

HALF-BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Internally set deadtime
- High side output in phase with input
- Also available LEAD-FREE

Description

The IR2111(S) is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half-bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel

Product Summary

Voffset	600V max.
I _O +/-	200 mA / 420 mA
Vout	10 - 20V
t _{on/off} (typ.)	750 & 150 ns
Deadtime (typ.)	650 ns

Packages

power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in figures 7 through 10.

Symbol	Definition		Min.	Max.	Units
V _B	High side floating supply voltage		-0.3	625	
٧s	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage	High side floating output voltage		V _B + 0.3	
Vcc	Low side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
V _{IN}	Logic input voltage		-0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient (figure 2)		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 Lead PDIP)	_	1.0	
		(8 lead SOIC)	_	0.625	W
RthJA	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	°C/W
		(8 lead SOIC)	_	200	C/VV
TJ	Junction temperature		_	150	
TS	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20	
٧s	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	V
Vcc	Low side and logic fixed supply voltage	10	20	
V _{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage	0	Vcc	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in figure 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	550	750	950		Vs = 0V
t _{off}	Turn-off propagation delay	_	150	180		V _S = 600V
t _r	Turn-on rise time	_	80	130		
t _f	Turn-off fall time	_	40	65	ns	
DT	Deadtime, LS turn-off to HS turn-on &	480	650	820		
	HS turn-off to LS turn-on					
MT	Delay matching, HS & LS turn-on/off	_	30	l —		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "1" input voltage for HO & logic "0" for LO	6.4	_	_		V _{CC} = 10V
		9.5	_	_		V _{CC} = 15V
		12.6	_	_		V _{CC} = 20V
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO	_	_	3.8	V	V _{CC} = 10V
		_	_	6.0		V _{CC} = 15V
		_	_	8.3		V _{CC} = 20V
Voн	High level output voltage, V _{BIAS} - V _O	_	_	100		I _O = 0A
V _{OL}	Low level output voltage, VO	_	_	100	mV	I _O = 0A
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	_	50	100	[V _{IN} = 0V or V _{CC}
IQCC	Quiescent V _{CC} supply current	_	70	180	μA	V _{IN} = 0V or V _{CC}
I _{IN+}	Logic "1" input bias current	_	30	50	[V _{IN} = V _{CC}
I _{IN} -	Logic "0" input bias current	_	_	1.0		V _{IN} = 0V
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	7.6	8.6	9.6		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	7.2	8.2	9.2] _v	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	7.6	8.6	9.6]	
Vccuv-	V _{CC} supply undervoltage negative going threshold	7.2	8.2	9.2		
I _{O+}	Output high short circuit pulsed current	200	250	_		$V_O = 0V$, $V_{IN} = V_{CC}$
					mA.	PW ≤ 10 µs
I _O -	Output low short circuit pulsed current	420	500	_] "	$V_{O} = 15V, V_{IN} = 0V$ PW \le 10 \mus

International

TOR Rectifier

Functional Block Diagram

Lead Definitions

Symbol	Description
IN	Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO
VB	High side floating supply
НО	High side gate drive output
VS	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

International

IR2111(S)&(PbF)

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 5. Deadtime Waveform Definitions

Figure 6. Delay Matching Waveform Definitions

Figure 11A Turn-On Time vs Temperature

Figure 12A Turn-Off Time vs Temperature

Figure 13A Turn-On RiseTime vs Temperature

Figure 11B Turn-On Time vs Voltage

Figure 12B Turn-Off Time vs Voltage

Figure 13B Turn-On RiseTime vs Voltage

Figure 14A Turn-Off Fall Time vs Temperature

Figure 15A Dead Time vs Temperature

Figure 16A Logic "I" Input voltage for HO & Logic "0" for LO vs Temperature

Figure 14B Turn-Off Fall Time vs Voltage

Figure 15B Dead Time vs Voltage

Figure 16B Logic "I" Input voltage for HO & Logic "0" for LO vs Voltage

Figure 17A Logic "0" Input voltage for HO & Logic "1" for LO vs Temperature

Figure 18A. High Level Output vs. Temperature

Figure 19A. Low Level Output vs. Temperature

Figure 17B Logic "0" Input voltage for HO & Logic "I" for LO vs Voltage

Figure 18B. High Level Output vs. Voltage

Figure 19B. Low Level Output vs. Voltage

Figure 20A Offset Supply Current vs Temperature

Figure 21A VBS Supply Current vs Temperature

Figure 22A VCC Supply Current vs Temperature

Figure 20B Offset Supply Current vs Voltage

Figure 21B VBS Supply Current vs Voltage

Figure 22B VCC Supply Current vs Voltage

International TOR Rectifier

Figure 23A Logic "1" Input Current vs Temperature

Figure 24A. Logic "0" Input Current vs. Temperature

Figure 25 VBS Undervoltage Threshold (+) vsTemperature

Figure 23B Logic "1" Input Current vs V_{CC} Voltage

Figure 24B. Logic "0" Input Current vs. V_{CC} Voltage

Figure 26 VBS Undervoltage Threshold (-) vsTemperature

International IOR Rectifier

IR2111(S)&(PbF)

11 VCC Undervoltage Lockout - (V) 10 Max. Min. -50 -25 25 50 75 100 125 Temperature (°C)

Figure 27 Vcc Undervoltage (-) vs Temperature

Figure 28 Vcc Undervoltage (-) vs Temperature

Figure 29A Output Source Current vs Temperature

Figure 29B Output Source Current vs Voltage

Figure 30A Output Sink Current vs Temperature

Figure 30B Output Sink Current vs Voltage

International TOR Rectifier

Figure 31. IR2111 T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, \, V_{CC} = 15V$

Figure 32. IR2111 T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, V_{CC} = 15V$

Figure 33. IR2111 T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega, \, V_{CC} = 15V$

Figure 34. IR2111 T_J vs. Frequency (IRFPC50) $R_{GATE} = 10\Omega, \ V_{CC} = 15V$

International TOR Rectifier

IR2111(S)&(PbF)

Figure 35. IR2111S T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, \ V_{CC} = 15V$

Figure 36. IR2111S T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, \ V_{CC} = 15V$

Figure 37. IR2111S T_J vs. Frequency (IRFBC40) $R_{GATE} = 15\Omega$, $V_{CC} = 15V$

Figure 38. IR2111S T_J vs. Frequency (IRFPC50) $R_{GATE} = 10\Omega,\, V_{CC} = 15V$

Case outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2111 order IR2111 8-Lead SOIC IR2111S order IR2111S **Leadfree Part**

8-Lead PDIP IR2111 order IR2111PbF 8-Lead SOIC IR2111S order IR2111SPbF

International

TOP Pactifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 4/12/2004