Spintronics and Nanomagnetics ECS 521/641

Instructor: Dr. Kuntal Roy

Electrical Engineering and Computer Science (EECS) Dept.

Indian Institute of Science Education and Research (IISER) Bhopal

Email: <u>kuntal@iiserb.ac.in</u>

Exchange Interaction

Single-domain nanomagnets

- Exchange interaction
 - ✓ Pauli's exclusion principle
 - ✓ Coulomb repulsion

- ➤ Each electron → small magnet
 - ✓ Ferromagnet
 - ✓ Ferrimagnet
 - ✓ Antiferromagnet

W. F. Brown Jr.,

The fundamental theorem of the ferromagnetic particle theory

Magnetic domain formation should be limited to **very small dimensions (100 nm)** because of the competition between the magnetostatic energy and the quantum-mechanical exchange energy, causing nanomagnets to behave like **single giant spins**

Electron beam lithography (EBL)

Exchange interaction

- Plays the key role in the operation of spin-devices
- Neglecting spin-orbit interaction, the state of one singleelectron system in an Hydrogen atom is precisely specified
- The multi-electron system cannot be solved exactly
 - Interaction between electrons is unknown
 - Density Functional Theory (Nobel Prize Chemistry, 1998)
- Pauli's exclusion principle (1924)
 - No two Fermions, whose wavefunctions have non-zero overlap can have exactly the same set of quantum numbers
 - Explanation of the periodic table
- Coulomb repulsion between charged particles
- Symmetry principle says that overall wavefunction must be antisymmteric while swapping the indices of any two electrons

Helium atom

- ➤ Pauli's exclusion principle was first applied to the simplest many-electron system
 - > Two electrons orbiting a nucleus

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

Application of symmetry principle

P operator permutes two identical electrons

$$H_{He}\phi(e_1, e_2) = E\phi(e_1, e_2)$$

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

 H_{He} is invariant upon permutation $[H_{He}, P] = 0$

$$[H_{He}, P] = 0$$

$$P\phi(e_1, e_2) = E\phi(e_2, e_1) = \lambda\phi(e_1, e_2)$$

$$e_{1,2} = r_{1,2}, s_{1,2}$$

$$P^2\phi(e_1, e_2) = \lambda P\phi(e_1, e_2) = \lambda^2\phi(e_1, e_2) = \phi(e_1, e_2)$$

$$\lambda^2 = 1$$
 $\lambda = \pm 1$

Since electrons are Fermions

Antisymmetric wavefunction

$$\phi_A(\boldsymbol{r_1}, s_1; \boldsymbol{r_2}, s_2) = \Psi_S\left(\boldsymbol{r_1}, \boldsymbol{r_2}\right) \Xi_A\left(s_1, s_2\right) \quad -e \quad r_{21} = r_2 - r_1$$
 or
$$\phi_A(\boldsymbol{r_1}, s_1; \boldsymbol{r_2}, s_2) = \Psi_A\left(\boldsymbol{r_1}, \boldsymbol{r_2}\right) \Xi_S\left(s_1, s_2\right)$$
 Nucleus +2e

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

Neglecting spin-orbit interaction

$$S = S_1 + S_2$$
 $S^2 = S \cdot S$

Individual $S_i s$ do not commute

$$[S^2, S_z] = 0$$

 S^2 is conserved quantity, thus the spinorial part must be eigenstates of these operators

Spinorial part of the wavefunction

$$\phi_A(r_1, s_1; r_2, s_2) = \Psi_S(r_1, r_2) \Xi_A(s_1, s_2) - e$$
or

$$\phi_A(\mathbf{r_1}, s_1; \mathbf{r_2}, s_2) = \Psi_A(\mathbf{r_1}, \mathbf{r_2}) \Xi_S(s_1, s_2)$$

$$\Xi_S(s_1, s_2) = |0\rangle_1 |0\rangle_2$$

$$\Xi_S(s_1, s_2) = |1\rangle_1 |1\rangle_2$$

$$\Xi_S(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1|1\rangle_2 + |1\rangle_1|0\rangle_2)$$

$$\Xi_A(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

Triplet states

Singlet state

Eigenstates of the spinorial part

$$\Xi_S(s_1, s_2) = |0\rangle_1 |0\rangle_2$$

 $\Xi_S(s_1, s_2) = |1\rangle_1 |1\rangle_2$

Triplet states

$$\Xi_S(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 + |1\rangle_1 |0\rangle_2)$$

$$\Xi_A(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

Singlet state

Exercise Determine $S^2|0\rangle_1|0\rangle_2$ and $S_z|0\rangle_1|0\rangle_2$

$$S^2 = S \cdot S = \frac{\hbar^2}{4} (\sigma_1^2 + \sigma_2^2 + 2\sigma_1 \cdot \sigma_2) = \frac{\hbar^2}{2} (3I + \sigma_1 \cdot \sigma_2)$$

$$\boldsymbol{\sigma_1} \cdot \boldsymbol{\sigma_2} = \sigma_{1x} \sigma_{2x} + \sigma_{1y} \sigma_{2y} + \sigma_{1z} \sigma_{2z}$$

$$\sigma_x |0\rangle = |1\rangle \quad \sigma_y |0\rangle = i|1\rangle \quad \sigma_z |0\rangle = |0\rangle$$

$$\sigma_x |1\rangle = |0\rangle$$
 $\sigma_y |1\rangle = -i|0\rangle$ $\sigma_z |1\rangle = -|1\rangle$

$$\sigma_{1} \cdot \sigma_{2} \{|0\rangle_{1}|0\rangle_{2}\}$$

= $|0\rangle_{1}|0\rangle_{2}$

Eigenstates of the spinorial part

$$\Xi_S (s_1, s_2) = |0\rangle_1 |0\rangle_2$$

$$\Xi_S (s_1, s_2) = |1\rangle_1 |1\rangle_2$$

Triplet states

$$\Xi_S(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 + |1\rangle_1 |0\rangle_2)$$

$$\Xi_A(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

Singlet state

Exercise Determine $S^2|0\rangle_1|0\rangle_2$ and $S_z|0\rangle_1|0\rangle_2$

$$S^{2} = S \cdot S = \frac{\hbar^{2}}{4} (\sigma_{1}^{2} + \sigma_{2}^{2} + 2\sigma_{1} \cdot \sigma_{2}) = \frac{\hbar^{2}}{2} (3I + \sigma_{1} \cdot \sigma_{2})$$

$$S^{2}\{|0\rangle_{1}|0\rangle_{2}\} = 2\hbar^{2}|0\rangle_{1}|0\rangle_{2} \qquad \sigma_{1} \cdot \sigma_{2}\{|0\rangle_{1}|0\rangle_{2}\} = |0\rangle_{1}|0\rangle_{2}$$

$$S_{z}\{|0\rangle_{1}|0\rangle_{2}\} = \frac{\hbar}{2}(\sigma_{1z}|0\rangle_{1}|0\rangle_{2} + \sigma_{2z}|0\rangle_{1}|0\rangle_{2}) = \hbar |0\rangle_{1}|0\rangle_{2}$$

Eigenstates of the spinorial part

$$\Xi_S(s_1, s_2) = |0\rangle_1 |0\rangle_2$$

$$\Xi_S(s_1, s_2) = |1\rangle_1 |1\rangle_2$$

Triplet states

$$\Xi_S(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1|1\rangle_2 + |1\rangle_1|0\rangle_2)$$

$$\Xi_A(s_1, s_2) = \frac{1}{\sqrt{2}}(|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

Singlet state

Spinorial part	S_z	S^2
$ 0\rangle_1 0\rangle_2$	ħ	$2\hbar^2$
$ 1\rangle_1 1\rangle_2$	$-\hbar$	$2\hbar^2$
$(1/\sqrt{2})(0\rangle_1 1\rangle_2 + 1\rangle_1 0\rangle_2)$	0	$2\hbar^2$
$(1/\sqrt{2})(0\rangle_1 1\rangle_2 - 1\rangle_1 0\rangle_2)$	0	0

$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{S}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{A}\left(s_{1},s_{2}\right) \quad -e \quad r_{21} = r_{2} - 11 \\ \phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{A}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad Nucleus \\ +2e$$

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

$$H_{He}(r_1, r_2) \Psi_{S,A}(r_1, r_2) = E \Psi_{S,A}(r_1, r_2)$$

$$H_0 = H_1 + H_2$$

Perturbation

$$H_1 = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} \quad H_2 = \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|}$$

Hydrogen atom with Z = 2e

$$\phi_{A}(\mathbf{r}_{1}, s_{1}; \mathbf{r}_{2}, s_{2}) = \Psi_{S}(\mathbf{r}_{1}, \mathbf{r}_{2}) \Xi_{A}(s_{1}, s_{2}) - e \qquad r_{21} = r_{2} - r_{1} - e$$
or
$$\phi_{A}(\mathbf{r}_{1}, s_{1}; \mathbf{r}_{2}, s_{2}) = \Psi_{A}(\mathbf{r}_{1}, \mathbf{r}_{2}) \Xi_{S}(s_{1}, s_{2}) \qquad Nucleus + 2e$$

$$H_{He} = \frac{|\mathbf{p}_{1}|^{2}}{2m} + \frac{|\mathbf{p}_{2}|^{2}}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_{0}|\mathbf{r}_{1}|} + \frac{(2e)(-e)}{4\pi\epsilon_{0}|\mathbf{r}_{2}|} + \frac{(-e)(-e)}{4\pi\epsilon_{0}|\mathbf{r}_{2}|}$$

$$H_{He}(\mathbf{r}_{1}, \mathbf{r}_{2}) \Psi_{S,A}(\mathbf{r}_{1}, \mathbf{r}_{2}) = E \Psi_{S,A}(\mathbf{r}_{1}, \mathbf{r}_{2})$$

$$H_{He}(\mathbf{r_1}, \mathbf{r_2}) \Psi_{S,A} (\mathbf{r_1}, \mathbf{r_2}) = E \Psi_{S,A} (\mathbf{r_1}, \mathbf{r_2})$$
$$\phi_i(\mathbf{r_1}) \phi_j(\mathbf{r_2}) \to \epsilon_i + \epsilon_j$$

$$i=j$$
 $\Psi_S\left(\boldsymbol{r_1},\boldsymbol{r_2}\right)=\phi_i(\boldsymbol{r_1})\;\phi_i(\boldsymbol{r_2})$ i,j are orbital states

$$\Psi_{S}(\mathbf{r_{1}}, \mathbf{r_{2}}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\mathbf{r_{1}}) \ \phi_{j}(\mathbf{r_{2}}) + \phi_{i}(\mathbf{r_{2}}) \ \phi_{j}(\mathbf{r_{1}}) \right]$$

$$\Psi_{A}(\mathbf{r_{1}}, \mathbf{r_{2}}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\mathbf{r_{1}}) \phi_{j}(\mathbf{r_{2}}) - \phi_{i}(\mathbf{r_{2}}) \phi_{j}(\mathbf{r_{1}}) \right]$$
HISER Bhopal

Kuntal Roy

 $i \neq j$

$$\phi_{A}(\boldsymbol{r}_{1}, s_{1}; \boldsymbol{r}_{2}, s_{2}) = \Psi_{S}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \Xi_{A}(s_{1}, s_{2}) - e \qquad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r}_{1}, s_{1}; \boldsymbol{r}_{2}, s_{2}) = \Psi_{A}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \Xi_{S}(s_{1}, s_{2}) \qquad Nucleus$$

$$|\boldsymbol{n}_{A}|^{2} |\boldsymbol{n}_{2}|^{2} (2e)(-e) \qquad (2e)(-e) \qquad (-e)(-e)$$

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

$$H_{He}(r_1, r_2) \Psi_{S,A}(r_1, r_2) = E \Psi_{S,A}(r_1, r_2)$$

 $\phi_i(r_1) \phi_j(r_2) \to \epsilon_i + \epsilon_j$

$$i = j \quad \Psi_S(r_1, r_2) = \phi_i(r_1) \phi_i(r_2)$$

$$\phi_A(\mathbf{r_1}, s_1; \mathbf{r_2}, s_2) = \frac{1}{\sqrt{2}} \phi_i(\mathbf{r_1}) \phi_i(\mathbf{r_2}) (|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

$$E_{i} = 2\epsilon_{i} + E_{C} \qquad E_{C} = \left\langle \phi_{A} \middle| \frac{(-e)(-e)}{4\pi\epsilon_{0}|\mathbf{r_{21}}|} \middle| \phi_{A} \right\rangle$$

Kuntal Roy IISER Bhopal

$$\phi_{A}(\boldsymbol{r_{1}}, s_{1}; \boldsymbol{r_{2}}, s_{2}) = \Psi_{S}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) \Xi_{A}(s_{1}, s_{2}) - e \qquad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r_{1}}, s_{1}; \boldsymbol{r_{2}}, s_{2}) = \Psi_{A}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) \Xi_{S}(s_{1}, s_{2})$$

$$i = j \quad \Psi_{S}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) = \phi_{i}(\boldsymbol{r_{1}}) \phi_{i}(\boldsymbol{r_{2}})$$

$$\phi_A(\mathbf{r_1}, s_1; \mathbf{r_2}, s_2) = \frac{1}{\sqrt{2}} \phi_i(\mathbf{r_1}) \phi_i(\mathbf{r_2}) (|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

$$E_i = 2\epsilon_i + E_C$$

$$E_C = \left\langle \phi_A \middle| \frac{(-e)(-e)}{4\pi\epsilon_0 |\mathbf{r}_{21}|} \middle| \phi_A \right\rangle$$

$$E_C = \frac{e^2}{2} \int d\mathbf{r_1} \int d\mathbf{r_2} (_1 \langle 0|_2 \langle 1| - _1 \langle 1|_2 \langle 0|) \left[\frac{|\phi_i(\mathbf{r_1})|^2 |\phi_i(\mathbf{r_2})|^2}{4\pi\epsilon_0 |\mathbf{r_{21}}|} \right] (|0\rangle_1 |1\rangle_2 - |1\rangle_1 |0\rangle_2)$$

$$({}_{1}\langle 0|_{2}\langle 1| - {}_{1}\langle 1|_{2}\langle 0|) (|0\rangle_{1}|1\rangle_{2} - |1\rangle_{1}|0\rangle_{2}) = 2$$

$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{S}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{A}\left(s_{1},s_{2}\right) \quad -e \quad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{A}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad Nucleus + 2e$$

$$i = j \quad \Psi_{S}(\mathbf{r_{1}}, \mathbf{r_{2}}) = \phi_{i}(\mathbf{r_{1}}) \phi_{i}(\mathbf{r_{2}})$$
$$\phi_{A}(\mathbf{r_{1}}, s_{1}; \mathbf{r_{2}}, s_{2}) = \frac{1}{\sqrt{2}} \phi_{i}(\mathbf{r_{1}}) \phi_{i}(\mathbf{r_{2}}) (|0\rangle_{1} |1\rangle_{2} - |1\rangle_{1} |0\rangle_{2})$$

$$E_i = 2\epsilon_i + E_C$$

$$E_{C} = \frac{e^{2}}{2} \int d\mathbf{r_{1}} \int d\mathbf{r_{2}} (_{1}\langle 0|_{2}\langle 1| - _{1}\langle 1|_{2}\langle 0|) \left[\frac{|\phi_{i}(\mathbf{r_{1}})|^{2}|\phi_{i}(\mathbf{r_{2}})|^{2}}{4\pi\epsilon_{0}|\mathbf{r_{21}}|} \right] (|0\rangle_{1}|1\rangle_{2} - |1\rangle_{1}|0\rangle_{2})$$

$$(_{1}\langle 0|_{2}\langle 1| - _{1}\langle 1|_{2}\langle 0|) (|0\rangle_{1}|1\rangle_{2} - |1\rangle_{1}|0\rangle_{2}) = 2$$

$$E_C = \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{e|\phi_i(\mathbf{r_1})|^2 e|\phi_i(\mathbf{r_2})|^2}{4\pi\epsilon_0|\mathbf{r_{21}}|} \right]$$

Coulomb repulsion

Coulomb repulsion term ($E_c = K_{1s1s}$)

$$K_{1s1s} = \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{e|\phi_{1s}(\mathbf{r_1})|^2 e|\phi_{1s}(\mathbf{r_2})|^2}{4\pi\epsilon_0 |\mathbf{r_{21}}|} \right]$$

$$\phi_{1s}(r) = \frac{1}{\sqrt{\pi a_{He}^3}} e^{-r/a_{He}}$$

$$a_{He} = a_0/2$$

$$K_{1s1s} = \frac{5e^2}{32\pi\epsilon_0 a_{He}}$$

$$E_{1s}(H\ atom) = -\frac{e^2}{4\pi\epsilon_0 2a_0}$$

Ground state for He

$$\frac{K_{1s1s}}{8E_{1s}} = -\frac{5}{16} = -0.3125$$

$$\phi_{A}(\boldsymbol{r}_{1},s_{1};\boldsymbol{r}_{2},s_{2}) = \Psi_{S}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right)\Xi_{A}\left(s_{1},s_{2}\right) \quad -e \quad r_{21} = r_{2} - r_{1} \\ \phi_{A}(\boldsymbol{r}_{1},s_{1};\boldsymbol{r}_{2},s_{2}) = \Psi_{A}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad \qquad Nucleus \\ \psi_{A}(\boldsymbol{r}_{1},s_{1};\boldsymbol{r}_{2},s_{2}) = \Psi_{A}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad \qquad Nucleus \\ \psi_{A}(\boldsymbol{r}_{1},s_{1};\boldsymbol{r}_{2},s_{2}) = \Psi_{A}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad \qquad \psi_{A}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) + \frac{(2e)(-e)}{4\pi\epsilon_{0}|\boldsymbol{r}_{2}|} + \frac{(-e)(-e)}{4\pi\epsilon_{0}|\boldsymbol{r}_{2}|} \\ \psi_{He}(\boldsymbol{r}_{1},\boldsymbol{r}_{2})\Psi_{S,A}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right) = E\Psi_{S,A}\left(\boldsymbol{r}_{1},\boldsymbol{r}_{2}\right) \\ \psi_{B}(\boldsymbol{r}_{1})\phi_{j}(\boldsymbol{r}_{2}) \rightarrow \epsilon_{i} + \epsilon_{j} \\ \psi_{A}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\boldsymbol{r}_{1})\phi_{j}(\boldsymbol{r}_{2}) + \phi_{i}(\boldsymbol{r}_{2})\phi_{j}(\boldsymbol{r}_{1})\right] \\ \psi_{A}(\boldsymbol{r}_{1},\boldsymbol{r}_{2}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\boldsymbol{r}_{1})\phi_{j}(\boldsymbol{r}_{2}) - \phi_{i}(\boldsymbol{r}_{2})\phi_{j}(\boldsymbol{r}_{1})\right]$$

Exercise Shoped

Kuntal Roy

$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{S}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{A}\left(s_{1},s_{2}\right) \quad -e \quad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{A}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad Nucleus + 2e$$

$$H_{He} = \frac{|\boldsymbol{p_1}|^2}{2m} + \frac{|\boldsymbol{p_2}|^2}{2m} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_1}|} + \frac{(2e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_2}|} + \frac{(-e)(-e)}{4\pi\epsilon_0|\boldsymbol{r_{21}}|}$$

$$i \neq j$$

$$\Psi_{S}(\mathbf{r_1}, \mathbf{r_2}) = \frac{1}{\sqrt{2}} \left[\phi_i(\mathbf{r_1}) \phi_j(\mathbf{r_2}) + \phi_i(\mathbf{r_2}) \phi_j(\mathbf{r_1}) \right]$$

$$E_i = \epsilon_i + \epsilon_j + E_S$$

$$E_{S} = \frac{e^{2}}{2} \int d\mathbf{r}_{1} \int d\mathbf{r}_{2} \left[\frac{\left(\phi_{i}^{*}(r_{1}) \phi_{j}^{*}(r_{2}) + \phi_{i}^{*}(r_{2}) \phi_{j}^{*}(r_{1})\right) \left(\phi_{i}(r_{1}) \phi_{j}(r_{2}) + \phi_{i}(r_{2}) \phi_{j}(r_{1})\right)}{4\pi\epsilon_{0}|r_{12}|} \right] \\ \langle \Xi_{A} \left(S_{1}, S_{2}\right) | \Xi_{A} \left(S_{1}, S_{2}\right) \rangle \qquad \qquad E_{S} = K_{ij} + J_{ij}$$

$$\phi_{A}(\boldsymbol{r}_{1}, s_{1}; \boldsymbol{r}_{2}, s_{2}) = \Psi_{S}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \Xi_{A}(s_{1}, s_{2}) - e \qquad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r}_{1}, s_{1}; \boldsymbol{r}_{2}, s_{2}) = \Psi_{A}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \Xi_{S}(s_{1}, s_{2}) \qquad Nucleus$$

$$i \neq j \qquad \Psi_{S}(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\boldsymbol{r}_{1}) \phi_{j}(\boldsymbol{r}_{2}) + \phi_{i}(\boldsymbol{r}_{2}) \phi_{j}(\boldsymbol{r}_{1}) \right]$$

$$e^{2} c \qquad s \qquad \left[(\phi_{i}^{*}(\boldsymbol{r}_{1}) \phi_{i}^{*}(\boldsymbol{r}_{2}) + \phi_{i}^{*}(\boldsymbol{r}_{2}) \phi_{i}^{*}(\boldsymbol{r}_{1})) (\phi_{i}(\boldsymbol{r}_{1}) \phi_{i}(\boldsymbol{r}_{2}) + \phi_{i}(\boldsymbol{r}_{2}) \phi_{i}(\boldsymbol{r}_{1})) \right]$$

$$E_{S} = \frac{e^{2}}{2} \int d\mathbf{r_{1}} \int d\mathbf{r_{2}} \left[\frac{\left(\phi_{i}^{*}(\mathbf{r_{1}}) \phi_{j}^{*}(\mathbf{r_{2}}) + \phi_{i}^{*}(\mathbf{r_{2}}) \phi_{j}^{*}(\mathbf{r_{1}})\right) \left(\phi_{i}(\mathbf{r_{1}}) \phi_{j}(\mathbf{r_{2}}) + \phi_{i}(\mathbf{r_{2}}) \phi_{j}(\mathbf{r_{1}})\right)}{4\pi\epsilon_{0}|\mathbf{r_{21}}|} \right]$$

$$\langle \Xi_A (s_1, s_2) | \Xi_A (s_1, s_2) \rangle$$

$$E_S = K_{ij} + J_{ij}$$

$$K_{ij} = \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{e|\phi_i(\mathbf{r_1})|^2 e|\phi_j(\mathbf{r_2})|^2}{4\pi\epsilon_0|\mathbf{r_{21}}|} \right]$$
Coulomb repulsion

Exchange

$$J_{ij} = e^2 \int d\mathbf{r_1} \int d\mathbf{r_2}$$

Exchange interaction
$$J_{ij} = e^2 \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{\phi_i^*(\mathbf{r_1})\phi_j^*(\mathbf{r_2})\phi_i(\mathbf{r_2})}{4\pi\epsilon_0|\mathbf{r_{21}}|} \right]$$

Exchange interaction: Overlap charge density

$$\phi_{A}(\boldsymbol{r_{1}}, s_{1}; \boldsymbol{r_{2}}, s_{2}) = \Psi_{S}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) \Xi_{A}(s_{1}, s_{2}) - e \qquad r_{21} = r_{2} - r_{1} - e$$
or
$$\phi_{A}(\boldsymbol{r_{1}}, s_{1}; \boldsymbol{r_{2}}, s_{2}) = \Psi_{A}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) \Xi_{S}(s_{1}, s_{2}) \qquad Nucleus + 2e$$

$$i \neq j \qquad \Psi_{S}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}) = \frac{1}{\sqrt{2}} \left[\phi_{i}(\boldsymbol{r_{1}}) \phi_{j}(\boldsymbol{r_{2}}) + \phi_{i}(\boldsymbol{r_{2}}) \phi_{j}(\boldsymbol{r_{1}}) \right]$$

$$E_{S} = \frac{e^{2}}{2} \int d\mathbf{r_{1}} \int d\mathbf{r_{2}} \left[\frac{\left(\phi_{i}^{*}(\mathbf{r_{1}}) \ \phi_{j}^{*}(\mathbf{r_{2}}) + \phi_{i}^{*}(\mathbf{r_{2}}) \ \phi_{j}^{*}(\mathbf{r_{1}})\right) \left(\phi_{i}(\mathbf{r_{1}}) \ \phi_{j}(\mathbf{r_{2}}) + \phi_{i}(\mathbf{r_{2}}) \ \phi_{j}(\mathbf{r_{1}})\right)}{4\pi\epsilon_{0}|\mathbf{r_{21}}|} \right]$$

$$E_S = \frac{1}{2} \int d\mathbf{r}_1 \int d\mathbf{r}_2 \left[\frac{4\pi \epsilon_0 |\mathbf{r}_{21}|}{4\pi \epsilon_0 |\mathbf{r}_{21}|} \right]$$

$$\langle \Xi_A (s_1, s_2) | \Xi_A (s_1, s_2) \rangle$$

$$\rho_{ij}(\boldsymbol{r_1}) = \phi_i^*(\boldsymbol{r_1}) \, \phi_j(\boldsymbol{r_1})$$

$$\rho_{ij}(\boldsymbol{r_2}) = \phi_j^*(\boldsymbol{r_2}) \, \phi_i(\boldsymbol{r_2})$$

$$E_S = K_{ij} + J_{ij}$$

$$J_{ij} = e^2 \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{\rho_{ij}(\mathbf{r_1})\rho_{ij}(\mathbf{r_2})}{4\pi\epsilon_0|\mathbf{r_{21}}|} \right]$$

$$J_{ij} = e^2 \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{\phi_i^*(\mathbf{r_1})\phi_j^*(\mathbf{r_2})\phi_i(\mathbf{r_2}) \phi_j(\mathbf{r_1})}{4\pi\epsilon_0 |\mathbf{r_{21}}|} \right]$$

Kuntal Roy

Heisenberg model of ferromagnetism

$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{S}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{A}\left(s_{1},s_{2}\right) \quad -e \quad r_{21} = r_{2} - r_{1}$$
or
$$\phi_{A}(\boldsymbol{r_{1}},s_{1};\boldsymbol{r_{2}},s_{2}) = \Psi_{A}\left(\boldsymbol{r_{1}},\boldsymbol{r_{2}}\right)\Xi_{S}\left(s_{1},s_{2}\right) \quad Nucleus$$

$$+2e$$

$$i \neq j$$
 $\Psi_A(\mathbf{r_1}, \mathbf{r_2}) = \frac{1}{\sqrt{2}} [\phi_i(\mathbf{r_1}) \phi_j(\mathbf{r_2}) - \phi_i(\mathbf{r_2}) \phi_j(\mathbf{r_1})]$

Singlet state

$$E_S = K_{ij} + J_{ij}$$

Triplet
$$E_T = K_{ij} - J_{ij}$$

$$\rho_{ij}(\mathbf{r_1}) = \phi_i^*(\mathbf{r_1}) \, \phi_j(\mathbf{r_1})$$

$$\rho_{ij}(\mathbf{r_2}) = \phi_j^*(\mathbf{r_2}) \, \phi_i(\mathbf{r_2})$$

$$E_T - E_S = -2J_{ij}$$

$$J_{ij} = e^2 \int d\mathbf{r_1} \int d\mathbf{r_2} \left[\frac{\rho_{ij}(\mathbf{r_1})\rho_{ij}(\mathbf{r_2})}{4\pi\epsilon_0 |\mathbf{r_{21}}|} \right]$$

$$H_{ij} = -2J_{ij}\boldsymbol{S_1} \cdot \boldsymbol{S_2}$$

 J_{ii} positive \rightarrow ferromagnetism

Energy levels of Helium atom

Helium atom versus Hydrogen molecule

ONE confining potential

Parahelium (singlet state)

Orthohelium (triplet states)

TWO confining potential

Orthohydrogen (triplet states)

Parahydrogen (singlet state)

Hydrogen molecule: Singlet state is at the lower energy state