1$)

2. (a) 株価指数 (対数系列) とランダム・ウォークの時系列プロット

(b) 株価指数(対数系列) とランダム・ウォークの散布図

(c) 株価指数(対数系列)のランダム・ウォークへの回帰(見せかけの回帰) モデル 1: 最小二乗法 (OLS), 観測: 1966-01-05-2006-07-26 (T=2117) 従属変数: l_close

	係数	標準	誤差	$t ext{-ratio}$	p値	直
const	6.39880	0.0166	6387	384.6	0.00	00
У	-0.0390894	0.0005	522650	-74.79	0.00	00
Mean depende	ent var 7.3	28124	S.D. d	ependent	var	0.971784
Sum squared r	resid 548	8.2608	S.E. of	regressio	n	0.509141
R^2	0.7	25633	Adjust	$ ed R^2 $		0.725503
F(1, 2115)	559	93.647	P-valu	e(F)		0.000000
Log-likelihood	-157	73.855	Akaike	criterion		3151.710
Schwarz criter	ion 316	63.025	Hanna	n–Quinn		3155.853
$\hat{ ho}$	0.9	96651	Durbin	n-Watson		0.007151

(d) 株価指数(対数階差系列)のランダム・ウォークの階差への回帰 モデル 2: 最小二乗法 (OLS), 観測: 1966-01-12-2006-07-26 (T=2116) 従属変数: ld_close

Schwarz criterion

 $\hat{\rho}$

	係数	標	準誤差	$t ext{-ratio}$	p値
const	0.001279	10 0.00	00448120	2.854	0.0044
$d_{-\!y}$	-0.000476	591 0.00	00457664	-1.041	0.2978
Mean depend	ent var	0.001291	S.D. dep	endent va	r 0.020607
Sum squared	resid	0.897654	S.E. of r	egression	0.020606
R^2		0.000513	Adjusted	$1 R^2$	0.000040
F(1, 2114)		1.084423	P-value(F)	0.297829
Log-likelihood	l	5213.164	Akaike c	riterion	-10422.33

-10411.01 Hannan-Quinn

0.012231 Durbin–Watson

-10418.19

1.975423

3. 対数系列

Augmented Dickey-Fuller 検定: 1_close

標本のサイズ: 2116 帰無仮説: a = 1

定数項付きの検定

但し、%d 個の (1-L)(null) のラグを含む

モデル: (1-L)y = b0 + (a-1)*y(-1) + e

(a-1) の推定値 (estimated value): 0.000203958

検定統計量: tau_c(1) = 0.442046

漸近的 p 値 0.9847

e **の1次の自己相関係数**: 0.012

定数項及びトレンド項付きの検定

但し、%d 個の (1-L)(null) のラグを含む

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e (a-1) の推定値 (estimated value): -0.00429142

検定統計量: tau_ct(1) = -2.4835

漸近的 p 値 0.3364

e **の1次の自己相関係数**: 0.013

対数階差系列

Augmented Dickey-Fuller 検定: d_l_close

標本のサイズ: 2115 帰無仮説: a = 1

定数項付きの検定

但し、%d 個の (1-L)(null) のラグを含む

モデル: (1-L)y = b0 + (a-1)*y(-1) + e

(a-1) **の推定値** (estimated value): -0.988035

検定統計量: tau_c(1) = -45.4186

漸近的 p 値 7.9e-06

e **の1次の自己相関係数**: -0.000

定数項及びトレンド項付きの検定

但し、%d 個の (1-L)(null) のラグを含む

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e (a-1) の推定値 (estimated value): -0.988642

検定統計量: tau_ct(1) = -45.4359

漸近的 p 値 2.319e-137

e **の1次の自己相関係数**: -0.000

4. 対数系列

```
Augmented Dickey-Fuller (GLS) 検定: 1_close
標本のサイズ: 2116
帰無仮説: a = 1
定数項及びトレンド項付きの検定
但し、%d 個の (1-L)(null) のラグを含む
```

モデル: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e (a-1) の推定値 (estimated value): -0.00133961

検定統計量: tau = -1.14086
approximate p-value 0.771
e の 1 次の自己相関係数: 0.013

対数階差系列

Augmented Dickey-Fuller (GLS) test for d_l_close testing down from 25 lags, criterion modified AIC, Perron-Qu sample size 2093 unit-root null hypothesis: a = 1 test with constant including 22 lags of (1-L)d_l_close model: (1-L)y = b0 + (a-1)*y(-1) + ... + e estimated value of (a - 1): -0.654439 test statistic: tau = -7.43599 approximate p-value 0.000 1st-order autocorrelation coeff. for e: 0.000 lagged differences: F(22, 2070) = 1.777 [0.0144]

5. 対数系列

KPSS 検定 対象:1_close (トレンドを含む)

T = 2117

Lag truncation parameter = 8

検定統計量 = 3.60474

10% 5% 1%

臨界値: 0.119 0.148 0.218

p値 < .01

対数階差系列

KPSS 検定 対象:d_l_close

T = 2116

Lag truncation parameter = 8

検定統計量 = 0.200317

10% 5% 1%

臨界値: 0.348 0.462 0.744

p**値** > .10