RB Tree ADT

#### Red - Black Tree

RB Tree = 
$$\{a_1, a_2, a_3, ..., a_n\}$$

As in the other trees, the conditions of the order must be met, in addition to this, each node must have, these colors are red and black, finally, it must meet certain conditions given, it will be seen in the invariant



$$a_7 < a_4 < a_2 < a_2 < a_1 < a_3 < a_6$$

**Note:** The red and black trees have a black height, which will be denoted by hb(x).

$$inv = \{root = color.black\}$$

 $inv = \forall node \ x \rightarrow \{node \ x \mid x = color.red \mid color.black\}$ 

 $inv = \forall node. sheet (null) x \{node. sheet x \mid x = color. black\}$ 

 $inv = \forall node.color.red x \{node x \mid x.sons = color.black\}$ 

 $inv = \forall node \ x \{node \ x \mid x = hb(x)\}$ 

#### **Primitive Operations**

| RB Tree      |                       | RB Tree |
|--------------|-----------------------|---------|
| Add          | RB Tree x Key x Value | RB Tree |
| Delete       | RB Tree x Key Value   | RB Tree |
| Search       | RB Tree x Key x Value | Node    |
| Left Rotate  | RB Tree x Node        | RB Tree |
| Right Rotate | RB Tree x Node        | RB Tree |
| Flip Colors  | RB Tree x Node        | RB Tree |
| Is Red       | RB Tree x Node        | RB Tree |

RB Tree

### RB Tree(): Constructor

Create the RB Tree

 $pre = \{true\}$ 

 $pos = \{RB \ Tree \ initialize\}$ 

#### Add(Key k, Value v): Modifier

Add a new element in the RB Tree, this element will be added with red color and after will be rebalance according to the previous conditions

 $pre = \{true, element\}$ 

pos = {root! = null and new element}

# Delete(Key k, Value v) : Modifier

Search a node with Key k and Value v, after this node is deleted

 $pre = \{node \ x \in RBTree\}$ 

 $pos = \{new \ order \ of \ the \ nodes \ and \ different \ colors\}$ 

# Search(Key k, Value v) : Analyzer

Search a node with Key k and Value v

 $pre \{node x \in RBTree\}$ 

 $pos = \{node \ with \ the \ same \ conditions, Key = k, and \ Value = v\}$ 

#### Left Rotate(Node x) : Modifier

Rotate to the left to accommodate the colors.

 $pre = \{true\}$ 

pos = {new order of the nodes and set colors in the nodes}

#### Right Rotate(Node x) : Modifier

Rotate to the right to accommodate the colors.

 $pre = \{true\}$ 

pos = {new order of the nodes and set colors in the nodes}

# Flip Colors(Node x): Modifier

Change the colors of the nodes according to the invariant

 $pre = \{true\}$ 

 $pos = \{changed\ colors\ of\ the\ nodes\}$ 

# Is Red(Node x): Analyzer

Evaluate if the node is color red

 $pre = \{node x! = null\}$ 

pos = {true or false according its color}