SPRAWOZDANIE

PROJEKT Z PRZEDMIOTU "ALGORYTMY I STRUKTURY DANYCH"

TEMAT

"Zaimplementuj sortowanie przez scalanie oraz sortowanie kopcowe."

Bartłomiej Trzepacz, PRz, semestr 2020/2021, Inżynieria i Analiza Danych

Spis treści

1. Podstawy teoretyczne algorytmów sortowania	3
1.1 Sortowanie przez kopcowanie	3
1.1.1 Opis algorytmu	
1.1.2 Tworzenie kopca	3
1.1.3 Sortowanie	4
1.2 Sortowanie przez scalanie	5
1.2.1 Opis algorytmu	5
2. Schematy blokowe	7
3. Pseudokod	10
3.1 Pseudokod algorytmu sortowania przez kopcowanie	10
3.1.1 Budowa kopca	10
3.1.2 Rozbiór kopca	10
3.2 Pseudokod algorytmu sortowania przez scalanie	11
3.2.1 Algorytm scalający	11
3.2.2 Algorytm sortujący	11
4. Testy porównujące działanie obu metod na różnych	
próbkach danych	12
4.1 Liczby pseudolosowe (oczekiwany)	12
4.2 Przypadek optymistyczny dla obu sortowań	14
4.3 Przypadek pesymistyczny dla obu sortowań	15
5. Wnioski	16

1. Podstawy teoretyczne algorytmów sortowania

1.1 Sortowanie przez kopcowanie

Sortowanie przez kopcowanie– jeden z algorytmów sortowania, choć niestabilny, to jednak szybki i niepochłaniający wiele pamięci (złożoność czasowa wynosi O(nlogn) a pamięciowa O(n). Jest on w praktyce z reguły nieco wolniejszy od sortowania szybkiego, lecz ma lepszą pesymistyczną złożoność czasową (przez co jest odporny np. na atak za pomocą celowo spreparowanych danych, które spowodowałyby jego znacznie wolniejsze działanie.

1.1.1 Opis algorytmu

Podstawą algorytmu jest użycie kolejki priorytetowej zaimplementowanej w postaci binarnego kopca zupełnego. Zasadniczą zaletą kopców jest stały czas dostępu do elementu maksymalnego (lub minimalnego) oraz logarytmiczny czas wstawiania i usuwania elementów; ponadto łatwo można go implementować w postaci tablicy.

Algorytm sortowania przez kopcowanie składa się z dwóch faz. W pierwszej sortowane elementy reorganizowane są w celu utworzenia kopca. W drugiej zaś dokonywane jest właściwe sortowanie.

1.1.2 Tworzenie kopca

Podstawową zaletą algorytmu jest to, że do stworzenia kopca wykorzystać można tę samą tablicę, w której początkowo znajdują się nieposortowane elementy. Dzięki temu uzyskuje się stałą złożoność pamięciową. Początkowo do kopca należy tylko pierwszy element w tablicy. Następnie kopiec rozszerzany jest o drugą, trzecią i kolejne pozycje tablicy, przy czym przy każdym rozszerzeniu, nowy element jest przemieszczany w górę kopca, tak aby spełnione były relacje pomiędzy węzłami.

```
for (i=2; i<=n; i++) //budujemy kopiec
57
58
           j = i;
59
           k = j/2;
60
           x = tab[i];
61
           while ((k>0) && (tab[k]<x))
62
63
             tab[j] = tab[k];
64
65
              j=k;
66
             k=j/2;
67
           tab[j] = x;
```

Rys. 1 Algorytm budowy kopca

1.1.3 Sortowanie

Po utworzeniu kopca następuje właściwe sortowanie. Polega ono na usunięciu wierzchołka kopca, zawierającego element maksymalny (minimalny), a następnie wstawieniu w jego miejsce elementu z końca kopca i odtworzenie porządku kopcowego. W zwolnione w ten sposób miejsce, zaraz za końcem zmniejszonego kopca wstawia się usunięty element maksymalny. Operacje te powtarza się aż do wyczerpania elementów w kopcu.

```
71
           Rozbieramy kopiec
72
          for (i=n; i>1; i--)
73
74
            swap(tab[1], tab[i]);
75
76
            j=1;
77
            k=2;
78
            while (k<i)
79
80
              if((k+1 < i) && (tab[k+1] > tab[k]))
81
                m=k+1;
82
              else
83
                m=k;
84
              if(tab[m] \le tab[j])
85
                break;
86
              swap (tab[j], tab[m]);
87
              j=m;
88
              k=j+j;
89
90
```

Rys. 2 Algorytm rozbioru kopca

1.2 Sortowanie przez scalanie

Algorytm sortowania przez scalanie opiera się na zasadzie "dziel i zwyciężaj". Główna zasada działania polega na rekurencyjnym dzieleniu tablicy na podtablice. Dzielenie kończymy, w którym, każda z podtablic w danej grupie jest tablicą jednoelementową. Łączymy je kolejno porównując wartości ich elementów.

1.2.1 Opis algorytmu

Jeśli indeks prawej części tablicy (r) jest większy od indeksu lewej części tablicy wykonaj następujące kroki:

- 1. Znajdź środkowy indeks tablicy (m), ze wzoru m=(l+r)/2 (resztę z dzielenia zaokrąglamy w dół)
- 2. Wywołaj sortowanie przez scalanie dla podtablicy o indeksach od l do m
- 3. Wywołaj sortowanie przez scalanie dla podtablicy o indeksach od m+1 do r
- 4. Połącz podtablicę l m i m+1 r, przyrównując przy tym ich elementy Jeśli element lewej tablicy na aktualnej pozycji jest mniejszy od tego na prawej, wstaw go do tablicy docelowej i zwiększ indeks lewej tablicy. W przeciwnym przypadku, wykonaj analogiczne działanie dla prawej tablicy.

```
void sortowanie_przez_scalanie(int* tab, int 1, int r)

if (r > 1) {
    int m = (1 + r) / 2;
    sortowanie_przez_scalanie(tab, 1, m);
    sortowanie_przez_scalanie(tab, m + 1, r);
    merge(tab, 1, m, r);
}
```

Rys. 3 Algorytm sortowania_przez_scalanie

```
108
        void merge(int* tab, int 1, int m, int r)
109
110
             int lSize = m - 1 + 1;
111
             int rSize = r - m;
112
             //Tablice pomocnicze
113
114
             int* tabL = new int[lSize];
             int* tabR = new int[rSize];
115
116
117
             // Kopiowanie danych do tablic pomocniczych
             for (int x = 0; x < 1Size; x++)</pre>
118
119
                 tabL[x] = tab[1 + x];
120
             for (int y = 0; y < rSize; y \leftrightarrow ++)
121
                 tabR[y] = tab[m + 1 + y];
122
123
             int indexL = 0;
124
             int indexR = 0;
125
             int currIndex;
126
127
             //Łaczenie tablic R i L
128
             for (currIndex = 1; indexL < lSize && indexR < rSize; currIndex++)</pre>
129
130
                 if (tabL[indexL] <= tabR[indexR])</pre>
                      tab[currIndex] = tabL[indexL++];
131
132
                 else
133
                      tab[currIndex] = tabR[indexR++];
134
135
136
             //Jeśli w tablicy tabl pozostały jeszcze jakieś elementy
137
             //kopiujemy je
138
             while (indexL < lSize)</pre>
139
                 tab[currIndex++] = tabL[indexL++];
140
141
             //Jeśli w tablicy tabR pozostały jeszcze jakieś elementy
142
             //kopiujemy je
143
             while (indexR < rSize)</pre>
144
                 tab[currIndex++] = tabR[indexR++];
145
146
             delete[] tabL;
147
             delete[] tabR;
```

Rys. 4 Algorytm scalania

2. Schematy blokowe

Schemat blokowy 1 Sortowanie przez kopcowanie

Schemat blokowy 2 Merge

Schemat blokowy 3 Sortowanie_przez_scalanie

3. Pseudokod

3.1 Pseudokod algorytmu sortowania przez kopcowanie

```
3.1.1 Budowa kopca
K01:
             Dla i = 2, ..., n:
              wykonuj kroki K02...K05
K02:
              j \leftarrow i; k \leftarrow j \text{ div } 2
              x \leftarrow d[i]
K03:
K04:
              Dopóki (k > 0) \land (d[k] < x):
              wykonuj: d[j] \leftarrow d[k]
             j \leftarrow k
             k \leftarrow i \text{ div } 2
K05:
             d[i] \leftarrow x
K06:
             Zakończ
3.1.2 Rozbiór kopca
             Dla i = n, n - 1, ..., 2:
K01:
             wykonuj kroki K02...K08
K02:
             d[1] \leftrightarrow d[i]
             i \leftarrow 1; k \leftarrow 2
K03:
             Dopóki (k < i):
K04:
             wykonuj kroki K05...K08
K05:
              Jeżeli (k + 1 < i) \land (d k + 1] > d[k]),
              to m \leftarrow k + 1
              inaczej m \leftarrow k
K06:
             Jeżeli d[m] \le d[j],
              to wyjdź z pętli K04
             i kontynuuj następny obieg K01
K07:
             d[j] \leftrightarrow d[m]
K08:
             j \leftarrow m; k \leftarrow j + j
```

Zakończ

K09:

3.2 Pseudokod algorytmu sortowania przez scalanie

3.2.1 Algorytm scalający

```
K01: 1Size \leftarrow m - 1 + 1;
```

rSize ← r - m;

K02: Dla x<lSize: wykonuj K03:

K03: tabL[x] = tab[1 + x]

K04: Dla y<rSize: wykonuj K05:

K05: tabR[y] = tab[m + 1 + y]

K06: int indexL \leftarrow 0; int indexR \leftarrow 0; int currIndex \leftarrow 1

K07: Dla indexL < lSize i indexR < rSize wykonuj od K08 do K10:

K08: Jeśli tabL[indexL] <= tabR[indexR] wykonuj K09, w przeciwnym wypadku przejdź do K10

K09: $tab[currIndex] \leftarrow tabL[indexL++]$

K10: $tab[currIndex] \leftarrow tabR[indexR++]$

K11: Dopóki indexR < rSize wykonuj K12:

K12: tab[currIndex++] = tabL[indexL++]

K13: Dopóki indexR < rSize wykonuj K14:

K14: tab[currIndex++] = tabR[indexR++]

K15: Usuń tablice dynamiczne i zakończ

3.2.2 Algorytm sortujący

K01: $m \leftarrow (1+r)/2$

K02: Jeśli r>1, to Sortowanie_przez_scalanie (tab, l,m)

K03: Jeśli r>1, to Sortowanie_przez_scalanie (tab, m+1, r)

K04: Scalaj (tab, l, m, r)

K05: Zakończ

4. Testy porównujące działanie obu metod na różnych próbkach danych

4.1 Liczby pseudolosowe (oczekiwany)

W pierwszym przypadku algorytm sortuje tablice wypełnioną liczbami pseudolosowymi. Wykorzystane zostały tablice dynamiczne co pozawala na sprawdzanie algorytmów na tablicach małych jak i dużych. Program będzie od nas wymagał podania wielkości tablicy.

Dzięki tablicy wypełnionej liczbami pseudolosowymi otrzymamy oczekiwaną złożoność czasową działania algorytmów.

Rozmiar Tablicy	100		10	00	10000	
Typ sortowania	Kopcowe	Scalania	Kopcowe	Scalania	Kopcowe	Scalania
Pomiar 1 [s]	0,015	0,02	0,171	0,241	1,593	1,633
Pomiar 2 [s]	0,015	0,021	0,204	0,255	1,547	1,689
Pomiar 3 [s]	0,016	0,02	0,156	0,301	1,564	1,701
Średnia pomiarów	0,01533	0,02033	0,177	0,26567	1,568	1,67433

Tabela 1 Pomiary czasów dla tablic 100-100000

Wykres 1 dla tablic 100-10000

Jak przedstawia wykres powyżej od początku można zauważyć, że czasy obu algorytmów sortowania są podobne. Wynika to z faktu, że ich złożoność wynosi O(n * logn).

Rozmiar Tablicy	20000		50000		100000	
Typ sortowania	Kopcowe	Scalania	Kopcowe	Scalania	Kopcowe	Scalania
Pomiar 1 [s]	3,157	3,902	10,609	11,253	18,884	20,512
Pomiar 2 [s]	3,415	3,821	10,601	11,115	19,142	21,214
Pomiar 3 [s]	3,213	3,802	10,355	11,632	18,924	20,701
Średnia pomiarów	3,26167	3,84167	10,5217	11,3333	18,9833	20,809

Tabela 2 Pomiary czasów dla tablic 20000-100000

Wykres 2 dla tablic 20000-100000

Dla większych tablic czas sortowania przebiega podobnie. Sortowanie przez kopcowanie z tablicą 100000- elementową poradziło sobie w czasie równym niespełna 19s, a sortowanie przez scalanie potrzebowało dla tej tablicy 2 sekundy więcej.

4.2 Przypadek optymistyczny dla obu sortowań

Optymistyczną złożoność czasową otrzymamy wtedy, gdy tablica, którą trzeba posortować, jest już posortowana. Do tego celu użyjemy możliwości pobrania danych do posortowania z pliku tekstowego.

Rozmiar Tablicy	1000		20000		100000	
Typ sortowania	Kopcowe	Scalania	Kopcowe	Scalania	Kopcowe	Scalania
Pomiar 1 [s]	0,156	0,191	3,031	3,04	16,5	16,733
Pomiar 2 [s]	0,187	0,198	2,984	3,102	16,537	16,619
Pomiar 3 [s]	0,156	0,16	2,996	3,067	16,524	16,701
Średnia pomiarów	0,1663	0,183	3,00367	3,0697	16,5203	16,684

Tabela 3 Pomiary czasów dla tablic 1000-100000

Wykres 3 dla tablic 1000-100000

W tym przypadku, gdy tablice są już posortowane czasy pracy algorytmów uległ zmniejszeniu co widać w Tabela 3.

4.3 Przypadek pesymistyczny dla obu sortowań

Pesymistyczną złożoność czasową otrzymamy wtedy, gdy tablica, którą trzeba posortować, jest posortowana odwrotnie. Do tego celu użyjemy możliwości pobrania danych do posortowania z pliku tekstowego.

Rozmiar Tablicy	1000		20000		100000	
Typ sortowania	Kopcowe	Scalania	Kopcowe	Scalania	Kopcowe	Scalania
Pomiar 1 [s]	0,156	0,16	3,625	3,981	17,953	19,653
Pomiar 2 [s]	0,156	0,161	3,328	3,99	18,141	19,741
Pomiar 3 [s]	0,156	0,15	3,584	3,894	18,204	19,541
Średnia pomiarów	0,156	0,157	3,51233	3,955	18,0993	19,645

Tabela 4 Pomiary czasów dla tablic 1000-100000

Wykres 4 dla tablic 1000-100000

Jak widać w Tabela 4 czasy pomiarów zwiększyły się względem poprzednich badań. Różnice czasów sięgają nawet 10% przy większych tablicach.

5. Wnioski

Projekt został zrealizowany, działanie algorytmu jest poprawne. W programie główny algorytm został zaimplementowany w osobnej funkcji, która jest wywoływana w późniejszych etapach działania programu. Projekt posiada możliwość odczytu z pliku tekstowego jak i późniejsze zapisanie wyników do pliku tekstowego. W programie zostały umieszczone stosowane komentarze, które pomagają w zrozumieniu kodu również w sprawozdaniu zostały umieszczone elementy które ułatwiają nam zrozumienie działania algorytmu szukającego jest to pseudokod i schemat blokowy.