Телекоммуникационные технологии

Отчет по лабораторной работе N_2 6

Тема:

«Дискретное косинусное преобразование»

Самсонова Сергея

Упражнение 6.1

Задание: Убедитесь в что analyzel требует времени пропорционально n^3 , а analyze2 - пропорционально n^2 , запуская их с несколькими разными массивами и засекая время работы.

Решение: chap06s.ipynb.

Заключение: На решения «гауссовского» и «белого» шумов analyzel затратил времени пропорционально не n^3 , а, соответственно, $n^{2.21}$ и $n^{2.17}$ (где n - число столбцов в M). Одна из возможностей, что степень не 3 заключается в том, что производительность "np.linalg.solve" почти квадратична в этом диапазоне размеров массива.

Что касается analyze2 и dct iv, то здесь степени 2.02 и 0.39, что и предполагалось.

Упражнение 6.2

Задание: Реализуйте версию ДКП алгоритма сжатия и примените его для записи музыки или речи. Сколько компонент можно удалить до того, как разница станет заметной?

Решение: chap06s.ipynb.

Заключение: Слушая восстановленный файл после сжатия до 90%, я не услышал отличия от оригинала настолько хорошо работает этот алгоритм.

Спектрограмма голоса до сжатия

После сжатия

Упражнение 6.3

Задание: Прочтите phase.ipynb блокнот и «погоняйте» примеры. Выберите иной сегмент звука и повторите эксперименты. Можно ли найти некие общие соотношения в фазовой структуре звука и его восприятии?

Решение: См. phase.ipynb.

Заключение: *Обнуление* фазового сдвига, кажется, создает звон для гобоя и саксофона. Для виолончели слышится движение смычка, а сам звук практически отсутствует.

Вращение имеет небольшой эффект – ухо воспринимает звук как основной.

<u>Рандомизация</u> добавляет придыхательное качество.

По крайней мере, для звуков, имеющих простую гармоническую структуру, кажется, что мы в основном "слепы по фазе"; то есть мы не слышим изменений в фазовой структуре при условии, что гармоническая структура неизменна.