

TRAVAUX DRIGES DU 26 Février 2025

Exercice 1

Pour le montage de la **figure 1** on donne : $\underline{E}=100V$, $R=20~\Omega$, $\underline{Z}_L=(20j)~\Omega$ et $\underline{Z}_C=(-20j)~\Omega$.

- 1) Déterminez les éléments Z_{Th} et E_{Th} du générateur de Thévenin équivalent au dipôle AB.
- 2) Déduisez-en les éléments Z_N et I_N du générateur de Norton équivalent au dipôle AB.
- 3) Déterminez alors le courant complexe qui traverse la charge \underline{Z}_L en utilisant le modèle équivalent de Thévenin du dipôle AB.
- 4) Reprenez la question 3 en utilisant cette fois-ci le modèle équivalent de Norton.
- 5) Déterminez la puissance consommée par la charge Z_L.

Exercice 2

Le circuit de la figure 2 permet de réguler le système acoustique d'un équipement de radar électrique. Les amplificateurs utilisés sont supposés parfaits et fonctionnent en régime linéaire.

- 1) Exprimer la tension Va en fonction de la tension d'entrée V₀.
- 2) Préciser la fonction réalisée par l'AOP N°1 (U1).
- 3) Que peut-on dire des courants i- et i+.
- 4) Etablir la loi des nœuds au point C.
- 5) Trouver l'expression de i₁ en fonction de Va, V et R₁.
- 6) Montrer que:
 - a) $V = R_3 i_3$;
 - b) $V_D = V + R_2 i_2$;
 - c) $V_D = 2 R_3 i_3$;
- 7) De la question précédente, déduire l'expression des courants :

- a) i_2 en fonction de i_3 , R_3 et R_2 ;
- b) i_3 en fonction de V et R_3 ;
- c) i₂ en fonction de V et R₂.
- 8) Déduire alors l'expression de i en fonction de Va, V, R₁ et R₂.
- 9) Quelle relation faut-il entre R₁ et R₂ pour que i soit indépendant de V.

Figure 2

Problème

On se propose d'étudier un alternateur entraîné par un moteur shunt. Cet alternateur alimente un atelier comme l'indique la figure 3.

Partie I: Etude du moteur shunt

Le moteur shunt, parfaitement compensé, a les caractéristiques suivantes : Résistance de l'inducteur : r = 120 Ω , résistance de l'induit : R = 0,5 Ω . Le rhéostat d'excitation a une résistance R_h = 100 Ω . Il est alimenté sous une tension U = 220 V constante et absorbe un courant d'intensité I_a = 21 A pour une vitesse n = 1200 tr/min. Le couple des pertes constantes est T_c et représente les 4% du couple électromagnétique T_{em} pour tous les régimes de fonctionnement.

- 1) Calculer l'intensité du courant inducteur.
- 2) Calculer la force électromotrice E.

- 3) Montrer que:
 - a) E = 0.175 n;
 - b) $\frac{T_u}{I} = 1.6 \text{ Nm/A}$;
 - c) n = 1257 2,86 I.

Avec T_u : Couple utile (Nm); n: Vitesse de rotation (tr/min); I: Courant dans l'induit (A).

- 4) Le couple utile peut s'écrire en fonction de la vitesse sous la forme Tu = a b.n; déterminer les valeurs de a et b.
- 5) Le moteur entraine l'alternateur dont le couple résistant est donné par l'équation T_r = 1,44. 10^{-4} n^2
 - a) Calculer la vitesse de rotation de l'ensemble (moteur et alternateur) puis en déduire la nouvelle valeur E' de la force électromotrice.
 - b) Calculer le rendement du moteur.

Partie II : Etude de l'alternateur

L'alternateur triphasé dont le stator est couplé en étoile comporte six pôles. Il est entrainé à une fréquence de rotation de 1000 tr/min. La résistance des enroulements statoriques mesurées à chaud entre deux bornes de phases a pour valeur R = 0,4 Ω . Les pertes collectives sont évaluées à 300 W. L'inducteur de résistance r = 15 Ω est alimenté par une tension continue U_e = 43,8 V.

- 1) Déterminer la fréquence des tensions fournies par cet alternateur.
- 2) Calculer la résistance R_S de chaque enroulement statorique de l'alternateur.
- 3) Cet alternateur débite un courant d'intensité I_S = 26 A pour une f.é.m synchrone d'un enroulement E_S = 281 V, dans un atelier dont la puissance absorbée est mesurée par la méthode des deux wattmètres : P_1 = 9810 W et P_2 = 4480 W.
 - a) Déterminer la tension U entre phases et le facteur de puissance de l'atelier.
 - b) Construire le diagramme de Behn-Eschemburg puis en-déduire la réactance synchrone X_S de la machine synchrone.
 - c) Calculer le rendement de l'alternateur.
 - d) Calculer la puissance mécanique P_m fournie par le moteur d'entraı̂nement puis en déduire le couple correspondant.

FIN