Assignment 1

Convex Optimization SS 2018

Patrick Knöbelreiter, knoebelreiter@icg.tugraz.at

19.03.2018

Submission: Upload your solution as a PDF to the TeachCenter. You can also use your scanned hand-written manuscript.

Deadline: April 16th, 2018 at 23:55h.

Convex Sets (13 points)

- 1. Let $C \subseteq \mathbb{R}^n$ be a convex set, $x_1, \ldots, x_k \in C$ and let $\theta_1, \ldots, \theta_k \in \mathbb{R}$ be factors that satisfy $\theta_i \geq 0$ and sum up to one $\sum_{i=1}^k \theta_i = 1$. Show that any combination of points $\theta_1 x_1 + \cdots + \theta_k x_k$ is also element of the set C. Hint: Use induction on the definition of convexity.
- 2. Calculate the distance between two parallel hyperplanes $\{x \in \mathbb{R}^n \mid a^T x = b_1\}$ and $\{x \in \mathbb{R}^n \mid a^T x = b_2\}$. You can derive this geometrically. Draw a picture!
- 3. Prove or disprove the convexity of the following sets:
 - a) The set $\{x \in \mathbb{R} \mid x \ge 1/2, x \le -1/2\}$.
 - b) The set of points closer to one set than another, i.e., $\{x \mid \text{dist}(x, S) \leq \text{dist}(x, T)\}$ with $S, T \subseteq \mathbb{R}^n$ (not necessarily convex) and $\text{dist}(x, S) = \inf\{\|x z\|_2 \mid z \in S\}$.
 - c) A hyperrectangle: $\{x \in \mathbb{R}^n \mid a_i \le x_i \le b_i, i = 1, \dots, n\}.$
 - d) A wedge, i.e., a set of form $\{x \in \mathbb{R}^n \mid a_1^T x \leq b_1, a_2^T x \leq b_2\}$. What happens if $b_1 = b_2 = 0$?
- 4. Let $x_0, x_1, \ldots, x_k \in \mathbb{R}^n$. The set of points closer to a given point x_0 than the other points x_1, \ldots, x_k

$$\{x \in \mathbb{R}^n \mid ||x - x_0||_2 \le ||x - x_i||_2, \quad i = 1, \dots, k\}$$
 (1)

is called a *Voronoi region* around x_0 with respect to the points x_1, \ldots, x_k .

- a) Show that (1) is a convex set.
- b) Equation (1) can be expressed in terms of a polyhedron. Rewrite (1) in the form $\{x \mid Ax \leq b\}$.
- c) Consider the case k = 1. Show that the set of all points closer to x_0 than to x_1 is a halfspace, $x_0 \neq x_1$. Hint: Recall the definition of a halfspace $\{x \mid a^T x \leq b\}$. Draw a picture!

Convex Functions (12 points)

1. Prove or disprove the convexity/concavity of the geometric mean

$$f(x) = \left(\prod_{i=1}^{k} x_i\right)^{\frac{1}{k}}$$

on \mathbb{R}^k_{++} .

2. Let $f: \mathbb{R}^n \to [-\infty, +\infty]$. Show that the perspective of f defined via

$$g(x,y) = yf(x/y), \ x \in \mathbb{R}^n, \ y \in \mathbb{R}_{++}$$

is convex if and only if f(x) is a convex function.

- 3. Prove or disprove the convexity/concavity of the following functions:
 - a) $f(x) = \log(x)$ for $x \in \mathbb{R}_{++}$
 - b) $f(x) = |a|x| x|^2$ for $a, x \in \mathbb{R}$
 - c) $f(x_1, x_2, x_3) = -e^{(-x_1 + x_2 2x_3)^2}$ for $x \in \mathbb{R}^3$
 - d) $f(x) = \ln(e^{x_1} + e^{x_2} + \dots + e^{x_n})$ for $x \in \mathbb{R}^n$