The Transformer: Let's dive into math

Eng. Ahmed Métwalli - Eng. Alia Elhefny

Contents

	C C	. C.1 7D C													
2	Core Components of the Transformer 2.1 Encoder														
	2.3 High-Level	Workflow		•						•				•	
3	Mathematics o	Mathematics of Attention													
	3.1 Key, Query	, and Value													
	3.2 Scaled Dot	Product Attention													
	3.3 Multi-Head	Attention													
		onnections and Norn													
	o.i itodiamai		nanzamo				-								
1	Positional Enco			•											
	Positional Enco														
	Positional Enco	oding mple: Self-Attent	ion												
	Positional Enco Numerical Exa 5.1 Inputs	oding mple: Self-Attent	ion				•								
	Positional Enco Numerical Exa 5.1 Inputs 5.2 Compute 4	oding $egin{array}{ll} \mathbf{mple: Self-Attent} \ & \dots & \dots & \dots \ \mathbf{k}^T & \dots & \dots & \dots \end{array}$	ion 												
	Positional Enco Numerical Exa 5.1 Inputs 5.2 Compute Q 5.3 Scale by $\frac{1}{\sqrt{q}}$	oding mple: Self-Attent $K^T = \dots = \dots$	ion 				• •								
4 5	Positional Enco Numerical Exa 5.1 Inputs 5.2 Compute Q 5.3 Scale by $\frac{1}{\sqrt{2}}$ 5.4 Apply Soft	oding $egin{array}{ll} \mathbf{mple: Self-Attent} \ & \dots & \dots & \dots \ \mathbf{k}^T & \dots & \dots & \dots \end{array}$	ion 		· · · · · · · · · · · · · · · · · · ·		• •								

1 Introduction

Transformers are the backbone of modern machine learning, excelling in Natural Language Processing (NLP), Vision, and Multimodal Learning. They process sequences in parallel using the **attention mechanism**, replacing sequential models like RNNs and LSTMs.

Key features:

- Handles long-range dependencies.
- Enables parallel processing of tokens.
- Scalable to large datasets and tasks.

This guide explores the Transformer's components, their inner workings, and practical implementation.

2 Core Components of the Transformer

The Transformer consists of an Encoder-Decoder architecture. Let us break it down.

2.1 Encoder

The encoder takes an input sequence and transforms it into a set of contextual representations. Each encoder block includes:

- 1. Multi-Head Self-Attention Layer.
- 2. Feed-Forward Neural Network (FFNN).
- 3. Residual Connections and Layer Normalization.

2.2 Decoder

The decoder generates the output sequence using the encoder's output and its own input. It includes:

- 1. Masked Multi-Head Self-Attention (prevents peeking at future tokens).
- 2. Encoder-Decoder Attention.
- 3. Feed-Forward Neural Network.

2.3 High-Level Workflow

- 1. Encode the input using the encoder stack.
- 2. Use the decoder stack to generate the output sequence, token by token.

3 Mathematics of Attention

The **Attention Mechanism** is the heart of the Transformer, allowing tokens to focus on relevant parts of the sequence.

3.1 Key, Query, and Value

For each input token, we compute:

- Query (Q): Encodes the focus of the current token.
- **Key** (K): Encodes how other tokens relate to the current token.
- Value (V): Encodes the information to pass along.

These are obtained using learned weight matrices:

$$Q = XW^Q, \quad K = XW^K, \quad V = XW^V$$

Where:

- X: Input embeddings of shape (seq_len, d_{model}).
- W^Q, W^K, W^V : Weight matrices of shape (d_{model}, d_k) .

3.2 Scaled Dot-Product Attention

The attention mechanism computes a weighted sum of V based on the similarity between Q and K:

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Explanation:

- 1. Compute QK^T : Measures similarity between tokens.
- 2. Scale by $\frac{1}{\sqrt{d_k}}$: Prevents large dot-product values.
- 3. Apply softmax: Converts scores into probabilities.
- 4. Weight V by these probabilities.

3.3 Multi-Head Attention

Instead of computing a single attention, the Transformer uses **multiple attention** heads. Each head focuses on different parts of the sequence.

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$

Where each head is:

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$

3.4 Residual Connections and Normalization

Residual connections are added after attention and FFNN layers:

$$Output = LayerNorm(X + Attention Output)$$

4 Positional Encoding

Since the Transformer lacks inherent sequence awareness, **Positional Encoding** is added to embeddings:

$$PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right), \quad PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{\text{model}}}}}\right)$$

5 Numerical Example: Self-Attention

Let us compute self-attention for a toy example. [Goal of Attention: Identify relationships between tokens (queries and keys) and use them to produce weighted representations (values).]

5.1 Inputs

Given:

$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad K = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
$$d_k = 2$$

5.2 Compute QK^T

$$QK^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

5.3 Scale by $\frac{1}{\sqrt{d_k}}$

Scaled Scores =
$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1\\ 1 & 1 & 2 \end{bmatrix}$$

5.4 Apply Softmax

Row-wise softmax normalizes the scaled scores:

Attention Weights = softmax
$$\left(\frac{QK^T}{\sqrt{2}}\right)$$

5.5 Compute Output

Output = Attention Weights
$$\cdot V$$

5.6 Python Code for Numerical Example

```
import torch
import torch.nn.functional as F

Q = torch.tensor([[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]])
K = torch.tensor([[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]])
V = torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

d_k = Q.size(-1)
scores = torch.matmul(Q, K.T) / torch.sqrt(torch.tensor(d_k))
attention_weights = F.softmax(scores, dim=-1)
output = torch.matmul(attention_weights, V)

print("Attention Weights:\n", attention_weights)
print("Output:\n", output)
```

6 Applications of Transformers

- NLP: Machine Translation, Summarization, Question Answering.
- Vision: Vision Transformers (ViT) for Image Classification.
- Multimodal Learning: CLIP, DALL-E for text-to-image generation.