Introduction to Bioinformatics

More on UNIX and Bioinformatics Data Formats

A Quick Glimpse

NGS (Bisulfite Sequencing)

A Quick Glimpse

NGS (Bisulfite Sequencing)

Why do we need to learn UNIX?

- Most of the software in the preprocessing part for NGS analysis is only available and can be run in UNIX system only
- Most high performance computing is using UNIX

What are we doing and what are we processing?

- During the preprocessing part we will preprocess the output from the sequencing machine
- The output is mostly looking like DNA sequence since we're sequencing DNA
- Our job here is to convert this data so it'd be usable for analysis

Preprocessing Pipeline using MethylSeq

Pipeline Summary

The pipeline allows you to choose between running either Bismark or bwa-meth / MethylDackel. Choose between workflows by using --aligner bismark (default, uses bowtie2 for alignment), --aligner bismark_hisat Or --aligner bwameth.

Step	Bismark workflow	bwa-meth workflow	
Generate Reference Genome Index (optional)	Bismark	bwa-meth	
Raw data QC	FastQC	FastQC	
Adapter sequence trimming	Trim Galore!	Trim Galore!	
Align Reads	Bismark	bwa-meth	
Deduplicate Alignments	Bismark	Picard MarkDuplicates	
Extract methylation calls	Bismark	MethylDackel	
Sample report	Bismark	2	
Summary Report	Bismark	(2)	
Alignment QC	Qualimap	Qualimap	
Sample complexity	Preseq	Preseq	
Project Report	MultiQC	MultiQC	

File Types

- Plain text file formats
 - Information often structured into lines and columns
 - Human-readable
 - Easy to process

- Binary file formats
 - Not human-readable
 - Require special software for processing
 - Efficient storage
 - (significant) reduction to file size when compared to a plain text counterpart (e.g. 75 % space saved)

Common File Formats that You Will Encounter

- FASTA Simple collections of named DNA/protein sequences (text)
- FASTQ Extension of FASTA format, contains additional quality information.
 Widely used for storing unaligned sequencing reads (text)
- **SAM/BAM** Alignments of sequencing reads to a reference genome (text/binary)
- **BED** Region-based genome annotation information (e.g. a list of genes and their genomic locations).
- GFF/GTF gene-centric annotations (text)
- VCF variant call format, to store information about genomic variants (text)
- **CSV/TSV** Usually stores read counts/expression information per sample

FASTA format

The nucleic acid codes that can be found in FASTA file:

A --> adenosine

T --> thymidine

C --> cytidine

S --> G C (strong)

G --> guanine

| W --> A T (weak)

B --> G T C

U --> uridine

N --> A G C T

R --> G A (purine)

Y --> T C (pyrimidine)

Example of fasta format http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/

Quick UNIX Check

- How long is chrY?
 - \$ grep -v ">" hg38.chrY.fa | grep -o "[ATCGatcg]" | wc -l 26415043
- How many adenosines are there? \$
 - \$ grep -v ">" hg38.chrY.fa | grep -o -i "A" | wc -l 7886192

FASTQ format

- Nearly all sequencing technologies produce sequencing reads in FASTQ format
 - Sequence ID @SEQ_ID
 - Sequence
 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACA
 GTTT
 - Separator +
 - Quality scores !''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>

FASTQ Quality Scores (Phred Scores)

- PHRED Base quality (Q) integer value derived from the estimated probability
 (P) of the corresponding base being determined wrong
 - \circ Q = -10 * log10(Perr) (rounded to nearest integer)

- PHRED Base quality (Q) integer value derived from the estimated probability
 (P) of the corresponding base being determined wrong A higher quality score is better (>=20 is considered "good")
 - Score of 10 means 10% of probability of it's being error
 - Score of 20 means 1%
 - Score of 30 means 0.1% etc

FastQC Helps Quality Control

More information on interpreting:

https://hbctraining.github.io/Int ro-to-rnaseq-hpc-salmon/lesson s/qc_fastqc_assessment.html

Sequence Alignment Map (SAM)

- Intended for storing read alignments against reference sequences.
- Has a binary version with good software support (BAM format)

- The SAM format consists of two sections:
 - Header section Used to describe source of data, reference sequence, method of alignment, etc.
 - Alignment section Used to describe the read, quality of the read, and nature alignment of the read to a region of the genome

Sequence Alignment Map (SAM)

Example SAM/BAM header section (abbreviated)

```
mgriffit@linus270 -- samtools view -H /gscmnt/gc13001/info/model data/2891632684/build136494552/alignments/136080019.bam | grep -P "SN\:22|HD|RG|PG"
                W:1.4 S0:coordinate
                SN:22 LN:51384566 UR:ftp://ftp.ncbi.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh37/special_requests/GRCh37-lite.fa.gz A5:GRCh37-lite M5:a718acaa
 4211dd SP:Homo sapiens
                ID:2888721359 PL:illumina
                                                                                PU:D1BA4ACXX.3 LB:H KA-452198-8817007-cDNA-3-Lib1
                                                                                                                                                                                                PI:365 DS:paired end DT:2812-18-83T19:88:88-8588
                                                                                                                                                                                                                                                                                                               SM:H KA-452198-0817007 CN:WUGSC
                ID:2888721359 W:2.0.8
                                                                                CL:tophat --Library-type fr-secondstrand --bowtie-version=2.1.8
                ID:MarkDuplicates
                                                                PN:MarkDuplicates
                                                                                                                PP:2888721359 W:1.85(exported)
                                                                                                                                                                                                CL:net.sf.picard.sam.MarkDuplicates INPUT=[/gscmnt/gc13881/info/build merged alignments/mer
e10-2-5.gsc.wustl.edu-jwalker-15434-136080019/scratch-ILg6Y/H_KA-452198-0817007-cDNA-3-lib1-2888360300.bam] OUTPUT=/gscmnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-
 alker-15434-136888819/scratch-ILgGY/M_KA-452198-0817007-cDNA-3-lib1-2888368300-post_dup.bam METRICS_FILE-/gscnnt/gc13001/info/build_merged_alignments/merged-alignment-blade10-2-5.gsc.wust
4-13688819/staging-liuJS/H KA-452198-0817007-cDNA-3-lib1-2888360300.metrics REMOVE DUPLICATES-false ASSUME SORTED-true MAX FILE HANDLES FOR READ ENDS MAP-9500 TMP DIR=[/gscmnt/gc13001/in
 ignments/merged-alignment-blade10-2-5.gsc.wustl.edu-jwalker-15434-136000019/scratch-ILg6Y] VALIDATION_STRINGENCY=SILENT MAX_RECORDS_IN_RAW=5000000 PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=MarkDuplicates_PROGRAM_RECORD_ID=
 DUPLICATES MAX SEQUENCES FOR DISK READ ENDS MAP-50000 SORTING COLLECTION SIZE RATIO-0.25 READ NAME REGEX-[a-zA-Z0-9]+:[0-9]+:([0-9]+):([0-9]+).* OPTICAL DUPLICATE PIXEL DISTANCE-1
 QUIET=false COMPRESSION LEVEL=5 CREATE INDEX=false CREATE MD5 FILE=false
mgriffit@linus270 ->
```

Example SAM/BAM alignment section (only 10 alignments shown)

```
mgriffit@linus270 --- samtools view -f 3 -F 1884 /gscmnt/gcl3001/info/model_data/2891632684/buildl36494552/alignments/136880019.bam | head
HMI-5T495 129147882:3:2114:15769:38646 99 1 11386 3 188M = 11588 382
                                                                                  ACTGCGGGGCCCTCTTGCTTACTGTATAGTGGTGGCACGCCGCCTGCTGGCAGCTAGGGACATTGCAGGGTCCTCTTGCTCA
CC:Z:15 MD:Z:5A94
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:0 NH:i:2 HI:
      XN:i:0 X0:i:0 CP:i:182519765 AS:i:-5 XS:A:+ YT:Z:UU
HMI-ST495_129147882:3:2114:15769:38646_147__1
                                            11508 3
                                                                                  :5:CDCDCDECEFCD#9E=?7EEIIIIHCEGGI3333II33IHF#?#8#IHHFFGG?*3333IJGHGEI33IJ3333IH#CIE33JHFHHGHFFEDFCCB
                                                                                  CC:Z:15 ND:Z:34A65
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:0 NH:i:2 HI:
      XN:1:0 XD:1:0 CP:1:102519563 A5:1:-6 X5:A:+ YT:Z:UU
HMI-ST495_129147882:3:1218:1257:16283 163 1
                                                                                  CCTGCATGTAGTTTAAACGAGATTGCCAGCACCGGGTATCATTCACCATTTTTCTTTTCGTTAACTTGCCGTCAGCCTTTTC
CCFFFFFHFHAFGGIII333EEHGIGGGI3I33GI78EHIGI3DGHIHIGGI33333333I3GHHHGHFFFCDDDDDCDCCCCCA;>8>8A8A8:AA>AA
                                                                                  CC:Z:15 MD:Z:100
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:1:0 NH:1:2 HI:
      XN:i:0 X0:i:0 CP:i:102519261 AS:i:0 XS:A:- YT:Z:UU
HMI-ST495 129147882:3:1218:1257:16283 83 1
                                            12055 3
                                                                                  GAGCACTGGAGTGGAGTTTTCCTGTGGAGAGGAGCCATGCCTAGAGTGGGATGGGCCATTGTTCATCTTCTGGCCCCCTGTTGT
CC:Z:15 MD:Z:100
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:0 NH:i:2 HI:
      XN:i:0 X0:i:0 CP:i:182519816 AS:i:0 XS:A:+ YT:Z:UU
HMI-ST495 129147882:3:2111:3117:78828 163 1
                                            12634 3
                                                                                  GCCCTTCCCCAGCATCAGGTCTCCAGAGCTGCAGAAGACGACGGCCGACTTGGATCACACTCTTGTGAGTGTCCCCAGTGTT
@GFFFFFDHHHH9FHGIIFGAFDHEGII>GHIIIIIIIIIIIIIIIIIIIIFHDDFFEEECEECCCACCCCCC: AADCCBCC>CAC<CCCCCC: @CB@@BAB##
                                                                                  CC:Z:15 MD:Z:85G14
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG: Z: 2888721359 XG: i:0 NH: i:2 HI:
      XN:i:0 XO:i:0 CP:i:102518437 AS:i:-5 XS:A:- YT:Z:UU
HMI-ST495 129147882:3:2111:3117:78828 83 1
                                            12746 3
                                                                                  GGGAGTGGCGTCGCCCCTAGGGCTCTACGGGGCCGGCATCTCCTGTCTCCTGGAGAGGCTTCGATGCCCCTCCACACCCTCTT
DCABDB0000000000000000BDB0B0BB00DB0;CCCCCDEFD0;.7<HIGGEIGEHIGJJJIIGIGIIHEGFEHFJIIIIIGJJJJHHHHHFFFFFC00
                                                                                  CC:Z:15 MD:Z:37G62
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:8 NH:i:2 HI:
      XN:1:0 X0:1:0 CP:1:182518325 AS:1:-5 XS:A:- YT:Z:UU
HMI-ST495 129147882:3:1182:4242:26638 99 1
                                                                                  CGCTGTGCCCTTTCCTTTGCCCCGCCGGAGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAA
                                            13503 3
CC:Z:2 MD:Z:100
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG: Z: 2888721359 XG: i:0 NH: i:2 HI:
      XN:i:0 XD:i:0 CP:i:114357414 AS:i:0 XS:A:+ YT:Z:UU
HMI-ST495_129147882:3:1389:15328:74882 99 1
                                                                     13780 346
                                                                                  AGACGGTGTTTGTCATGGGCCTGGTCTGCAGGGATCCTGCTACAAAGGTGAAACCCAGGAGAGTGTGGAGTCCAGAGTGTTG
                                            13534 3
PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:8 NH:i:2 HI:
                                                                                  CC:Z:2 MD:Z:100
      XN:i:0 XO:i:0 CP:i:114357383 AS:i:0 XS:A:+ YT:Z:UU
HMI-ST495_129147882:3:1388:18126:19636 99 1
                                                                                  CCTCTGCAGGAGGCTGCCATTTGTCCTGCCCACCTTCTTAGAAGCGAGACGGAGCCGATCTGCTACTGCCCTTTCTATA
CC:Z:2 MD:Z:100
                                                                                                     PG:Z:MarkDuplicates
                                                                                                                        RG:Z:2888721359 XG:i:0 NH:i:2 HI:
      XN:1:8 X0:1:8 (P:1:114357148 AS:1:8 XS:A:+ YT:7:III
```

SAM/BAM Header Section

- Used to describe source of data, reference sequence, method of alignment, etc.
- Each section begins with '@' followed by a two-letter record type code. These are followed by two-letter tags and values, example:
 - @HD The header line
 - VN: format version
 - SN: reference sequence name
 - LN: reference sequence length
 - SP: species

SAM/BAM Alignment Section

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,254}	Query template NAME
2	FLAG	Int	$[0,2^{16}-1]$	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	$[0,2^{31}-1]$	1-based leftmost mapping POSition
5	MAPQ	Int	$[0,2^8-1]$	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	Int	$[0,2^{31}-1]$	Position of the mate/next read
9	TLEN	Int	$[-2^{31}+1,2^{31}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity

Tools to work with BAM/SAM

- **samtools** view, sort, index, QC, stats on SAM/BAM files, and more
- **sambamba** view, sort, index, merge, stats, mark duplicates. fast laternative to samtools
- **picard** QC, validation, duplicates removal and many more utility tools

BED File Formats

- Text-based, tab-separated list of genomic regions
- Each region is specified by a reference sequence and the start and end positions on it
- Optionally, each region can have additional properties defined E.g. strand, name, score, color
- Intended for visualizing genomic annotations in IGV, UCSC Genome Browser (context of expression, regulation, variation, conservation, . . .)

BED File Formats

- 3 mandatory columns (must be in correct order)
 - "chrom" chromosome
 - "chromStart" the first base of the region with respect to the chromosome (counting starts from 0)
 - "chromEnd" the first base after the region with respect to the chromosome [chromStart, chromEnd) allows easy region-length calculation
 - Optional fields: "name", "score", "strand", other annotation columns

Example of BED File Formats

```
chr1 115263684 115263685 rs10489525 0 + chr12 97434219 97434220 rs6538761 0 + chr14 102360744 102360745 rs7142002 0 + chr16 84213683 84213684 rs4150167 0 - chr2 206086170 206086171 rs4675502 0 + chr20 14747470 14747471 rs4141463 0 +
```

BED File Formats

- 9 additional optional fields, their order is binding (unlike with SAM format).
- All regions must have the same optional fields
- Most important optional fields:
 - o "name" name of the region
 - "score" score value between 0 and 1000 (read-count, transformed p-value,
 "quality", . . .) Can be interpreted as shades of grey during visualization
 - "strand" either "+" or "-" (not "1"/"-1") BED12 format specification available

Tools to work with BED File Formats

- bedtools universal tools for manipulating genomic regions
- bedops complementary to bedtools, providing additional functionality and speedup

Genomic Data Resources

- GEO: Gene Expression Omnibus.
 - Host array- and sequencing-based data.
- **ArrayExpress**: European version of GEO.
 - Better curated than GEO but has less data.
- **SRA**: Sequence Read Archive. Designed for hosting large scale high-throughput sequencing data, e.g., high speed file transfer. Data are required to be deposited in one of the databases when paper is accepted

Sequence Read Archive

- The NCBI database which stores sequence data obtained from next generation sequence (NGS) technology
- Archives raw NGS data for various organisms from several platforms (FASTQ files) Serves as a starting point for "secondary analyses"
- Provides access to data from human clinical samples to authorized users who agree to the datasets' privacy and usage mandates
- Search metadata to locate the sequence reads for download and further downstream analyses

Getting data from SRA

- The NCBI sratoolkit provides two command line tools to allow local BLAST searches against specific sra files directly
 - fastq-dump: Convert SRA data into fastq format
 - prefetch: Allows command-line downloading of SRA, dbGaP, and ADSP data
 - sam-dump: Convert SRA data to sam format
- .sra files are NOT FASTQ files need to further convert them using sratoolkit