# Regression

Dr. Benjamin Säfken

Data Science Summer School 2019

Georg-August-University Göttingen

## Data Science Building Blocks



# Simple Linear Regression



### How do Data Scientists look like?



#### Sir Francis Galton

- 16 February 1822 17 January 1911
- English Victorian era statistician, polymath, sociologist, psychologist, anthropologist,....
- Pioneer of regression, who laid down the foundations of the method
- Cousin of Charles Darwin
- He studied how physical characteristics are passed down from one generation to the next.
- Specifically he was interested in and collected data on sibling and parental height

### Galton's data

#### Prediction

- An important aspect of data science is to find out what data can tell us about the future
  - $\rightarrow$  i.e. make predictions
- Sibling and parental height
- How to predict height of a person?
- The prediction is based on the heights of the parents
- Thus the correlation of the two variables is used for prediction
- Powerful tool in data science?

| family | midparentHeight | children | childNum | gender | childHeight |
|--------|-----------------|----------|----------|--------|-------------|
| 1      | 75.43           | 4        | 1        | male   | 73.2        |
| 1      | 75.43           | 4        | 2        | female | 69.2        |
| 1      | 75.43           | 4        | 3        | female | 69.0        |
| 1      | 75.43           | 4        | 4        | female | 69.0        |
| 2      | 73.66           | 4        | 1        | male   | 73.5        |
| 2      | 73.66           | 4        | 2        | male   | 72.5        |
| 2      | 73.66           | 4        | 3        | female | 65.5        |
| 2      | 73.66           | 4        | 4        | female | 65.5        |
| 3      | 72.06           | 2        | 1        | male   | 71.0        |
| 3      | 72.06           | 2        | 2        | female | 68.0        |
| 4      | 72.06           | 5        | 1        | male   | 70.5        |
| 4      | 72.06           | 5        | 2        | male   | 68.5        |
| 4      | 72.06           | 5        | 3        | female | 67.0        |
| 4      | 72.06           | 5        | 4        | female | 64.5        |
| 4      | 72.06           | 5        | 5        | female | 63.0        |
| 5      | 69.09           | 6        | 1        | male   | 72.0        |
| 5      | 69.09           | 6        | 2        | male   | 69.0        |
| 5      | 69.09           | 6        | 3        | male   | 68.0        |
| 5      | 69.09           | 6        | 4        | female | 66.5        |
| 5      | 69.09           | 6        | 5        | female | 62.5        |
| 5      | 69.09           | 6        | 6        | female | 62.5        |
| 6      | 73.72           | 1        | 1        | female | 69.5        |
| 7      | 73.72           | 6        | 1        | male   | 76.5        |
| 7      | 73.72           | 6        | 2        | male   | 74.0        |
| 7      | 73.72           | 6        | 3        | male   | 73.0        |
| 7      | 73.72           | 6        | 4        | male   | 73.0        |
| 7      | 73.72           | 6        | 5        | female | 70.5        |
| 7      | 73.72           | 6        | 6        | female | 64.0        |
| 8      | 72.91           | 3        | 1        | female | 70.5        |
| 8      | 72.91           | 3        | 2        | female | 68.0        |
|        |                 |          |          |        |             |

### Galton's data

#### Prediction

- An important aspect of data science is to find out what data can tell us about the future
  - → i.e. make predictions
- Sibling and parental height
- How to predict height of a person?
- The prediction is based on the heights of the parents
- Thus the correlation of the two variables is used for prediction
- Powerful tool in data science?
   → Visualizations

| family | midparentHeight | children | childNum | gender | childHeight |
|--------|-----------------|----------|----------|--------|-------------|
| 1      | 75.43           | 4        | 1        | male   | 73.2        |
| 1      | 75.43           | 4        | 2        | female | 69.2        |
| 1      | 75.43           | 4        | 3        | female | 69.0        |
| 1      | 75.43           | 4        | 4        | female | 69.0        |
| 2      | 73.66           | 4        | 1        | male   | 73.5        |
| 2      | 73.66           | 4        | 2        | male   | 72.5        |
| 2      | 73.66           | 4        | 3        | female | 65.5        |
| 2      | 73.66           | 4        | 4        | female | 65.5        |
| 3      | 72.06           | 2        | 1        | male   | 71.0        |
| 3      | 72.06           | 2        | 2        | female | 68.0        |
| 4      | 72.06           | 5        | 1        | male   | 70.5        |
| 4      | 72.06           | 5        | 2        | male   | 68.5        |
| 4      | 72.06           | 5        | 3        | female | 67.0        |
| 4      | 72.06           | 5        | 4        | female | 64.5        |
| 4      | 72.06           | 5        | 5        | female | 63.0        |
| 5      | 69.09           | 6        | 1        | male   | 72.0        |
| 5      | 69.09           | 6        | 2        | male   | 69.0        |
| 5      | 69.09           | 6        | 3        | male   | 68.0        |
| 5      | 69.09           | 6        | 4        | female | 66.5        |
| 5      | 69.09           | 6        | 5        | female | 62.5        |
| 5      | 69.09           | 6        | 6        | female | 62.5        |
| 6      | 73.72           | 1        | 1        | female | 69.5        |
| 7      | 73.72           | 6        | 1        | male   | 76.5        |
| 7      | 73.72           | 6        | 2        | male   | 74.0        |
| 7      | 73.72           | 6        | 3        | male   | 73.0        |
| 7      | 73.72           | 6        | 4        | male   | 73.0        |
| 7      | 73.72           | 6        | 5        | female | 70.5        |
| 7      | 73.72           | 6        |          | female | 64.0        |
| 8      | 72.91           | 3        |          | female | 70.5        |
| 8      | 72.91           | 3        | 2        | female | 68.0        |
|        |                 |          |          |        |             |

Scatterplot

Child height vs Average Parent height



Scatterplot

Child height vs Average Parent height



# Prediction in dependence



## A more precise prediction



# Regression line



# Simple Linear Regression

#### A linear function

A linear function

$$f(x) = \beta_0 + \beta_1 x$$

is uniquely defined by two parameters:

The intercept

$$\beta_0$$

And the slope

$$\beta_1$$

#### The univariate linear model

The regression model is defined by

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, ..., n$$

with

dependent (or response) variable

$$y_i$$
,

explanatory variable

$$x_i$$

error term

 $\epsilon_i$ 

## Regression line and prediction



## How to fit a regression line



# How to fit a regression line



## How to fit a regression line



### Method of least squares



## The method of least squares

#### The least squares criterion

The criterion to minimize is

$$LS(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

 Therefore calculate the derivatives and set them to zero

$$\frac{\partial LS(\beta_0, \beta_1)}{\partial \beta_i} = 0, j = 1,2$$

#### The LS-estimates

• The resulting estimates are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

and

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

### How do Data Scientists look like?



#### Carl Friedrich Gauss

- The method of least squares is usually credited to him
- He used it as method for calculating the orbits of celestial bodies
- In this work he claimed to have been in possession of the method of least squares since 1795
- Although the method was first published by Adrien-Marie Legendre in 1805

### Practical session I





### Be aware of mighty data science



- Sir Francis Galton was an eugenicist
- He misused statistics to justify racism
- In his book *Hereditary Genius* (1869) he states:
  - "The Negro now born in the United States has much the same natural faculties as his distant cousin who is born in Africa"
- Data science and statistics have a long and unfavorable misanthropic history
- Unfortunately, current examples do not give hope for mankind (Cambridge Analytica, social scoring,...)

# Multiple Regression



### **Application: Development Economics**



- Zambia is a country in south-central Africa
- Zambia ranked 117th out of 128 countries on the 2007 Global Competitiveness Index
- It had severe problems with childhood malnutrition
- Use regression models to find factors that lead to childhood malnutrition
- Data from the Zambia Demographic and Health Survey
- childhood malnutrition, we use stunting, i.e. insufficient height for age

### Childhood malnutrition in Zambia



- The main variable of interest is the zscore
- It measures the child height (in cm) standardized with respect to all children of the same age of a reference population
- Several covariates for the prediction of the z-score are available:
  - Residential district
  - Gender
  - Education & employment of the mother
  - Duration of breastfeeding
  - Height and body mass index of the mother and
  - Age of the mother at birth
  - Age of the child

## Multiple linear regression

#### The multivariate linear model

• The multiple linear model is defined by

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i, \qquad i = 1, \dots, n$$

with

• dependent (or response) variable

 $y_i$ 

explanatory variables

$$x_{i1}, \ldots, x_{ik}$$

and error term

 $\epsilon_i$ 

### A model for childhood malnutrition

#### The multivariate linear model

A working model could be the following

```
\begin{split} zscore_i \\ &= \beta_0 + \beta_1 gender_i + \beta_2 breastf_i + \beta_3 age_i + \beta_4 m\_agebirth_i + \beta_5 m\_height_i + \beta_6 m\_bmi \\ &+ \beta_7 m\_education + \beta_8 m\_work + \epsilon_i \end{split}
```

- This model tells us what the linear influence of the covariates on stunting are
- For instance: With all other covariates fixed, a child that was breastfeed for a month longer, stunting increases on average by  $\beta_2$

## The method of least squares

#### The least squares criterion

The criterion to minimize is

LS(
$$\beta_0, ..., \beta_k$$
) =  $\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_{ik})^2$  with

Therefore set the derivatives w.r.t. the regression parameters to zero and solve the resulting equations

$$\frac{\partial LS(\beta_0, \dots, \beta_k)}{\partial \beta_i} = 0, j = 1, \dots, k$$

#### The LS-estimates

Often noted in matrix notation

$$y = X\beta + \epsilon$$

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1k} \\ \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{pmatrix}$$

and

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}, \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

then

$$\beta = (XX)^{-1}Xy$$

### Practical session II





### Non- & Semiparametric Regression





### Non- & Semiparametric Regression





## Correlation and Causality



Laureates per 10 Million Population.

- 2012 paper in New England Journal of Medicine
- Relation between chocolate consumption and Nobel Prizes
- Three take home messages:
  - 1. Regression a powerful tool (and cool stuff)
  - Don't misuse your knowledge
  - Eat more chocolate!