

Don't forget, there is more than forgetting: new metrics for Continual Learning

Natalia Díaz Rodríguez^{1*}, Vincenzo Lomonaco^{2*}, Davide Maltoni² and David Filliat¹ November 29, 2018

(1) ENSTA ParisTech, Inria FLOWERS team, France. https://flowers.inria.fr/ http://asr.ensta-paristech.fr/ {natalia.diaz,david.filliat}@ensta-paristech.fr.

 $(2) \ University \ of \ Bologna, \ Italy. \ \{ \verb|vincenzo.lomonaco,davide.maltoni| \} @unibo.it \ (*) \ Equal \ contribution.$

2nd Continual Learning Workshop, NeurIPS. 7th Dec. 2018, Montreal, Canada https://continualAI.org

Outline

- Continual Learning
- Motivation
- Continual Learning Framework
- New Metrics for Continual Learning (WIP)
- Experiments
- Conclusions

Continual Learning (CL)

Continual Learning Algorithms:

- learn from a stream of data/tasks
- continuously and adaptively thought time
- enable the incremental development of ever more complex knowledge and skills.

Motivation:

- The lack of consensus in evaluating continual learning algorithms
- Almost exclusive focus on catastrophic forgetting ¹

We propose: Comprehensive, implementation independent metrics accounting for factors we believe have practical implications worth considering w.r.t.:

- "Non-static" ML settings
- Deployment of real AI systems that learn continually

¹[McCloskey and Cohen, 1989, French, 1999]

Catastrophic forgetting³

- The well-known phenomenon of a neural network experiencing a rapid overriding of previously learned knowledge when trained sequentially on new data.
- An important objective quantified for assessing the quality of CL approaches².

²[Serrà et al., 2018, Lopez-Paz and Ranzato, 2017, Hayes et al., 2018, Farquhar and Gal, 2018]

³[McCloskey and Cohen, 1989, French, 1999]

Continual Learning Framework

In Continual Learning,

- $\mathcal{D} = \{D_1, \dots, D_n\}$: a potentially infinite sequence of unknown distributions over $X \times Y$ encountered over time
- X and Y input and output r.v.
- h*: general target function (i.e. our ideal prediction model)
- Task T: defined by a unique task label t and its target function $g_{\hat{t}}^*(x) \equiv h^*(x, t = \hat{t})$ (i.e., the objective of its learning).

A CL algorithm A^{CL} : has the signature:

$$\forall D_i \in \mathcal{D}, \qquad A_i^{CL}: < h_{i-1}, Tr_i, M_{i-1}, t > \rightarrow < h_i, M_i >$$
 (1)

- hi: the model
- Tr_i : training set of examples drawn from the respective D_i distribution
- M_i : external memory that can store previous training examples
- N: nr of tasks (one per Tr_i).

Accuracy (A)⁵

Originally assessing the performance of the model at the end of the last $task^4$, we extend A to account for performance at every timestep in time:

$$A = \frac{\sum_{i \ge j}^{N} R_{i,j}}{\frac{N(N+1)}{2}} \tag{2}$$

 $R_{i,j}$ in Accuracy matrix $R \in \mathbb{R}^{N \times N}$: test classification accuracy on task t_j after observing the last sample from task t_i .

R	Te_1	Te_2	Te ₃
Tr_1	R*	R_{ij}	R_{ij}
Tr_2	R_{ij}	R^*	R_{ij}
Tr ₃	R_{ij}	R_{ij}	R^*

⁴[Lopez-Paz and Ranzato, 2017]

 $^{^{6}}$ Accuracy matrix R: elements accounted to compute A (white & cyan), BWT (cyan), and FWT (gray). $R^{*}=R_{ii}$, $Tr_{i}=$ training, $Te_{i}=$ test tasks.

Backward Transfer (BWT)⁷

BWT measures the influence that learning a task has on the performance on previous tasks 6 .

$$BWT = \frac{\sum_{i=2}^{N} \sum_{j=1}^{i-1} (R_{i,j} - R_{j,j})}{\frac{N(N-1)}{2}}$$
(3)

R	Te_1	Te ₂	Te ₃
Tr ₁	R*	Rij	R _{ij}
Tr_2	R_{ij}	R^*	R_{ij}
Tr ₃	R_{ij}	R_{ij}	R^*

⁶[Lopez-Paz and Ranzato, 2017]

 $^{^7}$ Accuracy matrix R: elements accounted to compute A (white & cyan), BWT (cyan), and FWT (gray). $R^*=R_{ii}$, $Tr_i=$ training, $Te_i=$ test tasks.

Backward Transfer (BWT^+) and Remembering (REM)

BWT is broken into two different clipped terms: (originally negative BWT, forgetting), **Remembering**:

$$REM = 1 - |min(BWT, 0)| \tag{4}$$

and (originally positive BWT) improvement over time: **Positive Backward Transfer** (BWT^+):

$$BWT^{+} = \max(BWT, 0) \tag{5}$$

Forward Transfer (FWT)⁹

Measures the influence that learning a task has on the performance of future tasks⁸:

$$FWT = \frac{\sum_{i < j}^{N} R_{i,j}}{\frac{N(N-1)}{2}}$$
 (6)

R	Te ₁	Te_2	Te ₃
Tr_1	R*	R_{ij}	R_{ij}
Tr_2	R_{ij}	R^*	R_{ij}
Tr_3	R_{ij}	R_{ij}	R^*

FWT can occur when the model is able to perform zero-shot learning.

⁸[Lopez-Paz and Ranzato, 2017]

⁹Accuracy matrix R: elements accounted to compute A (white & cyan), BWT (cyan), and FWT (gray). $R^*=R_{ii}$, $Tr_i=$ training, $Te_i=$ test tasks.

Model size (MS) efficiency

The memory size of model h_i , quantified in terms of parameters θ at each task i, $Mem(\theta_i)$, should not grow too rapidly with respect to the size of the model that learned the first task, $Mem(\theta_1)$:

$$MS = min(1, \frac{\sum_{i=1}^{N} \frac{Mem(\theta_1)}{Mem(\theta_i)}}{N})$$
 (7)

Samples storage size (SSS) efficiency

The memory occupation in bits by the samples storage memory M, Mem(M), should be bounded by the occupation of the total nr of examples encountered at the end of last task:

$$SSS = 1 - min(1, \frac{\sum_{i=1}^{N} \frac{Mem(M_i)}{Mem(D)}}{N})$$
 (8)

• D: the lifetime dataset associated to all distributions \mathcal{D} .

Computational efficiency (CE)

CE is bounded by the nr of operations for training set Tr_i :

$$CE = min(1, \frac{\sum_{i=1}^{N} \frac{Ops\uparrow\downarrow(Tr_{i})\cdot\varepsilon}{1+Ops(Tr_{i})}}{N})$$
 (9)

- $Ops(Tr_i)$: nr (mul-adds) operations needed to learn Tr_i
- $Ops \uparrow \downarrow (Tr_i)$: operations required to do one forward and one backward (backprop) pass on Tr_i .

CL_{score}

We fuse¹⁰ these metrics into a single score:

$$CL_{score} = \sum_{i=1}^{\#C} w_i c_i \tag{10}$$

- $c_i \in [0,1]$: avg. of r runs of c_i assigned a weight $w_i \in [0,1]$ s.t. $\sum_i^{\mathcal{C}} w_i = 1$
- As each c_i , the final CL_{score} :
 - $\bullet \ \in [0,1]$
 - is to be maximized.
 - can rank CL strategies

 $^{^{10}}$ Drawing inspiration from the standard Multi-Attribute Value Theory (MAVT)[Ishizaka and Nemery, 2013, Keeney and Raiffa, 1993]

CL_{stability}

The average of the std. deviations from all previous criteria c_i :

$$CL_{stability} = 1 - \sum_{i=1}^{\#C} w_i \sigma_{c_i}$$
 (11)

- $c_i \in [0,1]$: avg. of r runs assigned a weight $w_i \in [0,1]$ s.t. $\sum_i^{\mathcal{C}} w_i = 1$
- σ_{c_i} : std. deviation of criterion c_i

Experiments: Dataset and Baselines (as in ¹⁶)

Dataset: iCIFAR-100: each of the 10 tasks: a training batch of 10 disjoint classes at a time.

Baselines:

- Lower bound: *Naïve* baseline strategy: starts at Tr_1 and learns continuously the coming training sets $Tr_2, ..., Tr_N$ simply tuning the model across batches¹¹.
- Upper bound: Cumulative strategy: starts from scratch every time, learning from the accumulation of Tr₁, ..., Tr_{i-1}, Tr_i retrained with the patterns from the current batch and all previous batches¹².

CL strategies:

- Elastic Weight Consolidation (EWC)¹³
- Synaptic Intelligence (SI)¹⁴
- Learning without Forgetting (LwF)¹⁵

¹¹Without any specific mechanism to control forgetting, except early stopping

¹²Only in this approach we assume all previous data can be stored and reused.

^{13[}Kirkpatrick et al., 2016]

¹⁴[Zenke et al., 2017]

^{15[}Li and Hoiem, 2016]

¹⁶[Maltoni and Lomonaco, 2018, Rebuffi et al., 2018]

Experiments: Accuracy per CL strategy computed over the fixed test set

- The larger the area under the CL algorithm curve, the highest (more optimal) CL_{score} is.
- The farther away from the cumulative (blue) surface, the larger room for improvement

Experiments

Table 1: CL metrics for each CL strategy (higher is better)

Str.	Α	REM	BWT^+	FWT	MS	SSS	CE	CL_{score}	$CL_{stability}$
								0.5140	
Cum	0.7225	1.0000	0.0673	0.1000	1.0000	0.5500	0.1496	0.5128	0.9979
EWC	0.5940	0.9821	0.0000	0.1000	0.4000	1.0000	0.3495	0.4894	0.9972
LWF	0.5278	0.9667	0.0000	0.1000	1.0000	1.0000	0.4429	0.5768	0.9986
SI	0.5795	0.9620	0.0000	0.1000	0.4000	1.0000	0.3613	0.4861	0.9970

Weight configuration:

$$\textit{W}_1 = \left[\textit{w}_\textit{A}, \textit{w}_\textit{MS}, \textit{w}_\textit{SSS}, \textit{w}_\textit{CE}, \textit{w}_\textit{BWT}^+, \textit{w}_\textit{REM}, \textit{w}_\textit{FWT}\right] = \textit{w}_\textit{i} = \frac{1}{\#\mathcal{C}}$$

Experiments

Strategy/CL Metric	CL _{score}			$CL_{stability}$		
	W_1	W_2	W_3	W_1	W_2	W_3
Naïve	0.5140	0.5529	0.5312	0.9986	0.9969	0.9973
Cumulative	0.5128	0.6223	0.5373	0.9979	0.9976	0.9964
EWC	0.4894	0.6449	0.5816	0.9972	0.9976	0.9940
LWF	0.5768	0.6554	0.6030	0.9986	0.9990	0.9972
SI	0.4861	0.6372	0.5772	0.9970	0.9945	0.9927

Three weight configurations $W = [w_A, w_{MS}, w_{SSS}, w_{CE}, w_{BWT^+}, w_{REM}, w_{FWT}]$:

- W_1 : $w_i = \frac{1}{\#\mathcal{C}}$
- $W_2 = [0.4, 0.1, 0.1, 0.1, 0.2, 0.05, 0.05]$
- $W_3 = [0.4, 0.05, 0.2, 0.2, 0.05, 0.05, 0.05]^{17}$.

 $^{^{\}bf 17}\!\mathsf{Same}$ CNN model as in [Zenke et al., 2017, Maltoni and Lomonaco, 2018] (4 conv. + 2 FC layers)

Future work

- Provide more insights to assess:
 - importance of different metric schemes
 - their entanglement
- How to use metrics wisely to assist choosing among algorithms
- Evolve and extend the metrics beyond classification
- More datasets¹⁸, tasks, ... Adoption (!)

⁸CORe50 CL Dataset https://vlomonaco.github.io/core50/ [Lomonaco'17]

Thank you!

Join! https://www.continualai.org/
Slack channel: https://continualai.herokuapp.com/

References i

- Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint arXiv:1805.09733, 2018.
- Robert M. French. Catastrophic forgetting in connectionist networks. *Trends in Cognitive Sciences*, 3(4):128–135, 1999. ISSN 13646613. doi: 10.1016/S1364-6613(99)01294-2.
- Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. New Metrics and Experimental Paradigms for Continual Learning. pages 1–4, 2018. doi: 10.1109/CVPRW.2018.00273.
- Alessio Ishizaka and Philippe Nemery. Multi-criteria decision analysis: methods and software. John Wiley & Sons, 2013.
- RL Keeney and H Raiffa. Decision with multiple objectives, preferences and value tradeoffs. 1993.
- J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcoming catastrophic forgetting in neural networks. *ArXiv e-prints*, December 2016.
- Z. Li and D. Hoiem. Learning without Forgetting. ArXiv e-prints, June 2016.
- D. Lopez-Paz and M. Ranzato. Gradient Episodic Memory for Continual Learning. ArXiv e-prints, June 2017.
- Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios. arXiv preprint arXiv:1806.08568, 2018.

- Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology of learning and motivation, volume 24, pages 109-165. Elsevier, 1989.
- Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-domain deep neural networks. pages 8119-8127, 2018. doi: 10.1109/CVPR.2018.00847, URL http://arxiv.org/abs/1803.10082.
- Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forgetting with hard attention to the task. CoRR, abs/1801.01423, 2018. URL http://arxiv.org/abs/1801.01423.
- Friedeman Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3987-3995, International Convention Centre, Sydney, Australia, 06-11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/zenke17a.html.