## CA660 Statistical Data Analysis (2019\_2020) **Review Exercises + Probability Basis**

**Note:** Some of the exercises are FYI only. i.e. they are not covered or examinable in 2019]

1. Des Jarlan's et al. (1991) examined failure to maintain AIDS risk reduction in a study of intravenous drug user's in New York. Findings were as follows

| No. of Sexual   | Risk Reduction Status |                       |            |       |
|-----------------|-----------------------|-----------------------|------------|-------|
| Partners /month | None                  | <b>Not Maintained</b> | Maintained | Total |
| 0               | 20                    | 17                    | 43         | 80    |
| 1               | 37                    | 45                    | 95         | 177   |
| >1              | 20                    | 54                    | 67         | 141   |
| Total           | 77                    | 116                   | 205        | 398   |

On selecting a subject at random, what is the probability

- He/she did not initiate risk reduction (i)
- (ii) Given he/she had more than one sexual partner, that he/she maintained risk reduction
- That he/she had no sexual partners and did not maintain risk (iii) reduction
- He/she had one sexual partner or initiated no risk reduction (iv)
- 2. The probability that a person, selected at random from a given population, exhibits classical symptoms of a certain disease =0.2. The probability that a person, selected at random etc., has this disease =0.23. The probability that a person, selected at random etc., has the symptoms and has the disease =0.18. If a person, selected at random from the population, does not have the symptoms, what is the probability that he/she has the disease?
- 3. In a certain population, 10% of persons are given a credit rating B. A random sample of 25 is drawn, find the probability that
  - No more than 5 are CRB (i)
  - (ii) At least 6 are CRB
  - Between 6 and 9 inclusive are CRB. (iii)
  - Some 2,3 or 4 are CRB (iv)
- 4. In accident surveys, a large number of secondary roads are sampled in a given region and the number of fatal accidents in each sample is counted. The average number of accidents leading to fatalities in a sample is found to be 2. If these counts are assumed to follow a Poisson, find the probability that
  - A sample will contain  $\leq 1$  fatal accident (i) exactly 3 fatal accidents (ii) .. ≥ 5 fatal accidents (iii)
- 5. In a certain population, 13 new cases of oesophagal cancer are diagnosed on average each year. If we assume that the incidence of oesophagal cancer follows a Poisson, find the probability in a given year that the number of newly diagnosed cases of o.c.
  - Equals 10  $(iii) \leq 12$ (i)  $(v) \le 7$ (ii)
    - (iv) between 9 and 15 inclusive  $\geq 8$

6. [FYI, not covered/examinable in 2019] Complete the following decision tree and determine the decision based on the max expected payoff. Let  $P\{S_1\}=0.4$ ,



Branches are labelled  $S_1$  to  $S_4$  from top to bottom in each case

7. Worldwide production of Japanese car industry in 1989 was as follows, (in thousands of vehicles worldwide).

| Manufacturer | Thousands of Vehicles |
|--------------|-----------------------|
|              | Worldwide             |
| Toyota       | 4,448                 |
| Nissan       | 3,009                 |
| Honda        | 1,861                 |
| Mitsubishi   | 1,560                 |
| Mazda        | 1,270                 |
| Suzuki       | 868                   |
|              | 664                   |
| Daihatsu     |                       |
| Fuji(H)      | 563                   |
| Isuzu        | 559                   |

- (i) Are classifications mutually exclusive?
- (ii) If a Japanese vehicle is selected at random, what is the probability that it is neither a Toyota, a Nissan, or a Honda?
- (iii) Suppose two vehicles are selected at random from this worldwide production. What is the probability that both are Toyotas or both Nissans?
- (iv) For the two vehicles in (iii), what is the probability that at least one is a Toyota?
- 8. [FYI, not covered/examinable in 2019] Referring to the example in the lecture on introducing a new computer tablet to the market, the closeness of the expected payoff figures means that the management want to perform a sensitivity analysis before making a decision. The following sets of probabilities are to be used. How sensitive, (from your analysis), are decisions based, respectively, on *minimax* and *maximum expected payoff* strategies?

| $P{S_1}$ | $P{S_2}$ | $P{S_3}$ | $P{S_4}$ |
|----------|----------|----------|----------|
| 0.1      | 0.5      | 0.2      | 0.2      |
| 0.1      | 0.5      | 0.1      | 0.3      |
| 0.1      | 0.5      | 0.3      | 0.1      |
| 0.1      | 0.5      | 0.2      | 0.2      |
| 0.2      | 0.5      | 0.2      | 0.1      |