2. Aufgabenblatt

(Besprechung in den Tutorien 31.10–04.11.2022)

Aufgabe 1. Berechenbar oder nicht?

Die unbewiesene Goldbachsche Vermutung lautet: "Jede gerade Zahl größer 2 lässt sich als Summe zweier Primzahlen darstellen."

	Sei $f: \mathbb{N} \to \mathbb{N}$ eine Funktion, die bei allen Eingaben genau dann 1 ausgibt, wenn die Goldbachsche Vermutung gilt, und sonst 0. Existiert ein Algorithmus, der bei Eingabe $n \in \mathbb{N}$ nach endlicher Zeit $f(n)$ ausgibt?				
	Lösungsskizze				
	Ja, da man dazu nur konstant 1 oder konstant 0 ausgeben muss. (Aber: Wir wisser derzeit nicht, welche der beiden Möglichkeiten die richtige ist)				
2.	Existiert ein Algorithmus, der bei Eingabe einer binär kodierten natürlichen Zahl r genau dann 1 ausgibt, wenn n eine gerade Zahl größer 2 ist und sich als Summe zweier Primzahlen darstellen lässt, und sonst 0 ?				
	Lösungsskizze				
	Ja: Alle Primzahlenpaare, die kleiner sind als n , ausprobieren.				
3.					
3.	Beschreiben Sie den sich ergebenden Unterschied, wenn folgende, gegenüber 2. modifizierte Aufgabe betrachtet wird: Bei Eingabe n ist genau dann 1 auszugeben, wenn n eine gerade Zahl größer 2 ist und sich als Differenz zweier Primzahlen darstellen lässt und 0 sonst.				
3.	fizierte Aufgabe betrachtet wird: Bei Eingabe n ist genau dann 1 auszugeben, wenn r eine gerade Zahl größer 2 ist und sich als Differenz zweier Primzahlen darstellen lässt				
3.	fizierte Aufgabe betrachtet wird: Bei Eingabe n ist genau dann 1 auszugeben, wenn r eine gerade Zahl größer 2 ist und sich als Differenz zweier Primzahlen darstellen lässt und 0 sonst.				

Aufgabe 2. Berechenbar oder nicht?

Geben Sie an, ob folgende Funktionen berechenbar sind. Begründen Sie Ihre Antworten.

Ja: Es gibt eine maximale Studierendenanzahl x, die am Tag der Klausur in den Audimax passen. Also wird f von einem Algorithmus berechnet, der 1 ausgibt genau dann, wenn $n \leq x$ ist und sonst 0 ausgibt.

 $2. \ g(n) = \begin{cases} 1, & \text{falls } n \text{ Tage nach dem } 24.12.2022 \text{ die Sonne nicht scheint} \\ & \text{oder schönes Wetter ist.} \\ 0, & \text{sonst.} \end{cases}$

(Anmerkung: Sonnenschein impliziert schönes Wetter.)

----Lösungsskizze-----

Eine Fallunterscheidung wie bei 1. funktioniert nicht, aber wir können folgendes beobachten: Für alle $n \in \mathbb{N}$ gilt f(n) = 1. Denn falls kein schönes Wetter ist, kann die Sonne auch nicht scheinen. Damit ist f berechenbar.

Aufgabe 3. Berechenbar oder nicht?

Im Folgenden sei $B \in \mathbb{N}$ "Die kleinste Zahl, die sich nicht mit weniger als zwanzig deutschsprachigen Wörtern definieren lässt." Desweiteren sei die Funktion $f: \mathbb{N} \to \mathbb{N}$ definiert als

$$f(n) := \begin{cases} 1, & n \le B, \\ 0, & \text{sonst.} \end{cases}$$

Ist die Funktion f berechenbar oder nicht?

———Lösungsskizze———

Da die Definition von B widersprüchlich ist (denn sie beinhaltet weniger als 20 Wörter), existiert die Zahl B gar nicht. Daher ist die Funktion f also gar nicht wohldefiniert. Somit ist f die nirgends definierte Funktion und daher berechenbar.

Eine detaillierte Erläuterung der Problematik kann unter http://de.wikipedia.org/wiki/Berry-Paradoxon eingesehen werden.

Aufgabe 4. Berechenbarkeit

Sei $f: \mathbb{N} \to \mathbb{N}$ die Funktion aus der Vorlesung (Beispiel 3, Folie 21) mit

$$f(n) := \begin{cases} 1, & \text{falls die Dezimaldarstellung von } n \text{ in der Dezimalbruchentwicklung} \\ von & \pi \text{ vorkommt} \\ 0, & \text{sonst} \end{cases}$$

Desweiteren definieren wir für $x \in \mathbb{N}$ die Funktion $f_x : \mathbb{N} \to \mathbb{N}$ wie folgt

$$f_x(n) := \begin{cases} 1, & \text{falls die Dezimalbruchentwicklung von } \pi \text{ } n \text{ aufeinanderfolgende} \\ & \text{Konkatenationen der Dezimaldarstellung von } x \text{ enthält} \\ 0, & \text{sonst} \end{cases}$$

Zum Beispiel gilt $f_{141}(1) = 1$. Die Funktion f_1 entspricht also der Funktion aus Beispiel 4 aus der Vorlesung (Folie 21).

Worin besteht das Problem in folgendem vermeintlichen "Beweis" der Berechenbarkeit von f?

"Für jedes $x \in \mathbb{N}$ ist f_x berechenbar (analog zum Beweis der Berechenbarkeit von f_1 aus der Vorlesung). Um nun die Funktion f(n) zu berechnen, kann ein Algorithmus also einfach den Wert von $f_n(1)$ berechnen und ausgeben. Also ist auch f berechenbar."

T	Ösun	cccl.	ringe	
—т	Josui	.goor	ZIZZC	;

Das Problem liegt darin, dass dieser Ansatz keine endliche Beschreibung eines Algorithmus liefert. Es stimmt zwar, dass f_x für jedes $x \in \mathbb{N}$ berechenbar ist, jedoch besitzt jede Funktion f_x womöglich einen anderen Algorithmus, der sie berechnet. Um nun f zu berechnen, müsste ein Algorithmus nach obigem Ansatz also potenziell unendlich viele Algorithmen als "Subprozeduren" aufrufen können. Dies lässt sich aber nicht durch eine endliche Beschreibung (z.B. als Programmcode) erreichen. (Zur Erinnerung: Ein Algorithmus besteht immer aus endlich vielen Anweisungen.)