· JP 00/8631A

09/890688

本 国 符 計 与 PATENT OFFICE JAPANESE GOVERNMENT

REC'D **0.5 FEB 2831**

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年12月 6日

出 願 番 号 Application Number:

平成11年特許願第346864号

科学技術振興事業団

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2001年 1月19日

【書類名】 特許顧

【整理番号】 NP99461-YS

【提出日】 平成11年12月 6日

【あて先】 特許庁長官 殿

【国際特許分類】 C07H 21/00

C07K 14/435

【発明の名称】 ヒト蛋白質とcDNA[3]

【請求項の数】 7

【発明者】

【住所又は居所】 神奈川県相模原市若松3-46-50

【氏名】 加藤 誠志

【発明者】

【住所又は居所】 神奈川県相模原市西大沼2-52-12

グリーンヴィラ301

【氏名】 佐伯 美帆呂

【特許出願人】

【識別番号】 396020800

【氏名又は名称】 科学技術振興事業団

【代理人】

【識別番号】 100093230

【弁理士】

【氏名又は名称】 西澤 利夫

【電話番号】 03-5454-7191

【手数料の表示】

【予納台帳番号】 009911

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】

要約書 1

【プルーフの要否】

सर

【書類名】 明細書

【発明の名称】 ヒト蛋白質とcDNA[3]

【特許請求の範囲】

【請求項1】 配列番号1から配列番号10のいずれかのアミノ酸配列を有する精製ヒト蛋白質。

【請求項2】 請求項1の蛋白質をコードするDNA断片。

【請求項3】 請求項1の蛋白質をコードするヒトcDNAであって、配列番号11から配列番号20のいずれかの塩基配列を有するDNA断片。

【請求項4】 配列番号21から配列番号30のいずれかの塩基配列からなる請求項3のDNA断片。

【請求項5】 請求項2から4のいずれかのDNA断片をインビトロ翻訳あるいは宿主細胞内で発現しうる発現ベクター。

【請求項6】 請求項5の発現ベクターによる形質転換体であって、請求項1の蛋白質を生産しうる形質転換細胞。

【請求項7】 請求項1記載の蛋白質に対する抗体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この出願の発明は、精製ヒト蛋白質、この蛋白質をコードしているDNA断片、このDNA断片の発現ベクター、この発現ベクターにより形質転換した各種の細胞、およびこの蛋白質に対する抗体に関するものである。この発明の蛋白質は、医薬品として、あるいはこの蛋白質に対する抗体を作製するための抗原として用いることができる。また、この蛋白質は、細胞内蛋白質ネットワークを解明するための研究試薬として、あるいは低分子医薬と結合する蛋白質をスクリーニングするための蛋白質源として用いることができる。この発明のヒトcDNAは、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このcDNAがコードしている蛋白質を大量生産するための遺伝子源として用いることができる。これらのDNAをインビトロ翻訳あるいは宿主細胞内で発現しうる発現ベクターは、この発明の蛋白質をインビトロであるいは各種の宿主細

胞内で生産するのに用いることができる。これらの遺伝子を導入して蛋白質を過剰発現させた細胞は、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。この発明の蛋白質に対する抗体は、蛋白質を精製するための手段、あるいは細胞内における蛋白質の発現量や局在部位を調べるのに用いられる。

[0002]

【従来の技術】

ヒト蛋白質は、我々の身体を構成している細胞の基本要素である。その中には、(1)細胞の形態を維持したり、細胞内の物質輸送や細胞運動に関わっている細胞骨格蛋白質、(2)細胞内の物質代謝に関与する代謝酵素、(3)エネルギー産生に関わる蛋白質、(4)細胞の増殖・分裂に関わる情報伝達蛋白質、(5)蛋白質の合成に関わる翻訳関連蛋白質、(6)蛋白質の分解に関わるプロテアーゼ関連蛋白質、(7)ゲノムの複製に関与する蛋白質、(8)遺伝子の転写に関与する転写因子、(9)mRNAのスプライシングに関与する核蛋白質などが含まれる。これらの蛋白質は、ヒト細胞の働きを解明する上で重要であるのみならず、医薬品の開発においても有用である。これまで知られている低分子化合物医薬の多くは、細胞内のある特定の蛋白質と結合し、その蛋白質の働きを増強したり、阻止したりすることによって、その薬効を表す。したがって、一揃いのヒト蛋白質を持っていれば、これらの低分子医薬をスクリーニングする際の有力な道具となる。

[0003]

従来、ヒト蛋白質を得るには、ヒト組織や培養細胞をすりつぶした後、各種の分離法を組み合わせて単一の蛋白質を精製する方法がとられてきた。これまで知られている蛋白質のように、含有量が高く、活性が分かっているものは、従来の方法で容易に単離精製できるが、まだ解析されていない蛋白質の多くは含量が低く、かつその性質によっては単離するのが困難である。また、ヒト組織の多くは入手困難である。したがって、従来のように蛋白質を単離精製する方法では、ヒト蛋白質を全てそろえることは不可能に近い。

[0004]

特平11-346864

一方、ヒト蛋白質の構造情報は、ヒトゲノムDNAに書かれているので、この情報をすべて読み取れば、全ヒト蛋白質の一次構造を推定することができる。ヒトゲノムプロジェクトの目的の一つはここにある。ただ、ゲノム解読の結果得られるのは、DNA配列情報だけであり、蛋白質そのものは得られない。細胞内では、ゲノムの情報はまずmRNAに転写され、mRNAの配列情報を翻訳して蛋白質が合成される。したがって、このmRNAを鋳型にして作製したcDNAが合成できれば、このcDNAを用いて対応する蛋白質も合成することが可能となる。そこで、各種細胞から単離したmRNAを鋳型にして、cDNAを合成し、cDNAの部分塩基配列を決定するいわゆるESTプロジェクトが進行している

[0005]

【発明が解決しようとする課題】

蛋白質の取得を目的とする場合、cDNAに要求される必須要件は、蛋白質の翻訳領域を全て含んでいること、いわゆる完全長cDNAであることである。しかしながら、従来法で合成したcDNAは、完全長である割合は低く、得られたものが完全長かどうかを判定することも困難である。すなわち、ESTとして知られているものの多くは蛋白質の翻訳領域の一部のみ含んでいるcDNA断片である。

[0006]

これに対して、この出願の発明者らは、独自の完全長 c D N A 合成技術を完成させている (Kato, S. et al., Gene 150:243-250, 1994)。そしてこの技術で合成したヒト完全長 c D N A クローンを解析することにより、ヒト蛋白質を完全長 c D N A の形で取得することが可能となった。この技術を用いてヒト完全長 c D N A をすべてクローン化し、ヒト蛋白質バンクを作製することが望まれている

[0007]

また、これまでのヒト疾患に関する研究の結果、ほとんどの病気は何らかの形で遺伝子に異常があるために引き起こされることが明らかになりつつある。これらの病気を治療するためには、異常な遺伝子の替わりに正常な遺伝子を導入する

遺伝子治療が有望視されている。この際も、ヒトの完全長cDNAは、遺伝子治療用の遺伝子源として用いることができる。

[0008]

この出願の発明は、以上のとおりの事情に鑑みてなされたものであって、新規の精製ヒト蛋白質、この蛋白質をコードするDNA断片、このDNA断片の発現ベクター、この発現ベクターにより形質転換された細胞およびこの蛋白質に対する抗体を提供することを課題としている。

[0009]

【課題を解決するための手段】

この出願は、前記の課題を解決するものとして、以下の(1)~(7)の発明を提供する。

- (1) 配列番号1から配列番号10のいずれかのアミノ酸配列を有する精製ヒト蛋白質。
- (2) 前記(1)の蛋白質をコードするDNA断片。
- (3) 前記(1)の蛋白質をコードするヒトcDNAであって、配列番号11から配列番号20のいずれかの塩基配列を有するDNA断片。
- (4) 配列番号21から配列番号30のいずれかの塩基配列からなる前記(3)のD NA断片。
- (5) 前記(2)から(4)のいずれかのDNA断片をインビトロ翻訳あるいは宿主細胞内で発現しうる発現ベクター。
- (6) 前記(5)の発現ベクターによる形質転換体であって、前記(1)の蛋白質を生産しうる形質転換細胞。
- (7) 前記(1)の蛋白質に対する抗体。

[0010]

【発明の実施の形態】

前記発明(1)の蛋白質は、ヒトの臓器、細胞株などから単離する方法、この出願によって提供されるアミノ酸配列に基づき化学合成によってペプチドを調製する方法、あるいは前記発明(2)~(4)のDNA断片を用いて組換えDNA技術で生産する方法などにより取得することができるが、組換えDNA技術で取得する方

法が好ましく用いられる。例えば、前記発明(3)または(4)のDNA断片(cDNA)を有するベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行なうことによりインビトロで蛋白質を発現できる。また翻訳領域を公知の方法により適当な発現ベクターに組換えることにより、大腸菌、枯草菌等の原核細胞や、酵母、昆虫細胞、哺乳動物細胞、植物細胞等の真核細胞で、DNA断片がコードしている蛋白質を大量に発現させることができる。【0011】

前記発明(1)の蛋白質をインビトロ翻訳でDNA断片を発現させて生産させる場合には、例えば前記発明(3)または(4)のDNA断片の翻訳領域を、RNAポリメラーゼプロモーターを有するベクターに組換え、プロモーターに対応するRNAポリメラーゼを含む、ウサギ網状赤血球溶解物や小麦胚芽抽出物などのインビトロ翻訳系に添加すれば、前記発明(1)の蛋白質をインビトロで生産することができる。RNAポリメラーゼプロモーターとしては、T7、T3、SP6などが例示できる。これらのRNAポリメラーゼプロモーターを含むベクターとしては、pKA1、pCDM8、pT3/T7 18、pT7/3 19、pB luescript IIなどが例示できる。

[0012]

前記発明(1)の蛋白質を大腸菌などの微生物でDNA断片を発現させて生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、DNAクローニング部位、ターミネーター等を有する発現ベクターに、例えば前記発明(3)または(4)のDNA断片の翻訳領域を組換えた発現ベクターを作成し、この発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養すれば、このDNA断片がコードしている蛋白質を微生物内で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させれば、任意の領域を含む蛋白質断片を得ることができる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。この融合蛋白質を適当なプロテアーゼで切断することによってこのcDNAがコードする蛋白質部分のみを取得することもできる。大腸菌用発現ベクターとしては、pUC系、pBluescript II、pET発現システム、pGEX発現システムなどが例示できる

[0013]

前記発明(1)の蛋白質を、真核細胞でDNA断片を発現させて生産させる場合には、例えば前記発明(3)または(4)のDNA断片の翻訳領域を、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細胞用発現ベクターに組換え、真核細胞内に導入すれば、前記発明(1)の蛋白質を真核細胞内で生産することができる。発現ベクターとしては、pKA1、pCDM8、pSVK3、pMSG、pSVL、pBKーCMV、pBKーRSV、EBVベクター、pRS、pYES2などが例示できる。また、pIND/V5ーHis、pFLAGーCMV-2、pEGFP-N1、pEGFP-C1などを発現ベクターとして用いれば、Hisタグ、FLAGタグ、GFPなど各種タグを付加した融合蛋白質として発現させることもできる。真核細胞としては、サル腎臓細胞COS7、チャイニーズハムスター卵巣細胞CHOなどの哺乳動物培養細胞、出芽酵母、分裂酵母、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、前記発明(1)の蛋白質を発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など公知の方法を用いることができる。

[0014]

前記発明(1)の蛋白質を原核細胞や真核細胞で発現させたのち、培養物から目的蛋白質を単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、尿素などの変性剤や界面活性剤による処理、超音波処理、酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィーなどがあげられる。

[0015]

前記発明(1)の蛋白質には、配列番号1から配列番号10のアミノ酸配列のいかなる部分アミノ酸配列からなるペプチド断片(5アミノ酸残基以上)も含まれる。これらのペプチド断片は抗体を作製するための抗原として用いることができ

る。また、前記発明(1)の蛋白質の多くは、翻訳された後、細胞内で各種修飾を受ける。したがって、これらの修飾された蛋白質も前記発明(1)の蛋白質の範囲に含まれる。このような翻訳後修飾としては、N末端メチオニンの脱離、N末端アセチル化、糖鎖付加、細胞内プロテアーゼによる限定分解、ミリストイル化、イソプレニル化、リン酸化などが例示できる。

[0016]

前記発明(2)~(4)のDNA断片には、前記(1)の蛋白質をコードするすべての DNAが含まれる。このDNA断片は、化学合成による方法、 c DNAクローニングによる方法、ヒトゲノムライブラリーをスクリーニングする方法などを用いて取得することができる。

[0017]

前記発明(3)または(4)のDNA断片(cDNA)は、例えばヒト細胞由来cD NAライブラリーからクローン化することができる。cDNAはヒト細胞から抽 出したポリ(A)⁺RNAを鋳型として合成する。ヒト細胞としては、人体から手術 などによって摘出されたものでも培養細胞でも良い。cDNAは、岡山-Berg法 (Okayama, H. and Berg, P., Mol. Cell. Biol. 2:161-170, 1982) Gubler-H ffman法 (Gubler, U. and Hoffman, J., Gene 25:263-269, 1983) などいかな る方法を用いて合成してもよいが、完全長クローンを効率的に得るためには、実 施例にあげたようなキャッピング法(Kato, S. et al., Gene 150:243-250, 199 4)を用いることが望ましい。また市販のヒトcDNAライブラリーを用いるこ ともできる。cDNAライブラリーから目的のcDNAをクローン化するには、 この出願によって提供される前記発明(3)または(4)の c D N A (配列番号11か ら30)の任意部分の塩基配列に基づいてオリゴヌクレオチドを合成し、これを プローブとして用いて、公知の方法によりコロニーあるいはプラークハイブリダ イゼーションによるスクリーニングを行えばよい。また、目的とするcDNA断 片の両末端にハイブリダイズするオリゴヌクレオチドを合成し、これをプライマ ーとして用いて、ヒト細胞から単離したmRNAからRT-PCR法により、前 記発明(3)または(4)の c D N A 断片を調製することもできる。

[0018]

前記発明(3)のDNA断片は、配列番号11から20のいずれかの塩基配列を有するcDNAであり、前記発明(4)のDNA断片は、配列番号21から30のいずれかの塩基配列からなるcDNAである。それぞれのクローン番号(HP番号)、cDNAクローンが得られた細胞、cDNAの全塩基数、コードしている蛋白質のアミノ酸残基数をそれぞれ表1にまとめて示した。

[0019]

【表1】

配列番号	HP 番号	細胞	塩基数	アミノ酸残基数
1, 11, 21	HP10098	U937	901	199
2, 12, 22	HP10106	U937	1274	326
3, 13, 23	HP10111	U937	1000	50
4, 13, 23	HP10149	U937	1087	176
5, 15, 25	HP10151	U-2 OS	703	51
6, 16, 26	HP10160	U937	921	190
7, 17, 27	HP10173	HT-1080	584	125
8, 18, 28	HP10178	HT-1080	467	125
9, 19, 29	HP10200	HT-1080	875	176
10, 20, 30	HP10327	KB	470	52

[0020]

なお、配列番号11から30のいずれかの塩基配列に基づいて合成したオリゴ ヌクレオチドプローブを用いて、表1に示したヒト細胞株やヒト組織から作製し たcDNAライブラリーをスクリーニングすることにより、前記発明(3)および(4)のcDNAと同一のクローンを容易に得ることができる。

[0021]

また、一般にヒト遺伝子は個体差による多型が頻繁に認められる。従って配列番号11から30において、1または複数個のヌクレオチドの付加、欠失および/または他のヌクレオチドによる置換がなされているcDNAもこの発明の範囲に含まれる。

[0022]

同様に、これらの変更によって生じる1または複数個のアミノ酸の付加、欠失 および/または他のアミノ酸による置換がなされている蛋白質も、配列番号1か ら10のアミノ酸配列を有するそれぞれの蛋白質の活性を有する限り、この発明 の範囲に含まれる。

[0023]

前記発明(3) および(4)のDNA断片には、配列番号11から30の塩基配列のいかなる部分塩基配列からなるDNA断片(10bp以上)も含まれる。また、センス鎖およびアンチセンス鎖からなるDNA断片もこの範囲に含まれる。これらのDNA断片は遺伝子診断用のプローブとして用いることができる。

[0024]

前記発明(7)の抗体は、前記発明(1)の蛋白質を抗原として用いて動物を免役した後、血清から得ることが出きる。抗原としては配列番号1から10のアミノ酸配列に基づいて化学合成したペプチドや、真核細胞や原核細胞で発現させた蛋白質を用いることが出きる。あるいは、上記の真核細胞用発現ベクターを注射や遺伝子銃によって、動物の筋肉や皮膚に導入した後、血清を採取することによって作製することができる(例えば、特開平7-313187号公報記載の方法)。動物としては、マウス、ラット、ウサギ、ヤギ、ニワトリなどが用いられる。免疫した動物の脾臓から採取したB細胞をミエローマと融合させてハイブリドーマを作製すれば、前記発明(1)の蛋白質に対するモノクローナル抗体を産生することができる。

[0025]

【実施例】

次に実施例を示してこの出願の発明をさらに詳細かつ具体的に説明するが、この出願の発明は以下の例によって限定されるものではない。なお、以下の実施例において、DNAの組換えに関する基本的な操作および酵素反応は、文献("Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989)の記載に方従った。制限酵素および各種修飾酵素は特に記載の無い場合は宝酒造社製のものを用いた。各酵素反応の緩衝液組成、並びに反応条件は付属の説明書に従った。 c DNA合成は文献(Kato, S. et al., Gene 150:243-250, 1994)の記載に従った。

実施例1:cDNAクローニング

cDNAライブラリーとして、ヒト骨肉腫細胞株U-2 OScDNAライブラリー(WO97/33993)、ヒト類表皮癌細胞株KBcDNAライブラリー(WO98/11217)、ヒトフィブロサルコーマ細胞株HT-1080cDNAライブラリー(WO97/33993)、ヒトリンホーマ細胞株U937cDNAライブラリー(WO97/33993)を用いた。個々のライブラリーから完全長cDNAクローンを選択し、その全塩基配列決定を行った。得られたクローン(A)~(J)の詳細は以下のとおりである。

(A) HP10098

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンHP10098のcDNAインサートの全塩基配列を決定したところ、35bpの5 非翻訳領域、600bpのORF(配列番号11)、266bpの3 非翻訳領域からなる構造を有していた(配列番号21)。ORFは199アミノ酸残基(配列番号1)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量21,750よりやや大きい24kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞質に粒状の発現が認められた(実施例4)。

[0026]

また、クローン(A) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号H40208)が登録されていたが、部分配列なのでクローン(A)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(B) HP10106

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンHP10106のcDNAインサートの全塩基配列を決定したところ、130bpの5'非翻訳領域、981bpのORF(配列番号12)、163bpの3'非翻訳領域からなる構造を有していた(配列番号22)。ORFは326アミノ酸残基(配列番号2)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量36,684よりやや大きい41kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞全体に発

[0027]

また、クローン(B) cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA384225)が登録されていたが、部分配列なのでクローン(B)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(C) HP10111

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンHP10111のcDNAインサートの全塩基配列を決定したところ、32bpの5 非翻訳領域、153bpのORF(配列番号13)、815bpの3 非翻訳領域からなる構造を有していた(配列番号23)。ORFは50アミノ酸残基(配列番号3)からなる蛋白質をコードしていた。インビトロ翻訳の結果、ORFから予想される分子量5,547とほぼ同じ6kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞全体に網状の発現が認められた(実施例4)。

[0028]

また、クローン(C)cDNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AL110141)が登録されていたが、部分配列なのでクローン(C)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(D) HP10149

ヒトリンホーマ細胞株U937cDNAライブラリーから得られたクローンHP10149のcDNAインサートの全塩基配列を決定したところ、27bpの5 非翻訳領域、531bpのORF(配列番号14)、529bpの3 非翻訳領域からなる構造を有していた(配列番号24)。ORFは176アミノ酸残基(配列番号4)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量20,734よりやや大きい23kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞全体に認められた(実施例4)。

[0029]

この蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、線虫仮想蛋白質W02A11.2(アクセション番号CAB04889)と類似性を有していた。図1に、クローン(D)がコードするヒト蛋白質と、線虫仮想蛋白質W02A11.2のアミノ酸配列の比較を示す。一はギャップを、*はこの発明の蛋白質と同一アミノ酸残基を、. はこの発明の蛋白質と類似のアミノ酸残基をそれぞれ表す。全領域にわたって、42.5%の相同性を有していた。

[0030]

また、クローン(D) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号T34989)が登録されていたが、部分配列なのでクローン(D)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(E) HP10151

ヒト骨肉腫細胞株U-2 OScDNAライブラリーから得られたクローンHP10151のcDNAインサートの全塩基配列を決定したところ、66bpの5 非翻訳領域、156bpのORF(配列番号15)、481bpの3 非翻訳領域からなる構造を有していた(配列番号25)。ORFは51アミノ酸残基(配列番号5)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量6,031とほぼ同じ6kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、ゴルジ体に局在が認められた(実施例4)。

[0031]

また、クローン(E) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA304503)が登録されていたが、部分配列なのでクローン(E)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(F) HP10160

ヒトリンホーマ細胞株U937DNAライブラリーから得られたクローンHP 10160のcDNAインサートの全塩基配列を決定したところ、203bpの

[0032]

この蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、線虫仮想蛋白質ZK1248.15(アクセション番号AAC71096)と類似性を有していた。図2に、クローン(D)がコードするヒト蛋白質と、線虫仮想蛋白質ZK1248.15のアミノ酸配列の比較を示す。一はギャップを、*はこの発明の蛋白質と同一アミノ酸残基を、. はこの発明の蛋白質と類似のアミノ酸残基をそれぞれ表す。N末端側159アミノ酸残基にわたって、36.5%の相同性を有していた。

[0033]

また、クローン(F) c D N A の塩基配列を用いてG e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号AA304503)が登録されていたが、部分配列なのでクローン(F)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(G) HP10173

ヒトフィブロサルコーマ細胞株HT-1080cDNAライブラリーから得られたクローンHP10173のcDNAインサートの全塩基配列を決定したところ、40bpの5、非翻訳領域、378bpのORF(配列番号17)、166bpの3、非翻訳領域からなる構造を有していた(配列番号27)。ORFは125アミノ酸残基(配列番号7)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量14,190とほぼ同じ15kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞全体に認められた(実施例4)。

[0034]

この蛋白質のアミノ酸配列を用いてプロテインデータベースを検索したところ、線虫仮想蛋白質C04H5.1 (アクセション番号CAB03840) と類似性を有していた。図3に、クローン (D) がコードするヒト蛋白質と、線虫仮想蛋白質C04H5.1のアミノ酸配列の比較を示す。一はギャップを、*はこの発明の蛋白質と同一アミノ酸残基を、. はこの発明の蛋白質と類似のアミノ酸残基をそれぞれ表す。全領域にわたって、35.5%の相同性を有していた。

[0035]

また、クローン(G) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA937773)が登録されていたが、部分配列なのでクローン(G)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(H) HP10178

ヒトフィブロサルコーマ細胞株HT-1080cDNAライブラリーから得られたクローンHP10178のcDNAインサートの全塩基配列を決定したところ、39bpの5、非翻訳領域、378bpのORF(配列番号18)、50bpの3、非翻訳領域からなる構造を有していた(配列番号28)。ORFは125アミノ酸残基(配列番号8)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量13,506よりやや大きい15kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、核あるいは細胞質に局在が認められた(実施例4)。

[0036]

また、クローン(H) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA218581)が登録されていたが、部分配列なのでクローン(H)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(I) HP10200

ヒトフィブロサルコーマ細胞株HT-1080cDNAライブラリーから得られたクローンHP10200のcDNAインサートの全塩基配列を決定したところ、24bpの5、非翻訳領域、531bpのORF(配列番号19)、320

bpの3^{*} 非翻訳領域からなる構造を有していた(配列番号29)。ORFは176アミノ酸残基(配列番号9)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量18,408よりやや大きい24kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞全体に認められた(実施例4)。

[0037]

また、クローン(I) c DNAの塩基配列を用いてGenBankを検索したところ、ESTの中に、90%以上の相同性を有するもの(例えば、アクセション番号AA187416)が登録されていたが、部分配列なのでクローン(I)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

(J) HP10327

ヒト類表皮癌細胞株KBcDNAライブラリーから得られたクローンHP10327のcDNAインサートの全塩基配列を決定したところ、215bpの5、非翻訳領域、159bpのORF(配列番号20)、96bpの3、非翻訳領域からなる構造を有していた(配列番号30)。ORFは52アミノ酸残基(配列番号10)からなる蛋白質をコードしており、インビトロ翻訳の結果、ORFから予想される分子量5,636とほぼ同じ6kDaの翻訳産物が生成した(実施例2)。この蛋白質とGFPとの融合蛋白質は、細胞質に網目状の発現が認められた。(実施例4)。

[0038]

また、クローン(J) c D N A の塩基配列を用いて G e n B a n k を検索したところ、E S T の中に、90%以上の相同性を有するもの(例えば、アクセション番号 A I 0 9 7 0 9 2)が登録されていたが、部分配列なのでクローン(J)がコードする蛋白質と同じ蛋白質をコードしているかどうかは判定できない。

実施例2:インビトロ翻訳による蛋白質合成

実施例1で単離したcDNAを有するプラスミドベクターを用いて、 T_N Tウサギ網状赤血球溶解物キット(プロメガ社製)によるインビトロ転写/翻訳を行なった。この際 $[^{35}S]$ メチオニンを添加し、発現産物をラジオアイソトープでラベルした。いずれの反応もキットに付属のプロトコールに従って行なった。

具体的な方法は次のとおりである。プラスミド 2μ g を、 T_N T ウサギ網状赤血球溶解物 1 2. 5μ 1、緩衝液(キットに付属) 0. 5μ 1、アミノ酸混合液(メチオニンを含まない) 2μ 1、 $[^{35}S]$ メチオニン(アマーシャム社) 2μ 1 (0. 37MB q $/\mu$ 1)、T7RNA ポリメラーゼ 0. 5μ 1、RNasin 2 0 Uを含む総量 25μ 1の反応液中で 30 C、90 分間反応させた。反応液 3μ 1にSDSサンプリングバッファー(125mMトリス塩酸緩衝液、pH6. 8、120mM2 - メルカプトエタノール、2%SDS溶液、0.025% プロモフェノールブルー、20% グリセロール) 2μ 1を加え、95 C 3 分間加熱処理した後、SDS - ポリアクリルアミドゲル電気泳動にかけた。オートラジオグラフィーを行ない、翻訳産物の分子量を求めた。

実施例3: COS 7細胞による発現

[0039]

サル腎臓由来培養細胞COS7は、10%ウシ胎児血清を含むダルベッコ改変イーグル (DMEM) 培地中、5%CO2存在下、37%で培養した。 1×10^5 個のCOS7細胞を6穴プレート (ヌンク社、穴の直径3 cm) に植え、5%CO2存在下、37%で22時間培養した。培地除去後、リン酸緩衝液で細胞表面を洗浄し、さらに50 mMトリス塩酸 (p H 7. 5) を含むDMEM (T DMEM) で再度洗浄した。この細胞に一本鎖ファージ懸濁液 1μ 1、DMEM培地 0。6 m 1、T R A N S F E C T A M T (I B F 社) 3μ 1を懸濁したものを添加し、5%CO2存在下、37%で3時間培養した。サンプル液を除去後、T DMEMで細胞表面を洗浄し、10%ウシ胎児血清含有 DMEMを 1 穴あたり 2 m 1かえ、5%CO2存在下、37%Cにて2 日間培養した。培地を [35S] システインあるいは [35S] メチオニンを含む培地に交換した後、1 時間培養した。遠心

分離によって、培地と細胞を分けたあと、細胞画分の蛋白質をSDS-PAGE にかけた。

実施例4:緑色蛍光蛋白質(GFP)融合蛋白質の発現

EcoRI認識部位を付加した翻訳開始コドンから始まる26merのセンスプライマーとBamHI認識部位をを付加した停止コドンまでを含む26merのアンチセンスプライマーを用い、目的蛋白質をコードするcDNAを鋳型としてPCRにより翻訳領域を増幅した。PCR産物をEcoRIとBamHIで消化し、GFP融合蛋白質発現用ベクターpEGFP-N1 (Clontec社製)のEcoRI-BamHI部位に挿入した。塩基配列を確認した後、得られた融合遺伝子発現ベクターを実施例3に記載の方法によりCOS7細胞にトランスフェクトした。蛍光顕微鏡により緑色蛍光の分布を観察し、目的蛋白質の局在部位を調べた

実施例5:抗体の作製

EcoRI認識部位を付加した翻訳開始コドンから始まる26merのセンスプ ライマーとSal I 認識配列を付加した停止コドンまでを含む26merのアンチ センスプライマーを用い、各cDNAを鋳型としてPCRにより翻訳領域を増幅 した。PCR産物をEcoRIとSalIで消化し、pGEX-5X-1(ファ ルマシア社製)のEcoRIとSa1I部位に挿入した。塩基配列を確認した後 、宿主大腸菌JM109の形質転換を行った。LB培地中で37℃、5時間培養 し、IPTGを最終濃度がO.4mMになるように加え、さらに37℃で4時間 培養した。菌体を遠心により分離し、溶解溶液(50mM Tris-HCl p H7. 5、1mM EDTA、0. 2mMPMF)に溶かし、一度-80℃で凍 結させ融解させた後、超音波破砕を行った。10,000xgで30分遠心し、 上清にグルタチオンセファロース4Bを加え、4℃で1時間インキュベートした 。ビーズを十分洗浄した後、溶出溶液(50mM TrisーHCl pH7.5 、 50 mMグルタチオン)で融合蛋白質を溶出した。得られた融合蛋白質を抗原 として家兔に常法により免疫を行い抗血清を得た。抗血清はまず、40%飽和硫 安沈殿画分をGSTアフィニティーカラムによりGST抗体を除いた。素通り画 分をさらにGST融合蛋白質の抗原カラムにより精製した。

[0040]

【発明の効果】

以上詳しく説明したとおり、この出願によって、新規な精製ヒト蛋白質、これらの蛋白質をコードしているDNA断片、このDNA断片の発現ベクター、この発現ベクターによる形質転換細胞、およびこの蛋白質に対する抗体が提供される。この出願によって提供される蛋白質は、いずれも細胞内で機能している蛋白質と考えられるため、細胞内ターゲット蛋白質として、対応するレセプターやリガンドの検出、新しい低分子医薬のスクリーニングなどに利用できる。またこの蛋白質に対する抗体を作製するための抗原として用いることができる。この出願によって提供されるDNA断片は、遺伝子診断用プローブや遺伝子治療用遺伝子源として用いることができる。また、このDNA断片を用いることにより、この蛋白質を大量に発現することができる。これら遺伝子を導入してこの蛋白質を発現させた細胞は、この蛋白質の修飾型を得るのに利用できる。この出願によって提供される抗体は、この発明の蛋白質の検出、定量、精製などに利用できる。

[0041]

【配列表】

SEQUENCE LISTING

(110) Japan Science and Technology Corporation

<120> ヒト蛋白質とcDNA

<130> NP99461-YS

<140>

<141>

<160> 30

<170> PatentIn Ver. 2.0

<210> 1

⟨211⟩ 199

<212> PRT

<213> Homo sapiens

特平11-346864

<40	0> 1														
Met	Arg	Phe	Arg	Phe	Cys	Gly	Asp	Leu	Asp	Cys	Pro	Asp	Trp	Val	Leu
1				5					10					15	
Ala	Glu	Ile	Ser	Thr	Leu	Ala	Lys	Met	Ser	Ser	Val	Lys	Leu	Arg	Leu
			20					25					30		
													•		
Leu	Cys	Ser	Gln	Val	Leu	Lys	Glu	Leu	Leu	Gl y	Gln	Gly	Ile	Asp	Tyr
		3 5					40					45			
Glu	Lys	Ile	Leu	Lys	Leu	Thr	Ala	Asp	Ala	Lys	Phe	Glu	Ser	Gly	Asp
	50					55					60				
Val	Lys	Ala	Thr	Val	Ala	Val	Leu	Ser	Phe	Ile	Leu	Ser	Ser	Ala	Ala
65					70					7 5					80
Lys	His	Ser	Val	Asp	Gly	Glu	Ser	Leu	Ser	Ser	Glu	Leu	Gln	Gln	Leu
				85					90					95	
Gly	Leu	Pro	Lys	Glu	His	Ala	Ala	Ser	Leu	Cys	Arg	Cys	Tyr	Glu	Glu
			100					105					110		
Lys	Gln	Ser	Pro	Leu	Gln	Lys	His	Leu	Arg	Val	Cys	Ser	Leu	Arg	Met
		115					120					125			
Asn	Arg	Leu	Ala	Gly	Val	Gly	Trp	Arg	Val	Asp	Tyr	Thr	Leu	Ser	Ser
	130					135					140				

特平11-346864

Ser Leu Leu Gln Ser Val Glu Glu Pro Met Val His Leu Arg Leu Glu 145 150 155 160 Val Ala Ala Pro Gly Thr Pro Ala Gln Pro Val Ala Met Ser Leu 165 170 175 Ser Ala Asp Lys Phe Gln Val Leu Leu Ala Glu Leu Lys Gln Ala Gln 180 185 190 Thr Leu Met Ser Ser Leu Gly 195 <210> 2 **<211> 326** <212> PRT <213> Homo sapiens <400> 2 Met Lys Gln Asp Ala Ser Arg Asn Ala Ala Tyr Thr Val Asp Cys Glu 1 5 10 15 Asp Tyr Val His Val Val Glu Phe Asn Pro Phe Glu Asn Gly Asp Ser 20 25 30 Gly Asn Leu Ile Ala Tyr Gly Gly Asn Asn Tyr Val Val Ile Gly Thr 35 40 45

Cys Thr Phe Gln Glu Glu Ala Asp Val Glu Gly Ile Gln Tyr Lys

50 55 60

Thr Leu Arg Thr Phe His His Gly Val Arg Val Asp Gly He Ala Trp
65 70 75 80

Ser Pro Glu Thr Arg Leu Asp Ser Leu Pro Pro Val Ile Lys Phe Cys

85 90 95

Thr Ser Ala Ala Asp Met Lys Ile Arg Leu Phe Thr Ser Asp Leu Gln
100 105 110

Asp Lys Asn Glu Tyr Lys Val Leu Glu Gly His Thr Asp Phe Ile Asn 115 120 125

Gly Leu Val Phe Asp Pro Lys Glu Gly Gln Glu Ile Ala Ser Val Ser

130 135 140

Asp Asp His Thr Cys Arg Ile Trp Asn Leu Glu Gly Val Gln Thr Ala

145 150 155 160

His Phe Val Leu His Ser Pro Gly Met Ser Val Cys Trp His Pro Glu 165 170 175

Glu Thr Phe Lys Leu Met Val Ala Glu Lys Asn Gly Thr Ile Arg Phe
180 185 190

Tyr Asp Leu Leu Ala Gln Gln Ala Ile Leu Ser Leu Glu Ser Glu Gln
195 200 205

特平11-346864

Val Pro Leu Met Ser Ala His Trp Cys Leu Lys Asn Thr Phe Lys Val Gly Ala Val Ala Gly Asn Asp Trp Leu Ile Trp Asp Ile Thr Arg Ser Ser Tyr Pro Gln Asn Lys Arg Pro Val His Met Asp Arg Ala Cys Leu Phe Arg Trp Ser Thr Ile Ser Glu Asn Leu Phe Ala Thr Thr Gly Tyr Pro Gly Lys Met Ala Ser Gln Phe Gln Ile His His Leu Gly His Pro Gln Pro Ile Leu Met Gly Ser Val Ala Val Gly Ser Gly Leu Ser Trp His Arg Thr Leu Pro Leu Cys Val Ile Gly Gly Asp His Lys Leu Leu Phe Trp Val Thr Glu Val

<210> 3

<211> 50

<212> PRT

<213> Homo sapiens

<400> 3 Met Val Leu Gly Ala Asp Ala Val Trp Leu Trp Ile Ala Pro Tyr Gly 1 5 10 15 Gln Leu Cys Pro Gln Gly Arg Met Arg Ile Ala Thr Glu Val Leu Lys 20 25 30 Ser Lys Pro Asn Ser Ser His Trp His Thr Gly Ile Arg Gln Lys Ala 35 40 45 Gly Ser 50 <210> 4 ⟨211⟩ 176 <212> PRT <213> Homo sapiens <400> 4 Met Ala Met Ser Phe Glu Trp Pro Trp Gln Tyr Arg Phe Pro Pro Phe 1 5 10 15 Phe Thr Leu Gln Pro Asn Val Asp Thr Arg Gln Lys Gln Leu Ala Ala

Trp Cys Ser Leu Val Leu Ser Phe Cys Arg Leu His Lys Gln Ser Ser

35 40 45

25

20

30

特平11-346864

Met Thr Val Met Glu Ala Gln Glu Ser Pro Leu Phe Asn Asn Val Lys
50 55 60

Leu Gln Arg Lys Leu Pro Val Glu Ser Ile Gln Ile Val Leu Glu Glu 65 70 75 80

Leu Arg Lys Lys Gly Asn Leu Glu Trp Leu Asp Lys Ser Lys Ser Ser Ser 85 90 95

Phe Leu Ile Met Trp Arg Arg Pro Glu Glu Trp Gly Lys Leu Ile Tyr

100 105 110

Gln Trp Val Ser Arg Ser Gly Gln Asn Asn Ser Val Phe Thr Leu Tyr
115 120 125

Glu Leu Thr Asn Gly Glu Asp Thr Glu Asp Glu Glu Phe His Gly Leu
130 135 140

Asp Glu Ala Thr Leu Leu Arg Ala Leu Gln Ala Leu Gln Gln Glu His

150 155 160

Lys Ala Glu Ile Ile Thr Val Ser Asp Gly Arg Gly Val Lys Phe Phe
165 170 175

<210> 5

<211> 51

<212> PRT

<213> Homo sapiens

<400> 5

Met Phe Arg Ile Glu Gly Leu Ala Pro Lys Leu Asp Pro Glu Glu Met

1

5

10

15

Lys Arg Lys Met Arg Glu Asp Val Ile Ser Ser Ile Arg Asn Phe Leu

20

25

30

Ile Tyr Val Ala Leu Leu Arg Val Thr Pro Phe Ile Leu Lys Lys Leu

35

40

45

Asp Ser Ile

50

<210> 6

<211> 190

<212> PRT

<213> Homo sapiens

<400> 6

Met Ala Ser Arg Gly Lys Thr Glu Thr Ser Lys Leu Lys Gln Asn Leu

1

5

10

15

Glu Glu Gln Leu Asp Arg Leu Met Gln Gln Leu Gln Asp Leu Glu Glu

20

25

30

Cys Arg Glu Glu Leu Asp Thr Asp Glu Tyr Glu Glu Thr Lys Lys Glu

35 40 45

Thr Leu Glu Gln Leu Ser Glu Phe Asn Asp Ser Leu Lys Lys Ile Met
50 55 60

Ser Gly Asn Met Thr Leu Val Asp Glu Leu Ser Gly Met Gln Leu Ala
65 70 75 80

Ile Gln Ala Ala Ile Ser Gln Ala Phe Lys Thr Pro Glu Val Ile Arg

85 90 95

Leu Phe Ala Lys Lys Gln Pro Gly Gln Leu Arg Thr Arg Leu Ala Glu
100 105 110

Met Asp Arg Asp Leu Met Val Gly Lys Leu Glu Arg Asp Leu Tyr Thr

115 120 125

Gln Gln Lys Val Glu Ile Leu Thr Ala Leu Arg Lys Leu Gly Glu Lys

130 135 140

Leu Thr Ala Asp Asp Glu Ala Phe Leu Ser Ala Asn Ala Gly Ala Ile
145 150 155 160

Leu Ser Gln Phe Glu Lys Val Ser Thr Asp Leu Gly Ser Gly Asp Lys

165 170 175

Ile Leu Ala Leu Ala Ser Phe Glu Val Glu Lys Thr Lys Lys
180 185 190

<210> 7 <211> 125 <212> PRT <213> Homo sapiens <400> 7 Met Lys Leu Leu Thr His Asn Leu Leu Ser Ser His Val Arg Gly Val 1 5 10 15 Gly Ser Arg Gly Phe Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile 20 25 30 Cys Pro Val Glu Phe Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys 35 40 45 Val Glu Trp Ser Ala Phe Leu Glu Ala Ala Asp Asn Leu Arg Leu Ile 50 55 60 Gln Val Pro Lys Gly Pro Val Glu Gly Tyr Glu Glu Asn Glu Glu Phe 65 70 75 80

Leu Arg Thr Met His His Leu Leu Leu Glu Val Glu Val Ile Glu Gly
85 90 95

Thr Leu Gln Cys Pro Glu Ser Gly Arg Met Phe Pro Ile Ser Arg Gly
100 105 110

Ile Pro Asn Met Leu Leu Ser Glu Glu Glu Thr Glu Ser

115

120

125

<210> 8

<211> 118

<212> PRT

<213> Homo sapiens

<400> 8

Met Ala Gly Ala Gly Pro Thr Met Leu Leu Arg Glu Glu Asn Gly Cys

1 5 10 15

Cys Ser Arg Arg Gln Ser Ser Ser Ser Ala Gly Asp Ser Asp Gly Glu
20 25 30

Arg Glu Asp Ser Ala Ala Glu Arg Ala Arg Gln Gln Leu Glu Ala Leu

35
40
45

Leu Asn Lys Thr Met Arg Ile Arg Met Thr Asp Gly Arg Thr Leu Val
50 55 60

Gly Cys Phe Leu Cys Thr Asp Arg Asp Cys Asn Val Ile Leu Gly Ser
65 70 75 80

Ala Glu Phe Leu Lys Pro Ser Asp Ser Phe Ser Ala Gly Glu Pro
85 90 95

Arg Val Leu Gly Leu Ala Met Val Pro Gly His His Ile Val Ser Ile
100 105 110

Glu Val Gln Arg Glu Ser Leu Thr Gly Pro Pro Tyr Leu <210> 9 **<211> 176** <212> PRT <213> Homo sapiens <400> 9 Met Ala Ala Arg Gly Arg Arg Ala Glu Pro Gln Gly Arg Glu Ala Pro Gly Pro Ala Gly Gly Gly Gly Gly Ser Arg Trp Ala Glu Ser Gly Ser Gly Thr Ser Pro Glu Ser Gly Asp Glu Glu Val Ser Gly Ala Gly Ser Ser Pro Val Ser Gly Gly Val Asn Leu Phe Ala Asn Asp Gly Ser Phe Leu Glu Leu Phe Lys Arg Lys Met Glu Glu Glu Gln Arg Gln Arg 5

Gln Glu Glu Pro Pro Pro Gly Pro Gln Arg Pro Asp Gln Ser Ala Ala

Ala Ala Gly Pro Gly Asp Pro Lys Arg Lys Gly Gly Pro Gly Ser Thr 100 105 110 Leu Ser Phe Val Gly Lys Arg Arg Gly Gly Asn Lys Leu Ala Leu Lys 115 120 125 Thr Gly Ile Val Ala Lys Lys Gln Lys Thr Glu Asp Glu Val Leu Thr 130 135 140 Ser Lys Gly Asp Ala Trp Ala Lys Tyr Met Ala Glu Val Lys Lys Tyr 145 150 155 160 Lys Ala His Gln Cys Gly Asp Asp Lys Thr Arg Pro Leu Val Lys 165 170 175

<210> 10

<211> 52

<212> PRT

<213> Homo sapiens

<400> 10

Met Thr Asp Thr Glu Asn His Asp Ser Ala Pro Ser Ser Thr Ser Thr

1 5 10 15

Cys Cys Pro Pro Ile Thr Ala Gly Met Gln Leu Lys Asp Ser Leu Gly
20 25 30

Pro Gly Ser Asn Arg Pro Leu Trp Thr Leu Arg Pro Leu His Leu Trp

35

40

45

Val Val Cys Leu

50

<210> 11

<211> 600

<212> DNA

<213> Homo sapiens

<400> 11

atgaggttcc ggttctggg tgatctggac tgtcccgact gggtcctggc agaaatcagc 60 acgctggcca agatgtcctc tgtgaagttg cggctgctct gcagccaggt actaaaggag 120 ctgctgggac aggggattga ttatgagaag atcctgaagc tcacggctga cgccaagttt 180 gagtcaggcg atgtgaaggc cacagtggca gtgctgagtt tcatcctct cagtgcggcc 240 aagcacagtg tcgatggca atccttgtcc agtgaactgc agcagctggg gctgcccaaa 300 gagcacgcgg ccagcctgtg ccgctgttat gaggagaagc aaagcccctt gcagaagcac 360 ttgcgggtct gcagcctacg catgaatagg ttggcaggtg tgggctggc ggtggactac 420 accctgagct ccagcctgct gcaatccgtg gaagagccca tggtgcacct gcggctggag 480 gtggcagctg ccccagggac cccagcccag cctgttgcca tgtccctct agcagacaag 540 ttccaggtcc tcctggcaga actgaagcag gcccagaccc tgatgagctc cctgggctga 600

<210> 12

<211> 981

<212> DNA

<213> Homo sapiens

<400> 12

特平11-346864

atgaagcaag atgcctcaag aaatgctgcc tacactgtgg attgtgaaga ttatgtgcat 60 gtggtagaat ttaatccctt tgagaatggg gattcaggaa acctaattgc atatggtggc 120 aataattatg tggtcattgg cacgtgtacg tttcaggaag aagaagcaga cgttgaaggc 180 attcagtata aaacacttcg aacatttcac catggagtca gggttgatgg catagcttgg 240 agcccagaga ctagacttga ttcattgcct ccagtaatca aattttgtac ttcagctgct 300 gatatgaaaa ttagattatt tacttcagat cttcaggata aaaatgaata taaggtttta 360 gagggccata ccgatttcat taatggtttg gtgtttgatc ccaaagaagg ccaagaaatt 420 gcaagtgtga gtgacgatca cacctgcagg atttggaact tggaaggagt gcaaacagct 480 cattitigtic ticatticic tggcatgagt gtgtgctggc atcctgagga gacttttaag 540 ctaatggttg cagagaagaa tggaacaatc cggttttatg atcttttggc ccaacaggct 600 attitatete tigaateaga acaagigeea tiaatgieag cacaciggig ettaaaaaac 660 accttcaaag ttggagccgt tgcaggaaat gattggttaa tttgggatat tactcggtcc 720 agttatecte aaaataagag acctgtteae atggategag cetgettatt eaggtggtee 780 acaattagtg aaaatctgtt tgcaaccact ggttatcctg gcaaaatggc aagccagttt 840 caaattcatc atttaggaca ccctcagccc atcctcatgg gttctgtagc cgttggatct 900 ggactgtcct ggcatcgaac tctccctctg tgtgtaattg gaggagacca caagctgttg 960 ttttgggtga ctgaagtata a 981

<210> 13

<211> 153

<212> DNA

<213> Homo sapiens

<400> 13

atggtgctgg gtgcagatgc agtgtggctc tggatagcac cttatggaca gttgtgtccc 60 caaggaagga tgagaatagc tactgaagtc ctaaagagca agcctaactc aagccattgg 120 cacacaggca ttagacagaa agctggaagt tga

<210> 14

特平11

_	3	4	6	8	6	4

191	1	\	531
\ /.	1	,	:1.5 I

<212> DNA

<213> Homo sapiens

<400> 14

atggcgatga gtttcgagtg gccgtggcag tatcgcttcc cacccttctt tacgttacaa 60 ccgaatgtgg acactcggca gaagcagctg gccgcctggt gctcgctggt cctgtccttc 120 tgccgcctgc acaaacagtc cagcatgacg gtgatggaag ctcaggagag cccgctcttc 180 aacaacgtca agctacagcg aaagcttcct gtggagtcga tccagattgt attagaggaa 240 ctgaggaaga aagggaacct cgagtggttg gataagagca agtccagctt cctgatcatg 300 tggcggaggc cagaagaatg ggggaaactc atctatcagt gggtttccag gagtggccag 360 aacaactccg tctttaccct gtatgaactg actaatgggg aagacacaga ggatgaggag 420 ttccacggc tggatgaagc cactctactg cgggctctgc aggccctaca gcaggagcac 480 aaggccgaga tcatcactgt cagcgatggc cgaggcgtca agttcttcta g 531

⟨210⟩ 15

⟨211⟩ 156

<212> DNA

<213> Homo sapiens

<400> 15

atgttccgga ttgagggcct cgcgccgaag ctggacccgg aggagatgaa acggaagatg 60 cgcgaggatg tgatctcctc catacggaac tttctcatct acgtggccct cctgcgagtc 120 actccattta tcttaaagaa attggacagc atatga 156

⟨210⟩ 16

⟨211⟩ 573

<212> DNA

<213> H mo sapiens

<400> 16

atgcttcca gaggaaagac agagacaagc aaattaaagc agaatttaga agaacagttg 60 gatagactca tgcaacaatt acaagatctg gaggaatgca gagaggaact tgatacagat 120 gaatatgaag aaaccaaaaa ggaaactctg gagcaactaa gtgaatttaa tgattcacta 180 aagaaaatta tgtctggaaa tatgactttg gtagatgaac taagtggaat gcagctggct 240 attcaggcag ctatcagcca ggcctttaaa accccagagg tcatcagatt gtttgcaaag 300 aaacaaccag gtcagcttcg gacaaggtta gcagagatgg atagagatct gatggtagga 360 aagctggaaa gagacctgta cactcaacag aaagtggaga tactaacagc tcttaggaaa 420 cttggagaga agctgactgc agatgatga gccttcttgt cagcaaatgc aggtgctata 480 ctcagccagt ttgagaaag ctctacagac cttggctctg gagacaaaat tcttgctctg 540 gcaagttttg aggttgaaaa aacaaaaaaa tga

⟨210⟩ 17

⟨211⟩ 378

<212> DNA

<213> Homo sapiens

<400> 17

atgaaactgc ttacccaca tctgctgagc tcgcatgtgc ggggggtggg gtcccgtggc 60

ttcccctgc gcctccaggc caccgaggtc cgtatctgcc ctgtggaatt caaccccaac 120

ttcgtggcgc gtatgatacc taaagtggag tggtcggcgt tcctggaggc ggccgataac 180

ttgcgtctga tccaggtgcc gaaagggccg gttgagggat atgagggagaa tgaggagttt 240

ctgaggacca tgcaccacct gctgctggag gtggaagtga tagagggcac cctgcagtgc 300

ccggaatctg gacgtatgtt ccccatcagc cgcgggatcc ccaacatgct gctgagtgaa 360

gaggaaactg agagttga

<210> 18

⟨211⟩ 354

<212> DNA

<213> Homo sapiens

<400> 18

atggccgag ctggaccgac catgctgcta cgagaagaga atggctgttg cagtcggcgt 60 cagagcagct ccagtgccgg ggattcggac ggagagcgcg aggactcggc ggctgagcgc 120 gcccgacagc agctagaggc gctgctcaac aagactatgc gcattcgcat gacagatgga 180 cggacactgg tcggctgctt cctctgcact gaccgtgact gcaatgtcat cctgggctcg 240 gcgcaggagt tcctcaagcc gtcggattcc ttctctgccg gggagccccg tgtgctgggc 300 ctggccatgg tacccggaca ccacatcgtt tccattgagg tgcagagga gagtctgacc 360 gggcctccgt atctctga

<210> 19

<211> 531

<212> DNA

<213> Homo sapiens

<400> 19

atggctgccc gaggagacc ggcggagcct cagggccgg aggctccggg ccccgcggc 60 ggtggcggtg gcggagccg ttgggctgag tcgggatcgg ggacgtcgcc cgagagcgg 120 gacgaggagg tgtcggcc gggttcgagc ccggtgtcgg gcggcgtgaa cttgttcgcc 180 aacgacggca gcttcctgga gctgttcaag cggaagatgg aggaggagca gcggcagcgg 240 caggaggagc cgcccccggg tccgcagcga cccgaccagt cggccgccgc cgctggcccc 300 ggggatccga agaggaaggg cggtccggc tccacactta gcttcgtgg caaacgcaga 360 ggcgggaaca aactagccct caagacgga atagtagcca agaagcagaa gacggaggat 420 gaggtattaa caagtaaagg tgacgctgg gccaagtaca tggcagaagt gaaaaagtac 480 aaagctcacc agtgcggtga cgatgataaa actcggcccc tggtgaaatg a

<210> 20

⟨211⟩ 159

<212> DNA

<213> Homo sapiens

<400> 20

atgacagaca ccgaaaatca cgactcagcc ccctccagca cctctacctg ttgcccgccg 60 atcacagccg gaatgcagct gaaagattcc ctggggcctg gttccaaccg cccactgtgg 120 actctgaggc ctctgcattt gtgggtggtc tgcctgtga

<210> 21

<211> 901

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (36)..(635)

<400> 21

aaaaagaaat tcccgggctc tggcttcttg gcgcg atg agg ttc cgg ttc tgt 53

Met Arg Phe Arg Phe Cys

1 5

ggt gat ctg gac tgt ccc gac tgg gtc ctg gca gaa atc agc acg ctg 101

Gly Asp Leu Asp Cys Pro Asp Trp Val Leu Ala Glu Ile Ser Thr Leu

10 15 20

gcc aag atg tcc tct gtg aag ttg cgg ctg ctc tgc agc cag gta cta 149

Ala	Lys	Met	Ser	Ser	Val	Lys	Leu	Arg	Leu	Leu	Cys	Ser	Gin	Val	Leu	
		2 5					30					35				
aag	gag	ctg	ctg	gga	cag	ggg	att	gat	tat	gag	aag	atc	ctg	aag	ctc	197
Lys	Glu	Leu	Leu	Gly	Gln	Gly	Ile	Asp	Tyr	Glu	Lys	Ile	Leu	Lys	Leu	
	40					45					50					
acg	gct	gac	gcc	aag	ttt	gag	tca	ggc	gat	gtg	aag	gcc	aca	gtg	gca	245
		Asp														
55		_			60				•	65	-•				70	
gtg	ctg	agt	ttc	atc	ctc	tcc	agt	gCg	gcc	aag	cac	agt	gtc	gat	ggC	293
		Ser														
				75					80					85	- •	
gaa	tcc	ttg	tcc	agt	gaa	ctg	cag	cag	ctg	ggg	ctg	ссс	aaa	gag	cac	341
		Leu														
			90					95					100			
gcg	gcc	agc	ctg	tgc	cgc	tgt	tat	gag	gag	aag	caa	agc	ссс	ttg	cag	389
		Ser														
		105				-	110					115				
aag	cac	ttg	cgg	gtc	tgc	agc	cta	CgC	atg	aat	agg	ttg	gca	ggt	gtg	437
		Leu														
-	120				·	125				_	130		_		•	
	-															
ggC	tgg	cgg	gtø	gac	tac	acc	ctø	2ac	too	ጸውር	cto	cto	caa	tee	gta	485
		Arg									_	_				400
u 1 J	1 - P	u. P	101	vah	TÀT	TIIT	Leu	Der	Sei	Sei	Leu	Leu	GIII	96I	Aqı	

135					140					145					150	
gaa	gag	ссс	atg	gtg	cac	ctg	cgg	ctg	gag	gtg	gca	gct	gcc	cca	ggg	533
Glu	Glu	Pro	Met	Val	His	Leu	Arg	Leu	Glu	Val	Ala	Ala	Ala	Pro	Gly	
				155					160					165		
acc	cca	gcc	cag	cct	gtt	gcc	atg	tcc	ctc	tca	gca	gac	aag	ttc	cag	581
Thr	Pro	Ala	Gln	Pro	Val	Ala	Met	Ser	Leu	Ser	Ala	Asp	Lys	Phe	Gln	
			170					175					180			
gtc	ctc	ctg	gca	gaa	ctg	aag	cag	gcc	cag	acc	ctg	atg	agc	tcc	ctg	629
														Ser		
		185				•	190					195			_	
ggC	tga	ggag	raage	gt g	ttco	aggo	c te	tete	gago	. cgc	eccte	ccc	gta	tggag	rtc	685
Gly		00 0		.0		00				-0-		,		-000	, • •	000
_	200															
	200															
arar	cctc	tor a	acta	ctct	t co	aasa	aca a		taat	tet	2002	tact		****	tggcc	745
acgo		ig a	acig	,0101	i Cg	ggag	gcag		ıggı	····	agga	itgui	ga į	gccc	. tggcc	745
Cara	ctct	~~ ^	ataa	^n~n	+ 00	.000	.a.t.a.a			a+a	4044			. 4	4	005
cgga	CiCi	gg C	CLCC	caga		ccag	cigo		acti	Cic	ισιι	gaga	iac i	ıggu	tcagg	805
-ata	a t -a		++	4		-44-	44		44	-44			_4 4		- 4 4	0.05
gutc	ciga	gg a	cctt	tccc	a gc	атта	cctt	ccc	ττος	ctt	gaaa	ggca	at 1	gttg	gctgt	865
444				-			_									
tttc	ataa	gc a	ggaa	aaat	a aa	caga	agta	taa	agg							901

<210> 22

<211> 1274

符平11-346

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (131)..(1111)

<400> 22

acagcgcgtc gcggcagccc ccaaggaaga ccagcctgcc tctggtcggt tcctggcgct 60

ctgcgtttcg tgaccttgtc cagtagaagg ctatttaatt ttcacaactg cttgaatttt 120

gacatacaag atg aag caa gat gcc tca aga aat gct gcc tac act gtg 169
Met Lys Gln Asp Ala Ser Arg Asn Ala Ala Tyr Thr Val

1 5 10

gat tgt gaa gat tat gtg cat gtg gta gaa ttt aat ccc ttt gag aat 217
Asp Cys Glu Asp Tyr Val His Val Val Glu Phe Asn Pro Phe Glu Asn
15 20 25

ggg gat tca gga aac cta att gca tat ggt ggc aat aat tat gtg gtc 265

Gly Asp Ser Gly Asn Leu Ile Ala Tyr Gly Gly Asn Asn Tyr Val Val

30 35 40 45

att ggc acg tgt acg ttt cag gaa gaa gaa gca gac gtt gaa ggc att 313

Ile Gly Thr Cys Thr Phe Gln Glu Glu Glu Ala Asp Val Glu Gly Ile

50 55 60

cag tat aaa aca ctt cga aca ttt cac cat gga gtc agg gtt gat ggc 361

Glr	Tyr	Lys	Thr	Leu	Arg	Thr	Phe	His	His	Gly	<i>y</i> al	Arg	Val	Asp	Gly	
			65	i			•	70	ļ				7 5	i		
ata	gct	tgg	agc	cca	gag	act	aga	ctt	gat	tca	ttg	cct	cca	gta	atc	409
Ile	Ala	Trp	Ser	Pro	Glu	Thr	Arg	Leu	Asp	Ser	Leu	Pro	Pro	Val	Ile	
		80	t				85					90				
aaa	ttt	tgt	act	tca	gct	gct	gat	atg	aaa	att	aga	tta	ttt	act	tca	457
Lys	Phe	Cys	Thr	Ser	Ala	Ala	Asp	Met	Lys	Ile	Arg	Leu	Phe	Thr	Ser	
	95					100					105					
gat	ctt	cag	gat	aaa	aat	gaa	tat	aag	gtt	tta	gag	ggc	cat	acc	gat	505
Asp	Leu	Gln	Asp	Lys	Asn	Glu	Tyr	Lys	Val	Leu	Glu	Gly	His	Thr	Asp	
110					115					120					125	
ttc	att	aat	ggt	ttg	gtg	ttt	gat	ссс	aaa	gaa	ggc	caa	gaa	att	gca	553
Phe	Ile	Asn	Gly	Leu	Val	Phe	Asp	Pro	Lys	Glu	Gly	Gln	Glu	Ile	Ala	
				130					135					140		
agt	gtg	agt	gac	gat	cac	acc	tgc	agg	att	tgg	aac	ttg	gaa	gga	gtg	601
Ser	Val	Ser	Asp	Asp	His	Thr	Cys	Arg	Ile	Trp	Asn	Leu	Glu	Gly	Val	
			145					150					155			
caa	aca	gct	cat	ttt	gtt	ctt	cat	tct	cct	ggc	atg	agt	gtg	tgc	tgg	649
Gln	Thr	Ala	His	Phe	Val	Leu	His	Ser	Pro	Gly	Met	Ser	Val	Cys	Trp	
		160					165					170				
cat	cct	gag	gag	act	ttt	aag	cta	atg	gtt	gca	gag	aag	aat	gga	aca	697
His	Pro	Glu	Glu	Thr	Phe	Lys	Leu	Met	Val	Ala	Glu	Lys	Asn	Gly	Thr	

1'	75	ì

180

185

atc	cgg	ttt	tat	gat	ctt	ttg	gcc	caa	cag	gct	att	tta	tct	ctt	gaa	745
Ile	Arg	Phe	Tyr	Asp	Leu	Leu	Ala	Gln	Gln	Ala	Ile	Leu	Ser	Leu	Glu	
190					195					200					205	
tca	gaa	caa	gtg	cca	tta	atg	tca	gca	cac	tgg	tgc	tta	aaa	aac	acc	793
Ser	Glu	Gln	Val	Pro	Leu	Met	Ser	Ala	His	Trp	Cys	Leu	Lys	Asn	Thr	
				210					215					220		
ttc	aaa	gtt	gga	gcc	gtt	gca	gga	aat	gat	tgg	tta	att	tgg	gat	att	841
Phe	Lys	Val	Gly	Ala	Val	Ala	Gly	Asn	Asp	Trp	Leu	Ile	Trp	Asp	Ile	
			225	•				230					235			
			٠													
act	cgg	tcc	agt	tat	cct	caa	aat	aag	aga	cct	gtt	cac	atg	gat	cga	889
Thr	Arg	Ser	Ser	Tyr	Pro	Gln	Asn	Lys	Arg	Pro	Val	His	Met	Asp	Arg	
		240					245	•				250	-		-	
gcc	tgc	tta	ttc	agg	tgg	tcc	aca	att	agt	gaa	aat	ctg	ttt	gca	acc	937
Ala	Cys	Leu	Phe	Arg	Trp	Ser	Thr	Ile	Ser	Glu	Asn	Leu	Phe	Ala	Thr	
	255					260					265					
act	ggt	tat	cct	ggc	aaa	atg	gca	agc	cag	ttt	caa	att	cat	cat	tta	985
Thr	Gly	Tyr	Pro	Gly	Lys	Met	Ala	Ser	Gln	Phe	Gln	Ile	His	His	Leu	
270					275					280					285	
gga	cac	cct	cag	ссс	atc	ctc	atg	ggt	tct	gta	gcc	gtt	gga	tct	gga	1033
Gly	His	Pro	Gln	Pro	Ile	Leu	Met	Gly	Ser	Va l	Ala	Val	Gly	Ser	Gly	
				290					295					300		

ctg tcc tgg cat cga act ctc cct ctg tgt gta att gga gga gac cac 1081 Leu Ser Trp His Arg Thr Leu Pro Leu Cys Val Ile Gly Gly Asp His 305 310 315

aag ctg ttg ttt tgg gtg act gaa gta taa agtgttttct gtaccttaga 1131

Lys Leu Leu Phe Trp Val Thr Glu Val

320 325

ttcacaaact ttgtattttt agtacatatt ttgaagaatt tctatagtac atattttgaa 1191

gaatttttat atcaaatata ccgtatactt tagaaaatgt ctcagttgct tttattaaat 1251

aaaatgttga tggtttgaaa aat 1274

<210> 23

<211> 1000

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (33)..(185)

<400> 23

cttttcgagg taggagtcga ctcctgtgag gt atg gtg ctg ggt gca gat gca 53

Met Val Leu Gly Ala Asp Ala

1

5

gtg tgg ctc tgg ata gca cct tat gga cag ttg tgt ccc caa gga agg 101 Val Trp Leu Trp Ile Ala Pro Tyr Gly Gln Leu Cys Pro Gln Gly Arg 10 15 20 atg aga ata gct act gaa gtc cta aag agc aag cct aac tca agc cat 149 Met Arg Ile Ala Thr Glu Val Leu Lys Ser Lys Pro Asn Ser Ser His 25 30 35 tgg cac aca ggc att aga cag aaa gct gga agt tga aatggtggag 195 Trp His Thr Gly Ile Arg Gln Lys Ala Gly Ser 40 45 50 tccaacttgc ctggaccagc ttaatggttc tgctcctggt aacgttttta tccatggatg 255 acttgcttgg gtaaggacat gaagacagtt cctgtcatac cttttaaagg tacatgtttt 315 attgatgtta acgttaattg attgagctac tgttagtgat gattttaaaa ttaaagcaga 375 tgggaatete tetgagaaag aaaatggaga ttaatettaa aetgaaacag tagttgggaa 435 atcttttaga aatccaccta ttactaccta ttggtaaagg agattaaatt tctacaggta 495 tggagagtcg gcttgactac actgtgtgga gcaagtttta aagaagcaaa ggactcagaa 555 ttcatgattg aagaaatgca ggcagacctg ttatcctaaa ctaggtgagt cagcttttgg 615

tacatgtgat gattttcagt gtaaccaatg atgtaatgat tctgccaaat gaaatataat 675

gatateactg taaaaccgtt ecattitgat tetgaggita etetaciaac aageateaca 735

cattigiatt tigeectgat taatatgitg gettegetti eagggittit aatgaceaca 795

acaageaage atgeagetta etgettgaaa gggtettgee teaceeaage tagagtgeag 855

tggeettiga agettactae ageeteaaac tietgggete aagtgateet eageeteeca 915

gtggtettig tagaetgeet gatggagtet eatggeacaa gaagattaaa acagtgiete 975

caattitaat aaattitige aatee 1000

<210> 24

<211> 1087

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (28)..(558)

<400> 24

agcttccggg tttcctgggc tactacg atg gcg atg agt ttc gag tgg ccg tgg 54

Met Ala Met Ser Phe Glu Trp Pro Trp

1 5

cag tat cgc ttc cca ccc ttc ttt acg tta caa ccg aat gtg gac act 102 Gln Tyr Arg Phe Pro Pro Phe Phe Thr Leu Gln Pro Asn Val Asp Thr

10					15					20					25	
Cgg	cag	aag	cag	ctg	gcc	gcc	tgg	tgc	tcg	ctg	gtc	ctg	tcc	ttc	tgc	150
		Lys														
				30					35					40		
cgc	ctg	cac	aaa	cag	tcc	agc	atg	acg	gtg	atg	gaa	gct	cag	gag	agc	198
Arg	Leu	His	Lys	Gln	Ser	Ser	Met	Thr	Val	Met	Glu	Ala	Gln	Glu	Ser	
			45					50					55			
ccg	ctc	ttc	aac	aac	gtc	aag	cta	cag	cga	aag	ctt	cct	gtg	gag	tcg	246
Pro	Leu	Phe	Asn	Asn	Val	Lys	Leu	Gln	Arg	Lys	Leu	Pro	Val	Glu	Ser	
		60					65					70				
atc	cag	att	gta	tta	gag	gaa	ctg	agg	aag	aaa	ggg	aac	ctc	gag	tgg	294
Ile	Gln	Ile	Val	Leu	Glu	Glu	Leu	Arg	Lys	Lys	Gly	Asn	Leu	Glu	Trp	
	7 5		-			80					85	-				
		aag														342
	Asp	Lys	Ser	Lys		Ser	Phe	Leu	He		Trp	Arg	Arg	Pro		
90					95					100					105	
	4			-+-	-4-	4-4		4	. 4.4	4	_	_ 4	_			000
		ggg														390
Giu	11 þ	Gly	Lys		116	1 yr	GIN	1rp		Ser	Arg	Ser	ыу		ASN	
				110					115					120		
aac	tcc	gtc	ttt	acc	ctø	tat	gaa	cto	act	aat	ggg	gaa	gar	aca	gag	438
		Val														-100
			125	_		- •		130			5		135			

gat gag gag ttc cac ggg ctg gat gaa gcc act cta ctg cgg gct ctg 486 Asp Glu Glu Phe His Gly Leu Asp Glu Ala Thr Leu Leu Arg Ala Leu 140 145 150

cag gcc cta cag cag gag cac aag gcc gag atc atc act gtc agc gat 534

Gln Ala Leu Gln Gln Glu His Lys Ala Glu Ile Ile Thr Val Ser Asp

155 160 165

ggc cga ggc gtc aag ttc ttc tag cagggacctg tctcccttta cttcttacct 588

Gly Arg Gly Val Lys Phe Phe

170

175

tgactccacc agactcaaaa ggactccagt cctgaaggct gggacctggg gatgggtttc 708

tcacacccca tatgtctgtc ccttggatag ggtgaggctg aagcaccagg gagaaaatat 768

gtgcttcttc tcgccctacc tcctttccca tcctagactg tccttgagcc agggtctgta 828

aacctgacac tttatatgtg ttcacacatg taagtacata cacacatgcg cctgcagcac 888

atgcttctgt ctcctcctcc tcccacccct ttagctgctg ttgcctccct tctcaggctg 948

gtgctggatc cttcctaggg gatgggggaa gccctggctg caggcagcct tccaggcaat 1008

atgaagatag gaggcccacg ggcctggcag tgagaggtgt ggccccacac cgatttatga 1068

tattaaaatc tcaactccc

1087

⟨210⟩ 25

<211> 703

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (67)..(222)

<400> 25

cgggcgcgag gcggccaccg tggagagcag agcgcggcgg ctggaagctg ctaagtcaga 60

gccgcg atg ttc cgg att gag ggc ctc gcg ccg aag ctg gac ccg gag 108

Met Phe Arg Ile Glu Gly Leu Ala Pro Lys Leu Asp Pro Glu

1 5 10

gag atg aaa cgg aag atg cgc gag gat gtg atc tcc tcc ata cgg aac 156
Glu Met Lys Arg Lys Met Arg Glu Asp Val Ile Ser Ser Ile Arg Asn
20 25 30

ttt ctc atc tac gtg gcc ctc ctg cga gtc act cca ttt atc tta aag 204
Phe Leu Ile Tyr Val Ala Leu Leu Arg Val Thr Pro Phe Ile Leu Lys

35 40 45

aaa ttg gac agc ata tga agacaggaca tcacatatga atgcacgata 252 Lys Leu Asp Ser Ile 50

tgaagagcct ggttacagtt tcgactcctc tctgcaagtg aataggccca gaaaggtgta 312

agagactctt tgaatggaca taaaattctg cttgttaaga acaagtttgg ctctggtaac 372

tgaccttcaa agctaaaata taaaactatt tgggaagtat gaaacgatgt ctcgtgatct 432

ggtgtaccct tatccctgtg acgtttggcc cctgacaata ctggtataat tgtaaataat 492

gtcaaactcc gttttctagc aagtattaag ggagctgtgt ctgaaatggc actgtcttgt 552

cagtcatttc tgtttacctt tttcttctgc ccagagtgta tttgtgaaga gtctcttata 612

ttatgttttg tggaaatcag cacacaacca caatgacatt taagcacagg atcattatta 672

gtctatgttt ttaataaaca tatcaattaa g

<210> 26

<211> 921

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (204)..(776)

<400> 26

ctc	ccc	ggc ;	gcgg	tccg	cc a	ggcc	agtg	c cc	tcag	catc	tcc	accc	cga ;	ggtg	gtttga	60
act [.]	ttga	gcc	tttt	gtag	tc c	tgatı	gaat	a at	t t ca	tttt	cct	caag	ttt :	atga	cactcg	120
gaa	cgtc	aag :	aact	ggag	gt t	tgtg	caat	t tg:	agacı	cggt	Cgg	cact	gtg	cagaį	gatcag	180
agta	acta	aga ;	gaca	gaga	tt a:	aa a	tg g	ct t	cc a	ga gį	ga a:	ag a	ca g	ag a	ca agc	233
						Me	et A	la S	er A	rg G	ly L	ys Ti	hr G	lu T	hr Ser	
							1				5				10	
aaa	tta	aag	cag	aat	tta	gaa	gaa	cag	ttg	gat	aga	ctc	atg	caa	caa	281
Lys	Leu	Lys	Gln	Asn	Leu	Glu	Glu	Gln	Leu	Asp	Arg	Leu	Met	Gln	Gln	
				15					20					25		
								•								
tta	caa	gat	ctg	gag	gaa	tgc	aga	gag	gaa	ctt	gat	aca	gat	gaa	tat	329
Leu	Gln	Asp	Leu	Glu	Glu	Cys	Arg	Glu	Glu	Leu	Asp	Thr	Asp	Glu	Tyr	
			30					35		2			40			
gaa	gaa	acc	aaa	aag	gaa	act	ctg	gag	caa	cta	agt	gaa	ttt	aat	gat	377
Glu	Glu	Thr	Lys	Lys	Glu	Thr	Leu	Glu	Gln	Leu	Ser	Glu	Phe	Asn	Asp	
		45					50					55				
tca	cta	aag	aaa	att	atg	tct	gga	aat	atg	act	ttg	gta	gat	gaa	cta	425
Ser	Leu	Lys	Lys	Ile	Met	Ser	Gly	Asn	Met	Thr	Leu	Val	Asp	Glu	Leu	
	60	_•	_•			65	- •				70		- •			
agt	gga	atg	cag	ctg	gct	att	cag	gca	gct	atc	agc	cag	gcc	ttt	aaa	473
Ser	Gly	Met	Gln	Leu	Ala	Ile	Gln	Ala	Ala	Ile	Ser	Gln	Ala	Phe	Lys	
75					80					85					90	

acc	cca	a ga	ggto	ato	aga	ttg	ttt	gca	aag	aaa	caa	сса	ggt	cag	ctt	521
Thr	Pro	Gli	ı Val	Ιlε	Arg	Leu	Phe	Ala	Lys	Lys	Gln	Pro	Gly	/ Glr	Leu	
				95	;				100					105	5	
cgg	aca	agg	tta	gca	gag	atg	gat	aga	gat	ctg	atg	gta	gga	aag	ctg	569
Arg	Thr	Arg	. Leu	Ala	Glu	Met	Asp	Arg	Asp	Leu	Met	Val	Gly	Lys	Leu	
			110					115					120	ı		
												. •				
gaa	aga	gac	ctg	tac	act	caa	cag	aaa	gtg	gag	ata	cta	aca	gct	ctt	617
Glu	Arg	Asp	Leu	Tyr	Thr	Gln	Gln	Lys	Val	Glu	Ile	Leu	Thr	Ala	Leu	
		125					130					135				
			gga													665
Arg		Leu	Gly	Glu	Lys		Thr	Ala	Asp	Asp	Glu	Ala	Phe	Leu	Ser	
	140					145					150					
				_												
			ggt													713
	ASN	Ala	Gly	діа		Leu	Ser	GIn	Phe		Lys	Val	Ser	Thr	-	
155					160					165					170	
ctt	aac.	tot	~~1	~2.0	000	a++			- - -		_ 4		_			504
			gga													761
Leu	dı y	Sei	Gly		Lys	116	Leu			Ala	Ser	Pne	GIU		Glu	
				175					180					185		
ลลล	ara	222	222	tas	cata	atac	200 0	nast	t == t =		++	+	4 4	4 4		010
Lys			aaa	rga	ca ig	guge	ag d	agul	ıgıd	a Ca	ııga	LUAC	all	.0118	iaig	816
		133	190													
			TOO													

taaatggtgt ctttcttctg gggttttcag ttattgcaaa gaaatgaaga gattctggaa 876

atgcatcaat aacctaagaa aaagcgacat aaaaatatac ttatg

921

<210> 27

<211> 584

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (41)..(418)

<400> 27

ttttttccgg ttccggcctg gcgagagttt gtgcggcgac atg aaa ctg ctt acc 55

Met Lys Leu Leu Thr

1 5

cac aat ctg ctg agc tcg cat gtg cgg ggg gtg ggg tcc cgt ggc ttc 103 His Asn Leu Leu Ser Ser His Val Arg Gly Val Gly Ser Arg Gly Phe

10 15 20

ccc ctg cgc ctc cag gcc acc gag gtc cgt atc tgc cct gtg gaa ttc 151

Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile Cys Pro Val Glu Phe
25 30 35

aac ccc aac ttc gtg gcg cgt atg ata cct aaa gtg gag tgg tcg gcg 199 Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys Val Glu Trp Ser Ala

		40					45					50				
ttc	ctg	gag	gcg	gcc	gat	aac	ttg	cgt	ctg	atc	cag	gtg	ccg	aaa	ggg	247
Phe	Leu	Glu	Ala	Ala	Asp	Asn	Leu	Arg	Leu	Ile	Gln	Val	Pro	Lys	Gly	
	55					60					65					
ccg	gtt	gag	gga	tat	gag	gag	aat	gag	gag	ttt	ctg	agg	acc	atg	cac	295
Pro	Val	Glu	G1 y	Tyr	Glu	Glu	Asn	Glu	Glu	Phe	Leu	Arg	Thr	Met	His	
70					7 5					80					85	
cac	ctg	ctg	ctg	gag	gtg	gaa	gtg	ata	gag	ggc	acc	ctg	cag	tgc	ccg	343
His	Leu	Leu	Leu	Glu	Val	Glu	Val	Ile	Glu	Gly	Thr	Leu	Gln	Cys	Pro	
				90					95					100		
gaa	tct	gga	cgt	atg	ttc	ссс	atc	agc	cgc	ggg	atc	ссс	aac	atg	ctg	391
Glu	Ser	Gly	Arg	Met	Phe	Pro	Ile	Ser	Arg	Gly	Ile	Pro	Asn	Met	Leu	
			105					110					115			
ctg	agt	gaa	gag	gaa	act	gag	agt	tga	ttgt	gcca	agg (gcca	agtti	tt		438
Leu	Ser	Glu	Glu	Glu	Thr	Glu	Ser									
		120					125									
tctt	gtta	itg a	ctgt	tgtat	tt t1	tgtt	gato	: tat	acco	etgt	ttco	gaat	ttc 1	tgccg	gtgtgt	498
atco	ccaa	icc c	ttga	accca	na tg	acac	caaa	cac	agtg	ttt	ttga	agcto	cgg 1	tatta	tatat	558

584

ttttttctca ttaaaggttt aaaacc

<210> 28

(211)	> 46	7														
(212)	> DN	A														
(213)	> Ho	mo s	аріе	ns												
(220)	>															
(221)	> CD	S														
(222)	> (4	0)	(417	')												
(400)	> 28	3														
tttag	ggaa	igt 1	tgaaa	iggco	c ag	gagga	ggco	tco	gggc	aa a	itg g	cc g	ga g	gct g	ga	54
										M	et A	la (ly A	la (i y	
											1				5	
ccg a	acc	atg	ctg	cta	cga	gaa	gag	aat	ggc	tgt	tgc	agt	cgg	cgt	cag	102
Pro 1	Thr	Met	Leu	Leu	Arg	Glu	Glu	Asn	Gly	Cys	Cys	Ser	Arg	Arg	Gln	
				10	-				15					20		
agc a	agc	tcc	agt	gcc	ggg	gat	tcg	gac	gga	gag	cgc	gag	gac	tcg	gcg	150
Ser :	Ser	Ser	Ser	Ala	Gly	Asp	Ser	Asp	Gly	Glu	Arg	Glu	Asp	Ser	Ala	
			25					30					35			
gct	gag	cgc	gcc	cga	cag	cag	cta	gag	gcg	ctg	ctc	aac	aag	act	atg	198
Ala	Glu	Arg	Ala	Arg	Gln	Gln	Leu	Glu	Ala	Leu	Leu	Asn	Lys	Thr	Met	
		40					45					50				
cgc	att	cgc	atg	aca	gat	gga	cgg	aca	ctg	gtc	ggc	tgc	ttc	ctc	tgc	246
Arġ	Ile	Arg	Met	Thr	Asp	Gly	Arg	Thr	Leu	Val	Gly	Cys	Phe	Leu	Cys	
	55					60					65					

act gac cgt gac tgc aat gtc atc ctg ggc tcg gcg cag gag ttc ctc 294 Thr Asp Arg Asp Cys Asn Val Ile Leu Gly Ser Ala Gln Glu Phe Leu 70 **7**5 80 85 aag ccg tcg gat tcc ttc tct gcc ggg gag ccc cgt gtg ctg ggc ctg 342 Lys Pro Ser Asp Ser Phe Ser Ala Gly Glu Pro Arg Val Leu Gly Leu 90 95 100 gcc atg gta ccc gga cac cac atc gtt tcc att gag gtg cag agg gag 390 Ala Met Val Pro Gly His His Ile Val Ser Ile Glu Val Gln Arg Glu 105 110 115 agt ctg acc ggg cct ccg tat ctc tga ccacgatggc gcttaccttt 437 Ser Leu Thr Gly Pro Pro Tyr Leu 120 125 cagacttcat taaacttatg accgaatggg 467 <210> 29 <211> 875 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (25)..(555)

<400	> 29)														
cttt	gcgc	gg (cacci	tggcg	ga ca	aa a	ıtg g	gctg	cc c	ga g	gg a	iga (gg g	gcg g	ag	51
						ì	let /	la A	la /	rg (Gly A	rg A	rg /	la (lu	
							1				5				•	
cct	cag	ggc	cgg	gag	gct	ccg	ggc	ссс	gcg	ggc	ggt	ggc	ggt	ggc	ggg	99
Pro	Gln	Gly	Arg	Glu	Ala	Pro	Gly	Pro	Ala	Gly	Gly	Gly	Gly	Gly	Gly	
10					15					20					25	
agc	cgt	tgg	gct	gag	tcg	gga	tcg	ggg	acg	tcg	ссс	gag	agc	ggg	gac	147
Ser	Arg	Trp	Ala	Glu	Ser	Gly	Ser	Gly	Thr	Ser	Pro	Glu	Ser	Gly	Asp	
				30					35					40		
gag	gag	gtg	tcg	ggc	gcg	ggt	tcg	agc	ccg	gtg	tcg	ggc	ggç	gtg	aac	195
Glu	Glu	Val	Ser	Gly	Ala	Gly	Ser	Ser	Pro	Val	Ser	Gly	Gly	Val	Asn	
			4 5					50					55			
														-		
ttg	ttc	gcc	aac	gac	ggc	agc	ttc	ctg	gag	ctg	ttc	aag	cgg	aag	atg	243
Leu	Phe	Ala	Asn	Asp	Gly	Ser	Phe	Leu	Glu	Leu	Phe	Lys	Arg	Lys	Met	
		60					65					70				
gag	gag	gag	cag	cgg	cag	cgg	cag	gag	gag	ccg	ссс	ccg	ggt	ccg	cag	291
Glu	Glu	Glu	Gln	Arg	Gln	Arg	Gln	Glu	Glu	Pro	Pro	Pro	Gly	Pro	Gln	
	7 5					80					85					
cga	ссс	gac	cag	tcg	gcc	gcc	gcc	gct	ggc	ссс	ggg	gat	ccg	aag	agg	339
Arg	Pro	Asp	Gln	Ser	Ala	Ala	Ala	Ala	Gly	Pro	Gly	Asp	Pro	Lys	Arg	

105

100

90

95

aag	ggc	ggt	ccg	ggc	tcc	aca	ctt	agc	ttc	gtg	ggc	aaa	cgc	aga	ggc	387
Lys	Gly	Gly	Pro	Gly	Ser	Thr	Leu	Ser	Phe	Val	Gly	Lys	Arg	Arg	Gly	
				110					115					120		
							٠									
ggg	aac	aaa	cta	gcc	ctc	aag	acg	gga	ata	gta	gcc	aag	aag	cag	aag	435
Gly	Asn	Lys	Leu	Ala	Leu	Lys	Thr	Gly	Ile	Val	Ala	Lys	Lys	Gln	Lys	
			125			,		130					135			
														aag		483
Thr	Glu		Glu	Val	Leu	Thr		Lys	Gly	Asp	Ala	Trp	Ala	Lys	Tyr	
		140					145					150				
												_				
														gat		531
меι	155	GIU	vai	Lys	Lys	1 y r	Lys	BIA	HIS	GIN	_	GIY	ASP	Asp	ASP	
	199					100					165					
aaa	act	Cgg	ccc	ctg	gtg	aaa	tga	CCC	ecto	ec c	ccaco	etgeo	c ai	tggCC	tggg	585
Lys							-6							- 20	-000	
170					175	- •										
acto	tctg	cg a	tgta	cata	a ct	attt	aatg	cag	cggc	agc	ggcg	gacag	rcc 1	tccc	tgaga	645
ggac	ttaa	aa g	caga	agga	a ac	cgag	atgo	ttc	ccgc	agc	cgtg	ggace	at t	ctcc	aggac	705
tctt	tttt	ta c	cttg	agca	c tt	gcct	cgtg	aga	cttc	ata	gaac	agtg	gt t	tact	gtccc	765
cccc	ttct	ca c	ctcc	tcat	t ct	ctct	ggct	ctt	tctg	tct	tcct	ctto	tc a	ccct	cctcc	825
ctcc	cctt	ag c	catc	actt	c tg	ggaa	gtaa	aga	actt	gac	ttag	tgcc	gg			875

<210> 30 <211> 470 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (216)..(374) <400> 30 cttagtcgtg tgtacatcat tgggaatgga gggaaataaa tgactggatg gtcgctgctt 60 tttaagtttc aaattgacat tccagacaag cggtgcctga gcccgtgcct gtcttcagat 120 cttcacagca cagttcctgg gaaggtggag ccaccagcct ctccttgaat aactgggaga 180 233 tgaaacagga agctctatga cacacttgat cgaat atg aca gac acc gaa aat Met Thr Asp Thr Glu Asn 5 1 cac gac tca gcc ccc tcc agc acc tct acc tgt tgc ccg ccg atc aca 281 His Asp Ser Ala Pro Ser Ser Thr Ser Thr Cys Cys Pro Pro Ile Thr 20 15 10 gcc gga atg cag ctg aaa gat tcc ctg ggg cct ggt tcc aac cgc cca 329

35

Ala Gly Met Gln Leu Lys Asp Ser Leu Gly Pro Gly Ser Asn Arg Pro

30

25

ctg tgg act ctg agg cct ctg cat ttg tgg gtg gtc tgc ctg tga 374

Leu Trp Thr Leu Arg Pro Leu His Leu Trp Val Val Cys Leu

40

45

50

tattttggtc atgggctggt ctggtcggtt tcccatttgt ctggccagtc tctatgtgtc 434

ttaatccctt gtccttcatt aaaagcaaaa ctaaag

470

【図面の簡単な説明】

【図1】

蛋白質HP10149のアミノ酸配列と線虫仮想蛋白質W02A11.2のアミノ酸配列を比較した図である。

【図2】

蛋白質HP10160のアミノ酸配列と線虫仮想蛋白質ZK1248.15のアミノ酸配列を比較した図である。

【図3】

蛋白質HP10173のアミノ酸配列と線虫仮想蛋白質C04H5.1のアミノ酸配列を比較した図である。

【書類名】

図面

【図1】

HP10149	<u>ਜ</u>	MAMBFEWPWQYRFPFFFTLQPNVDTRQKQLAAWCSLVLSFCRLHKQSSMTVMEA + ++++ ++++++ + + + ++ ++ ++ ++ ++ ++ +
W02A11	ન	1" maaatttasafkwpwqydfppfftiqksintkdkqleawarividyaqhnkiysidiaea
HP10149	53	HP10149 55 QESPLFNNVKLQRKLPVESIQIVLEBLRKKGNLEWLDKSKSSFLIMWRRPEEWGKLIYQW
W02A11	61"	61" itselfnnoklnrrlstdgvnfvloylegkkliæftdngrirfhifwrrpdvmanmiygw
HP10149	115'	HP10149 115' VSRSGQNNSVFTLYELTNGRDTEDERFHGLDEATLLRALQALQQEHKAEIITV-SDGRGV

121" AVENAFINTPLTLYRITHGDDTTNESFHMLEREILAKALTCLZEGRRAQLANIGGDNEGV I.D HP10149 174' KFF 181" W02A11 W02A11

HP10160 ZK1248	1	1. Magrgktetskikonleegidrimoololeecreeldtdeyeetkketleolsefndsi. * .****
HP10160		61' KKIMBGNMTLVDELBGMQLALGAAFRPEVIRLFAKKQPGQLRTRLAKMDRDLMVG
ZK1248	26"	56" erloggdvsliddltatklairtaiskafktprimalfagkhtgllreklmmtetnyrsq
HP10160	121	HP10160 121' KLERDLYTQQKVEILTALRKLGEKLTADDEAFLSANAGAILSQFEKVSTDLGSGDKILAL
ZK1248	116"	116" KMPKQGYLERKFFILMALRRLEBTLTEDERRFLSDRLETPEFQLIRANANRLFSGNVT
HP10160	181	HP10160 181' ASFEVERTRK
ZK1248	174"	ZK1248 174" SPVFRVQIMASPKKPKKVRLDDKTENVSPPWKAWWHTEKKRKFYTNDKTKKSLWDHPNTR

1 · Malltenilebenvrgvgbrofplrloatevricpvefnpnfvarmiprvembafleaadm * * * * * *** *** *** HP10173

1" MKLEVHNEMSBRELKNVEVGYPLMLVVKQFVEKDIEFDRDMTIVMLDRIGYEALIVAAAA C04H5

61" VNQSDRIPREKPEKWDELTDEQLRVFHHLLANIDVIDGELICPETKTVFPIRDGIPNMLK 61' lrliq-vpropvegyer-nesflrtmhhllleveviegtlocpesgrafpisrgipnmll ***** *** HP10173 C04H5

HP10173 119' SEEFIES

CO4H5 121" VDAEK

3

出証特2000-3113198

【書類名】 要約書

【要約】

【課題】 精製ヒト蛋白質、この蛋白質をコードしている完全長cDNAを含む DNA断片、このDNA断片の発現ベクター、この発現ベクターによる形質転換 細胞およびこの蛋白質に対する抗体を提供する。

【解決手段】 配列番号1から10のいずれかのアミノ酸配列を有する精製ヒト蛋白質、配列番号11から20のいずれかの塩基配列を有するDNA断片、このDNA断片の発現ベクター、この発現ベクターによる形質転換細胞、およびこの蛋白質に対する抗体。

【選択図】 なし

出願人履歴情報

識別番号

[396020800]

1. 変更年月日 1998年 2月24日

[変更理由] 名称変更

住 所 埼玉県川口市本町4丁目1番8号

氏 名 科学技術振興事業団