Colle 26 - lundi 4 mai 2015 - Colleur : Isenmann - MPSI .. - Groupe ..

Planche 1.

Exercice 1. Soit E un ev de dimension finie et $f \in L(E)$. Montrer que :

$$Ker(f^2) = Ker(f) \iff Im(f^2) = Im(f) \iff E = Ker(f) \oplus Im(f)$$

Exercice 2. Soit u un vecteur non nul de E, un ev de dimension finie. Déterminer les endomorphismes de E tels que pour tout vecteur x de E, la famille (u, x, f(x)) soit liée.

Planche 2.

Exercice 1. Soit E un ev de dimension $n \ge 1$. On pose (e_1, \ldots, e_n) une base de E. On définit $f \in L(E)$ par : $f(e_i) = e_i - e_{i+1}, \forall i \le n-1$ et $f(e_n) = 0$. Calculer Ker(f) et Im(f).

Exercice 2. Soit E un ev de dimension finie et $u \in L(E)$. Trouver une CNS pour qu'il existe $v \in L(E)$ tel que $u \circ v = 0$ et $u + v \in GL(E)$.

Planche 3.

Exercice 1. On pose

$$f: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

$$P \longmapsto P - P'$$

Montrer que f est un isomorphisme et calculer son inverse.

Exercice 2. Soit E un \mathbb{C} -ev de dimension 2. Soient u, v, w des vecteurs. Trouver une CNS sur u, v et w pour qu'il existe une application linéaire f telle que :

$$f(u) = v, f(v) = w, f(w) = u$$

Solutions - Planche 1.

Exercice 1. Déjà, montrons que $Ker(f) \subset Ker(f^2)$ et $Im(f^2) \subset Im(f)$. Soit $x \in Ker(f)$. Alors f(x) = 0. Donc $f^2(x) = f(f(x)) = f(0) = 0$. Donc $x \in Ker(f^2)$. Soit $y \in Im(f^2)$. Alors il existe x tel que $f^2(x) = y$. En particulier si on pose f(x) = z. Alors f(z) = y. Donc on a bien les inclusions.

Montrons la première équivalence. D'après le théorème du rang on a :

$$dim(E) = dim(Ker(f)) + rg(f) = dim(Ker(f^2)) + rg(f^2)$$

D'où si $Ker(f) = Ker(f^2)$, alors $rg(f) = rg(f^2)$. Donc par égalité des dimensions et inclusion, $Im(f) = Im(f^2)$. Réciproquement, si $Im(f) = Im(f^2)$, alors $dim(Ker(f)) = dim(Ker(f^2))$. Donc par égalité des dimensions et inclusion, $Ker(f) = Ker(f^2)$.

Pour la dernière équivalence, on sait déjà que dim(E) = dim(Ker(f)) + dim(Im(f)). Donc pour vérifier que le deux espaces sont supplémentaires dans E, il suffit de vérifier que leur interesection est réduite à 0.

Supposons que les espaces sont supplémentaires. Soit $x \in Ker(f^2)$. Alors $f(x) \in Ker(f) \cap Im(f) = \{0\}$, donc f(x) = 0. Donc $Ker(f^2) = Ker(f)$.

Supposons que $Im(f^2) = Im(f)$, soit $y \in Ker(f) \cap Im(f)$. Alors il existe x tel que y = f(x). Or $y \in ker(f)$, donc f(f(x)) = 0, donc $x \in Ker(f^2) = Ker(f)$. Donc f(x) = 0, donc y = 0. Donc les espaces sont supplémentaires.

On a donc bien démontré les équivalences.

Exercice 2.

Analyse. Soit f qui convient. On complète u en base de E: (u, e_1, \ldots, e_n) est alors une base de E qui est de dimension n+1. Regardons ce que la condition de liaison donne sur les vecteurs de base. Déjà pour x=u, on a : (u, f(u)) est liée. Donc il existe $a, b \in \mathbb{R}$ tels que au+bf(u)=0 et $(a,b)\neq (0,0)$. Comme $u\neq 0$, on ne peut avoir b=0 (sinon on aurait a=0). Il existe donc λ tel que $f(u)=\lambda u$.

Maintenant pour $x = e_i$. On a : $(u, e_i, f(e_i))$ est liée. Il existe donc a_i, b_i et c_i (des réels non nuls simultanément) tels que :

$$c_i f(e_i) + a_i e_i + b_i u = 0$$

Si $c_i = 0$, alors $a_i e_i + b_i u = 0$. Or (u, e_i) est libre (car vecteurs d'une base), donc $a_i = b_i = 0$. C'est impossible. Donc $c_i \neq 0$. Quitte à diviser par c_i on peut supposer que $c_i = 1$ (et on prend l'opposé de a_i et b_i), pour avoir :

$$f(e_i) = a_i e_i + b_i u$$

Montrons maintenant que $a_i = a_j$. Soient i et j des indices différents. La condition donne que $(u, (e_i + e_j), f(e_i + e_j))$ est liée. Il existe donc a, b, c des réels non nuls simultanément tels que :

$$af(e_i + e_j) + b(e_i + e_j) + cu = 0$$

Donc

$$a(a_i e i + (b_i + b_j)u + a_j e_j) + b(e_i + e_j) + cu = 0$$

D'où par liberté, on a

$$\begin{cases} a(b_i + b_j) + c = 0 \\ aa_i + b = 0 \\ aa_j + b = 0 \end{cases}$$

D'où on en déduit que $a(a_i-a_j)=0$. Si a=0 alors c=0 et b=0 ce qui est impossible. Donc $a_i=a_j$.

Synthèse. Prenons une application définie tel que précédemment. On a alors pour $x = x_0 u + \sum x_i e_i$ que :

$$f(x) = x_0 f(u) + \sum_{i} x_i f(e_i) = x_0 \lambda u + \sum_{i} x_i (a_1 e_i + b_i u) = a_1 x + (x_0 \lambda + \sum_{i} x_i b_i) u$$

D'où la famille (u, x, f(x)) est liée.

Solutions - Planche 2.

Exercice 1. Soit $x \in Ker(f)$. On pose $x = \sum_{i=1}^{n} x_i e_i$. On a alors

$$0 = f(x) = \sum_{i=1}^{n} x_i f(e_i) = \sum_{i=1}^{n-1} x_i (e_i - e_{i+1}) = \sum_{i=1}^{n-1} x_i e_i - \sum_{i=2}^{n} x_{i-1} e_i = \sum_{i=2}^{n-1} (x_i - x_{i-1}) e_i + x_1 e_1 - x_{n-1} e_n$$

On déduit que $x_1 = x_{n-1} = 0$ et que $x_i = x_{i-1}$ pour tout $i \in [2, n-1]$. On en déduit par récurence évidente que $x_i = 0$ pour tout $i \le n-1$. D'où $x = x_n e_n \in Vect(e_n)$. Donc $Ker(f) \subset Vect(e_n)$. Réciproquement on vérifie que $Vect(e_n) \subset Ker(f)$. Donc $Ker(f) = Vect(e_n)$. On en déduit que dim(Ker(f)) = 1. Donc rg(f) = n-1.

Pour Im(f) il suffit donc de chercher n-1 vecteurs (et qui forment une famille libre). Par exemple les $f(e_i) = e_i - e_{i+1}$ pour $i \le n-1$. Ils forment une famille libre par le même calcul que précédemment. En effet si ils sont liés, il existe des x_i tels que

$$\sum_{i=1}^{n-1} x_i f(e_i) = 0$$

Ce qui est exactement ce qu'on avait avant. Et donc :

$$Im(f) = Vect(e_1 - e_2, \cdots, e_{n-1} - e_n)$$

Exercice 2.

Analyse. Supposons qu'un tel v existe. On a alors $u \circ v = 0$ et u + v est un isomorphisme. Donc $Im(v) \subset Ker(u)$. Donc $rg(v) \leq dim(Ker(u))$. Or d'après le théorème du rang, on a dim(Ker(u)) + rg(u) = n. Donc $rg(v) \leq n - rg(u)$. Or comme $Im(u + v) \subset Im(u) + Im(v)$, alors $rg(u + v) \leq rg(u) + rg(v)$. Or rg(u + v) = n car u + v est un isomorphisme. Donc $n \leq rg(u) + rg(v) \leq n$ DOnc rg(v) + rg(u) = n. On en déduit que rg(v) = dim(Ker(u)), donc par égalité des dimensions et par inclusion, Im(v) = Ker(u).

Or comme u+v est un surjective on a Im(u)+Im(v)=E. En effet si $y\in E$, il existe $x\in E$ tel que $y=(u+v)(x)=u(x)+v(x)\in Im(u)+Im(v)$. Donc $dim(Im(u)+Im(v))=n=rg(u)+rg(v)-dim(Im(u)\bigcap Im(v))$. D'où $dim(Im(u)\bigcap Im(v))=0$. Donc $Im(u)\bigcap Im(v)=0$. Donc Im(u) et Im(v) sont supplémentaires dans E. Or Im(v)=Ker(u). D'où

$$Im(u) \oplus Ker(u) = E$$

On va maintenant montrer que cette condition est suffisante.

Synthèse. Supposons que u vérifie $Im(u) \oplus Ker(u) = E$. Alors on pose v le projecteur parallèlement à Im(u) sur Ker(u). C'est à dire que Ker(v) = Im(u) et Im(v) = Ker(u). On a donc $u \circ v = 0$.

Montrons maintenant que u + v est un isomorphisme. Soit $x \in Ker(u + v)$. Donc $u(x) = -v(x) \in Im(u) \cap Im(v) = \{0\}$. Donc u(x) = 0 et v(x) = 0. Donc $x \in Ker(u) \cap Ker(v) = \{0\}$. Donc x = 0 et $Ker(u + v) = \{0\}$. Donc u + v est un isomorphisme.

Solutions - Planche 3.

Exercice 1. Soit $P \in Ker(f)$. Alors P = P', donc deg(P) = deg(P'), ce qui n'est possible que si P = 0. D'où P = 0. D'où Ker(f) = 0 et donc f est un isomorphisme.

Pour calculer l'inverse, on va calculer l'inverse d'une base de $\mathbb{R}_n[X]$. On cherche donc l'inverse de X^u . Soit P tel que $f(P) = X^u$. Comme deg(f(P)) = deg(P), il faut que deg(P) = u. Donc on pose : $P(X) = \sum_{i=0}^u a_i X^i$. On a donc :

$$P - P' = X^u = \sum_{i=0}^{u} a_i X^i - \sum_{i=1}^{u} i a_i X^{i-1} = \sum_{i=0}^{u} a_i X^i - \sum_{i=0}^{u-1} (i+1) a_{i+1} X^i = a_u X^u + \sum_{i=0}^{u-1} X^i (a_i - (i+1) a_{i+1}) =$$

On en déduit que $a_u = 1$ et que $a_i = (i+1)a_{i+1}$. On résoud alors cette suite définie par récurence :

$$a_i = \frac{u!}{i!}$$

D'où

$$P_u(X) = \sum_{i=0}^{u} \frac{u!}{i!} X^i$$

est l'inverse de X^u . Ainsi l'inverse de $Q(X) = \sum_{k=0}^n a_k X^k$ est $\sum_{k=0}^n a_k P_k(X)$

Exercice 2.

Analyse. Supposons qu'une telle fonction existe. Comme on est en dimension 2, alors 3 vecteurs sont forcément liés. Donc il existe a, b, c des complexes non nuls simultanément tels que :

$$au + bv + cw = 0$$

Quitte à permuter, on peut supposer que $b \neq 0$. Quitte à divise par b et à prendre l'opposé de a et c on peut supposer que b = 1 et que : v = au + cw.

Supposons maintenant que (u, w) est une famille libre. Donc f(u) = v = au + cw, f(w) = u ne sont pas des conditions restrictives. Par contre f(v) = w impose que af(u) + cf(w) = w et donc que $a^2u + acw + cu = w$. Donc par liberté, on a :

$$\begin{cases} a^2 = -c \\ ac = 1 \end{cases}$$

Donc a et c sont non nuls et on a $a^3 = -1$. Donc a = -1, -j ou $-j^2$. Comme $c = a^2$ alors les couples qui marchent sont : $(-1, -1), (-j, -j^2)$ et $(-j^2, -j)$.

Si au contraire u et w sont liés. Quitte à permuter u et w, on peut supposer que w=du. Alors v=au+cdu=(a+cd)u. De plus, f(u)=v=(a+cd)u, $f(v)=(a+cd)f(u)=(a+cd)^2u=w=du$ et f(w)=df(u)=d(a+cd)u=u.

On en déduit :

$$d = (a + cd)^2, d(a + cd) = 1$$

D'où $d \neq 0$ et on a : $d^3 = 1$. Donc d = 1, j ou j^2 . Si d = 1 alors a + c = 1. Si d = j alors $a + cj = j^2$ et $(a + cj)^2 = j$. Donc a = j(j - c). En insérant dans la seconde, $j^2(j - c + c)^2 = j$, on obtient rien de plus. Si $d = j^2$, on a a = j(1 - cj). On insère dans la seconde $j^2 = (j - cj^2 + cj^2)^2$, et on obtient rien de plus. Donc les triplets qui fonctionnent pour (a, c, d) sont (1 - c, c, 1), (j(j - c), c, j) et les $(j(1 - jc), c, j^2)$.

Synthèse. Soit (u, w) est libre et alors v = au + cw avec $(a, c) = (-1, -1), (-j, -j^2)$ ou $(-j^2, -j)$. On pose alors f(u) = v et f(w) = u (car (u, v) forme une base de E). On calcule $f(v) = af(u) + cf(w) = (a^2 + c)u + acw = w$ car $a^2 + c = 0$ et ac = 1.

Soit w = du et alors v = (a + cd)u avec (a, c, d) = (1 - c, c, 1), (j(j - c), c, j) ou $(j(1 - jc), c, j^2)$, où $c \in \mathbb{C}$ quelconque. On pose alors f(u) = v = (a + cd)u. On complète (u) en base de E avec u'. On pose ce qu'on veut pour u' par exemple f(u') = 0. Vérifions que f(v) = w et f(w) = u. $f(v) = (a + cd)^2u$. Or $(a + cd)^2 = d$. Donc f(v) = du = w. De même f(w) = d(a + cd)u = u car d(a + cd) = 1.

Les autres conditions pour u,v et w s'obtiennent par permutation de celles qu'on vient de trouver.