Graphs and Trees

Note

- Out of town Thursday afternoon
- Willing to meet before 1pm, email me if you want to meet then so I know to be in my office

A few extra remarks about recursion

- If you can write it recursively you can also write it iteratively, and vice versa
 - Church-Turing Thesis
- But why pick one method over the other?

Example: Fibonacci numbers

```
int fib(int n) {
    if(n == 1 || n == 0) return 1;
    else return fib(n-1)+fib(n-2)
int fib(int n) {
    int current = 1; int previous = 1; int temp;
    if(n == 0 | | n == 1) return 1;
    for(int i = 2; i < n; i++) {
         temp = current + previous;
         previous = current; current = temp;
    return current;
```

Results...

- Recursive may be easier, but may not be the best way
- Work out the best way before moving forward

Graphs and Trees

- Represents a **lot** of things
- Formally a graph G is a pair of sets, G= (V,E)
- V The set of vertices
- E the set of "edges"
- Each edge connects 2 vertices together

Terminology

- Lots of terminology surrounding graphs, tons of types, specific patterns, etc...
- Tip: Always read the description of graphs carefully they describe a lot in just a few words

Graph terminology

- Undirected you can travel along an edge in either direction
- Directed (Digraph) One-way travel only (but still possible to have 2 edges!)
 - Note: All undirected graphs can be converted into directed graphs, but not the other way around!
- Unweighted Edges have no value associated with them
- Weighted Edges have a value associated with them
- Examples on board

Yet more terminology

- Cycle A set of edges that forms a "loop"
- Cyclic Graph contains a cycle
- Acyclic No cycles allowed in the graph
- DAG Directed Acyclic Graph
- Self-loop: An edge from a vertex to itself (yes, this counts as a cycle)
- Simple Graph Shorthand for "Undirected Unweighted No-self-loops graph"

Yes, there's still more

- Degree (undirected only): The number of edges connected to a vertex
- In/Out-degree (directed only): The number of edges entering/leaving a graph
- Regular All vertices have the same degree
- (Simple) Path A sequence of (distinct) edges going from u to v
- Connected For any two vertices there exists a path between them
 - Directed graphs strongly connected components

Special graphs

- Clique (K_n) A graph will all possible edges on n vertices
- Bipartite A graph with two sets of vertices. Edges only allowed between sets
- Complete Bipartite $(K_{n,m})$ A bipartite graph with all possible edges
- Empty graph No vertices or edges
- Cycle Graph One giant cycle, no other edges allowed
- Path Graph All linked in a line

And...

- Tree: Any acyclic graph with *n* vertices and *n-1* edges.
- Or.. An acyclic directed graph where there is only one path between any two vertices
- Forest A collection of trees

Graph representations

- Adjacency Matrix a $|V| \times |V|$ matrix where A[u][v] represents the existence and weight of an edge from u to v
 - Good for dense graphs, easy to work with
 - \circ O(n^2) memory
- Adjacency list A list of lists. Each list represents a vertex, and contains the vertices it is connected to
 - Good for sparse graphs, harder to work with
 - \circ O(n + m) memory
- Example on board

Trees

- Used in a lot of more complex data structures
- Often a single vertex is designated as the root
- Root is on top. Not on bottom
- Allows a natural direction for edges

Tree terminology

- Root The "top" of the tree
- Children Those connected one layer below
- Descendant Can get to these nodes by only moving downward
- Ancestor Node that can be reached by following parents

Minimum Spanning Trees

- Consider a weighted graph G
- Find a set of edges that forms a tree (or forest, if G is not connected) within G
 in such a way that the sum of the edges is minimized
- Essentially, find the cheapest possible spanning tree that you can

Prim's Algorithm

- Idea: Take a greedy approach to making a MST
- Two versions: Adj. Matrix and Adj. List
- Matrix $O(n^2)$
- List O(m log n) [O(E log V)]

 Gist: Pick a starting point. Repeatedly add the closest edge to the current tree to the tree until you're done

Start with A. Find "closest" vertex to tree

Start with A. Find "closest" vertex to tree

Arbitrary tiebreaker: Alphabetical order

All N nodes in the tree. Done!

Kruskals algorithm

- Repeatedly pick the smallest edge that has not been visited
- If it does not make a cycle, add it to the tree
- Initialized as a forest of singletons
- Tree is stored as a Union Find. Gives us the runtimes we want

All vertices connected. Done

