Pandas Python Tutorial - Learn by Examples

listendata.com/2017/12/python-pandas-tutorial.html

Pandas being one of the most popular package in Python is widely used for data manipulation. It is a very powerful and versatile package which makes data cleaning and wrangling much easier and pleasant.

The Pandas library has a great contribution to the python community and it makes python as one of the top programming language for data science and analytics. It has become first choice of data analysts and scientists for data analysis and manipulation.

Why pandas?

It has many functions which are the essence for data handling. In short, it can perform the following tasks for you -

- 1. Create a structured data set similar to R's data frame and Excel spreadsheet.
- 2. Reading data from various sources such as CSV, TXT, XLSX, SQL database, R etc.
- 3. Selecting particular rows or columns from data set
- 4. Arranging data in ascending or descending order
- 5. Filtering data based on some conditions
- 6. Summarizing data by classification variable
- 7. Reshape data into wide or long format
- 8. Time series analysis
- 9. Merging and concatenating two datasets
- 10. Iterate over the rows of dataset
- 11. Writing or Exporting data in CSV or Excel format

Datasets:

In this tutorial we will use two datasets: 'income' and 'iris'.

1. 'income' data: This data contains the income of various states from 2002 to 2015.

- The dataset contains 51 observations and 16 variables. **Download link**
- 2. **'iris' data**: It comprises of 150 observations with 5 variables. We have 3 species of flowers (50 flowers for each specie) and for all of them the sepal length and width and petal length and width are given. **Download link**

Important pandas functions to remember

The following is a list of common tasks along with pandas functions.

Utility	Functions
Extract Column Names	df.columns
Select first 2 rows	df.iloc[:2]
Select first 2 columns	df.iloc[:,:2]
Select columns by name	df.loc[:,["col1","col2"]]
Select random no. of rows	df.sample(n = 10)
Select fraction of random rows	df.sample(frac = 0.2)
Rename the variables	df.rename()
Selecting a column as index	df.set_index()
Removing rows or columns	df.drop()
Sorting values	df.sort_values()
Grouping variables	df.groupby()
Filtering	df.query()
Finding the missing values	df.isnull()
Dropping the missing values	df.dropna()
Removing the duplicates	df.drop_duplicates()
Creating dummies	pd.get_dummies()
Ranking	df.rank()
Cumulative sum	df.cumsum()
Quantiles	df.quantile()
Selecting numeric variables	df.select_dtypes()
Concatenating two dataframes	pd.concat()
Merging on basis of common variable	pd.merge()

Importing pandas library

You need to import or load the Pandas library first in order to use it. By "Importing a library", it means loading it into the memory and then you can use it. Run the following code to import pandas library:

The "pd" is an alias or abbreviation which will be used as a shortcut to access or call pandas functions. To access the functions from pandas library, you just need to type **pd.function** instead of **pandas.function** every time you need to apply it. **Importing Dataset**

To read or import data from CSV file, you can use **read_csv() function**. In the function, you need to specify the file location of your CSV file.

```
income = pd.read csv("C:\\Users\\Hp\\Python\\Basics\\income.csv")
```

I	ndex	State	Y2002	Y2003	Y2004	Y2005	Y2006	Y2007 \
0	Α	Alabama	1296530	1317711	1118631	1492583	1107408	1440134
1	Α	Alaska	1170302	1960378	1818085	1447852	1861639	1465841
2	Α	Arizona	1742027	1968140	1377583	1782199	1102568	1109382
3	Α	Arkansas	1485531	1994927	1119299	1947979	1669191	1801213
4	C (California	1685349	1675807	1889570	1480280	1735069	1812546
	Y2008	3 Y2009	Y2010	Y2011	Y2012	Y2013	Y2014	Y2015
0	1945229	9 1944173	1237582	1440756	1186741	1852841	1558906	1916661
1	1551826	1436541	1629616	1230866	1512804	1985302	1580394	1979143
2	1752886	5 1554330	1300521	1130709	1907284	1363279	1525866	1647724
3	1188104	1628980	1669295	1928238	1216675	1591896	1360959	1329341
4	1487315	1663809	1624509	1639670	1921845	1156536	1388461	1644607

Get Variable Names

By using income.columns command, you can fetch the names of variables of a data frame.

income.columns[0:2] returns first two column names 'Index', 'State'. In python, indexing starts from 0.

Knowing the Variable types

You can use the **dataFrameName.dtypes** command to extract the information of types of variables stored in the data frame.

income.dtypes

```
object
Index
State
         object
          int64
Y2002
Y2003
          int64
Y2004
          int64
Y2005
          int64
Y2006
          int64
Y2007
          int64
Y2008
          int64
Y2009
          int64
Y2010
          int64
Y2011
          int64
Y2012
          int64
          int64
Y2013
Y2014
          int64
Y2015
          int64
dtype: object
```

Here 'object' means strings or character variables. **int64**' refers to numeric variables (without decimals).

To see the variable type of one variable (let's say "State") instead of all the variables, you can use the command below -

```
income['State'].dtypes
```

It returns **dtype('O').** In this case, 'O' refers to object i.e. type of variable as character. **Changing the data types**

Y2008 is an integer. Suppose we want to convert it to **float** (numeric variable with decimals) we can write:

```
income.Y2008 = income.Y2008.astype(float)
income.dtypes
Index object
```

State object int64 Y2002 Y2003 int64 Y2004 int64 Y2005 int64 Y2006 int64 Y2007 int64 Y2008 float64 Y2009 int64 Y2010 int64 Y2011 int64 int64 Y2012 Y2013 int64 Y2014 int64 Y2015 int64 dtype: object

```
income.shape (51, 16)
```

51 is the number of rows and 16 is the number of columns.

You can also use **shape[0]** to see the number of rows (similar to nrow() in R) and **shape[1]** for number of columns (similar to ncol() in R).

```
income.shape[0] income.shape[1]
```

To view only some of the rows

By default **head()** shows first 5 rows. If we want to see a specific number of rows we can mention it in the parenthesis. Similarly **tail()** function shows last 5 rows by default.

```
income.head()
income.head(2) #shows first 2 rows.
income.tail()
income.tail(2) #shows last 2 rows
```

Alternatively, any of the following commands can be used to fetch first five rows.

```
income[0:5]
income.iloc[0:5]
```

Extract Unique Values

The **unique()** function shows the unique levels or categories in the dataset.

```
income.Index.unique()
array(['A', 'C', 'D', ..., 'U', 'V', 'W'], dtype=object)
```

The **nunique()** shows the number of unique values.

```
income.Index.nunique()
```

It returns 19 as index column contains distinct 19 values.

Generate Cross Tab

pd.crosstab() is used to create a bivariate frequency distribution. Here the bivariate frequency distribution is between **Index** and **State** columns.

```
pd.crosstab(income.Index,income.State)
```

Creating a frequency distribution

income.Index selects the 'Index' column of 'income' dataset and **value_counts()** creates a frequency distribution. By default **ascending = False** i.e. it will show the 'Index' having the maximum frequency on the top.

```
income.Index.value counts(ascending = True)
F
     1
G
     1
     1
     1
     1
     2
D
Т
     2
S
     2
     2
     2
Κ
     3
     4
     8
Name: Index, dtype: int64
```

To draw the samples

income.sample() is used to draw random samples from the dataset containing all the columns. Here n = 5 depicts we need 5 columns and **frac = 0.1** tells that we need 10 percent of the data as my sample.

```
income.sample(n = 5)
income.sample(frac = 0.1)
```

Selecting only a few of the columns

To select only a specific columns we use either loc[] or iloc[] commands. The index or columns to be selected are passed as lists. "Index":"Y2008" denotes the that all the columns from Index to Y2008 are to be selected.

```
income.loc[:,["Index","State","Y2008"]]
income.loc[:,"Index":"Y2008"] #Selecting consecutive columns
#In the above command both Index and Y2008 are included.
income.iloc[:,0:5] #Columns from 1 to 5 are included. 6th column not included
```

The difference between loc and iloc is that loc requires the column(rows) names to be selected while iloc requires the column(rows) indices (position).

You can also use the following syntax to select specific variables.

```
income[["Index","State","Y2008"]]
```

Renaming the variables

We create a dataframe 'data' for information of people and their respective zodiac signs.

```
data = pd.DataFrame({"A" : ["John","Mary","Julia","Kenny","Henry"], "B" : ["Libra","Capricorn","Aries","Scorpio","Aquarius"]})
data
```

```
A B
0 John Libra
1 Mary Capricorn
2 Julia Aries
3 Kenny Scorpio
4 Henry Aquarius
```

If all the columns are to be renamed then we can use **data.columns** and assign the list of new column names.

```
#Renaming all the variables.
data.columns = ['Names','Zodiac Signs']
```

```
Names Zodiac Signs

John Libra

Mary Capricorn

Julia Aries

Kenny Scorpio

Henry Aquarius
```

If only some of the variables are to be renamed then we can use **rename()** function where the new names are passed in the form of a dictionary.

```
#Renaming only some of the variables.
    data.rename(columns = {"Names":"Cust_Name"},inplace = True)
  Cust_Name Zodiac Signs
       John
0
                    Libra
1
       Mary
                Capricorn
2
      Julia
                    Aries
3
      Kenny
                  Scorpio
      Henry
                Aquarius
```

By default in pandas **inplace = False** which means that no changes are made in the original dataset. Thus if we wish to alter the original dataset we need to define **inplace = True**.

Suppose we want to replace only a particular character in the list of the column names then we can use **str.replace()** function. For example, renaming the variables which contain "Y" as "Year"

Setting one column in the data frame as the index

Using **set_index("column name")** we can set the indices as that column and that column gets removed.

```
income.set_index("Index",inplace = True)
income.head()
#Note that the indices have changed and Index column is now no more a column
income.columns
income.reset_index(inplace = True)
income.head()
```

reset_index() tells us that one should use the by default indices.

Removing the columns and rows

To drop a column we use **drop()** where the first argument is a list of columns to be removed.

By default axis = 0 which means the operation should take place horizontally, row wise. To remove a column we need to set axis = 1.

```
income.drop('Index',axis = 1)
#Alternatively
income.drop("Index",axis = "columns")
income.drop(['Index','State'],axis = 1)
income.drop(0,axis = 0)
income.drop(0,axis = "index")
income.drop([0,1,2,3],axis = 0)
```

Also inplace = False by default thus no alterations are made in the original dataset. axis = "columns" and axis = "index" means the column and row(index) should be removed respectively.

Sorting the data

To sort the data **sort_values()** function is deployed. By default **inplace = False** and **ascending = True.**

```
income.sort_values("State",ascending = False)
income.sort_values("State",ascending = False,inplace = True)
income.Y2006.sort_values()
```

We have got duplicated for Index thus we need to sort the dataframe firstly by Index and then for each particular index we sort the values by Y2002

```
income.sort_values(["Index","Y2002"])
```

Create new variables

Using eval() arithmetic operations on various columns can be carried out in a dataset.

```
income["difference"] = income.Y2008-income.Y2009
#Alternatively
income["difference2"] = income.eval("Y2008 - Y2009")
income.head()
```

```
Index
                     Y2002
                             Y2003
                                      Y2004
                                              Y2005
                                                       Y2006
                                                               Y2007
             State
0
     Α
           Alabama 1296530 1317711 1118631 1492583 1107408 1440134
1
     Α
            Alaska 1170302 1960378 1818085 1447852 1861639
                                                             1465841
2
     Α
           Arizona 1742027 1968140 1377583 1782199 1102568
                                                             1109382
          Arkansas 1485531 1994927 1119299
     Α
                                            1947979
                                                     1669191
                                                             1801213
       California 1685349 1675807 1889570 1480280 1735069 1812546
      Y2008
              Y2009
                       Y2010
                               Y2011
                                        Y2012
                                                Y2013
                                                         Y2014
                                                                 Y2015 \
0
  1945229.0 1944173 1237582 1440756 1186741 1852841 1558906 1916661
  1551826.0 1436541 1629616 1230866 1512804 1985302 1580394 1979143
1
            1554330 1300521 1130709 1907284 1363279 1525866 1647724
  1752886.0
3 1188104.0 1628980 1669295 1928238 1216675 1591896 1360959
                                                               1329341
  1487315.0 1663809 1624509 1639670 1921845 1156536 1388461 1644607
  difference difference2
0
      1056.0
                  1056.0
1
   115285.0
                115285.0
2
    198556.0
                198556.0
3
  -440876.0
               -440876.0
   -176494.0
               -176494.0
```

income.ratio = income.Y2008/income.Y2009

The above command does not work, thus to create new columns we need to use square brackets.

We can also use **assign()** function but this command does not make changes in the original data as there is no inplace parameter. Hence we need to save it in a new dataset.

```
data = income.assign(ratio = (income.Y2008 / income.Y2009))
data.head()
```

Finding Descriptive Statistics

describe() is used to find some statistics like mean, minimum, quartiles etc. **for numeric** variables.

```
income.describe() #for numeric variables
```

To find the total count, maximum occurring string and its frequency we write **include =** ['object']

```
income.describe(include = ['object']) #Only for strings / objects
```

Mean, median, maximum and minimum can be obtained for a particular column(s) as:

```
income.Y2008.mean()
income.Y2008.median()
income.Y2008.min()
income.loc[:,["Y2002","Y2008"]].max()
```

Groupby function

To group the data by a categorical variable we use **groupby()** function and hence we can do the operations on each category.

```
income.groupby("Index").Y2008.min() income.groupby("Index")["Y2008","Y2010"].max()
```

agg() function is used to find all the functions for a given variable.

```
income.groupby("Index").Y2002.agg(["count","min","max","mean"]) income.groupby("Index")["Y2002","Y2003"].agg(["count","min","max","mean"])
```

The following command finds minimum and maximum values for Y2002 and only mean for Y2003

```
income.groupby("Index").agg({"Y2002": ["min","max"],"Y2003" : "mean"})
```

	Y2002		Y2003
	min	max	mean
Index			
Α	1170302	1742027	1810289.000
С	1343824	1685349	1595708.000
D	1111437	1330403	1631207.000
F	1964626	1964626	1468852.000
G	1929009	1929009	1541565.000
Н	1461570	1461570	1200280.000
I	1353210	1776918	1536164.500
K	1509054	1813878	1369773.000
L	1584734	1584734	1110625.000
M	1221316	1983285	1535717.625
N	1395149	1885081	1382499.625
0	1173918	1802132	1569934.000
Р	1320191	1320191	1446723.000
R	1501744	1501744	1942942.000
S	1159037	1631522	1477072.000
Т	1520591	1811867	1398343.000
U	1771096	1771096	1195861.000
V	1134317	1146902	1498122.500
W	1677347	1977749	1521118.500

Filtering

To filter only those rows which have Index as "A" we write:

```
income[income.Index == "A"]
#Alternatively
income.loc[income.Index == "A",:]
```

	111001		,1110.1110.071	11 ,•]					
	Index	State	Y2002	Y2003	Y2004	Y2005	Y2006	Y2007	\
0	Α	Alabama	1296530	1317711	1118631	1492583	1107408	1440134	
1	Α	Alaska	1170302	1960378	1818085	1447852	1861639	1465841	
2	Α	Arizona	1742027	1968140	1377583	1782199	1102568	1109382	
3	Α	Arkansas	1485531	1994927	1119299	1947979	1669191	1801213	
	Y200	98 Y200	99 Y201	LO Y201	L1 Y201	L2 Y201	3 Y201	4 Y201	. 5
0	194522	29 19441 [.]	73 123758	32 144075	6 118674	185284	1 155890	6 191666	61
1	155182	26 14365	162961	L6 123086	66 151280	198530	2 158039	4 197914	13
2	175288	36 15543	30 130052	21 113070	9 190728	34 136327	9 152586	6 164772	24

3 1188104 1628980 1669295 1928238 1216675 1591896 1360959 1329341

To select the States having Index as "A":

```
income.loc[income.Index == "A","State"]
income.loc[income.Index == "A",:].State
```

To filter the rows with Index as "A" and income for 2002 > 1500000"

```
income.loc[(income.Index == "A") & (income.Y2002 > 1500000),:]
```

To filter the rows with index either "A" or "W", we can use isin() function:

```
income.loc[(income.Index == "A") | (income.Index == "W"),:]
#Alternatively.
income.loc[income.Index.isin(["A","W"]),:]
```

	Index	Stat	e Y20	02 Y2	003	Y20	94	Y200	5 Y20	006	Y2007	\
0	Α	Alaban	na 12965	30 1317	711	11186	31 1	L49258	3 11074	108	1440134	
1	Α	Alask	ka 11703	02 1960	378	18180	85 1	L44785	2 18616	39	1465841	
2	Α	Arizor	na 17420	27 1968	140	13775	83 1	L78219	9 11025	68	1109382	
3	Α	Arkansa	as 14855	31 1994	927	11192	99 1	L94797	9 16691	L91	1801213	
47	W	Washingto	n 19777	49 1687	136	11994	90 1	L16309	2 13348	364	1621989	
48	W We	st Virgini	la 16773	47 1380	662	11761	90 1	L88894	8 19220	85	1740826	
49	W	Wisconsi	n 17889	20 1518	578	12896	63 1	L43688	8 12516	378	1721874	
50	W	Wyomir	ng 17751	90 1498	098	11982	12 1	L88168	8 17505	527	1523124	
	Y2008	Y2009	Y2010	Y2011	,	Y2012	Y2	2013	Y2014		Y2015	
0	1945229	1944173	1237582	1440756	11	86741	1852	2841	1558906	19	16661	
1	1551826	1436541	1629616	1230866	15	12804	1985	302	1580394	19	79143	
2	1752886	1554330	1300521	1130709	19	07284	1363	3279	1525866	16	47724	
3	1188104	1628980	1669295	1928238	12	16675	1591	L896	1360959	13	29341	
47	1545621	1555554	1179331	1150089	17	75787	1273	3834	1387428	13	77341	
48	1238174	1539322	1539603	1872519	14	62137	1683	3127	1204344	11	.98791	
49	1980167	1901394	1648755	1940943	17	29177	1510	119	1701650	18	46238	
50	1587602	1504455	1282142	1881814	16	73668	1994	1022	1204029	18	53858	

Alternatively we can use query() function and write our filtering criteria:

```
income.query('Y2002>1700000 & Y2003 > 1500000')
```

Dealing with missing values

We create a new dataframe named 'crops' and to create a NaN value we use **np.nan** by importing **numpy**.

isnull() returns True and notnull() returns False if the value is NaN.

```
crops.isnull() #same as is.na in R crops.notnull() #opposite of previous command. crops.isnull().sum() #No. of missing values.
```

crops.cost.isnull() firstly subsets the 'cost' from the dataframe and returns a logical vector with isnull()

```
crops[crops.cost.isnull()] #shows the rows with NAs.
crops[crops.cost.isnull()].Crop #shows the rows with NAs in crops.Crop
crops[crops.cost.notnull()].Crop #shows the rows without NAs in crops.Crop
```

To drop all the rows which have missing values in any rows we use **dropna(how = "any")**. By default **inplace = False**. If **how = "all"** means drop a row if all the elements in that row are missing

```
crops.dropna(how = "any").shape
crops.dropna(how = "all").shape
```

To remove NaNs if any of 'Yield' or'cost' are missing we use the subset parameter and pass a list:

```
crops.dropna(subset = ['Yield',"cost"],how = 'any').shape
crops.dropna(subset = ['Yield',"cost"],how = 'all').shape
```

Replacing the missing values by "UNKNOWN" sub attribute in Column name.

```
crops['cost'].fillna(value = "UNKNOWN",inplace = True)
crops
```

Dealing with duplicates

We create a new dataframe comprising of items and their respective prices.

```
data = pd.DataFrame({"Items" : ["TV","Washing Machine","Mobile","TV","TV","Washing Machine"], "Price" : [10000,50000,20000,10000,10000,40000]}) data
```

```
    Items
    Price

    0
    TV
    10000

    1
    Washing Machine
    50000

    2
    Mobile
    20000

    3
    TV
    10000

    4
    TV
    10000

    5
    Washing Machine
    40000
```

duplicated() returns a logical vector returning True when encounters duplicated.

```
data.loc[data.duplicated(),:]
data.loc[data.duplicated(keep = "first"),:]
```

By default **keep = 'first'** i.e. the first occurrence is considered a unique value and its repetitions are considered as duplicates.

If **keep = "last"** the last occurrence is considered a unique value and all its repetitions are considered as duplicates.

```
data.loc[data.duplicated(keep = "last"),:] #last entries are not there,indices have changed.
```

If **keep = "False"** then it considers all the occurrences of the repeated observations as duplicates.

```
data.loc[data.duplicated(keep = False),:] #all the duplicates, including unique are shown.
```

To drop the duplicates **drop_duplicates** is used with default **inplace = False**, keep = 'first' or 'last' or 'False' have the respective meanings as in duplicated()

```
data.drop_duplicates(keep = "first")
data.drop_duplicates(keep = "last")
data.drop_duplicates(keep = False,inplace = True) #by default inplace = False
data
```

Creating dummies

Now we will consider the iris dataset.

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

map() function is used to match the values and replace them in the new series automatically created.

```
iris["setosa"] = iris.Species.map({"setosa" : 1,"versicolor":0, "virginica" : 0})
iris.head()
```

To create dummies **get_dummies()** is used. **iris.Species.prefix = "Species"** adds a prefix ' Species' to the new series created.

```
pd.get_dummies(iris.Species,prefix = "Species")
pd.get_dummies(iris.Species,prefix = "Species").iloc[:,0:1] #1 is not included
species_dummies = pd.get_dummies(iris.Species,prefix = "Species").iloc[:,0:]
```

With **concat()** function we can join multiple series or dataframes. **axis = 1** denotes that they should be joined columnwise.

```
iris = pd.concat([iris,species_dummies],axis = 1)
iris.head()
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	/
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	

	Species_setosa	Species_versicolor	Species_virginica
0	1	0	0
1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0

It is usual that for a variable with 'n' categories we creat 'n-1' dummies, thus to drop the first 'dummy' column we write **drop_first = True**

```
pd.get dummies(iris,columns = ["Species"],drop first = True).head()
```

Ranking

To create a dataframe of all the ranks we use rank()

```
iris.rank()
```

Ranking by a specific variable

Suppose we want to rank the Sepal.Length for different species in ascending order:

```
iris['Rank'] = iris.sort_values(['Sepal.Length'], ascending=
[True]).groupby(['Species']).cumcount() + 1
iris.head()
#Alternatively
iris['Rank2'] = iris['Sepal.Length'].groupby(iris["Species"]).rank(ascending=1)
iris.head()
```

Calculating the Cumulative sum

Using cumsum() function we can obtain the cumulative sum

```
iris['cum_sum'] = iris["Sepal.Length"].cumsum()
iris.head()
```

Cumulative sum by a variable

To find the cumulative sum of sepal lengths for different species we use **groupby()** and then use **cumsum()**

```
iris["cumsum2"] = iris.groupby(["Species"])["Sepal.Length"].cumsum()
iris.head()
```

Calculating the percentiles.

Various quantiles can be obtained by using quantile()

```
iris.quantile(0.5)
iris.quantile([0.1,0.2,0.5])
iris.quantile(0.55)
```

if else in Python

We create a new dataframe of students' name and their respective zodiac signs.

Functions in python are defined using the block keyword def , followed with the function's name as the block's name. apply() function applies function along rows or columns of

dataframe.

Note: If using simple 'if else' we need to take care of the indentation. Python does not involve curly braces for the loops and if else.

Output

```
Names Zodiac Signs flag
0
      John
             Aquarius yes
1
      Mary
                Libra
                       no
2
     Henry
                Gemini yes
3 Augustus
                Pisces no
     Kenny
                 Virgo
                       no
```

Alternatively, By importing numpy we can use **np.where**. The first argument is the condition to be evaluated, 2nd argument is the value if condition is True and last argument defines the value if the condition evaluated returns False.

```
import numpy as np
students['flag'] = np.where(students['Names'].isin(['John','Henry']), 'yes', 'no')
students
```

Multiple Conditions: If Else-if Else

```
def mname(row):
    if row["Names"] == "John" and row["Zodiac Signs"] == "Aquarius" :
        return "yellow"
    elif row["Names"] == "Mary" and row["Zodiac Signs"] == "Libra" :
        return "blue"
    elif row["Zodiac Signs"] == "Pisces" :
        return "blue"
    else:
        return "black"

students['color'] = students.apply(mname, axis=1)
students
```

We create a list of conditions and their respective values if evaluated True and use **np.select** where default value is the value if all the conditions is False

```
conditions = [
  (students['Names'] == 'John') & (students['Zodiac Signs'] == 'Aquarius'),
  (students['Names'] == 'Mary') & (students['Zodiac Signs'] == 'Libra'),
  (students['Zodiac Signs'] == 'Pisces')]
choices = ['yellow', 'blue', 'purple']
students['color'] = np.select(conditions, choices, default='black')
students
```

```
Names Zodiac Signs flag color

John Aquarius yes yellow

Mary Libra no blue

Henry Gemini yes black

Augustus Pisces no purple

Kenny Virgo no black
```

Select numeric or categorical columns only

To include numeric columns we use select_dtypes()

```
data1 = iris.select_dtypes(include=[np.number])
data1.head()
```

_get_numeric_data also provides utility to select the numeric columns only.

```
data3 = iris._get_numeric_data()
data3.head(3)
```

cumsum2	cum_sum	Petal.Width	Petal.Length	Sepal.Width	Sepal.Length	
5.1	5.1	0.2	1.4	3.5	5.1	0
10.0	10.0	0.2	1.4	3.0	4.9	1
14.7	14.7	0.2	1.3	3.2	4.7	2

For selecting categorical variables

```
data4 = iris.select_dtypes(include = ['object'])
data4.head(2)
```

Species

- 0 setosa
- 1 setosa

Concatenating

We create 2 dataframes containing the details of the students:

using pd.concat() function we can join the 2 dataframes:

```
data = pd.concat([students,students2]) #by default axis = 0
```

	Marks	Names	Zodiac Signs
0	NaN	John	Aquarius
1	NaN	Mary	Libra
2	NaN	Henry	Gemini
3	NaN	Augustus	Pisces
4	NaN	Kenny	Virgo
0	50.0	John	NaN
1	81.0	Mary	NaN
2	98.0	Henry	NaN
3	25.0	Augustus	NaN
4	35.0	Kenny	NaN

present then in one of the dataframes it creates NaNs. To join column wise we set axis =

```
1
    data = pd.concat([students,students2],axis = 1)
    data
      Names Zodiac Signs Marks
                                      Names
0
       John
                Aquarius
                              50
                                       John
1
                              81
       Mary
                    Libra
                                       Mary
2
                              98
      Henry
                   Gemini
                                      Henry
3 Augustus
                   Pisces
                              25 Augustus
4
      Kenny
                    Virgo
                              35
                                      Kenny
```

Using append function we can join the dataframes row-wise

```
students.append(students2) #for rows
```

Alternatively we can **create a dictionary** of the two data frames and can use **pd.concat** to join the dataframes row wise

```
classes = {'x': students, 'y': students2}
result = pd.concat(classes)
result
```

		Marks	Names	Zodiac Signs
Х	0	NaN	John	Aquarius
	1	NaN	Mary	Libra
	2	NaN	Henry	Gemini
	3	NaN	Augustus	Pisces
	4	NaN	Kenny	Virgo
У	0	50.0	John	NaN
	1	81.0	Mary	NaN
	2	98.0	Henry	NaN
	3	25.0	Augustus	NaN
	4	35.0	Kenny	NaN

Merging or joining on the basis of common variable.

We take 2 dataframes with different number of observations:

```
students = pd.DataFrame({'Names': ['John','Mary','Henry','Maria'],

'Zodiac Signs': ['Aquarius','Libra','Gemini','Capricorn']})

students2 = pd.DataFrame({'Names': ['John','Mary','Henry','Augustus','Kenny'],

'Marks': [50,81,98,25,35]})
```

Using **pd.merge** we can join the two dataframes. **on = 'Names'** denotes the common variable on the basis of which the dataframes are to be combined is 'Names'

```
result = pd.merge(students, students2, on='Names') #it only takes intersections result
```

```
Names Zodiac Signs Marks
0 John Aquarius 50
1 Mary Libra 81
2 Henry Gemini 98
```

By default **how = "inner"** thus it takes only the common elements in both the dataframes. If you want all the elements in both the dataframes set **how = "outer"**

result = pd.merge(students, students2, on='Names',how = "outer") #it only takes unions result

```
Names Zodiac Signs Marks
0
       John
               Aquarius
                          50.0
                  Libra
                          81.0
1
      Mary
2
                 Gemini 98.0
     Henry
3
     Maria
              Capricorn
                           NaN
                          25.0
4 Augustus
                    NaN
                          35.0
5
     Kenny
                    NaN
```

To take only intersections and all the values in left df set how = 'left'

```
result = pd.merge(students, students2, on='Names',how = "left") result
```

```
Names Zodiac Signs Marks

John Aquarius 50.0

Mary Libra 81.0

Henry Gemini 98.0

Maria Capricorn NaN
```

Similarly how = 'right' takes only intersections and all the values in right df.

```
result = pd.merge(students, students2, on='Names',how = "right",indicator = True) result
```

	Names	Zodiac Signs	Marks	_merge
0	John	Aquarius	50	both
1	Mary	Libra	81	both
2	Henry	Gemini	98	both
3	Augustus	NaN	25	right_only
4	Kenny	NaN	35	right_only

indicator = **True** creates a column for indicating that whether the values are present in both the dataframes or either left or right dataframe.

About Author:

Ekta is a Data Science enthusiast, currently in the final year of her post graduation in statistics from Delhi University. She is passionate about statistics and loves to use analytics to solve complex data problems. She is working an an intern, ListenData. Let's Get Connected: Facebook | LinkedIn

Get Free Email Updates:

Please confirm your email address by clicking on the link sent to your Email

Related Posts:

- Linear Regression in Python
- NumPy Tutorial with Exercises
- Pandas Python Tutorial Learn by Examples
- Importing Data into Python
- Loading CSV data in Python using pandas
- Identify Person, Place and Organisation in content using Python
- Case Study: Sentiment analysis using Python

• Run Python from R