

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2550

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 สอบ วันศุกร์ที่ 12 ตุลาคม พ.ศ.2550

เวลา 9.00-12.00 น.

<u>คำเตือน</u>

- 1. ข้อสอบวิชานี้มี 5 ข้อ 12 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา		
รหัสประจำตัวรหัสประจำตัว		

(ผศ.ดร.วุฒิชัย อัศวินชัยโชติ)

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

สูตรที่ใช้ในการคำนวณ

Cartesian coordinate

1.
$$\overrightarrow{A} = A_x \hat{a}_x + A_y \hat{a}_y + A_z \hat{a}_z$$

2. Magnitude
$$|\overrightarrow{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

3. Unit vector
$$\hat{a}_R = \frac{\vec{A}}{|\vec{A}|}$$

Conversion from the cylindrical to Cartesian coordinate

$$x = \rho \cos \phi$$

4.
$$y = \rho \sin \phi$$

$$z = z$$

Magnetostatics

5. Ampere's law: $\oint \vec{H} \cdot d\vec{l} = I$

6. Magnetic field intensity, H และ sheet current density, K: $\overrightarrow{H} = \frac{1}{2} \overrightarrow{K} \times \overset{\circ}{a}_n$ A/m

โดยที่ \hat{a}_n คือ unit vector ที่อยู่ในทิศตั้งฉากพุ่งออกจาก current sheet ไปยังจุดสังเกด

7. Magnetic flux density, B และ Magnetic field intensity, H: $\overrightarrow{B} = \mu \overrightarrow{H}$ Tesla

8. Magnetization, M และ Magnetic field intensity, $H: \ \overrightarrow{M}=\chi_{_{m}}\overrightarrow{H}$ A/m Relative permeability, $\mu_r = \chi_m + 1$

 $\nabla \cdot \vec{B} = 0$ 9. Maxwell's equations for magnetostatics:

$$\nabla \times \overrightarrow{H} = \overrightarrow{J}$$

10. Boundary conditions: $B_{n1} = B_{n2}$

$$H_{t1} - H_{t2} = \hat{a}_{12} \times \overrightarrow{K}$$

11. แรงแม่เหล็ก $F = q\vec{v} \times \vec{B}$ N

Dynamic fields

12. Transformer emf: $emf = -\int \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$ V

13. Motional emf: $emf = \oint (\vec{v} \times \vec{B}) \cdot d\vec{l}$ V

Plane waves

14. ความสัมพันธ์ระหว่างสนามไฟฟ้า \overrightarrow{E} และสนามแม่เหล็ก \overrightarrow{H}

$$\vec{E} = -\eta \hat{a}_r \times \vec{H} \quad V/m$$

$$\vec{H} = \frac{1}{2} \hat{a}_r \times \vec{F} \quad 4/m$$

$$\overrightarrow{H} = \frac{1}{\eta} \hat{a}_r \times \overrightarrow{E} \quad A/m$$

$$\langle S \rangle = P_{ave} = \frac{1}{2} \operatorname{Re}(\vec{E} \times \vec{H}^*) \quad W / m^2$$

โดย \hat{a}_r = unit vector ที่ชี้ไปในทิศทางการเคลื่อนที่ของคลื่น

ชื่อ	١.		
טע			

	ما ٺ
รหัสประจำตัว	เลขที่นั่งสอบ

Loss tangent, $\tan \delta = \frac{\sigma}{\omega \varepsilon}$

wo			
	Lossless media	Low loss media	High loss media
Attenuation constant, α (Np/m)	0	$\cong \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}$	$\sqrt{\pi f \mu \sigma}$
Phase constant, β (rad/m)	$\omega\sqrt{\muarepsilon}$	$\cong \omega \sqrt{\mu \varepsilon}$	$\sqrt{\pi f \mu \sigma}$
Intrinsic impedance, η (Ω)	$\sqrt{rac{\mu}{arepsilon}}$	$\cong \sqrt{\frac{\mu}{\varepsilon}}$	$\cong \sqrt{\frac{j\omega\mu}{\sigma}}$

Constants

Free space permeability μ_{o} = $4\pi \times 10^{\text{--}7}$ H/m

Free space permittivity $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$

Free space intrinsic impedance η_{0} = 120 $\!\pi$ Ω

1. Steady magnetic field and Ampère's law: เส้นลวดน้ำกระแส $\vec{I}=7\hat{a}_z$ mA วางตัวอยู่ตามแกน z แผ่นกระแสชนาดอนันต์ $\overrightarrow{K}_1 = -0.2 \hat{a}_z$ A/m และ $\overrightarrow{K}_2 = 0.5 \hat{a}_z$ A/m วางตัวอยู่ที่ ho = 0.5 cm และ 1 cm ตามลำดับ จงคำนวณ (15 คะแนน)

a) \overrightarrow{H} ที่ตำแหน่ง ρ = 0.5 cm (5 คะแนน)

b) \overrightarrow{H} ที่ตำแหน่ง ho = 1 cm (5 คะแนน)

ชื่อ .	รหัสประจำตัว	เลขที่นั่งสอบ
--------	--------------	---------------

c) ถ้าความเข้มสนามแม่เหล็ก \overrightarrow{H} รวมที่ตำแหน่ง ho = 4 cm มีค่าเป็นศูนย์ต้องใช้แผ่นกระแส \overrightarrow{K} เท่าไร มาวางที่ระยะ ho > 4 cm (5 คะแนน)

2. Magnetic force: ประจุขนาด 5 nC วิ่งด้วยความเร็ว -10 \hat{a}_x m/s ผ่านแผ่นกระแสขนาดอนันต์ซึ่ง วางตัวอยู่ที่ตำแหน่ง z=0 บนระนาบ x-y และมีความหนาแน่น $\overline{K}=20\,\hat{a}_x$ A/m ดังรูป (20 คะแนน)

a) คำนวณแรงแม่เหล็ก \overline{F} ที่กระทำต่อประจุ (5 คะแนน)

b) ถ้านำเส้นลวดตัวนำความยาวอนันต์มาวางบนแกน z ดังรูปจะต้องใช้กระแสขนาดเท่าไรและใน ทิศทางใดจึงจะทำให้แรงแม่เหล็กที่กระทำต่อประจุที่เคลื่อนที่มาอยู่ ณ ตำแหน่ง ho=1 m, $\phi=53^\circ$ มี ค่าเป็นศูนย์ (แนะนำ: ให้คำนวณในพิกัดคาร์ทีเซียน) (10 คะแนน)

ชื่อ	j.	รหัสประจำตัว	เลขที่นั่งสอบ
טע		7710125 00 0 1711 0	**************************************

c) จากข้อ b) จงคำนวณแรงแม่เหล็กรวมที่มากระทำต่อประจุ เมื่อประจุเคลื่อนที่มาอยู่เหนือแกน y พอดี (5 คะแนน) 3. Magnetization and B.C.s: ตัวกลาง 3 ตัวเชื่อมต่อกันตั้งรูป กำหนดให้ความเข้มสนามแม่เหล็กที่ วิ่งเข้าไปยังรอยต่อระหว่างตัวกลางที่ 1 และตัวกลางที่ 2 มีค่า $\overrightarrow{H}_1 = 10 \hat{a}_x + 15 \hat{a}_y - 3 \hat{a}_z$ A/m กำหนตให้ตัวกลางที่ 2 ไม่มีการสูญเสีย จงคำนวณ (25 คะแนน)

a) \overrightarrow{H}_{n2} (5 คะแนน)

b) \overrightarrow{H}_{t2} (5 คะแนน)

ชื่อ
- D-U

•		•
รหัสป	l≪∾ลำ	അവ
STIGHT	19071	AI 9

_ เลขที่นั่งสอบ_

c) \overrightarrow{H}_{n3} (5 คะแนน)

d) \overrightarrow{H}_{t3} (5 คะแนน)

e) มุม $heta_{\!\scriptscriptstyle 2}$ (5 คะแนน)

4. Dynamic fields: วงจรตัวนำถูกแบ่งออกเป็นสองวงจรย่อยด้วยแท่งตัวนำที่มีความเร็ว $\vec{v}=0.1\cos\omega t\hat{a}_y$ m/s วงจรวางอยู่ในสนามแม่เหล็ก $\vec{B}=100\hat{a}_z$ mT กำหนดให้ความถี่ f ในการ เคลื่อนที่ของแท่งตัวนำมีค่า 10 Hz, w= 4 cm, $R_f=50~\Omega$, และ $R_g=100~\Omega$ (20 คะแนน)

a) จงแสดงค่าแรงดันที่ตกคร่อมตัวความต้านทาน \mathbf{R}_1 และ \mathbf{R}_2 ที่เวลา t ใดๆ (10 คะแนน)

b) ทิศของกระแสเหนี่ยวนำในวงจรย่อยที่ 1 และวงจรย่อยที่ 2 (ทวนเข็มหรือตามเข็มนาฬิกา) ที่เวลา 37.5 ms (5 คะแนน)

ð	อ	รหัสประจำตัว	เลขที่นั่งสอบ
			

c) ขนาดของกระแสเหนี่ยวนำในวงจรย่อยที่ 1 และวงจรย่อยที่ 2 ที่เวลา 37.5 ms (5 คะแนน)

- 5. Uniform plane wave: กำหนดให้คลื่นแม่เหล็กไฟฟ้าความถี่ 1 GHz เดินทางผ่านดัวกลางที่มีค่า ความนำไฟฟ้า σ = 10 $^{-2}$ S/m และ μ_r = 1 โดยมีรูปแบบสมการสนามไฟฟ้า $\vec{E}(z,t)=e^{-0.89z}\cos(\omega t-\beta z)\hat{a}_x$ mV/m จงคำนวณ (20 คะแนน)
- a) relative permittivity \mathcal{E}_{r} (5 คะแนน)

b) phase constant eta (5 คะแนน)

c) สนามแม่เหล็ก $\overrightarrow{H}(z,t)$ (5 คะแนน)

d) ความหนาแน่นกำลังเฉลี่ย $P_{\scriptscriptstyle avo}$ (5 คะแนน)