### Boolean Functional Synthesis and its Applications

Priyanka Golia 1,2

Joint work with: Kuldeep S. Meel <sup>1</sup> and Subhajit Roy <sup>1</sup>





<sup>1</sup>National University of Singapore <sup>2</sup>Indian Institute of Technology Kanpur

Corresponding Papers: CAV 2020, IJCAI 2021, ICCAD 2021 (Best Paper Award Nomination)



# **Synthesis**





### **Functional Synthesis**

Given 
$$\varphi(X, Y)$$
 over inputs  $X = \{x_1, x_2, ..., x_n\}$  and outputs  $Y = \{y_1, y_2, ..., y_m\}$ .  
Synthesize A function vector  $F = \{f_1, f_2, ..., f_m\}$ , such that  $y_i := f_i(x_1, ..., x_n)$  such that:  
$$\exists Y \varphi(X, Y) \equiv \varphi(X, F(X))$$

Each  $f_i$  is called Skolem function and F is called Skolem function vector.

Key Challenge:  $\varphi(X, Y)$  is a relation

### Non-uniqueness of Skolem Functions

Let 
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = x_1 \lor x_2 \lor y_1$$

Possible Skolem function:  $f(x_1, x_2) := \neg(x_1 \lor x_2)$ 

### Non-uniqueness of Skolem Functions

Let 
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = x_1 \lor x_2 \lor y_1$$

Possible Skolem function:  $f(x_1, x_2) := \neg(x_1 \lor x_2)$ 

$$\varphi(X,F(X))=x_1\vee x_2\vee (\neg(x_1\vee x_2))$$

| X                  | $\exists Y \varphi(X, Y)$ |      | $\phi(X, F(X))$ |
|--------------------|---------------------------|------|-----------------|
| $x_1 = 0, x_2 = 0$ | $y_1 = 1$                 | True | True            |
| $x_1 = 0, x_2 = 1$ | $y_1 = 1$                 | True | True            |
| $x_1 = 1, x_2 = 0$ | $y_1 = 1$                 | True | True            |
| $x_1 = 1, x_2 = 1$ | $y_1 = 1$                 | True | True            |

$$\left. \begin{array}{c} - \\ \exists Y \varphi(X, Y) \equiv \varphi(X, F(X)) \end{array} \right.$$

### Non-uniqueness of Skolem Functions

Let 
$$X = \{x_1, x_2\}, Y = \{y_1\} \text{ and } \phi(X, Y) = x_1 \lor x_2 \lor y_1$$

Possible Skolem function:  $f(x_1, x_2) := \neg(x_1 \lor x_2)$ 

$$\varphi(X,F(X))=x_1\vee x_2\vee (\neg(x_1\vee x_2))$$

| X                                                                                    | ∃ <b>Y</b> φ( <b>&gt;</b> | <b>(</b> , <i>Y</i> )        | $\varphi(X, F(X))$           | _ )                                                                                             |
|--------------------------------------------------------------------------------------|---------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|
| $x_1 = 0, x_2 = 0$<br>$x_1 = 0, x_2 = 1$<br>$x_1 = 1, x_2 = 0$<br>$x_1 = 1, x_2 = 1$ | $y_1 = 1$<br>$y_1 = 1$    | True<br>True<br>True<br>True | True<br>True<br>True<br>True | $ \left. \begin{array}{l} \exists Y \varphi(X, Y) \equiv \varphi(X, F(X)) \end{array} \right. $ |

Other possible Skolem functions:  $f_1(x_1, x_2) = \neg x_1$   $f_1(x_1, x_2) = \neg x_2$   $f_1(x_1, x_2) = 1$ 

# **Applications**



# **Applications**



# Application Domain 1: Program Synthesis

Golia et al., IJCAl'21

$$g(x_1, x_2) \ge x_1$$
 and  $g(x_1, x_2) \ge x_2$  and  $(g(x_1, x_2) == x_1$  or  $g(x_1, x_2) == x_2)$ 

 Synthesize program representing function g that satisfies the specification.

# Application Domain 1: Program Synthesis

Golia et al., IJCAl'21

$$g(x_1, x_2) \ge x_1$$
 and  $g(x_1, x_2) \ge x_2$  and  $(g(x_1, x_2) == x_1$  or  $g(x_1, x_2) == x_2)$ 

$$y_1 \ge x_1$$
 and  
 $y_1 \ge x_2$  and  
 $(y_1 == x_1 \text{ or } y_1 == x_2)$ 

- Synthesize program representing function g that satisfies the specification.
- Replace every call of functions g by a new variable y<sub>1</sub> in the specification.

$$\forall x_1, x_2 \exists y_1 \ \varphi(x_1, x_2, y_1)$$

# **Application Domain 1: Program Synthesis**

Golia et al., IJCAl'21

$$g(x_1, x_2) \ge x_1$$
 and  $g(x_1, x_2) \ge x_2$  and  $(g(x_1, x_2) == x_1$  or  $g(x_1, x_2) == x_2$ 

$$y_1 \ge x_1$$
 and  
 $y_1 \ge x_2$  and  
 $(y_1 == x_1 \text{ or } y_1 == x_2)$ 

- Synthesize program representing function g that satisfies the specification.
- Replace every call of functions g by a new variable y<sub>1</sub> in the specification.
- Works with appropriate caveats, e.g., outputs depend on all inputs.

$$\forall x_1, x_2 \exists y_1 \ \varphi(x_1, x_2, y_1)$$

The synthesized skolem function is an implementation of the function  $g(x_1, x_2)$ .

- **Given:** An incomplete implementation and specification.
- **Objective:** Complete the implementation s.t. it is functionally equivalent to specification.

- **Given:** An incomplete implementation and specification.
- **Objective:** Complete the implementation s.t. it is functionally equivalent to specification.





- Inputs  $x_1, x_2$ , Outputs  $y_1, y_2$ .
- Synthesise functions(circuits) for y<sub>1</sub>, y<sub>2</sub> such that it satisfy the given specification.



- Inputs  $x_1, x_2$ , Outputs  $y_1, y_2$ .
- Synthesise functions(circuits) for y<sub>1</sub>, y<sub>2</sub> such that it satisfy the given specification.

$$\forall x_1, x_2 \exists y_1 y_2 \neg (((y_1 \lor y_2) \lor (x_1 \land \neg x_2)) \oplus (x_1 \oplus x_2))$$

### **Diverse Approaches**

 From the proof of validity of ∀X∃Yφ(X, Y)

```
(Bendetti et al., 2005)
(Jussilla et al., 2007)
(Heule et al., 2014)
```

Quantifier instantiation in SMT solvers

```
(Barrett et al., 2015)
(Bierre et al., 2017)
```

Input-Output Separation

```
(Chakraborty et al., 2018)
```

Knowledge representation

```
(Kukula et al., 2000)
(Trivedi et al., 2003)
(Jiang, 2009)
(Kuncak et al., 2010)
(Balabanov and Jiang, 2011)
(John et al., 2015)
(Fried, Tabajara, Vardi, 2016,2017)
(Akshay et al., 2017,2018)
(Chakraborty et al., 2019)
```

Incremental determinization

```
(Rabe et al., 2015, 2018, 2019)
```

### **Diverse Approaches**

 From the proof of validity of ∀X∃Yφ(X, Y)

```
(Bendetti et al., 2005)
(Jussilla et al., 2007)
(Heule et al., 2014)
```

Quantifier instantiation in SMT solvers

```
(Barrett et al., 2015)
(Bierre et al., 2017)
```

Input-Output Separation

```
(Chakraborty et al., 2018)
```

Knowledge representation

```
(Kukula et al., 2000)
(Trivedi et al., 2003)
(Jiang, 2009)
(Kuncak et al., 2010)
(Balabanov and Jiang, 2011)
(John et al., 2015)
(Fried, Tabajara, Vardi, 2016,2017)
(Akshay et al., 2017,2018)
(Chakraborty et al., 2019)
```

Incremental determinization

```
(Rabe et al., 2015, 2018, 2019)
```

Scalability remains the holy grail

## A Data-Driven Approach for Boolean Functional Synthesis



### Manthan



### Manthan





### **Data Generation**

#### Standing on the Shoulders of Constrained Samplers



#### **Learn Candidate Functions**

#### Taming the Curse of Abstractions via Learning with Errors



### **Verification of Candidate Functions**

#### Reaping the Fruits of Formal Methods Revolution

$$\textit{E(X,Y,Y')} := \phi(\textit{X},\textit{Y}) \land \neg \phi(\textit{X},\textit{Y'}) \land (\textit{Y'} \leftrightarrow \textit{F(X)})$$

(JSCTA'15)

- If E(X, Y, Y') is UNSAT:  $\exists Y \phi(X, Y) \equiv \phi(X, F(X))$ 
  - Return F
- If E(X, Y, Y') is SAT:  $\exists Y \phi(X, Y) \not\equiv \phi(X, F(X))$ 
  - Let  $\sigma \models E(X, Y, Y')$  be a counterexample to fix.

• 
$$\sigma = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 0, y_1' \mapsto 0, y_2' \mapsto 1\}.$$

- $\sigma = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 0, y_1' \mapsto 0, y_2' \mapsto 1\}.$
- Repair: If  $\underbrace{x_1 \wedge x_2}_{\beta = \{x_1, x_2\}}$  then  $y_1 = 1$

- $\sigma = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 0, y_1' \mapsto 0, y_2' \mapsto 1\}.$
- Repair: If  $\underbrace{x_1 \wedge x_2}_{\beta = \{x_1, x_2\}}$  then  $y_1 = 1$



- $\sigma = \{x_1 \mapsto 1, x_2 \mapsto 1, y_1 \mapsto 1, y_2 \mapsto 0, y_1' \mapsto 0, y_2' \mapsto 1\}.$
- Repair: If  $\underbrace{x_1 \wedge x_2}_{\beta = \{x_1, x_2\}}$  then  $y_1 = 1$





### Manthan



### **Experimental Evaluations**

- 609 Benchmarks from:
  - QBFEval competition
  - Arithmetic
  - Disjunctive decomposition
  - Factorization
- Compared Manthan with State-of-the-art tools: CADET (Rabe et al., 2019), BFSS (Akshay et al., 2018), C2Syn (Chakraborty et al., 2019).
- Timeout: 7200 seconds.

## **Experimental Evaluations**



| C2Syn | BFSS | CADET |
|-------|------|-------|
| 206   | 247  | 280   |

## **Experimental Evaluations**



| C2Syn | BFSS | CADET | Manthan |
|-------|------|-------|---------|
| 206   | 247  | 280   | 509     |

An increase of 223 benchmarks.

#### Conclusion

Manthan: A Data-Driven Approach for Boolean Functional Synthesis.



Constrained Sampling



**Decision List Classifier** 



Formal Methods



Solves 509 benchmarks — state of the art could solve 280



https://github.com/meelgroup/manthan

Thanks!