线性代数 (Linear Algebra)

第一章 Linear Equations in Linear Algebra

§ 1.3 Vector Equations 向量方程组

衡益

2021 年 10 月 9 日,中山大学南校区

向量方程组

- ▶ ℝ²中的向量
- ▶ ℝ³中的向量
- ▶ ℝ"中的向量
- > 线性组合
- ➤ Span{v}与Span{u,v}的几何解释

向量

✓ 仅含一列的矩阵称为列向量,或简称**向量。**

 \mathbb{R}^2

✓ 所有两个元素的向量集记为ℝ²,例如:

$$\mathbf{u} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0.2 \\ 0.3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

(其中, w_1 和 w_2 是任意实数)

3

\mathbb{R}^2 中的向量

№2中的向量

✓ 符号表示:

v (粗体), v (使用箭头)

✓ ℝ²中两个向量相等,当且仅当对应元素相等

$$\begin{pmatrix} 4 \\ 7 \end{pmatrix} \neq \begin{pmatrix} 7 \\ 4 \end{pmatrix} \qquad \begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$

向量的一些性质

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad \mathbf{E} \mathbf{X} \quad \mathbf{v} + \mathbf{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix}$$

纯量乘法

$$2\mathbf{v} = \begin{pmatrix} 2v_1 \\ 2v_2 \end{pmatrix}$$
, $-\mathbf{v} = \begin{pmatrix} -v_1 \\ -v_2 \end{pmatrix}$ 标量与向量的乘法

线性组合 (Linear Combination)

$$c\mathbf{v} + d\mathbf{w} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + d \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

$$c\mathbf{v} + d\mathbf{w} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix} + d \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 $\mathbf{v} + \mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

c=1 和 d=1 的特例

\mathbb{R}^2 中的向量

例1: 设
$$\mathbf{u} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
和 $\mathbf{v} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$,求 $4\mathbf{u}$,(-3) \mathbf{v} 以及 $4\mathbf{u}$ +(-3) \mathbf{v}

解:

$$4\mathbf{u} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}, (-3)\mathbf{v} = \begin{pmatrix} -6 \\ 15 \end{pmatrix}$$

$$4\mathbf{u} + (-3)\mathbf{v} = \begin{pmatrix} 4 \\ -8 \end{pmatrix} + \begin{pmatrix} -6 \\ 15 \end{pmatrix} = \begin{pmatrix} 4+(-6) \\ -8+15 \end{pmatrix} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$

点积 (Dot product)

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
, $\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, 定义 $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2$

向量互相垂直

$$\mathbf{v} \cdot \mathbf{w} = 0$$

这里 0 是一个数,不是向量!

向量的长度

定义
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2}$$

向量的夹角

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

7

\mathbb{R}^2 中的向量

单位向量 (Unit Vector)

$$u = \frac{v}{\|v\|}$$
 是与 v 方向相同的单元向量

施瓦尔兹不等式 (Schwarz inequality)

$$|\mathbf{v} \cdot \mathbf{w}| \le ||\mathbf{v}|| ||\mathbf{w}||$$

三角不等式 (Triangle inequality)

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

ℝ²<mark>的几何表示</mark>

✓向量 $\binom{a}{b}$ 的几何表示是点(a, b),或者是一条由(0, 0)指向点(a, b)的有向线段。

\mathbb{R}^2 中的向量

例2: 设 $\mathbf{u} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$, 在图上表示向量 \mathbf{u} , $2\mathbf{u}$ 和 $-\frac{2}{3}\mathbf{u}$ 。

图3 u, 2u 和
$$-\frac{2}{3}$$
 u

向量加法的平行四边形法则

✓ 若 \mathbb{R}^2 中向量 \mathbf{u} 和 \mathbf{v} 用平面上的点表示,则 \mathbf{u} + \mathbf{v} 对应于以 \mathbf{u} , $\mathbf{0}$ 和 \mathbf{v} 为三个顶点的平行四边形的第4个顶点。

图4 平行四边形法则

11

向量方程组

- ▶ ℝ²中的向量
- ▶ ℝ³中的向量
- ▶[№]中的向量
- > 线性组合
- ➤ Span{v}与Span{u,v}的几何解释

几何表示

 \checkmark \mathbb{R}^3 中的几何表示为三维空间的点,或者起点为原点的箭头。 x_3

向量a与2a

图5 ℝ3中向量的几何表示

13

向量方程组

- ▶ ℝ²中的向量
- ▶ ℝ³中的向量
- ▶ ℝ"中的向量
- > 线性组合
- ➤ Span{v}与Span{u,v}的几何解释

Rn中的向量

定义 n 个有次序的数 a_1 , a_2 , ..., a_n 所组成的数组称为 n 维向量, 这 \mathbf{n} 个数称为该向量的 \mathbf{n} 个分量,第 \mathbf{i} 个数 $\mathbf{a}_{\mathbf{i}}$ 称为第 \mathbf{i} 个分量。

$$n$$
 维(实)列向量
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^n$$

$$\mathbf{a}^T = \begin{pmatrix} a_1, a_2, \cdots, a_n \end{pmatrix}$$

n 维向量空间 $\mathbb{R}^n = \left\{ \mathbf{x} = \left(x_1, x_2, \cdots, x_n \right)^T \middle| x_i \in \mathbb{R}, i = 1, \ldots, n \right\}$ n 维向量空间 \mathbb{R}^n 的 n-1 维超平面 $\left\{ \mathbf{x} = \left(X_{1}, \dots, X_{n} \right)^{T} \middle| a_{1}X_{1} + \dots + a_{n}X_{n} = b, a_{i}, X_{i}, b \in \mathbb{R}, i = 1, \dots, n \right\}$

总结

Rn中向量的代数性质

对 \mathbb{R}^n 中一切向量 \mathbf{u} , \mathbf{v} , \mathbf{w} 以及实数系数c和d,

$$(i) \quad \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(V) \quad c(u+v) = cu + cv$$

(ii)
$$(u + v) + w = u + (v + w)$$
 (Vi) $(c + d)u = cu + du$

(Vi)
$$(c + d)u = cu + du$$

(iii)
$$u + 0 = 0 + u = u$$

(Vii)
$$c(du) = (cd)(u)$$

(iV)
$$u + (-u) = -u + u = 0$$
 (Viii) $1u = u$

(Viii)
$$1n = r$$

其中 - u表示 (-1) u

注释: 一般用u+(-1)v代替u-v。

- ▶ ℝ²中的向量
- ▶ ℝ³中的向量
- ▶[№]中的向量
- > 线性组合
- ➤ Span{v}与Span{u,v}的几何解释

17

向量组

定义 若干个**同维数的列向量**(或同维数的行向量)所组成的集合 叫做**向量组**.

例 1:
$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} \in \mathbb{R}^m$$

m 个 n 维列向量

$n \times m$ 的矩阵

$$\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{m} \in \mathbb{R}^{n} \longrightarrow \mathbf{B}_{m \times n} = \begin{pmatrix} \mathbf{b}_{1}^{T} \\ \mathbf{b}_{2}^{T} \\ \vdots \\ \mathbf{b}_{m}^{T} \end{pmatrix} m \times n$$
 的矩阵

19

线性组合

定义 给定向量组 A: a_1 , a_2 , ..., a_m , 对于任何一组实数 k_1 , k_2 , ..., k_m , 表达式 $k_1a_1 + k_2a_2 + ... + k_ma_m$ 称为向量组 A 的一个线性组合, k_1 , k_2 , ..., k_m 称为这个线性组合的权(系数)。

给定向量组 A: a_1 , a_2 , ..., a_m 和向量 b, 如果存在一组数 k_1 , k_2 , ..., k_m , 使 $b = k_1 a_1 + k_2 a_2 + ... + k_m a_m$, 则向量 b 是向量组A的线性组合,这时称向量 b 能由向量组 A 线性表示。

其中权 $k_1,k_2,\cdots,k_{_{\!\scriptscriptstyle M}}$ 可为任意实数,包括0

例3: 图6选择性给出向量 $\mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 和 $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 的某些线性组合。估计由 \mathbf{v}_1 和 \mathbf{v}_2 的线性组合生成的向量 \mathbf{u} 和 \mathbf{w} 。

图6 v_1 与 v_2 的线性组合

线性组合

例4: 设
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix}$$
 和 $\mathbf{a}_2 = \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}$, 确定b 能否写成 \mathbf{a}_1 和 \mathbf{a}_2

的线性组合,也就是说,确定是否存在权 x_1 和 x_2 使

$$X_1 \mathbf{a_1} + X_2 \mathbf{a_2} = \mathbf{b}$$
 (1)

若向量方程(1)有解,求它的解。

解:

$$x_1 \begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}$$

向量加法 数乘

$$\begin{pmatrix} x_1 + 2x_2 \\ -2x_1 + 5x_2 \\ -5x_1 + 6x_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ -3 \end{pmatrix}$$
 (2)

✓ 向量方程组

$$X_1\mathbf{a}_1 + X_2\mathbf{a}_2 + \cdots + X_n\mathbf{a}_n = \mathbf{b}$$

和增广矩阵为

$$(\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n \ \mathbf{b})$$

的线性方程组有相同的解集。特别地,b可表示为 a_1 , a_2 ··· a_n 的线性组合,当且仅当对应的方程组**有解**。

课堂练习: 设
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 4 \\ 2 \\ 14 \end{pmatrix}$ 和 $\mathbf{a}_3 = \begin{pmatrix} 3 \\ 6 \\ 10 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -1 \\ 8 \\ -5 \end{pmatrix}$, 确定 \mathbf{b}

能否写成 a_1 , a_2 , a_3 的线性组合。

解: 行化简算法化简增广矩阵:

增广矩阵
$$\begin{pmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{pmatrix}$$

$$x_1 = 1$$

$$x_2 = -2$$

$$x_3 = 2$$

向量方程组

- ▶ ℝ²中的向量
- ▶ ℝ3中的向量
- ▶[№]中的向量
- > 线性组合
- ➤ Span{v}与Span{u,v}的几何解释

Span{v}与Span{u,v}的几何解释

定义: Span 扩张空间

 \checkmark 若 \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p 是 \mathbb{R}^n 中的向量,则 \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p 的所有线性组合所称的集合用记号 \mathbf{Span} $\left\{\mathbf{v}_1$, \mathbf{v}_2 , ..., $\mathbf{v}_p\right\}$ 表示,称为由 \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_p 所生成的 \mathbb{R}^n 的子集,也就是说, \mathbf{Span} $\left\{\mathbf{v}_1$, \mathbf{v}_2 , ..., $\mathbf{v}_p\right\}$ 是所有形如

$$c_1 \mathbf{v_1} + \cdots + c_p \mathbf{v_p}$$

的向量的集合,其中 $c_1, c_2, \cdots, c_p \in \mathbb{R}$ 为标量。

27

Span{v}与Span{u,v}的几何解释

Span{v}与Span{u, v}的几何解释

- Span{v} 是通过v和0的直线上所有点的集合
- Span{u, v}是ℝ³中通过u, v, 0的平面。

图7 Span{v}是通过原点的直线

图8 Span{u, v}是通过原点的平面

Span{v}与Span{u,v}的几何解释

例5: 设
$$\mathbf{a_1} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$
和 $\mathbf{a_2} = \begin{pmatrix} 5 \\ -13 \\ -3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -3 \\ 8 \\ 1 \end{pmatrix}$, 则Span $\{\mathbf{a_1, a_2}\}$

是R³中通过原点的一个平面,问b 是否在该平面内?

解: 行化简算法化简增广矩阵:

方程组无解

b不属于 Span{a₁, a₂}

29

回家作业

回家作业1

图1 xy平面

31

回家作业2

1作业2 确定b是否为矩阵A的各列向量的线性组合。

a)
$$A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{pmatrix}$$
, $b = \begin{pmatrix} 3 \\ -7 \\ -3 \end{pmatrix}$

b)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & -6 \\ 0 & 3 & 7 \\ 1 & -2 & 5 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 11 \\ -5 \\ 9 \end{pmatrix}$$

回家作业3

1作业3 设A= $\begin{pmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{pmatrix}$, b= $\begin{pmatrix} 4 \\ 1 \\ -4 \end{pmatrix}$, 以 \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 表示A的各列,

并设W=Span{a₁, a₂, a₃}.

- a) b是否属于{a₁, a₂, a₃}? 在{a₁, a₂, a₃}中有多少个向量?
- b) **b**是否属于W? W中有多少个向量?
- c) 证明: \mathbf{a}_1 属于 \mathbf{W} (提示: 不必作行变换)。

33

Q & A