Prediction of Ames
House Price and
Analysis of Impact of
Proximity to Amenities

Pei-Chieh (Paget) Hsiao

Paget.Hsiao@gmail.com

Project Overview

- Business Questions
 - Does the proximity to amenities (Parklands, Iowa State University and airport) have an impact on the predicted sale price of Ames properties in 2006~2010?
- Stakeholders
 - House buyers & house sellers

Flow Chart of Action

Data wrangling

- Load data
- Identify outliers
- EDA
- Correlation

Prediction

- Encode categorical features
- Forward feature selection
- Build regressor models
- Cross Validation

Summary

- Predicted sale price
- Proximity to amenities
- Findings

Identify Outliers

- Ames property dataset
 - 1460 rows
 - 80 features (ignore column 'ld')
- Remove commercial properties
 - 'C' in column 'MSZoning' 10 rows

- Remove insignificant neighborhood
 - 'Blueste' in column 'Neighborhood' 2 rows

Data Wrangling

- Combine numerical features
 - Bathroom = 'FullBath' + 'HalfBath'/2
 - BsmtBath = 'BsmtFullBath' + 'BsmtHalfBath'/2
 - AgeBuilt = 'YrSold' 'YearBuilt'
 - AgeRemod = 'YrSold' 'YearRemodAdd'
- Adjust features
 - Combine 'Condition1' & 'Condition2' as 'Condition'
 - 'Pos' ← ['PosA', 'PosN']
 - 'Neg' ← ['RRNn','RRAn','Feedr','Artery','RRNe','RRAe']

Proximity to Amenities

Sale Price & Proximity to Amenities

- Sale price per lot area tends to decrease with 'distance to Parklands'
- Sale price per lot area tends to increase with 'distance to Uni or airport'

Numerical Feature Selection

- Drop column 'ld'
- Drop features containing NaN
 - Three features are excluded: 'LotFrontage','GarageYrBlt','MasVnrArea'

Categorical Feature Selection

Ordinal Encoding – categories are in ascending order of median SalePrice

Feature Name	Categories	
?Qual, ?Cond	['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex']	
MSZoning	['RM','RH','RL','FV']	
BldgType	['2fmCon','Duplex','Twnhs','1Fam','TwnhsE']	
HouseStyle	['1.5Unf','1.5Fin','2.5Unf','SFoyer','1Story','SLvl','2Story','2.5Fin']	
MasVnrType	['NA','BrkCmn','None','BrkFace','Stone']	
Foundation	['Slab','BrkTil','Stone','CBlock','Wood','PConc']	
BsmtExposure	['NA','No','Mn','Av','Gd']	
BsmtFinType1	['NA','LwQ','BLQ','Rec','ALQ','Unf','GLQ']	
GarageType	['NA','CarPort','Detchd','Basment','2Types','Attchd','BuiltIn']	
GarageFinish	['NA','Unf','RFn','Fin']	
CentralAir	['N','Y']	
Condition	['NegNeg','NegNorm','NormNorm','NegPos','PosNorm','PosPos']	
SaleCondition	['AdjLand','Abnorml','Family','Alloca','Normal','Partial']	
Neighborhood	['MeadowV','IDOTRR','BrDale','OldTown',,'Timber','StoneBr','NoRidge','NridgHt']	

Target Variable

Log10(SalePrice) is used (approximate to normal distribution)

Feature Coefficient

Only 9 most significant features are shown

R² Score and Cross Validate

Regression	R ² Score	R ² Cross validate
OLS	0.8991	0.8842 ± 0.040
Ridge	0.8993	0.8784 ± 0.050
Lasso	0.8994	0.8777 ± 0.046

- Almost identical R² score between OLS, ridge and lasso regressors
- High cross validated R^2 score of 0.8842 ± 0.040

OLS with One Hot Encoding

- Ordinal encoding transforms categorical features into ordinal integers in a single column of integers (0 to n_categories - 1) per feature
- It implies the feature category is linearly correlated to the target variable.
- Use one hot encoding in preprocessor in pipeline for seamless modelling.

Regressor	R ² validate (ordinal encoding)	R ² validate (one-hot encoding)
OLS	0.8842 ± 0.040	_
RidgeCV	0.8784 ± 0.050	0.8778 ± 0.047
LassoCV	0.8777 ± 0.046	0.8776 ± 0.051

 Applying one-hot encoding in OLS model results in overfitting. Regularization is necessary.

Summary

- Impact of proximity to amenity on the Neighborhood sale price of Ames residential properties is analysed.
- Sale price tends to decrease with 'distance to Parklands' and increase with 'distance to Uni or airport'.
- Only 12 properties identified as outliers are excluded in the prediction of sale price.
- Ordinal encoding and one hot encoding are used for categorical features. Both achieved identical cross-validated R² score up to 0.88. However, regularisation is required to prevent overfitting.