Modélisation d'un système quantique.

1 Bit probabiliste.

On considère un système physique X avec des niveaux distinguables 1 dans $\Sigma = \{0,1\}$. L'état de connaissance de ce système est un vecteur

$$v = \begin{pmatrix} a \\ b \end{pmatrix},$$

où a représente la probabilité que l'on ait un 0, et b la probabilité que l'on ait un 1. Ceci implique que l'on ait $a, b \in \mathbb{R}^+$ et a + b = 1.

On peut considérer des transformations du système X, passant d'un état à un autre :

$$\quad \triangleright \ \mathsf{INIT}_0 : \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \mathsf{qui} \ \mathsf{initialise} \ \grave{\mathsf{a}} \ \mathsf{l'\acute{e}tat} \ 0 \, ;$$

$$ightharpoonup INIT_1: \begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 qui initialise à l'état 1;

$$ightharpoonup \mathsf{NOT}: \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 qui inverse l'état.

On demande que ces opérations soient linéaires :

$$\mathsf{NOT} \begin{pmatrix} a \\ b \end{pmatrix} = a \, \mathsf{NOT} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \, \mathsf{NOT} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$-1/5$$
 -

^{1.} On peut distinguer de l'état physique deux états : un état 0 (par exemple, pas de courant), et un état 1 (par exemple, avoir du courant)

On peut représenter une telle opération par une matrice stochastique : c'est une matrice

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

telle que $a, b, c, d \ge 0$ et a + c = b + d = 1. Ainsi, INIT_0 et INIT_1 ne sont pas des transformations valides.

Lorsqu'on « observe » le système X, on change l'état de nos connaissances :

$$\begin{pmatrix} 1/4 \\ 3/4 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \text{après avoir vu } 0$$

$$\begin{pmatrix} 1/4 \\ 3/4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \text{après avoir vu } 1.$$

2 Bit quantique.

On considère un système physique X avec des niveaux distinguables dans $\Sigma = \{0,1\}$. L'état de connaissance de ce système est un vecteur

$$v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix},$$

où $\alpha, \beta \in \mathbb{C}$ sont les amplitudes et vérifient $|\alpha|^2 + |\beta|^2 = 1$.

Les transformations de X sont des opérations linéaires en v et préservent la norme, représentations les matrices unitaires, c'est-à-dire des matrices $U^{\dagger}U = 1$, qui généralise les matrices orthogonales pour les matrices complexes. Quelques exemples de matrices unitaires sont :

$$\, \triangleright \, \text{ la matrice identit\'e } \mathbbm{1}_2 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$$

^{2.} L'opération $-^{\dagger}$ est la transconjuguasion qui correspond à la transposée de la conjugaison composante par composante.

Informatique quantique

$$\triangleright \text{ la matrice } \mathbf{NOT} := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};$$

$$\triangleright$$
 la matrice de Hadamard $\mathbf{H} := \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix};$

$$\triangleright \text{ la matrice } \mathbf{Y} := \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix};$$

$$\triangleright \text{ la matrice de rotation } \mathbf{R}_{\theta} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix};$$

 \triangleright mais les matrices des opérations INIT_i ne sont pas unitaires.

Lorsqu'on « observe » le système X (que l'on appellera une $\it mesure$), on change l'état de nos connaissances :

3 Plusieurs qubits.

On considère deux systèmes X_1, X_2 avec 4 niveaux $\Sigma = \{00, 01, 10, 11\}$. On peut distinguer un vecteur probabiliste « classique » et un état quantique :

$$\begin{pmatrix} 1/8 \\ 1/2 \\ 0 \\ 3/8 \end{pmatrix} \leftarrow / \rightarrow \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/2 \\ 1/2 \end{pmatrix}.$$

Un système à n qubits sera représenté par un espace à 2^n dimensions.

L'opération importante est le produit tensoriel. Si l'on a deux matrices $A \in \mathbb{C}^{k \times \ell}$ et $B \in \mathbb{C}^{m \times n}$ alors on a une matrice $A \otimes B \in \mathbb{C}^{km \times \ell n}$.

Définition 1 (Construction du produit tensoriel). Si on a :

- \triangleright un espace vectoriel V avec une base $\{e_1, \ldots, e_n\}$;
- \triangleright un espace vectoriel V' avec une base $\{e'_1, \ldots, e'_m\}$;

alors l'espace vectoriel $V \otimes V'$ a pour base

$${e_i \otimes e'_j \mid i \in [[1, n]] \text{ et } j \in [[1, m]]}.$$

Ainsi,

$$V \otimes V' = \text{vect}\{v \otimes v' \mid v \in V \text{ et } v' \in V\}.$$

On a quelques propriétés sur le produit tensoriel.

Proposition 1. On a :

- $\triangleright \lambda \otimes A = \lambda A$ où l'on identifie $\mathbb{C}^{1\times 1}$ et \mathbb{C} ;
- $\triangleright (A \otimes B) \otimes C = A \otimes (B \otimes C);$
- $(A \otimes B)(C \otimes D) = AC \otimes BD;$ $A \otimes (B + C) = A \otimes B + A \otimes C.$

On suppose ici que les matrices respectent les bonnes conditions de dimension pour que ces opérations aient du sens.

Attention! En général, on a $A \otimes B \neq B \otimes A$.

4 Notation de Dirac.

On adopte les notations suivantes :

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix},$$

que l'on appelle $ket \mid - \rangle$. Cette notation est linéaire dans le sens où l'on a

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta 1.$$

L'écriture des produits tensoriels est plus simple $|0\rangle \otimes |0\rangle = |00\rangle$. L'avantage est que l'on peut écrire

$$\frac{1}{\sqrt{2}}|0000\rangle + \frac{1}{\sqrt{2}}|1111\rangle = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ \vdots \\ 0 \\ 1/\sqrt{2} \end{pmatrix}.$$

On a la notion de dualité : $|\psi\rangle \leftrightarrow \langle\psi| = (|\psi\rangle)^{\dagger}$.

Avec $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ et $|\varphi\rangle = \begin{pmatrix} \gamma \\ \delta \end{pmatrix}$, on peut définir des notations sympathiques :

$$\langle \varphi | | \psi \rangle = (\bar{\gamma} \quad \bar{\delta}) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \bar{\gamma} + \beta \bar{\delta} = \langle \varphi | \psi \rangle.$$

On peut aussi définir $|-\rangle \langle -|$. On peut ainsi interpréter $|\psi\rangle \langle \psi|$ comme la projection sur vect $|\psi\rangle$.