Tutorial-1

Number systems (concept examples)

Example 1: Convert binary number 1011010 to the octal equivalent.

SOLUTION: The first step is to rewrite the number with the digits grouped in threes: 001 011 010

Note that two zeros were placed in front of the first digit 1 in order to make every group complete.

Next, write the decimal equivalent over each group of three:

The octal equivalent of binary 1011010 is 132.

1	3	2
001	011	010

Example 2: Convert binary number 1011010 to the hexadecimal equivalent.

SOLUTION: The first step is to rewrite the number with the digits grouped in fours: 0101 1010

Note the zero were placed in front of the first digit 1 in order to make the two groups complete.

Next, write the decimal equivalent over each group:

The hexadecimal equivalent of binary 1011010 is 5A.

5	Α
0101	1010

Example 3: Convert the hex number 2AE9₁₆ to binary.

SOLUTION: Write each hex digit to 4 bit group in binary system to give 2 --> 0010; A --> 1010; E --> 1110; 9 --> 1001. Putting them together gives 00101010111101001_2 .

Example 4: Convert 41₁₀ to binary.

SOLUTION: First, divide 41 by 2 and list the integer quotients and remainders. ...continue the process until the integer quotient becomes 0 (see table). So, 41_2 = (101001)₂

Integer	Remainder
41	
20	1
10	0
5	0
2	1
1	0
0	1 $101001 = answer$

Fraction

Coefficient

Example 5: Convert 0.6875₁₀ to binary.

SOLUTION: First, multiply 0.6875 by 2 to give an integer and a fraction. ...continue until the fraction becomes 0 or until the number of digits has sufficient accuracy. The

$0.6875 \times 2 =$	1	+	0.3750	$a_{-1} = 1$
$0.3750 \times 2 =$	0	+	0.7500	$a_{-2} = 0$
$0.7500 \times 2 =$	1	+	0.5000	$a_{-3} = 1$
$0.5000 \times 2 =$	1	+	0.0000	$a_{-4} = 1$

Integer

coefficients of the binary number are obtained from the integers as shown in the table:

PHY 307: Electronics-II

Tutorial-1

(Binary, Hexadecimal and Decimal numbers)

1. (A). Binary to decimal conversion: Convert the following binary numbers to decimal,

(i). 101101₂, (ii). 1 1 0 1 1₂, (iii). 10110₂, (iv). 10011100₂.

(B). Decimal to binary conversion: Convert the following decimal numbers to binary,

(i). 13_{10} , (ii). 37_{10} , (iii). 93_{10} , (iv). 0.625_{10} .

2. (A). Binary to hexadecimal conversion: Convert the following binary numbers to hexadecimal,

(i). 10110101_2 , (ii). 0110101110001100_2 , (iii). 10_2 , (iv). 01_2 .

(B). Hexadecimal to binary conversion: Convert the following hexadecimal numbers to binary,

(i). 374F₁₆, (ii). FACE₁₆, (iii). 8ADO₁₆, (iv). 32EB₁₆.

(C). **Hexadecimal to decimal conversion:** Convert the following hexadecimal numbers to decimal,

(i). $C921_{16}$, (ii). 11_{16} , (iii). $3AB_{16}$, (iv). $A1A1_{16}$.

3. Arithmetic addition in binary numbers:

(i). $+6_{10}+13_{10}$, (ii). $+6_{10}-13_{10}$, (iii). $-6_{10}+13_{10}$, (iv). $-6_{10}-13_{10}$.