Understanding and Implementing Regression Models

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Regression as a form of supervised machine learning

Ordinary Least Squares (OLS) regression

Evaluating regression models using R²

Choosing the right regression algorithm based on features and data

Lasso and Ridge regression

Gradient Descent in regression

Building Regression Models

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause Explanatory variable

EffectDependent variable

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

Minimising Least Square Error (x_i, y_i) (x_i, y_i) Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

The regression line is that line which minimizes the variance of the residuals (MSE)

Simple and Multiple Regression

Simple Regression

One independent variable

$$y = A + Bx$$

Multiple Regression

Multiple independent variables

$$y = A + B_1x_1 + B_2x_2 + B_3x_3$$

MSE Minimization Extends To Multiple Regression

Simple Regression

One independent variable

Multiple independent variables

$$R^2 = ESS / TSS$$

 \mathbb{R}^2

R² = Explained Sum of Squares / Total Sum of Squares

 \mathbb{R}^2

ESS - Variance of fitted values

TSS - Variance of actual values

R² = Explained Sum of Squares / Total Sum of Squares

 \mathbb{R}^2

The percentage of total variance explained by the regression. Usually, the higher the R², the better the quality of the regression (upper bound is 100%)

The original data points have some variance (TSS)

The fitted data points have their own variance (ESS)

 $R^2 = ESS / TSS$

 \mathbb{R}^2

How much of the original variance is captured in the fitted values? Generally, higher this number the better the regression Adjusted- $R^2 = R^2 \times (Penalty for adding irrelevant variables)$

Adjusted-R²

Increases if irrelevant* variables are deleted

(*irrelevant variables = any group whose F-ratio < 1)

The regression line found by minimizing variance of residuals (MSE) is the line with the **best R**²

Demo

Performing linear regression with numeric features

Demo

Preprocessing numeric and categorical data and fitting a regression model

100K+ Data Points: Use SGD

More Features Than Samples: Use LARS

Many Features, Few Useful: Lasso, ElasticNet

Many Features, Most Useful: Ridge

Size of Dataset

Number of Features

Medium-sized Data with Non-linearity: SVR

Small Data with Non-linearity: SVR with RBF

Many Features, Few Useful: Decision Trees

Many Samples, Few Features: OLS

Choosing Regression Algorithms

Size of Dataset

M	a	n	V
			_

Moderate

Few

Least Angle Regression (LARS)	Ridge	Stochastic Gradient Descent (SGD)
Support Vector Regression (Linear Kernel)	Lasso, Elastic Net	Support Vector Regression (Linear Kernel)
Support Vector Regression (RBF Kernel)	Decision Trees and Ensemble Methods	Ordinary Least Squares (OLS)

Number of Features

Small

Medium

Large

Lasso, Ridge, and Elastic Net

Regularized Regression Models

Lasso Regression

Penalizes large regression coefficients

Ridge Regression

Also penalizes large regression coefficients

Elastic Net Regression

Simply combines lasso and ridge

Ordinary MSE Regression

Minimize

To find

A, B

$$y = A + Bx$$

Minimize

To find

A, B

x is a hyperparameter

$$y = A + Bx$$

Minimize

 $+ \alpha (|A| + |B|)$

To find

A, B

L-1 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

Minimize $(yactual - ypredicted)^2 + \alpha (|A| + |B|)$ To find A, BL-2 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

 $\alpha = 0$ ~ Regular (MSE regression)

 $\alpha \rightarrow \infty$ ~ Force small coefficients to zero

Model selection by tuning α

Eliminates unimportant features

"Lasso" ~ <u>Least Absolute Shrinkage and</u> <u>Selection Operator</u>

Math is complex

No closed form, needs numeric solution

Minimize $(yactual - ypredicted)^2 + \alpha (|A| + |B|)$ To find A, BL-2 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

Add penalty for large coefficients

Penalty term is L-2 norm of coefficients

Penalty weighted by hyperparameter α

Unlike lasso, ridge regression has closedform solution

Unlike lasso, ridge regression will not force coefficients to 0

- Does not perform model selection

Regularized Regression Models

Lasso Regression

Penalizes large regression coefficients Ridge Regression

Also penalizes large regression coefficients

Elastic Net Regression

Simply combines lasso and ridge

SGD Regression

The "best fit" line is called the regression line

"Gradient Descent"

"Training" the Algorithm

Start Somewhere

"Gradient Descent"

Stochastic Gradient Descent iteratively converges to the best model

Works very well for training on large datasets

Demo

Performing regression using multiple techniques such as Lasso, Ridge, and Stochastic Gradient Descent

Summary

Regression as a form of supervised machine learning

Ordinary Least Squares (OLS) regression

Evaluating regression models using R²

Choosing the right regression algorithm based on features and data

Lasso and Ridge regression

Gradient Descent in regression