MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2011 SOLUTION KEY

Round 6

A) Let $m \angle 2 = x^{\circ}$ and $m \angle 1 = (x + 15)^{\circ}$ $m \angle 3 = 73^{\circ} \Rightarrow (x + 15) + x + 107 = 180 \Rightarrow x = 29$ $\Rightarrow m \angle 1 = 44^{\circ}$, $m \angle 2 = 29^{\circ} \Rightarrow b = 151$ Since a is vertical to the alternate interior angle of $\angle 3$, a = 73. Thus, $b - a = 151 - 73 = 78^{\circ}$.

B) In isosceles $\triangle ABC$, a vertex angle of $(2k)^{\circ}$ leaves base angles of $(90 - k)^{\circ}$ Thus, $m \angle ABP = \left(45 - \frac{k}{2}\right)^{\circ} \Rightarrow m \angle BPA = \left(135 - \frac{k}{2}\right)^{\circ}$ and $m \angle BPC = \left(90 + k\right)^{\circ}$

The required difference is $\left(135 - \frac{k}{2}\right)^{\circ} - \left(90 + k\right)^{\circ} = \left(45 - \frac{3k}{2}\right)^{\circ}$ or equivalent.

C) Case 1 - Given angles are the base angles:

$$x + 5 = 2x - 30 \Rightarrow x = 35$$

 \Rightarrow base angles 40° , vertex angle 100°

Case 2 - Both base angles measure $(x + 5)^{\circ}$:

$$2(x+5) + 2x - 30 = 180 \Rightarrow 4x = 200 \Rightarrow x = 50$$

 \Rightarrow vertex angle = $2(50) - 30 = 70^{\circ}$

Case 3 – Both base angles measure $(2x – 30)^{\circ}$:

$$2(2x-30) + (x+5) = 180 \Rightarrow 5x = 235 \Rightarrow x = 47$$

 \Rightarrow vertex angle = $47 + 5 = 52^{\circ}$

Thus, the required sum is 222°.