

POLYPEPTIDE DERIVED FROM VARIANT HEPATITIS B VIRUS, GENE ENCODING THE SAME, AND RELATED DNA

Publication number: WO9527788

Cited documents:

W O9429483

Publication date:

1995-10-19

Inventor: Applicant: UCHIDA TOSHIKAZU (JP); SHIKATA TOSHIO (JP)
DAINABOT CO LTD (JP); UCHIDA TOSHIKAZU (JP);

SHIKATA TOSHIO (JP)

Classification:

- international:

C07K14/02; C12N15/51; G01N33/576; A61K38/00;

C07K14/005; C12N15/51; G01N33/576; A61K38/00; (IPC1-7): C12N15/51; C07K14/02; G01N33/569

- european:

C07K14/02; G01N33/576B

Application number: WO1995JP00700 19950410 Priority number(s): JP19940095458 19940411

Report a data error here

Abstract of WO9527788

The invention provides a novel hepatitis virus that cannot be detected by any of the type A, B, C, D and E virus tests, determines the gene sequence thereof, and provides a means for developing an effective method of detection and diagnosis thereof. The sequencing of a polypeptide derived from the above-identified novel variant hepatitis B virus and a gene encoding the same is conducted by amplifying the nucleic acid obtained from the serum of a patient with hepatitis according to the polymerase chain reaction. Also found is a polypeptide encoded by the antisense sequence DNA of a gene derived from the X region of the HBV. The polypeptide has 161 amino acid residues. The X protein as a product of X genes of the HBV is known to be not only useful as an antigen for detecting HBV infection but also capable of activating transcription by the trans-action thereof on the enhancer of the HBV itself or the enhancer of the promoter sequence of another cell gene through the interaction with cell factors in normal liver cells. Therefore attention is paid to the participation of this protein in liver cancer. A polypeptide containing the whole or part of the amino acid sequence encoded by the antisense sequence DNA derived from the X region of the above novel HBV is thought to be useful in the development of a hepatitis virus detection system and the development of efficacious antiviral and antitumor drugs through the development of a transcription activity detection system.

Data supplied from the esp@cenet database - Worldwide

PCT.

4

国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/51, C07K 14/02, G01N

(11) 国際公開番号

WO95/27788

33/569

A1

1995年10月19日(19.10.95)

(21) 国際出願番号 (22) 国際出願日

PCT/JP95/00700

1995年4月10日(10.04.95)

(43) 国際公開日 (81) 指定国

JP, US, 欧州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,

(30) 優先権データ 特願平6/95458

1994年4月11日(11.04.94)

LU, MC, NL, PT, SE). 添付公開書類

国際調査報告書

(71) 出願人 (米国を除くすべての指定国について) ダイナボット株式会社(DAINABOT CO., LTD.)[JP/JP]

〒105 東京都港区虎ノ門3丁目8番21号 第33森ビル Tokyo, (JP)

(71) 出願人;および

(72) 発明者

内田俊和(UCHIDA, Toshikazu)[JP/JP]

〒173 東京都板橋区大山金井町16-8-216 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

志方俊夫(SHIKATA, Toshio)[JP/JP]

〒272 千葉県市川市本北方1丁目17番2号 Chiba, (JP)

(74) 代理人

弁理士 水野昭宣(MIZUNO, Akinobu) 〒150 東京都渋谷区渋谷1丁目10番7号 グローリア宮益坂田 305 Tokyo, (JP)

(54) Tide: POLYPEPTIDE DERIVED FROM VARIANT HEPATITIS B VIRUS, GENE ENCODING THE SAME, AND RELATED

(54) 発明の名称 変異B型肝炎ウイルス由来のポリペプチド、それをコードする遺伝子及びその関連DNA

. (57) Abstract

The invention provides a novel hepatitis virus that cannot be detected by any of the type A, B, C, D and E virus The invention provides a novel hepatitis virus that cannot be detected by any of the type A, B, C, D and E virus tests, determines the gene sequence thereof, and provides a means for developing an effective method of detection and diagnosis thereof. The sequencing of a polypeptide derived from the above-identified novel variant hepatitis B virus and a gene encoding the same is conducted by amplifying the nucleic acid obtained from the serum of a patient with hepatitis according to the polymerase chain reaction. Also found is a polypeptide encoded by the antisense sequence DNA of a gene derived from the X region of the HBV. The polypeptide has 161 amino acid residues. The X protein as a product of X genes of the HBV is known to be not only useful as an antigen for detecting HBV infection but also capable of activating transcription by the trans-action thereof on the enhancer of the HBV itself or the enhancer of the promoter sequence of another cell gene through the interaction with cell factors in normal liver cells. Therefore attention is paid to the participation of this protein in liver cancer. A polypeptide containing the whole or part of the amino acid sequence encoded by the antisense sequence DNA derived from the X region of the above novel HBV is thought to be useful in the development of a hepatitis virus detection system and the development of efficacions is thought to be useful in the development of a hepatitis virus detection system and the development of efficacious antiviral and antitumor drugs through the development of a transcription activity detection system.

A型、B型、C型、D型及びE型のいずれの測定法でも検知できない新 規な肝炎ウイルスを見出し、そのの遺伝子配列を決定するとともにその 有効な検出診断法を開発する手段を提供する。この新規に変異B型肝炎 ウイルスと同定され、そのHBV由来のポリペプチド及びそれをコード する遺伝子は、肝炎患者血清から得られた核酸をPCR法で増幅させる ことにより配列決定され、HBVのX領域由来の遺伝子のアンチセンス 配列DNAによりコードされるポリペプチドが見出された。該ポリペプ チドは、161個のアミノ酸残基を持つ。HBVのX遺伝子の産物であ るX蛋白は、HBVに感染したことを検出するための抗原としての有用 性があるのみならず、正常肝細胞中で細胞因子との相互作用を介してH BV自身のエンハンサーあるいは他の細胞遺伝子のエンハンサーやプロ モーター配列にトランスに作用し、転写を活性化することなどの知見が 得られていることから、肝癌への関与が注目されている。該新規なHB VのX領域由来のアンチセンス配列DNAでコードされるアミノ酸配列 の全てあるいは一部を含むポリペプチドは、肝炎ウイルス検出系を開発 したり、転写活性検出系を開発しての有効な抗ウイルス剤や抗腫瘍剤の 開発においても有用と考えられる。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AM アルメニアリテリス アリラリ ストースバドーファ アリラス オースバドー・ファ BB F ベルルギナリア BB J ア ア ア B J ア ア ア B J ア ア ア ア ア ア ア	EE エストーニア トーンン トーンン ド ES エスペインラン ア T R A イインス GB イインス GE グギニア	LK スリランカ LR リットアニア LT リットマニア LU リートウェーグ LV ラモナコア MC モルドガス MD マリ ML マリ	R S D E G I K N Z D E G I K N Z D A Z Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
BY ベラケル アナゲアー CA かサゲアー サウンゴスー CI スコール CI カメター CI カメター CM サチェッツ CZ ドインマーク DK デンマーク	GENRUESTY A イグギギハアアイリジアシガルスリードド イグギギハアアアイリシアー イグギギハアアイタ本ニル経験リングー イグギギハアアイタ本ニル経験リング イグギャハアアイタ本ニル経験リング イグギャハアアイタ本ニル経験リング イグギャルアアイタ本ニル経験リング イグギャルアアイタ本ニル経験リング イグギャルアアイタ本ニル経験リングを イグギャルアアイタ本ニル イグギャルアアイタ本ニル イグギャルアアイタ本ニル イグギャルアアイター イグギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアイター イクギャルアイター イクギャルアアイター イクギャルアアイター イクギャルアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアアイター イクギャルアクト イクギャルアアイター イクギャルアアイター イクギャルアクト イクギャルアクト イクギャルアクト イクギャルアクト イクギャルアクト イクギャルアクト イクギャルアクト インター イン	ML マリンゴリング マリンガル MR MR アーフ・カー アー・ファック イン・スープ・シェー・ アー・ファック・・ジャー・ アー・ファック・・ジャー・ アロー・ アロー・ アロー・ アロー・ アロー・ アロー・ アロー・ アロ	TD チャージャー アファー オージャージャー シースト・アージャー アファー アージャー アーン アージャー アージャー アージャー アーン アーン アーン アーン アーン アーン アーン アーン アーン アー

đ

1

明細書

変異B型肝炎ウイルス由来のポリペプチド、それを コードする遺伝子及びその関連DNA

産業上の利用分野

5 本発明は、新規なB型肝炎ウイルス(以下、「HBV」と略す。)由来のポリペプチド及びそれをコードする遺伝子に関し、より詳細には変異HBVのX領域由来の遺伝子のアンチセンス配列DNA、その変異配列及び部分断片、またはそれらから遺伝子工学的に誘導されたDNA配列、該アンチセンス配列を持つ遺伝子由来蛋白またはその一部のポリペプチド、さらにはそれらをコードする遺伝子、及びそれらの遺伝子を含有する断片に関する。本発明は、該遺伝子由来の蛋白またはその一部のポリペプチド及びそれに対する特異抗体を利用した変異HBV感染の検出測定診断にも関する。本発明は、一面では肝炎、肝癌、肝炎ウイルスなどの検出・診断薬、予防・治療剤などあるいはそれらの開発手段にも関する。

背景技術

20

ヒトの肝炎ウイルスは、現在までにA型、B型、C型、D型及びE型が発見されており、それぞれの血清学的診断方法もそれぞれ確立されている。すなわち、1970年代半ばにはA型肝炎ウイルス(HAV)及びB型肝炎ウイルス(HBV)の感染を検出する特異的な診断技術が、1980年代半ばにはD型肝炎ウイルス(HDV)、1980年代後半にC型肝炎ウイルス(HCV)及びE型肝炎ウイルス(HEV)の感染を検出する特異的な診断技術が開発され、現在では輸血後肝炎やこれら

10

15

20

25

4)

の感染キャリアーからの垂直感染または水平感染による散発性肝炎は世 界各地で激減させることに成功している実情がある。日本においては、 D型とE型肝炎ウイルス感染患者はほとんど存在せず、もっぱらA型、 B型及びC型肝炎ウイルスが全肝炎患者の99.9%の原因となってお り、HAV、HBV及びHCV感染の検出診断方法の恩恵によって患者 数を大きく減少させることができている。しかしながら、依然として散 発性肝炎の約20%、輸血後肝炎の約2%がHAV、HBV及びHCV 感染の検出診断方法で陰性の原因不明の肝炎として、ヒト社会の中に存 在し問題となっている。今のところその感染病態からこの原因不明の肝 炎はウイルスによる伝播と考えられている(内科、69(6)、116 7-1159, 1992)。現在、HBV感染の検出診断は、主にHB 表面抗原(HBs-Ag)とHBコア抗体(HBc-Ab)の検出によ って決定されているが、この他に、HB表面抗体(HBs-Ab)、H Be抗原(HBe-Ag)及びHBe抗体(HBe-Ab)の検出も実 施されており、これらの検出系の総合的な実施によりHBVの感染が判 定されている。こうして、これらHBVに関する5種類のHBV感染検 出診断方法と、HAV及びHCV感染検出診断方法とで陰性と判定され た場合、原因不明のウイルス肝炎と診断される。また、もしHBVある いはHCV感染と判明した場合、インターフェロン等による治療を受け ることが可能となるが、原因不明の場合はそのような治療は受けられな い。また、肝炎患者のみならず既知のこれら肝炎ウイルス感染検出方法 で検出できない肝炎ウイルスを保持している健常人(キャリアー)が存 在した場合には、適切な検出診断方法がないと何らかの方法で無差別に 他の人に感染させてしまうことがある。例えば、HBVで行われるワク チンやHBVイムノグロブリンによる感染予防や治療、献血血液の血清 診断方法の結果による廃棄等による肝炎ウイルス蔓延の予防が、原因不

10

15

20

25

明の肝炎ウイルスに対して行われ得ないことからこのようなことが起こるのが現状である。

これらの既存のHAV、HBV及びHCV感染の検出診断方法で判定できない肝炎ウイルスの原因として、未知のF型肝炎ウイルスやG型肝炎ウイルスの存在を示唆する報告(臨床医、18(5)、624-625、1992)もある。また、変異しており既存のHCV検出診断方法では検出できないHCVの存在が報告(下遠野ら、プロシーディングスオブ ナショナル アカデミー オブ サイエンス ユー・エス・エイ(Proc. Natl. Acad. Sci. USA)、87、9524-9528,1990;高見沢ら、ジャーナル オブ ビロロジー(Journal of Virology),65(3),1105-113,1991)されているが、このような例ですべての原因不明の肝炎について説明できない。

ところでHBVの変異株についても多数の報告例があり、例えば、ウイリアム エフ カーマン(William F. Carman)らは、HBV表面抗原(HBsーAg)由来のワクチンを投与されてHBs抗体(HBsーAb)が誘導されたにもかかわらず、HBsの145番目のアミノ酸がGIyからArgに変異したHBVに感染した例を報告している(ザ ランセット(The Lancet)、336、325-329、1990)。また、小俣らは、HBVプレコア領域の変異によりHBV感染が劇症化する例を報告している(日本臨床、51(2)、29-33、1993)。さらにエハタ(Ehata)らは、慢性化したHBV感染患者から分離されるHBVのコア蛋白の変異のアミノ酸配列を報告している(ジャーナル オブ クリニカル インベスティゲーション(Journal of Clinical Investigation)、89、332-338、1992)。しかしながら、

これらのHBVの変異ウイルスはいずれも既知のHBV感染検出診断方法でHBV感染と判定できるものであることから、上記した原因不明の肝炎について説明できない。HBVの遺伝子は一部が一本鎖の環状二本鎖DNAからなるものであることが解明されており、P領域、S領域、C領域及びX領域という4種の蛋白コード可能領域が知られている。X領域がコードしている蛋白はX蛋白とされている。ところが、HBVのX蛋白は、154個のアミノ酸残基よりなるもので、HBVに感染した初期の患者血清中にこのX蛋白に対する抗体が検出されることが確認されている以外は、そのものの詳細はまだよくわかっていない。最近になってX蛋白をコードする遺伝子と肝癌との関わりが示唆されるようになり、注目を集めるようになってきたが、その検出系や診断系は未だ確立されていないのが現状である。

このように、既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルスに対してはターゲットが不明なため有効な抗ウイルス剤やワクチンの開発が行われていない。同様に、これらのウイルスに対する有効な診断薬も開発されていない。従って既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルス感染患者は、その治療方法の有効な選択がなされない場合がある。また、既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルスキャリアーと接触する可能性がある人では、感染防止の観点でのワクチン等の有効な予防方法を実行できない場合がある。さらに、既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルスに汚染された血液等も有効な方法でチェックすることができず、処分しないまま利用して、他の人へのウイルス感染・伝播の原因となりかねない。

20

5

10

15

10

15

20

25

発明の開示

本発明者らは、既存の肝炎ウイルス感染検出診断方法で検出されない 肝炎ウイルス感染患者やキャリアーの診断、治療及び予防法の開発を目 的として、これまで発見されたウイルスとは異なる性質のウイルス遺伝 子を取得し、いままで開発されてきた診断系とは異なる性格の、特にい ままで検出できなかった範囲、あるいはこれまでより高率に肝炎ウイル ス感染を検出できる新規な診断方法の開発のため、また、いままで開発 されたHBVワクチンより優れた免疫獲得能を有するワクチンの開発の ため、さらにはこれまでより優れた抗ウイルス剤を開発するための評価 系の開発のため、鋭意研究してきた結果、新規なHBV由来遺伝子を見 出し、それを取得するに至った。そして更なる研究の結果、本発明を完 成させた。

即ち、本発明者らは、先に新規なB型肝炎ウイルス遺伝子のX領域に相当するDNA配列によりコードされる新規なポリペプチド及びそれをコードする遺伝子を見出したが、さらに新規な変異B型肝炎ウイルス遺伝子のX領域に相当する遺伝子のアンチセンス配列DNAによっても、新規なポリペプチドがコードされていることを見出し、そのポリペプチドあるいはその部分断片を利用すれば、HBVに感染したことを検出するための抗原としての有用性があるのみならず、正常肝細胞中で細胞因子との相互作用を介してHBV自身のエンハンサーあるいは他の細胞遺伝子のエンハンサーやプロモーター配列にトランスに作用し、転写を活性化することなどの肝癌への関与についての研究においても有用性があり、抗ウイルス剤、抗腫瘍剤として有用あるいはそれらの開発に役立つとの認識に至った。

本発明の新規なHBVのX領域遺伝子のアンチセンス配列DNA由来 の蛋白、その全であるいは一部を含むポリペプチドは、新規なHBVの

10

15

20

25

ñ

X領域遺伝子に特異的な領域と考えられ、これらの蛋白やポリペプチドを用いた肝炎ウイルス検出系を開発すれば、既存の肝炎ウイルス感染検出診断方法で陰性として検出できなかった肝炎陽性とすべき患者を検出することが可能となり、診断剤として有用であると考えられる。さらにこれらのポリペプチド自体及びそれをコードする遺伝子、さらにはそれらを遺伝子工学的に操作可能に含有するDNA配列は、新たな転写活性検出系の開発においても、有効な手段を提供し、抗ウイルス剤、抗癌剤などの開発においても有用と考えられる。

本発明の要旨は、配列表の配列番号1及び2に示す塩基配列で示される変異B型肝炎ウイルス遺伝子のX領域由来のアンチセンス配列DNA、実質的にそれと同等な性状の変異配列、それらの部分断片、またはそれらから遺伝子工学的に誘導されたDNA配列、該アンチセンス配列を持つ遺伝子由来の蛋白やポリペプチド、実質的にそれと同等な性状の変異体、それらの部分断片、さらにはそれらをコードする遺伝子、及びそれらの遺伝子を含有する断片に存する。本発明の要旨は、該遺伝子由来の蛋白またはその一部のポリペプチド及びそれに対する特異抗体を利用した変異HBV感染の検出測定診断手段にも存する。

発明の詳細な説明

本発明の新規な遺伝子のX領域由来のアンチセンス配列DNA及びそれに関連したDNA配列、例えば、それを有効利用するうえで必須の配列の一部は、配列表の配列番号1及び2に示すものから選ばれたもの、もしくはその全てあるいは一部を含むものであり、さらに実質的にそれと同等な性状の変異体も含まれる。さらに本発明においては、その遺伝子を利用して得られるポリペプチドの一部のアミノ酸を既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルス感染患者血清との反

10

15

20

25

応性を損なわない範囲で、除去、挿入、修飾、あるいは付加する等の改変を行うため、あるいは該アンチセンス配列DNAの核酸の機能を研究するためそれを除去、挿入、修飾、あるいは付加する等の改変を行ったもの、さらには肝炎ウイルス感染検出診断系においてあるいは転写活性検出系において、さらには遺伝子工学的操作において有効な利用を図る目的でその一部のみを断片としたものも、例えば、それを含んだりすれば、本発明の新規なDNA配列に含まれる。

該DNAの処理にあたっては、制限酵素、例えば、ロバーツ(Roberts)ら、ヌクライック アシッド リサーチ(Nucleic Acids Res.)、19、Suppl. 2077(1991)に記載されたものなど、DNAポリメラーゼ、例えば、大腸菌DNAポリメラーゼ、クレノウ・フラグメント、大腸菌ファージT4DNAポリメラーゼなど、末端デオキシヌクレオチジルトランスフェラーゼ(TdTase)、エキソヌクレアーゼ、例えば、T4DNAポリメラーゼ、大腸菌エキソヌクレアーゼIII、λエキソヌクレアーゼなど、エンドヌクレアーゼ、例えば、DNaseI、ミクロコッカス(Micrococcus)ヌクレアーゼ、ヌクレアーゼS1など、リガーゼ、例えば、大腸菌DNAリガーゼ、ア4DNAリガーゼなどを用いたり、合成オリゴヌクレオチドを用いたりできる。また、当該分野で知られた遺伝子の人工変異導入法、例えば、日本生化学会編、新生化学実験講座2、核酸III、組換えDNA技術、233~252頁、株式会社東京化学同人発行(1992年)などに記載の方法を利用することもできる。

こうして、本発明の新規なHBVのX領域由来のアンチセンス配列DNAとしては、配列表の配列番号1及び2に示すDNAの全配列、実質的にそれと同等な性状の変異体、それから上記の方法で誘導されたDNA配列が含まれ、このようなDNA配列としては一本鎖であることもで

10

15

20

25

きるし、その相補鎖とハイブリダイズしている二本鎖であることもでき、また配列表の配列番号1及び2に示すDNAを制限酵素などで断片化したものも含まれることができる。本発明の新規なHBVのX領域由来のアンチセンス配列DNAの全部あるいはその一部と実質的に同等の機能を利用しうるものであるかぎり、それから誘導されたり、改変された配列であってよい。

本発明の新規なHBVのX領域由来のアンチセンス配列DNAでコー ドされるポリペプチド及びそれをコードする遺伝子並びにそれに関連し たDNA配列は、特には配列表の配列番号1及び2に示すもの、もしく はその全てあるいは一部を含むものであり、該ポリペプチドは既存の肝 炎ウイルス感染検出診断方法で検出されない肝炎ウイルス感染患者血清 と特異的に免疫化学的に反応させうることが期待されている。先の本発 明者らにより開示されたように新規なHBVのX領域由来の新規なポリ ペプチド(134個のアミノ酸残基からなる)は、既存の肝炎ウイルス 感染検出診断方法で検出されない肝炎ウイルス感染患者血清と特異的に 免疫化学的に反応する。本発明においても、既存の肝炎ウイルス感染検 出診断方法で検出されない肝炎ウイルス感染患者血清との反応性を損な わないような範囲で該ポリペプチドの一部のアミノ酸を除去、挿入、修 飾、あるいは付加する等の改変を行ったもの、または該アンチセンス配 列DNAの核酸を除去、挿入、修飾、あるいは付加する等の改変を行っ たもの、さらには肝炎ウイルス感染検出診断系においてあるいは転写活 性検出系において、さらには遺伝子工学的操作において有効な利用を図 る目的でその一部のみを断片としたものも、例えば、それを含んだりす れば、本発明の新規なポリペプチド及びそれをコードする遺伝子に含ま れる。

また、配列表の配列番号3に示すもの、もしくはその全てあるいは一

10

15

20

部を含むポリペプチドで、既存の肝炎ウイルス感染検出診断方法で検出 されない肝炎ウイルス感染患者血清と異なった特異性で免疫化学的に反 応するものも、かかる既存の肝炎ウイルス感染検出診断方法で検出され ない肝炎ウイルス感染患者血清との反応性を損なわない範囲であるなら その変異体や、その一部のアミノ酸を除去、挿入、修飾、あるいは付加 する等の改変を行ったものも本発明の新規なポリペプチドに含まれる。 また、この変異及び改変ポリペプチドをコードする遺伝子も本発明の範 囲に含まれることが理解されよう。さらに、配列表の配列番号3に示す もの、その変異体もしくはその全てあるいは一部を含むポリペプチドは、 種々の遺伝子のエンハンサーやプロモーターの配列に特異的に作用する ことが期待されている。先の本発明者らにより開示されたように新規な HBVのX領域由来の新規なポリペプチド(134個のアミノ酸残基か らなる)は、種々の遺伝子のエンハンサーやプロモーターの配列に特異 的に作用する。本発明においては、同様に種々の遺伝子のエンハンサー やプロモーターの配列との作用性を損なわない範囲でその変異のあるも の及びその一部のアミノ酸を除去、挿入、修飾、あるいは付加する等の 改変を行ったものも本発明の新規なポリペプチドに含まれることは理解 されるべきである。また、この改変ポリペプチドをコードする遺伝子も 上記しているように本発明の範囲に含まれることは理解されるべきであ る。また同様に、配列表の配列番号3に示すもの、もしくはその全てあ るいは一部を含むポリペプチドで、種々の遺伝子のエンハンサーやプロ モーターの配列に異なった特異性で作用するものも、かかる種々の遺伝 子のエンハンサーやプロモーターの配列への作用性を損なわない範囲で あれば本発明の新規なポリペプチドに含まれる。

25 以下、配列表の配列番号1及び2に示されそして既存の肝炎ウイルス 感染検出診断方法で検出されない肝炎ウイルス感染患者血清由来の新規

10

15

20

25

なHBVのcDNAクローンの取得方法を説明するとともに、該クローンの塩基配列を決定する方法を説明する。

本発明の配列表に示すB型肝炎ウイルス遺伝子のX領域由来のアンチ センス配列DNA、及びそれによりコードされた新規なアミノ酸配列を もつ新規なポリペプチドは、例えば、次のような方法によって得られる。 すなわち、既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウ イルス感染患者血清から核酸を抽出する。該血清としては、既存の肝炎 ウイルス感染検出診断方法、HAV検査ラジオイムノアッセイキット、 例えば、ダイナボット社製のラジオイムノアッセイHAV抗体検査キッ h、HBs-Ag、HBs-Ab、HBc-Ab、HBc-Ab、HB e-Ag、HBe-Abなどのラジオイムノアッセイ検査キット、例え ば、ダイナボット社製のもの、及びHCV抗体検査キット、例えば、ダ イナボット社製のHCV抗体検査PHAキットを用いての検査などで、 その測定結果が全て陰性のものが使用される。非A-、非B-、非C-、 非Dーそして非Eー型肝炎患者と診断された患者血清が好ましく使用さ れる。こうして抽出された核酸からcDNAを得るに当たっては、サイ キ(Saiki)らの開発したポリメラーゼ チェイン リアクション 法(PCR法)(ネーチャー(Nature)、324、126 (19 86)) に準じて適宜その方法を改良して行うことができる。 PCR法 を適用し抽出された核酸から得られた第1の相補鎖DNA (1 s t c DNA)は、次にそれを鋳型にしてさらにPCR法を適用し、目的のD NA断片が得られるまで増幅させることができる。この場合、PCRの 条件はプライマーの種類、組合わせ、増幅する長さ等によって、最適な 条件が異なるので、適宜状況に応じてその条件を変えることができる。 例えば、PCRは、プログラムインキューベーター装置を用い、合成サ イクルとして約93~95℃で約1分間、約45~55℃で約1.5分

10

15

20

25

間、そして約72℃で約1.5分間の処理を1サイクルとし、これを通常約20~50サイクル繰り返し、サイクル後にさらに約72℃で約10分間合成処理することが好ましい。ポリメラーゼとしては、TaqD NAポリメラーゼなどが好ましく用いられる(サイキ(Saiki)ら、サイエンス(Science)、239、487(1988))。使用されるプライマーは、既知のHBVの核酸配列を参考にデザインすることができ、例えば、HBVのEcoR1サイトから第1268-1287番目の核酸配列、第1295-1314番目の核酸配列、第1503-1522番目の核酸配列などに相当するセンス配列、また第1822-1841番目の核酸配列などに相当するアンチセンス配列などが挙げられる。

こうして得られたDNA断片は、例えば、独立に3つ以上のクローンの塩基配列についてその両方の鎖に関し、配列決定する。配列の決定には、例えばジデオキシ法(サンガー(Sanger)ら、プロシーディングス オブ ナショナル アカデミー オブ サイエンス ユー・エス・エイ(Proc. Natl. Acad. Sci. USA)、74、5463-5467, 1977)、マクサム・ギルバート(MaxamーGilbert)法(マクサム(Maxam)ら、プロシーディングス オブ ナショナル アカデミー オブ サイエンス ユー・エス・エイ(Proc. Natl. Acad. Sci. USA)、74、560-564, 1977)などの方法が挙げられる。好ましくは塩基配列の決定には、デュポン社製盤光シークエンサー ジェネシス2000(Genesis 2000)システムなどを用いて、デュポン社の該システム用のプロトコールに従って行えば容易に決定できる。また、塩基配列の決定しにくいところや、決定しようとするDNA断片が約180塩基以上ある場合には、常法に従い、サブクローニングを行えば良い。

WO 95/27788 PCT/JP95/00700

クローニングには、例えばM13mp18などのM13クローニングベクター、入DASHII、EMBL3、EMBL4、シャロン(Charon)4A、シャロン28、入gt11、入ZAPIIなどの入ファージベクター、pBR322、pUC18、pUC118、pSP64、pSP65、pSL1180、pKMN1、pMW119、pGEMー3、pGEM-3Zf(-)、pBluescript KS(東洋紡)、pJB8、pCR™(Invitrogen, USA)などのベクターを目的の応じて用いることができ、また市販のクローニングベクターの中から選んで用いることができる。

5

10

15

20

25

かくして決定された本発明のDNA断片の塩基配列は、例えば、配列 表の配列番号1及び2に示された通りのものである。また肝臓組織から RNAを抽出し、それから逆転写酵素によりcDNAを合成し、PCR 法で増幅し、必要に応じクローニングすることもできる。ところで、先 の本発明者らにより開示された新規なHBVのX領域由来の新規なポリ ペプチドは、そのアミノ酸配列が既知のHBVのX蛋白領域と明らかに 相違するのは、73番目のLeuと131番目から134番目までのV al-Trp-Arg-Leuである。また既知のHBVのX蛋白領域 がコードするアミノ酸は154個であるにもかかわらず、そのコード遺 伝子のDNA断片のX蛋白領域ではコードするアミノ酸は134個であ る。これはX領域遺伝子のうちの217番目が本発明の遺伝子の場合C となっていること、そして既知のX領域遺伝子のうちの395番目から 402番目まで(既知のHBVの1770番目から1777番目まで) の8個の遺伝子配列TTGTACTAが欠失してい、そのため3'側の コドンが変化したことに起因することが示されている。すなわち、そこ に記載の新規な蛋白は、これまでのHBVのX蛋白とその抗原性及びそ の生理的機能が全く異なるものである。本発明のDNAは、これら領域

10

15

20

25

のアンチセンス配列をなすもので、従って従来にない特徴的な配列を持つと共に、161個のアミノ酸残基からなるオープン・リーディング・フレーム (ORF)を生じている。こうして、この発明の蛋白も、これまでのHBVの蛋白とその抗原性及びその生理的機能が全く異なるものであることが期待される。この161個のアミノ酸残基からなるORFの蛋白のうちには変異のある例が認められ、そのアミノ酸に置換がみられたり、N端側やC端側に付加や欠失が存在したりする可能性も認められ、こうした変異蛋白も実質的に同様な性状を示すかぎり含まれる。

本発明のHBVのX領域由来のアンチセンス配列DNAでコードされ るポリペプチドは、遺伝子組換えの手法を用いて大量に産生することが できる。例えば、上記PCR法で得られたDNA断片をリン酸化するか、 あるいはリン酸化したプライマーを用いてPCR法を行い、クローニン グに適したDNA断片とすることが好ましい。このリン酸化は通常の方 法に準じて行うことができ、例えば、T4ポリヌクレオチドキナーゼ及 びATPを用いて行う方法などが挙げられる。さらに必要に応じ、PC R産物は、クレノウ・フラグメント、T4DNAポリメラーゼなどによ り組換えに適したように平滑化処理されたり、制限酵素認識配列を含ん だプライマーを用いてPCR法を行った増幅産物をその制限酵素で処理 するか、5′末端に接着配列を設けるなどの修飾を施して、PCR増幅 産物を作成するなどしてクローニングに適したものとすることが好まし い。上記161個のアミノ酸残基からなるORF部分のDNA断片を、 適当な制限酵素部位を含むプライマーを使用してPCR法で大量に増幅 し、次に必要に応じクローニングし、ついで発現ベクターに組換えて適 当な宿主を形質転換させ、得られた形質転換体細胞で該配列を発現させ て所要のポリペプチドを得ることができる。

本発明のX蛋白領域をコードする遺伝子のアンチセンス配列遺伝子(

10

15

20

25

c D N A) またはその断片を、必要に応じその 5' 末端を修飾して発現 ベクターのプロモーターの下流に挿入し、次いで大腸菌、酵母、動物細 胞などの宿主細胞に導入した後、得られた形質転換体を培養して、組換 え X 領域アンチセンス配列由来のポリペプチドを宿主細胞内外に産生さ せる。発現ベクターとしては、X蛋白領域をコードする遺伝子のアンチ センス配列遺伝子(cDNA)またはその断片を転写できる位置にプロ モーターを含有しているものが使用される。例えば、大腸菌、枯草菌、 酵母などの微生物を宿主とするときには、発現ベクターはプロモーター、 リボゾーム結合(SD)配列、X蛋白領域をコードする遺伝子のアンチ センス配列遺伝子(cDNA)またはその断片、転写終止配列、及びプ ロモーターを制御する遺伝子よりなることが好ましい。発現ベクターと しては、当該分野で知られたものあるいは当該分野で市販されたもの、 またはそれらから合成オリゴヌクレオチド、制限酵素、リガーゼなどを 用いて遺伝子組換え技術により誘導されたものの中からその目的に応じ、 て選択して用いられ、例えば宿主大腸菌では、pTTQシリーズ(アマ シャム (Amersham) 社)、pKK233-2 (ファルマシア (Pharmacia) 社)、pPROKシリーズ(クロンテック(Cl ontech) 社)、pDR720 (ファルマシア (Pharmaci a) 社)、pETシリーズ、pRSETシリーズ(インビトロジェン(Invitrogen) 社)、pQEシリーズ(QIAGEN Inc. 社)などが挙げられる。また、例えば、当該分野で知られた融合蛋白質 として発現できるプラスミド(ベクター)及びそれらから外来遺伝子の 発現に適するように制限酵素、合成オリゴヌクレオチドリンカー、リガ ーゼなどを用いて誘導された融合蛋白質発現系プラスミド(ベクター) を作製することが可能であり、そのプラスミドを用いて遺伝子組換え法 により形質転換体を得ることができる。本発明で用いられるポリペプチ

10

15

20

ドをキメラ融合蛋白質として発現するために用いられるプラスミド(ベ クター)としては、例えば大腸菌では B-ガラクトシダーゼ、グルタチ オン S-トランスフェラーゼ、プロテインAのIgG結合領域、マル トース結合蛋白質、CKS、例えばCKSの全248個のアミノ酸配列 のうち最初の239個のアミノ酸配列をもつもの、又は6個のヒスチジ ン残基を持つものと外来遺伝子である抗原とを融合蛋白質として発現で きるプラスミドなどが挙げられ、例えばそれらはDEX系プラスミド(クロンテック (Clontech) 社)、pUEX系プラスミド (アマ シャム (Amersham) 社)、pGEX系プラスミド (ファルマシ ア (Pharmacia) 社)、pRIT系プラスミド (ファルマシア (Pharmacia) 社)、pMAL系プラスミド (ニュー イング ランド バイオラボズ (New England Biolabs) 社)、pTB系プラスミド (アポット (Abbott)社)、pQE30 ~32ベクター(QIAGEN Inc. 社)など、また例えば酵母で はSODとの融合蛋白質として抗原を発現できるプラスミド、例えばS OD8-3などが挙げられる。融合部位は、例えば臭化シアン、ヒドロ キシルアミン、ギ酸、酢酸-ピリジン溶液、2-(2-二トロフェニル スルフェニル) -3-プロモインドール-スカトールなどの化学的な処 理で切断しうるようなものか、トリプシン、リシルエンドプロテアーゼ、 Xa因子、トロンビン、ヒト血漿カリクレインなどの酵素で切断しうる ようなものとされていることができる。さらに、例えば宿主酵母では、 YIp1、YIp5、YIp32などのYIp型ベクター、YEp13、 YEp24、pAM82、pJDB219、pAT405などのYEp 型ベクター、YRp7などのYRp型ベクター、YCp50などのYC p型ベクターなどが挙げられ、宿主動物細胞では、pcD、pcD-S $R\alpha$, CDM8, pCEV4, pME18S, BPV-I, EBV, ν

25

10

15

20

25

トロウイルスベクターなどが挙げられ、目的に応じて選択して用いられ うる。

宿主細胞の形質転換は、常法に従い行うことができ、得られた形質転 換体の培養も常法に従い行うことができ、例えば、モレキュラー クロ ーニング (Molecular Cloning) (コールド スプリ ング ハーバー ラボラトリー (Cold Spring Harbo r)、1982年)に記載の方法に準じて行うことができる。例えば、 宿主として大腸菌を用いる場合、塩化カルシウム法、塩化ルビジウム法、 ハナハン(Hanahan)法などでコンピテントにされたコンピテン ト細胞と発現ベクターとを混合するなどして形質転換できる。例えば、 宿主として動物細胞を用いる場合、リン酸カルシウム法、DEAE-デ キストラン法、エレクトロポレーション法、マイクロインジェクション 法、リポソーム法、プロトプラスト法、ウイルス感染法などで発現ベク ターを導入することにより形質転換できる。産生された組換えX領域ア ンチセンス配列由来のポリペプチドは、公知の方法により宿主細胞から・ 単離・精製される。先ず形質転換体からの単離にあたっては、例えば、 必要に応じ形質転換体を破砕などする。例えば、得られた形質転換体は、 その大腸菌、酵母などの細胞を、ガラスビーズ、アルミナビーズなどを

10

15

20

25

備えていてもよいホモジュナイザー、ワーリングブレンダー、フレンチ プレス、超音波破砕機などの機械的方法、リゾチームなどの酵素による 方法、凍結融解や浸透圧による物理的方法あるいはドデシル硫酸ナトリ ウム(SDS)、トウィーン(Tween:商品名)、トライトンX (Triton X:商品名)などの界面活性剤、アセトン、ブタノール などの有機溶媒、EDTAなどのキレート化剤などを用いる化学的方法 などにより破砕することができる。得られた形質転換体細胞液を、例え ば硫酸アンモニウムなどの蛋白質沈殿剤などを用いての塩析、エタノー ルなどの有機溶媒による沈殿法、界面活性剤などを用いての抽出、透析、 密度勾配遠心などの遠心分離法、限外濾過法、イオン交換樹脂、イオン 交換セルロース、イオン交換セファデックス、アルミナ、ハイドロキシ アパタイトなどによる吸着、カラムクロマトグラフィー、電気泳動法、 デキストランゲル、ポリアクリルアミドゲル、ポリエチレングリコール ジメタクリル酸ゲル、アガロースゲル、多孔質シリカガラス、分子ふる い法、モノクローナル抗体あるいはNi-NTA樹脂(QIAGEN Inc. 社)などを利用したアフィニティクロマトグラフィーにより分 離、精製することがなされる。生成物は、必要に応じさらに、使用に適 したものに加工できる。

上記161個のアミノ酸残基からなるORF部分のアミノ酸配列を参考に液相法や固相法として知られたペプチド化学合成法によりその部分ペプチドまたは改変ペプチドを合成することができる。合成ペプチドは必要に応じコンジュゲート化のためシステイン残基が付加されていてよい。選択されるアミノ酸配列としては、抗原決定基部位が好ましい。ペプチドの化学合成は、一般的には自動ペプチド合成装置により好適に行なうことが出来、例えば島津製作所製PSSM-8などを用いて行なうことができる。こうして得られた蛋白、ポリペプチド、合成ペプチドは

10

15

抗原として用いてそれらに対する特異抗体を調製するのに用いられる。 抗原としてはそれをそのまま適当なアジュバントと共に用いてもよいが、 合成ペプチドなどは必要に応じ適当な縮合剤などを用いて種々の担体蛋 白、例えばキー・ホール・リムペット(Keyhole Limpet Hemocyanin; KL H)、アルブミン、グロブリン、ポリリジンなどと結合させ免疫原性コン ジュゲートとして用いられる。こうした調製される特異抗体は、その由 来を特に限定されるものではなく、また、抗体は常法により得ることが できる。例えば日本生化学会編、続生化学実験講座5、免疫生化学研究 法、東京化学同人、1986年及び日本生化学会編、新生化学実験講座 12、分子免疫学 Ⅲ、抗原・抗体・補体、東京化学同人、1992年 などに記載の方法に準じて、例えばウマ、ウシ、ヒツジ、ウサギ、ヤギ 、ラット、マウスなどの哺乳動物等に抗原を投与して免疫し、得られる 抗血清、腹水液をそのまま、あるいは従来公知の方法、例えば硫酸アン モニウム沈殿法などの塩析、セファデックスなどによるゲル濾過法、イ オン交換クロマトグラフィー法、電気泳動法、透析、限外濾過法、アフ ィニティ・クロマトグラフィー法、高速液体クロマトグラフィー法など により必要に応じ精製して用いることができる。また、抗原などで免疫 した哺乳動物など(例えばマウス)の脾臓細胞と骨髄腫細胞(ミエロー マ細胞)からハイブリッド細胞(ハイブリドーマ)を得、培養してモノ クローナル抗体を作成したり、これを更に修飾してもよい。モノクロー ナル抗体は、ケラー及びミルシュタイン(Kohler, G. &Mil stein, C., Nature, 256, 495, (1975)) な どにより開示されたマウスミエローマ細胞を用いての細胞融合技術を利 用して得られたモノクローナル抗体であってもよい。抗体はIgG、I gM、IgAといった各分画を用いることが出来る。またこれらをパパ イン、トリプシン、ペプシンなどの酵素により処理し、Fab、Fab'

25

20

10

15

20

といった抗体フラグメントにして使用してもよい。さらにこれら抗体は 単一で使用しても、複数の抗体を組み合わせて使用してもよい。抗体に は標識物を付与することができ、IgG画分、更にはペプシン消化後還 元して得られる特異的結合部 Fab'を用いて標識化することができる。 標識物の例としては、ペルオキシダーゼ、アルカリホスファターゼある いは $\beta-D-ガラクトシダーゼなどの酵素、化学物質、蛍光物質、発色$ 物質、磁気物質、金属粒子、例えば金コロイドなど、放射性同位体など がある。標識化は当該分野で用いられる方法を適宜用いることができる。 上記抗原及び特異抗体は必要に応じ、例えば吸着、架橋化法などで固相 化できる。抗原あるいは抗体を固相化できる担体は、当該分野で用いら れる公知のものの中から適宜選んで用いることができる。例えば活性化 ガラス、多孔質ガラスなど、シリカゲル、シリカーアルミナ、アルミナ、 磁化合金などの無機材料、ポリエチレン、ポリプロピレン、ポリ塩化ビ ニル、ポリフッ化ビニリデン、ポリ酢酸ビニル、ポリメタクリレート、 ポリスチレン、スチレンーブタジエン共重合体、ポリアクリルアミド、 架橋ポリアクリルアミド、スチレン-メタクリレート共重合体、ポリグ リシジルメタクリレート、アクロレイン-エチレングリコールジメタク リレート共重合体、ナイロンなどのポリアミド、ポリウレタン、ポリエ ポキシ樹脂などの有機高分子物質、架橋化アルブミン、コラーゲン、ゼ ラチン、デキストラン、架橋デキストラン、アガロース、架橋アガロー ス、セルロース、微結晶セルロース、カルボキシメチルセルロース、セ ルロースアセテートなどの天然物またはその変成物、乳化重合物、細胞、 赤血球などが挙げられる。ろ紙、ビーズ、試験容器の内壁、例えば試験 管、タイタープレート、タイターウェル、ガラスセル、合成樹脂製セル などの合成材料からなるセル、ガラス棒、合成材料からなる棒、各種の 形態の固体物質(物体)の表面などが挙げられる。

. 25

本発明では、こうした変異B型肝炎ウイルス遺伝子のX領域由来のア ンチセンス配列遺伝子由来の蛋白やポリペプチド、その部分断片、実質 的にそれらのうちの一つと同等な性状の変異体、さらにはそれらのうち のいずれか一つに対する特異抗体を利用して変異HBV感染の検出測定 診断手段が提供される。変異HBV感染は、特異抗体を用いてウイルス 抗原を免疫染色したりして検出測定したり、組換えウイルス抗原あるい は化学合成抗原によるウイルスに対する特異抗体の検出測定などである こともできるし、こうした抗原抗体反応生成物を標識二次抗体、ビオチ ンーアビジン系などで検知可能にする手法を含むこともできる。例えば 日本生化学会編、続生化学実験講座 5、免疫生化学研究法、東京化学同 人、1986年及び日本生化学会編、新生化学実験講座12、分子免疫 学Ⅲ、抗原・抗体・補体、東京化学同人、1992年などに記載の方法 に準じ変異HBV感染の検出測定診断系を組立てることが可能である。 本発明の測定方法で測定される試料としては、あらゆる形態の溶液やコ ロイド溶液などが使用しうるが、好ましくは生物由来の流体試料、例え ば血液、血漿、その他の体液、肝臓組織、細胞培養液、組織培養液など が挙げられる。特に好ましくは血漿、血清、肝臓組織などが挙げられる。

実施例

5

10

15

20

25

次に実施例を示して、本発明を更に具体的に説明する。本発明の要旨 に従うかぎり、本発明は、以下の実施例に限定されない。

実施例1から実施例6の実験操作では、基本的に試料の汚染に注意するため、例えば、各反応液への試料の調製、試薬等の全ての操作で用いられたピペット等の器具は、1回使用するごとに交換する。

また、特に方法を記さないで行った次に示す基本的な遺伝子操作は、それぞれの操作の後に、括弧内に示す実験書や試薬販売会社が添付した

• 5

10

15

20

プロトコールに従って行った。

実施例 1 既存の肝炎ウイルス感染検出診断方法で検出されない肝炎 ウイルス感染患者血清からの核酸の抽出

既存の肝炎ウイルス感染検出診断方法、すなわち、抗HAV IgM 抗体(ラジオイムノアッセイ検査キット(RIA)、ダイナボット社製)、抗HBc抗体(RIA、ダイナボット社製)、抗HBc抗体(RIA、ダイナボット社製)、抗HBC IgM抗体(RIA、ダイナボット社製)、抗HCV抗体(エンザイムイムノアッセイ(ELISA)、ダイナボット社製)、抗D型肝炎ウイルス抗体(RIA、ダイナボット社製)、抗D型肝炎ウイルス抗体(RIA、ダイナボット社製)、抗E型肝炎ウイルス抗体(ELISA、本発明者ら、アクタパソロ ジャパン(Acta Pathol. Jpn.)、43:94-98,1993)、抗ヘルペス シンプレックス ウイルス IgM抗体(ELISA、デンカ生検社製)、及び抗サイトメガロ ウイルス IgM抗体(ELISA、デンカ生検社製)について、血清の検査をしても、陰性である肝炎ウイルス感染患者(E88と称する)からの血清を出発材料とした。患者E88は、非Aー、非Bー、非Cー、非Dーそして非Eー型肝炎患者とされ、急性症状を示し、劇症であった。

また同様に、肝炎ウイルス感染患者で、HBs-Ag(RIA、ダイナボット社製)、抗HBc 抗HBc 抗体 (RIA、ダイナボット社製)、抗HC V抗体 (ELISA、ダイナボット社製)、及び抗D型 肝炎ウイルス抗体 (RIA、ダイナボット社製)について、血清の検査をしても、陰性である肝炎ウイルス感染患者 (H2と称する)からの血清も出発材料とした。患者H2も、非A-、非B-、非C-、非D-そして非E-型肝炎患者とされたが、慢性症状を示していた。

25 患者血清のそれぞれ100μ1に、12.0mM Tris-HCl 緩衝液(pH8.0)、10.0mM EDTA、0.6%ドデシル硫

酸ナトリウム、トリス緩衝液($50\,\mathrm{mM}$ Tris-HCl($\mathrm{pH8}$. 0)、 $12.0\,\mu\,\mathrm{g/ml}$ のプロテネースK($\mathrm{ProtenaseK}$ 、ファルマシア社製)からなる細胞膜破壊液(lysis buffer) $300\,\mu\,\mathrm{l}$ を混合し、 $70\,\mathrm{C}$ で3時間インキュベーション処理する。フェノール/クロロホルムでもって、 DNA を抽出し、エタノールで沈殿させた後、 $100\,\mu\,\mathrm{l}$ の水に溶解する。

実施例2 HBV DNAの合成

実施例1で得られた2名の患者由来のそれぞれの核酸E88及びH2 溶液を鋳型として用い、下記に示すようにしてHBV DNAをPCR 法 (ネーチャー (Nature)、324、126 (1986))で増幅した。PCRプライマーとして380B DNAシンセサイザー (アプライド バイオシステムズ ジャパン社製)を用い以下の配列のヌクレオチドを合成した。ヌクレオチドの番号はHBVのEcoR1サイトから始まるものである。

- 15 (i). 第1段のPCR処理用
 - (1) プレーC/C領域

 p142
 5'-GACTGGGAGGAGTTGGGGGA-3':

 センス配列1730~1749番目、配列表の配列番号4

 p144
 5'-GGATTAAAGACAGGTACAGT-3':

- 20 アンチセンス配列 2 5 1 0 ~ 2 5 2 9 番目、配列表の配列番号 5
 - (2) ポリメラーゼセグメント遺伝子領域

 p208
 5' -AGGCAGGTCCCCTAGAAGAA-3' :

 センス配列2364~2383番目、配列表の配列番号6

 p210
 5' -GGGTTGAAGTCCCAATCTGG-3' :

25 アンチセンス配列2976~2995番目、配列表の配列番号7

(3) プレーS領域

 p191
 5'-GGCATTAAACCTTATTATCC-3':

 センス配列2696~2715番目、配列表の配列番号8

p193 5'-TGGAGGACAAGAGGTTGGTG-3':

5 アンチセンス配列338~357番目、配列表の配列番号9

(4)表面蛋白領域

p 1 8 3 5'-CCATATCGTCAATCTCCTCG-3': センス配列 1 1 3~1 3 2番目、配列表の配列番号 1 0

p185 5'-AAGACCCACAATTCTTTGAC-3':

10 アンチセンス配列991~1010番目、配列表の配列番号11

(5)ポリメラーゼセグメント遺伝子領域

p 2 0 3 5'-ATGTGGTATTGGGGGCCAAG-3': センス配列 7 4 8 ~ 7 6 7番目、配列表の配列番号 1 2

p 2 0 5 5' -GGTCGTCCGCGGGATTCAGC-3':

15 アンチセンス配列 1 4 4 2 ~ 1 4 6 1番目、配列表の配列番号 1 3 (6) X領域

 p197
 5' - C C A T A C T G C G G A A C T C C T A G - 3' :

 センス配列1268~1287番目、配列表の配列番号14

p 2 0 1 5' -ATTAGGCAGAGGTGAAAAAG-3':

アンチセンス配列1822~1841番目、配列表の配列番号15

(ii). 第2段のPCR処理用

プレーC/C領域

20

p865'-GGAGATTAGGTTAAAGGTCT-3':センス配列1750~1769番目、配列表の配列番号16

 25
 p 8 9
 5' - A G A C A G G T A C A G T A G A A G A A - 3':

 アンチセンス配列 2 5 0 3 ~ 2 5 2 2 番目、配列表の配列番号 1 7

10

15

20

(2) ポリメラーゼセグメント遺伝子領域

p 2 0 9 5' - AGAACTCCCTCGCCTCGCAG-3':

センス配列2383~2402番目、配列表の配列番号18

p 2 1 1 5' -AGGGTCCAACTGGTGATCGG-3':

アンチセンス配列2932~2951番目、配列表の配列番号19

(3) プレーS領域

p192 5'-ATATAAGAGAGAAACTACAC-3':

センス配列2785~2804番目、配列表の配列番号20

p194 5'-AAACCCCGCCTGTAACACGA-3':

アンチセンス配列194~213番目、配列表の配列番号21

(4)表面蛋白領域

p184 5'-CTCCTCGAGGACTGGGGACC-3':

センス配列126~145番目、配列表の配列番号22

p186 5' -ACATACTTTCCAATCAATAG-3':

アンチセンス配列973~992番目、配列表の配列番号23

(5) ポリメラーゼセグメント遺伝子領域

p 2 0 4 5' - CTGTACAAGATCTTGAGTCC-3':

センス配列769~788番目、配列表の配列番号24

p 2 0 6 5' - CCGACGGGACGTAGACAAAG-3':

アンチセンス配列1421~1440番目、配列表の配列番号25

(6) X領域

p198 5'-TTTTGCTCGCAGCCGGTCTG-3':

センス配列1295~1314番目、配列表の配列番号26

p 2 0 1 5' - ATTAGGCAGAGGTGAAAAAG-3':

25 アンチセンス配列1822~1841番目、配列表の配列番号27

- (iii) インターナル・ヌクレオチド配列
- (1) プレーC/C領域

p1415'-TTGCCTTCTGACTTCTTTCC-3':センス配列1957~1976番目、配列表の配列番号28

- 5 (2) ポリメラーゼセグメント遺伝子領域
 - p2125'-TTTAATCCTGAATGGCAAAC-3':センス配列2521~2540番目、配列表の配列番号29
 - (3) プレーS領域
 - p195 5'-CTCAAACAATCCACATTGGG-3':
- 10 センス配列2966~2985番目、配列表の配列番号30
 - (4)表面蛋白領域
 - p 1 8 2
 5' TGTGTCTGCGGCGTTTTATC-3' :

 センス配列 3 8 0 ~ 3 9 9番目、配列表の配列番号 3 1
 - (5) ポリメラーゼセグメント遺伝子領域
- 15
 p 2 0 7
 5' CTATTGATTGGAAAGTATGT-3':

 センス配列 9 7 3 ~ 9 9 2番目、配列表の配列番号 3 2
 - (6) X領域
 - p202
 5'-CTGCCGTTCCGGCCGACCAC-3':

 センス配列1503~1522番目、配列表の配列番号33
- 20 上記のようにして調製された 2 名の患者由来のそれぞれの核酸水溶液 の 5 μ 1 を用い、上記合成プライマーを用いサイキ (Saiki)らの 方法 (ネーチャー (Nature)、324、126 (1986))に 準じて特異的な配列の増幅を行った。

 $PCR法は、まずDNA試料それぞれ5<math>\mu$ 1、各合成プライマー0.

25 25μM、Taq DNAポリメラーゼ (パーキン エルマー シータス (Perkin-Elmer Cetus、米国) 1ユニット、PC

10

15

R緩衝液 (50 mM KC1、10 mM Tris−HC1 (pH8.3)、1.5 mM MgC1₂、0.002% ゼラチン) 及びそれぞれ100 μMのdNTPを、蒸留水で合計100 μ1になるようにした。この反応用試料を、プログラムインキュベーター装置 (パーキン エルマー シータス社製) でもって、94℃で1分間変成処理、55℃で1分間アニーリング処理、72℃で2分間伸長反応処理からなる1サイクルの処理を、計40サイクル行った。

実施例3 増幅されて得られた2名の患者由来のDNA断片のクローニングと塩基配列の決定

実施例2において得られたそして既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルス感染患者2名の血清から調製された第2段のPCR処理で得られた増幅DNA断片を、それぞれ2%のアガロースゲルを用いた電気泳動にかけ、エチジウム ブロマイド螢光により可視化し、切り出されたゲルを抽出した(モレキュラー クローニング(Molecular Cloning)(コールド スプリング ハーバー ラボラトリー(Cold Spring Harbor)、1982年))。抽出にはジェネクリーン(Geneclean)IIキット(バイオ(BIO)101社製、米国)を用い、このキットに添付されているプロトコールに従った。

20 精製し、抽出したDNA断片を、20μ1の水に溶解し、その5μ1 ずつを、シークエンス キット (ユナイテッド ステイツ バイオケミカル コーポレイション (United States Bioche mical Corp.) 社製)を用い、ジデオキシ シークエンス法により配列決定した。上記PCRプライマーとインターナル・ヌクレオチドプライマーをシークエンスプライマーとして用いた。

10

15

20

25

該それぞれのDNA断片のHBVのX領域部分の+鎖及び-鎖の塩基配列を決定した。既存の肝炎ウイルス感染検出診断方法で検出されない肝炎ウイルス感染患者2名の血清から調製された増幅E88DNA及びH2DNA断片の-鎖はそれぞれ配列表の配列番号1及び2に示す通りの塩基配列を含有している。

配列表の配列番号34には、+鎖の塩基配列が示され、その第1376番目から第1829番目までがHBVのX蛋白領域であるが、そこにコードされるポリペプチドのアミノ酸配列では、既知のHBVのX蛋白領域と73番目のLeuと131番目から134番目までのVa1-Trp-Arg-Leuにおいて明らかに相違する。また既知のHBVのX蛋白領域がコードするアミノ酸は154個であるにもかかわらず、該+鎖のDNA断片のX蛋白領域遺伝子ではコードするアミノ酸は134個である。これはX領域遺伝子のうちの217番目が該+鎖の遺伝子の場合Cとなっていること、そして既知のX領域遺伝子のうちの395番目から402番目まで(既知のHBVの1770番目から1777番目まで:配列表の配列番号34の1769番目と1770番目の間)の8個の遺伝子配列TTGTACTAが欠失してい、そのため37側のコドンが変化したことに起因する。すなわち、この+鎖でコードされる蛋白は、これまでのHBVのX蛋白とその抗原性及びその生理的機能が全く異なるものである。

配列表の配列番号1及び2に示す一鎖の塩基配列は、HBVのX蛋白 領域のアンチセンス配列に相当するものであり、今回解明されたその配 列からそれが従来にない特徴的な配列を持つと共に、161個のアミノ 酸残基からなるオープン・リーディング・フレーム (ORF) の存在が 確認された。配列表の配列番号3にはこのペプチドの配列が示されてあ り、配列表の配列番号1の塩基配列の第1384番目から第1869番

15

20

25

目までの配列によりコードされている。以下このコードされている蛋白をASXPとも呼ぶ。このアンチセンス配列でコードされる蛋白は、これまでのHBVの蛋白とその抗原性及びその生理的機能が全く異なるものであることが期待される。またASXPのうちには変異のある例が認められ、そのアミノ酸に置換がみられたり、N端側やC端側に付加や欠失が存在したりする可能性も認められ、こうした変異ASXPも実質的に同様な性状を示すかぎり、本発明に含まれる。

実施例4 既存肝炎ウイルス検出法陰性患者でのASXPのmRNAの発現の検証

10 (1) 肝臓組織からの全RNAの抽出

実施例1で記載したように既存の肝炎ウイルス感染検出診断方法で血清の検査をしても陰性である患者(以下「F型肝炎患者」(血清マーカー陰性=サイレントB型肝炎患者)という)に肝生検を施して得られた肝臓組織からRNAを抽出する。

慢性下型肝炎患者 10 人及び非ウイルス肝炎患者(コントロール)のそれぞれに肝生検を施して得られた肝臓組織をRNA 201 M B (BIOTECX LABORARORIES, INC., USA) キットを用いその試薬キットに添付の処理方法の指針に従い処理し、RNAを抽出した。そのキットに添付の処理方法の指針は、約 $1\sim10$ mg という少量の組織からRNAを抽出する手法に関するものである。肝生検で得られた少量の肝臓組織をRNA 201 Bの0.8 m 1 中でホモジナイザー(「イボ付ホモジナイザー」、岩城硝子製)によりホモジュネート処理する。次にこうして得られたホモジュネートをエッペンドルフ型チューブに移した後、 $400\mu1$ のクロロフォルムを加え4 Cで5分間試料液を保持し、次に15 分間そのエッペンドルフ型チューブ中の試

10

20

25

料を12,000×gで遠心し、2相に分かれた試料液(下相はブルーのフェノール・クロロフォルム相で上相は無色の水性相で、DNA及び蛋白質は2相の境界及び有機相にある)から水性相を集め、その水性相を0.5 m 1のイソプロパノールにより処理し4℃で45分間から1昼夜かけてRNAを沈殿させる。RNA沈殿物を15分間12,000×gで遠心処理した後分離したRNA沈殿物を0.8 m 1の75%エタノールで1回洗浄処理して、4℃あるいは-20℃で8分間7,500×gで遠心処理してペレット状のRNA試料を得た。必要に応じ上記イソプロパノールを添加の後4℃でその試料は1昼夜保存できる。

こうして得られたペレット状のRNA試料は0.5%SDS液(pH7)あるいは1 mMEDTA液(pH7)に穏やかな処理で溶解される。 好ましくはジエチルピロリン酸(DEPC)処理されたRNaseフリーの液を用い、60%で10~15分間インキュベーション処理し溶解される。

15 (2) 肝臓組織全RNAからcDNAの合成

上記(1)で得られた肝臓組織全RNA試料を用い、Superscript RNase H- (reverse transcript ase) キット (BRL社) を使用してcDNAに逆転写する。

cDNA 1st strandの合成は、ランダム・プライマー(random primer)として 80μ Mの濃度のpd (N)。(宝酒造社製)を用い、上記(1)で得られた肝臓組織全RNA試料 5μ 1、 80μ Mのランダム・プライマー液 2μ 1及び水 4.5μ 1からなる液を70で10分間インキュベーション処理し、氷上ですばやく冷却する。Superscript RNase H^- キット(BRL社)に添付の反応用緩衝液(reaction buffer)の5倍希釈液 4μ 1、0.1Mのジチオスレイトール(DTT)液 2μ 1、10

10

15

20

25

mMのdNTP (Superscript RNase H^- キット (BRL社) に添付) 1μ 1及びRNase inhibitorの 1μ 1を添加し、良く混合する。次にその混合物にSuperscript RNase H^- キット (BRL社) に添付のreverse transcriptase 0.5 μ 1 (100ユニット) を添加し、37℃で1時間インキュベーション処理した後70℃で10分間処理する。 cDNA 2nd strandの合成は、プライマーとしてオリゴd Tプライマー (oligo dT primer) を用い、試料5 μ 1、オリゴdTプライマー1 μ 1及び水5.5 μ 1からなる液を用いた以外はcDNA 1st strandの合成と同様に処理した。こうして 肝臓組織全RNAからcDNAが合成される。

(3) 逆転写により合成された c DNAのPCR法による増幅

上記(2)で得られた c D N A を鋳型として用い、実施例 2 と同様に しネーチャー(Nature)、324、126(1986))に準じ てP C R 法で合成した。

合成プライマーを380B DNAシンセサイザー (アプライド バイオシステムズ ジャパン社製) を用い以下の配列のヌクレオチドを合成した。

p250 5'-ATGGTGCTGGTGAACAGACC-3': 配列表の配列番号35

p 2 5 1 5'-TCGGAACCGACAACTCTGTT-3': 配列表の配列番号 3 6

PCR法は、まずDNA試料それぞれ 5 μ 1、各合成プライマー 0.
2 5 μM、Taq DNAポリメラーゼ(パーキン エルマー シータス (Perkin-Elmer Cetus、米国) 1ユニット、PC
R緩衝液 (5 0 mM KC1、1 0 mM Tris-HC1 (pH8.

10

15

20

25

3)、1.5 mM MgC12、0.002% ゼラチン)及びそれぞれ100μMのdNTPを、蒸留水で合計100μlになるようにした。この反応用試料を、プログラムインキュベーター装置(パーキン エルマー シータス社製)でもって、94℃で1分間変成処理、55℃で1分間アニーリング処理、72℃で2分間伸長反応処理からなる1サイクルの処理を、計40サイクル行った。

(4) PCR産物DNAの検出

上記(3)で増幅されたPCR産物であるDNA試料をミニゲルを用いたアガロース電気泳動にかけ、エチジウム・ブロマイドで染色してDNAバンドを検出した。

1%アガロース・ミニゲルは、1 gのアガロース(岩井化学)と1 0 0 m 1 の TA E 緩衝液(9. 6 8 gの T r i s、 2. 8 m 1 の酢酸及び 1. 5 7 7 gの E D T A・三ナトリウムを蒸留水を加え約 9 0 m 1 にし、次に酢酸を加えて p H 7. 8 に調整した後蒸留水で 1 0 0 m 1 となるようにする)を混合後電子レンジに入れて加熱してアガロース溶解後、型に入れて冷却することにより得られる。こうして得られた s 1 a b g e 1 を 3 0 0 m 1 の TA E 緩衝液を入れた泳動槽に装着する。泳動する D N A 試料を色素液(グリセロール 3 0 %、ブロモフェノールブルー(B P B) 0. 2 5 %及びキシレンシアノール(X C) 0. 2 5 %含有)と混ぜ、ゲルのスロットに注入する。D N A 試料 5 μ 1 + 色素液 1 μ 1 となるようにゲルにかける。定電圧(約 5 0 \sim 1 5 0 V)で 3 0 \sim 3 5 分間電気泳動する。泳動後ゲル板にエチジウム・ブロマイド液(1 0 0 m 1 の蒸留水 + 5 μ 1 のエチジウム・ブロマイド)にひたし染色処理し、1 0 \sim 3 0 分間放置したのち水洗し、紫外線照射器を用いてD N A バンドを観察するか、写真に撮ってD N A バンドを観察する。

結果は、F型肝炎患者10人のうち3人において特異的なバンドが存

10

15

在することを確認した。一方コントロールの非ウイルス肝炎患者では全 て陰性であった。

(5) PCR産物DNAのクローニング及び配列決定

上記(3)で増幅されたPCR産物であるDNA試料をTA Cloning $^{\text{TM}}$ (Invitrogen, USA) キットを用いその試薬キットに添付の処理方法の指針に従い処理し、 pCR^{TM} ベクターにクローニングし、実施例 3 と同様にしてその配列の決定をした。

TA CloningTM (Invitrogen, USA) キット中の pCR^{TM} ベクターを 8. 8μ lのTE緩衝液(Tris-HCl (pH7.5) 10mM及びEDTAlmM)に懸濁し、最終的に 2. $5mg/\mu$ lの濃度とし、これを再懸濁 pCR^{TM} ベクター液とする。上記(3)で増幅されたPCR産物であるDNA試料 1μ l、 10×5 イゲーション緩衝液 1μ l、再懸濁 pCR^{TM} 11ベクター液 2μ l、T4 DNAリガーゼ試薬 1μ l及び蒸留水 5μ lからなるライゲーション反応液を 12^{CC} で少なくとも 4 時間、好ましくは一晩インキュベーション処理した。 TA Cloning TM (Invitrogen, USA) キットに添付の処理方法の指針では、 pCR^{TM} ベクターと PCR 産物である DNAとのモル比は、 $1:1\sim1:3$ とすることが推奨されているのでそれに従った。

20 LBアガー培地(アガー7~8g、トリプトン10g、イーストエキストラクト5g、塩化ナトリウム10gを蒸留水に入れ、水酸化ナトリウムで中和し、最終的に1リットルにする)からなるプレートには適当な抗生物質($50\mu g/m100$ のカナマイシンあるいは $50\mu g/m100$ アンピシリン)を添加してある。 $5-プロモ-4-クロロ-3-インドリル-\beta-D-ガラクトシド(X-Gal)40mgを1m1のジメチルホルムアミド(DMF)に溶解し、<math>4\%X-Gal$ 液とする。この4

10

15

20

25

%X-Gal液25μlを10cmのLBアガープレートの中央に垂らし、ガラス・スプレッダーで塗り広げ、X-Gal・LBアガープレートとする。SOC培地は、トリプトン(Difco)20g、イーストエキストラクト5g、塩化ナトリウム0.585g、塩化カリウム0.186g、塩化マグネシウム10mM及び硫酸マグネシウム10mMを

186g、塩化マグネシウム10 mM及び硫酸マグネシウム10 mMを蒸留水で1リットル(最終pH6.8~7.0にする)にして作成したSOB培地に10m102Mグルコース液を添加して作成される。

0. 5Mのβ-メルカプトエタノール液2μ1をTA Clonin g TM (Invitrogen, USA) キットに添付のOneSho t™ コンピテント細胞の50 μ 1 バイアル中に添加する。次に上記ラ イゲーション反応の結果得られた液1μ1を上記コンピテント細胞液に 添加し、30分間氷の上でインキュベーション処理した。次にコンピテ ント細胞液バイアルを42℃の浴槽につけ30秒間インキュベーション 処理し、次に2分間氷の上に置き、予め42℃に温めてあるSOC培地. 450μ1を添加し、そのバイアルをシールした後225rpmで回転 式シェイキング・インキュベーター中で37℃で1時間処理し、次に氷 の上に置き、形質転換細胞液を得る。この形質転換細胞液から25μ1 ~100μ1を採取し、抗生物質及びX-Galを含有するX-Gal・ LBアガープレートに播く。プレートを裏返して、37℃の培養器中で 一晩インキュベーション処理した。白色のコロニー(場合によっては薄 いブルーのコロニー)を選別し、シークエンシングに用いた。シークエ ンシングは、実施例3と同様にして行い、その配列の決定をした。

このシークエンシングの結果、pCR™11ベクターにクローニング されたPCR産物であるDNAの塩基配列はASXPに相当するもので、 上記得られたPCR産物がASXP遺伝子に由来するものであることが 確認できた。なお、F型肝炎患者10人のうち7人についてPCRによ

25

る結果は陰性であったが、これはASXPのmRNA量がPCRの感度 以下であった可能性もあり、全面的にASXPのmRNAが無いことを 意味するものではない。こうしてF型肝炎患者の肝臓ではASXP遺伝 子がmRNAに転写されている可能性が確認された。

実施例 5 既存肝炎ウイルス検出法陰性患者肝臓でのASXP蛋白発 現の検証

(1) ASXP蛋白に対する特異抗体の作成

15 (配列表の配列番号37)

(Hind III)

p222 5'-TAG TAC AAG CTT TTA TCG GAA CCG ACA ACT CT-3':
p225 5'-TAG TAC GCA TGC ATG GTG CTG GTG AAC AGA CC-3':

(Sph I)

20 (配列表の配列番号38)

PCR産物であるDNA試料を制限酵素 Sph Iと Hind IIIで消化して得られた断片を、PQEプラスミドを制限酵素 Sph Iと Hind IIIで消化して得られた断片とライゲーションする(QIAexpress $^{\text{M}}$ +ット(QIAGEN Inc., USA)を用いその試薬キットに添付の処理方法の指針に従い処理し、例えば pQE $^{\text{M}}$ -30ベク

- 10

15

20

ターをHind III/Sph Iによるdouble digestio n処理し得られた断片にライゲーションする)。ライゲーション反応は、 PQEプラスミド液(約100ng)2μ1、PCR産物3μ1、×1 0 ライゲーション緩衝液 3 μ 1 、 5 mMのATP液 2 μ 1、T 4 DN A Ligase (Takara) 2μ1及び蒸留水18μ1からなる 反応混合物 3 0 μ 1 を 4 ℃で一晩インキュベーション処理した。このラ イゲーション産物をJM109 Transformation Ki t (Toyobo)に添付の処理方法の指針に従い処理し大陽南株M1 5を形質転換処理した。形質転換体細胞はアンピシリンを含有するLB プレートにまき、一晩37℃でインキュベーション処理した。IPTG は20mg/ml濃度の水溶液をプレート当たり10μl、X-Gal は20mg/ml濃度のDMF溶液をプレート当たり40μl用いた。 SOC培地はJM109 Transformation Kit (T oyobo)に添付の処理指針に従った。出現したコロニーからmin iprep法でプラスミドを精製し、Hind III/Sph Iによるd ouble digestion処理した後、minigelにかけ、 特異バンドの観察されるプラスミドがASXPのORFを含んでいると した。ASXPのORFを含んでいるクローニングされた発現ベクター で大腸菌株M15 [pREP4]を宿主として形質転換し、得られた形 質転換体を発現させた。組換え蛋白質はQIAexpress™キット (QIAGEN Inc., USA)を用いぞの試薬キットに添付の処 理方法の指針に従い処理し精製処理した。一方ASXP蛋白のアミノ酸 配列の一部を持つ合成ペプチドを4種類合成して抗原とした。その合成 ペプチドは次のアミノ酸配列を有するものである:

25 XAS-1: N-末端 VSMRRAEVRRSAHGSADEKAQTGRPRKERCAP C-末端 (配列表の配列番号 3 9)

15

20

25

XAS-2: N-末端 GPETGRPRDSAPTGRRQRTSRAG C-末端

(配列表の配列番号40)

XAS-3: N-末端 SMRRAEVRRSAHGS C-末端

(配列表の配列番号41)

5 XAS-4: N-末端 PRKERCAPWSAGTADEEGDGRGPN C-末端

(配列表の配列番号42)

上記配列の合成ペプチドのC末端にCysを付加したペプチドをペプチド合成機PSSM-8 (島津製作所)により合成し、高速液体クロマトグラフィーにより精製し、次にKLH とマレイミド法を用いて、コンジュゲート化する。

(2) ASXP蛋白に対する特異抗体による患者肝臓組織の免疫染色

慢性 F型 肝炎患者 5 例及び非ウイルス 肝炎患者 (コントロール) 3 例 のそれぞれに 肝生検を施して得られた 肝臓組織を、上記 (1) で得られた ASXP蛋白に対する 特異抗体を 用いて免疫染色し、 肝臓組織で ASXP蛋白が発現しているか否かを 測定する。

肝生検を施して得られた肝臓組織は、それぞれホルマリン固定し、パラフィン包埋処理した後薄切りして肝パラフィン薄切切片とする。次に脱パラフィン処理し、リン酸塩緩衝化食塩液(phosphate-buffered saline: PBS)で10分間洗った後、上記(

10

20

25

1)で得られた5種類の抗体が混合されて含まれているASXP蛋白に対する特異抗体を1,000倍希釈とし、第一抗体として反応させる。 4℃で一晩反応させた後PBSで10分間洗った後、ペルオキシダーゼ (HRP)標識抗ウサギIgG(ヤギIgG/Fab') (MBL社)を500倍希釈とし、第二抗体として反応させる。37℃で1時間反応させた後PBSで10分間洗った後、過酸化水素含有ジアミノベンジジン液で発色処理して肝組織切片の免疫染色を観察した。

結果は慢性F型肝炎患者 5 例中 4 例で陽性であったが、コントロール 3 例ではすべて陰性であった。陽性産物は肝細胞の細胞質にほぼ慢性に 認められ、陽性細胞は集まっている傾向が観察された。

急性F型肝炎患者血清、慢性F型肝炎患者血清及び正常ヒト血清についてELISA測定を行った。

実施例5の(1)で合成したXAS-1抗原の溶液(50μg/m1)を50μ1ずつウェルに添加する。4℃で一晩静置した後PBSで洗浄し、次にウェルにスキムミルク上清200μ1ずつ添加し、室温で3時間静置し、PBSで洗浄し、抗原固相化ウェルとする。

肝炎患者血清試料は500倍希釈、正常ヒト血清は100倍希釈を検体として用いた。それぞれの血清検体 $50\mu1$ ずつを各ウェルに添加し、室温で3時間反応させた後PBSで洗浄する。次にウェルにHRP標識抗ヒトIgG抗体試薬(市販品) $50\mu1$ をそれぞれ添加し、室温で1時間反応させた後PBSで洗浄する。このウェルに基質として過酸化水素含有0-フェニレンジアミン(OPD)溶液 $50\mu1$ ずつを加え、室温で20分間反応させた後停止液として3N硫酸液 $100\mu1$ ずつを加

える。490 n mの吸光度を測定した。得られた結果を表1に示す。 表1よりF型肝炎患者血清は、有意に高い吸光度を示し、その血清中に ASXP蛋白に対する特異抗体が存在すると判断される。またASXP 蛋白を構成するアミノ酸配列の一部からなるペプチド抗原は、F型肝炎 感染の診断手段を提供する。正常ヒト血清の平均吸光度+2SDをカットオフ値とすれば、急性F型肝炎患者血清では少なくとも2例で、慢性 F型肝炎患者血清では少なくとも10例で陽性が認められる。

表1

検体 番号	正常ヒト血清	検体 番号	急性F型肝炎 患者血清	検体 番号	慢性F型肝炎 患者血清
1	0.063	11	0. 078	25	0. 239
2	0.071	12	0. 028	26	0. 078
3	0.057	13	0. 067	27	0.070
. 4	0.060	14	0.059	28	0.093
5	0.057	15	0. 037	29	0. 140
6	0.085	16	0. 073	30	0.073
7	0.022	17	0. 050	31	0. 156
7	0.024	18	0. 047	32	0. 120
9	0. 032	19	0. 091	33	0.073
10	0. 025	20	0. 090	34	0.062
		21	0. 086	35	0. 199
		22	0. 053	36	0. 242
-		23	0. 142	37	0. 147
		24	0.143	38	0. 132
_				39	0. 079
				40	0. 098
				41	0. 042
				42	0. 091
				43	0. 109
平均值	0.0496		0. 0745		0. 1178

10

15

20

25

発明の効果

HBVのX遺伝子の産物であるX蛋白は、HBVに感染したことを検 出するための抗原としての有用性があるのみならず、正常肝細胞中で細 胞因子との相互作用を介してHBV自身のエンハンサーあるいは他の細 胞遺伝子のエンハンサーやプロモーター配列にトランスに作用し、転写 を活性化することなどの知見が得られていることから、肝癌への関与が 注目されている。本発明の新規なHBVのX領域由来のアンチセンス配 列DNAでコードされるアミノ酸配列の全てあるいは一部を含むポリペ プチドは、新規なHBVのX蛋白に特異的な領域に関連して存在しうる ものと考えられ、これらのポリペプチド又はそれに対する特異抗体を用 いた肝炎ウイルスに対する特異抗体検出系又は肝炎ウイルス検出系を開 発すれば、既存の肝炎ウイルス感染検出診断方法で陰性として検出でき なかった陽性とすべき患者を検出することが可能となる。本発明の新規 なHBVのX領域由来のアンチセンス配列DNAでコードされるポリペ プチド、その変異体、あるいはそれら配列の一部を含むポリペプチドは、 診断剤又はそれらの開発用試薬として、さらには肝炎、肝癌、肝炎ウイ ルスなどの検出診断薬、予防治療剤などあるいはそれらの開発用試薬と して有用である。また、これらの蛋白又はポリペプチド自体及びそれを コードする遺伝子を用い、転写活性検出系などを開発すれば、有効な抗 ウイルス剤、抗腫瘍剤などの開発においても有用と考えられる。

既知のHBV DNAのX領域遺伝子のORFの8個の塩基配列が欠失しているため、アンチセンス配列上に161個のアミノ酸残基をコードするオープン・リーディング・フレーム(ORF)ができた。そしてこの遺伝子が実際に発現していると考えられる。この蛋白又はその一部配列からなるポリペプチドは、肝炎ウイルス、肝炎、肝癌などの腫瘍の診断剤、治療剤、予防剤又はそれらの開発用試薬として有望である。

两	冽	害
=-	ノリ	ax.

配列番号:1

配列の長さ:3192

配列の型:核酸 鎖の数:両形態 トポロジー:直線状

配列の種類:Genomic DNA

アンチセンス:Yes

起源:Hepatitis B virus

直接の起源: 既知の肝炎ウイルス検出診断方法で陰性の肝炎患者 (E 8 8 H B V

)血清

配列

CCACTGCATG	GCCTGAGGAT	GACTGTCTCT	TAGAGGTGGA	GAGATGGGAG	TAGGCTGTCT	60
TCCTGACTGC	CGATTGGTGG	AGGCAGGAGG	AGGCGCTGCT	GGCACTGTTG	TCAATATGCC	120
CTGAGCCTGA	GGGCTCCACC	CCAAAAGACC	GCCGTGTGGT	GGGGTGAACC	CTGGCCCGAA	180
TGCTCCCGCT	CCTACCTGAT	TTGCCTCTGG	CCAGTGATCC	TTGTTGGGGT	TGAAGTCCCA	240
ATCTGGATTG	TTTGAGTTGG	CTCCGAACGC	AGGGTCCAAC	TGGTGATCGG	GAAAGAATCC	300
CAGAGGATTG	GGAACAGAAA	GATTCGTCCC	CATGCCTTGT	CGAGGTTTGG	TGCTGTAGCT	360
CTTGTTCCCA	AGAATATGGT	GACCCACAAA	ATGAAGCGCT	GCGTGTAGTT	TCTCTTTTAT	420
ATAGAATGCC	AGCCTTCCAC	AGAGTATGTA	AATAATGCCT	AGTTTTGAAG	TAATGATTAA	480
CTGCATGTTC	AGGATAATAA	GGTTTAATGC	CTTTATCCAA	GGGCAAATAT	TTGGTAAGGT	540
TAGGATAGAA	CCTAGCAGGC	ATAATTAATT	TTAATCTCCT	TTTTTCATTA	ACTGTAAGAG	600
GGCCCACATA	TTGTTGACAT	CTATTAATAA	TGTCTTCCTG	TAAATGAATG	TGAGGAAAGG	660
AGGGCGGTTG	CCACTCGGGA	TTAAAGACAG	GTACAGTAGA	AGAATAAAGC	CCAGTAAAGT	720
TTCCCACCTT	ATGAGTCCAA	GGGATACTAA	CATTGAGATT	CCCGAGATTG	AGATCTTCTG	780
CGACGCGGCG	ATTGAGACCT	TCGTCTGCGA	GGCGAGGGAG	TTCTTCTTCT	AGGGGACCTG	840
CCTCGTCGTC	TAACAACAGT	AGTTTCCGGA	${\tt AGTGTTGATA}$	AGATAGGGGC	ATTTGGTGGT	900
CTGTAAGCGG	GAGGAGTGCC	AATCCACACT	CCAAAAGACA	CCAAATACTC	CAAAACAGTT	960
TCTCTTCCAA	AAGTAAGACA	GGAAATGTGA	AACCACAATA	GTTGTCTGAT	TTTTAGGCCC	1020
ATATTAACAT	TGACATAGCT	GACTACTAAT	TCCCTGGATG	${\tt CTGGGTCTTC}$	CAAATTACTT	1080
CCCACCCAGG	TGGCCAGATT	CATCAACTCA	CCCCAACACA	GAATAGCTTG	CCTGAGTGCT	1140
GTATGGTGAG	GTGAACAATG	TTCCGGAGAC	TCTAAGGCCT	CCCGATACAG	AGCAGAGGCG	1200
GTGTCGAGGA	GATCTCGAAT	AGAAGGAAAG	AAGTCAGAAG	GCAAAAAAGA	GAGTAACTCC	1260
ACAGAAGCTC	CAAATTCTTT	ATACGGGTCA	ATGTCCATGC	CCCAAAGCCA	CCCAAGGCAC	1320
AGCTTGGAGG	CTTGAACAGT	AGGACATGAA	CATGAGATGA	TTAGGCAGAG	GTGAAAAAGT	1380
TGCATGGTGC	TGGTGAACAG	ACCAATTTAT	GCCTACAGCC	TCCAGACCTT	TAACCTAATC	1440
TCCTCCCCCA	ACTCCTCCCA	GTCTTTAAAC	AAACAGTCTT	TGAAGTATGC	CTCAAGGTCG	1500

GTCGTTGACA	TTGCTGAGAG	TCCAAGAGTC	CTCTTATGTA	AGACCTTGGG	CAAGACCTGG	1560
TGGGCGTTCA	CGGTGGTCTC	CATGCGACGT	GCAGAGGTGA	GGCGAAGTGC	ACACGGCTCG	1620
GCAGATGAGA	AGGCACAGAC	GGGGAGACCG	CGTAAAGAGA	GGTGCGCCCC	GTGGTCGGCC	1680
GGAACGGCAG	ATGAAGAAGG	GGACGGTAGA	GGCCCAAACG	GCCCCGAGAC	GGGTCGTCCG	1740
CGGGATTCAG	CGCCGACGGG	ACGTAGACAA	AGGACGTCCC	GCGCAGGATC	CAGTTGGCAG	1800
CACACCCGAG	CAGCCATGGG	AAGGAGGTGT	ATTTCCGAGA	GAGGACAACA	GAGTTGTCGG	1860
TTCCGATAAG	TTTCGCTCCA	GACCGGCTGC	GAGCAAAACA	AGCTGCTAGG	AGTTCCGCAG	1920
TATGGATCGG	CAGAGGAGCC	ACAAAGGTTC	CACGCATGCG	GCGATGGCCA	ATAGCCAAGC	1980
CCCATCCAGT	GGGGGTTGCG	TCAGCAAACA	CTTGGCAGAG	ACCTGAACGT	TGCCGGGCAA	2040
CGGGGTAAAG	GTGCAGATAT	TGTTGACACA	GAAAGGCCTT	GTAAGTTGGC	GAGAAAGTGA	2100
AAGCCTGCTT	AGATTGTATA	CATGCATATA	AAGGCATCAA	TGCAGGATAG	CCACATTGTG	2160
TAAAAGGGGC	AGCAAAGCCC	AAAAGACCCA	CAATTCTTTG	ACATACTTTC	CAATCAATAG	2220
GTCTATTTAC	AGGCAGTTTC	CGAAAACATT	${\tt GTTTGAGTTT}$	TAATACAATA	TGTTCCTGTG	2280
GTAAAGTACC	CCAACTTCCA	ATTACATATC	CCATGAAGTT	AAGGGAGTAG	CCCCAACGTT	2340
TGGTTTTATT	AGGGTTCAAA	TGTATACCCA	AAGACAAAAG	AAAATTGGTA	ATAGAGGTAA	2400
AAAGGGACTC	AAGATGTTGT	ACAGACTTGG	CCCCCAATAC	CACATCATCC	ATATAACTGA	2460
	GTGGGGGAAA					2520
	CGGACTGAGG					2580
	CAAGTGCAGT					2640
	TGAGCAGGAA					2700
	AGAGGACAAA					2760
	AGCAGCAGGA					2820
	CAAATTGGAG					2880
	GGACACGTGG					2940
	GGTATTGTGA					3000
	AGGAATCCTG					3060
	GACGATATGG					3120
	GCAGGAAAAT	ATAGGCCCCT	CACTCTGGGA	TCTAGCAGAG	CTTGGTGGAA	3180
TGTTGTGGAG	TT					3192

配列番号:2

配列の長さ:3207

配列の型:核酸 鎖の数:両形態 トポロジー:直線状

配列の種類:Genomic DNA

アンチセンス:Yes

起源:Hepatitis B virus

直接の起源:既知の肝炎ウイルス検出診断方法で陰性の肝炎患者(H2HBV)

血清 配列

CCACTGCATG GCCTGAGGAT GACTGTCTCT TAGAGGTGGA GAGATGGGAG TAGGCTGTCT 60 TCCTGACTGC CGATTGGTGG AGGCAGGAGG AGGCGTTGCT GGCACTGTTG TCAATATGCC 120 CTGAGCCTGA GGGCTCCACC CCAAAAGACC GCCGTGTGGT GGGGTGAACC CTGGCCCGAA 180 TGCTCCCGCT CCTACCTGAT TTGCCTCTGG CCAGTGATCC TTGTTGGGGT TGAAGTCCCA 240 ATCTGGATTG TTTGAGTTGG CTCCGAACGC AGGGTCCAAC TGGTGATCGG GAAAGAATCC 300 CAGAGGATTG GGAACCGAAA GATTCGTCCC CATGCCTTGT CGAGGTTTGG AAGACCAACC 360 TCCCATGCTG TAGCTCTTGT TCCCAAGAAT ATGGTGACCC ACAAAATGAA GCGCTGCGTG 420 TAGTTTCTCT TTTATATAGA ATGCCCGCCT TCCACAGAGT ATGTAAATAA TGCCTAGTTT 480 TGAAGTAATG ATTAACTGCA TGTTCAGGAT AATATGGTTT AATGCCTTTG TCCAATGGCA 540 AATATTTGGT AAGGTTAGGA TAGAACCTAG CAGGCATAAT TAATTTTAAT CTTCTTTTTT 600 CATTAACTGT AAGAGGGCCC ACATATTGTT GACATCTATT AATAATGTCT TCCTGTAAAT 660 GAATGTTAGG AAAGGAGGGA GTTTGCCACT CAGGATTAAA GACAGGTACA GTAGAAGAAT 720 AAAGCCCAGT AAAGTTTCCC ACCTTATGAG TCCAAGGGAT ACTAACATTG AGATTCCCGA 780 GATTGAGATC TTCTGCGACG CGGCGATTGA GACCTTCGTC TGCGAGGCGA GGGAGTTCTT 840 CTTCTAGGGG ACCTGCCTCG TCGTCTAACA ACAGTAGTTT CCGGAAGTGT TGATAAGATA 900 GGGGCATTTG GTGGTCTGTA AGCGGGAGGA GTGCGAATCC ACACTCCAAA AGATACCAAA 960 TACTCCAAAA CAGTTTCTCT TCCAAAAGTA AGACAGGAAA TGTGAAACCA CAATAGTTGT 1020 CGGATTTTTA GGCCCATATT AACATTGACA TAGCTGACTA CTAATTCCCT GGATGCTGGG 1080 TCTTCCAAAT TACTTCCCAC CCAGGTGGCC AGATTCATCA ACTCACCCCA ACACAGAATA 1140 GCTTGCCTGA GTGCTGTATG GTGAGGTGAA CAATGTTCCG GAGACTCTAA GGCCTCCCGA 1200 TACAGAGCAG AGGCGGTGTC GAGGAGATCT CGAATAGAAG GAAAGAAGTC AGAAGGCAAA 1260 AAAGAGAGTA ACTCCACAGA AGCTCCAAAT TCTTTATATG GGTCAATGTC CATGCCCCAA 1320 AGCCACCCAA GGCACAGCTT GGAGGCTTGA ACAGTAGGAC ATGAACATGA GATGATTAGG 1380 CAGAGGTGAA AAAGTTGCAT GGTGCTGGTG AACAGACCAA TTTATGCCTA CAGCCTCCAG 1440 ACCTTTAACC TAATCTCCTC CCCCAACTCC TCCCAGTCCT TAAACAAACA GTCTTTGAAG 1500 TATGCCTCAA GGTCGGTCGT TGACATTGCT GAGAGTCCAA GAGTCCTCTT ATGTAAGACC 1560 TTGGGCAAGA CCTGGTGGGC GTTCACGGTG GTCTCCATGC GACGTGCAGA GGTGAGGCGA 1620 AGTGCACACG GTACGGCAGA TGAGAAGGCA CAGACGGGGA GAGCGGGTAA AGAGAGGTGC 1680 GCCCGGTGGT CGGCCGGAAC GGCAGATGAA GAAGGGGACG GTAGAGGCCC AAACGGCCCC 1740 GAGACGGGTC GTCGGCGGGA TTCAGCGCCG ACGGGACGTA GACAAAGGAC GTCCCGCGCA 1800 GGATCCAGTT GGCAGCACAC CCGAGCAGCC ATGGAAAGGA GGTGTATTTC CGAGAGAGGA 1860 CAACAGAGTT GTCAGTCCCG ATAAGTTTTG CTCCAGACCG GCTGCGAGCA AAACACGCTG 1920

CTAGGAGTTC	CGCAGTATGG	ATCGGCAGAG	GAGCCACAAA	GGTTCCACGC	ATGCGCCGAT	1980
GGCCTATGGC	CAAGCCCCAT	CCAGTGGGGG	TTGCGTCAGC	AAACACTTGG	CAGAGACCTG	2040
AACGTTGCCG	GGCAACGGGG	TAAAGGTGCA	GATATTGTTG	ACACAGAAAG	GCCTTGTAAG	2100
TTGGCGAGAA	AGTGAAAGCC	TGCTTAGATT	GTATACATGC	ATATAAAGGC	ATCAATGCAG	2160
GATAGCCACA	TTGTGTAAAA	GGGGCAGCAA	AGCCCAAAAG	ACCCACAATT	CTTTGACATA	2220
CTTTCCAATC	AATAGGTCTA	TTTACAGGCA	GTTTCCGAAA	ACATTGTTTG	AGTTTTAATA	2280
CAATATGTTC	CTGTGGTAAA	GTACECCAAC	TTCCAATTAC	ATATCCCATG	AAGTTAAGGG	2340
AGTAGCCCCA	ACGTTTGGTT	TTATTAGGGT	TCAAATGTAT	ACCCAAAGAC	AAAAGAAAAT	2400
TGGTAATAGA	GGTAAAAAGG	GACTCAAGAT	GTTGTACAGA	CTTGGCCCCC	AATACCACAT	2460
CATCCATATA	ACTGAAAGCC	AAACAGTGGG	GGAAAGCCCT	GCGAACCACT	GAACAAATGG	2520
CACTAGTAAA	CTGAGCCAGG	AGAAACGGAC	TGAGGCCCAC	TCCCATAGGA	ATCTTGCGAA	2580
AGCCCAGGAT	GATGGGATGG	GAATACAAGT	GCAGTTTCCG	TCCGAAGGTT	TTGTACAGCA	2640
ACAAGAGGGA	AACATAGAGG	TTCCTTGAGC	AGGAATCGTG	CAGGTCTTGC	ATGGTCCCGT	2700
GCTGGTAGTT	GATGTTCCTG	GAAGTAGAGG	ACAAACGGGC	AACATACCTT	GGTAGTCCAG	2760
			CAGGATGAAG			2820
			TGGAGGACAA			2880
			CGTGGGTGCT			2940
			TGTGAGGATT			3000
			TCCTGATGTT			3060
			TATGGGTGAG			3120
			AAAATATAGG	CCCCTCACTC	TGGGATCTAG	3180
CAGAGCTTGG	TGGAATGTTG	TGGAATT				3207

配列番号:3

配列の長さ:161 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド ハイポセティカル:Yes

起源:Hepatitis B virus

直接の起源: 既知の肝炎ウイルス検出診断方法で陰性の肝炎患者(E88HBV

)血清

配列の特徴

特徴を示す記号: peptide 存在位置:1384...1869

特徴を決定した方法: P

															
le t	Val	Leu	Val		Arg	Pro	lle	Tyr		Tyr	Ser	Leu	Gln		Phe
1				5					10					15	
Asn	Leu	He	Ser	Ser	Pro	Asn	Ser	Ser	Gln	Ser	Leu	Asn	Lys	Gln	Ser
			20					25					30		
Leu	Lys	Tyr	Ala	Ser	Arg	Ser	Val	Val	Asp	He	Ala	Glu	Ser	Pro	Arg
		35					40					45			
Val	Leu	Leu	Cys	Lys	Thr	Leu	Gly	Lys	Thr	Trp	Trp	Ala	Phe	Thr	Val
	50					55					60				
Val	Ser	Met	Arg	Arg	Ala	Glu	Val	Arg	Arg	Ser	Ala	His	Gly	Ser	Ala
65					70					75					80
Asp	Glu	Lys	Ala	Gln	Thr	Gly	Arg	Pro	Arg	Lys	Glu	Arg	Cys	Ala	Pro
				85					90					95	
Trp	Ser	Ala	Gly	Thr	Ala	Asp	Glu	Glu	Gly	Asp	Gly	Arg	Gly	Pro	Asn
	•		100					105					110		
Gly	Pro	Glu	Thr	Gly	Arg	Pro	Arg	Asp	Ser	Ala	Pro	Thr	Gly	Arg	Arg
		115					120					125			
Gln	Arg	Thr	Ser	Arg	Ala	Gly	Ser	Ser	Trp	Gln	His	Thr	Arg	Ala	Ala
	130					135					140				
Met	Gly	Arg	Arg	Cys	He	Ser	Glu	Arg	Gly	Gln	Gln	Ser	Cys	Arg	Phe
145					150					155					160
Arg									•						
161															

配列番号: 4 配列の長さ: 2 0 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

トポロジー:直線状配列の種類:他の核酸

配列

GACTGGGAGG AGTTGGGGGA

20

配列番号:5 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGATTAAAGA CAGGTACAGT

20

配列番号:6

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖・

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

AGGCAGGTCC CCTAGAAGAA

20

配列番号:7

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGGTTGAAGT CCCAATCTGG

20

配列番号:8

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGCATTAAAC CTTATTATCC

20

配列番号:9

配列の長さ:20

配列の型:核酸

鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TGGAGGACAA GAGGTTGGTG

20

配列番号:10 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CCATATCGTC AATCTCCTCG

20

配列番号:11 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

AAGACCCACA ATTCTTTGAC

20

配列番号:12 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

ATGTGGTATT GGGGGCCAAG

20

配列番号:13 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGTCGTCCGC GGGATTCAGC

20

配列番号:14 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CCATACTGCG GAACTCCTAG

20_

配列番号:15 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

ATTAGGCAGA GGTGAAAAAG

20

配列番号:16 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

GGAGATTAGG TTAAAGGTCT

20

配列番号:17 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

配列

AAACCCCGCC TGTAACACGA

4 8

AGACAGGTAC AGTAGAAGAA		20
配列番号:18 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状 配列の種類:他の核酸 配列 AGAACTCCCT CGCCTCGCAG		20
配列番号:19		
配列の長さ:20		
配列の型:核酸		
鎖の数:一本鎖		
トポロジー:直線状		
配列の種類:他の核酸 配列	合成DNA	
AGGGTCCAAC TGGTGATCGG		20
配列番号:20 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖		
トポロジー : 直線状		
配列の種類:他の核酸 配列	合成DNA	
ATATAAGAGA GAAACTACAC	2	20
配列番号:21		
配列の長さ:20		•
配列の型:核酸		
鎖の数:一本鎖		
トポロジー:直線状		
配列の種類:他の核酸	合成DNA	

4.9

配列番号:22 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CTCCTCGAGG ACTGGGGACC

20

配列番号:23 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

ACATACTTTC CAATCAATAG

20

配列番号:24 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CTGTACAACA TCTTGAGTCC

20

配列番号:25 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CCGACGGGAC GTAGACAAAG

配列番号:26 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TTTTGCTCGC AGCCGGTCTG

20

配列番号:27 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

ATTAGGCAGA GGTGAAAAAG

20

配列番号:28 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TTGCCTTCTG ACTTCTTTCC

20

配列番号:29 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TTTAATCCTG AATGGCAAAC

配列番号:30 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CTCAAACAAT CCACATTGGG

20

配列番号:31 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TGTGTCTGCG GCGTTTTATC

20

配列番号:32 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CTATTGATTG GAAAGTATGT

20

配列番号:33 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

CTGCCGTTCC GGCCGACCAC

配列番号: 3 4

配列の長さ:3192

配列の型:核酸 鎖の数:両形態

トポロジー:直線状

配列の種類: Genomic DNA

起源:Hepatitis B virus

直接の起源:既知の肝炎ウイルス検出診断方法で陰性の肝炎患者(E88HBV

)血清

配列

HC/ J						
AACTCCACAA	CATTCCACCA	AGCTCTGCTA	GATCCCAGAG	TGAGGGGCCT	ATATTTTCCT	60
GCTGGTGGCT	CCAGTTCCGG	AACAGTAAAC	CCTGTTCCGA	CTATTGTCTC	ACCCATATCG	120
TCAATCTTCT	CGAGGACTGG	GGACCCTGCA	CCGAACATGG	AGAGCACAAC	ATCAGGATTC	180
CTAGGACCCC	TGCTCGTGTT	ACAGGCGGGG	TTTTTCTTGT	TGACAAGAAT	CCTCACAATA	240
CCACAGAGTO	TAGACTCGTG	GTGGACTTCT	CTCAATTTTC	TAGGGGAAGC	ACCCACGTGT	300
CCTGGCCAAA	ATTCGCAGTC	CCCAACCTCC	AATCACTCAC	CAACCTCTTG	TCCTCCAATT	360
TGTCCTGGCT	' ATCGCTGGAT	GTGTCTGCGG	CGTTTTATCA	TATTCCTCTT	CATCCTGCTG	420
CTATGCCTCA	TCTTCTTGTT	GGTTCTTCTG	GACTACCAAG	GTATGTTGCC	CGTTTGTCCT	480
CTACTTCCAG	GAACATCAAC	TACCAGCACG	GGACCATGCA	AGACCTGCAC	GATTCCTGCT	540
CAAGGAACCT	CTATGTTTCC	CTCTTGTTGC	TGTACAAAAC	CTTCGGACGG	AAACTGCACT	600
TGTATTCCCA	TCCCATCATC	CTGGGCTTTC	GCAAGATTCC	TATGGGAGTG	GGCCTCAGTC	660
CGTTTCTCCT	GGCTCAGTTT	ACTAGTGCCA	TTTGTTCAGT	GGTTCGCAGG	GCTTTCCCCC	720
ACTGTTTGGC	TTTCAGTTAT	ATGGATGATG	TGGTATTGGG	GGCCAAGTCT	GTACAACATC	780
	TTTTACCTCT					840
	CAAACGTTGG					900
GGGGTACTTT	ACCACAGGAA	CATATTGTAT	TAAAACTCAA	ACAATGTTTT	CGGAAACTGC	960
CTGTAAATAG	ACCTATTGAT	TGGAAAGTAT	${\tt GTCAAAGAAT}$	TGTGGGTCTT	TTGGGCTTTG	1020
CTGCCCCTTT	TACACAATGT	GGCTATCCTG	CATTGATGCC	TTTATATGCA	TGTATACAAT	1080
	TTTCACTTTC					1140
	CGTTGCCCGG					1200
	GGGCTTGGCT					1260
	TACTGCGGAA					1320
	AACCGACAAC					1380
	TGCTGCCAAC					1440
	CGCGGACGAC					1500
	CCGGCCGACC					1560
CTTCTCATCT	GCCGAGCCGT	GTGCACTTCG	CCTCACCTCT	GCACGTCGCA	TGGAGACCAC	1620

CGTGAACGCC	CACCAGGTCT	TGCCCAAGGT	CTTACATAAG	AGGACTCTTG	GACTCTCAGC	1680
AATGTCAACG	ACCGACCTTG	AGGCATACTT	CAAAGACTGT	TTGTTTAAAG	ACTGGGAGGA	1740
GTTGGGGGAG	GAGATTAGGT	TAAAGGTCTG	GAGGCTGTAG	GCATAAATTG	GTCTGTTCAC	1800
CAGCACCATG	CAACTTTTTC	ACCTCTGCCT	AATCATCTCA	TGTTCATGTC	CTACTGTTCA	1860
AGCCTCCAAG	CTGTGCCTTG	GGTGGCTTTG	GGGCATGGAC	ATTGACCCGT	ATAAAGAATT	1920
TGGAGCTTCT	GTGGAGTTAC	TCTCTTTTTT	GCCTTCTGAC	TTCTTTCCTT	CTATTCGAGA	1980
TCTCCTCGAC	ACCGCCTCTG	CTCTGTATCG	GGAGGCCTTA	GAGTCTCCGG	AACATTGTTC	2040
ACCTCACCAT	ACAGCACTCA	GGCAAGCTAT	TCTGTGTTGG	GGTGAGTTGA	TGAATCTGGC	2100
CACCTGGGTG	GGAAGTAATT	TGGAAGACCC	AGCATCCAGG	GAATTAGTAG	TCAGCTATGT	2160
CAATGTTAAT	ATGGGCCTAA	AAATCAGACA	ACTATTGTGG	TTTCACATTT	CCTGTCTTAC	2220
TTTTGGAAGA	GAAACTGTTT	TGGAGTATTT	GGTGTCTTTT	GGAGTGTGGA	TTGGCACTCC	2280
TCCCGCTTAC	AGACCACCAA	ATGCCCCTAT	CTTATCAACA	CTTCCGGAAA	CTACTGTTGT	2340
TAGACGACGA	GGCAGGTCCC	CTAGAAGAAG	AACTCCCTCG	CCTCGCAGAC	GAAGGTCTCA	2400
ATCGCCGCGT	CGCAGAAGAT	CTCAATCTCG	GGAATCTCAA	TGTTAGTATC	CCTTGGACTC	2460
ATAAGGTGGG	AAACTTTACT	GGGCTTTATT	CTTCTACTGT	ACCTGTCTTT	AATCCCGAGT	2520
GGCAACCGCC	CTCCTTTCCT	CACATTCATT	TACAGGAAGA	CATTATTAAT	AGATGTCAAC	2580
AATATGTGGG	CCCTCTTACA	GTTAATGAAA	${\tt AAAGGAGATT}$	AAAATTAATT	ATGCCTGCTA	2640
GGTTCTATCC	TAACCTTACC	AAATATTTGC	CCTTGGATAA	AGGCATTAAA	CCTTATTATC	2700
CTGAACATGC	AGTTAATCAT	TACTTCAAAA	CTAGGCATTA	TTTACATACT	CTGTGGAAGG	2760
CTGGCATTCT	ATATAAAAGA	GAAACTACAC	GCAGCGCTTC	ATTTTGTGGG	TCACCATATT	2820
CTTGGGAACA	AGAGCTACAG	CACCAAACCT	CGACAAGGCA	TGGGGACGAA	TCTTTCTGTT	2880
CCCAATCCTC	TGGGATTCTT	TCCCGATCAC	CAGTTGGACC	CTGCGTTCGG	AGCCAACTCA	2940
	ATTGGGACTT					3000
GGAGCGGGAG	CATTCGGGCC	AGGGTTCACC	CCACCACACG	GCGGTCTTTT	GGGGTGGAGC	3060
CCTCAGGCTC	AGGGCATATT	GACAACAGTG	CCAGCAGCGC	CTCCTCCTGC	CTCCACCAAT	3120
CGGCAGTCAG	GAAGACAGCC	TACTCCCATC	TCTCCACCTC	TAAGAGACAG	TCATCCTCAG	3180
GCCATGCAGT	GG					3192

配列番号:35 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

ATGGTGCTGG TGAACAGACC

配列番号: 36 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖

トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TCGGAACCGA CAACTCTGTT

20

配列番号: 37 配列の長さ:32 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TAGTACAAGC TTTTATCGGA ACCGACAACT CT

32

配列番号:38 配列の長さ:32 配列の型:核酸 鎖の数:一本鎖 トポロジー:直線状

配列の種類:他の核酸 合成DNA

配列

TAGTACGCAT GCATGGTGCT GGTGAACAGA CC

32

配列番号: 39 配列の長さ:32 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド

配列

Val Ser Met Arg Arg Ala Glu Val Arg Arg Ser Ala His Gly Ser Ala . 1 5 10 15

Asp Glu Lys Ala Gln Thr Gly Arg Pro Arg Lys Glu Arg Cys Ala Pro

20

25

配列番号:40 配列の長さ:23 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド

配列

Gly Pro Glu Thr Gly Arg Pro Arg Asp Ser Ala Pro Thr Gly Arg Arg
1 5 10 15

Gln Arg Thr Ser Arg Ala Gly

20

配列番号: 41 配列の長さ:14 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド

配列

Ser Met Arg Arg Ala Glu Val Arg Arg Ser Ala His Gly Ser 1 5 10

配列番号: 42 配列の長さ: 24 配列の型:アミノ酸 トポロジー:直線状 配列の種類:ペプチド

配列

Pro Arg Lys Glu Arg Cys Ala Pro Trp Ser Ala Gly Thr Ala Asp Glu
1 5 10 15

Glu Gly Asp Gly Arg Gly Pro Asn

25

請求の範囲

- 1. 少なくとも配列表の配列番号 3 で示されるアミノ酸配列又はそれと実質的に同等の作用を有するアミノ酸配列あるいはその断片をコードする DNA を含有することを特徴とする HBVの X領域由来の遺伝子のアンチセンス配列 DNA。
- 2. 配列表の配列番号1で示されるDNA配列又はそれと実質的に同等の作用を有するDNA配列の全部またはその一部からなる請求項1記載のDNA。
- 3. 配列表の配列番号1で示されるDNA配列の全部またはその一部 10 からなる請求項1又は2記載のDNA。
 - 4. 配列表の配列番号1で示されるDNA配列のうち、第1384番目から第1869番目までの配列の全部またはその一部からなる請求項1~3のいずれか一記載のDNA。
- 5. 配列表の配列番号2で示されるDNA配列又はそれと実質的に同等の作用を有するDNA配列の全部またはその一部からなる請求項1記載のDNA。
 - 6. 配列表の配列番号2で示されるDNA配列の全部またはその一部からなる請求項1又は2記載のDNA。
- 7. 請求項1~6のいずれか一記載のDNAを遺伝子組換え操作可能 20 に含むことを特徴とするクローニングまたは発現ベクター。
 - 8. 請求項7記載のクローニングまたは発現ベクターで形質転換されたことを特徴とする宿主細胞。
 - 9. 配列表の配列番号3で示されるアミノ酸配列又はそれと実質的に同等の作用を有するアミノ酸配列の全部またはその一部からなることを特徴とするHBVのX領域由来の遺伝子のアンチセンス配列由来のポリ

ペプチド。

- 10. 配列表の配列番号3で示されるアミノ酸配列の全部またはその一部からなるところの請求項9記載のHBVのX領域由来の遺伝子のアンチセンス配列由来のポリペプチド。
- 5 11. 請求項9又は10記載のポリペプチドを含有することを特徴と するHBV測定試薬。
 - 12. 請求項9又は10記載のポリペプチドに対する特異抗体を含有することを特徴とするHBV測定試薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/00700

			.1/0293/00/00
A. CLA	SSIFICATION OF SUBJECT MATTER		
Int	. C1 ⁶ C12N15/51, C07K14/02	. G01N33/569	
According	to International Patent Classification (IPC) or to bo		
	DS SEARCHED		
Minimum de	ocumentation searched (classification system followed	hy dassification sumbate)	
Int	. C16 C12N15/51	oy classification symbols)	
	. 01 C12N13/31		
Documentat	ion searched other than minimum documentation to the		
	and the second of the second s	extent that such documents are include	ed in the fields searched
Electronic da	ata base consulted during the international search (name	of data have and where practicable co	earch teems used)
CAS	ONLINE, WPI/L, BIOSIS	or and once and, where practicable, so	carcii icims uscu)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where		
	where	appropriate, of the relevant passages	Relevant to claim No.
A	WO, 94/29483, A (UINV. JE	FFERSON THOMAS)	1 - 12
	December 22, 1994 (22, 12	. 94)	1 12
	& US, 5378605, A		
		·	, i
			}
1			
j			
1			
<u>. </u>			
Further	documents are listed in the continuation of Box C.	See patent family annex	
• Special c	ategories of cited documents:	"T" later document nublished after th	- International City and a second
"A" document	t defining the general state of the art which is not considered articular relevance	date and not in conflict with the the principle or theory underlyin	e international filing date or priority application but cited to understand
"E" earlier do	cument but published on or after the international filing date	"X" document of particular relevance	E: the claimed invention cannot be
"L" document	Which may throw doubts on priority claim(s) on which is	considered novel or cannot be	considered to involve an inventive
special re	establish the publication date of another citation or other ason (as specified)	"Y" document of particular relevance	e: the claimed invention cannot be
"O" document means	referring to an oral disclosure, use, exhibition or other	CONSIDERED TO INVOIVE AN INVE	ntive step when the document is such documents, such combination
"P" document	published prior to the international filing date but later than	being obvious to a person skilled	d in the art
tue priorit	y date claimed	"&" document member of the same p	patent family
	tual completion of the international search	Date of mailing of the internationa	search report
June	12, 1995 (12. 06. 95)	July 4, 1995 (04	•
Vama a= i = :	line address 6.1 To 1		
	iling address of the ISA/	Authorized officer	
	ese Patent Office		
Facsimile No.		Telephone No.	
om PCT/ISA/	210 (second sheet) (July 1992)		

国際出願番号 PCT/JP

95/00700

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C& C12N15/51, C07K14/02, G01N33/569

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C. C12N15/51

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAS ONLINE, WPI/L, BIOSIS

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	WO, 94/29483, A(UINV. JEFFERSON THOMAS), 22. 12月. 1994(22. 12. 94) &US, 5378605, A	1-12

□ C個の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と 矛盾するものではなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

12.06.95

国際調査報告の発送日

04.07.95

名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

田村明照

A a

4 B 8 4 1 2

電話番号 03-3581-1101 内線 3448