$(a_n)n\in\mathbb{C}^{\mathbb{N}}$, la série entière de la variable complexe z associée à la suite $(a_n)_n$ est la série de fonctions $\sum a_nz^n$

I. Rayon de convergence

I.1. Lemme d'Abel

ABEL Niels Henrik 1802 Nedstrand - 1829 Froland: Niels Abel a fait ses études au collège de la cathédrale d'Oslo (Christiania à l'époque). Dès 16 ans, il découvre les œuvres d'Euler de de Lagrange et cherche à résoudre l'équation du 5ème degré. Grâce à une bourse d'études, il se rend à Berlin mais les travaux d'Abel laissent indifférente la commanuté mathématique. Abel ne renonce pas et se rend à Paris. Son mémoire, "Sur quelques propriétés générales d'une certaine sorte de fonctions transcendantes", a été mésestimé par Gauss et Legendre puis égaré et retrouvé par Cauchy mais après la mort d'Abel (mort de tuberculose à 27 ans).

théorème: $\sum a_n z^n$ série entière, s'il existe $\rho > 0$ tel que la suite $(a_n \rho^n)_n$ soit bornée, alors $\forall z \in \mathbb{C} \ |z| < \rho \ (a_n z^n)_n$ est dominée par $\left(\frac{|z|}{\rho}\right)^n$ et donc $\sum a_n z^n$ converge absolument

I.2. Rayon de convergence

On pose $\mathcal{A} = \{ \rho \geq 0; (a_n \rho^n)_n \text{ suite bornée } \}$, $\mathcal{A} \subset \mathbb{R}_+$ $0 \in \mathcal{A}$

donc \mathcal{A} est un sous-ensemble de \mathbb{R} , non vide

<u>définition</u>: si \mathcal{A} non majoré, on pose $R=+\infty$

Si \mathcal{A} majoré, on pose $R = \sup \mathcal{A}$

R s'appelle rayon de convergnce de la série entière $\sum a_n z^n$

<u>définition</u>: On appelle disque ouvert de convergence $D(0,R) = \{z \in \mathbb{C} : |z| < R\}$ (inclus dans \mathbb{C}) et intervalle ouvert de convergence [-R,R] (inclus dans \mathbb{R})

Exemple: $\forall \alpha \in \mathbb{R}$ $\sum n^{\alpha}z^{n}$ a pour rayon de convergence 1.

théorème: $\sum a_n z^n$ série entière de rayon de convergence R > 0 alors

si |z| < R — alors $\sum a_n z^n$ converge absolument et converge

si |z| > R alors $\sum a_n z^n$ diverge grossièrement

si |z| = R alors on ne peut rien dire

théorème : Autres caractérisations du rayon de convergence :

$$R = \sup\{|z| \ge 0: \sum a_n z^n \text{ converge absolument }\} = \sup\{|z| \ge 0: \sum a_n z^n \text{ converge }\}$$

 $R = \sup\{|z| \ge 0: \lim_{n \to +\infty} a_n z^n = 0\}$

I.3. Propriétés

<u>théorème</u> : $\sum a_n z^n$ série entière de rayon de convergence R alors

si
$$\exists z_0 \in \mathbb{C} \mid \sum a_n z_0^n$$
 converge alors $R \ge |z_0|$

PC Lycer Pasteur 2022 2024

si $\exists z_1 \in \mathbb{C} \quad \sum a_n z_1^n$ diverge alors $R \leq |z_1|$

théorème : $\sum a_n z^n$ série entière de rayon de convergence R_a

 $\sum b_n z^n$ série entière de rayon de convergence R_b alors

- 1. Si $a_n = O(b_n)$ (ou $a_n = o(b_n)$) alors $R_a \ge R_b$
- 2. si $\forall n \in \mathbb{N} \quad 0 \le |a_n| \le |b_n|$ alors $R_a \ge R_b$
- 3. Si $|a_n| \sim |b_n|$ alors $R_a = R_b$

Utilisation de la règle de d'Alembert : $\sum a_n z^n$ série entière avec $\forall n \in \mathbb{N} \mid a_n \neq 0$

On suppose
$$\lim_{n \to +\infty} \left| \frac{a_{n-1}}{a_n} \right| = l$$
 , $l \in \mathbb{R} \cup \{+\infty\}$.

alors
$$R = \frac{1}{l} = \begin{cases} 0 \text{ si } l = +\infty \\ +\infty \text{ si } l = 0 \\ \frac{1}{l} \text{ si } l \in]0, +\infty[\end{cases}$$

II. Opérations sur les séries entières

II.1. Somme

théorème : $\sum a_n z^n$ série entière de rayon de convergence R_a . $\sum b_n z^n$ série entière de rayon de convergence R_b alors $\sum (a_n + b_n) z^n$ a pour rayon de convergence R avec $R \ge \min(R_a, R_b)$

et si
$$|z| < \min(R_a, R_b)$$
 $\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$

Si de plus $R_a \neq R_b$ alors $R = \min(R_a, R_b)$

II.2. Multiplication par un scalaire non nul

théorème : $\sum a_n z^n$ série entière de rayon de convergence R_a , $\alpha \in \mathbb{C}^*$ alors $\sum (\alpha a_n) z^n$ a pour rayon de convergence R_a

II.3. Produit de séries entières

théorème : $\sum a_n z^n$ série entière de rayon de convergence R_a , $\sum b_n z^n$ série entière de rayon de convergence R_b alors $\sum c_n z^n$ a pour rayon de convergence R avec $R \ge \min(R_a, R_b)$

$$où c_n = \sum_{k=0}^n a_k b_{n-k}$$

$$|\operatorname{si}|z| < \min(R_a, R_b) \quad \sum_{n=0}^{-\infty} c_n z^n = \left(\sum_{n=0}^{-\infty} a_n z^n\right) \left(\sum_{n=0}^{-\infty} b_n z^n\right)$$

III. Propriétés de la somme d'une série entière

III.1. Convergence normale

<u>théorème</u>: $\sum a_n z^n$ série entière de rayon de convergence R>0, alors $\sum a_n z^n$ converge normalement sur tout fermé borné du disque ouvert de convergence

PC Lucee Pasteur 2021 2024

faux sur D(0,R)

Corollaire : $\sum a_n z^n$ série entière de rayon de convergence R>0 , alors $\sum a_n x^n$ converge normalement sur tout segment de]-R, R[

faux sur] – R, R[

III.2. Continuité

théorème: $\sum a_n z^n$ série entière de rayon de convergence R > 0, alors la fonction somme $x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur]-R, R[(domaine de définition réel)

On ne sait rien en R et -R

Remarque admise: $\sum a_n z^n$ série entière de rayon de convergence R > 0, alors la fonction somme est continue sur D(0,R) (domaine de définition complexe)

III.3. Dérivation. Intégration

théorème : $\sum a_n z^n$ série entière de rayon de convergence R, alors $\sum na_n z^n$ et $\sum \frac{a_n}{n+1} z^n$ ont pour rayon de convergence R

Remarque: Les séries ont le même rayon de convergence mais peuvent avoir des comportements différents au bord

théorème intégration : $\sum a_n z^n$ série entière de rayon de convergence R > 0, alors

on pose $S:]\text{-}R, R[\longrightarrow \mathbb{C}$

$$x \longmapsto \sum_{n=0}^{-\infty} a_n x^n$$

alors si
$$|x| < R$$
 $\int_0^x S(t)dt = \int_0^x \sum_{n=0}^{+\infty} a_n t^n dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n-1}}{n+1}$

<u>théorème dérivation</u>: $\sum a_n z^n$ série entière de rayon de convergence R > 0, alors

on pose $S:]-R, R[\longrightarrow \mathbb{C}$

$$x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$$

alors S est de classe c^1 sur]-R,R[et \forall $x\in$]-R,R[$S'(x)=\sum_{n=1}^{+\infty}na_nx^{n-1}$

<u>Généralisation</u>: $\sum a_n z^n$ série entière de rayon de convergence R>0, alors

alors S est de classe e^{∞} sur]-R, $R[-\text{et }\forall \ x\in]-R$, $R[-\forall \ k\in \mathbb{N}-S^{(k)}(x)=\sum_{n=k}^{+\infty}n(n-1)..(n-k+1)a_nx^{n-k}]$

et
$$a_k = \frac{S^{(k)}}{k!}$$

théorème : Soit f:]- $R, R[\longrightarrow \mathbb{C}]$ tel que sur]- $R, R[f soit la somme d'une série entière de rayon de <math>_{PC-Lycee-Pasteur-2023}]_{2024}$

IV. Développement en série entière (DSE)

IV.1. Définition

<u>définition</u>: Soit $f:]-r, r[\longrightarrow \mathbb{C}$ est DSE sur]-r, r[s'il existe une série entière $\sum a_n z^n$ de rayon de

convergence
$$R \ge r$$
 telle que $\forall x \in]-r, r[-f(x) = \sum_{n=0}^{+\infty} a_n x^n$

Propriété: Si f est DSE sur]-r, r[, alors f est de classe e^{∞} sur]-r, r[et \forall $k \in \mathbb{N}$ | $a_k = \frac{S^{(k)}}{k!}$ réciproque fausse

IV.2. Série de Taylor d'une fonction de classe c^{∞}

TAYLOR Brook 1685 Edmonton - 1731 Londres : Savant éclectique, Brook Taylor s'adonne à la musique, la peinture et la philosophie. Formé aux mathématiques par John machin à l'université de Cambridge, on lui doit son traité sur le dévelopement en séries de fonctions : Methous incrementorum directa et inversa.

définition : Soit f:]- $r, r[\longrightarrow \mathbb{C}$ de classe c^{∞} sur \mathbb{C} , on appelle série de Taylor (ou de Mac-Laurin) de f la série entière $\frac{f^{(n)}(0)}{n!}x^n$

alors si f DSE sur]-r,r[, la série de Taylor de f converge vers f sur]-r,r[

Lien avec la formule de Taylor : Soit $f:]-r, r[\longrightarrow \mathbb{C}$ de classe c^{∞} sur \mathbb{C} .

alors
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

donc f est DSE sur]-r,r[si et seulement si \forall $x\in$]-r,r[$\lim_{n\mapsto+\infty}\int_0^x\frac{(x-t)^n}{n!}f^{(n+1)}(t)dt=0$

IV.3. Propriétés

1. Le DSE d'une fonction est unique (s'il existe)

2.
$$f, g:]$$
- $r, r[\longrightarrow \mathbb{C}$ DSE alors $f+g$. fg sont DSE sur $]$ - $r, r[$ et si $f(x) = \sum_{n=0}^{+\infty} a_n x^n - g(x) = \sum_{n=0}^{+\infty} b_n x^n$

alors
$$(f+g)(x) = \sum_{n=0}^{+\infty} (a_n + b_n)x^n$$
 $(fg)(x) = \sum_{n=0}^{+\infty} (\sum_{k=0}^{n} a_k b_{n-k})x^n$

3.
$$f:]-r, r[\longrightarrow \mathbb{C} \text{ DSE alors } x \longmapsto \int_0^x f(t)dt \text{ est DSE sur}]-r, r[\text{ et } \int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1}x^{n+1}$$

4.
$$f:]-r, r[\longrightarrow \mathbb{C}$$
 DSE alors f' est DSE sur]- $r, r[$ et $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$

IV.4. DSE usuels

$$\forall z \in \mathbb{C} \quad e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \text{ donc} \qquad \forall x \in \mathbb{R} \quad e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \qquad R = +\infty$$

$$\forall x \in \mathbb{R} \quad \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n-1}}{(2n+1)!} \qquad R = +\infty$$

$$\forall x \in \mathbb{R} \quad \cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad R = +\infty$$

$$\forall x \in \mathbb{R} \quad \sinh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \qquad R = +\infty$$

$$\forall x \in \mathbb{R} \quad \cosh(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \qquad R = +\infty$$

$$\forall \ z \in \mathbb{C} \text{ tel que } |z| < 1 \qquad \frac{1}{1-z} = \sum_{n=0}^{-\infty} z^n \text{ donc } \forall \ x \in]-1,1[\qquad \frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n \qquad R = 1$$

$$\forall x \in]-1,1[\quad \ln(1+x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{x^n}{n} \qquad R = 1$$

$$\forall \ x \in]-1,1[\quad \arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \qquad R = 1$$

$$\forall \ x \in]-1.1[\quad (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \alpha(\alpha-1)...(\alpha-n+1) \frac{x^n}{n!} \qquad R = 1$$

IV.5. Recherche de solutions DSE d'une équation différentielle linéaire

(E))
$$a_n(x)y^{(n)}(x) + ... + a_0(x)y(x) = b(x)$$
 avec a_0, \dots, a_n, b :]-r, r[\longrightarrow C DSE

On cherche y sous la forme
$$y(x) = \sum_{n=0}^{+\infty} u_n x^n$$

On effectue les produits de Cauchy et on égale les DSE par unicité du DSE.

Puis on cherche le rayon de convergence.

Autre application: série génératrice (probas)