Лабораторная работа №2

ПОСТРОЕНИЕ ИНТЕРПОЛИРУЮЩЕГО КУБИЧЕСКОГО СПЛАЙНА

Постановка задачи. Подготовьте программу для построения, визуализации и анализа кубических сплайнов S(x), интерполирующих функции F(x) при следующих условиях:

а) тестовая функция $F(x) = \varphi(x)$, заданная формулой

$$\varphi(x) = \begin{cases} x^3 + 3x^2, & x \in [-1; 0] \\ -x^3 + 3x^2, & x \in [0; 1] \end{cases}$$
 (1)

на отрезке $x \in [-1, 1]$, сетка равномерная, граничные условия

$$S''(a) = \varphi''(-1) = 0, S''(b) = \varphi''(1) = 0$$
 (2)

(совпадение вторых производных);

b) основную функцию F(x) = f(x) (см. табл. 6) на отрезке $x \in [a, b]$, сетка равномерная, граничные условия

$$S''(a) = 0, S''(b) = 0.$$
 (3)

(естественные граничные условия);

с) осциллирующую функцию F(x) = f(x) + cos 10 при тех же $x \in [a, b]$, сетка равномерная, граничные условия вида (3).

Размерность сетки, то есть число участков n, является параметром программы.

Используя тестовую функцию а), проверьте и аргументируйте правильность работы программы.

Для каждой из функций b) и c)

- проверьте наличие сходимости при сгущении сетки;
- постройте кубический сплайн, интерполирующий указанные функции **с погрешностью не более** $\varepsilon = 10^{-6}$;
- проведите **анализ сходимости**: сходимость сплайна к исследуемой функции, сходимость первой и второй производной сплайна к первой и второй производной исследуемой функции соответственно. Оцените **порядки сходимости**.

Сравните полученные результаты.

Требования к программе

1) Для построения сплайнов используйте каноническую запись

$$S(x) = \left\{ S_i(x) = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3, x \in [x_{i-1}, x_i], i = 1, \dots n \right\}$$

- 2) Коэффициенты c_i , i = 1...n, найдите методом прогонки.
- 3) Коэффициенты сплайнов нужно выводить в таблицу

Таблица 1

i	x_{i-1}	x_i	a_i	b_i	c_i	d_i
1	$x_0 = a$	x_1				
•••	•••	•••				
•••	•••	•••				
n	x_{n-1}	$x_n = b$				

Здесь n – число участков, i – номер участка, $[x_{i-1}, x_i]$ – границы участка с номером i; a_i , b_i , c_i , d_i – коэффициенты сплайна, i = 1, ... n.

4) Погрешностью интерполирующего сплайна в точке x называют разность F(x) - S(x).

Погрешностью производной (первой производной) в точке x называют разность $F^{'}(x) - S^{'}(x)$.

Погрешностью *второй производной* в точке x называют разность $F^{''}(x) - S^{''}(x)$.

Для изучения погрешностей при $x \in [a, b]$ используют их нормы

$$\max_{x \in [a,b]} |F(x) - S(x)|, \qquad (5)$$

$$\max_{x \in [a,b]} |F'(x) - S'(x)|, \ \max_{x \in [a,b]} |F''(x) - S''(x)|, \tag{6}$$

Чтобы программа могла оценить значения (5) и (6), используют контрольную (дополнительную) сетку, включающую, кроме узлов основной сетки, промежуточные узлы. Например, контрольная сетка может быть равномерной с числом участков N, кратным числу n.

Тогда нормы погрешностей (5) и (6) можно оценить значениями

$$\max_{j=0,\dots N} |F(x_j) - S(x_j)|, \qquad (7)$$

$$\max_{j=0,...N} |F'(x_j) - S'(x_j)|, \max_{j=0,...N} |F''(x_j) - S''(x_j)|$$
 (8)

5) Результаты сравнения F(x) и сплайна S(x) нужно выводить в таблицу (таблицы) и справку:

Таблица 2

j	x_j	$F(x_j)$	$S(x_j)$	$F(x_j) - S(x_j)$	$F^{'}(x_{j})$	$S'(x_j)$	$F'(x_j)-S'(x_j)$
0	$x_0 = a$						
•••	•••						
N	$x_N = b$						

Таблица 3 (опция)

j	χ_j	$F^{''}(x_j)$	$S^{''}(x_j)$	$F^{''}(x_j) - S^{''}(x_j)$
0	$x_0 = a$			
•••	•••			
N	$x_N = b$			

Справка

Сетка сплайна: $n = «__»$ Контрольная сетка: N = «

Погрешность сплайна на контрольной сетке

$$\max_{j=0,...N} |F(x_j) - S(x_j)| = «_____»$$
 при $x = «___»$

Погрешность производной на контрольной сетке

$$\max_{j=0,...N} |F^{'}(x_{j}) - S^{'}(x_{j})| = «______»$$
 при $x = «____»$

Погрешность второй производной на контрольной сетке (опция)

$$\max_{j=0,...N} |F^{''}(x_j) - S^{''}(x_j)| = «_____»$$
 при $x = «____»$

- 6) На графиках программа должна показывать:
- функцию F(x) и сплайн S(x);
- их первые (первые и вторые) производные;
- погрешность сплайна F(x) S(x);
- погрешность производных (первых и вторых производных).

Задания

а) В случае $F(x) = \varphi(x), x \in [-1, 1]$

- постройте с помощью программы сплайн S(x) на равномерной сетке для некоторого небольшого значения n (например, от 2 до 5);
- в отчет включите таблицу 1 (коэффициенты сплайна) полностью, покажите график функции и сплайна; запишите построенный сплайн (от руки!) в каноническом виде и выкладками подтвердите правильную работу программы. (Для проверки программы совпадения графиков недостаточно).

При выполнении заданий для функций b) и c) должны быть поэтапно заполнены таблицы 4 и 5.

b) В случае $F(x) = f(x), x \in [a, b]$

- постройте с помощью программы сплайн S(x) с граничными условиями (3) при каком-либо значении n. Укажите погрешности в ячейках таблицы 4 (от руки).
- проверьте наличие сходимости (с целью тестирования программы): отслеживайте поведение погрешности при изменении n;
- размерность сетки (число n) подберите так, чтобы на *контрольной сетке* сплайн интерполировал функцию с погрешностью не более $\varepsilon = 10^{-6}$, т.е.

$$\max_{i=0,\dots N} |F(x_i) - S(x_i)| \le \varepsilon \tag{9}$$

В отчет включите таблицу 1 (коэффициенты сплайна) и таблицу 2 (сравнение функции и сплайна) (фрагментами, скрин); покажите графики функции и сплайна, а также их производных (скрин); подобранное Вами число n и погрешности запишите (от руки!) в таблицу 4.

- исследуйте с помощью программы порядок сходимости. Для F(x) = f(x) с граничными условиями (3) постройте интерполирующий кубический сплайн при разных значениях n. Закономерность выбора n должна быть такой, чтобы оценка порядка сходимости была достаточно убедительной. Результаты запишите в таблицу 5, оцените порядок сходимости сплайна и его производных, итоги запишите в таблицу 4.
- с) Повторите исследование, указанное в случае b), для осциллирующей функции $F(x) = f(x) + cos\ 10x$,

при $x \in [a, b]$ с граничными условиями (3). По его результатам заполните новую таблицу, аналогичную таблице 4. Порядок сходимости подтвердите таблицами, аналогичными таблице 5.

Сравните результаты, полученные для F(x) = f(x) и осциллирующей функций.

Оформление отчета

- 1) Отчет должен быть оформлен на бланке.
- 2) В отчете должны быть приведены:
- сведения по теоретическим вопросам сплайн-интерполяции
- скриншоты таблиц коэффициентов сплайна (таблица 1);
- скриншоты таблиц сравнения функции и сплайна (таблица 2);
- скриншоты графиков;
- 3) Приведите результаты проверки программы (задание а))
- 4) По результатам выполнения заданий b), c) отчет должен содержать таблицы, аналогичные таблице 4 и таблице 5 для подтверждения оценки порядка сходимости.
- 5) В отчет включите наблюдения и выводы. В приложении к отчету приведите код программы.

f(x) = , $[a, b] = [$;

 $S^{''}(a)=0$, $S^{''}(b)=0$ (строки и столбцы с заливкой – опция)

S(a) = 0, S	(b) = 0 (строки и стол	10цы с заливкой – опци	(к)		
	Выбор функции $F(x)$				
	f(x)	$f(x)+cos\ 10x$	$\varphi(x)$		
При <i>n = «</i> »					
$\max_{j=0,N} F(x)-S(x) $					
$\max_{j=0,N} F'(x)-S'(x) $					
$\max_{j=0,N} F''(x)-S''(x) $					
При достижении погр	ешности сплайн-интер	поляции не более $oldsymbol{arepsilon}=$	10 -6		
Число участков сетки сплайна <i>n</i>					
$\max_{j=0,N} F(x)-S(x) $					
$\max_{j=0,N} F'(x)-S'(x) $					
$\max_{j=0,N} F''(x)-S''(x) $					
Оценка порядка сході	имости				
Сходимость к функции (оценка порядка)					
Сходимость к производной (оценка порядка)					
Сходимость к второй производной (оценка порядка)					
«Остановка» сходимости: число участков, начиная с которого в силу накопления вычислительной погрешности «меняется» сходимость (опция)					
n^*					

n	$\max_{j=0,N} F(x_j) - S(x_j) $	$\max_{j=0,N} F'(x_j) - S'(x_j) $	$\max_{j=0,N} F''(x_j) - S''(x_j) $
n_1			
n_2 .			
•••			
Порядок сходимости			

Таблица 6

Варианты заданий

$\mathcal{N}\!$	а	b	f(x)	$\mathcal{N}\!$	а	b	f(x)
1	2	4	$\frac{\sqrt{x^2-1}}{x}$	13	1	π	$\frac{\sin^2(x)}{x}$
2	0	1	$\sqrt[3]{1+x^2}$	14	0	1	$\sqrt{1+x^4}$
3	0	2	$\frac{\sin(x+1)}{x+1}$	15	0	π	$\cos\frac{x^2}{4}$
4	0.2	2	$\frac{\ln(x+1)}{x+1}$	16	1	π	$\sqrt{x}\sin(x)$
5	2	4	$\frac{\ln(x+1)}{x}$	17	0	5	e^{x-3}
6	1	π	$\frac{\sin(x+1)}{x}$	18	0	1	$\frac{\sin(x)}{1+x^2}$
7	0	1	$\sin(\cos x)$	19	0	π/2	$\frac{\cos(x)}{1+x^2}$
8	0	1	$\sin(e^x)$	20	0	π	$\frac{x\sin(x)}{3}$
9	1	3	$\sqrt{e^x-1}$	21	0	2	$\sqrt{1+3x^2}$
10	1	π	$\cos\left(e^{x}\right)$	22	0	π	$\sqrt{1+3(\sin x)^2}$
11	1	π	$\sqrt{x}\cos(x)$	23	0	π/2	$\sqrt{4-2\sin(x)}$
12	1	3	$\frac{\sin(x)}{x}$	24	0	3	$e^{x-3}\cos(x)$