DFT - IF - UERJ

Mecânica Geral

Prof: Marcelo Santos Guimarães Lista 5

- 1. Mostre que $I = I_{CM} + Ma^2$, onde I_{CM} é o momento de inércia de um corpo de massa M em relação a um eixo passando pelo centro de massa. I é o momento de inércia em relação a um eixo paralelo ao primeiro e distante deste de a. Este resultado é conhecido como teorema dos eixos paralelos ou teorema de Steiner.
- 2. Seja um corpo plano de espessura desprezível. O eixo z é um eixo perpendicular ao plano. Os eixos x e y estão neste plano e são perpendiculares entre si (veja a figura). Mostre que $I_{zz} = I_{xx} + I_{yy}$. Este resultado é conhecido como o teorema dos eixos perpendiculares.

- 3. Uma barra uniforme de comprimento l e massa m pode girar livremente em torno de um eixo horizontal que passa pelo ponto A, situado a uma distância b de seu centro de massa. Deslocando-se a barra de um pequeno ângulo θ_0 , relativo à posição de equilíbrio ($\theta = 0$) e abandonando-o nesta posição no instante t = 0, pede-se:
 - a) A equação diferencial do movimento da barra.
 - b) A solução $\theta(t)$ desta equação que satisfaça às condições iniciais do problema.
 - c) O período de oscilação da barra.

4. Um anel de raio R é suspenso como na figura abaixo. Calcule o período de pequenas oscilações.

- 5. Uma barra de comprimento l e massa M pode girar livremente em torno de um pino, colocado em A, num plano vertical. Um projétil de massa m e velocidade \vec{v} atinge a barra ficando alojado nela.
 - a) Calcule a velocidade angular de rotação da barra imediatamente após a colisão.
 - b) Que relação deve existir entre a e l para que não haja uma força extra do pino sobre a barra no instante da colisão?
 - c) Qual é a quantidade de energia transformada em calor durante o processo?.

6. Uma barra homogênea e estreita de massa m e comprimento l é mantida verticalmente com uma das extremidades apoiada no chão. Ela é então deixada cair. Supondo que a extremidade apoiada no chão não desliza, determine a velocidade da outra extremidade quando toca o chão.

7. Um disco de raio R e massa M está enrolado num fio e disposto como na figura. Calcule a aceleração com que o centro de massa desce.

- 8. Um truque interessante que pode ser feito com uma bola de gude, colocada sobre uma mesa horizontal, é pressioná-la com o dedo de maneira a projetá-la para a frente e girando. Considere que a bola saia com velocidade \vec{v}_0 e velocidade angular $\vec{\omega}_0$, como na figura. O coeficiente de atrito estático entre a bola de gude (raio R) e a mesa é constante.
 - a) Que relação precisamos ter entre v_0 , R e ω_0 para que a bola deslize até parar completamente?
 - b) Idem para o caso de a bola deslizar, parar e depois voltar até atingir uma velocidade constante final igual a $\frac{3}{7}v_0$

9. Considere 4 partículas de massa m dispostas como na figura abaixo. Calcule os momentos e produtos de inércia do sistema com relação aos eixos indicados.

Calcule os momentos principais de inércia.

- 10. Mostre que todo eixo que passa pelo centro de massa de um cubo é principal.
- 11. Um corpo é atirado para cima com uma velocidade \vec{v}_0 . Prove que ele voltará a terra, deslocado para o oeste de uma distância igual a $\frac{4}{3}\sqrt{\frac{8h^3}{g}}\omega\cos\lambda$, onde λ é a latitude e $h=\frac{v_0^2}{2g}$.
- 12. Um pequeno disco de massa m gira em torno de um ponto O, sobre uma mesa, preso a um fio de comprimento l e massa desprezível. O atrito entre o disco e a mesa também é desprezível. O sistema descrito está em um referencial inercial.
 - a) Faça um diagrama mostrando as forças que atuam sobre o disco de acordo com um observador inercial. Onde estão as reações a estas forças?
 - b) Considere agora um observador localizado no ponto O e girando com a mesma velocidade angular $\vec{\omega}$. Este observador é inercial? Faça um diagrama das forças que atuam no disco segundo ele. Onde estão suas reações?
 - c) Suponha que num determinado instante o fio se rompa. Esquematize a trajetória seguida pelo disco de acordo com os dois observadores descritos nos itens anteriores.

13. Para um observador inercial O, o movimento de uma partícula é descrito por $\vec{r}(t) = 5t^3\hat{e}_x + 2t\hat{e}_y - \hat{e}_z$ metros (t em segundos). Um outro observador O' vê o movimento da mesma partícula, só que através do seguinte vetor $\vec{r}'(t) = 7t^3\hat{e}_x + \hat{e}_y - t\hat{e}_z$ metros

4

(t em segundos).

- a) Qual a velocidade do observador O em relação ao observador O'? b) O observador O' também é inercial? Explique.