Groepen theorie

Luc Veldhuis

21 Maart 2016

Ondergroepen

Herhaling

G een groep, $H \subseteq G$ is een ondergroep, notatie $H \leqslant G \Leftrightarrow$

- H ≠ ∅
- H is gesloten onder producten en het nemen van inverses: $x, y \in H$ dan $xy \in H$ en $x^{-1} \in H$
- \Leftrightarrow
 - H ≠ ∅
 - als $x, y \in H$, dan $xy^{-1} \in H$

Ondergroepen

- $\mathbb{Z} \subseteq \mathbb{R}$ ondergroep want $\mathbb{Z} \neq \emptyset$ en $0 \in \mathbb{Z}$. En ook $x, y \in \mathbb{Z}$ dan ook $x y \in \mathbb{Z}$
- $G = GL_2(\mathbb{F}_3)$ $H = \{\begin{pmatrix} \overline{1} & \overline{a} \\ \overline{0} & \overline{1} \end{pmatrix} \text{ met } \overline{a} \in \mathbb{F}_3\} \subseteq G \text{ is een ondergroep. } H \neq \emptyset$ want $\begin{pmatrix} \overline{1} & \overline{0} \\ \overline{0} & \overline{1} \end{pmatrix} \in H$. Ook geldt als $\begin{pmatrix} \overline{1} & \overline{a} \\ \overline{0} & \overline{1} \end{pmatrix} \text{ en } \begin{pmatrix} \overline{1} & \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix} \in H$ met \overline{a} en $\overline{b} \in \mathbb{F}_3$ dan is $\begin{pmatrix} \overline{1} & \overline{a} \\ \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix}^{-1} = \begin{pmatrix} \overline{1} & \overline{a} \\ \overline{0} & \overline{1} \end{pmatrix} \begin{pmatrix} \overline{1} & \overline{-b} \\ \overline{0} & \overline{1} \end{pmatrix} = \begin{pmatrix} \overline{1} & \overline{a} - \overline{b} \\ \overline{0} & \overline{1} \end{pmatrix} \in F_3$ want \mathbb{Z} en $x, y \in \mathbb{Z}$ dan $x - y \in \mathbb{Z}$ $\overline{a - b} \in \mathbb{F}_3$

Centralisator

Definitie

G een groep, $\emptyset \neq A \subseteq G$

 $C_G(A) = \{g \in G | gag^{-1} = a \text{ voor alle } a \in A\}$ is de centralisator van A in G

Merk op

 $gag^{-1} = a \Leftrightarrow ga = ag$

Dus $g \in C_G(A) \Leftrightarrow g$ commuteert met alle $a \in A$.

Centralisator

Gevolg

- Als $A = \{a\}$ dan schrijf je $C_G(a)$ in plaats van $C_G(\{a\})$
- Dus is $C_G(A) = \bigcap_{a \in A} C_G(A) = \{g \in G \text{ met } gag^{-1} = a\}$
- $C_G(A) \leqslant G$ want $eae^{-1} = eae = a$ voor alle $a \in A$. Dus $e \in C_G(A)$
 - Als $x, y \in C_G(A)$ dan is $xy \in C_G(A)$ want $xya(xy)^{-1} = xyay^{-1}x^{-1} = xax^{-1} = a$ voor alle $a \in A$.
 - Als $x \in C_G(A)$ dan $x^{-1} \in C_G(A)$ want we weten dat $xax^{-1} = a$ voor alle $a \in A$. Dus is $x^{-1}ax = x^{-1}xax^{-1}x = eae = a$ voor alle $a \in A$

Centralisator

Definitie

```
G een groep.
```

$$Z(G) = \{g \in G \text{ met } gx = xg \text{ voor alle } x \in G\}$$

- = het **centrum** van *G*
- $= \{ \text{ alle } g \in G \text{ die met elk element van } G \text{ commuteert } \}$
- $= C_G(G)$ een ondergroep van G

Definitie

G een groep, $\emptyset \neq A \subseteq G$ $N_G(A) = \{g \in G \text{ met } gAg^{-1} = A\} = \text{de normalizator } \text{van } A \text{ in } G.$ $gAg^{-1} = \{gag^{-1} \text{ met } a \in A\}$

Gevolg

- $N_g(A) \leqslant G$
- $C_G(A) \subseteq N_G(A)$ maar ongelijkheid kan gelden
- $\{g \in G | gAg^{-1} \subseteq A\}$ is in het algemeen géén ondergroep van G

$$G = D_{24} = \{e, r, r^2, \dots, r^11, s, sr, sr^2, \dots, sr^11\} \text{ met } r^12 = e = s^2$$
 en $r^i s = sr^{-i}$ met $i \in \mathbb{Z}$ $A = \{r, r^{-1}, s\}$

- Bepaal $C_G(A)$: Neem $x=r^i$ of sr^i in G en bepaal of $xrx^{-1}=r$, $xr^{-1}x^{-1}=r^{-1}$ en $xsx^{-1}=s$ Maar voor $x=r^i$ geeft dit $xsx^{-1}=sr^{-2i}=s$, alleen als i=0 of i=6. En als $x=sr^i$ geldt dat $sr^irsr^i=r^{-1}\neq r$ Dus $C_G(A)=\{e,r^6\}$
- Bepaal $N_G(A)$: xAx = A voor $x = r^i$ of $x = sr^i$. Geval als $x = r^i$ dan $xAx^{-1} = A \Leftrightarrow (xsx^{-1} = s) \land (xrx^{-1} = r) \land (xr^{-1}x^{-1} = r^{-1}) \Leftrightarrow x \in C_G(A)$ Geval als $x = sr^i$ dan $xrx^{-1} = r^{-1}$, $xr^{-1}x^{-1} = r$ en $xsx^{-1} = sr^{2i}$ dus alleen voor i = 0 of i = 6. Dus $N_G(A) = \{e, s, r^6, sr^6\}$

$$G = S_3$$
, $A = \{(1 \ 2)\}$
 $B = \{(1 \ 2)(1 \ 3)\}$
 $C_G(A) = \{e, (1 \ 2)\}$
 $N_G(A) = \{e, (1 \ 2)\}$
 $C_G(B) = \{e\}$
 $N_G(B) = \{e, (2 \ 3)\}$

$$Z(S_n) = \begin{cases} \{e\} & \text{als } n \neq 2 \\ S_2 & \text{als } n = 2 \end{cases}$$
 Als $n = 1$ of $n = 2$ dan is $S_n = \{e\}$ of $\{e, (1\ 2)\}$, abels dus $Z(S_n) = S_n$ Neem $n \geq 3$ en stel $\sigma \in Z(S_n)$. Dan is $\sigma(1\ 2) = (1\ 2)\sigma \Leftrightarrow \sigma(1\ 2)\sigma^{-1} = \sigma(1)\sigma(2)$ Dus $\{\sigma(1), \sigma(2)\} = \{1, 2\}$ Net zo: $\sigma(1\ 3)\sigma^{-1} = \{1, 3\}$ Dus $\{\sigma(1), \sigma(2)\} \cap \{\sigma(1), \sigma(3)\} = \{\sigma(1)\} = \{1\}$. Dus $\sigma(1) = 1$ en net zo krijg je $\sigma(2) = 2$ en $\sigma(3) = 3$ Zo krijg je ook dat $\sigma(1i)\sigma^{-1} = (1\ i)$ met $i \geq 4$ geeft $\sigma(1\ i) = i$ Conclusie: $\sigma = e$ en $Z(S_n) \subseteq \{e\}$. Duidelijk: $\{e\} \in Z(S_n)$ dus $Z(S_n) = \{e\}$

Groepswerking

Een groep G werkt op een verzameling $S \neq \emptyset$: $G \times S \rightarrow S$ met $(g,s) \mapsto g \cdot s$ met eigenschappen:

- $g_1(g_2s) = (g_1g_2)s$ voor alle $g_1, g_2 \in G$, $s \in S$
- es = s voor elke $s \in S$

Definitie

Voor $s \in S$ is $G_s = \{g \text{ in } G \text{ met } gs = s\}$ de **stabilisator** van $s \in G$

Opgave

$$G_s \leqslant G$$

Definitie

 $\{g \in G \text{ met } gs = s \text{ voor alle } s \in S\}$ heet de **kern** van de werking $= \bigcap_{s \in S} G_s$

Opgave

De kern is een ondergroep van G

Voorbeeld

$$\begin{array}{l} G = \{\pm 1\} \leqslant R^* \text{ (groep onder vermenigvuldiging) werkt op } \mathbb{R} \text{ via } \\ G \times \mathbb{R} \to \mathbb{R} \text{ met } (g,s) \mapsto g \cdot s \\ \text{Wat is } G_s? \\ e_G = 1 \in G_s \text{ want } G_s \leqslant G \\ \text{Dus de echte vraag is, wanneer is } -1 \in G_s? \\ -1 \in G \Leftrightarrow (-1) \cdot s = s \Leftrightarrow 2 \cdot s = 0 \Leftrightarrow s = 0 \\ \text{Dus } G_s = \begin{cases} \{1\} & \text{als } s \neq 0 \\ \{\pm 1\} & \text{als } s = 0 \end{cases} \end{array}$$

Ter compensatie

De baan $G \cdot s = \{gs \text{ met } g \in G_s\}$

Banen

$$G \cdot 0 = \{g \cdot 0 \text{ met } g = \pm 1\} = \{0\}$$

$$G \cdot s = \{g \cdot s \text{ met } g = \pm 1\} = \{s, -s\} \text{ voor } s \neq 0 \text{ (2 elementen)}$$

Hier geldt altijd: $|G_s| \cdot |G \cdot s| = 2$

Een dergelijk principe geeft later telmogelijkjeden (combinatoriek)

$$\begin{split} &G=GL_2(\mathbb{R}) \text{ werkt op } \mathbb{R}^2 \text{ (kolomvectoren) via:} \\ &G\times\mathbb{R}^2\to\mathbb{R}^2 \text{ met } (A,v)\mapsto Av \\ &\text{Als } v=\begin{pmatrix}1\\0\end{pmatrix}\text{ dan is } G_v=\{\begin{pmatrix}1&b\\0&d\end{pmatrix}|b,d\in\mathbb{R},d\neq0\} \\ &\text{Neem } \begin{pmatrix}a&b\\c&d\end{pmatrix} \text{ in } GL_2(\mathbb{R}) \text{ dus } ad-bc\neq0 \\ &\text{Dan geldt } \begin{pmatrix}a&b\\c&d\end{pmatrix}\begin{pmatrix}1\\0\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}\Leftrightarrow \begin{pmatrix}a\\c\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}\Leftrightarrow a=1,c=0 \\ &\text{Dus } \begin{pmatrix}a&b\\c&d\end{pmatrix}\in GL_2(\mathbb{R}) \Leftrightarrow \text{ het is } \begin{pmatrix}1&b\\c&d\end{pmatrix} \text{ met } d\neq0 \end{split}$$