Specyfikacja implementacyjna – Gra w życie

Krzysztof Dąbrowski i Jakub Bogusz

12 maja 2019

Spis treści

1	Opis klas			
	1.1	Packag	ge "Controllers"	
		1.1.1	CellularAutomatonController	
		1.1.2	GameOfLifeController	
	1.2	Packag	ge "Models"	
		1.2.1	Cellular Automaton	
		1.2.2	GameOfLife	
		1.2.3	WireWorld	

Rozdział 1

Opis klas

1.1 Package "Controllers"

Package składający się z klas mających na celu połączenie graficznego interfejsu użytkownika z logiką działania automatów komórkowych. Będzie zawierać 3 klasy, jedną ogólna "CellularAutomatonController", łączącą w sobie cechy wspólne obsługi interfejsu obydwu automatów, oraz z dwóch klas dziedziczących z poprzedniej, zawierających elementu różne dla GameOfLife i WireWorld.

1.1.1 Cellular Automaton Controller

Pola

Pola chronione:

- protected Canvas canvas płótno na którym rysowana będzie plansza,
- \bullet protected Slider zoom Slider - suwak reprezentujący przybliżenie planszy ,
- protected Slider speedSlider suwak reprezentujący prędkość wyświetlania kolejnych generacji w trybie automatycznym,
- protected ToggleButton autoRunToggleButton przycisk włączający i wyłączający tryb automatyczny,
- protected Button nextGeneration przycisk służący do stworzenia i wyświetlenia kolejnej generacji,
- protected Button previousGeneration przycisk służący do wyświetlenia poprzedniej generacji,
- protected Spinner<Integer> widthSpinner pole reprezentujące szerokość generowanej planszy,

- protected Spinner<Integer> heightSpinner pole reprezentujące wysokość generowanej planszy,
- protected Button RandomButton przycisk służący do wygenerowania i wyświetlenia losowej planszy początkowej,
- protected Button EmptyButton przycisk służący do wygenerowania i wyświetlenia pustej planszy początkowej,
- protected Button saveButton przycisk służący do zapisania aktualnego stanu planszy,
- protected Button loadButton przycisk służący do wczytania planszy,
- protected MenuButton menuButton przycisk służący do zapisania części planszy lub narysowania i zapisania wzoru,
- protected Label generationLabel napis reprezentujący numer aktualnie wyświetlanej generacji,
- protected CellularAutomatonView cellularAutmatonView-obiekt odpowiedzialny za narysowanie planszy.

Pola prywatne:

- private Boolean running zmienna typu prawda/fałsz, określająca czy tryb automatyczny jest włączony,
- private Thread t wątek w którym generowane i wyświetlane są kolejne pokolenia w trybie automatycznym,
- private long delay odstęp czasowy między wyświetlaniem kolejnych generacji w trybie automatycznym.

Metody

Metody publiczne:

- public Controller(Slider speedSlider, Canvas canvas, Slider zoomSlider, ToggleButton autoRunToggleButton, Button previousGenerationButton, Button nextGenerationButton, Spinner widthSpinner, Spinner heightSpinner, Button randomButton, Button emptyButton, Button saveButton, Button loadButton, Label generationNumberLabel) metoda odpowiedzialna za zainicjowanie wszystkich zmiennych, połączenie elementów graficznym z odpowiednimi metodami,
- public void setCanvas metoda dostępowa pozwalająca ustawić wartość pola canvas funkcjom spoza tego pakietu.

Metody chronione:

- protected void shrinkSlider() metoda odpowiedzialna za dopasowanie maksymalnej wartość suwaka przybliżenia, tak aby wielkość wyświetlanego obrazu mieściła się w maksymalnym rozmiarze płótna,
- protected void enableButtons() metoda odpowiedzialna za aktywowanie przycisków, które przy starcie programu były nieaktywne ze względu na brak funkcjonalności,
- protected generationNumberChanged(ObservableValue<? extends Number> observable, Number oldValue, Number newValue) metoda odpowiedzialna za aktywowanie i dezaktywowanie przycisku previousGeneration, gdy wyświetlenie poprzedniej generacji jest nie możliwe.

Metody prywatne:

- private createThread() metoda odpowiedzialna za stworzenie nowego watku t,
- private zoomSliderChanged(ObservableValue<? extends Number> observable, Number oldValue, Number newValue) - metoda odpowiedzialna za zmianę rozmiaru rysowanych komórek, na podstawie wartości suwaka przybliżenia,
- private speedSliderChanged(ObservableValue<? extends Number> observable, Number oldValue, Number newValue) metoda odpowiedzialna za zmianę prędkości generowania i wyświetlania kolejnych generacji, na podstawie wartości suwaka prędkości,
- private void nextGeneration(Event event) metoda odpowiedzialna za przekazanie informacji do modelu automatu komórkowego, o tym że należy wygenerować następne pokolenie,
- private void previousGeneration(Event event) metoda odpowiedzialna za przekazanie informacji do modelu automatu komórkowego, o tym że należy wygenerować poprzednie pokolenie,
- private play() metoda odpowiedzialna za uruchomienie tryb automatycznego.

1.1.2 GameOfLifeController

1.2 Package "Models"

Package składający się z klas reprezentujących odpowiednie automaty komórkowe, odpowiedzialnych za przechowywanie ich zasad, przeprowadzanie symulacji i generowanie kolejnych pokoleń. Będzie on zawierać 3 klasy, jedną ogólną CellularAutomaton, łączącą w sobie cechy wspólne wszystkich automatów

komórkowych oraz 2 klasy dziedziczące z poprzedniej, opisujące działanie konkretnych automatów (GameOfLife oraz WireWorld).

1.2.1 Cellular Automaton

public abstract class CellularAutomaton<T extends Enum>

Klasa abstrakcyjna reprezentująca dowolny automat komórkowy. Typ T jest typem wyliczeniowym możliwych stanów komórki automatu.

Konstruktory:

• public CellularAutomaton(int width, int height) - Tworzy automat o podanym rozmiarze z komórkami o domyślnym stanie.

Pola chronione:

- protected final int width Liczba kolumn planszy automatu,
- protected final int height Liczba wierszy planszy automatu,
- protected T[] cells Tablica wszystkich komórek automatu,
- protected static Random random Zmienna używana do losowania stanów.

Pola prywatne:

- private List<T[]> history Lista poprzednich stanów automatu. Umożliwia przejście od poprzedniego stanu,
- private IntegerProperty currentGeneration Liczba reprezentująca number aktualnego pokolenia automatu.

Metody publiczne:

- public abstract T[] getPossibleCellValues() Zwraca tablicę możliwych stanów komórki automatu,
- public void setCells(T[] cells) Ustawia wszystkie komórki automatu na nowe wartości,
- public T getCell(int row, int column) Zwraca wartość konkretnej komórki,
- public int getCellCount() Zwraca ilość komórek w automacie,
- public void nextGeneration() Przeprowadza automat do następnego stanu.

- public void previousGeneration() Przeprowadza automat do poprzedniego stanu
- public void clear() Ustawia stan wszystkich komórek na domyślny,
- public abstract void randomize() Ustawia stan wszystkich komórek na losowy.

Metody chronione:

- protected abstract T[] generateNextGeneration() Zwraca stany komórek następnej generacji,
- protected abstract T getDefaultState() Zwraca domyślny stan dla danego automatu.

Metody prywatne:

• private void clearHistory() - Ustawia aktualny stan automatu jako jedyny stan w historii.

1.2.2 GameOfLife

public class GameOfLife extends CellularAutomaton<GameOfLife.CellStates> Klasa jest konkretną implementacja automatu komórkowego Game of Life.

Klasy wewnętrzne:

Typ wyliczeniowy reprezentujący możliwe stany komórki.

```
public enum CellStates {
    DEAD,
    ALIVE;

   public static CellStates randomState() - Zwraca losowy stan komórki.
}
```

Konstruktory:

• public GameOfLife(int width, int height) – Tworzy automat o podanym rozmiarze z komórkami o domyślnym stanie.

Metody prywatne:

- private int[] countAliveNeighbours() Oblicza ilość żywych sąsiadów dla każdej komórki automatu,
- private int countAliveNeighbours(final int cellX, final int cellY) Oblicza ilość żywych sąsiadów dla konkretnej komórki automatu.

Klasa implementuje poniższe metody abstrakcyjne z klasy bazowe:

- CellStates[] getPossibleCellValues(),
- protected CellStates[] generateNextGeneration(),
- public void randomize(),
- protected CellStates getDefaultState().

Szczegółowy opis każdej z metod znajduje się w klasie bazowej CellularAutomaton.

1.2.3 WireWorld

public class WireWorld extends CellularAutomaton

VireWorld.CellStates> Klasa jest konkretną implementacja automatu komórkowego WireWorld.

Klasy wewnetrzne:

Typ wyliczeniowy reprezentujący możliwe stany komórki.

```
public enum CellStates {
    EMPTY,
    HEAD,
    TAIL,
    CONDUCTOR;

public static CellStates randomState() - Zwraca losowy stan komórki.
}
```

Konstruktory:

• public WireWorld(int width, int height) – Tworzy automat o podanym rozmiarze z komórkami o domyślnym stanie.

Metody publiczne:

• public void killElectrons() – Zamienia wszystkie głowy elektronów i ogony elektronów na przewodniki.

Metody prywatne:

- private int countHeads(final int cellX, final int cellY) Oblicza ilość sąsiadów konkretnej komórki będących głową elektronu,
- private int[] countHeads() Dla każdej komórki oblicza ilość sąsiadów będących głową elektronu.

Klasa implementuje poniższe metody abstrakcyjne z klasy bazowe:

- CellStates[] getPossibleCellValues(),
- protected CellStates[] generateNextGeneration(),
- public void randomize(),
- protected CellStates getDefaultState().

Szczegółowy opis każdej z metod znajduje się w klasie bazowej Cellular Automaton.