

大数据的大众化

孔宇华 Aster 业务部总监 大中华区

TERADATA.

THE BEST DECISION POSSIBLE

阻碍Big Data平民化的最大问题

- "阻碍Hadoop平民化的首要问题是其研究成本。不同的公司对hadoop有着不同方向的研究与优化,针对自己公司的业务又有着不同的改进方法。而对于绝大多数小公司来说,这样的研究与改进,无论从人力、物力还是时间等方面上,都是一笔巨大的成本。建议改进方案:首先要让更多的人知道hadoop,不仅仅了解他的名字,要让更多的人知道其架构、体系、原理,甚至具体实现等等…"
- 学习成本较高, 出了Hive之外, 其他的组件几乎都是一门全新的知识, Pig和HBase相对来说入门还比较容易, MapReduce程序简单的还好, 复杂一点的程序编写程序是相当耗时间和非常考验编程能力的, Hive虽然支持SQL99的标准, 但是很多数据库功能是没有的, 用起来会非常的受限制, 当然可以通过编写UDF函数来解决, 但是据我自己编写UDF函数的经历告诉我, 很耗时, 而且不是那么容易上手的。
- 现阶段, Hadoop的实时性是不怎么好的, 编程模型单一, 比较适合离线的大数据的分析。
- •现有业务平台的迁移问题,比如:之前我在数据仓库、数据集市跑的一些报表啊之类的存储过程,到了Hadoop这里似乎就不是那么好迁移了,就算能迁移,付出的代价也是非常高的,作为企业的管理者,引入Hadoop是为了节省投入,目前阶段,肯定不会把大量逻辑复杂的存储过程放到Hadoop上面来跑,因为至少目前而言,是不会有这个想法的。

--CSDN 文章 (如何使Hadoop平民化?), 2012年11月

TERADATA.

THE BEST DECISION POSSIBLE P

大数据的天时, 地利, 人和

用户情况

	技术公司	非技术公司
公司构成	许多计算机科学人才	计算机科学人才数量较少
人员技能	编程 (java, C, C++)	SQL
系统维护技能	编程人员	数据库管理员 (DBAs)
关注点	灵活应用	易于使用

11/30/2012 4

用数据库分析大数据

- •数据库一直都是作为数据分析的选择。
- •SQL是高层次的,且易于重复使用
 - •适用于任何数据库结构
- •纯SQL可以用在大容量的数据
 - •已有许多上百TB级或PB级数据仓库

… 但这就够了吗?

- •SQL 在一些问题上 匹配性能较弱
 - •有些问题用SQL繁琐,很难理解,或极难表达
 - •查询优化器做的选择比较低效
- •User-defined functions(UDF)是一个不完整的修复
 - •不灵活
 - •不是并行设计
 - •跟数据模型关联很大,很难重复使用

•大数据需求使得一些用户寻找其他平台

TERADATA THE BEST DECISION POSSIBLE

MapReduce "趋势"

- MapReduce 可扩展到巨大数据容量
 - •几个知名的互联网公司使用大规模MapReduce平台
 - 克服了传统数据管理系统缺乏的灵活性
- 优秀的编程模型
 - 容易理解
 - •具有平行处理数据的能力
- •但是,MapReduce需要操作者有良好的编程背景
 - •新的问题必须要写新的程序
 - 难以快速重复利用

TERADATA. THE BEST DECISION POSSIBLE

...但我们失去了什么?

- •可重复使用的功能
 - •数据模型:模式,统计,局部优化
 - •通用算法:
 - 连接(joins)
 - 分组(grouping)
 - •排序(sorting)
- 为什么我们不能有
 - 可轻易重复使用的
 - 易用的
 - •能处理大容量的数据的分析工具?

11/30/2012

8 TERADATA. THE BES DECISION POSSIBLE POSSIBLE THE BES DECISION POSSIBLE THE BES DECISION POSSIBLE THE BES DECISION POSSIBLE P

SQL-MapReduce

■可处理大容量的数据

- ■容易利用众多服务器的硬件资源
- ■容易管理,容易落地的系统

■分析师易用

- ■用分析师熟悉的语言
- ■容易整合生态系统的工具
- 现成的功能包,可以更简便地做出业务上的分析
- ■使软件开发人员能够创建可重复使用的功能给分析师

■软件开发人员易用

- ■简单的编程模型
- ■以最大地自由提供有用的平台

SQL-MapReduce功能包(50+)列表(部分)

功能包	SQL-MR 函数	SQL-MR 函数说明			
时间序列/路径分 析	nPath	用于模式匹配的函数,使您可以在排序的行集合中指定模式,在匹配这些符号的行上指定其他条件,并从这些 序列中提取有用信息。			
	Path generator	该函数将一组路径作为输入值,其中每个路径都是用户从头至尾使用的路线(页面浏览序列)。对于每个路径该函数将生成正确格式化的序列和所有可能的子序列,以供"路径汇总器"函数进一步分析。路径中的第一个素是用户访问的第一个页面。路径中的最后一个元素是用户访问的最后一个页面。			
	Path starter	为特定父项生成所有子项,并计算其总数。			
	Path summarizer	"路径生成器"函数的输出值是该函数的输入值。该函数用于计算节点总数。"节点"可以是普通的子序列,t可以是完成子序列。完成子序列是指序列与子序列相同的序列。完成子序列通过在序列末尾附加"\$"来表示。			
	Sessionization	用所有单机的数据建立相关的访问流程			
	correlation	计算表中任意一对列之间的全局关联性。			
	linear regression	输出由输入矩阵表示的线性回归模型的系数。			
	logistic regression	为逻辑回归建立权重序列的一系列行函数和分区函数。			
	weighted moving average	计算某时间序列中大量点的平均值,同时为较旧的值应用算术递减加权。			
	histogram	为直方图提供生成分组数据功能的函数。			
文本分析	ilext Daisei	处理文本字段的一个常规工具,可以拆分词语输入流,对它们进行阻止(可选),然后发出各个词语并计算每个 词语的出现次数。			
	Seniimeni anaivsis	情感分析是从内容中提取用户观点(正面、负面、中立)的过程。它可以帮助客户分析各个用户对呼叫中心、社 会媒体等内容的观点。			
	Text categorization	这是根据一组文档培训朴素贝叶斯分类模型,并使用该模型预测新文档类别的一组函数。			
		生成同时购买的一系列商品或"购物篮"商品的数据记录,通常为交易记录或网页日志。			
数据转换	pack	将多个列中的数据压缩到一个"打包"数据列中。			
	unpack	获取一个"打包"列中的数据,并将其展开到多个列。			
工具 11/30/2012	XML Parser	XML 解析器函数是从 XML 文档中提取元素名称、属性名称和文本的一种工具。该函数的结果是一个展平表。			

黄金通道分析

挑战: 寻找十大最常见的从首页到购买页的路径•

```
SELECT path, count(*) as freq
FROM NPATH (
ON page_event_fact
PARTITION BY session key
ORDER BY page_event_times推动 大数据的投资
MODE (NONOVERLAPPING)
PATTERN ('^HOME.ANY*.PURCHASE$')
SYMBOLS (page_key = 1 AS HOME,
             TRUE AS B,
             page_key = 20 AS PURCHASE )
RESULT( ACCUMULATE(page_key OF B) AS path )
) T
GROUP BY path
ORDER BY freq DESC LIMIT 10;
```

TERADATA THE BEST DECISION POSSIBLE

Aster Developer Express: 简易的进行大数据功能包发展

•第一个集成MapReduce和SQL开发环境

TERADATA. THE BEST DECISION POSSIBLE

11/30/2012 12

Teradata 统一数据架构

Teradata Aster大数据综合分析平台 3H 领先优势

专利技术	SQL-MAPREDUCE专利技术是SQL和MAPREDUCE技术的完美结合,大规模并行处理,较MapReduce性能提升10-100+倍		
大数据分析引擎	同时支持SQL和SQL-MAPREDUCE,预先集成了50+个SQL-MAPREDUCE功能包,同时允许对SQL-MAPREDUCE功能包的快速扩展		
支持商用BI和 ETL工具	Aster均支持 <mark>商用的商业智能(BI)和转换加载</mark> (ETL)工具,如Tableau、Informatica等		
开放、标准接口	支持ODBC、JDBC等 <mark>标准访问接口</mark>		
集成开发环境	基于Eclipse的可视化集成开发环境		
高速互联技术	提供与Teradata等数据仓库进行 <mark>高速互联</mark> 的 SQL-MAPREDUCE功能包(<mark>高速连接器</mark>)		
集成Hadoop	行业内 <mark>唯一</mark> 同一机柜集成大数据分析平台和 Hortonworks Hadoop的综合解决方案,并提 供 <mark>双向的高速互联通道</mark> ,数据访问 <mark>透明化</mark>		
统一运维管理	提供 <mark>统一的运维管理界面</mark> ,同时可实现节点、 交换机、磁盘、操作系统、数据库等 <mark>集中化管</mark> 理		

Supervalu 案例- 关联分析

THE BEST DECISION POSSIBLE

初期商用案例 - 关联分析结果

关联功能包的比较结果: 测试和生产

测试应用案例: 13周数据关联分析

原来使用 SQL 的状态		4 小时	1个集团超市
Aster 测试	2.4 分钟	1个集团超市	
Aster 生产环境	2.2 分钟	13个集团超市	

测试分析应用案例: 8年数据关联分析

原来使用 SQL 的状态		不可	能	1个集团超市
Aster 测试	48 分钟	1个集团超市		
Aster 生产环境	75 分钟	13个集团超市		

A类产品和其他类别产品随时间变化的关联

大数据令Supervalu实现

- 较长期分析
- •不同区域分析
- •不同年龄组分析
- •不同客户群分析
- •特别促销如何改善市场菜篮子组合分析
- •同一公司内部产品间的关联分析
- 跨类分析

TERADATA THE BEST DECISION POSSIBLE

Supervalu 大数据解决方案的优点

易于使用

• 不仅从IT人员的角度,也从营销人员的 角度

易于维护

• 维护工作与数据库管理员职能近似

上市更快

迭代分析,易用性使得团队能够更快开 发出新的分析应用案例

TERADATA. THE BEST DECISION POSSIBLE

大数据的天时, 地利, 人和

- •哪些应用案例推动大数据的投资? 大数据带来哪些价值?
- •从这一系统中, 您有什么样的服务 等级需求?响应时间?数据量?
- •使用人员有哪些技能?SQL?编程?
- 您需要什么技术支持这些应用案例?

TERADATA. THE BEST DECISION POSSIBLE

问题?