Homework 3 Report

Tiantu Xu

Newly Added APIs Description:

```
API (NeuralNetwork)
[nil] backward([ND FloatTensor] target)
```

The Backward Propagation method that takes in the target, and do the calculations of delta, and $\partial E/\partial \Theta$. Note that for hidden layers, the first dimension of delta is removed before back-propagating to the front layer.

```
[nil] updateParams([float] eta)
```

Update the training weights by deducting eta*($\partial E/\partial \Theta$) from the weights in the last training epoch. The eta is used as element wise multiplication.

```
API (logicGates)
[nil] AND.train()
[nil] OR.train()
[nil] NOT.train()
[nil] XOR.train()
```

The training function for AND, OR, NOT, and XOR gate. Each input is randomized as combinations of x in (0, 1) and y in (0, 1). The target is verified by python's "and", "or", and "not". For XOR, the target is [(x and (not y)) or ((not x) and y)].

Note that target is converted from boolean values to float values for computation.

How to run:

\$ python test.py

Result:

It is shown that the trained weights performs correctly and output expected boolean results.

Analysis:

By comparing the trained weights with the predefined weights in **Homework 02**, I found out they are relatively the same, which is as expected.

Gates	HW2 Theta (Predefined)	HW3 Theta (Trained)
AND	[[-3, 2, 2]]	[[-5.9105, 3.8190, 3.8172]]
OR	[[-2, 3, 3]]	[[-1.9710, 4.5115, 4.4516]]
NOT	[[0, -1]]	[[2.7776, -5.7122]]
XOR	[[-2, 3, -3], [-2, -3, 3]]	[[-3.5787, -6.5990, 6.4673], [-3.3105, 5.9958, -6.2254]]
	[[-2, 3, 3]]	[[-5.0930, 10.2340, 10.3557]]