2

3

Purpose of document:

- 4 This document lists substantial changes in R package VAST for each numbered release
- 5 starting at 3.5.0. VAST depends upon utility functions within package FishStatsUtils, and
- 6 this document therefore lists new features, bug fixes, deprecated features, and other changes
- 7 occurring via edits to both VAST and FishStatsUtils.

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

CHANGES IN VAST 3.6.0

10 CHANGING DEPENDENCIES

• Requires FishStatsUtils version >= 2.8.0

NEW FEATURES

- Expanding use of formula interface to specify covariates. A separate formula is now specified for each linear predictor for density (X1_formula/X2_formula) or catchability (Q1_formula/Q2_formula). Catchability formulas are parsed by user-supplied data frame `catchability_data`. However, the user can still use previous interface, either by passing X_itp/X_gtp directly, or by passing a single formula.
 - Allowing user to specify spatially varying coefficients for each density linear predictor separately (X1config_cp / X2config_cp), and adding new feature to allow users to specify a spatially varying catchability covariate (Q1config_k / Q2config_k).
 This allows users to, for example, estimate a differences in gear performance between two surveys where gear performance varies spatially as a random field.
 - Adding generic predict function for S3 class `fit_model`; the function is very slow but could be expanded in the future to be similar to predict functions for other common regression packages.

ISSUES RESOLVED

• Identify issue whereby VAST was giving different results when run using R version >= 4.0.0, compared with earlier R versions. This occurred due to changes in base-R with how integers are sampled, as documented in issue #244. A new option 'calculate_kmeans(..., backwards_compatible_kmeans=FALSE)` has been added for users wanting to generate an identical k-means object to previous R versions; this is used e.g., in integrated-tests to ensure that results from prior versions can be replicated exactly.

BUG FIXES

Update `projargs` strings passed to package sp / RGDAL, to keep up with changes to
using PROJ6. The previous use of projargs strings was throwing annoying warning
messages, but the change did not appear to impact functionality.

CODE AND STABILITY IMPROVEMENTS

- Omega (spatial random effects), Epsilon (spatio-temporal random effects), and Delta (overdispersion random effects) are now built to have zero-length when these features are not needed (by making one dimension have length-0). This is intended to (1) decrease memory required in the former approach of mapping these off, and (2) eliminating the chance that users might inadvertently set starting values to non-zero values, which would previously have resulted in incorrect results.
- `make_covariates(.)` has been re-structured to change the order of operations, resulting in a more stable implementation for use with factors and interactions

CHANGES IN VAST 3.5.1

BUG FIXES

• Fix error in compiling CPP version 9.3.0 and 9.4.0, which occurred using rtools40 as required by R version >= 4.0.0. This involved change function `abs(.)` to `fabs(.)` in these CPP files.

53

54

56

CHANGES in VAST 3.5.0

55 CHANGING DEPENDENCIES

- Requires FishStatsUtils version >= 2.7.0
- Requires R package DHARMa

58 **NEW FEATURES**

- Added a feature for barrier-SPDE, where vertices of the SPDE mesh that occur over
 land have a correlation of zero with nearby vertices.
- Changed density covariates to index by X_gctp (rather than X_gtp), so that manual editing can be used to implement cohort effects.
- Allows probability-integral-transform (PIT) residuals for delta-models, using
 DHARMa for plotting tools.

DEPRECATED AND DEFUNCT

• Eliminated deprecated and generally unused feature for seasonal modelling, whereby input t_iz is now replaced by t_i. This change simplifies code in CPP files in multiple places. Seasonal modelling is still feasible using the spatially-varying-coefficient features involving covariates.

70

65

66

67

68

69