

QUÍMICA NIVEL MEDIO PRUEBA 1

Viernes 9 de noviembre de 2012 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

• •	7		<u> </u>	Número atómico	atómico		Ta	bla pe	Tabla periódica	æ		ю	4	w	9	r	0 2
				į													He 4,00
4 Be				Elemento	ento							5 B	9 9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	9	10 Ne
9,01				Masa atóm	Masa atómica relativa							10,81	12,01	14,01	16,00	19,00	20,18
12 Mg 24,31												13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
20 21 Ca Sc 40 08 44 96	21 Sc 44 9	9	22 Ti 47 90	23 V 50 94	24 Cr 52.00	25 Mn 54 94	26 Fe	27 Co	28 Ni	29 Cu	30 Zn 65 37	31 Ga 69 72	32 Ge 72.59	33 As 74 92	34 Se 78 96	35 Br 79 90	36 Kr 83.80
	9		40	41	42	43	4	45	46	47	48	49	50	51	52	53	54
Sr Y 87.62 88.91	88	91	Zr 91.22	Nb 92.91	Mo 95.94	Tc 98.91	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75	Te 127.60	I 126.90	Xe 131.30
	57	-;	72	73	74	75	92	77	78	79	80	81	82	83	84	85	98
Ba La 137,34 138,91	L 138	a 91	Hf 178,49	Ta 180,95	W 183,85	Re 186,21	Os 190,21	Ir 192,22	Pt 195,09	Au 196,97	Hg 200,59	T1 204,37	Pb 207,19	Bi 208,98	Po (210)	At (210)	Rn (222)
88 89 ‡ Ra Ac (226) (227)	89 A (22)	** 0 (
		-;	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		-															
		++	90 Th	91 Pa 231 04	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
			L0,707	TV,107	ا دە،٥٠٠	(1,67)	(257)	(547)	(/ []	(/ +7)	(401)	(FC7)	(107)	(007)	(777)	(400)	

- 1. ¿Qué número de iones hay en 0,20 mol de (NH₄)₃PO₄?
 - A. 8.0×10^{-1}
 - B. $1,2 \times 10^{23}$
 - C. 4.8×10^{23}
 - D. $2,4 \times 10^{24}$
- 2. ¿Cuál es la masa molar, en g mol⁻¹, de la soda cristalizada, Na₂CO₃•10H₂O?
 - A. 105,99
 - B. 124,00
 - C. 263,15
 - D. 286,19
- 3. La ecuación para la reducción del óxido de hierro(III) es:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

¿Qué masa de dióxido de carbono, en g, se produce por reducción completa de 80 g de óxido de hierro(III)?

- A. 44
- B. 66
- C. 88
- D. 132

4. Se mezclan 3,0 dm³ de etino, C₂H₂, con 3,0 dm³ de hidrógeno y se encienden. La ecuación para la reacción que se produce se muestra a continuación.

-4-

$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

Suponiendo que la reacción se completa y que todos los volúmenes gaseosos se miden a la misma temperatura y presión, ¿qué volumen de etano, C₂H₆, en dm³, se forma?

- A. 1,5
- B. 2,0
- C. 3,0
- D. 6,0
- 5. ¿Cuál es el número correcto de cada partícula en un ion oxígeno, ¹⁸O²⁻?

	Protones	Neutrones	Electrones
A.	8	8	10
B.	8	10	8
C.	8	8	6
D.	8	10	10

- **6.** ¿Qué enunciado sobre el espectro electromagnético es correcto?
 - A. La longitud de onda de la luz infrarroja es menor que la de la luz ultravioleta.
 - B. La longitud de onda de la luz visible es menor que la de la luz ultravioleta.
 - C. La frecuencia de la luz visible es mayor que la de la luz infrarroja.
 - D. La energía de la luz infrarroja es mayor que la energía de la luz visible.

- 7. ¿Qué enunciados sobre la estructura atómica y la tabla periódica son correctos?
 - I. Un elemento del grupo 2 tiene 2 electrones en su nivel energético de valencia (el más exterior).
 - II. Un elemento del periodo 3 tiene electrones en 3 niveles energéticos.
 - III. El elemento que está en el grupo 2 y en el periodo 3 tiene número atómico 12.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 8. ¿Qué combinación es correcta para las propiedades de los metales alcalinos del Li al Cs?

	Radio atómico	Punto de fusión	Primera energía de ionización
A.	aumenta	aumenta	aumenta
B.	aumenta	disminuye	disminuye
C.	aumenta	aumenta	disminuye
D.	disminuye	disminuye	aumenta

- 9. ¿Qué óxidos son ácidos?
 - $I. \qquad P_4O_{10}$
 - II. SO_3
 - III. Na₂O
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

¿Cuál es la fórmula del compuesto iónico formado cuando reaccionan calcio y nitrógeno?

	В.	Ca_3N_2	
	C.	$\mathrm{Ca_{5}N_{2}}$	
	D.	Ca_2N_5	
11.	¿Que	nlace es el menos polar?	
	A.	C–H	
	B.	–H	
	C.) –H	
	D.	Į–Н	
12.		nante, el C_{60} fulereno y el grafito son alótropos del carbono. ¿Qué enunciados son correctos alótropos?	tos
		En el diamante cada carbono se mantiene en disposición tetraédrica.	
		En el C ₆₀ fulereno cada carbono se mantiene en disposición trigonal.	
		II. En el grafito cada carbono se mantiene en disposición tetraédrica.	
	A.	olo I y II	
	B.	olo I y III	
	C.	olo II y III	
	D.	II y III	

10.

A.

 Ca_2N_3

- 13. ¿Qué enunciado sobre las propiedades físicas de las sustancias es correcto?
 - A. Los únicos sólidos que conducen la electricidad son los metales.
 - B. Todas las sustancias que tienen enlaces covalentes tienen bajo punto de fusión.
 - C. Los sólidos iónicos son siempre quebradizos.
 - D. Todos los metales tienen elevada densidad.
- **14.** ¿Qué combinación es correcta para la reacción exotérmica que se produce entre zinc y solución de sulfato de cobre?

	Temperatura de la solución	Calor liberado al ambiente	La entalpía de los productos es mayor que la de los reactivos
A.	aumenta	sí	sí
B.	disminuye	no	no
C.	aumenta	sí	no
D.	disminuye	no	sí

- 15. Una muestra de 5,00 g de una sustancia se calentó desde 25,0 °C hasta 35,0 °C usando $2,00 \times 10^2$ J de energía. ¿Cuál es la capacidad calorífica específica de la sustancia en J g^{-1} K $^{-1}$?
 - A. 4.00×10^{-3}
 - B. $2,50 \times 10^{-1}$
 - C. 2,00
 - D. 4,00

16. Usando las ecuaciones que se muestran a continuación:

$$\begin{split} & \text{C(s)} + \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) & \Delta H^\ominus = -390 \text{ kJ} \\ & \text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \to \text{H}_2 \text{O(l)} & \Delta H^\ominus = -286 \text{ kJ} \\ & \text{CH}_4(\text{g}) + 2 \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) + 2 \text{H}_2 \text{O(l)} & \Delta H^\ominus = -890 \text{ kJ} \end{split}$$

¿cuál es el ΔH^{Θ} , en kJ, para la siguiente reacción?

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$

- A. -214
- B. -72
- C. +72
- D. +214

17. ¿Qué equipo no se podría usar en un experimento para medir la velocidad de esta reacción?

$$\text{CH}_3\text{COCH}_3(\text{aq}) + \text{I}_2(\text{aq}) \rightarrow \text{CH}_3\text{COCH}_2\text{I}(\text{aq}) + \text{H}^+(\text{aq}) + \text{I}^-(\text{aq})$$

- A. Un colorímetro
- B. Una jeringa de gases
- C. Un cronómetro
- D. Un pehachímetro

18. ¿En qué recipiente se producirá con mayor rapidez la reacción entre 2,0 g de carbonato de magnesio y 25 cm³ de ácido clorhídrico 1,0 mol dm⁻³?

Trozos grandes 25 °C

Trozos grandes 50 °C

Trozos pequeños 25 °C

Trozos pequeños 50 °C

19. Considere la siguiente reacción:

$$2A \rightleftharpoons C$$
 $K_c = 1,1$

¿Qué enunciado es correcto cuando la reacción está en equilibrio?

- $A. \quad [A] >> [C]$
- $B. \quad [A] > [C]$
- $C. \quad [A] = [C]$
- $D. \quad [A] < [C]$
- **20.** Los iones hierro(III), Fe³⁺, reaccionan con los iones tiocianato, SCN⁻, por medio de una reacción reversible para formar una solución roja. ¿Qué cambios en el equilibrio harán que la solución se ponga roja?

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [FeSCN]^{2+}(aq)$$
 $\Delta H^{\ominus} = positivo$
Amarillo Rojo

- I. Aumentar la temperatura
- II. Añadir FeCl₃
- III. Añadir un catalizador
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- 21. ¿Qué sustancia puede actuar como ácido de Lewis pero no como ácido de Brønsted-Lowry?
 - A. HCl
 - B. CH₃COOH
 - C. BF₃
 - D. CF₃COOH

22. ¿En qué fila se describe correctamente NaOH (aq) 1,0 mol dm⁻³?

	рН	Color con solución de indicador universal	Conductividad eléctrica
A.	14	púrpura	buena
B.	10	verde	mala
C.	14	rojo	buena
D.	10	azul	mala

- **23.** ¿Cuál es el nombre sistemático correcto del MnO₂?
 - A. Óxido de manganeso(II)
 - B. Óxido de manganeso(IV)
 - C. Óxido de magnesio(II)
 - D. Óxido de magnesio(IV)
- **24.** Se construye una pila voltaica conectando semipilas de zinc y plomo. La ecuación total para la reacción que se produce en la pila se muestra a continuación.

$$Zn(s) + Pb^{2+}(aq) \rightarrow Pb(s) + Zn^{2+}(aq)$$

¿Qué enunciados son correctos cuando la pila produce electricidad?

- I. El zinc se oxida.
- II. Los electrones se mueven del zinc al plomo por el circuito externo.
- III. La masa del electrodo de plomo aumenta.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

- **25.** ¿Qué proceso ocurre durante la electrólisis de cloruro de sodio fundido?
 - A. La oxidación ocurre en el electrodo positivo (ánodo).
 - B. Los electrones se mueven a través del electrolito.
 - C. Los iones sodio se mueven a través del electrolito hacia el electrodo positivo (ánodo).
 - D. Los iones cloruro se mueven a través del electrolito y se reducen en el electrodo negativo (cátodo).
- **26.** ¿Qué enunciado sobre una serie homóloga es correcto?
 - A. Los miembros de la serie se diferencian en un CH₃.
 - B. Los miembros de la serie tienen las mismas propiedades físicas.
 - C. Los miembros de la serie tienen la misma fórmula empírica.
 - D. Los miembros de la serie tienen propiedades químicas similares.
- 27. ¿Qué compuesto no es un isómero del hexano?
 - A. CH₃CH(CH₃)CH₂CH₂CH₃
 - B. CH₃CHCHCH₂CH₂CH₃CH₃
 - C. (CH₃)₃CCH₂CH₃
 - D. CH₃CH₂CH(CH₃)CH₂CH₃
- 28. ¿Qué compuesto decoloraría al agua de bromo en la oscuridad?
 - A. CH₃COCH₂CH₃
 - B. CH₃(CH₂)₄OH
 - C. CH₃CHCHCH₃
 - D. $CH_3(CH_2)_3CH_3$

8812-6128 Véase al dorso

- 29. Se hace arder gas metano con suministro limitado de oxígeno. ¿Qué productos se podrían formar?
 - I. C(s)
 - II. CO(g)
 - III. $CO_2(g)$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **30.** Se miden 50 cm³ de solución de sulfato de cobre(II) usando una probeta de 100 cm³ y se colocan en un vaso de plástico. Se añade exceso de zinc en polvo y se mide la elevación de temperatura producida con un termómetro de -10 °C a +110 °C. A continuación se calcula la variación de entalpía de la reacción. ¿Qué enunciado es correcto?
 - A. El error sistemático se reducirá repitiendo el experimento varias veces y promediando los resultados.
 - B. El error aleatorio se reducirá aislando el vaso de plástico.
 - C. El error aleatorio se reducirá usando una pipeta graduada de 50 cm³ en lugar de usar una probeta.
 - D. El error sistemático aumentará usando mayor volumen de solución de sulfato de cobre(II).