Part IA - Probability Theorems

Lectured by R. Weber Lent 2015

Basic concepts

Classical probability, equally likely outcomes. Combinatorial analysis, permutations and combinations. Stirling's formula (asymptotics for $\log n!$ proved). [3]

Axiomatic approach

Axioms (countable case). Probability spaces. Inclusion-exclusion formula. Continuity and subadditivity of probability measures. Independence. Binomial, Poisson and geometric distributions. Relation between Poisson and binomial distributions. Conditional probability, Bayes's formula. Examples, including Simpson's paradox. [5]

Discrete random variables

Expectation. Functions of a random variable, indicator function, variance, standard deviation. Covariance, independence of random variables. Generating functions: sums of independent random variables, random sum formula, moments.

Conditional expectation. Random walks: gambler's ruin, recurrence relations. Difference equations and their solution. Mean time to absorption. Branching processes: generating functions and extinction probability. Combinatorial applications of generating functions.

Continuous random variables

Distributions and density functions. Expectations; expectation of a function of a random variable. Uniform, normal and exponential random variables. Memoryless property of exponential distribution. Joint distributions: transformation of random variables (including Jacobians), examples. Simulation: generating continuous random variables, independent normal random variables. Geometrical probability: Bertrand's paradox, Buffon's needle. Correlation coefficient, bivariate normal random variables. [6]

Inequalities and limits

Markov's inequality, Chebyshev's inequality. Weak law of large numbers. Convexity: Jensen's inequality for general random variables, AM/GM inequality.

Moment generating functions and statement (no proof) of continuity theorem. Statement of central limit theorem and sketch of proof. Examples, including sampling. [3]

Contents

1	Int	roduction	3	
2	Cla	Classical probability		
	2.1	Classical probability	4	
	2.2	Sample space and events	4	
3	Combinatorial analysis			
	3.1	Counting	Ę	
	3.2	Sampling with or without replacement	1	
	3.3			
	3.4	Four cases of enumerative combinatorics		
4	Stirling's formula			
	4.1	Multinomial coefficient	6	
	4.2	Stirling's formula	6	
5	Axiomatic approach			
	5.1	Boole's inequality	7	
	5.2	Inclusion-exclusion formula	7	

1 Introduction

- 2 Classical probability
- 2.1 Classical probability
- 2.2 Sample space and events

3 Combinatorial analysis

3.1 Counting

Theorem (Fundamental rule of counting). Suppose we have to make r multiple choices in sequence. There are m_1 possibilities for the first choice, m_2 possibilities for the second etc. Then the total number of choices is $m_1 \times m_2 \times \cdots m_r$.

- 3.2 Sampling with or without replacement
- 3.3 Sampling with or without regard to ordering
- 3.4 Four cases of enumerative combinatorics

4 Stirling's formula

4.1 Multinomial coefficient

4.2 Stirling's formula

Proposition. $\log n! \sim n \log n$

Theorem (Stirling's formula). As $n \to \infty$,

$$\log\left(\frac{n!e^n}{n^{n+\frac{1}{2}}}\right) = \log\sqrt{2\pi} + O\left(\frac{1}{n}\right)$$

Corollary.

$$n! \sim \sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}$$

Proposition ((non-examinable)). We use the 1/12n term from the proof above to get a better approximation:

$$\sqrt{2\pi}n^{n+1/2}e^{-n} + \frac{1}{12n+1} \le n! \le \sqrt{2\pi}n^{n+1/2}e^{-n} + \frac{1}{12n}.$$

5 Axiomatic approach

Theorem.

- (i) $P(\emptyset) = 0$
- (ii) $P(A^C) + 1 P(A)$
- (iii) $A \subseteq B \Rightarrow P(A) \le P(B)$
- (iv) $P(A \subseteq B) = P(A) + P(B) P(A \cap B)$.
- (v) Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$. Then

$$P\left(\bigcup_{1}^{\infty} A_i\right) = \lim_{n \to \infty} P(A_n).$$

This states that P is a continuous set function.

5.1 Boole's inequality

Theorem (Boole's inequality). For any A_1, A_2, \dots ,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i).$$

5.2 Inclusion-exclusion formula

Theorem (Inclusion-exclusion formula).

$$P\left(\bigcup_{i}^{n} A_{i}\right) = \sum_{1}^{n} P(A_{i}) - \sum_{i_{1} < i_{2}} P(A_{i_{1}} \cap A_{j_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) - \cdots + (-1)^{n-1} P(A_{1} \cap \cdots \cap A_{n}).$$