nit No. 10

Graphs of Functions

Exercise 10.2

Question No. 1

Plot the graph of $y = 2x^2 - 4x + 3$ from -1 to 3. Draw tangent at (2,3) and find the gradient.

Solution:

$$y = 2x^2 - 4x + 3$$

$$x = -1, 0, 1, 2, 3$$

$$x = -1$$
; $y = 2(-1)^2 - 4(-1) + 3 = 2 + 4 + 3 = 9$

$$x = 0$$
; $y = 2(0)^2 - 4(0) + 3 = 0 - 0 + 3 = 3$

$$x = 1$$
; $y = 2(1)^2 - 4(1) + 3 = 2 - 4 + 3 = 1$

$$x = 2$$
; $y = 2(2)^2 - 4(2) + 3 = 8 - 8 + 3 = 3$

$$x = 3$$
; $y = 2(3)^2 - 4(3) + 3 = 18 - 12 + 3 = 9$

Table:

	A	В	С	D	Е
x-axis	-1	0	1	2	3
y-axis	9	3	1	3	9

Graphical Representation:

Finding point on the tangent:

Let's find another point on the tangent line.

From graph drawn above two points are (2, 3) and (1.5, 1)

Slope of tangent line =
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{2 - 1.5} = \frac{2}{0.5} = \frac{2 \times 10}{5} = 4$$

So, required gradient is 4.

Question No. 2

Plot the graph of $y = 3x^2 + x + 1$ and draw tangent at (1,5). Also find gradient of the tangent line at this point.

Solution:

$$y = 3x^2 + x + 1$$

$$x = -2, -1, 0, 1, 2, 3$$

$$x = -2$$
; $y = 3(-2)^2 + (-2) + 1 = 12 - 2 + 1 = 11$

$$x = -1$$
; $y = 3(-1)^2 + (-1) + 1 = 3 - 1 + 1 = 3$

$$x = 0$$
; $y = 3(0)^2 + (0) + 1 = 0 - 0 + 1 = 1$

$$x = 1$$
; $y = 3(1)^2 + (1) + 1 = 3 + 1 + 1 = 5$

$$x = 2$$
; $y = 3(2)^2 + (2) + 1 = 12 + 2 + 1 = 1$

Table:

	A	В	C	D	Е
x-axis	-2	-1	0	1	2
y-axis	11	3	1	5	15

Graphical Representation:

Find gradient of the tangent line:

We find another point on tangent line. Other point on tangent line is (2, 12), slope of tangent line through (1, 5) and (2, 12) is,

Gradient =
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{12 - 5}{2 - 1} = \frac{7}{1} = 7$$

Gradient = 7

Question No. 3

The strength of students in a school was 1000 in 2016. If the strength decay according to the equation $S=1000 e^{-t}$, where S is the number of students at time t. (a) Graph the given equation for t=0 (in 2016) to t=9 (in 2025).

(b) From the graph, estimate the student's strength in 2019 and in 2023.

Solution:

$$S=1000 e^{-t}$$

In 2016 when
$$t = 0$$
; $S=1000 e^{-0} = 1000 (1) = 1000$

In 2017 when
$$t = 1$$
; $S=1000 \text{ e}-1 = 1000 (0.367879) = 367.879$

In 2018 when
$$t = 2$$
; $S=1000 \text{ e}-2 = 1000 (0.131762) = 131.762$

In 2019 when
$$t = 3$$
; $S=1000 e-3 = 1000 (0.048237) = 48.237$

In 2020 when
$$t = 4$$
; $S=1000 \text{ e}-4 = 1000 \text{ (} 0.017753 \text{)} = 17.753$

In 2021 when
$$t = 5$$
; $S=1000 \text{ e}-5 = 1000 (0.006547) = 6.547$

In 2022 when
$$t = 6$$
; $S=1000 \text{ e}-6 = 1000 (0.002415) = 2.415$

In 2023 when
$$t = 7$$
; $S=1000 \text{ e}-7 = 1000 (0.000891) = 0.891$

In 2024 when
$$t = 8$$
; $S=1000 \text{ e}-8 = 1000 (0.000329) = 0.329$

In 2025 when
$$t = 9$$
; $S=1000 e-9 = 1000 (0.000121) = 0.121$

Table:

	x-axis (t)	y-axis (S)
2016	0	1000
2017	1	367.879
2018	2	131.762
2019	3	48.237
2020	4	17.753
2021	5	6.547
2022	6	2.415
2023	7	0.891
2024	8	0.329
2025	9	0.121

Graphical Representation:

Answer to (b):

From the graph:

In 2019 (t = 3): Estimated student strength = $49.8 \approx 50$ students

In 2023 (t = 7): Estimated student strength = $0.9 \approx 1$ student

Question No. 4

The demand and supply functions for a product are given by the equations

$$P_d = 400 - 5Q$$
, $P_s = 3Q + 24$.

Plot the graph of each function over the interval Q = 0 to Q = 300.

Solution:

Given that; Q = 0 to Q = 300

For solving take Q = 0, 40, 80, 100

Put in Pd first:

$$Q = 0$$
, $P_d = 400 - 5(0) = 400 - 0 = 400$

$$Q = 40$$
, $P_d = 400 - 5(40) = 400 - 200 = 200$

$$Q = 80, P_d = 400 - 5(80) = 400 - 400 = 0$$

$$Q = 100, P_d = 400 - 5(100) = 400 - 500 = -100$$

Now, put in Ps;

$$Q = 0$$
, $P_s = 3(0) + 24 = 0 + 24 = 24$

$$Q = 40$$
, $P_s = 3(40) + 24 = 120 + 24 = 144$

$$Q = 80, P_s = 3(80) + 24 = 240 + 24 = 264$$

$$Q = 100, P_s = 3(100) + 24 = 300 + 24 = 324$$

Table:

	Α	В	C	D
Q	0	40	80	100
P_d	400	200	0	-100
Ps	24	144	264	324

Question No. 5

Shahid's salary S(x) in rupees is based on the following formula:

$$S(x) = 45000 + 4500x,$$

where x is the number of years he has been with the company. Sketch and interpret the graph of salary function for $0 \le x \le 5$.

Solution:

$$S(x) = 45000 + 4500x$$

$$0 \le x \le 5;$$
 $x = 0, 1, 2, 3, 4, 5$

$$x = 0$$
; $S(x) = 45000 + 4500(0) = 45000 + 0 = 45000$

$$x = 1$$
; $S(x) = 45000 + 4500(1) = 45000 + 4500 = 49500$

$$x = 2$$
; $S(x) = 45000 + 4500(2) = 45000 + 9000 = 54000$

$$x = 3$$
; $S(x) = 45000 + 4500(3) = 45000 + 13500 = 58500$

$$x = 4$$
; $S(x) = 45000 + 4500(4) = 45000 + 18000 = 63000$

$$x = 5$$
; $S(x) = 45000 + 4500(5) = 45000 + 22500 = 67500$

Table:

		A	В	С	D	Е	F
x-axis	X	0	1	2	3	4	5
y-axis	S(x)	45000	49500	54000	58500	63000	67500

Shahid's salary increases line only with years of service and rises Rs. 4500 for every year.

Question No. 6

A company manufactures school bags. The cost function of producing x bags is C(x) = 1200 + 20x and the revenue from selling x bags is R(x) = 50x.

- (a) Find the break-even point.
- (b) Determine the profit or loss when 250 bags are sold.
- (c) Plot the graphs of both the functions and identify the break-even point.

Solution:

$$C(x) = 1200 + 20x$$

$$R(x) = 50x$$

Let;
$$x = 0, 20, 40, 60, 250$$

Put these values in C(x) turn by turn:

$$x = 0$$
; $C(x) = 1200 + 20(0) = 1200 + 0 = Rs. 1200$

$$x = 20$$
; $C(x) = 1200 + 20(20) = 1200 + 400 = Rs. 1600$

$$x = 40$$
; $C(x) = 1200 + 20(40) = 1200 + 800 = Rs. 2000$

$$x = 60$$
; $C(x) = 1200 + 20(60) = 1200 + 1200 = Rs. 2400$

$$x = 250$$
; $C(x) = 1200 + 20(250) = 1200 + 5000 = Rs. 6200$

Table:

No. of bags	0	20	40	60	250
Cost (Rs.)	1200	1600	2000	2400	6200

From graph:

Break-Even point (40, 2000)

i.e. At
$$x = 40$$
 bags

$$C.P = 1200 + 20 \times 250$$

$$C.P = 1200 + 5000$$

$$C.P = Rs. 6200$$
 (for $x = 250$)

Sale price (S.P)=
$$50 \times 250$$

$$S.P = Rs. 12500$$

Since S.P > C.P so

Profit is realized

$$Profit = Rs. 12500 - Rs. 6200$$

Profit = Rs. 6300

Question No. 7

A newspaper agency fixed cost of Rs. 70 per edition and marginal printing and distribution costs of Rs. 40 per copy. Profit function is p(x) = 10 x - 70, where x is the number of newspapers. Plot the graph and find profit for 500 newspapers.

Solution:

$$P(x) = 10x - 70$$

Let;
$$x = 7, 14, 21$$

$$x = 7$$
; $P(7) = 10 \times 7 - 70 = 70 - 70 = 0$

$$x = 14$$
; $P(14) = 10 \times 14 - 70 = 140 - 70 = 70$

$$x = 21$$
; $P(21) = 10 \times 21 - 70 = 210 - 70 = 140$

Table:

X	7	14	21
P	0	70	140

Graphical

Representation:

Finding Profit for 500 Newspapers:

$$P(x) = 10 x - 70$$

$$P(500) = 10 \times 500 - 70$$

$$P(500) = 5000 - 70$$

$$P(500) = Rs. 4930$$

The profit for 500 newspapers is Rs. 4930.

Question No. 8

Ali manufactures expensive shirts for sale to a school. Its cost (in rupees) for x shirts is $C(x) = 1500 + 10 \times + 0.2 \times 2$, $0 \le x \le 150$. Plot the graph and find the cost of 200 shirts.

Solution:

$$C(x) = 1500 + 10 x + 0.2 x^2$$

$$0 \le x \le 150$$
; $x = 0, 1, 2, 3, \dots, 150$

For
$$x = 0$$
; C (0) = $1500 + 10(0) + 0.2(0)^2 = 1500 + 0 + 0 = Rs. 1500$

For
$$x = 50$$
; C $(50) = 1500 + 10(50) + 0.2(50)^2 = 1500 + 500 + 5000 = Rs. 2500$

For
$$x = 100$$
; $C(100) = 1500 + 10(100) + 0.2(100)^2 = 1500 + 1000 + 0.2(10000)$

$$C(100) = 1500 + 1000 + 2000 = Rs. 4500$$

For
$$x = 150$$
; $C(150) = 1500 + 10(150) + 0.2(150)^2 = 1500 + 1500 + 0.2(22500)$

$$C(150) = 1500 + 1500 + 4500 = Rs.7500$$

Table:

x (shirts)	0	50	100	150
C(x) (Rs.)	1500	2500	4500	7500

Finding cost of 200 shirts:

For x = 200;

$$C(200) = 1500 + 10(200) + 0.2(200)^2$$

$$C(200) = 1500 + 2000 + 8000$$

$$C(200) = Rs. 11500$$

The cost of 200 shirts will be Rs. 11500.