Уравнение теплопроводности II

"Уравнения математической физики"

Скопинцев Артур Маркович

Задачи на ур-е теплопроводности, фундаментальное решение

$$\frac{\partial u}{\partial t} = a^2 \Delta u,\tag{6.1}$$

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \Delta u, & t > 0, \ x \in \mathbb{R}^n; \\ u\big|_{t=0} = \varphi(x), & x \in \mathbb{R}^n. \end{cases}$$
(6.2)

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \Delta u, & t > 0, \ x \in \Omega; \\ u\big|_{t=0} = \varphi(x), & x \in \Omega; \\ u\big|_{\partial \Omega} = \alpha(t, x), & x \in \partial \Omega, \ t > 0. \end{cases}$$
(6.3)

$$\frac{\partial u}{\partial n}\big|_{\partial\Omega} = \beta(t, x), \qquad x \in \partial\Omega, \ t > 0,$$
 (6.4)

$$\tilde{u}(t,\,\xi) = \int e^{-ix\cdot\xi} u(t,\,x) \, dx$$

Стандартное интегрирование по частям даёт:

$$\int e^{-ix\cdot\xi} \left(\frac{\partial u}{\partial t} - a^2 \Delta_x u\right) dx = \left[\frac{\partial}{\partial t} + a^2 |\xi|^2\right] \int e^{-ix\cdot\xi} u(t, x) dx =$$

$$= \frac{\partial \tilde{u}}{\partial t} + a^2 |\xi|^2 \tilde{u}.$$

Таким образом, уравнение (6.1) равносильно уравнению

$$\frac{\partial \tilde{u}(t,\,\xi)}{\partial t} + a^2 |\xi|^2 \tilde{u}(t,\,\xi) = 0. \tag{6.10}$$

Начальное же условие, очевидно, приобретает вид

$$\tilde{\boldsymbol{u}}\big|_{t=0} = \widetilde{\varphi}(\xi),\tag{6.11}$$

где $\widetilde{arphi}=Farphi$.

Уравнение (6.10) представляет собой обыкновенное дифференциальное уравнение по t с параметром ξ . Оно легко решается, и мы получим с учётом начального условия (6.11):

$$\tilde{u}(t,\,\xi) = e^{-t\alpha^2|\xi|^2} \widetilde{\varphi}(\xi). \tag{6.12}$$

$$u(t, x) = (2\pi)^{-n} \int e^{ix \cdot \xi} \tilde{u}(t, \xi) d\xi =$$

$$= (2\pi)^{-n} \int e^{ix \cdot \xi - ta^2 |\xi|^2} \widetilde{\varphi}(\xi) d\xi =$$

$$= (2\pi)^{-n} \int e^{i(x-y) \cdot \xi - ta^2 |\xi|^2} \varphi(y) dy d\xi.$$

Меняя порядок интегрирования (это возможно по теореме Фубини), мы получаем:

$$u(t, x) = \int \Gamma(t, x - y) \varphi(y) dy, \qquad (6.13)$$

где

$$\Gamma(t, x) = (2\pi)^{-n} \int e^{ix \cdot \xi - ta^2 |\xi|^2} d\xi$$
 (6.14)

(по существу мы повторили выкладку, доказывающую, что преобразование Фурье переводит умножение в свёртку). Вычислим явно $\Gamma(t, x)$, взяв интеграл в (6.14). Для этого нужно выделить полный квадрат в показателе экспоненты:

$$ix \cdot \xi - ta^{2}|\xi|^{2} = -ta^{2}\xi \cdot \xi + ix \cdot \xi =$$

$$= -ta^{2}\left(\xi - \frac{ix}{2ta^{2}}\right) \cdot \left(\xi - \frac{ix}{2ta^{2}}\right) - \frac{|x|^{2}}{4ta^{2}}.$$

Делая замену переменных $\xi - \frac{ix}{2ta^2} = \eta$, т. е. сдвигая контур интегрирования по каждому ξ_j , мы получим:

$$\Gamma(t, x) = (2\pi)^{-n} e^{-\frac{|x|^2}{4ta^2}} \int e^{-ta^2 |\eta|^2} d\eta =$$

$$= (2\pi)^{-n} e^{-\frac{|x|^2}{4ta^2}} (a\sqrt{t})^{-n} \int e^{-|\xi|^2} d\xi$$

(мы сделали ещё замену переменных $\xi = a\sqrt{t}\,\eta$). Используя формулу

$$\int e^{-|\xi|^2} d\xi = \pi^{n/2},$$

получим окончательно:

$$\Gamma(t, x) = (2a\sqrt{\pi t})^{-n} \exp\left(-\frac{|x|^2}{4ta^2}\right).$$
 (6.15)

Решение задачи Коши записывается в виде

$$u(t, x) = \frac{1}{(2a\sqrt{\pi t})^n} \int e^{-\frac{|x-y|^2}{4a^2t}} \varphi(y) \, dy, \tag{6.16}$$

называемом интегралом Пуассона.

Теорема Фундаментальным решением оператора $\frac{\partial}{\partial t}-a^2\Delta_x$ в \mathbb{R}^{n+1} является локально интегрируемая функция

$$\mathcal{E}(t, x) = \theta(t)\Gamma(t, x) = (2a\sqrt{\pi t})^{-n}\theta(t)\exp\left(-\frac{|x|^2}{4a^2t}\right), \tag{6.22}$$

где $\theta(t)$ — функция Хевисайда ($\theta(t)=1$ при $t>0, \, \theta(t)=0$ при $t\leqslant 0$).

Асимптотическое поведение решения ур-я теплопроводности

Пример Используя формулу , исследовать асимптотическое поведение решения уравнения теплопроводности при $t \to +\infty$.

Pewenue. Будем считать, что $\varphi(x)$, а, следовательно, и $\widehat{\varphi}(y)$ принадлежат $S(\mathbb{R})$. Сначала отметим очевидный факт, что интеграл

$$I_{\delta}(t,x) = \frac{1}{\sqrt{2\pi}} \int_{|y| > \delta} \widehat{\varphi}(y) e^{-a^2 y^2 t} e^{iyx} dy$$

удовлетворяет оценке

$$I_{\delta}(t,x) = O(e^{-a^2\delta^2t}).$$

Поэтому основной вклад в решение u(t,x) при $t \to +\infty$ дает интеграл

$$J_{\delta}(t,x) = \frac{1}{\sqrt{2\pi}} \int_{|y| < \delta} \widehat{\varphi}(y) e^{-a^2 y^2 t} e^{iyx} dy.$$

Считая δ достаточно малым, можно заменить $\widehat{\varphi}(x)$ на ее значение в нуле

$$\widehat{\varphi}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \varphi(x) \, dx.$$

Оставшийся интеграл

$$\frac{1}{\sqrt{2\pi}} \int_{|y|<\delta} e^{-a^2y^2t} e^{iyx} dy$$

можно заменить интегралом

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-a^2 y^2 t} e^{iyx} dy, \tag{7.8}$$

так как разность этих интегралов имеет порядок $O(e^{-a^2\delta^2t})$. В свою очередь, интеграл 7.8, как было установлено в примере — совпадает с функцией

$$G_0(x,t) = \frac{e^{-\frac{x^2}{4a^2t}}}{2a\sqrt{\pi t}}.$$

Следовательно, имеет место асимптотическая формула

$$u(x,t) \sim \widehat{\varphi}(0) \frac{e^{-\frac{x^2}{4a^2t}}}{2a\sqrt{\pi t}}.$$

Конечно, приведенные рассуждения можно признать лишь наводящими соображениями. Однако, в этом направлении можно двигаться дальше. Предварительно заметим, что справедливо равенство

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^n e^{-a^2 y^2 t} e^{iyx} dy = (-i)^n \frac{d^n}{dx^n} \left\{ \frac{e^{-\frac{x^2}{4a^2 t}}}{2a\sqrt{\pi t}} \right\}.$$

Поэтому, заменив функцию $\widehat{\varphi}(y)$ в интеграле 7.4 ее тейлоровским разложением:

$$\widehat{\varphi}(y) \sim \sum_{n=0}^{\infty} \widehat{\varphi}^{(n)}(0) \frac{y^n}{n!},$$

получаем для u(x,t) следующий асимптотический ряд

$$u(x,t) \sim \sum_{n=0}^{\infty} \widehat{\varphi}^{(n)}(0) \frac{(-i)^n}{n!} \frac{d^n}{dx^n} \left\{ \frac{e^{-\frac{x^2}{4a^2t}}}{2a\sqrt{\pi t}} \right\}.$$

Приведенный способ асимптотического разложения интегралов носит название метода Лапласа. Его обоснование можно найти во многих книгах. Смотрите, например, М.В. Федорюк. Метод перевала. М.: Наука. 1977.

Пример Применяя преобразование Фурье, найти решение неоднородного уравнения теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

с нулевым начальным условием

$$u|_{t=0}=0.$$

Решение. Применяя преобразование Фурье к уравнению теплопроводности, получаем следующую задачу Коши

$$\begin{cases} \frac{\partial \widehat{u}}{\partial t} = -a^2 y^2 \widehat{u} + \widehat{f}(y, t) \\ \widehat{u}|_{t=0} = 0. \end{cases}$$

Ее решение имеет вид

$$\widehat{u}(y,t) = \int_{0}^{t} e^{-a^{2}y^{2}(t-\tau)} \widehat{f}(y,t) \, dy.$$

$$\mathcal{F}_{y\to x}^{-1}(e^{-a^{2}y^{2}(t-\tau)} \widehat{f}(y,t)) = \int_{0}^{+\infty} \frac{e^{-\frac{(x-s)^{2}}{4a^{2}(t-\tau)}}}{2a\sqrt{\pi(t-\tau)}} f(s,\tau) \, ds.$$

Поэтому формула Пуассона для решения неоднородного уравнения теплопроводности с нулевым начальным условием имеет вид

$$u(x,t) = \int_{0}^{t} \int_{-\infty}^{+\infty} \frac{e^{-\frac{(x-s)^2}{4a^2(t-\tau)}}}{2a\sqrt{\pi(t-\tau)}} f(s,\tau) \, ds \, d\tau.$$

Замечание Обобщенная функция $\delta(x-s)\delta(t-\tau)$ интерпретируется как меновенный точечный источник тепла в точке x=s, действующий в момент времени $t=\tau$. Поэтому фундаментальное решение называют функцией влияния меновенного точечного источника, т. е. фундаментальное решение $G(x,t|s,\tau)$ определяет распределение температуры при таком источнике. Представляя источники тепла как суперпозицию точечных источников

$$f(x,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \delta(x-s)\delta(t-\tau)f(s,\tau) \, ds \, d\tau$$

получаем решение как суперпозицию функций влияния с той же плотностью

$$u(x,t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,t|s,\tau) f(s,\tau) ds d\tau.$$

Считая, что источники тепла равны нулю при t < 0 и учитывая, что фундаментальное решение равно нулю при $\tau > t$, выводим

$$u(x,t) = \int_{-\infty}^{+\infty} \int_{0}^{t} G(x,t|s,\tau) f(s,\tau) ds d\tau.$$

Полученная формула совпадает с формулой Пуассона для решения неоднородного уравнения с нулевым начальным условием. Конечно, приведенные рассуждения носят эвристический характер, но могут быть строго обоснованы в рамках теории обобщенных функций.

Принцип максимума для уравнения теплопроводности

Теорема (принцип максимума). Всякое классическое решение u(x,t) (непрерывное в замкнутой области $\bar{D} \equiv \{0 \leqslant x \leqslant l, \, 0 \leqslant t \leqslant T\}$) уравнения

$$\frac{\partial}{\partial x} \left[k(x) \frac{\partial u}{\partial x} \right] = \rho(x) u_t \tag{53.1}$$

принимает наибольшее и наименьшее значения либо в начальный момент времени $u|_{t=0}$, либо на границе отрезка $u|_{x=0}$. $u|_{x=1}$.

Доказательство. 1. Если u(x,t) = const, то справедливость утверждения теоремы очевидна.

2. Пусть

$$M_1 = \max\{u|_{t=0}, u|_{x=0}, u|_{x=l}\},$$
 (53.2)

$$M_2 = \max_{x \in [0,l]} u(x,t), \quad M_2 = u(x_0, y_0).$$
 (53.3)
 $t \in [0,T]$

Покажем, что $M_1 = M_2$. Предположим противное: $M_1 < M_2$. Рассмотрим вспомогательную функцию

$$v(x,t) = u(x,t) + \alpha(T-t)$$
, где $0 < \alpha < \frac{M_2 - M_1}{2T}$.

Функция v(x,t) непрерывна в \bar{D} и, следовательно, достигает в \bar{D} наибольшего значения в некоторой точке (x_1,t_1) , так как $M_3=v(x_1,t_1)$

$$M = u(x_0, t_0) \leqslant u(x_0, t_0) + \alpha(T - t_0) = v(x_0, t_0) \leqslant M_3.$$

Точка (x_1, t_1) не может лежать на границе, так как

$$|v(x,0)| \leq |u(x,0)| + \alpha T < M_1 + \frac{1}{2}(M_2 - M_1) < M_2 \leq M_3;$$

$$|v(0,t)| \leq |u(0,t)| + \alpha(T-t) < M_1 + \frac{1}{2}(M_2 - M_1) < M_2 \leq M_3;$$

$$|v(l,t)| \leq |u(l,t)| + \alpha(T-t) < M_1 + \frac{1}{2}(M_2 - M_1) < M_2 \leq M_3.$$

Таким образом, точка $(x_1,t_1)\in \bar{D}$ и в ней функция u(x,t) должна удовлетворять уравнению (53.1). Но, так как (x_1,t_1) – точка максимума, то

$$u_x(x_1, t_1) = v_x(x_1, t_1) = 0, u_{xx}(x_1, t_1) = v_{xx}(x_1, t_1) \le 0,$$

 $u_t(x_1, t_1) = v_t(x_1, t_1) + \alpha > 0,$

поскольку

$$v_t(x_1, t_1) = \begin{cases} 0, & 0 < t < T; \\ v(x, t) \ge 0, & t = T, \end{cases}$$

и, следовательно, в точке (x_1, t_1) функция u(x, t) не удовлетворяет уравнению (53.1). Следовательно, предположение $M_1 < M_2$ неверно, т.е. $M_1 = M_2$, что и требовалось доказать.

Доказательство для минимума аналогично.

Единственность решения первой краевой задачи

Теорема (о единственности). Классическое решение смешанной задачи с краевыми условиями первого рода (непрерывное в области $0 \le x \le l, t \ge 0$)

$$\frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) + f(x, t) = \rho \frac{\partial u}{\partial t}, \tag{53.4}$$

$$u(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t), \quad u(x,0) = \varphi(x), \quad (53.5)$$

единственно.

Доказательство. Пусть u_1 и u_2 — два решения задачи (53.4), (53.5). Пусть $v = u_2 - u_1$, тогда

$$v(0,t) = v(l,t) = v(x,0) = 0.$$

Это решение непрерывно и достигает наибольшего и наименьшего значений на границе. Следовательно, v(x,t) = 0, что и доказывает теорему.

Единственность решения задачи Коши

Теорема Классическое решение задачи Коши (непрерывное и ограниченное при $-\infty < x < \infty, \ t \geqslant 0$)

$$a^{2} \frac{\partial^{2} u}{\partial x^{2}} = \frac{\partial u}{\partial t}, \qquad (53.6)$$

$$u(x,0) = \varphi(x), \qquad |\varphi(x)| \leq M < \infty,$$

единственно.

Доказательство. Пусть существуют функции u_1 и u_2 , удовлетворяющие уравнению (53.6), и функция $v = u_1 - u_2$, для которой $|v| \leq 2M$. Рассмотрим функцию

$$w(x,t) = \frac{4M}{L^2} \left(\frac{x^2}{l} + a^2 t \right). \tag{53.7}$$

Очевидно, она удовлетворяет уравнению (53.6), причем

$$|w(x,0)| = \frac{4M}{L^2} \left(\frac{x^2}{l}\right) \leqslant 2M$$
 при $|x| \leqslant L$, $|w(x,0)| \geqslant v(x,0) = 0$, $|w(\pm L,t)| \geqslant 2M$, $|w(\pm L,t)| \geqslant |v(\pm L,t)|$.

Следовательно, по теореме об экстремуме

$$|v(x,t)| \leq w(x,t)$$

для всех x, принадлежащих отрезку] — L, L[. Зафиксировав x, перейдем в последнем равенстве к пределу при $L \to \infty$. Тогда

$$|v(x,t)| \leq 0,$$

что дает v(x,t) = 0. Таким образом, теорема доказана.