Why is window length important (perceptually)?

Levels of Music Processing

Musical features: Examples

Mid/High-level / Rhythmic

Feature Extraction from music

- features in music evolve continuously
- feature extraction relies on summarising this evolution (means, std)

Which sounds brighter? (spectral centroid)

Example of frame-based analysis

spectral centroid of three excerpts

Features Overview

- Dynamics
- Pitch
- Timbre
- Tempo/rhythm
- Tonality
- Structure

Timbre

Acoustic features

Temporal

- zero-crossing rate
- low energy

Spectrotemporal

- spectral flux
- sub-band flux

Spectral

- centroid
- high energy-low energy ratio
- entropy
- roll-off 85
- MFCC

Identify features that might be useful for genre classification based on perceptual relevance

Zero-crossing rate

 number of time-domain zero-crossings of the signal per time unit

Low Energy

proportion of signal frames whose energy is below average energy

Spectral Centroid

Center of mass of the spectrum

$$sc = \frac{\sum a_i f_i}{\sum a_i}$$

Which sounds brighter?

Example of frame-based analysis

spectral centroid of three excerpts

Spectral Roll-Off

 Frequency, below which a certain fraction (usually 85%) of spectral energy

R such that

$$\sum_{1}^{R} a_i = 0.85 \sum_{1}^{N} a_i$$

Measure of spectral shape

Spectral Irregularity

measure of "jaggedness" of spectrum (Jensen, 1999)

$$irreg = \frac{\sum_{2}^{N} (a_i - a_{i-1})^2}{\sum_{1}^{N} a_i^2}$$

Spectral Entropy

information-theoretic measure of spectral energy distribution

 high entropy = even distribution of spectral energy (more noise-like?)

low:

Spectral Flux

- Measure of change over time in spectrum
- Dissimilarity between subsequent spectral frames

$$flux_i = \sum_{j=1}^{M} (a_{ij} - a_{(i-1)j})^2$$

Sub-band Flux

- Octave-scaled spectrum
 - 50 hz
 - 10 bands
- Spectral Flux in each band

Mel-Frequency Cepstral Coefficients

- Descriptor of spectral shape based on perception
- widely used in speech research (e.g. speech recognition)

Mel-frequency Cepstral Coefficients

Significance of MFCC

 provide a representation of the sound spectrum that closely corresponds to perceived distances between timbres (DePoli and Prandoni, 1997; Eronen, 2001; Terasawa et al., 2005)

similarity in MFCC <-> similarity in perceived timbre

important in classification of genre, mood, emotion, semantics

Genre Classification

Identify features that might be useful for genre classification based on perceptual relevance:

Temporal

- zero-crossing rate
- low energy

Spectrotemporal

- roughness
- sub-band flux

Spectral

- centroid
- high energy-low energy ratio
- entropy
- roll-off 85
- MFCC

Acoustic features

Rhythm

- tempo
- pulse clarity

Tonality

- chromagram
- mode
- keystrength/keyclarity

*typically extracted using longer time windows (contextdependent)

Tempo & Pulse Clarity

 tempo: estimate of how fast/slow the piece of music is

 pulse clarity/beat salience: how clear the beat is

Acoustic features

 chromagram: Harmonic Pitch Class Profile, shows the distribution of energy along the pitches or pitch classes.

Acoustic features

keystrength: measure of the tonal clarity

mode: major or minor (roughly depicts "happy" or "sad")

MIR Toolbox -

- Matlab toolbox for musical feature extraction from audio
- main developer Olivier Lartillot; Petri Toiviainen
- started within project Tuning the brain for music (EU FP7, 2006-9)

Overview

- 1. General Principles
- 2. Syntax & Basic Operations
- 3. Signal Processing Operators
- 4. Audio and Musical Descriptors
- 5. Statistical Analysis

General Principles

Modular framework

- Building blocks can be reused, reordered, ...

Simple and adaptive syntax

- User can focus on the general design.
- MIRtoolbox takes care of the technical details.

• Free software, open source

 Capitalized expertise of the research community, for everybody

General Principles

MIRtoolbox Reliances

- Requires:
 - Matlab, ≥ version 7
 - Signal Processing Toolbox (MathWorks)
- Distribution includes free softwares:
 - Auditory Toolbox, by Malcolm Slaney
 - Netlab toolbox, by Ian Nabney
 - SOM Toolbox, by Esa Alhoniemi et al.
- Code integrated from GPL project:
 - Music Analysis Toolbox by Elias Pampalk

Basic Operations

miraudio('mysong.wav')

miraudio('mysong.mp3')

- miraudio('Folder')
 - 'Folder' = all files in Current Directory

Basic Operations

```
• miraudio(..., 'Center')

(..., 'Sampling',
(..., 'Trim')

(..., 'TrimStart')

(..., 'TrimEnd')

(..., 'Extract', t1,
```


- Audio Summation
 - a1 = miraudio('melody.wav')
 - a2 = miraudio('accompaniment.wav')
 - a = a1 + a2

Flow of operators

- a = miraudio('mysong')
- **b** = miraudio(**a**, 'Extract', 0, 4)
 - b2 = miraudio('mysong', 'Extract', 0, 4)
 - mirplay(b)
 - mirsave(b, 'excerpt.wav')
- s = mirspectrum(b)
 - s2 = mirspectrum('mysong')
- p = mirpitch(s, 'Frame')
 - mirgetdata(p)

*mirspectrum*Fourier Transform

mirspectrum post-processing options

- mirspectrum(..., 'Normal')
 normalizes w.r.t. energy.
- mirspectrum(..., 'Power') squares the energy.
- mirspectrum(..., 'dB')
 in dB scale
- mirspectrum(..., 'dB', th)
 only highest energy, range
 of th dB

mirspectrum auditory models

- mirspectrum(..., 'Terhardt'):
 Outer ear modeling
- mirspectrum(..., 'Mel'):
 Mel-band spectrum
- mirspectrum(..., 'Bark'):
 Bark-band spectrum
- mirspectrum(..., 'Mask'):
 Masking effects along bands

Frame decomposition

f = mirframe('mysong', ...
'Length', .1, 's', 'Hop', 20, '%')

s = mirspectrum('mysong', ...
'Frame', .1, .2, 'Mel')

Filterbank decomposition

mirplay(f)

Peak picking (for different kinds of data)

mirpeaks(..., 'Total', 3, 'NoBegin')

- Adapts to various input types:
 - Multi-frame, multi-segment:

Features Overview

- Dynamics
- Tempo /rhythm
- Pitch
- Timbre
- Tonality
- Structure

(DYNAMICS)Energy / Envelope

mirrms('mysong', 'Frame')

mirenvelope('mysong')

Onsets, attacks, etc.

mironsets('mysong', 'Attack')

mirattackslope('mysong')

Timbre

- mirzerocross
 - Zero-crossing rate
- mir**rolloff**
 - **-** 85% or 95%
- mirbrightness
- mir**mfcc**
 - Mel-Frequency Cepstral Coefficients
- mirroughness
 - Sensory Dissonance
- mirregularity

Tempo

- Roughly:
 - o = mironsets('mysong', 'Detect', 'No')
 - do = mironsets(o, 'Diff')
 - ac = mirautocor(do)
 - pa = mirpeaks(ac, 'Total', 1)
- In short:
 - [t, pa] = mirtempo('mysong')
 t = 129.6333 bpm

Tempo (temporal evolution)

Roughly:

- o = mironsets('mysong', 'Detect', 'No')
- do = mironsets(o, 'Diff')
- **f** = mir**frame**(**do**)
- ac = mirautocor(f)
- pa = mirpeaks(ac, 'Total', 1)

In short:

[t, pa] = mirtempo('mysong', 'Frame')

Temporal location of events (in s.)

tempo vs pulse clarity

Pulse Clarity

- b=miraudio('Makeba.mp3','E xtract',5,25);
- mirpulseclarity(b, 'Frame')

 mirpulseclarity(miraudio('Ma keba.mp3','Extract',5,25),'Fra me')

Pitch

- [p, pa] = mirpitch('mysong', 'Frame')
- mirplay(p)

Tonal Analysis

- Roughly:
 - c =
 mirchromagram('mysong')
 - ks = mirkeystrength(c)
 - pk = mirpeaks(ks, 'Total', 1)

[k, kc] = mirkey('mysong')

$$k = D\# maj$$

 $kc = 0.69797$

Tonal Analysis (temporal evolution)

- Roughly:
 - c =
 mirchromagram('mysong',
 'Frame')
 - ks = mirkeystrength(c)
 - pk = mirpeaks(ks, 'Total', 1)
- In short:
 - [k, kc] = mirkey('mysong')

Modal Analysis

mirmode('mysong')

Tonal Analysis

mirkeysom('mysong', 'Frame')

Statistics

• mirstat

- mean
- standard deviation
- slope
- periodicity
- mirhisto
 - distribution histograms

- moments
 - mircentroid
 - mirspread
 - mirskewness
 - mirkurtosis

mirfeatures

- mirzerocross
- mircentroid
- mirbrightness
- mirspread
- mirskewness
- mirkurtosis
- mirrolloff
- mirentropy
- mirflatness
- mirroughness
- mirregularity
- mirinharmonicity
- mirmfcc

- mirfluctuation
- mirattacktime
- mirattackslope
- mirlowenergy
- mirflux
- mirpitch
- mirchromagram
- mirkeystrength
- mirkey
- mirmode
- mirhcdf
- mirtempo
- mirpulseclarity

Saving & Exporting

```
a = miraudio('mysong','Extract',0,1)
```

mirsave(a, 'mysample')

```
p = mirwhatever...
```

- mirexport('res.txt', p, q, r, ...)
 - Excel, Word, etc..
- mirexport('res.arff', p, q, r, ...)
 - Weka, etc..

Musical Feature(s) to Musical Structure

Structural analysis

- x = mirspectrum('mysong',
 'Frame')
- = mirmfcc('mysong', 'Frame')
- whatever...
- sm = mirsimatrix(x)
- nv = mirnovelty(sm)

Structural analysis

Figure 3. 64 x 64 checkerboard kernel with Gaussian taper

Tonal Analysis

Figure 3. Music segmentation pipeline. We segment all tracks from the soundtrack to ensure a cohesive listening experience. We extract keystrength [21] that captures tonal properties of a soundtrack (left), compute the self-similarity matrix (center), and use that to calculate the novelty curve [24]. The peaks of this curve are used to segment the track.

\$0NUS TEXER! AUTOMATED DENSE SOUNDTRACK CONSTRUCTION FOR BOOKS USING MOVIE ADAPTATIONS

Jaidev Shriram Makarand Tapaswi Vinoo Alluri International Institute of Information Technology, Hyderabad

How does the structure of this look like?

Segmentation

Segmentation

- nv = mirnovelty(sm)
- sg = mirsegment('mysong', nv)
- sg = mirsegment('mysong')
 - mirplay(sg)
- s = mirmfcc(sg)
- sm = mirsimatrix(s)

Novelty

What can you say about the structure of this piece?

https://1drv.ms/u/s!AtoLT6JDyxo-iWSxEYJILzdglJ3w?e=nbu6Fm

Similarity matrix

https://shorturl.at/bjz28

Visualizing Music(al Structure)

Lyrics

1

☐ Mobile mode

Repetition in Music

Where does one begin?

What does "genre" (musically) mean?
How do you describe "genre"?

What assumptions do we make?

Classes are acoustically and perceptually separable

How do we go about selecting relevant acoustic features and parameters thereof?

Assumption: Classes are separable

Perceptual

Genre 1

what are the perceptual features that distinguish these genres?

Assumption: Classes are separable

Acoustically

based on perceptual features can you identify the acoustic features?

Genre 1

Genre 2

So what sort of features do i choose?

Timbre

Rhythm

Key/Tonality

Genre 2

Genre 1

Spectral Centroid

So what sort of features do i choose?

Timbre

Rhythm

Key/Tonality

Genre 2

Genre 1

Tempo?

Pulse Clarity?

Acoustic feature selection

Visualizing Genres (Structure) guess the genre?

can lyrics-based similarity matrices be used to identify genres?

Genre 2

Repetition in Music

Repetition of Popular Music, by Year

Compressibility in Music

