F20DL Data Mining and Machine Learning

Diana Bental

(with material from David Corne and slides from http://www.cs.waikato.ac.nz/ml/weka/book.ht ml)

Lecture 5 Output: Knowledge Representations

- · We've talked about inputs
 - Concepts, instances, attributes
 - And some practical issues in preparing inputs
 - Normalisation
 - · Discretizatiopn (binning)
 - · Missing values
 - · Data inspection
- Now we look at outputs
 - Knowledge representation

21/09/2018

F20DL Diana Bental & Ekaterina Komendatskaya

Output: Knowledge Representation

- We have met some knowledge representations, e.g.
- Lecture 2 (and Lab 1)
 - Structural we can look at the model
 - Tables, rules, decision trees
- · Lecture 4
 - Instance-based the examples are the model
 - 1-nearest-neighbour

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya

Output: Knowledge Representation

- Different learning methods produce different knowledge representations
- The knowledge representation determines what we can do with the model – how we can reason or compute with it

21/09/20

F20DL Diana Bental & Ekaterina Komendatskava

Tables

- · Very simple, readable
- Same format as the input!
- Main issue: How to select the most relevant attributes?
- E.g. Decision Table for the Weather problem ignore temperature because it (usually) makes no difference

Outlook	Humidity	Play	
Sunny	High	No	
Sunny	Normal	Yes	
Overcast	High	Yes	
Overcast	Normal	Yes	
Rainy	High	No	
Rainy	Normal	No	

21/09/2011

F20DL Diana Bental & Ekaterina Komendatskaya

Linear Models

- Simple
- Regression attributes are all numeric (including the one we want to predict)
- Output is a sum of weighted attribute values
- Main issue: How to find good values for the weights?
- Linear models for prediction and classification

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya

Linear Regression

• Input: 209 different computer configurations

	Cycle time (ns)	Main memory (Kb)		Cache (Kb)	Channels		Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Model: a linear regression function to predict performance

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX //2018 F20DL Diana Bental & Ekaterina Komendatskaya 7

Linear models for (binary) classification

- · Binary classification
- Line separates the two classes
 - Decision boundary defines where the decision changes from one class value to the other
- Prediction is made by plugging in observed values of the attributes into the expression
 - Predict one class if output >= 0, and the other class if output < 0
- Boundary becomes a high-dimensional plane (hyperplane) when there are multiple attributes

21/09/2018 F20DL Diana Bental & Ekaterina Komendatskaya

Classifying iris flowers – using rules 5.1 3.5 1.4 0.2 Iris setosa 2 49 3.0 14 0.2 Tris setosa Iris versicolo 51 52 1.5 3.2 4.5 Iris versicoloi 101 6.3 3.3 6.0 2.5 Iris virginica 102 1.9 Iris virginica If petal length < 2.45 then Iris setosa If sepal width < 2.10 then Iris versicolor

Decision Trees

- Top down "divide and conquer" approach produces a tree
- Each node tests a particular attribute
 - Usually compare the attribute value to a constant
 - One branch per (categorical) value
 - Or Compare two attributes
 - Or Use a function of the attribute(s)
- To classify a new instance:
 - Travel down the tree, testing each attribute
 - Classification at a leaf
 - Classification(s) or probability distribution

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

12

Decision tree example - weather data

outlook = sunny, temperature= cool, humidity = high, windy = true, play = ?

F20DL Diana Bental & Ekaterina Komendatskaya

Trees for Nominal and Numeric Attributes

- · Nominal (categorical) attributes
 - One child per value
 - So each attribute only gets tested once
- · Numeric attributes
 - Greater / less than / equal to a constant (3 children)
 - Test for an interval or range (within/above / below)
 - One attribute may be tested several times, to compare with different values or ranges

Data Mining: Practical Machine Learning Tools and Techniques

Trees – what about missing values?

- If the absence of a value has a known meaning then need an explicit special value and test for
- If not then need a process
 - Follow the branch with most instances in the training set
 - Or assign a weight to all possible leaves, depending how many training instances go to

Data Mining: Practical Machine Learning Tools and Techniques

Using Trees for Numeric Prediction

- Motivation
 - Recall the linear regression equation for the CPU data.....
 - PRP = -56.1 +0.049 x MYCT + 0.015 x MMIN + 0.006 x MMAX + 0.630 x CACH -0.270 x CHMIN + 1.46 x CHMAX
 - But equation is not very accurate
- Regression tree: a "decision tree" where each leaf predicts a numeric quantity
 - The predicted value is the average value of the training instances that reach the leaf

Data Mining: Practical Machine Learning Tools and Techniques

Regression tree for the CPU data

Using Trees for Numeric Prediction

- Model tree: a "decision tree" with linear regression models at the leaf nodes
 - Linear patches that approximate the continuous function

Data Mining: Practical Machine Learning Tools and Techniques

Model tree for the CPU data (ST.328) LM1 (657.328) LM2 (266.378) LM3 (24/14.58) LM3 (24/14.58) LM3 (24/14.58) LM3 (24/14.58) LM3 (24/14.58) LM3 (24/14.58) LM3 PRP = 38.1 + 0.0012 x MMIN etc

Classification rules

- · Popular alternative to decision trees
- Antecedent (pre-condition): a series of tests (just like the tests at the nodes of a decision tree)
 - Tests are usually logically ANDed together (but may also be general logical expressions)
- Consequent (conclusion): classes, set of classes, or probability distribution assigned by rule
 - Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

20

From trees to rules

- · Easy: converting a tree into a set of rules
- One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are unambiguous
- Doesn't matter in which order they are executed
- · But: resulting rules are unnecessarily complex
- Pruning to remove redundant tests/rules

Data Mining: Practical Machine Learning Tools and Techniques

(Chapter

From rules to trees

- More difficult: transforming a rule set into a tree
- Tree cannot easily express disjunction between rules
 - Example: rules which test different attributes

If a and b then x
If c and d then x

- Symmetry needs to be broken
- Corresponding tree contains identical subtrees ("replicated subtree problem")

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

22

A complex tree for a simple disjunction Rules Tree If a and b then x If c and d then x Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

"Nuggets" of knowledge

- Are rules independent pieces of knowledge?
 - It seems easy to add a rule to an existing rule base.
- · Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules ("decision list")
 - · Order is important for interpretation
 - Unordered set of rules
 - · Rules may overlap and lead to different conclusions for the same instance

Data Mining: Practical Machine Learning Tools and Techniques

Interpreting rules

- · What if two or more rules conflict?
 - Give no conclusion at all?
 - Go with rule that is most popular on training data?
- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?

Data Mining: Practical Machine Learning Tools and Techniques

Special Case for Rules: Boolean Classification

- Two classes "yes" and "no"
- Assumption: if instance does not belong to class "yes", it belongs to class "no"
- Trick: only learn rules for class "yes" and use a default rule for "no"

If x = 1 and y = 1 then class = a If z = 1 and w = 1 then class = a Otherwise class = b

- Order of rules is not important. No conflicts!
- Rule can be written in disjunctive normal form

Data Mining: Practical Machine Learning Tools and Techniques

Association Rules

- · Association rules...
 - can predict any attribute
 - can predict combinations of attributes
 - are not intended to be used together as a set
- Problem: immense number of possible associations
 - Which ones?
 - Show only the most predictive associations
 - high support and high confidence

Data Mining: Practical Machine Learning Tools and Techniques

Association rules Example - weather data false Sunny Hot high no 4 Cool days with Sunny Hot high true no normal humidity: no Hot false Overcast yes cool days with any other Rainy Mild high false humidity Rainy Cool false normal yes Cool Rainy normal true Association rule: Overcast Cool normal true Sunny Mild high false nο normal Sunny Cool false yes If temperature = cool Rainy Mild false yes then humidity = normal Sunny Mild normal true yes Overcast Mild high true ves Overcast Hot normal false yes Mild F20DL Diana Bental & Ekaterina Komendatskaya

Support and Confidence of Rules

- Support: number of instances predicted correctly
- · Confidence: number of correct predictions, as a proportion of all instances that rule applies to
- Example:

```
If temperature = cool then humidity = normal
```

- Support = 4
 - 4 Cool days
- Confidence = 100%
 - All Cool days have normal humidity

Data Mining: Practical Machine Learning Tools and Techniques

Support and Confidence of Rules

- Normally: pre-specify minimum support and confidence E.g. Support >= 2 and confidence >= 95%
- · Is this an acceptable rule?

If temperature = hot then humidity = high

- Support =
- Confidence =
- 58 rules with support >= 2 and confidence >= 95% for weather data!

Data Mining: Practical Machine Learning Tools and Techniques

Meaning of Association Rules

• Be careful – the logical meaning of association rules is complex

If windy = false and play = no then outlook = sunny and humidity = high

Does not mean:

If windy = false and play = no then outlook = sunny If windy = false and play = no then humidity = high

Does mean:

If humidity = high and windy = false and play = no then outlook = sunny

F20DL Diana Bental & Ekaterina Komendatskaya

Rules with exceptions

- .Idea: allow rules to have exceptions
- .Example: rule for iris data

If petal-length ≥ 2.45 and petal-length < 4.45 then Iris-versicolor

.New instance:

Type

.Modified rule:

If petal-length \geq 2.45 and petal-length < 4.45 then Iris-versicolor EXCEPT if petal-width < 1.0 then Iris-setosa

Rules with exceptions

- · Can create rules with nested exceptions (exceptions to exceptions)
- · Logically equivalent to ordinary rules
 - Default ... Except If ... Then ...
 - If .. Then .. Else ...
- · Defaults are more common, exceptions are the special cases
- · Modular and incremental, useful for understanding large rule sets
- · Psychologically plausible

Data Mining: Practical Machine Learning Tools and Techniques

Rules involving relations

So far: all rules involved comparing an attribute-value to a constant (e.g. temperature < 45)

.These rules are called propositional because they have the same expressive power as propositional logic

.What if problem involves relationships between instances?

- .E.g. family tree problem from earlier lecture
 - .Could be denormalised
- •E.g. temperature today < temperature yesterday
- .Can't be denormalized (in any obvious way)
- •What if problems involve relationships between attributes?
- •Can't be expressed with propositional rules
- More expressive representation required

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 3)

A relational solution

· Comparing attributes with each other

If width > height then lying
If height > width then standing

- · Generalizes better to new data
- Standard relations: =, <, >
- · But: learning relational rules is costly
- Simple solution: add extra attributes (e.g. a binary attribute is width < height?)

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya

More Complications

.Using variables and multiple relations:

If height and width of (x,h,w) and h > w then standing(x)

.The top of a tower of blocks is standing:

If height and width of (x,h,w) and h > w and is top of (y,x) then standing(x)

.The whole tower is standing:

If is top of (x,z) and height and width of (z,h,w) and h > w and is rest of (x,y) and standing(y) then standing(x)

If empty(x) then standing(x)

.Recursive definition!

.Recursive definition!

"Inductive Logic Programming"

- · Relational and recursive rules
- · Open research topic
- · We're not going there!

Data Mining: Practical Machine Learning Tools and Techniques
(Chapter 3)

So that was rules...

- So far
 - Linear models
 - Rules
 - Trees
- · What else can we learn?
 - Instance-based representations
 - Clusters

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya

42

Instance-based representations

- Rote learning remember a similar instance
- Look in the training set for instances that are most like the new example
- Knowledge = instances + similarity function
- · Simple example: nearest neighbour
- "Lazy" because we only do any work when a new instance comes along to be classified

21/09/20:

F20DL Diana Bental & Ekaterina Komendatskaya

43

Instance-based representations

- · Distance function
- · Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved (or a function thereof)
- Several numeric attributes:
 - normally, Euclidean distance is used and attributes are normalized
- · Nominal attributes:
 - distance is set to 1 if values are different, 0 if they are equal
- Are all attributes equally important?
 - Weighting the attributes might be necessary

21/09/2018

F20DL Diana Bental & Ekaterina Komendatskaya

4.4

Instance-based representations

- · Nearest neighbour kNN Weka IBk
- Use one nearest neighbour (k=1) or several nearest neighbours
- · Classification or regression
 - Classification same class as nearest neighbour, or largest vote if several neighbours
 - Regression same value as nearest neighbour or mean if several neighbours
- Nearest neighbour is sensitive to noisy data; more neighbours means less sensitivity to noise but more overlap (fuzziones)
- Unbalanced classes: majority voting means likely to get the most common class value; weight the values by distance

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya

45

Learning prototypes

- •Only those instances involved in a decision need to be stored
- Noisy instances should be filtered out
- .Idea: only use prototypical examples

Data Mining: Practical Machine Learnin

Rectangular generalizations

- 1. Nearest-neighbor rule is used outside the rectangles .Rectangles are rules! (But they can be more conservative than "normal" rules.)
- 2. Nested rectangles are rules with exceptions

7 Data Mining: Practical Machine Lear

Clusters

- · Identify clusters of similar data
- Unsupervised method
- Simple: Label each instance with the cluster it belongs to

21/09/2018

F20DL Diana Bental & Ekaterina Komendatskaya

Knowledge Representation

- Chapter 3 "Data Mining" Witten Frank & Hall
- Next lecture:
 - Statistics
 - Coursework 1

21/09/201

F20DL Diana Bental & Ekaterina Komendatskaya