Sem vložte zadání Vaší práce.

Bakalářská práce

Věnná města českých královen -API pro předávání grafických modelů

 $Martin\ \check{C}apek$

Katedra softewarového inženýrství Vedoucí práce: Jiří Chludil

Poděkování Děkuji především své rodině za podporu, svému vedoucímu za časté konzultace a za směrování mě k práci.

Prohlášení

...

Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen "Dílo"), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

České vysoké učení technické v Praze Fakulta informačních technologií

© 2019 Martin Čapek. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí a nad rámec oprávnění uvedených v Prohlášení na předchozí straně, je nezbytný souhlas autora.

Odkaz na tuto práci

Čapek, Martin. Věnná města českých královen - API pro předávání grafických modelů. Bakalářská práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2019.

Abstrakt

Práce je věnována analýze funkčním a nefunkčním požadavkům editoru Virtuálního historického průvodce, který má zjednodušit práci odborníkům (zvláště historikům).

Hlavním přínosem této práce není vytvořit plně funkční REST API, ač je implementován funkční prototyp, ale sestavit obsáhlý manuál, základní kámen činnosti pro následující generace řešitelů projektu.

Klíčová slova Node.js, RestAPI, PostgreSQL, virtuální realita, historické modely budov

Abstract

abstractEN

Keywords Nahraďte seznamem klíčových slov v angličtině oddělených čárkou.

Obsah

U	νοα	1
1	Cíl práce	3
2	Analýza 2.1 Požadavky editoru virtuální reality	5 5
3	Návrh	7
4	Vývojářské prostředí pro OS Linux 4.1 Použité technologie	9 9 10 10
5	Implementace	11
6	Testování	13
Zá	ivěr	15
Li	teratura	17
\mathbf{A}	Seznam použitých zkratek	19
В	Obsah přiloženého CD	21

Seznam obrázků

Úvod

KAPITOLA 1

Cíl práce

Cílem teoretické části práce je analyzovat funkční a nefunkční požadavky editoru virtuální reality. Při analýze se zaměřit na datové úložiště a způsob propagace modelů. Dále provést analýzu nástrojů pro návrh a dokumentaci API a z těchto nástrojů vybrat nejvhodnější a s jeho použitím navrhnout prototyp API, které umožní komunikaci mezi datovým úložištěm a editorem virtuální reality. Dalším cílem práce je popsat vývojové prostředí, které využiji v implementaci. V popisu budou použité technologie, příprava vývojářského prostředí a doporučený způsob verzování zdrojových kódů.

Cílem praktické části práce je implementace a otestování prototypu REST API za použití technologie Node.js a využítím technologie continuous integration.

Analýza

2.1 Požadavky editoru virtuální reality

2.1.1 Funkční

Následující sekce popisuje funkční požadavky editoru virtuální reality. Tedy požadavky, které se vztahují k funkcionalitě na cílovou aplikaci. Tyto požadavky jsem vytvořil společně s pomocí Patrik Křepinský.

• F1

2.1.2 Nefunkční

Tato sekce se zabývá nefunkčními požadavky na REST API. Tedy požadavky, které se zaměřují na nároky cílové aplikace na software a to například z hlediska bezpečnosti, spolehlivosti, či výkonu.

· Rychlost odezvy

Uživatel nesmí na obdržení nebo aktualizování grafického modelu čekat. Je třeba, aby server reagoval rychle.

• Datová nenáročnost při komunikaci

Je třeba minimalizovat množství dat posílané přes API, abychom docílili rychlosti a zbytečně nepřetěžovali spojení s koncovým uživatelem.

• Bezpečnost

Určité koncové body vyžadují oprávnění, jelikož jejich zavoláním se předávají nebo přepisují citlivá data. To se vyřeší tím, že při přihlášení dostane uživatel token, kterým se bude autorizovat u volání citlivých koncových bodů.

Rozšiřitelnost

API musí umožňovat případné rozšíření o další funkcionality. Také musí být řádně zdokumentováno, aby umožnilo hladší průběh rozšiřování.

• Použité technologie

Bylo zadáno, že se bude vyvýjet v technologii Node.js za využití modulu Express.

2.2 Nástroje pro návrh REST API

2.2.1 Swagger

Swagger je sada nástrojů postavená na OpenAPI Specifikaci. Nástroje:

- Swagger editor webový editor umožňující psát OpenAPI Specifikace
- Swagger UI vizualizuje API dokumentaci, kterou generuje z OpenAPI Specifikace
- Swagger Codegen vygeneruje kód na základě OpenAPI Specifikace

OpenAPI Specifikace, dřívěji Swagger Specifikace, je sada pravidel, které sémanticky popisují API. Pravidla mohou být zapsaná nebo vygenerována do souboru formátu YAML, nebo JSON. YAML je více čitelný pro lidi, kteří nejsou zvyklí na závorky. Programátorům může více vyhovovat JSON. OpenAPI Specifikace se skládá z metadat, koncových bodů a schématu.

2.2.2 Apicurio Studio

Apicurio Studio je open-source editor pro OpenAPI specifikaci. Musíte se přihlásit a vaše návrhy REST API se ukládají do vašeho repozitáře na GitHubu, GitLabu nebp Bitbucketu, což se hodí v případě, když na návrhu pracujete spolčně v týmu. V editoru můžete přepínat mezi interaktivní vizualizací návrhu a jeho JSON/YAML definicí.

2.2.3 RAML

RAML je akronym RESTful API Modeling Language.

2.2.4 Restlet

nelibi se mi, je asi RAML based

2.2.5 Apiary

API Blueprint

Kapitola 3

Návrh

 ${\bf Z}$ předešlé analýzy nástrojů pro návrh REST API jsem si vybral Swagger, protože...

TBD Use case diagram

Vývojářské prostředí pro OS Linux

4.1 Použité technologie

4.1.1 Node.js

Node.js je open-source multiplatformní JavaScriptové prostředí postaveno na Chrome V8 JavaScript enginu. Primární účel Node.js je tvorba serverové části webových aplikací, které vychází z paradigmatu "JavaScript everywhere".

Node.js využívá událostmi řízenou architekturu a neblokující I/O operace. Tento návrh optimalizuje výkon a škálovatelnost programů s častými požadavky na I/O operace.

Jádro celého Node.js tvoří smyčka událostí, která běží na jednom vlákně. Ta podporuje desetitisíce souběžných připojení bez nutnosti neustálého přepínání kontextu díky neblokujícímu I/O. Nedochází zde k žádnému zamykání, tudíž nemusíme mít obavy z deadlocku systému.

4.1.2 npm

Node.js využívá správce balíčků npm, jehož pomocí můžeme obecně instalovat i spravovat závislosti a spouštět skripty. Npm se chlubí tím, že je největším balíčkovacím správcem a aktuálně obsahuje skoro 800 000 balíčků. - zdroj http://www.modulecounts.com.

4.1.3 Express

4.1.4 JWT

4.1.5 Implementační jazyk

Pro vývoj byl vybrán jazyk TypeScript, který je kompilovatelný do JavaScriptu. Tento jazyk je vyvýjen firmou Microsoft a jeho hlavní myšlenkou je být nadstavbou JavaScriptu, která přidává statické typování a další funkcionalitu.

4.1.5.1 TSLint

TSLint je nástroj pro statickou analýzu kódu TypeScriptu.

4.1.6 PostgreSQL

Pro datovou vrstvu byla vybrána databáze PostgreSQL.

PostgreSQL je objektově-relační databázový systém pod MIT licencí. Je pověstný svou spolehlivostí a vysokou bezpečností. Na PostgreSQL wiki¹ lze nalézt rozsáhlý seznam dostupného open-source software, sloužícího k administraci a monitoringu PostgreSQL databází. Nejrozšířenější a velmi přehledný je pgAdmin.

4.2 Příprava vývojářského prostředí

4.2.1 Node.js

```
Listing 4.1: Instalace Node.js a npm sudo apt install nodejs --Yes sudo apt install npm --Yes
```

V implementaci je použita verze nodejs 8.10.0 a npm 3.5.2. Vaši verzi si můžete zkontrolovat pomocí následujích příkazů.

```
Listing 4.2: Zkontrolování verze Node.js a npm
nodejs -v
npm -v
```

4.2.2 PostgreSQL

TBD

4.3 Verzování

Tady popíšu doporučený způsob verzování zdrojových kódů.

 $^{^{1} \}mathrm{https://wiki.postgresql.org/wiki/Community}_{G} uide_{t}o_{P} ostgreSQL_{G}UI_{T} ools$

Kapitola $\mathbf{5}$

Implementace

Kapitola **6**

Testování

Závěr

Literatura

PŘÍLOHA **A**

Seznam použitých zkratek

API Application Programming Interface

I/O Input/Output

npm Node.js package manager

IDE Integrated Development Environment

JSON JavaScript Object Notation

 ${\bf CI}$ Continuous Integration

PŘÍLOHA **B**

Obsah přiloženého CD

]	${ t readme.txt}$	stručný popis obsahu CD
	exe	.adresář se spustitelnou formou implementace
	src	
	impl	zdrojové kódy implementace
	thesis	zdrojové kódy implementace zdrojová forma práce ve formátu LAT _E X
		text práce
		text práce ve formátu PDF
	_	text práce ve formátu PS