Scalable Data Mining (Autumn 2018)

Assignment 2 (Full Marks: 150)

Steps for Spark installation:

1. Follow the guidelines given in this link to install Spark in your system:

 $\underline{https://medium.com/@josemarcialportilla/installing-scala-and-spark-on-ubuntu-5665ee4b62b1}$

Instructions: Please submit your answers to the following questions as a write-up in a PDF file and your codes via Moodle.

Question 1 (Marks = 25+25)

Download the file from this link on google drive: <u>data2_1</u> . Write a function to load this data in an RDD and name it as 'assignment2_1'. Make sure you use a case class to map the file fields.

Each line in this file contains the following fields: debug_level: String, timestamp: Date, download_id: Integer, retrieval_stage: String, rest: String

Example: **DEBUG**, **2017-03-24T12:06:23+00:00**, **ghtorrent-49 -- ghtorrent.rb**: **Repo Shikanime/print exists**

```
Here, debug_level = DEBUG; timestamp = 2017-03-24T12:06:23+00:00; download_id = ghtorrent-49; retrieval_stage = ghtorrent.rb; rest = Repo Shikanime / print exists
```

Process this data to answer the following questions:

- a. How many lines does the RDD contain?
- b. Count the number of "WARN" messages.
- c. How many repositories were processed in total when the retrieval_stage is "api_client"?

[Take the contents of the field 'rest' and search for 'Repo' or 'repos'.
For example: DEBUG, 2017-03-24T12:06:23+00:00, ghtorrent-49 -- ghtorrent.rb: Repo Shikanime/print exists --> the name of the repository for this entry is 'Shikanime/print'.

INFO, 2017-03-23T13:00:55+00:00, ghtorrent-42 -- api_client.rb: Successful request URL:https://api.github.com/repos/CanonicalLtd/maas-docs/issues/365/events?per_page=100, Remaining: 4943, Total: 88 ms --> the name of the repository for this entry is 'CanonicalLtd/maas-docs'.]

- d. Using retrieval_stage as "api_client", find which clients did the most HTTP requests and FAILED HTTP requests from the download id field.
- e. Find the most active hour of the day and most active repository.
- f. Which access keys are failing most often?

Question 2 (Marks = 12.5+12.5)

Using the same data file from Question 1, perform the following operations:

- a. Create a function that given an RDD and a field (e.g. download_id), it computes an inverted index on the RDD for efficiently searching the records of the RDD using values of the field as keys.
- b. Compute the number of different repositories accessed by the client 'ghtorrent-22' (without using the inverted index).
- c. Compute the number of different repositories accessed by the client 'ghtorrent-22' using the inverted index calculated above.

Question 3 (Marks = 12.5+12.5)

Download the file from this link on google drive: <u>data2_2</u>. The format of the file is in CSV, and the meaning of the fields are self-explanatory as given in the file. Process this file to answer the following questions:

- a. Read in the file to an RDD and name it as 'assignment2_2' and count the number of records.
- b. How many records in the log file (used in the last 2 questions) refer to entries in the 'assignment2 2' file?
 - [Hint: You need to key both the RDDs ('assignment2_1' and 'assignment2_2') by the substring for repository name in 'assignment2_1' matching with 'name' field in 'assignment2_2' and perform a JOIN operation.
 - For example: If the 'name' field in 'assignment2_2' is 'print' and the repository name in 'assignment2_1' is 'Shikanime/print', the corresponding records will be joined.]
- c. Which of the 'assignment2 2' repositories has the most failed API calls?

Question 4 (Marks = 50)

Implement the K-means clustering algorithm on the data given here: $\underline{\text{data2_3}}$ to find the clusters for K = 5. This data consists of 'n' features for each instance. Run the developed tensorflow program using :

- 1. Using CPU only
- 2. Using multiple devices (both CPU and GPU).

Report the running time of algorithm with both the options. Show the visualization of the clusters using PCA.

Submission Instructions:

In your write-up, please provide a description of how you are going to use Spark to solve each problem using Scala. Don't write more than 3 to 4 sentences for this; we only want a very high-level description of your strategy to tackle the problems.

You will submit 2 files for each question in the following format:

- 1. Submit your code using the filename RollNo_AssignmentNo_QuesNo.scala
- 2. Submit the output file using the filename RollNo_AssignmentNo_QuesNo.txt
- 3. Submit the write-up using the filename RollNo AssignmentNo QuesNo.pdf
- 4. For Question 4, submit the visualization in .png file format using the filename RollNo_AssignmentNo_QuesNo.png