IE441 Planning for Engineers

Boğaziçi University Department of Industrial Engineering Spring 2018

Assignment 1 Due March 7, Wednesday 11:55 pm

In this assignment, you are going to solve a multiple objective linear program to find **as many of its efficient extreme points** as possible. You can work in groups of two students. Each group is going to get a different data set.

The setting is an allocation problem. The problem is trying to maximize 5 objective functions (each corresponding to a performance measure) with 5 variables (corresponding to activities) subject to 5 constraints.

Consider the following example data set:

MODE	Ξ = 3,	KSEED TO	RE-			7					
	5001	5		5	5	0		0	0		0
	9										
1	1	2.000	1	2	7.000	1	3	7.000	1	4	1.000
1	5	4.000	2	1	4.000	3	2	-3.000	4	3	-4.000
5	4	4.000									
	- 5										
1	ŭ	1378.000	2		520.000	3		102.000	4		232.000
5		412.000	_		020.000	•		102.000	-		202.000
0	^	412.000									
	0										
	0										
	0										
	0										
	11										
1	1	1.000	1	3	3.000	1	5	2.000	2	1	6.000
2	3	5.000	3	1	-3.000	3	4	5.000	4	2	5.000
4	-		5	2	6.000	5	5		-	2	0.000
4	4	4.000	Э	2	6.000	Э	Э	3.000			
	Ω										

This corresponds to the following MOLP:

cons 1	$2x_1$	$+7x_{2}$	$+7x_{3}$	$+x_4$	$+4x_{5}$	\leq	1378
$\cos 2$	$4x_1$					\leq	520
$\cos 3$		$-3x_{2}$				\leq	102
$\cos 4$			$-4x_{3}$			\leq	232
cons 5				$4x_4$		\leq	412
$\max z_1 =$	x_1		$+3x_3$		$+2x_{5}$		
$\max z_2 =$	$6x_1$		$+5x_3$				
$\max z_3 =$	$-3x_1$			$+5x_4$			
$\max z_4 =$		$5x_2$		$+4x_4$			
$\max z_5 =$		$6x_2$			$+3x_{5}$		

- 1. Obtain your individual data sets from Engin Yıldız.
- 2. Using the weighting method find as many of the efficient extreme points of your problem as possible.
- 3. Using the Constraints method, find as many of the efficient extreme points of your problem as possible.
- 4. Is the solution set different than in part (2)? Why/why not?