Кросс-валидация для выявления и предотвращения overfitting

Курс «Искусственные нейронные сети» Аббакумов В.Л.

Источники

- Данная презентация в основном является переводом презентации
- Andrew W. Moore

- Исходный текст (на английском) можно скачать по адресу
- http://www.cs.cmu.edu/~awm/tutorials

О термине overfitting

- Мне неизвестен удачный перевод этого термина...
- Наиболее точным представляется «чрезмерная подгонка»
- В данной презентации под overfitting'ом будет пониматься
- Использование чрезмерно сложной модели для описания данных

Рассмотрим задачу регрессии

Подгонка многочленами разных степеней – выберите модель

Рассмотрим следующие данные

Модель 1: линейная регрессия

Модель 2: квадратичная регрессия

Модель 3: линейный сплайн

Какую модель выбрать?

Идея 1: «научный» подход

- Надо выбрать ту из них, которая наилучшим образом подгоняет данные.
- То есть ту, у которой наименьшая средняя ошибка.
- Или наименьшая средняя квадратичная ошибка.

Критерий качества

- Сумма модулей ошибок или
- Сумма квадратов ошибок

В этом случае

- Лучшей будет сплайн
- На втором месте квадратичная модель
- На третьем месте линейная модель

Уточняющий вопрос

 Почему линейная модель не может подгонять данные лучше, чем квадратичная?

Проблема

- Используются одни и те же данные
- Сначала для подгонки модели
- (то есть для вычисления параметров модели)
- Потом для оценки качества модели.

Например

- Портной научился хорошо шить костюмы для Смита.
- Пока он шьет для Смита все хорошо.
- Но если он будет шить для Джонса по тем же лекалам, что и для Смита, результат может быть намного хуже.

Идея 2: что будет «потом»?

- Зачем нужна модель?
- Чтобы успешно предсказывать будущие наблюдения.
- Чтобы для нового значения х предсказать значение Y с маленькой погрешностью.

- Наилучшей будет та модель, которая лучше всех будет предсказывать.
- То есть описывать (подгонять) новые данные.

Проблема

• У нас нет будущих значений...

• Они появятся потом...

• И будет уже поздно...

Проблема решаема

• У нас нет будущих значений...

• Так сделаем их из прошлых!

• Отберем часть наблюдений и объявим их «будущими»

Метод тестового множества

- Случайным образом выберем 30% всех наблюдений и назовем их «тестовой выборкой».
- Остальные 70% наблюдений назовем «обучающей выборкой».

Интерпретация

- Обучающая выборка прошлое
- Тестовая выборка будущие наблюдения.

- По наблюдениям из обучающей выборки построим модель.
- Проверим модель на тестовой выборке.

Обучающая и тестовая выборки

Линейная регрессия по обучающей выборке

Найдем ошибки на тестовом множестве

• Сумма квадратов ошибок на тестовом множестве равна 2.4

Квадратичная регрессия

• Сумма квадратов ошибок на тестовом множестве равна 0.9

Линейный сплайн

• Сумма квадратов ошибок на тестовом множестве равна 2.2

Обсуждение метода тестового множества

- Достоинства
- - очень просто реализуется;
- - понятен.

Обсуждение метода тестового множества

- Недостатки
- Расточителен: при построении модели отбрасывается 30% данных
- Если данных мало, как распределятся точки между обучающей и тестовой выборками? Дело случая. А это влияет на результат оценивания качества метода.

- Другими словами.
- Оценка качества модели с помощью тестового множества имеет большую дисперсию

Метод валидации посредством исключенных наблюдений (leave one out validation)

- Пусть у нас имеется п точек.
- Предыдущую процедуру проводим п раз.
- Каждый раз тестовое множество состоит из одной точки, каждый раз новой.
- За n шагов перебираем все точки множества.

 Посчитаем среднее значение квадратов ошибок методом валидации посредством исключенных наблюдений.

Проверим линейную регрессионную модель

Сейчас тестовая выборка – красная точка

Временно исключаем ее из рассмотрения

По оставшимся точкам подбираем модель

Определяем ошибку на тестовой выборке

Таким образом перебираем все точки

Результат для линейной регрессии

• Среднее значение квадратов ошибок оказалось равно 2.2

 Посчитаем среднее значение квадратов ошибок методом валидации посредством исключенных наблюдений.

Проверим квадратичную регрессионную модель

Результат для квадратичной регрессии

• Среднее значение квадратов ошибок оказалось равно 0.962

 Посчитаем среднее значение квадратов ошибок методом валидации посредством исключенных наблюдений.

Проверим модель линейный сплайн.

Результат для линейного сплайна

• Среднее значение квадратов ошибок оказалось равно 3.3

Метод к-кратной валидации

- Случайным образом разобьем выборку на к одинаковых частей.
- В рассматриваемом примере к=3, точки из разных частей будем отмечать красным, синим и зеленым цветом.

Получим следующее разбиение

•	Начнем	опять	с линейной	регрессии
---	--------	-------	------------	-----------

Валидация проводится в к этапов.

• Первый этап.

- Первая часть тестовая выборка.
- Все остальные наблюдения обучающая выборка.

- Считаем сумму квадратов ошибок для точек из тестового множества.
- Определяем обучающую выборку и тестовую выборку заново.

Второй этап.

- Вторая часть тестовая выборка.
- Все остальные наблюдения обучающая выборка.

- Считаем сумму квадратов ошибок для точек из тестового множества.
- Определяем обучающую выборку и тестовую выборку заново.

Третий этап.

- Третья часть тестовая выборка.
- Все остальные наблюдения обучающая выборка.

- Осталось сосчитать среднее значение квадратов ошибок.
- Оно оказалось равно 2.05

• В примере было к=3

• Если в другой задаче значение к будет больше, продолжаем дальше, до к-ой тестовой выборки

- Проведем валидацию для квадратичной регрессионной модели
- См рисунок на следующем слайде.

 среднее значение квадратов ошибок оказалось равно 1.11

- Проведем валидацию для линейного сплайна.
- См рисунок на следующем слайде.

• среднее значение квадратов ошибок оказалось равно 2.93

Где точка баланса?

