

ETC3550/ETC5550 Applied forecasting

Ch2. Time series graphics OTexts.org/fpp3/

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

```
# A tsibble: 15,150 x 6 [1Y]
##
  # Key:
               Country [263]
##
      Year Country
                               GDP Imports Exports Population
                             <dbl>
##
     <dbl> <fct>
                                     <dbl>
                                             <dbl>
                                                       <dbl>
                                             4.13
##
      1960 Afghanistan
                        537777811.
                                     7.02
                                                     8996351
##
      1961 Afghanistan
                        548888896.
                                     8.10
                                             4.45
                                                     9166764
##
   3
      1962 Afghanistan
                        546666678.
                                     9.35
                                             4.88
                                                     9345868
##
      1963 Afghanistan
                        751111191.
                                     16.9
                                             9.17
                                                     9533954
##
   5
      1964 Afghanistan
                        800000044.
                                    18.1
                                             8.89
                                                     9731361
##
   6
      1965 Afghanistan 1006666638.
                                     21.4
                                            11.3
                                                     9938414
##
      1966 Afghanistan 1399999967.
                                     18.6
                                             8.57
                                                    10152331
##
      1967 Afghanistan 1673333418.
                                     14.2
                                             6.77
                                                    10372630
##
      1968 Afghanistan 1373333367.
                                    15.2
                                             8.90
                                                    10604346
##
      1969 Afghanistan 1408888922.
                                     15.0
                                             10.1
                                                    10854428
  # ... with 15,140 more rows
##
```

```
# A tsibble: 15,150 x 6 [1Y]
##
    Key:
               Country [263]
##
      Year Country
                               GDP Imports Exports Population
      Index <fct>
                             <dbl>
##
                                     <dbl>
                                             <dbl>
                                                        <dbl>
      1960 Afghanistan
                        537777811.
                                      7.02
                                              4.13
                                                      8996351
##
   1
##
      1961 Afghanistan
                        548888896.
                                      8.10
                                              4.45
                                                      9166764
##
   3
      1962 Afghanistan
                        546666678.
                                      9.35
                                              4.88
                                                      9345868
##
      1963 Afghanistan
                        751111191.
                                     16.9
                                              9.17
                                                      9533954
##
   5
      1964 Afghanistan
                        800000044.
                                     18.1
                                              8.89
                                                      9731361
##
   6
       1965 Afghanistan 1006666638.
                                     21.4
                                             11.3
                                                      9938414
##
      1966 Afghanistan 1399999967.
                                     18.6
                                              8.57
                                                     10152331
##
      1967 Afghanistan 1673333418.
                                     14.2
                                              6.77
                                                     10372630
##
      1968 Afghanistan 1373333367.
                                     15.2
                                              8.90
                                                     10604346
##
       1969 Afghanistan 1408888922.
                                     15.0
                                             10.1
                                                     10854428
  # ... with 15,140 more rows
##
```

```
# A tsibble: 15,150 x 6 [1Y]
##
    Key:
               Country [263]
##
      Year Country
                                GDP
                                   Imports Exports Population
                              <dbl>
##
      Index
            Kev
                                      <dbl>
                                              <dbl>
                                                         <dbl>
      1960 Afghanistan
                        537777811.
                                      7.02
                                              4.13
                                                      8996351
##
   1
##
   2
      1961 Afghanistan
                        548888896.
                                      8.10
                                              4.45
                                                       9166764
##
   3
      1962 Afghanistan
                        546666678.
                                      9.35
                                              4.88
                                                      9345868
##
      1963 Afghanistan
                        751111191.
                                     16.9
                                              9.17
                                                      9533954
##
   5
      1964 Afghanistan
                        800000044.
                                     18.1
                                              8.89
                                                      9731361
##
   6
       1965 Afghanistan 1006666638.
                                     21.4
                                             11.3
                                                      9938414
##
      1966 Afghanistan 1399999967.
                                      18.6
                                              8.57
                                                      10152331
##
      1967 Afghanistan 1673333418.
                                     14.2
                                              6.77
                                                      10372630
##
      1968 Afghanistan 1373333367.
                                     15.2
                                              8.90
                                                      10604346
##
   10
       1969 Afghanistan 1408888922.
                                      15.0
                                              10.1
                                                      10854428
  # ... with 15,140 more rows
##
```

```
# A tsibble: 15,150 x 6 [1Y]
##
    Key:
               Country [263]
##
      Year Country
                               GDP Imports Exports Population
##
      Index
            Kev
                        Measured variables
      1960 Afghanistan
                        537777811.
                                      7.02
                                              4.13
                                                      8996351
##
   1
##
   2
      1961 Afghanistan
                        548888896.
                                      8.10
                                              4.45
                                                      9166764
##
   3
      1962 Afghanistan
                        546666678.
                                      9.35
                                              4.88
                                                      9345868
##
      1963 Afghanistan
                        751111191.
                                     16.9
                                              9.17
                                                      9533954
##
   5
      1964 Afghanistan
                        800000044.
                                     18.1
                                              8.89
                                                      9731361
##
   6
      1965 Afghanistan 1006666638.
                                     21.4
                                             11.3
                                                      9938414
##
      1966 Afghanistan 1399999967.
                                     18.6
                                              8.57
                                                     10152331
##
      1967 Afghanistan 1673333418.
                                     14.2
                                              6.77
                                                     10372630
##
      1968 Afghanistan 1373333367.
                                     15.2
                                              8.90
                                                     10604346
##
   10
       1969 Afghanistan 1408888922.
                                     15.0
                                             10.1
                                                     10854428
  # ... with 15,140 more rows
##
```

```
## # A tsibble: 24,320 x 5 [10]
  # Key: Region, State, Purpose [304]
##
     Quarter Region State Purpose Trips
##
       <qtr> <chr> <chr> <chr>
##
                                    <dbl>
##
   1 1998 Q1 Adelaide SA
                           Business 135.
##
   2 1998 Q2 Adelaide SA
                          Business 110.
##
   3 1998 Q3 Adelaide SA
                          Business 166.
   4 1998 Q4 Adelaide SA
                           Business 127.
##
                           Business 137.
##
   5 1999 Q1 Adelaide SA
##
   6 1999 O2 Adelaide SA
                           Business
                                    200.
##
   7 1999 Q3 Adelaide SA
                           Business
                                    169.
   8 1999 Q4 Adelaide SA
                           Business 134.
##
##
   9 2000 Q1 Adelaide SA
                           Business 154.
  10 2000 Q2 Adelaide SA
                           Business 169.
  # ... with 24,310 more rows
```

```
## # A tsibble: 24,320 x 5 [10]
  # Kev:
            Region, State, Purpose [304]
##
##
     Quarter Region State Purpose
                                    Trips
             <chr> <chr> <chr>
##
     Index
                                    <fdb>>
##
   1 1998 Q1 Adelaide SA
                           Business 135.
##
   2 1998 Q2 Adelaide SA
                           Business 110.
##
   3 1998 Q3 Adelaide SA
                           Business 166.
   4 1998 Q4 Adelaide SA
                           Business 127.
##
                           Business 137.
##
   5 1999 Q1 Adelaide SA
##
   6 1999 O2 Adelaide SA
                           Business
                                     200.
##
   7 1999 03 Adelaide SA
                           Business
                                    169.
   8 1999 Q4 Adelaide SA
                           Business 134.
##
##
   9 2000 O1 Adelaide SA
                           Business 154.
  10 2000 Q2 Adelaide SA
                           Business
                                     169.
  # ... with 24,310 more rows
```

```
## # A tsibble: 24,320 x 5 [10]
  # Kev:
               Region, State, Purpose [304]
##
##
     Quarter Region State Purpose
                                     Trips
                                     <dbl>
##
     Index
              Kevs
##
   1 1998 Q1 Adelaide SA
                            Business
                                      135.
##
   2 1998 O2 Adelaide SA
                            Business 110.
##
   3 1998 Q3 Adelaide SA
                            Business 166.
   4 1998 Q4 Adelaide SA
                            Business 127.
##
                            Business 137.
##
   5 1999 Q1 Adelaide SA
##
   6 1999 O2 Adelaide SA
                            Business
                                      200.
##
   7 1999 03 Adelaide SA
                            Business
                                     169.
   8 1999 Q4 Adelaide SA
                            Business 134.
##
##
   9 2000 O1 Adelaide SA
                            Business 154.
  10 2000 Q2 Adelaide SA
                            Business
                                      169.
  # ... with 24,310 more rows
```

```
## # A tsibble: 24,320 x 5 [10]
  # Kev:
               Region, State, Purpose [304]
##
##
     Quarter Region State Purpose
                                     Trips
##
     Index
              Kevs
                                      Measure
##
   1 1998 Q1 Adelaide SA
                            Business
                                      135.
##
   2 1998 O2 Adelaide SA
                            Business 110.
##
   3 1998 Q3 Adelaide SA
                            Business 166.
   4 1998 Q4 Adelaide SA
                            Business 127.
##
                            Business 137.
##
   5 1999 Q1 Adelaide SA
##
   6 1999 O2 Adelaide SA
                            Business
                                      200.
##
   7 1999 03 Adelaide SA
                            Business
                                     169.
   8 1999 Q4 Adelaide SA
                            Business 134.
##
##
   9 2000 O1 Adelaide SA
                            Business 154.
  10 2000 Q2 Adelaide SA
                            Business
                                      169.
  # ... with 24,310 more rows
```

```
# A tsibble: 24,320 x 5 [10]
   # Key:
                Region, State, Purpose [304]
##
##
      Quarter Region State Purpose
                                       Trips
##
      Index
               Kevs
                                        Measure
##
    1 1998 Q1 Adelaide SA
                              Business
                                        135.
##
    2 1998 O2 Adelaide SA
                              Business
                                       110.
                                              Domestic visitor
##
    3 1998 Q3 Adelaide SA
                              Business 166.
                                              nights in thousands
    4 1998 Q4 Adelaide SA
                              Business
                                       127.
##
                                              by state/region and
                              Business
                                        137.
##
    5 1999 Q1 Adelaide SA
                                              purpose.
    6 1999 Q2 Adelaide SA
##
                              Business
                                        200.
##
    7 1999 03 Adelaide SA
                              Business
                                        169.
    8 1999 Q4 Adelaide SA
                              Business
                                       134.
##
##
    9 2000 Q1 Adelaide SA
                              Business
                                       154.
   10 2000 Q2 Adelaide SA
                              Business
                                        169.
   # ... with 24,310 more rows
```

- A tsibble allows storage and manipulation of multiple time series in R.
- It contains:
 - An index: time information about the observation
 - Measured variable(s): numbers of interest
 - Key variable(s): optional unique identifiers for each series
- It works with tidyverse functions.

Example

```
mydata <- tsibble(</pre>
   year = 2012:2016,
   y = c(123, 39, 78, 52, 110),
   index = year
mydata
## # A tsibble: 5 x 2 [1Y]
## year
## <int> <dbl>
## 1 2012 123
## 2 2013 39
## 3 2014 78
## 4 2015 52
## 5 2016
            110
```

Example

```
mydata <- tibble(</pre>
   year = 2012:2016,
   y = c(123, 39, 78, 52, 110)
 ) %>%
 as_tsibble(index = year)
mydata
## # A tsibble: 5 x 2 [1Y]
## year
## <int> <dbl>
## 1 2012 123
## 2 2013 39
## 3 2014 78
## 4 2015 52
## 5 2016
            110
```

For observations more frequent than once per year, we need to use a time class function on the index.

Z

4 2019 Apr

5 2019 Mav

For observations more frequent than once per year, we need to use a time class function on the index.

```
z %>%
  mutate(Month = yearmonth(Month)) %>%
  as_tsibble(index = Month)
## # A tsibble: 5 x 2 [1M]
        Month Observation
##
                  <dbl>
##
        <mth>
## 1 2019 Jan
                       50
## 2 2019 Feb
                       23
## 3 2019 Mar
                       34
```

30

25

Common time index variables can be created with these functions:

Frequency	Function
Annual	start:end
Quarterly	yearquarter()
Monthly	yearmonth()
Weekly	yearweek()
Daily	<pre>as_date(), ymd()</pre>
Sub-daily	as_datetime()
-	

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White nois

Australian prison population

Read a csv file and convert to a tsibble

prison <- readr::read_csv("data/prison_population.csv")</pre>

```
## # A tibble: 3,072 x 6
##
     date
               state gender legal indigenous count
     <date> <chr> <chr> <chr>
                                               <fdb>>
##
                                    <chr>
   1 2005-03-01 ACT Female Remanded ATST
##
                                                  0
   2 2005-03-01 ACT Female Remanded Other
##
   3 2005-03-01 ACT Female Sentenced ATSI
##
                                                  0
##
   4 2005-03-01 ACT Female Sentenced Other
                                                  0
##
   5 2005-03-01 ACT
                     Male Remanded ATST
   6 2005-03-01 ACT
                     Male Remanded Other
##
                                                 58
##
   7 2005-03-01 ACT
                     Male Sentenced ATSI
                                                  0
##
   8 2005-03-01 ACT
                     Male Sentenced Other
                                                  0
##
   9 2005-03-01 NSW Female Remanded ATSI
                                                 51
## 10 2005-03-01 NSW Female Remanded
                                    Other
                                                131
## # ... with 3,062 more rows
```

Read a csv file and convert to a tsibble

```
prison <- readr::read_csv("data/prison_population.csv") %>%
  mutate(Quarter = yearquarter(date))
```

```
## # A tibble: 3,072 x 7
##
     date state gender legal indigenous count Quarter
     <date> <chr> <chr> <chr> <chr>
##
                                               <dbl>
                                                      <qtr>
##
   1 2005-03-01 ACT Female Remanded ATSI
                                                  0 2005 Q1
   2 2005-03-01 ACT Female Remanded Other
##
                                                  2 2005 01
   3 2005-03-01 ACT Female Sentenc~ ATST
##
                                                  0 2005 Q1
##
   4 2005-03-01 ACT Female Sentenc~ Other
                                                  0 2005 Q1
   5 2005-03-01 ACT
                     Male Remanded ATST
##
                                                  7 2005 01
##
   6 2005-03-01 ACT
                     Male Remanded Other
                                                 58 2005 01
##
   7 2005-03-01 ACT
                     Male Sentenc~ ATSI
                                                    2005 01
##
   8 2005-03-01 ACT
                     Male Sentenc~ Other
                                                    2005 01
   9 2005-03-01 NSW Female Remanded ATST
##
                                                 51 2005 Q1
  10 2005-03-01 NSW Female Remanded Other
                                                131 2005 01
                                                           15
  # ... with 3,062 more rows
```

Read a csy file and convert to a tsibble

```
prison <- readr::read_csv("data/prison_population.csv") %>%
  mutate(Quarter = yearquarter(date)) %>%
  select(-date)
```

```
## # A tibble: 3,072 x 6
##
     state gender legal indigenous count Quarter
##
     <chr> <chr> <chr> <chr>
                                      <dbl>
                                             <qtr>
   1 ACT
           Female Remanded ATSI
                                         0 2005 Q1
##
   2 ACT
           Female Remanded Other
                                         2 2005 01
##
##
   3 ACT
           Female Sentenced ATSI
                                         0 2005 01
##
   4 ACT
           Female Sentenced Other
                                         0 2005 01
##
   5 ACT
           Male Remanded ATSI
                                         7 2005 01
##
   6 ACT
           Male Remanded Other
                                        58 2005 Q1
           Male Sentenced ATSI
##
   7 ACT
                                         0 2005 Q1
##
   8 ACT
           Male Sentenced Other
                                         0 2005 01
##
   9 NSW
           Female Remanded ATSI
                                        51 2005 01
## 10 NSW
           Female Remanded Other
                                        131 2005 01
```

with 2 062 mara rawa

Read a csv file and convert to a tsibble

```
prison <- readr::read_csv("data/prison_population.csv") %>%
  mutate(Quarter = yearquarter(date)) %>%
  select(-date) %>%
  as_tsibble(
   index = Quarter,
   key = c(state, gender, legal, indigenous)
)
```

```
## # A tsibble: 3,072 x 6 [10]
## # Key: state, gender, legal, indigenous [64]
     state gender legal indigenous count Quarter
##
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <gtr>
   1 ACT Female Remanded ATSI
##
                                        0 2005 Q1
   2 ACT Female Remanded ATSI
##
                                        1 2005 Q2
##
   3 ACT Female Remanded ATSI
                                        0 2005 03
##
   4 ACT Female Remanded ATSI
                                        0 2005 Q4
   5 ACT
           Female Remanded ATSI
                                        1 2006 01
##
## C ACT
           Fomala Domandad ATCT
                                        1 2006 02
```

17

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

Australian Pharmaceutical Benefits Scheme

Australian Pharmaceutical Benefits Scheme

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

Australian Pharmaceutical Benefits Scheme

The **Pharmaceutical Benefits Scheme** (PBS) is the Australian government drugs subsidy scheme.

- Many drugs bought from pharmacies are subsidised to allow more equitable access to modern drugs.
- The cost to government is determined by the number and types of drugs purchased. Currently nearly 1% of GDP.
- The total cost is budgeted based on forecasts of drug usage.
- Costs are disaggregated by drug type (ATC1 x15 / ATC2 84), concession category (x2) and patient type (x2), giving $84 \times 2 \times 2 = 336$ time series.

PBS

```
## # A tsibble: 65,219 x 9 [1M]
##
    Key:
               Concession, Type, ATC1, ATC2 [336]
        Month Concession Type
                                ATC1
                                       ATC1 desc ATC2
##
                                                        ATC2 desc Scripts Cost
                                                                     <dh1> <dh1>
##
        <mth> <chr>
                          <chr> <chr> <chr> <chr> <chr>
##
   1 1991 Jul Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     18228 67877
   2 1991 Aug Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                    15327 57011
##
   3 1991 Sep Concession~ Co-pa~ A
##
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     14775 55020
##
   4 1991 Oct Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     15380 57222
   5 1991 Nov Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     14371 52120
##
   6 1991 Dec Concession~ Co-pa~ A
##
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     15028 54299
##
   7 1992 Jan Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     11040 39753
##
   8 1992 Feb Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     15165 54405
##
   9 1992 Mar Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     16898 61108
## 10 1992 Apr Concession~ Co-pa~ A
                                       Alimentar~ A01
                                                        STOMATOLO~
                                                                     18141 65356
## # ... with 65,209 more rows
```

We can use the filter() function to select rows.

```
PBS %>%
 filter(ATC2 == "A10")
## # A tsibble: 816 x 9 [1M]
## # Key: Concession, Type, ATC1, ATC2 [4]
        Month Concession Type ATC1 ATC1 desc ATC2 ATC2 desc Scripts Cost
##
        <dbl> <dbl>
##
##
   1 1991 Jul Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                89733 2.09e6
##
   2 1991 Aug Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                77101 1.80e6
   3 1991 Sep Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                76255 1.78e6
##
   4 1991 Oct Concession~ Co-pa~ A
                                     Alimentar~ A10
##
                                                     ANTTDTAR~
                                                                78681 1.85e6
##
   5 1991 Nov Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                70554 1.69e6
   6 1991 Dec Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                75814 1.84e6
##
   7 1992 Jan Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                64186 1.56e6
##
   8 1992 Feb Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                75899 1.73e6
   9 1992 Mar Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
                                                                89445 2.05e6
                                                                97315 2.2<del>32</del>6
## 10 1992 Apr Concession~ Co-pa~ A
                                     Alimentar~ A10
                                                     ANTIDIAB~
"" " ....... 00C .......
```

We can use the select() function to select columns.

```
PBS %>%
  filter(ATC2 == "A10") %>%
  select(Month, Concession, Type, Cost)
    A tsibble: 816 x 4 [1M]
          Concession, Type [4]
## # Key:
##
        Month Concession
                          Type
                                          Cost
         <mth> <chr>
                           <chr>>
                                          <dbl>
##
    1 1991 Jul Concessional Co-payments 2092878
##
##
    2 1991 Aug Concessional Co-payments 1795733
    3 1991 Sep Concessional Co-payments 1777231
##
   4 1991 Oct Concessional Co-payments 1848507
##
   5 1991 Nov Concessional Co-payments 1686458
##
##
    6 1991 Dec Concessional Co-payments 1843079
##
   7 1992 Jan Concessional Co-payments 1564702
   8 1992 Feb Concessional Co-payments 1732508
   9 1992 Mar Concessional Co-payments 2046102
## 10 1002 A-- C------ C- --- 222E077
```

We can use the summarise() function to summarise over keys.

```
PBS %>%
filter(ATC2 == "A10") %>%
select(Month, Concession, Type, Cost) %>%
summarise(total_cost = sum(Cost))
```

```
## # A tsibble: 204 x 2 [1M]
        Month total_cost
##
##
        <mth>
                   <fdh1>
##
   1 1991 Jul 3526591
   2 1991 Aug 3180891
##
##
   3 1991 Sep 3252221
##
   4 1991 Oct 3611003
   5 1991 Nov
                 3565869
##
   6 1991 Dec
                 4306371
##
##
   7 1992 Jan
                 5088335
##
   8 1992 Feb
                 2814520
   9 1992 Mar
                 2985811
## 10 1000 A----
```

We can use the mutate() function to create new variables.

```
PBS %>%
  filter(ATC2 == "A10") %>%
  select(Month, Concession, Type, Cost) %>%
  summarise(total_cost = sum(Cost)) %>%
  mutate(total_cost = total_cost / 1e6)
```

```
## # A tsibble: 204 x 2 [1M]
##
       Month total_cost
##
        <mth>
                  <dbl>
   1 1991 Jul 3.53
##
##
   2 1991 Aug 3.18
##
   3 1991 Sep 3.25
   4 1991 Oct 3.61
##
   5 1991 Nov
                  3.57
##
   6 1991 Dec
                  4.31
##
   7 1992 Jan
                  5.09
   8 1992 Feb
                  2.81
## 0 1000 Main
```

We can use the mutate() function to create new variables.

```
PBS %>%
  filter(ATC2 == "A10") %>%
  select(Month, Concession, Type, Cost) %>%
  summarise(total_cost = sum(Cost)) %>%
  mutate(total_cost = total_cost / 1e6) -> a10
```

```
## # A tsibble: 204 x 2 [1M]
##
       Month total_cost
##
       <mth>
                 <dbl>
   1 1991 Jul 3.53
##
##
   2 1991 Aug 3.18
##
   3 1991 Sep 3.25
   4 1991 Oct 3.61
##
   5 1991 Nov
                 3.57
##
   6 1991 Dec
                 4.31
##
   7 1992 Jan
                 5.09
  8 1992 Feb
                  2.81
## 0 1000 Main
```

Your turn

- Download tourism.xlsx from
 http://robjhyndman.com/data/tourism.xlsx,
 and read it into R using read_excel() from the
 readxl package.
- Create a tsibble which is identical to the tourism tsibble from the tsibble package.
- Find what combination of Region and Purpose had the maximum number of overnight trips on average.
- Create a new tsibble which combines the Purposes and Regions, and just has total trips by State.

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

Time plots

Ansett airlines

ansett %>% autoplot(Passengers)

Ansett airlines

```
ansett %>%
  filter(Class == "Economy") %>%
  autoplot(Passengers)
```


Ansett airlines

```
ansett %>%
  filter(Airports == "MEL-SYD") %>%
  autoplot(Passengers)
```


Your turn

- Create plots of the following time series: Bricks from aus_production, Lynx from pelt, Close from gafa_stock, Demand from vic_elec.
- Use help() to find out about the data in each series.
- For the last plot, modify the axis labels and title.

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

Seasonal plots

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Seasonal subseries plots

10 -

Month

Nov

Dec

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

```
beer <- aus_production %>%
  select(Quarter, Beer) %>%
  filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
```


Quarterly Australian Beer Production

Quarterly Australian Beer Production

beer %>% gg_subseries(Beer)

Your turn

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- tourism %>%
filter(Region == "Snowy Mountains")
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
##
      Time
                           Demand Temperature Date
                                                          Holiday
##
##
      < dttm>
                            <fdb>>
                                         <dbl> <date>
                                                           <lgl>
##
    1 2012-01-01 00:00:00
                            4383.
                                          21.4 2012-01-01 TRUF
##
    2 2012-01-01 00:30:00
                            4263.
                                          21.0 2012-01-01 TRUE
##
    3 2012-01-01 01:00:00
                            4049.
                                          20.7 2012-01-01 TRUE
##
    4 2012-01-01 01:30:00
                            3878.
                                          20.6 2012-01-01 TRUE
##
    5 2012-01-01 02:00:00
                            4036.
                                          20.4 2012-01-01 TRUE
##
    6 2012-01-01 02:30:00
                            3866.
                                          20.2 2012-01-01 TRUE
##
    7 2012-01-01 03:00:00
                            3694.
                                          20.1 2012-01-01 TRUE
##
    8 2012-01-01 03:30:00
                            3562.
                                          19.6 2012-01-01 TRUE
    9 2012-01-01 04:00:00
                                          19.1 2012-01-01 TRUE
##
                            3433.
##
   10 2012-01-01 04:30:00
                            3359.
                                          19.0 2012-01-01 TRUE
##
   # ... with 52,598 more rows
```

vic_elec %>% gg_season(Demand)

vic_elec %>% gg_season(Demand, period = "week")

vic_elec %>% gg_season(Demand, period = "day")

Australian holidays

```
holidays <- tourism %>%
  filter(Purpose == "Holiday") %>%
  group_by(State) %>%
  summarise(Trips = sum(Trips))
```

```
## # A tsibble: 640 x 3 [10]
##
  # Key: State [8]
##
     State Quarter Trips
     <chr> <qtr> <dbl>
##
##
   1 ACT 1998 Q1 196.
##
   2 ACT 1998 02 127.
   3 ACT 1998 Q3 111.
##
##
   4 ACT 1998 Q4 170.
   5 ACT 1999 Q1 108.
##
##
   6 ACT 1999 Q2 125.
   7 ACT 1999 Q3 178.
##
   8 ACT
##
           1999 Q4 218.
##
   9 ACT
           2000 01 158.
  10 ACT
           2000 Q2 155.
##
```

Australian holidays

Quarter [1Q]

Seasonal plots

Seasonal subseries plots

```
holidays %>%
  gg_subseries(Trips) +
  labs(y = "thousands of trips",
    title = "Australian domestic holiday nights")
```


Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

Example: Beer production

A tsibble: 74 x 7 [10]

##

##

##

##

##

4 1992 04

5 1993 01

6 1993 Q2

8 1993 Q4

1993 03

```
new_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
new_production
```

```
##
                Beer Tobacco Bricks Cement Electricity
                                                              Gas
      Ouarter
                                                     <dbl> <dbl>
##
        <qtr> <dbl>
                        <dbl>
                                <dbl>
                                       <dbl>
##
    1 1992 Q1
                 443
                         5777
                                  383
                                         1289
                                                     38332
                                                              117
                                                              151
##
    2 1992 02
                 410
                         5853
                                  404
                                         1501
                                                     39774
##
    3 1992 03
                 420
                         6416
                                  446
                                         1539
                                                     42246
                                                              175
```

Example: Beer production

new_production %>% gg_lag(Beer)

Example: Beer production

new_production %>% gg_lag(Beer, geom='point')

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.
- ACF (autocorrelation function):
 - $ightharpoonup r_1 = Correlation(y_t, y_{t-1})$
 - $ightharpoonup r_2 = Correlation(y_t, y_{t-2})$
 - $ightharpoonup r_3 = Correlation(y_t, y_{t-3})$
 - etc.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}
- etc.

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^T (y_t - \bar{y})(y_{t-k} - \bar{y})$$
 and
$$r_k = c_k/c_0$$

- \blacksquare r_1 indicates how successive values of y relate to each other
- Arr r₂ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and y_{t-k} .

Results for first 9 lags for beer data:

```
new_production %>% ACF(Beer, lag_max = 9)
## # A tsibble: 9 x 2 [10]
     lag acf
##
## <lag> <dbl>
## 1 10 -0.102
## 2 2Q -0.657
## 3 30 -0.0603
## 4
       40 0.869
## 5
       50 -0.0892
## 6
       60 -0.635
## 7
       70 -0.0542
       80 0.832
## 8
```

Results for first 9 lags for beer data:

new_production %>% ACF(Beer, lag_max = 9) %>% autoplot()

- Together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation or ACF.
- The plot is known as a correlogram

■ r_4 higher than for the other lags. This is due to **the seasonal** pattern in the data: the peaks tend to be **4 quarters** apart and the troughs tend to be **2 quarters** apart.

lag [1Q]

 $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

US retail trade employment

```
retail <- us_employment %>%
  filter(Title == "Retail Trade", year(Month) >= 1980)
retail %>% autoplot(Employed)
```


US retail trade employment


```
google_2015 <- gafa_stock %>%
  filter(Symbol == "GOOG", year(Date) == 2015) %>%
  select(Date, Close)
google_2015
```

```
## # A tsibble: 252 x 2 [1D]
##
     Date
            Close
##
     <date> <dbl>
##
  1 2015-01-02 522.
##
   2 2015-01-05 511.
   3 2015-01-06
                 499.
##
##
   4 2015-01-07 498.
## 5 2015-01-08
                 500.
##
   6 2015-01-09
                 493.
```

google_2015 %>% autoplot(Close)


```
google_2015 %>%
   ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
```

google_2015 %>%

```
ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
google_2015
## # A tsibble: 252 x 2 [1D]
     Date Close
##
     <date> <dbl>
##
## 1 2015-01-02 522.
## 2 2015-01-05 511.
   3 2015-01-06 499.
##
```

75

```
google_2015 <- google_2015 %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index = trading_day, regular = TRUE)
google_2015
```

```
## # A tsibble: 252 x 3 [1]
##
      Date Close trading_day
##
      <date> <dbl>
                            <int>
##
   1 2015-01-02 522.
                                1
##
   2 2015-01-05 511.
   3 2015-01-06 499.
                                3
##
   4 2015-01-07 498.
                                4
##
   5 2015-01-08
                 500.
                                5
##
    6 2015-01-09 493.
                                6
##
##
    7 2015-01-12
                 490.
```

76

```
google_2015 %>%
  ACF(Close, lag_max = 100) %>%
  autoplot()
```


Your turn

We have introduced the following functions:

- gg_lag
- ACF

Use these functions to explore the following time series:

- Bricks from aus_production
- Lynx from pelt
- Victorian Electricity Demand from aus_elec

Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

Which is which?

Outline

- 1 Time series in R
- 2 Example: Australian prison population
- 3 Example: Australian pharmaceutical sales
- 4 Time plots
- 5 Time series patterns
- 6 Seasonal and subseries plots
- 7 Lag plots and autocorrelation
- 8 White noise

```
set.seed(30)
wn <- tsibble(t = 1:50, y = rnorm(50), index = t)
wn %>% autoplot(y)
```



```
set.seed(30)
wn <- tsibble(t = 1:50, y = rnorm(50), index = t)
wn %>% autoplot(y)
```


- Sample autocorrelations for white noise series.
- Expect each autocorrelation to be close to zero.
- Blue lines show 95% critical values.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the **critical values**.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not a white noise series**.

Your turn

You can compute the daily changes in the Google stock price in 2018 using

```
dgoog <- gafa_stock %>%
  filter(Symbol == "GOOG", year(Date) >= 2018) %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE) %>%
  mutate(diff = difference(Close))
```

Does diff look like white noise?