Nuclear Fuel Performance

NE-533

Spring 2022

Last Time

- Fuel and pellet conditions change with time due to microstructure evolution
- All materials have defects, radiation damage causes many more defects
- Microstructure can be tailored through processing
- Thermal conductivity degrades with time
- High Burnup Structure can form along the rim
- Started on some fuel chemistry

FUEL CHEMISTRY

Incorporation of Fission Products

- As fission products form, the valence state of the uranium can change
- Typical valence of soluble fission products is M³⁺
- The uranium valence state changes to compensate
 - Oxygen liberated by fission
 - Fission products produced with M³⁺ valance state incorporated in fuel lattice
 - Uranium oxidizes from U⁴⁺ to U⁵⁺ or U⁶⁺ to maintain local electrical neutrality

Oxygen potential

- The oxygen potential is a measure of how free the oxygen is to escape/move around
- Oxygen potential is defined as: $\Delta \overline{G}_{O_2} \equiv R T \ln \left(p_{O_2} \right)$
- or, equivalently: $\Delta \bar{G}_{O_2} = 2 \mu_{O_{solution}} G_{O_2}^{\circ}$
 - With $\mu_{O_{solution}}$ = Chemical potential of oxygen in solution
 - $G_{0_2}^{\circ}$ = Gibbs free energy of gaseous oxygen at temperature T and a standard pressure (1 atm)
- It is possible to determine the stoichiometry from the oxygen potential

Oxygen potential

- The oxygen potential changes during irradiation, indicating change in the O/M ratio
- Oxygen potential changes during irradiation due to
 - Liberation of oxygen by fission; Generation of fission products; Conversion of uranium to plutonium; Reaction of oxygen with U, Pu, fission products, and cladding
- Oxygen potential across pellet radius observed to be constant at the approximate value of Mo/MoO₂ reaction (from calculations)
- Mo serves as a buffer to the O potential, or a means of inferring what the oxygen potential may have been in the fuel from PIE
- Oxygen potential is low near the cladding, because the oxygen enters the cladding

Fuel Stoichiometry/Properties

- The stoichiometry of the fuel directly impacts the fuel performance
- Stoichiometry impacts
 - Melting temperature
 - Thermal conductivity
 - Processes dependent on diffusion
 - Grain growth
 - Fission gas release
 - Creep
 - Chemical state and behavior of fission products
 - Chemical reactions at inner cladding surface
- Thermal conductivity is highest for stoichiometric UO2

Fuel Stoichiometry/Properties

 The lattice constant of the material decreases with increasing stoichiometry

 The vacancy formation energy also changes with stoichiometry

Fuel Stoichiometry/Properties

- The solution energy of Xe, Cs, and Sr in UO₂ depends on stoichiometry as well
- The coefficient defining Xe diffusion also changes with stoichiometry
- Though stoichiometry matters, most fuel performance codes ignore it

Fission product	UO _{1.97}	UO ₂	UO _{2.03}
Xe	3.88 eV	3.88 ev	2.61 eV
Cs	1.7 eV	-0.04 eV	-3.29 eV
Sr	-3.71 eV	-6.03 eV	-9.55 eV

Fuel Chemistry Summary

- UO₂ has a cubic fluorite structure that is very stable
- The charges are balanced with a U⁴⁺ valence state
- However, the ratio of oxygen to uranium can change. We call this the stoichiometry and abbreviate it as O/M ratio
- The O/M ratio changes during reactor operation, but it is complicated
- The O/M ratio impacts many properties of the fuel