Problem Session #6

2/15/2025

D2D 111

Recall Problem Session #4, we solved ID diffusionadvection equation Using FEA. Today we are going to solve it in 2D

2D diffusion-advection problem, Reo, f. v. & V2

find 7 smooth enough such that.

$$T(-1,y) = \widetilde{T}, \qquad \overline{T} = [-1,1] \times [0,1]$$

T(1, y) = T2

This  $n_i = 0$  on y = -1 and y = 1.

Consider a simple mosh - 6 nodes using linear triangles

| node | Coordinate | y .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # 1  | (-1,0)     | 2 8 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| # 2  | (-1,1)     | 3, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| #3   | (0,0)      | 1-0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| # 4  | (0,1)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| # 5  | (1,0)      | and the second of the second o |



The Galerkin formulation is stated as:

Find 
$$T_h \in \mathcal{T}_h = \operatorname{Span} \{N_3, N_4\}$$
 s.t.

 $a(T_h, w_h) = l(w_h) - a(w_h, T_h^g)$ ,

 $\forall w_h \in W_h = \mathcal{T}_h$ 

-

reorganize the sign of summation 
$$\underbrace{\sum_{a=3}^{4} \psi_{a}^{4} a(T_{b}N_{b}, N_{a})}_{A=3} = \underbrace{\sum_{a=3}^{4} w_{a} l(N_{a})}_{A=3} - \underbrace{\sum_{a=3}^{4} w_{a} a(T_{h}, N_{a})}_{A=3},$$

$$\forall w_{h} \in \mathcal{N}_{h} = T_{h}$$

We can reformate the equation as:
$$\frac{4}{5} a(N_b, N_a)T_b = A(N_a) - a(T_h^g, N_a).$$
Kisibi, isia =  $a(N_b, N_a)$ 

local version of finite element.
$$a(T_h, w_h)_{x} = \sum_{l, s}^{e} a(T_h, w_h)_{se}$$

We have 
$$K_{ab} = a(N_b^c, N_a^c)_{se}$$
 $l_a = l(N_a^c)_{se} - a(!T_a^g, N_a^c)_{se}$ 
 $A(T_a^g, N_a^c)_{se} = K_{ab}^c g^e$ 
 $A(T_a^g, N_a^c)_{se} = K_{ab}^c g^e$ 
 $A(T_a^g, N_a^c)_{se} = A(T_a^c, N_a^c)_{se}$ 
 $A(T_a^g, N_a^c)_{se} = A(T_a^c, N_a^c)_{se}$ 
 $A(T_a^g, N_a^c)_{se} = A(N_a^c, N_a^c)_{se}$ 
 $A(N_a^c, N_a^c)_{se} = A(N_a^c, N_a^c)_{se}$ 
 $A(T_a^g, N_a^c)_{se} = A(N_a^c, N_a^c)_{se}$ 
 $A(N_a^c, N_a^c)_{se} = A(N_a^c, N_a^c)_{se}$ 

N= (x,y) = 4

a(N'\_2, N'\_3) | s' = | (kN\_3, x N\_2, x - + kN\_3, y N\_2, y - V, N\_2, x N'\_3 - v'\_2 N\_2, y N\_3) do\_-= / (-v, N2x N3) ds  $= -v, \int y ds = -\frac{v}{6}.$ We can then do the assembly of K and F  $K = \begin{bmatrix} K_{22} + K_{22} & K_{23} \\ K = \end{bmatrix}$ K32 K23 the nest steps should be the same Dimension of overall K?