Correction

Soit la fonction $C: \mathbb{R}_+ \to \mathbb{R}$ définie par $C(t) = C_0 e^{-kt}$, où $C_0 > 0$ est la concentration initiale du réactif et k > 0 est une constante de vitesse de réaction.

- 1. Étude du domaine de définition et de la continuité.
 - (a) La fonction C est bien définie pour tous les $t \geq 0$. Donc, le domaine de définition est $\mathfrak{D}_C = [0, +\infty[$.
 - (b) La fonction $C(t) = C_0 e^{-kt}$ est continue sur $[0, +\infty[$ car elle est composée de fonctions élémentaires (exponentielle et constante), qui sont continues sur leur domaine. Par théorème de continuité des fonctions composées, C est donc continue sur \mathcal{D}_C .
 - (c) La fonction $C: \mathbb{R}_+ \to \mathbb{R}$ définie par $C(t) = C_0 e^{-kt}$ n'est pas bijective sur \mathbb{R} car C(t) prend uniquement des valeurs dans l'intervalle $]0, C_0]$ lorsque $t \in \mathbb{R}_+$. En particulier, C n'est pas surjective sur \mathbb{R} car elle ne peut atteindre les valeurs négatives ni les valeurs supérieures à C_0 . Par contre, elle est bien bijective sur $]0, C_0]$. En effet, restreinte à cet intervalle, la fonction $C(t) = C_0 e^{-kt}$ est strictement décroissante et donc injective. De plus, elle prend toutes les valeurs de $]0, C_0]$ lorsque $t \in \mathbb{R}_+$, ce qui garantit qu'elle est également surjective sur cet intervalle.
- 2. Étude asymptotique.
 - (a) Calcul des limites:

$$\begin{aligned} & - \lim_{t \to 0^+} C(t) = C_0 e^{-k \cdot 0} = C_0, \\ & - \lim_{t \to +\infty} C(t) = C_0 \lim_{t \to +\infty} e^{-kt} = C_0 \cdot 0 = 0. \end{aligned}$$

- (b) Au temps initial t = 0, la concentration est maximale et vaut C_0 . Au fur et à mesure que t tend vers l'infini, la concentration C(t) tend vers 0, ce qui signifie que le réactif se consomme progressivement jusqu'à disparaître.
- 3. Étude des variations.
 - (a) Calcul de la dérivée :

$$C'(t) = \frac{\mathrm{d}}{\mathrm{d}t}(C_0 e^{-kt}) = -kC_0 e^{-kt}.$$

- (b) Puisque k > 0 et $C_0 > 0$, on a C'(t) < 0 pour tout $t \ge 0$. Cela signifie que C est une fonction décroissante sur $[0, +\infty[$.
- 4. Temps caractéristique de décroissance.

On souhaite résoudre l'équation $C(t) = \frac{C_0}{10}$ pour $t \ge 0$:

$$C_0 e^{-kt} = \frac{C_0}{10}.$$

En simplifiant par C_0 , on obtient

$$e^{-kt} = \frac{1}{10},$$

puis en appliquant le logarithme népérien de chaque côté de l'équation, on trouve

$$-kt = \ln\left(\frac{1}{10}\right) \Leftrightarrow t = \frac{\ln(10)}{k} \qquad \left(\operatorname{car} \ln\left(\frac{1}{10}\right) = \ln(1) - \ln(10) = -\ln(10)\right).$$

Interprétation: Le temps $t = \frac{\ln(10)}{k}$ est le moment où la concentration du réactif est 10 fois moins importante que sa valeur initiale.

5. Impact des oscillations thermiques à partir de $t_0 = \frac{3\pi}{2}$.

La concentration est désormais, pour $t \geq t_0$,

$$\tilde{C}(t) = (C_0 + A\cos(t))e^{-kt}.$$

(a) Pour vérifier la continuité en t_0 , calculons les limites de $\tilde{C}(t)$ quand $t \to t_0^-$ et $t \to t_0^+$.

$$\lim_{t \to t_0^-} \tilde{C}(t) = C_0 e^{-kt_0},$$

$$\lim_{t \to t_0^+} \tilde{C}(t) = (C_0 + A\cos(t_0))e^{-kt_0}.$$

Or $\cos(t_0) = 0$ puisque $t_0 = \frac{3\pi}{2}$. Donc :

$$\lim_{t \to t_0^+} \tilde{C}(t) = \lim_{t \to t_0^+} C(t) = C_0 e^{-kt_0}.$$

Ainsi, $\lim_{t\to t_0^-} \tilde{C}(t) = \lim_{t\to t_0^+} \tilde{C}(t),$ et donc \tilde{C} est continue en $t_0.$

(b) Pour $t \to +\infty$,

$$\lim_{t \to +\infty} \tilde{C}(t) = \lim_{t \to +\infty} (C_0 + A\cos(t))e^{-kt} = 0,$$

 $car cos(t) \in [-1, 1]$ pour tout $t \ge 0$.

Interprétation : Même en tenant compte des oscillations thermiques, la concentration tend vers 0 lorsque $t \to +\infty$. Le réactif finit donc par se consommer intégralement.

(c) En utilisant le cercle trigonométrique, on trouve rapidement que

$$\cos(t) = 0 \quad \Leftrightarrow \quad t = \frac{\pi}{2} + 2k\pi, \quad \text{ou} \quad t = \frac{3\pi}{2} + 2k\pi, \quad k \in \mathbb{N}$$
$$\Leftrightarrow \quad t = \frac{\pi}{2} + k\pi, \quad k \in \mathbb{N}.$$

Sans prendre compte de la condition $t \geq t_0$, les solutions de cette équation sont :

$$t = \frac{\pi}{2} + k\pi$$
 pour $k \in \mathbb{N}$ tel que $t \ge t_0$.

Mais comme on veut les $t \ge t_0 = \frac{3\pi}{2}$, la première valeur de t pour laquelle $\cos(t) = 0$ et $t \ge t_0$ est $t = \frac{3\pi}{2} = t_0$. Les instants suivants seront ainsi $t = \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$ Les solutions sont donc

$$t = \frac{3\pi}{2} + k\pi, \quad k \in \mathbb{N}.$$

- (d) À chaque instant où $\cos(t)=0$, la contribution oscillatoire $A\cos(t)$ au modèle de concentration est momentanément nulle. Cela signifie que, même avec les fluctuations thermiques, la concentration suit temporairement une décroissance purement exponentielle au moment où $\cos(t)=0$. Ces instants $t=\frac{3\pi}{2}+k\pi$ (pour $k\in\mathbb{N}$ et $t\geq t_0$) représentent donc les moments où l'influence des oscillations disparaît brièvement, laissant la concentration suivre la loi initiale $C(t)=C_0e^{-kt}$.
- (e) Pour $t \ge t_0$, la concentration $\tilde{C}(t) = (C_0 + A\cos(t))e^{-kt}$ oscille en raison du terme $A\cos(t)$ mais décroît globalement vers 0. Les oscillations traduisent l'effet des variations thermiques, mais la tendance générale reste une décroissance exponentielle.

