İçindekiler

1	Z ve S tanım bölgesi	3
2	Ayrıklaştırma	9
3	Fark Denklemleri	19
4	Zaman Domeni Kriterleri	23
5	Z Tanım Bölgesinde Kök Eğrisi	31
6	Z Tanım Bölgesinde Kontrolör Tasarımı	35

2 İÇİNDEKİLER

Bölüm 1

Z ve S tanım bölgesi

Zaman tanım bölgesinden S tanım gölgesine dönüşüm

$$F(s) = \mathcal{L}{f(t)} = \sum_{k=0}^{\infty} f(kT)e^{-kTs}$$

= $f(0) + f(T)e^{-Ts} + f(2T)e^{-2Ts} + \cdots$ (1.1)

olarak verilmiştir. Zaman tanım bölgesinden Z tanım bölgesine geçiş ise

$$F(z) = \mathcal{Z}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)z^{-k}$$

= $f(0) + f(T)z^{-1} + f(2T)z^{-2} + \cdots$ (1.2)

şeklindedir. S ve Z tanım bölgesi dönüşümlerine dikkat edilirse

$$\mathcal{L}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)(e^{Ts})^{-k}$$

$$\mathcal{Z}\{f(t)\} = \sum_{k=0}^{\infty} f(kT)z^{-k}$$
(1.3)

ifadelerinden

$$z = e^{sT} (1.4)$$

ilişkisi elde edilir. Z dönüşümü için çizelge Çizelge 1.1 ile verilmiştir.

Zaman domeni	F(s)	F(z)
$-\delta(t)$	1	1
$\delta(t - kT)$	e^{-kTs}	z^{-k}
u(t) = 1	$\frac{1}{s}$	$\frac{z}{z-1}$
t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$
e^{-at}	$\frac{1}{s+a}$	
$1 - e^{-at}$	$\frac{a}{s(s+a)}$	$\frac{z}{z - e^{-aT}}$ $\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$
sin(wt)	$\frac{w}{s^2+w^2}$	$\frac{zsin(wT)}{(z-1)(z^2-2zcos(wT)+1)}$
cos(wt)	$\frac{s}{s^2+w^2}$	$\frac{z(z-\cos(wT))}{(z-1)(z^2-2z\cos(wT)+1)}$

Çizelge 1.1: S ve Z dönüşümü tablosu

1. S dönüşümü

$$\mathcal{L}\{1\} = \int_{t=0}^{\infty} e^{-st} dt$$

$$= \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty}$$

$$= \frac{e^{-s\infty}}{-s} - \frac{1}{-s}$$

$$= -\frac{1}{-s}$$

$$= \frac{1}{s}$$
(1.5)

olarak elde edilir. Z dönüşümü ise

$$\mathcal{Z}\{1\} = \sum_{t=0}^{\infty} z^{-t}
= 1 + z^{-1} + z^{-2} + z^{-3} + \cdots
= \frac{1}{1 - z^{-1}}, \quad |z| > 1
= \frac{z}{z - 1}, \quad |z| > 1$$
(1.6)

elde edilir.

2.

$$\int udv = uv - \int vdu \tag{1.7}$$

kullanarak u=t ve $dv=e^{-st}dt$ olmak üzere

$$dv = e^{-st}dt$$

$$\int dv = \int e^{-st}dt$$

$$v = \frac{e^{-st}}{-s}$$
(1.8)

ve dolayısıyla

$$\mathcal{L}\lbrace t\rbrace = \int_{t=0}^{\infty} t e^{-st} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} - \int_{t=0}^{\infty} \frac{e^{-st}}{-s} dt$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s} e^{-st} \Big|_{t=0}^{\infty}$$

$$= t \frac{e^{-st}}{-s} \Big|_{t=0}^{\infty} + \frac{1}{s^2}$$

$$= \frac{1}{s^2}$$

$$(1.9)$$

elde edilir. Z dönüşümü ise

$$\sum_{t=0}^{\infty} tz^{t-1} = 1 + 2z + 3z^2 + 4z^3 + \cdots$$

$$= \frac{1}{(1-z)^2}, \quad |z| < 1$$
(1.10)

yardımıyla

$$\mathcal{Z}{t} = \sum_{t=0}^{\infty} t T(z^{-1})^{t}
= Tz^{-1} \sum_{t=0}^{\infty} t(z^{-1})^{t-1}
= T \frac{z^{-1}}{(1-z^{-1})^{2}}, \quad |z| < 1
= T \frac{\frac{1}{z}}{(1-\frac{1}{z})^{2}}, \quad |z| < 1
= T \frac{\frac{1}{z}}{\frac{(z-1)^{2}}{z^{2}}}, \quad |z| < 1
= T \frac{z^{2}}{z(z-1)^{2}}, \quad |z| < 1
= \frac{Tz}{(z-1)^{2}}, \quad |z| < 1$$

olarak elde edilir.

1. sin(t) fonksiyonunu sürekli zaman ve ayrık zamanda çizdiriniz. Matlab kodu

```
T=0.5;
tvec=0:T:10;

f1=@(t)sin(t);
f1vec=f1(tvec);

figure(1); clf; hold on; grid on;
xlabel("Zaman(s)"); ylabel("y(t)"); title("sin(t)
    grafigi");
plot(0:0.01:10,f1(0:0.01:10),'k','LineWidth',2);
stem(tvec,f1(tvec),'r','LineWidth',2);
```

olarak verilmiştir. Şekil 1.1 ile elde edilen grafik verilmiştir.

2. $y = \delta(t)$ fonksiyonunun s tanım bölgesi ve z tanım bölgesi karşılığını elde ediniz.

```
syms t s z;
```


Şekil 1.1: sin(t) sürekli zaman ve ayrık zaman karşılaştırması

3.

$$G(s) = \frac{2}{s^3 + 4s^2 + 5s + 6} \tag{1.12}$$

ifadesini basit kesir toplamına çeviriniz.

4. $\int_{t=0}^{\infty} t e^{-st} dt$ ifadesini hesaplayınız.

```
Gss=t*exp(-s*t);
expr=int(Gss);
subs(expr,t,inf)-subs(expr,t,0)
```

Bölüm 2

Ayrıklaştırma

Türevin geometrik yorumu

$$\frac{dy(t)}{dt} \approx \frac{\Delta y}{\Delta t} \tag{2.1}$$

olmak üzere

$$\frac{dy(t)}{dt} \approx \frac{\Delta y}{\Delta t}$$

$$\approx \frac{y((k+1)T) - y(kT)}{(k+1)T - kT}$$

$$\approx \frac{y((k+1)T) - y(kT)}{T}$$
(2.2)

elde edilir. Ayrık bir sinyalin türevi ardışık değerler farkının örnekleme zamanına oranı ile hesaplanabilmektedir. Örneğin, $y(kT)=\sin(kT)$ ve T=0.1 olmak üzere

$$\frac{y((k+1)T) - y(kT)}{T} = 10(\sin((k+1)0.1) - \sin(0.1k))$$
 (2.3)

ve dolayısıyla

$$\{10\sin(0.1), 10(\sin(0.2) - \sin(0.1)), 10(\sin(0.3) - \sin(0.2)), \cdots \}$$

$$\{0.9983, 0.9884, 0.9685, \cdots \}$$

$$(2.4)$$

elde edilir. $y(kT) = \sin(kT)$ sinyalinin türevinin $\frac{d\sin(t)}{dt} = \cos(t)$ olduğu bilindiğinden

$$\left\{ \cos(0.1), \cos(0.2), \cos(0.3), \cdots \right\} \\
 \left\{ 0.9950, 0.9801, 0.9553, \cdots \right\}
 \tag{2.5}$$

elde edilir ve ayrık türev ile benzer değerler olduğu görülmektedir. Bu yaklaşıklığın türeve yakınsaması için örnekleme zamanı T daha küçük seçilmelidir.

$$\frac{dq(t)}{dt} = x \tag{2.6}$$

olmak üzere

$$\frac{dq(t)}{dt} = x$$

$$dq(t) = xdt$$

$$\int dq(t) = \int xdt$$

$$q(t) = \int xdt$$
(2.7)

elde edilir. Buradan hareketle,

$$\frac{\Delta q}{\Delta t} = x$$

$$\frac{q((k+1)T) - q(kT)}{(k+1)T - kT} = x$$

$$\frac{q((k+1)T) - q(kT)}{T} = x$$

$$q((k+1)T) - q(kT) = xT$$

$$q((k+1)T) - q(kT) = xT$$

$$q((k+1)T) = q(kT) + xT$$
(2.8)

ifadesi bulunur. Ayrık zamanda integral birikimli toplama karşılık gelmektedir. Bu karşılıklar Zero Order Hold(ZOH) ile elde edilmiştir. ZOH örnekleme zamanı boyunca değerlerin sabit olduğu varsayımına dayanmaktadır. Bu durum

$$x(t) = x(kT), \quad kT \le t \le (k+1)T \tag{2.9}$$

ile ifade edilebilir. ZOH için transfer fonksiyonu elde etmek amacıyla girişe $\delta(t)$ birim darbe fonksiyonu uygulanırsa çıkışında u(t)-u(t-T) elde edilir. Bu durumda S tanım bölgesinde çıkış ifadesi

$$\mathcal{L}\{u(t) - u(t - T)\} = \mathcal{L}\{u(t)\} - \mathcal{L}\{u(t - T)\}\$$

$$= \mathcal{L}\{u(t)\} - e^{-sT}\mathcal{L}\{u(t)\}\$$

$$= \frac{1}{s} - e^{-sT}\frac{1}{s}$$

$$= (1 - e^{-sT})\frac{1}{s}$$
(2.10)

şeklindedir. ZOH transfer fonksiyonu ile bir G(s) sistemi birlikte Z dönüşümü yapılmalıdır. Örneğin,

$$G(s) = \frac{1}{s+1} \tag{2.11}$$

sistemi ayrıklaştırılmak istensin. Bu durumda $G_{ZOH}(s)G(s)$ ayrıklaştırılmalıdır. Bu sebeple,

$$L(s) = G_{ZOH}(s)G(s) = \frac{1 - e^{-sT}}{s(s+1)}$$
(2.12)

ifadesi Z tanım bölgesine

$$\mathcal{Z}{L(s)} = \mathcal{Z}\left{\frac{1 - e^{-sT}}{s(s+1)}\right}
= \mathcal{Z}\left{1 - e^{-sT}\right} \mathcal{Z}\left{\frac{1}{s(s+1)}\right}
= (1 - z^{-1}) \left(\mathcal{Z}\left{\frac{1}{s} - \frac{1}{s+1}\right}\right)
= \left(1 - \frac{1}{z}\right) \left(\mathcal{Z}\left{\frac{1}{s}\right} - \mathcal{Z}\left{\frac{1}{s+1}\right}\right)
= \frac{z-1}{z} \left(\frac{z}{z-1} - \frac{z}{z-e^{-1}}\right)
= \left(1 - \frac{z-1}{z-e^{-1}}\right)
= \frac{1-e^{-1}}{z-e^{-1}}$$
(2.13)

olarak dönüstürülür.

First Order Hold(FOH) yöntemi ise

$$x(t) = x(kT) + \frac{t - kT}{T}(x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$
 (2.14)

olarak tanımlanır. Eşitliğin sağ tarafı t=kT için $x(kT),\,t=(k+0.5)T$ için

$$x(t) = x(kT) + \frac{t - kT}{T} (x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$

$$= x(kT) + \frac{kT + 0.5T - kT}{T} (x((k+1)T) - x(kT))$$

$$= x(kT) + 0.5(x((k+1)T) - x(kT))$$

$$= x(kT) + 0.5x((k+1)T) - 0.5x(kT)$$

$$= 0.5x((k+1)T) + 0.5x(kT)$$
(2.15)

ve t = (k+1)T için ise

$$x(t) = x(kT) + \frac{t - kT}{T} (x((k+1)T) - x(kT)), \quad kT \le t \le (k+1)T$$

$$x(t) = x(kT) + \frac{(k+1)T - kT}{T} (x((k+1)T) - x(kT))$$

$$x(t) = x(kT) + x((k+1)T) - x(kT)$$

$$x(t) = x((k+1)T)$$
(2.16)

olarak elde edilir. Görüldüğü üzere ZOH yönteminin aksine T süre boyunca değerler değişmektedir. FOH için birim darbe yanıtı

$$x(t) = \begin{cases} t + \frac{1}{T} & 0 \le t \le \frac{1}{T} \\ -t + \frac{1}{T} & \frac{1}{T} \le t \le \frac{2}{T} \\ 0 & t > \frac{2}{T} \end{cases}$$
 (2.17)

ve işlem kolaylığı açısından T=1 alınırsa

$$x(t) = (1-t)u(2-t) + 2tu(1-t)$$
(2.18)

şeklindedir. S dönüşümü sonucu

$$\mathcal{L}\{x(t)\} = \mathcal{L}\{(1-t)u(2-t)\} + \mathcal{L}\{2tu(1-t)\}$$

$$= \mathcal{L}\{(1-t)(1-u(t-2))\} + \mathcal{L}\{2t(1-u(t-1))\}$$

$$= \mathcal{L}\{(1-t)\} - \mathcal{L}\{(1-t)u(t-2)\} + \mathcal{L}\{2t\} - \mathcal{L}\{2tu(t-1)\}$$

$$= \mathcal{L}\{(1+t)\} + \mathcal{L}\{(t-1)u(t-2)\} - \mathcal{L}\{2tu(t-1)\}$$

$$= \mathcal{L}\{(1+t)\} + \mathcal{L}\{(t-1)u(t-2)\} - \mathcal{L}\{(2t-2+2)u(t-1)\}$$

$$= \mathcal{L}\{(1+t)\} + \mathcal{L}\{(t-1-1+1)u(t-2)\} - \mathcal{L}\{(2t-2+2)u(t-1)\}$$

$$= \mathcal{L}\{(1+t)\} + \mathcal{L}\{(t-2)u(t-2) + u(t-2)\} - \mathcal{L}\{(2t-2)u(t-1) + 2u(t-1)\}$$

$$= \frac{1}{s} + \frac{1}{s^2} + \frac{e^{-2s}}{s^2} + \frac{e^{-2s}}{s} - 2\frac{e^{-s}}{s^2} - \frac{2e^{-s}}{s}$$

$$= \frac{1 - 2e^{-s} + e^{-2s}}{s} + \frac{1 - 2e^{-s} + e^{-2s}}{s^2}$$

$$= \frac{(1 - e^{-s})^2}{s} + \frac{(1 - e^{-s})^2}{s^2}$$

$$= \frac{(1 - e^{-s})^2}{s^2} (s + 1)$$
(2.19)

elde edilir. FOH için transfer fonksiyonu

$$G_{FOH}(s) = \frac{(1 - e^{-s})^2 Ts + 1}{T^2 s^2 T}$$

$$= G_{ZOH}^2(s) \frac{Ts + 1}{T}$$
(2.20)

şeklindedir. Örneğin daha önce Denklem 2.11 ile verilen sistemi FOH yöntemi ve yine aynı örnekleme zamanı ile ayrıklaştırmak gerekirse

$$L(s) = \frac{1}{s+1} G_{FOH}(s)$$

$$= \frac{1}{s+1} \frac{(1-e^{-s})^2}{T^2s^2} \frac{Ts+1}{T}$$

$$= \frac{1}{s+1} \frac{(1-e^{-s})^2}{s^2} (s+1)$$

$$= \frac{(1-e^{-s})^2}{s^2}$$
(2.21)

ifadesi Z dönüşümüne tabi tutulmalıdır. Dolayısıyla,

$$G(z) = \mathcal{Z} \left\{ \frac{(1 - e^{-s})^2}{s^2} \right\}$$

$$= \mathcal{Z} \left\{ (1 - e^{-s})^2 \right\} \mathcal{Z} \left\{ \frac{1}{s^2} \right\}$$

$$= (1 - z^{-1})^2 \frac{Tz}{(z - 1)^2}$$

$$= \left(\frac{z - 1}{z} \right)^2 \frac{z}{(z - 1)^2}$$

$$= \frac{1}{z}$$
(2.22)

elde edilir. Görüldüğü üzere, birim gecikme elde edilmiştir.

1. $x(t) = \sin(t)$ fonksiyonunun türevini hesaplayıp çiziniz.

```
t=0:0.1:10;
xt=sin(t);
dxt=zeros(size(t));
T=t(2)-t(1);
```

```
for i=2:length(t)
          dxt(i)=(xt(i)-xt(i-1))/T;
end
figure(1);clf;hold on;grid on;xlabel("Zaman(s)");
    ylabel("x(t)");title("sin(t) ve turevi");
plot(t,xt,'k','LineWidth',2);
plot(t,dxt,'r','LineWidth',2);
```

Şekil 2.1'de sin(t) ve türevi gösterilmiştir.

Şekil 2.1: sin(t) ve türevinin karşılaştırılması(T = 0.1)

Şekil 2.2'de daha düşük bir örnekleme zamanı seçilmiştir ve bu sebeple gerek sinyal gerekse türevi düşük kalitededir.

2. $x(t) = e^{-t}$ sinyalinin integralini hesaplayınız ve çizdiriniz.

```
t=0:1:10;
xt=exp(-t);
q=zeros(size(t));
T=t(2)-t(1);
for i=2:length(t)
    q(i)=q(i-1)+xt(i-1)*T;
end
figure(1);clf;hold on;grid on;xlabel("Zaman(s)");
    ylabel("x(t)");title("sin(t) ve integrali");
```


Şekil 2.2: sin(t) ve türevinin karşılaştırılması(T=1)

```
plot(t,xt,'k','LineWidth',2);
plot(t,q,'r','LineWidth',2);
```

Şekil 2.3'de integral çizdirilmiştir.

Şekil 2.3: sin(t) ve integralinin karşılaştırılması(T=1)

3. ZOH yöntemini kullanarak T=1 olmak üzere x(kT)=1 sinyalini veri tutucunu çıkışını çizdiriniz.

```
T=1;
t=0:T:3;
xt=[1,2,-1,3];

tnew=0:0.01:4;
yt=zeros(size(tnew));
for i=1:length(t)
    for j=1:100
        yt(100*(i-1)+j)=xt(i);
    end
end
figure(1);clf;hold on;grid on;xlabel("Zaman(s)");
    ylabel("x(t)");title("ZOH ornegi");
stem(t,xt,'k','LineWidth',2);
plot(tnew,yt,'r','LineWidth',2);
```

Şekil 2.4'de ZOH işleminin sonucu gösterilmiştir.

Şekil 2.4: ZOH örneği

4. FOH yöntemini kullanarak T=1 olmak üzere x(kT)=1 sinyalini veri tutucunu çıkışını çizdiriniz.

```
T=1;
t=0:T:3;
xt=[1,2,-1,3];
```

Şekil 2.5'de FOH işleminin sonucu gösterilmiştir.

Şekil 2.5: FOH örneği

Bölüm 3

Fark Denklemleri

Örnek sistemin ZOH yöntemi ile elde edilen ve Denklem 2.13 ile verilen sistem için

$$G_{ZOH}(z) = \frac{1 - e^{-1}}{z - e^{-1}}$$

$$= \frac{(1 - e^{-1})z^{-1}}{1 - e^{-1}z^{-1}}$$

$$\frac{y(z)}{u(z)} = \frac{(1 - e^{-1})z^{-1}}{1 - e^{-1}z^{-1}}$$

$$y(z)(1 - e^{-1}z^{-1}) = \frac{(1 - e^{-1})z^{-1}u(z)}{1 - e^{-1}z^{-1}}$$

$$y(z) - y(z - 1)e^{-1} = (1 - e^{-1})u(z - 1)$$

$$y(z) = y(z - 1)e^{-1} + (1 - e^{-1})u(z - 1)$$

$$y(z) = 0.3679y(z - 1) + 0.6321u(z - 1)$$

elde edilir. Z tanım bölgesinde tanımlı transfer fonksiyonundan fark denklemine geçişe örnektir. Fark denklemleri programlama dilleri ile kolaylıkla gerçeklenebilmektedir. Benzer şekilde FOH yöntemi ile elde edilen ve Denklem 2.22 ile verilen ifade için

$$G_{FOH}(z) = \frac{1}{z}$$

$$\frac{y(z)}{u(z)} = z^{-1}$$

$$y(z) = u(z - 1)$$
(3.2)

elde edilir. Yay-Kütle-Damper sistemi için dinamikleri ifade eden denklem

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = u(t) \tag{3.3}$$

olarak verilmiştir. Bu diferansiyel denklem S tanım bölgesine dönüştürülürse

$$ms^{2}X(s) + bsX(s) + kX(s) = U(s)$$

$$(ms^{2} + bs + k)X(s) = U(s)$$

$$\frac{X(s)}{U(s)} = \frac{1}{ms^{2} + bs + k}$$
(3.4)

elde edilir. Denklem 3.3 ile verilen sistem için

$$m\frac{\Delta^{2}x}{(\Delta t)^{2}} + b\frac{\Delta x}{\Delta t} + kx(kT) = u(kT)$$

$$m\frac{\Delta(x(kT) - x((k-1)T))}{kT - (k-1)T} + b\frac{x(kT) - x((k-1)T)}{kT - (k-1)T} + kx(kT) = u(kT)$$

$$m\frac{\Delta x(kT) - \Delta x((k-1)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$(m + bT + kT^{2})x(kT) = (2m + bT)x((k-1)T) - mx((k-2)T) + T^{2}u(kT)$$

$$x(kT) = \frac{2m + bT}{m + bT + kT^{2}}x((k-1)T) - \frac{m}{m + bT + kT^{2}}x((k-2)T) + \frac{T^{2}}{m + bT + kT^{2}}u(kT)$$

$$(3.5)$$

Örnek olması için $m=1\,kg,\,b=1\,Ns/m,\,k=1\,Nm$ ve T=0.1 olmak üzere fark denklemi

$$x(kT) = 1.8919x((k-1)T) - 0.9009x((k-2)T) + 0.009009u(kT)$$
(3.6)

olarak elde edilir. Transfer fonksiyonundan yola çıkarak $\zeta = b\sqrt{m}/(2m\sqrt{k}), w_n = \sqrt{k}/\sqrt{m}$ ve $\phi = \cos^{-1}(\zeta)$ olmak üzere

$$G(z) = \mathcal{Z} \left\{ \frac{1 - e^{-0.1s}}{s(s^2 + s + 1)} \right\}$$

$$= \frac{z - 1}{z} \mathcal{Z} \left\{ \frac{1}{s(s^2 + s + 1)} \right\}$$

$$= \frac{z - 1}{z} \left(\frac{z}{z - 1} - \frac{1}{\sqrt{1 - \zeta^2}} \frac{\sqrt{1 - \zeta^2} z^2 + z e^{-\zeta w_n T} \sin(w_n \sqrt{1 - \zeta^2} T - \phi)}{z^2 - 2z e^{-\zeta w_n T} \cos(w_n \sqrt{1 - \zeta^2} T) + e^{-2\zeta w_n T}} \right)$$

$$= \frac{0.004833 z^3 - 0.0001585 z^2 - 0.004675 z}{z^4 - 2.895 z^3 + 2.8 z^2 - 0.9048 z}$$

$$= \frac{0.004833 z + 0.004675}{z^2 - 1.895 z + 0.9048}$$
(3.7)

elde edilir.

 Yay-kütle-damper sisteminin çıkış işaretini fark denklemlerini kullanarak elde ediniz.

```
m=1;
b=1;
k=1;
Gs=tf(1,[m b k]);
[y,t]=step(Gs,10);
T=0.1;
fac1=(2*m+b*T)/(m+b*T+k*T^2);
fac2=-m/(m+b*T+k*T^2);
fac3=T^2/(m+b*T+k*T^2);
tvec=0:T:10;
xt=zeros(size(tvec));
ut=ones(size(tvec));
for i=3:length(tvec)
    xt(i)=fac1*xt(i-1)+fac2*xt(i-2)+fac3*ut(i);
end
```

2. Yay-kütle-damper sisteminin çıkış işaretini ayrık transfer fonksiyonu kullanarak elde ediniz.

Şekil 3.1: Yay-kütle-damper sisteminin çıkış işareti

```
T=0.25;
Gz=c2d(tf(1,[m b k]),T);
[yz,tz]=step(Gz,10);
T=1;
Gz2=c2d(tf(1,[m b k]),T);
[yz2,tz2]=step(Gz2,10);
```


Şekil 3.2: Yay-kütle-damper sisteminin çıkış işareti

Bölüm 4

Zaman Domeni Kriterleri

Sürekli zamanda tanımlı birinci dereceden bir transfer fonksiyonu

$$G(s) = \frac{p}{s+p} \tag{4.1}$$

olarak verilsin. Birim basamak giriş için yanıt

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{p}{s+p} \cdot \frac{1}{s} \right\}$$

$$= \mathcal{L}^{-1} \left\{ \frac{1}{s} \right\} - \mathcal{L}^{-1} \left\{ \frac{1}{s+p} \right\}$$

$$= 1 - e^{-pt}$$

$$(4.2)$$

şeklinde hesaplanır. e^{-t} fonksiyonunun aldığı değerler için Çizelge 4.1 verilmiştir. Görüldüğü üzere 4.1 ile verilen sistemin yanıtı p değişkeninin değerinden bağımsız olarak 1 değerine yakınsamaktadır. 1 değerini aşmamaktadır. Dolayısıyla aşım değeri %0'dır. Sürekli halde oturduğu değerin %2 altı veya üstü ile tanımlanan %2'lik banda çıkmamak üzere girdiği zamana yerleşme zamanı denir. Bu tanımdan ve Çizelge 4.1'den yola çıkarak 4.1 ile verilen sistemin yerleşme zamanı $t_s=4\,s$ 'dir. p=1 olmaması durumunda zaman ekseni genişler veya daralır bu sebepten yerleşme zamanı

$$t_s = \frac{4}{p} \tag{4.3}$$

ile hesaplanır. İkinci dereceden bir sistem

$$G(s) = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2} \tag{4.4}$$

Zaman $t(s)$	Değer e^{-t}	$1 - e^{-t}$	
1	0.3679	0.6321	
2	0.1353	0.8647	
3	0.0498	0.9502	
4	0.0183	0.9817	
5	0.0067	0.9933	
6	0.0025	0.9975	

Çizelge 4.1: e^{-t} fonksiyonunun aldığı değerler

ile tanımlanmaktadır. Burada ζ sönüm oranı ve w_n doğal frekans olarak adlandırılmaktadır. İkinci dereceden polinomun kökleri bulunurken faydalanılan $\Delta = b^2 - 4ac$ hesaplanırsa,

$$\Delta = (2\zeta w_n)^2 - 4w_n^2$$

$$= 4\zeta^2 w_n^2 - 4w_n^2$$

$$= 4w_n^2(\zeta^2 - 1)$$
(4.5)

elde edilir ve çözümün tipini belirlemek için

$$\begin{cases} \text{gerçel k\"ok} & \Delta > 0 \quad \zeta > 1 \\ \text{çakışık k\"ok} & \Delta = 0 \quad \zeta = 1 \\ \text{karmaşık k\"ok} & \Delta < 0 \quad 0 < \zeta < 1 \end{cases} \tag{4.6}$$

kullanılabilir. $\zeta>1$ durumunda gerçel köklü çözüm olmasından dolayı sistem transfer fonksiyonu

$$G(s) = \frac{p_1 p_2}{(s + p_1)(s + p_2)} \tag{4.7}$$

olarak güncellenebilir. $p_1 >> p_2$ durumunda p_2 , $p_2 >> p_1$ durumunda p_1 yanıtın hızını ve davranışını belirler. $\zeta = 1$ olması durumunda yanıt birinci dereceden bir sisteme göre daha yavaş olmaktadır. Haricinde, $0 < \zeta < 1$ durumunda

$$t_s = \frac{4}{\zeta w_n}, \quad \text{Aşım} = 100 \cdot e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}} \tag{4.8}$$

ile hesaplanmaktadır. İkinci dereceden sistem yanıtı,

$$y(t) = 1 - e^{-\zeta w_n t} \left[\cos(\sqrt{1 - \zeta^2} w_n t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\sqrt{1 - \zeta^2} w_n t) \right]$$
(4.9)

ile ifade edilmektedir. Sinüzoidal terimler salınımlı olduklarından sadece $e^{-\zeta w_n t}$ terimi yerleşme zamanının hesabı için önemlidir ve birinci dereceden sistem ile aynı ifade kullanılmaktadır. Aşım için

$$\frac{dy(t)}{dt} = 0$$

$$\sin(\sqrt{1 - \zeta^2}w_n t^*)(\frac{\zeta}{\sqrt{1 - \zeta^2}} - \sqrt{1 - \zeta^2}w_n) = 0$$

$$\sin(\sqrt{1 - \zeta^2}w_n t^*) = 0$$

$$\sqrt{1 - \zeta^2}w_n t^* = \pi$$

$$t^* = \frac{\pi}{\sqrt{1 - \zeta^2}w_n}$$

$$(4.10)$$

yanıtta yerine yazılırsa

$$M_{p} = e^{-\zeta w_{n} t^{*}} \left[\cos(\sqrt{1 - \zeta^{2}} w_{n} t^{*}) + \frac{\zeta}{\sqrt{1 - \zeta^{2}}} \sin(\sqrt{1 - \zeta^{2}} w_{n} t^{*}) \right]$$

$$= e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^{2}}}} \left[\cos(\pi) + \frac{\zeta}{\sqrt{1 - \zeta^{2}}} \sin(\pi) \right]$$

$$= e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^{2}}}}$$

$$= e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^{2}}}}$$
(4.11)

elde edilir. Verilen yerleşme zamanı ve aşım formülleri kullanılarak sistem davranışı şekillendirilebilmektedir. Örneğin $t_s=1$ ve aşım %10 olacak şekilde sistem transfer fonksiyonu seçilirse

$$\zeta = -\frac{\log(0.1)}{\sqrt{\pi^2 + \log(0.1)^2}} = 0.591$$

$$w_n = \frac{4}{\zeta t_s} = \frac{4}{0.591} = 6.7682$$
(4.12)

elde edilir. Bu durumda,

$$G(s) = \frac{45.81}{s^2 + 8s + 45.81} \tag{4.13}$$

transfer fonksiyonu elde edilir.

$$G(s) = \frac{p}{s+p} \tag{4.14}$$

ve $1 \leq p \leq 5$ olmak üzere yerleşme zamanı ile sistem kutubu arasındaki ilişkiyi elde ediniz.

```
pvec=1:1:5;
tsvec=zeros(size(pvec));
for i=1:length(pvec)
    pval=pvec(i);
    Gs=tf(pval,[1 pval]);
    info=stepinfo(Gs);
    tsvec(i)=info.SettlingTime;
end
```


Şekil 4.1: Denklem ?? ile verilen sistem için yerleşme zamanı

2. $0 < \zeta \le 1$ ve $w_n = 2$ olmak üzere

$$G(s) = \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2} \tag{4.15}$$

sisteminin yerleşme zamanının formülünü elde ediniz.

```
wn=2;
zetavec=0.1:0.1:1;
tsvec=zeros(size(zetavec));
for i=1:length(zetavec)
    zetaval=zetavec(i);
    Gs=tf(wn^2,[1 2*zetaval*wn wn^2]);
    info=stepinfo(Gs);
    tsvec(i)=info.SettlingTime;
end
```


Şekil 4.2: Denklem 4.15 ile verilen sistem için yerleşme zamanı

3. Denklem 4.15 sistemi için $1 \le w_n \le 5$ ve $\zeta = 0.6$ değerleri için yerleşme zamanı formülünü elde ediniz.

```
wnvec=1:5;
zeta=0.6;
tsvec=zeros(size(wnvec));
for i=1:length(wnvec)
    wnval=wnvec(i);
    Gs=tf(wn^2,[1 2*zeta*wnval wnval^2]);
    info=stepinfo(Gs);
    tsvec(i)=info.SettlingTime;
end
```

4. Denklem 4.15 sistemi için $0 < \zeta < 1$ ve $w_n = 2$ değerleri için aşımın ifadesini elde ediniz.

```
wn=2;
zetavec=0.1:0.1:1;
osvec=zeros(size(zetavec));
for i=1:length(zetavec)
    zetaval=zetavec(i);
    Gs=tf(wn^2,[1 2*zetaval*wn wn^2]);
    info=stepinfo(Gs);
    osvec(i)=info.Overshoot;
end
```


Şekil 4.3: Denklem 4.15 ile verilen sistem için yerleşme zamanı

Şekil 4.4: Denklem 4.15ile verilen sistem için aşım

Bölüm 5

Z Tanım Bölgesinde Kök Eğrisi

Z tanım bölgesinde bir transfer fonksiyonu T=0.2 olmak üzere

$$G(z) = \frac{1}{z^3 + 0.4z^2 - 0.37z - 0.04}$$
 (5.1)

olarak verilmiştir. P kontrolör ile kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{kG(z)}{1 + kG(z)}$$

$$T(z) = \frac{\frac{z^3 + 0.4z^2 - 0.37z - 0.04}{k}}{1 + \frac{k}{z^3 + 0.4z^2 - 0.37z - 0.04}}$$

$$T(z) = \frac{k}{z^3 + 0.4z^2 - 0.37z - 0.04 + k}$$

$$(5.2)$$

olarak hesaplanır. Karakteristik polinomunda k değiştikçe köklerin aldığı değer Çizelge 5.1 ile verilmiştir. Her kutbun kendi hareketinin görselleştirildiği çizime **Kök Eğrisi** denir. Sisteme ait kök eğrisi Şekil 5.1 ile verilmiştir.

Şekil 5.1 ile verilen ayrık noktalar birleştirildiğinde Şekil 5.2 oluşmaktadır.

S tanım bölgesinde kararlılık sınırı s=jw ile elde edilmektedir ve bu durumda $\zeta=0$ 'dır. Dolayısıyla,

$$y(t) = 1 - e^{-\zeta w_n t} \left[\cos(\sqrt{1 - \zeta^2} w_n t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin(\sqrt{1 - \zeta^2} w_n t) \right]$$

= 1 - \cos(w_n t) (5.3)

elde edilmektedir. Görüldüğü üzere sistem yanıtı salınımlıdır. Girişe uygulanan birim

Çizelge 5.1 : k 'nın	$\operatorname{değişimine}$	$\ddot{\text{gore}}$	polinomun	köklerinin	yada	sistem	${\bf kutuplarının}$
değişimi							

k	\mathbf{z}_1	${f z_2}$	$\mathbf{z_3}$
0.1	-0.8909	$0.2455+0.0843\mathrm{i}$	0.2455 - 0.0843i
0.2	-0.9594	$0.2797+0.2975\mathrm{i}$	0.2797 - 0.2975i
0.3	-1.0160	$0.3080+0.4013\mathrm{i}$	0.3080 - 0.4013i
0.4	-1.0649	$0.3325+0.4770\mathrm{i}$	0.3325 - 0.4770i
÷	÷	:	÷

Şekil 5.1: Sisteme ait kök eğrisi

basamak sinyaline karşın sistem salınım yapmakta ve giriş sinyali değerine yakınsamamaktadır. Z tanım bölgesine $z=e^{sT}$ ile geçiş yapılırsa

$$z = e^{iwT}$$

$$z = e^{i\theta}$$

$$z = 1/\underline{\theta}$$
(5.4)

elde edilir. Dikkat edilirse açı değişmekte fakat genlik sabittir ve bu ifade birim

Şekil 5.2: Sisteme ait kök eğrisi

çemberi tanımlamaktadır. S tanım bölgesinde kutup z tanım bölgesinde

$$z = e^{(-\sigma \pm iw)T}$$

$$z = e^{-\sigma T} e^{\pm iwT}$$

$$z = e^{-\sigma T} / \pm wT$$
(5.5)

şeklinde yer alacaktır. Burada σ değeri yarıçapı belirlemektedir. S tanım bölgesinde baskın kutuplar z tanım bölgesinde birim çembere yakın kutuplar, baskın olmayan kutuplar ise birim çemberin merkezine yakın kutuplardır.

Bölüm 6

Z Tanım Bölgesinde Kontrolör Tasarımı

- 1. Geçici hal yanıtını şekillendirecek isterler dikkate alınarak s tanım bölgesinde baskın kutuplar seçilir.
- 2. Baskın kutuplar $z=e^{sT}$ ilişkisi ile z tanım bölgesine aktarılır.
- 3. Kontrol edilecek sistem Z tanım bölgesine geçirilir.
- 4. Kapalı çevrim transfer fonksiyonu elde edilir ve kutup atama yapılır.

Örnek sistem

$$G(s) = \frac{1}{s+2} \tag{6.1}$$

z tanım bölgesinde T = 0.2 olmak üzere

$$G(z) = \frac{0.1648}{z - 0.6703} \tag{6.2}$$

olarak elde edilmektedir. Yerleşme zamanı $t_s=2$ ve aşım %10 isterleri verilmiştir. Bu durumda $\zeta=0.591$ ve $w_n=6.7664$ seçilir. Seçilen sönüm oranı ve doğal frekans ile baskın kutuplar

$$s_{1,2} = -4 \pm 5.4575i \tag{6.3}$$

şeklinde hesaplanır. $z=e^{sT}$ ifadesi ile z tanım bölgesinde kutuplar

$$z_{1,2} = 0.2072 \pm 0.3987i \tag{6.4}$$

ve kutuplardan oluşturulacak polinom

$$p(z) = z^2 - 0.4144z + 0.2019 (6.5)$$

olarak hesaplanır. P tipi kontrolör ile kapalı çevrim transfer fonksiyonunun ifadesi

$$T(z) = \frac{kG(z)}{1 + kG(z)}$$

$$= \frac{k \frac{0.1648}{z - 0.6703}}{1 + k \frac{0.1648}{z - 0.6703}}$$

$$= \frac{k(0.1648)}{z - 0.6703 + k(0.1648)}$$

$$= \frac{0.1648k}{z + 0.1648k - 0.6703}$$
(6.6)

şeklindedir. Görüldüğü üzere karakteristik polinom birinci dereceden elde edilmiştir ve her iki isterlerin sağlanması mümkün değildir. Yerleşme zamanı sağlanmak istenirse,

$$s = -\frac{4}{t_c} = -4 \tag{6.7}$$

ve z tanım bölgesinde

$$z = e^{sT} = e^{-0.8} = 0.4493 (6.8)$$

elde edilir. Bu durumda P kontrolör

$$-0.1648k + 0.6703 = 0.4493$$

$$k = 1.341$$
(6.9)

şeklindedir. Kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{0.221}{z - 0.4493} \tag{6.10}$$

şeklindedir. Kapalı çevrim transfer fonksiyonuna ait basamak yanıtı Şekil 6.1 ile verilmiştir.

PD kontrolör transfer fonksiyonu

$$F(z) = K_p + K_d(1 - z^{-1})$$

$$= K_p + K_d(\frac{z - 1}{z})$$

$$= \frac{K_p z + K_d z - K_d}{z}$$

$$= \frac{(K_p + K_d)z - K_d}{z}$$
(6.11)

Şekil 6.1: P kontrol için kapalı çevrim basamak yanıtı

olmak üzere kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{F(z)G(z)}{1 + F(z)G(z)}$$

$$= \frac{\frac{(K_p + K_d)z - K_d}{z} \frac{0.1648}{z - 0.6703}}{1 + \frac{(K_p + K_d)z - K_d}{z} \frac{0.1648}{z - 0.6703}}$$

$$= \frac{0.1648(K_d + K_p)z - 0.1648 - K_d}{z^2 + (0.1648(K_p + K_d) - 0.6703)z - 0.1648K_d}$$
(6.12)

şeklindedir. Bu durumda tasarım problemi

$$0.1648(K_p + K_d) - 0.6703 = -0.4144$$

$$-0.1648K_d = 0.2019$$
(6.13)

ve çözüm ise $K_d = -1.2251$ ve $K_p = 2.7778$ olarak elde edilir. PD kontrolör

$$F(z) = \frac{1.553z + 1.225}{z} \tag{6.14}$$

ve kapalı çevrim transfer fonksiyonu ifadesi

$$T(z) = \frac{0.2559z + 0.2019}{z^2 - 0.4144z + 0.2019}$$
(6.15)

olarak elde edilir.

Şekil 6.2: PD kontrol için kapalı çevrim basamak yanıtı

PI kontrolörü

$$F(z) = K_p + \frac{K_i z}{z - 1}$$

$$= \frac{(K_p + K_i)z - K_p}{z - 1}$$
(6.16)

olarak tanımlanmıştır. Kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{F(z)G(z)}{1 + F(z)G(z)}$$

$$= \frac{\frac{(K_p + K_i)z - K_p}{z - 1} \frac{0.1648}{z - 0.6703}}{1 + \frac{(K_p + K_i)z - K_p}{z - 1} \frac{0.1648}{z - 0.6703}}$$

$$= \frac{0.1648(K_p + K_i)z - 0.1648K_p}{z^2 + (0.1648(K_p + K_i) - 1.6703)z + 0.6703 - 0.1648K_p}$$
(6.17)

şeklindedir. Tasarım problemi

$$0.1648(K_p + K_i) - 1.6703 = -0.4144$$

$$0.6703 - 0.1648K_p = 0.2019$$
(6.18)

ve çözüm ise $K_p=2.8423$ ve $K_i=4.7784$ şeklindedir. Bu durumda PI kontrolör

$$F(z) = \frac{7.621z - 2.842}{z - 1} \tag{6.19}$$

ve kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{1.256z - 0.4685}{z^2 - 0.4141z + 0.2018}$$
$$= \frac{1.2562(z - 0.373)}{z^2 - 0.4141z + 0.2018}$$
 (6.20)

olarak elde edilir.

Şekil 6.3: PI kontrol için kapalı çevrim basamak yanıtı

PID kontrolör

$$F(z) = K_p + \frac{K_i z}{z - 1} + K_d \frac{z - 1}{z}$$

$$= \frac{K_p(z^2 - z) + K_i z^2 + K_d (z - 1)^2}{z^2 - z}$$

$$= \frac{K_p z^2 - K_p z + K_i z^2 + K_d z^2 - 2K_d z + K_d}{z^2 - z}$$

$$= \frac{(K_p + K_i + K_d) z^2 - (K_p + 2K_d) z + K_d}{z^2 - z}$$
(6.21)

olarak tanımlanmıştır. Kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{F(z)G(z)}{1 + F(z)G(z)}$$

$$= \frac{\frac{(K_p + K_i + K_d)z^2 - (K_p + 2K_d)z + K_d}{z^2 - z} \frac{0.1648}{z - 0.6703}}{1 + \frac{(K_p + K_i + K_d)z^2 - (K_p + 2K_d)z + K_d}{z^2 - z} \frac{0.1648}{z - 0.6703}}$$

$$= \frac{0.1648((K_p + K_i + K_d)z^2 - (K_p + 2K_d)z + K_d)}{(z^2 - z)(z - 0.6703) + 0.1648((K_p + K_i + K_d)z^2 - (K_p + 2K_d)z + K_d)}$$
(6.22)

olmaktadır. Bu durumda tasarım problemi

$$0.1648(K_p + K_i + K_d) - 1.6703 = p - 0.4144$$

$$0.6703 - 0.1648(K_p + 2K_d) = 0.2019 - 0.4144p$$

$$0.1648K_d = 0.2019p$$
(6.23)

olarak verilir. Burada polinom dereceleri eşitlemek amacıyla tasarlanan polinom s+p terimi ile çarpılmıştır. Görüldüğü üzere bilinmeyen sayısı denklem sayısından fazla olması sebebiyle birden çok çözüm bulunmaktadır. Bu durum bir fırsata çevrilirse, isterleri sağlama konusunda bir eniyileştirme işlemi yapılabilir. Bunun için parametrik çözüm elde edilmelidir. $p,\ k_d$ ve k_i kalan parametre k_p cinsinden elde edilirse

$$p = 15.51k_p - 44.08$$

$$k_d = 19k_p - 54$$

$$k_i = 74.1k_p - 205.8$$
(6.24)

olarak bulunur. Kapalı çevrim sistemin kararlılığı açısından |p|<1 şartı sağlanmalıdır. Bu sebeple k_p için sınır değerler

$$15.51k_p - 44.08 = 1, \quad 15.51k_p - 44.08 = -1 \tag{6.25}$$

denklemleri çözülerek

$$2.7778 < k_p < 2.9067 \tag{6.26}$$

elde edilir. Bu aralıkta değerler tek tek seçilir ve kapalı çevrim transfer fonksiyonu ve elde edilen yerleşme zamanı ve aşım verileri ile

$$J(k_p) = \frac{|t_s - 1|}{2} + \frac{|os - 10|}{20}$$
(6.27)

amaç fonksiyonunda yerine yazılır. $J(k_p)$ 'yi en az yapan k_p değeri $k_p=2.7998$ olarak elde edilir. Bu durumda kontrolör parametreleri $k_d=-0.8067$ ve $k_i=1.6319$ ve dolayısıyla kontrolör transfer fonksiyonu

$$F(z) = \frac{3.625z^2 - 1.186z - 0.8067}{z^2 - z} \tag{6.28}$$

şeklindedir. Kapalı çevrim transfer fonksiyonu

$$T(z) = \frac{0.5975z^2 - 0.1956z - 0.133}{z^3 - 1.073z^2 + 0.4748z - 0.133}$$

$$= \frac{0.59754(z - 0.663)(z + 0.3357)}{(z - 0.6585)(z^2 - 0.4143z + 0.2019)}$$

$$\approx \frac{0.6014(z + 0.3357)}{z^2 - 0.4143z + 0.2019}$$
(6.29)

olarak hesaplanmaktadır. Görüldüğü üzere yakın bir kutup ve sıfır mevcuttur. Bu yakınlık bir götürmeye sebep olarak istenen kutup dağılımına daha yakın bir kapalı çevrim sistem elde edilmektedir. Basamak yanıtı Şekil 6.4 ile verilmiştir.

Görüldüğü üzere isterlere oldukça yakın değerler elde edilmiştir. Bunun sebebi, PID kontrolörün fazladan parametreye sahip olması ve bu parametre kullanılarak bir eniyileştirme işleminin mümkün olmasıdır.

Şekil 6.4: PID kontrol için kapalı çevrim basamak yanıtı