STATEMENT TO COMPUTER DISK AND SEQUENCE LISTING

The content of the incorporated sequence listing information recorded in computer readable form is identical to the herein incorporated written sequence listing and no new matter has been included. A written sequence listing of 65 sequences is included as well as a computer disk labeled "Corrected Sequence Listing" for application entitled "Light-driven energy generation using proteorhodopsin" by Edward F. DeLong and Oded Beja" containing files "MBA101-SEQLIST_CORR.prj", dated "8/4/01" with 171,574 bytes, which is the PatentIn project file generated using PatentIn Version 3.0 software provided by the USPTO, and "MBA101-SEQLIST_CORR.txt", dated "08/04/01" with 314,695 bytes, which is the generated sequence listing from the PatentIn project file MBA101-SEQLIST_CORR.prj using PatentIn Version 3.0 software, all which are herein incorporated. The information recorded in computer readable format on the incorporated computer disk labeled "Corrected Sequence Listing" containing files "MBA101-SEQLIST_CORR.prj" and "MBA101-SEQLIST_CORR.txt" are identical to the incorporated written sequence listing.

I declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both under Title 18, §1001 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Respectfully submitted,

Marek Alboszta Reg. No. 39,894

Lumen 45 Cabot Avenue, Suite 110 Santa Clara, CA 95051-6670 (408) 260-7300 x15

following page that the content of the sequence listing recorded in computer readable form on the incorporated computer disk is identical to the incorporated written sequence listing.

Respectfully submitted,

Marek Alboszta Reg. No. 39,894

Lumen 45 Cabot Avenue, Suite 110 Santa Clara, CA 95051-6670 (408) 260-7300 x15

MBARI BOWARD SEQUED BELONG, Edward Delong, Edward Try, oded

<110> MBARI

Light-driven energy generation using proteorhodopsin <120>

MBA-101 <130> US/09/847,513 <140>

2001-05-01 <141> 60/201,602 <150>

2000-05-03 <151>

65 <160> PatentIn version 3.0 <170>

<210>

105184 <211>

DNA <212>

Naturally occurring gamma proteobacterium <213>

<220>

gene <221> (50866)..(51615) <222> Proteorhodopsin gene sequence. <223>

<220>

misc_feature <221>

(1593)..(2807) <222>

Contains 'n' at position 2753. Predicted threonine dehydratase. <223>

09/847,513 DeLong et al.

L.P.,	09	120	180	240	300	360	420	480	540
F., Hadd,A.,Nguyen,L.P., 3.F 5 of phototrophy in the	tata attagtttat	aatgcatttt cttgctcaga	laacc tttgcgagtt	ctaca cttatcaata	cctag taattgggat	egcag aattttgttc	caaag gaaaaaagc	ctcat ggaactttaa	atcaa aggtaaagcc
Suzuki,M.T., F , DeLong,E.F a new type of	ctaatatata		tcaagaaacc	tgtggttaca	. gattttctag	gatgttgcag	: aaagtcaaag	; actccctcat	a tatggatcaa
Koonin, E.V., Suz Feldman, R.A., D evidence for a n	taacttaata	ttttacacta	ttccgctgag	tgcaagtaga	taaagatgaa	tgatgaaagc	ctcaactgct	atcaggtttt	tgtatccaca
χ, Ψ	attgctccaa taacttaata	ggttattgtt	gagttcttga	ttgtgaatgt	atgaaagtta	aagaatactc	ttoctatgtt	ttattgcaga	agggcaaggt
Seja,O., Aravind,L., Kch,S.B., Gates,C.M., Sacterial rhodopsin: 65200-09-15 AF279106 2000-06-15 (50866)(51615)	agtaatggct a		acagacatga				- ggtgttgaat	tataaaaaac	atctcaaaag
<pre><300> <301> Beja,O., Al Jovanovich,S.B., (<302> Bacterial l <303> Science <304> 289 <305> 5486 <305> 5486 <306> 1902-1906 <307> 2000-09-15 <308> AF279106 <309> 2000-06-15 <313> (50866)(</pre>	<400> 1 ttqttatatc a								

cttatttcat tacaggaacc
gacaagctaa
aaggcataca
aaagctcatc
cctcctcgtc
cgagctcata
tattatttcc
ctttcaaagc
ttagatcaaa
gccatatcag
catttggaaa
accgattatc
agttctttgc
aggcttcatt
attgaaattt
ttgaattacc
atatcgagct
agtctcttct

gtcgtcttca aaataaagaa ggcttccact tatgttagat agtttatttg gaagatatgt

cccaagattt atagcaagaa '	tgaaagcttt	gttaccatca	ccatcaaagt	ctatatttat	4800
agagttttta tcgctaagtg a	aatttatttg	atctctaagc	gtcttcctgg	agaacataga	4860
atcattactt tgaaaattct	taaatccaac	atatatacca	tccttatttg	agaaaattaa	4920
agccgttgta agaagttcat	ttttcttaag	agtaaaagga	gatgtttcat	aaaaatctgt	4980
aatttcaaat gcattattcc	actcaggctc	atcaagagag	ccatcaataa	caattgagtt	5040
tgaccaaatc agcacagagg	taagtaaaag	tgataatgag	gctaaagtta	ttttcataga	5100
tagatttaat tcagagtatt	ttaatctatg	aagagtagga	aatcatccga	tcattctcag	5160
aaaaaacata atcatattta	aggtcatgtt	tttctccaaa	atgcatatta	caaatctggt	5220
attgataaca cagtccaacc	aataaaggtc	ttgatacctc	ctcgtttata	gagccaataa	5280
ttctatcgaa atatccagag	ccatagccaa	gcctgtatcc	atttaaatca	actcctgtca	5340
taggaataaa cattaaatca	atttcattta	tgttgacata	atcttcactt	ttaacctctt	5400
tgatcccaaa ttgatttata	aagaagttag	gctgctcatc	cagcaaatta	aaagccatca	5460
tttcgtcatc aattactttt	ggaatataaa	tattctttt	aagtttagta	aaagcttgaa	5520
ttaacaaatt tgtattgact	tcatttcgaa	aaggaaaata	taaggcaatg	ttttgcattt	5580
catgagtatt gattttttct	aatacatttt	cttggattaa	aaaacttata	ttgctcttag	5640
ataaatcaga aatagactgc	ccctgctcaa	agagtgattt	tcgtatttta	tttttcacca	5700
taaattgtgc cgaggctaac	aaaccaaatc	accgccatgt	gctatacctg	aaccgatggg	5760
tcaggtggtg aatttcataa	caaatcaggc	ttccctgtaa	aggtactgcg	caacaatgct	5820

aaagtaattg act	actggacatg	cgcagcaaat	tctaaagata	ggcacagcaa	atcaattgat	0069
attattgatg gct	gctcttcgat	ggtaggaaat	ttaaggctta	tcaaagataa	gcatgaaatt	0969
gatattatga aga	agagagcttg	tgaaatttca	gctgaatcat	atattgaggt	catgaaatct	7020
ataaagcctg ggg	gggacaatga	gcaggaaata	gaggcgctat	ttttatatga	attcgccaaa	7080
aggggaggaa ggt	ggtttccagc	ttatacacct	atagttgctg	gaggtgaggg	tgcttgtgta	7140
ttgcattata ttę	ttgaaaatga	taaagagtta	gcttcatcag	atttaatttt	ggtagacgca	7200
ggatgtgaat aca	acaaaatgta	tgcatctgat	atcacaagaa	ccttcccagt	aagtggaaaa	7260
ttttcagatg aa	aacagctaca	aatttataat	attgtccaca	aagccaatct	tgctgcaatc	7320
gatgctgtaa aa	aaactggtaa	tagcataatg	gagccccaaa	tggtttcaga	aaaagtaatt	7380
actgaaggtc tto	ttgtagagtt	gggtattcta	tctggcgatg	ttaatcagct	tcataaaaat	7440
ggtgcattca ag	aggactttta	tatgcataag	gtgggacatt	ggcttggact	tgatgttcat	7500
gatgttggtg ac	actacatgga	gggagatgag	tttatgaagt	ttaagccagg	gatgataacc	7560
acaatcgagc ca	caggcatcta	tatcagtagc	gcaatggatg	tagatgacaa	atggaaaggc	7620
atcggcataa ga	gaatagagga	cgacatcctt	gtaacagatt	caggcaatat	taatctaaca	7680
gagaaggtgc ca	catctaatcc	tcaagaaata	gaatcattga	tggcttagac	tatggaggtt	7740
ccaattgtta tt	tttctggcgg	agggataata	ggtaattaca	tttctcttag	gcttgaaaaa	7800
aataatatca aa	aaaccgttat	tgtcgaaaaa	gctagtagtt	tcaaagccct	agataagggt	7860
ataagaacag tc	tcactctcaa	tgagcattct	atgcaaatgc	taaaaaatat	tggtatttgc	7920

cactaatgcc	tttttatca	atgattctca	taccttttgc	agatacttta	agatttacga	0006
acctgttctc	agattcaacc	caaaatttgt	gtgtgtgaag	attaggaaaa	aactttcttt	0906
tagtcctatt	tttagcgtga	gaaacattgt	ttactgactg	tggtatctta	cctgttactt	9120
gacatattt	actcattgaa	acgcgatttt	atagaacact	gaggaactta	gcaatactat	9180
tgtgaaacaa	atttatttat	tacggcatgc	acaatctgac	tgggagagct	ctaatcagaa	9240
agattttgat	agaccattag	caagaaaagg	cattgaagaa	gcaaataaaa	tatcatgtta	9300
ctgcaaatct	cattcaattt	tagtagataa	aatattctgt	agcactgcag	aaagaactaa	9360
gcagactttt	gatatatgca	gtgatgggct	taattatcca	atagctgaag	cagtctatac	9420
tgatgagctt	tacttttctg	gccctggtga	gatcgttaag	cttatccaaa	gtttaagtga	9480
attcatttcc	tctgttttaa	taataggcca	caatccatca	atgcaaatgt	acatagatgc	9540
tatttcagaa	aatcctcata	ttacgtattc	aacatgcggg	ctggcagaaa	ttctcgttga	0096
aagttcatgg	aaagacttat	ctttaaaaaa	atgtaagtta	aaatctttta	ttcaaccagg	0996
agagctttaa	aaattgaaaa	acataaaaat	taagatcatt	aacccactaa	tgggatccaa	9720
gataccctta	cctcaatatg	aaacaaaggg	ctcggcagga	ttggatttaa	gggcatgcct	9780
agatagtaat	ctcagccttc	aagcaggaac	atctcagttg	atacctattg	gttttgcaat	9840
gtacttagaa	gateceggte	ttgcagcaat	ggttatacct	agatcaggtt	taggttctaa	0066
gcatggaatc	gttcttggta	. atctggttgg	gttgattgat	tcagactatc	aaggagagct	0966
aatggttcct	. gcctggaata	gatcagatac	agattttgag	attaatcctg	gagacaggat	10020

09/847,513 DeLong et al.

13140	ccatctctaa	tgtctcatct	ttaaatctaa	tatctattat	agcatcctgg	catatttcct
13080	atatctgctc	tgaaacaaaa	cagcatggat	ctaaacccat	ggaagataat	caccetttac
13020	aaaacagaag	tgaccatata	aagcttcatc	acagtacttg	gttcctagca	ttttagataa
12960	tecettigtt	ctgtattctt	ttatatcagc	tttagatttt	atcaactggc	cctcatcaaa
12900	cttgccgcat	ataggtttgt	atatttctgg	tttttcttat	ttcagaaatt	aaattttact
12840	ttagttccta	atccaatatc	ttttaagttg	aaagggtctc	aatttttgtg	tctttttatg
12780	tactcaacat	gaaatcagcg	taagaactct	tcaatagact	agaaggtata	caaccaatac
12720	aaccctgact	gttggttata	cgtcttcagg	aatctttgtg	cttgcccttt	ttctccctgg
12660	gcaatcattc	aacagatctt	ttcctaggaa	tagttatgta	gtccttaaaa	ctttaggttt
12600	aaggtatttg	aatactcata	agcctggatc	taagtcacaa	ttgtattttg	catccccttt
12540	tctgataaga	tatcgctatt	cccaaatct	tctacagtca	attaatttct	tattctctgt
12480	ttgtttagtt	tattggttta	gtcctgggta	ttaattaatt	aatattaatc	acttaagcta
12420	gatccaatag	tttcgacatt	ttaagtggtc	tctaataagg	atggccggaa	agtttgaaaa
12360	ttgacaacag	attaaagttt	taaataaggt	aagacttttt	tgcaccaaag	tctatatcca
12300	aggcaccaag	aggaaattat	cgaagtcgaa	tcattagttt	tecettgeet	atgttattgg
12240	actgatataa	atccaatagg	ttttaatttt	gagaaagctg	agatttccta	agagtaatgt
12180	ccaactcaaa	gtgctcatca	gtctgcttag	actactttat	acctccattt	aaatgaactt

cgaatgaaca gcaacagcaa	taatgctcgc	atttcttata	tcaagacctt	gggcaagaag	14280
agcagtcaaa acaccagcca	gaacgtcacc	agttcctcct	gaagcaagtt	caggtccgcc	14340
gcacgcgcat ataaaagact	tgttatttgt	tgagtcaaag	accaccgttc	ccattccttt	14400
taatatgaca atagaagccc	cataagtgtc	tgcaatttgc	ttggcagcag	aaatcctatc	14460
tctttgaact tcttcaatag	atatgtttag	taatatagcg	gactatactg	gatggggcgt	14520
catcaagatt gttttattgg	attttttgat	taaagatttt	gatgatgcca	cgatgtgtaa	14580
agcacctgca tctaatataa	tttttgaatt	atttgcagac	tttaatattt	tacccaatat	14640
agtttttgca aaagcagtat	tagcaattcc	tggtccatac	aatataacgc	tatgatcttt	14700
aatttttaaa tctatatcga	cccttcaac	catatcaaca	ccaattgcca	ttacctcagg	14760
gtttcttaat aaagatgggc	ttacattaga	cgtgtctgtg	acgagagtta	ctagtccaga	14820
gccacaaaat aaacttgcct	. cagatgcaag	tattccggcg	ccacccatgc	ctggggagcc	14880
agcgcatatc aaaacttttc	caaaattacc	tttatggcta	tectttgete	tattgggcag	14940
aagatttttt aattcttgaa	aggtaaaact	ttgcaatata	gacatgaaat	tacttaagct	15000
aaattatgtt gaatgctaaa	aattcattct	tcagcgaaat	aaccaatcct	atcggaatgg	15060
aatgatccca taaaaatttt	ttcgtcatga	ggcactgcaa	tagtgggtag	gccaaaaact	15120
gttctagaaa atgaaaactt	atcttctctc	ttaagtgttt	tttgattaag	tttatgaatg	15180
gagaagggta gagaacaatt	tgttttttct	gcacaattac	caaaatcatt	agcctgtaaa	15240

a 15300	a 15360	t 15420	a 15480	a 15540	a 15600	a 15660	a 15720	t 15780	a 15840	a 15900	ıg 15960	ıg 16020	16080	ya 16140	st 16200	sa 16260	ga 16320
actctgaata	gtcaccttga	aggcccact	atgccctga	tttatacata	atattggtca	tataatttca	gaagccttca	tcttatgcat	ttcataggta	gatccctcca	tgggtttga	catttggggg	agaaaccggg	atgatttgga	: aaaaattact	r aatcatccca	. cgaaaagaga
tattatctgg	cagataaatt	aaattccatt	aaagtactac	tgatatctct	cattgaaata	attcattttt	ctagttgata	ctagctcgcc	gtaccttttt	catatggacc	caatatcttc	tactaatatc	aataaagaat	tctttgaagc	ccataacaac	ttaaaaaaag	caacaaattt
tttaaaaaga	atatcgtaaa	tcatctagca	ttgtcactcc	tctttcatgc	agggcaacat	tcccatgaag	ttaattacag	ttgaatatgt	gtaatttttg	gtatgttctg	ggcgtaatca	gattcacact	gaaataaata	atttctaaaa	gatagagccc	agaagaccag	actttcgatc
cgaaccgtct	attttgatta	tccagagccc	attaaaatta	cattaaccat	atcttttta	ccatatcata	tggcgaatga	tccgtgggga	ttctccaaaa	gtaaccaggg	tttattatca	acggtcatcg	gacagttaca	ctttataaaa	ttttaaaaaa	ttccggctga	tgagattttg
ttaaccaaac	ctgttttagt	cataaagaag	catcaacttt	ataatgaatt	aaaaacttcc	tacagccccg	tcgactcaaa	caagatctat	cccaagagct	ttaaggcaaa	taaagaagaa	taaccttgat	cagtagatac	tataatagtg	gccaaacccc	tgtcagacca	ctaaatagcc
tctaaagaag	aaataactac	ttatagttaa	ccatctgttc	atacttttaa	tgagatgcat	gggaccctaa	aacatttcaa	tcattttcaa	gaagcgtcac	tttaaatcca	aattcagaaa	aaattacaaa	cctatatagt	acggtaatct	agtgcgatca	gaccatagcc	aagaataaag

17280 16380 16440 16500 16560 16620 16680 16740 16860 16920 17040 17340 16980 17160 tggatgaaca aagcagggca gccaaatgaa aatgtgtaac cgaataacct ttcaagactg cagctagaat aggatatatc cccatgagga ttcttgataa tctctgagct aggcttgtcc atttccataa acagtattct aagctataaa aaataaaaat atgaataaac ttaatttaac tagtaattca taagttagtt tttatataaaa tgctccttaa taatactaac aagttctaag ggettgteca atggaacatg gtgagcaget ecaggaaeee eeteaaaagt eataatgtea ccatatgtat ttttaatatt gtccaagata cttccggagg ttaataagct gtcttcaccg ctaaacatga catcatcaaa tttccatctc cacccagcct caatattttt tactgagtgc tcagcaatgt atcttaagta ccaatcattc gtacaatctt gcttaggcat taacctaaac cttttaataa tatctgtctt gtcttgatag tgcttgatca ttctgagagg agaagagtgt tgattcgggt cataatccgg tggtcttata aatgtatcaa taataataat attatttatt agateettte ttteagatge aaegtaaeea geaaeatgte egeegaggga gtgteeaaea ataaaaatat ttgaaatatt ttttttatcc ttttcctttt caattacaga gacaatacat tctccaaaat ctttaatgcc atatgaatct ctaaaagaag agtcacccat gccaggaaga tctattgcaa ctatatttgc gcagtctcta aagtgggggg caataggatc ccaccatttt ttatgagcac ctgttccgtg aataagaatt attaaatctt tgctttcatc tttggagttc tcaatggcat ctttgaacca ctgtggggca tgaataatgt cttgatttag attgttagtt tatgtataaa gaggctttat aagaactagt aaaccacagg ccaagaaaaa gaatgctaag

attattttaa	atgataaaga	tattattgag	acagacgaat	atacgttaga	agtaatacat	18480
actcctgggc	acgcatctaa	tcatttatgc	tttttaataa	aagatacgaa	atgccttcta	18540
acaggcgatc	acattatgga	cgggtctacg	gttgttattg	ggccaccaga	tggcaatatg	18600
acaagctata	tcaattcatt	agaaaagtta	ctagattttg	atattgattg	ctttgcgcct	18660
gggcatggaa	attatattca	tgagcctgag	aaaaccattc	aatcaattat	taggcacaga	18720
ctaacaagag	aaagaaaagc	tcttagaaag	ctaggagagg	caggaatctc	atcattagat	18780
aaacttacta	agcttgttta	tgatgatgtg	tcagagatgc	tccatcctat	agctaaatat	18840
agtctagaag	cacatttatt	aaagcttata	gatgaaaaga	aagttaaatt	agataaagat	18900
ctattcgaaa	taatttaatc	ctttttattt	ttatgtaaga	ctttctcctc	aatagcttct	18960
atatcaatat	catcaattga	gtcttcgtta	ttatcaggta	tctttttac	atcttttca	19020
attttaaggt	cgataggaga	ggctccaaga	tcaaaagtta	gctcccttac	attttttgaa	19080
atagtatcct	caacacagtc	atcttgatcg	tatgcctcac	gggtctctcc	tttatcatta	19140
atgggaaagg	gtctttgggg	agggcccatt	tgcatgcatt	taatagtagc	aactggtgag	19200
tagtaatcgt	cactagaata	taacttatca	agttcttttg	gtgatattga	gcaaccaata	19260
attccaaata	gaataaatgg	cgctaagagt	cttttcataa	actttgtttg	ttttctataa	19320
gagactcaac	aaccgaagga	tcggcaaggg	ttgtcgtgtc	tcctaaatta	gatagatcat	19380
tctcagcaat	ctttctaaga	attctgcgca	taatttttcc	cgatcttgtt	ttaggcaagc	19440

ctggagcatt t	ttgaattaaa	tctggttttg (caatagctcc	aatttcttta	gcaacaaatt	19500
	ataactaaag	ttgtcatcaa (atgattcatt t	tatcattaaa g	gtaacaaaag	19560
	ttgcccctta	attggatgat	caaaaccaac 🤞	aacagctgct t	tcagcaattt	19620
agggtggag c	cacaagagca	ctttcaattt	cagctgtacc	tagtctgtgg 0	ccagaaacat	19680
taagaacatc a	atcaactctt	ccggttatcc	agaagtatcc	atcctcgtct (cgcctggctc	19740
	aaagtaaata	tctttataca	taccaaaata	ggtgtcgatc	attctttggt	19800
gatcaccata a	aatacttcta	atttgactag	gccaagattg	ctcaataact	aaattacctg	19860
cattagagcc t	ttctagcgta	tttccatgct	cgtcatagag	agatggctta	actccgaaga	19920
agggcagagt t	tgctgaccca	ggttttgttg	gagtaatacc	cgctattgga	gagataagta	19980
	ttaggtttga	caccaagtat	caataacctc	gcaattagat	ttaccgacaa	20040
cactgtagta (ccaatcccac	gcctctggat	taattggctc	tccaactgta	cctaaaattc	20100
ttaggctatc t	tcttttgtc	tttttaacag	gatcatcgcc	ttgggccatc	agagctctaa	20160
tggcagttgg a	agctgtataâ	aaaatactaa	tgtcatgctt	atcgcatatc	tcccaacacc	20220
ttgatgctga a	agggtaggtt	ggcactcctt	caaacataag	tgttgttgct	ccatttgaaa	20280
gaggtccgta	caagatataa	gtatgtcctg	ttatccatcc	cacatctgca	gtacaccagt	20340
	tggccttatt	ccaaaaagat	atttgaaact	aatatgagcg	cctaatagat	20400
aacctgcagt	agtatgtaga	acaccctttg	gcttgcctgt	agagcctgat	gtatagagaa	20460
tgaaaagagg	gtcttcggaa	tccataggct	ctggagcaca	cttattagaa	acatctttaa	20520

tttgtcatat agatccattt c	cctcgttaga	aagagtaacc	tcagcgaata	atcgatcttt	21600
ttctattaaa aaatcagcaa c	ccctcactgt	ttcaaaaagg	cttctttgtt	taagatcttg	21660
aatttgttgc attctttgaa s	acaagaagaa	aagctgagtg	gctagagctg	attggcttgg	21720
gtttttataa aaattcttta a	agaagggatt	ctctgccggt	tgttctaaaa	aagaatcata	21780
attaaatgtt teggetatet t	tatttgctaa	agtagttttc	ccaacaccta	teggteette	21840
aattgcgata tattttggaa g	gtggtacttc	tttaatagct	gggttcattt	ataacgtata	21900
gtttttatcc tagattatct o	caactcgtta	tagaagccaa	atattttgc	agattcttca	21960
tcacttttt cattcatctc a	agcaataatg	gttcctctca	atgagtcatc	atttttttgg	22020
aaatcagtcc accacttccc	aataccactc	ttgtctccag	aagctctctc	tcttacaagg	22080
agaaaatcat atgcagctct	aaaccttgga	tgtcgaagag	ttttatatgg	ctggctacca	22140
attctgctat gaagttttaa	ttgaagtacc	caaatatcct	taatatagct	tgaaaatttt	22200
cttggtattg ctgtgatttt	ttgttgttcg	cgaagtacac	catccataga	tcggaaaaat	22260
tttctcacat taatttctcc	attcttagaa	cactttttca	ataacgaggg	ccataacaat	22320
gcagccataa gaaagcctgg	tgtaattgac	tgttggtttt	taaccctatc	atcagtattt	22380
cttagagcat gtgtcataac	attgctggca	aagtcattcc	tacttggatc	agaaaggata	22440
agatatttat ttaaatgaaa	tgagcagagt	ttttcaaaat	tctttcacc	cattccattc	22500
attt tgcagaactc	atcaaacaat	ctagcgtttg	agatgcctga	taaaagatgg	22560
cctttatcat agatggcatc	cttaaccaga	ttatctatct	taaaattgag	tttgttacta	22620

gagctttttt g	ggtaacagtt	tttttaactg	tagctttttt	ggcaacagtt 1	tttttaactg	23700
gagctttttt 1	tactgtcttg	gattttttt	cgaccatgta	agattttata (gaattttagg	23760
	tatcagatac	tgacaaaatt	agctagtcat	ttttaattt	atttaatact	23820
	catccgagct	aagtcttggc	ccaaatgtct	caacaacctt	ggaagatgca	23880
tagtttgcaa	acttagcaca	tgcttcaata	ttattccctt	gaaggtaggc	atgcataaac	23940
gatccggcaa	acatatcacc	agctccattg	gtatctattg	gagttatttc	ttctgcttga	24000
gcatgcttct	caaccccttt	atctataaca	acacttccat	cggcgccttt	tgtaatagca	24060
gtcatatagg	gattttattt	ataaaagcta	acagcatcat	caaggctttc	tttaccagaa	24120
aaagcaacag	cttcatcatc	attacagaag	atcatatcta	ttccatatga	ctctattaaa	24180
tcaaattttt	ctttaaaacc	atgaacaata	cctgcatcag	aaagagacaa	ggctttcttt	24240
acgtccttgt	ctttaaggtg	ctctaagact	gaaataacag	cattaaagtt	atcgtcactt	24300
gttaccatgt	agccttcgat	ataaaaaatt	tttgaatttt	ctacaacatc	aaaatctata	24360
tctgatttac	caagatacgc	actaactcca	agcatgctgc	tcatagttct	cttagcgtca	24420
ggagtaacta	aaattaagca	tttcccagtt	ggttgatctg	tattttcaga	gctgacacca	24480
atatgtttga	ctccagccga	cctgagacta	tcaagatagt	ttcttccatc	ttcatcatca	24540
gaaactctgc	atacatgatg	r gcaattcgaa	ccataatttg	ctgcagcaac	aagagaattg	24600
gttgcagagc	caccgcaatc	: agaaatcgat	teggeteeea	tttcaataag	tttgctaatt	24660
ataggtgcct	gttcttcaga	agatgaaaga	gtcatagagt	cggctacaag	gcctacactt	24720

Corrected Sequence Listing (August 4th, 2001)

aaccattctt	attttttcaa	ttgaaggaat	gcatttttta	attagcctgg (ccacatcaga	25800
ttcaagactt	gtcgggggcgc	cataactagt	tccaagcgca	acttgatttt .	taattgcacc	25860
tacaatgtct	gggtgtgaat	gacccattat	catcggaccc	caagacccaa	tataatcaat	25920
atattcatta	tgatcagcat	cataaaggta	tgcgccggat	gctctttcaa	aaaatatagg	25980
attgccattg	atatttttga	atgcccttac	tggtgaattt	accctccag	gcataagagt	26040
cttggcctct	ttgaataagg	ctatggattt	atcaatttta	ttatgtgtca	aagctaattc	26100
ttcttaattt	ttaatttcga	tatgatatca	acttaattct	tattatgtat	ttaattgttt	26160
tgaaaattca	tccacagtat	tccagttggt	gaactcataa	gtatttgtaa	catctgtagg	26220
accctttgta	atccacataa	tcaatctaat	catgtgttta	tctataaatt	tatattttgg	26280
ataatctatt	ttgcctgcaa	agactgctaa	tttcattggg	ttccaaggag	acagctctaa	26340
aaatttttgc	atatacgggt	ttgtttcagg	tgtattttt	tcaggctttc	tcgcaactac	26400
attaactgaa	. aagaaggcat	tttcttttgt	ttcaagacaa	gcaacatttt	tttgaataaa	26460
ttcataaagt	: tctggtttgt	gtttgccata	cctaatgctc	gcaccaataa	taattttatc	26520
aaattgatat	. aaatctaact	ctactgcttt	tgcaatatgt	attatttttg	aagattcaga	26580
cacatctaat	: ttagagaaaa	ttttttaca	aatttccaga	gtttgcccat	cggttgtaga	26640
gtagattagt	. agagttgatt	tcataaatat	attttatatt	gttaattaaa	aaatttcatg	26700
gcacgcgcaa	aatataaaca	. aaaatatagt	atatttaaaa	aatgattaaa	tatttattta	26760
ttatcgcttt	: attcatcagc	aactttgcat	atgcaaatat	tgatgcagct	aggtgcgcag	26820

09/847,513 DeLong et al.

tgaacagcaa taccaaatcc tttccagttt	ttaatatttg	gtgaaagggc	catctcttta	32100
ataatctcta aactaacggc cagtctgtct	tgctcctcag	catcgattgt	aatttctaca	32160
tetttagaet ttgeataete tgtgagetga	ataagttttg	gaagtagatc	agactttatg	32220
tcttttagct ttttcatttc atatctagga	gataaagctg	atatttttat	tgagacacca	32280
ttaattgtat tttttgtcag atttatcttg	ccgacttcat	ctatagcatt	cttataagac	32340
tgataataag tgtcggcttg ttcagcgttt	cttgctgcct	ctccaagcat	gtcaaatgaa	32400
taaatttcat tttctatatt cttaattttt	tttatgtcat	caaaatctct	gcccataaca	32460
aattettgae tgagaatatg eatggeaeea	actacagcat	ttctaattgg	aaactcgcca	32520
gattttgaga ttaaagaact taatagggcg	cttgggtttt	tggtccactc	atcgggtgta	32580
gaaactacct tgcctgcaag aagaagaccc	catgttgatg	cattaacgaa	aacactatcc	32640
gctttgttta aatgctctat ccacgcaccc	tcagataact	tctcagatat	tattagatcc	32700
cttgtttttt tgtctgggat tcttagtatt	gattcggcta	aacacatcag	agcaacacct	32760
tctttattat ctagcccata ttcgcttaga	aatgcatcta	gttttgttct	ctcgctctta	32820
ttctctctgc aagcatcaat tattttattg	agcattttt	gaaatcgaag	ggtcatttaa	32880
aaaatcagaa ttactaataa gatctgaaac	tatttcttgt	tcaggataaa	acttgttact	32940
tgttaatgtc atagctatta ttttaatctt	atagtgccaa	gtatcaactt	actgattcta	33000
ttaatgactt aaaaacatta tgatagtcat	atgagtgatg	cacttaaatt	aattaaacga	33060
ggaaccgacg agatcctcac agagtctgat	ttaaaaaaga	aattagattc	tggaaaacag	33120

36300	36360	36420	36480	36540	36600	36660	36720	36780	36840	36900	36960	37020	37080	37140	37200	37260	37320
ccatctgata	gagatagttc	tcacagtcct	gttttttgt	ttcttagcaa	tgtctctcga	tcttcgatta	tcaaaattat	tatttattgc	gcatggcaac	gatgcttgaa	ggatattcta	cgtagtttta	agaaaatgag	tctggggggt	cccagctttt	caaaggagct	tttgtttggg
atcagaccca	acttgcaaga	ttggcattct	ataataaaaa	ctcatctaaa	gaaattattt	tctataagca	ttcagggtat	catgtatatg	attcaatcga	cacccatcat	ctcagcctga	gtctcttagg	ccatagaatc	tctttccact	tattaatact	tgcttgaaga	atggcaccac
aggttctcca	taacgctggt	aaactctatc	catcattgaa	tatcccaaac	atttttgtgt	cctccatcca	ctttatttga	atagagctgc	ttatgaatca	gtacttgccg	caaaacgtta	ggctctgtta	tcgtatgcat	ataagaaaat	tgtcttttt.ggtatcttat	gcatttatta	acggatgagc
agtactttcc	gcatcatitac	ggatcaagta	tgccatgacc	atcgaatctg	tggcctataa	cttgtaaaat	ctaaaaggaa	actagaatta	tacaattacc	gttttttatt	aaccccaata	agcctttcta	gctttttgtt	atttttaggc		catttttcct	ttgggaaaag
ttcaatatca	tagaagagat	gaactgattt	cttgctttgt	aggcatgctt	atatttattt	tgagtcctca	gacttcttca	tgagcaacta	cataatactt	aaaattggaa	catcaatggt	atgagaatat	ttatgggagc	taaatgcctt	cttcagttgg	. caaggetttg	ttaaattatc
tttttcctga	ttgagaaagc	catcttctga	taatcatcag	taacctgata	tagatttttt	cccagtctgt	ggtatccatg	ctgtttgatt	gcataaaaag	ttttacgcaa	atagcaatgg	gaatttttca	agtatggctt	attgagcctc	tatcttatag	tatgtagcag	atagaatctc

tagctttctc tatttcaaaa	tttaacttac	ttaaatcaaa a	agatgtttca	acatgattaa	38400
ggtattgctc gcctcttacg	agctcaatct	tattaaaagc a	aaagtatatg	cctgagatag	38460
tccaaagtaa taactgaaga	gagataaaaa	aacttaggta	cttatgaatt	ttcctaacta	38520
aaaagttcat cttttcataa	tcttcattat	ttcatcaatt	tttacatcaa	attcgtcatc	38580
accttttaaa gattccttaa	tgcattcacg	caaatgggtt	tttagaattt	tgccctcaac	38640
agtaataatt gaattcttaa	gtgcttttat	ttgattaaga	atatcaacgc	agtattgacc	38700
ttcctcaacc attccttgaa	cgcctcgcac	ctggccctct	attcttttta	agcttattaa	38760
ttgctcttta tgacatggat	gtttcatttt	ataaaaacct	cggaactata	tacgtaaaaa	38820
ttgtagcgaa taaaaaaatt	gctacagatg	catagtacag	atacctagat	ttttttctag	38880
tttctgaaca tgctctgcct	. agttctgggt	cagcagggca	aggcatatga	taagttttgt	38940
agttgatata tcctgcaatg	acaatcatta	ctaatgcaaa	tagtgttatg	taaagcttat	39000
attgagatag ggtaattaag	, aatggaaata	cagttaccag	gcttgcaaaa	cttgccccag	39060
caccaagagc aacaaaaata	gctggcaagg	cacaacatat	caaagtagaa	gaagatgcaa	39120
ataatgaaaa aaaattcgac	gccttatcat	tcatagttat	taaatttcta	ggatttgaag	39180
atcagacata ttttggccat	: tagaaagaat	cttcttttcg	atctcagaga	aggtgatttc	39240
ttttgcctta gaaaaggcaa	a tcactacttt	tccattatca	agatcaacat	ctattctttt	39300
gacatcttta tcttttagaa	a, aagtttttga	aatacctctt	gcacagaaat	cacaaaccat	39360
tecetteaeg ettaegateg	g ctatatttac	atttgagagt	ccttcaacaa	atgcatcaaa	39420

	7 7 0 1 1 1 1 1		atcaaccatg c	gtttcatgta	aatgaccttc	39480
	ccacacac		atteteegee (gcaataaggc	cgcttgaaag	39540
argament anadtaatt	aataataatt	tttcatatt	tttctccttt 1	taaaatctgt	acataaaatg	39600
taaatcccad	ctcgtatctg	cgtcatagcc	aaactcaaca	agggcattac	cataaaaaaa	39660
tttcaattct	ggatacgtag	atgatttatt	tgttacagta	tttttttgg	ttttaaccat	39720
aacccatgta	tgtaaatcat	tgtagtcagc	aacgtaagga	gcaaatccaa	gttgaatata	39780
ttcttctta	tagtctttgc	taaatttact	gttaatatcc	tttaacccaa	agcccgcata	39840
ccacttccgg	gtttcccagt	ctccatggat	accataaaaa	ttatttttaa	tacttccagg	39900
cacaattcct	gattgaaaat	ataaattcct	ttgggatgta	aaagtatttt	ttctattcac	39960
caaataagta	aaacgaaaat	agttttctgt	gttcttataa	aatttatttt	tagccctttc	40020
taggccaatg	gaatatttgt	aggttggaga	gtagtggaaa	taaatagaat	cattaaaggt	40080
atctgattta	tacattatgg	ttgttccgcc	agagtaggat	ateggtettg	catcagcatt	40140
aaagaccatt	. aaaaaaacta	aaatgattat	tttatatata	cccatggggg	gtatcttacc	40200
ataggattat	. aaattaattt	. caggcatctc	tccaagcgcc	cattttcaat	gaaatcacca	40260
tcagaattcc	aaaaataacc	; atagctatag	cagatgcata	aaaaatacta	actagcccat	40320
atgagagcca	a gtaaacagct	: accaatgcta	taacagaaaa	tactataagc	ctgatggccg	40380
tgattataat	: tggccatttc	s attgcattgg	ctccctgaga	tgcaaaatac	agggaaagcc	40440

catatccttg	aaatacataa	catacaccaa	ggatttgaat 8	atactgcttt (gtaactaata	40500
aggtctctgg	atccgatgta	aaaatactaa	tccaaagatt t	tggtgttagt (gctaaagcta	40560
gaccgataac	agccgaaagc	aatccagctg	ttgttgcacc ;	aaccatgcct a	attttttctg	40620
ctcgctctat	atttttggca	cctatatttg	ttccaaccat	ggctgtcata	gcagtcccaa	40680
tgccgaacac	aattgggatt	aataagaact	ctacccttga	accaattcca	taaccggcaa	40740
tagcagacgt	tccaaattga	ccaatgagtc	ctgtcagtaa	aagaactgtt	gcaactgtca	40800
ttattggcga	aagagatgcg	ggtaaggcaa	cagaaaaat	atcttcgaat	aattctcttt	40860
caattgttag	tcttttgagc	ttaagcctta	caggcgatga	agggctcgaa	atttttatta	40920
aagttactaa	tgccataaaa	cctgaagtaa	ctatcattga	ccaagcagat	cccacaagcc	40980
caagtttagg	. tagaccgaat	gatcctaata	taaatccagc	agagaaaaaa	acttgtatac	41040
ctgcacaaat	taccgttagg	actgcaggaa	attgcatatc	teccatecet	cttagggcgg	41100
cggttaagct	. acctgatagc	caaacaacta	ttgctcccaa	taaatagaca	aaacaataag	41160
ctaaagactc	ctctaataat	gcacctgttc	cacctaatat	tcttaataga	ggctctccaa	41220
aaataaaaaa	a gataattaaa	. aaagctaaag	ctccaaagca	agatatatac	aaagaatgcc	41280
ataataattt	tcagcccta	ggettgtetg	cggctccaag	acttcttgca	atagaagatg	41340
tgaccgctcc	: tccaagagca	. ccaaatgcca	tctgctgagt	cagcatgatt	gcaggaaatg	41400
ccaaagtaad	c agcagctaat	ggagttatgc	caagttgact	aataaaccag	aattcagcaa	41460
gaacaaccac	c agcatttatt	: aaaaatgcaa	cagtattagg	tgctgacatt	ttaatcagca	41520

09/847,513 DeLong et al.

agtcttaata 42600	gtaaaaattt 42660	actgatgtca 42720	atttatgact 42780	cttgtatccc 42840	agttttgtag 42900	tcagacccat 42960	agctattctt 43020	ggtggaagat 43080	ccatcaaata 43140	aatatttatt 43200	cttgataaaa 43260	gaagttggaa 43320	tattctgatc 43380	aacacttttt 43440	aatatagatt 43500	acagaaataa 43560	ccaaaaaata 43620
tatagatggg agtc	tgcctatggg gtaa	cttaacgaat actç	ttcacccttt attt	agaatttaga cttç	cgttggggct agtt	tggagatcca tcag	ttcttcttca agct	aatttcaatt ggtg	atcattttca cca	taataattct aat	aggtettggt ett	aactaattac gaa	agtcctgttt tat	ttcagatccc aac	cttagagtta aat	attgctaaat aca	ggcgcatgct cca
atatatggac	aaaaaagtaa	gcctatcaag	ctgagtcgca	cttttagtca	tcgaatgggt	a ctggtattta	t tgagtgactt	g aaacaataaa	t cttatgacga	a aaactcttaa	g gatttaattt	c cagaattttt	aa atcttggagc	sc aggttgatcc	aa ttaataatgg	g ctaattttgg	ag gtagagaaca
yat gatcctgcag	yga atggactctc	ctt gaatttcaaa	yat tggggcaacc	aga aaaagagata	aca gaaaaagca	yct aaaaaagata	aac tcttcttctt	tat ttaattaatg	aat tattttgatt	ttg tcactagtta	tat aaccagggtg	tta tattatgatc	cag tcaaaattaa	tta atttcaaccc	gct gcagaaggaa	cta ggtatatttg	.cca gatatagaag
tatctcaaat agagttagat	cattatctga taagcctgga	atcatcaatt taaaaaattt	ttcttagtta tgatgctgat	atttttcaga aactacaaga	aatttgcaga taaaaataca	atataaatga aacaaatgct	atggtcctta ttttagtaac	tatttggaaa tattgattat	gggagaattt taaatctaat	aaatgtctgg tggtaagttg	ttaatattgc taagggctat	attcatcaaa tagaaattta	ttaatagtaa attttccag	gaaaagatca acaggtetta	tatacttaac ccaaaatgct	atgcactgaa taaatctcta	aaaattggat ttcaagacca

gatgatccta tcgatggttc atggaatata gctgatgctg tgtagctgca ggtagaattg tttgcattac tttgatattc ctatcatgat tctgtagagt attgcatcct aaaactgagc		- 0, 0, 1						
ygaaté tagctí tgcatí atcatí	raate	ate ctç ati ati	it; it; at.	it garage and the state of the	ate att att against ag	aate gotg catt tate gat gat lggc	raate	gaate agetç teat; tatat; tagat tagat gagaç aaaaa
•	•	, , , , , , , , , , , , , , , , , , , ,						
gagggcatgc atgaaaccct gaagcagaac	gagggcatgc atgaaacct gaagcagaac gtagttaata attagtaaaa	gagggcatgc atgaaaccct gaagcagaac gtagttaata attagtaaaa aaaaaagatgcta	gagggcatgc atgaaaccct gaagcagaac gtagttaata attagtaaaa aaaagatgcta	gagggcatgc atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata	gagggcatgc atgaaacct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag	gagggcatgc a atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag aatggtgatc	gagggcatgc a atgaaacct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag aatggtgatc tcagaagagg	
atgaaaccct gaagcagaac gtagttaata	atgaaaccct gaagcagaac gtagttaata attagtaaaa	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag	atgaaaccct gaagcagaac gtagttaata attagtaaaa aaagatgcta tggttcccac actcctcata gaaattctag aatggtgatc	atgaaaccct t gaagcagaac t gtagttaata t attagtaaaa aaaaagatcccac actcctcata gaaattctag aatggtgatc tcagaagagg
gaagcagaac taaacctcac gtagttaata ttagttgccc	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagta	gaagcagaac taaacctcac gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagta
gtagttaata ttagttgccc	gtagttaata ttagttgccc attagtaaaa tgaaaagagg	gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg	gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc	gtagttaata ttagttgccc attagtaaaa tgaaaaagagg aaagatgcta ttgcaaagagg tggttcccac aaccagctcc actcctcata cttcaggtac	gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt	gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat	gtagttaata ttagttgccc attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagta	gtagttaata ttagttgccc attagtaaaa tgaaaagagg taaaagatgcta ttgcaagagg cctcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagtat tcagaagagg ccgctaagta aatagagtct gcctctgcca
	attagtaaaa tgaaaagagg	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat	attagtaaaa tgaaaagagg aaagatgcta ttgcaagagg tggttcccac aaccagctcc actcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagta	attagtaaaa tgaaaagagg aaaagatgcta ttgcaagagg cactcctcata cttcaggtac gaaattctag aatgttattt aatggtgatc ttgcaggtat tcagaagagg ccgctaagtat aatagaggtct gcctctgcca

50400 50640 50340 50460 50520 50700 50760 50820 50880 50940 50220 50280 50580 50040 50160 49980 50100 ttetttaaca geaacattee atataattaa aecaaataga atettgttaa eaaagteage accgcttctt catactgagg tcaaggtggt tggagatgat gggaatgaac tgcctgctgg agaagtaggc gagatttata ttaaaggccc aaatattaca cctggctatt ggaagaaaga agaggctact agagattett ttgaagaegg gtggttaaaa aeaggtgatg etgettaett tgatgacgag ggtttttttat acatagttga tcgatggaag gatatgtata tctcaggtgg agaaaatgtt tatccagctg aagttsaaaa tgttatctat cagttaccac aaatcgcaga agttggagtt attggtattg atagccctaa gtggggtgag actggtaaag cctttgttgc tttaaagccc gatcatgaat tgacggcaga agaagtcata gatcattgtt taaaaaatct agcaaagtac aaaattccag agaaagttga gtttattgca gctcttccaa gaaatgctac aggtaaagtt ttaaaaagaa cattaagaga tatgtaatat ttttaagcca aaaaaaaccc agcctaagct gggttttttta tttaactatt taaagttatc taatgttaag cattagaaga cggaatgaat tgttattcaa atccaattct tcatgcaggt ggcgagttaa tattacttaa tecaggtget actggtettg aategteega ggetgaaaga aaaataggat etgetggaaa agagtttgag cctgggaaag ttctatcaat tatcggcagc tctgactatg gagttactca tetgtttgca gttccagccc cttatcaatt tatgatgaat catccagatt ttgaatcaac aaatttatca ggagttaagt atgctggagt tgggggggggc ccttgtgcag aggctattt gaagacttat ataagcaagg gtgtttcgat gcagcaagga tggggtatga cagaaactag

cagttctaat	ataaccgctg	cagtcttatc	tgaaaaaacc t	ttttctagat 1	tagtaatgtc	59400
attatatgga	tgatttttta	tecetetagg	cagaggcgca 🤞	aaaccgtctg	taagatgctt	59460
agctttagct	aaagctatac	caagcatagt	tcttccatga a	aatgacgttg	aaaatgaaat	59520
gacctcattt	ttatttttat	taactgttga	tgagcaaaat	tttcttgcta	tcttaactgc	59580
agcctcaatt	gattctgccc	ctgaattgca	aaaaaatact	ttatctgcaa	aagaattctt	59640
gcataacttt	cttgccaaag	taactgaggg	ctcatttatg	tagagatttg	ataaatgcca	59700
aagctcctca	gattgctttt	taagaatttt	tattagatct	ttatttgaat	gaccaaggtt	59760
agtgacggca	atgcctgctg	tgaaatcaat	atatttctta	ttatttaggt	cccatacatg	59820
cgatccactc	gctttttta	caacaaaatc	tgcaggagcg	taaaaaggca	ccatataatt	59880
agtatattct	ttaattatct	ctttcataaa	tatattgtat	cgtggtttca	gttcaaaaat	59940
taaatgacca	. aaaatttcta	gtatctttaa	aaccaaacag	ctcactcatt	ggctttaata	00009
gaataatatt	tatatctagt	atatctattg	tatgcggtgg	catagcattg	atatttttct	09009
ttttggagc	; aacgctcatt	ttgccttttg	ctggtttaga	gcttggtatt	ctattcactg	60120
cattctattt	: aagttttaaa	tggagtgata	ааааадаааа	aatatttatt	tctcaagatc	60180
ttgtaactat	: agaaaaaggc	tctaattatg	ctgaatataa	atgggaagag	ttcaggtcat	60240
ttacctcttt	ccaggtttca	ı aaagacagaa	gagatcttct	taagctaagc	tttaggtcta	60300
aaggcgagga	a tgttgaggtt	: ggcagctttc	taaatgaaga	tgataaaaat	gtattaatag	60360
aagagctaac	c tcagatcata	a gatacattaa	atcacgattc	cttctcaaag	ccagagcttt	60420

09/847,513 DeLong et al.

cttgaatcta agtta	agttaatctc g	gtccaaaata g	gattctaatg	gatatattgt t	ttgctgggac	64680
	agtegttgaa	taattttgaa t	tttagtaaat	tttttgaaaa 🤅	atccatgctg	64740
		tgtaattggt g	ggttcatttg	gcatacctcg 6	agatattctt	64800
		ctcgatctca a	agtctcaccc	tacctcacag	gcttttcaag	64860
	tagagcaaat	ctataggtca	ttttcaattc	tcaaaaatct	tecetaceae	64920
	tctgaatgag	aggtttgttg	aaaaagaag	cttttcaat	agattgttgc	64980
ttatatattt tttct	tttatttggg	gccctgtttt	tattcttgct	tttcaagacc	tattctttac	65040
aggtttctag ctatt	ctattctgac	tatgaactag	cagcactaaa	gaataaaaca	aaagaagtgc	65100
tagttcagcc tgtto	tgttcgagga	gtcatctatg	acaggaatgg	aaatattcta	gttaataatg	65160
	tgacctaata	atccaaccat	caaaaattaa	aaacttagat	gatttcatta	65220
	taaaataata	gagctatcag	attcagaaat	tgaaaacatt	attaaaaatt	65280
ttaaaaggag tgca	tgcaacttat	aatagagagc	taacaattaa	aaaagatctc	tcgaaagaag	65340
aaatagcaaa attt	atttgaagta	agaagctacc	aatttcagaa	tgcatttata	gatgttaggt	65400
atagtagaga aaat	aaataaatat	ccttacttat	tttcacacgc	actcggttat	gtaggtggtg	65460
taagtaatga taag	taaggtttta	tcaattttaa	aaaatcaaga	tttgaagcaa	tctgaaacaa	65520
cttttaagta ttca	ttcaggtggt	tttattgctg	gaaaaacagg	attggaaaat	atttatgatt	65580
cagctttaag aggg	agggtccttt	ggaaaaaagt	tatttgaagt	tgatgcaagg	ggaaggettt	65640

aaacctatta
tttgaacaaa
atagttacct
teggtagagt
caaggtcggt
gaaaaaatag
gatcagagga
gcaatcatag
aatttaatca
aatccagatt
tggtttaaag
gttcaattag
tttgtcgaga
tcagactggg
gctaaaagat
cttgtcagca
gaccatgcaa
gttattgaaa

08/99	66840	00699	09699	67020	67080	67140	67200	67260	67320	67380	67440	67500	67560	67620	67680	67740
tagactttaa	tgtcggtcat	ctaagcaagc	accctgattt	ttctaactat	tttttacct	atttatataa	taggttttat	ttatgtcagg	aatagcctta	acaacagaga	tataactcaa	gggctcccaa	tattgctgaa	atkactcaga	aggaggccta	tgtagttcct
aagaaaaaat	ataaccctgt	agcactgttg	agccaacctg	gtattgattt	gatttaggat	ttatcatcat	ttgatattaa	ttagtagtat	ttggatctgc	agccatttca	ctgcatggaa	gttatcagga	tttttgctgt	ttdtctttat	ggttaactat	tggttgttgg
tcaataaatg	atttattgcg	agaagatatc	gtttgtagtt	gggggastt	aagatggctt	gccaattttt	ttttattaca	gggaaccagt	ccgccgttta	aactttctag	ccttatggta	aatggaaaag	acagatttta	ttatcagtat	agattttgca	aatttagcaa
aatgagctta	atcaatattt	gcgcatcaca	tgctgttaat	tattttttgg	atggagccaa	aaatatcatt	ctaggcatac	aacctgactt	caggattaag	tttatggaat	agacgcagac	aggcggaatt	agagacagaa	ctgtattttg	tgcaagagat	attatttatt
tgctgtttta	atttattttg	tttttataca	ggttttggtt	ttttctgggt	aaagaaataa	gagattatta	ccaataagca	gtagctagac	ttatttttag	ccttacctbt	atttgaaccc	caattggatc	atdttttacc	ttattggagt	tagcatttaa	ttgcctctac
ctgttgctat	aaactttagc	gggtttattt	tgtattegtt	ttataataca	gatttttggt	gcaatcctct	taagccactt	atttgcactt	gggttatgta	tttttattat	gttttaactt	tcaaaaatag	gcccatcttg	gagtttggtt	tgtttatatt	agtttagttt

atttatcagc
ttctatggca
atattcacta
aatgaactcg
gcaaaaagc
tgggatgaat
ataaaaaaaa
ataattactg
gttttagata
agagaactta
aaaggctcat
tatgctgtag
attgggagta
acaaaaactt
ttcatacctt
tttagggcta
tcagaagagt
ttcaagcaca

gttcgttctt	tggatattta	gcttatttgg	tctaacagat	gaaaacacca	cttaaaggcg	00669
ttttaatgg	ggcttttgat	actgtagata	acataaaaat	atcacctttt	tctcgagctt	09669
atactttttc	tgatagcgta	tatgaagtag	ttcctttctt	taattcaact	gcaattgctt	70020
ttgatgatca	tataaaaaga	ttagaatttt	ctgctagtca	actagcgatg	gccgtagatt	70080
taaaagaagt	tatatttgaa	attaattctt	taataacatc	atctgaattt	agtaatggct	70140
atgtctatta	tcaagttact	cgaggcgttg	atccattaag	gtctcatatt	catgagccaa	70200
atttaaaaat	agaaaccttt	ggctatgcaa	aggcgcactt	attccaatgg	aaaccattaa	70260
gagtatcagt	atgtgatgat	attaggtggg	ggaggtgtga	tattaaatca	acatcattgc	70320
ttggtaatgt	tatgaacatg	aatgcagcaa	aactagataa	ttgtgatgaa	gttattatgc	70380
acaaagataa	tttgttgacc	gagggtggcg	catctaatct	ttttttgta	aaaaatgatt	70440
caatctgcac	cccagctcta	aatggaaata	tacttcccgg	cataaccaga	gcattactaa	70500
ttaatgaatt	aaaaaattat	agtatagagg	tcatcgaaga	taacttcagg	ctagaagatt	70560
tatcaaatgc	ttcttgcgcg	tggctcacaa	gcgcaacgaa	agggctggcc	cccatttctg	70620
aaattagtaa	cctagaatct	cacttggatt	tataccatcc	tcttttcaaa	aagagtgaag	70680
aaatttttaa	taagaagttc	cttagttaga	agtcagttta	ataactatat	tatcaagctc	70740
gtaccaaaaa	. tctttatcac	taagaccttt	atttgcaaga	tcaagctcaa	atacattttt	70800
ttggagctgt	attaagtttt	gtagtttatg	atttttaata	aaatgcatat	attcagaagt	70860
tttatttttc	: caaaccccag	atttaattag	actatctaca	ggatttttac	tttgtctagc	70920

09/847,513 DeLong et al.

74040	gatcaatttc	ataaaccatt	tgtaattttt	cagcgtagtc	caaagatgtt aaaagttcct	caaagatgtt
73980	ccacctcatc	tcaggccaat	tttaacattt	tttgcattgt	atccaattcc	agatttccca
73920	ctgctccctg	tatttaattt	ctcaatcatg	catcggaatc	tttaaagaat	tgaaaatacc
73860	caggtcgtgt	aaaattgtat	agaaacacca	ttgctaaaaa	tttggtgata	tatagagtga
73800	accctattga	tttttgaca	cgattcatta	agtcttttat	ttgtttagaa	ttctttgcat
73740	cagctttcac	tcagcttcag	tttagccata	gtttttcagc	ttaattccaa	cattccacta
73680	gaattacatg	gtaattggat	cttcttctt	atacgggtat	tttccaatcc	aagtacaaaa
73620	cataatcaag	actccagttc	acccatcact	gagcaggaac	ctttgatcat	ttcgaaatct
73560	tagatgcaaa	agattatatt	aggaatctct	taataacttg	ttatcaaaac	ttcattatta
73500	caactggaag	cctttttgta	tattaatttg	tatcagagtt	ccatcatatt	agagtccatg
73440	atgcctcatc	atttcaagag	atctttaata	cgtctgctaa	ccaaggtttg	taactgctca
73380	tgaactggat	tctcttaatc	cacaccccag	tttgtctgct	ccccaatatc	aatagggcaa
73320	aaacaaccgg	ccattttcat	tcttggttca	catcaataac	atatcctttt	cactataggc
73260	gctctggaag	ttcttttta	aggtgccgag	ttaagggaat	tcattttgac	ataaaaatct
73200	cagaaatatt	tttagtcgat	tgtctctctt	caaaagtatc	ataaatgtat	tgatgagtcc
73140	cgtaatacca	gtaaatcttg	gtcagatgaa	catctgcatt	tcaaacattt	tgaattttta
73080	gccaatattt	tcaacaggca	tatatataaa	caatacctcc	atcgcatgct	taagtgcagt

ttttatttca	acttgcgccc	cagacctcca	tccttttcca	tctataactt	gctcatttgc	74100
taaaactgtc	tcatcaactg	gatcccagtt	cactaatgat	tttttcctat	ааассааасс	74160
tttatcataa	aactttttaa	atattaactg	ctcccactta	tagtattccg	gttcacatgt	74220
tctaagctct	tttgaccaat	catacccaag	gcccaaagat	ataagttgct	gtttcatatg	74280
ttcaatattt	tgattcgtcc	aatcttttgg	gctaacttta	ttagcaatcg	ctgcgttttc	74340
agcaggaagc	ccaaatgcat	cccagcccat	aggctgaaaa	acattaaagt	tattcattct	74400
tttatatcta	gatatgacat	caccgatcgt	atagtttctt	acatggccca	tatgtaattt	74460
acctgatgga	tatggaaaca	ttgataggca	ataaaatttt	tctctaccat	caggattagc	74520
tttaaatttg	tcttctttta	accattcatc	ttgaatggtt	ttctctattt	gacttgggtt	74580
atattcagga	ttcatttttt	taggaactca	ttttctaagt	aattaatagt	atgtttattt	74640
tctttaaagg	tatcatcatg	cagaatcctt	tgatgaagag	ggtgatttgt	tttaatgccc	74700
tctataaaaa	attcatctaa	agcactcagc	attctcttaa	tagccgagct	tctagaattt	74760
gcctgagtaa	tgatttttgc	tagaagtgaa	tcatagttag	ggggaactct	atatcctcca	74820
taaatatgtg	agtcatatct	tatgccaaaa	ccgccaggtg	tatgcatttt	tgtaattgtt	74880
cctggggatg	gttgaaaatt	atcaggatct	tctgcattaa	ttctgcattc	tagtgagtgg	74940
ccatgaaaat	taatatcatc	ttgatttagc	tcaattggca	tttcaagagc	aattcttagt	75000
tgtgctttta	ctaaatcaaa	gccagttatc	atttctgtta	ccggatgttc	aacctgaatt	75060
cttgtattca	tttctataaa	atagaattga	ttatcttcgt	ataaaaattc	aatagtgcca	75120

75300 75360 75480 75540 75780 76140 ccatttttag cttcctgcat tgttatttct gcatgtccaa taagatcttc ctctctttca gcaaaattat gatcttctgc aaggaaccca tatccaggat atatagcatt agcacttgta acccttcgt aatttatttc ttcacataaa ttgacacaag ctattagtgt tttattaaga gcttcttgat ttatattaag tgctggagct tcctcaatta ttttttgatg tctcctctgc ggaacgattt gaattccaga tttttcagcc agtgtttttg ctgttatttt gtcgcccatt tatattgtct cctactttta caaatggatc tttttcggga cttgggcttc tataaaaagt atactgcaat cccttgtacc taaatgtatc gcctttcctt taccatcacc aactatttga acttcaatat gtctagggtt cccaataaat ttttctagat aaatggtttc attgccgaat acaactctca ttcctcttcc accgccacca gccgttgcct taatcataat tggatagccg agttctgcag ctgagagaat ggcaggtata tttaggtagc tttgagttgg agatgcaggc taaacagata ctgtcttgat accaagctct ttacaagctc ttatagctcg aagagcaatc atatctctag caattttttt aaactcatca ttatcagatg gaatctcatc tttataacct ttttggattg tttctgaggt tggcccaata aatttaaatc cacttttttc acacatttct ccaatacaaa cagtttcatc agagaatctt aaatgtttta gatctttatc agcttctgag tcaccacgat tggcaataag aactttataa ctcattttaa ttgacagtta taattttttg tccaaattca accggacttc catcttccac gtcaatactt gaaatcttgc catcaaattc tgatttaatt tcattcatca ttttcatggc ttcaactata cagagcacat cacctacttt

aaagatttgc	tgaattcaat	tcacctgcaa	tcacattgga	tagtagtata	attattaaac	77280
ttttgatcat	gaagacttaa	gaataaaccc	ctaagtactt	aaaataaaga	ttttattaaa	77340
taacacggta	gttaaaaatt	tatgttccag	actttcgcac	taaaaatttt	cttttatatg	77400
cctatttggc	ttttaaaaat	aattttttat	agaaaagaa	cagtaataag	agggcatcaa	77460
tttgatgctc	aatctgctgc	attattgtct	ttgcttccaa	agaaagattt	atctgaatta	77520
ttagatggtg	aaattgcaaa	agctagaatt	actcttgaag	aagcaagaat	tcaaaataaa	77580
gtttctttaa	caccgtctat	acaagtcaga	aaagtagatc	atattttacc	aaagcatgat	77640
ttaattctca	gagaatacaa	gccgcatcaa	gaggatttaa	aaaagttat	tctctatttt	77700
catggaggag	gttatgtcct	taactcagtc	aatacacatg	atgatatggt	ttcatatatg	77760
tcagataaaa	taggagtaaa	gttttattct	ctagactata	gactatcgcc	tgagagcaaa	77820
tatcctgatt	ctcttgatga	tgctctagat	gctttttctt	ggctcatcgg	ccagggatat	77880
ggaccaggtg	atatttcagt	ttgtggagac	agcgcaggcg	ctcatctagc	tgattatttg	77940
tgccattacc	tagctgaaca	aaataaagat	ttgcctagta	gccagctact	aatatatcca	78000
atgtgtgatc	cgtcctgttc	atctgagtct	tataatttat	tatcttcagg	atatcttcta	78060
actaaaaaaa	ctatgatttg	gttttgggat	aagcttagaa	cttccgaagt	aaacaataac	78120
gattcggcct	ttaatctctt	aaaatttaat	tttgaaaaaa	ctttaccgcc	aacaattatc	78180
gttacaggtg	gctttgatcc	tctatgcgat	gatggagaaa	aatatgcata	tttattacat	78240

78300

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

81480

aaaagtaaaa	gaaaccttca	aagtacctac	ctttgcatac	caggttagtg	gtgaatatag	82500
catgcttaaa	ctggcgattg	ataaaggatg	gcttgaaagc	gatgttatgt	tagaatcatt	82560
aataagtttt	aaaagagcgg	gagctgatgc	aattctaacg	tacgcagcta	aagaaatttc	82620
caaggagata	actaacaaat	gagcaatgtg	atagaaattc	gtgatgaaga	aagctttaat	82680
agcgacgtct	taaattcaga	aaaacctgta	ttggttgatt	tttgggctga	gtggtgtgga	82740
ccttgtaaac	agcttgcacc	aactgttgaa	acagttgcag	cagaaaaatc	agaaacatta	82800
aaggtttgca	aaatggatgt	tgattcaaat	agagagattg	ctgctaaata	tggaataagg	82860
tcaatccctt	cattaattat	atttaaaaac	ggagagcctg	caggagttga	agtaggtgct	82920
ctaaccaaac	aacaattaga	ggactttata	agtacagtag	tttaactttg	caaagacttc	82980
tttgcatatt	gcaagaaata	ggattatcat	ttcgacttct	aaggctgaaa	gccactcaaa	83040
acaaaaaccc	accttttcaa	tcataaaaac	aacaactaga	acggaaataa	ctaaatgaac	83100
cttactgaaa	. ttaaaataaa	accaataaat	gaacttgtag	atatagctac	tgagcttggg	83160
cttgaggatg	ttggaagget	gaaaaagcaa	gagataatat	ttagaatatt	taagcataag	83220
gcttctgaag	gtgttgatat	ctatggtggc	ggagttcttg	agattttaaa	tgatggtttt	83280
gggttttgc	: gatccccaga	aggctcttat	tgcgctggcg	aagatgatat	ctatgtttca	83340
ccaagccaaa	ı taagaaagtt	tagcctcagg	aagggagact	cagttgctgg	gaagataagg	83400
acccctaaag	y ataaagagcg	ctattttgca	ttaatccaag	ttgatactat	taatggtgaa	83460
gagccaagaa	a agactaaaaa	caagattctt	tttgaaaatt	taactcctct	tttcccaat	83520

83580

aaaatttcat
caaactatct
ccgcaaaata
gatgaatggc
gcgggcccaa
atatcaagtc
atatttttaa
taaatatttt
ttttgggcc
aaactcatca
tttataaatt
atttttatct
aaaagatcgc
ctcaataata
aggtaacatt
agcagcctta
agctatgttg
taattigigc ttttcttctt

tttactctgt	cagtgtgatg	tcaaatgttg	acgagaataa a	aaagtttagt g	gctataacag	86700
tttcttcagt	tacctctgtt	tctttagatc	ctcctagttt	gctcgtttgt ;	atcaataaat	86760
cagctggaat	tcacaactca	ataaaagaag	ggtcctcttt	ttgcataaac	cttttaaata	86820
aaaatcaaga	agatatttct	aatctatgca	gttcatttaa	gaccgaaggt	gatagattta	86880
atagtggtga	ctgggattta	agcggcactc	cgtttttaaa	aagtgcccag	gctaatattt	86940
tttgtactgt	tgatcaatta	atttcatacc	acacacatac	tattgtgatt	ggtcatgtca	87000
caaactctct	tagcgatgag	aaaattaata	cactgacata	tgttgatggt	agctatgaat	87060
aaattttcaa	aaaatgtatt	ttttatttta	ataatactca	actctttttt	tcttgcctct	87120
aacatttttg	ctagccagga	agagtgtgaa	gaaaagccaa	gtgtttttat	tatctctcct	87180
caagacggtt	ttatctcaga	atctaataat	gtaaaagtct	tatttggatc	aaaaaatatt	87240
gaaataaatc	cagctggcaa	aggtgagatt	gcaaaaaata	aatgttttgc	aagcgggcat	87300
caccatcttt	tagttaatat	cgaagcattg	ccagagagct	ttattccttt	tgacaagggt	87360
tatttacatt	ttggaggagg	tcaaactgaa	acaattcttg	atcttgatcc	tggaacctat	87420
tctctccaac	taattcttgg	atcttatgtg	cataattcaa	aaatgcaggt	aaataacttt	87480
aaaggtcaag	gaccetttt	atcagaaaaa	ataacaatta	cagttaatta	gagattagac	87540
cagttataac	: tttatctaga	. tgttcatcta	agttattagc	aattatattt	gcactagaaa	87600
taggaccaga	attatcgtca	. taatcatcac	caactacatt	cacctttctt	attatcccaa	87660
caagaccatg	y caacatagac	. caaagagtta	tacatttaaa	ggcaatcact	tcctcaggct	87720

87780

tacctaaaga
cttctaacgc
tagatagtga
gagttttgat
ctgtatttt
gactggttaa
cggttttttc
ttggtgagga
caacttcaaa
ctggtcaaaa
ttggcactat
aaaacaatat
attttgatag
atggccaaag
ctgaaaaatc
cattaaaaca
cagcttttat
aattctttca gagaggctgg

taaaatatgc ataatcaata 93000	cagcatgcgc agcctcagtt 93060	cctgttcagc atatttgcca 93120	caccaaaata attttttcca 93180	gctgttctat ttctgggcca 93240	atactataaa tagttttaaa 93300	atcgtaattt aagcttgaaa 93360	attgttaaaa atgttccaaa 93420	atgtttacag attattccag 93480	ataaatggag aggtatccca 93540	agccctaaag aagaacaaaa 93600	tttgaaaatg aagattttat 93660	tctggttgct atgatggaac 93720	aatattccaa ggtcgggaat 93780	gtagcaagaa atgagtcttt 93840	gtaaaaaat atacgtctat 93900	ccaattggaa gagataaaaa 93960	
atagctagaa aggcctttca taa	tcttataaat ttttctgctg ca	ataaataagc tctacttgcg cc	tgcttctaat gaatcaatag ca	atcgtaataa attttttcag gc	taacagagtt acaattggca at	ttgcacattc tacctgcatt at	ttttataata agttcatatg at	tagacaaagc tacagcagaa at	tagaagaagg cagagttctt at	agaatgatca gattgaatta ag	atatagattt tgaaattcac tt	gtttaataat gcatccaggt tc	ataaatttcc agaattgatc aa	atacttctgg cattctgctc gt	aaatgcagga gaggagagtt gt	gaagcttttc tatagaagag cc	
ataaagctat tatctctcgt at	tttggatgcc taggatgaag to	tcagcattca taaattgagc a	aaaggatatc ttgattcaat tg	gccatccttc tttgggcttg a	tcagaattac aactaaccaa t	attagtttat ctttcattat t	acatctattt agattaattt t	tgatctatct tcaatgaggc t	aactcagata aaaaaatgga t	gccaagagat aaagtttatg a	agtatcatgg gaagctcaag a	tataattaat aaacctgctg g	tctcgcaaat gggctcattt a	tgttcatcga ttagacaaag a	taggaacttt tttattaatg e	tgttattggt tctacactag c	

99300

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

cttgtactaa taactcgtga ggcttgatca tgtaacctta agcaaggttc ataatttgag 102360 taaaacattg tagtgagaat taaaaaataa aaagttacat accagtttgc ctgatgacaa $102420\,$ cgagctgggt ttagaacgtc gtgagacagt tcggtcccta tctgctgtgg gcgtttggag 102060 tataageggg aageetetee caagattaaa teteecagag aetttatgte teetaaagag 102240 tegteataga etatgaegtt gataggeaag atgtgtaage getgegagge gttgagetaa 102300 aaggatgett gactgegaga tegaeggate gageaggtag gaaaetaggt ettagtgate 101820 cggtggttct gaatggaagg gccatcgctc aacggataaa aggtacgccg gggataacag 101880 getgataceg eccaagagtt catategaeg geggtgtttg geacetegat gteggeteat 101940cacatectgg ggetggagea ggteecaagg gtatggetgt tegeeattta aagtggtaeg 102000atttgaggga agctgattct agtacgagag gaccgaattg gacgaacctc tggtgttccg $102120\,$ gttgtcacgc cagtggcatt gccgggtagc tatgttcgga aaggataacc gctgaaagca 102180 tggagtcatc cttgaaatac caccettgta agattgaagt tetaacctag gtccattate 101640 cggaggagta cgaaggtatc cttatcacgg tcggacatcg tgaggtaagt ataaaggcag $101760\,$ tataacggtc ctaaggtagc gaaattcctt gtcgggtaag ttccgacctg cacgaatggc 101400gtaacgatgg ccacactgtc tccaccatag actcagtgaa attgaaatcg ctgttaagat 101460 gcagtgtacc cgcagctaga cggaaagacc ccgtgcacct ttactatagg ttcgcactgg 101520 actttgacct tacttgtgta ggataggtgg gagactttga agcagagacg ccagtctttg 101580 tggatcaggg acagtgcgtg ctgggtagtt tgactggggc ggtctcctcc taaagagtaa $101700\,$

09/847,513 DeLong et al.

aaatttcata atttttaaat tagaaacaga gtaagcccat ctgaggctcc aagccgattc 105180 105184 aagaaatact aagtcattaa gatcagctct agccatagga acatttgttg ggatgatgat 104820 gacatttagg ccatagattt gactaaactc tactgcttca gtatctgctg ttcctgtcat 104880 cccagaaagt tttttaaata atctaaaaaa gttttggaat gtggtggatg ctagtgtttg 104940agactetett tggatageaa eattttettt geatteeagt geetggtgaa eaeetteaet 105000 cattettett cegggeattg ttetacetgt atgeteatea atcaaaagaa eeteaeegtt 105060 cctaaccaaa taatccacat tctttttaaa taagaagctt gctctaagtg ttgcttgaac 105120 ctctgcttct ttttcgtgat gcttggcatt taaaatttga tgaggtattt ttttgttatt 104640 agattttttt cttaattgtt caatttcttc aattagagct ttatatttcg attctgttgt 104760cettectgee atattegtag caatagttae cattecaggt ttaectgeat tggcaattat 104580 taaatatget gataettett etgaagatte aacegaaaet gttecaacaa gaatgggaga 104700 cagc

<210>

<212> <211>

pcr primer <213>

<220>

misc_feature <221>

(1)...(29)<2222> <223>

ſΞι Oligonucleotide primer for amplifying the proteorhodopsin gene.

09/847,513 DeLong et al.

```
accatgggta aattattact gatattagg
```

29

<210>

24 <211> DNA <212>

pcr primer <213>

<220>

misc_feature <221>

(1)...(24)<222>

Oligonucleotide primer for amplifying the proteorhodopsion gene. <223>

Reverse primer

m

agcattagaa gattctttaa cagc <400>

24

<210>

750 <211>

DNA <212>

Naturally occurring gamma proteobacterium <213>

<220>

CDS <221> (1)..(750)<222>

, with retinal. An additional three nucleotides are incorporated Light-driven proton pump that is active when expressed in E. coli <223>

to native sequence (31A08) via pcr primer (DNA residues 4-6, ggt), adding a new restriction site for cloning/expression

09/847,513 DeLong et al.

48	96	144	192	240	28 8 2	336	384
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr	aaa Lys
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu	ttt Phe 125
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	tta Leu
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	tca Ser
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tag Ser 90	tta Leu	gga ${ t G1}Y$
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105	gct Ala
tta Leu	ctt	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro	gtt Val 120
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn
ctg	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	аса Тћг	act Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu	gca Ala
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100	gct Ala
ааа Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala 115
4 gt 1y	gct	ttt Phe	gtt Val 50	tct Ser	ggg Gl y	gat Asp	ctt Leu
<400> atg g Met G 1	ttt	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile

432	480	528	576	624	672	720	750	
cta gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	gga atc atg gct gca tgg cct gca ttc att att ggg tgt tta gct tgg Gly lle Met Ala Ala Trp Pro Ala Phe lle lle Gly Cys Leu Ala Trp 150	gta tac atg att tat gaa tta tgg gct gga gaa gga aaa tct gca tgt Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 170	aat act gca agt cct gct gtg caa tca gct tac aac aca atg atg tat Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180	att atc atc ttt ggt tgg gcg att tat cct gta ggt tat ttc aca ggt Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195	tac ctg atg ggt gac ggt gga tca gct ctt aac tta aac ctt atc tat Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210	aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225	aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	<210> 5 <211> 250
υц	004	01 1	10 14	10 1 1	- -			

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

<212> PRT
<213> Naturally occurring gamma proteobacterium

<400> 5

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

Gly ile Met Ala Ala Trp Pro Ala Phe ile ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180

ile ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 6

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

```
Jovanovich, S.B., Gates, C.M., Feldman, R.A., Spudich, J.L., Spudich, E.N. and DeLong, E.F.
                                                                                                                                                                                                                                                    Bacterial rhodopsin: evidence for a new type of phototrophy in the sea
                                                                                                                                                                                                     Beja, O., Aravind, L., Koonin, E.V., Suzuki, M.T., Hadd, A., Nguyen, L.P.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        144
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            96
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe Phe
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ggt ggt gac ctt gat gct agt gat tac act ggt gtt tct
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc ttt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  atg aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca ttt
                                                                                                             Native proteorhodpsion DNA sequence from BAC clone 31A08
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Pro Thr
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Gly Val
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Met Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Tyr Thr
Naturally occurring gamma proteobacterium
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Gly Gly Asp Leu Asp Ala Ser Asp
                                                                                                                                                                                                                                                                                                                                                                                 2000-09-15
                                                                                                                                                                                                                                                                                                                                                                                                                               2000-06-15
                                                                                                                                                                                                                                                                                                                                                                                                                                                    (1) \dots (747)
                                                                                                (1) \dots (747)
                                                                                                                                                                                                                                                                                                                                                         1902-1906
                                                                                                                                                                                                                                                                                                                                                                                                       AAG10475
                                                                                                                                                                                                                                                                                      Science
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        gct gca ggt
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Ala Ala Gly
                                                                                                                                                                                                                                                                                                                                    5486
                                                                                                                                                                                                                   <301>
                                                                                                                                                                                                                                                                                                                                    <305>
                                                                                                                                                                                                                                                                                                                                                            <306>
                                                                                                                                                                                                                                                                                                               <304>
                                                                                                                                                                                                                                                                                                                                                                                  <307>
                                                                                                <222>
                                                                                                                                                                                                                                                                                       <303>
                                                                                                                                                                                                                                                                                                                                                                                                         <308>
                                                                                                                                                                                                                                                                                                                                                                                                                                <309>
                                                                         <221>
     <213>
```

747

<211>

192	240	88 87	336	384	432	480	22 8	576
gta Val	aga Arg 80	att Ile	att Ile	cta Leu	gga Gly	gta Val 160	aat Asn	att Ile
act Thr	atg Met	tac Tyr 95	tta Leu	tta Leu	gca Ala	tgg Trp	tgt Cys 175	tat Tyr
tta Leu	tac Tyr	aga Arg	tac Tyr 110	aaa Lys	gaa Glu	gct Ala	gca Ala	atg Met
tca Ser	atg Met	ttt Phe	ttc Phe	aag Lys 125	ggt Gly	tta Leu	tot Ser	atg Met
aca Thr 60	tac Tyr	gta Val	gaa Glu	ttt Phe	atg Met 140	tgt Cys	aaa Lys	aca Thr
aaa Lys	cat His 75	act Thr	tgt Cys	tta Leu	tac Tyr	ggg Gly 155	gga Gly	aac Asn
tgg Trp	tgg Trp	cca Pro 90	ata Ile	tca Ser	ggt Gly	att Ile	gaa Glu 170	tac Tyr
aaa Lys	ttc Phe	tcg Ser	tta Leu 105	gga Gly	ttt Phe	att Ile	gga Gly	gct Ala
gca Ala	gct Ala	gat Asp	cta Leu	gct Ala 120	gtg Val	ttc Phe	gct Ala	tca Ser
tct Ser 55	att Ile	ggt Gly	cct Pro	gtt Val	ctt Leu 135	gca Ala	tgg Trp	caa Gln
gtt Val	ggt Gly 70	act Thr	gtt Val	aat Asn	atg Met	cct Pro 150	tta Leu	gtg Val
aga Arg	act Thr	gaa G1u 85	aca Thr	act Thr	gtt Val	tgg Trp	gaa Glu 165	gct Ala
gat Asp	gtt Val	att Ile	cta Leu 100	gca Ala	ctt Leu	gca Ala	tat Tyr	cct Pro
aga Arg	ctt Leu	tgg Trp	tta Leu	gct Ala 115	tct Ser	gct Ala	att Ile	agt Ser
gaa Glu 50	ggt Gly	gta Val	tgg Trp	gct Ala	ggt G1y 130	atg Met	atg Met	gca Ala
gtt Val	tct Ser 65	ggg Gly	gat Asp	ctt Leu	gtt Val	atc 11e	tac Tyr	act Thr

Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val Ser 20

Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

09/847,513 DeLong et al.

110/235

	624	672	720	747	·	
190	ggt tat ttc aca ggt tac Gly Tyr Phe Thr Gly Tyr 205	tta aac ctt atc tat aac Leu Asn Leu Ile Tyr Asn 220	ggt tta att ata tgg aat Gly Leu Ile Ile Trp Asn 235		bacterium	lle Ala Leu Pro Thr Phe 15
185	att tat cct gta ! Ile Tyr Pro Val 0	tca gct ctt aac Ser Ala Leu Asn 215	aag att cta ttt Lys Ile Leu Phe	tct aat gct Ser Asn Ala	7 249 PRT Naturally occurring gamma proteobacterium	Leu Gly Ser Val
180	atc atc ttt ggt tgg gcg Ile Ile Phe Gly Trp Ala 195	ctg atg ggt gac ggt gga Leu Met Gly Asp Gly Gly 210	ctt gct gac ttt gtt aac Leu Ala Asp Phe Val Asn 225	gtt gct gtt aaa gaa tct Val Ala Val Lys Glu Ser 245	<210> 7 <211> 249 <212> PRT <213> Naturally occurr	<400> 7 Met Lys Leu Leu Leu Ile 1

45

40

35

Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Val 09 20 Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Arg 65

Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ile 85 95 82 Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu Ile 100

Leu Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu Leu 115

Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala Gly 140 Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp Val 145

Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys Asn 170 170

Corrected Sequence Listing (August 4th, 2001)

Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr Ile 190 185 180

Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly Tyr 205 200

Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr Asn 220 210

240 Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp Asn 230

Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 8

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)

<223> proteorhodopsin variant from clone EBAC40

atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr <400>>

48

Corrected Sequence Listing (August 4th, 2001)

Corrected Sequence Listing (August 4th, 2001)

96	144	192	240	2 8 8	336	384	432	480
rt gtt Y Val	ttt ttc Phe Phe	tta act Leu Thr	tac atg Tyr Met 80	aga tac Arg Tyr 95	tac tta Tyr Leu	aaa tta Lys Leu	gag gca Glu Ala	gct tgg Ala Trp
act ggt Thr Gly 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys	${ t ggt}$	tta Leu
gat tac Asp Tyr	tct act Ser Thr 45	aaa aca Lys Thr 60	cat tac His Tyr	act gta Thr Val	tgt ga Cys Gl	ctg ttt Leu Phe 125	tac atg Tyr Met 140	ggg tgt Gly Cys
gct agt Ala Ser	tta gca Leu Ala	aaa tgg Lys Trp	ttc tgg Phe Trp 75	tcg cca Ser Pro 90	ttg ata Leu Ile	gct ggc Ala Gly	ttt ggt Phe Gly	gtt att Val Ile
gat Asp 25	t cta a Leu	gca Ala	att gct t Ile Ala I	ggt gat t Gly Asp (cct cta Pro Leu	gtt gct Val Ala 120	ctt gtg Leu Val	gca ttc Ala Phe
gac ctt Asp Leu	gct g Ala A	gtt t Val S 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	ggt Gly
ggt ggt Gly Gly	gtt act Val Thr	gat aga Asp Arg	gtt act Val Thr 70	att gag Ile Glu 85	cta aca Leu Thr	gca aca Ala Thr	ctt gtt Leu Val	gct tgg Ala Trp
ca ggt la Gly 20	gg tta rp Leu 5	gaa aga Glu Arg	ggt ctt Gly Leu	gta tgg Val Trp	tgg tta Trp Leu 100	gct gct Ala Ala 115	ggt tct Gly Ser	atg aac Met Asn
ttt gct g Phe Ala A	tct ttt to Ser Phe T	ttt gtt g Phe Val G 50	gta tcg g Val Ser G 65	aga ggg g Arg Gly V	att gat t Ile Asp T	att ctt g Ile Leu A	ttg gtt g Leu Val (gga att a Gly Ile 1

Corrected Sequence Listing (August 4th, 2001)

	ω	v	4	Ø	0	0		
	528	576	624	672	720	75		
160	tgt Cys	tat Ty <i>r</i>	ggt Gly	tat Tyr	tgg Trp 240			Thr
	gca Ala 175	atg Met	aca Thr	atc Ile	ata Ile			Pro
	gct Ala	atg Met 190	ttc Phe	ctt Leu	att Ile			Leu
	aag Lys	aca Thr	tat Tyr 205	aac Asn	tta Leu		£	Ala
	ggc Gly	aac Asn	ggt Gly	tta Leu 220	ggt Gly		wire	Ile
155	gaa Glu	tac Tyr	gta Val	aac Asn	ttt Phe 235		bact	Val
	gga G1Y 170	gct Ala	cct Pro	ctt Leu	cta Leu	gct Ala 250	proteobacterium	Ser
	gct Ala	tca Ser 185	tat Tyr	gct Ala	att Ile	aat Asn		G1y
	tgg Trp	caa Gln	att Ile 200	tca Ser	aag Lys	tat Ser	gamma	Leu
	cta Leu	gtg Val	gca Ala	gga G1 <u>Y</u> 215	aac Asn	tct Ser		Ile
150	gaa Glu	gct Ala	tgg Trp	ggt Gly	gtt Val 230	gaa Glu	occurring	Leu
	tat Tyr 165	cct Pro	ggt Gly	gac Asp	ttt Phe	aaa Lys 245		Leu
	att Ile	agt Ser 180	ttt Phe	ggt Gly	gac Asp	gtt Val	9 250 PRT Naturally 9	Leu
	atg Met	gca Ala	atc Ile 195	atg Met	gct Ala	gct Ala	9 250 PRT Natu 9	Gly Lys Leu Leu
	tac Tyr	act Thr	atc Ile	cta Leu 210	ctt Leu	gtt Val		
145	gta Val	aat Asn	ata Ile	tac Tyr	gac Asp 225	aat Asn	<210> <211> <212> <212> <213>	Met

10

15

വ

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

40

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

55

09

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu $100 \ \,$ $100 \ \,$

ile Leu Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 125

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 190 185 180

Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$

Asp Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230 235

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 10

<211> 750

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(750)
<223> proteorhodpsin variant from clone EBAC41

ω	9	₽	7	0	ω	9	4
48	96	14	192	240	288	33	384
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr	ааа Lys
ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu	ttt Phe
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	tta Leu
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	tca Ser
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu	gga Gly
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105	gct Ala
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro	gtt Val
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	аса Тћ <i>r</i>	act Thr
tta Leu 5	ggt Gly	gct Ala	gat Asp	gtt Val	att Ile 85	cta Leu	gct Ala
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100	gct Ala
10 aaa · Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala
yt Ly	gct Ala	ttt Phe	gtt Val 50	tct Ser	999 Gly	gat Asp	ctt Leu
<400> atg gg Met GJ	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

432	480	528	576	624	672	720	750	
cta gtt ggt tct ctt gtt atg ctt gtg ttt ggt tac atg ggt gaa gca	gga atc atg gct gca tgg cct gca ttc att att ggg tgt tta gct tgg	gta tac atg att tat gaa cta tgg gct gga gaa gga aaa tct gca tgt	aat act gca agt cct gct gtg caa tca gct tac aac aca atg atg tat	att atc atc ttt ggt tgg gcg att tat cct gta ggt tat ttc aca ggt	tac ctg atg ggt gac ggt gga tca gct ctt aac tta aac ctt atc tat	aac ctt gct gat ttt gtt aac aag att cta ttt ggt tta att ata tgg	aat gtt gct gtt aaa gaa tct tct aat gct	09/847,513 DeLong et al. Corrected Sequence Listing (August 4th, 2001)
Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala	Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp	Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys	Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr	Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly	Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr	Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp	Asn Val Ala Val Lys Glu Ser Ser Asn Ala	
130	145	165	180	195	210	225	245	

125

120

115

09/847,513 DeLong et al.

<212> PRT <213> Naturally occurring gamma proteobacterium

250

<210>

<400> 11

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val

Ser Phe Trp Leu Ala Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu

09/847,513 DeLong et al.

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 120

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150 Gly Ile Met Ala Ala 145

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 190 185 180

ile ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 235

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250

Corrected Sequence Listing (August 4th, 2001)

		48	96	144	192	240	288
		aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr
		cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg
		ctt Leu	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe
_		gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val
rium	EBAC64	att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr
acte		gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cct Pro
12 750 DNA Naturally occurring gamma proteobacterium	from clone	agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser
pro	rom	ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala	gat Asp
amma		tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly
ng g	raria	ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr
urri	v ni	ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	gaa Glu
))	dops	tta Leu 5	ggc $_{ m G1Y}$	gtt Val	gat Asp	gtt Val	att Ile
a11y	(750 orho	tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp
12 750 DNA Natur	CDS (1)(750) Proteorhodopsin variant	12 aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val
)> 1 ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	gga $_{ m G1Y}$
<210><211><211><211><211><212><213>	<2220> <221> <222> <223>	<400> atg g Met G 1	ttt Phe	tat Ser	ttt Phe	gta Val 65	aga Arg

									122/235
						<i>\$</i>			
336	384	432	480	528	576	624	672	720	
K)	S.	7	7'	<u>.</u> ,					
c tta r Leu	a ctt s Leu	a gca u Ala	t tgg a Trp 160	ta tgt a Cys 5	ig gct et Ala	aca ggt Thr Gly	att tat Ile Tyr	ata tgg	2001)
ttc tac Phe Tyr 110	aag aaa Lys Lys	ggt gaa Gly Glu	tta gct Leu Ala	tct gca Ser Ala 175	atg atg Met Met 190	ttc a(Phe Tl	ctt a Leu I	att a	gust 4 th , 2
gaa Glu	ttt Phe 125	atg Met	tgt Cys	ааа Lys	c aca n Thr	t tat y Tyr 205	a aac u Asn 0	ıt tta	ing (Au
ata tgt Ile Cys	tca tta Ser Leu	ggt tac Gly Tyr 140	att ggg Ile Gly 155	gaa gga Glu Gly	tac aac Tyr Asn	ata ggt Ile Gly	aac tta Asn Leu 220	ttt ggt	Corrected Sequence Listing (August 4 th , 2001)
tta al Leu I	ggc t Gly S	ttt g Phe G	att Ile	gga G1 <u>y</u> 170	gct Ala	cct Pro	ctt Leu	cta	ed Sequ
t tta o Leu 105	t gcc 1 Ala 0	t gtg su Val	ttc La Phe	tat gct Tyr Ala	caa tca Gln Ser 185	att tat Ile Tyr 200	tca gct Ser Ala	ag att	Correct
gtt cct Val Pro	aat gtt Asn Val 120	atg ctt Met Leu 135	cct gca Pro Ala	cta tí Leu T	gtt c Val G	gca Ala	gga G1Y 215	aac a	
aca Thr	act Thr	gtt Val	t tgg a Trp 150	t gaa r Glu 5	t tcg o Ser	t tgg y Trp	ic ggt sp Gly	ttt gtt	
tta cta Leu Leu 100	gct gca Ala Ala	tct ctt Ser Leu	gca gct Ala Ala	att tat Ile Tyr 165	agt cct Ser Pro 180	ttc ggt Phe Gly	ggt gac Gly Asp	gac tt	ng et al.
tgg Trp	gct Ala 115	ggt t Gly S	atg Met	atg Met	gca Ala	gtc Val 195	atg Met	t gct	09/847,513 DeLong et
t gat e Asp	tt ctt le Leu	a gtt tu Val 130	ga att 11y 11e 45	ta tac al Tyr	at act sn Thr	tc ata le Ile	tac cta Tyr Leu 210	ac ctt	9/847,51
att Ile	at I1	cta Leu	99 G1	gt	ğ ş	at Il	ΗH	מ	0

95

90

85

240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230

aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala

245

750

210 > 13

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 13

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al. Corrected Se

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 06 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Ile Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

125/235

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225
Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245
<210> 14 <211> 750 <212> DNA <213> Naturally occurring gamma proteobacterium
<220>> <221> CDS <222> (1)(750) <223> Proteorhodopsin variant from pcr clone HOT01m: GenBank# AF349978
<pre><400> 14 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 48 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 1</pre>
ttt gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt 96 Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20
tct ttt tgg tta gtt act gct cta tta gca tct act gta ttt ttc 144 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe 35
ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act 192
09/847,513 DeLong et al. Corrected Sequence Listing (August 4th, 2001)

126/235

	240	2 8 8	336	384	432	480	528	576	
g Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55	t gtt act ggt att gct ttc tgg cat tac atg tac atg u Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70 78	g att gag acc ggt gat tcg cca act gta ttt aga tac p Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85	a cta aca gtt cct cta ttg ata tgt gaa ttc tac tta u Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 105	t gca aca aat gtt gct gct ggc ctg ttt aag aaa tta a Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 120	t ctt gtt atg ctt gtg ttt ggt tac atg ggt gag gca r Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135	c gct tgg ggt gca ttc gtt att ggg tgt tta gct tgg n Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150	t tat gaa cta tgg gct gga gaa ggc aag gct gca tgt e Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 165	t cct gct gtg caa tca gct tac aac aca atg atg tat r Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 0	et al. Corrected Sequence Listing (August 4th, 2001)
Phe Val Glu Ar 50	gta tcg ggt ct Val Ser Gly Le1 65	aga ggg gta tg Arg Gly Val Tr	att gat tgg tt. Ile Asp Trp Le1	att ctt gct gc Ile Leu Ala Al	ttg gtt ggt tc Leu Val Gly Se 130	gga att atg aa Gly Ile Met As: 145	gta tac atg at Val Tyr Met Il	aat act gca ag Asn Thr Ala Se 18	09/847,513 DeLong

624	672	720	750					
ata atc atc ttt ggt tgg gca att tat cct gta ggt tat ttc aca ggt Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195	tac cta atg ggt gac ggt gga tca gct ctt aac tta aac ctt atc tat Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210	aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225	aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	<210> 15 <211> 250 <212> PRT <213> Naturally occurring gamma proteobacterium	<400> 15	Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1	Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20	Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 120 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 140 Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 165

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr

Corrected Sequence Listing (August 4th, 2001)

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$

240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 <210> 16 <211> 753 <212> DNA

<212> DNA
<213> Naturally occurring gamma prtoeobacterium
<220>
<221> CDS
<222> (1)..(753)

48 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser

Proteorhodopsin variant from pcr clone HOT75m1: GenBank#AF349979

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

130/235

96	144	192	240	28 88	336	384	432	480	
gat cta gat ata agt gat act gtt ggt gtt	gct ggt atg tta gcg gca act gtg ttc ttt	gtc agc gct aag tgg aaa act tca ctt gct	ggt ata gct ttt tgg cat tat ctc tat atg	act ggt gat acc cca aca gta ttc aga tat	gtt cca tta caa atg gtt gag ttc tat cta	agt gtt gct gct tca tta ttt aag aag ctt	atg tta ggt gct gga ttt gca ggc gaa gct	cct gct ttc att att ggt atg gct gga tgg	Corrected Sequence Listing (August 4th, 2001)
Asp Leu Asp Ile Ser Asp Thr Val Gly Val	Ala Gly Met Leu Ala Ala Thr Val Phe Phe	Val Ser Ala Lys Trp Lys Thr Ser Leu Ala	Gly Ile Ala Phe Trp His Tyr Leu Tyr Met	Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr	Val Pro Leu Gln Met Val Glu Phe Tyr Leu	Ser Val Ala Ala Ser Leu Phe Lys Lys Leu	Met Leu Gly Ala Gly Phe Ala Gly Glu Ala	Pro Ala Phe Ile Ile Gly Met Ala Gly Trp	
25	40	55	75	90	105	120	135	155	
ttt gct gct gct ggt ggc	tca ttc tgg ctg gtt aca	ttt gta gaa aga gac caa	gta tct ggt tta att act	aga ggt gtt tgg ata gac	att gat tgg tta tta act	att ctt gct gct tgt aca	cta gct ggt tca tta gta	gga tta gct cct gta tta	09/847,513 DeLong et al.
Phe Ala Ala Ala Gly Gly	Ser Phe Trp Leu Val Thr	Phe Val Glu Arg Asp Gln	Val Ser Gly Leu Ile Thr	Arg Gly Val Trp Ile Asp	Ile Asp Trp Leu Leu Thr	Ile Leu Ala Ala Cys Thr	Leu Ala Gly Ser Leu Val	Gly Leu Ala Pro Val Leu	
20	35	50	65	85	100	115	130	145	

Corrected Sequence Listing (August 4th, 2001)

22 8	576	624	672	720	753			
tta tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 175	agt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180	att att gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195	tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210	tat aac ctt gcc gac ctt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225	tgg aat gtt gct gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	<210> 17 <211> 251 <212> PRT <213> Naturally occurring gamma prtoeobacterium	<400> 17	Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1

Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe Phe Ser

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Ala

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 110 105 100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

155

150

145

160

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 180

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 $230\,$

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

245

250

18 <210>

753 <211>

DNA

Naturally occurring gamma proteobacterium <212><213>

<220>

CDS

(1) .. (753) <221><222> 09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

133/235

Corrected Sequence Listing (August 4th, 2001)

48	96	144	192	240	2 8 8	336	384
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu	ctt Leu
cca Pro	ggt Gly	ttc Phe	ctt Leu	tac Tyr	aga Arg 95	tat Tyr	aag Lys
ctt Leu	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	ttc Phe 110	aag Lys
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu	ttt Phe
att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val	tta Leu
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met	tca Ser
agt Ser	a ta Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	caa Gln	gct Ala
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105	gct Ala
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro	gtt Val
a H H e	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val	agt Ser
ctg Leu	ggc Gly	аса Тhr	caa Gln	act Thr 70	gat Asp	act Thr	aca Thr
t tta Leu 7	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu	tgt Cys
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100	gct Ala
18 aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp	gct Ala
)> ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp	ctt Leu
<400> atg g Met G	t ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile

	432	480	528	576	624	672	720	753
125	gct gga ttt gca ggc gaa gct Ala Gly Phe Ala Gly Glu Ala 140	att att ggt atg gct gga tgg Ile Ile Gly Met Ala Gly Trp 155	ggt gaa ggt aag gct gct gta Gly Glu Gly Lys Ala Ala Val 170	gca tac aac gca atg atg aag Ala Tyr Asn Ala Met Met Lys 190	cct gct gga tat gct gct ggt Pro Ala Gly Tyr Ala Ala Gly 205	gct tca aac tta aac ctt ata Ala Ser Asn Leu Asn Leu Ile 220	att cta ttt ggt ttg atc att Ile Leu Phe Gly Leu Ile Ile 235	aat gct Asn Ala 250
120	gta atg tta ggt Val Met Leu Gly 135	tta cct gct ttc Leu Pro Ala Phe 150	gag cta cat atg Glu Leu His Met	gct gtt aac tct Ala Val Asn Ser 185	tgg gca att tat Trp Ala Ile Tyr 200	gac ggt gta tac Asp Gly Val Tyr 215	ttt gtt aac aag Phe Val Asn Lys 230	aaa gaa tct tct Lys Glu Ser Ser
115	cta gct ggt tca tta Leu Ala Gly Ser Leu 130	ggt tta gct cct gta Gly Leu Ala Pro Val 145	tta tac atg att tat Leu Tyr Met Ile Tyr 165	agt act gca agt cct Ser Thr Ala Ser Pro 180	att att gtt att gga Ile Ile Val Ile Gly 195	tac cta atg agt ggt Tyr Leu Met Ser Gly 210	tat aac ctt gct gac Tyr Asn Leu Ala Asp 225	tgg aat gtt gct gtt Trp Asn Val Ala Val 245

09/847,513 DeLong et al.

<211> <210>

251 PRT <212>

Naturally occurring gamma proteobacterium <213>

<400>

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 25 20 Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 60

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu

Corrected Sequence Listing (August 4th, 2001)

125
120
115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145

Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 165

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 190 185 180

Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195 200

Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245 Corrected Sequence Listing (August 4th, 2001)

t tgt aca act gara tgt aca a cys Thr gara tta gaa a cys Thr gara tta gaa a ttat gaa a ttat gaa a cct gct a cct gct a cct gct a cct gct a gaa tgg a gaa a ggc gaa a ggc gaa a gac ttt									
a tta act git cca tta caa gig git gag ttc tat cta is not in val Pro Leu Gln Val Val Glu Phe Tyr Le 105 t tgt aca agt git gct gct tca tta tit aag aag cta Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Lea Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Lea tta gta atg tta ggt gct gga tit gca ggc gaa gcr Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Al 155 t gta tta cct gct ttc att att ggt atg gct gga tg oval Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Tr 150 t ctt gg cta tat atg ggt gaa ggt aag gct gct gt Gr	\sim	∞	4 3 2 4 8 0 4 8 0 4 8 0	2 8 0	576	624	672	720	
att gat tgg t Ile Asp Trp I att ctt gct g Ile Leu Ala A Ils cta gct ggt t Leu Ala Gly S Ise Ala Gly S Ise Tyr Met I Leu Tyr Met I Ise Tyr Met I Ise Ise Val Ise Ise Val Tyr Leu Met G	gat tgg tta tta act gtt cca tta caa gtg gtt gag ttc tat cta Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu 100	ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys 115	gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu 130 130 140 140	Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Lac atg att tat gag cta tat atg ggt gaa ggt aag gct gct Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala 155	act gca agt cct gct gtt aac tct gca tac aac gca atg atg Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met 180	att gtt gtt gga tgg gca att tat cct gct gga tat gct gct gg Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gl 195	cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu 210	aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc a	09/847,513 DeLong et al. Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225

tgg aat gtt gct gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

245

250

210 > 21

<211> 251

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400> 21

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35

Ser Ala Lys Trp Lys Thr Ser Leu Thr 09 Phe Val Glu Arg Asp Gln Val 20

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70

753

09/847,513 DeLong et al.

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90

lle Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu 100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130

160 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 150

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170 175

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 190 185 180

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 220 210

142/235

			49982	48	96	144	192	
Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 235	Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	. 22 . 753 . DNA . Naturally occurring gamma proteobacterium	CDS (1)(753) Proteorhodopsin variant from pcr clone HOT75m8: GenBank#AF349982)> 22 ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 5	gct gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20	ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35	gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act	09/847,513 DeLong et al. Corrected Sequence Listing (August 4th, 2001)
Tyr 2225	Trp 1	<210> <211> <211> <212> <213>	<pre><220> <221> <222> <223> <223> </pre>	<400> atg g Met G 1	ttt g Phe A	tca t Ser B	tt i	09/847

	240	288	336	384	432	480	528	576
Thr	atg Met 80	tat Tyr	cta Leu	ctt Leu	gct Ala	tgg Trp 160	gta Val	gtg Val
Leu	tat Tyr	aga Arg 95	tat Tyr	aag Lys	gaa Glu	gga ${ t G1y}$	gct Ala 175	atg Met
Ser	ctc Leu	ttc Phe	ttc Phe 110	aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190
$\operatorname{Th} \mathfrak{x}$	tat Tyr	gta Val	gag Glu	ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala
Lys 60	cat His	aca Thr	gtt Val	tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn
Trp	tgg Trp 75	cca Pro	atg Met	tca Ser	gga G1y	att Ile 155	gaa Glu	tac Tyr
Lys	ttt Phe	acc Thr 90	caa Gln	gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala
Ala	gct Ala	gat Asp	tta Leu 105	gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185
Ser	ata Ile	ggt Gly	cca Pro	gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn
Val 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val
Gln	act Thr 70	gac Asp	act Thr	aca Thr	gta Val	tgg Trp 150	gag Glu	gct Ala
Asp	att Ile	ata Ile 85	tta Leu	tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro
Arg	tta Leu	tgg Trp	tta Leu 100	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180
Glu	ggt Gly	gtt Val	tgg Trp	gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala
Val 50	tct Ser	ggt Gly	gat Asp	ctt Leu	gct Ala 130	ttg Leu	tac Tyr	act Thr
Phe	gta Val 65	aga Arg	att Ile	att Ile	cta Leu	gga G1 <i>y</i> 145	tta Leu	agt Ser

					•			-
624	672	720	753					
ggt Gly	ata Ile	att 11e 240				Ser	Val	Phe
gct Ala	ctt Leu	atc Ile				Pro 15	${\tt G1}{\tt Y}$	Phe
gct Ala	aac Asn	ttg Leu				Leu	Val 30	Val
tat Tyr 205	tta Leu	ggt Gly		_		Ala	\mathtt{Thr}	Thr 45
gga Gly	aac Asn 220	ttt Phe		occurring gamma proteobacterium		Ile	Asp	Ala
gct Ala	tca Ser	cta Leu 235	gct Ala	Jacte		Ala	Ser	Ala
cct Pro	gct Ala	att Ile	aat Asn 250	teob		Ser 10	H H e	Leu
tat Tyr	tac Tyr	aag Lys	tct Ser) Drc		Gly	Asp 25	Met
att Ile 200	gta Val	aac Asn	tct Ser	yammê		Leu	Leu	G1 <i>y</i> 40
gca Ala	ggt Gly 215	gtt Val	gaa Glu	ng 6		Ile	Asp	Ala
tgg Trp	gaa Glu	ctt Leu 230	aaa Lys	urri		Leu	${ t Gly}$	Thr
gga $_{ m G1y}$	ggc Gly	gac Asp	gtt Val 245			Leu 5	${ t Gly}$	Val
gtt Val	ggt Gly	gcc Ala	gct Ala	23 251 PRT Naturally		Leu	A1a 20	Leu
gtt Val 195	atg Met	ctt Leu	gtt Val	23 251 PRT Natur	ε:	Lys	Ala	Trp 35
att Ile	cta Leu 210	aac Asn	aat Asn		7	Gly	Ala	Phe
att 11e	tac Tyr	tat Tyr 225	tgg Trp	<210><211><211><211><212><213>	<400>	Met 1	Phe	Ser

09/847,513 DeLong et al.

Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 Val

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 110 100

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 125 120

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130 140

160 Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 150 150 Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165 170

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val 180

09/847,513 DeLong et al.

atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

<400> 24

ttt gct gca ggt ggt ggc ctt gat gct agt gat tac act ggt gtt

Proteorhodopsin variant from pcr clone MB0m1: GenBank#AF349983

 $(1) \dots (750)$

<222>

<223>

CDS

<221>

<220>

Naturally occurring gamma proteobacterium

24 750 DNA

> <212> <213>

<211>

<210>

240

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly
195

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile

230

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

250

96

Corrected Sequence Listing (August 4th, 2001)
g et al.

	144
Val	ttc Phe
Gly	ttt Phe
Thr 30	gta Val
$\mathrm{T}\mathrm{Y}\mathrm{r}$	act Thr 45
Asp	tct Ser
Ser	gca Ala
Ala	tta Leu
Asp 25	cta Leu
Leu	gct Ala 40
Asp	gct Ala
${ t G1Y}$	act Thr
Gly	gtt Val
G1y 20	tta Leu
. Ala	tgg Trp 35
Ala	ttt Phe
Phe	tct Ser

	192
	tta act Leu Thr
	tca Ser
4 C	aca Thr
	aaa Lys 60
	tgg Trp
	aaa Lys
	gca Ala
40	tct Ser
	gtt Val 55
	aga Arg
	gat Asp
	aga gat Arg Asp
32	gaa Glu
35	gtt Val 50
2	ttt Phe

240
atg Met 80
tac Tyr
atg Met
tac Tyr
cat tac His Tyr
ttc tgg c Phe Trp F 75
ttc Phe
gct Ala
ggt att Gly Ile
ggt Gly
act Thr 70
gtt act 9 1 Val Thr G 70
st ggt ctt g er Gly Leu V
ggt Gly
gta tct Val Ser 65
gta Val 65

7 8 8
tcg cca act gta ttt aga tac Ser Pro Thr Val Phe Arg Tyr 90
ggt gat Gly Asp
aga ggg gta tgg att gag act g Arg Gly Val Trp Ile Glu Thr G 85

336
tta . Leu
tac Tyr
ttc tac Phe Tyr 110
gaa 31u
7.gt
ata Ile
ttg Leu
gtt cct cta ttg ata t Val Pro Leu Leu Ile (105
cct Pro
gtt Val
aca Thr
cta Leu
tta Leu 100
tgg tta cta Trp Leu Leu 100
gat
att gat Ile Asp
· · · · ·

384
gtt gct gct ggc ctg ttt aag aaa tta Val Ala Ala Gly Leu Phe Lys Lys Leu 120
gtt Val 120
aat Asn
аса Тћr
rca 11a
gct Ala
gct Ala 115
ctt Leu
att (Ile]

432
ttt ggt tac atg ggt gag gca Phe Gly Tyr Met Gly Glu Ala 140
gtt atg ctt gtg ' Val Met Leu Val 135
ct Le
gtt atg Val Met 135
gtt Val
ctt Leu
gtt ggt tct ctt Val Gly Ser Leu 130
ggt Gly
gtt Val 130
ttg gtt ggt tct ctt g Leu Val Gly Ser Leu V 130

tgg Trp 160
gct Ala
tgt tta Cys Leu
tgt Cys
199 31y
att att g Ile Ile G 155
att Ile
ttc Phe
gca Ala
cct Pro
tgg Trp 150
gct Ala
aac Asn
atg Met
att Ile
gga G1Y 145

528	576	624	672	720	750		
gta tac atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 170	aat act gca agt cct tcg gtt caa tca gct tac aac aca atg atg gct Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180	atc ata gtc ttc ggt tgg gca att tat cct gta ggt tat ttc aca ggt Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195	tac cta atg ggt gac ggt gga tca gct ctt aac tta aac ctt att tat Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210	aac ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225	aat gtt gct gtt aaa gaa tct tct aat gct Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	<210> 25 <211> 250 <212> PRT <213> Naturally occurring gamma proteobacterium	<pre><400> 25 Met Gly Lys Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10 15</pre>

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 52 50 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met 80 70 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 126

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gly Ile Met Asn Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 150

```
Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys
                   175
                         170
```

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 190 180 lle Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 235 225

Asn Val Ala Val Lys Glu Ser Ser Asn Ala

<210>

750 <211> DNA

Naturally ocurring gamma proteobacterium <212><213>

<220>

CDS <221>

<222> <223>

Proteorhodopsin variant from pcr clone MB0m2

Corrected Sequence Listing (August 4th, 2001)

48	96	144	192	240	288	336	384
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	tta Leu
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr	aaa Lys
ctt Leu	act Thr 30	gta Val	tc Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu	ttt Phe 125
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	ctg Leu
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	ggc Gly
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tag Ser 90	tta Leu	gct Ala
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105	gct Ala
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro	gtt Val 120
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr	act Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu	gct Ala
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100	gct
6 aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala 115
2 gt 1y	gct Ala	ttt Phe	gtt Val	Ser	ggg Gly	gat Asp	ctt Leu
<400> atg g Met G 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile

432	480	528	576	624	672	720	750	
gca Ala	tgg Trp 160	tgt Cys	atg Met	ggt Gly	tat Ty <i>r</i>	tgg Trp 240		
gaa Glu	gct Ala	gcg Ala 175	atg Met	aca Thr	atc Ile	ata Ile		
ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu	att Ile		
atg Met	tgt Cys	ааа Lys	aca Thr	tat Tyr 205	aac Asn	tta Leu		
tac Tyr 140	ggg Gly	gga Gly	aac Asn	ggt Gly	tta Leu 220	ggt Gly		
ggt Gly	att 11e 155	gaa Glu	tac Tyr	gta Val	aac Asn	ttt Phe 235		
ttt Phe	gtt Val	gga G1Y 170	gct Ala	cct Pro	ctt Leu	cta Leu	gct Ala 250	
gtg Val	ttc Phe	ctt Leu	tca Ser 185	tat Tyr	gca Ala	att Ile	aat Asn	
ctt Leu	gca Ala	tgg Trp	cag Gln	att Ile 200	tca Ser	aag Lys	tct Ser	
atg Met 135	ggt Gly	ctt Leu	gtt Val	gca Ala	gga G1Y 215	aac Asn	tct Ser	
gtt Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	ggt Gly	gtt Val 230	gaa Glu	
ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp	ttt Phe	aaa Lys 245	
tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly	gac Asp	gtt Val	
ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met	gct Ala	gct Ala	27
gtt Val 130	att Ile	tac Tyr	aca Thr	atc Ile	cta Leu 210	ctt Leu	gtt Val	<u>^</u>
ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	atc Ile	tac Tyr	aac Asn 225	aat Asn	<210>

<212> PRT
<213> Naturally ocurring gamma proteobacterium

<400> 27

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 09

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120

Corrected Sequence Listing (August 4th, 2001)

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Trp Leu Gly Glu Gly Lys Ala Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Met Met 180

ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 205

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250

<210> 28

09/847,513 DeLong et al.

	#AF349985	48	96	144	192	240	7 8 8 8
> 750 > DNA > Naturally occuring gamma proteobacterium	CDS (1)(750) Proteorhodopsin variant from pcr clone MB20m2; GenBank)> 28 ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5	gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20	ttt tgg tta gtt act gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35	gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50	tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70	ggg gta tgg att gaa act ggt gat tcg cca act gta ttt aga tac Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr. 85
<211> <212> <212>	<220><221><2221><2222><2223> 223	<400> atg g Met G 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg

336	384	432	480	528	576	624	672	720
e n	ta eu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr	tgg Trp
tac tta Tyr Leu	aaa tta Lys Leu	gag gc Glu Al	gct tç Ala Tı	gca tí Ala Ci 175	atg t Met T	aca g Thr G	atc t Ile I	ata t Ile T
ttc t Phe 7 110	aag a Lys J	ggt g	tta Leu	gct Ala	atg Met 190	ttc	ctt	att 1 Ile
gaa Glu	ttt Phe 125	atg Met	tgt Cys	aag Lys	aca Thr	tat Tyr 205	aac Asn	tta Leu
tgt Cys	ctg Leu	tac Tyr 140	999 G1 <u>y</u>	ggc Gly	aac Asn	ggt Gly	tta Leu 220	ggt Gly
ata Ile	ggc Gly	ggt Gly	att Ile 155	gaa Glu	tac Tyr	gta Val	aac Asn	ttt Phe
tta Leu	gct Ala	ttt Phe	gtt Val	gga G1Y 170	gct Ala	cct	ctt Leu	cta Leu
cta Leu 105	gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	. gct . Ala	att Ile
cct Pro	gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser	aag Lys
gtt Val	aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	. gga . Gly 215	aac Asn
aca Thr	act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly	gtt Val
cta Leu	gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct	ggt Gly	gac Asp	ttt Phe
tta Leu 100	gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt	ggt Gly	gac A Asp
tgg Trp	gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc 116	a atg 1 Met)	gct Ala
gat Asp	ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	a atc	cta Leu 210	c ctt n Leu
att Ile	att Ile	ttg Leu	gga G1Y 145	gta Val	aat Asn	ata Ile	tac Tyr	aac Asn

225

235

240

aat gtt gct gtt aaa gaa tct tct aat gct

750

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250

<210>

250 <211> PRT<212>

Naturally occuring gamma proteobacterium <213>

<4005>

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr $10\,$

Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr

09/847,513 DeLong et al.

82

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu $100\,$

lle Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 115 120

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 140 130 Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 185 180 ile ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

			986	48	9	144
sn Lys Ile Leu Phe Gly Leu Ile Ile Trp 235	er Ser Asn Ala 250	g gamma proteobacterium	from pcr clone MB20m5; GenBank#AF34998	tta ggt agt gtt att gca ctt cct aca Leu Gly Ser Val Ile Ala Leu Pro Thr 10	gac ctt gat gct agt gat tac act ggt gtt 96 Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25	gct gct cta tta gca tct act gta ttt ttc 144 Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40
1 Asn 0	u Ser	ring	ı vari	ctg ata Leu Ile	ggt gad Gly Asp	aca gct Thr Ald
Phe Val 230	Lys Glu 245	occurring	CDS (1)(750) Proteorhodopsin variant	tta ct Leu Le 5	ggc gg Gly G]	gtt ac Val Tł
Asp 1	Val 1	30 750 DNA Naturally	CDS (1)(750) Proteorhod	tta Leu	ggt Gly 20	tta Leu
Ala	Ala	30 750 DNA Natur	CDS (1) Prote	30 aaa Lys	gca Ala	tgg Trp 35
sn Leu 25	n Val	<210> <211> <212> <213>	<220><221><222><223> 223	<400> (atg ggt met Gly 1	ttt gct Phe Ala	tct ttt Ser Phe
Asn 225	Asn	3232	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<400 atg Met 1	ttt Phe	tct Ser

Corrected Sequence Listing (August 4th, 2001)

ttt gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 60

160/235

240	2 8 8	336	384	432	480	528	576	624	
s ggt att gct ttc tgg cat tac atg tac atg c Gly Ile Ala Phe Trp His Tyr Met Tyr Met 75	a act ggt gat tcg cca act gta ttt aga tac ı Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90	a gtt cct cta tta ata tgt gaa ttc tac tta r Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 105	r aat gtt gct gga tca tta ttt aag aaa tta r Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 120	t atg ctt gtg ttt ggt tac atg ggt gaa gca 1 Met Leu Val Phe Gly Tyr Met Gly Glu Ala 135	g cct gca ttc att att ggg tgt tta gct tgg p Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 155	a cta tat gct gga gaa gga aaa tct gca tgt u Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 170	g gtt caa tca gct tac aac aca atg atg gct r Val Gln Ser Ala Tyr Asn Thr Met Met Ala 185	g gca att tat cct gta ggt tat ttc aca ggt p Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly	Corrected Sequence Listing (August 4th, 2001)
gta tct ggt ctt gtt act Val Ser Gly Leu Val Thr 65 70	aga ggg gta tgg att gaa Arg Gly Val Trp Ile Glu 85	att gat tgg tta cta aca Ile Asp Trp Leu Leu Thr 100	att ctt gct gct gct act Ile Leu Ala Ala Ala Thr 115	cta gtt ggt tct ctt gtt Leu Val Gly Ser Leu Val 130	caa att atg gct gca tgg Gln Ile Met Ala Ala Trp 145	gta tac atg att tat gaa Val Tyr Met Ile Tyr Glu	aat act gca agt cct tcg Asn Thr Ala Ser Pro Ser 180	atc ata gtc ttc ggt tgg Ile Ile Val Phe Gly Trp	09/847,513 DeLong et al.

672	((077	750		
	s gac ggt ggg tca gct ctt aac tta aac ctc coo y Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 220	ttt gtt Phe Val	aaa gaa tet tet aat get	Ser Asıı	
195	cta atg ggt r Leu Met Gly	210 c ctt gct gac	, s + t = t = t = t = t = t = t = t = t = t	aat gir goo s Asn Val Ala V	
	tac Tyr	י ש י	7. P.	ø ∢.	

<210> 31 <211> 250 <212> PRT <213> Naturally occurring gamma proteobacterium Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

09/847,513 DeLong et al.

50

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 70

 ${
m Tyr}$ Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 lle Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 12.0 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gln Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 170

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala

Corrected Sequence Listing (August 4th, 2001)

					#AF349987	48	96
Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195	Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210	Leu Ala Asp Phe Val Asn Lys Ile Leu Leu Gly Leu Ile Ile Trp 230	Val Ala Val Lys Glu Ser Ser Asn Ala 245	> 32 > 750 > DNA > Naturally occurring gamma proteobacterium	CDS (1)(750) Proteorhodopsin variant from pcr clone MB20m12; GenBank)> 32 ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5	gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20
11e	$\mathrm{T} y x$	Asn 225	Asn	<210> <211> <212> <213>	<220><221><221><222><222><223>	<400> atg g Met G	ttt Phe

144	192	240	288	336	384	432	480	528
						•	•	٠,
ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	tta Leu	gca Ala	tgg Trp 160	tgt Cys
ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr	aaa Lys	gaa Glu	gct Ala	gca Ala
gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys	ggt Gly	tta Leu	tct Ser
act Thr 45	aca Thr	tac Tyr	gta Val	gaa G1u	ttt Phe 125	atg Met	tgt Cys	aaa Lys
tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	tta Leu	tac Tyr 140	ggg Gly	gga Gly
gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	tca Ser	ggt Gly	att 11e 155	gaa Glu
tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu	gga $_{ m G1Y}$	ttt Phe	att Hle	gga Gly
tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105	gct Ala	gtg Val	ttc Phe	gct Ala
gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro	gtt Val 120	ctt Leu	gca Ala	tgg Trp
gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	cct Pro	tta Leu
act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr	gct Ala	gtt Val	tgg Trp 150	gaa Glu
gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu	gca Ala	ctt Leu	gca Ala	tat Tyr
tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100	gct Ala	tct Ser	gct Ala	att Ile
tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala 115	ggt Gly	atg Met	atg Met
ttt Phe	gtt Val 50	tct Ser	999 Gly	gat Asp	ctt Leu	gtt Val 130	atc Ile	tac Tyr
tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile	cta Leu	gga G1y 145	gta Val

	576	624	672	720	750	
175	aca atg atg tat Thr Met Met Tyr 190	tat ttc aca ggt Tyr Phe Thr Gly 205	aac ctt atc tat Asn Leu Ile Tyr	tta att ata tgg Leu Ile Ile Trp 240		
170	tca gcc tac aac Ser Ala Tyr Asn 185	tat cct gta ggt Tyr Pro Val Gly	gct ctt aac tta Ala Leu Asn Leu 220	att cta ttt ggt Ile Leu Phe Gly 235	aat gct Asn Ala 250	\$ 0 1
23	gct gtg caa Ala Val Gln	tgg gcg att Trp Ala Ile 200	ggt gga tca Gly Gly Ser 215	gtt aac aag Val Asn Lys 230	gaa tct tct Glu Ser Ser	
165	aat act gca agt cct Asn Thr Ala Ser Pro 180	att atc atc ttt ggt Ile Ile Ile Phe Gly 195	tac ttg atg ggt gac Tyr Leu Met Gly Asp 210	aac ctt gct gac ttt Asn Leu Ala Asp Phe 225	aat gtt gct gtt aaa Asn Val Ala Val Lys 245	<210> 33 <211> 250 <212> PRT

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 1 10 15

Naturally occurring gamma proteobacterium

<400> 33

<213>

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val

20

30

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 09 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 \$145

Corrected Sequence Listing (August 4th, 2001)

```
Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys
175
```

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 190 185 180

ile ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$

240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 235 230

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210>

750 <211>

DNA <212>

Naturally occurring gamma proteobacterium <213>

<220>

<221>

(1)..(750)

Proteorhodopsin variant from pcr clone MB40m1; GenBank #AF349988 <222> <223>

09/847,513 DeLong et al.

48	96	144	192	240	7 8 8	336	384	432	
t aca o Thr	t gtt y Val	t ttc e Phe	a act u Thr	c atg r Met 80	a tac g Tyr	c tta r Leu	a ctt s Leu	a gca	001)
ctt cct Leu Pro 15	act ggt Thr Gly 30	gta ttt Val Phe	tca tta Ser Leu	atg tac Met Tyr	ttt aga Phe Arg 95	ttc tac Phe Tyr 110	aag aaa Lys Lys	ggt ga	Corrected Sequence Listing (August 4 th , 2001)
t gca e Ala	t tac p Tyr	t act r Thr 45	a aca s Thr	t tac s Tyr	t gta r Val	t gaa s Glu	a ttt u Phe 125	c atg	ing (Au
gtt att Val Ile	agt gat Ser Asp	gca tct Ala Ser	tgg aaa Trp Lys 60	tgg cat Trp His 75	cca act Pro Thr	ata tgt Ile Cys	tca tta Ser Leu	ggt tac	nce List
agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe	tag Ser 90	tta Leu	ggc Gly	tt	ed Seque
ata ggt Ile Gly	ctt gat Leu Asp 25	gct cta Ala Leu 40	tct gca Ser Ala	att gct Ile Ala	ggt gat Gly Asp	cct tta Pro Leu 105	gtt gcc Val Ala 120	tt gtg	Correct
ata Ile I	gac ct Asp Le	gct gc Ala Al 40	gtt to Val Se 55	ggt a Gly I	act g Thr G	gtt c Val P	aat g Asn V	atg c	
ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr 70	c gaa e Glu	a aca 1 Thr	a act a Thr	t gtt	
tta tta Leu Leu 5	ggt ggc Gly Gly 20	tta gtt Leu Val	aga gat Arg Asp	ctt gtt Leu Val	tgg att Trp Ile 85	tta cta Leu Leu 100	gct gca Ala Ala	tct ctt	g et al.
4 aaa Lys	gca g Ala G 2	tgg t Trp L 35	gaa a Glu A	ggt c Gly L	gta t Val T	tgg Trp	gct g Ala A 115	ggt	DeLon
<400> 3 atg ggt Met Gly 1	t gct e Ala	t ttt r Phe	t gtt e Val 50	a tct 1 Ser	a gga g Gly	t gat e Asp	t ctt e Leu	a gtt	09/847,513 DeLong et al.
<40(atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile	cta	, (60

	480	528	576	624	672	720	750	
Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130	∞	tat atg att tat gaa cta tat gct gga gaa gga aaa tct gca tgt 528 Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175	aca gca agt cct gct gtg caa tca gct tac aac aca atg atg tat 576 Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180	atc gtc ttt ggt tgg gcg att tat cct gta ggt tat ttc aca ggt 624 Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 195	ctg atg ggt gac ggt gga tca gct ctt aac tta aac ctt atc tat Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210	ctt gct gac ttt gtt aac aag att cta ttt ggt tta att ata tgg 720 Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230	gtt gct gtt aaa gaa tct tct aat gct Val Ala Val Lys Glu Ser Ser Asn Ala 245	> 35 > 250 > PRT
Leu	gga Gly 145	gta Val	aat Asn	att Ile	tac Tyr	aac Asn 225	aat Asn	<210> <211> <212>

<400> 35

Met Gly Lys Leu Leu Leu Ile Ile Gly Ser Val Ile Ala Leu Pro Thr $1\,$

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85 95

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 105 ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 115 Gly ile Met Ala Ala Trp Pro Ala Phe ile ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Ile Tyr 210

Trp 240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 235

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 36 <211> 750

09/847,513 DeLong et al.

80

aga ggg gta tgg att gag act ggt gat tcg cca act gta ttt aga tac Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85

att gat tgg tta cta aca gtt cct cta ttg ata tgt gaa ttc tac tta

gta tcg ggt ctt gtt act ggt att gct ttc tgg cat tac atg tac atg Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met

240

336

	349989	48	96	144	192
DNA Naturally occurring gamma proteobacterium	CDS (1)(750) Proteorhodopsin variant from pcr clone MB40m5;p GenBank #AF349989	tta ctg ata tta ggt agt gtt att gca ctt cct aca Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5	ggt ggt gac ctt gat gct agt gat tac act ggt gtt Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 25	gtt act gct cta tta gca tct act gta ttt ttc Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40	gat aga gtt tct gca aaa tgg aaa aca tca tta act Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55
rally	CDS (1)(750) Proteorhod	tta	ggt gly 20	tta Deu	a aga 1 Arg
DNA Natu:	CDS (1).	36 t aaa y Lys	t gca a Ala	t tgg e Trp 35	t gaa 1 Glu
<212><213>	<2220> <221> <222> <223>	<400> 3 atg ggt Met Gly 1	ttt gct Phe Ala	tct ttt Ser Phe	ttt gtt Phe Val 50

Corrected Sequence Listing (August 4th, 2001)

	384	432	480	528	576	624	672	720
Leu	tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly	tat Tyr	tgg Trp 240
$\mathrm{T} \mathrm{Y} \mathrm{r}$	aaa Lys	gag Glu	gct Ala	gca Ala 175	atg Met	aca Thr	atc Ile	ata Ile
Phe 110	aag Lys	ggt Gly	tta Leu	gct Ala	atg Met 190	ttc Phe	ctt Leu	att Ile
Glu	ttt Phe 125	atg Met	tgt Cys	aag Lys	аса Тћr	tat Tyr 205	aac Asn	tta Leu
Cys	ctg Leu	tac Tyr 140	ggg Gl y	ggc Gly	aac Asn	ggt Gly	tta Leu 220	ggt Gly
Ile	ggc Gly	ggt ${ t G1Y}$	att 11e 155	gaa Glu	tac Tyr	gta Val	aac Asn	ttt Phe 235
Leu	gct Ala	ttt Phe	gtt Val	gga G1y 170	gct Ala	cct Pro	ctt Leu	cta Leu
Leu 105	gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr	gct Ala	aat Asn
Pro	gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att Ile 200	tca Ser	aag Lys
Val	aat Asn	atg Met 135	ggt Gly	cta Leu	gtg Val	gca Ala	gga Gly 215	aac Asn
Thr	aca Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp	ggt Gly	gtt Val 230
Leu	gca Ala	ctt Leu	gct Ala	tat Tyr 165	cct Pro	ggt Gly	gac Asp	ttt Phe
Leu 100	gct Ala	tct Ser	aac Asn	att Ile	agt Ser 180	ttt Phe	ggt Gly	gac Asp
Trp	gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195	atg Met	gct Ala
Asp	ctt Leu	gtt Val 130	att Ile	tac Tyr	act Thr	atc Ile	cta Leu 210	ctt Leu
Ile	att Ile	ttg Leu	gga G1 <u>y</u> 145	gta Val	aat Asn	ata Hle	tac Tyr	aac Asn 225

250 <211> PRT<212>

Naturally occurring gamma proteobacterium <213>

37 <4005> Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 10 Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 45 Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 75 65 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 95 8

09/847,513 DeLong et al.

Leu	
Tyr	
Phe	110
Glu	
Pro Leu Leu Ile Cys	
Ile	
Len	
Leu	105
Pro	
Val	
Thr	
Leu	
rp Leu Leu	100
Trp	
Asp	
Ile i	

Ile Leu Ala Ala Ala Thr Asn Val Ala Ala Gly Leu Phe Lys Lys Leu 120

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gly Ile Met Asn Ala Trp Gly Ala Phe Val Ile Gly Cys Leu Ala Trp 150

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ala Ala Cys 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 185 180 Ile Ile Ile Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$

Asn Leu Ala Asp Phe Val Asn Lys Asn Leu Phe Gly Leu Ile Ile Trp 225

09/847,513 DeLong et al.

Ala	250
Asn	
Ser	
Ser	
Glu	
Lys	245
Val	
Ala	
Val	
Asn	

							GenBank # AF34999
245 250	38 750	DNA	Naturally occurring gamma proteobacterium		CDS	(1)(750)	
	<210><211>	<212>	<213>	<220>	<221>	<222>	<223>

8	96	144	192
aca Thr	gtt Val	ttc Phe	act Thr
cct Pro 15	ggt Gly		tta Leu
ctť Leu	act Thr 30	gta Val	tca Ser
gca Ala	tac Tyr	act Thr 45	aca Thr
att	gat Asp	tct Ser	aaa Lys 60
gtt Val	agt	gca Ala	tgg Trp
agt Ser 10	gct Ala	tta Leu	aaa Lys
ggt Gly	gat Asp 25	cta Leu	gca Ala
tta Leu	ctt Leu	gct Ala 40	
ata Ile	gac Asp	gct Ala	gtt Val 55
cgg Arg	ggt Gly	aca Thr	aga Arg
tta Leu 5	ggc Gly	gtt Val	gat Asp
tta Leu	ggt Gly 20	tta Leu	aga Arg
a S	gca Ala	tgg Trp 35	gaa Glu
<400> 38 atg ggt a Met Gly L	gct Ala	ttt Phe	gtt Val 50
<400> 3 atg ggt Met Gly 1	ttt Phe	tat Ser	ttt Phe

09/847,513 DeLong et al.

240	2 88	336	384	432	480	528	576	624
atg Met 80	tac Tyr	tta Leu	tta Leu	gca Ala	tgg Trp 160	tgt Cys	tat Tyr	ggt Gly
tat Tyr	aga Arg 95	tac Tyr	aaa Lys	gaa Glu	gct Ala	gca Ala 175	atg Met	aca Thr
atg Met	ttt Phe	ttc Phe 110	aag Lys	ggt Gly	tta Leu	tct Ser	atg Met 190	ttc Phe
tac Tyr	gta Val	gaa Glu	ttt Phe 125	atg Met	tgt Cys	aaa Lys	aca Thr	tat Tyr 205
cat His	act Thr	tgt Cys	tta Leu	tac Tyr 140	ggg G $1 Y$	gga Gly	aac Asn	ggt Gly
tgg Trp 75	cca Pro	ata Ile	tca Ser	ggt Gly	att 11e 155	gaa Glu	tac Tyr	gta Val
ttc Phe	tcg Ser 90	tta Leu	gga Gly	ttt Phe	att Ile	gga G1y 170	gct Ala	cct Pro
gct Ala	gat Asp	tta Leu 105	gct Ala	gtg Val	ttc Phe	gct Ala	tca Ser 185	tat Tyr
att Ile	ggt Gly	cct Pro	gtt Val 120	ctt Leu	gca Ala	tgg Trp	caa Gln	att 11e 200
ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	cct	cta Leu	gtg Val	gcg Ala
act Thr 70	gaa Glu	aca Thr	act Thr	gtt Val	tgg Trp 150	gaa Glu	gct Ala	tgg Trp
gtt Val	att Hle 85	cta Leu	gca Ala	ctt Leu	gca Ala	tat Tyr 165	cct Pro	ggt Gly
ctt Leu	tgg Trp	tta Leu 100	gct Ala	tct Ser	gct Ala	att Ile	agt Ser 180	gtt Val
ggt Gly	gta Val	tgg Trp	gct Ala 115	ggt Gly	atg Met	atg Met	gca Ala	atc Ile 195
tct Ser	gga Gly	gat Asp	ctt Leu	gtt Val 130	atc	tac Tyr	act Thr	atc Ile
gta Val 65	aga Arg	att Ile	att Ile	cta Leu	gga G1Y 145	gta Val	aat Asn	atc Ile

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4^{th} , 2001)

- Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 70
- Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90
- Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 110 105 100
- Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115
- Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 140
- Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145
- Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 175
- Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr
- Ile Ile Ile Val Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$ 210

240 Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230

Asn Val Ala Val Lys Glu Ser Ser Asn Ala

<210>

750 <211>

DNA <212>

Naturally occurring gamma proteobacterium <213>

<220>

CDS <221>

 $(1) \dots (750)$ <222>

Proteorhodopsin variant from pcr clone MB100m5; GenBank #AF349991 <223>

48 Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr atg ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca <4007>

96 ttt gct gca ggt ggc ggt gac ctt gat gct agt gat tac act ggt gtt Phe Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25

09/847,513 DeLong et al.

									18
144	192	240	8 8 8	336	384	432	480	2 2 8	
				(',		•		_,	
ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	ctt Leu	gca Ala	tgg Trp 160	tgt Cys	
ttt	tta Leu	tac Tyr]	aga Arg 95	tac Tyr	ааа Lys	gaa Glu	gct Ala	gca Ala 175	Corrected Sequence Listing (August 4 th , 2001)
gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys	ggt Gly	tta Leu	tct Ser	zust 4 th
act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu	ttt Phe 125	atg Met	tgt Cys	aaa Lys	g (Aug
tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	tta Leu	tac Tyr 140	999 G1y	gga Gly	Listin
gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	tca Ser	ggt Gly	att 11e 155	gaa Glu	nence
tta Leu	aaa Lys	ttc Phe	tcg Ser 90	tta Leu	ggc Gly	ttt Phe	att Ile	gga Gly 170	pa Seq
cta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105	gcc Ala	gtg Val	ttc Phe	gct Ala	orrecte
gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro	gtt Val 120	ctt	gca Ala	. tat . Tyr	ŭ
gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	cct Pro	cta	
aca Thr	aga Arg	act Thr 70	gaa Glu	aca Thr	act	gtt .Val	tgg Trp 150	gaa Glu	
gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu	gca Ala	ctt . Leu	. gct . Ala	tat Tyr 165	t al.
tta	aga Arg	ctt Leu	. tgg . Trp	tta Leu 100	gct Ala	tct Ser	gca Ala	att : Ile	ong e
tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala 115	ggt. $G1y$	atg Met	atg Met	3 DeL
ttt Phe	gtt Val	r tot Ser	a gga g Gly	gat Asp	ctt Leu	a gtt 1 Val 130	a att 7 Ile	a tac I Tyr	09/847,513 DeLong et al.
tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile	cta Leu	gga Gly 145	gta Val	3/60

576	624	672	720	750				
gct Ala	ggt Gly	tat Tyr	tgg Trp 240				Thr	Val
atg Met	aca Thr	att Ile	ata Ile				Pro 15	Gly Val
atg a Met 1 190	ttc : Phe '	ctt	att Ile				Leu	Thr 30
aca Thr 1	tat Tyr 205	aac Asn	tta Leu		_		Ala	$\mathrm{T} \mathrm{Y} \mathrm{r}$
aac Asn	ggt Gly	tta Leu 220	ggt Gly		proteobacterium		Ile	Asp
tac Tyr	gta Val	aac Asn	ttt Phe 235		sacte		Val	Ser
gct Ala	cct Pro	ctt Leu	cta Leu	gct Ala 250	oteoł		Ser 10	Ala
tca Ser 185	tat Tyr	gct Ala	att Ile	aat Asn	a pro		$_{ m G1y}$	Asp 25
caa Gln	att Ile 200	tca Ser	aag Lys	tct Ser	gamma		Leu	Leu
gtt Val	gca Ala	gga G1Y 215	aac Asn	tct Ser			I1e	Asp
tag Ser	tgg Trp	ggt Gly	gtt Val 230	gaa Glu	occurring		Leu	Gly Gly
cct Pro	ggt Gly	gac Asp	ttt Phe	aaa Lys 245			Leu 5	
agt Ser 180	ttc Phe	ggt Gly	gac Asp	gtt Val	41 250 PRT Naturally		Leu	G1y 20
gca Ala	gtc Val 195	atg Met	gct Ala	gct Ala	41 250 PRT Natu:	41	Lys	Ala
act Thr	ata Ile	cta Leu 210	ctt Leu	gtt Val			${ t Gly}$	Ala
aat Asn	atc Ile	tac Tyr	aac Asn 225	aat Asn	<210> <211> <211> <212>	<400>>	Met 1	Phe

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 40

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 09 55 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 $$150\,$

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys

09/847,513 DeLong et al.

165

175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 180

ile ile Val Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 230 235

Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

750 <211>

DNA

Naturally occurring gamma proteobacterium <212><213>

<220>

CDS <221>

(1)..(750)

Proteorhodopsin variant from pcr clone MB100m7; GenBank #AF349992 <222></223>

<4007>

09/847,513 DeLong et al.

48	96	144	192	240		336	384	432
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu	ctt Leu	gca Ala
cct Pro 15	ggt Gly	ttt Phe	tta Leu	tac Tyr	aga Arg 95	tac Tyr	aaa Lys	gaa Glu
ctt Leu	act Thr 30	gta Val	ca Ser	atg Met	ttt Phe	ttc Phe 110	aag Lys	ggt Gly
gca Ala	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu	ttt Phe 125	atg Met
att Ile	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys	tta Leu	tac Tyr 140
gtt Val	agt Ser	gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile	tca Ser	ggt Gly
agt Ser 10	gct Ala	tta Leu	ааа Lys	ttc Phe	tcg Ser 90	tta Leu	ggc Gly	ttt Phe
ggt Gly	gat Asp 25	tta Leu	gca Ala	gct Ala	gat Asp	cta Leu 105	gcc Ala	gtg Val
tta Leu	ctt Leu	gct Ala 40	tat Ser	att 11e	ggt Gly	cct Pro	gtt Val 120	ctt Leu
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135
ctg Leu	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr	act Thr	gtt Val
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu	gct Ala	ctt Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100	gct Ala	tct Ser
aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp	gct Ala 115	ggt Gly
ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser	ggg G $1 \rm Y$	gat Asp	ctt Leu	gtt Val 130
atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile	cta Leu

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr $10\,$

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 30 20 Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 45

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 65

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85

lle Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala

09/847,513 DeLong et al.

130

140

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145

Val Tyr Met Ile Tyr Glu Leu Tyr Ala Gly Glu Gly Lys Ser Ala Cys 175

Asn Thr Ala Ser Pro Ser Val Gln Ser Ala Tyr Asn Thr Met Met Ala 190 185 180

Ile Ile Val Phe Gly Trp Ala Ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr $210\,$

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 225

Asn Ala Ala Val Lys Glu Ser Ser Asn Ala

<210>

750 <211>

DNA

Naturally occurring gamma proteobacterium <212> <213>

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

48	96	144	192	240	2 8 8	336
aca Thr	gtt Val	ttc Phe	act Thr	atg Met 80	tac Tyr	tta Leu
	ggt Gly	ttt Phe	tta Leu	tat Tyr	aga Arg 95	tac Tyr
	act Thr 30	gta Val	tca Ser	atg Met	ttt Phe	ttc Phe 110
	tac Tyr	act Thr 45	aca Thr	tac Tyr	gta Val	gaa Glu
	gat Asp	tct Ser	aaa Lys 60	cat His	act Thr	tgt Cys
		gca Ala	tgg Trp	tgg Trp 75	cca Pro	ata Ile
		tta Leu	aaa Lys	ttc Phe	tag Ser 90	tta Leu
		tta Leu	gca Ala	gct Ala	gat Asp	tta Leu 105
tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile	ggt Gly	cct Pro
ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly	act Thr	gtt Val
	ggt Gly	act Thr	aga Arg	act Thr 70	gaa Glu	aca Thr
tta Leu 5	ggt Gly	gtt Val	gat Asp	gtt Val	att Ile 85	cta Leu
tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu	tgg Trp	tta Leu 100
4 aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly	gta Val	tgg Trp
4 gt 1y		ttt Phe	gtt Val 50	tct Ser	ggg Gly	gat Asp
<400 atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val 65	aga Arg	ata Ile
)> 44 ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5	ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca 61y Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5 gct gca ggt ggt gac ctt gat gct agt gat tac act ggt gtt 9 Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20	ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5 gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 ttt tgg tta gtt act gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe Phe 35 35	ggt aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr 5 gct gca ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr Ser Leu Thr Ser Leu Thr Ser Leu Thr Ser Ser Leu Thr Ser Ser Ser Ser Ser Ser Ser Ser Ser Se	get aaa tta tta ctg ata tta ggt agt gtt att gca ctt cct aca ggt aaa tta tta ctg at tta ggt agt ggt get val Ile Ala Leu Pro Thr 15 5 gct gca ggt ggt ggc ctt gat gct agt gat tac act ggt gtt Ala Ala Ala Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 25 ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50 tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tat atg ser Ct gt atg ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr	gct gca ggt ggt ggt gat gct att gca ctt cct aca ggt aat tta tta ctg ata tta ggt agt gtt att gca ctt cct aca ggly Leu Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr Scr gct ggt ggt ggt gac ctt gat gct agt gat tac act ggt gtt Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20 ttt tgg tta gtt act gct gct tta tta gca tct act gta ttt ttc Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe 35 gtt gaa aga gat aga gtt tct gca aaa tgg aaa aca tca tta act Scr Ala Lys Trp Lys Thr Ser Leu Thr 50 tct ggt ctt gtt act ggt att gct ttc tgg cat tac atg tat atg Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Tyr Met Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met Gly Val Trp Ile Glu Thr Gly Bsp Ser Pro Thr Val Phe Arg Tyr Ss Tyr Met Tyr Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Ss Tyr Met Tyr Ile Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Tyr Met Tyr Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr Tyr Met Tyr Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr

<220>

384	432	480	528	576	624	672	720	Ú20
gga tca tta ttt aag aaa tta Gly Ser Leu Phe Lys Lys Leu 125	ttt ggt tac atg ggt gaa gca Phe Gly Tyr Met Gly Glu Ala 140	att att ggg tgt tta gct tgg Ile Ile Gly Cys Leu Ala Trp 155	gga gaa gga aaa tct gca tgt Gly Glu Gly Lys Ser Ala Cys 170	gct tac aac aca atg atg tat Ala Tyr Asn Thr Met Met Tyr 190	cct gta ggt tat ttc aca ggt Pro Val Gly Tyr Phe Thr Gly 205	ctt aac tta aac ctt att tat Leu Asn Leu Asn Leu Ile Tyr 220	cta ttt ggt tta att ata tgg Leu Phe Gly Leu Ile Ile Trp 235	gct . Ala
att ctt gcc gct gca act aat gtt gct Ile Leu Ala Ala Ala Thr Asn Val Ala 115	ctt gtt ggt tct ctt gtt atg ctt gtg Leu Val Gly Ser Leu Val Met Leu Val 130	gga atc atg gct gca tgg cct gca ttc Gly Ile Met Ala Ala Trp Pro Ala Phe 145	gta tac atg att tat gaa cta tgg gct Val Tyr Met Ile Tyr Glu Leu Trp Ala 165	aat act gca agt cct gct gtg caa tca Asn Thr Ala Ser Pro Ala Val Gln Ser 185	atc atc atc ttt ggt tgg gcg att tat Ile Ile Ile Phe Gly Trp Ala Ile Tyr 195	tac ctt atg ggt gac ggt gga tca gca Tyr Leu Met Gly Asp Gly Gly Ser Ala 210	aac ctt gct gac ttt gtt aac aag att Asn Leu Ala Asp Phe Val Asn Lys Ile 225	aat gtt gct gtt aaa gaa tct tct aat Asn Val Ala Val Lys Glu Ser Ser Asn

<210> 45

<211> 250

<212> PRT

<213> Naturally occurring gamma proteobacterium

<400>

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Val Ile Ala Leu Pro Thr $10\,$

Phe Ala Ala Gly Gly Gly Asp Leu Asp Ala Ser Asp Tyr Thr Gly Val 20

Ser Phe Trp Leu Val Thr Ala Ala Leu Leu Ala Ser Thr Val Phe Phe

Phe Val Glu Arg Asp Arg Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 52 Val Ser Gly Leu Val Thr Gly Ile Ala Phe Trp His Tyr Met Tyr Met 80 65 Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 85

lle Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu

09/847,513 DeLong et al.

105

100

Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115

Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 140 135 Gly ile Met Ala Ala Trp Pro Ala Phe Ile Ile Gly Cys Leu Ala Trp 145 155

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 175

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 180

ile ile ile Phe Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200

Tyr Leu Met Gly Asp Gly Gly Ser Ala Leu Asn Leu Asn Leu Ile Tyr 210

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile Trp 240

Corrected Sequence Listing (August 4th, 2001)

	CDS (1)(750) Proteorhodopsin variant from pcr clone MB100m10; GenBank #AF34999
acterium	clone MB100m10
245 250 46 750 DNA Naturally occurring gamma proteobacterium	variant from pcr
	CDS (1)(750) Proteorhodopsin
<210><211><211><211><212><213>	<220> <221> <222> <223>

	4. ∞	96	144	192	240
	Ф Ы	ъ.	ပ စ	т. Я	βģ
	aca Thr	gtt Val	ttc Phe	act Thr	atg Met
	cct Pro 15	ggt Gly	ttt Phe	tta Leu	tat Tyr
	ctt Leu	act Thr 30	gta Val	tca Ser	atg Met
	gca Ala	tac Tyr	act Thr 45	аса Тћ <i>r</i>	tac Tyr
	att Ile	gat Asp	tct Ser	aaa Lys 60	cat His
	gtt Val	agt Ser	gcg Ala	tgg Trp	tgg Trp
	agt Ser 10	gct Ala	tta Leu	aaa Lys	ttc Phe
	ggt Gly	gat Asp 25	cta Leu	gca Ala	gct Ala
	tta Leu	ctt Leu	gct Ala 40	tct Ser	att Ile
	ata Ile	gac Asp	gct Ala	gtt Val 55	ggt Gly
	ctg Leu	ggt Gly	aca Thr	aga Arg	act Thr
	tta Leu 5	ggc Gly	gtt Val	gat Asp	gtt Val
	tta Leu	ggt Gly 20	tta Leu	aga Arg	ctt Leu
46	aaa Lys	gca Ala	tgg Trp 35	gaa Glu	ggt Gly
	ggt Gly	gct Ala	ttt Phe	gtt Val 50	tct Ser
<400>	atg Met 1	ttt Phe	tct Ser	ttt Phe	gta Val

09/847,513 DeLong et al.

	2 8 8 2 7	336	384	432	480	528	576	624	672	
80	a ttt aga tac 1 Phe Arg Tyr 95	a ttc tac tta u Phe Tyr Leu 110	t aag aaa ctt e Lys Lys Leu 5	g ggt gaa gca t Gly Glu Ala	rt tta gca tgg rs Leu Ala Trp 160	na tct gca tgt rs Ser Ala Cys 175	aca atg atg tat Thr Met Met Tyr 190	tat ttc aca ggt Tyr Phe Thr Gly 205	ac ctt att tat	August 4 th , 2001)
75	y cca act gta r Pro Thr Val	a ata tgt gaa u Ile Cys Glu	c tca tta ttt y Ser Leu Phe 125	t ggt tac atg e Gly Tyr Met 140	tc gtt gga tgt le Val Gly Cys 155	t gaa gga aaa y Glu Gly Lys 0	tac aac Tyr Asn	gta ggt Val Gly	tt aat cta aa	Corrected Sequence Listing (August 4 th , 2001)
	act ggt gat tcg Thr Gly Asp Ser 90	gtt cct tta tta Val Pro Leu Leu 105	aat gtt gcc ggc Asn Val Ala Gly 120	atg ctt gtg ttt Met Leu Val Phe 135	cct gca ttc ato Pro Ala Phe Il	cta tgg gct ggt Leu Trp Ala Gly 170	gta cag tca gct Val Gln Ser Ala 185	gca att tat cct Ala Ile Tyr Pro 200	gga tca gct ct	Corrected So
7.0	tgg att gaa Trp Ile Glu 85	tta cta aca Leu Leu Thr 100	gct gca act Ala Ala Thr	tct ctt gtt Ser Leu Val	gcg gct tgg Ala Ala Trp 150	att tat gaa Ile Tyr Glu 165	agt cct gct Ser Pro Ala 180	s gtt ggt tgg e Val Gly Trp 5	y ggt gac ggt	ong et al.
65	aga gga gta Arg Gly Val	att gat tgg Ile Asp Trp	att ctt gct Ile Leu Ala 115	cta gtt ggt Leu Val Gly 130	gga ata atg Gly Ile Met 145	gta tat atg Val Tyr Met	aat act gca Asn Thr Ala	atc atc atc Ile Ile Ile 195	tac cta atg	09/847,513 DeLon

	720	750				b		
Tyr	tgg Trp 240				Thr	Val	Phe	Thr
Ile	ata Ile				Pro 15	Glγ	Phe	Leu
Leu	att Ile				Leu	Thr 30	Val	Ser
Asn	tta Leu		£		Ala	$\mathrm{T}\mathrm{y}\mathrm{r}$	Thr 45	Thr
Leu 220	ggt Gly		gamma proteobacterium		Ile e	Asp	Ser	Trp Lys'
Asn	ttt Phe 235		sacte		Val	Ser	Ala	Trp
Leu	cta Leu	gct Ala 250	oteol		Ile Leu Gly Ser 10	Ala	Leu	$ ext{L} ext{ys}$
Ala	a H H D e	aat Asn	a pr		Gly	Asp 25	Leu	Ala
Ser	aag Lys	tct Ser	gamm		Leu	Leu	Ala 40	Ser
Gly 215	aac Asn	tct Ser	pui			Asp	Ala	. Val 55
G1y	gtt Val 230	gaa Glu	curr		Leu Leu 5	${ t Gly}$	${\tt Th}_{\cal L}$	Arg
Gly Asp	ttt Phe	aaa Lys 245	47 250 PRT Naturally occurring			Glγ	Leu Val	Asp
$_{ m G1y}$	gac Asp	gtt Val	rall		Leu	G1y 20		ı Arg
Met	gct Ala	gct Ala	47 250 PRT Natu	47	Lys	Ala	: Trp 35	. Glu
Leu 210	ctt Leu	gtt Val		^ 0	Met Gly Lys 1	Ala	Phe	Val 50
$\mathrm{T} \mathrm{Y} \mathrm{r}$	aac Asn 225	aat Asn	<210> <211> <211> <212>	<400>	Met 1	Phe	Ser	Phe

Arg Gly Val Trp Ile Glu Thr Gly Asp Ser Pro Thr Val Phe Arg Tyr 90 90

Ile Asp Trp Leu Leu Thr Val Pro Leu Leu Ile Cys Glu Phe Tyr Leu 100 100 Ile Leu Ala Ala Ala Thr Asn Val Ala Gly Ser Leu Phe Lys Lys Leu 115 120 Leu Val Gly Ser Leu Val Met Leu Val Phe Gly Tyr Met Gly Glu Ala 130

Gly Ile Met Ala Ala Trp Pro Ala Phe Ile Val Gly Cys Leu Ala Trp 150

Val Tyr Met Ile Tyr Glu Leu Trp Ala Gly Glu Gly Lys Ser Ala Cys 170

Asn Thr Ala Ser Pro Ala Val Gln Ser Ala Tyr Asn Thr Met Met Tyr 185 ile ile val Gly Trp Ala ile Tyr Pro Val Gly Tyr Phe Thr Gly 200 195

$\mathrm{T}\mathrm{y}\mathrm{r}$
пТе
Leu Ile
Leu Asn 220
Leu 220
Asn
Leu
: Ala Leu Asn
Ser
Gly Gly Ser 215
$\mathtt{G1y}$
Asp
Gly
Met
Leu Met 210
Tyr

	_
Trp	740
Ile	
I1e	
Leu	
Phe Gly Leu Ile Ile	-
Phe	235
Ile Leu	
Ile	
Lys	
Val Asn Lys	
Val	230
Phe	
Asp	
Ala	
Asn Leu Ala	
Asn	225

Ala	250
Asn	
Ser	
Ser	
Glu	
Lys	245
Val	
Ala	
Val	
Asn	

	#AF3
	GenBank
acterium	<220> <221> CDS <222> (1)(753) APF3
roteob	ر د ۲
žą r	بر
gamme	 6 7
ing) (1
occnrr	\$ \$
<210> 48 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium	<220> <221> CDS <222> (1)(753)
<210> 48 <211> 75; <212> DNA <213> Nat	<2220> <221> <222>

ហ៊	48
<222> (1)(1997) <223> Proteorhodopsin variant from pcr clone PALB1; GenBank #AF349995	ø Н
국 #	tca Ser
nBan.	cca Pro 15
Ge.	ctt Leu
LB1;	gca Ala
e PA	att Ile
clon	gct Ala
pcr	agt Ser 10
rom	ggt Gly
nt f	tta Leu
aria	ata Ile
v ni	ctg Leu
, dops	tta Leu 5
orho	tta Leu
ı) rote	8 aaa Lys
Δi	4 gt . 1y .
<223> (1)(733) <223> Proteorhod	<pre><400> 48 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro 15</pre>
νν	A M M L

96		
	Asp Thr Val Gly	30
cta	Leu Asp Ile	25
gct ggt ggc		20
ttt gat gat	Ala Ala	

144	
ttc ttt	
gta ttc	Val
act	Thr
gca	
gag	Ala
tta	Leu
atg	Met
ggt	${\tt Gly}$
gct	Ala
aca	Thr
gtt	Val
ctg	Trp Leu
tgg	Trp
	Phe
tca	Ser

	192	5
	act 1 Thr	-
	ctt Leu	-
	tca Ser	-
45	act Thr	
	aaa Lys 60	
	tgg Trp	
	aag Lys	
	gct Ala	
40	agc	
	gtc Val 55	٠
	caa Gln	
	gac Asp	
	aga Arg	
35	gaa Glu	
	gta Val 50	
	ttt Phe	

240		
c tac atg	Met	80
tac	TYr	
ctc	Len	
tat	$\mathtt{T}\mathtt{y}\mathtt{r}$	
cat tat ctc	His	
tgg	Trp	75
ttt	Phe	
gct	Ala	
ata	Ile	
ggt ata gct	G1y	
act	Thr	70
att	Ile	
tta	Leu	
ggt	G1y	ı
tct	Ser	
gta	Val	65

288		
gta ttt aga tat	7al Phe Arg Tyr	95
	Thr \	
	Pro	
	Thr	90
gat	Asp	
ggt	Gly	
	Thr	
gat	Asp	ı
ata	Ile	85
tgg	Trp	Ī
gtt	Val	
ggt	314	1
aga)

φ

336	384
cta Leu	ctt Leij
tat Tyr	aag
ttc Phe 110	aag
gtt gag ttc tat Val Glu Phe Tyr 110	att ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt
gtt Val	tta
act gtt cca tta caa atg 1 Thr Val Pro Leu Gln Met 105	tca ox
caa Gln	gat
tta Leu 105	gat
cca Pro	gtt
gtt Val	agt
act Thr	aca L
cta tta a Leu Leu 1 100	tgt
cta Leu 100	gat
tgg Trp	gat
att gat tgg Ile Asp Trp	ctt
att Ile	att

384
ctt Leu
aag Lys
aag a Lys I
ttt Phe 125
tta ttt Leu Phe
tca Ser
gct Ala
gtt gct g Val Ala A 120
agt gtt Ser Val 120
agt Ser
aca Thr
tgt Cys
gct Ala
gct Ala 115
ctt Leu
att Ile

432		
gct	Ala	
ggc gaa	Glu	
	Ala	
ttt	Phe	140
gga	${ t G1Y}$	
gct	Ala	
ggt	$\frac{31}{2}$	
ta	jeu	
atg	Val Met I	135
gta	Val	
tta	Len	
tca	Ser	
ggt	Gly	
gct	Ala	130
cta	Leu	

480		
gct ggt tgg	Ala Gly Trp	160
att ctt ggt atg	Ile Leu Gly Met	155
gta tta cct	Val Leu Pro Ala Phe	150
ggt tta gct cct	Pro	145

528		
gta	Val	
gct	Ala Ala	175
gct	Ala	
aag	Lys	
3	CD.	
atg ggt gaa g	Glu	
ggt	G1y	170
atg	Met	
cat	His	
tta	Jeu	
gag	Glu	
tat	Tyr	165
att	lle Tyr Glu 1	
atg	Met	
tac	ľyr	1
tta	Leu	

aag	
atg	
atg	
gca	
aat	
tac	
gct	
tct	
aac	
gtt	
gct	
act	
agt	
gca	
act	
agt	

576

_
2001)
₽,
(August
Listing
anence
Sec
Corrected

— ;
ੌਰ
et
ьp
)
Q
1
ě
\Box
\mathcal{C}
Ţ
ΛÝ
7
4
∞
9
Ó

624		
gct ggt		
gct ga		
tat	$\mathrm{T}\mathrm{Y}\mathrm{r}$	205
gga	G1y	
gct		
cct	Pro	
tat	TYr	
att	Ile	200
gca	Ala	
tgg	Trp	
gga	G1y	

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 180

6 4 4	672
t ggt a Gly	t ata ù Ile
gct gct Ala Ala	aac ctt Asn Leu
tat Tyr 205	tta Leu
gga G1Y	aac Asn 220
gct Ala	tca Ser
cct Pro	gct Ala
tat Tyr	tac Tyr
att Ile 200	gta Val
gca Ala	ggt G1y 215
tgg Trp	gac Asp
gga ${ t G1} { t Y}$	ggt Gly
att Ile	agt Ser
gtt Val 195	atg Met
att Ile	cta Leu 210
att Ile	tac Tyr

0.7.7		
ggt ttg atc att	en Ile Ile	240
ggt t	Gly I	
ttt	Phe	
cta	Leu	235
att	Ile	
aac aag att cta ttt	Lys	
gtt aac	Asn	
gtt	Val	
tt	Phe	230
gad	Asp	
gct	Ala	
ctt	Leu	
aac	Tyr Asn Leu Ala	
tat	Tyr	225

gct	Ala	
aat	Asn	250
tct	Ser	
tct	Ser	
gaa	Glu	
aaa	Lys	
gtt	Val	245
gct	Ala	
gtt	Val	
aat	Asn	245
tgg	Trp A	Ī

753

251 PRT 49 <212> <211> <210>

Naturally occurring gamma proteobacterium <213>

<400>

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser $1\,$

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 95 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100 105

ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 125

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Leu Gly Met Ala Gly Trp 150

Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 170

Corrected Sequence Listing (August 4th, 2001)

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Lys 190 180 lle lle Val ile Gly Trp Ala ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile $210\,$

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 235

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 50

<211> 50 <211> 753

<212> DNA

<213> Naturally occurring gamma proteobacterium

<220>

<221> CDS

<222> (1)..(753)

Proteorhodopsin variant from pcr clone PALB2; GenBank #AF349996 <223>

atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser <4007>

48

09/847,513 DeLong et al.

96	144
gtt Val	ttt Phe
ggt Gly	ttc Phe
gtt Val 30	gtg Val
act Thr	act Thr 45
gat Asp	gca Ala
agt Ser	gcg Ala
ata Ile	tta Leu
gat Asp 25	atg Met
cta Leu	ggt Gly 40
gat Asp	gct Ala
ggc $_{ m G1Y}$	aca Thr
ggt Gly	gtt Val
gct Ala 20	ctg Leu
gct Ala	tgg Trp 35
gct Ala	ttc Phe

15

10

S

ttt Phe

Ser tca

192 Thr tca ctt act Ala Glu Trp Lys Thr Ser Leu tgg aaa act 09 caa gtc agc gct gag Gln Val Ser Ala Glu 55 gac caa Asp gaa aga Glu Arg Val gta ttt Phe

240 atg Met 80 TYrtgg cat tat ctc tat Leu Trp His Tyr 75 tta att act ggt ata gct ttt Leu Ile Thr Gly Ile Ala Phe 70 ggt Gly Ser tct gta Val 65 288 tat Tyr gta ttc aga Pro Thr Val Phe Arg gat acc cca aca ggt gat acc Gly Asp Thr 90 ggt gtt tgg ata gat act Gly Val Trp Ile Asp Thr 85 Arg aga

336 Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu tat ttc gag atg gtt act gtt cca tta caa tta tta tgg gat Asp att Ile

384 Val Ala Ala Ser Leu Phe Lys Lys Leu ttt aag aag 125 gtt gct gct tca tta 120 gct gct tgt aca agt Ala Ala Cys Thr Ser 115 att ctt Ile Leu

432 ggc gaa Glu G1yttt gca Phe Ala 140 gct gga Gly Ala Gly tta ggt ggt tca tta gta atg tta Gly Ser Leu Val Met Leu 135 gct Ala Leu cta

gct cct gta tta cct gct ttc att att ggt atg gct gga tgg

gga tta

	528	576	624	672	720	753		
y Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 5	tac atg att tat gag cta tat atg ggt gaa ggt aag gct gct gta Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170	gt act gca agt cct gct gtt aac tct gca tac aac gca atg atg atg er Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met 180	tt att gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt 62 le lle Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195	tac cta atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata 67 Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210	tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att 7%. Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225		<210> 51 <211> 251 <212> PRT <213> Naturally occurring gamma proteobacterium	400> 51
G1y 145	tta Leu	യ് യ	øН	t) (t	t Fi Cl	ΗH	2 2 2 2	V

Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35

Phe Val Glu Arg Asp Gln Val Ser Ala Glu Trp Lys Thr Ser Leu Thr 50

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 75 80

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85 95

lle Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 135

Corrected Sequence Listing (August 4th, 2001)

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met Met 180

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile $210\,$

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 235

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210>

753 <211>

DNA <212>

Naturally occurring gamma proteobacterium <213>

<220>

09/847,513 DeLong et al.

09/847,513 DeLong et al.

	48	96	144	192	240	288	336	384
GenBank#AF349997			4)		T		d 7	1)
c#AF	tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu	ctt
Banl	cca Pro 15	ggt Gly	ttc Phe	att Leu	tat Tyr	aga Arg 95	tat Tyr	aag
	ctt Leu	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110	aag
PALB5;	gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu	tt
	att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val	t t
clone	gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	atg Met	tca
par	agt Ser 10	a H H H H	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln	gat
from pcr	ggt Gly	gat Asp 25	atg Met	gct Ala	gcc Ala	gat Asp	tta Leu 105	gat
	tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	CCa Pro	gtt
raria	ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val	aat
in v	ctg Leu	ggc Gly	аса Тhr	caa Gln	act Thr 70	gac Asp	act Thr	aca
) dops	tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu	tgt
(1)(753) Proteorhodopsin variant	tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100	gct
1) rote	.2 aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp	gct
	> 5 ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp	ctt
<222> <223>	<400> atg gg Met G	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att

<221> CDS

	432	480	2 2 8	576	624	672	720	753
_		T 0 0		7	1) 5	д Ф	O @ t	
Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile	att 116 24(
Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu	atc Ile	
Lγs	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn	ttg Leu	
Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	cta Leu	ggt Gly	
Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga $_{ m G1y}$	aac Asn 220	ttt Phe	
Ser	gga Gly	att 11e 155	gaa Glu	tac Tyr	gct Ala	tca Ser	cta Leu 235	gct Ala
Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala	att Ile	aat Asn 250
Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr	aag Lys	tat Ser
Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200.	gta Val	aac Asn	tct Ser
Asn	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215	gtt Val	gaa Glu
Thr	gta Val	tgg Trp 150	gag Glu	gct Ala	tgg Trp	gaa Glu	ttt Phe 230	aaa Lys
Cys	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly	gac Asp	gtt Val 245
Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly	gct Ala	gct Ala
Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met	ctt Leu	gtt Val
Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210	aac Asn	aat Asn
I1e	cta Leu	gga G1Y 145	tta Leu	agt Ser	att	tac Tyr	tat Tyr 225	tgg Trp

```
Corrected Sequence Listing (August 4th, 2001)
```

09/847,513 DeLong et al.

PRT Naturally occurring gamma proteobacterium

53 251

<210><211>

<212><213>

<400> 53

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser $10\,$

Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 09 Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 105

125
120
115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130

Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 190 185 180 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

	#AF349999	tca 48 Ser	gtt 96 Val	ttt 144 Phe	act 192 Thr	atg 240 Met 80	tat 288	
	GenBank	cca t Pro S 15	ggt g	ttc t Phe I	ctt ¿ Leu 7	tac é Tyr D	aga t	2001)
		ctt o	gtt g Val (30	gta Val	ser .	ctc Leu	ttt	Corrected Sequence Listing (August 4th, 2001)
e	PalB7;	gcg Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta	g (Aug
proteobacterium	9-	att Ile	gat Asp	gca Ala	aaa Lys 60	cat His	aca	Listing
oacte	clone	gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	CCA	lence
oteo	pcr	agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca	d Seq
a Dr	from pcr	ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat	orrecte
gamma		tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt	ŭ
	CDS (1)(753) Proteorhodopsin variant	ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act	
curr	sin	ctg Leu	ggc Gly	acg Thr	caa Gln	act Thr 70	ı gat	
⊼	3) odopo	tta Leu 5	ggt Gly	gtt. Val	gac Asp	att 11e	l ata	t al.
54 753 DNA Naturally occurring	.(75 eorh	tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg	ong et al.
54 753 DNA Natu	CDS (1). Prot	54 : aaa ⁷ Lys	gct Ala	tgg Trp 35	gaa Glu	ggt : Gly	gtt	09/847,513 DeLon
3	3	<400> (atg ggt Met Gly	gct Ala	a ttc : Phe	gta Val 50	a tct 1 Ser	a ggt	347,51
<pre></pre>	<pre></pre>	<400 atg Met 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	age	3/60

	336	384	432	480	528	576	624	672
${ m Tyr}$	cta Leu	ctt Leu	gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile
Arg 95	tat Tyr	aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctc
Phe	ttc Phe 110	aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn
Val	gag Glu	ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu
Thr	gtt Val	tta Leu	tct Ser 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220
Pro	atg Met	tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala	tca Ser
Thr 90	caa Gln	gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala
Asp	tta Leu 105	gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr
G1y	cca Pro	gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val
$\operatorname{Th} r$	gtt Val	agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215
Asp	act Thr	aca Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu
11e 85	tta Leu	tgt Cys	ttg Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggc Gly
\mathtt{Trp}	tta Leu 100	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly
Val	tgg Trp	gcc Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met
G1y	gat Asp	ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210
Arg	att Ile	att Ile	cta Leu	gga G1 <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr

Val Phe Arg Tyr	95
Gly Asp Thr Pro Thr	06
Arg Gly Val Trp Ile Asp Thr	. 85

Ile Asp Trp Leu Leu Thr' Val Pro Leu Gln Met Val Glu Phe Tyr Leu 110 105 100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 120 Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Ser Ala Gly Glu Ala 130

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180 Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200 Tyr Leu Met Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Corrected Sequence Listing (August 4th, 2001)

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245

<210> 56 <211> 753 <212> DNA <213> Naturally occurring gamma proteobacterium

Proteorhodopsin variant from pcr clone PalB6; GenBank # AF349998 CDS <221> <222> <223> <213> <220>

144 96 48 tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35 ttt gct gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val tca ary yyr agg run the Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca

Corrected Sequence Listing (August 4th, 2001)

192	240	2 88	336	384	432	480	528	576
act Thr	atg Met 80	tat Tyr	cta Leu	ctt Leu	gct Ala	tgg Trp 160	gta Val	gtg Val
ctt Leu	tat Tyr	aga Arg 95	tat Tyr	aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met
cca Ser	ctc Leu	ttc Phe	ttc Phe 110	aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190
act Thr	tat Tyr	gta Val	gag Glu	ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala
aaa Lys ' 60	cat His	aca Thr	gtt Val	tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn
tgg Trp	tgg Trp 75	cca Pro	atg Met	tca Ser	gga Gly	att 116 155	gaa Glu	tac Tyr
aag Lys '	ttt Phe	acc Thr 90	caa Gln	gct Ala	gct Ala	att Ile	ggt G1y 170	gca Ala
gct Ala	gct Ala	gat Asp	tta Leu 105	gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185
agc Ser	ata Ile	ggt Gly	cca Pro	gtt Val 120	tta Leu	gct Ala	tat Tyr	aac Asn
gtc Val 55	ggt Gly	act Thr	gtt Val	aat Asn	atg Met 135	cct Pro	cta Leu	gtt Val
caa Gln	act Thr 70	gac Asp	act Thr	aca Thr	gta Val	tgg Trp 150	gag Glu	gct Ala
gac Asp	att Ile	ata Ile 85	tta Leu	tgt Cys	tta Leu	gta Val	tat Tyr 165	cct Pro
aga Arg	tta Leu	tgg Trp	tta Leu 100	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180
gaa Glu	ggt Gly	gtt Val	tgg Trp	gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala
gta Val 50	tct Ser	ggt Gly	gat Asp	ctt Leu	gct Ala 130	tta Leu	tac Tyr	act Thr
ttt Phe	gta Val 65	aga Arg	att Ile	att Ile	cta Leu	gga Gly 145	tta Leu	agt Ser

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

4	ΟI.	0						
624	672	720	753					
ggt Gly	ata Ile	att Ile 240				Ser	Val	Phe
gct Ala	ctt Leu	atc Ile				Pro 15	$\mathtt{G1}\mathtt{y}$	Phe
gct Ala	aac Asn	ttg Leu				Leu	Val 30	Val
tat Tyr 205	cta Leu	ggt Gly		ď		Ala	Thr	Thr 45
gga Gly	aac Asn 220	ttt Phe		proteobacterium		H H G	Asp	Ala
gct Ala	tca Ser	cta Leu 235	gct Ala	oacte		Ala	Ser	Ala
cct Pro	gct Ala	att Ile	aat Asn 250	oteok		Ser 10	Ile	Leu
tat Tyr	tac Tyr	aag Lys	tct Ser			$\mathtt{G1}\mathtt{y}$	Asp 25	Met
att Ile 200	gta Val	aac Asn	tct Ser	gamma		Leu	Leu	G1y 40
gca Ala	ggt Gly 215	gtt Val	gaa G1u			Leu Ile	Gly Gly Asp	Ala
tgg Trp	gaa G1u	ttt Phe 230	aaa Lys	occurring		Leu	$\mathtt{G1}\mathtt{y}$	Thr
gga Gly	ggc Gly	gac Asp	gtt Val 245			Leu 5		Val
gtt Val	ggt Gly	gct Ala	gct Ala	57 251 PRT Naturally		Leu	Ala 20	Leu
gtt Val 195	atg Met	ctt Leu	gtt Val	57 251 PRT Natu:	57	Lys	Ala	Trp 35
att Ile	cta Leu 210	aac Asn	aat Asn			Met Gly Lys 1	A1a	Phe
att Ile	tac Tyr	tat Tyr 225	tgg Trp	<210> <211> <211> <212> <213>	<400>	Met 1	Phe	Ser

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90 Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 110 105

Ile Leu Ala Ala Cys Thr Asn Val Ala Ala Ser Leu Phe Lys Lys Leu 115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 140 135

160 Gly Leu Ala Pro Val Trp Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Val

09/847,513 DeLong et al.

190

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

240 Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 250

<210>

753 DNA <211>

Naturally occurring gamma proteobacteria <212><213>

<220>

CDS <221>

(1)..(753)

Proteorhodopsin variant from pcr clone PalB8; GenBank #AF350000 <222><222>

<400>

atg ggt aaa tta tta ctg ata tta ggt agt gct att gca ctt cca tca Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser

48

Corrected Sequence Listing (August 4th, 2001)

219/235

96	144	192	240	7 8 8 8	336	384	432	480	
ttt gct gct gct ggt ggc gat cta gat ata agt gat act gtt ggt gtt Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 25	tca ttc tgg ctg gtt aca gct ggt atg tta gcg gca act gtg ttc ttt Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35	ttt gta gaa aga gac caa gtc agc gct aag tgg aaa act tca ctt act Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50	a tot ggt tta att act ggt ata gct ttt tgg cat tat ctc tat atg il Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 75	aga ggt gtt tgg ata gac act ggt gat acc cca aca gta ttc aga tat Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85	att gat tgg tta tta act gtt cca tta caa atg gtt gag ttc tat cta Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100	att ctt gct gct tgt aca agt gtt gct gct tca tta ttt aag aag ctt Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115	cta gct ggt tca tta gta atg tta ggt gct gga ttt gca ggc gaa gct Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130	gga tta gct cct gta tta cct gct ttc att att ggt atg gct gga tgg Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145	09/847,513 DeLong et al. Corrected Sequence Listing (August 4th, 2001)
म म	υ ct	بط ب	gt Va 65	Ø ₹	øН	ďН	υH	004	0

220/235

528	576	624	672	720	753				
att tat gag cta tat atg ggt gaa ggt aag gct gct gta Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165	gca agt cct gct gtt aac tct gca tac aac gca atg atg atg Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met 180	gtt gtt gga tgg gca att tat cct gct gga tat gct gct ggt 65 Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195	atg ggt ggc gaa ggt gta tac gct tca aac tta aac ctt ata 6' Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 215	ctt gct gac ctt gtt aac aag att cta ttt ggt ttg atc att Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile 11e 230	gtt gct gtt aaa gaa tct tct aat gct Val Ala Val Lys Glu Ser Ser Asn Ala 245	59 251 PRT Naturally occurring gamma proteobacteria		Lys Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 5 10	eLong et al. Corrected Sequence Listing (August 4th, 2001)
tta tac atg Leu Tyr Met	agt act go Ser Thr Al	att att gt Ile Ile Va	tac cta at Tyr Leu Me	tat aac ci Tyr Asn Le 225	tgg aat g' Trp Asn V	<210> 59 <211> 25 <212> PR <213> Na	<400> 59	Met Gly L	09/847,513 DeLon

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 40 Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 09

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 65

Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90

ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100

lle Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

160

150

145

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 165

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 180

ile ile Val Val Gly Trp Ala ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Leu Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 235 240

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

245

<210>

753 <211>

DNA <212>

Naturally occurring gamma proteobacteria <213>

<220>

<221> <222>

09/847,513 DeLong et al.

Proteorhodopsin variant from pcr clone PalE1;GenBank# AF350001 <223>

48	96	44	92	40	88	336	384
			\leftarrow	7	7	(*)	(*)
tca Ser	gtt Val	ttt Phe	act Thr	atg Met 80	tat Tyr	cta Leu	ctt Leu
cca Pro 15	ggt Gly	ttc Phe	ctt Leu	tat Tyr	aga Arg 95	tat Tyr	aag Lys
ctt	gtt Val 30	gtg Val	tca Ser	ctc Leu	ttc Phe	ttc Phe 110	aag ${ m L} Y$ s
gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	gag Glu	ttt Phe 125
att 11e	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	gtt Val	tta Leu
gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	gtg Val	tca Ser
agt Ser 10	a Tie e	tta Leu	aag Lys	ttt Phe	acc Thr 90	caa Gln	gct Ala
ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	tta Leu 105	gct Ala
tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	cca Pro	gtt Val 120
ata Hle	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	gtt Val	agt Ser
ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gac Asp	act Thr	aca Thr
tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	tta Leu	tgt Cys
tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	tta Leu 100	gct Ala
60 aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	tgg Trp	gct Ala 115
)> ggt Gly	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	gat Asp	ctt Leu
<400> atg g Met G 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	att Ile	att Ile

432	480	528	576	624	672	720	753
						4. 0	
gct Ala	tgg Trp 160	gta Val	atg Met	ggt Gly	ata Ile	att Ile 240	
gaa Glu	gga Gly	gct Ala 175	atg Met	gct Ala	ctt Leu	atc Ile	
ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	aac Asn	ttg Leu	
gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu	ggt Gly	
ttt Phe 140	ggt Gly	ggc Gly	aac Asn	gga ${ t G1y}$	aac Asn 220	ttt Phe	
gga G1y	att Ile 155	gaa G1u	tac Tyr	gct Ala	tca Ser	cta Leu 235	gct Ala
gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala	att Ile	aat Asn 250
ggt Gly	ttc Phe	atg Met	cct Pro 185	tat Tyr	tac Tyr	aag Lys	tct Ser
tta Leu	gct Ala	tat Tyr	aac Asn	att Ile 200	gta Val	aac Asn	tct Ser
atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt Gly 215	gtt Val	gaa Glu
gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gaa Glu	ttt Phe 230	ааа Lys
tta Leu	gta Val	tat Tyr 165	aat Pro	gga Gly	ggc Gly	gac Asp	gtt Val 245
tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val	ggt Gly	gct Ala	gct Ala
ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met	ctt Leu	gtt Val
gct Ala 130	tta Leu	tac Ty <i>r</i>	act Thr	att Ile	cta Leu 210	aac Asn	aat Asn
cta Leu	gga G1 <u>y</u> 145	tta Leu	agt Ser	att Ile	tac Tyr	tat Tyr 225	tgg Trp

09/847,513 DeLong et al.

<210> 61

- <211> 251
 - <212> PRT
- <213> Naturally occurring gamma proteobacteria
- <400> 61

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 10 $$15\ {\rm 15}$$

Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 30 Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr 50

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 90 lle Asp Trp Leu Leu Thr Val Pro Leu Gln Val Val Glu Phe Tyr Leu 110

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu

120

115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 130

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp

150

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170

Ser Thr Ala Ser Pro Ala Val Asn Pro Ala Tyr Asn Ala Met Met Met 190

180

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 205

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala

Corrected Sequence Listing (August 4th, 2001)

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

		48	96	144	192	240	28 8	
	0002							
	GenBank#AF350002	tca Ser	gtt Val	ttt	act Thr	atg Met 80	tat Tyr	
	Bank⊭	cca t Pro 8 15	ggt g Gly V	ttc 1 Phe]	ctt a	tac Tyr]	aga Arg 95	
		ctt	gtt Val 30	gta Val	tca Ser	ctc Leu	ttt Phe	
	PalE6;	gca Ala	act Thr	act Thr 45	act Thr	tat Tyr	gta Val	
rium		att	gat Asp	gca Ala	aaa Lys 60	cat His	aca Thr	
acte	clone	gct Ala	agt Ser	gcg Ala	tgg Trp	tgg Trp 75	cca Pro	
teob		agt Ser 10	ata Ile	tta Leu	aag Lys	ttt Phe	aca Thr 90	
gamma proteobacterium	from pcr	ggt Gly	gat Asp 25	atg Met	gct Ala	gct Ala	gat Asp	
amma		tta Leu	cta Leu	ggt Gly 40	agc Ser	ata Ile	ggt Gly	
	CDS (1)(753) Proteorhodopsin variant	ata Ile	gat Asp	gct Ala	gtc Val 55	ggt Gly	act Thr	
urri	v di	ctg Leu	ggc Gly	aca Thr	caa Gln	act Thr 70	gat Asp	
၁၁၀) dops	tta Leu 5	ggt Gly	gtt Val	gac Asp	att Ile	ata Ile 85	
753 DNA Naturally occurring	(753) orhod	tta Leu	gct Ala 20	ctg Leu	aga Arg	tta Leu	tgg Trp	
753 DNA Natur	CDS (1)(Protec	62 aaa Lys	gct Ala	tgg Trp 35	gaa Glu	ggt Gly	gtt Val	
	_	6 gt 1Y	gct Ala	ttc Phe	gta Val 50	tct Ser	ggt Gly	
<pre><211> <211> <212> <213></pre>	<2220><2221><2221><2222><223>	<400> atg g Met G 1	ttt Phe	tca Ser	ttt Phe	gta Val 65	aga Arg	

62

<210>

336	384	432	480	528	576	624	672	720
cta Leu	ctt Leu	gct Ala	tgg Trp 160	gta .Val	aag Lys	t ggt a Gly	t ata u Ile	c att e Ile
tat Tyr	aag Lys	gaa Glu	gga Gly	gct Ala 175	atg Met	gc Al	ct Le	at Il
ttc Phe 110	aag Lys	ggc Gly	gct Ala	gct Ala	atg Met 190	gct Ala	A A S	tt Le
gag Glu	ttt Phe 125	gca Ala	atg Met	aag Lys	gca Ala	tat Tyr 205	tta Leu	ggt Gly
gtt Val	tta Leu	ttt Phe 140	ggt Gly	ggt Gly	aac Asn	gga Gly	aac Asn 220	ttt Phe
atg g Met	Ser	gga Gly	att 11e 155	gaa Glu	tac Tyr	gct Ala	tca Ser	cta Leu
caa a Gln l	gct Ala	gct Ala	att Ile	ggt Gly 170	gca Ala	cct Pro	gct Ala	att Ile
tta (Leu (105	gct Ala	ggt Gly	ttc Phe	atg Met	tct Ser 185	tat Tyr	tac Tyr	aag Lys
cca t Pro I	gtt (Val / 120	tta Leu	gct Ala	cat His	aac Asn	att Ile 200	gta Val	aac Asn
gtt o Val]	agt Ser	atg Met 135	cct Pro	cta Leu	gtt Val	gca Ala	ggt G1y 215	gtt Val
act g Thr	aca a Thr	gta Val	tta Leu 150	gag Glu	gct Ala	tgg Trp	gac Asp	ttt Phe
tta d	tgt Cys '	tta Leu	gta Val	tat Tyr 165	cct Pro	gga Gly	ggt Gly	gac Asp
tta 1 Leu 1 100	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	att Ile	agt Ser	gct Ala
tgg t Trp]	gct Ala 115	ggt Gly	gct Ala	atg Met	gca Ala	gtt Val 195	atg Met	ctt Leu
gat t Asp	ctt g Leu	gct Ala 130	tta Leu	tac Tyr	act Thr	att Ile	cta Leu 210	aac Asn
att g Ile A	att (Ile J	cta Leu	ggt G1Y 145	tta Leu	agt Ser	att Ile	tac Tyr	tat Tyr

225

753

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala tgg aat gtt gct gtt aaa gaa tct tct aat gct

245

<210>

251 <211>

PRT <212>

Naturally occurring gamma proteobacterium <213>

<400>>

Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1

Phe Ala Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 20

Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe

Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 75 65 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr

09/847,513 DeLong et al.

90

85

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 100

100

Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115

120

115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala

140

135

Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 155

145

160

Leu Tyr Met Ile Tyr Glu Leu His Met Gly Glu Gly Lys Ala Ala Val 170

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Lys 180

Ile Ile Val Ile Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 200

Tyr Leu Met Ser Gly Asp Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile $210\,$

09/847,513 DeLong et al.

Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 230	Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	64 753 DNA Naturally occurring gamma proteobacterium
Tyr A 225	Trp A	<210> <211> <212> <213> <213>

Proteorhodopsin variant from pcr clone PalE7; GenBank# AF350003

CDS (1)..(753)

<221><222><223>

48	96	144	192
tca Ser	gtt Val	ttt Phe	act Thr
cca Pro 15	ggt Gly	ttc Phe	ctt Leu
ctt Leu	gtt Val 30	gtg Val	tca Ser
gca Ala	act Thr	act Thr 45	act Thr
att Ile	gat Asp	gca Ala	aaa Lys 60
gct Ala	agt Ser	gcg Ala	tgg Trp
agt Ser 10	ata Ile	tta Leu	aag Lys
ggt Gly	gat Asp 25	atg Met	gct Ala
tta Leu	cta Leu	ggt Gly 40	agc Ser
ata Ile	gat Asp	gct Ala	gtc Val 55
ctg Leu	ggc Gly	аса Тhr	caa Gln
tta Leu 5	ggt Gly	gtt Val	gac Asp
tta Leu	gct Ala 20	ctg Leu	ı aga gac ı Arg Asp
64 : aaa : Lys	gct Ala	tgg Trp 35	gaa Glu
	gct Ala	ttc Phe	gta Val 50
<400> 6 atg ggt Met Gly 1	ttt Phe	tca Ser	ttt Phe

09/847,513 DeLong et al.

Corrected Sequence Listing (August 4th, 2001)

240	288	336	384	432	480	528	576	624
atg Met 80	r tat Tyr	cta : Leu	g ctt s Leu	a gct 1 Ala	a tgg 7 Trp 160	gta Val	g atg r Met	t ggt a Gly
c tat u Tyr	c aga e Arg 95	c tat e Tyr 0	g aag s Lys	c gaa y Glu	t gga a Gly	t gct a Ala 175	g atg et Met 00	gct gct Ala Ala
tat ctc Tyr Leu	gta ttc Val Phe	gag ttc Glu Phe 110	ttt aag Phe Lys 125	gca ggc Ala Gly	atg gc Met Al	aag gct Lys Ala	gca atg Ala Met 190	tat gc Tyr A]
cat t His T	aca g Thr V	gtt g Val G	tta t Leu F	ttt g Phe A 140	ggt a Gly M	ggt é Gly I	aac g Asn A	gga t Gly
tgg Trp 75	cca Pro	atg Met	tca Ser	gga Gly	att Ile 155	gaa Glu	tac Tyr	gct Ala
ttt. Phe	acc Thr 90	caa Gln	gct Ala	gct Ala	att Ile	ggt : Gly 170	t gca r Ala 5	cat Pro
a gct e Ala	t gat / Asp	a tta o Leu 105	t gct 1 Ala 0	a ggt u Gly	t ttc a Phe	t atg r Met	ည် သို့ 18	t tat e Tyr
at Il	t ggt Ir Gly	t cca 1 Pro	rt gtt er Val	atg tta Met Leu 135	cct.gct Pro Ala	cta tat Leu Tyr	ъ В В	gca att Ala Ile
act ggt Thr Gly 70	gat act Asp Thr	act gtt Thr Val	aca agt Thr Ser	gta at Val Me	tta cc Leu Pr 150	gag ct Glu Le	gct gt Ala Va	tgg ga Trp A.
att a Ile T	ata g Ile A 85	tta a Leu I	tgt a Cys I	tta g Leu V	gta t Val I	tat g Tyr (165	cct g Pro A	gga t Gly 1
tta Leu	tgg Trp	tta Leu 100	gct Ala	tca Ser	cct Pro	att Ile	agt Ser 180	gtt Val
ggt Gly	gtt. Val	tgg Trp	gct Ala 115	ggt Gly	a gct 1 Ala	atg Met	gca Ala	t gtt e Val
a tct 1 Ser	a ggt g Gly	t gat e Asp	t ctt e Leu	a gct u Ala 130	a tta Y Leu 5	a tac u Tyr	gt act er Thr	e at
gta Val 65	aga Arg	att	att Ile	cta Leu	gga G1Y 145	cta Leu	ရ ည ရွ	ati Ile

233/235

Corrected Sequence Listing (August 4th, 2001)

•	672	720	753						
205	tac cta atg ggt ggc gaa ggc gta tac gct tca aac tta aac ctt ata Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210	tat aac ctt gct gac ttt gtt aac aag att cta ttt ggt ttg atc att Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 225	tgg aat gtt gtt aaa gaa tct tct aat gct Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245	<210> 65 <211> 251 <212> PRT <213> Naturally occurring gamma proteobacterium	<400> 65	Met Gly Lys Leu Leu Leu Ile Leu Gly Ser Ala Ile Ala Leu Pro Ser 1 15	Phe Ala Ala Gly Gly Asp Leu Asp Ile Ser Asp Thr Val Gly Val 25	Ser Phe Trp Leu Val Thr Ala Gly Met Leu Ala Ala Thr Val Phe Phe 35	Phe Val Glu Arg Asp Gln Val Ser Ala Lys Trp Lys Thr Ser Leu Thr

55

50

Val Ser Gly Leu Ile Thr Gly Ile Ala Phe Trp His Tyr Leu Tyr Met 70 65 Arg Gly Val Trp Ile Asp Thr Gly Asp Thr Pro Thr Val Phe Arg Tyr 85

Ile Asp Trp Leu Leu Thr Val Pro Leu Gln Met Val Glu Phe Tyr Leu 105 100 Ile Leu Ala Ala Cys Thr Ser Val Ala Ala Ser Leu Phe Lys Lys Leu 115

Leu Ala Gly Ser Leu Val Met Leu Gly Ala Gly Phe Ala Gly Glu Ala 140 Gly Leu Ala Pro Val Leu Pro Ala Phe Ile Ile Gly Met Ala Gly Trp 145 145

Leu Tyr Met Ile Tyr Glu Leu Tyr Met Gly Glu Gly Lys Ala Ala Val 170

Ser Thr Ala Ser Pro Ala Val Asn Ser Ala Tyr Asn Ala Met Met Met 185

Corrected Sequence Listing (August 4th, 2001)

09/847,513 DeLong et al.

734/

Ile Ile Val Val Gly Trp Ala Ile Tyr Pro Ala Gly Tyr Ala Ala Gly 195

Tyr Leu Met Gly Gly Glu Gly Val Tyr Ala Ser Asn Leu Asn Leu Ile 210

Tyr Asn Leu Ala Asp Phe Val Asn Lys Ile Leu Phe Gly Leu Ile Ile 235

Trp Asn Val Ala Val Lys Glu Ser Ser Asn Ala 245