CLOSED HASHING

OPEN HASHING

Keep a list of all elements that hash to the same value.

Also known as **Separate Chaining**

Insert 6, 15, 23, 21 and 13 to a hash table of size m = 7

CLOSED HASHING

If a collision occurs, alternate cells are tried until an empty cell is found.

CLOSED HASHING

Also known as **Open Addressing**

CLOSED HASHING

 $h_0(x)$, $h_1(x)$, ... are tried in succession where

 $h_i(x) = (hash(x) + f(i)) mod hSize$

Linear Probing

Quadratic Probing

Double Hashing

(hFunction(x) +f(i))%hSize

LINEAR PROBING

f is a linear function of i.

f(i) = i

((key mod hSize) +i) mod hSize

0	
I	
2	
3	
4	
5	
6	
7	
8	
9	

((key mod hSize) +i) mod hSize

0	
I	
2	
3	
4	
5	
6	
7	
8	
9	89

((key mod hSize) +i) mod hSize

0	
I	
2	
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i) mod hSize

0	49
I	
2	
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i) mod hSize

0	49
I	58
2	
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i) mod hSize

0	49
I	58
2	69
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i) mod hSize

0	49
1	58
2	69
3	
4	
5	
6	
7	
8	18
9	89

Primary Clustering

Any key that hashes into the cluster will require several attempts to resolve the collision, and then it will add to the cluster.

QUADRATIC PROBING

f is a quadratic function of i.

$$f(i) = c_1 * i + c_2 i^2$$

QUADRATIC PROBING

f is a quadratic function of i.

$$f(i) = i^2$$

((key mod hSize) +i2) mod hSize

0	
I	
2	
3	
4	
5	
6	
7	
8	
9	89

((key mod hSize) +i2) mod hSize

0	
2	
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i2) mod hSize

0	49
I	
2	
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i2) mod hSize

0	49
I	
2	58
3	
4	
5	
6	
7	
8	18
9	89

((key mod hSize) +i2) mod hSize

0	49	
I		
2	58	-
3	69	-
4		
5		
6		
7		
8	18	-
9	89	-

QUADRATIC PROBING

Secondary Clustering

Elements that hash to the same position will probe the same alternate cells.

DOUBLE HASHING

If a collision occurs, apply a second hash function tox.

DOUBLE HASHING

$$f(i) = i*hash2(x)$$

DOUBLE HASHING

$$hash2(x) = R - (x\%R)$$

R = prime smaller than hSize.

((key%hSize) +i*h2(key))%hSizeh2(key) = 7 - (key%7)

0	
I	
2	
3	
4	
5	
6	
7	
8	
9	89

((key%hSize) +i*h2(key))%hSizeh2(key) = 7 - (key%7)

18
89

((key%hSize) +i*h2(key))%hSizeh2(key) = 7 - (key%7)

0	0	
2 3 4 5 6 49 7 8 18	U	
3 4 5 5 6 49 7 7 8 18	- 1	
4 5 6 49 7 8 18	2	
5 6 49 7 8 18	3	
6 49 7 8 18	4	
7 8 18	5	
8 18	6	49
	7	
9 89	8	18
	9	89

((key%hSize) +i*h2(key))%hSizeh2(key) = 7 - (key%7)

0	
I	
2	
3	58
4	
5	
6	49
7	
8	18
9	89

((key%hSize) +i*h2(key))%hSizeh2(key) = 7 - (key%7)

0	69
I	
2	
3	58
4	
5	
6	49
7	
8	18
9	89