Angaben für Beispiel Region Mittelland

Dachfläche: 230 m²

Spitzenabflussbeiwert ψ: 0.6 (Gründach)

Regen: Jährlichkeit (15) z = 10

■ Spezifische Sickerleistung: 2 l/(min*m²) (lässt sich oft aus GEP ableiten)

Versickerungswirksame Fläche: 10 m²

Tangentenmethode, Berechnung mit Grafiken, Modellrechnung (Simulation), Massenbilanzmethode

Massenbilanzmethode

1. Reduzierte Dachfläche: $F_{red} = \psi^* A$

 F_{red} = 230 m² * 0.6 = 138 m² => 0.0138 ha_{red}

 Möglicher Abfluss Q (spezifische Sickerleistung)

Q = 10 $m^2 * 2 I / (min*m^2) = 20 I/min$

Spezifischer Abfluss Q_{ab}

 $Q_{ab} = \frac{12.8 \text{ mm}}{60 \text{ s/min} * 0.0138 \text{ha}_{red}} = 24.2 \text{ l/(s * ha_{red})}$

 Retentionsvolumen (m³) (VSA-Richtlinie z=10)

 $280 \text{ m}^3/\text{ha}_{\text{red}} * 0.0138 \text{ ha}_{\text{red}} = 3.9 \text{ m}^3$

Ist das Retentionsvolumen ausreichend ?

 $V_{ret,eff}$ = 10 m² * 0.6 m = 6 m³ (Ja, mit Sicherheitsfaktor 1.5)

Beispiel: Abflussbeiwerte

• Wie gross wird der Abflussbeiwert ψ für ein Wohngebiet mit den folgenden Teilflächenanteilen γ_i

	γi	α_{i}
Strassen, Asphalt	0.19	0.80
Ziegeldächer	0.22	0.90
Parkplätze, Zufahrten	0.08	0.80
Total: γversiegelt	0.49	

Antwort

Abflussbeiwert ψ = 0.19 · 0.80 + 0.22 · 0.90 + 0.08 · 0.80 = 0.41

Durch Versickerung des Dachwassers und Gestaltung der Parkplätze mit Rasengittersteinen könnte dieser Wert auf ca. die Hälfte verringert werden.

Beispiel: Dimensionierung einer Versickerung

- In einem kleinen Quartier soll eine zentrale Versickerungsanlage für das anfallende Dachwasser von 1500 m² Steildächern gebaut werden. Die Siedlung liegt im übrigen Gewässerschutzbereich üB und der Grundwasserspiegel liegt mehrere Meter unter dem anstehenden Boden. Es soll ein Versickerungsstrang in der sickerfähigen Schicht gebaut werden.
 - Für die vorgesehene Versickerungsanlage stehen F_S = 100 m² Versickerungsfläche (kiesiger Sand) mit einer gemessenen Versickerungsleistung von q_S = 5 l/min m² zur Verfügung.
 - Die Anlage soll im Durchschnitt in 5 Jahren nicht mehr als 1 Mal überlastet sein (z = 5 a)

Wie gross ist das erforderliche Retentionsvolumen V_{ret}?

Beispiel: Dimensionierung einer Versickerung

Antworten

■ Die reduzierte Fläche

 $F_{red} = w \cdot F = 0.9 \cdot 1500 \text{ m}^2 = 1350 \text{ m}^2$

■ Versickerte Regenintensität (spezifische Versickerungsleistung)

 $r_{Ab} = q_s \cdot F_S / F_{red} = 5 I / min m^2 \cdot 100 m^2 / 1350 m^2 = 62 I / s ha$

Nach Folie «Retentionsvolumen» ergibt sich mit r_{Ab} = 62 l/s ha und z = 5 a ein erforderliches Rückhaltevolumen von i_R = 125 m³ ha_{red} oder für den vorliegenden Fall

 $V_{Ret} = F_{red} \cdot i_R = 1350 \text{ m}^2 \cdot 125 \text{ m}^3 \text{ ha}_{red} / 10'000 = 16.9 \text{ m}^3$

Das entspricht einer Regenhöhe von ca. 17 m³/1350 m² = 13 mm