Address	Cache	index	tag	Block offs	et Hit/Miss
0x10010000	0		0x0020020	0 0	Miss
0x10010004	0		0x0020020	0 1	Hit
0x10010008	0		0x0020020	0 2	Hit
0x1001000c	0		0x0020020	3	Hit
0x10010010	1		0x0020020	0 0	Miss
0x10010014	1		0×0020020	0 1	Hit
Number of b	loeks	Cacha	size(bytes)	Hit rate(%)	Miss count
8	HOCKS	128	size(by tes)	75	3072
16		256		75 75	3072
32		512		75	3072
64		1024		99	64
128		2048		99	64

Question 1

Block offset: 2 bits (cache block size is 4), cach index: 3 bits (8 blocks), tag: 32 bits Cache index for the first two is 0 because both are in block 0. Cache tag wont change until it has gone through all blocks, block offset will incriment 4 times per block. The hit miss outcome was .75 hit rate. It would miss once then hit three times, then repeat.

Question 2

I did not predict all the hit rates correctly, I did not assume for them to just jump at the 64 blocks, I thought it would grow in a linear way. If the size of warray is doubled, the 64 block size row will have different data, it will have a 75 hit rate instead,