Louis Meunier

Algebra 2 MATH251

Course Outline:

Based on Lectures from Winter, 2024 by Prof. Anush Tserunyan.

Contents

1	Intr	oduction	2
	1.1	Vector Spaces	2
	1.2	Creating Spaces from Other Spaces	4
	1.3	Linear Combinations and Span	6
	1.4	Linear Dependence and Span	9
2	Line	ear Transformations	16
	2.1	Definitions	16
	2.2	Isomorphisms, Kernel, Image	18
	2.3	The Space $\operatorname{Hom}(V,W)$	22
	2.4	Matrix Representation of Linear Transformations	24
	2.5	General Matrix Representation	26

1 Introduction

Remark 1.1. This course is about vector spaces and linear transformations between them; a vector space involves multiplication by scalars, where the scalars come from some field. We recall first examples of fields, then vector spaces, as a motivation, before presenting a formal definition.

1.1 Vector Spaces

Remark 1.2. Much of this is recall from Algebra 1.

*** Example 1.1: Examples of Fields**

- 1. \mathbb{Q} ; the field of rational numbers.
- 2. \mathbb{R} ; the field of real numbers; $\mathbb{Q} \subseteq \mathbb{R}$.
- 3. \mathbb{C} ; the field of complex numbers; $\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.
- 4. $\mathbb{F}_p \equiv \mathbb{Z}/p\mathbb{Z} \equiv \{0, 1, \dots, p-1\}; the(unique) field of pelements, where pprime.^a$
 - (a) p = 2; $\mathbb{F}_2 \equiv \{0, 1\}$.
 - (b) p = 3; $\mathbb{F}_3 \equiv \{0, 1, 2\}$.
 - (c) · · ·

a where $a +_p b :=$ remainder of $\frac{a+b}{p}$, $a \cdot_p b :=$ remainder of $\frac{a \cdot b}{p}$.

Remark 1.3. Throughout the course, we will denote an abstract field as \mathbb{F} .

® Example 1.2: Examples of Vector Spaces

- 1. $\mathbb{R}^3:=\{(x,y,z):x,y,z\in\mathbb{R}\}$. We can add elements in \mathbb{R}^3 , and multiply them by real scalars.
- 2. $\mathbb{F}^n := \underbrace{\mathbb{F} \times \mathbb{F} \times \cdots \mathbb{F}}_{n \text{ times}} := \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{F}\}, \text{ where } n \in \mathbb{N}^1; \text{ this is a generalization of the previous example, where we took } n = 3, \mathbb{F} = \mathbb{R}. \text{ Operations follow identically; addition:}$

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) := (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and, taking a scalar $\lambda \in \mathbb{F}$, multiplication:

$$\lambda \cdot (a_1, a_2, \dots, a_n) := (\lambda \cdot a_1, \lambda \cdot a_2, \dots, \lambda \cdot a_n).$$

We refer to these elements (a_1, \dots, a_n) as *vectors* in \mathbb{F}^n ; the vector for which $a_i = 0 \,\forall i$ is the 0 *vector*, and is the additive identity, making \mathbb{F}^n an abelian group under addition, that admits multiplication by scalars from \mathbb{F} .

- 3. $C(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} : f \text{ continuous} \}$. Here, we have the constant zero function as our additive identity $(x \mapsto 0 \,\forall x)$, and addition/scalar multiplication of two continuous real functions are continuous.
- 4. $\mathbb{F}[t] := \{a_0 + a_1t + a_2t^2 + \cdots + a_nt^n : a_i \in \mathbb{F} \ \forall i, n \in \mathbb{N}\}$, ie, the set of all polynomials in t with coefficients from \mathbb{F} . Here, we can add two polynomials;

$$(a_0 + a_1t + \dots + a_nt^n) + (b_0 + b_1t + \dots + b_mt^m) := \sum_{i=0}^{\max\{n,m\}} (a_i + b_i)t^i,$$

(where we "take" undefined a_i/b_i 's as 0; that is, if m > n, then $a_{m-n}, a_{m-n+1}, \ldots, a_m$ are taken to be 0). Scalar multiplication is defined

$$\lambda \cdot (a_0 + a_1t + a_2t^2 + \dots + a_nt^n) := \lambda a_0 + \lambda a_1t + \lambda a_2t^2 + \dots + \lambda a_nt^n.$$

Here, the zero polynomial is simply 0 (that is, $a_i = 0 \,\forall i$).

\hookrightarrow **Definition** 1.1: Vector Space

A vector space V over a field \mathbb{F} is an abelian group with an operation denoted + (or $+_V$) and identity element²denoted 0_V , equipped with scalar multiplication for each scalar $\lambda \in \mathbb{F}$ satisfying the following axioms:

- 1. $1 \cdot v = v$ for $1 \in \mathbb{F}$, $\forall v \in V$.
- 2. $\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta)v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$
- 3. $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v, \forall \alpha, \beta \in \mathbb{F}, v \in V.$
- 4. $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v, \forall \alpha \in \mathbb{F}, u, v \in V.$

We refer to elements $v \in V$ as vectors.

\hookrightarrow Proposition 1.1

For a vector space V over a field \mathbb{F} , the following holds:

- 1. $0 \cdot v = 0_V$, $\forall v \in V$ (where $0 := 0_{\mathbb{F}}$)
- 2. $-1 \cdot v = -v, \forall v \in V \text{ (where } 1 := 1_{\mathbb{F}})^3$
- 3. $\alpha \cdot 0_V = 0_V, \forall \alpha \in \mathbb{F}$

Proof. 1. $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \implies 0 \cdot v = 0_V$ (by "cancelling" one of the $0 \cdot v$ terms on each side).

¹Where we take $0 \in \mathbb{N}$, for sake of consistency. Moreover, by convention, we define \mathbb{F}^0 (that is, when n = 0) to be $\{0\}$; the trivial vector space.
²The "zero vector".

³NB: "additive inverse"

2. $v + (-1 \cdot v) = (1 \cdot v + (-1) \cdot v) = (1 - 1) \cdot v = 0 \cdot v = 0_V \implies (-1 \cdot v) = -v$.

3. $\alpha \cdot 0_V = \alpha \cdot (0_V + 0_V) = \alpha \cdot 0_V + \alpha \cdot 0_V \implies \alpha \cdot 0_V = 0_V$ (by, again, cancelling a term on each side).

 $\hookrightarrow Lecture~01; Last~Updated:~Wed~Jan~10~14:16:29~EST~2024$

1.2 Creating Spaces from Other Spaces

→ Definition 1.2: Product/Direct Sum of Vector Spaces

For vector spaces U, V over the same field \mathbb{F} , we define their *product* (or *direct sum*) as the set

$$U \times V = \{(u, v) : u \in U, v \in V\},\$$

with the operations:

$$(u_1, v_1) + (u_2, v_2) := (u_1 + u_2, v_1 + v_2)$$

 $\lambda \cdot (u, v) := (\lambda \cdot u, \lambda \cdot v)$

 \circledast Example 1.3: \mathbb{F}

 $\mathbb{F}^2 = \mathbb{F} \times \mathbb{F}$, where \mathbb{F} is considered as the vector space over \mathbb{F} (itself).

For a vector space V over a field \mathbb{F} , a *subspace* of V is a subset $W \subseteq V$ s.t.

- 1. $0_V \in W^4$
- 2. $u + v \in W \, \forall u, v \in W$ (closed under addition)
- 3. $\alpha \cdot u \in W \, \forall \, u \in W, \alpha \in \mathbb{F}^5$

Then, W is a vector space in its own right.

*** Example 1.4: Examples of Subspaces**

- 1. Let $V := \mathbb{F}^n$.
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 = 0\} = \{(0, x_2, x_3, \dots, x_n) : x_i \in \mathbb{F}\}.$
 - $W := \{(x_1, x_2, \dots, x_n) \in \mathbb{F}^n : x_1 + 2 \cdot x_2 = 0\}$

<u>Proof.</u> Let $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in W$. Then, $x + y = (x_1 + y_1, \dots, x_n + y_n)$, and $x_1 + y_1 + 2 \cdot (x_2 + y_2) = x_1 + 2 \cdot x_2 + y_1 + 2 \cdot y_2 = 0 + 0 = 0 \implies x + y \in W$. Similar logic follows for axioms 2., 3.

• (More generally)

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$W := \{(x_1, \dots, x_n) \in \mathbb{F}^n : a_{21}x_1 + \dots + a_{2n}x_n = 0 \},$$

$$a_{k1}x_1 + \dots + a_{kn}x_n = 0$$

that is, a linear combination of homogenous "conditions" on each term.

- $W^* := \{(x_1, \dots, x_n) : x_1 + x_2 = 1\}$ is *not* a subspace; it is not closed under addition, nor under scalar multiplication.
- 2. Let $\mathbb{F}[t]_n := \{a_0 + a_1 t + \dots + a_n t^n : a_i \in \mathbb{F}\}$. Then, $\mathbb{F}[t]_n$ is a subspace of $\mathbb{F}[t]$, the more general polynomial space. *However*, the set of all polynomials of degree *exactly* n (all axioms fail, in fact) is not a subspace of $\mathbb{F}[t]_n$.
 - $W := \{ p(t) \in \mathbb{F}[t]_n : p(1) = 0 \}.$
 - $W := \{p(t) \in \mathbb{F}[t]_n : p''(t) + p'(t) + 2p(t) = 0\}.$
- 3. Let $V:=C(\mathbb{R})$ be the space of continuous function $\mathbb{R}\to\mathbb{R}$.

⁴This is equivalent to requiring that $W \neq \emptyset$; stated this way, axiom 3. would necessitate that $0 \cdot w = 0_V \in W$.

⁵Note that these axioms are equivalent to saying that W is a subgroup of V with respect to vector addition; 2. ensures closed under addition, and 3. ensures the existence of additive inverses (as per $-1 \cdot v = -v$).

- $W := \{ f \in C(\mathbb{R}) : f(\pi) + 7f(\sqrt{2}) = 0 \}.$
- $W:=C^1(\mathbb{R}):=$ everywhere differentiable functions.
- $W := \{ f \in C(\mathbb{R}) : \int_0^1 f \, \mathrm{d}x = 0 \}.$

\hookrightarrow Proposition 1.2

Let W_1, W_2 be subspaces of a vector space V over \mathbb{F} . Then, define the following:

1.
$$W_1 + W_2 := \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$$

2.
$$W_1 \cap W_2 := \{ w \in V : w \in W_1 \land w \in W_2 \}$$

These are both subspaces of V.

Proof. 1. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 + W_2$.

(b)
$$(u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W_1 + W_2$$
.

(c)
$$\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v \in W_1 + W_2$$

2. (a) $0_V \in W_1$ and $0_V \in W_2 \implies 0_V = 0_V + 0_V \in W_1 \cap W_2$.

(b)
$$u, v \in W_1 \cap W_2 \implies u + v \in W_1 \wedge u + v \in W_2 \implies u + v \in W_1 \cap W_2$$
.

(c)
$$\alpha \cdot u \in W_1 \wedge \alpha \cdot u \in W_2 \implies \alpha \cdot u \in W_1 \cap W_2$$
.

1.3 Linear Combinations and Span

→ Definition 1.4: Linear Combination

Let V be a vector space over a field \mathbb{F} . For finitely many vectors v_1, v_2, \ldots, v_n , their *linear combination* is a sum of the form

$$\sum_{i=1}^{n} a_i v_i = a_1 \cdot v_1 + \dots + a_n \cdot v_n,$$

where $a_i \in \mathbb{F} \, \forall i$.

A linear combination is called *trivial* if $a_i = 0 \,\forall\, i$, that is, all coefficients are 0.

If n=0 (ie, we are "summing up" 0 vectors), we define the sum as the zero vector; $\sum_{i=1}^{0} a_i v_i := 0_V$.

 $\hookrightarrow Lecture~02; Last~Updated:~Tue~Jan~23~15:04:02~EST~2024$

→ **Definition** 1.5: A More General Definition of Linear Combination

For a (possibly infinite) set S of vectors from V, a linear combination of vectors in S is a linear combination of

 $a_1v_1 + \cdots + a_nv_n$ for some finite subset $\{v_1, \dots, v_n\} \subseteq S^6$

\hookrightarrow **Definition** 1.6: Span

For a subset $S \subseteq V$, we define its *span* as

 $\operatorname{Span}(S) := \operatorname{set} \operatorname{of} \operatorname{all linear combinations} \operatorname{of} S := \{a_1v_1 + \cdots + a_nv_n : a_i \in \mathbb{F}, v_i \in S\}.$

By convention, we set $Span(\emptyset) = \{0_V\}.$

*** Example 1.5**

Let $S := \{(1,0,-1), (0,1,-1), (1,1,-2)\} \subseteq \mathbb{R}^3$. Then,

$$0_{\mathbb{R}^3} = (0,0,0) = 1 \cdot (1,0,-1) + 1 \cdot (0,1,-1) + -1 \cdot (1,1,-2).$$

We claim, moreover, that $\mathrm{Span}(S)=U:=\{(x,y,z)\in\mathbb{R}^3:x+y+z=0\}$ (a plane through the origin).

Proof. Note that $S \subseteq U$, hence $S \subseteq \operatorname{Span} S \subseteq U$. OTOH, if $(x, y, z) \in U$, we have z = -x - y, and so

$$(x, y, z) = (x, y, -x - y) = x \cdot (1, 0, -1) + y \cdot (0, 1, -1) \in \text{Span}(S)$$

hence $U \subseteq \operatorname{Span}(S)$ and thus $\operatorname{Span}(S) = U$.

Remark 1.4. We implicitly used the following claim in the proof above; we prove it more generally.

\hookrightarrow Proposition 1.3

Let V be a vector space over \mathbb{F} and let $S \subseteq V$. Then, $\operatorname{Span}(S)$ is always a subspace. Moreover, it is the smallest (minimal) subspace containing S (that is, for any subspace $U \supseteq S$, we have that $U \supseteq \operatorname{Span} S$).

<u>Proof.</u> Because adding/scalar multiplying linear combinations of elements of S again results in a linear combination of elements of S, and $0_V \in \text{Span}(S)$ by definition, we have that Span(S) is indeed a subspace.

If $U \supset S$ is a subspace of V containing S, then by definition U is closed under addition, that is, taking linear combinations of its elements (in particular, of elements of S); hence, $U \supset \operatorname{Span}(S)$.

\hookrightarrow Lemma 1.1

For $S \subseteq V$ and $v \in V$, $v \in \operatorname{Span}(S) \iff \operatorname{Span}(S \cup \{v\}) = \operatorname{Span}(S)$.

Proof. (\Longrightarrow) Let $v \in \operatorname{Span}(S) \Longrightarrow v = a_1v_1 + \cdots + a_nv_n, a_i \in \mathbb{F}, v_i \in V$. Then, for any linear combination

$$b_1u_1 + \cdots + b_mu_m + b \cdot v = b_1u_1 + \cdots + b_mu_m + b(a_1v_1 + \cdots + a_nv_n)$$

⁶That is, we do not allow infinite sums.

is a linear combination of vectors in $S \cup \{v\}$ (first equality) or equivalently, a combination of vectors in S (second equality) and thus $\operatorname{Span}(S \cup \{v\}) \subseteq \operatorname{Span} S$. The reverse inclusion follows trivially.

$$(\Leftarrow) \operatorname{Span}(S \cup \{v\}) = \operatorname{Span} S \implies v \in \operatorname{Span}(S).$$

*** Example 1.6**

(From the above example) We have

$$Span(\{(1,0,-1),(0,1,-1)\} \cup \{(1,1,-2)\}) = Span(\{(1,0,-1),(0,1,-1)\}),$$

since $(1, 1, -2) \in \text{Span}(\{(1, 0, -1), (0, 1, -1)\})$ (it was redundant, as it could be generated by the other two vectors).

→ Definition 1.7: Spanning Set

Let V be a vector space over a field \mathbb{F} . We call $S \subseteq V$ a spanning set for V if $\mathrm{Span}(S) = V$. We call such a spanning set minimal if no proper subset of S is a spanning set $(\not\exists v \in S \text{ s.t. } S \setminus \{v\} \text{ spanning})$.

Remark 1.5. Note that any $S \subseteq V$ is a spanning for Span(S). But, S may not be minimal; indeed, consider the previous example. We were able to remove a vector from S while having the same span.

*** Example 1.7**

§1.3

For \mathbb{F}^n as a vector space over \mathbb{F} , the *standard spanning set*

$$\operatorname{St}_{n} := \{ \underbrace{(1, \dots, 0)}_{:=e_{1}}, \underbrace{(0, 1, 0, \dots, 0)}_{:=e_{2}}, \dots, \underbrace{(0, \dots, 1)}_{e_{n}} \}.$$

Given any $x := (x_1, \dots, x_n) \in \mathbb{F}^n$, we can write

$$x = x_1 \cdot e_1 + \cdots + x_n \cdot e_n$$
.

This is clearly minimal; removing any e_i would then result in a 0 in the *i*th "coordinate" of a vector, hence $\operatorname{St} \setminus \{e_i\}$ would span only vectors whose *i*th coordinate is 0.

\hookrightarrow <u>Definition</u> 1.8: Linear Dependence

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is said to be *linearly dependent* if there is a nontrivial linear combination of vectors in S that is equal to 0_V .

Conversely, S is called *linearly independent* if there is no nontrivial linear combination of vectors in S that is equal to 0_V ; all linear combinations of vectors in S that equal 0_V are trivial.

 $\hookrightarrow Lecture~03; Last~Updated:~Tue~Jan~23~15:04:36~EST~2024$

*** Example 1.8**

- 1. The empty set \varnothing is linearly independent; there are no non-trivial linear combinations that equal 0_V (there are no linear combinations at all).
- 2. For $v \in V$, the set $\{v\}$ is linearly dependent iff $v = 0_V$.
- 3. $S:=\{(1,0,-1),(0,1,-1),(1,1,-2)\}:=\{v_1,v_2,v_3\}; S \text{ is linearly dependent } (v_1+v_2-v_3=(0,0,0)).$
- 4. $V:=\mathbb{F}^3; S:=\{(1,0,-1),(0,1,-1),(0,0,1)\}=\{v_1,v_2,v_3\}$ is linearly independent.

Proof. Suppose

$$a_1v_1 + a_2v_2 + a_3v_3 = 0_V$$

$$\implies a_1 = 0 \land a_2 = 0 \land -a_1 - a_2 + a_3 = 0 \implies a_3 = 0$$

$$\implies a_1 = a_2 = a_3 = 0$$

Hence only a trivial linear combination is possible.

5. St_n is linearly independent.

Proof.

$$\sum_{i=1}^{n} a_i e_i = 0_{\mathbb{F}^n} \implies a_i = 0 \,\forall i$$

\hookrightarrow Lemma 1.2

Let V be a vector space over a field $\mathbb F$, and $S\subseteq V$ (possibly infinite).

- 1. S is linearly dependent \iff there is a finite subset $S_0 \subseteq S$ that is linearly dependent.
- 2. S is linearly independent \iff all finite subsets of S are linearly independent.

<u>*Proof.*</u> 2. follows from the negation of 1.

 (\Leftarrow) Trivial.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V =$ some nontrivial linear combination of vectors v_1, \ldots, v_n in S. Let $S_0 = \{v_1, \ldots, v_n\}$, then, S_0 is linearly dependent itself.

1.4 Linear Dependence and Span

\hookrightarrow Proposition 1.4

Let V be a vector space over a field \mathbb{F} and $S \subseteq V$.

- 1. S linearly dependent $\iff \exists v \in \text{Span}(S \setminus \{v\}).$
- 2. S linearly independent \iff there is no $v \in \text{Span}(S \setminus \{v\})$.

Proof. 2. follows from the negation of 1.

(\Longrightarrow) Suppose S linearly dependent. Then, $0_V = \sum_{i=1}^n a_i v_i$ for some nontrivial linear combination of distinct vectors S. At least one of $a_i \neq 0$; we can assume wlog (reindexing) $a_1 \neq 0$. Then,

$$a_1 v_1 = -\sum_{i=2}^n a_i v_i \implies v_1 = (-a_1^{-1}) \sum_{i=2}^n a_i v_i = \sum_{i=2}^n (-a_1^{-1} a_i) v_i,$$

hence, $v_1 \in \operatorname{Span}(\{v_2, \dots, v_n\}) \subseteq \operatorname{Span}(S \setminus \{v\})$

(\iff) Suppose $v \in \text{Span}(S \setminus \{v\})$, then $v = a_1v_1 + \cdots + a_nv_n$, with $v_1, \ldots, v_n \in S \setminus \{v\}$, thus

$$0_V = a_1 v_1 + \dots + a_n v_n - v,$$

which is not a trivial combination (-1 on the v; v cannot "merge" with the other vectors), hence S is linearly dependent.

\hookrightarrow Corollary 1.1

 $S \subseteq V$ is linearly independent $\iff S$ a minimal spanning set of $\operatorname{Span} S$.

Proof. Follows from proposition 1.4, 2.

→ **Definition** 1.9: Maximally Independent

Let V be a vector space over a field \mathbb{F} . A set $S \subseteq V$ is called *maximally independent* if S is linearly independent and $\exists v \in V \setminus S$ s.t. $S \cup \{v\}$ is still linearly independent.

In other words, there is no proper supset $\tilde{S} \supseteq S$ that is still independent.

$\hookrightarrow \underline{Lemma} \ 1.3$

If $S \subseteq V$ maximally independent, then S is spanning for V.

<u>Proof.</u> Let $S \subseteq V$ be maximally independent. Let $v \in V$; supposing $v \notin S$ (in the case that $v \in S$, then $v \in \operatorname{Span}(S)$ trivially). By maximality, $S \cup \{v\}$ is linearly dependent, hence there exists a nontrivial linear combination that equals

 0_V . Since S independent, this combination must include v, with a nonzero coefficient. We can write

$$av + \sum_{i=1}^{n} a_i v_i = 0_V \quad a \neq 0, v_i \in S$$

$$\implies v = \sum_{i=1}^{n} (-a^{-1}a_i)v_i \in \operatorname{Span} S.$$

\hookrightarrow Theorem 1.1

Let V be a vector space over a field \mathbb{F} and let $S \subseteq V$. TFAE:

- 1. S is a minimal spanning set;
- 2. S is linearly independent and spanning;
- 3. *S* is a maximally linearly independent set;
- 4. Every vector in V is equal to *unique* linear combination of vectors in S.

← Lecture 04; Last Updated: Fri Jan 26 13:32:10 EST 2024

<u>Proof.</u> (1. \implies 2.) Suppose S is spanning for V and is minimal. Then, by corollary 1.1, we have that S is linearly independent, and is thus both linearly independent and spanning.

(2. \Longrightarrow 3.) Suppose S is linearly independent and spanning. Let $v \in V \setminus S$; S is spanning, hence $v \in \operatorname{Span} S$, that is, there exists a linear combination of vectors in S that is equal to v:

$$v = a_1 v_1 + \dots + a_n v_n, a_i \in \mathbb{F}, v_i \in S.$$

Thus, $0_V = a_1v_1 + \cdots + a_nv_n - v$, thus $S \cup \{v\}$ is linearly dependent, and so S is maximally linearly independent.

- (3. \implies 1.) Suppose S is maximally linearly independent. By lemma 1.3, S is spanning, and since S is linearly independent, by corollary 1.1, S is minimally spanning for $\operatorname{Span} S$.
- (2. \implies 4.) Suppose S is linearly independent and spans V, and let $v \in V$. We have that $v \in \operatorname{Span} S$ and hence is equal to a linear combination of vectors in S. This gives existence; we now need to prove uniqueness.

Suppose there exist two linear combinations that equal v,

$$v = a_1v_1 + \cdots + a_nv_n = b_1u_1 + \cdots + b_mu_m$$

 $a_i, b_j \in \mathbb{F}$, $v_i, u_j \in S$. With appropriate reindexing/relabelling and allowing certain scalars to equal 0, we can assume that the combinations use the same vectors (with potentially different coefficients), that is,

$$v = a_1 w_1 + \dots + a_k w_k = b_1 w_1 + \dots + a_k w_k$$
.

This implies, then,

§1.4

$$(a_1 - b_1)w_1 + \cdots + (a_k - b_k)w_k = 0_V$$
.

and by the assumed linear independent of S, each coefficient $(a_i - b_i) = 0 \,\forall i \implies a_i = b_i \,\forall i$, hence, these are indeed the same representations, and thus this representation is unique.

(4. \implies 2.) Suppose every vector in V admits a unique linear combination of vectors in S. Clearly, then, S is spanning. It remains to show S is linearly independent. Suppose

$$0_V = a_1 v_1 + \dots + a_n v_n$$

for $v_i \in S$. But we have that every vector has a unique representation, and we know that $a_i = 0 \,\forall i$ is a (valid) linear combination that gives 0_V ; hence, this must be the unique combination, $a_i = 0 \,\forall i$, and the linear combination above is trivial. Hence, S is linearly independent and spanning.

→ Definition 1.10: Basis

If any (hence all) of the above statements hold, we call S a *basis* for V.

In the words of 4, we call the unique linear combination of vectors in S that is equal to v the unique representation of v in S. Its coefficients are called the Fourier coefficients of v in S.

*** Example 1.9**

- 1. $\operatorname{St}_n = \{e_i : 1 \le i \le n\}$ is a basis for \mathbb{F}^n .
- 2. In \mathbb{F}^3 , the set

$$\{(1,0,-1),(0,1,-1),(0,0,1)\}$$

is a basis; it is linearly independent and spanning.

3. For $\mathbb{F}[t]_n$, the standard basis is

$$\{1,t,t^2,\ldots,t^n\}.$$

4. For $\mathbb{F}[t]$, the standard basis is

$$S := \{1, t, t^2, \dots\} = \{t^n : n \in \mathbb{N}\}.$$

5. Let $\mathbb{F}[t]$ denote the space of all formal power series $\sum_{n\in\mathbb{N}} a_n t^n$; polynomials are an example, but with only finite nonzero coefficients. Note that, then, the set S defined above is not a basis for this "extended" set. We *can* in fact find a basis for this set; we need more tools first.

\hookrightarrow Theorem 1.2

Every vector space has a basis.

Remark 1.6. This theorem relies on assuming the Axiom of Choice.

 $\hookrightarrow Lecture~05; Last~Updated:~Wed~Jan~17~13:37:26~EST~2024$

Proof (Attempt). (Of theorem 1.2) We will try to "inductively" build a maximally independent set, as follows:

Begin with an empty set $S_0 := \emptyset$, and iteratively add more vectors to it. Let $v_0 \in V$ be a non-zero vector, and let $S_1 := \{v_0\}$.

If S_1 is maximal, then we are done. Otherwise, there exists a new vector $v_1 \in V \setminus S_1$ s.t. $S_2 := \{v_0, v_1\}$ is still independent.

If S_2 is maximal, then we are done. Otherwise, there exists a new vector $v_2 \in V \setminus S_2$ s.t. $S_3 := \{v_0, v_1, v_2\}$ is still independent.

Continue in this manner; this would take arbitrarily many finite, or even infinite, steps; we would need some "choice function" that would "allow" us to choose any particular ith vector v_i .

We can make this construction precise via the Axiom of Choice and transfinite induction (on ordinals); alternatively, we will prove a statement equivalent to the Axiom of Choice, Zorn's Lemma.

Remark 1.7. Before stating Zorn's Lemma, we introduce the following terminology.

→ Axiom 1.1: Axiom of Choice

Let X be a set of nonempty sets. Then, there exists a choice function f defined on X that maps each set of X to an element of that set.

→ Definition 1.11: Inclusion-Maximal Element

A inclusion-maximal element of I is a set $S \in I$ s.t. there is no strict super set $S' \supseteq S$ s.t. $S' \in I$.

→ Definition 1.12: Chain

Let X a set. Call a collection $\mathcal{C} \subseteq \mathcal{P}(X)$ a *chain* if any two $A, B \in \mathcal{C}$ are comparable, ie, $A \subseteq B$ or $B \subseteq A$.

\hookrightarrow **<u>Definition</u>** 1.13: Upper Bound

An *upper bound* of a collection $\tau \subseteq \mathcal{P}(X)$ is a set $U \subseteq X$ s.t. $U \supseteq J \ \forall \ J \in \tau$; U contains the union of all sets in J.

® Example 1.10: Of The Previous Definitions

Let
$$X := \mathbb{N}, I := \{\emptyset, \{0\}, \{1, 2\}, \{1, 2, 3\}\} \subseteq \mathcal{P}(\mathbb{N}).$$

The maximal elements of I would be $\{0\}$ and $\{1, 2, 3\}$.

Chains would include $C_0 := \{\emptyset, \{1, 2\}, \{1, 2, 3\}\}, C_1 := \{\emptyset, \{0\}\}, C_2 := \{\emptyset\}$ (or any set containing a single element).

The sets $\{0, 1, 2, 3\}$ and $\{0, 1, 2, 3, 4, 5\}$ are upper bounds for I, while neither is an element of I. The set $\{1, 2, 3\}$ is an upper bound for C_0 . A chain $\{\emptyset, \{0\}, \{0, 1\}, \{0, 1, 2\}, \dots\}$ has an upper bound of \mathbb{N} .

→ Lemma 1.4: Zorn's Lemma

Let X be an ambient set and $I \subseteq \mathcal{P}(X)$ be a nonempty collection of subsets of X. If every chain $\mathcal{C} \subseteq I$ has an upper bound in I, then I has a maximal element.

"Proof". This is equivalent to the Axiom of Choice; proving it is beyond the scope of this course :(.

Proof of theorem 1.2, cnt'd. We obtain a maximal independent set using Zorn's Lemma.

Let I be the collection of all linearly independent subsets of V. I is nonempty; $\emptyset \in I$, as is $\{v\} \in I$ for any nonzero $v \in V$. To apply Zorn's, we need to show that every chain C if sets in I has an upper bound in I; that is, every linearly independent set has an upper bound that itself is linearly independent.

Let \mathcal{C} be a chain in I. Let $S:=\bigcup \mathcal{C}$ be the union of all sets in \mathcal{C} . To show S is linearly independent, it suffices to show that every finite subset $\{v_1,\ldots,v_n\}\subseteq S$ is linearly independent. Let $S_i\in\mathcal{C}$ be s.t. $v_i\in S_i$ for each i. Because \mathcal{C} a chain, for each i,j we have either $S_i\subseteq S_j$ or $S_j\subseteq S_i$, and so we can order S_1,\ldots,S_n in increasing order w.r.t \subseteq . This implies, then, there is a maximal S_{i_0} s.t. $S_{i_0}\supseteq S_i \ \forall \ i\in\{1,\ldots,n\}$. Moreover, we have that $\{v_1,\ldots,v_n\}\in S_{i_0}$, and that S_{i_0} is linearly independent and thus $\{v_1,v_2,\ldots,v_n\}$ is also linearly independent.

Thus, as we can apply Zorn's Lemma, we conclude that I has a maximal element, ie, there is a maximal independent set, and thus a V indeed has a basis.

← Lecture 06; Last Updated: Fri Jan 19 13:36:58 EST 2024

\hookrightarrow Theorem 1.3

For every vector space V over a field \mathbb{F} , any two bases \mathcal{B}_1 , \mathcal{B}_2 are equinumerous/of equal size/cardinality, ie, there is a bijection between \mathcal{B}_1 and \mathcal{B}_2 .

Remark 1.8. We will only prove this for vector spaces that admit a finite basis.

← Lemma 1.5: Steinitz Substitution

Let V be a vector space over a field \mathbb{F} . Let $Y\subseteq V$ be a (possibly infinite) linearly independent set and let $Z\subseteq V$ be a finite spanning set. Then:

- 1. $k := |Y| \le |Z| =: n$
- 2. There is $Z' \subseteq Z$ of size n k s.t. $Y \cup Z'$ is still spanning.

Proof. We prove by induction on k.

k=0 gives that $Y=\emptyset$, and so Z'=Z itself works $(Z'\cup Y=Z)$ as a spanning set.

Suppose the statement holds for some $k \geq 0$. Let Y be an independent set such that |Y| = k + 1, ie

$$Y := \{y_1, y_2, \dots, y_k, y_{k+1}\}, \quad y \in V.$$

By our inductive assumption, we can consider $Y' := \{y_1, \dots, y_k\} \subseteq Y$ of size k, to obtain a set

$$Z' = \{z_1, z_2, \dots, z_{n-k}\} \subseteq Z$$
, s.t. $Y' \cup Z' = \{y_1, \dots, y_k, z_1, \dots, z_{n-k}\}$

is spanning. As this is spanning, we can write y_{k+1} as a linear combination of vectors in $Y' \cup Z'$, ie

$$y_{k+1} = a_1 y_1 + \dots + a_k y_k + b_1 z_1 + \dots + b_{n-k} z_{n-k}, \quad a_i, b_i \in \mathbb{F}.$$

It must be that at least one of b_j 's must be nonzero; if they were all zero, then y_{k+1} would simply be a linear combination of vector y_i giving that y_{k+1} linearly dependent, contradicting our construction of Y linearly independent.

Assume, wlog, $b_{n-k} \neq 0$. Then, we can write

$$z_{n-k} = b_{n-k}^{-1} y_{k+1} - b_{n-k}^{-1} a_1 y_1 - \dots - b_{n-k}^{-1} a_k y_k - b_{n-k}^{-1} b_1 z_1 - \dots - b_{n-k}^{-1} b_{n-k-1} z_{n-k-1},$$

and hence

$$z_{n-k} \in \text{Span}\{y_1, \dots, y_{k+1}, z_1, \dots, z_{n-k-1}\} = \text{Span}\left(\underbrace{\{y_1, \dots, y_{k+1}\}}_{Y} \cup \underbrace{\{z_1, \dots, z_{n-k-1}\}}_{:=Z''}\right).$$

We had that $Y' \cup Z'$ was spanning, and $(Y' \cup Z') \setminus (Y \cup Z'') = \{z_{n-k}\} \subseteq \operatorname{Span}(Y \cup Z'')$, and we thus have that $Y \cup Z''$ is also spanning.

⇔ Corollary 1.2: Finite Basis Case for theorem 1.3

Let V be a vector space that admits a finite basis. Then, any two bases of V are equinumerous.

Proof. Let Y, Z be two finite bases for V. Then, Y is independent and Z is spanning, so by Steinitz Substitution, $\overline{|Y|} \leq |Z|$. OTOH, Z is independent, and Y is spanning, so by Steinitz Substitution, $|Z| \leq |Y|$, and we conclude that |Y| = |Z|. Let n := |Y|.

It remains to show that there exist no infinite bases for V; it suffices to show that there is no independent set of size n+1. To this end, let $I \subseteq V$ such that |I| = n+1 be an independent set. Y is still spanning, hence, by the substitution lemma, $n+1 \le n$, a contradiction. Hence, I as defined cannot exist and so any basis of V must be of size n.

→ Definition 1.14: Dimension

Let V be a vector space over a field \mathbb{F} . The *dimension* of V, denote

$$\dim(V)$$

as the cardinality/size of any basis for V. We call V finite dimensional if $\dim(V)$ is a natural number, i.e. V admits a finite basis. Otherwise, we say V is infinite dimensional.

⇔ Corollary 1.3: of Steinitz Substitution

Let V be a finite dimensional vector space over \mathbb{F} and denote $n := \dim(V)$. Then:

1. Every linearly independent subset $I \subseteq V$ has size $\leq n$;

- 2. Every spanning set $S \subseteq V$ for V has size $\geq n$;
- 3. Every independent set I can be completed to a basis to V, ie, there exists a basis B for V s.t. $I \subseteq B$.

Proof. Fix a basis B for V, |B| =: n.

- 1. If I is a independent set, then because B spanning, Steinitz Substitution gives $|I| \leq |B|$.
- 2. If S spanning for V, then because B is linearly independent, Steinitz Substitution gives $|B| \leq |S|$.
- 3. Let I be an independent set. Then, because B is spanning, Steinitz Substitution gives $B' \subseteq B$ of size n |I| s.t. $I \cup B'$ is spanning. Moreover, $|I \cup B'| \le n$, and by 2. it must have size $\ge n$, and thus has size precisely n and is thus a minimally spanning set and thus a basis.

→ Corollary 1.4: Monotonicity of Dimension

Let V be a vector space over a field \mathbb{F} . For any subspace $W \subseteq \dim W \leq \dim V$, and

$$\dim W = \dim V \iff W = V.$$

Proof. Let $B \subseteq W$ be a basis for W. Because B is independent, $|B| \leq \dim(V)$ by 1. of corollary 1.3, so $\dim(W) = \overline{|B|} \leq \dim(V)$.

If $|B| = \dim(V)$, then B is a basis for V again by 1. of corollary 1.3, so $W = \operatorname{Span}(B) = V$.

 $\hookrightarrow Lecture~07; Last~Updated:~Mon~Jan~22~13:43:44~EST~2024$

2 Linear Transformations

2.1 Definitions

→ **Definition 2.1: Linear Transformation**

Let V, W be vector spaces over a field \mathbb{F} . A function $T: V \to W$ is called a *linear transformation* if it preserves the vector space structures, that is,

- 1. $T(v_0 + v_1) = T(v_0) + T(v_1), \forall v_0, v_1 \in V;$
- 2. $T(\alpha \cdot v) = \alpha \cdot T(v), \forall \alpha \in \mathbb{F}, v \in V;$
- 3. $T(0_V) = 0_W$.

Remark 2.1. *Note that 3. is redundant, implied by 2., but included for emphasis:*

$$T(0_V) = T(0_{\mathbb{F}} \cdot 0_V) = 0_{\mathbb{F}} \cdot T(0_V) = 0_W.$$

*** Example 2.1: Linear Transformations**

- 1. $T: \mathbb{F}^2 \to \mathbb{F}^2, T(a_1, a_2) := (a_1 + 2a_2, a_1).$
- 2. Let $\theta \in \mathbb{R}$, and let $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation by θ . The linearity of this is perhaps most obvious in polar coordinates, ie $v \in \mathbb{R}^2$, $v = r(\cos \alpha, \sin \alpha)$ for appropriate r, α , and $T_{\theta}(v) = r(\cos(\alpha + \theta), \sin(\alpha + \theta))$.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$, a reflection about the x-axis, ie, T(x,y) = (x,-y).
- 4. Projections, $T: \mathbb{F}^n \to \mathbb{F}^n$.
- 5. The transpose on $M_n(\mathbb{F})$, ie, $T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$, where $A \mapsto A^t$.
- 6. The derivative on space of polynomials of degree leq $n, D : \mathbb{F}[t]_{n+1} \to \mathbb{F}[t]_n, p(t) \mapsto p'(t)$.

\hookrightarrow Theorem 2.1

Linear transformations are completely determined by their values on a basis.

That is, let $\mathcal{B} := \{v_1, \dots, v_n\}$ be a basis for a vector space V over \mathbb{F} . Let W also be a vector space over \mathbb{F} and let $w_1, \dots, w_n \in W$ be arbitrary vectors. Then, there is a unique linear transformation $T: V \to W$ s.t. $T(v_i) = w_i \, \forall \, i = 1, \dots, n$.

Proof. We aim to define T(v) for arbitrary $v \in V$. We can write

$$v = a_1 v_1 + \dots + a_n v_n$$

as the unique representation of v in terms of the basis \mathcal{B} . Then, we simply define

$$T(v) := a_1 w_1 + \cdots + a_n w_n$$

for our given w_i 's. Then, $T(v_i) = 1 \cdot w_i = w_i$, as desired, and T is linear;

1. Let $u, v \in V$; $u := \sum_n a_i v_i, v := \sum_n b_i v_i$. Then,

$$T(u+v) = T(\sum_{i=1}^{n} a_i v_i + \sum_{i=1}^{n} b_i v_i) = T(\sum_{i=1}^{n} (a_i + b_i) v_i) = \sum_{i=1}^{n} (a_i + b_i) w_i = \sum_{i=1}^{n} a_i w_i + \sum_{i=1}^{n} b_i w_i = T(u) + T(v).$$

2. Scalar multiplication follows similarly.

To show uniqueness, suppose T_0, T_1 are two linear transformations satisfying $T_0(v_i) = w_i = T_1(v_i)$. Let $v \in V$, and write $v = \sum_n a_i v_i$. By linearity,

$$T_k(v) = T_k(\sum_n a_i v_i) = \sum_n a_i T(v_i) = \sum_n a_i w_i,$$

for k = 0, 1, hence, $T_1(v) = T_0(v)$ for arbitrary v, hence the transformations are equivalent.

→ Definition 2.2: Some Important Transformations

We denote $T_0: V \to W$ by $T_0(v) := 0_W \, \forall v \in V$ the zero transformation. We denote $I_V: V \to V$, $I_V(v) := v \, \forall v \in V$, as the identity transformation.

← Lecture 08; Last Updated: Thu Jan 25 12:38:49 EST 2024

2.2 Isomorphisms, Kernel, Image

→ <u>Definition</u> 2.3: Isomorphism

Let V, W be vector spaces over \mathbb{F} . An *isomorphism* from V to W is a linear transformation $T: V \to W$ (a homomorphism for vector spaces) which admits an inverse T^{-1} that is also linear.

If such an isomorphism exists, we say V and W are isomorphic.

\hookrightarrow Proposition 2.1

 $T: V \to W$ is an isomorphism $\iff T$ is linear and bijective.

Proof. The direction \implies is trivial.

Suppose $T:V\to W$ is linear and bijective, ie T^{-1} exists. We need to show that T^{-1} is linear. Let $w_1,w_2\in W, a_1,a_2\in \mathbb{F}$. Then:

$$T^{-1}(a_1w_1 + a_2w_2) = T^{-1}(a_1T(T^{-1}(w_1)) + a_2T(T^{-1}(w_2)))$$
(by linearity of T)
$$= T^{-1}(T(a_1T^{-1}(w_1) + a_2T^{-1}(w_2)))$$

$$= a_1T^{-1}(w_1) + a_2T^{-1}(w_2).$$

Remark 2.2. This proposition holds for all structures that only have operations; it does not for those with relations, such as graphs, orders, etc..

\hookrightarrow Theorem 2.2

For $n \in \mathbb{N}$, every n-dimensional vector space V over \mathbb{F} is isomorphic to \mathbb{F}^n . In particular, all n-dim vector spaces over \mathbb{F} are isomorphic.

<u>Proof.</u> Fix a basis $\mathcal{B} := \{v_1, \dots, v_n\}$ for V, and let $T : V \to \mathbb{F}^n$ be the unique linear transformation determined by \mathcal{B} with $T(v_i) = e_i$, where $\{e_1, \dots, e_n\}$ is the standard basis for \mathbb{F}^n . We show that T is a bijection.

(Injective) Suppose $T(x)=T(y), x,y\in V$. Write $x=a_1v_1+\cdots+a_nv_n,y=b_1v_1+\cdots+b_nv_n$, the unique representation of x,y in the basis \mathcal{B} . We have:

$$a_1e_1 + \dots + a_ne_n = a_1T(v_1) + \dots + a_nT(v_n) = T(a_1v_1 + \dots + a_nv_n) = T(x) = T(y) = \dots = b_1e_1 + \dots + b_ne_n$$

but by the uniqueness of representation in a basis, it follows that each $a_i = b_i$, hence, x = y.

(Surjective) Let $w \in \mathbb{F}^n$. Then, $w = a_1 e_1 + \cdots + a_n e_n$ (uniquely). But then,

$$w = a_1 T(v_1) + \dots + a_n T(v_n) = T(a_1 v_1 + \dots + a_n v_n),$$

where $a_1v_1 + \cdots + a_nv_n \in V$, hence T indeed surjective.

Remark 2.3. Replacing \mathbb{F}^n with an arbitrary n-dim vector space W over \mathbb{F} yields the following.

→ Theorem 2.3: Freeness of Vector Space

Let W,V be vector spaces over \mathbb{F} and let β,γ be bases for V,W respectively. Every bijection $T:\beta\to\gamma$ can be extended to an isomorphism $\hat{T}:V\to W$.

In particular, all vector spaces over \mathbb{F} with equinumerous bases are isomorphic.

Remark 2.4. The proof follows very similarly to the previous theorem, but extended to arbitrary, possible infinite, spaces.

Proof.

→ **Definition** 2.4: Image/Kernel

For a linear transformation $T: V \to W$, where V, W are vector spaces over \mathbb{F} , we define the *image*

$$Im(T) := T(v),$$

and its kernel

$$\ker(T) = T^{-1}(\{0_W\}).$$

$\hookrightarrow \underline{ \text{Proposition}} \ 2.2$

 $\ker(T)$ and $\operatorname{Im} T$ are subspaces of V,W resp.

<u>Proof.</u> (ker(T)) Let $v_0, v_1 \in \ker T$ and $a_0, a_1 \in \mathbb{F}$, then

$$T(a_0v_0 + a_1v_1) = a_0T(v_0) + a_1T(v_1) = 0_W \implies a_0v_0 + a_1v_1 \in \ker T.$$

(Im(T)) Let $w_0, w_1 \in \text{Im } T$, $a_0, a_1 \in \mathbb{F}$. Then $w_i = T(v_i), v_i \in V$, and so

$$a_0w_0 + a_1w_1 = a_0T(v_0) + a_1T(v_1) = T(a_0v_0 + a_1v_1) \implies a_0w_0 + a_1w_1 \in \operatorname{Im} T.$$

\hookrightarrow Proposition 2.3

Let $T:V\to W$ be a linear transformation, where V,W vector spaces over \mathbb{F} . Let β be a (possibly infinite) basis

for V. Then, T(B) spans Im(T).

In particular, T is surjective iff $T(\beta)$ spans W.

Proof. Let $w \in \text{Im}(T)$, so w = T(v) for some $v \in V$, where we have $v := a_1v_1 + \cdots + a_nv_n, v_i \in \beta$. Then,

$$w = T(v) = a_1 T(v_1) + \dots + a_n T(v_n) \in \operatorname{Span}(\{T(v_1), \dots, T(v_n)\}) \subseteq \operatorname{Span}(T(\beta)).$$

∴ Lecture 09; Last Updated: Fri Jan 26 13:39:26 EST 2024

\hookrightarrow Proposition 2.4

Let $T:V\to W$ be a linear transformation, where V,W vector spaces over \mathbb{F} . TFAE:

- 1. T is injective.
- 2. ker(T) is the trivial subspace $\{0_V\}$.
- 3. $T(\beta)$ is independent for each basis β for V.
- 3'. $T(\beta)$ is independent for some basis β for V.

Proof. (1. \implies 2.) Trivial; only 0_V can be mapped to 0_W .

(2. \implies 1.) Suppose $\ker(T) = \{0_V\}$ and let $T(x) = T(y), x, y \in V$. By linearity,

$$T(x-y) = T(x) - T(y) = 0_W \implies x-y \in \ker(T) \implies x-y = 0_V \implies x = y.$$

(2. \Longrightarrow 3.) Fix a basis β for V. To show that $T(\beta)$ linearly independent, take an arbitrary linear combination $a_1w_1 + \cdots + a_nw_n \in T(\beta)$. Suppose $\sum_i a_iw_i = 0_W$. Since $w_i \in T(\beta)$, $w_i = T(v_i)$, $v_i \in \beta$, hence

$$0_W = a_1 w_1 + \dots + a_n w_n = a_1 T(v_1) + \dots + a_n T(v_n) = T(a_1 v_1 + \dots + a_n v_n)$$

$$\implies a_1 v_1 + \dots + a_n v_n \in \ker(T)$$

$$\implies a_1 v_1 + \dots + a_n v_n = 0_V,$$

but each v_i is linearly independent, hence this must be a trivial linear combination, and thus $a_i = 0 \,\forall i$.

- (3) \implies (3') Trivial; stronger statement implies weaker statement.
- (3') \Longrightarrow (2) Suppose $T(\beta)$ linearly independent for some basis β for V. Suppose $T(v) = 0_W, v \in V$. We write

$$v = a_1 v_1 + \cdots + a_n v_n, v_i \in \beta.$$

Then,

$$0_W = T(v) = T(a_1v_1 + \dots + a_nv_n) = a_1T(v_1) + \dots + a_nT(v_n),$$

but $\{T(v_i)\}\subseteq T(\beta)$ is linearly independent, hence, this combination must be trivial and each $a_i=0$, and thus $v=0_V$ and so $\ker(T)=\{0_V\}$ is trivial.

→ **Definition** 2.5: Rank, nullity

Let V,W be vector spaces over $\mathbb F$ and $T:V\to W$ be linear. Define rank of T as

$$rank(T) := \dim(Im(T)),$$

and nullity of T as

$$\operatorname{nullity}(T) := \dim(\ker(T)).$$

→ Theorem 2.4: Rank-Nullity Theorem

Let V, W be vector spaces over \mathbb{F} , $\dim(V) < \infty$. Let $T: V \to W$ be a linear transformation. Then,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V).$$

Remark 2.5. Intuitively: the nullity is the number of vectors we "collapse"; the rank is what is left. Together, we have the entire space.

Remark 2.6. This follows directly from the first isomorphism theorem for vector spaces, and the fact that $\dim(V/\ker(T)) = \dim(V) - \dim(\ker(T))$; however, we will prove it without this result below.

<u>Proof.</u> Let $\{v_1, \ldots, v_k\}$ be a basis for $\ker(T)$, and complete it to a basis $\beta := \{v_1, \ldots, v_k, u_1, \ldots, u_{n-k}\}$ for V, where $\overline{n := \dim(V)}$. We need to show that $\dim(\operatorname{Im}(T)) = n - k$.

Recall that $\{T(v_1), \ldots, T(v_k), T(u_1), \ldots, T(u_{n-k})\}$ spans $\operatorname{Im}(T)$. But $v_1, \ldots, v_k \in \ker(T)$, so $T(v_i) = 0_W \, \forall i = 1, \ldots, k$. Hence, letting $\gamma := \{T(u_1), \ldots, T(u_{n-k})\}$ spans $\operatorname{Im}(T)$. It remains to show that γ is independent.

Let $a_1T(u_1) + \cdots + a_{n-k}T(u_{n-k}) = 0_W$; by linearity,

$$T(a_1u_1 + \dots + a_{n-k}u_{n-k}) = 0_W$$

$$\implies a_1u_1 + \dots + a_{n-k}u_{n-k} \in \ker(T)$$

$$\implies a_1u_1 + \dots + a_{n-k}u_{n-k} = b_1v_1 + \dots + b_kv_k,$$

but each of these $u_i, v_j \in \beta$, hence, each coefficient must be identically zero as β linearly independent, and thus $\dim(\operatorname{Im}(T)) = n - k$. This completes the proof.

\hookrightarrow Corollary 2.1: Pigeonhole Principle for Dimension

Let $T: V \to W$ be a linear transformation. If T injective, then $\dim(W) \ge \dim(V)$.

Proof. If $\dim(V) < \infty$, then $\dim(\operatorname{Im}(T)) = \dim(V)$, and we have that $\dim(\operatorname{Im}(T)) \le \dim(W)$ and conclude $\dim(V) \le \dim(W)$.

If
$$\dim(V) = \infty$$
, then $\dim(\operatorname{Im}(T)) = \infty$ and $\dim(W) \ge \dim(\operatorname{Im}(T)) = \infty$.

\hookrightarrow Corollary 2.2

Let $n \in \mathbb{N}$ and V, W be n-dimensional vector spaces over \mathbb{F} . For a linear transformation $T: V \to W$, TFAE:

- 1. T injective;
- 2. T surjective;
- 3. $\operatorname{rank}(T) = n$.

Proof. (2. \iff 3.) Follows from rank $(T) = \dim(\operatorname{Im}(T)) = n \iff \operatorname{Im}(T) = W$.

(1. \implies 3.) We have $\operatorname{nullity}(T) = 0$ so $\operatorname{rank}(T) = \dim(V) = n$.

(3. \implies 1.) If rank(T) = n, then nullity(T) = 0.

← Lecture 10; Last Updated: Fri Jan 26 14:27:02 EST 2024

→ <u>Theorem</u> 2.5: First Isomorphism Theorem for Vector Spaces

Let V,W be vector spaces over \mathbb{F} . Let $T:V\to W$ be a linear transformation. Then,

$$V/\ker(T) \cong \operatorname{Im}(T),$$

by the isomorphism given by $v + \ker(T) \mapsto T(v)$.

<u>Proof.</u> From group theory, we know that $\hat{T}:V/\ker(T)\to \operatorname{Im}(T)$, where $\hat{T}(v+\ker(T)):=T(v)$ is well-defined, and is an isomorphism of abelian groups. We need only to check that \hat{T} is linear, namely, that is respects scalar multiplication. We have

$$\hat{T}(a \cdot (v + \ker(T))) = \hat{T}((a \cdot v) + \ker(T))$$

$$= T(av) = a \cdot T(v)$$

$$= a\hat{T}(v + \ker(T)),$$

as desired.

2.3 The Space Hom(V, W)

→ Definition 2.6: Homomorphism Space

For vector spaces V, W over \mathbb{F} , let $\mathrm{Hom}(V, W)$ (also denoted $\ell(V, W)$) denote the set of all linear transformations from V to W. We can turn this into a vector space over \mathbb{F} as follows:

1. Addition of linear transformations: for $T_0, T_1 \in \text{Hom}(V, W)$, define

$$(T_0 + T_1): V \to W, \quad v \mapsto T_0(v) + T_1(v).$$

 $(T_0 + T_1)$ is clearly a linear transformation, as the linear combination of linear transformations T_0, T_1 .

2. Scalar multiplication of linear transformations: for $T \in \text{Hom}(V, W)$, $a \in \mathbb{F}$, define

$$(a \cdot T) : V \to W, \quad v \mapsto a \cdot T(v),$$

which is again clearly linear in its own right.

\hookrightarrow Proposition 2.5

Endowed with the operations described above, Hom(V, W) is a vector space over \mathbb{F} .

Proof. Follows easily from the definitions.

\hookrightarrow Theorem 2.6: Basis for Hom(V, W)

For vector spaces V, W over \mathbb{F} and bases β, γ for V, W resp., the following set

$$\{T_{v,w} = v \in \beta, w \in \gamma\},\$$

is a basis for $\operatorname{Hom}(V,W)$, where for each $v \in \beta$ and $w \in \gamma$, $T_{v,w} \in \operatorname{Hom}(V,W)$ defined as the unique linear transformation such that

$$T_{v,w}(v') = \begin{cases} w & v' = v \\ 0_W & v' \neq v \iff \beta \setminus \{v\} \end{cases}.$$

Proof. Left as a (homework) exercise.

\hookrightarrow Corollary 2.3

If V, W finite dimensional, then $\dim(\operatorname{Hom}(V, W)) = \dim(V) \cdot \dim(W)$.

\hookrightarrow **Proposition 2.6**

Let $\beta = \{v_1, \dots, v_n\}$, $\gamma = \{w_1, \dots, w_m\}$ be bases for V, W resp. Then, by theorem 2.6,

$$\{T_{v_i,w_j}: i \in \{1,\ldots,n\}, j \in \{1,\ldots,m\}\}$$

is a basis for $\operatorname{Hom}(V,W)$, and it has $n \cdot m$ vectors by construction.

2.4 Matrix Representation of Linear Transformations

Consider a linear transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ between finite fields. We know that T is uniquely determined by its value of basis vectors, so fix the standard bases

$$\beta = \{e_1^{(n)}, \dots, e_n^{(n)}\} = \{v_1, \dots, v_n\},\$$

and note that T is determined by $\{T(v_1), \ldots, T(v_n)\} \subseteq \mathbb{F}^m$.

Remark 2.7. We denote vectors in \mathbb{F}^n as column vectors, ie $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n$.

Each $T(v_i)$ is a column vector in \mathbb{F}^m , and we an put these into a $m \times n$ matrix, namely:⁷

$$[T] := \underbrace{\begin{pmatrix} \vdots & & \vdots \\ T(v_1) & \cdots & T(v_n) \\ \vdots & & \vdots \end{pmatrix}}_{T} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

We call this the *matrix representation* of T in the standard bases. The operation of multiplying an $m \times n$ matrix and a $n \times 1$ vector is precisely defined so that

\hookrightarrow **Proposition 2.7**

 $T(v) = [T] \cdot v \text{ for all } v \in \mathbb{F}^n.$

Proof. Let
$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 , where $v = x_1v_1 + \cdots + x_nv_n$. Then

$$T(v) = x_1 T(v_1) + \dots + x_n T(v_n)$$
$$T(v_i) = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$$

so

$$T(v) = \begin{pmatrix} a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n \\ & \ddots \\ a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n \end{pmatrix} = [T] \cdot v$$

⁷Where [T] denotes a matrix named "T".

\hookrightarrow **Definition 2.7**

For a given $m \times n$ matrix A over \mathbb{F} , define $L_A : \mathbb{F}^n \to \mathbb{F}^m$ by $L_A(v) := A \cdot v$, where v is viewed as an $n \times 1$ column. It follows from definition that the L_A is linear.

In other words, every $T \in \text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$ is equal to L_A for some A.

← Lecture 11; Last Updated: Wed Jan 31 13:55:59 EST 2024

\hookrightarrow Proposition 2.8

The map

$$\operatorname{Hom}(\mathbb{F}^n, \mathbb{F}^m) \to M_{m \times n}(\mathbb{F})$$

$$T \mapsto [T]$$

is an isomorphism of vector spaces, with inverse

$$M_{m \times n}(\mathbb{F}) \to \operatorname{Hom}(\mathbb{F}^n, \mathbb{F}^m)$$

 $A \mapsto L_A.$

<u>Proof.</u> Linearity: Let $\beta = \{v_1, \dots, v_n\}$ be the standard basis for \mathbb{F}^n . Fix $T_1, T_2 \in \text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$ and $\alpha \in \mathbb{F}$.

1.

$$[T_1 + T_2] = \begin{pmatrix} \vdots \\ \cdots \\ (T_1 + T_2)(v_i) \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \cdots \\ T_1(v_i) + T_2(v_i) \\ \vdots \end{pmatrix}$$

$$= \begin{pmatrix} \vdots \\ \cdots \\ T_1(v_i) \\ \cdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \cdots \\ T_2(v_i) \\ \vdots \end{pmatrix}$$

$$= [T_1] + [T_2]$$

2. It remains to show that $\alpha \cdot [T] = [\alpha \cdot T]$; the proof follows similarly to 1.

<u>Inverse</u>: We need to show that 1. $A \mapsto L_A \mapsto [L_A]$ is the identity on $M_{m \times n}(\mathbb{F})$, and conversely, that 2. $T \mapsto [T] \mapsto L_{[T]}$ is the identity on $\text{Hom}(\mathbb{F}^n, \mathbb{F}^m)$.

1. We need to show that $[L_A] = A$. The jth column of $[L_A]$ is $L_A(v_j) = A \cdot v_j = j$ th column of $A =: A^{(j)}$. Hence, the jth column of $[L_A]$ is equal to the jth column of A, and thus they are equal.

2. We showed this in proposition 2.7.

\hookrightarrow Corollary 2.4

 $\dim(\operatorname{Hom}(\mathbb{F}^n,\mathbb{F}^m)) = \dim(M_{m \times n}(\mathbb{F})) = m \cdot n.$

Remark 2.8. This was stated previously in proposition 2.6 by constructing an explicit basis. Indeed, this basis is precisely the image of the standard basis for $M_{m \times n}(\mathbb{F})$ under the map $A \mapsto L_A$.

2.5 General Matrix Representation

Remark 2.9. The previous section was concerned with representing transformations between finite fields \mathbb{F}^n , \mathbb{F}^m ; this section aims to make the same construction for any finite dimensional V, W.

→ Definition 2.8: Coordinate Vector

Let V be a finite dimensional space over \mathbb{F} and let $\beta := \{v_1, \dots, v_n\}$ be a basis for V. Let $v \in V$, with (unique) representation $v = a_1v_1 + \dots + a_nv_n$. We denote

$$[v]_{\beta} := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{F}^n$$

the *coordinate vector* of v in base β .

Remark 2.10. Recall that $V \cong \mathbb{F}^n$ where $\dim(V) = n$, by the unique linear transformation $v_i \mapsto e_i$, where $\{e_1, \dots, e_n\}$ the standard basis for \mathbb{F}^n . We denote this transformation

$$I_{\beta}:V\to\mathbb{F}.$$

For an arbitrary $v \in V$, $I_{\beta}(v)$ maps v to its coordinate vector:

$$I_{\beta}(v) = I_{\beta}(a_1v_1 + \dots + a_nv_n) = a_1I_{\beta}(v_1) + \dots + a_nI_{\beta}(v_n)$$
(1)

$$= a_1 e_1 + \dots + a_n e_n = [v]_{\beta}. \tag{2}$$

\hookrightarrow **Proposition 2.9**

The map

$$I_{\beta}: V \to \mathbb{F}^n, \quad v \mapsto [v]_{\beta}$$

is an isomorphism.

Suppose we are given a linear transformation $T:V\to W$, where V,W finite dimensional spaces over \mathbb{F} . Fix $\beta:=\{v_1,\ldots,v_n\}$ and $\gamma:=\{w_1,\ldots,w_m\}$ as bases for V,W resp. We can denote $[T(v_i)]_{\gamma}$ as $T(v_i)$ in base γ (in the field m), and construct a matrix for T:⁸

$$[T]_{\beta}^{\gamma} := \begin{pmatrix} \vdots & \cdots & \vdots \\ [T(v_1)]_{\gamma} & \ddots & [T(v_n)]_{\gamma} \\ \vdots & \cdots & \vdots \end{pmatrix}$$

We call this the *matrix representation* of T from β to γ .

\hookrightarrow Theorem 2.7

Let $T: V \to W, \beta, \gamma$ as above.

1. The following diagram commutes:

$$\begin{array}{ccc}
\bullet V & \xrightarrow{T} & \bullet W \\
I_{\beta} \downarrow & & \downarrow I_{\gamma} \\
\bullet \mathbb{F}^{n} & \xrightarrow{L_{[T]_{\beta}^{\gamma}}} & \bullet \mathbb{F}^{m}
\end{array}$$

Namely, $I_{\gamma} \circ T = L_{[T]_{\beta}^{\gamma}} \circ I_{\beta}$

2. The map $\operatorname{Hom}(V,W) \to M_{m \times n}(\mathbb{F}), T \mapsto [T]_{\beta}^{\gamma}$ is a vector space isomorphism with inverse begin the map $M_{m \times n}(\mathbb{F}) \to \operatorname{Hom}(V,W), A \mapsto I_{\gamma}^{-1} \circ L_A \circ I_{\beta}$

Proof. 2. is left as a (homework) exercise; it follows directly from 1.

Fix $v \in V$. We need to show that $I_{\gamma} \circ T(v) = L_{[T]_{\beta}^{\gamma}} \circ I_{\beta}(v)$. We have

$$I_{\gamma} \circ T(v) = [T(v)]_{\beta}.$$

OTOH,

$$L_{[T]^{\gamma}_{\beta}} \circ I_{\beta}(v) = L_{[T]^{\gamma}_{\beta}}([v]_{\beta}) = [T]^{\gamma}_{\beta} \cdot [v]_{\beta}.$$

Let
$$v=a_1v_1+\cdots+a_nv_n$$
, so $[v]_{\beta}=\begin{pmatrix}a_1\\ \vdots\\ a_n\end{pmatrix}$. Then:

← Lecture 12; Last Updated: Wed Jan 31 15:14:00 EST 2024

⁸Where we denote $[T]^{\gamma}_{\beta}$ as the matrix representation of the transform $T:V\to W$, with basis β,γ for V,W respectively.