Lecture 6

Avi Herman

9/19/2024

Table of Contents

- Wheels
 - o Diagram of Forces on a Wheel
 - Angular Velocity of a Wheel
- Work + Power
- Kinetic Energy
 - Formulas for Kinetic Energy
- Momentum and Impulse
 - Momentum
 - Impulse
- PollEV Answers

Wheels

- Wheels are a type of simple machine which are used to reduce friction and make it easier to move objects.
- $\vec{v}_{\rm ground}$ must be 0 which means that the wheel is not slipping (because wheels \emph{roll}) and so $\vec{v}_{\rm contact\ point} = \vec{v}_{\rm ground}$.
 - No work down by frictional forces from the ground to the wheel.
- $\vec{v}_{\mathrm{top}} = \vec{v}_{\mathrm{contact\ point}}$

Diagram of Forces on a Wheel

Angular Velocity of a Wheel

- Use right hand rule to determine the direction of the angular velocity vector.
 - $ec{\omega} = rac{ec{v}_{ ext{contact point}}}{r}$ where r is the radius of the wheel.

Work + Power

- Translational Motion
 - $egin{aligned} \circ ext{ work} &= W = ec{F} \cdot ec{\Delta x} = F_{\parallel} \Delta x \end{aligned}$
 - ullet W is the work done by a force.
 - ullet $ec{F}$ is the force applied.
 - $\vec{\Delta x}$ is the displacement of the object.
 - ullet F_{\parallel} is the component of the force parallel to the displacement.

$$\circ ext{ power} = ec{F} \cdot ec{v} = rac{W}{\Delta t}$$

- power is the rate at which work is done.
- ullet $ec{F}$ is the force applied.
- \vec{v} is the velocity of the object.
- ullet W is the work done by a force.
- Δt is the time interval.
- · Rotational Motion

$$egin{aligned} \circ ext{ work} &= W = ec{ au} \cdot ec{\Delta heta} = ec{ au} \cdot (ec{ heta_f} - ec{ heta_i}) \end{aligned}$$

- ullet W is the work done by a torque.
- $\vec{\tau}$ is the torque applied.
- $\vec{\Delta \theta}$ is the angular displacement of the object.
- $\vec{\theta}_f$ is the final angle of the object.
- $\vec{ heta}_i$ is the initial angle of the object.

$$\circ ext{ power} = \vec{ au} \cdot \vec{\omega} = rac{W}{\Delta t}$$

- power is the rate at which work is done.
- $\vec{\tau}$ is the torque applied.
- $\vec{\omega}$ is the angular velocity of the object.
- ullet W is the work done by a torque.
- Δt is the time interval.

Kinetic Energy

- Kinetic energy is the energy of motion.
 - $\,\circ\,$ This means that the total energy of a system is constant.

Formulas for Kinetic Energy

- ullet $K=rac{1}{2}mv^2$ for translational motion.
- ullet $K=rac{1}{2}I\omega^2$ for rotational motion.
- Total energy is conserved
 - $\circ u = mgh$
 - ullet u is the potential energy of an object.
 - m is the mass of the object.
 - g is the acceleration due to gravity ($-9.8 \frac{m}{s^2}$).
 - ullet h is the height of the object.
 - $\circ \ {\rm total\ energy} = K + u + heat + \dots$

Momentum and Impulse

Momentum

- Momentum is the product of mass and velocity.
 - Refers to the quantity of motion an object has.
- Translational Motion
 - $\circ \; ec{p} = m ec{v}$
 - \vec{p} is the momentum of an object ($kg rac{m}{s}$).
 - m is the mass of the object.
 - \vec{v} is the velocity of the object.
 - If no forces are applied, momentum is conserved.
- Rotational Motion
 - $\circ \,\, \vec{L} = I \vec{\omega}$
 - \vec{L} is the angular momentum of an object $(kg \frac{m^2}{s})$.
 - ullet I is the moment of inertia of the object.
 - $\vec{\omega}$ is the angular velocity of the object
 - \circ No $\vec{\tau}$ means \vec{L} is constant.

Impulse

- Impulse is the change in momentum.
 - Quantifies the overall effect of a force on an object across a time interval.
- Translational Motion

$$egin{array}{l} \circ \ \Delta ec{p} = ec{p_f} - ec{p_i} = ec{F} \cdot \Delta t \end{array}$$

- ullet $\Delta ec{p}$ is the change in momentum.
- ullet $ec{F}$ is the force applied.
- Δt is the time interval.
- Rotational Motion

$$\circ \; \Delta ec{L} = ec{L_f} - ec{L_i} = ec{ au} \cdot \Delta t$$

- ullet $\Delta ec{L}$ is the change in angular momentum.
- $\vec{ au}$ is the torque applied.
- ullet Δt is the time interval.

PollEV Answers

- A (+v, 0, -v)
 - What is the velocity vector of right middle point of a wheel's rim?
- $C(50\frac{m}{s})$
 - \circ A roller coaster car drops from rest at a height of 150m along a complicated track. Ignoring friction, what is the velocity of the car 25m above the ground?
 - To determine the speed of the roller coaster car at 25 meters above the ground, we can use the principle of **conservation of mechanical energy**. This principle states that in the absence of non-conservative forces (like friction), the total mechanical energy (potential + kinetic) of an object remains constant.

Given:

- Initial Height (h_i): 150 meters
- Final Height (h_f): 25 meters
- **Initial Speed (** v_i **)**: 0 m/s (since it starts from rest)
- Acceleration due to Gravity (g): 9.8 m/s²

Steps:

1. Calculate the Change in Height (Δh):

$$\Delta h = h_i - h_f = 150\,\mathrm{m} - 25\,\mathrm{m} = 125\,\mathrm{m}$$

2. Apply Conservation of Energy:

Potential Energy Initial + Kinetic Energy Initial = Potential Energy Final + Kinetic Energy Final

$$mgh_i+rac{1}{2}mv_i^2=mgh_f+rac{1}{2}mv^2$$

Since the car starts from rest ($v_i=0$), the equation simplifies to:

$$mgh_i=mgh_f+rac{1}{2}mv^2$$

The mass (m) cancels out:

$$gh_i=gh_f+rac{1}{2}v^2$$

3. Solve for Final Speed (v):

$$gh_i - gh_f = rac{1}{2}v^2$$
 $v^2 = 2g(h_i - h_f) = 2 imes 9.8 \, ext{m/s}^2 imes 125 \, ext{m} = 2450 \, ext{m}^2/ ext{s}^2$ $v = \sqrt{2450 \, ext{m}^2/ ext{s}^2} pprox 49.5 \, ext{m/s}$

Final Answer: The roller coaster car would be moving at approximately **49.5 meters per second** when it is 25 meters above the ground.