

Le séquençage haut débit ou NGS

SOMMAIRE

Principe du séquençage NGS

LIBRAIRIE

Fragment d'ADN

Fragment d'ADN plus adaptateur

Chargement de la librairie

Réalisation des clusters

Synthèse SBS

Analyse des

✓ Fichier output Fastq

données

- ✓ Envoi par DDM
- √ Récupération des fichiers analysés
- ✓ Analyse des données via :

Réalisation de la librairie NGS

J1 entre 7 et 9 heures

J2 7 heures

J3 entre 7 et 9 heures

La fragmentation

Dilution d'ADN 200 ng

Fragment de l'ADN

Réparation et ajout d'une base A

Ligation des index

PCR amplification

- ✓ Après lavage post-ligation et une double sélection des produits de ligation.
- ✓ Une double sélection des produits de ligation allant de 250 à 700 pb.
- ✓ On amplifie les produits de ligation sélectionnés par PCR de 8 cycles afin d'augmenter la quantité de fragment.

Quantification et contrôle de qualité

✓ Quantification sur un Qubit 4 par fluorimétrie.

✓ Contrôle de la ... taille des fragments par migration capillaire.

Hybridation et capture

- √ Hybridation des régions étudiées 4h à 65°C
- ✓ Capture sur bille de streptavidine
- √ Lavage des billes de streptavidine
- ✓ Amplification postcapture
- √ Lavage de l'amplification post-capture
- ✓ Quantification et contrôle de qualité de la librairie

✓ Mélange des librairies

La Technologie ILLUMINA

- ✓ Séquenceur moyen débit deux couleurs
- ✓ Jusqu'à 180 Gb de données par run
- ✓ Deux types de cartouche P1 et P2
- ✓ Cartouche et flow cell faciles à utiliser
- ✓ Equipé de deux processeurs microserveur
- ✓ Equipé de 288 GB de RAM
- ✓ Un disque dur en flash de 4 T
- ✓ Un système sur une base LINUX: CentOS 7.6