计组实验5 - 实验报告

于新雨 计25 2022010841

跳转时,写入内存和写入串口时的波形图和对应的指令译码情况

跳转时

以 beq zero, zero, loop 为例

• 波形图

- o 注:因为在通过 oj 后接着实现了 icache 所以图中为输出的 debug 信号·如图·wbic_adr_o_dbg 代表向 icache 请求的指令地址·即当前指令地址
- 指令译码情况
 - o 定义类型

o 如图·ty 识别为1·即是 BEQ 类型的指令·imm 是 0x1ff4 即 -12, rs1 是 0x0, rs2 是 0x0

写入内存时

以 sw t2, 0x100(t0) 为例

波形图

• 译码

。 可见 ty 为 4 · 即 SW 类型的指令 · imm 为 0x100, rs1 为 0x5, rs2 为 0x7 rd 为 0x5

写入串口时

以 sb a0, 0(t0) 为例

• 波形图

• 译码

。 可见 ty 为 $3 \cdot$ 即 SB 类型的指令 \cdot imm 为 0, rs1 为 0x5, rs2 为 0xa, rd 为 0xa

内容要求

cpu 结构图

信号表和状态转移表

信号表

信号名	信号类型	信号描述
clk	input	时钟信号
rst_n	input	复位信号

wb_cyc_o output wishbone 总线周期信号 wb_stb_o output wishbone 总线使能信号 wb_ack_i input wishbone 总线应答信号 wb_adr_o output wishbone 总线数据信号 wb_dat_o output wishbone 总线数据信号 wb_dat_i input wishbone 总线数据输入信号 wb_sel_o output wishbone 总线数据输入信号 wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入操作数1 alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写数据 we output register file 写数据 we output register file 写使能 rdata_a input register file 读数据1	信号名	信号类型	信号描述
wb_ack_i input wishbone 总线应答信号 wb_adr_o output wishbone 总线数据信号 wb_dat_o output wishbone 总线数据信号 wb_dat_i input wishbone 总线数据输入信号 wb_sel_o output wishbone 总线选择信号 wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入操作数1 alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_cyc_o	output	wishbone 总线周期信号
wb_adr_o output wishbone 总线地址信号 wb_dat_o output wishbone 总线数据信号 wb_dat_i input wishbone 总线数据输入信号 wb_sel_o output wishbone 总线选择信号 wb_we_o output alu 输入 操作数1 alu_a output alu 输入 操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_stb_o	output	wishbone 总线使能信号
wb_dat_o output wishbone 总线数据信号 wb_dat_i input wishbone 总线数据输入信号 wb_sel_o output wishbone 总线选择信号 wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入 操作数1 alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_ack_i	input	wishbone 总线应答信号
wb_dat_i input wishbone 总线数据输入信号 wb_sel_o output wishbone 总线选择信号 wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入 操作数1 alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 写地址 waddr output register file 写数据 we output register file 写使能	wb_adr_o	output	wishbone 总线地址信号
wb_sel_o output wishbone 总线选择信号 wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入 操作数1 alu_b output alu 输入 操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_dat_o	output	wishbone 总线数据信号
wb_we_o output wishbone 总线写使能信号 alu_a output alu 输入 操作数1 alu_b output alu 输入 操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_dat_i	input	wishbone 总线数据输入信号
alu_a output alu 输入操作数1 alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_sel_o	output	wishbone 总线选择信号
alu_b output alu 输入操作数2 alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	wb_we_o	output	wishbone 总线写使能信号
alu_op output alu 操作码 alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	alu_a	output	alu 输入 操作数1
alu_y input alu 输出 raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	alu_b	output	alu 输入 操作数2
raddr_a output register file 读地址1 raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	alu_op	output	alu 操作码
raddr_b output register file 读地址2 waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	alu_y	input	alu 输出
waddr output register file 写地址 wdata output register file 写数据 we output register file 写使能	raddr_a	output	register file 读地址1
wdata output register file 写数据 we output register file 写使能	raddr_b	output	register file 读地址2
we output register file 写使能	waddr	output	register file 写地址
	wdata	output	register file 写数据
rdata_a input register file 读数据1	we	output	register file 写使能
	rdata_a	input	register file 读数据1
rdata_b input register file 读数据2	rdata_b	input	register file 读数据2
pc_reg reg 当前指令地址(IF)或者下一条指令地址(其他段)	pc_reg	reg	当前指令地址(IF)或者下一条指令地址(其他段)
pc_now_reg 当前指令地址	pc_now_reg	reg	当前指令地址
instr_reg reg 当前指令	instr_reg	reg	当前指令
state reg 状态机	state	reg	状态机
regfile_state reg 寄存器文件状态机(因为 regfile 不是当前周期返回)	regfile_state	reg	寄存器文件状态机(因为 regfile 不是当前周期返回)
ty reg 指令类型	ty	reg	指令类型
imm reg 立即数	imm	reg	立即数
lui_imm reg 长立即数	lui_imm	reg	长立即数
rd reg 目的寄存器	rd	reg	目的寄存器
rs1 reg 源寄存器1	rs1	reg	源寄存器1
rs2 reg 源寄存器2	rs2	reg	源寄存器2
rs1_val reg 源寄存器1的值	rs1_val	reg	源寄存器1的值
rs2_val reg 源寄存器2的值	rs2_val	reg	源寄存器2的值
rd_val reg 目的寄存器的值	rd_val	reg	目的寄存器的值
exe_arith_done reg 算术运算是否完成	exe_arith_done	reg	算术运算是否完成
shift_val reg 非对齐访问右移位数	shift_val	reg	非对齐访问右移位数
sram_addr_tmp reg 临时算出的 sram 地址	sram_addr_tmp	reg	临时算出的 sram 地址
exe_beq_done reg beq 是否完成	exe_beq_done	reg	beq 是否完成

信号名	信号类型	信号描述
exe_mem_done	reg	load/store 是否完成
reg_write_state	reg	写回寄存器的状态
is_split	reg	非对齐访问是否需要分两次写入(sw 的场景)

Arith (ADDI,ANDI,LUI,ADD)

STATE	wb_addr	wb_cyc	rf_addra	rf_addrb	alu_a	alu_b	ор	rf_we	rf_wdata	rf_waddr
STATE_IF	рс	1	unk	unk	unk	unk	unk	0	unk	unk
STATE_ID	unk	0	rs1	rs2	unk	unk	unk	0	unk	unk
STATE_EXE	unk	0	unk	unk	rs1_val	rs2_val	alu_op	0	unk	unk
STATE_WRITE_ARITH	unk	0	unk	unk	unk	unk	unk	1	alu_y	rd

BEQ

STATE	wb_addr	wb_cyc	rf_addra	rf_addrb	rs1_val	rs2_val	рс
STATE_IF	рс	1	unk	unk	unk	unk	unk
STATE_ID	unk	0	rs1	rs2	rs1_val	rs2_val	unk
STATE_EXE	unk	0	unk	unk	unk	unk	if rs1_val == rs2_val then newpc

Load

STATE	wb_addr	wb_cyc	rf_addra	rf_addrb	alu_a	alu_b	ор	rf_we	rf_wdata	rf_waddr
STATE_IF	рс	1	unk	unk	unk	unk	unk	0	unk	unk
STATE_ID	unk	0	rs1	rs2	unk	unk	unk	0	unk	unk
STATE_EXE_LD	unk	0	unk	unk	rs1_val	imm	unk	0	unk	unk
STATE_READ_LD	imm + rs1_val	1	unk	unk	unk	unk	unk	0	0	0
STATE_REG_LD	unk	0	unk	unk	unk	unk	unk	1	sram_data	rd

Store

STATE	wb_addr	wb_cyc	rf_addra	rf_addrb	alu_a	alu_b	ор	rf_we	rf_wdata	rf_waddr	wb_dat_i
STATE_IF	рс	1	unk	unk	unk	unk	unk	0	unk	unk	unk
STATE_ID	unk	0	rs1	rs2	unk	unk	unk	0	unk	unk	unk
STATE_EXE_ST	unk	0	unk	unk	rs1_val	imm	unk	0	unk	unk	unk
STATE_WRITE_ST	imm + rs1 val	1	unk	unk	unk	unk	unk	0	0	0	rs2_val

状态转移表

内存数据

在 sw t2, 0x100(t0) 后增加 lb t3, 0x100(t0) 查看 sram 返回值

可见从 base_ram 返回了计算的正确结果即 5050

串口输出

思考题

- 流水线 CPU 中,用于 branch 指令的比较器既可以放在 ID 阶段,也可以放在 EXE 阶段。放在这两个阶段分别有什么优缺点?
- 放到 ID 阶段
 - ο 优点
 - 早发现分支,可以提前进行分支预测,减少分支延迟
 - o 缺点
 - 可拓展性差·如果分支条件需要依赖 EXE 阶段计算的结果(例如计算某些寄存器值)·则无法在 ID 阶段直接做出跳转决策
 - 代码实现上 ID 阶段本身组合逻辑较复杂,可能增大 ID 段时延
- 放到 EXE 阶段
 - o 优点
 - 在 EXE 阶段执行分支条件比较符合流水线逻辑,减少了 ID 阶段的复杂度
 - 分支条件可以依赖 EXE 阶段的计算结果,可以设计更加复杂 更具拓展性的指令
 - 缺点
 - 增加分支延迟·直到 EXE 阶段才能确定跳转条件·延迟了分支的决策·可能导致更多的气泡和性能损失
 - 需要等待 EXE 阶段完成后才能更新 PC 寄存器,从而可能影响整个流水线的吞吐量