

FCC PART 90

TEST REPORT

For

Hytera Communications Corporation Limited

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, 518057 China

FCC ID: YAMPT350PF5

Report Type: **Product Type:** Original Report TETRA PORTABLE TERMINAL **Report Number:** RDG190627003-00C **Report Date:** 2019-08-16 Jerry Zhang Jerry Zhang **EMC Manager Reviewed By: Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
TEST EQUIPMENT LIST	7
FCC §1.1310 & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	
TEST RESULT	8
FCC §2.1046 & §90.205- RF OUTPUT POWER	9
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §2.1047 - MODULATION CHARACTERISTIC	10
FCC §90.210& §90.221- ADJACENT CHANNEL POWER	11
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	11
FCC §2.1049 &§90.209 & §90.210 – OCCUPIED BANDWIDTH	15
APPLICABLE STANDARD	15
TEST PROCEDURE	
TEST DATA	15
FCC §2.1051&§90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	18
APPLICABLE STANDARD	18
TEST PROCEDURE	
TEST DATA	18
FCC §2.1053& §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §2.1055 & §90.213- FREQUENCY STABILITY	
APPLICABLE STANDARD	
TEST PROCEDURE	26

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

	EUT Name:	TETRA PORTABLE TERMINAL	
EUT Model:		PT350 F5	
N	Multiple Model:	PT310 F5	
Operat	ion Frequency:	806-824MHz, 851-869MHz	
Output Powe	er(Conducted):	1.8W	
Mo	dulation Type:	π /4-DQPSK	
Channel Spacing:		25kHz	
Rated	Input Voltage:	DC 3.85V from battery	
	P/N:	PS1014	
Adapter	Model:	HKA012120-XQ	
Information	Input:	100-200V 50/60Hz 0.5A	
Output:		DC 12V, 1A	
Serial Number:		190627003-1(Model: PT350 F5) 190627003-2(Model: PT310 F5)	
EUT	Received Date:	2019-07-01	

Note: The series products models PT350 F5, PT310 F5 are electrically identical, we selected PT350 F5 for fully testing, the details of the difference between them were explained in the attached declaration letter.

Objective

This test report is prepared on behalf of *Hytera Communications Corporation Limited* in accordance with Part 2, Part 90 of the Federal Communication Commission rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: YAMPT350PF5. FCC Part 15C DTS submissions with FCC ID: YAMPT350PF5.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Unwanted Emissions, radiated	30MHz ~ 1GHz:5.85 dB 1G~26.5GHz: 5.23 dB
Unwanted Emissions, conducted	±1.5 dB
Temperature	$\pm 1^{\circ}\!\!\mathrm{C}$
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Unknown	50 Load Teminal	100W	/

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1310 and §2.1093	RF Exposure	Compliance
§2.1046;§90.205	RF Output Power	Compliance
\$2.1046;\$90.210; \$90.221	Adjacent Channel Power	Compliance
§2.1047;§90.207	Modulation Characteristic	Not Applicable*
\$2.1049;\$90.209; \$90.210	Occupied Bandwidth	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Not Applicable*

Not applicable*: It is not required for tetra device

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test						
R&S	EMI Test Receiver	ESCI	100035	2019-08-03	2020-08-03	
Sunol Sciences	Antenna	ЈВ3	A060611-2	2017-08-25	2020-08-25	
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A	
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05	
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2018-09-05	2019-09-05	
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2018-09-24	2019-09-24	
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05	
Agilent	Signal Generator	E8247C	MY43321350	2018-12-10	2019-12-10	
R&S	Spectrum Analyzer	FSP 38	100478	2019-05-09	2020-05-09	
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12	
ETS-Lindgren	Horn Antenna	3115	000 527 35	2018-10-12	2021-10-12	
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-02	2018-09-05	2019-09-05	
MICRO-COAX	Coaxial Cable	UFA147-1- 2362-100100	64639 231029- 001	2019-02-24	2020-02-24	
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2018-09-05	2019-09-05	
HP	Amplifier	8447F	2443A01912	2018-09-05	2019-09-05	
Sinoscite	Band-stop filter	BSF824- 862MS-1438- 001	1438001	2019-06-16	2020-06-16	
		RF Conducted T	'est			
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-31	2019-08-31	
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A	
E-Microwave	Coaxial Attenuators	EMCA40- 200SN-6	OE01201046	Each time	N/A	
UNI-T	Multimeter	UT39A	M130199938	2019-07-24	2020-07-24	
Pro instrument	DC Power Supply	pps3300	3300012	N/A	N/A	
LEADER	Millivoltmeter	LMV-181A	601788	2019-08-11	2020-08-10	
ESPEC	Constant temperature and humidity Tester	ESX-4CA	018 463	2019-03-26	2020-03-26	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: RDG190627003-20A.

Page 8 of 28

FCC §2.1046 & §90.205- RF OUTPUT POWER

Applicable Standard

FCC §2.1046, and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

RBW	VBW
100 kHz	300 kHz

Test Data

Environmental Conditions

Temperature:	27.5°C
Relative Humidity:	46 %
ATM Pressure:	100.7 kPa
Tester:	Blake
Test Date:	2019-08-02

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Frequency (MHz)	Mode	Conducted Output Power (W)
806.0125		1.76
815.0000		1.71
823.9875	DMO	1.78
851.0125	DMO	1.91
860.0000		1.74
868.9875		1.87
806.0125		1.72
815.0000		1.85
823.9875	TMO	1.89
851.0125	TMO	1.97
860.0000		1.75
868.9875		1.86

Note: 806-809 MHz, 851-854MHz not for FCC use.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC $\S 2.1047(d)$, there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Page 10 of 28

FCC §90.210& §90.221- ADJACENT CHANNEL POWER

Applicable Standard

FCC §2.1046, §90.210& §90.221

According to FCC§90.221:

(c)(1) Maximum adjacent power levels for frequencies in the 809-824/854-869 MHz band:

Frequency offset	Maximum ACP (dBc) for devices less than 15 watts	Maximum ACP (dBc) for devices 15 watts and above
25 kHz	-55 dBc	-55 dBc
50 kHz	-65 dBc	-65 dBc
75 kHz	-65 dBc	-70 dBc

(2) In any case, no requirement in excess of -36 dBm shall apply.

Test Procedure

The EUT was connected to the Spectrum Analyzer with a suitable attenuator.

Test Data

Environmental Conditions

Temperature:	27.5°C
Relative Humidity:	46 %
ATM Pressure:	100.7 kPa
Tester:	Blake
Test Date:	2019-08-02

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

Mode	Frequency (MHz)	Frequency offset (kHz)	Adjacent Channel Ratio (dB)	Limit (dB)
		-75	-69.42	-65
		-50	-71.73	-65
	815	-25	-69.21	-55
	613	25	-68.77	-55
		50	-72.43	-65
DMO		75	-69.16	-65
DMO		-75	-69.80	-65
		-50	-72.29	-65
	860	-25	-70.70	-55
	800	25	-70.26	-55
		50	-72.45	-65
		75	-70.54	-65
		-75	-69.58	-65
		-50	-71.94	-65
	815	-25	-69.56	-55
		25	-69.21	-55
		50	-71.34	-65
TMO		75	-69.53	-65
TMO		-75	-70.54	-65
		-50	-73.11	-65
	860	-25	-70.69	-55
	000	25	-71.28	-55
		50	-72.96	-65
		75	-71.82	-65

DMO:

Frequency 815 MHz

Report No.: RDG190627003-00C

Frequency 860 MHz

Frequency 815 MHz

Report No.: RDG190627003-00C

Frequency 860 MHz

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 300 Hz.

Test Data

Environmental Conditions

Temperature:	27.5°C
Relative Humidity:	46 %
ATM Pressure:	100.7 kPa
Tester:	Blake
Test Date:	2019-08-02

Mode	\mathbf{f}_{c}	99% Occupied Bandwidth	26 dB Bandwidth	Note
	MHz	kHz	kHz	
DMO	815	20.842	23.848	
DIVIO	860	20.842	24.048	Part 90
TMO	815	21.042	24.248	Part 90
TWIO	860	21.042	24.248	

DMO:

Occupied Bandwidth -815 MHz

Report No.: RDG190627003-00C

Occupied Bandwidth -860 MHz

TMO:

Occupied Bandwidth -815 MHz

Report No.: RDG190627003-00C

Occupied Bandwidth -860 MHz

FCC §2.1051&§90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

FCC §2.1051 & §90.210

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at $100 \mathrm{kHz}$ for below $1 \mathrm{GHz}$, and $1 \mathrm{MHz}$ for above $1 \mathrm{GHz}$. Sufficient scans were taken to show any out of band emissions up to 10^{th} harmonic.

Test Data

Environmental Conditions

Temperature:	27.4°C
Relative Humidity:	41 %
ATM Pressure:	100.7 kPa
Tester:	Blake
Test Date:	2019-08-14

Test Mode: Transmitting

DMO

TMO:

815 MHz

Ref Lvl

1MAX

Fundamental

40.3 dBm

40.3 dB Offset

Stop 1 GHz

Report No.: RDG190627003-00C

Start 30 MHz

97 MHz/

FCC §2.1053& §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053, &§90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	27.5°C
Relative Humidity:	46 %
ATM Pressure:	100.7 kPa
Tester:	Lucy Lu
Test Date:	2019-08-17

Test Mode: Transmitting(Model: PT350 F5 was the worst):

30MHz - 10GHz:

Part 90:

	Substituted Method Receiver			ethod	A baobuto			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Frequency:815 MHz								
913.00	Н	27.77	-46.29	0.00	1.07	-47.36	-13.00	27.36
63.00	V	25.17	-41.30	-8.71	0.23	-50.24	-13.00	30.24
1630.00	Н	38.39	-66.03	10.39	1.29	-56.93	-13.00	43.93
1630.00	V	38.89	-65.47	10.39	1.29	-56.37	-13.00	43.37
2445.00	Н	37.09	-65.84	12.12	1.23	-54.95	-13.00	41.95
2445.00	V	36.47	-67.71	12.12	1.23	-56.82	-13.00	43.82
3260.00	Н	37.30	-64.05	12.30	1.56	-53.31	-13.00	40.31
3260.00	V	36.92	-63.60	12.30	1.56	-52.86	-13.00	39.86
4075.00	Н	36.76	-62.59	12.47	1.46	-51.58	-13.00	38.58
4075.00	V	36.60	-63.49	12.47	1.46	-52.48	-13.00	39.48
4890.00	Н	37.24	-59.55	13.09	1.46	-47.92	-13.00	34.92
4890.00	V	36.81	-59.79	13.09	1.46	-48.16	-13.00	35.16
5705.00	Н	37.17	-58.01	13.09	1.30	-46.22	-13.00	33.22
5705.00	V	36.47	-58.95	13.09	1.30	-47.16	-13.00	34.16
		•	Fre	equency:860	MHz	•		•
489.78	Н	24.12	-56.52	0.00	0.70	-57.22	-13.00	37.22
972.84	V	25.41	-43.65	0.00	1.17	-44.82	-13.00	24.82
1720.00	Н	38.96	-65.37	10.66	1.25	-55.96	-13.00	42.96
1720.00	V	39.65	-64.62	10.66	1.25	-55.21	-13.00	42.21
2580.00	Н	36.66	-65.98	12.23	1.28	-55.03	-13.00	42.03
2580.00	V	36.46	-67.35	12.23	1.28	-56.40	-13.00	43.40
3440.00	Н	37.24	-63.77	12.22	1.60	-53.15	-13.00	40.15
3440.00	V	37.39	-62.29	12.22	1.60	-51.67	-13.00	38.67
4300.00	Н	36.77	-61.90	12.96	1.50	-50.44	-13.00	37.44
4300.00	V	36.76	-62.45	12.96	1.50	-50.99	-13.00	37.99
5160.00	Н	37.36	-58.79	12.94	1.38	-47.23	-13.00	34.23
5160.00	V	36.82	-59.24	12.94	1.38	-47.68	-13.00	34.68
6020.00	Н	36.97	-57.62	13.52	1.40	-45.50	-13.00	32.50
6020.00	V	36.84	-57.69	13.52	1.40	-45.57	-13.00	32.57

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

TMO

IMO	Substituted Method			43.14				
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain Cable Loss	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
			Fre	equency:815 I	MHz			
656.62	Н	24.17	-53.96	0.00	0.86	-54.82	-13.00	34.82
476.57	V	24.57	-53.38	0.00	0.69	-54.07	-13.00	34.07
1630.00	Н	39.06	-65.36	10.39	1.29	-56.26	-13.00	43.26
1630.00	V	39.35	-65.01	10.39	1.29	-55.91	-13.00	42.91
2445.00	Н	37.05	-65.88	12.12	1.23	-54.99	-13.00	41.99
2445.00	V	37.58	-66.60	12.12	1.23	-55.71	-13.00	42.71
3260.00	Н	36.84	-64.51	12.30	1.56	-53.77	-13.00	40.77
3260.00	V	37.33	-63.19	12.30	1.56	-52.45	-13.00	39.45
4075.00	Н	37.15	-62.20	12.47	1.46	-51.19	-13.00	38.19
4075.00	V	36.88	-63.21	12.47	1.46	-52.20	-13.00	39.20
4890.00	Н	36.69	-60.10	13.09	1.46	-48.47	-13.00	35.47
4890.00	V	37.59	-59.01	13.09	1.46	-47.38	-13.00	34.38
5705.00	Н	37.33	-57.85	13.09	1.30	-46.06	-13.00	33.06
5705.00	V	36.82	-58.60	13.09	1.30	-46.81	-13.00	33.81
			Fre	quency:860	MHz			
210.42	Н	24.07	-61.73	0.00	0.49	-62.22	-13.00	42.22
183.26	V	24.62	-60.11	0.00	0.45	-60.56	-13.00	40.56
1720.00	Н	38.99	-65.34	10.66	1.25	-55.93	-13.00	42.93
1720.00	V	39.47	-64.80	10.66	1.25	-55.39	-13.00	42.39
2580.00	Н	37.27	-65.37	12.23	1.28	-54.42	-13.00	41.42
2580.00	V	37.51	-66.30	12.23	1.28	-55.35	-13.00	42.35
3440.00	Н	36.87	-64.14	12.22	1.60	-53.52	-13.00	40.52
3440.00	V	37.47	-62.21	12.22	1.60	-51.59	-13.00	38.59
4300.00	Н	37.44	-61.23	12.96	1.50	-49.77	-13.00	36.77
4300.00	V	37.42	-61.79	12.96	1.50	-50.33	-13.00	37.33
5160.00	Н	37.59	-58.56	12.94	1.38	-47.00	-13.00	34.00
5160.00	V	37.29	-58.77	12.94	1.38	-47.21	-13.00	34.21
6020.00	Н	37.39	-57.20	13.52	1.40	-45.08	-13.00	32.08
6020.00	V	37.53	-57.00	13.52	1.40	-44.88	-13.00	31.88

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055& §90.213

Test Procedure

requency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set from 85% to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Data

Environmental Conditions

Temperature:	27.5°C
Relative Humidity:	46 %
ATM Pressure:	100.7 kPa
Tester:	Blake
Test Date:	2019-08-15

Test Mode: Transmitting

	fc =815 MHz, 25 kHz						
Temerature	Voltage	Reading	Frequency Error	Limit			
°C	Vdc	MHz	ppm	ppm			
-30		815.000068	0.08				
-20		815.000048	0.06				
-10		815.000051	0.06				
0		815.000037	0.05				
10	3.85	814.999946	-0.07				
20		815.000000	0.00	2.5			
30		815.000064	0.08				
40		815.000052	0.06				
50		815.000069	0.08				
20	3.6	814.999968	-0.04				
20	4.35	815.000076	0.09				

	fc =860 MHz, 25 kHz						
Temerature	Voltage	Reading	Frequency Error	Limit			
°C	Vdc	MHz	ppm	ppm			
-30		859.999967	-0.04				
-20		859.999940	-0.07				
-10	1	859.999973	-0.03				
0		860.000024	0.03				
10	3.85	860.000039	0.05				
20		860.000080	0.09	2.5			
30		859.999943	-0.07				
40		859.999944	-0.07				
50		859.999933	-0.08				
20	3.6	859.999939	-0.07				
20	4.35	860.000041	0.05				

TMO:

	fc =815 MHz, 25 kHz						
Temerature	Voltage	Reading	Frequency Error	Limit			
°C	Vdc	MHz	ppm	ppm			
-30		814.999936	-0.08				
-20		814.999929	-0.09				
-10		815.000076	0.09				
0		814.999938	-0.08				
10	3.85	815.000037	0.05				
20		814.999940	-0.07	2.5			
30		814.999934	-0.08				
40		815.000067	0.08				
50		815.000064	0.08				
20	3.6	815.000066	0.08				
20	4.35	814.999970	-0.04				

	fc =860 MHz, 25 kHz						
Temerature	Voltage	Reading	Frequency Error	Limit			
℃	Vdc	MHz	ppm	ppm			
-30		859.999965	-0.04				
-20		859.999934	-0.08				
-10		859.999941	-0.07				
0]	859.999945	-0.06				
10	3.85	859.999920	-0.09				
20]	860.000065	0.08	2.5			
30]	859.999948	-0.06				
40		859.999948	-0.06				
50		859.999954	-0.05				
20	3.6	859.999965	-0.04				
20	4.35	859.999929	-0.08				

***** END OF REPORT *****