Practice quiz on Types of Functions

PUNTOS TOTALES DE 6

 Suppose that A = {1, 2, 10} and B = {4, 8, 40}. Which of the following formulae do **not** define a function $f: A \rightarrow B$?

1/1 puntos

- $\bigcirc f(a) = 4a$, for each $a \in A$
- f(1) = 4, f(2) = 4, and f(10) = 4.
- f(1) = 5, f(2) = 8, and f(10) = 40.
- f(1) = 4, f(2) = 40, and f(10) = 8.

A function $f: A \rightarrow B$ is a rule which assigns an element $f(a) \in B$ to each $a \in A$. In this case, unfortunately, $f(1) = 5 \notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y = \{+, -\}$ and $Z = \{H, S\}$

1/1 puntos

Suppose that $T: A \rightarrow Y$ is the function which gives T(a) = + if person a tests positive and T(a) = -if they test negative.

Suppose that $D: A \rightarrow Z$ is the function which gives D(a) = H does not actually have VBS and D(a) = S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcirc T(a) = + \text{ and } D(a) = S$
- $\bigcirc T(a) = \text{ and } D(a) = S$
- $\bigcap T(a) = \text{ and } D(a) = H$
- \odot T(a) = + and D(a) = H

/ Correcto

Recall that a false positive is a positive test result (so T(a) = +) which is misleading because the person actually does not have the disease (D(a) = H)

 Consider the function g: R → R defined by g(x) = x² - 1. Which of the following points are not on the graph of g?

1/1 puntos

- (1,0)
- ⊚ (2, -1)
- (0, -1)
- (−1,0)

	Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3\neq -1$, so the point $(2,-1)$ is \emph{not} on the graph of g .
4.	Let the point $A=(2,4).$ Which of the following graphs does $\operatorname{\it not}$ contain the point A ?
	\bigcirc The graph of $s(x)=x^2$
	$\textcircled{\tiny{1}}$ The graph of $h(x)=x-1$
	\bigcirc The graph of $g(x)=x+2$
	\bigcirc The graph of $f(x)=2x$
	\checkmark Correcto The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 \neq 4$, so the point $(2,4)$ is not on the graph of h .
e	
5.	Suppose that $h(x) = -3x + 4$. Which of the following statements is true?
	All statements are correct
	h is a strictly increasing function
	h is neither a strictly increasing function nor a strictly decreasing function.
	h is a strictly decreasing function
	\checkmark Correcto A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$
	Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!
6.	Suppose that $f:\mathbb{R} o \mathbb{R}$ is a strictly increasing function, with $f(3)=15$
	Which of the following is a possible value for $f(3.7)$?
	O 14.7
	O 3
	17
	○ -3

A function f is called strictly increasing if whenever a < b, then

Since f(3) = 15 is given and 3 < 3.7, it must be that 15 < f(3.7), and this

f(a) < f(b).

answer satisfies that.

✓ Correcto