⑩日本国特許庁(JP)

の実用新案出題公告

@寒用新案公報(Y2)

平2-30764

Sint, CI. 4 G 01 N

識別記号.

庁内整理番号

经经公告 平成2年(1990)8月20日

3 2 1 3 4 1

7363-2G 7363 — 2 G 7363 — 2 G

G 01 N 27/30 353 (全5頁)

酵素電極瀬定部 の考案の名称

> 御実 魔 昭62-15876

昭63-124658 多公

金出 昭62(1987) 2月5日 ❸昭63(1988) 8月15日

ͷ

昭

兵庫県尼崎市常光寺4丁目3番1号 神崎製紙株式会社神 崎工場内

(2)考 林

造

兵庫県尼崎市常光寺4丁目3番1号 神崎製紙株式会社神 給工場內

人 神崎製紙株式会社 他出 11

東京都千代田区神田小川町3丁目7番地

辮 砂代 理 人 弁理士 莲 見 康 能 知 審査官

早期寄查对象出題

昭60-244853 (JP, A) **多参考文献** 特開

昭62-24140 (JP, A) 特開

昭54-59393 (JP, U) 実関

図実用新薬登録請求の範囲

- (1) 作用極1、対極2、固定化酵素膜6、フロー セル18を含むフロー測定用酵素電極測定部1 3において、固定化酵素膜6が作用機1上に形 成されており、且つ該作用極1が絶縁性ねじ1 5 7に密封固定されており、該絶縁性ねじ17は 対様2とは独立してフローセル 18に対し着脱 可能に装着されていることを特徴とするフロー 測定用酵素電攝測定部13。
- (2) 対極2が絶縁性ねじに密封固定されており、10 対版2を国定した前記絶縁性ねじは作用極1と は独立してフローセル18に対し着脱可能に装 着されていることを特徴とする請求の範囲第1 項記載のフロー測定用酵素電極測定部13。
- されていることを特徴とする請求の範囲第1項 記載のフロー側定用酵素電極制定部 13。
- (4) フローセル 1 8 の測定室 8 を配管 7 内径と同 じ径の円柱状に構成した請求の範囲第1項記載 のフロー脚定用酵素電優測定部13。
- (5) フローセル18の測定室内壁23を導電性材

料で構成し対極2としての機能を持たせたこと を特徴とする請求の範囲第1項記載のフロー側 定用酵素電極測定部13。

考案の詳細な説明

(産業上の利用分野)

本考案は、試料中に含まれる目的物質を測定す る酵素電極を利用した測定装置に関し、特に改良 されたフロー測定用酵素電極測定部に関するもの である。

(従来の技術)

現在、生体物質や食品等の試料に含まれる物質 の濃度を酵素電極を利用して測定する各種装置が 開発されており、その方式には、静止した試料液 の測定を行うパッチ測定方式と緩衝波等を流しな (3) フローセル18には配管1が着脱可能に装着 15 がら次々に試料液を注入して測定を行うフロー制 定方式が知られている。フロー測定方式は多数の 試料液を連続的に測定出来るため、その迅速性に おいて優れているが、フローセルを除いた酵素電 極自体(作用極、対極、固定化酵素膜及びこれら 20 の支持部を含む部分)の構成はパッチ測定方式で 用いられるものと同じであり、固定化酵素膜の着

脱操作等の取扱が煩雑なままである。

以下に第6図に従って、従来のフロー測定用酵 紫電極測定部を説明する。酵素電極の作用極1と リング状の対極2は電極支持部3に固定され、両 電極は、膜支持台4にOリング5で取り付けられ 5 た固定化酵素膜 8 と接する構造になつている。測 定目的物質を含む試料はマイクロシリンジ(図示 されていない) により緩衝液中に注入され、試料 を含む級衡液は配管了を通り矢印のように流れ、 いる。固定化酵素膜6はグルコースの測定におい てはグルコースオキシダーゼ固定化膜を、またエ タノール制定においてはアルコールオキシダーゼ 固定化膜を用いる等、試料中の測定目的物質によ は測定後に冷蔵保存するため、その都度取り外す 必要があり、その際膜を傷付け易いという欠点が あった。

(自的)

解決したフロー測定用酵素電極測定部を提供する ことを目的とする。

(構成)

本考案は、作用極 1、対極 2、固定化酵素膜 8、フローセル18を含むフロー測定用酵素電腦 25 測定部13において、固定化酵素膜8が作用級1 上に形成されており、且つ該作用極1が絶縁性ね じ17に密封固定されており、該絶縁性ねじ17 は対極2とは独立してフローセル18に対し着脱 定用酵素電極測定部 1 3 である。尚、酵素電極と は、作用極、対極、固定化酵素膜及びこれらの支 特部を含み、フロー制定用酵素電極測定部とはさ らにフローセルを含む。フローセルとは作用低、 対極等の電極が直接あるいは固定化酵素膜を介し 35 て試料液に接する部位、即ち測定室及びその部位 を形成する容器である。

(突無例)

第1図は本考案の一実施例を示したものであ る。銀៓摘夜リザーパー9に蓄えられた緩衝放10 が、定量ポンプ11によって試料の注入口12及 び配管 7、更にフロー制定用酵素電極測定部 1 8 を経て供液剤14へ送波される。酵素電極はポテ ンシオスタツト15に接続されており、その電流

値を測定する。

第2図は、第1図の実施例におけるフロー測定 用酵素電極測定部 13を詳細に説明したものであ る。試料中の測定目的物質はフローセルの測定室 8で固定化酵素膜6に接し、そこで発生した過酸 化水素が作用極しで酸化される際に生ずる低流値 より測定目的物質の定量を行う。作用極1は、白 金、金、グラフアイト等の導電性材料に固定化酵 素膜6を直接形成したものであり、絶縁性被費1 御定室8で固定化酵素膜6に接するようになつて 10 6におおわれ、着脱容易な絶縁性ねじ17に密封 固定され、更にフローセル18の電極ねじ込み穴 19に固定されている。対極2は固定化酵素膜 8 を有さない導電性材料を同様に取り付けたもので ある。固定化酵素膜8は例えば、導電性材料上に り適宜交換する必要があり、また固定化酵素膜 6 15 アルブミンのグルタールアルデヒドによる架橋層 を形成し、更に酵素のグルタールアルデヒドによ る架構層を形成して構成され、酵素としてはグル コースオキシダーゼ、アルコールオキシダーゼ等 の過酸化水素形成オキシーダーゼを用いる。電極 本考案は、頃雄な作業を要せず、上記の問題を 20 の絶縁性被覆16としてはテフロン(登録商標 名)、塩化ビニルその他の高分子材質を用いるこ とができる。導入用の配管1及び排出用の配管 は、ねじ式接続具20によりフローセル18に接 続される。

> 第2図の例では作用極1、対極2、配管7がそ れぞれ独立して着脱できるため、酵素電極測定都 13の継ぎ足しや、対極2の表面の清浄化処理が 容易に行える利点がある。

本考案において作用極は、絶縁性ねじに固定さ 可能に装着されていることを特徴とするフロー側 30 れる。そしてこのねじは固定化酵素膜が測定室内 に接するように着脱可能にフローセルのねじ穴に 取りつけられる。またフローセルと配管の接続方 式は第2回に示すフランジ接続方式の他、フレア 一接続方式、フエラル接続方式等が適用できる。

> 本考案においては作用極が他の電極(対極や参 **照極)と独立して着脱出来るため、作用極ごと取** り外して固定化酵素膜の冷蔵保存が出来、測定対 象の変更に際しても別の酵素が固定化された作用 極に容易に交換可能で、固定化酵素膜の交換操作 40 において膜に傷を付けるということはない。

第8図より明らかなように従来の酵素電極では 作用極 1 がリング状の対極 2 と一体になつてお り、対極2が固定化酵素膜6を介して試料液と十 分な接触面積を得るため、測定室8の巾を配管7

の内径より大きく構成している。このため測定室 8内で乱流が起こり、試料が緩衝液に拡散希釈さ れ測定の精度を損なう欠点があつた。しかし本考 案においては第2回、第3回に示すように作用極 1と対極2が一体に構成されていないため、フロ 5 ーセル18の測定室8を配管7と同じ内径の円柱 状に構成でき、試料の拡散希釈を防ぐことができ る。従つて複数のフローセルを継いでも各電流値 の測定ビークが徐々に広がらず、測定の精度を損 なう欠点がない。第3図は、2つの目的物質を制 定する場合の実施例でありグルコース測定用酵素 電極測定部21とエタノール測定用酵素電極測定 部22を接続し、試料中に含まれる2物質の濃度 測定を同時に行うことができる。 エタノールの検 出電流ピークの半顧幅はグルコース測定用酵素電 15 り、第4図はフローセルの測定室内壁部を導電性 極測定部21を取りつけない場合と同じであっ た。・

また第4図はフローセルの測定室内壁部23を 蒋亀性材料で構成し、対極とした実施例であり、 面積が広いため、対極の充分な電子供給能が得ら れる利点がある。

更に第5図の様に参照極24を送液系中に挿入 することも可能である。

(効果)

本考案においては作用極が単独で着脱出来るた め、制定対象の変更操作が容易に行うことがで き、固定化酵素膜の取り外しで膜に傷を付けると いうこともない。またフローセルの測定室を配管 内径と同じ内径の円柱状に構成できるため、フロ 20

ーセル内で乱流が起こり試料が緩衝液に拡散希釈 されることがなく、彼数のフローセルを継いで測 定しても各検出電流のピークが広がらないため測 定格度が高い。

更に固定化酵素膜が直接作用極上に形成されて いるため少量の酵素で制定ができる利点がある。 図面の簡単な説明

第6図は従来の酵素電極測定部の構造を示す断 面図である。第1図は本考案にかかる酵素電極制 10 定部の一実施例を用いた測定装置を示し、第2図 はその酵素電極測定部の断面図である。第3図~ 第5回は本考案の実施例を示すもので、第3回は フローセルの測定室を配管内径と同じ径の円柱状 に構成したフローセルを2つ継いだ実施例であ 材料で構成し、対極として使用するものであり、 第5図は参照極を加えた実施例を示す。

1 ……作用極、2 ……対極、3 ……電極支持 部、4……膜支持台、5……Oリング、6……固 かかる態様では対極と試料を含む緩衝液との接触 20 定化酵素膜、7……配管、8……測定室、9…… 緩衝液リザーバー、10……緩衝液、11……定 量ポンプ、12……注入口、13…… 酵素電擬測 定部、14……排液溶、15……ポテンシオスタ ツト、16……絶縁性被覆、17……絶縁性ね 25 じ、18……フローセル、19……電極ねじ込み 穴、20……ねじ式接続具、21……グルコース 測定用酵素電極測定部、22……エタノール測定 用酵素電極測定部、23……測定室内壁部、24 ……參照極。

- 201 -

(4)

建公 平 2-30764

(5)

奥公 平 2-30704

