

<u>Lecture 6: Introduction to</u> <u>Hypothesis Testing, and Type 1 and</u>

<u>课程 > Unit 2 Foundation of Inference > Type 2 Errors</u>

> 8. First Example

8. First Example

Does at most a third of Americans get at least some news from youtube?

That will be a number which will be some number between 0 and 1.

And what he needs to do, or she needs to do,

is to map it back onto the scale of the problem itself-- back

to minutes or back to percentages of Americans.

OK?

End of transcript. Skip to the start.

视频

下载视频文件

字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

Intuition for Hypothesis Testing

1/1 point (graded)

The purpose of this question is not to formally outline the procedure of hypothesis testing, but rather to illustrate some of the intuition involved in answering a hypothesis testing question.

Your friend claims to you that a random variable X has the distribution $\mathcal{N}(0,1)$, and your goal is to decide whether or not this claim is true. You observe a single realization this random variable, which comes out to be X=3.514.

Which of the following is the most plausible assessment of the experiment?

- It is **not** very unlikely for a standard Gaussian random variable to be at least 3.514 (*i.e.*, the event has probability larger than 5%), so you are not able to refute your friend's claim that $X \sim \mathcal{N}(0,1)$.
- It is **not** very unlikely for a standard Gaussian random variable to be at least 3.514 (*i.e.*, the event has probability larger than 5%), so you can affirm with 100% certainty your friend's claim that $X \sim \mathcal{N}(0,1)$.
- It is very unlikely for a standard Gaussian random variable to be at least 3.514 (*i.e.*, the event has probability less than 0.1%), so if indeed $X \sim \mathcal{N}(0,1)$, then you just observed a very rare event. Intuitively, it seems unlikely that your friend's claim is true. \checkmark
- It is very unlikely for a standard Gaussian random variable to be at least 3.514 (*i.e.*, the event has probability less than 0.1%), so you can conclude with 100% certainty that X is **not** distributed like a Gaussian.

Solution:

The third choice is correct. We can compute using computational tools or a table that if $X \sim \mathcal{N}\left(0,1
ight)$, then

$$P\left(X>3.514
ight)=\int_{3.514}^{\infty}rac{1}{\sqrt{2\pi}}e^{-x^{2}/2}~dxpprox.00022$$

which is smaller than 0.1%. Indeed this is a very rare event, so based on this heuristic argument, it seems unlikely that your friend's claim is true.

We examine the incorrect choices in order:

• The first two choices are both incorrect. As above, $P(X \ge 3.514)$ is much smaller than 5%, so X being larger than the given observation is **not** a likely event.

Remark: Note how the language between these two choices differs: the first one says "you are not able to refute your friend's claim," and the second says "you can affirm with 100% certainty your friend's claim". The logic of the two statements are very different. For statistical analysis, we almost always stick with the first one.

• The fourth choice is incorrect. While the observation $X \geq 3.514$ would be a rare event given that $X \sim \mathcal{N}(0,1)$, there is still some positive probability (roughly 0.02%) of it happening. Rare events can still occur, so we cannot rule out with 100% certainty that the distribution of X is $\mathcal{N}(0,1)$.

提交

你已经尝试了1次(总共可以尝试2次)

• Answers are displayed within the problem

Review: Central Limit Theorem

1/1 point (graded)

Recall the central limit theorem states that if

- X_1, \ldots, X_n are i.i.d.;
- $\mathbb{E}\left[X_1\right] = \mu < \infty$, and $\mathrm{Var}\left(X_1\right) = \sigma^2 < \infty$,

then a shift and a rescaling of the sample mean $\overline{X}_n=rac{1}{n}\sum_{i=1}^n X_i$ converges to a standard Gaussian $\mathcal{N}\left(0,1\right)$ in distribution as $n o\infty$:

$$\sqrt{n}\left(rac{\overline{X}_{n}-\mu}{\sigma}
ight)rac{^{(d)}}{^{n o\infty}}\mathcal{N}\left(0,1
ight).$$

Suppose $\mu=0$ and $\sigma^2=1$. Given this assumption, which of the following limits is **strictly** between 0 and 1?

$$\lim_{n o\infty}P\left(\overline{X}_n\in(-1,1)
ight)$$

$$igcellet \lim_{n o\infty}P\left(\overline{X}_n\in\left(-rac{1}{\sqrt{n}},rac{1}{\sqrt{n}}
ight)
ight)ullet$$

$$igcap_{n o\infty}P\left(\overline{X}_n\in\left(-rac{1}{n},rac{1}{n}
ight)
ight)$$

Solution:

Let $Z\sim\mathcal{N}\left(0,1
ight)$ and let a_n,b_n denote sequences depending on n. By the central limit theorem (CLT),

$$\lim_{n o\infty}P\left(\overline{X}_n\in(a_n,b_n)
ight)\ =\lim_{n o\infty}P\left(\sqrt{n}\,\overline{X}_n\in(\sqrt{n}a_n,\sqrt{n}b_n)
ight)$$

$$=P\left(Z\in (\lim_{n o\infty}\sqrt{n}a_n,\lim_{n o\infty}\sqrt{n}b_n)
ight)$$

Now let's examine the choices in order.

 $ullet \lim_{n o\infty}P\left(\overline{X}_n\in(-1,1)
ight)=1$, so this choice is incorrect. Setting $a_n=-1$ and $b_n=1$, we see that

$$\lim_{n o\infty}\sqrt{n}a_n=-\infty,\quad \lim_{n o\infty}\sqrt{n}b_n=\infty.$$

Hence, by the above calculation,

$$\lim_{n o\infty}P\left(\overline{X}_n\in(a_n,b_n)
ight)=P\left(Z\in(-\infty,\infty)
ight)=1.$$

• $\lim_{n \to \infty} P\left(\overline{X}_n \in \left(-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right)\right)$ lies strictly between 0 and 1, as we will show below. Setting $a_n = -\frac{1}{\sqrt{n}}$ and $b_n = \frac{1}{\sqrt{n}}$, we see that

$$\sqrt{n}a_n=-1, \quad \sqrt{n}b_n=1.$$

Hence, by the above calculation,

$$\lim_{n o\infty}P\left(\overline{X}_n\in(a_n,b_n)
ight)=P\left(Z\in(-1,1)
ight)$$

Since Gaussian variables have a positive probability of being inside (-1,1) and also a positive probability of being outside (-1,1), we can also conclude without doing any computation that $0 < P(Z \in (-1,1)) < 1$.

Remark: Alternatively we can compute, using computational tools or a table that

$$P\left(Z\in(-1,1)
ight)=\int_{-1}^{1}rac{1}{\sqrt{2\pi}}e^{-x^{2}/2}~dxpprox0.6827.$$

• $\lim_{n o\infty}P\left(\overline{X}_n\in\left(-rac{1}{n},rac{1}{n}
ight)
ight)=0$, so this choice is incorrect. Setting $a_n=-rac{1}{n}$ and $b_n=rac{1}{n}$, we see that

$$\lim_{n o\infty}\sqrt{n}a_n=\lim_{n o\infty}-rac{1}{\sqrt{n}}=0,\quad \lim_{n o\infty}\sqrt{n}b_n=\lim_{n o\infty}rac{1}{\sqrt{n}}=0$$

Hence, by the above calculuation,

$$\lim_{n o\infty}P\left(\overline{X}_{n}\in\left(a_{n},b_{n}
ight)
ight)=P\left(Z\in\left(0,0
ight)
ight)=0.$$

Remark: This exercise emphasizes the heuristic interpretation of the CLT which states that the sample mean \overline{X}_n lives inside an interval of radius $Constant imes \frac{1}{\sqrt{n}}$ around its expectation. This heuristic will be useful for designing hypothesis tests.

提交

你已经尝试了1次(总共可以尝试2次)

Answers are displayed within the problem