

planetmath.org

Math for the people, by the people.

cohomology of small categories

Canonical name CohomologyOfSmallCategories

Date of creation 2013-03-22 17:55:21 Last modified on 2013-03-22 17:55:21

Owner whm22 (2009) Last modified by whm22 (2009)

Numerical id 7

Author whm22 (2009)
Entry type Definition
Classification msc 18G10
Related topic inverselimit

Related topic IndexOfCategories

Defines derived functors of inverse limit

Let \mathcal{C} be a small category. For $n \geq 0$ we have functors $\Delta_n : \mathcal{C} \to Ab$ which send an object $X \in \mathcal{C}$ to the free abelian group generated by n + 1-tuples of morphisms to X. The action of Δ_n on a morphism $f : X \to Y$ is defined by:

$$\Delta_n(f):(g_0,g_1,\cdots,g_n)\mapsto(fg_0,fg_1,\cdots,fg_n)$$

for any morphisms $g_0, g_1, \dots, g_n \in \mathcal{C}$ with codomain X.

For n > 0 the natural transformation $\partial_n : \Delta_n \to \Delta_{n-1}$ is defined by letting the homomorphism $[\partial_n]_X : \Delta_n(X) \to \Delta_{n-1}(X)$ be given by:

$$[\partial_n]_X(f_0,f_1,\cdots,f_n)$$

$$= (f_1, \dots, f_n) - (f_0, f_2, \dots, f_n) + \dots + [-1^n](f_0, f_1, \dots, f_{n-1})$$

Hence we have a of natural transformations:

$$\cdots \xrightarrow{\partial_{n+1}} \Delta_n \xrightarrow{\partial_n} \Delta_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \Delta_1 \xrightarrow{\partial_1} \Delta_0$$

For any functor $F: \mathcal{C} \to Ab$, let $[\Delta_n, F]$ denote the abelian group of natural transformations $\Delta_n \to F$. Also let $\partial^n : [\Delta_{n-1}, F] \to [\Delta_n, F]$ denote the abelian group homomorphism sending $\eta \to \eta \partial_n$.

We have a chain complex:

$$\cdots \stackrel{\partial^{n+1}}{\leftarrow} [\Delta_n, F] \stackrel{\partial^n}{\leftarrow} [\Delta_{n-1}, F] \stackrel{\partial^{n-1}}{\leftarrow} \cdots \stackrel{\partial^2}{\leftarrow} [\Delta_1, F] \stackrel{\partial^1}{\leftarrow} [\Delta_0, F]$$

It is easily verified that $H_0([\Delta_*, F], \partial^*)$ is just $\lim_{\leftarrow} (F)$, the inverse limit of F. This motivates the definition:

$$\lim_{\leftarrow}^{n}(F) = H_n([\Delta_*, F], \partial^*)$$

Note that if \mathcal{C} is a group G (that is \mathcal{C} has one object and all its morphisms are invertible) then F may be regarded as a module M, over G. In this case $\lim_{\leftarrow}^{n}(F)$ coincides with group cohomology: $\lim_{\leftarrow}^{n}(F) = H^{n}(G; M)$.