霍尼韦尔 HAF2XXX 系列流量传感器

主要特征

- 外形更加小巧紧凑,有效节省客户产品的内部空间尺寸
- 全量程校准和温度补偿,有效简化客户产品的系统设计
- 数字信号与模拟信号同时输出,提供客户产品设计的更高安全等级
- 高可靠性与稳定性,助力客户产品的长期稳定表现
- 本地制造和本土研发团队,供应链更安全,技术支持更快捷·

产品摘要

霍尼韦尔HAF2XXX系列流量传感器是基于霍尼韦尔新一代流量芯体而设计. 传感器同时提供数字和模拟输出,用于读取气体流量测量结果和气体温度测量结果。传感器可用于测量(干燥)空气和其他非腐蚀性气体,如氧气(O2)、一氧化二氮(N2O)等。

HAF2XXX系列流量传感器在全量程校准并且进行温度补偿。传感器在0°C至50°C的温度范围内具有线性流量输出,在-20°C至80°C范围内具有线性温度输出(可选配置)。

HAF2XXX系列流量传感器根据热传导原理来测量空气质量。它为客户提供了高可靠性、高精度、高可重复性测量,并具有多种可定制选项,以满足许多特定的应用需求。

产品规格

霍尼韦尔 HAF2XXX 系列流量传感器的产品规格,将另行提供规格书文档.

测量模式

上电和预热

HAF系<mark>列流量传</mark>感器典型的上电时间约0.7ms,这是由系统硬件决定的。在此之后,MCU开始初始化,内部加热器自动打开并准被测量。传感器响应数字通讯请求的时间约2.7ms,在此之后还需要1ms时间完成一些测量准备工作,这一共需要约3.7ms时间。但是,如果传感器是软件复位而不是断电,这个时间将会缩短至约2.7ms。

从上电开始,约4.1ms我们能够得到第一个流量值,约4.7ms我们能够得到第一个温度值。由于热量测量的原理,完整的传感器预热时间约50ms,在此之后能够得到更好的测量精度。

连续测量

传感器启动之后,建议的测量步骤如下图所示。默认的气体类型是空气(详细的气体类型定义在章节"I²C命令"),默认的混合气体占比是1000‰,也就是纯空气。如果我们测量的是空气流量,我们就不需要设置气体类型和混合气体占比。当传感器重新上电或者软件复位,气体类型和混合气体占比将会恢复默认值。

我们可以在任何时间改变混合气体占比,但是测量需要重新启动。我们也可以在任意时间改变气体类型,但是混合气体占比会被恢复默认值,这意味着我们需要设置混合气体占比并重新启动测量。

当传感器接收到测量命令,如04、05、06(更多细节请见章节"I²C命令"),传感器进入相应的连续测量模式并且每1ms执行一次测量。

发送任意除04、05、06之外的命令,传感器<mark>会停止连续测量。如果气体类型和混合气体占比没有发生改变,我们可以重新</mark>发送测量命令,而无需重新设置气体参数。

低功耗模式

在低功耗模式下传感器执行最小的电流消耗,这非常有利于电池供电的设备延长电池寿命。在通讯建立后,传感器可以通过I²C命令08进入低功耗模式。在低功耗模式下,传感器关闭内部加热器并且停止ADC测量。

当传感器接收到有效的I²C地址,传感器将会被唤醒退出低功耗模式,此时需要重新发送测量命令开始连续测量。典型的唤醒时间小于1ms。

数字接口描述

传感器数字接口兼容I²C标准。

接口连接

 I^2C 数据使用串行两线通讯,数据线SDA和时钟线SCL。SDA和SCL必须是双向的,并且通过上拉电阻连到正向电压上。建议的上拉电阻值取决于系统设置(电路或电缆的电容和总线时钟频率)。在大多数情况下, $10k\Omega$ 是一个合适的选择。

霍尼韦尔HAF系列流量传感器提供内部4.7kΩ上拉电阻。

I²C 地址

霍尼韦尔HAF系列流量传感器 I^2 C接口使用7-bits地址,默认的 I^2 C地址是0x48.7-bits地址后是一位R/W位,写bit(0)读bit (1)。R/W位的值决定了数据传输序列其余部分的数据方向。如果R/W=0,数据方向保持主到从,如果R/W=1,在地址字节后数据方向变为从到主。

为了更多定制化需求,我们可以在出厂时改变传感器的I²C地址(1~127)并存储到flash中。如果产品已经出厂,更改I²C请联系霍尼韦尔。尽管执行地址更改仅仅消耗约30ms,但我们必须做好参数备份避免如断电这样的异常发生。

I²C Timing

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
f _{eUSCI}	eUSCI input clock frequency	Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10%				f _{SYSTEM}	MHz	
f _{SCL}	SCL clock frequency		2.2 V, 3 V	0		400	kHz	
+	Hold time (repeated) START	f _{SCL} = 100 kHz	2.2 V, 3 V	4.8			μs	
t _{HD,STA}		f _{SCL} > 100 kHz		1.2				
+	Setup time for a repeated START	f _{SCL} = 100 kHz	2.2 V, 3 V	4.9			ше	
t _{SU,STA}	Setup time for a repeated START	f _{SCL} > 100 kHz	2.2 V, 3 V	1.26			μs	
t _{HD,DAT}	Data hold time		2.2 V, 3 V	0.12			μs	
+	Data setup time	f _{SCL} = 100 kHz	2.2 V, 3 V	4.7			μs	
t _{SU,DAT}	Data setup time	f _{SCL} > 100 kHz		1.08				
	Cotum time for CTOD	f _{SCL} = 100 kHz	2.2 V, 3 V	4.9				
t _{SU,STO}	Setup time for STOP	f _{SCL} > 100 kHz		1.18			μs	
		UCGLITx = 0		75	110	160		
t _{SP}	Pulse duration of spikes suppressed by input filter	UCGLITx = 1	2.2 V, 3 V	35	50	80		
		UCGLITx = 2		15	25	40	ns	
		UCGLITx = 3		10	15	20		
		UCCLTOx = 1			33			
t _{TIMEOUT}	Clock low timeout	UCCLTOx = 2	2.2 V, 3 V		37		ms	
		UCCLTOx = 3			41			

I²C 序列

在I²C协议中,数据以字节包的形式传输,也就是8-bits帧。每个字节后面跟着一个确认位。数据最高位(MSB)首先传输。如果正确寻址的传感器识别到一个有效的命令,并授予对该命令的访问权,则在随后的SCL脉冲中拉下SDA线用于确认信号(ACK),否则它将离开SDA线的控制(NACK)。

在下列图表中,

S: 起始条件

P: 停止条件

W: 写

R: 读

A: 确认

N: 非确认

阴影区域: 传感器控制SDA线

每个I²C命令的长度为8bits,如下图所示。命令的具体描述在下列章节"I²C命令"。

如果命令需要带入参数,16bits后需要外加16bits和校验位checksum,校验位仅对参数校验,并不包含 I^2 C命令本身。

在这之后,可以从传感器读取数据。数据以16 bits的倍数的形式发出,数据帧的最后是16 bits和校验,以确保通信的可靠性。I²C序列可以通过NACK和P(停止条件)中止。

SDA上数据流的方向可以由主设备改变,而无需停止传输,只需发出重复的S起始条件,这叫重复起始条件。重复起始条件后,从地址再次被发送出去,数据方向由R/W位指定。因此,我们可以在发送命令后直接读取数据,如下图所示。

I²C 命令

下表描述了I²C命令码的具体定义。所有参数和返回值为大端模式。

Command	Description	Command argument	Length of return		
code (Hex)			(Byte)		
01	Get se <mark>rial</mark> number		4(SN)+2(Checksum)		
02	Soft reset				
04	Get flow		2(Flow)+2(Checksum)		
05	Get temperature		2(Temp)+2(Checksum)		
06	Get flow and		2(Flow)+2(Temp)+2(Checksum)		
06	temperature				
08	Enter low power				
A0	Get flow min		2(Min)+2(Checksum)		
A1	Get flow max		2(Max)+2(Checksum)		
A2	Get unit		2(Unit)+2(Checksum)		
A7	Cot gas type	Air, O ₂ , N ₂ O, O ₂ _Air,	2(Type) + 2(Cheeksum)		
A/	Get gas type	N ₂ O_Air, O ₂ _N ₂ O	2(Type)+2(Checksum)		

霍尼韦尔 HAF2XXX 系列流量传感器使用说明书 V2.1 Copyright © 2022 Honeywell International Inc. All rights reserved.

A8	Get gas proportion	Volume fraction of mixed gas (in ‰)	2(Proportion)+2(Checksum)
A9	Set gas type	Air, O ₂ , N ₂ O, O ₂ _Air, N ₂ O_Air, O ₂ _N ₂ O	2(error code)
AA	Set gas proportion	Volume fraction of mixed gas (in ‰)	2(error code)

下表描述了16bits气体流量的单位。

Gas unit	Code (Hex)
sccm	0x0010
slm	0x0011

下表描述了16bits气体类型的定义。

Gas type	Code (Hex)
Air	0x0000
O2	0x0001
N2O	0x0002
O2 mixed with Air	0x000A
N2O mixed with Air	0x000B
O2 mixed with N2O	0x000C

如果我们设置气体类型为空气、氧气(O_2)、笑气(N_2O),这意味着被测气体是非混合的。如果我们设置气体类型是混合气体,如"氧气空气混合(O_2 mixed with Air)",并且设置气体占比为3000,即氧气O2的体积分数为混合气体的300‰。

当我们使用命令代码0xA9、 0xAA时,我们可以读取16bits的命令执行结果,不附加校验和。命令执行结果如下表所示。

Error code (Hex)	Description
0xFFFE	Correct
0xFFFD	Command error
0xFFFC	Argument error
0xFFFA	Checksum error

转换公式

从传感器读出的校准的气体流量值为16bits无符号整型(0 to 65535)。我们可以通过命令04获得传感器采样的气体流量,整型值可以通过如下公式转换成物理量。flow max和flow min对应传感器量程的上下限,可以通过命令A1、A0读取。流量的物理单位是slm或者sccm(详细说明请参见章节"单位定义"),可以通过命令A2读取。

$$flow = \frac{(flow\ max - flow\ min) \times \left(\frac{digital\ output}{16384} - 0.1\right)}{0.8} + flow\ min$$

从传感器读出的温度值为16bits有符号整型(-32768 to 32767)。我们可以通过命令05获得传感器采样的温度,整型值可以通过如下公式转换成物理量。温度的单位是℃。

temperature(°C) =
$$\frac{sensor\ output}{100}$$

此外, 我们可以同时读取流量和温度值通过命令06。

模拟接口描述

传感器的默认模拟输出范围为0.3-2.7V。

流量输出

流量的默认输出曲线如下图所示。流量0%FS 对应0.3V(10% *3V), 流量100%FS对应2.7V(90% *3V)。

$$flow = \frac{(flow\ max - flow\ min) \times (analog\ output - 0.3)}{2.7 - 0.3} + flow\ min$$

温度输出

温度的默认输出曲线如下图所示。-20℃对应0.3V(10% *3V), 80℃对应2.7V(90% *3V)。

temperature =
$$\frac{100 \times (analog\ output - 0.3)}{2.7 - 0.3} - 20$$

单位定义

质量流量是以克/分钟为单位测量的动态质量/时间单位。在标准(参考)条件下,以体积流量单位来指定质量流量在行业中很常见。通过参考标准温度和压力的体积流量,可以从体积流量计算出精确的质量流量(g/min)。

"SCCM"或"SLPM"表示的参考条件没有行业标准,必须明确确定。霍尼韦尔质量流量 传感器一直遵循在 0°C 和 1 个大气压的标准参考条件下定义体积流量单位。 这在带有 "S"前缀的体积单位上表示。 例如:

SCCM: "Standard Cubic Centimeters (per) Minute" , 参考条件: 0 °C, 1 atm

SLM: "Standard Liters (per) Minute", 参考条件: 0°C, 1 atm

当不同厂商的<mark>质量</mark>流量单位的参考条件有所<mark>不同</mark>时,若客户需对不同单位进行换算,则一个具体换算过程提供如下,如想了解更多详情,请参考 Honeywell Technical Note about Unit Conversions。

Equation 7: Solving for Qx yields:

$$Qx = Qs \cdot \frac{Ps}{Px} \cdot \frac{Tx}{Ts}$$

Equation 7

Equation 7 calculates volumetric flow (Qx) at "X" conditions from volumetric flow (Qs) at reference conditions of 0 $^{\circ}$ C and 1 atm.

Given:

Qs = 200 SCCM

Ps = 1 atm

Px = 1 atm

 $Ts = 273.15 \, ^{\circ}K \, (0 \, ^{\circ}C)$

 $Tx = 298.15 \, ^{\circ}K \, (25 \, ^{\circ}C)$

Answer:

$$Qx = Qs \cdot \frac{Ps}{Px} \cdot \frac{Tx}{Ts} = 218.3 \text{ cm}^3/\text{min}$$

外形尺寸

大流量产品(标准量程: -200-300L、0-300L、0-160L)

气路接口 1: 22mm Cone Conforming to ISO5356

小流量产品(标准量程: 0-30L)

气路接口 2: O-ring NBR, ID12.5mm

引脚定义

Name	Description
SCL	I ² C时钟线
SDA	I ² C数据线
Temp Out	温度模拟输出
Flow Out	流量模拟输出
GND	电源负
VDD	电源正

