Zusammenstellung magnetischer Grössen für einige spezielle Leiteranordnungen

	Leitwert Λ	Durchfl. Θ	Fluss $\Phi^{-1)}$	VerkFluss Y	Induktivität L ²⁾	Bemerkungen
Kreisförmige Schleife d: Draht- durchmerer	$\frac{\mu D}{2} \cdot \ln \frac{D}{d}$	Θ = Ι	$\frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot 1$	Ψ = Φ	$L = \frac{\mu D}{2} \cdot \ln \frac{D}{d}$	 ohne Fluss durch Leiter nur äussere Induktivität, vgl. 5.6.3 A = π d²/4, l_m ≈ π D_m Wicklongselvschmerrer ein rodialer und axial Richtung e< D d collection sehr dietteinender
Kreisrahmenspule Windungen d: Wichlungen durch messel		Θ = ΝΙ	$\frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu D}{2} \cdot \ln \frac{D}{d} \cdot N^2$	
Zylinderspule — JJMMWW— td — t >> d	$\frac{\mu A}{\ell} = \frac{\mu \pi d^2}{4 \ell}$	Θ = ΝΙ	$\frac{\mu \pi d^2}{4 \ell} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu \pi d^2}{4 \ell} \cdot N^2$	
Toroidspule 3) A A	$\frac{\mu A}{\ell_m} = \frac{\mu d^2}{4 D_m}$	Θ = ΝΙ	$\frac{\mu d^2}{4 D_m} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu d^2}{4 D_m} \cdot N^2$	Allgemein gilt: $\bar{Q} = \Lambda \cdot \Theta / \Lambda = \frac{1}{R_m}$
Ringspule mit rechteckf. Querschnitt p	$\frac{\mu a}{2\pi} \cdot \ln \frac{D}{d}$	Θ = ΝΙ	$\frac{\mu a}{2\pi} \cdot \ln \frac{D}{d} \cdot N \cdot I$	$\Psi = N \cdot \Phi$	$L = \frac{\mu a}{2\pi} \cdot \ln \frac{D}{d} \cdot N^2$	$L = \frac{\Psi}{I}$ $L = \Lambda = \frac{\pi}{P}, \text{ falls } \Lambda$
Koaxialleitung	$\frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1}$	Θ = Ι	$\frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1} \cdot I$	$\Psi = \Phi$	$L = \frac{\mu \ell}{2\pi} \cdot \ln \frac{R_2}{R_1}$	L = 12. N2 = N2, Fell. N-Vinding unlessich ideal geh
Paralleldrahtleitung 2R 2R 2R 2R 2R 2R 2R 2R 2R 2		Θ = Ι	$\frac{\mu\ell}{\pi} \cdot \ln \frac{a-R}{R} \cdot I$	Ψ = Φ	$L = \frac{\mu \ell}{\pi} \cdot \ln \frac{a - R}{R}$	

Bemerkungen

- ¹⁾ ohne Fluss durch Leiter
- 2) nur äussere Induktivität, vgl. 5.6.3
- ³⁾ $A = \pi d^2/4$, $\ell_m \approx \pi D_m$
- 4) Wicklungselvehmerrer of in radialer und axialer Richtung ec D

Allgemein gilt:

$$L = \frac{\Psi}{I}$$

$$L = \Delta = \frac{T}{Rm}, \text{ Falls } N = 1$$

$$L = \Delta \cdot N^2 = \frac{N^2}{Rm}, \text{ Falls while}$$

$$N - \text{Windows undersich intelligetoppett}$$