

NH₃ Ammonia

R-NH, 1° AMINE

R₂. NH 2° Amine

R₂N 3° Amine

Pyramidal geometry

PHYSICAL PROPERTIES

PHYSICAL STATE

Lower aliphatic amines are gases, intermediate members are liquid (fishy odour), while higher members are sold.

SOLUBILITY

Lower aliphatic amines are soluble in wate due to H-bonding. While higher amines (> $C_{\rm c}$) are insoluble in water.

So lub ility $\infty \frac{1}{\text{Molecular weight}}$

BOILING POINT

Primary and Secondary amines forms intermolecular H-Bonding While tertiary does not.

Primary > Secondary > Tertiary

AMINES

Colourless. Soluble in water, decompose in

PHYSICAL PROPERTIES

Colourless, soluble in water, decompose in dry State

C,H,N,Cl- is readily soluble in water

PREPERATION

CHEMICAL PROPERTIES

PREPARATION

· Reduction of Nitro Compounds.

$$RNO_2 \xrightarrow{SN/HCl \text{ or fe/HCl}} RNH_2$$

· Ammonolysis

$$R-X \xrightarrow{NH_3} R-NH_3X^- \xrightarrow{NAOH} R-NH_2+H_2O+NA^+X^-$$

Reduction of Nitriles

$$R-C \equiv N \xrightarrow{H_2/Ni} R-CH_2-NH_2$$

· Reduction of Amides

$$R - C - NH_2 \xrightarrow{\text{(i) LiAlH}_4} R - CH_2 - NH_2$$

· Hoffmann Bromamide Degradation reaction

$$\begin{array}{l} | \\ R-C-NH_2+Br_2+4NaOH \longrightarrow R-NH_2+Na_2CO_3+2NaBr+2H_2O \\ \\ \text{one carbon less amine is formed as compared to amides} \end{array}$$

· Gabriel Phthalimide Synthesis

Aromatic primary amines cannot be prepared by this method.

IN GASESOUS PHASE

3° Amine > 2° Amine > 1° Amine > NH

IN AQUEOUS PHASE

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$ $(C2H5)2 > (C_2H_5)_3N > (C_2H_5)NH_2 > NH_3$

OVERALL BASICITY ORDER

AliPhatic Amine > Amines > Aromatic Amines

BASIC NATURE

Due to the presence of lone pair on nitrogen amines are basic.
Factors affecting basicity

(i) Inductive effect
(ii) Solvation effect
(iii) Steric hinderance

PPt. Soluble in

alkali

CHEMICAL REACTION

alkali

NH₂ II) CH₃COCL (ii) Br₂. CH₃COOH NH₂ (i) CH₃COCL (ii) Br₂. CH₃COOH NO₂ NH₂ (i) CH₃COCL (ii) Br₂. CH₃COOH NO₂ NH₂ Or CH₃COCL NO₃ Or CH₃COCL (due to Salt formation)

ELECTROPHIC SUBSTITUTION