※实验研究≪

Experimental Research

X 线图像质量与造影剂浓度 和放射剂量相关性研究

高 凯¹ 孙立军¹ 邓振生¹ 牟轩沁² 余厚军¹ 张学昕¹ (1 第四军医大学西京医院放射科 陕西 西安 710032;

2 西安交通大学图像处理与识别研究所)

摘要:目的 探讨 X 线图像质量与造影剂浓度和放射剂量相关性。方法 在丙烯酸体模块上制作圆柱 状 体 模 管 . 管 直 径 为 $1.2~\mathrm{mm}$ 。体模管内造影剂的碘浓度范围从 $4.0\sim50~\mathrm{mg/ml}$,并摄取 X 线图像。目测观察不同管电压的 X 线图像 ,确定碘的探测 阈浓度。观察 X 线管电压、表面剂量、比释动能以及碘探测阈浓度之间的变化关系。分析了不同比释动能状态下图像像素值与管电压间的变化关系。结果 无论比释动能为 $1.1~\mu\mathrm{Gy/$ 帧还是 $4.0~\mu\mathrm{Gy/}$ 帧 ,表面剂量随着 X 线管电压的增加而降低。当比释动能为 $4.0~\mu\mathrm{Gy/}$ 帧时 ,随着管电压的增加 ,像素值保持相对的恒定 ,而当比释动能为 $1.1~\mu\mathrm{Gy/}$ 帧时 ,像素值却逐渐增加。当 X 线管电压 为 $85~\mathrm{kVp}$ 时显示的体模管最多。结论 在保证 X 线图像质量前提下 ,降低 X 射线管电压和曝光量 ,可以有效地减少放射性损害。

关键词 图像质量 X 射线管电压 数字减影血管造影 放射剂量测定法

中图分类号:R814.49;R814.43 文献标识码:A 文章编号:1002-1671(2005)01-0001-04

The Correlative Study on Image Quality , Concentration of Iodinated

Contrast Material and Radiation Dose

GAO Kai , SUN Li - jun , DENG Zhen - sheng , MU Xuan - qin , YU Hou - jun , ZHANG Xue - xin

(Department of Radiology , Xijing Hospital , Fourth Military Medical University , Xi 'an , Shaanxi 710032 ,China)

Abstract Objective To study the correlation among image quality , concentration of iodinated contrast material , and radiation dose. Methods Radiographic images were obtained of a phantom which was 1.2 mm diameter vessels containing iodine at concentration between 4.0 and 50 mg/ml. The detection threshold concentration of iodine was determined by inspecting radiographic images at a range of X – ray tube voltages and input exposure levels. Surface doses were obtained from measured X – ray tube output data. The correlative changes were observed among X – ray tube voltage , surface dose , air kerma , and the detection threshold concentration of iodine. The relationship between the pixel values of images and X – ray tube voltage was analysed with a different situation of air kerma. Results Surface doses were found to be decreased with increasing the X – ray tube voltage when air kerma was varied between 1.1 μ Gy/frame and 4.0 μ Gy/frame. The pixel value was kept relatively constant with air kerma of 4.0 μ Gy/frame and increased with air kerma of 1.1 μ Gy/frame when X – ray tube voltage was increased. The most vessels were showed with the X – ray tube voltage of 85 kVp. Conclusion Radiation injuries may effectively decreased with reducing X – ray tube voltage and exposure level under the precondition of X – ray image quality to be guaranteed.

Key words image quality ;X - ray tube voltage ; digital subtraction angiography ;dosimetry

数字减影血管造影(DSA)是实施血管腔内介入治疗的主要技术,通过对病变血管解剖细节的详细显示,使介入性诊断与治疗得以顺利完成。在恶性实体瘤化疗栓塞和神经以及冠状动脉腔内介入治疗中,为了清晰显示病变远端的微细血管包括毛细血管,有时需要提高碘造影剂的浓度和延长 X 线曝光时间 这无疑直

接增加了患者碘造影剂的毒性和医患双方的 X 线放射剂量。因而 如何降低碘造影剂浓度和 X 线的放射剂量 ,又不影响介入操作的顺利实施 ,成为人们关注的课题 [1-7]。本研究通过改变 X 线管电压数值 ,探讨 X 线图像质量与造影剂浓度和放射剂量相关性。

1 材料与方法

1.1 体模的设计 将20个30 cm×30 cm×1.0 cm的 丙烯酸模块叠堆在一起组成用于评估图像质量的体模。该体模上沿水平方向钻有25组(共50根)圆柱状管(即体模管)。管直径为1.2 mm,长40 mm以及管间距为11 mm。体模管内充满一定比例的肝素-优维

收稿日期 2004-09-13 / 修回日期 2004-10-11

作者简介 高 凯(1973 -),男,湖南省桃源县人,现为第四军医大学硕士研究生,导师孙立军教授。

基金项目:本研究受国家"十五 863 计划"项目资助(2001AA114万分数据

显(300 mg I/ml)溶液。在注入体模管之前,将造影剂充分混合。体模管内造影剂的碘浓度范围从 $4.0 \sim 50 \text{ mg/ml}$,任意 2 个相邻管中碘浓度 的比例是0.90(图1表1)。

图 1 含 25 组不同碘浓度体模管模型的 X 线图像(注射器针头示为模型中部)。从右至左,体模管内的造影剂浓度逐渐降低(各管浓度参见表 I)。从图中可以看出,第 $I\sim 14$ 组体模管均显影

表 1 每支体模管含碘造影剂浓度情况(n=25)

χı	3古峡边影剂水皮俱从 II = 23)	
	体模管序	造影剂浓度(mg/ml) 4.00
	1	
	2	4.43
	3	4. 92
	4	5.47
	5	6.07
	6	6.75
	7	7.50
	8	8.33
	9	9.26
	10	10.29
	11	11.43
	12	12.70
	13	14.12
	14	15.69
	15	17.43
	16	19.37
	17	21.52
	18	23.91
	19	26.57
	20	29.52
	21	32.80
	22	36.45
	23	40.50
	24	45.00
_	25	50.00

1.2 图像质量的评价 由3名放射专业人员,采用5级分类标准(表2)评判每一幅所得的图像质量。图像质量的指标是指在1幅图像中通过视觉能够探测到1.2 mm 直径体模管中碘的最低浓度。在试验中,首先对每位图像质量研查者(检查医生和技师)进行图像评

分训练,然后评判含不同碘浓度 10 幅体模 X 线图像。图像测试是通过 X 线胶片完成的。最后,打乱 X 线图片的排列顺序,要求评判者利用表 2 所规定的分级标准,对 X 线图像进行逐个打分、记录 $[^{8}]$ 。当 50% 的含碘体模管被显示时,体模管的浓度被视为碘探测阈值(iodine detection threshold)。

表 2 评价含不同碘造影剂浓度体模管可视性的记录标准

评分等级	 记录描述
1	体模管未见显示
2	<50%体模管模糊显示
3	50%体模管显示
4	大部分体模管显示(> 50%)
5	体模管完全显示

1.3 X 线图像的采集 所用设备为国产万东超越2000 型800 mA 数字胃肠机。将丙烯酸体模放置于检查床上,保证体模管的几何放大率为1.2倍。采用1.2 mm 焦点和12英寸(1英寸=2.54 cm)直径的影像增强器获得 X 线图像。在正位 X 线球管上额外增加了3.0 mm 铝等效滤板。将高压发生器设置为手动模式,以便于调整 X 线球管电压(kVp),管电流(mA)以及曝光时间(ms)等参数,以满足实验的要求。将瑞典 RTI Electronics 生产的 PMX - III 型号电离室放置在体模表面和影像增强器上,以记录相应部位的 X 线曝光量。在实验中 随着 X 线管电压(kVp)的增加,相应地降低毫安秒(mAs),以保证空气比释动能恒定。X 线管电压从69 kVp 逐级分档增加至126 kVp。利用Simexpl 软件工具,分别测出每幅图像上9个不同点的像素值并求出图像的平均像素值。

2 结果

图 2×3 显示当比释动 能 分 别 为 $1.1~\mu$ Gy/帧 和 $4.0~\mu$ Gy/帧时 X 线管电压与表面剂量间的关系。随 着 X 线管电压的增加 表面剂量相应降低。

表 3 显示 当 比 释 动 能 分 别 为 $1.1~\mu$ Gy/帧和 $4.0~\mu$ Gy/帧时 kVp 与 mAs 以及相应的像素值间的变化关系。当比释动能为 $1.1~\mu$ Gy/帧时 ,随着 kVp 的增加 mAs 相应降低 ,而像素值则逐渐增加。但当比释动能为 $4.0~\mu$ Gy/帧时 ,尽管 kVp 逐渐增加 ,mAs 相应逐渐降低 ,但像素值却保持相对的恒定。

图 4 显示不同空气比释动能和 kVp 所示体模管组数的关系。无论空气比释动 能 为 $1.1~\mu Gy/$ 帧 还 是 $4.0~\mu Gy/$ 帧,随着 kVp 的逐渐增高,显示的体模管组数也随之相应的增多,但以 kVp 为 85~kVp 时所显示的体模管组数最多。然后,随着 kVp 的增加,所显示的体模管组数反而减少。

图 2 比释动能为 1.1 µGy/帧时管电压与表面剂量关系

图 3 比释动能为 4.0 µGy/帧时管电压与表面剂量关系

图 4 不同空气比释动能和 X 线管电压所显示体模管组数

3 讨论

X 射线的发现与广泛应用尽管给人类带来了巨大裨益,但同时 X 射线的应用也给人群的健康带来了一定危害与影响,也就是说电离辐射是一把双刃剑,它具有产生躯体效应和遗传效应的危害^[9]。随着接受 X 射线检查的次数增多,检查时间的延长,每次检查受检者的受照剂量也越大。严格控制患者及操作人员 X 万方数据

表 3 比释动能分别为 1.1 μGy/帧和 4.0 μGy/帧时放射技术参数(kVp, mAs)间的关系

1.37	1.1 μGy/帧		4.0 μGy/帧	
kVp ·	mAs	像素值	mAs	像素值
69	80	144.0	320	243
72	64	167.1	250	244
74	50	223.7	200	240
79	40	287.3	160	246
82	32	383.0	125	217
85	25	423.0	100	242
91	20	637.0	80	217
95	16	758.0	64	249
100	12.5	880.0	50	246
107	10	903.0	40	247
112	8	924.0	32	246
118	6.4	900.0	25	250
126	5		20	

注 kVp 为 X 线管电压 "mAs 为毫安秒

射线的剂量 ,无疑将大大降低或减少由 X 射线检查所 造成的潜在性的各种危害效应。因此国际放射防护委 员会(ICRP)提出了 X 射线检查的正当化、最优化的 合理防护原则。X射线 kVp、管电流以及 DSA 检查时 影像增强器的 X 射线入射剂量等因素 ,直接影响图像 质量以及医患双方 X 射线的吸收剂量 ,因而 ,在不影 响图像诊断的前提下,如何正确调整以上放射技术参 数 减少患者的 X 射线吸收剂量成为人们关注的问 题。Gkanatsios 等[8]研究显示 ,当 kVp 恒定时 ,表面剂 量(surface dose)和授予能量(energy imparted)直接与 DSA 每帧图像采集时的入射剂量成比例;当入射剂量 增加 图像质量仅仅轻度提高。因而作者认为 ,降低 kVp 及曝光量 将使 DSA 成像系统的性能得到极大的 改善。图 2、3 显示当比释动能分别为 1.1 μGy/帧和 4.0 μGy/帧时 kVp 与表面剂量间的关系。随着 kVp 的增加 表面剂量相应降低。表面剂量决定着皮肤放 射损伤的程度。当皮肤受照射时,电离辐射既可引起 确定性效应(deterministic effect) 如:急、慢性放射性 皮肤损伤),也可诱发癌症。因而,在临床放射学实践 特别是介入放射治疗中,十分重视表面剂量的监测。 Vano 等[5]报道 在经皮穿刺冠状动脉腔内球囊成形术 中,每次介入操作造成最大皮肤剂量的平均值为391 mGy ,并出现了放射性皮肤损伤。图 4 显示无论空气 比释动能为 1.1 μGy/帧还是 4.0 μGy/帧 ,随着 kVp 的逐渐增高 显示的体模管组数也随之相应的增多 但 以 kVp 为 85 kVp 时所显示的体模管组数最多。然后, 随着 kVp 的增加 ,所显示的体模管组数反而减少。这 说明当 kVp 大于 85 kVp 时 随着管电压的增加 ,散射 (scatter radiation)对图像质量的影响也随之增加 导致

图像模糊 X 射线成像系统对碘的探测能力降低 ,因而无疑影响诊断质量。表 3 显示当比释动能为 1.1 μ Gy/帧时 ,随着 kVp 的增加 ,mAs 的降低 ,像素值却逐渐增加。而当比释动能为 4.0 μ Gy/帧时 ,尽管 kVp 逐渐增加 ,mAs 相应地逐渐降低 ,但像素值却保持相对的恒定。这说明当比释动能较低时 ,本研究所依赖的 X 射线成像系统 ,图像质量随着 kVp 的增加而下降。当比释动能较高时 ,图像质量并不因为 kVp 的增加而改变。但是比释动能的增加 ,使 X 射线的曝光量要增加 ,这无疑增加了医患双方 X 射线的吸收量 ,同时也加大了放射性损害的危险性。

本研究显示,在保证图像质量的前提下,合理选择放射照相技术参数,是实践放射防护最优化原则的具体体现。

参考文献:

- [1] Marx MV. The radiation dose in interventional radiology study: knowledge brings responsibility [J]. J Vasc Interv Radiol , 2003 , 14 (8) 947 - 951.
- [2] Vetter S, Schultz FW, Strecker EP, et al. Patient radiation exposure in uterine artery embolization of leiomyomata: calculation of organ do-

- ses and effective dose[J]. Eur Radiol 2004 , 14(2) 842 848.
- [3] Bor D, Sancak T, Olgar T, et al. Comparison of effective doses obtained from dose area product and air kerma measurements in interventional radiology J. Br J Radiol 2004, 77(4) 315 322.
- [4] Gkanatsios NA, Huda W, Peters KR. Adult patient doses in interventional neuroradilogy J. Med Phys 2002, 29(5) 717 723.
- [5] Vano E, Goicolea J, Galvan C, et al. Skin radiation injuries in patients following repeated coronary angioplasty procedures [J]. Br J Radiol 2001, 74(11):1023-1031.
- [6] Onnasch DGW, Schemm A, Kramer HH. Optimization of radiographic parameters for paediatric cardiac angiography [J]. Br J Radiol, 2004, 77(6):479-487.
- [7] Kemerink GJ, de Haan MW, Vasbinder GBC, et al. The effect of equipment set up on patient radiation dose in conventional and CT angiography of the renal arteries [J]. Br J Radiol 2003, 76(9):625 – 630
- [8] Gkanatsios NA. Effect of radiographic techniques (kVp and mAs) on image quality and patient doses in digital subtraction angiography[J]. Med Phys 2002, 29(8):1643-1650.
- [9] Prasad KN , Cole WC , Haase GM. Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage J]. Br J Radiol 2004 ,77(2):97 – 99.

脾脏上皮样血管内皮瘤 1 例报告

One Case :Epithelioid Hemangioendothelioma of the Spleen

欧成英 姚 承 汪耀程 白建军

第四军医大学唐都医院放射科 710038

中图分类号:R733.2

文章编号 :1002 - 1671(2005)01 - 0004 - 02

患者 女 30 岁。无明显诱因出现持续性腰部隐痛 2 月,向两侧腹股沟及右腿部放射,活动后加剧,无反酸、恶心、呕吐及腹痛等症状。在当地医院服用药物治疗后症状稍好转,停药后上述症状复发 2 月来上述症状反复发作。2 周前上述症状加剧并伴有胸部疼痛及发热,T 38.7° C,在当地医院就诊,给予静滴'青霉素"等治疗后体温降至正常,全身疼痛持续无缓解,伴食欲下降、全身 乏力。实验室检查:WBC 10.7×10^{9} /L,RBC 4.10×10^{12} /L,HGB 116 g/L,PLT 93×10^{9} /L。腹部 B 超检查发现脾脏肿大,实质呈不均匀分布粗大回声,条索状强回声后不伴声影,考虑脾脏慢性感染。

CT 所见 : 脾脏体积增大约 10 个肋单元 , 脾内缘凹凸不平 , 脾实质内见散在的略低密度影 , 低密度区 CT 值为 39 HU , 并可见多发不规则的斑点状及簇状钙化灶(图 1)。增强后脾脏于动静脉期均呈不均匀强化 ,实质内布满大小不等的低密度灶呈蜂窝状 ,延迟后脾脏造影剂消退 ,病灶密度仍低于脾脏(图 2 , 3)。考虑血管瘤和能性大。

手术探查见:脾脏大小约 15 cm×6 cm×8 cm.被膜紧张,表面布满了灰白色、质韧、大小不等的结节,胰腺及肠管均未见异常,腹腔内有少量腹水,行脾切除术。病理诊断:脾脏低度恶性上皮样血管内皮瘤(图4)。

讨论:脾脏肿瘤分为良性和恶性,良性者包括:①血管瘤; ②淋巴瘤 :③错构瘤。恶性者包括 :①淋巴瘤 :②血管肉瘤 :③ 转移性肿瘤。脾脏的原发性肿瘤很少见。本例属于低度恶性 上皮样血管内皮瘤 起源于上皮样内皮细胞 是脾脏的恶性肿 瘤 国内文献报道 1 例 1 3。该肿瘤最初报告发生在软组织 后 来也有报告发生在肺、肝、骨、脾部位。发生在脾脏的上皮样血 管内皮瘤的患者年龄为3~48岁,但以儿童和青少年为多见。 临床表现为左上腹包块、发热、不适及贫血、腹痛、体重下降和 消耗性凝血功能障碍[2]。影像学表现为平扫时脾脏增大 "脾内 可见低密度或接近等密度的肿物 肿物较大时脾脏轮廓呈波浪 状,瘤内有钙化、新鲜出血或形成 Gamna - Candy 小体时,可发 生病变内斑点状或斑块状高密度区 增强扫描可使病变与正常 脾脏的密度差增大 病变常呈不均匀强化 但无明显特异性 增 强幅度可低于或高于脾实质,或接近;延迟扫描肿物多呈低密 度。病变边缘光整或分叶状[3]。本例患者女性 30 岁 仅有反 复发作的腰痛、发热 既往体健。 其影像表现脾脏体积增大 "脾 实质内见散在的低密度影,并可见多发不规则的斑点状及簇状 钙化灶 增强后脾脏于动静脉期均呈不均匀强化 ,实质内布满 大小不等的低密度灶呈蜂窝状,延迟后脾脏造影剂消退,病变 密度仍低于脾脏。本例临床表现不典型,但影像学基本符合文 献报道,由于对此病影像表现认识不足,术前未能确诊。

脾脏恶性和良性血管瘤的诊断及鉴别具有较重要的临床意义,其中需与脾转移瘤、淋巴瘤及血管瘤相鉴别。脾转移瘤:多发生于癌广泛转移的晚期,多伴有其他部位的转移,单纯累及脾脏者极为罕见。CT表现,脾脏体积多数增大,脾实质内可

(下转第57页)