Clustering

Dr Ellis Patrick

School of Mathematics and Statistics, Usyd The Westmead Institute for Medical Research

Bioinformatics

As an interdisciplinary field of science, **bioinformatics** combines biology, computer science, information engineering, mathematics and statistics to analyze and interpret biological data.

- "Wikipedia"

Clustering 20,000 genes

Alizadeh, Ash A., et al. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling." *Nature* 403. 6769 (2000): 503.

Clustering 100,000 cells

Breast cancer

130 patients. Consider 10 variables:

Breast cancer

130 patients. Consider 10 variables:

Breast cancer

- 130 patients. Consider 10 variables:

Unsupervised clustering

K-means clustering

K-means clustering

Choose K and then...

- 1. Randomly assign a number, from 1 to K, to each of the observations. (These serve as initial cluster assignments for the observations).
- 2. Iterate until the cluster assignments stop changing.
 - a) For each of the K clusters, computer the cluster centroid. The kth cluster centroid is the vector of the p covariate means for the observations in the kth cluster.
 - b) Assign each observation to the cluster whose centroid is closest (where closest is deemed using Euclidean distance).

The University of Sydney

Code

```
km <- kmeans(x, 2)</pre>
```

km\$cluster

Hierarchical clustering

Hierarchical clustering

Hierarchical clustering methods produce a tree or dendrogram.

They avoid specifying how many clusters are appropriate by providing a partition for each k obtained from cutting the tree at some level.

The tree can be built in two distinct ways

- 1. bottom-up: agglomerative clustering.
- 2. top-down: divisive clustering.

Alizadeh, Ash A., et al. "Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling." *Nature* 403. 6769 (2000): 503.

Example 1

Cluster Dendrogram

Between cluster similarity measures

Single (minimum)

Complete (maximum)

Distance between centroids

Average (Mean) linkage

Example 2

Distance metrics

- Euclidean

If
$$\mathbf{x} = \{x_1, x_2\}$$
 and $\mathbf{y} = \{y_1, y_2\}$

$$D(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- Manhattan

Code

```
hc <- x |>
  dist(method = "euclidean") |>
  hclust(method = "complete")

cutree(hc, k = 2)
```

$$D(x, y) = \sqrt{\frac{(x_1 - x_2)^2}{scale_x^2} + \frac{(y_1 - y_2)^2}{scale_y^2}}$$

Code

```
hc <- x |>
scale() |>
dist(method = "euclidean") |>
hclust(method = "complete")

cutree(hc, k = 2)
```

The University of

Highly multiplexed in situ imaging cytometry

Clustering highly multiplexed imaging data

Elijah Willie

The University of Sydney $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Page 33

When and why?

When and why?

Some advantages of hierarchical clustering:

- 1. Don't need to know how many clusters you're after.
- 2. Can cut hierarchy at any level to get any number of clusters.
- 3. Easy to interpret hierarchy for particular applications.
- 4. Deterministic.

Some advantages of k-means clustering:

- 1. Can be much faster than hierarchical clustering, depending on data.
- 2. Nice theoretical framework.
- 3. Can incorporate new data and reform clusters easily.

Quantitative clustering

Sydney Precision Data Science Centre

Precision Bioinformatics Cluster

We share an interest in developing statistical and computational methodologies to tackle the foremost significant challenges posed by modern biology and medicine.

Find out more: http://www.maths.usyd.edu.au/bioinformatics/

Shiny apps: http://shiny.maths.usyd.edu.au/
Github: https://github.com/SydneyBioX

Thanks!