Previously MERRHXH Propostion of Symmetric Real Matrices 1) Eigenvalues are orcal. 2) Eigen rectors corresponding to different eigenvalues are onthogonal. 3) If M has an O.N.E.V.B Costhonormal, eigenvectors, then Miss symmetric. 4) If P is the change of basis matrix Frame one ONB to another ONB then $P' = P^T$ 3) 9f M has n distinct eigenvalues

=> M has an ONEV.B

Spectral Theorem Mis symmetric (=>) Mhas ONEVB
Theomer's Mhas Mis symmetric => Mhas ONEVB
Prost: The char poisnomial of M has atlent I nost. If M is symmetric the it I nost. If M is symmetric the it has to be nead. Mwi = Aw, (whitespersons) Mwi = Re(Wi) or Im(Wi) R M(Re(Wi) + i Im(Wi) M(Re(Wi) + i Im(Wi) Eigenvalue A,

We will And O.N.B for IR" Qwi, Wz .. Why?

P-chanse of bash matsish M'= P'MP = pt MP M'= 0000 M'= 0000 M'o Symmetonic mathemation) M' = \[\begin{aligned} \begin

 $\begin{vmatrix} \lambda_1 & \delta_3 & \delta_3 \\ 0 & \lambda_2 & \delta_3 & \delta_3 \\ 0 & \delta_3 & \delta_4 & \delta_5 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_5 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_4 & \delta_6 & \delta_6 \\ 0 & \delta_3 & \delta_6 & \delta_6 & \delta_6 \\ 0 & \delta_4 & \delta_6 & \delta_6 & \delta_6 \\ 0 & \delta_5 & \delta_6 & \delta_6 & \delta_6 \\ 0 & \delta_6 & \delta_6 &$ O. N.-E.V.B $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \mathcal{L}_{1}, \mathcal{L}$ $\begin{cases} (n) & (n) \\ W_1 & W_2 \end{cases}$

Mc Rn-1×n-1 M = M = M = M =20 E R^-) Mv = 1/22 then for in evect of M with eigenvalue A_2 $M\begin{bmatrix} 0 \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ \tilde{M}v \end{bmatrix} = \begin{bmatrix} 0 \\ \lambda v \end{bmatrix} = \lambda \begin{bmatrix} 0 \\ v \end{bmatrix}$ Spectral Decomposition Theorem

Min Dymmetonic (=> M cante won'then $M = \sum_{i=1}^{n} \lambda_i u_i u_i^{T}$

when X; u, are eigenvalue, vector

Uin are O.N.B. 1919 TER Symmetric, outer product 91ank =1 Treet!

sum of som matorice in som.

u' .. u' 0.N.B

M'= & A; U; U; T

1 s M = M?

 $\mathcal{L}_{\mathcal{D}} = \begin{bmatrix} \mathcal{D}_{1} \\ \mathcal{D}_{2} \end{bmatrix}$

Chair of
$$M'=\sum_{i=1}^{n}\lambda_{i}^{i}u_{i}^{i}u_{i}^{i}$$

Then λ_{i}^{i} has to be eigen values of M'
 λ_{i}^{i} has to be eigen vectors M'
 λ_{i}^{i} has to be eigen vectors M'
 λ_{i}^{i} has to be eigen vectors M'
 λ_{i}^{i} $\lambda_{$