Recurrent Neural Networks and State Space Models Lecture 4

Konstantin Yakovlev ¹

¹MIPT Moscow, Russia

MIPT 2024

Recap

- Weight initialisation
 - Zero
 - Random
 - Xavier
- Batch Normalization
 - Layer norm
 - Instance norm
 - Group norm
- Convolutions
 - Forward
 - Backward
 - Parameters

Lecture 4 MIPT 2024 2

Motivation

Input: a sequence of arbitrary length
Output: a sequence of arbitrary
length

Proposition: MLP or CNN will not allow you to get a scalar output given an arbitrary sequence.

RNN for language modeling

The probability of a sequence of a sequence of T words $(w_1, \ldots w_T)$:

$$p(w_1,\ldots,w_T)=\prod_{t=1}^T p(w_t|w_{< t}),$$

Notation

- $\mathbf{x}_t \in \mathbb{R}^d$ input word vector at timestep t.
- $oldsymbol{W}_{x} \in \mathbb{R}^{D_h imes d}$ weights matrix used to condition the input word vector $oldsymbol{x}_t.$
- ullet $\mathbf{W}_h \in \mathbb{R}^{D_h imes D_h}$ weights matrix used to condition the output of the previous time-step \mathbf{h}_{t-1} .
- \mathbf{h}_{t-1} output of the non-linear function at the previous time-step t-1.
- $\sigma(.)$ activation function.
- $y_t = \operatorname{softmax}(\mathbf{W}_y \mathbf{h}_t + \mathbf{b}_y)$ the output probability distribution over the vocabulary; $\mathbf{W}_y \in \mathbb{R}^{|V| \times D_h}, \ \mathbf{b}_y \in \mathbb{R}^{|V|}.$

Lecture 4 MIPT 2024 4 / 37

Recurrent Neural Network (RNN)

Architecture

$$\mathbf{h}_t = \sigma(\mathbf{W}_x \mathbf{x}_t + \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{b}_h)$$
 $\mathbf{z}_t := \mathbf{W}_x \mathbf{x}_t + \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{b}_h$
 $\mathbf{h}_t = \sigma(\mathbf{z}_t)$
 $\mathbf{y}_t = \operatorname{softmax}(\mathbf{W}_y \mathbf{h}_t + \mathbf{b}_y)$

Criterion

$$\mathcal{L}(\mathbf{W}, \mathbf{b}) := -\mathbb{E}_{\mathbf{x}} \sum_{t=1}^{T} \underbrace{\sum_{j=1}^{|V|} \mathbb{I}[y_{t,j} = w_t] \log y_{t,j}}_{\mathcal{L}_t(\mathbf{x}_{< t}, \mathbf{W}, \mathbf{b})} o \min_{\mathbf{W}, \mathbf{b}}$$

Problem

$$\nabla_{\mathbf{W}_{h}}\mathcal{L}=?$$

RNN backpropagation

Deriving a gradient w.r.t. W_h

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{h}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_{t}}{\partial \mathbf{W}_{h}} = \sum_{t=1}^{T} \sum_{k=1}^{t} \frac{\partial \mathcal{L}_{t}}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}_{h}} =$$

$$= \sum_{t=1}^{T} \sum_{k=1}^{t} \frac{\partial \mathcal{L}_{t}}{\partial \mathbf{h}_{t}} \left(\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}} \right) \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}_{h}}.$$

Vanishing/Exploding gradients

$$\|\frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}}\| \leq \|\mathbf{W}_{h}\| \cdot \|\operatorname{diag}(\sigma'(\mathbf{z}_{j-1}))\| \leq \|\mathbf{W}_{h}\| \Rightarrow \|\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}_{j}}{\partial \mathbf{h}_{j-1}}\| \leq \|\mathbf{W}_{h}\|^{t-k}.$$

Vanishing gradients: $\|\mathbf{W}_h\| < 1$. **Problem**: dras- tically reducing the learning quality of the model for far-away words.

Exploding gradients: $\|\frac{\partial \mathbf{h}_j}{\partial \mathbf{h}_{j-1}}\| > 1$. **Problem**: if the gradient value grows extremely large, it causes an overflow.

Lecture 4 MIPT 2024

6/37

Exploding gradients

Problem: if the gradient value grows extremely large, it causes an overflow. **Solution**: gradient clipping.

$$\begin{split} \mathbf{g} &\leftarrow \frac{\partial \mathcal{L}}{\partial \mathbf{W}} \\ \text{if } &\|\mathbf{g}\| \geq \operatorname{threshold} \ \mathbf{then} \\ &\mathbf{g} \leftarrow \frac{\operatorname{threshold}}{\|\mathbf{g}\|} \mathbf{g} \\ \text{end if} \end{split}$$

Lecture 4 MIPT 2024 7

General overview of solutions

MLPs and Convolutional Networks

- Residual connections
- Batch normalisation
- Dropout
- Weight initialization

RNNs

- LSTM/GRU architectures
- Layer normalisation
- Dropout
- Weight parametrization

8/37

Weight Parametrization¹

Challenge: gradient explosion/Vanishing **Solution**: parametrization by unitary matrices Let $\sigma(.) = \text{ReLU}(.)$

$$\|rac{\partial \mathbf{h}_j}{\partial \mathbf{h}_{j-1}}\| = \|\mathrm{diag}(\sigma'(\mathbf{z}_{j-1}))\underbrace{\mathbf{W}_h}_{orthogonal}\| = 1$$

Therefore, we avoid exploding gradients. Effective parametrization in the complex domain:

$$\mathbf{W}_h = \mathbf{D}_3 \mathbf{R}_2 \mathcal{F}^{-1} \mathbf{D}_2 \mathbf{\Pi} \mathbf{R}_1 \mathcal{F} \mathbf{D}_1,$$

- **D** diagonal matrix, $\mathbf{D}_{ii} = e^{iw_j}$
- $\mathbf{R} = \mathbf{I} 2 \frac{\mathbf{v} \mathbf{v}^*}{\|\mathbf{v}\|^2} \text{refection matrix}$
- **Π** − fixed radnom index permutation matrix
- \mathcal{F} Fourier transform

Interestingly, **D**, **R**, Π requires $\mathcal{O}(D_h)$ computations, while \mathcal{F} requires $\mathcal{O}(D_h \log D_h)$. Vanilla RNN requires $\mathcal{O}(D_h^2)$ computation. Activation function:

$$\sigma(z) = \text{ReLU}(|z| + b) \frac{z}{|z|}.$$

¹Arjovsky M., Shah A., Bengio Y. Unitary evolution recurrent neural networks, 2016 👜 🔻 🖘 🖘 🖘

Long-Short-Term Memory network²

Challenge: RNN poorly models long-term dependencies

Solution: introduce a memorization mechanism

$$\begin{aligned} &\mathbf{i}_t = \sigma(\mathbf{W}_{x}^i \mathbf{x}_t + \mathbf{W}_{h}^i \mathbf{h}_{t-1} + \mathbf{b}_i) \\ &\mathbf{f}_t = \sigma(\mathbf{W}_{x}^f \mathbf{x}_t + \mathbf{W}_{h}^f \mathbf{h}_{t-1} + \mathbf{b}_f) \\ &\mathbf{o}_t = \sigma(\mathbf{W}_{x}^o \mathbf{x}_t + \mathbf{W}_{h}^o \mathbf{h}_{t-1} + \mathbf{b}_o) \\ &\tilde{\mathbf{c}}_t = \tanh(\mathbf{W}_{x}^c \mathbf{x}_t + \mathbf{W}_{h}^c \mathbf{h}_{t-1} + \mathbf{b}_c) \\ &\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \tilde{\mathbf{c}}_t \\ &\mathbf{h}_t = \mathbf{o}_t \circ \tanh(\mathbf{c}_t) \end{aligned}$$

FC layer with activation function Elementwise operator Copy Concatenate

where \mathbf{i}_i – input gate, \mathbf{f}_i – forget gate, \mathbf{o}_i – output gate, $\tilde{\mathbf{c}}_t$ – new memory cell, \mathbf{c}_t – final memory cell **Note**: Initialize $\mathbf{b}_f \gg 1$, $\mathbf{b}_i \gg 1$.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Lecture 4

²Hochreiter S., Schmidhuber J. Long Short-Term Memory, 1997

Gated Recurrent Units³

Architecture:

$$\begin{aligned} \mathbf{u}_t &= \sigma(\mathbf{W}_x^u \mathbf{x}_t + \mathbf{W}_h^u \mathbf{h}_{t-1} + \mathbf{b}_u) \\ \mathbf{r}_t &= \sigma(\mathbf{W}_x^r \mathbf{x}_t + \mathbf{W}_h^r \mathbf{h}_{t-1} + \mathbf{b}_r) \\ \tilde{\mathbf{h}}_t &= \tanh(\mathbf{r}_t \circ \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{W}_x \mathbf{x}_{t-1}) \\ \mathbf{h}_t &= (1 - \mathbf{u}_t) \circ \tilde{\mathbf{h}}_t + \mathbf{u}_t \circ \mathbf{h}_{t-1} \end{aligned}$$

- **u**_t update gate
- \mathbf{r}_t reset gate
- $\tilde{\mathbf{h}}_t$ new memory

Note: initialize $\mathbf{b}_u \gg 1$, $\mathbf{b}_r \gg 1$.

Lecture 4 MIPT 2024 11 / 37

³Cho et al. On the Properties of Neural Machine Translation: Encoder-Decoder-Approaches, 2014

Layer Normalization⁴

Challenge: batch normalization can not be applied to the case when the minibatches have to be small.

Solution: introduce layer normalization. Define LN : $\mathbb{R}^D \to \mathbb{R}^D$, with two parameters $\alpha, \beta \in \mathbb{R}^D$.

$$LN(\mathbf{z}; \boldsymbol{\alpha}, \boldsymbol{\beta})_{i} = \frac{z_{i} - \mu}{\sigma} \alpha_{i} + \beta_{i}, \ i = \overline{1, D},$$

$$\mu = \frac{1}{D} \sum_{i=1}^{D} z_{i}, \quad \sigma = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (z_{i} - \mu)^{2}}.$$

LSTM with layer normalization:

$$\begin{pmatrix} \mathbf{f}_t \\ \mathbf{i}_t \\ \mathbf{o}_t \\ \mathbf{g}_t \end{pmatrix} = \mathrm{LN}(\mathbf{W}_h \mathbf{h}_{t-1}; \boldsymbol{\alpha}_1, \boldsymbol{\beta}_1) + \mathrm{LN}(\mathbf{W}_x \mathbf{x}_t; \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2) + \mathbf{b}$$

$$\mathbf{c}_t = \sigma(\mathbf{f}_t) \circ \mathbf{c}_{t-1} + \sigma(\mathbf{i}_t) \circ \tanh(\mathbf{g}_t)$$

$$\mathbf{h}_t = \sigma(\mathbf{o}_t) \circ \tanh(\mathrm{LN}(\mathbf{c}_t; \boldsymbol{\alpha}_3, \boldsymbol{\beta}_2))$$

4□ > 4ⓓ > 4≧ > 4≧ > ½
9<</p>

12 / 37

⁴Ba, Jimmy et al. Layer Normalization, 2016

Deep Bidirectional RNNs

Challenge: Consider the part-of-speech tagging task: $p(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} p(y_i|\mathbf{x}_{1:n})$. A vanilla RNN can not be conditioned on $\mathbf{x}_{i:n}$.

Solution: introduce a Bidirectional recurrent neural network (BRNN).

$$\begin{split} &\vec{\mathbf{h}}_t = \sigma(\vec{\mathbf{W}}_{\mathsf{X}}\mathbf{x}_t + \vec{\mathbf{W}}_{h}\mathbf{h}_{t-1} + \vec{\mathbf{b}}) \\ &\overleftarrow{\mathbf{h}}_t = \sigma(\overleftarrow{\mathbf{W}}_{\mathsf{X}}\mathbf{x}_t + \overleftarrow{\mathbf{W}}_{h}\mathbf{h}_{t+1} + \overleftarrow{\mathbf{b}}) \\ &\mathbf{y}_t = \operatorname{softmax}(\mathbf{W}_y[\overrightarrow{\mathbf{h}}_t, \overleftarrow{\mathbf{h}}_t] + \mathbf{b}_y) \end{split}$$

Extension: multi-layered BRNNs.

(ロト 4년) + 4분 + 4분 + 1분 - 1900은

13 / 37

Naive dropout ⁵

Idea: apply the dropout operator only to the non-recurrent connections.

Model	Training set	Validation set
Non-regularized LSTM	71.6	68.9
Regularized LSTM	69.4	70.5

Variational Dropout⁶

⁶Gal Y. et al. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks, 2016

Variational dropout: theoretical explanation

Approximate Variational Inference in Bayesian Neural Networks: Let $q(\mathbf{w})$ be an approximating variational distribution: model output $\mathbf{f}(\mathbf{x}_i, \mathbf{v})$

$$egin{aligned} & \mathrm{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{X},\mathbf{Y})) \propto \ & -\sum_{i=1}^n \mathbb{E}_{q(\mathbf{w})} \log p(\mathbf{y}_i|\mathbf{f}(\mathbf{x}_i,\mathbf{w})) + \mathrm{KL}(q(\mathbf{w})||p(\mathbf{w}))
ightarrow \min_q \end{aligned}$$

Variational Inference with RNNs:

$$\mathbf{w} = [\mathbf{m}_k]_{k=1}^K = [\mathbf{W}_h, \mathbf{W}_x, \mathbf{W}_y, \mathbf{b}_h, \mathbf{b}_y].$$

Approximating posterior distribution:

$$\begin{aligned} q(\mathbf{w}) &= \prod_{k=1}^{K} q(\mathbf{w}_k), \\ q(\mathbf{w}_k) &= p \mathcal{N}(\mathbf{w}_k | \mathbf{0}, \sigma^2 \mathbf{I}) + (1 - p) \mathcal{N}(\mathbf{w}_k | \mathbf{m}_k, \sigma^2 \mathbf{I}) \end{aligned}$$

Interpretation: Evaluating the model output $\mathbf{f}(\mathbf{x}_i, \hat{\mathbf{w}})$ with a sample $\hat{\mathbf{w}} \sim q(\mathbf{w})$ corresponds to randomly masking rows in each weight matrix during the forward pass if σ is small enough.

Predictive distribution:

$$p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{X},\mathbf{Y}) pprox \mathbb{E}_{q(\mathbf{w})} p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{w}) pprox$$

$$rac{1}{\mathcal{K}}\sum_{j=1}^{J}
ho(\mathbf{y}^*|\mathbf{x}^*,\hat{\mathbf{w}}_j), \quad \hat{\mathbf{w}}_j \sim q(\mathbf{w}).$$

We perform dropout at test time and average results (MC dropout).

ロ ト 4 個 ト 4 差 ト 4 差 ト 0 年 0 夕 (や

Lecture 4

Recurrent Dropout without Memory Loss⁷

Challenge: information loss in memory cells of LSTMs when applying recurrent dropout **Solution**: a novel dropout mechanism $\mathbf{c}_t = \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ d(\tilde{\mathbf{c}}_t)$

Dropout rate	Sampling	Moon et al. (2015)		Gal (2015)		Ours	
Dropout rate	Samping	Valid	Test	Valid	Test	Valid	Test
0.0	_	130.0	125.2	130.0	125.2	130.0	125.2
0.25	per-step	113.0	108.7	119.8	114.2	106.1	100.0
0.5	per-step	124.0	116.5	118.3	112.5	102.8	98.0
0.25	per-sequence	121.0	113.0	120.5	114.0	106.3	100.7
0.5	per-sequence	137.7	126.2	125.2	117.9	103.2	96.8

⁷Semeniuta S. et al. Recurrent Dropout without Memory Loss, 2016

$\mathsf{Zoneout}^8$

Challenge: the repeated application of the same transition operator can make the dynamics of an RNN sensitive to minor perturbations in the hidden state

Solution: regularize transition dynamics

$$egin{aligned} \mathbf{c}_t &= d_t^c \circ \mathbf{c}_{t-1} + (1 - d_t^c) \circ (\mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \mathbf{ ilde{c}}_t), \ \mathbf{h}_t &= d_t^h \circ \mathbf{h}_{t-1} + (1 - d_t^h) \circ (\mathbf{o}_t \circ anh(\mathbf{c}_t)) \end{aligned}$$

⁸Krueger D. et al. ZONEOUT: Regularizing RNNs by Randomly Preserving Hidden Activations, 2017

Lecture 4 MIPT 2024 18 / 37

Application: Image Captioning⁹

Training:

$$-\sum_{(I,S)\in\mathfrak{D}}\log p(s_t|s_{< t},I)\to \min_{\mathbf{W},\mathbf{b}}$$

Inference: generate a sentence given an image

- Sampling: $\hat{s}_t \sim p(s_t|s_{< t}, I)$
- Beam Search: iteratively consider the set of the k best sentences up to time t as candidates to generate sentences of size t+1, and keep only the resulting best k of them

MIPT 2024 19 / 37

⁹Vinyals O. et al. Show and Tell: A Neural Image Caption Generator, 2015

Application: Neural Machine Translation¹⁰

Architecture

An encoder computes a representation **s** for each source sentence and an autoregressive decoder.

$$\log p(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^{|\mathbf{y}|} \log p(y_i|\mathbf{y}_{< i},\mathbf{s})$$

Lecture 4 MIPT 2024

20 / 37

Application: Black-Box Meta Learning¹¹

Consider a "few-shot learning" task

Challenge: fine-tuning is prone to poor learning Solution: Memory-Augmented Neural Networks

Supervised learning: $f: x \mapsto v$,

Supervised meta-learning :
$$f:(\mathfrak{D}_{\mathsf{train}},x)\mapsto y.$$

$$oldsymbol{ heta}^* = \arg\min_{ heta} \mathbb{E}_{\mathfrak{D}} \sum_{t=1}^{|\mathcal{D}|} \log \underbrace{oldsymbol{p}_{ heta}}_{\mathsf{RNN}} (y_t | \mathbf{x}_t, \mathfrak{D}_{1:t-1}).$$

Retrieving a memory: Given a key $\mathbf{k}_t = f(\mathbf{x}_t)$

$$\mathbf{w}_t^{\mathsf{read}}(i) = \frac{\exp(\sin(\mathbf{k}_t, \mathbf{M}_t(i)))}{\sum_j \exp(\sin(\mathbf{k}_t, \mathbf{M}_t(j)))}, \quad \mathbf{k}_t \in \mathbb{R}^d,$$

$$\mathbf{r}_t = \sum_i \mathbf{w}_t^{\mathsf{read}}(i) \mathbf{M}_t(i), \quad \mathbf{M}_t \in \mathbb{R}^{m imes d}.$$

Retrieving a memory: Given a key
$$\mathbf{k}_t = f(\mathbf{x}_t)$$
 $\mathbf{w}_t^{\text{usage}} = \gamma \mathbf{w}_{t-1}^{\text{usage}} + \mathbf{w}_t^{\text{read}} + \mathbf{w}_t^{\text{write}},$ $\mathbf{w}_t^{\text{write}} = \alpha \mathbf{w}_{t-1}^{\text{read}} + (1 - \alpha) \mathbf{w}_{t-1}^{\text{least-used}},$ $\mathbf{w}_t^{\text{read}}(i) = \frac{\exp(\sin(\mathbf{k}_t, \mathbf{M}_t(i)))}{\sum_j \exp(\sin(\mathbf{k}_t, \mathbf{M}_t(j)))},$ $\mathbf{k}_t \in \mathbb{R}^d,$ $\mathbf{w}_t^{\text{least-used}}(i) = \begin{cases} 0, & \mathbf{w}_t^{\text{usage}}(i) > \text{bottom}_n(\mathbf{w}_t^{\text{usage}}) \\ 1, & \text{otherwise} \end{cases}$ $\mathbf{r}_t = \sum \mathbf{w}_t^{\text{read}}(i) \mathbf{M}_t(i),$ $\mathbf{M}_t \in \mathbb{R}^{m \times d}.$ $\mathbf{M}_t(i) = \mathbf{M}_{t-1}(i) + \mathbf{w}_t^{\text{write}}(i) \mathbf{k}_t$

Lecture 4 **MIPT 2024** 21 / 37

¹¹Santoro A. et. al, One-shot Learning with Memory-Augmented Neural Networks, 2016

Memory-Augmented Neural Network: evaluation

(a) LSTM, five random classes/episode, one-hot vector labels

(b) MANN, five random classes/episode, one-hot vector labels

	INSTANCE (% CORRECT)					
MODEL	1 ST	2^{ND}	3^{RD}	4^{TH}	5 TH	10^{TH}
HUMAN	34.5	57.3	70.1	71.8	81.4	92.4
FEEDFORWARD	24.4	19.6	21.1	19.9	22.8	19.5
LSTM	24.4	49.5	55.3	61.0	63.6	62.5
MANN	36.4	82.8	91.0	92.6	94.9	98.1

Experimental setup: fewshot classification tasks of Ominiglot images.

Results: The proposed MANN architecture substantially outperforms the baselines: feedforward RNN, LSTM, and human.

シック モー・モト・ロト・ロト

Lecture 4 MIPT 2024 22 / 37

HyperNetworks¹²

Idea: the normalization policy is fixed (ex. Layer Normalization). The learnable policy would give an increase in prediction accuracy.

Solution: adaptive weight generation with a hypernetwork.

$$\begin{split} &\mathbf{h}_t = \sigma(\mathbf{d}_h(\mathbf{z}_h) \odot \mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{d}_x(\mathbf{x}_t) \odot \mathbf{W}_x \mathbf{x}_t + \mathbf{b}(\mathbf{z}_b)), \\ &\mathbf{d}_h(\mathbf{z}_h) = \mathbf{W}_{hz} \mathbf{z}_h, \quad \mathbf{d}_x(\mathbf{z}_x) = \mathbf{W}_{xz} \mathbf{z}_x, \\ &\mathbf{b}(\mathbf{z}_b) = \mathbf{W}_{bz} \mathbf{z}_b + \mathbf{b}_0, \\ &\hat{\mathbf{x}}_t = [\mathbf{h}_{t-1}, \mathbf{x}_t], \\ &\hat{\mathbf{h}}_t = \sigma(\hat{\mathbf{W}}_h \hat{\mathbf{h}}_{t-1} + \hat{\mathbf{W}}_x \hat{\mathbf{x}}_{t-1} + \hat{\mathbf{b}}), \\ &\mathbf{z}_h = \hat{\mathbf{W}}_{hh} \hat{\mathbf{h}}_{t-1} + \hat{\mathbf{b}}_{hh}, \\ &\mathbf{z}_x = \hat{\mathbf{W}}_{hx} \hat{\mathbf{h}}_{t-1} + \hat{\mathbf{b}}_{hx}, \\ &\mathbf{z}_b = \hat{\mathbf{W}}_{hb} \hat{\mathbf{h}}_{t-1}. \end{split}$$

HyperRNNs architecture

Lecture 4

MIPT 2024 23 / 37

¹²Ha D. et. al, HyperNetworks, 2016

HyperNetworks: evaluation

Evaluation on Penn Treebank

Model ¹	Test	Validation	Param Count
ME n-gram (Mikolov et al., 2012)	1.37		
Batch Norm LSTM (Cooijmans et al., 2016)	1.32		
Recurrent Dropout LSTM (Semeniuta et al., 2016)	1.301	1.338	
Zoneout RNN (Krueger et al., 2016)	1.27		
HM-LSTM ³ (Chung et al., 2016)	1.27		
LSTM, 1000 units ²	1.312	1.347	4.25 M
LSTM, 1250 units ²	1.306	1.340	6.57 M
2-Layer LSTM, 1000 units ²	1.281	1.312	12.26 M
Layer Norm LSTM, 1000 units ²	1.267	1.300	4.26 M
HyperLSTM (ours), 1000 units	1.265	1.296	4.91 M
Layer Norm HyperLSTM, 1000 units (ours)	1.250	1.281	4.92 M
Layer Norm HyperLSTM, 1000 units, Large Embedding (ours)	1.233	1.263	5.06 M
2-Layer Norm HyperLSTM, 1000 units	1.219	1.245	14.41 M

Layer Norm HyperLSTM significantly outperforms Layer Norm LSTM.

The normalized histogram plots of the hidden states

The normalization policy of HyperLSTM appears to be doing something very different from statistical normalization.

Lecture 4 MIPT 2024 24 / 37

Mixture-of-Experts Laver¹³

Challenge: an increase in model capacity is General overview accompanied by an increase in computational cost.

Solution: Sparsely-Gated Mixture-of-Experts Layer (MoE).

Mixture-of-Experts layer

$$y = \sum_{i=1}^{n} \underbrace{G(x)_{i}}_{\text{gating network}} \cdot \underbrace{E_{i}(x)}_{\text{expert network}}$$

Noisy Top-k Gating Network

$$egin{aligned} \mathbf{G}(\mathbf{x}) &= \operatorname{softmax}(\operatorname{topk}(\mathbf{x}\mathbf{W}_g + \operatorname{softplus}(\mathbf{x}\mathbf{W}_{\mathsf{noise}})\epsilon)), \ \epsilon &\sim \mathcal{N}(\mathbf{0}_n, \mathbf{I}_n). \end{aligned}$$

$$\operatorname{topk}(\mathbf{v}) = \begin{cases} v_i, & v_i \in \operatorname{\mathsf{max}}_k(\mathbf{v}), \\ -\infty, \text{ otherwise} \end{cases}$$

The noise term helps with load balancing.

Lecture 4 **MIPT 2024** 25 / 37

¹³Shazeer N. et. al, Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017

Mixture-of-Experts: evaluation

Machine translation WMT14(En-Fr)

Model	Test	Test	ops/timenstep	Total	Training
	Perplexity	BLEU		#Parameters	Time
MoE with 2048 Experts	2.69	40.35	85M	8.7B	3 days/64 k40s
MoE with 2048 Experts (longer training)	2.63	40.56	85M	8.7B	6 days/64 k40s
GNMT (Wu et al., 2016)	2.79	39.22	214M	278M	6 days/96 k80s
GNMT+RL (Wu et al., 2016)	2.96	39.92	214M	278M	6 days/96 k80s
PBMT (Durrani et al., 2014)		37.0			-
LSTM (6-layer) (Luong et al., 2015b)		31.5			
LSTM (6-layer+PosUnk) (Luong et al., 2015b)		33.1			
DeepAtt (Zhou et al., 2016)		37.7			
DeepAtt+PosUnk (Zhou et al., 2016)		39.2			

Each MoE layer contains 2048 feed-forward experts. There is a significant gain in BLEU score on top of the strong baselines.

Perplexity on WMT14(En-Fr)

As we increased the number of experts to approach 2048, the test perplexity of our model continued to improve.

26 / 37

Softmax Bottleneck¹⁴

Language Modeling with Softmax

$$\begin{split} & p(x_t|c) = \operatorname{softmax}(\mathbf{h}_c^\top \mathbf{E}_w), \\ & c = x_{< t}, \quad \mathbf{E}_w \in \mathbb{R}^{d \times |\mathcal{V}|}, \\ & \mathbf{H}_\theta = \begin{pmatrix} \mathbf{h}_{c_1}^\top \\ \dots \\ \mathbf{h}_{c_N}^\top \end{pmatrix}, \quad \mathbf{W}_\theta = \begin{pmatrix} \mathbf{w}_1^\top \\ \dots \\ \mathbf{w}_{|\mathcal{V}|}^\top \end{pmatrix}, \\ & \mathbf{A} = \|\log \pi(x_i|c_i)\|, \quad i = \overline{1, N}, j = \overline{1, |\mathcal{V}|}, \end{split}$$

where $\{c_i\}_{i=1}^N$ are all possible context in the natural language and $\pi(.|.)$ is data distribution.

Matrix factorization problem

$$\boldsymbol{H}_{\boldsymbol{\theta}}\boldsymbol{W}_{\boldsymbol{\theta}}^{\top} = \boldsymbol{A}', \quad \boldsymbol{A}' = \boldsymbol{A} + \underbrace{\operatorname{diag}(\boldsymbol{\lambda})}_{N \times N} \boldsymbol{1}_{|\mathcal{V}|}^{\top}.$$

Proposition (Softmax Bottleneck): if $d < \operatorname{rank}(A) - 1$ for any θ , there exists a context c such that $\pi(.|c) \neq p(.|c)$. **Solution: Mixture of Softmaxes**

$$p(x_t|c) = \sum_{k=1}^K \pi(c)_k \operatorname{softmax}(\mathbf{h}_{c,k}^\top \mathbf{E}_w),$$

$$\sum_{k=1}^k \pi(c)_k = 1, \quad \hat{\mathbf{A}} = \log(\sum_{k=1}^K \mathbf{\Pi}_k \exp(\mathbf{H}_{ heta,k} \mathbf{W}_{ heta}^{ op})).$$

high-rank

Lecture 4 MIPT 2024 27 / 37

 $^{^{14}\}mbox{Yang Z. et. al, Breaking the Softmax Bottleneck: A High-Rank RNN Language Model, 2018}$

Softmax Bottleneck: evaluation

Character-level Language Modeling

Model		#Param	Train	Validation	Test
Softmax	(hid1024, emb1024)	8.42M	1.35	1.41	1.49
MoS-7	(hid910, emb510)	8.45M	1.35	1.40	1.49
MoS-7	(hid750, emb750)	8.45M	1.38	1.42	1.50
MoS-10	(hid860, emb452)	8.43M	1.35	1.41	1.49
MoS-10	(hid683, emb683)	8.43M	1.38	1.42	1.50

The models performs on par with each other, indicating that the softmax bottleteck problem diminishes when rank(A) is relatively small.

Language modeling on Penn Treebank

Model	#Param	Validation	Test
Mikolov & Zweig (2012) – RNN-LDA + KN-5 + cache	9M [‡]	-	92.0
Zaremba et al. (2014) – LSTM	20M	86.2	82.7
Gal & Ghahramani (2016) – Variational LSTM (MC)	20M	-	78.6
Kim et al. (2016) - CharCNN	19M	-	78.9
Merity et al. (2016) - Pointer Sentinel-LSTM	21M	72.4	70.9
Grave et al. (2016) - LSTM + continuous cache pointer [†]	-	-	72.1
Inan et al. (2016) - Tied Variational LSTM + augmented loss	24M	75.7	73.2
Zilly et al. (2016) – Variational RHN	23M	67.9	65.4
Zoph & Le (2016) – NAS Cell	25M	-	64.0
Melis et al. (2017) – 2-layer skip connection LSTM	24M	60.9	58.3
Merity et al. (2017) – AWD-LSTM w/o finetune	24M	60.7	58.8
Merity et al. (2017) – AWD-LSTM	24M	60.0	57.3
Ours – AWD-LSTM-MoS w/o finetune	22M	58.08	55.97
Ours – AWD-LSTM-MoS	22M	56.54	54.44
Merity et al. (2017) - AWD-LSTM + continuous cache pointer [†]	24M	53.9	52.8
Krause et al. (2017) - AWD-LSTM + dynamic evaluation [†]	24M	51.6	51.1
Ours – AWD-LSTM-MoS + dynamic evaluation [†]	22M	48.33	47.69

The proposed approach outperforms the baselines by a huge margin.

28 / 37

The Challenges of Continuous Time Series¹⁵

Difficult challenges:

- Handle information across long distances
- Understand the <u>continuous</u> nature of the data (insensitivity to the resolution)
- Be very <u>efficient</u>, at both <u>training</u> and inference time

Fast Discrete Representations

29 / 37

¹⁵Structured State Spaces for Sequence Modeling (S4)

Three Paradigms for Time Series¹⁶

Recurrence

- ✓ Efficient inference (constant-time state updates)
- X Slow to train (lack of parallelizability)
- X Vanishing/exploding gradient problem for long sequences

Convolutions

- ✓ Efficient training (parallelizable)
- × Slow in online or autoregressive settings (has to recompute over entire input for every new datapoint)
- × Fixed context size

Continuous-time

- ✓ Automatically handles irregularly-sampled data
- Mathematically tractable to analyze
- Extremely slow at both training and inference

The State Space Sequence Model¹⁷

Definition ((Linear Time Invariant) State Space Model). Given an input signal $u(t) \in \mathbb{R}^M$, an output signal $y(t) \in \mathbb{R}^M$, and a latent state $x(t) \in \mathbb{R}^N$:

$$x'(t) = \underbrace{\mathbf{A}}_{N \times N} x(t) + \underbrace{\mathbf{B}}_{N \times M} u(t)$$
$$y(t) = \underbrace{\mathbf{C}}_{M \times N} x(t)$$

Or, equivalently, $y = \mathrm{SSM}(\mathbf{A}, \mathbf{B}, \mathbf{C})(u)$. **Discretization**. Given a stepsize parameter $\Delta \in \mathbb{R}_{++}$. Then, using the Euler's method,

$$x_{k} = x_{k-1} + \Delta(\mathbf{A}x_{k-1} + \mathbf{B}u_{k})$$

$$= \underbrace{(\mathbf{I} + \Delta\mathbf{A})}_{\overline{\mathbf{A}}} x_{k-1} + \underbrace{(\Delta\mathbf{B})}_{\overline{\mathbf{B}}} u_{k}$$

The convolutional representation (Efficient Training). Assume that $x_{-1} = 0$.

$$\begin{aligned} x_k &= \overline{\mathbf{A}}^k \overline{\mathbf{B}} u_0 + \overline{\mathbf{A}}^{k-1} \overline{\mathbf{B}} u_1 + \ldots + \overline{\mathbf{B}} u_k, \\ y_k &= \mathbf{C} \overline{\mathbf{A}}^k \overline{\mathbf{B}} u_0 + \mathbf{C} \overline{\mathbf{A}}^{k-1} \overline{\mathbf{B}} u_1 + \ldots + \mathbf{C} \overline{\mathbf{B}} u_k, \\ y &= u * \overline{\mathbf{K}}, \quad \overline{\mathbf{K}} = (\mathbf{C} \overline{\mathbf{B}}, \ldots, \mathbf{C} \overline{\mathbf{A}}^k \overline{\mathbf{B}}, \ldots) \end{aligned}$$

Definition. We call $\overline{\mathbf{K}}$ by a State Space Kernel (SSK).

4 D > 4 B > 4 E > 4 E > E 990

¹⁷Albert Gu, Modeling sequences with structured state spaces

The State Space Sequence Model

Convolution Complexities. For a sequence of length L and a Kernel of length K:

- A naive convolution has complexity O(LK)
- an FFT-convolution has complexity $O((L+K)\log(L+K))$.

Note: the statement is true for an instantiated \overline{K} , however, generating it can be highly non-trivial.

Lemma (Gating Mechanism of RNNs)

A gated recurrence

$$x_t = (1 - \sigma(z))x_{t-1} + \sigma(z)u_t,$$

where z is an arbitrary real number, can be viewed as the Backward-Euler discretization of a linear ODE x'(t) = -x(t) + u(t).

Proof.

First, write down the discretization $x_t - x_{t-1} = \exp(z)(-x_t + u_t)$. Hence, we get the recurrence, setting $\Delta = \exp(z)$.

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | かく()

32 / 37

Computational Difficulty of SSM

Challenge (Convolutional mode computation). The SSM has optimal convolutional mode if the SSK can be computed in $\tilde{O}(L+N)$.

Proposition (Naive computation). Suppose that $\mathbf{B} \in \mathbb{R}^{N \times 1}$. Then, for a general matrix $\overline{\mathbf{A}}$ it takes $O(LN^2)$ to compute

$$\overline{\mathbf{K}} = (\overline{\mathbf{B}}, \dots, \overline{\mathbf{A}}^{L-1}\overline{\mathbf{B}}) \in \mathbb{R}^{N \times L}.$$

Challenge (Recurrent mode computation). The SSM has optimal recurrent mode if its Matrix-Vector Multiplication can be comuted in O(N).

S4D: Diagonal SSM. If **A** is diagonal, computing the SSK becomes simple ($\mathbf{B} \in \mathbb{R}^{N \times 1}$, $\mathbf{C} \in \mathbb{R}^{1 \times N}$):

₹=

$$[\overline{\mathbf{B}}_{0}\mathbf{C}_{0},\ldots,\overline{\mathbf{B}}_{N-1}\mathbf{C}_{N-1}]\begin{pmatrix} 1 & \overline{\mathbf{A}}_{0} & \ldots & \overline{\mathbf{A}}_{0}^{L-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \overline{\mathbf{A}}_{N-1} & \ldots & \overline{\mathbf{A}}_{N-1}^{L-1} \end{pmatrix}$$

Note: Vandermonde are well-studied and the convolution can be implemented in $\tilde{O}(N+L)$ time and O(N+L) space.

(ロ) (回) (目) (目) (目) (O)

33 / 37

Sequence Model Complexities

	Convolution	Recurrence	S4
Parameters	LH	<u>H²</u>	<u>H²</u>
Training	$\tilde{L}H(B+H)$	BLH^2	<u> BĨH + BHĤ</u>
Space	BLH	BLH	BLH
Parallel	✓	×	\checkmark
Inference	LH ²	$\underline{H^2}$	<u>H²</u>

Table: Complexity of various sequence models in terms of sequence length (L), batch size (B), and hidden dimension (H);

34 / 37

HIPPO: Continuous Memory with Optimal Polynomial Projections

Research Question: How can SSMs be instantiated to be able to model long-range dependencies?

HIPPO Problem Setup: Given an input function $f(t) \in \mathbb{R}$. As for the quality of an approximation, introduce an inner product

$$\langle f, g \rangle_{\mu} = \int_0^{\infty} f(x)g(x)d\mu(x),$$

So the corresponding norm $\|f\|_{L_2(\mu)} = \langle f, f \rangle^{1/2}$. Given an orthogonal basis $\{g_n\}_{n=1}^N$. The task is to seek for $g^{(t)} \in \mathcal{G} := \lim(g_1, \dots, g_N)$ that minimizes $\|f_{\leq t} - g^{(t)}\|_{L^2(\mu_t)}$ for μ_t supported on $(-\infty, t]$.

Additionally, we get an expression for the optimal coefficients $c_n^{(t)} = \langle f_{\leq t}, g_n \rangle_{\mu^{(t)}}$.

Example: HIPPO-LegS (Scaled Legendre measures). Let $\mu^{(t)}:=\frac{1}{t}\mathbf{1}_{[0,t]}$ and

$$g_n(x;t) := (2n+1)^{1/2} P_n(2x/t-1),$$

where P_n are the basic Legendre polynomials.

Theorem

$$c'(t) = -\frac{1}{t} \mathbf{A}c(t) + \frac{1}{t} \mathbf{B}f(t), \ \mathbf{B}_n = (2n+1)^{1/2},$$
$$\mathbf{A}_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2}, & n > k \\ n+1, & n=k \\ 0, & n < k \end{cases}$$

35 / 37

HIPPO: effectiveness and efficiency

Remark: Matrix-Vector multiplication with HIPPO-LegS matrix can be computed in O(N) operations.

Theorem

Let $f: \mathbb{R}_+ \to \mathbb{R}$ be a differentiable function and let $g^{(t)}$ be its projection at time t by HIPPO-LegS with maximum polynomial degree N-1. If f has order-k bounded derivatives then

$$||f_{\leq t} - g^{(t)}||_{L_2(\mu^{(t)})} = O(t^k N^{-k+1/2}).$$

Empirical Evaluation on Character Trajectory classification on out-of-distribution timescales.

	Model	Sampling R	ate Change	Missing Values + Timestamps		
	model	$100 \mathrm{Hz} o 200 \mathrm{Hz}$	$200 \mathrm{Hz} \rightarrow 100 \mathrm{Hz}$	Upscale	Downscale	
	LSTM [86]	31.9	28.2	24.4	34.9	
L	GRU [31]	25.4	64.6	28.2	27.3	
ı	GRU-D [23]	23.1	25.5	05.5	07.7	
1	ODE-RNN [176]	41.8	31.5	04.3	07.7	
ı	NCDE [107]	44.7	11.3	63.9	69.7	
ı	LMU [218]	06.0	13.1	39.3	67.8	
ı	HIPPO-LegS	88.8	90.1	94.5	94.9	

Evaluation on a toy function approximation.

Method	MSE	Speed (elements / s)
LSTM	0.25	35,000
HIPPO-LegS	0.02	470,000

(ロト 4回 ト 4 恵 ト 4 恵 ト) 恵 | 釣り(で)

Lecture 4 MIPT 2024 36 / 37

Summary

- RNN for Language modeling
- RNN backpropagation and related issues
- LSTM and GRU networks
- Layer Normalization and dropout mechanisms
- Applications: Neural Nachine Translation, Image Captioning, Black-Box Meta Learning
- HyperNetworks
- Mixture-of-Experts Layer
- Softmax Bottleneck
- State Space Models: S4D and HIPPO

37 / 37