дои: 10.26456/ммг/2020-831

Математическое моделирование И Геометрия

Том 8, № 3, стр. 1 – 14 (2020)

Базисный формализм Паули в квантовых вычислениях

В.В. Никоноваи А.Н. Цирулев 6

Математический факультет Тверского государственного университета, Садовый пер. 35, Тверь, Россия электронная почта: anikonov.vv@tversu.ru atsirulev.an@tversu.ru

Поступила 1 декабря 2020 г., в окончательном виде 28 декабря. Опубликовано 30 декабря 2020 г.

Абстрактный.В данной статье рассматриваются квантовые вычисления в базисе Паули, элементы которого обычно отождествляются со струнами Паули. Этот подход позволяет нам представлять квантовые состояния, наблюдаемые и унитарные операторы в унифицированной форме линейной комбинации струн Паули, так что все операции можно свести к композициям струн. Тем не менее формальное обоснование базиса Паули для квантовых вычислений должно основываться на сильных результатах комплексной линейной алгебры и теории гильбертовых пространств. Кратко рассмотрены основные свойства струн Паули для квантовых состояний и унитарных операторов, а также ключевые операции с ними, включая алгоритм композиции струн и алгоритм преобразования из стандартного базиса в базис Паули.

Ключевые слова:квантовые вычисления, базис Паули

Номера МСК:81П16, 81П68

1.Введение

Теория квантовых вычислений остается в поле большого внимания на протяжении последних двух десятилетий. Различные типы и подтипы квантовых вычислений адаптированы для разных технологий и аппаратных архитектур, но их математические структуры построены с использованием одних и тех же основных понятий гильбертова пространства, квантовой наблюдаемой, унитарного оператора и квантового состояния. В данной статье мы рассматриваем взаимодействующую составную квантовую систему, состоящую из нидентичных двухуровневых подсистем (кубитов), так что размерность соответствующего гильбертова пространства равна 2 н. Квантовые вычисления в чистом состоянии с числом вентилей, полиномиально зависящим от числа кубитов, могут быть эффективно смоделированы классически. Поскольку универсальный квантовый компьютер, демонстрирующий квантовое превосходство, должен иметь большое количество кубитов, скажем н≥1000, количество базисных состояний 2 н>10300. Квантовые компьютеры с небольшим количеством кубитов (н~100), которые будут доступны в ближайшем будущем, должны использоваться вместе с классическим компьютером. В обоих случаях многокубитные квантовые вычисления очень чувствительны к выбору вычислительного базиса. 1,2,3].

Есть две общие возможности выбора базиса, и какая из них более эффективна, зависит как от данного алгоритма, так и от конкретного типа квантового компьютера. Во-первых, мы можем использовать стандартный ортонормированный базис в базисном гильбертовом пространстве, а затем построить подходящий базис в алгебре линейных операторов. Однако такой подход оказывается неудобным и неестественным при рассмотрении задач, связанных со смешанными состояниями, графовыми состояниями [4], исправления ошибок [3,5,6], тензорные сети [7,8,9] и вообще ко всем проблемам, где измерения не являются проективными [10,11,12]. Вторая возможность связана непосредственно с базисом в операторной алгебре, и в этом случае базисные элементы обычно не могут быть разделены на тензорное произведение некоторых кет- и бра-векторов; базис Паули считается лучшим выбором, потому что он эрмитов, ортонормирован (по отношению к скалярному произведению Гильберта-Шмидта) и составляет ортонормированный базис в алгебре Ли соответствующей унитарной группы. Группа Клиффорда, имеющая множество приложений в квантовых вычислениях, проще всего описывается в терминах базиса Паули [1].10,14].

Основная цель этой статьи — дать систематический алгебраический обзор многокубитных систем в базисе Паули. Статья организована следующим образом. Раздел2 содержит некоторые необходимые математические предварительные сведения. В разделе3 мы даем краткое описание квантовых состояний для *н*-кубитовая квантовая система в базисе Паули. Раздел4посвящен изучению некоторых вычислительных свойств струн Паули. В разделе5мы рассматриваем вычислительные алгоритмы, предназначенные для перехода от стандартного базиса к базису Паули.

На протяжении всей этой статьи мы используем натуральные единицы с \sim = c''="1. Для удобства чтения некоторые обозначения сделаны контекстно-зависимыми: строчные буквы латинского алфавита в двоичных строках (например, в символах bra и ket) принимают значения 0 и 1, а в строках и индексах Паули — от 0 до 3.

2.Основные черты базиса Паули

Мы будем рассматривать квантовую систему *н*различимые кубиты, где кубит связан с двумерным пространством Hi(lber)t *ЧАС*и его двойственное (эрмитово сопряженное) космос *ЧАСт*. Позволять *ЧАСн*"="*ЧАСвни ЧАСт н*"="*ЧАСт вн*— гильбертово пространство системы и его двойственный соответственно, и пусть *п*(*ЧАСн*"="*ЧАСн*&*Чт н*— пространство линейных операторов действующий на *ЧАСи ЧАСт*левым и правым сокращениями соответственно. Затем

тусклыйс
$$4AC_{+}$$
"="тусклыйс $4AC_{+}$ H "=" 2_{H} , T УСКЛЫЙС Π ($4AC_{H}$) = 2_{2H} .

Будем также считать, что пространство*л*(*ЧАСн*) снабжен внутренним произведением Гильберта-Шмидта,

$$\langle \hat{A}, B \rangle$$
 "="Tp($\hat{A} \uparrow B$), B, Ben($\forall A C_H$), (1)

который является естественным продолжением внутреннего продукта в *ЧАСн*. Вещественное линейное пространство эрмитовых операторов далее обозначается как *ЧАС*(*ЧАСн*).

Позволять $\{/0\$, $/1\$)быть ортонормированным базисом в некотором однокубитном **Единица** пространстве *ЧАС*. матрица и матрицы Паули,

$$O(1)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, O(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, O(2) = \begin{pmatrix} 0 & -\beta \\ \beta & 0 \end{pmatrix}, O(3)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, O(3)^{-1} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, O(3)^{-1$$

определить четыре оператора Паули

$$\hat{\sigma_0}$$
"="/0 λ \(\delta_1 + /1 λ \(\delta_1 \), \(\sigma_1\$"="/0 λ \(\delta_1 + /1 λ \(\delta_1 \), \(\delta_2\$"="-\(\sigma_1 \delta_2 \delta_1 \delta

которые эрмитовы и унитарны одновременно, и которые составляют основу в*л*(*ЧАС*). Обратное преобразование дается выражением

Напомним, что для κ , Λ , M ∈ {1,2,3} γ нас есть тр σ_{κ}^{2} "="0, σ_{κ}^{2} "=" σ_{κ}^{2

$$\hat{\sigma_k}\hat{\sigma_n}"="-\hat{\sigma_n}\hat{\sigma_k}, \hat{\sigma_k}\hat{\sigma_n}"="$$
*я*знак(π) $\hat{\sigma_M}$,(*клм*"=" π (123), (2)

где*п*(123) является перестановкой *{*1,2,3*}*.

Есть*стандартный* бинарный базис в *ЧАС* порожденные ортонормированными базисами {/0⟩, /1⟩ }в соответствующих однокубитных пространствах. Математически положение в тензорном произведении отличает кубиты друг от друга. Поэтому для фиксированного н, элемент этого базиса и соответствующий ему элемент двойственного базиса удобно записать в виде

$$|K\rangle "="|K_1...K_H\rangle "="|K_1\rangle \otimes ...\otimes |K_H\rangle$$
, $\langle K|"="|\langle K_1...K_H|"="|\langle K_1|\otimes ...\otimes \langle K_H|$,

¹Мы не используем обычный термин «вычислительный», потому что это может привести к путанице. Базис Паули и стандартный базис являются вычислительными в одном и том же смысле.

относительно строк $\kappa_1 \dots \kappa_H(\kappa_1, \dots, \kappa_H \in \{0,1\})$ как двоичное число и обозначая его десятичным представлением κ . Например, $\langle 101 \rangle$ "=" $\langle 5 \rangle$ и $\langle 00110 \rangle$ "=" $\langle 6 \rangle$

В стандартной основе,

$$|y\rangle$$
 "=" $\sum_{\kappa=0}^{2\sqrt{2}-1} \int_{\tau_{bl\kappa}/\kappa} \int_{\kappa} \hat{\mathcal{A}}$ "=" $\sum_{\kappa, \ \sigma=0}^{2\sqrt{2}-1} \int_{\kappa, \ \sigma=0} \int_{\kappa} \int_{$

где/ты $\rangle \in H_H$ и \hat{A} е π (ЧА C_H).

где \hat{o} ...оявляется тождественным оператором. элементы. Онфридно, что Π (ЧАСн) состоит из 4H использовать компактные обозначения, такие как

$$\sigma \hat{k}'' = "\sigma \hat{k}_1 \dots k_H$$

обозначая *Струна Паулик*1...*кн*, где *к*1, ..., *кн* \in {0,1,2,3}, соответствующей заглавной буквой *К*. При этом мы часто будем рассматривать *К*как число, то есть как десятичное представление строки; понятно что $06 \, K64 \, \mu$ –1. Обратите внимание, что струна Паули *К*и элемент $\sigma \hat{k}$ базиса Паули полностью определяются друг другом и, следовательно, могут быть отождествлены. Например, элементы стандартного базиса выражены в терминах базиса Паули в Приложении A1 на стр.12.

Полезно сравнить $\pi(4AC_H)$ со стандартным основанием. У нас есть

$$\hat{\sigma_{\kappa_1...\kappa_H}}\hat{\sigma_{\kappa_1...\kappa_H}}"="\hat{\sigma_{0...0}}" + \hat{\sigma_{0...0}}"="2 \qquad \text{H,Tp} \hat{\sigma_{\kappa_1...\kappa_H}} \hat{\sigma_{\kappa_1...\kappa_H}} = 0. \tag{4}$$

Базис Паули эрмитов, унитарный и ортогональный относительно скалярного произведения (1). Обратите внимание, что оператор $/\kappa$ $\langle n/$ стандартного базиса не унитарна и не эрмитова, если κ 6'="n. Стандартный базис не содержит тождественного оператора, имеющего вид

в той основе. В базисе Паули любой оператор \hat{U} из унитарной группы U($4AC_H$) (то есть, $\hat{U}_{\uparrow}\hat{U}$ '=" $\hat{\sigma_0}$...0) имеет разложение вида

$$\hat{U}''="\sum_{\substack{g_1,\dots,g_H\in\{0,1,2,3\}}} \sum_{\substack{U_{g_1,\dots,g_H}\hat{O_{g_1}}\dots g_H,\\g_1,\dots,g_H\in\{0,1,2,3\}}} \sum_{\substack{g_1,\dots,g_H\in\{0,1,2,3\}}} \sum_{\substack{g_1$$

где

)

(Обратите внимание, что буквенное условие может быть очевидно разложено на 22л-12н-1 независимые условия.

3.Квантовые состояния в базисе Паули

Квантовое состояние (оператор плотности) является эрмитовым, положительно полуопределенным (или положительным1, короче) оператор вида

$$\rho^{n} = \frac{1}{2H} \sum_{K_{1},...,K_{H} \in \{0,1,2,3\}} a_{K_{1}...K_{H}} \hat{\sigma_{K_{1}...K_{H}}} \equiv \frac{1}{2H} \sum_{K=0}^{H-1} a_{K} \hat{\sigma_{K_{1}}}$$
(5)

где*ак*1...кнери

$$a_{0...0}$$
"="1, $/a_{\kappa_1...\kappa_H}/61$, $\sum_{\kappa_1,...,\kappa_H \in \{0,1,2,3\}} (a_{\kappa_1...\kappa_H}) \ _262_H$. (6)

Условия (6) гарантировать, что ρ_i^2 "=" ρ_i " тр ρ_i^0 "="1 и тр ρ_i^2 61. Для квантовых вычислений важно, чтобы все коэффициенты в состоянии (5) действительны и каждое из них, кромеа...., является в точности r (результатом) локального измерения с одним из базисных операторов (3), $a\kappa$ = $a\kappa$... κ $_{\mu}$ "="тр $\hat{\rho}\hat{\sigma}\hat{\kappa}_{1...\kappa_{1}}$ Все квантовые (чистые и смешанные) состояния составляют выпуклое множество (замкнутое многообразие, поскольку оно является прообразом 1 при отображении tr : ЧАС $\forall AC_{+}$)→P)реального измерения 4_{+} −1 в вещественном линейном многообразии C_{+} \subset Охватывать $\{\Pi(AC_H)\}^*="AC(AC_H)\}$, а чистые состояния располагаются на границе C_H и составить вещественное подмногообразие размерности $2_{H+1}-2$.

Каждый элементn($4AC_H$) является идемпотентным ($\hat{\sigma \kappa} \hat{\sigma \kappa}^{\dagger} = \hat{\sigma \sigma}_{0...0}$), так что операторы

$$\Pi_{K''="} \frac{c_{0...0} \pm \sigma_{K}}{2}$$

это проекторы. Таким образом, наблюдаемая $\hat{\sigma \kappa}'' = "\Pi_+ - \Pi^- \hat{\sigma \kappa}$ естественным образом сводится к проективные измерения. Использование операторов Π_{t} «,теперь мы можем доказать следующее практически важное положение, которое, по-видимому, не рассматривалось, по крайней мере, в современной литературе.

Предложение 1. Состояние / акт...кн/61 в(6) следует из положительной определенности

оператора плотности(5) и первое условие в(6).

Обратите внимание, что эрмитовы проекторы Π_{t} $K''="\Pi_{t}$ K_{t} Π_{t} Π_{t} из-за очевидных неравенств

В общем случае эрмитов оператор \hat{A} ел(4 $AC_{H})$ положителен тогда и только тогда, когда существует некоторый операторBел($4AC_H$) такой, что \hat{A} "=" BB_T , более того,Bможно выбрать эрмитовым [15]. Это, в свою очередь, означает, что (\hat{A} и \hat{p} положительные)

$$()()()$$

τρ $\hat{A}\hat{\rho}$ = τρ $B\hat{B}\hat{\tau}\hat{\rho}$ "="τρ $\hat{B}\hat{\tau}\hat{\rho}\hat{B}$ >0,

¹Для нашей цели в этой статье нам не нужно различать положительно полуопределенные и положительно определенные операторы.

с $B\hat{\tau}
ho\hat{B}$ явно положительный. Таким образом,

$$\mathsf{Tp} / \mathcal{I}_{\mathbb{Z}} \rho^{\mathsf{n}} = \mathsf{m} \frac{1 \pm a}{2} \gg 0, \tag{7}$$

так что -16 aк61. Доказательство завершено. -

В качестве примера запишем одно из практически полезных состояний в стандартном базисе и в базисе Паули, а именно трехкубитное состояние Гринбергера-Хорна-Цайлингера состояние. Использование оператора *CNOT*и оператор Адамара \hat{U}_{+} 2,которые определены по отношениям (13) и (14) в приложении А2 можно записать унитарное преобразование начального состояния /000 \rangle до ГГцзсостояние в форме

$$\hat{\mathcal{U}}_{\text{\Gamma\Gamma}_{\text{LJ3}}}"="\sigma \hat{0} \otimes \textit{CNOT} \circ \textit{CNOT} \otimes \sigma \hat{0} \qquad \qquad \begin{array}{c} 0 & (0 & 0 & 0) \\ 0 & 0 & 0 & 0 \end{array}$$

из которого легко найти

$$\rho \hat{\Gamma}_{\Gamma \downarrow = 3} = \frac{1}{2} \frac{1}{000} \frac{1}{000} \frac{1}{000} \frac{1}{11} \frac{1}{11} \frac{1}{000} \frac{1}{11} \frac{1}{$$

4.Операции со струнами Паули

Нам понадобится несколько фактов и определений, связанных с базисом Паули и множеством μ струны Паули длины,

Сначала рассмотрим множествоФ₄"="*{*0*,*1*,*2*,*3*}*как четырехгруппа Клейна с правилами умножения

$$0 * \kappa'' = "\kappa, \kappa * \kappa'' = "0, \kappa * \pi'' = "M.$$

где*к, л, м*∈ {1,2,3}и*клм*есть любая перестановка числа 123. Во-вторых, пусть функция *с*: Φ 4 × Φ 4 → {1, *я*, - *я*}определяться его значениями

$$c(0,0) = c(0, \kappa'' = "c(\kappa,0) = c(\kappa, \kappa) = 1, \kappa'' = "1,2,3,$$

 $c(1,2) = c(2,3) = c(3,1) = является(2,1) = c(3,2) = c(1,3) = -я.$

Далее, пусть функция C: ул. $_H \times$ ул. $_H \to \{1,-1, g, -g\}$, $(K, J) \to C \ltimes J$, определяется как произведение

$$C_{KJ}''="(d_{K1}, J_1)(d_{K2}, J_2)...d_{KH}, J_H), K''="K_1K_2...K_H, J_1''="J_1J_2...J_H$$

Функция *С*симметричен или антисимметричен в зависимости от количества пар (κ_p , Λ_p) (pэто позиция в строках Kи Λ) такой, что κ_p , $\Lambda_p \in \{1,2,3\}$ и $\kappa_p 6$ '=" Λ_p , а также в зависимости от относительного порядка в них. Позволять M+ $\kappa \Lambda$ 0M- $\kappa \Lambda$ 0 БТЬ

количество пар форм (1,2),(2,3),(3,1) и форм (2,1),(3,2),(1,3) соответственно, и пустьж кл"="жкл+ж- кл. Затем

$$C_{K/l}"="g)_{xK/l}(-1)_{x-} \stackrel{K/l}{\sim}, \quad C_{(K/l)}"="\frac{C_{K/l}}{2} 1 + (-1)_{xK}^{-1}, \quad C_{[K/l]}"="\frac{C_{K/l}}{2} 1 - (-1)_{x}^{-1}, \quad (8)$$

где круглые и квадратные скобки обозначают симметризацию и антисимметризацию соответственно. значения Скл, С(кл), и С(кл)приведены в таблице2.

жклмод 4	0	2	0	2	1	3	1	3
<i>жкл</i> мод 2	0	1	1	0	0	1	1	0
Скл	1	1	-1	-1	Я	Я	- я	-я
С(кл)	1	1	-1	-1	0	0	0	0
С[кл]	0	0	0	0	Я	Я	- я	- я

Таблица 1: Факторы до $\hat{\sigma}_{MB}$ (9) для $\hat{\sigma}_{K}\hat{\sigma}_{n}$, $\{\hat{\sigma}_{K}, \hat{\sigma}_{n}\}$, и [$i\hat{\sigma}_{K}, i\hat{\sigma}_{n}$].

Теперь композицию двух базисных элементов Паули и их антикоммутатора и коммутатора можно записать в виде компактных выражений, удобных для классического компьютерного программирования:

$$\sigma \hat{k} \sigma \hat{n}^{"} = "C_{K} \bar{n} \sigma \hat{k}, \ \sigma \hat{n}, \ \{\sigma \hat{k}, \ \sigma \hat{n}\}" = "C_{(K} \bar{n}) \sigma \hat{k}, \ [i\sigma \hat{k}, \ i\sigma \hat{n}" = "-C_{[K} \bar{n}] \sigma \hat{k}, \ (9)$$

где

$$\widehat{\sigma_M}'' = \widehat{\sigma_M}_{...MH}, M_1'' = K_1 * J_1, ..., M_H'' = K_H * J_H.$$
 (10)

Обратите внимание, что две строки Паули длины Hмогут коммутировать, даже если они имеют разные ненулевые записи в одних и тех же местах. Например, три оператора σ 1, σ 22, и σ 33взаимно коммутировать. Также легко видеть, что унитарная матрица перехода, преобразующая стандартный базис H 1...H H H 6 базис Паули, состоит только из элементов H 1 H 8 частности,

$$/00...0\rangle$$
 $\langle 00...0/ \rightarrow \frac{1}{2H} \sum_{g_1,...,g_H \in \{0,3\}} \hat{g_{g_1...g_H}}$

В более общем виде стандартные ортогональные проекторы могут быть выражены как

$$|g_1...g_H\rangle \langle g_1...g_H|_{g_1,...,g_H\in\{0,1\}}"=" \frac{1}{2H} \sum_{K_1,...,K_H\in\{0,3\}} X_{g_1} \cdots X_{k_H} \hat{g_K}_{g_1...K_H},$$

где

$$x_0''="x_3^0'="x_0^1="1, x_3''="-1.$$

Некоторые важные операторы базиса Паули описаны в Приложении А2 на стр.14.

Выражения (9) показать, во-первых, что множество $\{iac\}_{r}$ $\stackrel{4}{\not\sim}_{l}$ составляет ортонормированный основа всу(μ). И, во-вторых, набор

который состоит из 4_{*н*+1}элементы, это группа; это называется ((*н*-кубит) группа Паули. нормализатор группы Паули,

$$\{C(YAC_H)^*="\hat{U}eU(YAC_H) / \hat{U}\sigma\hat{k}\hat{U}en(\tilde{Y}AC_H), \sigma\hat{k}\in P(YAC_H), \}$$

называется группой Клиффорда. У нас есть от2,4, и10следующее предложение:

Предложение 2.Взаимные унитарные преобразования базисных операторов Паули подчиняются соотношениям о̂я...яно̂к....кно̂я...ян"="±о̂я...ян, где знак плюс стоит тогда и только тогда, когда количество троек(ямкмям)м∈⟨1,...,п⟩, удовлетворяющие условиямям6 "="км, ям6= 0, икм6= 0, даже.

5.Алгоритмы перехода к базису Паули

В стандартном базисе и в базисе Паули можно выразить оператор \hat{A} ел (ЧАСн) (например, унитарное преобразование, наблюдаемая или оператор плотности) как

$$\hat{A}''="\sum_{g_0,...,g_{n-1},j_0,...,j_{n-1}\in\{0,1\}} a_{g_{n-1}...g_0}/g_{g_{n-1}...g$$

или, короче,

$$\hat{\mathcal{A}}"=" \sum_{g=0,\not\not\perp x=0}^{2\sqrt{p}-1} \sum_{a_{ij}/g} \sum_{g=0}^{2\sqrt{p}-1} \sum_{g=0}^{14\sqrt{p}-1} C_{g}^{2}O_{g}.$$
 (11)

Таким образом, мы имеем дело с задачей вычисления коэффициентов $C_{\mathfrak{s}}$ когда коэффициенты $a_{\mathfrak{s}}$ дано; такой алгоритм недавно был предложен [13]. Наш подход основан на следующем наблюдении: все коэффициенты $a_{\mathfrak{s}}$ с двоичными строками $\mathfrak{s}''= \mathfrak{s}_{\mathfrak{k}}$ двоичными строками $\mathfrak{s}''=\mathfrak{s}_{\mathfrak{k}}$ двоичными строками $\mathfrak{s}_{\mathfrak{k}}$ двоичными $\mathfrak{s}_{$

$$K''="K_{\Pi}-1...K_0)_2"="\mathcal{F}_{\Pi}-1...\mathcal{F}_0)_2 \oplus (\mathcal{I}_{\mathcal{K}\Pi}-1...\mathcal{I}_{\mathcal{K}0})_2,$$

дают ненулевые вклады только в члены вида $C(s \oplus A)$ $\hat{\sigma_n}$, гделэто двоичная строкалn-1...s0, 06n62n-1, а операторы $\hat{\sigma_n}$ необходимо пересчитать к форме (11) Несложно (но громоздко) доказать, что строки \hat{s} "=" \hat{s} (κ , \hat{s} "=" \hat{s} (κ , \hat{s} "=" \hat{s} (κ , \hat{s}) \hat{s} 0 пределяются

$$g''="\bar{\Lambda}\Lambda \kappa + 2\bar{\Lambda}\Lambda \kappa + 3\bar{\Lambda}\Lambda \kappa, \qquad (12)$$

где черта над буквой обозначает инверсию $0 \leftrightarrow 1$ для каждой цифры соответствующей двоичной строки и лобозначает логическую операцию $\mathcal{U}\mathcal{I}\mathcal{U}$. С правой стороны в (12), мы рассматриваем полученные двоичные строки как числа с основанием 4. Для заданных двоичных строкяи $\mathcal{L}\mathcal{X}$, псевдокод этой процедуры написан на алгоритме1.

Например, слагаемые

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} + i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} + \widehat{\sigma_{022}} + \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} - i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} + i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} + \widehat{\sigma_{022}} + \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} - i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} + i\widehat{\sigma_{021}} + \widehat{\sigma_{022}} + \widehat{\sigma_{311}} - i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} + i\widehat{\sigma_{021}} + \widehat{\sigma_{022}} + \widehat{\sigma_{311}} - i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} - \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} + i\widehat{\sigma_{021}} + \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} - i\widehat{\sigma_{321}} - \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} + i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} + i\widehat{\sigma_{321}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} + i\widehat{\sigma_{322}} + \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - i\widehat{\sigma_{012}} - i\widehat{\sigma_{021}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} - i\widehat{\sigma_{321}} - \widehat{\sigma_{322}},$$

$$\frac{\partial 21}{\partial 3} (\widehat{\sigma_{011}} - \widehat{\sigma_{012}} - \widehat{\sigma_{022}} - \widehat{\sigma_{311}} + i\widehat{\sigma_{312}} - \widehat{\sigma_{322}} - \widehat{\sigma_{322}} - \widehat{\sigma_{311}} + \widehat{\sigma_{322}} - \widehat{\sigma_{322} - \widehat{\sigma_{322}} - \widehat{\sigma_$$

будет способствовать линейной комбинации ϕ 011, ϕ 012, ϕ 021, ϕ 022, ϕ 311, ϕ 312, ϕ 321, ϕ 3

$$\kappa'' = "010 \oplus 001 = 001 \oplus 010 = 101 \oplus 110 = 111 \oplus 100 = 011$$
.

Элементы базиса Паули, возникающие в (12) из этих слагаемых показаны в табл.2. Например, если $n''=5=(101)^2$, то в соответствии с (12),

Далее, например, слагаемое*а*101,110/101*〉* 〈110/"="*a*56/5*〉* 〈6/способствует*я*56/23 в *C*(3)[5], так как существуют тройки (лояоДжо) = (110)2, (л1я1Дж1) = (001)2, и (л2я2Дж2) = (111)2в алгоритме1(строки 17 – 26); поэтому, знак"="1, с"="1.

Л	0	1	2	3	4	5	6	7
Л2Л1Л0	000	001	010	011	100	101	110	111
K2 K1 K0	011	011	011	011	011	011	011	011
л̄ΛΚ	011	010	001	000	011	010	001	000
ЛΛК	000	001	010	011	000	001	010	011
<i>ΠΛ Κ</i> -	000	000	000	000	100	100	100	100
О̂я	<i>o</i> ô11	<i>o</i> ̂012	<i>o</i> ô21	<i>o</i> ô22	<i>o</i> ŝ11	<i>o</i> 3̂12	<i>0</i> 3̂21	<i>0</i> 322

Таблица 2: Элементы базиса Паули, возникающие для к"="011.

Алгоритм 1Преобразование к базису Паули.

```
1:Входколичество кубитовн
 2:Входструныg''="g_{\pi-1}\dots g_0и\mathcal{A}ж''="\mathcal{A}ж\pi-1\dots \mathcal{A}ж0,g_c,\mathcal{A}жc\in\{0,1\}
 3:Входкомплексное числоa_{ij}—фактор вa_{ij}/g \langle j/g \rangle
 4://Составьте номер строкик"="я⊕Дж
 5:Инициализироватьнитьк"="нулевой
 6:дляяс"="я0, . . . , яп-1делать
         для\mathcal{L}жc"="\mathcal{L}ж0, ..., \mathcal{L}жn-1делать
              Kc"="Яc \oplus ДЖc
 8:
         конец для
 9:конец для
10:Конвертировать (кп-1...к0)2в целое (к)10
11://Для номерак,фил в два ряда
12:Инициализировать C_{(\kappa)}на ноль 2\mu-длинный вектор комплексного типа данных
13:Инициализировать\mathbf{g}_{(k)}нулем 2_{k}-длинный вектор типа строковых данных
14:Инициализироватьинтцентризнак∈ {1, −1, я, -я}по произвольным значениям
15:длял"="0к2<sub>H</sub>-1делать
16:
         Конвертировать (л)10к (лп-1...ло)2
         центр"="0 изнак"="1 для
17:
         18:
19:
             еслилс==1затем
20:
                  если (g_c, \Delta m_c) == (1,1)затемзнак"="-знак если (g_c,
21:
                  \Delta (x_c) = (0,1)затем центр"="центр+1 если (яс, \Delta (x_c))
22:
                  == (1,0)затемзнак"="-знак, конец, если
                                                                        центр"="центр+1
23:
24:
         конец для
         - Since Arin ( ) ()
Я(κ)[Л"="Л̄ΛΚ+2ЛΛΚ + 3ЛΛ κ̄
25:
26:
         интc''="центр(мод4), C(\kappa)[J] +=g_c\cdot 3нак\cdot a_{ij}
27:конец для
28:Возвращатьсяряды C(\kappa)и g(\kappa).
```

6.Заключение

В этой статье мы описали базовую технику работы с базисом Паули. Показано, что этот прием может сделать более удобными и алгоритмичными некоторые манипуляции с математическими выражениями, относящимися к квантовым схемам с большим числом кубитов. Представлен новый эффективный алгоритм полиномиальной сложности перехода от стандартного базиса к базису Паули.

р.ссылки

- [1] Б. Дирксе, М. Помпили, Р. Хэнсон, М. Уолтер, С. Венер *Свидетельство запутанности в экспериментах с произвольным шумом* Квантовая наука и технологии5,035007, 2020 (arxiv:1909.09119)
- [2] И. Хамамура и Т. Имамичи. Эффективная оценка квантовых наблюдаемых с использованием запутанных измерений прј Квантовая информация 6,56, 2020 (arxiv:1909.09119)
- [3] О. Кроуфорд, Б. ван Страатен, Д. Ван, Т. Паркс, Э. Кэмпбелл, С. Брайерли Эффективное квантовое измерение операторов Паули при наличии конечной ошибки дискретизацииквант5,385–404, 2021 г. (архив: 1908.06942)
- [4] В. Клобус и др. *Запутанность более высокого измерения без корреляций*. Евро. физ. Дж. Д.73,29, 2019 (архив: 1808.10201)
- [5] Т. Дж. О'Коннор, Ю. Ю., Б. Хелоу, Р. Лафламм. *Надежность дистилляции магического состояния от ошибок в воротах Клиффорда*Квантовая информация и вычисления 13,361–378, 2013 г. (архив: 1205.6715)
- [6] К. А. Риофрио, Д. Гросс, С. Т. Фламмиа, Т. Монц, Д. Нигг, Р. Блатт, Дж. Эйсерт. *Экспериментальное квантово-сжатое зондирование для семикубитной системы* Связь с природой8,15305, 2017 (архив: 1608.02263)
- [7] С.С. Джахроми, Р. Орус. *Универсальный тензорный сетевой алгоритм для любой бесконечной решетки*физ. Преподобный Д99,195105, 2019 (архив: 1808.00680)
- [8] А.Н. Цирулев. *Геометрический взгляд на квантовые тензорные сети*европ. физ. J. Сеть конференций226,№ 4, 2020 г. (https://doi.org/10.1051/epjconf/202022602022)
- [9] И.М. Поташов, А.Н. Цирулев. *Вычислительный алгоритм для разложения ковариантных рядов в общей теории относительности*европ. физ. J. Сеть конференций173, 03021, 2018 (https://doi.org/10.1051/epjconf/201817303021)
- [10] С. Бравый, А. Китаев. *Универсальное квантовое вычисление с идеальными вентилями Клиффорда и шумными помощниками*физ. Преп. A71,022316, 2005 (arXiv: квант-ph/0403025)
- [11] В. Данос и Э. Кашефи. *Детерминизм в односторонней модели*физ. Преподобный А. 74,052310, 2006 (arXiv: квант-ph/0506062)
- [12] В. Данос и Э. Кашефи. *Измерения Паули универсальны* Электронные заметки по теоретической информатике 170,95–100, 2007 г. (https://doi.org/10.1016/j.entcs.2006.12.013)

- [13] Д. Ганлике, М. С. Паленик и С. А. Фишер. Эффективный алгоритм генерации координат Паули для произвольного линейного оператора 2020 (архив: 2011.08942)
- [14] С. Бравый, Д. Маслов. *Схемы без Адамара раскрывают структуру группы Клиффорда.* 2020 (архив: 2003.09412)
- [15] И. Бенгтссон, К. Жычковский. *Геометрия квантовых состояний: введение в квантовую запутанность.* Издательство Кембриджского университета, Кембридж, 2 006
- [16] Шенде В.В., Марков И.Л., Буллок С.С.*Минимальные универсальные двухкубитные схемы на основе управляемого НЕ*физ. Преподобный A,69,062321, 2004 (arXiv: квант-ph/0308033)

Приложение

A1. Базис Паули для*н*"="2

Для справки приведем здесь выражения элементов стандартного базиса в *ЧАС*2 в терминах элементов базиса Паули. Напомним, что такие выражения в *ЧАС*1 иметь форма

$$\frac{\vec{\sigma_{00}} + \vec{\sigma_{03}} + \vec{\sigma_{30}} + \hat{\sigma_{30}} + \hat{\sigma_{30}} + \hat{\sigma_{30}}}{4}, \qquad \frac{\vec{\sigma_{01}} - i\vec{\sigma_{02}} + \vec{\sigma_{31}} - \hat{\sigma_{32}}, \quad o}{4}$$

$$\frac{\vec{\sigma_{00}} + \vec{\sigma_{13}} - i\vec{\sigma_{20}} - \vec{\sigma_{23}} \cdot o}{4}, \qquad \frac{\vec{\sigma_{01}} - i\vec{\sigma_{02}} + \vec{\sigma_{31}} - i\vec{\sigma_{21}} - \hat{\sigma_{22}}, \quad o}{4}$$

$$\frac{\vec{\sigma_{00}} + \vec{\sigma_{13}} - i\vec{\sigma_{20}} - \vec{\sigma_{23}} \cdot o}{4}, \qquad \frac{\vec{\sigma_{01}} - i\vec{\sigma_{12}} - i\vec{\sigma_{21}} - \hat{\sigma_{22}}, \quad o}{4}$$

$$\frac{\vec{\sigma}_{11} + i\vec{\sigma}_{12} + i\vec{\sigma}_{21} - \vec{\sigma}_{22}}{4} \qquad \frac{\vec{\sigma}_{10} - \vec{\sigma}_{13} + i\vec{\sigma}_{20} - i\vec{\sigma}_{23}}{4}$$

$$\frac{\vec{\sigma}_{10} + i\vec{\sigma}_{12} + i\vec{\sigma}_{12} - \vec{\sigma}_{13} - i\vec{\sigma}_{23}}{4}$$

$$\frac{\vec{\sigma}_{10} - \vec{\sigma}_{13} + i\vec{\sigma}_{20} - i\vec{\sigma}_{23}}{4}$$

А2. Некоторые унитарные операторы в базисе Паули

Оператор контролируемого НЕ:

$$CNOT"="_{00}+\frac{\hat{\sigma_{0}}}{\hat{\sigma_{0}}+\hat{\sigma_{0}}-\hat{\sigma_{0}}}="/00\rangle \quad \langle 00/+/01\rangle \quad \langle 01/+/10\rangle \quad \langle 11/+/11\rangle \quad \langle 10/, \qquad (13)$$

Оператор управляемой фазы:

$$\hat{\sigma}$$
 Чехия"=" $\frac{\hat{\sigma}}{2}$ "=" $\frac{\hat$

Хорошо известно, что *CNOTи Чехия*принадлежат к группе Клиффорд *C*(*ЧАС*2). Известны также некоторые наборы образующих и канонические формы для операторов группы *C*(*ЧАС*4) (см., например, [14]), но количество элементов в этих группах растет экспоненциально (на самом деле чуть быстрее) с ростом *н*: например, *C*(*ЧАС*1) имеет порядок 24, и *C*(*ЧАС*2) имеет порядок 11520. Поэтому возникает проблема нахождения практически подходящего [16] набор унитарных операторов для построения групп Клиффорда и соответствующий формализм стабилизатора. Здесь мы вводим однокубитный

Оператор Адамара \hat{U}_{+2} и псевдоадамаровы операторы \hat{U}_{-2} , \hat{U}_{\pm} 1и \hat{U}_{\pm} 3,повиноваться отношения $\hat{U}_{\pm 1}$ "=" $\hat{U}_{\pm 2}$ "=" $\hat{U}_{\pm 2}$ 2"=" $\hat{\sigma}_{0}$. Они унитарны и эрмитовы, и определяются

$$\hat{U}_{\sharp}^{"} = \frac{\hat{\sigma}_{2}^{+} \hat{\sigma}_{1}^{+}}{2} = \frac{1}{2} \frac{$$

Их можно использовать для построения унитарных преобразований $\hat{\sigma_s} \leftrightarrow \pm \hat{\sigma_{\!\!\!/}} \pi$ и $\hat{\sigma_s} \rightarrow -\hat{\sigma_s} (g''=1,2,3)$:

$$\hat{U}_{tt}\hat{\sigma}\hat{U}_{tt}^{tt} = \pm \hat{\sigma}_{L}^{2} \times, \qquad \hat{U}_{tt}\hat{\sigma}_{\kappa}\hat{U}_{\kappa}^{tt} = -\hat{\sigma}_{\kappa}, \qquad \text{$96'=2.4$} \times 6' = \kappa, \text{ $9,2.3$}.$$

или, более подробно,

$$\hat{U}_{\pm}\hat{\sigma}\hat{L}\hat{U}_{\pm}^{+} = \pm\hat{\sigma}\hat{L}_{3}, \quad \hat{U}_{\pm}^{\dagger}\hat{\sigma}\hat{L}_{1}^{\pm} = \pm\hat{\sigma}\hat{L}_{2}, \quad \hat{U}_{\pm}\hat{\sigma}\hat{L}_{1}^{\pm} = -\hat{\sigma}\hat{L}_{1}, \quad \hat{U}_{\pm}\hat{\sigma}\hat{L}_{2}^{\pm} = \pm\hat{\sigma}\hat{L}_{2}, \quad \hat{U}_{\pm}\hat{\sigma}\hat{L}_{2}^{\pm} = -\hat{\sigma}\hat{L}_{2}, \quad \hat{U}_{\pm}\hat{\sigma}\hat{L}_{2}^{\pm} = -\hat{\sigma}\hat{L}_{2}, \quad \hat{U}_{\pm}\hat{\sigma}\hat{L}_{2}^{\pm} = -\hat{\sigma}\hat{L}_{2}, \quad \hat{U}_{\pm}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm} = -\hat{L}_{2}^{\pm}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm}\hat{L}_{2}^{\pm} = \pm\hat{L}_{2}\hat{L}_{2}^{\pm}$$

Далее для единообразия обозначим $\hat{\mathcal{O}}$ ік $\hat{\mathcal{U}}$ і. Так, например, мы можем выбрать полный набор генераторов для $\mathcal{C}(\mathcal{U}AC_1)$ в виде ($\hat{\mathcal{U}}_{\mathcal{S}} = \hat{\mathcal{U}}_{\mathcal{S}}$ — $\mathcal{S}_{\mathcal{S}}$ ="1,2,3)

$$\{\hat{U}_{0}, \hat{V}_{1}, \hat{U}_{2}, \hat{U}_{3}\}.$$

В общем случае $\Pi(\mathit{ЧАC}_H)$, аполный набор генераторов для группы $C(\mathit{ЧAC}_H)$ составляют операторы вида

$$\{ \hat{\mathcal{U}}_{\mathfrak{H}_{1}...\mathfrak{H}_{H}} = \hat{\mathcal{U}}_{\mathfrak{H}_{1}} \otimes \cdots \otimes \hat{\mathcal{U}}_{\mathfrak{H}_{H}} + \hat{\mathcal{H}}_{1,...,\mathfrak{H}_{H}} \in \{0,1,2,3\}$$