Université Sultan Moulay Slimane Faculté des Sciences et Techniques Département : Génie Electrique

12 juin 2024

Examen Electrotechnique GE-GM /S4 2h

Exercice 1

Une charge triphasée consomme, sur un système triphasé 230V/400 V, 50Hz, une puissance de 25 kW avec un facteur de puissance de 0,7 AR.

- 1) Calculer la puissance réactive Q consommée par l'atelier.
- 2) Calculer la valeur des capacités C, câblées en étoile, permettant de relever le facteur de puissance à la valeur 0,92 AR.
- 3) Calculer la valeur des capacités C', câblées en triangle, permettant de relever le facteur de puissance à la valeur 0,92 AR.
- 4) Le facteur de puissance ayant dans les deux cas la même valeur, quelle solution préférer ?

Exercice 2

On considère le circuit magnétique de la figure.

Hypothèses:

- $\mu_0 = 4\pi 10^{-7} \text{ (SI)}$
- $\mu_4 = 1600$
- $\mu_r = 1600$
- $S_1 = 3 \text{ cm}^2$; $l_1 = 30 \text{ cm}$
- $S_2 = 3 \text{ cm}^2$; $l_2 = 30 \text{ cm}$
- $S_3 = 2 \text{ cm}^2$; $l_3 = 10 \text{ cm}$
- Bobine °1: N₁ = 240 spires
- Bobine °2: N₂ = 50 spires

Toutes les lignes d'induction se referment uniquement dans le circuit magnétique

(Les fuites sont négligées).

Dans tout l'exercice, le courant dans le bobinage °2 est nul (i₂=0).

ELECTROTECHNIQUE GE-GM

1. Calculer les réluctances magnétiques \Re_1 , \Re_2 et \Re_3 correspondant respectivement aux tronçons l_1 , l_2 et l_3 .

- 2. Ecrire la relation liant les φ_1 , φ_2 et φ_3 .
- 3. En utilisant le principe de diviseur de courant, exprimer le flux φ_1 en fonction de φ_3 , \Re_2 et \Re_3 .
- 4. Exprimer Ni₁ en fonction de φ_1 , \Re_1 , \Re_2 et \Re_3 .
- 5. Calculer i_1 dans les N_1 spires pour avoir $B_3 = 0.8$ T dans la colonne centrale.
- 6. Calculer l'inductance propre de la bobine de N₁ spires.
- 7. Calculer l'inductance mutuelle entre les bobines °1 et °2.

Exercice 3

Pour alimenter une charge monophasée, on utilise un transformateur monophasé sur lequel on a réalisé les essais suivants :

- Essai à vide : $U_{10} = 220 \text{ V}$; $U_{20} = 130 \text{ V}$; 50 Hz
- Essai en court-circuit : $U_{1CC} = 38 \text{ V}$; $I_{1cc} = 0.52 \text{ A}$; $P_{1CC} = 10 \text{ W}$.

On suppose l'hypothèse de Kapp vérifiée.

- 1. Déduire des essais précédents
 - 1.1 le rapport de transformation
 - 1.2 les éléments du schéma équivalent du transformateur ramené au secondaire $r_{\rm t2}$ et $x_{\rm t2}$.
- 2. Calculer la tension U_1 à appliquer au primaire du transformateur pour que le moteur fonctionne en charge : $U_2 = 115 \text{ V}$; $I_2 = 0.88 \text{ A}$; $P_2 = 100 \text{ W}$;