Fonctions composées - Exercices

Exercice 1:

Soit u la fonction définie sur \mathbb{R} par $u(x)=x^3$, v la fonction définie sur \mathbb{R} par v(x)=2x-1 et w la fonction définie sur $[0;+\infty[$ par $w(x)=\sqrt{x}$

- 1. Préciser l'ensemble de définition de $u \circ v$, puis déterminer explicitement $(u \circ v)(x)$.
- 2. Préciser l'ensemble de définition de $v \circ u$, puis déterminer explicitement $(u \circ v)(x)$
- 3. Préciser l'ensemble de définition de $v \circ w$, puis déterminer explicitement $(v \circ w)(x)$
- 4. Préciser l'ensemble de définition de $w \circ v$, puis déterminer explicitement $(w \circ v)(x)$

Exercice 2:

Calculer la dérivée des fonctions f, g, h et k dérivables sur \mathbb{R} dont on donne l'expression: l'expression : a. $f(x) = \sqrt{x^2 + 4x + 6}$ b. $g(x) = (3x - 1)^4$

a.
$$f(x) = \sqrt{x^2 + 4x + 6}$$

b.
$$g(x) = (3x-1)^4$$

c.
$$h(x) = \frac{1}{(x^2+1)^2}$$

d.
$$k(x) = e^{1-2x^2}$$

Exercice 3:

La fonction f définie sur \mathbb{R} par $f(x)=(x-1)e^{-x}$ est deux fois dérivable sur \mathbb{R} . Calculer f''(x).

Exercice 4:

- 1. Soit les fonctions f et g définies par $f(x) = \sqrt{x}$ et $g(x) = x^2 4$
 - a. Préciser le domaine de définition, $m{D_{f \circ g}}$, de $m{f} \circ m{g}$ puis déterminer explicitement $(m{f} \circ m{g})(x)$.
 - b. Préciser le domaine de définition, $m{D}_{g\circ f}$, de $m{g}\circ m{f}$ puis déterminer explicitement $m{(g}\circ m{f)(x)}$.
- 2. Soit les fonctions f et g définies par $f(x) = \frac{x-1}{x-2}$ et $g(x) = \sqrt{x}$
 - a. Préciser le domaine de définition, $D_{f\circ g}$, de $f\circ g$ puis déterminer explicitement $(f\circ g)(x)$.
 - b. Préciser le domaine de définition, $\; m{D}_{g\circ f} \;$, de $\; m{g}\circ m{f} \;$ puis déterminer explicitement $\; m{(g}\circ fm{)}(x) \;$.

Exercice 5:

Étudier la fonction f définie par $f(x) = \sqrt{\frac{3x}{3x+2}}$