МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

БГТУ.СМК-Ф-4.2-К5-01

Факультет	O	Естественнонаучный
•	шифр	наименование
Кафедра	O6	Высшая математика
•	шифр	наименование
Дисциплина	Математическая статистика и случайные процессы	

Лабораторная работа №5

Проверка статистических гипотез о числовых значениях нормальных распределений в пакете «МАТНСАD»

Вариант 4

Выполнил студен	И967					
Васильев Н.А.						
Фамилия И.О.						
	РУКОВОД	ИТЕЛЬ				
Мартынова Т.Е.						
Фамилия И.О.	Подпись	Подпись				
Оценка		_ 2019г.				
		_				

Краткие сведения из теории

Статистическая гипотеза - это предположение о свойствах и характеристиках статистического распределения.

Виды гипотез:

- 1. Нулевая гипотеза Н₀.
- 2. Альтернативная гипотеза Н_І.

Нулевой гипотезой называют предположение о том, что характеристики выборки (например, средняя арифметическая \overline{X} или стандартное отклонение S) не отличаются от аналогичных характеристик μ , σ генеральной совокупности, из которой взята выборка.

Альтернативной гипотезой (контргипотезой) - называется такая гипотеза, которая считает, что различия между характеристиками выборки и такими же характеристиками генеральной совокупности существенны и не случайны.

Для подтверждения или опровержения выдвинутой гипотезы применяют специальные методы статистического оценивания, которые называются **критериями оценки.**

Формулировка задания

Смоделировать 2 нормальные выборки (nx=50, ny=100) с заданными параметрами. Не засоряя первую выборку, проверить в пакете «MATCHAD» все 6 гипотез, приняв уровень значимость 0.1

Ход работы

ORIGIN := 1

$$mx1 := 11$$
 $my := 12.5$
 $Dx1 := 11$
 $\sigma x1 := \sqrt{Dx1}$
 $\sigma x1 = 3.317$
 $Dy := 14$
 $\sigma y := \sqrt{Dy}$
 $\sigma y = 3.742$
 $nx := 50$
 $ny := 100$

NORM := $morm(nx, mx1, \sigma x1)$

NORM1 := $morm(ny, my, \sigma y)$

		1
	1	11.198
	2	9.348
	3	11.187
	4	8.28
	5	10.843
	6	10.166
	7	11.064
NORM =	8	16.923
	9	10.76
	10	9.443
	11	14.435
	12	15.615
	13	6.135
	14	15.271
	15	7.133
	16	

		1
	1	14.103
	2	10.722
	3	9.898
	4	23.905
	5	11.428
	6	7.711
	7	15.342
NORM1 =	8	11.031
	9	7.997
	10	8.62
	11	12.428
	12	12.62
	13	13.491
	14	14.339
	15	13.392
	16	

H0: M(NORM)=11, дисперсия известна: D(NORM)=11
 H1: M(NORM) != 11

$$\alpha := 0.1$$

$$xmean := mean(NORM)$$

$$xmean = 10.594$$

$$xright := qnorm \left(1 - \frac{\alpha}{2}, 0, 1\right)$$

$$xleft := -xright$$

$$xleft = -1.645$$

$$xright = 1.645$$

$$zb := \frac{xmean - mx1}{\sqrt{\frac{Dx1}{nx}}}$$

$$zb = -0.866$$

Гипотеза Ho: M(NORM)=11 принимается, так как xleft<zb<xright

2. H0: M(NORM)=11, дисперсия неизвестна D(NORM)=? H1: M(NORM)>11

$$Dx := \frac{nx}{nx - 1} \cdot var(NORM)$$

$$Dx = 11.654$$

$$xright := qt(1 - \alpha, nx - 1)$$

$$xright = 1.299$$

$$zb := \frac{xmean - mx1}{\sqrt{\frac{Dx}{nx}}}$$

$$zb = -0.841$$

Гипотеза H0 принимается, т.к zb<xright

3. H0: D(NORM)=11 H1: D(NORM)>11

xleft := qchisq(
$$\alpha$$
, nx - 1)
xleft = 36.818
zb := (nx - 1) $\cdot \frac{Dx}{Dx1}$
zb = 51.914

Гипотеза H0: D(NORM)=11 принимается, т.к. xleft<zb

4. H0:M(NORM)=M(NORM1), если известно, что D(NORM)=11, а D(NORM1)=14 H1: M(NORM)<M(NORM1)

$$xleft := qnom(\alpha, 0, 1)$$

$$xleft = -1.282$$

$$ymean := mean(NORM1)$$

$$ymean = 11.966$$

$$zb := \frac{xmean - ymean}{\sqrt{\frac{Dx1}{nx} + \frac{Dy}{ny}}}$$

$$zb = -2.287$$

Гипотеза H0: M(NORM)=M(NORM1) отвергается, т.к. xleft>zb

5. H0: M(NORM)=M(NORM1), если D(NORM)=?, D(NORM1)=? D(NORM)=D(NORM1)

H1: M(NORM) > M(NORM1)

$$DY := \frac{ny}{ny - 1} \cdot var(NORM1)$$

$$DY = 14.559$$

$$xright := qt(1 - \alpha, nx + ny - 2)$$

$$xright = 1.287$$

$$zb := \frac{xmean - ymean}{\sqrt{\left(\frac{1}{nx} + \frac{1}{ny}\right) \cdot \frac{(nx - 1) \cdot Dx + (ny - 1) \cdot DY}{nx + ny - 2}}}$$

$$zb = -2.148$$

H0:M(NORM)=M(NORM1) принимается, т.к. zb<xright

6. H0: D(NORM)=D(NORM1)

H1: D(NORM)!=D(NORM1)

xleft :=
$$qF\left(\frac{\alpha}{2}, nx - 1, ny - 1\right)$$

xleft = 0.653

xright := $qF\left(1 - \frac{\alpha}{2}, nx - 1, ny - 1\right)$

xright = 1.482

zb := $\frac{Dx}{DY}$

zb = 0.8

Гипотеза H0: D(NORM)=D(NORM1) принимается, так как zb<xright, но zb>xleft

Вывод: В ходе выполнения данной лабораторной работы блыи смоделированы 2 нормальные выборки и произведена проверка статистических гипотез о числовых значениях этих распределений. Можно сделать следующие выводы:

-Гипотеза 1 принимается верно, так как выборочное математическое ожидание практически не отличается от теоретического;

-Гипотеза 2 принимается верно, так как выборочное математическое ожидание и диспресия несильно отличается от теоритических;

-Гипотеза 3 принимается верно потому, что выборочная дисперсия оказалась практически равной теоретической;

-Гипотеза 4 отвергается верно, так как математические ожидание двух нормальных выборок неравны;

-Гипотеза 5 принимается неверно при неизвестных но равных дисперсиях, так как математическое ожидания двух нормальных выборок неравны;

-Гипотеза 6 принимается неверно, так как диспресии двух нормальных выборок неравны.