# USING VR TO MODEL & CONTROL REALISTIC OCTOPUS EXPERIENCE



STUDENTS: MAYANK KUMAR, HELEN TRAN, ROBERT CRIST, TILBOON ELBERIER

# **Motivation and Objective**

- Octopuses have extremely **complex nervous systems** that are vastly different than humans due to their *decentralized* nature
- This project seeks to create a Virtual Reality experience to help increase the user's empathy for octopuses
- With guidance from experts, our team is challenged to create an octopus model and implement AI models that *accurately* replicate the behavior patterns of real octopuses

# Requirements

- An immersive sandbox experience that allows the user to explore the environment
- Create a shader graph that allows the model to camouflage with the environment
- Develop an Al model that enables the arms to reach into & explore interior space
  Implement an Al model that allows the arms to bend away from dangerous objects
- Integrate an existing diver model into the environment that can interact with the user

# Introduction

In order to orient our users, we created a rough **tutorial** before they enter the sandbox experience. For the player to move on, they must **complete tasks** assigned by the diver. Each scene is crafted not only to show the *functionality* of the octopus which we created, but also to promote a sense of **empathy.** 



The tutorial is split up into **four distinct scenes**. To start, we provide the basic inputs for the user to *control* the octopus. Next, there are three scenes which **highlight the work** that we have completed for this project. Finally, once all tutorial scenes are finished, the user is able to roam freely in the **sandbox experience**.

# **General Scripts**

Throughout the development process, many additional scripts were identified in order to achieve our goals. The following list provides a summary of these scripts.

- Scene Manager: In order to create a tutorial for the experience, a script was created to sequence events in a particular order.
- Audio Manager: Manages all audio clips in a particular scene so that individual clips can be played when desired
- Portals: Used in the tutorial to transition from one scene to the next
- Barriers: A barrier script was created to confine the user to the map. Instead of being a hard wall, it acts more as a forcefield
- **Object Spawner:** Spawns random objects at the surface to create the illusion that a fisherman is throwing these objects overboard



# Map Layout, Model and Experiences





# Camouflage Behavior

Camouflage enables the octopus to hide when it encounters predators

- Modeling of this behavior uses real-time rendering capability of ShaderGraphics
- Dynamically collects data from the environment & passes it to the shader to create new material in real-time
- Each node of PBR graph is processed individually to render the actual behavior
- Colliders on the object in the scene provide trigger information to start the camouflaging behavior of octopus



### Diver Interaction

To increase empathy from a human's perspective towards octopus

- Used as a technique to simulate the human counterpart
- Implement vector RayCast functionality to simulate the diver searching and following the player.
- Implemented animations to communicate between diver and player
- Diver leads the tutorial which acquaints first time users into the VR experience
- Normal gameplay the human diver follows the player as they navigate the scene within a target distance

#### **S**

# **Avoidance Behavior**

Al implementation enables the arms to recognize and bend away from dangerous species

- Different types of sea anemones and sea urchins are implemented and inserted into the scene
- Strategy for the AI is to orient the octopus's arms in the opposite direction when they interact with threatening object, such as sea urchins
- Mesh collider (green): the surface of the object for arms to bend away from
- Visual and audible feedback for users to avoid the object in the next phase



# **Reaching Behavior**

Checkpoints created with triggers are used to orient the tentacle reaching AI about where it currently is in relation to the opening

- Opening Region (Yellow A): The edge of the opening which tells the AI to orient the tip of the tentacle towards the opening
- Opening (Blue B): The physical opening which leads to the interior space and tells the AI to reach further inside the opening
- Inside (Green C): The interior space which defines the region in which a random point (Red D) is generated for the AI to move the tentacle to



- To ensure that the model is realistic:
- Strategic placement of checkpoints allows for the AI to engage only when a real octopus would be aware of an opening

## Future Work & Conclusion

Although the core mechanics which we developed are in a solid state, there is still work that needs to be done that is outside the scope of our project:

- Further refinement towards the story aspect & creating defined experiences within the sandbox experience
- Menus as well as UI to provide feedback for the user
- Additional audio and visual effects for the environment
- Deliver this experience to aquariums as well as the general consumers

Our team accomplished the following goals for the project:

- Completed identified missing mechanics from Octopus model or environment
- Created numerous scripts which can be implemented in a variety of settings
- Assembled all work into a single sandbox experience
  Created a foundation which can be built upon after our
- Created a foundation which can be built upon after our team exits

# Acknowledgements & References

Huge thanks to Terrell Strong, Natalie Burke, Dave Hunt, Dominic Sivitilli, Youjean Cho, Oliver Abate, Yerim Heo

• Unity API: <a href="https://docs.unity3d.com/ScriptReference/">https://docs.unity3d.com/ScriptReference/</a>

ELECTRICAL & COMPUTER ENGINEERING

ADVISORS: BARBARA MONES, TERRELL STRONG, DOMINIC SIVITILLI, PAYMAN ARABSHAHI, DANIEL KING SPONSORS: PAUL G. ALLEN CENTER FOR COMPUTER SCIENCE & ENGINEERING, UNIVERSITY OF WASHINGTON

UNIVERSITY of WASHINGTON