



# Meta-Analysis of Treatments for Platinum-Resistant Ovarian Cancer (PROC)

vs. Standard Chemotherapy
Based on Clinical trials

### **Background and Objective**

This study aimed to conduct a meta-analysis, systematically integrating findings from multiple independent clinical trials. The goal was to derive more robust and generalizable conclusions about treatment efficacy for platinum-resistant ovarian cancer (PROC) than what could be inferred from individual studies alone.

We extracted and summarized key clinical endpoints - Overall Survival (OS), Progression-Free Survival (PFS), and Objective Response Rate (ORR) - from seven randomized phase III trials. These trials evaluated various investigational therapies compared to different single-agent chemotherapy regimens commonly used in PROC.

## Methodology

Software Used - R

Models: Fixed Effect and Random Effects model.



# Forest plot for fixed effect model for overall survival



Heterogeneity:  $Tau^2 = 15.3518$ ;  $Chi^2 = 29151.20$ , df = 3 (P = 0);  $I^2 = 100.0\%$  Test for overall effect: Z = 650.75 (P = 0) Test for overall effect: Z = 6.53 (P < 0.0001) Test for subgroup differences:  $Chi^2 = 29151.20$ , df = 3 (P = 0)



### $I^2 = 100\%$ , chi-square p < 0.0001

- → Indicates extremely high heterogeneity across studies.
- → The differences in survival outcomes are not due to random variation.
- → Suggests the presence of true clinical or methodological differences between trials.
- → Fixed-effect model assumptions are likely violated a random-effects model is more appropriate.

### $\chi^2$ = 29,151.20, degrees of freedom = 3, p < 0.0001 (Subgroup analysis)

 $\rightarrow$  Subgroup differences are highly significant.  $\rightarrow$  Indicates that treatment type has a significant impact on overall survival (OS).



# Forest plot for random effect model for overall survival



Heterogeneity:  $Tau^2 = 15.3518$ ;  $Chi^2 = 29151.20$ , df = 3 (P = 0);  $I^2 = 100.0\%$  Test for overall effect: Z = 650.75 (P = 0) Test for overall effect: Z = 6.53 (P < 0.0001) Test for subgroup differences:  $Chi^2 = 29151.20$ , df = 3 (P = 0)



 $I^2 = 100\%$ ,  $Tau^2 = 15.35$ ,  $\chi^2 p < 0.0001$ 

- → Indicates extremely high heterogeneity across studies.
- $\rightarrow$  The magnitude of between-study variance (Tau<sup>2</sup> = 15.35) confirms that differences in OS are substantial and not due to chance.
- → Strongly suggests the presence of true clinical or methodological variability across trials.
- → A random-effects model is more appropriate in this context.

 $\chi^2$  = 29,151.20, degrees of freedom = 3, p < 0.0001 (Subgroup analysis)

- → Demonstrates that overall survival (OS) differs significantly across treatment types.
- → Indicates a strong subgroup effect, likely reflecting differences in treatment mechanisms or patient populations.



# Forest plot for fixed effect model for progression free survival



Heterogeneity:  $Tau^2 = 20.3765$ ;  $Chi^2 = 49778.80$ , df = 6 (P = 0);  $I^2 = 100.0\%$ Test for overall effect: Z = 305.90 (P = 0) Test for overall effect: Z = 3.39 (P = 0.0007) Test for subgroup differences;  $Chi^2 = 49778.80$ , df = 6 (P = 0)



### $I^2 = 100\%$ , $\chi^2 p < 0.0001$

- → Indicates extreme heterogeneity the studies are likely estimating different treatment effects.
- → Fixed-effect model assumptions are invalid in this context due to non-random variation across studies.
- → Strongly supports the use of a random-effects model.

### $\chi^2$ = 49,778.80, degrees of freedom = 6, p < 0.0001 (Subgroup analysis)

- → Confirms statistically significant differences in progression-free survival (PFS) across treatment groups.
- → Suggests that treatment type meaningfully influences PFS outcomes. Pooled Median PFS = 3.71 months [95% CI: 3.68–3.73]
- $\rightarrow$  The narrow confidence interval is misleading due to extreme heterogeneity (I<sup>2</sup> = 100%).
- → Interpretation of this pooled estimate should be cautious, as it may oversimplify true between-study variability.



# Forest plot for random effect model for progression free survival



Heterogeneity:  $Tau^2 = 20.3765$ ;  $Chi^2 = 49778.80$ , df = 6 (P = 0);  $I^2 = 100.0\%$  Test for overall effect: Z = 305.90 (P = 0) Test for overall effect: Z = 3.39 (P = 0.0007) Test for subgroup differences:  $Chi^2 = 49778.80$ , df = 6 (P = 0)



 $I^2 = 100\%$ ,  $Tau^2 = 20.38$ ,  $\chi^2 p < 0.0001$ 

- → Indicates extremely high heterogeneity across studies.
- → Suggests that trials likely differ in design, patient populations, or treatment efficacy.
- → The pooled estimate should be interpreted with caution, as studies are not estimating a single common effect.

 $\chi^2$  = 49,778.80, degrees of freedom = 6, p < 0.0001 (Subgroup analysis)

- → Confirms statistically significant variation in PFS outcomes across treatment groups.
- → Strongly supports the presence of treatment-dependent differences in progression-free survival. Pooled Median PFS = 5.79 months [95% CI: 2.44–9.13]
- → The wide confidence interval reflects substantial uncertainty and between-study variability.
- → Highlights the importance of considering study-level factors when interpreting pooled results.



# Forest plot for fixed effect model for Objective Response Rate



Heterogeneity:  $Tau^2 = 0.4162$ ;  $Chi^2 = 29.58$ , df = 4 (P < 0.0001);  $I^2 = 86.5\%$ Test for subgroup differences:  $Chi^2 = 29.58$ , df = 4 (P < 0.0001)



 $I^2 = 86.5\%$ ,  $\chi^2$  p < 0.0001

- → Indicates high heterogeneity across studies.
- → The assumption of a common treatment effect (fixed-effect model) is not valid.
- → Suggests substantial variability in response rates due to differences in study design, population, or interventions.

### $\chi^2$ = 29.58, degrees of freedom = 4, p < 0.0001 (Subgroup analysis)

- → Confirms that objective response rates (ORR) vary significantly across treatment types.
- → Points to meaningful differences in efficacy between therapies. Fixed-Effect Pooled ORR = 20% [95% CI: 17% to 24%]
- $\rightarrow$  Indicates a moderate overall response rate across all included studies.  $\rightarrow$  However, due to high heterogeneity (I<sup>2</sup> = 86.5%), this pooled estimate may be misleading.
- → A random-effects model would provide a more reliable and generalizable estimate.



# Forest plot for Random Effect model for Objective Response Rate



Heterogeneity:  $Tau^2 = 0.4162$ ;  $Chi^2 = 29.58$ , df = 4 (P < 0.0001);  $I^2 = 86.5\%$ Test for subgroup differences:  $Chi^2 = 29.58$ , df = 4 (P < 0.0001)



 $I^2 = 86.5\%$ ,  $Tau^2 = 0.42$ ,  $\chi^2 p < 0.0001$ 

- → Indicates substantial heterogeneity in objective response rates across studies.
- → Suggests real differences in treatment efficacy, study populations, or trial design.
- → Justifies the use of a random-effects model to account for this variability and provide a more generalizable estimate.

 $\chi^2$  = 29.58, degrees of freedom = 4, p < 0.0001 (Subgroup analysis)

- → Demonstrates statistically significant differences in ORR between treatment types.
- → Confirms that treatment selection meaningfully impacts response outcomes in platinum-resistant ovarian cancer.