Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrifl
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkei
- 4. Primitive und partielle Rekursion
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- Reduzierbarkeit
- 9. Das Postsche Korrespondenzproblem
- 10. Komplexität Einführung
- 11. NP-Vollständigkei
- 12. PSPACE

Definition (Erinnerung)

a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.

$$\chi_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$

Definition (Erinnerung)

- a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.
- b) Eine Sprache $A \subseteq \Sigma^*$ heißt **semi-entscheidbar**, falls die halbe charakteristische Funktion $\chi'_{\Delta}: \Sigma^* \to \{0,1\}$ berechenbar ist.

$$\chi_A(x) := egin{cases} 1, & \mathsf{falls} \ x \in A, \ 0, & \mathsf{falls} \ x
otin A. \end{cases}$$

$$\chi'_{\mathcal{A}}(x) := \begin{cases} 1, & \text{falls } x \in \mathcal{A}, \\ \perp, & \text{falls } x \notin \mathcal{A}. \end{cases}$$

Definition (Erinnerung)

- a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.
- b) Eine Sprache $A \subseteq \Sigma^*$ heißt **semi-entscheidbar**, falls die halbe charakteristische Funktion $\chi'_A : \Sigma^* \to \{0,1\}$ berechenbar ist.

$$\chi_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$
 $\chi'_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ \bot, & \text{falls } x \notin A. \end{cases}$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **(rekursiv)** aufzählbar, falls $A = \emptyset$ gilt oder falls es eine <u>totale</u>, <u>berechenbare</u> Funktion $\underline{f} : \mathbb{N} \to \Sigma^*$ derart gibt, dass $\underline{A} = \{f(0), f(1), f(2), \ldots\} = f(\mathbb{N})$.

Definition (Erinnerung)

- a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.
- b) Eine Sprache $A \subseteq \Sigma^*$ heißt **semi-entscheidbar**, falls die halbe charakteristische Funktion $\chi'_A : \Sigma^* \to \{0,1\}$ berechenbar ist.

$$\chi_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$
 $\chi'_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ \bot, & \text{falls } x \notin A. \end{cases}$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **(rekursiv)** aufzählbar, falls $A = \emptyset$ gilt oder falls es eine totale, berechenbare Funktion $f : \mathbb{N} \to \Sigma^*$ derart gibt, dass $A = \{\underline{f(0)}, f(1), \underline{f(2)}, \ldots\} = \underline{f(\mathbb{N})}$. Das heißt, \underline{f} zählt \underline{A} auf.

Beachte: *f* muss weder <u>injektiv</u> noch monoton sein!

Definition (Erinnerung)

- a) Eine Sprache $A\subseteq \Sigma^*$ heißt **entscheidbar**, falls die charakteristische Funktion $\chi_A:\Sigma^*\to\{0,1\}$ berechenbar ist.
- b) Eine Sprache $A\subseteq \Sigma^*$ heißt **semi-entscheidbar**, falls die halbe charakteristische Funktion $\chi_A':\Sigma^*\to\{0,1\}$ berechenbar ist.

$$\chi_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ 0, & \text{falls } x \notin A. \end{cases}$$
 $\chi'_A(x) := \begin{cases} 1, & \text{falls } x \in A, \\ \bot, & \text{falls } x \notin A. \end{cases}$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **(rekursiv)** aufzählbar, falls $A = \emptyset$ gilt oder falls es eine totale, berechenbare Funktion $f : \mathbb{N} \to \Sigma^*$ derart gibt, dass $A = \{f(0), f(1), f(2), \ldots\} = f(\mathbb{N})$.

Das heißt, f zählt A auf.

Beachte: *f* muss weder injektiv noch monoton sein!

Frage: Können Sie ein f angeben, das die Sprache $\{w \in \{0,1\}^* \mid w \text{ ist Binärkodierung einer Primzahl}\}$ aufzählt?

Theorem

 $A \subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch $\Sigma^* \setminus A$ semi-entscheidbar ist.

Theorem

 $A\subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch $\Sigma^*\setminus A$ semi-entscheidbar ist.

Theorem

 $A\subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl \underline{A} als auch $\underline{\Sigma^*\setminus A}$ semi-entscheidbar ist.

Beweis

$$_{u}\Rightarrow$$
": A entscheidbar \Rightarrow 1. A semi-entscheidbar.

2. $\Sigma^* \setminus A$ entscheidbar $\Rightarrow \Sigma^* \setminus A$ semi-entscheidbar.

 $, \Leftarrow$ ": $\underline{\chi'_A}$ und $\chi'_{\Sigma^* \setminus A}$ berechenbar durch

WHILE-Programme mit einer WHILE-Schleife

(& disjunkten Variablennamen):

$$x_i := 1$$
; WHILE $x_i \neq 0$ DO P_A END; $x_0 := 1$

sowie

$$x_j := 1$$
; WHILE $x_j \neq 0$ DO $P_{\bar{A}}$ END; $x_0 := 1$

Theorem

 $A \subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch $\Sigma^* \setminus A$ semi-entscheidbar ist.

Beweis

$$"\Rightarrow": A \text{ entscheidbar} \Rightarrow 1. A \text{ semi-entscheidbar}.$$

2. $\Sigma^* \setminus A$ entscheidbar $\Rightarrow \Sigma^* \setminus A$ semi-entscheidbar.

"
$$\Leftarrow$$
": χ_A' und $\chi_{\Sigma^* \setminus A}'$ berechenbar durch

Dann entscheidet folgendes Programm A:

WHILE-Programme mit einer WHILE-Schleife $\mathbf{1} \times_i := 1; \times_i := 1;$

$$1 \ x_i := 1; \ x_j := 1;$$

(& disjunkten Variablennamen):

2 WHILE
$$x_i \neq 0$$
 und $x_j \neq 0$ DO

 $x_i := 1$; WHILE $x_i \neq 0$ DO (P_A) END; $x_0 := 1$

$$P_A; P_{\bar{A}};$$

sowie

5 IF $x_i = 0$ THEN $x_0 := 1$ ELSE $x_0 := 0$;

$$x_j := 1$$
; WHILE $x_j \neq 0$ DO $P_{\bar{A}}$ END; $x_0 := 1$

(Rekursiv) Aufzählbare Sprachen Theorem

Eine Sprache *L* ist aufzählbar gdw.

L is semi-entscheidbar.

(Rekursiv) Aufzählbare Sprachen Theorem

Eine Sprache *L* ist aufzählbar gdw.

L is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi_A': \mathbb{N} \to \{0,1\}$ (Bijektion zwischen \mathbb{N} & Σ^* berechenbar)

(Rekursiv) Aufzählbare Sprachen Theorem

Eine Sprache L ist aufzählbar gdw.

L is semi-entscheidbar.

```
Beachte: Wir nehmen an, dass \chi'_A : \underline{\mathbb{N}} \to \{0, 1\} (Bijektion zwischen \mathbb{N} \& \Sigma^* berechenbar)
```

Beweis

"":
$$f(\mathbb{N}) = A$$
 total & berechenbar
"": χ'_A berechnet durch
 $\chi_2 := 0$;
WHILE $\chi_0 \neq 1$ DO
IF $f(\chi_2) = \chi_1$ THEN $\chi_0 := 1$;
 $\chi_2 := \chi_2 + 1$;
END

Theorem

Eine Sprache *L* ist aufzählbar gdw.

<u>L</u> is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi_A': \mathbb{N} \to \{0,1\}$ (Bijektion zwischen $\mathbb{N} \& \Sigma^*$ berechenbar)

Beweis

"
$$\Rightarrow$$
": $f(\mathbb{N}) = A$ total & berechenbar

$$\sim \chi'_A$$
 berechnet durch

$$|x_2| = 0;$$

WHILE
$$x_0 \neq 1$$
 DO

$$x_2 := x_2 + 1;$$

"←" (Skizze):

Konstruiere Algorithmus der eine totale Funktion f berechnet die A aufzählt:

Versuch 1: Berechne erst $\chi'_A(0)$, dann $\chi'_A(1)$, ... Problem: $\chi'_A(0)$ kann endlos laufen!

$$N = \{0, 1, 2, 3, 4, 5, \dots \}$$

 $\in A$?

Theorem

Eine Sprache L ist aufzählbar gdw.

L is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi'_A: \mathbb{N} \to \{0,1\}$ (Bijektion zwischen $\mathbb{N} \& \Sigma^*$ berechenbar)

Beweis

$$",\Rightarrow"$$
: $f(\mathbb{N}) = A$ total & berechenbar $\sim \chi'_A$ berechnet durch $\chi_2 := 0$:

 $x_2 := 0;$

WHILE
$$x_0 \neq 1$$
 DO

IF
$$f(x_2) = x_1$$
 THEN $x_0 := 1$;

$$x_2 := x_2 + 1;$$

5 END

"←" (Skizze):

Konstruiere Algorithmus der eine totale Funktion *f* berechnet die *A* aufzählt:

Versuch 2: Simuliere $\chi'_A(i)$ für jedes $i \in \mathbb{N}$ einen Schritt, dann noch einen Schritt, ... Problem: es gibt unendlich viele Eingaben $i \in \mathbb{N}$!

Theorem

Eine Sprache L ist aufzählbar gdw.

L is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi'_A: \mathbb{N} \to \{0,1\}$ (Bijektion zwischen N & Σ^* berechenbar)

Beweis

 $,\Rightarrow$ ": $f(\mathbb{N})=A$ total & berechenbar $\sim \chi'_{A}$ berechnet durch

 $|x_2 := 0$:

2 WHILE $x_0 \neq 1$ DO

IF $f(x_2) = x_1$ **THEN** $x_0 := 1$;

 $x_2 := x_2 + 1$:

Mathias Weller (TU Berlin)

5 END

"←" (Skizze):

Konstruiere Algorithmus der eine totale Funktion f berechnet die A aufzählt:

1(n)=

Versuch 3: In Schritt i des Algorithmus für f, simuliere Algorithmus für $\chi'_{A}(j)$ für jedes $j \leq i$ genau einen Schritt, bis $n^{\mathbf{q}}$ Erfolge $(\chi'(j) = 1)$ beobachtet wurden und gebe das letzte erfolgreiche w; aus.

Aufzählbarkeit & (Semi-)Entscheidbarkeit

Theorem

Eine Sprache *L* ist aufzählbar gdw. *L* is semi-entscheidbar.

Beachte: Wir nehmen an, dass $\chi_A': \mathbb{N} \to \{0,1\}$ (Bijektion zwischen \mathbb{N} & Σ^* berechenbar)

Beweis

```
"
\Rightarrow": f(\mathbb{N}) = A total & berechenbar
\Rightarrow \chi'_A berechnet durch
```

$$x_2 := 0;$$

WHILE
$$x_0 \neq 1$$
 DO

IF $f(x_0) = x_1$ THEN $x_0 := 1$;

$$x_2 := x_2 + 1;$$

END

```
"\Leftarrow": Sei \chi_A' berechnet durch WHILE-Programm mit k+1 Variablen y_0,\ldots,y_k (P nutzt y_0 nicht): p_k:=1; WHILE p_k\neq 0 DO p END; p_0:=1 Das folgende Programm zählt P0 auf:
```

 $x_1 := x_1 + 1;$

```
2 WHILE x_1 \neq 0 DO

3 PUSH 0, x_2, 0, \dots, 0, x_2 TO n_1,

4 WHILE n_1 \neq 0 und x_1 \neq 0 DO
```

(POP
$$x_0, y_k, \dots, y_0$$
 FROM $\underline{n_1}$;)

$$\underbrace{\mathsf{IF}\ y_k = 0}_{\mathsf{FLSE}\ \mathsf{PUSH}\ y_0, \ldots, y_k, x_0} \mathsf{TO} \underbrace{n_2}_{n_2} ;$$

END
$$n_1 := n_2$$
;

$$x_2 := x_2 + 1;$$

2/(×2)

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen: A ist semi-entscheidbar

 $\Leftrightarrow \chi'_{A}$ ist berechenbar

⇔A ist aufzählbar

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen: A ist semi-entscheidbar

 $\Leftrightarrow \chi'_A$ ist berechenbar

*⇔*A ist aufzählbar

 $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen: A ist semi-entscheidbar

- $\Leftrightarrow \chi'_{\Delta}$ ist berechenbar
- *⇔*A ist aufzählbar
- $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert
- A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)
 - \Leftrightarrow A ist Wertebereich einer (partiellen) berechenbaren Funktion $g: \Pi^* \to \Sigma^*$ (A läßt sich schreiben als $A = g(\Pi^*)$)

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen: A ist semi-entscheidbar

$$\Leftrightarrow_{\chi'_A}$$
 ist berechenbar

*⇔*A ist aufzählbar

$$\Leftrightarrow A = T(M)$$
 wird von einer Turing-Maschine M akzeptiert

- \Leftrightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$
 - (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)
- \Leftrightarrow A ist Wertebereich einer (partiellen) berechenbaren Funktion $g:\Pi^*\to\Sigma^*$ (A läßt sich schreiben als $A=g(\Pi^*)$)
- [⇔A ist Typ 0-Sprache (Chomsky-Hierarchie)]

 Mathias Weller (TU Berlin)

 Berechenbarkeit und Komplexität

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen:

Berechenbarkeit und Komplexität

A ist semi-entscheidbar

 $\Leftrightarrow \chi'_A$ ist berechenbar

⇔A ist aufzählbar

Mathias Weller (TU Berlin)

 $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert

 \Leftrightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$

(A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)

⇒A ist Wertebereich einer (partiellen) berechenbaren Funktion $g: \Pi^* \to \Sigma^*$

(A läßt sich schreiben als $A = g(\Pi^*)$)

 \Leftrightarrow A ist Typ 0-Sprache (Chomsky-Hierarchie)

A ist entscheidbar

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen:

A ist semi-entscheidbar

A ist entscheidbar

 $\Leftrightarrow \chi'_A$ ist berechenbar

 \Leftrightarrow_{χ_A} ist berechenbar

*⇔*A ist aufzählbar

⇔A endlich oder aufzählbar durch totale, berechenbare, streng monotone Funktion

 $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert

 \Leftrightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)

 \Leftrightarrow A ist Wertebereich einer (partiellen) berechenbaren Funktion $g:\Pi^*\to \Sigma^*$ (A läßt sich schreiben als $A=g(\Pi^*)$)

⇔ A ist Typ 0-Sprache (Chomsky-Hierarchie)

Mathias Weller (TU Berlin)

Berechenbarkeit und Komplexität

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen: A ist semi-entscheidbar

- $\Leftrightarrow \chi'_A$ ist berechenbar
- ⇔A ist aufzählbar
- $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert
- \Rightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)
- \Rightarrow A ist Wertebereich einer (partiellen) berechenbaren Funktion $g: \Pi^* \to \Sigma^*$ (A läßt sich schreiben als $A = g(\Pi^*)$)
- \Leftrightarrow A ist Typ 0-Sprache (Chomsky-Hierarchie) Berechenbarkeit und Komplexität

A ist entscheidbar

- \Leftrightarrow_{χ_A} ist berechenbar
- $\Leftrightarrow A$ endlich oder aufzählbar durch totale, berechenbare, streng monotone Funktion
- $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert die auf allen Eingaben hält

Für beliebige Sprachen $A \subseteq \Sigma^*$ gelten folgende Äquivalenzen:

A ist semi-entscheidbar

A ist entscheidbar

 $\Leftrightarrow \chi'_A$ ist berechenbar

 \Leftrightarrow_{χ_A} ist berechenbar

⇔A ist aufzählbar

⇔ A endlich oder aufzählbar durch totale, berechenbare, streng monotone Funktion

 $\Leftrightarrow A = T(M)$ wird von einer Turing-Maschine M akzeptiert

 \Leftrightarrow A = T(M) wird von einer Turing-Maschine M akzeptiert die auf allen Eingaben hält

 \Leftrightarrow A ist Definitionsbereich einer (partiellen) berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(\Pi^*)$)

 $\stackrel{\leftarrow}{\rightarrow}$ A ist Urbild eines Bildwertes einer totalen,

 \Leftrightarrow A ist Wertebereich einer (partiellen) berechenbaren Funktion $g: \Pi^* \to \Sigma^*$

berechenbaren Funktion $f: \Sigma^* \to \Pi^*$ (A läßt sich schreiben als $A = f^{-1}(1)$, mit $1 \in \Pi^*$)

(A läßt sich schreiben als $A = g(\Pi^*)$)

 \Leftrightarrow A ist Wertebereich einer totalen, berechenbaren, streng monotonen Funktion $g:\Pi^* \to \Sigma^*$ (A läßt sich schreiben als $A=g(\Pi^*)$)

⇔ A ist Typ 0-Sprache (Chomsky-Hierarchie)

Mathias Weller (TU Berlin)

Berechenbarkeit und Komplexität