

FCC PART 15.247 TEST REPORT

For

Xiamen Padmate Technology Co.,LTD

RM 201, Huli Park No.37, Industrial Zone, Tong'an District, Xiamen, China

FCC ID: 2AJEO-T3PLUS

Report Type: Product Name:

Original Report Bluetooth Earphones

Report Number: RXM190527058-00B

Report Date: 2019-06-22

Dean Lau

Reviewed By: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)

Jean Lau

Test Laboratory: No.69 Pulongcun, Puxinhu Industry Area,

Tangxia, Dongguan, Guangdong, China

Tel: +86-769-8685888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE LIST AND DETAILS	7
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	9
APPLICABLE STANDARD	9
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	10
Antenna Connector Construction	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	11
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	16
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	24
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	24
Test Procedure	
Tect Data	2.4

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	30
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	36
APPLICABLE STANDARD	36
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	40
APPLICABLE STANDARD	40
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	46
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	
FCC §15.247(d) - BAND EDGES TESTING	48
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	49

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

EUT Name:	Bluetooth Earphones
EUT Model:	T3PLUS
Operation Frequency:	2402-2480 MHz
Maximum Output Power (Conducted):	3.66dBm
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Rated Input Voltage:	DC 3.6V from Battery
Serial Number:	190527058
EUT Received Date:	2019.05.31

The Left and right earphone are electrically identical with the same PCB, the detailed information please refer to the declaration letter, left earphone was choose for fully testing.

Objective

This report is prepared on behalf of *Xiamen Padmate Technology Co., LTD* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Rules Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s).

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Parameter	Measurement Uncertainty	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±0.61dB	
Power Spectral Density, conducted	±0.61 dB	
Unwanted Emissions, radiated	30M~200MHz: 4.55 dB,200M~1GHz: 5.92 dB,1G~6GHz: 4.98 dB, 6G~18GHz: 5.89 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB	
Unwanted Emissions, conducted	±1.5 dB	
Temperature	±1 ℃	
Humidity	±5%	
DC and low frequency voltages	±0.4%	
Duty Cycle	1%	
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)	

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 897218, the FCC Designation No.: CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

EUT Exercise Software

The software: BlueSuite 3.2.0 'was used during test, which was provided by manufacturer. The maximum power level was configured by the software as below table:

Mode	Packet type	Channel	Frequency (MHz)	Packet length	Power Level
		Low	2402	27	251
	DH1	Middle	Middle 2441		251
		High	2480	27	251
		Low	2402	183	251
GFSK	DH3	Middle	2441	183	251
		High	2480	183	251
		Low	2402	339	251
	DH5	Middle	2441	339	251
		High	2480	339	251
		Low	2402	54	252
	2DH1	Middle	2441	54	252
		High	2480	54	252
	π/4 DQPSK 2DH3	Low	2402	367	252
π/4 DQPSK		Middle	2441	367	252
		High	2480	367	252
		Low	2402	679	252
	2DH5	Middle	2441	679	252
		High	2480	679	252
		Low	2402	83	252
	3DH1	Middle	2441	83	252
		High	2480	83	252
		Low	2402	552	252
8DPSK 3DH3	3DH3	Middle	2441	552	252
	High	2480	552	252	
		Low	2402	1021	252
	3DH5	Middle	2441	1021	252
		High	2480	1021	252

Equipment Modifications

No modification was made to the EUT.

Manufacturer	Description	Model	Serial Number
LEADER ELECTRONICS INC.	Adapter	MU24-B480050-C5	Unknown

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Power Cable	Yes	No	1.02	Adapter	Charging Case

Block Diagram of Test Setup

For conducted emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC§15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
FCC §15.207(a)	AC line conducted emissions	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max conducted power including tune-up tolerance is 4.0 dBm (2.52 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] =2.52/5*($\sqrt{2}$.480) = 0.8< 3.0

So the stand-alone SAR evaluation is not necessary.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has internal antenna arrangement, fulfill the requirement of this section. Please refer to below information and the EUT photos:

Antenna Type	input impedance (Ohm)	Antenna Gain /Frequency Range
Internal	50	Left Headset: -2.29 dBi/2.4~2.5GHz Right Headset: -6.79 dBi/2.4~2.5GHz

Result: Compliance.

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Herein,

 V_C : corrected voltage amplitude V_R : reading voltage amplitude A_c : attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2018-12-10	2019-12-10
Unknown	Coaxial Cable	C-NJNJ-50	C-0200-01	2018-09-05	2019-09-05
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
R&S	Two-line V-network	ENV 216	101614	2018-12-10	2019-12-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	28.1 °C
Relative Humidity:	53 %
ATM Pressure:	100.0 kPa

The testing was performed by Lily Xie on 2019-06-12.

Test Result: Compliance

Test Mode: Charging

Report No.: RXM190527058-00B

AC120V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.520311	28.8	9.000	L1	9.9	27.2	56.0
0.580495	32.1	9.000	L1	9.8	23.9	56.0
0.604065	29.8	9.000	L1	9.8	26.2	56.0
0.737074	27.3	9.000	L1	9.8	28.7	56.0
1.164916	27.2	9.000	L1	9.8	28.8	56.0
3.550491	29.0	9.000	L1	9.8	27.0	56.0

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.580495	26.8	9.000	L1	9.8	19.2	46.0
0.610106	26.5	9.000	L1	9.8	19.5	46.0
1.130656	22.4	9.000	L1	9.8	23.6	46.0
1.683392	22.4	9.000	L1	9.7	23.6	46.0
2.054059	21.9	9.000	L1	9.7	24.1	46.0
3.515338	23.2	9.000	L1	9.8	22.8	46.0

Report No.: RXM190527058-00B

AC120V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.580495	34.7	9.000	N	9.8	21.3	56.0
0.767003	30.5	9.000	N	9.8	25.5	56.0
1.224338	31.2	9.000	N	9.8	24.8	56.0
1.650223	31.4	9.000	N	9.8	24.6	56.0
2.054059	31.2	9.000	N	9.8	24.8	56.0
3.515338	31.9	9.000	N	9.8	24.1	56.0

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.520311	26.2	9.000	N	9.9	19.8	46.0
0.580495	30.9	9.000	N	9.8	15.1	46.0
0.610106	29.9	9.000	N	9.8	16.1	46.0
1.683392	27.4	9.000	N	9.8	18.6	46.0
2.054059	27.0	9.000	N	9.8	19.0	46.0
3.550491	27.1	9.000	N	9.8	18.9	46.0

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission Below 1GHz tests were performed in the 3 meters chamber A, above 1GHz tests were performed in the 3 meters chamber A, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

According to FCC public notice: DA-00-705, During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	AV

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2018-12-10	2019-12-10
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A
Sunol Sciences	Antenna	JB3	A060611-3	2017-07-21	2019-07-21
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-02	2018-09-05	2019-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2018-09-24	2019-09-24
Sonoma	Amplifier	310N	185914	2018-10-13	2019-10-13
R&S	Spectrum Analyzer	FSP 38	100478	2018-12-10	2019-12-10
TDK RF	Horn Antenna	HRN-0118	130 084	2018-10-12	2021-10-12
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2016-11-18	2019-11-18
Unknown	Coaxial Cable	C-SJSJ-50	C-0800-01	2018-09-05	2019-09-05
MICRO-COAX	Coaxial Cable	UFA147-1-2362- 100100	64639 231029- 001	2019-02-24	2020-02-24
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2018-09-05	2019-09-05
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2018-06-27	2019-06-27
E-Microwave	Band-stop Filters	OBSF-2400-2483.5- S	OE01601525	2018-06-16	2019-06-16
Micro-tronics	High Pass Filter	HPM50111	S/N-G217	2018-06-16	2019-06-16

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	24.2~27.9 °C
Relative Humidity:	49~61%
ATM Pressure:	100.1∼ 100.7kPa

^{*} The testing was performed by Tyler Pan and Neil Liao on 2019-06-10 and 2019-06-11.

Test Mode: Transmitting

1) 30MHz-1GHz (GFSK Low channel was the worst)

Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Remark	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.0000	25.03	peak	1.72	26.75	40.00	13.25
44.5500	34.26	peak	-8.96	25.30	40.00	14.70
79.4700	35.10	peak	-11.20	23.90	40.00	16.10
164.8300	28.33	peak	-6.19	22.14	43.50	21.36
772.0500	27.87	peak	4.33	32.20	46.00	13.80
896.2100	33.86	peak	0.02	33.88	46.00	12.12

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Remark	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.0000	26.32	peak	1.72	28.04	40.00	11.96
50.3700	31.70	peak	-11.27	20.43	40.00	19.57
120.2100	26.19	peak	-4.83	21.36	43.50	22.14
706.0900	27.03	peak	3.17	30.20	46.00	15.80
773.9900	26.70	peak	4.35	31.05	46.00	14.95
901.0600	32.59	peak	0.14	32.73	46.00	13.27

2)1GHz-25GHz:

BDR Mode (GFSK) was the worst

DDR Mode	GFSK) was				~		~			
Frequency		eiver		ntenna	Cable	Amplifier	Corrected	Limit	Margin	
(MHz)	Reading	Remark	Polar	Factor	loss	Gain	Amplitude	(dBµV/m)	(dB)	
	(dBµV)		(H/V)	(dB/m)	(dB)	(dB)	(dBµV/m)	` ' /	()	
Low Channel: 2402 MHz										
2402.00	67.35	PK	Н	28.10	1.80	0.00	97.25	N/A	N/A	
2402.00	57.13	Ave.	Н	28.10	1.80	0.00	87.03	N/A	N/A	
2402.00	61.31	PK	V	28.10	1.80	0.00	91.21	N/A	N/A	
2402.00	51.09	Ave.	V	28.10	1.80	0.00	80.99	N/A	N/A	
2390.00	26.23	PK	Н	28.08	1.80	0.00	56.11	74.00	17.89	
2390.00	13.27	Ave.	Н	28.08	1.80	0.00	43.15	54.00	10.85	
4804.00	57.00	PK	Н	32.91	3.17	37.20	55.88	74.00	18.12	
4804.00	45.88	Ave.	Н	32.91	3.17	37.20	44.76	54.00	9.24	
7206.00	48.63	PK	Н	35.74	4.82	37.23	51.96	74.00	22.04	
7206.00	35.53	Ave.	Н	35.74	4.82	37.23	38.86	54.00	15.14	
	Middle Channel: 2441 MHz									
2441.00	66.03	PK	Н	28.18	1.82	0.00	96.03	N/A	N/A	
2441.00	56.08	Ave.	Н	28.18	1.82	0.00	86.08	N/A	N/A	
2441.00	60.35	PK	V	28.18	1.82	0.00	90.35	N/A	N/A	
2441.00	50.73	Ave.	V	28.18	1.82	0.00	80.73	N/A	N/A	
4882.00	59.01	PK	Н	33.06	3.27	37.21	58.13	74.00	15.87	
4882.00	48.64	Ave.	Н	33.06	3.27	37.21	47.76	54.00	6.24	
7323.00	47.08	PK	Н	36.04	4.62	37.38	50.36	74.00	23.64	
7323.00	34.30	Ave.	Н	36.04	4.62	37.38	37.58	54.00	16.42	
				High Chan	nel: 2480	MHz				
2480.00	64.50	PK	Н	28.26	1.84	0.00	94.60	N/A	N/A	
2480.00	54.06	Ave.	Н	28.26	1.84	0.00	84.16	N/A	N/A	
2480.00	59.86	PK	V	28.26	1.84	0.00	89.96	N/A	N/A	
2480.00	49.72	Ave.	V	28.26	1.84	0.00	79.82	N/A	N/A	
2483.50	28.64	PK	Н	28.27	1.84	0.00	58.75	74.00	15.25	
2483.50	13.92	Ave.	Н	28.27	1.84	0.00	44.03	54.00	9.97	
4960.00	59.74	PK	Н	33.22	3.23	37.25	58.94	74.00	15.06	
4960.00	48.78	Ave.	Н	33.22	3.23	37.25	47.98	54.00	6.02	
7440.00	46.94	PK	Н	36.34	4.41	37.52	50.17	74.00	23.83	
7440.00	34.66	Ave.	Н	36.34	4.41	37.52	37.89	54.00	16.11	

Worst plots (GFSK High channel was the worst) **Horizontal**

Vertical

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Huang on 2019-06-04.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)
	Low	2402-2403	1.002	0.6
BDR (GFSK)	Middle	2441-2442	1.002	0.6
	High	2480-2479	1.002	0.6
EDD	Low	2402-2403	1.002	0.88
EDR (π/4-DQPSK)	Middle	2441-2442	1.006	0.88
(1/4-DQF3K)	High	2480-2479	1.002	0.88
EDR (8DPSK)	Low	2402-2403	0.998	0.84
	Middle	2441-2442	1.002	0.85
	High	2480-2479	1.006	0.85

Note: Limit= $(2/3) \times 20dB$ bandwidth

BDR Mode (GFSK):

Low Channel

Middle Channel

High Channel

EDR Mode (\pi/4-DQPSK):

Middle Channel

High Channel

4.JUN.2019 16:13:01

EDR Mode (8DPSK):

Low Channel

Middle Channel

High Channel

FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.4 °C	
Relative Humidity:	54 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Andy Huang on 2019-06-04.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RXM190527058-00B

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
BDR Mode	Low	2402	0.898
(GFSK)	Middle	2441	0.894
(Grsk)	High	2480	0.894
EDR Mode (π/4-DQPSK)	Low	2402	1.315
	Middle	2441	1.315
	High	2480	1.315
EDR (8DPSK)	Low	2402	1.267
	Middle	2441	1.275
	High	2480	1.279

BDR Mode (GFSK):

Low Channel

Middle Channel

High Channel

EDR Mode ($\pi/4$ -DQPSK):

Middle Channel

High Channel

EDR Mode (8DPSK):

Low Channel

Middle Channel

High Channel

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Huang on 2019-06-04.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RXM190527058-00B

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

EDR Mode ($\pi/4$ -DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

EDR Mode (8DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; the time of single pulses was tested.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2019-05-09	2020-05-09
Unknown	Coaxial Cable	C-SJ00-0010	C0010/02	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Huang on 2019-06-08.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RXM190527058-00B

Test Mode: Transmitting

Mode	Packet type	Channel	Frequency (MHz)	Puse width (ms)	Result (s)	Limit (s)
	DH1	Middle	2441	0.400	0.128	
GFSK	DH3	Middle	2441	1.678	0.268	
	DH5	Middle	2441	2.948	0.314	
T /4	2DH1	Middle	2441	0.410	0.131	
π /4-	2DH3	Middle	2441	1.676	0.268	0.4
DQPSK	2DH5	Middle	2441	2.946	0.314	
	3DH1	Middle	2441	0.412	0.132	
8DPSK	3DH3	Middle	2441	1.684	0.269	
	3DH5	Middle	2441	2.954	0.315	

Note:

DH1/2DH1/3DH1:Dwell time=Pulse time (ms) \times (1600/2/79) \times 31.6 s

DH3/2DH3/3DH3:Dwell time=Pulse time (ms) \times (1600/4/79) \times 31.6 s

DH5/2DH5/3DH5:Dwell time=Pulse time (ms) × (1600/6/79) ×31.6 s

BDR Mode (GFSK):

DH1: Middle Channel

Date: 8.JUN.2019 15:50:24

DH3: Middle Channel

Report No.: RXM190527058-00B

Date: 8.JUN.2019 15:52:10

DH5: Middle Channel

Date: 8.JUN.2019 15:52:59

EDR Mode ($\pi/4$ -DQPSK):

2DH1: Middle Channel

Date: 8.JUN.2019 15:54:53

2DH3: Middle Channel

Date: 8.JUN.2019 15:56:33

2DH5: Middle Channel

Report No.: RXM190527058-00B

Date: 8.JUN.2019 15:57:54

EDR Mode (8DPSK):

3DH1: Middle Channel

Date: 8.JUN.2019 15:59:13

3DH3: Middle Channel

Report No.: RXM190527058-00B

Date: 8.JUN.2019 15:59:55

3DH5: Middle Channel

Date: 8.JUN.2019 16:00:29

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	USB Wideband Power Sensor	U2022XA	MY5417006	2018-12-10	2019-12-10
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Huang on 2019-06-08.

Test Result: Compliance.

Mode	Frequency (MHz)	Peak Conducted Output power (dBm)	Limit (dBm)
22216	2402	3.66	21
BDR Mode (GFSK)	2441	3.53	21
(GrSK)	2480	3.27	21
EDR Mode (π/4-DQPSK)	2402	0.02	21
	2441	0.02	21
	2480	-0.34	21
EDR Mode (8DPSK)	2402	0.78	21
	2441	0.66	21
	2480	0.15	21

Note: The data above was tested in conducted mode.

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW/ VBW of spectrum analyzer to 100/300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2018-08-03	2019-08-03
Unknown	Coaxial Cable	C-SJ00-0010	C0010/01	Each time	N/A

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1~26.4 °C
Relative Humidity:	52~54 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Huang on 2019-06-04 and 2019-06-08.

Test Result: Compliance

Single Channel: BDR Mode (GFSK):

Band Edge, Left Side

Report No.: RXM190527058-00B

EDR Mode ($\pi/4$ -DQPSK):

Band Edge, Left Side

Report No.: RXM190527058-00B

EDR Mode (8DPSK):

Band Edge, Left Side

Report No.: RXM190527058-00B

Hopping Mode, BDR Mode (GFSK):

Band Edge, Left Side

Date: 8.JUN.2019 16:16:11

Report No.: RXM190527058-00B

Date: 8.JUN.2019 16:17:24

EDR Mode ($\pi/4$ -DQPSK):

Band Edge, Left Side

Date: 8.JUN.2019 16:20:12

Report No.: RXM190527058-00B

Date: 8.JUN.2019 16:34:17

EDR Mode (8DPSK):

Band Edge, Left Side

Date: 8.JUN.2019 16:26:51

Report No.: RXM190527058-00B

Date: 8.JUN.2019 16:32:52

**** END OF REPORT *****