Прикладной Data Mining

Крот Александр, Lead Data Scientist

- Лекция носит обзорный и ознакомительный характер для людей, впервые знакомящихся с методами прикладного анализа данных
- Информация в этом курсе не претендует на научную строгость и полноту изложения
- Часть информации к моменту рассказа может быть немного устаревшей, за более подробной и актуальной информацией лучше обращаться к документации

Теория

- Примеры прикладных задач анализа данных
- Основы машинного обучения
- Инструменты анализа данных
- Разработка продукта: бизнес-процесс
- Подготовка специалистов в областях Data Science и Big Data

Практические кейсы

- Примеры решения прикладных задач анализа данных
 - Предсказание судьбы пассажиров
 Титаника
 - Кластеризация городов России по социально-экономическим показателям
 - Классификация отзывов к фильмам
 - Поиск необычных моделей Playboy

Примеры прикладных задач анализа данных

Примеры прикладных задач анализа данных

• Сферы

 – Финансовые организации, ритейл, телеком, медиа, социальные сети, медицина, урбанистика, Интернет - компании

• Данные

 Обработка естественного языка, анализ социальных сетей, анализ изображений и видео, анализ аудио сигналов, рекомендательные системы, поиск ассоциативных правил

• Кейсы

 Поиск спама, рекомендательные системы, сегментация потребителей, выявление фрода, прогнозирование оттока, распознавание речи, классификация изображений

Примеры прикладных задач анализа данных: сферы

- Финансовые организации (Bank of America, Citigroup, Сбербанк, HomeCredit)
- Ритейл (Amazon, Target, Metro, Лента)
- Телеком (Vodafone, China Mobile, Вымпелком, МТС, Мегафон)
- Социальные сети (Facebook, Baidu, ВКонтакте, Одноклассники)
- **Медицина** (Enlitic, Lumiata, Numerate)
- **Урбанистика** (Uber, ГенПлан, РЖД, ДИТ Правительства Москвы)
- Интернет-компании (Google, Facebook, Яндекс, Mail.ru,)

Примеры прикладных задач анализа данных: данные

- Обработка естественного языка (Natural Language Processing)
 - Машинный перевод, анализ отзывов, выделение названий, логические выводы
- Анализ социальных сетей (Social Network Analysis)
 - Рекомендация друзей, поиск сообществ, выделение лидеров мнения
- Анализ изображений и видео (Computer Vision)
 - Выделение лиц на изображениях, извлечение номеров, названий с камер

- Анализ аудио сигналов (Signal Processing)
 - Распознавание речи, классификация музыки, рекомендация плейлиста
- Рекомендательные системы (Recommended Systems)
 - Рекомендация товаров, друзей,
 прогнозирование оценок к фильмам
- Поиск ассоциативных правил (Association Rule Learning)
 - Построение логических правил, анализ чеков

Примеры прикладных задач анализа данных: кейсы

- Поиск спама (Spam Detection)
 - Gmail, Mail.ru, Яндекс.Почта, ...
- Рекомендательные системы (Product Recommendation)
 - Netflix, Amazon, Ozon, RetailRocket, Facebook, ...
- Сегментация потребителей (Customer Segmentations)
 - Facebook, Google, Яндекс, Вымпелком, ...
- Выявление фрода (Fraud Detection)
 - Google, Facebook, Вымпелком, Сбербанк, ...

- Прогнозирование оттока (Churn Prediction)
 - Amazon, Netflix, Вымпелком, МТС, Мегафон, МГТС, ...
- Распознавание речи (Speech Understanding)
 - Apple (Siri),
- Классификация изображений (Image Understanding)
 - Facebook, Google, Instagram, Яндекс, Mail.ru, ...

А также множество других задач, vногие из которых в стадии Research

Основы машинного обучения

Основы машинного обучения

- Понятия объекта и признаков
- 3 классические задачи машинного обучения
- Извлечение, отбор и преобразование признаков
- Алгоритмы машинного обучения
- Метрики качества алгоритмов классификации

Объекты и признаки

• Объекты и признаки зависят от рассматриваемого контекста (задачи)

- В2С абонент сотового оператора
 - ARPU, модель телефона, количество финансовых блокировок, количество входящих звонков, средняя сумма пополнения баланса
- Пара сим-карт
 - Количество общих контактов, модели телефонов, количество совместных регистраций на базовой станции
- Электронное сообщение
 - Длина сообщения, наличие цифр, количество слов, предложений, сами слова
- Ресторан
 - Средний чек, количество посетителей за месяц, район, количество официантов

- Машинное обучение умеет:
 - Получив **объекты** (человек, изображение, сим-карта, цветок, пара людей)
 - **Получить** или **извлечь признаковое описание** объектов (рост, цвет волос, размер одежды, количество детей, образование, наличие смартфона)
 - Посмотрев на объекты, научиться:
 - Классифицировать (Мужчина/Женщина)
 - Прогнозировать значения для объектов (Возраст, Доход, Рост)
 - Группировать (Школьники, Бизнесмены, Политики, Любители Чая)

Классификация

Регрессия

Обучение с учителем (supervised learning)

Кластеризация

Обучение без учителя (unsupervised learning)

Классификация

Дано:

 Обучающая выборка, состоящая из признакового описания объектов и метки класса для каждого объекта

• Найти:

 Алгоритм, который бы для каждого нового объекта по его признаковому описанию прогнозировал класс этого объекта

Геометрически алгоритм строит разделяющую поверхность, отделяющую объекты разных классов

Классификация

ID	ARPU	Кол-во блокирово к	Кол-во входящих звонков	отток
9034948911	123.5	5	15	1
9034948912	245.6	10	124	0
9034948913	890.4	0	23	1
9034948914	50.3	101	0	0

АЛГОРИТМ: **ВХОД** - [ID, ARPU, Кол-во блокировок, Кол-во входящих звонков], **ВЫХОД** – [ОТТОК]

903494895	12.6	8	12	?
9034948916	1012.2	10	256	?
9034948917	132.9	112	10	?

"Билайн"

Классификация

• Важно помнить:

- Классификация это **обучение с учителем (supervised learning)**, в роли учителя выступает **обучающая выборка**
- Классификация прогнозирует **метку (класс)** для объекта, который может принимать набор **дискретных** значений
- В результате получается **алгоритм**, который на вход принимает **признаковое описание** объекта, а на выходе выдает его **класс**

• Примеры задач:

 Классификация абонентов по полу, классификация спама, классификация абонентов на наличие второго устройства

Геометрически, алгоритм восстанавливает зависимость между признаками и целевой переменной

Дано:

- Обучающая выборка, состоящая из признакового описания объектов и значения целевой переменной для каждого объекта

• Найти:

Алгоритм, который бы для каждого нового объекта по его признаковому описанию прогнозировал целевую переменную этого объекта

ID	ARPU	Модель телефона	Интернет- трафик	доход
9034948911	123.5	Samsung	1500.4	10000
9034948912	245.6	iPhone 6	1124.7	25000
9034948913	890.4	Nokia	2312.6	135000
9034948914	50.3	Samsung	1321.3	90000

АЛГОРИТМ: **ВХОД** - [ID, ARPU, Модель телефона, Интернет-трафик], **ВЫХОД** - [ДОХОД]

903494895	12.6	iPhone 5S	12123.6	?
9034948916	1012.2	НТС	13256.9	?
9034948917	132.9	Samsung	101333.1	?

• Важно помнить:

- Регрессия это **обучение с учителем (supervised learning)**, в роли учителя выступает **обучающая выборка**
- Регрессия прогнозирует **значение целевой переменной** для объекта, которая может принимать любое **действительное** значение
- В результате получается **алгоритм**, который на вход принимает **признаковое описание** объекта, а на выходе выдает **значение целевой переменной**

• Примеры задач:

 Прогнозирование дохода абонента, прогнозирование нагрузки на колл-центр, прогнозирование прибыли ресторана

Дано:

 Обучающая выборка,
 состоящая из признакового описания объектов

• Найти:

 Разделение всех объектов на кластеры

Геометрически, алгоритм **группирует** данные объекты в **кластеры** наилучшим образом

Кластеризация

ID	ARPU	Модель телефона	Интернет- трафик	Кол-во блокирово к
9034948911	123.5	Samsung	1500.4	5
9034948912	245.6	iPhone 6	1124.7	10
9034948913	890.4	Nokia	2312.6	0
9034948914	50.3	Samsung	1321.3	101
9034948915	12.6	iPhone 5S	12123.6	8
9034948916	1012.2	HTC	13256.9	10
9034948917	132.9	Samsung	101333.1	2
9034948918	152.0	Nokia	1498.2	76
9034948919	14.6	Samsung	4135.7	54

Кластер 1

Кластер 2

Кластер 3

• Важно помнить:

- Кластеризация это **обучение без учителя (unsupervised learning)**, размеченная (обучающая) выборка не нужна
- Кластеризация **группирует** данное множество объектов на кластеры **наилучшим образом**
- В результате получается **алгоритм**, который на вход принимает **признаковое описание** набора объектов и на выходе выдает разбиение объектов на группы

• Примеры задач:

 Выделение домохозяйств среди абонентской базы, выделение сообществ, определение архетипа абонента

Извлечение, отбор и преобразование признаков

- Признаки **для простых объектов** (человек, сим-карта) берутся на основе целевой переменной:
 - Опытным путем (наверное, на доход влияет ARPU)
 - Из статей (если задача ранее решалась)

- Для **сложных объектов** (лицо на изображении, слова в тексте, номер на видео) признаки извлечь очень тяжело:
 - Либо из статей (то, что ученые придумали)
 - Либо извлекать автоматически (**Deep Learning** подход)

Человеко-читаемые, извлекаются сразу

НЕ человеко-читаемые, извлекаются с помощью сложных алгоритмов

Извлечение, отбор и преобразование признаков

• Машина – не человек:

- Если в качестве признака есть дата, то машина не понимает время суток
- Если дано имя машина не понимает, что оно женское
- Если дан числовой признак машина не понимает, много это или мало
- Машина не может группировать признаки
- Машина не различает «много» или «мало»

• Примеры преобразования признаков:

- При прогнозировании спроса на вело прокат дату можно преобразовать в признаки «утро», «день», «вечер»
- При прогнозировании цены квартиры «длину» и «ширину» нужно преобразовать в площадь

Наиболее простые подходы к задачам машинного обучения

- Классификация
 - Деревья решений (**Decision Trees**), метод ближайшего соседа (**kNN**), метод опорных векторов (**SVM**)
- Регрессия
 - Линейная регрессия (Linear Regression)
- Кластеризация
 - KMeans, иерархическая кластеризация (Hierarchical Clustering)

Классификация: деревья решений

Наиболее часто используемый алгоритм в медицине и банковском скоринге ввиду человеко-читаемости

Идея:

- Пытаемся оптимальным образом построить **дерево** так, чтобы объекты **обучающей выборки** классифицировались **максимально** правильно

• Результат:

 Для каждого нового объекта сможем пройтись по дереву и классифицировать объект, выдав при этом причину классификации

Классификация: метод ближайшего соседа

Идея:

 Наверное, новый объект такого же класса, как и его окружение

• Результат:

 Для каждого нового объекта смотрим его окружение и говорим, на кого он больше похож

Алгоритм **не используется в продуктивных задачах**, т.к. для каждого нового объекта мы должны искать ближайших – **это долго**

Классификация: метод опорных векторов

Один из самых **распространенных** алгоритмов классификации, ввиду своей **гибкости**

Идея:

Пытаемся провести разделяющую поверхность так, чтобы максимизировать зазор между объектами обучающей выборки разных классов

• Результат:

 Для каждого нового объекта смотрим, с какой стороны от разделяющей поверхности он лежит, тем самым, классифицирую объект

Регрессия: линейная регрессия

Линейные модели допускают гибкую настройку и большое количество эвристик. Настраивать сложно, но алгоритмы наиболее подходят для продуктивных решений ввиду своей простоты

• Идея:

- Метод наименьших квадратов, известный со школы
- Ищем значение целевой переменной в виде линейной комбинации признаков

• Результат:

 Для каждого нового объекта смотрим по восстановленной зависимости (формуле) считаем значение целевой переменной

Кластеризация: KMeans

Fig. 2. Grouping of observations by k-means algorithm

KMeans является **наиболее распространенным** методом кластеризации, однако важно правильно определить **метрику** – расстояние между объектами

Идея:

- Задаем количество кластеров
- Задаем центры кластеров
- Каждый объект принадлежит к тому кластеру, центр которого ближе
- Уточняя центры кластеров находим оптимальное разбиение

• Результат:

 Наиболее оптимальное разбиение данных объектов на кластеры

Кластеризация: иерархическая кластеризация

Иерархическая кластеризация **более гибкая**, чем KMeans в бизнес приложениях, но и **более чувствительна к настройкам** параметров

• Идея:

- Изначально каждый объект отдельный кластер
- Постепенно объединяем похожие кластеры между собой на основе метрики схожести
- Результат:
 - Дендрограмма иерархическое древовидное представление кластеризации

Метрики качества алгоритмов классификации

Бинарная		Истинные значения	
классиф	рикация	1	0
Результат	1	TP	FP
алгоритма	0	FN	TN

TP + TN

Доля	Accuracy = $\frac{11 + 11}{2}$		
Доли.	$Accuracy = \frac{1}{TP + FP}$		
Точность	$Precision = \frac{TP}{TP + FP}$		
ТОЧНОСТВ			
Полнота	$Recall = \frac{TP}{}$		
ПОЛНОТА	$\frac{\text{TP} + \text{FN}}{\text{TP} + \text{FN}}$		
F-мера	$F = 2 \frac{Precision \times Recall}{Precision}$		
і -мера	Precision + Recall		

True Positive

- верно угадали 1
- True Negative
 - верно угадали 0
- False Positive
 - ошибка первого рода
- False Negative
 - ошибка второго рода

Инструменты анализа данных

Инструменты для анализа данных

- Инструменты анализа Small Data
 - Интерактивные инструменты: RapidMiner, Weka
 - Скриптовые языки: Python (pandas, scikit-learn), R (DataFrame, caret)
- Инструменты анализа **Big Data**
 - Введение в стек технологий **Hadoop**
 - Первичный анализ данных: **Hive**, **Pig**
 - Машинное обучение: Apache Spark, Vowpal Wabbit
- Порядок использования инструментов в конкретных задачах

Инструменты анализа Small Data: интерактивные инструменты - RapidMiner

Подготовка данных (ETL)

Первичный анализ (Data Mining)

Машинное обучение

- Хороший GUI
- Упрощает ETL операции
- Расширяемость (R-scripts)
- Open-source решение
- Реализовано множество алгоритмов машинного обучения
- Минимальный порог входа для аналитика

Инструменты анализа Small Data: интерактивные инструменты - Weka

Первичный анализ (Data Mining)

Машинное обучение

- Относительно хороший GUI
- ETL операции не гибки
- Расширяемость сложна
- Полностью Open-Source
- Реализовано множество алгоритмов машинного обучения
- Средний порог входа для аналитика

Инструменты анализа Small Data: скриптовые языки - Python

Подготовка данных (ETL)

Первичный анализ (Data Mining)

Машинное обучение

- Есть подобие GUI Jupyter
- Максимальная гибкость ETL операций (pandas)
- Расширяемость за счет библиотек
- Полностью Open-Source
- Реализовано множество алгоритмов машинного обучения (scikit-learn)
- Высокий порог входа для аналитика

Инструменты анализа Small Data: скриптовые языки - R

Подготовка данных (ETL)

Первичный анализ (Data Mining)

Машинное обучение

- Хорошее GUI RStudio
- Максимальная гибкость ETL операций (**DataFrame**)
- Расширяемость за счет библиотек
- Полностью Open-Source (+ коммерческая реализация)
- Реализовано множество алгоритмов машинного обучения (caret)
- Высокий порог входа для аналитика

Инструменты анализа Small Data: сравнение

Продукт	GUI	ETL	Машинное обучение	Расширяем ость	Порог входа	Цена
RapidMiner	10	10	8	7	3	Free
Weka	7	5	7	3	5	Free
Python	9	10	10	10	9	Free
R	10	10	9	9	10	Free

- На практике обычно простой анализ делается с помощью интерактивных инструментов RapidMiner или Weka, более сложный – с помощью Python или R с подключением дополнительных библиотек
- Ценность инструментов от **IBM**, **SAS** заключается в проприетарной поддержке

Введение в стек технологий Hadoop

- Когда говорят о **Hadoop**, в первую очередь подразумевают:
 - Распределенную файловую систему **HDFS**
 - Модель вычислений MapReduce
- Также в стек технологий Hadoop входит большое кол-во дополнительных инструментов:
 - ZooKeeper, Oozie, Azkaban координация процессов и планирование потоков задач
 - **Sqoop**, **Flume**, **Kafka** импорт и экспорт данных
 - **Hbase**, **Cassandra** noSQL базы данных
 - **Hive**, **Pig** обработка данных, adhoc-запросы

Hadoop Distributed File System (HDFS)

Data Nodes (Commodity Hardware)

- Данные хранятся распределенно на большом количестве машин
- Имеется **NameNode** главная машина (может быть не одна), на которой хранится вся метаинформация
- Имеется большое количество **DataNode**, на которых хранятся непосредственно блоки данных
- Линейный рост мощности (добавление новых **DataNode**)
- Устойчивость и безопасность хранения достигается благодаря репликации

Модель вычислений MapReduce

- Данные хранятся в **HDFS** в виде файлов (построчно)
- Большинство запросов можно вычислить с помощью двух операций
- · Map:
 - Input record => (key, value)
- Reduce:
 - $(key, \{v1,...,vn\}) => output record$

Инструменты анализа Big Data: Data Mining - Hive

```
-- import the file as lines

CREATE EXTERNAL TABLE lines(line string)
LOAD DATA INPATH 'books' OVERWRITE INTO TABLE lines;

-- create a virtual view that splits the lines

SELECT word, count(*) FROM lines

LATERAL VIEW explode(split(text, ' ')) lTable as word

GROUP BY word;
```

Adhoc - запросы

Подготовка данных

- **SQL**-подобный синтаксис
- Слабая гибкость
- Расширяемость за счет пользовательских функций
- Полностью Open-Source (входит в стек Hadoop)
- Низкий порог входа для аналитика

Инструменты анализа Big Data: Data Mining - Pig

Sample Pig script:

```
stock = LOAD '/user/fred/stock' AS (id, item);
orders= LOAD '/user/fred/orders' AS (id, cost);
grpd = GROUP orders BY id;
totals = FOREACH grpd GENERATE group,
SUM(orders.cost) AS t;
result = JOIN stock BY id, totals BY group;
DUMP result;
```

We will investigate Pig in more detail later in the course

Подготовка данных (ETL)

Adhoc - запросы

- Собственный процедурный язык (Pig Latin)
- Достаточно гибкие запросы
- Расширяемость за счет пользовательских функций
- Полностью Open-Source (входит в стек Hadoop)
- Средний порог входа для аналитика

Инструменты анализа Big Data: машинное обучение – Apache Spark

- Имеет streaming для Python, Scala, Java
- Вычисления im-memory
- Высокая гибкость
- Расширяемость практически не требуется
- Полностью Open-Source
- Высокий порог входа для аналитика

Инструменты анализа Big Data: машинное обучение – Vowpal Wabbit

Машинное обучение

- Предназначен для машинного обучения на больших данных **без кластера**
- Для работы используется консоль
- Высокая гибкость
- Базового функционала хватает
- Полностью Open-Source, коммерческого происхождения
- Средний порог входа для аналитика

Разработка продукта: бизнес-процесс

Разработка продукта: бизнес-процесс

- Идея
- Бизнес-требования
- Формальные требования
- Определение необходимых данных
- Выгрузка данных
- Предобработка данных
- Построение модели, тестирование
- «ВАУ» эффект на пилоте
- Разработка продуктивного решения

Разработка продукта: бизнес-процесс

Идея

Бизнес-требования

Формальные требования

Определение необходимых данных

Выгрузка данных

Предобработка данных

Построение модели

«ВАУ» - эффект на пилоте

Разработка продуктивного решения

Идея

- Идеи обычно генерирует бизнес
- Генерирует, не думая
- Идеи фантастические, часто не реализуемые
- Задачи, которые можно решать хорошо известны давно
- Кроме телекома там почти все задачи новые и в книгах их нет=)

- Что такое отток клиентов?
- Хочется находить абонентов со вторыми устройствами
- Неплохо было бы знать пол абонента
- Ну и возраст заодно
- А еще хорошо сделать рекомендательную систему для IPTV

"Билайн"

Бизнес-требования

Бизнес-требования

- Рассчитывается кейс
- Как правило, рассчитывается на основе кампании
- Определяется то, что хочется на выходе
- Бизнес решает «делать или нет»!

- Что такое отток клиентов?
- Как будет планироваться кампания по удержанию?
- Сколько времени занимает компания?
- Насколько критична «ложная тревога»?
- Как должно выглядеть продуктивное решение?
- Каков бизнес эффект от кейса?

Формальные требования

- Четко определено целевое действие
- Понятно, к какому качеству стремиться
- Понятно, какие данные придется выгружать, какие признаки генерировать
- Можно назвать «сроки»!

- Отток «не звонил X раз, не писал смс Y раз за последние Z дней»
- После прогнозирования оттока «в течении X дне будет проводиться коммуникация с клиентов посредством канала Y»
- Компания занимает X дней с момента выгрузки отчета
- Точность должна быть не менее X, полнота должна быть не менее Y
- В продуктивном решении отчет выгружается раз в X дней

Определение необходимых данных

Определение необходимых данных

- Понятно, сколько придется писать код
- Понятно, сколько придется по времени выгружать данные
- Пока еще не понятны признаки, которые нужны в задаче

- Для оттока скорее всего нужны агрегированные показатели по активности звонки, смс
- Скорее всего также потребуются агрегированные данные по трафику
- Наверное, также потребуется обработка обращений
- Звонки на номера конкурентов тоже потребуются
- И что-то еще, но пока возьмем то, что есть
- Где брать «обучающую» выборку?

Выгрузка данных

Выгрузка данных

- На выходе разнородные, не очищенные, часто не правильные данные
- Over X файлов на выходе, которые нужно предобработать

- Источники данных разные
- Пишем код
- Тестируем
- Не все сразу работает, на больших данных часто что-то «падает»
- Запускаем и ждем

Предобработка данных

Предобработка данных

- На выходе имеет данные в формате, пригодном для разработки алгоритма
- Фактически, теперь мыслим в терминах «объект-признак», ведь матрица уже есть

- Из сырых данных генерируем признаки (часто берем лишние с запасом)
- Удаляем выбросы
- Пропущенные значения либо удаляем, либо думаем, как заполнять
- Подготавливаем матрицу «объектпризнак»

Построение модели

Построение модели

- На выходе имеем законченную модель, протестированную на обучающей выборке
- Ограничения продукта на данном этапе видны еще не окончательно!

- Проверяем простые гипотезы смотрим корреляцию, зависимости между признаками
- Отбираем признаки, генерируем новые, сокращаем размерность
- Строим несколько моделей
- Сравниваем между собой
- Выбираем лучший алгоритм

«ВАУ» - эффект на пилоте

«ВАУ» - эффект на пилоте

- Фактически, прошла продажа, результат утвержден
- Можно работать над продуктивным решением

- Возвращаемся к заказчику
- Просим несколько абонентов
- Угадываем
- Подписываем чек
- Начинаем внедрять в продуктив

Разработка продуктивного решения

Разработка продуктивного решения

- Продуктивное решение важно сделать максимально простым с точки зрения поддержки
- Продуктивное решение тоже нужно тестировать

- Определяем самый простой путь от сырых данных до нужных признаков
- Создаем новые «витрины» данных при необходимости
- Пишем максимально качественный код
- Готовим презентации, отдаем результат

Подготовка специалистов в областях Data Science и Big Data

- Математическая подготовка
- Навыки программирования
- Машинное обучение
- Практика построения алгоритмов
- Знакомство с методами хранения и обработки больших данных
- Знакомство с вопросами архитектуры и Real-Time методами анализа данных

- Важно развивать в себе математическое мышление:
 - Работа с дискретными объектами
 - Алгоритмическое мышление
 - Понимание понятия «вероятность»

- Навыки программирования в **Data Science**:
 - Минимальные (для аналитиков и тех, кто строит модели)
 - **Python, R, SQL** на этапе тестирования гипотез и разработки алгоритмов машинного обучения
 - Требовательные (для разработчиков продуктивных решений)
 - Java, Scala, C++ в зависимости от архитектуры конечного продуктивного решения

- Важно понимать, какие задачи есть, какие решаются хорошо, какие пока плохо
- Важно научиться правильно и эффективно извлекать признаки из сложных объектов
- Важно понимать, как выбирать модели, тестировать алгоритмы, какие метрики используются
- Важно научиться объяснять результаты простыми словами

Практика построения алгоритмов

- Важно наступить на все грабли, которые не описаны в книгах:
 - Где и как искать обучающую выборку?
 - Какие признаки использовать для конкретной задачи?
 - Как лучше разбивать выборку на тестовую и обучающую?
 - Какие алгоритмы больше подходят для классификации текстов?
 - Что делать, если объектов не достаточно для построения алгоритма?
 - И множество других вопросов, ответы на которые можно найти только решив большое кол-во задач

Знакомство с большими данными

- Важно понимать, как хранятся и обрабатываются большие данные
- Надо научиться мыслить в парадигме MapReduce
- Необходимо понимать, как существующие алгоритмы машинного обучения реализуются в модели вычислений **MapReduce**
- Важно научиться импортировать модели на кластер и запускать на большой тестовой выборке
- Необходимо научиться работать с инструментами Hive, Pig, Apache Spark

Знакомство с вопросами архитектуры и Real-Time методами анализа данных

- Важно отличать в продуктивном решении **batch**-обработку данных (анализ истории) от real-time (**mini-batch** либо **транзакции**)
- Необходимо понимать, как алгоритмы могут «дообучаться» в режиме реального времени
- Важно правильно строить архитектуру обработки данных
- Нужно быть знакомым с инструментами обработки данных в реальном времени (Apache Spark, Apache Storm)
- Очень важно оценивать нагрузку на сервис

Примеры решения прикладных задач

Примеры решения прикладных задач

- Предсказание судьбы пассажиров Титаника
- Кластеризация городов России по социально-экономическим признакам
- Классификация отзывов к фильмам
- Поиск необычных моделей Playboy

Предсказание судъбы пассажиров Титаника

Оригинал: habrahabr.ru/post/202090/

Предсказание судьбы пассажиров Титаника

- Имеются пассажиры (объекты), описываемые признаками:
 - **PClass** социально-экономический статус (высокий, средний, низкий)
 - **Name** имя пассажира
 - **Sex** пол пассажира
 - Age возраст
 - SibSp кол-во родственников 2го порядка (муж, жена, братья) на борту
 - Parch кол-во родственников 1го порядка (мать, отец, дети) на борту
 - Ticket номер билета
 - Fare цена билета
 - Cabin номер каюты
 - **Embarked** порт посадки (C Cherbourg, Q Queenstown, Sa Southampton)

Для каждого пассажира необходимо узнать – утонет он или нет?

Смотрим на данные

ID	PClass	Name	Sex	Ag e	Sub Sp	Parc h	Ticket	Fare	Cabin	Emb arke d	Surv ived
1	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	NaN	S	0
2	1	Cumings, Mrs. John Bradley	femal e	38	1	0	PC 17599	71.2833	C85	С	1
3	3	Heikkinen, Miss. Laina	femal e	26	0	0	STON/ O2. 3101282	7.9250	NaN	S	1
4	1	Futrelle, Mrs. Jacques Heath	femal e	35	1	0	113803	53.1000	C123	S	?
5	3	Allen	male	35	0	0	373450	8.0500	NaN	S	?

- Обучающая выборка содержит из 890 объектов
- Часть данных пропущена

Бинарная классификация

Тестируем простые гипотезы - 1

• Гипотеза 1: чем выше социальный статус (PClass), тем прочнее каюта, тем больше вероятность спасения человека

- В целом, почти верно
- Можно добавить новый признак «Pclass = 3», характеризующий тех, кто с большой вероятностью спасется

До появления машинного обучения все примерно так и работало

Тестируем простые гипотезы - 2

• Гипотеза 2: человек будет спасать своих родственников при крушении. Посмотрим, как влияет количество родственников на вероятность спасения

- Действительно, из тех, кто имеют родственников, спаслись не многие
- Можно добавить новые признаки
 «кол-во родственников
 больше Х»

Заполняем пропуски, отбираем признаки

- Данные о каютах (Cabin) заполнены на 204 / 890 < 23% можно отбросить
- Данные о возрасте (**Age**) заполнены на 713 / 890 > **80% надо научиться заполнять!**
 - Можно заполнить средним или медианным значением
- Есть 2 человека, у которых не известен порт посадки (**Embarked**)
 - С большой вероятностью они сели там же, где и большинство людей
- Наверное, номер билета и имя пассажира не влияют на вероятность спасения (в нумерологию не верим, хотя, интересно проверить)

Преобразование категориальных признаков

- Признаки **Sex** (пол) и **Embarked** (порт посадки) категориальные
- Большинство алгоритмов машинного обучения работают с числовыми признаками
- Сделаем следующее преобразование:
 - Заменим пол (Sex) на 1 (мужчина) и 0 (женщина)
 - Порт посадки заменим на 0 (Cherbourg), 1 (Queenstown), 2 (Southampton) –
 почему это не совсем верно?

Все описанные выше операции применяем и к тестовой выборке

Пред обработанные данные

• После всех преобразований, наша **обучающая** выборка готова для тестирования алгоритмов машинного обучения

ID	PClass	Sex	Age	SubSp	Parch	Fare	Embarked	Survived
1	3	1	34.5	0	0	7.8292	1	0
2	3	0	47.0	1	0	7.0000	2	1
3	2	1	62.0	0	0	9.6875	1	1
4	3	1	27.0	0	0	8.6625	2	?
5	3	0	22.0	1	1	12.2875	2	?

Обучающая и тестовая выборки отличаются одним столбцом

Планирование методик тестирования алгоритма

- Целевые значения на тестовой выборке нам не известны. Как локально проверять качество алгоритма?
- Можно обучающую выборку разделить на 2 части:
 - Train например, первые **80% объектов** от обучающей выборки
 - Validation проверочная оставшиеся 20% объектов
- После чего «обучить» алгоритм на выборке Train, «проверить» на выборке Validation
- Сделаем так много раз и посчитаем среднее значение **Precision данный подход** носит название **5-fold**
- Также можем построить **ROC-кривые**

Тестирование алгоритмов машинного обучения, выбор модели

- Выбираем среди KNN, SVM, RandomForest и логистической регрессии
- Для каждого алгоритма также необходимо подбирать параметры, например, в KNN мы использовали
 18 соседей, а в RandomForest 70 деревьев
- Видим, что наилучшее значение метрики качества показал алгоритм **RandomForest**

Тестирование алгоритмов машинного обучения, выбор модели

- Строим **ROC кривые** для KNN, SVM, RandomForest и логистической регрессии
- Чем выше и выпуклее ROCкривая, тем качественнее алгоритм
- Снова наилучшее значение метрики качества показал алгоритм RandomForest

Анализ результатов, презентация внутри команды

- Итого, в итоговом варианте мы получили алгоритм, который на обучающей выборке показывает значение метрики 5-fold равное 0.77
- На входе алгоритм принимает значения признаков:
 - PClass (социально экономический статус), Sex (пол), Age (возраст), SubSp (кол-во родственников 1го порядка), Parch (кол-во родственников 2го порядка), Fare (цена билета), Embarked (порт посадки)
- На выходе алгоритм прогнозирует бинарное значение (утонет/не утонет)

Осталось правильно это «продать» бизнесу, оперируя понятиями: качество, точность, охват, лифт, value и другими, понятными конкретному заказчику понятными метриками

Как продать?

- Можно пойти 4мя путями:
 - Мы получили алгоритм, который на обучающей выборке показывает значение метрики 5-fold равное 0.77
 - Мы сделали алгоритм **с точностью 0.77**, который для каждого пассажира предсказывает, утонет он или нет
 - Мы взяли обучающую выборку, разбили ее на **2 части**, на одной обучились, на второй протестировали. Так сделали несколько раз. Усреднили результаты. Получили тем самым значение метрики **5-fold** равным **0.77**. Готовы брать признаки и предсказывать факт спасения человека
 - Дайте нам несколько пассажиров с последнего
 Титаника, а мы расскажем, кто из них утонул

Не поспоришь!

Работает!!!

Кластеризация городов России по социально-экономическим признакам

Оригинал: habrahabr.ru/post/140837/

Кластеризация городов России по социально-экономическим признакам

- Имеется 17 крупнейших (по численности населения) городов России
- Каждый город описывается 10ю социально-экономическими признаками:
 - Население, плотность населения, прирост населения
 - Средняя зарплата, средняя численность трудоустроенных
 - Общая площадь жилых помещений
 - Кол-во преступлений на одного жителя, число обучающихся на одного жителя
 - ...
- Необходимо найти «**похожие**» между собой города, например, чтобы прогнозировать бюджет или сравнивать города между собой

Разделение на 3 кластера

Санкт-Петербург, Екатеринбург, Новосибирск Нижний Новгород, Уфа, Пермь, Красноярск, Краснодар

В основном схожи по численности населения

Москва

Отдельный кластер

Самара, Казань, Омск, Челябинск, Волгоград, Ростов-на-Дону, Воронеж, Саратов

Опять же, разделение в основном по демографии

Разделение на 5 кластеров

Самара, Ростов-на-Дону, Челябинск, Нижний Новгород

Омск, Волгоград, Саратов, Казань, Воронеж

Новосибирск, Екатеринбург, Пермь, Красноярск, Краснодар, Уфа

Санкт-Петербург

Москва

- Появляется новый нетипичный объект Санкт-Петербург
- Оба города похожи между собой по демографическим признакам, но разнятся, например, в средней заработной плате
- Далее необходимо все больше изучать разницу между городами и «всматриваться» в отдельный кластер, чтобы попять результат кластеризации

Дальнейшее объяснение кластеризации индивидуально

Классификация отзывов к фильмам

Классификация отзывов в фильмам

- Имеются наборы отзывов к фильмам:
 - **25 тыс** размеченных отзывов к фильмам (**обучающая выборка**)
 - 25 тыс неразмеченных отзывов к фильмам (тестовая выборка)
 - 50 тыс дополнительных неразмеченных отзывов (зачем?)
- Необходимо научить классифицировать отзывы к фильмам на 5 классов, например, чтобы прогнозировать рейтинг фильма

Задача классификации на 5 классов

Сложные объекты - тексты

Посмотрим на данные

ID	Review	Sentiment
5814_8	1	With all this stuff going down at the moment
2381_9	0	The Classic War of the Worlds by Timothy
7759_3	4	The film starts with a manager (Nicholas Bell
3630_4	?	It must be assumed that those who praised thi
9495_8	?	Superbly trashy and wondrously unpretentious

Осталось научиться извлекать признаки

Bag of Words

- Документ это набор слов
- Признаки интерпретируются
- Не учитываются связи между словами
- Признаки для документа наличие очередного слова
- Требуется предобработка данных

Word2Vec

- Слово описывается набором числовых параметров
- Учитываются связи между словами
- Признаки для слова не интерпретируются
- Не требуется предобработка данных

Извлечение признаков: Bag of Words

- Очищаем каждый текст:
 - Удаляем мусор (html-теги, заголовки, служебные отметки)
 - Выбрасываем числа и знаки препинания
 - Разделяем на слова
 - Приводим к нижнему регистру
 - Делаем **лемматизацию**
 - Делаем стемминг
 - Удаляем стоп-слова (в каждом языке свои)
 - Удаляем наиболее редко встречающиеся слова
- Отзыв это набор слов (bag of words)

Строим Document Term Matrix

- Строим словарь
 - Берем все слова, используемые во всех отзывах, отсекаем ${f N}$ самых часто встречающихся
- Для каждого отзыва, набор признаков это факт наличия в нем очередного слова из словаря
- Итого, каждый **отзыв** имеет **N** бинарных признаков

Словарь может строиться на всех объектах

Можно для каждого слова из словаря считать кол-во его вхождений в очередной отзыв

Document Term Matrix

ID	Review	"film"	"actor"	"love"
5814_8	1	1	0	1
2381_9	0	0	1	1
7759_3	4	1	1	0
3630_4	?	1	0	0
9495_8	?	0	1	1

Далее, также как и в предыдущей задаче, используя алгоритмы машинного обучения строим модель

Извлечение признаков: Word2Vec

После преобразования слова можно складывать, вычитать и т. д.

- Word2Vec структура данных, первоначально разработанная и используемая компанией Google для анализа поисковых запросов
- На вход подается большое количество необработанных текстов, а также другие дополнительные параметры
- На **выходе** для каждого слова имеем вектора одинаковой длины, состоящие из не интерпретируемых числовых признаков

Word2Vec: примеры

• Подадим на вход **word2vec** большое количество поисковых запросов на русском языке

- Посмотрим на возможности **word2vec** на примерах:
 - Опечатки
 - Транслитерация
 - Слова-синонимы
 - Семантически близкие слова
 - Кластеризация запроса
 - Семантическая разница между словами
 - Оценка важности слов в поисковом запросе

Оригинал: habrahabr.ru/post/249215/

Word2Vec: опечатки

Word: преключение

Word Cosine distance

— приключение 0.748698

преключения 0.726111

риключения 0.692828

приключеия 0.670168

прключение 0.666706

приключеня 0.663286

приключени 0.659609

• Вычисляя угол между векторами (скалярное произведение) – мы можем узнать «расстояние» между словами

Таким образом, наиболее близкое по значению слово есть правильное, если имеется опечатка

Word2Vec: транслитерация

Word: avito

Word Cosine distance

- awito 0.693721

авито 0.675299

fvito 0.661414

авита 0.659454

irr 0.642429

овито 0.606189

avito 0.598056

• Вычисляя угол между векторами (скалярное произведение) – мы можем узнать «расстояние» между словами

Можем находить не только опечатки, но и сайты-аналоги

Word2Vec: слова-синонимы

Word: mail

Word Cosine distance

- rambler 0.77771

meil 0.765292

inbox 0.745602

maill 0.741604

yandex 0.696301

maii 0.675455

myrambler 0.674704

• Вычисляя угол между векторами (скалярное произведение) – мы можем узнать «расстояние» между словами

Можем определять также слова-

Word2Vec: слова-синонимы

Word: кофе

Word Cosine distance

— коффе 0.734483

чая 0.690234

чай 0.688656

капучино 0.666638

кофн 0.636362

какао 0.619801

эспрессо 0.599390

• Вычисляя угол между векторами (скалярное произведение) – мы можем узнать «расстояние» между словами

В зависимости от настроек word2vec мы можем выдавать слова, синонимичные запросу

Word2Vec: описание запроса

Word: кофе

Word Cosine distance

— зернах 0.757635

растворимый 0.709936

чая 0.709579

коффе 0.704036

сублемированный 0.694553

молотый 0.690066

кофейные 0.680409

• Вычисляя угол между векторами (скалярное произведение) – мы можем узнать «расстояние» между словами

В зависимости от настроек word2vec мы можем выдавать слова, характеризующие запрос

Word2Vec: кластеризация запроса

Word: мобильный телефон

Word Cosine distance

— сотовый 0.811114

телефона 0.776416

смартфон 0.730191

телфон 0.719766

мобильного 0.717972

мобильник 0.706131

телефо 0.698894

• «Расстояние» можно считать не только между словом, но и между предложениями и документами, предварительно вычисляя вектор признаков для предложения/ документа

Сложный запрос может быть сведен к более простому

Word2Vec: семантическая разница между словами

Word: франция париж германия

Word Cosine distance

- мюнхен 0.716158

берлин 0.671514

дюссельдорф 0.665014

гамбург 0.661027

кельн 0.646897

амстердам 0.641764

франкфурт 0.638686

• «Расстояние» можно считать не только между словом, но и между предложениями и документами, предварительно вычисляя вектор признаков для предложения/ документа

Нашли слово, которое к Германии относится также как Париж к Франции

Word2Vec: оценка важности слов в поисковом запросе

Word: купить пиццу в москве

Importance

купить = 0.159387

пиццу = 1

B = 0.403579

MOCKBE = 0.455351

- На наших векторах можно также делать кластеризацию
- После, можно определить, к какому кластеру тяготеет запрос в целом
- А дальше упорядочить слова по расстоянию до центра кластера

Word: владимир путин

Importance

владимир = 0.28982

путиH = 1

Можно определить объект, который описывается в предложении

Возвращаемся к задаче

- Подадим на вход word2vec большое количество неразмеченных предложений
- Каждый отзыв описывается словами
- Каждое слово вектором признаков
- Посчитаем для каждого слова среднее значение векторов слов, входящих в него это и будет результирующий вектор признаков

Далее, также как и в предыдущей задаче, используя алгоритмы машинного обучения строим модель

Поиск необычных моделей Playboy

Оригинал: habrahabr.ru/post/251225/

Поиск необычных моделей Playboy

- Имеется 604 «девушек месяца» Playboy с декабря 1953 по январь 2009
- Для каждой из них известны:
 - Обхват груди (Bust, в см)
 - Обхват талии (Waist, в см)
 - Обхват бедер (Hips, в см)
 - Рост (Height, в см)
 - Bec (Weight, в кг)
- Хотелось бы найти самых «необычных» моделей за весь период

Первичный анализ данных

- По данным видно, что средние формы модели Playboy 89-60-89
- Средний рост 168 см
- Bec 52 кг
- Есть одна модель с талией 89 см – позже выяснится, что это выброс
- Есть одна модель с бедрами 61 см это тоже выброс

- Существует множество алгоритмов для выделения нетипичных (outliers) объектов в выборках. Один из них модификация **SVM**
- Задается процент выбросов
- Строится разделяющая поверхность, отделяющая выбросы от обычных объектов

Задав **1%** выбросов, получаем **7** моделей

Мики Уинтерс. Сентябрь, 1962. 91-46-86, рост 152, вес 45

Талия 46 — это, конечно, круто! Как у них при этом грудь 91?

Кристин Уильямс. Октябрь, 1963. 94-66-94, рост 183, вес 68

Достаточно большая девушка, учитывая средние значения тех лет

Розмари Хилкрест. Октябрь, 1964. 104-64-97, рост 168, вес 66

Еще более внушительная женщина

Сюзан Миллер. Сентябрь, 1972. 98-64-99, рост 185, вес 64

Необычное сочетание рост/ вес

Тройняшки Дам. 86-89 (реально 64)-86, рост 173, вес 52

Это как раз те самые выбросы, которые обнаружились вначале

Кара Мишель. Декабрь, 2000. 86-66-91, рост 188, вес 61

Рост 188 см - многовато для того времени

Кармелла де Сезаре. Апрель, 2003. 86-61-69, рост 173, вес 54

«Пожалуй, из-за бедер»

Ссылки на использованные ресурсы

- Часть материала основана на статьях:
 - http://habrahabr.ru/users/akrot/
 - http://habrahabr.ru/post/202090/
 - http://habrahabr.ru/post/140837/
 - http://habrahabr.ru/post/249215/
 - http://habrahabr.ru/post/251225/
- А также форумах:
 - https://www.kaggle.com
- И ресурсов по машинному обучению:
 - http://www.machinelearning.ru, http://mlclass.ru

Ресурсы для дальнейшего изучения

- Пишите по любым вопросам/проектам:
 - <u>al.krot.kav@gmail.com</u>
 - MLClass.ru
- Статьи на хабре
 - http://habrahabr.ru/users/akrot/
- Kypc Andrew Ng на Coursera.org: Machine Learning
- Решение практических задач: https://www.kaggle.com

Спасибо за внимание