

Process and apparatus for producing elongate, reinforced structural elements from a wide variety of materials, in particular from recycled plastic

Patent number: DE4330323
Publication date: 1995-03-09
Inventor: SCHIBALSKY MANFRED DIPLO ING (DE); ATTILIO GIUSEPPE (DE)
Applicant: SPIESS KUNSTSTOFF RECYCLING (DE)
Classification:
- **International:** B29C45/14; B29C45/02; B29C70/00
- **European:** B29C45/14C2, B29C45/14L, B29C70/70
Application number: DE19934330323 19930908
Priority number(s): DE19934330323 19930908

Abstract of DE4330323

An intrusion installation for producing elongate, reinforced structural elements (11), comprising an extruder or other plasticator (1), an intrusion mould (2) and, if appropriate, a pressure metering accumulator (5). In the intrusion mould (2), a reinforcing profile (4) is held in the predetermined position by means of arresting pins (3). The arresting pins (3) are initiated as a function of the filling pressure in the intrusion mould (2) and moved into the intrusion mould (2) and back by a device (8):

Data supplied from the **esp@cenet** database - Worldwide

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ ⑫ Offenlegungsschrift
⑯ ⑯ DE 43 30 323 A 1

⑯ Int. Cl. 6:
B 29 C 45/14
B 29 C 45/02
B 29 C 70/00

DE 43 30 323 A 1

⑯ ⑯ Aktenzeichen: P 43 30 323.4
⑯ ⑯ Anmeldetag: 8. 9. 93
⑯ ⑯ Offenlegungstag: 9. 3. 95

⑯ ⑯ Anmelder:
Dr. Spiess Kunststoff-Recycling GmbH & Co, 67271
Kleinkarlbach, DE

⑯ ⑯ Erfinder:
Attilo, Giuseppe, 67269 Grünstadt, DE; Schibalsky,
Manfred, Dipl.-Ing., 67550 Worms, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ ⑯ Verfahren und Vorrichtung zur Herstellung langgestreckter, armerter Bauelemente aus den verschiedensten Werkstoffen, insbesondere aus Recycling-Kunststoff

⑯ ⑯ Eine Intrusionsanlage zur Herstellung langgestreckter, armerter Bauelemente (11), bestehend aus einem Extruder oder sonstigem Plastifikator (1), einer Intrusionsform (2) und gegebenenfalls einem Druck-Dosierspeicher (5). In der Intrusionsform (2) ist ein Versteifungsprofil (4) mittels Arretierstifte (3) in der vorbestimmten Position gehalten. Die Arretierstifte (3) werden in Abhängigkeit vom Fülldruck in der Intrusionsform (2) initiiert und durch eine Einrichtung (8) in die Intrusionsform (2) ein- und zurückgefahren.

DE 43 30 323 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 01.95 408 070/412

9/29

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung langgestreckter, armerter Bauelemente aus Kunststoff, insbesondere aus Recycling-Kunststoff.

Bei langgestreckten, stabförmigen Bauelementen aus Kunststoff, insbesondere aus Recycling-Kunststoff, werden zwecks Erhöhung der Biegefestigkeit im Querschnitt Profile, vorzugsweise aus Metall, angeordnet. Derartige Versteifungsprofile werden in der Regel im Zentrum der Bauelemente angeordnet. Bei der Herstellung nach dem Intrusionsverfahren ist besonders dann mit Schwierigkeiten zu rechnen, wenn die das Versteifungsprofil umschließende Kunststoffhülle dünnwandig gestaltet werden soll. Das Kernproblem besteht darin, daß die in die Intrusionsform eintretende Kunststoffschmelze das in der Form befindliche Versteifungsprofil aus der vorgegebenen Lage verdrängt und zwar in Richtung zur Formwandung. Dies führt zu einer hohen Ausschußquote, weil das Versteifungsprofil dann nur teilweise im Kunststoff eingebettet ist und das Bauelement daher nicht mehr korrosionsbeständig ist.

Bekannte Herstellungsverfahren sind dadurch gekennzeichnet, daß ein in der Längsachse der Intrusionsform verschiebbarer Schleppkolben mit profilzentrierender Wirkung angewandt wird. Dieser Schleppkolben ist dabei so ausgebildet, daß die Außenkontur desselben der Innenkontur der Intrusionsform entspricht. Der Durchbruch im Schleppkolben ist hierbei äquivalent der Außenkontur des Versteifungsprofils. Es ist offensichtlich, daß die Innenkontur der Intrusionsform sowie die Außenkontur des Versteifungsprofils gleichbleibend sein müssen. Dies bedeutet aber eine Einschränkung der konstruktiven Freiheitsgrade in der Gestaltung der Bauelemente.

Aufgabe der Erfindung ist es, ein Verfahren zu entwickeln, welches ermöglicht, langgestreckte, hochbelastbare Bauelemente herzustellen, wobei der Querschnitt entlang der Längsachse auch variabel und wobei auch die Form des Versteifungsprofils in Längsrichtung ebenfalls varierbar sein kann.

Diese Aufgabe wird dadurch gelöst, daß

- a) die vom Extruder oder einem sonstigen Plastifikator kommende Schmelze vorzugsweise gemäß dem Volumen des herzustellenden Bauelementes in einem Druck-Dosierspeicher gespeichert oder unmittelbar in eine Intrusionsform eingefüllt wird,
- b) in der Intrusionsform ein durch steuerbare Arretierstifte gehaltenes Versteifungsprofil in einer vorbestimmten Position arriert wird und
- c) die das Versteifungsprofil abstützenden Arretierstifte in Abhängigkeit von der Formfüllung initiiert und aus der Intrusionsform zurückgefahren werden.

Durch die justierbaren Arretierstifte, die entlang der Intrusionsform angeordnet sind, ist es möglich, daß das Versteifungsprofil individuell abgestützt wird, auch wenn es über die Gesamtlänge unterschiedliche Querschnitte hat. Ebenso kann die Intrusionsform entlang der Längsachse variable Querschnitte besitzen, wenn die Form geteilt ist. An der Oberfläche des Versteifungsprofils können Erhebungen, Anker und dgl. für bestimmte Zwecke, angeordnet sein die vom Kunststoff zu umschließen sind. Es können also Artikel vielfältiger Art, auch mit mehreren Versteifungsprofilen, hergestellt

werden. Selbstverständlich ist die Möglichkeit gegeben, minimale Schichtdicken von Kunststoff über dem Versteifungsprofil anzugeben. Außerdem wird erreicht, daß das nach dem jeweiligen Ausfahren der Arretierstifte vorher verdrängte Volumen durch die nachdrängende Schmelze sofort mit Kunststoff ausgefüllt wird. Eine Perforierung der Kunststoffhülle wird dadurch zuverlässig vermieden. Der vorgesehene Schutz des Versteifungsprofils gegen Umwelteinflüsse bleibt erhalten.

In vorteilhafter Ausgestaltung der Erfindung kann das druckabhängige Zurückfahren der Arretierstifte durch einen oder mehreren an bestimmten Stellen der Intrusionsform angeordneten Drucksensor(en) vom vorherrschenden Druck in Bezug zum Füllungsgrad der Intrusionsform gesteuert werden. Damit kann man dem Ort jedes, entlang der Intrusionsform, angeordneten Arretierstiftes bzw. Arretierstiften einen bestimmten Forminnendruck zuordnen. Dieser vorherrschende Forminnendruck setzt die Einrichtung zum Zurückfahren der Arretierstifte in Bewegung.

Nach einem weiteren Merkmal der Erfindung können die Arretierstifte zeitabhängig zurückgefahren werden. Da man bei der Formfüllung Kenntnis von der je Zeiteinheit in die Form gelangende Menge der Kunststoffschmelze hat, kann die Einrichtung zum Zurückfahren der Arretierstifte entlang der Intrusionsform in bestimmten Zeitintervallen erfolgen. Hier können im einfachsten Fall empirisch ermittelte Werte eingesetzt werden.

Außerdem können die jeweiligen Arretierstifte durch an bestimmten Stellen der Intrusionsform angeordneten mechanischen oder elektro-mechanischen Initiatoren ausgefahren werden.

Darüber hinaus kann das Zurückfahren der Arretierstifte durch eine andere Prozeßgröße der Extrusionsanlage, die eine Beziehung zum Füllungsgrad der Intrusionsanlage hat, gesteuert werden.

Nach einem weiteren Merkmal der Erfindung, wobei die Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 aus einem Extruder oder Plastifikator, einer Intrusionsform und einem Druck-Dosierspeicher besteht, kann

- a) in der Intrusionsform ein durch steuerbare Arretierstifte fixiertes Versteifungsprofil angeordnet sein,
- b) die im temperierten Druck-Dosierspeicher gespeicherte Schmelze durch einen Druckkolben in die Intrusionsform einbringbar sein und
- c) die Arretierstifte in Abhängigkeit von der Formfüllung initierbar und steuerbar sein.

Bei entsprechender Schaltung des Schaltschalters kann die im Druck-Dosierspeicher befindliche Kunststoffschmelze mittels eines Kolbens in die Intrusionsform mit den wählbaren Parametern Preßdruck und Fließgeschwindigkeit eingebracht werden. Der Kolben des Druck-Dosierspeichers wird dabei vorzugsweise von einem Hydraulik-Zylinder angetrieben. Entlang des Kolbenweges sind Sensoren angeordnet, welche die Einrichtung für die Betätigung der Arretierstifte initiiieren und steuern.

In vorteilhafter Ausgestaltung der Erfindung können die Arretierstifte an der Intrusionsform in Abständen hintereinander oder nur an bestimmten Stellen angeordnet sein. Die Positionen der Arretierstifte werden durch die Konstruktion der herzustellenden Bauelemente festgelegt.

Ferner können entlang des Kolbenweges des Druck-Dosierspeichers Sensoren zur Steuerung der Arretierstifte angeordnet sein, die sukzessive mit der fortschreitenden Formfüllung das Zurückfahren derselben steuern. Die Arretierung des Versteifungsprofils wird dadurch lediglich in jenen Abschnitten der Intrusionsform aufgehoben, die bereits mit Kunststoffschmelze ausgefüllt sind und wo das Versteifungsprofil bereits umschlossen und eingebettet ist. Ein Verschieben des Versteifungsprofils durch den Druck der einfließenden Kunststoffschmelze ist daher ausgeschlossen.

In einem weiteren Beispiel der Erfindung, wobei die Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 aus einem Extruder oder Plastifikator und einer Intrusionsform besteht, kann

- a) in der Intrusionsform ein durch steuerbare Arretierstifte fixiertes Versteifungsprofil angeordnet sein,
- b) ein oder mehrere Drucksensor(en) an bestimmten Stellen der Intrusionsform vorgesehen sein und
- c) eine Schaltzentrale die Impulse des Fülldruckes in der Intrusionsform an die Einrichtung zur Bewegung der Arretierstifte weitergeben.

In einem anderen Beispiel der Erfindung, wobei die Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 aus einem Extruder oder Plastifikator und einer Intrusionsform besteht, kann

- a) in der Intrusionsform ein durch steuerbare Arretierstifte fixiertes Versteifungsprofil angeordnet sein,
- b) die Arretierstifte zeitabhängig von der Formfüllung steuerbar sein und
- c) eine Schaltuhr nach bestimmten Zeitintervallen Impulse an die Einrichtung zur Bewegung der Arretierstifte abgeben.

Hier können empirisch ermittelte Werte eingesetzt werden.

Darüber hinaus kann die Bewegung der Arretierstifte pneumatisch erfolgen; sie kann aber auch elektromagnetisch, hydraulisch oder mechanisch erfolgen.

Anhand von in der Zeichnung dargestellten Ausführungsbeispielen soll die Erfindung näher erläutert werden.

Es zeigen:

Fig. 1 eine schematische Darstellung einer Vorrichtung,

Fig. 2 einen Querschnitt durch eine Intrusionsanlage mit durch Arretierstifte zentriertem Versteifungsprofil,

Fig. 3 einen Querschnitt durch eine Intrusionsanlage mit an der Intrusionsform angeordneten Drucksensoren und

Fig. 4 einen Querschnitt durch eine Intrusionsanlage mit von der Formfüllung zeitabhängiger Steuerung der Arretierstifte.

Die vom Extruder oder Plastifikator 1 aufbereitete Schmelze 6 gelangt über einen Schalschieber 12 in einem Druck-Dosierspeicher 5. Im Druck-Dosierspeicher 5 wird die gewichtsmäßige oder volumenmäßige Schmelze 6 für das herzustellende Bauelement 11 gespeichert. Ist das vorgegebene Gewicht bzw. das Volumen erreicht, welches durch einen Sensor 10 überwacht wird, schaltet der Schalschieber 12 den Schmelzzufluß ab und öffnet die Zuleitung 15 zur Intrusionsform 2. Ein mit dem Druck-Dosierspeicher 5 zusammenarbeitender

Hydraulik-Zylinder 13 preßt anschließend die gespeicherte Menge an Schmelze 6 in die Intrusionsform 2. Durch einen mit dem Druckkolben 7 verbundenen Führer 16 wird über die Sensoren 10 die Einrichtung 8 betätigt, welche mit dem Fortschreiten der Formfüllung die Arretierstifte 3 abschnittsweise zurückfahren. Die nachfließende Schmelze 6 füllt die dabei entstandene Perforierung sofort wieder aus. Der Hydraulik-Zylinder 13 bleibt dabei vorzugsweise im Kraftschluß. Die verdrängte Ölmenge kann sich über ein nichtgezeichnetes Steuerventil ausgleichen.

Die Lagefixierung für das Versteifungsprofil 4 kann einerseits an den Enden jeweils durch Stirnaufnahmen 17 oder andererseits durch in die Intrusionsform 2 einfahrbaren Arretierstifte 3 erfolgen, wie dies in der Fig. 2 dargestellt ist.

Die Arretierstifte 3 sowie die Einrichtung 8 für die Betätigung derselben sind in Abständen entlang der Intrusionsform 2 angeordnet. Erreicht der Druckkolben 7 beim Auspreßvorgang der Schmelze 6 aus dem Druck-Dosierspeicher 5 den nächstfolgenden Sensor 10, erfolgt das Zurückfahren der vorher liegenden und bereits von der Schmelze 6 eingeschlossenen Arretierstifte 3. Dieser Vorgang wiederholt sich, bis die Intrusionsform 2 gefüllt ist, wobei das Versteifungsprofil 4 exakt in der vorgegebenen Position vom intrudierten Kunststoff umhüllt ist.

Wie aus der Fig. 3 zu ersehen ist, sind an der Intrusionsform 2 Drucksensoren 18 angeordnet, welche den Fülldruck in derselben messen und diesen an eine Schaltzentrale 20 weiterleiten. Die Schaltzentrale 20 steuert dann die Einrichtung 8 zur Betätigung der Arretierstifte 3.

Die Fig. 4 zeigt eine Intrusionsanlage, in der die Arretierstifte 3 zeitabhängig von der Formfüllung gesteuert werden. Eine Schaltuhr 21 gibt in bestimmten Zeitintervallen Impulse an die Einrichtung 8 zur Betätigung der Arretierstifte 3 ab. Hierbei können auch empirisch ermittelte Werte eingesetzt werden.

Das Verfahren kann außer dem Intrusionsverfahren auch bei allen anderen Verfahren zur Herstellung langgestreckter, armerter Bauteile verwendet werden, ohne daß der Rahmen der Erfindung überschritten wird.

Patentansprüche

1. Verfahren zur Herstellung langgestreckter, armerter Bauelemente aus Kunststoff, insbesondere aus Recycling-Kunststoff, dadurch gekennzeichnet, daß

- a) die von einem Extruder oder sonstigem Plastifikator (1) kommende Schmelze (6) vorzugsweise gemäß dem Volumen des herzustellenden Bauelementes (11) in einem Druck-Dosierspeicher (5) gespeichert oder unmittelbar in eine Intrusionsform (2) eingefüllt wird,
- b) in der Intrusionsform (2) ein durch steuerbare Arretierstifte (3) gehaltenes Versteifungsprofil (4) in einer vorbestimmten Position arretiert wird
- c) die das Versteifungsprofil (4) abstützenden Arretierstifte (3) in Abhängigkeit von der Formfüllung initiiert und aus der Intrusionsform (2) zurückgefahren werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das druckabhängige Zurückfahren der Arretierstifte (3) durch einen oder mehreren an bestimmten Stellen der Intrusionsform (2) angeordneten Drucksensor(en) (18) vom vorherrschenden

Druck in Bezug zum Füllungsgrad der Intrusionsform (2) gesteuert wird.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Arretierstifte (3) zeitabhängig zurückgefahren werden.

4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die jeweiligen Arretierstifte (3) durch an bestimmten Stellen der Intrusionsform (2) angeordneten mechanischen oder elektro-mechanischen Initiatoren (19) ausgefahren werden.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Zurückfahren der Arretierstifte (3) durch eine andere Prozeßgröße der Extrusionsanlage, die eine Beziehung zum Füllungsgrad der Intrusionsform (2) hat, gesteuert wird.

6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bestehend aus einem Extruder oder Plastifikator, einer Intrusionsform und einem Druck-Dosierspeicher, dadurch gekennzeichnet, daß

- a) in der Intrusionsform (2) ein durch steuerbare Arretierstifte (3) fixiertes Versteifungsprofil (4) angeordnet ist,
- b) die im temperierten Druck-Dosierspeicher (5) gespeicherte Schmelze (6) durch einen Druckkolben (7) in die Intrusionsform (2) einbringbar ist und
- c) die Arretierstifte (3) in Abhängigkeit von der Formfüllung initiiertbar und steuerbar sind.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Arretierstifte (3) an der Intrusionsform (2) in Abständen hintereinander oder nur an bestimmten Stellen angeordnet sind.

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß entlang des Kolbenweges (9) des Druck-Dosierspeichers (5) Sensoren (10) zur Steuerung der Arretierstifte (3) angeordnet sind.

9. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bestehend aus einem Extruder oder Plastifikator und einer Intrusionsform, dadurch gekennzeichnet, daß

- a) in der Intrusionsform (2) ein durch steuerbare Arretierstifte (3) fixiertes Versteifungsprofil (4) angeordnet ist,
- b) ein oder mehrere Drucksensor(en) (18) an bestimmten Stellen der Intrusionsform (2) vorgesehen sind,
- c) eine Schaltzentrale (20) die Impulse des Fülldruckes in der Intrusionsform (2) an die Einrichtung (8) zur Bewegung der Arretierstifte (3) weitergibt.

10. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bestehend aus einem Extruder oder Plastifikator und einer Intrusionsform, dadurch gekennzeichnet, daß

- a) in der Intrusionsform (2) ein durch steuerbare Arretierstifte (3) fixiertes Versteifungsprofil (4) angeordnet ist,
- b) die Arretierstifte (3) zeitabhängig von der Formfüllung steuerbar sind.
- c) eine Schaltuhr (21) nach bestimmten Zeitintervallen Impulse an die Einrichtung (8) zur Bewegung der Arretierstifte (3) abgibt.

11. Vorrichtung nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß die Bewegung der Arretierstifte (3) pneumatisch erfolgt.

12. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Bewegung der

Arretierstifte (3) elektromagnetisch erfolgt.

13. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Bewegung der Arretierstifte (3) hydraulisch erfolgt.

14. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß die Bewegung der Arretierstifte (3) mechanisch erfolgt.

Hierzu 2 Seite(n) Zeichnungen

Fig. 1

Fig. 2

Fig. 3

Fig. 4