Soal Latihan Pra-Assessment 02 ISD

Berdasarkan gambar tree berikut (sumber: https://www.javatpoint.com/binary-tree-vs-binary-search-tree):

Buatlah:

- 1. Penelusuran berdasarkan pre-order.
- 2. Penelusuran berdasarkan in-order.
- 3. Penelusuran berdasarkan post-order.
- 4. Sebutkan depth dari tree, level dari node 9, sibling dari node 6, ancestor node 11 dan child dari node 5.
- 5. Buatlah suatu heap-tree (prioritas maksimum) berdasarkan masukan data berikut:

3	23	12	7	45	8	34	17	35	55
---	----	----	---	----	---	----	----	----	----

- 6. Jika pada heap tree berdasarkan no 5 ditambahkan data 60, bagaimanakah tree yang terbentuk?
- 7. Buatlah heapsort berdasarkan tree yang terbentuk pada no 6. Lakukan per-langkah!
- 8. Buatlah suatu binary search tree (BST) berdasarkan masukan data berikut:

19	23	11	7	45	8	34	3	12	55

9. Berdasarkan BST yang terbentuk pada soal no 8, lakukan penghapusan untuk node berikut (lakukan berturut-turut): 8, 7, 19

Berdasarkan gambar graf berikut (sumber: https://algorithms.tutorialhorizon.com/weighted-graph-implementation-java/):

Buatlah:

- 10. Representasi graf berdasarkan matrix adjacency
- 11. Representasi graf berdasarkan list adjacency
- 12. Representasi graf berdasarkan matrix incidency Noted:

Daftar edge untuk matriks di atas:

Vertex awal	Vertex akhir	Edge	
0	1	e1	
0	3	e2	
1	2	e3	
1	3	e4	
2	3	e5	
3	4	e6	
4	0	e7	
4	1	e8	
4	5	e9	

13. Gambarkan graf yang terbentuk berdasarkan matrix adjacency berikut

	1	2	3	4	5	6	7
1	0	1	0	0	1	1	0
2	1	0	1	0	1	0	0
3	0	1	0	0	1	1	1
4	0	0	0	0	0	0	1
5	1	1	1	0	0	1	1
6	1	0	1	0	1	0	0
7	0	0	1	1	1	0	0

14. Gambarkan graf yang terbentuk berdasarkan list adjacency berikut

15. Berdasarkan graf berikut, tuliskan penelusuran BSF dan DSF dengan vertex source pada node S (sumber: https://people.cs.umass.edu/~liberato/courses/2016-fall-compsci190d/homeworks/19-directed-graph-search-again/)!

Diketahui pasangan key dan value sebagai berikut:

KEY	VALUE
27	Ketupat
113	Opor
7	Sayur Godog
18	Sayur Lodeh
4	Rendang
200	Kentang Mustofa
96	Sambel Goreng Udang

Gambarkan isi *hash table* untuk pasangan *key-value* tersebut ke dalam suatu table yang awalnya masih kosong. Ingat, karena *value* diketahui, yang akan mengisi *table* adalah *value*-nya, sesuai dengan *hash code* dari *key*.

Misal, key 27 memiliki *hash code* 3, jadi pada table indeks ke-3 akan terisi "Ketupat" (bukan 27). Tuliskan terlebih dahulu *hash code* yang terbentuk untuk setiap *key* pada masing-masing soal. Gunakan ketentuan berikut untuk penanganan *collision* dan *hash function*. (Silahkan gunakan kalkulator jika dibutuhkan)

- 16. *Value* akan dipetakan pada *table* dengan ukuran 5. *Hash function* bagi key adalah h(k) = (11 * k) mod M. M merupakan besar table dengan k adalah nilai key. Penanganan *collision* menggunakan *separate chaining*.
- 17. *Value* akan dipetakan pada *table* dengan ukuran 7. *Hash function* bagi *key* adalah h(k) = k mod M. M merupakan besar *table* dengan k adalah nilai *key*. Penanganan *collision* menggunakan *linear probing*.
- 18. *Value* akan dipetakan pada table dengan ukuran 11. *Hash function* bagi *key* adalah h(k) = k mod M. M merupakan besar *table* dengan k adalah nilai *key*. Penanganan *collision* menggunakan *quadratic probing*.
- 19. Value akan dipetakan pada table dengan ukuran 11. Hash function bagi key adalah h1(k) = (11 * k) mod M dan h2(k) = (k mod 3) + 1. M merupakan besar table dengan k adalah nilai key. Penanganan collision menggunakan double hashing
- 20. Buatlah topological sort dari graf berikut. Jelaskan langkah pembuatannya!

Sumber gambar: https://web.ntnu.edu.tw/~algo/DirectedAcyclicGraph.html