Protokoll

Isentropenindex Physikalisches Grundpraktikum

Free University Berlin

Christoph Haaf - christoph.haaf@fu-berlin.de Zacharias V. Fisches - zacharias.vf@gmail.com Tutor: Dr. Stefan Mebs

2.12.2014

Inhaltsverzeichnis

1	Physikalischer Hintergrund
	Wärmekapazität
	Adiabengleichung
	Kappa & Freiheitsgrade
	Clemens-Desormes Methode
2	Aufgaben
	Aufgabe 1
	Aufgabe 2
3	Geräteliste
4	Nennfehler und Literaturwerte
5	Messprotokoll
J	- Incorporation -
6	Auswertung
	6.1 Aufgabe 1
	Fehlerbetrachtung
	6.2 Aufgabe 2
7	Fazit

1 Physikalischer Hintergrund

Wärmekapazität

Die Wärmekapazität eines Körpers ist definiert als die Wärmemenge Q, die der Körper bei einer Temperaturänderung um ΔT aufnimmt oder abgibt:

$$C = \frac{Q}{\Delta T} \tag{1}$$

Diese Formel ist allerdings nur eine Durchschnittsgröße und die Wärmekapazität kann von der Temperatur abhängen, sodass im einzelnen ein Limes benutzt werden muss:

$$C(T) = \lim_{\Delta T \to 0} \frac{Q}{\Delta T}$$

Außerdem hängt die Energie Q im allgemeinen von Druck und Volumen ab, sodass man C_p und C_V als Wärmekapazität bei konstantem Druck bzw. konstantem Volumen definiert. Bezogen auf die Masse oder die Stoffmenge ergeben sich die spezifische Wärmekapazität:

$$c = \frac{C}{m}$$

und mit der Stoffmenge n die molare $W\"{a}rmekapazit\"{a}t$:

$$C_{mol} = \frac{C}{n}$$

Analog folgt c_p und c_V und wir definieren das Verhältnis als Adiabaten exponent:

$$\kappa = \frac{c_p}{c_V} \tag{2}$$

Adiabengleichung

Der erste Hauptsatz der Thermodynamik besagt, dass die einem System zugeführte Wärme δQ und Arbeit (hier: Volumenarbeit $dW=-p\cdot dV$) die Zunahme seiner inneren Energie dU ausmacht:

$$dU = \delta Q - p \cdot dV \tag{3}$$

Für einen adiabatischen Prozess ist $\delta Q = 0$ und für ein ideales Gas gilt $dU = C_V dT$ und die thermische Zustandsgleichung idealer Gase:

$$p \cdot V = n \cdot R_m \cdot T,\tag{4}$$

wobei n die Stoffmenge und R_m die molare Gaskonstante ist. Durch einsetzen erhält man:

$$\frac{1}{T}dT = -\frac{nR_m}{C_V}\frac{1}{V}dV$$

Aufintegration beider Seiten und einsetzen von $nR_m = C_p - C_V$ liefert sofort:

$$\ln T + \frac{C_p - C_V}{C_V} \ln V = const$$

und nach Einsetzen von κ :

$$\ln(TV^{\kappa-1}) = const$$

$$\Longrightarrow TV^{\kappa-1} = const$$

Nochmaliges verwenden von (3) liefert die Poisson Gleichung:

$$\frac{pV}{nR_m}V^{\kappa-1} = const$$

$$\implies pV^{\kappa} = const$$
(5)

Kappa & Freiheitsgrade

Aus dem Äquipartitionstheorem folgt, dass sich die Energie eines Gases gleich auf die Freiheitsgrade verteilt. Für ein einatomiges ideales Gas gilt daher:

$$E = \frac{1}{2}mv^2 = \frac{1}{2}m(v_x^2 + v_y^2 + v_z^2)$$

Es kommen also drei Freiheitsgrade pro Atom vor, daher ist die mittlere Energie je Atom:

$$\langle E \rangle = \frac{3}{2}k_BT$$

Daraus folgt nach Differentiation nach der Temperatur für ein Gas von N Teilchen: $C_V = \frac{3}{2}Nk_BT$ und allgemein pro mol:

$$c_V = \frac{f}{2} N_A k_B \tag{6}$$

Wir verwenden weiterhin $c_p - c_V = R$ und $R = N_A k_B$. Daraus folgt dann für κ :

$$\kappa = \frac{c_p}{c_V} = \frac{R + c_V}{c_V}$$

$$= \frac{\frac{f}{2}N_A k_B + N_A k_B}{\frac{f}{2}N_A k_B} = \frac{\frac{f}{2}N_A k_B + \frac{2}{2}N_A k_B}{\frac{f}{2}N_A k_B}$$

$$\iff \kappa = \frac{f + 2}{f}$$
(7)

Clemens-Desormes Methode

Die Methode dient der experimentellen Bestimmung von κ eines Gases. Die Idee ist, durch geschicktes Messen des Drucks eines Gases, die schwierige Messung von kleinen Tempera-

turänderungen vermeiden zu können. Adiabatisch und reversible Zustandsänderungen, d.h. solche, die thermisch isoliert und ohne Erzeugung von Entropie ablaufen werden durch die Poisson Gleichungen beschrieben:

$$p \cdot V^{\kappa} = const \tag{8}$$

$$p^{1-\kappa}T^{\kappa} = const \tag{9}$$

Bei der Methode von Clemens-Desormes wird praktisch ein mit Gas bei einem Druck $p_1 > p_A$ befüllter Behälter auf Zimmertemperatur ins thermische Gleichgewicht gebracht, wobei p_A der Umgebungsdruck ist. Danach wird der Druck durch Öffnen des Behälters schnell auf Außendruck p_A gebracht. Die Temperaturabsenkung wäre schwierig direkt zu messen, darum wird nun der Behälter verschlossen und das Gas bei gleichem Volumen (isochor wieder ins thermische Gleichgewicht gebracht.

2 Aufgaben

Aufgabe 1

Bestimmung des Verhältnisses der spezifischen Wärmen $\frac{c_p}{c_V} = \kappa$ für Luft nach der Methode von Clemens-Desormes.

Aufgabe 2

Bestimmung des Wertes κ für ein einatomiges (Argon), ein zweiatomiges (N_2) und ein dreiatomiges Gas (CO_2) durch Messung der Eigenfrequenzen eines Gasoszillators. Vergleich der Ergebnisse untereinander und mit den erwarteten Werten aus der kinetischen Gastheorie für ein ideales Gas.

3 Geräteliste

4 Nennfehler und Literaturwerte

5 Messprotokoll

Please see inserted page.

6 Auswertung

6.1 Aufgabe 1

Drei Höhen wurden im Druckmanometer der Apparatur gemessen. Zunächst wurde der Druck im Volumen der Apparatur erhöht und das Manometer im thermischen Gleichgewicht abgelesen (h_1) . Danach wurde das Druck schnell auf einen beliebigen Wert abgelassen und schnell abgelesen (h_2) . Nachdem sich das thermische Gleichgewicht wieder eingestellt hatte wurde h_3 abgelesen. zur Auswertung werden nur die relativen Höhen dh_1 und dh_3 benötigt.

Die erhaltenen Größen werden zur Auswertung in die Messgleichung zur Bestimmung von κ eingesetzt:

$$\kappa = \frac{dp_a}{dp_a + dp_i} \approx \frac{dh_1}{dh_1 - dh_3} \tag{10}$$

Dabei bezeichnet dh_i die relativen Messgrößen bezeichnet:

$$dh_1 = h_1 - h_2$$

$$dh_3 = h_3 - h_2$$

Durch bilden des mit den Fehlern gewichteten Mittelwertes der Messreihen ergibt sich κ zu:

$$\kappa = 1, 23 \pm 0, 02 \tag{11}$$

Fehlerbetrachtung

Wir schätzen Ablesefehler auf der Höhenskala ab mit:

$$\Delta h_1 = \Delta h_3 = 1mm$$

$$\Delta h_2 = 2mm$$

Somit ergeben sich die Fehler der relativen Höhen zu:

$$\Delta dh = \Delta dh_1 = \Delta dh_2 = \sqrt{(\Delta h_1)^2 + (\Delta h_2)^2}$$

Der Fehler der Messgleichung ergibt sich nach Gauß zu:

$$\Delta \kappa = \Delta dh \frac{\sqrt{dh_1^2 + dh_3^2}}{(dh_1 - dh_3)^2} \tag{12}$$

Der Fehler für Kappa wurde ebenfalls über die Messreihen gemittelt.

$$\Longrightarrow \Delta \kappa = 0, 2$$

6.2 Aufgabe 2

7 Fazit