

DATA STRUCTURES AND ALGORITHMS

ALGORITHM DESIGN TECHNIQUES

issntt@nus.edu.sg

Problem

A child is **going up** a **staircase** with *n* **steps**, and **can hop** either **1** step, **2** steps, or **3 steps** at a time. Implement a program to count **how many possible ways** the child can go up the stairs.

Example

Input. 3

Output. 4 (111, 12, 21, 3)

Image by <u>Pexels</u> from <u>Pixabay</u>

What have we learnt so far?

Are there any other **tools** that help us **solve** even **more problems**?

Algorithm Design Techniques

The following techniques can solve many problems

- Greedy
- Brute Force
- Dynamic Programming
- Divide and Conquer

Image by mohamed Hassan from Pixabay

Proven methods or **processes** for designing and constructing algorithms

Outline

- Greedy Algorithms
 - Problem Money Change
 - Greedy Techniques
 - Problem Classroom Scheduling
- Time Efficiency of Recursive Methods
- Dynamic Programming

Money Change Problem

NUS National University of Singapore

- In Singapore, assume the available notes/coins are \$1, \$2, \$5, \$10, \$50
- Given N (integer)
 dollars in Singapore
- What is the minimum number of notes/coins to make N dollars of change?

Image credit to changiairport.com

How do want to make change for **\$\$7**?

Which option has less number of notes / coins?

How about **\$\$13**?

Nuls National University of Singapore

How about **\$27**?

From these observations, what should we choose to make minimum number of notes/coins?

Idea

For example, **\$\$63**

Next largest possible

S\$13

S\$3

S\$1

S\$0

Keep changing denominations **from high to low** value, **until** there is **no more** amount to change

```
static int MinChange(int amount) {
   int[] DENOS = { 1, 2, 5, 10, 20, 50, 100 };
   int res = 0;
   // Traverse through all denomination
   for (int i = DENOS.Length - 1; i >= 0; i--) {
      // Making change
      while (amount >= DENOS[i]) {
         amount -= DENOS[i];
         res++;
   return res;
                                          Worst case O(n/100) \sim O(n)
```

Outline

- Greedy Algorithms
 - Problem Money Change
 - Greedy Techniques
 - Problem Classroom Scheduling
- Time Efficiency of Recursive Methods
- Dynamic Programming

Greedy Techniques

- Because the previous uses a greedy technique, it's called greedy algorithm
- A greedy algorithm works in phrase. At each phrase
 - Take the best we can right now, without regard for future consequences
 - So, hope that choosing local
 optimum at each phrase
 will end up global optimum

Image by kirillslov from Pixabay

Does it really work?

Is there any other solution that is more optimum?

For Singapore money, it's proven that the greedy technique always gives optimum solutions

But for **some other problems**, greedy
techniques do **not always**give **optimum solutions**

A Failure Case

In India, assume available notes/coins are 1, 5, 10, 20, 25, 50 Rupees. What is the optimum change for 40 Rupees?

Greedy Algorithm

1 x 25 1 x 15

1 x 5

3 notes/coins

Optimum solution

2 x 20

2 notes/coins

So, is Greedy Technique useless?

Not At All!

Outline

- Greedy Algorithms
 - Problem Money Change
 - Greedy Techniques
 - Problem Classroom Scheduling (Self Study)
- Time Efficiency of Recursive Methods
- Dynamic Programming

Classroom Scheduling Problem

Self study

Suppose we have **one classroom** and want to hold **as many classes** there **as possible**

Class	Start	End
SQL	9:00	10:00
OOPCS	9:30	11:30
Design	10:00	12:00
Data Structures	10:30	11:30
FOPCS	11:30	12:30

Can we pick all of the classes?

The Scheduling Problem

Self study

We can't, because some of them overlap

A greedy idea

Self study

Pick the **next class** that **starts** the **soonest**

Class	Start	End	Picked?
SQL	9:00	10:00	Yes
OOP	9:30	11:30	No
Design	10:00	12:00	Yes
Algorithm	10:30	11:30	No
FOP	11:30	12:30	No

Is it the optimal solution? Why or why not?

A class may take too long

Sometimes, we need to try a different options for the correct greedy criterion

A greedy idea

Self study

Pick the **next class** that **ends** the **soonest**

Class	Start	End	Picked?
SQL	9:00	10:00	Yes
OOP	9:30	11:30	No
Design	10:00	12:00	No
Algorithm	10:30	11:30	Yes
FOP	11:30	12:30	Yes

Is there any case that this tactic fail?

No, it is proven that for this problem, this local optimum leads to global optimum

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
 - A review of Recursive Methods
 - Problem Calculating Sum
 - Time efficiency of Recursive Methods
 - Problem Calculating Fibonacci Number
- Dynamic Programming

A review of Recursive Methods

A recursion is a technique **simplifying** a complicated **problem** by **breaking** it **down** into simpler sub-problems

```
static int Pow(int x, int exp)
{
    if (exp == 0)
    {
        return 1;
    }
    else
    {
        return x * Pow(x, exp - 1);
    }
}
```

A review of Recursive Methods

A recursive method performs a task by **calling itself** to **perform** some **subtasks** (recursive case)

```
static int Pow(int n, int exp)
{
    if (exp == 0)
    {
        return 1;
    }
    else
    {
        return n * Pow(n, exp - 1);
    }
}
```

A review of Recursive Methods

At some point, the method encounters a **subtask** that can **perform without calling itself** (base case)

```
static int Pow(int n, int exp)
{
    if (exp == 0)
    {
       return 1;
    }
    else
    {
       return n * Pow(n, exp - 1);
    }
}
```


Can we call more than one sub-tasks?

Can we have more than one base-cases?

```
static int Pow(int x, int exp)
{
    if (exp == 0)
    {
        return 1;
    }
    else
    {
        return x * Pow(x, exp - 1);
    }
}
```


A Learning Tip

Computers can always solve sub-problems automatically

Given that, can we

- 1. Solve the whole problem? And
- 2. Find base cases and solve them?

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
 - A review of Recursive Methods
 - Problem Calculating Sum
 - Time efficiency of Recursive Methods
 - Problem Calculating Fibonacci Number
- Dynamic Programming

Problem – Calculating Sum

Given an **array** of **integers**, write a method to **calculate** and return the **sum** of all elements

Sample Input: 3, 5, 1, 2, 2, 4, 1, 8

Sample Output: 26

Thinking 1

Providing that the sub-problem "calculate and return the sum of all elements **excluding the last**" has been solved

- 1. Can we calculate and return the sum of all elements?
- 2. What is/are the base case(s)?

3, **5**, **1**, **2**, **2**, **4**, **1**, 8

Implementing Linear Sum Left

Keep a variable *toWhere*, indicating the **last index to include**

```
static int LinearSumLeft(int[] arr, int toWhere)
{
  if (toWhere == 0)
     return arr[0];
  return LinearSumLeft(arr, toWhere - 1)
                                   + arr[toWhere];
static int LinearSum A(int[] arr)
{
  return LinearSumLeft(arr, arr.Length - 1);
```

Thinking 2

Self study

Providing that the sub-problem "calculate and return the sum of all elements **excluding the first**" has been solved

- 1. Can we calculate and return the sum of all elements?
- 2. What is/are the base case(s)?
 - 3, **5, 1, 2, 2, 4, 1, 8**

Implementing Linear Sum Right

Self study

Keep a variable *fromWhere*, indicating the **first index to include**

```
static int LinearSumRight(int[] arr, int fromWhere)
{
  if (fromWhere == arr.Length - 1)
     return arr[arr.Length - 1];
  return arr[fromWhere] +
          LinearSumRight(arr, fromWhere + 1);
static int LinearSumRight(int[] arr)
{
  return LinearSumRight(arr, 0);
```

Thinking 3

Self study

Providing that the sum for the following 2 subproblems have been solved:

- "All elements in the first half", and
- "All elements in the second half"
- 1. Can we calculate and return the sum of all elements?
- 2. What is/are the base case(s)?

3, 5, 1, 2

2, 4, 1, 8

Implementing Binary Sum

Self study

Keep a variable *fromWhere* and *toWhere*, indicating the first and last index to include

```
static int BinarySum(int[] arr,
              int fromWhere, int toWhere) {
  if (fromWhere > toWhere) return 0;
  if (fromWhere == toWhere) return arr[fromWhere];
  int middleIndex = (fromWhere + toWhere) / 2;
  return BinarySum(arr, fromWhere, middleIndex) +
           BinarySum(arr, middleIndex + 1, toWhere);
static int BinarySum(int[] arr)
{
  return BinarySum(arr, 0, arr.Length - 1);
```

Next

How can we analyze a recursive method to see if it runs fast enough?

Image by <u>Thomas Wolter</u> from <u>Pixabay</u>

Btw, how can we analyze a **non-recursive method**?

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
 - A review of Recursive Methods
 - Problem Calculating Sum
 - Time efficiency of Recursive Methods
 - Time efficiency of Recursive Fibonacci Numbers
- Dynamic Programming

When array length is 1, we need 1 basic operation

```
LinearSumLeft(arr, 5)
       LinearSumLeft(arr, 4)
             LinearSumLeft(arr, 3)
                    LinearSumLeft(arr, 2)
                          LinearSumLeft(arr, 1)
                              LinearSumLeft(arr, 0)
static int LinearSumLeft(...) {
  if (toWhere == 0)
     return arr[0];
```


When array length is 2, we need 1 + 1 basic operations

```
LinearSumLeft(arr, 5)
      LinearSumLeft(arr, 4)
            LinearSumLeft(arr, 3)
                  LinearSumLeft(arr, 2)
                      LinearSumLeft(arr, 1)
```

LinearSumLeft(arr, 0)

When array length is 3, we need 1 + 1 + 1 basic operations

```
LinearSumLeft(arr, 5)
      LinearSumLeft(arr, 4)
           LinearSumLeft(arr, 3)
               LinearSumLeft(arr, 2)
                     LinearSumLeft(arr, 1)
                          LinearSumLeft(arr, 0)
```


When array length is n, we need $1 + 1 + 1 \dots + 1$ (n times) basic operations

```
LinearSumLeft(arr, 5)
       LinearSumLeft(arr, 4)
            LinearSumLeft(arr, 3)
                   LinearSumLeft(arr, 2)
                       LinearSumLeft(arr, 1)
                             LinearSumLeft(arr, 0)
```

Time complexity: O(n)

Self study

When array length is 1, we need 1 basic operation


```
if (fromWhere == toWhere)
    return arr[fromWhere];
```

Note: 0,0 is short for BinarySum(arr, 0, 0)

Self study

When array length is 2, we need 2x1 + 1x2 basic operations

Self study

When array length is 4, we need 4x1 + (2+1)x2 basic operations

Counting is based on every level in the tree

Self study

When array length is 8, we need 8x1 + (4+2+1)x2 basic operations

Self study

When array length is n, we need nx1 + (n-1)x2 basic operations

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
 - A review of Recursive Methods
 - Problem Calculating Sum
 - Time efficiency of Recursive Methods
 - Time efficiency of Recursive Fibonacci Numbers
- Dynamic Programming

Recursive Fibonacci Numbers

Recursive methods can be used to calculate Fibonacci numbers

```
static int Fib(int n) // n > 0
{
   if (n == 1) return 1;
   if (n == 2) return 1;

   return Fib(n - 1) + Fib(n - 2);
}
```


What is the time efficiency of this implementation?

When n is 1 or 2, we need 1 basic operation, t(1) = t(2) = 1

When n is 3, we need 1 + 1 + 1 basic operations,

return Fib(n - 1) + Fib(n - 2);

When n is 4, we need 1 + (1 + 2) + 1 basic operations

Observation: $t(4) = 1 + (1 + 2) + 1 = 1 + F_3 + F_2 = 1 + F_4 > F_4$ where F_4 is Fibonacci number 4

When n is 5, we need 1 + (1 + (1 + 2) + 1) + (1 + 2) basic operations

Observation: $t(5) = 1 + (1 + (1 + 2) + 1) + (1 + 2) = 1 + F_5 > F_5$

- For $n \ge 2$, $t(n) = 1 + F_n > F_n$ basic operations
- It is proven that

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

And conclude that time complexity for calculate F_n recursively increases exponentially as n increases t(n) ~ O(1.618ⁿ)

You don't need to know all the details, which include several math. If interested, read Recurrence Relation

Self study

Roughly, how long does it take to calculate F_{100} ?

Assume that our fast PC can do **100** millions (100x10⁶) basic operations per second

Image by Peter Fischer from Pixabay

No of basic operations:

 $\sim 1.618^{100} = 790 \times 10^{18}$

No of seconds:

 $\sim (790 \times 10^{18})/(100 \times 10^6) = 7.9 \times 10^{12}$

No of years:

 $\sim (7.9x10^{12})/(3.156x10^7) = 2.5x10^5$

Question

In some cases, when recursions are used, time complexity tends to be very slow Can our solution still **keep** the recursions but perform better?

Image by jacqueline macou from Pixabay

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
- Dynamic Programming
 - Problem Recursive Fibonacci Numbers revisit
 - Problem Different Ways of Sum
 - Problem Money Change revisit

Why is it so BAD?

remove them?

Dynamic Programming

Dynamic Programming is mainly an optimization over a plain recursion by caching the results of subproblems

Dynamic Programming = Recursion + Memorization (caching)

When it takes us so long to work on a solution, do remember its answer for the subsequent efforts

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
- Dynamic Programming
 - Problem Recursive Fibonacci Numbers revisit
 - Problem Different Ways of Sum
 - Problem Money Change revisit

Store the results and try retrieving before computing

```
static int Fib(int n) // n > 0
{
  // 1. Try retrieving res from memo
  if (value Fib n is available in memo)
     return Fib n
  // 2. Compute res
  if (n == 1) res = 1;
  else if (n == 2) res = 1;
  else res = Fib (n - 1) + Fib(n - 2);
  // 3. Store the res to memo
                                          What data
                                          structure is
  // 4. Return the res
                                          appropriate
  return res
                                          for memo?
```


Following is an implementation using **Dictionaries** (**Hash Tables** inside) for **memorization**

```
static long Fib_DP1(long n, Dictionary<long, long> memo) {
   if (memo.ContainsKey(n))
     return memo[n];
   long res;
   if (n == 1)
     res = 1;
   else if (n == 2)
      res = 1;
  else
      res = Fib DP1(n - 1, memo)
            + Fib DP1(n - 2, memo);
                                          Why is memo
                                          declared in the
  memo.Add(n, res);
                                          parameter list and
   return res;
                                          not in method body?
```


To use the method, create an empty Dictionary and use it as a parameter

```
static void Main()
{
  Console.WriteLine(Fib DP1(40));
  Console.WriteLine(Fib_DP1(50));
}
public static long Fib DP1(long n)
 Dictionary<long, long> memo =
              new Dictionary<long, long>();
  return Fib_DP1(n, memo);
```

102334155 12586269025

Alternatively, using **direct addressing** to implement **memorization**. Faster? (in fact, not much!)

```
static long Fib_DP2(long n, long[] memo) {
   if (memo[n-1] > 0)
      return memo[n-1];
   long res;
   if (n == 1)
      res = 1;
   else if (n == 2)
      res = 1;
   else
      res = Fib DP2(n - 1, memo)
            + Fib DP2(n - 2, memo);
                                        Compared to Dictionary,
  memo[n-1] = res;
                                        which implementation
   return res;
                                        has better readability?
```

DP for Fibonacci Numbers

To use the method, create an empty array whose length equals to the Fibonacci number to calculate

```
static void Main()
{
   Console.WriteLine(Fib_DP2(40));
   Console.WriteLine(Fib_DP2(50));
}

public static long Fib_DP2(long n)
{
   long[] memo = new long[n];
   return Fib_DP2(n, memo);
}
```

102334155 12586269025

Time Complexity

Now **every** Fibonacci **number** F_n is **calculated** exactly **only one time**

Time Complexity

Time complexity is t(n)=2n-3, which is O(n)

E.g., t(7) = 1(root) + 9(left sub-tree) + 1(right left-node) = 11

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
- Dynamic Programming
 - Problem Recursive Fibonacci Numbers revisit
 - Problem Different Ways of Sum (Self Study)
 - Problem Money Change revisit

Problem: Different Ways of Sum

Self study

Given n, find the **number** of **different ways** to write n as the **sum of 1, 3 and 4**

Input: n = 4

Output: 4

Explanation:

$$4 = 1 + 1 + 1 + 1$$

= 1 + 3
= 3 + 1
= 4

Problem: Different Ways of Sum

Self study

Given n, find the **number** of **different ways** to write n as the **sum of 1, 3 and 4**

Input: n = 6

Output: 9

Explanation:

$$6 = 1 + 1 + 1 + 1 + 1 + 1$$

 $= 1 + 1 + 1 + 3$
 $= 1 + 1 + 3 + 1$
 $= 1 + 1 + 4$
 $= 1 + 3 + 1 + 1$
 $= 1 + 4 + 1$
 $= 3 + 1 + 1 + 1$
 $= 3 + 3$
 $= 4 + 1 + 1$

Thinking

Self study

Let's consider n = 6

The sub-problem "find number of different ways to write (6 - 1) as the sum of 1, 3, 4" has been solved

Can we calculate the result for 6?

$$6 = 1 + 1 + 1 + 1 + 1 + 1$$

$$= 1 + 1 + 1 + 3$$

$$= 1 + 1 + 3 + 1$$

$$= 1 + 1 + 4$$

$$= 1 + 3 + 1 + 1$$

$$= 1 + 4 + 1$$

$$= 3 + 1 + 1 + 1$$

$$= 3 + 3$$

$$= 4 + 1 + 1$$

Where is the result of **(6-1)** in this picture?

Thinking

Self study

Let's consider n = 6

The sub-problem "find number of different ways to write (6 - 1) as the sum of 1, 3, 4" has been solved, and

The sub-problem "find number of different ways to write (6 - 3) as the sum of 1, 3, 4" has been solved

Can we calculate the result for 6?

$$6 = 1 + 1 + 1 + 1 + 1 + 1$$

 $= 1 + 1 + 1 + 3$
 $= 1 + 1 + 3 + 1$
 $= 1 + 1 + 4$
 $= 1 + 3 + 1 + 1$
 $= 1 + 4 + 1$
 $= 3 + 1 + 1 + 1$
 $= 3 + 3$
 $= 4 + 1 + 1$

Where is the result of (6-3) in this picture?

Different Ways of Sum

Self study

- Let D_n be the number of ways to write n as the sum of 1, 3, 4
- Consider one possible solution

$$n = X_1 + X_2 + X_3 \dots + X_m$$

$$X_1 = 1$$

- The rest must sum
 to *n* 1
- Thus, the number of sums that start with $x_1 = 1$ is equal to D_{n-1}

Similar for $x_1 = 3$

- The rest must sum
 to *n* 3
- The number of sums that start with $x_1 = 3$ is equal to D_{n-3}

Similar for $x_1 = 4$

- The rest must sum
 to *n* 4
- The number of sums that start with $x_1 = 4$ is equal to D_{n-4}

If we can define a problem as some sub-problems, we can use recursions

Different Ways of Sum

Self study

Recurrence case:

$$D_n = D_{n-1} + D_{n-3} + D_{n-4}$$

- Base cases: we need D_1 ,

$$D_2$$
, D_3 , D_4 , D_5 . Why?

•
$$D_1 = 1$$

•
$$D_2 = 1$$

•
$$D_3 = 2$$

•
$$D_{\Delta} = 4$$

•
$$D_5 = 6$$

Any alternatives?

If we can define a problem as some sub-problems, we can use recursions

Different Ways of Sum

Self study

The implementation, once again, includes base cases and recursive cases

```
public static int WaysOfSum(int n)
{
   if (n == 1 || n == 2)
      return 1;
   if (n == 3)
      return 2;
   if (n == 4)
      return 4;
   if (n == 5)
      return 6;
   return WaysOfSum(n - 1) +
      WaysOfSum(n - 3) + WaysOfSum(n - 4);
```

Can we do better?

DP for Different Ways of Sum


```
public static long WaysOfSum2(
                    long n, Dictionary<long, long> memo) {
   if (memo.ContainsKey(n))
      return memo[n];
   long res;
   if (n == 1 | | n == 2)
     res = 1;
   else if (n == 3)
      res = 2;
   else if (n == 4)
      res = 4;
   else if (n == 5)
      res = 6;
   else res = WaysOfSum2(n - 1, memo) +
         WaysOfSum2(n - 3, memo) + WaysOfSum2(n - 4, memo);
   memo.Add(n, res);
   return res;
```

Outline

- Greedy Algorithms
- Time efficiency of Recursive Methods
- Dynamic Programming
 - Problem Recursive Fibonacci Numbers revisit
 - Problem Different Ways of Sum
 - Problem Money Change revisit (Self-Study)

Problem: Money Change revisit

Self study

In India, assume available notes/coins are 1, 5, 10, 20, 25, 50 Rupees. What is the optimum change for 40 Rupees?

Greedy Algorithm

1 x 25

1 x 15

1 x 5

3 notes/coins

Optimum solution

2 x 20

2 notes/coins

How can we reach the real optimum solution?

A "Stupid" Idea

Self study

Examine all possible options of changing 40 Rupees and **pick the best**

In programming, many excellent solutions start from such "stupid" ideas that consider all possibilities, called Brute-Force

Question

Self study

Let *MinChange(amount)* be the **optimal change** of a given amount. Can we define it by any sub-problems?

Hint: what is the MinChange(40)? How about MinChange(40-25)?

$$40 = 1 \times 25, 1 \times 10, 1 \times 5$$
 (3)

$$= 1 \times 25, 1 \times 10, 5 \times 1 (7)$$

$$= 1 \times 20, 1 \times 20 (2)$$

$$= 1 \times 20, 1 \times 10, 1 \times 10 (3)$$

$$= 1 \times 20, 1 \times 10, 2 \times 5 (4)$$

$$= 1 \times 20, 4 \times 5 (5)$$

If we can define a problem as some sub-problems, we can use recursions

Define sub-problems

Self study

If the optimal includes first change of	Then MinChange
25	MinChange(40) = 1 + MinChange(40 - 25)
20	MinChange(40) = 1 + MinChange(40 - 20)
10	MinChange(40) = 1 + MinChange(40 - 10)
5	MinChange(40) = 1 + MinChange(40 - 5)
1	MinChange(40) = 1 + MinChange(40 - 1)

Finally, the real optimal MinChange (40) must be the minimum of above

Define sub-problems

Self study

MinChange(n-50)

MinChange(n-25)

MinChange(n-20)

MinChange(n-10)

MinChange(n-5)

MinChange(n-1)

What should be our base cases?

An implementation


```
public static long MinChange(long amount) {
  long min;
  if (amount >= 50) {
     List<long> alls = new List<long> {
        MinChange(amount - 50), MinChange(amount - 25),
        MinChange(amount - 20), MinChange(amount - 10),
        MinChange(amount - 5), MinChange(amount - 1)
     };
     min = alls.Min();
  else if (amount >= 25) {
     List<long> alls = new List<long> {
        MinChange(amount - 25), MinChange(amount - 20),
        MinChange(amount - 10), MinChange(amount - 5),
        MinChange(amount - 1)
     };
     min = alls.Min();
  else if (amount >= 1) {
     min = MinChange(amount - 1);
  else return 0;
                                                    Can you make the
  return 1 + min;
                                                    code more concise?
```

Can we do better?

Self study

For large amount, we solve 6 recursive problems

1 problem becomes 6 subproblems, each of which will subsequently become 6 subproblems...

Can we do better?

Self study

But many calculations are duplicate ©

DP for Money Change Problem


```
public static long MinChange(long amount, Dictionary<long, long> memo) {
  if (memo.ContainsKey(amount)) return memo[amount];
  long min;
  if (amount >= 50) {
     List<long> alls = new List<long> {
        MinChange(amount - 50, memo), MinChange(amount - 25, memo),
        MinChange(amount - 20, memo), MinChange(amount - 10, memo),
        MinChange(amount - 5, memo), MinChange(amount - 1, memo)
     };
     min = alls.Min();
  else if (amount >= 25) {
  else if (amount >= 1) {
     min = MinChange(amount - 1, memo);
  else return 0;
                                     Time complexity: t(n)=O(6N)=O(N),
  memo.Add(amount, 1 + min);
                                     where 6 is the number of different
  return 1 + min;
                                     kinds of coins
```

Question

Do you remember recursive Factorial?

Can we use DP for it?

If there's **no duplicate computations**, **memorization** is **useless**!

Readings

- Data structures and abstractions with Java, 4ed –
 Chapter 7, Recursion, section 7.22 7.27, 7.37 7.41,
 Frank M.Carrano and Timothy M. Henry
- Data structures and algorithms using C# Chapter 17,
 Advanced Algorithms, by Michael McMillan (2007)