МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

АВТОМАТИЧЕСКАЯ ТЕМАТИЧЕСКАЯ КЛАССИФИКАЦИЯ НОВОСТНОГО МАССИВА

БАКАЛАВРСКАЯ РАБОТА

студента 4 курса 451 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Кондрашова Даниила Владиславовича

Научный руководитель доцент, к. фм. н.	 С.В.Папшев
Заведующий кафедрой	
к. фм. н.	 С.В.Миронов

СОДЕРЖАНИЕ

BI	ВЕДЕ!	НИЕ		4	
1	Teop	етичес:	кие и методологические основы автоматической тематиче-		
	ской	і класси	іфикации	5	
	1.1	Место	автоматической классификации новостей в разведыва-		
		тельно	ом поиске	5	
	1.2	Сбор	Сбор новостных данных данных		
		1.2.1	Выбор метода получения новостных данных	6	
		1.2.2	Подбор новостной платформы для сбора данных	6	
	1.3	Подго	товка собранных данных	7	
	1.4	Матем	иатические основы тематического моделирования	9	
		1.4.1	Основная гипотеза тематического моделирования	9	
		1.4.2	Аксиоматика тематического моделирования	9	
		1.4.3	Задача тематического моделирования	10	
		1.4.4	Решение обратной задачи	11	
		1.4.5	Регуляризаторы в тематическом моделировании	14	
		1.4.6	Оценка качества моделей	17	
	1.5	Метод	цические основы работы с текстом с помощью нейросетей	19	
		1.5.1	Проблема представления текста	19	
		1.5.2	Выбор архитектуры нейронной сети	21	
2	Пра	ктико-т	ехнологические основы автоматической тематической клас-		
	сиф	икации		23	
	2.1	Получ	вение новостного массива путём веб-скраппинга	23	
		2.1.1	Выбор инструментов получения новостных данных	23	
		2.1.2	Реализация алгоритма сбора новостных данных	23	
	2.2	Подго	товка новостного массива	27	
		2.2.1	Выбор инструментов для подготовки данных	27	
		2.2.2	Удаление лишних пробелов и переносов строк	28	
		2.2.3	Разделение строк на русские и английские фрагменты		
		2.2.4	Обработка двоеточий и временных меток	30	
		2.2.5	Токенизация, лемматизация и удаление стоп-слов по словарю	31	
		2.2.6	Удаление стоп-слов с помощью метрики tfidf	32	
	2.3	Колич	ественные характеристики обработанного и необработан-		
		ного д	ратасета	35	

	2.4	Вычис	ление тематической модели	
		2.4.1	Выбор инструментов для тематического моделирования37	
		2.4.2	Недостающий функционал библиотеки BigARTM38	
		2.4.3	Функциональности классов My_BigARTM_model и	
			Hyperparameter_optimizer38	
		2.4.4	Преобразование новостного массива в приемлемый для	
			BigARTM формат	
		2.4.5	Удобное добавление регуляризаторов40	
		2.4.6	Вычисление когерентности	
		2.4.7	Вычисление тематической модели и формирование гра-	
			фиков метрик	
		2.4.8	Подбор гиперпараметров для тематического моделирования 44	
2.5 Результаты тематического моделирования			таты тематического моделирования47	
	2.6 Обучение модели классификатора			
		2.6.1	Выбор модели для тематической классификации48	
		2.6.2	Выбор способа для получения предобученных моделей49	
		2.6.3	Получение весов предобученной модели	
		2.6.4	Подготовка данных для работы с моделью	
		2.6.5	Дообучение модели51	
ЗАКЛЮЧЕНИЕ				
	СПИСС	к исп	ОЛЬЗОВАННЫХ ИСТОЧНИКОВ54	
	Прилож	ение А	Листинг вебскраппера	
	Прилож	ение Б	Листинг обработчика новостного массива 57	
	Прилож	ение В	Количественные характеристики подготовленного и непод-	
готовленного новостного массива				
	Прилож	ение Г	Полный код класса My_BigARTM_model	
	Прилож	ение Д	Полный код класса Hyperparameter_optimizer	
	Прилож	ение Е	Полный код обучения модели классификатора 78	

ВВЕДЕНИЕ

В настоящее время обработка больших объёмов текстовых данных, включа новостные потоки, становится критически важной задачей. Как в научной среде, так и в бизнесе требуется оперативно анализировать информацию, отслеживать тенденции и принимать решения. Однако анализ всего массива данных невозможен из-за его масштабов. Необходимо фильтровать информацию, оставляя только релевантную.

Решением этой проблемы может стать тематическая классификация. Хотя многие сайты и порталы предлагают рубрикацию контента, её точность часто оказывается низкой: теги присваиваются некорректно или поверхностно. Это приводит к ошибкам в поиске и анализе информации.

Для устранения этих недостатков необходим механизм, обеспечивающий точную тематическую классификацию данных с возможностью автоматической разметки новостей. Одним из инструментов для реализации такого подхода являются тематические модели в сочетании с алгоритмами машинного и глубокого обучения. Первые позволяют выявить скрытые темы в текстовых данных и подготовить разметку для обучения вторых. Алгоритмы машинного и глубокого обучения, в свою очередь, могут классифицировать новые тексты по заданным темам.

Таким образом, целью данной работы является создание механизма автоматической тематической классификации новостей с использованием методов тематического моделирования, машинного и глубокого обучения.

Для достижения цели необходимо решить следующие задачи:

- 1. Реализовать сбор новостных данных;
- 2. Разработать механизм предобработки текстовых данных;
- 3. Вычислить количественные характеристи данных и провести их анализ;
- 4. Построить тематические модели;
- 5. Выбрать оптимальную тематическую модель с помощью сравнительного анализа;
- 6. Подготовить размеченные данные для обучения моделей;
- 7. Обучить и сравнить эффективность различных моделей машинного и глубокого обучения;
- 8. Провести анализ полученных результатов.

1 Теоретические и методологические основы автоматической тематической классификации

1.1 Место автоматической классификации новостей в разведывательном поиске

Разведывательный поиск — это процесс сбора, анализа и интерпретации информации из открытых источников для поддержки принятия решений в различных сферах: от бизнеса до государственного управления. В условиях информационной перегрузки автоматическая классификация новостей становится ключевым инструментом, обеспечивающим структуризацию и фильтрацию данных. Её задача — преобразовать неупорядоченные массивы текстов в категоризированные наборы, которые могут быть эффективно использованы для дальнейшего анализа.

Интеграция в процесс разведывательного поиска:

- 1. Сбор данных: новостные потоки формируют основу для разведывательного поиска. Однако их объёмы и разнообразие форматов затрудняют ручную обработку;
- 2. Предварительная обработка: автоматическая классификация группирует статьи по темам, геолокациям, уровням важности или эмоциональной окраске, сокращая время на первичный анализ;
- 3. Целевой анализ: категоризированные данные позволяют экспертам фокусироваться на конкретных аспектах например, отслеживать кризисные события или выявлять скрытые тенденции.

Практическая значимость:

- 1. Скорость обработки: ручная классификация тысяч новостных статей в день невозможна. Алгоритмы на базе BigARTM, машинного и глубокого обучения справляются с этим за минуты, обеспечивая актуальность данных для принятия решений;
- 2. Масштабируемость: автоматизация позволяет работать с постоянно растущими объёмами информации без увеличения ресурсных затрат;
- 3. Снижение субъективности: исключаются человеческие ошибки, связанные с усталостью или предвзятостью, что повышает достоверность результатов;
- 4. Выявление скрытых паттернов: методы машинного обучения обнаруживают неочевидные связи между событиями, например, корреляцию между

экономическими новостями и колебаниями рынка.

Автоматическая классификация новостей не заменяет экспертов, но становится их основным помощником, беря на себя рутинные задачи. В разведывательном поиске это критически важно, так как позволяет перейти от обработки данных к их осмысленному использованию — будь то стратегическое планирование или оперативное управление. Технологии вроде BigARTM и методов машинного обучения обеспечивают баланс между скоростью, точностью и адаптивностью, что делает их незаменимыми в работе с динамичными новостными потоками.

1.2 Сбор новостных данных данных

1.2.1 Выбор метода получения новостных данных

Для получения данных с сайтов существует три основных метода:

- Ручной сбор извлечение информации человеком вручную;
- Запрос данных получение информации от владельцев с последующим скачиванием;
- Программный сбор автоматизированное извлечение данных.

Первый метод можно исключить из рассмотрения из-за низкой эффективности. Второй метод применим не во всех случаях: владельцы информационных платформ вряд ли будут оперативно предоставлять данные по каждому запросу. Таким образом, наиболее целесообразным остаётся третий метод — программный сбор.

Среди методов программного сбора оперативно и эффективно получать данные в большинстве случаев позволяют инструменты веб-скрапинга, который мы выбираем в качестве основного подхода. Далее в работе будет использован именно этот метод для формирования новостного массива, так как он прост в изучении, а также обеспечивает баланс между скоростью получения данных и минимальными требованиями к стороннему участию.

1.2.2 Подбор новостной платформы для сбора данных

В рамках данной работы основным объектом исследования являются новостные текстовые данные. Для их сбора необходимо выбрать подходящий вебресурс.

При наличии нескольких потенциальных источников выбор следует осуществлять по следующим критериям:

- 1. Единая структура документов на всём сайте;
- 2. Отсутствие блокировок НТТР-запросов от скраперов;
- 3. Статичность контента полная доступность HTML-кода страницы при первичном запросе без динамической подгрузки.

Идеальный случай — соответствие всем трём пунктам. При этом:

- 1. Ограничения по пунктам 2 и 3 в большинстве случаев можно обойти стандартными методами;
- 2. Нарушение пункта 1 создаёт принципиальные сложности: обработка разноформатных данных может потребовать ручной настройки для каждого документа.

В качестве источника выбран новостной сайт НИУ ВШЭ. Этот ресурс:

- 1. Имеет единую структуру новостных материалов;
- 2. Не блокирует автоматизированные запросы;
- 3. Предоставляет полный HTML-код страницы без динамической генерации контента.

Указанные характеристики делают сайт ВШЭ оптимальным вариантом для реализации поставленных задач.

1.3 Подготовка собранных данных

Полученные данные требуют предварительной обработки для устранения шума и повышения качества анализа. Основные этапы предобработки включают:

1. Очистка от технического шума:

- Удаление лишних пробелов и переносов строк;
- Очистка от специальных символов (скобки, HTML-теги, эмодзи);
- Нормализация регистра (приведение текста к нижнему регистру).
- 2. **Токенизация:** разделение текста на семантические единицы (слова, предложения);
- 3. Лемматизация: приведение словоформ к лемме (словарной форме);
- 4. **Удаление стоп-слов:** исключение частотных слов с низкой смысловой нагрузкой (предлоги, союзы, частицы);

Обоснование выбора лемматизации: В отличие от стемминга (например, алгоритм Snowball), который применяет шаблонное усечение окончаний, лемматизация обеспечивает точное приведение слов к нормальной форме с сохранением семантики. Это критически важно для тематического моделиро-

вания, где искажение смысла слов может привести к некорректной интерпретации контекста. На рис. 1 показаны принципиальные различия между двумя подходами.

Рисунок 1 – Иллюстрация разницы между стеммингом и лемматизацией

1.4 Математические основы тематического моделирования

1.4.1 Основная гипотеза тематического моделирования

Тематическое моделирование — это метод анализа текстовых данных, который позволяет выявить семантические структуры в коллекциях документов.

Основная идея тематического моделирования заключается в том, что слова в тексте связаны не с конкретным документом, а с темами. Сначала текст разбивается на темы, и каждая из них генерирует слова для соответствующих позиций в документе. Таким образом, сначала формируется тема, а затем тема формирует терм.

Эта гипотеза позволяет проводить тематическую классификацию текстов на основе частоты и взаимовстречаемости слов.

1.4.2 Аксиоматика тематического моделирования

Каждый текст можно количественно охарактеризовать. Ниже приведены основные количественные характеристики, использующиеся при тематическом моделировании:

- *W* конечное множество термов;
- *D* конечное множество текстовых документов;
- *T* конечное множество тем;
- $D \times W \times T$ дискретное вероятностное пространство;
- коллекция i.i.d выборка $(d_i, w_i, t_i)_{i=1}^n$;
- $n_{dwt} = \sum_{i=1}^{n} [d_i = d][w_i = w][t_i = t]$ частота (d, w, t) в коллекции;
- $n_{wt} = \sum_d n_{dwt}$ частота терма w в документе d;
- $n_{td} = \sum_{w} n_{dwt}$ частота термов темы t в документе d;
- $n_t = \sum_{d,w} n_{dwt}$ частота термов темы t в коллекции;
- $n_{dw} = \sum_t n_{dwt}$ частота терма w в документе d;
- $n_W = \sum_d n_{dw}$ частота терма w в коллекции;
- $n_d = \sum_w n_{dw}$ длина документа d;
- $n = \sum_{d,w} n_{dw}$ длина коллекции.

Также в тематическом моделировании используются следующие гипотезы и аксиомы:

- независимость слов от порядка в документе: порядок слов в документе не важен;
- независимость от порядка документов в коллекции: порядок документов

в коллекции не важен;

- зависимость терма от темы: каждый терм связан с соответствующей темой и порождается ей;
- гипотеза условной независимости: p(w|d,t) = p(w|t).

1.4.3 Задача тематического моделирования

Как уже говорилось ранее, документ порождается следующим образом:

- 1. для каждой позиции в документе генерируется тема p(t|d);
- 2. для каждой сгенерированной темы в соответствующей позиции генерируется терм p(w|d,t).

Разработан спектрально-аналитический подход к выявлению размытых протяженных повторов в геномных последовательностях. Метод основан на разномасштабном оценивании сходства нуклеотидных последовательностей в пространстве коэффициентов разложения фрагментов кривых GC- и GA-содержания по классическим ортогональным базисам. Найдены условия оптимальной аппроксимации, обеспечивающие автоматическое распознавание повторов различных видов (прямых и инвертированных, а также тандемных) на спектральной матрице сходства. Метод одинаково хорошо работает на разных масштабах данных. Он позволяет выявлять следы сегментных дупликаций и мегасателлитные участки в геноме, районы синтении при сравнении пары геномов. Его можно использовать для детального изучения фрагментов хромосом (поиска размытых участков с умеренной длиной повторяющегося паттерна).

Рисунок 2 – Алгоритм формирования документа

Тогда вероятность появления слова в документе можно описать по формуле полной вероятности:

$$p(w|d) = \sum_{t \in T} p(w|d, t)p(t|d) = \sum_{t \in T} p(w|t)p(t|d)$$
 (1)

Такой алгоритм является прямой задачей порождения текста. Тематическое моделирование призвано решить обратную задачу:

1. для каждого терма w в тексте найти вероятность появления в теме t (найти $p(w|t) = \phi_{wt}$);

2. для каждой темы t найти вероятность появления в документе d (найти $p(t|d) = \theta_{td}$).

Обратную задачу можно представить в виде стохастического матричного разложения **3**.

Рисунок 3 – Стохастическое матричное разложение

Таким образом, тематическое моделирование ищет величину p(w|d).

1.4.4 Решение обратной задачи

Для решения задачи тематического моделирования необходимо найти величину p(w|d), сделать это можно с помощью метода максимального правдоподобия.

Лемма о максимизации функции на единичных симплексах: Перед тем как перейти к решению обратной задачи, сформулируем лемму, которая поможет в этом процессе.

Введём операцию нормировки вектора:

$$p_i = (x_i) = \frac{\max x_i, 0}{\sum_{k \in I} \max x_k, 0}$$
 (2)

Лемма о максимизации функции на единичных симплексах:

Пусть функция $f(\Omega)$ непрерывно дифференцируема по набору векторов $\Omega=(w_i)_{j\in J}, \quad w_j=(w_{ij})_{i\in I_j}$ различных размерностей $|I_j|$. Тогда векторы w_j локального экстремума задачи

$$\begin{cases} f(\Omega) \to \max_{\Omega} \\ \sum_{i \in I_j} w_{ij} = 1, & j \in J \\ w_{ij} \ge 0, & i \in I_j, j \in J \end{cases}$$

при условии $1^0: \ (\exists i \in I_j) w_{ij} \frac{\partial f}{\partial w_{ij}} > 0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(3)

при условии $2^0: \ (\forall i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}\leq 0$ и $(\exists i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}<0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(-w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(4)

в противном случае (условие 3^0) — однородным уравнениям

$$w_{ij}\frac{\partial f}{\partial w_{ij}} = 0, \quad i \in I_j. \tag{5}$$

Данная лемма служит для оптимизации любых моделей, параметрами которых являются неотрицательные нормированные векторы.

Сведение обратной задачи к максимизации функционала: Чтобы вычислить величину p(w|d) воспользуемся принципом максимума правдоподобия, согласно которому будут подобраны параметры Φ, Θ такие, что p(w|d) примет наибольшее значение.

$$\prod_{i=1}^{n} p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}}$$
(6)

Прологарифмировав правдоподобие, перейдём к задаче максимизации логарифма правдоподобия.

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d) p(d) = n_{dw} \to max$$
 (7)

Данная задача эквивалентна задаче максимизации функционала

$$L(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi, \Theta}$$
 (8)

при ограничениях неотрицательности и нормировки

$$\phi_{wt} \ge 0; \quad \sum_{w \in W} \phi_{wt} = 1; \quad \theta_{td} \ge 0; \quad \sum_{t \in T} \theta_{td} = 1$$
 (9)

Таким образом, обратная задача сводится к задаче максимизации функционала.

Аддитивная регуляризация тематических моделей: Задача 8 не соответствует критериям корректно поставленной задаче по Адамару, поскольку в общем случае она имеет бесконечное множество решений. Это свидетельствует о необходимости доопределения задачи.

Для доопределения некорректно поставленных задач применяется регуляризация: к основному критерию добавляется дополнительный критерий — регуляризатор, который соответствует специфике решаемой задачи.

Метод ARTM (аддитивная регуляризация тематических моделей) основывается на максимизации линейной комбинации логарифма правдоподобия и регуляризаторов $R_i(\Phi,\Theta)$ с неотрицательными коэффициентами регуляризации $\tau_i,\ i=1,\ldots,k.$

Преобразуем задачу к ARTM виду:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}; \quad R(\Phi, \Theta) = \sum_{i=1}^{k} \tau_i R_i(\Phi, \Theta) \quad (10)$$

при ограничениях неотрицательности и нормировки 9.

Регуляризатор (или набор регуляризаторов) выбирается в соответствии с решаемой задачей.

Е-М алгоритм: Из представленных выше ограничений 9 следует, что столбцы матриц можно считать неотрицательными единичными векторами. Таким образом, задача сводится к максимизации функции на единичных симплексах.

Воспользуемся леммой о максимизации функции на единичных симплексах 1.4.4 и перепишем задачу.

Пусть функция $R(\Phi,\Theta)$ непрерывно дифференцируема. Тогда точка (Φ,Θ) локального экстремума задачи с ограничениями, удовлетворяет системе уравнений с вспомогательными переменными $p_{twd}=p(t|d,w)$, если из решения исключить нулевые столбцы матриц Φ и Θ :

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} + \phi_{wt}\frac{\partial R}{\partial \phi_{wt}}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td}\frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$

$$(11)$$

Полученная модель соответствует Е-М алгоритму, где первая строка системы уравнений соответствует Е-шагу, а вторая и третья строки — М-шагу.

Решив полученную систему уравнений, методом простых итерации получим искомые матрицы Φ и Θ .

1.4.5 Регуляризаторы в тематическом моделировании

В этом разделе будут рассмотрены некоторые возможные варианты регуляризаторов.

Дивергенция Кульбака-Лейблера: Перед тем как перейти к регуляризаторам необходимо ввести меру оценки близости тем.

Чтобы оценить близость тем можно воспользователься дивергенцией Кульбака-Лейблера (КL или KL-дивергенция). КL-дивергенция позволяет оценить степень вложенности одного распределения в другое, в случае тематического моделирования будет оценитьваться вложенность матриц.

Определим KL-дивергенцию:

Пусть $P=(p_i)_{i=1}^n$ и $Q=(q_i)_{i=1}^n$ некоторые распределения. Тогда дивергенция Кульбака-Лейблера имеет следующий вид:

$$KL(P||Q) = KL_i(p_i||q_i) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$
 (12)

Свойства KL-дивергенции:

- 1. $KL(P||Q) \ge 0$;
- $2. \ KL(P||Q) = 0 \ \Leftrightarrow \ P = Q;$
- 3. Минимизация KL эквивалентна максимизации правдоподобия:

$$KL(P||Q(\alpha)) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i(\alpha)} \to \min_{\alpha} \Leftrightarrow \sum_{i=1}^{n} p_i \ln q_i(\alpha) \to \max_{\alpha};$$

4. Если KL(P||Q) < KL(Q||P), то P сильнее вложено в Q, чем Q в P. Теперь можно перейти к рассмотрению регуляризаторов.

Регуляризатор сглаживания: Сглаживание предполагает сематническое сближение тем, это может быть полезно в следующих случаях:

- 1. Темы могут быть похожи между собой по терминологии, например, основы теории вероятностей и линейной алгебры обладают рядом одинаковых терминов;
- 2. При выделении фоновых тем важно максимально вобрать в них слова, следовательно, сглаживание поможет решить эту задачу.

Определим регуляризатор сглаживания:

Пусть распределения ϕ_{wt} близки к заданному распределению β_w и пусть распределения θ_{td} близки к заданному распределению α_t . Тогда в форме KL-дивергеннции 1.4.5 выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \min_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \min_{\Theta}.$$
 (13)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = \beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} + \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (14)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} + \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} + \alpha_0\alpha_t) \end{cases}$$

$$(15)$$

Таким образом был получен модифицированный EM-алгоритм соответствующий модели LDA.

Регуляризатор разреживания: Разреживание подразумевает разделение тем и документов, исключая общие слова из них. Этот тип регуляризации основывается на предположении, что темы и документы в основном являются специ-

фичными и описываются относительно небольшим набором терминов, которые не встречаются в других темах.

Определим регуялризатор разреживания:

Пусть распределения ϕ_{wt} далеки от заданного распределения β_w и пусть распределения θ_{td} далеки от заданного распределения α_t . Тогда в форме KL-дивергеннции 1.4.5 выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \max_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \max_{\Theta}. \tag{16}$$

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = -\beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_{wt} - \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (17)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} - \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} - \alpha_0\alpha_t) \end{cases}$$
(18)

Таким образом был получен модифицированный ЕМ-алгоритм, разреживающий матрицы Φ и Θ .

Регуляризатор декоррелирования тем: Декоррелятор тем — это частный случай разреживания, призванный выделить для каждой темы лексическое ядро — набор термов, отличающий её от других тем:

Определим регуляризатор декоррелирования:

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to max.$$
 (19)

Перепишем ЕМ-алгоритм 11 в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} - \tau\phi_{wt} \sum_{t \in T \setminus t} \phi_{ws}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$
(20)

Таким образом был получен модифицированный ЕМ-алгоритм, декоррелирующий темы.

1.4.6 Оценка качества моделей

После построения модели, очевидно, нужно оценить её качество.

Перечислим основные критерии оценки качества тематических моделей:

- 1. Внешние критерии (оценка производится экспертами):
 - а) полнота и точность тематического поиска;
 - б) качество ранжирования при тематическом поиске;
 - в) качество классификации / категоризации документов;
 - г) качество суммаризации / сегментации документов;
 - ∂) экспертные оценки качества тем.
- 2. Внутренние критерии (оценка производится программно):
 - а) правдоподобие и перплексия;
 - δ) средняя когерентность (согласованность тем);
 - θ) разреженность матриц Φ и Θ ;
 - г) различность тем;
 - ∂) статический тест условной независимости.

Поскольку оценка по внешним критериям невозможна в рамках данной работы, сосредоточимся на внутренних критериях оценки, которые можно вычислять автоматически.

Правдоподобие и перплексия: Перплексия основывается на логарифме правдоподобия и является его некоторой модификацией.

$$P(D) = \exp\left(-\frac{1}{n}\sum_{d\in D}\sum_{w\in d}n_{dw}\ln p(w|d)\right), \quad n = \sum_{d\in D}\sum_{w\in d}n_{dw}$$
 (21)

Не трудно заметить, что при равномерном распределении слов в тексте выполняется равенство $p(w|d)=\frac{1}{|W|}$. В этом случае значение перплексии равно мощности словаря P=|W|. Это позволяет сделать вывод, что перплексия является мерой разнообразия и неопределенности слов в тексте: чем меньше значение перплексии, тем более разнообразны вероятности появления слов.

Таким образом, чем меньше перплексия, тем больше слов с большей вероятностью p(w|d), которые модель умеет лучше предсказывать, следовательно, чем меньше перплексия, тем лучше.

Когерентность: Когерентность является мерой, коррелирующей с экспертной оценкой интерпретируемости тем.

Когерентность (согласованность) темы t по k топовым словам:

$$PNI_{t} = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} PMI(w_{i}, w_{j}),$$
 (22)

где w_i — i-ое слово в порядке убывания ϕ_{wt} , $PMI(u,v) = \ln \frac{|D|N_{uv}}{N_uN_v}$ — поточечная взаимная информация, N_{uv} — число документов, в которых слова u,v хотя бы один раз встречаются рядом (расстояние опледеляется отдельно), N_u — число документов, в которых u встретился хотя бы один раз.

Гипотезу когерентности можно выразить так: когда человек говорит о какой-либо теме, то часто употребляет достаточно ограниченный набор слов, относящийся к этой теме, следовательно, чем чаще будут встречаться вместе слова этой темы, тем лучше её можно будет интерпретировать.

Сама когерентность берёт самые часто встречающиеся слова из тем, и вычисляет для каждой пары из них насколько они часто встречаются, соответственно, чем выше будет значение взаимовстречаемости, тем лучше.

Разреженность — доля нулевых элементов в матрицах Φ и Θ .

Разреженность играет ключевую роль в выявлении различий между темами. Каждая тема формируется на основе ограниченного набора слов, в то время как остальные слова должны встречаться реже, что отражается в нулевых элементах матриц. Оптимальный уровень разреженности должен быть высоким, но не чрезмерным: в таком случае темы будут четко различимы. Если разре-

женность слишком низка, темы могут сливаться, а если слишком высока содержать недостаточное количество слов для адекватного представления.

Чистота темы: Чистота темы:

$$\sum_{w \in W_t} p(w|t),\tag{23}$$

где W_t — ядро темы: $W_t=\{w:p(w|t)>\alpha\},$ где α подбирается по разному, например $\alpha=0.25$ или $\alpha=\frac{1}{|W|}.$

Данная характеристика показывает как вероятностно относится ядро темы к фоновым словам темы, следовательно, чем больше вероятность ядра, тем лучше.

Контрастность темы: Контрастность темы:

$$\frac{1}{|W_T|} \sum_{w \in W_t} p(t|w). \tag{24}$$

Данная характеристика показывает насколько часто слова из ядра темы встречаются в других темах, очевидно, что чем меньше ядро будет встречаться в других темах, тем лучше.

1.5 Методические основы работы с текстом с помощью нейросетей

1.5.1 Проблема представления текста

Нейронные сети умеют работать только с числами, поэтому встаёт вопрос о том, как наилучшим образом переносить текст в пространство чисел. Такой способ переноса должен быть не только быстрым, точным и способным вмещать в себя тысячи слов, но ещё и учитывать, что естественный язык имеет временную зависимость: слова в предложении складываются последовательно и зависят друг от друга, а не существуют в вакууме, что дополнительно усложняет задачу.

Тогда формализуем качества, которыми должен обладать способ представления текста в виде чисел:

— Выразительность:

1. Способность различать тысячи слов;

- 2. Способность учитывать контекст (временную зависимость между словами).
- Скорость: эффективно работать с высокоразмерными данными на современном оборудовании;
- **Эффективным**: иметь компактное представление и адаптироваться к новым словам.

Теперь кратко рассмотрим некоторые из методов представления текста в виде чисел:

Мешок слов (Bag-of-Words): Одним из самых простых способов численного представления текста является мешок слов.

Данный метод работает следующим образом:

- 1. Создаётся словарь слов с уникальными индексами;
- 2. Каждое слово кодируется one-hot вектором:

$$v_i = [a_1, \dots, a_N], \quad a_j = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$
 (25)

где N — размер словаря.

3. Предложение представляется суммой векторов слов:

$$s = [f_1, \dots, f_N], \quad f_j =$$
 частота слова j в предложении. (26)

Данный метод, несмотря на свою простоту, не может быть выбран из-за ряда существенных недостатков:

- 1. Высокая размерность и разреженность данных;
- 2. Игнорирование порядка слов;
- 3. Отсутствие учёта семантики (все слова ортогональны);
- 4. Сложность адаптации к новым словам (требуется пересчёт словаря).

TF-IDF взвешивание: Улучшение BoW: элементы вектора предложения умножаются на TF-IDF веса слов. Частично решает проблему семантической значимости, но сохраняет другие недостатки BoW.

Эмбеддинги слов: Семантические векторные представления слов:

- Каждому слову сопоставляется плотный вектор фиксированной размерности (обычно 50-300);
- Векторы обучаются так, чтобы семантически близкие слова имели схожие эмбеддинги;
- Матрица эмбеддингов обучаемый параметр нейросети.

Данный способ максимально полно соответствует описанным ранее критериям, обладая благодаря своей природе следующими преимуществами:

- 1. Низкая размерность;
- 2. Учёт семантики;
- 3. Возможность учёта контекста;
- 4. Гибкость: новые слова можно добавлять через дообучение.

1.5.2 Выбор архитектуры нейронной сети

Так как представление текста в виде эмбеддингов удовлетворяет критериям то, будем рассматривать архитектуры, разработанные для работы с ними: рекуррентные нейронные сети (RNN) и трансформеры.

Рекуррентные нейронные сети (RNN) Данные сети обрабатывают последовательность слов рекуррентно, шаг за шагом обновляя своё состояние на основе текущего слова и предыдущих значений. Это позволяет учитывать:

- Порядок слов;
- Контекст (благодаря механизмам памяти в LSTM/GRU). Недостатки:
 - 1. Низкая скорость: вычисления последовательны, невозможна параллелизация;
 - 2. Проблемы с длинными последовательностями:
 - а) Забывание раннего контекста;
 - б) Затухание/взрыв градиентов при обучении.

Преимущества:

- 1. Менее требовательны к вычислительным ресурсам;
- 2. Эффективны на малых объёмах данных.

Трансформеры Обрабатывают всю последовательность слов одновременно благодаря механизму внимания (attention).

Ключевые особенности:

- Параллельные вычисления, а следовательно и высокая скорость;
- Учёт контекста через self-attention;
- Позиционные энкодинги позволяют учитывать порядок слов.
 Недостатки:
 - 1. Высокие требования к вычислительным ресурсам;
- 2. Требуют больших объёмов данных для обучения. Преимущества:
- 1. Эффективны для длинных текстов;
- 2. Имеют лучшее качество на сложных задачах.

Определение с типом В рамках данной работы рассматривается тематическая классификация текстов, то есть предполагается, что по длинной входящей последовательности принимается решение о её принадлжности к той или иной теме.

Тогда для данной задачи критичны:

- 1. Обработка длинных последовательностей;
- 2. Скорость предсказания;
- 3. Использование современных вычислительных ресурсов.

Таким образом, для решения поставленной задачи больше подходят сетитрансформеры, так как:

- Проблемы с ресурсами решаются облачными сервисами;
- Доступны предобученные модели (BERT, GPT);
- Механизм внимания лучше улавливает тематические связи.

2 Практико-технологические основы автоматической тематической классификации

2.1 Получение новостного массива путём веб-скраппинга

2.1.1 Выбор инструментов получения новостных данных

Для веб-скрапинга доступны библиотеки на разных языках, однако выбор логично сделать в пользу Python — наиболее популярного языка для обработки данных и работы с машинным обучением. Среди Python-библиотек ключевыми являются:

- requests для отправки HTTP-запросов;
- BeautifulSoup4 для парсинга HTML-кода в удобную объектную структуру;
- selenium для работы с динамическими сайтами, где контент генерируется JavaScript.

Первые две библиотеки эффективны для статических страниц: requests получает исходный код, а BeautifulSoup4 извлекает данные через поиск по тегам. Selenium же имитирует взаимодействие реального браузера, что позволяет обрабатывать страницы с отложенной загрузкой контента.

Этот набор инструментов покрывает потребности работы с подавляющим большинством сайтов — от простых статических ресурсов до сложных веб-приложений.

2.1.2 Реализация алгоритма сбора новостных данных

библиотек requests и BeautifulSoup4 без привлечения Selenium.

Алгоритм сбора данных включает следующие этапы:

- 1. Анализ структуры сайта:
 - Многостраничный ресурс с 10 новостными карточками на каждой странице;
 - Карточка новости содержит: ссылку, дату публикации, заголовок, краткое содержание;
 - Полный текст доступен по отдельной ссылке внутри карточки.
- 2. Реализация базовых функций (листинг 1):
 - Получение HTML-кода страницы через requests.get();
 - Сохранение сырых данных для последующей обработки.

```
\label{eq:condition} \begin{array}{lll} & \texttt{def} & \texttt{\_\_getPage} \texttt{\_\_} \big(\, \mathtt{url} : \; \mathtt{str} \;, \; \; \mathtt{file} \texttt{\_name} : \; \mathtt{str} \,\big) \; \text{->} \; \; \mathtt{None} : \end{array}
```

```
# получение html кода страницы с помощью библиотеки requests

requests

r = requests.get(url=url)

# сохранение полученного кода в текстовый файл

with open(file_name, "w", encoding="utf-8") as file:

file.write(r.text)
```

Листинг 1: Функция получения HTML-кода страницы

- 3. Извлечение метаданных (листинг 2):
 - Парсинг сохранённого HTML через BeautifulSoup4;
 - Поиск элементов по тегам и CSS-классам (find(), find_all());
 - Извлечение текстового содержимого (text, get()).

```
ı # получение html кода страницы из файла
  with open(page_file_name, encoding="utf-8") as file:
          src = file.read()
4 # преобразование html кода в классы
  soup = BeautifulSoup(src, "lxml")
6 # переход к содержимому новости, которое находится
  # в теге div с классом post
  news = soup.find("div", class = "post")
  try:
      # получение текста ссылки из соответствующего тега
      link = news.find("h2",
              class = "first child").find("a").get("href")
      # не все ссылки в теге сохранены полностью, данный
      # код добавляет обрезанную часть
      if not link.startswith("https://"):
           link = 'https://www.hse.ru' + link
  except:
      link = ""
  try:
18
      # получение краткого описания новости из соответствующег
19
              о тега
      news short content = news.find("p",
              class \_= "first \_child") . find \_next \_sibling ("p") . text . strip ()
  except:
      news short content = ""
```

Листинг 2: Извлечение ссылок и кратких описаний

4. Получение полного текста новости (листинг 3):

- Рекурсивное использование get_page() для целевых URL;
- Анализ структуры контентной страницы.

```
def __parse_news__(url: str) -> str:
      # получаем html код страницы по ссылке на новость
      news_file_name = "news.html"
      __getPage__(url, news_file_name)
      # и сразу загружаем его из файла
      with open(news_file_name, encoding="utf-8") as file:
          src = file.read()
      # преобразуем html код к классам и сразу получаем всё те
             кстовое содержание
      # новости. Это возможно так как весь контент новости сод
             ержится
      # в теге post text
10
      content = BeautifulSoup(src, "lxml").find("div",
             class = "main").find(
          "div", class = "post text"
      ).text.strip()
      # возвращаем полученное содержание новости в виде строки
      return content
```

Листинг 3: Функция извлечения полного текста новости

- 5. Обработка страницы целиком (листинг 4):
 - Итерация по 10 элементам div.post на странице;
 - Использование find_next_sibling() для навигации;
 - Сохранение результатов в pandas DataFrame для анализа.

```
def __parse_page__(page_file_name: str, news_container:
    pd.DataFrame) -> None:

# скрытый фрагмент получения html кода страницы

for i in range(10):

# скрытый фрагмент получения краткой информации о но

вости

try: # получение полного содержания новости

if link.startswith("https://www.hse.ru/news/"):

news_content = __parse_news__(link)

except:

news_content = ""

# сохранение содержимого новости, если она не пустое

if len(

news day + news month + news year + news name +
```

Листинг 4: Обработка новостной страницы

- 6. Масштабирование на все страницы (листинг 5):
 - Динамическое формирование URL через модификацию параметров;
 - Пакетная обработка через цикл с изменяемым индексом страницы.

Листинг 5: Функция обработки всего архива новостей

- 7. Оптимизация производительности (листинг 6):
 - Реализация многопоточности через стандартные средства Python;
 - Создание изолированных DataFrame для каждого потока;
 - Агрегация результатов после завершения параллельных задач.

```
def crawling_pages (off_pc: bool, pages: int) -> None:
columns = ["url", "date", "title", "summary", "content"]
# создание контейнеров под каждый из потоков
news_container1 = pd.DataFrame(columns=columns)
news_container2 = pd.DataFrame(columns=columns)
# создание потоков
thread1 = threading.Thread(target=_crawling_pages__,
args=(0, pages // 2, news_container1, 1))
```

```
thread2 = threading.Thread(target=\__crawling\_pages\_\_,
              args=(pages // 2, pages, news container2, 2))
      # запуск потоков
      thread1.start()
      thread2.start()
      # ожидание завершения работы потоков
      thread1.join()
      thread2.join()
      # объединение содержимого контейнеров потоков в один
      try:
16
           news = pd.concat([news_container1,
                  news container2, ignore index=True)
          news.to excel("./news.xlsx")
      except:
           print ("He получилось!")
20
```

Листинг 6: Многопоточная реализация парсера

Полная реализация веб-скрапера доступна в приложении А.

2.2 Подготовка новостного массива

2.2.1 Выбор инструментов для подготовки данных

Чтобы не повышать количество используемых языков, будем рассматривать только инструменты, доступные на Python. Среди них выделяются: NLTK, Pymorphy3, SpaCy и Gensim.

Сделаем выбор между связкой NLTK + Pymorphy3 и SpaCy. Обе группы библиотек позволяют проводить лемматизацию и удаление стоп-слов, но реализуют это по-разному. NLTK и Pymorphy3 приводят слова к начальной форме без учёта контекста, тогда как SpaCy — нейросетевой инструмент, анализирующий окружение терминов. Определение стоп-слов в обоих случаях происходит по заранее заданным словарям, поэтому разницы здесь нет. Однако SpaCy обеспечивает не только более точную лемматизацию, но и лаконичный интерфейс, что упрощает её использование.

Как упоминалось ранее библиотека SpaCy определяет стоп-слова только по предопределённому списку, который не является исчерпывающим. Это связано с тем, что набор стоп-слов зависит от тематики текста, и универсального решения не существует. Для дополнительной фильтрации применим метрику TF-IDF, которая оценивает значимость слов. Формула расчёта:

$$tfidf(w,d) = \frac{n_{wd}}{n_d} \cdot \log\left(\frac{|D|}{|\{d \in D : w \in d\}|}\right),\tag{27}$$

где:

- w термин;
- *d* документ;
- n_{wd} частота встречаемости w в d;
- n_d число терминов в d;
- |D| число документов в коллекции;
- $|\{d \in D : w \in d\}|$ количество документов, содержащих w.

Данная метрика будет тем выше для термина w в документе d, чем чаще будет встречаться термин w в документе d и реже во всех остальных документах коллекции. Таким образом, данную метрику можно интерпретировать как метрику значимости слова w для документа d. Её расчёт будет производиться с помощью билиотеки Gensim.

Таким образом, для обработки текста выбраны SpaCy (токенизация, лемматизация, базовые стоп-слова) и Gensim (расширенная фильтрация через TF-IDF).

2.2.2 Удаление лишних пробелов и переносов строк

Для корректной токенизации и анализа текстовых данных требуется предварительная очистка от лишних пробелов и переносов строк. Реализацию этой процедуры можно выполнить с помощью встроенных методов обработки строк в Python.

Алгоритм функции включает три этапа:

- 1. **Копирование значимых символов:** Посимвольное добавление содержимого исходной строки в результирующий буфер до обнаружения пробела или переноса строки.
- 2. Нормализация пробелов: При обнаружении пробела/переноса:
 - Добавление одного пробела в буфер
 - Пропуск всех последующих пробелов/переносов до первого непробельного символа
- 3. **Циклическая обработка:** Повтор шагов 1-2 до полного прохода исходной строки.

Реализация функции представлена в листинге 7:

```
def __remove_extra_spaces_and_line_breaks__(self, text: str) ->
       processed = ""
       if type(text) != str or len(text) == 0:
           return ""
       flag = True
       for symb in text:
           if flag and (symb == " or symb == "\n"):
                \texttt{processed} \; +\!\!\!= \; " \quad "
                flag = False
           if symb != " " and symb != "\n":
                flag = True
11
           if flag:
                processed += symb
13
       return processed.strip()
```

Листинг 7: Функция нормализации пробелов и переносов строк

2.2.3 Разделение строк на русские и английские фрагменты

Библиотека SpaCy использует предобученные языковые модели, каждая из которых оптимизирована для обработки одного языка (например, отдельно для русского и английского).

Для новостных материалов ВШЭ, содержащих смешанные языковые фрагменты, применение единой модели недопустимо. Решение заключается в предварительном разделении текста на русскоязычные и англоязычные сегменты с последующей обработкой соответствующими моделями.

Алгоритм разделения текста:

1. Инициализация языка:

- Определение языка первого буквенного символа строки
- Установка текущего языкового идентификатора (RU/EN)

2. Построение сегментов:

- Посимвольное накопление символов во временном буфере
- Прерывание потока при обнаружении символа другого языка

3. Сохранение результата:

- Фиксация сегмента в формате (язык, текст)
- Сброс временного буфера
- 4. Циклическое выполнение: Повтор шагов 2-3 до полной обработки строки с автоматическим переключением языкового идентификатора.

Реализация функции представлена в листинге 8:

```
def __first_is_en__(self, cell: str) -> bool:
          index first en = re.search(r"[a-zA-Z]", cell)
          index_first_ru = re.search(r"[a-яА-Я]", cell)
          return True if index_first_en and (not(index_first_ru)
                 or index first en.start() <
                 index_first_ru.start()) else False
5 def __split_into_en_and_ru__(self, cell: str) -> list[(bool,
         str):
      parts = []
      is_en = self.__first_is_en__(cell)
      part = ""
      for symb in cell:
          if is en == (symb in string.ascii letters) or not
                 (symb.isalpha()):
              part += symb
          else:
              parts.append((is en, part))
              part = symb
              is_en = not (is_en)
16
          parts.append((is en, part))
      return parts
```

Листинг 8: Функция разделения текста на русско- и англоязычные фрагменты

2.2.4 Обработка двоеточий и временных меток

Библиотека BigARTM интерпретирует двоеточие как служебный символ, что может привести к ошибкам обработки текстовых данных. Для устранения проблемы требуется предварительная нормализация символа.

Стратегия обработки:

- 1. Сохранение смысла в временных обозначениях: замена шаблонов времени (например, "12:30") на текстовый маркер "time";
- 2. Удаление избыточных символов: устранение всех других двоеточий, не входящих в временные конструкции

Алгоритм реализует контекстно-зависимую обработку: анализ окружения символа определяет его замену или удаление.

Реализация функции приведена в листинге 9:

```
_{\text{l}} def __time_processing__(self , text: str) -> str:
```

```
if re.match(r"\d{2}:\d{2}", text):
    return "time"

else:
    return text.replace(":", "")

def __processing_token__(self, token_lemma: str) -> str:
    return self.__time_processing__(
        self.__remove_extra_spaces_and_line_breaks__(token_lemma)
)
```

Листинг 9: Функция нормализации двоеточий в тексте

2.2.5 Токенизация, лемматизация и удаление стоп-слов по словарю

Библиотека SpaCy предоставляет унифицированный интерфейс для лингвистической обработки текста. Её функционал позволяет выполнять в одном конвейере:

- Токенизацию;
- Лемматизацию;
- Идентификацию стоп-слов

Принцип работы:

- 1. На вход подаётся текстовая строка;
- 2. Обработанные данные возвращаются в виде последовательности токенов;
- 3. Каждый токен содержит:
 - Исходную словоформу;
 - Нормализованную лемму;
 - Флаг принадлежности к стоп-словам

Результирующая строка формируется путём фильтрации: сохраняются только леммы токенов, не отнесённых к стоп-словам.

Пример обработки русскоязычного текста показан в листинге 10:

```
result = " ".join(

token.lemma_

for token in

self.nlp_en(self.__processing_token__(russian_str))

if

not (token.is_stop) and not (token.is_punct) and

len(token.lemma_) > 1
```

7)

Листинг 10: Обработка строки русского языка средствами SpaCy

Полный алгоритм предобработки, объединяющий нормализацию пробелов, токенизацию и фильтрацию, реализован в листинге 11:

```
def __processing_cell__(self, cell: str) -> str:
      parts = self.__split_into_en_and_ru__(cell)
      tokens = []
      for part in parts:
           if part [0]:
               tokens += [
                   token.lemma
                   for token in
                          self.nlp_en(self.__processing_token__(part[1]))
                   if not (token.is_stop) and not (token.is_punct)
                          and
                   len(token.lemma) > 1
10
           else:
               tokens += [
13
                   token.lemma
14
                   for token in
                          self.nlp_ru(self.__processing_token__(part[1]))
                   if not (token.is\_stop) and not (token.is\_punct)
16
                          and
                   len(token.lemma_) > 1
17
      return " ".join(tokens)
```

Листинг 11: Комплексная обработка текста: нормализация, токенизация, лемматизация, фильтрация стоп-слов

2.2.6 Удаление стоп-слов с помощью метрики tfidf

Как отмечалось ранее, удаление стоп-слов исключительно по предзаданному словарю имеет ограниченную эффективность. Для повышения качества фильтрации предлагается дополнительное использование метрики TF-IDF, позволяющей оценивать значимость терминов в корпусе документов.

Алгоритм расширенной фильтрации:

1. Вычисление TF-IDF:

- а) Формирование словаря терминов с помощью Gensim;
- б) Построение частотного корпуса документов;
- в) Расчёт весов TF-IDF для каждого термина

Реализация базового расчёта представлена в листинге 12:

```
1 def
         calc_tfidf_corpus_without_zero_score_tokens_and_tfidf_dictions
        -> None:
      texts = []
      self.original\_tokens = []
      for row in range(self.p_data.shape[0]):
          words = []
          for column in self.processing_columns:
              for word in self.p_data.loc[row,
                     column].split(" "):
                  words.append(word)
          self.original_tokens.append(words)
          texts.append(words)
      dictionary = gensim.corpora.Dictionary(texts)
      corpus = [dictionary.doc2bow(text) for text in texts]
      tfidf = gensim.models.TfidfModel(corpus)
      self.tfidf corpus = tfidf [corpus]
      self.tfidf_dictionary = dictionary
```

Листинг 12: Вычисление TF-IDF метрик для текстового корпуса

2. Коррекция словаря:

- *а*) Добавление терминов с нулевым TF-IDF, исключённых Gensim по умолчанию;
- б) Нормализация структуры данных для последующего анализа; Соответствующая доработка реализована в листинге 13:

```
def add_in_tfidf_corpus_zero_score_tokens(self) -> None:
    full_corpus = []

for doc_idx, doc in enumerate(self.tfidf_corpus):
    original_words = self.original_tokens[doc_idx]
    term_weights = {self.tfidf_dictionary.get(term_id):
        weight for term_id, weight in doc}

full_doc = []

for word in original_words:
    if word in term_weights[word]
```

```
else:
weight = 0.0
full_doc.append((word, weight))
full_corpus.append(full_doc)
self.tfidf_corpus = full_corpus
```

Листинг 13: Дополнение словаря нулевыми TF-IDF значениями

3. Определение порога отсечения:

- *a*) Вычисление n-го процентиля распределения TF-IDF;
- δ) Установка границы для отбора малозначимых терминов; Логика расчёта границы показана в листинге 14:

```
def add in tfidf corpus zero score tokens(self) -> None:
      full\_corpus = []
      for doc_idx, doc in enumerate(self.tfidf_corpus):
           original_words = self.original_tokens[doc_idx]
           term_weights = { self.tfidf_dictionary.get(term_id):
                  weight for term id, weight in doc}
           full_doc = []
           for word in original_words:
               if word in term_weights:
                   weight = term weights [word]
               else:
10
                   weight = 0.0
11
               full_doc.append((word, weight))
           full_corpus.append(full_doc)
      self.tfidf_corpus = full_corpus
14
```

Листинг 14: Определение порогового значения TF-IDF

4. Фильтрация датасета:

- *а*) Итеративное удаление терминов с ТF'=IDF ниже порога;
- б) Дополнительная очистка низкочастотных слов (менее k вхождений); Финальный этап обработки представлен в листинге 15:

Листинг 15: Удаление стоп-слов на основе TF-IDF метрики

Полная реализация обработчика данных доступна в приложении Б.

2.3 Количественные характеристики обработанного и необработанного датасета

В ходе исследования выполнена обработка новостного массива с вариацией параметров, включая:

- 1. Пороговые значения TF-IDF;
- 2. Комбинации методов предобработки.

Количественные характеристики результатов представлены в таблицах приложения В.

Ключевые наблюдения:

- 1. Объём документов: медианное количество токенов на документ составляет 305, что свидетельствует о содержательной насыщенности материалов;
- 2. Эффективность фильтрации:
 - Частота наиболее распространённого слова снизилась с 800,000+ до 50,000 вхождений;
 - Количество уникальных токенов сократилось на 50 процентов (рис. 4-5).

Рисунок 4 – Распределение частот слов по закону Ципфа (исходные данные)

Рисунок 5 – Распределение частот слов по закону Ципфа (обработанные данные)

Проблемные аспекты:

- 1. Сохранение высокого числа уникальных токенов (?45 процентов от исходного);
- 2. Наличие шумовых компонентов:
 - Опечатки;
 - Ненормализованные словоформы;
 - Специфические аббревиатуры.

Указанные факторы могут негативно влиять на качество:

- Тематического моделирования;
- Обучения ML-алгоритмов;
- Интерпретации результатов.

2.4 Вычисление тематической модели

2.4.1 Выбор инструментов для тематического моделирования

При разработке системы автоматической классификации новостей выбор инструментов напрямую влияет на гибкость, скорость и качество модели. Библиотека BigARTM (Additive Regularization of Topic Models) была выбрана по нескольким ключевым критериям, которые делают её предпочтительной на фоне альтернатив, таких как Gensim или Mallet.

Критерии выбора:

- 1. Удобный интерфейс: BigARTM предоставляет простой API для работы с тематическими моделями, что ускоряет интеграцию в существующие пайплайны обработки текстов. Например, загрузка данных, настройка параметров и запуск обучения выполняются минимальным количеством кода, снижая риск ошибок и время на разработку;
- 2. Разнообразие регуляризаторов: библиотека поддерживает множество регуляляризаторов (например, сглаживание, разреживание тем), которые можно комбинировать для улучшения интерпретируемости и точности модели. Это критически важно для новостных данных, где темы часто пересекаются (например, «экономика» и «политика»), а шумовые слова требуют фильтрации;
- 3. Блочный синтаксис: настройка модели в BigARTM осуществляется через декларативное описание компонентов (блоков), что упрощает эксперименты с архитектурой. Например, можно быстро добавить регуляризатор для контроля за размером тем или подключить модуль для обработки

мультимодальных данных;

4. Доступность туториалов: BigARTM имеет подробную документацию и примеры использования, включая готовые сценарии для классификации текстов. Это сокращает время на изучение библиотеки и позволяет сосредоточиться на решении прикладных задач.

BigARTM сочетает в себе специализацию для работы с текстами, гибкость настройки и низкий порог входа благодаря понятному синтаксису. Это делает её оптимальным выбором для задач автоматической классификации новостей, где важно быстро адаптировать модель под изменяющиеся условия (например, появление новых тем) и контролировать качество результатов.

2.4.2 Недостающий функционал библиотеки BigARTM

Тематическое моделирование с использованием библиотеки BigARTM обладает практической ценностью, но имеет ряд ограничений:

- 1. Отсутствие встроенной метрики оценки когерентности тематик;
- 2. Сложность интеграции регуляризаторов из-за многоэтапного АРІ;
- 3. Трудоёмкое преобразование данных в требуемый формат представления;
- 4. Недостаток инструментов визуализации для мониторинга качества моделей;
- 5. Отсутствие автоматизированных методов подбора гиперпараметров.

Наибольшее влияние на качество моделирования оказывает первый фактор. Остальные ограничения преимущественно связаны с эргономикой рабочего процесса, но их совокупность существенно увеличивает сложность поддержки кодовой базы.

Для компенсации выявленных недостатков предлагается разработка двух вспомогательных классов, расширяющих функционал библиотеки:

- 1. Анализатор качества реализация расчёта когерентности и визуализации метрик;
- 2. Препроцессинг-обёртка автоматизация преобразования данных и управления регуляризацией.
- 2.4.3 Функциональности классов My_BigARTM_model и Hyperparameter_optimizer

В рамках класса My_BigARTM_Model целесообразно реализовать:

— Расчёт метрик когерентности тематик;

- Упрощённый интерфейс для добавления регуляризаторов;
- Автоматизацию преобразования данных в требуемый формат;
- Визуализацию динамики метрик качества через графики.

Интеграцию функциональности по подбору гиперпараметров в данный класс нецелесообразно, так как это:

- Нарушит принцип единственной ответственности;
- Усложнит поддержку кодовой базы;
- Снизит читаемость реализации.

Для решения этих задач предложено выделение отдельного класса Hyperparamete который:

- Инкапсулирует логику оптимизации;
- Обеспечивает удобное сохранение настроенных моделей;
- Поддерживает различные конфигурации предобработки данных.

Такое разделение обеспечивает модульность архитектуры и упрощает дальнейшее расширение системы.

Следующим этапом работы является последовательная реализация обоих компонентов.

2.4.4 Преобразование новостного массива в приемлемый для BigARTM формат

Модель BigARTM поддерживает ограниченный набор форматов данных, включая Vowpal Wabbit. Для интеграции с pandas DataFrame требуется предварительное преобразование новостного массива, которое целесообразно реализовать отдельной функцией.

Алгоритм преобразования:

- 1. Извлечение строки из DataFrame;
- 2. Конкатенация ячеек строки в единый текстовый блок;
- 3. Запись результата в файл формата Vowpal Wabbit с меткой документа;
- 4. Итеративная обработка всего массива новостей.

Реализация функции преобразования представлена в листинге 16:

```
def __make_vowpal_wabbit__(self) -> None:
    f = open(self.path_vw, "w")
    for row in range(self.data.shape[0]):
        string = ""
    for column in self.data.columns:
```

```
string += str(self.data.loc[row, column]) + " "
f.write("doc_{0}".format(row) + string.strip() + " n")
```

Листинг 16: Преобразование новостного массива в формат Vowpal Wabbit

Последующие этапы обработки:

- 1. Разделение данных на батчи;
- 2. Генерация словаря терминов.

Оба действия выполняются средствами библиотеки BigARTM. Соответствующий код приведён в листинге 17:

```
def __make_batches__(self) -> None:
self.batches = artm.BatchVectorizer(
data_path=self.path_vw,
data_format="vowpal_wabbit",
batch_size=self.batch_size,
target_folder=self.dir_batches
)
self.dictionary = self.batches.dictionary
```

Листинг 17: Функция создания батчей и словаря

Подготовленные данные готовы для передачи в модель BigARTM для тематического моделирования.

2.4.5 Удобное добавление регуляризаторов

Библиотека BigARTM предоставляет обширный набор регуляризаторов, однако их интеграция в модель требует сложного синтаксиса, что затрудняет массовое использование. Для упрощения процесса предложен двухуровневый подход:

- 1. Базовая функция добавляет регуляризатор по имени и значению гиперпараметра;
- 2. Обёрточная функция применяет первый метод для пакетного добавления.

Преимущества решения:

- Устранение необходимости работы с низкоуровневым API BigARTM;
- Единообразный интерфейс для одиночных и групповых операций;
- Повышение читаемости и поддерживаемости кода.
 Фрагмент реализации базовой функции (листинг 18):

```
def add_regularizer(self, name: str, tau: float = 0.0) -> None:
```

```
if name = "SmoothSparseThetaRegularizer":
           self.model.regularizers.add(
               artm.SmoothSparseThetaRegularizer(name=name, tau=tau)
           )
           self.user regularizers [name] = tau
       elif name == "SmoothSparsePhiRegularizer":
           self.model.regularizers.add(
               artm. Smooth Sparse Phi Regularizer (name=name, tau=tau)
           )
      else:
11
           print (
               "Регуляризатора {0} нет! Проверьте корректность назва
                      ния!".
               format (name)
14
```

Листинг 18: Функция добавления одиночного регуляризатора

Реализация пакетной обработки (листинг 19):

Листинг 19: Функция добавления набора регуляризаторов

Данное решение существенно упрощает эксперименты с различными комбинациями регуляризаторов, сохраняя при этом гибкость подхода BigARTM.

2.4.6 Вычисление когерентности

Библиотека BigARTM включает набор встроенных метрик оценки качества, однако не поддерживает расчёт когерентности — ключевого показателя тематической согласованности. Для восполнения этого функционала предлагается интеграция с библиотекой Gensim, предоставляющей методы вычисления различных видов когерентности.

Алгоритм расчёта метрики:

1. Экспорт тематических ядер:

Получение списка тем, где каждая тема представлена N ключевыми терминами

2. Подготовка текстового корпуса:

Преобразование документов в структуру вида: [[токен_1_док_1, токен_2_док_1, ...], [токен_1_док_2, ...], ...]

3. Вычисление показателя:

Передача данных в Gensim для расчёта выбранного типа когерентности Реализация функции представлена в листинге 20:

```
def __calc_coherence__(self) -> None:
      last tokens =
              self.model.score tracker["top tokens"].last tokens
      valid topics = [tokens for tokens in last tokens.values() if
              tokens]
      texts = []
      for row in range (self.data.shape[0]):
          words = []
          for column in self.data.columns:
               cell content = self.data.loc[row, column]
               if isinstance (cell_content, str) and
                      cell content.strip():
                   words += cell content.split()
10
          if words:
11
               texts.append(words)
      dictionary = Dictionary (texts)
      coherence model = CoherenceModel (
           topics=valid topics,
           texts=texts,
16
          dictionary=dictionary,
17
          coherence="c v"
      self.coherence = coherence model.get coherence()
```

Листинг 20: Функция вычисления метрики когерентности

2.4.7 Вычисление тематической модели и формирование графиков метрик

Библиотека BigARTM не поддерживает мониторинг динамики метрик качества в процессе обучения, особенно для пользовательских метрик. Для реализации этого функционала требуется дополнительная разработка.

Алгоритм отслеживания метрик:

1. Итеративное обучение модели:

- Установка num_collection_passes=1 для пошагового прохода;
- Циклическое выполнение обучения с накоплением метрик после каждой эпохи.

2. Визуализация результатов:

- Использование matplotlib для построения графиков;
- Унифицированный подход для различных типов метрик.

Реализация итеративного обучения представлена в листинге 21:

```
def calc_model(self):
       self.perplexity_by_epoch = []
       self.coherence_by_epoch = []
       self.topic_purities_by_epoch = []
      for epoch in range (self.num_collection_passes):
           self.model.fit_offline(
               batch vectorizer=self.batches,
                      num_collection_passes=1
           self.__calc_metrics__()
           self.perplexity_by_epoch.append(self.perplexity)
           self.coherence_by_epoch.append(self.coherence)
11
           self.topic_purities_by_epoch.append(self.topic_purities)
           if epoch > 0:
13
               change\_perplexity\_by\_percent = abs(
                   self.perplexity_by_epoch[epoch - 1] -
                   self.perplexity_by_epoch[epoch]
16
               ) / (self.perplexity_by_epoch[epoch - 1] +
                       self.epsilon) * 100
               change_coherence_by_percent =
18
                      abs (self.coherence_by_epoch[epoch - 1] -
                       self.coherence_by_epoch[epoch]) / \
                                                 (self.coherence_by_epoch[epocl
19
                                                         - 1 | +
                                                         self.epsilon)
                                                         * 100
               change_topics_purity_by_percent = abs(
20
                   self.topic_purities_by_epoch[epoch - 1] -
21
                           self.topic purities by epoch[epoch]) / \
                                                      (self.topic_purities_by_e<sub>1</sub>
                                                             -1] +
                                                             self.epsilon)
                                                             * 100
```

Листинг 21: Функция обучения модели с пошаговым расчётом метрик

Пример визуализации для метрики когерентности (листинг 22):

```
def print_coherence_by_epochs(self) -> None:
plt.plot(
range(len(self.coherence_by_epoch)),
self.coherence_by_epoch,
label="coherence"

plt.title("График когерентности")
plt.xlabel("Epoch")
plt.ylabel("Coherence")
plt.legend()
plt.show()
```

Листинг 22: Функция построения графика динамики когерентности

Для других метрик применяется аналогичная логика с заменой целевого показателя.

Данная реализация завершает базовый функционал класса My_BigARTM_model. Полный код доступен в приложении Γ .

2.4.8 Подбор гиперпараметров для тематического моделирования

Для интеллектуального подбора гиперпараметров целесообразно использовать библиотеку Optuna, которая предоставляет:

- Упрощённый АРІ для настройки экспериментов;
- Поддержку байесовской оптимизации (вместо полного перебора);
- Автоматическое сокращение вычислительных ресурсов за счёт адаптивного выбора параметров.

Алгоритм работы:

1. Реализация целевой функции:

- Определение пространства поиска гиперпараметров через trial.suggest_int() и trial.suggest_float();
- Вычисление и возврат метрик качества модели.

Ключевой фрагмент реализации (листинг 23):

Листинг 23: Целевая функция для оптимизации гиперпараметров

2. Запуск оптимизации:

- Использование study.optimize() для выполнения экспериментов;
- Получение набора попыток с параметрами и метриками.

3. Выбор оптимальной конфигурации:

- Нормализация метрик;
- Выбор попытки с минимальной совокупной ошибкой.

Логика выбора (листинг 24):

Листинг 24: Функция выбора оптимальной конфигурации

4. Финализация модели:

- Обучение на лучших гиперпараметрах;
- Возврат оптимизированной модели.

Завершающий этап (листинг 25):

```
def optimizer(self):

study = optuna.create_study(

directions=["minimize", "maximize", "maximize"])

study.optimize(self.__objective__,

n_trials=self.n_trials)

best_trial = self.__select_best_trial__(study,

weights=[1, -1, -1])

best_params = best_trial[0]

num_topics = best_params["num_topics"]

# скрытые остальные параметры ...

# скрытый фрагмент создания финальной модели

final_model.calc_model()

self.model = final_model
```

Листинг 25: Обучение модели с оптимальными параметрами

Полная реализация класса Hyperparameter_optimizer доступна в приложении $\mathbf{\Pi}$.

2.5 Результаты тематического моделирования

В ходе исследования проведено тематическое моделирование 13 конфигураций предобработанных данных. Для каждой конфигурации выполнены:

- 1. Оптимизация гиперпараметров;
- 2. Расчёт финальной модели;
- 3. Оценка метрик качества.

Результаты оценки представлены в таблице 1 (когерентность и перплексия) и таблице 2 (оптимальные гиперпараметры).

Таблица 1 – Метрики моделей

Данные	perplexity	coherence
Без tfidf и add.	3486	0.470
Без tfidf c add.	2974	0.456
C tfidf 1 пр.	3643	0.476
C tfidf 2 пр.	3848	0.479
C tfidf 3 пр.	-	-
C tfidf 4 пр.	-	-
C tfidf 5 пр.	4094	0.495
C tfidf 6 пр.	3982	0.505
C tfidf 7 пр.	4620	0.491
C tfidf 8 пр.	4183	0.514
C tfidf 9 пр.	3811	0.496
C tfidf 10 пр.	4022	0.490
C tfidf 10 пр. с add.	3284	0.486

Таблица 2 – Гиперпараметры моделей

Данные	topics	cols	docs	tau phi	tau theta
Без tfidf и add.	8	6	7	-1.561	0.809
Без tfidf c add.	8	5	6	-0.004	-0.653
С tfidf 1 пр.	6	7	5	-1.540	-0.038
С tfidf 2 пр.	8	6	4	-0.101	0.146
С tfidf 3 пр.	-	-	-	-	-
C tfidf 4 пр.	-	-	-	-	-

Данные	topics	cols	docs	tau phi	tau theta
С tfidf 5 пр.	8	6	6	1.139	-1.981
C tfidf 6 пр.	8	6	7	0.954	-1.353
С tfidf 7 пр.	8	5	5	0.942	-0.102
С tfidf 8 пр.	6	7	7	1.757	-1.222
С tfidf 9 пр.	8	6	7	-0.449	-0.365
C tfidf 10 пр.	8	5	6	-0.184	-1.826
C tfidf 10 пр. с add.	8	5	6	0.385	-1.165

Ключевые наблюдения:

- Наилучшее качество (когерентность 0.514) достигнуто при:
 - Удалении низкочастотных слов;
 - Отказе от TF-IDF фильтрации стоп-слов;
 - Пороге TF-IDF 8 процентов.
- Потенциальные причины результата:
 - Ограничения оптимизации: Неполный перебор гиперпараметров;
 - Недостаток вариантов: Не исследованы комбинации TF-IDF с удалением стоп-слов и низкочастотных терминов;
 - Методические риски: Возможная некорректность TF-IDF фильтрации стоп-слов (требует дополнительной проверки).
- Влияние порогов TF-IDF:
 - Пороги > 8 процентов приводят к снижению качества;
 - Высокие пороги удаляют смысловые термины;
 - Оптимальный диапазон: 5-8 процентов.

Возможные пути улучшения:

- Расширить пространство поиска гиперпараметров;
- Исследовать комбинированные стратегии очистки данных;
- Провести валидацию метода TF-IDF фильтрации стоп-слов.

2.6 Обучение модели классификатора

2.6.1 Выбор модели для тематической классификации

Как установлено ранее, для решения задачи наиболее эффективны трансформеры. Существует три основных типа архитектур:

- Encoder-only (BERT, RoBERTa): Содержат только кодирующую часть;
- Decoder-only (GPT): Содержат только декодирующую часть;

- Encoder (BART, T5): Комбинируют обе части.
 Их функциональные различия можно описать следующим образом:
- Encoder модели (BERT, RoBERTa) специализируются на понимании текста (задачи классификации, извлечения информации);
- Decoder модели (GPT) оптимизированы для задачи генерации текста;
- Гибридные модели (BART, T5) предназначены для задачи трансформации текста (перевод, суммаризация).

Для тематической классификации требуется глубокое понимание контекста, поэтому оптимальны encoder-only модели. Среди них RoBERTa (Robustly optimized BERT approach) демонстрирует преимущества перед BERT:

- Обучена на большем объёме данных;
- Использует динамическое маскирование слов;
- Исключает задачу предсказания следующего предложения;
- Показывает лучшие результаты на NLU-задачах.
 Таким образом, для классификации новостей выберем RoBERTa.

2.6.2 Выбор способа для получения предобученных моделей

Существует несколько способо получения весов предобученной модели: от их скачивания с облака и github репозиториев, до получения через API разных сайтов. Их этих методов будет предпочтительнее выбрать последний, так как есть портал Hugging Face.

Hugging Face предсталяет собой большое хранилище различных моделей, в том числе и предобученных крупными компаниями и исследователями (Google, Facebook, Sberbank). Кроме того, данный сайи предоставляет удобный, лаконичный и унифицированный интерфейс для работы с ним, что позволяет делать код максимально компактным и читабельным.

Таким образом, будет получать предобученные модели с помощью портала Hugging Face.

2.6.3 Получение весов предобученной модели

Для начала работы с нейронными сетями с платформы Hugging Face необходимо подключить следующие зависимости:

49

^{1 %%}capture

^{2 !}pip install transformers datasets evaluate

```
from datasets import Dataset
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer,
EarlyStoppingCallback

import evaluate
```

Листинг 26: Подключение необходимых зависимсотей для работы с Hugging Face

С помощью данных библиотек будут происходить подготовка данных, загрузка весов моделей и их обучение.

Для загрузки модели потребуется класс AutoModelForSequenceClassification и его метод from_pretrained, в который будут задаваться параметры загрузки (название модели и тип решаемой ей задачи, для загрузки предобученной на соответствующих данных модели). Реализация соответствующего кода представлена в соответствующем листинге 27.

```
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=self.num_labels,
problem_type="single_label_classification",
ignore_mismatched_sizes=True
).to(self.device)
```

Листинг 27: Загрузка весов модели

2.6.4 Подготовка данных для работы с моделью

Для работы с моделью нужно уметь разделять текст на слова. Осуществлять это можно с помощью встроенного токенизатора, для этого его нужно будет загрузить и настроить.

Загрузка происходит с помощью класса AutoTokenizer и метода from_pretrained. Реализация загрузки представлена ниже.

```
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)

Листинг 28: Загрузка токенизатора
```

Данные токенизатор будет использоваться для преобразования данных к нужному виду с помощью класса DataSets и метода map.

Реализацию соответствующей функции можно увидеть в следующем листинге 29.

Листинг 29: Загрузка токенизатора

Также важно не забыть преобразовать метки классов к числам, сделать это можно следующим образом 30.

Листинг 30: Загрузка токенизатора

2.6.5 Дообучение модели

Так как выбранная модель не является огромной, а ресурсы предоставляемые Google Colab позволяют использовать мощные графические ускорители, то будем дообучать нейронную сеть целиком, без заморозки слоёв энкодера.

Перед обучением нужно сначала задать его параметры, реализуется это с помощью класса TrainingArguments, в конструктор которого передаются соответствующие параметры. Среди них можно выделить следующие:

— Стратегия обучения (eval_strategy);

- Стратегия сохранения результата (save_strategy);
- Шаг ошибки (learning_rate);
- Размер батча (per_device_train_batch_size, per_device_eval_batch_size);
- Количество эпох обучения (num_train_epochs);
- Метрика качества подбора лучшей модели (metric_for_best_model).

Соответствующий код можно увидеть в следующем листинге 31.

```
training args = TrainingArguments (
      output dir=self.output dir,
      eval_strategy="epoch",
      save strategy="epoch",
      learning rate=2e-5,
      lr scheduler_type="linear",
      warmup steps=100,
      per device train batch size=32,
      per device eval batch size=32,
      num_train_epochs=10,
      weight decay = 0.01,
      load best model at end=True,
      metric for best model="accuracy",
      logging dir='./logs',
      \log g i n g \_ s t e p s = 10,
15
      report to="none",
      save total limit=1
```

Листинг 31: Код установки параметров обучения

Осталось только создать объект тренировщика и запустить его. Делается это с помощью класса Trainer следующим образом ??.

```
self.trainer = Trainer(
model=self.model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=self.__compute_metrics__,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]
)
self.trainer.train()
```

Листинг 32: Код класса обучения

Таким образом, была реализована основная функциональнось для обучения тематического классификатора. Полный код можно увидеть в соответствующем приложении.

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

приложение а

Листинг вебскраппера

```
1 import requests
 from bs4 import BeautifulSoup
  import pandas as pd
  import os
  import time
  import threading
  def loading bar and info (
      start: bool, number_of_steps: int, total_steps: int,
              number of thread: int
  ) -> None:
      '''Вывод инфомрации о прогрессе выполнения программы.
      start - нужно ли вывести начальную строку;
      number page - количество спаршенных страниц;
      total pages - всего стираниц, которые нужно спарсить;
      miss count - число новостей, которые не удалось спарсить;
      whitour whole content - число новостей, у которых не получило
16
             сь полностью спарсить контент. ""
      done = int(number of steps / total steps * 100) if int(
          number of steps / total steps * 100
      ) < 100 or number of steps == total steps else 99
19
      stars = int(
20
          40 / 100 * done
21
      ) if int(20 / 100 * done) < 20 or number of steps ==
              total steps else 39
      tires = 40 - stars
24
      if start:
25
          stars = 0
           tires = 40
          done = 0
28
29
      print("thread{0} <".format(number of thread), end="")</pre>
30
      for i in range(stars):
31
           print("*", end="")
32
```

```
for i in range (tires):
34
           print("-", end="")
35
       print ("> {0}% | | | {1} / {2}".format (done, number_of_steps,
              total steps))
37
  def __getPage__(url: str, file_name: str) -> None:
38
       '''Получение html файла страницы.
      url - ссылка на страницу;
      file name - имя файла, в который будет сохранена страница.'''
41
      r = requests.get(url=url)
42
43
      with open (file name, "w", encoding="utf-8") as file:
           file.write(r.text)
45
  def __parse_news__(url: str) -> str:
47
       '''Получиние полного контента новости.
      url - ссылка но новость.
      Функция возвращает полный текст новости.'''
50
      news_file_name = "news.html"
51
      __getPage__(url, news_file_name)
52
53
      with open(news file name, encoding="utf-8") as file:
           src = file.read()
55
      content = BeautifulSoup(src, "lxml").find("div",
              class = "main").find(
           "div", class = "post text"
      ).text.strip()
59
60
      return content
61
62
  def __parse_page__(page_file_name: str, news_container:
63
         pd.DataFrame) -> None:
       '''Парсинг информации с новостной страницы: ссылка на новость
64
               + короткая информация о ней.
      page file name - имя файла, в который сохранён код страницы;
      news container - таблица, в которую заносится информация о но
66
              вости.
      Функция также возвращает количество новостей, которые не удал
67
              ось спарсить
```

```
и количество новостей, полный контент которых спарсить не уда
68
              лось.'''
       with open(page_file_name, encoding="utf-8") as file:
69
           src = file.read()
71
       soup = BeautifulSoup(src, "lxml")
73
       news = soup.find("div", class_="post")
       for i in range (10):
75
            try:
76
                news_day = news.find("div",
77
                       class_="post-meta__day").text.strip()
           except:
78
                news day = ""
79
80
           try:
81
                news month = news.find("div",
                                          class = "post-meta month").text.strip(
           except:
84
                news month = ""
85
86
           try:
                news_year = news.find("div",
88
                       class_="post-meta__year").text.strip()
           except:
89
                news\_year = ""
90
           news date = news day + "." + news month + "." + news year
92
93
           try:
94
                news name = news.find("h2",
95
                                        class = "first child").find("a").text.st
           except:
97
                news\_name = ""
98
99
           try:
                news_short_content = news.find("p",
101
                       class = "first child"
                                                 ).find_next_sibling("p").text.s
102
           except:
103
                news_short_content = ""
```

```
105
           try:
106
                link = news.find("h2")
107
                       class = "first child").find("a").get("href")
                if not link.startswith("https://"):
108
                    link = 'https://www.hse.ru' + link
109
           except:
                link = ""
           try:
113
                if link.startswith("https://www.hse.ru/news/"):
114
                    news_content = __parse_news__(link)
           except:
116
                news_content = ""
117
118
            if len (
119
                news day + news month + news year + news name +
                       news short content +
                news\_content
            ) > 0:
                news container.loc[len(news container.index)] = [
                    link, news date, news name, news short content,
                            news_content
126
           news = news.find\_next\_sibling("div", class\_="post")
```

Листинг 33: Полный код вебскраппера

приложение б

Листинг обработчика новостного массива

```
'''Вывод инфомрации о прогрессе выполнения программы.
11
       start - нужно ли вывести начальную строку;
12
       number page - количество спаршенных страниц;
13
       total pages - всего стираниц, которые нужно спарсить;
       miss count - число новостей, которые не удалось спарсить;
15
       whitour whole content - число новостей, у которых не получило
16
              сь полностью спарсить контент. ""
       done = int(number_of_steps / total_steps * 100) if int(
           number of steps / total steps * 100
18
       ) < 100 or number of steps == total steps else 99
19
       stars = int(
20
           40 / 100 * done
       ) if int(20 / 100 * done) < 20 or number of steps ==
              total steps else 39
       tires = 40 - stars
24
       if start:
           stars = 0
           tires = 40
           done = 0
28
29
       print ("thread {0} <".format (number of thread), end="")
       for i in range(stars):
31
           print("*", end="")
32
       for i in range (tires):
           print("-", end="")
       print("> \{0\}\% \mid \mid \mid \{1\} \mid \{2\}" . format(done, number_of_steps,
              total steps))
37
  def __getPage__(url: str , file_name: str) -> None:
38
       '''Получение html файла страницы.
39
       url - ссылка на страницу;
40
       file name - имя файла, в который будет сохранена страница.'''
41
       r = requests.get(url=url)
43
       with open (file name, "w", encoding="utf-8") as file:
           file.write(r.text)
45
46
  def \__parse_news\__(url: str) \rightarrow str:
47
       '''Получиние полного контента новости.
48
```

```
url - ссылка но новость.
49
      Функция возвращает полный текст новости.'''
50
      news_file_name = "news.html"
51
      __getPage__(url, news_file_name)
53
      with open(news_file_name, encoding="utf-8") as file:
           src = file.read()
      content = BeautifulSoup(src, "lxml").find("div",
              class = "main").find(
           "div", class_="post_ text"
58
      ).text.strip()
59
      return content
61
62
  def __parse_page__(page_file_name: str, news_container:
         pd.DataFrame) -> None:
       '''Парсинг информации с новостной страницы: ссылка на новость
              + короткая информация о ней.
      page_file_name - имя файла, в который сохранён код страницы;
65
      news container - таблица, в которую заносится информация о но
66
             вости.
      Функция также возвращает количество новостей, которые не удал
             ось спарсить
      и количество новостей, полный контент которых спарсить не уда
             лось.'''
      with open (page file name, encoding="utf-8") as file:
           src = file.read()
      soup = BeautifulSoup(src, "lxml")
72
      news = soup.find("div", class = "post")
      for i in range (10):
75
           trv:
76
               news_day = news.find("div",
                      class_="post-meta__day").text.strip()
           except:
               news day = ""
79
80
           try:
81
               news month = news.find("div",
```

```
class_="post-meta__month").text.strip(
83
            except:
84
                news\_month = ""
85
86
            try:
87
                news year = news.find("div",
88
                        class_="post-meta_year").text.strip()
            except:
                news year = ""
90
91
            news_date = news_day + "." + news_month + "." + news_year
92
93
            try:
                news\_name = news.find("h2",
95
                                         class_="first_child").find("a").text.st
96
            except:
97
                news\_name = ""
            try:
100
                news_short_content = news.find("p",
101
                        class = "first child"
                                                  ).find next sibling("p").text.s
            except:
103
                news_short_content = ""
104
105
            try:
106
                link = news.find("h2")
                        class = "first child").find("a").get("href")
                if not link.startswith("https://"):
108
                     link = 'https://www.hse.ru' + link
109
            except:
110
                link = ""
            try:
                if link.startswith("https://www.hse.ru/news/"):
114
                     news_content = __parse_news__(link)
            except:
116
                news_content = ""
117
118
            if len (
119
                news day + news month + news year + news name +
120
```

Листинг 34: Полный код подготовки новостного массива

ПРИЛОЖЕНИЕ В Количественные характеристики подготовленного и неподготовленного новостного массива

Характеристика	Неподгот.	Стоп-слова	+Низкочаст.	TF-IDF 1%	TF-IDF 2%	TF-IDF 3%
Кол. док.	17340	17340	17340	17340	17340	17340
Кол. токенов	1213111	16545045	-	6479545	6414045	6348544
Кол. уник. ток.	278724	148677	-	148677	148677	148677
Мин. кол. ток. в док.	6	4	-	4	4	4
Модальное кол. ток. в док.	47	31	-	31	31	30
Среднее кол. ток. в док.	695	375	-	371	367	364

Продолжение следует...

Продолжение таблицы

		родолже				
Характеристика	Неподгот.	Стоп-слова	+Низкочаст.	TF-IDF 1%	TF-IDF 2%	TF-IDF 3%
Медианное	-	313	-	312	310	309
кол. ток. в						
док.						
Макс. кол.	6514	3151	-	2903	2825	2766
ток. в док.						
Мин. кол.	6	4	-	4	4	4
уник. ток. в						
док.						
Мод. кол.	39	27	1	27	27	30
уник. ток. в						
док.						
Сред. кол.	346	214	-	211	208	205
уник. ток. в						
док.						
Мед. кол.	_	186	-	185	183	182
уник. ток. в						
док.						
Макс. кол.	2287	1353	_	1299	1262	1214
уник. ток. в						
док.						

Характеристика	TF-IDF 4%	TF-IDF 5%	TF-IDF 6%.	TF-IDF 7%	TF-IDF 8%	TF-IDF 9%
Кол. док.	17340	17340	17340	17340	17340	17340
Кол. токенов	6283046	6217544	6152044	6086544	6021044	5955543
Кол. уник.	148677	148677	148677	148677	148677	148677
ток.						
Мин. кол.	4	4	4	4	4	4
ток. в док.						
Модальное	30	30	30	30	29	29
кол. ток. в						
док.						
Среднее кол.	360	356	352	349	345	341
ток. в док.						
Медианное	307	306	305	303	301	299
кол. ток. в						
док.						
Макс. кол.	2713	2662	2595	2545	2501	2424
ток. в док.						
Мин. кол.	4	4	4	4	4	4
уник. ток. в						
док.						
Мод. кол.	27	29	29	28	28	28
уник. ток. в						
док.						
Сред. кол.	201	198	195	192	189	186
уник. ток. в						
док.						

Продолжение следует...

Продолжение таблицы

Характеристика	TF-IDF 4%	TF-IDF 5%	TF-IDF 6%	TF-IDF 7%	TF-IDF 8%	TF-IDF 9%
Мед. кол.	181	179	177	176	174	172
уник. ток. в док.						
Макс. кол.	1164	1122	1085	1047	1018	986
уник. ток. в						
док.						

Характеристика	TF-IDF 10%	ТҒ-ІDҒ 10% + Низк.
Кол. док.	17340	17340
Кол. токенов	5890042	, –
Кол. уник.	148677	-
ток.		
Мин. кол.	4	-
ток. в док.		
Модальное	30	-
кол. ток. в		
док.		
Среднее кол.	337	-
ток. в док.		

Продолжение следует...

Продолжение таблицы

Характеристика	TF-IDF 10%	ТҒ-ІDҒ 10% + Низк.
Медианное	297	-
кол. ток. в		
док.		
Макс. кол.	2391	-
ток. в док.		
Мин. кол.	4	-
уник. ток. в		
док.		
Мод. кол.	28	-
уник. ток. в		
док.		
Сред. кол.	182	-
уник. ток. в		
док.		
Мед. кол.	170	-
уник. ток. в		
док.		
Макс. кол.	946	-
уник. ток. в		
док.		

приложение г

Полный код класса My_BigARTM_model

```
class My_BigARTM model():
      def __init__(
           self.
          data: pd.DataFrame = pd.DataFrame(),
          num topics: int = 1,
          num document passes: int = 1,
           class ids: dict[str, float] = { "@default class": 1.0},
          num processors: int = 8,
          path_vw: str = "./vw.txt",
           batch size: int = 1000,
           dir batches: str = "./batches",
          num\_top\_tokens: int = 10,
           regularizers: dict[str, float] = \{\},
           num collection passes: int = 1,
           plateau perplexity: float = 0.1,
           plateau coherence: float = 0.1,
16
           plateau_topics_purity: float = 0.1,
           epsilon: float = 0.0000001
      ):
19
           self.data = data.copy(deep=True)
           self.num topics = num topics
           self.num document passes = num document passes
           self.class ids = class ids
           self.num processors = num processors
           self.path vw = path vw
           self.batch size = batch size
26
           self.dir batches = dir batches
           self.num top tokens = num top tokens
           self.user regularizers = regularizers
29
           self.num collection passes = num collection passes
30
           self.epsilon = epsilon
31
           self.perplexity by epoch = []
33
           self.coherence by epoch = []
34
           self.topic_purities_by_epoch = []
           self.plateau perplexity = plateau perplexity
           self.plateau coherence = plateau coherence
           self.plateau_topics_purity = plateau_topics_purity
39
```

```
40
           if data.empty:
41
                print (
42
                    "Чтобы создать модель добавьте данные, на которых
                             будет строиться модель"
                )
44
           else:
45
                self.__make_vowpal_wabbit__()
                self.\_\_make\_batches\_\_()
47
                self.\__make\_model ()
48
49
           if self.user regularizers:
50
                self.add regularizers (self.user regularizers)
51
52
       def __make_vowpal_wabbit__(self) -> None:
53
           f = open (self.path vw, "w")
54
           for row in range (self.data.shape [0]):
                string = ""
57
                for column in self.data.columns:
58
                    string += str(self.data.loc[row, column]) + " "
59
                f.write("doc_{0}) ".format(row) + string.strip() +
61
                       " \setminus n")
62
       def __make_batches__(self) -> None:
           self.batches = artm.BatchVectorizer(
                data path=self.path vw,
65
                data format="vowpal wabbit",
66
                batch size=self.batch size,
67
                target folder=self.dir batches
           )
70
           self.dictionary = self.batches.dictionary
71
       def __make_model__(self) -> None:
           self.model = artm.ARTM(
                cache theta=True,
75
                num topics=self.num topics,
76
                num_document_passes=self.num_document_passes,
77
                dictionary=self.dictionary,
```

```
class_ids=self.class_ids,
79
                num\_processors=8
80
           )
81
            self. add BigARTM metrics ()
83
       def __add_BigARTM_metrics__(self) -> None:
            self.model.scores.add(
                artm. Perplexity Score (name='perplexity',
87
                        dictionary=self.dictionary)
88
            self.model.scores.add(artm.SparsityPhiScore(name='sparsity phi sc
89
            self.model.scores.add(
                artm. Sparsity Theta Score (name='sparsity_theta_score')
91
           )
92
            self.model.scores.add(
93
                artm. TopTokensScore (
                    name="top tokens", num tokens=self.num top tokens
96
            )
97
       def __calc_coherence__(self) -> None:
            topics = []
100
            if "top_tokens" in self.model.score_tracker:
                last tokens =
102
                        self.model.score_tracker["top_tokens"].last_tokens
                topics = [last tokens[topic] for topic in
                       last_tokens |
104
            valid\_topics = []
105
           for topic in topics:
                if isinstance(topic, list) and len(topic) > 0:
                    valid_topics.append(topic)
108
109
            if not valid_topics:
                self.coherence = 0.0
                return
113
           texts = []
114
           for row in range (self.data.shape [0]):
                words = []
```

```
for column in self.data.columns:
                     cell content = self.data.loc[row, column]
118
                     if isinstance (cell content, str) and
119
                             cell content.strip():
                          words += cell content.split()
120
                if words:
                     texts.append(words)
            if not texts:
124
                 self.coherence = 0.0
                return
126
            try:
128
                dictionary = Dictionary (texts)
129
                coherence_model = CoherenceModel(
130
                     topics=valid topics,
                     texts=texts,
                     dictionary=dictionary,
                     coherence="c v"
134
                 self.coherence = coherence model.get coherence()
136
            except Exception as e:
                print(f"Ошибка при расчете когерентности: {e}")
138
                 self.coherence = 0.0
139
140
       def __calc_phi__(self) -> None:
141
            self.phi = np.sort(self.model.get phi(), axis=0)[::-1, :]
143
       def \_\_calc\_theta\_\_(self) -> None:
144
            self.theta = self.model.get\_theta()
145
146
       def __calc_topic_purity__(self, topic: int) -> None:
            return np.sum(self.phi[:, topic]) / self.phi.shape[0]
148
149
       def __calc_topics_purities__(self) -> None:
150
            topics = range (self.phi.shape [1])
151
            self.topic purities = sum(
152
                [\ self.\_\_calc\_topic\_purity\_\_(\ topic\ ) \ \ for \ \ topic \ \ in
153
            ) / len(topics)
154
155
```

```
def __calc_metrics__(self) -> None:
156
           self.perplexity =
157
                   self.model.score tracker['perplexity'].last value
           self.sparsity phi score =
158
                   self.model.score tracker['sparsity phi score'
                                                                  l. last value
159
           self.sparsity theta score = self.model.score tracker[
160
                'sparsity theta score' | . last value
           self.top tokens =
162
                   self.model.score tracker['top tokens'].last tokens
           self.__calc_coherence__()
163
           self.__calc_phi__()
164
            self. calc topics purities ()
165
166
       def add data(self, data: pd.DataFrame) -> None:
167
           self.data = data
168
           self. make vowpal wabbit ()
           self.__make_batches__()
            self.__make_model__()
173
       def add regularizer (self, name: str, tau: float = 0.0) ->
              None:
           if name = "SmoothSparseThetaRegularizer":
                self.model.regularizers.add(
176
                    artm.SmoothSparseThetaRegularizer (name=name,
                           tau=tau)
178
                self.user regularizers [name] = tau
179
            elif name == "SmoothSparsePhiRegularizer":
180
                self.model.regularizers.add(
181
                    artm.SmoothSparsePhiRegularizer(name=name,
                            tau=tau)
183
                self.user_regularizers[name] = tau
184
            elif name == "DecorrelatorPhiRegularizer":
                self.model.regularizers.add(
186
                    artm. Decorrelator Phi Regularizer (name=name,
187
                            tau=tau)
                )
188
                self.user regularizers [name] = tau
```

```
elif name == "LabelRegularizationPhiRegularizer":
190
                self.model.regularizers.add(
191
                    artm. LabelRegularizationPhiRegularizer (name=name,
192
                            tau=tau)
193
                self.user regularizers [name] = tau
194
            elif name == "HierarchicalSparsityPhiRegularizer":
                self.model.regularizers.add(
                    artm. HierarchicalSparsityPhiRegularizer (name=name,
197
                            tau=tau)
198
                self.user_regularizers[name] = tau
199
            elif name == "TopicSelectionThetaRegularizer":
                self.model.regularizers.add(
201
                    artm. TopicSelectionThetaRegularizer(name=name,
202
                            tau=tau)
                )
                self.user regularizers [name] = tau
            elif name == "BitermsPhiRegularizer":
                self.model.regularizers.add(
206
                    artm.BitermsPhiRegularizer(name=name, tau=tau)
207
                self.user_regularizers[name] = tau
209
            elif name == "BackgroundTopicsRegularizer":
                self.model.regularizers.add(
                    artm. Background Topics Regularizer (name=name,
                            tau=tau)
                self.user regularizers [name] = tau
214
            else:
                print (
216
                    "Регуляризатора {0} нет! Проверьте корректность н
                            азвания!".
                    format (name)
218
                )
219
       def add regularizers (self, regularizers: dict[str, float])
221
               \rightarrow None:
           for regularizer in regularizers:
                self.add_regularizer(regularizer,
223
                        regularizers [regularizer])
```

```
224
       def calc model (self):
            self.perplexity by epoch = []
226
           self.coherence by epoch = []
           self.topic purities by epoch = []
228
229
           for epoch in range(self.num_collection_passes):
230
                self.model.fit_offline(
                    batch vectorizer = self.batches,
                           num collection passes=1
                self. calc metrics ()
234
                self.perplexity by epoch.append(self.perplexity)
235
                self.coherence_by_epoch.append(self.coherence)
236
                self.topic purities by epoch.append(self.topic purities)
238
                if epoch > 0:
                    change_perplexity_by_percent = abs (
                        self.perplexity_by_epoch[epoch - 1] -
241
                        self.perplexity_by_epoch[epoch]
242
                    ) / (self.perplexity_by_epoch[epoch - 1] +
243
                            self.epsilon) * 100
                    change_coherence_by_percent =
                           abs(self.coherence_by_epoch[epoch - 1] -
                            self.coherence_by_epoch[epoch]) / \
                                                     ( self.coherence\_by\_epoch[ep
245
                                                            - 1 | +
                                                            self.epsilon)
                                                            * 100
                    change_topics_purity_by_percent = abs (
246
                        self.topic_purities_by_epoch[epoch - 1] -
247
                                self.topic purities by epoch [epoch])
                                / \
                                                         (self.topic_purities_by_
248
                                                                 - 1 | +
                                                                 self.epsilon)
                                                                 * 100
249
                    if change_perplexity_by_percent <
250
                            self.plateau_perplexity and
                           change coherence by percent <
```

```
self.plateau coherence and
                            change topics purity by percent <
                            self.plateau topics purity:
                         break
252
       def get perplexity(self) -> float:
            return self.perplexity
254
       def get perplexity by epochs(self) -> list[float]:
256
            return self.perplexity by epoch
257
258
       def print perplexity by epochs (self) -> None:
259
            plt.plot(
                range(len(self.perplexity_by_epoch)),
261
                self.perplexity by epoch,
262
                label="perplexity"
263
            )
            plt.title("График перплексии")
            plt.xlabel("Epoch")
266
            plt.ylabel("Perplexity")
267
            plt.legend()
268
            plt.show()
270
       def get coherence(self) -> float:
271
            return self.coherence
272
273
       def get coherence by epochs (self) -> list [float]:
            return self.coherence_by_epoch
276
       def print_coherence_by_epochs(self) -> None:
277
            plt.plot(
                range (len (self.coherence by epoch)),
                self.coherence by epoch,
280
                label="coherence"
281
            )
282
            plt.title("График когерентности")
            plt.xlabel("Epoch")
            plt.ylabel("Coherence")
285
            plt.legend()
286
            plt.show()
287
```

```
def get_topic_purities(self) -> float:
289
            return self.topic purities
290
291
       def get topic purities by epochs(self) -> list[float]:
            return self.topic purities by epoch
293
294
       def print topic purities by epochs (self) -> None:
            plt.plot(
                range (len (self.topic_purities_by_epoch)),
297
                self.topic purities by epoch,
298
                label="topic purities"
299
            )
300
            plt.title("График чистоты тем")
301
            plt.xlabel("Epoch")
302
            plt.ylabel("Topics purity")
303
            plt.legend()
304
            plt.show()
       def get model(self):
307
            return self.model
308
309
       def save model(self, dir model: str =
310
               "./drive/MyDrive/model") -> None:
            self.model.dump artm model(dir model)
311
```

Листинг 35: Полный код класса My_BigRTM_model

приложение д

Полный код класса Hyperparameter_optimizer

```
3, 7),
           regularizers: dict[str, tuple[str, float, float]] = {
11
               "SmoothSparseThetaRegularizer": ('tau theta', -2.0,
                       2.0),
               "SmoothSparsePhiRegularizer": ('tau phi', -2.0, 2.0)
13
           },
           class ids: dict[str, float] = {"@default class": 1.0}
      ):
           self.data = data.copy(deep=True)
17
           self.n trials = n trials
18
           self.num_topics = num_topics
19
           self.num document passes = num document passes
20
           self.num collection passes = num collection passes
21
           self.regularizers = regularizers
22
           self.class ids = class ids
           self.robast scaler = RobustScaler()
      def __objective__(self, trial) -> tuple[float, float, float]:
           num_topics = trial.suggest_int(
28
               self.num topics[0], self.num topics[1],
29
                       self.num topics [2]
30
           num_document_passes = trial.suggest_int(
31
               self.num document passes [0],
32
                       self.num document passes [1],
               self.num document passes [2]
           num collection passes = trial.suggest int(
               self.num collection passes [0],
36
                       self.num collection passes [1],
               self.num collection passes [2]
37
38
           tau theta = trial.suggest float(
39
               self.regularizers["SmoothSparseThetaRegularizer"][0],
               self.regularizers["SmoothSparseThetaRegularizer"][1],
               self.regularizers["SmoothSparseThetaRegularizer"][2]
43
           tau _phi = trial.suggest_float(
44
               self.regularizers["SmoothSparsePhiRegularizer"][0],
45
               self.regularizers ["SmoothSparsePhiRegularizer"][1],
```

```
self.regularizers["SmoothSparsePhiRegularizer"][2]
47
           )
48
           regularizers = {
               "SmoothSparseThetaRegularizer": tau theta,
               "SmoothSparsePhiRegularizer": tau phi
51
52
           class ids = self.class ids
53
           model = My BigARTM model (
               data=self.data,
56
               num_topics=num_topics ,
57
               num document passes=num document passes,
58
               class ids=class ids,
               num collection passes=num collection passes,
60
               regularizers=regularizers
61
           )
62
           model.calc model()
           return model.get_perplexity(), model.get_coherence(
65
           ), model.get_topic_purities()
66
67
          select best trial (self, study, weights):
           """Выбирает trial с минимальной взвешенной суммой метрик
69
           params_and_metrics = [
70
               (trial.params, trial.values) for trial in
                       study.best trials
           metrics = np.array([item[1] for item in
                  params_and_metrics])
74
           scaled metrics = np.zeros like (metrics)
           for i in range (metrics.shape [1]):
76
               scaler = RobustScaler()
77
               scaled_column = scaler.fit_transform(metrics[:,
                       i].reshape(-1, 1)
                                                      ) . flatten ()
79
80
               if weights [i] < 0:
81
                   scaled\_column = -scaled\_column
82
               scaled metrics [:, i] = scaled column
```

```
84
           scaled params and metrics = [
85
                (item [0], item [1], scaled metrics [i]. tolist())
86
                for i, item in enumerate (params and metrics)
88
           return min(scaled params and metrics, key=lambda trial:
                   sum (trial [2]))
91
       def optimizer(self):
92
           study = optuna.create_study(
93
                directions = ["minimize", "maximize", "maximize"]
94
           )
96
           study.optimize(self.__objective__,
97
                   n trials=self.n trials)
           best_trial = self.__select_best_trial__(study,
                   weights = [1, -1, -1]
100
           best params = best trial [0]
101
           num topics = best params ["num topics"]
103
           num document passes = best params ["num document passes"]
104
           num collection passes =
105
                   best params ["num collection passes"]
           tau theta = best params ["tau theta"]
           tau_phi = best_params["tau_phi"]
107
108
           print("best params:")
109
           print(f"num topics = {num topics}; num document passes =
110
                   {num document passes};\nnum collection passes =
                   {num_collection_passes}; tau theta = {tau theta};
                   tau phi = \{tau phi\}."
           final model = My BigARTM model(
                data=self.data,
113
                num topics=num topics,
114
                num document passes=num document passes,
                num_collection_passes=num_collection_passes,
116
                regularizers={
117
```

```
"SmoothSparseThetaRegularizer": tau theta,
118
                    "SmoothSparsePhiRegularizer": tau_phi
119
               },
120
                class_ids={"@default_class": 1.0}
           final model.calc model()
           self.model = final model
126
       def get model(self) -> My BigARTM model:
           return self.model
128
129
       def save model(self, path model: str =
130
              "./drive/MyDrive/model") -> None:
           self.model.model.dump artm model(path model)
       def save phi(self, path phi: str =
              "./drive/MyDrive/phi.xlsx") -> None:
           self.model.model.get phi().to excel(path phi)
134
       def save theta (
136
           self, path theta: str = "./drive/MyDrive/theta.xlsx"
       ) -> None:
138
           self.model.model.get_theta().T.to_excel(path_theta)
139
```

Листинг 36: Полный код класса Hyperparameter_optimizer

приложение е

Полный код обучения модели классификатора

```
class Topic Classifier:
    def __init__(
        self ,
        data_path: str ,
        columns: List[str],
        maximum_sequence_length: int = 200,
        output_dir: str = "./model"
    ):
        try:
        self.data = pd.read_excel(data_path)
        self.data = self.data.fillna("")
        self.data = self.data.astype(str)
        except FileNotFoundError:
```

```
raise ValueError(f"File {data_path} not found!")
14
           self.model name = "nikitast/multilang-classifier-roberta"
16
           self.columns = columns
           self.maximum sequence length = maximum sequence length
18
           self.output dir = output dir
           self.device = torch.device("cuda" if
                  torch.cuda.is_available() else "cpu")
21
           self.topic2id: Dict[str, int] = {}
           self.id2topic: Dict[int, str] = \{\}
23
           self.num labels: int = 0
24
           self.tokenizer = None
           self.model = None
26
           self.trainer = None
           self.evaluation_results: Dict[str, float] = {}
28
      def __prepare_data__(self):
           self.data['text'] = self.data[self.columns].apply(
               lambda x: ''.join(x.dropna().astype(str)), axis=1
           )
           unique topics = self.data['topic'].unique()
           self.topic2id = {topic: i for i, topic in
36
                  enumerate(unique_topics)}
           self.id2topic = \{i: topic for i, topic in \}
37
                  enumerate(unique topics)}
38
           self.num labels = len(self.topic2id)
39
           if self.num labels < 2:
40
               raise ValueError ("At least 2 classes required for
41
                      classification")
42
           self.data['label'] =
43
                  self.data['topic'].map(self.topic2id)
      def load model (self):
           self.tokenizer =
46
                  AutoTokenizer.from pretrained(self.model name)
           self.model =
47
                  AutoModelForSequenceClassification.from pretrained (
```

```
self.model_name,
48
              num labels=self.num labels,
49
              problem_type="single_label_classification",
50
              ignore mismatched sizes=True
51
          ).to(self.device)
52
53
      54
          dataset = Dataset.from_pandas(df[['text', 'label']])
56
          def tokenize function (examples):
57
               return self.tokenizer(
58
                   examples ["text"],
59
                   padding="max length",
                   truncation=True,
61
                   max length=self.maximum sequence length
62
               )
63
          return dataset.map(tokenize function, batched=True)
66
      def __compute_metrics__(self, eval_pred) -> Dict[str, float]:
67
          accuracy metric = evaluate.load("accuracy")
68
          logits, labels = eval pred
          predictions = np.argmax(logits, axis = -1)
70
71
          metrics = {
72
              "accuracy":
73
                      accuracy metric.compute(predictions=predictions,
                      references=labels) ["accuracy"],
              "fl micro": fl score(labels, predictions,
74
                      average="micro"),
              "fl macro": fl score(labels, predictions,
75
                      average="macro"),
              "fl weighted": fl score(labels, predictions,
76
                      average="weighted"),
          }
          try:
               if logits.shape[1] == 2:
80
                   metrics ["roc_auc"] = roc_auc_score(labels,
81
                          logits [:, 1])
               else:
82
```

```
metrics ["roc_auc"] = roc_auc_score(
83
                         labels, logits, multi class="ovo",
84
                                average="macro"
                    )
85
           except ValueError:
86
                metrics ["roc_auc"] = float ("nan")
           return metrics
       def print final metrics (self):
91
            if not self.evaluation_results:
92
                raise ValueError("Model not evaluated yet. Call
93
                       train model() first")
94
           print("\n" + "="*50)
95
           print("Final Model Evaluation Metrics:")
96
           print("-"*50)
           for metric, value in self.evaluation results.items():
                if metric not in ["eval loss", "epoch"]:
99
                    print(f"{metric.upper():<15}: {value:.4f}")</pre>
100
            print("="*50 + "\n")
101
       def train model (self):
103
            self.__prepare_data__()
104
            train df, val df = train test split
105
                self.data,
                test size = 0.2,
                random state=42,
108
                stratify=self.data['topic']
109
           )
            self. load model ()
113
           train_dataset = self.__tokenize_data__(train_df)
114
           val_dataset = self.__tokenize_data__(val_df)
           training args = TrainingArguments (
117
                output dir=self.output dir,
118
                eval strategy="epoch",
119
                save_strategy="epoch",
120
                learning rate=2e-5,
```

```
lr_scheduler_type="linear",
                warmup steps=100,
                per device train batch size=32,
124
                per device eval batch size=32,
                num train epochs=10,
126
                weight decay = 0.01,
                load\_best\_model\_at\_end{=}True\;,
                metric_for_best_model="accuracy",
                logging_dir='./logs',
130
                \log ging steps = 10,
                report_to="none",
                save_total_limit=1
            )
134
135
            self.trainer = Trainer (
136
                model = self.model,
                args=training args,
                train_dataset=train_dataset,
                eval_dataset=val_dataset,
140
                compute_metrics=self.__compute_metrics__,
141
                callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
142
            )
143
            self.trainer.train()
145
146
            self.evaluation results = self.trainer.evaluate()
            self.__print_final_metrics__()
149
            self.model.save pretrained (self.output dir)
150
            self.tokenizer.save_pretrained(self.output_dir)
151
152
           with open(f"{self.output dir}/id2topic.json", "w") as f:
                json.dump({str(k): v for k, v in})
154
                        self.id2topic.items()}, f)
155
       def load_trained_model(self, model_path: str):
156
            self.tokenizer =
157
                   AutoTokenizer.from pretrained (model path)
            self.model =
158
                   AutoModelForSequenceClassification . from _ pretrained ( model _ p
```

159

```
with open(f"{model_path}/id2topic.json", "r") as f:
160
                 self.id2topic = \{int(k): v for k, v in \}
161
                        json.load(f).items()}
162
       def predict(self, text: str) -> str:
163
            self.model.eval()
164
            inputs = self.tokenizer(
                 text,
                 return tensors="pt",
167
                 truncation=True,
168
                 \max_{\text{length}} = self. \max_{\text{sequence}} length
169
            ).to(self.device)
170
171
            with torch.no_grad():
172
                 logits = self.model(**inputs).logits
174
            predicted id = torch.argmax(logits, dim=-1).item()
            return self.id2topic[predicted_id]
```

Листинг 37: Полный код обучения модели классификатора