CLAIMS

Having thus described our invention in detail, what we claim is new and desire to secure by the Letters Patent is:

1. A method of forming a microelectronic interconnect structure containing a bilayer undefill layer comprising the steps of: 2 3 (a) forming a first polymeric material on/a surface of a semiconductor wafer having 4 5 interconnect pads disposed thereon; 6 (b) patterning said first polymeric material to provide openings that expose said 7 8 interconnect pads; 9 (c) forming conductive bump material in said openings; 10 11 (d) forming a second polymeric material over said first polymeric material and said 1.2 conductive bump material; 13 14 (e) dicing said semiconductor wafer into individual chips; and 15 16 U (f) bonding at least on f of said individual chips to an external substrate, wherein 17 during said bonding said conductive bump material penetrates said second polymeric 18 material and contacts a surface of said external substrate. 19

مكا

1

- 1 2. The method of Claim 1 wherein said first polymeric material is formed by a
- 2 deposition process selected from the group consisting of spin coating, dip coating,
- 3 brushing, chemical vapor deposition (CVD) plasma-assisted CVD, sputtering, and
- 4 chemical solution deposition
 - 3. The method of Claim 2 wherein said deposition process is spin coating.

- 2 polymeric material selected from the group consisting of polyimides, polyamides, Si-
- 3 containing polymers, parylene polymers, polybenzocyclobutane and epoxies.
- 1 5. The method of Claim 4 wherein said first polymeric material is an epoxy.
- 1 6. The method of Claim 1 wherein said first polymeric material further includes an
- 2 inorganic filler.
- 7. The method of Claim 6 wherein said inorganic filler is silica, fumed silica, alumina,
- 2 titanium dioxide, glass fibers or mixtures thereof.
- 8. The method of Claim 6 wherein said inorganic filler is present in said first
- 2 polymeric material in an amount of from about 10 to about 80 wt.%.
- 9. The method of Claim 1 wherein said first polymeric material has a thickness of
- 2 from about 25 to about 100 microns.
- 1 10. The method of Claim 1 wherein said wafer is composed of a semiconducting
- 2 material and has one or more devices present therein.
- 1 11. The method of Claim 1 wherein step (b) includes lithography and etching.
- 1 12. The method of Claim 1 wherein said conductive bump material is solder.
- 1 13. The method of Claim 1 wherein said conductive bump material is applied to said
- 2 openings by injection molding, evaporation, plating, or a paste screening process.
- 1 1/4. The method of Claim 1 wherein said second polymeric material is formed by spin
- 2 /coating.

- 1 15. The method of Claim 1 wherein said second polymeric material includes a fluxing
- 2 agent and an adhesive.
- 1 16. The method of Claim 1 wherein said second polymeric material is a thermoplastic
- 2 or thermosetting adhesive.
- 1 17. The method of Claim 1 wherein said second polymeric material has a thickness
- 2 that is thinner than said first polymeric material.
- 1 18. The method of Claim 1 wherein said second polymeric material has a thickness of
- 2 from about 1 to about 10 microns.
- 1 19. The method of Claim 1 wherein said bonding step occurs a temperature of from
- 2 about 180° to about 260°C for a time period of from about 1 to about 10 minutes.
- 1 20. The method of Claim 1 wherein said external substrate is a laminate substrate, a
- 2 chip carrier, a circuit card or a circuit board, each having interconnect pads formed
- 3 thereon.

3

6

9

- 1 21. A method of forming a microelectronic interconnect structure containing a bilayer
- 2 underfill layer comprising the steps of:

4 (a) forming a first polymeric material on a surface of a semiconductor wafer having

5 conductive/bump material disposed on portions thereof;

7 (b) removing a portion of said first polymeric material so as to expose top surfaces of

8 said conductive bump material;

- 10 (c) forming a second polymeric material on said first polymeric material and said
- exposed top surfaces of said conductive bump material;

12	
13	(d) dicing said semiconductor wafer into individual chips; and
14	
15	(e) bonding at least one of said individual chips to an external substrate. wherein
16	during said bonding said conductive bump material penetrates said second polymeric
17	material and contacts a surface of said external substrate.
1	22. The method of Claim 21 wherein step (b) is carried out by polishing or etching.
1	A micro electronic interconnect atmost we compressing:
1	23. A microelectronic interconnect structure comprising:
2	a comican dustor ship having a surface whoreign conductive humn material is dispose
3	a semiconductor chip having a surface wherein conductive bump material is dispose
4 5	on portions thereof;
6	a bilayer comprising a first polymeric material and a second polymeric material
7	abutting said conductive bump material; and
8	douting said conductive outing material, and
9	an external substrate bonded to said semiconductor chip by said conductive bump
10	material.
1	24. The structure of Claim 23 wherein said first polymeric material is a dielectric
2	polymeric material selected from the group consisting of polyimides, polyamides, Si
3	containing polymers, parylene polymers, polybenzocyclobutane and epoxies.
1	25. The structure of Claim 24 wherein said first polymeric material is an epoxy.
1	26. The structure of Claim 23 wherein said first polymeric material further includes
2	an inorganic filler.
1	27. The structure of Claim 26 wherein said inorganic filler is silica, fumed silica,

alumina, titanium dioxide, glass fibers or mixtures thereof.

- 2 polymeric material in an amount of from about 10 to about 80 wt. %.
- 1 29. The structure of Claim 23 wherein said chip is composed of a semiconducting
- 2 material and has at least one device present therein.
- 1 30. The structure of Claim 23 wherein said conductive bump material is solder.
- 1 31. The structure of Claim 23 wherein said second polymeric material includes a
- 2 fluxing agent and an adhesive agent.
- 1 32. The structure of Claim 23 wherein said second polymeric material is a
- 2 thermoplastic or thermosetting adhesive.

