Two-treatment response adaptive Group-Sequential Allocation Design For Count data

Preet Paul, Souvik Das, Sahil Dutta

Presidency University, Kolkata

June 9, 2025

Introduction

• Underutilized Potential of GSDs: Group-sequential designs offer ethical and statistical efficiency but remain underused in clinical trials due to computational and analytical complexities—especially beyond normal or binary responses.

Introduction

- Underutilized Potential of GSDs: Group-sequential designs offer ethical and statistical efficiency but remain underused in clinical trials due to computational and analytical complexities—especially beyond normal or binary responses.
- Need for Count Data Models: Real-world medical studies increasingly yield count-type outcomes (e.g., seizure counts, readmissions), which are better modeled by Poisson-type distributions rather than classical ones.

Introduction

- Underutilized Potential of GSDs: Group-sequential designs offer ethical and statistical efficiency but remain underused in clinical trials due to computational and analytical complexities—especially beyond normal or binary responses.
- Need for Count Data Models: Real-world medical studies increasingly yield count-type outcomes (e.g., seizure counts, readmissions), which are better modeled by Poisson-type distributions rather than classical ones.
- Our Contribution: We develop a two-treatment response-adaptive GSD specifically for count data, bridging a significant methodological gap in biostatistics and clinical trial design.

• Purpose & Advantage: GSDs allow interim analyses and early stopping (for efficacy/futility), reducing patient burden and accelerating access to effective treatments—while maintaining control over Type I and II errors.

- Purpose & Advantage: GSDs allow interim analyses and early stopping (for efficacy/futility), reducing patient burden and accelerating access to effective treatments—while maintaining control over Type I and II errors.
- Efficiency: Compared to fixed-sample designs, GSDs improve statistical and ethical efficiency by lowering the Average Sample Number (ASN) needed to reach a decision.

- Purpose & Advantage: GSDs allow interim analyses and early stopping (for efficacy/futility), reducing patient burden and accelerating access to effective treatments—while maintaining control over Type I and II errors.
- Efficiency: Compared to fixed-sample designs, GSDs improve statistical and ethical efficiency by lowering the Average Sample Number (ASN) needed to reach a decision.
- Relevance for Count Data: Count outcomes naturally arise in settings such as: Number of seizures (epilepsy), Asthma attacks per patient, 30-day hospital re-admissions, Number of ulcers healed.

- Purpose & Advantage: GSDs allow interim analyses and early stopping (for efficacy/futility), reducing patient burden and accelerating access to effective treatments—while maintaining control over Type I and II errors.
- Efficiency: Compared to fixed-sample designs, GSDs improve statistical and ethical efficiency by lowering the Average Sample Number (ASN) needed to reach a decision.
- Relevance for Count Data: Count outcomes naturally arise in settings such as: Number of seizures (epilepsy), Asthma attacks per patient, 30-day hospital re-admissions, Number of ulcers healed.
- Proposed Approach: We develop a two-treatment response-adaptive GSD that dynamically updates patient allocation based on interim outcomes—ensuring both efficiency and ethical consideration.

• Let, X_k be the number of recurrences of the symptoms with treatment k; where k = A, B.

- Let, X_k be the number of recurrences of the symptoms with treatment k; where k = A, B.
- We assume, $X_k \sim Poisson(\lambda_k)$, k = A, B, independently

- Let, X_k be the number of recurrences of the symptoms with treatment k; where k = A, B.
- We assume, $X_k \sim Poisson(\lambda_k)$, k = A, B, independently
- Here, λ_k be the average number of recurrence of the symptoms with treatment 'k'.

- Let, X_k be the number of recurrences of the symptoms with treatment k; where k = A, B.
- We assume, $X_k \sim Poisson(\lambda_k)$, k = A, B, independently
- Here, λ_k be the average number of recurrence of the symptoms with treatment 'k'.
- In our study, we want to test,

$$H_0$$
: $A \leq B$ i.e. $\lambda_A \geq \lambda_B$

$${\rm against} ~~ H_1 ~:~ A \succ B {\rm ~i.e.} ~ \lambda_A < \lambda_B$$

• Let, N = Total sample size to be allowed to take.

- Let, N = Total sample size to be allowed to take.
- \bullet We consider maximum "K" interim look of the Group Sequential process.

- Let, N = Total sample size to be allowed to take.
- We consider maximum "K" interim look of the Group Sequential process.
- With equal observations, let, m_{A_k} be the number of patients recieving treatment A in k^{th} interim and m_{B_k} be the number of patients recieving treatment B in k^{th} interim such that $m_{A_k} + m_{B_k} = r = n_k = \text{size of } k^{th} \text{group } ; k = 1(1)K$.

- Let, N = Total sample size to be allowed to take.
- We consider maximum "K" interim look of the Group Sequential process.
- With equal observations, let, m_{A_k} be the number of patients recieving treatment A in k^{th} interim and m_{B_k} be the number of patients recieving treatment B in k^{th} interim such that $m_{A_k} + m_{B_k} = r = n_k = \text{size of } k^{th} \text{group } ; k = 1(1)K$.
- We also define, $n_{A_k} = m_{A_1} + m_{A_2} + \dots + m_{A_k} = \text{cumulative}$ sample size upto k^{th} group with treatment A and $n_{B_k} = m_{B_1} + m_{B_2} + \dots + m_{B_k} = \text{cumulative sample size}$ upto k^{th} group with treatment B; k = 1(1)K.

- Let, N = Total sample size to be allowed to take.
- We consider maximum "K" interim look of the Group Sequential process.
- With equal observations, let, m_{A_k} be the number of patients recieving treatment A in k^{th} interim and m_{B_k} be the number of patients recieving treatment B in k^{th} interim such that $m_{A_k} + m_{B_k} = r = n_k = \text{size of } k^{th} \text{group } ; k = 1(1)K$.
- We also define, $n_{A_k} = m_{A_1} + m_{A_2} + \dots + m_{A_k} = \text{cumulative}$ sample size upto k^{th} group with treatment A and $n_{B_k} = m_{B_1} + m_{B_2} + \dots + m_{B_k} = \text{cumulative sample size}$ upto k^{th} group with treatment B; k = 1(1)K.
- Now, we want to check for which transformation, the poisson data more effectively exhibits asymptotic normality.

- Let, N = Total sample size to be allowed to take.
- We consider maximum "K" interim look of the Group Sequential process.
- With equal observations, let, m_{A_k} be the number of patients recieving treatment A in k^{th} interim and m_{B_k} be the number of patients recieving treatment B in k^{th} interim such that $m_{A_k} + m_{B_k} = r = n_k = \text{size of } k^{th} \text{group } ; k = 1(1)K$.
- We also define, $n_{A_k} = m_{A_1} + m_{A_2} + \dots + m_{A_k} = \text{cumulative}$ sample size upto k^{th} group with treatment A and $n_{B_k} = m_{B_1} + m_{B_2} + \dots + m_{B_k} = \text{cumulative sample size}$ upto k^{th} group with treatment B; k = 1(1)K.
- Now, we want to check for which transformation, the poisson data more effectively exhibits asymptotic normality.
- Suppose $X \sim poisson(\lambda = 15)$

P-Values for Kolmogorov-Smrinov under suitable transformations

```
Transformation P_Value
OrgSample 0.0245251871
sqrt 0.0337430991
two_thirds 0.0877515261
log_of_sqrt 0.0005209938
```

Histograms of the Data under Different Transformations

Test Statistic

• Based on the Kolmogorov - Smrinov test results and the histogram, we will use the $g(X) = X^{2/3}$ transformation for our analyses

Test Statistic

- Based on the Kolmogorov Smrinov test results and the histogram, we will use the $g(X) = X^{2/3}$ transformation for our analyses
- Using CLT and delta method, the test statistic for k^{th} interim is given by,

$$Z_{k} = \frac{\bar{X}_{A_{k}}^{2/3} - \bar{X}_{B_{k}}^{2/3}}{\sqrt{\frac{4}{9}\hat{\lambda}_{k}^{1/3}(\frac{1}{n_{A_{k}}} + \frac{1}{n_{B_{k}}})}} \; ; \; k = 1, 2,, K$$

Test Statistic

- Based on the Kolmogorov Smrinov test results and the histogram, we will use the $g(X) = X^{2/3}$ transformation for our analyses
- Using CLT and delta method, the test statistic for k^{th} interim is given by,

$$Z_{k} = \frac{\bar{X}_{A_{k}}^{2/3} - \bar{X}_{B_{k}}^{2/3}}{\sqrt{\frac{4}{9}\hat{\lambda}_{k}^{1/3}(\frac{1}{n_{A_{k}}} + \frac{1}{n_{B_{k}}})}} \; ; \; k = 1, 2,, K$$

• where,

$$\hat{\lambda_k} = \frac{n_{A_k} \bar{X}_{A_k} + n_{B_k} \bar{X}_{B_k}}{n_{A_k} + n_{B_k}} \; ; \; k = 1, 2,, K$$

• Then, the sequential test procedure for first stage can be written as,

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;
- \Rightarrow We reject H_0 i.e. we accept H_1

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;
- \Rightarrow We reject H_0 i.e. we accept H_1
- (ii) If, $Z_k > b_k$;

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;
- \Rightarrow We reject H_0 i.e. we accept H_1
- (ii) If, $Z_k > b_k$;
- \Rightarrow We accept H_0

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;
- \Rightarrow We reject H_0 i.e. we accept H_1
- (ii) If, $Z_k > b_k$;
- \Rightarrow We accept H_0
- (ii) If, $a_k \le Z_k \le b_k$

- Then, the sequential test procedure for first stage can be written as,
- (i) If, $Z_k < a_k$;
- \Rightarrow We reject H_0 i.e. we accept H_1
- (ii) If, $Z_k > b_k$;
- \Rightarrow We accept H_0
- (ii) If, $a_k \leq Z_k \leq b_k$
- \Rightarrow inconclusive about acceptance of H_i ; i=0,1 and we go for the next stage.

• Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.

- Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.
- Here, the boundary points a_1, b_1 can be chosen from,

- Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.
- Here, the boundary points a_1, b_1 can be chosen from,
- (The Size Condition)

$$\alpha_k = P_{H_0}(a_1 \leq Z_1 \leq b_1, ..., Z_k \leq a_k)$$

- Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.
- Here, the boundary points a_1, b_1 can be chosen from,
- (The Size Condition)

$$\alpha_k = P_{H_0}(a_1 \leq Z_1 \leq b_1, ..., Z_k \leq a_k)$$

• (The Type-II error probability)

$$\beta_k = P_{H_1}(a_1 \le Z_1 \le b_1, ..., Z_k > b_k)$$

- Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.
- Here, the boundary points a_1, b_1 can be chosen from,
- (The Size Condition)

$$\alpha_k = P_{H_0}(a_1 \leq Z_1 \leq b_1, ..., Z_k \leq a_k)$$

• (The Type-II error probability)

$$\beta_k = P_{H_1}(a_1 \le Z_1 \le b_1, ..., Z_k > b_k)$$

• We will use K = 3 for our study.

- Let, $\alpha = \alpha_1 + \alpha_2 + \dots + \alpha_K =$ the total size of the test procedure and $\beta = \beta_1 + \beta_2 + \dots + \beta_K =$ the total type-II error probability spent in the test.
- Here, the boundary points a_1, b_1 can be chosen from,
- (The Size Condition)

$$\alpha_k = P_{H_0}(a_1 \leq Z_1 \leq b_1, ..., Z_k \leq a_k)$$

• (The Type-II error probability)

$$\beta_k = P_{H_1}(a_1 \le Z_1 \le b_1, ..., Z_k > b_k)$$

- We will use K = 3 for our study.
- So, we will consider $a_3 = b_3$ for the third stage.

 \bullet We consider, $n_i=n_{A_i}+n_{B_i}$; i=1,2,....,K

 \bullet We consider, $n_i=n_{A_i}+n_{B_i}$; i=1,2,....,K

•	ni	probability of terminating at i^{th} stage (p_i)
	n_1	$P(Z_1 < a_1)P(Z_1 > b_1) = 1 - P(a_1 \le Z_1 \le b_1)$
	n_2	$P[(a_1 \leq Z_1 \leq b_1) \cap \{(Z_2 < a_2) \cup (Z_2 > b_2)\}]$
	<i>n</i> ₃	$P_{H_0}[(a_1 \leq Z_1 \leq b_1) \cap (a_2 \leq Z_2 \leq b_2) \cap (Z_3 \leq b_3)]$

 \bullet We consider, $n_i=n_{A_i}+n_{B_i}$; i=1,2,....,K

•	ni	probability of terminating at i^{th} stage (p_i)
	n_1	$P(Z_1 < a_1)P(Z_1 > b_1) = 1 - P(a_1 \le Z_1 \le b_1)$
	n_2	$P[(a_1 \leq Z_1 \leq b_1) \ \cap \ \{(Z_2 < a_2) \cup (Z_2 > b_2)\}]$
	<i>n</i> ₃	$P_{H_0}[(a_1 \leq Z_1 \leq b_1) \ \cap \ (a_2 \leq Z_2 \leq b_2) \ \cap \ (Z_3 \leq b_3)]$

• Then, average sample number can be defined as,

$$ASN = E(N)$$

 \bullet We consider, $n_i=n_{A_i}+n_{B_i}$; i=1,2,....,K

•	n _i	probability of terminating at i^{th} stage (p_i)
	n_1	$P(Z_1 < a_1)P(Z_1 > b_1) = 1 - P(a_1 \le Z_1 \le b_1)$
	n_2	$P[(a_1 \le Z_1 \le b_1) \ \cap \ \{(Z_2 < a_2) \cup (Z_2 > b_2)\}]$
	<i>n</i> ₃	$P_{H_0}[(a_1 \leq Z_1 \leq b_1) \ \cap \ (a_2 \leq Z_2 \leq b_2) \ \cap \ (Z_3 \leq b_3)]$

• Then, average sample number can be defined as,

$$ASN = E(N)$$

• i.e.

$$ASN = n_1 p_1 + n_2 p_2 + n_3 p_3$$

• We fix the sample of each group $n_1 = n_2 = n_3 = 100$.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- We choose $\alpha = 0.05$ and $\beta = 0.05$ such that $\alpha_1 = 0.02$, $\alpha_2 = 0.02$, $\alpha_3 = 0.01$ and $\beta_1 = 0.015$, $\beta_2 = 0.015$, $\beta_3 = 0.02$, for now.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- We choose $\alpha = 0.05$ and $\beta = 0.05$ such that $\alpha_1 = 0.02$, $\alpha_2 = 0.02$, $\alpha_3 = 0.01$ and $\beta_1 = 0.015$, $\beta_2 = 0.015$, $\beta_3 = 0.02$, for now.
- We simulate 50 samples each from $poisson(\lambda_A)$ and $poisson(\lambda_B)$ for the first interim and carry out the procedure to find the boundary points.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- We choose $\alpha = 0.05$ and $\beta = 0.05$ such that $\alpha_1 = 0.02$, $\alpha_2 = 0.02$, $\alpha_3 = 0.01$ and $\beta_1 = 0.015$, $\beta_2 = 0.015$, $\beta_3 = 0.02$, for now.
- We simulate 50 samples each from $poisson(\lambda_A)$ and $poisson(\lambda_B)$ for the first interim and carry out the procedure to find the boundary points.
- Then, in second and third stage, we simulate data from $poisson(\hat{\lambda}_A)$ and $poisson(\hat{\lambda}_B)$; where $\hat{\lambda}_A = \bar{X}_{A_1}$ and $\hat{\lambda}_B = \bar{X}_{B_1}$.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$.
- so, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- We choose $\alpha = 0.05$ and $\beta = 0.05$ such that $\alpha_1 = 0.02$, $\alpha_2 = 0.02$, $\alpha_3 = 0.01$ and $\beta_1 = 0.015$, $\beta_2 = 0.015$, $\beta_3 = 0.02$, for now.
- We simulate 50 samples each from $poisson(\lambda_A)$ and $poisson(\lambda_B)$ for the first interim and carry out the procedure to find the boundary points.
- Then, in second and third stage, we simulate data from $poisson(\hat{\lambda}_A)$ and $poisson(\hat{\lambda}_B)$; where $\hat{\lambda}_A = \bar{X}_{A_1}$ and $\hat{\lambda}_B = \bar{X}_{B_1}$.
- We fix $\lambda_A = 2$.

ASN for Different $\lambda's$

```
lambda_B ASN_HO ASN_H1
       2.0
            291.3 287.8
2
       2.2 290.0 274.4
3
       2.4
           288.1 245.6
4
       2.6 282.6 201.4
5
       2.8 273.8 154.0
6
       3.0
           259.7
                 123.1
       3.2 237.3 107.3
8
       3.4 220.9 100.9
9
       3.6
           209.5 100.3
10
       3.8
           203.6 100.0
           197.4 100.0
11
       4.0
```

Different Choices of Error Spendings

• Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) ; k = 1, 2, 3 (keeping the total size $\alpha = 0.05$ and total type II probability $\beta = 0.05$ fixed) in multiple line diagrams against different $\lambda'_R s$.

Different Choices of Error Spendings

- Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) ; k = 1, 2, 3 (keeping the total size $\alpha = 0.05$ and total type II probability $\beta = 0.05$ fixed) in multiple line diagrams against different $\lambda'_B s$.
- We take the choices of (α, β) as,

Different Choices of Error Spendings

- Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) ; k = 1, 2, 3 (keeping the total size $\alpha = 0.05$ and total type II probability $\beta = 0.05$ fixed) in multiple line diagrams against different $\lambda'_B s$.
- We take the choices of (α, β) as,

	Choices	α_1	α_2	α_3	β_1	β	β_3
•	1	0.02	0.02	0.01	0.015	0.015	0.02
	2	0.03	0.01	0.01	0.02	0.02	0.01
	3	0.015	0.025	0.01	0.03	0.01	0.01
	4	0.015	0.015	0.02	0.025	0.01	0.015
	5	0.03	0.015	0.005	0.02	0.025	0.005

ASN for Different (α_k, β_k) and Different $\lambda's$

ASN Comparison Across Different Choices

ASN table for $\alpha = (0.03, 0.015, 0.005)$, $\beta = (0.02, 0.025, 0.005)$

```
lambda_B ASN_HO ASN_H1
       2.0
            287.9
                   284.9
2
       2.2 286.6 270.1
3
       2.4 282.2 236.2
4
       2.6 275.8 190.1
5
       2.8 261.4 142.6
6
       3.0
           239.4 118.3
       3.2 222.8 104.5
8
           210.1 100.5
       3.4
9
       3.6
            202.6
                  100.3
10
       3.8
           197.7
                  100.0
11
       4.0
            195.0
                   100.0
```

• Need for Adaptation: Traditional fixed-sample and classical GSDs lack flexibility and can be ethically limiting, especially when interim evidence suggests one treatment is clearly better.

- Need for Adaptation: Traditional fixed-sample and classical GSDs lack flexibility and can be ethically limiting, especially when interim evidence suggests one treatment is clearly better.
- Statistical and Ethical Integration: Adaptive GSD blends sequential testing with evolving allocation rules, reducing Average Sample Number (ASN) while ethically favoring superior treatments.

- Need for Adaptation: Traditional fixed-sample and classical GSDs lack flexibility and can be ethically limiting, especially when interim evidence suggests one treatment is clearly better.
- Statistical and Ethical Integration: Adaptive GSD blends sequential testing with evolving allocation rules, reducing Average Sample Number (ASN) while ethically favoring superior treatments.
- Dynamic Allocation: Instead of static equal randomization, treatment probabilities are updated based on accumulating evidence, ensuring more patients receive the potentially better treatment over time.

- Need for Adaptation: Traditional fixed-sample and classical GSDs lack flexibility and can be ethically limiting, especially when interim evidence suggests one treatment is clearly better.
- Statistical and Ethical Integration: Adaptive GSD blends sequential testing with evolving allocation rules, reducing Average Sample Number (ASN) while ethically favoring superior treatments.
- Dynamic Allocation: Instead of static equal randomization, treatment probabilities are updated based on accumulating evidence, ensuring more patients receive the potentially better treatment over time.
- **Practical Impact:** Enhances patient welfare, improves trial efficiency, and maintains rigorous Type I/II error control—especially vital in trials involving serious or life-threatening conditions.

Entry Stage Adaptive Group Sequential Design

• In the first stage, we simulate 50 samples X_{A_1} from $poisson(\lambda_A)$ and 50 samples X_{B_1} from $poisson(\lambda_B)$ and we carry out the sequential test procedure for first stage as described in the group sequential design.

Entry Stage Adaptive Group Sequential Design

- In the first stage, we simulate 50 samples X_{A_1} from $poisson(\lambda_A)$ and 50 samples X_{B_1} from $poisson(\lambda_B)$ and we carry out the sequential test procedure for first stage as described in the group sequential design.
- In second stage, we simulate 50 samples X_{A_2} from $poisson(\hat{\lambda}_A)$ and 50 samples X_{B_2} from $poisson(\hat{\lambda}_B)$ and carry out GSD; where,

$$\hat{\lambda}_A = \bar{X}_{A_1} = \frac{1}{50} \sum_{j=1}^{50} X_{A_1}^{(j)} \text{ and } \hat{\lambda}_B = \bar{X}_{B_1} = \frac{1}{50} \sum_{j=1}^{50} X_{B_1}^{(j)}$$

Entry Stage Adaptive Group Sequential Design

- In the first stage, we simulate 50 samples X_{A_1} from $poisson(\lambda_A)$ and 50 samples X_{B_1} from $poisson(\lambda_B)$ and we carry out the sequential test procedure for first stage as described in the group sequential design.
- In second stage, we simulate 50 samples X_{A_2} from $poisson(\hat{\lambda}_A)$ and 50 samples X_{B_2} from $poisson(\hat{\lambda}_B)$ and carry out GSD; where,

$$\hat{\lambda}_A = \bar{X}_{A_1} = \frac{1}{50} \sum_{j=1}^{50} X_{A_1}^{(j)} \text{ and } \hat{\lambda}_B = \bar{X}_{B_1} = \frac{1}{50} \sum_{j=1}^{50} X_{B_1}^{(j)}$$

• In third stage, we simulate 50 samples X_{A_3} from $poisson(\hat{\lambda}_A^*)$ and 50 samples X_{B_3} from $poisson(\hat{\lambda}_B^*)$ and carry out GSD; where,

$$\hat{\lambda_A^*} = \bar{X}_{A_2} = \frac{1}{50} \sum_{i=1}^{50} X_{B_1}^{(j)} \text{ and } \hat{\lambda_B^*} = \bar{X}_{B_2} = \frac{1}{50} \sum_{i=1}^{50} X_{B_2}^{(j)}$$

ASN table for Entry Stage Adaptive Group Sequential Design

```
lambda_B ASN_HO ASN_H1
        2.0 289.23 283.74
2
        2.2 288.14 262.65
3
        2.4 278.54 223.19
4
        2.6 251.82 175.71
5
        2.8 218.46 136.37
6
        3.0 199.60 112.70
        3.2 195.02 102.83
8
        3.4 195.02 100.67
9
        3.6 195.02 100.10
10
        3.8 195.02 100.04
11
        4.0 195.02 100.02
```

Comparison of ASN between Non-Adaptive and Entry Stage Adaptive GSD For different λ_B

Comparison between GSD and Adaptive GSD

• In such designs, allocation probabilities are adjusted at each interim stage based on the accumulating evidence.

- In such designs, allocation probabilities are adjusted at each interim stage based on the accumulating evidence.
- Specifically: As the trial progresses and evidence accumulates in favor of Treatment A, the randomization scheme is adaptively modified to assign more patients to Treatment A and fewer to Treatment B.

- In such designs, allocation probabilities are adjusted at each interim stage based on the accumulating evidence.
- Specifically: As the trial progresses and evidence accumulates in favor of Treatment A, the randomization scheme is adaptively modified to assign more patients to Treatment A and fewer to Treatment B.
- This ensures that more patients receive the better treatment, enhancing the ethical integrity of the trial without sacrificing statistical rigor.

- In such designs, allocation probabilities are adjusted at each interim stage based on the accumulating evidence.
- Specifically: As the trial progresses and evidence accumulates in favor of Treatment A, the randomization scheme is adaptively modified to assign more patients to Treatment A and fewer to Treatment B.
- This ensures that more patients receive the better treatment, enhancing the ethical integrity of the trial without sacrificing statistical rigor.
- Here, we have discussed two methods of allocating treatments in fully adaptive group sequential design.

• In our scenario, the alternative hypothesis propose treatment A is superior than the treatment B.

- In our scenario, the alternative hypothesis propose treatment A is superior than the treatment B.
- Then for ethical purpose, when we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k;k=1,2,...,K)$ patient with higher probability.

- In our scenario, the alternative hypothesis propose treatment A is superior than the treatment B.
- Then for ethical purpose, when we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k;k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A

- In our scenario, the alternative hypothesis propose treatment A is superior than the treatment B.
- Then for ethical purpose, when we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k;k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A
- We propose,

$$R_A = \frac{\lambda_B}{\lambda_A + \lambda_B}$$

- In our scenario, the alternative hypothesis propose treatment A is superior than the treatment B.
- Then for ethical purpose, when we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k;k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A
- We propose,

$$R_A = \frac{\lambda_B}{\lambda_A + \lambda_B}$$

• where, $\lambda_A < \lambda_B \Rightarrow$ treatment A is better than treatment B

Allocation Procedure

• We generate few samples (say, 4) $X_{A_k}^{[4]} = \left(X_{A_k}^{(1)}, X_{A_k}^{(2)}, X_{A_k}^{(3)}, X_{A_k}^{(4)}\right) \text{ from } poisson(\lambda_{A_k}) \text{ and same number of samples } X_{B_k}^{[4]} \text{ from } poisson(\lambda_{B_k}) \text{ ; } k = 1, 2, ..., K$

- We generate few samples (say, 4) $X_{A_k}^{[4]} = (X_{A_k}^{(1)}, X_{A_k}^{(2)}, X_{A_k}^{(3)}, X_{A_k}^{(4)}) \text{ from } poisson(\lambda_{A_k}) \text{ and same number of samples } X_{B_k}^{[4]} \text{ from } poisson(\lambda_{B_k}) \text{ ; } k = 1, 2, ..., K$
- We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))

- We generate few samples (say, 4) $X_{A_k}^{[4]} = (X_{A_k}^{(1)}, X_{A_k}^{(2)}, X_{A_k}^{(3)}, X_{A_k}^{(4)}) \text{ from } poisson(\lambda_{A_k}) \text{ and same number of samples } X_{B_k}^{[4]} \text{ from } poisson(\lambda_{B_k}) \text{ ; } k = 1, 2, ..., K$
- We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- Then, if $r_{i_k} \leq R_{A_k}^{(i-1)}$, we draw $X_{A_k}^{(i)}$ from $poisson(\lambda_{A_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K

- We generate few samples (say, 4) $X_{A_k}^{[4]} = \left(X_{A_k}^{(1)}, X_{A_k}^{(2)}, X_{A_k}^{(3)}, X_{A_k}^{(4)}\right) \text{ from } poisson(\lambda_{A_k}) \text{ and same number of samples } X_{B_k}^{[4]} \text{ from } poisson(\lambda_{B_k}) \text{ ; } k = 1, 2, ..., K$
- We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- Then, if $r_{i_k} \leq R_{A_k}^{(i-1)}$, we draw $X_{A_k}^{(i)}$ from $poisson(\lambda_{A_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K
- otherwise, we draw $X_{B_k}^{(i)}$ from $poisson(\lambda_{B_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K

ASN Table for Fully Adaptive GSD under Adaptive Allocation (R_A)

	lambda_B	ASN_HO	ASN_H1	RA	Prop_A	Prop_A_SE
1	2.0	289.1	282.9	0.5063556	0.5053500	0.1340708
2	2.2	288.9	277.2	0.5212328	0.5203600	0.1304991
3	2.4	289.1	276.9	0.5356348	0.5329733	0.1296204
4	2.6	288.8	269.6	0.5501091	0.5482433	0.1368455
5	2.8	288.2	269.4	0.5658189	0.5615400	0.1271016
6	3.0	288.5	262.1	0.5774070	0.5726267	0.1283543
7	3.2	287.3	255.0	0.5907565	0.5841400	0.1251406
8	3.4	286.4	250.6	0.6090878	0.6012033	0.1220593
9	3.6	288.2	237.5	0.6184434	0.6081033	0.1281298
10	3.8	282.7	233.6	0.6287941	0.6201900	0.1185039
11	4.0	284.2	214.3	0.6432668	0.6331767	0.1211721

• In the response adaptive allocation as described in the previous part, we can clearly see the RA values and the proportion of patients receiving treatment A (Prop(A)) is increasing as we move away from the null.

- In the response adaptive allocation as described in the previous part, we can clearly see the RA values and the proportion of patients receiving treatment A (Prop(A)) is increasing as we move away from the null.
- But, we are still interested in some better choices of R_A , so that we can have more increase in the Prop(A).

- In the response adaptive allocation as described in the previous part, we can clearly see the RA values and the proportion of patients receiving treatment A (Prop(A)) is increasing as we move away from the null.
- But, we are still interested in some better choices of R_A , so that we can have more increase in the Prop(A).
- So, we introduce another version of R_A (say, R_A^*); which can be defined as follows,

$$R_A^* = P(X_A < X_B) + (\frac{1}{2}) \times P(X_A = X_B)$$

- In the response adaptive allocation as described in the previous part, we can clearly see the RA values and the proportion of patients receiving treatment A (Prop(A)) is increasing as we move away from the null.
- But, we are still interested in some better choices of R_A , so that we can have more increase in the Prop(A).
- So, we introduce another version of R_A (say, R_A^*); which can be defined as follows,

$$R_A^* = P(X_A < X_B) + (\frac{1}{2}) \times P(X_A = X_B)$$

• Here, the first term $P(X_A < X_B)$ allocates positive probability when the treatment A is perform better than the treatment B; and the second term $(\frac{1}{2}) \times P(X_A = X_B)$ allocates equal probabilities when treatment A and treatment B performs similar.

• we generate few samples (say, 4) $X_{A_k}^{[4]}$ from $poisson(\lambda_{A_k})$ and same number of samples $X_{B_k}^{[4]}$ from $poisson(\lambda_{B_k})$; k = 1, 2, ..., K

- we generate few samples (say, 4) $X_{A_k}^{[4]}$ from $poisson(\lambda_{A_k})$ and same number of samples $X_{B_k}^{[4]}$ from $poisson(\lambda_{B_k})$; k = 1, 2, ..., K
- We draw a random number say r_{i_k} ($i=9,...,n_k$; k=1,2,,,,K) from 0 to 1 (i.e. we generate a sample from Uniform(0,1))

- we generate few samples (say, 4) $X_{A_k}^{[4]}$ from $poisson(\lambda_{A_k})$ and same number of samples $X_{B_k}^{[4]}$ from $poisson(\lambda_{B_k})$; k = 1, 2, ..., K
- We draw a random number say r_{i_k} ($i=9,...,n_k$; k=1,2,...,K) from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- The R_A^* is to be calculated empirically.

- we generate few samples (say, 4) $X_{A_k}^{[4]}$ from $poisson(\lambda_{A_k})$ and same number of samples $X_{B_k}^{[4]}$ from $poisson(\lambda_{B_k})$; k = 1, 2, ..., K
- We draw a random number say r_{i_k} ($i=9,...,n_k$; k=1,2,...,K) from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- \bullet The R_A^* is to be calculated empirically.
- We simulate 50 samples from $poisson(\lambda_{A_k})$ and 50 samples from $poisson(\lambda_{B_k})$.

- we generate few samples (say, 4) $X_{A_k}^{[4]}$ from $poisson(\lambda_{A_k})$ and same number of samples $X_{B_k}^{[4]}$ from $poisson(\lambda_{B_k})$; k = 1, 2, ..., K
- We draw a random number say r_{i_k} ($i=9,...,n_k$; k=1,2,...,K) from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- The R_A^* is to be calculated empirically.
- We simulate 50 samples from $poisson(\lambda_{A_k})$ and 50 samples from $poisson(\lambda_{B_k})$.
- So, we get total 2500 pair of observations $(X_{A_{\iota}}^{(i)}, X_{B_{\iota}}^{(j)})$.

• Then, we can calculate,

$$P(X_{A_k} < X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} < X_{B_k}^{(j)}}{2500}$$
; $i, j = 1(1)50$; $k = 1(1)K$

and

$$P(X_{A_k} = X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} = X_{B_k}^{(j)}}{2500} \; ; i,j = 1 \\ (1)50; \; k = 1 \\ (1)K$$

• Then, we can calculate,

$$P(X_{A_k} < X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} < X_{B_k}^{(j)}}{2500}$$
; $i, j = 1(1)50$; $k = 1(1)K$

and

$$P(X_{A_k} = X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} = X_{B_k}^{(j)}}{2500}$$
; $i, j = 1(1)50$; $k = 1(1)K$

• Then, if $r_{i_k} \leq R_{A_k}^{*(i-1)}$, we draw $X_{A_k}^{(i)}$ from $poisson(\lambda_{A_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K

• Then, we can calculate,

$$P(X_{A_k} < X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} < X_{B_k}^{(j)}}{2500}$$
; $i, j = 1(1)50$; $k = 1(1)K$

and

$$P(X_{A_k} = X_{B_k}) = \frac{\text{number of } X_{A_k}^{(i)} = X_{B_k}^{(j)}}{2500} \; ; i,j = 1 \\ (1)50; \; k = 1 \\ (1)K$$

- Then, if $r_{i_k} \leq R_{A_k}^{*(i-1)}$, we draw $X_{A_k}^{(i)}$ from $poisson(\lambda_{A_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K
- otherwise, we draw $X_{B_k}^{(i)}$ from $poisson(\lambda_{B_k})$; $i = 9, ..., n_k$; k = 1, 2, ..., K

ASN Table for Fully Adaptive GSD under Adaptive Allocation (R_A^*)

	lambda_B	ASN_HO	ASN_H1	RA_Star	Prop_A	Prop_A_SE
1	2.0	288.7	282.0	0.5005146	0.5009600	0.2144455
2	2.2	288.7	279.0	0.5221844	0.5210067	0.2098777
3	2.4	288.8	275.3	0.5566484	0.5550300	0.2162207
4	2.6	287.9	276.7	0.5938794	0.5856133	0.2052927
5	2.8	288.3	266.0	0.6148290	0.6051300	0.2031611
6	3.0	287.6	260.7	0.6385272	0.6256400	0.1997961
7	3.2	286.6	256.6	0.6620340	0.6525900	0.1978750
8	3.4	284.3	256.9	0.6886046	0.6707867	0.1896226
9	3.6	284.2	253.7	0.7017788	0.6868700	0.1856287
10	3.8	283.5	237.2	0.7242718	0.7068800	0.1843832
11	4.0	276.5	230.0	0.7403032	0.7224000	0.1797703

Allocation comparison for R_A and R_A^*

Allocation comparison for RA and RA_star

Comparison of ASN for all methods

	Lambda_B	Non Ada	Entry Ada	RA	RA_star
[1,]	2.0	284.9	283.74	282.9	282.0
[2,]	2.2	270.1	262.65	277.2	279.0
[3,]	2.4	236.2	223.19	276.9	275.3
[4,]	2.6	190.1	175.71	269.6	276.7
[5,]	2.8	142.6	136.37	269.4	266.0
[6,]	3.0	118.3	112.70	262.1	260.7
[7,]	3.2	104.5	102.83	255.0	256.6
[8,]	3.4	100.5	100.67	250.6	256.9
[9,]	3.6	100.3	100.10	237.5	253.7
[10,]	3.8	100.0	100.04	233.6	237.2
[11,]	4.0	100.0	100.02	214.3	230.0

Comparison of ASN for all methods

Comparison of ASN for different allocation methods

• Motivation: Many clinical trials involve multiple correlated count outcomes (e.g., disease events and healthcare utilization), making univariate analysis insufficient for capturing joint treatment effects.

- Motivation: Many clinical trials involve multiple correlated count outcomes (e.g., disease events and healthcare utilization), making univariate analysis insufficient for capturing joint treatment effects.
- Need for Joint Modeling: Correlated outcomes often share underlying risk factors (e.g., disease severity), and joint analysis improves efficiency and provides more clinically relevant insights.

- Motivation: Many clinical trials involve multiple correlated count outcomes (e.g., disease events and healthcare utilization), making univariate analysis insufficient for capturing joint treatment effects.
- Need for Joint Modeling: Correlated outcomes often share underlying risk factors (e.g., disease severity), and joint analysis improves efficiency and provides more clinically relevant insights.
- **Bivariate GSD Advantage:** Allows interim evaluations and early stopping based on joint outcomes, maintaining both statistical rigor and ethical patient treatment allocation.

- Motivation: Many clinical trials involve multiple correlated count outcomes (e.g., disease events and healthcare utilization), making univariate analysis insufficient for capturing joint treatment effects.
- Need for Joint Modeling: Correlated outcomes often share underlying risk factors (e.g., disease severity), and joint analysis improves efficiency and provides more clinically relevant insights.
- **Bivariate GSD Advantage:** Allows interim evaluations and early stopping based on joint outcomes, maintaining both statistical rigor and ethical patient treatment allocation.
- Examples: Asthma attacks & inhaler use, seizures & ER visits, infections & antibiotic prescriptions, ulcers healed & follow-up visits all naturally modeled as bivariate counts.

• Let, for treatment A, $U_A \sim Poisson(\lambda_A)$, $V_A \sim Poisson(\theta_A)$ and $W_A \sim Poisson(\phi_A)$ and U_A , V_A and W_A are independently distributed.

- Let, for treatment A, $U_A \sim Poisson(\lambda_A)$, $V_A \sim Poisson(\theta_A)$ and $W_A \sim Poisson(\phi_A)$ and U_A , V_A and W_A are independently distributed.
- Then,

$$X_A = U_A + W_A \stackrel{marginally}{\sim} Poisson(\lambda_A + \phi_A)$$

 $Y_A = V_A + W_A \stackrel{marginally}{\sim} Poisson(\theta_A + \phi_A)$

- Let, for treatment A, $U_A \sim Poisson(\lambda_A)$, $V_A \sim Poisson(\theta_A)$ and $W_A \sim Poisson(\phi_A)$ and U_A , V_A and W_A are independently distributed.
- Then,

$$X_A = U_A + W_A \stackrel{marginally}{\sim} Poisson(\lambda_A + \phi_A)$$

 $Y_A = V_A + W_A \stackrel{marginally}{\sim} Poisson(\theta_A + \phi_A)$

• Then, jointly, (X_A, Y_A) follows a probability distribution called $BVPoisson(\lambda_A, \theta_A, \phi_A)$ with pmf,

$$e^{-(\lambda_A+\theta_A+\phi_A)}\lambda_A^{x_A}\theta_A^{y_A}\sum_{r=0}^{min\{x_A,y_A\}}(\frac{\phi_A}{\lambda_A\theta_A})^r\frac{1}{(x_A-r)!(y_A-r)!r!}$$

• Here, $Cov(X_A, Y_A) = \phi_A$

- Here, $Cov(X_A, Y_A) = \phi_A$
- We are interested to test,

$$\begin{aligned} H_0: B \succeq A \quad \text{vs} \quad H_1: B \prec A \\ \text{i.e.} \quad H_0: \lambda_A + \phi_A \geq \lambda_B + \phi_B \quad \text{vs} \quad H_1: \lambda_A + \phi_A < \lambda_B + \phi_B \\ \text{or, } \theta_A + \phi_A \geq \theta_B + \phi_B \quad & \text{and, } \theta_A + \phi_A < \theta_B + \phi_B \end{aligned}$$

$$\bullet$$
 Let, $Z_1 = \bar{X}_A^{2/3} - \bar{X}_B^{2/3}$ and $Z_2 = \bar{Y}_A^{2/3} - \bar{Y}_B^{2/3}$

- Let, $Z_1 = \bar{X}_A^{2/3} \bar{X}_B^{2/3}$ and $Z_2 = \bar{Y}_A^{2/3} \bar{Y}_B^{2/3}$
- Then, we define three statistics which are given by,

• Let,
$$Z_1 = \bar{X}_A^{2/3} - \bar{X}_B^{2/3}$$
 and $Z_2 = \bar{Y}_A^{2/3} - \bar{Y}_B^{2/3}$

• Then, we define three statistics which are given by,

•

$$T^{(1)} = min\{Z_1, Z_2\}$$

• Let,
$$Z_1 = \bar{X}_A^{2/3} - \bar{X}_B^{2/3}$$
 and $Z_2 = \bar{Y}_A^{2/3} - \bar{Y}_B^{2/3}$

• Then, we define three statistics which are given by,

$$T^{(1)} = min\{Z_1, Z_2\}$$

•

$$T^{(2)} = max\{Z_1, Z_2\}$$

• Let,
$$Z_1 = \bar{X}_A^{2/3} - \bar{X}_B^{2/3}$$
 and $Z_2 = \bar{Y}_A^{2/3} - \bar{Y}_B^{2/3}$

• Then, we define three statistics which are given by,

•
$$T^{(1)} = min\{Z_1, Z_2\}$$

$$T^{(2)} = max\{Z_1, Z_2\}$$

•

•

$$T^{(3)} = \frac{T^{(1)} + T^{(2)}}{2}$$

Test Procedure

• The sequential test procedure for k^{th} group can be written as,

Test Procedure

• The sequential test procedure for k^{th} group can be written as,

$$\begin{array}{lll} \text{(i)} & \text{if,} & T_k^{(s)} < a_k & \Rightarrow \text{ We reject } H_0 \text{ i.e. we accept } H_1 \\ \text{(ii)} & \text{if,} & T_k^{(s)} > b_k & \Rightarrow \text{ We accept } H_0 \end{array}$$

(ii) if,
$$T_k^{(s)} > b_k \implies \text{We accept } H_0$$

(ii) if,
$$a_k \leq T_k^{(s)} \leq b_k \Rightarrow \text{go for next group}$$

Test Procedure

• The sequential test procedure for k^{th} group can be written as,

•

(i) if,
$$T_k^{(s)} < a_k \implies \text{We reject } H_0 \text{ i.e. we accept } H_1$$

(ii) if,
$$T_k^{(s)} > b_k \implies \text{We accept } H_0$$

(ii) if,
$$a_k \leq T_k^{(s)} \leq b_k \implies$$
 go for next group

• We calculate the boundary points and the ASN similarly as univariate setup.

Justification of The Statistic

- Here, we have defined the statistic $T^{(2)}$ in such a way that it will prioritize the alternative hypothesis more since when the maximum of Z_1 and Z_2 will be small, then the alternative is accepted (i.e., $max\{Z_1, Z_2\} < a_1 \iff Z_1 < a_1, Z_2 < a_1$).
- Unlike $T^{(2)}$, the other test statistic $T^{(1)}$ will prioritize the null hypothesis more since when the minimum of Z_1 and Z_2 will be large enough, then the null hypothesis will be accepted (i.e., $min\{Z_1, Z_2\} > b_1^* \iff W_1 > b_1^*, W_2 > b_1^*$).
- The statistic $\mathcal{T}^{(3)}$ should perform equally good for null and alternative, as we have taken the average of the other two statistics.

• We fix the sample of each group $n_1 = n_2 = n_3 = 100$. So, N = 300.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$. So, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$. So, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- As, directly simulation from bivariate poisson is difficult, so we simulate 50 samples each from $poisson(\lambda_A)$, $poisson(\lambda_B)$, $poisson(\theta_A)$ and $poisson(\theta_B)$ separately for the first interim and carry out the procedure to find the boundary points.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$. So, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- As, directly simulation from bivariate poisson is difficult, so we simulate 50 samples each from $poisson(\lambda_A)$, $poisson(\lambda_B)$, $poisson(\theta_A)$ and $poisson(\theta_B)$ separately for the first interim and carry out the procedure to find the boundary points.
- Then, in second and third stage, we simulate data from $poisson(\hat{\lambda}_A)$, $poisson(\hat{\lambda}_B)$, $poisson(\hat{\theta}_A)$ and $poisson(\hat{\theta}_B)$; where $\hat{\lambda}_A = \bar{X}_{A_1}$ and $\hat{\lambda}_B = \bar{X}_{B_1}$.

- We fix the sample of each group $n_1 = n_2 = n_3 = 100$. So, N = 300.
- We allocate equal number of treatment A and treatment B to the patients, i.e. $m_{A_k} = m_{B_k} = 50$; k = 1, 2, 3.
- As, directly simulation from bivariate poisson is difficult, so we simulate 50 samples each from $poisson(\lambda_A)$, $poisson(\lambda_B)$, $poisson(\theta_A)$ and $poisson(\theta_B)$ separately for the first interim and carry out the procedure to find the boundary points.
- Then, in second and third stage, we simulate data from $poisson(\hat{\lambda}_A)$, $poisson(\hat{\lambda}_B)$, $poisson(\hat{\theta}_A)$ and $poisson(\hat{\theta}_B)$; where $\hat{\lambda}_A = \bar{X}_{A_1}$ and $\hat{\lambda}_B = \bar{X}_{B_1}$.
- We fix the nuisance parameter $\phi_A = \phi_B = \phi$ for our computational purposes.

ASN for Different $\lambda' s$ and θ 's (for $T^{(1)}$)

```
lambda_B theta_B ASN_HO ASN_H1
                   290.9
                          291.4
       2.0
               2.5
       2.2
           2.7 272.7 274.2
3
       2.4
           2.9 232.4 236.4
4
       2.6
               3.1
                   171.2 178.9
5
       2.8
              3.3
                   127.0
                          131.0
6
       3.0
               3.5
                   105.9
                          106.1
       3.2
                   100.0 100.0
               3.7
8
       3.4
              3.9
                   100.0
                          100.0
       3.6
              4.1
                   100.0
                          100.0
10
       3.8
              4.3
                   100.0
                          100.0
11
       4.0
               4.5
                    100.0
                          100.0
```

ASN for Different $\lambda' s$ and θ 's (for $T^{(2)}$)

```
lambda_B theta_B ASN_HO ASN_H1
       2.0
               2.5
                   290.7
                          288.5
       2.2
           2.7 274.7
                          263.7
3
       2.4
           2.9 245.5 212.8
4
       2.6
               3.1
                   191.1
                          162.8
5
       2.8
               3.3
                   140.3
                          120.7
6
       3.0
               3.5
                   104.8
                          103.4
       3.2
                    100.0
                          100.0
               3.7
8
       3.4
              3.9
                    100.0
                          100.0
       3.6
              4.1
                    100.0
                          100.0
10
              4.3
       3.8
                   100.0
                          100.0
11
       4.0
               4.5
                    100.0
                          100.0
```

ASN for Different $\lambda' s$ and θ 's (for $T^{(3)}$)

```
lambda_B theta_B ASN_HO ASN_H1
                          290.2
       2.0
               2.5
                   291.3
       2.2
           2.7 276.1
                          259.7
3
       2.4
           2.9 224.8 205.1
4
       2.6
               3.1
                   155.4 140.5
5
       2.8
              3.3
                   109.0
                          107.9
6
       3.0
               3.5
                   100.0
                          100.0
       3.2
                    100.0
                          100.0
               3.7
8
       3.4
              3.9
                   100.0
                          100.0
       3.6
              4.1
                    100.0
                          100.0
10
              4.3
                          100.0
       3.8
                   100.0
11
       4.0
               4.5
                    100.0
                          100.0
```

ASN Under H_0 for Different statistics

Comparison of ASN under H0 for Different Statistics

ASN Under H_1 for Different statistics

Comparison of ASN under H1 for Different Statistics

Different Choices of Error Spendings

• We fix $\lambda_A = 2.\theta_A = 2.5$. Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) .

Different Choices of Error Spendings

- We fix $\lambda_A = 2, \theta_A = 2.5$. Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) .
- We take the choices of (α, β) as,

Different Choices of Error Spendings

- We fix $\lambda_A = 2, \theta_A = 2.5$. Now, we will find and plot ASN for different choices of the error spending (α_k, β_k) .
- We take the choices of (α, β) as,

	Choices	α_1	α_2	α_3	eta_1	β	β_3
	1	0.02	0.02	0.01	0.015	0.015	0.02
•	2	0.03	0.01	0.01	0.02	0.02	0.01
	3	0.015	0.025	0.01	0.03	0.01	0.01
	4	0.015	0.015	0.02	0.025	0.01	0.015
	5	0.03	0.015	0.005	0.02	0.025	0.005

ASN Under H_0 for Different (α_k, β_k)

ASN under H0 across Different Alpha/Beta Choices

ASN Under H_1 for Different (α_k, β_k)

ASN under H1 across Different Alpha/Beta Choices

ASN table for $\alpha = (0.03, 0.015, 0.005)$, $\beta = (0.02, 0.025, 0.005)$

```
lambda_B theta_B ASN_HO
                          ASN_H1
       2.0
               2.5
                     287.6
                            287.5
2
       2.2
               2.7 268.4 256.0
3
       2.4
               2.9 214.0 195.5
4
       2.6
                    146.4 134.1
               3.1
5
       2.8
            3.3
                    104.8
                           105.3
6
       3.0
               3.5
                    100.0
                           100.0
       3.2
               3.7
                     100.0
                           100.0
8
       3.4
               3.9
                           100.0
                     100.0
9
       3.6
               4.1
                     100.0
                            100.0
10
       3.8
               4.3
                     100.0
                            100.0
11
       4.0
               4.5
                     100.0
                            100.0
```

ASN Under H_0 for Different ϕ

ASN under H0 for Different phi Values

ASN Under H_1 for Different ϕ

ASN under H1 for Different phi Values

• Motivation: Many modern trials involve two correlated count outcomes that must be evaluated jointly for clinical insight and patient safety.

- Motivation: Many modern trials involve two correlated count outcomes that must be evaluated jointly for clinical insight and patient safety.
- Adaptive Component: Treatment allocation and model parameters are adaptively updated at each interim stage based on joint evidence from both outcomes.

- Motivation: Many modern trials involve two correlated count outcomes that must be evaluated jointly for clinical insight and patient safety.
- Adaptive Component: Treatment allocation and model parameters are adaptively updated at each interim stage based on joint evidence from both outcomes.
- Sequential Framework: Interim analyses still maintain statistical rigor, allowing for early stopping based on combined treatment effects.

- Motivation: Many modern trials involve two correlated count outcomes that must be evaluated jointly for clinical insight and patient safety.
- Adaptive Component: Treatment allocation and model parameters are adaptively updated at each interim stage based on joint evidence from both outcomes.
- Sequential Framework: Interim analyses still maintain statistical rigor, allowing for early stopping based on combined treatment effects.
- Ethical and Efficient: Ensures more patients receive the superior treatment across both outcomes, balancing ethical responsibility and inferential accuracy in complex trials.

• In the first stage, we simulate 50 samples of $\binom{X_{A_1}}{Y_{A_1}}$ from $BVPoisson(\lambda_A, \theta_A, \phi_A)$ and 50 samples of $\binom{X_{B_1}}{Y_{B_1}}$ from $BVPoisson(\lambda_B, \theta_B, \phi_B)$. Then we carry out the sequential test procedure for first stage as described in the group sequential design.

- In the first stage, we simulate 50 samples of $\binom{X_{A_1}}{Y_{A_1}}$ from $BVPoisson(\lambda_A, \theta_A, \phi_A)$ and 50 samples of $\binom{X_{B_1}}{Y_{B_1}}$ from $BVPoisson(\lambda_B, \theta_B, \phi_B)$. Then we carry out the sequential test procedure for first stage as described in the group sequential design.
- In second stage, we simulate 50 samples $\binom{X_{A_2}}{Y_{A_2}}$ from $BVPoisson(\hat{\lambda}_A, \hat{\theta}_A, \phi_A)$ and 50 samples $\binom{X_{B_2}}{Y_{B_2}}$ from $BVPoisson(\hat{\lambda}_B, \hat{\theta}_B, \phi_B)$ where,

$$\begin{pmatrix} \hat{\lambda}_A \\ \hat{\theta}_A \end{pmatrix} = \begin{pmatrix} \bar{X}_{A_1} \\ \bar{Y}_{A_1} \end{pmatrix} \ \text{and} \ \begin{pmatrix} \hat{\lambda}_B \\ \hat{\theta}_B \end{pmatrix} = \begin{pmatrix} \bar{X}_{B_1} \\ \bar{Y}_{B_1} \end{pmatrix}$$

- In the first stage, we simulate 50 samples of $\binom{X_{A_1}}{Y_{A_1}}$ from $BVPoisson(\lambda_A, \theta_A, \phi_A)$ and 50 samples of $\binom{X_{B_1}}{Y_{B_1}}$ from $BVPoisson(\lambda_B, \theta_B, \phi_B)$. Then we carry out the sequential test procedure for first stage as described in the group sequential design.
- In second stage, we simulate 50 samples $\binom{X_{A_2}}{Y_{A_2}}$ from $BVPoisson(\hat{\lambda}_A, \hat{\theta}_A, \phi_A)$ and 50 samples $\binom{X_{B_2}}{Y_{B_2}}$ from $BVPoisson(\hat{\lambda}_B, \hat{\theta}_B, \phi_B)$ where,

$$\begin{pmatrix} \hat{\lambda}_A \\ \hat{\theta}_A \end{pmatrix} = \begin{pmatrix} \bar{X}_{A_1} \\ \bar{Y}_{A_1} \end{pmatrix} \ \text{and} \ \begin{pmatrix} \hat{\lambda}_B \\ \hat{\theta}_B \end{pmatrix} = \begin{pmatrix} \bar{X}_{B_1} \\ \bar{Y}_{B_1} \end{pmatrix}$$

• Then we carry out the group sequential test procedure.

• In third stage, we simulate 50 samples $\binom{X_{A_3}}{Y_{A_3}}$ from $BVPoisson(\hat{\lambda^*}_A, \hat{\theta^*}_A, \phi_A)$ and 50 samples of $\binom{X_{B_3}}{Y_{B_3}}$ from $BVPoisson(\hat{\lambda^*}_A, \hat{\theta^*}_A, \phi_B)$; where,

$$\begin{pmatrix} \hat{\lambda^*}_A \\ \hat{\theta^*}_A \end{pmatrix} = \begin{pmatrix} \bar{X}_{A_2} \\ \bar{Y}_{A_2} \end{pmatrix} \text{ and } \begin{pmatrix} \hat{\lambda^*}_B \\ \hat{\theta^*}_B \end{pmatrix} = \begin{pmatrix} \bar{X}_{B_2} \\ \bar{Y}_{B_2} \end{pmatrix}$$

• Then we carry out the group sequential test procedure.

ASN table for Entry Stage Adaptive Group Sequential Design

	lambda_B	theta_B	ASN_HO	ASN_H1
1	2.0	2.5	287.5	290.5
2	2.2	2.7	267.5	258.1
3	2.4	2.9	206.1	196.1
4	2.6	3.1	147.0	133.4
5	2.8	3.3	106.9	103.5
6	3.0	3.5	100.0	100.0
7	3.2	3.7	100.0	100.0
8	3.4	3.9	100.0	100.0
9	3.6	4.1	100.0	100.0
10	3.8	4.3	100.0	100.0
11	4.0	4.5	100.0	100.0

Comparison of ASN between Non-Adaptive GSD and Entry Stage Adaptive GSD

ASN Comparison between non adaptive and adaptive

• The entry-stage adaptive group sequential designs helped us in reducing sample size.

- The entry-stage adaptive group sequential designs helped us in reducing sample size.
- But still we have ethical concerns.

- The entry-stage adaptive group sequential designs helped us in reducing sample size.
- But still we have ethical concerns.
- To deal with that, also in bivariate setup, we introduce fully adaptive group sequential design under bivariate setup.

- The entry-stage adaptive group sequential designs helped us in reducing sample size.
- But still we have ethical concerns.
- To deal with that, also in bivariate setup, we introduce fully adaptive group sequential design under bivariate setup.
- We will discuss two methods to work with this.

Adaptive Allocation (R_A)

• When we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k; k=1,2,...,K)$ patient with higher probability.

Adaptive Allocation (R_A)

- When we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k; k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A

Adaptive Allocation (R_A)

- When we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k; k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A
- We propose,

$$R_A = \frac{\lambda_B + \theta_B}{\lambda_A + \theta_A + \lambda_B + \theta_B}$$

Adaptive Allocation (R_A)

- When we get stronger evidence against the null hypothesis, we wish to allocate treatment A to the $i^{th}(i=1,...,n_k;k=1,2,...,K)$ patient with higher probability.
- Let, R_A be the probability that a randomly entered (i^{th}) patient will receive treatment A
- We propose,

$$R_A = \frac{\lambda_B + \theta_B}{\lambda_A + \theta_A + \lambda_B + \theta_B}$$

• where, $\binom{\lambda_A}{\theta_A} < \binom{\lambda_B}{\theta_B} \Rightarrow$ treatment A is better than treatment B

• We generate few samples (say, 4)

$${X_{A_k}^{[4]} \choose Y_{A_k}^{[4]}} = {X_{A_k}^{(1)} \choose Y_{A_k}^{(1)}}, {X_{A_k}^{(2)} \choose Y_{A_k}^{(2)}}, {X_{A_k}^{(3)} \choose Y_{A_k}^{(3)}}, {X_{A_k}^{(4)} \choose Y_{A_k}^{(4)}}$$
from

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

• We generate few samples (say, 4)

$${X_{A_k}^{[4]} \choose Y_{A_k}^{[4]}} = \left({X_{A_k}^{(1)} \choose Y_{A_k}^{(1)}}, {X_{A_k}^{(2)} \choose Y_{A_k}^{(2)}}, {X_{A_k}^{(3)} \choose Y_{A_k}^{(3)}}, {X_{A_k}^{(4)} \choose Y_{A_k}^{(4)}}\right) \text{ from }$$

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

• We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))

• We generate few samples (say, 4)

$${X_{A_k}^{[4]} \choose Y_{A_k}^{[4]}} = \left({X_{A_k}^{(1)} \choose Y_{A_k}^{(1)}}, {X_{A_k}^{(2)} \choose Y_{A_k}^{(2)}}, {X_{A_k}^{(3)} \choose Y_{A_k}^{(3)}}, {X_{A_k}^{(4)} \choose Y_{A_k}^{(4)}}\right) \text{ from }$$

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

- We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- Then, if $r_{i_k} \leq R_{A_k}^{(i-1)}, \binom{X_{A_k}^{(i)}}{Y_{A_k}^{(i)}}$ from $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$; $i=9,...,n_k$; k=1,2,...,K

• We generate few samples (say, 4)

$${X_{A_k}^{[4]} \choose Y_{A_k}^{[4]}} = \left({X_{A_k}^{(1)} \choose Y_{A_k}^{(1)}}, {X_{A_k}^{(2)} \choose Y_{A_k}^{(2)}}, {X_{A_k}^{(3)} \choose Y_{A_k}^{(3)}}, {X_{A_k}^{(4)} \choose Y_{A_k}^{(4)}}\right) \text{ from }$$

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

- We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- Then, if $r_{i_k} \leq R_{A_k}^{(i-1)}, \binom{X_{A_k}^{(i)}}{Y_{A_k}^{(i)}}$ from $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$; $i = 9, ..., n_k$; k = 1, 2, ..., K
- otherwise, we draw $\binom{X_{B_k}^{(i)}}{Y_{B_k}^{(i)}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$; $i = 9, ..., n_k$; k = 1, 2, ..., K

ASN for Fully Adaptive GSD under Adaptive Allocation (R_A)

	lambda_B	theta_B	ASN_HO	ASN_H1	RA	Prop_A	Prop_A_SE
1	2.0	2.5	288.9	282.0	0.50	0.50	0.11
2	2.2	2.7	289.0	276.2	0.52	0.52	0.10
3	2.4	2.9	288.3	274.5	0.54	0.53	0.10
4	2.6	3.1	288.2	266.2	0.55	0.55	0.10
5	2.8	3.3	287.3	255.2	0.57	0.57	0.10
6	3.0	3.5	287.3	246.5	0.58	0.58	0.10
7	3.2	3.7	281.4	238.0	0.60	0.59	0.09
8	3.4	3.9	281.3	224.0	0.61	0.60	0.10
9	3.6	4.1	280.2	217.8	0.63	0.61	0.09
10	3.8	4.3	273.3	201.7	0.63	0.62	0.09
11	4.0	4.5	273.2	199.9	0.64	0.63	0.09

Adaptive Allocation (R_A^*)

• Now, we introduce another version of R_A (say, R_A^*); which can be defined as follows,

$$R_{A}^{*} = (1/4)\{P(X_{A} = X_{B}, Y_{A} > Y_{B})$$

$$+P(X_{A} > X_{B}, Y_{A} = Y_{B})\}$$

$$+(3/4)\{P(X_{A} = X_{B}, Y_{A} < Y_{B})$$

$$+P(X_{A} < X_{B}, Y_{A} = Y_{B})\}$$

$$+(1/2)\{P(X_{A} > X_{B}, Y_{A} < Y_{B})$$

$$+P(X_{A} < X_{B}, Y_{A} > Y_{B})$$

$$+P(X_{A} < X_{B}, Y_{A} = Y_{B})\} + P(X_{A} < X_{B}, Y_{A} < Y_{B})$$

• we generate few samples (say, 4)

$$\begin{pmatrix} X_{A_k}^{[4]} \\ Y_{A_k}^{[4]} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} X_{A_k}^{(1)} \\ Y_{A_k}^{(1)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(2)} \\ Y_{A_k}^{(2)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(3)} \\ Y_{A_k}^{(3)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(4)} \\ Y_{A_k}^{(4)} \end{pmatrix} \text{ from }$$

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$

from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

• we generate few samples (say, 4)

$$\begin{pmatrix} X_{A_k}^{[4]} \\ Y_{A_k}^{[4]} \end{pmatrix} = \begin{pmatrix} X_{A_k}^{(1)} \\ Y_{A_k}^{(1)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(2)} \\ Y_{A_k}^{(2)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(3)} \\ Y_{A_k}^{(3)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(4)} \\ Y_{A_k}^{(4)} \end{pmatrix}$$
from

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

• We simulate 50 samples from $poisson(\lambda_{A_k})$ and 50 samples from $poisson(\lambda_{B_k})$.

• we generate few samples (say, 4)

$$\begin{pmatrix} X_{A_k}^{[4]} \\ Y_{A_k}^{[4]} \end{pmatrix} = \begin{pmatrix} X_{A_k}^{(1)} \\ Y_{A_k}^{(1)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(2)} \\ Y_{A_k}^{(2)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(3)} \\ Y_{A_k}^{(3)} \end{pmatrix}, \begin{pmatrix} X_{A_k}^{(4)} \\ Y_{A_k}^{(4)} \end{pmatrix}$$
from

 $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$ and same number of samples $\binom{X_{B_k}^{[4]}}{Y_{B_k}^{[4]}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$

- We simulate 50 samples from $poisson(\lambda_{A_k})$ and 50 samples from $poisson(\lambda_{B_k})$.
- Then we calculate the probability terms in $R_{A_k}^*$ empirically by simulation as in the univariate setup.

• We draw a random number say r_{i_k} $(i=9,...,n_k; k=1,2,...,K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0,1))

- We draw a random number say r_{i_k} ($i=9,...,n_k$; k=1,2,...,K) from 0 to 1 (i.e. we generate a sample from Uniform(0,1))
- Then, if $r_{i_k} \leq R_{A_k}^{*(i-1)}, \binom{X_{A_k}^{(i)}}{Y_{A_k}^{(i)}}$ from $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$; $i = 9, ..., n_k$; k = 1, 2, ..., K

- We draw a random number say r_{i_k} $(i = 9, ..., n_k; k = 1, 2, ..., K)$ from 0 to 1 (i.e. we generate a sample from Uniform(0, 1))
- Then, if $r_{i_k} \leq R_{A_k}^{*(i-1)}, \binom{X_{A_k}^{(i)}}{Y_{A_k}^{(i)}}$ from $BVPoisson(\lambda_{A_k}, \theta_{A_k}, \phi_A)$; $i = 9, ..., n_k$; k = 1, 2, ..., K
- otherwise, we draw $\binom{X_{B_k}^{(i)}}{Y_{B_k}^{(i)}}$ from $BVPoisson(\lambda_{B_k}, \theta_{B_k}, \phi_B)$; $i=9,...,n_k$; k=1,2,...,K

ASN for Fully Adaptive GSD under Adaptive Allocation (R_{Δ}^{*})

	lambda_B	theta_B	ASN_HO	ASN_H1	RA	Prop_A	Prop_A_SE
1	2.0	2.5	289.1	283.5		0.50	0.15
2	2.2	2.7	289.0	278.2	0.53	0.53	0.15
3	2.4	2.9	288.3	276.0	0.54	0.54	0.15
4	2.6	3.1	288.2	266.0	0.58	0.57	0.15
5	2.8	3.3	287.7	252.1	0.60	0.60	0.15
6	3.0	3.5	288.4	241.8	0.62	0.62	0.15
7	3.2	3.7	284.4	238.9	0.64	0.63	0.15
8	3.4	3.9	285.8	227.6	0.66	0.66	0.14
9	3.6	4.1	284.7	216.9	0.68	0.68	0.14
10	3.8	4.3	262.9	188.6	0.70	0.70	0.13
11	4.0	4.5	272.9	191.3	0.70	0.70	0.13

Allocation Comparison for R_A and R_A^*

Allocation Comparison for RA and RA_star

Comparison of ASN for All Methods

```
Comparison of ASN for different methods :
    Lambda_B Theta_B Non Ada Entry Ada RA RA_star
[1,]
                   287.5
        2.0
              2.5
                       290.5 282.0
                                      283.5
[2,]
        2.2 2.7 256.0
                          258.1 276.2 278.2
[3,] 2.4 2.9 195.5
                                      276.0
                           196.1 274.5
[4,] 2.6 3.1 134.1
                           133.4 266.2
                                      266.0
[5,] 2.8 3.3 105.3
                           103.5 255.2
                                      252.1
[6,]
        3.0
              3.5 100.0
                           100.0 246.5 241.8
        3.2
[7,]
              3.7
                   100.0
                           100.0 238.0
                                      238.9
[8,]
        3.4
              3.9
                   100.0
                           100.0 224.0
                                      227.6
[9,]
        3.6
              4.1
                   100.0
                           100.0 217.8
                                      216.9
        3.8
[10,]
              4.3
                   100.0
                           100.0 201.7
                                      188.6
[11,]
        4.0
              4.5
                   100.0
                           100.0 199.9
                                      191.3
```

Comparison of ASN for All Methods

ASN H1 Comparison for different allocation methods

Conclusion

- Developed and compared univariate and bivariate group sequential designs (GSDs) for count data, incorporating adaptive allocation rules to improve ethical treatment assignment.
- Adaptive designs improved patient allocation toward better treatments but led to increased average sample number (ASN) compared to non-adaptive methods — highlighting a trade-off between ethics and efficiency.
- Extended the framework to bivariate Poisson models capturing correlated outcomes (e.g., seizures & hospital visits); observed similar trade-offs, especially as correlation (φ) increased.

Future Directions

- Covariate-Adaptive Extensions: Incorporate patient-specific covariates to guide allocation and improve personalized treatment strategies.
- Estimating ϕ : Develop methods to estimate and update ϕ during interim analyses for improved modeling accuracy.
- Multi-Arm and Multi-Endpoint Trials: Extend the framework to trials involving more than two treatments or multiple outcomes (e.g., include quality-of-life measures).
- Utility-Based or Bayesian Approaches: Integrate utility functions or Bayesian priors that align with clinical priorities to guide ethical and efficient decision-making.

Thank You

All R codes are accessible from the following GitHub repository:

https://github.com/SahilO1S/STAT1092-Research-Project

Happy to take any questions.

