Calculus and its Applications (Limits and Continuity - Functions and their Graphs)

KRISHNASAMY R

email: rky.amcs@psgtech.ac.in Mobile No.: 9843245352

September 13, 2021

LIMITS AND CONTINUITY

- Standard functions
- Graphs
- Limit
- Continuity
- Piecewise continuity
- Periodic functions
- Differentiable functions
- Riemann sum
- Integrable functions
- Fundamental theorem of calculus

Invertible function: $f: X \to Y$ is invertible if there exist a function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$. The function g is called the inverse of f and is denoted by f^{-1} .

f is invertible iff f is both 1-1 and onto.

Examples:

1.
$$f: X \to Y$$
 defined by $f(x) = 4x + 3$

$$f(x)=y$$

$$x=y-3/4$$
 (inverse function)

2.
$$f: \mathbb{R} - \{-4/3\} \to \mathbb{R}$$
 defined by $f(x) = \frac{4x}{3x+4}$. The inverse of f is

$$g=4x/(4-3x)$$

domain of
$$g = \mathbb{R} - \{4/3\}$$

Problems to find domain and range

Determine the domain and associated ranges of the following functions

Function	Domain (x)	Range (y)
1 $y = x^2$	\mathbb{R}	$[0,\infty)$
y = 1/x	$\mathbb{R} - \{0\}$	$\mathbb{R}-\{0\}$
3 $y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
4 $y = \sqrt{4 - x}$	$(-\infty,4]$	$[0,\infty)$
$5y = \sqrt{1 - x^2}$	[-1,1]	$\boxed{ [0,1] }$

$$4 - x \ge 0$$

5

$$1 - x^2 > 0$$

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for f. In set notation, the graph is

$$\{(x, f(x)) \mid x \in D\}$$

FIGURE 1.3 The graph of f(x) = x + 2 is the set of points (x, y) for which y has the value x + 2.

FIGURE 1.4 If (x, y) lies on the graph of f, then the value y = f(x) is the height of the graph above the point x (or below x if f(x) is negative).

Vertical and horizontal tests

A function f can have only one value f(x) for each x in its domain, so no vertical line can intersect the graph of a function more than once.

Vertical and horizontal tests

horizontal line should not intersect the graph of the function more than once

Piece-wise defined functions

A function which is described in pieces by using different formulas on different parts of its domain.

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

Piece-wise function - Example

Greatest integer function

The function whose value at any number \underline{x} is the greatest integer less than or equal to x is called the greatest integer function or the integer floor function. It is denoted by $\lfloor x \rfloor$

Least integer function

The function whose value at any number \underline{x} is the smallest integer greater than or equal to \underline{x} is called the least integer function or the integer ceiling function. It is denoted [x]

Increasing and Decreasing Functions

Let f be a function defined on an interval I and let x_1 and x_2 be two distinct points in I.

- If $f(x_2) > f(x_1)$ whenever $x_1 < x_2$, then f is said to be increasing on I.
- If $f(x_2) < f(x_1)$ whenever $x_1 < x_2$, then f is said to be decreasing on I.

14.20

Even and Odd Functions

reither odd nor even

A function y = f(x) is an

- even function of x if f(-x) = f(x)
- odd function of x if f(-x) = -f(x) g = x, g = x, $g = x^3$ for every x in the function's domain.

from tank? add/even/neither add norman

Even and Odd Functions - Examples

THANK YOU