#### Miscellaneous

### Chanseok Park (박찬석)

Applied Statistics Laboratory Department of Industrial Engineering Pusan National University

August 31, 2018

Hosted by SEC



- A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- 3 Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- 5 Revisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

- 1 A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- 3 Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- Sevisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

- A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- 3 Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- 5 Revisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

- A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- 3 Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- 5 Revisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

- 1 A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- 5 Revisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

- 1 A measure of heaviness of a tail
- 2 Different meanings of robustness in engineering
- Cauchy and Normal distribution
- 4 Smooth empirical distribution and KDE
- 5 Revisit: robustness issues (pdf and KDE)
- 6 Skewed distribution

### A measure of heaviness of a tail

#### Definition of kurtosis

kurtosis = 
$$E\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$$
. Note: the kurtosis of normal is **3**.

#### NIST: kurtosis

Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to a normal distribution. That is, data sets with **high kurtosis** tend to have heavy tails, or outliers. See NIST (2018) at NIST.

### Interpretation of kurtosis (Wikipedia)

··· The exact interpretation of the measure of kurtosis used to be disputed, but is *now settled(?)* (Westfall, 2014). ··· Therefore, kurtosis measures outliers only; it measures nothing about the peak(?). See wiki(Kurtosis).

尖度 (일본)

峯度 (중국)

鈍尖度 (my suggestion)

### A measure of heaviness of a tail

### Heavy distribution

- Rigorously, a heavy-tailed distribution means any distribution whose tail has heavier tail(s) than the exponential.
   See wiki(heavy tail).
- Occasionally, a heavy-tailed (fat-tailed) distribution means any distribution that has heavier tail(s) than the normal. (kurtosis greater than 3).

## Danger of using kurtosis (Example: Weibull distribution)

$$\mathrm{kurtosis} = \frac{\Gamma(1+\frac{4}{\alpha}) - 4\Gamma(1+\frac{3}{\alpha})\Gamma(1+\frac{1}{\alpha}) + 6\Gamma(1+\frac{2}{\alpha})\Gamma(1+\frac{1}{\alpha})^2 - 3\Gamma(1+\frac{1}{\alpha})^4}{\left(\Gamma(1+\frac{2}{\alpha}) - \Gamma(1+\frac{1}{\alpha})^2\right)^2}$$

variance =  $\Gamma(1 + \frac{2}{\alpha}) - \Gamma(1 + \frac{1}{\alpha})^2$ 

 $\Diamond NB$ : as  $\alpha \to \infty$ , the variance goes to 0 and the kurtosis goes to 27/5.

# A measure of heaviness of a tail (danger of using kurtosis)



# A measure of heaviness of a tail (danger of using kurtosis)



## A measure of heaviness of a tail (alternative to kurtosis)

- In some cases, the kurtosis does not explain the heaviness of a distribution properly.
  - ⇒ Use the QQ-norm if one wants to compare with a normal distribution. (baseline: normal distribution)
  - Use the definition of heavy-tailed dist. provided in Foss et al. (2013). (baseline: exponential distribution) According to this definition, Weibull has a heavy tail only if  $\alpha$  (shape) less than one.
- Also, for many distributions including the Cauchy, t-distributions with 1,2,3,4 degrees of freedom, and so on, the value of the kurtosis is infinity  $(\infty)$ .
  - The definition in Foss et al. (2013) can be used, but it does not provide the strength of heaviness.
  - $\implies$  L-kurtosis by Hosking (1990) can be a good alternative.
- $\Diamond$  Suggestion: Kurtosis + QQ-norm + L-kurtosis.
- ♦ Not a fan of Foss et al. (2013): too complex and no strength.

## Different meanings of robustness in engineering

- In practice, robust estimators are widely used when dealing with heavy-tailed distributions and contaminated data, etc.
- We will look at various interpretations of robustness.

#### Definition of Robustness in statistics literature

- Robustness implies stability of parameter estimation under departure from the true model (contamination, model departure, etc.)
   In statistics, it is also called outlier-resistance.
- Outliers can be from contamination or from a nature of heavy distribution (surprising observation).
- ♦ The meaning of robustness in engineering is slightly different.

# Different meanings of robustness in engineering

#### Robust to noise. Noise in what sense?

- Robust to contamination (outlier / influential).
   Robust to something wrong.
- Robust to model departure (usually departure from the normality).
   Robust to something different from normal.
   For example, the *t*-test is robust; see Remark 8.3.1 of (Hogg et al., 2013). (Roughly speaking, it is due to CLT).
- Robust to surprising observation
   Robust to something surprising.
   An outlier (from a heavy distribution). Thus, not a contamination.
   Not necessarily influential.

   No influential observation to the MLE of Laplace (median).
   For Cauchy, we can easily meet surprising outlying observations.
- Robust to uncontrollable noise (Robust Design)
   Robust to something uncontrollable.

# Different meanings of robustness in engineering

### Measures of robustness property (review)

becomes non-sensical and incorrect.

Refer to Talk-1 at • github.com/AppliedStat/seminar.

$$\mathrm{RE}(\hat{\theta}_2, \hat{\theta}_1) = \frac{\mathrm{Var}(\hat{\theta}_1)}{\mathrm{Var}(\hat{\theta}_2)} \times 100\%$$

where  $\hat{\theta}_1$  is often a reference or baseline estimator (usually, the MLE under a normal distribution).

Refer to Talk-5 at • github.com/AppliedStat/seminar).

ullet Robust to **uncontrollable noise** (Robust Design)  $\Longrightarrow$  **SN ratio**.

## Cauchy and Normal distribution

Cauchy: 
$$f(x) = \frac{\beta}{\pi} \frac{1}{\beta^2 + (x - \alpha)^2}$$

Normal: 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$





## Cauchy and Normal distribution

### R Code to compare Cauchy and Normal

```
set.seed(14) # Change this seed.
n = 10; # n = 10000
x = rcauchy(n)
y = rnorm(n)
OUT = rbind( c(mean(x),sd(x)), c(mean(y),sd(y)) )
colnames(OUT) = c("mean", "SD")
rownames(OUT) = c("Cauchy(x)","Normal(y)")
OUT
```

- Cauchy is very dangerous due to gravity with leverage.
- Robust estimators are needed for most of heavy-tailed distributions.
- MLE under heavy distributions are robust in general.
   (MLE of t-distribution, Laplace, Cauchy, etc).

# Smooth empirical distribution and KDE

Suppose that there are n observations:  $x_1, x_2, \ldots, x_n$ , and their order statistics are denoted by  $y_1 < y_2 < \ldots < y_n$ . The value of the empirical distribution at a given point,  $y_k$ , is given by

$$\hat{F}_n(y_k) = \frac{k}{n}.$$

In general, the empirical distribution function of t (without sorting) can be written by

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i \leq t),$$

where  $\mathbb{I}(\cdot)$  is an indicator function.

 $\Diamond NB: \hat{F}_n(t)$  also works for tied observations.



We can re-write  $\hat{F}_n(t)$  as

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{P}(X \le t | \mu_i = x_i),$$

where X is a random variable which degenerates at  $\mu_i = x_i$ . Instead of degenerating  $\mathbb{P}$ , one can use any smooth distribution function. Say, we use normal CDF with  $\mu_i = x_i$  and  $\sigma_i = h_i$  (aka, bandwidth). That is, we have

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n P(X \le t \mid \mu_i = x_i, \sigma_i = h_i),$$

where  $X \sim N(x_i, h^2)$ . Since  $Z = (X - \mu_i)/\sigma_i$ , we have

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n P\left(Z \le \frac{t - \mu_i}{\sigma_i} \mid \mu_i = x_i, \sigma_i = h_i\right)$$

$$= \frac{1}{n} \sum_{i=1}^n P\left(Z \le \frac{t - x_i}{h_i}\right) = \frac{1}{n} \sum_{i=1}^n \Phi\left(\frac{t - x_i}{h_i}\right), \tag{1}$$

where  $\Phi$  is a CDF of N(0,1).

Differentiating Eq. (1) with t, we have

$$\hat{f}_n(t) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_i} \phi\left(\frac{t - x_i}{h_i}\right),\,$$

Instead of  $\phi(\cdot)$ , one can use any kernel  $k(\cdot)$  which is positive and its integration is one. Also, we can use any positive weights instead of 1. Then we have more general KDE

$$\hat{f}_n(t) = \frac{1}{\sum_{i=1}^n w_i} \sum_{i=1}^n w_i \frac{1}{h_i} k(\frac{t-x_i}{h_i}).$$

In many cases, we use a constant weight  $w_i = 1$  and a fixed bandwidth  $h_i = h$ . Then we have

$$\widehat{f}_n(t) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} k\left(\frac{t-x_i}{h}\right) = \frac{1}{nh} \sum_{i=1}^n k\left(\frac{t-x_i}{h}\right).$$

## Revisit: robustness issues (pdf and KDE)

The difference between the two faults rate (test and control phone-lines) from Welch (1987).



- −988, −135, −78, 3, 59, 83, 93, 110, 189, 197, 204, 229, 269, 310.
- Using the empirical CDF,  $\hat{F}_n(-500) = 1/14 = 0.07142857$ . (n = 14).
- Using the CDF with the MLE,  $\hat{F}_{\hat{\theta}}(-500)=0.04706641$ .
- Using the CDF with robust estimation,  $\hat{F}_{\hat{\theta}}(-500) = 0.0001891299$ .
- Using the CDF with the KDE (large h),  $\hat{F}_h(-500) = 0.07203472$ .
- Using the CDF with the KDE (small h),  $\hat{F}_h(-500) = 0.07142857$ .

0.003

# Revisit: robustness issues (CDF)



# Revisit: robustness issues (pdf and KDE)



- The pdf (grey) with the MLE does not fit the histogram. ( $\hat{\mu}=38.92857$  and  $\hat{\sigma}=321.9428$ ). NB: gravity and leverage.
- The pdf (dashed) with the HL and Shamos fits the histogram well. ( $\hat{\mu}=100.0$  and  $\hat{\sigma}=168.7856$ ). NB: it is robust.
- The KDE (blue/red) is not robust.
   But, the probability estimation is not so sensitive to an outlier.
- The empirical CDF (step function) is not robust either.
   But, the probability estimation is not so sensitive to an outlier.
- The KDE depends on the bandwidth h.

### Skewed distribution

#### **Skewness**

- Skewness is a measure of the asymmetry of a pdf.
   (zero ⇒ symmetric. non-zero ⇒ asymmetric or skewed).
- A unimodal left-skewed distribution has a long left tail while a unimodal right-skewed distribution has a long right tail.
- A skewed distribution with a light longer tail is not lethal.
- A long and heavy tail may create potential problems.

#### Measure of skewness

- $E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$  (Pearson). Most popular measure.
- $\frac{\mu \text{median}}{\sigma}$  (old **nonparametric**).  $\lozenge \text{NB}$ :  $\mu$  is just a center of gravity (so nonparametric).
- Others: quartile-based measure, L-moment by Hosking (1990), etc.

#### Skewed distribution

#### How to deal with skewed distributions

 One can use the empirical CDF or the KDE although they may not be robust.

Note: the estimation of a probability is not so sensitive to outliers.

- One can select parametric (asymmetric or skewed) distributions with robust estimation.
  - For example, Weibull, lognormal, Birnbaum-Saunders, gamma distribution,  $\chi^2$ -distribution, F-distribution, etc.
- One can normalize the data set (say, using Box–Cox Transformation).
   Then, use the existing methods developed under the normality.
- One can try data-driven weights for a general KDE to give smaller weights for outliers

$$\hat{f}_n(t) = \frac{1}{\sum_{i=1}^n w_i} \sum_{i=1}^n \frac{1}{w_i} \frac{1}{h} k \left( \frac{t - x_i}{h} \right).$$

#### References

- Foss, S., Korshunov, D., and Zachary, S. (2013). *An Introduction to Heavy-Tailed and Subexponential Distributions*. Springer, New York.
- Hogg, R. V., McKean, J. W., and Craig, A. T. (2013). *Introduction to Mathematical Statistics*. Pearson, Boston, MA, 7 edition.
- Hosking, J. R. M. (1990). *L*-moments: Analysis and estimation of distributions using linear combinations of order statistics. *Journal of the Royal Statistical Society B*, 52:105–124.
- NIST (2018). NIST/SEMATECH e-handbook of statistical methods: 1.3.5.11 measures of skewness and kurtosis. https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm. Accessed: 2018-08-07.
- Welch, W. J. (1987). Rerandomizing the median in matched-pairs designs. *Biometrika*, 74:609–614.
- Westfall, P. H. (2014). Kurtosis and peakedness, 1095–2014. R.I.P. *The American Statistician*, 68:191–195.