The CLaC Discourse Parser at CoNLL-2015

Majid Laali* Elnaz Davoodi[†] Leila Kosseim[‡]

Department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada

Engineering and Computer Science

I. Summary

- Focus on the treatment of explicit discourse relations.
- Overall F₁ measure of 17.38%, ranking in 6th place out of the 17 parsers submitted to CoNLL 2015.
- Architecture similar to the End-to-End Discourse parser.
- The CLaC Discourse parser is based on the UIMA framework.
- Uses ClearTK to add machine learning functionality.
- Written in Java and its source code is available at "https://github.com/mjlaali/CLaCDiscourseParser.git".

IV. Argument Labeler

Algorithm:

- Calculates the *Connective-Root path nodes*, the nodes that appear in the path from the discourse connective to the root of the sentence.
- Labels all constituents that are directly connected to one of the *Connective-Root path nodes* with 'part of ARG1', 'part of ARG2' or 'NON'.
- Uses a classifier with nine features (i.e. F_1 - F_9).
- Merges all constituents which were tagged as part of ARG1 or as part of ARG2 to obtain the actual boundaries of ARG1 and ARG2.
- If no constituent was labeled as a part of ARG1, the whole text of the previous sentence is considered as ARG1

Results:

• The F₁ score of the *Argument Labeler*:

	Arg1	Arg2
Best Result	49.68%	74.29%
CLaC Discourse Parser	45.18%	69.18%
Average	30.77%	50.91%
Std. deviation	15.31%	20.58%

• Results show that the identification of ARG1 is more difficult than ARG2.

Error Analysis:

- Attribute spans:
- But the RTC also requires "working" capital to maintain the bad assets of thrifts that are sold until the assets can be sold separately.
- Subordinate and coordinate clauses:
- We would have to wait until we have collected on those assets before we can move forward.

II. Architecture

V. Features

Category	Description		
	F ₁ : Discourse connective text in lower-		
	case.		
Connective	F ₂ : Categorization of the case of the con-		
Features	nective: all lowercase, all uppercase and		
	initial uppercase		
	F ₃ : Highest node in the parse tree that		
	covers the connective words but nothing		
	more		
	F ₄ : Parent of <i>SelfCat</i>		
	F ₅ : Left sibling of <i>SelfCat</i>		
	F ₆ : Right sibling of <i>SelfCat</i>		
Syntactic Node Features	F ₇ Path from the node to the SelfCat		
	node in the parser tree		
	F ₈ : Context of the node in the parse tree.		
	The context of a node is defined by its		
	label the label of its parent, the label of		
	left and right sibling in the parse tree.		
	F ₉ : Position of the node relative to the		
	SelfCat node: left or right		

VI. Example

We would stop index arbitrage when the market is under stress.

$F_1 = when$	F_2 = all lowercase
$F_3 = WRB$	$F_4 = WHADVP$
$F_5 = null$	$F_6 = S$
$F_7 = S \uparrow SBAR \downarrow WHADVP$	$F_8 = S-SBAR-WHADVP-null$
$F_9 = left$	

VIII. Overall Results

• The F₁ scores of the CLaC discourse parser and the individual performance of its components:

1	•	•	•	
	Discourse Connective	Argument	Discourse Parsing	Discourse Parsing
	Classifier	Labeler	(explicit only)	(explicit and implicit)
Best Result	91.86%	41.35%	30.58%	24.00%
CLaC Discourse Parser	90.19%	36.60%	27.32%	17.38%
Average	74.20%	23.89%	18.28%	13.25%
Standard deviation	23.24%	13.01%	9.93%	6.41%

III. Discourse Connective Annotator

Algorithm:

- Searches the input texts for terms that match a predefined list of discourse connectives (was built solely from the CoNLL training dataset.
- Checks each match of discourse connective to see if it occurs in discourse usage or not.
- Uses a binary classifier with six features (i.e. F_1 - F_6)

Results:

 \bullet F₁ = 90.19%.

VII. Discourse Sense Annotator

• Uses the naïve approach that labels each discourse connective with its most frequent. The most frequent relation for discourse connectives is mined from the CoNLL training dataset.

IX. Conclusion

- CLaC Discourse Parser was developed from scratch for CoNLL 2015.
- 3 person-month effort focused on *Discourse Connective Classification* and *Argument Labeler*.
- Naïve approach for sense labelling and consider only explicit relations.
- Yet, good results.

References

Steven Bethard, Philip Ogren, and Lee Becker. ClearTK 2.0: Design patterns for machine learning in UIMA. LREC, 2014.

David Ferrucci and Adam Lally. UIMA: An architectural approach to unstructured information processing in the corporate research environment. *Natural Language Engineering*, 10(3-4):327–348, 2004.

Fang Kong, Hwee Tou Ng, and Guodong Zhou. A Constituent-Based Approach to Argument Labeling with Joint Inference in Discourse Parsing. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 68–77, Doha, Qatar, October 2014.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. A PDTB-styled end-to-end discourse parser. *Natural Language Engineering*, 20(02):151–184, 2014.