Problem Set 2

D. Zack Garza

January 21, 2020

Contents

5	Problem 30	3
4	Problem 27 4.1 a .	2 3
3	Problem 23	2
2	Problem 22	1
1	Problem 19	1

Next time: 19,22,23,27,30

Definition: A space X is connected iff it can not be written as $X = U \coprod V$ with U, V nonempty, disjoint, and open.

1 Problem 19

Prove that the product of two connected spaces is connected.

Solution:

Use the fact that a union of spaces containing a common point is still connected. Fix a point $(a,b) \in X \times Y$. Since the horizontal slice $X_b := X \times \{b\}$ is homeomorphic to X which is connected, as are all of the vertical slices $Y_x := \{x\} \times Y \cong Y$ (for any x), the "T-shaped" space $T_x := X_b \bigcup Y_x$ is connected for each x.

Note that $(a,b) \in T_x$ for every x, so $\bigcup_{x \in X} T_x = X \times Y$ is connected.

2 Problem 22

?

Figure 1: Image

3 Problem 23

Note: this is precisely the cofinite topology.

- 1. $\mathbb{R} \in \tau$ since $\mathbb{R} \setminus \mathbb{R} = \emptyset$ is trivially a finite set, and $\emptyset \in \tau$ by definition.
- 2. If $U_i \in \tau$ then $(\bigcup_i U_i)^c = \bigcap_i U_i^c$ is an intersection of finite sets and thus finite, so $\bigcup_i U_i \in \tau$.
- 3. If $U_i \in \tau$, then $(\bigcap_{i=1}^n U_i)^c = \bigcup_{i=1}^n U_i^c$ is a finite union of finite sets and thus finite, so $\bigcap U_i \in \tau$.

So τ forms a topology.

To see that (\mathbb{R}, τ) is compact, let $\{U_i\} \rightrightarrows \mathbb{R}$ be an open cover by elements in τ .

Fix any U_{α} , then $U_{\alpha}^{c} = \{p_{1}, \dots, p_{n}\}$ is finite, say of size n. So pick $U_{1} \ni p_{1}, \dots, U_{n} \ni p_{n}$; then $\mathbb{R} \subset U_{\alpha} \bigcup_{i=1}^{n} U_{i}$ is a finite cover.

4 Problem 27

4.1 a

 \Longrightarrow :

If X is totally bounded, let $\varepsilon = \frac{1}{n}$ for each n, and let $\{x_i\}$ be an arbitrary sequence. For n = 1, pick a finite open cover $\{U_i\}_n$ such that $\operatorname{diam} U_i < \frac{1}{n}$ for every i.

Choose V_1 such that there are infinitely many $x_i \in V_1$. (Why?) Note that diam $V_i < 1$. Now choose $x_i \in V_1$ arbitrarily and define it to be y_1 .

Then since V_1 is totally bounded, repeat this process to obtain $V_2 \subseteq V_1$ with diam $(V_2) < \frac{1}{2}$, and choose $x_i \in V_2$ arbitrarily and define it to be y_2 .

This yields a nested family of sets $V_1 \supseteq V_2 \supseteq \cdots$ and a sequence $\{y_i\}$ such that $d(y_i, y_j) < \max(\frac{1}{i}, \frac{1}{j}) \to 0$, so $\{y_i\}$ is a Cauchy subsequence.

⇐=:

Then fix $\varepsilon > 0$ and pick x_1 arbitrarily and define $S_1 = B(\varepsilon, x_1)$. Then pick $x_2 \in S_1^c$ and define $S_2 = S_1 \bigcup B(\varepsilon, x_2)$, and so on. Continue by picking $x_{n+1} \in S_n^c$ (Since X is not totally bounded, this can always be done) and defining $S_{n+1} = S_n \bigcup B(\varepsilon, x_{n+1})$.

Then $\{x_n\}$ is not Cauchy, because $d(x_i, x_j) > \varepsilon$ for every $i \neq j$.

4.2 b

Take $X = C^0([0,1])$ with the sup-norm, then $f_n(x) = x^n$ are all bounded by 1, but $||f_i - f_j|| = 1$ for every i, j, so no subsequence can be Cauchy, so X can not be totally bounded.

Moreover, $\{f_n\}$ is closed. (Why?)

5 Problem 30

Let $A \subset X$ be compact, and pick a fixed $x \in X \setminus A$. Since X is Hausdorff, for arbitrary $a \in A$, there exists opens $U_a \ni a$ and $U_{x,a} \ni x$ such that $V_a \cap U_{x,a} = \emptyset$. Then $\{U_a \mid a \in A\} \rightrightarrows A$, so by compactness there is a finite subcover $\{U_{a_i}\} \rightrightarrows A$.

Now take $U = \bigcup_i U_{a_i}$ and $V_x = \bigcap_i V_{a_i,x}$, so $U \cap V = \emptyset$. Note that both U and V_x are open.

But then defining $V := \bigcup_{x \in X \setminus A} V_x$, we have $X \setminus A \subset V$ and $V \cap A = \emptyset$, so $V = X \setminus A$, which is open and thus A is closed.