Département de génie civil

Matériaux de construction

Enseignant responsable: SALEM Nawel

# Devoir de synthèse

(Documents non autorisés)

### Questions de cours:

1- En s'appuyant sur la courbe suivante, donner les différents modes de cure des éprouvettes des bétons et leurs influence sur la résistance à la compression. Justifier votre réponse.



- 2- A partir de la courbe contrainte-déformation obtenu lors d'un essai de compression sur une éprouvette de béton, commenter le comportement mécanique du matériau. Ce comportement est-il élastique ? Justifier votre réponse.
- 3- A l'aide d'une courbe, expliquer le rôle des accélérateurs de prise sur le comportement rhéologique et mécanique des mortiers et des bétons témoin.
- 4- Donner l'effet de la vibration sur les bétons avec et sans armatures.
- 5- Définir les termes suivants :
  - Entraineur d'air
  - Fluage
  - Nuance
  - Fendage

#### Problème:

Soit les refus cumulés des différents types de granulats :

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
|            | Refus sable S1 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refus sable S2 (%) | Rejus gravier G (%) |
| Tamis (mm) | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                | ₩                   |
| 0.08       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                | ·                   |
| 0.125      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 86               |                     |
| ₩ 0.16     | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 53               | -                   |
| α 0.315    | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ 24               |                     |
| d 0.63     | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                 |                     |
| d 1.25     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                  | - 100               |
| d 2.5      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                  | 98                  |
| 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                  | 95                  |
| α 5 —      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 93                  |
| 6.3        | The second secon |                    | - 89 Tomiat         |
| 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 78                  |
| 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 52                  |
| 12.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 15                  |
| 16         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |
| _20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                     |

### Formulation théorique du béton :

Déterminer le module de finesse des sables roulés S1 et S2.

Quel est le sable le plus adéquat pour la fabrication d'un béton ordinaire?

On désire formuler un béton binaire avec un sable S3 de module de finesse égale à 2,5.

- 3- Tracer les courbes granulométriques de sable S3 et de gravier G.
  - 4- Déterminer la classe granulaire de deux granulats S3 et G.
  - O Déterminer le diamètre maximal des granulats.

La résistance mécanique à 28j de ce béton est de 23 MPa. L'ouvrabilité désirée est caractérisée par un affaissement au cône égal à 6 cm. Le ciment possède une résistance vraie à 28j de l'ordre de 42 MPa et une masse volumique absolue 3100 kg/m³. Les granulats sont de bonne qualité, de masse volumique réelle de 2.54 g/cm³ pour le sable et 2.62 g/cm³ pour le gravier.

6- Déterminer le rapport C/E ainsi que le dosage en ciment.

En déduire le dosage en eau.

Déterminer les coordonnées du point de brisure A et tracer la courbe de référence OAB.

Calculer les masses de différents constituants de ce béton.

### Correction des dosages

Classer ce béton.

Corriger, en justifiant, les dosages de fines sachant que la résistance à la compression à 28j réalisée sur des éprouvettes des bétons est égale à 20 MPa.

Bon travail

#### Annexe

Tableau 1 : Affaissement au cône en fonction de type de vibration

| Affaissement en | Plasticité        | Désignation | Vibration conseillée |
|-----------------|-------------------|-------------|----------------------|
| 0 à 4           | Ferme             | F           | Puissante            |
| 5 à 9           | Plastique         | Р           | Normale              |
| 10 à 15         | Très<br>plastique | TP          | Faible               |
| ≥ 16            | Fluide            | Fl          | Léger piquage        |

 $\textbf{Tableau 2}: Coefficient \ granulaire \ G \ en \ fonction \ de \ la \ qualit\'e \ et \ de \ la \ taille \ maximale \ des \ granulaits \ D_{max}.$ 

|                       | Dimension D <sub>max</sub> des gr  | anulats                 |                                          |
|-----------------------|------------------------------------|-------------------------|------------------------------------------|
| Qualité des granulats | Fins                               | Moyens                  | Gros                                     |
|                       | $D_{\text{max}} \le 16 \text{ mm}$ | $20 \le D_{max} \le 40$ | $D_{\text{max}} \ge \bar{5}0 \text{ mm}$ |
| Excellente            | 0,55                               | 0,60                    | 0,65                                     |
| Bonne, courante       | 0,45                               | 0,50                    | 0,55                                     |
| Passable              | 0,35                               | 0,40                    | 0,45                                     |



Figure 1 : Abaque de Dreux

Tableau 3: Correction sur le dosage en eau

| Dimension maximale D des granulats (mm) | 5   | 10 | 12,5 | 16 | 20 | 25 | 31,5 | 40 | 50 | 63 | 100 |
|-----------------------------------------|-----|----|------|----|----|----|------|----|----|----|-----|
| Correction sur le dosage en eau (%)     | +15 | +9 | +6   | +4 | +2 | 0  | -2   | -4 | -6 | -8 | -12 |

Tableau 4:Détermination du coefficient K

| _ Vibration |                                                  | Faible | Faible   |       | e        | Puissante |          |  |
|-------------|--------------------------------------------------|--------|----------|-------|----------|-----------|----------|--|
| 1           | Forme des granulats<br>(du sable en particulier) |        | Concassé | Roulé | Concassé | Roulé     | Concassé |  |
| ٠           | 400 + fluidifiant                                | - 2    | 0        | -4    | - 2      | - 6       | - 4      |  |
| ciment      | 400                                              | 0      | + 2      | -2    | 0        | -4        | -2       |  |
| en ci       | 350                                              | +2     | + 4      | 0     | +2       | -2        | 0        |  |
| 9 6         | 300                                              | +4     | ÷ 6      | +2    | +4       | 0         | +2       |  |
| Dosage<br>K | 250                                              | +6     | + 8      | ÷4    | +6       | +2        | ÷4       |  |
| Δ           | 200                                              | ÷8     | + 10     | ÷6    | +8       | ÷4        | ÷6       |  |

Tableau 5:Détermination du coefficient de compacité du béton

| Consistance | Serrage             |       | Dimer | sion D | ies gran | ulats (e | n mm) |       |
|-------------|---------------------|-------|-------|--------|----------|----------|-------|-------|
|             |                     | D=5   | D=10  | D=12,5 | D=20     | D=31,5   | D=50  | D=80  |
| Molle       | Vibration normale   | 0,750 | 0,780 | 0,795  | 0,805    | 0,810    | 0,815 | 0,820 |
| ,           | Vibration faible    | 0,755 | 0,785 | 0,800  | 0,810    | 0,815    | 0,820 | 0,825 |
| ,           | Piquage             | 0,760 | 0,790 | 0,805  | 0,815    | 0,820    |       |       |
| Plastique   | Piquage             | 0,760 | 0,790 | 0,805  | 0,815    | 0,820    | 0,825 | 0,830 |
|             | Vibration faible    | 0,765 | 0,795 | 0,810  | 0,820    | 0,825    | 0,530 | 0,835 |
|             | Vibration normale   | 0,770 | 0,800 | 0,815  | 0,825    | 0,830    | 0,835 | 0,840 |
|             | Vibration puissante | 0,775 | 0,805 | 0,820  | 0,830    | 0,835    | 0,840 | 0,845 |
|             |                     |       |       |        |          |          | _     |       |
| Ferme       | Vibration faible    | 0,775 | 0,805 | 0,820  | 0,830    | 0,835    | 0,840 | 0,845 |
|             | Vibration normale   | 0,780 | 0,810 | 0,825  | 0,835    | 0,840    | 0,845 | 0,850 |
|             | Vibration puissante | 0,785 | 0,815 | 0,830  | 0,840    | 0,845    | 0,850 | 0,855 |

N.B : Ces valeurs sont convenables pour des granulats roulés sinon il

- sable roulé et gravier concassé : 0,01
- sable et gravier concassé : 0,03

**ENIG** 

2020/2021

Département de génie civil

GCV1

Matériaux de construction

Enseignant responsable : SALEM Nawel

### Devoir de contrôle

## (Documents non autorisés)

## Question de cours :

1. A travers des exemples, décrire le processus de fabriation d'un liant aérien et un liant hydraulique.

2.

- 2.1. Définir : Résistance mécanique, retrait de séchage, pores et consistance.
- **2.2.** La résistance mécanique, le retrait de séchage, la porosité et la consistance sont tous gouvernés par la quantité d'eau ajoutée. Expliquer.



- 3. Quels sont les différentes exigences relatives aux granulats.
- **4.** En s'appuyant sur la figure suivante, expliquer le mécanisme d'hydratation d'un ciment Portland.



#### **Ex1**:

Un granulat a un indice des vides de 0,45. Il est saturé à 70%. La densité des solides est de 2,80.

A : Quelle est la masse spécifique du granulat ?

B : Quel est la masse volumique apparente du granulat sec ?

C : Quelle est la teneur en eau ?

D : Quelle teneur en eau faut-il pour une saturation à 90% ?

E: Quelle est la porosité?

#### Ex2:

Voici les résultats d'une analyse granulométrique d'un matériau S1 à partir d'une masse sèche de 200g et un matériau G1 de masse sèche  $M_{G1}$  = 1Kg.

| Tamis | Poids des | Poids des                   | Re                       | fus                     | Refus cum | Tamisât |
|-------|-----------|-----------------------------|--------------------------|-------------------------|-----------|---------|
| (mm)  | Tamis (g) | Tamis +<br>matériaux<br>(g) | Refus<br>partiels<br>(g) | Refus<br>cumulés<br>(g) | %         | cum %   |
| 5     | 716.39    | 716.39                      |                          |                         |           |         |
| 2.5   | 708.9     | 710.3                       |                          |                         |           |         |
| 2     | 680.5     | 682.5                       |                          |                         |           |         |
| 1.25  | 672.15    | 676.88                      |                          |                         |           |         |
| 0.63  | 627.15    | 654.61                      |                          |                         |           |         |
| 0.315 | 582.35    | 665.55                      |                          |                         |           |         |
| 0.16  | 533       | 599.2                       |                          |                         |           |         |
| 0.08  | 512.57    | 525.41                      |                          |                         |           |         |
| Fond  | 748.04    | 74851                       |                          |                         |           |         |

| Tamis Poids des |           | Poids des                   | Re                       | fus                     | Refus cum | Tamisât |
|-----------------|-----------|-----------------------------|--------------------------|-------------------------|-----------|---------|
| (mm)            | Tamis (g) | Tamis +<br>matériaux<br>(g) | Refus<br>partiels<br>(g) | Refus<br>cumulés<br>(g) | %         | cum %   |
| 20              | 595.64    | 595.64                      |                          |                         |           |         |
| 16              | 716.44    | 729.1                       |                          | /                       |           |         |
| 12.5            | 517.63    | 596.85                      |                          |                         |           |         |
| 10              | 528.17    | 700.6                       |                          |                         | -         |         |
| 8               | 5103      | 718.26                      |                          |                         |           |         |
| 6.3             | 494.5     | 680.31                      |                          |                         | -         |         |
| 5               | 710.83    | 835.83                      |                          |                         | -         |         |
| 2.5             | 701.42    | 831.32                      |                          |                         | -         |         |
| 1.25            | 599.93    | 621.75                      |                          |                         |           |         |
| Fond            | 439.7     | 502.42                      |                          |                         |           |         |

- 1. Compléter les tableaux puis tracer les courbes granulométriques de S<sub>1</sub> et G<sub>1</sub>. Commenter. A partir de cette courbe, déterminer sa classe granulaire.
- 2. Déterminer le module de finesse Mf du sable S1.
- 3. Est-ce que cet essai est validé.
- 4. Vérifier cette classe en se basant sur les 4 conditions de la norme NF P 18-304.
- 5. Calculer le pourcentage de fine sur le tamis 0.08.
- 6. On veut réaliser un mélange de ces deux matériaux avec 30% de S1 et 70% de G1. Tracer la courbe de mélange.

### NF P 18-304:

1- 
$$0.63d \rightarrow T' < 3\% \text{ (D>5mm)}$$
  
 $T' < 5\% \text{ (D<5mm)}$ 

2- /d 
$$\rightarrow$$
 1%< T< 15% si (D< 1.56d)  
1% < T< 20% si (D> 1.56d)

3- D 
$$\rightarrow$$
 1%< R< 15% (si (D< 1.56d)  
1%< R< 20% (si (D>1.56d)

Bon travail