

UNIVERSIDAD AUTÓNOMA DE AGUASCALIENTES.

Centro de Ciencias Básicas.

Departamento de Matemáticas y Física.

Licenciatura en Matemáticas Aplicadas.

Práctica 7.

Difracción.

Óptica. Prof. Mariana Alfaro Gómez.

Alumnos:

Carlos Francisco Guzmán Barba. Erick Ignacio Rodríguez Juárez. Manuel Alejandro Siller Landin.

Realización: 16/05/22.

Entrega: 23/05/22.

1 RESUMEN.

2 INTRODUCCIÓN.

2.1 — Marco Teórico —

Consideremos el siguiente sistema físico. En la Figura 1 (obtenida de [1]) se tiene el experimento de Young, que consiste en la transmisión de una única onda a través de dos ranuras $(S_1 \text{ y} S_2)$ colocadas en una pared contra la que choca la onda. Además, se registra el patrón de ondas generado en una segunda pared ubicada a una distancia L de la primera (cuyo centro está en O), y haremos el análisis para un punto P en ella. Sea d la distancia de separación entre las rejillas, y supondremos que $d \ll L$. Debido a ésto, $S_2R \approx r_2 - r_1$, y además $QP \perp S_1R$, por lo que el ángulo $\angle S_2S_1R \approx \angle OQP = \theta$, el ángulo de desviación de la onda.

Figura 1: Experimento de la Doble Rendija de Young.

Notamos que la interferencia total que se obtendrá en el punto P, queda completamente determinada por la diferencia de longitudes $r_2 - r_1$, puesto que en cualquier trayecto de longitud r_1 , la onda se comporta de la misma manera. La interferencia es constructiva siempre que $r_1 - r_2 = m\lambda$, para algún $m \in \mathbb{Z}$. Es decir

$$d\sin\theta = m\lambda, \qquad m \in \mathbb{Z}. \tag{1}$$

donde se alcanzará un máximo cuando $m \in \mathbb{Z}$. Y si m = k/2, con k impar, entonces se alcanzará un mínimo. Además, el campo eléctrico E_i en el punto S_i está dado por

$$E_1 = E_0 \sin wt$$

$$E_2 = E_0 \sin(wt + \phi)$$
(2)

Y por el principio de superposición, tendremos que el campo eléctrico total es:

$$E = E_1 + E_2 = (2E_0 \cos \beta) \sin(wt + \beta). \tag{3}$$

donde $\beta = \phi/2$. Recordamos que $\beta = \frac{2\pi \sin \theta}{\lambda}$, y la intensidad para el ángulo θ está dada por

$$I(\theta) = 4I_0 \cos^2 \beta = 4I_0 \cos^2 \left(\frac{\pi d \sin \theta}{\lambda}\right). \tag{4}$$

Los máximos son alcnazados cuando

$$W\sin\theta = n\lambda, \qquad n \in \mathbb{Z} \tag{5}$$

y análogamente al caso anterior, se tiene que

$$\theta = \arctan(y/L). \tag{6}$$

Consulte la teoría en [2].

2.2 — Análisis Experimental —

El propósito de el sistema experimental es el de presenciar el patrón de difracción y el patrón de interferencia en el sistema de la doble rendija. Además, de observar el cambio producido en el fenómeno por diferentes longitudes de onda dentro del rango humano visible. Por tanto, para rejillas proporcionales a la longitud de onda, se espera que el patrón de difracción, cree el patrón de onda para la longitud de onda correspondiente. En consecuencia, para una sola longitud de onda se tendrá el patrón de la Figura 2. Y para varias longitudes de onda, se tendrá el patrón de la Figura 3, cuando todas las longitudes de onda del espectro visible impacten la rejilla.

Figura 3: Patrón de onda para las longitudes de onda del espectro humano visible.

Figura 2: Patrón de onda para una sóla longitud de onda.

3 METODOLOGÍA.

La incertidumbre de la regla y la cinta métrica empleados era de $\frac{0.1cm}{2} = 0.05cm$

3.1 — Difracción de una Rendija Simple y Doble Rendija —

3.1.1 Rendija Simple.

3.1.2 Doble Rendija.

3.2 — Rejilla de Difracción. —

4 RESULTADOS.

4.1 — Difracción de una Rendija Simple y Doble Rendija —

Para la primera parte del experimento, donde se emplearon los filtros de colores, se obtuvieron las siguientes mediciones mostradas en la tabla 1.

Tabla 1: Difracción en una rendija simple.

	Color	n	W(mm)	$y \ (\pm 0.05 \ cm)$	$L~(\pm 0.05~em)$
	Rojo	2	0.04	1.25	25
	Verde	2	0.04	1	25
	Azul	2	0.04	0.9	25

Entonces, en la tabla 2 se encuentran los resultados para la estimación de la longitud de onda de la luz empleada.

Tabla 2: Estimación de λ .

Color	θ (rad)	λ (nm)
Rojo	0.0499 ± 0.0020	998.7523 ± 41.8429
Verde	0.0399 ± 0.0020	799.3608 ± 41.5003
Azul	0.0359 ± 0.0020	719.5339 ± 41.3595

4.2 — Rejilla de Difracción. —

Para el segundo experimento, se empleó la rejilla de difracción con

$$A = 6000 \frac{aberturas}{cm}$$

separada a una distancia $L=(25\pm0.05)$ cm tanto de la fuente como de la retina del ojo. Se obtuvieron entonces las siguientes mediciones, las cuales se muestran en la tabla 3.

Empleando la fórmula (6), se obtuvieron los siguientes resultados (tabla 4).

Los rangos para la longitud de onda de los colores se muestran en la tabla 5.

Y a partir de estos valores, se obtuvieron los siguientes errores absolutos (calculados entre el valor promedio de λ y el mínimo valor de cada rango) mostrados en la tabla 6.

Tabla 3: Datos para el cálculo del rango de λ .

Color	$y_1 \ (\pm 0.05 \ \mathrm{cm})$	$y_2 \ (\pm 0.05 \ { m cm})$
Violeta	5. 5	14
Azul	6.5	15.5
Verde	7	18
Amarillo	8	20
Anaranjado	8.5	20.5
Rojo	10	23

Tabla 4: Resultados de la estimación de λ para cada color.

Color	$\lambda_1(\mathbf{nm})$	$\lambda_2(\mathbf{nm})$	Promedio $\lambda(nm)$
Violeta	346.4805 ± 3.7237	408.3907 ± 1.9001	377.4356 ± 2.8119
Azul	406.9889 ± 3.7766	443.9966 ± 1.8722	425.4927 ± 2.8244
Verde	436.8139 ± 3.7982	499.2184 ± 1.8124	468.0162 ± 2.8053
Amarillo	495.5247 ± 3.8316	539.7928 ± 1.7560	517.6587 ± 2.7938
Anaranjado	524.3816 ± 3.8436	549.4541 ± 1.7412	536.9179 ± 2.7924
Rojo	608.8102 ± 3.8620	595.0045 ± 1.6637	601.9073 ± 2.7629

Tabla 5: Rangos para λ de cada color.

Color	$\lambda(\mathbf{nm})$
Violeta	400 - 455
Azul	455 - 490
Verde	490 - 570
Amarillo	570 - 590
Anaranjado	590 - 620
Rojo	620 - 780

Tabla 6: Cálculo del error absoluto para λ

r		
Color	$ \lambda_{ ext{\tiny Estimado}} - \lambda_{ ext{\tiny Tabla ??}} (ext{nm}) $	
Violeta	22.5644	
Azul	29.5073	
Verde	21.9838	
Amarillo	52.3416	
Anaranjado	53.0821	
Rojo	18.0927	

5 DISCUSIÓN DE RESULTADOS Y CONCLUSIONES.

6 REFERENCIAS.

1 Raymond A. Serway; Ana Elizabeth García Hernández; Chris Vuille; Ernesto Filio López. Fundamentos de física. vol. 2. Cengage Learning, novena edición. edition, 2013.

2 Marcelo Alonso Edward J. Finn. Fundamental University Physics II Fields And Waves. Addison-Wesley Series In Physics. Addison-Wesley Publishing Company, 1967.

7 APÉNDICE.

7.1 — Propagación de la Incertidumbre —

La propagación de la incertidumbre para un producto y un cociente están dadas, respectivamente por

$$(x \pm \delta x)(y \pm \delta y) = x \cdot y \pm (|y|\delta x + |x|\delta y)$$

$$\frac{x \pm \delta x}{y \pm \delta y} = \frac{x}{y} \pm \left(\frac{\delta x}{|y|} + |x| \frac{\delta y}{|y|^2}\right)$$

Ahora, recordar que si f es una función de \mathbb{R}^n a \mathbb{R} en la cual se le pueden medir sus variables (cada una asociada con su respectiva incertidumbre)

$$f(x_1 \pm \Delta x_1, x_2 \pm \Delta x_2, ..., x_n \pm \Delta x_n)$$

entonces la propagación de la incertidumbre está dada por

$$\Delta f = \pm \left(\sum_{i=1}^{k} \Delta x_i \cdot \left| \frac{\partial f(x_i)}{\partial x_i} \right| \right)$$

En esta práctica se emplearán las siguientes

· Función $sen(\theta)$ En este caso

$$f(x \pm \Delta x) = sen(\theta \pm \Delta \theta) \quad \Rightarrow \Delta f = \Delta \theta \cdot \left| \frac{dsen(\theta)}{d\theta} \right| = \Delta \theta \cdot |cos(\theta)|$$

Por lo que

$$sen(\theta \pm \Delta \theta) = sen(\theta) \pm \Delta \theta \cdot |cos(\theta)|$$

· Función $arctan(\theta)$ Se tiene que

$$f(x \pm \Delta x) = \arctan(\theta \pm \Delta \theta) \quad \Rightarrow \Delta f = \Delta \theta \cdot \left| \frac{d \arctan(\theta)}{d\theta} \right| = \Delta \theta \cdot \left| \frac{1}{\theta^2 + 1} \right|$$

Y entonces

$$arctan(\theta \pm \Delta \theta) = arctan(\theta) \pm \frac{\Delta \theta}{\theta^2 + 1}$$

7.2 — Estimación de la longitud de onda —

A partir de los datos de la tabla 1 y empleando lo descrito al inicio del apéndice junto con las fórmulas (5) y (6), se tiene lo siguiente.

· Filtro Rojo

$$\frac{y}{L} = \frac{(1.25 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{1.25}{25} \pm \left(\frac{0.05}{25} + 1.25 \cdot \frac{0.05}{25^2}\right) = 0.05 \pm 0.0021$$

$$\Rightarrow \arctan(0.05 \pm 0.0021) = \arctan(0.05) \pm \frac{0.0021}{(0.05)^2 + 1} = 0.0499 \pm 0.0020$$

$$\Rightarrow \sec(0.0499 \pm 0.0020) = \sec(0.0499) \pm 0.0020 \cdot \cos(0.0499) = 0.0499 \pm 0.0020$$

$$\Rightarrow \lambda = \frac{(0.04 \text{ mm}) \cdot (0.0499 \pm 0.0020)}{2} = (998.7523 \pm 41.8429) \text{ nm}$$

· Filtro Verde

$$\frac{y}{L} = \frac{(1 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{1}{25} \pm \left(\frac{0.05}{25} + 1 \cdot \frac{0.05}{25^2}\right) = 0.04 \pm 0.0020$$

$$\Rightarrow \arctan(0.04 \pm 0.0020) = \arctan(0.04) \pm \frac{0.0020}{(0.04)^2 + 1} = 0.0399 \pm 0.0020$$

$$\Rightarrow sen(0.0399 \pm 0.0020) = sen(0.0399) \pm 0.0020 \cdot cos(0.0399) = 0.0399 \pm 0.0020$$

$$\Rightarrow \lambda = \frac{(0.04 \text{ mm}) \cdot (0.0399 \pm 0.0020)}{2} = (799.3608 \pm 41.5003) \text{ nm}$$

· Filtro Azul

$$\frac{y}{L} = \frac{(0.9 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{0.9}{25} \pm \left(\frac{0.05}{25} + 0.9 \cdot \frac{0.05}{25^2}\right) = 0.036 \pm 0.0020$$

$$\Rightarrow \arctan(0.036 \pm 0.0020) = \arctan(0.036) \pm \frac{0.0020}{(0.036)^2 + 1} = 0.0359 \pm 0.0020$$

$$\Rightarrow sen(0.0359 \pm 0.0020) = sen(0.0359) \pm 0.0020 \cdot cos(0.0359) = 0.0359 \pm 0.0020$$

$$\Rightarrow \lambda = \frac{(0.04 \text{ mm}) \cdot (0.0359 \pm 0.0020)}{2} = (719.5339 \pm 41.3595) \text{ nm}$$

$7.3 \quad -$ Estimación del rango de la longitud de onda -

· Color Violeta

$$\begin{split} \frac{y_1}{L} &= \frac{(5.5 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{5.5}{25} \pm \left(\frac{0.05}{25} + 5.5 \cdot \frac{0.05}{25^2}\right) = 0.2200 \pm 0.0024 \\ \Rightarrow \arctan(0.22 \pm 0.0024) &= \arctan(0.22) \pm \frac{0.0024}{(0.22)^2 + 1} = 0.2165 \pm 0.0023 \\ \Rightarrow \lambda_1 &= (1.6 \times 10^{-4} \text{ cm}) \cdot (0.2165 \pm 0.0023) = (346.4805 \pm 3.7237) \text{ nm} \\ \frac{y_2}{L} &= \frac{(14 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{14}{25} \pm \left(\frac{0.05}{25} + 14 \cdot \frac{0.05}{25^2}\right) = 0.5600 \pm 0.0031 \\ \Rightarrow \arctan(0.5600 \pm 0.0031) = \arctan(0.5600) \pm \frac{0.0031}{(0.5600)^2 + 1} = 0.5104 \pm 0.0023 \\ \Rightarrow \lambda_2 &= \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.5104 \pm 0.0023) = (408.3907 \pm 1.9001) \text{ nm} \end{split}$$

· Color Azul

$$\frac{y_1}{L} = \frac{(6.5 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{6.5}{25} \pm \left(\frac{0.05}{25} + 6.5 \cdot \frac{0.05}{25^2}\right) = 0.2600 \pm 0.0025$$

$$\Rightarrow \arctan(0.2600 \pm 0.0025) = \arctan(0.2600) \pm \frac{0.0025}{(0.2600)^2 + 1} = 0.2543 \pm 0.0023$$

$$\Rightarrow \lambda_1 = (1.6 \times 10^{-4} \text{ cm}) \cdot (0.2543 \pm 0.0023) = (406.9889 \pm 3.7766) \text{ nm}$$

$$\frac{y_2}{L} = \frac{(15.5 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{15.5}{25} \pm \left(\frac{0.05}{25} + 15.5 \cdot \frac{0.05}{25^2}\right) = 0.6200 \pm 0.0032$$

$$\Rightarrow \arctan(0.6200 \pm 0.0032) = \arctan(0.6200) \pm \frac{0.0032}{(0.6200)^2 + 1} = 0.5549 \pm 0.0023$$

$$\Rightarrow \lambda_2 = \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.5549 \pm 0.0023) = (443.9966 \pm 1.8722) \text{ nm}$$

· Color Verde

$$\frac{y_1}{L} = \frac{(7 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{7}{25} \pm \left(\frac{0.05}{25} + 7 \cdot \frac{0.05}{25^2}\right) = 0.2800 \pm 0.0025$$

$$\Rightarrow \arctan(0.2800 \pm 0.0025) = \arctan(0.2800) \pm \frac{0.0025}{(0.280)^2 + 1} = 0.2730 \pm 0.0023$$

$$\Rightarrow \lambda_1 = (1.6 \times 10^{-4} \text{ cm}) \cdot (0.2730 \pm 0.0023) = (436.8139 \pm 3.7982) \text{ nm}$$

$$\frac{y_2}{L} = \frac{(18 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{18}{25} \pm \left(\frac{0.05}{25} + 18 \cdot \frac{0.05}{25^2}\right) = 0.7200 \pm 0.0034$$

$$\Rightarrow \arctan(0.7200 \pm 0.0034) = \arctan(0.7200) \pm \frac{0.0034}{(0.7200)^2 + 1} = 0.6240 \pm 0.0022$$

$$\Rightarrow \lambda_2 = \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.6240 \pm 0.0022) = (499.2184 \pm 1.8124) \text{ nm}$$

· Color Amarillo

$$\frac{y_1}{L} = \frac{(8 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{8}{25} \pm \left(\frac{0.05}{25} + 8 \cdot \frac{0.05}{25^2}\right) = 0.3200 \pm 0.0026$$

$$\Rightarrow \arctan(0.3200 \pm 0.0026) = \arctan(0.3200) \pm \frac{0.0026}{(0.3200)^2 + 1} = 0.3097 \pm 0.0023$$

$$\Rightarrow \lambda_1 = (1.6 \times 10^{-4} \text{ cm}) \cdot (0.3097 \pm 0.0023) = (495.5247 \pm 3.8316) \text{ nm}$$

$$\frac{y_2}{L} = \frac{(20 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{20}{25} \pm \left(\frac{0.05}{25} + 20 \cdot \frac{0.05}{25^2}\right) = 0.8000 \pm 0.0036$$

$$\Rightarrow \arctan(0.8000 \pm 0.0036) = \arctan(0.8000) \pm \frac{0.0036}{(0.8000)^2 + 1} = 0.6747 \pm 0.0021$$

$$\Rightarrow \lambda_2 = \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.6747 \pm 0.0021) = (539.7928 \pm 1.7560) \text{ nm}$$

Color Anaranjado

$$\frac{y_1}{L} = \frac{(8.5 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{8.5}{25} \pm \left(\frac{0.05}{25} + 8.5 \cdot \frac{0.05}{25^2}\right) = 0.0500 \pm 0.0026$$

$$\Rightarrow \arctan(0.0500 \pm 0.0026) = \arctan(0.0500) \pm \frac{0.0026}{(0.0500)^2 + 1} = 0.3277 \pm 0.0024$$

$$\Rightarrow \lambda_1 = (1.6 \times 10^{-4} \text{ cm}) \cdot (0.3277 \pm 0.0024) = (524.3816 \pm 3.8436) \text{ nm}$$

$$\frac{y_2}{L} = \frac{(20.5 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{20.5}{25} \pm \left(\frac{0.05}{25} + 20.5 \cdot \frac{0.05}{25^2}\right) = 0.8200 \pm 0.0036$$

$$\Rightarrow \arctan(0.8200 \pm 0.0036) = \arctan(0.8200) \pm \frac{0.0036}{(0.8200)^2 + 1} = 0.6868 \pm 0.0021$$

$$\Rightarrow \lambda_2 = \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.6868 \pm 0.0021) = (549.4541 \pm 1.7412) \text{ nm}$$

· Color Rojo

$$\frac{y_1}{L} = \frac{(10 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{10}{25} \pm \left(\frac{0.05}{25} + 10 \cdot \frac{0.05}{25^2}\right) = 0.4000 \pm 0.0028$$

$$\Rightarrow \arctan(0.4000 \pm 0.0028) = \arctan(0.4000) \pm \frac{0.0028}{(0.4000)^2 + 1} = 0.3805 \pm 0.0024$$

$$\Rightarrow \lambda_1 = (1.6 \times 10^{-4} \text{ cm}) \cdot (0.3805 \pm 0.0024) = (608.8102 \pm 3.8620) \text{ nm}$$

$$\frac{y_2}{L} = \frac{(23 \pm 0.05) \text{ cm}}{(25 \pm 0.05) \text{ cm}} = \frac{23}{25} \pm \left(\frac{0.05}{25} + 23 \cdot \frac{0.05}{25^2}\right) = 0.9200 \pm 0.0038$$

$$\Rightarrow \arctan(0.9200 \pm 0.0038) = \arctan(0.9200) \pm \frac{0.0038}{(0.9200)^2 + 1} = 0.7437 \pm 0.0020$$

$$\Rightarrow \lambda_2 = \left(\frac{1.6 \times 10^{-4} \text{ cm}}{2}\right) \cdot (0.7437 \pm 0.0020) = (595.0045 \pm 1.6637) \text{ nm}$$