SPEZIFIKATION

Flexible ALU

Version	Bearbeiter	Neuerung
1.0		

Inhaltsverzeichnis

1	Date	enblatt 2									
	1.1	Einsatzbereich									
	1.2	Features									
	1.3	Funktion									
	1.4	Blockschaltbild									
	1.5	Schnittstellen									
	1.6	Gate-Count									
	1.7	Timing-Diagramm									
	1.8	Leistungsabschätzung									
2	Spe	pezifikation 5									
	2.1	Register									
		2.1.1 RegA									
		2.1.2 RegB									
		2.1.3 AccuA									
		2.1.4 AccuB									
		2.1.5 CMD									
		2.1.6 Flags									
	2.2	Modul-Beschreibung									
		2.2.1 74_181									
		2.2.2 MUL-4									
		2.2.3 Barrel-Shifter-8									
		2.2.4 Bi-Reg-n									
		2.2.5 Uni-Reg-n									
		2.2.6 MC-PROM									
	23	Data il blockschalt bild									

1. Datenblatt

1.1 Einsatzbereich

1.2 Features

1.3 Funktion

CMD)	
2	1	0	Logisch/arithmetischer Ausdruck
0	0	0	AND
0	0	1	OR
0	1	0	NOT
0	1	1	ADD
1	0	0	SUB
1	0	1	MUL
1	1	0	MCo
1	1	1	MC1

Tabelle 1.1: Befehls-Codierung

1.4 Blockschaltbild

Abbildung 1.1: Äußeres Blockschaltbild

Port	Тур	Funktion	
Cin	Input		
WriteRegA	Input	Wenn 1, wird Operand 1 in Register A geschrieben (solange die Arbitierung auß	
WriteRegB	Input	Wenn 1, wird Operand 2 in Register B geschrieben.	
Reset	Input	Register werden zurückgesetzt.	
Start	Input	Die Operation wird mit den angelegten Operanden durchgeführt.	
CLK	Input	Takt.	
CMDo2	Input	Auswahl des Befehls. Codierung siehe S. 2	
		IN: Operand 1 wird mit WriteRegA angelegt.	
Ao3	Bidirektional	OUT: Ist Busy o, liegt hier das Ergebnis der Berechnung an.	
Αυ3	Biullektionar	Die Subtraktion liefert das 2er-Komplement.	
	l'	Multiplikation liefert hier die LSBits des Ergebnisses.	
		IN: Operand 2 wird mit WriteRegB angelegt.	
Bo3	Bidirektional	OUT: Wird Busy o, liegt hier o an,	
		die Multiplikation liefert hier die MSBits des Ergebnisses.	
Busy	Output	Ist 1, solange die ALU arbeitet.	
busy		Wird Busy o, liegt das Ergebnis an Ao3 und Bo3 an.	
OF	Output	OF ist 1, wenn die letzten beiden Übertragsbits ungleich sind	
Or	Output	und somit ein Overflow auftritt.	
Zero	Output	Zero ist 1, wenn alle Ergebnisbits o sind.	
Equal	Output	Equal ist 1, wenn die 4 Ergebnisbits von A und B bitweise gleich sind.	
Cout	Output	Tritt während der Berechnung ein Übertrag über die letzte Bitstelle auf,	
Cout		wird Cout 1 und kann weiter behandelt werden.	

Tabelle 1.2: Liste aller Ports

1.5 Schnittstellen

Siehe Seite 3. flags hahaa

1.6 Gate-Count

Für eine detaillierte Angabe der Gatteräquivalente siehe S. 4.

1.7 Timing-Diagramm

1.8 Leistungsabschätzung

watt pro gatter pro mhz als energieverbrauch

Тур	Gatteräquivalente	Anzahl	Summe
Gatter			
AND2	1,5	65	97,5
AND3	2	13	26
AND4	2,5	12	30
AND5	3	4	12
Inv	0,5	11	5,5
Mult2:1	3	28	84
Mult4:1	7	0	0
Mult8:1	16	9	144
NAND2	1	6	6
NAND3	1,5	0	0
NAND4	2	0	0
NAND6	4,5	0	0
NAND8	5,5	0	0
NOR2	1	0	0
NOR3	1,5	0	0
NOR4	2	0	0
OR2	1,5	21	31,5
OR3	2	4	8
OR4	2,5	9	22,5
OR5	3	4	12
XNOR2	3	0	0
XOR2	3	32	96
Speicher (Angabe / bit)			
DFF	7	4	28
DFF-R	8	0	0
DFF-S	8	0	0
DFF-SR	9	0	0
DRAM	5	0	0
DRAM (o. Anst.)	0,25	0	0
SRAM	7,5	0	0
SRAM (o. Anst.)	1	0	0
Buffer4	4	19	76
74_181	108,5	1	108,5
Gesamtsumme:	787,5		

Tabelle 1.3: Gatteräquivalente

2. Spezifikation

2.1 Register

2.1.1 RegA

Register für Operand A und das low-nibble des Ergebnisses. Es handelt sich um ein Bi-Reg-4. Die Arbitrierung des Registers liegt intern, solange busy=0 ist. Das Ergebnis liegt am Ausgang an, sobald busy=0 wird.

2.1.2 RegB

Analog zu RegA

2.1.3 AccuA

Akkumulatorregister für das low-nibble des Ergebnisses. Es handelt sich um ein Uni-Reg 4. Die Ausgänge des Registers können als Operand A verwendet werden.

2.1.4 AccuB

Analog zu AccuB

2.1.5 CMD

Register für den Befehlscode. Es handelt sich um ein Uni-Reg-3. Wir geschrieben sobald Start=1 gesetzt wird.

2.1.6 Flags

Register für die Flags. Es handelt sich um ein Uni-Reg-4. Die Flags liegen am Ausgang an, sobald busy=0 wird.

2.2 Modul-Beschreibung

- 2.2.1 74_181
- 2.2.2 MUL-4
- 2.2.3 Barrel-Shifter-8
- 2.2.4 Bi-Reg-n
- 2.2.5 Uni-Reg-n
- **2.2.6** MC-PROM

Programmierung

2.3 Detailblockschaltbild

Für das innere Schaltbild siehe Seite 6.

Abbildung 2.1: Inneres Blockschaltbild