Michael Yau Chan, Daniel Jarc, Jacob Powers CS467-400 Capstone Project January 20, 2019

# Team Fang Project Plan

#### Introduction

Our team will be building and programming a 3D printed, quadruped robot using C++ and an Arduino microcontroller. The quadruped will have 3 degrees of freedom on each leg and be capable of walking, body rotation, tilt and translation. The robot will interface with custom control software connected via Bluetooth.

#### **Team Members**

Michael/Yau Chan - <a href="mailto:chany@oregonstate.edu">chany@oregonstate.edu</a>
Daniel Jarc - <a href="mailto:jarcd@oregonstate.edu">jarcd@oregonstate.edu</a>
Jacob Powers - <a href="mailto:powersi2@oregonstate.edu">powersi2@oregonstate.edu</a>

## **User Perspective**

As a user of the hardware and software that make up the robot I would expect that the robot would operate in an manner persistent with its design. The robot requires the harmonious operation of many different systems: hardware, movement and controls. The movement software will be the centerpiece of the robot and will tie all various hardware components into a single functioning machine. The inner workings of the code and relationship of parts is hidden from the user. The user will be presented with basic controls as outlined in the control software to operate the movements of the robot.

#### Client

Our client is Ryan Gambord and/or the TA who will be grading this project. In addition, this extends to anyone interested in robotics. The design of our projects is simple yet extensible enough that it can be built and improved upon by anyone. The parts are all cheap and readily available

#### Structure

The project can be broken down into several primary sections - movement system, control system and frame design/hardware. The movement systems will consist of code 3rd party libraries as well as our own libraries.

#### Movement System

The movement for the quadruped will be written using the Arduino IDE using C++ and the open source Arduino libraries. The body and leg movement algorithms will need to utilize inverse kinematics. Initially, the following capabilities will be developed:

|   | Tilt body, stationary                   |
|---|-----------------------------------------|
|   | Rotate body, stationary                 |
|   | Translate body horizontally, stationary |
|   | Translate body vertically, stationary   |
| П | Translate/walk in desired direction     |

☐ Rotate while walking

If these primary movement mode goals are completed, additional movement gaits and functionality will be added, possibility including additional walking gaits, scripted sequences, simple obstacle detection. The Adafruit servo library will be used to control leg servos.

The movement code will be encapsulated within a quadruped class:

### Quadruped - mode: int - submode: int coxaLength: float - femurLength: float tibiaLength: float - bodyWidth: float - bodyLength: float - servoMin[12]: int - servoMax[12]: int xPos: float - yPos: float - zPos: float + Quadruped() + cycleMode(): int + cycleSubMode():int + processinput(float xinput, float yinput): - tilt(float xInput, float yInput) - rotate(float xinput, float yinput) - translate(float xinput, float yinput)

Figure 1: Quadruped Class

The Quadruped constructor will take arguments pertaining to the frame dimensions and servo calibration settings. The user will interface with the quadruped by setting a mode (default: stationary) via cycleMode(), submode (default: tilt) via cycleSubMode() and process directional input from the virtual joystick via processInput(). The processInput() function will move the quadruped depending on the currently selected mode and submode.

#### Control Software

The quadruped user interface will be designed using the Qt 5 framework and C++. The software will consist of a single screen interface with the following functionality:

□ Mode Select - Cycles between walk and stationary modes
 □ Submode Select - Cycles selected mode submodes
 □ Connect - Connects to quadruped via bluetooth
 □ Status - Indicates connection status
 □ Directional pad/joystick interface - Controls quadruped according to mode and submode selections



Figure 2: UI Mockup/Layout

### Applicable <a href="Qt modules">Qt modules</a> include:

- ☐ QtCore Provides core non-GUI functionality
- $\hfill \Box$  QtGui Basic enablers for graphical applications
- ☐ QtWidgets Extends Qt GUI with C++ widget functionality
- **Q**tBluetooth Enables basic Bluetooth operations like scanning for devices and connecting them



Figure 3: App class diagram

The *QuadrupedControl* class will contain all the logic/functionality of the app while the *UiQuadrupedControl* class will contain all the visual components. The UI will be connected to the logic via slots and actions.

### Arduino Bluetooth Hardware Integration

The Arduino <u>SoftwareSerial</u> library and a HC-06 bluetooth module will be used onboard the Arduino. The bluetooth connection process is illustrated below.



Figure 3: Connection Process

#### Frame Design

A preliminary frame design was created using Autodesk Inventor and a Monoprice Mini Delta 3D printer. Below is a screenshot from Inventor displaying the frame components. This frame is a work in progress. Modifications and refinements to this design will occur throughout the development.



Figure 4: Prototype Frame Design

# **Build Components**

- 1x Arduino Uno microcontroller
- 1x Adafruit servo shield
- 1x 2S 1000 mAh Lipo or 4X AA Battery (servo power)
- 1X 9V battery and barrel plug adapter
- 1x 3A 5V UBEC
- 12x SG90 servos
- 1x Bluetooth module
- 2x Upper/lower body assemblies
- 4x Shoulder assemblies
- 4x Femur assemblies
- 4x Tibia assemblies
- 4x 2 mm ball bearings



#### **Software Libraries**

- Arduino IDE
  - o Quadruped movement system
- Qt Creator
  - User interface/control software
- Adafruit servo library
  - Servo control
- <u>SoftwareSerial library</u>
  - o Bluetooth connectivity
- <u>Qt Widgets library</u>
  - UI elements/controls
- BasicLinearAlgebra Library
  - o Arduino math library

Additional open source libraries may be used depending on development needs. The primary language used will be C++ for both the robot code and UI code.

## Plan

Below is a high-level plan of the tasks required to complete the project and our target completion dates. Our group will utilize Slack for messaging and Google Hangouts for weekly meetings (Sundays).

| Task                                     | Target Completion |
|------------------------------------------|-------------------|
| Servo alignment                          | Jan 11            |
| Final frame assembly                     | Jan 23            |
| Stationary - tilt body                   | Feb 1             |
| Stationary - rotate body                 | Feb 1             |
| Stationary - translate body horizontally | Feb 1             |
| Stationary - translate body vertically   | Feb 1             |
| Move - translate/rotate                  | Feb 8             |
| Control software/UI                      | Feb 15            |
| Bluetooth module integration with UI     | Feb 22            |
| Testing, debugging, improvements         | Mar 17            |

# Class Assignments

Below is a summary of the required class assignments and due dates.

| Assignment              | Due Date | Assignee     |
|-------------------------|----------|--------------|
| Week 4 Progress Report  | Feb 1    | Individual   |
| Week 5 Progress Report  | Feb 8    | Individual   |
| Mid-Point Project Check | Feb 15   | Jake         |
| Week 7 Progress Report  | Feb 22   | Individual   |
| Week 8 Progress Report  | Mar 1    | Individual   |
| Week 9 Progress Report  | Mar 8    | Individual   |
| Create Poster           | Mar 17   | Dan Jarc     |
| Create Final Report     | Mar 17   | Michael Chan |
| Demonstrate Project     | Mar 17   | Everyone     |

# Individual Task Assignments

Below is a detailed plan of individual task assignments, organized by week.

Team Member: Michael/Yau Chan

| Week | Tasks                                                                             | Time |
|------|-----------------------------------------------------------------------------------|------|
| 3    | Project plan and tools ramp-up                                                    | 10   |
| 4    | Create preliminary UI with Qt                                                     | 10   |
| 5    | Create preliminary control software to interface with Qt                          | 10   |
| 6    | Mid-Point Project Write-up                                                        | 10   |
| 7    | Create preliminary bluetooth control to interface with Qt                         | 10+  |
| 8    | Combine control software and Qt UI, look into additional features if time permits | 20+  |
| 9    | Testing and debug                                                                 | 20+  |
| 10   | Poster and final report                                                           | 10+  |

### Team Member: Daniel Jarc

| Week | Tasks                                           | Time |
|------|-------------------------------------------------|------|
| 3    | Frame prototyping, project plan, research       | 10   |
| 4    | Final frame assembly, single leg IK, research   | 15   |
| 5    | Stationary modes (tilt/rotate/translate)        | 15   |
| 6    | Basic movement, motion control                  | 15   |
| 7    | Additional gaits, modifications, motion control | 15   |
| 8    | Control software/bluetooth integration          | 15   |
| 9    | Testing, debugging                              | 10   |
| 10   | Poster, final report, demonstration             | 20   |

#### Team Member: Jacob Powers

| Week | Tasks                                                             | Time |
|------|-------------------------------------------------------------------|------|
| 3    | Research robotic kinematics, Initial bluetooth, Servo calibration | 15   |
| 4    | Frame assembly, single leg IK, Research, Test development         | 15   |
| 5    | Stationary modesm, Test                                           | 15   |
| 6    | Basic movement, Test, Midpoint writeup                            | 15   |
| 7    | Additional gaits, Test                                            | 15   |
| 8    | Control software/bluetooth integration, Test                      | 10   |
| 9    | Testing, debugging                                                | 20   |
| 10   | Poster, final report, demonstration                               |      |

### Conclusion

This project will allow team members to explore embedded systems, inverse kinematics, bluetooth connectivity and user interface design. In addition, this project allows us to use the software methodologies and programming techniques that we have been developing over the course of the OSU CS post-baccalaureate program into a concrete application that can be tested and used by others.