Modelling Multi-dimensional Opinions and Polarization Formation

The Opinioneers
Michael Andres, Florian Dorner, Gian Luca Gehwolf, Fabian Hafner, David Metzger
Complex Social Systems
7 December 2020

Motivation

- 1. Political polarization is a threat to political stability
- 2. How can opinion polarization be simulated?
 - Weighted Balance Theory Model by Schweighofer et al. (2020)
- 3. How can opinion polarization dynamics be influenced by...
 - Network structures
 - → Coevolution of networks and opinions model developed by Holme and Newman (2006)
 - Bots

How do opinion formation models work?

Model 1: coevolution of opinions and networks

Holme et al. 2006

Discrete, 1D opinions Randomly initialized network

Example: 30 students need to choose where to go for lunch

Model 1: coevolution of opinions and networks

Holme et al. 2006

Discrete, 1D opinions Randomly initialized network

Convergence when communities have consensus

Coevolution Model - influence rules

with probability Φ

connect to like-minded

with probability 1-Φ

adjust my opinion

Comparison of Results

Holme 2006

Histograms of community sizes (avg)

Model 2: Weighted Balance Theory

Schweighofer et al. 2020

- Multidimensional, continuous opinions [-1,+1], no network. Political topics.
- How opinions change depends on overall opinion similarness
- → **Hyperpolarization:** extreme and clustered opinions
 - → Two-party system

Model 2: Weighted Balance Theory

- Interpersonal attitude Aij as measure of closeness
 - within [-1,+1] based on signed geometric
 mean and sigmoid evaluative extremeness
 - Equilibrium / fixed points
 $\mathbf{o}(i)_{eq} \simeq \pm \mathbf{o}(j)$

$$A_{ij} := f\left(\frac{1}{D}\sum_{d=1}^{D} \text{SGM}(o_d(i), o_d(j))\right) \qquad f(x) = \text{sign}(x)|x|^{1-e}$$

$$\mathbf{o}(i) \leftarrow \mathbf{o}(i) + \alpha \left[\mathbf{b}^{ij} - \mathbf{o}(i)\right] + \xi(0, z) \qquad \mathbf{b}^{ij} := \begin{pmatrix} b_1^{ij} \\ \vdots \\ b_D^{ij} \end{pmatrix} := \begin{pmatrix} \text{SGM}(o_1(j), A_{ij}) \\ \vdots \\ \text{SGM}(o_D(j), A_{ij}) \end{pmatrix}$$

Model 2: Weighted Balance Theory

Hyperpolarisation

Evaluative extremeness

$$f(x) = \operatorname{sign}(x)|x|^{1-e}$$

slightly agree on average like person a lot

slightly disagree on average dislike a lot

e = 0.5

Evaluative extremeness

$$f(x) = sign(x)|x|^{1-e}$$

slightly agree on average like person a lot

slightly disagree on average dislike a lot

e = 0.5attitude opinion closeness

Evaluative extremeness

$$f(x) = \operatorname{sign}(x)|x|^{1-e}$$

e > 0 creates drift to corners

→ not entirely unrealistic, but still surprising

Model 3: Generalized WBT Model

- WBT Model implemented into network structure
- With probability Φ : $\operatorname{connect}(\mathbf{o}(i), \mathbf{o}(j)) = \begin{cases} 1 & \text{if } |\mathbf{o}(i) \mathbf{o}(j)| < \varepsilon(N, D, z) \\ 0 & \text{else} \end{cases}$
- With probability 1-Ф:

update(
$$\mathbf{o}(i), \mathbf{o}(j)$$
) = $\mathbf{o}(i) + \alpha \left[\mathbf{b}^{ij} - \mathbf{o}(i) \right] + \xi(0, z)$

→ **New behavior**: clusters, phase transitions

Observation: convergence into ~S/N similarly sized clusters

Graph evolution

from random to polarized

In some cases no hyperpolarization, just polarization & fragmentation

Clusters in the corners + some disconnected nodes

$$\phi$$
= 0.45,ε= 0.3

Bots

- Like normal nodes but don't change their opinion
- This presentation:
 - Bots all have same extreme opinion in all dimensions

Bots (e=0, fully connected network)

Bots (e=0, fully connected network)

Bots in dynamic BA graph (e=0, ϕ =0.5, ϵ =1)

Bots in dynamic BA graph (e=0, ϕ =0.5, ϵ =1)

Bots in dynamic BA graph (e=0,φ=0.5,ε=1)

Reproduction of Models

Extensions

Critique

Reproduction of Models

- very similar findings for reproduced experiments and parameters
- only minor deviations due to smaller networks
- indicates other results also likely valid for larger networks

Critical assumption on evaluative extremeness & attitude as function of opinions only

In general: different models can have very different outcomes

(Hyper)polarization only allows (one) extreme opinion on every topic within one group

Critique

Thank you for your attention

Questions?

Coevolution Model

Implementation

- 1. Implement our own coevolution model
 - \rightarrow compare it to the coevolution model of Holme and Newman (2006)
- 2. Implement our own WBT model
 - \rightarrow compare to WBT model of Schweighofer et al. (2020)
- 3. Combine these two models to a generalized model

Model 2: Weighted Balance Theory

- simultaneous emergence of opinion extremeness and issue constraint (**Hyperpolarization**)
 - → Two-party system, where all opinions are diametrically opposed

Comparison of Results

Histograms of community sizes (avg)

Reproduced by us

Model 2: Weighted Balance Theory

- simultaneous emergence of opinion extremeness and issue constraint (Hyperpolarization)
 - → Two-party system
- Multi-dimensional opinion vectors with values within [-1,+1]
- Interpersonal attitudes within [-1,+1] weighted with sigmoid-function and parameter e
 - → evaluative extremeness (Backfire-Effect, convergence of like-minded agents)

Bots in static Barabási-Albert graph (e=0)

50 bots in least connected nodes

50 bots in random nodes

50 bots in most connected nodes

Bots in static Barabási–Albert graph (e=0)

General Model, N= 250, D= 3, e= 0.3, α = 0.3, ϕ = 0.45, ϵ (N, D, z) = 0.3.