## CS21004 - Tutorial 8

## Solution Sketch

- 1. Show that following language is not context-free using pumping lemma
  - (a)  $L_1 = \{a^{n!} : n \ge 0\}$

Hints: Given the opponent's choice for m (Pumping lemma constant), we pick  $a^{m!}(=uvxyz)$ . Obviously, whatever the decomposition is, it must be of the form  $v=a^k$ ,  $y=a^l$ . Then  $w_0=uxz$  (pump down) has length m!-(k+l). This string is in L only if m!-(k+l)=j! for some j. But this is impossible, since with  $k+l \leq m$ , m!-(k+l)>(m-1)!. Therefore, the language is not context-free.

(b)  $L_2 = \{wtw^R | w, t \in \{0, 1\}^*\}$  and  $|w| = |t|\}$ 

**Answer:** Suppose on the contrary that A is context-free. Then, let p be the pumping length for A, such that any string in A of length at least p will satisfy the pumping lemma. Now, we select a string s in A with  $s = 0^{2p}0^p1^p0^{2p}$ . For s to satisfy the pumping lemma, there is a way that s can be written as uvxyz, with  $|vxy| \le p$  and  $|vy| \ge 1$ , and for any i,  $uv^ixy^iz$  is a string in A.

There are only three cases to write s with the above conditions:

- Case 1: vy contains only 0s and these 0s are chosen from the last  $0^{2p}$  of s. Let i be a number with  $7p > |vy| \times (i+1) \ge 6p$ . Then, either the length of  $uv^i x y^i z$  is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w' is all 0s and w is not all 0s (this is,  $w' \ne w^R$ ).
- Case 2: vy does not contain any 0s in the last  $0^2p$  of s. Then, either the length of  $uv^2xy^2z$  is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w is all 0s and w' is not all 0s (that is,  $w' \neq w^R$ ).
- Case 3: vy is not all 0s, and some 0s are from the last  $0^2p$  of s. As  $|vxy| \le p$ , vxy in this case must be a substring in  $1^p0^p$ . Then, either the length of  $uv^2xy^2z$  is not a multiple of 3, or this string is of the form wtw' such that |w| = |t| = |w'| with w is all 0s and w' is not all 0s (that is,  $w' \ne w^R$ ).

In summary, we observe that there is no way s can satisfy the pumping lemma. Thus, a contradiction occurs (where?), and we conclude that A is not a context-free language.

- 2. Design NPDA for the following languages
  - (a)  $L_3 = \{a^i(bc)^j | i, j \ge 0, i \ge j\}$  Give a PDA with 2 states (To Submit)



(b)  $L_4 = \{a^n b^m | n \neq m\}$ 

Hints:  $Q = \{q_0, q_1, q_2\}$ ,  $\Sigma = \{a, b\}$ ,  $\Gamma = \{a, z\}$ ,  $F = \{q_2\}$  The transition function can be visualized as having several parts: a set to push a on the stack -

$$\delta(q_0, a, z) = \{(q_0, az)\}, \, \delta(q_0, a, a) = \{(q_0, aa)\}$$

a set to pop a on reading b, where the NPDA switches from state  $q_0$  to  $q_1$  -

$$\delta(q_0, b, a) = \{(q_1, \epsilon)\}, \ \delta(q_1, b, a) = \{(q_1, \epsilon)\}$$

a set to ensure  $m \neq n$ , where NPDA switches from state  $q_1$  to  $q_2$ 

$$\delta(q_1, b, z) = \{(q_2, z)\}, \ \delta(q_1, \epsilon, a) = \{(q_2, \epsilon)\}$$

and finally  $\delta(q_2, \epsilon, z) = \{(q_2, \epsilon)\}$ 

3. Construct a NPDA that accepts the language generated by a grammar with productions:  $S \to aSbb|a$ 

*Hints:* The language generated by the grammar is  $\{a^nb^{2n-2}: n \geq 1\}$ . The corresponding automaton will have

$$Q = \{q_0, q_1, q_2\}$$
,  $\Sigma = \{a, b\}$ ,  $\Gamma = \{S, A, B, z\}$ ,  $F = \{q_2\}$ 

The transitions are:

 $\delta(q_0, \epsilon, z) = \{(q_1, Sz)\}$  [First, the start symbol S is put on the stack by],

$$\begin{array}{lll} \delta(q_1,a,S) &=& \{(q_1,SA),(q_1,\epsilon)\}, \ \delta(q_1,b,A) &=& \{(q_1,B)\}, \ \delta(q_1,b,B) &=& \{(q_1,\epsilon)\}, \\ \delta(q_1,\epsilon,z) &=& \{(q_2,\epsilon)\} \end{array}$$