Группа движений

Определение

Движение плоскости Лобачевского – композиция элементарных движений (из теоремы).

Замечание

Движения образуют группу.

Определение

Дробно-линейные преобразования плоскости Лобачевского:

- ullet $f(z)=rac{az+b}{cz+d}$, где $a,b,c,d\in\mathbb{R}$ и (ad-bc)>0;
- $f(z)=rac{a\overline{z}+b}{c\overline{z}+d}$, где $a,b,c,d\in\mathbb{R}$ и (ad-bc)<0.

Упражнение

Докажите, что движения \mathbb{H}^2 – в точности дробно-линейные преобразования.

Определение

Прямыми плоскости Лобачевского называются:

- вертикальные (евклидовы) лучи, начинающиеся на абсолюте;
- (евклидовы) полуокружности с центрами на абсолюте.

Определение

Прямыми плоскости Лобачевского называются:

- вертикальные (евклидовы) лучи, начинающиеся на абсолюте;
- (евклидовы) полуокружности с центрами на абсолюте.

Лемма

Вертикальный отрезок – это кратчайшая кусочно-гладкая кривая в плоскости Лобачевского, соединяющая точки (x_0, y_1) и (x_0, y_2) , причем единственная с точностью до замены параметра.

Расстояние между (x_0, y_1) и (x_0, y_2) равно $|\ln(y_2) - \ln(y_1)|$.

Определение

Прямыми плоскости Лобачевского называются:

- вертикальные (евклидовы) лучи, начинающиеся на абсолюте;
- (евклидовы) полуокружности с центрами на абсолюте.

Лемма

Вертикальный отрезок — это кратчайшая кусочно-гладкая кривая в плоскости Лобачевского, соединяющая точки (x_0, y_1) и (x_0, y_2) , причем единственная с точностью до замены параметра.

Расстояние между (x_0, y_1) и (x_0, y_2) равно $|\ln(y_2) - \ln(y_1)|$.

Док-во: Пусть кривая $\gamma\colon [a,b] o \mathbb{H}^2$, $\gamma(t)=(x(t),y(y))$ соединяет наши точки.

$$\ell(\gamma) = \int_a^b \frac{\sqrt{(x')^2 + (y')^2}}{y} dt \ge \int_a^b \frac{|y'|}{y} dt \ge \int_a^b \frac{y'}{y} dt = \log(y(b)) - \log(y(a)).$$

Заметим, что выражение справа не зависит от кривой, и для вертикального отрезка достигается равенство. Таким образом, доказали, что вертикальный отрезок — кратчайший. Единственность следует из того, что равенство достигается тогда и только тогда, когда x'=0 и $y'\geq 0$.

27 апреля 2022 г.

Теорема (о прямых)

Прямые плоскости Лобачевского изометричны $\mathbb R$ (как метрические пространства).

Док-во:

ullet Вертикальный луч $\{x=x_0,y>0\}$ изометричен $\mathbb R$:

$$f(t) = (x_0, e^t) \colon \mathbb{R} \to \mathbb{H}^2$$

• Любая полуокружность – образ вертикального луча при инверсии.

• Через любые две точки можно провести прямую, и только одну.

- Через любые две точки можно провести прямую, и только одну.
- Аксиома параллельных неверна.

- Через любые две точки можно провести прямую, и только одну.
- Аксиома параллельных неверна.
- Прямая разбивает плоскость на две полуплоскости.

- Через любые две точки можно провести прямую, и только одну.
- Аксиома параллельных неверна.
- Прямая разбивает плоскость на две полуплоскости.

Определение

Флагом называется тройка, состоящая из точки, луча (полупрямой) с началом в этой точке и полуплоскости, инцидентной этому лучу.

- Через любые две точки можно провести прямую, и только одну.
- Аксиома параллельных неверна.
- Прямая разбивает плоскость на две полуплоскости.

Определение

Флагом называется тройка, состоящая из точки, луча (полупрямой) с началом в этой точке и полуплоскости, инцидентной этому лучу.

Теорема (о флагах)

Для любых двух флагов существует движение, переводящее один в другой.

Доказательство теоремы о флагах 70

0

Модель Пуанкаре в круге

Определение

Модель Пуанкаре в единичном круге — образ модели плоскости Лобачевского в верхней полуплоскости при инверсии с центром (0,-1) и радиусом $\sqrt{2}$.

- Почему образ круг с центром в 0 и радиуса 1?
- Как устроены прямые в новой модели?

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Док-во: Пусть \mathbb{D}^2 – модель в круге с метрикой \widehat{g} .

• Инверсия $I: \mathbb{D}^2 \to \mathbb{H}^2$, в к.ч. $I(z) = z_0 + 2/\overline{(z-z_0)}$ – суперпозиция параллельного переноса, сопряжения и функции $f(z) = 2/(z-z_0)$ (мы смотрим на инверсию как на отображение из \mathbb{R}^2 в себя).

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Док-во: Пусть \mathbb{D}^2 – модель в круге с метрикой \widehat{g} .

- Инверсия $I: \mathbb{D}^2 \to \mathbb{H}^2$, в к.ч. $I(z) = z_0 + 2/\overline{(z-z_0)}$ суперпозиция параллельного переноса, сопряжения и функции $f(z) = 1/(z-z_0)$ (мы смотрим на инверсию как на отображение из \mathbb{R}^2 в себя).
- Пусть $v \in T_q \mathbb{D}^2$. Параллельный перенос и сопряжение сохраняют евклидову длину v. Следовательно

$$|d_q I(v)|_e = |d_q f(v)|_e = 2|v|_e/|z-z_0|^2,$$

поскольку $f'(z) = -2/(z-z_0)^2$ и $d_q f(v) = -2/(z-z_0)^2 \cdot v$.

27 апреля 2022 г.

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Док-во: Пусть \mathbb{D}^2 – модель в круге с метрикой \widehat{g} .

- Инверсия $I: \mathbb{D}^2 \to \mathbb{H}^2$, в к.ч. $I(z) = z_0 + 2/\overline{(z-z_0)}$ суперпозиция параллельного переноса, сопряжения и функции $f(z) = 1/(z-z_0)$ (мы смотрим на инверсию как на отображение из \mathbb{R}^2 в себя).
- Пусть $v \in T_q \mathbb{D}^2$. Параллельный перенос и сопряжение сохраняют евклидову длину v. Следовательно

$$|d_q I(v)|_e = |d_q f(v)|_e = 2|v|_e/|z-z_0|^2,$$

поскольку
$$f'(z) = -2/(z-z_0)^2$$
 и $d_q f(v) = -2/(z-z_0)^2 \cdot v$.

• Вторая координата точки I(x,y) равна $\frac{1-x^2-y^2}{x^2+(y+1)^2}=\frac{1-x^2-y^2}{|z-z_0|^2}.$

27 апреля 2022 г.

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Док-во: Пусть \mathbb{D}^2 – модель в круге с метрикой \widehat{g} .

- Инверсия $I: \mathbb{D}^2 \to \mathbb{H}^2$, в к.ч. $I(z) = z_0 + 2/\overline{(z-z_0)}$ суперпозиция параллельного переноса, сопряжения и функции $f(z) = 1/(z-z_0)$ (мы смотрим на инверсию как на отображение из \mathbb{R}^2 в себя).
- Пусть $v \in T_q \mathbb{D}^2$. Параллельный перенос и сопряжение сохраняют евклидову длину v. Следовательно

$$|d_q I(v)|_e = |d_q f(v)|_e = (2|v|_e/|z-z_0|^2,$$

поскольку
$$f'(z) = -2/(z-z_0)^2$$
 и $d_q f(v) = -2/(z-z_0)^2 \cdot v$.

- Вторая координата точки I(x,y) равна $\frac{1-x^2-y^2}{x^2+(y+1)^2} = \frac{1-x^2-y^2}{|z-z_0|^2}$.
- $|v|_{\widehat{g}} = |d_q I(v)|_h = |d_q f(v)|_e$ (вторая координата точки I(x,y)) = $\frac{2}{1-x^2-y^2}|v|_e$.

9=(x,y)

Теорема

Метрические коэффициенты в модели в круге имеют вид:

$$\widehat{g}_{ij}(x,y) = \frac{4}{(1-x^2-y^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Док-во: Пусть \mathbb{D}^2 – модель в круге с метрикой \widehat{g} .

- Инверсия $I: \mathbb{D}^2 \to \mathbb{H}^2$, в к.ч. $I(z) = z_0 + 2/\overline{(z-z_0)}$ суперпозиция параллельного переноса, сопряжения и функции $f(z) = 1/(z-z_0)$ (мы смотрим на инверсию как на отображение из \mathbb{R}^2 в себя).
- Пусть $v \in T_q \mathbb{D}^2$. Параллельный перенос и сопряжение сохраняют евклидову длину v. Следовательно

$$|d_q I(v)|_e = |d_q f(v)|_e = 2|v|_e/|z-z_0|^2$$

поскольку
$$f'(z) = -2/(z-z_0)^2$$
 и $d_q f(v) = -2/(z-z_0)^2 \cdot v$.

- ullet Вторая координата точки I(x,y) равна $\frac{1-x^2-y^2}{x^2+(y+1)^2}=\frac{1-x^2-y^2}{|z-z_0|^2}.$
- ullet $|v|_{\widehat{g}}=|d_qI(v)|_h=|d_qf(v)|_e/($ вторая координата точки $I(x,y))=rac{2}{1-x^2-y^2}|v|_e.$
- Пусть $\lambda = 2/1 x^2 y^2$. Тогда

$$\langle v_1, v_2 \rangle_{\widehat{g}} = \frac{|v_1 + v_2|_{\widehat{g}}^2 - |v_1 - v_2|_{\widehat{g}}^2}{4} = \lambda^2 \frac{|v_1 + v_2|_e^2 - |v_1 - v_2|_e^2}{4} = \lambda^2 \langle v_1, v_2 \rangle_e.$$

□ ► ← □ ► ← ₹ ► ← ₹ → ↑ Q (°)
Лекция 8

27 апреля 2022 г.

Шары плоскости Лобачевского

Теорема

В обеих моделях плоскости Лобачевского метрические шары – это евклидовы шары с другим центром.

DURAP B MOSERU DE C YENTON BO - EBRA WEAR E YENTO BD (NPSM-BDZ 2/20 - GRANEFAN) (P) MPYMEHUM K ATOMY WARPY WABERCUS D2-> H?Z. OH NEPEUSET B EBRA- WARP, T.K. WHERPCM3-Yng. Zakokyan Teopeny-

Пусть M – гладкое n-мерное многообразие, p – его точка, F(M) – множество всех функций $M \to \mathbb{R}$, $\mathfrak{F}(M)$ – множество всех гладких функций $M \to \mathbb{R}$, V(M) – множество всех векторных полей на M $\mathfrak{X}(M)$ – множество всех гладких векторных полей на M. $\mathcal{K}(M) = \mathcal{K}(M) = \mathcal{K}(M$

Пусть M – гладкое n-мерное многообразие, p – его точка,

- F(M) множество всех функций $M \to \mathbb{R}$,
- $\mathfrak{F}(M)$ множество всех гладких функций $M o \mathbb{R}$,
- V(M) множество всех векторных полей на M
- $\mathfrak{X}(M)$ множество всех гладких векторных полей на M.
 - тензор типа (k,0) в точке p полилинейное отображение

$$\widehat{S}(p)\colon T_pM^k\to\mathbb{R}.$$

• тензор типа (k,1) в точке p — полилинейное отображение

$$\widehat{S}(p)\colon T_pM^k\to T_pM.$$

• Тензорное поле типа (k,t) на M — семейство $\{\widehat{S}(p)\}_{p\in M}$, где $\widehat{S}(p)$ — тензор типа (k,t) в точке $p\in M$.

t=0 una I

Лекция 8

Пусть M – гладкое n-мерное многообразие, p – его точка,

- F(M) множество всех функций $M \to \mathbb{R}$,
- $\mathfrak{F}(M)$ множество всех гладких функций $M \to \mathbb{R}$,
- V(M) множество всех векторных полей на M
- $\mathfrak{X}(M)$ множество всех гладких векторных полей на M.
 - тензор типа (k,0) в точке p полилинейное отображение

$$\widehat{S}(p)$$
: $T_pM^k \to \mathbb{R}$.

• тензор типа (k,1) в точке p — полилинейное отображение

$$\widehat{S}(p)\colon T_pM^k\to T_pM.$$

- ullet Тензорное поле типа (k,t) на M семейство $\{\widehat{S}(p)\}_{p\in M}$, где $\widehat{S}(p)$ – тензор типа (k, t) в точке $p \in M$.
- Тензорное поле $\{\widehat{S}(p)\}_{p\in M}$ порождает отображение

$$\widehat{S}$$
: $V(M)^k o F(M)$ или \widehat{S} : $V(M)^k o V(M)$

следующим образом: $\forall Y_1, \ldots, Y_k \in V(M)$ и $\forall p \in M$

$$\widehat{S}(Y_1,\ldots,Y_k)(p):=\widehat{S}(p)(Y_1(p),\ldots,Y_k(p)).$$

Лекция 8

Соглашение

Далее будем рассматривать только тензоры типа (k,0). Случай тензоров типа (k, 1) идентичен.

- Тензорное поле типа (k,0) называется гладким, если $orall Y_1,\ldots,Y_k\in\mathfrak{X}(M)$ функция $\widetilde{S}(Y_1,\ldots,Y_k)\in\mathfrak{F}(M)$.
- ullet Т.о. гладкое тензорное поле $\{\widehat{S}(p)\}_{p\in M}$ задаёт отображение $S: \mathfrak{X}(M)^k \to \mathfrak{F}(M)$ – свое сужение на $\mathfrak{X}(M)^k$.

Пример

Риманова структура — гладкое тензорное поле типа (2,0).

D-76, 30 V fe F(M) V X E X (M)
ux noroyerHoe ymm. e fo X E X (M)

Лемма

Пусть $\{\widehat{S}(p)\}_{p\in M}$ – гладкое тензорное поле. Тогда $S:\mathfrak{X}(M)^k o \underline{\mathfrak{F}(M)}$ линейно по каждому аргументу над $\mathfrak{F}(M)$.

Док-во: Покажем, что $S(f_1Y_1,\ldots,f_kY_k)=f_1\cdots f_kS(Y_1,\ldots,Y_k).$ Достаточно проверить равенство поточечно $\forall p\in M.$

$$\underbrace{S(f_1Y_1,\ldots,f_kY_k)(p)}_{S(p)(Y_1(p)Y_1(p),\ldots,f_k(p)Y_k(p))} = \widehat{S}(p)(f_1(p)Y_1(p),\ldots,f_k(p)Y_k(p)) = f_1\cdots f_kS(Y_1,\ldots,Y_k)(p).$$

$$\underbrace{f_1(p)\cdots f_k(p)\widehat{S}(p)(Y_1(p),\ldots,Y_k(p))}_{f_1(p),\ldots,f_k} = \underbrace{f_1(p)\cdots f_kS(Y_1,\ldots,Y_k)(p)}_{f_1(p),\ldots,f_k}.$$

$$\underbrace{f_1(p)\cdots f_kS(p)\widehat{S}(p)(Y_1(p),\ldots,Y_k(p))}_{f_1(p),\ldots,f_k} = \underbrace{f_1(p)\cdots f_kS(Y_1,\ldots,Y_k)(p)}_{f_1(p),\ldots,f_k}.$$

$$\underbrace{f_1(p)\cdots f_kS(p)\widehat{S}(p)(Y_1(p),\ldots,Y_k(p))}_{f_1(p),\ldots,f_k} = \underbrace{f_1(p)\cdots f_kS(p)\widehat{S}(p)(Y_1(p),\ldots,Y_k(p))}_{f_1(p),\ldots,f_k}.$$

Лекция 8