Stat-440/640 Regression and Time Series Analysis Fall 2018

Exam	1A						
Name						_	
		show	work	to	ensure	full	credit

1. Accu-Copiers Inc., sells and services Accu-500 copying machines. As a part of its standard service contact, the company agrees to perform routine service on this copier. To obtain information about the time it takes to perform routine service, Accu-Copiers has collected data for 11 service calls. The data are given in the following table:

Service	Number of Copiers	Number of Minutes
Call	Serviced (x)	Required (y)
1	4	109
2	2	58
3	5	138
4	7	189
5	1	37
6	3	82
7	4	103
8	5	134
9	2	68
10	4	112
11	6	154

The R output of a simple liner regression analysis of the service time data

Coefficients	Estimate	Std. Error	t value	Р
(Intercept)	11.4641	3.4390	3.334	0.00875
X	24.6022	0.8045		

Analysis of variance

Source	DF	Sum of	Mean	${ m F}$
		Squares	Squares	
Regression			19918.84	
Error		191.70		
Total	10	20110.55		

- (a) (7 pts) Some entries in the above tables have been erased. Complete the tables by putting the correct numbers in the boxes.
- (b) (4 pts) Find the least-squares regression line fitted to the service time data.

(c)	(4 pts) Use the least-squares line to obtain a point estimate of the mean time to service four copiers on a single call.
(d)	(4 pts) Use the least-squares line to obtain a point prediction of the time to service four copiers on a single call.
(e)	(5 pts) Identify s_{b_1} and the t - statistic for testing the significance for the slope. Show how t has been calculated using b_1 and s_{b_1} .
(f)	(9 pts) Using the t-statistics and the appropriate rejection region, test $H_0: \beta_1 = 0$ versus $H_A: \beta_1 \neq 0$ by setting $\alpha = 0.05$. What do you conclude about the relationship between y and x ?
(g)	(5 pts) How much of the variation in time for service is explained by the proposed model?
(h)	(5 pts) Calculate the value of adjusted \mathbb{R}^2 .

(i) (10 pts) Calculate the simple correlation r between x and y. Use this to test $H_0: \rho = 0$ versus $H_A: \rho \neq 0$ by setting $\alpha = 0.05$. What can you say about the relationship between y and x?

2. (10 pts) In multiple linear regression with k regressors we use $D=x_0^T(X^TX)^{-1}x_0$ to find confidence interval for the mean response of the dependent variable, where

$$x_0 = \begin{bmatrix} 1 \\ x_{01} \\ x_{02} \\ \vdots \\ x_{0k} \end{bmatrix} \text{ and } X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}$$
Show that for the simple linear regression the expression $x_0^T (X^T X)^{-1} x_0$ is same as
$$\begin{pmatrix} 1 & (x_0 - \bar{x})^2 \end{pmatrix} \text{ where } x_0 = \sum_i x_i^2 - (\sum_i x_i)^2 / n$$

 $\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{s_{xx}}\right)$, where $s_{xx} = \sum x_i^2 - (\sum x_i)^2/n$

	(a)	ϵ (b)	σ^2	(c) 0	(d) Y			
(b)	(b) In multiple regression with p predictor variables, when constructing a confidence interval for any β_j , the degrees of freedom for the tabulated value of t should be:							
	(a) n	-1 (b) p -	-1 (c)	n-p	(d) n - p - 1			
(c)	In a regression study, What would a test for				_	(-5.65, 2.61).		
	i. reject the null hypothesis at $\alpha = 0.05$ and all smaller α ii. fail to reject the null hypothesis at $\alpha = 0.05$ and all smaller α							
	iii. reject the null hypothesis at $\alpha = 0.05$ and all larger α							
	iv. fail to reject the null hypothesis at $\alpha=0.05$ and all larger α							
(d)	(d) In general, the Least Squares Regression approach finds the equation:							
	i. that includes the	best set of p	redictor	variables				
	ii. of the best fitting straight line through a set of points							
	iii. with the highest	R^2 , after con	nparing a	ll possibl	e models			

3. (12 pts) Circle the best possible answer of the following:

iv. that has the smallest sum of squared errors

(a) The MSE is an estimator of: