Institut und Poliklinik für Radiologische Diagnostik

Bildrekonstruktion ,,Wir basteln uns einen CT"

EDV-Praktikum

Institut und Poliklinik für Radiologische Diagnostik

Aufgabe 1: Vorwärtsprojektion

- Erzeugung eines Satzes von Projektionen aus echten und simulierten CT-Bildern
 - Einlesen einer interaktiv wählbaren Datei (quadr. Matrix Integer oder String, verschiedene Matrixgrößen)
 - Kontroll-Darstellung
 - Erzeugung Projektionen aus beliebiger, interaktiv wählbarer Anzahl von Winkeln (geradzahlig, ungeradzahlig)
 - Kontrolldarstellung (linear und logarithmisch?)
 - Speicherung

Institut und Poliklinik für Radiologische Diagnostik

Aufgabe 2: Rückprojektion

- Rekonstruktion von CT-Bildern aus den Sinogrammen von Aufgabe 1
 - Einlesen eines interaktiv wählbaren Sinogramms gemäß in Vorwärtsprojektion definiertem Format
 - Kontroll-Darstellung
 - Rückprojektion und Darstellung
 - Ungefilterte und gefilterte Rückprojektion (mindestens Ramp-Filter)
 - (Einbeziehung weiterer Filter?)
 - Kontrolldarstellung
 - Speicherung (durch Programm(teil) aus Aufgabe 1 lesbar)

Institut und Poliklinik für Radiologische Diagnostik

Bedingungen

- Programmiersprache: python
- Nutzung muss möglich sein, ohne in Programmtext einzugreifen
- Aus didaktischen Gründen bitte folgende Python-Funktionen nicht verwenden:
 - rotate
 - radon

oder weitere Funktionen, die wesentliche Schritte der Praktikumsaufgabe lösen.

- map_coordinates (,griddata (deutlich langsamer))
- fft, ifft, fftshift

sind ausdrücklich zugelassen.

Bedingungen

Abgabe bis 31.12.2015
 23.58 Uhr

per e-mail an volker.hietschold@uniklinikum-dresden.de

Institut und Poliklinik für Radiologische Diagnostik

Hinweise

- Visualisierung (auch zur Fehlersuche)
- Visualisierung (auch zur Fehlersuche)
- Visualisierung (auch zur Fehlersuche)

Kontroll-prints

Institut und Poliklinik für Radiologische Diagnostik

Hinweise

import matplotlib
matplotlib.use("TkAgg")

from numpy import *
from PIL import Image
from scipy import interpolate
import Tkinter, tkFileDialog
import os
from matplotlib import pyplot as plt
from scipy import ndimage
from time import time

Institut und Poliklinik für Radiologische Diagnostik

Zusatzaufgaben

Interpolation selbst programmieren

Graphische Oberfläche

Algebraische Verfahren

Institut und Poliklinik für Radiologische Diagnostik

Konsultationen, Anleitungen

 ~ 3. DS vor Vorlesung "Tomographische Techniken"

 "auf Zuruf" (Tel. 13555, Volker.Hietschold@Uniklinikum-Dresden.de)

Voraussetzungen

$$x = \xi * \cos(\Phi) - \eta * \sin(\Phi)$$

$$y = \xi * \sin(\Phi) + \eta * \cos(\Phi)$$

- x, y Raumfeste Koordinaten
- ξ, η An das Meßsystem gebundene Koordinaten
- ϕ Projektionswinkel

- I Röntgenstrahlintensität
- μ Schwächungskoeffizient
- s Weg eines Strahls

- Erzeugung eines Satzes von Projektionen aus echten und simulierten CT-Bildern
 - Einlesen (quadr. Matrix Integer oder String)
 - Kontroll-Darstellung
 - Erzeugung Projektionen aus beliebiger Anzahl von Winkeln
 - Kontrolldarstellung linear und logarithmisch
 - Kontrolldruck numerisch
 - Speicherung
- Akquisition wie Translationsscanner
- Detektorbreite erfasst
 Rechteck auch diagonal
- Summation μ entlang ξ in Längen unabhängig von Φ
- bei "krummen" Indizes in x und y Interpolation

Institut und Poliklinik für Radiologische Diagnostik

Interpolation

Projektion der x,y-Daten in η,ξ-Ebene:

Institut und Poliklinik für Radiologische Diagnostik

Rückprojektion Vorwärts – es geht zurück!

Vorwärtsprojektion war simulierte Messung

- Rückprojektion ≅ Bildberechnung
- Einlesen gespeicherter Sinogramme
- jede Projektion(φ)
 "winkelrichtig über
 Bildmatrix schmieren"

"Wie sehen denn diese Bilder aus? …"

Institut und Poliklinik für Radiologische Diagnostik

Koordinatentransformation

 Empfehlung: Kontroll-Darstellung der interpolierten, d.h. "breitgeschmierten" und gedrehten Profile

Institut und Poliklinik für Radiologische Diagnostik

Gefilterte Rückprojektion

- Einbau eines Ramp-Filters
 - ungefilterte vs. gefilterte Rückprojektion wählbar
 - Vorsicht! Funktion fft liefert Frequenz 0 nicht in der Mitte, sondern bei Pixel # 1 Abhilfe: fftshift

Institut und Poliklinik für Radiologische Diagnostik

Zusatzaufgabe: Iterative Verfahren

• add-ART $\mathbf{f}^{n+1} = \max \left(0, \mathbf{f}^n + \frac{\mathbf{p} - \mathbf{p}^n}{\mathbf{n}}\right) \mathbf{f}^n$ and \mathbf{p}^n where \mathbf{p}^n is the second second state \mathbf{p}^n and \mathbf{p}^n and \mathbf{p}^n and \mathbf{p}^n is the second second

Bild nach n-tem Iterationsschritt gemessene Projektionen Vorwärts-Projektion aus fⁿ Anzahl Pixel entlang Projektion

• mult-ART $\mathbf{f}^{n+1} = \mathbf{f}^n * \frac{\mathbf{p}}{\mathbf{p}^n}$

- Empfehlungen:
 - jeweils ganze Projektion behandeln (nicht nur Einzelpunkt)
 - Vorwärts- und Rückprojektion aus vorhergehenden Aufgaben "recyclen"