测定介质中的声速

张欣睿*

北京大学化学与分子工程学院 学号: 1600011783

摘 要:本实验使用声速测定仪等装置,分别通过极值法、相位法和测定气体参量再进行计算的方法,求得了测量环境下的空气中声速,并通过相位法测定了测量环境下的水中声速。

关键词: 声速测定; 相位法; 极值法; 气体参量法

e-mail: zhangxinrui16@pku.edu.cn; mobile number: 18801391162

1 实验数据及其分析、处理和结论

1.1 声速测定仪换能器的共振频率

实验首先调节了声速测定仪中两个换能器的平行性。将换能器拉开约 20 mm, 改变输出信号的不同频率,对每个频率调节换能器间距,使探测到的驻波信号达 到极大值。这一极大值达到最大值时的频率则为换能器的共振频率。

本次实验中测得换能器的共振频率为 f_0 = 41.0 kHz。

1.2 使用极值法进行空气中声速测定及数据处理

读取当前测定环境的气温为 18.5 °C。取定合适距离,不断增大换能器间距,连续记下接收正弦波振幅极大值时的位置 x_1 、 x_2 、…、 x_{10} 和对应的峰峰电压 u_1 、 u_2 、…、 u_{10} ,如表 1 所示。按照隔多项逐差法处理数据,逐差一同列在表中。

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	21.535	25.860	30.102	34.406	38.657
峰峰电压 u _i (V)	4.56	4.16	3.80	3.40	3.00
序号 i	6	7	8	9	10
换能器位置 x_i (mm)	43.121	47.180	51.433	55.540	59.596
峰峰电压 u _i (V)	2.60	2.26	1.98	1.76	1.68
逐差序号 i	1	2	3	4	5
逐差 $\Delta x_i = \frac{1}{5}(x_{i+5} - x_i)$ (mm)	4.3172	4.2640	4.2662	4.2268	4.1878

表 1 正向极值法声速测定结果

由表中 Δx_i 数据得到其平均值和平均值的标准差:

$$\overline{\Delta x} = \frac{1}{5} \cdot \sum_{i=1}^{5} \Delta x_i = 4.2520 \text{ (mm)} \qquad \sigma_{\overline{\Delta x}} = \sqrt{\frac{\sum_{i=1}^{5} (\Delta x_i - \overline{\Delta x})^2}{5 \cdot (5-1)}} = 0.02 \text{ (mm)}$$

则声速测定值为:

$$v = \lambda \cdot f = 2\Delta x \cdot f = 348.7 \text{ m} \cdot \text{s}^{-1}$$

声速测定的不确定度:

$$\sigma_{v} = v \cdot \sqrt{\left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} = 2 \text{ m} \cdot \text{s}^{-1}$$

故正向测定声速的结果为 v_+ = (349 ± 2) m · s⁻¹。

再沿反方向旋转手轮,不断减小换能器间距,连续记下接收正弦波振幅极大 值时的换能器位置和峰峰电压,如表 2 所示。

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	59.703	55.689	51.387	47.122	43.033
峰峰电压 u _i (V)	1.66	1.72	1.87	2.28	2.54
序号 i	6	7	8	9	10
换能器位置 x_i (mm)	38.599	34.451	30.100	25.817	21.491
峰峰电压 <i>u_i</i> (V)	2.90	3.26	3.70	4.00	4.36
逐差序号 i	1	2	3	4	5
逐差 $\Delta x_i = \frac{1}{5}(x_i - x_{i+5})$ (mm)	4.2208	4.2476	4.2574	4.2610	4.3084

表 2 反向极值法声速测定结果

同理给出逐差的平均值和平均值的标准差:

$$\overline{\Delta x} = \frac{1}{5} \cdot \sum_{i=1}^{5} \Delta x_i = 4.2590 \text{ (mm)} \qquad \sigma_{\overline{\Delta x}} = \sqrt{\frac{\sum_{i=1}^{5} (\Delta x_i - \overline{\Delta x})^2}{5 \cdot (5-1)}} = 0.01 \text{ (mm)}$$

声速测定值为:

$$v = \lambda \cdot f = 2\Delta x \cdot f = 349.2 \text{ m} \cdot \text{s}^{-1}$$

声速测量的不确定度为:

$$\sigma_v = v \cdot \sqrt{\left(\frac{\sigma_{\overline{\Delta x}}}{\Delta x}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2} = 1 \text{ m} \cdot \text{s}^{-1}$$

故反向测定声速的结果为 v_{-} = (349 ± 1) m · s⁻¹。

取二者的平均值为声速测定值, $v = (349 \pm 2) \text{ m} \cdot \text{s}^{-1} (18.5 \,^{\circ}\text{C})$ 。

结论: 通过极值法对探测驻波的换能器检测到强度极值时的位置进行测量,利用逐差法处理正反两组测量数据,求得的逐差可作为半波长,结合频率可以求得声速。本实验测得 18.5 °C 下的声速为 $v = (349 \pm 2) \text{ m} \cdot \text{s}^{-1}$ 。

1.3 使用相位法进行空气中声速测定及数据处理

读取当前测定环境的气温为 18.7 °C。将示波器更换为 X-Y 显示模式,显示 屏出现稳定的李萨如图形。正向测量,取定换能器间距合适,不断增大换能器间

距,连续记录下李萨如图形为相同正斜率直线时换能器的位置坐标。测量结果如表 3 所示。

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	20.227	28.885	37.361	45.812	54.231
序号 i	6	7	8	9	10
换能器位置 x_i (mm)	62.739	70.968	79.350	87.677	96.246

表 3 正向相位法声速测定结果

使用最小二乘法处理数据,做拟合直线,如图1所示。

图 1 正向相位法测量的最小二乘拟合直线

拟合直线的斜率即波长, $\lambda = k = (8.42 \pm 0.01) \, \text{mm}$, 则声速

$$v = \lambda \cdot f = 8.42 \cdot 41.0 \text{ m} \cdot \text{s}^{-1} = 345 \text{ m} \cdot \text{s}^{-1}$$

不确定度:

$$\sigma_{v} = v \cdot \sqrt{\left(\frac{\sigma_{\lambda}}{\lambda}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} = 1 \text{ m} \cdot \text{s}^{-1}$$

故正向测定声速为 $v_{+} = (345 \pm 1) \,\mathrm{m \cdot s^{-1}}$ 。

反向测量,不断减小换能器间距,连续记录下李萨如图形为相同的正斜率直 线时换能器的位置坐标,测量结果如表 4 所示。

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	96.153	87.666	79.237	70.961	62.619
序号 i	6	7	8	9	10

表 4 反向相位法声速测定结果

同样使用最小二乘法作出拟合直线,如图 2 所示。

图 2 反向相位法测量的最小二乘拟合直线

测量结果斜率的负值为声波的波长。 $\lambda = -k = (8.42 \pm 0.01) \, \text{mm}$,则声速:

$$v = \lambda \cdot f = 8.42 \cdot 41.0 \text{ m} \cdot \text{s}^{-1} = 345 \text{ m} \cdot \text{s}^{-1}$$

不确定度:

$$\sigma_{v} = v \cdot \sqrt{\left(\frac{\sigma_{\lambda}}{\lambda}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} = 1 \text{ m} \cdot \text{s}^{-1}$$

故反向测定声速为 $v_{-}=(345\pm1)\,\mathrm{m\cdot s^{-1}}$ 。

由正、反向测量,取二者平均值为声速测定值: $v = (345 \pm 1) \,\mathrm{m \cdot s^{-1}} \,(18.7 \,^{\circ}\mathrm{C})$ 。

结论: 通过对不同刚性平面处声波和原始信号形成的李萨如图形的观察,可以用相位法测定空气中的声速。用最小二乘法处理数据,求得 18.7 °C 下的声速为 $v = (345 \pm 1) \,\mathrm{m \cdot s^{-1}}$ 。

1.4 利用气体参量法计算空气中的声速

使用干湿球温度计、气压计等对温湿度、气压等进行测量,结果如表5所示。

室温 θ (°C)	19.0	饱和蒸气压 p _s (Pa)	2196.9
湿球温度 θ'(°C)	13.2	水蒸气压 $p_w = Hp_s$ (Pa)	945
相对湿度 H	43 %	大气压 p (mmHg)	766.35

表 5 相关气体参量的测量

根据空气声速的计算式(含水蒸气修正),计算声速为:

$$v = 331.45 \sqrt{1 + \frac{\theta}{T_0} \left(1 + \frac{0.3192 p_w}{p}\right)} \text{ (m} \cdot \text{s}^{-1}) = 343.29 \text{ m} \cdot \text{s}^{-1}$$

 θ 、 T_0 按照摄氏温标约去,这一商取三位有效数字 0.0696,故 $\left(1+\frac{\theta}{T_0}\right)$ 项取五位有效数字。同理, $\left(1+\frac{0.3192p_w}{p}\right)$ 项取五位有效数字。故总运算结果取五位有效数字。数字。

结论: 通过气体参量的相关测量,可算出 19.0 ℃ 下声速 *v* = 343.29 m·s⁻¹。

1.5 探究峰峰值电压随距离的衰减

使用表 1、表 2 数据,作出峰峰电压对换能器间距的图线,如图 3 所示。

图 3 峰峰电压随换能器间距的衰减曲线

结论: 从曲线可以看出,无论是在正向还是在反向的极值法实验中,峰峰电压随换能器间距的增大均会减小,在一定距离之内基本上呈线性衰减,超过一定距离衰减速率减慢。

1.6 用相位法测定水中声速

在水槽中注水,量得水温为 $18.2\,^{\circ}$ C。在水中调节两换能器互相平行,且移动平行于主轴线。首先通过寻找最大极值的方法,确定换能器工作的谐振频率 f_0 = $1.81\,\mathrm{MHz}$ 。调节换能器间距合适。更换示波器的显示模式为 X-Y 显示模式,观察由初始信号和换能器接收信号产生的李萨如图形,并连续记下李萨如图形为正斜率直线时移动换能器的位置坐标。同理对换能器移动方向的不同有两组测量结果,正向测量结果如表 $6\,\mathrm{fm}$ 所示、反向测量结果如表 $7\,\mathrm{fm}$ 所示。使用最小二乘法进行数据处理,对正、反向测量数据分别作出拟合直线,正向、反向测量结果的拟合图线分别如图 4 、图 $5\,\mathrm{fm}$ 所示。

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	1.405	2.220	2.989	3.800	4.625
序号 i	6	7	8	9	10
换能器位置 x_i (mm)	5.449	6.270	7.078	7.898	8.718

表 6 正向相位法的水中声速测定结果

图 4 正向相位法测量水中声速的最小二乘拟合直线

序号 i	1	2	3	4	5
换能器位置 x_i (mm)	8.790	7.933	7.120	6.295	5.461
序号 i	6	7	8	9	10
换能器位置 x_i (mm)	4.638	3.821	3.012	2.222	1.400

表 7 反向相位法的水中声速测定结果

图 5 反向相位法测量水中声速的最小二乘拟合直线

对于正向测量, $\lambda = k = (0.814 \pm 0.002)$ mm, 声速为:

$$v = \lambda \cdot f = 1.47 \times 10^3 \text{ m} \cdot \text{s}^{-1} = 1.47 \text{ km} \cdot \text{s}^{-1}$$

不确定度为:

$$\sigma_{v} = v \cdot \sqrt{\left(\frac{\sigma_{\lambda}}{\lambda}\right)^{2} + \left(\frac{\sigma_{f}}{f}\right)^{2}} = 9 \text{ m} \cdot \text{s}^{-1}$$

故正向测定结果为 v_+ = (1.47 ± 0.01) km · s⁻¹。 对于反向测量, $\lambda = -k$ = (0.820 ± 0.002) mm,声速为:

$$v = \lambda \cdot f = 1.48 \times 10^3 \text{ m} \cdot \text{s}^{-1} = 1.48 \text{ km} \cdot \text{s}^{-1}$$

不确定度为:

$$\sigma_v = v \cdot \sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2} = 9 \text{ m} \cdot \text{s}^{-1}$$

故反向测定结果为 v_- =(1.48±0.01) km·s⁻¹。 取平均值,得到水中声速的测量结果v=(1.48±0.01) km·s⁻¹(18.2 °C)

结论:通过相位法也可以对水中声速进行测量,测量结果用最小二乘法进行处理,可以得到 18.2 °C 下的水中声速为 $v = (1.48 \pm 0.01)$ km · s⁻¹。

2 实验收获

本次实验使我理解了声速测量的相关方法,了解了声速测定仪、干湿球温度 计、水银气压计等仪器装置的使用。

通过实验,我更进一步理解了预习题。例如水中声速测定的特殊考虑需要考虑共振频率的变化,水中的共振频率远高于空气,若在没有达到共振的条件下测量,测量效率会变低,发热也会变多,影响实验的测定;又例如共振频率的测定方法取最大极大值法、避免螺距差的目的可以通过同向旋转来达到等。

3 致谢

感谢李峰老师对实验仪器操作和实验过程的指导。