

Netzwerke

Was machen wir heute?

- Netzwerke: Ergänzungen und eure Fragen
 - Subnetzmaske, CIDR
 - Masquerading
- Prozesse

IP-Adressen

IP-Adressen

Wir betrachten folgende IP-Adresse: 192.168.0.0

Fragen zu dieser Adresse:

- IPv4 oder IPv6?
 - IPv4: Vier, durch Punkte getrennte, Dezimalzahlen bis 255
 - IPv6: Acht, durch Doppelpunkt getrennte, Gruppen von 4 Hexadezimalziffern (0-9 und a-f)
- Öffentlich oder Privat?
 - Private Bereiche:
 - **1**0.0.0.0/18
 - **172.16.0.0/12**
 - 192.168.0.0/16

IPv4-Adressen: Binäre Darstellung

Was ist die binäre Darstellung zu 192.168.0.0?

=> 1100 0000 . 1010 1000 . 0000 0000 . 0000 0000

Was ist die binäre Darstellung zu 255.255.255.0?

=> 1111 1111 . 1111 1111 . 1111 1111 . 0000 0000

Subnetzmasken

1111 1111 . 1111 1111 . 1111 1111 . 0000 0000

1en = Netzwerkteil:

Identifizieren eindeutig das Netzwerk

0en = Hostanteil:

Identifizieren eindeutig den Host im Netwerk

Subnetzmasken

Was ist der Netzwerkteil bzw. Hostanteil unserer

IPv4-Adresse?

Subnetzmasken

Netzwerk möglich ist?

```
192. 168. 0. 255
11000000.10101000.00000000.11111111
```


Subnetzmasken - CIDR

CIDR = Classless InterDomain Routing

Beispiel: 16.32.64.128/24

Gibt an, wie viele Einsen die Subnetzmaske für eine

IP-Adresse beinhaltet. Wie sieht diese also aus?

=> 111111111111111111111111111100000000 =

255.255.255.0

Übung

Ergänze die Tabelle:

IPv4 Dezimal	IPv4 Binär	Subnetzmaske Dezimal	Subnetzmaske Binär	CIDR
192.168.0.255	1100 0000.1010 1000. 0000 0000.1111 1111	255.255.0.0	1111 1111.1111 1111. 0000 0000.0000 0000	/16
128.64.32.8	1000 0000.0100 0000. 0010 0000.0000 1000	255.0.0.0	1111 1111.0000 0000. 0000 0000.0000 0000	/8
11.254.65.3	0000 1011.1111 1110. 0100 0001.0000 0011	255.255.255.128	1111 1111.1111 1111. 1111 1111.1000 0000	/25

Masquerading

Wie viele IPv4-Adressen gibt es höchstens?

^{2^32 =} 4294967296								
Rad	Deg	x!	()	%	AC		
Inv	sin	In	7	8	9	÷		
π	cos	log	4	5	6	×		
е	tan	V	1	2	3	-		
Ans	EXP	Хy	0	•	=	+		

Masquerading

Mehr IPv4-Adresse nötig als möglich!

Lösungsansatz: Masquerading

- Nach außen: Nur eine IP-Adresse (vom Router)
- Innen: Viele Private IP-Adressen

Masquerading / Private IP-Adressen

Bei Eingabe "ipconfig" in Powershell, dürften die meisten eine

IP-Adresse im Stil "192.168.178.*" haben (trotz anderem Netzwerk)!

Private Adressbereiche:

10.0.0.0/8

172.16.0.0/12

192.168.0.0/16

