Elementos para uma tipologia do uso do solo agrícola no Brasil: uma aplicação de análise fatorial

Cláudio Gontijo *
Antônio Aquirre * *

Neste artigo relata-se uma pesquisa objetivando a determinação de uma tipologia do uso do solo agrícola no Brasil. Utilizou-se a análise fatorial a fim de identificar os principais fatores responsáveis pelas variâncias das variáveis estudadas. O produto final desta primeira etapa — os factor scores correspondentes a cada uma das unidades de análise — constitui a matéria-prima para a elaboração da mencionada tipologia.

O artigo divide-se em quatro itens, além da introdução: o item 2 apresenta a técnica utilizada, o item 3 descreve os dados, o item 4 discute os resultados obtidos e o item 5 aponta as principais conclusões alcançadas.

1. Introdução; 2. Utilização de técnicas estatísticas multivariadas: a análise fatorial; 3. Descrição dos dados; 4. Resultados da análise fatorial; 5. Conclusões.

1. Introdução

A análise científica do setor agropecuário brasileiro esbarra na sua grande complexidade estrutural interna e na sua acentuada diversidade espacial. Deste modo, as generalizações baseadas em observações pontuais são, em geral, inválidas, exigindo do analista um estudo detalhado das principais formas de organização da produção agropecuária nas diversas regiões do Brasil, de maneira a se obter uma visão adequada do conjunto.

Um modo de se enfrentar a questão consiste em definir, a partir do exame concreto da realidade agropecuária, diferentes tipos de organização produtiva, e, então, determinar sua disseminação no espaço brasileiro — ou seja, em regionalizar a agropecuária do país com base nas diferentes formas prevalescentes de uso do solo.

Essencialmente, o processo de regionalização consiste numa classificação ou agrupamento de objetos (regiões) com base na similaridade ou inter-relação

^{**}Professor na Face/UFMG.

R. Bras. Econ.	Rio de Janeiro	v. 42	n.º 1	p. 13-49	jan./mar. 1988
	L	1			

^{*}Professor na Face/UFMG e no Cedeplar/UFMG.

existente entre eles — isto é, a regionalização promove a divisão de uma área em regiões menores, tendo em vista suas características internas e suas relações.

Embora se possa confundir regionalização com classificação, existe uma diferença básica entre estes dois termos, relativa à localização do indivíduo. Em taxonomia, a posição (ou localização) do indivíduo não tem significado especial, não sendo, portanto, uma propriedade considerada no sistema de classificação. No caso da regionalização, entretanto, ela é uma propriedade básica para o sistema.

O Brasil, por exemplo, com seus 8.500.000 km², foi dividido pelo Instituto Brasileiro de Geografia e Estatística (IBGE) em 361 microrregiões homogêneas (MRH) a partir de 1967, com o fim de se homogeneizar e estabilizar as bases de divulgação dos dados estatísticos do Instituto. É evidente a vantagem de se estudar o país neste nível de desagregação, mesmo levando em conta as suas imperfeições, dada a maior facilidade de compreensão das características naturais básicas e das atividades sócio-econômicas das microrregiões.

A diferença entre um esforço de classificação que gera uma regionalização e outro que gera uma verdadeira tipologia consiste simplesmente na ênfase atribuída, na realização do agrupamento, a um dos critérios alternativos; contigüidade espacial ou similaridade. Se o procedimento (algoritmo) de agrupamento dá maior ênfase à contigüidade espacial das MRH, o resultado é uma regionalização. Se, pelo contrário, o critério predominante é a similaridade entre MRH, o produto final é uma verdadeira tipologia de áreas.

O objetivo deste artigo é a geração de elementos para uma posterior determinação de uma tipologia do uso do solo no Brasil, ou seja, uma definição quantitativa dos padrões espaciais de suas características agrárias, com base nas suas dimensões internas, funcionais e econômicas. Para isso, foi utilizada, numa primeira etapa, a análise fatorial, que ajudou a definir as principais linhas de diferenciação da organização agrária regional e identificar os grupos de unidades observacionais que apresentaram características similares na atividade agropecuária com relação aos aspectos considerados. O produto final desta primeira etapa são os factor scores correspondentes a cada uma das unidades de análise — MRH — e para cada um dos fatores mais importantes identificados. Esses scores constituem-se na matéria-prima para a construção da tipologia procurada.

O artigo divide-se em quatro seções, além da introdução. Na seção 2, faz-se uma breve apresentação da técnica análise fatorial, justificando-se a sua utilização. A seção 3 apresenta uma descrição dos dados utilizados, enquanto na seção 4 discutem-se os resultados obtidos. Finalmente, a seção 5 contém as principais conclusões do estudo.

2. Utilização de técnicas estatísticas multivariadas: a análise fatorial

A complexidade e a diversidade do setor agropecuário brasileiro retratam-se nos censos agropecuários, que representam a mais abrangente fonte disponível de dados sobre o setor no Brasil. Através de sua utilização, pode-se destacar grande número de variáveis relevantes que refletem as diversas dimensões estruturais do setor. A construção de uma tipologia de uso do solo que leve em conta a riqueza estrutural da agropecuária brasileira esbarra, pois, no grande número de variáveis que servem para descrevê-la.

14 R.B.E. 1/88

Contudo, essas variáveis não são independentes entre si, podendo-se encontrar elevado grau de correlação entre muitas delas. Sendo assim, em princípio, pode-se tentar agrupar aquelas variáveis que se encontram estreitamente correlacionadas, formando conjuntos de variáveis que permitam, posteriormente, uma caracterização mais simples da realidade que é objeto de estudo. Deste modo, técnicas de agrupamento podem ser usadas para realizar essa sumarização de variáveis, reduzindo as informações de um grande número num novo conjunto, significativamente menor, de novas variáveis.

A distinção entre informações sobre indivíduos ou variáveis permite uma separação, amplamente aceita, das numerosas técnicas de agrupamento. Em geral, as técnicas de agrupamento ou sumarização de variáveis são englobadas pelo rótulo de análise fatorial (factor analysis), onde se inclui, também, a análise de componentes principais. Já as técnicas de agrupamentos de objetos ou indivíduos são conhecidas como análise de agrupamento (cluster analysis).

O objetivo da análise fatorial é agrupar, através de um processo de transformação linear de variáveis, os dados empíricos não-ordenados das variáveis em estudo, de maneira que:

- a) um total menor seja obtido do material original (menor número de variáveis), onde toda a informação dada é reproduzida de forma resumida;
- b) fatores sejam obtidos, cada um reproduzindo um padrão separado de relações entre variáveis. Um fator é uma entidade hipotética gerada por meio de uma transformação linear das variáveis em estudo;
- c) cada padrão de relações pode ser interpretado logicamente.

A análise fatorial está baseada no pressuposto de que existem certos fatores causais gerais que originam as correlações observadas entre as variáveis em estudo. Já que muitas das relações entre variáveis são, na maior parte, devidas aos mesmos fatores causais gerais, o número deles será geralmente menor que o de variáveis. Na literatura, esses fatores causais gerais recebem diferentes denominações: fatores, componentes, condições, dimensões, etc., dependendo dos distintos modos técnicos de desenvolver a análise fatorial.

Resumindo, então, pode-se dizer que a análise fatorial é a tentativa, baseada em observações estatísticas, de se determinarem as relações quantitativas entre variáveis devidas a fatores condicionantes separados ou fatores causais gerais. Cada relação é expressada por coeficientes ou percentagens que indicam até que ponto as variâncias das variáveis em estudo estão influenciadas por um fator causal geral qualquer. Esse fator é comum a todas as variáveis que fazem parte de um padrão de relações específico.

Deve-se ressaltar que esse método faz uma seleção das relações mais importantes e ajuda a interpretar as relações que surgem de cada fator separado. Como cada escolha e cada interpretação são, em maior ou menor medida, subjetivas, a análise fatorial é criticada nesse ponto: depois de se obterem os resultados da análise não se pode assegurar que as relações estabelecidas sejam as únicas verdadeiras. Apesar dessa crítica, o método é uma ajuda importante para estudar as relações mútuas entre as variáveis analisadas.

O ponto de partida da análise fatorial (AF) é a matriz $X = \begin{cases} X_{ji} \\ nxN \end{cases}$, onde n indica o número de variáveis e N o número de observações de cada uma dessas variáveis. O primeiro passo consiste em normalizar esses dados, obtendo-se a matriz $Z = \begin{cases} Z_{ji} \\ nxN \end{cases}$ das pontuações-padrão.

A hipótese fundamental da AF expressa-se na equação (1):

$$Z = F_A \cdot C$$
 (1)

onde $F = |f_{jm}| nxq$; $C = |x_{mi}| q x N$; q é o número de fatores. A matriz F_A é chamada de matriz fatorial, enquanto a matriz C pode ser denominada por matriz do coletivo. Os elementos da matriz fatorial são chamados de factor loadings, ou simplesmente loadings, e indicam a direção e a intensidade das relações entre as variáveis normalizadas Z_i e os fatores F_I , segundo a equação (2).

$$z = f. F (2)$$

onde $z = |z_j| nxl$; $f = |f_{jm}| nxq$; $F = |F_{mj}| qxl$. O vetor $F \in O$ vetor dos fatores (q < n).

Os elementos da matriz do coletivo C indicam as pontuações ou pesos típicos do indivíduo i em termos de cada fator m.

A AF baseia-se no conceito de "comunalidade", que representa aquela parte da variância total de cada variável z_i associada com a variância de outras variáveis. Esta parte da variância corresponde à equação (2), de modo que os factor loadings mostram que parte da vacância total é atribuível a cada fator. 1 Na realidade, a AF procura separar os r fatores comuns que intervêm em mais de uma variável dos t fatores específicos que intervêm em apenas uma variável e dos e fatores de erro que se devem a fatores estranhos ou a erros de medição (observe-se que r + t + e = q). Para tanto, baseia-se na distinção entre comunalidade (h_I^2) , especificidade (d_I^2) e erro (e_I^2) , que esgotam a variância total segundo a equação (3):

$$\sigma_{j}^{2} = \sum_{m=1}^{r} a_{jm}^{2} + \sum_{m=1}^{t} b_{jm}^{2} + e_{j}^{2} = 1 \quad j = 1, 2, ..., m$$
(3)

onde
$$h_j^2 = \sum_{m=1}^r a_{jm}$$

$$d_j = \sum_{m=1}^t b_{jm}$$

A questão central da AF reside, pois, em determinar-se a matriz fatorial reduzida $F_B = |f_{im}|$ nxr, também chamada de matriz de factor loadings (reduzida). Essa matriz revela, então, as relações entre as variáveis normalizadas z_i e os fatores comuns, abandonando-se os específicos e os fatores de erro.

16 R.B.E. 1/88

¹Cada factor loading representa a raiz quadrada da parte da variância de variável j que é atribuível ao fator m.

Como se disse, para chegar-se a esses resultados, a AF parte da análise da variância. Concretamente, da matriz das correlações entre as variáveis, $R_A = |r_{jh}|$ nxn. Observe-se que a relação entre a matriz R_A e Z, segundo a equação (4):

$$R_{A} = .Z.Z' \tag{4}$$

Com base na matriz R_A , obtém-se a matriz reduzida das correlações $R = r_{jk} \mid nxn$. Os elementos dessa matriz obedecem as condições a seguir:

$$r_{jk} = I \sum_{N=i=1}^{N} z_{ji} z_{ki} \text{ se } j \neq k$$

$$r_{jk} = \sum_{m=1}^{r} f_{jm}^{2} = hj^{2} \text{ se } j = k$$

ou seja, tem-se:

$$R = F_{R} \cdot F'_{R} \tag{5}$$

O problema da AF se reduz, portanto, a decompor uma matriz das correlações dada em outra matriz fatorial $F_{B'}$ de tal modo que o produto de si mesma por sua transposta reproduza a matriz das correlações R, cujos elementos da diagonal principal são as comunalidades das variáveis. Assim, a matriz fatorial reduzida deixa sem explicar a variância correspondente aos fatores singulares (específicos e de erro).

A base para a solução do modelo de AF consiste na determinação das comunalidades h_j^2 . Contudo, aqui surge uma dificuldade crucial, pois h_j^2 só pode ser conhecido depois de determinarem-se os coeficientes f_{jm} , isto é, os factor loadings. Mas estes, por sua vez, somente serão conhecidos depois de determinar-se h_j^2 . A solução reside em estimarem-se os valores correspondentes.

A' resolução do modelo parte da matriz das observações normalizadas Z, que pode ser interpretada, também, como um conjunto de n vetores no espaço N-dimensional. Esta é a representação vetorial das variáveis normalizadas z_j . Esses n vetores geram um espaço n-dimensional que está contido no espaço original de N dimensões (a condição de que n < N, ou seja, de um maior número de observações que de variáveis, é a garantia para evitar resultados espúrios). O objetivo da análise fatorial é reduzir ainda mais aquele espaço, até o espaço r-dimensional dos fatores F_i ($i=1,2,\ldots,r$). Esta redução permite que as relações mais importantes entre as variáveis, no espaço original, permaneçam no espaço r-dimensional dos fatores.

Como os fatores gerais causais F_i não afetam da mesma maneira a todas as variáveis z_j , a distribuição multivariada de pontos (nuvem de pontos), formada pelos n pontos z no espaço de N dimensões terá uma dispersão que toma a forma de um elipsóide.

Os eixos F_i do espaço fatorial são determinados por meio do método de eixos principais. Esse método consiste em selecionar a direção do primeiro eixo principal (o fator F_1), de maneira tal que ele coincida com a direção da maior dispersão do elipsóide. Depois, a nuvem de pontos é projetada sobre o hiperplano, perpendicular ao primeiro eixo. Assim, a dispersão residual das observações normalizadas — com relação aos eixos restantes do elipsóide — é a mínima possível. O segundo eixo principal F_2 é escolhido na direção da maior dispersão da nuvem de pontos projetada. No hiperplano perpendicular aos eixos F_1 e F_2 ainda existe uma nuvem de pontos (ou diagrama de dispersão), e nele determinase um terceiro eixo F_3 , da mesma forma que foram estabelecidos os anteriores, e assim sucessivamente.

Se esse processo é continuado, finalmente seriam obtidos os n eixos principais que geram um espaço n-dimensional. Contudo na análise fatorial, os últimos (n-r) eixos principais não são levados em conta, porque a informação essencial já está contida no espaço r-dimensional dos fatores F_i .

Repetindo, no modelo fatorial a variável normalizada z_j é expressada como uma função dos fatores F_i , conforme a equação (2), onde os coeficientes f_{jm} são as coordenadas dos pontos z_J no espaço r-dimensional gerado por F_1, F_2, \ldots, F_r . Isto é, os factor loadings são as projeções desses pontos sobre os eixos dos correspondentes fatores. Os quadrados dessas projeções indicam até que ponto as variâncias das variáveis z_j são influenciadas pelos fatores comuns relevantes.

A matriz F_B de loadings (reduzida) é determinada calculando-se os sucessivos vetores coluna f_i . O cálculo do primeiro vetor coluna de loadings da matriz F_B – que corresponde ao fator F_I – é feito através da maximização dos correspondentes da variância comum f_{il}^2 . Em outras palavras, Σf_{il} deve ser maximizada para o fator l.

Como Σf_{il}^2 é uma raiz característica, a maior raiz característica de R deve ser escolhida para determinar-se seu valor. Esta escolha, então, determinaria as coordenadas das variáveis com relação ao primeiro eixo principal F_I .

Por analogia, e considerando-se as modificações pertinentes, obtêm-se todos os outros eixos principais.

Contudo, na prática nem todas as raízes características e, em consequência, nem todos os vetores característicos são determinados na análise fatorial, mas apenas r deles. Não existe um critério exato e definitivo que indique com qual valor de raiz característica deve-se parar o processo de extração de vetores característicos. Isso depende do ponto de vista do analista e do problema. A equação (5) serve como controle para garantir que não se estão perdendo informações vitais: a matriz F_B multiplicada por F_B^{\prime} deve reproduzir, aproximadamente, a matriz R.

Uma última observação toma-se necessária. O desenvolvimento anterior pressupõe que apenas uma matriz F_B será calculada a partir de R. Na prática, existe um infinito número de matrizes F_B que satisfazem a condição $R=F_B\,F_B$. Contudo, nem todas essa matrizes devem ser calculadas a partir de R porque as mesmas podem ser facilmente deduzidas a partir dos loadings iniciais através da rotação dos eixos originais. Do ponto de vista matemático, a rotação dos eixos (ou fatores) é uma consequência da indeterminação da solução. Basicamente, o objetivo da rotação é simplificar a interpretação dos resultados através da eliminação de alguns valores intermediários de loadings. A rotação mais comumen-

te usada é a rotina chamada Varimax que, por meio de uma série de transformações ortogonais de pares de fatores, procura simplificar as colunas da matriz de factor loadings.

3. Descrição dos dados

Os dados utilizados para dimensionar os padrões de organização são 100 variáveis, observadas a nível de cada uma das 360 MRH do Brasil (a ilha de Fernando de Noronha foi excluída) no censo agropecuário de 1975. Estas variáveis podem ser agrupadas em conjuntos menores, relacionados com as seguintes características internas dos estabelecimentos agropecuários: uso do solo, progresso técnico, relações de produção e aplicação de capital. A relação completa das 100 variáveis está apresentada no quadro 1 do anexo 1. No quadro 2 do mesmo anexo estão apresentados a média aritmética, o desvio-padrão e o coeficiente de variação de cada variável.

Uma das características fundamentais da agropecuária brasileira é sua grande diferenciação espacial, que se revela em distintas configurações de seus componentes estruturais, tanto a nível das microrregiões nacionais, quanto a nível de regiões menores. Cada uma dessas configurações forma um tipo singular, que caracteriza a estrutura produtiva do setor agropecuário para determinada região ou certo número de regiões.

Na escolha das variáveis que permitissem construir uma tipologia de estrutura do setor agropecuário, procurou-se utilizar indicadores que retratassem os diversos componentes que condicionam a configuração dessas estruturas, isto é, a ocupação do espaço agrícola, a estrutura da posse da terra, o perfil do progresso técnico, a forma das relações de produção, da aplicação de capital e do uso do solo.

A primeira variável selecionada (X_I) refere-se à ocupação do espaço agrícola. Infelizmente, não foi possível encontrar outros indicadores que revelassem essa importante dimensão estrutural da agropecuária brasileira, uma vez que, no Brasil, a fronteira agrícola ainda se acha em processo de ocupação, e as áreas pouco ocupadas, em geral, diferem radicalmente das já com a ocupapão consolidada. Assim, na análise fatorial subsequente, o peso deste importante componente da estrutura produtiva do setor viu-se diluído. 2

As variáveis seguintes, de x_2 a x_{12} , referem-se à estrutura da posse da terra. Algumas delas servem para indicar a presença de grandes ou pequenos estabelecimentos agrícolas; outras para revelar uma estrutura fundiária polarizada (um grande número de pequenos minifúndios, ao lado de um pequeno número de grandes estabelecimentos), e a variável X_3 serve para medir o grau de concentração da posse da terra. Observe-se, já aqui, a presença de algumas dificuldades

²Em princípio, o número de variáveis relacionadas a priori com cada um dos componentes condicionantes da estrutura deve ser o mesmo, pois o resultado da análise fatorial, ou melhor, o poder de explicação de cada fator (os eigenvalues) é função do número de variáveis que se encontram correlacionadas, de forma significativa, com ele. Assim, por exemplo, a princípio, o fator relacionado com as variáveis de progresso técnico a priori deverá ter maior poder de explicação, simplesmente porque o número dessas variáveis (22) é maior do que o número das variáveis a priori relacionadas com a ocupação do solo (1), ou com a estrutura fundiária (11), ou com as relações de produção (21), ou com a aplicação de capital (18), ou com o uso do solo (16), ou com a produtividade da terra (9), ou, finalmente, com a densidade da população rural (apenas uma variável).

não-superadas e que serviram para distorcer, em parte, os resultados da análise fatorial, tais como a existência de variáveis não-lineares (como X_3).

As variáveis X_{13} , X_{14} , ..., X_{34} são indicadores de progresso técnico. Dentre estas, ressaltam-se aquelas que representam quocientes, cujo denominador refere-se a áreas ocupadas, com lavouras e pastagens, ou relativa à área total dos estabelecimentos. Tais variáveis refletem, de certo modo, a intensidade do uso do solo e devem apresentar valores mais elevados naquelas regiões onde as explorações sejam mais modernas e usem mais intensamente o fator terra. Observem-se, novamente, alguns problemas derivados da não-linearidade de algumas variáveis, assim como do número excessivo de indicadores relacionados com este aspecto da exploração agrícola, o que implica que o peso do fator progresso técnico do modelo escolhido estará reforçado pela própria escolha de grande número de variáveis com ele relacionados.

Já as variáveis X_{35} , X_{36} , ..., X_{55} dizem respeito às relações de produção. Neste sentido, algumas referem-se à condição do produtor $(X_{35} \text{ a } X_{38})$, ao estatuto social do uso do solo $(X_{39} \text{ a } X_{42})$, às dimensões e às condições sociais da força de trabalho ocupada nos estabelecimentos agropecuários $(X_{43} \text{ a } X_{51})$ e às condições de remuneração do pessoal ocupado $(X_{52} \text{ a } X_{55})$. Observese que algumas destas variáveis servem como indicadores do caráter capitalista ou familiar das explorações agrárias $(X_{44} \text{ a } X_{48}, X_{50} \text{ e } X_{51})$.

As variáveis X_{55} , X_{57} , ..., X_{73} estão relacionadas com a aplicação de capital nos estabelecimentos agropecuários. Em termos gerais, algumas refletem a dimensão econômica das explorações (X_{56} , X_{58} , X_{60} e X_{72}); outras estão relacionadas com a intensidade do uso do solo, do ponto de vista da relação capital/terra (X_{57} , X_{61} , X_{63} e X_{73}); outras informam a respeito da capitalização e do acesso dos estabelecimentos ao crédito (X_{64} a X_{71}) e a variável (X_{59}) corresponde ao preço da terra.

Finalmente, as variáveis X_{74} a X_{100} , com exceção desta última, são indicadores do uso e da produtividade do solo. Ressalte-se que, neste conjunto de variáveis, o problema derivado da restrição do campo de variação de muitas delas $(X_{74} \text{ a } X_{89})$ é particularmente grave. Observe-se, por outro lado, que os indicadores X_{74} a X_{80} estão intimamente associados, de forma que um elevado valor de um deles implica, necessariamente, um baixo valor para os restantes (já que $X_{74} + X_{75} + \ldots + X_{80} = 1$). Note-se, também, que o mesmo ocorre com o grupo de variáveis X_{81} a X_{89} . Quanto ao significado das variáveis deste conjunto $(X_{74} \text{ a } X_{100})$, fora a última, elas podem ser agrupadas em dois subgrupos. O primeiro deles agrega as variáveis X74 a X80 e diz respeito ao uso do solo, tanto em termos gerais $(X_{74} \text{ a } X_{80})$, quanto em termos de culturas específicas $(X_{81} \text{ a}$ X_{R0}). O segundo subgrupo agrega variáveis relacionadas com a produtividade da terra com culturas singulares $(X_{90} \text{ a } X_{98})$ ou em termos da pecuária bovina (X_{00}) . O último indicador, X_{100} , não está relacionado nem com o uso da terra, nem com a sua produtividade. Como é a única variável populacional, seu peso na determinação do modelo adotado é mínimo.

4. Resultados da análise fatorial

A análise fatorial aplicada resultou na identificação de 19 componentes (fatores) com raízes características (eigenvalues) iguais ou superiores à unidade que, no

BIBLIOTECA! TO THE TIMONSEN FUNDACAL DELIBER VARGAS

conjunto, explicam 78,28% da variância total (lembre-se que esta porção explicada da variância total é chamada variância comum). Dessas 19 dimensões básicas, seis apresentam maior significado para este estudo, reunindo três quartas partes da explicação total dos 19 fatores (isto é, 76,2% da variância comum). O quadro 1 resume as principais informações relacionadas com os seis fatores mais decisivos. Em última instância, o produto mais importante da análise fatorial é a matriz final de loadings. Cada coluna dessa matriz contém um conjunto de coeficientes que mostra como se relaciona cada uma das variáveis com os fatores F_j . O quadro 1 do anexo 1 mostra o subconjunto da matriz de factor loadings correspondente aos seis primeiros fatores. Além do mais, nem todos os coeficientes (loadings) correspondentes foram incluídos mas apenas aqueles cujo valor absoluto é igual ou maior que 0,30.

Quadro 1
Valores das raízes características e percentagem da variância total explicada pelos seis primeiros fatores identificados na análise fatorial

Fator	Raiz característica		
1	29,50832	37,7	37,7
2	10,55794	13,5	51,2
3	6,88842	8,8	60,0
4	5,29907	6,8	66,8
5	4,07566	5,2	72,0
6	3,26426	4,2	76,2

Fonte: Fundação João Pinheiro, Diretoria de Planejamento.

Os elementos da matriz F_B mostrados no quadro 1 do anexo 1 podem ser interpretados de duas maneiras diferentes: vertical ou horizontalmente. Lidos verticalmente, os elementos de cada coluna da matriz mostram um padrão de relações entre as variáveis envolvidas e o correspondente fator. Para a interpretação horizontal, os coeficientes são usualmente elevados ao quadrado, de maneira tal que os mesmos possam ser interpretados como percentagens do componente de variância comum h_j^2 ; dessa forma, cada linha da matriz F_B mostra como os diferentes fatores influenciam a correspondente variável z_j $(j = \ldots, 100)$. Justamente, os 100 componentes h_j^2 são as communalities das variáveis, as quais são apresentadas na última coluna do quadro 1 do anexo 1.

Com relação às communalities, apenas 18 variáveis apresentam valores menores que 60%. Das restantes, 29 têm valores superiores a 90%, outras 29 variáveis apresentam communalities na faixa de 80-90%, 15 na faixa de 70-80% e nove na de 60-70%. A mais alta communality corresponde à variável X_{62} , Valor Médio das Despesas por Estabelecimento, com 99,03% da variância sendo explicados pelos 19 fatores, e 88,36% sendo explicados apenas pelo Fator 1. A menor das communalities observadas corresponde à variável X_{90} (Produtividade do Café) com valor 20,14%: isso indica que a maior parte da variância dessa variável

é de tipo específico, ou seja, é a variável que menos serviu à definição e à descrição da organização agrária das MRH.

4.1 Principais fatores

4.1.1 Grande produção capitalista moderna (Fator 1)

A primeira dimensão básica, ou fator, explicou 37,7% da variância comum, e poderia ser identificado com áreas onde existe uma agricultura capitalista moderna, com a predominância de unidades econômicas de grande porte do ponto de vista do valor de sua produção. Esse fator, diretamente relacionado com a variável Taxa de Ocupação, é relativamente independente do conjunto de variáveis vinculadas à estrutura fundiária, e está estreitamente relacionado com os indicadores de elevado progresso técnico, relações de produção capitalista (trabalho assalariado), alta intensidade de capital por estabelecimento e uso do solo com canade-açúcar e outras culturas comerciais com alta produtividade. A existência de um coeficiente de loading de 0,32, vinculando a variável Taxa de Ocupação com o Fator 1, indica a existência de uma associação direta entre os mesmos: quanto maior for a taxa de ocupação numa MRH qualquer, mais altos escores terá ela nesse fator.

Do conjunto de variáveis relacionadas com a estrutura fundiária, apenas uma (X_4) apresenta um coeficiente de loading significativo, e igual a -0.34. O sinal negativo desse coeficiente indica que a correlação entre X_4 e o Fator 1 é inversa, isto é, que, para aquelas MRH onde a proporção de estabelecimentos com menos de 10 hectares (minifúndios) é grande, o escore do Fator 1 tenderá a ser relativamente pequeno.

Dentre todas as variáveis incluídas na análise, o conjunto daquelas ligadas ao Progresso Técnico é o que apresenta o maior número de loadings positivos e significativos com relação ao Fator 1. Esta estreita vinculação desse fator com os indicadores de progresso tecnológico justifica a qualificação de agricultura moderna dada a ele. Com efeito, variáveis tais como Número Médio de Tratores por Estabelecimento e Número Médio de Tratores por Unidade de Área apresentam coeficientes de 0,88 e 0,55, respectivamente. Note-se, assim mesmo, que essas variáveis não estão ligadas significativamente com nenhum dos outros cinco fatores selecionados. De forma semelhante, a análise detectou outras seis variáveis deste conjunto que estão relacionadas apenas com o Fator 1. São elas: Despesas com Adubos e Corretivos por Estabelecimento, com coeficiente de 0,88; Número Médio de Veículos de Tração Mecânica, com coeficiente de 0,88; Silos para Forragem com, loading igual a 0,53; Consumo de Óleo Diesel, com coeficientes de 0,87 e 0,92, respectivamente. Outras variáveis, ainda, apresentam também uma correlação positiva com o Fator 1, embora não tão alta como nos casos anteriores, já que estão também correlacionados com outros fatores. Este é o caso das variáveis Número Médio de Arados por Estabelecimento (0,43), Número Médio de Colhedeiras por Estabelecimento (0,74), Número Médio de Colhedeiras por Unidade de Área (0,32), Despesas com Adubos e Corretivos por Unidade de Área (0,32), Despesas com Sementes e Mudas por Estabelecimento (0,73), Despesas com Defensivos por Unidade de Área (0,37), Despesas com Medicamentos para Animais por Estabelecimento (0,49), Número Médio de Veí-

22 R.B.E. 1/88

culos de Tração Animal (0,34), Silos para Grãos (0,44), Participação dos Estabelecimentos que Usam Energia Elétrica (0,38) e Consumo de Energia Elétrica por Estabelecimento, com coeficiente de 0,65.

O conjunto de variáveis que constituem os indicadores de relações de produção típicas do sistema capitalista está, também, significativamente correlacionado com o Fator 1, sendo que algumas variáveis apresentam correlação positiva (aquelas ligadas ao tipo de produção capitalista) e outras mostram correlações negativas (aquelas ligadas ao tipo de produção familiar, não-capitalista). Com efeito, o Fator 1 está alta e positivamente relacionado com variáveis como: Pessoal ocupado por Estabelecimento (0,47), Trabalhadores Permanentes por Estabelecimento (0,76), Trabalhadores Temporários por Estabelecimento (0,55), Salários Pagos por Estabelecimento (0,87), Despesas com Serviços de Empreitada por Estabelecimento (0.80), etc. Enquanto as variáveis anteriores indicadores de trabalho assalariado – apresentam relações positivas com o Fator 1, o contrário acontece com aquelas variáveis mais ligadas à atividade agrícola de cunho familiar, haja vista os coeficientes de loadings de variáveis tais como: Trabalho Familiar (-0,70), Número de Estabelecimentos sem Pessoal Contratado (-0,54), Proporção de Mulheres na Força de Trabalho (-0,52), Proporção de Menores de 14 Anos na Força de Trabalho (-0.48).

Assim como os coeficientes anteriormente comentados indicam as características "moderna" e "capitalista" da agricultura ligada ao Fator 1, os loadings dos indicadores pertencentes ao grupo Aplicações de Capital dizem respeito ao tamanho econômico dos estabelecimentos que a praticam. Seis variáveis desse conjunto estão correlacionadas (positivamente) apenas com o Fator 1: Valor das Terras por Estabelecimento (0,84), Valor dos Bens (0,84), Valor da Produção Vegetal e Animal (0,88), Valor das Despesas (0,94); Valor dos Investimentos em Terras Adquiridas (0,69) e Valor dos Financiamentos Obtidos (0,91). Como todas as variáveis anteriores são valores médios por estabelecimentos, as altas correlações positivas delas com o Fator 1 indicam que as unidades produtivas a este ligadas são relativamente grandes em termos econômicos. Existem ainda outras variáveis desse conjunto que estão positivamente relacionadas com o Fator 1, mas que, ao mesmo tempo, estão também ligadas a outros fatores. Esse é o caso de algumas variáveis medidas em valores médios por unidade de área: Valor das Despesas por Hectares (0,36), Valor do Total de Investimentos por Hectare (0,32), Valor dos Investimentos em Terras Adquiridas por Hectare (0,30), Valor dos Financiamentos por Hectare (0,51). Finalmente, duas variáveis relacionadas com o Fator 1 e com outros fatores, simultaneamente, são as seguintes: Valor do Total dos Investimentos por Estabelecimento, com loading de 0,73, e Número Médio de Financiamentos por Estabelecimento, com coeficiente igual a 0,53.

Quanto à participação de cada cultura na área total dos estabelecimentos, a única variável a mostrar um loading significativo é a X_{84} (cana-de-açúcar). Do ponto de vista de produtividade, entretanto, destacam-se as culturas de cana, algodão, milho e soja com loadings positivos, e a mandioca com um coeficiente negativo. Este último resultado mostra que, nas áreas caracterizadas pelo Fator 1, a cultura da mandioca tem uma natureza ou finalidade diferente das outras. Enquanto as primeiras são culturas comerciais com bons padrões técnicos, a última é uma cultura marginal com baixos rendimentos em relação à média nacional, e destinada basicamente ao autoconsumo.

Em resumo, o Fator 1 está ligado a áreas com altas taxas de ocupação da terra, onde se desenvolve uma agricultura tecnicamente evoluída e altamente capitalizada, e voltada principalmente para o mercado. Todas essas características estão implícitas nos altos *loadings* no Fator 1 das variáveis antes comentadas. Confirmada esta interpretação, os escores alcançados por cada MRH neste fator descrevem um quadro totalmente compatível com as características sócio-econômicas já mostradas por outros estudos.

4.1.2 Uso intensivo da terra (Fator 2)

O segundo fator, que explica 13,5% da variância comum, tem um número menor de factor loadings significativos que no caso do Fator 1. Em primeiro lugar, o Fator 2 apresenta apenas quatro variáveis que estão correlacionadas unicamente com ele: Valor dos Bens por Unidade de Área, com loading de 0.95; Valor das Terras por Unidade de Área, com coeficiente igual ao anterior; Valor da Produção Animal e Vegetal por Unidade de Área (0,87); Valor das Receitas por Unidade de Área (0,83). Essas quatro variáveis pertencem ao grupo de indicadores de Aplicação de Capital. Outras quatro variáveis do mesmo grupo apresentam coeficientes significativos no Fator 2 e também em outros fatores. É o caso de Valor das Despesas por Hectare (0,84), Valor Total dos Investimentos em Terra por Hectare (0,64) e Valor dos Financiamentos por Hectare (0,37). Diferentemente do Fator 1, onde predominam os loadings significativos nas variáveis expressadas em termos de médias por estabelecimento, no Fator 2 prevalecem as variáveis expressadas em termos de valores médios por unidade de área. Este fato indica que, do ponto de vista da área total das unidades envolvidas, o Fator 2 pode estar ligado a estabelecimentos de qualquer tamanho, sempre que estes apresentem altos valores de aplicação de capital por hectare. Este tipo de organização, contudo, é bem mais provável no caso de modernos estabelecimentos de médio e pequeno porte, que no caso de grandes latifúndios, ou de minifúndios familiares. Tudo isso porque o uso intensivo da terra, nesse caso, dá-se através de uma alta relação capital/terra.

É importante frisar que nem as variáveis do grupo Relações de Produção nem os indicadores de Estrutura Fundiária apresentam factor loadings significativos no Fator 2. Isso indica a relativa independência daqueles aspectos com relação ao segundo fator, situação substancialmente diferente da observada no caso da primeira dimensão. Cinco variáveis do conjunto Progresso Técnico apresentam uma significativa relação positiva com o Fator 2. As variáveis, que também estão correlacionadas com o Fator 1, são as seguintes: Despesas com Adubos e Corretivos por Hectare, com coeficiente de 0,37; Despesas com Defensivos por Hectare (0,53); Despesas com Medicamentos para Animais por Estabelecimento (0,43); Participação dos Estabelecimentos que Usam Energia Elétrica (0,51); e Consumo de Energia Elétrica por Estabelecimento (0,40). Todos esses coeficientes indicam que o Fator 2 está ligado a uma atividade agrícola relativamente modema, com alta relação capital-terra e, provavelmente, alta relação capital-trabalho. A hipótese da intensidade do uso dos insumos terra e trabalho é reforçada pelos coeficientes positivos associados às variáveis Produtividade do Milho (0,33), Produtividade do Feijão (0,47) e Densidade do Rebanho Bovino (0,30).

24 R.B.E. 1/88

Observe-se que os maiores escores acontecem em áreas próximas a centros urbanos de grande influência na estrutura produtiva do meio rural.

4.1.3 Produção de grãos (Fator 3)

A contribuição do terceiro fator à explicação da variância comum é de 8,8%. Vários são os coeficientes significativos que mostram quais as variáveis mais fortemente ligadas a esse fator e que, em conseqüência, ajudam a descrever as características das áreas onde o mesmo prevalece. Nesse sentido, é necessário salientar que a designação escolhida para esta dimensão (produção de grãos) pode parecer insatisfatória, ou incompleta, em face da riqueza de características detectadas pela análise. Contudo, deve-se lembrar que o nome atribuído a uma categoria qualquer não pretende descrever com o máximo de detalhes os resultados da análise, descrição essa que será feita agora, quando forem analisados os valores dos loadings de cada variável.

Começando sempre pelos coeficientes específicos, ou seja, aqueles que são significativos apenas para esse fator, não aparecendo em nenhum dos outros, seis variáveis apresentam correlações com o Fator 3. Quatro dessas variáveis pertencem ao conjunto denominado Uso do Solo, a saber: Participação do Milho na Área Colhida, com loading de 0,39; Produtividade do Arroz, 0,38; Produtividade do Trigo, 0,42; e a variável X_{80} , que mede a proporção das terras produtivas não-utilizadas, e que apresenta um coeficiente negativo (-0,32), indicando que as regiões ligadas mais estreitamente ao Fator 3 caracterizam-se pela predominância de estabelecimentos que utilizam produtivamente a totalidade da sua área disponível. A variável X_{38} , Proporção de Estabelecimentos de Ocupantes, que informa sobre um aspecto das relações de produção, tem coeficiente de -0,30. Finalmente, a variável Número de Arados por Unidade de Área apresenta um loading relativamente alto (0,78).

O número de variáveis significativamente relacionadas com o Fator 3 — embora estejam ligadas a outros fatores — é maior que as específicas já comentadas. Em primeiro lugar, as variáveis Produtividade do Milho e Produtividade da Soja aparecem com coeficientes positivos (0,57 e 0,62, respectivamente) mostrando que o nível de tecnologia empregado pelos estabelecimentos dessas áreas deve ser satisfatório. Por outro lado, a variável Densidade do Rebanho Bovino tem um coeficiente positivo (0,30) e marginalmente significativo, indicando que o Fator 3 também está relacionado com áreas onde o rebanho bovino é importante. Aliás, é bom notar que dada à expressão do rebanho bovino da agricultura brasileira, não é de se estranhar o fato de ele gerar escores positivos em mais de um fator e determinar algumas características de outros.

Do conjunto de variáveis que caracterizam o nível tecnológico dos estabelecimentos, o Fator 3 está relacionado positivamente com várias delas, que também estão ligadas ao Fator 1. Assim, a variável Participação dos Estabelecimentos com Força Animal e Mecânica tem coeficiente de 0,77; Número Médio de Arados por Estabelecimento, 0,78; Número Médio de Colhedeiras por Estabelecimento, 0,31; Número Médio de Colhedeiras por Unidade de Área, 0,43; Número Médio de Veículos de Traça Animal, 0,82; Silos para Grãos, 0,64; e Participação dos Estabelecimentos que Usam Energia Elétrica, 0,44. Todos esses resultados indicam a importância relativamente grande que a produção de grãos em

geral tem para os estabelecimentos das áreas ligadas ao Fator 3, que coincide com a distribuição espacial dos seus escores (quadro 3 do anexo 1).

Finalmente, os loadings das variáveis Coeficiente de Concentração de Gini (-0,48) e Participação dos Estabelecimentos Médios (0,44) indicam que as áreas relacionadas com o Fator 3 caracterizam-se pela predominância de unidades econômicas de tamanho médio e relativamente homogêneas entre si, já que não existe problema de concentração da terra em pequeno número de estabelecimentos. Se unirmos estas informações com aquelas proporcionadas pelos coeficientes das variáveis Participação das Terras Arrendadas (0,31) e Participação dos Estabelecimentos de Ocupantes — já mencionadas — podem-se resumir os grandes traços que caracterizam as áreas onde prevalece o Fator 3: trata-se de áreas onde predominam unidades de tamanho pequeno e médio, com grande proporção de arrendatários, dedicados à produção de grãos com bom nível de produtividade e mecanização.

4.1.4 Binômio minifúndio-latifúndio (Fator 4)

O quarto fator identificado explica 6,8% da variância comum. As variáveis com loadings específicos para esse fator são Participação da Mandioca no Total de Área Colhida (0,74) e Densidade da População Rural (0,62). Esses coeficientes, juntamente com aqueles de algumas variáveis ligadas com a estrutura agrária, levaram à conclusão de que o Fator 4 está relacionado com áreas onde existem minifúndios dedicados à produção de mandioca — entre outras atividades — e alta densidade de população rural, ou latifúndios dedicados basicamente a pecuária bovina, ou a ambos os tipos de organização, lado a lado. Com efeito, a variável Proporção de Estabelecimentos com Menos de 10 Hectares apresenta um coeficiente de 0,55, enquanto a Proporção de Estabelecimentos na Faixa de 10 a 100 Hectares tem coeficiente de -0,42. Juntamente com isso, as variáveis X_{10} e X_{12} , cujo objetivo é captar o grau de polarização existente na distribuição dos estabelecimentos classificados por tamanho, acusam coeficientes positivos e altos (0,86) e 0,83, respectivamente). Todos esses elementos levaram à conclusão de que o Fator 4 caracteriza áreas onde predomina o binômio minifúndio-latifúndio.

4.1.5 Produção de soja e trigo (Fator 5)

O Fator 5, chamado Produção de Soja e Trigo, explica 5,2% da variância comum. A denominação proposta para esse fator surge, basicamente, do fato que os dois únicos loadings específicos do mesmo correspondem às variáveis Participação da Soja na Área Colhida e Participação do Trigo na Área Colhida, ambos com coeficientes iguais a 0,90%. Reforçando esta interpretação, a variável Número Médio de Colhedeiras por Estabelecimento apresenta, também, uma correlação positiva com o Fator 5 (coeficiente de 0,30). Três variáveis do grupo Aplicações de Capital com coeficientes positivos dizem respeito à participação dos estabelecimentos dessas regiões no mercado financeiro: Valor de Financiamentos por Unidade de Área, com coeficiente igual a 0,48; Valor dos Investimentos em Terra (0,45); e Valor Total dos Investimentos (0,40). Do mesmo modo, os coeficientes das variáveis Despesas com Sementes e Mudas (0,41) e Despesas com Medicamentos para Animais (0,30) parecem indicar grau apreciável de modernização nas ativi-

26 R.B.E. 1/88

dades agropecuárias. Finalmente, o Fator 5 é o único — além do Fator 3 — que está relacionado com a variável Proporção de Terras Arrendadas (0,32), mostrando a influência dessa relação de produção.

Por se tratar de um fator bastante específico, soja/trigo, é de se esperar que os valores muito baixos não tenham definição clara.

4.1.6 Latifundio (Fator 6)

O último dos fatores considerados neste estudo contribui com apenas uma explicação de 4,2% da variância comum. Também o número de loadings significativos é menor que nos casos anteriores, sendo que cinco correspondem a variáveis ligadas à estrutura fundiária, e o último à variável Valor Total dos Investimentos por Unidade de Área. Os coeficientes das variáveis relacionadas com a estrutura fundiária são os seguintes: Área Média dos Estabelecimentos, com coeficiente igual a 0,90; Proporção dos Estabelecimentos entre 1.000 e 10.000 Hectares, com loading de 0,30; Proporção dos Grandes Estabelecimentos (0,47); e dois indicadores do grau de polarização da distribuição dos estabelecimentos classificados por tamanho (variáveis X_8 e X_9) com altos loadings positivos. Todos esses resultados da análise fatorial levam a identificar as áreas onde o Fator 6 apresenta altos escores como de grandes propriedades.

5. Conclusões

Do estudo precedente, conclui-se que a grande complexidade estrutural da agropecuária brasileira pode ser, até certo ponto, adequadamente descrita por um número reduzido de "fatores" determinantes. Cada "fator" representa, na realidade, um verdadeiro complexo de variáveis interdependentes, conformando um tipo específico de configuração estrutural, com significado econômico particular.

Os seis fatores mais importantes na explicação da realidade da agropecuária do Brasil em 1985 foram, em ordem hierárquica decrescente: Grande Produção Capitalista, Uso Intensivo da Terra, Produção de Grãos, Binômio Minifúndio-Latifúndio, Produção de Soja e Trigo e Latifúndio. Esses fatores explicam 60% da variância total dos dados apresentados.

Observe-se que quatro dos seis fatores assinalados vinculam-se, de algum modo, à organização capitalista da exploração agropecuária: somente os fatores Binômio Minifúndio-Latifúndio e Latifúndio parecem relacionar-se com formas arcaicas (não-capitalista) de uso do solo. Mesmo assim, no caso último, a inclusão da variável Valor do Investimento por Unidade de Área faz pensar em grandes propriedades capitalistas. Assim, existem evidências de que o grande "fator" geral de maior poder explicativo da agropecuária brasileira seja Produção Capitalista, de modo que os diferentes fatores explicativos encontrados refletem outras tantas formas de estruturação da exploração capitalista do solo.

Apesar disso, assinale-se que 40% da variância total explicam-se por outros fatores (sendo que até 22% devem-se a fatores específicos e de erro), deixando certa margem para fatores relacionados com a exploração artesanal-familiar do solo.

Uma observação deve ser feita em relação à qualidade dos resultados obtidos. À primeira vista, estes mostraram-se compatíveis com o que se deveria esperar, em se utilizando um marco teórico no qual a economia agropecuária poderia ser esquematicamente dividida em três formas interdependentes de organização (capitalista, camponesa-familiar e latifundiária), cabendo o papel central à capitalista. No entanto, não se devem esquecer os problemas assinalados anteriormente no que diz respeito ao desbalanceamento entre o número de variáveis teoricamente relacionadas com cada uma das dimensões da estrutura agropecuária. Assim, a conveniência dos resultados pode refletir, em parte, o número de variáveis disponíveis vinculadas às diferentes dimensões estruturais, em lugar de refletir a importância real de cada um dos fatores na explicação da realidade concreta.

Outra observação importante consiste em assinalar que, a partir dos resultados obtidos, torna-se possível remontar o próprio estudo, restringindo o número de variáveis, de forma a se obter um conjunto menor, mas nem por isso com menor poder de explicação. A partir, então, desse conjunto restringido, poderse-ia, novamente, aplicar a técnica da análise fatorial e se conseguir resultados melhores. Outra alternativa seria, a partir da escolha das variáveis realizadas com base no presente estudo, utilizar outro conjunto de informações, como, por exemplo, as do censo de 1980.

Seja como for, salienta-se que os resultados apontados são adequados para a aplicação de técnicas de agrupamento (cluster analysis), através do que se pode obter uma regionalização útil da agropecuária brasileira a partir de suas dimensões estruturais.

Abstract

In this paper we report a research work aiming at the determination of a typology of land use in the Brazilian agriculture. With this objective we used factor analysis in order to identify the main factors which are responsible for sample variability. The final product of this first stage — factor scores for each one of the sampling units — is the raw material to build the aforementioned typology.

The paper is divided into four items plus the introduction. In item 2, we review briefly the technique of analysis used. In item 3, we describe the data, while in item 4 we discuss the results obtained. Finally, item 5 presents the main conclusions.

Referências bibliográficas

Faissol, S., org. Tendências atuais na geografia urbano/regional. Rio de Janeiro; IBGE. 1978.

Harman, H.H. Modern factor analysis. Chicago, The University of Chicago Press, 1970.

Minagri/Incra/DCT. Zoneamento agrário — 1.ª fase. Brasília; Minagri/Incra, 1978. (Informativo técnico 4.)

Steffan, E.R. & Brito, M.S. Aplicação de uma análise fatorial para estudo de organização agrária na Paraíba e Pernambuco. Revista Brasileira de Geografia, 3 (254): 22-47, jul./set. 1977.

Quadro 1 Matriz de factor loadings (F_B)

	Variáveis			Fat	tores			Cisi
	variaveis	1	2	3	4	5	6	— Communalitie
1.	Ocupação							
^X 1	Taxa de ocupação (área dos estabelecimentos/área das MRH	0,32						0,74371
(₂	Estrutura fundiária Área média dos estabelecimentos (área dos estabelecimentos/							
-2	número dos estabelecimentos)						0.90	0,95550
(3	Coeficiente de Gini			0,48			0,70	0,86144
4	Número de estabelecimentos de menos de 10ha/total			0,10				-,
7	dos estabelecimentos	-0,34			0,55			0,90256
5	Número de estabelecimentos de 10ha a menos de							
_	100ha/total de estabelecimentos			0,44	-0,42			0,82587
κ ₆	Area dos estabelecimentos de 1.000ha a menos de						0.20	0.62456
X ₇	10.000ha/área dos estabelecimentos Área dos estabelecimentos de 10.000ha e mais/área						0,30	0,63456
`7	dos estabelecimentos						0,47	0,84803
۲ ₈	Razão participação percentual dos estabelecimentos de menos						0,47	0,01005
-8	de 10ha no total dos estabelecimentos/participação da área dos							
	estabelecimentos de menos de 10ha no total da área ocupada						0,88	0,87998
Κ ₉	Razão participação percentual dos estabelecimentos de 10ha							
-	a menos de 100ha no total dos estabelecimentos/participação							
	da área de 10ha a menos de 100ha no total da área ocupada						0,91	0,94706
10	Razão participação percentual da área dos estabelecimentos de							
	1.000ha a menos de 10.000ha no total da área dos							
	estabelecimentos/participação dos estabelecimentos de 10.000ha e mais no total dos estabelecimentos				0,86			0,90865
	10.000na c mais no total dos estabelecimentos							
								(Continua)

(Quadro 1 - Continuação)

	Variáveis -			Fato	ores			
	variaveis	1	2	3	4	5	6	 Communalities
$\overline{x_{11}}$	Razão participação percentual dos estabelecimentos de							
* *	10.000ha e mais no total da área ocupada/participação							
	percentual dos estabelecimentos de 10.000ha e mais no							
	total dos estabelecimentos							0,41142
X_{12}	Razão participação percentual dos estabelecimentos de 100ha							
	a menos de 1.000ha no total da área ocupada/participação							
	percentual dos estabelecimentos de 100ha a menos de							
	1.000ha no total dos estabelecimentos				0,83			0,94249
3.	Progresso técnico							
X_{13}	Número de estabelecimentos que utilizam força animal e							
	mecânica/total de estabelecimentos	0,35		0,77				0,88847
X_{14}	Número de tratores/total de estabelecimentos	0,88						0,94610
X_{15}	Número de tratores/área de lavouras temporárias e pastagens							
	plantadas	0,55		0 -0				0,80944
x_{16}	Número de arados/total de estabelecimentos	0,43		0,78				0,96116
\mathbf{x}_{17}	Número de arados/área de lavouras temporárias			0,78				0,79351
X ₁₇ X ₁₈	Número de colhedeiras/total de estabelecimentos	0,74		0,31		0,30		0,84079
X ₁₉	Número de colhedeiras/áreas de lavouras temporárias	0,32		0,43				0,57556
\mathbf{x}_{20}	Despesas com adubos e corretivos/total de estabelecimentos	0,88	0.05					0,92499
X ₁₉ X ₂₀ X ₂₁ X ₂₂ X ₂₃	Despesas com adubos e corretivos/área de lavouras temporárias	0,32	0,37			0.41		0,51962
X ₂₂	Despesas com sementes e mudas/total de estabelecimentos	0,73	0.61			0,41		0,90148
\mathbf{x}_{23}	Despesas com sementes e mudas/área de lavouras temporárias		0,61					0,75453
x_{24}^{23}	Despesas com defensivos/estabelecimentos dedicados à	0.00						0.04/37
	agricultura e agropecuária	0,80						0,84637
X_{25}	Despesas com defensivos agrícolas/área das culturas	0.27	0.50					0.06500
	temporárias e permanentes	0,37	0,53					0,86509
\mathbf{x}_{26}	Despesas com medicamentos para animais/estabelecimentos	0.40	0.43			0.20		0.60217
	dedicados à pecuária e agropecuária	0,49	0,43			0,30		0,69317

K.B.E. 1/88

	Variáveis ~			Fato	res			0 100
	v ariaveis		2	3	4	5	6	- Communalitie
X ₂₇ Número de veículos o	le tração mecânica/total de							
estabelecimentos	•	0,88						0,96398
X28 Número de veículos o	le tração animal/total de estabelecimentos	0,34		0,82				0,86441
X ₂₈ Número de veículos o X ₂₉ Capacidade dos silos	para forragem/estabelecimentos dedicados							
à pecuária e agropecu	ária	0,53						0,63780
X ₃₀ Capacidade dos silos	para grãos e outros depósitos para							
produção/total de est		0,44		0,64				0,76985
X _{3.1} Quantidade consumio	la de gasolina/total de estabelecimentos	0,87						0,92862
	la de óleo diesel/total de estabelecimentos	0,92						0,93230
X ₃₃ Estabelecimentos que	usam energia elétrica/total de							
estabelecimentos		0,38	0,51	0,44				0,83061
X ₃₄ Quantidade consumio	la de energia elétrica/total de							
estabelecimentos	-	0,65	0,40					0,91219
4. Relações de produçõe	es ·							
X ₃₅ Número de estabeleci	mentos de proprietários/ total							
de estabelecimentos	• •							0,92301
X ₃₆ Número de estabeleci	mentos arrendatários/total de							
estabelecimentos	·							0,58208
X ₃₇ Número de estabeleci	mentos de ocupantes/total de							•
estabelecimentos	•							0,59798
	imentos de ocupantes/total de							,
estabelecimentos	anontos do ocupantos, total de			-0.30				0,05665
	dutor/área total dos estabelecimentos			0,50				0.91835
	adas por quantia fixa/área total dos							0,51000
estabelecimentos	adas por quantila inaliarea total dos							0,66624
	adas por quota-parte da produção/área							0,00021
total dos estabelecim				0.31		0,32		0,80274
-	las/área total dos estabelecimentos			0,51		0,02		0,90376
X ₄₂ Área de terras ocupac	las/area total dos establicementos							
								(Continua)

(Quadro 1 - Continuação)

	Variáveis			Fat	ores			Commenter.
	v ariaveis	1	2	3	4	5	6	- Communalitie
X ₄₃	Total do pessoal ocupado/total de estabelecimentos	0,47						0,95571
X_{44}^{-43}	Total de mulheres do pessoal/total pessoal ocupado	-0,52						0,87157
X ₄₅	Total do pessoal ocupado de menos de 14 anos/total							
43	do pessoal ocupado	-0,48						0,86966
X ₄₆	Trabalho familiar/total do pessoal ocupado	-0,70						0,97074
X ₄₇	Trabalhadores permanentes/total do pessoal ocupado	0,76						0,88897
48	Trabalhadores temporários/total do pessoal ocupado	0,55						0,65340
49	Parceiros/total do pessoal ocupado							0,72296
ζ ₅₀	Estabelecimentos sem pessoal contratado/total de							
-30	estabelecimentos	-0,54						0,79944
ζ ₅₁	Estabelecimentos de menos de cinco pessoas ocupadas/							
-31	total de estabelecimentos							0,86791
ζ ₅₂	Salários/total de estabelecimentos	0,87						0,93307
ζ_{53}^{2}	Quota-parte da produção entregue a terceiros/total de							
-33	estabelecimentos	0,34						0,75071
ζ ₅₄	Despesas com arrendamento de terras/área total dos							
J -	estabelecimentos		0,40					0,84625
K ₅₅	Despesas com serviços de empreitada (somente mão-de-obra)/							
33	total de estabelecimentos	0,80						0,75959
5.	Aplicação de capital							
X ₅₆	Valor dos bens/total de estabelecimentos	0,84						0,92477
X ₅₇	Valor dos bens/área total dos estabelecimentos		0,95					0,97930
X 5 0	Valor das terras/total de estabelecimentos	0,84						0,89564
59	Valor das terras/área total dos estabelecimentos		0,95					0,97286
60	Valor da produção animal e vegetal/total de estabelecimentos	0,88						0,94220
x_{61}^{60}	Valor da produção animal e vegetal/área total dos							
01	estabelecimentos		0,87					0,96622
x ₆₂	Valor das despesas/total de estabelecimentos	0,94						0,99029
								(Continua)

(Quadro 1 - Continuação)

	Variáveis -			– Communalitie				
	v ariaveis -	1	2	3	4	5	6	Communatitie
X ₆₃	Valor das despesas/área total dos estabelecimentos	0,36	0,84					0,98249
(21	Valor total dos investimentos/total de estabelecimentos	0,73	•				0,42	0,80576
65	Valor total dos investimentos/área dos estabelecimentos	0,32	0.60			0,40		0,86901
66	Valor dos investimentos em terras adquiridas/total de	•	•			•		
00	estabelecimentos	0,69						0,74892
67	Valor dos investimentos em terras adquiridas/área total	•						
07	dos investimentos	0,30	0,64			0,45		0,86261
K ₆₈	Número de estabelecimentos que realizaram investimentos/	•	ŕ			-		
00	total de estabelecimentos							0,42206
ζ ₆₉	Número de estabelecimentos que receberam financiamentos/							
UF	total de estabelecimentos	0.53		0,56				0,83263
70	Valor dos financiamentos obtidos/total de estabelecimentos	0.91		•				0,92013
71	Valor dos financiamentos obtidos/área total dos	- 7-						
71	estabelecimentos	0,51	0.37			0,48		0,88149
72	Valor das receitas/total de estabelecimentos	0,86				,		0,88930
73	Valor das receitas/área total dos estabelecimentos	•	0,83					0,88185
	Uso do solo							
74	Área das lavouras permanentes/área total dos estabelecimentos							0,55523
75	Área das lavouras temporárias/área total dos estabelecimentos				0,30	0,59		0,95795
76	Área das pastagens naturais/área total dos estabelecimentos							0,88329
77	Área das pastagens plantadas/área total dos estabelecimentos							0,57986
78	Área das matas e florestas naturais/área total dos							
70	estabelecimentos							0,71749
79	Área das matas e florestas plantadas/área total dos							
1)	estabelecimentos							0,47977
80	Área das terras produtivas não-utilizadas/área total							
UU	dos estabelecimentos			-0.32				0,54226
81	Área colhida de café/área total dos estabelecimentos			,				0,63500
82	Área colhida de algodão em caroço/área total dos							,
02	estabelecimentos							0,26455

(Quadro 1 - Continuação)

	Variáveis -			Fator	res			– Communalitie
	v ariaveis	1	2	3	4	5	6	– Communaiitie.
x ₈₃	Área colhida de arroz em casca/área total dos							0,56819
	estabelecimentos							0,50019
X ₈₄	Área colhida de cana-de-açúcar/área total dos	0.38						0,71563
.,	estabelecimentos	0,36						0,71303
X ₈₅	Área colhida do feijão em grão/área total dos							0.67530
v	estabelecimentos				0,74			0,73849
^X 86	Área colhida de mandioca/área total dos estabelecimentos			0,39	0,74			0,88162
^X 87	Área colhida de milho em grão/área total dos estabelecimentos			0,59		0.90		0,92183
88	Área colhida de soja em grão/área total dos estabelecimentos Área colhida de trigo em grão/área total dos estabelecimentos					0,90		0,87584
K89	Quantidade colhida de café/área colhida de café					0,50		0,20136
×90	Quantidade colhida de algodão em caroço/área colhida de							0,20130
x ₉₁	algodão em caroço	0,56						0,65264
v	Quantidade colhida de arroz em casca/área colhida de	0,50						0,00201
x_{92}	arroz em casca			0,38				0,45236
v	Quantidade colhida de cana-de-açúcar/área colhida			0,50				0,10200
X ₉₃	de cana-de-açúcar	0,32						0,53229
V	Quantidade colhida de feijão em grão/área colhida de	0,32						0,002
X ₉₄	feijão em grão		0,47					0,59209
X ₉₅	Quantidade colhida de mandioca/área colhida de mandioca	-0.39	0,					0,57468
195 Yar	Quantidade colhida de milho em grão/área colhida de	0,00						-,
X ₉₆	milho em grão	0.47	0,33	0,57				0,79782
X ₉₇	Quantidade colhida de soja em grão/área colhida de	0,.,	0,00	0,0.				-,
~97	soja em grão	0,41		0,62				0,76277
X ₉₈	Quantidade colhida de trigo em grão/área colhida de	-,		-,				
-98	trigo em grão			0,42				0,49731
X99	Efetivos de bovinos/área de pastagens naturais e			•				
77	plantadas		0,30	0,33	0,49			0,62525
x ₁₀₀			•	•	0,62			0,71026

Quadro 2 Média, desvio-padrão e coeficiente de variação das variáveis da análise fatorial

Indicador	Média	Desvio-padrão	Coeficiente de variação
\mathbf{x}_1	69,0607	25,7261	0,3725
X2	104,7409	175,7938	1,6784
X2	0,7402	0,1148	0,1558
X_4^3	0,4368	0,2445	0,5598
X_5^7	0,4208	0,1817	0,4318
X ₅ X ₆ X ₇ X ₈	0,2101	0,1380	0,6568
X ₇	0,0765	0,1606	2,0993
Xo	23,7204	42.2361	1,7806
Xo	2,8655	4,8547	1,6942
X ₁₀	53,8344	57,4528	1,0672
X ₁₁	230,1255	551,9392	2,3984
\mathbf{x}_{12}^{11}	6,7793	7,0800	1,0444
X ₁₃	0,4146	0,3244	0,7824
X ₁₄	0,0994	0,1664	1,6740
X14 X14	0,0064	0,0130	2,0313
X ₁₅ X ₁₆	0,4470	0,5518	1,2345
X16 Y	0,0582	0,0698	1,1993
X17	0,0382	0,0352	1,6682
X18	0,00211	0.0026	1,2381
X19	2,8944	5,4525	1,8838
\mathbf{x}_{20}^{1}		0,6245	
X ₂₁	0,2940	•	2,1241
A22	0,7096	1,2929	1,8220
X_{23}^{22}	0,0725	0,1093	1,5076
x_{24}^{23}	0,9563	1,7667	1,8474
X ₂₅	0,0452	0,0653	1,4447
X26	2,4955	2,5976	1,0409
X27	0,1580	0,1973	1,2487
X28	0,2665	0,2844	1,0672
X29	2,9214	0,4607	2,2115
X30	32.6624	39,7692	1,2176
X ₃₁	0,2327	0,2881	1,2381
Xaa	0,4360	0,7837	1,7975
X_{33}	0,0958	0,1432	1,4948
X24	0,3289	0,7096	2,1575
X25	0,6785	0,2277	0,3356
A36	0,0918	0,1140	1,2418
X27	0,0545	0,0755	1,3853
X ₃₈	0,1750	0,1916	1,0949
Χąq	0,8720	0,1283	0,1471
XAO	0,0426	0,0528	1,2394
X41	0,0152	0,0213	1,4013
X_{A2}	0,0686	0,1176	1,7143
X43	4,3597	1,1403	0,2616
X_{AA}	0,3394	0,0922	0,2717
X15	0,2009	0,0764	0,3803
X46	0,7624	0,1746	0,2290
X47	0,1041	0,1139	1,0941
X_{AB}	0,0927	0,0636	0,6861
X49	0,0316	0,0580	1,8354
X ₅₀	0,7778	0,1632	0,2098
30_		- ,	(Cantinua)

(Quadro 2 - Continuação)

Indicador	Média	Desvio-padrão	Coeficiente de variação
X ₅₁	0,6764	0,1172	0,1733
2557	4,4543	5,9757	1,3416
X53	0,5397	0,9729	1,8027
X54	0,0181	0,0321	1,7735
X ₅₄ X ₅₅	1,3266	1,9126	1,4417
X ₅₆	429,3900	540,1484	1,2579
X57	6,8861	13,1619	1,9114
X58	305,2058	417,1917	1,3669
X59	4,8423	10,3313	2,1336
x_{60}^{50}	37,9456	40,0533	1,0555
x ₆₁	0,7131	0.9065	1,2712
X_{62}	21,1073	26,7436	1,2670
X63	0,3574	0,5040	1,4102
X ₆₄	9,4629	10,9487	1,1570
X ₆₅	0,1376	0,1365	0,9920
X ₆₆	1,6787	2,4484	1,4585
X67	0,0234	0,0345	1,4744
X68	0,2755	0,1236	0,4486
X69	0,1651	0,1315	0,7965
X70	10,7186	14,2881	1,3330
X ₇₁	0,1595	0,1922	1,2050
X_{72}^{11}	36,4005	40,4440	1,1111
X ₇₃	0,6781	0.9141	1,3480
X74	0.0482	0,0658	1,3651
X ₇₅	0,1386	0,1288	0,9293
X ₇₆	0,3327	0,2214	0,6655
X ₇₇	0,1074	0,1440	1,3408
X ₇₈	0.1830	0,1705	0,9317
X ₇₉	0,0135	0,0303	2,2444
X ₈₀	0,1164	0,1150	0,9880
X ₈₁	0,0091	0,0280	3,0769
X82	0,0045	0,0139	3,0889
X83	0,0170	0,0208	1,2235
X84	0,0140	0,0489	3,4929
x_{85}^{64}	0,0183	0,0258	1,4098
Xoc	0,0090	0,0188	2,0889
X87	0,0455	0,0506	1,1121
X88	0,0213	0,0830	3,8967
Xeo	0,0083	0,0430	5,1807
X_{90}	2,6128	15,0353	5,7545
Xq1	0,3480	0,5087	1,4618
X_{92}	1,1173	0,6439	0,5763
Xgχ	21,5150	15,1423	0,7038
X _{Q4}	0,4505	0,2181	0,4841
Xqs	7,4157	3,6872	0,4972
Xos	1,0721	0,6065	0,5657
X97	0,5666	0,7773	1,3719
Xqg	0,1297	0,3511	2,7070
X99	0,8354	0,6091	0,7291
X_{100}	14,8386	16,2864	1,0976

36

Quadro 3
Escores dos fatores por microrregião homogênea (MRH)
Brasil, 1975

MRH	F_{l}	F_2	$F_{\mathcal{J}}$	F4	F_5	F_6
1	-0,62140	0,15818	-0,47259	-1,48148	-0,03325	-0,39835
2	-0,80689	0,10544	0,50805	-1,79984	-0,50785	-0,29068
3	-0,74401	-0,03754	-0,09095	-2,23835	-0,15958	0,3219
4	-0,17810	0,62428	0,37487	4,71048	-0,96024	-0,2086
5	-0,88622	0,04399	0,44456	-0,67195	-0,10107	0,2522
6	-0,73375	-0,13971	0,16718	-0,37265	0,53642	-0,0032
7	-0,38267	-0,11024	-0,59371	-0,26846	-1,00048	-0,2386
8	0,18374	-0,24653	-0,22126	5.71155	-1,35498	-0,64313
9	-0,45104	-0.06725	-0,51959	-0,45002	-0,45072	-0,7589
10	-0,40265	0,15867	-1,02152	-0,80306	-1,18794	-1,06140
11	-0,49365	-0,53519	0,49388	0,32662	0,25310	2,8879
12	-0,67263	0,02126	-0.74769	-1,71513	-0,02247	-0,3025
13	-0,44762	-0.05467	0,17271	0,64809	0,37694	-0,3540
14	-0,17717	-0,36079	-0,62078	-0.87324	-0,28419	0,3410
15	-1,02153	-0,19367	-0.11037	-1,13364	0,11738	4,9604
16	-0,45092	-0,20923	-0,67766	-0.82833	-0,15681	-0,8636
17	-3,34925	1,99608	-2,70491	-15,78509	-0,19081	7,0834
18	-0,75866	-0,14409	-0,66973	-0,29449	0,05657	-0,2129
19	-0,29107	-0.42115	-0,57140	-0,65185	-0,24770	0,5750
20	-0,00685	-0,65681	-0.64621	-0,28390	0,46638	0,8800
21	-0,57428	0,13185	-0,90198	-1,46663	-0.07643	-0,3915
22	-0,47156	-0,23988	-0.62609	-0,23242	-0.09644	-0.2175
23	-0,47916	-0.02480	-1,05137	1,17382	-0.13299	-0,7151
24	-0,63065	0,03120	-0.72668	0,13243	-0.18480	-0,4686
25	-0.07357	-0,00195	-1,35376	4,89964	1,43298	0,52986
26	-0,34953	-0,14813	-0,64733	-0,18266	-0,16465	-0,4694
27	-0,29343	-0,04590	-0,93595	-1,51735	-0,17777	-0,4824
28	0,04030	-0,64222	-1,29031	-1,18694	-0,10101	0,9620
29	-0,19577	-0,55342	-0,73345	1,08561	-0,28218	-0,2835

37

(Quadro 3 - Continuação)

MRH	F_1	F_2	$F_{\mathcal{J}}$	F_{4}	F_5	F_6
30	-0,23907	-0,73744	-0,34737	3,70430	-0,14874	-0,35363
31	-0,05229	-0.95776	0,33632	6,40928	0,91729	0,52894
32	-0,02734	-0,73575	-0,37828	4,59825	0,27707	-0,19828
33	-0,51875	-0,36506	-0,83649	0,68677	-0,15076	-0.18478
34	-0,44889	-0,26180	-0,77426	0,34182	0,14227	-0.31761
35	-0,26714	-0,34235	-0,80021	0,93785	-0,22116	-0,53451
36	-0,52619	-0,36295	-0,57009	0,94867	-0,08702	-0,23899
37	-0,62104	-0,19268	-0,66584	0,12566	-0,05836	-0,21501
38	-0,58619	-0,05210	-0,92730	-1,49889	0,01995	-0,09284
39	-0,72377	-0,05141	-0,80587	-1,54450	0,28039	0,09249
40	-0,39405	-0,43326	-0,51527	1,00935	0,41430	-0.32738
41	-0,50146	-0,32899	-0,59758	0,23056	0,08377	-0,42744
42	-0,45449	-0,40324	-0,35773	0,31875	0,03223	-0,37195
43	-0,43090	-0,39665	-0,76745	-0,38830	0,05656	-0,58316
44	-0,59946	-0,15954	-0,88692	-1,00035	-0,34009	-0.50615
45	-0,67017	-0,41901	-0,90970	0,13507	0,17383	0,01702
46	-0,79650	-0,40636	-0,94689	-0,41377	0,30318	0,22759
47	-0,53238	-0,39803	-1,08891	-0.81428	-0.02454	-0.45595
48	-0,49877	-0,38681	-0.84674	-0.17729	-0.08037	-0,54004
49	-0,85374	-0,43377	-0,69784	-0.59744	0,24652	0,10602
50	-0,82186	-0,34299	-0,03644	-0.50973	0,28365	0,15614
51	-0,92286	-0,46598	-0,01867	-0.86286	0,08825	0.00517
52	-0,24116	0,71530	-0,47754	0,86204	0,10568	0,10923
53	-0,64608	-0,22074	-0.82201	-1,39162	0,24214	0,20081
54	-0,69101	-0,25834	-0,11842	-0.42722	-0,18515	-0,34514
55	-0,90565	0,02446	-0,70327	-2,75562	-0.26286	0,35634
56	-0,54686	-0,38303	-0.89571	-0.53121	-0,28525	-0,58799
57	-0.46415	-0,40450	-0.91102	-0.68925	-0.23358	-0,37797
58	-0.61259	-0,44486	-1,07216	-0.73684	-0.09371	-0,14522

.B.E. 1/88

(Quadro 3 - Continuação)

MRH	F_{1}	F_2	$F_{\mathcal{J}}$	F_{4}	F_5	F_6
59	-0,10879	-0,24392	-1,12544	1,31599	0,16851	-0,85062
60	-0,41252	-0,40214	-1,01333	0,10809	0,07313	-0,36680
61	-0,51720	-0,46536	-0,07003	0.02247	-0.07151	-0,32757
62	-0.30757	-0.15678	-1.00256	0.00722	-0.79369	-0,80326
63	-0.82695	-0,33230	-0.89478	-0.88038	-0,02888	0,09574
64	-0,66499	-0.59871	-0,67292	-0.15756	0,21229	0,06266
65	-0.34932	-0,36847	-0.78002	-0.38161	-0.10368	-0,28560
66	-0.62160	-0,37494	-0.39237	0,22069	-0.26467	-0,64148
67	-0,49810	-0,45697	-0,75800	-0,38708	-0,25414	-0,43833
68	-0,33836	-0,60959	-1,09646	-1,04100	-0,23665	-0,16589
69	-0,31454	-0.75334	-0,55740	-0.01738	-0,00479	-0,55175
70	-0,24109	-0,64446	-0,41677	0,01013	-0,36399	-0.73259
71	-0,62067	-0,64853	-0,39236	-0.14458	0,15527	0,12794
72	-0,36640	-0.63441	-0,83565	-0,68458	-0.02230	-0,56604
73	-0,33793	-0,51862	-0,77391	-0,27107	-0,18682	-0,53300
74	-0,46163	-0.36003	-0,62748	-0,38277	-0,37752	-0,53075
75	-0,45348	-0,43741	-0,81045	-0,31002	-0,12681	-0,39981
76	-0,56117	-0,35483	-0,24084	-0,44688	-0,32439	-0,25711
77	-0,58201	-0,51913	-0,42501	-0,15678	0,36061	-0,06604
78	-0,49612	-0,39924	-0,60784	0,27267	0,04142	-0,03156
79	-0,14265	-0,69347	-0,53767	-0,00951	0,44678	-0,31918
80	-0,14776	-0,55759	-0,95462	0,59561	-0,34561	-0,72696
81	-0,59098	-0,42617	-0,82227	-0,91691	-0,03449	-0,28762
82	-0,66340	-0,46502	-0,87878	-0,78738	-0,08481	0,01386
83	-0,49071	-0,22609	-0,93276	-0,89229	-0,28060	-0,25505
84	-0,55588	-0,18967	-1,04558	1,21380	0,75867	-0,00875
85	-0,62820	-0,37978	-0,97273	-0,62981	-0,18641	-0,12720
86	-0,58531	-0,35277	-0,64874	-0,74499	-0,42698	-0,21197
87	-0.58052	-0.38639	-0,83074	-0.31537	-0.02009	-0.05118

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_{4}	F_5	F_6
88	-0,06567	-0,37688	-0,74093	1,13190	0,10826	-0,08991
89	-0,49037	-0,69613	1,30334	0,66495	-0,07160	0,07038
90	-0.87709	-0,21841	0,31738	-0,17939	0,19007	-0,05196
91	-0,66395	-0,27066	-0,49744	0,54098	0,06629	0,03082
92	-0,52440	-0,28628	-0,41130	1,83689	-0,11440	-0.05242
93	-0.53947	0,21770	-0.85379	1,23694	0,17997	-0,13824
94	-0,62259	-0,33406	-0,49096	-0,32735	-0,04817	-0,25696
95	-0.83430	-0,30707	0,16806	-0,75870	-0,10209	0,19059
96	-0.64952	-0,45867	-0.08072	0,28504	-0.07296	-0.29303
97	-0,55663	-0,14414	-0.49120	1,80039	0,03184	-0,0649
98	-0,39594	-0,13387	-0.70395	2,60703	-0.18482	-0.17893
99	-0.32336	0,43061	-0,58111	1,61261	-0,25366	0,1266
100	-0.70161	-0,30819	-0.67053	0,31344	-0,53999	-0.11342
101	-0,63499	-0,33275	-0.65843	-0,90879	0,29466	-0,07603
102	-0,55729	-0,34364	-0.46100	-0,60304	-0.11071	-0.3964
103	-0,73888	-0,34377	-0.30286	-0,62950	0,08097	0,04363
104	-0,53948	-0.41659	-0.42178	0,31699	-0.73844	-0,19030
105	-0,55800	-0,49209	-0.22389	0,16908	-0,42911	-0.51840
106	-0,47027	-0,26663	-0.06112	0,58786	-0,43877	-0,32042
107	-0,19775	-0,22920	-0.32231	4,39830	-0.05808	0,25272
108	-0,27849	-0,27691	-0,58664	1,64121	-0,23606	-0,20216
109	-0,43205	-0,07687	-0,61884	1,91826	-0.16550	-0,18056
110	-0,17099	0,81127	-1,11530	0,21295	0,88927	-0,04859
111	-0,12561	0,70616	-0,83622	0,88254	0,45528	0,00366
112	0,91154	-0,07401	-1,32927	0,34871	0,00593	-0,56233
113	-0,57897	-0,50345	-0,39701	1,46625	-0,19902	-0,12770
114	-0,55899	-0,35701	0,17870	0,69357	0,00934	-0,08293
115	-0,47149	-0,22742	-0,48750	1,55024	-0,24865	-0,32807
116	0,26050	0,44756	-1,16586	-0,77276	0,03341	-0.45093

<.B.E. 1/80

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_4	F_5	F_6
117	0,71231	-0,29246	-1,14331	0,09414	-0,24527	-0,51705
118	-0,45055	0,32161	-1,20433	1,08329	0,44300	-0,21408
119	2,70836	-0,48934	-1,97459	1,16656	0,52500	-1,24448
120	2,56024	1,14037	-1,68302	0,34705	-0,65979	-0,11589
121	-0,42482	-0,00532	-0,97920	1,18867	-0,15862	-0,39234
123	-0,77359	-0,31049	-0,16655	-0,14369	-0,06917	-0,14214
124	-0,40797	0,06383	-0,82556	0,75055	-0,40865	-0,49771
125	-0,56359	-0,24416	-0,70701	0,97273	-0,52645	-0,50918
126	-0,30953	-0,27195	-0,43329	1,16129	0,08148	-0,46466
127	-0,35049	0,14454	-0,45139	4,38258	-0,51442	-0,33130
128	-0,50877	-0,26473	-0,28188	2,42364	0,11553	-0,27528
129	-0,34391	-0,36519	-0,67769	1,31417	-0,15263	-0,50510
130	-0,62987	-0,06443	-0,46589	0,43686	-0,30720	-0,03278
131	-0,47097	-0,28157	-0.63327	-0,31370	-0,09843	-0,41790
132	-0,37868	-0,36525	-0,81708	-0,36178	-0,38219	-0,79480
133	-0,47885	-0,47114	-0,38751	0,93712	-0,15392	-0,56851
134	-0,46564	-0,61469	0,08336	0,29129	0,13639	-0,28814
135	-0,94486	-0,53170	0,68559	-0,91750	1,77456	0,96249
136	-0,56613	-0,29421	-0,42713	0,32603	-0,42803	-0,40655
137	-0,57393	-0,25848	0,00124	-0,60712	-0,46462	-0,74814
138	-0,49500	-0,21733	-0,90681	-0,10316	-0,29214	-0,39294
139	-0,32537	-0,28096	-0,74766	-0,12330	-0,08905	-0,61275
140	-0,36601	-0,34980	-0,66285	1,58861	-0,43578	-0,66379
141	-0,67494	-0,27092	-0,61437	0,54369	-0,20747	-0,31046
142	-0,69194	-0.16112	-0.03365	-0,47999	-0,28913	-0,53478
143	-0,68660	0,04861	-0.65210	0,28260	-0,33534	-0,36099
144	-0,25345	-0,18739	-0,61066	0,41345	-0,19932	-0.82750
145	-0,07914	-0,42413	-0.92236	0,06394	0,07984	-1,29581
146	0,18310	0,03383	-0,97025	-0,89342	-0,06159	0,80253
						(Continua)

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	F_3	F_4	F_5	F_6
147	-0,53995	-0,32754	-0,25189	0,64605	-0,21453	-0,45898
148	-0,63695	-0,27339	-0,54042	1,14819	-0,40855	-0,37214
149	-0,43627	-0,23285	-0,34833	0,49884	-0,25010	-0,70713
150	-0,21835	0,10156	-0,30980	1,75561	-0,06865	-0,53723
151	-0.48100	0,17844	-0,55923	1,45166	-0.01689	-0,29475
152	-0.51939	0,02125	-1,29691	-0,45190	0,18852	0,05396
153	0,41228	-0,30830	-1,77176	-1,14037	-0,42110	0,17250
154	0,12514	0,35972	-1,39177	0,01803	-0,45204	-0,13742
155	-0.05974	-0,29045	-0,89829	-0,17670	1,30818	0,56638
156	0,03607	-0,20190	-0,98856	0,04385	-0,31789	-0,86263
157	-0,14728	-0,28845	-0,68168	-0,19754	-0,02594	-0,69469
158	-0,18185	-0,58853	-0,12554	-0,89951	-0,23416	-0,75936
159	-0,35023	-0,50632	-0,03375	0,56676	-0,19786	-0,85298
160	0,41063	-0,48398	0,43831	0,00790	-0,31824	1,11177
161	1,35272	-0,51071	-0,38849	1,43633	-0,24910	2,34939
162	-0.05505	-0,26632	-0,31601	-1,03611	-0,51024	-0,09689
163	0,54567	0,11451	-0,82045	-1,36603	-0,28640	-0,31092
164	0,01459	-0,40856	-1,22720	-0,58029	∸0,26973	-1,05158
165	-0,21594	-0,08918	-0,83782	-0,92175	~ 0,55619	0,85677
166	-0,29292	-0,19292	1,08192	-1,88786	-0,30085	1,15070
167	-0,38350	-0.31927	-0,49369	0,40161	-0,19383	-0,37367
168	-0,43628	-0,25333	-0,37272	0,08888	0,06991	-0,34978
169	0,30941	-0,19998	-0,99211	-0,45246	0,00089	0,19475
170	1,81957	-0,34087	0,16328	-0,51306	-0,54407	0,03277
171	0,58421	-0,54623	0,52221	-0,37686	0,38206	0,08243
172	-0,13028	-0,22002	0,75635	-0,36109	0,15554	0,01303
173	0,02263	-0,46590	0,99897	-1,40379	-0,05994	0,94879
174	-0,42410	-0,35604	0,40438	-0,57130	-0,06588	0,05238
175	-0,27028	0,48510	-0.20922	0,77437	-0.28100	0.06721

B.E. 1/88

(Quadro 3 - Continuação)

MRH	F_{1}	F_2	$F_{\mathcal{J}}$	$F_{\mathcal{A}}$	F_5	F_6
176	-0,28501	0,16852	-0,44641	0,80661	0,16616	-0,76836
177	1,45865	-1,64368	0,41705	-0,44696	-0,45582	0,03747
178	1,11291	-0,06047	-0,06741	-1,71284	-0,08787	0,60432
179	0,43141	-0,35502	0,38196	-0,77843	-0,13985	0,52790
180	-0,23749	-0,33925	0,86855	-0,82858	-0,14226	0,04922
181	-0,27111	-0,39149	1,63648	0,23931	0,03603	0,23506
182	0,08811	0,22935	0,64709	0,37709	-0,18306	-0,15364
183	0,16535	-0,25345	0,24878	0,64056	-0,50472	-0,89347
184	-0,49146	0,10585	-0,37296	-0,81355	-0,27296	-0,35274
185	-0,17963	-0,18591	-0,00472	-0,01349	-0,27561	-0,27024
186	-0,17363	-0,06617	1,00191	0,29820	-0,20537	-0,83786
187	-0,69316	0,07459	0,53924	-0,27088	-0,39585	-0,09703
188	-0,45979	-0,05092	0,33402	-0,08267	0,02979	-0,18507
189	-0,43702	-0,00919	-0,15416	-0,08559	0,13707	0,00556
190	0,75913	-0,00316	0,23179	0,47457	-0,00416	-0,60626
191	-0,38620	-0,18805	1,05113	-0,11594	0,06472	-0,09753
192	-0,74288	-0,01831	0,52658	-0,15470	-0,02532	0,15902
193	-0,35212	-0,03614	0,58195	0,17100	0,27584	-0,06754
194	0,26620	0,21364	0,25766	0,22667	-0,30079	-0,47858
195	-0,57117	-0,16995	0,80934	-0,32153	-0,26975	-0,24387
196	-0,61432	-0,00262	1,16336	-0,18535	-0,18905	0,08133
197	0,04098	0,51399	0,12856	-0,51322	-0,41483	-0,27172
198	0,04203	0,07605	0,41353	0,30563	-0,17538	-0,46411
199	-0,10279	-0,40011	0,52875	-0,28272	-0,55780	-0,51767
200	-0,12818	-0,46902	1,05993	-0,11598	-0,45872	-0,23524
201	-0.06982	-0,22500	1,17143	-0,46183	-0,65492	-0,05919
202	-0,10305	0,28440	-0,07445	0,16100	-0,66277	-0,64679
203	-0,02736	0,31989	-0,80308	-0,01406	0,17588	0,54540
204	-0,28288	0,19321	-0,38249	-0,41669	0,07271	0,00417

ಏ

(Quadro 3 - Continuação)

MRH	F_{1}	F_2	$F_{\mathcal{J}}$	F_4	F_5	F_6
205	-0,17081	0,35119	-0,99063	-0,78403	-0,07102	0,20246
206	-0,33694	0,23492	-0,21879	-0,72940	-0,22007	-0,27460
207	0,18388	-0,15950	-0,99375	0,91541	-0,52677	-0,53210
208	-0.30418	0,12642	-0,56109	-0,32431	0,38425	-0,08599
209	-0.03757	0,11329	-0,20152	0,12619	0,24024	-0,22235
210	0,10123	0,37237	-0,64767	0,29464	0,04861	-0,50676
211	0,00580	0,19204	-0.19561	-0.62581	-0,39729	-0,28885
212	-0.87931	0,07603	-0.07412	-0,94082	-0,36087	0,53432
213	0,81038	0,26946	-0.82540	0,51241	0,21471	-0,65670
214	-0,59280	0,12381	0,53270	-0,30190	0,15039	0,21067
215	0,28987	-0.46186	0,76153	0,71892	-0,14446	-0,16747
216	-0.03975	-0,29332	-0,35536	-0,15874	-0.03004	-0.32414
217	1.29755	-0.30257	0,47999	-0.26746	-0.67698	-0,26301
218	-0.43770	0,72351	-1,16607	-0.56041	0,12227	-0.08421
219	0,30601	-0.25493	0,09048	-0,27197	-0,40448	-0,19378
220	-0.08955	0,10627	0,71412	0,51626	-0.03643	-0,47165
221	-0,54543	1,09827	-0.76177	1,08543	-0,35673	0,12332
222	0,05516	0,42624	-1,23121	1,19412	-0.15422	0,14530
223	-0.32192	-0.52796	-1,13185	-0,48690	-0.18549	-0,27421
224	-1,61955	15,29377	-2.09947	-1,46800	-1,55983	0,90597
225	-0,38476	0,09001	2,53111	-0,21637	-0.92858	0,25247
226	-0.08934	-0.04471	2,68354	0,02388	-0.86017	0,02506
227	1,63932	0,46360	0,89780	-1,51770	-0.85453	0,02027
228	4,37902	-0,32754	-0.48897	-0,51459	-0,48786	-1,48071
229	4,63435	-0,55756	-0.48861	-0,50008	1,10986	-1,66727
230	2,11986	0,03995	-0.50412	-0,87983	0,03369	-0,28902
231	1,40961	-0,00357	2,02640	-0.13255	-1,12554	0,19234
232	-0,10261	0,02314	2,23221	-0,35905	-0.53700	0,01611
233	-0,04273	-0.12690	2,66153	0,14480	-0.87301	-0.34744

R.B.E. 1/88

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_4	F_5	F_{6}
234	0,11375	0,27143	1,71976	-0,54986	-0,98355	-0,06069
235	1,53462	0,13815	2,12570	0,18065	-0,84892	-0,86767
236	3,10342	0,86622	-0,12979	0,74645	0,15334	-1,27048
237	6,48020	-0.48263	-0,41685	0,73792	-0.71348	-1,30940
238	2,65911	-0,09446	0,88863	-0,42875	-0,68027	0,24665
239	-0,17828	0,27635	1,85607	0,42027	-0,77216	-0,00438
240	0,34671	0,19385	1,42803	-0,90666	-0,59307	-0,00445
241	2,62202	-0.24049	0,89420	-0,66328	-0.91901	-0,05610
242	4.43099	-1,18944	1,42738	2,28257	-0.83112	-1,32446
243	3,38564	0,37875	0,25139	0,22417	-0,40480	-1,22284
244	1,92208	0,49215	0,09574	0,43018	-0,85706	-0,91806
245	2,41099	-0,06226	1,23261	0,64573	-0,66422	-1,04430
246	3,55612	0,14683	0,55005	-0,30304	-0,59607	-0,31753
247	2,36546	0,12838	0,55686	-0,04068	-0,40875	-0,12719
248	2,69395	2,94399	-0,44935	0,24232	-0,26993	0,01504
249	0,95023	1,04856	0,03337	0,83929	0,03214	-0,22440
250	0,33715	-0,17777	2,37039	-0,35538	-0,54673	0,01200
251	2,14439	0,09278	-0,14167	-0,03006	1,39018	-0,78956
252	1,54593	-0,11497	0,91331	-0,01714	-0,46938	-1,17579
253	1,54692	-0.12412	1,00775	-0,49962	-0,35203	-0,31043
254	3,38531	0,92183	0,76307	0,24634	-0,28364	-0,67903
255	0,60359	0,96634	1,19571	-0,26716	-0,67463	-0,44686
256	1,52473	1,73929	-0,03389	-0,16223	-1,10000	-0,18538
257	0,82438	4,61115	0,54491	-0,15795	-1,28478	0,36496
258	0,40969	1,45046	-0,05347	-0,63098	-0.80795	-0,52244
259	1,61312	0,41886	0,34358	0,42074	-0,71202	-0,58225
260	0,08503	0,04378	0,93846	-1,05603	-0,27375	-0,57046
261	0,04282	0,38645	0,42691	-0,74650	-0,32978	-0,34347
262	1,09754	5,58828	-0.81858	0,13760	-0.71994	0,22923

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_{4}	F_5	F_6
263	-0,22021	-0,03051	0,08880	-0,59149	-0,11699	0,07362
264	-0,35319	-0,26861	-0.02946	-0.37945	-0.40472	-0,59735
265	0,01846	0,18537	-1,01052	-1,12892	0,04582	-0,42079
266	0,13281	0,95892	-1,28658	-0,82392	-0,66556	-0,61981
267	0,51171	-0,25658	-0,37612	0,63265	-0.25362	-0,66064
268	-0,49002	0,25114	1,00208	-0,24672	-0.01066	-0.05627
269	-0,11008	0,32391	-1,43793	-0.93407	0,08001	0,80872
270	-0,68570	-0,31282	-0,23176	-0.21534	-0.06527	-0.18370
271	-0,60982	0,08595	1,26979	-0.41146	-0.21530	0,15936
272	-0,05054	0,08564	1,59815	-0.53262	0.63944	-0.13935
273	1,52682	-0.59742	0,14049	0.11218	0.31329	-0,49688
274	-0.07198	-0,24758	1,05983	-0.86919	0,29237	0,58623
275	-0,79374	-0,24843	1,50883	-1,28354	-0.70097	-0,22453
276	-0,72067	-0,04931	0,89797	-1.25446	-0.35913	-0.37102
277	-0,16152	-0,26984	-0.01547	0,03528	-0.76621	-0,64456
278	-0,40894	0,07369	0,70926	-0.39925	-0,56065	0,04238
279	0,58845	0,94482	0,76959	-0.92099	0,82789	-0.11115
280	0,24115	0,81292	0,89733	0,56811	1,13916	-0,43562
281	1,88340	1,25975	0,02631	1,78334	0,20841	-0,98605
282	-0,08760	1,51443	-0,68646	-0,21533	2,75063	0,06841
283	0,53112	0,63913	-0,10541	-0.30693	-1,01183	0,18885
284	-0,91023	0,31499	-0,44310	-0.03214	-0.03130	0,45759
285	-0,54870	0,50665	0,34727	0,34894	-0,34404	0,27465
286	-0,17395	0,42315	-0.03625	-0,07419	1,81623	0,10376
287	-0,09279	-0,11468	-0,30343	-0,55819	-1,00432	-0,54116
288	-0,37586	0,97612	-0,31125	-0,00475	3,29866	0,47020
289	-0,24801	0,17478	1,31284	0,72335	0,50128	-0,26831
290	0,11635	0,24856	1,03499	-0,71837	0,34034	-0,22356
291	-0,51533	-0,00285	1,03899	-0,66949	0,06529	0,00933

.B.E. 1/88

(Quadro 3 - Continuação)

MRH	F_1	F_2	$F_{\mathcal{J}}$	F ₄	F_5	F_6
292	-0,85955	0,60603	2,14699	1,33170	-0,86455	-0,43600
293	-0,71372	0,95952	0,85267	-0.84198	-0.16153	0,13722
294	-1,03625	0,66530	2,00506	0,99606	-0,98684	-0,17358
295	-0,74510	0,49587	2,26253	0,30862	-1,11985	-0,17788
296	-0,78658	0,52060	2,27410	0,61398	-0,94045	-0,11965
297	-0,35825	0,66858	1,01732	1,69595	-0,73847	-0,38369
298	-0,74506	0,19018	1,09639	-0,41895	-0,77144	-0,19387
299	-0,71621	0,42136	0,59209	2,03333	-0,48643	-0,41772
300	-0,86938	0,54777	2,31057	-0,21258	-0,77620	-0,08951
301	-0,77908	0,39686	2,44420	1,64604	-0,38625	-0,18614
302	0,01443	-0,18826	2,43407	3.46728	-0,78069	-1,29346
303	-0,45053	0,04478	0,58804	-0,74713	-0,17180	0,63117
304	-0,35928	-0,06500	0,72563	-0,64775	-0,08352	-0,11833
305	-0,16925	-0,10419	2,65496	0,66679	0,25502	-0,31466
306	-0,57182	0,22635	1,98730	0,71219	0,63479	0,29355
307	-0,45720	0,02795	1,27424	-1,43246	-0,36078	-0,13159
308	0,10668	0,62041	1,87878	0,10368	0,05115	-0,47981
309	-1,14122	0,61789	2,74231	1,02276	-0,13969	0,37340
310	-0,59560	0,01177	1,60145	0,72446	-0,54908	-0,20882
311	-0,99656	0,54282	2,60008	0,94307	-0,08320	0,02634
312	0,60464	0,26095	2,09127	0,03831	0,30435	-0,21995
313	-1,47328	0,75034	3,27320	0,71269	1,53242	0,65271
314	-1,04494	0,62204	2,83785	-0,53303	0,44124	0,56819
315	-0,20397	-0,25194	2,69495	-0,10065	0,48091	-0,30436
316	-0,50955	-0.22348	2,37286	0,01103	0,90078	-0,10932
317	-0,53883	-0,21971	2,04842	-0,37445	0,07354	0,03331
318	-0,40052	-0,02396	2,57287	-1,13389	-0,37612	0,54656
319	2.47390	-0,96952	0,98006	-0,30491	-0,21436	-0,29590
320	-0,37300	-0,49196	1.89963	-0,76073	-0,07826	0,01976

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_4	F_5	F_6
321	2.85636	-1,19457	0,63307	0,50287	0,07161	0,18505
322	1,91855	-0,77931	0,89853	-0,20485	2,47584	-0,92540
323	0,31538	0,13294	0,69004	-0.98773	4,67701	-0,27036
324	-1,23117	1,07304	1.64373	0,43433	5,02169	0,78586
325	-1,06234	0,47252	1,51662	0,51831	3,45168	0,53707
326	-0,47528	0,33664	1,80539	-0,26034	2,04771	-0,02244
327	0,47378	0,87371	1,12668	-0,38991	7,92279	-0,39587
328	0,50803	0,48326	0,66056	0,17062	6,35303	-0,49979
329	1,43588	1,55550	-0.65124	0,38437	9,74727	-0,08331
330	-0,45500	0,08036	1,26713	-0,58954	2,04872	0,10078
331	-0,14767	-0,27122	1,09842	-0,43165	-0.00561	0,16483
332	0,03013	0,13605	-0.84926	-1,48415	0,58781	5,60573
333	-0,66185	-0,43296	0,83712	0,29234	0,37964	0,94072
334	-0,40365	-0,25066	-0,7444	-0.77050	0,17594	0,40781
335	-0.36210	-0.32716	0,20857	0,93297	0,34506	1,26464
336	-0,04521	-0,28470	-0,10890	-0,09514	-0,19002	0,29115
337	-0,24548	-0,13324	-0.67558	-0,45536	0,07787	1,10378
338	0,97367	-0,13090	0,58081	2,31820	-1,20057	10,41607
339	0,65301	-0.21808	-0.57953	-0.52708	0.08998	2,44449
340	0,81490	-0,60394	-0.80461	0,73674	0,46028	0,46085
341	1,44182	-0,59733	-0.16130	1,29754	0,03518	2,98903
342	2,82402	-0.56234	-1.07668	0,00199	-0.22475	3,69101
343	2,17864	-0,43897	-0.34194	0,21046	-0.23671	7,65973
344	0,21762	-0,21413	0,81133	0,38254	0,19113	0,61061
345	-0,27020	-0,21978	-0,76140	-0,58853	-0,13108	-0,04440
346	-0,10896	-0,36184	-0,84516	-0,98481	-0,07374	0,76463
347	-0,41037	-0,59670	-0,16025	-0,46394	0,17046	0,42496
348	-0,01173	-0,36474	-0,67003	-0,59783	-0,23138	1,61827
349	-0,17825	-0,28482	-0.60086	-0.67268	-0.19240	1,31345

.B.E. 1/88

(Quadro 3 - Continuação)

MRH	F_{I}	F_2	$F_{\mathcal{J}}$	F_{4}	F_5	F_6
350	-0,00007	-0,20302	-0,47143	-0,74566	-0,04228	1,21314
351	-0,20150	-0,33109	-0,73166	-0.91092	-0,24076	0,14288
352	-0.09431	-0.12068	-0,58404	-0,48090	-0,27031	0,79898
353	0,81021	-0,47438	-0.94219	-0.07259	-0,10556	0,89964
354	0,44019	-0,26589	0,46885	0,24108	-0,06379	-0,42740
355	0,24359	-0,41914	-0,14365	0,16167	-0,12609	0,25594
356	0,94812	-0,42061	-0,59124	-1,02059	-0,00123	2,89936
357	2,05666	-0,73389	-0.34048	-0,45645	0,43253	1,69743
358	0,51859	-0,15353	-0.12878	-1,26411	-0.05489	0,11412
359	0,02943	-0,44959	0,15211	-0,68383	0,20846	0,49933
360	1,82125	-0,12643	0,26545	-1,02783	0,06291	0,22689
361	0,39596	0,05006	-0.34454	-1.51888	-0.03885	0.01084