

University of MinhoSchool of Engineering

PhageLysin: Phage Endolysin Finder

TIAGO BAPTISTA1, HUGO OLIVEIRA2, AND ÓSCAR DIAS2

¹ UNIVERSITY OF MINHO, SCHOOL OF ENGINEERING (EEUM), PORTUGAL

² UNIVERSITY OF MINHO, CENTER OF BIOLOGICAL ENGINEERING (CEB), PORTUGAL

Contextualization, Aims, and Tasks

Bacterial multidrug resistance problem Phage endolysins as an alternative to antibiotics

- Review public datasets containing metagenomic data;
- Review annotation tools applied to phage genomes on metagenomic data;
- Build a positive dataset of phage endolysins and a negative dataset of proteins;
- Explore Machine Learning (ML) approaches to improve the accuracy of endolysins prediction;

• End goal: Development of a **machine learning (ML) tool** to provide a quick and reliable way to **identify endolysins** in new phage genomes and metagenomic sequencing data.

What are phage endolysins?

Positive dataset

NCBI Protein Database

endolysin[Protein Name]
AND txid28883[Organism]

9,495 sequences

Pandas DataFrame Columns:

- accession id
- sequence
- target (endolysin)
- 2,758 sequences

Pandas DataFrame Columns:

- accession_id
- sequence
- target (endolysin)

9,495 sequences

Pandas DataFrame 6,503 sequences

2,758 sequences

(default parameters)

6,503 sequences

Negative datasets

PhANNs structural proteins

547,911 sequences

- accession_id
- sequence
- target (not_endolysin)

57,389 sequences

Pandas DataFrame Columns:

- accession id
- sequence
- target (not_endolysin)547,911 sequences

Remove duplicates

Pandas DataFrame 173,791 sequences

57,389 sequences

(default parameters)

173,791 sequences

Negative datasets

Positive Dataset:

2,758 sequences

Pandas DataFrame Columns:

- accession id
- sequence
- target (not_endolysin)57,389 sequences

Random Sample
Equal rows positive dataset

Pandas DataFrame 2,758 sequences

Random Sample
Double rows positive dataset

Pandas DataFrame 5,516 sequences

Generate Physicochemical Descriptors with Propythia

Positive Dataset

2,758 sequences

Negative dataset (equal)

2,758 sequences

Negative dataset (double)

5,516 sequences

Pandas DataFrame

3 Columns:

- accession id
- sequence
- target(endolysin or not_endolysin)

Pandas DataFrame 28 Columns

Propythia Physicochemical Descriptors

Descriptor	Description		
length	length		
charge	charge		
chargedensity	charge density		
formula	calculates number of C, H, N, O and S of the protein sequence		
bond	total number of hydrogen, single, double and aromatic bonds		
mw	molecular weight		
gravy	gravy from a sequence (accordingly to biopython)		
aromacity	aromacity (accordingly to biopython)		
isoelectric point	isoelectric (accordingly to biopython)		
instability index	instability (accordingly to biopython)		
secondary structure	fraction of aa that tend to be in helix, turn or sheet		
molar extinction coefficient	value of reduced cysteins and oxidized (with disulfid bridges)		
flexibility	flexibility according to Vihinen, 1994 (return proteinsequencelenght-9 values) from biopython		
aliphatic index	aliphatic index of sequence (1 value) from modlamp		
boman index	boman index of sequence (1 value) from modlamp		
hydrophobic ratio	hydrophobic ratio from modlamp		

Dataset for ML

Positive Dataset

28 columns 2,758 sequences

Negative dataset (equal)

28 columns 2,758 sequences

Dataset (equal)

28 columns 5,516 sequences

Positive Dataset

28 columns 2,758 sequences

Negative dataset (double)

28 columns 5,516 sequences

Dataset (double)

28 columns 8,274 sequences

Dataset for ML

Dataset (equal)

28 columns 5,516 sequences

V

Set accession_id as dataframe index

Convert target values: endolysin => 1 not_endolysin => 0

Remove **sequence** column

Dataset (double)

28 columns 8,274 sequences

Final Dataset (equal)

26 columns target (0 and 1) 5,516 sequences

Final Dataset (double)

26 columns target (0 and 1) 8,274 sequences

Train and Test sets split

Dataset (equal)

26 columns target (0 and 1) 5,516 sequences **Dataset (double)**

26 columns target (0 and 1) 8,274 sequences

	other 25 columns (X)	target (y)
Train (70%)	X_train set 3,861 rows (equal) 5,791 rows (double)	y_train set 3,861 values (equal) 5,791 values (double)
Test (30%)	X_test set 1,655 rows (equal) 2,483 rows (double)	y_test set 1,655 values (equal) 2,483 values (double)

Cross-Validation and Hyperparameter Tuning

Model	Selector	Estimator
Logistic Regression (LogR)	15 features	penalty: I2
Random Forest (RF)	25 features	n_estimators: 100
Support Vector Machine (SVM)	20 features	C: 1.0
Decision Tree (DT)	20 features	criterion: gini
Artificial Neural Network (ANN)	15 features	hidden_layer_sizes: (10,)

Dataset **equal**

Model	Selector	Estimator
Logistic Regression (LogR)	20 features	penalty: I2
Random Forest (RF)	25 features	n_estimators: 50
Support Vector Machine (SVM)	20 features	C: 1.0
Decision Tree (DT)	20 features	criterion: entropy
Artificial Neural Network (ANN)	25 features	hidden_layer_sizes: (100,)

Dataset double

Confusion Matrices

y_test set (equal)
1,655 values

Confusion Matrices

y_test set (double)
2,483 values

Model	Accuracy	Precision	Recall	F1 Score
LogR	83%	81%	87%	84%
RF	91%	91%	91%	91%
SVM	81%	81%	81%	81%
DT	84%	85%	84%	84%
ANN	76%	71%	88%	79%

Dataset **equal**

Score Metrics

Model	Accuracy	Precision	Recall	F1 Score
LogR	85%	80%	74%	77%
RF	92%	91%	86%	88%
SVM	83%	79%	65%	71%
DT	87%	79%	82%	81%
ANN	77%	61%	85%	71%

Dataset double

Receiver Operating Characteristic (ROC) Curves and Area Under the Curves (AUCs)

Final Remarks and Future Perspectives

- Improved and more consistent results for the "equal" dataset;
- Random Forest was the best performing model, while ANN as the worst performing one.
- Generate all Propythia descriptors;
- Tuning of more hyperparameters;
- Use phage lytic protein and enzybiotics databases (PhaLP, PhalydDB, phiBIOTICS, EnzyBase, GMEnzy);
- Use other proteins to build the negative dataset;
- Incorporate a differentiation between gram-positive and gram-negative targeting endolysins;
- Explore approaches to identify endolysins in genes in **new phage genomes** and **metagenomic data**;
- Development of a ML tool to identify endolysins.