

(43) International Publication Date
1 August 2002 (01.08.2002)

PCT

(10) International Publication Number
WO 02/059309 A2

(51) International Patent Classification⁷: C12N 15/12,
C07K 14/435

60 kv. 21, 113570 Moscow (RU). FRADKOV, Arcady,
Fedorovich [RU/RU]; ul. Dnepropetrovskaya d. 35/2
kv.14, 113570 Moscow (RU).

(21) International Application Number: PCT/US01/47995

(74) Agent: FIELD, Bret, E.; BOZICEVIC, FIELD & FRANCIS, L.L.P, 200 Middlefield Road, Suite 200, Menlo Park, CA 94025 (US).

(22) International Filing Date:
11 December 2001 (11.12.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/255,533 13 December 2000 (13.12.2000) US

(71) Applicant (for all designated States except US): CLON-TECH LABORATORIES, INC. [US/US]; 1020 East Meadow Circle, Palo Alto, CA 94303-4230 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LUKYANOV, Sergey, Anatolievich [RU/RU]; ul. Golubinskya d. 13/1 kv. 161, 113570 Moscow (RU). LUKYANOV, Konstantin, Anatolievich [RU/RU]; ul. Yuznobutovskaya d.

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: ANTHOZOA DERIVED CHROMOPROTEINS, FLUORESCENT MUTANTS THEREOF AND METHODS FOR USING THE SAME

FP11 mut C148S

WO 02/059309 A2

(57) Abstract: Nucleic acid compositions encoding Actiniidaen, e.g., Condylactin, chromoproteins and fluorescent mutants thereof, as well as the polypeptide compositions encoded by the same, are provided. The proteins of interest are proteins that are colored and/or fluorescent, where this feature arises from the interaction of two or more residues of the protein. Also of interest are proteins that are substantially similar to, or mutants of, the above specific proteins, including non-aggregating mutants and mutants with modulated oligomerization characteristics as compared to wild type. Also provided are fragments of the nucleic acids and the peptides encoded thereby, as well as antibodies to the subject proteins and transgenic cells and organisms. The subject protein and nucleic acid compositions find use in a variety of different applications. Finally, kits for use in such applications, e.g., that include the subject nucleic acid compositions, are provided.

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- without international search report and to be republished upon receipt of that report

ANTHOZOA DERIVED CHROMOPROTEINS, FLUORESCENT MUTANTS

THEREOF AND METHODS FOR USING THE SAME

INTRODUCTION

Labeling is a tool for marking a protein, cell, or organism of interest and plays a prominent role in many biochemistry, molecular biology and medical diagnostic applications. A variety of different labels have been developed, including radiolabels, chromolabels, fluorescent labels, chemiluminescent labels, etc. However, there is continued interest in the development of new labels. Of particular interest is the development of new protein labels, including chromo- and/or fluorescent protein labels.

10

SUMMARY OF THE INVENTION

Nucleic acid compositions encoding chromoproteins, including fluorescent mutants thereof, as well as the polypeptide compositions encoded by the same, are provided. The proteins of interest are proteins that are colored and/or fluorescent, where this feature arises from the interaction of two or more residues of the protein. Also of interest are proteins that are substantially similar to, or mutants of, the above specific proteins, including non-aggregating mutants and mutants with modulated oligomerization characteristics as compared to wild type. Also provided are fragments of the nucleic acids and the peptides encoded thereby, as well as antibodies to the subject proteins and transgenic cells and organisms. The subject protein and nucleic acid compositions find use in a variety of different applications. Finally, kits for use in such applications, e.g., that include the subject nucleic acid compositions, are provided.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 provides the wild type sequence for the CgCP cDNA and the chromoprotein encoded thereby.

Figure 2 provides the nucleic acid sequence for the C148S mutant and the fluorescent protein encoded thereby.

Figure 3 provides a graph of the absorption spectra for the CgCP protein.

Figure 4 provides a graph of the excitation and emission spectra for the C148S mutant protein.

DEFINITIONS

5 In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Maniatis, Fritsch & Sambrook, "Molecular Cloning: A Laboratory Manual (1982); "DNA Cloning: A Practical Approach," Volumes I and II (D.N. Glover ed. 1985); "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" (B.D. Hames & S.J. Higgins eds. (1985)); "Transcription and Translation" (B.D. Hames & S.J. Higgins eds. (1984)); "Animal Cell Culture" (R.I. Freshney, ed. (1986)); "Immobilized Cells and Enzymes" (IRL Press, (1986)); B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

15 A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in either single stranded form or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, 20 inter alia, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes.

A DNA "coding sequence" is a DNA sequence which is transcribed and translated into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 25 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g., mammalian) DNA, and synthetic

- DNA sequences. A polyadenylation signal and transcription termination sequence may be located 3' to the coding sequence.

As used herein, the term "hybridization" refers to the process of association of two nucleic acid strands to form an antiparallel duplex stabilized by means of hydrogen bonding

5 between residues of the opposite nucleic acid strands.

The term "oligonucleotide" refers to a short (under 100 bases in length) nucleic acid molecule.

"DNA regulatory sequences", as used herein, are transcriptional and translational control sequences, such as promoters, enhancers, polyadenylation signals, terminators,

10 and the like, that provide for and/or regulate expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Various promoters, including inducible promoters, may be

15 used to drive the various vectors of the present invention.

20

As used herein, the terms "restriction endonucleases" and "restriction enzymes"

refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

A cell has been "transformed" or "transfected" by exogenous or heterologous DNA

25 when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is

- one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells
- 5 derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth *in vitro* for many generations.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will 10 usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. In another example, heterologous DNA includes coding sequence in a construct where portions of genes from two different sources have been brought together so as to produce a fusion protein product. Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

15 As used herein, the term "reporter gene" refers to a coding sequence attached to heterologous promoter or enhancer elements and whose product may be assayed easily and quantifiably when the construct is introduced into tissues or cells.

The amino acids described herein are preferred to be in the "L" isomeric form. The 20 amino acid sequences are given in one-letter code (A: alanine; C: cysteine; D: aspartic acid; E: glutamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: methionine; N: asparagine; P: proline; Q: glutamine; R: arginine; S: serine; T: threonine; V: valine; W: tryptophan; Y: tyrosine; X: any residue). NH₂ refers to the free 25 amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, *J Biol. Chem.*, 243 (1969), 3552-59 is used.

The term "immunologically active" defines the capability of the natural, recombinant or synthetic chromo/fluorescent protein, or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. As

- used herein, "antigenic amino acid sequence" means an amino acid sequence that, either alone or in association with a carrier molecule, can elicit an antibody response in a mammal. The term "specific binding," in the context of antibody binding to an antigen, is a term well understood in the art and refers to binding of an antibody to the antigen to which
5 the antibody was raised, but not other, unrelated antigens.

As used herein the term "isolated" is meant to describe a polynucleotide, a polypeptide, an antibody, or a host cell that is in an environment different from that in which the polynucleotide, the polypeptide, the antibody, or the host cell naturally occurs.

10

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Nucleic acid compositions encoding chromo and fluorescent proteins, as well as mutants thereof, as well as the polypeptide compositions encoded by the same, are provided. The proteins of interest are proteins that are colored and/or fluorescent, where this feature arises from the interaction of two or more residues of the protein. Also of
15 interest are proteins that are substantially similar to, or mutants of, the above specific proteins, including non-aggregating mutants and mutants with modulated oligomerization characteristics as compared to wild type. Also provided are fragments of the nucleic acids and the peptides encoded thereby, as well as antibodies to the subject proteins and transgenic cells and organisms. The subject protein and nucleic acid compositions find use
20 in a variety of different applications. Finally, kits for use in such applications; e.g., that include the subject nucleic acid compositions, are provided.

Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as
25 variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.

In this specification and the appended claims, the singular forms "a," "an" and "the" include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as
5 commonly understood to one of ordinary skill in the art to which this invention belongs.

Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that
10 stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.

15

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred
20 methods, devices and materials are now described.

All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the cell lines, vectors, methodologies and other invention components that are described in the publications which might be used in
25 connection with the presently described invention.

In further describing the subject invention, the subject nucleic acid compositions will be described first, followed by a discussion of the subject protein compositions, antibody

- compositions and transgenic cells/organisms. Next a review of representative methods in which the subject proteins find use is provided.

NUCLEIC ACID COMPOSITIONS

As summarized above, the subject invention provides nucleic acid compositions encoding chromo and fluorescent proteins, which proteins include fluorescent mutants of Actiniidaen chromoproteins, as well as fragments and homologues of these proteins. By chromo and/or fluorescent protein is meant a protein that is colored, i.e., is pigmented, where the protein may or may not be fluorescent, e.g., it may exhibit low, medium or high fluorescence upon irradiation. In any event, the subject proteins of interest are those in which the colored characteristic, i.e., the chromo and/or fluorescent characteristic, is one that arises from the interaction of two or more residues of the protein, and not from a single residue, more specifically a single side chain of a single residue, of the protein. As such, fluorescent proteins of the subject invention do not include proteins that exhibit fluorescence only from residues that act by themselves as intrinsic fluors, i.e., tryptophan, tyrosine and phenylalanine. As such, the fluorescent proteins of the subject invention are fluorescent proteins whose fluorescence arises from some structure in the protein that is other than the above specified single residues, e.g., it arises from an interaction of two or more residues.

By nucleic acid composition is meant a composition comprising a sequence of DNA having an open reading frame that encodes a chromo/fluoro polypeptide of the subject invention, e.g., an Actiniidaen chromo/fluoroprotein gene, and is capable, under appropriate conditions, of being expressed as a protein according to the subject invention. Also encompassed in this term are nucleic acids that are homologous, substantially similar or identical to the nucleic acids of the present invention. Thus, the subject invention provides genes and coding sequences thereof encoding the proteins of the subject invention, as well as homologs thereof. The subject nucleic acids are present in other than their natural

- environment, e.g., they are isolated, present in enriched amounts, etc., from their naturally occurring environment, e.g., the organism from which they are obtained.

In many embodiments, the wild type naturally occurring nucleic acid sequences of the subject invention are from specie members of Zoantharian species; often Actiniarian 5 species, often Nyantheaen species, often Actiniidaen species, e.g., Condylactin species. Species of particular interest include Condylactis gigantea etc., where in many embodiments the wild type nucleic acids are from Condylactis gigantea.

A specific nucleic acid of interest is one that encodes the wild type chromoprotein of Condylactis gigantea. This wild type chromoprotein has the amino acid sequence shown in 10 Figure 1 and identified as SEQ ID NO:02. The wild type cDNA coding sequence for the this protein is provided in SEQ ID NO: 01 and is shown in Figure 1.

Nucleic acids encoding specific fluorescent mutant proteins of the above wild type chromoproteins are also provided. Of particular interest are nucleic acids encoding mutant 15 fluorescent proteins identified herein as mut C148S, which protein has the amino acid sequence shown in Figure 2 and identified as SEQ ID NO:04. The cDNA coding sequence for mutC148S is provided in SEQ ID NO: 03 and is shown in Figure 2.

In addition to the above described specific nucleic acid compositions, also of interest are homologues of the above sequences. With respect to homologues of the subject 20 nucleic acids, the source of homologous genes may be any species of plant or animal, or the homologue may be a completely synthetic sequence. In certain embodiments, sequence similarity between homologues is at least about 20%, sometimes at least about 25 %, and may be 30 %, 35%, 40%, 50%, 60%, 70% or higher, including 75%, 80%, 85%, 90% and 95% or higher. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, 25 flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul *et al.* (1990), *J. Mol. Biol.* 215:403-10 (using default settings, i.e.

parameters w=4 and T=17). The sequences provided herein are essential for recognizing related and homologous nucleic acids in database searches. Of particular interest in certain embodiments are nucleic acids of substantially the same length as the specific nucleic acids identified in the enclosed sequence listing and provided in the enclosed figures,

5 where by substantially the same length is meant that any difference in length does not exceed about 20 number %, usually does not exceed about 10 number % and more usually does not exceed about 5 number %; and have sequence identity to any of these sequences of at least about 90%, usually at least about 95% and more usually at least about 99% over the entire length of the nucleic acid. In many embodiments, the nucleic acids have a

10 sequence that is substantially similar (i.e. the same as) or identical to the specific nucleic acid sequences of the figures and sequence listing included herewith as part of this specification. By substantially similar is meant that sequence identity will generally be at least about 60%, usually at least about 75% and often at least about 80, 85, 90, or even 95%.

15 Also provided are nucleic acids that encode the proteins encoded by the above described nucleic acids, but differ in sequence from the above described nucleic acids due to the degeneracy of the genetic code.

Also provided are nucleic acids that hybridize to the above described nucleic acids under stringent conditions. An example of stringent hybridization conditions is hybridization
20 at 50°C or higher and 0.1×SSC (15 mM sodium chloride/1.5 mM sodium citrate). Another example of stringent hybridization conditions is overnight incubation at 42°C in a solution: 50 % formamide, 5 × SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5 × Denhardt's solution, 10% dextran sulfate, and 20 µg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 × SSC at about 65°C.
25 Stringent hybridization conditions are hybridization conditions that are at least as stringent as the above representative conditions, where conditions are considered to be at least as stringent if they are at least about 80% as stringent, typically at least about 90% as stringent as the above specific stringent conditions. Other stringent hybridization conditions

- are known in the art and may also be employed to identify nucleic acids of this particular embodiment of the invention.

Nucleic acids encoding mutants of the proteins of the invention are also provided.

Mutant nucleic acids can be generated by random mutagenesis or targeted mutagenesis,

- 5 using well-known techniques that are routine in the art. In some embodiments, chromo- or fluorescent proteins encoded by nucleic acids encoding homologues or mutants have the same fluorescent properties as the wild-type fluorescent protein. In other embodiments, homologue or mutant nucleic acids encode chromo- or fluorescent proteins with altered spectral properties, as described in more detail herein.

- 10 One category of mutant that is of particular interest is the non-aggregating mutant.

In many embodiments, the non-aggregating mutant differs from the wild type sequence by a mutation in the N-terminus that modulates the charges appearing on side groups of the N-terminus residues, e.g., to reverse or neutralize the charge, in a manner sufficient to produce a non-aggregating mutant of the naturally occurring protein or mutant, where a

15 particular protein is considered to be non-aggregating if it is determined be non-aggregating using the assay reported in U.S. Patent Application serial no. 60/270,983, the disclosure of which is herein incorporated by reference. More specifically, basic residues located near the N-termini of the proteins are substituted, e.g., Lys and Arg residues close to the N-terminus are substituted with negatively charged or neutral residues.

- 20 Another category of mutant of particular interest is the modulated oligomerization mutant. A mutant is considered to be a modulated oligomerization mutant if its oligomerization properties are different as compared to the wild type protein. For example, if a particular mutant oligomerizes to a greater or lesser extent than the wild type, it is considered to be an oligomerization mutant. Of particular interest are oligomerization
- 25 mutants that do not oligomerize, i.e., are monomers under physiological (e.g., intracellular) conditions, or oligomerize to a lesser extent than the wild type, e.g., are dimers or trimers under intracellular conditions.

Nucleic acids of the subject invention may be cDNA or genomic DNA or a fragment thereof. In certain embodiments, the nucleic acids of the subject invention include one or more of the open reading frames encoding specific fluorescent proteins and polypeptides, and introns, as well as adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The subject nucleic acids may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome, as described in greater detail below.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 5' and 3' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, being removed by nuclear RNA splicing, to create a continuous open reading frame encoding the protein.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include 5' and 3' un-translated regions found in the mature mRNA. It may further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

The nucleic acid compositions of the subject invention may encode all or a part of the subject proteins. Double or single stranded fragments may be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part,

- DNA fragments will be of at least about 15 nt, usually at least about 18 nt or about 25 nt, and may be at least about 50 nt. In some embodiments, the subject nucleic acid molecules may be about 100 nt, about 200 nt, about 300 nt, about 400 nt, about 500 nt, about 600 nt, about 700 nt, or about 720 nt in length. The subject nucleic acids may encode fragments of the subject proteins or the full-length proteins, e.g., the subject nucleic acids may encode polypeptides of about 25 aa, about 50 aa, about 75 aa, about 100 aa, about 125 aa, about 150 aa, about 200 aa, about 210 aa, about 220 aa, about 230 aa, or about 240 aa, up to the entire protein.

The subject nucleic acids are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a nucleic acid of the subject invention or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

The subject polynucleotides, the corresponding cDNA, the full-length gene and constructs of the subject polynucleotides are provided. These molecules can be generated synthetically by a number of different protocols known to those of skill in the art. Appropriate polynucleotide constructs are purified using standard recombinant DNA techniques as described in, for example, Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd Ed., (1989) Cold Spring Harbor Press, Cold Spring Harbor, NY, and under current regulations described in United States Dept. of HHS, National Institute of Health (NIH) Guidelines for Recombinant DNA Research.

Also provided are nucleic acids that encode fusion proteins of the subject proteins, or fragments thereof, which are fused to a second protein, e.g., a degradation sequence, a signal peptide, etc. Fusion proteins may comprise a subject polypeptide, or fragment thereof, and a non-polypeptide of the subject invention ("the fusion partner") fused in-frame at the N-terminus and/or C-terminus of the subject polypeptide. Fusion partners include, but are not limited to, polypeptides that can bind antibody specific to the fusion partner

- (e.g., epitope tags); antibodies or binding fragments thereof; polypeptides that provide a catalytic function or induce a cellular response; ligands or receptors or mimetics thereof; and the like. In such fusion proteins, the fusion partner is generally not naturally associated with the subject Anthozoan portion of the fusion protein, and is typically not an Anthozoan
- 5 protein or derivative/fragment thereof, i.e., it is not found in Anthozoan species.

Also provided are constructs comprising the subject nucleic acids inserted into a vector, where such constructs may be used for a number of different applications, including propagation, protein production, etc. Viral and non-viral vectors may be prepared and used, including plasmids. The choice of vector will depend on the type of cell in which propagation
10 is desired and the purpose of propagation. Certain vectors are useful for amplifying and making large amounts of the desired DNA sequence. Other vectors are suitable for expression in cells in culture. Still other vectors are suitable for transfer and expression in cells in a whole animal or person. The choice of appropriate vector is well within the skill of the art. Many such vectors are available commercially. To prepare the constructs, the
15 partial or full-length polynucleotide is inserted into a vector typically by means of DNA ligase attachment to a cleaved restriction enzyme site in the vector. Alternatively, the desired nucleotide sequence can be inserted by homologous recombination in vivo. Typically this is accomplished by attaching regions of homology to the vector on the flanks of the desired nucleotide sequence. Regions of homology are added by ligation of oligonucleotides, or by
20 polymerase chain reaction using primers comprising both the region of homology and a portion of the desired nucleotide sequence, for example.

Also provided are expression cassettes or systems that find use in, among other applications, the synthesis of the subject proteins. For expression, the gene product encoded by a polynucleotide of the invention is expressed in any convenient expression system, including, for example, bacterial, yeast, insect, amphibian and mammalian
25 systems. Suitable vectors and host cells are described in U.S. Patent No. 5,654,173. In the expression vector, a subject polynucleotide, is linked to a regulatory sequence as appropriate to obtain the desired expression properties. These regulatory sequences can

- include promoters (attached either at the 5' end of the sense strand or at the 3' end of the antisense strand), enhancers, terminators, operators, repressors, and inducers. The promoters can be regulated or constitutive. In some situations it may be desirable to use conditionally active promoters, such as tissue-specific or developmental stage-specific
- 5 promoters. These are linked to the desired nucleotide sequence using the techniques described above for linkage to vectors. Any techniques known in the art can be used. In other words, the expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional
- 10 and translational termination region. These control regions may be native to the subject species from which the subject nucleic acid is obtained, or may be derived from exogenous sources.

Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding heterologous proteins. A selectable marker operative in the expression host may be present. Expression vectors may be used for, among other things, the production of fusion proteins, as described above.

Expression cassettes may be prepared comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest 20 is the use of sequences that allow for the expression of functional epitopes or domains, usually at least about 8 amino acids in length, more usually at least about 15 amino acids in length, to about 25 amino acids, and up to the complete open reading frame of the gene. After introduction of the DNA, the cells containing the construct may be selected by means 25 of a selectable marker, the cells expanded and then used for expression.

The above described expression systems may be employed with prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli*, *B. subtilis*, *S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of

- a higher organism such as vertebrates, e.g. COS 7 cells, HEK 293, CHO, Xenopus Oocytes, etc., may be used as the expression host cells. In some situations, it is desirable to express the gene in eukaryotic cells, where the expressed protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Polypeptides that are subsets of the complete protein sequence may be used to identify and investigate parts of the protein important for function.

5 Specific expression systems of interest include bacterial, yeast, insect cell and mammalian cell derived expression systems. Representative systems from each of these categories is are provided below:

10 Bacteria. Expression systems in bacteria include those described in Chang *et al.*, *Nature* (1978) 275:615; Goeddel *et al.*, *Nature* (1979) 281:544; Goeddel *et al.*, *Nucleic Acids Res.* (1980) 8:4057; EP 0 036,776; U.S. Patent No. 4,551,433; DeBoer *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1983) 80:21-25; and Siebenlist *et al.*, *Cell* (1980) 20:269.

15 Yeast. Expression systems in yeast include those described in Hinnen *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1978) 75:1929; Ito *et al.*, *J. Bacteriol.* (1983) 153:163; Kurtz *et al.*, *Mol. Cell. Biol.* (1986) 6:142; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Gleeson *et al.*, *J. Gen. Microbiol.* (1986) 132:3459; Roggenkamp *et al.*, *Mol. Gen. Genet.* (1986) 202:302; Das *et al.*, *J. Bacteriol.* (1984) 158:1165; De Louvencourt *et al.*, *J. Bacteriol.* (1983) 154:737; Van den Berg *et al.*, *Bio/Technology* (1990) 8:135; Kunze *et al.*, *J. Basic Microbiol.* (1985) 25:141; Cregg *et al.*, *Mol. Cell. Biol.* (1985) 5:3376; U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, *Nature* (1981) 300:706; Davidow *et al.*, *Curr. Genet.* (1985) 10:380; Gaillardin *et al.*, *Curr. Genet.* (1985) 10:49; Ballance *et al.*, *Biochem. Biophys. Res. Commun.* (1983) 112:284-289; Tilburn *et al.*, *Gene* (1983) 26:205-221; Yelton *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1984) 81:1470-1474; Kelly and Hynes, *EMBO J.* (1985) 4:475479; EP 0 244,234; and WO 91/00357.

20 Insect Cells. Expression of heterologous genes in insects is accomplished as described in U.S. Patent No. 4,745,051; Friesen *et al.*, "The Regulation of Baculovirus Gene Expression", in: *The Molecular Biology Of Baculoviruses* (1986) (W. Doerfler, ed.);

EP 0 127,839; EP 0 155,476; and Vlak *et al.*, *J. Gen. Virol.* (1988) 69:765-776; Miller *et al.*, *Ann. Rev. Microbiol.* (1988) 42:177; Carbonell *et al.*, *Gene* (1988) 73:409; Maeda *et al.*, *Nature* (1985) 315:592-594; Lebacq-Verheyden *et al.*, *Mol. Cell. Biol.* (1988) 8:3129; Smith *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1985) 82:8844; Miyajima *et al.*, *Gene* (1987) 58:273; 5 and Martin *et al.*, *DNA* (1988) 7:99. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow *et al.*, *Bio/Technology* (1988) 6:47-55, Miller *et al.*, *Generic Engineering* (1986) 8:277-279, and Maeda *et al.*, *Nature* (1985) 315:592-594.

10 Mammalian Cells. Mammalian expression is accomplished as described in Dijkema *et al.*, *EMBO J.* (1985) 4:761, Gorman *et al.*, *Proc. Natl. Acad. Sci. (USA)* (1982) 79:6777, Boshart *et al.*, *Cell* (1985) 41:521 and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, *Meth. Enz.* (1979) 58:44, Barnes and Sato, *Anal. Biochem.* (1980) 102:255, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

15 When any of the above host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides or nucleic acids of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or organism. The product is recovered by any appropriate means known in the art.

20 Once the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the cell to which the gene is native. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence inserted into the genome of the cell at location sufficient to at least enhance expression of the gene in the cell. The regulatory sequence may be designed to integrate into the genome via 25 homologous recombination, as disclosed in U.S. Patent Nos. 5,641,670 and 5,733,761, the disclosures of which are herein incorporated by reference, or may be designed to integrate into the genome via non-homologous recombination, as described in WO 99/15650, the disclosure of which is herein incorporated by reference. As such, also encompassed in the

subject invention is the production of the subject proteins without manipulation of the encoding nucleic acid itself, but instead through integration of a regulatory sequence into the genome of cell that already includes a gene encoding the desired protein, as described in the above incorporated patent documents.

5 Also provided are homologs of the subject nucleic acids. Homologs are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization
10 under low stringency conditions, for example, at 50°C and 6×SSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1×SSC (0.15 M sodium chloride/.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and 0.1×SSC (15 mM sodium chloride/1.5 mM sodium citrate). Nucleic acids having a region of
15 substantial identity to the provided sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes.

Also of interest are promoter elements of the subject genomic sequences, where
20 the sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, e.g., that provide for regulation of expression in cells/tissues where the subject proteins gene are expressed.

Also provided are small DNA fragments of the subject nucleic acids, which fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA
25 fragments, *i.e.*, greater than 100 nt are useful for production of the encoded polypeptide, as described in the previous section. For use in geometric amplification reactions, such as geometric PCR, a pair of primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize

to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification 5 primers hybridize to complementary strands of DNA, and will prime towards each other.

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature. Briefly, DNA or mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using 10 reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, e.g. nitrocellulose, nylon, etc., and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, *in situ* hybridizations, and 15 hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of Anthozoan protein gene expression in the sample.

The subject nucleic acids, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter 20 strength, sequence of the encoded protein, properties of the encoded protein, including fluorescent properties of the encoded protein, etc. The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, e.g. will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may 25 be substitutions, insertions, deletions, or a combination thereof. Deletions may further include larger changes, such as deletions of a domain or exon, e.g. of stretches of 10, 20, 50, 75, 100, 150 or more aa residues. Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et*

al. (1993), *Biotechniques* 14:22; Barany (1985), *Gene* 37:111-23; Colicelli et al. (1985), *Mol. Gen. Genet.* 199:537-9; and Prentki et al. (1984), *Gene* 29:303-13. Methods for site specific mutagenesis can be found in Sambrook et al.; *Molecular Cloning: A Laboratory Manual*, CSH Press 1989, pp. 15.3-15.108; Weiner et al. (1993), *Gene* 126:35-41; Sayers et al. (1992), *Biotechniques* 13:592-6; Jones and Winstorfer (1992), *Biotechniques* 12:528-30; Barton et al. (1990), *Nucleic Acids Res* 18:7349-55; Marotti and Tomich (1989), *Gene Anal. Tech.* 6:67-70; and Zhu (1989), *Anal Biochem* 177:120-4. Such mutated nucleic acid derivatives may be used to study structure-function relationships of a particular chromo/fluorescent protein, or to alter properties of the protein that affect its function or regulation.

10 Of particular interest in many embodiments is the following specific mutation protocol, which protocol finds use in mutating chromoproteins (e.g., colored proteins that have little if any fluorescence) into fluorescent mutants. In this protocol., the sequence of the candidate protein is aligned with the amino acid sequence of *Aequorea victoria* wild type GFP, according to the protocol reported in Matz et al., "Fluorescent proteins from non-bioluminescent Anthozoa species," *Nature Biotechnology* (October 1999) 17: 969 –973. 15 Residue 148 of the aligned chromoprotein is identified and then changed to Ser, e.g., by site directed mutagenesis, which results in the production of a fluorescent mutant of the wild type chromoprotein. See e.g., mut C148S described below.

Also of interest are humanized versions of the subject nucleic acids. As used herein, 20 the term "humanized" refers to changes made to a nucleic acid sequence to optimize the codons for expression of the protein in human cells (Yang et al., *Nucleic Acids Research* 24 (1996), 4592-4593). See also U.S. Patent No. 5,795,737 which describes humanization of proteins, the disclosure of which is herein incorporated by reference.

25 PROTEIN/POLYPEPTIDE COMPOSITIONS

Also provided by the subject invention are chromo and fluorescent proteins, (as well as wild type non-fluorescent chromoprotein precursors thereof) and mutants thereof, as

well as polypeptide compositions related thereto. As the subject proteins are chromoproteins, they are colored proteins, which may be fluorescent, low or non-fluorescent. As used herein, the terms chromoprotein and fluorescent protein do not include luciferases, such as Renilla luciferase, and refer to any protein that is pigmented or colored and/or fluoresces when irradiated with light, e.g., white light or light of a specific wavelength (or narrow band of wavelengths). The term polypeptide composition as used herein refers to both the full-length protein, as well as portions or fragments thereof. Also included in this term are variations of the naturally occurring protein, where such variations are homologous or substantially similar to the naturally occurring protein, and mutants of the naturally occurring proteins, as described in greater detail below. The subject polypeptides are present in other than their natural environment.

In many embodiments, the subject Anthozoa chromoproteins have an absorbance maximum ranging from about 450 to 650, usually from about 550 to 600 and more usually from about 560 to 580 nm.

With respect to the subject proteins that exhibit fluorescence, by which is meant that they can be excited at one wavelength of light following which they will emit light at another wavelength, the excitation spectrum of the subject proteins typically ranges from about 450 to 650, usually from about 550 to 600 and more usually from about 570 to 600 nm while the emission spectrum of the subject proteins typically ranges from about 480 to 680, usually from about 580 to 660 and more usually from about 590 to 650 nm.

The subject proteins typically range in length from about 200 to 300, usually from about 220 to 250 amino acid residues, and generally have a molecular weight ranging from about 20 to 35, usually from about 25 to 30 kDa.

In certain embodiments, the subject proteins are bright, where by bright is meant that: the chromoproteins and their fluorescent mutants can be detected by common methods (e.g., visual screening, spectrophotometry, spectrofluorometry, fluorescent microscopy, by FACS machines, etc.) Fluorescence brightness of particular fluorescent

proteins is determined by its quantum yield multiplied by maximal extinction coefficient.

Brightness a chromoproteins may be expressed by its maximal extinction coefficient.

In certain embodiments, the subject proteins fold rapidly following expression in the host cell. By rapidly folding is meant that the proteins achieve their tertiary structure that gives rise to their chromo- or fluorescent quality in a short period of time. In these embodiments, the proteins fold in a period of time that generally does not exceed about 3 days, usually does not exceed about 2 days and more usually does not exceed about 1 day. In certain embodiments the proteins mature in under physiological temperature conditions, e.g., at temperatures ranging from 30 to 40 °C, e.g., 37°C

A specific and representative wild type Anthozoa chromoprotein according to the subject invention is the wild type Condylactis gigantea chromoprotein. A wild type Condylactis gigantean CgCP protein has an amino acid sequence as shown in Fig. 1 and identified as SEQ ID NO:02. A representative specific fluorescent mutant thereof is mutC148S, which mutant has an amino acid sequence as shown in Fig. 2, is identified as SEQ ID NO:04, and has an absorption, excitation and emission spectrum as shown in Fig. 4.

In some embodiments, an isolated Anthozoan polypeptide of the invention comprises an amino acid sequence of at least about 5, at least about 10, at least about 20, at least about 25, at least about 50, at least about 75, at least about 100, at least about 125, at least about 150, at least about 175, or at least about 200 contiguous amino acids of the sequence set forth in SEQ ID NO:2 or SEQ ID NO:4, up to the entire amino acid sequence set forth in SEQ ID NO:2 or SEQ ID NO:4.

Homologs or proteins (or fragments thereof) that vary in sequence from the specific amino acid sequences of the subject invention provided herein are also provided. By homolog is meant a protein having at least about 10%, usually at least about 20 % and more usually at least about 30 %, and in many embodiments at least about 35 %, usually at least about 40% and more usually at least about 60 % amino acid sequence identity to the

protein of the subject invention, as determined using MegAlign, DNAsstar (1998) clustal algorithm as described in D. G. Higgins and P.M. Sharp, "Fast and Sensitive multiple Sequence Alignments on a Microcomputer," (1989) CABIOS, 5: 151-153. (Parameters used are ktuple 1, gap penalty 3, window, 5 and diagonals saved 5). In many embodiments, 5 homologues of interest have much higher sequence identify, e.g., 65%, 70%, 75%, 80%, 85%, 90% or higher.

Also provided are proteins that are substantially identical to the wild type protein, where by substantially identical is meant that the protein has an amino acid sequence identity to the sequence of wild type protein of at least about 60%, usually at least about 10 65% and more usually at least about 70 %, where in some instances the identity may be much higher, e.g., 75%, 80%, 85%, 90%, 95% or higher.

In many embodiments, the subject homologues have structural features found in the above provided specific sequences, where such structural features include the β -can fold.

Proteins which are mutants of the above-described naturally occurring proteins are 15 also provided. Mutants may retain biological properties of the wild-type (e.g., naturally occurring) proteins, or may have biological properties which differ from the wild-type proteins. The term "biological property" of the subject proteins includes, but is not limited to, spectral properties, such as absorbance maximum, emission maximum, maximum extinction coefficient, brightness (e.g., as compared to the wild-type protein or another 20 reference protein such as green fluorescent protein from *A. victoria*), and the like; *in vivo* and/or *in vitro* stability (e.g., half-life); etc. Mutants include single amino acid changes, deletions of one or more amino acids, N-terminal truncations, C-terminal truncations, insertions, etc.

Mutants can be generated using standard techniques of molecular biology, e.g., 25 random mutagenesis, and targeted mutagenesis. Several mutants are described herein. Given the guidance provided in the Examples, and using standard techniques, those skilled in the art can readily generate a wide variety of additional mutants and test whether a

biological property has been altered. For example, fluorescence intensity can be measured using a spectrophotometer at various excitation wavelengths.

Those proteins of the subject invention that are naturally occurring proteins are present in a non-naturally occurring environment, e.g., are separated from their naturally occurring environment. In certain embodiments, the subject proteins are present in a composition that is enriched for the subject protein as compared to its naturally occurring environment. For example, purified protein is provided, where by purified is meant that the protein is present in a composition that is substantially free of non-chromo/fluoroprotein derived proteins of the subject invention, where by substantially free is meant that less than 90 %, usually less than 60 % and more usually less than 50 % of the composition is made up of non-Anthozoan derived chromoproteins or mutants thereof. The proteins of the subject invention may also be present as an isolate, by which is meant that the protein is substantially free of other proteins and other naturally occurring biologic molecules, such as oligosaccharides, polynucleotides and fragments thereof, and the like, where the term "substantially free" in this instance means that less than 70 %, usually less than 60% and more usually less than 50 % of the composition containing the isolated protein is some other naturally occurring biological molecule. In certain embodiments, the proteins are present in substantially pure form, where by "substantially pure form" is meant at least 95%, usually at least 97% and more usually at least 99% pure.

In addition to the naturally occurring proteins, polypeptides that vary from the naturally occurring proteins; e.g., the mutant proteins described above, are also provided. Generally such polypeptides include an amino acid sequence encoded by an open reading frame (ORF) of the gene encoding an Anthozoan protein, including the full length protein and fragments thereof, particularly biologically active fragments and/or fragments corresponding to functional domains, and the like; and including fusions of the subject polypeptides to other proteins or parts thereof. Fragments of interest will typically be at least about 10 aa in length, usually at least about 50 aa in length, and may be as long as 300 aa in length or longer, but will usually not exceed about 1000 aa in length, where the

fragment will have a stretch of amino acids that is identical to the subject protein or at least about 10 aa, and usually at least about 15 aa, and in many embodiments at least about 50 aa in length. In some embodiments, the subject polypeptides are about 25 aa, about 50 aa, about 75 aa, about 100 aa, about 125 aa, about 150 aa, about 200 aa, about 210 aa, 5 about 220 aa, about 230 aa, or about 240 aa in length, up to the entire protein. In some embodiments, a protein fragment retains all or substantially all of a biological property of the wild-type protein.

The subject proteins and polypeptides may be obtained from naturally occurring sources or synthetically produced. For example, wild type proteins may be derived from 10 biological sources that express the proteins, e.g., Anthozoan species, such as the specific ones listed above. The subject proteins may also be produced using synthetic means, e.g. by expressing a recombinant gene or nucleic acid coding sequence encoding the protein of interest in a suitable host, as described above. Any convenient protein purification procedures may be employed, where suitable protein purification methodologies are 15 described in Guide to Protein Purification, (Deuthser ed.) (Academic Press, 1990). For example, a lysate may prepared from the original source and purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, and the like.

ANTIBODY COMPOSITIONS

20 Also provided are antibodies that specifically bind to the subject fluorescent proteins. Suitable antibodies are obtained by immunizing a host animal with peptides comprising all or a portion of the subject protein. Suitable host animals include mouse, rat sheep, goat, hamster, rabbit, etc. The origin of the protein immunogen will generally be an Anthozoan species. The host animal will generally be a different species than the 25 immunogen, e.g., mice, etc.

The immunogen may comprise the complete protein, or fragments and derivatives thereof. Preferred immunogens comprise all or a part of the protein, where these residues contain the post-translation modifications found on the native target protein. Immunogens

are produced in a variety of ways known in the art, e.g., expression of cloned genes using conventional recombinant methods, isolation from Anthozoan species, etc.

For preparation of polyclonal antibodies, the first step is immunization of the host animal with the target protein, where the target protein will preferably be in substantially pure form, comprising less than about 1% contaminant. The immunogen may comprise the complete target protein, fragments or derivatives thereof. To increase the immune response of the host animal, the target protein may be combined with an adjuvant, where suitable adjuvants include alum, dextran, sulfate, large polymeric anions, oil & water emulsions, e.g. Freund's adjuvant, Freund's complete adjuvant, and the like. The target protein may also be conjugated to synthetic carrier proteins or synthetic antigens. A variety of hosts may be immunized to produce the polyclonal antibodies. Such hosts include rabbits, guinea pigs, rodents, e.g. mice, rats, sheep, goats, and the like. The target protein is administered to the host, usually intradermally, with an initial dosage followed by one or more, usually at least two, additional booster dosages. Following immunization, the blood from the host will be collected, followed by separation of the serum from the blood cells. The Ig present in the resultant antiserum may be further fractionated using known methods, such as ammonium salt fractionation, DEAE chromatography, and the like.

Monoclonal antibodies are produced by conventional techniques. Generally, the spleen and/or lymph nodes of an immunized host animal provide a source of plasma cells. The plasma cells are immortalized by fusion with myeloma cells to produce hybridoma cells. Culture supernatant from individual hybridomas is screened using standard techniques to identify those producing antibodies with the desired specificity. Suitable animals for production of monoclonal antibodies to the human protein include mouse, rat, hamster, etc. To raise antibodies against the mouse protein, the animal will generally be a hamster, guinea pig, rabbit, etc. The antibody may be purified from the hybridoma cell supernatants or ascites fluid by conventional techniques, e.g. affinity chromatography using protein bound to an insoluble support, protein A sepharose, etc.

The antibody may be produced as a single chain, instead of the normal multimeric structure. Single chain antibodies are described in Jost *et al.* (1994) J.B.C. 269:26267-73, and others. DNA sequences encoding the variable region of the heavy chain and the variable region of the light chain are ligated to a spacer encoding at least about 4 amino acids of small neutral amino acids, including glycine and/or serine. The protein encoded by this fusion allows assembly of a functional variable region that retains the specificity and affinity of the original antibody.

Also of interest in certain embodiments are humanized antibodies. Methods of humanizing antibodies are known in the art. The humanized antibody may be the product of an animal having transgenic human immunoglobulin constant region genes (see for example International Patent Applications WO 90/10077 and WO 90/04036). Alternatively, the antibody of interest may be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see WO 92/02190).

The use of Ig cDNA for construction of chimeric immunoglobulin genes is known in the art (Liu *et al.* (1987) P.N.A.S. 84:3439 and (1987) J. Immunol. 139:3521). mRNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest may be amplified by the polymerase chain reaction using specific primers (U.S. Patent nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region sequences. The sequences of human constant regions genes may be found in Kabat *et al.* (1991) Sequences of Proteins of Immunological Interest, N.I.H. publication no. 91-3242. Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector functions, such as complement fixation, or activity in antibody-dependent cellular cytotoxicity. Preferred isotypes are IgG1, IgG3 and IgG4. Either of the human light chain constant regions, kappa or lambda, may be used. The chimeric, humanized antibody is then expressed by conventional methods.

Antibody fragments, such as Fv, F(ab')₂ and Fab may be prepared by cleavage of the intact protein, e.g. by protease or chemical cleavage. Alternatively, a truncated gene is designed. For example, a chimeric gene encoding a portion of the F(ab')₂ fragment would include DNA sequences encoding the CH1 domain and hinge region of the H chain, 5 followed by a translational stop codon to yield the truncated molecule.

Consensus sequences of H and L J regions may be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in 10 the human sequence.

Expression vectors include plasmids, retroviruses, YACs, EBV derived episomes, and the like. A convenient vector is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed. In such vectors, splicing usually 15 occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody may be joined to any strong promoter, including retroviral LTRs, e.g. SV-40 early promoter, (Okayama *et al.* 20 (1983) Mol. Cell. Bio. 3:280), Rous sarcoma virus LTR (Gorman *et al.* (1982) P.N.A.S. 79:6777), and moloney murine leukemia virus LTR (Grosschedl *et al.* (1985) Cell 41:885); native Ig promoters, etc.

TRANSGENICS

The subject nucleic acids can be used to generate transgenic, non-human plants or animals or site specific gene modifications in cell lines. Transgenic cells of the subject invention include one or more nucleic acids according to the subject invention present as a transgene, where included within this definition are the parent cells transformed to include 25

the transgene and the progeny thereof. In many embodiments, the transgenic cells are cells that do not normally harbor or contain a nucleic acid according to the subject invention. In those embodiments where the transgenic cells do naturally contain the subject nucleic acids, the nucleic acid will be present in the cell in a position other than its natural location, i.e. integrated into the genomic material of the cell at a non-natural location.

Transgenic animals may be made through homologous recombination, where the endogenous locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

Transgenic organisms of the subject invention include cells and multicellular organisms, e.g., plants and animals, that are endogenous knockouts in which expression of the endogenous gene is at least reduced if not eliminated. Transgenic organisms of interest also include cells and multicellular organisms, e.g., plants and animals, in which the protein or variants thereof is expressed in cells or tissues where it is not normally expressed and/or at levels not normally present in such cells or tissues.

DNA constructs for homologous recombination will comprise at least a portion of the gene of the subject invention, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently,

markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are known in the art. For various techniques for transfecting mammalian cells, see Keown *et al.* (1990),

Meth. Enzymol. 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in

an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, etc. Representative examples of the use of transgenic animals include those described infra.

Transgenic plants may be produced in a similar manner. Methods of preparing transgenic plant cells and plants are described in U.S. Pat. Nos. 5,767,367; 5,750,870; 5,739,409; 5,689,049; 5,689,045; 5,674,731; 5,656,466; 5,633,155; 5,629,470 ; 5,595,896; 5,576,198; 5,538,879; 5,484,956; the disclosures of which are herein incorporated by reference. Methods of producing transgenic plants are also reviewed in Plant Biochemistry and Molecular Biology (eds Lea & Leegood, John Wiley & Sons)(1993) pp 275-295. In brief, a suitable plant cell or tissue is harvested, depending on the nature of the plant species. As such, in certain instances, protoplasts will be isolated, where such protoplasts may be isolated from a variety of different plant tissues, e.g. leaf, hypocotyl, root, etc. For protoplast isolation, the harvested cells are incubated in the presence of cellulases in order to remove

the cell wall, where the exact incubation conditions vary depending on the type of plant and/or tissue from which the cell is derived. The resultant protoplasts are then separated from the resultant cellular debris by sieving and centrifugation. Instead of using protoplasts, embryogenic explants comprising somatic cells may be used for preparation of the

5 transgenic host. Following cell or tissue harvesting, exogenous DNA of interest is introduced into the plant cells, where a variety of different techniques are available for such introduction. With isolated protoplasts, the opportunity arise for introduction via DNA-mediated gene transfer protocols, including: incubation of the protoplasts with naked DNA, e.g. plasmids, comprising the exogenous coding sequence of interest in the presence of

10 polyvalent cations, e.g. PEG or PLO; and electroporation of the protoplasts in the presence of naked DNA comprising the exogenous sequence of interest. Protoplasts that have successfully taken up the exogenous DNA are then selected, grown into a callus, and ultimately into a transgenic plant through contact with the appropriate amounts and ratios of stimulatory factors, e.g. auxins and cytokinins. With embryogenic explants, a convenient

15 method of introducing the exogenous DNA in the target somatic cells is through the use of particle acceleration or "gene-gun" protocols. The resultant explants are then allowed to grow into chimera plants, cross-bred and transgenic progeny are obtained. Instead of the naked DNA approaches described above, another convenient method of producing transgenic plants is *Agrobacterium* mediated transformation. With *Agrobacterium* mediated

20 transformation, co-integrative or binary vectors comprising the exogenous DNA are prepared and then introduced into an appropriate *Agrobacterium* strain, e.g. *A. tumefaciens*. The resultant bacteria are then incubated with prepared protoplasts or tissue explants, e.g. leaf disks, and a callus is produced. The callus is then grown under selective conditions, selected and subjected to growth media to induce root and shoot growth to

25 ultimately produce a transgenic plant.

UTILITY

The subject chromoproteins and fluorescent mutants thereof find use in a variety of different applications, where the applications necessarily differ depending on whether the protein is a chromoprotein or a fluorescent protein. Representative uses for each of these types of proteins will be described below, where the follow described uses are merely 5 representative and are in no way meant to limit the use of the subject proteins to those described below.

Chromoproteins

The subject chromoproteins of the present invention find use in a variety of different 10 applications. One application of interest is the use of the subject proteins as coloring agents which are capable of imparting color or pigment to a particular composition of matter. Of particular interest in certain embodiments are non-toxic chromoproteins. The subject chromoproteins may be incorporated into a variety of different compositions of matter, where representative compositions of matter include: food compositions, pharmaceuticals, 15 cosmetics, living organisms, e.g., animals and plants, and the like. Where used as a coloring agent or pigment, a sufficient amount of the chromoprotein is incorporated into the composition of matter to impart the desired color or pigment thereto. The chromoprotein may be incorporated into the composition of matter using any convenient protocol, where the particular protocol employed will necessarily depend, at least in part, on the nature of 20 the composition of matter to be colored. Protocols that may be employed include, but are not limited to: blending, diffusion, friction, spraying, injection, tattooing, and the like.

The chromoproteins may also find use as labels in analyte detection assays, e.g., assays for biological analytes of interest. For example, the chromoproteins may be incorporated into adducts with analyte specific antibodies or binding fragments thereof and 25 subsequently employed in immunoassays for analytes of interest in a complex sample, as described in U.S. Patent No. 4,302,536; the disclosure of which is herein incorporated by reference. Instead of antibodies or binding fragments thereof, the subject chromoproteins or chromogenic fragments thereof may be conjugated to ligands that specifically bind to an

analyte of interest, or other moieties, growth factors, hormones, and the like; as is readily apparent to those of skill in the art.

In yet other embodiments, the subject chromoproteins may be used as selectable markers in recombinant DNA applications, e.g., the production of transgenic cells and organisms, as described above. As such, one can engineer a particular transgenic production protocol to employ expression of the subject chromoproteins as a selectable marker, either for a successful or unsuccessful protocol. Thus, appearance of the color of the subject chromoprotein in the phenotype of the transgenic organism produced by a particular process can be used to indicate that the particular organism successfully harbors the transgene of interest, often integrated in a manner that provides for expression of the transgene in the organism. When used a selectable marker, a nucleic acid encoding for the subject chromoprotein can be employed in the transgenic generation process, where this process is described in greater detail supra. Particular transgenic organisms of interest where the subject proteins may be employed as selectable markers include transgenic plants, animals, bacteria, fungi, and the like.

In yet other embodiments, the chromoproteins (and fluorescent proteins) of the subject invention find use in sunscreens, as selective filters, etc., in a manner similar to the uses of the proteins described in WO 00/46233.

20 *Fluorescent Proteins*

The subject fluorescent proteins of the present invention (as well as other components of the subject invention described above) find use in a variety of different applications, where such applications include, but are not limited to, the following. The first application of interest is the use of the subject proteins in fluorescence resonance energy transfer (FRET) applications. In these applications, the subject proteins serve as donor and/or acceptors in combination with a second fluorescent protein or dye, e.g., a fluorescent protein as described in Matz et al., *Nature Biotechnology* (October 1999) 17:969-973, a green fluorescent protein from *Aequoria victoria* or fluorescent mutant

thereof, e.g., as described in U.S. Patent No. 6,066,476; 6,020,192; 5,985,577; 5,976,796; 5,968,750; 5,968,738; 5,958,713; 5,919,445; 5,874,304, the disclosures of which are herein incorporated by reference, other fluorescent dyes, e.g., coumarin and its derivatives, e.g. 7-amino-4-methylcoumarin, aminocoumarin, bodipy dyes, such as Bodipy FL, cascade blue, fluorescein and its derivatives, e.g. fluorescein isothiocyanate, Oregon green, rhodamine dyes, e.g. texas red, tetramethylrhodamine, eosins and erythrosins, cyanine dyes, e.g. Cy3 and Cy5, macrocyclic chelates of lanthanide ions, e.g. quantum dye, etc., chemiluminescent dyes, e.g., luciferases, including those described in U.S. Patent Nos. 5,843,746; 5,700,673; 5,674,713; 5,618,722; 5,418,155; 5,330,906; 5,229,285; 5,221,623; 10 5,182,202; the disclosures of which are herein incorporated by reference. Specific examples of where FRET assays employing the subject fluorescent proteins may be used include, but are not limited to: the detection of protein-protein interactions, e.g., mammalian two-hybrid system, transcription factor dimerization, membrane protein multimerization, multiprotein complex formation, etc., as a biosensor for a number of different events, where 15 a peptide or protein covalently links a FRET fluorescent combination including the subject fluorescent proteins and the linking peptide or protein is, e.g., a protease specific substrate, e.g., for caspase mediated cleavage, a linker that undergoes conformational change upon receiving a signal which increases or decreases FRET, e.g., PKA regulatory domain (cAMP-sensor), phosphorylation, e.g., where there is a phosphorylation site in the 20 linker or the linker has binding specificity to phosphorylated/dephosphorylated domain of another protein, or the linker has Ca^{2+} binding domain. Representative fluorescence resonance energy transfer or FRET applications in which the subject proteins find use include, but are not limited to, those described in: U.S. Patent Nos. 6,008,373; 5,998,146; 5,981,200; 5,945,526; 5,945,283; 5,911,952; 5,869,255; 5,866,336; 5,863,727; 5,728,528; 25 5,707,804; 5,688,648; 5,439,797; the disclosures of which are herein incorporated by reference.

The subject fluorescent proteins also find use as biosensors in prokaryotic and eukaryotic cells, e.g. as Ca^{2+} ion indicator; as pH indicator, as phosphorylation indicator, as

an indicator of other ions, e.g., magnesium, sodium, potassium, chloride and halides. For example, for detection of Ca ion, proteins containing an EF-hand motif are known to translocate from the cytosol to membranes upon Ca²⁺ binding. These proteins contain a myristoyl group that is buried within the molecule by hydrophobic interactions with other regions of the protein. Binding of Ca²⁺ induces a conformational change exposing the myristoyl group which then is available for the insertion into the lipid bilayer (called a "Ca²⁺ - myristoyl switch"). Fusion of such a EF-hand containing protein to Fluorescent Proteins (FP) could make it an indicator of intracellular Ca²⁺ by monitoring the translocation from the cytosol to the plasma membrane by confocal microscopy. EF-hand proteins suitable for use in this system include, but are not limited to: recoverin (1-3), calcineurin B, troponin C, visinin, neurocalcin, calmodulin, parvalbumin, and the like. For pH, a system based on hisactophilins may be employed. Hisactophilins are myristoylated histidine-rich proteins known to exist in *Dictyostelium*. Their binding to actin and acidic lipids is sharply pH-dependent within the range of cytoplasmic pH variations. In living cells membrane binding seems to override the interaction of hisactophilins with actin filaments.

At pH 6.5 they locate to the plasma membrane and nucleus. In contrast, at pH 7.5 they evenly distribute throughout the cytoplasmic space. This change of distribution is reversible and is attributed to histidine clusters exposed in loops on the surface of the molecule. The reversion of intracellular distribution in the range of cytoplasmic pH variations is in accord with a pK of 6.5 of histidine residues. The cellular distribution is independent of myristylation of the protein. By fusing FPs (Fluorescent Proteins) to hisactophilin the intracellular distribution of the fusion protein can be followed by laser scanning, confocal microscopy or standard fluorescence microscopy. Quantitative fluorescence analysis can be done by performing line scans through cells (laser scanning confocal microscopy) or other electronic data analysis (e.g., using metamorph software (Universal Imaging Corp) and averaging of data collected in a population of cells. Substantial pH-dependent redistribution of hisactophilin-FP from the cytosol to the plasma membrane occurs within 1-2 min and reaches a steady state level after 5-10 min. The reverse reaction takes place on

a similar time scale. As such, hisactophilin-fluorescent protein fusion protein that acts in an analogous fashion can be used to monitor cytosolic pH changes in real time in live mammalian cells. Such methods have use in high throughput applications, e.g., in the measurement of pH changes as consequence of growth factor receptor activation (e.g.

5 epithelial or platelet-derived growth factor) chemotactic stimulation/ cell locomotion, in the detection of intracellular pH changes as second messenger, in the monitoring of intracellular pH in pH manipulating experiments, and the like. For detection of PKC activity, the reporter system exploits the fact that a molecule called MARCKS (myristoylated alanine-rich C kinase substrate) is a PKC substrate. It is anchored to the plasma membrane

10 via myristylation and a stretch of positively charged amino acids (ED-domain) that bind to the negatively charged plasma membrane via electrostatic interactions. Upon PKC activation the ED-domain becomes phosphorylated by PKC, thereby becoming negatively charged, and as a consequence of electrostatic repulsion MARCKS translocates from the plasma membrane to the cytoplasm (called the "myristoyl-electrostatic switch"). Fusion of

15 the N-terminus of MARCKS ranging from the myristylation motif to the ED-domain of MARCKS to fluorescent proteins of the present invention makes the above a detector system for PKC activity. When phosphorylated by PKC, the fusion protein translocates from the plasma membrane to the cytosol. This translocation is followed by standard fluorescence microscopy or confocal microscopy e.g. using the Cellomics technology or

20 other High Content Screening systems (e.g. Universal Imaging Corp./Becton Dickinson). The above reporter system has application in High Content Screening, e.g., screening for PKC inhibitors, and as an indicator for PKC activity in many screening scenarios for potential reagents interfering with this signal transduction pathway. Methods of using fluorescent proteins as biosensors also include those described in U.S. Patent Nos.

25 972,638; 5,824,485 and 5,650,135 (as well as the references cited therein) the disclosures of which are herein incorporated by reference.

The subject fluorescent proteins also find use in applications involving the automated screening of arrays of cells expressing fluorescent reporting groups by using

microscopic imaging and electronic analysis. Screening can be used for drug discovery and in the field of functional genomics: e.g., where the subject proteins are used as markers of whole cells to detect changes in multicellular reorganization and migration, e.g., formation of multicellular tubules (blood vessel formation) by endothelial cells, migration of cells

5 through Fluoroblok Insert System (Becton Dickinson Co.), wound healing, neurite outgrowth, etc.; where the proteins are used as markers fused to peptides (e.g., targeting sequences) and proteins that allow the detection of change of intracellular location as indicator for cellular activity, for example: signal transduction, such as kinase and transcription factor translocation upon stimuli, such as protein kinase C, protein kinase A,

10 transcription factor NF^kB, and NFAT; cell cycle proteins, such as cyclin A, cyclin B1 and cyclinE; protease cleavage with subsequent movement of cleaved substrate, phospholipids, with markers for intracellular structures such as endoplasmic reticulum, Golgi apparatus, mitochondria, peroxisomes, nucleus, nucleoli, plasma membrane, histones, endosomes, lysosomes, microtubules, actin) as tools for High Content Screening: co-localization of

15 other fluorescent fusion proteins with these localization markers as indicators of movements of intracellular fluorescent fusion proteins/peptides or as marker alone; and the like. Examples of applications involving the automated screening of arrays of cells in which the subject fluorescent proteins find use include: U.S. Patent No. 5,989,835; as well as WO/0017624; WO 00/26408; WO 00/17643; and WO 00/03246; the disclosures of which

20 are herein incorporated by reference.

The subject fluorescent proteins also find use in high through-put screening assays. The subject fluorescent proteins are stable proteins with half-lives of more than 24h. Also provided are destabilized versions of the subject fluorescent proteins with shorter half-lives that can be used as transcription reporters for drug discovery. For example, a protein

25 according to the subject invention can be fused with a putative proteolytic signal sequence derived from a protein with shorter half-life, e.g., PEST sequence from the mouse ornithine decarboxylase gene, mouse cyclin B1 destruction box and ubiquitin, etc. For a description of destabilized proteins and vectors that can be employed to produce the same, see e.g.;

U.S. Patent No. 6,130,313; the disclosure of which is herein incorporated by reference.

Promoters in signal transduction pathways can be detected using destabilized versions of the subject fluorescent proteins for drug screening, e.g., AP1, NFAT, NFkB, Smad, STAT, p53, E2F, Rb, myc, CRE, ER, GR and TRE, and the like.

5 The subject proteins can be used as second messenger detectors, e.g., by fusing the subject proteins to specific domains: e.g., PKCgamma Ca binding domain, PKCgamma DAG binding domain, SH2 domain and SH3 domain, etc.

Secreted forms of the subject proteins can be prepared, e.g. by fusing secreted leading sequences to the subject proteins to construct secreted forms of the subject
10 proteins, which in turn can be used in a variety of different applications.

The subject proteins also find use in fluorescence activated cell sorting applications. In such applications, the subject fluorescent protein is used as a label to mark a population of cells and the resulting labeled population of cells is then sorted with a fluorescent activated cell sorting device, as is known in the art. FACS methods are described in U.S.
15 Patent Nos. 5,968,738 and 5,804,387; the disclosures of which are herein incorporated by reference.

The subject proteins also find use as in vivo marker in animals (e.g., transgenic animals). For example, expression of the subject protein can be driven by tissue specific promoters, where such methods find use in research for gene therapy, e.g., testing
20 efficiency of transgenic expression, among other applications. A representative application of fluorescent proteins in transgenic animals that illustrates this class of applications of the subject proteins is found in WO 00/02997, the disclosure of which is herein incorporated by reference.

Additional applications of the subject proteins include: as markers following injection
25 into cells or animals and in calibration for quantitative measurements (fluorescence and protein); as markers or reporters in oxygen biosensor devices for monitoring cell viability; as markers or labels for animals, pets, toys, food, etc.; and the like.

The subject fluorescent proteins also find use in protease cleavage assays. For example, cleavage inactivated fluorescence assays can be developed using the subject proteins, where the subject proteins are engineered to include a protease specific cleavage sequence without destroying the fluorescent character of the protein. Upon cleavage of the 5 fluorescent protein by an activated protease fluorescence would sharply decrease due to the destruction of a functional chromophor. Alternatively, cleavage activated fluorescence can be developed using the subject proteins, where the subject proteins are engineered to contain an additional spacer sequence in close proximity/or inside the chromophor. This variant would be significantly decreased in its fluorescent activity, because parts of the 10 functional chromophor would be divided by the spacer. The spacer would be framed by two identical protease specific cleavage sites. Upon cleavage via the activated protease the spacer would be cut out and the two residual "subunits" of the fluorescent protein would be able to reassemble to generate a functional fluorescent protein. Both of the above types of application could be developed in assays for a variety of different types of proteases, e.g., 15 caspases, etc.

The subject proteins can also be used in assays to determine the phospholipid composition in biological membranes. For example, fusion proteins of the subject proteins (or any other kind of covalent or non-covalent modification of the subject proteins) that allows binding to specific phospholipids to localize/visualize patterns of phospholipid 20 distribution in biological membranes also allowing colocalization of membrane proteins in specific phospholipid rafts can be accomplished with the subject proteins. For example, the PH domain of GRP1 has a high affinity to phosphatidyl-inositol tri-phosphate (PIP3) but not to PIP2. As such, a fusion protein between the PH domain of GRP1 and the subject proteins can be constructed to specifically label PIP3 rich areas in biological membranes.

25 Yet another application of the subject proteins is as a fluorescent timer, in which the switch of one fluorescent color to another (e.g. green to red) concomitant with the ageing of the fluorescent protein is used to determine the activation/deactivation of gene expression,

e.g., developmental gene expression, cell cycle dependent gene expression, circadian rhythm specific gene expression, and the like

The antibodies of the subject invention, described above, also find use in a number of applications, including the differentiation of the subject proteins from other fluorescent proteins.

KITS

Also provided by the subject invention are kits for use in practicing one or more of the above described applications, where the subject kits typically include elements for making the subject proteins, e.g., a construct comprising a vector that includes a coding region for the subject protein. The subject kit components are typically present in a suitable storage medium, e.g., buffered solution, typically in a suitable container. Also present in the subject kits may be antibodies to the provided protein. In certain embodiments, the kit comprises a plurality of different vectors each encoding the subject protein, where the vectors are designed for expression in different environments and/or under different conditions, e.g., constitutive expression where the vector includes a strong promoter for expression in mammalian cells, a promoterless vector with a multiple cloning site for custom insertion of a promoter and tailored expression, etc.

In addition to the above components, the subject kits will further include instructions for practicing the subject methods. These instructions may be present in the subject kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc. Yet another means would be a computer readable medium, e.g., diskette, CD, etc., on which the information has been recorded. Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.

The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

5 I. Characterization of CgCP

The nucleic acid sequence and deduced amino acid sequence of the wild type chromoprotein CgCP are provided in Figure 1. The absorption spectra of the wild type CgCP was measured using the protocol described in: Matz et al., Nature Biotech., 1999, 10 17: 969-973) and is provided in Figure 3.

II. Mutants

A. Generation of mutC148S

15

Upon alignment of the subject chromoprotein of SEQ ID NO:02 with GFP according to the protocol described in Matz et al., supra, residue 148 (numbering based on GFP) was identified as being occupied by a Cys residue instead of a Ser residue, were Ser 148 is present all of the fluorescent Anthozoa derived proteins disclosed in the Matz et al., reference, supra. Site-directed mutagenesis was employed to generate point mutants of the chromoprotein containing Ser at position 148. Mutagenesis was performed by the overlap extension method (Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R., 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59.). Briefly, two overlapping fragments of each FP coding region were amplified. "Forward cloning" (5' A CAT GGA TCC GCT GGT TTG TTG AAA GA-3') (SEQ ID NO:05) and "reverse mutagenesis" (5'-ATC TCA GTG CTT GGT TCC CAT-3') (SEQ ID NO:06) primers were used for 5'-end fragment amplification, and "forward mutagenesis" (5'-ATG GGA ACC AAG CAC TGA GAT-3') (SEQ ID NO:07) and "reverse cloning" (5'-TGA CAA

GCT TCT GGT GTC ACT GGG AAC AAT CA-3') (SEQ ID NO:08) primers were used for 3'-end fragment amplification. PCR was carried out using Advantage™ 2 Polymerase Mix (CLONTECH) in 1× manufacturer's buffer supplemented with 100 μM of each dNTP, 0.2 μM of each primer and 1 ng of plasmid DNA in 25 μl (final volume). The cycling parameters were set at: 95°C for 10 seconds, 65°C for 30 seconds, 72°C for 30 seconds. 20 cycles were completed using PTC-200 MJ Research Thermocycler. To remove plasmids encoding wild type proteins, the 5'- and 3'-fragments were excised from 2% low-melting agarose gel in 1× TAE buffer. To drain the DNA solution, the gel pieces were subjected to 3 freeze-thaw cycles. Then, 5'- and 3'-fragments were combined to obtain full-length cDNA as follows.

10 Equal volumes of 5'-fragment solution, 3'-fragment solution and 3 × PCR mixture containing Advantage 2 Polymerase Mix, buffer and dNTPs were mixed together and subjected to 2-3 cycles of 95°C for 20 s, 65°C for 30 minutes, 72°C for 30 s. Then, the reaction was diluted 10 fold and 1 μl of the diluted sample was used as a template for PCR with forward and reverse cloning primers (as described above for 5'- and 3'-fragments amplification). As a 15 result, ready-for-cloning fragment containing full-length coding regions with target substitution was generated. This single substitution dramatically increased the quantum yield of red fluorescence as compared to the wild type protein.

B. Characterization of fluorescent mutant C148S

20

The nucleic acid sequence and deduced amino acid sequence of mutC148S is provided in Figure 2, SEQ ID NOS. 03 and 04, respectively. The excitation and emission spectra of mutC148S was measured using the protocol describe in: Matz et al., Nature Biotech., 1999, 17: 969-973) and is provided in Figure 4.

25

III. Summary

The properties of wild-type CgCP and mutC148S are summarized in the table below.

SPECTRAL PROPERTIES

Species	nFP Name	Absorbance Maximum nm	Emission Maximum nm	Maximum Extinction Coeff.	Quantum Yield	Relative Brightness *
Condylactis gigantea	CgCP Wild Type	570	-	37,800	-	-
Condylactis gigantea	Mutant C148S	582	622	36000	0.01	0.02

5

*relative brightness is extinction coefficient multiplied by quantum yield divided by the same value for *A. victoria* GFP.

It is evident from the above discussion and results that the subject invention
 10 provides important new chromoproteins and fluorescent proteins and nucleic acids
 encoding the same. The subject proteins and nucleic acids find use in a variety of different
 applications. As such, the subject invention represents a significant contribution to the art.

All publications and patent applications cited in this specification are herein
 15 incorporated by reference as if each individual publication or patent application were
 specifically and individually indicated to be incorporated by reference. The citation of any
 publication is for its disclosure prior to the filing date and should not be construed as an
 admission that the present invention is not entitled to antedate such publication by virtue of
 prior invention.

20

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope
5 of the appended claims.

WHAT IS CLAIMED IS:

1. A nucleic acid present in other than its natural environment, wherein said nucleic acid encodes condylactin chromoprotein or fluorescent mutant thereof
5
2. The nucleic acid according to Claim 1, wherein said nucleic acid is isolated.
3. A nucleic acid present in other than its natural environment, wherein said nucleic acid encodes fluorescent protein having an emission maximum ranging from about 480 to
10 680 nm.
4. The nucleic acid according to Claim 3, wherein said nucleic acid is isolated.
5. A nucleic acid having a sequence of residues that is substantially the same as or
15 identical to a nucleotide sequence of at least 10 residues in length of SEQ ID NOS:01 or 3.
6. The nucleic acid according to Claim 5, wherein said nucleic acid has a sequence similarity of at least about 60% with a sequence of at least 10 residues in length selected from the group of sequences consisting of SEQ ID NOS: 01 or 03.
20
7. A fragment of the nucleic acid selected from the group consisting of:
 - (a) a nucleic acid that encodes Condylactin chromoprotein or fluorescent mutant thereof;
 - (b) a nucleic acid that encodes fluorescent protein having an emission maximum ranging from about 480 to 680 nm; and
 - (c) a nucleic acid having a sequence of residues that is substantially the same as or identical to a nucleotide sequence of at least 10 residues in length of SEQ ID NOS:01 or 03.

8. An isolated nucleic acid or mimetic thereof that hybridizes under stringent conditions to a nucleic acid selected from the group consisting of:

- (a) a nucleic acid that encodes Condylactin chromoprotein or fluorescent mutant thereof;
- 5 (b) a nucleic acid that encodes fluorescent protein having an emission maximum ranging from about 480 to 680 nm; and
- (c) a nucleic acid having a sequence of residues that is substantially the same as or identical to a nucleotide sequence of at least 10 residues in length of SEQ ID NOS:01
10 or 03;
or its complementary sequence.

9. A construct comprising a vector and a nucleic acid selected from the group consisting of:

- 15 (a) a nucleic acid that encodes Condylactin chromoprotein or fluorescent mutant thereof;
- (b) a nucleic acid that encodes fluorescent protein having an emission maximum ranging from about 480 to 680 nm; and
- (c) a nucleic acid having a sequence of residues that is substantially the same
20 as or identical to a nucleotide sequence of at least 10 residues in length of SEQ ID NOS:01 or 03.
(d) a fragment of the above nucleic acids; and
(e) a nucleic acid or the complement thereof that hybridizes under stringent conditions to the above nucleic acids.

25

10. An expression cassette comprising:

- (a) a transcriptional initiation region functional in an expression host;

- (b) a nucleic acid selected from the group consisting of the nucleic acids of
Claims 1 to 9; and
- (c) and a transcriptional termination region functional in said expression host.

5 11. A cell, or the progeny thereof, comprising an expression cassette according to
Claim 10 as part of an extrachromosomal element or integrated into the genome of a host
cell as a result of introduction of said expression cassette into said host cell.

10 12. A method of producing an Anthozoan chromo and/or fluorescent protein, said
method comprising:
growing a cell according to Claim 11, whereby said protein is expressed; and
isolating said protein substantially free of other proteins.

13. A protein or fragment thereof encoded by a nucleic acid selected from the group
consisting of Claims 1 to 9.

14. An antibody binding specifically to a protein according to Claim 13.

15. A transgenic cell or the progeny thereof comprising a transgene selected from the
group consisting of a nucleic acids according to any of Claims 1 to 9.

16. A transgenic organism comprising a transgene selected from the group consisting
of a nucleic acids according to any of Claims 1 to 9.

25 17. In an application that employs a chromo- or fluorescent protein, the improvement
comprising:
employing a protein according to Claim 13.

18. In an application that employs a nucleic acid encoding a chromo- or fluorescent protein, the improvement comprising:

employing a nucleic acid according to Claims 1 to 9.

5 19. A kit comprising a nucleic acid according to Claims 1 to 9 and instructions for using said nucleic acid.

Fig. 1

Sequence Data

Condylactis gigantea chromoprotein wild type

10 20 30 40 50 60
 'AAAACGAAAGTTAGACGAAAACCTACACAGATTACATTCTCCTGATCGATCCTAACAT
 M
 70 80 90 100 110 120
 GGCTGGTTGAAAGAAAGTATGCGCATCAAGATCTACATGGAAGGGACAGTCATGG
 A G L L K E S M R I K I Y M E G T V N G
 130 140 150 160 170 180
 CTACCATTCAGTGCAGAAGGAGAAGGGAGACGCCATCCATTGAAAGGTACGCAGAACAT
 Y H F K C E G E G D G N P F E G T Q N M
 190 200 210 220 230 240
 GAGGATTCTGTCACCGAAGGAGCTCCATTACCATTGCCCTCGACATTTGTCACCGTG
 R I R V T E G A P L P F A F D I L S P C
 250 260 270 280 290 300
 TTGTGCCCTACGGCAGCAAGACCTTCATCAAACATACTTCAGGGATTCCGACTACTCAA
 C A Y G S K T F I K H T S G I P D Y F K
 310 320 330 340 350 360
 GCAGTCTTCCCTGAAGGCTTACTTGGGAAAGAACCAATCTATGAAGATGGAGGAGT
 Q S F P E G F T W E R T T I Y E D G G V
 370 380 390 400 410 420
 TCTAACTGCTCATCAGGACACAAGCCTCGAGGGAACTGCCATTATTAACAGGTGAAAGT
 L T A H Q D T S L E G N C L I Y K V K V
 430 440 450 460 470 480
 ACTTGGTACCAACTTCCCTGCTGACGGCCCCGTGATGAAGAAAATATCAGGAGGATGGGA
 L G T N F P A D G P V M K K I S G G W E
 490 500 510 520 530 540
 ACCATGCACTGAGATGTTTATCAAGACAATGGTGTCTCGCTGGACGTAATGTGATGCC
 P C T E I V Y Q D N G V L R G R N V M A
 550 560 570 580 590 600
 CCTTAAAGTCAGTGGTCGTCCTCCTTGATCTGCATCTCCATTCTACTTACAGGTCCAA
 L K V S G R P P L I C H L H S T Y R S K
 610 620 630 640 650 660
 GAAAGCCTGTGCCATTGACCATGCCAGGATTTCATTCGAGACCTCCGCATTGAGATGCC
 K A C A L T M P G F H F A D L R I Q M P
 670 680 690 700 710 720
 GAAGAAAAAGAAAGACGAGTACTTGAACGTACGAAGCATCGGTGGCTAGGTACAGTG
 K K K K D E Y F E L Y E A S V A R Y S D
 730 740 750 760 770 780
 TGTTCTGAAAAAGCAACTTGATTGTTCCCAC TGAAACACCAGGCTGCTGTCTGCTTGA
 V P E K A T *
 790 800 810 820 830
 TTCAAGTCCTAAAGACAAAGGGACATTCAATTATAGTTAGTTCTGTTCTGATC 3'
 (SEQ ID NO:
 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4098 4100 4102 4104 4106 4108 4110 4112 4114 4116 4118 4120 4122 4124 4126 4128 4130 4132 4134 4136 4138 4140 4142 4144 4146 4148 4150 4152 4154 4156 4158 4160 4162 4164 4166 4168 4170 4172 4174 4176 4178 4180 4182 4184 4186 4188 4190 4192 4194 4196 4198 4200 4202 4204 4206 4208 4210 4212 4214 4216 4218 4220 4222 4224 4226 4228 4230 4232 4234 4236 4238 4240 4242 4244 4246 4248 4250 4252 4254 4256 4258 4260 4262 4264 4266 4268 4270 4272 4274 4276 4278 4280 4282 4284 4286 4288 4290 4292 4294 4296 4298 4300 4302 4304 4306 4308 4310 4312 4314 4316 4318 4320 4322 4324 4326 4328 4330 4332 4334 4336 4338 4340 4342 4344 4346 4348 4350 4352 4354 4356 4358 4360 4362 4364 4366 4368 4370 4372 4374 4376 4378 4380 4382 4384 4386 4388 4390 4392 4394 4396 4398 4400 4402 4404 4406 4408 4410 4412 4414 4416 4418 4420 4422 4424 4426 4428 4430 4432 4434 4436 4438 4440 4442 4444 4446 4448 4450 4452 4454 4456 4458 4460 4462 4464 4466 4468 4470 4472 4474 4476 4478 4480 4482 4484 4486 4488 4490 4492 4494 4496 4498 4500 4502 4504 4506 4508 4510 4512 4514 4516 4518 4520 4522 4524 4526 4528 4530 4532 4534 4536 4538 4540 4542 4544 4546 4548 4550 4552 4554 4556 4558 4560 4562 4564 4566 4568 4570 4572 4574 4576 4578 4580 4582 4584 4586 4588 4590 4592 4594 4596 4598 4600 4602 4604 4606 4608 4610 4612 4614 4616 4618 4620 4622 4624 4626 4628 4630 4632 4634 4636 4638 4640 4642 4644 4646 4648 4650 4652 4654 4656 4658 4660 4662 4664 4666 4668 4670 4672 4674 4676 4678 4680 4682 4684 4686 4688 4690 4692 4694 4696 4698 4700 4702 4704 4706 4708 4710 4712 4714 4716 4718 4720 4722 4724 4726 4728 4730 4732 4734 4736 4738 4740 4742 4744 4746 4748 4750 4752 4754 4756 4758 4760 4762 4764 4766 4768 4770 4772 4774 4776 4778 4780 4782 4784 4786 4788 4790 4792 4794 4796 4798 4800 4802 4804 4806 4808 4810 4812 4814 4816 4818 4820 4822 4824 4826 4828 4830 4832 4834 4836 4838 4840 4842 4844 4846 4848 4850 4852 4854 4856 4858 4860 4862 4864 4866 4868 4870 4872 4874 4876 4878 4880 4882 4884 4886 4888 4890 4892 4894 4896 4898 4900 4902 4904 4906 4908 4910 4912 4914 4916 4918 4920 4922 4924 4926 4928 4930 4932 4934 4936 4938 4940 4942 4944 4946 4948 4950 4952 4954 4956 4958 4960 4962 4964 4966 4968 4970 4972 4974 4976 4978 4980 4982 4984 4986 4988 4990 4992 4994 4996 4998 5000 5002 5004 5006 5008 5010 5012 5014 5016 5018 5020 5022 5024 5026 5028 5030 5032 5034 5036 5038 5040 5042 5044 5046 5048 5050 5052 5054 5056 5058 5060 5062 5064 5066 5068 5070 5072 5074 5076 5078 5080 5082 5084 5086 5088 5090 5092 5094 5096 5098 5100 5102 5104 5106 5108 5110 5112 5114 5116 5118 5120 5122 5124 5126 5128 5130 5132 5134 5136 5138 5140 5142 5144 5146 5148 5150 5152 5154 5156 5158 5160 5162 5164 5166 5168 5170 5172 5174 5176 5178 5180 5182 5184 5186 5188 5190 5192 5194 5196 5198 5200 5202 5204 5206 5208 5210 5212 5214 5216 5218 5220 5222 5224 5226 5228 5230 5232 5234 5236 5238 5240 5242 5244 5246 5248 5250 5252 5254 5256 5258 5260 5262 5264 5266 5268 5270 5272 5274 5276 5278 5280 5282 5284 5286 5288 5290 5292 5294 5296 5298 5300 5302 5304 5306 5308 5310 5312 5314 5316 5318 5320 5322 5324 5326 5328 5330 5332 5334 5336 5338 5340 5342 5344 5346 5348 5350 5352 5354 5356 5358 5360 5362 5364 5366 5368 5370 5372 5374 5376 5378 5380 5382 5384 5386 5388 5390 5392 5394 5396 5398 5400 5402 5404 5406 5408 5410 5412 5414 5416 5418 5420 5422 5424 5426 5428 5430 5432 5434 5436 5438 5440 5442 5444 5446 5448 5450 5452 5454 5456 5458 5460 5462 5464 5466 5468 5470 5472 5474 5476 5478 5480 5482 5484 5486 5488 5490 5492 5494 5496 5498 5500 5502 5504 5506 5508 5510 5512 5514 5516 5518 5520 5522 5524 5526 5528 5530 5532 5534 5536 5538 5540 5542 5544 5546 5548 5550 5552 5554 5556 5558 5560 5562 5564 5566 5568 5570 5572 5574 5576 5578 5580 5582 5584 5586 5588 5590 5592 5594 5596 5598 5600 5602 5604 5606 5608 5610 5612 5614 5616 5618 5620 5622 5624 5626 5628 5630 5632 5634 5636 5638 5640 5642 5644 5646 5648 5650 5652 5654 5656 5658 5660 5662 5664 5666 5668 5670 5672 5674 5676 5678 5680 5682 5684 5686 5688 5690 5692 5694 5696 5698 5700 5702 5704 5706 5708 5710 5712 5714 5716 5718 5720 5722 5724 5726 5728 5730 5732 5734 5736 5738 5740 5742 5744 5746 5748 5750 5752 5754 5756 5758 5760 5762 5764 5766 5768 5770 5772 5774 5776 5778 5780 5782 5784 5786 5788 5790 5792 5794 5796 5798 5800 5802 5804 5806 5808 5810 5812 5814 5816 5818 5820 5822 5824 5826 5828 5830 5832 5834 5836 5838 5840 5842 5844 5846 5848 5850 5852 5854 5856 5858 5860 5862 5864 5866 5868 5870 5872 5874 5876 5878 5880 5882 5884 5886 5888 5890 5892 5894 5896 5898 5900 5902 5904 5906 5908 5910 5912 5914 5916 5918 5920 5922 5924 5926 5928 5930 5932 5934 5936 5938 5940 5942 5944 5946 5948 5950 5952 5954 5956 5958 5960 5962 5964 5966 5968 5970 5972 5974 5976 5978 5980 5982 5984 5986 5988 5990 5992 5994 5996 5998 5999 6000

(SEQ ID NO:1 - nt)
(SEQ ID NO:2 - aa)

Fig. 2

Condylactis gigantea fluorescent protein mutant C148S (numbering according to GFP)

70 80 90 100 110 120
GCTGGTTTGTGAAAGAAAGTATGCCATCAAGATCTACATGGAAAGGGACAGTCATGG
A G L L K E S M R I K I Y M E G T V N G

130 140 150 160 170 180
CTACCATTCAAGTGCAGGAAGGAGAACGGACGGCAATCCATTGAAGGTACGCAGAACAT
Y H F K C E G E G D G N P F E G T Q N M

190 200 210 220 230 240
GAGGATTCTGTCACCGAAGGGAGCTCATTACCATTTGCCTCGACATTTCACCGTG
R I R V T E G A P L P F A F D I L S P C

250 260 270 280 290 300
TTGTGCCTACGGCAGCAAGACCTTCATCAAACATACTTCAGGGATTCCGACTACTTCAA
C A Y G S K T F I K H T S G I P D Y F K

310 320 330 340 350 360
GCAGTCTTCCCTGAAGGCTTACTTGGAAAGAACCAATCTATGAAGATGGAGGAGT
Q S F P E G F T W E R T T I Y E D G G V

370 380 390 400 410 420
TCTAACTGCTCATCAGGACACAAGCCTCGAGGGGAACCGCCTTATTTACAAGGTGAAAGT
L T A H Q D T S L E G N C L I Y K V K V

430 440 450 460 470 480
ACTTGGTACCAACTTCCTGCTGACGGCCCCGTGATGAAGAAAATATCAGGAGGATGGGA
L G T N F P A D G P V M K K I S G G W E

490 500 510 520 530 540
ACCAAGCACTGAGATCGTTATCAAGACAATGGTGTCTGCCTGGACGTAATGTGATGGC
P S T E I V Y Q D N G V L R G R N V M A

550 560 570 580 590 600
CCTTAAAGTCAGGGTCGTCCTCCTTGATCTGCCATCTCATTCTACAGGTCCAA
L K V S G R P P L I C H L H S T Y R S K

610 620 630 640 650 660
GAAAGCCTGTGCCCTGACCATGCCAGGATTCATTGCGACCTCCGCATTCAAGATGCC
K A C A L T M P G F H F A D L R I Q M P

670 680 690 700 710 720
GAAGAAAAAGAAAGACGAGTACTTGAACGTACGAAGCATCGTGGCTAGGTACAGTGA
K K K K D E Y F E L Y E A S V A R Y S D

730 740
TGTTCTGAAAAGCAACTTGA
V P E K A T *

(SEQ ID NO:3 - nt)
(SEQ ID NO:4 - aa)

Figure 3

Figure 4

SEQUENCE LISTING

<110> Clontech Laboratories, Inc.

<120> ANTHOZOA DERIVED CHROMOPROTEINS,
FLUORESCENT MUTANTS THEREOF AND METHODS FOR USING THE SAME

<130> CLON-066WO

<150> 60/255,533

<151> 2000-12-13

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 835

<212> DNA

<213> Condylacin gigantea

<400> 1

aaaacgaaag ttttagacgaa aacttacaca gattacattc tcctgatcga tccttaacat 60
ggctggttt ttgaaagaaa gtatgcgcat caagatctac atggaaggga cagtcaatgg 120
ctaccattc aagtgcgaag gagaaggaga cggcaatcca tttgaaggta cgcagaacat 180
gaggattcgt gtcaccgaag gagctccatt accatttgcc ttgcacattt tgtcaccgtg 240
tttgtgcctac ggcagcaaga ccttcatcaa acatacttca gggattcccg actacttcaa 300
gcagtcttc cctgaaggct ttacttggga aagaaccaca atctatgaag atggaggagt 360
tctaactgct catcaggaca caaggcctcga gggaaactgc cttatttaca agtgaaagt 420
acttggtacc aacttccctg ctgacggccc cgtgatgaag aaaatatcag gaggatggg 480
accatgcact gagatcgtt atcaagacaa tggtgtcctg cgtggacgta atgtgatggc 540
ccttaaagtc agtggtcgtc ctcccttgat ctgccatctc cattctactt acaggtccaa 600
gaaaggctgt gccttgacca tgccaggatt tcatttcgca gacctccgca ttcagatgcc 660
gaagaaaaag aaagacgagt actttgaact gtacgaagca tcggtggtca ggtacagtga 720
tgttcctgaa aaagcaactt gattgttccc actgaacacc aggctgctgt ctgctttga 780
ttcaagtccct aaagacaaag ggacattcaa ttatagttt agttttctgt tcatc 835

<210> 2

<211> 227

<212> PRT

<213> condylactis gigantea

<400> 2

Met Ala Gly Leu Leu Lys Glu Ser Met Arg Ile Lys Ile Tyr Met Glu
1 5 10 15

Gly Thr Val Asn Gly Tyr His Phe Lys Cys Glu Gly Glu Asp Gly
20 25 30

Asn Pro Phe Glu Gly Thr Gln Asn Met Arg Ile Arg Val Thr Glu Gly
35 40 45

Ala Pro Leu Pro Phe Ala Phe Asp Ile Leu Ser Pro Cys Cys Ala Tyr
50 55 60

Gly Ser Lys Thr Phe Ile Lys His Thr Ser Gly Ile Pro Asp Tyr Phe
65 70 75 80

Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr
85 90 95

Glu Asp Gly Gly Val Leu Thr Ala His Gln Asp Thr Ser Leu Glu Gly
100 105 110

Asn Cys Leu Ile Tyr Lys Val Lys Val Leu Gly Thr Asn Phe Pro Ala
115 120 125

Asp Gly Pro Val Met Lys Lys Ile Ser Gly Gly Trp Glu Pro Cys Thr
130 135 140

Glu Ile Val Tyr Gln Asp Asn Gly Val Leu Arg Gly Arg Asn Val Met

145	150	155	160
Ala Leu Lys Val Ser Gly Arg Pro Pro Leu Ile Cys His Leu His Ser			
165	170	175	
Thr Tyr Arg Ser Lys Lys Ala Cys Ala Leu Thr Met Pro Gly Phe His			
180	185	190	
Phe Ala Asp Leu Arg Ile Gln Met Pro Lys Lys Lys Asp Glu Tyr			
195	200	205	
Phe Glu Leu Tyr Glu Ala Ser Val Ala Arg Tyr Ser Asp Val Pro Glu			
210	215	220	
Lys Ala Thr			
225			

<210> 3
<211> 681
<212> DNA
<213> condylactis gigantea

<400> 3

gctggtttgt	tgaaagaaaag	tatgcgcatac	aagatctaca	tggaaggac	agtcaatggc	60
taccatttca	agtgcgaagg	agaaggagac	ggcaatccat	ttgaaggtag	gcagaacatg	120
aggattcgtg	tcaccgaagg	agctccatta	ccatttgcc	tgcacat	ttt gtcaccgtgt	180
tgtgcctacg	gcagcaagac	cttcatcaaa	cataacttcag	ggattcccga	ctacttcaag	240
cagtctttcc	ctgaaggctt	tacttggaa	agaaccacaa	tctatgaaga	tggaggagtt	300
ctaactgctc	atcaggacac	aagcctcgag	gggaactgccc	ttatttacaa	ggtgaaaagta	360
cttggtagcca	acttccctgc	tgacggcccc	gtgatgaaga	aaatatcagg	aggatggaa	420
ccaagcactg	agatcgaaaa	tcaagacaaat	ggtgtcctgc	gtggacgtaa	tgtgatggcc	480
cttaaagtca	gtggcgtcc	tcctttgatc	tgccatctcc	attctactta	caggtccaag	540
aaagcctgtg	ccttgaccat	gccaggattt	catttcgcag	acctccgcat	tcaagatgccg	600
aagaaaaaaga	aagacgagta	ctttgaactg	tacgaagcat	cggtggctag	gtacagtgtat	660
gttcctgaaa	aagcaacttg	a				681

<210> 4
<211> 226
<212> PRT
<213> condylatis gigantea

<400> 4

Ala Gly Leu Leu Lys Glu Ser Met Arg Ile Lys Ile Tyr Met Glu Gly			
1	5	10	15
Thr Val Asn Gly Tyr His Phe Lys Cys Glu Gly Glu Gly Asp Gly Asn			
20	25	30	
Pro Phe Glu Gly Thr Gln Asn Met Arg Ile Arg Val Thr Glu Gly Ala			
35	40	45	
Pro Leu Pro Phe Ala Phe Asp Ile Leu Ser Pro Cys Cys Ala Tyr Gly			
50	55	60	
Ser Lys Thr Phe Ile Lys His Thr Ser Gly Ile Pro Asp Tyr Phe Lys			
65	70	75	80
Gln Ser Phe Pro Glu Gly Phe Thr Trp Glu Arg Thr Thr Ile Tyr Glu			
85	90	95	
Asp Gly Gly Val Leu Thr Ala His Gln Asp Thr Ser Leu Glu Gly Asn			
100	105	110	
Cys Leu Ile Tyr Lys Val Lys Val Leu Gly Thr Asn Phe Pro Ala Asp			
115	120	125	
Gly Pro Val Met Lys Lys Ile Ser Gly Gly Trp Glu Pro Ser Thr Glu			
130	135	140	
Ile Val Tyr Gln Asp Asn Gly Val Leu Arg Gly Arg Asn Val Met Ala			
145	150	155	160
Leu Lys Val Ser Gly Arg Pro Pro Leu Ile Cys His Leu His Ser Thr			
165	170	175	
Tyr Arg Ser Lys Lys Ala Cys Ala Leu Thr Met Pro Gly Phe His Phe			
180	185	190	
Ala Asp Leu Arg Ile Gln Met Pro Lys Lys Lys Asp Glu Tyr Phe			
195	200	205	

Glu Leu Tyr Glu Ala Ser Val Ala Arg Tyr Ser Asp Val Pro Glu Lys
210 215 220
Ala Thr
225

<210> 5
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 5
acatggatcc gctgggttgc tgaaaga 27

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 6
atctcagtgc ttgggtccca t 21

<210> 7
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 7
atgggaacca agcactgaga t 21

<210> 8
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 8
tgacaagctt ctgggtcac tgggaaacaat ca 32

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.