Image Retrival by Comparing Color Features

Abdullah Al Mamun (1305003) S. Mahmudul Hasan (1305043)

Bangladesh University of Engineering and Technology

November 13, 2016

The original Research was done by:

S.R. Kodituwakku¹

&

S.Selvarajah²

¹University of Peradeniya

²University of Jaffna

Outline

- Problem
 - Image Retrieval
 - Application
- 2 Proposal
 - Color Features
- 3 Methodology
 - Color Reduction
 - Histogram Based Image Retrival
 - Extraction of Visual Feature
 - Coherence Bassed Image Retrival
- 4 Results
- Decisions

mage Retrieva Application

<u>Problem</u>

What is Image Retrieval?

- Retrieve image from database
- Search by keywords or a query image

What is Image Retrieval?

- Retrieve image from database
- Search by keywords or a query image
- Our focus: Content Based Image Retrieval (CBIR)

Content Based Image Retrieval

- Search key is an **image**
- Retrieve image comparing similarity

Application

- Finding similar images
- Retrieving a criminal's profile

Image Retrieval Application

Color Features

Proposal

Proposal

Compare the Color Features

Color Features

Color Features

Color Features

Color Features

Color Moments

Color Features

- Color Moments
- Histogram

Color Features

- Color Moments
- Histogram
- Color Coherent Vector (CCV)

Color Features

Color Moments

Color Features

Color Moments

Mean

- Mean
- Variance

- Mean
- Variance
- Standard Deviation

- Mean
- Variance
- Standard Deviation

Let, P_{ij} is the pixel value of the pixel on *i*th row and *j*th column. N is the number of pixels.

- Mean
- Variance
- Standard Deviation

Let, P_{ij} is the pixel value of the pixel on *i*th row and *j*th column. N is the number of pixels.

$$mean = \frac{SUM(P_{ij})}{N}$$

- Tonal distribution of pixels.
- Tonal range is a measurement of darkness or lightness

- Tonal distribution of pixels.
- Tonal range is a measurement of darkness or lightness
- Can be used to find the Color Moments
- Used for very large datasets when direct methods are expensive

Problems?

■ Two different images may have almost same histogram.

Color Coherent Vector (CCV)

Differentiate every pixel into 2 categories:

- Coherent neighborhood pixels have similar tonal range
- Incoherent otherwise

Color Coherent Vector (CCV)

Differentiate every pixel into 2 categories:

- Coherent neighborhood pixels have similar tonal range
- Incoherent otherwise

CCV represents this classification for each color.

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

METHODOLOGY

Color Reduction

Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Color Reduction

Color Reduction

Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Color Reduction

■ True Color: supports 24-bit for three RGB colors

Color Reduction

Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Color Reduction

- True Color: supports 24-bit for three RGB colors
- Total number of possible colors: 2²⁴

Color Reduction

Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Color Reduction

■ True Color: supports 24-bit for three RGB colors

■ Total number of possible colors: 2²⁴

Reduced to: 256

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Histogram Based Image Retrival

Two techniques:

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Histogram Based Image Retrival

Two techniques:

■ GCH: Global Color Histogram

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Histogram Based Image Retrival

Two techniques:

- GCH: Global Color Histogram
- LCH: Local Color Histogram

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Histogram Based Image Retrival

Two techniques:

■ GCH: Global Color Histogram

■ LCH: Local Color Histogram

GCH:

Represents images with single histogram.

Histogram Based Image Retrival

Two techniques:

■ GCH: Global Color Histogram

■ LCH: Local Color Histogram

GCH:

Represents images with single histogram.

LCH:

Images are divided into fixed blocks of size 8x8 & histogram is obtained for each block

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Histogram Based Image Retrival

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Histogram Based Image Retrival

Steps for using histogram:

■ Histograms of all images in the databes are computed & stored

Histogram Based Image Retrival

- Histograms of all images in the databes are computed & stored
 - Histogram of the query image is computed

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics
- Identify relevant images using a fixed threshold value

Steps for using histogram:

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics
- Identify relevant images using a fixed threshold value

Euclidian Distance Metrics?

Steps for using histogram:

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics
- Identify relevant images using a fixed threshold value

Euclidian Distance Metrics?

For 3D

distance(
$$(x, y, z), (a, b, c)$$
) = $\sqrt{(x - a)^2 + (y - b)^2 + (z - c)^2}$ (1)

Steps for using histogram:

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics
- Identify relevant images using a fixed threshold value

Euclidian Distance Metrics?

For 3D

distance(
$$(x, y, z), (a, b, c)$$
) = $\sqrt{(x - a)^2 + (y - b)^2 + (z - c)^2}$ (1)

Let, Image A:
$$(x_1, x_2, ..., x_n)$$

Image B: $(y_1, y_2, ..., y_n)$

Steps for using histogram:

- Histograms of all images in the databes are computed & stored
- Histogram of the query image is computed
- Measure similarity of database's images and query images using euclidian distance metrics
- Identify relevant images using a fixed threshold value

Euclidian Distance Metrics?

For 3D

distance(
$$(x, y, z), (a, b, c)$$
) = $\sqrt{(x - a)^2 + (y - b)^2 + (z - c)^2}$ (1)

Let, Image A:
$$(x_1, x_2, ..., x_n)$$

Image B: $(y_1, y_2, ..., y_n)$

Distance between A & B =
$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Extraction of Visual Feature

³Threshold value is based on the difference of the properties ⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retriva

Extraction of Visual Feature

Extract viusal features using color histograms and moments

³Threshold value is based on the difference of the properties ⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟩⟩ ⟨⟨⟨⟩⟩

Extraction of Visual Feature

Extract viusal features using color histograms and moments

■ Calculate mean and std. deviations of database images and store

Extraction of Visual Feature

Extract viusal features using color histograms and moments

- Calculate mean and std. deviations of database images and store
- Compare mean & std. deviation of DB's images & query image

³Threshold value is based on the difference of the properties ⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩ ⟨⟨⟨⟨⟨⟩⟩⟩

Extraction of Visual Feature

Extract viusal features using color histograms and moments

- Calculate mean and std. deviations of database images and store
- Compare mean & std. deviation of DB's images & query image
- Rank relevant images based on a fixed threshold value³

³Threshold value is based on the difference of the properties ⟨⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩ ⟨⟨⟨⟨⟨⟨⟩⟩⟩⟩

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Coherence Measure

Pixels: Coherent or Incoherent

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

■ Part of a sizable contiguous region

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute connected components for pixel groups⁴

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute connected components for pixel groups⁴
- Size of a pixel group need to exceed a fixed value⁵

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute connected components for pixel groups⁴
- Size of a pixel group need to exceed a fixed value⁵

Incoherent pixels: The rest of the pixels

Steps for image retrival:

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute connected components for pixel groups⁴
- Size of a pixel group need to exceed a fixed value⁵

Incoherent pixels: The rest of the pixels

Steps for image retrival:

Classify pixels as coherent or incoherent.

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute **connected components** for pixel groups⁴
- Size of a pixel group need to exceed a fixed value⁵

Incoherent pixels: The rest of the pixels

Steps for image retrival:

- Classify pixels as coherent or incoherent.
- Use a **color coherence vector** to represent those for each color.

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Coherence Measure

Pixels: Coherent or Incoherent

Coherent pixels:

- Part of a sizable contiguous region
- Compute **connected components** for pixel groups⁴
- Size of a pixel group need to exceed a fixed value⁵

Incoherent pixels: The rest of the pixels

Steps for image retrival:

- Classify pixels as coherent or incoherent.
- Use a **color coherence vector** to represent those for each color.
- Compute similarity between query & DB's images CCVs and retrive.

⁴A pixel and its 8 surrounding neighbours

⁵1% of the total image area

Color Reduction Histogram Based Image Retrival Extraction of Visual Feature Coherence Bassed Image Retrival

RESULTS

Results

Results

General purpose image database containing 14500 images is used.

Results

General purpose image database containing 14500 images is used.

Categories:

Results

General purpose image database containing 14500 images is used.

Categories:

- Africans & villages
- **Beaches**
- **Buildings**
- Buses

- Dinosaurs Elephants
- Flowers
- Horses

- Mountains & glaciers
- Foods Faces
- Objects

- **Drawings**
- Textures
- Natural scenes

General purpose image database containing 14500 images is used.

Categories:

■ Africans &	Dinosaurs
villages	■ Elephants
BeachesBuildings	■ Flowers

Image Details in the DB:

Buses

General purpose image database containing 14500 images is used.

Categories:

- Africans & villages
- Beaches■ Buildings
- Building ■ Buses

- DinosaursElephants
 - Flowers ■ Horses

- Mountains & glaciers
 - ☐ Foods☐ Faces
- Faces ■ Objects

- Drawings
- Textures
- Natural scenes

Image Details in the DB:

■ Image Format: **JPEG**

General purpose image database containing 14500 images is used.

Categories:

- Africans & villages
- Beaches
- Buildings
- Buses

- DinosaursElephants
 - Flowers
 - Horses

- Mountains & glaciers
- Foods
 Faces
- FacesObjects

- Drawings
- **Textures**
- Natural scenes

Image Details in the DB:

■ Image Format: JPEG

■ Imgae Size: **384x256**

Results

General purpose image database containing 14500 images is used.

Categories:

- Africans & villagesBeaches
- BeachesBuildings
- Buses

- Dinosaurs■ Elephants
 - Flowers■ Horses

- Mountains & glaciers
- Foods
 Faces
- Faces■ Objects

- Drawings
- **Textures**
- Natural scenes

Image Details in the DB:

Image Format: JPEGImgae Size: 384x256

■ Image Representation: RGB color space

Results

General purpose image database containing 14500 images is used.

Categories:

Africans & villages Beaches Buildings

Buses

Dinosaurs **Elephants**

Flowers Horses

Mountains & glaciers

Foods Faces

Objects

Drawings

Textures

Natural scenes

Image Details in the DB:

Image Format: JPEG Imgae Size: 384x256

Image Representation: RGB color space

■ Image used: 5 per category

Results

General purpose image database containing 14500 images is used.

Categories:

Africans & villages Beaches Buildings

Buses

Dinosaurs **Elephants**

Flowers Horses

Mountains & glaciers

Foods Faces Objects Drawings

Textures

Natural scenes

Image Details in the DB:

Image Format: JPEG Imgae Size: 384x256

Image Representation: RGB color space

■ Image used: 5 per category

■ Image Types: Uniform, non-uniform & average color distribution

Results

Results

Performance Measurement Metrics:

Results

Performance Measurement Metrics:

Precision: Relevant retrived images
Total retrived images

Results

Performance Measurement Metrics:

Precision: Relevant retrived images
Total retrived images

Recall: Relevant retrived images

Total relevant images in DB

Results

Performance Measurement Metrics:

Precision: Relevant retrived images
Total retrived images

■ Recall: Relevant retrived images

Total relevant images in DB

Table: Category - Dinosaurs

Descriptor	Recall	Precision
СМ	0.100137931	0.698748797
Civi	0.09862069	0.754219409
	0.097586207	0.815092166
GCH	0.099586207	0.529325513
GCII	0.09862069	0.580121704
	0.096551724	0.615114236
LCH	0.097586207	0.5
LCII	0.095586207	0.508064516
	0.093586207	0.534672971
CCV	0.10062069	0.555597867
CCV	0.099586207	0.585801217
	0.096551724	0.631483987

Table: Category - Africans

Descriptor	Recall	Precision
GCH & CCV	0.088531187	0.871287129
GCIT & CCV	0.08249497	0.872340426
	0.079476861	0.877777778
LCH & CCV	0.100603622	0.487804878
LCH & CCV	0.099597586	0.5
	0.097585513	0.510526316
CCV, CM, LCH & GCH	0.095573441	0.95959596
CCV, CM, LCH & GCH	0.09054326	0.97826087
	0.088531187	0.988764045
GCH. LCH & CCV	0.098591549	0.439461883
GCH, LCH & CCV	0.096579477	0.507936508
	0.095573441	0.50802139

DECISIONS

Decisions

Which feature gives better performance?

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram

■ Average Color Distribution: Color Moments

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram
■ Average Color Distribution: Color Moments

■ Widely Scattered Colors: Color Coherent Vector

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram
■ Average Color Distribution: Color Moments

■ Widely Scattered Colors: Color Coherent Vector

No feature is superior to other as performance is color distribution dependent.

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram
■ Average Color Distribution: Color Moments

■ Widely Scattered Colors: Color Coherent Vector

No feature is superior to other as performance is color distribution dependent.

But

Decisions

Which feature gives better performance?

■ Uniform Color Distribution: Color Histogram Average Color Distribution: Color Moments

■ Widely Scattered Colors: Color Coherent Vector

No feature is superior to other as performance is color distribution dependent.

But

The **combination** of different descriptors gives most satisfactory results.

Thank you!

Questions?