MATH 697 FALL 2017

PROBLEM SET 1: DUE THURSDAY WEEK 3

(1) Let $g:[a,b] \to \mathbb{R}$ be a continuous function such that

$$\int_a^b g(x)\phi''(x) \ dx = 0,$$

for any ϕ which is twice differentiable and compactly supported in (a, b).

- (a) Assume that g is itself twice differentiable, show that in this case necessarily $g'' \equiv 0$.
- (b) Let K be a $C^{\infty}(\mathbb{R})$ function such that

$$0 \le K(x) \ \forall x, \ K(x) = 0 \text{ if } x \notin (-1,1), \ \int_{-1}^{1} K(x) \ dx = 1.$$

Then, for $\delta > 0$ define $K_{\delta}(x) = \frac{1}{\delta}K_{\delta}(x)$ and $g_{\delta}(x) := \int_{a}^{b} g(y)K_{\delta}(x-y) dy$. Show that if $x \in (a+\delta,b-\delta)$, then g_{δ} is twice differentiable near x and that $g''_{\delta}(x) = 0$.

- (c) Show that as $\delta \to 0^+$, $g_{\delta} \to g$ uniformly in every closed interval contained in (a, b).
- (d) Conclude g must be an affine function, that is, g(x) = mx + p for some m and p.
- (2) We are given N points $0 = x_1 < ... < x_N = 1$ in the interval [0, 1], and N numbers $y_1, ..., y_N$. Fix $\lambda > 0$, define for each $f : [0, 1] \mapsto \mathbb{R}$ with a continuous second derivative, the functional

$$\mathcal{J}(f) = \sum_{i=1}^{N} |f(x_i) - y_i|^2 + \lambda \int_0^1 |f''(x)|^2 dx.$$

Let f_0 be such that $\mathcal{J}(f_0) \leq \mathcal{J}(f)$ for all f. Then,

(a) Show that if ϕ is smooth and compactly supported in (x_i, x_{i+1}) , then

$$\int_{x_i}^{x_{i+1}} f_0''(x)\phi''(x) \ dx = 0,$$

and conclude that $f_0''(x)$ must be an affine function in each interval (x_i, x_{i+1}) . Hint: Observe that $\mathcal{J}(f_0 + s\phi)$, considered as a function of s, has a local minimum at s = 0.

- (b) From the previous step, conclude that f_0 must be a polynomial of degree at most 3 when restricted to each interval (x_i, x_{i+1}) .
- (3) From HTF: Exercise 2.5.
- (4) From HTF: Exercise 2.7.
- (5) Produce code to accomplish the following: considering f(x) = 2x 5, generate 100 data points of the form (x_i, y_i) , where the x_i are equally spaced in the interval [-10, 10], and where for each i,

$$y_i = f(x_i) + \varepsilon_i,$$

the ε_i being i.i.d. random variables. Do this for the following three cases: first with $\varepsilon_i = \pm 1$ with equal probability, second with ε_i being a number uniformly distributed in [-1, 1], and third ε_i being distributed according to the standard normal distribution.

Make three plots, where in each case you plot the resulting data (x_i, y_i) together with the graph for the line y = f(x).