Exercises and outline solutions for MM101 tutorial in week 7

1. Prove, using the limit definition, that if f(x) = 1/x then $f'(a) = -1/a^2$ for all $a \neq 0$.

$$f'(a) = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{a+h} - \frac{1}{a} \right) = \lim_{h \to 0} \frac{a - (a+h)}{h(a+h)a} = \lim_{h \to 0} \frac{-1}{(a+h)a} = -\frac{1}{a^2}.$$

2. Find the derivatives of $f(x) = \frac{1}{\sin x}$, $g(x) = \frac{x^2 + 1}{x^3 - 1}$, and $h(x) = \frac{\sin^7(x)}{\cos(x)}$.

$$f'(x) = \frac{-\cos x}{\sin^2 x} = -\csc x \cot x.$$

$$g'(x) = \frac{2x(x^3 - 1) - (x^2 + 1)3x^2}{(x^3 - 1)^2} = -\frac{x(x^3 + 3x + 2)}{(x^3 - 1)^2}.$$

$$h'(x) = \frac{7\sin^6(x)\sin'(x) - \sin^7(x)\cos'(x)}{\cos^2(x)} = \frac{7\sin^6(x)\cos^2(x) + \sin^8(x)}{\cos^2(x)}.$$

- 3. Find f'(x) for the functions defined by the following expressions.
 - (a) $f(x) = \sin(x + x^2)$.
 - (b) $f(x) = \sin^2 x + \sin(x^2)$.
 - (c) $f(x) = \sin^2(\sqrt{x}) + \sin(\sqrt{x}^2)$.
 - (d) $f(x) = \cos x \sin x$.
 - (e) $f(x) = \cos(\sin x)$.

(a)
$$f'(x) = (1+2x)\cos(x+x^2)$$
.

(b)
$$f'(x) = 2\sin x \cos x + 2x \cos x^2$$
.

(c)
$$f'(x) = \frac{\sin \sqrt{x} \cos \sqrt{x}}{\sqrt{x}} + \cos x$$
.

(d)
$$f'(x) = -\sin^2 x + \cos^2 x = 2\cos^2 x - 1$$
.

(e)
$$f'(x) = -\sin(\sin x) \cdot \cos x$$
.

- 4. Find f'(x) for the functions defined by the following expressions.
 - (a) $f(x) = \arctan(\arctan x)$.
 - (b) $f(x) = \arccos(1+x^2)$.

(c)
$$f(x) = \arcsin\left(\frac{1}{\sqrt{1+x^2}}\right)$$
 for $x \ge 0$.

(a)
$$f'(x) = \frac{1}{1 + \arctan^2 x} \cdot \frac{1}{1 + x^2}$$
.

(b)
$$f'(x) = \frac{-2x}{\sqrt{1-(1+x^2)^2}} = \frac{-2x}{\sqrt{-2x^2-x^4}}$$
. This is not defined for any $x \in \mathbb{R}$. The domain of arccos is $[-1,1]$.

(c)
$$f'(x) = \frac{1}{\sqrt{1 - (\frac{1}{\sqrt{1+x^2}})^2}} \cdot \frac{-x}{(1+x^2)^{3/2}} = \frac{1}{\sqrt{\frac{x^2}{1+x^2}}} \cdot \frac{-x}{(1+x^2)^{3/2}} = \frac{-1}{1+x^2}.$$

(Note that $f(x) = \arctan \frac{1}{x} = \frac{\pi}{2} - \arctan x$. This can be seen from a right-angled triangle with sides 1, x, and $\sqrt{1+x^2}$.)