بالنسبة للتمارين من 1 إلى 3 الفضاء منسوب إلى $\left(O;\vec{i};\vec{j};\vec{k}\right)$ معلم

نعتبر النقط Aig(1;1;1ig) وBig(1;1;0ig) و نعتبر النقط والمستوى P ذو المعادلة الديكارتية . Dig(0;0;-1ig)x-2y+z-1=0

اً أ- تحقق أن النقطتان A و B لا تنتميان إلى 1(P) المستوى ب- بین أن y-z-1=0 هي معادلة ديكارتية (BCD) للمستوى

ج- حدد تمثيلا بارامتريا للمستقيم (Δ) تقاطع (BCD)و (P) المستويين

(OA) أ- حدد تمثيلا بارامتريا للمستقيم (2 (Δ) و(OA)و ب- ادرس الوضع النسبي للمستقيمين

ل مع كل (OA) استنتج الوضع النسبي للمستقيم (3 (BCD) من المستويين (P)و

نعتبر المستقيم (D) المعرف بالمعادلتين الديكارتيتين

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$

والمستوى (P) المار من النقطة Aig(0;-1;1ig) والموجه vig(1;1;2ig) بالمتجهتين uig(1;-2;0ig) و

بين أن :
$$x=1+2\alpha$$
 : تمثيل بارامتري (D) بين أن $y=2+3\alpha$ / $\alpha\in\mathbb{R}$ $z=3+4\alpha$

- عادلة 4x + 2y 3z + 5 = 0) أثبت أن (P) ديكارتية للمستوى
- ين أن المستقيم (D) و المستوى (P)وحدد إحداثيات نقطة تقاطعهما
- $\overline{w_2}(t;1+2t;-2)$ و $\overline{w_1}(t-1;4;0)$ نعتبر المتجهتين (4 حیث $\,t\,$ عدد حقیقی

أ- بين أن المتجهتين $\overrightarrow{w_1}$ و $\overrightarrow{w_2}$ غير مستقيميتين $\overrightarrow{w_1}$ ب- ليكن (Q) مستوى موجها بالمتجهتين متوازیین (Q) مروازیین t متوازیین . $\overrightarrow{w_2}$

C(1;-1;1)و B(0;1;0) وA(1;0;0) نعتبر النقط أ- تحقق أن A و B و A غير مستقيمية (1

ب- بين أن معادلة ديكارتية للمستوى $\left(ABC
ight)$ هي x + y + z - 1 = 0

> ليكن (Q) المستوى ذا المعادلة (2 x + y - 2z - 1 = 0

أ- بين أن المستويين (ABC) و (Q) متقاطعان

ig(ABig) ب- تحقق أن تقاطعig(ABCig)و

ليكن (Δ) المستقيم المار من (Δ) والموجه $\left(\vec{i}+2\vec{j}
ight)$ بالمتجهة

 (Δ) اعط تمثيلا بارامتريا للمستقيم

(Q)و (Δ) تقاطع وحداثيات E تقاطع ب- حدد

ج- تحقق من أن النقط A و B و B غير مستوائية ثم استنتج أن المستقيمين (Δ) و(AB)غير مستوائيين

تمرين 4 : نعتبر متوازي المستطيلات *OABKJCDE* ونعتبر

 $EM = \frac{m}{4}ED$ و $\overrightarrow{OA} = 4\overrightarrow{OI}$: النقطتين I و

حیث $\,m\,$ بارامتر حقیقی

 $\left(O;\overrightarrow{OI};\overrightarrow{OJ};\overrightarrow{OK}
ight)$ ننسب الفضاء $\left(\mathscr{E}
ight)$ إلى المعلم $\overrightarrow{u_2} = \overrightarrow{OI} + \overrightarrow{OJ} + \overrightarrow{OK}$ ونضع $\overrightarrow{u_1} = \overrightarrow{OM}$ ونضع

 $\overrightarrow{u_2}$ و $\overrightarrow{u_1}$ و (1

ب- ادرس حسب قيم $\,m\,$ الأوضاع النسبية $\Deltaig(I,\overrightarrow{u_2}ig)$ و $Dig(O,\overrightarrow{u_1}ig)$ للمستقيمين

بين أنه مهما يكن m من $\mathbb R$ فإن المستويين (2 و $\left(OKM
ight)$ يتقاطعان وفق مستقيم $\left(ABM
ight)$ یتم تحدیده $\left(\Delta'
ight)$

(BC) حدد تقاطع المستقيم (ED) والمستوى (3

igl[ASigr] ليكن SABC رباعي أوجه و I و I منتصفات و[BS] و[CS] على التوالي

 $\left(S;\overrightarrow{SA};\overrightarrow{SB};\overrightarrow{SC}\right)$ ننسب الفضاء إلى المعلم

 $\left(\mathit{IJK} \right)$ حدد معادلة ديكارتية للمستوى (1

ABC ليكن G مركز ثقل المثلث (2 ig(IJK ig) و ig(SG ig) حدداحداثیات H تقاطع

يتقاطعان (ABK) بين أن المستويين (IJK) بين أن المستويين (3 ig(ABig) وفق مستقيم ig(Dig) يوازي

(D) أعط معادلتين ديكارتيتين للمستقيم (4