Leveraging Machine
Learning Models for
Climate Data
Interpretation and
Forecasting

Edwin Peraza Maxwell Lebda Cade Duncan

Introduction

Climate change impacts ecosystems, agriculture, and society.

Predicting temperature trends is critical for mitigation and adaptation

strategies.

Objective

Use machine learning models to analyze historical temperature data and forecast future trends.

Dataset and features

Dataset: Berkeley Earth Surface Temperature data.

Features:

- <u>Target Variable</u>: AverageTemperature
- <u>Temporal</u>: Date (Year, Month, Day)
- <u>Spatial</u>: Latitude, Longitude
- <u>Excluded</u>: City and Country (to avoid redundancy)

Preprocessing:

- → Remove data points without AverageTemperature
- → Remove data where the year is earlier than 1870
- → Split date feature into day, month and year

Results:

→ Before: 239177 data points

→ After: 171125 data points

‡	AverageTemperature ÷	AverageTemperatureUncertainty ÷	Latitude ÷	Longitude ÷	Year ‡	Month ÷
0	21.425	0.437	4.02	-76.34	1926	10
1	22.05	0.343	4.02	-76.34	1967	3
2	21.577	0.461	4.02	-76.34	1910	6
3	21.109	0.502	4.02	-76.34	1913	5
4	21.432	1.062	4.02	-76.34	1888	10

- 1. Linear Regression
- 2. Random Forest
- 3. SVM (Support Vector Machine)
- 4. KNN (K-Nearest Neighbours)

- → Random train-test split (80/20)
- → Why?
 - Baseline model
 - Simplicity and interpretability
- → Experiment configuration:
 - Tested with final features and reduced features
- → Results:
 - Performed poorly due to inability to model non-linear relationships
 - Provided a guidance for future experiments

Random Forest

- → Random train-test split (80/20)
- → Why?
 - Captures non-linear relationship
 - Robust Against Overfitting
- → Experiment configuration:
 - With and without country encoding
- → Results:
 - ◆ Best R2 Score: **0.985694**
 - Performance almost unchanged with encoded country variable

- → Random train-test split (80/20)
- → Why?
 - Handles non-linear patterns effectively
 - Robust to outliers
- → Experiment configuration:
 - Kernels tested: Linear, Polynomial, RBF
- → Results:
 - Polynomial and Linear kernel performed poorly
 - ◆ RBF kernel had one of the highest R2 Score: **0.9179**
 - Slower training and prediction times compared to other models

Comparison of SVM

Radial Basis Function (RBF)

Polynomial

Linear

- → Random train-test split (80/20)
- → Why?
 - Simplicity of implementation
 - **♦** Effective for capturing local, spatial and temporal patterns
- → Experiment configuration:
 - ◆ Tested reduced feature set
 - ◆ Optimal k = 5
- → Results:
 - Performed poorly on reduced features
 - Second highest R2 Score: 0.970539

Results

Model	MAE	MSE	RMSE	R^2
Random Forest	0.7750	1.3258	1.1514	0.9857
KNN (Final Features)	1.1471	2.7303	1.6524	0.9705
KNN (Reduced Features)	5.2274	52.9441	7.2763	0.4287
SVR (RBF Kernel)	2.0081	7.6086	2.7584	0.9179
SVR (Poly Kernel)	5.9241	58.0018	7.6159	0.3741
SVR (Linear Kernel)	6.8501	84.9333	9.2159	0.0835
Linear Regression	7.0842	79.7846	8.9322	0.1391

Conclusion

- Machine learning models, specifically Random Forest and KNN, demonstrated exceptional capability in capturing spatial and temporal climate patterns.
- Random Forest achieved the highest accuracy with an R2 score of 0.9857, highlighting its robustness and predictive power.
- The results **underscore** the critical role of non-linear models in addressing the complexity of climate data.
- Linear models like Linear Regression and SVR with a linear kernel performed poorly due to the complex nature of climate data.

Future Work

- ☐ Map integration using arcGIS
- Utilize more models and merge more data for more accurate predictions
- ☐ Integrate with a **front end** allow for users to see various metric of data from our models

Questions

