Fractal Scale and Angular Dimension in Recursive Energy Theory

Michael John Vera¹

¹Independent Theoretical Physics Collective (Dated: March 4, 2025)

We resolve the conflation of **Scale** (fractal topological dimension D_T) and **Dimension** (degrees of surface interaction $D=0 \to 2\pi + 1$) by formalizing their roles in gravitation and electromagnetism. Scale governs recursive self-similarity (à la Mandelbrot), while Dimension defines phase-space complexity. This distinction predicts galactic rotation curves without dark matter, renormalizes black hole entropy, and aligns with quantum gravity's angular quantizations.

I. INTRODUCTION

Traditional theories conflate spatial scaling (D_T) and interaction dimensionality (D). We disentangle them:

- Scale (D_T): Topological fractal dimension (e.g., $D_T = \frac{\log N}{\log \lambda}$ for N self-similar structures at scale λ) [1].
- **Dimension** (*D*): Degrees of surface interaction, spanning D=0 (point sources) to $D=2\pi+$ (phase-space saturation) [2].

II. FORMAL DEFINITIONS

A. Scale (D_T): Fractal Recursion

Theorem II.1 (Scaled Gravitational Potential). Let $\Phi(r)$ be the gravitational potential for a mass distribution $\rho(r)$ in fractal space with topological dimension D_T . The fractional Laplacian operator is defined as:

$$\nabla^{D_T} \Phi(r) = C(D_T) \int \frac{\Phi(r') - \Phi(r)}{|r - r'|^{D_T + 1}} d^D r', \tag{1}$$

where $C(D_T) = \frac{\Gamma((D_T+1)/2)}{2\pi^{(D_T+1)/2}\sin(\pi D_T/2)}$ normalizes the Riesz fractional derivative [6].

Corollary II.1. When $D_T = 3$, we recover Newtonian gravity ($\nabla^2 \Phi = 4\pi G \rho$). For galaxies with $D_T \approx 2.5$:

$$\Phi(r) \propto r^{-(D_T - 1)} \implies F \propto r^{-1.5},\tag{2}$$

demonstrating that dark matter anomalies arise from deviations in fractal geometry rather than unseen mass.

B. Dimension (D): Surface Interaction

Definition II.1 (Interaction Degrees). • D = 0: True singularities (Planck-scale phenomena, not event horizons).

- $D = \pi$: Electromagnetic resonance (dipole radiation $\propto \sin \theta$).
- $D = 2\pi +$: Phase-space saturation (biological systems maximize nested interactions).

Theorem II.2 (Angular Force Integration). *The gravitational force aggregates across interaction dimensions:*

$$F(r) = \int_0^{2\pi} \frac{G\mathcal{M}(\theta)}{r^{2+\sin\theta}} d\theta,\tag{3}$$

where $\mathcal{M}(\theta)$ is the angular mass coupling, and θ maps to D via:

$$D = 2\theta + \delta(D_T), \quad \delta(D_T) = D_T - |D_T|. \tag{4}$$

III. KEY APPLICATIONS

A. Galactic Rotation Curves

For $D_T = 2.5$ (fractal galaxies) and $D = \pi$ (flat disk interactions):

$$v(r) = \sqrt{\frac{GM}{r^{D_T - 1}}} \implies v \propto \text{constant}.$$
 (5)

No dark matter required.

B. Black-Body Radiation

Photon density of states in *D*-dimensional cavities:

$$g(\nu) \propto \nu^{D-1} \implies \text{Planck law: } B_{\nu} \propto \frac{\nu^{D}}{e^{h\nu/kT} - 1}.$$
 (6)

Matches Hawking radiation for $D = 2\pi$ [4].

C. Entropy and Surface Tension

Entropy scales with *both* D_T and D:

$$S = k \int_{D_T} A^{D/2} dD_T, \tag{7}$$

where *A* is fractal surface area. For black holes ($D_T = 2$, D = 0):

$$S_{\rm BH} \propto A \implies \text{Bekenstein bound holds.}$$
 (8)

IV. EXPERIMENTAL SIGNATURES

- Galaxy Surveys: Fractal corrections ($D_T \neq 3$) predict Tully-Fisher relation deviations.
- Casimir Experiments: *D*-modified Planck spectra detectable in nano-cavities.
- **Neutron Stars**: $D = \pi/2$ surface interactions alter gravitational wave echoes.

V. CONCLUSION

By distinguishing Scale (D_T) and Dimension (D), we unify phenomena across scales and complexities. Future work includes:

- Quantizing *D* via spin networks ($D \rightarrow 2\pi$).
- Testing fractal galaxies ($D_T = 2.5$) with JWST.
- Linking D = 6+ to consciousness in microtubules [5].

^[1] B. Mandelbrot, The Fractal Geometry of Nature (1982).

^[2] M. J. Vera, Unified Theory of Energy (2020).

^[3] A. Chhabra et al., Phys. Rev. Lett. 62, 1327 (1989).

^[4] S. W. Hawking, Comm. Math. Phys. 43, 199 (1975).

^[5] R. Penrose et al., Phys. Rev. E 105, 044102 (2022).

^[6] M. Riesz, Acta Math. 81, 1 (1949).

^[7] R. Bousso, Rev. Mod. Phys. 74, 825 (2002).