32

1	Claims	
2		·
3	1.	A cardiovascular stent comprising:
4		a generally tubular body, and
5		a synthetic one-way valve capable of moving
6		from a first open position to a second closed
7		position, wherein, in use, movement of fluid in
8		a first direction through the stent causes the
9		valve to adopt the open position and movement
10		of fluid in a second opposite direction causes
11		the valve to adopt the closed position.
12		·
13	2.	A cardiovascular stent as claimed in claim 1.
14		wherein the valve is formed from resilient
15		material.
16		
17	3.	A cardiovascular stent as claimed in claim 2
18		wherein the valve is constructed such that, in
19		use, movement of fluid in the first direction
20		through the stent urges the resilient material
21		of the valve to adopt a configuration in which
22		the aperture defined by the material is
23		substantially circular in cross-section thereby
24		enabling increased fluid to flow through the
25		valve and thus through the stent.
26		
27	4.	A cardiovascular stent as claimed in claim 2 or
28		3 wherein the valve comprises two leaflets
29		formed from resilient material and wherein, in
30		use, when fluid is flowing in the second
31		direction through the stent or when no fluid is

flowing through the stent, the leaflets are

WO 2004/019814 PCT/GB2003/003810

31

1		urged towards each other such that the passage
2		of fluid is minimised.
3		
4	5.	A cardiovascular stent as claimed in any one of
5		the preceding claims, wherein the valve
6		comprises at least one cantilever member having
7		a first end and a second end, said cantilever
8		member being pivoted at said first end to the
9		stent, the cantilever member being resiliently
10		pivotable from a first extended position in
11		which the valve is in a closed position to a
12		second position in which the valve is in the
13		open position.
14		
15	6.	A cardiovascular stent as claimed in claim 5
16		wherein the valve comprises two cantilever
17		members.
18		
19	7.	A cardiovascular stent as claimed in any one of
20		the preceding claims wherein the stent is
21		constructed such that it can be expanded in
22		diameter from a "collapsed" configuration to an
23		"expanded" configuration, wherein in the
24		collapsed configuration, the stent is of
25		narrower diameter than in the expanded
26		configuration.
27		:
28	8.	A cardiovascular stent as claimed in claim 7
29		when dependent on claim 5 or claim 6 wherein on
30		expansion of the diameter of the stent, the
31		second end of the cantilever member pivots to
32		an extended position in which the material

1		forming the valve and defining the aperture of
2		the valve when in the open position is pulled
3		such that the area of the aperture formed by
4		the material is decreased.
5		
6	9.	A cardiovascular stent as claimed in any one of
7		the preceding claims wherein the stent is
8		resiliently deformable at one or both ends to
9		receive and enable connection with a second
10		stent.
11		
12	10.	A cardiovascular stent as claimed in any of one
13		of the preceding claims wherein the stent is
14		shaped at one or both ends to enable connection
15		to a second stent.
16		
17	11.	A cardiovascular stent as claimed in any one of
18		the preceding claims for linking a coronary
19		artery to the left ventricle of the heart.
20		
21	12.	A cardiovascular stent as claimed in any one of
22		claims 1 to 10 for linking a first portion of
23		an ascending venous structure and a second
24		portion of the same ascending venous structure.
25		
26	13.	A method for treating a full or partial
27		occlusion of a blood vessel comprising the
28		steps of:
29		
30		providing stent means wherein said stent means
31		comprise at least one stent as claimed in
32		claims 1 to 12, a first end of the lumen of the

RECTIFIED SHEET (RULE 91)
ISA/EP

WO 2004/019814 PCT/GB2003/003810

33

1		stent means being in communication with a
. 2		cardiovascular compartment on a first side of
3	-	the occlusion,
4		
5		the second end of the lumen of the stent means
6		being in communication with a cardiovascular
7		compartment on the other side of the occlusion
8		and allowing blood flow from the first side of
9		the occlusion to the other side of the
10		cardiovascular compartment through the lumen of
11		the stent means.
12		
13		
14	14.	A method as claimed in claim 13 wherein the
1.5		stent means comprises a plurality of stents
16		longitudinally aligned to allow the flow of
17		blood from a stent at a first end of the stent
18		means to a stent at a second end of the stent
19		means.
20		
21	15.	A method as claimed in claim 13 or claim 14
22		further comprising the step of increasing the
23		diameter of the stent from a reduced diameter
24		in a collapsed position to an increased
25		diameter in an expanded position.
26		
2 7	16.	A method for treating varicose veins comprising
28		the step of:
29		
30		positioning stent means comprising at least one
31		stent as claimed in claims 1 to 12 in a vein.
32	•	

1	17.	A method for treating varicose veins comprising
2		the step of:
3		
4		replacing at least a part of a vein with stent
5		means comprising at least one stent of the
6		first aspect of the invention.
7		
8	18.	Tube means comprising a tubular portion and a
9		valve, said valve comprising at least one
10		cantilever member having a first end and a
11		second end, said cantilever member being
12		pivoted at said first end to the tubular
13		portion, the cantilever member being
14		resiliently pivotable from a first extended
15		position in which the valve is in the closed
16		position to a second position in which the
17		valve is in the open position.
18		
19	19.	Tube means as claimed in claim 18 wherein in
20		moving from the closed position to the open
21		position the aperture of the valve is moved
22		from being ellipisoidal to substantially
23		circular.
24		
25	20.	A device for moving fluid comprising a tube as
26		claimed in claims 18 or 19.
27		
28		