PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 96/13520
C07K 14/705, C12N 15/81, 1/19, C12Q 1/02	A1	(43) International Publication Date: 9 May 1996 (09.05.96)
(21) International Application Number: PCT/US9 (22) International Filing Date: 25 October 1995 (2)		EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT,
(30) Priority Data: 08/332,312 31 October 1994 (31.10.94)	τ	NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).
(60) Parent Application or Grant (63) Related by Continuation US Filed on 31 October 1994 (2)	•	
(71) Applicant (for all designated States except US): AM CYANAMID COMPANY [US/US]; Five Girald Madison, NJ 07940 (US).	ERICA la Farn	.N
 (72) Inventors; and (75) Inventors/Applicants (for US only): PAUSCH, Mar [US/US]; 312 Andover Place, Robbinsville, NJ 086 PRICE, Laura, Alicia [US/US]; 181 Canterbury Langhome, PA 19047 (US). 	692 (U	S).
(74) Agents: MATHEWS, Gale, F.; American Home Corporation, Five Giralda Farms, Madison, NJ 07 et al.	Produ 1940 (U	ets (S)

(54) Title: GENES ENCODING A FAMILY OF POTASSIUM CHANNELS

(57) Abstract

This invention relates generally to the potassium channel gene family. More particularly, the present invention relates to the cloning and characterization of potassium channel genes from *Drosophila melanogaster* and *Caenorhabditis elegans*. Other aspects of the present invention include methods of assaying substances to determine effects on cell growth. Also presented are methods of controlling nematode and insect pests by inhibiting potassium channels substantially homologous to those encoded by nucleotide sequences as described herein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy ·	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KР	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	U Z	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

10

15

20

25

- 1 -

32,421-01

GENES ENCODING A FAMILY OF POTASSIUM CHANNELS

Field of Invention

This invention relates generally to the potassium channel gene family. More particularly, the present invention relates to the cloning and characterization of potassium channel genes from Drosophila melanogaster and Caenorhabditis elegans.

Background of the Invention

Synthetic organic insecticides are primarily nerve poisons acting on the cholinergic system (organophosphorus compounds and methylcarbamates), the voltage-gated sodium channel (pyrethroids and DDT), and the GABA-gated chloride channel (cyclodienes and other polychlorocycloalkanes). Potassium channels comprise a large and diverse group of integral membrane proteins that determine the level of excitability and repolarization properties of neurons and muscle fibers [B. Hille, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA (1984)]. The multiple essential functions encoded by the potassium channels make them excellent targets for new pesticides and animal and human therapeutics. Potassium channel diversity in the fruitfly Drosophila melanogaster results from an extended gene family coding for homologous proteins. Six genes encoding

10

15

20

25

30

potassium channels have been cloned from Drosophila melanogaster which account for a large part of the diversity of potassium currents observed in insect nervous tissue [A. Wei, M. Covarrubias, A. Butler, K. Baker, M. Pak, L. Salkoff, Science 248, 599-603 (1990), N.S. Atkinson, G.A. Robertson, B. Ganetzky, Science 253,551-555, (1991), J. Warmke, R. Drysdale, B. Ganetzky, Science 252, 1560-1564 (1991), A. Bruggemann, L.A. Pardo, W. Stuhmer, O. Pongs, Nature 365, 445-448 (1993)]. Shaker and Shal encode voltagegated potassium channels with rapid current activation and inactivating properties. Shab and Shaw encode delayed rectifier channels, with slow inactivating (Shab) and non-inactivating (Shaw) properties. encodes a calcium-activated potassium channel and eag encodes a voltage-gated channel permeable to both potassium and calcium which is modulated by cyclic AMP.

Modulation of cardiac action potential by compounds that effect the behavior of potassium channels may be a useful treatment for serious heart In this regard, each of the potassium channels cloned from insects have corresponding versions in mammalian species, including, specifically, a delayed rectifier potassium channel homolog, RAK, cloned from rat cardiac tissue [M. Paulmichl, P. Nasmith, R. Hellmiss, K. Reed, W.A. Boyle, J.M. Nerbonne, E.G. Peralta, D.E. Clapham, Proc. Natl. Acad. Sci USA 88, 7892-7895 (1991)]. Thus, the RAK channel represents an important target of new drugs for the control of heart failure. delayed rectifier potassium current in heart cells regulates the duration of the plateau of the cardiac action potential by countering the depolarizing,

10

15

20

25

30

inward calcium current. Delayed rectifier potassium currents characteristically are activated upon depolarization from rest, display a sigmoidal or delayed onset, and have a nonlinear, or rectifying, current-voltage relation. Several types of delayed potassium conductances have been identified in cardiac cells based on measured single-channel conductances. Heart rate and contractility are regulated by second messenger modification of delayed rectifier potassium conductances, and species differences in the shape of the plateau may be influenced by the type and level of channel expression.

On the basis of predicted membrane spanning topology, potassium channels may be subdivided into two distinct classes: voltage-gated, calciumactivated, and cyclic nucleotide-gated potassium channels that are composed of six membrane spanning domains (S1-S6) and a single pore forming domain (H5), and inward rectifying potassium channels that pass through the membrane twice and also contain a single pore forming region [Y. Kubo, E. Reuveny, P.A. Slesinger, Y.N. Jan, L.Y. Jan Nature 364, 802-806 (1993); Y. Kubo, T.J. Baldwin, Y.N. Jan, L.Y. Jan Nature 362, 127-133 (1993)]. Here, we report the cloning and functional expression in yeast of a novel Drosophila melanogaster potassium channel. Further, we identify a Caenorhabditis elegans homolog that constitutes the second member of a new family of potassium channels exhibiting a topological configuration unique among the known classes of potassium channels.

The yeast Saccharomyces cerevisiae is utilized as a model eukaryotic organism for the purpose of studying potassium transport mechanisms.

10

15

20

25

30

- 4 -

Due to the ease with which one can manipulate the genetic constitution of the yeast Saccharomyces cerevisiae, researchers have developed a detailed understanding of many complex biological pathways, including potassium transport. In yeast, high affinity potassium uptake is performed by the product of the TRK1 gene [R.F. Gaber, C.A. Styles, G.R. Fink Mol. Cell. Biol. 8, 2848-2859 (1988)]. Mutant yeast strains lacking trk1 function are incapable of growing in medium lacking high concentrations of potassium. Since potassium transport mechanisms are present in organisms as divergent as yeast and man, one could predict that expression of heterologous potassium channels in mutant cells might replace trk1 function, and support growth on medium containing low potassium In this regard, plant potassium concentration. channels were shown to function in yeast and represent important targets for new herbicides [J.A Anderson, S.S. Huprikar, L.V. Kochian, W.J. Lucas, R.F. Gaber, Proc. Natl. Acad. Sci USA 89, 3736-3740 (1992); H. Sentenac, N. Bonnaud, M. Minet, F. Lacroute, J.-M. Salmon, F. Gaynard, C. Grignon, Science 256, 663-665 (1992); D.P. Schachtman and J.I. Schroeder, Nature Thus, we have employed this yeast 370, 655-658]. expression system for cloning and expression of potassium channels from heterologous species, making it useful for discovery of new pesticides, and animal and human therapeutics. Discovery of such compounds will necessarily require screening assays of high specificity and throughput. For example, new pesticides directed at potassium channels require high selectivity for insect channels and low activity against non-insect species. Screening assays utilizing yeast strains genetically modified to

10

15

20

25

30

- 5 -

accommodate functional expression of heterologous potassium channels offer significant advantages in this area.

Summary of the Invention

A first aspect of the present invention is the discovery of a new subclass of potassium channel genes and proteins encoded thereby. Potassium channels belonging to this new subclass comprise four hydrophobic domains capable of forming transmembrane helices, wherein a first pore-forming domain is interposed between the first and second transmembrane helices and a second pore-forming domain is interposed between the third and fourth transmembrane helices, and wherein each pore-forming domain contains a potassium selective peptide motif. In preferred embodiments, the peptide motif is selected from the group consisting of a Y/F-G dipeptide motif.

In certain preferred embodiments, the isolation and characterization of invertebrate (i.e. insect and nematode) potassium channel genes belonging to this new subclass is presented. In more preferred embodiments, the present invention provides for the isolation of complementary DNA fragments from Drosophila melanogaster and Caenorhabditis elegans which encode conserved amino acid sequence elements unique to this potassium channel gene family. A yeast expression technology is employed to clone cDNAs from Drosophila melanogaster and C. elegans and a hybridization approach is utilized to isolate additional cDNAs from Caenorhabditis elegans.

A second aspect of the present invention is a method of assaying substances to determine effects

10

15

20

25

30

on cell growth. Yeast cells of the kind described above are cultured in appropriate growth medium to cause expression of heterologous proteins, embedded in agar growth medium, and exposed to chemical compounds applied to the surface of the agar plates. Effects on the growth of embedded cells are found around compounds that have effects on the heterologous potassium channel.

A third aspect of the present invention is a method of controlling nematode and insect pests by inhibiting potassium channels substantially homologous to those encoded by nucleotide sequences as presented herein.

Brief Description of the Drawings

FIGURE 1. Growth of CY162 cells bearing pDmORF1. CY162 cells transformed with plasmids isolated from survivors of a primary library screen for plasmids that support the growth of CY162 on medium contain low potassium concentration. Six individual transformants of each plasmid-bearing strain are cultured in patches on the indicated medium. CY162 cells bearing pDmORF1 are found in the upper left-hand corner of each plate while pKAT1 containing cells are found in the lower right hand corner.

FIGURE 2A and 2B. DNA sequence and deduced amino acid sequence of Dm ORF1 [SEQ ID NOS:1 and 2]. The nucleotide sequence of the 2.4 kb cDNA revealed a single long open reading frame proximal to the GAL1 promoter. Segments corresponding to putative transmembrane (M1-M4) and pore-forming H5 domains in the predicted polypeptide are underlined. The single

20

25

30

amino-terminal asparagine linked glycosylation site is indicated by a G.

FIGURE 3A and 3B. DNA sequence and deduced amino acid sequence of the F22b7.7 segment of the Caenorhabditis elegans genome [SEQ ID NO:3]. Segments corresponding to putative transmembrane (M1-M4) and pore-forming H5 domains in the predicted polypeptide are underlined.

10 FIGURE 4. Alignment of DmORF1 and F22b7.7 sequences.
Protein-coding regions of DmORF1 [SEQ ID NO: 37] and
F22b7.7 [SEQ ID NO: 38] (designated as CeORF-1 in this
FIGURE) are compared using the protein sequence
alignment algorithm in Genework DNA sequence analysis
software. Identical amino acids are boxed.

FIGURE 5A. Comparison of the pore-forming domains of DmORF1 and F22b7.7. Amino acid sequences from the six cloned Drosophila melanogaster potassium channels and three inward rectifier channels [SEQ ID NOS:7 through 21] are compared to DmORF1 and F22b7.7 within the pore-forming H5 regions. Amino acid identities are indicated by a vertical line and conserved substitutions indicated by a dot. Amino acid substitutions deemed acceptable are indicated.

FIGURE 5B. Hydropathy plot analysis of the DmORF1 and F22b7.7 polypeptide sequence. The Kyte-Doolittle hydropathy algorithm in the Geneworks DNA analysis software is used to predict the topology of DmORF1 and F22b7.7. The position of predicted membrane spanning domains (M1-M4) and pore-forming domains are indicated.

FIGURE 6. Predicted membrane spanning topology of DmORF1.

FIGURE 7. Heterologous potassium channel-dependent growth of plasmid bearing CY162 (trk14) strains. CY162 bearing pYES2, pKAT1, pDmORF1, and pRATRAK are cultured at 30°C for four days on arginine phosphate agar medium containing 0 mM, 0.2 mM, or 100 mM added KC1.

10

15

5

FIGURE 8. Inhibition of growth of yeast cells containing heterologous potassium channels. CY162 cells (10⁵) bearing the indicated plasmids are plated in arginine phosphate agar medium containing 0.2 mM potassium chloride. Sterile filter disks were placed on the surface of the agar and saturated with 20 ml of a 1 M solution of potassium channel blocking compound. Clockwise from upper left-hand corner is BaCl₂, CsCl, TEA, and RbCl. KCl is applied to the center disk.

20

25

FIGURE 9A and 9B. DNA sequence and deduced amino acid sequence of CORK [SEQ ID NO: 36]. The nucleotide sequence of the 1.4 kb cDNA revealed a single long open reading frame proximal to the GAL1 promoter. Segments corresponding to pore-forming H5 domains in the predicted polypeptide are underlined. Asparaginelinked glycosylation sites are indicated by a G.

Detailed Description of the Invention

30

Nucleotide bases are abbreviated herein as follows:
Ade; A-Adenine G-Guanine Ura; U-Uracil
C-Cytosine T-Thymine
Amino acid residues are abbreviated herein to either three

20

25

30

- 9 -

letters or a single letter as follows:

Ala; A-Alanine Leu; L-Leucine

Arg; R-Arginine Lys; K-Lysine

Asn; N-Asparagine Met; M-Methionine

5 Asp;D-Aspartic acid Phe;F-Phenylalanine

Cys;C-Cysteine Pro;P-Proline

Gln;Q-Glutamine Ser;S-Serine

Glu; E-Glutamic acid Thr; T-Threonine

Gly; G-Glycine Trp; W-Tryptophan

10 His;H-Histidine Tyr;Y-Tyrosine

Ile;I-Isoleucine Val;V-Valine

The term "mammalian" as used herein refers to any mammalian species (e.g., human, mouse, rat, and monkey).

The term "heterologous" as used herein refers to DNA sequences, proteins, and other materials originating from organisms other than the organism used in the expression of the potassium channels or portions thereof, or described herein (e.g., mammalian, avian, amphibian, insect, plant), or combinations thereof not naturally found in yeast.

The terms "upstream" and "downstream" are used herein to refer to the direction of transcription and translation, with a sequence being transcribed or translated prior to another sequence being referred to as "upstream" of the latter.

The potassium channels of the present invention possess properties in common with known potassium channels including, voltage-gated channels, calcium activated channels, cyclic nucleotide gated channels, inward rectifier channels, and the like, and especially with regard to electrophysiological properties. Certain preferred channels exhibit inward and outward currents that are affected by potassium concentration, particularly characteristic of voltage-gated channels. The term "channel" and the

10

15

20

25

30

nucleotide sequences encoding same, is intended to encompass subtypes of the aforementioned classes of channels, and mutants, derivatives and homologs thereof.

The nucleotide sequences encoding the potassium channels or parts thereof may be expressed recombinantly, and utilized for a variety of reasons, the most notable of which is for screening of substances that modulate the activity of the potassium ion channels. Such substances, especially inhibitors of the activity of the potassium channels of the present invention, may be utilized as insecticides, antihelmenthics, drugs suitable for the control of heart failure, and the like.

Heterologous DNA sequences are typically expressed in a host by means of an expression vector. An expression vector is a replicable DNA construct in which a DNA sequence encoding the heterologous DNA sequence is operably linked to suitable control sequences capable of affecting the expression of a protein or protein subunit coded for by the heterologous DNA sequence in the intended host. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and (optionally) sequences which control the termination of transcription and translation. Vectors useful for practicing the present invention include plasmids, viruses (including bacteriophage), and integratable DNA fragments (i.e., fragments integratable into the host genome by genetic recombination). The vector may replicate and function independently of the host genome, as in the case of a plasmid, or may integrate into the genome itself, as in the case of an integratable DNA fragment. Suitable vectors will contain replicon and control sequences which are derived from species compatible with the intended expression host. For example, a promoter operable in a host cell is

10

15

20

25

30

one which binds the RNA polymerase of that cell, and a ribosomal binding site operable in a host cell is one which binds the endogenous ribosomes of that cell.

DNA regions are operably associated when they are functionally related to each other. For example, a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation. Generally, operably linked means contiguous and, in the case of leader sequences, contiguous and in reading phase.

Transformed host cells of the present invention are cells which have been transformed or transfected with the vectors constructed using recombinant DNA techniques and express the protein or protein subunit coded for by the heterologous DNA sequences. In preferred embodiments, the transformed host cells are yeast. A variety of yeast cultures, and suitable expression vectors for transforming yeast cells, are known. See e.g., U.S. Patent No. 4,745,057; U.S. Patent No. 4,797,359; U.S. Patent No. 4,615,974; U.S. Patent No. 4,880,734; U.S. Patent No. 4,711,844; and U.S. Patent No. 4,865,989. Saccharomyces cerevisiae is the most commonly used among the yeasts, although a number of other yeast species are commonly See. e.g., U.S. Patent No. 4,806,472 (Kluveromyces lactis and expression vectors therefore); 4,855,231 (Pichia pastoris and expression vectors therefore). A heterologous potassium channel may permit a yeast strain unable to grow in medium containing low potassium concentration to survive [CY162, for example, see J.A Anderson, S.S. Huprikar, L.V. Kochian, W.J. Lucas, R.F. Gaber, Proc. Natl. Acad. Sci USA 89, 3736-3740 (1992)]. Yeast vectors may contain an origin of replication from the endogenous 2 micron (2µ) yeast plasmid or an autonomously

10.

15

20

25

30

replicating sequence (ARS) which confer on the plasmid the ability to replicate at high copy number in the yeast cell, centromeric (CEN) sequences which limit the ability of the plasmid to replicate at only low copy number in the yeast cell, a promoter, DNA encoding the heterologous DNA sequences, sequences for poly-adenylation and transcription termination, and a selectable marker gene. An exemplary plasmid is YRp7, (Stinchcomb et al., (1979) Nature 282, 39; Kingsman et al., (1979) Gene 7, 141; Tschemper et al., (1980) Gene 10, 157]. This plasmid contains the TRP1 gene, which provides a selectable marker for a mutant strain of yeast lacking the ability to grow in the absence tryptophan, for example ATCC No. 44076. The presence of the trpl lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

Suitable promoting sequences in yeast vectors include the promoters for metallothionein (YEp52), 3phosphoglycerate kinase [pPGKH, Hitzeman et al., (1980) J. Biol. Chem. 255, 2073] or other glycolytic enzymes [pYSK153, Hess et al., (1968) J. Adv. Enzyme Reg. 7, 149]; and Holland et al., (1978) Biochemistry 17, 4900], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phospho-fructokinase, glucose-6phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, trioseposphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for use in yeast expression are further described in R. Hitzeman et al., EPO Publn. No. 73,657. Other promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2 (pAD4M), isocytochrome C, acid phosphates, degradative enzymes associated with nitrogen metabolism, and the aforementioned metallothionein and glyceraldehyde-3-

10

15

20

25

30

phosphate dehydrogenase, as well as enzymes responsible for maltose and galactose (pYES2) utilization. Finally, in constructing suitable expression plasmids, the termination sequences associated with these genes may also be ligated into the expression vector 3' of the heterologous coding sequences to provide polyadenylation and termination of the mRNA.

In one embodiment of the present invention, a yeast expression system is described, wherein yeast cells bear heterologous potassium channels. In preferred embodiments, these channels are DmORF-1, CORK, or RAK. As noted above, transformed host cells of the present invention express the proteins or proteins subunit coded for by the heterologous DNA sequences. When expressed, the potassium channel is located in the host cell membrane (i.e., physically positioned therein in proper orientation for both the stereoselective binding of ligands and passage of potassium ions).

In certain preferred screening embodiments of the present invention, a transformed yeast cell is presented, containing a heterologous DNA sequence which codes for a rat cardiac delayed rectifier potassium channel, RAK, cloned into a suitable expression vector. RAK is capable of complementing the potassium-dependent phenotype of Saccharomyces cerevisiae strain CY162 on medium containing low potassium concentration.

The potassium channel subclass of the present invention is characterized in that the potassium channels have four hydrophobic domains capable of forming transmembrane helices. These channels are further characterized in that they comprise two pore-forming domains, one of which is interposed between said first helix and said second helix, and the other of which is interposed between said third helix and said fourth helix. The pore-forming domains

10

15

20

25

30

further contain a potassium selective motif which serves to confer upon the channel the ability to pass potassium ions to the exclusion of other ions, such as sodium, calcium, and the like. In certain preferred embodiments, this motif contains the peptide Y/G, and particularly in either a dipeptide or tripeptide motif, and frequently with Y/F-G bonding. In most preferred embodiments, the motif is selected from the group consisting of G-V-G, G-L-G, G-Y-G, G-F-G, and G-I-G.

In certain embodiments of the present invention, the potassium channel is positioned within a cell membrane in such a manner as to allow it to function as a modulator of the flow of potassium ions into and out of the cell. To best regulate this activity, at least one pore-forming domain may be positioned proximal to a exterior portion of the cell membrane.

In other embodiments, the potassium channels of the present invention further comprise an amino-terminal glycosylation site, and especially wherein that site is asparagine-linked.

Potassium channels belonging to the subclass as presented herein may be derived from a wide variety of animal species, both vertebrate and invertebrate. Using the yeast expression technology and other teachings as set forth herein, the present inventors have isolated a single 2463 base pair cDNA fragment from an invertebrate source, designated Dm ORF1 [SEQ ID NO: 1], by complementation of the potassium-dependent phenotype of Saccharomyces cerevisiae strain CY162 (trk14) on medium containing low potassium concentration [J.A Anderson, S.S. Huprikar, L.V. Kochian, W.J. Lucas, R.F. Gaber, Proc. Natl. Acad. Sci USA 89, 3736-3740 (1992)]. Dm ORF1 contains a single long open reading frame encoding a protein of 618 amino acids [SEQ ID NO:2] that exhibits substantial amino acid identity to the pore-

10

15

20

25

30

forming regions of other potassium channels. The DmORF1 contains structural features that distinguish it from other classes of potassium channels, including four hydrophobic domains capable of forming transmembrane helices (M1-M4) and two putative pore forming H5 domains found between transmembrane helices M1 and M2, and M3 and M4. Each pore forming H5 domain contains the Y/F-G dipeptide motif required for potassium selectivity [L. Heginbotham, T. Abramson, R. MacKinnon, Science 258, 1152-1155, (1992)]. This work was expanded to clone a construct derived from C. elegans having a single open reading frame sufficient to encode a protein of 434 amino acids, designated pCORK.

A search of the GENBANK database for DNA and protein sequences similar to DmORF1 revealed several cloned potassium channel sequences including a putative protein coding DNA sequence, F22b7.7, reported in the Caenorhabditis elegans genome sequencing project [R. Wilson, R. Ainscough, K Anderson, et al. Nature 368, 32-38 (1994)]. The DNA sequence contained a single long open reading frame sufficient to encode a protein of 336 amino acids (predicted MW 38.5 kDa) with substantial homology to known potassium channel sequences.

Using the hybridization approach, a cDNA sequence designated CeORF1 [SEQ ID NO: 38] was isolated by probing a Caenorhabditis elegans cDNA library with oligonucleotides designed using F22b7.7 DNA sequences [T.N. Davis and J. Thorner Meth. Enzymol. 139, 246-262 (1987)]. CeORF1 contains a single long open reading frame encoding a protein that exhibits substantial amino acid identity to poreforming regions of other potassium channels.

CeORF1 and pCORK each contain structural features similar to DmORF1, including two putative pore forming H5 domains. Each pore forming H5 domain contains the Y/F-G dipeptide motif required for potassium selectivity [L.

10

15

20

25

30

Heginbotham, T. Abramson, R. MacKinnon, Science 258, 1152-1155, (1992)]. These features form the basis of the designation of a new sub-family of potassium channels comprising DmORF1, CORK, and CeORF1.

Other aspects of the present invention relate to methods of modulating potassium channel activity, by affecting the ability of such channel to allow the flow of ions into, through, or out of a cellular membrane, and particularly when these ions are potassium ions. Certain substances whether biological or chemical in nature, may be applied to cell membranes having as an integral part of their structure, one or more potassium channels comprising the amino acid sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 36, or RAK, in an amount and for a time sufficient to affect the ability of the potassium channel to so regulate the flow of ions. Substances that are potassium channel blockers will inhibit the ability of the channel to regulate the flow of such ions. Substances that enhance such ability may be considered potassium channel "activators." Substances that modulate the activity of RAK may do so by modulation of cardiac action potential, upward or downward.

Application of such substances may take the form of in vitro, ex vivo, or in vivo application, each in a formulation suitable to deliver the substance to the cell membrane and to sustain such delivery for a time sufficient to allow the substance to interact with the membrane. Appropriate formulations, concentrations of substances, application time, and other relevant parameters may be established by utilizing, inter alia, known assays for measuring ion channel current flow. Another suitable endpoint one skilled in the art may utilize in optimizing these parameters, especially in the case of potassium channel blockers, is "cell death". Such assays may be performed in vitro and extrapolated to in vivo conditions,

10

15

20

25

30

or in some cases may be easily established directly in vivo, as for example, by applying the substance directly to a test sample comprising the target insect pest (whole organism) and noting the appropriate parameters at which an acceptable per cent of insect death is attained.

In certain preferred embodiments, methods of selectively inhibiting insect pests are presented by applying to such insect pests a substance capable of selectively inhibiting the activity of a potassium channel contained in the cells of such insect, and comprising the amino acid sequence of SEQ ID NO:2, or a potassium channel substantially homologous thereto. In the most preferred embodiments, the inhibitor will inhibit the activity of the aforementioned potassium channel without inhibition of other, non-homologous potassium channels that may be present in species other than the targeted insect pest. envisioned that such other species may also be present at the site of application of the inhibitor, such as in a garden, crop, or other site wherein it is desired to control In other preferred embodiments, methods of insect pests. selectively inhibiting nematode pests are presented much in the same manner as discussed for control of insect pests, by applying to such pests a substance capable of selectively inhibiting the activity of a potassium channel contained in the cells of such pest, and comprising the the amino acid sequence of SEQ ID NO:4 or SEQ ID NO: 36, or potassium channels substantially homologous thereto.

The following Examples are provided to further illustrate various aspects of the present invention. They are not to be construed as limiting the invention.

Example 1

Recombinant expression library screening.

10

15

20

25

30

Saccharomyces cerevisiae strain CY162 is described in Anderson, J.A. et al. (1992) Proc. Natl. Adad. Sci. USA 89, 3736-3740]. Growth of bacterial strains and plasmid manipulations are performed by standard methods (Maniatis T., Molecular Cloning. Cold Spring Harbor Laboratory Press, 1982). Media conditions for growth of yeast, isolation of plasmid DNA from yeast, and DNA-mediated transformation of yeast strains are as described (Rose M. D., Methods in yeast genetics, Cold Spring Harbor Laboratory Press, 1990). multifunctional expression library constructed in pYES2 and containing cDNA made from 3rd instar male Drosophila melanogaster mRNA is used as described [S.J. Elledge, J.T. Mulligan, S.W. Ramer, M. Spottswood, R.W. Davis Proc. Natl. Acad. Sci USA 88, 1731-1735 (1991)]. A multifunctional expression library constructed in pYES2 and containing cDNA made from mRNA obtained from all life stages of Caenorhabditis elegans is custom-made by Invitrogen Corporation.

Isolation of expression plasmids encoding heterologous potassium channels. CY162 cells are transformed with plasmid DNA from each library to give 3 x 106 transformants from each library on SCD-ura (synthetic complete dextrose (2 %) medium containing all necessary nutritional supplements except uracil) containing 0.1 M KCl agar medium. Transformants are replica-plated to SCG-ura (synthetic complete galactose (2 %) medium containing all necessary nutritional supplements except uracil) agar medium. Colonies that grow on this selective agar medium are transferred to SCG-ura agar medium to obtain single colonies clones and while reassaying suppression of the potassiumdependent phenotype. Plasmid DNA is isolated from surviving colonies and used to transform CY162. Six individual transformant strains containing one plasmid, pDmORF1, that confers the potassium independent phenotype is cultured on

15

20

25

30

- 19 -

SCD-ura and SCG-ura medium along with CY162 strains bearing pKAT1, which encodes a plant inward rectifier potassium channel that supports the growth of CY162 on selective medium (FIGURE 1). The plasmid bearing strains exhibit potassium-independent growth on both dextrose and galactose containing medium. Growth on dextrose is likely due to basal level of transcription leading to sufficient potassium channel expression to support growth.

10 Example 2

DNA sequence analysis of DmORF1. Plasmids that confer suppression of the potassium-dependent phenotype are subjected to automated DNA sequence analysis performed by high temperature cycle sequencing (Applied Biosystems). Geneworks DNA sequence analysis software (Intelligenetics) is used to align raw DNA sequence information and to The DNA sequence of the 2.4 identify open reading frames. kb insert in pDmORF1 is displayed in FIGURE 2A and 2B [SEQ The 5' untranslated sequences of the cDNA contain long poly A and poly T tracts not likely to be found in protein coding regions. The first ATG proximal to the 5' end is present in a consensus Drosophila melanogaster translational initiation site [D.R. Cavener Nucleic Acids Res., 15, 1353-1361 (1987)], consistent with the designation of this site as the translational start site. A single long open reading frame sufficient to encode a protein of 618 amino acids (predicted MW 68 kDa) is encoded in pDmORF1. consensus polyadenylation site, AATCAA, occurs at position 2093-2098 in 3' untranslated sequences. The DmORF1 contains structural features that distinguish it from other classes of potassium channels, including four hydrophobic domains capable of forming transmembrane helices (M1-M4) and two pore forming H5 domains found between transmembrane helices

M1 and M2, and M3 and M4. Each pore forming H5 domain contains the Y/F-G dipeptide motif required for potassium selectivity [L. Heginbotham, T. Abramson, R. MacKinnon, Science 258, 1152-1155, (1992)].

5

10

15

20

25

30

Example 3

Identification of Caenorhabditis elegans sequences homologous to DmORF1. A search of the GENBANK database protein sequences similar to DmORF1 reveals significant matches with several known potassium channel sequences. The closest match is to a putative protein coding DNA sequence, F22b7.7, reported in the Caenorhabditis elegans genome sequencing project [R. Wilson, R. Ainscough, K. Anderson, et al., Nature 368, 32-38 (1994)]. The DNA sequence and predicted amino acid sequence assembled from putative exons recognized by a GENBANK exon identification algorithm is displayed in FIGURE 3A and 3B [SEQ ID NOS:3 and 4]. sequence contains a single long open reading frame sufficient to encode a protein of 336 amino acids (predicted MW 38.5 kDa) with substantial homology to known potassium channel sequences. The F22b7.7 sequence contains structural features that distinguish it from other classes of potassium channels, including three of four hydrophobic domains capable of forming transmembrane helices (M1-M4) identified in DmORF1 and two pore forming H5 domains found between transmembrane helices a predicted M1 and M2, and M3 and M4. Each pore forming H5 domain contains the Y/F-G dipeptide motif required for potassium selectivity [L. Heginbotham, T. Abramson, R. MacKinnon, Science 258, 1152-1155, (1992)]. The lack of an amino terminal transmembrane domain homologous to DmORF1 M1 in the F22b7.7 sequence may be due to failure of the search algorithm to identify exon(s)

- 21 -

encoding the amino terminus. Alternatively, an amino terminal coding sequence may be added by trans-splicing, which occurs frequently in Caenorhabditis elegans.

5

10

15

20

25

ľ

Example 4

Cloning and DNA sequence analysis of CeORF1.

Oligonucleotides corresponding to DNA sequences encoding the two pore forming domains of F22b7.7 are synthesized using an Applied Biosystems DNA synthesizer.

. F22b7.7-H2-1:

5 TCCATTTTCTTTGCCGTAACCGTCGTCACTACCATCGGATACGGTAATCCA [SEQ ID NO:5]. F22b7.7-H2-2:

5 'TCATTCTACTGGTCCTTCATTACAATGACTACTGTCGGGGTTTGGCGACTTG [SEO ID NO:6]. The oligos were labelled at their 5' ends with 32P using a 5'-end labelling kit according to manufacturers instructions (New England Nuclear). The labelled oligos are pooled and used to screen 6 x 10^5 plaques from a $\lambda ZAP-$ Caenorhabditis elegans cDNA library (obtained from Clontech) by published methods [T.N. Davis and J. Thorner Meth. Enzymol. 139, 246-262 (1987)]. Hybridization is at Positive clones are plaque-purified by 42°C for 16 hours. twice repeating the hybridization screening process. Plasmid DNAs, excised from phage DNA according to manufacturers instructions, are subjected to automated DNA sequence analysis performed by high temperature cycle sequencing (Applied Biosystems). Geneworks DNA sequence analysis software (Intelligenetics) is used to align raw DNA sequence data and to identify open reading frames.

30

Example 5

Comparison of the putative proteins encoded by DmORF1 and F22b7.7. Predicted amino acid sequences of DmORF1 and

10

15

20

F22b7.7 are aligned and displayed in FIGURE 4 [SEQ ID NOS:37 and 38]. Only limited overall amino acid homology is exhibited by these two proteins with regions of greatest homology existing in the pore forming H2-1 and H2-2 domains. FIGURE 5A shows a comparison of the pore forming domains of DmORF1 and F22b7.7 with those of the known Drosophila melanogaster potassium channel and inward rectifier sequences [SEQ ID NOS:7 through 21]. Amino acid identities greater than 50 % are observed with all potassium channel sequences. FIGURE 5B shows hydropathy plot analysis of DmORF1 and F22b7.7. The two proteins, which show remarkable topological similiarity through their length, are predicted to be composed of four membrane-spanning hydrophobic domains (M1-M4), and two pore forming H2 domains. These data suggest the predicted topology shown in FIGURE 6. proteins are predicted to span the membrane four times with amino and carboxyl termini residing within the cell. topology places the single amino-terminal asparagine-linked glycosylation site and H2 domains on the cell exterior permitting permeation of the membrane by the pore forming domains from the outside, an absolute requirement for the formation of a functional potassium channel.

Example 6

Functional expression of a rat atrial delayed rectifier potassium channel in yeast. CY162 transformants containing plasmids pKAT1, which encodes a plant inward rectifier potassium channel, pRATRAK, which encodes a rat atrial delayed rectifier potassium channel, pDmORF1, and control plasmid pYES are cultured on arginine-phosphate-dextrose agar medium lacking ura medium [A. Rodriguez-Navarro and J. Ramos, J. Bacteriol. 159, 940-945, (1984)] containing various KCl concentrations (FIGURE 7). Strains containing pKAT1, pRATRAK, and pDmORF1 all support the growth of CY162

10

20

25

30

on medium containing a low concentration of potassium, while pYES2 containing CY162 cells only grow on medium containing a high potassium concentration, indicating that heterologous potassium channels of several different types function to provide high affinity potassium uptake.

pRATRAK is constructed by modifying the protein-coding sequences of RATRAK to add 5' HindIII and 3' XbaI sites using PCR. In addition, four A residues are added to the sequences immediately 5' proximal to the initiator ATG to provide a good yeast translational initiation site. The modified fragment is cloned into the HindIII and XbaI sites in the yeast expression vector pYES2 (Invitrogen), forming pRATRAK.

15 Example 7

Bioassay of functional expression of heterologous potassium channels

Yeast strains dependent on heterologous potassium channels for growth should be sensitive to non-specific potassium channel blocking compounds. To test the potassium channel blocking properties of several compounds, a convenient agar plate bioassay is employed. Strains containing pKAT1, pRATRAK, pDmORF1, and pYES2 are plated in arginine-phosphate-dextrose agar medium lacking ura and containing various amounts of potassium chloride. Argininephosphate-dextrose medium is used to avoid interference from potassium and ammonium ions present in standard synthetic yeast culture medium. Sterile filter disks were placed on the surface of the agar and saturated with potassium channel blocking ions CsCl, BaCl2, and TEA. The growth of heterologous potassium channel containing strains is inhibited by potassium channel blocking ions, in a channel dependent manner. DmORF1-dependent growth is blocked by

10

15

20

25

30

BaCl₂ but not by CsCl or TEA. KAT-dependent growth is blocked by BaCl₂, CsCl and TEA. RATRAK-dependent growth is blocked by BaCl₂, CsCl and TEA to a much greater extent than pKAT1, reflecting in part a slower growth rate of pRATRAK-containing cells. These observations confirm that these channels support the growth of the mutant yeast cells and demonstrate the efficacy of the yeast bioassay for screening for compounds that block potassium channel function. The control pYES-containing strain grows only around applied KCl and RbCl, a congener of KCl.

Example 8

Identification of compounds that alter potassium channel activity

Yeast strains made capable of growing on medium containing low potassium concentration by expression of heterologous potassium channels are used to screen libraries of chemical compounds of diverse structure for those that interfere with channel function. CY162 cells containing pKAT1, pRATRAK, pDmORF1, pCeORF1, and pYES2-TRK1 (104/ml) are plated in 200 ml of arginine-phosphate-dextrose agar medium lacking ura and containing 0.2 mM potassium chloride in 500 cm² plates. The CY162 cells bearing pYES2-TRK1 are included in the assay as a control to identify compounds that have non-specific effects on the yeast strain and are therefore not specifically active against the heterologous potassium channels. Samples of chemical compounds of diverse structure (2 µl of 10 mg/ml solution in DMSO) are applied to the surface of the hardened agar medium The plates are incubated for 2 days at in a 24×24 array. 30°C during which time the applied compounds radially diffuse into the agar medium. The effects of applied compounds on strains bearing heterologous potassium channel

10

20

25

30

genes are compared to the pYES2-TRK1 bearing strain. Compounds that cause a zone of growth inhibition around the point of application that is larger on plates containing cells bearing the heterologous potassium channels than that observed around the pYES2-TRK1 bearing strains are considered selective potassium channel blockers. Compounds that induce a zone of enhanced growth around the point of application that is larger on plates containing cells bearing the heterologous potassium channels than that observed around the pYES2-TRK1 bearing strains are considered selective potassium channel openers.

Example 9

DmoRF1-induced currents in X. laevis oocytes assayed by twoelectrode voltage clamp

DNA sequence analysis of the pDmORF insert strongly suggest that the protein encoded by the single long ORF possesses properties in common with known potassium channels. To test this hypothesis, the electrophysiological properties of the putative potassium channel encoded by DmORF was examined by expression in X. laevis oocytes. Currents were measured by two-electrode whole-cell voltage clamp. DNA sequences encoding the open reading frame of DmORF1 were amplified by polymerase chain reaction (PCR) using the following oligonucleotides: MPO23: ATAAAGCTTAAAAATGTCGCCGAATCGATGGAT [SEQ ID NO:22] AGCTCTAGACCTCCATCTGGAAGCCCATGT [SEQ ID NO:23] The full length PCR product was cloned into corresponding sites in pSP64 poly A (Promega), forming pMP147. DNA was linearized with EcoRI and RNA transcribed using the Message Machine (Ambion) in vitro transcription kit according to manufacturers instructions. A sample of the RNA was resolved in a MOPS-acetate-formaldehyde agarose gel

and RNA content was estimated by ethidium bromide staining. The remainder was stored on dry ice. X. laevis oocytes were isolated and injected with 50 nl of sterile TE containing 5-20 ng transcript according to published procedures. three days, whole oocyte currents were recorded using a twoelectrode voltage clamp. Electrodes contained 3M KCl and had resistances of $0.3-1.0 \text{ M}\Omega$. Recordings were performed with constant perfusion at room temperature in the presence of either low (10 mM) or high (90 mM) potassium chloride. Two electrode voltage clamp analysis of the DmORF1 gene product expressed in X. laevis oocytes demonstrates properties of a voltage- and potassium-dependent potassium channel. At low potassium concentrations, DmORF1 exhibited outward current at depolarizing potentials. At high potassium concentration, DmORF1 exhibits both inward and outward currents. The DmORF1 channel displays a high preference for potassium and shows cation selectivity in the rank order K>Rb>NH4>Cs>Na>Li. Potassium currents were greatly attenuated by BaCl₂.

20

25

30

5

10

15

Example 10

Developmental regulation of DmORF1 expression in D. melanogaster determined by northern blotting analysis

Isolation of pDmORF1 from a *D. melanogaster* expression library strongly suggests that the insert contained within originated in mRNA from that species. Detailed understanding of the developmental regulation of DmORF1 expression should aid in determining strategies for use of DmORF1 as a target for novel insecticides. To characterize DmORF1 expression, northern blotting analysis of poly A RNA from various stages of the *D. melanogaster* life cycle was carried out.

D. melanogaster poly A+ RNA from embryo, larvae and

Γ

5

10

15

20

25

30

adult forms (Invitrogen, 5 µg) was resolved in a MOPS-acetate-formaldehyde agarose gel according to standard procedures. The gel was stained with ethidium bromide and photographed to mark the positions of 18 S and 28 S ribosomal RNAs used as molecular weight markers. RNA was transferred by capillary action to nitrocellulose with 10 x SSPE. The blot was air-dried, baked for one hour at 80°C, and prehybridized in 4x SSPE, 1% SDS, 2x Denhardt's, 0.1 % single stranded DNA at 68 °C for 2 hours.

A 2.4 kb XhoI fragment of DmORF1 was isolated from pDmORF1 and labeled with $\alpha^{-32}P$ dCTP using the Ready-to-Go kit (Pharmacia) according to manufacturers instructions. The probe was denatured by heating to 100°C for 5 minutes followed by quenching in an ice water bath. The probe was added to the prehybridization solution and hybridization continued for 24 hours at 68 °C.

The blot was washed briefly with 2x SSPE, 0.1% SDS at room temperature followed by 0.5 x SSPE, 0.1 % SDS at 65 °C for 2 hours. The blot was air-dried and exposed to Reflection X-ray film (NEN) using an intensifying screen at -70 °C for 48 hours.

Northern blotting analysis indicates that the DmORF1 probe hybridizes to an mRNA species of approximately 2.8 kb isolated from D. melanogaster embryo, larvae, and adult forms. The length of the DmORF1 mRNA corresponds well with the length of the predicted ORF. Thus, the DmORF is expressed at all developmental stages in the life cycle of D. melanogaster.

Example 11

Expression of the DmORF1 gene product in vitro.

DNA sequence analysis of the pDmORF1 insert reveals a single long ORF with conserved amino acid sequence domains

10

15

20

25

30

in common with known potassium channels. The DNA sequence predicts an ORF sufficient to encode a protein of 618 amino acid in length. The DmORF1 polypeptide contains four segments of at least 20 hydrophobic amino acids in length suggesting that the segments span the plasma membrane. In addition, the DmORF1 protein sequence contains a putative N-linked glycosylation site (Asn-Thr-Thr) at amino acids 58-60. To confirm that a protein of the predicted size of DmORF is expressed from the insert in pDmORF1 and to test the proposition that DmORF1 is glycosylated, pDmORF1 was used as template to drive coupled in vitro transcription/translation.

Plasmid pMP147 was used as template to produce 35Slabeled DmORF gene product in vitro using a TnT coupled transcription-translation kit (Promega) according to manufacturers instructions. Glycosylation of the nascent DmORF1 polypeptide was accomplished by addition of canine pancreatic microsomes (Promega) to the transcription-Samples of glycosylated DmORF protein translation reaction. were treated with endoglycosidase H to remove added carbohydrate moieties. Aliquots were precipitated with TCA and collected on GF/C filters, washed with ethanol, dried and counted. Equivalent cpm's were resolved by SDS-PAGE. The gel was impregnated with soluble fluor Amplify The dried gel (Amersham) and dried onto Whatman 3MM paper. was exposed to Reflection X-ray film at room temperature.

Translation of the DmORF1 gene product in vitro produced a polypeptide of 68 kDa, consistent with the predicted molecular weight of the ORF. Translation of DmORF1 in the presence of canine pancreatic microsomes results in synthesis of a protein with reduced electrophoretic mobility, consistent with glycosylation of the nascent polypeptide. Treatment of glycosylated DmORF with EndoH increased its relative mobility as expected upon

10

15

20

25

30

removal of carbohydrate moieties. Thus, the pDmORF1 insert is capable of directing the expression of a glycoprotein with the expected molecular weight. EndoH treatment removes carbohydrate residues consistent with the sugar added through N-linked glycosylation.

Example 12

High-affinity K uptake and selectivity of DmORF1 expressed in yeast.

Expression of DmORF permits CY162 cells to grow on medium containing a low concentration of potassium, implying that DmORF1 supplies high affinity potassium uptake capacity. To characterize the potassium uptake properties of CY162 cells containing DmORF1, ⁸⁶Rb uptake studies were performed. Examination of the uptake of this potassium congener revealed important aspects of potassium uptake by DmORF1.

Yeast strains containing heterologous potassium-expression plasmids CY162-DmORF1, CY162-pKAT and the control strain CY162-pYES2 (Clontech) were cultured overnight in SC Gal-ura containing 0.1 M KCl. The cells were harvested, washed with sterile doubled distilled water and starved for K+ for 6 hours in Ca-MES buffer. Cells were washed again and distributed to culture tubes (108 cells/tube) containing 86RbCl in Ca-MES buffer. The tubes were incubated at room temperature, samples filtered at various time intervals and counted. 86Rb uptake into cells was displayed. For Double Reciprocal analysis, 86Rb was held constant and barium ions varied to determine Ki values.

The high-affinity potassium uptake capacity encoded by DmORF1 permits high-affinity uptake of the potassium congener, ⁸⁶Rb, as well. Barium inhibited ⁸⁶Rb uptake with a

Ki of μM as demonstrated in Double Reciprocal analysis. No high affinity ^{86}Rb uptake is observed in control CY162-pYES2 cells and ^{86}Rb uptake into CY162-pKAT cells is consistent with its published properties.

5

Example 13

Expression of Drosophila melanogaster potassium channels in yeast.

Voltage-gated potassium channel diversity in the fruitfly Drosophila melanogaster is encoded in large part by six genes, Shaker, Shab, Shal, Shaw, Eag, and Slo.

Expression of these potassium channels in yeast will permit their introduction into screening assays for novel insecticidal compounds and facilitate characterization of their ion channel properties and sensitivity to compounds with activating and inhibitory properties.

DNA sequences encoding Drosophila melanogaster potassium channels were amplified by PCR using synthetic oligonucleotides that add 5' HindIII or Kpn I, sites and 3' XbaI, SphI, or XhoI sites:

Shaker 5':AAAAGCTTAAAATGGCACACATCACG [SEQ ID NO:24] Shaker 3':AAACTCGAGTCATACCTGTGGACT [SEQ ID NO:25]

25

20

Shab 5': AAAAAGCTTAAAATGGTCGGGCAATTG [SEQ ID NO:26] Shab 3': AAAAGCATGCTCATCTGGATGGGCA [SEQ ID NO:27]

Shal 5': AAAAAGCTTAAAATGGCCTCGGTCGCC [SEQ ID NO:28]

Shal 3':TTTTCTAGACTACATCGTTGTCTT [SEQ ID NO:29]

Shaw 5': AAAAAGCTTAAAATGAATCTGATCAAC [SEQ ID NO:30] Shaw 3': AAATCTAGATTAGTCGAAACTGAA [SEQ ID NO:31]

I

5

10

15

20

25

30

Eag 5': AAAAAGCTTAAAATGCCTGGCGGA [SEQ ID NO:32]
Eag 3': AAATCTAGAGGCTACAGGAAGTCC [SEQ ID NO:33]

Slo 5':GGGGGTACCAAAATGTCGGGGTGTGAT [SEQ ID NO:34]
Slo 3':TTTTCTAGATCAAGAGTTATCATC [SEQ ID NO:35]

Plasmids used as templates for the PCR reactions were:

pBSc-DShakerH37, pBSc-dShab11, pBSc-dShal2+(A)₃₆, pBScMXT-dShaw [A. Wei, M. Covarrubias, A. Butler, K. Baker, M. Pak,
L. Salkoff, Science 248, 599-603 (1990), provided by L.

Salkoff], pBScMXT-slo,v4 [N.S. Atkinson, G.A. Robertson, B.

Ganetzky, Science 253,551-555, (1991), provided by L.

Salkoff], and pBIMCH20 Eag [CH20] [J. Warmke, R. Drysdale,
B. Ganetzky, Science 252, 1560-1564 (1991), A. Bruggemann,
L.A. Pardo, W. Stuhmer, O. Pongs, Nature 365, 445-448

(1993), provided by B. Ganetzky].

Amplified fragments were digested with the appropriate restriction endonucleases, purified using GeneClean (Bio 101), and ligated into corresponding sites in pYES2 (Invitrogen). CY162 cells were transformed with assembled Drosophila melanogaster potassium channel expression plasmids by the LiCl method and plated on SCD-ura containing 0.1M KCl agar medium. Selected transformants were tested for growth on arginine-phosphate-galactose (2 %)/sucrose (0.2 %)-ura agar medium containing 1-5 mM KCl. CY162 cells containing pKAT1 or pDmORF1 were cultured as positive controls and CY162 cells containing pYES2 were grown to provide a negative control.

CY162 cells bearing *Drosophila melanogaster* potassium channel expression plasmids survive under conditions in which growth is dependent on functional potassium channel expression. At potassium ion concentrations between 1-3 mM, negative control CY162 cells containing pYES2 grow poorly. Expression of the *Drosophila melanogaster* potassium channels

Shal, Shaw and Eag substantially improve growth of CY162. These results are consistent with the *Drosophila* melanogaster potassium channels providing high-affinity potassium uptake capacity. This capacity is apparently sufficient to replace the native high-affinity potassium transport capacity encoded by TRK1 which is lacking in CY162 (trk1 trk2) cells.

Example 14

10

15

20

25

30

5

Cloning of a novel *C. elegans* sequence with homology to potassium channels.

In order to expand the applicability of this technology to discover compounds with novel anhelmenthic activity, CY162 cells were transformed with a pYES2-based yeast expression library constructed using cDNA synthesized from C. elegans mRNA (Invitrogen). Plasmid DNA isolated from yeast cells that survived the selection scheme described in EXAMPLE 1 were subjected to automated DNA sequence analysis performed by high temperature cycle sequencing (Applied Biosystems). Geneworks DNA sequence analysis software (Intelligenetics) is used to align raw DNA sequence information and to identify open reading frames. sequence of the 1.4 kb insert in pCORK is displayed in FIGURE 9A and 9B. The 5' untranslated sequences of the cDNA are present in this construct. A single long open reading frame sufficient to encode a protein of 434 amino acids (predicted MW 48 kDa) is predicted in pCORK [SEQ ID NO:38]. A consensus polyadenylation site, AATAAA, occurs at position 1359-1364 in 3' untranslated sequences and is followed by a tract of 15 consecutive A residues. The CORK ORF contains structural features that resemble pore forming H5 domains found in potassium channels. Two putative pore forming H5 domains (residues 76-39 and 150-162) contain the G-Y/F-G

- 33 -

tripeptide motif required for potassium selectivity [L. Heginbotham, T. Abramson, R. MacKinnon, Science 258, 1152-1155, (1992)].

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:
-----	---------	--------------

- (i) APPLICANT: American Cyanamid Company
- (ii) TITLE OF INVENTION: Genes Encoding a Novel Family of Potassium Channels
- (iii) NUMBER OF SEQUENCES: 38
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: American Cyanamid Company
 - (B) STREET: One Cyanamid Plaza
 - (C) CITY: Wayne
 - (D) STATE: New Jersey
 - (E) COUNTRY: USA
 - (F) ZIP: 07470-8426
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Matthews, Gale F.

 - (B) REGISTRATION NUMBER: 32,369
 (C) REFERENCE/DOCKET NUMBER: 32,421-01 PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 201-660-6329
 - (B) TELEFAX: 201-660-7160
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2441 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 190..2043
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACGCGATCGC CGCGAGTGTA	TATTTTTTT TTAGCTCAGT CTTCAGTGTT TCGCGATTCT	60
CTTTAAAAGA AAAAAAAAAT	AATAAGTCAA AACTACAAAC CACACAGCGA AAGGCGAAAG	120
CAACGGTTCC TGCGAGTGTT	TATTTTTTT TTCAACAATT TTTGATCGTA GTGCGACAAT	180
CCGTCGAGC ATG TCG CCG	AAT CGA TGG ATC CTG CTG CTC ATC TTC TAC Asn Arg Trp Ile Leu Leu Leu Ile Phe Tyr	228

276 ATA TCC TAC CTG ATG TTC GGG GCG GCA ATC TAT TAC CAT ATT GAG CAC Ile Ser Tyr Leu Met Phe Gly Ala Ala Ile Tyr Tyr His Ile Glu His

20 15 GGC GAG GAG AAG ATA TCG CGC GCC GAA CAG CGC AAG GCG CAA ATT GCA Gly Glu Glu Lys Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln Ile Ala ATC AAC GAA TAT CTG CTG GAG GAG CTG GGC GAC AAG AAT ACG ACC ACA 372 Ile Asn Glu Tyr Leu Leu Glu Glu Leu Gly Asp Lys Asn Thr Thr 50 CAG GAT GAG ATT CTT CAA CGG ATC TCG GAT TAC TGT GAC AAA CCG GTT 420 Gln Asp Glu Ile Leu Gln Arg Ile Ser Asp Tyr Cys Asp Lys Pro Val ACA TTG CCG CCG ACA TAT GAT GAT ACG CCC TAC ACG TGG ACC TTC TAC 468 Thr Leu Pro Pro Thr Tyr Asp Asp Thr Pro Tyr Thr Trp Thr Phe Tyr 85 CAT GCC TTC TTC GCC TTC ACC GTT TGC TCC ACG GTG GGA TAT GGG 516 His Ala Phe Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly AAT ATA TCG CCA ACC ACC TTC GCC GGA CGG ATG ATC ATG ATC GCG TAT 564 Asn Ile Ser Pro Thr Thr Phe Ala Gly Arg Met Ile Met Ile Ala Tyr 120 115 110 TCG GTG ATT GGC ATC CCC GTC AAT GGT ATC CTC TTT GCC GGC CTC GGC 612 Ser Val Ile Gly Ile Pro Val Asn Gly Ile Leu Phe Ala Gly Leu Gly GAA TAC TTT GGA CGT ACG TTT GAA GCG ATC TAC AGA CGC TAC AAA AAG Glu Tyr Phe Gly Arg Thr Phe Glu Ala Ile Tyr Arg Arg Tyr Lys Lys 660 155 150 145 TAC AAG ATG TCC ACG GAT ATG CAC TAT GTC CCG CCG CAG CTG GGA TTG 708 Tyr Lys Met Ser Thr Asp Met His Tyr Val Pro Pro Gln Leu Gly Leu 165 ATC ACC ACG GTG GTG ATT GCC CTG ATT CCG GGA ATA GCT CTC TTC CTG 756 Ile Thr Thr Val Val Ile Ala Leu Ile Pro Gly Ile Ala Leu Phe Leu 185 175 180 GTG CTG CCC TGC GTG GGT GTT CAC CTA CTT CGA GAA CTG GGC CTA TCT 804 Val Leu Pro Cys Val Gly Val His Leu Leu Arg Glu Leu Gly Leu Ser 195 190 TCC ATC TCG CTG TAC TAC AGC TAT GTG ACC ACC ACA ACA ATT GGA TTC 852 Ser Ile Ser Leu Tyr Tyr Ser Tyr Val Thr Thr Thr Thr Ile Gly Phe 215 GGT GAC TAT GTG CCC ACA TTT GGA GCC AAC CAG CCC AAG GAG TTC GGC 900 Gly Asp Tyr Val Pro Thr Phe Gly Ala Asn Gln Pro Lys Glu Phe Gly 230 GGC TGG TTC GTG GTC TAT CAG ATC TTT GTG ATC GTG TGG TTC ATC TTC Gly Trp Phe Val Val Tyr Gln Ile Phe Val Ile Val Trp Phe Ile Phe TCG CTG GGA TAT CTT GTG ATG ATC ATG ACA TTT ATC ACT CGG GGC CTC 996 Ser Leu Gly Tyr Leu Val Met Ile Met Thr Phe Ile Thr Arg Gly Leu 255 CAG AGC AAG AAG CTG GCA TAC CTG GAG CAG CAG TTG TCC TCC AAC CTG 1044 Gln Ser Lys Lys Leu Ala Tyr Leu Glu Gln Gln Leu Ser Ser Asn Leu 275 270 AAG GCC ACA CAG AAT CGC ATC TGG TCT GGC GTC ACC AAG GAT GTG GGC 1092 Lys Ala Thr Gln Asn Arg Ile Trp Ser Gly Val Thr Lys Asp Val Gly 295 290

TAC Tyr	CTC Leu	CGG Arg	Arg	ATG Met	CTC Leu	AAC Asn	GAG Glu	CTG Leu 310	TAC . Tyr	ATC Ile	CTC Leu	AAA Lys	GTG Val 315	AAG Lys	CCT Pro	1140
GTG Val	TAC Tyr	ACC Thr 320	305 GAT Asp	GTA Val	GAT Asp	ATC Ile	GCC Ala 325	TAC	ACA Thr	CTG Leu	CCA Pro	CGT Arg 330	TCC Ser	AAT Asn	TCG Ser	1188
TGT Cys	CCG Pro 335	C 3 T	CTG Leu	AGC Ser	ATG Met	TAC Tyr 340	רפר	GTG Val	GAG Glu	CCG Pro	GCT Ala 345	PIO	ATT Ile	CCC Pro	AGC Ser	1236
CGG Arg 350		AGG Arg	GCA Ala	TTC Phe	TCC Ser 355	GTG Val	TGC Cys	GCC Ala	GAC Asp	ATG Met 360	GTT Val	GGC Gly	GCC Ala	CAA Gln	AGG Arg 365	1284
GAG Glu	GCG Ala	GGC Gly	ATG Met	GTA Val 370	CAC His	GCC Ala	AAT Asn	TCC Ser	GAT Asp 375	ACG Thr	GAT Asp	CTA Leu	ACC Thr	AAA Lys 380	CTG Leu	1332
GAT Asp	CGC Arg	GAG Glu	AAG Lys 385	ACA Thr	TTC Phe	GAG Glu	ACG Thr	GCG Ala 390	GAG Glu	GCG Ala	TAC	CAC His	CAG Glm 395		ACC Thr	1380
GAT Asp	TTG Leu	CTG Leu 400	Ala	AAG Lys	GTG Val	GTC Val	AAC Asn 405	Ala	CTG Leu	GCC Ala	ACG Thr	GTG Val 410	. Llye	CCA Pro	CCG Pro	1428
Pro	Ala	Glu	CAG Gln	Glu	Asp	Ala	Ala	Leu	TYI	GIY	GT	TAT	CAT His	GGC Gly	TTC Phe	1476
TCC Ser 430	Asp	TCC Ser	CAG Gln	ATC Ile	CTG Leu 435	Ala	AGC Sei	GAA Glu	TGG Trp	TCG Ser 440	PIL	TCG Ser	ACG Thi	GTC Val	AAC L Asn 445	1524
GAG Glu	TTC	ACA	TCA Ser	CCG Pro 450	Arg	CGT Arg	CCA Pro	AGA Arg	GCA Ala 455	AFG	GCC Ala	TGC Cys	TCC Sei	GAT Asi 460		1572
AAT Asn	CTG	GAG Glu	GCA Ala 465	Pro	CGC Arg	TGG Trp	CAG Glr	AGC A Ser 470	GIU	AGG L Arg	CCA Pro	CTG	CGT Arg 47	,	AGC r Ser	1620
CAC His	ABE	ı Glı	TGG Trp	Thi	TIL	o Sez	Gly	y Asi	ABI	I GII	1 GI	ATC n Ile 49	B G 1	GAG n Gli	GCA u Ala	1668
TT(Phe	AAC ABI 495	ı Glı	CGC	TAC Ty	AAG Lys	s Gly	CAG Gli	n Gli	CGT	GCC Ala	AAC a As: 50	n Gr	GCA Y Al	GCC a Ala	AAC a Asn	1716
TC(Se: 51(Thi	C ATO	G GTC	CAT L His	CTG B Let 51!	u Gli	CCC	GAT O As	GCT PAla	TTG Let 52	n GT	GAG u Gl	CAG u Gl	CTG	AGA u Arg 525	1764
AA(As:	C AAT	r CA	s Arg	GTO G Vai	l Pro	G GTC	GCC LAl	TCA a Se	AGA r Ar 53	g se	TCT r Se	r CCA r Pr	TGC OCY	CGG B Ar 54	ATG g Met 0	1812
GT Va	C TGG	C GA B AB	C GTC p Val 54	1 су	r TT(s Ph	c cci e Pr	TCC Se	C AGA r Ar 55	g Ar	AGC g Se	ACC Th	C CCI	CGC Ar 55	9	ATC g Ile	1860
TG Tr	G AG P Se	C GC r Al 56	a Se	r TG' r Cy	r cc s Pr	G TG(F Se 56	r Ar	g Ty	CCC	J AG(o Ai	G GTO		TCI r Se	CGC r Arg	1908
AG	g aa	G CC	A GA	r cc	C CG	C TG	3 AC	T AC	r aci	I TCI	A AC	A CGC	TC!	A CGG	CGG	1956

į,

													_	_	-		
Arg	Lys 575	Pro	qaA	Pro	Arg	Trp 580	Thr	Thr	Thr	Ser	Thr 585	Arg	ser	Arg	j Ar	g	
CCT Pro 590	CCA Pro	GTC Val	AAT Asn	CCT Pro	ATT Ile 595	Сув	GCA Ala	ACG Thr	GAC Asp	GCG Ala 600	GTC Val	CGC Arg	CAC His	CGC Arg	CCT 9 Pr 60	. •	2004
TCG Ser	AAT Asn	CGA Arg	ATG Met	GCA Ala 610	GCT Ala	TGG Trp	CCA Pro	GCG Ala	GCG Ala 615	GCG Ala	GCG Ala	GGC Gly	TAA	CGAA	CAT		2053
GGG	CTTC	CAG A	ATGG#	AGGA:	rg ga	\GCAI	ACCC(GC	CATC	GCA	TTG	GCGG	TG (GAGC	CTA	TCA	2113
ACG	CAAG	GCG (CTG	CTGG	CA AC	GCGC	CGAC	G CG	AGAG	CATC	TAC	ACCCA	GA .	ATCA	AGC	ccc	2173
ATC	CGCT	CGC (ceee	GCAG	CA TO	STAT	CCGC	C GA	CCGC	GCAC	GCC	TTGGC	CC .	AGAT	GCA	GAT	2233
GCG	ACGC	GGC 2	AGCT:	rggc	AA C	CAGT	GCT	C TG	GATC	GCG	GCC	ATGGC	GG	CAGT	GGC	CGC	2293
GCG	TCGT	GGC 2	AGCC:	CTT	cc C	AGCT	ACAG	C AT	CGGC	ATCA	TCG	CTGAC	CT	CTGC	TCC	GCG	235
CCG	AAGC	AGC :	ATAT:	TCTC	GG T	TACC	rccg.	A AA	AGGA'	TATG	AAT	GTGCT	rgg	AGCA	GAC	GAC	241
			CTGA'														244

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 618 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

165

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Met Ser Pro Asn Arg Trp Ile Leu Leu Leu Ile Phe Tyr Ile Ser Tyr 1 5 10 15 Leu Met Phe Gly Ala Ala Ile Tyr Tyr His Ile Glu His Gly Glu Glu 20 25 30 Lys Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln Ile Ala Ile Asn Glu Tyr Leu Leu Glu Glu Leu Gly Asp Lys Asn Thr Thr Gln Asp Glu Ile Leu Gln Arg Ile Ser Asp Tyr Cys Asp Lys Pro Val Thr Leu Pro ____70 ____ Pro Thr Tyr Asp Asp Thr Pro Tyr Thr Trp Thr Phe Tyr His Ala Phe 85 Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn Ile Ser 105 Pro Thr Thr Phe Ala Gly Arg Met Ile Met Ile Ala Tyr Ser Val Ile Gly Ile Pro Val Asn Gly Ile Leu Phe Ala Gly Leu Gly Glu Tyr Phe 135

Gly Arg Thr Phe Glu Ala Ile Tyr Arg Arg Tyr Lys Lys Tyr Lys Met

Ser Thr Asp Met His Tyr Val Pro Pro Gln Leu Gly Leu Ile Thr Thr

170

Val	Val	Ile	Ala 180	Leu	Ile	Pro	Gly	11e 185	Ala	Leu	Phe	Leu	Val 190	Leu	Pro
Сув	Val	Gly 195	Val	His	Leu	Leu	Arg 200	Glu	Leu	Gly	Leu	Ser 205	Ser	Ile	Ser
Leu	Tyr 210	Tyr	Ser	Tyr	Val	Thr 215	Thr	Thr	Thr	Ile	Gly 220	Phe	Gly	Asp	Tyr
Val 225	Pro	Thr	Phe	Gly	Ala 230	Asn	Gln	Pro	Lys	Glu 235	Phe	Gly	Gly	Trp	Phe 240
Val	Val	Tyr	Gln	Ile 245	Phe	Val	Ile	Val	Trp 250	Phe	Ile	Phe	Ser	Leu 255	Gly
Tyr	Leu	Val	Met 260	Ile	Met	Thr	Phe	Ile 265	Thr	Arg	Gly	Leu	Gln 270	Ser	Lys
Lys	Leu	Ala 275	Tyr	Leu	Glu	Gln	Gln 280	Leu	Ser	Ser	Asn	Leu 285	Lys	Ala	Thr
Glr	Asn 290	Arg	Ile	Trp	Ser	Gly 2 9 5	Val	Thr	Lys	Asp	Val 300	Gly	Tyr	Leu	Arg
Arg 305	Met	Leu	Asn	Glu	Leu 310	Tyr	Ile	Leu	Lys	Val 315	Lys	Pro	Val	Tyr	Thr 320
Asr	Val	Asp	Ile	Ala 325	Tyr	Thr	Leu	Pro	Arg 330	Ser	Asn	Ser	Сув	Pro 335	Asp
Let	Ser	_Met	Tyr 340	Arg	Val	Glu	Pro	Ala 345	Pro	Ile	Pro	Ser	Arg 350	Lys	Arg
Ala	. Phe	Ser 355		Сув	Ala	Asp	Met 360	Val	Gly	Ala	Gln	Arg 365	Glu	Ala	Gly
Met	7al 370		Ala	Asn	Ser	Asp 375		qaA	Leu	Thr	Lys 380	Leu	Asp	Arg	Glu
38					390					395					400
	a Lys			405					410					413	
Gli	n Glu	Asp	Ala 420		Leu	Tyr	Gly	Gly 425	Tyr	His	Gly	Phe	Ser 430	Asp	Ser
Gl	n Ile	435		Ser	Glu	Trp	Ser 440		Ser	Thr	Val	Asn 445	Glu	Phe	Thr
	450	ı				455	;				460				
46					470				•	475					400
Tr	p Thr	Tr	Ser	Gly 485	Asp	Asn	Gln	Gln	11e 490	Gln	Glu	Ala	Phe	Asn 495	Gln
	g Tyr		500)				505	•				210		
۷a	l His	51:		Prc	Asp	Ala	Leu 520	Glu	Glu	Gln	Leu	Arg 525	Asn	Asn	His
Ar	g Val		o Val	. Ala	Ser	535	ser	Ser	Pro	Сув	Arg 540	Met	Val	Сув	Asp

5

- Adding

Val Cys Phe Pro Ser Arg Arg Ser Thr Pro Arg Arg Ile Trp Ser Ala

Ser Cys Pro Trp Ser Arg Tyr Pro Arg Val Ser Ser Arg Arg Lys Pro 570 565

Asp Pro Arg Trp Thr Thr Ser Thr Arg Ser Arg Arg Pro Pro Val

Asn Pro Ile Cys Ala Thr Asp Ala Val Arg His Arg Pro Ser Asn Arg 600

Met Ala Ala Trp Pro Ala Ala Ala Gly 615

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (\bar{A}) LENGTH: 1011 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: CDS
 (B) LOCATION: 1..1008

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

	. —															
ATG Met 1	TCC Ser	GAT Asp	CAG Gln	CTG Leu 5	TTT Phe	GTC Val	GCA Ala	TTT Phe	GAG Glu 10	AAG Lys	TAT	TTC Phe	TTG Leu	ACG Thr 15	AGT Ser	48
AAC Asn	GAG Glu	GTC Val	AAG Lys 20	AAG Lys	AAT Asn	GCA Ala	GCA Ala	ACG Thr 25	GAG Glu	ACA Thr	TGG Trp	ACA Thr	TTT Phe 30	261	TCG Ser	96
TCC Ser	ATT Ile	TTC Phe 35	TTT Phe	GCC Ala	GTA Val	ACC Thr	GTC Val 40	GTC Val	ACT Thr	ACC Thr	ATC Ile	GGA Gly 45	TYE	GGT Gly	AAT Asn	144
CCA Pro	GTT Val 50	CCA Pro	GTG Val	ACA Thr	AAC Asn	ATT Ile 55	GGA Gly	CGG Arg	ATA Ile	TGG Trp	TGT Cys 60	TTO	TTG Leu	TTC Phe	TCC Ser	192
TTG Leu 65	CTT Leu	GGA Gly	ATA Ile	CCT Pro	CTA Leu 70	ACA Thr	CTG Leu	GTT Val	ACC Thr	ATC Ile 75	GCT Ala	GAC Asp	TTG Leu	GCA Ala	GGT Gly 80	240
AAA Lys	TTC Phe	CTA Leu	TCT Ser	GAA Glu 85	CAT His	CTT Leu	GTT Val	TGG Trp	TTG Leu 90	Tyr	GGA Gly	AAC Asn	TAT Tyr	TTG Leu 95	AAA Lys	288
TTA Leu	AAA Lys	TAT Tyr	CTC Leu 100	ATA Ile	TTG Leu	TCA Ser	CGA Arg	CAT His 105	Arg	AAA Lys	GAA Glu	CGG Arg	AGA Arg 110	GIU	CAC His	336
GTT Val	TGT Cys	GAG Glu 115	His	TGT Cys	CAC His	AGT Ser	CAT His 120	Gly	ATG Met	GGG Gly	CAT His	GAT Asp 125	Met	AAT Asn	ATC Ile	384
GAG Glu	GAG Glu 130	Lys	AGA Arg	ATT	CCT Pro	GCA Ala 135	Phe	CTG Leu	GTA Val	TTA Leu	GCT Ala 140	TTE	CTG Leu	ATA Ile	GTA Val	432
TAT	ACA Thr	GCG Ala	TTT Phe	GGC Gly	GGT Gly	GTC Val	CTA Leu	ATG Met	TCA Ser	AAA Lys	TTA Leu	GAG Glu	CCG Pro	TGG Trp	TCT Ser	480

145					150					155					160	
TTC Phe	TTC Phe	ACT Thr	TCA Ser	TTC Phe 165	TAC Tyr	TGG Trp	TCC Ser	TTC Phe	ATT Ile 170	ACA Thr	ATG Met	ACT Thr	ACT Thr	GTC Val 175	GGG Gly	528
TTT Phe	GGC Gly	GAC Asp	TTG Leu 180	ATG Met	CCC Pro	AGA Arg	AGG Arg	GAC Asp 185	GGA Gly	TAC Tyr	ATG Met	TAT Tyr	ATC Ile 190	ATA Ile	TTG Leu	576
CTC Leu	TAT Tyr	ATC Ile 195	ATT Ile	TTA Leu	G GT Gly	A AA Lys	TTT Phe 200	TCA Ser	ATG Met	AAA Lys	AAA Lys	AAA Lys 205	GIII	AAA Lys	TTC Phe	624
AAA Lys	ATA Ile 210	TTT Phe	TTA Leu	GGT Gly	CTT Leu	GCA Ala 215	ATA Ile	ACT Thr	ACA Thr	ATG Met	TGC Cys 220	ATT Ile	GAT Asp	TTG Leu	GTA Val	672
GGA Gly 225	GTA Val	CAG Gln	TAT Tyr	ATT Ile	CGA Arg 230	AAG Lys	ATT Ile	CAT His	TAT Tyr	TTC Phe 235	GGA Gly	AGA Arg	AAA Lys	ATT Ile	CAA Gln 240	720
GAC Asp	GCT Ala	AGA Arg	TCT Ser	GCA Ala 245	TTG Leu	GCG Ala	GTT Val	GTA Val	GGA Gly 250	GTA	AAG Lys	GTA Val	GTC Val	CTT Leu 255		768
TCA Ser	GAA Glu	CTC	TAC Tyr 260	Ala	AAT Asn	TTA Leu	ATG Met	CAA Gln 265	Lys	CGA Arg	GCT Ala	CGT	AAC Asn 270	Met	TCC Ser	816
CGA Arg	GAA Glu	GCT Ala 275	Phe	ATA	GTG Val	GAG Glu	AAT Asn 280	Leu	_TAT _Tyr	GTT Val	TCC	Lys 285	, ure	ATC Ile	ATA Ile	864
CCA Pro	TTC Phe 290	Ile	. CCA Pro	ACT	G AT Asp	ATC Ile 295	Arg	TGT Cys	ATT Ile	CGA Arg	TAT Tyr 300	. TT6	GAT Asp	CAA Glr	ACT Thr	912
GCC Ala 305	Asp	GCT Ala	GCT Ala	ACC Thr	ATT Ile 310	Ser	ACG Thi	TCA Ser	TCG Sei	TCT Ser 315	GCA Ala	ATT Ile	GAT Asp	ATG Met	CAA Gln 320	960
AGT Ser	TGT Cys	AGA	TTT Phe	TGT Cys 325	His	TCA Ser	AGA Arg	TAT Tyr	TCT Ser 330	: Let	AAT 1 Asr	CGT Arg	GCA Ala	TTC Phe 335	a my b	1008
TAG	}															1011

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 336 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser

Asn Glu Val Lys Lys Asn Ala Ala Thr Glu Thr Trp Thr Phe Ser Ser

Ser Ile Phe Phe Ala Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn

Pro Val Pro Val Thr Asn Ile Gly Arg lle Trp Cys Ile Leu Phe Ser Leu Leu Gly Ile Pro Leu Thr Leu Val Thr Ile Ala Asp Leu Ala Gly Lys Phe Leu Ser Glu His Leu Val Trp Leu Tyr Gly Asn Tyr Leu Lys Leu Lys Tyr Leu Ile Leu Ser Arg His Arg Lys Glu Arg Arg Glu His Val Cys Glu His Cys His Ser His Gly Met Gly His Asp Met Asn Ile Glu Glu Lys Arg Ile Pro Ala Phe Leu Val Leu Ala Ile Leu Ile Val Tyr Thr Ala Phe Gly Gly Val Leu Met Ser Lys Leu Glu Pro Trp Ser Phe Phe Thr Ser Phe Tyr Trp Ser Phe Ile Thr Met Thr Thr Val Gly Phe Gly Asp Leu Met Pro Arg Arg Asp Gly Tyr Met Tyr Ile Ile Leu Leu Tyr Ile Ile Leu Gly Lys Phe Ser Met Lys Lys Lys Gln Lys Phe 200 Lys Ile Phe Leu Gly Leu Ala Ile Thr Thr Met Cys Ile Asp Leu Val Gly Val Gln Tyr Ile Arg Lys Ile His Tyr Phe Gly Arg Lys Ile Gln Asp Ala Arg Ser Ala Leu Ala Val Val Gly Gly Lys Val Val Leu Val Ser Glu Leu Tyr Ala Asn Leu Met Gln Lys Arg Ala Arg Asn Met Ser Arg Glu Ala Phe Ile Val Glu Asn Leu Tyr Val Ser Lys His Ile Ile 280 Pro Phe Ile Pro Thr Asp Ile Arg Cys Ile Arg Tyr Ile Asp Gln Thr 295 Ala Asp Ala Ala Thr Ile Ser Thr Ser Ser Ser Ala Ile Asp Met Gln 305 Ser Cys Arg Phe Cys His Ser Arg Tyr Ser Leu Asn Arg Ala Phe Lys

(2) INFORMATION FOR SEQ ID NO:5:

325

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: TCCATTTTCT TTGCCGTAAC CGTCGTCACT ACCATCGGAT ACGGTAATCC A

330

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 base pairs

 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TCATTCTACT GGTCCTTCAT TACAATGACT ACTGTCGGGT TTGGCGACTT G

51

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe 10

Arg Cys Val Thr Asp Glu Cys Pro 20_

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ala Phe Leu Phe Ser Leu Glu Thr Gln Val Thr Ile Gly Tyr Gly Phe

Arg Cys Val Thr Glu Gln Cys Ala 20

- (2) INFORMATION FOR SEQ ID NO:9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Ala Phe Leu Phe Phe Ile Glu Thr Glu Ala Thr Ile Gly Tyr Gly Tyr

Arg Tyr Ile Thr Asp His Cys Pro 20

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ala Phe Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn 1 5 10 15

Ile Ser Pro Thr Thr Phe Ala Gly

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ala Phe Trp Trp Ala Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp 1 10 15

Met Thr Pro Val Gly Phe Trp Gly

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ala Phe Trp Tyr Thr Ile Val Thr Met Thr Thr Leu Gly Tyr Gly Asp

Met Val Pro Glu Thr Ile Ala Gly

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala Phe Trp Trp Ala Gly Ile Thr Met Thr Thr Val Gly Tyr Gly Asp

Ile Cys Pro Thr Thr Ala Leu Gly 20

1

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Gly Leu Trp Trp Ala Leu Val Thr Met Thr Thr Val Gly Tyr Gly Asp 10

Met Ala Pro Lys Thr Tyr Ile Gly

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Ala Leu Tyr Phe Thr Met Thr Cys Met Thr Ser Val Gly Phe Gly Asn

Val Ala Ala Glu Thr Asp Asn Glu 20

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Cys Val Tyr Phe Leu Ile Val Thr Met Ser Thr Val Gly Tyr Gly Asp 10

Val Tyr Cys Glu Thr Val Leu Gly

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ser Leu Tyr Thr Ser Tyr Val Thr Thr Thr Thr Ile Gly Phe Gly Asp 5

Tyr Val Pro Thr Phe Gly Ala Asn 20

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ala Phe Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn 10

Ile Ser Pro Thr Thr Phe Ala Gly 20

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Ser Ile Phe Phe Ala Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn 10

Pro Val Pro Val Thr Asn Thr Gly 20

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids
 (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Ser Leu Tyr Thr Ser Tyr Val Thr Thr Thr Thr Ile Gly Phe Gly Asp

Tyr Val Pro Thr Phe Gly Ala Asn 20

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

٦

Ser Phe Tyr Trp Ser Phe Ile Thr Met Thr Thr Val Gly Phe Gly Asp 10 Leu Met Pro Arg Arg Asp Gly Tyr (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: 33 ATAAAGCTTA AAAATGTCGC CGAATCGATG GAT (2) INFORMATION FOR SEQ ID NO:23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear ---- (xi)- SEQUENCE DESCRIPTION: SEQ_ID_NO:23: 30 AGCTCTAGAC CTCCATCTGG AAGCCCATGT (2) INFORMATION FOR SEQ ID NO:24: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: 27 AAAAAGCTTA AAATGGCACA CATCACG (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: 24 AAACTCGAGT CATACCTGTG GACT (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
AAAAAGCTTA AAATGGTCGG GCAATTG	27
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
AAAAGCATGC TCATCTGGAT GGGCA	25
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
AAAAAGCTTA AAATGGCCTC GGTCGCC	27
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
TTTTCTAGAC TACATCGTTG TCTT	24
(2) INFORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
AAAAAGCTTA AAATGAATCT GATCAAC	27
(2) INFORMATION FOR SEQ ID NO:31:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

(xi) 5	SEQUENCE DESCRIPTION: SEQ ID NO:31:	
AAATCTAGAT	T TAGTCGAAAC TGAA	24
(2) INFOR	MATION FOR SEQ ID NO:32:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:32:	
AAAAAGCTT	A AAATGCCTGG CGGA	24
(2) INFOR	MATION FOR SEQ ID NO:33:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:33:	
AAATCTAGA	G GCTACAGGAA GTCC	24
(2) INFOR	MATION FOR SEQ ID NO:34:	
(±)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:34:	
GGGGGTACC	A AAATGTCGGG GTGTGAT	27
(2) INFOR	MATION FOR SEQ ID NO:35:	
(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
1.51	SEQUENCE DESCRIPTION: SEQ ID NO:35:	
		25
	A TCAAGAGTTA TCATC	
	MATION FOR SEQ ID NO:36:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 1529 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Asx Asp Asp Ala His Asx Asp Asp Ala Asx His Ala Asx His Ala Asp

Asx Ala Asp Asx His Asp His Ala Ala His Ala Asx Asp Ala Asx His

Asx Ala Asx His Ala His Ala Asp Asp Asp Ala Ala His Ala His His 35 40 45

Ala Ala Asp Asx His Asp Asp His Ala Asx Asx Asp Ala Asp Asx His

Asx Asp Asp Ala His Asx Asx Ala Asx His Ala Asp His Ala Ala Asx 65 70 75 80

Asp Asp Asx Asx Asp Asx Asx Ala Asp His Asp His Asp Asp His Asp 90 95

Asp Ala Ala His His Asx Asp Asp Ala Ala Ala His Asp Asp His Ala

Ala His Ala Ala His Asx Ala Ala Asx Asx Asp Ala His Asx Asp Ala 115 120 125

Ala Asx Ala Asx Asx His Ala His Asp Asx Asx Asp His His Asp Ala

Asp Asx Ala Asp Asp Ala Ala Asp Asx Ala His His His Asx Asx Ala
145 150 155 160

Ala Asp Ala Asp Ala Asx Ala Ala Asp His Ala Asx Ala Ala His Ala 165 170 175

His His Asp His Asx His Ala Asx His Asp Asp Asx His Asx Asp His 180

Asx Ala His His Asx His His Asp His His Asp Asp Ala His His Asx 195 200 205

Asp Asp Ala Asp His His Asx His His Asx His Asp Asx Asx Ala His 210 215 220

Asp Asp Ala Ala His Ala His Asp His His Asx Ala His His Ala Asx 225 230 235

His Ala His Ask Asp Ask Ask Ask His Asp Ala Asp His Ala His
255

His Ala His His Asp His Asp Ala Ala His His Ala His Asp Asp 260 265 270

His His Asx Ala Ala Ala Asx Asx Asp Asp Ala His Asp Asp Asx Asp 275 280 285

His Asp Asp Ala Asp Ala Asx Ala His Asp Asp His Ala His His Asx 290 295 300

Asp Ala Ala Ala Asp Ala Ala His His Asx Ala His Asp Asp Asp Ala 305 310 315

His Asx His His Asp Ala Asx Asp Ala His His Asp Asp Asx His 325 330 335

Asx Ala Asx Ala Ala Asx His His Asx Asx Ala Ala Ala Asx Asp Asx 340 345

Ala	Ala	Двр 355	Asx	Ala	His	His	Ala 360	Ala	His	Asp	His	His 365	His	His	Asx
Ala	Ala 370	хая	Asx	His	Asp	His 375	His	Asx	Asx	His	X8X 380	Ala	His	His	Ala
His 385	His	Asp	XaX	His	Asp 390	Ąsp	His	Asx	Asx	Asx 395	Asx	His	Asp	Ala	His 400
Asx	His	Ala	Asx	Asx 405	Asp	Asx	Asp	His	Asx 410	His	His	His	Asp	Авж 415	His
			420		His			443							
		435			Ala		440								
	450				His	455					300				
465					His 470					4/3					
				485					430						
			500		His			505							
Ala		515	3	•			520								
XBX	His 530	His	xaA s	: Ala	Ala	His 535	Asx	Ala	Ala	His	His 540	His	His	Ala	Asp
Ав х 545		Ala	A His	Asp	Asp 550	Asp	Asx	His	Ala	His 555	Ala	His	Asp	Ala	Ala 560
				565					5/0	,				• • • • • • • • • • • • • • • • • • • •	
			580)	a Asp			202	•						
		59	5				600	,							X8X
	610	0				PT:	•				-	•			Ala
62	5				630)				033	,				640
				64	5				051	U					
			6 6	0				00:	ə				• • • • • • • • • • • • • • • • • • • •		c His
		67	5				001	U				•			Ala
Aв	р Ав 69		x Hi	s Al	a Ala	a Al 69	a As: 5	ĸ Hi	s Hi	s Asj	700	s Hia	a Ası	As:	c Ala
Al 70		s As	x As	p Hi	s As: 71	x Hi O	s Ala	a Hi	s Hi	s Hi:	8 A83 5	c Asi) Ası	AB;	720

His	Ala	His	Asx	Asp 725	His	His	Asp	Asp	His 730	qaA	Ala	His	X8A	Asx 735	His
His	XaX	His	Asp 740	Asp	His	qaA	His	Asp 745	His	Asp	Asx	Ala	Ala 750	His	His
Asp	Asx	Ala 755	Asx	His	His	His	His 760	XaX	His	His	His	Ala 765	His	Asx	Ala
Asx	Ala 770	Ala	Ala	Asp	Asx	Ala 775	Ala	Asp	Ala	His	His 780	His	Хвх	His	Ala
785					Ala 790					195					
				805	Ala				810					010	
			820		Ala			825					050		
		835			Asp		840					013			
	850				His	855					860				
865					Ala 870					8/3					
His				885					030						
			900		Asp			905					,,,,		
		915	j		Ala		920					,_,			
	930)			. Asx	935					340				
945	;				950					955					,
				965					970					,,,	
			980)				985)				330		His
		995	5		A Asx		100	10				100	,		
	101	LO				103	15				102	·			Авр
102	25				103	0				103	5				His 1040
				104	15				105						
			100	50				TO))				10,	•	Asx
As:	x Ala	a Ala 10		o Ala	a His	s Hi	108	c Ala 30	A ABX	c His	Asp	108	Авж 5	XBA :	Asp

- Ala Asx Ala Asx Asx Asx Asp His His Ala Asx Asx His Asx Ala
 1090 1095 1100
- Ala Ala His His His Asp Asx Asx Ala His Ala Ala His Asx His His 1105 1110 1115 1120
- Asp Asx Asp His Asp Asx His Asx His His His Asx Ala His His 1125 1130 1135
- Asx Asx Ala His His Asx His His Asx His His Asx His His Asx His 1140 1150
- Asp Asx Ala Ala Asx His Ala His Asx Asp His Asp His Asx Asx Ala 1155 1160 1165
- Asp Ala Asx Asp Asx Asp His Asp Asx His His Ala His Asx Asx His 1170 1175 1180
- Asp His His His Asx His His His Asp Ala Asp His Asx His Ala 1185 1190 1195 1200
- Asx His Asp Ala Asx Ala His His His His Asp His Asp Ala His 1205 1210 1215
- His Asp Asp His Asp Asp Ala Ala His His Asp Asx Asx Ala His Asp 1220 1225 1230
- His Asx His His His His Asx Ala Asx Ala His Asp Asp Ala His 1235 1240 1245
- Ala Asx Asx His Asx Ala Asp Asx Asp Asx His Asp Asp Asx 1250 1255
- Ala Ala His Asp Asp Asp Ala His Ala Asx Ala Asx His Asx Asx Ala 1265 1270 1280
- Ala Ala Asx Asp His Asx Asp His Asp Asx Asx Ala His Asx His Asx 1285 1290 1295
- Ala Asx His Ala Asx His Asx Ala Ala Asp Ala His His Asp Asx 1300 1305
- Asx Asp Asx His Asx Ala Asp Asx His His His Asx Asx Asp His His 1315 1320 1325
- His Asp Asx Ala Asx His Asx His His Ala His Asp Asp His His Asp 1330 1335
- Asp Asx Asx His His Asx His Asx Ala Asx Asp Asp His Asp Asp 1345 1350 1355
- Asx Asx His Asp His Asp Asp Asx Asx Asx Asp His His Asp His His 1365 1370 1375
- Ala His His Asp Ala Asp Asx Ala Asx His His Asx Asp His Asp Asp 1380 1385 1390
- Ala Asx Ala Ala Asp Asx Asx Ala Ala Asp His Ala His Asx His His
 1395
 1400
 1405
- Ala His Ala Ala Ala His Ala His His His Ala His Ala Asp Asx Ala 1410 1415 1420
- His His Ala Asp Ala Asp His Ala His Ala Asx His His Asp His His 1425 1430 1435
- Ala His Ala His Asp His His Asp His His His His His Ala His His 1445 1450 1455

Ala Ala Asp Asx His Asp His Asp Asp Ala Ala His Ala Ala Ala Ala 1460 1465 1470

Asx Asx Asp Asx His Asx Asp Ala Asp Asx Ala His His Asx Ala His 1505 1510 1515

Asp Asp Ala Asp Ala Ala Ala 1525

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 479 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Ser Pro Asn Arg Trp Ile Leu Leu Leu Ile Phe Tyr Ile Ser Tyr 1 5 10 15

Leu Met Phe Gly Ala Ala Ile-Tyr Tyr His Ile Glu His Gl<u>y Glu Glu</u> 20 25 30

Lys Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln Ile Ala Ile Asn Glu 35 40 45

Tyr Leu Leu Glu Glu Leu Gly Asp Lys Asn Thr Thr Thr Gln Asp Glu 50 55

Ile Leu Gln Arg Ile Ser Asp Tyr Cys Asp Lys Pro Val Thr Leu Pro 65 70 75 80

Pro Thr Tyr Asp Asp Thr Pro Tyr Thr Trp Thr Phe Tyr His Ala Phe 85 90 95

Phe Phe Ala Phe Thr Val Cys Ser Thr Val Gly Tyr Gly Asn Ile Ser 100 105

Pro Thr Thr Phe Ala Gly Arg Met Ile Met Ile Ala Tyr Ser Val Ile 115 120 125

Gly Ile Pro Val Asn Gly Ile Leu Phe Ala Gly Leu Gly Glu Tyr Phe 130 135 140

Gly Arg Thr Phe Glu Ala Ile Tyr Arg Arg Tyr Lys Lys Tyr Lys Met 145 150 155

Ser Thr Asp Met His Tyr Val Pro Pro Gln Leu Gly Leu Ile Thr Thr 165 170 175

Val Val Ile Ala Leu Ile Pro Gly Ile Ala Leu Phe Leu Val Leu Pro 180 185 190

Cys Val Gly Val His Leu Leu Arg Glu Leu Gly Leu Ser Ser Ile Ser

Leu Tyr Tyr Ser Tyr Val Thr Ile Thr Thr Ile Gly Phe Gly Asp Tyr 210 215 220

Val 225	Pro	Thr	Phe	Gly	Ala 230	Asn	Gln	Pro	Lys	Glu 235	Phe	Gly	GīÀ	Trp	Phe 240
Val	Val	Tyr	Gln	Ile 245	Phe	Val	Ile	Val	Trp 250	Phe	Ile	Phe	Ser	Leu 255	Gly
Tyr	Leu	Val	Met 260	Ile	Met	Thr	Phe	Ile 265	Thr	Arg	Gly	Leu	Gln 270	Ser	Lys
Lys	Leu	Ala 275	Tyr	Leu	Glu	Gln	Gln 280	Leu	Ser	Ser	Asn	Leu 285	Lys	Ala	Thr
Gln	Asn 290	Arg	Ile	Trp	Ser	Gly 295	Val	Thr	Lys	Asp	Val 300	Gly	Tyr	Leu	Arg
Arg 305	Met	Leu	Asn	Glu	Leu 310	Tyr	Ile	Leu	Lys	Val 315	Lys	Pro	Val	Tyr	Thr 320
Asp	Val	Asp	Ile	Ala 325	Tyr	Thr	Leu	Pro	Arg 330	Ser	Asn	Ser	Pro	Leu 335	Ser
Met	Tyr	Arg	Val 340	Glu	Pro	Ala	Pro	Ile 345	Pro	Ser	Arg	Lys	Arg 350	Ala	Phe
Ser	Val	Сув 355	Ala	Asp	Met	Val	Gly 360	Ala	Gln	Arg	Glu	Ala 365	Gly	Met	Val
His	Ala 370	Asn	Ser	Asp	Thr	Asp 375	Leu	Thr	Lys	Leu	986 380	Arg	Glu	Lys	Thr
- Phe 385	Glu	Thr	. Ala	Glu	_Ala 390	Tyr	<u>Hi</u> s	<u>G</u> ln	Thr	Thr 395	Asp	Leu	Leu	Ala	Lys 400
Val	Val	Asn	Ala	Leu 405	Ala	Thr	Val	Lys	Pro 410	Pro	Pro	Ala	Leu	Gln 415	Glu
Asp	Ala	Ala	Leu 420	Тут	Gly	Gly	Tyr	His 425	Gly	Phe	Ser	Asp	Ser 430	Gln	Ile
Leu	Ala	Ser 435	Glu	Trp	Ser	Phe	Ser 440	Thr	Val	Asn	Glu	Phe 445	Thr	Ser	Pro
Arg	Arg 450	Pro	Arg	Ala	Arg	Ala 455	Сув	Ser	Asp	Phe	Asn 460	Leu	Glu	Ala	Pro
Arg 465		Glr	Ser	Glu	470	Pro	Leu	Arg	Ser	Ser 475	His	Asn	Glu	Trp	

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Met Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser

Asn Glu Val Lys Lys Asn Ala Ala Thr Glu Thr Trp Thr Phe Ser Ser

Ser Ile Phe Phe Ala Val Thr Val Val Thr Thr Ile Gly Tyr Gly Asn 40

	50					5 5					•				
65					Thr 70					, ,					
				85	Val				30						
			100		Arg			103							
		115			His		120								
	130				Phe	133									
145					Leu 150					100					
Thr	Ser	Phe	Tyr	Trp 165	Ser	Phe	Ile	Thr	Met 170	Thr	Thr	Val	Gly	Phe 175	Gly
			180		Arg			103						`	
Ile	Ile	Leu 195	Gly	Lys	Phe	Ser	Met 200	Lys	Lys	Lys	Gln	Lys 205	Phe	Lys	Ile
Phe	Leu 210	Gly	Leu	Ala	Ile	Thr 215	Thr	_Met	Сув	Ile	220	Leu	Val	Gly	Val
G1: 225	Tyr	Ile	Arg	Lys	Ile 230	His	Tyr	Phe	Gly	Arg 235	Lys	Ile	Gln	Asp	Ala 240
Arg	, Ser	Ala	Leu	Ala 245	Val	Val	Gly	Gly	Lys 250	Val	Val	Leu	Val	Ser 255	Glu
Lev	ı Tyr	Ala	Asn 260	Leu	Met	Gln	Lys	Arg 265	Ala	Arg	Asn	Met	Ser 270	Arg	Glu
Ala	a Phe	11e 275	val	. Glu	. Asn	Leu	Tyr 280	Val	Ser	Lys	His	11e 285	Ile	Pro	Phe
Île	Pro 290	Thr	. Asp) Ile	Arg	Сув 295	Ile	Arg	туг	Ile	300	Gln	Thr	Ala	Asp
Al:	a Ala	a Thi	r Ile	s Ser	Thr 310	Ser	Ser	Ser	Ala	315	Asp	Met	: Glr	Ser	320
Ar	g Phe	в Суя	B His	3 Ser	Arg	туз	: Ser	Leu	330	a Arg	Ala	Phe	Lys	335	. 5

What is claimed is:

- A potassium channel comprising four hydrophobic domains capable of forming transmembrane helices, wherein
 - (i) a first pore-forming domain is interposed between a first and a second transmembrane helix; and
 - (ii) a second pore-forming domain is interposed between a third and a fourth transmembrane helix.
- 2. The potassium channel of claim 1 wherein each poreforming domain comprises a potassium selective peptide motif.
- 3. The potassium channel of claim 2 wherein the peptide motif is selected from the group consisting of a Y/F-G dipeptide motif and a G-Y/F-G tripeptide motif.
- 4. The potassium channel of claim 3 wherein at least one pore-forming domain is positioned proximal to an exterior portion of a cell membrane.
- 5. The potassium channel of claim 4 further comprising an amino-terminal glycosylation site.
- 6. The potassium channel of claim 5 wherein said glycosylation site is asparagine-linked.
- 7. The potassium channel of claim 6 characterized in that it belongs to a class of invertebrates.
- 8. The potassium channel of claim 7 characterized in that

- it is insect-derived.
- 9. The potassium channel of claim 7 characterized in that it is nematode-derived.
- 10. An isolated nucleotide sequence capable of encoding DmORF-1.
- 11. The isolated nucleotide sequence of Claim 10 comprising the nucleotide sequence depicted in Seq. I.D. No. 1.
- 12. An isolated nucleotide sequence capable of encoding CORK.
 - 13. The isolated nucleotide sequence of Claim 12 encoding for the protein depicted in Sequence I.D. No. 36.
 - 14. An expression vector capable of expressing a heterologous potassium channel in a cell membrane of a yeast cell comprising the nucleotide sequence of Claim 10.
 - 15. An expression vector capable of expressing a heterologous, potassium channel in a cell membrane of a yeast cell comprising the nucleotide sequence of Claim 11.
 - 16. An expression vector capable of expressing a heterologous potassium channel in a cell membrane of a yeast cell comprising the nucleotide sequence of Claim 12.
 - 17. An expression vector capable of expressing a heterologous potassium channel in a cell membrane of a yeast cell wherein the potassium channel comprises the amino acid sequence of Claim 13.

- 18. A transformed yeast cell comprising the nucleotide sequences of Claims 10, 11, 12 or 13.
- 19. A transformed yeast cell comprising the expression vector of claims 14, 15, 16 or 17.
- 20. A method of assaying substances to determine effects on cell growth, the method comprising the steps of:
 - a. preparing cultures of yeast cells in liquid medium lacking uracil, the liquid medium consisting of a concentration of KCl adequate to support growth of potassium-dependent mutant strains;
 - b. plating the yeast cells in uracil-free agar medium, the agar medium consisting of sufficient KC1 to selectively support growth of potassiumdependent mutant strains containing a heterologous potassium channel of claim 1;
 - c. applying substances to the agar plate;
 - d. incubating the agar plate to permit growth; and
 - e. identifying zones of growth around the substances, wherein the level of growth indicates whether or not activity of the heterologous potassium channel has been modulated as compared to control.
- 21. The yeast cell of Claim 20 further comprising a nucleotide sequence encoding RAK, or a nucleotide sequence of Claim 10, 11, 12 or 13.
- 22. The method of claim 20, wherein said effect on cell

growth is modulated by activation of the potassium channel.

- 23. The method of claim 20, wherein said effect on cell growth is modulated by inhibition of said potassium channel.
- 24. A method of selectively inhibiting insect pests by applying to such insect pests a substance capable of inhibiting a potassium channel substantially homologous to that encoded by the nucleotide sequence of claim 10.
- 25. A method of selectively inhibiting nematode pests by applying to such pests a substance capable of inhibiting a potassium channel substantially homologous to that encoded by the nucleotide sequence of claim 12.
 - 26. A method of modulating the activity of a potassium channel positioned in a cellular membrane and comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and SEQ ID NO: 36, by contacting said cellular membrane with a substance, in an amount and for a period of time sufficient to inhibit the ability of potassium ions to pass through said channel.

WO 96/13520 PCT/US95/14364

1 / 13

SC galactose, 100 mM KCl

SC glucose, 0mM KCI

SC galactose, 0 mM KCl

SC glucose, 100 mM KCI

FIG. 1

. 1	75	150	225	300	375	2 / 13 2 / 13	525	009	675	750	825	006	975
TCAGTCTTCAGTGTTTCGCGATTCTCTTTAAAAGAAAAAAAA	Trp lle Leu Leu Leu Ile Phe Tyr Ile Ser Tyr Leu Met file 31, Att Tat Tat Tat 7, TGG ATC CTG CTG CTG CTG TC TAT TAC 7, TGG ATC CTG CTG CTC TTC TAC ATA TCC TAC CTG ATC TAC TAT TAC 7, TGG ATC CTG CTG CTC ATC TAC TAC ATA TCC TAC CTG ATC TAC TAT TAC 7, TGG ATC CTG CTG CTC ATC TAC TAC ATC TAC TAC TAC TAC TAC	s Ile Ser Arg Ala Glu Gln Arg Lys Ala Gln Ile Ala Ile Asn Glu 1yr Leu 3 ATA TCG CGC GC GAA CAG CGC AAG GCG CAA ATT GCA ATC AAC GAA TAT CTG 1	r Thr Gln Asp Glu Ile Leu Gln Arg Ile Ser Asp Tyr Cys Asp Lys C ACA CAG GAT GAG ATT CTT CAA CGG ATC TCG GAT TAC TGT GAC AAA 22	80 80 80 80 80 80 80 80 80 80 80 80 80 8	H5-1 Wal Cys Ser Thr Val Gly Tyr Gly Asn Ile Ser Pro Thr Thr Phe Ala Gly Arg Met Ile Met Ile Ala Tyr Val Cys Ser Thr Val Gly Tyr Gly Asn Ile Ser Pro Thr Thr Phe Ala GC GGA CGG ATG ATG ATG ATG TAT GCG TAT 37 CTT TCC ACG GTG GGA TAT GGG AAT ATA TCG CCA ACC TTC GCC GGA CGG ATG ATG ATG ATG TAT GCG TAT 37	Val 11e Gly 11e Pro Val Asn Gly 11e Leu Phe Ala Gly Leu Gly Glu Tyr Phe Gly Arg Thr Phe Glu Ala Val 11e Gly 11e Pro Val Asn Gly 11e Leu Phe Ala GC CTC GC GC GAA TAC TTT GGA CGT ACG TTT GAA GCG 4	TYR ARG ARG TYR LYS TYR LYS MET Ser Thr ASP MET HIS TYR VAI PRO PRO GIN LEU GIV LEU IIE THE TAR TYR ARG ARG TRC ACC GAG CAG CAG CAG CAG CAG CAG CAG CA	Val Val Ile Ala Leu Ile Pro Gly Ile Ala Leu Phe Leu Val Leu Pro Cys Val Gly Val His Leu Leu Arg Grg Grg ATT GCC CTG GGA ATA GCT CTC TTC CTG GTG CTG GTG GGT GTT CAC CTA CTT CGA	Leu Gly Leu Ser Ser Ile <u>Ser Leu Tyr Tyr Ser Tyr Val Thr Thr Thr Thr Ile Gly Phe Gly Asp Tyr</u> Val CTG GGC CTA TCT TCC ATC TCG CTG TAC TAC AGC TAT GTG ACC ACA ACA ATT GGA TTC GGT GAC TAT GTG	Asn Gln Pro Lys Glu Phe Gly Gly Trp Phe Val <u>Val Tyr Gln Ile Phe Val Ile Val Trp</u> AAC CAG CCC AAG GAG TTC GGC GGC TGG TTC GTG GTC TAT CAG ATC TTT GTG ATC GTG TGG	M4 Ile Phe Ser Leu Gly Tyr Leu Val Met Ile Met Thr Phe Ile Thr Arg Gly Leu Gln Ser Lys Lys Leu Ala Ile Phe Ser Leu Gly Tyr Leu Val Met Ile Met Thr Phe Ile Thr Arg Gly Leu Gln Ser Lys Lys Leu Ala Arg Trc Trc Trc Gra Aga And Arg Arg Arg Arg Arg Trr Arg Act Trr Arg Ggc Crc Cag Agg Aag Aag Crg Gca Arg Arg Trr Trc Trc Trc Gra Gga Tar Crr Gra Arg	180 Leu Glu Gln Gln Leu Ser Ser Asn Leu Lys Ala Thr Gln Asn Arg Ile Trp Ser Gly Val Thr Lys Asp Val CTG GAG CAG CAG TTG TCC TCC AAC CTG AAG GCC ACA CAG AAT CGC ATC TGG TCT GGC GTC ACC AAG GAT GTG 320	J10 Tyr Leu Arg Arg Met Leu Asn Glu Leu Tyr Ile Leu Lys Val Lys Pro Val Tyr Thr Asp Val Asp Ile Ala TAC CTC CGG CGA ATG CTC AAC GAG CTG TAC ATC CTC AAA GTG AAG CCT GTG TAC ACC GAT GTA GAT ATC GCC

•	3 / 13													
	1050	1125	1200	1275	1350	1425	1500	1575	1650	1725	1800	1880		
350	Pro Ala Pro Ile Pro Ser Arg CCG GCT CCC ATT CCC AGC CGG 370	Met Val His Ala Asn Ser ATG GTA CAC GCC AAT TCC	His Gln Thr Thr Asp Leu CAC CAG ACC ACC GAT TTG 420	Asp Ala Ala Leu Tyr Gly GAT GCG GCT CTC TAT GGT	: Val Asn Glu Phe Thr Ser Pro ; GTC AAC GAG TTC ACA TCA CCG 470	Gln Ser Glu Arg Pro Leu CAG AGC GAG AGG CCA CTG	Phe Asn Gln Arg Tyr Lys TTC AAC CAG CGC TAC AAG	Ala Leu Glu GCT TTG GAG	Asp Val Cys Phe Pro Ser GAC GTC TGT TTC CCT TCC 570	Arg AGG	Pro Ile Cys Ala Thr Asp CCT ATT TGC GCA ACG GAC	TAA CGAACATGGGCTTCCAGATGGAG	SACGCGAGGCATCTACACCCAGAATCAA	
340	Met Tyr Arg Val ATG TAC CGC GTG	Val Gly Ala Gln Arg Glu GTT GGC GCC CAA AGG GAG 390	Thr Phe Glu Thr Ala Glu Ala ACA TTC GAG ACG GCG GAG GCG	Val Lys Pro Pro Pro Ala Glu Glu Gu GTG AAG CCA CCG CCG GGG GAA CAG GAA 440	Leu Ala Ser Glu Trp Ser Phe Ser Thr CTG GCC AGC GAA TGG TCG TTC TCG ACG 460	Asp Phe Asn Leu Glu Ala Pro Arg Trp 3AT Trc AAT CTG GAG GCA CCT CGC TGG 490	Gly Asp Asn Gln Gln Ile Gln Glu Ala GGC GAC AAC CAG CAG ATC CAG GAG GCA	Ser Thr Met Val His Leu Glu Pro Asp TCG ACC ATG GTC CAT CTG GAG CCG GAT 540	Arg Ser Ser Pro Cys Arg Met Val Cys AGA AGT TCT CCA TGC CGG ATG GTC TGC 560	Ser Cys Pro Trp AGT TGT CCG TGG	Thr Arg Ser Arg Arg Pro Pro Val Asn ACA CGG TCA CGG CGG CCT CCA GTC AAT 610	Ala Trp Pro Ala Ala Ala Ala GCT TGG CCA GCG GCG GCG GCG	GCCTATCAACGCAAGGCGGCTGCTGGCAAGCGCCG	
330	Tyr Thr Leu Pro Arg Ser Asn Ser Cys P TAC ACA CTG CCA CGT TCC AAT TCG TGT C	Lys Arg Ala Phe Ser Val Cys Ala Asp M AAG AGG GCA TYC TCC GTG TGC GCC GAC A 380		Ala Lys Val Val Asn Ala Leu Ala Thr V GCC AAG GTG GTC AAC GCA CTG GCC ACG G 430	Tyr His Gly Phe Ser Asp Ser Gln Ile I TAT CAT GGC TTC TCC GAC TCC CAG ATC C	Arg Arg Pro Arg Ala Arg Ala Cys Ser A CGA CGT CCA AGA GCA CGT GCC TGC TCC C	Trp Thr Trp Ser	Gln Gln Arg Ala Asn Gly Ala Ala Asn S CAG CAG CGT GCC AAC GGA GCA GCC AAC 530	Pro Val Ala Ser CCG GTC GCG TCA	Arg Ser Thr Pro Arg Arg Ile Trp Ser Aga Aga Aca aca car aga Ara Tag Aga A	Thr Thr Thr Ser ACT ACT ACA TCA	Val Arg His Arg Pro Ser Asn Arg Met Gre CGC CAC CGC CCT TCG AAT CGA ATG	GATGGAGCAACCCCGCCATCGGCCATTGGGCGGTGGAGCCTATCAACGCAAGGCGCTGCTGGCAAGCGCGACGCGAGGCACGCATCTACACCACCAGAATCAA	

Met Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser Asn Glu Val Lys ATG TCC GAT CAG CTG TTT GAG AAG TAT TTC TTG ACG AGT AAC GAG GTC AAG 40 Lys Asn Ala Ala thr Glu Thr Trp Thr Phe Ser Ser Ile Phe Phe Ala Val Thr Val AAG AAT GCA GCA ACG GAG ACA TGG ACA TTG TCG TCC ATT TTC TTT GCC GTA ACC GTC CTS 60 Lys Thr Thr Ile Glv Tvr Glv Asn Pro Val Pro Val Thr Trc TTT GC GTA ACG GTC TCC ATG TCC ATT TTC TTT GCC GTA ACG GTC AAG TTG CACT ACC ACT ACC GTT CA GTT CCA GTT CCA GTT CCA GTT CA GTT TCC TTG GTT TTG TCC TTG GTT TCC TTG GTT TCC TTG GTT TCC TTG GTT ACC ATC GTT ACC ATC GCG ATA TGG TCT AAC ATC GTT ACC ATC GTT ACC ATC GTT ACC ATC GTT TTG TTG TTG TTG TTG TTG TTG TTG T	4 / 13																							
Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser Asn Glu Val TCC GAT CAG CTG TTT GTC GCA TTT GAG AAG TAT TTC TTG ACG ACT AAC GAG GTC ASN Ala Ala thr Glu Thr Trp Thr Phe Ser Ser Ile Phe Phe Ala Val Thr AAT GCA GCA ACG GAG ACA TGG ACA TTT TCA TCG TCC ATT TTC TTT GCC GTA ACC 50 Thr Thr GAC ACC GAG ACA TGG ACA TTT TCA TCG TCC ATT TTC TTT GCC GTA ACC ASS. Thr Thr Ile Glv Tyr Glv Asn Pro Val Pro Val Thr Asn Ile Glv Arg Ile Trp ACT ACC ATC GGA TA TGG ACA GTT ACC ATC GGA TA TGG ATA CCT GTT ACC ATC GGA TA TGG ATA CCT CTA ACA CTG GTT ACC ATC GGA TA TGG ATA CCT CTA ACA CTG GTT ACC ATC GTT GGA TTG GCA TTG GCA TTG TTG TTC TCC TTG TTG TTG TTG TTG TTG			09		120			180			240			300			360			420			480	
AH GO AH AL AH GK AL AK	10	Ser Asp Gln Leu Phe Val Ala Phe Glu Lys Tyr Phe Leu Thr Ser Asn Glu Val	ice gai cag cig i'i' gic gca i'fi gag aag tat tic tig acg agt aac gag gtc 30	Ala Ala thr Glu Thr Trp Thr Phe Ser Ser Ile Phe Phe Ala Val Thr	GCA GCA ACG GAG ACA TGG ACA TTT TCA TCG TCC ATT TTC TTT GCC GTA ACC	50	n Pro Val Pro Val Thr Asn Ile Gly Arg Ile Trp	T CCA GTT CCA GTG ACA AAC ATT GGA CGG ATA TGG	70	e Pro Leu Thr Leu Val Thr Ile Ala Asp Leu Ala	TTC TCC TTG CTT GGA ATA CCT CTA ACA CTG GTT ACC ATC GCT GAC TTG GCA		Phe Leu Ser Glu His Leu Val Trp Leu Tyr Gly Asn Tyr Leu Lys Leu Lys Tyr	CTA TCT GAA CAT CTT GTT TGG TTG TAT GGA AAC TAT TTG AAA TTA AAA TAT	110	Ser Arg His Arg Lys Glu Arg Arg Glu His Val Cys Glu His Cys His Ser	TCA CGA CAT CGA AAA GAA CGG AGA GAG CAC GTT TGT GAG CAC TGT CAC AGT	130	Met Gly His Asp Met Asn Ile Glu Glu Lys Arg Ile Pro Ala Phe Leu Val Leu	GGG CAT GAT ATG AAT ATC GAG GAG AAA AGA ATT CCT GCA TTC CTG GTA TTA	150	Leu Ile Val Tyr Thr Ala Phe Gly Gly Val Leu Met Ser Lys Leu Glu Pro Trp	ATA GTA TAT ACA GCG TTT GGC GGT GTC CTA ATG TCA AAA TTA GAG CCG TGG	

•											5 ,	/ 1	3														
		540			009			099			720			780			840			006			096			1011	
180	e Gly Asp Leu	GGC GAC	200	u Gly Lys Phe	A GGT AAA TTT	M4 220	r Thr Met Cvs	T ACA ATG TGC	240	g Lys Ile Gln	A AAA ATT CAA	260	r Glu Leu Tyr	A GAA CTC TAC	280	e Val Glu Asn	A GTG GAG AAT	300	Ile Arg		320	e Asp Met Gln	T GAT ATG CAA			Ŋ	
	Val Gly Phe	GTC GGG TTT		Ile Ile Leu	ATC ATT TTA		Ala Ile Thr	GCA ATA ACT		Phe Gly Arg	TTC GGA AGA		Leu Val Ser	CTT GTA TCA		Ala Phe Ile	GCT TTT ATA		Ile Arg Cys	ATC CGA TGT		Ser Ala Ile	TCT GCA AT	336	Phe Lys	TTC AAA TAG	
H5-2	Thr Thr V	ACT ACT G		Leu Tyr I	CTC TAT A		Gly Leu A	GGT CTT G		His Tyr F	CAT TAT T		Val Val L	GTA GTC C		Arg Glu A	GAA		Thr Asp I				TCA TCG I		Arg Ala F	GCA	
HS	Thr Met	ACA ATG 1		Ile Leu	ATA TTG (Phe Leu	TTT TTA		Lys Ile l	AAG ATT		Gly Lys	GGA AAG					Ile Pro	ATA CCA		Ser Thr	TCC ACG		Leu Asn	CTC AAT	
170	Phe Ile		190	Tyr Ile]	TAT ATC 1	210	Lys Ile	AAA ATA	230	Ile Arg	ATT CGA	250	Val Gly	GTA GGA	270	Arg Asn	CGT AAC	290	Pro Phe	CCA TTC	310	Thr Ile	ACC ATT	330	Tyr Ser	TAT TCT	i
	Trp Ser	TGG TCC		. Tyr Met	TAC ATG		Lys Phe	AAA TTC		Gln Tyr	A CAG TAT		Ala Val	GCG GTT					s Ile Ile	S ATC ATA		Ala Ala	r GCT GCT		s Ser Arg	r TCA AGA	
	r Phe Tyr	A TTC TAC		Arg Asp Gly	AGG GAC GGA	· [Lys Lys Lys Gln	AAA AAA AAA CAA AAA TTC		Leu Val Gly Val Gln Ty	A GGA GTA		r Ala Leu	AGA TCT GCA TTG	Şelike	Leu Met Gln Lys	TTA ATG CAA AAG		Ser Lys His	TCC AAA CAC		ır Ala Asp Ala	ACT GCC GAT		Phe Cys His	FT TGT CAT	
	Phe Thr Ser Phe Tyr Trp Ser	TTC ACT TCA		Pro Arg Ar	CCC AGA AG		Met Lys Ly	ATG AAA AA		Asp Leu Va	GAT TTG GTA GGA GTA CAG		Ala Arg Se			Asn Leu Me	AAT TTA AT		Tyr Val Se	TAT GTT TO		Asp Gln Thr	GAT CAA A		Cys Arg Pl	AGA	
	Phe F	TTC I		Met	ATG C		Ser N	TCA A		Ile A			Asp A	GAC (Ala A			Leu 7	CTC		Ile 1	ATT (Ser (AGT '	

6 / 13

Ce orfl Dm orfl Consensus	MSPNRWILLL IFYISYLMFG AAIYYHIEHG EEKISRAEQR KAQIAINEYL 50	_
Ce orfl Dm orfl Consensus	LEELGDKNTT TQDEILQRIS DYCDKPVTLP PTYDDTPYTW TFYHAFFFAF 10	0
Ce orfl Dm orfl Consensus	TVVTTIGYGN PVPVTNIGRI WOILFSLIGI PLTLVTIATL AGKFLSEHLV 8 TVCSTVGYGN ISPITEAGRM IMIAYSVIGI PVNGILFAGL 14 TVTT.GYGNP.TGRISGI PA.L 15	0
Ce orfl Dm orfl Consensus	WLYGYTEKE YLILSRHEKE RREHVCEHCH SHGMGHDMINI EEKHIPAFLV 13 GEYFGRT FEAIYRRYKK YKMSTDMHYV PPQLGLITTV VIALIPGIAL 18G.YR.KH	7
Ce orfl Dm orfl Consensus	LAILIVYTAF GGVLMSKLEP WSFFTSFYWS FITHTTWGFG DLMFRRDGYM 18 FLULPCVGVH LLRELGLSS ISLYMS YVITTTIGFG DYVFT-FGAN 23L	1
Ce orfl Dm orfl Consensus	YIILLYIILG KFSMKKKQKF KIFLGLAITT MCIDLVGVOY IRKIHYFGRK 23 QPKEFGGWFV VYQIFVIVWF IFSLGYLVMI MTFITFGLOS KKLAYLEQQL 28	1
Ce orfl Dm orfl Consensus	IQDARSALAV VGGKVVLVSE LYANLMQKRA RNMSREAFIV ENLYVSKHII 28 SSNLKATQNR IWSCVTKDVG YLRRMLNELY ILKVKPVYTD VDIAYTLPRS 33	1
Ce orfl Dm orfl Consensus	PFIPTDIRCI -RYIDQTADA ATISTSSSAI DMOSCRFCHS RYSLNRAFKX 33 NSCPOLSMYR VEPAPIPSRK RAFSVCADMV GAOREAGMVH ANSDTDLIKL 38	31
Ce orfl Dm orfl Consensus	DREKTFETAE AYHQTTDLLA KVVNALATVK PPPAEQEDAA LYGGYHGFSD 43	3 1
Ce orfl Dm orfl Consensus	SQILASEWSF STVNEFTSPR RPRARACSDF NLEAPRWQSE RPLRSSHNEW 48	31

FIG. 4

mIRK hROMK1 rGIRK1	AFLFSIETQTTTGYGFRCVTDECP AFLFSLETQVTTGYGFRCVTEQCA AFLFFIETEATTGYGYRYTTDHCP	{G,A,S,T}, {D,E} {N,Q}, {K,R,H} {F,Y,W} = {I,L,M,V}
Dm H5-1	AFFFAFTVCSTVGYGNISPTTFAG	
Shak Shal Shab Shaw Eag Slo	AFWWAVVTMTTVGYGDMTPVGFWG AFWYTIVTMTTLGYGDMVPETIAG AFWWAGITMTTVGYGDICPTTALG GLWWALVTMTTVGYGDMAPKTYIG ALYFTMTCMTSVGFGNVAAETDNE CVYFLIVTMSTVGYGDVYCETVLG	
Dm H5-2	ŚĹŶŦŚŶŸŦŦŦŤĬĠFGDŶVPŦFĠAN	
Dm H5-1 Ce 5-1 Dm H5-2 Ce H5-2	AFFFAFTVCSTVGYGNISPTTFAG SIFFAVTVVTTIGYGNPVPVTNTG SLYTSYVTTTTIGFGDYVPTFGAN SFYWSFITMTTVGFGDLMPRRDGY	

FIG. 5A

1) SHAKER

2) INWARD RECTIFIER

3) ORF1

FIG. 6

10 / 13

100 mM KCI

pORF1 pKAT1

pYES2

PRATRAK

0.2 mM KCI 0 mM KCI

11 / 13

FIG. 8

. 75	150	225	008	2/13 52	450	525	009	675
Val GTC	50 Tyr TAT	Ile ATT	100 Arg CGC	Thr	150 TYE TAT	Ile ATT	200 Ile ATC	Phe TTC
Ile ATT	G1u GAG	Thr	Tyr	Pro	Leu CTA	Asn	Ala GCA	Asp Gat
Asn AAT	Pro	Leu TTG	Ile ATC	Glu GAG	Gly GGG	Asn AAC	Val GTT	Gln
Tyr	Ala GCC	Ser TCT	Leu CTG	Leu CTG	Asn	G1y GGA	Leu CTT	Lys AAG
Lys	Ile	Gly GGA	Pro	Val GTT	G Ser AGC	Ile ATT	Lys Aaa	Thr
20 Asp GAC	Thr	70 Met ATG	Gly GGT	120 Ile ATT	Phe TTT	170 Leu TTG	Pro	220 Ile ATC
Arg	Ile ATT	Phe	Ala GCT	Val GTC	Asn AAT	Leu	Glu GAG	Phe TTT
Pro	Phe TTC	Glu GAA	Ile ATT	Leu	Ile ATC	Ala GCT	Asp GAT	Phe TTC
Phe TTT	Met ATG	Lys Aaa	Ile ATT	Ile ATC	Ser	G1y GGC	Asn AAT	Leu CTT
Ala GCA	A'sn AAT	Ser	Leu	Crc	Thr	Ile ATT	Leu CTG	Ala GCA
Glu GAA	40 Trp TGG	Ty r Ta T	90 Phe TTC	Ile ATT	140 Ala GCG	Ty r TAC	190 Phe TTT	Ile A
Gln CAG	Pro CCA	Trp TGG	Leu CTG	Ile ATC	Met ATG	Thr	$\mathbf{T}_{\mathbf{Y}}^{\mathbf{r}}$	Ala GCA
Glu GAG	Leu Leu CTT CTG	Thr ACA	Asn	Thr	Gly GGA	His	Thr	Cys TGT
Val GTT	Leu	Glu GAG	Phe TTC	Leu CTG	Leu	වූට වර්ල	Val GTG	Val GTG
Ala GCC	Val GTT	Val GTG	Val GTT	Asn AAC	Thr	Phe	Gly GGA	Leu CTG
10 Tyr Tat	G17	60 G1y GGC	Asn AAT	110 Val GTC	Val GTA	160 Asp GAT	11e ATC	210 Leu CTT
Thr	Phe	Pro Asp Gly CCG GAT GGC	80 G Pro Asn Ala Ser Ile CCA AAC GCA AGC ATT	Asn Ile AAC ATC	Trp Phe Phe Trp Val TGG TTT TTC TGG GTA	GLV Val GLV GLV ASD GGA GTT GGT GGC GAT	Lys Aaa	Ile ATC
Asn	G1y GGA.	Pro	G Ser AGC	Asn	Trp Phe Phe TGG TTT TTC	GIV GGT	Val GTG	Val GTG
G Ser TCG	Val GTT	Ly s AAA	Ala	Phe	Phe TTT	Val GTT	Val V	Leu
Arg CGA	Leu	Phe	Asn	Val Cys Phe GTT TGC TTC	Trp	GCA	Thr	Ser TCG
Ile Asn ATC AAC	30 Ile ATT	Trp		Val	130 Ser TCC	Val Tyr Gly Val Gly Gly GTT TAT GGA GTT GGT GGC	180 Ile ATA	Gly Ile GGC ATA
Ile	Val GTC	Ty r TA T	Leu CTT	Pro	Met	Val GTT	Leu CTG	G1y GGC
Ile ATA	Trp Leu Val Ile Leu Val Gly Phe Gly TGG CTC GTC ATT CTT GTT GGA TTC GGA	Asn Tyr Trp Phe Lys AAT TAT TGG TTC AAA	Ser Gln Leu TCA CAA CTT	Ala GCT	Glu Asp Ser Met GAA GAT TCC ATG	Glu Asn Ser Val Tyr GAA AAC TCG GTT TAT	Gly Leu GGA TTG	Phe
Val GTA	Trp	Val GTG		Phe TTT	Asp GAT	<u>Glu Asn</u> GAA AAC	G1y GGA	Ty r TA T
Met	TAC	Tyr	61y GGC	Val GTC	Glu GAA	GAA	Cys TGC	Val GTC

CHRETTHE CHEET (RIJLE 26)

	750	825	006	975	13/13 05 01	1125	1200	1275	1364	
	250 Leu CTT	Phe TTC	300 Ile ATC	His CAC	350 Asn AAC	Met	400 Arg AGA	Glu GAG	AAA	
	Ile ATT	Ile	Glu GAA	Ile ATT	Cys TGC	Ala GCC	Ser	Ile ATT	GAAT	
	Ser	Thr	Asp GAT	Lys AAG	Phe TTC	Ile ATT	Ty r TAC	Val GTT	TGTG	
	Pro	Leu	Asn AAC	Ser TCC	Phe TTC	Gly GGA	His	Val GTT	AAGC	
	Ser	Thr	Glu GAA	Ala GCT	Phe	Gly GGT	Ser	Pro	TAT	
	Pro	270 Val GTT	Ser	320 Val GTT	Phe	370 11e ATT	Pro	420 Trp TGG	TAA ATATTTATAGCATTAGAGTATACTTGTTATATGTTGTTTTTTTATTAAGCTGTGGAATAAA	
	Arg AGA	Ala GCC	Met ATG	Ile ATA	Pro	Val GTG	Val GTG	Leu	rGTTC	
	Asp Gac	Phe TTT	Ile ATT	Ser	Ile ATT	Phe TTT	Val GTC	G1y GGC	PATA1	
	Thr	Cys TGC	Lys AAA	Gly GGA	Phe	Ile ATT	Asn	Gly GGT	PTGT	
-	Glu GAA	Phe	Asn	Ile	Leu	Asp	Pro	Thr	ATAC	
	240 Ala GCG	Trp TGG	290 Leu CTA	Ala GCG	340 Ala GCT	Thr	390 Thr ACT	Leu	SAGT	1
	Lys AAG	Val GTT	Phe TTC	Ala GCT	Arg	Ser	Tyr TAC	Leu CTT	a tya	ı
	Glu GAA	Asn AAT	Gly	Phe	Leu	Glu GAG	G1y GGA	G1y GGC	TAGC	(
	Arg	Phe TTC	Ser	Leu	Ile	Phe TTT	Met	Val GTT	TTTA	ĺ
	Ile	Leu	Asp GAT	Asn	Ile ATA	Phe	Ala	Met ATG	ATA	
	Glu	260 Gln CAA	G1y GGA	310 Phe TTC	Ala	360 Val	Leu CTG	410 Leu		
	Met	G1y GGG	Arg	Val GTC	Phe	Pro	Ala	Thr	434 Leu TTA	
	G1y GGA	Tyr TAT	Thr	Leu	Lys	Tyr TAT	Ser	Cys , TGC	. Ile	1388
	Lys Aaa	Cys TGT	Thr	Phe TTC	Leu	Ala	Leu	Val GTT	Ser	
	Gln CAA	Asn	Val GTT	Ser	TYr	Arg	TYr TAC	Ser TCC	Pro	AAAA
	230 His CAT	Thr	280 Thr ACC	Thr ACA	330 Arg CGT	Thr	380 G1y GGA	Leu	430 Lys	AAAA
	His	Phe	Met ATG	Leu	Pro	Gln CAG	His	Gln	Asp GAC	AAAA
	Tyr TAT	Thr	Met ATG	Leu	Thr	Val GTC	Ser	Ala	Val GTG	TTAA
	His	Thr	Val GTT	Thr	Pro	Arg CGT	Phe TTT	Ala GCC	Phe TTC	ATAATTAAAAAAAAAAAAAAA
	Ty r TAC	Trp TGG	Pro	Ty r TAC	Trp TGG	Ty r TA T	Ser	Phe TTT	His	ATA

FIG. 9B

INTEP 'ATIONAL SEARCH REPORT

Ir tions splication No
PUT/US 95/14364

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C07K14/705 C12N15/81 ABBRICAL C12N1/19 C12Q1/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07K C12N IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) R. WILSON ET 2.1 de et contignos -nucleotide sequence form chromosome III of C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category BIOPHYS J, 63 (5). 1992. 1406-1411., MCCORMACK K ET AL 'TANDEM LINKAGE OF 1 X SHAKER POTASSIUM CHANNEL SUBUNITS DOES NOT ENSURE THE STOICHIOMETRY OF EXPRESSED CHANNELS' see the whole document JOURNAL OF NEUROSCIENCE, 13 (11). 1993. 1 Х 4669-4679., 'Modulation of different K+ ZHONG Y ET AL currents in Drosophila: A hypothetical role for the eag subunit in multimeric K+ channels' see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. Х Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the document defining the general state of the art which is not invention considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or 'Y' document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 27 MARCH 1996 21 March 1996 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Gurdjian, D Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Interns optication No
PCT/US 95/14364

	PC1/05 95/14364
	Relevant to claim No.
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to train 140.
NATURE, vol. 345, 1990 pages 530-4, E.Y.ISACOFF ET AL. 'Evidence for the formation of heteromultimeric potassium	1
see the whole document	20-26
NATURE, vol. 368, March 1994 pages 32-38, R. WILSON ET AL. '2.2 mb of contigous nucleotide sequence form chromosome III of	1
c.elegans' see abstract; table 2	20-26
SCIENCE, vol. 256, 1992 pages 663-5, H.SENTENAC ET AL. 'Cloning and expression in yeast of a plant potassium ion transport system' cited in the application see the whole document	20-26
EP,A,O 615 976 (AMERICAN CYANAMID CO) 21 September 1994 see the whole document	20-26
PROC NATL ACAD SCI U S A, 86 (12). 1989. 4372-4376., KAMB A ET AL 'IDENTIFICATION OF GENES FROM PATTERN FORMATION TYROSINE KINASE AND POTASSIUM CHANNEL FAMILIES BY DNA AMPLIFICATION' see the whole document	10,12
US,A,5 356 775 (HEBERT STEVEN C ET AL) 18 October 1994 see the whole document	1,10-13
NATURE, vol. 362, 1993 pages 127-133, Y.KUBO ET AL. 'Primary structure and functional expression of a mouse inward rectifier potassium channel' cited in the application see the whole document	10-13
	vol. 345, 1990 pages 530-4, E.Y.ISACOFF ET AL. 'Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes 'see the whole document NATURE, vol. 368, March 1994 pages 32-38, R. WILSON ET AL. '2.2 mb of contigous nucleotide sequence form chromosome III of c.elegans' see abstract; table 2 SCIENCE, vol. 256, 1992 pages 663-5, H.SENTENAC ET AL. 'Cloning and expression in yeast of a plant potassium ion transport system' cited in the application see the whole document EP,A,O 615 976 (AMERICAN CYANAMID CO) 21 September 1994 see the whole document PROC NATL ACAD SCI U S A, 86 (12). 1989. 4372-4376., KAMB A ET AL 'IDENTIFICATION OF GENES FROM PATTERN FORMATION TYROSINE KINASE AND POTASSIUM CHANNEL FAMILIES BY DNA AMPLIFICATION' see the whole document US,A,5 356 775 (HEBERT STEVEN C ET AL) 18 October 1994 see the whole document NATURE, vol. 362, 1993 pages 127-133, Y.KUBO ET AL. 'Primary structure and functional expression of a mouse inward rectifier potassium channel' cited in the application see the whole document

-INTERP'ATIONAL SEARCH REPORT

Intr on pplication No PLI/US 95/14364

C.(Continua	DOCUMENTS CONSIDERED TO BE RELEVANT	Industrial Alexander
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	NATURE (LONDON), 376 (6542). 1995. 690-695., KETCHUM K A ET AL 'A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem' see the whole document	1-13
	්රිත්ව සහ වෙන් සහ දෙනා ලබා යට සහ දෙනා ලබා යට සහ දෙනා	because they read that no material they controlled
··· -· 		

Inter

d application No.

INTERNATIONAL SEARCH REPORT

PCT/US 95/14364

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This int	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X 2.	Claims Nos.: 23-26 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 23-26 refer, at least partially as far it concerns a medical method, to a method of treatment of the human or animal body, the search has been carried out and has been based on the alleged effects of the composition. Claims Nos.: Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Ir	nternational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. [No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rem	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTER' ATIONAL SEARCH REPORT

one oplication No

Patent document ed in search report	Publication date	Patent memb		Publication date
P-A-0615976	21-09-94	CA-A- JP-A-	2112445 6253849	01-07-94 13-09-94
S-A-5356775	18-10-94	NONE		