CS-E4850	COMPUTER	VISION
----------	----------	--------

Exercise Round 6

Exercise 1:

a)
$$E = \sum_{i=1}^{n} \|x_{i}' - Mx_{i} - t\|^{2} = \sum_{i=1}^{n} \|x_{i}' - [m, m, x_{i}]\|_{Y_{i}}^{2} - [t_{1}]\|_{Y_{i}}^{2}$$

$$= \sum_{i=1}^{n} (x_i' - m_1 x_i - m_2 y_i - t_1)^2$$

$$= \sum_{i=1}^{n} (y_i' - m_2 x_i - m_2 y_i - t_2)^2$$

We have the gradient of E with respect to each parameter:

$$\frac{\partial E}{\partial m_1} = \begin{bmatrix} \sum_{i=1}^{n} -2x_i \left(x_i' - m_1 x_i - m_2 y_i - t_4\right) \\ 0 \end{bmatrix}$$

+)
$$\frac{\partial E}{\partial m_2} = \begin{bmatrix} \sum_{i=1}^{N} -2y_i(x_i' - m_i x_i - m_2 y_i - t_1) \\ 0 \end{bmatrix}$$

$$\frac{1}{\delta m_{4}} = \frac{0}{\sum_{i=1}^{n} -2y_{i}(y_{i}' - m_{3}x_{i} - m_{4}y_{i} - t_{2})}$$

+)
$$\frac{\partial E}{\partial t_1} = \begin{bmatrix} \sum_{i=1}^{n} -2(x_i' - m_i x_i - m_i y_i - t_i) \\ 0 \end{bmatrix}$$

4)
$$\frac{\partial E}{\partial t_2} = \left[\frac{n}{2} - 2(y_i' - m_3 x_i - m_4 y_i - t_2) \right]$$

ate / /				
	, , ,	* , ,		
b) Setting all	partial derivatives	to O. we ha	Ve:	
· ·				
4) = -2x; (x;	'- m, x; - m, y; -t	() = 0		
1 - 1			И	
=> \(\sum_{i=1}^{\chi} \) \(\chi^{\chi} \)	$i \times i' = m_4 \sum_{i=4}^{n} \chi_i^2$	+ m Z xiyi .	+ t, 5 x;	
10			7-1	
+ = -2y: (xi	- m, zi - m, yi - t)=0		
) × =	= m, \(\sum_{i=1}^{n} \times_{ij} + v	5 2 . 4	И	
1=4 9141	= Ving = Kiyi + V	n, 2 yi + ty	=1 41	1
+) \(\sum_{i=1}^{n} - 2x_i(y_i').	- m - y: - m 11: - t)=0		
=) \(\sum_{\text{xi yi'}} \)	$= m_3 \sum_{i=1}^{n} x_i^2 + n$	Xiyi + to	× xi	
		- 1 m	1=1	5 P
+) \(\sum_{i=1}^{2} -2yi(yi'-	m3xi - m4yi - t2)	= 0		
11	_	N N	-	
=) /= yi yi =	= m = xiyi + m	4 = y;2 + t2 =	- yi	
) \(\sum_{i=1}^{N} -2 \left(\chi_{i}' - m_{i}') \)	×	× × ′	1	n
) \(\frac{1}{1=1} - 2(yi' - mg)	(i - may: -t.) = 0	=) \(\su' = m.\)	n x: + m. 5	5 u. + nt
i=1 J. 3	4.	i=1 3.	=1	=1 31
Therefore, we	can rewrite Sh=	u as:	- L-4	
				- N
Σ χ; ² Σ χ	iy; 0 0 \(\sum_{i=1}^{} \)	; 0		E xi xi
2 2	2 0 0 5	0 [-		
ied rigi Zed Al	2 0 0 \sum_{i=4} \text{V}	j; 0 m	1	E yixi'
0 0	= x; = x x; y; 0	3 m	2	<u>"</u>
	i=1. 1=1.11	isl m	3 =	Si xi yi
0 0	> niy; > y;2 0	Žy; t	9	1 y y y
	1=1	1=1 1		i=1 31 31
1 4		1 1	1	
A 8	0 0 n	0		X Xi'

c) We have :
$$\{(x_i, y_i) \in \{(0,0), (1,0), (0,1)\} = n = 3$$

 $\{(x_i', y_i') \in \{(1,2), (3,2), (1,4)\} = n = 3$

+) The components of S would be calculated by:

\\ \sum_{1=1} \(\gamma_{1}^{2} \)	> xiyi	$\sum_{i=1}^{n} \chi_{i}$														
м	N.	1=1		Tx,	X,	7.	[x	y,	17		50	1	07	0	0	1
S riyi	$\sum_{i=1}^{N} y_i^2$	Σ yi	=	y,	y2	y 3	X	y.	1	=	0	0	1	1	0	1
	- 1	1		1	1	1	X	4.	1		1	1	1	0	1	1
2 Xi	Z y;	N									_					

011

+) The components of 4 could be calculated by:

1=1	i=1 J	iel	X; X, X.	1 56 u/ 1	110	10	[1 21
Eyix,	5 yiyi	> y =	y, y, y,	x' y' 1 x' y' 1	= 0	01	321
<u>*1</u>	131-0	151 0	1111	x 3 y 1	L1	11	141
Z Xi'	Z yi	n				[3	2 17

Therefore, we have Sh=u = h= 5-14

	m		1	0	0	0	1	0	1-1	3		[2]	
	ln ₂		0	1	0	0	1	0		1		0	
=)	m	=	0	0	1	0	0	1		2	14 -	0	
	m		0	0	0	1	0	1		4		2	
	t		1	1	0	0	3	0		5		1	
	t		0	0	1-	4	0	3		8		2	

Exercise 2:

$$x' = sRx + t = s(x') = s(cos\theta - sin\theta)(x) + (t_x)$$
 $sin\theta = s(sin\theta)(x) + (t_y)$

$$\{x_1 \rightarrow x_1'\}, \{x_2' \rightarrow x_2'\}$$

a)
$$V = x_2 - x_4 = \begin{bmatrix} x_2 - x_4 \\ y_2 - y_4 \end{bmatrix}$$
, $V = x_2' - x_1' = \begin{bmatrix} x_2' - x_1' \\ y_2' - y_4' \end{bmatrix}$

+)
$$x_{2}' - x_{1}' = s(\cos\theta x_{2} - \sin\theta y_{2}) + t_{2} - s(\cos\theta x_{1} - \sin\theta y_{1}) - t_{2}$$

= $s(\cos\theta(x_{2} - x_{1}) - \sin\theta(y_{2} - y_{1}))$

+)
$$y_2' - y_1' = s(sin\theta x_2 + ws\theta y_2) + t_y - s(sin\theta x_1 + ws\theta y_1) - t_y$$

= $s(sin\theta(x_2 - x_1) + us\theta(y_2 - y_1))$

$$=) \quad v' = x_2' - x_1' = x_2' - x_1' = s \cos \theta - \sin \theta \qquad x_2 - x_1$$

$$y_2' - y_1' = s \cos \theta - \sin \theta \qquad x_2 - x_1$$

$$sin \theta \cos \theta = y_2 - y_1$$

$$\cos \theta = \sqrt{\cdot v} = \frac{(x_2 - x_1)(x_2 - x_1) + (y_2 - y_1)(y_2 - y_1')}{(x_2 - x_1')^2 + (y_2 - y_1')^2 + (y_2 - y_1)^2 + (y_2 - y_1)^2}$$

$$=) \theta = arccos \left(\frac{(x_2 - x_1)(x_2 - x_1') + (y_2 - y_1)(y_2' - y_1')}{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (y_2' - y_1')^2 + (y_2' - y_1')^2} \right)$$

b)
$$s = \frac{\|v'\|}{\|v\|} = \frac{(x_2' - x_1')^2 + (y_2' - y_1')^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

C) We have:
$$\begin{bmatrix} \dot{x} \\ - s \end{bmatrix} = \begin{bmatrix} \cos \theta \\ - \sin \theta \end{bmatrix} x + \begin{bmatrix} t_x \\ - t_y \end{bmatrix} = \begin{bmatrix} s \times \cos \theta \\ - sy \sin \theta \end{bmatrix} + \underbrace{t_y} = \begin{bmatrix} s \times \sin \theta \\ - sy \cos \theta \end{bmatrix} + \underbrace{t_y} = \begin{bmatrix} t_x \\ - s \times \cos \theta \\ - sy \sin \theta \end{bmatrix} + \underbrace{t_y} = \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_x \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} t_y \\ - s \times \sin \theta \\ - sy \cos \theta \end{bmatrix}$$

d)
$$\left\{ \begin{pmatrix} \frac{1}{2}, 0 \end{pmatrix} \rightarrow (0, 0) \right\}, \left\{ (0, \frac{1}{2}) \rightarrow (-1, -1) \right\}$$

$$v = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}, v' = \begin{bmatrix} x_2 - x_1 \\ y_2' - y_1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$\Rightarrow \theta = \arccos\left(\frac{(x_2 - x_1)(x_2' - x_1') + (y_2 - y_1)(y_2' - y_1')}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} = \arccos(0)$$

$$\Rightarrow \theta = \frac{\pi}{3} \left(+ k\pi \right)$$

Also, we have
$$s = \frac{(x_2 - x_1)^2 + (y_2 - y_1)^2}{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 2$$

$$\begin{bmatrix} t_x \end{bmatrix} = \begin{bmatrix} x_1' - Sx_1 \cos\theta + Sy_1 \sin\theta \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$t_y \end{bmatrix} = \begin{bmatrix} y_1' - Sx_1 \sin\theta - sy_1 \cos\theta \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix}$$

Therefore, the complete transformation in this case:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = 2 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} y + \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$