Deep Learning Final Project

Few Shot Forgery Detection

Group 1 余振揚 NM6121030 機器人、徐仁瓏 RE6121011 數據所 梁菁芸 Q36134182 電通所、鄭翊宏 P76121657 資工所

Outline

- 1. Goal
- 2. Dataset
- 3. Detection Pipeline
- 4. Proposed Pipeline
- 5. Training Phase
- 6. Testing Phase
- 7. Implementation Detail
- 8. Results
- 9. Conclusion

Goal

1. Classify if a video is real or fake

2. Disscuss transfer learning performance on few-shot sample finetuning

Dataset (FaceForensics++ & Celeb-DF)

Dataset Comparison

Dataset	#]	Real	# DeepFake		Release Date	
Dataset	Video	Frame	Video	Frame	Release Date	
UADFV	49	17.3k	49	17.3k	2018.11	
DF-TIMIT-LQ	320*	34.0k	320	34.0k	2018.12	
DF-TIMIT-HQ	320	34.UK	320	34 0k	2016.12	
FF-DF	1,000	509.9k	1,000	509.9k	2019.01	
DFD	363	315.4k	3,068	2,242.7k	2019.09	
DFDC	1,131	488.4k	4,113	1,783.3k	2019.10	
Celeb-DF	590	225.4k	5,639	2,116.8k	2019.11	

Table 1. Basic information of various DeepFake video datasets. *: the original videos in DF-TIMIT are from Vid-TIMIT dataset.

Detection Pipeline

- * Face Detection done by dlib
- * Classification Model: MesoNet, XceptionNet, EfficientNet

Proposed Pipeline

Training Phase

Fake

Real

Dataloader: random split the fake/real video frame

Training Phase

Dataloader: random split the fake/real video frame

Testing Phase

We classify a video to be real/fake based on the average predicted label

Testing Phase

We classify a video to be real/fake based on the average predicted label

Implementation Detail

model pretrained on face forensics ++ c23

models: MesoNet(2018), XceptionNet(2016), EfficientNet(2019)

finetune 1%, 5%, 10%, 50%, 100% Celeb-DF

- training set: 1%, 5%, 10%, 50%, 100%
- validation set: 1%
- testing set: all Celeb-DF official testing set

Hyperparameter

- Loss: Cross Entropy

- Optimizer: Adam

- Learning rate: 0.001

- Scheduler: StepLR, step size=5

- Epoch

	1%-shot	5%-shot	10%-shot	50%-shot	100%-shot
Epoch	100	100	100	50	30

Result - MesoNet

In-dataset

FF++(c23)					
Accuracy F1-Score Recall Precision AUC					
0.884	0.8131	0.8038	0.8237	0.9191	

Cross-dataset

Celeb-DF(v2)					
Accuracy F1-Score Recall Precision AUC					
0.8475	0.6748	0.7488	0.6467	0.8273	

Result - MesoNet

	Celeb-DF(v2)					
	Accuracy	F1-Score	Recall	Precision	AUC	
zero-shot	0.8475	0.6748	0.7488	0.6467	0.8273	
1%-shot	0.4719	0.3935	0.5262	0.5091	0.5172	
5%-shot	0.1108	0.1052	0.5089	0.5481	0.4471	
10%-shot	0.252	0.2484	0.5717	0.5449	0.5747	
50%-shot	0.8828	0.5391	0.5331	0.571	0.484	
100%-shot	0.9839	0.9493	0.9153	0.9913	0.9998	

Result - Xception

In-dataset

FF++(c23)					
Accuracy F1-Score Recall Precision AUC					
0.966	0.9471	0.9488	0.9454	0.9935	

Cross-dataset

Celeb-DF(v2)					
Accuracy F1-Score Recall Precision AUC					
0.9133	0.6393	0.6031	0.7713	0.821	

Result - Xception

	Celeb-DF(v2)					
	Accuracy	F1-Score	Recall	Precision	AUC	
zero-shot	0.9133	0.6393	0.6031	0.7713	0.821	
1%-shot	0.2022	0.2021	0.5594	0.5531	0.7942	
5%-shot	0.4318	0.3953	0.6786	0.5682	0.9134	
10%-shot	0.3933	0.367	0.6649	0.5675	0.9522	
50%-shot	0.9021	0.5049	0.5134	0.6205	0.7084	
100%-shot	0.9984	0.9953	0.9915	0.9991	1	

Result - EfficientNetB4

In-dataset

FF++(c23)					
Accuracy F1-Score Recall Precision AUC					
0.95	0.9244	0.9388	0.9118	0.9812	

Cross-dataset

Celeb-DF(v2)					
Accuracy F1-Score Recall Precision AUC					
0.8989	0.7238	0.7393	0.711	0.8351	

Result - EfficientNetB4

	Celeb-DF(v2)					
	Accuracy	F1-Score	Recall	Precision	AUC	
zero-shot	0.8989	0.7238	0.7393	0.711	0.8351	
1%-shot	0.7047	0.5783	0.761	0.5974	0.8545	
5%-shot	0.695	0.5867	0.8164	0.6137	0.9614	
10%-shot	0.809	0.69	0.8945	0.6657	0.9983	
50%-shot	0.9117	0.5402	0.5339	0.9556	0.8689	
100%-shot	1	1	1	1	1	

Model Comparison on F1-Score

Model Comparison on Accuracy

Model Comparison on AUC

Conclusion

EfficientNet outperforms the other two models when testing few-shot samples

Guess:

Since the difference between real and fake images is really small, it's very hard to distinguish them by using simple convolutional feature extraction method.

We think Residual component plays an important role in this task

Model Comparison

XceptionNet

EfficientNet

Reference

dlib: https://github.com/davisking/dlib

MesoNet: https://github.com/DariusAf/MesoNet

XceptionNet: https://medium.com/ching-i/inception-系列-xception-fd2a4a4e7e82

EfficientNet: https://medium.com/ching-i/efficientnet-論文閱讀-e828ac005ce8

Fail to apply on this project

MTCNN: https://github.com/ipazc/mtcnn

ViT (MARLIN): https://github.com/ControlNet/MARLIN

DFDC Dataset: https://ai.meta.com/datasets/dfdc/

Thanks!