一 硬件介绍

1. NB-IoT 模块介绍

NB-IoT 网络模块: 移远通信 BC95-B5/8/20 or BC95-G

型号与对应频率:

Model	BC95-B20	BC95-B5	BC95-B8	BC95-G
Fraguancy	800MHz	850MHz 90	900MHz	B1/B3/B5/B8/B20/B28
Frequency	800101112	650IVITZ	900IVII12	@FDD-LTE (TBD)

SIM卡:

1).微型 SIM 卡插槽 (Micro SD SIM Slot)

2).板载 e-SIM 焊盘

天线:BC95 开发板预留了 IPEX 天线接口,可以使用 IPEX PCB 天线或者 IPEX 转接 SMA 天线。

2. MCU 介绍

	BC95-B5/8/20	BC95-G
SoC	STM32F103RCT6	STM32F103RBT6
CPU	ARM 32-bit Cortex™-M3 CPU @72MHz	
FLASH	256KB	128KB
RAM	48KB	20KB
Functions	UART、I2C、SPI、PWM	

3. 开发板硬件介绍

电源	MicroUSB电源或2脚电池插头		
外设	1 Micro USB 2.0 host		
	40 Pins 排针(2.0mm间距)内含 32个GPIO		
	1组调试串口		
以 接	1组SWD模式下载接口		
按 口	1个微型SIM卡插座		
	1个IPEX天线接口		
	1个e-SIM卡焊盘		
LED	1个电源指示灯、5个LED		
按键	1个复位按键,一个用户按键		

二 软件介绍

1. Lite OS 介绍

Lite OS 是 2015 年华为发布的一款轻量级的物联网操作系统。

Huawei LiteOS 是华为面向 IoT 领域, 构建的轻量级物联网操作系统, 以轻量级低功耗、快速启动、互联互通、安全等关键能力, 为开发者提供"一站式"完整软件平台, 有效降低开发门槛、缩短开发周期。

IDE: 推荐使用的开发环境 MDK521&STM32F1xxx 器件包

2. BC95 模块软件介绍

指令格式:

Test Command	AT+ <cmd>=?</cmd>	Check possible sub-parameter values
Read Command	AT+ <cmd>?</cmd>	Check current sub-parameter values
Set Command	AT+ <cmd>=p1[,p2[,p3[]]]</cmd>	Set command
Execution Command	AT+ <cmd></cmd>	Execution command

模块找网流程:

AT+NBAND?	//查询 Band
AT+CFUN?	//值为1
AT+CIMI	//查询 IMSI 号
AT+CSQ	//查询信号强度
AT+NUESTATS	//查询模块状态
AT+CGATT?	//返回+CGATT:1 表示附着成功,有时延约 30s
AT+CEREG?	//查寻注网状态, 1 为注册上网络, 2 为正在找网
AT+CSCON?	//查询连接状态, 1 为 CONNECT, 0 为 IDLE

如果无法自动注网,此时需要手动进行配置:

AT+CFUN=1	
AT+CIMI	//执行 CFUN=1, 等待 4 秒后查询 IMSI, 如果能查到表示卡己识别:
	若查不到,请检查卡是否插好并确认是否是 USIM 卡。
AT+NBAND?	//查询频段信息。
AT+CEREG=1	//设置自动上报网络注册状态,当模块注册上网络,会上报 URC。
AT+CGDCONT=1,"IP","APN"	//APN 为本地入网方式,自行配置(也可不配置)。
AT+COPS=1,2,"46000"	//指定 PLMN 搜索,PLMN 自行配置。
AT+CSQ	//查询信号强度。
AT+NUESTATS	//查询模块状态。
AT+CGATT?	//返回+CGATT:1 表示附着成功,有时会有约 30s 的延迟。
AT+CEREG?	//查寻注网状态, 1 为注册上网络, 2 为正在找网。
AT+CSCON?	//查询连接状态,1 为 CONNECT, 0 为 IDLE。

网络连接状态示意图:

- : 1. Connect 状态(+CSCON:0,1,模块注网后即处于该状态),该状态持续的时间由基站配置,由不定时活动器来控制,范围为1-3600s,默认20s。
 - Idle 状态 (+CSCON:0,0),该状态持续的时间由核心网配置,由 Active timer (T3324)来 控制,范围为 0-11160s,默认 10s。
 - 3. PSM 状态 (可通过功耗判断,最大功耗 5uA),该状态持续的时间由核心网配置,由 TAU 定时器 (T3412)来控制,范围为 0h-310h,默认 24h。

三 使用介绍

1. 硬件准备

BPI OPEN DEBUGGER 或 J-Link DEBUGGER *1 BPI BC95-Linaro 开发板 *1 Micro USB 数据线 *2 杜邦线(母对母) *4

2. 硬件连接

使用 BPI OPEN DEBUGGER:

用杜邦线连接 BPI OPEN DEBUGGER 与 BPI BC95-Linaro 的 SWD 烧录接口,连接对应关系如下表所示,

BPI OPEN DEBUGGER	BPI NB-IoT Linaro SWD
3V3	VCC
GND	GND
DIO	DIO
CLK	CLK

然后使用两根 Micro USB 线分别将 BPI OPEN DEBUGGER 连接至 PC, BPI BC95-Linaro 连接至 5V 直流电源。

使用 J-Link DEBUGGER:

JLink 与 BPI BC95 Linaro 采用 SWD 模式连接对应接口:

J-link	BPI NB-IoT Linaro SWD	
3V3 (Pin1)	VCC	
GND (Pin4.6.8.10)	GND	
SWDIO (Pin7)	DIO	
SWCLK (Pin9)	CLK	
nJTRST (Pin3) 可不接	RST 可不接	

3. 软件设置

在 MDK5 中进行设置:

首先需要根据对应芯片建立工程文件,并在 Options of Target 中做如下设置 (工程文件具体设置情况包括但不仅限于以下设置)

(此时板子需要供电)

备注:

- 1.调试串口、SWD 仿真接口间距 2.54mm, GPIO 间距 2.0mm
- 2.靠近 MicroUSB 的 LED 是电源指示灯,任意方式正确通电后应该常亮。

4. 调试实例

在 BPI 论坛有两个软件调试实例:

1.通过调试串口进行调试,连接:http://forum.banana-pi.org.cn/thread-2200-1-1.html 2.通过调试串口进行调试,连接:http://forum.banana-pi.org.cn/thread-2215-1-1.html 在论坛版块内还有一些关于本开发板的资料与介绍,连接:http://forum.banana-pi.org.cn/forum-121-1.html

5. GitHub:

https://github.com/yelvlab/BPI_NB-IoT_Linaro_96Boards