PREDICTING USED CARS PRICES

IMPORT NEEDED LIBRARIES

```
In [1]: import pandas as pd # for data processing
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split # for splitting the datas
    from sklearn.preprocessing import LabelEncoder
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import r2_score, mean_squared_error
```

LOADING THE DATASET

In [2]: df = pd.read_excel("C://Users//quays//Desktop//used_car_listings.csv.xlsx")

VIEWING THE FIRST 5 ROWS

In [3]:	df.head()										
Out[3]:	listing_id		make	model year		trim	body_type	oody_type fuel_type		mileage	
	0	2	Nissan	Rogue	2024	LT	Sedan	Hybrid	Automatic	16109	
	1	3	Hyundai	i20	2018	XLE	Crossover	Petrol	Automatic	173239	
	2	4	Kia	Sportage	2023	EX	Hatchback	Diesel	CVT	36810	
	3	5	Kia	Seltos	2020	Trend	Pickup	Diesel	Automatic	87749	
	4	6	Mercedes- Benz	GLA	2019	Platinum	Crossover	Electric	CVT	60853	
	4 6									•	

DATA CLEANING AND EXPLORATORY DATA

1. CHECKING FOR DUPLICATES

```
In [4]: df.duplicated().sum()
Out[4]: 0
```

2. CHECKING FOR NULL SPACES

```
In [5]: df.isnull().sum()
Out[5]: listing_id
                         0
        make
                         0
        model
                         0
        year
                         0
        trim
                         0
                         0
        body_type
        fuel_type
                         0
        transmission
                         0
        mileage
                         0
        price
                         0
        condition
                         0
        Country
                         0
        seller_type
        dtype: int64
```

3. CHECKING COLUMNS AND THEIR DATA TYPES

```
In [6]: df.dtypes
Out[6]: listing_id
                         int64
        make
                        object
                        object
        model
                         int64
        year
                        object
        trim
                        object
        body_type
        fuel_type
                        object
        transmission
                        object
                         int64
        mileage
        price
                         int64
        condition
                        object
        Country
                        object
        seller_type
                        object
        dtype: object
```

4. CAR MILEAGE AND PRICE DISTRIBUTION

```
In [7]: plt.subplot(1, 2, 1)
   plt.hist(df['mileage'])
   plt.title('MILEAGE')

   plt.subplot(1, 2, 2)
   plt.hist(df['price'])
   plt.title('PRICE')
   plt.show()
```


5. ENCODING THE STRING COLUMNS TO NUMERCAL VALUES

```
In [8]: encoder = LabelEncoder()

In [9]: df['make'] = encoder.fit_transform(df['make'])
    df['model'] = encoder.fit_transform(df['model'])
    df['trim'] = encoder.fit_transform(df['trim'])
    df['body_type'] = encoder.fit_transform(df['body_type'])
    df['fuel_type'] = encoder.fit_transform(df['fuel_type'])
    df['transmission'] = encoder.fit_transform(df['transmission'])
    df['condition'] = encoder.fit_transform(df['condition'])
    df['Country'] = encoder.fit_transform(df['Country'])
    df['seller_type'] = encoder.fit_transform(df['seller_type'])
```

In [10]:	df	.head()										
Out[10]:		listing_id	make	model	year	trim	body_type	fuel_type	transmission	mileage	price	con
	0	2	10	44	2024	4	7	3	1	16109	19480	
	1	3	5	64	2018	17	2	4	1	173239	4556	
	2	4	6	53	2023	1	3	1	2	36810	11536	
	3	5	6	46	2020	16	5	1	1	87749	14098	
	4	6	9	26	2019	10	2	2	2	60853	17137	
	4 (•

SPLITTING THE DATA INTO TRAINING AND TESTING

1. GROUPING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

2. SPLITTING THE DATA

```
In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando
```

1. LINEAR REGRESSION MODEL

```
In [14]: lr_model = LinearRegression()
```

TRAINING THE MODEL ON THE DATA

```
In [15]: lr_model.fit(X_train, y_train)
```

Out[15]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

MAKING PREDICTIONS

```
In [16]: lr_pred = lr_model.predict(X_test)
```

MODEL METRICS/PERFORMANCE

```
In [17]: lr_r2 = r2_score(y_test, lr_pred)
lr_r2
```

Out[17]: 0.6528444192293608

```
In [19]: lr_mse = mean_squared_error(y_test, lr_pred, squared = False)
lr_mse
```

Out[19]: 2960.1500399484685

RANDONFOREST REGRESSOR

```
In [20]: rf_model = RandomForestRegressor()
```

TRAINING THE MODEL ON THE DATA

```
In [21]: rf_model.fit(X_train, y_train)
```

Out[21]: RandomForestRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

MAKING PREDICTIONS

```
In [22]: rf_pred = rf_model.predict(X_test)
```

MODEL METRICS/PERFORMANCE

```
In [23]: rf_r2 = r2_score(y_test, rf_pred)
    rf_r2
Out[23]: 0.8303611888910583
```

```
In [24]: rf_mse = mean_squared_error(y_test, rf_pred, squared = False)
rf_mse
```

Out[24]: 2069.2561706265337

CONCLUSION

THE BEST PERFORMING MODEL IS THE RANDOM FOREST REGRESSOR WHICH SHOWED THE HIGHEST VALUES FOR THE R2 SCORE AND AND THE LOWEST VALUE FOR THE MEAN SCORE ERROR WHICH ARE 0.83 AND 2069.3 RESPECTIVELY.

