QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

Com massas atômicas referidas ao isótopo 12 do carbono

1																	18
1 H 1,01	2											13	14	15	16	17	2 He 4,0
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6,94	9,01											10,8	12,0	14,0	16,0	19,0	20,2
11	12											13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	CI	Ar
23,0	24,3		ı	ı	ı	ı	ı	1		ı	1	27,0	28,1	31,0	32,1	35,5	39,9
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39,1	40,1	45,0	47,9	50,9	52,0	54,9	55,8	58,9	58,7	63,5	65,4	69,7	72,6	74,9	79,0	79,9	83,8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1000	Xe
85,5	87,6	88,9	91,2	92,9	95,9	(98)	101	102,9	106,4	107,8	112,4	114,8	118,7	121,7	127,6	126,9	131,3
55	56	57-71	72	73 T -	74	75 D -	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Série dos Lantanídios		Ta	W	Re	Os	lr 400.0	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132,9 87	137,3 88	89-103	178,5 104	181 105	183,8 106	186,2 107	190,2 108	192,2 109	195 110	197 111	200,5	204,3	207,2	209	(209)	(210)	(222)
Fr	Ra	Série dos	-	Db	Sg	Bh	Hs	Mt	Ds	Rg	1						
(223)	(226)	Actinídios		(262)	(266)	(264)	(277)	(268)	(281)	(272)	A .						
(==0)	(==0)					(=0.)	(=,	(200)	(=0.7	(=:=)							
			Série c	los Lant	anídios												
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
Núme	Número Atômico		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Sím	Símbolo		139	140	141	144,2	(145)	150,3	152	157,2	159	162,5	165	167,2	169	173	175
Massa Atômica Série dos Actinídios																	
() Nº de massa do		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
isótopo mais estável		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			(227)	232,0	231	238	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Informações para a resolução de questões

- 1. Algu<mark>mas</mark> cadeias carbônicas nas questões de química orgânica foram desenhadas na sua forma simplificada apenas pelas ligações entre seus carbonos. Alguns átomos ficam, assim, subentendidos.
- 2. As ligações com as representações e ligações que se aproximam do observador e ligações que se afastam do observador.

UFRGS – CV/2012 – QUI 1

26. Uma hipótese para o acidente com o voo AF447, na rota Rio-Paris, é de que tenha havido erro de leitura nos indicadores de velocidade, devido ao congelamento dos sensores denominados tubos de Pitot. No momento do acidente. а aeronave atravessava uma forte tempestade, fato que pode ter ocasionado condições atípicas de temperatura e de pressão, que teriam levado à formação de água super-resfriada. Essa água super-resfriada teria congelado instantaneamente ao encontrar a superfície metálica dos tubos de Pitot. Estima-se que a temperatura externa da aeronave no momento do acidente estava em torno de - 40°C.

O termo "água super-resfriada" corresponde a uma situação metaestável na qual a água se encontra

- (A) no estado sólido em uma temperatura abaixo do seu ponto de congelamento.
- (B) no estado líquido em uma temperatura superior e próxima ao seu ponto de congelamento
- (C) no estado líquido em uma temperatura abaixo do seu ponto de congelamento
- (D) no estado sólido em uma temperatura superior e próxima ao seu ponto de congelamento.
- (E) nos estados sólido, líquido e gasoso, simultaneamente, em uma temperatura abaixo do seu ponto de congelamento.
- 27. A cultura egípcia desenvolveu técnicas avançadas de mumificação para a preservação dos corpos. Em uma das etapas mais importantes do processo de mumificação, a desidratação do corpo, utilizava-se uma solução de sais de natrão. Essa solução é constituída por uma mistura de sais de carbonato, bicarbonato, cloreto e sulfato de sódio.

Quando os sais de natrão são dissolvidos em água, os íons presentes, além do Na^+ , são

- (A) CO_2^{3-} , HCO^{3-} , $C\ell O^{-}$ e HSO_4^{-} .
- (B) CO_2^{3-} , HCO_3^{-} , $C\ell O^{-}$ e SO_4^{2-} .
- (C) CO_3^{2-} , $H_2CO_3^{-}$, $C\ell^-$ e SO_3^{2-} .
- (D) CO_3^{2-} , $H_2CO_3^{-}$, $C\ell^-$ e HSO_4^{-} .
- (E) CO_3^{2-} , HCO_3^{-} , $C\ell^-$ e SO_4^{2-} .

28. O hidróxido de sódio, NaOH, é uma substância de ampla utilização industrial, sendo obtida através da eletrólise em solução aquosa do NaC\(\ell\), de acordo com a reação abaixo.

$$2 \text{ NaC} \ell + 2 \text{ H}_2\text{O} \rightarrow \text{C} \ell_2 + \text{H}_2 + 2 \text{ NaOH}$$

Considere as seguintes afirmações, a respeito da quantidade de partículas atômicas presentes em algumas espécies químicas dessa reação.

- I As quantidades de prótons existentes nos átomos de sódio e de cloro presentes no NaCℓ permanecem inalteradas quando esses átomos formam os produtos Cℓ₂ e NaOH .
- II A substância cloro gasoso é constituída por moléculas neutras formadas por átomos de cloro que apresentam 17 elétrons cada um.
- III- No íon positivo do elemento sódio, o número de elétrons é maior que o existente em um átomo neutro de sódio.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) I, II e III.
- 29. Em 2011, um intenso terremoto seguido de tsunami provocou sérias avarias nos reatores da usina nuclear de Fukushima, no Japão, ocasionando a liberação de iodo radioativo em dosagem muito superior aos limites aceitáveis. Como medida de prevenção, foram distribuídos à população evacuada tabletes de iodo. A OMS indica, preferencialmente, que esses tabletes sejam constituídos da substância iodato de potássio (KIO₃), em vez da substância iodeto de potássio (KI), que tem menor durabilidade.

Sobre essas substâncias, é correto afirmar que

- (A) o iodeto de potássio é um sal básico e insolúvel em água.
- (B) o iodato de potássio é um sal neutro e solúvel em água.
- (C) o iodato de potássio apresenta o elemento iodo em seu estado mínimo de oxidação.
- (D) o iodato de potássio é um óxido, enquanto o iodeto de potássio é um sal não oxigenado.
- (E) o iodeto de potássio pode ser utilizado como agente oxidante, pois sofre redução com facilidade em contato com o oxigênio do ar.

30. A coluna da esquerda, abaixo, apresenta cinco espécies moleculares que têm o elemento enxofre como átomo central; a da direita, tipos de geometria molecular que correspondem a quatro dessas espécies.

Associe corretamente a coluna da direita à da esquerda.

- 1 SO₂
- () trigonal-plana
- 2 SOCℓ₂
- () tetraédrica
- 3 H₂SO₄
- () piramidal
- 4 SO₃
- () angular
- 5 H₂S

A sequência correta de preenchimento dos parênteses, de cima para baixo, é

- (A) 2 3 1 4.
- (B) 2-4-3-1.
- (C) 3 2 1 5.
- (D) 4 3 2 1.
- (E) 4-2-3-5.
- 31. Um experimento clássico em aulas práticas de Química consiste em mergulhar pastilhas de zinco em solução de ácido clorídrico. Através desse procedimento, pode-se observar a formação de pequenas bolhas, devido à liberação de hidrogênio gasoso, conforme representado na reação ajustada abaixo.

$$Zn + 2 HC\ell \rightarrow ZnC\ell_2 + H_2$$

Ao realizar esse experimento, um aluno submeteu 2 g de pastilhas de zinco a um tratamento com ácido clorídrico em excesso.

Com base nesses dados, é correto afirmar que, no experimento realizado pelo aluno, as bolhas formadas liberaram uma quantidade de gás hidrogênio de, aproximadamente,

- (A) 0,01 mols.
- (B) 0,02 mols.
- (C) 0,03 mols.
- (D) 0,06 mols.
- (E) 0,10 mols.

32. Num parque temático é oferecida a atração da "neve artificial", obtida a partir de água da chuva e nitrogênio líquido, em contêineres que funcionam como câmaras frias.

Considere as afirmações abaixo sobre o processo de produção de "neve artificial" contidas no prospecto informativo do parque.

- I A neve artificial que imita o fenômeno natural é produzida pela reação entre nitrogênio e água.
- II A fabricação de neve artificial refere-se ao setor da criogenia, tecnologia para a produção de temperaturas muito abaixo do ponto de congelamento da água, principalmente com a utilização de nitrogênio líquido.
- III- A água líquida é injetada nos contêineres através de um sistema de flautas, sendo que a água aspersada (borrifada) se divide em moléculas, as quais se transformam em cristais formando os flocos de neve.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas II e III.
- (E) I, II e III.
- **33.** Observe as duas reações abaixo envolvendo a dimetilamina.

1-
$$(CH_3)_2NH + HC\ell \rightarrow [(CH_3)_2NH_2]^+C\ell^-$$

2-
$$(CH_3)_2NH + C_4H_9Li \rightarrow (CH_3)_2N^-Li^+ + C_4H_{10}$$

A dimetilamina atua nas reações 1 e 2, respectivamente, como

- (A) base e ácido.
- (B) base e redutor.
- (C) oxidante e redutor.
- (D) oxidante e ácido.
- (E) redutor e catalisador.

34. O sulfeto de hidrogênio (H_2S) é um gás incolor de cheiro desagradável altamente tóxico. No segmento industrial, a procedência do H_2S é oriunda, geralmente, de processos de remoção de gases ácidos e de tratamento de efluentes, como exemplificado nas reações abaixo.

Assinale com ${\bf V}$ (verdadeiro) as reações abaixo em que ocorre tanto oxidação quanto redução do enxofre e com ${\bf F}$ (falso) as demais.

- () $FeS_2 + H_2O$ (alta temperatura) $\rightarrow FeO + H_2S + S$
- () CuS + $H_2SO_4 \rightarrow CuSO_4 + H_2S$
- () $4 \text{ Na}_2\text{SO}_3 + 2 \text{ H}_2\text{O} \text{ (vapor)} \rightarrow 3 \text{ Na}_2\text{SO}_4 + 2 \text{ NaOH} + \text{H}_2\text{S}$
- () $CH_4 + 4 S \text{ (vapor)} \rightarrow CS_2 + 2 H_2S$

A sequência correta de preenchimento dos parênteses, de cima para baixo, é

- (A) V F F F.
- (B) F F V F.
- (C) V F V F.
- (D) F V F V.
- (E) F V V V.
- **35.** A destilação de folhas de plantas ou cascas de algumas frutas com vapor de água produz misturas líquidas de fragrâncias chamadas de óleos essenciais. Muitos desses óleos são usados como matérias-primas para as indústrias cosmética, farmacêutica e alimentícia. Abaixo, são mostradas as estruturas e fórmulas moleculares dos principais componentes de alguns óleos essenciais.

 $C_{10}H_{16}$

mirceno (óleo de louro) limoneno (óleo

>

limoneno (óleo de casca de laranja ou limão) $C_{10}H_{16}$

C

citronelal (óleo de citronela) $C_{10}H_{18}O$

Considere as seguintes afirmações, a respeito da combustão completa desses compostos.

- I A combustão de um mol de cada um desses compostos leva à formação da mesma quantidade de CO₂.
- II A combustão de um mol de mirceno e de um mol de limoneno leva à formação da mesma quantidade de água.
- III- A combustão de um mol de limoneno e de um mol de citronelal leva à formação de diferentes quantidades de água.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas I e II.
- (D) Apenas II e III.
- (E) I, II e III.

36. Existe um mito de que produto químico e produto tóxico são sinônimos e que um produto, por ser natural, não faz mal à saúde. No século IV a.C., os gregos coletavam amostras do veneno cicuta de uma planta (*Conium maculatum*). Coniina e coniceína, cujas estruturas são mostradas abaixo, são os principais alcalóides presentes nesta planta, sendo os responsáveis por sua toxidez.

Com base nas estruturas desses compostos, considere as afirmações abaixo.

- I A coniceína apresenta o menor ponto de ebulição.
- II A coniina não apresenta carbono assimétrico em sua estrutura.
- III- Tanto a coniceína quanto a coniina são aminas secundárias.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (D) Apenas III.
- (D) Apenas I e II.
- (E) Apenas II e III.
- **37.** Um teste clássico para a identificação de alcenos é o descoramento de uma solução de bromo. Bromo, que tem uma coloração vermelho-castanho, se adiciona à dupla ligação formando um produto dibromado incolor, conforme mostra a equação abaixo.

Para a realização desse teste, primeiramente, adiciona-se, em três tubos de ensaio, hex-1-eno; em seguida, bromo, conforme se registrou na tabela abaixo.

Tubo de ensaio	Hex-1-eno	Br ₂
Α	2,1 g	4,4 g
В	4,2 g	8,4 g
C	8,4 g	15,0 g

Ao final do teste, quais serão os tubos de ensaio que apresentarão uma solução incolor? Considere massa molar do Hex-1-eno como 84 g/mol.

- (A) Apenas A.
- (B) Apenas B.
- (C) Apenas C.
- (D) Apenas A e B.
- (E) Apenas B e C.

38. Observe os seguintes aminoácidos.

$$\begin{array}{ccc} {\rm H_2N- \ CH - COOH} & {\rm alanina} \\ {\rm \ CH_3} & \end{array}$$

$$\begin{array}{ccc} {\rm H_2N- \ CH - COOH} & {\rm ciste\'ina} \\ | & {\rm CH_2SH} \end{array}$$

A reação entre o grupo ácido carboxílico de uma molécula de aminoácido e o grupo amina de outra molécula de aminoácido, com eliminação de água, forma uma ligação peptídica (-CO-NH-), gerando um dipeptídio.

Qual é o número máximo de dipeptídios diferentes que podem ser formados a partir de uma mistura equimolar de glicina, alanina e cisteína?

- (A) 2.
- (B) 3.
- (C) 6.
- (D) 8.
- (E) 9.

39. O ácido núdico, cuja estrutura é mostrada abaixo, é um antibiótico isolado de cogumelos como o *Tricholoma nudum*.

Em relação a uma molécula de ácido núdico, é correto afirmar que o número total de átomos de hidrogênio, de ligações duplas e de ligações triplas é, respectivamente,

- (A) 1 1 2.
- (B) 1 2 3.
- (C) 3 1 2.
- (D) 3 2 3.
- (E) 5 1 3
- **40.** Assinale a alternativa que completa corretamente as lacunas do enunciado abaixo, na ordem em que aparecem.

O brometo de benzila pode ser transfo<mark>rmado</mark> em álcool benzílico, que, por sua vez, pode conduzir ao ácido benzoico, conforme a sequência de reações mostrada abaixo.

Com base nesses dados, é correto afirmar que a primeira etapa é uma reação de , e, a segunda, uma reação de

- (A) substituição oxidação
- (B) substituição adição
- (C) eliminação oxidação
- (D) eliminação substituição
- (E) eliminação adição

41. Assinale a alternativa que completa corretamente as lacunas do enunciado abaixo, na ordem em que aparecem.

Uma sopa muito salgada é aquecida numa panela aberta. Nessas condições, a sopa deve entrar em ebulição numa temperatura 100 °C. Assim, à medida que a água da sopa evapora, a temperatura da sopa

- (A) acima de aumenta
- (B) acima de diminui
- (C) abaixo de aumenta
- (D) igual a permanece constante
- (E) igual a aumenta
- **42.** Um estudante realizou uma diluição, conforme mostrado na figura abaixo.

Supondo-se que a densidade da água, bem como da solução inicial, sejam de 1,0 g mL⁻¹, qual será o volume de água a ser adicionado para que a solução passe a ter concentração de 0,2 mol L⁻¹?

- (A) 25 mL.
- (B) 50 mL.
- (C) 100 mL.
- (D) 200 mL.
- (E) 250 mL.

43. A solubilidade aquosa do KNO₃, a 25 °C, é de 36 g/100 mL, e a 35 °C, é de 55 g/100 mL.

Uma solução de KNO₃ preparada em água a 30 °C, contendo 55 g deste sal em 100 mL de água será uma

- (A) solução saturada, porém sem precipitado.
- (B) solução saturada na presença de precipitado.
- (C) solução não saturada, porém, sem precipitado.
- (D) solu<mark>ção não</mark> saturada na presença de precipitado.
- (E) mistura heterogêna formada por sal precipitado e água pura.
- **44.** Apesar da pequena quantidade de oxigênio gasoso (O₂) dissolvido na água, sua presença é essencial para a existência de vida aquática.

Sabendo-se que na água de um lago há uma molécula de oxigênio (O_2) para cada 0,2 milhões de moléculas de água e considerando-se que em 1 litro de água há 55,55 mols de moléculas de água, a concentração em mol L^{-1} do oxigênio na água desse lago será de

- (A) 0.2×10^{-4} .
- (B) 5.0×10^{-4} .
- (C) 2.4×10^{-4} .
- (D) 2.8×10^{-4} .
- (E) 3.3×10^{-4} .

45. A reação

$$N_2O_4$$
 (g) \rightarrow 2 NO_2 (g)

é um processo que segue uma cinética de primeira ordem, e sua constante de velocidade a 25 °C é de 1.0×10^{-3} s⁻¹.

Partindo-se de uma concentração inicial 2,00 mol L^{-1} de N_2O_4 , a taxa inicial de formação de NO_2 será

- (A) $1.0 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$.
- (B) $2.0 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$.
- (C) $4.0 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$.
- (D) $8.0 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$.
- (E) $16.0 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$.

46. No metabolismo dos vegetais, quando se considera o balanço energético, deve-se levar em conta que a energia dos vegetais é obtida através da "queima" de substâncias como a glicose, cuja combustão metabólica pode ser equacionada da seguinte maneira:

$$C_6H_{12}O_6$$
 (s) + 6 O_2 (g) \rightarrow 6 CO_2 (g) + 6 H_2O (l) ΔH_1

A glicose, por sua vez, é sintetizada numa das reações mais importantes da natureza, a fotossíntese, cuja equação está representada abaixo.

$$6 \text{ CO}_2 \text{ (g)} + 6 \text{ H}_2 \text{O (l)} \rightarrow \text{C}_6 \text{H}_{12} \text{O}_6 \text{ (s)} + 6 \text{ O}_2 \text{ (g)}$$
 ΔH_{11}

Com base nesses dados, assinale a alternativa correta, a respeito do balanço energético no metabolismo de vegetais.

- (A) Para que o vegetal não consuma, na síntese da glicose, toda a energia obtida na sua combustão, deve-se ter $\Delta H_{I} \neq -\Delta H_{II}$.
- (B) As duas reações são exceções da Lei de Hess.
- (C) Para que haja um bom rendimento em termos energéticos, deve-se ter, em módulo, $\Delta H_{I} >> \Delta H_{II}$.
- (D) Como, em módulo, ΔH_{II} < ΔH_{III} , os vegetais precisam necessariamente de outras fontes energéticas além da glicose.
- (E) A combinação das duas reações constitui exemplo de interconversão de energia.
- **47.** Abaixo, está representado o perfil de energia ao longo do caminho da reação de isomerização do cis-but-2-eno para o trans-but-2-eno.

Considere as seguintes afirmações a respeito da velocidade dessa reação.

- I A barreira de energia de ativação da reação direta é de 256 kJ.
- II Como a reação é exotérmica, sua velocidade diminuirá com o aumento da temperatura.
- III- A presença de catalisador tornará a reação mais exotérmica.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas II.
- (C) Apenas III.
- (D) Apenas I e II.
- (E) Apenas I, II e III.

48. A constante de equilíbrio da reação

$$CO(g) + 2H_2(g) \Longrightarrow CH_3OH(g)$$

tem o valor de 14,5 a 500 K. As concentrações de metanol e de monóxido de carbono foram medidas nesta temperatura em condições de equilíbrio, encontrando-se, respectivamente, $0,145 \text{ mol L}^{-1}$ e 1 mol L^{-1} .

Com base nesses dados, é correto afirmar que a concentração de hidrogênio, em mol L^{-1} , deverá ser

- (A) 0,01.
- (B) 0,1.
- (C) 1.
- (D) 1,45.
- (E) 14,5.

49. A quantidade de etanol presente na gasolina deve respeitar os limites estabelecidos pela Agência Nacional do Petróleo. Para forçar a diminuição do preço do etanol, o Governo tem reduzido o teor de etanol na gasolina.

Um aluno, para determinar o teor de etanol presente na gasolina, realizou um experimento adicionando 50 mL de gasolina e 50 mL de água a um cilindro graduado com tampa. Após agitar a solução, o aluno observou a presença de duas fases, uma superior e outra inferior, constatando que a fase superior continha 35 mL de líquido.

Sabendo-se que a densidade dos hidrocarbonetos é menor que a da água, é correto afirmar que, na gasolina testada pelo aluno, o teor de álcool, em volume/volume é de, aproximadamente,

- (A) 15%.
- (B) 30%.
- (C) 35%.
- (D) 60%.
- (E) 70%.
- **50.** O ano de 2011 foi proclamado como o **Ano Internacional da Química**, que abordou o tema "**Química a nossa vida, o nosso futuro**", envolvendo vários projetos no mundo todo.

Um dos projetos desenvolvidos foi denominado "pH do planeta - Experimento global sobre a qualidade da água". Neste projeto, alunos do mundo inteiro foram convidados a coletar amostras de água em suas regiões, a fim de mapear as condições de água no planeta.

No quadro abaixo, são mostrados alguns dados coletados no Brasil.

Local	Rio Itajaí do Sul-SC	Dique do Tororó-BA	Baía de Guanabara-RJ	Rio São Francisco-AL	Praia do Pina-PE	
Natureza da água	Fluvial	Manancial de água doce	Salgada	Fluvial	Salgada	
рН	6.8	8.0	7.7	6.4	8.2	

Sobre esses dados são feitas as seguintes afirmações.

- I As águas fluviais analisadas apresentam concentrações de H⁺ maiores que 10⁻⁷ mol L⁻¹.
- II A água do dique do Tororó é imprópria para consumo humano, devido a sua excessiva acidez.
- III- As águas salgadas analisadas apresentam concentrações de H⁺ menores que as concentrações de H⁺ das águas fluviais analisadas.

Quais estão corretas?

- (A) Apenas I.
- (B) Apenas III.
- (C) Apenas I e II.
- (D) Apenas I e III.
- (E) I, II e III.

UFRGS – CV/2012 – QUI 19