

Written assessment, January 11, 2023

Last name, First name

Exercise 1 (value 9)

A telecommunication company needs to install antennae for the new 6G technology. A set L of locations where antennae can be installed (maximum one antenna per location) has been identified. A set A of areas that the company aims to cover with the signal is also given. The signal intensity s_{ij} , namely the strength of the signal from an antenna installed in location $i \in L$ received in area $j \in A$, is known for each pair (i,j). An area j is classified as covered only when the sum of the strength of the signals received is at least T. Furthermore, due to interference issues, an area $j \in A$ is declared as non-covered if there is more than one signal with level greater than or equal to U (i.e., $s_{ij} \geq U$) in j. Finally, for technical reasons, an antenna can be placed in location α only if an antenna is installed in location β . Write an integer linear programming model to help the company to decide where to install antennae in order to maximize the number of covered areas.

Exercise 2 (value 9)

Solve the following LP problem with a simplex method of your choice:

min
$$4x_1 + x_2 + x_3$$

 $x_1 + 4x_2 - 10x_3 \le 4$
 $-x_1 - 2x_2 + 5x_3 = 5$
 $x_1, x_2, x_3 > 0$.

State the method you choose, show all the steps, and write the optimal solution together with its cost.

Exercise 3 (value 9)

Consider the graph G = (V, A) described by the following adjacency matrix with costs:

Find the shortest path from node 1 to node 5 by using the Bellman-Ford algorithm. Show the procedure (show the tables of labels and predecessors) and write the optimal path with the associated cost.

Solution sketch

Exercise 1

 $x_i = 1$ if an antenna is installed in location $i \in L$; 0 otherwise $y_i = 1$ if the area $j \in A$ is covered; 0 otherwise

$$\max \sum_{j \in A} y_j$$

$$\sum_{i \in L} s_{ij} x_i \ge T y_j \qquad j \in A$$

$$\sum_{i \in L: s_{ij} \ge U} x_i \le 1 + |L|(1 - y_j) \quad j \in A$$

$$x_{\alpha} \le x_{\beta}$$

$$x_i \in \{0, 1\} \qquad i \in L$$

$$y_j \in \{0, 1\} \qquad j \in A$$

Exercise 2

Dual simplex method:

$$\min \quad 4x_1 + x_2 + x_3$$

$$x_1 + 4x_2 - 10x_3 + y_1 = 4$$

$$-x_1 - 2x_2 + 5x_3 + y_2 = 5$$

$$x_1 + 2x_2 - 5x_3 + y_3 = -5$$

$$x_1, x_2, x_3, y_1, y_2, y_3 \ge 0.$$

Alternatively, two phases method:

The optimal solution is $x = \{0, 0, 1\}$ with cost 1.

Exercise 3

	$f^k(j)$						$Pred_j$					
k	1	2	3	4	5	6	1	2	3	4	5	6
0	0	_	_	_	_	_	1	_	_	_	_	_
1	0	2	3	5	_	8	1	1	1	1	_	1
2	0	1	3	4	9	6	1	3	1	2	2	4
3	0	1	3	3	7	5	1	3	1	2	6	4
4	0	1	3	3	6	4	1	3	1	2	6	4
5	0	1	3	3	5	4	1	3	1	2	6	4

The optimal path is $\{1,3,2,4,6,5\}$ and has cost 5.