Amendments to the Claims:

Please amend the claims as specified below. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

WHAT IS CLAIMED IS

1. (Currently amended). A compound of the formula I or II

in which

 R^1 is hydrogen, or branched or unbranched $C_{1^*}C_{6^*}$ alkyl, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where R^{11} is hydrogen or $C_{1^*}C_{4^*}$ alkyl, and

 R^2 is hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, NHCOR 21 , $NR^{22}R^{23}$, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R^{24} , and R^{21} and R^{22} independently of one another are hydrogen or C_1 -C₄-alkyl, R^{21} and R^{22} is hydrogen, R^{21} and R^{22} is OH, R^{21} is OH, R^{22} is OH, R^{22} is OH, R^{23} is hydrogen, R^{23} is OH, R^{23} is OH, R^{23} is OH, R^{24} in OH, R^{24} is OH, R^{24} is OH, R^{24} is OH, R^{24} in OH, R^{24} in OH, R^{24} in OH, R^{24} in OH, R^{24} is OH, R^{24} in OH, R^{24

 $\underline{x} \times \mathbf{X}$ may be 0, 1 or 2 and

2

 $R^3 \ is -D \cdot (F^1)_p \cdot (E)_{q^*}(F^2)_r \cdot G, \ where \ p, \ q \ and \ r \ may \ not simultaneously \ be \ 0, \ or \ R^3 \ is \\ -E \cdot (D)_{u^*}(F^2)_{s^*}(G)_{v_i} \ it \ also \ being \ possible \ for \ the \ radical \ E \ to \ be \ substituted \ by \ one \ or \ two \ radicals \ A, \ and \ if \ v = \underline{0} \ G, \ E \ is \ imidazole, \ pyrrole, \ pyridine, \ pyrimidine, \ piperazine, \ pyrazine, \ pyrrolidine \ or \ piperidine, \ or \ R^3 \ is \ B \ and$

R⁴ is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR⁴¹R⁴², NH-CO-R⁴³, or O-C₁-C₄-alkyl, where R⁴¹ and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

R43 is hydrogen, C1-C4-alkyl, C1-C4-alkylphenyl or phenyl, and

D is S or O

E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine, and

 $F^l \ \ is \ a \ chain \ \ f1 \ \ to \ 8 \ carbon \ atoms, it \ also being \ possible \ for \ one \ carbon \ atom \ of \ the \ chain \ to \ carry \ an \ OH \ or \ O-C_1-C_4-alkyl \ group \ and$

 $F^2 \ is \ a \ chain \ of \ 1 \ to \ 8 \ carbon \ atoms, it \ also \ being \ possible \ for \ one \ carbon \ atom \ of \ the \ chain \ to \ carry \ an \ OH \ or \ C_1-C_4-alkyl \ group \ and$

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1

v may be 0 or 1 G may be NR⁵¹R⁵² or

$$R^{52}$$
 R^{52} R^{52}

where

 R^{51} is hydrogen or branched or unbranched $C_1\hbox{-} C_6\hbox{-alkyl},$ or $(CH_2)_{i}\hbox{-} K$ and

R52 is hydrogen, branched or unbranched C1-C6-alkyl, phenyl,

in which

 R^{53} may be branched or unbranched $O\text{-}C_1\text{-}C_6\text{-}alkyl, phenyl, or branched or unbranched <math display="inline">C_1\text{-}C_4\text{-}alkylphenyl, where in the case of <math display="inline">R^{52}$ and R^{53} , independently of one another, one hydrogen of the $C_1\text{-}C_6\text{-}alkyl$ radical may be replaced by one of the following radicals: OH, O-C_1-C_4-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl or phenyl, it also being possible for the carbocycles of the radicals R^{52} and R^{53} independently of one another to carry one or two of the following radicals: branched or unbranched $C_1\text{-}C_6\text{-}alkyl,$ branched or unbranched O-C_1-C_4-alkyl, OH, F, Cl, Br, I, CF_3, NO_2, NH_2, COOH, COOC_1-C_4-alkyl, C_1-C_4-alkylamino, CCl_3, C_1-C_4-di-alkylamino, SO_2-C_1-C_4-alkyl, SO_2phenyl, CONH_2, CONH-C_1-C_4-alkyl, CONH-C_1-C_4-alkyl, NHSO_2phenyl, S-C_1-C_4-alkyl, S-C_1-C_4-Al

$$alkyl, \qquad \circ \qquad C_{\tau^*C_4\text{-ellkyl}}, \qquad \circ \qquad C_{\sigma^*C_4\text{-ellkylphenyl}}, CHO, -CH_2\text{-}O-C_1\text{-}C_4$$

alkyl, -CH₂O-C₁-C₄-alkylphenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkylphenyl, -SO₂NH₂, -SO₂NH-C₁-C₄-alkyl,

or two radicals form a bridge -O-(CH)1,2-O-,

B may be

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF_3 , nitro, OH, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkyl, $O-C_1-C_4$ -alkyl, and

 $\underline{t} \mp is 0,1,2,3 \text{ or } 4 \text{ and }$

K is [[a]] phonyl, which may carry at most two radicals on the ring, $NR^{hl}R^{hl}$ wherein R^{hl} and R^{hl} are as defined for R^{4+} and R^{4+} respectively, $NH \cdot C_1 \cdot C_4$ alkylphonyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an $C_4 \cdot C_6$ alkyl radical, or homopiperazine, which may also be substituted by an $C_4 \cdot C_6$ alkyl radical, and

R5 may be hydrogen, C1-C6-alkyl, or NR7R9 and

and

 R^7 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_4 -alkylphenyl or phenyl, it also being possible for the rings to be substituted by up to two radicals R^{71} , and

 R^{71} is OH, C_1 - C_6 -alkyl, O- C_1 - C_4 -alkyl, chlorine, bromine, iodine, fluorine, CF_3 , nitro.

or NH2, and

 R^8 is hydrogen, C_1 - C_6 -alkyl, phenyl, or C_1 - C_4 -alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R^{81} and

 $R^{81} \ is \ OH, C_1\text{-}C_6\text{-alkyl}, \ O\text{-}C_1\text{-}C_4\text{-alkyl}, \ ehlorine, \ bromine, \ iodine, \ fluorine, \ CF_3, \ nitro, \ or \ NH_2 \ and$

 R^{9} is hydrogen, COCH3, CO-O-C1-C4-alkyl, COCF3, branched or unbranched $C_{1}\text{-}C_{6}\text{-}alkyl$, it being possible for one or two hydrogens of the $C_{1}\text{-}C_{6}\text{-}alkyl$ radical to be replaced in each case by one of the following radicals: OH, O-C1-C4-alkyl and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched or unbranched $C_{1}\text{-}C_{6}\text{-}alkyl$, nitro, amino, $C_{1}\text{-}C_{4}\text{-}alkyl$ amino, OH, O-C1-C4-alkyl, CN, CF3, or SO2-C1-C4-alkyl, or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

2. (Currently amended). A compound of the formula I or II

$$\begin{bmatrix} R^4 & & & & \\ & & & \\ & & & \\ R^1 & & & \\$$

in which

R¹ is hydrogen, or branched or unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where

R11 is hydrogen or C1-C4-alkyl, and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

R²¹ and R²² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R²³ is hydrogen[[,1] or C₁-C₄-alkyl, and

R3 is O-(CH2)o-(CHR31)m-(CH2)n-R5 where

R³¹ is hydrogen, C₁-C₄-alkyl, OH or O-C₁-C₄-alkyl,

m, o are, independently of one another, 0, 1 or 2, and

n is 1, 2, 3 or 4 and

 R^4 is hydrogen, branched or unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, cyano, $NR^{41}R^{42}$, NH-CO- R^{43} , or OR^{41} , where

R41 and R42 are, independently of one another, hydrogen or C1-C4-alkyl, and

 R^{43} is C_1 - C_4 -alkyl or phenyl, and

 $\ensuremath{R^5}$ is $N\ensuremath{R^{51}}\ensuremath{R^{52}}$ or one of the following radicals

where

R⁵¹ is hydrogen or branched or unbranched C₁-C₆-alkyl, and R⁵² is hydrogen, or branched or unbranched C₁-C₆-alkyl, phenyl,

R⁵³ is branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and R⁵³ are, independently of one another, optionally replaced by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cyclohetyl, naphthyl or phenyl, where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COO-C₁-C₄-alkyl, C₁-C₄alkylamino, -CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, S-C₁-C₄-alkyl, NHSO₂phenyl, S-C₁-C₄-alkyl,

CHO, CH2-O-C1-

 $\label{eq:c4-alkyl} $$ C_4-alkyl, -CH_2OC_1-C_4-alkyl-phenyl, -CH_2OH, -SO-C_1-C_4-alkyl, -SO-C_1-C_4-alkyl-phenyl, -SO_2NH_2, -SO_2NH-C_1-C_4-alkyl or two radicals form a bridge -O-(CH)_12-O-,$

or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

3. (Currently amended). A compound of the formula I or II

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, it also being possible for one C atom of thealkyl radical to carry OR^{11} or a group R^5 , where

R11 is hydrogen or C1-C4-alkyl, and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

 R^{21} and R^{22} are, independently of one another, hydrogen or $C_1\text{-}C_4\text{-}alkyl,$ and R^{23} is hydrogen, $C_1\text{-}C_4\text{-}alkyl$ or phenyl, and

R3 is

and

R31 is hydrogen, CHO or -O-(CH2)o-(CHR32)m-(CH2)n-R5 where

R³² is hydrogen, C₁-C₄-alkyl, OH or C₁-C₄-alkyl,

m, o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

 R^4 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl, chlorine, bromine, fluorine, nitro, evano, $NR^{41}R^{42}$, NH-CO- R^{43} , or OR^{41} , where

 R^{41} and R^{42} are, independently of one another, hydrogen or C_1 - C_4 -alkyl and R^{43} is C_1 - C_4 -alkyl or phenyl, and

R5 is NR51R52 or one of the radicals below

where

 R^{51} is hydrogen or branched or unbranched $C_1\text{-}C_6\text{-alkyl},$ and

 R^{52} is hydrogen, COCH₃, CO-O-C₁-C₄-alkyl, COCF₃, or branched or unbranched C_1 -C₆-alkyl, it being possible for one hydrogen of the C_1 -C₆-alkyl radical to be replaced by one of the following radicals: OH, O-C₁-C₆-alkyl or phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C_1 -C₄-alkyl, nitro, amino, C_1 -C₄-alkylamino, C_1 -C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, or SO_2 -C₁-C₄-alklyl, or a tautomeric form, or a possible enantiomeric or disasteriomeric form, or a prodrug or pharmacologically tolerated salt thereof.

- 4. (Previously presented). A compound as claimed in claims 1, 2 or 3 where R^2 is in position 3 and R^3 is in position 4 or R^2 is in position 4 and R^3 is in position 3 relative to the benzimidazole ring.
- 5. (Previously presented). A compound as claimed in claims 1, 2 or 3 where \mathbb{R}^1 and \mathbb{R}^4 are hydrogen.
- (Previously presented). A compound as claimed in claims 1, 2 or 3 where R² is hydrogen, or branched or unbranched C₁-C₆-alkyl, nitro, CN, NH₂, or O-C₁-C₄-alkyl.
 - 7. (Currently amended). A compound of the formula I or II[[.]]

in which

 R^1 is hydrogen, or branched or unbranched C_1 - C_6 -alkyl it also being possible for one C atom of thealkyl the alkyl radical to carry OR^{11} or a group R^5 , where

R11 is hydrogen or C1-C4-alkyl and

 R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched or unbranched C_1 - C_6 -alkyl, nitro, CF_3 , CN, $NR^{21}R^{22}$, NH-CO- R^{23} , or OR^{21} , where

 R^{21} and R^{22} are, independently of one another, hydrogen or C_1 - C_4 -alkyl, and R^{23} is hydrogen, C_1 - C_4 -alkyl or phenyl, and

 R^3 is

(i)

R³¹ is hydrogen or –(CH₂)_n-R⁵, where

p is 1 or 2 and

 $R^{52} \ may \ be \ hydrogen, or \ branched \ or \ unbranched \ C_1-C_6-alkyl, \ where \ one \ hydrogen of the \ C_1-C_6-alkyl \ radical \ may \ be \ replaced by one of the following \ radicals: OH, O-C_1-C_4-alkyl \ and \ phenyl, \ and \ where the phenyl \ ring \ may \ also \ carry \ one \ or \ two \ of the following \ radicals: \ chlorine, \ bromine, \ fluorine, \ branched \ or \ unbranched \ C_1-C_4-alkyl, \ nitro, \ amino, \ C_1-C_4-alkyl \ amino, \ C_1-C_4-alkyl, \ CN, \ or \ SO_2-C_1-C_4-alkyl;$

or

(ii) R3 is

R31 is hydrogen or -(CH2)p-R5, where

p is 1 or 2 and

 R^{52} may be hydrogen, or branched or unbranched C_1 - C_6 -alkyl, where one hydrogen of the C_1 - C_6 -alkyl radical may be substituted by one of the following radicals: OH, O- C_1 - C_4 -alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C_1 - C_4 -alkyl, nitro, amino, C_1 - C_4 -alkylamino, C_1 - C_4 -alkyl, CN, or SO₂- C_1 - C_4 -alkyl:

or

(iii) R3 is

where R²² is hydrogen, or branched or unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be replaced by one of the following radicals: OH, O- C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched or unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-di-alkylamino, OH, O-C₁-C₄-alkyl, or SO₂-C₁-C₄-alkyl, or a tautorneric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

- 8. (Previously Presented) A compound as claimed in claim 1, where R^3 is -D- $(F^1)_p$ - $(E)_q$ - $(F^2)_r$ -G, where D is O, F^1 is a O-O4 carbon chain, P is O5, O6 and O7 is O8.
- 9. (Currently amended). A compound as claimed in claim 1, where R^5 is a 6-membered ring selected from

- 10. (Previously Presented) A drug comprising besides conventional vehicles and ancillary substances a compound as claimed in claim 1.
 - 11-13. (Cancelled)
- 14. (Previously presented). A method for treating a disorder in which pathologically elevated PARP activities occur, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from said disorder wherein the disorder is stroke or craniocerebral trauma.

15. (Cancelled)

- 16. (Previously presented). A method for treating ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from ischemia.
- 17. (Previously presented). A method for treating epilepsy, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from epilepsy.
- 18. (Previously presented). A method for treating damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from damage to the kidneys after renal ischemia, damage caused by drug therapy or damage resulting after kidney transplants.
- 19. (Previously presented). A method for treating damage to the heart after cardiac ischemia, said method comprising administering an effective amount of a compound of the formula I as claimed in claim I to a mammal suffering from damage to the heart after cardiac ischemia.
- 20. (Previously presented). A method for treating a microinfarct said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from a microinfarct.
- 21. (Previously presented). A method for treating under vascularization of critically narrowed coronary arteries said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from under vascularization of critically narrowed coronary arteries.

22. (Previously presented). A method for treating an acute myocardial infarct and damage during and after medical or mechanical lysis thereof, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from an acute myocardial infarct and damage during and after medical or mechanical lysis thereof.

23. (Canceled).

24. (Previously presented). A method for treating sepsis, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from sepsis of multiorgan failure.

25. (Cancelled).

26. (Previously presented). A method for treating diabetes mellitus, said method comprising administering an effective amount of a compound of the formula I as claimed in claim 1 to a mammal suffering from diabetes mellitus.

Claims 27-38. (Canceled).