

International Conference "Distributed Computing and Grid-Technologies in Science and Education"

June 30 - July 5, 2014, Dubna, Russia

GRID'2014

Book of Abstracts

JOINT INSTITUTE FOR NUCLEAR RESEARCH LABORATORY OF INFORMATION TECHNOLOGIES

DISTRIBUTED COMPUTING AND GRID-TECHNOLOGIES IN SCIENCE AND EDUCATION

Book of Abstracts of the 6th International Conference

Dubna, June 30 – July 5, 2014

РАСПРЕДЕЛЕННЫЕ ВЫЧИСЛЕНИЯ И ГРИД-ТЕХНОЛОГИИ В НАУКЕ И ОБРАЗОВАНИИ

RECENT DEVELOPMENTS IN THE CONTRIBUTION OF DFCTI/IFIN-HH TO THE WLCG COLLABORATION21
CIUBANCAN Mihai, IVANOAICA Teodor, DULEA Mihnea
THE DEVELOPMENT OF AN ARM SYSTEM ON CHIP BASED PROCESSING UNIT FOR DATA STREAM COMPUTING22
COX Mitchell
DERIVING SEMANTICS FROM WS-BPEL SPECIFICATIONS OF PARALLEL BUSINESS PROCESSES ON AN EXAMPLE22
DIMITROV Vladimir
PILITE: A UNIFIED INTERFACE TO LOCAL RESOURCE
MANAGERS ON SUPERCOMPUTING RESOURCES23
DUBENSKAYA Yulia, KRYUKOV Alexander, DEMICHEV Andrey, PRIKHODKO Nikolay
HIGH-PERFORMANCE AND GRID COMPUTING AT INCDTIM, CLUJ-NAPOCA, ROMANIA24
FLOARE Calin Gabriel, FARCAS Felix, ADAM Gheorghe
RUNNING APPLICATIONS ON A HYBRID CLUSTER24
GAIDUCHOK Vladimir, YUZHANIN Nikolai, GANKEVICH Ivan, BOGDANOV Alexander
EFFICIENT PROCESSING AND CLASSIFICATION OF WAVE ENERGY SPECTRUM DATA WITH A DISTRIBUTED PIPELINE25
GANKEVICH Ivan, DEGTYAREV Alexander
APPLICATIONS OF ON-DEMAND VIRTUAL CLUSTERS TO HIGH
PERFORMANCE COMPUTING26
GANKEVICH Ivan, KORKHOV Vladimir, BALYAN Serob, ABRAAMYAN Suren
REVIEW OF JULIA PROGRAMMING LANGUAGE FOR SCIENTIFIC COMPUTING27
GEVORKYAN Migran, KULYABOV Dmitry, SEVASTYANOV Leonid
NUMERICAL SIMULATION OF COMPLEX SEISMIC PROBLEMS IN
HETEROGENEOUS MEDIA USING HIGH-PERFORMANCE COMPUTING SYSTEMS28
GOLUBEV Vasily, PETROV Igor, KHOKHLOV Nikolay, FAVORSKAYA Alena, BABICHEV Dmitry

INTEGRATION OF THE COMPUTING CLUSTER INTO THE INFORMATION SYSTEM OF FACILITY36
KULYABOV Dmitry, GEVORKYAN Migran, SEVASTYANOV Leonid
CLOUD INFRASTRUCTURE AT JINR37 KUTOVSKIY Nikolay, BALASHOV Nikita, BARANOV Alexandr, SEMENOV Roman
STORAGE DATABASE IN CLOUD PROCESSING37 KYAW Thurein, BOGDANOV Alexander
HARDWARE PLATFORMS OF PARALLEL AND DISTRIBUTED SIMULATION TECHNOLOGY
TIER-1 FOR ALICE, ATLAS & LHCB AT THE KURCHATOV INSTITUTE (NRC KI). CURRENT STATUS
ALLOCATION STEINER POINTS IN EUCLIDEAN STEINER TREE PROBLEM BY MEANS OF MATLAB PACKAGE
TOOL FOR UTILIZING IDLE RESOURCES OF COMPUTING CLUSTERS IN VOLUNTEER COMPUTING
DEFINING VOLUNTEER COMPUTING: A FORMAL APPROACH40 MAROSI Attila Csaba, LOVAS Robert
USE OF NESTED VIRTUALIZATION WHEN WORKING WITH PRIVATE OPENSTACK CLOUD AND HYPERVISOR VMWARE ESXI41 MINUKHIN Sergii, LEONTIEV Igor
HIGH-THROUGHPUT PARALLEL PIPELINED DATA PROCESSING SYSTEM FOR REMOTE EARTH SENSING BIG DATA IN THE CLOUDS42
NOVIKOV Alexander, POYDA Alexey, AULOV Vasilij
ACTIVITIES AND PERSPECTIVES AT ARMENIAN GRID SITE43 OGANEZOV Hovhannes, ASTSATRYAN Hrachya

Technologies, architectures, models, methods and experiences of building distributed computing systems. Consolidation and integration of distributed resources

INTEGRATION OF THE COMPUTING CLUSTER INTO THE INFORMATION SYSTEM OF FACILITY

KULYABOV Dmitry, GEVORKYAN Migran, SEVASTYANOV Leonid yamadharma@gmail.com, mngevorkyan@sci.pfu.edu.ru, mngevorkyan@sci.pfu.edu.ru, Peoples' Friendship University of Russia

The experience of integration of the computing cluster into the information system of facility is described. The cluster is comprised of one control node (2xCPU Intel Xeon E5-2670, 64 Γ 6 RAM) and two compute nodes (1xCPU Xeon E5-2670, 64 Γ 6 RAM, 1xGPU Nvidia Tesla M2090).

The following problems had to be solved during cluster configuration.

Integration of the cluster authentication system with faculty's local network authentication system.

Setting the consistent software updates on the cluster's control node and the compute nodes.

The centralized initial cluster setup with help of xcat utility.

Installing additional software with CUDA technology support.

Creating the local software repository for specific software support (for example, PBS / Torque with CUDA support).

The following software were to be installed on the cluster: GNU Compiler Collection (gcc) [2], with gfortran version 4.4.7 c OpenMP [3], Julia language compiler [4], Python interpreter version 2.7. Oslo following libraries have been installed: OpenMPI [5], MPICH [6], BLAS [7], LAPACK [8], GSL (GNU Scientific Library) [9], GAMESS (US) (General Atomic and Molecular Electronic Structure System) [10], Python NumPy and SciPy [11].

All the software listed above is widely known and a good account of itself in the field of scientific computing. However, it may be useful to give a little bit more details about Julia programming language — the new open source programming language that is in the stage of active development. Julia language has created to achieve following goals: multiparadigmality, focus on scientific computing, the possibility of interactive language constructions execution (like iPython), achieving the performance close to C/C++ and Fortran, built-in support of parallel computing, easy integration of an external Fortran and C/C++ libraries.

Литература

- 1. Геворкян М.Н., Королькова А.В., Кулябов Д.С. Настройка высокопроизводительного вычислительного комплекса // // Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем / РУДН. Москва: РУДН. 2014. С. 171.
- 2. GCC, the GNU Compiler Collection http://gcc.gnu.org/
- 3. OpenMP API specification for parallel programming http://openmp.org/wp/
- 4. The Julia Language http://julialang.org/
- 5. Open MPI: Open Source High Performance Computing http://www.open-mpi.org/
- 6. MPICH: High-Performance Portable MPI http://www.mpich.org/