Lecture 17

Properties of Contor Bet K 3 ack iff there is a temary expansion of a a =0.5,5253... with Sie [0,2]

(4) K is uncountable

Ternory Expansion

Let $a \in [0,1]$, we can write in base 3 as $\alpha = 0.5,5_2...$

which means
$$\alpha = \sum_{i=1}^{\infty} \frac{S_i}{3^i}$$

Where $Si \in \{0, 1, 2\}$ This is called a termany expansion of a.

Example:

(1) 0.0220220220 ··· corresponds to
$$(\frac{0}{3!} + \frac{2}{3^2} + \frac{2}{3!}) + (\frac{6}{3^4} + \cdots)$$

3-digits pattern =
$$2(\frac{1}{3^2} + \frac{1}{3^5} + \frac{1}{3^5} + \frac{1}{3^5} + \frac{1}{3^5} + \frac{1}{3^6} + \frac{1}{3^$$

$$=\frac{3}{3^{2}}(1+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\cdots)+\frac{2}{3^{3}}(1+\frac{1}{3^{3}}+\frac{1}{3^{2}}+\cdots)$$

$$=(\frac{2}{3^{2}}+\frac{2}{3^{3}})\cdot\sum_{i=0}^{\infty}\frac{1}{3^{3}}=\frac{8}{27}\cdot\frac{1}{1-\frac{1}{27}}=\frac{8}{27}\cdot\frac{27}{26}=\frac{1}{13}$$

$$\frac{20.11111...}{3!+3!+...} = \frac{1}{3} = \frac{2}{3!} = \frac{1}{3!} = \frac{1}{3!} = \frac{1}{2}$$

0.02222... corresponds to $\frac{2}{9}\sum_{i=0}^{\infty}\frac{1}{3i}=\frac{2}{9}\frac{1}{1-\frac{1}{3}}=\frac{1}{3}$ has different expressions in

so # and fore in K, f +K

Remark: The tenary daits of a = [0,1] tell at each step with 'third' the third number is in:

Do 3 1 1 First Heration implies that
$$S_1 \neq 1$$

The Second iteration implies that $S_2 \neq 1$

So the nth iteration $\Rightarrow S_n \neq 1$.

(Basically proved property 3)

Proof of 4: Suppose that K is countable. then there is a bijection $\Phi: N \rightarrow K$ Let $k_1 = \Phi(n)$, So $K = \{k_1, k_2, k_3, \dots\}$

Then $K_1 = 0.5 | S_2 | S_3 | \cdots$ $K_2 = 0.5 | S_2 | S_3 | \cdots$ $K_3 = 0.5 | S_2 | S_3 | \cdots$ K_n

Define a number $k=as_1s_2s_3...$ by $S_j=0$ if $S_j^j=0$ $S_j=0$

The temory expansion of K has only 0s and 2s. So keK.

Then there is meN such that km=k

Thus km=0.5 msm sm. sjeco.2]

k=0.5 is 2 sm. sjeco.2)

But those 2 are not equal!

Sm ≠ Sm => k≠km => =

Exercise: Read page 79 in textbook. Direct proof that K is uncountable $\psi:K\to [0,1]$

Use base 2, cos the base 3 in Cantor set is just like base 2 Only need to change $1 \leftarrow 2$.