MA3305P – Semaine 01

24 février 2023

Le but de ce TD est d'apprendre à manipuler des calculs de différentielles. On rappelle le résultat suivant du cours d'algèbre linéaire :

Théorème: Soit $M \in \mathbb{M}_n(\mathbb{R})$ une matrice. On définit les applications suivantes :

$$||M||_F = \operatorname{Tr}({}^t M \cdot M), \ ||M||_2 = \sup_{|x|=1} |Mx|$$

Alors ces deux applications sont des normes d'algèbre. C'est-à-dire que ce sont des normes sur l'espace des matrices, et qu'elles satisfont de plus la propriété suivante :

$$\forall (M, N) \in M_n(\mathbb{R})^2, ||MN|| \leqslant ||M|| \times ||N||$$

On admet aussi le théorème de topologie que nous montrerons à la fin de l'année :

Théorème 1. Dans un espace vectoriel de dimension finie, toutes les normes sont équivalentes.

En particulier, on peut écrire les o(|h|) pour n'importe quelle norme.

Exercice 1:

Soit $E = M_n(\mathbb{R})$ $(n \geq 2)$ et φ l'application définie par :

$$\varphi : \left\{ \begin{array}{l} E \to E \\ A \mapsto {}^t A \cdot A \end{array} \right.$$

- 1. Montrer que l'application φ est de classe \mathscr{C}^{∞} .
- 2. Calculer la différentielle de φ en A_0 .
- 3. Calculer la différentielle seconde de φ en A_0 .

Exercice 2:

On considère l'application f définie par :

$$f: \left\{ \begin{array}{ll} M_n(\mathbb{R}) & \to M_n(\mathbb{R}) \\ A & \mapsto A^3 \end{array} \right.$$

- 1. Montrer que f est différentiable sur $M_n(\mathbb{R})$, et calculer sa différentielle en $A \in M_n(\mathbb{R})$.
- 2. Montrer que f est deux fois différentiable sur $M_n(\mathbb{R})$, et calculer sa différentielle seconde en $A \in M_n(\mathbb{R})$.
- 3. Vérifier vos résultats avec Python (voire le Notebook sur Moodle).

Exercice 3:

L'application suivante est-elle différentiable sur \mathbb{R}^2 ? De classe \mathscr{C}^1 ?

$$f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ f: & (x,y) & \mapsto & \left\{ \begin{array}{ccc} (0,0) & \text{si } (x,y) = (0,0) \\ \left(x^2 \cos(\frac{1}{x^2 + y^4}), y^2 \sin(\frac{1}{x^4 + y^2}) \right) & \text{sinon.} \end{array} \right.$$

(On pourra s'aider de Python pour le calcul des dérivées partielles de f).

Exercice 4:

Soit $f: E \to E$ bijective telle que f et f^{-1} soient différentiables. Pour $x \in E$, déterminer $d(f^{-1})_x$ en fonction de df.

Exercice 5:

Soit $n \ge 2$. On considère $M_n(\mathbb{R})$ l'ensemble des matrices carrées de taille n. En admettant que l'ensemble $GL_n(\mathbb{R})$ est ouvert, calculer la différentielle du déterminant sur l'ensemble $GL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}), \ det(A) \ne 0\}$ des matrices inversibles. (On pourra commencer par calculer la différentielle de la matrice identité).

Exercice 6:

Soit E un espace euclidien. On note $\langle \ , \ \rangle$ le produit scalaire et |.| sa norme. Soit O un ouvert de E et soit f et $g:O\to\mathbb{R}$ deux applications différentiables sur O, soit enfin φ une application dérivable de \mathbb{R} dans \mathbb{R} . On rappelle le théorème de représentation de Riesz (Théorème 4.3 page 31 du poly d'algèbre linéaire du S1) :

Théorème 2 (de représentation de Riesz). Soit E un espace euclidien, et soit $f \in \mathcal{L}(E, \mathbb{R})$ une forme linéaire sur E. Alors,

$$\exists ! v \in E, \ \forall x \in E, \ f(x) = \langle v, x \rangle$$

Dans le cas où la forme linéaire est la différentielle d'une fonction $f: E \to \mathbb{R}$ (pas forcément linéaire), on note $\operatorname{grad}_x f$ le vecteur v dans le théorème de représentation de Riesz, que l'on apppelle gradient de f au point x. On a donc :

$$\forall x \in O, \ \forall h \in E, \ df_x(h) = \langle \operatorname{grad}_x f, h \rangle.$$

4. Calculer pour $x \in O$:

grad
$$(f \times g)$$
.

5. Calculer pour $x \in O$:

$$\operatorname{grad}_{x}(\varphi \circ f).$$

On suppose dans la suite de cet exercice que $E = M_n(\mathbb{R})$.

On suppose dans cette question que le produit scalaire est défini par :

$$\forall (A, B) \in M_n(\mathbb{R})^2, \langle A, B \rangle = \text{Tr} ({}^t A \cdot B).$$

- 6. Calculer le gradient de l'application $f = \det en \ x = A \in GL_n(\mathbb{R})$.
- ▶ On suppose dans cette question que le produit scalaire est défini par $(S \in S_n^{++}(\mathbb{R}))$:

$$\forall (A, B) \in M_n(\mathbb{R})^2, \langle A, B \rangle = \text{Tr} \left({}^t A \cdot S \cdot B \right).$$

7. Calculer le gradient de l'application $f = \det \operatorname{en} x = A \in M_n(\mathbb{R})$.

Exercice 7:

Soit E un espace euclidien, nous noterons \langle , \rangle son produit scalaire et $|\cdot|$ sa norme associée. Soit $f \in E^*$ une forme linéaire non nulle sur E. On considère l'application :

$$g: \begin{cases} E \to \mathbb{R} \\ x \mapsto f(x) \times \exp(-|x|^2) \end{cases}$$

- 1. Montrer que g est continue sur E.
- 2. Montrer que g est différentiable sur E et calculer sa différentielle en un point $x_0 \in E$.

Exercice 8:

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ de classe \mathscr{C}^1 , croissante et vérifiant f(0) = 1. On considère \mathbb{R}^n muni du produit scalaire usuel noté $\langle ., . \rangle$ et de la norme euclidienne $|\cdot|$. On pose $F: \mathbb{R}^n \to \mathbb{R}^n$ définie par :

$$F(x) = f(|x|) \cdot x$$

- 1. Montrer que F est de classe \mathscr{C}^1 sur $\mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ et déterminer sa différentielle.
- 2. Montrer que F est de classe \mathscr{C}^1 sur \mathbb{R}^n et déterminer sa différentielle en $0_{\mathbb{R}^n}$.
- 3. Montrer que

$$\forall (x,h) \in (\mathbb{R}^n)^2, \ \langle dF_x(h), h \rangle \geqslant f(|x|) \times |h|^2.$$

- 4. Montrer que $t \mapsto t \times f(t)$ est strictement croissante sur \mathbb{R}^+ , puis montrer que F est injective.
- 5. Soit $y \in \mathbb{R}^n$; on définit l'application $\psi : t \mapsto |F(t,y)|$. Montrer qu'il existe $t \in [0,1]$ tel que $\psi(t) = |y|$, puis montrer que F est surjective.