Solutions to selected practice problems

- 1. Let A be a set, and let S(x) be a statement depending on a free variable x (and no other free variables) where x ranges over A.
 - (i) Find all sets A for which the implication

$$(\forall x \in A \ S(x)) \Rightarrow (\exists x \in A \ S(x))$$

is true, regardless of the statement S(x)

(ii) Now find all sets A for which the implication

$$(\exists x \in A \quad S(x)) \Rightarrow (\forall x \in A \quad S(x))$$

is true, regardless of the statement S(x).

Solution: (i) This implication is true for all $S(x) \iff A$ is non-empty. Indeed, the statement $\forall x \in A$ S(x) asserts that S(x) is true for every $x \in A$, while $\exists x \in A$ S(x) means that S(x) is true for at least one $x \in A$. Obviously, the first statement implies the second as long as A has at least one element, that is, as long as A is non-empty. On the other hand, if A is empty, then $\forall x \in A$ S(x) is true, no matter what S(x) is while $\exists x \in A$ S(x) is false, no matter what S(x) is, so the implication $(\forall x \in A \mid S(x)) \Rightarrow (\exists x \in A \mid S(x))$ is false in this case.

- (ii) This implication is true for all $S(x) \iff |A| \le 1$, that is, A is empty or has one element. Indeed, as we already said, if $A = \emptyset$, then $\exists x \in A$ S(x) is always false and $\forall x \in A$ S(x) is always true, so the implication in (ii) is true. If |A| = 1, the statements $\exists x \in A$ S(x) and $\forall x \in A$ S(x) are equivalent, so again the implication in (ii) is true. Finally, if $|A| \ge 2$, we can always find a statement S(x) for which the implication in (ii) is false. For instance, fix some element $a \in A$, and let S(x) be the statement x = a. Then $\exists x \in A$ S(x) is true (since S(a) is true), but $\forall x \in A$ S(x) is false since by assumption A has at least one element b besides a, and S(b) is false.
 - **3.** Let $\{f_n\}$ be the Fibonacci sequence defined as follows:

$$f_1 = f_2 = 1$$
 and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 3$.

Use induction to prove the following identities:

(i)
$$\sum_{i=1}^{n} f_i = f_{n+2} - 1$$
 for all $n \in \mathbb{N}$

(ii)
$$\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$$
 for all $n \in \mathbb{N}$

Solution: (i) Base case n = 1:

We have
$$f_3 = f_1 + f_2 = 2$$
, so $\sum_{i=1}^{1} f_i = f_1 = 1 = 2 - 1 = f_3 - 1$.

Induction step: Assume that $\sum_{i=1}^{n} f_i = f_{n+2} - 1$ for some n. Adding f_{n+1} to both sides and observing that $f_{n+2} + f_{n+1} = f_{n+3}$ (by the recursive definition), we get $\sum_{i=1}^{n+1} f_i = f_{n+2} - 1 + f_{n+1} = f_{n+3} - 1 = f_{(n+1)+2} - 1$, as desired.

(ii) Base case
$$n = 1$$
: $\sum_{i=1}^{1} f_i^2 = 1^2 = 1 \cdot 1 = f_1 f_2$

Induction step: Assume that $\sum_{i=1}^{n} f_i^2 = f_n f_{n+1}$ for some n. Adding f_{n+1}^2 to both sides, we get $\sum_{i=1}^{n+1} f_i^2 = f_n f_{n+1} + f_{n+1}^2 = f_{n+1} (f_n + f_{n+1}) = f_{n+1} f_{n+2} = f_{n+1} f_{(n+1)+1}$, as desired.

6. Let $a, b, c \in \mathbb{Z}$, and assume that $c \mid ab$. Is it always true that $c \mid a$ or $c \mid b$? If the answer is yes, prove it; if the answer is no, give a specific counterexample.

Solution: By Euclid's lemma we know that the statement is true if c is prime; however, it is false in general – for instance, take a = b = 2 and c = 4. Then $c \mid ab$, but $c \nmid a$ and $c \nmid b$.

7. Let $m, n, a, b \in \mathbb{Z}$ be such that

$$am + bn = 3$$
.

List all natural numbers which are possible values of gcd(a, b).

For every number you listed, show that this number is indeed a possible value of gcd(a, b) by giving a specific example. For all other natural numbers prove that they cannot equal gcd(a, b).

Answer: 1 and 3.

Solution: 1. As in HW#5.6 let $L_{a,b}$ denote the set $\{ax + by \mid x, y \in \mathbb{Z}\}$, and let let d = gcd(a, b). By the result of HW#5.6 we know that $L_{a,b} = d\mathbb{Z}$, that is, elements of $L_{a,b}$ are precisely the multiples of d. On the other hand, the assumption in our problem is that 3 is an element of $L_{a,b}$. Combining these two facts, we deduce that 3 is a multiple of d or, equivalently, $d \mid 3$. Since we also know that d > 0, we deduce that d = 1 or d = 3.

2. It remains to show that 1 and 3 are possible values of gcd(a,b) by providing specific examples. Indeed, if we set a=b=1, m=1, n=2, then gcd(a,b)=1 and am+bn=3. If we set a=b=3, m=1, n=0, then gcd(a,b)=3 and am+bn=3.