CSCE 478/878 Recitation 8 Handout Linear Regression: Ordinary Least Squares (OLS) Method and The Singularity Problem

March 5, 2019

- This is a **graded recitation**. Submit your work for grading.
- Your Jupyter notebook should be submitted via webhandin by 4:45PM, March 5.
- Use the following naming convention: `<astname> <firstname> 8.ipynb`

Part 1: OLS Linear Regression Using Python (90 pts)

- 1. Read the "Linear Regression-1-OLS" jupyter notebook (posted on github) carefully to understand how to use the ordinary least squares (OLS) method for solving a Linear Regression problem. In particular observe how to fix the singularity issue.
- 2. Then, implement the marked sections in the "Recitation-Linear Regression-OLS-Singularity Problem" jupyter notebook. You will need to download the file "OLS_Data.csv" to create your dataset for this recitation.

Note: "train test split" Function:

You should set the "random_state" attribute in the "train_test_split" function as shown below. If you don't specify it, then every time you run your code a new random value is generated and the train and test datasets would have different values each time.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Score Distribution:

- Manually Coded OLS Solution (pts 35)

Expected Output:

```
Determinant of (X_bias^T.X_bias): 0.0
LinAlgError: Singular matrix
```

- Applying OLS Method on Data Matrix With Colinearity in Columns (pts 50)

Expected Output:

Mean squared error: 21.64

Coefficient of determination r^2 variance score [1 is perfect predic tion1: 0.75

Note: your output might vary slightly because of the randomness of the train-test slip.

- Evaluate the Model Using Test Data - OLS Linear Regression (pts 5)

Expected output:

Mean squared error: 24.29

Coefficient of determination r^2 variance score [1 is perfect predic

tion]: 0.67

Note: your output might vary slightly because of the randomness of the train-test slip.

Part 2: Understanding the Singularity Issue and its Solution (10 pts)

Answer these questions in the marked sections of the "Recitation-Linear Regression-OLS- Singularity Problem" jupyter notebook.

- 1. Why do you think the singularity matrix error occur while using OLS method on the "OLS Data.csv" dataset?
- 2. To fix the singularity problem of the $X_{bias}^T X_{bias}$ matrix what non-zero positive number did vou add on its diagonal?
- 3. Add 100000 on the diagonal of the $X_{bias}^T X_{bias}$ matrix and report the MSE and the R² values for the training data set. Explain these results.
- 4. After adding 100000 on the diagonal of the X_{bias}^TX_{bias} matrix what change did you notice in the weights of the model?