以下での(*)とは,次のもの:

- integral,
- separated,
- noetherian, and
- regular in codimention one.

また, (†) は次のもの: X :: noetherian scheme, S :: graded \mathcal{O}_X -algebra となっている. また, $d \in \mathbb{Z}, d \geq 0$ について, \mathcal{S}_d :: homogeneous part of S を $U \mapsto \mathcal{S}(U)_d$. X, S は次をすべて満たす.

- S :: quasi-coherent.
- $S = \bigoplus_{d>0} S_d$.
- $S_0 = \mathcal{O}_X$.
- S_1 :: coherent \mathcal{O}_X -module.
- S :: locally generated by S_1 as \mathcal{O}_X -algebra.

Ex7.1 Surjective Mophism between Invertible Sheaves is Isomorphic.

X:: locally ringed space, \mathcal{L} , \mathcal{M} :: invertible sheaves on X, $f:\mathcal{L} \to \mathcal{M}$:: surjective mophism, とする.

■Proof 1. 任意の点 $x \in X$ をとり, $A = \mathcal{O}_{X,x}$ とおく. $f_x : \mathcal{L}_x \to \mathcal{M}_x$ は同型写像を合成することで $\phi : A \to A$:: surjective A-morphism と同一視出来る. ϕ :: surjective より, $\phi(\alpha) = 1 \in A$ となる $\alpha \in A$ がとれる.また ϕ は A-module morphism だから, $\alpha\phi(1) = 1$.そこで $\psi : A \to A$ を $a \mapsto \alpha a$ と 定義すれば,これが ϕ の逆写像になる.よって ϕ , f_x は同型.Prop1.1 から,f :: iso.

■Proof 2. Matsumura, Thm2.4 から分かる. これは NAK (or Nakayama's Lemma) からの帰結である.

注意 Ex7.1.1

k(x) :: residue field と $f_x: \mathcal{L}_x \to \mathcal{M}_x$ をテンソルすると, $f_x \otimes \operatorname{id}_{k(x)}$:: surjective k(x)-module morphism が得られる.よって $\ker(f_x \otimes \operatorname{id}_{k(x)}) = 0$. しかし,ここから NAK をつかって $\ker f_x = 0$ を 導くことは出来ない.k(x) が flat $\mathcal{O}_{X,x}$ -module でなく,したがって $\ker(f_x \otimes \operatorname{id}_{k(x)})$ と $(\ker f_x) \otimes k(x)$ の間に同型があることが言えないからである.このことは flat \Longrightarrow torsion-free に気をつければすぐ に分かる.同様の議論が f_x :: injective(と $\operatorname{coker} f_x$)の場合に出来ることにも気づくが,このときは $\mathbb{Z}_2 \to \mathbb{Z}_2; 1 \mapsto 3$ という反例がある.

Ex7.2 Two Sets of Global Generators and Corresponding Morphisms.

k:: field, X:: scheme /k, \mathcal{L} :: invertible sheaf on X, $S = \{s_0, \ldots, s_m\}$, $T = \{t_0, \ldots, t_n\}$:: global generators of \mathcal{L} . とする.ここで S, T は同じ線形(部分)空間 $V \subseteq \Gamma(X, \mathcal{L})$ を張るとする.また $n \leq m, d = \dim_k V$ とする.

S,T からそれぞれ Thm7.1 のように定まる morphism を ϕ_S,ϕ_T とする. ϕ_S が次のように分解できる

ことを示す.

$$X \xrightarrow{\phi_T} \operatorname{im} \phi_T \xrightarrow{} \mathbb{P}^m - L \xrightarrow{\pi} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

 $22 \text{ T} = \pi$, α is the linear projection is automorphism of α .

 $X \to \mathbb{P}^n$ の morphism を考えることは, $k[y_0,\ldots,y_n]$ の元 y_0,\ldots,n の変換を考えることと同じである.これは Thm7.1 の証明を観察すれば分かる.二つの k-linear map は ϕ_S^*,ϕ_T^* はそれぞれ, $y_i \mapsto s_i (i=0,\ldots,n), \ y_i \mapsto t_i (i=0,\ldots,m)$ で定まっている.したがって問題は, t_0,\ldots,t_m を s_0,\ldots,s_n へ変換する projection と automorphism をつくる問題,と言い換えられる.

今,次のような(m+1)×(n+1)行列Qが存在する.

$$\begin{bmatrix} s_0 \\ \vdots \\ s_n \end{bmatrix} = Q \begin{bmatrix} t_0 \\ \vdots \\ t_m \end{bmatrix}.$$

S,T が V の生成系であることから $\mathrm{rank}\,Q=\dim V=:d.$ Q は基本行列をいくつもかける(あるいは基本変形を繰り返し行う)ことにより、次の形に分解できる.

$$Q = LP_dR$$
 where $L \in PGL(m, k), R \in PGL(n, k)$

ただし行列 P_r $(r=1,\ldots,n+1)$ は $r\times r$ -identity matrix I_r をもちいて $P_r=\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ と定義される行列である.(TODO: P_d を P_{n+1} に交換しても問題ない?) L,P_{n+1},R が誘導する morphism をそれぞれ $\beta,\tilde{\pi},\alpha$ とすれば, α,β は automorphism であり, $\tilde{\pi}$ は projection である.

$$\mathbb{P}^m \xrightarrow{\beta} \mathbb{P}^m \stackrel{i}{\longrightarrow} \mathbb{P}^m - L \xrightarrow{\tilde{\pi}} \mathbb{P}^n \xrightarrow{\alpha} \mathbb{P}^n$$

求める写像はこの α と, $\pi=\beta\circ i\circ \tilde{\pi}$ である.また, $L=\mathcal{Z}_p(y_0,\ldots,y_n)\subseteq \mathbb{P}^m$ の次元は m-(n+1) である.

Ex7.3 Morphism of $\mathbb{P}^n \to \mathbb{P}^m$ can be Decomposed into Common Ones.

 $\phi: \mathbb{P}^n_k \to \mathbb{P}^m_k$ を考える. $\mathcal{O}_{\mathbb{P}^m}(1), \mathcal{O}_{\mathbb{P}^n}(1)$:: invertible sheaves の global generator をそれぞれ $\{x_0,\ldots,x_m\},\{y_0,\ldots,y_n\}$ とする.

(a) $\operatorname{im} \phi = pt$ or $m \geq n$ and $\operatorname{dim} \operatorname{im} \phi = n$.

 $s_i = \phi^*(x_i) \ (i = 0, ..., m)$ とおくと、 $s_0, ..., s_m$ は $\mathcal{L} := \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$ の global generator である. \mathcal{L} は \mathbb{P}^n 上の invertible sheaf だから、Cor6.17 より、 $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n}(d)$ となる $d \in \mathbb{Z}$ が存在する.Example7.8.3 同様, $\mathcal{O}_{\mathbb{P}^n}(d)$ は |d| 次斉次単項式で生成される.

- $\blacksquare m < n \implies \dim \operatorname{im} \phi = 0.$
- $\blacksquare m \ge n \implies \dim \operatorname{im} \phi = n.$

Ex7.4 If X Admits an Ample Invertible Sheaf, then X is Separated.

(a) Assumption of Thm7.6 $\implies X ::$ separated.

A:: noetherian ring, X:: scheme of finite type /A とする. $\mathcal L$:: ample invertible sheaf on X が存在したとする. Thm7.6 から, immersion $i:X\to\mathbb P^n_A$ (n>0) が存在する. これは X から $\mathbb P^n_A$ $\mathcal O$ locally closed subscheme $\mathcal O$ isomorphism である. これに projection $\mathrm{pr}:\mathbb P^n_A=\mathbb P^n_\mathbb Z\times_\mathbb Z$ $\mathrm{Spec}\,A\to\mathrm{Spec}\,A$ を合成したものは、quasi-projective.

$$X \xrightarrow{\sim} U \cap Z \xrightarrow{\sim} \mathbb{P}_A^n \xrightarrow{\operatorname{pr}} \operatorname{Spec} A$$

U, Z はそれぞれ \mathbb{P}_A^n の open, closed subscheme である. A, X についての仮定から Spec A, X :: noetherian scheme がわかる^{†1} から、Thm4.9 より、この写像 $X \to \operatorname{Spec} A$ は separated.

(b) There is No Ample Invertible Sheaf on ——:—— / a field k.

k:: field, X:: affine with doubled origin /k とする. より詳細に、X は $X_1=\operatorname{Spec} k[x], X_2=\operatorname{Spec} k[y]$ を $U_1=X_1-\{O_1\}, U_2=X_2-\{O_2\}$ で貼りあわせたものとする. ただし $O_1\in X_1, O_2\in X_2$ は原点である. X_i, U_i, O_i (i=1,2) はすべて X の部分集合とみなす. X:: noetherian integral scheme は明らか. Example 6.3.1, Cor 6.16 より、 $\operatorname{Pic} X_1, \operatorname{Pic} X_2=0$.

まず $\operatorname{Pic} X$ を計算する. $\mathcal{L} \in \operatorname{Pic} X$ をとる. $X_{12} := X_1 \cap X_2 (\cong \mathbb{A}^1 - \{0\})$ としておく. $\operatorname{Pic} X_{12} = 0$ ($\operatorname{Prop6.2}$, $\operatorname{Cor6.16}$) より, $\mathcal{O}_{X_{12}} \cong \mathcal{L}|_{X_{12}}$. さらに X_{12} は $D(x) \subseteq \operatorname{Spec} k[x]$ と同型であるから,

$$\mathcal{O}_{X_{12}} = \mathcal{O}_{X_1}|_{X_{12}} = (k[x]_x)^{\tilde{}} = (k[x, x^{-1}])^{\tilde{}}.$$

すなわち $\Gamma(X_{12},\mathcal{O}_{X_{12}})=k[x,x^{-1}]$. X_{12} は affine だから,Ex5.3 より, $\mathcal{O}_{X_{12}}\stackrel{\cong}{\to}\mathcal{L}|_{X_{12}}$ は $k[x,x^{-1}]\stackrel{\cong}{\to}\Gamma(X_{12},\mathcal{L}|_{X_{12}})$ の $k[x,x^{-1}]$ -isomorphism によって決定される.この同型射は $k[x,x^{-1}]$ の単元をかける 写像によって定まる.そして単元は ax^n $(a\in k^*,n\in\mathbb{Z})$ と書ける.また, $k^*=\Gamma(X_{12},\mathcal{O}_{X_{12}}^*)$ の分の違いは無視されるから,結局同型射は x^n $(n\in\mathbb{Z})$ で定まる.こうして, $\mathcal{O}_{X_{12}}\stackrel{\cong}{\to}\mathcal{L}|_{X_{12}}$ が \mathbb{Z} に対応することが分かった.この同型射で \mathcal{L} 全体も定まる(??).以上から $\mathrm{Pic}\,X\cong\mathbb{Z}$.

 $n \in \mathbb{Z}$ に対応する $\operatorname{Pic} X$ の元を \mathcal{L}_n と書く、 $\operatorname{Pic} X \cong \operatorname{CaCl} X$ に注意して、 \mathcal{L}_n に対応する Carier Divisor を考えると、これは $\{\langle U_1, x^{-n} \rangle, \langle U_2, 1 \rangle\}$ である.

 \mathcal{L}_n が global generator を持つのは n=0 すなわち $\mathcal{L}_n=\mathcal{O}_X$ であるときのみ、 $\mathcal{L}_0\otimes\mathcal{L}_n\cong\mathcal{L}_n$ なので、ample sheaf は存在しない、https://math.stackexchange.com/questions/70042.

 $^{^{\}dagger 1}$ $f: X \to \operatorname{Spec} A$ が finite type ならば $f^{-1}\operatorname{Spec} A = X$ は finite affine open cover をもち、各 affine open cover は finitely generated A-algebra $\mathcal O$ Spec である。finitely generated A-algebra は A から noetherian を受け継ぐから、X:: noetherian.

- Ex7.5 Ample and Very Ample are Inherted by Tensor Products.
- Ex7.6 The Riemann-Roch Problem.
- Ex7.7 Some Rational Surfaces.
- Ex7.8 Sections of $\pi: \P(\mathcal{E}) \to X \leftrightarrow \text{Quotient Invertible Sheaves of } \mathcal{E}.$
- Ex7.9
- Ex7.10 P^n -Bundles Over a Scheme.
- Ex7.11 Different Sheaves of Ideals can Give Rise to Isomorphic Blow Up Schemes.
- Ex7.12
- Ex7.13 * A Complete Nonprojective Variety.
- Ex7.14