Machine Learning Perceptrons

These slides are based on the slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley - http://ai.berkeley.edu.

The artwork is by Ketrina Yim.

Announcement

Office hours:

Wednesday May 4 at 3 PM instead of 12 PM.

Where we are

- Last week:
 - Naïve Bayes Classification (AIMA 20.1 20.2)
- Today:
 - Perceptrons (Artificial Neural Networks AIMA 18.7)
- Homework 9: Programming Assignment
 - Perceptrons
 - Apprenticeship

Error-Driven Classification

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors

- Problem: there's still spam in our inbox
- Need more features words aren't enough!
 - Have we emailed the sender before?
 - Have 1M other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)

Features

Data is represented as a feature vector

```
Hello,
Do you want
free printr
cartriges? Why
pay more when
you can get
them ABSOLUTELY
FREE! Just ...
```

```
f(x)
```

```
# free :
YOUR_NAME :
MISSPELLED :
FROM_FRIEND :
```

Data is represented as a feature vector

```
Hello,
Do you want
free printr
cartriges? Why
pay more when
you can get
them ABSOLUTELY
FREE! Just ...
```

```
f(x)
```

```
# free : 2
YOUR_NAME :
MISSPELLED :
FROM_FRIEND :
```

Data is represented as a feature vector

 \mathcal{X}

Hello,
Do you want
free printr
cartriges? Why
pay more when
you can get
them ABSOLUTELY
FREE! Just ...

f(x)

Data is represented as a feature vector

```
Hello,
Do you want
free printr
cartriges? Why
pay more when
you can get
them ABSOLUTELY
FREE! Just ...
```

```
f(x)
```


Data is represented as a feature vector

 \mathcal{X}

Hello,
Do you want
free printr
cartriges? Why
pay more when
you can get
them ABSOLUTELY
FREE! Just ...

f(x)

Data is represented as a feature vector

 \mathcal{X} Do you want free free printr YOUR NAME cartriges? Why

Hello,

pay more when

FREE! Just ...

them ABSOLUTELY

you can get

f(x)**SPAM** MISSPELLED : 2 or FROM FRIEND: HAM

Some (Simplified) Biology

Very loose inspiration: human neurons

- Inputs are feature values (vectors)
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

Binary case: compare features to a weight vector

```
# free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3

w

f(x_1)

# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
```

Dot product: $w \cdot f(x1) = 4 \times 2 - 1 \times 0 + 1 \times 2 - 3 \times 0 = 10$

Dot product w . f positive means the positive class (SPAM)

Weights

Binary case: compare features to a weight vector

```
# free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3

f(x_1)

# free : 0
YOUR_NAME : 1
MISSPELLED : 1
FROM_FRIEND : 1
```

Dot product: $w \cdot f(x2) = 4 \times 0 - 1 \times 1 + 1 \times 1 - 3 \times 1 = -3$

Dot product w . f negative means the negative class (HAM)

Bias

The bias shifts the decision boundary away from the origin and does not depend on any input value.

Weights

Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - A weight vector corresponds to a decision boundary that is a hyperplane (a line in 2D, a plane in 3D)
 - One side corresponds to Y=+1
 - lacktriangledown Other corresponds to Y=-1 w

BIAS	•	-3
free	•	4
money	:	2

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights
 - y: guessed label
 - y*: training label
 - If correct (i.e., y=y*), no change!

- If wrong: adjust the weight vector
- Repeat until no more significant changes (iterations)

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- y*: training label
- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Not all data is separable
- Convergence: if the training data is separable, the binary perceptron rule is guaranteed to converge

Separable

Non-Separable

Non-Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - lacktriangledown A weight vector for each class: w_y
 - Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction: highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer (y), raise score of right answer (y*)

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$

Training Examples: Training Labels

"win the vote" POLITICS

"win the election" POLITICS

"win the game" SPORTS

 w_{SPORTS}

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

 $w_{POLITICS}$

BIAS : 0 win : 0 game : 0 vote : 0 the : 0

 w_{TECH}

f("win the vote")

```
BIAS : 1
win : 1
game : 0
vote : 1
the : 1
```

```
w_{\text{SPORTS}}. f(\text{"win the vote"}) = 1
```

$$w_{\text{POLITICS}}$$
. $f("\text{win the vote"}) = 0$

$$w_{\text{POLITICS}}$$
. $f("\text{win the vote"}) = 0$

 w_{SPORTS}

BIAS	:	1	
win	:	0	
game	:	0	
vote	:	0	
the	:	0	

 $w_{POLITICS}$

BIAS	:	0
win	:	0
game	:	0
vote	:	0
the	:	0

 w_{TECH}

BIAS	:	0
win	:	0
game	:	0
vote	:	0
the	:	0

```
f("win the vote")
```

y = SPORTS

y* = POLITICS

```
BIAS : 1
win : 1
game : 0
vote : 1
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the vote"}) = 1
```

 $w_{\text{POLITICS}} x f(\text{"win the vote"}) = 0$

 $w_{\text{TECH}} x f(\text{"win the vote"}) = 0$

w_{SPORTS}

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

$w_{POLITICS}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

w_{TECH}

f("win the vote")

y = SPORTS

y* = POLITICS

BIAS : 1 win : 1 game : 0

vote : 1 the : 1 $w_{\text{SPORTS}} = w_{\text{SPORTS}} - f$

 $w_{\text{POLITICS}} = w_{\text{POLITICS}} + f$

 w_{SPORTS}

BIAS : 0
win : -1
game : 0
vote : -1
the : -1

 $w_{POLITICS}$

BIAS : 1
win : 1
game : 0
vote : 1
the : 1

 w_{TECH}

f("win the election")

```
BIAS : 1
win : 1
game : 0
vote : 0
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the election"}) = -2

w_{\text{POLITICS}} x f(\text{"win the election"}) = 3

w_{\text{TECH}} x f(\text{"win the election"}) = 0
```

 w_{SPORTS}

```
BIAS : 0
win : -1
game : 0
vote : -1
the : -1
```

 $w_{POLITICS}$

BIAS	:	1
win	:	1
game	:	0
vote	:	1
the	:	1

 w_{TECH}

f("win the election")

```
BIAS : 1
win : 1
game : 1
vote : 0
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the election"}) = -2
```

 $w_{\text{POLITICS}} x f(\text{"win the election"}) = 3$

 $w_{\text{TECH}} x f(\text{"win the election"}) = 0$

 w_{SPORTS}

```
BIAS : 0
win : -1
game : 0
vote : -1
the : -1
```

 $w_{POLITICS}$

 w_{TECH}

```
f("win the election")
y = POLITICS
y* = POLITICS
```

No updates

```
BIAS : 1
win : 1
game : 1
vote : 0
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the election"}) = -2

w_{\text{POLITICS}} x f(\text{"win the election"}) = 3

w_{\text{TECH}} x f(\text{"win the election"}) = 0
```

w_{SPORTS}

```
BIAS : 0
win : -1
game : 0
vote : -1
the : -1
```

$w_{POLITICS}$

BIAS	:	1
win	:	1
game	:	0
vote	:	1
the	:	1
I		I

w_{TECH}

f("win the game")

```
BIAS : 1
win : 1
game : 1
vote : 0
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the game"}) = -2

w_{\text{POLITICS}} x f(\text{"win the game"}) = 3

w_{\text{TECH}} x f(\text{"win the game"}) = 0
```

 w_{SPORTS}

```
BIAS : 0
win : -1
game : 0
vote : -1
the : -1
```

 $w_{POLITICS}$

 w_{TECH}

```
f("win the game")
```

y = POLITICS

y* = SPORTS

```
BIAS : 1
win : 1
game : 1
vote : 0
the : 1
```

```
w_{\text{SPORTS}} x f(\text{"win the game"}) = -2
```

 $w_{\text{POLITICS}} x f(\text{"win the game"}) = 3$

 $w_{\text{TECH}} x f(\text{"win the game"}) = 0$

w_{SPORTS}

BIAS : 0
win : -1
game : 0
vote : -1
the : -1

$w_{POLITICS}$

BIAS : 1
win : 1
game : 0
vote : 1
the : 1

w_{TECH}

```
f("win the game")
```

y = POLITICS

y* = SPORTS

```
BIAS : 1
win : 1
game : 1
vote : 0
the : 1
```

$$w_{\text{POLITICS}} = w_{\text{POLITICS}} - f$$
 $w_{\text{SPORTS}} = w_{\text{SPORTS}} + f$

w_{SPORTS}

BIAS : 1
win : 0
game : 1
vote : -1
the : 0

$w_{POLITICS}$

BIAS : 0
win : 0
game : -1
vote : 1
the : 0

w_{TECH}

We're not done.

We go back for a second iteration over the examples and update the weights.

We keep iterating over the training examples until there are no more changes.

w_{SPORTS}

BIAS : 1 win : 0 game : 1 vote : -1 the : 0

$w_{POLITICS}$

BIAS	:	0
win	:	0
game	:	-1
vote	:	1
the	:	0

w_{TECH}

```
BIAS : 0
win : 0
game : 0
vote : 0
the : 0
```

Improving the Perceptron

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Linear Separators

Which of these linear separators is better?

Support Vector Machines

- Maximizing the margin: good according to intuition, theory, practice
- Only support vectors (vectors on the margin) matter; other training examples are ignorable
- Support vector machines (SVMs) find the separator with the maximum margin

Classification: Comparison

Naïve Bayes

- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)

Perceptrons:

- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate