

RESEARCH

Muhammad Nova Ramadhana 21081010235

Formulasi Permasalahan

Latar Belakang:

- Tempat bersejarah di Surabaya menarik banyak wisatawan.
- Kendala utama: Kesulitan menentukan rute tercepat karena padatnya lalu lintas dan minimnya informasi.

Rumusan Masalah:

- 1. Bagaimana performa algoritma A* dibandingkan dengan algoritma Dijkstra dalam mencari rute tercepat di peta kota Surabaya menuju tempat bersejarah?
- 2. Faktor apa saja yang memengaruhi efisiensi kedua algoritma tersebut dalam konteks lingkungan geografis Surabaya?
- 3. Algoritma mana yang lebih optimal untuk digunakan dalam sistem navigasi berbasis lokasi di Surabaya?

Formulasi Permasalahan

Research Gap:

- 1. Bagaimana performa algoritma A* dibandingkan dengan algoritma Dijkstra dalam mencari rute tercepat di peta kota Surabaya menuju tempat bersejarah?
- 2. Faktor apa saja yang memengaruhi efisiensi kedua algoritma tersebut dalam konteks lingkungan geografis Surabaya?
- 3. Algoritma mana yang lebih optimal untuk digunakan dalam sistem navigasi berbasis lokasi di Surabaya?

Mind Map

Topik Utama: Perbandingan Algoritma Penentuan Rute Terpendek

Metode:

Pengumpulan data peta dan titik bersejarah

- Implementasi Algoritma Dijkstra & A*
- Graf berbobot dari data Google Maps
- Pengujian dan evaluasi performa

Studi Terdahulu:

- Kota Toboali (Dijkstra untuk rute wisata berbasis web)
- Danau Toba (Dijkstra untuk rute wisata lokal)

Hasil dan Analisis

- Perbandingan waktu eksekusi
- Akurasi hasil rute

Metode

Tahapan Penelitian

- Pengumpulan Data:
- a. Data peta Surabaya (OpenStreetMap, Google Maps, dll.)
- b. Daftar tempat bersejarah di Surabaya.
- Pemodelan Peta:
 - Representasi graf berdasarkan simpul (nodes) dan tepi (edges).
- Implementasi Algoritma:
- Implementasikan algoritma A* dan Dijkstra menggunakan bahasa pemrograman (Python, Java, dll.).
- Simulasi dan Eksperimen:
- Menalankan algoritma pada dataset peta dengan berbagai skenario.
- Evaluasi Hasil:
- Bandingkan hasil berdasarkan waktu eksekusi, jumlah simpul yang diperiksa, dan efisiensi memori.

Parameter Uji

- Waktu eksekusi algoritma.
- Jumlah simpul yang diperiksa.
- Panjang rute yang dihasilkan.
- Penggunaan memori.

Matriks Pengujian

Aspek Uji	Parameter	Evaluasi
Waktu Eksekusi	Waktu (ms)	Stopwatch/perhitung an internal program.
Kompleksitas Proses	Jumlah simpul yang diperiksa	Log data simpul selama proses pencarian.
Akurasi Rute	Panjang Rute (Km/m)	Bandingkan Hasil Rute dengan peta sebenarnya
Efisiensi Memori	Memori yang digunakan (MB)	Profiling memori selama proses pencarian

THANK YOU

