Revue de projet n°2

Projet B-Smart

Groupe 4

GOURDET Hadrien

HULOT Alexandra

BIROLINI Nikolai

LEBRETON Maxime

Les Capteurs

TMP36

TMP36

DS1820

DS1820

SHT20

SHT20

Girouette et anémomètre

Girouette et anémomètre

Grove Sound Sensor

Grove Sound Sensor

Fonctionnements

ESSAIMAGE : -500Hz - 600Hz (2j avant le départ)

-Augmentation de la température (36-37 degrés)

-Se passe en Juin-Juillet

MORT DE LA REINE : Inférieur à 200Hz

STRESSE : -Supérieur à 400Hz

Alimentation et capteur de luminosité

Alimentation et capteur de luminosité

Module SigFox

Autonomie du Système

Power Timer Breakout Board

https://euro-makers.com/fr/composants-electroniques/4110-transis tor-irf530-irf530n-mosfet-puissance-n-channel-100v-14a-3701172929 508 html

Source: https://www.amazon.fr/Adafruit-TPL5110-Power-Timer-Breakout/dp/B06XWTHJ5N

Courant utilisé: 35 nA

Consommation

Analyse autonomie

Consommation moyenne de 4,33 mA

Autonomie: 10 jours

Capacité de la batterie 1050 mA.h

Source: https://www.gotronic.fr/art-accu-li-ion-3-7-v-1050-mah-pr47 4446-5811.htm

Alimentation énergétique

Extrait de la dataSheet

Puissance de 2 W

Courant de sortie 360 mA

Voltage 5,5 v

Analyse des conditions de mise en place du panneau photovoltaïque

Durée de la journée au cours de l'année

Source: http://www.solartopo.com/duree-du-jour-durant-annee.htm

1. Durée des journées

2. Panneau photovoltaïque fixe

 Variation de l'angle du soleil par rapport à la terre en fonction de la saison

Analyse temps de recharge

Courant provenant du panneau photovoltaïque 100 mA

Temps de recharge: 10h30

Capacité de la batterie 1050 mA.h

Source: https://www.gotronic.fr/art-accu-li-ion-3-7-v-1050-mah-pr47 4446-5811.htm

Consommation des composants

Image Consommation en active		Consommation en veille	
	50,6 <u>mA(</u> SLEEP) 62,5 <u>mA(</u> RUN)		
	2 mA	900 <u>nA</u>	
0	300 <u>uA</u> – 330 <u>uA</u>	0,15 <u>uA</u>	
	Image	active 50,6 <u>mA(</u> SLEEP) 62,5 <u>mA(</u> RUN) 2 mA	

Consommation des composants

Balance	0	Information théorique manquantes	Information théorique manquantes
Module Sigfox	The second second	55 mA (TX) et 15 mA (RX)	
Capteur sonore Grove		5 mA	

Simulation partielle

Réseau

Problème

- Taille du message limité : 144 messages de 12 octets/jour

Solution

- Organiser la trame

Comment?

- Ne prendre en compte que le nombre de valeurs qui nous intéressent

Résultats

- Nombre de bits utiles
- Offset pour normaliser à partir de 0

Organisation de la trame

Champs	Nombre de bits
Température extérieure	7
Température intérieure	7
Luminosité	4
Masse	9
FFT	3 (1: Stress?, 1: Reine ?, 1: Essaimage?)
Force du vent	3
Batterie	6
Humidité	5
Numéro du cadre avec miel	8
Libre	4

Exemples

<u>Température extérieure</u> : 23.5° (mesurée)

- offset: $+18^{\circ}$
- pas de 0.5 (2 valeurs intermédiaires entre chaque unité)

=> Valeur envoyée : (23.5+18)*2 = 83

<u>Température intérieure</u> : 20.5° (mesurée)

=> Valeur envoyée : (20.5+18)*2 = 77

Data / Decoding	LQI	Callbacks
a736c6d5e72ff0	utl	

temp_ext::uint:7 temp_int:0:uint:7::0

```
Frame {
     taille : 56 / 56
     bitfield : 1010011 00110110 11011111 11110101 11100111 00101111 11110000
}
```


83.00

temp_ext

Last activity:

a few seconds ago

temp_ext::uint:7 temp_int:0:uint:7::0

```
Frame
         taille : 56 / 56
bitfield : 1010011 1 001101 0 11011111 11110101 11100111 00101111 11110000
      4
                                                                20.50
      77.00
                                                                Température intérieure
      temp_int
                                                                Last activity:
      Last activity:
                                                                a minute ago
      a few seconds ago
```


Mise en forme des données & interface utilisateur

Ubidots - Dashboard

Gantt Conclusion

GANTT - Conclusion

Planificateur de projet: B-Smart

	Sélectionnez une période à mettre el	n évidence à droite. U	ne légende décrivant	le graphique suit	t.	Séance à mettre en évidence	: 9 Durée du plan	Début réel % accompli Réel
THEMATIQUE	ACTIVITÉ	DÉBUT DU PLAN	DURÉE DU PLAN	DÉBUT RÉEL	DURÉE RÉELLE	POURCENTAGE ACCOMPLI	Séance 1 2 3 4 5 6 7 8	9 10 11 12 13 14 15 16 17 18 19 20 2:
	Analyse et sélection des capteurs	2	2	2	2	100%		
	Recherche et sélection du MCU	3	2	3	2	100%		
	Implémentation des capteurs auprès du MCU sur platine Labdec	6	3	6	4	50%		
	Interfaçage entre les capteurs et le PCB	12	4	0	0	0%		35

Énergie

							1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16
	Choix des dispositifs d'alimentation et autonomie	4	2	4	2	100%		
	Étude théorique de la consommation	5	1	5	1	100%		
s	Simulations de consommation	10	1	0	0	0%		
1	Mesures de consommation	11	1	0	0	0%		
c	nterprétation des mesures de consommation du prototype Labdec	11	1	0	0	0%		
	Corrections du prototype	12	0	0	0	0%		
c	nterfaçage des dispositif d'alimentation et de stockage avec prototype PCB	13	3	0	0	0%		

Tests

							sealite	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2
Mesures de conso	mmation	11	1	0	0	0%	1 2 3 4 3 6 7 8	10 11 12 15 14 15 16 17 18 19 20 21 22 25 24 25 7
Interprétation des de consommation prototype Labdec	du	11	1	0	0	0%		
Corrections du pro		12	0	0	0	0%		
Interfaçage des dis d'alimentation et d avec prototype PC	de stockage	13	3	0	0	0%		
Mesures en fonctions sur une longue du		13	2	0	0	0%		
Interprétation des	mesures	14	2	0	0	0%		
Préparation des es terrain	ssais sur le	15	2	0	0	0%		
Essais sur le terrain	n	17	1	0	0	0%		
Exploitation des m	nesures	18	3	0	0	0%		
Ammélioration du	prototype	19	7	0	0	0%	37	

Bibliographie

- Professeur Thomas Dyer Seeley de l'université de Cornell, 2001
- https://link.springer.com/article/10.1007/s00265-002-0567-y
- Projet Swarmonitor, Noa SIMON et Janine KIEVITS, 2014
- http://www.cari.be/medias/abcie_articles/163recherche.pdf
- http://worldbeeproject.org/

Questions?

