$\begin{array}{c} \text{TITLE} \\ \text{TO BE DETERMINED} \end{array}$

by

John L Waczak

APPROVED BY SUPERVISORY COMMITTEE	D:
David Lary, Chair	
Person 2	
Person 3	
Person 4	

Copyright \bigcirc 2012

John L Waczak

All rights reserved

This thesis class file

is dedicated to my students,

who suffered without a proper one

until the present time.

$\begin{array}{c} \text{TITLE} \\ \text{TO BE DETERMINED} \end{array}$

by

JOHN L WACZAK, BS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN PHYSICS

THE UNIVERSITY OF TEXAS AT DALLAS ${\rm May} \ 2023$

ACKNOWLEDGMENTS

Update required!

December 2022

TITLE

TO BE DETERMINED

 ${\it John~L~Waczak,~PhD}$ The University of Texas at Dallas, 2023

Supervising Professor: David Lary, Chair

 ${\bf Update\ required!}$

TABLE OF CONTENTS

ACKNOWLEDGMENTS	V
ABSTRACT	V
LIST OF FIGURES	ix
LIST OF TABLES	
CHAPTER 1 AUTONOMOUS SENSING	
1.1 Autonomous Hyperspectral Imaging	
1.2 Walking Robot and Hovercraft	
CHAPTER 2 SUPER RESOLUTION	
2.1 Hyper Spectral Images	
2.2 Visible Images	
2.3 Thermal Images	
2.4 Temporal Super Resolution: Imputation	
CHAPTER 3 ATMOSPHERIC SENSING	
3.1 Time Series Analysis for Network Nodes	
CHAPTER 4 BIOMETRIC ANALYSIS	4
4.1 Pose Analysis	4
4.2 Facial Landmark Analysis	
CHAPTER 5 AUDIO EVENT ANALYSIS	
5.1 Gunshot Detection	
5.2 Species Identification	
CHAPTER 6 TOPOLOGICAL DATA ANALYSIS IN PHYSICAL M	MEASUREMENT 6
6.1 Persistent Homology	6
6.2 Time Series Visibility Graphs	6
6.3 Graph Spectrum Analysis	6
6.4 Graph Neural Networks	6
CHAPTER 7 SCIENTIFIC MACHINE LEARNING	
7.1 Interpretable Machine Learning	
7.2 Sparse Identification of Nonlinear Dynamics	7

7.3 Physics Informed Neural Networks	1
7.4 SciML Applications	7
CHAPTER 8 CONCLUSION	8
BIOGRAPHICAL SKETCH	Ĝ
CURRICULUM VITAE	

LIST OF FIGURES

LIST OF TABLES

AUTONOMOUS SENSING

- 1.1 Autonomous Hyperspectral Imaging
- 1.2 Walking Robot and Hovercraft

SUPER RESOLUTION

- 2.1 Hyper Spectral Images
- 2.2 Visible Images
- 2.3 Thermal Images
- 2.4 Temporal Super Resolution: Imputation

ATMOSPHERIC SENSING

3.1 Time Series Analysis for Network Nodes

$\mathbf{CHAPTER}\ \mathbf{4}$

BIOMETRIC ANALYSIS

- 4.1 Pose Analysis
- 4.2 Facial Landmark Analysis

$\mathbf{CHAPTER}\ \mathbf{5}$

AUDIO EVENT ANALYSIS

- 5.1 Gunshot Detection
- 5.2 Species Identification

TOPOLOGICAL DATA ANALYSIS IN PHYSICAL MEASUREMENT

- 6.1 Persistent Homology
- 6.2 Time Series Visibility Graphs
- 6.3 Graph Spectrum Analysis
- 6.4 Graph Neural Networks

SCIENTIFIC MACHINE LEARNING

- 7.1 Interpretable Machine Learning
- 7.2 Sparse Identification of Nonlinear Dynamics
- 7.3 Physics Informed Neural Networks
- 7.4 SciML Applications

CHAPTER 8 CONCLUSION

BIOGRAPHICAL SKETCH

Kevin W. Hamlen began learning the basics of LaTeX in the Fall of 2000 in order to publish computer science journal articles as part of his Ph.D. candidacy at Cornell University. By the completion of his degree in 2006, he had written thousands of lines of TeX code.

After completing his Ph.D., Dr. Hamlen joined the faculty of the Computer Science Department at The University of Texas at Dallas, and graduated his first two Ph.D. students (Micah Jones and Sunitha Ramanujam) in 2011. By the graduation of his third student (Richard Wartell) in 2012, he had concluded that a properly crafted LaTeX class file for UTD theses was badly needed to streamline future dissertation preparations. He therefore created this one in December 2012.

CURRICULUM VITAE