

Outline

01

INTRODUCTION

Background Introduction and Motivation

02

METHODOLOGY

Data Preprocessing and Model Training

03

RESULTS ANALYSIS

Model Testing and Metrics Evaluation 04

CONCLUSIONS

Limitation and Future Improvement

O1INTRODUCTION

INTRODUCTION

- **Motivation:** The process of manually performing metastasis detection is labor intensive and error-prone [1]. To relieve the workload of pathologists, scholars proposed utilizing deep learning models i.e. Convolution Neural Network (CNN), to assist pathologists by providing second opinions.
- **Objective:** Leverage deep learning model to detect tumor cells on gigapixel pathology image and experiment with multi-scale zoom levels

BACKGROUND

 Based on "Detecting Cancer Metastases on Gigapixel Pathology Images" (see reference for detail)

• KEY TAKEAWAYS:

- Utilize Inception (V3) architecture
- o Input patch size (299, 299, 3) and label of this patch is determined by the central 128*128 region; classify as **tumor** if at least one pixel in the central region is a tumor pixel
- Use two levels of magnification
- Data Augmentation helps

WORKFLOW

Data Preparation and Visualization

Train/Test Split, Patch Generation

Model Building

O2METHODOLOGY

Data Content

-{

- **Dataset:** Camelyon16
- **Input**: lymph node digitized images, tumor mask
- Different zoom level associates with different dimension and downsample factor (lower level has higher resolution)

```
Read WSI from /content/gdrive/MyDrive/ADL_Project/slides/tumor_016.tif with width: 97792, height: 221184
Read tumor mask from /content/gdrive/MyDrive/ADL_Project/slides/tumor_016_mask.tif
Slide includes %d levels 10
Level 0, dimensions: (97792, 221184) downsample factor 1
Level 1, dimensions: (48896, 110592) downsample factor 2
Level 2, dimensions: (24448, 55296) downsample factor 4
Level 3, dimensions: (12224, 27648) downsample factor 8
Level 4, dimensions: (6112, 13824) downsample factor 16
Level 5, dimensions: (3056, 6912) downsample factor 32
Level 6, dimensions: (1528, 3456) downsample factor 64
Level 7, dimensions: (764, 1728) downsample factor 128
Level 8, dimensions: (382, 864) downsample factor 256
```


VISUALIZATION

Slide 016 at zoom level 5

Overlay Slide 016

Mask 016 at zoom level 5

VISUALIZATION

PIPELINE

PATCH GENERATION

1.

For each slide image, get all the normal pixels and tumor pixels i.e.(x, y) pairs, and retrieve the center of this patch 2.

Repeatedly generate normal patches by locating the central region until n_sample is met 3.

Repeatedly generate tumor patches by locating the central region until n_sample is met

PATCH GENERATION

• Training Slide: 016, 075, 101, 110

• Validation Slide: 064, 094

• Testing Slide: 084, 091

	Tumor	Normal
Training Data	1017	983
Validation Data	506	494

DATA AUGMENTATION

- Horizontal Flip
- Vertical Flip
- Rotation 90 degree
- Shear range 0.2
- Brightness: [0.7, 1.3]

MODEL BUILDING

- InceptionV3 as base model
- Concatenate model using zoom level 0 and model using zoom level 1
- 0.2 Dropout is used
- A dense layer with sigmoid activation function is built on top

03 RESULT

TRAINING MODEL RESULT

	loss	accuracy
training	0.1309	0.9460
validation	0.1882	0.9260

TESTING SLIDE 084

• Using 0.7 as threshold while predicting labels

TESTING SLIDE 091

 Using 0.7 as threshold while predicting labels

O4 CONCLUSION

CONCLUSION

- This model performs surprisingly well on slide 091, but not as well on slide 084
- **Limitation:** limited dataset and the model requires excessive amount of RAM, which makes it unrealistic to train and test on local machine
- Next step:
 - o Get more data
 - o handle margin while finding pixels in a slide
 - Better model and threshold tuning

Reference

[1] <u>Detecting Cancer Metastases on Gigapixel Pathology Images</u>

THANKS

For more details: https://github.com/BrianHJLi/Tumor-Tissue-Detection

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**