Lecture6: Velocity Kinematics-Geometric and Analytic Jacobian of Open Chain

Notes taken by squarezhong

Repo address: squarezhong/SDM5008-Lecture-Notes

Lecture6: Velocity Kinematics-Geometric and Analytic Jacobian of Open Chain

Velocity Kinematics Geometric Jacobian Derivations Analytic Jacobian Derivations

Velocity Kinematics

Derive the **Jacobian Matrix**: lineariezd map from joint velocities $\dot{\theta}$ to the spatial velocity \mathcal{V} of the end effector (frame {b}).

ullet Twist representation o **Geometric Jacobian**

$$\mathcal{V}_b = J(\theta)\dot{\theta}$$

ullet Local coordinate of $SE(3)
ightarrow {f Analytic Jacobian}$

Let $x \in \mathbb{R}^p$ be the task space variable

e.g. some of Cartesain + Euler angle of end-effector frame

$$egin{aligned} x &= g(heta_1, heta_2, \dots heta_n) \ \dot{x} &= rac{\mathrm{d}}{\mathrm{d}t}(g(heta_1, \dots heta_n)) = \underbrace{rac{\partial g}{\partial heta}}_{ ext{Analytic Jacobian}} \dot{ heta} &= J_a(heta)\dot{ heta} \ rac{\partial g}{\partial heta} &\in \mathbb{R}^{n_x imes n} \end{aligned}$$

• Relation between Geometric Jacobian and Analytic Jacobian

$$J_a(\theta) = E(x)J(\theta)$$

where E(x) can be easily found with given parameterization x

Geometric Jacobian Derivations

In general, the end-effector twist $\mathcal{V}=(\omega,v)$

$$\mathcal{V}_b = \begin{bmatrix} J_1(heta) & J_2(heta) & \cdots & J_n(heta) \end{bmatrix} egin{bmatrix} \dot{ heta}_1 \ \dot{ heta}_2 \ dots \ \dot{ heta}_n \end{bmatrix}$$

where $heta=(heta_1, heta_2,\cdots, heta_n)$,

 $J_i(heta)$ is the screw axis of joint i when all other joints do not move (i.e. $orall j
eq i, \dot{ heta}_j = 0$)

In coordinate free notation, $J_i(heta) = \mathcal{S}_i(heta)$

Using local coordinate

$$^{i}J_{i}={}^{i}\mathcal{S}_{i},\quad i=1,2,\cdots,n$$

In fixed frame {0}

$${}^{0}J_{i}(\theta) = {}^{0}X_{i}(\theta)^{i}S_{i}, \quad i = 1, 2, \cdots, n$$
 (1)

where ${}^0X_i(heta)$ is the change of coordinate matrix for special velocities.

Recall the proof we did in Lecture5

$$T_i(heta) = e^{[{}^0ar{\mathcal{S}}_1] heta_1}e^{[{}^0ar{\mathcal{S}}_2] heta_2}\dots e^{[{}^0ar{\mathcal{S}}_i] heta_i}M \Rightarrow {}^0X_i(heta) = [\mathrm{Ad}_{{}^0T_i(heta)}]$$

To calculate more efficiently, we then derive a recursive Jacobian

$${}^{0}J_{i}(heta) = {}^{0}\mathcal{S}_{i}(heta) = \left[\operatorname{Ad}_{\hat{T}(heta_{1}, \cdots, heta_{i-1})}\right]^{0}\bar{\mathcal{S}}_{i}$$
 (3)

where $\hat{T}(heta_1,\cdots, heta_{i-1})=e^{[{}^0ar{\mathcal{S}}_1] heta_1}e^{[{}^0ar{\mathcal{S}}_2] heta_2}\cdots e^{[{}^0ar{\mathcal{S}}_{i-1}] heta_{i-1}}$

Analytic Jacobian Derivations

You should have learned it in traditional robotics course.