Deep Gaussian processes

Andreas Damianou

Department of Neuro- and Computer Science, University of Sheffield, UK

Deep Learning Meetup, London, 24/06/2014

Outline

Part 1: A general view Deep modelling and deep GPs

Part 2: Gaussian processes

GPs as infinite dimensional Gaussian distributions From lin. regression to GPs Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes

Bayesian regularization Inducing Points

Structure: ARD and MRD (multi-view) Extensions: dynamics and autoencoders

Summary

2h away from London!

Great collaborators!

- · Prof. Neil Lawrence
- · Dr James Hensman
- · Dr Michalis Titsias
- · Dr Carl Henrik Ek

Outline

Part 1: A general view Deep modelling and deep GPs

Part 2: Gaussian processes

GPs as infinite dimensional Gaussian distributions

Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes

Bayesian regularization

Inducing Points

Structure: ARD and MRD (multi-view) Extensions: dynamics and autoencoders

Summary

Deep learning

$$\mathbf{Y} = f(f(\cdots f(\mathbf{X})))$$

Deep Gaussian processes - Big Picture

Deep GP:

- Directed graphical model
- ► Non-parametric, non-linear mappings *f*
- ► Mappings f marginalised out analytically
- Likelihood is a non-linear function of the inputs
- Continuous variables
- NOT a GP!

Challenges:

- ► Marginalise out **H**
- ▶ No sampling: analytic approximation of objective

Solution:

- Variational approximation
- ► This also gives access to the *model evidence*

Deep Gaussian processes - Big Picture

Deep GP:

- Directed graphical model
- ▶ Non-parametric, non-linear mappings f
- ► Mappings f marginalised out analytically
- ► Likelihood is a non-linear function of the inputs
- Continuous variables
- ▶ NOT a GP!

Challenges:

- Marginalise out H
- ► No sampling: analytic approximation of objective

Solution

- Variational approximation
- ► This also gives access to the *model evidence*

Deep Gaussian processes - Big Picture

Deep GP:

- Directed graphical model
- ► Non-parametric, non-linear mappings *f*
- Mappings f marginalised out analytically
- Likelihood is a non-linear function of the inputs
- Continuous variables
- ▶ NOT a GP!

Challenges:

- Marginalise out H
- ► No sampling: analytic approximation of objective

Solution:

- Variational approximation
- ▶ This also gives access to the model evidence

Gesture challenge: human vs computer

A human brain is good at one-shot learning... a computer struggles...

Gesture challenge: human vs computer

A human brain is good at one-shot learning... a computer struggles...

Biological Brain

"Experience" fills the gaps

Memory handles streaming data

Outline

Part 1: A general view

Deep modelling and deep GPs

Part 2: Gaussian processes

GPs as infinite dimensional Gaussian distributions
From lin. regression to GPs
Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes

Bayesian regularization
Inducing Points
Structure: ARD and MRD (multi-view)
Extensions: dynamics and autoencoders

Summary

Introducing Gaussian Processes:

- ► A Gaussian distribution depends on a mean and a covariance vector / matrix.
- ► A Gaussian process depends on a mean and a covariance function.

Next: Demo, from Gaussian distributions to Gaussian processes.

Infinite model... but we always work with finite sets!

Let's start with a multivariate Gaussian:

$$p(\underbrace{f_1, f_2, \cdots, f_s}_{\mathbf{f}_A}, \underbrace{f_{s+1}, f_{s+2}, \cdots, f_N}_{\mathbf{f}_B}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$$

$$\mathsf{OR:} \quad p(\mathbf{f}_A, \mathbf{f}_B) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}).$$

with:

$$m{\mu} = egin{bmatrix} m{\mu}_A \\ m{\mu}_B \end{bmatrix}$$
 and $\mathbf{K} = egin{bmatrix} \mathbf{K}_{AA} & \mathbf{K}_{AB} \\ \mathbf{K}_{BA} & \mathbf{K}_{BB} \end{bmatrix}$

Marginalisation property:

$$p(\mathbf{f}_A) = \int_{\mathbf{f}_B} p(\mathbf{f}_A, \mathbf{f}_B) d\mathbf{f}_B = \mathcal{N}(\boldsymbol{\mu}_A, \mathbf{K}_{AA})$$

Infinite model... but we always work with finite sets!

Let's start with a multivariate Gaussian:

$$p(\underbrace{f_1, f_2, \cdots, f_s}_{\mathbf{f}_A}, \underbrace{f_{s+1}, f_{s+2}, \cdots, f_N}_{\mathbf{f}_B}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$$

$$\mathsf{OR:} \quad p(\mathbf{f}_A, \mathbf{f}_B) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}).$$

with:

$$\mu = \begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}$$
 and $\mathbf{K} = \begin{bmatrix} \mathbf{K}_{AA} & \mathbf{K}_{AB} \\ \mathbf{K}_{BA} & \mathbf{K}_{BB} \end{bmatrix}$

Marginalisation property:

$$p(\mathbf{f}_A) = \int_{\mathbf{f}_B} p(\mathbf{f}_A, \mathbf{f}_B) d\mathbf{f}_B = \mathcal{N}(\boldsymbol{\mu}_A, \mathbf{K}_{AA})$$

Infinite model... but we always work with finite sets!

In the GP context:

$$m{\mu}_{\infty} = egin{bmatrix} m{\mu}_{\mathbf{X}} & & & \\ & \ddots & & \\ & \ddots & & \\ & & \ddots & \end{bmatrix}$$
 and $\mathbf{K}_{\infty} = egin{bmatrix} \mathbf{K}_{\mathbf{XX}} & & \cdots \\ & \ddots & & \ddots \end{bmatrix}$

where:

Posterior is also Gaussian!

$$p(\mathbf{f}_A, \mathbf{f}_B) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$$
. Then: $p(\mathbf{f}_A | \mathbf{f}_B) = \mathcal{N}(\cdots, \cdots)$

n the GP context this can be used for inter/extrapolation:

$$p(f_*|f_1,\cdots,f_N) = p(f(x_*)|f(x_1),\cdots,f(x_N)) \sim \mathcal{N}$$

Posterior is also Gaussian!

$$p(\mathbf{f}_A, \mathbf{f}_B) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K}).$$
 Then: $p(\mathbf{f}_A | \mathbf{f}_B) = \mathcal{N}(\cdots, \cdots)$

In the GP context this can be used for inter/extrapolation:

$$p(f_*|f_1,\cdots,f_N) = p(f(x_*)|f(x_1),\cdots,f(x_N)) \sim \mathcal{N}$$

More about the GP posterior

- For test points X_∗ we can predict their values f_∗.
- ▶ Assuming a zero-mean GP prior, \mathbf{f} and \mathbf{f}_* follow a joint Gaussian:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} = \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}_{\mathbf{X}\mathbf{X}} & \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \\ \mathbf{K}_{\mathbf{X}_*\mathbf{X}} & \mathbf{K}_{\mathbf{X}_*\mathbf{X}_*} \end{bmatrix} \right)$$

▶ The conditional $p(\mathbf{f}_*|\mathbf{f}, \mathbf{X}, \mathbf{X}_*)$ is Gaussian with:

$$\begin{split} \boldsymbol{\mu} &= \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \mathbf{K}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{f} \\ \boldsymbol{\Sigma} &= \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \mathbf{K}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{K}_{\mathbf{X}_*\mathbf{X}} \end{split}$$

▶ But where is **K**_{..} coming from?

More about the GP posterior

- For test points X_∗ we can predict their values f_∗.
- ▶ Assuming a zero-mean GP prior, \mathbf{f} and \mathbf{f}_* follow a joint Gaussian:

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} = \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}_{\mathbf{X}\mathbf{X}} & \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \\ \mathbf{K}_{\mathbf{X}_*\mathbf{X}} & \mathbf{K}_{\mathbf{X}_*\mathbf{X}_*} \end{bmatrix} \right)$$

▶ The conditional $p(\mathbf{f}_*|\mathbf{f}, \mathbf{X}, \mathbf{X}_*)$ is Gaussian with:

$$\begin{split} \boldsymbol{\mu} &= \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \mathbf{K}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{f} \\ \boldsymbol{\Sigma} &= \mathbf{K}_{\mathbf{X}\mathbf{X}} - \mathbf{K}_{\mathbf{X}\mathbf{X}_*} \mathbf{K}_{\mathbf{X}\mathbf{X}}^{-1} \mathbf{K}_{\mathbf{X}_*\mathbf{X}} \end{split}$$

▶ But where is K_{..} coming from?

Covariance functions

Assumptions about *properties* of $f \Rightarrow$ define a parametric form for k, e.g.

$$k(x, x') = \alpha \exp\left(-\frac{\gamma}{2}(x - x')^{\top}(x - x')\right)$$

- However, a GP prior with this cov. function defines a whole family of functions
- ▶ The parameters $\{\alpha, \gamma\}$ are hyperparameters.
- We write: $f \sim \mathcal{GP}(0, k(x, x'))$

Covariance samples and hyperparameters

► The hyperparameters of the cov. function define the properties (and NOT an explicit form) of the sampled functions

Incorporating Gaussian noise is tractable

- ▶ So far we assumed: $\mathbf{f} = f(\mathbf{X})$
- ► Assuming that we only observe noisy versions y of the true outputs f:

$$\mathbf{y} = f(\mathbf{X}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Fitting the data - Prior Samples

Fitting the data - more noise

Fitting the data - no noise

Fitting the data - Posterior samples

Another view: from lin. regression to GPs

▶ Bayesian linear regression: $y = \phi(x)w + \epsilon$

$$p(y|x) = \int_{w} p(y|w, x) \quad p(w) =$$

$$= \int_{w} \mathcal{N}(\phi(x)w, \sigma^{2}) \ \mathcal{N}(0, \sigma_{w}^{2})$$

▶ Gaussian process: $y = f(x) + \epsilon$:

$$p(y|x) = \int_{f} p(y|f,x) \quad p(f|x) =$$

$$= \int_{f} \mathcal{N}(f,\sigma^{2}) \ \mathcal{N}(\mu(x), k(x,x))$$

Unsupervised learning: GP-LVM

- ▶ If X is unobserved, treat it as a parameter and optimize over it.
- ► GP-LVM is interpreted as non-linear PPCA.

Outline

Part 1: A general view

Deep modelling and deep GPs

Part 2: Gaussian processes

GPs as infinite dimensional Gaussian distributions From lin. regression to GPs Unsupervised GPs: GP-LVM

Part 3: Deep Gaussian processes

Bayesian regularization Inducing Points

Structure: ARD and MRD (multi-view)

Extensions: dynamics and autoencoders

Summary

Sampling from a deep GP

MAP optimisation?

- $\blacktriangleright \mathsf{ Joint} = p(y|h_1)p(h_1|h_2)p(h_2|x)$
- MAP optimization is extremely problematic because:
 - Dimensionality of hs has to be decided a priori
 - ullet Prone to overfitting, if h are treated as parameters
 - Deep structures are not supported by the model's objective but have to be forced [Lawrence & Moore '07]

Regularization solution: approximate Bayesian framework

- ▶ Analytic variational bound $\mathcal{F} \leq p(y|x)$
 - Extend Titsias' method for variational learning of inducing variables in Sparse GPs.
 - Approximately marginalise out h
- Automatic structure discovery (nodes, connections, layers)
 - Use the Automatic / Manifold Relevance Determination trick

...

$$\blacktriangleright$$
 New objective: $p(y|x) = \int_{h_1} \Big(p(y|h_1) \! \int_{h_2} p(h_1|h_2) p(h_2|x) \Big)$

$$(0_{-}0)$$

- ▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $ightharpoonup p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2)p(f_2|h_2) p(h_2|x)$

- ▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $ightharpoonup p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2) p(f_2|h_2) p(h_2|x)$

▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$

$$\begin{array}{cccc} \blacktriangleright & p(h_1|x) & = & \int_{h_2,f_2} p(h_1|f_2) & \underbrace{p(f_2|h_2)}_{\text{contains}} & p(h_2|x) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

 $(O_{-}O)$

▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$

$$\begin{array}{ccc} \blacktriangleright & p(h_1|x) & = \int_{h_2,f_2} p(h_1|f_2) & \underbrace{p(f_2|h_2)}_{\text{contains}} & p(h_2|x) \\ & & & \\ & & & \mathbf{K}_{h_2,h_2}^{-1} \end{array}$$

- \blacktriangleright New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2) p(f_2|h_2) p(h_2|x)$
- $p(h_1|x, \tilde{h}_2) = \int_{h_2, f_2, u_2} p(h_1|f_2) p(f_2|u_2, h_2) p(u_2|\tilde{h}_2) p(h_2|x)$

- ▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2) p(f_2|h_2) p(h_2|x)$
- $p(h_1|x, \tilde{h}_2) = \int_{h_2, f_2, u_2} p(h_1|f_2) p(f_2|u_2, h_2) p(u_2|\tilde{h}_2) p(h_2|x)$
- ▶ $\log p(h_1|x, \tilde{h}_2) \ge \int_{h_2, f_2, u_2} \mathcal{Q} \log \frac{p(h_1|f_2)p(f_2|u_2, h_2)p(u_2|\tilde{h}_2)p(h_2|x)}{\mathcal{Q}}$

- ▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $ightharpoonup p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2)p(f_2|h_2) p(h_2|x)$
- ▶ $p(h_1|x, \tilde{h}_2) = \int_{h_2, f_2, u_2} p(h_1|f_2) p(f_2|u_2, h_2) p(u_2|\tilde{h}_2) p(h_2|x)$
- ▶ $\log p(h_1|x, \tilde{h}_2) \ge \int_{h_2, f_2, \mathbf{u}_2} \mathcal{Q} \log \frac{p(h_1|f_2)p(f_2|u_2, h_2)p(u_2|h_2)p(h_2|x)}{\mathcal{Q} = p(f_2|u_2, h_2)q(u_2)q(h_2)}$

- ▶ New objective: $p(y|x) = \int_{h_1} \left(p(y|h_1) \int_{h_2} p(h_1|h_2) p(h_2|x) \right)$
- $ightharpoonup p(h_1|x) = \int_{h_2, f_2} p(h_1|f_2)p(f_2|h_2) p(h_2|x)$
- $\qquad \qquad \qquad \qquad \qquad \qquad p(h_1|x,\tilde{h}_2) = \int_{h_2,f_2,u_2} p(h_1|f_2) p(f_2|u_2,h_2) p(u_2|\tilde{h}_2) p(h_2|x)$
- ▶ $\log p(h_1|x, \tilde{h}_2) \ge \int_{h_2, f_2, \mathbf{u}_2} \mathcal{Q} \log \frac{p(h_1|f_2)p(f_2|\mathbf{u}_2, h_2)p(\mathbf{u}_2|\tilde{h}_2)p(h_2|x)}{\mathcal{Q} = p(f_2|\mathbf{u}_2, h_2)q(\mathbf{u}_2)q(h_2)}$
- ► $\log p(h_1|x, \tilde{h}_2) \ge \int_{h_2, f_2, u_2} Q \log \frac{p(h_1|f_2)p(u_2|\tilde{h}_2)p(h_2|x)}{Q = q(u_2)q(h_2)}$

$$p(u_2| ilde{h}_2)$$
 contains $\mathbf{K}_{ ilde{h}_2 ilde{h}_2}^{-1}$

Inducing points: sparseness, tractability and Big Data

h_1	\mathbf{f}_1
h_2	\mathbf{f}_2
h_{30}	\mathbf{f}_{30}
h_{31}	\mathbf{f}_{31}
h_N	\mathbf{f}_N

Inducing points: sparseness, tractability and Big Data

$\overline{h_1}$	\mathbf{f}_1
h_2	\mathbf{f}_2
$h_{30} \ ilde{h}^{(i)}$	$egin{array}{c} \mathbf{f}_{30} \ u^{(i)} \end{array}$
h_{31}	\mathbf{f}_{31}
h_N	\mathbf{f}_N

Inducing points: sparseness, tractability and Big Data

h_1	\mathbf{f}_1
h_2	\mathbf{f}_2
• • •	
h_{30}	\mathbf{f}_{30}
$ ilde{h}^{(i)}$	$u^{(i)}$
h_{31}	\mathbf{f}_{31}
	• • •
h_N	\mathbf{f}_N

- ► Inducing points originally introduced for faster (sparse) GPs
- Our manipulation allows to compress information from the inputs of every layer
- ► This induces tractability
- Viewing them as global variables ⇒ extension to Big Data [Hensman et al., UAI 2013]

Automatic dimensionality detection

- ► Achieved by employing automatic relevance determination (ARD) priors for the mapping f.
- $f \sim \mathcal{GP}(\mathbf{0}, k_f)$ with:

$$k_f(\mathbf{x}_i, \mathbf{x}_j) = \sigma^2 \exp\left(-\frac{1}{2} \sum_{q=1}^{Q} w_q (x_{i,q} - x_{j,q})^2\right)$$

► Example:

Deep GP: MNIST example

http://staffwww.dcs.sheffield.ac.uk/people/A.Damianou/research/index.html#DeepGPs

Manifold Relevance Determination

- ightharpoonup Observations come into two different *views*: Y and Z.
- ▶ The latent space is segmented into parts private to Y, private to Z and shared between Y and Z.
- Used for data consolidation and discovering commonalities.

MRD weights

MRD examples

Yale faces

Motion capture / silhouette

► http://staffwww.dcs.sheffield.ac.uk/people/A.Damianou/research/index.html#MRD

Deep GPs: Another multi-view example

Automatic structure discovery

Tools:

- ► ARD: Eliminate uncessary nodes/connections
- MRD: Conditional independencies
- ► Approximating evidence: Number of layers (?)

Automatic structure discovery

Tools:

- ► ARD: Eliminate uncessary nodes/connections
- ► MRD: Conditional independencies
- ► Approximating evidence: Number of layers (?)

Deep GP variants

Temporal model: VGPDS

- ▶ Dynamics are encoded in the covariance matrix $K_x = k_x(\mathbf{t}, \mathbf{t})$.
- ▶ We can consider special forms for K_x .

Model individual sequences

Model periodic data

- ► Show videos...
- ► https://www.youtube.com/watch?v=i9TEoYxaBxQ
- https://www.voutube.com/watch?v=mUY1XHPnoCU

Autoencoder example

Run demo...

Summary

- ▶ A deep GP is not a GP.
- Sampling is straight-forward. Regularization and training needs to be worked out.
- ▶ The solution is a special treatment of auxiliary variables.
- ▶ Many variants: multi-view, temporal, autoencoders ...
- ► Future: how does it compare to / complement more traditional deep models?

Thanks

Thanks to Neil Lawrence, James Hensman, Michalis Titsias, Carl Henrik Ek.

References:

- N. D. Lawrence (2006) "The Gaussian process latent variable model" Technical Report no CS-06-03. The University of Sheffield. Department of Computer Science
- N. D. Lawrence (2006) "Probabilistic dimensional reduction with the Gaussian process latent variable model" (talk)
- C. E. Rasmussen (2008), "Learning with Gaussian Processes", Max Planck Institute for Biological Cybernetics, Published: Feb. 5, 2008 (Videolectures.net)
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. MIT Press. Cambridge. MA. 2006. ISBN 026218253X.
- M. K. Titsias (2009), "Variational learning of inducing variables in sparse Gaussian processes", AISTATS 2009
- A. C. Damianou, M. K. Titsias and N. D. Lawrence (2011), "Variational Gaussian process dynamical systems", NIPS 2011
- A. C. Damianou, C. H. Ek, M. K. Titsias and N. D. Lawrence (2012), "Manifold Relevance Determination", ICML 2012
- A. C. Damianou and N. D. Lawrence (2013), "Deep Gaussian processes", AISTATS 2013
- J. Hensman (2013), "Gaussian processes for Big Data", UAI 2013