

Chapter 5: Mission Analysis

Lecture 14 — Orbit selection

Professor Hugh Lewis

Overview of lecture 14

- This is a short lecture focused on orbit selection
 - This is a process that is used to identify suitable orbits for a mission, which is one of the key aims of mission analysis
 - Orbit selection requires an understanding of the payload requirements (the mission drivers)
 - Ultimately, we want to select (i.e. define) the orbital elements precisely
 - We won't do this here. Instead, we will focus on the selection of broad categories of orbits
 - We will look at typical categories of orbit and what they are used for
 - See chapter 11 for the theory and lectures associated with the orbit selection and definition of the orbital elements for a typical Earth observation mission
 - Make sure you have a good understanding of orbital elements (see lectures 7 and 8)

Orbit selection

Southampton
Astronautics – Chapter 5: Mission Analysis

- Commonly used orbits:
 - 1. Low Earth Orbit (LEO) near equatorial:
 - Parking orbit

- 2. LEO, moderately inclined ($\sim 50^{\circ}$ inclination):
 - Space stations
 - Communications (e.g. Starlink)

- 3. LEO, near-polar:
 - Earth observation
 - Communications (e.g. Iridium, OneWeb)

Orbit selection

Southampton
Astronautics – Chapter 5: Mission Analysis

- Commonly used orbits:
 - 4. Highly Eccentric Orbit (HEO):
 - Observatories & other science missions
 - Communications
 - 5. Semi-synchronous orbits:
 - Navigation
 - **6.** Geostationary Earth Orbit (GEO):
 - Communications
 - Earth observation
 - Equatorial, circular orbit of radius $6.6R_E$
 - Orbit period ~ 24 hours

Southampton Astronautics – Chapter 5: Mission Analysis

Orbit selection

- Orbit selection is dominated by the mission objectives:
 - Payload requirements
 - System requirements (to a lesser extent)
 - Examples:
 - Provision of global environmental monitoring at high resolution → LEO near-polar
 - Provision of global communications
 - Using large fixed ground stations → GEO
 - Using small mobile terminals → LEO polar
 - Provision of high resolution astronomical imaging → LEO, HEO or GEO...

Orbit selection

Orbit trade-off for an orbiting observatory:

	P/l	Sys.	Orbit Favoured		
Parameters (also known as "drivers")			LEO	HEO	GEO
Observation mode operation (Ground comms. Duration)	√			√	√
Uninterrupted source observation	√			√	√
Sky viewing efficiency	√			√	√
Radiation exposure		√	√		
Ease of orbit acquisition		✓	✓		
In-orbit servicing		✓	✓		

Choice of orbit derived by trade-off of payload and system impacts

Activity

- Try to identify what some of the <u>drivers</u> might be for an Earth observation mission:
 - E.g. global coverage
- Following the example for an orbiting observatory, use these drivers to identify favourable orbits:
 - E.g. What type of LEO orbit? What about GEO?

	P/1	Sys.	Orbit Favoured		
Parameters (also known as "drivers")			LEO	HEO	GEO
Observation mode operation (Ground comms. Duration)	✓			1	✓
Uninterrupted source observation	✓			1	✓
Sky viewing efficiency	✓			1	1
Radiation exposure		1	1		
Ease of orbit acquisition		1	1		
In-orbit servicing		✓	1		