

ENSEMBLES ET APPLICATIONS

Dr Euloge KOUAME ©UVCI 2017

Table des matières

Objectifs		5
I - Ense	embles	7
Α.	Définition	
В.	Opérations sur les ensembles	8
C.	Produit cartésien	9
D	Exercice : Exercice 1	9
E.	Exercice 2	10
II - Ap _l	plications	11
Α.	Définitions	1
В.	Image directe, image réciproque, composée	12
C.	Exercice : Exercice 1	12
D	. Injections, surjections et bijections	13
E.	Exercice : Exercice 2	12
Ressou	rces annexes	17
Solutio	n des exercices	19
Bibliog	raphie	21
Webog	raphie	23

À la fin de cette leçon, vous serez capable de :

- Identifier ce qu'est un ensemble en mathématique
- Appliquer les règles de calcul sur les ensembles ;
- **Définir** les propriétés de base des applications

Définition	7
Opérations sur les ensembles	8
Produit cartésien	9
Exercice : Exercice 1	9
Exercice 2	10

Objectifs

A la fin de cette section, l'étudiant sera capable de :

- Identifier un ensemble
- Manipuler les règles de base concernant les ensembles

A. Définition

Un ensemble est une collection d'objets appelés éléments. Cette collection n'a pas d'ordre et chaque élément ne peut y apparaître qu'une fois

Exemple

 ${3, 1, 7, 2} = {1, 2, 3, 7} = {7, 3, 1, 3, 2, 7}.$

Il y a plusieurs manières de définir des ensembles :

- Un ensemble peut être défini de manière explicite par la simple donnée de ces éléments (défini **en extension**):

 $A = \{ 2,3,4,5 \}$

- l'ensemble $B=\{n \in N \mid 2 \le n < 6\}$ est dit défini en **compréhension** (vérifie une certaine propriété).

Il est évident que A=B

Syntaxe

La notation $\mathbf{a} \in \mathbf{E}$ se lit "a est un élément de E" ou bien "a appartient à E". la négation s'écrit a \notin E.

Fondamental

I' ensemble vide et noté \emptyset , est l'ensemble qui ne contient aucun élément.

- N désigne l'ensemble des entiers naturels
- Z désigne l'ensemble des entiers relatifs
- Q désigne l'ensemble des nombres rationnels
- R désigne l'ensemble des nombre réels
- C désigne l'ensemble des nombres complexes

B. Opérations sur les ensembles

Inclusion, égalité, ensemble des parties

-L'**inclusion** : **E** ⊂ **F** se lit : **E inclus dans F** et qui signifie que tout élément de E est aussi élément de F.

On dit alors que E est un **sous-ensemble** de F ou **une partie** de F. Sa négation s'écrit $E \not\subset F$.

- L'égalité. E et F sont égaux (E = F) s'ils ont les mêmes éléments, c'est- à-dire si et seulement si $E \subset F$ et $F \subset E$.
- **Ensemble des parties de E** et noté P(E), l'ensemble dont les éléments sont tous les ensembles inclus dans E.

Exemple

si $E=\{1, 2, 3\}$:

 $P(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$

Union, intersection, complémentaire

Soient A et B deux parties d'un ensemble E

- On appelle **union** de A et B et on note $\mathbf{A} \cup \mathbf{B}$ l'ensemble contenant les éléments de A et de B :

 $A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}.$

(zone en couleur bleue)

- On appelle **intersection** de A et B et on note $\mathbf{A} \cap \mathbf{B}$ l'ensemble contenant les éléments qui appartiennent à la fois à A et à B :

 $A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}.$

- On appelle **différence** de A et de B, la partie de E définie par :

 $A \setminus B = \{ x \in A \setminus x \notin B \}.$

Ensembles

- On appelle complémentaire de A dans E, l'ensemble des éléments de E qui n'appartiennent pas à A:

 $C_EA=E\setminus A$ ou \bar{A}

Fondamental : Règles de calculs

Soient A, B et C des parties d'un ensemble E.

- **Commutativité** : $A \cup B = B \cup A$ et $A \cap B = B \cap A$.
- **Associativité**: $A \cup (B \cup C) = (A \cup B) \cup C$ et $A \cap (B \cap C) = (A \cap B) \cap C$.
- **Distributivité**: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ et $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$

C. Produit cartésien

Étant donnés deux ensembles A et B, le produit cartésien de A par B et se note Ax B est l'ensemble des couples (a, b), avec $a \in A$ et $b \in B$.

On a donc : $A \times B = \{(a, b) | a \in A \text{ et } b \in B\}.$

Remarque

Lorsque A = B, le produit cartésien de $A \times A$ se note aussi A2.

Par extension, étant donnés un entier $n \ge 1$ et des ensembles A_1, \dots, A_n , on appelle produit de A_1, \ldots, A_n l'ensemble de tous les **n-uplets** $(x_1; \ldots; x_n)$ tels que $x_1 \in A_1, \ldots, A_n$ $x_n \in A_n$. Cet ensemble est noté $A_1 \times ... \times A_n$.

- Exemple

 R2 = Rx R= {(x,y)| x, y∈ R}

 A={ 1;2} B={3;4;5} : A x B={(1;2);(1;4);(1;5);(2;3);(2;4);(2;5)}

D. Exercice: Exercice 1

[Solution n°1 p 19]

Exercice

Soient A = [1,3] et B = [2,4] Lesquelles des assertions suivantes sont vérifiées ?

A ∩ B= [2,3]
A ∪B = [1,4]
$A \cup B = A$
A ∩ B={ 2, 3}

E. Exercice 2

- 1. Énumérer P ({1, 2, 3, 4}).
- 2. Montrer $AU(B \cap C) = (AU B) \cap (AUC)$
- 3. Énumérer {1, 2, 3} x {1, 2, 3, 4}.
- 4. représenter graphiquement le produit $A \times B$ avec A = [1,3] et B = [2,4].

Applications

Définitions	11
Image directe, image réciproque, composée	12
Exercice : Exercice 1	12
Injections, surjections et bijections	13
Exercice · Exercice 2	14

Objectifs

A la fin de cette section vous serez capable de :

- Identifier une application
- **Reconnaître** les différents types d'applications : la surjection, l'injection et la bijection

A. Définitions

Soient E et F sont deux ensembles quelconques

Définition

On appelle **application** d'un ensemble E dans un ensemble F, toute correspondance f entre les éléments de E et ceux de F qui à tout élément $x \in E$ fait correspondre un **unique élément** $y \in F$ noté f(x).

- On dit que y est l'image de x par f et x est un antécédent de y.
- L'ensemble E est l'ensemble de départ de f et F est son ensemble d'arrivée.
- On représente l'application f de E dans F par :

```
f: E \rightarrow F
 x \rightarrow f(x)
```


Exemple

- L'application IdE : $E \rightarrow E$ telle que $\forall x \in E$, IdE(x) = x

est appelée application identité sur E.

- soit a un élément de F, alors la correspondance f de E dans F définie par :

 $\forall x \in E, x \rightarrow a$

est une application dite application constante.

B. Image directe, image réciproque, composée

Définition

Soient f et g deux applications.

On dit qu'elles sont égales et on note $\mathbf{f} = \mathbf{g}$ si elles ont le même ensemble de départ E, le même ensemble d'arrivée F et si $\forall \mathbf{x} \in \mathbf{E}$, $\mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x})$.

Soit f une application de E vers F.

Définition

- Soit $A \subset E$, on appelle **image directe de A** par f l'ensemble $f(A) = \{f(x) \mid x \in A\}$.

- Soit B \subset F l'image réciproque de B est l'ensemble f-1(B) = { $x \in E \mid f(x) \in B$ }.

Attention

- f (A) est un sous-ensemble de F, f-1(B) est un sous-ensemble de E.
- La notation « f-1(B) » est un tout, rien ne dit que f est un fonction bijective (voir plus loin). L'image réciproque existe quelque soit la fonction.

Définition

Soient $f: E \to F$ et $g: F \to G$ des applications. On appelle **composée** de f et g l'application notée $g \circ f$ définie de E vers G par $g \circ f(x) = g(f(x))$:

C. Exercice: Exercice 1

[Solution n°2 p 19]

Applications

Exercice

Soit f l'application de l'ensemble {1,2,3,4} dans lui-même définie par :

$$f(1) = 4$$
, $f(2) = 1$, $f(3) = 2$, $f(4) = 2$.

Déterminez les images réciproques f-1(A) lorsque : $A = \{2\}$

Exercice

Même énoncé que précédemment lorsque : $A = \{1,2\}$

Exercice

Même énoncé que précédemment lorsque : $A = \{3\}$

D. Injections, surjections et bijections

Soient E et F deux ensembles et f : $E \rightarrow F$ une application.

Définition

L'application f est **injective** si deux éléments quelconques distincts de E ont des images distinctes par f :

$$\forall x, y \in E, f(x) = f(y) \Rightarrow x = y.$$

Les applications représentées sont injectives :

Définition

L'application **f est surjective** si l'image de E par f est l'ensemble F : i.e $\forall y \in F$, $\exists x \in E$, f(x) = y.

Les applications représentées sont surjectives :

Remarque

- f est injective si et seulement si tout élément y de F a au plus un antécédent (et éventuellement aucun).
- f est surjective si et seulement si tout élément y de F a au moins un antécédent
 - Voici deux fonctions non injectives

- Ainsi que deux fonctions non surjectives :

Définition

L'application f est **bijective** si elle est **injective et surjective** autrement dit tout élément de F a un **unique antécédent** par f i.e :

 $\forall y \in F, \exists! x \in E, f(x) = y.$

Définition

Soit f une bijection de E vers F.

On appelle **bijection réciproque** de f l'unique application notée f-1 telle que $f-1 \circ f = Id_E$ et $f \circ f - 1 = Id_E$

C'est l'application qui à chaque élément de F associe son unique antécédent par f.

Conseil

Pour démontrer qu'une application f est bijective et trouver sa réciproque, on peut : résoudre l'équation y = f(x) et montrer qu'elle admet, quel que soit $y \in F$, une unique solution x = g(y).

exemple: bijexemple. PNG (cf. bijexemple p 17)

Proposition

La composée de deux bijections est une bijection.

E. Exercice: Exercice 2

[Solution n°3 p 19]

Exercice

Soient E, F et G trois ensemble et soient f: $E \to F$ et g: $F \to G$ deux applications Parmi les assertions , lesquelles sont vraies ?

Applications
f et g sont injectives alors g o f est injective
f est injective alors g o f est injective
f et g sont surjectives alors g ∘f est surjective.
$g \circ f$ est injective alors g est injective
g \circ f est injective alors f est injective
f est injective si et seulement si pour toute partie A de E et pour toute partie B de E, on a $f(A \cap B) = f(A) \cap f(B)$
f et g sont bijectives alors g ∘ f est bijective

O

Ressources annexes

- bijexemple

Exemple La relation $y=x+\sqrt{x^2+1}$ définit une application u de \mathbb{R} dans \mathbb{R}_+^* puisque pour $x\in\mathbb{R}$, on a $\sqrt{x^2+1}>\sqrt{x^2}\geqslant |x|$ et évidemment $x+|x|\geqslant 0$. Montrons qu'elle est bijective et trouvons sa réciproque. Pour $x\in\mathbb{R}$ et $y\in\mathbb{R}_+^*$, on a :

$$x + \sqrt{x^2 + 1} = y \iff \sqrt{x^2 + 1} = y - x$$

$$\iff x^2 + 1 = (y - x)^2 \quad \text{et} \quad x \leqslant y$$

$$\iff 2x y = y^2 - 1 \quad \text{et} \quad x \leqslant y$$

$$\iff x = \frac{y^2 - 1}{2y} \quad \text{et} \quad x \leqslant y$$

$$\iff x = \frac{y^2 - 1}{2y}$$

la dernière équivalence venant du fait que si y > 0, on a :

$$\frac{y^2 - 1}{2y} = y - \frac{y^2 + 1}{2y} \leqslant y.$$

Donc f est bijective et sa réciproque est :

$$\begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \frac{y^2-1}{2y}. \end{array}$$

0

Solution des exercices

>	Solution	nº1	(exercice	n.	9)
	Solution		(CACI CICC	ρ.	7)

Exercice

- **A** ∩ B= [2,3]
- **A** ∪B = [1,4]
- A ∪B =A
- $A \cap B = \{ 2, 3 \}$

> Solution n°2 (exercice p. 12)

Exercice

{3,4}

Exercice

{2,3,4}

Exercice

Ø

> Solution n°3 (exercice p. 14)

Exercice

V	f et g sont injectives alors g \circ f est injective
	f est injective alors g of est injective
	f et g sont surjectives alors g ∘f est surjective.
	$g \circ f$ est injective alors g est injective
	$g \circ f$ est injective alors f est injective
	f est injective si et seulement si pour toute partie A de E et pour toute partie B de E, on a $f(A \cap B) = f(A) \cap f(B)$
V	f et g sont bijectives alors g o f est bijective

Bibliographie

- [1] F. Liret, D. Martinais, Algèbre Licence 1ère année MIAS-MASS-SM, éditions Dunod, 2002
- [2] François Liret, Maths en pratique à l'usage des étudiants Cours et exercices, éditions Dunod, 2006
- [4] Claude Deschamps, André Warufsel, Mathématiques tout en un 1ière année, MPSI, PCSI, , éditions Dunod, 2003

Webographie

[5] www.bibliotheque.auf.org/doc_num.php?explnum_id=370

www.bibmath.net/ressources/index.php? action=affiche&quoi=mathsup/cours/ensembleapplicationrelation.html