

Room Layout Estimation in AR

Panagiotis Minos¹, Pranjal Mishra¹, Heng Zhao², Ziqi Zhang³ Supervisor: Rémi Pautrat⁴ ¹D-MATH, ETH Zurich; ²D-ITET, ETH Zurich; ³D-MAVT, ETH Zurich; ⁴Spatial AI Lab, Microsoft

1 Introduction

This project uses the Magic Leap 2 platform to develop a **room** layout estimation system. By combining images and depth captured by the device, alongside ST-RoomNet and OneFormer, the system extracts room boundaries and renders them in 3D with customizable features.

2 Background

Motivation:

- Interior Decoration/Design: Should I put furniture here?
- Better AR Device: Locate myself with room layout lines!
- Real Estate: Buy satisfying room!

→ 3D Rendering

Would it be possible if I put a microwave here??

3 Method Overview

- Data Capture: Magic Leap 2 → images with depth captured
- Backend Processing: Images + Neural estimators in 2D → boundaries in 2D + depth captured → boundaries in 3D
- **Rendering:** Boundaries in 3D → coordinates transformation→ Magic Leap 2
- **UI Control:** Console → customize visualization.

4 Results and Discussion

 Backend Output: Only depth information filtered by OneFormer will be considered

Final UI Output: Allow customization and ask for neip.

Data Transmission: Images with depth captured → server → 2D Neural Estimator \rightarrow Magic Leap 2 \rightarrow rendering.

5 Conclusions

- Room layout estimation system developed:
 - Visualize furniture placement and optimize room flow
 - Enhance spatial awareness with AR
- Future:
 - Reduce latency
 - Enhance real-time

References

- 1. H. Ibrahem, A. Salem, and H.-S. Kang, "ST-RoomNet: Learning Room Layout Estimation From Single Image Through Unsupervised Spatial Transformations," in *Proc. IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops*, Jun. 2023, pp. 3375-3383.
- 2. Jain, J., Li, J., Chiu, M., Hassani, A., Orlov, N., & Shi, H. (2023). OneFormer: Universal Image Segmentation.

