- 1. (20pt) Using the $c-n_0$ definitions of the asymptotic notations to answer the following questions:
 - (a) Let f(n) = 2n, is f(n) = O(n)? Why or why not?
 - (b) Let f(n) = 2n, is $f(n) = \Omega(n)$? Why or why not?
 - (c) Let f(n) = 2n, is $f(n) = \Theta(n)$? Why or why not?
 - (d) Let f(n) = 2n, is f(n) = o(n)? Why or why not?
 - (e) Let g(n) = n, is $g(n) = O(n^2)$? Why or why not?
 - (f) Let g(n) = n, is g(n) = o(n)? Why or why not?

Answer:

- (a) f(n) = O(g(n)) = O(n) is true. Use c = 2 and $n_0 = 1$
- (b) $f(n) = \Omega(g(n)) = \Omega(n)$ is true. Use c = 1 and $n_0 = 1$.
- (c) $f(n) = \theta(g(n)) = \theta(n)$ is true. From (a) and (b), this is obvious.
- (d) f(n) = o(g(n)) = o(n) is false. If f = o(g), then for every c > 0, we will need to find an n_0 such that for all $n >= n_0$, f < cg. Observe that if c = 1, f > cg for any n_0 . Thus f is NOT o(g).
- (e) true. Use c = 2 and $n_0 = 1$.
- (f) False.

Observe that if c = 0.5, f > cg for any n_0 . Thus f is NOT o(g).

2. (20pt) Sort the following functions based on their asymptotic growth rate with brief explanations. $f(n) = 10^{-10}, \ g(n) = 10^{10}, \ n^2, \ (\log_2 n)^2, \ 2^n, \ 3^n, \ n \log_2 n, \ \log_2 n, \ \log_3 n, \ 2^{\log_2 n}, \ (\sqrt{2})^{\log_2 n}, \ (\log_2 n)^{\log_2 n}, \ n^{\log_2 n}, \ n^{\log_2 n}, \ \sqrt{n}, \ \log_2 \sqrt{n}, \ \log_2 (\log_2 n), \ n^n (1 + (-1)^n).$

Answer: here, $n^n(1 + (-1)^n)$ oscillating function and can't be quantified using asymptotic notations.

- f(n) = 10^{-10} , g(n) = 10^{10}
- $\log_2(\log_2 n)$
- $\log_3 n$, $\log_2 \sqrt{n}$, $\log_2 n$
- $(\log_2 n)^2$

$$\sqrt{n}, (\sqrt{2}^{\log_2 n})$$

$$2^{\log_2 n}$$

$$n \log_2 n$$

$$\log_2 n^{\log_2 n} = (2^{\log_2 \log_2 n})^{\log_2 n} = 2^{(\log_2 \log_2 n)(\log_2 n)}$$

$$n^{\log_2 n} = 2^{(\log_2 n)^2}$$

$$2^n$$

$$3^n$$

- (10pt) Consider a special type of tree data structure called the Short Tree, which is defined as follows.
 - Each leaf node of a Short Tree is associated with a distinct key, i.e., no two nodes of the tree have the same key.
 - Each non-leaf node of a Short Tree is associated with a pair of keys, v_{min} and v_{max}, indicating
 the smallest key v_{min} and the largest key v_{max} in its sub-tree.
 - Let v be an aibitrary node of a Short Tree. Let m be the total number of leaf nodes in the sub-tree rooted at v. For ease of explanation, let the keys be {k₀ < k₁ < k₂ < ... < k_{m-1}}. Then v has Θ(√m) children. Let the children be indexed 0, 1, ..., √m − 1, then the j−th child is responsible for storing the keys within the range {k_{j√m}, ..., k_{(j+1)√m-1}}, and has a min of k_{j√m} and a max of k_{(j+1)√m-1}. Note that the above definition is applied recursively to the children of v.

Answer the following questions:

- (a) Let the keys of a particular Short Tree be 0, 1, 2, ..., 255. What is the height of the tree?
- (b) What is the assmptotic height of a Short Tree with a total of n keys {0, 1, ..., n − 1}?

Answer:

$$\Rightarrow \log_2 n = 2^k$$

$$\Rightarrow$$
 k = log₂log₂n

We get the recurrence relation,

$$T(n) = T(\sqrt{n}) + 1$$

$$= \mathsf{T}(\sqrt{2^{2^k}}) + 1$$

$$=T(2^{2^{k-1}})+1$$

$$=T(2^{2^{k-2}})+2$$

$$= \mathsf{T}(2^{2^{k-k}}) + \mathsf{k}$$

$$= T(2) + k$$

$$= 1 + \log_2 \log_2 n$$

- (a) Height of the tree = $1 + \log_2 \log_2(256) = 1 + 3 = 4$
- (b) Asysmptotic Height of the tree = log_2log_2n
- 4. (10pt) In computational geometry, an arrangement of lines is the partition of the plane formed by a collection of lines. Observe that the lines partition the plane into disjoint regions. Calculate the maximum number of disjoint regions in an arrangement created by n lines.

Answer:

So, the maximum number of disjoint regions created by n lines = 1 + n(n+1)/2

5. (10pt) Use the recursion tree method to determine a good upper bound on the recurrence

$$T(n) = 3T\left(\lceil\frac{n}{2}\rceil\right) + n$$

Answer:

At kth level n = 1, Then $n/2^k = 1$, $k = log_2 n$.

From the tree, we get

$$n + 3/2 n + (3/2)^{2} n + (3/2)^{3} n + (3/2)^{4} n + \dots + (3/2)^{k} n$$

$$= n \{ 1 + 3/2 + (3/2)^{2} + (3/2)^{3} + (3/2)^{4} + \dots + (3/2)^{k} \}$$

$$= n \{ ((3/2)^{k} - 1) / (3/2 - 1) \}$$

$$= n \{ ((3/2)^{k} - 1) / (1/2) \}$$

$$= 2n \{ (3/2)^{\log_{2} n} - 1 \}$$

$$= (3/2)^{\log_{2} n} \cdot 2n - 2n$$

$$= (3^{\log_{2} n} / 2^{\log_{2} n}) 2n - 2n$$

$$= (3^{\log_{2} n} / n) 2n - 2n$$

$$= (n^{\log_{2} n} / n) 2n - 2n$$

Then,
$$T(n) = O(n^{\log_2 3})$$

6. (10pt) Use the guess and substitution method to prove that the T(n) in the following recurrence relation is O(n).

$$\begin{cases} T(n) = T(\frac{n}{2}) + n & \text{for } n \ge 2 \\ T(1) = 1 \end{cases}$$

Answer:

Guess: Suppose we guess the solution to be, T(n) = O(n). This means there exists a positive constant c, such that $T(n) \le cn$ for all n sufficiently large (i.e for some positive constant $n_0 \ge cn$)

Basis:

For n = 2
$$T(2) = T(2/2) + 2 = T(1) + 2 = 1 + 2 = 3 \le c.2, \text{ as long as } c \ge 2$$

Induction Hypothesis:

Assume for
$$2 \le k < n$$

 $T(k) \le ck$ is true

Induction Step:

$$T(n) = T(n/2) + n$$

 $\leq [c.n/2] + n$
 $\leq c. n/2 + n$
 $\leq n (c/2 + 1)$

For $c \ge 2$, $c/2 + 1 \le c$

Then, we can write $T(n) \le n$ (c/2 + 1) $\le cn$ is true for $c \ge 2$ Therefore, T(n) = O(n)