Lens Design OPTI 517

Seidel aberration coefficients

Fourth-order terms

$$W(\vec{H}, \vec{\rho}) = W_{040}(\vec{\rho} \cdot \vec{\rho})^{2} + W_{131}(\vec{H} \cdot \vec{\rho})(\vec{\rho} \cdot \vec{\rho}) + W_{222}(\vec{H} \cdot \vec{\rho})^{2} + W_{220}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho}) + W_{311}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho}) + W_{400}(\vec{H} \cdot \vec{H})^{2}$$

Spherical aberration

Coma

Astigmatism (cylindrical aberration!)

Field curvature

Distortion

Piston

Coordinate system

Spherical aberration

We have a spherical surface of radius of curvature r, a ray intersecting the surface at point P, intersecting the reference sphere at B', intersecting the wavefront in object space at B and in image space at A', and passing in image space by the point Q" in the optical axis. The reference sphere in object space is centered at Q and in image space is centered at Q'

Question: how do we draw the first order marginal ray in image space?

$$[PQ]^{2} = (s-Z)^{2} + h^{2} = s^{2} - 2sZ + Z^{2} + h^{2}$$

$$= s^{2} \left\{ 1 + \frac{h^{2} - 2s\left[\frac{h^{2}}{2r} + \frac{h^{4}}{8r^{3}}\right] + \left[\frac{h^{4}}{4r^{2}}\right]}{s^{2}} \right\}$$

$$= s^{2} \left\{ 1 + \frac{h^{2}}{s^{2}} \left[1 - \frac{s}{r} \right] + \frac{h^{4}}{4r^{2}s^{2}} \left[1 - \frac{s}{r} \right] \right\}$$

[PB] = [OQ] - [PQ] $= -\frac{h^2}{2} \left[\frac{1}{s} - \frac{1}{r} \right] - \frac{h^4}{8r^2} \left[\frac{1}{s} - \frac{1}{r} \right] + \frac{h^4}{8s} \left[\frac{1}{s} - \frac{1}{r} \right]^2$

$$h = y \left(1 + \frac{u}{2r} y \right)$$

Spherical aberration

$$[PB] = [OQ] - [PQ]$$

$$= -\frac{y^2}{2} \left(1 + \frac{u}{2r} y \right)^2 \left[\frac{1}{s} - \frac{1}{r} \right] - \frac{y^4}{8r^2} \left[\frac{1}{s} - \frac{1}{r} \right]$$

$$+ \frac{y^4}{8s} \left[\frac{1}{s} - \frac{1}{r} \right]^2$$

$$[PB'] = [OQ'] - [PQ']$$

$$= -\frac{y^2}{2} \left(1 + \frac{u}{2r} y \right)^2 \left[\frac{1}{s'} - \frac{1}{r} \right] - \frac{y^4}{8r^2} \left[\frac{1}{s'} - \frac{1}{r} \right]$$

$$+ \frac{y^4}{8s'} \left[\frac{1}{s'} - \frac{1}{r} \right]^2$$

$$W = n [PB'] - n[PB] =$$

$$= -\frac{y^2}{2} \left(1 + \frac{u}{r} y \right) \left\{ n \left[\frac{1}{s} - \frac{1}{r} \right] - n \left[\frac{1}{s} - \frac{1}{r} \right] \right\}$$

$$-\frac{y^4}{8r^2} \left\{ n \left[\frac{1}{s} - \frac{1}{r} \right] - n \left[\frac{1}{s} - \frac{1}{r} \right] \right\}$$

$$+ \frac{y^4}{8} \left\{ \frac{n}{s} \left[\frac{1}{s} - \frac{1}{r} \right]^2 - \frac{n}{s} \left[\frac{1}{s} - \frac{1}{r} \right]^2 \right\}$$

Spherical aberration

$$u = -y/s$$

$$u' = -y/s$$

$$\Delta\{A\} = 0$$

$$A = ni = -n(y/s - y/r)$$

$$W_{040} = -\frac{1}{8}A^2 y\Delta \left\{\frac{u}{n}\right\}$$

Petzval field curvature W_{220P}

We locate the aperture stop at the center of curvature of the spherical surface. With being the object height, then the inverse of the distance along the chief ray from the off-axis object point to the surface is:

Petzval field curvature

$$\frac{1}{-S} = \frac{1}{-r + \sqrt{(r-s)^2 + \overline{y}_0^2}} = \frac{1}{-r + (r-s)\sqrt{1 + \frac{\overline{y}_0^2}{(r-s)^2}}}$$

$$\approx \frac{1}{-r + (r-s)\left(1 + \frac{1}{2}\frac{\overline{y}_0^2}{(r-s)^2}\right)} = \frac{1}{-s\left(1 - \frac{1}{2}\frac{\overline{y}_0^2}{(r-s)s}\right)}$$

$$= -\frac{1}{s}\left(1 + \frac{1}{2}\frac{\overline{y}_0^2}{(r-s)s}\right) = -\frac{1}{s}\left(1 + \frac{1}{2}\frac{\overline{y}_0^2}{\left(\frac{1}{s} - \frac{1}{r}\right)rs^2}\right) = \frac{1}{s}\left(1 + \frac{u}{2}\frac{\overline{y}_0^2}{irs}\right) = -\frac{1}{s}\left(1 + \frac{u}{2}\frac{\overline{y}_0^2}{irs}\right) = -\frac{u}{s}\left(1 +$$

$$\frac{1}{-S'} \cong -\frac{1}{s'} - \frac{u'}{v^2} \frac{1}{2} \frac{\mathcal{K}^2}{n'^2 r i'}$$

Petzval field curvature

By inserting the 1/s in the quadratic term of W

$$W = n [PB'] - n[PB] =$$

$$= -\frac{y^2}{2} \left(1 + \frac{u}{r} y \right) \left\{ n \left[\frac{1}{s} - \frac{1}{r} \right] - n \left[\frac{1}{s} - \frac{1}{r} \right] \right\}$$

$$-\frac{y^4}{8r^2} \left\{ n \left[\frac{1}{s} - \frac{1}{r} \right] - n \left[\frac{1}{s} - \frac{1}{r} \right] \right\}$$

$$+ \frac{y^4}{8} \left\{ \frac{n}{s} \left[\frac{1}{s} - \frac{1}{r} \right]^2 - \frac{n}{s} \left[\frac{1}{s} - \frac{1}{r} \right]^2 \right\}$$

$$W = -\frac{y^2}{2} \left\{ n \left[\frac{1}{S} - \frac{1}{r} \right] - n \left[\frac{1}{S} - \frac{1}{r} \right] \right\} =$$

$$= \left\{ n u \left(-\frac{1}{4} \frac{\mathcal{K}^2}{n^2 r i} \right) - n u \left(-\frac{1}{4} \frac{\mathcal{K}^2}{n^2 r i} \right) \right\} =$$

$$= \left\{ -\frac{1}{4} \frac{\mathcal{K}^2}{A r} (u - u) \right\} =$$

$$= \left\{ -\frac{1}{4} \frac{\mathcal{K}^2}{r} \Delta \left\{ \frac{1}{n} \right\} \right\}$$

$$= W_{220P} + O^{(6)}$$

$$\Delta \{A\} = 0$$

$$W_{220P} = -\frac{1}{4} \frac{\mathcal{K}^2}{r} \Delta \left(\frac{1}{n}\right)$$

Aberration function at CC

$$W(\vec{H}, \vec{\rho}) = W_{040}(\vec{\rho} \cdot \vec{\rho})^2 + W_{220P}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho})$$

Stop shifting

New stop

Old stop at CC

New chief ray height at old pupil

$$\overline{y}_E$$

Marginal ray height at old pupil

$$y_E$$

Prof. Jose Sasian OPTI 517

$$y_E \vec{\rho}_{shift} = y_E \vec{\rho} + \overline{y}_E \vec{H}$$

$$\vec{\rho}_{shift} = \vec{\rho} + \frac{\vec{y}_E}{y_E} \vec{H} = \vec{\rho} + \frac{\overline{A}}{A} \vec{H}$$

Expansion about chief ray height

$$y_E \vec{\rho}_{shift} = y_E \vec{\rho} + \overline{y}_E \vec{H}$$

$$\vec{\rho}_{shift} = \vec{\rho} + \frac{\vec{y}_E}{y_E} \vec{H} = \vec{\rho} + \frac{\overline{A}}{A} \vec{H}$$

Expansion about the new chief ray height

$$W(\vec{H}, \vec{\rho}) = W_{040}(\vec{\rho} \cdot \vec{\rho})^2 + W_{220P}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho})$$

$$\vec{\rho}_{shift} = \vec{\rho} + \frac{\overline{y}_E}{y_E} \vec{H} = \vec{\rho} + \frac{\overline{A}}{A} \vec{H}$$

Graphical view

Quadratic term

$$\vec{\rho}_{shift} \cdot \vec{\rho}_{shift} = \left(\vec{\rho} + \frac{\overline{A}}{A}\vec{H}\right) \cdot \left(\vec{\rho} + \frac{\overline{A}}{A}\vec{H}\right) =$$

$$= \vec{\rho} \cdot \vec{\rho} + 2\frac{\overline{A}}{A}\vec{H} \cdot \vec{\rho} + \left(\frac{\overline{A}}{A}\right)^2 \vec{H} \cdot \vec{H}$$

$$W_{220P}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho}) \rightarrow W_{220P}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho}) + 2\frac{\overline{A}}{A}W_{220P}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho}) + (\frac{\overline{A}}{A})^{2}W_{220P}(\vec{H} \cdot \vec{H})^{2}$$

Quartic term

$$(\vec{\rho}_{shift} \cdot \vec{\rho}_{shift})^{2} = \left[\vec{\rho} \cdot \vec{\rho} + 2\frac{\overline{A}}{A} \vec{H} \cdot \vec{\rho} + \left(\frac{\overline{A}}{A} \right)^{2} \vec{H} \cdot \vec{H} \right] \times$$

$$\left[\vec{\rho} \cdot \vec{\rho} + 2\frac{\overline{A}}{A} \vec{H} \cdot \vec{\rho} + \left(\frac{\overline{A}}{A} \right)^{2} \vec{H} \cdot \vec{H} \right] =$$

$$= (\vec{\rho} \cdot \vec{\rho})^{2} + 4\frac{\overline{A}}{A} (\vec{H} \cdot \vec{\rho}) (\vec{\rho} \cdot \vec{\rho}) + 4\frac{\overline{A}}{A} (\vec{H} \cdot \vec{\rho})^{2}$$

$$+ 2\frac{\overline{A}}{A} (\vec{H} \cdot \vec{H}) (\vec{\rho} \cdot \vec{\rho}) + 4\left(\frac{\overline{A}}{A} \right)^{3} (\vec{H} \cdot \vec{H}) (\vec{H} \cdot \vec{\rho}) + \left(\frac{\overline{A}}{A} \right)^{4} (\vec{H} \cdot \vec{H})^{2}$$

All terms

$$W(\vec{H}, \vec{\rho}) = W_{040}(\vec{\rho} \cdot \vec{\rho})^{2} + W_{131}(\vec{H} \cdot \vec{\rho})(\vec{\rho} \cdot \vec{\rho}) + W_{222}(\vec{H} \cdot \vec{\rho})^{2} + W_{220}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho}) + W_{311}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho}) + W_{400}(\vec{H} \cdot \vec{H})^{2}$$

$$W_{040} = W_{040}$$

Spherical aberration

$$W_{131} = 4\frac{\overline{A}}{A}W_{040}$$

Coma

$$W_{222} = 4\left(\frac{\overline{A}}{A}\right)^2 W_{040}$$

Astigmatism

$$W_{220} = 2\left(\frac{\overline{A}}{A}\right)^2 W_{040} + W_{220P}$$

$$W_{311} = 4\left(\frac{\overline{A}}{A}\right)^3 W_{040} + 2\frac{\overline{A}}{A} W_{220P}$$

Distortion

$$W_{400} = \left(\frac{\overline{A}}{A}\right)^4 W_{040} + \left(\frac{\overline{A}}{A}\right)^2 W_{220P}$$

Piston

For as system of two surfaces Exit pupil becomes entrance pupil for next surface.

Fourth-order contributions

For a given system ray we add the OPD contributed by each surface. The problem is that because of pupil aberrations we do not know the pupil coordinates of the ray at previous exit pupils. However, the error in knowing the ray pupil coordinate leads to six-order aberrations.

To fourth-order we do not have other fourth-order terms to account for.

We are assuming we do not have second-order aberrations. Otherwise these will generate Prof. Jose Sæther fourth-order terms.

OPTI 517

Order of Error

- We know the ray heights to first-order
- There is an error on the ray heights y and y-bar of third order
- If the third order error is accounted for it leads to sixth-order terms

$$y = y + \alpha y^{3}$$

$$y^{4} \rightarrow y^{4} + \beta y^{6}$$

$$W_{040}(y^{4}) \rightarrow W_{040}(y^{4}) + W_{040}(y^{6})$$

Conclusion

Assume no second order terms in the aberration functions of each surface

Then for a system of surfaces the fourthorder coefficients are the sum of the coefficients contributed by each surface

There are no fourth-order extrinsic terms from previous aberration in the system

Prof. Jose Sasian OPTI 517

Aberration Coefficients in terms of Seidel sums					
Coefficient	Seidel sum				
$W_{040} = \frac{1}{8} S_I$	$S_{I} = -\sum_{i=1}^{j} \left(A^{2} y \Delta \left(\frac{u}{n} \right) \right)_{i}$				
$W_{131} = \frac{1}{2}S_{II}$	$S_{II} = -\sum_{i=1}^{j} \left(A \overline{A} y \Delta \left(\frac{u}{n} \right) \right)_{i}$				
$W_{222} = \frac{1}{2} S_{III}$	$S_{III} = -\sum_{i=1}^{j} \left(\overline{A}^2 y \Delta \left(\frac{u}{n} \right) \right)_i$				
$W_{220} = \frac{1}{4} (S_{IV} + S_{III})$	$S_{IV} = -\mathcal{K}^2 \sum_{i=1}^{j} P_i$				
$W_{311} = \frac{1}{2}S_V$	$S_{V} = -\sum_{i=1}^{j} \left(\frac{\overline{A}}{A} \left[\mathcal{K}^{2} P + \overline{A}^{2} y \Delta \left(\frac{u}{n} \right) \right] \right)_{i}$				
$W_{311} = \frac{1}{2}S_V$	$S_{V} = -\sum_{i=1}^{j} \left(\overline{A} \left[\overline{A}^{2} \Delta \left(\frac{1}{n^{2}} \right) y - \left(\mathcal{K} + \overline{A} y \right) \overline{y} P \right] \right)_{i}$				
$\mathcal{S}_{\lambda}W_{020} = \frac{1}{2}C_{L}$	$C_{L} = \sum_{i=1}^{j} \left(Ay\Delta \left(\frac{\delta n}{n} \right) \right)_{i}$				
$\delta_{\lambda}W_{111} = C_T$	$C_T = \sum_{i=1}^{j} \left(\overline{A} y \Delta \left(\frac{\delta n}{n} \right) \right)_i$				

Quantities derived from first-order ray data used in computing the aberration coefficients					
Refraction invariant marginal ray	Refraction invariant chief ray	Lagrange invariant	Surface curvature	Petzval sum term	
A = ni = nu + nyc	$\overline{A} = n\overline{i} = n\overline{u} + n\overline{y}c$	$\mathcal{K} = n\overline{u}y - nu\overline{y}$ $= \overline{A}y - A\overline{y}$	$c = \frac{1}{r}$	$P = c \cdot \Delta \left(\frac{1}{n}\right)$	

Example: Cooke triplet lens

First-order ray trace for Cooke triplet							
	Marginal ray y, u, ni			Chief ray y, u, ni			
1.0000	6.2500	-0.1077	0.2636	-4.2509	0.2885	0.1847	
2.0000	5.7297	-0.1816	-0.1808	-2.8572	0.4876	0.4872	
3.0000	4.6656	-0.0318	-0.3724	-0.0000	0.2915	0.4876	
4.0000	4.6345	0.0891	0.3008	0.2842	0.4963	0.5093	
5.0000	5.0643	0.0289	0.1475	2.6774	0.2809	0.5272	
6.0000	5.1546	-0.1250	-0.3765	3.5557	0.3551	0.1816	
Exit pupil	6.4063	-0.1250	-0.1250	-0.0000	0.3551	0.3551	
Image	0.0000	-0.1250	-0.1250	18.1985	0.3551	0.3551	

Wave coefficients

In waves at 0.000587 mm

	W040	W131	W222	W220	W311	W020	W111
1.0000	5.8831	16.4912	11.5569	37.9424	61.2785	-10.4705	-14.6753
2.0000	4.6978	-50.6336	136.4338	-0.1227	-366.9639	-6.5847	35.4854
3.0000	-22.3709	117.1708	-153.4247	-36.2070	295.7159	18.4586	-48.3398
4.0000	-9.6490	-65.3484	-110.6438	-40.4402	-324.2767	14.8117	50.1564
5.0000	1.6894	24.1504	86.3110	10.3704	382.5921	-4.7481	-33.9387
6.0000	22.0849	-42.6064	20.5492	43.9016	-52.2587	-12.3359	11.8993
Totals	2.3352	-0.7760	-9.2175	15.4444	-3.9128	-0.8690	0.5872

Prescription F/4, f=50 mm; FOV +/- 20 degrees Stop at surface 3

SURFACE DATA SUMMARY:

Surf Type	Radius Th	ickness	Glass	Diameter	Conic	Comment
OBJ STANDARI	D Infinity	Infinity		0	0	
1 STANDARD	23.713	4.831	LAK9	20.26679	0	
2 STANDARD	7331.288	5.86		18.17704	0	
3 STANDARD	-24.456	0.975	SF5	9.598584	0	
4 STANDARD	21.896	4.822		9.909458	0	
5 STANDARD	86.759	3.127	LAK9	16.07715	0	
6 STANDARD	-20.4942	-10.0135		16.69285	0	
STO STANDARI	D Infinity	51.25		12.90717	0	
IMA STANDARD	Infinity		36	.46158	0	

Summary

- Spherical aberration
- Stop shifting
- Off-axis aberrations
- Entrance/exit pupil concatenation
- Seidel sums
- Actual coefficients computation
- Information acquired

