תורת הקבוצות ־ תרגול מספר 6 שקילות עוצמה

תזכורת - הגדרות

יהיו A,B קבוצות.

A,B' אם קיימת פונקציה חח"ע ועל $A \to B$ או אנחנו אומרים ש־A,B' שוות עוצמה ומסמנים A,B' או

 $|A| \leq |B|$ אם קיימת פונקציה חח"ע (לאו דווקא על) מסמנים את f:A o B

 $A \sim \{1,2,\ldots,n\} = \emptyset$ אז n=0 סופית אם $A \sim \{1,2,\ldots,n\}$ עבור $A \sim \{1,2,\ldots,n\}$

 $A\sim\mathbb{N}$ בת מניה. $A\sim\mathbb{N}$ אומרים ש־

ראינו דוגמאות פשוטות:

- $f\left(n
 ight)=n+1$ עם הפונקציה $f:\mathbb{N} o\mathbb{N}^+$ שמוגדרת על ידי $\mathbb{N}\sim\mathbb{N}^+$.1
- g(a,n)=2n+a עם הפונקציה $g:\{0,1\} imes\mathbb{N} o\mathbb{N}$ שמוגדרת על ידי $\{0,1\} imes\mathbb{N} o\mathbb{N}$.2
- $h\left(a
 ight)=egin{cases} 2a & a\geq 0 \ 2\left|a
 ight|-1 & a<0 \end{cases}$ שמוגדרת על ידי $h:\mathbb{Z} o\mathbb{N}$ הפונקציה א $\mathbb{Z} o\mathbb{N}$.3

 $A \sim B$ חח"ע ועל, כלומר h:A o B חח"ע אז קיימת h:A o B חח"ע ועל, כלומר f:A o B חח"ע ועל, כלומר |A|=|B| אז $|B|\leq |A|$ גניסות אחר: אם

 $|A| \leq |C|$ ניתן להסיק וגם $|B| \leq |C|$ ניתן ואם כמו כן, מכיוון שהרכבת פונקציות חח"ע, היא חח"ע, הרי שאם

תרגיל

 $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ נוכיח ש

פתרון מפורש הוא לא קל, אבל עם קנטור־שרדר־ברנשטיין הפתרון מיידי:

f(n)=(n,0) נתון פשוט על ידי $f:\mathbb{N} o \mathbb{N} imes \mathbb{N}$

בכיוון השני, נמספר את הראשוניים: p_0, p_1, p_2, \ldots (הוכחה לקיום אינסוף ראשוניים: נניח שיש רק מספר סופי הוכחה לקיום אינסוף (הוכחה לקיום אינסוף השני, נמספר את הראשוניים: . היוב להתחלק על ידי ראשוני שאינו ברשימה $p_0\cdots p_n+1$

 $g\left(n,k
ight)=p_{k}^{n+1}$: נגדיר $g:\mathbb{N} imes\mathbb{N} o\mathbb{N}$ באופן הבא $g:\mathbb{N} imes\mathbb{N} o\mathbb{N}$

.("המשפט היסודי של האריתמטיקה"). a=b ו־p=q וא a,b>0 עבור p,q עבור עבור $p^a=q^b$ ו־ל

מסקנה: $\mathbb{Q} \sim \mathbb{Q}$, שכן $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}| \leq |\mathbb{Q}|$ ולכן כל האי־שוויונים בשרשרת הם שוויונות. זוהי תוצאה מפתיעה למדי, שכן הרציונליים הם קבוצה צפופה בהרבה מהטבעיים - בין כל שני טבעיים יש אינסוף רציונליים. קנטור עצמו אמר על תוצאה זו "אני רואה זאת אך איני מאמין בזאת".

תרגיל

. תהא $A=\mathbb{N}^{\mathbb{N}}$ קבוצת כל הסדרות האינסופיות של טבעיים (פונקציות מהטבעיים לעצמן).

 $.k < n
ightarrow a_k < a_n$ קבוצת כל הסדרות של טבעיים שהן מונוטוניות עולות, כלומר $B \subseteq A$

נראה פונקציה $f\left(a
ight)=b$ שהיא חח"ע ועל: f:B o A כאשר:

 $b_0 = a_0$

 $a_{n+1} = a_{n+1} - a_n$ לכל

a במילים: b היא סדרת ההפרשים בין אברי

נוכיח ש־f חח"ע ועל על ידי כך שנציג לה פונקציה הופכית g. אינטואיטיבית, הרעיון הוא שהצלחנו "לקודד" את a בצורה מושלמת בתוך b, כך שאנחנו מסוגלים לשחזר את a המקורית מתוך כל שנקבל.

תוגדר כך: $g\left(b
ight)=c$ כך ש־

 $c_0 = b_0$

 $c_{n+1} = c_n + b_{n+1}$

c=a נוכיח שאה עובד, כלומר שלכל a מתקיים a מתקיים $g\left(f\left(a
ight)
ight)=a$ נוכיח שאה עובד, כלומר

 $c_n=a_n$ נוכיח באינדוקציה על n שמתקיים

.בסיס: $c_0 = b_0 = a_0$ על פי הגדרה

 $n \geq 1$ צעד, עבור

 $n \ge 1$ עד, עבור

$$c_n = c_{n-1} + b_n = c_{n-1} + (a_n - a_{n-1}) = a_{n-1} + (a_n - a_{n-1}) = a_n$$

כנדרש.

תרגיל

 $\mathcal{P}\left(\mathbb{N}
ight)\sim\mathbb{R}$ נוכיח כי

 ∞ ונסתמך על הטרנזיטיביות של היחס ההוכחה תהיה דו־שלבית: נוכיח כי $\mathbb{R}\sim(0,1)$ וכי $\mathbb{R}\sim(0,1)$

את היחס $\mathbb{R} \sim (0,1)$ למשל, $\tan x$ למשל, $\mathbb{R} \sim (0,1)$ את היחס על ידי כל פונקציה חח"ע שהתמונה שלה על קטע פתוח היא כל $\mathbb{R} \sim (0,1)$ היא חח"ע כך שי $\tan (-\frac{\pi}{2}, \frac{\pi}{2})$, ואז נפעיל $\tan ((-\frac{\pi}{2}, \frac{\pi}{2})) = \mathbb{R}$ התוצאה.

 $.f_{1}\left(x\right)=\pi x$ ידי על ידי ל־ $\left(0,1\right)$ ל-
 $\left(0,1\right)$ את נהפוך ראשית, נהפוך

 $f_{2}\left(x
ight)=x-rac{\pi}{2}$ על ידי לי $\left(-rac{\pi}{2},rac{\pi}{2}
ight)$ לי $\left(0,\pi
ight)$ אנית, נהפוך את

לבסוף נפעיל את הפונקציה $f\left(x
ight)=\tan\left(f_{2}\left(f_{1}\left(x
ight)
ight)
ight)=\tan\left(\pi x-\frac{\pi}{2}
ight)$ המוגדרת על ידי $f:\left(0,1
ight)\to\mathbb{R}$ הפונקציה לבסוף נפעיל את הפונקציה $f:\left(0,1
ight)\to\mathbb{R}$ המוגדרת על ידי $f:\left(0,1
ight)\to\mathbb{R}$ בעזרת קנטור־שרדר־ברנשטיין.

a= בעזרתו: את הפונקציה את בייצוג עשרוני ולהגדיר הרעיון יהיה להסתכל על כל מספר בי(0,1) בייצוג שרוני ולהגדיר את הפונקציה בעזרתו: $f:(0,1) o\mathcal{P}\left(\mathbb{N}
ight)$ בייצוג פונקציה $0.a_1a_2a_3,\dots$

כזכור, יש מספרים עם יותר מייצוג עשרוני אחד, למשל $0.399\cdots=0.4000\ldots$, אז נחליט שתמיד בוחרים את הייצוג שמסתיים באינסוף 9 כדי שהפונקציה שלנו תהיה מוגדרת היטב.

:כעת נגדיר

$$f(0.a_1a_2a_3,\dots) = \{10^k + a_k \mid k \ge 1\}$$

 $0 \le a_k \le 9$ מקיימת a_k מפרה שכל מכיוון מכיוון מכיוון מכיוון מקיימת

כעת נציג פונקציה במשהו דמוי פונקציה בהם לנקוט בהם לנקוט בהם הרבה תעלולים שאפשר פונקציה מציינת: $g:\mathcal{P}\left(\mathbb{N}
ight) o(0,1)$

$$a_n = egin{cases} 1 & n \in A \\ 0 & n
otin A \end{cases}$$
 כך ש $g\left(A
ight) = 0.a_0a_1a_2, \ldots$

הבניה הזו כמעט עובדת, אבל יש בה בעיה: אם $\emptyset=A$ אז נקבל g g, ו־g g, ו־g g ו־g בעיה טכנית לא מהותית זו שלל פתרונות אפשריים. $a_n=egin{cases} 1 & n\in A \\ 2 & n\notin A \end{cases}$ אל הקטע החצי פתוח g פתרון אחד לדוגמה: נגדיר g אל הקטע החצי פתוח ההגדרה הקודמת. פתרון אחד לדוגמה: נגדיר g (g) (g) במקום ההגדרה הקודמת. פתרון אחד להוכיח בנפרד ש־g (g) (