

1

回忆: 计算机的工作过程

int a=2,b=3,c=1,y=0; void main(){ y=a*b+c;

程序计数器 PC: 指明下一条指 令的存放地址

下一条指令的地址: (PC)+1 → PC

主存 地址	指令		.»1- 4∇. ∇\$
	操作码	地址码	注释
0	000001	0000000101	取数a至ACC
1	000100	0000000110	乘b得ab,存于ACC中
2	000011	0000000111	加c得ab+c,存于ACC中
3	000010	0000001000	将ab+c,存于主存单元
4	000110	0000000000	停机
5	00000000000000010		原始数据a=2
6	00000000000000011		原始数据b=3
7	000000000000000001		原始数据c=1
8	00000000000000000		原始数据y=0
•			

存储字长 =16bit

王道考研/CSKAOYAN.COM

指令寻址

下一条 欲执行 指令 的 地址 指令寻址

(始终由程序计数器PC给出)

 $(PC) + 1 \longrightarrow PC$

指令地址 0

3

0001001111101000
0011001111101001
0010010010110000
1001000000000111
0001011111010000
0100011111010001
0101011111010001
0001100111000100

该系统采用<mark>定长指令字结构</mark>

指令字长=存储字长=16bit=2B

主存<mark>按字编址</mark>

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址 地址码 指令地址 操作码 $(PC) + 1 \longrightarrow PC$ LDA 1000 0 该系统采用<mark>定长指令字结构</mark> ADD 1001 1 指令字长=存储字长=16bit=2B DEC 1200 JMP 主存按字编址 LDA 2000 **SUB** 2001 INC 6 LDA 1100 王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址 地址码 指令地址 操作码 $(PC) + 1 \longrightarrow PC$ LDA 1000 0 该系统采用定长指令字结构 ADD 1 1001 指令字长=存储字长=16bit=2B DEC 1200 2 JMP 主存按字编址 LDA 2000 **SUB** 2001 INC 6 LDA 1100 王道考研/CSKAOYAN.COM

指令寻址 指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) $(PC) + 1 \longrightarrow PC$ 指令地址 操作码 地址码 LDA 1000 该系统采用定长指令字结构 ADD 1001 指令字长=存储字长=16bit=2B DEC 1200 2 3 JMP 主存按字编址 LDA 2000 SUB 2001 5 INC 6 LDA 1100 王道考研/CSKAOYAN.COM

指令寻址

下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址

指令地址 0

2

4

6

8

 $(PC) + 2 \longrightarrow PC$

该系统采用定长指令字结构

指令字长=存储字长=16bit=2B

主存按字节编址

王道考研/CSKAOYAN.COM

指令寻址

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出)

读入一个字,根据操作码判 断这条指令的总字节数 n, 修改PC的值

 $(PC) + n \longrightarrow PC$

根据指令的类型,CPU可能还要进 行多次访存,每次读入一个字

指令地址

12

14

0001001111101000 0 2 0011001111101001 0010010010110000 1001000000000111 6 0001011111010000 8 0100011111010001 10

0101011111010001

0001100111000100

该系统采用变长指令字结构 指令字长-存储字长-16bit-2B

主存按<mark>字节</mark>编址

王道考研/CSKAOYAN.COM

10

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址 顺序寻址 王道考研/CSKAOYAN.COM

指令寻址
指令寻址
下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出)

指令地址

6

跳跃寻址 由转移指令指出

顺序寻址

 $(PC) + "1" \longrightarrow PC$

DEC 1200
3 JMP 7
4 LDA 2000
5 SUB 2001

INC

LDA

操作码

地址码

1100

道 该系统采用<mark>定长指令字结构</mark> 指令字长=存储字长=16bit=2B 主存<mark>按字编址</mark>

王道考研/CSKAOYAN.COM

14

王道考研/CSKAOYAN.COM

指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) 指令寻址 地址码 (PC) + "1" → PC 指令地址 操作码 顺序寻址 LDA 1000 0 该系统采用定长指令字结构 跳跃寻址 由转移指令指出 ADD 1001 1 指令字长=存储字长=16bit=2B DEC 1200 2 JMP 7 主存按字编址 LDA 2000 SUB 2001 5 INC 6 LDA 1100

15

指令寻址 指令寻址 下一条 欲执行 指令 的 地址 (始终由程序计数器PC给出) $(PC) + "1" \longrightarrow PC$ 地址码 顺序寻址 指令地址 操作码 LDA 1000 该系统采用定长指令字结构 跳跃寻址 由转移指令指出 ADD 1001 顺序寻址 1 指令字长=存储字长=16bit=2B 1200 DEC 顺序寻址 2 7 JMP 7 顺序寻址 3 主存<mark>按字编址</mark> LDA 2000 4 JMP: 无条件转移 SUB 2001 5 把PC中的内容改成7 INC 6 跳跃寻址 7 1100 LDA 王道考研/CSKAOYAN.COM

19

20