Juan Carlos Llamas Núñez 3º DG Int-Mat

DNI: 11867802-D Fecha: 17/12/2020

Examen I.O.

1.-Para añadir esa nueva variable calculamos el vector / = Ba

$$\Rightarrow Y_6 = \begin{pmatrix} 13 \\ 12 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$$

El coste reducido sera C6 = C6 - CB B a6 = C6 - CB X6 = $=-1-(-1,2)(-\frac{5}{-3})=-1-(-1)=0$. Por tanto, la solución asociada a la tabla que teníamos siguesiendo éplima, pero ahora la solución ya no es única. La nueva tabla es:

	Yı	X 2	X3	Xy	1 X5	/ ×	
	Ô	1	5	1	3	-5	24
Yı	1	0	4	1	2	-3	21
	0	0	-2	-1	-1	0	2-18
						-	

Detectamos que hay una dirección extrema en la que la función objetivo mantiene su valor optimo asi que el conjunto de soluciones es:

Juan Carles Llamas Niñez DNI: 11867802-D

$$X_{B}^{*} = B^{-1}b' = \begin{pmatrix} 1/2 & 0 \\ -1/6 & 1/3 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2/3 \end{pmatrix}$$

Por tunto la nueva table del simplex queda:

	X	1 X2 -	1 ×2	ſ×.	1 v.	Ĺ
x ₃	0	1/2	1	1/2	0	2
X,	1	11/21	0	-1/6	1/3	-2/2
	0	4	0	4	2	2-1-26)

Como no tenemos factibilidad primal pero si factibilidad dual aplicamos el algoritmo dial dial del Simplex.

Entra en la base x2 y sale x,

	X,	×2	×3	İ x.	1 V-	-1
×3	1	0	1	1/3	1/5	7/2
X2	-2	1	0	1/3	-2/2	4/3
1	8	0	0	8/3	14/3	2-1-62/3)

Esta tabla presenta solución óptima factible y además es única. Esta es:

$$\begin{cases} x^* \\ x_2^* \\ x_3^* \\ x_4^* \\ x_5^* \\ x_7^* \\ x_7^$$

3,-

En primer lugar observamos que la soloción óptima de la que partiamos no verifica la nueva restricción ya que 2.0-20-3.0 < -10

Introducimos por tambo la restricción -2x1+x2+3x3 < 10. Para ello aumentamos la base considerando la nueva variable de holgura x6 y escribimos la nueva tabla (con x6 en la base):

-	X,	X2	X 3	Xy	1 X5	į x,	, <u>j</u>
×2	-1	1	3	1	0	0	20
X5	8	0	-1	-2	1	0	5
X ₆	- A/	0	0	-1	0	1	-10
-	0	0	-2	-5	0	0	7 160
1.							E-100

Como tenemos factibilidad dual aplicamos el algoritmo dual del simplex. Entra en la base la variable x, y sale xe

	X	¥2	X3	1 X4	1 ×c	- X	.1
X	0	1	3	2	0	-1	30
-X	1	0	-1	1716	.1	8	-75
-71	0	0	0	1	0	-1	10
			-2	-7	0	0	2-100

Ejecutamos otra iteración en la que entra en la base xy y sale

					2	900	11116
	×	1 X2	X3	1 Xy	1 X5	X ₆	1
X2	0	1	14/5	0		3/5	15
Xy	O	0	1/10	1	-1/10	- 4/5	15/2
XI	1	0	-1/10	0			5/2
E .	0	0	-3/2	0	-1/2	-4	Z-125

Juan Carlos Llamas Núñez DNJ: 11867802-D

Hemos llegado a una tabla óptima con solvaión óptima unica quees:

$$con Z^* = \frac{125}{2}$$

Vamos a aplicar el Ecrolorio del Feorena de la Holgara complementaria.

En primer lugar ponemos el problema primel de minimización en forma canúnica:

min
$$z = -6x_1 + 2x_2 - 10x_3$$

5.a. $+3x_1 - x_2 - 4x_3 \ge -5$
 $-6x_1 + x_2 - 2x_3 \ge -10$
 $x_1, x_2, x_3 \ge 0$

Efectivemente

$$3x_1^* - x_2^* - 4x_3^* = -5 \ge -5$$

 $-6x_1^* + x_2^* - 2x_3^* = -10 \ge -10$ por lo que la solución es factible.

Si consideramos el problema dual, este es:

Juan Carlos Llamas Nuñez

DNJ: 11867802-D

$$ma \times w = -5y_1 - 10y_2$$

5.a. $3y_1 - 6y_2 \le -6$
 $-y_1 + y_2 \le 2$
 $-4y_1 - 2y_2 \le -10$
 $y_1, y_2 \ge 0$

Como las variables Xi y xi son estrictamente mayores de la lonces la primera y tercera restricción del duel debe complirse con igual dad para la solución óplima:

Esta solución verifica la segunda restrición del duel

$$\left(-\frac{8}{5} + \frac{9}{5} = \frac{1}{5} \le 2\right)$$
 y se liene que $w^* = -26 = -26 = 2^*$

Por tanto can cluimos que
$$\begin{vmatrix} x_i^* \\ x_z^* \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$$
 es solución o plima del primal y $\begin{vmatrix} y_i^* \\ y_z^* \end{vmatrix} = \begin{vmatrix} 8/5 \\ 9/5 \end{vmatrix}$ es solución óphina del dual.