Информационни технологии

Бази от данни

Същност на БД - информация

- всяко сведение за събитие, същност, процес, явяващ се обект на някаква операция – възприемане, предаване, преобразуване, съхранение, използване (широк смисъл)
- концептуално свързани сведения, понятия, изменящи представите ни за явленията от обкръжаващия ни свят (от гледна точка на информатиката)

Същност на БД

- Информация създава се и се използва във всички области на човешката дейност
- Данни информация, представена във формализиран вид, удобен за обработка от компютър, съхранение и предаване (текст, графика, говор, видео)

Системи

- Всеки обект принадлежи към някаква система и притежава определен смисъл и носи информация
- Система единица, конструирана от обекти, обединени чрез релации; обекти и релации снабдени със свойства
- Естествени ИС
 - възникват от потребността да се снабди всяко производство с информация, необходима при контрол и вземане на решения;
 - човек се научава да събира тази информация, да я обработва и предава по предназначение

Информационни системи

- ИС система, предназначена за съхраняване, предаване и обработка на данни с цел получаване на необходима за потребителя информация (общо)
- ИС взаимосвързана съвкупност от средства, методи и персонал, използвана за обработка, съхраняване на данни с цел предоставяне на информация за достигане на определена цел (Международна организация по стандартизация)

ИС - описание

- Да се опише системата означава да се определят:
 - нейните обекти;
 - техните свойства;
 - <u>стойностите</u>, които могат да приемат тези свойства;
 - дейността на системата;
 - организацията на системата.

ИС - описание

- > Термини:
 - елемент обект, индивид;
 - свойство атрибут;
 - асоциация релация

ИС - пример

- ≻ Система "Фирма":
 - обекти "Служител", "Артикул", "Склад",
 "Длъжност" и др.
 - свойства "артикулен номер", "наименование на артикул", "име на служител", "адрес на склад", "наименование на длъжност" и др.

ИС - пример

- Релация между обекти:
 - "<u>е назначен</u>" м/у обекти "Служител" и "Длъжност";
 - "<u>е складиран</u>" м/у обекти "Артикул" и "Склад"
- Свойства на тези релации:
 - "дата на назначаване на длъжност" "е назначен";
 - "<u>складирано количество</u>" "е складиран"

Същност на БД

- Голям обем общи данни може да се използват многократно;
- отделните потребители не извършват отделна подготовка, а създават съвместно хранилище, наречено база от данни;
- провежда се обработка в среда,
 удовлетворяваща някои изисквания система
 за управление на база от данни

Същност на БД

- ▶ Бази от данни (БД)
 - набор от данни, подредени по определени правила с цел правилно и надеждно съхраняване
 - лесно, удобно и бързо манипулиране с тях:
 - допълване, редактиране, актуализиране
 - сортиране, извличане, пресмятане
- Създаване преминава се през процес на моделиране на данни; осигурява подредба по определени правила

Преимущества на БД

- > Съкращава се излишната информация
- Обезпечава се принципът за еднократно въвеждане и използване в различни аспекти
- Промяна на данните се извършва само на едно място

Предметна област

- Предметна област реалният свят, който трябва да се отрази в БД;
 - Съвкупност от конкретни и абстрактни понятия, между които съществува връзка
 - При представяне на предметната област чрез изчислителна машина, говорим за логическо и физическо ниво на представяне

Пример:

- Предметна област библиография; понятия източник, автор, кратко съдържание, препратка към литература
 - В този момент е малък интересът към брой рисунки в библиографските източници, качество на хартията за печат, име на автор на дадена статия

ИС – представа и място

- ИС едно възможно представяне на всяка организирана човешка система:
 - Организацията сама по себе си според информацията; ИС е естествен обект;
 - Конструираната от човека система представяне на отношенията, съхранение на информацията; изкуствен обект;
- Концепцията за ИС в непрекъсната взаимовръзка м/у организацията (естествения обект) и нейното представяне (изкуствения обект)

Етапи при изграждане на ИС

- Концептуално НИВО описва класите от обекти и съществените правила според целите, дефинирани от взимащите решения;
- Логическо ниво за данните и организационно за действията – да създаде подходящо представяне за удобно реализиране на следващото ниво;
- Физическо ниво за данните и операционно за действията – отчита техническите условия за реализация

Моделиране на ИС - първи етап

- Концептуален модел КМД
 - представяне на данните под формата на обекти и релации м/у тях;
 - Уточняват се свойствата на обектите и релациите, стойностите, които могат да приемат;
 - Задава се идентификатор за всеки обект свойство, което го определя еднозначно в ИС

КМД – пример (ИС "Видеотека")

- Съхранява информация за наличните видеокасети;
- > Класифицира по жанрове и националности;
- > Съхранява информация за клиентите;
- Съхранява информация за заемания на касети от клиенти

КМД

Обекти:

- Жанр № на жанр, Име на жанр (свойства, идентификатор)
- Националност —
- Касета № на касета, Заглавие, Цена закупуване, Дата на запис, Дата регистрация
- Клиент № на клиент, Име, Фамилия, Адрес,
 ЕГН, Телефон (свойства, идентификатор)
- Релация "Заема" м/у Клиент и Касета;
 - Свойства Дата заемане, Вид плащане

КМД

- > Релация "Принадлежи" м/у Касета и Жанр
- За свяка двойка "обект-релация" се задават "кардинали" (символика) – (1,1), (0,n) (минимум, максимум)
- "Принадлежи"- (1,1) всяка касета принадлежи точно на един жанр
- "Заема" (0, n) касета присъства във видеотеката без да бъде заемана; може да бъде заемана безброй пъти

КМД

Моделиране на ИС - втори етап

- Логически модел ЛМД; създава се според наличните схеми
 - Класически файл
 - Йерархична схема
 - Тип мрежа
 - Релационен тип

ЛМД - Класически файл

- Един файл групира информация от еднакво естество (напр. Файл Клиенти, файл Касети) под формата на полета (напр. №Клиент, ИмеКлиент,...) групирани в записи файл за клиенти, файл за касети.
- ≽ Ключ или идентификатор е полето, което позволява да се разпознае всяка поява на записа (№Клиент).

ЛМД - Класически файлове

ЛМД – Йерархична схема

- Най-семплата и отговаряща най-точно на естествените структури на реалния свят.
 - първа поява (1965 г. в програмата Apollo).
- Единствената употребяема връзка в този модел е връзката "баща-син"

ЛМД – Йерархична схема

- Съставен от възли (някои от тях се наричат корени) и от клони.
 - Възлите различните единици на модела;
 клоните са връзките между тези възли
 - Всяка единица има само един "Баща" и може да има многобройни "синове"

Понастоящем този модел е широко заместен от мрежовите модели, в които той е включен.

ЛМД – тип мрежа

- > Този модел е по-пълен от йерархичния модел.
- Функционира в подреждането на данните и в достъпа върху принципа на присъединяване на физически ключ на всяка поява на сегмент (record).
- Този физически ключ представлява всъщност физическият ключ на записа.

ЛМД – тип релационен

Релационен модел

Релационната концепция се появява през 1970 г. и е резултат от изследванията на *E. F. Codd*, превърнали се в международна норма

В релационния модел данните на предметната област се представят чрез множество таблици

Концепция на релационния модел

- Релационният модел е логически модел за данни;
- Основният елемент е релацията в смисъла на *Е. F. Codd*. Тя представлява една асоциация на атрибути (данни);
- > Основна форма:

Име на релация (Атрибут 1, Атрибут 2, , Атрибут п)

Концепция на релационния модел

 Множеството от случаите (проявите) на релационната релация се представя чрез таблица.

Колоните на таблицата съдържат стойностите, приемани от атрибутите на тази релация.

Редовете на таблицата представляват случаите (проявите) на релационната релация. Всеки ред е идентифициран чрез един атрибут или множество от атрибути, наречен **първичен** ключ.

Концепция на релационния модел

 Атрибутите-ключ са поместени в началото на списъка от атрибути и е прието да са подчертани.

```
КЛИЕНТ ( <u>№Клиент</u>, ИмеКлиент, ФамилияКлиент, АдресКлиент, ЕГН, ЛК, ТелКлиент )
```

```
жанр ( <u>№Жанр</u>, ИмеЖанр )
```

НАЦИОНАЛНОСТ (<u>№ Националност</u>, ИмеНационалност)

Пример за Релационна таблица

ЖАНР(<u>№Жанр</u>, ИмеЖанр)

ЖАНР	<u>№Жанр</u>	ИмеЖанр
	1	Драма
	2	Комедия
	3	Детски

В една релационна таблица не може да има два идентични реда, откъдето се налага и понятието ключ.

Стойността, която приема ключа, трябва да позволява да се идентифицира еднозначно реда.

- » <u>Първичен ключ (primary key)</u>
 - Това е този ключ, който осигурява единствеността на реда.

Той е <u>прост първичен ключ</u>, ако е само с 1 атрибут

ИЛИ

<u>сложен първичен ключ</u>, ако се състои от повече от 1 атрибут.

Примери

прост първичен ключ

```
КЛИЕНТ ( <u>№Клие́нт</u>, ИмеКлиент,
ФамилияКлиент, АдресКлиент, ЕГН, ЛК,
ТелКлиент )
```

ЖАНР (<u>№Жанр</u>, ИмеЖанр)

сложен първичен ключ

ЗАЕМАНЕ (<u>№Клиент, №Касета</u>, ДатаЗаемане)

> Чужд ключ (foreign key)

Един атрибут е чужд ключ в една релационна релация, когато е първичен ключ в друга релационна релация.

Напр.

```
КАСЕТА ( № Касета, ИмеКасета, ДатаЗапис, ЗакупнаЦена, № Жанр, № Националност) 
ЖАНР ( № Жанр, ИмеЖанр) 
НАЦИОНАЛНОСТ ( № Националност, ИмеНационалност)
```

Ключ кандидат

Този атрибут не е първичен ключ, но е в състояние да осигури единствеността на един ред от релационната таблица.

КЛИЕНТ (<u>№Клиент</u>, ИмеКлиент, ФамилияКлиент, АдресКлиент, <u>ЕГН</u>, ЛК, ТелКлиент)

Вторичен ключ

Това е индекса на физическо ниво, улесняващ достъпа до някоя често използвана колона.

Приложението Access

Последователност за работа:

- Таблици разработва се структурата на таблицата;
 определя се свойството първичен ключ; режим Design View
 - 1. Таблици без чужди ключове
 - 2. Таблици с чужди ключове
- Дефиниране на релации Relationships
- Формуляри форми за регистриране на екземплярите на обекти и релации; режим Wizard; допълнителна настройка в режим Design View
 - 1. За таблици без чужди ключове
 - 2. За таблици с чужди ключове

Приложението Access

Последователност за работа:

- Заявки справки на базата на зададени критерии; режим Design View
 - Критерии в различни полета на ред
 - Критерии в различни полета на различни редове
 - Заявка с параметър
 - Заявка с изчисляемо поле
- Отчети информация от таблици или заявки, представена
 в удобен за разпространение вид; режим Wizard;
 допълнителна настройка в режим Design View
 - Възможно групиране по поле чужд ключ

Специални символи при шаблони

- 0 изисква цифра, задължителен запис
- # изисква цифра, незадължителен запис
- Шаблон за дата 00.00.0000
- ▶ L изисква буква, задължителен запис
- ? изисква буква, незадължителен запис
- < преобразува следващите букви в малки
- > преобразува следващите букви в главни
- Шаблон за име на жанр (15 символа) задължително поне три букви, първата главна, останалите малки >L<LL????????????