## Chapter 2.5 Practice Problems

## EXPECTED SKILLS:

- Know the derivatives of the 6 elementary trigonometric functions.
- Be able to use these derivatives in the context of word problems.

## PRACTICE PROBLEMS:

1. Fill in the given table:

| f(x)     | $\int f'(x)$ |
|----------|--------------|
| $\sin x$ |              |
| $\cos x$ |              |
| $\tan x$ |              |
| $\cot x$ |              |
| $\sec x$ |              |
| $\csc x$ |              |

- 2. Use the definition of the derivative to show that  $\frac{d}{dx}(\cos x) = -\sin x$ Hint:  $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
- 3. Use the quotient rule to show that  $\frac{d}{dx}(\cot x) = -\csc^2 x$ .
- 4. Use the quotient rule to show that  $\frac{d}{dx}(\csc x) = -\csc x \cot x$ .
- 5. Evaluate  $\lim_{h\to 0} \frac{\tan\left(\frac{\pi}{3}+h\right)-\tan\left(\frac{\pi}{3}\right)}{h}$  by interpreting the limit as the derivative of a function at a particular point.

1

## For problems 6-14, differentiate

$$6. \ f(x) = 2\cos x + 4\sin x$$

$$7. \ f(x) = 5\cos x + \cot x$$

$$8. \ g(x) = 4\csc x + 2\sec x$$

9. 
$$f(x) = \sin x \cos x$$

$$10. \ f(x) = \frac{\sin^2 x}{\cos x}$$

$$11. \ f(x) = x^3 \sin x$$

12. 
$$f(x) = \sec^2 x + \tan^2 x$$

13. 
$$f(x) = \frac{x + \sec x}{1 + \cos x}$$

For problems 14-17, compute  $\frac{d^2y}{dx^2}$ 

14. 
$$f(x) = \tan x$$

15. 
$$f(x) = \sin x$$

16. 
$$f(x) = \cos^2 x$$

17. 
$$f(x) = \sin^2 x + \cos^2 x$$

For problems 18-19, find all values of x in the interval  $[0,2\pi]$  where the graph of the given function has horizontal tangent lines.

18. 
$$f(x) = \sin x \cos x$$

19. 
$$g(x) = \csc x$$

20. Compute an equation of the line which is tangent to the graph of  $f(x) = \frac{\cos x}{x}$  at the point where  $x = \pi$ .

21. Consider the graphs of  $f(x) = \sqrt{2}\cos(x)$  and  $g(x) = \sqrt{2}\sin(x)$  shown below on the interval  $\left[0, \frac{\pi}{2}\right]$ .



Show that the graphs of f(x) and g(x) intersect at a right angle when  $x = \frac{\pi}{4}$ . (Hint: Show that the tangent lines to f and g at  $x = \frac{\pi}{4}$  are perpendicular to each other.)

2

22. A 15 foot ladder leans against a vertical wall at an angle of  $\theta$  with the horizontal, as shown in the figure below. The top of the ladder is h feet above the ground. If the ladder is pushed towards the wall, find the rate at which h changes with respect to  $\theta$  at the instant when  $\theta = 30^{\circ}$ . Express your answer in **feet/degree**.



- 23. Use the Intermediate Value Theorem to show that there is at least one point in the interval (0,1) where the graph of  $f(x) = \sin x \frac{1}{3}x^3$  will have a horizontal tangent line.
- 24. **Multiple Choice:** At how many points on the interval  $[-\pi, \pi]$  is the tangent line to the graph of  $y = 2x + \sin x$  parallel to the secant line which passes through the graph endpoints of the interval?
  - (a) 0
  - (b) 1
  - (c) 2
  - (d) 3
  - (e) None of these