

Two Dimensional Random Variables (continued)

Definition 3.3

- 1. (X,Y) is a two-dimensional **discrete** random variable if the possible values of (X(s),Y(s)) are finite or countable infinite.
 - i.e. the possible values of (X(s), Y(s)) may be represented as $(x_i, y_j), i = 1, 2, 3, \dots; j = 1, 2, 3, \dots$
- 2. (X,Y) is a two-dimensional **continuous** random variable if the possible values of (X(s),Y(s)) can assume all values in some region of the Euclidean plane \mathbb{R}^2 .

ST2334 Probability and Statistics

CYN

2-dim RVs & cond prob dist 3-6

To judge whether a two dimensional random vector (X, Y) is discrete or continuous, we can view X and Y separately.

- ✓ If both X and Y are discrete random variables, we say (X,Y) is a discrete random vector.
- \checkmark Likewise, if both X and Y are continuous random variables, we say (X,Y) is a continuous random vector.
- \checkmark Certainly, there are other cases. For example, X is discrete, but Y is continuous, or Y is neither a discrete nor a continuous random variable. But these are not the main focus of this module.

3.2.1 Joint Probability Function for Discrete RVs

Definition 3.4

- Let (X, Y) be a 2-dimensional **discrete** random variable defined on the sample space of an experiment. With each possible value (x_i, y_j) , we associate a number $f_{X,Y}(x_i, y_j)$ representing $Pr(X = x_i, Y = y_j)$ and satisfying the following conditions:
- 1. $f_{X,Y}(x_i, y_j) \ge 0$ for all $(x_i, y_j) \in R_{X,Y}$.
- $2. \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \Pr(X = x_i, Y = y_j) = 1$ (3.1)

ST2334 Probability and Statistics

CYIV

2-dim RVs & cond prob dist 3-10

Equation (3.1) on this page of the lecture slide essentially requires that the summation over all $f(x_i, y_j) > 0$ equals 1. It can be equivalently written as

$$\sum_{(x_i, y_j): f_{X,Y}(x_i, y_j) > 0} f_{X,Y}(x_i, y_j) = 1.$$

Note that in this case, $f_{X,Y}(x_i, y_j)$ may not be defined for some x_i and y_j ; see the distribution given on page 3-20. So, in this case, if you would like to add i = 0, 1, 2, 3 and j = 0, 1, 2, 3 freely, you need use 0 to replace those $f_{X,Y}(x, y)$ who does not have a point mass on (x, y).

Solution to Example 3 (Continued)

The above p.f. are given explicitly in the following table.

х		Row			
	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

ST2334 Probability and Statistics

CYM

2-dim RVs & cond prob dist 3-20

Joint pdf for Continuous RVs (Continued)

1. $f_{X,Y}(x,y) \ge 0$ for all $(x,y) \in R_{X,Y}$.

2.

$$\iint_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y)dx dy = 1$$

or

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \, dy = 1.$$

ST2334 Probability and Statistics

CYM

2-dim RVs & cond prob dist 3-22

- ✓ In most cases of this module, when we do the bivariate integration, the integration region is a rectangular; therefore, the variables x and y can be integrated separately; and the order of which is integrated first does not matter. See examples 3-24, 3-28, and 3-29.
- ✓ However, we need to bear in mind that there are cases under which the integration region is NOT a rectangular, so that x and y can not move freely for a unified expression of $f_{X,Y}(x,y)$. See the example given on pages 3-25, 3-26, and 3-27 of the lecture slides: the region is defined by straight lines such as a triangle or a trapezium.

Note: when we integrate a two dimensional function in a region which is not a rectangular, we need to take care that x and y may not move freely! Based on mathematical theory, integrating which variable first won't change the outcome of the integration; however, a right choice of integration order may make the computation easier; read pages 3-25 to 3-26 carefully for such an example.

Marginal Distributions (Continued)

• For **discrete** case,

$$f_X(x) = \sum_{y} f_{X,Y}(x,y)$$
 and $f_Y(y) = \sum_{x} f_{X,Y}(x,y)$

• For continuous case,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

and

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

ST2334 Probability and Statistics

2-dim RVs & cond prob dist 3-31

The practical interpretation of the marginal distribution for X is: focusing on viewing the distribution of X by ignoring the presence of Y. Note that

- \bigstar $f_X(x)$ should NOT involve y; and
- ★ it is a pdf/pmf; so it must have all the properties of a pdf/pmf.

If (X, Y) is discrete, then the marginals are also discrete; likewise, if (X, Y) is continuous, the marginals are also continuous.

The meaning of the formulae for $f_X(x)$ is that "for each given x, integrate (or sum) over all the value of y such that $f_{X,Y}(x,y) > 0$." So, similar to the discussion of page 4 above, we need to take care of the region of y for each x.

Conditional Distribution (Continued)

Definition 3.7 (Continued)

• Then the conditional distribution of Y given that X = x is given by

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}, \quad \text{if } f_X(x) > 0,$$

for each *x* within the range of *X*.

ST2334 Probability and Statistics

CYM

2-dim RVs & cond prob dist 3-41

- \checkmark The condition distribution is similar in meaning to the condition probability. It is the distribution of the random variable of Y when the random X is fixed at a certain value x.
- \checkmark It is important to take note that it is a distribution for y, so it must satisfies all the properties of a pdf/pmf in terms of the argument y for every x that it is defined.
- ✓ It may or may not be a function of x. But it is defined only when x satisfies $f_X(x) > 0$. If it does not depend on x, then we have X and Y independent.
- ✓ It is not a pdf/pmf for x. So there is NO requirement that $\int_{-\infty}^{\infty} f_{Y|X}(y|x)dx = 1$ when Y is continuous or $\sum_{x} f_{Y|X}(y|x) = 1$, when Y is discrete.
- ✓ Can you find $f_{Y|X}(y|x)$ for the example given on page 5?

Example 1 (Continued)

• $f_{X,Y}(x,y)$, $f_X(x)$ and $f_Y(y)$ are displayed in the following table

27		f (ar)					
У	0	1	2	3	4	5	$f_{Y}(y)$
0	0	0.01	0.02	0.05	0.06	0.08	0.22
1	0.01	0.03	0.04	0.05	0.05	0.07	0.25
2	0.02	0.03	0.05	0.06	0.06	0.07	0.29
3	0.02	0.04	0.03	0.04	0.06	0.05	0.24
$f_X(x)$	0.05	0.11	0.14	0.20	0.23	0.27	1

ST2334 Probability and Statistics

CYM

2-dim RVs & cond prob dist 3-36

Example 1 (Continued)

Outcome	ннн	THH	HTH	ННТ	TTH	THT	HTT	TTT
(x,y)	(1,3)	(1,2)	(1,2)	(0,2)	(1,1)	(0,1)	(0,1)	(0,0)
$f_{XY}(x,y)$	1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8

• The joint probability distribution of (X, Y) is given in the following table: y

24		f (m)			
х	0	1	2	3	$f_X(x)$
0	1/8	1/4	1/8	0	1/2
1	0	1/8	1/4	1/8	1/2
$f_{Y}(y)$	1/8	3/8	3/8	1/8	1

ST2334 Probability and Statistics

CYIV

2-dim RVs & cond prob dist 3-47

For a discrete random vector (X, Y). The two-dimensional tables as shown in these slides are particularly useful to help us understand the joint, marginal, and the conditional distributions.