HW 6 - Enumeration of Spanning trees and Eulerian circuits (Due Tuesday 04/02)

1. [Trees with prescribed degrees and Cayley's formula]

(a) Given positive integers $d_1, d_2, ..., d_n$ such that $\sum d_i = 2n - 2$, show that the number of (labelled) tress on [n] such that vertex i has degree d_i for each i is

$$\frac{(n-2)!}{\prod (d_i-1)!}$$

(Remark: Note that for any graph on n vertices with m edges, we always have $\sum d_i = 2m$, thus for a tree, $\sum d_i = 2n - 2$. One can conversely show (say, by induction) that if $\sum d_i = 2n - 2$, there must exist at least one tree with this degree sequence.

Note, the problem can easily be done using Prüfer code. Can you use induction to show the same?)

- (b) Prove Cayley's formula from (a).
- (c) What is the number of all trees on n vertices with exactly n-l leaves? (Hint: You may use (a), and leave your answer in a terms of Stirling's number of the second kind.)
- 2. [Counting Spanning trees of $K_{m,n}$] Find the value of $\tau(K_{m,n})$ using:
- (i) Matrix-Tree Theorem.
- (ii) Combinatorial argument, say, that of Prüfer or Joyal.
- (iii) Let L be the Laplacian of $K_{m,n}$.
 - (a) Find a simple upper bound on rank(L mI).
 - (b) Deduce a lower bound on the multiplicity of eigenvalue of L equal to m.
 - (c) Assume $m \neq n$ and do the same for n.
 - (d) Find the remaining eigenvalues of L.
 - (e) Use (a) (d) to compute $\tau(K_{m,n})$
- **3.** [Not for credit] Let $n \geq 5$ and G_n be a graph with vertex set \mathbb{Z}_n with edges $\{i, i+1\}$ and $\{i, i+2\}$ for all $i \in \mathbb{Z}_n$. Show that $\tau(G_n) = nF_n^2$, where F_n is the n^{th} Fibonacci number (where $F_1 = 1, F_2 = 1, F_{n+2} = F_{n+1} + F_n$).
- **4.** [Labyrinth Problem] Starting at a point x_0 we walk along the edges of a connected graph G according to the following rules:
 - We never use the same edge twice in the same direction.
 - Whenever we arrive at a point $x \neq x_0$ not previously visited, we mark the edge along which we entered x. We use the marked edge to leave x only if we must, that is, if we have used all the other edges before.

Show that we get stuck at x_0 and that, by then, every edge has been traversed in both directions.

5. [Universal cycles for S_n]

- (i) Let $n \ge 3$. Show that there does not exist a sequence $a_1, a_2, \dots, a_{n!}$ such that all the n! contiguous blocks $a_i, a_{i+1}, \dots a_{i+n-1}$ (subscripts taken modulo n!) are all the n! permutations of S_n .
- (ii) Show that for all $n \geq 1$, there exist a sequence $a_1, a_2, \dots, a_{n!}$ such that all the n! contiguous blocks $a_i, a_{1+1}, \dots a_{i+n-2}$ consists of the first n-1 terms b_1, b_2, \dots, b_{n-1} of all permutations b_1, b_2, \dots, b_n of [n]. Such sequences are called *universal cycles* for S_n (For example, for n=3, 123213 is such a universal cycle)

- (iii) For n = 3, find the number of universal cycles beginning with 123.
- (iv) (unsolved, not for credit) Find U_n , the number of universal cycles for S_n beginning with $123 \cdots n$. It is known that

$$\begin{aligned} U_4 &= 2^7 \cdot 3 \\ U_5 &= 2^{33} \cdot 3^8 \cdot 5^3 \\ U_6 &= 2^{190} \cdot 3^{49} \cdot 5^{33} \\ U_7 &= 2^{1217} \cdot 3^{123} \cdot 5^{119} \cdot 7^5 \cdot 11^{28} \cdot 43^{35} \cdot 73^{20} \cdot 79^{21} \cdot 109^{35} \end{aligned}$$

(Remark: Perhaps some divisibilities can be explained by more powerful machinery of Representation Theory of S_n)