THE MACROECONOMIC IMPLICATIONS OF THE AI ECONOMY

Pablo Guerrón Quintana¹ and Tomoaki Mikami² and Jaromir Nosal¹

¹Boston College ²Bank of Japan

Boston College Macro-Labor-Al Workshop

AI AND ECONOMIC ACTIVITY

- Al transformative innovation of our time
 - o potential importance multitude of economic activities
 - o we are still in the process of determining how broad is the impact

AI AND ECONOMIC ACTIVITY

- Al transformative innovation of our time
 - o potential importance multitude of economic activities
 - o we are still in the process of determining how broad is the impact
- Quantitative impact?
 - o localized to technical applications? tech sector?
 - how does it spill over to aggregate economy?
 some industry estimates: 7% (GS) and 14% (PwC) over next decade
 - o capital and labor allocation across sectors

AI AND ECONOMIC ACTIVITY

- Al transformative innovation of our time
 - o potential importance multitude of economic activities
 - o we are still in the process of determining how broad is the impact
- Quantitative impact?
 - o localized to technical applications? tech sector?
 - how does it spill over to aggregate economy?
 some industry estimates: 7% (GS) and 14% (PwC) over next decade
 - o capital and labor allocation across sectors
- Use: quantitative macro model
 - $\circ \ \ parameterized \ input-output \ linkages$
 - model and calibrate role of AI

WHAT IS SPECIAL ABOUT AI?

- Many things, some of them modeled in literature
 - automation and task replacement, skill-biased technical change
 Acemoglu & Autor (2011), Acemoglu & Restrepo (2018, 2020), ...
- Our focus: Al in marketing
 - customer base management, acquisition, management, product design, advertising

WHAT IS SPECIAL ABOUT AI?

- Many things, some of them modeled in literature
 - automation and task replacement, skill-biased technical change
 Acemoglu & Autor (2011), Acemoglu & Restrepo (2018, 2020), ...
- Our focus: Al in marketing
 - customer base management, acquisition, management, product design, advertising
- Current/future use in these applications?
 - customer support improvements of 14%-34%
 Brynjolfsson et al. (2023)
 - \circ gen-Al could lead to 30%-50% increase in productivity in customer service Bamberger et al. (BCG 2023)
 - organizations utilizing generative AI in marketing, sales, product development, and service operations
 Chui et al. (McKinsey 2023)
 - multiple marketing applications explored in industry reviewed in Ma, Sun (2020), Verma et al. (2021), Haleem et al. (2022)

Nvidia CEO Jensen Huang Said, "This Is the Beginning of a New World" Thanks to Artificial Intelligence (AI). 1 Stock to Buy If He's Right

Generative Al could raise global GDP by 7%

Published on 05 APR 2023 Topic: ARTIFICIAL INTELLIGENCE Goldman Sachs

By Danny Vena - Apr 16, 2024 at 3:09PM

Generative AI can streamline time-consuming tasks.

Microsoft has been working behind the scenes to develop digital helpers.

▲ Motley Fool Issues Bare "All In" Ray Δler

FINANCIAL TIMES

myFT

Advertising (+ Add to myFT

AI advertising start-up valued at \$4bn after fundraising

The Brandtech Group will use funds to disrupt industry with machine-generated content

and artificial intelligence

CIO IOURNAL

At Moderna, OpenAI's GPTs Are **Changing Almost Everything**

'People literally talk about how AI is going to cure diseases someday. and I think this is a very meaningful first step,' said OpenAI CEO Sam Altman

up to 14% higher in AI - the equivalent of trillion - making it the biggest commercial opportunity in today's fast changing economy.

Increase in AI Productivity

- Setup: multi-sector model with customer markets
 - customer base crucial for generating sales
 - endogenously accumulated and managed using marketing services (Al sector 1)
 - Al impacts productivity in marketing

Increase in AI Productivity

- Setup: multi-sector model with customer markets
 - o customer base crucial for generating sales
 - endogenously accumulated and managed using marketing services (Al sector 1)
 - Al impacts productivity in marketing
- Study effect of increase in marketing productivity
 - $\circ~10\%$ increase in productivity in Al-service sector $\rightarrow~6\%$ increase in aggregate GDP
 - o customer market friction drives more than half of the response, I-O the rest
 - large spillover effect of customer market friction:
 small marketing sector (20% of VA) but large aggregate effects
 Bai, Storesletten, Ríos-Rull (2024) demand shocks → productivity shocks
 - \circ reallocation of labor towards traditional sectors ($-4.4\% \rightarrow +1.5\%$)

Model: Flow of Goods

Model: Friction and Prices

PRODUCTION

- ullet Sector j production Cobb-Douglas: $z_j F(k_j, l_j, \{x_{jm}\})$
 - $\circ x_{jm}$ intermediate use of sector m output in sector j
 - o productivity $\ln z_{jt} = (1 \rho_z^j) \ln z_j^* + \rho_z^j \ln z_{jt-1} + \varepsilon_{jt}$
- Marginal cost v given factor prices and productivity:

$$v_{jt} \equiv \min_{k,\ell} \left\{ w_t \ell_{jt} + r_t k_{jt} + v_{jt} x_{jjt} + \sum_{j} p_{mt} x_{jmt} \mid z_{jt} F(\cdot) = 1 \right\}$$

Intermediate Producers

- Customer market friction based on double-sided search and matching Drozd and Nosal (2012)
- Mass 1 of intermediate producers
 - \circ each with customer base H_j , and marketing capital m_j
 - \circ producers need customer base to sell goods: sales $d_j \leq H_j$
 - o marketing helps get new customers: $H_{jt} = (1 \delta_H)H_{jt-1} + \frac{m_j}{\sum_j \bar{m}_j}h_t$
 - \circ h_t is the mass of searching retailers
- Marketing services a_j accumulate marketing capital

$$m_{jt} = (1 - \delta_m^j) m_{jt-1} + a_{jt} - \Psi_j(m_{jt-1}, a_{jt})$$

Intermediate Producers

• Producers maximize the present value of discounted profits

$$\Pi_{jt} = (q_{jt} - v_{jt})d_{jt} - v_{1t}a_{jt}$$

subject to

$$\rightarrow m_{jt} = (1 - \delta_m) m_{jt-1} + a_{jt} - \Psi(m_{jt-1}, a_{jt})$$

$$\rightarrow H_{jt} = (1 - \delta_H)H_{jt-1} + \frac{m_{jt}}{\sum_i \bar{m}_{jt}}h_t$$

$$\rightarrow d_{jt} \leq H_{jt}$$

RETAILERS

- ullet Retailers h search for producers at cost $\chi v_1 h$
 - \circ undirected search $h \to \text{probabilities } \pi_i$
 - $\circ\,$ matching consistent with producer problem: buys H_j from j

$$H_{jt} = (1 - \delta_H)H_{jt-1} + h_t \pi_j$$

• In equilibrium

$$\pi_j = \frac{\bar{m}_j}{\sum_j \bar{m}_j}$$

• Marketing services a_{jt} , h_t produced by sector impacted by AI (Sector 1)

Retailers: Search

• Measure of searching retailers endogenously determined by

$$\sum_{j} \pi_{jt} J_{jt} \le \chi v_{1t} \qquad \text{(with equality when } h > 0\text{)}$$

where

$$J_{jt} = \max\{0, p_{jt} - q_{jt}\} + (1 - \delta_H)\mathbb{E}_t[\Omega_{t,t+1}J_{jt+1}]$$

 p_j : retail price

 q_j : wholesale price

Wholesale Prices: Nash Bargaining

- Producer and retailer bargain over the wholesale price (q_j)
- ullet At each date and state, the price q_j satisfies

$$q_j \in \arg\max_q J_{jt}(q)^{1-\theta} V_{jt}(q)^{\theta}$$

value of the match to retailer

$$J_{jt} = \max\{0, p_{jt} - q\} + (1 - \delta_H) \mathbb{E}_t[\Omega_{t,t+1} J_{jt+1}]$$

value of the match to the producer

$$V_{jt} = \max\{0, q - v_{jt}\} + (1 - \delta_H)\mathbb{E}_t[\Omega_{t,t+1}V_{jt+1}]$$

Result

$$q_j = \theta p_{jt} + (1 - \theta)v_{jt}$$

Households

Maximize expected discounted lifetime utility:

$$U = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(c_t, \ell_t) \right]$$

• Aggregate sectoral goods y_i into composite $G(\{y_i\})$:

$$G(\{y_j\}) = \left(\sum_{j} \omega_j^{\frac{1}{\gamma}}(y_j)^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

- Composite good used for consumption and investment: $c_t + i_t = G(\{y_i\})$
- Capital accumulation with adjustment cost ϕ :

$$k_t = (1 - \delta)k_{t-1} + i_t - \phi(i_t, k_{t-1})$$

 Budget constraint includes income from labor, capital, profits, and bonds

- Industry information at the 3-digit level and group industries in 3 sectors
 - services impacted by AI in marketing (Sector 1)
 - other services (Sector 2)
 - o the rest (Sector 3)
- Idea: industries exposed to AI, related to marketing/management services
 - o use Al Industry Exposure measure from Felten et al. (2021)
 - o abilities exposed to AI (based on survey) ightarrow occupations ightarrow 4-digit exposure
 - \circ 4-digit \rightarrow 3-digit using labor compensation weights
 - select highest index marketing/management services

- Industry information at the 3-digit level and group industries in 3 sectors
 - services impacted by AI in marketing (Sector 1)
 - other services (Sector 2)
 - the rest (Sector 3)
- Idea: industries exposed to AI, related to marketing/management services
 - o use Al Industry Exposure measure from Felten et al. (2021)
 - o abilities exposed to AI (based on survey) ightarrow occupations ightarrow 4-digit exposure
 - \circ 4-digit \rightarrow 3-digit using labor compensation weights
 - select highest index marketing/management services
- Baseline Calibration (20% of aggregate value added)
 - Publishing industries, except internet (includes software)
 - o Data processing, internet publishing, and other information services
 - Computer systems design services
 - Miscellaneous professional, scientific, and technical services
 - Management of companies and enterprises

- Industry information at the 3-digit level and group industries in 3 sectors
 - services impacted by AI in marketing (Sector 1)
 - other services (Sector 2)
 - the rest (Sector 3)

Alternative Calibration

- Publishing industries, except internet (includes software)
- Motion picture and sound recording industries
- Broadcasting and telecommunication
- o Data processing, internet publishing, and other information services
- o Computer systems design and related services
- o Miscellaneous professional, scientific, and technical services
- Management of companies and enterprises
- Administrative and support services

- Industry information at the 3-digit level and group industries in 3 sectors
 - o services impacted by AI in marketing (Sector 1)
 - other services (Sector 2)
 - the rest (Sector 3)

Alternative Calibration

- Publishing industries, except internet (includes software)
- Motion picture and sound recording industries
- Broadcasting and telecommunication
- Data processing, internet publishing, and other information services
- Computer systems design and related services
- o Miscellaneous professional, scientific, and technical services
- Management of companies and enterprises
- Administrative and support services

Conservative Calibration

CALIBRATION

Weights in demand aggregator (PCE): NIPA and PCE Bridge tables

$$\left(\sum_{j} \omega_{j}^{\frac{1}{\gamma}}(y_{j})^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}}$$

• Factor shares: 'use tables' of the I-O accounts from BEA

$$F(k_j, l_j, \{x_m^j\}) = k_{jt}^{\alpha_k^j} l_{jt}^{\alpha_l^j} \prod_m x_{jmt}^{\alpha_m^j}$$

- ullet BEA-BLS Integrated Industry-level Production Accounts o Solow residuals
- Sectoral PPI: BEA's use tables

Marketing friction

$$\circ \ m_{jt} = (1 - \delta_m^j) m_{jt-1} + a_{jt} - \Psi_j(m_{jt-1}, a_{jt})$$

- makes retail prices less volatile than wholesale prices
- adjustment cost to match the volatility of PPI to CPI in aggregate data
- $\delta_m^j \leftarrow$ marketing expenditures/sales of 7%

QUANTITATIVE MODEL: SPILLOVERS

- Spillovers in the model due to customer market friction
- Essential element of output (sales)
 - $\circ z_j F(k_j, l_j, \{x_m^j\})$ production
 - $\circ \ H_{jt} = rac{m_j}{\sum_i m_j} h_t$ customers

QUANTITATIVE MODEL: SPILLOVERS

- Spillovers in the model due to customer market friction
- Essential element of output (sales)
 - $\circ z_j F(k_j, l_j, \{x_m^j\})$ production
 - \circ $H_{jt}=rac{m_j}{\sum_j m_j}h_t$ customers
- ullet z_1 shock increases efficiency of customer acquisition in all sectors
 - \rightarrow to sell more, need $k_j, l_j, \{x_m^j\} \uparrow$
 - \rightarrow short run in Sector 1: $k, l \downarrow$, long run: $l \downarrow$
 - \rightarrow output in all sectors goes up
 - ightarrow output in Sector 1 by less than implied by just the productivity shock

- 1% positive productivity shock in Sector 1
- → Large impact on Sector 2-3 output

- 1% positive productivity shock in Sector 1
- → Relocation of factors from Sector 1

- 1% positive productivity shock in Sector 1
- → Customer market responsible for spillovers

Baseline

NO CUSTOMER MARKET

- 1% positive productivity shock in Sector 1
- → Input-output increases impact of customer market

LONG-RUN IMPACT: PERMANENT AI SHOCK

• 10% permanent productivity shock in AI service Sector

Long-run Impact: Permanent AI Shock

• 10% permanent productivity shock in AI service Sector

Long-run Impact: Permanent AI Shock

• 10% permanent productivity shock in Sector 1

Long-run Impact: Permanent AI Shock

• 10% permanent productivity shock in Sector 1

• Aggregate GDP effects: Baseline calibration

Variable	Baseline	No I-O	No Customer Market	No I-O No CM
rGDP	5.9	3.3	2.5	0.3
$rGDP_1$	15.8	12.0	14.1	11.1
$rGDP_2$	5.8	3.1	2.3	0.1
$rGDP_3$	5.6	3.1	2.2	0.1
rGDP/l	5.9	3.3	2.5	0.3
$rGDP_1/l_1$	21.1	19.5	13.9	10.1
$rGDP_2/l_2$	4.3	1.4	2.3	0.2
$rGDP_3/l_3$	4.0	1.5	2.2	0.2

- Aggregate GDP effects: Baseline calibration
- → Significant impact of both network and customer market effects

Variable	Baseline	No I-O	No Customer Market	No I-O No CM
rGDP	5.9	3.3	2.5	0.3
$rGDP_1$	15.8	12.0	14.1	11.1
$rGDP_2$	5.8	3.1	2.3	0.1
$rGDP_3$	5.6	3.1	2.2	0.1
rGDP/l	5.9	3.3	2.5	0.3
$rGDP_1/l_1$	21.1	19.5	13.9	10.1
$rGDP_2/l_2$	4.3	1.4	2.3	0.2
$rGDP_3/l_3$	4.0	1.5	2.2	0.2

- Aggregate GDP effects: Baseline calibration
- → Significant impact of both network and customer market effects
- \rightarrow No I-O linkages, no customer market \rightarrow small impact [Acemoglu (2024)]

Variable	Baseline	No I-O	No Customer Market	No I-O No CM
rGDP	5.9	3.3	2.5	0.3
$rGDP_1$	15.8	12.0	14.1	11.1
$rGDP_2$	5.8	3.1	2.3	0.1
$rGDP_3$	5.6	3.1	2.2	0.1
rGDP/l	5.9	3.3	2.5	0.3
$rGDP_1/l_1$	21.1	19.5	13.9	10.1
$rGDP_2/l_2$	4.3	1.4	2.3	0.2
$rGDP_3/l_3$	4.0	1.5	2.2	0.2

- Aggregate GDP effects: Baseline calibration
- → Significant impact of both network and customer market effects
- ightarrow No I-O linkages, no customer market ightarrow small impact [Acemoglu (2024)]
- → Labor productivity goes up across sectors

Variable	Baseline	No I-O	No Customer Market	No I-O No CM
rGDP	5.9	3.3	2.5	0.3
$rGDP_1$	15.8	12.0	14.1	11.1
$rGDP_2$	5.8	3.1	2.3	0.1
$rGDP_3$	5.6	3.1	2.2	0.1
rGDP/l	5.9	3.3	2.5	0.3
$rGDP_1/l_1$	21.1	19.5	13.9	10.1
$rGDP_2/l_2$	4.3	1.4	2.3	0.2
$rGDP_3/l_3$	4.0	1.5	2.2	0.2

- Aggregate GDP effects: Baseline calibration
- → Consumption, investment, wages go up
- $\,\rightarrow\,$ Relocation of labor, capital driven by customer markets

Variable	Baseline	No I-O	No Customer Market	No I-O No CM
\overline{c}	5.8	3.1	2.5	0.3
i	6.5	3.8	2.5	0.3
w	5.8	3.1	2.5	0.3
l_1	-4.4	-6.2	0.1	0.9
l_2	1.5	1.6	0.0	0.0
l_3	1.5	1.6	0.0	0.0
k_1	1.2	-3.4	2.6	1.3
k_2	7.4	4.7	2.4	0.3
k_3	7.4	4.7	2.4	0.3

Conclusions

- Multi-sector model with I-O and customer market friction
 - calibrated input-output structure
 - customer market friction implies strong spillover effect of AI shock
 - consistent with findings on the impact of TV marketing on sales
 Kim (2022) TV introduction impacts sales by 3-4%

Other predictions

- labor, capital reallocation away from AI sector
- spillover of labor productivity

• Other outcomes and potential questions

- \circ speed of transition \leftarrow depends on marketing friction
- effect on income distribution and labor reallocation: capital and labor shares
- flexible and tractable framework