Moment of Inertia / Second Moment of Area

DNYANESH PAWASKAR

	$x' = x \cos \theta$	+ysin0			
	$y' = -x \sin \theta$	t y cos b			
40		(,2 ,			
x,¥,	= I _{xx} =	Ω			
da ^l =	Jda	1=	<u>5x</u> ,	9x'	
	= Jdxdy		3x 3 3x, 3 3x, 3) y	
9×,=	cos 8 d x + Si		J=		n Ø
dy1 = -	sinDdx + C	oso dy		-sint co	9
			= 1		•
Trx	$= \int (-x^{s})^{s}$	sino+y cos	e)2dxd	y	
=	$\sin^2\theta \int x^2$	da + cos	² θ (γ c	la – 2sin0	xyda
	J		J	CoZB	J

DNYANESH PAWASKAR

DNYANESH PAWASKAR

Mohr's circle same as that for stress because transformation rules are the same.

Principle inertias, principle stresses

Principle axes of inertia, principal directions

Mohr's circle always lies to the right of the I'xy axis. Why?

In this course, the convention used is that positive I'xy along vertically upward axis. Hence anticlockwise i.e. +ve THETA rotation in the x-y plane corresponds to clockwise i.e. -ve 2*THETA rotation in the I'xy - I'xx plane