Задание 1. Цирковая разминка

Это задание состоит из двух не связанных между собой задач.

Задача 1. Девочка на шаре

Построим предельно упрощенную модель этого изящного циркового номера: первое — считаем, что шар закреплен и неподвижен; второе — считаем девочку сплошным однородным цилиндром; третье — считаем, что трение между поверхностью шара и основанием цилиндра достаточно велико, так, что цилиндр может прокатываться по поверхности шара без проскальзывания. Обозначим радиус шара R, высоту цилиндра h.

1. Определите, при каких значениях отношения $\frac{h}{R}$ цилиндр может устойчиво стоять вертикально на вершине шара.

Задача 2. Канатоходцы

Исполнение этого циркового номера требует серьезной технической подготовки. Для исследования возможности хождения по канату проводится следующий модельный эксперимент.

Медная проволока длины L = 2,0 M подвешена горизонтально между двумя неподвижными упорами. Массой проволоки и ее натяжением в горизонтальном положении следует пренебрегать. К

середине проволоки подвешивают груз массы m . При этом проволока провисает на некоторую величину x .

В ниже приведена диаграмма растяжения проволоки — зависимость силы упругости F , возникающей в проволоке, от ее относительной деформации $\varepsilon = \frac{\Delta l}{L}$. Там же приведены значения

относительной деформации и соответствующей силы упругости в двух характерных точках. Участок диаграммы 0-1 — линейный (область упругости), точка 2 — точка разрыва.

Ускорение свободного падения считать равным $g = 9.8 \frac{M}{c^2}$.

Используя приведенные данные, рассчитайте:

2.1 Величину провисания проволоки x, если масса подвешенного груза равна $m_1 = 2.0 \kappa z$.

2.2 Максимальную массу груза m_2 , который можно подвесить к этой проволоке (до ее разрыва)

Диаграмма растяжения проволоки.

№	<i>ε</i> (%)	$F, \kappa H$
0	0,00	0,00
1	0,24	0,31
2	5,10	0,43

