

An Angle in Trigonometry

A problem-oriented approach

An Angle in Trigonometry Early Draft [May 19, 2025] Copyright, © Shiv Shankar Dayashru, 2025. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license is included in the section entitled "GNU Free Documentation License".

Table of Contents

	Pr	eface		. i
Ι	\mathbf{T}	heory a	and Problems	4
	1	Measu	rement of Angles	. 5
		1.1	Angles in Geometry	. 5
		1.2	Angles in Trigonometry	. 5
		1.3	Angles Exceeding 360°	. 6
		1.4	Quadrants	. 6
		1.5	Units of Measurement	. 7
		1.6	Problems	. 8
	2	Trigon	ometric Ratios	13
		2.1	Relationship betweeen Trigonometric Functions or Ratios	
		2.2	Problems	14
	3	Trigon	cometric Ratios of Any Angle and Sign	19
		3.1	Angle of 45°	19
		3.2	Angles of 30° and 60°	19
		3.3	Angle of 0°	20
		3.4	Angle of 90°	
		3.5	Complementary Angles	21
		3.6	Supplementary Angles	21
		3.7	Angles of $-\theta$	22
		3.8	Angles of $90^{\circ} + \theta$	23
		3.9	Angles of $360^{\circ} + \theta$	23
		3.10	Problems	23
	4	Comp	ound Angles	27
		4.1	The Addition Formula	27
		4.2	The Subtraction Formula	28
		4.3	Important Deductions	28
		4.4	To express $a\cos\theta + b\sin\theta$ in the form of $k\cos\phi$ or $k\sin\phi$	30
		4.5	Problems	30
	5	Transf	ormation Formulae	34
		5.1	Transformation of products into sums or differences	34
		5.2	Transformation of sums or differences into products	34
		5.3	Problems	34

Preface

This is a book on trigonometry, which, covers basics of trigonometry till high school level. It covers the most essential topics to take up a bachelor's course where knowledge of trigonometry is required. I will try to cover as much as I can and will keep adding new material over a long period.

Trigonometry is probably one of the most fundamental subjects in Mathematics as further study of subjects like coordinate geometry, 3D and 2D geometry, engineering and rest all depend on it. It is very important to understand trigonometry for the readers if they want to advance further in mathematics.

How to Read This Book?

Every chapter will have theory. Read that first. Make sure you understand that. Of course, you have to meet the prerequisites for the book. Then, go on and try to solve the problems. In this book, there are no pure problems. Almost all have answers except those which are of similar kind and repetitive in nature for the sake of practice. If you can solve the problem then all good else look at the answer and try to understand that. Then, few days later take on the problem again. If you fail to understand the answer you can always email me with your work and I will try to answer to the best of my ability. However, if you have a local expert seek his/her advice first.

Note that mathematics is not only about solving problems. If you understand the theory well, then you will be able to solve problems easily. However, problems do help enforce with the enforcement of theory in your mind.

I am a big fan of old MIR publisher's problem books, so I emphasize less on theory and more on problems. I hope that you find this style much more fun as a lot of theory is boring. Mathematics is about problem solving as that is the only way to enforce theory and find innovtive techniques for problem solving.

Some of the problems in certain chapters rely on other chapters which you should look ahead or you can skip those problems and come back to it later. Since this books is meant for self study answers of most of the problems have been given which you can make use of. However, do not use for just copying but rather to develop understanding.

Who Should Read This Book?

Since this book is written for self study anyone with interest in trigonometry can read it. That does not mean that school or college students cannot read it. You need to be selective as to what you need for your particular requirements. This is mostly high school course with a little bit of lower classes' course thrown in with a bit of detail here and there.

i

Preface 2

Prerequisite

You should have knowledge till grade 8th course. Attempt has been made to keep it simple and give as much as background to the topic which is reasonable and required. However, not everything will be covered below grade 10.

Goals for Readers

The goal of for reading this book is becoming proficient in solving simple and basic problems of trigonometry. Another goal would be to be able to study other subjects which require this knowledge like trigonometry or calculus or physics or chemistry or other subjects. If you can solve 95% problems after 2 years of reading this book then you have achieved this goal.

All of us possess a certain level of intelligence. At average any person can read this book. But what is most important is you have to have interest in the subject. Your interest gets multiplied with your intelligence and thus you will be more capable than you think you can be. One more point is focus and effort. It is not something new which I am telling but I am saying it again just to emphasize the point. Trust me if you are reading this book for just scoring a nice grade in your course then I have failed in my purpose of explaining my ideas.

Also, if you find this book useful feel free to share it with others without hesitation as it is free as in freedom. There are no conditions to share it.

Confession

I feel like an absolute thief while writing this book for nothing given in this book is mine. All of it belongs to others who did the original work and I have just copied shamelessly. I have nothing new to put in the book. This book is just the result of the pain I feel when I see young children wasting their life for they are poor. And therefore, this book is licensed under GNU FDL. Even if I manage to create few new problems it is still based on knowledge of other pioneers of the subject but perhaps that is how we are supposed to progress bit-by-bit.

Acknowledgements

I am in great debt of my family and free software community because both of these groups have been integral part of my life. Family has prvided direct support while free software community has provided the freedom and freed me from the slavery which comes as a package with commercial software. I am especially grateful to my wife, son and parents because it is their time which I have borrowed to put in the book. To pay my thanks from free software community I will take one name and that is Richard Stallman who started all this and is still fighting this never-ending war. When I was doing the Algebra book then I realized how difficult it is to put Math on web in HTML format and why Donald Knuth wrote TeX. Also, TeX was one of the first softwares to be released as a free software.

Now as this book is being written using ConTEXt so obviously Hans Hagen and all the people involved with it have my thanks along with Donald Knuth. I use Emacs with Auctex and hope that someday I will use it in a much more productive way someday.

I have used Asymptote and tikz for drawing all the diagrams. Both are wonderful packages and work very nicely. Asymptote in particular is very nice for 3d-drawings and linear equation solving. I have yet to learn Metafun which comes with ConTeXt.

I would like to thank my parents, wife, son and daughter for taking out their fair share of time and the support which they have extended to me during my bad times. After that I would like to pay my most sincere gratitude to my teachers particularly H. N. Singh, Yogendra Yadav, Satyanand Satyarthi, Kumar Shailesh and Prof. T. K. Basu. Now is the turn of people from software community. I must thank the entire free software community for all the resources they have developed to make computing better. However, few names I know and here they go. Richard Stallman is the first, Donald Knuth, Edger Dijkstra, John von Neumann after that as their lives have strong influence in how I think and base my life on. Cover graphics has been done by Koustav Halder so much thanks to him. I am not a native English speaker and this book has just gone through one pair of eyes therefore chances are high that it will have lots of errors(particularly with commas and spelling mistakes). At the same time it may contain lots of technical errors. Please feel free to drop me an email at shivshankar.dayal@gmail.com where I will try to respond to each mail as much as possible. Please use your real names in email not something like coolguy. If you have more problems which you want to add it to the book please send those by email or create a PR on github. The github url is https://github.com/shivshankardayal/Trigonometry-Context.

Shiv Shankar Dayal Nalanda, 2023

I Theory and Problems

Chapter 1

Measurement of Angles

The word trigonometry comes from means measurement of triangles. The word originally comes from Greek language. measurement. The objective of studying plane trigonometry is to develop a method of solving plane triangles. However, as time changes everything it has changed the scope of trigonometry to include polygons and circles as well. A lot of concepts in this book will come from your geometry classes in lower classes. It is a good idea to review the concepts which you have studied till now without which you are going to struggle while studying trigonometry in this book.

1.1 Angles in Geometry

If we consider a line extending to infinity in both directions, and a point OO which divides this line in two parts one on each side of the point then each part is called a ray or half-line. Thus O divides the line into two rays OA and OA'.

Figure 1.1

The point O is called vertex or origin for these days. An angle is a figure formed by two rays or half lies meeting at a common vertex. These half lines are called *sides of the angle*.

An angle is denoted by the symbol \angle followed by three capital letters of which the middle one represents the vertex and remaining two points point to two sides. Otherwise the angle is simply written as one letter representing the vertex of the angle.

Figure 1.2 An angle

The angle in above image is written as $\angle AOB$ or $\angle BOA$ or $\angle O$.

Each angle can be measured and there are different units for the measurement. In Geometry, an angle always lie between 0° and 360° and negative angles are meaningless. Measure of an angle is the smallest amount of rotation from the direction of one ray of the angle to the direction of the other.

1.2 Angles in Trigonometry

Angles are more generalized in Trigonometry. They can have positive or negative values. As was the case in gerometry, similarly angles are measured in Trigonometry. The starting and ending positions of revolving rays are called initial side and terminal side respectively. The revolving half line is called the generating line or the radius vector. For example, if OA and OB are the initial and final position of the radius vector then angle formed will be $\angle AOB$.

1.3 Angles Exceeding 360°

In Geometry, angles are limited to 0° to 360°. However, when multiple revolutions are involved angles are more than 360°. For example, the revolving line starts from the initial position and makes n complete revolutions in anticlockwise direction and also further angle α in the same direction. We then have a certain angle β_n given by $\beta_n = x \times 360^\circ + \alpha$, where $0^\circ < \alpha < 360^\circ$ and n is zero or positive integer. Thus, there are infinite possible angles.

Figure 1.3 An angle

Angles formed by anticlockwise rotation of the radius vector are taken as positive and angles formed by clockwise rotation of the radius vector are taken as negative.

1.4 Quadrants

Figure 1.4 Quadrants

Let XOX' and YOY' be two mutually perpendicular lines in a plane and OX be the initial half line. The lines divide the whole reason in quadrants. XOY, YOX', X'OY' and Y'OX are respectively called 1st, 2nd, 3rd and 4th quadrants. According to terminal side lying in 1st, 2nd, 3rd and 4th quadrants the angles are said to be in 1st, 2nd, 3rd and 4th quadrants respectively. A quandrant angle is an angle formed if terminal side coincides with one of the axes.

For any angle \angle which is not a quadrant angle and when number of revolutions is zero and radius vector rotates in anticlockwise directions:

- $0^{\circ} < \alpha < 90^{\circ}$ if α lies in first quadrant
- $90^{\circ} < \alpha < 180^{\circ}$ if α lies in second quadrant
- $180^{\circ} < \alpha < 270^{\circ}$ if α lies in third quadrant
- $270^{\circ} < \alpha < 360^{\circ}$ if α lies in fourth quadrant
- when terminal side lies on OY, angle formed = 90°
- when terminal side lies on OX', angle formed = 180°
- when terminal side lies on OY', angle formed = 270°
- when terminal side lies on OX, angle formed = 360°

1.5 Units of Measurement

In Geometry, angles are usually measured in terms of right angles, however, that is an inconvenient system for smaller angles. So we introduce different systems of measurements. There are three system of units for this:

Sexagecimal or British system: In British system, a right angle is divided into 90 equal parts
called degrees. Each degree is then divided into 60 equal parts called minutes and each minute
is further is divided into 60 parts called seconds.

A degree, a minute and a second are denoted by 1°, 1", and 1 respectively.

Centesimal or French System: In French system, a right angle is divided into 100 equal parts called grades. Each grade is then divided into 100 equal parts called minutes and each minute is further is divided into 100 parts called seconds.

A degree, a grade and a second are denoted by 1^g , 1^u , and 1 respectively.

3. Radian or Circular Measure: An arc equal to radius of a circle when subtends an anngle on the center then that angle is 1 radian and is denoted by 1^c . The angle made by half of perimeter is π radians. Also, from Geometry we know that angle subtended is the ratio between length of cord and radius. This ratio is in radians. Since both length or chord and radius have same unit radian is a constant.

1.5.1 Relationship between Systems of Measurements

If measure of an angle if D degrees, G grades and C radians then upon elementary manipulation we find that $\frac{D}{180} = \frac{G}{200} = \frac{C}{\pi}$.

1.5.2 Meaning of π

The ratio of circumference and diameter of a circle is always constant and this constant is denoted by gree letter π .

 π is an irrational number. In general, we use the value of $\frac{22}{7}$ but $\frac{355}{113}$ is more accurate though not exact. If r be the radius of a circle and c be the circumference then $\frac{c}{2r} = \pi$ leading circumference to be $c = 2\pi r$.

1.6 Problems

- 1. Reduce 63°14′51″ to centisimal measure.
- 2. Reduce $45^{\circ}20'10''$ to centisimal and radian measure.
- 3. Reduce $94^{g}23'27''$ to Sexagecimal measure.
- 4. Reduce 1.2 radians in Sexageciaml measure.

Express in terms of right angle; the angles

5. 60°

8. 130°30′

6. 75°15′

9. 210°30′30″

7. 63°17′25″

10. 370°20′48″

Express in grades, minutes and degrees

11. 30°

14. 35°47′15″

12. 81°

15. 235°12′36″s

13. 138°30′

16. 475°13′48″

Express in terms of right angles and also in degrees, minutes and seconds; the angles

- 17. 120^g
- 18. $45^g 35' 24''$
- 19. $39^{9}45'36''$
- 20. $255^{9}8'9''$
- 21. $759^{g}0'5''$
- 22. Reduce 55°12′36″ to centisimal measure.
- 23. Reduce 18°33′45″ to circular measure.
- 24. Reduce $196^g 35' 24''$ to sexagecimal measure.
- 25. How many degrees, minutes and seconds are respectively passed over in $11\frac{1}{9}$ minutes by the hour and minute hand of a watch.

- 26. The number of degrees in one acute angle of a right-angled triangle is equal to the number of grades in the other; express both angles in degrees.
- 27. Prove that the number of Sexagecimal minutes in any angle is to the number of Centisimal minutes in the same angle as 27:50.
- 28. Divide 44°8′ into two parts such that the number of Sexagecimal seconds in one part may be equal to number of Centisimal seconds in the other part.
- 29. The angles of a triangle are in the ratio of 3:4:5, find the smallest angle in degrees and greatest angle in radians.
- 30. Find the angle between the hour hand and the minute hand in circular measure at half past four.
- 31. If p, q and r denote the grade measure, degree measure and the radian measure of the same angle, prove that

i.
$$\frac{p}{10} = \frac{q}{9} = \frac{20r}{\pi}$$

ii.
$$p - q = \frac{20r}{\pi}$$

- 32. Two angles of a triangle are $72^{\circ}53'51''$ and $41^{\circ}22'50''$ respectively. Find the third angle in radians.
- 33. The angles of triangle are in A.P. and the number of radians in the greatest angle is to the number of degrees in the least one as π : 60; find the angles in degrees.
- 34. The angles of a triangle are in A.P. and the number of grades in the least is to the number of radians in the greatest is $40:\pi$; find the angles in degrees.
- 35. Three angles are in G.P. The number of grades in the greatest angle is to the number of circular units in the least is $800 : \pi$; and the sum of angles is 126° . Find the angles in grades.
- 36. Find the angle between the hour-hand and minute-hand in circular measure at 4 o'clock.
- 37. Express in sexagecimal system the angle between the minute-hand and hour-hand of a clock at quarter to twelve.
- 38. The diameter of a wheel is 28 cm; through what distance does its center move during one rotation of wheel along the ground?
- 39. What must be the radius of a circular running path, round which an athlete must run 5 time in order to describe 1760 meters?
- 40. The wheel of a railway carriage is 90 cm in diameter and it makes 3 revolutions per second; how fast is the train going?
- 41. A mill sail whose length is 540 cm makes 10 revolutions per minute. What distance does its end travel in one hour?
- 42. Assuming that the earth describes in one year a circle, or 149, 700, 000 km. radius, whose center is the sun, how many miles does earth travel in a year?

- 43. The radius of a carriage wheel is 50 cm, and in $\frac{1}{9}$ th of a second it turns through 80° about its center, which is fixed; how many km. does a point on the rim of the wheel travel in one hour?
- 44. Express in terms of three systems of angular measurements the magnitude of an angle of a regular decagon.
- 45. One angle of a triangle is $\frac{2}{3}x$ grades and another is $\frac{3}{2}x$ degrees, while the third is $\frac{\pi x}{75}$ radians; express them all in degrees.
- 46. The circular measure of two angles of a triangle are $\frac{1}{2}$ and $\frac{1}{3}$. What is the number of degrees of the third angle?
- 47. The angles of a triangle are in A.P. The number of radians in the least angle is to the number of degree in the mean angle is 1:120. Find the angles in radians.
- 48. Find the magnitude, in radians and degrees, of the interior angle of 1. a regular pentagon 2. a regular heptagon 3. a regular octagon 4. a regular duodecagon 5. a polygon with 17 sides
- 49. The angle in one regular polygon is to that in another is 3:2, also the number of sides in the first is twice that in the second. How many sides are there in the polygons?
- 50. The number of sides in two regular polygons are as 5:4, and the difference between their angles is 9°; find the number of sides in the polygons.
- 51. Find two regular polygons such that the number of their sides may be 3 to 4 and the number of degrees of an angle of the first to the number of grades of the second as 4 to 5.
- 52. The angles of a qadrilateral are in A.P. and the greatest is double the least; express the least angle in radians.
- 53. Find in radians, degrees, and grades the angle between hour-hand and minute-hand of a clock at 1. half-past three 2. twenty minutes to six 3. a quarter past eleven.
- 54. Find the times 1. between fours and five o'clock when the angle between the minute hand and the hour-hand is 78°, 2. between seven and eight o'clock when the angle is 54°
- 55. The interior angles of a polygon are in A.P. The smallest angle is 120° and the common difference is 5° . Find the number of sides of the polygon.
- 56. The angles of quadrilateral are in A.P. and the number of grades in the least angle is to the number of radians in the greatest is $100 : \pi$. Find the angles in degrees.
- 57. The angles of a polygons are in A.P. The least angle is $\frac{5\pi}{12}$ common difference is 10°, find the number of sides in the polygon.
- 58. Find the angle subtended at the center of a circle of radius 3 cm. by an arc of length 1 cm.
- 59. In a circle of radius 5 cm., what is the length of the arc which subtends an angle of $33^{\circ}15'$ at the center.
- 60. Assuming the average distance of sun from the earth to be 149, 700, 000 km., and the angle subtended by the sun at the eye of a person on the earth is 32′, find the sun's diameter.

- 61. Assuming that a person of normal sight can read print at such a distance that the letter subtends and angle of 5' at his eye, find what is the height of the letters he can read at a distance of 1. 12 meters 2. 1320 meters.
- 62. Find the number of degrees subtended at the center of a circle by an arc whose length is 0.357 times the radius.
- 63. Express in radians and degrees the angle subtended at the center of a circle by an arc whose length is 15 cm., the radius of the circle being 25 cm.
- 64. The value of the divisions on the outer rim of a graduated cicle is 5' and the distance between successive graduations is .1 cm. Find the radius of the circle.
- 65. The diamter of a graduated circle is 72 cm., and the graduations on the rim are 5' apart; find the distance of one graduation to to another.
- 66. Find the radius of a globe which is such that the distance between two places on the same meridian whose latitude differs by 1°10′ may be 0.5 cm.
- 67. Taking the radius of earth to as 6400 km., find the difference in latitude of two places, one of which is 100 km. north of another.
- 68. Assuming the earth to be a sphere and the difference between two parallels of latitude, which subtends an angle of 1° at the eath's center, to be $69\frac{1}{2}$ km., find the radius of the earth.
- 69. What is the ratio of radii of the circles at the center of which two arcs of same length subtend angles of 60° and 75°?
- 70. If an arc, of length 10 cm., on a circle of 8 cm. diameter subtend at the center of circle an angle of $143^{\circ}14'22''$, find the value of π to 4 places of decimals.
- 71. If the circumference of a circle be divided into five parts which are in A.P., and if the greatest part be six times the least find in radians the the magnitude of the angles the parts subtend at the center of the circle.
- 72. The perimeter of a certain sector of a circle is equal to the length of the arc of a semicircle having the same radius; express the angle of the sector in degrees.
- 73. At what distance a man, whose height is 2 m., subtend an angle of 10'.
- 74. Find the length which at a distance of 5280 m., will subtend an angle of 1' at the eye.
- 75. Assuming the distance of the earth from the moon to be 38400 km., and the angle subtended by the moon at the eye of a person on earth to be 31', find the diameter of the moon.
- 76. The wheel of a railway carriage is 4 ft. in diameter and makes 6 revolutions in a second; how fast is the train going?
- 77. Assuming that moon subtends an angle of 30' at the eye of an observer, find how far from the eye a coin of one inch diameter must be held so as just to hide the moon.

- 78. A wheel make 30 revolutions per minute. Find the circular measure of the angle described by spoke in half a second.
- 79. A man running along a circular track at the rate of 10 miles per hour, traverses in 36 seconds, an arc which subtends an angle of 56° at the center. Find the diamter of the circle.

Chapter 2

Trigonometric Ratios

From Geometry, we know that an acute angle is an angle whose measure is between 0° and 90° . Consider the following figure:

Figure 2.1 Trigonometric ratios

This picture contains two similar triangles $\triangle OMP$ and $\triangle OM'P'$. We are interested in $\angle MOP$ or $\angle M'OP'$ 0. In the $\triangle MOP$ and $\triangle M'OP'$, OP, OP' are called the hypotenuses i.e. sides opposite to the right angle, PM, P'M' are called perpendiculars i.e. sides opposite to the angle of interest and OM, OM' are called bases i.e. the third angle.

Hypotenuses are usually denoted by h, perpendiculars by p and bases by b. Let OM = b, OM' = b', PM = p, P'M' = p', OP = h, OP' = h'. Since the two triangles are similar $\therefore \frac{p}{p'} = \frac{b}{b'} = \frac{h}{h'}$. Thus rhe ratio of any two sides is dependent purely on $\angle O$ or $\angle MOP$ or $\angle M'OP'$.

Since there are three sides, we can choose 2 in 3C_2 i.e. 3 ways and for each combination there will be two permutations where a side can be in either numerator or denominator. From this we can conclude that there will be six ratios(these are called trigonometric ratios), These six trigonometric ratios or functions are given below:

 $\frac{MP}{OP}$ or $\frac{p}{h}$ is called the **Sine** of the $\angle MOP$.

 $\frac{OM}{OP}$ or $\frac{b}{h}$ is called the **Cosine** of the $\angle MOP$.

 $\frac{MP}{OM}$ or $\frac{p}{b}$ is called the **Tangent** of the $\angle MOP$.

 $\frac{OP}{MP}$ or $\frac{h}{p}$ is called the **Cosecant** of the $\angle MOP$.

 $\frac{OP}{OM}$ or $\frac{h}{b}$ is called the **Secant** of the $\angle MOP$.

 $\frac{OM}{MP}$ or $\frac{b}{p}$ is called the **Cotangent** of the $\angle MOP$.

 $1 - \cos MOP$ is called the **Versed Sine** of $\angle MOP$ and $1 - \sin MOP$ is called the **Coversed Sine** of $\angle MOP$. These two are rarely used in trigonometry. It should be noted that the trigonometric ratios are all numbers. The name of the trigonometric ratios are written for brevity $\sin MOP$, $\cos MOP$, $\tan MOP$, $\cot MOP$, \cot

2.1 Relationship betweeen Trigonometric Functions or Ratios

Let us represent the $\angle MOP$ with θ , we observe from previous section that

$$\sin\theta = \frac{1}{\csc\theta}, \cos\theta = \frac{1}{\sec\theta}, \tan\theta = \frac{1}{\cos\theta}, \csc\theta = \frac{1}{\sin\theta}, \sec\theta = \frac{1}{\cos\theta}, \cot\theta = \frac{1}{\tan\theta}$$

We also observe that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\cot \theta = \frac{\cos \theta}{\sin \theta}$

From Pythagora theorem in geometry, we know that hypotenuse² = perpendicular² + base² or $h^2 = p^2 + b^2$

1. Dividing both side by h^2 , we get

$$\frac{p^2}{h^2} + \frac{b^2}{h^2} = 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

We can rewrite this as $\sin^2 \theta = 1 - \cos^2 \theta$, $\cos^2 \theta = 1 - \sin^2 \theta$, $\sin \theta = \sqrt{1 - \cos^2 \theta}$, $\cos \theta = \sqrt{1 - \sin^2 \theta}$.

2. If we divide both sides by b^2 , then we get

$$\frac{h^2}{b^2} = \frac{p^2}{b^2} + 1$$

$$\sec^2 \theta = \tan^2 \theta + 1$$

We can rewrite this as $\sec^2 \theta - \tan^2 \theta = 1$, $\tan^{\theta} = \sec^2 \theta - 1$, $\sec \theta = \sqrt{1 + \tan^2 \theta}$, $\tan \theta = \sqrt{\sec^2 \theta - 1}$

3. Similarly, if we divide by p^2 , then we get

$$\frac{h^2}{n^2} = 1 + \frac{b^2}{n^2}$$

$$\csc^2\theta = 1 + \cos^2\theta$$

We can rewrite this as $\csc^2\theta - \cot^2\theta = 1$, $\cot^2\theta = \csc^2\theta - 1$, $\csc\theta = \sqrt{1 + \cot^2\theta}$, $\cot\theta = \sqrt{\csc^2\theta - 1}$

2.2 Problems

Prove the following:

1.
$$\sqrt{\frac{1-\cos A}{1+\cos A}} = \csc A - \cot A$$
.

2.
$$\sqrt{\sec^2 A + \csc^2 A} = \tan A + \cot A$$
.

3.
$$(\csc A - \sin A)(\sec A - \cos A)(\tan A + \cot A) = 1$$
.

4.
$$\cos^4 A - \sin^4 A + 1 = 2\cos^2 A$$
.

5.
$$(\sin A + \cos A)(1 - \sin A \cos A) = \sin^3 A + \cos^3 A$$
.

6.
$$\frac{\sin A}{1+\cos A} + \frac{1+\cos A}{\sin A} = 2\csc A.$$

7.
$$\sin^6 A - \cos^6 A = 1 - 3\cos^2 A\sin^2 A$$
.

8.
$$\sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A - \tan A.$$

9.
$$\frac{\csc A}{\csc A - 1} + \frac{\csc A}{\csc A + 1} = 2\sec^2 A$$
.

10.
$$\frac{\csc A}{\tan A + \cot A} = \cos A.$$

11.
$$(\sec A + \cos A)(\sec A - \cos A) = \tan^2 A + \sin^2 A$$
.

12.
$$\frac{1}{\tan A + \cot A} = \sin A \cos A$$
.

13.
$$\frac{1-\tan A}{1+\tan A} = \frac{\cot A - 1}{\cot A + 1}$$

14.
$$\frac{1+\tan^2 A}{1+\cot^2 A} = \frac{\sin^2 A}{\cos^2 A}$$
.

15.
$$\frac{\sec A - \tan A}{\sec A + \tan A} = 1 - 2\sec A \tan A + 2\tan^2 A.$$

16.
$$\frac{1}{\sec A - \tan A} = \sec A + \tan A.$$

17.
$$\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} = \sec A \csc A + 1.$$

18.
$$\frac{\cos A}{1-\tan A} + \frac{\sin A}{1-\cot A} = \sin A + \cos A$$
.

19.
$$(\sin A + \cos A)(\tan A + \cot A) = \sec A + \csc A$$
.

20.
$$\sec^4 A - \sec^2 A = \tan^4 A + \tan^2 A$$
.

21.
$$\cot^4 A + \cot^2 A = \csc^4 A - \csc^2 A$$
.

22.
$$\sqrt{\csc^2 A - 1} = \cos A \csc A$$
.

23.
$$\sec^2 A \csc^2 A = \tan^2 A + \cot^2 A + 2$$
.

24.
$$\tan^2 A - \sin^2 A = \sin^4 A \sec^2 A$$
.

25.
$$(1 + \cot A - \csc A)(1 + \tan A + \sec A) = 2$$
.

26.
$$\frac{\cot A \cos A}{\cot A + \cos A} = \frac{\cot A - \cos A}{\cot A \cos A}.$$

27.
$$\frac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B$$
.

28.
$$\left(\frac{1}{\sec^2 A - \cos^2 A} + \frac{1}{\csc^2 A - \sin^2 A}\right)\cos^2 A \sin^2 A = \frac{1 - \cos^2 A \sin^2 A}{2 + \cos^2 A \sin^2 A}$$

29.
$$\sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(1 - 2\sin^2 A \cos^2 A)$$
.

30.
$$\frac{\cos A \csc A - \sin A \sec A}{\cos A + \sin A} = \csc A - \sec A.$$

31.
$$\frac{1}{\csc A - \cot A} - \frac{1}{\sin A} = \frac{1}{\sin A} - \frac{1}{\csc A + \cot A}$$

32.
$$\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{1 + \sin A}{\cos A}$$
.

33.
$$(\tan A + \csc B)^2 - (\cot B - \sec A)^2 = 2\tan A \cot B(\csc A + \sec B)$$
.

34.
$$2 \sec^2 A - \sec^4 A - 2 \csc^2 A + \csc^4 A = \cot^4 A - \tan^4 A$$
.

35.
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = \tan^2 A + \cot^2 A + 7$$
.

36.
$$(\operatorname{cosec} A + \cot A)(1 - \sin A) - (\operatorname{sec} A + \tan A)(1 - \cos A) = (\operatorname{cosec} A - \operatorname{sec} A)[2 - (1 - \cos A)(1 - \sin A)].$$

37.
$$(1 + \cot A + \tan A)(\sin A - \cos A) = \frac{\sec A}{\csc^2 A} - \frac{\csc A}{\sec^2 A}$$

38.
$$\frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A + \tan A}$$

39.
$$3(\sin A - \cos A)^4 + 4(\sin^6 A + \cos^6 A) + 6(\sin A + \cos A)^2 = 13$$
.

40.
$$\sqrt{\frac{1+\cos A}{1-\cos A}} = \csc A + \cot A$$
.

41.
$$\frac{\cos A}{1+\sin A} + \frac{\cos A}{1-\sin A} = 2 \sec A$$
.

42.
$$\frac{\tan A}{\sec A - 1} + \frac{\tan A}{\sec A + 1} = 2\csc A$$
.

43.
$$\frac{1}{1-\sin A} - \frac{1}{1+\sin A} = 2 \sec A \tan A$$
.

44.
$$\frac{1+\tan^2 A}{1+\cot^2 A} = \left(\frac{1-\tan A}{1-\cot A}\right)^2$$
.

45.
$$1 + \frac{2\tan^2 A}{\cos^2 A} = \tan^4 A + \sec^4 A$$
.

46.
$$(1 - \sin A - \cos A)^2 = 2(1 - \sin A)(1 - \cos A)$$
.

47.
$$\frac{\cot A + \csc A - 1}{\cot A - \csc A + 1} = \frac{1 + \cos A}{\sin A}$$

- 48. $(\sin A + \sec A)^2 + (\cos A + \csc A)^2 = (1 + \sec A \csc A)^2$
- 49. $\frac{2\sin A \tan A (1-\tan A) + 2\sin A \sec^2 A}{(1+\tan A)^2} = \frac{2\sin A}{1+\tan A}$
- 50. If $2\sin A = 2 \cos A$, find $\sin A$.
- 51. If $8 \sin A = 4 + \cos A$, find $\sin A$.
- 52. If $\tan A + \sec A = 1.5$, find $\sin A$.
- 53. If $\cot A + \csc A = 5$, find $\cos A$.
- 54. If $3\sec^4 A + 8 = 10\sec^2 A$, find the value of $\tan A$.
- 55. If $\tan^2 A + \sec A = 5$, find $\cos A$.
- 56. If $\tan A + \cot A = 2$, find $\sin A$.
- 57. If $\sec^2 A = 2 + 2 \tan A$, find $\tan A$.
- 58. If $\tan A = \frac{2x(x+1)}{2x+1}$, find $\sin A$ and $\cos A$.
- 59. If $3 \sin A + 5 \cos A = 5$, show that $5 \sin A 3 \cos A = \pm 3$.
- 60. If $\sec A + \tan A = \sec A \tan A$ prove that each side is ± 1 .
- 61. If $\frac{\cos^4 A}{\cos^2 B} + \frac{\sin^4 A}{\sin^2 B} = 1$, prove that
 - i. $\sin^4 A + \sin^4 B = 2\sin^2 A \sin^2 B$,
 - ii. $\frac{\cos^4 B}{\cos^2 A} + \frac{\sin^4 B}{\sin^2 A} = 1$.
- 62. If $\cos A + \sin A = \sqrt{2}\cos A$, prove that $\cos A \sin A = \pm \sqrt{2}\sin A$.
- 63. If $a\cos A b\sin A = c$, prove that $a\sin A + b\cos A = \sqrt{a^2 + b^2 c^2}$.
- 64. If $1 \sin A = 1 + \sin A$, then prove that value of each side is $\pm \cos A$.
- 65. If $\sin^4 A + \sin^2 A = 1$, prove that
 - i. $\frac{1}{\tan^4 A} + \frac{1}{\tan^2 A} = 1$,
 - ii. $\tan^4 A \tan^2 = 1.$
- 66. If $\cos^2 A \sin^2 A = \tan^2 B$, prove that $2\cos^2 B 1 = \cos^2 B \sin^2 B = \tan^2 A$.
- 67. If $\sin A + \csc A = 2$, then prove that $\sin^n A + \csc^n A = 2$.
- 68. If $\tan^2 A = 1 e^2$, prove that $\sec A + \tan^3 A \csc A = (2 e^2)^{\frac{3}{2}}$.

- 69. Eliminate A between the equations $a \sec A + b \tan A + c = 0$ and $p \sec A + q \tan A + r = 0$.
- 70. If $\csc A \sin A = m$ and $\sec A \cos A = n$, elimiate A.
- 71. Is the equation $\sec^2 A = \frac{4xy}{(x+y)^2}$ possible for real values of x and y?.
- 72. Show that the equation $\sin A = x + \frac{1}{x}$ is impossible for real values of x.
- 73. If $\sec A \tan A = p$, $p \neq 0$, find $\tan A$, $\sec A$ and $\sin A$.
- 74. If $\sec A = p + \frac{1}{4p}$, show that $\sec A + \tan A = 2p$ or $\frac{1}{2p}$.
- 75. If $\frac{\sin A}{\sin B} = p$, $\frac{\cos A}{\cos B} = q$, find $\tan A$ and $\tan B$.
- 76. If $\frac{\sin A}{\sin B} = \sqrt{2}$, $\frac{\tan A}{\tan B} = \sqrt{3}$, find A and B.
- 77. If $\tan A + \cot A = 2$, find $\sin A$.
- 78. If $m = \tan A + \sin A$ and $n = \tan A \sin A$, prove that $m^2 n^2 = 4\sqrt{mn}$.
- 79. If $\sin A + \cos A = m$ and $\sec A + \csc A = n$, prove that $n(m^2 1) = 2m$.
- 80. If $x \sin^3 A + y \cos^3 A = \sin A \cos A$ and $x \sin A y \cos A = 0$, prove that $x^2 + y^2 = 1$.
- 81. Prove that $\sin^2 A = \frac{(x+y)^2}{4xy}$ is possible for real values of x and y only when x=y and $x,y\neq 0$.

Chapter 3

Trigonometric Ratios of Any Angle and Sign

3.1 Angle of 45°

Figure 3.1

Consider the above figure, which is a right-angle triangle, drawn so that $\angle OMP = 90^{\circ}$ and $\angle MOP = 45^{\circ}$. We know that the sum of all angles of a triangle is 180° . Thus,

$$\angle OPM = 180^{\circ} - \angle MOP - \angle OMP = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}$$

 $\therefore OM = MP$. Let OP = 2a, then from Pythagora theorem, we can write

$$4a^2 = OP^2 = OM^2 + MP^2 = 2OM^2 \Rightarrow Om = a\sqrt{2} = MP$$

$$\sin 45^{\circ} = \frac{MP}{OP} = \frac{a\sqrt{2}}{2a} = \frac{1}{\sqrt{2}}.$$

Other trigonometric ratios can be deduced similarly for this angle.

3.2 Angles of 30° and 60°

Figure 3.2

Consider an equilateral $\triangle OMP$. Let the sides OM, OP, MP be each 2a. We draw a bisector of $\angle MOP$, which will be a perpendicular bisector of MP at X because the triangle is equilateral. Thus, MX = a. In $\triangle OMX$, OM = 2a, $\angle MOX = 30^{\circ}$, $\angle OXM = 90^{\circ}$ because each angle in an equilateral triangle is 60° .

$$\sin MOX = \frac{MX}{OM} = \frac{1}{2} \Rightarrow \sin 30^{\circ} = \frac{1}{2}$$

Similarly, $\angle OMX = 60^{\circ}$ because the sum of all angles of a triangle is 180° .

$$\cos OMX = \frac{MX}{OM} = \frac{1}{2} \Rightarrow \cos 60^{\circ} = \frac{1}{2}$$

All other trigonometric ratios can be found from these two.

3.3 Angle of 0°

Figure 3.3

Consider the $\triangle MOP$ such that side MP is smaller than any quantity we can assign i.e. what we denote by 0. Thus, $\angle MOP$ is what is called approaching 0 or $\lim_{x\to 0}$ in terms of calculus. Why we take such a value is because if any angle of a triangle is equal to 0° then the triangle won't exist. Thus these values are limiting values as you will learn in calculus.

However, in this case, $\sin 0^{\circ} = \frac{MP}{OP} = \frac{0}{OP} = 0$. Other trigonometric ratios can be found from this easily.

3.4 Angle of 90°

In the previous figure, as $\angle OMP$ will approach 0° , the $\angle OPM$ will approach 90° . Also, OP will approach the length of OM. Similar to previous case, in right-angle trianglee if one angle (other than right angle) approaches 0° the other one will approach 90° and at that value the triangle will cease to exist.

Thus, $\sin 90^{\circ} = \frac{OM}{OP} = \frac{OP}{OP} = 1$. Now other angles can be found easily from this.

Given below is a table of most useful angles:

Angle	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞

Table 3.1 Values of useful angles

3.5 Complementary Angles

Figure 3.4

Angles are said to be complementary if their sum is equal to one right angle i.e. 90° . Thus, if measure of one angle is θ the other will automatically be $90^{\circ} - \theta$.

Consider the figure. $\triangle OMP$ is a right-angle triangle, whose $\angle OMP$ is a right angle. Since the sum of all angles is 180°, therefore sum of $\angle MOP$ and $\angle MPO$ will be equal to one right angle or 90° i.e. they are complementary angles.

Let $\angle MPO = \theta$ then $\angle MOP = 90^{\circ} - \theta$. When $\angle MPO$ is considered MP becomes the base and OM becomes the perpendicular.

Thus,
$$\sin(90^{\circ} - \theta) = \sin MOP = \frac{MP}{OP} = \cos MPO = \cos \theta$$

$$\cos(90^{\circ} - \theta) = \sin MPO = \frac{MO}{OP} = \sin \theta$$

$$\tan(90^{\circ} - \theta) = \tan MOP = \frac{PM}{OM} = \cot MPO = \cot \theta$$

Similarly, $\cot(90^{\circ} - \theta) = \tan \theta$, $\csc(90^{\circ} - \theta) = \sec \theta$, $\sec(90^{\circ} - \theta) = \csc \theta$.

3.6 Supplementary Angles

Figure 3.5

Angles are said to be supplementary if their sum is equal to two right angles i.e. 180°. Thus, if measure of one angle is θ , the other will automatically be $180^{\circ} - \theta$.

Consider the above figure which includes the angles of $180^{\circ} - \theta$. In each figure OM and OM' are drawn in different directions, while MP and M'P' are drawn in the same direction so that OM' = -OM and M'P' = MP. Hence we can say that

$$\sin\left(180^{\circ} - \theta\right) = \sin MOP' = \frac{M'P'}{OP'} = \frac{MP}{OP} = \sin\theta$$

$$\cos(180^{\circ}-\theta)=\cos MOP'=\frac{OM'}{OP'}=-\frac{OM}{OP}=-\cos\theta$$

$$\tan(180^{\circ}-theta) = \tan MOP' = \frac{OM'}{M'P'} = -\frac{OM}{MP} = -\tan\theta$$

Similarly, $\cot(180^{\circ} - \theta) = -\cot\theta$, $\sec(180^{\circ} - \theta) = -\sec\theta$, $\csc(180^{\circ} - \theta) = \csc\theta$

3.7 Angles of $-\theta$

Figure 3.6

Consider the above diagram which plots the angles of θ and $-\theta$. Note that MP and MP' are equal in magnitude but opposite in sign. Thus, we have

$$\sin\left(-\theta\right) = \frac{MP'}{OP'} = -\frac{MP}{OP} = -\sin\theta.$$

$$\cos(-\theta) = \frac{OM}{MP'} = \frac{OM}{OP} = \cos\theta.$$

$$tan(-\theta) = \frac{MP'}{QM} = \frac{-MP}{QM} = -\tan\theta.$$

Similarly, $\cot(-\theta) = -\cot\theta$, $\sec(-\theta) = \sec\theta$, $\csc(-\theta) = -\csc\theta$.

3.8 Angles of $90^{\circ} + \theta$

The diagram has been left as an exercise. Similarly, it can be proven that $\sin(90^\circ + \theta) = \cos\theta, \cos(90^\circ + \theta) = -\sin\theta, \tan(90^\circ + \theta) = -\cot\theta, \cot(90^\circ + \theta) = -\tan\theta, \sec(90^\circ + \theta) = -\csc\theta, \csc(90^\circ + \theta) = \sec\theta.$

Angles of $180^{\circ} + \theta$, $270^{\circ} - \theta$, $270^{\circ} + \theta$ can be found using previous relations.

3.9 Angles of $360^{\circ} + \theta$

For angles of θ the radius vector makes an angle of θ with initial side. For angles of $360^{\circ} + \theta$ it will complete a full revolution and then make an angle of θ with initial side. Thus, the trigonometrical ratios for an angle of $360^{\circ} + \theta$ are the same as those for θ .

It is clear that angle will remain θ for any multiple of 360°.

3.10 Problems

- 1. If $A = 30^{\circ}$, verify that
 - i. $\cos 2A = \cos^2 A \sin^2 A = 2\cos^2 A 1$
 - ii. $\sin 2A = 2\sin A\cos A$
 - iii. $\cos 3A = 4\cos^3 A 3\cos A$
 - iv. $\sin 3A = 3\sin A 4\sin^3 A$
 - v. $\tan 2A = \frac{2 \tan A}{1 \tan^2 A}$
- 2. If $A = 45^{\circ}$, verify that
 - i. $\sin 2A = 2\sin A\cos A$
 - ii. $\cos 2A = 1 2\sin^2 A$
 - iii. $\tan 2A = \frac{2 \tan A}{1 \tan^2 A}$

Verify that

3.
$$\sin^2 30^\circ + \sin^2 45^\circ + \sin^2 60^\circ = \frac{3}{2}$$

4.
$$\tan^2 30^\circ + \tan^2 45^\circ + \tan^2 60^\circ = 4\frac{1}{3}$$

5.
$$\sin 30^{\circ} \cos 60^{\circ} + \sin 60^{\circ} \cos 30^{\circ} = 1$$

6.
$$\cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ} = -\frac{\sqrt{3}-1}{2\sqrt{2}}$$

7.
$$\csc^2 45^\circ \cdot \sec^2 30^\circ \cdot \sin^2 90^\circ \cdot \cos 60^\circ = 1\frac{1}{3}$$

8.
$$4 \cot^2 45^\circ - \sec^2 60^\circ + \sin^2 30^\circ = \frac{1}{4}$$

Prove that

9.
$$\sin 420^{\circ} \cos 390^{\circ} + \cos(-300^{\circ}) \sin(-330^{\circ}) = 1$$

10.
$$\cos 570^{\circ} \sin 510^{\circ} - \sin 330^{\circ} \cos 390^{\circ} = 0$$

What are the values of $\cos A - \sin A$ and $\tan A + \cot A$ when A has the values

11.
$$\frac{\pi}{3}$$

14.
$$\frac{7\pi}{4}$$

12.
$$\frac{2\pi}{3}$$

15.
$$\frac{11\pi}{3}$$

13.
$$\frac{5\pi}{4}$$

What values between 0° and 360° may A have when

16.
$$\sin A = \frac{1}{\sqrt{2}}$$

19.
$$\cot A = -\sqrt{3}$$

20.
$$\sec A = -\frac{2}{\sqrt{3}}$$

17.
$$\cos A = -\frac{1}{2}$$

21.
$$\csc A = -2$$

18.
$$\tan A = -1$$

Express in terms of the ratios of a positive angle, which is less than 45°, the quantities

22. $\sin(-65^{\circ})$

28. $\sin 843^{\circ}$

23. $\cos(-84^{\circ})$

29. $\cos(-928^{\circ})$

 $24. \tan 137^{\circ}$

 $30. \tan 1145^{\circ}$

25. $\sin 168^{\circ}$

31. $\cos 1410^{\circ}$

26. $\cos 287^{\circ}$

32. $\cot(-1054^{\circ})$

27. $\tan(-246^{\circ})$

33. $\sec 1327^{\circ}$

34. $\csc(-756^{\circ})$

What sign has $\sin A + \cos A$ for the following values of A?

35.
$$140^{\circ}$$
 37. -356°

What sign has $\sin A - \cos A$ for the following values of A?

39.
$$215^{\circ}$$
 41. -634°

40.
$$825^{\circ}$$
 42. -457°

43. Find the sine and cosine of all angles in the first four quadrants whose tangents are equal to cos 135°.

Prove that

44.
$$\sin(270^{\circ} + A) = -\cos A$$
 and $\tan(270^{\circ} + A) = -\cot A$

45.
$$\cos(270^{\circ} - A) = -\sin A$$
 and $\cot(270^{\circ} - A) = \tan A$

46.
$$\cos A + \sin(270^{\circ} + A) - \sin(270^{\circ} - A) + \cos(180^{\circ} + A) = 0$$

47.
$$\sec(270^{\circ} - A)\sec(90^{\circ} - A) - \tan(270^{\circ} - A)\tan(90^{\circ} + A) + 1 = 0$$

48.
$$\cot A + \tan(180^{\circ} + A) + \tan(90^{\circ} + A) + \tan(360^{\circ} - A) = 0$$

49. Find the value of
$$3\tan^2 45^{\circ} - \sin^2 60^{\circ} - \frac{1}{2}\cot^2 30^{\circ} + \frac{1}{8}\sec^2 45^{\circ}$$

50. Simplify
$$\frac{\sin 300^{\circ} \cdot \tan 330^{\circ} \cdot \sec 420^{\circ}}{\tan 135^{\circ} \cdot \sin 210^{\circ} \cdot \sec 315^{\circ}}$$

51. Show that
$$\tan 1^{\circ} \tan 2^{\circ} \dots \tan 89^{\circ} = 1$$

52. Show that
$$\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \dots + \sin^2 90^\circ = 9\frac{1}{2}$$

53. Find the value of
$$\cos^2 \frac{\pi}{16} + \cos^2 \frac{3\pi}{16} + \cos^2 \frac{5\pi}{16} + \cos^2 \frac{7\pi}{16}$$

Find the value of the following:

54.
$$\sec^2 \frac{\pi}{6} \sec^2 \frac{\pi}{4} + \tan^2 \frac{\pi}{3} \sin^2 \frac{\pi}{2}$$

55.
$$\cot^2 30^\circ - 2\cos^2 60^\circ - \frac{3}{4}\sin^2 45^\circ - 4\sin^2 30^\circ$$

56.
$$\frac{\sec 480^{\circ} \csc 570^{\circ} \cdot \tan 330^{\circ}}{\sin 600^{\circ} \cdot \cos 660^{\circ} \cdot \cot 405^{\circ}}$$

57. If
$$A = 30^{\circ}$$
, show that $\cos^{6} A + \sin^{6} A = 1 - \sin^{2} A \cos^{2} A$

58. Show that
$$\left(\tan\frac{\pi}{4} + \cot\frac{\pi}{4} + \sec\frac{\pi}{4}\right) \left(\tan\frac{\pi}{4} + \cot\frac{\pi}{4} - \sec\frac{\pi}{4}\right) = \csc^2\frac{\pi}{4}$$

- 59. Show that $\sin^2 6^\circ + \sin 6^2 12^\circ + \sin^2 18^\circ + \dots + \sin^2 84^\circ + \sin^2 90^\circ = 8$
- 60. Show that $\tan 9^{\circ}.\tan 27^{\circ}.\tan 45^{\circ}.\tan 63^{\circ}.\tan 81^{\circ}=1$
- 61. Show that $\sum_{r=1}^{9} \sin^2 \frac{r\pi}{18} = 5$
- 62. If $4n\alpha=\pi$, show that $\tan\alpha\tan2\alpha\tan3\alpha....\tan(2n-2)\alpha\tan(2n-1)\alpha=1$

Chapter 4

Compound Angles

Algebraic sum of two or more angles is called a *compound angle*. If A, B, C are any angle then A + B, A - B, A - B + C, A + B + C, A - B - C, A + B - C etc. are all compound angles.

4.1 The Addition Formula

 $\frac{\sin(A+B) = \sin A \cos B + \sin B \cos A \cos(A+B) = \cos A \cos B - \sin A \sin B \tan(A+B) = \tan A + \tan B}{1 - \tan A \tan B}$

Figure 4.1

Consider the diagram above. PM and PN are perpendicual to OQ and ON. RN is parallel to OQ and NQ is perpendicular to OQ. The left diagram represents the case when sum of angles is an acute angle while the right diagram represents the case when sum of angles is an obtuse angle.

$$\angle RPN = 90^{\circ} - \angle PNR = \angle RNO = \angle NOQ = \angle A$$

Now we can write, $\sin(A+B) = \sin QOP = \frac{MP}{OP} = \frac{MR+RP}{OP} = \frac{QN}{OP} + \frac{RP}{OP}$

$$= \frac{QN}{ON} \frac{ON}{OP} + \frac{RP}{NP} \frac{NP}{OP} = \sin A \cos B + \cos A \sin B$$

Also,
$$\cos(A+B) = \cos QOP = \frac{OM}{OP} = \frac{OQ-MQ}{OP} = \frac{OQ}{ON}\frac{ON}{OP} - \frac{RN}{NP}\frac{NP}{OP}$$

 $=\cos A\cos B-\sin A\sin B$

These two results lead to $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

We have shown that addition formula is true when angles involved are acute angles. The same proof can be applied to prove the results for all values of A and B.

Consider
$$A' = 90^{\circ} + A : \sin A' = \cos A$$
 and $\cos A' = \sin A$

$$\sin(A' + B) = \cos(A + B) = \cos A \cos B - \sin A \sin B = \sin A' \cos B + \cos A' \sin B$$

Similarly
$$\cos(A'+B) = -\sin(A+B) = -\sin A\cos B - \sin B\cos A = \cos A'\cos B - \sin A'\sin B$$

We can prove it again for $B' = 90^{\circ} + B$ and so on by increasing the values of A and B. Then we can again increase values by 90° and proceeding this way we see that the formula holds true for all values of A and B.

4.2 The Subtraction Formula

 $\frac{\sin(A-B) = \sin A \cos B - \sin B \cos A \cos(A-B) = \cos A \cos B + \sin A \sin B \tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

Figure 4.2

Conside the diagram above. The angle MOP is A-B. We take a point P, and draw PM and PN perpendicular to OM and ON respectively. From N we draw NQ and NR perpendicular to OQ and MP respectively.

$$\angle RPN = 90^{\circ} - \angle PNR = \angle QON = A$$

Thus, we can write
$$\sin(A-B) = \sin MOP = \frac{MP}{OP} = \frac{MR-PR}{OP} = \frac{QN}{ON}\frac{ON}{OP} - \frac{PR}{PN}\frac{PN}{OP}$$

Thus, $\sin(A - B) = \sin A \cos B - \cos A \sin B$

Also,
$$\cos(A - B) = \frac{OM}{OP} = \frac{OQ + QM}{OP} = \frac{OQ}{ON} \frac{ON}{OP} + \frac{RN}{NP} \frac{NP}{OP}$$

 $=\cos A\cos B + \sin A\sin B$

We have shown that subtraction formula is true when angles involved are acute angles. The same proof can be applied to prove the results for all values of A and B.

From the results obtained we find upon division that $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

4.3 Important Deductions

1.
$$\sin(A + B)\sin(A - B) = \sin^2 A - \sin^2 B = \cos^2 B - \cos^2 A$$

L.H.S. =
$$(\sin A \cos B + \sin B \cos A)(\sin A \cos B - \sin B \cos A)$$

$$= \sin^2 A \cos^2 B - \sin^2 B \cos^2 A = \sin^2 A (1 - \sin^2 B) - \sin^2 B (1 - \sin^2 A)$$

$$= \sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 B \sin^2 A$$

$$= \sin^2 A - \sin^2 B = (1 - \cos^2 A) - (1 - \cos^2 B)$$

$$= \cos^2 B - \cos^2 A$$

2.
$$\cos(A+B)\cos(A-B) = \cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$$

L.H.S. = $(\cos A \cos B - \sin A \sin B)(\cos A \cos B + \sin A \sin B)$
= $\cos^2 A \cos^2 B - \sin^2 A \sin^2 B$
= $\cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B$
= $\cos^2 A - \cos^2 A \sin^2 B - \sin^2 B + \cos^2 A \sin^2 B$
= $\cos^2 A - \sin^2 B = \cos^2 B - \sin^2 A$

3.
$$\cot(A+B) = \frac{\cot A \cot B - 1}{\cot B + \cot A}$$

L.H.S. =
$$\cot(A+B) = \frac{\cos(A+B)}{\sin(A+B)}$$

$$= \frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}$$

Dividing numerator and denominator by $\sin A \sin B$

$$= \frac{\cot A \cot B - 1}{\cot B + \cot A}$$

4.
$$\cot(A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

L.H.S. =
$$\cot(A - B) = \frac{\cos(A - B)}{\sin(A - B)}$$

$$= \frac{\cos A \cos B + \sin A \sin B}{\sin A \cos B - \cos A \sin B}$$

Dividing numerator and denominator by $\sin A \sin B$

$$= \frac{\cot A \cot B + 1}{\cot B - \cot A}$$

5.
$$\tan \left(A+B+C\right) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1-\tan A \tan B - \tan B + \tan C - \tan C \tan A}$$

L.H.S. =
$$\tan[(A+B) + C] = \frac{\tan(A+B) + \tan C}{1 - \tan(A+B) \tan C}$$

$$=\frac{\frac{\tan A + \tan B}{1 - \tan A \tan B} + \tan C}{1 - \frac{\tan A + \tan B}{1 - \tan A \tan B} \tan C}$$

$$=\frac{\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B}}{\frac{1 - \tan A \tan B - \tan C + \tan C \tan A}{1 - \tan A \tan B}}$$

$$= \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B + \tan C - \tan C \tan A}$$

4.4 To express $a\cos\theta + b\sin\theta$ in the form of $k\cos\phi$ or $k\sin\phi$

$$a\cos\theta + b\sin\theta = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos\theta + \frac{b}{\sqrt{a^2 + b^2}} \sin\theta \right)$$

Let
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
 then $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Thus,
$$a\cos\theta + b\sin\theta = \sqrt{a^2 + b^2}(\cos\alpha\cos\theta + \sin\alpha\sin\theta)$$

$$=\sqrt{a^2+b^2}\cos(\theta-\alpha)=k\cos\phi$$
 where $k=\sqrt{a^2+b^2}$ and $\phi=\theta-\alpha$

Alternatively, if
$$\frac{a}{\sqrt{a^2+b^2}} = \sin \alpha$$
 then $\frac{b}{\sqrt{a^2+b^2}} = \cos \alpha$

Thus,
$$a\cos\theta + b\sin\theta = \sqrt{a^2 + b^2}(\sin\alpha\cos\theta + \cos\alpha + \sin\theta)$$

$$=\sqrt{a^2+b^2}\sin(\theta+\alpha)=k\sin\phi$$
 where $k=\sqrt{a^2+b^2}$ and $\phi=\theta+\alpha$

4.5 Problems

- 1. If $\sin \alpha = \frac{3}{5}$ and $\cos \beta = \frac{9}{41}$, find the values of $\sin(\alpha \beta)$ and $\cos(\alpha + \beta)$.
- 2. If $\sin \alpha = \frac{45}{53}$ and $\sin \beta = \frac{33}{65}$, find the values of $\sin (\alpha \beta)$ and $\sin (\alpha + \beta)$.
- 3. If $\sin \alpha = \frac{15}{17}$ and $\cos \beta = \frac{12}{13}$, find the values of $\sin(\alpha + \beta)$, $\cos(\alpha \beta)$ and $\tan(\alpha + beta)$.

Prove the following:

- 4. $\cos(45^{\circ} A)\cos(45^{\circ} B) \sin(45^{\circ} A)\sin(45^{\circ} B) = \sin(A + B)$
- 5. $\sin(45^{\circ} + A)\cos(45^{\circ} B) + \cos(45^{\circ} + A)\sin(45^{\circ} B) = \cos(A B)$.
- 6. $\frac{\sin(A-B)}{\cos A \cos B} + \frac{\sin(B-C)}{\cos B \cos C} + \frac{\sin(C-A)}{\cos C \cos A} = 0.$
- 7. $\sin 105^{\circ} + \cos 105^{\circ} = \cos 45^{\circ}$.
- 8. $\sin 75^{\circ} \sin 15^{\circ} = \cos 105^{\circ} + \cos 15^{\circ}$.
- 9. $\cos \alpha \cos(\gamma \alpha) \sin \alpha \sin(\gamma \alpha) = \cos \gamma$.
- 10. $\cos(\alpha + \beta)\cos\gamma \cos(\beta + \gamma)\cos\alpha = \sin\beta\sin(\gamma \alpha)$.
- 11. $\sin(n+1)A\sin(n-1)A + \cos(n+1)A\cos(n-1)A = \cos 2A$.
- 12. $\sin(n+1) A \sin(n+2) A + \cos(n+1) A \cos(n+2) A = \cos A$.
- 13. Find the value of $\cos 15^{\circ}$ and $\sin 105^{\circ}$.

- 14. Find the value of tan 105°.
- 15. Find the value of $\frac{\tan 495^{\circ}}{\cot 855^{\circ}}$.
- 16. Evaluate $\sin\left(n\pi + (-1)^n \frac{\pi}{4}\right)$, where n is an integer.

Prove the following:

17.
$$\sin 15^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$$
.

18.
$$\cos 75^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$$
.

19.
$$\tan 75^{\circ} = 2 + \sqrt{3}$$
.

20.
$$\tan 15^{\circ} = 2 - \sqrt{3}$$
.

Find the value of following:

21.
$$\cos 1395^{\circ}$$
.

22.
$$\tan(-330^{\circ})$$
.

23.
$$\sin 300^{\circ} \csc 1050^{\circ} - \tan(-120^{\circ})$$
.

24.
$$\tan\left(\frac{11\pi}{12}\right)$$
.

25.
$$\tan((-1)^n \frac{\pi}{4})$$
.

Prove the following:

26.
$$\cos 18^{\circ} - \sin 18^{\circ} = \sqrt{2} \sin 27^{\circ}$$
.

27.
$$\tan 70^{\circ} = 2 \tan 50^{\circ} + \tan 20^{\circ}$$
.

28.
$$\cot\left(\frac{\pi}{4} + x\right)\cot\left(\frac{\pi}{4} - x\right) = 1.$$

29.
$$\cos(m+n)\theta \cdot \cos(m-n)\theta - \sin(m+n)\theta \sin(m-n)\theta = \cos 2m\theta$$
.

$$30. \ \frac{\tan(\theta+\phi)+\tan(\theta-\phi)}{1-\tan(\theta+\phi)\tan(\theta-\phi)}=\tan 2\theta.$$

31.
$$\cos 9^{\circ} + \sin 9^{\circ} = \sqrt{2} \sin 54^{\circ}$$
.

32.
$$\frac{\cos 20^{\circ} - \sin 20^{\circ}}{\cos 20^{\circ} + \sin 20^{\circ}} = \tan 25^{\circ}$$
.

33.
$$\frac{\tan A + \tan B}{\tan A - \tan B} = \frac{\sin(A+B)}{\sin(A-B)}.$$

34.
$$\frac{1}{\tan 3A - \tan A} - \frac{1}{\cot 3A - \cot A} = \cot 2A$$
.

35.
$$\frac{1}{\tan 3A + \tan A} - \frac{1}{\cot 3A - \cot A} = \cot 4A$$
.

36.
$$\frac{\sin 3\alpha}{\sin \alpha} + \frac{\cos 3\alpha}{\cos \alpha} = 4\cos 2\alpha.$$

$$37. \ \frac{\tan\left(\frac{\pi}{4}+A\right)-\tan\left(\frac{\pi}{4}-A\right)}{\tan\left(\frac{\pi}{4}+A\right)+\tan\left(\frac{\pi}{4}-A\right)} = \sin 2A.$$

38.
$$\tan 40^{\circ} + 2 \tan 10^{\circ} = \tan 50^{\circ}$$
.

39.
$$\tan(\alpha + \beta) \tan(\alpha - \beta) = \frac{\sin^2 \alpha - \sin^2 \beta}{\cos^2 \alpha - \sin^2 \beta}$$

40.
$$\tan^2 \alpha - \tan^2 \beta = \frac{\sin(\alpha + \beta)\sin(\alpha - \beta)}{\cos^2 \alpha \cos^2 \beta}$$
.

41.
$$\tan[(2n+1)\pi + \theta] + \tan[(2n+1)\pi - \theta] = 0$$
.

42.
$$\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{3\pi}{4} + \theta\right) + 1 = 0.$$

43. If
$$\tan \alpha = p$$
 and $\tan \beta = q$ prove that $\cos(\alpha + \beta) = \frac{1 - pq}{\sqrt{(1 + p^2)(1 + q^2)}}$

44. if
$$\tan \beta = \frac{2 \sin \alpha \sin \gamma}{\sin(\alpha + \gamma)}$$
, show that $\cot \alpha$, $\cot \beta$, $\cot \gamma$ are in A.P.

45. Eliminate
$$\theta$$
 if $\tan(\theta - \alpha) = a$ and $\tan(\theta + \alpha) = b$.

46. Eliminate
$$\alpha$$
 and β if $\tan \alpha + \tan \beta = b$, $\cot \alpha + \cot \beta = a$ and $\alpha + \beta = \gamma$.

47. If
$$A + B = 45^{\circ}$$
, show that $(1 + \tan A)(1 + \tan B) = 2$.

48. If
$$\sin \alpha \sin \beta - \cos \alpha \cos \beta + 1 = 0$$
, prove that $1 + \cot \alpha \tan \beta = 0$.

49. If
$$\tan \beta = \frac{n \sin \alpha \cos \alpha}{1 - n \sin^2 \alpha}$$
, prove that $\tan (\alpha - \beta) = (1 - n) \alpha$.

50. If
$$\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -\frac{3}{2}$$
, prove that $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$.

51. If
$$\tan \alpha = \frac{m}{m+1}$$
, $\tan \beta = \frac{1}{2m+1}$, prove that $\alpha + \beta = \frac{\pi}{4}$.

52. If
$$A + B = 45^{\circ}$$
, show that $(\cot A - 1)(\cot B - 1) = 2$.

53. If
$$\tan \alpha - \tan \beta = x$$
 and $\cot \beta - \cot \alpha = y$, prove that $\cot (\alpha - \beta) = \frac{x+y}{xy}$.

54. If a right angle be divided into three pats
$$\alpha$$
, β and γ , prove that $\cot \alpha = \frac{\tan \beta + \tan \gamma}{1 - \tan \beta \tan \gamma}$.

55. If
$$2 \tan \beta + \cot \beta = \tan \alpha$$
, show that $\cot \beta = 2 \tan (\alpha - \beta)$.

56. If in any
$$\triangle ABC$$
, $C=90^\circ$, prove that $\operatorname{cosec}(A-B)=\frac{a^2+b^2}{a^2-b^2}$ and $\operatorname{sec}(A-B)=\frac{c^2}{2ab^2}$

57. If
$$\cot A = \sqrt{ac}$$
, $\cot B = \sqrt{\frac{c}{a}}$, $\tan C = \sqrt{\frac{c}{a^3}}$ and $c = a^2 + a + 1$, prove that $A = B + C$.

58. If
$$\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1$$
, prove that $\tan A \tan B = \tan^2 C$.

- 59. If $\sin \alpha \sin \beta \cos \alpha \cos \beta = 1$ show that $\tan \alpha + \tan \beta = 0$.
- 60. If $\sin \theta = 3 \sin(\theta + 2\alpha)$, prove that $\tan(\theta + \alpha)$, prove that $\tan(\theta + \alpha) + 2 \tan \alpha = 0$.
- 61. If $3 \tan \theta \tan \phi = 1$, prove that $2 \cos(\theta + \phi) = \cos(\theta \alpha)$.
- 62. Find the sign of the expression $\sin \theta + \cos \theta$ when $\theta = 100^{\circ}$.
- 63. Prove that the value of $5\cos\theta + 3\cos\left(\theta + \frac{\pi}{3}\right) + 3$ lies between -4 and 10.
- 64. If $m \tan(\theta 30^\circ) = n \tan(\theta + 120^\circ)$, show that $\cos 2\theta = \frac{m+n}{2(m-n)}$.
- 65. if $\alpha + \beta = \theta$ and $\tan \alpha : \tan \beta = x : y$, prove that $\sin(\alpha \beta) = \frac{x y}{x + y} \sin \theta$.
- 66. Find the maximum and minimum value of $7\cos\theta + 24\sin\theta$.
- 67. Show that $\sin 100^{\circ} \sin 10^{\circ}$ is positive.

Chapter 5

Transformation Formulae

5.1 Transformation of products into sums or differences

We know that $\sin(A+B) = \sin A \cos B + \cos A \sin B$ and $\sin(A-B) = \sin A \cos B - \cos A \sin B$

Adding these, we get $2 \sin A \cos B = \sin(A+B) + \sin(A-B)$

Subtracting, we get $2\cos A\sin B = \sin(A+B) - \sin(A-B)$

We also know that $\cos(A+B) = \cos A \cos B - \sin A \sin B$ and $\cos(A-B) = \cos A \cos B + \sin A \sin B$

Adding, we get $2\cos A\cos B = \cos(A+B) + \cos(A-B)$

Subtrating we get $2 \sin \sin B = \cos(A - B) - \cos(A + B)$

5.2 Transformation of sums or differences into products

We have $2 \sin A \cos B = \sin (A + B) \sin (A - B)$

Substituting for A+B=C, A-B=D so that $A=\frac{C+D}{2}$ and $B=\frac{C-D}{2}$

 $\sin C + \sin D = 2\sin \frac{C+D}{2}\cos \frac{C-D}{2}$

We also have $2\cos A\sin B = \sin(A+B) - \sin(A-B)$

Following similarly $\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$

For $2\cos A\cos B=\cos (A+B)+\cos (A-B),$ we get $\cos C+\cos D=2\cos \frac{C+D}{2}\cos \frac{C-D}{2}$

For $2\sin\sin B = \cos(A-B) - \cos(A+B)$, we get $\cos C - \cos D = 2\sin\frac{C+D}{2}\sin\frac{D-C}{2}$

5.3 Problems

- 1. Find the value of $\frac{\sin 75^{\circ} \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}}$
- 2. Simplify the expression $\frac{(\cos\theta \cos 3\theta)(\sin 8\theta + \sin 2\theta)}{(\sin 5\theta \sin \theta)(\cos 4\theta \cos 6\theta)}$

Prove that

- 3. $\frac{\sin 7\theta \sin 5\theta}{\cos 7\theta + \cos 5\theta} = \tan \theta.$
- 4. $\frac{\cos 6\theta \cos 4\theta}{\sin 6\theta + \sin 4\theta} = -\tan \theta.$
- 5. $\frac{\sin A + \sin 3A}{\cos A + \cos 3A} = \tan 2A.$

6.
$$\frac{\sin 7A - \sin A}{\sin 8A - \sin 2A} = \cos 4A \sec 5A.$$

7.
$$\frac{\cos 2B + \cos 2A}{\cos 2B - \cos 2A} = \cot(A+B)\cot(A-B).$$

8.
$$\frac{\sin 2A + \sin 2B}{\sin 2A - \sin 2B} = \frac{\tan(A+B)}{\tan(A-B)}.$$

9.
$$\frac{\sin A + \sin 2A}{\cos A - \cos 2A} = \cot \frac{A}{2}.$$

$$10. \ \frac{\sin 5A - \sin 3A}{\cos 3A + \cos 5A} = \tan A.$$

11.
$$\frac{\cos 2B - \cos 2A}{\sin 2B + \sin 2A} = \tan(A - B).$$

12.
$$\cos(A+B) + \sin(A-B) = 2\sin(45^\circ + A)\cos(45^\circ + B)$$
.

13.
$$\frac{\cos 3A - \cos A}{\sin 3A - \sin A} + \frac{\cos 2A - \cos 4A}{\sin 4A - \sin 2A} = \frac{\sin A}{\cos 2A \cos 3A}$$

14.
$$\frac{\sin(4A-2B)+\sin(4B-2A)}{\cos(4A-2B)+\cos(4B-2A)} = \tan(A+B).$$

15.
$$\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta - \tan 3\theta} = 4\cos 2\theta\cos 4\theta.$$

16.
$$\frac{\cos 3\theta + 2\cos 5\theta + \cos 7\theta}{\cos \theta + 2\cos 3\theta + \cos 5\theta} = \cos 2\theta - \sin 2\theta \tan 3\theta.$$

17.
$$\frac{\sin A + \sin 3A + \sin 5A + \sin 7A}{\cos A + \cos 3A + \cos 5A + \cos 7A} = \tan 4A$$
.

18.
$$\frac{\sin(\theta+\phi)-2\sin\theta+\sin(\theta-\phi)}{\cos(\theta+\phi)-2\cos\theta+\cos(\theta-\phi)}=\tan\theta.$$

19.
$$\frac{\sin A + 2\sin 3A + \sin 5A}{\sin 3A + 2\sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}$$

20.
$$\frac{\sin(A-C)+2\sin A+\sin(A+C)}{\sin(B-C)+2\sin B+\sin(B+C)} = \frac{\sin A}{\sin B}$$

21.
$$\frac{\sin A - \sin 5A + \sin 9A - \sin 13A}{\cos A - \cos 5A - \cos 9A + \cos 13A} = \cot 4A.$$

22.
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \frac{A+B}{2} \cot \frac{A-B}{2}.$$

23.
$$\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \frac{A+B}{2} \cot \frac{A-B}{2}.$$

24.
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}.$$

25.
$$\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \frac{A+B}{2}.$$

$$\frac{26.}{\sin(A+B+C) + \cos(-A+B+C) + \cos(A-B+C) + \cos(A+B-C)}{\sin(A+B+C) + \sin(-A+B+C) - \sin(A-B+C) + \sin(A+B-C)} = \cot B.$$

27.
$$\cos 3A + \cos 5A + \cos 7A + \cos 15A = 4\cos 4A\cos 5A\cos 6A$$
.

28.
$$\cos(-A+B+C) + \cos(A-B+C) + \cos(A+B-C) + \cos(A+B+C) = 4\cos A\cos B\cos C$$
.

- 29. $\sin 50^{\circ} \sin 70^{\circ} + \sin 10^{\circ} = 0$.
- 30. $\sin 10^{\circ} + \sin 20^{\circ} + \sin 40^{\circ} + \sin 50^{\circ} = \sin 70^{\circ} + \sin 80^{\circ}$.
- 31. $\sin \alpha + \sin 2\alpha + \sin 4\alpha + \sin 5\alpha = 4\cos \frac{\alpha}{2}\cos \frac{3\alpha}{2}\sin 3\alpha$.

Simplify:

32.
$$\cos\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] - \cos\left[\theta + \left(n + \frac{3}{2}\right)\phi\right]$$
.

33.
$$\sin\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] + \sin\left[\theta + \left(n + \frac{3}{2}\right)\phi\right].$$

Express as a sum or difference the following:

- 34. $2\sin 5\theta \sin 7\theta$.
- 35. $2\cos 7\theta \sin 5\theta$.
- 36. $2\cos 11\theta\cos 3\theta$.
- $37. \ 2\sin 54^{\circ} \sin 66^{\circ}.$

Prove that

- 38. $\sin \frac{\theta}{2} \sin \frac{7\theta}{2} + \sin \frac{3\theta}{2} \sin \frac{11\theta}{2} = \sin 2\theta \sin 5\theta$.
- 39. $\cos 2\theta \cos \frac{\theta}{2} \cos 3\theta \cos \frac{9\theta}{2} = \sin 5\theta \sin \frac{5\theta}{2}$.
- 40. $\sin A \sin(A + 2B) \sin B \sin(B + 2A) = \sin(A B) \sin(A + B)$.
- 41. $(\sin 3A + \sin A)\sin A + (\cos 3A \cos A)\cos A = 0$.
- 42. $\frac{2\sin(A-C)\cos C \sin(A-2C)}{2\sin(B-C)\cos C \sin(B-2C)} = \frac{\sin A}{\sin B}$
- 43. $\frac{\sin A \sin 2A + \sin 3A \sin 6A + \sin 4A \sin 13A}{\sin A \cos 2A + \sin 3A \cos 6A + \sin 4A \cos 13A} = \tan 9A.$
- 44. $\frac{\cos 2A \cos 3A \cos 2A \cos 7A + \cos A \cos 10A}{\sin 4A \sin 3A \sin 2A \sin 5A + \sin 4A \sin 7A} = \cot 6A \cot 5A.$
- 45. $\cos(36^{\circ} A)\cos(36^{\circ} + A) + \cos(54^{\circ} + A)\cos(54^{\circ} A) = \cos 2A$.
- 46. $\cos A \sin(B-C) + \cos B \sin(C-A) + \cos C \sin(A-B) = 0$.
- 47. $\sin(45^{\circ} + A)\sin(45^{\circ} A) = \frac{1}{2}\cos 2A$.
- 48. $\sin(\beta \gamma)\cos(\alpha \delta) + \sin(\gamma \alpha)\cos(\beta \delta) + \sin(\alpha \beta)\cos(\gamma \delta) = 0.$
- 49. $2\cos\frac{\pi}{13}\cos\frac{9\pi}{13} + \cos\frac{3\pi}{13} + \cos\frac{5\pi}{13} = 0$.
- 50. $\cos 55^{\circ} + \cos 65^{\circ} + \cos 175^{\circ} = 0$.

- 51. $\cos 18^{\circ} \sin 18^{\circ} = \sqrt{2} \sin 27^{\circ}$.
- 52. $\frac{\sin A + \sin 2A + \sin 4A + \sin 5A}{\cos A + \cos 2A + \cos 4A + \cos 5A} = \tan 3A$.
- 53. $\left(\frac{\cos A + \cos B}{\sin A \sin A}\right)^n + \left(\frac{\sin A + \sin B}{\cos A \cos B}\right)^n = 2 \cot^n \frac{A B}{2}$ or 0 according as n is even or odd.
- 54. If α, β, γ are in A.P., show that $\cos \beta = \frac{\sin \alpha \sin \gamma}{\cos \gamma \cos \alpha}$
- 55. If $\sin \theta + \sin \phi = \sqrt{3}(\cos \phi \cos \theta)$ prove that $\sin 3\theta + \sin 3\phi = 0$.
- 56. $\sin 65^{\circ} + \cos 65^{\circ} = \sqrt{2}\cos 20^{\circ}$.
- 57. $\sin 47^{\circ} + \cos 77^{\circ} = \cos 17^{\circ}$.
- 58. $\frac{\cos 10^{\circ} \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \tan 35^{\circ}$.
- $59. \cos 80^{\circ} + \cos 40^{\circ} \cos 20^{\circ} = 0.$
- 60. $\cos \frac{\pi}{5} + \cos \frac{2\pi}{5} + \cos \frac{6\pi}{5} + \cos \frac{7\pi}{5} = 0.$
- 61. $\cos \alpha + \cos \beta + \cos \gamma + \cos (\alpha + \beta + \gamma) = 4 \cos \frac{\alpha + \beta}{2} \cos \frac{\beta + \gamma}{2} \cos \frac{\gamma + \alpha}{2}$.
- 62. If $\sin \alpha \sin \beta = \frac{1}{3}$ and $\cos \beta \cos \alpha = \frac{1}{2}$, prove that $\cot \frac{\alpha + \beta}{2} = \frac{2}{3}$.
- 63. If $\csc A + \sec A = \csc B + \sec B$, prove that $\tan A \tan B = \cot \frac{A+B}{2}$.
- 64. If $\sec(\theta + \alpha) + \sec(\theta \alpha) = 2\sec\theta$, show that $\cos^2\theta = 1 + \cos\alpha$.
- 65. Show that $\sin 50^{\circ} \cos 85^{\circ} = \frac{1 \sqrt{2} \sin 35^{\circ}}{2\sqrt{2}}$.
- 66. Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{\sqrt{3}}{8}$.
- 67. Prove that $\sin A \sin(60^{\circ} A) \sin(60^{\circ} + A) = \frac{1}{4} \sin 3A$.
- 68. If $\alpha + \beta = 90^{\circ}$, find the maximum value of $\sin \alpha \sin \beta$.
- 69. Prove that $\sin 25^{\circ} \cos 115^{\circ} = \frac{1}{2} (\sin 40^{\circ} 1)$.
- 70. Prove that $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$.
- 71. Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$.
- 72. Prove that $\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ} = 3$.
- 73. Prove that $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \frac{3}{16}$.

- 74. Prove that $4\cos\theta\cos\left(\frac{\pi}{3}+\theta\right)\cos\left(\frac{\pi}{3}-\theta\right)=\cos 3\theta$.
- 75. Prove that $\tan \theta \tan (60^{\circ} \theta) \tan (60^{\circ} + \theta) = \tan 3\theta$.
- 76. If $\alpha + \beta = 90^{\circ}$, show that the maximum value of $\cos \alpha \cos \beta$ is $\frac{1}{2}$.
- 77. If $\cos \alpha = \frac{1}{\sqrt{2}}$, $\sin \beta = \frac{1}{\sqrt{3}}$, show that $\tan \frac{\alpha + \beta}{2} \cot \frac{\alpha \beta}{2} = 5 + 2\sqrt{6}$ or $5 2\sqrt{6}$.
- 78. If $x\cos\theta = y\cos\left(\theta + \frac{2\pi}{3}\right) = z\cos\left(\theta + \frac{4\pi}{3}\right)$, prove that xy + yz + xz = 0.
- 79. If $\sin \theta = n \sin(\theta + 2\alpha)$, prove that $\tan(\theta + \alpha) = \frac{1+n}{1-n} \tan \alpha$.
- 80. If $\frac{\sin(\theta+\alpha)}{\cos(\theta-\alpha)} = \frac{1-m}{1+m}$, prove that $\tan\left(\frac{\pi}{4}-\theta\right)\tan\left(\frac{\pi}{4}-\alpha\right) = m$.
- 81. If $y \sin \phi = x \sin(2\theta + \phi)$, show that $(x + y) \cot(\theta + \phi) = (y x) \cot \theta$.
- 82. If $\cos(\alpha + \beta)\sin(\gamma + \delta) = \cos(\alpha beta)\sin(\gamma \delta)$, prove that $\cot\alpha\cot\beta\cot\gamma = \cot\delta$.
- 83. If $\frac{\cos(A-B)}{\cos(A+B)} + \frac{\cos(C+D)}{\cos(C-D)} = 0$, prove that $\tan A \tan B \tan C \tan D = -1$.
- 84. If $\tan(\theta + \phi) = 3\tan\theta$, prove that $\sin(2\theta + \phi) = 2\sin\phi$.
- 85. If $\tan(\theta + \phi) = 3\tan\theta$, prove that $\sin 2(\theta + \phi) + \sin 2\theta = 2\sin 2\phi$.