

EXAME NACIONAL DO ENSINO SECUNDÁRIO - MATEMÁTICA A

PROVA MODELO N.º 4

12.º ANO DE ESCOLARIDADE

"Um matemático é um homem cego, numa sala às escuras, à procura de um gato preto, que não se encontra lá." Charles Danwin

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1.	Considera três números	naturais	a, b	е	c tais	que	$a = {}^{2008}C_{100}$,	b=	$^{2008}C_{101}$	е	$c={}^{2009}C_{101}$ Então, o valor o	et
a-	+2b−c é igual a:										0.	

Α	²⁰⁰⁸ C ₁₀₀	B ²⁰⁰⁸ C ₁₀₁	C ²⁰⁰⁹ C ₁₀₀	D	²⁰⁰⁹ C ₁₀

2. Um dado, equilibrado, com as faces numeradas de 1 a 6 é lançado quatro vezes. Qual é a probabilidade de sair faces com os mesmos números apenas nos dois primeiros lançamentos?

3. Em cada uma das opções seguintes estão representadas oito figuras, círculos, quadrados ou triângulos que estão pintados de preto, encarnado ou verde. Para cada uma das opções considera a experiência que consiste em escolher uma das oito figuras. Considera os acontecimentos:

X: «A figura escolhida é um triângulo»

Y: «A figura escolhida é preta»

Em qual das opções se tem $P(X|\overline{Y}) = \frac{1}{4}$

4. Considera uma função f de domínio IR. Na figura está representado parte do gráfico da função f', **primeira derivada** de f:

Em qual das figuras seguintes pode estar parte da representação gráfica de f", segunda derivada de f?

Α

В

С

D

5. Na figura está parte da representação gráfica de uma função g de domínio $]-\infty,4[$. Na figura também estão também representadas duas rectas que são assimptotas do gráfico de g, uma oblíqua e outra vertical.

Qual é o valor de $\lim_{x\to -\infty} \frac{e^x - x}{g(x)}$?

$$-\frac{2}{3}$$

6. Considera um número $a \in IR^+ \setminus \{0\}$ tal que $\log_a x = 2$ e um número real positivo, **b**, tal que $\sqrt{b} = x$, com $x \in IR^+$. Qual das seguintes afirmações é **falsa**?

- $\mathbf{B} \quad \mathbf{a}^4 = \mathbf{b}$
- $\boxed{\textbf{C}} \quad \frac{b}{a} = x$

7. Em C, conjunto dos números complexos, considera um número complexo z=a+bi, em que a<0 e b>0. Qual dos números seguintes pode representar $-\overline{z}$, simétrico do conjugado de z?

- $\mathbf{A} \quad 2e^{i\frac{\pi}{7}}$
- **B** $2e^{i\frac{6\pi}{7}}$
- D 2e^{i 13/7}

8. Em C, conjunto dos números complexos, considera um número complexo w = 2 - i + xi, com $x \in IR$. O valor real de x para o qual a imagem geométrica de $w - 2\overline{w}$ pertence à bissectriz dos quadrantes pares é:

- **A** $-\frac{5}{3}$
- **B** $-\frac{1}{3}$
- C $\frac{1}{3}$

 $\frac{5}{3}$

GRUPO II - ITENS DE RESPOSTA ABERTA

1. Seja C o conjunto dos números complexos e i a unidade imaginária.

- **1.1** Considera o número complexo $w = 2cis\frac{7}{8}\pi$. Determina o menor natural \mathbf{n} de modo que $\left(\frac{w}{i}\right)^n$ seja um número real negativo.
- **1.2** Sejam z_1 , z_2 e z_3 três números complexos, cujas imagens geométricas, A, B e C, respectivamente, pertencem à região do plano complexo, definido pela condição |z|=2. Sabe-se que:
 - O ponto A pertence ao primeiro quadrante e à bissectriz dos quadrantes ímpares e o ponto C pertence ao semi-eixo real positivo;

$$-\mathbf{z}_2 = \mathbf{z}_1 \times \mathbf{i}^{54} .$$

1.2.1 Representa no plano complexo o triângulo [ABC] e determina a sua área.

1.2.2 Sem recorrer à calculadora, determina $-z_1 \times z_2 - 2z_3$, apresenta o resultado na forma trigonométrica.

- 2. Numa escola de Lisboa, no ano de 2003, sabe-se que:
 - 3 em cada 5 alunos realizaram o Exame Nacional de Matemática;
 - Dos alunos que realizaram o Exame Nacional de Matemática, 35% também realizaram o Exame Nacional de Física:
 - Dos alunos que n\u00e3o realizaram o Exame Nacional de Matem\u00e1tica, 90% tamb\u00e9m n\u00e3o realizaram o Exame Nacional de F\u00edsica.

Escolhe-se ao acaso um aluno dessa escola que realizou o Exame Nacional de Física. Qual é a probabilidade de não ter realizado o Exame Nacional de Matemática? (Apresenta o resultado na forma de percentagem)

3. Numa caixa estão 12 bolas, três numeradas com o número 1, três numeradas com o número 2, quatro numeradas com o número 3 e duas numeradas com o número 4. Retiram-se da caixa, simultaneamente e ao acaso, três bolas. Qual é a probabilidade da soma ser 7? Uma das respostas possíveis a este problema é:

$$\frac{4 \times {}^{3}C_{2} + 3 \times {}^{4}C_{2} + 3 \times 3 \times 2}{{}^{12}C_{3}}$$

Numa pequena composição, explica porquê. A composição deve incluir:

- Uma referência à Regra de Laplace;
- Uma explicação do número de casos possíveis
- Uma explicação do número de casos favoráveis.
- **4.** Seja S o espaço de resultados associado a uma experiência aleatória. Sejam A e B dois acontecimentos $(A \subset S \ e \ B \subset S)$, ambos de probabilidade não nula. Mostra que:

$$1-P(\overline{A}|\overline{B})=P(A|\overline{B})$$

5. Considera uma função g, de domínio IR, definida por:

$$g(x) = \begin{cases} 2x + \frac{\ln(x-1)}{x} & \text{se} \quad x > 1 \\ 0 & \text{se} \quad x = 1 \\ \frac{\cos x}{x+1} & \text{se} \quad x < 1 \end{cases}$$

Estuda a função g quanto à existência de assimptotas do seu gráfico e escreve as suas equações, caso existam.

- **6.** Considera uma função f, de domínio $[0,\pi]$, cuja sua **derivada** também está definida em $[0,\pi]$ por $f'(x) = \text{sen}x + \cos x$. **Recorrendo à calculadora gráfica** reproduz o gráfico de f'. Considera:
 - − O ponto A pertencente ao gráfico de f' em que a ordenada é igual ao quadrado da abcissa;
 - − O ponto B, pertencente ao gráfico de f', cuja abcissa é o único maximizante de f.

Representa o triângulo [AOB], sendo O a origem do referencial, e determina a sua área. (Apresenta o resultado arredondado às centésimas. Indica as coordenadas dos pontos, também arredondadas às centésimas)

- 7. Considera a função g definida em IR por $g(x) = x + 2x^2e^{4-x}$
 - **7.1** Mostra que $g''(x) = e^{4-x}(2x^2 8x + 4)$ e estuda o gráfico de g quanto ao sentido das concavidades e existência de pontos de inflexão.
 - **7.2** Mostra que no intervalo $\left[\frac{1}{4},1\right]$, existe pelo menos um ponto cuja sua imagem por, meio da função g, é 10.
- **8.** A energia E, libertada por um sismo, medido em Joules, e a sua magnitude M, na escala de Richter, estão relacionados pela equação:

$$logE = a + b \times M$$
, $a,b \in IR$

- **8.1** Nesta alínea considera a = 5,5 e b = 1,5. No sudoeste asiático, no ano de 2005, ocorreu um sismo de magnitude 9,1 na escala de Richter. Qual foi a energia libertada por esse sismo?
- **8.2** Sabe-se que a energia libertada por um sismo de magnitude 8 é de 5.8×10^{16} Joules, sendo este valor 21000 vezes maior do que a energia libertada por um sismo de magnitude 5. Determina os valores de a e b. (Apresenta os resultados aproximados às centésimas. Nos eventuais cálculos intermédios utiliza pelo menos quatro casas decimais)

Soluções

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

3. A

5.

6. С **7.** A

GRUPO II - ITENS DE RESPOSTA ABERTA

1.1 n=8

2. 16%

A.V.: x=1; A.H.: y=0 ($x \rightarrow -\infty$); A.O.: y=2x ($x \rightarrow +\infty$)

 $A_{\text{[AOB]}}\approx 1,56$ 6.

O gráfico de g tem c.v. baixo em $\left[2-\sqrt{2},2+\sqrt{2}\right]$ e tem c.v. cima $\left]-\infty,2-\sqrt{2}\right]$ e em $\left[2+\sqrt{2},+\infty\right[$. O gráfico de g tem P.I. para 7.1 $x=2\pm\sqrt{2}$

 $E = 10^{19,15} \approx 1,41 \times 10^{19}$ Joules 8.1

a = 5,24 e b = 1,44

RESOLUÇÃO DA PROVA MODELO N.º 4

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

1.
$$a + 2b - c = {}^{2008}C_{100} + 2 \times {}^{2008}C_{101} - {}^{2009}C_{101} {}^{2009}C_{101} =$$

$$= \underbrace{{}^{2008}C_{100} + {}^{2008}C_{101}}_{2009} + \underbrace{{}^{2008}C_{101} - {}^{2009}C_{101} =}_{2008} + \underbrace{{}^{2008}C_{101} - {}^{2009}C_{101} =}_{2008}$$

A resposta correcta é a **B**.

2. O número de casos possíveis é 6^4 , porque em cada um dos quatro lançamentos pode sair cada uma das seis faces do cubo. O número de casos favoráveis é dado por $6\times1\times5\times4$, pois pretendese que apenas que os números saídos nos dois primeiros lançamentos sejam iguais, sendo os restantes distintos. Assim a probabilidade pedida é $\frac{6\times1\times5\times4}{6^4}=\frac{5}{54}$. A resposta correcta é a

A.

- 3. $P(X|\overline{Y})$ designa a probabilidade da figura escolhida ser um triângulo sabendo que a figura escolhida não é preta. Como $P(X|\overline{Y}) = \frac{1}{4}$ pretendemos determinar a opção onde um quarto das figuras que não estão pintadas de preto sejam triângulos. Esta condição só é verificada pela opção A. A resposta correcta é a A.
- **4.** A função f'' é a função derivada da função f'. A função f' não está definida no ponto de abcissa -1 e não é derivável no ponto de abcissa 1 (ponto anguloso), portanto podemos eliminar as opções A e B. Como a função f' é constante em $]-\infty,-1]$ e em $[1,+\infty[$ então a função f'' é nula no intervalo $]-\infty,-1[$ e no intervalo $]1,+\infty[$. Como a função f' é crescente em]-1,1] então a função f'' é positiva no intervalo]-1,1[, assim eliminamos a resposta D e a resposta correcta é a $\bf C$.
- **5.** Os pontos \overrightarrow{A} e B de coordenadas (-2,0) e (0,3) pertencem à assimptota do gráfico da função g. O vector director dessa recta é dado por $\overrightarrow{AB} = B A = (2,3)$ e o seu declive é $\frac{3}{2}$ e portanto $\lim_{x \to a} \frac{g(x)}{x} = \frac{3}{2}$. Assim:

$$\lim_{x \to \infty} \frac{e^x - x}{g(x)} \stackrel{\left(\frac{\infty}{\infty}\right)}{=} \lim_{x \to \infty} \left(\frac{e^x}{g(x)} - \frac{x}{g(x)} \right) = \frac{e^{-\infty}}{-\infty} - \frac{2}{3} = \frac{0}{-\infty} - \frac{2}{3} =$$

$$= 0 - \frac{2}{3} = -\frac{2}{3}$$

A resposta correcta é a D.

6.

i) Tem-se $\log_a x = 2 \Leftrightarrow x = a^2$ e como $\sqrt{b} = x$ então $a^2 = \sqrt{b}$ e consequentemente $a^4 = b$. Assim as respostas A e B são **verdadeiras**.

$$\begin{split} & \text{ii)} \quad \text{Tem-se} \quad x = a^2 \underset{a > 0}{\Longleftrightarrow} a = \sqrt{x} \quad e \quad \sqrt{b} = x \Longleftrightarrow b = x^2 \;. \quad \text{Então} \\ & \frac{b}{a} = \frac{x^2}{\sqrt{x}} = x^{\frac{2-1}{2}} = x^{\frac{3}{2}} = \sqrt{x^3} \quad e \quad a \times b = \sqrt{x} \times x^2 = x^{\frac{1}{2}+2} = x^{\frac{5}{2}} = \sqrt{x^5} \;. \end{split}$$

Assim a resposta C é falsa e a resposta D é verdadeira.

A resposta correcta é a C.

7. Tem-se $-\overline{z}=-(a-bi)=-a+bi$. Como a<0 então -a>0, assim $Re(-\overline{z})>0$ e $Im(-\overline{z})>0$ e portanto a imagem geométrica do número complexo $-\overline{z}$ pertence ao 1.º quadrante. Concluímos então que o número complexo $-\overline{z}$ só pode ser

representado por $2e^{i\frac{\pi}{7}}$. A resposta correcta é a **A**.

8. A imagem geométrica do número complexo $w-2\overline{w}$ pertence à bissectriz dos quadrantes pares se e só se $Im(w-2\overline{w})=-Re(w-2\overline{w})$. Assim:

$$Im(w-2\overline{w}) = -Re(w-2\overline{w}) \Leftrightarrow 3x-3 = 2 \Leftrightarrow 3x = 5 \Leftrightarrow x = \frac{5}{3}$$

A resposta correcta é a D.

Cálculos Auxiliares:

i)
$$w = 2-i + xi = 2 + (x-1)i$$

ii)
$$w-2\overline{w}=2+(x-1)i-2\times(2-(x-1)i)=$$

$$=2+(x-1)i-4+(2x-2)i=-2+(x-1+2x-2)i=$$

$$=-2+(3x-3)i$$

GRUPO II - ITENS DE RESPOSTA ABERTA

1.

1.1 O número complexo $\left(\frac{w}{i}\right)^n$ é um número real negativo se e só se qualquer seu argumento for da forma $\pi+2k\pi$, $k\in\mathbb{Z}$. Assim:

$$\left(\frac{w}{i}\right)^n = \left(\frac{2e^{\frac{i^{\frac{7\pi}{8}}}{8}}}{e^{\frac{i^{\frac{\pi}{2}}}{2}}}\right)^n = \left(2e^{i\left(\frac{7\pi}{8}-\frac{\pi}{2}\right)}\right)^n = \left(2e^{\frac{i^{3\pi}}{8}}\right)^n = 2^n 2e^{\frac{i^{3n\pi}}{8}}$$

$$Logo \ \frac{3n\pi}{8} = \pi + 2k\pi, \quad k \in Z \Longleftrightarrow 3n\pi = 8\pi + 16k\pi, \quad k \in \mathbb{Z} \Longleftrightarrow$$

$$\Leftrightarrow$$
 3n = 8 + 16k, $k \in \mathbb{Z} \Leftrightarrow$

$$\Leftrightarrow n = \frac{8}{3} + \frac{16k}{3}, k \in \mathbb{Z}$$

Para
$$k=0 \rightarrow n = \frac{8}{3} \notin \mathbb{N}$$

Para
$$k=1 \rightarrow n = \frac{8}{3} + \frac{16}{3} = \frac{24}{3} = 8 \in \mathbb{N}$$

Portanto n=8.

1.2

1.2.1

i) Os pontos A, B e C pertencem à região do plano complexo definido pela condição |z|=2, então $|z_1|=|z_2|=|z_3|=2$. Além disso o ponto A pertence ao primeiro quadrante é à bissectriz dos quadrantes ímpares e o ponto C pertence ao semi-eixo positivo real, logo $z_1=2e^{i\frac{\pi}{4}}$ e $z_3=2e^{i(0)}=2$.

Representação no plano complexo do triângulo [ABC] e cálculo da sua área.

Cálculo Auxiliar:

$$sen\left(\frac{\pi}{4}\right) = \frac{h}{2} \Leftrightarrow h = 2sen\left(\frac{\pi}{4}\right) = \cancel{2} \times \frac{\sqrt{2}}{\cancel{2}} \Leftrightarrow h = \sqrt{2}$$

1.2.2
$$-z_1 \times z_2 - 2z_3 = -2e^{i\frac{\pi}{4}} \times 2e^{i\frac{5\pi}{4}} - 2 \times 2 =$$

$$= 2e^{i\left(\frac{\pi}{4} + \pi\right)} \times 2e^{i\frac{5\pi}{4}} - 4 =$$

$$= 2e^{i\frac{5\pi}{4}} \times 2e^{i\frac{5\pi}{4}} - 4 = 2e^{i\left(\frac{5\pi}{4} + \frac{5\pi}{4}\right)} - 4 =$$

$$= 4e^{i\frac{5\pi}{2}} - 4 = 4e^{i\frac{\pi}{2}} - 4 = -4 + 4i$$

Escrevendo o número $\,-4+4\mathrm{i}\,\,$ na forma trigonométrica, tem-se

$$\begin{split} &\left|-4+4\mathrm{i}\right|=\sqrt{\left(-4\right)^2+4^2}=\sqrt{16+16}=\sqrt{32}=4\sqrt{2}\;.\quad \text{Seja}\quad \theta\quad \text{o}\\ &\text{argumento do número complexo}\quad -4+4\mathrm{i}\;,\; \text{assim}\quad \mathrm{tg}\theta=\frac{4}{-4}=-1\;.\\ &\text{Como}\quad \theta\in 2.^\circ Q\quad \text{então}\quad \theta\quad \text{pode ser}\quad -\frac{\pi}{4}+\pi=\frac{3}{4}\pi\;,\;\; \text{pelo que}\\ &-4+4\mathrm{i}=4\sqrt{2}\,\mathrm{e}^{\mathrm{i}\,\frac{3\pi}{4}}\;. \end{split}$$

2. Consideremos os acontecimentos M: «O aluno realizou o exame nacional de Matemática» e F: «O aluno realizou o exame nacional de Física». Queremos determinar $P\left(\overline{M}\middle|F\right)$. Vamos construir uma tabela para responder a esta questão. Do enunciado tem-se $P\left(M\right) = \frac{3}{5} = 0.6$, $P\left(F\middle|M\right) = 0.35$ e $P\left(\overline{F}\middle|\overline{M}\right) = 0.9$. Assim:

	М	M	p.m.	
F	0,21	0,04	0,25	
F	0,39	0,36	0,75	
p.m.	0,6	0,4	1	

Logo
$$P(\overline{M}|F) = \frac{P(\overline{M} \cap F)}{P(F)} = \frac{0.04}{0.25} = 0.16 = 16\%$$

Justificações:

i)
$$P(F|M) = 0.35 \Leftrightarrow \frac{P(F \cap M)}{P(M)} = 0.35 \Leftrightarrow$$

$$\Leftrightarrow$$
 P(F \cap M)=0,35 \times 0,6=0,21

ii)
$$P(\overline{F}|\overline{M}) = 0.9 \Leftrightarrow \frac{P(\overline{F} \cap \overline{M})}{P(\overline{M})} = 0.9 \Leftrightarrow \Leftrightarrow P(\overline{F} \cap \overline{M}) = 0.9 \times 0.4 = 0.36$$

iii)
$$P(\overline{F} \cap M) = 0,6-0,21=0,39$$

iv)
$$P(\overline{M} \cap F) = 0.4 - 0.36 = 0.04$$

3. O número de casos possíveis é dado por ¹²C₃ (das 12 bolas que estão na caixa escolhemos três). Para que a soma dos números das três bolas extraídas seja 7, temos de considerar três casos: Extrair uma bola com o número 3 e duas bolas com o número 2, o número de maneiras de o fazer é ${}^4C_1 \times {}^3C_2 = 4 \times {}^3C_2$ (das quatro bolas numeradas com o número 3 escolhemos uma e das três bolas numeradas com o número 2 escolhemos duas); Retirar uma bola com o número 1 e duas bolas com o número 3, o número de maneiras de o fazer é ${}^3C_1 \times {}^4C_2 = 3 \times {}^4C_2$ (das três bolas numeradas com o número 1 escolhemos uma e das quatro bolas numeradas com o número 3 escolhemos duas); Extrair uma bola com o número 1, uma com o número 2 e uma com o número 4, o número de maneiras de o fazer é ${}^{3}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} = 3 \times 3 \times 2$ (das três bolas numeradas com o número 1 escolhemos uma, das três bolas numeradas com o número 2 escolhemos uma e das duas bolas numeradas com o número 4 escolhemos uma). Logo o número de casos favoráveis é $4 \times {}^{3}C_{2} + 3 \times {}^{4}C_{2} + 3 \times 3 \times 2$. Pela Regra de Laplace a probabilidade de um acontecimento é o quociente entre o número de casos favoráveis e o número de casos possíveis, quando estes são equiprováveis. Assim a probabilidade pedida é dada por $\frac{4 \times {}^3C_2 + 3 \times {}^4C_2 + 3 \times 3 \times 2}{{}^{12}C}$

4.
$$1-P(\overline{A}|\overline{B})=1-\frac{P(\overline{A} \cap \overline{B})}{P(\overline{B})} = \frac{P(\overline{B})-P(\overline{A \cup B})}{P(\overline{B})} =$$

$$=\frac{\cancel{1}-P(B)-\cancel{1}+P(A \cup B)}{P(\overline{B})} =$$

$$=\frac{-P(B)+P(A)+P(B)-P(A \cap B)}{P(\overline{B})} =$$

$$=\frac{P(A)-P(A \cap B)}{P(\overline{B})} = \frac{P(A \cap \overline{B})}{P(\overline{B})} = P(A|\overline{B})$$
Q.E.D.

Justificações:

i) Por De Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

ii)

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

5. O domínio da função g é IR. A função g é contínua para x < 1 e para x > 1. Logo o gráfico de função g só pode ter assimptota vertical em x = 1, pois é o único ponto onde a função g pode ser descontínua. Assim:

i)
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} \left(2x + \frac{\ln(x-1)}{x}\right) = 2 + \frac{\ln(0^+)}{1} = 2 + \frac{-\infty}{1} = -\infty$$

Logo a recta de equação x=1 é assimptota vertical do gráfico de g. Como a função g é contínua em IR\ $\{1\}$ então o gráfico de g não tem mais assimptotas verticais.

ii) Quando $x \rightarrow +\infty$ tem-se

$$m = \lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \left(\frac{2x}{x} + \frac{\ln(x-1)}{x^2} \right) = 2 + \lim_{x \to +\infty} \frac{\ln(x-1)}{x^2} =$$

$$= 2 + \lim_{x \to +\infty} \left(\frac{\ln(x-1)}{x} \times \frac{1}{x} \right) = 2 + \lim_{x \to +\infty} \frac{\ln x}{x} \times \lim_{x \to +\infty} \frac{1}{x} =$$

$$= 2 - 0 \times \frac{1}{+\infty} = 2 - 0 \times 0 = 2$$

$$b = \lim_{x \to +\infty} \left(g(x) - mx \right) = \lim_{x \to +\infty} \left(2x + \frac{\ln(x-1)}{x} - 2x \right) =$$

$$= \lim_{x \to +\infty} \frac{\ln\left(x \left(1 - \frac{1}{x}\right)\right)}{x} = \lim_{x \to +\infty} \frac{\ln x}{x} + \lim_{x \to +\infty} \frac{\ln\left(1 - \frac{1}{x}\right)}{x} = 0 + \frac{\ln 1}{+\infty} = 0$$

Logo a recta de equação y=2x é assimptota oblíqua do gráfico de g quando $x \rightarrow +\infty$.

iii) Quando $x \rightarrow -\infty$ tem-se:

$$m = \lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \frac{\cos x}{x^2 + x} = \lim_{x \to -\infty} \left(\frac{1}{x^2 + x} \times \cos x \atop \text{Infinitesimo} \right) = 0$$

$$b = \lim_{x \to -\infty} \left(g(x) - mx \right) = \lim_{x \to -\infty} \frac{\cos x}{x+1} = \lim_{x \to -\infty} \left(\frac{1}{x+1} \times \cos x \right) = 0$$
Infinitesimo

Logo a recta de equação y=0 é assimptota horizontal do gráfico de g quando $x \rightarrow -\infty$.

Recursos para Matemática | MathSuccess Fátima

Nota: Se f e g forem duas funções reais de variável real tais que $\lim_{x\to a}f(x)=0$ (f é um infinitésimo em a) e g é uma função limitada então $\lim_{x\to a}f(x)\times g(x)=0$.

6. Utilizando o editor de funções da calculadora vamos definir as funções $y_1 = f'(x) = \operatorname{sen} x + \cos x$ e $y_2 = x^2$ na janela $\lceil 0, \pi \rceil \times \lceil -1, 2 \rceil$. Obtemos:

Logo
$$A_{[AOB]} = \frac{\overline{OB} \times h}{2} = \frac{2,36 \times 1,32}{2} \approx 1,56$$
.

Nota: A função f', função derivada de f, tem um único zero em $x=a\approx 2,36$ e nesse ponto muda de sinal, de positiva para negativa, logo a função f tem um máximo relativo em $x=a\approx 2,36$, ou seja, $a\approx 2,36$ é o único maximizante da função f. Portanto $a\approx 2,36$ é a abcissa do ponto B.

7.

7.1 Vamos começar por determinar a expressão analítica de g'' e os seus zeros.

i)
$$g'(x) = (x + 2x^2e^{4-x})' = 1 + 4xe^{4-x} - 2x^2e^{4-x} =$$

$$= 1 + e^{4-x} \times (4x - 2x^2)$$

$$g''(x) = (1 + e^{4-x} \times (4x - 2x^2))' =$$

$$= -e^{4-x} \times (4x - 2x^2) + e^{4-x} \times (4 - 4x) =$$

$$= e^{4-x} \times (2x^2 - 8x + 4)$$

ii)
$$g'(x) = 0 \Leftrightarrow e^{4-x} \times (2x^2 - 8x + 4) = 0 \Leftrightarrow$$

$$\Leftrightarrow \underbrace{e^{4-x} = 0}_{\text{Eq. impossivel}} \quad \forall \quad 2x^2 - 8x + 4 = 0 \Leftrightarrow$$

$$\Leftrightarrow x = \frac{8 \pm \sqrt{\left(-8\right)^2 - 4 \times 2 \times 4}}{2 \times 2} \Leftrightarrow x = \frac{8 \pm \sqrt{32}}{4} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{8 \pm 4\sqrt{2}}{4} \Leftrightarrow x = 2 - \sqrt{2} \quad \lor \quad x = 2 + \sqrt{2}$$

Fazendo um quadro de sinal vem:

х	-∞	2-√2		2+√2	+∞
e ^{4-x}	+	+	+	+	+
$2x^2 - 8x + 4$	+	0	_	0	+
g"(x)	+	0	-	0	+
g(x)	U	P.I.		P1	U

Concluímos então que o gráfico de g tem concavidade voltada para baixo em $\left[2-\sqrt{2},2+\sqrt{2}\right]$ e tem concavidade voltada para cima em $\left]-\infty,2-\sqrt{2}\right]$ e em $\left[2+\sqrt{2},+\infty\right[$. O gráfico de g tem P.I. para $x=2-\sqrt{2}$ e para $x=2+\sqrt{2}$.

7.2

i) A função g é contínua em IR pois é soma de duas funções continuas em IR (y=x é continua em IR porque é função polinomial e $y=2x^2e^{4-x}$ é produto entre a função $y=2x^2$, polinomial, continua em IR e a função $y=e^{4-x}$ composta entre a função $y=e^x$, exponencial, continua em IR, e a função y=4-x, polinomial, contínua em IR) Logo g é contínua em $\left[\frac{1}{4},1\right]$ \subset IR .

ii)
$$g\left(\frac{1}{4}\right) = \frac{1}{4} + 2 \times \left(\frac{1}{4}\right)^2 \times e^{4 - \frac{1}{4}} = \frac{1}{4} + \frac{1}{8} \times e^{\frac{15}{4}} \approx 5,57$$

iii)
$$g(1) = 1 + 2 \times 1^2 \times e^{4-1} = 1 + 2e^3 \approx 41,17$$

Como g é contínua em $\left[\frac{1}{4},1\right]$ e como $g\left(\frac{1}{4}\right)<10< g(1)$ então pelo Teorema de Bolzano $\exists\,x_{_0}\in\left]\frac{1}{4},1\right[:g(x_{_0})=10$.

8.

8.1 Como a = 5,5, b = 1,5 e M = 9,1 então vem:

$$logE = 5.5 + 1.5 \times 9.1 \Leftrightarrow logE = 19.15 \Leftrightarrow E = 10^{19,15} \approx 1.41 \times 10^{19}$$

Logo, a energia libertada por um sismo de magnitude 9,1 na escala de Richter é, aproximadamente, 1,41×10¹⁹ Joules .

8.2 Se E₈ for a energia libertada por um sismo de magnitude 8 e $\mathsf{E}_{\scriptscriptstyle{5}}\,$ a energia libertada por um sismo de magnitude 5 então:

$$E_8 = 21000 \times E_5 \Longleftrightarrow E_5 = \frac{E_8}{21000} \Longleftrightarrow E_5 = \frac{5.8 \times 10^{16}}{21000}$$

$$E_{a} = 21000 \times E_{a} \Leftrightarrow E_{1} = \frac{E_{1}}{21000} \Leftrightarrow E_{1} = \frac{5.8 \times 10^{4}}{21000}$$
Assim:
$$\begin{vmatrix} log(5.8 \times 10^{8}) - a + 8b \\ log(\frac{5.8 \times 10^{8}}{21000}) - a + 6b \end{vmatrix} = 16.7634 - a + 8b \Leftrightarrow 12.4412 - 16.7634 - 8b + 9b \Rightarrow 12.4412 - 16.7634 - 8b + 9b \Rightarrow 12.4412 - 16.7634 - 8b + 407 \Leftrightarrow \frac{a - 16.7634 - 8b + 407}{3b - 4.3222} \Leftrightarrow \begin{vmatrix} a - 16.7634 - 8 \times 1.4407 \\ b - \frac{4.3222}{3} = 1.4407 \end{vmatrix} \Leftrightarrow \begin{cases} a = 5.24 \\ b = \frac{4.3222}{3} = 1.4407 \end{vmatrix} \Leftrightarrow \frac{a = 5.24}{b - 4.3222} \Leftrightarrow \frac{a - 6.7634 - 8 \times 1.4407}{b - 1.4407} \Leftrightarrow \frac{a = 5.24}{b - 1.4407} \Leftrightarrow \frac{$$