STATISTIQUE

Script et Test statistique

1/ Les tests paramétriques

- Test du Chi2
- Test de Student

3/ Les regressions linéaires (Variable continue)

- Linéaire simple
- Multiple
- Avec intercation

5/ Covariance

- Covariance
- Covariance avec interaction

7/ Analyse des résidus

- Normalité
- Homogénéité

2/ Transformations de variable

- Test de normalité
- Test d'homogénéité des variances
- Linéarisation

4/ ANOVA (Variable catégorielle)

- 1 Facteur
- 2 Facteur
- Avec intercation

6/ Modèle liéaire généralisé (GLM)

- Modèle
- Reprèsentation graphique

Script important

Importation des données .txt

Dans propriété: avec / ou \\
tab <-read.table("chemin d'accès", header = TRUE / FALSE,
dec = ", / .")

Decimal utilisé

En-tête

Importation des données .csv

Séparateur entre les données

tab <-read.csv("chemin d'accès", sep = "; ", header = TRUE/ FALSE, dec = ", /.")

Creation de vecteur

V <- c(1, 2, 3, ...)

Formation de list

Changer l'affichage des graphiques

par (mfrow = c(1,2)) nombre de ligne

nombre de colonne

Creation de matrix

tab <-matrix(data=c(1, 2, 3, ...), ncol= nbc, nrow=nbl, dimnames= list (c("nml1", "nml2", ...), c("nmc1","nmc2", ...)))

Creation d'un tableau

Creation de graphique

plot(y~x, data = tab)

nuage de point

boxplot(y~x, data = tab)

boite

TEST CHI2

Comparaison de 2 échantillon dont les 2 variables sont catégorielles

1/ Creation du tableau de contingence

tab <-matrix(data=c(1, 2, 3, ...), ncol= nombre de colonne, nrow=nombre de ligne, dimnames= list (c("nom ligne 1", "nom ligne 2", ...), c("nom colonne 1","nom colonne 2", ...)))

	Α	В	С
а	1	3	5
b	2	4	6

c() = Creation d'un vecteur

Attention : Les valeurs doivent être ajouté dans le bonne ordre (comme dans le tableau)

2/ Test du Chi2

chic.test (x= tab)

Donne la valeur de **chi2**, **p-value** et le **ddl**

> #Test du Chi2

> chisq.test(x=tab)

b 4788 5

Pearson's Chi-squared test

data: tab

X-squared = 17.092, df = 4, p-value = 0.001855

H0: Pas de difference significative de la croissance entre les 2 espèces **H1:** INVERSE

p>0,01	p<0,01
Acceptation de H0	Rejet de H0

P-value = 0,0019 < 0,01

=> Rejet de H0

Il y a une difference significative de croissance entre les 2 espèces

TEST DE STUDENT

Comparaison de 2 moyennes de variable continue

1/ Création de 2 vecteurs à comparer

V1 <- **c** (1, 2, 3) V2 <- **c** (a, b, c)

V1	V2
1	a
2	b
3	С

2/ Calcul des moyennes

mean (\(\frac{\sqrt{2}}{1} \)

3/ Test de Student

Echantillons appariés?

t.test (V1, V2, paired (TRUE/FALSE), var.equal = TRUE/FALSE, conf.level = 0,01)

intervalle de confiance

Variances égales ?

```
> #Creation des vecteurs
> MS<-c(5.7,8.2,6.9,6,3.8,3.9,4.3,2.7)
> MH<-c(4,5.8,4.9,4.8,3.6,3.5,2.9,1.2)
> #Calcul des moyennes
> mean(MS)
[1] 5.1875
> mean(MH)
[1] 3.8375
> #Test de Student
> t.test(MS,MH,paired=TRUE,var.equal=FALSE,conf.level=0.90)
```

p>0,01	p<0,01
Acceptation de H0	Rejet de H0

Paired t-test

data: MS and MH t = 5.1025, df = 7, p-value = 0.001396

alternative hypothesis: true mean difference is not equal to 0

90 percent confidence interval:

0.8487416 1.8512584 sample estimates: mean difference 1.35

HO: Pas de difference significative entre les 2 moyennes (methode)

H1: INVERSE

P-value = 0,0014 < 0,01

=> Rejet de HO

Il y a une difference significative entre les 2 methode

Transformations de variable

TEST DE NORMALITÉ

Comparaison d'une distribution à une distribution théorique continue normale : <u>Test de Kolmogorov-</u>Smirnov

HO: Pas de difference entre la distribution observée de xi et la distribution théorique de xi attendue sou l'hypothèse que xi suit une loi normal

1/ Création de la distribution théorique

Xth <- **rnorm** (1000, mean (*tab*), sd(*tab*))

H1: INVERSE

Si D tend vers 0 - p>0,01

Acceptation de HO

Si D tend vers 1 - p<0,01

Rejet de HO

2/ Test de normalité
observée
ks.test(tab, Xth)
théorique

Exemple:

Asymptotic two-sample Kolmogorov-Smirnov test

data: tab1 and X1
D = 0.13975, p-value = 0.58
alternative hypothesis: two-sided

Ici, **D tend vers 0** donc on ne peux pas rejeter **H0**

P-value = 0,58 >0,01 => Grande Il n'y a pas de difference significative entre les 2 distributions

TEST D'HOMOGÉNÉITÉ

Comparaison de 2 variances de 2 échantillons observés indépendants

> PN<-c(110, 115, 80, 75, 120, 96, 73, 105)

HO: Pas de difference entre les variances observés des 2 échantillon

H1: Difference significative entre les 2 variances

2/ Test de Fisher var.test(tab1, tab2) Variance la + grande Variance la + petite

Exemple:

1/ Calcul des variances

V1 <- **var**(*tab1*) *V2* <- **var**(*tab2*)

```
Si F tend vers 1
- p>0,01

Acceptation
de HO

Si F s'éloigne
de 1 - p<0,01

Rejet de HO
```

Ici, **F tend vers 1** donc on peut accepter H0

p-value =0,998>0,01, donc il n'y a pas de difference significative entre les variances On accepte **HO**

LINÉARISATION

lorsqu'une Utilisé d'echantillon courbe est exponentielle ou logarithmique

Exponentielle

1/ Definir un tableau avec X et Y

tab <- data.frame (nom = c (donnée, ...), nom = c(donnée, ...))

3/ Linéarisation

log < -log (tab \$xy)

2/ Création du graphique avant modification

plot(y ~ x, data= tab)

4/ Création du grapgique après linéarisation

plot(y ~ log, data= tab)

- > tab<-data.frame(ID=c(1:14),</pre>
- Abondance=c(5,2,2,9,3,10,4,12,20,19,25,29,31,43),
- Aire=c(0,1,1,1,1,1,2,5,5,6,15,32,57,144)
- > par(mfrow=c(1,2))
- > #Création du graphique
- > plot(Abondance~Aire,data=tab)
- > #Graphique de type log
- > logAire<-log(tab\$Aire)</pre>
- > #Graphique
- > plot(Abondance~logAire,data=tab)

REGRESSION LINÉAIRE

Regression linéaire 2 facteurs + interaction

Les interactions n'ont pas un effet significatif

Changement de modèle

Les intercations ont un effet significatif

Bon modèle

Regression linéaire à 2 facteurs

Seul 1 Facteur à un effet significatif

Changement de modèle

Les 2 facteurs ont un effet significatif

Bon modèle

Regression linéaire à 1 facteurs

Le facteur a un effet significatif

Le facteur n'a pas d'effet significatif

REGRESSION SIMPLE

Condition à respecter pour faire une regression linéaire :

- Normalité de Y
- Homogénéité
- Linéarité

1/ Création du nuage de point

plot (tab\$X, tab\$Y)

3/ Test de comparaison anova(M)

```
Si F tend vers 1
- p>0,01

Si F s'éloigne
de 1 - p<0,01

Acceptation
de H0

Rejet de H0
```

HO: X n'influence

pas Y

H1: X influence Y

2/ Création de la droite

 $M < -lm (y \sim x, data = tab)$

4/ Determibation de l'equation de droite summary(M)

```
Intercetp = b
X = a
R-squared = [1;0]
```

Les "error" ne doivent pas être supérieur aux "estimate"

```
plot(tab2$LT,tab$Racines)
M1<-lm(Racines~LT,data=tab2)
anova(M1)
summary(M1)
```

```
Analysis of Variance Table

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F)

LT 1 37.983 37.983 32.7 3.458e-06 ***

Residuals 29 33.685 1.162

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
lm(formula = Racines ~ LT, data = tab2)
Residuals:
   Min
            1Q Median
                           30
                                 Max
-2.0505 -0.7821 0.0590 0.4369 2.6127
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.28742 0.66548 -1.935 0.0629 .
                      0.01018 5.718 3.46e-06 ***
LT
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.078 on 29 degrees of freedom
Multiple R-squared: 0.53,
                             Adjusted R-squared: 0.5138
F-statistic: 32.7 on 1 and 29 DF, p-value: 3.458e-06
```

```
F= 32,7 -> il est eloigné de 1
P= 3,458e-06< 0,01
```

Donc on rejette H0 et accepte H1

```
b a
Racine = -1,28742 +0,05821 LT
```

R-squared = 0,5138 Donc il y a **51%** de la dispersion total des racines expliqué par la longueur des feuilles (LT)

REGRESSION MULTIPLE

Regression où l'on prend en compte 2 facteurs : On test des relations multiples en ajoutant une dimension supplémentaire

Modèle ADDITIF

Création du modèle

(comme pour une simple mais en ajoutant un facteur)

```
M<-lm(y ~ x1 + x2, data= tab)
anova(M)
summary(M)
```

```
30 40 50 60 70 80 90

tab2$LT
```



```
tab2<-read.table("/Users/eleane/Desktop/BEE/Outils analytique /Statistique/Atelier/dataAtelier4.txt",
                header=TRUE, dec=".")
par(mfrow=c(1,2))
                                         Analysis of Variance Table
plot(tab2$LT,tab$Racines)
plot(tab2$PHF,tab2$Racines)
                                         Response: Racines
M<-lm(Racines~LT+PHF,data=tab2)
                                                   Df Sum Sq Mean Sq F value
                                                                                 Pr(>F)
anova(M)
                                                    1 37.983 37.983 79.852 1.085e-09 ***
                                         LT
summary(M)
                                                    1 20.366 20.366 42.816 4.296e-07 ***
                                         PHF
                                         Residuals 28 13.319
                                                                0.476
                                         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Call:
lm(formula = Racines \sim LT + PHF, data = tab2)
Residuals:
               10
                    Median
                                 30
                                         Max
-1.50533 -0.43046 0.06791 0.35581 1.33523
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.385798   0.426129   -3.252   0.00298 **
LT
             0.036763
                        0.007292
                                  5.041 2.48e-05 ***
PHF
            0.011685
                        0.001786
                                   6.543 4.30e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6897 on 28 degrees of freedom
Multiple R-squared: 0.8142,
                               Adjusted R-squared: 0.8009
F-statistic: 61.33 on 2 and 28 DF, p-value: 5.86e-11
```


F sont éloignés de 1 P < 0,01 Donc **on rejette H0** et **accepte H1**

R-squared = 0,8009 Donc il y a **80%** de la dispersion total des racines expliqué par la longueur des feuilles (LT) et le potentiel hydrique foliaire (PHF)

REGRESSION AVEC INTERCATION

Regression où l'on prend en compte 2 facteurs et leur

interaction

Création du modèle

F tend vers 1

P=0.506 > 0.01

bon modèle

Donc on accepte HO

 $M < -Im(y \sim x7 + x2 + x7*x2, data = tab)$

Si F tend vers 1	Si F s'éloigne
- p>0,01	de 1 - p<0,01
Acceptation de H0	Rejet de H0

Pas d'effet de l'intercation, pas le

anova(M)

Analysis of Variance Table

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F) 1 37.983 37.983 78.2961 1.830e-09 *** LT 1 20.366 20.366 41.9818 6.045e-07 *** PHF LT:PHF

Residuals 27 13.098 0.485

1 0.220 0.220 0.4544 0.506

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(M)

Residuals:

Min 10 Median 30 Max -1.4022 -0.4172 0.1090 0.3237 1.2960

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -1.912e+00 8.917e-01 -2.145 0.04114 * 4.533e-02 1.469e-02 3.086 0.00464 ** LT PHF 1.779e-02 9.231e-03 1.927 0.06457 . -9.095e-05 1.349e-04 -0.674 0.50596 LT:PHF

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6965 on 27 degrees of freedom Multiple R-squared: 0.8172, Adjusted R-squared: 0.7969 F-statistic: 40.24 on 3 and 27 DF, p-value: 4.211e-10

Racine = -1,912 +1,779e-02 PHF + 4,533e-02 LT - 9,095e-05*LT*PHF

R-squared = 0,7969

=> Donc il y a 79% de la dispersion total des racines expliqué par la longueur des feuilles (LT), le potentiel hydrique foliaire (PHF) et l'interaction de ces 2 paramètres

Anova (variable catégorielle)

ANOVA À 1 FACTEUR

Analyse de variance avec un facteur categoriel

1/Rendre des variables catégorielles

tab\$x1<-as.factor(tab\$x1)

2/Representation graphique

boxplot($y \sim x1$, data = tab)

Si F tend vers 0	Si F tend vers 0
- p>0,01	l'infini - p<0,01
Acceptation de H0	Rejet de H0

3/ Création et analyse du modèle

 $M \leftarrow Im (y \sim x), data = tab)$

HO: X n'influence pas Y

H1: X influence Y

anova(M)

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F)

2 52.913 26.4566 39.497 7.067e-09 ***

Residuals 28 18.756 0.6698

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F (=39,5) tend vers l'infini P=7,067e-09 < 0,01 Donc on rejette HO Effet des groupes sur les racines

summary(M)

Dénominateur 4

18,75 >> 0,6698

Dénominateur supérieur au Nominateur

=> effet de Gpe fort

Residuals:

Min 10 Median 30 Max -1.45667 -0.41344 -0.06667 0.38333 1.86812

Coefficients:

Estimate Std. Error t value Pr(>|t|)

5.727 3.82e-06 *** (Intercept) 1.1719 0.2046 5.556 6.08e-06 *** 1.8948 0.3410 GpeB 0.3918 8.329 4.62e-09 *** GpeC 3.2631

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

= moyenne des racines de GpeA

> = écart-type, marge d'erreur de la moyenne

Nominateur

Residual standard error: 0.8184 on 28 degrees of freedom Multiple R-squared: 0.7383, Adjusted R-squared: 0.7196 F-statistic: 39.5 on 2 and 28 DF, p-value: 7.067e-09

Moyenne GpeB = Moyenne Gpe A + Ecart avec B = 1.17+ 1.89 = **3.06**

Changer de referentiel pour avoir l'eccart entre Bet C

tab\$x1 <- relevel(tab\$x1, "b")

ANOVA À 2 FACTEURS

Analyse de variance avec deux facteur catégoriel

Même script

tab\$x1<-as.factor(tab\$x1)

boxplot($y \sim x7 + x2$, data = tab)

 $M < - Im (y \sim x7 + x2, data = tab)$

anova(M)

summary(M)

tab\$x1 <- relevel(tab\$x1, "b")

H0: X1+X2 n'influence pas Y

H1: X1+X2 influence Y

Si F tend vers 0 -	Si F tend vers 0
p>0,01	l'infini - p<0,01
Acceptation de H0	Rejet de H0

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F)

Gpe 2 52.913 26.4566 41.9162 5.253e-09 ***

Origine 1 1.714 1.7138 2.7153 0.111

Residuals 27 17.042 0.6312

F (=41,9) tend vers l'infini P=5,253e-09 < 0,01 Donc **on rejette H0**

Effet des groupes sur les racines

Call:

lm(formula = Racines ~ Gpe + Origine, data = tab2)

Residuals:

Min 1Q Median 3Q Max -1.66922 -0.41269 -0.02617 0.32643 1.59911

Coefficients:

Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 0.9626
 0.2357
 4.084
 0.000355

 GpeB
 1.8383
 0.3328
 5.524
 7.48e-06

 GpeC
 3.1535
 0.3861
 8.168
 9.00e-09

OrigineUSA 0.4782 0.2902 1.648 0.110982

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7945 on 27 degrees of freedom Multiple R-squared: 0.7622, Adjusted R-squared: 0.7358 F-statistic: 28.85 on 3 and 27 DF, p-value: 1.424e-08

On peut additionner les ecart car il s'agit d'un modèle sans intercation et donc **additif**

racines de GpeA

 = difference de moyenne des racines entre EurA et EurB/EurC

= moyenne des

= difference de moyenne des racines entre EurA et USA A

ANOVA À 2 FACTEURS+INTERACTION

Analyse de variance avec deux facteur catégoriel + interaction de ces 2 facteurs

Même script

tab\$x1<-as.factor(tab\$x1)

boxplot($y \sim x7 + x2$, data = tab)

 $M < - Im (y \sim x1 + x2, data = tab)$

anova(M)

summary(M)

tab\$x1 <- relevel(tab\$x1, "b")

Pas d'interaction

Interaction

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F)

Gpe 2 52.913 26.4566 44.4996 5.794e-09 **

Origine 1 1.714 1.7138 2.8826 0.1020 Gpe:Origine 2 2.178 1.0892 1.8320 0.1809

Residuals 25 14.863 0.5945

Changment de modèle

Residuals:

Min 1Q Median 3Q Max -1.3620 -0.4764 -0.1114 0.4068 1.4556

Coefficients:

Estimate Std. Error t value Pr(> t)					
(Intercept)	0.7444	0.2570	2.896	0.00773	**
GpeB	2.4406	0.4633	5.267	1.87e-05	***
GpeC	3.5856	0.6028	5.949	3.29e-06	***
OrigineUSA	0.9770	0.3886	2.514	0.01873	*
GpeB:OrigineUSA	-1.1900	0.6469	-1.839	0.07776	
<pre>GpeC:OrigineUSA</pre>	-0.8195	0.7726	-1.061	0.29897	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7711 on 25 degrees of freedom Multiple R-squared: 0.7926, Adjusted R-squared: 0.7511 F-statistic: 19.11 on 5 and 25 DF, p-value: 8.028e-08

H0: X1+X2+X2*X1 n'influence pas Y **H1:** X1+X2+X1*X2 influence Y

Si F tend vers 0 -	Si F tend vers 0
p>0,01	l'infini - p<0,01
Acceptation de H0	Rejet de H0

F (=44,5) tend vers l'infini P=5,794e-09 < 0,01 Donc **on rejette H0** Différence significative des effets de Gpe

MAIS: Interaction pas significativement différente (p>0,01) Donc pas d'effet de l'interaction des 2 facteurs

Covariance (continue et catégorielle)

Analyse de variance avec 1 variable catégorielle, 1 variable continue et interaction

Les interactions n'ont pas un effet significatif

Changement de modèle

Les intercations ont un effet significatif

Bon modèle

Analyse de variance avec 1 variable catégorielle et 1 variable continue

Seul 1 Facteur à un effet significatif

Changement de modèle

Les 2 facteurs ont un effet significatif

Bon modèle

Analyse de variance avec 1 variable

Le Facteur n'à pas un effet significatif

Le facteur a un effet significatif

COVARIANCE À 2 FACTEURS

Analyse de variance avec un facteur catégoriel + un

facteur continu

1/ Representation graphique

Plot(tab\$x1, tab\$y)

Variable continue $boxplot(y \sim x2, data = tab)$

Variable catégorielle

HO: X1+X2+n'influence pas Y

H1: X1+X2 influence Y

2/ Rendre la variable catégorielle

tab\$x2<-as.factor(tab\$x2)

Si F tend vers 0 -Si F tend vers 0 p>0,001 l'infini - p<0,001 Acceptation de Rejet de HO H₀

anova(M)

LT

Response: Racines

Df Sum Sq Mean Sq F value 2 52.913 26.4566 47.4286 1.46e-09 *** Gpe 1 3.694 3.6945 6.6231 0.01588 *

Residuals 27 15.061 0.5578

3/ Création et analyse du modèle

 $M < -Im(y \sim x1 + x2, data = tab)$ anova(M) summary(M)

tab\$x1 <- relevel(tab\$x2, "b")

F (=47,4) tend vers l'infini P=1,46e-09 < 0,001 Donc on rejette HO Différence significative des effets de Gpe et LT

summary(M)

Residuals:

Min 10 Median Max -1.51043 -0.48020 -0.05323 0.32102 1.42981

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.510673 -0.101 0.92063 (Intercept) -0.051362 GpeB 1.357347 0.374774 3.622 0.00119 ** 2.571116 0.447367 5.747 4.13e-06 *** GpeC LT 0.024193 0.009401 2.574 0.01588 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7469 on 27 degrees of freedom Multiple R-squared: 0.7899, Adjusted R-squared: 0.7665 F-statistic: 33.83 on 3 and 27 DF, p-value: 2.73e-09

Racines = -0,051 + 0,024 **LT A**

Racines = 1,36-0,051 + 0,024 **LT B**

Racines = 2,57-0,051 + 0,024 LT_C

= ordonnée a

l'origine de GpeA

COVARIANCE À 2 FACTEURS + INTERACTION

Analyse de variance avec un facteur catégoriel + un facteur continu + l'interaction des 2 facteurs

Même script

tab\$x1<-as.factor(tab\$x1)

 $M <- lm (y \sim x1 + x2 + x1 * x2, data = tab)$

anova(M)

summary(M)

tab\$x1 <- relevel(tab\$x1, "b")

HO: X1+X2+ X1*X2 n'influence

pas Y

H1:X1+X2+X1*X2 influence Y

Si F tend vers 0 -	Si F tend vers 0
p>0,01	l'infini - p<0,01
Acceptation de H0	Rejet de H0

Response: Racines

Df Sum Sq Mean Sq F value Pr(>F)

Gpe 2 52.913 26.4566 59.6563 3.041e-10 ***

LT 1 3.694 3.6945 8.3306 0.007922 **

Gpe:LT 2 3.974 1.9870 4.4805 0.021727 *

Residuals 25 11.087 0.4435

F (=59,7) tend vers l'infini P=3,041e-10 < 0,01

Donc **on rejette H0**Interaction significative

Residuals:

Min 1Q Median 3Q Max -1.40374 -0.36945 -0.05548 0.43078 1.27715

Coefficients:

Estimate Std. Error t value Pr(>|t|)

GpeC 5.51945 1.75581 3.144 0.004266 ** LT 0.04037 0.01006 4.015 0.000477 ***

GpeB:LT -0.06418 0.02431 -2.641 0.014059 *

GpeC:LT -0.04309 0.02314 -1.862 0.074420 .

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

51g/// 100c5. 0 0.001 0.01 0.05 . 0.1

Residual standard error: 0.6659 on 25 degrees of freedom
Multiple R-squared: 0.8453, Adjusted R-squared: 0.8144

F-statistic: 27.32 on 5 and 25 DF, p-value: 2.247e-09

= ordonnée à

l'origine / pente de GpeA

= Ecart de B / C avec l'ordonnée a l'origine de A

= Ecart de B / C avec la pente de A

R-squared = 0,81 **81** % de Racines s'explique par les 2 facteurs et leur interaction

Racines = -0,87 + 0,04 LT A

Racines = (5,66-0,87) + (-0,064+0,04) **LTB**

Racines = (5,52-0,87) + (-0,043-0,04) LT c

MODÈLE LINÉAIRE GENERALISÉ

Analyse pour toutes etudes où la distribution ne suit pas une loi normale : De type binomial

modèle

data = tab)

1/ Representation graphique

Plot(tab\$x, tab\$y)

Type:

- normal
- gamma
- inverse
- poisson
- gaussian
- binomial

anova(M, test = "Chisq")

Model: binomial, link: logit

Response: Presence

Terms added sequentially (first to last)

summary(*M*) p>0,01 p<0,01

 $M < -glm(y \sim x, family = binomial,$

2/ Création et analyse du

anova(M, test = "Chisq")

Acceptation de H0

Rejet de H0

Modèle sans l'effet de la distance => Horizontale

Df Deviance Resid. Df Resid. Dev Pr(>Chi) 75 104.039

NULL 75 104.039 Distance 1 28.748 74 75.291 8.243e-08 ***

→ Modèle avec l'effet de la distance

= Valeur du Chi2 = ecrat entre les 2 résidus

P=8,243e-08 < 0,01

Donc on rejette H0

=> Effet de la distance

(X) sur la presence (Y)

summary(M)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.732062 0.652313 4.188 2.81e-05 ***
Distance -0.037577 0.009583 -3.921 8.81e-05 ***

Effet positif ou négatif ?? => Summary

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

= Ordonnée à l'origine

(Dispersion parameter for binomial family taken to be 1)

= pente

Null deviance: 104.039 on 75 degrees of freedom Residual deviance: 75.291 on 74 degrees of freedom

AIC: 79.291

Number of Fisher Scoring iterations: 5

logit(présence) = 2,73 + -0,038 LT

GRAPHIQUE GLM

1/ Création d'un nouveau tableau

Valeurs max et min

tab2 < -data.frame(X = seq (from = 1, to = 201, by = 1))Même nom que dans le fichier d'origine

Pas de 1 🤝

2/ Ajout d'une colonne de prediction sur le modèle dans tab2

pred <- predict(M, newdata = tab2, type = "response")</pre> Résultat de la sygmoïde de logis(Y)

3/ Graphique

par(new = TRUE)

Permet d'ajouter un nouveau plot au dessus d'un deja existant

lines(tab2\$X, pred)

NORMALITÉ DES RESIDUS

distribustion **Analyse** résidus la de des en comparaison avec une loi Normal

1/ Extraction des residus du modèle

R <- resid(M)

2/ Representation graphique

hist (R)

3/ Test de normalité des résidus

 $Xth \leftarrow rnorm (1000, mean (R), sd(R))$ ks.test (R, Xth)

Si D tend vers 0 -	Si D tend vers 1 -
p>0,01	p<0,01
Acceptation de H0	Rejet de H0

HO: Les résidus suivent une loi normale

H1: Les résidus ne suivent pas

de loi normale

Asymptotic two-sample Kolmogorov-Smirnov test

data: R1 and TH11 D = 0.095387, p-value = 0.9473

alternative hypothesis: two-sided

P=0,94 > 0,001 => On ne peut pas rejeter H0 Il n'y a pas de difference significative entre la loi normale et la distribution des residus

Residus Theorique

HOMOGÉNÉITÉ DES RESIDUS

Analyse de l'homogénéité des variances résiduelles

Trouver la representation graphique qui nous intéresse

plot (M11, which= c (1)) Donne un diagnostic du modèle

Dependance

Heterogénéité peut etre du a :

- Point non indépendant
- obsevateur different
- dependance des points
- spatial
- temporel

