

Contents

1	General approach			
	1.1	Definition	1	
	1.2	Notation	1	
	1.3	Specific Linear Maps	1	
		1.3.1 Definition	1	
	1.4	Necessary Condition	1	
		1.4.1 Proof	1	
2	Kernel and Images			
	2.1	Definition	2	
	2.2	Graphics representation	2	
	2.3	Example	2	
	2.4	Proposition	3	
3	Projects and Symmetries 3			
	3.1	Reminder:	3	
		3.1.1 Definition of supllementary subspaces	3	
	3.2	Proposition	3	
	3.3	Definition	4	
4	Rar	nk Nullity Theorem (RNT)	4	
	4.1	Definition of Rank	4	
	4.2	Proposition	4	
	4.3	Theorem (Rank Nullity Theorem)	4	
	4.4	Corollary	5	
	4.5	Involvement	5	
	4.6			

1 General approach

1.1 Definition

Let E, F two $\mathbb{K} - VS$, and f a mapping from E to F. We say that f is a linear (or f is a linear map) if:

$$\forall (\alpha, X, Y) \in \mathbb{K} \times E \times E, f(\alpha \cdot X + Y) = \alpha \cdot f(X) + f(Y)$$

$$\iff$$

$$\forall (\alpha, \beta, X, Y) \in \mathbb{K} \times \mathbb{K} \times E \times E, f(\alpha \cdot X + \beta \cdot Y) = \alpha \cdot f(X) + \beta \cdot f(Y)$$

1.2 Notation

We denote L(E, F) the set of all linear maps from E to F.

1.3 Specific Linear Maps

1.3.1 Definition

- 1. Let $f \in \mathcal{L}(E, F)$: we say f is an endomorphism if E = F we then denote $\mathcal{L}(E)$ the set of all endomorphism of E.
- 2. Let $f \in \mathcal{L}(E, F)$: we say f is an isomorphism if f is bijective.
- 3. Let $f \in \mathcal{L}(E, F)$: we say f is an automorphism if f is an endomorphism and an isomorphism. (E = F and bijective)

1.4 Necessary Condition

$$f \in \mathcal{L}(E, F) \Longrightarrow f(0_E) = 0_F$$

1.4.1 **Proof**

Let
$$X \in E$$
 Let $X \in E$
$$f(0_E) = f(0_E \times X)$$

$$f(0_E) = 0_F \times f(X)$$

$$f(0_E) = 0_F$$

$$f(0_E) = 0_F$$

$$f(0_E) = 0_F$$

2 Kernel and Images

2.1 Definition

Let E and F two $\mathbb{K} - VS$ and $f \in \mathcal{L}(E, F)$. Then:

1. We call kernel of f and denote Ker(f) the subset of E defined as follows:

$$Ker(f) = \{X \in E, f(X) = 0_F\} = f^{-1}(\{0_F\})$$

Note: $f^{-1}()$ is NOT the inverse of f beacause f is not necessarily bijective.

2. We call image of f and denote Im(f) the subset of F defined as follows:

$$Im(f)=\{f(X),X\in E\}=\{Y\in F,\exists X\in E,f(X)=Y\}$$

2.2 Graphics representation

Ker(f): Vector Space of A

2.3 Example

$$f: R^{2} \longrightarrow R^{3}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x \\ 0 \\ y \end{pmatrix}$$

$$(1) f \in \mathcal{L}(R^{2}, R^{3})?$$

$$(2) \text{ Kerf} = ?$$

$$(3) \text{ Imf} = ?$$

1 Necessary condition:
$$f(0_E) = 0_F : f(0_{R^2}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
?

$$\forall (\alpha, X, Y) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2, X = \begin{pmatrix} x \\ y \end{pmatrix} \text{ and } Y = \begin{pmatrix} x' \\ y' \end{pmatrix}, x, y, x', y' \in \mathbb{R}$$

$$f(\alpha \cdot X + Y) = \begin{pmatrix} \alpha \cdot x + x' \\ \alpha \cdot y + y' \end{pmatrix} = \begin{pmatrix} \alpha \cdot x + x' \\ 0 \\ \alpha \cdot y + y' \end{pmatrix} = \alpha \cdot \begin{pmatrix} x \\ 0 \\ y \end{pmatrix} + \begin{pmatrix} x' \\ 0 \\ y' \end{pmatrix} = \alpha \cdot f(X) + f(Y)$$

so
$$\widehat{1}$$
 $f \in \mathcal{L}(R^2, R^3)$ \checkmark

2.4 Proposition

1. Let $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$. Then:

$$g \circ f \in \mathcal{L}(E,G)$$

- 2. If f is bijectif then f^{-1} is bijective and $f^{-1} \in \mathcal{L}(F, E)$
- 3. $\mathcal{L}(E, F)$ is a $\mathbb{K} VS$:

$$\mathcal{L}(E,F)$$
: $E \longrightarrow F$
 $X \mapsto B_F \in \mathcal{L}(F,E)$ $\forall (\alpha, f, g) \in \mathbb{K} \times \mathcal{L}^2(E,F)$
 $\alpha \cdot f + g \in \mathcal{L}(E,F)$

- 4. Let $f \in \mathcal{L}(A, B)$:
 - f is injective $\iff Ker(f) = \{0_A\}$
 - f is surjective $\iff Im(f) = B$

3 Projects and Symmetries

3.1 Reminder:

3.1.1 Definition of supllementary subspaces

Let E a \mathbb{K} - VS. Let F and G two supllementary \mathbb{K} - VSS of E:

$$E = F \oplus G \iff \forall X \in E, \exists ! (X_F, X_G) \in F \times G, X = X_F + X_G$$

3.2 Proposition

Let us consider:

$$p: \qquad E \xrightarrow{\qquad \qquad } F \subset E$$

$$X \longmapsto^{p} X_{F} \stackrel{E}{\longmapsto} X_{F}$$

- 1. $p \in \mathcal{L}(E)$
- 2. $p \circ p \ (= p^2) = p$
- $3. \quad \bullet \ Ker(p) = G$
 - Im(p) = F

3.3 Definition

We call projector from \mathbb{K} - VS E over \mathbb{K} - VS F, any endomorphism p of E such that $p \circ p = p$. (We often say that p is a projector over F parallel of/alongside G.)

$$Im(p) \oplus Ker(p) = E$$

Let us consider:

$$S:$$
 $E \xrightarrow{} E$ $X \longmapsto (2P - Id_E)(X) = 2p(x) - X$

- 1. $S \in \mathcal{L}(E)$
- 2. $\forall X \in E, S(X) = X_E X_G$
- 3. $S \circ S = Id_E$

4 Rank Nullity Theorem (RNT)

4.1 Definition of Rank

Let E and F two finite dimensional vector spaces. We call rank of any mapping f from $\mathcal{L}(E,F)$ and denote rank(f) the dimension of Im(f):

$$rank(f) = dim(Im(f))$$

4.2 Proposition

Let E a finite dimensional \mathbb{K} - VS such that $B = (U_1, U_2, \dots, U_n)$ a basis of E. Let F a \mathbb{K} - VS. Then let $f \in \mathcal{L}(E, F)$. We have:

$$Im(f) = sp(\{f(U_1), f(U_2), \dots, f(U_n)\})$$

We then deduce the following theorem:

4.3 Theorem (Rank Nullity Theorem)

Let E a finite dimensional VS and $f \in \mathcal{L}(E, F)$. Then:

$$dim(\underline{E}) = dim(Ker(\underline{f})) + \underbrace{rank(\underline{f})}_{dim(Im(\underline{f}))}$$

4.4 Corollary

Let $f \in \mathcal{L}(E, F)$ where E and F two finite dimensional vector spaces.

If
$$dim(E) = dim(F) (\iff dim(Ker(f)) = 0 \text{ or } dim(Im(f)) = 0)$$

 \implies

f injective \iff f surjective \iff f bijective

4.5 Involvement

$$f \text{ injective} \iff Ker(f) = \{0_E\}$$

$$[f \text{ injective} \implies dim(E) \leq dim(F)] \iff [dim(E) > dim(F) \implies \text{f not injective}]$$

$$f \text{ surjective} \iff Im(f) = F$$

$$[f \text{ surjective} \implies dim(E) \geq dim(F)] \iff [dim(E) < dim(F) \implies \text{f not surjective}]$$

4.6 Proof of corollary

Hypothesis: dim(E) = dim(F)

f injective
$$\iff Ker(f) = \{0_E\}$$

 $\iff dim(Ker(f)) = 0$
 $\iff dim(E) = dim(Ker(f)) + dim(Im(f))$
 $\iff dim(E) = dim(Im(f))$
 $\iff dim(F) = dim(Im(f))$
f surjective $\iff Im(f) = F$