* * * Artificial Intelligence and Machine Learning * * *

Mathematics Refresher

Daniel Wehner, M.Sc.

SAP SE / DHBW Mannheim

Summer term 2025

Find all slides on GitHub (DaWe1992/Applied_ML_Fundamentals)

Agenda for this Unit

- Introduction
- 2 Linear Algebra
- 3 Probability Theory and Statistics
- Wrap-Up

Section:

Introduction

Introduction
Math is important!

Introduction

Mathematics play a major role in data science and machine learning!

You will need it to understand:

- Statistical machine learning
- How optimization is used in learning and empirical risk minimization
- How linear algebra, calculus, and statistics are used to make learning and inference more efficient

Math is important!

Rough importance of mathematical disciplines in data science and machine learning:

Section:

Linear Algebra

Vectors and Vector Operations
Matrix Operations
Determinants and Inverses
Eigenvectors and Eigenvalues
Symmetric Matrices and Definiteness

What is a Vector?

General:

$$m{x} = egin{pmatrix} x_1 \ dots \ x_D \end{pmatrix} \in \mathbb{R}^D$$

Example: (D = 2)

$$\mathbf{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

Multiplication of Vectors by Scalars

General: Let $c \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^D$:

$$c\mathbf{x} = c \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} = \begin{pmatrix} cx_1 \\ \vdots \\ cx_D \end{pmatrix}$$

Example:
$$(D = 2)$$

$$2\mathbf{v} = 2 \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$$

Addition of Vectors

General: Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_D \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_D + y_D \end{pmatrix}$$

Example: (D = 2)

$$\mathbf{v} + \mathbf{w} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Linear Combination of Vectors and Span

- Let $c_1, \ldots, c_N \in \mathbb{R}$ and $\boldsymbol{x}^1, \ldots, \boldsymbol{x}^N \in \mathbb{R}^D$
- A linear combination of these vectors is given by $\mathbf{u} \in \mathbb{R}^D$:

$$\boldsymbol{u} := \sum_{n=1}^{N} c_n \boldsymbol{x}^n \tag{1}$$

• The span (German: *lineare Hülle*) of $\mathbf{x}^1, \dots, \mathbf{x}^N \in \mathbb{R}^D$ is defined by:

$$\operatorname{span}(\boldsymbol{x}^1,\ldots,\boldsymbol{x}^N) := \left\{ \boldsymbol{u} \in \mathbb{R}^D : \exists c_1,\ldots,c_N : \boldsymbol{u} = \sum_{n=1}^N c_n \boldsymbol{x}^n \right\}$$
 (2)

Linear Combination of Vectors and Span (Ctd.)

Vector Transpose, Inner and Outer Product

- Let \mathbf{x} , $\mathbf{y} \in \mathbb{R}^D$ be given
- Transposition:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} \qquad \mathbf{x}^\top = \begin{pmatrix} x_1 & \dots & x_D \end{pmatrix}$$
 (3)

Inner product (also referred to as dot product or scalar product):

$$\mathbf{x}^{\top}\mathbf{y} \equiv \langle \mathbf{x}, \mathbf{y} \rangle := \begin{pmatrix} x_1 & \dots & x_D \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_D \end{pmatrix} = \sum_{d=1}^D x_d y_d$$
 (4)

Vectors and Vector Operations
Matrix Operations
Determinants and Inverses
Eigenvectors and Eigenvalues
Symmetric Matrices and Definitenes

Vector Transpose, Inner and Outer Product (Ctd.)

• Outer product:

$$\mathbf{x}\mathbf{y}^{\top} = \begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} \begin{pmatrix} y_1 & \dots & y_D \end{pmatrix} = \begin{pmatrix} x_1 y_1 & x_1 y_2 & \dots & x_1 y_D \\ x_2 y_1 & x_2 y_2 & \dots & x_2 y_D \\ \vdots & \vdots & \ddots & \vdots \\ x_D y_1 & x_D y_2 & \dots & x_D y_D \end{pmatrix}$$
(5)

Remember: The inner product yields a scalar value; The result of an outer product is a matrix!

Example: Vector Transpose, Inner and Outer Product

$$ullet$$
 Let $oldsymbol{v}=egin{pmatrix} 3 \ 1 \end{pmatrix} \in \mathbb{R}^2$ and $oldsymbol{w}=egin{pmatrix} 2 \ 4 \end{pmatrix} \in \mathbb{R}^2$

• Transposition:

$$\mathbf{v}^{\top} = \begin{pmatrix} 3 & 1 \end{pmatrix}$$

• Inner product:

$$\mathbf{v}^{\top}\mathbf{w} = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 3 \cdot 2 + 1 \cdot 4 = 10$$

Example: Vector Transpose, Inner and Outer Product (Ctd.)

• Outer product:

$$\mathbf{v}\mathbf{w}^{\top} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ 2 & 4 \end{pmatrix}$$

Length of a Vector and Norms

• Length of a vector (Euclidean norm): Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$ and $\mathbf{c} \in \mathbb{R}$

$$\|\mathbf{x}\| := \sqrt{\mathbf{x}^{\top}\mathbf{x}} \tag{6}$$

$$\|c\mathbf{x}\| = |c| \cdot \|\mathbf{x}\| \tag{7}$$

$$\|\mathbf{x} + \mathbf{y}\| \leqslant \|\mathbf{x}\| + \|\mathbf{y}\| \tag{8}$$

• Example: Let
$$\mathbf{v} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \in \mathbb{R}^2$$

$$\|\mathbf{v}\| = \sqrt{3^2 + 1^2} = \sqrt{10}$$

Angle between Vectors

• The angle between two vectors \mathbf{x} , $\mathbf{y} \in \mathbb{R}^D$ is given by:

$$\cos \angle(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\|} = \frac{\sum_{d=1}^{D} x_{d} y_{d}}{\sqrt{\sum_{d=1}^{D} x_{d}^{2}} \cdot \sqrt{\sum_{d=1}^{D} y_{d}^{2}}}$$
(9)

$$\cos \angle(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v}^{\top} \mathbf{w}}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|} = \frac{10}{\sqrt{10} \cdot \sqrt{20}} \approx 0.71$$

• Inner product: $\mathbf{x}^{\top}\mathbf{y} = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cdot \cos \angle(\mathbf{x}, \mathbf{y})$

(Orthogonal) Projection of Vectors

- How is the projection of y onto x defined?
- Formally, we have:

$$p = \|\mathbf{y}\| \cos \angle(\mathbf{x}, \mathbf{y})$$

$$= \|\mathbf{y}\| \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

$$= \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\|}$$

Note that p is **not a vector!**

(10)

What is a Matrix?

• General case:

$$m{X} = egin{pmatrix} X_{11} & X_{12} & \dots & X_{1M} \ X_{21} & X_{22} & \dots & X_{2M} \ dots & dots & \ddots & dots \ X_{N1} & X_{N2} & \dots & X_{NM} \end{pmatrix} \in \mathbb{R}^{N imes M}$$

• x_{nm} is the entry in row n and column m

Remember: Zeilen zuerst, Spalten später (German)

Example: Matrices

$$\mathbf{A} = \begin{pmatrix} 3 & 4 & 5 \\ 1 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

A has three rows, but only two columns.

$$\mathbf{B} = \begin{pmatrix} 10 & 1 \\ 11 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

B is a square matrix as it has the same number of rows and columns.

Square matrices play a special role in mathematics, e.g. matrix inversion and determinants are only defined for square matrices.

$$\boldsymbol{c} = \begin{pmatrix} 3 & 0 \\ 0 & 7 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

C is a square matrix, but also a **diagonal matrix** because $c_{ij} = 0$ for $i \neq j$. We often write C := diag(3,7).

Special Matrices

Identity matrix:

$$I_N := egin{pmatrix} 1 & 0 & 0 & \dots & 0 \ 0 & 1 & 0 & \dots & 0 \ 0 & 0 & 1 & \dots & 0 \ dots & dots & dots & \ddots & dots \ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \in \mathbb{R}^{N imes N}$$

Zero matrix:

$$\mathbf{0} := \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{N \times N}$$

Matrix Transpose

• Matrix transposition:

$$\mathbf{X}^{\top} = \begin{pmatrix} x_{11} & x_{21} & \dots & x_{N1} \\ x_{12} & x_{22} & \dots & x_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1M} & x_{2M} & \dots & x_{NM} \end{pmatrix} \in \mathbb{R}^{M \times N}$$
(11)

• Please note: $\mathbf{X} \in \mathbb{R}^{N \times M}$, but $\mathbf{X}^{\top} \in \mathbb{R}^{M \times N}$

Matrix Addition

• Addition of matrices: Let X, $Y \in \mathbb{R}^{N \times M}$

$$\mathbf{X} + \mathbf{Y} = \begin{pmatrix} x_{11} & \dots & x_{1M} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{NM} \end{pmatrix} + \begin{pmatrix} y_{11} & \dots & y_{1M} \\ \vdots & \ddots & \vdots \\ y_{N1} & \dots & y_{NM} \end{pmatrix}$$

$$= \begin{pmatrix} x_{11} + y_{11} & \dots & x_{1M} + y_{1M} \\ \vdots & \ddots & \vdots \\ x_{N1} + y_{N1} & \dots & x_{NM} + y_{NM} \end{pmatrix} \in \mathbb{R}^{N \times M}$$
(12)

• Please note: X and Y must be of the same size!

Multiplication of Matrices by Scalars

• Multiplication by scalars: Let $X \in \mathbb{R}^{N \times M}$ and $c \in \mathbb{R}$

$$c\mathbf{X} = c \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1M} \\ x_{21} & x_{22} & \dots & x_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{NM} \end{pmatrix} = \begin{pmatrix} cx_{11} & cx_{12} & \dots & cx_{1M} \\ cx_{21} & cx_{22} & \dots & cx_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ cx_{N1} & cx_{N2} & \dots & cx_{NM} \end{pmatrix} \in \mathbb{R}^{N \times M} \quad (13)$$

This is defined for all matrices.

Multiplication of Matrices by Vectors

• Matrix-vector multiplication: Let $\mathbf{X} \in \mathbb{R}^{N \times M}$ and $\mathbf{v} \in \mathbb{R}^{M}$

$$\mathbf{X}\mathbf{y} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1M} \\ x_{21} & x_{22} & \dots & x_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{NM} \end{pmatrix} \begin{pmatrix} y_1 \\ v_2 \\ \vdots \\ y_M \end{pmatrix} = \begin{pmatrix} \sum_{m=1}^{M} x_{1m} y_m \\ \sum_{m=1}^{M} x_{2m} y_m \\ \vdots \\ \sum_{m=1}^{M} x_{Nm} y_m \end{pmatrix} \in \mathbb{R}^N$$
 (14)

- Please note: The number of columns of X and the number of rows of y must be equal in order for the matrix-vector product to exist!
- The order is important: Xy is defined, but yX is not, if n > 1

Matrix Multiplication (Ctd.)

Matrix-matrix multiplication: Let $\mathbf{X} \in \mathbb{R}^{L \times M}$ and $\mathbf{Y} \in \mathbb{R}^{M \times N}$

Introduction

Wran-I In

Linear Algebra

$$\mathbf{XY} = \begin{pmatrix} x_{11} & \dots & x_{1M} \\ \vdots & \ddots & \vdots \\ x_{L1} & \dots & x_{LM} \end{pmatrix} \begin{pmatrix} y_{11} & \dots & y_{1N} \\ \vdots & \ddots & \vdots \\ y_{M1} & \dots & y_{MN} \end{pmatrix} = \begin{pmatrix} z_{11} & \dots & z_{1N} \\ \vdots & \ddots & \vdots \\ z_{L1} & \dots & z_{LN} \end{pmatrix}$$
(15)

where:

$$z_{\ell n} = \sum_{m=1}^{M} x_{\ell m} y_{nk} \tag{16}$$

Please note: The number of columns of **X** and the number of rows of **Y** must match!

Determinants of Square Matrices

- Determinants are defined for square matrices only!
- The determinant of a (2×2) -matrix is given by:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} := ad - bc \tag{17}$$

• The determinant of a (3×3) -matrix is given by (rule of SARRUS):

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} := aei + bfg + cdh - gec - hfa - idb \tag{18}$$

LAPLACE Expansion

Use the LAPLACE expansion for $(N \times N)$ -matrices if N > 3:

LAPLACE expansion: Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be given. Then

$$\det(\mathbf{X}) = \sum_{n=1}^{N} x_{nm} \cdot (-1)^{n+m} \cdot \det(\mathbf{X}_{nm}), \tag{19}$$

where X_{nm} is the matrix obtained by removing row n and column m from X.

Matrix Inversion

- Matrix inversion is defined for square matrices only!
- $\mathbf{X} \in \mathbb{R}^{N \times N}$ multiplied by its inverse $\mathbf{X}^{-1} \in \mathbb{R}^{N \times N}$ gives the identity matrix \mathbf{I}_N :

$$XX^{-1} = I_N \tag{20}$$

• Also, the order is not important, i. e.:

$$\boldsymbol{X}^{-1}\boldsymbol{X} = \boldsymbol{I}_{N} \tag{21}$$

• We call \boldsymbol{X} non-singular or invertible, if \boldsymbol{X}^{-1} exists

Matrix Inversion (Ctd.)

Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be a square matrix. The following statements are equivalent:

 \boldsymbol{X} is invertible $\iff \boldsymbol{X}$ is non-singular

$$\iff \det(\textbf{\textit{X}}) \neq 0$$

 \iff **X** has rank **N** (full rank)

 \iff **X** does not have eigenvalue 0

 \iff The **reduced row echelon form** of **X** is the identity matrix I_N

Matrix Inversion (Ctd.)

- The inverse of a matrix can be computed using the GAUSS-JORDAN algorithm
- Special case: Do not use the GAUSS-JORDAN algorithm for (2×2) -matrices!

You can be more efficient using the identity

$$extbf{X} \operatorname{adj}(extbf{X}) = \operatorname{det}(extbf{X}) extbf{I}_{N} \overset{\operatorname{det}(extbf{X})
eq 0}{\Longleftrightarrow} extbf{X} \overline{\frac{1}{\operatorname{det}(extbf{X})}} \operatorname{adj}(extbf{X}) = extbf{I}_{N}, \tag{22}$$

where $adj(\mathbf{X})$ is the **adjugate matrix** of \mathbf{X} .

Matrix Inversion (Ctd.)

- In general, $adj(\mathbf{X})$ is hard to compute, but it is easy for (2×2) -matrices
- Let

$$\mathbf{X} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

• The adjugate matrix adj(X) of X is then given by:

$$\operatorname{adj}(\boldsymbol{X}) := \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
 (23)

Eigenvectors and Eigenvalues

- Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be a square matrix
- Some vectors $\mathbf{v} \in \mathbb{R}^N$ only change their length (but not their direction) when multiplied by \mathbf{X}
- Such vectors are called eigenvectors of X and the scaling factors are known as eigenvalues of X

Eigenvectors and eigenvalues satisfy the equation:

$$\mathbf{X}\mathbf{v} = \lambda \mathbf{v}$$
 (24)

Example: Eigenvectors and Eigenvalues

• Let
$$\mathbf{X} := \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
 be given

We have (please verify for yourself):

$$\begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

• Thus, $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector of \mathbf{X} and $\lambda = 2$ is the corresponding eigenvalue

Eigenvectors form a Basis (Eigenbasis)

- Let v^1 , v^2 , ..., v^N be N eigenvectors of $X \in \mathbb{R}^{N \times N}$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_N$
- Theorem (*):
 - If \mathbf{v}^1 , \mathbf{v}^2 , ..., \mathbf{v}^N correspond to **distinct eigenvalues** λ_1 , λ_2 , ..., λ_N , then the system $(\mathbf{v}^1, \mathbf{v}^2, \ldots, \mathbf{v}^N)$ represents a basis of \mathbb{R}^N (eigenbasis)
 - Hence, v^1, \ldots, v^N are linearly independent and any vector $u \in \mathbb{R}^N$ can be uniquely expressed as a linear combination of the eigenvectors of X, i. e.

$$\exists c_1, \ldots, c_N \in \mathbb{R}$$
 such that

$$u = \sum_{n=1}^{N} c_n v^n \quad \forall u \in \mathbb{R}^N$$

How to compute Eigenvalues and Eigenvectors

- Let $\mathbf{X} \in \mathbb{R}^{N \times N}$ be a square matrix
- The eigenvalues are the roots (German: Nullstellen) of the characteristic polynomial defined by

$$\chi_{\mathbf{X}}(\lambda) := \det(\lambda \mathbf{I}_{N} - \mathbf{X}) \tag{25}$$

• For each eigenvalue λ_n we have to solve the **homogeneous system of linear** equations

$$(\mathbf{X} - \lambda_n \mathbf{I}_N) \mathbf{v} = \mathbf{0} \tag{26}$$

to obtain the respective eigenvectors (see \Rightarrow here)

Example: Computation of Eigenvalues and Eigenvectors

Computation of the eigenvalues:

• Let
$$\mathbf{A} := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

The eigenvalues are the roots of (25) which is given by

$$\chi_{\mathbf{A}} := \det \begin{pmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{pmatrix} = (\lambda - 2)^2 - 1 = (\lambda - 1)(\lambda - 3)$$

• We directly see: $\lambda_1 = 1$, $\lambda_2 = 3$

Example: Computation of Eigenvalues and Eigenvectors (Ctd.)

Computation of the eigenspaces:

• We start with the eigenvalue $\lambda_1 = 1$ and solve (26):

$$(\mathbf{A} - \mathbf{I}_2) = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{I+II} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

• The eigenspace for eigenvalue 1 is therefore given by $\mathcal{E}(1) = \left\{t \cdot \left(-1, -1\right)^\top : t \in \mathbb{R}\right\}$

• Similarly, we can show that
$$\mathcal{E}(3) = \left\{t \cdot \left(1, -1\right)^{ op} : t \in \mathbb{R}\right\}$$

Diagonalizable Matrices

- Let $\mathbf{A} \in \mathbb{R}^{N \times N}$ be a square matrix
- If the conditions of theorem (*) are met, then we can find a non-singular matrix $\mathbf{S} \in \mathbb{R}^{N \times N}$ such that:

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \mathbf{B} \in \mathbb{R}^{N \times N} \tag{27}$$

- The columns of **S** are given by the eigenvectors of **A**, and **B** := diag($\lambda_1, \ldots, \lambda_N$) is a diagonal matrix containing the eigenvalues of **A**
- We say A is a diagonalizable matrix
- A and B are called similar matrices

Vectors and Vector Operations
Matrix Operations
Determinants and Inverses
Eigenvectors and Eigenvalues
Symmetric Matrices and Definiteness

Symmetric Matrices

• A square $(N \times N)$ -matrix **X** is called **symmetric**, if and only if

$$\mathbf{X} = \mathbf{X}^{\top} \tag{28}$$

- Some properties:
 - The inverse X^{-1} of X is also a symmetric matrix
 - **Eigen-decomposition:** Let X be a symmetric matrix. In this case the conditions of theorem (*) are met and we can find an **orthogonal matrix** Q (i. e. $Q^{-1} = Q^{\top}$) such that $Q^{\top}XQ = D$. The columns of Q are given by the normalized eigenvectors of X, and D is a diagonal matrix whose entries are the corresponding eigenvalues

Example: Eigen-Decomposition

- Consider $\mathbf{A} := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$
- We choose one eigenvector for each eigenvalue and divide them by their lengths:

Eigenvalue 1:
$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\top}$$
 Eigenvalue 3: $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)^{\top}$

Thus, the eigen-decomposition of **A** is given by:

$$\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} = \mathbf{Q}^{\top} \mathbf{A} \mathbf{Q}$$

Positive (semi-)definite Matrices

• A symmetric matrix $\mathbf{X} \in \mathbb{R}^{N \times N}$ is called **positive definite** (notation: $\mathbf{X} \succ 0$), if

$$\mathbf{z}^{\top} \mathbf{X} \mathbf{z} > 0 \quad \forall \mathbf{z} \in \mathbb{R}^{N} \setminus \{\mathbf{0}\}$$
 (29)

• Or **positive semi-definite** (notation: $X \succeq 0$), if

$$\mathbf{z}^{\top} \mathbf{X} \mathbf{z} \geqslant 0 \quad \forall \mathbf{z} \in \mathbb{R}^{N}$$
 (30)

Such matrices are important in machine learning. For instance, the covariance matrices Σ are always positive semi-definite.

Section:

Probability Theory and Statistics

Random Variables and Common Distributions

Basic Rules of Probability

Expectation and Variance

Kullback-Leibler Divergence

Random Variables

• What is a random variable?

Random Variables

- What is a random variable?
 - It's a random number determined by chance (according to an underlying distribution). To be precise: A random variable $\mathfrak X$ is a **measurable function**

$$\mathfrak{X}:\Omega
ightarrow \mathbb{R}$$
 where Ω is the sample space

- Examples of random variables in machine learning: Input data, output data, noise
- What is a probability distribution?

Random Variables

- What is a random variable?
 - It's a random number determined by chance (according to an underlying distribution). To be precise: A random variable $\mathfrak X$ is a **measurable function**

$$\mathfrak{X}:\Omega
ightarrow \mathbb{R}$$
 where Ω is the sample space

- Examples of random variables in machine learning: Input data, output data, noise
- What is a probability distribution?
 - It describes the probability that a random variable is equal to a certain value
 - It can be given by the physics of an experiment (e.g. throwing dice)
 - Discrete vs. continuous distributions

Uniform Distribution

Every outcome is equally probable within a bounded region $\Re := [a, b]$

$$p(\mathfrak{X}=x):=\frac{1}{b-a}$$

Discrete Distributions

A discrete random variable takes on discrete values.

Please note: Discrete does not mean finite!

Examples:

• When throwing a die, the possible values are given by the finite set:

$$\mathfrak{X} \in \{1, 2, 3, 4, 5, 6\}$$

• The number of sand grains at the beach (countably infinite set):

$$\mathfrak{X} \in \mathbb{N}$$

Discrete Distributions (Ctd.)

• All probabilities sum up to 1, i. e.:

$$\sum_{x \in \mathcal{X}(\Omega)} p(\mathcal{X} = x) = 1$$

- Discrete distributions are particularly important in classification
- A discrete distribution is described by a probability mass function (also called frequency function)

BERNOULLI Distribution

• A BERNOULLI random variable only takes on two values (e.g. 0 and 1):

$$\mathfrak{X} \in \{0, 1\} \tag{31}$$

$$\rho(\mathcal{X}=1;\mu)=\mu\tag{32}$$

$$\rho(\mathcal{X}=0;\mu)=1-\mu\tag{33}$$

$$\mathbb{E}\{\mathcal{X}\} = \mu \tag{34}$$

$$\mathbb{V}\big\{\mathcal{X}\big\} = \mu(1-\mu) \tag{35}$$

 The BERNOULLI distribution is governed only by the parameter μ, the probability of success

Binomial Distribution

- Repeating a BERNOULLI experiment N times leads to the binomial distribution
- **Example:** What is the probability of getting $n \in \mathbb{N}$ heads in N trials?

$$b(X = n; N, \mu) := \binom{N}{n} \mu^n (1 - \mu)^{N-n}$$
 (36)

$$\mathbb{E}\{\mathcal{X}\} = N\mu \tag{37}$$

$$\mathbb{V}\big\{\mathcal{X}\big\} = N\mu(1-\mu) \tag{38}$$

Binomial Distribution (Ctd.)

Continuous Distributions

Continuous random variables take on continuous values

- Continuous distributions are discrete distributions where the number of discrete values goes to infinity, while the probability of each value goes to zero
- A continuous random variable \mathcal{X} is described by a **probability density function** which integrates to 1, i. e.:

$$\int_{-\infty}^{\infty} p(\mathfrak{X} = x) \, \mathrm{d}x = 1$$

GAUSSIAN Distribution

Central Limit Theorem

Central Limit Theorem:

The distribution of the sum of N i.i.d. (independent and identically distributed) random variables **becomes increasingly Gaussian as** N **increases**

- The Gaussian distribution is one of the most important distributions
- GAUSSian distributions often are a good model (due to the central limit theorem)
- Working with Gaussians leads to analytical solutions for complex operations

Multivariate Gaussian Distribution

$$\mathcal{N}_{D}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\varSigma}) := \frac{1}{\sqrt{(2\pi)^{D}\det(\boldsymbol{\varSigma})}} \cdot \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\varSigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$$
(40)

Please note: ${\it x}$ and ${\it \mu}$ are vectors, while ${\it \Sigma}$ is a matrix.

The probability given by $\mathcal{N}_D(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is still a scalar value!

Basic Rules of Probability

Joint distribution:

$$\rho(\mathfrak{X} \cap \mathfrak{Y}) \tag{41}$$

Marginal distribution:

$$p(\mathcal{Y}) = \int_{\mathcal{X}} p(\mathcal{X} \cap \mathcal{Y}) \, d\mathcal{X} \tag{42}$$

Conditional distribution:

$$p(\mathcal{Y}|\mathcal{X}) = \frac{p(\mathcal{X} \cap \mathcal{Y})}{p(\mathcal{X})} \tag{43}$$

Basic Rules of Probability (Ctd.)

• Probabilistic independence:

$$\rho(\mathcal{X} \cap \mathcal{Y}) = \rho(\mathcal{X})\rho(\mathcal{Y}) \tag{44}$$

Chain rule of probabilities:

$$\rho(\mathcal{X}_1 \cap \ldots \cap \mathcal{X}_N) = \rho(\mathcal{X}_1 | \mathcal{X}_2 \cap \ldots \cap \mathcal{X}_N) \rho(\mathcal{X}_2 \cap \ldots \cap \mathcal{X}_N)$$
$$= \rho(\mathcal{X}_1 | \mathcal{X}_2 \cap \ldots \cap \mathcal{X}_N) \ldots \rho(\mathcal{X}_{N-1} | \mathcal{X}_N) \rho(\mathcal{X}_N)$$
(45)

BAYES' rule:

$$p(\mathcal{Y}|\mathcal{X}) = \frac{p(\mathcal{X}|\mathcal{Y})p(\mathcal{Y})}{p(\mathcal{X})} \tag{46}$$

Expectation

• The expectation $\mathbb E$ of a random variable $\mathcal X$ is defined by

$$\mathbb{E}\{\mathcal{X}\} := \sum_{k \in \Omega(\mathcal{X})} k \cdot p(\mathcal{X} = k) \tag{47}$$

Expectations of functions:

$$\mathbb{E}_{x}\big\{f\big\} := \sum_{x} p(x)f(x) \tag{48}$$

• **Remark:** In the continuous case we have to replace \sum by \int

Expectation (Ctd.)

Rules of expectations:

• The expectation is a **linear** operation:

$$\mathbb{E}\left\{aX + bY\right\} = a\mathbb{E}\left\{X\right\} + b\mathbb{E}\left\{Y\right\} \tag{49}$$

- More general: $\mathbb{E}\{\sum_{n=1}^N a_n \mathcal{X}_n\} = \sum_{n=1}^N a_n \mathbb{E}\{\mathcal{X}_n\}$
- If $\mathfrak X$ and $\mathfrak Y$ are independent: $\mathbb E \{\mathfrak X \mathfrak Y\} = \mathbb E \{\mathfrak X\} \mathbb E \{\mathfrak Y\}$
- The expectation is monotonous:

$$\mathfrak{X} \leqslant \mathfrak{Y} \Longrightarrow \mathbb{E} \{ \mathfrak{X} \} \leqslant \mathbb{E} \{ \mathfrak{Y} \} \tag{50}$$

Variance

• The variance $\mathbb V$ of a random variable $\mathfrak X$ is defined by

$$\mathbb{V}\{\mathcal{X}\} := \mathbb{E}\{\mathcal{X} - \mathbb{E}^2\{\mathcal{X}\}\} = \mathbb{E}\{\mathcal{X}^2\} - \mathbb{E}^2\{\mathcal{X}\}$$
 (51)

■ V is not linear:

$$\mathbb{V}\left\{a+b\mathfrak{X}\right\} = b^2\mathbb{V}\left\{\mathfrak{X}\right\} \tag{52}$$

$$\mathbb{V}\{\mathcal{X}+\mathcal{Y}\} = \mathbb{V}\{\mathcal{X}\} + \mathbb{V}\{\mathcal{Y}\} + \mathsf{cov}\{\mathcal{X},\mathcal{Y}\}$$
 (53)

• BIENAYMÉ's identity: If \mathcal{X} and \mathcal{Y} are uncorrelated, we get:

$$\mathbb{V}\{\mathcal{X} + \mathcal{Y}\} = \mathbb{V}\{\mathcal{X}\} + \mathbb{V}\{\mathcal{Y}\} \tag{54}$$

Covariance

 Covariances give a measure of correlation, i. e. how much variables change together

$$\operatorname{cov}\{\mathfrak{X},\mathfrak{Y}\} := \mathbb{E}\left\{ (\mathfrak{X} - \mathbb{E}\{\mathfrak{X}\}) (\mathfrak{Y} - \mathbb{E}\{\mathfrak{Y}\}) \right\}$$
$$= \mathbb{E}\{\mathfrak{X}\mathfrak{Y}\} - \mathbb{E}\{\mathfrak{X}\}\mathbb{E}\{\mathfrak{Y}\}$$
(55)

• The variance $\mathbb V$ of a random variable $\mathcal X$ is a special case:

$$\mathbb{V}\{\mathcal{X}\} = \mathsf{cov}\{\mathcal{X}, \mathcal{X}\} \tag{56}$$

Kullback-Leibler Divergence

 The Kullback-Leibler (KL) divergence is a similarity measure between two distributions p and q:

$$\mathbb{KL}(p||q) := \sum_{x} p(x) \cdot \log \frac{p(x)}{q(x)}$$
 (57)

- Some properties:
 - It is not symmetric: $\mathbb{KL}(p||q) \neq \mathbb{KL}(q||p)$
 - It is non-negative: $\mathbb{KL}(p||q) \geqslant 0$
 - If $\forall x : p(x) = q(x) \Longrightarrow \mathbb{KL}(p||q) = 0$

Section:

Wrap-Up

Summary
Recommended Literature
Self-Test Questions
Lecture Outlook

Summary

- Mathematics play a major role in machine learning!
- Linear algebra:
 - You should know what vectors are and what you can do with them (addition, multiplication, transpose, ...)
 - The same applies to matrices
 - You should know the concept of determinants and how to invert matrices
 - Eigenvectors and eigenvalues are important tools in machine learning
 - The eigen-decomposition plays an import role in many machine learning applications

Summary (Ctd.)

- Probability theory and statistics:
 - Random variables are numbers determined by chance
 - Probability distributions describe a probability mass or probability density
 - Discrete distributions: BERNOULLI, Binomial, Multinomial
 - Continuous distribution: Gaussian distribution
 - GAUSSians are important in machine learning and have appealing properties
 - Terms you should know: Joint-, marginal- and conditional distribution, chain rule, probabilistic independence, Bayes' rule
 - You should know what expectation and variance of distributions are

Recommended Literature

1 Linear algebra:

- [Deisenroth.2019], chapter 2
- [Deisenroth.2019], chapter 3
- [Deisenroth.2019], chapter 4

Probability theory and statistics:

[Deisenroth.2019], chapter 6

(For free PDF versions, see list in GitHub readme!)

Self-Test Questions

- What is a vector and what is a matrix?
- What is the result of an inner product / outer product?
- 3 How can you invert matrices? Is this always possible?
- What is an eigenvalue problem? How can you compute eigenvectors and eigenvalues?
- What are random variables and probability distributions?
- Why is the Gaussian distribution so important?
- What is BAYES' rule? Explain its components!

What's next...?

- I Machine Learning Introduction
 - II Optimization Techniques
 - III Bayesian Decision Theory
 - IV Non-parametric Density Estimation
 - V Probabilistic Graphical Models
 - VI Linear Regression
 - VII Logistic Regression
 - VIII Deep Learning

- IX Evaluation
- X Decision Trees
- XI Support Vector Machines
- XII Clustering
- XIII Principal Component Analysis
- XIV Reinforcement Learning
- XV Advanced Regression

Thank you very much for the attention!

* * * Artificial Intelligence and Machine Learning * * *

Topic: Mathematics Refresher
Term: Summer term 2025

Contact:

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

daniel.wehner@sap.com

Do you have any questions?