Stata Lab 6. Multivariate Regression 2

Dr. Adam William Chalmers

Table of Contents

Multivariate Regression with Dummy Variables	2
Binary Dummy Variables	2
Categorical Dummy Variables	4
Categorical Variables: Controlling for Time	8
Stata Exercises. 1	11
Marginal Effects and Predicted Probabilities	12
Marginsplot	13
Stata Exercises. 2	18
Graphing with marginsplot	19
Scatter and Line	19
Scatter and Binary Variable	
Scatter and Categorical Variable	
Line and Continuous Variable	20
Over	20
Stata Exercises. 3	22
Advanced Task: The Privacy Survey	23

Multivariate Regression with Dummy Variables

So far we have learned how to run multivariate regression analyses using continuous (and sometimes ordinal) IVs. However, the use of nominal (binary and continuous) IVs is an important extension of regression analysis. We call these **dummy variables** and their interpretation is slightly different from ordinal and continuous variables.

Binary Dummy Variables

Binary dummy IVs take one of two values, and most frequently 0 or 1. These dummies could be at any level and are often used to distinguish between two groups. For instance, at the individual level, a very common dummy variable is 'gender' where men = 0 and women = 1. At the group level, we could create a dummy that distinguishes technology companies = 1 from companies operating in all other sectors = 0. We can also create binary dummies at the country level: USA = 1, all other countries = 0 or Eurozone countries = 1 and non-Eurozone countries = 0.

Example 1. Using **Data6.dta**, I want to run a multivariate regression explaining variation in individuals' 'income' (DV) by the IVs 'years of education' (yedu) and age (age). However, I also acknowledge that there may be important differences between men and women. Indeed, research suggests that being male is correlated with higher income levels. We therefore want to include a dummy variable for 'Gender' in our analysis.

First, we need to **create a new variable** for 'Gender', where Men = 1 and Women are the reference category =0. **Reference category** means that we will compare results for men against this category. Stata automatically takes the lower number to be the reference category. Hence, we code Women as 0 and Men as 1 in this case. This is pretty clear when we have binary dummies but will get more complicated with categorical dummies.

. recode sex (1=1 'Men')(2=0 'Women'), gen(Gender)

Next, run a multivariate regression analysis including all variables as well as our dummy variable Men.

. regress income yedu age Gender

Source	SS	df	MS	Number of obs	=	4,464
				F(3, 4460)	=	205.10
Model	7.9761e+11	3	2.6587e+11	Prob > F	=	0.0000
Residual	5.7814e+12	4,460	1.2963e+09	R-squared	=	0.1212
				Adj R-squared	=	0.1206
Total	6.5790e+12	4,463	1.4741e+09	Root MSE	=	36004
income	Coef.	Std. Err.	t P	> t [95% Co	onf.	Interval]
yedu	3631.66	201.2839	18.04 0	.000 3237.04	43	4026.276
age	-220.3496	32.69213	-6.74 0	.000 -284.442	24	-156.2568
age		1070 110	13.70 0	.000 12669.3	15	16900.36
Gender	14784.76	1079.118	20.70			

Interpreting the results. First, we can see that years of education has a sizeable impact on income. With each additional year of education, we can expect income to increase by \$3631.66USD. We can also see that this effect is statistically significant with a p-value <0.001. Next, we find evidence that being younger is correlated with earning more. With each additional year in age, we can expect a decrease in income of \$220.3496USD. This effect is also statistically significant with a p-value <0.001. Finally, we find that being Gender, and in particular being a man, has a sizeable positive impact on income. However, here we interpret the results a bit differently. There is no 'one unit increase' in our binary variable 'Men'. Instead, we need to think of the regression coefficient as the mean difference in the DV for Men compared to the reference category, Women. Hence, we can say that the mean income difference for Men compared to Women is \$14784.76USD. We can also see that this effect is statistically significant with a p-value <0.001.

Example 2. We want to replicate the multivariate regression analysis above, but instead of controlling for differences between men and women, we want to include a binary dummy variable for individuals living in West Germany. Our assumption is that the West is more prosperous compared to the East and this might have an important impact on income.

First, we will need to create a dummy variable for 'West Germany'. This new variable will distinguish between West Germany and East Germany based on the geographical location of the different German states.

```
. recode state (0 1 2 3 4 5 6 7 8 9 10 = 1 "West")(11 12 13 14 15 16 = 0 "East"), gen(WestGermany)
```

In this case, East Germany = 0 and is our reference category. Recall that Stata automatically takes the lower value as the reference category (unless we tell it otherwise). Hence, East = 0 and is the references category for West which = 1.

Next, we run our regression model including our new dummy variable.

. regress income yedu age WestGermany

Source	SS	df	MS		er of obs	=	4,464
Model	6.2744e+11	3	2.0915e+1	-	4460) > F	=	156.73 0.0000
Residual	5.9516e+12	4,460	1.3344e+09		uared	=	0.0954
Total	6.5790e+12	4,463	1.4741e+09		R-squared MSE	=	0.0948 36530
income	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
yedu	3875.068	204.7735	18.92	0.000	3473.6	1	4276.525
age	-214.7809	33.18941	-6.47	0.000	-279.848	6	-149.7132
WestGermany	9445.586	1275.686	7.40	0.000	6944.6	1	11946.56
	-23611.32	3141.148	-7.52	0.000	-29769.5	_	-17453.11

Interpreting the results. We can see that the <u>mean income difference</u> for those living in West Germany compared to those living in East Germany is \$9445.586 USD. We can also see that this difference is statistically significant with a p-value <0.001.

Categorical Dummy Variables

In addition to binary dummy variables we can also include categorical dummy variables in our multivariate regression analyses. Again, these can be measured at any level (individual, group, country, region, international). Please see the lectures and notes from Week 2 if you need a refresher on the nominal categorical level of measurement.

Example 1. Again, we want to replicate the multivariate regression analysis above, but this time we want to control for differences between all of the 16 German Bundesländer (rather than just East and West). Our logic is a bit broader than before when we had very specific expectations about the differences between East and West Germany. Now we are acknowledging that, giving the federal structure of the German Bundesländer that there might be important differences across the Bundesländer that possibly influence income. These differences remain undefined. In fact, using categorical dummies in this way is a good strategy for dealing with variation that is otherwise **not observed** in your other indictors. For instance, there might be 'difficult to observe' cultural differences across the Bundesländer that are otherwise not captured in our analyses. Our categorical dummies are meant to capture these differences.

To include a categorical dummy in your multivariate regression analysis you need to add the prefix 'i.' to the beginning of the variable. This tells Stata to show us results for the different categories in our dummy variable. Stata automatically selects the first category as the reference category, which in this case is Berlin. Here's how it looks for our example outlined above.

. regress income yedu age i.state

Source		SS	df		MS	Number of			4,464
Model	6.6	5207e+11	15	4.413	8e+10	F(15, 4448 Prob > F)		33.18
Residual		9169e+12	4,448	1.330	2e+09	R-squared			.1006
						Adj R-squa	red	= 0	.0976
Total	6.5	5790e+12	4,463	1.474	1e+09	Root MSE		=	36473
ine	come	Coef.	Std.	Err.	t	P> t	[95	% Conf.	Interval]
,	/edu	3940.215	206.	0443	19.12	0.000	353	6.265	4344.164
	age	-209.1228	33.2	1677	-6.30	0.000	-274	.2442	-144.0014
si	tate								
Schleswig-Hol		9825.688	4326	.401	2.27	0.023	13	43.79	18307.59
Hamburg/Bren		-1802.296	483	1.67	-0.37	0.709	-112	74.77	7670.18
Lower Saxo		1992.67	3432	. 483	0.58	0.562	-473	6.704	8722.044
N-Rhein-Westi	fa.	4994.326	305	6.98	1.63	0.102	-998	.8753	10987.53
Hess	sen	11205.73	3523	. 205	3.18	0.001	429	8.495	18112.96
R-Pfalz,Saar	rl.	4968.291	3584	. 877	1.39	0.166	-205	9.851	11996.43
aden-Wuertter	nb.	8632.425	323	8.45	2.67	0.008	228	3.453	14981.4
Bavaı	ria	6890.187	3171	. 325	2.17	0.030	672	.8116	13107.56
Mecklenburg-	-V.	-1813.404	4495	.797	-0.40	0.687	-10	627.4	7000.595
Brandenbu	ırg	-3415.443	3798	. 143	-0.90	0.369	-108	61.69	4030.807
Saxony-Anha	alt	-2964.259	3817	.513	-0.78	0.438	-104	48.48	4519.966
Thuering	gen	-1574.296	3783	. 205	-0.42	0.677	-899	1.259	5842.667
Saxo	ony	-5632.509	3377	. 087	-1.67	0.095	-122	53.28	988.2619
_(cons	-21037.85	4134	.571	-5.09	0.000	-291	43.66	-12932.03

Interpreting the results. You can see that we now have results for Germany's various Bundesländer. We can see that some Bundesländer do seem to have significant differences when it comes to explaining income. We would interpret these coefficients in the same way as we do with binary dummy variables. For example, we can see that the mean income difference for those living in Hessen compared to those living in the reference category (Berlin) is \$11205.73USD. We can also see that this difference is statistically significant with a p-value <0.001. If you look closely you will see that our reference category, Berlin, is not present in our regression results. This is because Berlin has been used as our reference category (the same way that Women were used as the reference category in the example above). As already noted, Stata automatically takes the first category as the reference category. We can, however, manually select our own reference category by adding to the prefix we learned above. For example, to select Schlewig-Hols as the reference category we would change our command to this.

. regress income yedu age ib1.state

The 'ib1' relates to the fact that the value label for Schlewig-Hols = 1.

Recall that we get the numeric values for the value labels by comparing frequency tables, like I've done below.

. tab state				. tab state, no	ı		
State of				State of			
Residence	Freq.	Percent	Cum.	Residence	Freq.	Percent	Cum.
Berlin	208	3.84	3.84	0	208	3.84	3.84
Schleswig-Hols.	166	3.07	6.91	1	166	3.07	6.91
Hamburg/Bremen	101	1.87	8.78	2	101	1.87	8.78
Lower Saxony	412	7.61	16.39	3	412	7.61	16.39
N-Rhein-Westfa.	1,145	21.16	37.55	5	1,145	21.16	37.55
Hessen	355	6.56	44.11	6	355	6.56	44.11
R-Pfalz,Saarl.	321	5.93	50.05	7	321	5.93	50.05
Baden-Wuerttemb.	617	11.40	61.45	8	617	11.40	61.45
Bavaria	743	13.73	75.18	9	743	13.73	75.18
Mecklenburg-V.	133	2.46	77.64	12	133	2.46	77.64
Brandenburg	266	4.92	82.55	13	266	4.92	82.55
Saxony-Anhalt	245	4.53	87.08	14	245	4.53	87.08
Thueringen	252	4.66	91.74	15	252	4.66	91.74
Saxony	447	8.26	100.00	16	447	8.26	100.00
Total	5,411	100.00		Total	5,411	100.00	

Below are our regression results.

. regress income yedu age ib1.state

You can now see that Berlin is included in our results table, and Schlewig-Hols has been removed because it is now our reference category.

Source		SS	df		MS	Number of		=	4,464 33.18
Model	6.	.6207e+11	15	4.41	38e+10	Prob > F	,	=	0.0000
Residual		.9169e+12	4,448		02e+09	R-squared	1	=	0.1006
						Adj R-squ		=	0.0976
Total	6.	.5790e+12	4,463	1.47	41e+09	Root MSE		=	36473
inc	ome	Coef.	Std.	Err.	t	P> t	[95%	Conf	Interval]
V	edu	3940.215	206.0	1443	19.12	0.000	3536	. 265	4344.164
,	age	-209.1228	33.21		-6.30	0.000	-274.2		-144.0014
st	ate								
Berl	in	-9825.688	4326.	401	-2.27	0.023	-18307	7.59	-1343.79
Hamburg/Brem	en	-11627.98	5132.	043	-2.27	0.024	-21689	9.34	-1566.627
Lower Saxo	ny	-7833.018	3832.	684	-2.04	0.041	-15346	5.99	-319.0502
N-Rhein-Westf	a.	-4831.362	3498.	431	-1.38	0.167	-11696	0.03	2027.302
Hess	en	1380.041	3914	.68	0.35	0.724	-6294	679	9054.762
R-Pfalz,Saar	ι.	-4857.397	3964.	928	-1.23	0.221	-12636	0.63	2915.835
Baden-Wuertte	~.	-1193.263	365	7.1	-0.33	0.744	-8362	.998	5976.471
Bavar	ia	-2935.501	3598.	964	-0.82	0.415	-9991	.261	4120.259
Mecklenburg-	٧.	-11639.09	4811.	441	-2.42	0.016	-2107	1.91	-2206.274
Brandenbu	rg	-13241.13	4169.	997	-3.18	0.002	-214	L6.4	-5065.863
Saxony-Anha	lt	-12789.95	4185.	223	-3.06	0.002	-20995	5.07	-4584.828
Thuering	en	-11399.98	4148.	713	-2.75	0.006	-19533	3.53	-3266.442
Saxo	ny	-15458.2	3788.	816	-4.08	0.000	-22886	5.16	-8030.232
_c	ons	-11212.16	4365.	712	-2.57	0.010	-1977	1.13	-2653.193

Example 2. We are now interested in controlling for 'Status of employment' (emp). We should first inspect the different categories in this variable.

- . tab emp
- . tab emp, nolabel

Status of Employment	Freq.	Percent	Cum.	Status of Employment	Freq.	Percent	Cum.
full time	2,041	38.83	38.83	1	2,041	38.83	38.83
part time	599	11.40	50.23	2	599	11.40	50.23
irregular	288	5.48	55.71	4	288	5.48	55.71
not employed	2,328	44.29	100.00	5	2,328	44.29	100.00
Total	5,256	100.00		Total	5,256	100.00	

Our hunch is that there will be important differences in income between people who are employed full time compared to the other categories.

. regress income yedu age i.emp

		<u> </u>					
Source	SS	df	MS		r of obs	=	4,354
				F(5,	4348)	=	254.94
Model	1.4851e+12	5	2.9702e+11	Prob :	> F	=	0.0000
Residual	5.0656e+12	4,348	1.1650e+09	R-squ	ared	=	0.2267
				Adj R	-squared	=	0.2258
Total	6.5506e+12	4,353	1.5049e+09	Root I	MSE	=	34133
income	Coef.	Std. Err.	. t	P> t	[95%	Conf.	Interval]
yedu	2825.439	195.1006	14.48	0.000	2442.	943	3207.936
age	134.9955	36.73052	3.68	0.000	62.98	494	207.006
emp							
part time	-22096.99	1616.365	-13.67	0.000	-25265	.89	-18928.09
irregular	-32101.65	2302.569	-13.94	0.000	-36615	.86	-27587.44
ot employed	-35060.43	1333.622	-26.29	0.000	-37675	.01	-32445.85
_cons	230.6431	2854.253	0.08	0.936	-5365.	148	5826.434

Interpreting the results. Even with just a quick glance, we can see that 'part time' employment, 'irregular' employment, and 'not employed' all have mean incomes that are much lower than our reference category, 'full time' employment. This is not a big surprise. After all, we should expect people who are employed full time to make more than those who work part time, irregularly, or are not employed. All of these effects are also statistically significant with a p-value <0.001.

**Pro-tip: You can choose any reference category you like. However, you should choose one that makes interpreting your results easier. In the case above where we are using the categorical dummy variable 'emp', it might have made more sense to use 'not employed' as our reference category. Then we could see the differences between not being employed and different types of employment. Below are the results that we'd get if we did use 'not employed' as our reference category.

. regress income yedu age ib5.emp

Source	SS	df	MS	Num	ber of obs	=	4,354
				— F(5	, 4348)	=	254.94
Model	1.4851e+12	5	2.9702e+1	. 1 Pro	b > F	=	0.0000
Residual	5.0656e+12	4,348	1.1650e+0	9 R-s	quared	=	0.2267
				— Adj	R-squared	=	0.2258
Total	6.5506e+12	4,353	1.5049e+0	9 Roo	t MSE	=	34133
income	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
yedu	2825.439	195.1006	14.48	0.000	2442.94	3	3207.936
age	134.9955	36.73052	3.68	0.000	62.9849	4	207.006
emp							
full time	35060.43	1333.622	26.29	0.000	32445.8	5	37675.01
part time	12963.44	1759.885	7.37	0.000	9513.16	9	16413.71
irregular	2958.78	2402.969	1.23	0.218	-1752.26	3	7669.824
_cons	-34829.79	3039.234	-11.46	0.000	-40788.2	4	-28871.34

Categorical Variables: Controlling for Time

We can also use categorical variables to control for otherwise unobserved variation over **time**. In other words, this means including 'time dummies' in our multivariate regression analysis. This is not the same as time-series analysis or multi-level regression models. However, this is one basic way to include a time dimension into our analysis.

Example 1. Using **QOG** timeseries.dta, we want to examine the following hypothesis:

H1. The more interest groups in a political system, the more efficient governance will be.

Our DV is governance performance (bti_gp), our main IV is number of interest groups (bti_ig), and we control for GDP (wdi_gdpcapgr) and rule of law (wel_rol). We also include 'year' as our categorical dummy variable. As above, use the 'i' prefix for year.

. regress bti_gp bti_ig wel_rol wdi_gdpcapgr i.year

Source	SS	df	MS		er of obs	=	475
Model	1110.53844	6	185.089739		468)	=	247.48 0.0000
		-				=	
Residual	350.009335	468	.747883194		uared	=	0.7604
				_	R-squared	=	0.7573
Total	1460.54777	474	3.08132441	L Root	MSE	=	.8648
bti_gp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
bti_ig	. 4443334	.0238516	18.63	0.000	.397463	8	.4912029
wel_rol	5.693039	.3192816	17.83	0.000	5.06563	6	6.320442
wdi_gdpcapgr	.0188196	.0073313	2.57	0.011	.004413	3	.0332259
year							
2007	.3041333	.1139572	2.67	0.008	.080202	2	.5280644
2009	.3280115	.1203278	2.73	0.007	.091561	8	.5644612
2011	.2048538	.1145004	1.79	0.074	020144	7	.4298524
_cons	.6890666	.1538559	4.48	0.000	.386732		.9914005

Interpreting the results. First, we do see evidence supporting our hypothesis. With each one unit increase in 'interest groups', we can expect a .044 increase in the Governance Performance index. This effect is statistically significant with a p-value <0.001. We have also controlled for differences across years. Specifically, we can see that the **mean difference in the Governance Performance Index** for 2007 compared to the reference category year (which happens to be 2005 due to missing data in 2006) is 0.3041333. We can also see that this effect is statistically significant with a p-value <0.01. If you looked at all the years available in the dataset you will see that they run from 2000 to 2018. However, there are far fewer years included in the regression. This is the case because of the way the data has been collected: there are many years, in other words, where we don't have data on our DV and/or IVs.

**Pro-tip: the easiest way to figure out the reference category when you have missing data on different years, to continue with our example, is to change the reference category. We know that Stata automatically selects the lowest value category as the reference category. Hence, if you change the reference to anything else and run the regression you will see the old reference category listed in the results.

Changing the reference category for a numeric variable is different than changing it for a string variable. To change our reference category to 2007, for example, we would write the following.

. regress bti_gp bti_ig wel_rol wdi_gdpcapgr ib2007.year

Source	SS	df	MS		er of obs 468)	=	475 247.48
Model	1110.53844	6	185.08973			=	0.0000
Residual	350.009335	468	.74788319	4 R-sq	uared	=	0.7604
				– Adj	R-squared	=	0.7573
Total	1460.54777	474	3.0813244	1 Root	MSE	=	.8648
bti_gp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
bti_ig	.4443334	.0238516	18.63	0.000	.397463	8	.4912029
wel_rol	5.693039	.3192816	17.83	0.000	5.06563	6	6.320442
/di_gdpcapgr	.0188196	.0073313	2.57	0.011	.004413	3	.0332259
year							
2005	3041333	.1139572	-2.67	0.008	528064	4	0802022
2009	.0238782	.1194464	0.20	0.842	210839	5	.258596
2011	0992794	.1126901	-0.88	0.379	320720	7	.1221618
_cons	.9931999	.1488783	6.67	0.000	.700647	13	1.285752

Stata Exercises. 1

Task 1. We are interested in testing the following hypothesis.

H1. The more a country is ethnically fractionalised, the less a country will be globalised.

Using QOG_timeseries.dta, our DV is the Index of Globalisation (dr_ig). Higher values correspond to being more globalised. Our main IV is Ethnic Fractioanlisation (al_ethnic). Higher values correspond to being more fractionalised ("Reflects probability that two randomly selected people from a given country will not belong to the same [ethnic] group. The higher the number, the more fractionalized society"). We also include the following IVs: Freedom to trade internationally (fi_ftradeint_pd), Inward Foreign Direct Investment (wdi_fdiin) and Outward Foreign Direct Investment (wdi_fdiout). Finally, we are interested in a country's colonial past and in particular, whether or not a country has one. We therefore need to create a binary dummy for Colonial Past.

- Step 1. Create a binary dummy variable using the variable Colonial Origin (ht_colonial), where 1 = colonial past and 0 = no colonial past. Call your variable ColonialPast.
- Step 2. Run a multivariate regression analysis testing H1 and controlling for ColonialPast. Interpret the results for all of your variables including your binary dummy.

Task 2. We want to test the same hypothesis as in Task 1 and include all of the same IVs. However, this time we want to replace our Binary Dummy with a Categorical dummy for 'Regime type' (ht_regtype1). Run your regression analysis using the category 'Democracy' as your reference category. Interpret the results for all IVs and the following categories of your Dummy: Monarchy & Military.

Task 3. Introduce a time dummy into the same regression model (be sure to omit the Regime type dummy).

- 1. Question 1. Compare this model to the model with the Regime type dummy. Which model has more explanatory power (and by how much)?
- 2. Question 2. What is the reference category for your categorical dummy?
- 3. Question 3. Interpret the regression results for 2001 & 2015.

Marginal Effects and Predicted Probabilities

Regression coefficients tells us about the magnitude of our expected effects. For instance, with a one unit increase in the IV, we can expect some x increase or decrease in the DV. However, these interpretations can sometimes feel a bit abstract. This is particularly the case when we start to include binary and categorical dummy variables in our analysis. One way to improve our ability to interpret results for multivariate regression analysis is to estimate and present 'marginal effects'. A 'margin' is a statistic computed from predictions from a model of the covariation between an IV and a DV. In plain terms, margins will give us very specific predicted values of our DV when our IV is at another very specific value. In Stata, marginal effects is a post-estimation technique. It is also something that relies heavily on visualisation for interpretation. A good rule of thumb in statistics is that, when possible, present your results visually. I.e., replace confusing and crowded tables with nice visualisations.

The are many basic Stata commands for marginal effects. Here are a few of the main ones:

```
. margins, at(var1=(min(increment)max))
```

- . margins, at(var1=(# #))
- . margins var1, at(var2=(min(increment)max))
- . margins, at (var1 == #)(var1 == #) (var1 == #) ...
- . margins var1, at (var2 == #)(var2 == #)(var1 == #) ...

Example. Going back to our first example and using **data6.dta**, above, we want to run a multivariate regression explaining variation in individuals' 'income' (DV) by the IVS 'years of education' (yedu) and 'age' (age) while also controlling for 'Gender'.

. recode sex (1=1 'Men')(2=0 'Women'), gen(Gender)

This time, we want to supplement our regression results with the post-estimation of marginal effects of yedu on income. This will take several steps and will require you to know the range of values that yedu take.

. sum yedu

Variable	0bs	Mean	Std. Dev.	Min	Max
yedu	5,039	11.80419	2.676028	8.7	18

Our IV, yedu, has a minimum value of 8.7 and a maximum value of 18 with a standard deviation of about 2.6.

Let's run our regression analysis and then the post-estimation command for margins.

- . regress income yedu age Men
- . margins, at(yedu=(8.7(1)18))

What does this margins command mean?

- 'margins' is a Stata command for predicting marginal effects
- 'yedu' is our IV of interest
- 8.7 is the min value of yedu
- 18 is the max value of yedu
- 1 is the 'increment' that we have told Stata to predict between the min and max values. In this case, 1 means that we have requested predicted results for each 1 year of yedu between our min and max values. We could have just as easily specified '2' for an increment of 2 years, or 0.5 for an increase of 6 months. It is up to you (and is also largely related to how your IV is measured and its min and max values).

Here are the results.

	Delta-method						
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]	
_at							
1	9944.068	836.9753	11.88	0.000	8303.181	11584.95	
2	13575.73	695.1464	19.53	0.000	12212.9	14938.56	
3	17207.39	589.033	29.21	0.000	16052.59	18362.18	
4	20839.05	540.1126	38.58	0.000	19780.16	21897.94	
5	24470.71	563.4836	43.43	0.000	23366	25575.41	
6	28102.37	651.411	43.14	0.000	26825.28	29379.45	
7	31734.03	782.4252	40.56	0.000	30200.08	33267.97	
8	35365.69	938.6546	37.68	0.000	33525.46	37205.91	
9	38997.35	1109.498	35.15	0.000	36822.18	41172.52	
10	42629.01	1289.159	33.07	0.000	40101.62	45156.4	

Interpreting the results. In the left column (under _at) we see our 1 year increments of yedu between our min value and our max value. There are 10 increments. In the 'margin' column we get the results of a predicted value for income for people for each increment of education. For example, at increment 1 (8.7 years of education), we can predict that the average income will be \$9944.068. Critically, this prediction is statistically significant with a p-value <0.001. At increment 2 (9.7 years of education) we can predict that the average income will be \$13575.73. This is also statistically significant with a p-value <0.001. We get these predicted values for income for each increment in yedu. Finally, in the two columns on the right we get our confidence intervals. The main thing to take from these columns is the range of values (the lower bounds and the upper bounds) with which we can be 95% confident (p-value <0.05) of our results. These values for increment 1 are between \$8303.181 (the lower bound) and \$11584.95 (the upper bound). Any values outside of these lower and upper bounds are beyond the range in which we can be 95% confident.

Marginsplot

All of the information about marginal effects displayed above is very useful because it gives us a very specific sense of how our IV affects our DV. However, we rarely replicate this table in reports. Instead, the best way to report these results is visually using the 'marginsplot' command. Again, this is part of the post-estimation technique we learned above. It is therefore critical that these commands are executed in the correct order. Here are the commands.

- . regress income yedu age Gender
- . margins, at(yedu=(8.7(1)18))
- . marginsplot

Interpreting the results. All of the values that are plotted here are listed in the table we produced above. However, now we get a very clear and intuitive sense of the impact of Years of education on Income. Along the x-axis we can see our 'increments' for yedu. The dots are the predicted values for income. The capped-lines are the upper and lower bounds of the confidence intervals. A general rule of thumb for confidence intervals is that the tighter (smaller!) the better.

Example. We want to include our binary dummy variable 'Gender' in our predicted values for 'income' at different values of 'yedu'. This time, we need to include the prefix 'i.' for our binary dummy 'Gender' so that Stata includes Men and the reference category, Women.

- . regress income yedu age i.Gender
- . margins Gender, at(yedu=(8.7(1)18))
- $. \ margin splot \\$

	Delta-method					
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]
_at#Gender						
1#'Women'	2740.473	974.0307	2.81	0.005	830.8898	4650.056
1#'Men'	17525.23	1018.051	17.21	0.000	15529.35	19521.12
2#'Women'	6372.133	860.4135	7.41	0.000	4685.295	8058.97
2#'Men'	21156.89	899.8825	23.51	0.000	19392.67	22921.11
3#'Women'	10003.79	782.8905	12.78	0.000	8468.939	11538.65
3#'Men'	24788.55	814.9724	30.42	0.000	23190.8	26386.3
4#'Women'	13635.45	752.6977	18.12	0.000	12159.79	15111.11
4#'Men'	28420.21	774.3397	36.70	0.000	26902.12	29938.3
5#'Women'	17267.11	775.3842	22.27	0.000	15746.97	18787.25
5#'Men'	32051.87	784.8912	40.84	0.000	30513.09	33590.65
6#'Women'	20898.77	846.71	24.68	0.000	19238.8	22558.74
6#'Men'	35683.53	844.7111	42.24	0.000	34027.48	37339.58
7#'Women'	24530.43	955.848	25.66	0.000	22656.49	26404.37
7#'Men'	39315.19	944.4839	41.63	0.000	37463.53	41166.85
8#'Women'	28162.09	1091.514	25.80	0.000	26022.18	30302
8#'Men'	42946.85	1073.123	40.02	0.000	40842.99	45050.7
9#'Women'	31793.75	1245.067	25.54	0.000	29352.8	34234.7
9#'Men'	46578.51	1221.543	38.13	0.000	44183.68	48973.34
10#'Women'	35425.41	1410.677	25.11	0.000	32659.79	38191.04
10#'Men'	50210.17	1383.391	36.29	0.000	47498.04	52922.3

Interpreting the results. While both women and men benefit from more education when it comes to income, men benefit much more. This effect appears to be consistent across all increments of education.

Example. Omitting 'yedu' for the time being, we now want to estimate the predicted values of 'income' for Men vs Women and graph this using 'marginsplot'.

- . regress income yedu age i.Gender
- . margins, at(Gender=(10))

Note that I have changed the values for the min and max values and have not specified an increment. This is because our binary dummy variable Men only has two values.

		Delta-method Std. Err.	t	P> t	[95% Conf.	Interval]
_at	29080.08	772.3777	37.65	0.000	27565.83	30594.32
2	14295.32	752.8804	18.99	0.000	12819.3	15771.34

Interpreting the results. In this case in the '_at' column we see the predicted values for 1 = men and 2 = women. We can see that the predicted mean income for men is \$29080.08, which is much higher than for women, who have a predicted income of just \$14295.32. Both results are statistically significant with p-values of <0.001.

Now, let's visualise the results with the 'marginsplot' command.

Example. We now want to examine the predicted values of income for differences across our variable 'age'. However, in this case our focus is on precited values for income for people aged 20, 30, 40, and 50.

- . regress income yedu age
- . margins, at(age == 20) at(age == 30) at(age == 40) at(age == 50)

	Delta-method						
	Margin	Std. Err.	t	P> t	[95% Conf.	Interval	
_at							
1	25415.13	802.9405	31.65	0.000	23840.97	26989.	
2	23181.15	604.7114	38.33	0.000	21995.62	24366.6	
3	20947.17	556.1741	37.66	0.000	19856.8	22037.5	
4	18713.19	689.6917	27.13	0.000	17361.06	20065.3	

Interpreting the results. The column '_at' is now at our different age increments. 1 = 20; 2 = 30, 3 = 40, and 4 = 50. We can clearly see that the predicted values for income decrease with age. All results are statistically significant with p-values of <0.001.

Let's also plot these results using 'marginsplot'.

Stata Exercises. 2

Task 1. Using **QOG_timeseries.dta** and testing the same hypothesis in Task 1-3, complete the following.

- Step 1. Run a multivariate analysis including dr_ig al_ethnic fi_ftradeint_pd wdi_fdiin wdi_fdiout as well as your Binary Dummy variable for 'ColonialPast' and predict marginal effects for the two values of your Binary Dummy.
- Step 2. Visual your results.

Task 2. Run a multivariate analysis including dr_ig (your DV), al_ethnic, fi_ftradeint_pd, wdi_fdiin, and wdi_fdiout. Predict marginal effects for 'al_ethnic' at increments of 0.01 and ranging from 0 to 1.

- 1. Task 1. What is the predicted value of dr ig when al ethnic is at 0.01?
- 2. Task 2. Is this above our below the mean for dr ig?
- 3. Task 3. What is the lower bound for this increment and what is the upper bound?
- 4. Task 4. Visualise your results.

Task 3. Rerun your regression and margins, but:

- Step 1. This time we want to predict values for al_ethinc for our two values of the Binary Dummy 'ColonialPast'.
- Step 2. Visualise the results.

Task 4. Run a multivariate analysis including 'dr_ig', 'al_ethnic', 'fi_ftradeint_pd', 'wdi_fdiin', 'wdi_fdiout' and this time include your Categorical Dummy variable for Regime Type (ht regtype1).

- Step 1. Predict marginal values for dr_ig when regime type is Monarchy, Military, and Democracy.
- Step 2. Visualise your results.

Graphing with marginsplot

There are many options that you can use to improve your graphs using marginsplot. You can explore these many options using Stata's built in help function. In this section I will point out some basic options for improving your graphing skills in marginsplot.

Scatter and Line

When our variable of interest is **binary** or **categorical** we can graph our margins plot using the 'scatter' option. When the variable of interest is **continuous**, we can graph our margins plot using the 'line' option and also adjusting the confidence intervals. Making these adjustments requires us to use the 'recast' and 'recastci' options. Let's take our examples from what we already learned above.

Scatter and Binary Variable

- . regress income yedu age i.Gender
- . margins, at(Gender=(10))
- . marginsplot, recast(scatter)

This is the same result as we got before, not there is no line joining the two dots. This is the proper way to visualise these marginal effects.

Scatter and Categorical Variable

- . regress income yedu age i.state
- . margins, at(age == 30) at(age == 40) at(age == 50)
- . marginsplot, recast(scatter)

Line and Continuous Variable.

- . regress income yedu age i.Men
- . margins, at(age=(20(1)80))
- . marginsplot, recastci(rline) recast(line)

Over

- .regress income yedu age i.Men
- .margins Men, at(age=(20(1)80))
- .marginsplot, by(Men) recastci(rline) recast(line)

- . regress income yedu age i.state
- . margins state, at(age == 20) at(age == 30) at(age == 40) at(age == 50)
- . marginsplot, by(state) recast(scatter)

Stata Exercises. 3

Task 1. Re-draw your graphs from tasks 4-7, but improve them using the techniques for scatter and line outlined above.

Task 9. We want to examine the relationship between Globalisation (dr_ig) and Ethnic Fractionalisation (al_ethnic), controlling for alternative explanations (fi_ftradeint_pd wdi_fdiin wdi_fdiout) as well as a new binary dummy variable for Democracy.

- Step 1. Recode ht_regtype1 into a binary dummy variable where 1 = Democracy and
 0 = Non-democracy. Call your new variable 'Democracy'.
- Step 2. Predict marginal effects for 'al_ethnic' at increments of 0.01 and ranging from 0 to 1 for the two categories of your Dummy variable Democracy.
- Step 3. Visualise your results using the appropriate graphing format and include two graphs (side by side), comparing Democracy to Non Democracy.

Advanced Task: The Privacy Survey

For the advanced task this week you will be using the data collected through the **Privacy Attitudes / Privacy Behaviours Survey**. First some background. Researchers have recently pinpointed something call the 'privacy paradox'. In short, the privacy paradox means that people have very **risk adverse attitudes** about privacy issues but very **risk perverse behaviours**. This is particularly the case when it comes to internet privacy. For instance, most people would say they value the privacy of their online identity and personal information, but rarely do things to actually protect their privacy (using VPNs, reading 'terms of agreement', checking cookies, etc). Their attitudes do not match their behaviour.

For this assignment you will start with the 'raw' survey data in a xlsx file and work your way up to two major tests: (1) a paired t-test to test the privacy paradox hypothesis and (2) a multivariate regression analysis examining the determinants of a 'privacy index'.

STEPS

Preparing your data:

- 1. import Privacydata.xlsx.
- 2. encode the string variable 'gender'
- 3. create a new variable 'age' using dob (data of birth).
- 4. Rename the following
 - a. doyouconsideryourselftobealight1 = SocialMediaUse
 - b. doyoutendtotrustotherpeopleveryl = TrustOtherPeople
 - c. doyoutendtobelievewhatyoureadint = BelieveNewsMedia

Creating Privacy Indices:

- create two different indices. One for PrivacyAttitudes and one for PrivacyBehaviours. Use the data from the remaining survey questions to create these two indices. It is up to you which data to include in which index. For each survey question, a response of Yes = 1 and a response of No = 0. Also note that Attitudes are about things like 'concern' and 'worry' and behaviors are what people actually do. Be sure to standardize each index (sum up the components and then divide by the number of components).
- 2. Run a paired t-test to test the privacy paradox hypothesis. This hypothesis says that Privacy Attitudes are different from Privacy Behaviors. Hence, the null hypothesis is that there are no differences between the two, while the alternative hypothesis says that there is a (statistically significant) difference. Do you find support for the Privacy Paradox Hypothesis?
- 3. Create a new index called the PrivacyIndex, which combines the PrivacyAttitudes and PrivacyBehaviours indices. Besure to standardize your new PrivacyIndex (sum up the components and then divide by the number of components).
- 4. Using your new PrivacyIndex as your DV, run a multivariate regression analysis where your IVs are (1) SocialMediaUse (2) TrustOtherPeople (3) BelieveNewsMedia, (4) Age and (5) Gender. Note that Gender is a binary dummy variable.
- 5. Report the results of your regression analysis and interpret regression coefficients, p-values, and adjusted r-squared.

- 6. Use pre- and post-estimation checks for multicollinearity. Are there any problematic IVs?
- 7. Using semi-partial correlations, which IV has the most explanatory power?
- 8. Predict marginal effects for all of your IVs and visualize using 'marginsplot.'