NATIONAL UNIVERSITY OF SINGAPORE

PC2130 Quantum Mechanics I

(Semester II: AY 2016-17)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Please write your student number only. Do **not** write your name.
- 2. This assessment paper contains 4 questions and comprises 5 printed pages.
- 3. Students are required to answer all questions.
- 4. Students should write the answers for each question on a new page.
- 5. This is a CLOSED BOOK examination.
- 6. Students are allowed to bring in one A4-sized (both sides) sheet of notes.
- 7. Non-programmable electronic calculators are allowed.

1) Wavefunctions and operators

[10 marks]

The wavefunction $|\Psi\rangle$ is given as a superposition of quantum states $|A\rangle$ and $|B\rangle$:

$$|\Psi\rangle = a|A\rangle + b|B\rangle$$

a, b are complex constants.

Calculate the probability of measuring the particle in quantum state $|A\rangle$ for:

a)
$$a = \frac{i}{2}$$

[2 marks]

b)
$$b = \frac{1}{3} + \frac{i}{\sqrt{2}}$$

[2 marks]

Let $\widehat{Q}=\sum_i q_n \ |q_n\rangle\langle q_n|$ be the operator of an observable Q. Here $|q_n\rangle$ is the nth eigenket of \widehat{Q} and q_n is the nth eigenvalue. $|\Psi\rangle$ is the quantum state of the system.

c) What is the physical interpretation of $|\langle q_n | \Psi \rangle|^2$?

[2 marks]

d) Let $q_n(x) = \langle x | q_n \rangle$ be the wavefunction of $|q_n \rangle$ in position representation.

Write down an integral that evaluates $\langle q_n | \Psi \rangle$ in position representation.

[2 marks]

e) In practice, many individual measurements are required to establish the expectation value $\langle \Psi | \hat{Q} | \Psi \rangle$.

Devise an experimental procedure for measuring the expectation value.

For example: 1) prepare quantum state, 2) measure observable Q, 3) What next?

[2 marks]

2) Probability density and probability current within the infinite square well

[17 marks]

Consider the wavefunction

$$\Psi(x,t) = \frac{1}{\sqrt{N}} \left(sin\left(\frac{\pi}{a}x\right) e^{-i\omega_1 t} - sin\left(\frac{2\pi}{a}x\right) e^{-i\omega_2 t} \right), 0 \le x \le a.$$

a) Determine the normalization constant N.

[3 marks]

b) Calculate the density in the left half of the well

[3 marks]

$$\rho_{left}(t) = \int_0^{a/2} \Psi(x,t)^* \Psi(x,t) \ dx.$$

c) What is the minimal value of $\rho_{left}(t)$?

[1 mark]

d) What is the maximal value of $\rho_{left}(t)$?

[1 mark]

- e) Produce a graph (x-axis: time, y-axis: $\rho_{left}(t)$) and indicate minimal and maximal values of $\rho_{left}(t)$. [2 marks]
- f) Calculate the probability current

[4 marks]

$$J\left(\frac{a}{2},t\right) = \frac{i\hbar}{2m} \left(\Psi\left(\frac{a}{2},t\right)\partial_{x}\Psi\left(\frac{a}{2},t\right)^{*} - \Psi\left(\frac{a}{2},t\right)^{*}\partial_{x}\Psi\left(\frac{a}{2},t\right)\right).$$

$$m = \frac{3}{2}\frac{\pi^{2}\hbar}{a^{2}\Delta\omega}, \quad \Delta\omega = \omega_{2} - \omega_{1}$$

g) Confirm that your results obey the continuity equation

[3 marks]

$$\partial_t \rho_{left}(t) + J\left(\frac{a}{2}, t\right) = 0.$$

The Hamilton operator of the harmonic oscillator is given by

$$\widehat{H} = \frac{1}{2m} (\widehat{p}^2 + (m\omega \widehat{x})^2).$$

The eigenvalue equation yields

$$\widehat{H}|n\rangle = \hbar\omega\left(n + \frac{1}{2}\right)|n\rangle.$$

We define a raising operator \hat{A}^{\dagger} and a lowering operator \hat{A}

$$\hat{A} = \frac{m\omega\hat{x} + i\hat{p}}{\sqrt{2m\hbar\omega}}, \qquad \hat{A}^{\dagger} = \frac{m\omega\hat{x} - i\hat{p}}{\sqrt{2m\hbar\omega}},$$
$$[\hat{A}, \hat{A}^{\dagger}] = 1.$$

a) Show that $\hat{A}|n\rangle=c\;|n-1\rangle,\;c$ is a constant.

[3 marks]

b) Show that $c = \sqrt{n}$

[3 marks]

c) Employing the definition of \hat{A} in position representation and the condition $\hat{A}|0\rangle=0$, calculate the normalized ground state wave function $\langle x|0\rangle=\Psi_0(x)$. [5 marks]

Hint:
$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$

d) Consider the harmonic oscillator in an external electric field. We assume that the electric field is constant and therefore the electrostatic potential is a linear function of position.

Then, the Hamilton operator is given by:

$$\widehat{H} = \frac{1}{2m}(\widehat{p}^2 + (m\omega x)^2) + \beta x,$$

where β is a constant indicating the strength of the electrostatic potential.

Calculate the energy eigenvalues.

[5 marks]

Hint: Introduce a new variable x' = x + const.

4) Stern Gerlach experiment and Larmor precession for spin =1

[17 marks]

We define the total Spin operator

$$\hat{S}^2|s,m\rangle = \hbar^2 s(s+1)|s,m\rangle,$$

and spin operator for the z-component:

$$\hat{S}_z|s,m\rangle = \hbar m|s,m\rangle.$$

We define the raising and lowering operators

$$\hat{S}_{+} = \hat{S}_{x} \pm i \hat{S}_{y} ,$$

and

$$\hat{S}_{\pm}|s,m\rangle = \hbar\sqrt{s(s+1) - m(m\pm 1)}|s,m\pm 1\rangle.$$

Assuming a non-polarized beam of atoms with spin s=1 is guided through a Stern-Gerlach experiment:

a) Derive the operators $\,\hat{S}_x,\,\hat{S}_y\,$ and $\hat{S}_z\,$ in matrix form.

[4 marks]

b) Calculate the eigenvectors for \hat{S}_x .

[3 marks]

- c) Considering a non-polarized beam of spin =1 atoms, how many spin states are detected on the screen? [1 mark]
- d) What is the probability to measure $m_z=\pm 1$ when the magnetic gradient is along z-direction? [1 mark]
- e) What is the probability to measure $m_z=\pm 1$ in two Stern-Gerlach experiments in series, when the first magnetic gradient is along x-direction and passing only $m_x=0$, and the second field gradient is in the z-direction? [2 marks]
- f) Consider a magnetic field in the z-direction, and the system is in the quantum state

$$\begin{split} |\Psi\rangle &= \alpha |1,1\rangle \cdot e^{-\frac{iE_+t}{\hbar}} + \beta |1,-1\rangle \cdot e^{-\frac{iE_-t}{\hbar}}, \ \alpha^2 + \beta^2 = 1 \\ E_+ &= \overline{+} \gamma B_z \hbar. \end{split}$$

The spin is measured in a direction given by the unit vector \hat{n} rotated an angle θ away from the z-direction (you may assume the azimuthal angle $\emptyset = 0$).

Calculate the expectation value $\langle \hat{S}_{\widehat{n}} \rangle$.

[6 marks]

------ End of paper-----

JM