Relativity The Special and General Theory

일반 상대성 이론은 아인슈타인이 **1916**년에 발표한 이론으로, **중력**을 설명하는 이론입니다. 특수 상대성 이론이 중력과 가속도가 없는 상황에서만 적용된다는 한계를 극복하기 위해, 아인슈타인은 중력을 **시공간의 휘어짐**으로 해석하였습니다.

핵심 개념:

1. 등가 원리 (Principle of Equivalence):

- 가속도와 중력은 본질적으로 구별할 수 없다는 원리입니다. 즉, 가속도에 의해 발생하는 힘과 중력에 의한 힘은 동일하게 작용합니다.
- 예를 들어, 우주선 내부에서 사람이 가속도에 의해 바닥에 눌리게 되는 현상은 중력에 의한 작용과 동일하게 느껴집니다.

시공간의 휘어짐 (Curvature of Spacetime):

- 중력은 물체가 시공간을 휘게 만드는 효과로 설명됩니다. 즉, 질량을 가진 물체가 시공간을 왜곡시키고, 다른 물체는 이 왜곡된 시공간을 따라 움직이게 됩니다.
- 이는 뉴턴의 고전적인 "힘으로서의 중력"과는 완전히 다른 관점입니다. 물체는 곧장 직진하려 하지만, 시공간이 휘어져 있기 때문에 곡선 경로를 따라가게 됩니다.

아인슈타인 방정식:

• 일반 상대성 이론은 아인슈타인 방정식으로 표현됩니다. 이 방정식은 질량과 에너지가 시공간의 휘어짐을 어떻게 만드는지를 설명합니다:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

• 여기서 $G_{\mu\nu}$ 는 시공간의 곡률(휘어짐)을 나타내는 아인슈타인 텐서이고, $T_{\mu\nu}$ 는 에너지-운동량 텐서입니다.

주요 결과:

1. 중력에 의한 시간 지연:

- 중력이 강한 곳에서는 시간이 더 느리게 흐릅니다. 예를 들어, 지구 표면에서는 시간의 흐름이 고도 높은 곳보다 느립니다. 이는 GPS 위성의 시간 보정에서 매우 중요한 요소입니다.
- 이 현상은 중력 시간 지연이라고 불리며, 아인슈타인 방정식으로 설명됩니다.

1. 중력 렌즈 효과 (Gravitational Lensing):

• 강한 중력장은 빛의 경로를 휘게 만듭니다. 이는 마치 렌즈가 빛을 굴절시키는 것과 같은 효과를 나타내며, 우리가 멀리 있는 별이나 은하를 관찰할 때 빛이 휘어져 보이는 현상을 설명할 수 있습니다.

1. 블랙홀:

• 매우 큰 질량을 가진 물체가 시공간을 극도로 휘게 만들어, 그 안으로 빠져나올 수 없는 **블랙홀**이 형성됩니다. 이 블랙홀의 사건의 지평선(event horizon)은 그 경계를 넘은 물체나 빛이 빠져나올 수 없는 경계를 나타냅니다.

1. 우주의 팽창:

• 아인슈타인의 일반 상대성 이론은 우주의 팽창을 설명하는 데에도 중요한 역할을 합니다. 우주는 시공간 자체가 팽창하는 것이며, 이는 **빅뱅 이론**과 밀접한 관련이 있습니다.

일반 상대성 이론의 적용:

일반 상대성 이론은 **중력과 가속도**가 있는 상황을 설명합니다. 대규모 천체의 운동, 중력파, 블랙홀, 우주의 팽창 등에서 이 이론이 중요한 역할을 합니다.

1. 중력 렌즈 효과 (Gravitational Lensing)

중력 렌즈 효과는 질량이 큰 천체(예: 은하, 블랙홀)가 시공간을 휘게 하여 빛의 경로를 굴절시키는 현상입니다.

```
% Gravitational Lensing Visualization in MATLAB
% Define grid for the background stars (light sources)
[x, y] = meshgrid(linspace(-1, 1, 500), linspace(-1, 1, 500));
% Gravitational lens: a large mass at the center
% Define the mass of the lens (approximated as a point mass)
M = 1; % Normalized mass
R = sqrt(x.^2 + y.^2); % Distance from the center
% Define deflection caused by the gravitational lens
% Deflection angle is inversely proportional to the distance from the mass
deflection x = -x ./ R.^2;
deflection_y = -y ./ R.^2;
% Prevent division by zero at the center
deflection_x(R == 0) = 0;
deflection_y(R == 0) = 0;
% Apply deflection to the grid
lens x = x + deflection x * M;
lens y = y + deflection y * M;
% Plot the original and lensed grid
figure;
subplot(1, 2, 1);
imagesc(x(1, :), y(:, 1), R); % Original star field
title('Original Light Source (Stars)');
axis equal;
colormap('hot');
```

```
colorbar;
subplot(1, 2, 2);
imagesc(lens_x(1, :), lens_y(:, 1), R); % Lensed star field
title('Lensed Light Source (Gravitational Lensing)');
axis equal;
colormap('hot');
colorbar;
```


- 중심에 큰 질량을 가진 은하가 있다고 가정하고, 이 은하의 중력에 의해 배경에서 오는 빛이 휘어지는 효과를 시각화합니다.
- 실제로 이런 현상은 빛의 경로를 구부리며, 배경에 있는 천체(예: 은하)가 여러 개의 이미지로 보이거나, 빛이 고리 모양으로 휘어져 보이는 현상이 발생할 수 있습니다. 이를 **아인슈타인 링**이라고도 합니다.

```
% Gravitational Lensing 3D Visualization in MATLAB

% Define grid for the background stars (light sources)
[x, y] = meshgrid(linspace(-10, 10, 500), linspace(-10, 10, 500));

% Gravitational lens: a large mass at the center

% Define the mass of the lens (approximated as a point mass)

M = 10;  % Normalized mass (larger value means stronger gravitational effect)

R = sqrt(x.^2 + y.^2);  % Distance from the center
```

```
% Define deflection caused by the gravitational lens
% Deflection angle is inversely proportional to the distance from the mass
deflection_x = -M * x ./ R.^2;
deflection_y = -M * y ./ R.^2;
% Prevent division by zero at the center
deflection x(R == 0) = 0;
deflection_y(R == 0) = 0;
% Apply deflection to the grid
lens_x = x + deflection_x;
lens_y = y + deflection_y;
% Create a 3D plot of the deflected light paths (z = deflection)
figure;
mesh(x, y, sqrt(deflection x.^2 + deflection y.^2));
xlabel('X-coordinate (Light Source)');
ylabel('Y-coordinate (Light Source)');
zlabel('Deflection Magnitude');
title('3D Visualization of Gravitational Lensing');
colormap('turbo');
shading interp;
colorbar;
grid on;
```


- 좌표계 설정: 중력 렌즈 효과를 시각화하기 위해 x와 y좌표계에서 은하와 배경 별(광원)의 위치를 설정합니다.
- 중력 렌즈 질량 설정: 은하의 질량을 M으로 설정합니다. 큰 질량일수록 중력 렌즈 효과가 강해집니다.
- 휘어짐 계산: 빛이 중심 질량에 의해 어떻게 굴절되는지 계산합니다. 빛의 경로가 중심에서 멀어질수록 굴절 정도가 작아지며, 중력 렌즈 효과는 $1/R^2$ 에 비례하여 발생합니다.

2. 시공간의 휘어짐 (Spacetime Curvature)

시공간의 휘어짐 (Spacetime Curvature)은 아인슈타인의 일반 상대성 이론에서 중력이 시공간을 휘게 만들며, 물체가 그 곡률에 따라 운동하게 된다는 개념입니다. 이를 시각화하기 위해, 큰 질량을 가진 물체 주변에서 시공간이 어떻게 휘어지는지 나타낼 수 있습니다. 예를 들어, 블랙홀 주변의 시공간이 휘어지는 모습을 그래프로 표현할 수 있습니다.

```
% Spacetime Curvature Visualization in MATLAB
% Define grid for spacetime (representing a 2D slice of spacetime)
[x, y] = meshgrid(linspace(-10, 10, 100), linspace(-10, 10, 100));
% Define mass that creates curvature in spacetime
M = 10; % Mass value (larger values create more curvature)
% Calculate the gravitational potential (simplified model)
R = sqrt(x.^2 + y.^2); % Distance from the center
curvature = M ./ (R + 1e-5); % Simplified curvature (avoid division by zero)
% Plot the spacetime curvature as a surface
figure;
surf(x, y, -curvature, 'EdgeColor', 'none');
xlabel('Space (x)');
ylabel('Space (y)');
zlabel('Curvature');
title('Spacetime Curvature due to Mass');
colormap('winter');
shading interp;
colorbar;
```


- 큰 질량을 가진 물체(예: 태양, 블랙홀)가 시공간을 휘게 만드는 현상을 시각화할 수 있습니다. 이 물체 주변에서 시공간은 더 크게 휘어지며, 휘어짐은 질량에 비례하게 커집니다.
- 물체가 있는 중심에 가까울수록 시공간의 휘어짐이 더 크며, 먼 거리에서는 휘어짐이 작아집니다.

```
% Spacetime Curvature Visualization in MATLAB

% Define grid for spacetime (representing a 2D slice of spacetime)
[x, y] = meshgrid(linspace(-10, 10, 500), linspace(-10, 10, 500));

% Define mass that creates curvature in spacetime (e.g., a black hole or star)
M = 10; % Normalized mass value (the larger the value, the stronger the curvature)

% Calculate the radial distance from the center (r = sqrt(x^2 + y^2))
R = sqrt(x.^2 + y.^2);

% Calculate the gravitational potential or curvature effect (simplified model)
% The curvature is inversely proportional to the distance from the mass curvature = M ./ (R + 1e-5); % Add small value to avoid division by zero at the center

% Plot the spacetime curvature as a 3D surface figure;
surf(x, y, -curvature, 'EdgeColor', 'none');
xlabel('Space (x)');
```

```
ylabel('Space (y)');
zlabel('Spacetime Curvature');
title('Spacetime Curvature due to Mass (Black Hole Example)');
colormap('jet');
shading interp;
colorbar;
axis equal;
grid on;
```


좌표계 설정:

• 2D 평면에서 시공간의 슬라이스를 나타내기 위해 x와 y 좌표계를 정의합니다.

Space (y)

• 이 좌표계는 시공간의 평면을 나타내며, 중심에 큰 질량을 가진 물체(예: 블랙홀)가 있다고 가정합니다.

중심 질량 설정:

- 중심에 있는 물체의 질량을 M으로 설정합니다. 큰 질량일수록 시공간의 휘어짐이 더 크게 발생합니다.
- M 값은 질량의 크기를 나타냅니다. 예를 들어, 블랙홀이나 별과 같은 천체를 나타낼 수 있습니다.

시공간의 휘어짐 계산:

- 중심 질량에서의 거리 R에 따른 시공간의 휘어짐을 계산합니다. 휘어짐은 거리 R에 반비례하며, 중심에 가까울수록 휘어짐이 더 큽니다.
- 휘어짐을 나타내는 식은 curvature $=\frac{M}{R}$ 로 단순화된 모델입니다.

결과 시각화:

- surf 함수를 사용해 시공간의 휘어짐을 3D 곡면으로 시각화합니다.
- X축과 Y축은 공간 좌표를 나타내고, Z축은 시공간의 휘어짐 정도를 나타냅니다.
- colormap('jet')을 사용하여 시공간의 휘어짐을 색상으로 표현하고, shading interp로 곡면을 부드럽 게 처리하여 매끄러운 그래프를 그립니다.

설명:

- 블랙홀 주변의 시공간을 시각화한 예시입니다. 중심에 큰 질량을 가진 블랙홀이 위치하고, 이 블랙홀 주변의 시공간은 크게 휘어집니다.
- 그래프에서 블랙홀 중심에 가까울수록 Z축 값이 더 크게 변하여, 시공간의 휘어짐이 더 강해지는 것을 볼수 있습니다.
- 반대로 블랙홀에서 멀어질수록 Z축 값이 작아져 시공간이 평평해지는 것을 확인할 수 있습니다.
- 이 시각화는 블랙홀이나 별 같은 큰 질량체가 시공간을 어떻게 휘게 만드는지를 단순한 형태로 나타낸 것입니다.
- 실제로 일반 상대성 이론에서는 시공간의 휘어짐을 설명하기 위해 **아인슈타인 방정식**을 사용합니다. 이 방정식은 질량과 에너지가 시공간을 어떻게 휘게 만드는지를 설명합니다.
- 시공간의 휘어짐은 천체의 운동과 빛의 경로에 영향을 주며, 중력 렌즈 효과, 블랙홀 근처의 시간 지연 등다양한 현상에서 나타납니다.

3. 슈바르츠실트 블랙홀의 이벤트 지평선 (Schwarzschild Black Hole Event Horizon)

슈바르츠실트 블랙홀의 이벤트 지평선(Schwarzschild Black Hole Event Horizon)은 일반 상대성 이론에서 블랙홀의 경계로, 이 경계를 넘은 빛이나 물질은 블랙홀의 중력장에서 빠져나올 수 없습니다. 이벤트 지평선은 블랙홀의 중력에 의해 형성된 경계이며, 블랙홀의 질량에 따라 달라집니다.

슈바르츠실트 반지름 (Schwarzschild Radius)

슈바르츠실트 반지름 R_s 는 블랙홀의 질량에 따라 결정되는 반지름으로, 이는 다음과 같이 계산됩니다:

$$R_s = \frac{2GM}{c^2}$$

여기서:

- G는 중력 상수 6.67430 × 10^{-11} m³/kg/s²,
- *M*은 블랙홀의 질량.
- c는 빛의 속도 (3×10⁸ m/s),
- Rs는 슈바르츠실트 반지름입니다.

% Schwarzschild Black Hole Event Horizon Visualization

% Define constants

G = 6.67430e-11; % Gravitational constant (m³ kg⁻¹ s⁻²)

M = 1.989e30; % Mass of black hole (e.g., mass of the sun in kg)

슈바르츠실트 반지름을 기준으로 블랙홀의 중력장이 어떻게 형성되고, 이벤트 지평선 내에서 어떤 물질이나 빛도 빠져나올 수 없다는 것을 시각화할 수 있습니다.

```
% Schwarzschild Black Hole Event Horizon Visualization in MATLAB

% Constants
G = 6.67430e-11;  % Gravitational constant (m^3 kg^-1 s^-2)
M = 1.989e30;  % Mass of the black hole (e.g., mass of the sun in kg)
c = 3e8;  % Speed of light (m/s)
```

```
% Calculate Schwarzschild radius
Rs = 2 * G * M / c^2; % Schwarzschild radius (event horizon)
% Define grid for space coordinates (2D slice)
[x, y] = meshgrid(linspace(-10 * Rs, 10 * Rs, 500), linspace(-10 * Rs, 10 * Rs,
500));
% Calculate radial distance from the center
R = sqrt(x.^2 + y.^2);
% Event horizon: curvature becomes infinite as R approaches Rs
% Simplified curvature model (1/R term for distance, set max curvature at event
horizon)
curvature = Rs ./ (R + 1e-3); % Add a small value to avoid division by zero at the
center
% Limit the curvature inside the event horizon
curvature(R <= Rs) = max(curvature(:));</pre>
% Create a 3D surface plot of the spacetime curvature
figure;
surf(x / Rs, y / Rs, curvature, 'EdgeColor', 'none');
xlabel('X (in units of Schwarzschild radius Rs)');
ylabel('Y (in units of Schwarzschild radius Rs)');
zlabel('Spacetime Curvature');
title('Schwarzschild Black Hole Event Horizon');
colormap('jet');
shading interp;
colorbar;
grid on;
% Highlight the event horizon as a circle
hold on;
theta = linspace(0, 2*pi, 100);
plot3(Rs/Rs * cos(theta), Rs/Rs * sin(theta), max(curvature(:)) *
ones(size(theta)), 'r', 'LineWidth', 2);
hold off;
```


Y (in units of Schwarzschild radius Rs)

상수 정의:

- G: 중력 상수, M: 블랙홀의 질량 (예: 태양 질량), c: 빛의 속도.
- 블랙홀의 질량을 태양 질량으로 가정하여 이벤트 지평선을 계산합니다.
- 슈바르츠실트 반지름 계산:
- 블랙홀의 질량에 따라 슈바르츠실트 반지름 R_s 를 계산합니다. 이 반지름이 이벤트 지평선을 정의하는 경계입니다.
- 2D 공간 좌표계 설정:
- x와 y 좌표계를 설정하여 블랙홀 주변의 공간을 표현합니다. 공간의 크기는 이벤트 지평선 R_s 의 **10**배로 설정하여, 블랙홀 주변의 시공간 휘어짐을 넓은 범위에서 볼 수 있게 합니다.

곡률 계산:

- 슈바르츠실트 반지름 R_s 에 따라 곡률을 계산합니다. 중심에 가까울수록 곡률이 더 커지며, R_s 내부에서는 곡률이 최대값으로 고정됩니다.
- 이 값은 시공간이 블랙홀의 이벤트 지평선 내부에서 극도로 휘어진 상태를 나타냅니다.

설명:

- 블랙홀의 질량이 태양 질량 정도일 때, 이벤트 지평선의 반지름은 $R_s \approx 2.95 \, \mathrm{km}$ 입니다.
- 이벤트 지평선 바깥에서는 시공간이 휘어지지만, 빛이나 물질은 빠져나올 수 있습니다.

- 이벤트 지평선 안쪽에서는 빛조차도 빠져나올 수 없으며, 시공간의 휘어짐은 극도로 커집니다.
- 이 시각화는 슈바르츠실트 블랙홀 주변의 시공간이 어떻게 휘어지는지를 보여주며, 이벤트 지평선이 빨간 원으로 표시되어 경계를 나타냅니다.
- 슈바르츠실트 반지름은 블랙홀의 중력장에서 빛이 빠져나올 수 없는 경계를 정의합니다. 이 경계 안쪽에 서는 아무것도 탈출할 수 없으며, 시공간은 무한히 휘어집니다.
- 이 시각화는 블랙홀의 이벤트 지평선과 주변의 시공간 곡률을 직관적으로 이해하는 데 도움을 줍니다.
- 실제 블랙홀은 시공간을 더 복잡하게 휘어지게 만들며, 중력파나 강한 중력 렌즈 효과를 발생시킬 수 있습니다.