Interaktive Computergrafik

Prof. Dr. Frank Steinicke
Human-Computer Interaction
Department of Computer Science
University of Hamburg

Interaktive Computergrafik Lektion 12

Prof. Dr. Frank Steinicke

Human-Computer Interaction, Universität Hamburg

Interaktive Computergrafik Lektion 12

Texturen 2

MIP-Mapping

Beispiel: Texturpyramide

MIP-Mapping Speicherung Texturpyramide

• Nach geometrischer Reihe $\sum_{i=0}^{n} q^i = \frac{q^{n+1}-1}{q-1}$ gilt:

$$\sum_{i=0}^{\infty} \left(\frac{1}{4}\right)^i = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3} = 1 + \frac{1}{3}$$

→ MIP-Maps haben höchstens um 1/3 höheren Speicherbedarf als das größte Bild

MIP-Mapping Speicherung Texturpyramide

Effiziente Speicherung durch volle
 Ausnutzung der Textur mit 1 Byte (Graustufen)
 statt 3 Byte pro Pixel

Interaktive Computergrafik Lektion 12

Bump Mapping

Bump-Mapping Phong-Beleuchtung

Auf flacher Oberfläche ist Reflexionsrichtung überall gleich (für direktionale Lichtquelle) Auf Oberfläche mit Unebenheit (engl. *Bump*) sind Seiten und Zentrum unterschiedlich hell Für diese Wirkung sind Normalen verantwortlich, nicht Geometrie

Bump-Mapping Beispiele

 Texel speichern (x,y,z)-Werte der Normale in RGB-Kanälen einer 2D-Textur

- Texel speichern (x,y,z)-Werte der Normale in RGB-Kanälen einer 2D-Textur
- Vorsicht: $x,y,z \in [-1..1]$ und $r,g,b \in [0..1]$
 - → Konvertierung notwendig

Color.rgb = Normal.xyz / 2.0 + 0.5 bzw. Normal.xyz = Color.rgb * 2.0 - 1.0

- Normalen gespeichert in Tangentenraum
- Beispiel:

$$n_{1welt} = (0, 1, 0)$$
 \neq
 $n_{2welt} = (1, 0, 0)$

$$n_{1tangente} = (0, 0, 1)$$
=
 $n_{2tangente} = (0, 0, 1)$

Tangentenraum

Beispiel Diffuse Map

Object Space

Object Space (0,0,1)↓norm (0.5, 0.5, 1.0)

Object Space

Object Space

Object Space

Object Space

Object Space

Object Space

Object Space

Beispiel Normal Map - Tangent Space

Object Space

Beispiel Normal Map - Tangent Space

Object Space

- Normalen gespeichert in Tangentenraum
 - Normale (0,0,1) entspricht Polygonnormale
 - Abbildung von Tangentenraum nach Welt-/ Kamerakoordinaten durch TBN-Matrix (<u>Tangente</u>, <u>Binormale</u>, <u>Normale</u>)

- Normalen N sind die vom Anwendungsprogramm übergebenen Normalen
- Tangenten T liegen in der Ebene senkrecht zur Normalen
- Binormalen B werden berechnet durch Kreuzprodukt N x T

Normal Map Berechnung der TBN-Matrix

Berechnung im Fragment Shader:

```
in vec4 normalCam;
...
vec3 n = normalize(normalCam.xyz);
vec3 t = normalize(cross(n, vec3(0.0, 0.0, 1.0)));
vec3 b = cross(n, t);
...
```

⇒ praktische Anwendung in Übung

Normal Map Anwendung der TBN-Matrix

$$TBN = \begin{pmatrix} T_x & B_x & N_x \\ T_y & B_y & N_y \\ T_z & B_z & N_z \end{pmatrix}$$

2 Möglichkeiten:

- Überführung der Normalen von Tangentenraum in Welt-bzw. Kamerakoordinaten: $N_{cam} = TBN \cdot N_{tangent}$
- Überführung aller anderer Vektoren (L und V) in Tangentenraum durch Multiplikation mit TBN-1

Interaktive Computergrafik Lektion 12

Parallax Occlusion Mapping

Parallax-Occlusion-Mapping

Ansatz Eye Position Original Texture Coordinates Corrected Texture Coordinates Polygon Surface Heightmap Depth Simulated Heightmap Volume

Diskussion

Vergleichen Sie Bump Mapping und Parallax Occlusion Mapping.

Vergleich Bump vs. Parallax Occlusion

	Bump Mapping	Parallax Occlusion Mapping
Erfordert zusätzliche Textur (neben Diffuse Map)		
Simuliert Oberflächenstruktur		
Unterstützt Selbstokklusion	X	
Verändert die Objekt-Silhouette	X	X
Unterstützt dynamische Objekte / Lichtquellen		

