International IOR Rectifier

IRF7750PbF

HEXFET® Power MOSFET

 $V_{DSS} = -20V$

 $R_{DS(on)} = 0.030\Omega$

- Ultra Low On-Resistance
- Dual P-Channel MOSFET
- Very Small SOIC Package
- Low Profile (< 1.1mm)
- Available in Tape & Reel
- Lead-Free

Description

HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design, that International Rectifier is well known for, provides the designer with an extremely efficient and reliable device for battery and load management.

The TSSOP-8 package has 45% less footprint area than the standard SO-8. This makes the TSSOP-8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) allows it to fit easily into extremely thin environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	±4.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	±3.8	Α
I _{DM}	Pulsed Drain Current ①	±38	
P _D @T _A = 25°C	Power Dissipation	1.0	W
P _D @T _A = 70°C	Power Dissipation	0.64	VV
	Linear Derating Factor	0.008	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	125	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			٧	$V_{GS} = 0V, I_D = -250\mu A$	
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.012		V/°C	Reference to 25°C, I _D = -1mA	
D	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = -4.5V, I _D = -4.7A ②	
R _{DS(on)}				0.055		V _{GS} = -2.5V, I _D = -3.8A ②	
V _{GS(th)}	Gate Threshold Voltage	-0.45		-1.2	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	
g _{fs}	Forward Transconductance	11			S	$V_{DS} = -10V, I_{D} = -4.7A$	
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -20V, V_{GS} = 0V$	
				-25	μA	$V_{DS} = -16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$	
I _{GSS}	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			-100	nA ·	V _{GS} = -12V	
				100		V _{GS} = 12V	
Qg	Total Gate Charge		26	39		I _D = -4.7A	
Q _{gs}	Gate-to-Source Charge		3.9	5.8	nC	V _{DS} = -16V	
Q_{gd}	Gate-to-Drain ("Miller") Charge		8.0	12		V _{GS} = -5.0V②	
t _{d(on)}	Turn-On Delay Time		15			V _{DD} = -10V	
t _r	Rise Time		54		no	$I_D = -1.0A$	
t _{d(off)}	Turn-Off Delay Time		180		ns	$R_D = 10\Omega$	
t _f	Fall Time		210			$R_G = 24\Omega$ ②	
C _{iss}	Input Capacitance		1700			V _{GS} = 0V	
Coss	Output Capacitance		380		pF	V _{DS} = -15V	
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0MHz	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions				
Is	Continuous Source Current			4.0		MOSFET symbol				
	(Body Diode)			-1.0	_	showing the				
I _{SM}	Pulsed Source Current			38	00	00	00	00	Α .	integral reverse
	(Body Diode) ①					p-n junction diode.				
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.0A$, $V_{GS} = 0V$ ②				
t _{rr}	Reverse Recovery Time		26	39	ns	$T_J = 25^{\circ}C, I_F = -1.0A$				
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/μs ②				

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

 $[\]ensuremath{\ensuremath{\mbox{3}}}$ When mounted on 1 inch square copper board, t<10 sec

② Pulse width \leq 300 μ s; duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Source-Drain Diode Forward Voltage

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Threshold Voltage Vs. Temperature

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Power Vs. Time

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Normalized On-Resistance Vs. Temperature

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14. Typical On-Resistance Vs. Gate Voltage

TSSOP8 Package Outline

Dimensions are shown in milimeters (inches)

S Y	MO-153AA DIMENSIONS						
M B O	М	ILLIMETE	RS	INCHES			
Ĭ	MIN	NOM	MAX	MIN	МОИ	MAX	
Α			1.20			.0472	
A1	0.05		0.15	.0020		.0059	
A2	0.80	1.00	1.05	.032	.039	.041	
b	0.19		0.30	.0075		.0118	
С	0.09		0.20	.0036		.0078	
D	2.90	3.00	3.10	.115	.118	.122	
Е		6.40 BS0)	.251 BSC			
E1	4.30	4.40	4.50	.170	.173	.177	
е		0.65 BS0)	.0256			
L	0.45	0.60	0.75	.0178	.0236	.0290	
L1	0.25 BSC			.01 0 BSC			
Θ	0°		8°	0°		8°	
aaa		0.10		.0039			
bbb	0.10			.0039			
ccc		0.05		.0019			
ddd	0.20			.0078			

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS AND INCHES.
- 3. CONTROLLING DIMENSION: MILLIMETER.

- CONTROLLING DIMENSION: MILLIMETER.
 DATUM PLANE H IS LOCATED AS SHOWN.
 DATUM A AND B TO BE DETERMINED AT DATUM PLANE H.
 DIMENSIONS D AND ET ARE MEASURED AT DATUM PLANE H.
 DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE M0-153AA.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com

8

International

TOR Rectifier

TSSOP8 Part Marking Information

EXAMPLE: THIS IS AN IRF8852PBF

TSSOP-8 Tape and Reel Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

www.irf.com

Visit us at www.irf.com for sales contact information. 05/2009