Computational Methods for Geological Engineers

Eldad Haber 9th January 2025

University of British Columbia

Learning Outcomes

At the end of the course, participants will be able to:

- · Code mathematical and physical models in pytorch
- · Solve some ODE's
- Find parameters within the simulation

Approximate schedule

Week	Technical Programming	Analytical Skills
Week 1	intro to python	Motivation, why
Week 2	intro to python	Separable ODEs
Week 3	Finite difference	Finite difference
Week 4	Finite difference	Integrating factors
Week 5	Solving IVP's particle propagation	Second order equations/Syster
Week 6	Nonlinear equations	Systems
Week 7	Implicit methods	Boundary Value Problems
Week 8	Matrix methods for BVP	Boundary Value Problems
Week 9-10	Optimization	Optimization
Week 11-12	Parameter estimation	Optimization
Week 13	Catch-up	Catch up

- Programming Quiz: Jan 23
- · Midterm I Feb 27
- · Midterm II March 27

Ordinary Differential Equations

ODE's - Ordinary differential equations

$$\frac{d\mathbf{y}}{dt} = f(t, \mathbf{y}; p)$$

or more specifically

$$\frac{d}{dt}\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} f_1(y_1, \dots, y_n; p) \\ \vdots \\ f_n(y_1, \dots, y_n; p) \end{pmatrix}$$

Appear in many applications

- · Particle flow
- · Disease propagation
- · Fake news detection
- Geochemistry
- ...

ODE's - Classification

- · Linear first order
- · Linear higher order
- · Nonlinear first order
- Nonlinear higher order
- · System, linear
- System, nonlinear
- · Initial value problems, Boundary value problems

Types of ODE's

Linear ODE's

$$\dot{y} = f(y)$$

f(y) = Ay + b, that is f is linear.

Nonlinear ODE's

$$\dot{y} = f(y)$$

e.g. $f(y) = \cos(y)$, that is f is nonlinear.

Types of ODE's

First order ODE's

$$\dot{y} = f(y)$$

Higher order ODE's

$$y'''=f(y)$$

Types of ODE's

Initial value problems (IVP)

$$y'' = f(y)$$
 $y'(0) = y_0$, $y''(0) = y_0''$

Boundary value problems

$$y''' = f(y)$$
 $y(0) = y_0,$ $y(1) = y_1$

Separation of variables

We have a special case

$$\frac{dy}{dx} = f(x, y) = \frac{g(x)}{w(y)}$$

Then

$$w(y)dy = g(x)dx$$

$$\int^{y} w(y)dy = \int^{x} g(x)dx + C$$

Integrate and solve for y(x)

Examples

Exponential model

$$\frac{dy}{dx} = \lambda y$$

Examples

Logistic model

$$\frac{dy}{dx} = \lambda y \left(1 - \frac{y}{a} \right)$$
$$\frac{1}{y(1 - y/a)} = \frac{1}{y} + \frac{1}{a + y}$$