

planetmath.org

Math for the people, by the people.

quotient group of a topological group by its identity component is totally disconnected

 $Canonical\ name \qquad Quotient Group Of A Topological Group By Its Identity Component Is Totally Disconnection of the property o$

Date of creation 2013-03-22 18:45:35 Last modified on 2013-03-22 18:45:35

Owner joking (16130) Last modified by joking (16130)

Numerical id 7

Author joking (16130) Entry type Theorem Classification msc 22A05 Assume that G is a topological group and G_e is the identity component. It is well known, that G_e is a normal subgroup of G, thus we may speak about quotient group.

Proposition. The quotient group G/G_e is totally disconnected.

Proof. First of all note that connected components of G are of the form gG_e . Indeed, G_e is a connected component of $e \in G$ and for any $g \in G$ we have a homeomorphism $f_g : G \to G$ such that $f_g(x) = gx$. Thus $f_g(G_e) = gG_e$ is a connected component of $g \in G$ (please, see http://planetmath.org/HomeomorphismsPresentry for more details).

Now let $\pi: G \to G/G_e$ be the quotient map (which is open and onto) and $A \subseteq G/G_e$ be an arbitrary, connected subset of G/G_e . Assume that there are at least two points in A. Consider the subset $\pi^{-1}(A) \subseteq G$ (which is the union of some cosets). Since A has at least two points, then $\pi^{-1}(A)$ contains at least two cosets, which are connected components of G. Thus $\pi^{-1}(A)$ is not connected. Therefore there exist $U, V \subseteq \pi^{-1}(A)$ such that U, V are open (in $\pi^{-1}(A)$), disjoint and $U \cup V = \pi^{-1}(A)$.

Note that if $x \in U$, then the connected component of x (which is equal to xG_e) is contained in U. Indeed, assume that $xG_e \not\subseteq U$. Then there is $h \in xG_e$ such that $h \notin U$. Then, since $U \cup V = \pi^{-1}(A)$ we have that $h \in V$. But then $U \cap xG_e$ and $V \cap xG_e$ are nonempty open and disjoint subsets of xG_e such that $(U \cap xG_e) \cup (V \cap xG_e) = xG_e$. Contradiction, because xG_e is connected. Analogusly, whenever $x \in V$, then $xG_e \subseteq V$.

Therefore both U and V are unions of cosets. Thus $\pi(U)$ and $\pi(V)$ are disjoint. Furthermore $\pi(U) \cup \pi(V) = A$ and both $\pi(U)$, $\pi(V)$ are open in A (because π is an open map). This means that A is not connected. Contradiction. Thus A has at most one element, which completes the proof. \square

Remark. This proposition can be easily generalized as follows: assume that X is a topological space, $X = \bigcup X_i$ is a decomposition of X into connected components and R is an equivalence relation associated to this decomposition (i.e. xRy if and only if there exists i such that $x, y \in X_i$). Then, if the quotient map $\pi: X \to X/R$ is open, then X/R is totally disconnected.