Case Study BPI 2015 M3

Index

- Overview
- Exploratory Analysis
- Data Preparation
 - Preprocessing
 - Feature engineering
 - Attribute Selection
- Resource roles
- Organisational Structure
- Outsourcing
- Performance Analysis
- Process Models

Overview

Dataset: #29 attributes under following levels & categories

Event

- Activity | concept:name | activityNameEN | activityNameNL | action_code: Activity Identifier
- **Resource**: Resource executing the event
- Monitoring resource : Resource monitoring the event

Trace

- Case ID : Unique case identifier #
- (case) SUMleges: Cost of each trace
- o (case) last phase: last phase for each case
- (case) caseStatus: status of the case
- (case) Includes_subCases: if a case has any subcases
- (case) Responsible_actor: Resource responsible for case
- (case) case_type: Type of permit applied

Overview

Timestamp

- **Complete Timestamp**: Timestamp of execution of an event
- dateFinished : almost similar to Complete Timestamp
- dateStop: Not relevant. (couldn't make any sense)
- Planned : Planned time of execution of an event
- dueDate : Due date of execution of an event

Others

- Variant : Cases following similar trace
- All other 10 attributes are not considered as most of them had missing values.

EDA

Attributes

Variant

(case) last_phase

Action_code | Concept: name

activityNameEN

Case Id	1409	Relevant
Events	59681	Relevant
Complete Timestamp	2010.01.01 - 2015.03.05	Duration of each case

Count

Comments

Relevant

Mismatch with activityNameNL

Built new attributes

Context Information

27 383

277

1349

Attributes	Count	Comments
Executing Resources	14	Relevant
Responsible_actor	20	Dropped due to ambiguity
monitoringResource	22	Not relevant
(case) case_type	1 - 557668	No Insight
(case) IdofConceptCase	805 (including null)	No Insight
(case) caseStatus	2	Open or Close
Avg no events per case	43	Duration & trace length

Attributes	Count	Comments
(case) parts	94	Not relevant
(case) requestcomplete	2	Not relevant
(case) termName	14	Not relevant
Lifecycle: transition	1	Not relevant
question	540	No Value added
IDofConceptCase Includes_subCases SUMleges caseProcedure landRegisterID	40% 24% 35% 87% 80%	Missing Data : dropped

Data Preparation

- In this section we shall discuss:
 - Data preprocessing and cleaning
 - Feature Engineering
 - Attribute selection

Python, Excel & Disco were used to perform the task.

Preprocesing & cleaning

- The data had logging inconsistencies
 - Timestamp: many had "00:00:00" but had different order. (No changes done)
 - Batch execution?
 - Automated processing?
 - Event Ordering: Initially data is ordered based on time, but to be sure, sorted again in terms of order.
 - As a result, now we know the correct duration of each event.
 - Did not bring a major change but more concrete analysis further.
 - Overlaps could be used to find problems in the process flow.
 - CaseStatus: (if lastPhase == activityNameNL) → case should have ended.
 - There are many scenarios when caseType is still open "O"
 - Dropping "G" would lead to loss of information but avoid noise.
 - Conclusion: We consider Closed cases in our analysis.

Feature Engineering

Action_code: Since we can't rely on timestamp values as they happen parallely, So → had to reorder them.

New attributes are created

- o <u>Order</u>: Last three letters are supposed to mention the order of an event
- Issues:
 - Created new columns and cleaned a lot of "_" values. (01_BB_1_xxx_Y)
 - String to numeric conversion and
 - Data ordered → first by Case ID → and then Order.
- O Phase:
 - 01_H00FD_1xx → It is informed the activity belongs to Phase 1
 - Observed a total of 10 phases from (0-9) and their frequency distribution is shown below.

Phase =	Count =	Percentage	Phase level frequency	
0	22973	38.5	Phase level frequency	
4	10772	18.0	 Summarizing for all 277 activities would be too fine grained. 	
5	9859	16.5	too ilile grained.	
1	6937	11.6	For Simplicity, looked at main	
3	4670	7.8	stages/phases for all the activities (0-9)	
2	4105	6.9		
8	188	0.3	 Phase [0,1,4,5] contains 85 % of all 	
7	107	0.2	activities in log	
6	33	0.1		
UVO	22	0.0	 There was a label 'UOV' in the action code, but they represent the subprocess count. 	
9	15	0.0	 delete these records as we do not have any 	
	59681	100.0	details about the order of these activities	

Feature Engineering

Activity Name:

- Many to one relationship : Some activity names have more than one action code (383 → 277)
- Difficult to make a process model with 383 activities.
- Suggestion : Aggregation by abstracting to a higher phase level
- We find 53 distinct activityNameEN with the word "phase"
- Issue: These names can't be related to action_code. (Reason activityNameNL might make sense).
- Conclusion: Keep things simple and use action_code to identify main events.

Completeness:

- Ongoing cases →! process discovery of case variants.
- Three attributes:
 - requestComplete | caseStatus | endDate
 - Nothing gave an implicit conclusion to decide if the case has actually ended.
 - As discussed above, we only consider caseStatus.

Feature Engineering

- Main/Sub-process: This would be the coarse grained indicator of each event.
 - O1_H00FD_1xx: Split out the central part and make a frequency table. Described below.

• Timestamp:

- Complete:timestamp | dateFinished | planned | dateStop | dueDate Event Level
- startDate | endDate | endDatePlanned Case Level
- Since most of them were missing → "NA"
- Timestamp of last event does't coincide with endDate
- Conclusion: they are not reliable, We only consider Complete:timestamp
- Now we have two levels on which model could be developed
 - Phase: Range(0,9)
 - Subprocess: 18 values (Table below)
 - Issue: We do not have any context information in this approach.

subprocess	count	Percentage	
HOOFD	45557	76.3%	
AWB45	3642	6.1%	Main/Cubarages Free
AH	2612	4.4%	Main/Subprocess Freq
BPT	1534	2.6%	 No relation of each subprocess with the context
VD	1006	1.7%	information.
UOV	926	1.6%	 Reason: believe it would match with
GBH	909	1.5%	activityNameNL if we do some word cloud
DRZ	884	1.5%	analysis on each activity name & then try to find
AP	668	1.1%	out some relation.
EIND	585	1.0%	
CRD	501	0.8%	 Further Model development will be described
OPS	343	0.6%	 With subprocess code
VRIJ	242	0.4%	Phase number 0-9
вв	135	0.2%	
NGV	119	0.2%	
OLO	13	0.0%	
LGSV	4	0.0%	
LGSD	1	0.0%	
	59681	100.0	

Attrubute Selection

After dropping caseType == "G" and Phase = "UOV" (22 records). We take following attributes for our analysis

```
• Case ID: # 1328
```

Complete Timestamp: 01:01:2010 - 05:03:2015

• Phase: # 9

Subprocess: # 18

ActionCode : # 374

activityNameEN: # 276

• Order: # 128

• Resource: # 14

• caseStatus: #1 Note: We will only consider "O" henceforth

• Variant: # 1285

Statistics

Observation

Events	57467	Data loss of 3.7%
Case duration: Mean Median	39d 62.6 d	60 % cases → takes >= 40d ~28% cases → takes >=60d 22% cases → 40< bw <60
Variants	~600/1285	Represents our 75% of model behaviour
Phase	0 1 4 5	Cumulates for ~85 % of events
Subprocess codes	HOOFD AWB45 AH BPT	~ 90 % events are in this phases
Active case / day	Range (14 - 18)	From 10-2010 → observe an increase. However with time the figure has slowly decreased

Value

Comments

Resource Roles

First step would be to limit an attribute.

- Resource : 14 members Event Level
- Monitoring Resource :22 members responsible for cases.
 - Relevance when some Case Ids involve multiple municipalities.
 - So, not relevant to our analysis.
- Responsible Actor: 20 unique members who monitor at Trace level

In order to find the activities performed by each resource, a frequency table is shown below.

- Mean 4106 & Median 1645. Distribution is heavily right skewed.
- We conclude 5 resources contribute in 86% of the activities.
- **Conclusion**: Most of the workload is on 5 particular resources.

Resource	0	1	2	3	4	5
560454	35.2	16.6	10.7	12.3	19.4	5.0
560673	39.0	4.6	3.4	4.5	20.1	28.2
560696	49.8	17.2	6.7	6.8	7.6	11.4
560713	63.6	36.4	0.0	0.0	0.0	0.0
560741	34.7	3.8	2.9	3.1	21.2	33.5
560749	38.0	7.5	4.8	5.1	20.1	24.1
560922	27.7	24.6	18.5	7.7	13.8	7.7
2013365	38.7	17.3	10.6	12.7	14.9	5.6
3069866	45.5	27.3	18.2	0.0	0.0	9.1
3122446	31.7	22.5	13.4	11.0	18.2	2.6
3148844	100.0	0.0	0.0	0.0	0.0	0.0
3442724	51.4	17.5	4.3	3.9	11.2	9.1
5025869	34.2	8.9	4.5	6.7	26.8	16.3

Phase Level Frequency

Phase 0 -9 (In order)

Resource Roles

- From the log data, it is not clear how roles are assigned per resource. However, there are 2 cases
 - 6 : Involved in Phase 2
 - o 3148844: Involved in Phase 0
- Multiple resources perform different roles. Eg: Resource 560654 has interchanging roles.
 - Resource → 25%
 - Responsible actor → 31%
 - Monitoring resource → 27 %
- Assumption: Could this be due to lack of human resources?
- Comparison of resource roles:
 - All 14 people in Resource → Monitoring resource
 - 8/14 people in Resource → Responsible actor.
- Conclusion: The roles of Resources seem to be interchangeable with Monitoring & Responsible actor.

Organisational Structure

- It is often that a case takes longer due to some resource having huge workload.
- We have already identified such resources above and further improvements could be done.

Observation Parameters : Activity → 50% Path → 90%

- Many resources take a much higher workload than others (as indicated in the figure below).
 - o 560673 | 560741 | 560749 | 560454 | 560696 | 2013365
- Therefore, one of the improvement could be to manage the workload between the resources performing the same role evenly. (Refer pg no 19)
- Re-do work loops among

 - 560749 & 560696 → ~ 60-90 cases

Organisational Structure

Improvements

- Self loops:
 - Tasks are processed periodically, but the impact is overall.
 - Kept on low Priority, that they queue heavily
 - Resources are overloaded that leads to FIFO (distribute tasks among free resources)
- High Impact Areas:
 - Rework loop b/w 560454 & 560673 would free 200 cases and save ~ 12 days waiting time
 - 560749 | 560741 : receive **majority incoming cases** and almost all redo work. So their work is an important area to understand domain outside log data. (Errors or some feedback/approval)
- Delegate the rebound tasks to new resources instead of overloaded employees. Pg20
- O Divide cases based on "currently available" resources; and ! on previous experience.
 - The latter resources keep waiting for other initial resources to pass on the case, who happen to work more than their capacity. ("6 do not actively participate in workload)

Outsourcing

- Importance: Cost Reduction (Preserve important activities & support from third party)
- Better task allocation to the primary resources and not overloaded.
- First look on the most frequent subprocess to outsource. Refer Pg no 13
- HOOFD → is a main process &! a good idea to outsource.

	Suggestions:	AWB45	3642	6.1%
		AH	2612	4.4%
•	Outsource those which are	BPT	1534	2.6%
4		VD	1006	1.7%
Ί,	difficult to be Managed	UOV	926	1.6%
2.	Doesn't involve loops with other subprocess	GBH	909	1.5%
3.	Directly connected to the main process	DRZ	884	1.5%

DRZ: $^{\circ}650$ cases & mean waiting time (12.6d + 9.7 hrs) **EIND**: $^{\circ}320$ cases & mean waiting time (6.1 d + 55 hrs)

Improvements

Resources are no longer Overloaded.

2 cases which take 21 weeks but they might be an outlier.

Throughput times

- Large difference in mean & median values distribute the data in a **right skew.**
- **Outliers** presence is a huge factor for average 62 days/case.
- As discussed above
 - \circ 60 % cases \rightarrow takes >= 40 days
 - ~28% cases → takes >=60 days
 - \circ 22% cases \rightarrow 40< bw <60 days.
 - If we look at 95% cases we observe following stats
 - Mean duration shifts from $62 \rightarrow 46$
 - In 2010 until October process took longer
 Duration and it doesn't help us build a good
 Process model.

Median cas	se duration	36.4 d
Mean case	duration	44.5 d
Start	04.10.20	10 00:00:00
End	04.03.20	15 14:02:58

Throughput times

Performance Analysis

For the Action Code improved drastically on removing these 5 % cases.

The most clear bottleneck we observe in HOOFD.

Which Shall require further drill down.

Model 1

- We have two levels of abstraction
 - Action Code level
 - Phase level
 - Model would be best represented in absence of outliers and on clean data

Model 2 - Fuzzy Miner

Action Code Level

Phase Level Model

End