FINE-TUNING AN LLM

What does pre-training mean?

What does fine-tuning mean?

How many parameters does BERT have?

Is BERT much smaller than GPT?

How was the BERT model pre-trained?

How does MLM pre-training objective work?

How does NSP pre-training objective work?

Pre-training

is like a child learning to read and write his/her mother tongue.

Fine Tuning

is like a student learning to use language to perform complex tasks in high school and college.

In-Context Learning

is like a working professional trying to figure out his/her manager's instructions

Zero Shot vs Few Shot

TEXT CLASSIFICATION

My experience so far has been fantastic!

POSITIVE

The product is okay I guess.

NEUTRAL

Your support team is useless.

NEGATIVE

Classical NLP Approach

Requires Fine Tuning

Requires Fine Tuning

Is only the classifier layer on top trained or are the BERT parameters also updated during fine-tuning?

NAMED ENTITY RECOGNITION

EXAMINATION_VALUE EXAMINATION_UNIT

ROUTE_OR_MODE

BERT NER: The B-I-O Notation

Yesterday	,	Rohan	Sharma	traveled	to	Mumbai	
О	0	B-PER	I-PER	О	Ο	B-LOC	Ο

INFORMATION RETRIEVAL

SBERT Fine-Tuning

- The query has a vector representation using embeddings
- Documents in the database stored as embeddings

Brute Force Approach:

Do a dot product of the query vector with the embeddings of all the documents, and choose the one that gives the closest match

 Hierarchical Navigable Small World (HNSW):
 Create a layered graph structure of the document embedding vectors so that the search process is made much faster

QUESTION ANSWERING

Passage Sentence

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity.

Question

What causes precipitation to fall?

Answer Candidate

Gravity

Question: How many parameters does BERT-large have?

Reference Text:

BERT-large is really big... it has 24 layers and an embedding size of 1,024, for a total of 340M parameters! Altogether it is 1.34GB, so expect it to take a couple minutes to download to your Colab instance.

How to fine-tune BIG models?

Quantization

- LLMs require a large amount of expensive GPU memory
 - Large number of parameters
 - High precision of the floating point numbers

Model	Original Size	Quantized Size (4-bit)
LLaMA2 7B	13 GB	3.9 GB
LLaMA2 13B	24 GB	7.8 GB
LLaMA2 30B	60 GB	19.5 GB
LLaMA2 65B	120 GB	38.5 GB

NVIDIA A100 has 80 GB memory and costs around INR 12-15 lakhs

Distillation

- Transfer of knowledge from larger "teacher" model to a smaller "student" model
- Smaller model represents the bigger model for specific tasks
- Larger model learns the distribution from the data
- Smaller model learns the distribution from the larger model

	BERT	RoBERT	DistilBERT	XLNet
Size (millions)	Base: 110 Large: 340	Base: 110 Large: 340	Base: 66	Base: ~110 Large: ~340
Training Time	Base: 8 x V100 x 12 days* Large: 64 TPU Chips x 4 days (or 280 x V100 x 1 days*)	Large: 1024 x V100 x 1 day; 4-5 times more than BERT.	Base: 8 x V100 x 3.5 days; 4 times less than BERT.	Large: 512 TPU Chips x 2.5 days; 5 times more than BERT.
Performance	Outperforms state-of- the-art in Oct 2018	2-20% improvement over BERT	5% degradation from BERT	2-15% improvement over BERT
Data	16 GB BERT data (Books Corpus + Wikipedia). 3.3 Billion words.	160 GB (16 GB BERT data + 144 GB additional)	16 GB BERT data. 3.3 Billion words.	Base: 16 GB BERT data Large: 113 GB (16 GB BERT data + 97 GB additional). 33 Billion words.
Method	BERT (Bidirectional Transformer with MLM and NSP)	BERT without NSP**	BERT Distillation	Bidirectional Transformer with Permutation based modeling

