Universität Hannover

Hannover, 30. Dezember 2004

Institut für Mathematische Stochastik

Prof. Dr. R. Grübel Dr. C. Franz, M. Kötter, Dr. M. Reich

Aufgabenblatt 10 zur Vorlesung

Elementare Wahrscheinlichkeitstheorie und Statistik A WS 2004/05

Stundenübung

Aufgabe 45. Es seien X, Y, Z Zufallsvariablen mit existierendem zweiten Moment und $a, b \in \mathbb{R}$.

- (a) Zeigen Sie, dass die Kovarianz ein bilinearer Operator ist, d.h. es gilt
 - (i) Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z) und
 - (ii) Cov(Z, aX + bY) = aCov(Z, X) + bCov(Z, Y).
- (b) Wir betrachten die Abbildung $(a,b) \longmapsto \varphi(a,b) := E(X-a-bY)^2$. Für welche reellen Zahlen a, b ist φ minimal, und wie groß ist dieses Minimum?
- (c) Zeigen Sie anhand eines Gegenbeispiels, dass unkorrelierte Zufallsvariablen nicht notwendigerweise auch unabhängig sind.

Aufgabe 46. (Multinomialverteilung)

Der Zufallsvektor $X = (X_1, X_2, \dots, X_r)$ sei multinomialverteilt mit den Parametern $n \in \mathbb{N}$ und $p = (p_1, p_2, \dots, p_r)$, d.h.

$$P(X_1 = k_1, \dots, X_r = k_r) = \frac{n!}{k_1! \cdot \dots \cdot k_r!} p_1^{k_1} \cdot \dots \cdot p_r^{k_r}$$

für $k_1, \ldots, k_r \in \mathbb{N}_0$ mit $k_1 + \ldots + k_r = n$, wobei $p_1, \ldots, p_r \ge 0$ und $p_1 + \ldots + p_r = 1$.

- (a) Bestimmen Sie die Verteilung von X_i , i = 1, 2, ..., r.
- (b) Bestimmen Sie für i, j = 1, 2, ..., r die Kovarianzen $Cov(X_i, X_j)$ der Komponenten von X.
- (c) Sind die Komponenten von X unabhängig?

Aufgabe 47. (Faltung der geometrischen Verteilung)

Gegeben seien zwei unabhängige, mit Parameter p geometrisch verteilte Zufallsgrößen X und Y. Bestimmen Sie die Verteilung von X + Y.

Hausübung

Aufgabe 48. (Das Postbotenproblem)

Es sei Ω die Menge der Permutationen $\omega = (\omega_1, \omega_2, ..., \omega_n)$ von (1, 2, ..., n). Wir betrachten das durch Ω festgelegte Laplace-Experiment (vgl. das Postbotenproblem, Beispiel 2.7 der Vorlesung). Es sei $Y(\omega)$ die Anzahl der Fixpunkte von ω . Bestimmen Sie den Erwartungswert und die Varianz von Y.

Hinweis. Es gilt $Y = X_1 + X_2 + ... + X_n$ mit

$$X_i(\omega) := \begin{cases} 1 & \text{, falls } \omega_i = i \\ 0 & \text{, sonst} \end{cases}$$

für alle i = 1, 2, ..., n.

(5 Punkte)

Aufgabe 49. (Faltung der Gammaverteilung)

Wir schreiben $\Gamma(\alpha, \lambda)$, $\alpha > 0$, $\lambda > 0$, für die in Aufgabe 38 vorgestellte Gammaverteilung mit den Parametern α und λ . Zeigen Sie: Sind X und Y unabhängige Zufallsvariablen mit $X \sim \Gamma(\alpha, \lambda)$ und $Y \sim \Gamma(\beta, \lambda)$, so gilt $X + Y \sim \Gamma(\alpha + \beta, \lambda)$.

(5 Punkte)

Abgabe der Hausübungen in den Übungsstunden vom 17. Januar bis 19. Januar.