

fedora41

Report generated by Tenable Nessus $^{\mathsf{TM}}$

Sun, 31 Aug 2025 22:10:38 EDT

1	TABLE OF CONTENTS
Vulnerabilities by Host	
• 192.168.2.105	4

192.168.2.105

Scan Information

Start time: Sun Aug 31 22:07:46 2025 End time: Sun Aug 31 22:10:38 2025

Host Information

IP: 192.168.2.105

MAC Address: 00:15:5D:1A:01:26

OS: Linux Kernel 2.6

Vulnerabilities

12217 - DNS Server Cache Snooping Remote Information Disclosure

Synopsis

The remote DNS server is vulnerable to cache snooping attacks.

Description

The remote DNS server responds to queries for third-party domains that do not have the recursion bit set.

This may allow a remote attacker to determine which domains have recently been resolved via this name server, and therefore which hosts have been recently visited.

For instance, if an attacker was interested in whether your company utilizes the online services of a particular financial institution, they would be able to use this attack to build a statistical model regarding company usage of that financial institution. Of course, the attack can also be used to find B2B partners, web-surfing patterns, external mail servers, and more.

Note: If this is an internal DNS server not accessible to outside networks, attacks would be limited to the internal network. This may include employees, consultants and potentially users on a guest network or WiFi connection if supported.

See Also

http://cs.unc.edu/~fabian/course_papers/cache_snooping.pdf

Solution

Contact the vendor of the DNS software for a fix.

Risk Factor

Medium

CVSS v3.0 Base Score

5.3 (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N)

CVSS v2.0 Base Score

5.0 (CVSS2#AV:N/AC:L/Au:N/C:P/I:N/A:N)

Plugin Information

Published: 2004/04/27, Modified: 2020/04/07

Plugin Output

udp/53/dns

Nessus sent a non-recursive query for example.com and received 1 answer :

192.168.2.105

10114 - ICMP Timestamp Request Remote Date Disclosure

Synopsis It is possible to determine the exact time set on the remote host. Description The remote host answers to an ICMP timestamp request. This allows an attacker to know the date that is set on the targeted machine, which may assist an unauthenticated, remote attacker in defeating timebased authentication protocols. Timestamps returned from machines running Windows Vista / 7 / 2008 / 2008 R2 are deliberately incorrect, but usually within 1000 seconds of the actual system time. Solution Filter out the ICMP timestamp requests (13), and the outgoing ICMP timestamp replies (14). Risk Factor Low **VPR** Score 2.2 **EPSS Score** 0.0037 CVSS v2.0 Base Score 2.1 (CVSS2#AV:L/AC:L/Au:N/C:P/I:N/A:N) References CVE CVE-1999-0524 XRFF CWF:200 Plugin Information Published: 1999/08/01, Modified: 2024/10/07 Plugin Output

192.168.2.105

icmp/0

The difference between the local and remote clocks is -33382 seconds.

192.168.2.105 7

45590 - Common Platform Enumeration (CPE)

Synopsis

It was possible to enumerate CPE names that matched on the remote system.

Description

By using information obtained from a Nessus scan, this plugin reports CPE (Common Platform Enumeration) matches for various hardware and software products found on a host.

Note that if an official CPE is not available for the product, this plugin computes the best possible CPE based on the information available from the scan.

See Also

http://cpe.mitre.org/

https://nvd.nist.gov/products/cpe

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2010/04/21, Modified: 2025/07/14

Plugin Output

tcp/0

```
The remote operating system matched the following CPE:

cpe:/o:linux:linux_kernel -> Linux Kernel

Following application CPE's matched on the remote system:

cpe:/a:isc:bind:9.18.3 -> ISC BIND

cpe:/a:isc:bind:9.18.33 -> ISC BIND
```

10028 - DNS Server BIND version Directive Remote Version Detection

Synopsis

It is possible to obtain the version number of the remote DNS server.

Description

The remote host is running BIND or another DNS server that reports its version number when it receives a special request for the text 'version.bind' in the domain 'chaos'.

This version is not necessarily accurate and could even be forged, as some DNS servers send the information based on a configuration file.

Solution

It is possible to hide the version number of BIND by using the 'version' directive in the 'options' section in named.conf.

Risk Factor

None

References

XREF IAVT:0001-T-0583

Plugin Information

Published: 1999/10/12, Modified: 2022/10/12

Plugin Output

udp/53/dns

Version : 9.18.33

11002 - DNS Server Detection

Synopsis

A DNS server is listening on the remote host.

Description

The remote service is a Domain Name System (DNS) server, which provides a mapping between hostnames and IP addresses.

See Also

https://en.wikipedia.org/wiki/Domain_Name_System

Solution

Disable this service if it is not needed or restrict access to internal hosts only if the service is available externally.

Risk Factor

None

Plugin Information

Published: 2003/02/13, Modified: 2017/05/16

Plugin Output

tcp/53/dns

11002 - DNS Server Detection

Synopsis

A DNS server is listening on the remote host.

Description

The remote service is a Domain Name System (DNS) server, which provides a mapping between hostnames and IP addresses.

See Also

https://en.wikipedia.org/wiki/Domain_Name_System

Solution

Disable this service if it is not needed or restrict access to internal hosts only if the service is available externally.

Risk Factor

None

Plugin Information

Published: 2003/02/13, Modified: 2017/05/16

Plugin Output

udp/53/dns

72779 - DNS Server Version Detection

Synopsis

Nessus was able to obtain version information on the remote DNS server.

Description

Nessus was able to obtain version information by sending a special TXT record query to the remote host.

Note that this version is not necessarily accurate and could even be forged, as some DNS servers send the information based on a configuration file.

Solution

n/a

Risk Factor

None

References

XREF IAVT:0001-T-0030 XREF IAVT:0001-T-0937

Plugin Information

Published: 2014/03/03, Modified: 2024/09/24

Plugin Output

tcp/53/dns

```
DNS server answer for "version.bind" (over TCP) : 9.18.33 \label{eq:power_server}
```

35371 - DNS Server hostname.bind Map Hostname Disclosure

Synopsis

The DNS server discloses the remote host name.

Description

It is possible to learn the remote host name by querying the remote DNS server for 'hostname.bind' in the CHAOS domain.

Solution

It may be possible to disable this feature. Consult the vendor's documentation for more information.

Risk Factor

None

Plugin Information

Published: 2009/01/15, Modified: 2011/09/14

Plugin Output

udp/53/dns

The remote host name is : localhost-live

54615 - Device Type

Synopsis

It is possible to guess the remote device type.

Description

Based on the remote operating system, it is possible to determine what the remote system type is (eg. a printer, router, general-purpose computer, etc).

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2011/05/23, Modified: 2025/03/12

Plugin Output

tcp/0

Remote device type : general-purpose Confidence level : 65

35716 - Ethernet Card Manufacturer Detection

Synopsis The manufacturer can be identified from the Ethernet OUI. Description Each ethernet MAC address starts with a 24-bit Organizationally Unique Identifier (OUI). These OUIs are registered by IEEE. See Also https://standards.ieee.org/faqs/regauth.html http://www.nessus.org/u?794673b4 Solution n/a Risk Factor None Plugin Information Published: 2009/02/19, Modified: 2020/05/13 Plugin Output tcp/0

The following card manufacturers were identified: 00:15:5D:1A:01:26: Microsoft Corporation

86420 - Ethernet MAC Addresses

Synopsis

This plugin gathers MAC addresses from various sources and consolidates them into a list.

Description

This plugin gathers MAC addresses discovered from both remote probing of the host (e.g. SNMP and Netbios) and from running local checks (e.g. ifconfig). It then consolidates the MAC addresses into a single, unique, and uniform list.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2015/10/16, Modified: 2025/06/10

Plugin Output

tcp/0

The following is a consolidated list of detected MAC addresses:

- 00:15:5D:1A:01:26

84047 - Hyper-V Virtual Machine Detection

Synopsis

The remote host is a Hyper-V virtual machine.

Description

According to the MAC address of its network adapter, the remote host is a Microsoft Hyper-V virtual machine.

See Also

http://www.nessus.org/u?76f71a39

http://www.nessus.org/u?344a6879

Solution

Since it is physically accessible through the network, ensure that its configuration matches your organization's security policy.

Risk Factor

None

Plugin Information

Published: 2015/06/09, Modified: 2025/07/14

Plugin Output

tcp/0

The remote host is a Hyper-V virtual machine.

11219 - Nessus SYN scanner

Synopsis

It is possible to determine which TCP ports are open.

Description

This plugin is a SYN 'half-open' port scanner. It shall be reasonably quick even against a firewalled target.

Note that SYN scans are less intrusive than TCP (full connect) scans against broken services, but they might cause problems for less robust firewalls and also leave unclosed connections on the remote target, if the network is loaded.

Solution

Protect your target with an IP filter.

Risk Factor

None

Plugin Information

Published: 2009/02/04, Modified: 2025/07/14

Plugin Output

tcp/53/dns

Port 53/tcp was found to be open

11219 - Nessus SYN scanner

Synopsis

It is possible to determine which TCP ports are open.

Description

This plugin is a SYN 'half-open' port scanner. It shall be reasonably quick even against a firewalled target.

Note that SYN scans are less intrusive than TCP (full connect) scans against broken services, but they might cause problems for less robust firewalls and also leave unclosed connections on the remote target, if the network is loaded.

Solution

Protect your target with an IP filter.

Risk Factor

None

Plugin Information

Published: 2009/02/04, Modified: 2025/07/14

Plugin Output

tcp/5355

Port 5355/tcp was found to be open

19506 - Nessus Scan Information

Synopsis

This plugin displays information about the Nessus scan.

Description

This plugin displays, for each tested host, information about the scan itself:

- The version of the plugin set.
- The type of scanner (Nessus or Nessus Home).
- The version of the Nessus Engine.
- The port scanner(s) used.
- The port range scanned.
- The ping round trip time
- Whether credentialed or third-party patch management checks are possible.
- Whether the display of superseded patches is enabled
- The date of the scan.
- The duration of the scan.
- The number of hosts scanned in parallel.
- The number of checks done in parallel.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2005/08/26, Modified: 2025/06/25

Plugin Output

tcp/0

```
Information about this scan :

Nessus version : 10.9.3
Nessus build : 20023
Plugin feed version : 202508291506
Scanner edition used : Nessus Home
Scanner OS : LINUX
Scanner distribution : debian10-x86-64
Scan type : Normal
Scan name : fedora41
```

```
Scan policy used : Advanced Scan
Scanner IP : 192.168.2.101
Port scanner(s) : nessus_syn_scanner
Port range : default
Ping RTT : 159.666 ms
Thorough tests : no
Experimental tests : no
Scan for Unpatched Vulnerabilities : no
Plugin debugging enabled : no
Paranoia level : 1
Report verbosity : 1
Safe checks : yes
Optimize the test : yes
Credentialed checks : no
Patch management checks : None
Display superseded patches : yes (supersedence plugin did not launch)
CGI scanning : disabled
Web application tests : disabled
Max hosts : 256
Max checks : 5
Recv timeout : 5
Backports : None
Allow post-scan editing : Yes
Nessus Plugin Signature Checking: Enabled
Audit File Signature Checking : Disabled
Scan Start Date: 2025/8/31 22:07 EDT (UTC -04:00)
Scan duration : 167 sec
Scan for malware : no
```

209654 - OS Fingerprints Detected

Synopsis

Multiple OS fingerprints were detected.

Description

Using a combination of remote probes (TCP/IP, SMB, HTTP, NTP, SNMP, etc), it was possible to gather one or more fingerprints from the remote system. While the highest-confidence result was reported in plugin 11936, "OS Identification", the complete set of fingerprints detected are reported here.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2025/02/26, Modified: 2025/03/03

Plugin Output

tcp/0

```
Following OS Fingerprints were found

Remote operating system: Linux Kernel 2.6

Confidence level: 65

Method: SinFP

Type: general-purpose

Fingerprint: SinFP:
    P1:B10113:F0x12:W64240:00204ffff:M1460:
    P2:B10113:F0x12:W65160:00204ffff0402080affffffffff4445414401030307:M1460:
    P3:B00000:F0x00:W0:O0:M0
    P4:191303_7_p=5355
```

11936 - OS Identification

Synopsis

It is possible to guess the remote operating system.

Description

Using a combination of remote probes (e.g., TCP/IP, SMB, HTTP, NTP, SNMP, etc.), it is possible to guess the name of the remote operating system in use. It is also possible sometimes to guess the version of the operating system.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 2003/12/09, Modified: 2025/06/03

Plugin Output

tcp/0

Remote operating system : Linux Kernel 2.6
Confidence level : 65
Method : SinFP

The remote host is running Linux Kernel 2.6

25220 - TCP/IP Timestamps Supported

Synopsis
The remote service implements TCP timestamps.
Description
The remote host implements TCP timestamps, as defined by RFC1323. A side effect of this feature is that the uptime of the remote host can sometimes be computed.
See Also
http://www.ietf.org/rfc/rfc1323.txt
Solution
n/a
Risk Factor
None
Plugin Information
Published: 2007/05/16, Modified: 2023/10/17
Plugin Output
tcp/0

10287 - Traceroute Information

Synopsis

It was possible to obtain traceroute information.

Description

Makes a traceroute to the remote host.

Solution

n/a

Risk Factor

None

Plugin Information

Published: 1999/11/27, Modified: 2023/12/04

Plugin Output

udp/0

```
For your information, here is the traceroute from 192.168.2.101 to 192.168.2.105: 192.168.2.101
192.168.2.105

Hop Count: 1
```

192.168.2.105 25

66717 - mDNS Detection (Local Network)

Synopsis

It is possible to obtain information about the remote host.

Description

The remote service understands the Bonjour (also known as ZeroConf or mDNS) protocol, which allows anyone to uncover information from the remote host such as its operating system type and exact version, its hostname, and the list of services it is running.

This plugin attempts to discover mDNS used by hosts residing on the same network segment as Nessus.

Solution

Filter incoming traffic to UDP port 5353, if desired.

Risk Factor

None

Plugin Information

Published: 2013/05/31, Modified: 2013/05/31

Plugin Output

udp/5353/mdns

```
Nessus was able to extract the following information:

- mDNS hostname : fedora.local.

- Advertised services:
    o Service name : Passim-6050._cache._tcp.local.
    Port number : 27500
```

192.168.2.105 26