1 1.2

Let $x, d \in \mathbb{Z}$, where d > 0. Prove that $M \cap N \neq \emptyset$, where $M = \{x - qd | q \in \mathbb{Z}\}$.

Solution 1.1. Let $x, d \in \mathbb{Z}$, where d > 0. Let $M = \{x - qd \mid q \in \mathbb{Z}\}$ and $N = \{x + pd \mid p \in \mathbb{Z}\}.$

Consider $x \in \mathbb{Z}$:

$$x = x - 0d \in M$$
 (where $q = 0$)
 $x = x + 0d \in N$ (where $p = 0$)

Therefore, $x \in M \cap N$, and thus $M \cap N \neq \emptyset$.

2 1.3

Let $a, b, N \in \mathbb{Z}$ where N > 0 Prove that [a][b] = [[a][b]] where [x] denotes the remainder of x after divison by N

Solution 2.1. By definition of modular arithmetic:

$$a \equiv [a] \pmod{N}$$

$$b \equiv [b] \pmod{N}$$

This means there exist integers k and m such that:

$$a = [a] + kN$$

$$b = [b] + mN$$

Multiplying these equations:

$$ab = ([a] + kN)([b] + mN)$$

= $[a][b] + [a]mN + [b]kN + kmN^2$

Taking both sides modulo N:

$$[ab] \equiv [[a][b] + [a]mN + [b]kN + kmN^2] \pmod{N}$$
$$\equiv [[a][b]] \pmod{N}$$

and thus [ab] = [[a][b]].

this is because [a]mN, [b]kN, and kmN^2 are all multiples of N.

3 1.6

```
Solution 3.1. Let a = a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n, where 0 \le a_i < 10.
(i) 2 divides a if and only if 2 divides a_0:
a \equiv a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n \pmod{2} \equiv a_0 + 0 + 0 + \dots + 0 \pmod{2}
(since 10^k \equiv 0 \pmod{2} for k \ge 1) \equiv a_0 \pmod{2}
Therefore, a \equiv 0 \pmod{2} if and only if a_0 \equiv 0 \pmod{2}.
(ii) 4 divides a if and only if 4 divides a_0 + 2a_1:
a \equiv a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n \pmod{4} \equiv a_0 + 2a_1 + 0 + \dots + 0
\pmod{4} (since 10 \equiv 2 \pmod{4} and 10^k \equiv 0 \pmod{4} for k \geq 2) \equiv a_0 + 2a_1 \pmod{4}
Therefore, a \equiv 0 \pmod{4} if and only if a_0 + 2a_1 \equiv 0 \pmod{4}.
(iii) 8 divides a if and only if 8 divides a_0 + 2a_1 + 4a_2:
a \equiv a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n \pmod{8} \equiv a_0 + 2a_1 + 4a_2 + 0 + \dots + 0
\pmod{8} (since 10 \equiv 2 \pmod{8}, 10^2 \equiv 4 \pmod{8}, and 10^k \equiv 0 \pmod{8} for k \geq 3)
\equiv a_0 + 2a_1 + 4a_2 \pmod{8}
Therefore, a \equiv 0 \pmod{8} if and only if a_0 + 2a_1 + 4a_2 \equiv 0 \pmod{8}
(iv) 5 divides a if and only if 5 divides a_0:
a \equiv a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n \pmod{5} \equiv a_0 + 0 + 0 + \dots + 0 \pmod{5}
(since 10^k \equiv 0 \pmod{5} for k \ge 1) \equiv a_0 \pmod{5}
Therefore, a \equiv 0 \pmod{5} if and only if a_0 \equiv 0 \pmod{5}.
(v) Let a = a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n, where 0 \le a_i < 10.
9 divides a if and only if 9 divides the sum a_0 + a_1 + \cdots + a_n of its digits:
a \equiv a_0 \cdot 10^0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_n \cdot 10^n \pmod{9} \equiv a_0 + a_1 + a_2 + \dots + a_n
\pmod{9} (since 10^k \equiv 1 \pmod{9} for all k \ge 0)
Therefore, a \equiv 0 \pmod{9} if and only if (a_0 + a_1 + \cdots + a_n) \equiv 0 \pmod{9}.
Note: 10^k \equiv 1 \pmod{9} for all k \ge 0 because 10^k - 1 = (10 - 1)(10^{k - 1} + 10^{k - 2} + \dots + 1)
is divisible by 9 for k \ge 1, and 10^0 - 1 = 0 is also divisible by 9.
```

4 1.8

 $3|4^n-1$ for all $n\in\mathbb{N}$

Solution 4.1. e will prove that $3 \mid 4^n - 1$ for all $n \in \mathbb{N}$ using mathematical induction.

Base case: For n = 1, $4^1 - 1 = 3$, which is clearly divisible by 3.

Inductive step: Assume the statement holds for some $k \in \mathbb{N}$, i.e., $3 \mid 4^k - 1$. This means there exists an integer m such that $4^k - 1 = 3m$.

Now, let's prove it holds for k + 1:

$$4^{k+1} - 1 = 4 \cdot 4^k - 1$$

$$= 4(4^k - 1) + 4 - 1$$

$$= 4(3m) + 3 \quad \text{(substituting } 4^k - 1 = 3m)$$

$$= 12m + 3$$

$$= 3(4m + 1)$$

Since 4m+1 is an integer, we have shown that $4^{k+1}-1$ is divisible by 3. we can also use the fact that $4 \equiv 1 \pmod 3$ and any power to the 4 bigger than 1 would be divisible by 3.

5 1.11

Solution 5.1. et $x, y, z, d \in \mathbb{Z}$ where $d \neq 0$.

(i) Reflexivity: $x \equiv x \pmod{d}$

By definition, $x \equiv x \pmod{d}$ if $d \mid (x - x)$. $x - x = 0 = d \cdot 0$ Therefore, $d \mid (x - x)$, so $x \equiv x \pmod{d}$.

(ii) Symmetry: If $x \equiv y \pmod{d}$, then $y \equiv x \pmod{d}$

Given: $x \equiv y \pmod{d}$ This means $d \mid (x-y)$, so there exists an integer k such that x-y=dk Rearranging: y-x=-dk=d(-k) Since -k is an integer, $d \mid (y-x)$ Therefore, $y \equiv x \pmod{d}$

(iii) Transitivity: If $x \equiv y \pmod{d}$ and $y \equiv z \pmod{d}$, then $x \equiv z \pmod{d}$

Given: $x \equiv y \pmod{d}$ and $y \equiv z \pmod{d}$ This means there exist integers k and m such that: x-y=dk and y-z=dm Adding these equations: (x-y)+(y-z)=dk+dm x-z=d(k+m) Since k+m is an integer, $d\mid (x-z)$ Therefore, $x\equiv z\pmod{d}$

(iv)

6 2.1

Solution 6.1. 1. Injectivity:

Let $x_1, x_2 \in G$ such that $\xi(x_1) = \xi(x_2)$. Then $x_1g = x_2g$. Multiplying both sides by g^{-1} on the right (which exists because G is a group): $x_1gg^{-1} = x_2gg^{-1}$ $x_1 = x_2$ (by the properties of inverse elements in a group)

Thus, if $\xi(x_1) = \xi(x_2)$, then $x_1 = x_2$, proving that ξ is injective.

2. Surjectivity:

Let $y \in G$ be arbitrary. We need to find an $x \in G$ such that $\xi(x) = y$. Consider $x = yg^{-1}$. Then $\xi(x) = \xi(yg^{-1}) = yg^{-1}g = y$ (by the properties of inverse elements)

Thus, for any $y \in G$, we can find an $x \in G$ (namely, yg^{-1}) such that $\xi(x) = y$, proving that ξ is surjective.

Since ξ is both injective and surjective, we conclude that ξ is bijective.