

DIGITAL COMMUNICATION

Dr. Sanjeev G.

Department of Electronics and Communication Engg

BASEBAND SHAPING

Pulse Shaping Line Coding

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

BASEBAND SHAPING FOR DATA TRANSMISSION

Pulse Modulation Schemes

PES UNIVERSITY ONLINE

- At the end of quantization, we now have a bit sequence to transmit
- Pulse shaping is required, which is a process of representing a bit stream in terms of an electrical (analog) waveform
- In discrete pulse modulation, the amplitude, duration or position of the transmitted pulses are varied according to the binary data to be transmitted
- This is called baseband shaping or pulse modulation
- The pulse modulation schemes are:
 - Pulse Amplitude Modulation (PAM)
 - Pulse Duration Modulation (PDM)
 - Pulse Position Modulation (PPM)

BASEBAND SHAPING FOR DATA TRANSMISSION

Pulse Amplitude Modulation (PAM) and Types

- Among these techniques, PAM is preferred since it is the most efficient among all in terms of bandwidth and power
- In baseband transmission, we assume that the digital pulses are rectangular, and the transmission lines to be distortionless
- We consider the rectangular pulse as a basic shape. Let T_b denote the bit duration
- PAM signals are of two types
 - Non-return to zero (NRZ): Pulse occupies entire duration of T_b
 - Return to zero (RZ): Pulse occupies a fraction of duration T_b

PULSE AMPLITUDE MODULATION

Non-Return to Zero (NRZ) and Sub-Types

- NRZ PAM is also called as Type I coding
- NRZ in PAM can be further classified into the following categories
 - Unipolar NRZ technique
 - Polar NRZ technique
 - Bipolar NRZ technique
 - Manchester coding
 - M-ary format coding

Unipolar NRZ

• In unipolar NRZ, the bits 1 and 0 have amplitudes α and 0, respectively

Example of unipolar NRZ: Consider the bit sequence – 010110

- Major issue: Presence of a non-zero DC value
- This DC component contains no information, and only drains the power
- Repeaters in the channel typically use transformers, which block DC
- Creates problems in magnetic storage (due to hysteresis)

Polar NRZ

• In polar NRZ, the bits 1 and 0 have amplitudes a and -a, respectively

• Example of polar NRZ: Consider the bit sequence – 010110

- If 1 and 0 occur with equal probabilities, then this scheme has zero DC value
- Major issue: Polarity inversion (switched telephone networks) is problematic
- Efficient scheme, since it consumes least power among all other techniques

Bipolar NRZ

• In bipolar NRZ, the bit 1 has amplitudes a, and -a alternatively, and bit 0 has an amplitude of 0. This is also called as pseudo-ternary coding technique

• Example of bipolar NRZ: Consider the bit sequence – 010110

Bipolar NRZ

- Similar to polar NRZ, the DC value is zero. Polarity inversion is not a problem
- Some bit errors can be recovered, but cannot be corrected

- In case of bipolar NRZ, a long string of 0s can result in a loss of synchronization between the clocks at the transmitter and receiver
- A similar problem exists in unipolar and polar NRZ schemes as well, where a long string of 0s or 1s cause a loss of clock synchronization
- To overcome this, Manchester coding is used

Manchester Coding

 In Manchester coding, the bits 1 and 0 have a transition in the middle of every bit duration, and hence clock recovery becomes easier

• Example of Manchester NRZ: Consider the bit sequence – 010110

PULSE AMPLITUDE MODULATION

Return to Zero (RZ) and Sub-Types

- RZ PAM is also called as Type II coding
- RZ in PAM can be further classified into the following categories
 - Unipolar NRZ technique
 - Polar NRZ technique
 - Bipolar NRZ technique

RETURN TO ZERO (RZ)

Unipolar RZ and Polar RZ Illustrations

Unipolar RZ

Polar RZ

RETURN TO ZERO (RZ)

Bipolar RZ Illustration

THANK YOU

Dr. Sanjeev G.

Department of Electronics and Communication Engineering

sanjeevg@pes.edu

+91 80 2672 1983 Extn 838