CS 2305: Discrete Mathematics for Computing I

Lecture 03

- KP Bhat

Precedence of Logical Operators

- ¬p ∧ q
 − Is it (¬p) ∧ q or ¬(p ∧ q)?
- To unambiguously interpret compound propositions, the following precedence of logical operators has been agreed upon:

Operator	Precedence
コ	1
٨	2
V	3
\rightarrow	4
\leftrightarrow	5

- By default the proposition is (¬p) ∧ q
- Use parentheses to override the default precedence
- Use parentheses when in doubt

Translating English Sentences (1)

- Translate the following English sentence into a logical expression
 - "Sylvia is very smart but she is careless"
- Steps:
 - i. Extract simple propositions from the sentence, assigning them to propositional variables
 - p: Sylvia is very smart
 - q: She is careless
 - ii. Extract the logical operators used in the sentence
 - ???
 - iii. Rewrite the original sentence to use more commonly used logical operators
 - Sylvia is very smart and she is careless
 - iv. Extract the logical operators used in the sentence
 - and: ∧
 - v. Convert to logical expression, using propositional variables and logical operators
 - p \(\) q

Translating English Sentences (2)

- Translate the following English sentence into a logical expression
 - "Neither is he interested in higher studies nor is he interested in a job"
- Steps:
 - Extract simple propositions from the sentence, assigning them to propositional variables
 - p: He interested in higher studies
 - q: He interested in a job
 - ii. Extract the logical operators used in the sentence
 - ???
 - iii. Rewrite the original sentence
 - He is not interested in higher studies and he is he not interested in a job
 - iv. Extract the logical operators used in the sentence
 - not:¬
 - and: Λ
 - v. Convert to logical expression, using propositional variables and logical operators
 - ¬p ∧ ¬q

Translating English Sentences (3)

- Translate the following English sentence into a logical expression
 - "You can access the Internet from campus only if you are a computer science major or you are not a freshman"
- Steps:
 - Extract simple propositions from the sentence, assigning them to propositional variables
 - p: You can access the Internet from campus
 - q: You are a computer science major
 - r: You are a freshman
 - ii. Extract the logical operators used in the sentence
 - only if: \rightarrow
 - or: V
 - not: ¬
 - iii. Convert to logical expression, using propositional variables and logical operators
 - $p \rightarrow q \vee \neg r$
 - May add parentheses for clarity: $p \rightarrow (q \lor \neg r)$

A Word About "Unless"

- Unless has the same semantics as if ... not
 - Unless I work hard, I will fail the exam
 - If I do not work hard then I will fail the exam
 - I will not go to Best Buy unless I need a TV
 - I will not go to Best Buy if I do not need a TV
 - If I do not need a TV then I will not go to Best Buy

Remember: q if $p \equiv if p then q$

Translating English Sentences (4.1)

- Translate the following English sentence into a logical expression
 - "You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old"
- Steps:
 - Extract simple propositions from the sentence, assigning them to propositional variables
 - p: You can ride the roller coaster
 - q: You are under 4 feet tall
 - r: You are older than 16 years old
 - ii. Extract the logical operators used in the sentence
 - not: ¬
 - if ...:
 - iii. Rewrite the original sentence to use more commonly used logical operators
 - p unless $q \equiv p$ if not $q \equiv if \neg q$ then p

q if
$$p \equiv if p$$
 then q

- If you are under 4 feet tall then you cannot ride the roller coaster unless you are older than 16 years old
- If you are not older than 16 years old then if you are under 4 feet tall then you cannot ride the roller coaster

Translating English Sentences (4.2)

- "If you are not older than 16 years old then if you are under 4 feet tall then you cannot ride the roller coaster"
- Steps (Cont'd):
 - iv. Extract the logical operators used in the modified sentence
 - not: ¬
 - if then: \rightarrow
 - v. Convert to logical expression, using propositional variables and logical operators
 - $\neg r \rightarrow (q \rightarrow \neg p)$

Note: This solution is different from that in the text. Verify that the two logical expressions are equivalent.

Tautologies, Contradictions, and Contingencies

- A <u>tautology</u> (represented by **T** or **1**) is a proposition which is always true.
 - − Example: $p \lor \neg p$
- A <u>contradiction</u> (represented by **F** or **0**) is a proposition which is always false.
 - − Example: $p \land \neg p$
- A <u>contingency</u> is a proposition which is neither a tautology nor a contradiction

An Example of a Tautology

• $p \vee \neg (p \wedge q)$

р	q	pΛq	¬(p ∧ q)	p∨¬(p∧q)
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	T
F	F	F	Т	Т

Logically Equivalent (1)

- We already know that two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.
- Formally two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions

Logically Equivalent (2)

- Formally, two compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology.
 - Example: $\neg(r \land s) \equiv \neg r \lor \neg s$

De Morgan's Laws (1)

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Augustus De Morgan 1806-1871

- Amongst the most important results in logic
 - Lots of applications in computer programming, VLSI chip design, set theory, formal logic etc.
- Truth table for De Morgan's Second Law

р	q	¬р	¬q	(p ∨ q)	¬(p ∨ q)	¬p ∧ ¬q
Т	Т	F	F	Т	F	F
Т	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Ţ	Т

De Morgan's Laws (2)

- De Morgan's laws can be extend to multiple variables
 - $\neg(p_1 \land p_2 \land \dots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n)$
 - $\neg(p_1 \lor p_2 \lor \cdots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n)$
- Symbolically

$$\neg \left(\bigwedge_{j=1}^{n} p_{j} \right) \equiv \bigvee_{j=1}^{n} \neg p_{j}$$

$$\neg \left(\bigvee_{j=1}^{n} p_{j} \right) \equiv \bigwedge_{j=1}^{n} \neg p_{j}$$

Key Logical Equivalences 1

Identity Laws:

$$p \wedge T \equiv p$$
,

$$p \vee F \equiv p$$

Domination Laws:

$$p \vee T \equiv T$$
,

$$p \wedge F \equiv F$$

Idempotent laws:

$$p \lor p \equiv p$$
,

$$p \wedge p \equiv p$$

Double Negation Law:

$$\neg(\neg p) \equiv p$$

Negation Laws:

$$p \lor \neg p \equiv T$$
, $p \land \neg p \equiv F$

$$p \land \neg p \equiv F$$

Key Logical Equivalences 2

Commutative Laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

Associative Laws:
$$(p \land q) \land r \equiv p \land (q \land r)$$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws: $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$

$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

Absorption Laws: $p \lor (p \land q) \equiv p \ p \land (p \lor q) \equiv p$