

BINARY ARITAssignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Bernhard Kainz (with thanks to N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Binary Arithmetic

- Unsigned
 - · Addition, Suntaition Autimorphic Addition, Suntaition Addition, Suntaition Autimorphic Addition, Suntaition Autimorphic Addition, Suntaition Addition, Suntaition Autimorphic Addition Autimorphic Addition, Suntaition Autimorphic Addition Autimorphic Autimor
- Signed

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Two's Complement Addition, Subtraction, Multiplication and Division
 - Chosen because of its widespread use

Binary Arithmetic

- Couple of definitions
 - · Subtrahend Aversigin heingt Petrigetet dExam Help
 - Minuend: what it https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro
 - Example: 612 485 = 127
 - 485 is the subtrahend, 612 is the minuend, 127 is the result

Binary Addition – Unsigned

- Reasonably straight forward
- Example: Perform the binary addition 111011 + 101010
 Assignment Project Exam Help

Carry	ŀ	nttps	·//ec	luas	sistr	ro a	ithul	n in/
Α		•			•		1	1
В	A	Add	We(Chrat	edu	_ass	sist_	pipo
Sum		1	1	0	0	1	0	1
Step		7	6	5	4	3	2	1

In Decimal: 59 + 42 = 101

Binary Subtraction – Unsigned

- Reasonably straight forward as well ©
- Example: Perform the binary subtraction 1010101 11100

ASS	ign	m <mark>er</mark>	nt D	roje	ct _o E	xar	n H	elp	
Α							0	1	
В	1- 44	/	/1.		-!-4		0	9	/
Diff	ntt	DS:7	/ea	uas	sist	pro.	gar	IUD.	IO/
Step		7	6	5				1	

Step k	^- ≱-dd WeChat edu assist pro
1	
2	0 - 0 = 0
3	1 – 1 = 0
4	$0-1$ Borrow by subtracting 1 from $A_{75}=101$ to
	give A' _{7.5} =100 and A' ₄ =10.
	Now use A' instead of A, e.g. $A'_4 - B_4$
	10 – 1 =1
5	0 – 1 Subtract 1 from A' _{7 6} =10 to give A" _{7 6}
	$=01, A''_{5} = 10.$
	Now use A" instead of A', e.g. $A''_5 - B_5$
	10 – 1 =1
6	$1 - 0 = 1$ i.e. $A''_6 - B_6$
7	0 - 0 = 0

Binary Multiplication – Unsigned

• Example: Perform the binary multiplication 11101 x 111

Assignment Project Exam Help

t	ittps	:://e	dua	ssis	stpro	o.gi	thuk).io/
F	Add	We	Cha	at e	du_a	assi	st_ _{_1}	oro 1
		1	1	1	0	1		
Answer	1	1	0	0	1	0	1	1
Carry	1	10	10	1	1			

Binary Division – Unsigned

- Recall:
 - Division is: Aissignment remainder oject Exam Help
 - Or: dividend = quotient to sold en dividend = quotient = quotient to sold en dividend = quotient = quo
 - Left as an exercised WeChat edu_assist_pro
 - Can use long division

Binary Arithmetic – Signed

- Two's complement Arithmetic because of it's widespread use
- Recall Assignment Project Exam Help
 - Addition and subt https://eduassistpro.githelb/ilb/ut having a separate sign bit

Add WeChat edu_assist_pro

- Overflow
 - Result of an arithmetic operation is too large or too small to fit into the resultant bit-group (E.g.: 9 can't fit into 4-bits in Two's complement)
 - Normally left to programmer to deal with this situation

Two's Complement – Addition

Add the values and discard any carry-out bit

• Example: Adds ig tomes to lean to some sent two is complement https://eduassistpro.github.io/

	A 1 1 T	TI						
(+3)	Q0000011	wecr	1 at 26	eau	_a	SSI	St_	prø
+(-8)	1111 1000		+(-5)		1111	1011		
(-5)	1111 1011		(-7)	1	1111	1001		
				1	Disca	ard Ca	rry-Ou	t

Two's Complement – Addition

- Overflow
 - Occurs if an a soliginal Entity Projected Entity and they both have t or both negative) and the result has the https://eduassistpro.github.io/

 - Adding two negative du wees hastedu_assist response
 - Never occurs when adding operands with different signs
 - E.g.
 - (+A) + (+B) = -C
 - (-A) + (-B) = +C

Two's Complement – Addition

Overflow

• Example: Using ighim on's Projetem extanum blash $-8 \le x \le +7$), calculate (-7) + (

https://eduassistpro.github.io/

	Ac	ld	WOM	Chat e	du	_assist_	pro
	+(- 6)		1010			_	
İ	(+3)	1,	0011	"Overflow"			
					-		

Two's Complement – Subtraction

- Accomplished by negating the subtrahend and adding it to the minuend
 - · Any carry-out bit is religious Project Exam Help
- Example: Calcu https://eduassistpro.githwls.icomplement representation • Recall: $8-5 \rightarrow 8+(-5)$ WeChat edu_assist_pro

(+3) 1 0000 0011	(+8)	0000 1000		0000 1000
1 ` '	-(+5)	0000 0101	-> Negate ->	+ 1111 1011
Discard	(+3)			1 0000 0011
				♠ Discard

Two's Complement – Subtraction

- Overflow
 - Occurs if and soliginate mots representation between and their signs a as the same sign as the subtrahend https://eduassistpro.github.io/
 - E.g. Add WeChat edu_assist_pro
 - (+A) (-B) = -C
 - (-A) (+B) = +C

Two's Complement – Subtraction

Overflow

• Example: Using ighim whis Projetem extanmetry $-8 \le x \le +7$), calculate 7 - (-6)

https://eduassistpro.github.io/

P	dd_6	VeChat edu_ass	sist_	_pro

(+7)	0111
-(-6)	0110 (Negated)
(-3)	1101 "Overflow"

Two's Complement – Summary

- Addition
 - Add the values, discarding any carry-out bit

Assignment Project Exam Help

- Subtraction
 - Negate the subtrhttps://eduassistpro.gith@brivo/ut bit

Overflow

Add WeChat edu_assist_pro

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

Two's Complement – Multiplication and Division

- Cannot be accomplished using the standard technique
- Example: considernt ent Project Exam Help
 - Two's compleme https://eduassistpro.github2io/₁) = 2ⁿX XY

 Add WeChat edu_assist_pro
 - Expected result should be 2²ⁿ XY

Signed multiplication

- Booth's multiplication algorithm
- Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
- Determine the values of A and S, and the initial value of P. All of these numbers
 - zeros.
 - S: Fill the most significa https://eduassistpro.github.notation. Fill the remaining (y + 1) bits wi
 - P: Fill the most significant x bits with zeros. To th end the value of r. Fill the
- least significant (rightmost) bit with a zero hat edu_assist_pro

 Determine the two least significant (rightmost) bit with a zero hat edu_assist_pro
 - If they are 01, find the value of P + A. Ignore any overflow.
 - If they are 10, find the value of P + S. Ignore any overflow.
 - If they are 00, do nothing. Use *P* directly in the next step.
 - If they are 11, do nothing. Use *P* directly in the next step.
- Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let *P* now equal this new value.
- Repeat steps 2 and 3 until they have been done y times.
- Drop the least significant (rightmost) bit from P. This is the product of **m** and **r**.

Booth's multiplication example

- Find $3 \times (-4)$, with $\mathbf{m} = 3$ and $\mathbf{r} = -4$, and x = 4 and y = 4:
- m = 0011, -m = 1101, r = 1100
- A = 0011 0000 0
- S = 1101 000 Ssignment Project Exam Help
- P = 0000 1100 0
- Perform the loop https://eduassistpro.github.io/
 - P = 0000 1100 0. The last two bits a
 - P = 0000 0110 0. And the Person assist_pro
 - P = 0000 0110 0. The last two bits a
 - P = 0000 0011 0. Arithmetic right shift.
 - P = 0000 001**1 0**. The last two bits are 10.
 - P = 1101 0011 0. P = P + S.
 - P = 1110 1001 1. Arithmetic right shift.
 - P = 1110 100**1 1**. The last two bits are 11.
 - P = 1111 0100 1. Arithmetic right shift.
- The product is 1111 0100, which is −12.

Two's Complement – Multiplication and Division

• Can perform multiplication and division by converting the two's complement numbers to their absolute values and then negate the result if the signs of the personds are different

https://eduassistpro.github.io/

Most architectures implement edu_assisticated algorithms (Booth's multiplicati m, Wallace tree, Dadda multiplier)