CUR: Pros & Cons

Easy interpretation

Since the basis vectors are actual columns and rows

Sparse basis

 Since the basis vectors are actual columns and rows

 Columns of large norms will be sampled many times

Solution

- If we want to get rid of the duplicates:
 - Throw them away
 - Scale (multiply) the columns/rows by the square root of the number of duplicates

SVD vs. CUR

Simple Experiment

DBLP bibliographic data

- Author-to-conference big sparse matrix
- A_{ij}: Number of papers published by author *i* at conference *j*
- 428K authors (rows), 3659 conferences (columns)
 - Very sparse
- Want to reduce dimensionality
 - How much time does it take?
 - What is the reconstruction error?
 - How much space do we need?

Results: DBLP- big sparse matrix

Accuracy:

- 1 relative sum squared errors
- Space ratio:
 - #output matrix entries / #input matrix entries
- CPU time