Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Probabilidad y Estadística

Unidad 3

Autor del resumen:

DEMAGISTRIS, Santiago Ignacio

0.1 Modelos y Fenómenos

Es muy importante distinguir entre el fenómeno observable en sí mismo y el modelo matemático para dicho fenómeno. No influimos sobre lo que observamos; sin embargo, al elegir un modelo, sí podemos aplicar nuestro juicio crítico.

Los modelos que estudiaremos son el probabilístico o estocástico y el determinístico. El modelo determinístico es aquel que estipula que las condiciones bajo las cuales se verifica un experimento determinan el resultado del mismo.

Ejemplo:

Colocamos una batería a un circuito simple, el modelo matemático que posiblemente describiría el flujo observable de corriente sería $I=\frac{E}{R}$, que es la Ley de Ohm. Este modelo predice el valor de I tan pronto como se dan las condiciones E y R. En otras palabras, si se repitiese el experimento anterior cierto número de veces, empleando cada vez el mismo circuito (esto es, manteniendo fijos E y R) posiblemente hubiéramos esperado obtener el mismo valor de I.

El resultado de medir I se puede ver afectador por factores como el alambre conductor, la batería, el amperímetro, entre otras posibilidades. Cualquier desviación que pudiese ocurrir sería tan pequeña que la mayor parte de los objetivos de la descripción anterior (el modelo) se cumplirían.

En la naturaleza hay muchos ejemplos de experimentos para los cuales el modelo deterministico es apropiado. Entre estos están las leyes gravitacionales (describen con precisión lo que le sucede a un cuerpo que cae enciertas condiciones); o las leyes de Kepler, que nos indican el comportamiento de los planetas.

Dicho todo lo anterior una definición de modelo determinístico sería:

El modelo determinístico señala que las condiciones en las cuales se verifican ciertos fenómenos determinan el valor de ciertas variables observables: la magnitud de la velocidad, el área recorrida durante cierto periodo de tiempo, etc.

Existen otros fenómenos para los cuales el modelo determinístico no es suficiente para una correcta investigación. Por ejemplo, dado un trozo de material radioactivo que emite particulas α podríamos observar la cantidad de partículas en un intervalo de tiempo gracias a un medidor. Es evidente que no podemos predecir exactamente cl número de partículas emitidas, aunque sepamos la forma exacta, la dimensión, la composición química y la masa del objeto que se considera. Así no parece haber un modelo determinista razonable que nos indique el número de partículas emitidas, digamos n, como una función de varias características propias de la fuente de radiactividad. En su lugar, debemos considerar un **modelo probabilístico.**

Más ejemplos en la página 18 -del total del pdf-

Conclusión: en un modelo determinista se supone que el resultado real (sea numérico o de otra especie) está definido por las condiciones en las cuales se efectúa el experimento o procedimiento. En un modelo no determinista, sin embargo, las condiciones experimentales sólo determinan el comportamiento probabilístico (más específicamente, la distribución probabilística) de los resultados observables. En otras palabras, en un modelo determinista, utilizamos "consideraciones específicas" para predecir el resultado, mientras que en un modelo probabilístico usamos la misma clase de consideraciones que para especificar una distribución de probabilidades.

0.2 Introducción a la probabilidad

0.2.1 Experimentos aleatorios

Experimentos "aleatorios" \sim "no deterministas" \sim "Experimentos estudiados con modelos probabilísticos". Ejemplos:

- \bullet E_1 : Se lanza un dado y se observa el número que aparece en la cara superior.
- $\bullet~E_2$: Se lanza una moneda cuatro veces y se cuenta el número total de caras obtenidas.
- \bullet E_3 : Se lanza una moneda cuatro veces y se observa la sucesión de caras y sellos obtenidos.
- E_4 : Sc fabrican artículos en una línea de producción y se cuenta el número de artículos defectuosos producidos en un periodo de 24 horas.
- E_5 : El ala de un aeroplano se arma con un gran número de remaches. Se cuenta el número de remaches defectuosos.
- E_6 : Se fabrica una bombilla. Luego se prueba su duración conectandola en un portalámparas y se anota el tiempo transcurrido (en horas) hasta que se quema.
- E_7 : En un lote de 10 artículos hay 3 defectuosos. Se elige un artículo después de otro (sin sustituir el artículo elegido) hasta que se obtiene el último artículo defectuoso. Se cuenta el número total de artículos sacados del lote.
- \bullet E_8 : Se fabrican artículos hasta producir 10 no defectuosos. Se cuenta el número total de artículos manufacturados.
- E_9 : Se lanza un proyectil. Después de un tiempo determinado t, se anotan los tres componentes de la velocidad v_x , v_y , v_z .
- E_{10} : Se observa un proyectil recién lanzado en tiempos, $t_1, t_2, ..., t_n$. En cada oportunidad se anota la altura del proyectil sobre el suelo.
- E_{11} : Medir la resistencia a la tensión de una barra de acero.
- \bullet E_{12} : De una urna que contiene sólo esferas negras, se escoge una esfera y se anota su color.
- E_{13} : Un termógrafo marca la temperatura continuamente en un periodo de 24 horas. En un sitio y en una fecha señalados, "leer" dicho termógrafo.
- E_{14} : En la situación descrita en E_{13} se anotan las temperaturas mínima y máxima, x y y del periodo de 24 lloras considerado.

Características de un experimento aleatorio¹:

- Es posible repetir un experimento de forma indefinida sin cambiar escencialmente las condiciones.².
- Podemos describir el conjunto de todos los resultados posibles del experimento.
- Como el experimento se repita un gran número de veces aparecerá un patrón definido o regularidad. Esta regularidad hace posible la construcción de un modelo matemático con el cual lo analizaremos.

¹Al describir los diversos experimentos, hemos especificado no sólo el procedimiento que se realiza, sino también lo que estamos interesados en observar (veremos en otra unidad que esto se relaciona estrechamente con las variables aleatorias).

²Si pensamos en modelos determinísticos y en una función que nos devuelve el valor que nos es de interés, los argumentos de esta función serían las condiciones

0.2.2 El espacio muestral

Definición Dado un experimento ϵ definimos su espacio muestral asociado como el conjunto de todos los posibles resultados de ϵ . Usualmente se le designa la letra S.

Consideremos cada uno de los experimentos anteriores y describamos el espacio muestral de cada uno. El espacio muestral S_i se referirá al experimento E_i .

- $S_1: \{1,2,3,4,5,6\}$
- $S_2: \{0,1,2,3,4\}$
- S_3 : {Todas las posibles sucesiones de la forma a_1, a_2, a_3, a_4 , donde cada a_i = Cara o Cruz de acuerdo al i-ésimo lanzamiento}
- S_4 : {0,1,...,K; Siendo K la máxima capacidad de producción}.
- $S_5: \{0,1,...,K; \text{ Siendo K la cantidad total de remaches}\}.$
- $S_6: \{t \mid t \geq 0\}$
- $S_7: \{3,4,...,10\}$
- $S_8: \{10,11,...\}$
- $S_9: \{x,y,z \mid x,y,z \in \Re\}$
- $S_{10}: \{h_1, h_2, ..., h_n \mid h_i \geq 0; \forall i \in 1, ..., 10\}$
- $S_{11}: \{K \mid K \geq 0\}$
- E_{12} : {Esfera Negra}
- E₁₃: Este espacio muestral es el más importante de los que aquíconsideramos. Prácticamente debemos suponer que la temperatura en cierta localidad específica nunca puede subir o bajar con relación a ciertos valores, digamos M y m. Fuera de esta restricción, debemos admitir la posibilidad de que aparezca cualquier gráfica con determinadas características. Es posible que ésta no tenga saltos (esto es, representará una función continua). Además, la gráfica tendrh ciertas características (le suavidad que pueden resumirse en forma matemática al decir que la gráfica representa una función diferenciable. Así, finalmente podemos enunciar ue el espacio muestral es: {f | f una función diferenciable, que satisface m ≤ f(t) ≤ M, ∀ t}
- E_{14} : { $(x,y) \mid m \le z \le y \le M$ }. Es decir, S_{14} consta de todos los puntos que están sobre y en un triángulo en el plano bidimensional z, y.

Cuando buscamos describir un espacio muestral debemos tener una idea muy clara de lo que medimos u observamos. Por lo tanto deberíamos hablar de "un" espacio muestral asociado con un experimento y no de "el" espacio muestral (notar diferencia entre S_2 y S_3).

De acuerdo al tamaño muestral, el espacio muestral puede ser:

$$S = \begin{cases} Finito & si \quad |S| = K (S_1) \\ Infinito numerable & si \quad |S| = \aleph_0 (S_8) \\ Infinito no numerable & si \quad |S| = \aleph_1 (S_6) \end{cases}$$

0.2.3 Eventos

Definición Dado un experimento ϵ y sea S³ su espacio muestral asociado, definimos un evento A como un conjunto de posibles resultados de ϵ . Es decir, un evento es un subconjunto del espacio muestral asociado a ϵ .

Consideremos algunos de los experimentos anteriores y describamos algún evento de ellos. El evento A_i se referirá al experimento E_i .

- A_1 : Un número par ocurre; $A_1 = \{2,4,6\}$
- $A_2: A_2 = \{2\}$; es decir que ocurren 2 caras
- $A_3: A_3 = \{CCCC, CCCS, CCSC, CSCC, SCCC\};$ es decir que salen más Caras que Cruz(S)
- A_4 : $A_4 = \{0\}$; es decir que todos los artículos fueron no defectuosos
- $A_5: A_5 = \{3,4,...,M\}$; es decir que más de dos remaches fueron defectuosos
- A_6 : $A_6 = \{t \mid t \leq 3\}$; es decir la bombilla se quema en menos de 3 horas
- $A_{14}: A_{14} = \{(x,y) \mid y = x + 20\}$; es decir el máximo es 20° mayor que el mínimo

Podemos ahora utilizar los diversos métodos para combinar conjuntos (es decir, eventos) y obtener nuevos:

- a) Si A y B son eventos, $A \cup B$ es el evento que ocurre si y sólo si alguno de los eventos A o B ocurren.
- b) Si A y B son eventos, $A \cap B$ es el evento que ocurre si y sólo si los eventos A y B ocurren.
- ullet c) Si A es un evento, A^c es el evento que ocurre sí y solo sí el evento A no ocurre.
- d) Si $A_1, A_2, ..., A_n$ es cualquier colección finita de elementos, entonces $\bigcup_{i=1}^n A_i$ es el evento que ocurre sí y solo sí al menos un evento A_i ocurre.
- e) Si $A_1, A_2, ..., A_n$ es cualquier colección finita de elementos, entonces $\bigcap_{i=1}^n A_i$ es el evento que ocurre sí y solo sí todos los eventos A_i ocurren.
- f) Si $A_1, A_2, ..., A_n, ...$ es cualquier colección infinita (numerable) de elementos, entonces $\bigcup_{i=1}^{\infty} A_i$ es el evento que ocurre sí y solo sí al menos un evento A_i ocurre.
- g) Si $A_1, A_2, ..., A_n$ es cualquier colección infinita (numerable) de elementos, entonces $\bigcap_{i=1}^{\infty} A_i$ es el evento que ocurre sí y solo sí todos los eventos A_i ocurren.
- h) Supóngase que S representa el espacio muestral asociado al experimento ϵ y realizamos ϵ n veces. Entonces S x S... x S se puede utilizar para representar todos los resultados de esas n repeticiones. Es decir, $(s_1, s_2, ..., s_n) \in S$ x S x ... x S significa que s_1 resultó cuando se realizó el experimento por primera vez y s_2 cuando se realizó por segunda vez y así sucesivamente.

Definición. Se dice que dos eventos A y B son **mutuamente excluyentes**, si no pueden ocurrir juntos. Expresamos esto escribiendo $A \cap B = \emptyset$; es decir, la intersección de A y B es el conjunto vacío.

Ejemplo página 14-15 (Meyer)

Una de las características del concepto de experimento es que no sabemos que resultado particular se obtendrá al realizarlo. En otras palabras, si A es un evento asociado con el experimento, no podemos indicar con certeza que A ocurrirá o no. Por lo tanto, llega a ser muy importante la tarea de asignar un número al evento A que medirá, de alguna manera, la posibilidad de que el mismo ocurra. Lo cual nos lleva a la teoría de probabilidad ...

 $^{^3\}mathrm{S}$ es un evento, así como \emptyset también lo es

0.2.4 Frecuencia Relativa

Dada n repeticiones de un experimento ϵ y sean A y B dos eventos asociados con ϵ . Sean n_A y n_B el número respectivo de veces que el evento A y el evento B ocurrieron en las n repeticiones.

Definición. $f_A = \frac{n_A}{n}$ es la **frecuencia relativa** del evento A en las n repeticiones del experimento ϵ .

Propiedades

- 1. $0 \le f_A \le 1$.
- 2. $f_A = 1 \iff$ A ocurre en cada una de las n repeticiones.
- 3. $f_A = 9 \iff$ A no ocurre en ninguna de las n repeticiones.
- 4. Sea $f_{A \cup B}$ la frecuencia relativa asociada al evento $A \cup B$ y sean A y B son eventos mutuamente excluyentes, entonces $f_{A \cup B} = f_A + f_B$.
- 5. Dada f_A basada en n repeticiones de un experimento ϵ , si $n \to \infty \Rightarrow f_A \to P(A)^4$

Ejemplo página 16 (Meyer)

Lo importante de la propiedad 5 es que si un experimento se realiza un gran número de veces, la frecuencia relativa con que ocurre un evento A tiende a variar cada vez menos a medida que el número de repeticiones aumenta. A esta característica se la denomina como **regularidad estadística**.

Experimento: es susceptible de estudiarse matemáticamente mediante un modelo no determinista cuando es posible efectuarlo repetidas veces y a causa de esto presente regularidad estadística.

0.2.5 Nociones básicas de probabilidad

Con lo visto hasta ahora, la única forma de la cual podríamos obtener este preciado número asociado a un evento es por medio de la repetición del experimento un gran número de veces. Para evitar este proceso, se procede con la siguiente definición.

Definición. Sea ϵ un experimento y S un espacio muestral asociado con ϵ . A cada evento A le asociamos un número real P(A), llamado **probabilidad de A**, el cual satisface las siguientes propiedades:

- 1. $0 \le P(A) \le 1$
- 2. P(S) = 1
- 3. Si A y B son eventos que se excluyen mutuamente $P(A \cup B) = P(A) + P(B)$
- 4. Si $A_1, A_2, ..., A_n, ...$ son eventos que se excluyen mutuamente de par en par, entonces:

$$P(\bigcup_{i=1}^{\infty} A_i) = P(A_1) + P(A_2) + \dots + P(A_n) + \dots$$

⁴Es un hecho empírico

Teorema 1.1

Dado
$$\emptyset$$
, $P(\emptyset) = 0$ (Dem. Pág. 19)

Teorema 1.2

Sea A^c el evento complementario de A, entonces $P(A^c) = 1 - P(A)$ (Dem. Pág. 19)

Teorema 1.3

Si A y B son eventos cualesquiera, entonces $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (Dem. Pág. 19)

Teorema 1.4

Si A, B y C son tres eventos cualesquiera, entonces
$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(C \cap B) + P(A \cap B \cap C)$$
 (Dem. Pág. 20)

Teorema 1.5

Si
$$A \subset B$$
 entonces $P(A) \leq P(B)$ (Dem. Pág. 21)