CSE321: Operating Systems Quiz-1

Name:	
-------	--

Q1) Why must the Long term scheduler select wisely?

[3]

Q2) Find output of the following code:

[6]

```
int x = 63;
int y = 49;
pid t pid1 = fork();
if (pid1 == 0) {
    x += 9;
    y -= 8;
    pid t pid2 = fork();
    if (pid2 == 0) {
       x = 12;
        y += 10;
        printf("Child 1: x = %d", x);
        printf("Child 1: y = %d", y);
    } else {
       x -= 15;
        y += 8;
        printf("Child 2: x = %d", x);
        printf("Child 2: y = %d", y);
    }
} else {
    wait(NULL);
    x += 8;
    y = 16;
    printf("Parent: x = %d", x);
    printf("Parent: y = %d", y);
}
```

•	Gantt Chart	[3]
•	Average Waiting Time & Average Turnaround Time	[2]
	Number of Context Switching	[1]

Process ID	Arrival Time	Burst Time
P1	0	8
P2	3	9
Р3	2	10
P4	1	3
P5	5	5

CSE321: Operating Systems

Quiz-1

Name:	ID:	Section:	

Q1) What are Zombie processes, how can we prevent that?

[3]

Q2) Find output of the following code:

[6]

```
int x = 63;
int y = 89;
pid t pid1 = fork();
if (pid1 == 0) {
    x += 1;
    y = 13;
    pid t pid2 = fork();
    if (pid2 == 0) {
        x = 14;
        y += 17;
        printf("Child 1: x = %d", x);
        printf("Child 1: y = %d", y);
    } else {
       x = 7;
        y += 2;
        printf("Child 2: x = %d", x);
        printf("Child 2: y = %d", y);
    }
} else {
    wait(NULL);
    x += 7;
    y = 7;
    printf("Parent: x = %d", x);
    printf("Parent: y = %d", y);
}
```

•	Gantt Chart	[3]
•	Average Waiting Time & Average Turnaround Time	[2]
•	Number of Context Switching	[1]

Process ID	Arrival Time	Burst Time
P1	0	9
P2	4	4
Р3	9	10
P4	7	2
P5	5	2

CSE321: Operating Systems

Quiz-1

Name:	ID:	Section:	

- Q1) Explain Long term and Short term scheduler, what is the reason for such naming? [3]
- **Q2)** Find output of the following code: [6]

```
int x = 66;
int y = 16;
pid t pid1 = fork();
if (pid1 == 0) {
   x += 15;
    y = 5;
    pid t pid2 = fork();
    if (pid2 == 0) {
        x -= 1;
        y += 17;
        printf("Child 1: x = %d", x);
        printf("Child 1: y = %d", y);
    } else {
       x = 15;
        y += 15;
        printf("Child 2: x = %d", x);
        printf("Child 2: y = %d", y);
    }
} else {
    wait(NULL);
    x += 15;
    y = 10;
    printf("Parent: x = %d", x);
    printf("Parent: y = %d", y);
}
```

•	Gantt Chart	[3]
•	Average Waiting Time & Average Turnaround Time	[2]
•	Number of Context Switching	[1]

Process ID	Arrival Time	Burst Time
P1	0	3
P2	2	10
Р3	2	2
P4	1	6
P5	8	5

CSE321: Operating Systems

Quiz-1

Name:	ID:	Section:	

Q1) What is context switching? What can be the drawbacks of very frequent context switching?

[3]

Q2) Find output of the following code:

[6]

```
int x = 35;
int y = 1;
pid t pid1 = fork();
if (pid1 == 0) {
    x += 19;
    y = 13;
    pid t pid2 = fork();
    if (pid2 == 0) {
        x -= 16;
        y += 8;
        printf("Child 1: x = %d", x);
        printf("Child 1: y = %d", y);
    } else {
        x = 10;
        y += 12;
        printf("Child 2: x = %d", x);
        printf("Child 2: y = %d", y);
    }
} else {
    wait(NULL);
    x += 12;
    y = 14;
    printf("Parent: x = %d", x);
    printf("Parent: y = %d", y);
}
```

•	Gantt Chart	[3]
•	Average Waiting Time & Average Turnaround Time	[2]

•	Number of Context Switching	[1]

Process ID	Arrival Time	Burst Time
P1	0	7
P2	3	4
Р3	6	2
P4	6	8
P5	8	7