TRIGONOMETRY INTRODUCTORIO 2023

EXPLORATORIO

1. Halle el valor de x.

$$\sec(x^3 + 18)^{\circ} \cdot \cos(72 - x^3)^{\circ} = 1$$

- A) 3
- B) 4

C) 5

- D) 1/3
- E) 1/2

Resolución:

Por razones recíprocas:

$$sec(x) \cdot cos(y) = 1 \Longrightarrow x = y$$

De:
$$sec(x^3 + 18)^{\circ} \cdot cos(72 - x^3)^{\circ} = 1$$

Tenemos:
$$x^3 + 18 = 72 - x^3$$

$$2x^3 = 54$$

$$x^3 = 27$$

$$x = 3$$

Respuesta: A) 3

2. Halle el valor de x en la figura adjunta.

A) 2

B) 1/2

E) 1/4

C) 1

D) 3

Resolución:

Por Teorema de Pitágoras:

Tenemos:

$$(x+2)^2 + 3^2 = (x+3)^2$$

$$x^{2} + 2(x)(2) + 2^{2} + 9 = x^{2} + 2(x)(3) + 3^{2}$$

$$4x + 13 = 6x + 9$$

$$2x = 4$$

$$x = 2$$

Respuesta: A) 2

 Siendo S, C y R lo conocido para un mismo ángulo, simplifique

$$E = \frac{3C\pi + 2S\pi + 40R}{(C-S)\pi}$$

- A) 10
- B) 20

C) 30

D) 40

E) 50

Resolución:

Por números convencionales:

$$S = 9k$$
 $C = 10k$ $R = \frac{\pi}{20}k$

Tenemos:

$$E = \frac{3(10k)\pi + 2(9k)\pi + 40\left(\frac{\pi}{20}k\right)}{(10k - 9k)\pi}$$

$$E = \frac{30k\pi + 18k\pi + 2k\pi}{k\pi}$$

$$E=\frac{50k\pi}{k\pi}$$

$$E = 50$$

Respuesta: E) 50

4. De la figura, calcule sen θ + tan β .

C) 1/2

- A) 4
- D) 1

- B) 3
 - E) 2

Resolución:

Por razones trigonométricas de un ángulo agudo:

Tenemos: $sen\theta = \frac{5}{7}$ y $tan\beta = \frac{9}{7}$

Luego: $sen\theta + tan\beta = \frac{5}{7} + \frac{9}{7} = \frac{14}{7} = 2$

Respuesta: E) 2

5. Calcule $tan\theta + cot\theta$

$$C) -13/8$$

E)
$$-6/13$$

Resolución:

Por razones trigonométricas de un ángulo en posición normal:

Tenemos: x = -2 e y = 3

Luego:
$$tan\theta + cot\theta = \frac{3}{-2} + \frac{-2}{3} = -\frac{3}{2} - \frac{2}{3} = -\frac{13}{6}$$

Respuesta: B) – 13/6

6. Encuentre el valor numérico de

$$E = \frac{6\cos 60^{\circ} + 10\sin 53^{\circ} + \csc 30^{\circ}}{3\sec 60^{\circ}}$$

- A) 13/5
- B) 16/5
- C) 6/13

- D) 13/6
- E) 13/4

Resolución:

Por razones trigonométricas de ángulos notables:

_	30°	37°	45°	53°	60°
sen		<u>3</u> 5	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	<u>4</u> 5	60° √3/2 1/2 √3 √3/3 2
cos	$\frac{1}{2}$ $\frac{\sqrt{3}}{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	3 5 4 5 8 4 4 8 5 4 5 8	$\frac{\sqrt{2}}{2}$	4 5 3 5 4 3 3 4 5 3 5 4	<u>1</u> 2
tan	<u>√3</u>	<u>3</u> 4	1	<u>4</u> 3	√3
cot	√3	<u>4</u> 3	1	<u>3</u> 4	<u>3</u> √3
sec	<u>2√3</u> 3	<u>5</u> 4	√2	<u>5</u> 3	
CSC	2	<u>5</u> 3	√2	<u>5</u> 4	<u>2√3</u> 3

$$E = \frac{6\left(\frac{1}{2}\right) + 10\left(\frac{4}{5}\right) + 2}{3(2)} = \frac{3 + 8 + 2}{6}$$

$$E=\frac{13}{6}$$

Respuesta: D) 13/6

En los sectores circulares AOB y COD, si $L_{\widehat{AB}} = a\sqrt{3}$ y OC = b, determine m∢AOB.

A) $\frac{a}{5}$

D) a

Resolución:

Por área de sector circular:

Tenemos, en el sector circular COD: $S = \frac{\theta \cdot b^2}{2}$

$$S = \frac{\theta \cdot b^2}{2}$$

y en el sector circular COD:

$$3S = \frac{\left(a\sqrt{3}\right)^2}{2 \cdot \theta}$$

Luego:
$$3\left(\frac{\theta b^2}{2}\right) = \frac{3a^2}{2\theta} \implies \theta^2 = \frac{a^2}{b^2} \implies \theta = \frac{a}{b}$$

Respuesta: B) a/b

8. Calcule senβ.

- A) 5/13
- B) 5/6

C) 5/9

- D) 13/18
- E) 5/8

Resolución:

Por triángulos rectángulos notables:

En el triángulo rectángulo ABD, por triángulo notable de 45° : BD = 5

Luego, en el triángulo rectángulo ABC, por Teorema de Pitágoras:

$$AC = 13$$

Por lo tanto: $sen\beta = \frac{5}{13}$

Respuesta: A) 5/13

