

Mercado Imobiliário

Apresentou maior crescimento de lançamentos dos últimos 10 anos - Câmara Brasileira da Indústria da Construção (CBIC)

Crescimento de 12% no Brasil, em relação ao ano anterior - Associação de Dirigentes de Empresas do Mercado Imobiliário (Ademi)

O Valor Geral de Vendas (VGV) tem previsão de encerrar o ano em R\$ 99 bilhões - Associação de Dirigentes de Empresas do Mercado Imobiliário (Ademi)

Os preços dos imóveis australianos devem apresentar um pico de 10% no próximo ano - Commonwealth Bank

Objetivos Centrais

Utilizar diferentes métodos de *ensemble* das *Machine Learnings* para melhorar as predições já existente sobre o preço dos imóveis (*House Pricing*).

Comparar os métodos através das métricas de <u>coeficiente de determinação</u> (R²) e <u>erro médio quadrático</u> (MSE) procurando obter os melhores resultados para os mesmos.

Fazer uma aplicação (deploy) simples para os modelos treinados.

Sumário

- ETL (Extração, Transformação e Carregamento) Slide 5
- EDA (Análise Exploratória de Dados) Slide 7
- Feature Engineering (Manipulação de features) Slide 13
- Modelagem das *Machine Learnings* Slide 14
- Deploy dos modelos (Aplicação) Slide 22

ETL (GitHub)

Dataset original - Perth House Prices (Kaggle)

	ADDRESS	SUBURB	PRICE	BEDROOMS	BATHROOMS	GARAGE	LAND_AREA	FLOOR_AREA	BUILD_YEAR	CBD_DIST	NEAREST_STN	NEAREST_STN_DIST	DATE_SOLD	POSTCODE	LATITUDE	LONGITUDE	NEAREST_SCH	NEAREST_SCH_DIST	NEAREST_SCH_RANK
0	1 Acorn Place	South Lake	565000	4	2	2.0	600	160	2003.0	18300	Cockburn Central Station	1800	09-2018\r	6164	-32.115900	115.842450	LAKELAND SENIOR HIGH SCHOOL	0.828339	NaN
1	1 Addis Way	Wandi	365000	3	2	2.0	351	139	2013.0	26900	Kwinana Station	4900	02-2019\r	6167	-32.193470	115.859553	ATWELL COLLEGE	5.524324	129.0
2	1 Ainsley Court	Camillo	287000	3	1	1.0	719	86	1979.0	22600	Challis Station	1900	06-2015\r	6111	-32.120578	115.993579	KELMSCOTT SENIOR HIGH SCHOOL	1.649178	113.0
3	1 Albert Street	Bellevue	255000	2	1	2.0	651	59	1953.0	17900	Midland Station	3600	07-2018\r	6056	-31.900547	116.038009	SWAN VIEW SENIOR HIGH SCHOOL	1.571401	NaN
4	1 Aman Place	Lockridge	325000	4	1	2.0	466	131	1998.0	11200	Bassendean Station	2000	11-2016\r	6054	-31.885790	115.947780	KIARA COLLEGE	1.514922	NaN

Transformações aplicadas

```
df['BUILD_YEAR'] = pd.to_datetime(df['BUILD_YEAR'], format='\fine('\final Y')
df['BUILD_YEAR'] = pd.to_datetime(df['BUILD_YEAR']).dt.strftime('\fine Y')
df['DATE_SOLD'] = df['DATE_SOLD'].map(lambda x: x.rstrip('\r'))
df['MONTH_SOLD'] = pd.to_datetime(df.DATE_SOLD).dt.strftime('\fine M')
df['YEAR_SOLD'] = pd.to_datetime(df.DATE_SOLD).dt.strftime('\fine Y')
df.drop('DATE_SOLD', axis='columns', inplace=True)
df = df[df['BATHROOMS']<15]
df = df[df['GARAGE']<=10]
df = df[df['FLOOR_AREA']>=50]
df = df[df['FLOOR_AREA']<=900000]</pre>
```

ETL (GitHub)

Dataset transformado - ETL finalizado

	ADDRESS	SUBURB	PRICE	BEDROOMS	BATHROOMS	GARAGE	LAND_AREA	FLOOR_AREA	BUILD_YEAR	CBD_DIST	NEAREST_STN	NEAREST_STN_DIST	POSTCODE	LATITUDE	LONGITUDE	NEAREST_SCH	NEAREST_SCH_DIST	NEAREST_SCH_RANK	MONTH_SOLD	YEAR_SOLD
0	1 Addis Way	Wandi	365000	3	2	2.0	351	139	2013	26900	Kwinana Station	4900	6167	-32.193470	115.859553	ATWELL COLLEGE	5.524324	129.0	02	2019
1	1 Ainsley Court	Camillo	287000	3	1	1.0	719	86	1979	22600	Challis Station	1900	6111	-32.120578	115.993579	KELMSCOTT SENIOR HIGH SCHOOL	1.649178	113.0	06	2015
2	1 Arundel Street	Bayswater	685000	3	2	8.0	552	126	1999	5900	Bayswater Station	508	6053	-31.917880	115.907050	CHISHOLM CATHOLIC COLLEGE	0.936243	29.0	10	2019
3	1 Ashcott Gate	Butler	367500	3	2	2.0	398	158	2003	36300	Butler Station	2100	6036	-31.654280	115.702200	BUTLER COLLEGE	0.680843	39.0	11	2018
4	1 Ashendon Boulevard	Hammond Park	535000	4	2	4.0	704	247	2002	23100	Cockburn Central Station	3900	6164	-32.159590	115.849480	ATWELL COLLEGE	2.220643	129.0	07	2019

EDA (GitHub)

Área de terreno e Área construída

As áreas não apresentam comportamento que pareça ser muito decisivo para a definição de preço.

EDA (GitHub)

Distância para o Centro da cidade, Estação de trem e Escola mais próximos

As distâncias mostram uma correlação inversa ao preço das casas, tendendo a serem mais decisivas para o valor.

Feature Engineering (GitHub)

Aplicação de log para lidar com distribuição enviesada; Mudança da coluna SUBURB pela média dos preços de cada distrito; Retirada dos demais dados categóricos.

Machine Learnings – Ensemble Learnings

Bagging – aprende os weak learners de maneira independente uns dos outros, e os combina seguindo um processo médio determinístico/preditivo;

Boosting - aprende os weak learners sequencialmente, adaptando-se e os combinando com uma estratégia determinística/preditiva;

Stacking - aprende weak learners em paralelo e os combina num metamodelo para produzir uma previsão baseada nas previsões dos diferentes weak learners.

Stacking (GitHub)

 $FS-k=3 \label{eq:fsuburb} \begin{tabular}{ll} ["SUBURB", "FLOOR_AREA", "NEAREST_SCH_RANK"] \end{tabular}$

Modelos aplicados:

- Redes Neurais;
- *SVM*;
- Árvore de decisão;
- *KNN*;
- Regressão Linear.

Stacking (GitHub)

Bagging (GitHub)
Real x Predict comparison

XGBoost Feature Importance

Boosting (GitHub)

0.0

R² e MSE dos Ensemble Learnings

Deploy (App)

Streamlit - framework de código aberto, criado para colocar em funcionamento os projetos de Machine Learning, sem a necessidade de ferramentas de front-end ou de deploy de aplicações.

House Price Sales Prediction: Perth City

Explore different ensemble approaches for Regression

Image Source: https://www.travelsafe-abroad.com/br/australia/perth/

About this APP

This application aims to explore 3 different types of regression model ensembles, namely: Boosting, Bagging and Stacking. The predictions made are for home prices in the city of Perth - Australia

Map of Perth

The red points are sold houses in Perth and whose descriptive data was used in this project.

