Pandas Practice Question

print first and last five rows

```
In [20]:
```

```
import pandas as pd
data = pd.read_csv("Automobile_data.csv")
```

print first and last five rows

```
In [21]:
```

```
data.head(5)
```

Out[21]:

	index	company	body-style	wheel-base	length	engine-type	num-of-cylinders	horsepower	average-mileage	price
0	0	alfa-romero	convertible	88.6	168.8	dohc	four	111	21	13495.0
1	1	alfa-romero	convertible	88.6	168.8	dohc	four	111	21	16500.0
2	2	alfa-romero	hatchback	94.5	171.2	ohcv	six	154	19	16500.0
3	3	audi	sedan	99.8	176.6	ohc	four	102	24	13950.0
4	4	audi	sedan	99.4	176.6	ohc	five	115	18	17450.0

```
In [22]:
```

```
data.tail(5)
```

Out[22]:

	index	company	body-style	wheel-base	length	engine-type	num-of-cylinders	horsepower	average-mileage	price
56	81	volkswagen	sedan	97.3	171.7	ohc	four	85	27	7975.0
57	82	volkswagen	sedan	97.3	171.7	ohc	four	52	37	7995.0
58	86	volkswagen	sedan	97.3	171.7	ohc	four	100	26	9995.0
59	87	volvo	sedan	104.3	188.8	ohc	four	114	23	12940.0
60	88	volvo	wagon	104.3	188.8	ohc	four	114	23	13415.0

Print most expensive car's company name and price.

```
In [23]:
```

```
data1 = data[['company','price']][data.price == data['price'].max()]
data1
```

Out[23]:

	company	price
35	mercedes-benz	45400.0

Print All Toyota Cars details

```
In [24]:
```

```
df = data.groupby('company')
```

```
toyotadf = df.get_group('toyota')
toyotadf
```

Out[24]:

	index	company	body-style	wheel-base	length	engine-type	num-of-cylinders	horsepower	average-mileage	price
48	66	toyota	hatchback	95.7	158.7	ohc	four	62	35	5348.0
49	67	toyota	hatchback	95.7	158.7	ohc	four	62	31	6338.0
50	68	toyota	hatchback	95.7	158.7	ohc	four	62	31	6488.0
51	69	toyota	wagon	95.7	169.7	ohc	four	62	31	6918.0
52	70	toyota	wagon	95.7	169.7	ohc	four	62	27	7898.0
53	71	toyota	wagon	95.7	169.7	ohc	four	62	27	8778.0
54	79	toyota	wagon	104.5	187.8	dohc	six	156	19	15750.0

Count total cars per company

In [28]:

```
total_count = data['company'].value_counts()
total_count
```

Out[28]:

toyota	7
bmw	6
mazda	5
nissan	5
audi	4
mitsubishi	4
volkswagen	4
mercedes-benz	4
isuzu	3
chevrolet	3
jaguar	3
honda	3
alfa-romero	3
porsche	3
volvo	2
dodge	2
	1.

Name: company, dtype: int64

Find each company's Higesht price car

In [32]:

```
import warnings
warnings.filterwarnings("ignore")
com = data.groupby('company')
highest = com['company','price'].max()
print(highest)
```

	company	price
company		
alfa-romero	alfa-romero	16500.0
audi	audi	18920.0
bmw	bmw	41315.0
chevrolet	chevrolet	6575.0
dodge	dodge	6377.0
honda	honda	12945.0
isuzu	isuzu	6785.0
jaguar	jaguar	36000.0
mazda	mazda	18344.0
mercedes-benz	mercedes-benz	45400.0
mitsubishi	mitsubishi	8189.0
nissan	nissan	13499.0
porsche	porsche	37028.0
1		1 [] [^ ^

toyota toyota 15/50.0 volkswagen volkswagen volvo 13415.0

average mileage of each car making company

```
In [35]:
```

```
df1 = data.groupby('company')
avg_mileage = df1['company','average-mileage'].mean()
avg_mileage
```

Out[35]:

average-mileage

company 20.333333 alfa-romero 20.000000 audi 19.000000 bmw chevrolet 41.000000 dodge 31.000000 honda 26.333333 33.333333 isuzu jaguar 14.333333 mazda 28.000000 18.000000 mercedes-benz mitsubishi 29.500000 31.400000 nissan porsche 17.000000 toyota 28.714286 volkswagen 31.750000

Sort all cars by Price column

volvo

23.000000

In [40]:

```
cars_price = data.sort_values(by=['price'], ascending = False)
cars_price.head()
```

Out[40]:

	index	company	body-style	wheel-base	length	engine-type	num-of-cylinders	horsepower	average-mileage	price
35	47	mercedes-benz	hardtop	112.0	199.2	ohcv	eight	184	14	45400.0
11	14	bmw	sedan	103.5	193.8	ohc	six	182	16	41315.0
34	46	mercedes-benz	sedan	120.9	208.1	ohcv	eight	184	14	40960.0
46	62	porsche	convertible	89.5	168.9	ohcf	six	207	17	37028.0
12	15	bmw	sedan	110.0	197.0	ohc	six	182	15	36880.0

Create two data frames using the following two Dicts, Concatenate those two data frames and create a key for each data frame.

```
In [41]:
```

```
GermanCars = {'Company': ['Ford', 'Mercedes', 'BMV', 'Audi'], 'Price': [23845, 171995, 135925 , 714 00]}
```

```
japaneseCars = {'Company': ['Toyota', 'Honda', 'Nissan', 'Mitsubishi '], 'Price': [29995, 23600, 61
500 , 58900]}
carsDf2 = pd.DataFrame.from_dict(japaneseCars)

carsDf = pd.concat([carsDf1, carsDf2], keys=["Germany", "Japan"])
carsDf
```

Out[41]:

		Company	Price
Germany	0	Ford	23845
	1	Mercedes	171995
	2	BMV	135925
	3	Audi	71400
Japan	0	Toyota	29995
	1	Honda	23600
	2	Nissan	61500
	3	Mitsubishi	58900

In []: