SOLVING COMPLEX PROBLEMS: GRAPHS, CONSTRAINTS, AND MACHINE LEARNING IN ACTION

ModRef 2023

Hélène Verhaeghe

27 August 2023

KULeuven, Leuven, Belgium, helene.verhaeghe@kuleuven.be

bipartite


```
undirected
   directed
disconnected
   acyclic
   bipartite
   regular
  complete
homogeneous
     tree
   planar
heterogeneous
   Eulerian
  weighted
```


ŀ

Source: https://yashuseth.wordpress.com/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

Source: https://greatpeopleinside.com/networking-particularities-men-women/

Model + Search

- · <u>Goal</u>: Find (optimal) solution wrt some constraints
- · Pro: Exact method
- · Con: Difficulties in dealing with huge inputs

(Big) Data + algorithms

- · <u>Goal</u>: Learn from examples
- · Pro: Good with huge quantities of data
- · <u>Con</u>: Difficulties to satisfy (hard) constraints in outputs

.

Can we get the best of both worlds?

Yes, by combining them!

8

- Modeling ML problems (e.g., clustering using CP)
- · Joint inference on NN output (e.g., visual sudoku problem)
- Improving the learning of NN (e.g., PLS experiment)

ML for CP

- Algorithm configuration (e.g., Sunny-CP solver)
- Learning to branch (e.g., SeaPearl project)
- Constraint acquisition (e.g., ClassAcq approach)

And many many other examples ...

CP for ML

- · Optimal decision trees
- · CP-BP for learning

ML for CP

· Solving RCPSP using GNNs

WHEN CP HELPS ML: OPTIMAL DECISION TREES

Database

f_1	f_2	f_3		f_n	c
1	0	1		1	+
0	1	0		1	_
1	1	0		0	+
0	0	0		0	+
1	0	0		0	+
0	1	1		1	_
1	1	1		0	_
:	:	:	٠.	:	:
_1	1	1		1	+

· already a binary database

is green	produce gum	has flowers	poisonous?
yes	yes	no	+
no	yes	yes	_

· binarization required

height	age	F	sick?
134	34	1.45	+
178	23	3.66	_

height< 150	height< 180	F< 1	 sick?
yes	yes	no	 +
no	yes	no	 _

THE PROBLEM: LEARNING OPTIMAL DECISION TREES

Database						
f_1	f_2	f_3		f_n	c	
1	0	1		1	+	
0	1	0		1	_	
1	1	0		0	+	
0	0	0		0	+	
1	0	0		0	+	
0	1	1		1	_	
1	1	1		0	_	
:	:	:	٠.	:	:	
1	1	1		1	+	

Database						
f_1	f_2	f_3		f_n	c	
1	0	1		1	+	
0	1	0		1	_	
1	1	0		0	+	
0	0	0		0	+	
1	0	0		0	+	
0	1	1		1	_	
1	1	1		0	_	
:	:	:	٠.	:	:	
1	1	1		1	+	
_	_	_		_	· '	

THE PROBLEM: LEARNING OPTIMAL DECISION TREES

		Data	base		
f_1	f_2	f_3		f_n	c
1	0	1		1	+
0	1	0		1	_
1	1	0		0	+
0	0	0		0	+
1	0	0		0	+
0	1	1		1	_
1	1	1		0	_
:	:	:	٠.,	:	:
1	1	1	•	1	· -
1	1	1		1	

New sample

Databaco

THE PROBLEM: LEARNING OPTIMAL DECISION TREES

		Data	<u>base</u>		
f_1	f_2	f_3		f_n	c
1	0	1		1	+
0	1	0		1	_
1	1	0		0	+
0	0	0		0	+
1	0	0		0	+
0	1	1		1	_
1	1	1		0	_
:	:	:	٠	:	:
1	1	1		1	+

Databasa

Greedy methods:

- ✓ easy construction
- **x** hard to impose additional constraints
- ${\it x}$ potentially unnecessarily complex tree

- · Mining optimal decision trees from itemset lattices, Nijssen, S., Fromont, E., 2007
- · Minimising decision tree size as combinatorial optimisation, Bessiere, C., Hebrard, E., O'Sullivan, B., 2009
- · Optimal constraint-based decision tree induction from itemset lattices, Nijssen, S., Fromont, É., 2010
- · Optimal classification trees, Bertsimas, D., Dunn, J., 2017
- · Learning optimal decision trees with sat, Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J., RAS, I., 2018
- · Learning optimal and fair decision trees for non-discriminative decision-making, Aghaei, S., Azizi, M.J., Vayanos, P., 2019
- · Learning optimal classification trees using a binary linear program formulation, Verwer, S., Zhang, Y., 2019

$$dom(d[i]) = \{1, ..., n\}$$

$$dom(d[i]) = \{1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

	Feat	Counter		
(Dense)				
x_1	x_2	x_3	x_4	

P. Schaus, J. Aoga, and T. Guns. "Coversize: A global constraint for frequency-based itemset mining". In CP 2017.

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

	Feat	Counter		
(Dense)				
x_1	x_2	x_3	x_4	
0	1	0	1	

P. Schaus, J. Aoga, and T. Guns. "Coversize: A global constraint for frequency-based itemset mining". In CP 2017.

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

	Feat	Counter		
	(Der			
x_1	x_2	x_3	x_4	
0	1	0	1	3

P. Schaus, J. Aoga, and T. Guns. "Coversize: A global constraint for frequency-based itemset mining". In CP 2017.

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

	Feat	Counter		
	(Dei			
$x_1 \mid x_2 \mid x_3 \mid x_4 \mid$				
0	1	0	1	3

- · Dense representation
- · No feature rejection

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

Feat	ures	Counter
(Spa	ırse)	
$y_1 \mid y_2 \mid$		
2	4	3

- · Dense representation
- · No feature rejection

f_1	f_2	f_3	f_4
1	0	1	1
0	1	0	1
1	1	0	0
0	0	0	0
1	0	0	0
0	1	1	1
1	1	1	0
1	1	1	1

✓ Fea	atures	X Features	Counter
(Spa	arse)	(Sparse)	
y_1	y_2	z_1	
2	4	3	1

- · Dense representation
- · No feature rejection

$$Coversize(\{d[0], d[4]\}, \{d[1]\}, c^{+}[9])$$

 $Coversize(\{d[0], d[4]\}, \{d[1]\}, c^{-}[9])$

· constraints imposing minimum at leaf

$$c^+[i] + c^-[i] \ge N_{min}$$

· constraints avoiding useless decisions

· redundant constraints improving speed

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(e[i]) = \{0, ..., N\}$$

$$dom(d[i]) = \{0, 1, ..., n\}$$

$$dom(c[i]) = \{0, ..., N\}$$

$$dom(e[i]) = \{0, ..., N\}$$

OR nodes $SOL = SOL_1 \text{ or } SOL_2 \text{ or } \dots$

OR nodes

 $SOL = SOL_1 \text{ or } SOL_2 \text{ or } \dots$

AND nodes

 $SOL = SOL_1$ and SOL_2 and ...

SEARCH - AND/OR SEARCH TREE

SEARCH - AND/OR SEARCH TREE

SEARCH - AND/OR SEARCH TREE

yes	no	hash
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		f_i, f_j
f_i	f_j	$f_i - f_j$

		$N_{\min} = 1$			$N_{ m min}$	$_{1} = 5$	
	DL8	BinOCT	CP	DL8	СР	CP-c	CP-m
Proven optimality	49(64%)	13(17%)	57 (75%)	54(71%)	56(74%)	56(74%)	58 (76%)
Best solution found	49(64%)	21(28%)	76 (100%)	54(71%)	74 (97%)	74 (97%)	70(92%)
Fastest	23(30%)	11(14%)	49 (64%)	28(37%)	40 (53%)	33(43%)	22(29%)
Time out	27(36%)	63(83%)	19 (25%)	22(29%)	21(28%)	21(28%)	19 (25%)

23 instances, depths from 2 to 5, 10 min TO

DL8: Dynamic programming approach using frequent itemsets mining BinOCT: MIP-based approach running on CPLEX

- · Sub-tree independence
- · Path equivalence
- · How this helps:
 - · Reduction of symmetries
 - · Caching possible

WHEN CP HELPS ML: CP-BP FOR LEARNING

M. Silvestri, M. Lombardi, and M. Milano. "Injecting domain knowledge in neural networks: a controlled experiment on a constrained problem". In CPAIOR 2021.

$$D_{x_a} = D_{x_a} = D_{x_a} = D_{x_a} = \{1, 2, 3, 4\}$$

Constraints:

- $C_1 := AllDifferent(x_a, x_b, x_c)$
- $C_2 := x_a + x_b + x_c + x_d = 7$
- $C_3 := x_c \le x_d$

Two solutions: (2, 3, 1, 1) and (3, 2, 1, 1)

True marginals (target)

	1	2	3	4
θ_{x_a}	0	.5	.5	0
$ heta_{x_b}$	0	.5	.5	0
$ heta_{x_c}$	1	0	0	0
$ heta_{x_d}$	1	0	0	0

$$D_{x_a} = D_{x_a} = D_{x_a} = D_{x_a} = \{1, 2, 3, 4\}$$

Constraints:

$$C_1 := AllDifferent(x_a, x_b, x_c)$$

$$C_2 := x_a + x_b + x_c + x_d = 7$$

$$C_3 := x_c \le x_d$$

Two solutions: (2, 3, 1, 1) and (3, 2, 1, 1)

True marginals (target)

	1	2	3	4
θ_{x_a}	0	.5	.5	0
$ heta_{x_b}$	0	.5	.5	0
$ heta_{x_c}$	1	0	0	0
θ_{x_d}	1	0	0	0

Marginals at iteration 0

	1	2	3	4
$\hat{ heta}_{x_a}$.25	.25	.25	.25
$\hat{ heta}_{x_b}$.25	.25	.25	.25
$\hat{ heta}_{x_c}$.25	.25	.25	.25
$\hat{ heta}_{x_d}$.25	.25	.25	.25

$$D_{x_a} = D_{x_a} = D_{x_a} = D_{x_a} = \{1, 2, 3, 4\}$$

Constraints:

$$C_1 := AllDifferent(x_a, x_b, x_c)$$

$$C_2 := x_a + x_b + x_c + x_d = 7$$

$$C_3 := x_c \le x_d$$

Two solutions: (2, 3, 1, 1) and (3, 2, 1, 1)

True marginals (target)

	1	2	3	4
θ_{x_a}	0	.5	.5	0
$ heta_{x_b}$	0	.5	.5	0
$ heta_{x_c}$	1	0	0	0
θ_{x_d}	1	0	0	0

Marginals at iteration 1

	1	2	3	4
$\hat{ heta}_{x_a}$.50	.30	.15	.05
$\hat{ heta}_{x_b}$.50	.30	.15	.05
$\hat{ heta}_{x_c}$.62	.28	.09	.01
$\hat{ heta}_{x_d}$.29	.34	.26	.11

$$\cdot \ D_{x_a} = D_{x_a} = D_{x_a} = D_{x_a} = \{1, 2, 3, 4\}$$

Constraints:

$$C_1 := AllDifferent(x_a, x_b, x_c)$$

$$C_2 := x_a + x_b + x_c + x_d = 7$$

$$C_3 := x_c \le x_d$$

Two solutions: (2, 3, 1, 1) and (3, 2, 1, 1)

True marginals (target)

	1	2	3	4
θ_{x_a}	0	.5	.5	0
$ heta_{x_b}$	0	.5	.5	0
$ heta_{x_c}$	1	0	0	0
θ_{x_d}	1	0	0	0

Marginals at iteration 10

	1	2	3	4
$\hat{ heta}_{x_a}$.01	.52	.46	.01
$\hat{\theta}_{x_b}$.01	.52	.46	.01
$\hat{ heta}_{x_c}$.98	.02	.00	.00
$\hat{ heta}_{x_d}$.90	.10	.00	.00

Domains

	1	2	3	4	
D_{x_a}	0	1	1	0	
D_{x_b}	0	1	1	0	
D_{x_c}	1	0	0	0	
D_{x_d}	1	0	0	0	

Marginals

	1	2	3	4
$\hat{\theta}_{x_a}$.01	.52	.46	.01
$\hat{\theta}_{x_b}$.01	.52	.46	.01
$\hat{ heta}_{x_c}$.98	.02	.00	.00
$\hat{ heta}_{x_d}$.90	.10	.00	.00

$$Loss(x,y) = \underbrace{-\langle y, \log(\frac{1}{Z} \widehat{f(x)} \rangle}_{\text{cross entropy}} + \underbrace{\lambda}_{\text{weight}} \cdot \underbrace{t(x)}_{\text{CP feedback}}$$

Domains

Marginals

$$t(x) = L_1(x, C) = \sum_{k} |C_k(x) - f_k(x)| \qquad t(x) = L_1(x, \hat{\theta}) = \sum_{k} |\hat{\theta}_k(x) - f_k(x)|$$

$$t(x) = L_2(x, C) = \sum_{k} (C_k(x) - f_k(x))^2 \qquad t(x) = L_2(x, \hat{\theta}) = \sum_{k} (\hat{\theta}_k(x) - f_k(x))^2$$

$$C_k(x) \in \{0, 1\} \qquad \hat{\theta}_k(x) \in [0, 1]$$

Domains

Marginals

$$t(x) = L_1(x, C) = \sum_{k} |C_k(x) - f_k(x)|$$

$$t(x) = L_1(x, \hat{\theta}) = \sum_{k} |\hat{\theta}_k(x) - f_k(x)|$$

$$t(x) = L_2(x, C) = \sum_{k} (C_k(x) - f_k(x))^2$$

$$t(x) = L_2(x, \hat{\theta}) = \sum_{k} (\hat{\theta}_k(x) - f_k(x))^2$$

$$C_k(x) \in \{0, 1\}$$

$$\hat{\theta}_k(x) \in [0, 1]$$

- · Key technology:
 - · Message passing
- · How this helps:
 - · Computation of marginals

2	
	BCD
2	Е
2	
1	С
1	С
	_

Task	p_i	c_{ir_1}	c_{ir_2}	succ
Α	2	1	2	BCD
В	3	2	2	Е
C	1	1	2	
D	2	2	1	С
Е	1	1	1	С
$C_{r_1} = 3 \text{ and } C_{r_2} = 4$				

B

39

Task	p_i	c_{ir_1}	c_{ir_2}	succ
Α	2	1	2	BCD
В	3	2	2	Е
C	1	1	2	
D	2	2	1	С
Е	1	1	1	С
$C_{r_1}=3$ and $C_{r_2}=4$				

Task	p_i	c_{ir_1}	c_{ir_2}	succ
А	2	1	2	BCD
В	3	2	2	Е
C	1	1	2	
D	2	2	1	С
Е	1	1	1	С
$C_{r_1}=3$ and $C_{r_2}=4$				

Task	p_i	c_{ir_1}	c_{ir_2}	succ
А	2	1	2	BCD
В	3	2	2	Е
C	1	1	2	
D	2	2	1	С
Е	1	1	1	С

$$C_{r_1}=3$$
 and $C_{r_2}=4$

Task	p_i	c_{ir_1}	c_{ir_2}	succ
А	2	1	2	BCD
В	3	2	2	Е
C	1	1	2	
D	2	2	1	С
Е	1	1	1	С
$C_{r_1}=3$ and $C_{r_2}=4$				

Main principle: for each node, creating an embedding of its neighborhood

Tasks:

- · Graph classification
- · Node prediction
- · Link prediction

GRAPH NEURAL NETWORKS

TRANSITIVE CLOSURE

Goal: creates, for each node, embedding of the neighborhood

Goal: evaluate, given a candidate edge, its likeliness to exist

Two usages of the learned precedences:

- · additional constraints:
 - · reduces search space
 - · restriction of the problem
 - · improve solution for a few instances
- · task ordering:
 - · preserve solutions
 - · best first solution

- · Type of graph used: Homogeneous directed graphs
- · Key technology:
 - · GNNs

- · Key operation:
 - · Transitive closure
- · How this helps:
 - · Reduction of the diameter
 - · Better generalization
 - · Computation of embeddings

CP helps ML

· Help with satisfying (hard) constraint

ML helps CP

· Deal with (big) data

Always look at the graph side of problems

- · Designs benefits from properties of underlying graphs
- · Lots of tools/library/algorithms for graphs ready to use
- · Known operations can create the graph you need

https://youtube.com/playlist?list=PLcByDTr7vRTYJ2s6DL-3bzjGwtQif33y3

Thank you for listening!

Any questions?

https://hverhaeghe.bitbucket.io/

ML for CP

- · Sunny-CP: R. Amadini, M. Gabbrielli, and J. Mauro. "A Multicore Tool for Constraint Solving". In IJCAI 2015.
- · SeaPearl: F. Chalumeau, I. Coulon, Q. Cappart, and L.-M. Rousseau. "SeaPearl: A Constraint Programming Solver Guided by Reinforcement Learning". In CPAIOR 2021. https://corail-research.github.io/seapearl/
- · Constraint acquisition: S. Prestwich, E. Freuder, B. O'Sullivan, and D. Browne. "Classifier-based constraint acquisition". In AMAI 2021.

CP for ML

- · Clustering: T. Guns, T.-B.-H. Dao, C. Vrain, and K.-C. Duong. "Repetitive Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-Squares Clustering". In ECAI 2016.
- · Visual Sudoku: M. Mulamba, J. Mandi, R. Canoy, and T. Guns. "Hybrid classification and reasoning for image-based constraint solving"
- · PLS experiment: M. Silvestri, M. Lombardi, and M. Milano. "Injecting domain knowledge in neural networks: a controlled experiment on a constrained problem". In CPAIOR 2021.