Dynamic Programming

Dr. Priyadarshan Dhabe,

Ph.D (IIT Bombay)

Professor in Information Technology

What is Dynamic programming?

- It is algorithm design technique where the subproblems of the same form occurs many time.
- We store the result and use it to avoid re-computation of subproblems repeatedly encountered in getting solution to original problem.
- It is mostly used for optimization problems, problems where multiple solutions are there and we have to opt for best solution (define optimization problem, linear and non linear programming)
- Storing the results of subproblems and using the tabulated/stored results of them is key feature of dynamic programming.

Dynamic programming-general strategy

- Dynamic programming, like the divide-and-conquer method, solves problems by combining the solutions to subproblems.
- "Programming" in this context refers to a tabular method.
- divide-and-conquer algorithms partition the problem into disjoint subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
- In contrast, dynamic programming applies when the subproblems <u>overlap</u>—that is, <u>when subproblems share</u> <u>subsubproblems</u>. In this context, a divide-and-conquer algorithm does more work than necessary, repeatedly solving the common subsubproblems.
- A dynamic-programming algorithm solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem.

Dynamic programming-general strategy

- We typically apply dynamic programming to optimization problems. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value.
- When developing a dynamic-programming algorithm, we follow a sequence of four steps:
- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. **Compute** the value of an optimal solution, typically in a **bottom-up fashion.**
- 4. Construct an optimal solution from computed information

Fibonacci sequence algorithm-Recursive version

Fibonacci sequence algorithm-Recursive version

$$T(n) = T(n-1) + T(n-2) + 1$$

Fibonacci sequence algorithm-Recursive version performance

For computing Fib(n) we need $(2^{n-1} + 1)$ calls

Fibonacci sequence algorithm- Dynamic prog.

```
Int FibDP(int n)
{
  int Fib[n+1]; //array of n+1
  Fib[0]=0; Fib[1]=1; //base
  for i=2 to n
    Fib[i]=Fib[i-1]+Fib[i-2];
  return Fib[n];
}
```

- Fib[] is an array of size n+1
- At each iteration i ,previous 2 values (i-1) and (i-2) are added
- O(n) time and space complexity

Recursive	Dynamic Programming
Time exponential O(2^n)	Time linear O(n)
Space O(2^n)	Space O(n)

https://algorithms.tutorialhorizon.com/introduction-to-dynamic-programming-fibonacci-series/

Travelling salesman Problem- Dynamic prog.

A salesman has to visit set of n cities. Each city
has to be visited only once and has to return
to the same starting city, such that the
distance travelled should be minimum.

Travelling salesman Problem (TSP)- Dynamic prog.

 The dynamic programming approach is to solve the smaller subproblems first and use their stored solutions to get solutions for bigger problems, there by avoiding the repeated computations.

Matrix C

Travelling salesman Problem (TSP)- Dynamic prog.

- Way of working/understanding
 - Will solve by using brute-force
 - Derive the formula
 - Apply the formula

TSP- Using Dynamic prog.

Need to be solved bottom up manner-brute force

Need to be solved bottom up manner-brute force

• Lets generate formula for the above problem and then we will generalize it to any starting node.

$$g(1,\{2,3,4\}) = \min \begin{cases} C_{1,2} + g(2,\{3,4\}) \\ C_{1,3} + g(3,\{2,4\}) \\ C_{1,4} + g(4,\{2,3\}) \end{cases}$$

 $g(1,\{2,3,4\})$ - cost of going from node 1 and visiting each of the node from set $s=\{2,3,4\}$ once and returning back to node 1.

$$g(2,\{3,4\}) = \min \begin{cases} C_{2,3} + g(3,\{4\}) \\ C_{2,4} + g(4,\{3\}) \end{cases}$$

$$g(3,\{2,4\}) = \min \begin{cases} C_{3,2} + g(2,\{4\}) \\ C_{3,4} + g(4,\{2\}) \end{cases}$$
$$g(4,\{2,3\}) = \min \begin{cases} C_{4,2} + g(2,\{3\}) \\ C_{4,3} + g(3,\{2\}) \end{cases}$$

 $g(3,\{4\}) = C_{3,4} + g(4,\phi)$ $g(4,\phi)$ – cost of going from 4 through each node in empty set and returning to node 1, which is same as $C_{4,1}$

$$g(4,{3}) = C_{4,3} + g(3,\phi)$$

$$g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\}$$
 where
$$g(i,S)$$
- is the shortest path starting from i

and going through all the vertices in set S

and terminate at node *i*.

Starting from level 3 compute the costs, there are links between each of the node 2,3,4 to the city 1.

$$g(2, \phi) = c_{21} = 5$$

 $g(3, \phi) = c_{31} = 6$
 $g(4, \phi) = c_{41} = 8$

$$g(i,S) = \min_{j \in S} \left\{ c_{ij} + g(j,S - \{j\}) \right\}$$

 $g(2,\phi)$ - means there are no intermediate nodes bet 2 and 1

Computing costs at level 2

$$g(i,S) = \min_{j \in S} \left\{ c_{ij} + g(j,S - \{j\}) \right\}$$

$$g(2,\{3\}) = c_{23} + g(3,\phi) = 9 + 6 = 15$$

$$g(2,\{4\}) = c_{24} + g(4,\phi) = 10 + 8 = 18$$

$$g(3,\{2\}) = c_{32} + g(2,\phi) = 13 + 5 = 18$$

$$g(3,\{4\}) = c_{34} + g(4,\phi) = 12 + 8 = 20$$

$$g(4,\{3\}) = c_{43} + g(3,\phi) = 9 + 6 = 15$$

 $g(4,\{2\}) = c_{42} + g(2,\phi) = 8 + 5 = 13$

Computing costs at level 1

$$g(i, S) = \min_{j \in S} \left\{ c_{ij} + g(j, S - \{j\}) \right\}$$

$$\begin{split} g(2,\{3,4\}) &= \min \begin{cases} j = 3 & c_{23} + g(3,\{4\}) = 9 + 20 = 29 \\ j = 4 & c_{24} + g(4,\{3\}) = 10 + 15 = 25 \end{cases} \\ g(2,\{3,4\}) &= 25 \\ g(3,\{2,4\}) &= \min \begin{cases} j = 2 & c_{32} + g(2,\{4\}) = 13 + 18 = 31 \\ j = 4 & c_{34} + g(4,\{2\}) = 12 + 13 = 25 \end{cases} \\ g(3,\{2,4\}) &= 25 \end{split}$$

Computing costs at level 1

$$g(i, S) = \min_{j \in S} \{c_{ij} + g(j, S - \{j\})\}\$$

$$g(4,\{2,3\}) = \min \begin{cases} j = 2 & c_{42} + g(2,\{3\}) = 8 + 15 = 23 \\ j = 3 & c_{43} + g(3,\{2\}) = 9 + 18 = 27 \end{cases}$$
$$g(4,\{2,3\}) = 23$$

Computing costs at level 0

$$g(i, S) = \min_{j \in S} \left\{ c_{ij} + g(j, S - \{j\}) \right\}$$

$$g(1,\{2,3,4\}) = \min \begin{cases} j = 2 & c_{12} + g(2,\{3,4\}) = 10 + 25 = 35 \\ j = 3 & c_{13} + g(3,\{2,4\}) = 15 + 25 = 40 \\ j = 4 & c_{14} + g(4,\{2,3\}) = 20 + 23 = 43 \end{cases}$$

$$g(1,\{2,3,4\}) = 35$$
Final argument

Final answer

0/1 knapsack problem

- We have a knapsack with a capacity of weight W and a set of objects with their corresponding profits. We have to choose the set of objects with weights <= W and has to maximize the profit.
- 0/1 means we can either pick an object (1) or not pick(0) it. That is **partial object** is not allowed.
- An object can be picked only once.

0/1 knapsack problem

Object	ob1	ob2	ob3
weight	2	4	8
profit	20	25	60

Given knapsack capacity M=12, find the objects to be put in the sack to get maximum profit with weight<=12

For each object two possibilities are there 1 or 0. Thus, for n objects we have 2ⁿ possibilities.

0/1 knapsack problem-brute force approach

Object	ob1	ob2	ob3
weight	2	4	8
profit	20	25	60

In this case 2³=8 possibilities are there.

objects	Weight	profit	
000	0	0	
001	8	60	
010	4	25	
011	12	85	
100	2	20	
101	10	80	
110	6	45	
111	14 >12 (not possible)		

Increasing order

M[i, w]=profit

For i=0, no item is considered and thus, first row of M will be zero, since no profit from 0 objects

Increasing order

Considering first object and ignore remaining objects

M[i, w]=profit

Increasing order

Considering 1 and 2 nd object

M[i, w]=profit

	i		W ·	->	M							
				0	1	2	3	4	5	6	7	8
pi	wi		0	0	0	0	0	0	0	0	0	0
2	3		1	0	0	0	2	2	2	2	2	2
3	4	•	2	0	0	0	2	3	3	3	5	5
4	5	1	3	0	0	0	2	3	4	4	5	6
1	6		4	0								

Increasing order

Considering 1,2 and 3rd object

M[i, w]=profit

Increasing order

Final answer

Considering 1,2, 3 and 4th object

M[i, w]=profit

0/1 knapsack problem- Dynamic Prog.-Philosophy

 The optimal solution to the overall problem depends upon the optimal solution to its subproblems. This simple optimization reduces time complexities from exponential to polynomial.

$$M[i, w] = \max(M[i-1, w], M[i-1, w-w[i]] + p[i])$$

Where p[i]- is profit from i th object

$$M[i, w] = \max(M[i-1, w], M[i-1, w-w[i]] + p[i])$$

$$M[2,4] = \max(M[1,4], M[1,4-4] + p[2])$$

$$M[2,4] = \max(M[1,4], M[1,0] + 3)$$

$$M[2,4] = \max(2,0+3)$$

$$M[2,4] = 3$$

$$M[i, w] = \max(M[i-1, w], M[i-1, w-w[i]] + p[i])$$

$$M[2,7] = \max(M[1,7], M[1,7-4] + p[2])$$

$$M[2,7] = \max(M[1,7], M[1,3] + 3)$$

$$M[2,7] = \max(2,2+3)$$

$$M[2,7] = 5$$

W ->

pi	wi
2	3
3	4
4	5
1	6

	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0	0	2	2	2	2	2	2
2	0	0	0	2	3	3	3	5	5
3	0	0	0	2	3	4	4	5	6
4	0	0	0	2	3	4	4	5	6

Deciding the objects in the sack

https://www.youtube.com/watch?v=nLmhmB6NzcM

Time complexity of Dynamic programming is O(n*w) (polynomial time), where n-number of objects and W is the knapsack capacity. Using Brute-force approach is O(2^n) (exponential time)

Solve 0/1 knapsack problem using Dynamic Prog.

Weights={2,3,4,5}, Profit={1,2,5,6}, capacity W=8 and N=4

TSP-Time complexity

For a pnroblem of size n cities, there can be 2^n subsets of set S. Each subset contains max n cities. Thus, there are $2^n.n$ subproblems. To solve each problem we need O(n) linear time, thus

$$T(n) = O(2^n . n.n) = O(2^n . n^2)$$