

SF1624 Algebra och geometri Tentamen Måndagen den 13 januari, 2014

Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

2

DEL A

- 1. Vi har parallellogrammen T med hörn A = (1, 1, 1), B = (2, 3, 0), C = (3, 2, 4) och D = (4, 4, 3).
 - (a) Bestäm arean av parallellogrammen T. (2 p)
 - (b) Bestäm en ekvation för planet som innehåller T. (2 p)
- 2. För varje tal a har vi följande ekvationssystem i tre okända x, y och z.

(*)
$$\begin{cases} (a-2)x + 4y + 2z = 1\\ ay + z = 2\\ ax + 2y + z = 3 \end{cases}$$

Vi kan också skriva ekvationssystemet som en matrisekvation AX = B, där $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$och B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

- (a) Bestäm matrisen A. (1 p)
- (b) Bestäm determinanten till A. (1 \mathbf{p})
- (c) Bestäm för vilka tal a ekvationssystemet (*) har en unik lösning. (1 p)
- (d) Välj ett värde på a där systemet har en unik lösning och bestäm denna lösning. (1 p)
- 3. Avbildningen $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ ges av matrisen

$$A = \begin{bmatrix} 9 & -12 \\ -12 & 16 \end{bmatrix}.$$

Med linjen L menas alla vektorer på formen $L = \{(2+4t, 2+3t)\}$, godtyckliga tal t.

- (a) Avgör om punkten P = (2,3) är i bildrummet för T.
- (b) Bestäm nollrummet för T. (1 \mathbf{p})
- (c) Vad avbildas linjen L på genom avbildningen T? (2 **p**)

3

DEL B

4. Vi har ekvationssystemet i fyra okända x, y, z, w,

$$\begin{cases} x - 2z - w = 0 \\ x + y - 4z - 3w = 0 \end{cases}$$

Lösningsmängden till ekvationssystemet är ett delrum $V \subseteq \mathbb{R}^4$.

(a) Bestäm en ortonormal bas $\mathcal{B} = \{\vec{u}, \vec{v}\}$ för V. (2 p)

(b) Verifiera att
$$\vec{x} = (\vec{x} \cdot \vec{u})\vec{u} + (\vec{x} \cdot \vec{v})\vec{v}$$
 med $\vec{x} = \begin{bmatrix} -4\\2\\-5\\6 \end{bmatrix}$. (1 p)

(c) Bestäm projektionen av vektorn $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ på delrummet V. (1 **p**)

5. Det linjära ekvationssysemet

$$\begin{cases} x & = 16 \\ 3y & = 3 \\ -3x + 2y & = -4 \\ x + y & = -4 \\ 2x + y & = 9 \end{cases}$$

i de två variablerna x och y är överbestämt och har ingen lösning. Det går att använda minsta kvadratmetoden för att finna de bästa tänkbara värdena på x och y.

(a) Ställ upp normalekvationen för systemet och bestäm minsta kvadratlösningen.

(3p)

(b) Vad är det som är minimerat i minsta kvadratlösningen?

(1 p)

- 6. Låt $H \subseteq \mathbb{R}^3$ vara ett givet plan genom origo och låt $T \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ vara den linjära avbildning som ges av ortogonal projektion på planet H.
 - (a) Använd en normalvektor till planet H för att ge ett uttryck för $T(\vec{x})$, där \vec{x} är en godtycklig vektor. (1 p)

(b) Bestäm alla egenvärden och egenvektorer till T.

(2 p)

(c) Låt \mathcal{B} vara en godtycklig ON-bas för \mathbb{R}^3 , och låt A vara matrisrepresentationen för T. Förklara varför A är en symmetrisk matris. (1 p)

DEL C

7. Vektorerna

$$\vec{u} = \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix} \quad \text{och} \quad \vec{v} = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}$$

ger en bas $\mathcal{B} = \{\vec{u}, \vec{v}\}$ för vektorrummet V i \mathbb{R}^4 . Övergångsmatrisen från basen \mathcal{B} till basen \mathcal{C} ges av matrisen

 $P = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.$

Bestäm vektorerna i \mathbb{R}^4 som utgör basen \mathcal{C} .

(4 p)

- 8. Låt ABCD vara parallellogrammen med diagonalerna AC och BD. Punkten E ligger mitt på sträckan AB och punkten F delar sträckan CD i förhållandet 1:4, alltså $\overrightarrow{CF} = \frac{1}{4}\overrightarrow{FD}$. Sträckorna AF och DE skär varandra i punkten P. Använd vektorberäkningar för att bestämma i vilket förhållandet sträckan AF delas av punkten P. (4 p)
- 9. Låt V_n vara vektorrummet av $n \times n$ -matriser, där $n \geq 2$ är ett fixt heltal. Vi har en linjär avbildning $T \colon V_n \longrightarrow \mathbb{R}^3$, som skickar en matris X till

$$T(X) = (r(X), c(X), d(X)),$$

där r(X) är summan av elementen i de två första raderna i X, c(X) är summan av elementen i de två sista kolonnerna i X, och d(X) är summan av diagonalelementen. Bestäm dimensionen till nollrummet av T.