INFERENCE IN BAYESIAN NETWORKS

Chapter 14.4–5

Outline

- ♦ Exact inference by enumeration
- ♦ Approximate inference by stochastic simulation

Inference tasks

Simple queries: compute posterior marginal $P(X_i|\mathbf{E} = \mathbf{e})$ e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: $P(X_i, X_j | \mathbf{E} = \mathbf{e}) = P(X_i | \mathbf{E} = \mathbf{e})P(X_j | X_i, \mathbf{E} = \mathbf{e})$

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$$\mathbf{P}(B|j,m)$$

$$= \mathbf{P}(B,j,m)/P(j,m)$$

$$= \alpha \mathbf{P}(B,j,m)$$

$$= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$$

Rewrite full joint entries using product of CPT entries:

$$\begin{aligned} &\mathbf{P}(B|j,m) \\ &= \alpha \ \sum_{e} \sum_{a} \mathbf{P}(B)P(e)\mathbf{P}(a|B,e)P(j|a)P(m|a) \\ &= \alpha \mathbf{P}(B) \ \sum_{e} P(e) \ \sum_{a} \mathbf{P}(a|B,e)P(j|a)P(m|a) \end{aligned}$$

Recursive depth-first enumeration: O(n) space, $O(d^n)$ time

Enumeration algorithm

```
function ENUMERATION-ASK(X, e, bn) returns a distribution over X
   inputs: X, the query variable
              e. observed values for variables E
              bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
   \mathbf{Q}(X) \leftarrow a distribution over X, initially empty
   for each value x_i of X do
        extend e with value x_i for X
        \mathbf{Q}(x_i) \leftarrow \text{Enumerate-All}(\text{Vars}[bn], \mathbf{e})
   return Normalize(\mathbf{Q}(X))
function ENUMERATE-ALL(vars, e) returns a real number
   if EMPTY?(vars) then return 1.0
   Y \leftarrow \text{First}(vars)
   if Y has value y in e
        then return P(y \mid Pa(Y)) \times \text{ENUMERATE-ALL}(\text{Rest}(vars), \mathbf{e})
        else return \Sigma_y P(y \mid Pa(Y)) \times \text{Enumerate-All(Rest(vars), } \mathbf{e}_y)
              where e_y is e extended with Y = y
```

Complexity of exact inference

Multiply connected networks:

- can reduce 3SAT to exact inference \Rightarrow NP-hard
- equivalent to counting 3SAT models \Rightarrow #P-complete

- 1. A v B v C
- 2. C v D v ¬A
- 3. B v C v ¬D

Inference by stochastic simulation

Basic idea:

- 1) Draw N samples from a sampling distribution S
- 2) Compute an approximate posterior probability \hat{P}
- 3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples

Sampling from an empty network

```
function PRIOR-SAMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n) \mathbf{x}\leftarrow an event with n elements for i=1 to n do x_i\leftarrow a random sample from \mathbf{P}(X_i\mid parents(X_i)) given the values of Parents(X_i) in \mathbf{x} return \mathbf{x}
```

Example P(C).50 Cloudy P(S|C)P(R|C)Rain Sprinkler T .80 .10 F F .50 .20 Wet Grass $R \mid P(W|S,R)$ S .99 T .90 F .90 F F F .01

Example P(C).50 Cloudy P(S|C)P(R|C)Rain Sprinkler T .10 .80 F F .50 .20 Wet Grass $R \mid P(W|S,R)$ S .99 T .90 F .90 F F F .01

Example P(C).50 Cloudy P(S|C)P(R|C)Rain Sprinkler .10 T T .80 F F .50 .20 Wet Grass $R \mid P(W|S,R)$ S .99 T .90 F .90 F F F .01

Example P(C).50 Cloudy P(S|C)P(R|C)Rain Sprinkler T .10 T .80 F .50 F .20 Wet Grass $R \mid P(W|S,R)$ S .99 T .90 F .90 F F F .01

Example P(C).50 Cloudy P(S|C)P(R|C)Rain Sprinkler .10 T T .80 F .50 F .20 Wet Grass $R \mid P(W|S,R)$ S .99 T .90 F F .90 F F .01

Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i)) = P(x_1 \dots x_n)$$

i.e., the true prior probability

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= P(x_1, \dots, x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand:
$$\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$$

Rejection sampling

 $\hat{\mathbf{P}}(X|\mathbf{e})$ estimated from samples agreeing with \mathbf{e}

```
function Rejection-Sampling(X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do
\mathbf{x} \leftarrow \text{Prior-Sample}(bn)
if \mathbf{x} is consistent with e then
\mathbf{N}[x] \leftarrow \mathbf{N}[x] + 1 \text{ where } x \text{ is the value of } X \text{ in } \mathbf{x}
return \text{Normalize}(\mathbf{N}[X])
```

```
E.g., estimate \mathbf{P}(Rain|Sprinkler=true) using 100 samples 27 samples have Sprinkler=true Of these, 8 have Rain=true and 19 have Rain=false.
```

$$\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle$$

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

```
\hat{\mathbf{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X,\mathbf{e}) (algorithm defn.)

= \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) (normalized by N_{PS}(\mathbf{e}))

\approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) (property of PRIORSAMPLE)

= \mathbf{P}(X|\mathbf{e}) (defn. of conditional probability)
```

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if $P(\mathbf{e})$ is small

 $P(\mathbf{e})$ drops off exponentially with number of evidence variables!

Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
        \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x}
   return Normalize(\mathbf{W}[X])
function Weighted Sample (bn, e) returns an event and a weight
   \mathbf{x} \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
        if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from P(X_i \mid parents(X_i))
   return x, w
```


w = 1.0

w = 1.0

w = 1.0

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1$

 $w = 1.0 \times 0.1$

$$w = 1.0 \times 0.1 \times 0.99 = 0.099$$

Likelihood weighting analysis

Sampling probability for WeightedSample is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Note: pays attention to evidence in ancestors only

⇒ somewhere "in between" prior and posterior distribution

Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Weighted sampling probability is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e})$$

$$= \prod_{i=1}^{l} P(z_i|parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i|parents(E_i))$$

$$= P(\mathbf{z}, \mathbf{e}) \text{ (by standard global semantics of network)}$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

Summary

Exact inference by enumeration:

NP-hard on general graphs

Approximate inference by LW:

- LW does poorly when there is lots of (downstream) evidence
- LW, generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables