CSC 339 – Theory of Computation Fall 2023-2024

1. Introduction

Outline

- What is automata theory?
- Computation
- Automaton
- Different kinds of automata
- Finite automata
- Pushdown automata
- Turing machines
- Time complexity of computation problems

What is Automata Theory?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can and cannot do
 - The *theory of computation*
- Computability vs. Complexity

Alan Turing (1912-1954)

(A pioneer of automata theory)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
- The Turing test!

Theory of Computation: A Historical Perspective

_	1930s	 Alan Turing studies Turing machines Decidability Halting problem 	
	1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages 	
	1969	Cook introduces "intractable" problems or "NP-Hard" problems	
	1970-	Modern computer science: compilers, computational & complexity theory evolve	5

Finite Automata

- Some Applications
 - Software for designing and checking the behavior of digital circuits
 - Lexical analyzer of a typical compiler
 - Software for scanning large bodies of text (e.g., web pages) for pattern finding
 - Software for verifying systems of all types that have a finite number of state (communication/network protocol)

Finite Automata: Examples

• On/Off switch

• Modeling recognition of the word "then"

Different Kinds of Automata

Automata are distinguished by the temporary memory

• Finite Automata: No temporary memory

• Pushdown Automata: Stack

• Turing Machines: Random access memory

Turing Machine is the most powerful computational model known

Question: Are there computational problems that a Turing Machine cannot solve?

Answer: Yes (there are unsolvable problems)

Time Complexity of Computational Problems

NP-complete problems

Believed to take exponential time to be solved

P problems

Solved in polynomial time