Problem Set 9.10 • Graded

Student

Total Points

95 / 100 pts

Question 1

1. Exercise 5.1.4 5 / 5 pts

- 5 pts no answer
- **5 pts** wrong problem
- **5 pts** illegible
- 1 pt 1 incorrect term
- **2.5 pts** 2 incorrect terms
- **5 pts** 3 ior more ncorrect terms

Question 2

2 Exercise 5.1.15 3 / 5 pts

- 0 pts Correct
- 5 pts no answer
- **5 pts** wrong problem
- **5 pts** illegible
- 2 pts no power of -1

- 2 pts incorrect to value
- 2 pts no Sigma
- **2 pts** incorrect term representation

3. Exercise 5.1.24 (just show the computation)

5 / 5 pts

- ✓ 0 pts Correct
 - **5 pts** no answer
 - **5 pts** wrong problem
 - **5 pts** illegible
 - 4 pts only a 1

Question 4

4, Exercise 5.1.38 (just show the computation)

5 / 5 pts

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** wrong problem
 - **5 pts** illegible
 - 2 pts missing/incorrect from value
 - **2 pts** missing/incorrect to value
 - 2 pts missing/incorrect + an extra term
 - 2 pts incorrect term representation

Question 5

5. Exercise 5.1.41 5 / 5 pts

- 5 pts no answer
- 5 pts wrong problem / incorrect
- **5 pts** illegible
- **2 pts** incorrect from value
- 2 pts incorrect to value
- **2 pts** no Sigma
- 2 pts incorrect term representation

6. Exercise 5.1.45 5 / 5 pts

- ✓ 0 pts Correct
 - **5 pts** no answer
 - **5 pts** wrong problem
 - **5 pts** illegible
 - **3 pts** no Pi
 - 2 pts incorrect from value
 - **2 pts** incorrect to value
 - 2 pts incorrect term representation

Question 7

7. Exercise 5.1.50 5 / 5 pts

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** wrong problem
 - **5 pts** illegible
 - 3 pts no Sigma
 - **2 pts** incorrect from value
 - 2 pts incorrect to value
 - **2 pts** incorrect term representation

Question 8

8. Exercise 5.1.67 5 / 5 pts

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** wrong problem
 - **5 pts** illegible
 - 3 pts severe algebraic error
 - **1.5 pts** algebraic error

9. Exercise 5.2.4a 3 / 3 pts

- ✓ 0 pts Correct
 - 3 pts no answer
 - 3 pts wrong problem
 - 3 pts illegible
 - 1.5 pts incorrect P(2)
 - **1.5 pts** answer should include "yes" or "true"

Question 10

10. Exercise 5.2.4b 3 / 3 pts

- ✓ 0 pts Correct
 - 3 pts no answer
 - 3 pts wrong problem
 - **3 pts** illegible
 - 3 pts incorrect formula
 - **1.5 pts** incomplete formula

Question 11

11. Exercise 5.2.4c 3 / 3 pts

- ✓ 0 pts Correct
 - 3 pts no answer
 - 3 pts wrong problem
 - **3 pts** illegible
 - 3 pts incorrect formula
 - **1.5 pts** incomplete formula

- 0 pts Correct
- 3 pts no answer
- 3 pts wrong problem
- **3 pts** illegible
- ✓ 3 pts this should be an if-then statement

Question 13

13. Exercise 5.2.7 6 / 6 pts

- ✓ 0 pts Correct
 - 6 pts no answer
 - **6 pts** wrong problem
 - **6 pts** illegible
 - 4.5 pts no proof
 - 3 pts incorrect skeleton
 - **1 pt** incorrect P(1) statement
 - 1 pt incorrect P(k) statement
 - 1 pt incorrect P(k+1) statement
 - **3 pts** multiple prrof steps missing / no reasons
 - **1 pt** 1 proof step missing / no reason

- 6 pts no answer
- 6 pts wrong problem
- **6 pts** illegible
- 4.5 pts no proof
- **3 pts** incorrect skeleton
- 1 pt incorrect P(0) statement
- **1 pt** incorrect P(k) statement
- 1 pt incorrect P(k+1) statement
- **3 pts** multiple proof steps missing / no reasons
- **1 pt** 1 proof step missing / no reason

Question 15

15. Exercise 5.2.23 5 / 5 pts

- 5 pts no answer
- **5 pts** incorrect template
- **5 pts** wrong problem
- **5 pts** illegible
- **1.5 pts** incorrect formula
- 1.5 pts incorrect match to formula
- **1.5 pts** incorrect lower bound

- ✓ 0 pts Correct
 - **5 pts** no answer
 - 5 pts wrong problem
 - **5 pts** illegible
 - 2 pts incorrect value for a
 - **2 pts** incorrect value for r
 - **1.5 pts** inocrrect formula
 - 1.5 pts incorrect match to formula
 - **2 pts** incorrect value for n (number of terms)
 - 2 pts incorrect simplification

Question 17

17. Exercise 5.3.7a 2.5 / 2.5 pts

- ✓ 0 pts Correct
 - 2.5 pts no answer
 - 2.5 pts wrong problem / incorrect
 - 2.5 pts illegible
 - 1.5 pts incorrect P(2)
 - 1.5 pts answer should include "yes" or "true"

Question 18

18. Exercise 5.3.7b 2.5 / 2.5 pts

- ✓ 0 pts Correct
 - 2.5 pts no answer
 - **2.5 pts** wrong problem / incorrect
 - 2.5 pts illegible
 - **0.5 pts** incorrect formula
 - 1.5 pts incomplete formula

19. Exercise 5.3.7c 2.5 / 2.5 pts

- ✓ 0 pts Correct
 - 2.5 pts no answer
 - **2.5 pts** wrong problem / incorrect
 - 2.5 pts illegible
 - **3 pts** incorrect statement
 - **1.5 pts** incomplete statement

Question 20

20. Exercise 5.3.7d 2.5 / 2.5 pts

- ✓ 0 pts Correct
 - 2.5 pts no answer
 - 2.5 pts wrong problem
 - 2.5 pts illegible
 - **3 pts** this should be an in-then statement

Question 21

21. Exercise 5.3.9 8 / 8 pts

- ✓ 0 pts Correct
 - 8 pts no answer
 - 8 pts wrong problem
 - 8 pts incorrect template
 - 8 pts illegible
 - 4.5 pts no proof
 - 3 pts incorrect skeleton
 - **1 pt** incorrect P(0) statement
 - 1 pt incorrect P(k) statement
 - 1 pt incorrect P(k+1) statement
 - **3 pts** multiple proof steps missing / incorrect / no reasons
 - 1 pt 1 proof step missing / incorrect / no reason

- 8 pts no answer
- -8 pts wrong problem
- -8 pts illegible
- 4.5 pts no proof
- **3 pts** incorrect skeleton
- **1 pt** incorrect P(1) statement
- 1 pt incorrect P(k) statement
- 1 pt incorrect P(k+1) statement
- **3 pts** multiple proof steps missing/incorrect / no reasons
- 1 pt 1 proof step missing / no reason
- 1 pt 2-3 minor errors

I also worked with the following students (provide EMLPIDs only)

EMPLID	EMPLID	EMPLID
EMPLID	EMPLID	EMPLID
EMPLID	EMPLID	EMPLID
EMPLID	EMPLID	EMPLID

My answers came in part or in full from the following sources

Put your answer in each indicated box. Answers must be handwritten, legible and use correct notation. Study the answers in Appendix A to similar problems so you know what your approach should be. Larger boxes indicate that you are expected to provide substantial detail.

1. Exercise 5.1.4

$$d_{m} = 1 + (\frac{1}{2})$$
 (2, 1.5, 1.25, 1.125, ...) First 4
 $m \ge 0$

2. Exercise 5.1.15

$$Q_N = (-1)^{N-1} \left(\frac{N-1}{N}\right)$$
 with a_1 boing first term of the sequence

3. Exercise 5.1.24 (Just show the computation)

$$\sum_{j=0}^{0} (jH)(z^{j}) = (0+1)(z^{0}) = 1$$

4. Exercise 5.1.38 (Just show the computation)

$$\sum_{k=1}^{m+1} k^{2} = \sum_{k=1}^{m} k^{2} + (mt^{1})^{2}$$

5. Exercise 5.1.41

$$\sum_{k=1}^{N} \frac{N}{N+1} + \frac{N}{N+1} = \sum_{k=1}^{N+1} \frac{N}{N+1}$$

6. Exercise 5.1.45

7. Exercise 5.1.50

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n41)!} = \sum_{K=1}^{n} \frac{K}{(K+1)!}$$

8. Exercise 5.1.67

$$\frac{(n-2)!}{(n-2)!} = \frac{(n) \cdot (n-1) \cdot (n-2)!}{(n/2)!} = \frac{(n)(n-1)}{(n-1)!}$$

9. Exercise 5.2.4a

$$\sum_{i=1}^{N-1} (i)(i+1) = \frac{n(n-1)(n+1)}{3}$$
Since both sides of the equation and equation are equation of the equation of th

10. Exercise 5.2.4b

$$P(K): \sum_{i=1}^{k-1} i(i+i) = \frac{k(k-1)(k+1)}{3}$$

11. Exercise 5.2.4c

12. Exercise 5.2.4d

Theorem: Let P(n) be $\sum_{i=1}^{\infty} (S_i - u) = \frac{n(S_i - 3)}{7}$ Proof by Mathematical Induction's We must show that P(n) is true for all n 21 Basis: P(1); $\sum_{i=1}^{7} (5(i)-4) = \frac{(1)(5(i)-3)}{7}$

Since both the left and right side of the equation is 1, P(1) is true

Inductive Step: Assume for some that $\sum_{i=1}^{n} \frac{k(u+i)}{2}$ By Substitution, P(Uti); Ei = (KHI)(KHZ)

We must show P(Kti) is true.

By definition of 2, the left side of the P(u+1) equation is $\underset{\sim}{\text{E}}_{i} + (uti) = \frac{u(uti)}{2} + (uti)$

= h(h1) +7(k+1) = (h+2)(h+1) which is the

right side of the equation for P(k+1)

Since we have proved the basks step and the inductive stop, the theorem is true

QED

Theorem! Let P(n) be \(\frac{1}{2} \) i. \(\frac{1}{2} \) = n. \(\frac{1}{2} \) \(\frac{1}{2} \) Proof by Mathematical Induction:

We must show that P(n) is true for all integer

We must show that P(n) is true for all integers n 20

Basis: $P(0): \sum_{i=1}^{n} i \cdot 2^{i} = 0 \cdot 2^{n+1} + 2^{n+1}$ $1 \cdot 2^{i} = 0 + 2^{n+1}$ $7 \cdot 2^{i} = 0$

Since both sides of P(O) is Z, P(O) is true.

Industrie Step: Assame for some K P(K): \(\frac{1}{2} \cdot \frac{1}{2} \cdot \(\frac{1}{2} \cdot \frac{1}{2} \cdot \fra

By substitution, P(u+1): \(\frac{k+2}{2}i\cdot z' = (u+1)(z) \frac{k+2}{2}

We must show P(kt1) is true

By definition of Z, p(u+1): \(\frac{1}{2}i-\frac{1}{2}i + (u+2).\(\frac{1}{2}i-\frac{1}{2}i + (u+2).\(\frac{1}i-\frac{1}{2}i + (u+2).\(\frac{1}i-\frac{1}{2}i + (u+2).\(\frac{

 $= (u)(z)^{k+2} + (u+z)(z)^{k+2} + 2$ $= (u)(z)^{k+2} + (u+z)(z)^{k+2} + 2$

= (u+u+z)(z) + z = (zu+z)(z) + z

= (u+1)(2)(1) +2

= (U+1)(7) H7

Since, (KH)(7) to is the right side of P(KH), we have proved the basis step and the industrie step so the theorem is true.

15. Exercise 5.2.23

$$\frac{(n)(n+1)}{2} = 7 + 8 + 0 + 10 + \dots + 600 + 5 + 600 + 5 + 600 + 5 + 600 + 60$$

16. Exercise 5.2.27

$$5^{3} + 5^{4} + 5^{5} + \dots + 5^{k} \ge 5^{3} \left(1 + 5 + 5^{7} + 5^{3} + \dots + 5^{k-3}\right)$$

$$(5)^{3} \stackrel{k-3}{\ge} 5^{i} = (175) \left(\frac{5^{k-2} - 1}{5 - 1}\right) = \left(\frac{125}{4}\right) \left(5^{k-2} - 1\right)$$

17. Exercise 5.3.7a

18. Exercise 5.3.7b

19. Exercise 5.3.7c

20. Exercise 5.3.7d

we must show zuti z (ktr)! is true in the industre step which would show that p(kti); is also true which would prove our entire theorem

Theorem: Let P(n) be 6/7"-1 In EN, n70 Proof by Mathematical Induction: We must show Pn is true for all n20 Basis. P(0): 6/7"-1=6/70-1=6/(1-1)=6/0 Since 610 is true, P(0) is also trul Industrie Step: Assume for some K that P(K) is true, that is, 6/7"-1 By Substitution, P(Utl) equals 617kti-1 Since 6/7 1, 3m EZ > 7 -1 = 6m If we multiply both sides by 7, we get 7(71-1)=711-7=47m If we add 6 to both sides, we get 7 th -1 = 6(7 mf1) Since addition is closed under multiplication and subtraction, 7m +1 is an integer. By definition of divisibility, 7 ktl -1 is divisible by 6 so P(uti) is time

Since we have proved the basis stop and the inductive step, the theorem is true

QED

(DFD

Theorem: Let P(n) be 1+3n = 4" Un EN > n>0 Proof by Mathematical Induction: We must show P(n) is true for all N >0 Basis? P(0): 1+3(0) 64 1+0 41 Industive Step: Assume for some u that P(u) is time By substitution, P(K): 1+34 Eyl We must show P(leti) is true By substitution, P(kt1): 1+3(kt1) & 4k+1 344 = 4(4K) On the right side, multiplying the inductive hypothesis by 4, we get that 4+12k & (4)(4") Since 3444 L 12444 E (4)(4) by transitivity of < and < , 3hty 2 (4)(4) Thus, P(kti) is true Since we have proved both the basis and the inductive step, the theorem is true