# **Amendments to the Claims:**

This listing of claims will replace all prior versions, and listings of claims in the application:

#### **Listing of Claims:**

Claim 1. (original) A substituted benzanilide compound represented by the formula (1):

$$(X)_{m}$$

$$C=W^{1}$$

$$R^{2}-N$$

$$R^{1}$$

$$(Y)_{n}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$

$$R^{6}$$

$$R^{1}$$

$$R^{1}$$

wherein W<sup>1</sup> and W<sup>2</sup> each independently represent an oxygen atom or a sulfur atom,

X represents a halogen atom, cyano, nitro, azide, -SCN, -SF<sub>5</sub>, a C<sub>1</sub> to C<sub>6</sub> alkyl, a (C<sub>1</sub> to C<sub>6</sub>) alkyl optionally substituted by R<sup>7</sup>, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, a (C<sub>3</sub> to C<sub>8</sub>) cycloalkyl optionally substituted by R<sup>7</sup>, a C<sub>2</sub> to C<sub>6</sub> alkenyl, a (C<sub>2</sub> to C<sub>6</sub>) alkenyl optionally substituted by R<sup>7</sup>, a C<sub>3</sub> to C<sub>8</sub> cycloalkenyl, a C<sub>3</sub> to C<sub>8</sub> halocycloalkenyl, a C<sub>2</sub> to C<sub>6</sub> alkynyl, a (C<sub>2</sub> to C<sub>6</sub>) alkynyl optionally substituted by R<sup>7</sup>, -OH, -OR<sup>8</sup>, -OS(O)<sub>2</sub>R<sup>8</sup>, -SH, -S(O)<sub>7</sub>R<sup>8</sup>, -CHO, -C(O)R<sup>9</sup>, -C(O)OR<sup>9</sup>, -C(O)SR<sup>9</sup>, -C(O)NHR<sup>10</sup>, -C(O)N(R<sup>10</sup>)R<sup>9</sup>, -C(S)OR<sup>9</sup>, -C(S)SR<sup>9</sup>, -C(S)NHR<sup>10</sup>, -C(S)N(R<sup>10</sup>)R<sup>9</sup>, -CH=NOR<sup>11</sup>, -C(R<sup>9</sup>)=NOR<sup>11</sup>, -S(O)<sub>2</sub>OR<sup>9</sup>, -S(O)<sub>2</sub>NHR<sup>10</sup>, -S(O)<sub>2</sub>N(R<sup>10</sup>)R<sup>9</sup>,

-Si( $R^{13}$ )( $R^{14}$ ) $R^{12}$ , phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M, when m is 2, 3 or 4, each X may be the same or different from each other, and when two Xs are adjacent

to each other, the adjacent two Xs may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Xs are bonded by forming -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>O-,

-CH<sub>2</sub>OCH<sub>2</sub>-, -OCH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>S-, -CH<sub>2</sub>SCH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>N(R<sup>15</sup>)-, -CH<sub>2</sub>N(R<sup>15</sup>)CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>CH-, -OCH=CH-, -SCH=CH-, -N(R<sup>15</sup>)CH=CH-, -OCH=N-, -SCH=N-, -N(R<sup>15</sup>)CH=N-, -N(R<sup>15</sup>)N=CH-, -CH=CHCH=CH-, -OCH<sub>2</sub>CH=CH-, -N=CHCH=CH-, -N=CHCH=CH-, and at this time, each hydrogen atom bonded to the respective carbon atoms which form the ring may be optionally substituted by Z, and further when it is substituted by two or more Zs at the same time, each Z may be the same or different from each other,

Y represents a halogen atom, cyano, nitro, a C<sub>1</sub> to C<sub>6</sub> alkyl, a (C<sub>1</sub> to C<sub>6</sub>) alkyl optionally substituted by R<sup>7</sup>, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, -OR<sup>8</sup>, -S(O)<sub>r</sub>R<sup>8</sup>, -NH<sub>2</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylamino, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)amino or -Si(R<sup>13</sup>)(R<sup>14</sup>)R<sup>12</sup>, when n is 2, 3 or 4, each Y may be the same or different from each other, and when two Ys are adjacent to each other, the adjacent two Ys may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Ys are bonded by forming -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>S-, -CH<sub>2</sub>SCH<sub>2</sub>-, -SCH<sub>2</sub>S-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>-, -CH<sub>2</sub>-,

-CH<sub>2</sub>OCH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>S-, -SCH<sub>2</sub>CH<sub>2</sub>S-, -OCH=N- or -SCH=N-, and at this time, each hydrogen atom bonded to the respective carbon atoms which form the ring may be optionally substituted by Z, and further when it is substituted by two or more Zs at the same time, each Z may be the same or different from each other,

 $R^1$  represents a hydrogen atom, cyano, a  $C_1$  to  $C_{12}$  alkyl, a ( $C_1$  to  $C_{12}$ ) alkyl optionally substituted by  $R^{16}$ , a  $C_3$  to  $C_{12}$  cycloalkyl, a ( $C_3$  to  $C_{12}$ ) cycloalkyl optionally substituted by  $R^{16}$ , a  $C_3$  to  $C_{12}$  alkenyl, a ( $C_3$  to  $C_{12}$ ) alkenyl optionally substituted by  $R^{16}$ , a  $C_3$  to  $C_{12}$  cycloalkenyl, a  $C_3$  to  $C_{12}$  halocycloalkenyl, a  $C_3$  to  $C_{12}$  alkynyl optionally substituted by  $R^{16}$ , -OH, a  $C_1$  to  $C_8$  alkoxy, a  $C_3$  to  $C_8$  alkenyloxy, a  $C_3$  to  $C_8$  haloalkenyloxy, phenoxy, a phenoxy substituted by ( $Z_{12}$ ), a phenyl ( $C_1$  to  $C_4$ ) alkoxy, a phenyl ( $C_1$  to  $C_4$ ) alkoxy substituted by ( $Z_{12}$ ), -N( $Z_{12}$ ), phenyl, a phenyl substituted by ( $Z_{12}$ ), L or M,

 $R^2$  and  $R^3$  each independently represent a hydrogen atom, cyano, a  $C_1$  to  $C_{12}$  alkyl, a ( $C_1$  to  $C_{12}$ ) alkyl optionally substituted by  $R^{16}$ , a  $C_3$  to  $C_{12}$  alkenyl, a  $C_3$  to  $C_{12}$  haloalkenyl, a  $C_3$  to  $C_{12}$  alkynyl, a  $C_3$  to  $C_{12}$  haloalkynyl, -OH, a  $C_1$  to  $C_8$  alkoxy, a  $C_1$  to  $C_6$  alkylthio, a  $C_1$  to  $C_6$  haloalkylthio, phenylthio, a phenylthio substituted by  $(Z)_{p1}$ , - $S(O)_2R^9$ ,

 $-SN(R^{18})R^{17}$ ,  $-S(O)_2N(R^{10})R^9$ ,  $-N(R^{20})R^{19}$ ,  $-C(O)R^9$ ,  $-C(O)OR^9$ ,  $-C(O)SR^9$ ,  $-C(O)N(R^{10})R^9$ ,

-C(S)OR $^9$ , -C(S)SR $^9$ , -C(S)N(R $^{10}$ )R $^9$ , phenyl or a phenyl substituted by (Z)<sub>p1</sub>, or R $^2$  is combined with R $^1$  to form a C $_2$  to C $_6$  alkylene chain whereby it may form a 3 to 7-membered ring with the nitrogen atom to which they are bonded, and the alkylene chain at this time may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom, a C $_1$  to C $_6$  alkyl group, a C $_1$  to C $_6$  alkoxy group, a C $_1$  to C $_6$  alkoxycarbonyl group,

 $R^4$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a ( $C_1$  to  $C_6$ ) alkyl optionally substituted by  $R^{21}$ , a ( $C_1$  to  $C_6$ ) haloalkyl optionally substituted by  $R^{21}$ , a  $C_3$  to  $C_8$ 

cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, a ( $C_3$  to  $C_8$ ) cycloalkyl optionally substituted by  $R^{21}$ , a ( $C_3$  to  $C_8$ ) halocycloalkyl optionally substituted by  $R^{21}$ , a  $C_3$  to  $C_6$  alkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a  $C_3$  to  $C_6$  haloalkynyl, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M,

 $R^5$  represents cyano, a (C<sub>1</sub> to C<sub>6</sub>) alkyl optionally substituted by  $R^{21}$ , a (C<sub>1</sub> to C<sub>6</sub>) haloalkyl optionally substituted by  $R^{21}$ , a (C<sub>3</sub> to C<sub>8</sub>) cycloalkyl optionally substituted by  $R^{21}$ , a (C<sub>3</sub> to C<sub>8</sub>) halocycloalkyl optionally substituted by  $R^{21}$ , a (C<sub>2</sub> to C<sub>6</sub>) alkenyl optionally substituted by  $R^{21}$ , a C<sub>3</sub> to C<sub>8</sub> cycloalkenyl, a C<sub>3</sub> to C<sub>8</sub> halocycloalkenyl, a (C<sub>2</sub> to C<sub>6</sub>) alkynyl optionally substituted by  $R^{21}$ ,  $-OR^8$ ,  $-S(O)_rR^8$ ,  $-N(R^{10})R^9$ , -CHO,  $-C(O)R^9$ ,  $-CH=NOR^{11}$ ,  $-C(R^9)=NOR^{11}$ ,  $-C(O)OR^9$ ,  $-C(O)SR^9$ ,  $-C(O)NHR^{10}$ ,  $-C(O)N(R^{10})R^9$ ,  $-C(S)OR^9$ , -C(S)

 $-C(R^9)=NOR^{11}$ ,  $-C(O)OR^9$ ,  $-C(O)SR^9$ ,  $-C(O)NHR^{10}$ ,  $-C(O)N(R^{10})R^9$ ,  $-C(S)OR^9$ ,  $-C(S)SR^9$ ,

-C(S)NHR<sup>10</sup>, -C(S)N(R<sup>10</sup>)R<sup>9</sup>, phenyl, a phenyl substituted by  $(Z)_{p1}$ , biphenyl, a biphenyl substituted by  $(Z)_{p1}$ , phenoxyphenyl, a phenoxyphenyl substituted by  $(Z)_{p1}$ , pyridyloxyphenyl, a pyridyloxyphenyl substituted by  $(Z)_{p1}$ , phenylthiophenyl, a phenylthiophenyl substituted by  $(Z)_{p1}$ , phenylsulfinylphenyl, a phenylsulfinylphenyl substituted by  $(Z)_{p1}$ , phenylsulfonylphenyl, a phenylsulfonylphenyl substituted by  $(Z)_{p1}$ , L or M, or it forms a  $C_2$  to  $C_3$  alkylene chain with Y present at the adjacent position in combination whereby it may form a 5 to 6-membered ring which fuses with a benzene ring, and the alkylene chain at this time may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom or a  $C_1$  to  $C_6$  haloalkyl group,

 $R^6$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a ( $C_1$  to  $C_6$ ) alkyl optionally substituted by  $R^{21}$ , a ( $C_1$  to  $C_6$ ) haloalkyl optionally substituted by

 $R^{21}$ , a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_6$  alkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a phenyl( $C_3$  to  $C_6$ ) alkenyl substituted by (Z)<sub>p1</sub>, a  $C_3$  to  $C_6$  cycloalkenyl, a  $C_3$  to  $C_6$  alkynyl, a  $C_3$  to  $C_6$  haloalkynyl, a phenyl( $C_3$  to  $C_6$ ) alkynyl, a phenyl( $C_3$  to  $C_6$ ) alkynyl substituted by (Z)<sub>p1</sub>, -S(O)<sub>2</sub>R<sup>9</sup>, -C(O)R<sup>9</sup>, -C(O)OR<sup>9</sup>, -C(O)SR<sup>9</sup>, -C(S)OR<sup>9</sup>, -C(S)SR<sup>9</sup>, -C(O)NHR<sup>10</sup>, -C(S)NHR<sup>10</sup>, -C(S)N(R<sup>10</sup>)R<sup>9</sup>, -Si(R<sup>13</sup>)(R<sup>14</sup>)R<sup>12</sup>, -P(O)(OR<sup>22</sup>)<sub>2</sub>, -

 $-C(O)N(R^{10})R^9$ ,  $-C(S)NHR^{10}$ ,  $-C(S)N(R^{10})R^9$ ,  $-Si(R^{13})(R^{14})R^{12}$ ,  $-P(O)(OR^{22})_2$ ,  $-P(S)(OR^{22})_2$  or M,

L represents an aromatic heterocyclic ring represented by any of the formula L-1 to the formula L-58,

$$(Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p2} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p4} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p4}$$

. :

$$(Z)_{p2} \qquad (Z)_{p2} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p2} \qquad (Z)_{p3} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p3} \qquad (Z)_{p4} \qquad (Z)_{p4} \qquad (Z)_{p4} \qquad (Z)_{p4} \qquad (Z)_{p4} \qquad (Z)_{p5} \qquad (Z)_{p5}$$

M represents an aromatic heterocyclic ring represented by any of the formula M-1 to the formula M-28,

$$(R^{23})_{q4} \qquad (O)_{r} \qquad (R^{23})_{q4} \qquad (O)_{r} \qquad (R^{23})_{q4} \qquad (O)_{r} \qquad (R^{23})_{q4} \qquad (O)_{r} \qquad (R^{23})_{q4} \qquad (O)_{r} \qquad (O)_$$

Z represents a halogen atom, cyano, nitro, azide, -SCN, -SF<sub>5</sub>, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a C<sub>1</sub> to C<sub>3</sub> alkoxy(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkoxy(C<sub>1</sub> to C<sub>3</sub>) alkyl, a cyano(C<sub>1</sub> to C<sub>6</sub>) alkyl, a hydroxy(C<sub>1</sub> to C<sub>3</sub>) haloalkyl, a C<sub>1</sub> to C<sub>3</sub> alkoxy(C<sub>1</sub> to C<sub>3</sub>) haloalkyl, a C<sub>1</sub> to C<sub>3</sub> alkoxy(C<sub>1</sub> to C<sub>3</sub>) haloalkyl, a C<sub>1</sub> to C<sub>3</sub> alkylthio (C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> alkylsulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> alkylsulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> alkylsulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkyl-sulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> alkylsulfonyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylsulfonyl-(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, a C<sub>3</sub> to C<sub>8</sub> haloalkylsulfonyl, a C<sub>2</sub> to C<sub>6</sub> alkenyl, a C<sub>2</sub> to C<sub>6</sub> haloalkenyl, a C<sub>3</sub> to C<sub>8</sub> cycloalkenyl, a C<sub>3</sub> to C<sub>8</sub> haloalkoxy, a C<sub>1</sub> to C<sub>6</sub> haloalkoxy, a C<sub>1</sub> to C<sub>6</sub> haloalkoxy, a C<sub>1</sub> to C<sub>6</sub> haloalkoxy, a C<sub>2</sub> to C<sub>6</sub> haloalkoxy, a C<sub>3</sub> to C<sub>6</sub> haloalkoxy, a C<sub>2</sub> to C<sub>6</sub> haloalkenyloxy, a C<sub>3</sub> to C<sub>6</sub> haloalkenyloxy, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyloxy, -SH, a C<sub>1</sub>

9

to C<sub>6</sub> alkylthio, a C<sub>1</sub> to C<sub>6</sub> haloalkylthio, a C<sub>1</sub> to C<sub>6</sub> alkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, -NH<sub>2</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylamino, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)amino, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonylamino, a C<sub>1</sub> to C<sub>6</sub> haloalkyl-sulfonylamino, a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkoxycarbonyl, -C(O)NH<sub>2</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylaminocarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)aminocarbonyl, -C(S)NH<sub>2</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylaminosulfonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)aminosulfonyl or a tri(C<sub>1</sub> to C<sub>6</sub> alkyl)silyl, when p1, p2, p3 or p4 is an integer of 2 or more, each Z may be the same or different from each other,

further, when two Zs are adjacent to each other, the adjacent two Zs may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Zs are bonded by forming -CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>O-, -CH<sub>2</sub>OCH<sub>2</sub>-, -OCH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>S-, -CH<sub>2</sub>SCH<sub>2</sub>-,

-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>-, -CH<sub>2</sub>CH<sub>2</sub>O-, -CH<sub>2</sub>CH<sub>2</sub>OCH<sub>2</sub>-, -CH<sub>2</sub>OCH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>O-, -OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>O-, and at this time, each hydrogen atom bonded to the respective carbon atoms which form the ring may be optionally substituted by a halogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl group,

 $R^7$  represents a halogen atom, cyano, a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, -OH, -OR<sup>8</sup>, -SH, -S(O)<sub>r</sub>R<sup>8</sup>, -N(R<sup>10</sup>)R<sup>9</sup>, -N(R<sup>10</sup>)CHO, -N(R<sup>10</sup>)C(O)R<sup>9</sup>, -N(R<sup>10</sup>)C(O)OR<sup>9</sup>, -N(R<sup>10</sup>)C(O)SR<sup>9</sup>, -N(R<sup>10</sup>)C(S)OR<sup>9</sup>, -N(R<sup>10</sup>)C(S)SR<sup>9</sup>, -N(R<sup>10</sup>)S(O)<sub>2</sub>R<sup>9</sup>, -C(O)OR<sup>9</sup>, -C(O)N(R<sup>10</sup>)R<sup>9</sup>, -Si(R<sup>13</sup>)(R<sup>14</sup>)R<sup>12</sup>, phenyl, a phenyl substituted by  $(Z)_{p1}$ , L

 $R^8$  represents a  $C_1$  to  $C_6$  alkyl, a ( $C_1$  to  $C_6$ ) alkyl optionally substituted by  $R^{25}$ , a  $C_3$  to  $C_8$  cycloalkyl, a ( $C_3$  to  $C_8$ ) cycloalkyl optionally substituted by  $R^{25}$ , a  $C_2$  to  $C_6$ 

or M,

alkenyl, a ( $C_2$  to  $C_6$ ) alkenyl optionally substituted by  $R^{25}$ , a  $C_3$  to  $C_8$  cycloalkenyl, a  $C_3$  to  $C_8$  halocycloalkenyl, a  $C_3$  to  $C_6$  alkynyl, a ( $C_3$  to  $C_6$ ) alkynyl optionally substituted by  $R^{25}$ , phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M,

 $R^9$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_6$  cycloalkyl ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylthio ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylthio ( $C_1$  to  $C_4$ ) alkyl, a cyano( $C_1$  to  $C_6$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, an L-( $C_1$  to  $C_4$ ) alkyl, an M-( $C_1$  to  $C_4$ ) alkyl, a  $C_3$  to  $C_6$  cycloalkyl, a  $C_3$  to  $C_6$  halo-alkenyl, a  $C_3$  to  $C_6$  alkynyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>,

R<sup>10</sup> represents a hydrogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl, or R<sup>9</sup> and R<sup>10</sup> are combined in combination to form a C<sub>2</sub> to C<sub>6</sub> alkylene chain whereby they may form a 3 to 7-membered ring with an atom(s) to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom, a C<sub>1</sub> to C<sub>6</sub> alkyl group, a C<sub>1</sub> to C<sub>6</sub> alkoxy group, a formyl group, a C<sub>1</sub> to C<sub>6</sub> alkylcarbonyl group or a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl group,

R<sup>11</sup> represents a hydrogen atom, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl substituted by (Z)<sub>p1</sub>, a C<sub>3</sub> to C<sub>6</sub> alkenyl, a C<sub>3</sub> to C<sub>6</sub> haloalkenyl, a C<sub>3</sub> to C<sub>6</sub> alkynyl or a C<sub>3</sub> to C<sub>6</sub> haloalkynyl, or R<sup>11</sup> is combined with R<sup>9</sup> to form a C<sub>2</sub> to C<sub>4</sub> alkylene chain whereby it may form a 5 to 7-membered ring with an atom(s) to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl group,

 $R^{12}$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_6$  alkenyl, phenyl or a phenyl substituted by  $(Z)_{p1}$ ,

 $R^{13}$  and  $R^{14}$  each independently represent a  $C_1$  to  $C_6$  alkyl or a  $C_1$  to  $C_6$  haloalkyl,

 $R^{15}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_6$  alkoxycarbonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkoxycarbonyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, a  $C_3$  to  $C_6$  alkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a  $C_4$  to  $C_6$  haloalkoxycarbonyl, a  $C_4$  to  $C_6$  haloalkoxycarbonyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>,

 $R^{16}$  represents a halogen atom, cyano, nitro, a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl,  $-OR^{26}$ ,  $-N(R^{27})R^{26}$ , -SH,  $-S(O)_rR^{28}$ ,  $-SO_2NHR^{30}$ ,  $-SO_2N(R^{30})R^{29}$ , -CHO,  $-C(O)R^{29}$ , -C(O)OH,  $-C(O)OR^{29}$ ,  $-C(O)SR^{29}$ ,  $-C(O)NHR^{30}$ ,  $-C(O)N(R^{30})R^{29}$ ,  $-C(O)C(O)OR^{29}$ ,

-P(O)(phenyl)<sub>2</sub>, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M,

 $R^{17}$  represents a  $C_1$  to  $C_{12}$  alkyl, a  $C_1$  to  $C_{12}$  haloalkyl, a  $C_1$  to  $C_{12}$  alkoxy( $C_1$  to  $C_{12}$ ) alkyl, a cyano( $C_1$  to  $C_{12}$ ) alkyl, a  $C_1$  to  $C_{12}$  alkoxycarbonyl( $C_1$  to  $C_{12}$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by ( $Z_{12}$ ), a  $C_3$  to  $C_{12}$  alkenyl, a  $C_3$  to  $C_{12}$  haloalkenyl, a  $C_3$  to  $C_{12}$  alkylcarbonyl, a  $C_1$  to  $C_{12}$  alkoxycarbonyl, phenyl or a phenyl substituted by ( $Z_{12}$ ),

 $R^{18}$  represents a  $C_1$  to  $C_{12}$  alkyl, a  $C_1$  to  $C_{12}$  haloalkyl, a  $C_1$  to  $C_{12}$  alkoxy( $C_1$  to  $C_{12}$ ) alkyl, a cyano( $C_1$  to  $C_{12}$ ) alkyl, a  $C_1$  to  $C_{12}$  alkoxycarbonyl( $C_1$  to  $C_{12}$ ) alkyl, a

phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl substituted by (Z)<sub>p1</sub>, a C<sub>3</sub> to C<sub>12</sub> alkenyl, a C<sub>3</sub> to C<sub>12</sub> haloalkenyl, a C<sub>3</sub> to C<sub>12</sub> alkynyl, a C<sub>3</sub> to C<sub>12</sub> haloalkynyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>, or R<sup>17</sup> and R<sup>18</sup> are combined in combination to form a C<sub>4</sub> to C<sub>7</sub> alkylene chain whereby it may form a 5 to 8-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom, and may be optionally substituted by a C<sub>1</sub> to C<sub>4</sub> alkyl group or a C<sub>1</sub> to C<sub>4</sub> alkoxy group,

 $R^{19}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, a  $C_3$  to  $C_6$  alkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a  $C_3$  to  $C_6$  alkynyl, -CHO, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  haloalkylcarbonyl, a  $C_1$  to  $C_6$  alkoxycarbonyl, a  $C_1$  to  $C_6$  haloalkoxycarbonyl, a phenyl( $C_1$  to  $C_4$ ) alkoxycarbonyl substituted by (Z)<sub>p1</sub>, phenoxycarbonyl, a phenylcarbonyl substituted by (Z)<sub>p1</sub>, phenylcarbonyl substituted by (Z)<sub>p1</sub>, phenylcarbonyl substituted by (Z)<sub>p1</sub>, phenylcarbonyl substituted by (Z)<sub>p1</sub>,

 $R^{20}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, -CHO, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  haloalkylcarbonyl or a  $C_1$  to  $C_6$  alkoxycarbonyl,

 $R^{21}$  represents cyano, a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, -OH, -OR<sup>8</sup>, -SH, -S(O)<sub>r</sub>R<sup>8</sup>, -N(R<sup>10</sup>)R<sup>9</sup>, -N(R<sup>10</sup>)CHO, -N(R<sup>10</sup>)C(O)R<sup>9</sup>, -N(R<sup>10</sup>)C(O)SR<sup>9</sup>, -N(R<sup>10</sup>)C(O)SR<sup>9</sup>,

 $-N(R^{10})C(S)OR^9$ ,  $-N(R^{10})C(S)SR^9$ ,  $-N(R^{10})S(O)_2R^9$ ,  $-C(O)OR^9$ ,  $-C(O)N(R^{10})R^9$ ,  $-Si(R^{13})(R^{14})R^{12}$ , phenyl, a phenyl substituted by  $(Z)_{p1}$ , L or M,

R<sup>22</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl or a C<sub>1</sub> to C<sub>6</sub> haloalkyl,

 $R^{23}$  represents a halogen atom, cyano, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a hydroxy( $C_1$  to  $C_6$ ) alkyl, a  $C_1$  to  $C_4$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_4$ 

alkoxycarbonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  alkoxycarbonyl, phenyl or a phenyl substituted by  $(Z)_{p1}$ , when q1, q2, q3 or q4 is an integer of 2 or more, each  $R^{23}$  may be the same or different from each other,

R<sup>24</sup> represents a hydrogen atom, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, -CHO, a C<sub>1</sub> to C<sub>6</sub> alkylcarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylcarbonyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkylcarbonyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkylcarbonyl substituted by (Z)<sub>p1</sub>, a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkoxycarbonyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkoxycarbonyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkoxycarbonyl substituted by (Z)<sub>p1</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylthio carbonyl, a C<sub>1</sub> to C<sub>6</sub> alkoxythiocarbonyl, a C<sub>1</sub> to C<sub>6</sub> alkylaminocarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)aminocarbonyl, a C<sub>1</sub> to C<sub>6</sub> alkylaminothiocarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl)aminothiocarbonyl, phenylcarbonyl, a phenylcarbonyl substituted by (Z)<sub>p1</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, phenylsulfonyl, a phenylsulfonyl substituted by (Z)<sub>p1</sub>, -P(O)(OR<sup>22</sup>)<sub>2</sub> or -P(S)(OR<sup>22</sup>)<sub>2</sub>,

 $R^{25}$  represents a halogen atom, cyano, a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, a  $C_1$  to  $C_6$  alkylthio, a  $C_1$  to  $C_6$  haloalkylthio, a  $C_1$  to  $C_6$  alkylsulfonyl, a  $C_1$  to  $C_6$  haloalkylsulfonyl, a  $C_1$  to  $C_6$  alkylamino, a di( $C_1$  to  $C_6$  alkyl)amino, -CHO, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  haloalkylcarbonyl, a  $C_1$  to  $C_6$  haloalkoxycarbonyl, -  $C_1$  to  $C_6$  haloalkoxycarbonyl, -  $C_1$  to  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_3$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_3$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_2$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_2$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_2$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_2$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkoxycarbonyl, a  $C_1$  to  $C_2$  haloalkoxycarbonyl, -  $C_1$  to  $C_2$  haloalkylcarbonyl, -  $C_2$  haloalkylcarbonyl, -  $C_1$  to  $C_2$  haloalkylcarbonyl, -  $C_1$  to C

 $R^{26}$  represents a hydrogen atom, a  $C_1$  to  $C_8$  alkyl, a ( $C_1$  to  $C_8$ ) alkyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  cycloalkyl, a ( $C_3$  to  $C_8$ ) cycloalkyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  alkenyl, a ( $C_3$  to  $C_8$ ) alkenyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  alkynyl, a ( $C_3$  to  $C_8$ ) alkynyl optionally substituted by  $R^{33}$ , -CHO, -C(O) $R^{29}$ , -C(O) $R^{29}$ 

 $-C(O)NHR^{30}, -C(O)N(R^{30})R^{29}, -C(O)C(O)R^{29}, -C(O)C(O)OR^{29}, -C(S)R^{29}, -C(S)OR^{29}, -C(S)SR^{29}, -C(S)NHR^{30}, -C(S)N(R^{30})R^{29}, -S(O)_2R^{29}, -S(O)_2N(R^{30})R^{29}, -S(O)_2R^{29}, -S(O)_2R^$ 

-P(O)(OR<sup>22</sup>)<sub>2</sub>, -P(S)(OR<sup>22</sup>)<sub>2</sub>, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M,

 $R^{27}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_6$  cycloalkyl or a  $C_1$  to  $C_6$  alkoxy, or  $R^{26}$  and  $R^{27}$  are combined in combination to form a  $C_2$  to  $C_5$  alkylene chain whereby it forms a 3 to 6-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom, and may be substituted by a halogen atom, a  $C_1$  to  $C_6$  alkyl group, a  $C_1$  to  $C_6$  alkoxy group, a phenyl group or a phenyl group substituted by  $(Z)_{p1}$ ,

 $R^{28}$  represents a  $C_1$  to  $C_8$  alkyl, a ( $C_1$  to  $C_8$ ) alkyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  cycloalkyl, a ( $C_3$  to  $C_8$ ) cycloalkyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  alkenyl, a ( $C_3$  to  $C_8$ ) alkenyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  alkynyl, a ( $C_3$  to  $C_8$ ) alkynyl optionally substituted by  $R^{33}$ , -SH, a  $C_1$  to  $C_6$  alkylthio, a  $C_1$  to  $C_6$  haloalkylthio, phenylthio, a phenylthio substituted by ( $Z_{p1}$ , -CHO, -C(O) $R^{29}$ , -C(O) $R^{29}$ 

-C(S)NHR<sup>30</sup>, -C(S)N(R<sup>30</sup>)R<sup>29</sup>, -P(O)(OR<sup>22</sup>)<sub>2</sub>, -P(S)(OR<sup>22</sup>)<sub>2</sub>, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L-18, L-21, L-25, L-30 to L-35, L-45, L-48, L-49 or M,

 $R^{29}$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_8$  cycloalkyl ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkylthio ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkylsulfonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkylsulfonyl( $C_1$  to  $C_4$ ) alkyl, a cyano( $C_1$  to

 $C_6$ ) alkyl, a  $C_1$  to  $C_6$  alkylcarbonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkylcarbonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkoxycarbonyl( $C_1$  to  $C_4$ ) alkyl, a di( $C_1$  to  $C_6$  alkyl)aminocarbonyl( $C_1$  to  $C_4$ ) alkyl, a tri( $C_1$  to  $C_4$  alkyl)silyl ( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by ( $Z_{p_1}$ , an L-( $Z_1$  to  $Z_2$ ) alkyl, an M-( $Z_1$  to  $Z_2$  to  $Z_3$  to  $Z_4$  cycloalkyl, a  $Z_4$  to  $Z_4$  halocycloalkyl, a  $Z_4$  to  $Z_4$  alkenyl, a  $Z_4$  to  $Z_4$  to  $Z_4$  haloalkenyl, a  $Z_4$  to  $Z_4$  to  $Z_4$  haloalkyl, phenyl, a phenyl substituted by ( $Z_{p_1}$ ), L or M,

 $R^{30}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, phenyl or a phenyl substituted by  $(Z)_{p1}$ , or  $R^{29}$  and  $R^{30}$  are combined to form a  $C_2$  to  $C_5$  alkylene chain whereby it may form a 3 to 6-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom, a  $C_1$  to  $C_6$  alkyl group, a  $C_1$  to  $C_6$  alkoxy group, a formyl group, a  $C_1$  to  $C_6$  alkoxycarbonyl group, a phenyl group or a phenyl group substituted by  $(Z)_{p1}$ ,

 $R^{31}$  represents a hydrogen atom, a  $C_1$  to  $C_8$  alkyl, a ( $C_1$  to  $C_8$ ) alkyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  alkenyl, a ( $C_3$  to  $C_8$ ) alkenyl optionally substituted by  $R^{33}$ , a  $C_3$  to  $C_8$  alkynyl or a ( $C_3$  to  $C_8$ ) alkynyl optionally substituted by  $R^{33}$ .

 $R^{32}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_8$  cycloalkyl ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylthio ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  haloalkylthio ( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylsulfonyl( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$ 

haloalkylsulfonyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by  $(Z)_{p1}$ , phenyl or a phenyl substituted by  $(Z)_{p1}$ ,

 $R^{33}$  represents a halogen atom, cyano, nitro, a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, -OH, -OR<sup>34</sup>, -SH, -S(O)<sub>r</sub>R<sup>34</sup>, -NHR<sup>35</sup>, -N(R<sup>35</sup>)R<sup>34</sup>, -CHO, -C(O)R<sup>29</sup>, -C(O)OR<sup>29</sup>, -C(O)SR<sup>29</sup>, -C(O)NHR<sup>30</sup>, -C(O)N(R<sup>30</sup>)R<sup>29</sup>, -C(O)C(O)OR<sup>29</sup>, -CH=NOR<sup>11</sup>, -C(R<sup>9</sup>)=NOR<sup>11</sup>, -Si(R<sup>13</sup>)(R<sup>14</sup>)R<sup>12</sup>, -P(O)(OR<sup>22</sup>)<sub>2</sub>, -P(S)(OR<sup>22</sup>)<sub>2</sub>, -P(phenyl)<sub>2</sub>, -P(O)(phenyl)<sub>2</sub>, phenyl, a phenyl substituted by  $(Z)_{p1}$ , L or M,

R<sup>34</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a C<sub>1</sub> to C<sub>6</sub> alkoxy(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>6</sub> alkylthio(C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl substituted by (Z)<sub>p1</sub>, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, a C<sub>3</sub> to C<sub>8</sub> halocycloalkyl, a C<sub>3</sub> to C<sub>6</sub> alkenyl, a C<sub>3</sub> to C<sub>6</sub> haloalkenyl, a C<sub>3</sub> to C<sub>6</sub> cycloalkenyl, a C<sub>3</sub> to C<sub>8</sub> halocycloalkenyl, a C<sub>3</sub> to C<sub>6</sub> alkynyl, a C<sub>3</sub> to C<sub>6</sub> haloalkynyl, -CHO, a C<sub>1</sub> to C<sub>6</sub> alkylcarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylcarbonyl, a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkoxycarbonyl, a C<sub>1</sub> to C<sub>6</sub> alkylaminocarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl) aminocarbonyl, phenylcarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl) aminothiocarbonyl, a phenyl substituted by (Z)<sub>p1</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylaminothiocarbonyl, a di(C<sub>1</sub> to C<sub>6</sub> alkyl) aminothiocarbonyl, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M,

R<sup>35</sup> represents a hydrogen atom, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, a C<sub>3</sub> to C<sub>6</sub> alkenyl, a C<sub>3</sub> to C<sub>6</sub> alkynyl, a C<sub>1</sub> to C<sub>6</sub> alkylcarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylcarbonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkoxycarbonyl, phenoxycarbonyl, a phenoxycarbonyl substituted by (Z)<sub>p1</sub>, phenylcarbonyl, a phenylcarbonyl substituted by (Z)<sub>p1</sub>, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L or M, or R<sup>34</sup> and R<sup>35</sup> are combined to form a C<sub>2</sub> to C<sub>5</sub> alkylene chain, whereby it may form a 3 to 6-membered

ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom, and may be substituted by a halogen atom or a methyl group,

m is an integer of 0 to 4,

n is an integer of 0 to 4,

p1 is an integer of 1 to 5,

p2 is an integer of 0 to 4,

p3 is an integer of 0 to 3,

p4 is an integer of 0 to 2,

p5 is an integer of 0 or 1,

q1 is an integer of 0 to 3,

q2 is an integer of 0 to 5,

q3 is an integer of 0 to 7,

q4 is an integer of 0 to 9,

r is an integer of 0 to 2,

t is an integer of 0 or 1,

or a salt thereof.

Claim 2. (Original) The substituted benzanilide compound according to claim 1, wherein W<sup>1</sup> and W<sup>2</sup> each respresent an oxygen atom,

X represents a halogen atom, cyano, nitro, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, a  $C_1$  to  $C_6$  alkylsulfonyloxy, a  $C_1$ 

to C<sub>6</sub> haloalkylsulfonyloxy, a C<sub>1</sub> to C<sub>6</sub> alkylthlo, a C<sub>1</sub> to C<sub>6</sub> haloalkylthlo, a C<sub>1</sub> to C<sub>6</sub> alkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyl or a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, and when m is 2 or 3, each X may be the same or different from each other, and when two Xs are adjacent to each other, the adjacent two Xs may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Xs are bonded by forming -OCH<sub>2</sub>O- or -OCH<sub>2</sub>CH<sub>2</sub>O-, and at this time, the hydrogen atom(s) bonded to the respective carbon atoms which form a ring may be optionally replaced with a halogen atom, a C<sub>1</sub> to C<sub>4</sub> alkyl group or a C<sub>1</sub> to C<sub>4</sub> haloalkyl group,

Y represents a halogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a hydroxy( $C_1$  to  $C_6$ ) alkyl, a  $C_1$  to  $C_3$  alkoxy( $C_1$  to  $C_3$ ) alkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, a  $C_1$  to  $C_6$  alkylthio, a  $C_1$  to  $C_6$  haloalkylthio, a  $C_1$  to  $C_6$  alkylamino or a di( $C_1$  to  $C_6$  alkyl)amino, when n is 2 or 3, each Y may be the same or different from each other,

R<sup>1</sup> represents a C<sub>1</sub> to C<sub>8</sub> alkyl, a (C<sub>1</sub> to C<sub>8</sub>) alkyl optionally substituted by R<sup>16</sup>, a C<sub>3</sub> to C<sub>8</sub> cycloalkyl, a C<sub>3</sub> to C<sub>8</sub> alkenyl, a C<sub>3</sub> to C<sub>8</sub> alkynyl, a C<sub>1</sub> to C<sub>8</sub> alkoxy, M-4, M-5, M-8, M-9, M-13 to M-19, M-21 or M-22,

R<sup>2</sup> and R<sup>3</sup> each independently represent a hydrogen atom, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>4</sub> alkoxy(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylthio (C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylsulfonyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>3</sub> to C<sub>6</sub> alkenyl, a C<sub>3</sub> to C<sub>6</sub> alkynyl, a C<sub>1</sub> to C<sub>6</sub> alkylthio, a C<sub>1</sub> to C<sub>6</sub> haloalkylthio, phenylthio, a phenylthio substituted by (Z)<sub>p1</sub> or -SN(R<sup>18</sup>)R<sup>17</sup>, or R<sup>2</sup> and R<sup>1</sup> may be combined to form a C<sub>2</sub> to C<sub>6</sub> alkylene chain whereby they may form a 3 to 7-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom,

 $R^4$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $(C_1$  to  $C_6)$  alkyl optionally substituted by  $R^{21}$ , a  $(C_1$  to  $C_6)$  haloalkyl optionally substituted by  $R^{21}$ , a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  haloalkyl, a  $C_3$  to  $C_6$  haloalkynyl, a  $C_3$  to  $C_6$  haloalkynyl, or a phenyl substituted by  $(Z)_{p1}$ ,

R<sup>5</sup> represents cyano, a (C<sub>1</sub> to C<sub>6</sub>) alkyl optionally substituted by R<sup>21</sup>, a (C<sub>1</sub> to

 $C_6$ ) haloalkyl optionally substituted by  $R^{21}$ , a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, a  $(C_2$  to  $C_6)$  alkenyl optionally substituted by  $R^{21}$ , a  $(C_2$  to  $C_6)$  alkynyl optionally substituted by  $R^{21}$ ,  $-C(O)OR^9$ ,  $-C(O)SR^9$ ,  $-C(O)NHR^{10}$ ,  $-C(O)N(R^{10})R^9$ ,  $-C(S)OR^9$ ,  $-C(S)SR^9$ ,  $-C(S)NHR^{10}$ ,  $-C(S)N(R^{10})R^9$ , phenyl, a phenyl substituted by  $(Z)_{p1}$ , a phenoxyphenyl substituted by  $(Z)_{p1}$ , a pyridyloxyphenyl substituted by  $(Z)_{p1}$ , L-1 to L-4, L-8 to L-13, L-15 to L-23, L-25 to L-35, L-37, L-38, L-40, L-43 to L-58, M-4, M-5, M-8, M-9, M-14 to M-18 or M-19, or may be combined with Y existing at the adjacent position to form a  $C_2$  to  $C_3$  alkylene chain, whereby it may form a 5 to 6-membered ring which fuses with a benzene ring, and at this time, the alkylene chain may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom or a  $C_1$  to  $C_6$  haloalkyl group,

 $R^6$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_4$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_4$  alkylthio( $C_1$  to  $C_4$ ) alkyl, a cyano( $C_1$  to  $C_6$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, a  $C_3$  to  $C_6$  alkenyl, a  $C_3$  to  $C_6$  haloalkenyl, a phenyl( $C_3$  to  $C_6$ ) alkenyl, a phenyl( $C_3$  to  $C_6$ ) alkenyl substituted by (Z)<sub>p1</sub>, a  $Z_3$  to  $Z_6$  alkynyl, a  $Z_6$  to  $Z_6$  haloalkynyl, a phenyl( $Z_6$  to  $Z_6$ ) alkynyl, a phenyl( $Z_6$  to  $Z_6$ ) alkynyl, a phenyl( $Z_6$  to  $Z_6$ ) alkynyl substituted by ( $Z_6$ )<sub>p1</sub>, - $Z_6$ ( $Z_6$ ) alkynyl substituted by ( $Z_6$ )<sub>p1</sub>, - $Z_6$ ( $Z_6$ ) alkynyl substituted by ( $Z_6$ )<sub>p1</sub>, - $Z_6$ ( $Z_6$ ) alkynyl substituted by ( $Z_6$ )<sub>p1</sub>, - $Z_6$ ( $Z_6$ )

 $-C(S)N(R^{10})R^9$ ,  $-Si(R^{13})(R^{14})R^{12}$ ,  $-P(O)(OR^{22})_2$  or  $-P(S)(OR^{22})_2$ ,

Z represents a halogen atom, cyano, nitro, a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a C<sub>1</sub> to C<sub>3</sub> alkylthio(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylthio(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylsulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylsulfinyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> alkylsulfonyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylsulfonyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>6</sub> alkoxy, a C<sub>1</sub> to C<sub>6</sub> haloalkoxy, a C<sub>1</sub> to C<sub>3</sub> haloalkoxy(C<sub>1</sub> to C<sub>3</sub>) haloalkoxy, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyloxy, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyloxy, a C<sub>1</sub> to C<sub>6</sub> alkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, a C<sub>1</sub> to C<sub>6</sub> ha

further, when two Zs are adjacent to each other, the adjacent two Zs may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Zs are bonded by forming -CF<sub>2</sub>CF<sub>2</sub>O-, -CF<sub>2</sub>OCF<sub>2</sub>-, -OCF<sub>2</sub>O-, -OCF<sub>2</sub>CHFO-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CH=CHCH=CH-,

 $R^9$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_3$  to  $C_6$  cycloalkyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by  $(Z)_{p1}$ , a  $C_3$  to  $C_8$  cycloalkyl, a  $C_3$  to  $C_8$  halocycloalkyl, phenyl or a phenyl substituted by  $(Z)_{p1}$ ,

 $R^{10}$  represents a hydrogen atom or a  $C_1$  to  $C_6$  alkyl, or  $R^9$  and  $R^{10}$  are combined to form a  $C_4$  to  $C_5$  alkylene chain, whereby it may form a 5-membered ring or 6-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom,

 $R^{12}$  represents a  $C_1$  to  $C_6$  alkyl, phenyl or a phenyl substituted by  $(Z)_{p1}$ ,  $R^{13}$  and  $R^{14}$  each independently represent a  $C_1$  to  $C_6$  alkyl,

 $R^{16}$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by  $(Z)_{p1}$ , phenyl or a phenyl substituted by  $(Z)_{p1}$ ,

 $R^{16}$  represents a halogen atom, cyano, a  $C_3$  to  $C_6$  cycloalkyl, -OR<sup>26</sup>, -N(R<sup>27</sup>)R<sup>26</sup>,

 $-S(O)_rR^{28}$ ,  $-SO_2N(R^{30})R^{29}$ , a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl,  $-C(O)N(R^{30})R^{29}$ ,  $-C(R^{32})=NOH$ ,  $-C(R^{32})=NOR^{31}$ ,  $-Si(R^{13})(R^{14})R^{12}$ , phenyl, a phenyl substituted by  $(Z)_{p1}$ , L-1, L-2, L-3, L-4, L-45, L-46, L-47 or M,

 $R^{17}$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  alkoxycarbonyl ( $C_1$  to  $C_4$ ) alkyl or a  $C_1$  to  $C_6$  alkoxycarbonyl,

R<sup>18</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl, or R<sup>17</sup> and R<sup>18</sup> are combined to form a C<sub>4</sub> to C<sub>5</sub> alkylene chain whereby it may form a 5-membered ring or 6-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom, and may be optionally substituted by a methyl group or a methoxy group,

 $R^{21}$  represents cyano, a  $C_3$  to  $C_6$  cycloalkyl, a  $C_3$  to  $C_6$  halocycloalkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, phenoxy, a phenoxy substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkylthio, a  $C_1$  to  $C_6$  haloalkylthio, phenylthio, a phenylthio substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkylsulfinyl, a  $C_1$  to  $C_6$  haloalkylsulfinyl, a  $C_1$  to  $C_6$  alkylsulfonyl, a  $C_1$  to  $C_6$  haloalkylsulfonyl, phenylsulfonyl, a phenylsulfonyl substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkylamino, a di( $C_1$  to  $C_6$  alkyl)amino, phenylamino, a phenylamino substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkoxycarbonyl, phenyl, a phenyl substituted by  $(Z)_{p1}$ , L-1 to L-5, L-8 to L-24, L-36, L-39, L-45 to L-52 or L-53,

 $R^{22}$  represents a  $C_1$  to  $C_6$  alkyl,

R<sup>23</sup> represents a C<sub>1</sub> to C<sub>4</sub> alkyl, when q1, q2, q3 or q4 is an integer of 2 or more, each R<sup>23</sup> may be the same or different from each other,

 $R^{24}$  represents -CHO, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  alkylsulfonyl,

 $R^{26}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_4$  alkyl, a  $C_1$  to  $C_4$  alkyl, a  $C_1$  to  $C_4$  alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  haloalkylcarbonyl, a  $C_3$  to  $C_6$  cycloalkylcarbonyl, a  $C_1$  to  $C_6$  alkoxycarbonyl, -  $C(O)N(R^{30})R^{29}$ , a  $C_1$  to  $C_6$  alkylsulfonyl, a di( $C_1$  to  $C_6$  alkyl)aminosulfonyl, phenylsulfonyl, a phenylsulfonyl substituted by (Z)<sub>p1</sub>, a di( $C_1$  to  $C_6$  alkyl)phosphoryl, a di( $C_1$  to  $C_6$  alkyl)thiophosphoryl, a tri( $C_1$  to  $C_4$  alkyl)silyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>,

 $R^{27}$  represents a hydrogen atom or a  $C_1$  to  $C_6$  alkyl,

R<sup>28</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl, a C<sub>1</sub> to C<sub>6</sub> haloalkyl, a hydroxy(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylthio(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylthio(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylcarbonyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkoxycarbonyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a C<sub>1</sub> to C<sub>4</sub> alkylaminocarbonyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a di(C<sub>1</sub> to C<sub>4</sub> alkyl)aminocarbonyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a tri(C<sub>1</sub> to C<sub>4</sub> alkyl)silyl (C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl, a phenyl(C<sub>1</sub> to C<sub>4</sub>) alkyl substituted by (Z)<sub>p1</sub>, a C<sub>3</sub> to C<sub>6</sub> alkenyl, a C<sub>3</sub> to C<sub>6</sub> alkynyl, a C<sub>1</sub> to C<sub>6</sub> alkylthio, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, L-21, L-35, L-45 or L-48,

 $R^{29}$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_4$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_4$  alkylthio( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by (Z)<sub>p1</sub>, a  $C_3$  to  $C_6$  cycloalkyl, a  $C_3$  to  $C_6$  alkenyl, a  $C_2$  to  $C_6$  alkynyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>,

R<sup>30</sup> represents a hydrogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl, or R<sup>29</sup> and R<sup>30</sup> are combined to form a C<sub>2</sub> to C<sub>5</sub> alkylene chain, whereby it may form a 3 to 6-membered ring with the nitrogen atom to which they are bonded, and at this time, the alkylene chain may contain one oxygen atom or sulfur atom,

 $R^{31}$  represents a  $C_1$  to  $C_6$  alkyl, a phenyl( $C_1$  to  $C_4$ ) alkyl or a phenyl( $C_1$  to  $C_4$ ) alkyl substituted by  $(Z)_{01}$ ,

R<sup>32</sup> represents a hydrogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl,

m is an integer of 0 to 3,

n is an integer of 0 to 3,

q2, q3 and q4 are each independently an integer of 0 to 2 or a salt thereof.

Claim 3. (Original) The substituted benzanilide compound according to claim 2, wherein X represents a halogen atom, nitro, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, a  $C_1$  to  $C_6$  alkylsulfonyloxy, a  $C_1$  to  $C_6$  alkylsulfinyl, a  $C_1$  to  $C_6$  haloalkylsulfinyl, a  $C_1$  to  $C_6$  haloalkylsulfinyl, a  $C_1$  to  $C_6$  haloalkylsulfonyl or a  $C_1$  to  $C_6$  haloalkylsulfonyl, and when m is 2, each X may be the same or different from each other,

Y represents a halogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_6$  alkylthio, and when n is 2, each Y may be the same or different from each other,

 $R^1$  represents a  $C_1$  to  $C_8$  alkyl, a ( $C_1$  to  $C_8$ ) alkyl optionally substituted by  $R^{16}$ , a  $C_3$  to  $C_8$  alkenyl or a  $C_3$  to  $C_8$  alkynyl,

R<sup>2</sup> represents a hydrogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl,

R<sup>3</sup> represents a hydrogen atom,

 $R^4$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_3$  alkoxy( $C_1$  to  $C_3$ ) haloalkyl, a  $C_1$  to  $C_3$  alkylthio( $C_1$  to  $C_3$ ) haloalkyl, a  $C_3$  to  $C_6$  cycloalkyl or a  $C_3$  to  $C_6$  halocycloalkyl,

 $R^5$  represents a ( $C_1$  to  $C_6$ ) alkyl optionally substituted by  $R^{21}$ , a ( $C_1$  to  $C_6$ ) haloalkyl optionally substituted by  $R^{21}$ , a ( $C_2$  to  $C_6$ ) alkenyl optionally substituted by  $R^{21}$ , a ( $C_2$  to  $C_6$ ) alkynyl optionally substituted by  $R^{21}$ , a  $C_1$  to  $C_6$  alkoxycarbonyl, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, a phenoxyphenyl substituted by (Z)<sub>p1</sub>, a pyridyloxyphenyl substituted by (Z)<sub>p1</sub>, L-1 to L-4, L-8 to L-13, L-15 to L-23, L-45 to L-52 or L-53, or may be combined with Y existing at the adjacent position to form a  $C_2$  to  $C_3$  alkylene chain, whereby it may form a 5 to 6-membered ring which fuses with a benzene ring, and at this time, the alkylene chain may contain one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom,

 $R^6$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_4$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylcarbonyl or a tri( $C_1$  to  $C_4$  alkyl)silyl,

 $R^{16}$  represents -OR<sup>26</sup>, -N(R<sup>27</sup>)R<sup>26</sup>, -S(O)<sub>r</sub>R<sup>28</sup>, -SO<sub>2</sub>N(R<sup>30</sup>)R<sup>29</sup>, -C(R<sup>32</sup>)=NOH or -C(R<sup>32</sup>)=NOR<sup>31</sup>,

 $R^{21}$  represents a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, phenoxy, a phenoxy substituted by  $(Z)_{p1}$ , phenylthio, a phenylthio substituted by  $(Z)_{p1}$ , phenylsulfonyl, a phenylsulfonyl substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkylamino, a di $(C_1$  to  $C_6$  alkyl)amino,

phenylamino, a phenylamino substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkoxycarbonyl, phenyl, a phenyl substituted by  $(Z)_{p1}$ , L-1 to L-5, L-8 to L-24, L-36, L-39, L-45 to L-52 or L-53,

 $R^{26}$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  alkylcarbonyl, a  $C_1$  to  $C_6$  alkoxycarbonyl, a  $C_1$  to  $C_6$  alkylaminocarbonyl, a  $C_1$  to  $C_6$  alkylaminocarbonyl or a  $C_1$  to  $C_6$  alkylsulfonyl,

R<sup>28</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl,

R<sup>29</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl,

R<sup>30</sup> represents a hydrogen atom or a C<sub>1</sub> to C<sub>6</sub> alkyl,

 $R^{31}$  represents a  $C_1$  to  $C_6$  alkyl,

R<sup>32</sup> represents a hydrogen atom,

m is an integer of 0 to 2,

n is an integer of 0 to 2

or a salt thereof.

Claim 4. (Original) The substituted benzanilide compound according to claim 3, wherein X represents a halogen atom, nitro, a C<sub>1</sub> to C<sub>4</sub> alkyl, a C<sub>1</sub> to C<sub>4</sub> haloalkyl, a C<sub>1</sub> to C<sub>4</sub> alkylthio, a C<sub>1</sub> to C<sub>4</sub> alkylsulfinyl or a C<sub>1</sub> to C<sub>4</sub> alkylsulfonyl, and when m is 2, each X may be the same or different from each other,

Y represents a halogen atom or a  $C_1$  to  $C_4$  alkyl, when n is 2, each Y may be the same or different from each other,

 $R^1$  represents a  $C_1$  to  $C_8$  alkyl, a  $C_1$  to  $C_4$  alkylthio( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_4$  alkylsulfinyl( $C_1$  to  $C_4$ ) alkyl or a  $C_1$  to  $C_4$  alkylsulfonyl( $C_1$  to  $C_4$ ) alkyl,

R<sup>2</sup> represents a hydrogen atom,

R4 represents a C1 to C6 alkyl or a C1 to C6 haloalkyl,

 $R^5$  represents phenyl, a phenyl substituted by  $(Z)_{p1}$ , a phenoxyphenyl substituted by  $(Z)_{p1}$ , a pyridyloxyphenyl substituted by  $(Z)_{p1}$ , L-1 to L-4, L-8 to L-13, L-15 to L-23, L-45 to L-52 or L-53,

R<sup>6</sup> represents a hydrogen atom or a salt thereof.

Claim 5. (Original). An N-substituted phenyl-3-nitrophthalimide or substituted aniline represented by the formula (2) or the formula (3):

wherein  $Y^1$  represents a hydrogen atom, a halogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_6$  alkoxy or a  $C_1$  to  $C_6$  alkylthio,

Y<sup>2</sup> and Y<sup>3</sup> each independently represent a hydrogen atom, or may form a C<sub>2</sub> to C<sub>3</sub> alkylene chain in combination with R<sup>5</sup>, whereby it may form a 5 to 6-membered ring which fuses with a benzene ring, at this time, the alkylene chain may contain

one oxygen atom, sulfur atom or nitrogen atom, and may be optionally substituted by a halogen atom,

 $R^4$  represents a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_3$  alkoxy( $C_1$  to  $C_3$ ) haloalkyl, a  $C_1$  to  $C_3$  alkylthio( $C_1$  to  $C_3$ ) haloalkyl, a  $C_3$  to  $C_6$  cycloalkyl, halocycloalkyl,

 $R^5$  represents a (C<sub>1</sub> to C<sub>6</sub>) alkyl optionally substituted by  $R^{21}$ , a (C<sub>1</sub> to C<sub>6</sub>) haloalkyl optionally substituted by  $R^{21}$ , a (C<sub>2</sub> to C<sub>6</sub>) alkenyl optionally substituted by  $R^{21}$ , a (C<sub>2</sub> to C<sub>6</sub>) alkynyl optionally substituted by  $R^{21}$ , a C<sub>1</sub> to C<sub>6</sub> alkoxycarbonyl, phenyl, a phenyl substituted by (Z)<sub>p1</sub>, a phenoxyphenyl substituted by (Z)<sub>p1</sub>, a pyridyloxyphenyl substituted by (Z)<sub>p1</sub>, L-1 to L-4, L-8 to L-13, L-15 to L-23, L-45 to L-52 or L-53,

 $R^6$  represents a hydrogen atom, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_4$  alkoxy( $C_1$  to  $C_4$ ) alkyl, a  $C_1$  to  $C_6$  alkylcarbonyl or a tri( $C_1$  to  $C_4$  alkyl)silyl,

 $R^{21}$  represents a  $C_1$  to  $C_6$  alkoxy, a  $C_1$  to  $C_6$  haloalkoxy, phenoxy, a phenoxy substituted by  $(Z)_{p1}$ , phenylthio, a phenylthio substituted by  $(Z)_{p1}$ , phenylsulfonyl, a phenylsulfonyl substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkylamino, a di( $C_1$  to  $C_6$  alkyl)amino, phenylamino, a phenylamino substituted by  $(Z)_{p1}$ , a  $C_1$  to  $C_6$  alkoxycarbonyl, phenyl, a phenyl substituted by  $(Z)_{p1}$ , L-1 to L-5, L-8 to L-24, L-36, L-39, L-45 to L-52 or L-53,

L-1 to L-5, L-8 to L-24, L-36, L-39, L-45 to L-52 or L-53 each represent the following aromatic heterocyclic ring,





Z represents a halogen atom, cyano, nitro, a  $C_1$  to  $C_6$  alkyl, a  $C_1$  to  $C_6$  haloalkyl, a  $C_1$  to  $C_3$  alkylthio( $C_1$  to  $C_3$ ) alkyl, a  $C_1$  to  $C_3$  haloalkylthio( $C_1$  to  $C_3$ ) alkyl, a  $C_1$  to  $C_3$  haloalkylsulfinyl( $C_1$  to  $C_3$ ) alkyl, a  $C_1$ 

to C<sub>3</sub> alkylsulfonyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>3</sub> haloalkylsulfonyl(C<sub>1</sub> to C<sub>3</sub>) alkyl, a C<sub>1</sub> to C<sub>6</sub> alkoxy, a C<sub>1</sub> to C<sub>6</sub> haloalkoxy, a C<sub>1</sub> to C<sub>3</sub> haloalkoxy(C<sub>1</sub> to C<sub>3</sub>) haloalkoxy, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyloxy, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyloxy, a C<sub>1</sub> to C<sub>6</sub> alkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfinyl, a C<sub>1</sub> to C<sub>6</sub> alkylsulfonyl, a C<sub>1</sub> to C<sub>6</sub> haloalkylsulfonyl, -C(O)NH<sub>2</sub> or -C(S)NH<sub>2</sub>, when p1, p2, p3 or p4 is an integer of 2 or more, each Z may be the same or different from each other, further, when two Zs are adjacent to each other, the adjacent two Zs may form a 5-membered ring or 6-membered ring with the carbon atoms to which two Zs are bonded by forming -CF<sub>2</sub>CF<sub>2</sub>O-, -CF<sub>2</sub>OCF<sub>2</sub>-, -OCF<sub>2</sub>O-, -OCF<sub>2</sub>CHFO-, -OCF<sub>2</sub>CF<sub>2</sub>O- or -CH=CHCH=CH-,

R<sup>15</sup> represents a C<sub>1</sub> to C<sub>6</sub> alkyl, phenyl or a phenyl substituted by (Z)<sub>p1</sub>, p1 is an integer of 1 to 5, p2 is an integer of 0 to 4, p3 is an integer of 0 to 3, p4 is an integer of 0 to 2, p5 is an integer of 0 or 1, r is an integer of 0 to 2, t is an integer of 0 or 1.]

or a salt thereof.

Claim 6. (Currently Amended) A noxious organism controlling agent which comprises one or more kinds selected from the substituted benzanilide compound

and a salt thereof according to any one of claims 1 to 4 claim 1 as an effective ingredient.

Claim 7. (Currently Amended) An agricultural chemical which comprises one or more kinds selected from the substituted benzanilide compound and a salt thereof according to any one of claims 1 to 4 claim 1 as an effective ingredient.

Claim 8. (Currently Amended) An insecticide or araricide which comprises one or more kinds selected from the substituted benzanilide compound and a salt thereof according to any one of claims 1 to 4 claim 1 as an effective ingredient.