Электрические свойства монокристаллов MnIn₂S₄

© Н.Н. Нифтиев

Азербайджанский государственный педагогический университет, 370000 Баку, Азербайджан

(Получена 3 марта 2003 г. Принята к печати 25 марта 2003 г.)

В монокристаллах $MnIn_2S_4$ исследованы температурная зависимость тока и вольт-амперные характеристики в различных условиях. Показано, что механизм токопрохождения в нелинейной области вольт-амперной характеристики обусловлен током, ограниченным пространственным зарядом. Определены энергия залегания и концентрации ловушек. Установлено, что монокристаллы $MnIn_2S_4$ являются сильно компенсированными полупроводниками.

В настоящей работе приводятся результаты исследования электрических свойств монокристаллов MnIn₂S₄.

Монокристаллы $MnIn_2S_4$ были получены методом химических транспортных реакций. Рентгенографическим методом установлено, что полученные нами монокристаллы обладают шпинельной структурой с параметрами кристаллической решетки $a=10.71\,\mbox{Å}$ [1]. Некоторые физические свойства монокристаллов $MnIn_2S_4$ изучались в нескольких работах [2,3]. Монокристаллы $MnIn_2S_4$ обладают n-типом проводимости. Контакты к образцам создавались вплавлением индия к противоположным поверхностям. Расстояние между электродами изменялось в пределах $50-300\,\mbox{мкм}$.

На рис. 1 представлены вольт-амперные характеристики (BAX) структур $\text{In-MnIn}_2\text{S}_4\text{-In}$ при различных температурах. На BAX выявляются следующие участки: линейный $I \propto U$, квадратичный $I \propto U^2$ и кубический $I \propto U^3$.

Такие зависимости говорят о том, что основную роль в токопрохождении играют токи, ограниченные пространственным зарядом (ТОПЗ). Кроме того, установлено, что зависимости плотности тока J от межэлектродных расстояний L для квадратичной и кубической областей соответственно выполняются в виде $J \propto L^{-3}$ и $J \propto L^{-5}$ [4,5].

ВАХ, измеренные при различных температурах, дают возможность определить глубину залегания моноэнергетических уровней, которая связана с напряжением перехода V_{1-2} от омического участка к "ловушечному" квадратичному $I \propto U^2$ формулой [6]

$$V_{1-2}^{-1} \propto \exp[(E_t - E_c)/kT].$$

По наклону этой зависимости (рис. 2) определена энергия активации, значение которой $E_t = 0.53$ эВ.

Исследование температурной зависимости ВАХ позволяет из квадратичного участка определить концентрацию ловушек $N_t=2\cdot 10^{15}\,{\rm cm}^{-3}$ [7].

Согласно [8], если значение напряжения перехода от омического участка к квадратичному V_{1-2} не зависит от температуры, то в этих кристаллах имеет место слабая компенсация, а если V_{1-2} зависит от температуры, то имеет место сильная компенсация. Температурная

зависимость напряжения V_{1-2} указывает, что монокристаллы $\mathrm{MnIn}_2\mathrm{S}_4$ являются сильно компенсированными полупроводниками.

На рис. 3 показана температурная зависимость тока при различных постоянных напряжениях. Нижняя прямая (кривая I) соответствует омическому участку, кривая 2 — квадратичному участку. Следующая прямая состоит из двух участков с различными наклонами (кривая 3) — соответствует кубическому участку. Энергии активации носителей тока в монокристаллах MnIn₂S₄, определенные по двум наклонам, соответственно равны: $E_1 = 0.45$ эВ, $E_2 = 0.38$ эВ. Видно, что похожие наклоны кривых с ростом внешнего напряжения уменьшаются в интервале 0.53–0.45 эВ. Следует отметить, что уровни

Рис. 1. Темновые ВАХ монокристаллов MnIn₂S₄ при различных температурах T, K: I — 242, 2 — 251, 3 — 256, 4 — 264, 5 — 270, 6 — 276, 7 — 280, 8 — 288, 9 — 296, 10 — 308.

Рис. 2. Температурная зависимость обратного значения переходного напряжения $1/V_{1-2}$.

Рис. 3. Температурная зависимость тока при различных значениях напряжения V, B: I - 50, 2 - 200, 3 - 500.

с энергией 0.53 и 0.38 эВ обнаруживаются также на термостимулированных токах [3].

Таким образом, на основе исследований ВАХ и температурной зависимости тока установлено, что механизм токопрохождения обусловлен током, ограниченным пространственным зарядом. Определены основные параметры локальных уровней. Установлено, что в монокристаллах $MnIn_2S_4$ имеет место сильная компенсация.

Список литературы

- T. Kanomata, H. Ido, T. Kaneko. J. Phys. Soc. Japan, 34, 554 (1973).
- [2] N.N. Niftiyev. Sol. St. Commun., 92, 781 (1994).
- [3] Н.Н. Нифтиев. ФТП, 36, 836 (2002).
- [4] К. Као, В. Хуанг (М., Мир, 1984) ч. 1.
- [5] А. Милнс. Примеси с глубокими уровнями в полупроводниках (М., Мир, 1977).
- [6] Н.С. Грушко, Л.А. Герасименко, Т.И. Гоглидзе. В сб.: Физика полупроводников и диэлектриков (Кишинев, Штиинца, 1982) с. 82.
- [7] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [8] А.В. Маловичко, В.Г. Чалая, Е.Т. Шульга. УФЖ, 20, 209 (1975).

Редактор Л.В. Беляков

Electrical properties of MnIn₂S₄ single crystals

N.N. Niftiev

Azerbaijan State Pedagogical Institute 370000 Baky, Azerbaijan