

Ayudantía 8 - Relaciones de Orden y Funciones

 $11\ {\rm de\ octubre\ de\ }2024$ Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Relaciones, relaciones

Sea A el conjunto de todas las relaciones binarias en \mathbb{R} . Sobre A definimos la relación binaria Ω siguiente:

Sean $\mathcal{R}_1, \mathcal{R}_2 \in A$, entonces

$$\mathcal{R}_1\Omega\mathcal{R}_2 \Longleftrightarrow (\forall x, y \in \mathbb{R}, x\mathcal{R}_1y \Longrightarrow x\mathcal{R}_2y)$$

Demuestre que Ω es una relación de orden, y además que no es un orden total en A.

Solución

Primero se demostrará que es relación de orden.

- Refleja: Para una relación $\mathcal{R} \in A$ arbitraria, la expresión $x\mathcal{R}y \Rightarrow x\mathcal{R}y$ es una tautología, por lo que la relación es refleja.
- Antisimétrica: Sean $\mathcal{R}_1, \mathcal{R}_2 \in A$ arbitrarias. Supongamos que $\mathcal{R}_1\Omega\mathcal{R}_2 \wedge \mathcal{R}_2\Omega\mathcal{R}_1$. Debemos demostrar que $\mathcal{R}_1 = \mathcal{R}_2$. Cambiando la notación del supuesto realizado:

$$\forall x, y \in \mathbb{R}, (x, y) \in \mathcal{R}_1 \Rightarrow (x, y) \in \mathcal{R}_2$$

 $\forall x, y \in \mathbb{R}, (x, y) \in \mathcal{R}_2 \Rightarrow (x, y) \in \mathcal{R}_1$

Lo primero es equivalente, por definición de subconjunto, a $\mathcal{R}_1 \subseteq \mathcal{R}_2$, y lo segundo a $\mathcal{R}_2 \subseteq \mathcal{R}_1$. Por definición de igualdad de conjuntos, esto quiere decir que $\mathcal{R}_1 = \mathcal{R}_2$, con lo que se demuestra lo deseado.

■ Transitiva: Sean $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3 \in A$. Supongamos que $\mathcal{R}_1\Omega\mathcal{R}_2 \wedge \mathcal{R}_2\Omega\mathcal{R}_3$. Debemos demostrar que $\mathcal{R}_1\Omega\mathcal{R}_3$. Por el mismo argumento que en el apartado anterior se tiene que $\mathcal{R}_1 \subseteq \mathcal{R}_2 \wedge \mathcal{R}_2 \subseteq \mathcal{R}_3$. Como \subseteq es una relación de orden parcial, es transitiva, por lo que $\mathcal{R}_1 \subseteq \mathcal{R}_3$ y equivalentemente, $\forall x, y \in \mathbb{R}, x\mathcal{R}_1y \Rightarrow x\mathcal{R}_3y$, con lo que $\mathcal{R}_1\Omega\mathcal{R}_3$.

2. Verdadero y Falso

Sea A un conjunto no vacío y $\leq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demustrelo, y en caso de ser falso, dé un contra ejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$, entonces \leq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

Solución

1. Verdadero.

conexo.

PD: $\forall S \subseteq A, S \neq \emptyset$. S tiene un mínimo, entonces \preceq es un orden total. Sabemos por enunciado que \preceq que ya es un orden parcial, por lo tanto lo anterior es equivalente a demostrar que \preceq es conexo. Sean $a, b \in A$ y escogemos $S = \{a, b\}$. Como S tiene mínimo, pueden pasar dos cosas, que a sea menor que b o viceversa: $a \preceq b$ o $b \preceq a$. Por lo tanto, \preceq es

- 2. Falso. Basta tomar el conjunto de los enteros \mathbb{Z} como contraejemplo. El conjunto \mathbb{Z} es un orden total y no tiene mínimo.
- 3. Falso. Falso que para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento. Un posible contra-ejemplo es el siguiente: Sea $A = \mathbb{N}$ y el orden parcial "divide a". Si definimos $S = \{2,3\}$, vemos que tanto 2 como 3 son minimales y maximales al mismo tiempo, pero S no tiene un único elemento. Otro posible contra-ejemplo es considerar el conjunto potencia $A = 2^{\mathbb{N}}$ tomando el subconjunto $S = \{\{1,2\},\{3,4\}\}$

3. La mezcla

Sea A un conjunto no vacío, $\simeq \subseteq A \times A$ una relación de equivalencia y $\preceq \subseteq A \times A$ un orden parcial, ambos sobre A. Considere el conjunto cuociente A/\simeq y defina la siguiente relación $\ll \subseteq (A/\simeq) \times (A/\simeq)$:

 $(S_1, S_2) \in \ll$ si, y solo si, existe $a \in S_1$ tal que $\forall b \in S_2$ se cumple que $a \leq b$

- 1. Demuestre que \ll^r es un orden parcial sobre A/\simeq donde \ll^r es la clausura refleja de \ll .
- 2. ¿Es verdad que A tiene un elemento minimal según \leq si, y solo si, A/\simeq tiene un elemento minimal según \ll^r ? Demuestre su afirmación.

Solución

Parte 1

Como debemos demostrar que \ll^r es un orden parcial, debemos demostrar que esta relación es refleja, transitiva y antisimétrica.

- 1. Refleja Como \ll^r es clausura refleja, es refleja por definición.
- 2. Antisimétrica

Sean S_1, S_2 tales que $S_1, S_2 \in A/\simeq$, $S_1 \ll^r S_2$ y $S_2 \ll^r S_1$. P.D.: $S_1 = S_2$ Como

$$S_1 \ll^r S_2, \exists a \in S_1. \forall b \in S_2. a \leq b$$

 $S_2 \ll^r S_1, \exists c \in S_2. \forall d \in S_1. c \leq d$

En particular, $(a \leq c) \land (c \leq a)$. Como \leq es orden parcial, es antisimétrico y $a = c \rightarrow a \simeq c$. Luego,

$$a \in S_1 \to S_1 = [a]_{\simeq}$$

 $c \in S_2 \to S_2 = [c]_{\sim}$

y como $a \simeq c$, $S_1 = S_2$.

3. Transitiva

Sean S_1, S_2 y $S_3 \in A/\simeq$ tales que $S_1 \ll^r S_2$ y $S_2 \ll^r S_3$. P.D.: $S_1 \ll^r S_3$

$$S_1 \ll^r S_2 \to \exists a \in S_1. \forall b \in S_2. a \leq b$$

 $S_2 \ll^r S_3 \to \exists c \in S_2. \forall d \in S_3. c \leq d$

En particular $a \leq c$ ya que $c \in S_2$. Como $a \leq c$ y $c \leq d$, por transitividad de \leq (que es un orden parcial) tenemos que $a \leq d$. Como $\exists a \in S_1. \forall d \in S_3. a \leq d$, tenemos que $S_1 \ll^r S_3$.

Parte 2

Esta afirmación es falsa por lo que debemos encontrar un contraejemplo. Consideremos $A = \mathbb{Z}$, con orden parcial \leq usual, y la relación de equivalencia \simeq tal que $a \simeq b \leftrightarrow$ a y b son ambos negativos o ambos positivos₀ (más el 0).

Con esto, tenemos que $A/\simeq = \{\{a|a \in \mathbb{Z}_-\}, \{a|a \in \mathbb{Z}_+\}\}$. Fácilmente se puede ver que $\{a|a \in \mathbb{Z}_-\} \ll^r \{a|a \in \mathbb{Z}_+\}$, ya que existe un número (cualquier negativo) que es menor a todos los elementos del otro conjunto (los positivos). Esto implica que existe un elemento minimal según $\ll^r (\{a|a \in \mathbb{Z}_-\})$. No obstante, \mathbb{Z} no tiene minimal según \leq , por lo que concluímos que la dirección \leftarrow de la doble implicancia no se cumple, por lo que la propiedad es falsa.

4. Funciones

Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f: A \to B$ es *creciente* si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).

- 1. Demuestre que si f es creciente, entonces es inyectiva.
- 2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $g\circ f$ es inyectiva? Demuestre o de un contarejemplo.

Solución

a) Demostraremos que si f es creciente, entonces es inyectiva. Sea f una función creciente y supongamos por contradicción que no es inyectiva; vale decir, que existen $x_1, x_2 \in A$ tales que $x_1 \neq x_2$ y $f(x_1) = f(x_2)$. Sin pérdida de generalidad, supongamos que $x_1 < x_2$. Luego, como f es creciente, se cumple que

$$f(x_1) < f(x_2)$$

Esto claramente es una contradicción. Concluímos que f es inyectiva.

b) Demostraremos que esta afirmación es verdadera. Sean $f: A \to B$ y $g: B \to C$ funciones crecientes, y $x_1, X_2 \in A$ tales que $x_1 < x_2$. Como f es creciente, entonces

$$f(x_1) < f(x_2)$$

Además, como $f(x_1), f(x_2) \in B$ y g es creciente, tenemos que

$$g(f(x_1)) < g(f(x_2))$$

$$\Leftrightarrow (g \circ f)(x_1) < (g \circ f)(x_2)$$

Con esto hemos demostrado que $g \circ f$ es creciente. Por el inciso anterior podemos concluir que $g \circ f$ es inyectiva.