```
In [1]: from keras.datasets import mnist;
   (train_images, train_labels), (test_images, test_labels) = mnist.load_dat
   print( train_images.shape )
   print( len(train_labels) )
   print( train_labels )
   print( train_images[0])
```

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-d atasets/mnist.npz

```
In [2]: import matplotlib.pyplot as plt
        img = train_images[0].reshape(28,28)
        plt.imshow( img, cmap='Greys')
        print("Liczba ", train_labels[0])
        fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, sharey=True)
        ax = ax.flatten()
        for i in range(10):
         img = train_images[ train_labels==i ][0].reshape(28,28)
         ax[i].imshow( img, cmap='Greys')
        ax[0].set_xticks([])
        ax[0].set_yticks([])
        plt.tight_layout()
        plt.show()
        fig, ax = plt.subplots(nrows=2, ncols=5, sharex=True, sharey=True)
        ax = ax.flatten()
        for i in range(10):
         img = train_images[ train_labels==7 ][i].reshape(28,28)
         ax[i].imshow( img, cmap='Greys')
        ax[0].set_xticks([])
        ax[0].set_yticks([])
        plt.tight_layout()
        plt.show()
        x_{train} = train_{images.reshape((60000, 28*28))}
        x_train = x_train.astype('float32') / 256
        x_{test} = test_{images.reshape((10000, 28*28))}
        x_test = x_test.astype('float32') / 256
        print( train_images[0])
        print( x_train[0])
```

Liczba 5

]]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	0	0	0	0	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	0	0	3	18	18	18	126	136
[L75 0	26 0	166 0	255 0	247 0	127 0	0	0	0 30	0] 36	94	154	170	253	253	253	253	253
[225 0	172 0	253 0	242 0	195 0	64 0	0 0	0 49	0 238		253	253	253	253	253	253	253	251
]	93	82 0	82 0	56 0	39 0	0 0	0 0	0 18	0 219	0] 253		253	253	253	198	182	247	241
[0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 80	0] 156		253	253	205	11	0	43	154
[0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0] 14		154	253	90	0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0		139	253	190	2	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0			190		70	0	0	0
[0	0	0	0	0	0	0	0	0	0] 0	_	0			225			1
	0	0	0	0	0	0	0	0	0	0]								
[0 25	0	0	0	0	0	0	0	0	0 0]	0	0	0		240			
[0 L50	0 27	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0]	0	0	0	0	45	186	253	253
[0 253	0 187	0	0 0	0 0	0	0 0	0	0 0	0 0]	0	0	0	0	0	16	93	252
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	249
[0	249	64 0	0	0	0	0	0	0	0] 0	0	0	0	0	46	130	183	253
[0	207 0	2 0	0 0	0 0	0 0	0 0	0 0	0 0	0] 0	0	0	39	148	229	253	253	253
	250 0	182 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0] 0		114	221	253	253	253	253	201
[78 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 23	0] 66		253	253	253	253	198	81	2
[0 0	0	0	0 0	0	0	0 18	0 171	0 219	0] 253		253	253	195	80	9	0	0
[0	0	0	0	0 55	0	0	0	0	0] 253					0	0	0	0
[0	0	0	0	0	0	0	0	0	0] 135				0	0	0	0	
	0	0	0	0	0	0	0	0	0	0]			0					0
[0 0	0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0]	0	0	0	0	0	0	0	0
[0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0]	0	0	0	0	0	0	0	0
[0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0]	0	0	0	0	0	0	0	0
[0. 0.			0			0.			0. 0.	-	(0. 0.		0				
0.			0			0.			0.		(0.		0				
0.	1		0	•		0.			0.		(0.		0	•			

0	0	0	0	0	0
0.	0.	0.	0.	0.	0.
0. 0.	0.	0.	0.	0. 0.	0.
0.	0.	0.	0.		0.
0.	0. 0.	0.	0. 0.	0. 0.	0. 0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.01171875		0.0703125	0.0703125
0.4921875	0.53125	0.68359375		0.6484375	0.99609375
	0.49609375		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.1171875	0.140625	0.3671875	
0.6640625			0.98828125	0.98828125 0.76171875	
0.07090025	0.671875 0.	0.90020125	0.9455125	0.701/10/5	0.25
0.	0.	0.	0.	0.	0.19140625
0.9296875				0.98828125	
	0.98828125			0.36328125	
0.3203125	0.21875	0.15234375		0.	0.
0.	0.	0.	0.	0.	0.
0.				0.85546875	
				0.7734375	
	0.94140625		0.	0.	0.
	0.	0.			0.
0.	0.	0.	0.		0.
0.			0.609375	0.41796875	0.98828125
0.98828125	0.80078125			0.16796875	0.6015625
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
	0.		0.		
				0.98828125	
	0.	0.	0.		0.
0.		0.	0.		0.
	0.				
	0.				
				0.0078125	
	0.	0.		0.	0.
	0. 0.	0. 0.			0. 0.
	0.	0.	0.	0. 0.	0.04206875
	0.98828125			0.	0.04290673
0.7421073			0.		0.
0.	0.	0.	0.		0.
	0.		0.		0.
0.	0.	0.	0.	0.13671875	
0.87890625	0.625	0.421875	0.00390625	0.	0.
_					

0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.31640625	0.9375	0.98828125
0.98828125	0.46484375	0.09765625	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0. 0.5859375	0. 0.10546875	0.17578125 0.	0.7205025	0.98828125 0.	0.98828125 0.
0.3839373	0.10340873	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.0625	0.36328125	0.984375	0.98828125	0.73046875
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0. 0.	0.97265625 0.	0.98828125 0.	0.97265625 0.	0.25 0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.1796875	0.5078125	0.71484375	0.98828125
0.98828125	0.80859375	0.0078125	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.15234375	
0.89453125					0.7109375
0. 0.	0.	0.	0.	0. 0.	0.
0.	0.	0.	0.	0.	0.
0.09375	0.4453125	0.86328125			
0.98828125		0.3046875	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.		0.2578125		
			0.7734375		
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0.	0.	0.	0.		0.66796875
			0.98828125		
0.3125	0.03515625		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.21484375			0.98828125		
0.98828125 0.	0.953125 0.	0.51953125 0.	0.04296875	0.	0. 0.
0.	0.	0.	0. 0.	0.	0.
0.	0.	0.	0.	0.53125	0.98828125
	0.98828125		0.52734375		0.0625
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0. 0.	0. 0.	0. 0.	0. 0.	0. 0.	0. 0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.

```
0.
                                                                 0.
0.
                                       0.
                                                    0.
0.
            0.
                          0.
                                       0.
                                                    0.
                                                                 0.
0.
            0.
                          0.
                                      0.
                                                    0.
                                                                 0.
0.
            0.
                         0.
                                      0.
                                                    0.
                                                                 0.
0.
            0.
                          0.
                                       0.
                                                   0.
                                                                 0.
                          0.
                                                    0.
                                                                 0.
0.
            0.
                                       0.
0.
            0.
                          0.
                                       0.
```

```
In [3]: from keras.utils import to_categorical
    y_train = to_categorical(train_labels)
    y_test = to_categorical(test_labels)

print( train_labels[0] )
    print( y_train[0] )

5
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

Zadanie nr 1:

```
In [4]: from keras import models
   from keras import layers
   network = models.Sequential()
   network.add(layers.Input(shape=(28*28,)))
   #kolejne warstwy sieci Dense
#...
   network.add(layers.Dense(10, activation="relu"))
   network.add(layers.Dense(10, activation='softmax'))
   network.compile(optimizer='rmsprop', loss='categorical_crossentropy',
   metrics=['accuracy'])
```

Zadanie nr 2:

```
In [5]: import copy
        from sklearn.metrics import accuracy_score
        def getIndexOfMax(arr):
          index = 0;
          for i in range(len(arr)):
            if arr[i] > arr[index]:
              index = i
            #elif (i != index) and (arr[i] == arr[index]):
              #raise Exception("Cannot get max element. Elements aren't uniqe.")
          return index
        def maxto1restto0(_mat):
            mat = copy.deepcopy(_mat)
            for arr in mat:
              index = getIndexOfMax(arr)
              for i in range(len(arr)):
                if i == index:
                  arr[i] = 1.0;
                else:
                  arr[i] = 0.0;
            return mat
        history = network.fit(x_train, y_train, epochs=500, batch_size=32, verbos
```

```
print("Ostatni błąd:", history.history['loss'][-1])
plt.plot(history.history['loss'])
plt.title('Wartość funkcji straty względem epok uczenia')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train'], loc='upper left')
plt.show()

#treningowe
y_result_train = network.predict(x_train)
y_result_train_rounded = maxto1restto0(y_result_train)
accuracy = accuracy_score(y_train, y_result_train_rounded)
print("Accuracy:",accuracy)
print("Wyniki obliczeń:\n", y_result_train[0],"\nZaokrąglone:\n",y_result
```

Ostatni błąd: 0.18411201238632202

Wartość funkcji straty względem epok uczenia


```
Accuracy: 0.95446666666667
Wyniki obliczeń:
[1.1338093e-09 1.7666850e-12 4.8749328e-08 1.4026439e-02 5.2114424e-29
9.8597360e-01 3.3910630e-12 1.3519860e-08 2.1042602e-10 1.2197202e-12]
Zaokrąglone:
[[0. 0. 0. ... 0. 0. 0.]
[1. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
```

2s 1ms/step

Zadanie nr 3

[0. 0. 0. ... 0. 1. 0.]

1875/1875 -

```
In [20]: import numpy as np
         def hitPercentage(_x, _y, model, label):
           predict_x = model.predict(_x)
           y_result = np.argmax(predict_x,axis=1)
           count = 0
           goodCount = 0
           for i in range(len(_y)):
             if(y_result[i] == _y[i]):
               goodCount += 1
             count += 1
           print(label, (goodCount/count)*100,"%")
         hitPercentage(x_train, train_labels, network, "Zbiór treningowy:")
         hitPercentage(x_test, test_labels, network, "Zbiór testowy:")
        1875/1875 -
                                      - 2s 1ms/step
        Zbiór treningowy: 95.4466666666667 %
        313/313 -
                                    - 1s 2ms/step
        Zbiór testowy: 92.88 %
```

Zadanie nr 4

```
In [34]: from sklearn.metrics import accuracy_score, precision_score, recall_score
         import numpy as np
         def metrics(_x, _y, model, label):
           # Przewidywanie wyników
           y_pred = model.predict(_x)
           # Zaokrąglenie wyników przewidywań
           y_pred_rounded = np.argmax(y_pred, axis=1)
           # Obliczenie metryk
           accuracy = accuracy_score(_y, y_pred_rounded)
           precision = precision score( y, y pred rounded, average="macro")
           recall = recall_score(_y, y_pred_rounded, average="macro")
           # Uzyskanie macierzy pomyłek
           conf_matrix = confusion_matrix(_y, y_pred_rounded)
           # Wyświetlanie wyników
           print(label)
           print("Accuracy:", accuracy)
           print("Precision:", precision)
           print("Recall:", precision)
           print("Confusion Matrix:\n", conf_matrix)
         metrics(x_train, train_labels, network, "Metriki i macierz pomyłek dla zb
         metrics(x_test, test_labels, network, "Metrik i macierz pomyłek dla zbior
```

```
1875/1875 —
                                 - 2s 1ms/step
Metriki i macierz pomyłek dla zbioru treningowego:
Accuracy: 0.954466666666667
Precision: 0.9542385739932907
Recall: 0.9542385739932907
Confusion Matrix:
 [5812
            1
                12
                       4
                            1
                                 13
                                       31
                                             5
                                                  41
                                                         31
                      8
                                 7
 ſ
     1 6643
               22
                            3
                                       3
                                           10
                                                 37
                                                        81
    28
          30 5632
                          28
                                                 79
                                                       81
 ſ
                     64
                                 8
                                      50
                                           31
 [
    20
          23
               87 5683
                           2
                               116
                                      16
                                           27
                                                127
                                                      301
               33
                      8 5553
                                                 39
 [
    10
          17
                                 6
                                            8
                                                     101]
                                      67
 ſ
    31
          31
               15
                   102
                          13 5046
                                      85
                                            3
                                                 81
    15
          9
                      3
                          15
                                43 5805
                                            3
                                                 18
                                                       11
 Γ
                6
 Γ
    21
          19
               20
                     23
                          30
                                 5
                                       5 6022
                                                 35
                                                       851
 [
    20
          67
               21
                     69
                          17
                                53
                                      33
                                            8 5549
                                                       141
                                           96
 Γ
    22
          11
                6
                     55
                        108
                                35
                                       7
                                                 86 5523]]
313/313 -
                               1s 2ms/step
Metrik i macierz pomyłek dla zbioru testowego:
Accuracy: 0.9288
Precision: 0.9282213884893157
Recall: 0.9282213884893157
Confusion Matrix:
 [[ 960
            0
                       2
                             0
                                  2
                                             2
                                                         01
                4
                      2
                            2
                                       5
                                                        11
 ſ
     0 1110
                                 2
                                                  9
                                            0
 Γ
     9
           9
              930
                     15
                          12
                                 7
                                      16
                                            8
                                                 26
                                                        01
     2
 [
           4
                    920
                                26
                                      3
                                                       31
               16
                           2
                                           10
                                                 24
     1
           2
                9
                     7
                         898
                                     17
                                            7
                                                  3
 Γ
                                 4
                                                      341
     5
                2
                                                       7]
           3
                     24
                            5
                               810
                                      17
                                            1
                                                 18
 ſ
     9
           4
                7
                           3
                                    918
                     1
                                10
                                            2
                                                  4
                                                       01
 Γ
     2
           9
                           5
               14
                     14
                                2
                                       0
                                          947
                                                  8
                                                      271
                           9
 Γ
     5
          13
                7
                     14
                                14
                                      10
                                            9
                                                888
                                                        51
     8
                                           25
                                                     90711
 Γ
           6
                0
                     11
                          26
                                 8
                                       0
                                                 18
```

Zadanie nr 5

```
In [47]:
         badIndexes = []
         y_pred = network.predict(x_test)
         y_pred_rounded = np.argmax(y_pred, axis=1)
         for i in range(len(y_pred_rounded)):
           if(y_pred_rounded[i] != test_labels[i]):
             badIndexes.append(i)
         #otrzymaliśmy tablicę zawierającą indexy błednie sklasyfikowanych cyfr
         #wyświetlenie błędnych 4 cyfr
         len_badIndexes = len(badIndexes)
         for i in range(4):
           if i < len_badIndexes:</pre>
             fig, ax = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True)
             img = test_images[badIndexes[i]].reshape(28,28)
             ax.imshow( img, cmap='Greys')
             ax.set_xticks([])
             ax.set_yticks([])
             plt.tight_layout()
             plt.show()
             print("Cyfra sklasyfikowana jako:",y_pred_rounded[badIndexes[i]])
             print("Poprawna klasyfikacja:", test_labels[badIndexes[i]])
```

- 1s 2ms/step

313/313 -

Cyfra sklasyfikowana jako: 6 Poprawna klasyfikacja: 5

Cyfra sklasyfikowana jako: 8 Poprawna klasyfikacja: 3

Cyfra sklasyfikowana jako: 7 Poprawna klasyfikacja: 9

Cyfra sklasyfikowana jako: 2 Poprawna klasyfikacja: 8

In []: