Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М3205	К работе допущен	
Студент <u>Степанюк Аврора, Тросько</u> <u>Виктория</u>	Работа выполнена	
Преподаватель IIIоев В И	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №4.03

Определение радиуса кривизны линзы по интерференционной картине колец Ньютона

- 1. Цель работы.
 - 1. Изучение интерференционной картины Колец Ньютона
- 2. Задачи, решаемые при выполнении работы.
- 1. Определение радиуса кривизны плоско-выпуклой линзы с помощью интерференционной картины колец Ньютона.
 - 2. Оценка спектральной полосы пропуская оптических фильтров.
- 3. Объект исследования.

Интерференционная картина колец Ньютона, радиус кривизны плоско-выпуклой линзы, пропускная способность линзы.

- 4. Метод экспериментального исследования. Лабораторный эксперимент.
- 5. Рабочие формулы и исходные данные.

Исходные данные:

$$\lambda_1 = 546$$
 нм, $\lambda_2 = 578$ нм, $\lambda_3 = 435$ нм

Рабочие формулы:

 $R = \frac{r_m^2 - r_n^2}{(m-n)\lambda}$ — формула радиуса кривизны линзы. r_m, r_n — радиусы двух темных колец с различными порядками интерференции m, n.

 $\Delta \lambda = \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda}$ — формула пропускной способности линзы. λ — длина волны, $r_{disappear}$ — радиус, при котором видность интерференционной картины равна 0, R — радиус линзы.

6. Измерительные приборы.

№ п/п	Наименование	Используемый диапазон	Погрешность прибора
1	Микроскоп МБС-10	10x - 100x	±1 мкм
2	Камера	5МП	±1 мкм

7. Схема установки

8. Результаты прямых измерений и их обработки.

Таблица 1:

λ, нм	<i>N</i> пары	<i>R</i> , мм	$R_{ m cpeg}$, мм	
546	1	1139,495	1141,272	
340	2	1143,049		
578	1	1048,419	1044 602	
3/6	2	1040,946	1044,682	
435	1	1255,172	1160,458	
435	2	1065,744		

1. Расчет радиуса кривизны линзы.

$$R=rac{r_m^2-r_n^2}{(m-n)\lambda}$$
 $R_1=rac{r_2^2-r_1^2}{(2-1)\lambda}=rac{1,258^2-0,98^2}{546 imes10^{-6}}=1139,495$ мм $R_{
m cpe_{
m J}}=1141,272$ мм

2. Расчет среднего значения радиуса, при котором видность интерференционной картины равна 0.

$$r_{disappear} = \frac{3,9+3,9+3,88+3,92+4+4,1+4,07}{7} = 3,967 \text{ MM}$$

Найдем доверительный интервал:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2 \frac{n}{i=0}}{n-1}}$$

$$\sigma = 0.089 \text{ mm}$$

При уровне доверия $\alpha = 0.95$ и 6 степенях свободы, $t_{
m крит} = 2.447$.

$$SE = \frac{\sigma}{\sqrt{n}}$$
 $SE = 0.033$ мм $O: [r_{disappear} - t \times SE; r_{disappear} + t \times SE]$

9. Расчет результатов косвенных измерений.

Таблица 2:

- 1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
λ, нм	Δλ, нм
546	21,195
578	21,175
435	13,728

1. Расчет ширины полосы пропускания.

$$\Delta\lambda = \frac{2\lambda^2 R}{2r_{disappear}^2 + R\lambda}$$

$$\Delta\lambda = \frac{2\times (546\times 10^{-9})^2 \times 1,141}{2\times 0,003967^2 + 1,141\times 546\times 10^{-9}} = 21,195 \text{ нм}$$

10. Расчет погрешностей измерений.

λ, нм	Δ_R , мм	$\Delta_{\Delta\lambda}$, нм
546	5,841	0,11
578	5,518	0,11
435	7,332	0,09

1. Погрешность радиуса кривизны линзы.

$$\begin{split} & \Delta_R = \sqrt{\left(\frac{\Delta_R}{\Delta_{r_m}} \Delta_{r_m}\right)^2 + \left(\frac{\Delta_R}{\Delta_{r_n}} \Delta_{r_n}\right)^2 + \left(\frac{\Delta_R}{\Delta_{\lambda}} \Delta_{\lambda}\right)^2} = \sqrt{\left(\frac{2r_m}{(m-n)\lambda} \Delta_{r_m}\right)^2 + \left(\frac{-2r_n}{(m-n)\lambda} \Delta_{r_n}\right)^2 + \left(\frac{-(r_m^2 - r_n^2)}{(m-n)\lambda^2} \Delta_{\lambda}\right)^2} \\ & \Delta_R = \sqrt{\left(\frac{2\times 1,258}{546\times 10^{-6}} \times 0,001\right)^2 + \left(\frac{-2\times 0,98}{546\times 10^{-6}} \times 0,001\right)^2 + \left(\frac{-(1,258-0,98)^2}{(546\times 10^{-6})^2} \times 0\right)^2} = 5,841 \text{ mm} \end{split}$$

2. Погрешность ширины полосы пропускания.

$$\Delta_{\Delta\lambda} = \sqrt{\left(\frac{\partial\Delta\lambda}{\partial R}\Delta_R\right)^2 + \left(\frac{\partial\Delta\lambda}{\partial r_{disappear}}\Delta_{r_{disappear}}\right)^2} = \sqrt{\left(\frac{2\lambda^2 \times 2r_{disappear}^2}{\left(2r_{disappear}^2 + R\lambda\right)^2}\Delta_R\right)^2 + \left(\frac{-4\lambda^2 Rr_{disappear}}{\left(2r_{disappear}^2 + R\lambda\right)^2}\Delta_{r_{disappear}}\right)^2}$$

$$\Delta_{\Delta\lambda} = \sqrt{\left(\frac{2\times(546\times10^{-9})^2\times2\times0,003967^2}{(2\times0,003967^2+1,141\times546\times10^{-9})^2}\times5,841\right)^2 + \left(\frac{-4\times(546\times10^{-9})^2\times1,141\times0,003967}{(2\times0,003967^2+1,141\times546\times10^{-9})^2}\times0,001\right)^2} = 0,11\ \text{HM}$$

11. Графики.

График 1: Зависимость $r^2(n)$ для каждой длины волны λ .

12. Окончательные результаты.

Радиус кривизны линзы:

$$R_{\text{сред}} = (1115,471 \pm 6,23) \text{ мм}$$

Ширина полосы пропускания:

$$\Delta \lambda_{\rm cpeg} = (18,699 \pm 0,1)$$
 нм

13. Выводы и анализ результатов работы.

В ходе работы изучена интерференционная картина колец Ньютона, возникающая в системе из плоско-выпуклой линзы и плоскопараллельной пластины. По измеренным радиусам тёмных колец для разных длин волн рассчитан радиус кривизны линзы: $R_{\rm cpeq} = (1115,471 \pm 6,23) \, {\rm мм}.$ Ширина полосы пропускания равна $\Delta \lambda_{\rm cpeq} = (18,699 \pm 0,1) \, {\rm нм}.$ Результаты подтверждают применимость метода колец Ньютона для определения геометрических параметров линзы. Погрешности измерений находятся в пределах ожидаемых, что свидетельствует о корректности проведённого эксперимента.

- 14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).
 - 1. Объединить R для каждой длины волны в $R_{
 m cpeg}$.
 - 2. Объединить $\Delta\lambda$ для каждой длины волны в $\Delta\lambda_{\rm cpex}$.
 - 3. Объединить три графика в один.
 - 4. Исправить схему микроскопа.