DESCRIPTION

PT6355 is a Vacuum Fluorescent Display Controller driven 5/16, 6/16, 14/16 and 15/16 duty factors. Eight to Eighteen Segment Output Lines, Seven to Ten Grid Output Lines, Ten Segment/Grid Output Drive Lines, 8-bit x 6-channel A-D Converter, Built-in Noise Filter are all incorporated into a single chip to build a highly reliable peripheral device for a single chip micro-computer. PT6355 also provides 4 serial interfaces via the CS, SIN, SOUT, SCLK Pins. Housed in 44-pin, LQFP Package, PT6355's pin assignment and application circuit are optimized for easy PCB layout and cost saving benefits.

FEATURES

- CMOS Technology
- Internal Pull-Low Resistor
- 4-Step Dimming Circuitry
- 8 to 18 Segment Outputs
- 7 to 10 Grid Outputs
- Built-in Noise Filter in Serial Clock and Serial Input Pins with 2 MHz sampling
- 8-bit x 6 channels Analog-to-Digital Converter with +3LSB Accuracy
- Available in 44-pin, LQFP Package

APPLICATION

· Micro-Computer Peripheral Device

BLOCK DIAGRAM

APPLICATION CIRCUIT

ORDER INFORMATION

Valid Part Number	Package Type	Top Code
PT6355-LQ/PT6355	44-pin, LQFP	PT6355-LQ/PT6355

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.
VCC	-	Power supply	1, 44
OSC2	0	Oscillation output pin	2
VSS	-	Power supply	3
OSC1	I	Oscillation input pin	4
/Reset	I	Reset input pin Active "L" Internal pull-high resistors are connected between this pin and the VCC pins.	5
AN5 to AN0	I	Analog to digital pin	6 to 11
/CS	I	Chip select	12
SIN	I	Serial input pin The clock is read twice with a 2MHz sampling rate in order to judge if the signal is a noise or not.	13
SOUT	O n-channel open drain	Serial output pin During the Reset condition, this pin is in high-impedance state.	14
SCLK	I	Serial clock input pin The clock is read twice with a 2MHz sampling rate in order to judge if the signal is a noise or not.	15
VEE	-	Pull-down power supply Supplies voltage to Pull-down resistors	16, 17
GR0/P0 to GR7/P7	O p-channel open drain	Grid/Port output pins This pin acts as either a Grid Output Pin or as an Ordinary Port Terminal. During the reset condition, this pin is set to VEE via a pull-down resistor.	18 to 25
GR8/SEG17 to GR17/SEG8	O p-channel open drain	Grid/Segment output pins This pin acts as either a Grid Output Pin or as an Segment Output Pin. During the reset condition, this pin is set to VEE via a pull-down resistor.	26 to 35
SEG0 to SEG7	O p-channel open drain	Segment output pin During the reset condition, this pin is set to VEE via a pull-down resistor.	43 to 36

PORT BLOCK DIAGRAM

• Grid/Port Pin & Grid/Segment Pin

Segment Pin

/CS Pin

A-D Input

Notes

- 1. * = Dimmer signal is for setting the T off time
- 2. ** = High-break down voltage P channel transistor

Grid Pin

SOUT Pin

• SIN, SCLK Pins

OSC1 & OSC2 Pins

FUNCTION DESCRIPTION

COMMANDS

COMMAND 0: DISPLAY DATA SETTING

COMMAND 1: DISPLAY STATE SETTING

COMMAND 2: GRID SELECTION

COMMAND 3: PORT DATA SETTINGS

Note: In the event that a port has been selected (example: b4 = 0, P3 to P0 is selected), and at the same time the Grid Output Pin function is enabled, then the Grid Output having a higher priority than the Port Function will override the Port selection.

V1.6 7

SERIAL INTERFACE PORTOCOL

BYTE PORTOCOL

Note: When the CS Signal is "HIGH", SOUT is in High-Impedance State.

- The serial data which is transmitted after the execution of Command 0 is recognized as a Display Data. A-D Data 6 and above are defined as "x".
 After transferring a Display Data, the CS must be set to "HIGH" Level.

COMMANS 1 TO COMMAND 3

SERIAL COMMUNICATION FORMAT

3-BYTE TRANSFER: 17 SEGMENTS AND ABOVE

2-BYTE TRANSFER: 16 SEGMENTS OR BELOW

Note: The 2 Bytes namely "X" Data is outputted before the A-D valid data. Please refer to the diagram above.

2-BYTE TRANSFER: 8 SEGMENTS OR LESS

DISPLAY TIMING

SEGMENT/GRID SETTING EXAMPLE

	Port	GR	SEG
1			SEG0
2			SEG1
3 4			SEG2
			SEG3
5 6			SEG4
			SEG5
7			SEG6
8			SEG7
9		GR17	SEG8
10		GR16	SEG9
11		GR15	SEG10
12		GR14	SEG11
13		GR13	SEG12
14		GR12	SEG13
15		GR11	SEG14
16		GR10	SEG15
17		GR9	SEG16
18		GR8	SEG17
19	P7	GR7	
20	P6	GR6	
21	P5	GR5	· ·
22	P4	GR4	
23	P3	GR3	
24	P2	GR2	
25	P1	GR1	
26	P0	GR0	

Grid: 7	Grid: 10	Grid: 10	Grid: 7
Segment: 8	Segment: 8	Segment: 16	Segment: 18
S1	S1	S1	S1
S2	S2	S2	S2
S3	S3	S3	S3
S4	S4	S4	S4
S5	S5	S5	S5
S6	S6	S6	S6
S7	S7	S7	S7
S8	S8	S8	S8
G7	G10	S9	S9
G6	G9	S10	S10
G5	G8	S11	S11
G4	G7	S12	S12
G3	G6	S13	S13
G2	G5	S14	S14
G1	G4	S15	S15
	G3	S16	S16
	G2	G10	S17
	G1	G9	S18
		G8	G7
		G7	G6
		G6	G5
		G5	G4
		G4	G3
		G3	G2
		G2	G1
		G1	

BIT ALLOCATION FOR DISPLAY MEMORY

Address	b7	b6	b5	b4	b3	b2	b1	b0	Grid
0916							SEG17	SEG16	
0A16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 0
0B16	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
0D16							SEG17	SEG16	
0E16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 1
0F16	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
1116							SEG17	SEG16	
1216	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 2
1316	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0]
1516							SEG17	SEG16	
1616	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 3
1716	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0]
1916							SEG17	SEG16	
1A16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 4
1B ₁₆	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
1D16							SEG17	SEG16	
1E16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 5
1F16	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
2116							SEG17	SEG16	
2216	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 6
2316	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
2516							SEG17	SEG16	
2616	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 7
2716	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
2916							SEG17	SEG16	
2A16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 8
2B16	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	
2D16							SEG17	SEG16	
2E16	SEG15	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9	SEG8	Grid 9
2F16	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	

RESET FUNCTION

To enable the Reset Function of PT6355, the /RESET Pin must be set at "L" Level for 2 μ s or more. After which the /RESET Pin reverts back to "H" Level and then the reset is released. The /RESET Pin returned to an "H" Level when the OSC1 oscillation is stable and the voltage of the power source is between 4.0 V and 5.5 V. It is very important to note that the Reset Input Voltage is less than $0.2V_{CC}$ when the V_{CC} is 4 V. The figure below is an example of a RESET Circuit.

OSCILLATION CIRCUIT

An oscillation circuit is constructed by connecting a capacitor between Oscillation pins -- OSC1 and OSC2 and V_{SS} . The Oscillation Pins -- OSC1 and OSC2 must be as "SHORT" as possible. If you are supplying a clock externally, apply the clock signal to OSC1 and make OSC2 Pin floating or open. Please refer to the diagram below.

SETTING UNUSED PINS

If a segment or grid pin will not be used, just leave it floating or open. The Analog Input Pin, however, must be connected to V_{CC} or V_{SS} via a resistor if it is not used. Please refer to the table below.

Pin Type	Connection
Segment	Open
Grid	Open
Analog Input	Connect to V _{CC} or V _{SS} via a resistor

ABSOLUTE MAXIMUMS RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Power source voltage	V_{CC}		-0.3 to 7.0	V
Pull-down power source voltage	VEE	All voltages are based on V _{SS}	V_{SS} -38 to V_{CC} +0.3	V
Input voltage (AN0~AN5)	Vi	Output transistors are cut off.	-0.3 to V _{CC} +0.3	V
Input voltage (/CS, SIN, SCLK)	Vi		-0.3 to V _{CC} +0.3	V
Input voltage (/RESET)	Vi		-0.3 to V _{CC} +0.3	V
Output voltage (GR0~GR17) (SEG0~SEG17)	Vo	All voltages are based on V_{SS} . Output transistors are cut off. A waveform with frequency of 450 μ s or more and a pulse width of 30 μ s or less. Connect only capacitor load (CL = 200 μ F)	V _{cc} -38 to V _{cc} +0.3	V
Output voltage (SOUT)	Vo	All voltage are based on Vss. Output transistors are cut off.	-0.3 to V _{CC} +0.3	٧
Power dissipation	Pd	Ta=25℃	600	mW
Operating temperature	Topr	-	-40 to +85	$^{\circ}\!\mathbb{C}$
Storage temperature	Tstg	-	-65 to +150	$^{\circ}\!\mathbb{C}$

RECOMMENDED OPERATING CONDITIONS

(Unless otherwise specified, V_{CC} = 5 V, Ta = -20 to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power source voltage	V _{cc}	4.5	5.0	5.5	V
Power source voltage	V _{SS}		0		V
Pull-down power source voltage	VEE	V _{cc} -35		V_{CC}	V
"H" input voltage (/CS, SIN, SCLK)	VIH	0.75V _{CC}		V_{CC}	V
"H" input voltage (/RESET)	VIH	0.8V _{CC}		V_{CC}	V
"L" input voltage (/CS, SIN, SCLK)	VIL	0		0.25V _{CC}	V
"L" input voltage (/RESET)	VIL	0		0.2V _{CC}	V

RECOMMENDED OPERATING CONDITIONS

(Unless otherwise specified, $V_{CC} = 5 \text{ V}$, Ta = -20 to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
"H" total peak output current ^{Note1}	Σ IOH (peak)			-240	mA
GR0~GR17, SEG0~SEG17	∠ IOTT (peak)			-240	шА
"H" total peak output current	Σ IOH (avg.)			-120	mA
GR0~GR17, SEG0~SEG17	∠ 1011 (avg.)			-120	шА
"H" peak output current GR0~GR17	IOH (peak)			-40	mA
"H" peak output currentNote2 SEG0~SEG7	IOH (peak)			-20	mA
"L" peak output current SOUTNote2	IOL (peak)			10	mA
"H" peak output current GR0~GR17	IOH (avg.)			-18	mA
"H" peak output current SEG0~SEG17	IOH (avg.)			-7	mA
"L" peak output current SOUT	IOL (avg.)			5.0	mA
Main clock input oscillator frequency	f (OSC1)		4.0	5.2	MHz
Serial I/O external clock frequency	f (SCLK))		250		KHz

Notes

^{1.} The total output current is the sum of all the current flowing through all the applicable ports. The total average current is the average/ or mean value measured over 100 ms. The total peak current is the peak value of all the currents.

^{2.} The peak output current is the peak current flowing in each port.

^{3.} The average output current is an average or mean value measured per 100 ms.

^{4.} Under the condition that the oscillation frequency has a 50% duty cycle.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, V_{CC} = 5 V, Ta = -20 to +85°C)

	meter	Symbol	Conditions	Min.	Тур.	Max.	Unit
"H" output	GR Output	VOH	IOH = -18 mA	V _{CC} -2			V
voltage	SEG Output	VOIT	IOH = -7 mA	V _{CC} -2			V
"L" output voltage	SOUT	VOL	IOL = 5 mA			2.0	V
Hysteresis	SIN,SCLK,/CS	VT+~VT-	V _{CC} = 5V		0.5		V
пузістезіз	/RESET,OSC1	V I +~ V I -	V _{CC} - 5V		0.5		V
"H" input	SIN,SCLK,/CS					5.0	μΑ
	/RESET	VIH	$VI = V_{CC}$			5.0	μΑ
current	OSC1]			4.0		μA
"L" input	SIN,SCLK,/CS					-5.0	μΑ
· ·	/RESET	VIL	$VI = V_{SS}$		-150		μΑ
current	OSC1 ^{Note}]			-0.8		mA
Output load current	GR0~GR17 SEG0~SEG17	ILOAD	VEE = V _{CC} -35 V, VOL = V _{CC} , Output Transistors OFF	250	500	750	μΑ
Output leakage current	GR0~GR17 SEG0~SEG17	ILEAK	VEE = V_{CC} -35 V, VOL = V_{CC} -35 V, Output Transistors OFF			-10	μΑ
RAM hold voltag	je	VRAM	When the clock is stopped	2.0		5.5	V
Power source cu	urrent	ICC	V _{CC} = 5 V, f(OSC1) = 4 MHz, Output transistors OFF when A-D Converter is operating		0.5	1.0	mA

Note: See OSC1 & OSC2 Pins Port Diagram

A-D CONVERTER CHARACTERISTICS

(Unless otherwise specified, $V_{CC} = 5 \text{ V}$, $Ta = -20 \text{ to } +85^{\circ}\text{C}$)

(Offices officialise specified, VCC									
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Resolution					8	Bits			
Absolute accuracy (excluding quantization error)		V _{CC} = 5.12 V			+3	LSB			
Conversion time	Tconv				100	tc (OSC1)			
Analog input voltage	VIA		0		V_{CC}	V			
Analog port input current	IIA			0.5	5.0	μA			
Ladder resistor	Rladder			35		ΚΩ			

TIMING REQUIRMENTS

(Unless otherwise specified, $V_{CC} = 5 \text{ V}$, Ta = -20 to +85°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Reset input "L" pulse width	tw (/RESET)	2			μs
Main clock input cycle time (OSC1 input)	tc (OSC1)	192			ns
Main clock input "H" pulse width (OSC1 Input)	twH (OSC1)	60			ns
Main clock input "L" pulse width (OSC1 Input)	twL (OSC1)	60			ns
Serial clock input cycle time ^{Note2}	tc (SCLK)	5			CLKs
Serial clock input "H" pulse width Note2	twH (SCLK)	2			CLKs
Serial clock input "L" pulse width Note2	twL (SCLK)	3			CLKs
Serial input set-up time ^{Note2}	tsu (SIN-SCLK)	2			CLKs
Serial input hold time ^{Note2}	th (SCLK-SIN)	3			CLKs
Serial input set-up time	tsu (/CS)	50tc (OSC1)			ns
Serial input hold time	th (/CS)	50tc (OSC1)			ns
Serial clock interval time	trec (SCLK)	50tc (OSC1)			ns

Notes:

- 1. tc (OSC1) = 1/fosc
- 2. The unit means the number of Noise Filter Sampling Clock [2 x tc (OSC1)]
- 3. Test Mode Frequency Measurement (refer to diagram):
 - a. fosc= 2 x Frequency Value outputted by the CS Pin.
 - b. twH (SCLK) = [(1/fosc) x 2] x 2 c. twL (SCLK) = [(1/fosc) x 2] x 3

 - d. trec (SCLK) = $[50 \times (1/fosc)]$
 - e. twH (SCLK), twL (SCLK) & trec (SCLK) are very important factors in writing the PT6355 software program.

SWITCHING CHARACTERISTICS

(Unless otherwise specified, Vcc = 5 V, Ta = -20 to +85°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Serial I/O output delay time Note2	td (SCLK-SOUT)		4			CLKs
Serial I/O output valid time ^{Note2}	tv (SCLK-SOUT)		4			CLKs
High break down voltage P-Channel open drain output rising time	tr (Pch)	CL = 100 pF VEE = V_{CC} -35 V		1.8		μs
External capacitor size ^{Note3}	Cosc			22		pF

Notes:

- 1. tc(OSC1) = 1/fosc
- 2. The unit means the number of Noise Filter Sampling Clock (2 \times tc(OSC1)).
- 3. An external capacitor size varies with a mounted condition.

OUTPUT SWITCHING CHARACTERISTICS MEASUREMENT APPLICATION CIRCUIT

Serial I/O Clock Output Port

P-Channel Output Port

TIMING DIAGRAM

PACKAGE INFORMATION

44-PIN, LQFP (BODY SIZE: 10 X 10 MM, PITCH SIZE: 0.8 MM, THK BODY: 1.40 MM)

Symbol	Min.	Nom.	Max.		
A	-	-	1.60		
A1	0.05	-	0.15		
A2	1.35	1.40	1.45		
b	0.30	0.37	0.45		
С	0.09	-	0.20		
D	12.00 BSC				
D1	10.00 BSC				
E	12.00 BSC				
E1	10.00 BSC				
е	0.80 BSC				
θ	0°	3.5°	7°		
θ1	0°	-	-		
θ2	11°	12°	13°		
θ3	11°	12°	13°		
L	0.45	0.60	0.75		
L1	1.00 REF				
R1	0.08	-	-		
R2	0.08	-	0.20		
S	0.20	-	-		
CCC	0.10				

- Notes:
 1. All dimensions are in millimeters.
 2. Refer to JEDEC MS-026 BCB.

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian, Taipei 23145, Taiwan

Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw

V1.6 20