<u>Datenbanken und Informationssysteme – 3. JG</u>

Normalisierung

Foliensatz 3

DI(FH) Gerald Aistleitner, 2015/16

Normalisierung

- Sammlung von Verhaltensregeln, deren Einhaltung die Wahrscheinlichkeit von Redundanzen und damit die Wahrscheinlichkeit von Speicheranomalien reduziert
- Normalisierung betrachtet nur einzelne, isolierte Entitätsmengen und erkennt daher Redundanzen über mehrere Entitätsmengen nicht
 - → nicht als vollständiges Regelwerk ansehen!
- Findet auf konzeptioneller Ebene statt
- Bei der Überleitung ins interne Modell wird tw. wieder denormalisiert (Performanceoptimierung)

Funktionale Abhängigkeit

- Darstellung: α → β
- α und β repräsentieren jeweils Mengen von Attributen (Teilmengen von R)
- Für alle Paare von Tupeln r,t ∈ R mit r.α=t.α muss auch gelten r.β=t.β
- Wenn 2 Tupel gleiche Werte für alle Attribute in α haben, dann müssen auch ihre β -Werte übereinstimmen.
- α -Werte bestimmen die β -Werte funktional bzw.
 - $\rightarrow \beta$ -Werte sind funktional abhängig von α -Werten

Funktionale Abhängigkeit

Beispiel: Prüfe auf funktionale Abhängigkeit

	R					
	A	B	C	D		
t	a_4	b_2	c_4	d_3		
p	a_1	b_1	c_1	d_1		
q	a_1	b_1	c_1	d_2		
r	a_2	b_2	c_3	d_2		
s	a_3	b_2	c_4	d_3		

- $\{A\} \to \{B\}$?
- {A} → {C} ?
 {C,D} → {B} ?
- {B} → {C}?

<u>Ausgangsbeispiel</u>

 Einfache Auftragsverwaltung basierend auf 2 Entitätsmengen

Auftrag				
<u>AuftragsNr</u>	ArtikelNr[1:10]	ArtikelBez	Betrag	Auftragsdatum
1	4, 5	HDMI-Kabel, TV	15, 550	2.1.2016
2	5, 9	TV, SAT-Receiver	550, 250	5.1.2016
3	4	HDMI-Kabel	15	7.1.2016

Kunde				
KundenNr	Name	PLZ	Ort	AuftragsNr[1:100]
1	Maier	4020	Linz	1, 2
2	Müller	5020	Salzburg	3

<u>1. Normalform (1. NF)</u>

 Ein Relationstyp (Tabelle) ist in 1. Normal-form, wenn die Wertebereiche sämtlicher Attribute skalar sind.

(ein Wertebereich ohne Wiederholungsgruppen heißt skalar oder atomar)

 Anmerkung:
 Bei manchen DB-Systemen wird gezielt darauf verzichtet (Performancegründen)

2. Normalform (2. NF)

- Ein Relationstyp ist in 2. Normalform, wenn er in 1.
 Normalform ist und wenn jedes Nichtschlüsselattribut von jedem Schlüsselkandidaten voll funktional abhängig ist..
- Kann nur verletzt sein, falls sich der Entitätsschlüssel aus mehreren Attributen zusammensetzt und die Entitätsmenge Nichtschlüsselattribute enthält.
- Lösung durch Auftrennen der Entitätsmenge

2. NF: Teilen einer Entitätsmenge

- N-Schlüsselattribute: 2ⁿ 1 Kombinationen möglich
- 1. Bestimmen von möglichen Schlüsselkombinationen
- Zuordnen von Nichtschlüsselattributen zu jener Schlüsselkombination, von welcher das Nichtschlüsselattribut abhängig ist
- 3. Schlüsselkombinationen mit mind. 1 Nichtschlüsselattribut sind die ersten Resultatemengen.
- 4. Schlüsselkombinationen ohne Nichtschlüsselattribute: prüfen ob weglassen ohne Informationsverlust möglich ist
- 5. Benennung der Resultatemengen
 - → Kenntnis des Sachverhaltes notwendig !!

3. Normalform (3. NF)

 Ein Relationstyp ist in 3. Normalform, wenn er in 2.
 Normalform ist und kein Nichtschlüsselattribut transitiv von einem Schlüsselkandidat abhängt.

- transitive Abhängigkeit:
 Wenn Y von X funktional abhängig ist und Z von Y, so ist Z von X funktional abhängig.
- Transitiv abhängige Spalten werden in weitere Untertabellen ausgelagert, da sie nicht direkt vom Schlüsselkandidaten abhängen, sondern nur indirekt.

Boyce Codd Normalform (BCNF)

 Eine Relationstyp ist in BCNF, wenn jede Determinante vom Relationstyp ein Schlüsselkandidat ist.

- Determinante: Eine Menge von Attributen, von denen andere voll funktional abhängen.
- Elimination von überlappenden Schlüsselkandidaten

<u>4. Normalform (4. NF)</u>

- Ein Relationstyp befindet sich genau dann in der vierten Normalform, wenn er sich in der BCNF befindet und maximal eine nichttriviale mehrwertige Abhängigkeit enthält.
- Mehrwertige Abhängigkeit: X→→Y Wenn für 2 Attributmengen X und Y gilt, dass einem Wert von X eine Menge von Werten von Y unabhängig von den restlichen Werten zugeordnet wird, so besteht zw. X und Y eine mehrwertige Abhängigkeit.
- Eine mehrwertige Abhängigkeit einer Attributmenge Y von einer Attributmenge X ist trivial, wenn Y teil von X ist oder die Relation nur aus X und Y besteht.

5. Normalform (5. NF, Project-Join-Normalform)

- Ein Relation R ist in 5. Normalform, wenn sie in 4. NF ist und für jede Join-Abhängigkeit (R1, R2, ..., Rn) gilt:
 - Die Join-Abhängigkeit ist trivial oder
 - Jedes Ri aus (R1, R2, ..., Rn) ist Schlüsselkandidat
- Eine Relation R ist in 5. Normalform, wenn sie in 4. NF ist und keine mehrwertigen Abhängigkeiten enthält, die voneinander abhängig sind.

Vereinfacht:

 Ein Relationstyp ist in 5. Normalform, wenn er in der vierten Normalform ist und sich nicht ohne Informationsverlust in mehrere Tabellen aufspalten lässt.