Математическая постановка задачи

В области $D\subset R^2$ ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = f(x, y), \quad (1)$$

где оператор Лапласа:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

f(x, y) - известна.

Для выделения единственного решения уравнение дополняется граничными условием Дирихле:

$$u(x, y) = 0$$
, $(x, y) \in \gamma$ (2)

Необходимо найти функцию u(x,y), удовлетворяющую уравнению (1) в области D и краевому условию (2) на ее границе.

Вариант 10.

$$f(x, y) = 1$$
 при всех $(x, y) \in D$,

D - область, ограниченная дугой гиперболы и отрезком прямой:

$$\{(x, y) : x^2 - 4y^2 > 1, 1 < x < 3\}$$

Численный метод решения задачи

Метод фиктивных областей

Пусть область $D \subset \Pi = \{(x, y) : A1 < x < B1, A2 < y < B2\}$.

 $\hat{D} = \Pi \backslash \overline{D}$ - фиктивная область, \overline{D} - замыкание D.

Выберем и зафиксируем малое $\epsilon > 0$

В прямоугольнике П рассматривается задача Дирихле:

$$\frac{\partial}{\partial x} \left(k(x, y) \frac{\partial v}{\partial x} \right) - \frac{\partial}{\partial y} \left(k(x, y) \frac{\partial v}{\partial y} \right) = F(x, y), \tag{3}$$

 $v(x,y)=0,\,(x,y)\in\Gamma$, Γ - граница прямоугольника

С кусочно-постоянным коэффициентом:

$$k(x,y) = \begin{cases} 1, (x,y) \in D \\ 1/\epsilon, (x,y) \in \hat{D} \end{cases}$$

И правой частью:

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in \hat{D} \end{cases}$$

Требуется найти непрерывную в Π функцию v(x,y), удовлетворяющую дифференциальному уравнению задачи (3) всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямоугольника, и такую, чтобы вектор потока:

$$W(x,y) = -k(x,y) \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right)$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника Π .

Функция v(x,y) равномерно приближает решение u(x,y) задачи (1),(2) в области D, то есть: $\max_{P \in D} |v(x,y) - u(x,y)| < C\epsilon, \ C > 0.$

Таким образом, искомую функцию u(x,y) можно получить с любой наперед заданной точностью $\epsilon>0$. То есть задача Дирихле в криволинейной области приближенно заменяется задачей Дирихле в прямоугольнике с кусочно-постоянным коэффициентом k(x,y).

Вариант 10.

Был выбран прямоугольник $\Pi = \{1 < x < 3, -1.5 < y < 1.5\}.$

Разностная схема решения задачи

В замыкании прямоугольника $\overline{\Pi}$ определим равномерную прямоугольную сетку

$$\overline{w}_h = \overline{w}_1 \times \overline{w}_2$$
, где

$$\overline{w}_1 = \{x_i = A_1 + ih_1, i = 0,...,M\}, h1 = (B1 - A1)/M$$

 $\overline{w}_2 = \{y_j = A_2 + jh_2, j = 0,...,N\}, h2 = (B2 - A2)/N$

 w_h - множество внутренних узлов сетки \overline{w}_h .

Рассмотрим линейное пространство H функций, заданных на сетке w_h . w_{ij} - значение сеточной функции H в узле сетки $(x_i, y_j) \in w_h$. Определим скалярное произведение и норму в пространстве сеточных функций H:

$$(u, v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}$$

$$||u||_E = \sqrt{(u,u)}$$

Метод конечных разностей заключается в замене дифференциальной задачи математической физики на конечно-разностную операторную задачу вида:

$$Aw = B$$
, где

$$A: H \rightarrow H$$

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1}\left(a_{i+1j}\frac{w_{i+1j}-w_{ij}}{h_1}-a_{ij}\frac{w_{ij}-w_{i-1j}}{h_1}\right)-\frac{1}{h_2}\left(b_{ij+1}\frac{w_{ij+1}-w_{ij}}{h_2}-b_{ij}\frac{w_{ij}-w_{ij-1}}{h_2}\right)=F_{ij},$$

$$i = 1, \ldots, M-1, j = 1, \ldots, N-1,$$

Где коэффициенты:

$$a_{ij} = \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt,$$

$$b_{ij} = \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt,$$

$$i = 1, \ldots, M, \ j = 1, \ldots, N,$$

Полуцелые узлы:

$$x_{i\pm 1/2} = x_i \pm 0.5 h_1,$$

$$y_{j\pm 1/2} = y_j \pm 0.5h_2$$

Правая часть разностопного уравнения:

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) dx dy$$

$$\Pi_{ij} = \{(x, y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{i-1/2} \le y \le y_{i+1/2}\},\$$

$$i = 1, ..., M-1, j = 1, ..., N-1$$

Краевые условия Дирихле в задаче (3) аппроксимируются точно равенством

$$w_{ii} = w(x_i, y_i) = 0, (x_i, y_i) \in \Gamma$$

Полученная система является линейной относительно неизвестных величин w_{ij} и может быть представлена в виде Aw=B с самосопряженным и положительно определенным оператором A. Построенная разностная схема линейна и имеет единственное решение при любой правой части.

Интегралы a_{ij} , b_{ij} вычисляем по формуле : $a_{ij} = h_2^{-1}l_{ij} + (1 - h_2^{-1}l_{ij})/\epsilon$,

где l_{ij} – длина части отрезка $\left[P_{ij}, P_{ij+1}\right]$, которая принадлежит области D.

 b_{ii} - аналогично.

 F_{ij} приближенно заменяем на значение в центре квадрата Π_{ij}

$$F_{ij} = F(x_i, y_j) = \begin{cases} 1, \ (x_i, y_j) \in D \\ 0, \ (x_i, y_j) \in \hat{D} \end{cases}$$

Метод решения системы линейных алгебраических уравнений

Приближенное решение разностной схемы может быть получено итерационным методом наименьших невязок.

Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H, k=1,2,...$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$\|w-w^{(k)}\|_E\to 0, k\to +\infty.$$

Начальное приближение $w^{(0)}$ берем равным нулю во всех точках расчетной сетки.

Итерация (k + 1) вычисляется по формуле:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - au_{k+1} r_{ij}^{(k)}$$
, где

$$r^{(k)} = Aw^{(k)} - B$$
 - невязка

$$au_{k+1} = rac{(A \, r^{(k)}, \, r^{(k)})}{\|A \, r^{(k)}\|_E}$$
 - инерционный параметр.

В качестве критерия остановы итерационного процесса использовалось неравенство: $\|r^{(k)}\|_E < \delta$, где δ выбиралась различной в зависимости от числа точек сетки.

Описание OpenMP программы.

Был разработан последовательный код программы на языке Си, вычисляющий приближенное решение разностной схемы методом наименьших невязок. Выполнены расчеты на сгущающихся сетках: (M,N)=(10,10), (20,20), (40,40);

С помощью средств OpenMP, разработан параллельный код программы, вычисляющий приближенное решение разностной схемы. Использовалась директива OpenMP: pragma omp parallel for collapse(2).

Выполнены расчеты на сетке (M,N) = (40,40), (80,80), (160,160) на двух, четырех и шестнадцати нитях.

Результаты расчетов приведены в Таблице 1.

Таблица 1

Число OpenMP нитей	Число точек сетки МхN	Время решения	Ускорение
2	40x40	52.186256	1.149728
4	40x40	49.297645	1.217097
8	40x40	40.335287	1.487531
16	40x40	11.072925	5.418622
2	80x80	278.47896	1.156281
4	80x80	126.419113	2.547083
8	80x80	67.502084	4.770223
16	80x80	66.349032	4.853123
4	160x160	265.912563	1.444084
8	160x160	69.678694	5.511010
16	160x160	56.844923	6.755221
32	160x160	40.335287	9.520200

Промежуточные результаты сходимости

Проекция на плоскость ОХҮ:

График зависимостей ускорений от числа потоков

