Stability of Spatially Homogeneous Periodic Solutions of Reaction-Diffusion Equations

Kenjiro Maginu

Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering, University of Tokyo, Tokyo, Japan

Received January 23, 1978

When a certain condition is satisfied, a reaction-diffusion equation has a spatially homogeneous periodic solution, i.e. a temporally periodic solution that does not depend on spatial variables. We analyse the orbital stability of this periodic solution. A sufficient condition is given for the homogeneity breaking instability, which is stated in terms of the manner of dependency of its temporal period on a certain parameter of the system.

1. Introduction

In this paper we consider the following partial differential equation with a temporal variable t and n spatial variables $\mathbf{x} = (x_1, ..., x_n)$.

$$\frac{\partial}{\partial t} \mathbf{u} = D\Delta \mathbf{u} + \mathbf{f}(\mathbf{u}), \tag{1}$$
$$-\infty < x_i < \infty, \quad i = 1, ..., n.$$

Here

$$D = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_m \end{pmatrix}, \qquad \Delta = \frac{\partial^2}{\partial x_1^2} + \cdots + \frac{\partial^2}{\partial x_n^2},$$

$$\mathbf{u} = (u_1, ..., u_m)',$$

$$\mathbf{f}(\mathbf{u}) = (f_1(\mathbf{u}), ..., f_m(\mathbf{u}))'.$$

The 'denotes the transposition of a vector. It is assumed that $f_i(\mathbf{u})$ are smooth functions of \mathbf{u} and σ_i are nonnegative constants such that $\sigma_1 + \cdots + \sigma_m > 0$. Equations of this type, called the reaction-diffusion equations, appear in various fields in chemistry and biology ([3], [6]). For example a spatially distributed chemical system is described by an equation of the form (1), in which $\mathbf{u}(\mathbf{x}, t)$ corresponds to the spatial distribution of chemical components and $f_i(\mathbf{u})$ and σ_i correspond to the reaction rate and diffusibility of each component respectively.

One can observe a spatially synchronized oscillation of chemical components in a chemical reaction-diffusion system called the Zhabotinski system [7]. Namely this reaction-diffusion system has a spatially homogeneous periodic solution $\mathbf{u} = \phi(t)$, i.e. a temporally periodic solution which does not depend on \mathbf{x} . Clearly $\phi(t)$ is given as a periodic solution of the ordinary differential equation

$$\frac{d}{dt}\,\bar{\mathbf{u}} = \mathbf{f}(\bar{\mathbf{u}}). \tag{2}$$

The solution $\mathbf{u} = \phi(t)$ of Eq. (1) is not always stable even if $\bar{\mathbf{u}} = \phi(t)$ is a stable periodic solution of Eq. (2). It is shown by a numerical analysis of the Zhabotinski system that $\mathbf{u} = \phi(t)$ becomes unstable when the values of σ_i are chosen suitably. If an appropriate small disturbance which is spatially inhomogeneous is added to the spatially homogeneous periodic solution $\mathbf{u} = \phi(t)$, this inhomogeneity grows and the solution of Eq. (1) begins to deviate from $\mathbf{u} = \phi(t)$. The instability of this type is called the homogeneity breaking instability. In this paper we aim to obtain a sufficient condition for the occurrence of this instability.

In the following, we assume that the ordinary differential equation (2) has a periodic solution $\mathbf{\tilde{u}} = \phi(t)$, and we denote by T its minimum period, i.e.

$$\frac{d}{dt} \phi(t) = \mathbf{f}(\phi(t)), \qquad \phi(t) = \phi(t+T). \tag{3}$$

We further assume that $\bar{\mathbf{u}} = \boldsymbol{\phi}(t)$ is a stable periodic solution of Eq. (2). It is easily proved that the spatially homogeneous periodic solution $\mathbf{u} = \boldsymbol{\phi}(t)$ of Eq. (1) is always unstable if $\bar{\mathbf{u}} = \boldsymbol{\phi}(t)$ is an unstable periodic solution of Eq. (2).

2. Main Result

Let us consider a periodic solution of the following ordinary differential equation.

$$(E + \nu D) \frac{d}{dt} \mathbf{u} = \mathbf{f}(\mathbf{u}). \tag{4}$$

Here E is an $m \times m$ unit matrix and ν is a real parameter. It follows from (3) that Eq. (4) in the case of $\nu = 0$ has a periodic solution $\mathbf{u} = \phi(t)$. Since this periodic solution is orbitally stable, $\nu = 0$ is not a bifurcation point of the parameter ν (see [2]). Namely, if $|\nu|$ is sufficiently small, Eq. (4) has a periodic solution which smoothly depends on ν and approaches $\mathbf{u} = \phi(t)$ as $\nu \to 0$. Let $\psi(t, \nu)$ and $L(\nu)$ denote this periodic solution and its minimum period respec-

tively. In order to fix the phase of the periodic solution, we assume the additional condition

$$\frac{\partial}{\partial t}\,\psi_1(0,\,\nu)=0,$$

where $\psi_1(t, \nu)$ is the first component of $\psi(t, \nu)$. The vector function $\psi(t, \nu)$ satisfies the following equalities.

$$(E + \nu D) \frac{\partial}{\partial t} \psi(t, \nu) = \mathbf{f}(\psi(t, \nu)),$$

$$\psi(t, \nu) = \psi(t + L(\nu), \nu),$$

$$\psi(t, 0) = \phi(t), \quad L(0) = T.$$
(6)

The main result of this paper is given as follows.

THEOREM. Assume that $\bar{\mathbf{u}} = \phi(t)$ is a stable periodic solution of Eq. (2). The spatially homogeneous periodic solution $\mathbf{u} = \phi(t)$ of Eq. (1) is unstable and the homogeneity breaking instability takes place if L'(0) < 0.

This theorem is obtained as a result of two lemmas that are formulated in the next section.

3. STABILITY ANALYSIS

Let $\bar{\mathbf{u}}(t)$ be a solution of Eq. (2) slightly deviating from the periodic solution $\phi(t)$. The deviation $\bar{\mathbf{v}}(t) \equiv \bar{\mathbf{u}}(t) - \phi(t)$ satisfies the following linearized perturbation equation if higher order terms are neglected.

$$\frac{d}{dt}\,\mathbf{\bar{v}}(t) = \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}}\,\mathbf{\bar{v}}(t),\tag{7}$$

where $\partial \mathbf{f}(\phi)/\partial \mathbf{u}$ is an $m \times m$ matrix given by $[\partial \mathbf{f}(\phi)/\partial \mathbf{u}]_{ij} = \partial f_i(\phi)/\partial u_j$. Let $\Psi(t)$ denote the fundamental solution of Eq. (7), i.e. an $m \times m$ matrix which satisfies $(d/dt) \Psi(t) = [\partial \mathbf{f}(\phi(t))/\partial \mathbf{u}] \Psi(t)$ and $\Psi(0) = E$. By the use of this matrix, a solution $\bar{\mathbf{v}}(t)$ with initial data $\bar{\mathbf{v}}(0)$ is given by $\bar{\mathbf{v}}(t) = \Psi(t) \bar{\mathbf{v}}(0)$.

Let λ_i and $\bar{\mathbf{v}}_i(0)$, i = 1,..., m, denote the eigenvalues and eigenvectors of the matrix $\Psi(T)$ respectively, i.e.

$$\lambda_i \bar{\mathbf{v}}_i(0) = \Psi(T) \,\bar{\mathbf{v}}_i(0) = \bar{\mathbf{v}}_i(T), \qquad i = 1, \dots, m, \tag{8}$$

where $\bar{\mathbf{v}}_i(t)$ are vector functions given by $\bar{\mathbf{v}}_i(t) = \Psi(t) \, \bar{\mathbf{v}}_i(0)$. The eigenvalues λ_i

are called the Floquet multipliers of the periodic solution $\phi(t)$. The following equalities are obtained by differentiating (3) with respect to t.

$$\frac{d}{dt}\frac{d\phi}{dt} = \frac{\partial \mathbf{f}(\phi(t))}{\partial \mathbf{u}}\frac{d\phi}{dt},$$
$$\frac{d\phi}{dt}(0) = \frac{d\phi}{dt}(T).$$

Hence, without losing any generality, we may assume that

$$\bar{\mathbf{v}}_{\mathbf{i}}(t) = \frac{d\boldsymbol{\phi}}{dt}(t), \quad \lambda_{\mathbf{i}} = 1.$$
(9)

Since the periodic solution $\phi(t)$ is assumed to be stable, the other Floquet multipliers must satisfy

$$|\lambda_i| < 1, \quad i = 2, ..., m,$$

(see [1]).

Next let us consider a solution $\mathbf{u}(x,t)$ of Eq. (1) slightly deviating from the spatially homogeneous periodic solution $\mathbf{u} = \phi(t)$. The deviation $\mathbf{v}(x,t) \equiv \mathbf{u}(x,t) - \phi(t)$ satisfies the following linearized perturbation equation if higher order terms are neglected.

$$\frac{\partial}{\partial t} \mathbf{v} = D\Delta \mathbf{v} + \frac{\partial \mathbf{f}(\phi(t))}{\partial \mathbf{u}} \mathbf{v},$$

$$-\infty < x_i < \infty, \qquad = 1, ..., n.$$
(10)

Let us consider a solution of the form $\mathbf{v}(x,t) = \mathbf{a}(t) \exp(i\langle \boldsymbol{\mu}, \mathbf{x} \rangle)$, where $\boldsymbol{\mu}$ is a real *n*-vector which corresponds to a spatial frequency and $\langle \boldsymbol{\mu}, \mathbf{x} \rangle = \mu_1 x_1 + \cdots + \mu_n x_n$. It is easily verified that $\mathbf{a}(t)$ satisfies the ordinary differential equation

$$\frac{d}{dt}\mathbf{a}(t) = \left\{-\alpha D + \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}}\right\}\mathbf{a}(t), \tag{11}$$

where $\alpha = \| \boldsymbol{\mu} \|^2 \equiv \langle \boldsymbol{\mu}, \boldsymbol{\mu} \rangle$.

Let $\Phi(t, \alpha)$ be the fundamental solution of Eq. (11) and $\omega_i(\alpha)$ and $\mathbf{a}_i(0, \alpha)$ be the eigenvalues and the eigenvectors of the matrix $\Phi(T, \alpha)$ respectively, i.e.

$$\omega_i(\alpha) \mathbf{a}_i(0, \alpha) = \Phi(T, \alpha) \mathbf{a}_i(0, \alpha) = \mathbf{a}_i(T, \alpha), \tag{12}$$

where $\mathbf{a}_i(t, \alpha)$, i = 1, ..., m, are vector functions given by $\mathbf{a}_i(t, \alpha) = \Phi(t, \alpha) \mathbf{a}_i(0, \alpha)$.

Since the matrix $\Phi(t, \alpha)$ satisfies $\Phi(t, 0) = \Psi(t)$, we may assume without losing generality that

$$\mathbf{a}_1(t,0) = \bar{\mathbf{v}}_1(t) \equiv \frac{d\phi}{dt}(t), \qquad \omega_1(0) = \lambda_1 \equiv 1.$$
 (13)

Moreover since $\Phi(T, \alpha)$ depends smoothly on the parameter α and $\lambda_1 = 1$ is a simple eigenvalue of $\Psi(T)$, we may assume that $\omega_1(\alpha)$ and $a_1(t, \alpha)$ are smooth functions of α if $|\alpha|$ is sufficiently small.

If there exists a vector $\mu_0 \neq 0$ such that an eigenvalue $\omega_i(\alpha_0)$ of $\Phi(T, \alpha_0)$, $\alpha_0 \equiv ||\mu_0||^2 > 0$, satisfies $|\omega_i(\alpha_0)| > 1$, the absolute value of $\mathbf{a}_i(kT, \alpha_0)$ becomes large as the integer k increases. Namely the deviation $\mathbf{v}(x, t)$ with the spatial frequence μ_0 becomes large in the course of time. Hence, taking into account of (13), we obtain a sufficient condition for the instability of $\mathbf{u} = \phi(t)$ as follows.

LEMMA 1. The spatially homogeneous periodic solution $\mathbf{u} = \phi(t)$ is unstable and the homogeneity breaking instability takes place if $\omega_1'(0) > 0$.

The vector function $\mathbf{a}_1(t, \alpha)$ satisfies the equation

$$\frac{\partial}{\partial t} \mathbf{a}_1(t, \alpha) = \left\{ -\alpha D + \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}} \right\} \mathbf{a}_1(t, \alpha).$$

Since $\mathbf{a}_1(t,\alpha)$ depends smoothly on α when $|\alpha|$ is sufficiently small, we can define the partial derivative $\mathbf{a}_{1\alpha}(t,\alpha) \equiv \partial \mathbf{a}_1(t,\alpha)/\partial \alpha$ at $\alpha = 0$ on the finite interval [0,T] of the variable t. By differentiating the above equality with respect to α , we obtain the equality

$$\frac{\partial}{\partial t} \mathbf{a}_{1\alpha}(t,0) = \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}} \mathbf{a}_{1\alpha}(t,0) - D\mathbf{a}_{1}(t,0)$$

$$= \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}} \mathbf{a}_{1\alpha}(t,0) - D\frac{d\boldsymbol{\phi}}{dt}(t). \tag{14}$$

Similarly, by differentiating the equality (12) for i = 1 with respect to α and setting $\alpha = 0$, we obtain

$$\mathbf{a}_{1\alpha}(T,0) = \omega_{1}(0) \ \mathbf{a}_{1\alpha}(0,0) + \omega'_{1}(0) \ \mathbf{a}_{1}(0,0)$$

$$= \mathbf{a}_{1\alpha}(0,0) + \omega'_{1}(0) \frac{d\phi}{dt} (0). \tag{15}$$

Next let us consider the function $\psi(t, \nu)$. Since this is a smooth function of ν when $|\nu|$ is sufficiently small, we can define the partial derivative $\psi_{\nu}(t, \nu) \equiv$

 $\partial \psi(t, \nu)/\partial \nu$ at $\nu = 0$ on the interval [0, T]. By differentiating (5) with respect to ν and setting $\nu = 0$, we obtain

$$egin{aligned} rac{\partial}{\partial t} \, \psi_{
u}(t,\,0) + D \, rac{\partial}{\partial t} \, \psi(t,\,0) &= rac{\partial \mathbf{f}(\psi(t,\,0))}{\partial \mathbf{u}} \, \psi_{
u}(t,\,0), \\ \psi_{
u}(0,\,0) &= \psi_{
u}(L(0),\,0) + rac{\partial}{\partial t} \, \psi(L(0),\,0) \, L'(0). \end{aligned}$$

By the use of (6), these are rewritten as follows.

$$\frac{\partial}{\partial t} \, \psi_{\nu}(t,0) = \frac{\partial \mathbf{f}(\boldsymbol{\phi}(t))}{\partial \mathbf{u}} \, \psi_{\nu}(t,0) - D \, \frac{d\boldsymbol{\phi}}{dt} \, (t) \tag{16}$$

$$\Psi_{\nu}(T,0) = \Psi_{\nu}(0,0) - L'(0) \frac{d\phi}{dt}(0). \tag{17}$$

It follows from (16) that $\psi_{\nu}(t, 0)$ is a particular solution of Eq. (14). Hence $\mathbf{a}_{1\alpha}(t, 0)$ must be written as

$$\mathbf{a}_{1\alpha}(t,0) = \mathbf{\psi}_{\nu}(t,0) + \sum_{i=1}^{m} \beta_i \mathbf{\bar{v}}_i(t),$$

where β_1 is an appropriate constant and $\beta_i(t)$, i = 2,..., m, and appropriate constants or polynomials of t. Substituting this in (15) we obtain

$$\Phi_{\nu}(T,0) + \sum_{i=1}^{m} \beta_{i}(T) \, \bar{\mathbf{v}}_{i}(T) = \Phi_{\nu}(0,0) + \sum_{i=1}^{m} \beta_{i}(0) \, \bar{\mathbf{v}}_{i}(0) + \omega_{1}'(0) \, \frac{d\boldsymbol{\phi}}{dt} \, (0).$$

By the use of (8), (9) and (17), this is rewritten as

$$\{L'(0)+\omega_1(0)\}\,rac{doldsymbol{\phi}}{dt}\,(0)=\sum_{i=2}^m\left\{\lambda_ieta_i(T)-eta_i(0)
ight\}ar{\mathbf{v}}_i(0).$$

Since the vector $\bar{\mathbf{v}}_1(0) \equiv (d\phi/dt)(0)$, $\bar{\mathbf{v}}_2(0),...,\bar{\mathbf{v}}_m(0)$ are linearly independent eigenvectors of the matrix $\Psi(T)$, it follows that

$$L'(0) + \omega_1'(0) = 0.$$

Hence the next lemma holds.

LEMMA 2. The inequality $\omega_1'(0) > 0$ holds when L(v) satisfies L'(0) < 0.

The theorem in Section 2 is an immediate consequence of Lemma 1 and Lemma 2.

4. Example

Let us apply Theorem to the following second order system.

$$C_{1} \frac{\partial}{\partial t} u = \sigma_{1} \Delta u + f(u) - w,$$

$$C_{2} \frac{\partial}{\partial t} w = \sigma_{2} \Delta w + bu - kw,$$

$$-\infty < x_{i} < \infty, \qquad i = 1, ..., n.$$
(18)

This system was introduced in [5] as a simplified mathematical description of the spontaneous spatial pattern formation (morphogenesis) in spatially distributed biological and chemical system [6]. We assume that f(u) is a smooth function of u that satisfies

$$f(u) = -f(-u),$$

 $f(0) = 0, m \equiv f'(0) > 0,$
 $f'(u) \le 0 \text{for } |u| \ge a > 0,$
 $uf''(u) < 0 \text{for } u \ne 0,$

and C_i , σ_i , b and k are positive constants that satisfy

$$mk < b < 2mk$$
.

This equation has a spatially homogeneous stationary solution (u, w) = (0, 0) because $(\bar{u}, \bar{w}) = (0, 0)$ is a stationary solution of the ordinary differential equation

$$C_{1} \frac{d}{dt} \, \bar{u} = f(\bar{u}) - \bar{w},$$

$$C_{2} \frac{d}{dt} \, \bar{w} = b\bar{u} - k\bar{w}.$$
(19)

If $C_2/C_1 > k/m$, the solution $(\bar{u}, \bar{w}) = (0, 0)$ is unstable and Eq. (19) has a stable periodic solution $(\bar{u}, \bar{w}) = (\phi_1(t), \phi_2(t))$ (see Chap. 11 of [4]). On the other hand, if $C_2/C_1 < k/m$, $(\bar{u}, \bar{w}) = (0, 0)$ is asymptotically stable and Eq. (19) has no non-trivial periodic solutions.

First let us consider the stability of the homogeneous stationary solution (u, w) = (0, 0) of Eq. (18). This solution is not always stable even if $C_2/C_1 < k/m$. It is proved in [5] that, if σ_1 and σ_2 satisfy

$$m\sigma_2 - k\sigma_1 > 0,$$
 (20)
 $(m\sigma_2 + k\sigma_1)^2 - 4b\sigma_1\sigma_2 > 0,$

and if an appropriate small disturbance is added to (u, w) = (0, 0), there appears spatial inhomogeneity with a certain periodic spatial structure in the solution of Eq. (18), and this inhomogeneous solution begins to deviate from (u, w) = (0, 0). Namely, a sort of homogeneity breaking instability takes place in this case. The condition (20) is satisfied when $\sigma_2 \gg \sigma_1$.

Next let us consider the case $C_2/C_1 > k/m$ and study the stability of the spatially homogeneous periodic solution $(u, w) = (\phi_1(t), \phi_2(t))$ of Eq. (18). It is conjectured from the above consideration that this spatially homogeneous solution is unstable if σ_1 and σ_2 are chosen so that $\sigma_2 \gg \sigma_1$ and if the value of C_2/C_1 is chosen suitably.

The minimum period $L(C_1, C_2)$ of this periodic solution is obtained as follows by the use of Poincaré's method in the theory of nonlinear oscillations (see [8]).

$$L(C_1, C_2) \doteq L_1(C_1, C_2) = 2\pi / \left(\frac{b}{C_1C_2} - \left(\frac{k}{C_1}\right)^2\right)^{1/2}.$$

Here $L_1(C_1, C_2)$ denotes the first approximation of the period. (The inequality $b/C_1C_2-(k/C_2)^2>0$ follows from the assumptions b>mk and $C_2/C_1>k/m$.) It is shown that $L_1(C_1, C_2)$ is sufficiently close to $L(C_1, C_2)$ if the value of C_2/C_1 (>k/m) is chosen so that $C_2/C_1 \doteqdot k/m$. On the other hand, $L_1(C_1, C_2)$ satisfies

$$\frac{\partial}{\partial C_2}L_1(C_1, C_2)<0$$

if C_2/C_1 is in the range $(k/m, 2k^2/b)$. (The inequality $2k^2/b > k/m$ follows from the assumption 2mk > b.) Hence, if σ_2/σ_1 is sufficiently large and if C_2/C_1 is chosen suitably, the period $L(C_1, C_2)$ satisfies

$$\begin{split} \frac{d}{d\nu}L(C_1+\sigma_1\nu,\,C_2+\sigma_2\nu)\mid_{\nu=0} \\ &=\sigma_1\,\frac{\partial}{\partial C_1}L(C_1\,,\,C_2)+\sigma_2\,\frac{\partial}{\partial C_2}L(C_1\,,\,C_2)<0. \end{split}$$

Thus it follows from the theorem in Section 2 that the spatially homogeneous periodic solution $(u, w) = (\phi_1(t), \phi_2(t))$ is unstable and the homogeneity breaking instability takes place in this case.

ACKNOWLEDGMENT

The author thanks Professor J. Nagumo of the University of Tokyo for helpful advice.

REFERENCES

- E. A. CODDINGTON AND N. LEVINSON, "Theory of Ordinary Differential Equations," McGraw-Hill, New York, 1955.
- J. CRONIN, "Fixed Points and Topological Degree in Nonlinear Analysis," Amer. Math. Soc., Providence, R. I., 1964.
- 3. P. GLANSDORFF AND I. PRIGOGINE, "Thermodynamic Theory of Structure, Stability and Fluctuations," Wiley-Interscience, London/New York/Sydney/Toronto, 1971.
- S. Lefschetz, "Differential Equations: Geometric Theory," Interscience, New York, 1957.
- K. MAGINU, Reaction-diffusion equation describing morphogenesis: I. Waveform stability of stationary wave solutions in a one-dimensional model, *Math. Biosci.* 27 (1975), 17-98.
- A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc., London Ser. B, 237 (1952), 5-72.
- J. T. Tyson, "The Belousov-Zhabotinskii Reaction," Lecture Notes in Biosciences, Springer-Verlag, New York/Heidelberg/Berlin, 1976.
- 8. J. J. STOKER, "Nonlinear Vibrations in Mechanical and Electrical Systems," Interscience, New York, 1950.