Dependability and Safe State

MDH Solar Car

Outline

- Dependability in a SVV
 - Redundancy
 - Parts
 - Design
- Modular System
- Safe State
 - Requirements
 - System Breakdown
 - Schematics
 - Components

Dependability

Reliability: The solar car shall behave as expected with very few errors in its expected life time

Availability: The solar car system shall be available when needed. If down time exist, it shall be kept at a minimum

Safety: The system shall be safe for users and environment

Confidentiality: Data transferred between the solar car and follow car shall not be accessible for third parties

Survivability: The system shall be designed so that it can withstand the environment it operates in as well as withstand possible accidents

Integrity: The systems data shall only be able to be accessed by authorized user

Maintainability: Easy to maintain and repair

Dependability in a SVV - Redundancy

Reliability of a system:

$$R = e^{-\lambda T}$$

Where T is an interval of time

 λ = Number of faults / Time (fault intensity)

Dependability in a SVV - Redundancy

What is redundancy?

R1: 0.94*0.97*0.85*0.92 = **0.713**

R2: 0.94*0.97*(1-(1-0.85)*(1-0.85))*0.92 =**0.81998**

Dependability in a SVV - Redundancy

Redundancy

Advantages:

- Higher reliability
- System keeps working even with syúbsystem/component failure

Disadvantages:

- Extra weight
- Extra space
- Extra cost
- Higher complexity

Dependability in a SVV - Parts

Does parts play a role in the dependability in a vehicle?

YES!

- Easy accessibility to parts makes for easilier repairs
- Open source
- Standard components easy implementation
- Quality

In case of redundancy:

Different brands

Dependability in a SVV - Design

Both in hardware and software

Needs to be planned, tested, reviewed and accepted

Important to design interfaces

Modular System

A modular system makes repair and maintenance easy and quick

Advantages

- Changing faulty components fast
- Maintenance can take place outside the vehicle
- Possible to have IP-classificated boxes

Disadvantages

- Need backup boxes more components
- Takes more space
- Heat generation inside boxes

Modular System

Cable Channel and Component Placement

Symbols

• The solar car must have a 'safe state' which, in an emergency, minimises the risk of electrical fire and electric shock to occupants, team members, emergency response personnel, and bystanders.

Safe state is for emergencies and for complete shutdown of the car. In addition to safe state, a solar car may have a "standby" state that provides power to some subsystems outside of the energy storage packs. An external battery is not necessary to bring the car out of safe state. Possible alternatives include:

- A switch on the energy storage pack
- An air switch inside an energy storage pack, with an airline to a remote start button
- A fibre-optic switch.
- When in the safe state:
 - Every conductor emerging from each energy storage pack must be galvanically isolated from every energy storage cell.
 - No voltage may be present across any pair of conductors emerging from energy storage packs or the solar collector..
 - No current may be present through any conductor loop that is external to the energy storage packs or the solar collector. MOSFETS and other semiconductor devices are not considered to offer galvanic isolation.
- Any conductor that is more than 200 mm from the nearest PV cell is outside of the solar collector.
- All mechanisms for placing the solar car into safe state and maintaining safe state must be fail-safe; if an electrical activation mechanism
 fails, the solar car must automatically and immediately place itself into safe state and must remain in safe state indefinitely.
- Emergency Button placement Requirements

Safe State - Requirements

Stakeholders				
	Bridgestone World Solar Challenge			
	Driver			
	Bystanders			
	Maintenance			
	Electronics Domain			
	Mechanics Domain			
	Solar Vehicle			

Safe State - Requirements

Stakeholder Goals					
Stakeholder		Goal			
Bridgestone World Solar Challenge					
1.		Follow BWSC Regulations			
	2.	Safe car for the driver			
Driver	Driver				
	1.	Activate Safe State from Driver Compartment			
	2.	Safe to driver the vehicle			
Bystanders	Bystanders				
	1.	Easy activate Safe State from outside the vehicle			
Maintenance					
	1.	Easy to activate Safe State			
2.		Easy restart procedure			
	3.	Not being harmed by the vehicle			

Stakeholder		Goal			
Electronics Dor	nain				
	1.	Follow BWSC regulations			
	2.	Easy integration			
	3.	Dependable			
Mechanics Domain					
	1.	Incorporate in vehicle design			
Solar Vehicle					
	1.	Enter Safe State			
	2.	Protect the systems			
	3.	Stay in Safe State until deactivated			
	4.	Withstand operating environment			

Safe State - Requirements

Stakeholder Requ	Stakeholder Requirements				
Identification	Description				
Stake_Req1	The Safe State System shall cut all power out from the Energy Storage Pack				
Stake_Req2	The Safe State System shall cut all power from the Solar Collectors				
Stake_Req3	When Safe State is activated, the 12 V DC/DC inside the Energy Storage Pack shall remain active				
Stake_Req4	The Safe State System shall be activated if an "Emergency Button" fails				
Stake_Req5	The Safe State shall be activated if set threshold values from the SSV exceeds				
Stake_Req6	The Safe State System shall have two Emergency Buttons				
Stake_Req7	The Safe State System shall be able to be activated from outside the vehicle				
Stake_Req8	The safe state system shall be able to be activated from the Driver compartment				
Stake_Req9	The Safe State System shall remain in Safe State until deactivated				
Stake_Req10	Maintenance shall be able to deactivate Safe State				
Stake_Req11	The Safe State system shall have a Safe State deactivation button located on the outside of the Energy Storage Pack				
Stake_Req12	Maintenance shall be able to close the Emergency Buttons after activated				
Stake_Req13	The Safe State System shall use standard components				
Stake_Req14	The Safe State System shall withstand vibrations				
Stake_Req15	The Safe State System components shall have the right IP-classification				
Stake_Req16	The Safe State System shall be easily accessible				
Stake_Req17	The Safe State System shall have well organized cable management				

(4)

Safe State - Schematics

Safe State - Components

Battery

Emergency Switches

Relays

Software

Conclusion (1)

Design			Build		Transport	Race		
Plan	Review	Accept	Modular	Redundancy	Robustnes	Maintenance	Fault-Tracing	Error Fixing
Reliability	Reliability Confidentiality Safety			Safety		Reliability Confidentiality Safety Survivability Availability Integrity Maintainability		

Timeline of the MDH Solar Car

Conclusion (2

The Safe State System fulfills following attributes for dependability:

- Safety
- Survivability
- Maintainability
- Reliability

Photo: Vattenfall Solar Team/Facebook