

5 WHAT IS CLAIMED IS:

1. A method for alleviating pain in a patient suffering from chronic pain comprising administering to said patient an analgesic effective amount of a compound of the formula:

10

15

wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl heterocyclic, lower cycloalkyl, lower, cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron

5 withdrawing group or electron donating group wherein the electron donating group or electron withdrawing group is acyclic; and wherein heterocyclic in R₂ and R₃ is furyl, thienyl, pyrazolyl, pyrrolyl, imidazolyl, indolyl, thiazolyl, oxazolyl, isothiazolyl, isoxazolyl,
10 piperidyl, pyrrolinyl, piperazinyl, quinolyl, triazolyl, tetrazolyl, isoquinolyl, benzofuryl, benzothienyl, morpholinyl, benzoxazolyl, tetrahydrofuryl, pyranyl, indazolyl, purinyl, indolinyl, pyrazolindinyl, imidazolinyl, imidazolindinyl, pyrrolidinyl, furazanyl,
15 N-methylindolyl, methylfuryl, pyridazinyl, pyrimidinyl, pyrazinyl, epoxy, aziridino, oxetanyl or azetidinyl;

Z is O, S, S(O)_a, NR₆', or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, 20 heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, OPR₄R₅, PR₄OR₅, SNR₄R₇, NR₄SR₇, SPR₄R₅, PR₄SR₇, NR₄PR₅R₆ or
25 PR₄NR₅R₇,

NR₄C-R₅, SCR₅, NR₄C-OR₅, SC-OR₅;

30 R₆' is hydrogen, lower alkyl, lower alkenyl, or lower alkynyl and R₄ may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

35 R₄, R₅ and R₆ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower

5 alkynyl, wherein R₄, R₅ and R₆ may be unsubstituted or
· substituted with an electron withdrawing group or an
electro-donating group; and

R, is COOR₈, COR₈, hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R, may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

a is 1-3.

2. The method according to Claim 1 wherein one of R_2 and R_3 is hydrogen.

20 3. The method according to Claim 1 wherein n
is 1.

4. The method according to Claim 1 wherein one of R_2 and R_3 is hydrogen and n is 1.

25 5. The method according to Claim 1 wherein R
is aryl lower alkyl and R₁ is lower alkyl.

6. The method according to Claim 1
wherein

R₂ and R₃ are independently hydrogen, lower alkyl, heterocyclic, heterocyclic loweralkyl, or ZY;

Z is O, NR₄, or PR₄;

Y is hydrogen or lower alkyl; or

ZY is NR₅R₆R₇, NR₅OR₆, ONR₅R₇, NR₅C-R₆ or NR₅C-OR₆.

7. The method according to Claim 6 wherein

5 R₂ is hydrogen and R₃ is hydrogen, lower alkyl,
heterocyclic, heterocyclic loweralkyl or ZY;

Z is O, NR₄, or PR₄;

Y is hydrogen, lower alkyl; or

ZY is NR₅NR₆R₇, NR₅OR₆, ONR₅R₇, NR₅C-R₆ or NR₅C-OR₆.

15 8. The method according to Claim 6 wherein

8. The method according to Claim 6 wherein

R_2 is hydrogen and R_3 is lower alkyl, which may be unsubstituted or substituted with an electron

20 donating or electron withdrawing group, NR_4OR_5 , or ONR_4R_7 .

9. The method according to Claim 8 wherein R₃ is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR₄OR₆ or ONR₄R₇, wherein R₄, R₅ and R₇ are independently hydrogen or lower alkyl, R is aryl loweralkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R₁ is lower alkyl.

10. The method according to Claim 9 wherein aryl is phenyl.

30 11. The method according to claim 6 wherein
one of R_2 and R_3 is heterocyclic.

12. The method according to Claim 11 wherein heterocyclic is heteroaromatic.

35 13. The method according to Claim 11 wherein
R₃ is furyl, pyridyl, thienyl or thiazolyl.

14. The method according to Claim 9 wherein aryl is phenyl and is unsubstituted or substituted with halo.

5 15. The method according to Claim 1 wherein
the compound is

(R)-N-Benzyl-2-acetamide-3-methoxy-
propionamide;

10 O-methyl-N-acetyl-D-serine-m-
fluorobenzylamide;

O-methyl-N-acetyl-D-serine-p-
fluorobenzylamide;

N-acetyl-D-phenylglycinebenzylamide;

15 D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide
acetic acid benzylamide;

D-1,2-(O-methylhydroxylamino)-2-acetamido
acetic acid benzylamide.

16. The method according to Claim 1 wherein
the pain is neuropathic pain.

20 17. The method according to Claim 6 wherein
the pain is neuropathic pain.

18. The method according to Claim 1 wherein
the pain is nociceptive pain.

25 19. The method according to Claim 6 wherein
the pain is nociceptive pain.

20. A method for the prophylaxis or treatment
of migraine headaches in a subject, comprising
administering to said patient a headache relieving
effective amount of a compound of the formula:

30

10 wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

15 R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

20 R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower alkyl heterocyclic lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron 25 donating group;

Z is O, S, S(O)_a, NR₄, or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or

5 substituted with an electron donating group or an electron withdrawing group, or
ZY taken together is $\text{NR}_4\text{NR}_5\text{R}_7$, NR_4OR_5 , ONR_4R_7 ,
 OPR_4R_5 , PR_4OR_5 , SNR_4R_7 , NR_4SR_7 , SPR_4R_5 or PR_4SR_7 , $\text{NR}_4\text{PR}_5\text{R}_6$ or
 $\text{PR}_4\text{NR}_5\text{R}_7$,

10

15 R_4 , R_5 and R_6 are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R_4 , R_5 and R_6 may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

20 R_7 is COOR_8 or COR_8 , hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R_7 may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

25 R_8 is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4;

a is 1-3;

30 wherein

heterocyclic contains from 3 up to 18 ring atoms and up to a total of 17 ring carbon atoms containing 1 to 4 hetero ring atoms selected from the group consisting of nitrogen, oxygen and sulfur.

35 21. The method according to Claim 20 wherein one of R_2 and R_3 is hydrogen.

5

22. The method according to Claim 20 wherein
n is 1.

23. The method according to Claim 20 wherein
one of R₂ and R₃ is hydrogen and n is 1.

10 24. The method according to Claim 20 wherein
R is aryl lower alkyl and R₁ is lower alkyl.

25. The method according to Claim 20 wherein
R₂ and R₃ are independently hydrogen, lower alkyl, aryl,
aryllower alkyl, heterocyclic, heterocyclic loweralkyl
or ZY;

15 Z is O, NR₄ or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl
loweralkyl, heterocyclic or heterocyclic lower alkyl; or

20 ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇,

NR₄C-R₅, or NR₄C-OR₅; and

$$\begin{array}{c} \parallel \\ \text{O} \end{array} \qquad \qquad \qquad \begin{array}{c} \parallel \\ \text{O} \end{array}$$

25

R₄, R₅ and R₇ are independently hydrogen, lower
alkyl, aryl or aryl lower alkyl.

26. The method according to Claim 25 wherein
R₂ is hydrogen and R₃ is lower alkyl, aryl, aryllower
30 alkyl, heterocyclic or heterocyclic lower alkyl, or ZY;

Z is O, NR₄ or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl
loweralkyl, heterocyclic or heterocyclic lower alkyl; or

35 ZY taken together is NR₄R₅R₇, NR₄OR₅, ONR₄R₇,

NR₄C-R₅, or NR₄C-OR₅; and

$$\begin{array}{c} \parallel \\ \text{O} \end{array} \qquad \qquad \qquad \begin{array}{c} \parallel \\ \text{O} \end{array}$$

R_4 , R_5 and R_7 are independently hydrogen, lower alkyl, aryl or aryl lower alkyl.

27. The method according to Claim 26 wherein
10 R_2 is hydrogen and R_3 is lower alkyl, which may be unsubstituted or substituted with an electron donating or electron withdrawing group, NR_5OR_6 , or ONR_5R_7 .

28. The method according to Claim 26 wherein
15 R_3 is lower alkyl which is unsubstituted or substituted with hydroxy or loweralkoxy, NR_4OR_5 or ONR_4R_7 , wherein R_4 , R_5 and R_7 are independently hydrogen or lower alkyl, R is aryl loweralkyl, which aryl group may be unsubstituted or substituted with an electron withdrawing group and R_1 is lower alkyl.

20 29. The method according to Claim 26 wherein R_3 is heterocyclic.

30. The method according to Claim 29 wherein heterocyclic is heteroaromatic.

31. The method according to Claim 30 wherein
25 R_3 is furyl, pyridyl, thienyl or thiazolyl.

32. The method according to Claim 28 wherein aryl is phenyl.

33. The method according to Claim 28 wherein
30 aryl is phenyl and is unsubstituted or substituted with halo.

34. The method according to Claim 20 wherein the compound is

(R)-N-Benzyl-2-acetamide-3-methoxy-
propionamide;

5 O-methyl-N-acetyl-D-serine-m-
fluorobenzylamide;

10 O-methyl-N-acetyl-D-serine-p-
fluorobenzylamide;

15 N-acetyl-D-phenylglycinebenzylamide;
D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide
acetic acid benzylamide; or

20 D-1,2-(O-methylhydroxylamino)-2-acetamido
acetic acid benzylamide.

15 35. A method of treating a patient suffering
from bipolar disease comprising administering thereto a
therapeutically effective amount of a compound for
treating bipolar disease, said compound having the
formula:

wherein

25 R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R_1 is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each

5 unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S(O)_a, NR₄, or PR₄;

15 Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

20 ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, OPR₄R₅, PR₄OR₅, SNR₄R₇, NR₄SR₇, SPR₄R₅ or PR₄SR₇, NR₄PR₅R₆ or PR₄NR₅R₇,

25 NR₄C-R₅, SCR₅, NR₄C-OR₅, SC-OR₅;

$$\begin{array}{cccc} \parallel & \parallel & \parallel & \parallel \\ \text{O} & \text{O} & \text{O} & \text{O} \end{array}$$

R₄, R₅ and R₆ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R₄, R₅ and R₆ may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

30 R₇ is COOR₈, COR₈, hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl wherein R₈ may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

5 R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

10 a is 1-3.

36. The method according to Claim 35 wherein one of R₂ and R₃ is hydrogen.

37. The method according to Claim 35 wherein n is 1.

15 38. The method according to Claim 35 wherein one of R₂ and R₃ is hydrogen and n is 1.

39. The method according to Claim 35 wherein R is aryl lower alkyl and R₁ is lower alkyl.

20 40. The method according to Claim 35 wherein R₂ and R₃ are independently lower alkyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, or ZY;

Z is O, NR₄ or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, heterocyclic or heterocyclic lower alkyl; or

25 ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, NR₄C-R₅, or NR₄C-OR₅; and

30 R₄, R₅ and R₇ are independently hydrogen, lower alkyl, aryl or aryl lower alkyl.

41. The method according to Claim 40 wherein R₂ is hydrogen and R₃ is lower alkyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl or ZY;

35 Z is O, NR₄ or PR₄;

5 Y is hydrogen, lower alkyl, aryl, aryl
loweralkyl, heterocyclic or heterocyclic lower alkyl; or
ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇,
NR₄C-R₅, or NR₄C-OR₅; and

R₄, R₅ and R₇ are independently hydrogen, lower
alkyl, aryl or aryl lower alkyl.

15 42. The method according to Claim 41 wherein
R₂ is hydrogen and R₃ is lower alkyl, which may
be unsubstituted or substituted with an electron
donating or electron withdrawing group, NR₄OR₅, or ONR₄R₇.

20 43. The method according to Claim 41 wherein
R₃ is lower alkyl which is unsubstituted or substituted
with hydroxy or loweralkoxy, NR₄OR₅ or ONR₄R₇, wherein R₄,
R₅ and R₇ are independently hydrogen or lower alkyl, R is
aryl loweralkyl, which aryl group may be unsubstituted
or substituted with an electron withdrawing group and R₁
is lower alkyl.

25 44. The method according to Claim 41 wherein
R₃ is heterocyclic.

45. The method according to Claim 44 wherein
heterocyclic is heteroaromatic.

30 46. The method according to Claim 45 wherein
R₃ is furyl, pyridyl, thieryl or thiazolyl.

47. The method according to Claim 43 wherein
aryl is phenyl.

35 48. The method according to Claim 43 wherein
aryl is phenyl and is unsubstituted or substituted with
halo.

49. The method according to Claim 35 wherein
the compound is (R)-N-Benzyl-2-acetamide-3-methoxy-
10 propionamide;

O-methyl-N-acetyl-D-serine-m-
fluorobenzylamide;

O-methyl-N-acetyl-D-serine-p-
fluorobenzylamide;

15 N-acetyl-D-phenylglycinebenzylamide;

D-1,2-(N, O-dimethylhydroxylamino)-2-acetamide
acetic acid benzylamide;

D-1,2-(O-methylhydroxylamino)-2-acetamido
acetic acid benzylamide.

20 50. A method for treating a disorder in a
mammal resulting from abnormal activity at the glycine_b
site of the NMDA receptor in neurons of said mammal
comprising administering to said mammal a
therapeutically effective amount of a compound to
25 interact with the glycine_b site of the NMDA receptor,
said compound having the formula:

5 wherein

R is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, aryl lower alkyl, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, and R is unsubstituted or is substituted with at least one electron withdrawing group or electron donating group;

R₁ is hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, heterocyclic lower alkyl, heterocyclic, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, each unsubstituted or substituted with an electron donating group or an electron withdrawing group; and

R₂ and R₃ are independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl lower alkyl, aryl, halo, heterocyclic, heterocyclic lower alkyl, lower alkyl heterocyclic, lower cycloalkyl, lower cycloalkyl lower alkyl, or Z-Y wherein R₂ and R₃ may be unsubstituted or substituted with at least one electron withdrawing group or electron donating group;

Z is O, S, S(O)_a, NR₄, or PR₄;

Y is hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, lower alkynyl, heterocyclic, heterocyclic lower alkyl, and Y may be unsubstituted or substituted with an electron donating group or an electron withdrawing group, or

ZY taken together is NR₄NR₅R₇, NR₄OR₅, ONR₄R₇, OPR₄R₅, PR₄OR₅, SNR₄R₇, NR₄SR₇, SPR₄R₅ or PR₄SR₇, NR₄PR₅R₆ or PR₄NR₅R₇,

5

R₄, R₅ and R₆ are independently hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl, or lower alkynyl, wherein R₄, R₅ and R₆ may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

R₇ is COOR₈ or COR₈, hydrogen, lower alkyl, aryl, aryl lower alkyl, lower alkenyl or lower alkynyl, which R₇ may be unsubstituted or substituted with an electron withdrawing group or electron donating group;

R₈ is hydrogen or lower alkyl, or aryl lower alkyl, and the aryl or alkyl group may be unsubstituted or substituted with an electron withdrawing group or an electron donating group; and

n is 1-4; and

a is 1-3.

51. The method according to Claim 1 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, carboxyamido, trifluoromethyl, lower alkoxy carbonyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, mercapto, loweralkylthio, and lower alkylthio.

52. The method according to Claim 20 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, loweralkoxy carbonyl, lower alkenyl, lower alkynyl, formyl, aryl, arylloweralkanoyl,

5 carboxyamido, hydroxy, loweralkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, aryl, aryl lower alkanoyl, trifluoromethyl, aryloxy, lower alkylthio, mercapto, and lower alkylidithio.

10 53. The method according to Claim 35 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, loweralkoxy carbonyl, lower alkenyl, lower alkynyl, formyl, aryl, arylloweralkanoyl, carboxyamido, hydroxy, loweralkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, aryl, aryl lower alkanoyl, trifluoromethyl, aryloxy, lower alkylthio, mercapto, and lower alkylidithio.

15 54. The method according to Claim 50 wherein the electron withdrawing group and electron donating group are selected from the group consisting of halo, nitro, carboxy, lower alkenyl, lower alkynyl, formyl, carboxyamido, trifluoromethyl, lower alkoxy carbonyl, hydroxy, lower alkoxy, lower alkyl, amino, lower alkylamino, diloweralkylamino, mercapto, loweralkylthio, and lower alkylidithio.

20 55. The method according to Claim 1 wherein the carbon atom which is substituted by R₂ and R₃, is in the D configuration.

25 56. The method according to Claim 20 wherein the carbon atom which is substituted by R₂ and R₃, is in the D configuration.

30 57. The method according to Claim 35 wherein the carbon atom which is substituted by R₂ and R₃, is in the D configuration.

5

58. The method of Claim 1 wherein the compound is of the formula:

10

wherein

15 Ar is aryl which is unsubstituted or substituted with an electron donating or electron withdrawing group, and

Q is loweralkoxy.

59. The method according to Claim 56 wherein Ar is unsubstituted aryl or aryl substituted with halo.

20 60. The method according to Claim 56 wherein Q is methoxy.

61. The method according to Claim 56 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.

25 62. The method according to Claim 56 wherein the carbon atom which is bonded to CH₂Q is in the D configuration.

63. The method according to Claim 20 wherein Ar is unsubstituted aryl or aryl substituted with halo
30 wherein the compound has the formula:

35

5

and Q is lower alkoxy.

64. The method according to Claim 63 wherein Q is methoxy.

10 65. The method according to Claim 63 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.

66. The method according to Claim 63 wherein the carbon atom which is bonded to CH₂Q is in the D configuration.

15 67. The method according to Claim 63 wherein the carbon atom which is bonded to CH₂Q is in the D configuration.

68. The method of Claim 35 wherein the compound is of the formula:

20

25

wherein

30 Ar is aryl which is unsubstituted or substituted with an electron donating or electron withdrawing group, and

Q is loweralkoxy.

69. The method according to Claim 68 wherein Ar is unsubstituted aryl or aryl substituted with halo.

5

70. The method according to Claim 68 wherein Q is methoxy.

71. The method according to Claim 68 wherein Q is methoxy and Ar is unsubstituted aryl or aryl substituted with halo.

10

72. The method according to Claim 68 wherein the carbon atom which is bonded to CH_2Q is in the D configuration.