Решение нелинейных уравнений

Цель: сформировать практические навыки описания и анализа используемых алгоритмов; создания программной реализации системы с заданными свойствами

Задачи: изучение и исследование методов решения нелинейных уравнений и их систем, отделение корней, поиск корней методами с различной степенью сходимости

Задание

Дано уравнение f(x) = 0.

Требуется

- 1) Отделить все корни или корни на указанном интервале. Решить уравнение встроенными средствами Matlab, с использованием функций solve, vpasolve, fzero, fsolve.
- 2) Сузить интервалы, определенные выше, в несколько раз, используя метод половинного деления.
- 3) Вычислить корни методом Ньютона (или модифицированным) с точностью $\varepsilon = 0.000001$. Эти значения корней далее будем считать "точными", ранее и далее в таблице они обозначены x^* .
- 4) Используя интервалы из первого или второго пункта, найти требуемые корни с точностью $\varepsilon = 0.0001$ методом секущих. В качестве критерия использовать модуль разности между двумя соседними приближениями. Сравнить с фактической погрешностью.
- 5) Используя интервалы из первого или второго пункта, найти требуемые корни с точностью $\varepsilon = 0.001$ методом хорд. В качестве критерия использовать оценку .

Сравнить с фактической погрешностью.

- 6) Вычислить корни методом итераций с точностью $\varepsilon = 0.00001$, выбрав в качестве x_0 то же значение, что и в методе Ньютона.
- 7) Сравнить результаты, количество итераций.

Для численной реализации методов должны быть созданы подпрограммы с параметрами:

- x_0 нулевое приближение к корню (в методе Ньютона и в методе итераций);
- ε заданная точность;
- k_{max} максимальное количество итераций (для исключения зацикливания).

Подпрограмма должна возвращать либо x_k , такое что $|x_k - x_{k-1}| < \varepsilon$, либо $x_{k \max}$.

Результаты методов уточнения оформить в виде таблицы

k	Xk	$X_k - X_{k-1}$	$X_k - X^*$	f(x _k)
0				
1				
•••	•••	•••	•••	•••