Madhur Jaripatke

Roll No. 48

TE A Computer

RMDSSOE, Warje, Pune

3. Descriptive Statistics - Measures of Central Tendency and variability

Perform the following operations on any open source dataset (e.g., data.csv) the age groups. Create a list that contains a numeric value for each response to the

1. Provide summary statistics (mean, median, minimum, maximum, standard deviation) for a dataset (age, income etc.) with numeric variables grouped by one of the qualitative (categorical) variable. For example, if your categorical variable is age groups and quantitative variable is income, then provide summary statistics of income grouped by

categorical variable. 2. Write a Python program to display some basic statistical details like percentile, mean, standard deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-versicolor' of iris.csv dataset. Provide the codes with outputs and explain everything that you do in this step.

```
In [1]: import pandas as pd
from sklearn import preprocessing
```

Importing the dataset

```
In [2]: df = pd.read_csv('Datasets/Mall_Customers.csv')
df
```

Out[2]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	•••					
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

Exploratory Data Analysis

[n [3]:	<pre>df.describe()</pre>									
Out[3]:		CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)					
	count	200.000000	200.000000	200.000000	200.000000					
	mean	100.500000	38.850000	60.560000	50.200000					
	std	57.879185	13.969007	26.264721	25.823522					
	min	1.000000	18.000000	15.000000	1.000000					
	25%	50.750000	28.750000	41.500000	34.750000					
	50%	100.500000	36.000000	61.500000	50.000000					
	75%	150.250000	49.000000	78.000000	73.000000					
	max	200.000000	70.000000	137.000000	99.000000					
[4]:	df.min	()								
[4]:	CustomerID Gender Age Annual Income (k\$) Spending Score (1-100) dtype: object			1 nale 18 15 1						
[5]:	df.gro	upby([' <mark>Gende</mark>	r'])['Age']	.mean()						

```
Out[5]: Gender
          Female
                 38.098214
          Male
                   39.806818
          Name: Age, dtype: float64
 In [6]: df.groupby(['Gender'])['Age'].median()
 Out[6]: Gender
          Female
                    35.0
          Male
                    37.0
          Name: Age, dtype: float64
         df.groupby(['Gender'])['Age'].std()
 In [7]:
 Out[7]:
         Gender
                 12.644095
          Female
          Male 15.514812
          Name: Age, dtype: float64
 In [8]:
         df.groupby(['Gender'])['Annual Income (k$)'].mean()
 Out[8]:
         Gender
          Female
                   59.250000
          Male
                   62.227273
          Name: Annual Income (k$), dtype: float64
 In [9]:
         df.groupby(['Gender'])['Annual Income (k$)'].median()
 Out[9]:
         Gender
                    60.0
          Female
          Male
                    62.5
          Name: Annual Income (k$), dtype: float64
In [10]: df.groupby(['Gender'])['Annual Income (k$)'].std()
Out[10]: Gender
                    26.011952
          Female
                    26.638373
          Male
          Name: Annual Income (k$), dtype: float64
In [11]:
        df.groupby(['Gender'])['Age'].median()
Out[11]: Gender
          Female
                    35.0
                   37.0
          Male
          Name: Age, dtype: float64
In [12]:
         df.groupby(['Gender']).mean()
Out[12]:
                  CustomerID
                                  Age Annual Income (k$) Spending Score (1-100)
          Gender
                    97.562500 38.098214
                                                 59.250000
                                                                       51.526786
          Female
            Male
                   104.238636 39.806818
                                                 62.227273
                                                                       48.511364
In [13]:
         df.groupby(['Gender']).median()
```

Out[13]:		Customerl	D A	ge	Annual Income ((\$)	Spending Score (1-100)
	Gender						
	Female	94.	.5 35	5.0	6	0.0	50.0
	Male	106	.5 37	7.0	6	2.5	50.0
In [14]:	df.grou	pby([' <mark>Gend</mark>	er'])	.mi	.n()		
Out[14]:		Customerl	D A	ge	Annual Income ((\$)	Spending Score (1-100)
	Gender						
	Female		3	18		16	5
	Male		1	18		15	1
In [15]:	df.grou	pby([' <mark>Gend</mark>	er'])	.ma	ix()		
Out[15]:		Customerl	D A	ge	Annual Income ((\$)	Spending Score (1-100)
	Gender						
	Female	19	97	68	1	26	99
	Male	20	00	70	1	37	97
T- [16].	40	d/	4	. 7	[[Candan]])		
IU [10]:	x = uT.0	urop(axis=	1, 00	otum	nns=['Gender'])		
Out[16]:	Cu	stomerID	Age	An	nual Income (k\$)	Sp	ending Score (1-100)
	0	1	19		15		39
	1	2	21		15		81
	2	3	20		16		6
	3	4	23		16		77
	4	5	31		17		40
	•••						
	195	196	35		120		79
	196	197	45		126		28
	197	198	32		126		74
	198	199	32		137		18
	199	200	30		137		83

200 rows × 4 columns

Encoding

```
In [17]: enc = preprocessing.OneHotEncoder()
          enc_df = pd.DataFrame(enc.fit_transform(df[['Gender']]).toarray())
          enc_df
Out[17]:
                0
                     1
            0.0
                  1.0
            1 0.0
                  1.0
            2 1.0 0.0
            3 1.0 0.0
            4 1.0 0.0
              ... ...
          195
              1.0 0.0
          196
              1.0 0.0
          197 0.0 1.0
          198 0.0 1.0
          199 0.0 1.0
         200 rows × 2 columns
In [18]: df_encode = x.join(enc_df)
          df_encode
Out[18]:
               CustomerID Age Annual Income (k$) Spending Score (1-100)
                                                                            0
                                                                                 1
            0
                        1
                             19
                                                15
                                                                           0.0
                                                                              1.0
                             21
                                                15
                                                                           0.0 1.0
            2
                        3
                             20
                                                16
                                                                           1.0 0.0
                             23
                                                16
                                                                           1.0 0.0
            4
                        5
                             31
                                                17
                                                                           1.0 0.0
          195
                      196
                             35
                                               120
                                                                           1.0 0.0
```

200 rows × 6 columns

```
In [19]: df1 = pd.read_csv('Datasets/Iris.csv')
    df1
```

1.0 0.0

0.0 1.0

0.0 1.0

83 0.0 1.0

Out[19]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris- setosa
	1	2	4.9	3.0	1.4	0.2	Iris- setosa
	2	3	4.7	3.2	1.3	0.2	lris- setosa
	3	4	4.6	3.1	1.5	0.2	lris- setosa
	4	5	5.0	3.6	1.4	0.2	lris- setosa
	•••						
	145	146	6.7	3.0	5.2	2.3	lris- virginica
	146	147	6.3	2.5	5.0	1.9	lris- virginica
	147	148	6.5	3.0	5.2	2.0	lris- virginica
	148	149	6.2	3.4	5.4	2.3	lris- virginica
	149	150	5.9	3.0	5.1	1.8	lris- virginica

150 rows × 6 columns

In [20]: df1.describe()

\cap	14-	ГЭ.	ΩT	0
υı	1 L	L 4	0]	0

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

```
In [21]: set1 = (df1['Species'] == 'Iris-virginica')
  print(df1[set1].describe())
```

```
SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
        count
                50.00000
                                50.00000
                                              50.000000
                                                             50.000000
                                                                             50.00000
               125.50000
                                 6.58800
                                               2.974000
                                                               5.552000
                                                                              2.02600
        mean
        std
                14.57738
                                 0.63588
                                               0.322497
                                                               0.551895
                                                                              0.27465
        min
               101.00000
                                 4.90000
                                               2.200000
                                                               4.500000
                                                                              1.40000
        25%
               113.25000
                                 6.22500
                                               2.800000
                                                               5.100000
                                                                              1.80000
        50%
               125.50000
                                 6.50000
                                               3.000000
                                                               5.550000
                                                                              2.00000
        75%
               137.75000
                                                                              2.30000
                                 6.90000
                                               3.175000
                                                               5.875000
        max
               150.00000
                                 7.90000
                                               3.800000
                                                               6.900000
                                                                              2.50000
In [22]: set2 = (df1['Species'] == 'Iris-versicolor')
          print(df1[set2].describe())
                       Id SepalLengthCm SepalWidthCm
                                                         PetalLengthCm
                                                                         PetalWidthCm
        count
                50.00000
                               50.000000
                                              50.000000
                                                             50.000000
                                                                            50.000000
                75.50000
        mean
                                5.936000
                                               2.770000
                                                               4,260000
                                                                             1.326000
                14.57738
        std
                                0.516171
                                               0.313798
                                                               0.469911
                                                                             0.197753
        min
                51.00000
                                                               3.000000
                                4.900000
                                               2.000000
                                                                             1.000000
        25%
                63.25000
                                5.600000
                                               2.525000
                                                               4.000000
                                                                             1.200000
        50%
                                5.900000
                75.50000
                                               2.800000
                                                               4.350000
                                                                             1.300000
        75%
                87.75000
                                6.300000
                                               3.000000
                                                               4.600000
                                                                             1.500000
                                7.000000
        max
               100.00000
                                               3.400000
                                                               5.100000
                                                                             1.800000
In [23]: set3 = (df1['Species'] == 'Iris-setosa')
          print(df1[set3].describe())
                          SepalLengthCm
                                         SepalWidthCm
                                                       PetalLengthCm
                                                                        PetalWidthCm
               50.00000
        count
                               50.00000
                                             50.000000
                                                             50.000000
                                                                            50.00000
        mean
               25.50000
                                5.00600
                                              3.418000
                                                             1.464000
                                                                             0.24400
        std
               14.57738
                                0.35249
                                              0.381024
                                                             0.173511
                                                                             0.10721
        min
                1.00000
                                4.30000
                                              2.300000
                                                             1.000000
                                                                             0.10000
        25%
               13.25000
                                4.80000
                                              3.125000
                                                             1.400000
                                                                             0.20000
        50%
               25.50000
                                5.00000
                                              3.400000
                                                             1.500000
                                                                             0.20000
        75%
               37.75000
                                5.20000
                                              3.675000
                                                             1.575000
                                                                             0.30000
               50.00000
                                5.80000
                                              4.400000
                                                             1.900000
                                                                             0.60000
        max
In [24]:
         df1['Species'].unique()
Out[24]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

Grouping

	uii.gi oupby(<pre>df1.groupby(['Species']).mean()</pre>							
5]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm			
_	Species								
	Iris-setosa	25.5	5.006	3.418	1.464	0.244			
	lris- versicolor	75.5	5.936	2.770	4.260	1.326			
	Iris-virginica	125.5	6.588	2.974	5.552	2.026			

Out[26]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	Species					
	Iris-setosa	25.5	5.0	3.4	1.50	0.2
	lris- versicolor	75.5	5.9	2.8	4.35	1.3
	Iris-virginica	125.5	6.5	3.0	5.55	2.0
T. [27].	d£1 ===========	[

In [27]: df1.groupby(['Species']).std()

_	1.0	\sim \sim \sim	
11	177) /	
\cup \cup	ノレト	4/	

Out[27]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
	Species					
	Iris- setosa	14.57738	0.352490	0.381024	0.173511	0.107210
	lris- versicolor	14.57738	0.516171	0.313798	0.469911	0.197753
	Iris- virginica	14.57738	0.635880	0.322497	0.551895	0.274650