Immediate Settlement – Use of SPT Index

$$\varepsilon = \frac{1}{C'} \log_{10} \left(\frac{\sigma_o + \Delta \sigma_v'}{\sigma_o} \right)$$

or

$$s = \int_0^H \varepsilon dz = \sum_{i=1}^n \frac{H_i \Delta \sigma_{zi}}{E_{si}} \qquad M_i$$

158

Hough, "Compressibility as a Basis for Soil Bearing Value" ASCE 1959

Consolidation Settlement

Δu must be determined using Skempton's pore pressure parameters should be used for 2-D or 3-D load applications

$$\begin{split} s_c &= s_{c1} + s_{c2} \\ s_c &= C_c \frac{\log(\sigma_1'/\sigma_c')}{1 + e_0} H + C_e \frac{\log(\sigma_c'/\sigma_0')}{1 + e_0} H \\ \text{virgin} \quad \text{rebound} \end{split}$$

For 2 or 3-D, the focus is on Δu , not on $\Delta \sigma$ for consolidation; $\Delta \sigma' = -\Delta u$

Secondary Consolidation Settlement

Secondary compression index, C_{α}

$C_{\alpha} = 0.00168 + 0.00033I_{P}$		Nakase et al. (1988)
$= 0.0001 w_N$		NAFAC DM7.1 p. 7.1-237
$C_{\alpha} = 0.032C_{c}$	$0.025 < C_{\alpha} < 0.1$	Mesri and Godlewski (1977)
$= 0.06 \text{ to } 0.07C_c$	Peats and organic soil	Mesri (1986)
$= 0.015$ to $0.03C_c$	Sandy clays	Mesri et al. (1990)

$$s_s = \frac{C_{\alpha}}{1 + e_0} H \Delta \log t = \frac{C_{\alpha}}{1 + e_0} H \log \left(t / t_p \right)$$

 C_{α} = secondary compression index (dimensionless), which is defined as the slope of the secondary compression curve.

 $e_0 = void ratio at the end of primary consolidation.$

Settlement Determination

- Divide soil layer into several sublayers
- Calculate change of stress at the center of each sublayer
- Assume uniform stress distribution in each sublayer
- Calculate the settlement of each sublayer s_i
- $\blacksquare S = \sum S_i$