9. The CFD Process	
 Pre-processing Solving: discretisation solution of equations Post-processing 	
Pre-processing: governing equations boundary conditions grid-generation Solving Post-processing	

• Pre-pr	ocessing	
 Solving 		
	processing:	
– analys – visual	sis	
		-
_		
Co	ommercial Codes	
		-
Vendor	Code] <u> </u>
CD adapco	Star CD Star CCM+	1
Ansys	FLUENT	-
Flow Science	CFX FLOW3D	
EXA	PowerFLOW	-
2701	1 OWEN LOW	
Web porta	al: http://www.cfd-online.com/	
The Computational Mesh		

Mesh Generation

- Function:
 - to decompose the domain into control volumes
- Constraints:
 - flow geometry
 - capabilities of the solver
- Output:
 - cell vertices (x, y, z)
 - connectivity data

Mesh Arrangements

- Node locations (cell centres / vertices)
- Staggered / co-located
- Cell shapes (tetrahedra / hexahedra / arbitrary polyhedra)
- Structured (single- or multi-block) / unstructured
- Cartesian / curvilinear (orthogonal / non-orthogonal)
- ..

Cell Shapes

- 2-d: triangles, quadrilaterals, ...
- 3-d: tetrahedra, hexahedra, ...

tetrahedron

Areas and Volumes

• Vector areas are needed to compute fluxes:

mass flux: ρ**u • A**

diffusive flux: $-\Gamma\nabla \phi \bullet \mathbf{A}$

Volumes are needed to compute amounts in cells and cell averages:

amount in cell: $\rho V \phi$

Face Areas

Triangles

Quadrilaterals

- 4 points are not necessarily coplanar
- Vector area is independent of spanning surface

 $\mathbf{A} = \frac{1}{2} \mathbf{d}_{13} \wedge \mathbf{d}_{24} = \frac{1}{2} (\mathbf{r}_3 - \mathbf{r}_1) \wedge (\mathbf{r}_4 - \mathbf{r}_2)$

Some Vector Calculus (Not Examinable)

$$\nabla \equiv (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$
 is both a vector and a differential operator

Gradient:
$$grad(\phi) \equiv \nabla \phi = (\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z})$$

Divergence:
$$\operatorname{div} \mathbf{f} \equiv \nabla \cdot \mathbf{f} \equiv \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial x} + \frac{\partial f_y}{\partial x}$$

Curl:
$$curl \ \mathbf{f} \equiv \nabla \wedge \mathbf{f} \ = \ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \end{vmatrix}$$

Integral Theorems

Gauss' Divergence Theorem:
$$\int_{V} \nabla \cdot \mathbf{f} \, dV = \oint_{\partial V} \mathbf{f} \cdot d\mathbf{A}$$

$$\int_{A} \nabla \wedge \mathbf{f} \cdot d\mathbf{A} = \oint_{\partial A} \mathbf{f} \cdot d\mathbf{s}$$

Volumes

Position vector:
$$\mathbf{r} \equiv (x, y, z)$$

Divergence:
$$\nabla \bullet \mathbf{r} = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$$

$$\int_{V} \nabla \bullet \mathbf{r} \ \mathrm{d}V = \int_{V} 3 \ \mathrm{d}V$$

Use the divergence theorem:

$$\oint_{\partial V} \mathbf{r} \cdot d\mathbf{A} = 3V$$

$$V = \frac{1}{3} \oint_{\partial V} \mathbf{r} \cdot \mathbf{dA}$$

Volumes

Arbitrary volume:

$$V = \frac{1}{3} \oint_{\partial V} \mathbf{r} \cdot d\mathbf{A}$$

General polyhedron:

$$V = \frac{1}{3} \sum_{faces} \mathbf{r}_f \cdot \mathbf{A}_f$$

Tetrahedron

$$V = \frac{1}{6} \mathbf{S}_1 \bullet \mathbf{S}_2 \wedge \mathbf{S}_3$$

$$V = \frac{1}{3} \sum_{faces} \mathbf{r}_f \cdot \mathbf{A}_f$$

$$\mathbf{r}_f = \frac{1}{4} (\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 + \mathbf{r}_4)$$

2-D Case

- Treat as cells of unit depth
- The "volume" of the cell is then the planar area

Outward "face area" vectors derived from Cartesian projections:

(cell boundary traversed anticlockwise)

Cell-Averaged Derivatives

$$\left(\frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{x}} \right)_{av} \equiv \frac{1}{V} \int_{V} \frac{\partial \boldsymbol{\phi}}{\partial \boldsymbol{x}} \, \mathrm{d}V \qquad = \frac{1}{V} \int_{V} \nabla \bullet (\boldsymbol{\phi} \mathbf{e}_{\boldsymbol{x}}) \, \mathrm{d}V \qquad = \frac{1}{V} \oint_{\partial V} \boldsymbol{\phi} \, \, \mathrm{d}A_{\boldsymbol{x}}$$

$$\left(\frac{\partial \phi}{\partial x}\right)_{av} = \frac{1}{V} \sum_{faces} \phi_f A_{fx}$$

$$(\nabla \phi)_{av} = \frac{1}{V} \oint_{\partial V} \phi \ d\mathbf{A}$$

$$(\nabla \phi)_{av} = \frac{1}{V} \sum_{faces} \phi_f \mathbf{A}_f$$

$$(\nabla \phi)_{av} = \frac{1}{V} \sum_{faces} \phi_f \mathbf{A}$$

$$(\nabla \boldsymbol{\phi})_{av} = \frac{1}{V} (\boldsymbol{\phi}_w \mathbf{A}_w + \boldsymbol{\phi}_e \mathbf{A}_e + \boldsymbol{\phi}_s \mathbf{A}_s + \boldsymbol{\phi}_n \mathbf{A}_n + \boldsymbol{\phi}_b \mathbf{A}_b + \boldsymbol{\phi}_t \mathbf{A}_t)$$

$$\frac{\partial \phi}{\partial x} = \frac{\phi_e - \phi_w}{\Delta x} = \frac{\phi_e A - \phi_w A}{A \Delta x} = \frac{1}{V} (\phi_e A_{ex} + \phi_w A_{wx})$$

Example

A tetrahedral cell has vertices at A(2, -1, 0), B(0, 1, 0), C(2, 1, 1) and D(0, -1, 1).

- (a) Find the outward vector areas of all faces. Check that they sum to zero.
- (b) Find the volume of the cell.
- (c) If the values of $\boldsymbol{\phi}$ at the centroids of the faces (indicated by their vertices) are

$$\begin{split} & \phi_{BCD} = 5, \quad \phi_{ACD} = 3, \quad \phi_{ABD} = 4, \quad \phi_{ABC} = 2, \\ & \text{find the volume-averaged derivatives} \quad \left(\frac{\partial \phi}{\partial x}\right)_{av}, \quad \left(\frac{\partial \phi}{\partial y}\right)_{av}, \quad \left(\frac{\partial \phi}{\partial z}\right)_{av}, \quad \left(\frac{\partial \phi}{\partial z}\right)_{av}, \end{split}$$

Example

In a 2-dimensional unstructured mesh, one cell has the form of a pentagon. The coordinates of the vertices are as shown in the figure, whilst the average values of a scalar ϕ on edges a-e are:

$$\phi_a = -7$$
, $\phi_b = 8$, $\phi_c = -2$, $\phi_d = 5$, $\phi_e = 0$

Find:

- (a) the area of the pentagon;
- (b) the cell-averaged derivatives $\left(\frac{\partial \phi}{\partial x}\right)_{av}$, $\left(\frac{\partial \phi}{\partial y}\right)_{av}$

Fitting Complex Boundaries - Blocking Out Cells

Implemented by a source-term modification:

$$a_P \phi_P - \sum_F a_F \phi_F = b_P + s_P \phi_P$$

$$b_p \rightarrow 0$$
, $s_p \rightarrow -(large\ number)$

$$\phi_P = \frac{\sum a_F \phi_F}{large \ number} \approx 0$$

A lot of redundant matrix operations for cells inside block

Fitting Complex Boundaries - Volume-of-Fluid (VOF) Approach

- One way of handling free-surface calculations.
- For moving surfaces, solve a transport equation for fluid fraction f.

Fitting Complex Boundaries - Curvilinear (Body-Fitted) Grids

Curvilinear Grids

$$\frac{\mathrm{d}}{\mathrm{d}t}(amount) + \sum_{faces} (advection + diffusion) = source$$

Diffusion:

- also require derivatives parallel to cell faces

$$-\Gamma \frac{\partial \phi}{\partial n} A \neq -\Gamma \left(\frac{\phi_E - \phi_P}{\Delta_{PE}} \right) A$$

Advection:

- all velocity components contribute to mass flux

Fitting Complex Boundaries - Multi-Block Grids

- Multiple structured blocks
- Grid lines may or may not match at block boundaries
- Arbitrary interfaces allow non-coincident grid vertices
- Sliding grids used for rotating machinery

Fitting Complex Boundaries - Overlapping (Chimera) Grids

Disposition of Grid Cells

- Local refinement where gradients are large:
 - solid boundaries
 - separation, reattachment and impingement points
 - discontinuities (shocks, hydraulic jumps)
- Grid-dependence tests necessary
- Turbulent calculations impose constraints:
 - low-Re calculations: y⁺ < 1 (ideally)
 - wall-function calculations: 30 < y $^{\scriptscriptstyle +}$ $\!<$ 150 (ideally)

Multiple Levels of Grid

- Used to confirm grid independence
- Exploited by multi-grid methods
- Permit estimation of error (and solution improvement) by Richardson extrapolation

Richardson Extrapolation

Order
$$n \Leftrightarrow \operatorname{error} \propto \Delta^n$$

$$\begin{aligned}
\phi_{\Delta} - \phi^* &= C\Delta^n \\
\phi_{2\Delta} - \phi^* &= C(2\Delta)^n
\end{aligned}$$

$$\phi^* = \frac{2^n \phi_\Delta - \phi_{2\Delta}}{2^n - 1}$$

Improved solution by weighted average from two meshes

$$C\Delta^n = \frac{\phi_{2\Delta} - \phi_{\Delta}}{2^n - 1}$$

Estimate of error from difference between solutions on two meshes

Example

A numerical scheme known to be second-order accurate is used to calculate a steady-state solution on two regular Cartesian meshes A and B, where the finer mesh A has half the grid spacing of mesh B. The values of the solution ϕ at a particular point are found to be 0.74 using mesh A and 0.78 using mesh B. Use Richardson extrapolation to:

(a) estimate an improved value of the solution at this point;

(b) estimate the error at this point using the mesh-A solution.

Summary of Grids

- Dictated by:
 - flow geometry
 - solver capabilities
- Grid generator provides vertex and connectivity data
- Vector geometry to find areas, volumes and cell-averages
- Structured/unstructured meshes
- Complex geometries via:
 - blocked-out cells
 - volume-of-fluid methods
 - curvilinear (body-fitted) meshes
 - multiblock grids
 - chimera meshes
- Cell density higher in rapidly-varying regions

•			
•			
•			

Boundary Conditions	
-	
Boundary Conditions	
• Inlet:	
velocity inletstagnation / reservoir inlet	
• Outlet:	
standard outletpressure boundary	
- radiation boundary	
• Wall:	
 non-slip (rough/smooth; moving/stationary; adiabatic/heat-transfer) slip 	
Symmetry plane	
Periodic boundary	
Free surface	
Flow Visualisation	

Uses of Flow Visualisation

- · Understanding flow behaviour
- Locating important regions
- Summarising data
- Optimising design
- Finding reasons for non-convergence
- Publicity

Types of Plot

- x-y line graphs
- Contour plots
- Vector plots
- Streamline plots
- Mesh plots
- Composite plots

_			
-			
-			
-			
_			
_			
-			
-			
-			
-			
_			
-			
-			
-			
-			
_			

x-y Graphs - Assessment

- Simple
- Widely-available software
- · Precise and quantitative
- Direct comparison with experimental data
- · Linear or logarithmic scales
- · Limited view of flow field

Contour Plots

- Isoline (2-d) or isosurface (3-d)
- · Optional smooth or discrete colour shading
- Global view of the flow
- · Geometric spacing of lines indicates gradient
- Not as quantitative as line graphs
- Miss detail in small, but important, flow regions

Vector Plots - Assessment

- Direction and magnitude
- Used to plot vector quantities (velocity and stress)
- May be coloured to indicate magnitude
- Excellent first indication of flow behaviour
- Interpolation often necessary for non-uniform grids
- Not good in flows with wide range of magnitudes
- Miss important detail in small regions
- Orientation effects deceptive in 3d

Calculating Streamlines

3-d: integrate particle path

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{u}$$

2-d: contour the stream function

 $d\psi = u dy - v dx = volume flux$

$u = \frac{\partial \psi}{\partial x}$,	$v = -\frac{\partial \psi}{\partial x}$
∂y	∂x

Example

(a) Two adjacent cells in a 2-dimensional Cartesian mesh are shown below, along with the cell dimensions and some of the velocity components (in m s-1) normal to cell faces. The value of the stream function ψ at the bottom left corner is $\psi_A=0.$ Find the value of the stream function at the other vertices B to F. (You may use either sign convention for the stream function.)

(b) Sketch the pattern of streamlines across the two cells in part (a).

