Задача 9.2

Задача решается весьма просто с использованием «золотого правила механики»: ни один простой механизм не дает выигрыша в работе - во сколько раз выигрываешь в силе, во столько раз проигрываешь в расстоянии. Согласно этому правилу, произведение силы, приложенной к рукоятке на ее смещение равно произведению силы, создаваемой поршнем, на его перемещение. Если винт провернется на один оборот, то поршень сместится на величину, равную шагу поршня, поэтому

$$2F \cdot 2\pi l = F_{\pi} h, \tag{1}$$

где $F_{\mathcal{A}} = pS = p\pi R^2$ сила давления, создаваемая поршнем. Из этих выражений находим искомое давление

$$p = \frac{4Fl}{hR^2} \tag{2}$$

Схема оценивания.

Пункт	Содержание	Баллы	Примечания
1.1	Использование «золотого правила»	2	
1.2	Математическое соотношение между силами и смещениями	2	
1.3	Связь между смещениями	1	
1.4	Связь между силой и давлением	1	
1.5	Выражение для давления	2	
1.6	Обоснование, оформление	2	7/4
	ОТОГИ	10	

Задача 9.3

Выделим тонкое кольцо протекающей воды толщиной h . Мощность теплоты, выделяемой в этом кольце при прохождении тока, определяется законом Джоуля-Ленца

$$P = \frac{U^2}{R},\tag{1}$$

где R - электрическое сопротивление слоя воды, которое можно рассчитать по формуле

$$R = \rho \frac{L}{S}.$$
 (2)

Учитывая, что электрический ток идет перпендикулярно тонкому слою воды, в данном случае

$$L = R_1 - R_2; S = 2\pi R_1 h.$$
 (3)