Neural network methods for working with graphs

Vasileva Anna

Motivation

Motivation

Graph

Many Types of Data are Graphs

Image credit: Maximilian Nickel et al

Knowledge Graphs

Image credit: MDPI

Molecules

Image credit: Medium

Social Networks

Disease Pathways

Citation Networks

Image credit: visitlondon.com

Underground Networks

Graphs vs Images & Texts

- Arbitrary size and complex topological structure
- No fixed node ordering or reference point

Different Types of Tasks

Node-level Tasks

Node classification

- Node-level graph clasterisation

Traditional ML Approach for Node-level Tasks

- Extract various features that would describe graph topological structure
 - Node degree, node centrality, ...

Our Approach for Node-level Tasks

Representation Learning

- Similarity of nodes -> similarity of embeddings
- Encodes network information
- Low dimensional, continuous, adaptable
- Can be used in many tasks

Deep Walk

(a) Input: Karate Graph

(b) Output: Representation

Embedding Nodes

Shallow Encoding

Embedding Nodes

Nodes Similarity: Random Walks

Power Law

Figure 2: The power-law distribution of vertices appearing in short random walks (2a) follows a power-law, much like the distribution of words in natural language (2b).

Algorithm

Figure 3: Overview of DEEPWALK. We slide a window of length 2w + 1 over the random walk W_{v_4} , mapping the central vertex v_1 to its representation $\Phi(v_1)$. Hierarchical Softmax factors out $\Pr(v_3 \mid \Phi(v_1))$ and $\Pr(v_5 \mid \Phi(v_1))$ over sequences of probability distributions corresponding to the paths starting at the root and ending at v_3 and v_5 . The representation Φ is updated to maximize the probability of v_1 co-occurring with its context $\{v_3, v_5\}$.

Algorithm

```
Algorithm 1 DEEPWALK(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
    embedding size d
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from \mathcal{U}^{|V| \times d}
 2: Build a binary Tree T from V
 3: for i = 0 to \gamma do
       \mathcal{O} = \text{Shuffle}(V)
       for each v_i \in \mathcal{O} do
 6:
         W_{v_i} = RandomWalk(G, v_i, t)
         SkipGram(\Phi, W_{v_i}, w)
       end for
9: end for
```

Algorithm 2 SkipGram(Φ , W_{v_i} , w)

```
1: for each v_i \in \mathcal{W}_{v_i} do
```

- 2: for each $u_k \in \mathcal{W}_{v_i}[j-w:j+w]$ do
- 3: $J(\Phi) = -\log \Pr(u_k \mid \Phi(v_i))$
- 4: $\Phi = \Phi \alpha * \frac{\partial J}{\partial \Phi}$
- 5: end for
- 6: end for

Parallelizability

Updates that affect embedding matrix will be sparse in nature, so

- Easy to parallelize
- Easy to accommodate small changes

Datasets

Name	BLOGCATALOG	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	333,983	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

Table 1: Graphs used in our experiments.

- **BlogCatalog** is a **network of social relationships** provided by blogger authors. The labels represent the topic categories provided by the authors.
- **Flickr** is a **network of the contacts** between users of the photo sharing website. The labels represent the interest groups of the users such as 'black and white photos'.
- YouTube is a social network between users of the popular video sharing website. The labels here represent groups of viewers that enjoy common video genres (e.g. anime and wrestling).

Deep Walk Performance

3	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DW	90.00	00.00	90.00	40.00	41.00	41.00	41.50	41.50	40.00
	DEEPWALK	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
Micro-F1(%)	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DEEPWALK	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
Macro-F1(%)	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Table 2: Multi-label classification results in BlogCatalog

Deep Walk Performance

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DEEPWALK	37.95	39.28	40.08	40.78	41.32	41.72	42.12	42.48	42.78	43.05
	SpectralClustering	-	5-8			_		5-0	_		_
Micro-F1(%)	EdgeCluster	23.90	31.68	35.53	36.76	37.81	38.63	38.94	39.46	39.92	40.07
,	Modularity		-				_	-		_	
	wvRN	26.79	29.18	33.1	32.88	35.76	37.38	38.21	37.75	38.68	39.42
	Majority	24.90	24.84	25.25	25.23	25.22	25.33	25.31	25.34	25.38	25.38
	DEEPWALK	29.22	31.83	33.06	33.90	34.35	34.66	34.96	35.22	35.42	35.67
	SpectralClustering					_	-				10-10
Macro-F1(%)	EdgeCluster	19.48	25.01	28.15	29.17	29.82	30.65	30.75	31.23	31.45	31.54
	Modularity		_			_	-	-	_		
	wvRN	13.15	15.78	19.66	20.9	23.31	25.43	27.08	26.48	28.33	28.89
	Majority	6.12	5.86	6.21	6.1	6.07	6.19	6.17	6.16	6.18	6.19

Table 4: Multi-label classification results in YouTube

Parameter Sensitivity

node2vec

use flexible, biased random walks that can trade off between local and global views of the network

BFS: Micro-view of neighbourhood

neighbourhood

Advantages & Limitations of Random Walks Approach

Advantages

- Beats baselines given significantly less labeled data
- Can make useful models of various sizes
- Strong performance with simple linear classifiers (logistic regression)

Limitations

- O(|V|d) parameters are needed
- Cannot generate embeddings for nodes that are not seen during training
- Do not incorporate node features

Deep Graph Encoders

Naive Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - O(|V|) parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

Naive Approach

Graph does not have a canonical order of the nodes!

Spectral vs Spatial Convolutions

- Spectral approach is based on graph laplacian and its eigenvectors
- Spatial approach is based on message-passing paradigm
- Spectral approach works better on large graphs, while spatial approach better finds local structures inside a graph

Spectral Convolution

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

Spectral Convolution: GCN Layer

$$H^{(l+1)} = \sigma \Big(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \Big) .$$

Here, $\tilde{A} = A + I_N$ is the adjacency matrix of the undirected graph \mathcal{G} with added self-connections. I_N is the identity matrix, $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$ and $W^{(l)}$ is a layer-specific trainable weight matrix. $\sigma(\cdot)$ denotes an activation function, such as the $\operatorname{ReLU}(\cdot) = \max(0, \cdot)$. $H^{(l)} \in \mathbb{R}^{N \times D}$ is the matrix of activations in the l^{th} layer; $H^{(0)} = X$. Let's define graph contraction for 2 signals as

$$g_{ heta}\star x=Ug_{ heta}U^{ op}x$$
 , \underline{U} is the matrix of eigenvectors of the normalized graph Laplacian $L=I_N-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$ $g_{ heta'}\star xpprox heta'_0x+ heta'_1\left(L-I_N\right)x= heta'_0x- heta'_1D^{-\frac{1}{2}}AD^{-\frac{1}{2}}x$, $g_{ heta}\star xpprox heta\left(I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)x$, $Z=\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$, renormalization trick: $I_N+D^{-\frac{1}{2}}AD^{-\frac{1}{2}} op \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$,

Why GCN

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed
Chebyshev filter (Eq. 5) $K = 3$ K = 2	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.8 69.6	$79.5 \\ 81.2$	74.4 73.8
1 st -order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
1st-order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

- More layers for fixed computational budget
- Avoids overfitting on local neighbourhood structure

Simple GCN Model

$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right) \qquad \hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$

 $W^{(0)} \in \mathbb{R}^{C \times H}$ is an input-to-hidden weight matrix for a hidden layer with H feature maps $W^{(1)} \in \mathbb{R}^{H \times F}$ is a hidden-to-output weight matrix.

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf} ,$$

Datasets

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Citation Networks

Results

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Effects on model depth

Advantages & Limitations

Advantages

- One step realisation
- Time-effective & great quality

Limitations

- Does not support edge features
- Limited to undirected graphs

GraphSAGE

A **transductive** approach

- Optimizes embeddings for each node in a single fixed graph
 An **inductive** approach:
- Creates embeddings for previously unseen nodes/new subgraphs
- Generalizes over graphs with the same form of features
- Should learn both the node's local role as well as its global position

In GraphSAGE, instead of training individual embeddings, we learn a set of functions that **sample(SA)** and **aggregate(GE)** features from the node's local neighbourhood. At test, we use our system to generate embeddings

Spatial Convolution: GraphSAGE Layer

1. Sample neighborhood

2. Aggregate feature information from neighbors

3. Predict graph context and label using aggregated information