Curs 9

Cuprins

Sisteme de rescriere abstracte

Definiție

Un sistem de rescriere abstract este o pereche (T, \rightarrow) unde:

- \Box T este o mulțime,
- $\square \rightarrow \subseteq T \times T \ (\rightarrow \text{ este o relație binară pe } T).$

Definiție

Un sistem de rescriere abstract este o pereche (T, \rightarrow) unde:

- ☐ *T* este o mulţime,
- $\square \rightarrow \subseteq T \times T \ (\rightarrow \text{ este o relație binară pe } T).$

Definiții:

- $\square \leftarrow := \rightarrow^{-1}$ (relația inversă)
- $\square \leftrightarrow := \rightarrow \cup \leftarrow$ (închiderea simetrică)
- $\square \stackrel{*}{\rightarrow} := (\rightarrow)^*$ (închiderea reflexivă și tranzitivă)
- $\square \stackrel{*}{\leftrightarrow} := (\leftrightarrow)^*$ (echivalența generată)

```
\square T := \mathbb{N} \setminus \{0,1\}
```

$$\square \rightarrow := \{(m,k) \mid k < m, k | m\}$$

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k | m\}$
- $\square \leftarrow = \{(k, m) \mid k < m, k | m\}$

```
\Box T := \mathbb{N} \setminus \{0, 1\} 

\Box \rightarrow := \{(m, k) \mid k < m, k \mid m\} 

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\} 

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\}
```

```
\Box T := \mathbb{N} \setminus \{0, 1\}

\Box \to := \{(m, k) \mid k < m, k \mid m\}

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\}

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\}

\Box \stackrel{+}{\to} = \{(m, k) \mid \text{ex. } n \geq 0, \text{ ex. } k_1, \dots, k_n \in T \text{ a.î. } m \to k_1 \to \dots \to k_n \to k\} = \to
```

Exemple

```
\Box T := \mathbb{N} \setminus \{0, 1\} 

\Box \rightarrow := \{(m, k) \mid k < m, k \mid m\} 

\Box \leftarrow = \{(k, m) \mid k < m, k \mid m\} 

\Box \leftrightarrow = \{(k_1, k_2) \mid k_1 \neq k_2, k_1 \mid k_2 \text{ sau } k_2 \mid k_1\} 

\Box \stackrel{+}{\rightarrow} = \{(m, k) \mid \text{ex. } n \geq 0, \text{ ex. } k_1, \dots, k_n \in T \text{ a.î. } m \rightarrow k_1 \rightarrow \dots \rightarrow k_n \rightarrow k\} = \rightarrow 

\Box \stackrel{*}{\rightarrow} = \stackrel{+}{\rightarrow} \cup \{(k, k) \mid k \in T\}
```

Definiție

Fie (T, \rightarrow) sistem de rescriere.

 \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.

Definiție

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un șir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$

Definiție

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un șir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.

Definiție

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un șir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.
- □ t₀ este o formă normală a lui t dacă
 - \Box $t\stackrel{*}{
 ightharpoonup}t_0$ și
 - \Box t_0 este în formă normală.

Definiție

- \Box $t \in T$ este reductibil dacă există $t' \in T$ a.î. $t \to t'$.
- \square O reducere este un şir $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- \Box $t \in T$ este în formă normală (ireductibil) dacă nu este reductibil.
- □ t₀ este o formă normală a lui t dacă
 - \Box $t\stackrel{*}{
 ightharpoonup} t_0$ și
 - \Box t_0 este în formă normală.
- \square t_1 și t_2 se intâlnesc dacă există $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$.
 - \square notație: $t_1 \downarrow t_2$.

```
\Box T := \mathbb{N} \setminus \{0,1\}
```

$$\square \rightarrow := \{(m,k) \mid k < m, k | m\}$$

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- □ k este în formă normală dacă

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$
- \square k este în formă normală dacă este număr prim.

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă nu sunt prime între ele.

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă nu sunt prime între ele.
- □ k este o formă normală a lui m dacă

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m, k) \mid k < m, k \mid m\}$
- \square k este în formă normală dacă este număr prim.
- \square $k_1 \downarrow k_2$ dacă nu sunt prime între ele.
- \square k este o formă normală a lui m dacă k este un factor prim al lui m.

```
\Box T := \{a, b\}^* 

\Box \rightarrow := \{(ubav, uabv) \mid u, v \in T\}
```

- $\square T := \{a, b\}^*$
- $\square \rightarrow := \{(ubav, uabv) \mid u, v \in T\}$
- □ w este în formă normală dacă

- \Box $T := \{a, b\}^*$
- $\square \rightarrow := \{(ubav, uabv) \mid u, v \in T\}$
- \square w este în formă normală dacă $w = a^n b^k$, cu $n, k \ge 0$.

- $\Box T := \{a, b\}^*$ $\Box \rightarrow := \{(ubav, uabv) \mid u, v \in T\}$
- \square w este în formă normală dacă $w = a^n b^k$, cu $n, k \ge 0$.
- \square $w_1 \downarrow w_2$ dacă

```
□ T := \{a, b\}^*
□ \rightarrow := \{(ubav, uabv) \mid u, v \in T\}
□ w este în formă normală dacă w = a^n b^k, cu n, k \ge 0.
□ w_1 \downarrow w_2 dacă
□ nr_a(w_1) = nr_a(w_2) și
□ nr_b(w_1) = nr_b(w_2).
```

Definiție

Definiție

- noetherian (se termină): dacă nu există reduceri infinite
 - $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.

Definiție

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
 - orice rescribe se terrima.
- \Box confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.

Definiție

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
 - _____
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.

Definiție

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
- \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.

Definiție

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
- \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- □ Normalizat: orice element are o formă normală.

Definiție

- □ noetherian (se termină): dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
 - orice rescriere se termină.
- \square confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- \square local confluent: $t_1 \leftarrow t \rightarrow t_2 \Rightarrow t_1 \downarrow t_2$.
- \Box Church-Rosser: $t_1 \stackrel{*}{\leftrightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- □ Normalizat: orice element are o formă normală.
- □ Complet (convergent, canonic): confluent și noetherian.

Confluent:

Local confluent:

- \square $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$

Sisteme de rescriere abstracte

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k | m\}$
- \Box (T, \rightarrow) este noetherian:
 - orice *m* se rescrie într-un factor prim al său.

Sisteme de rescriere abstracte

- \Box $T := \mathbb{N} \setminus \{0,1\}$
- $\square \rightarrow := \{(m,k) \mid k < m, k \mid m\}$
- \square (T, \rightarrow) este noetherian:
 - orice *m* se rescrie într-un factor prim al său.
- \square (T, \rightarrow) nu este confluent:

Proprietăți (goto 25)

Propoziție (1)

Fie (T, \rightarrow) sistem de rescriere. Dacă $t \downarrow t'$, atunci $t \stackrel{*}{\leftrightarrow} t'$.

Proprietăți (goto 25)

Propoziție (1)

Fie (T, \rightarrow) sistem de rescriere. Dacă $t \downarrow t'$, atunci $t \stackrel{*}{\leftrightarrow} t'$.

Demonstrație

Dacă $t\downarrow t'$, atunci există t_0 a.î. $t\stackrel{*}{\to} t_0\stackrel{*}{\leftarrow} t'$, i.e. $t\stackrel{*}{\leftrightarrow} t'$.

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

noetherian ⇒ orice element are o formă normală

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

$$\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & & & & & & & \\ \end{array}$$

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

$$\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & & & & & & & \\ \end{array}$$

- \Box $T = \{a, b, c\}$
- $\square \rightarrow = \{(a,b),(b,a),(b,c)\}$
- ☐ Orice element are forma normală c, dar

Propoziție (2)

Fie (T, \rightarrow) sistem de rescriere.

$$\begin{array}{ccc} \text{noetherian} & \Rightarrow & \text{orice element are o formă normală} \\ & & \neq & \end{array}$$

- \Box $T = \{a, b, c\}$
- $\square \rightarrow = \{(a,b),(b,a),(b,c)\}$
- \square Orice element are forma normală c, dar
- \square \rightarrow nu este noetherian: $a \rightarrow b \rightarrow a \rightarrow b \rightarrow a \rightarrow \dots$

Propoziție (3)

Fie (T, \rightarrow) sistem de rescriere.

complet \Rightarrow orice element t are o unică formă normală fn(t)

Propoziție (3)

Fie (T, \rightarrow) sistem de rescriere.

complet \Rightarrow orice element t are o unică formă normală fn(t)

Demonstrație

- \square Deoarece (T, \rightarrow) este noetherian, t are o formă normală, i.e.
 - $t \stackrel{*}{\rightarrow} t'$ și t' este în formă normală.
- \square Presupunem că t mai are o altă formă normală t''.
- \square Cum $t\stackrel{*}{ o}t''$ și $t\stackrel{*}{ o}t'$, din confluență avem

$$t' \downarrow t''$$
.

 \square Cum t' și t'' sunt în formă normală, putem obține doar t'=t''.

Propoziție (4)

Fie (T, \rightarrow) sistem de rescriere.

confluent ⇔ Church-Rosser

Propoziție (4)

Fie (T, \rightarrow) sistem de rescriere.

confluent ⇔ Church-Rosser

Demonstrație

(⇐)

- \square Presupunem $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2$.
- \square Atunci avem $t_1 \stackrel{*}{\leftrightarrow} t_2$.
- \square Cum (T, \rightarrow) este Church-Rosser, obţinem că $t_1 \downarrow t_2$.
- \square Deci (T, \rightarrow) este confluent.

Demonstrație (cont.)

 (\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

Demonstrație (cont.)

 (\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

□ Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:

Demonstrație (cont.)

 (\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

- Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:
 - \square n=1: Atunci evident $t'_1 \downarrow t'_1$.

Demonstrație (cont.)

 (\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

- Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:
 - \square n=1: Atunci evident $t'_1 \downarrow t'_1$.
 - \square $n \rightarrow n+1$: Pres. $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' \leftrightarrow t_{n+1}'$.

Din ip. de inducție știm $t_1' \downarrow t_n'$. Atunci ex. w a.î. $t_1' \stackrel{*}{\to} w \stackrel{*}{\leftarrow} t_n'$. Avem două cazuri:

Demonstrație (cont.)

(\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t'_1 \leftrightarrow t'_2 \leftrightarrow \ldots \leftrightarrow t'_n = t_2.$$

- Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:
 - \square n=1: Atunci evident $t'_1 \downarrow t'_1$.
 - \square $n \rightarrow n+1$: Pres. $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' \leftrightarrow t_{n+1}'$.

Din ip. de inducție știm $t_1' \downarrow t_n'$. Atunci ex. w a.î. $t_1' \stackrel{*}{\to} w \stackrel{*}{\leftarrow} t_n'$. Avem două cazuri:

Demonstrație (cont.)

(\Rightarrow)

 \square Presupunem $t_1 \stackrel{*}{\leftrightarrow} t_2$. Atunci există n și t_1', \ldots, t_n' a.î.:

$$t_1 = t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' = t_2.$$

- \square Demonstrăm prin inducție după n că dacă $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n'$, atunci $t_1' \downarrow t_n'$:
 - \square n=1: Atunci evident $t'_1 \downarrow t'_1$.
 - \square $n \rightarrow n+1$: Pres. $t_1' \leftrightarrow t_2' \leftrightarrow \ldots \leftrightarrow t_n' \leftrightarrow t_{n+1}'$.

Din ip. de inducție știm $t_1' \downarrow t_n'$. Atunci ex. w a.î. $t_1' \stackrel{*}{\to} w \stackrel{*}{\leftarrow} t_n'$. Avem două cazuri:

- $t'_n o t'_{n+1}$: Cum $w \overset{*}{\leftarrow} t'_n o t'_{n+1}$ și (T, o) este confluent, obținem $w \downarrow t'_{n+1}$. Deci există w' a.î. $w \overset{*}{\rightarrow} w' \overset{*}{\leftarrow} t'_{n+1}$. Deci $t'_1 \overset{*}{\rightarrow} w \overset{*}{\rightarrow} w' \overset{*}{\leftarrow} t'_{n+1}$, adică $t'_1 \downarrow t'_{n+1}$.
 - \square În concluzie, $t_1 \downarrow t_2$.

Propoziție (5)

Fie (T, \rightarrow) sistem de rescriere.

confluent ⇒ local confluent

Propoziție (5)

Fie (T, \rightarrow) sistem de rescriere.

 $\begin{array}{ccc} \mathsf{confluent} & \Rightarrow & \mathsf{local} \; \mathsf{confluent} \\ & \not = & \end{array}$

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere.

$$\begin{array}{ccc} \mathsf{confluent} & \Rightarrow & \mathsf{local} \; \mathsf{confluent} \\ & & & & & & \\ \end{array}$$

$$\Box T = \{a, b, c, d\}$$

$$\quad \square \ \rightarrow :$$

$$a \leftarrow b$$
 $c \rightarrow a$

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere. confluent \Rightarrow local confluent $\not=$

$$\Box T = \{a, b, c, d\}$$

$$\Box \rightarrow: \qquad a \longleftarrow b \qquad c \longrightarrow c$$

- ☐ T este local confluent:

Propoziție (5)

Fie
$$(T, \rightarrow)$$
 sistem de rescriere. confluent \Rightarrow local confluent $\not=$

$$\Box T = \{a, b, c, d\}$$

$$\Box \rightarrow: \qquad a \longleftarrow b \qquad c \longrightarrow c$$

- ☐ T este local confluent:
- ☐ T nu este confluent:
 - \square $a \stackrel{*}{\leftarrow} b \stackrel{*}{\rightarrow} d$, dar $a \not\downarrow d$
 - \square $a \stackrel{*}{\leftarrow} c \stackrel{*}{\rightarrow} d$, dar $a \not\downarrow d$

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Demonstrație

Deoarece (T, \rightarrow) este noetherian, știm că orice element are o formă normală.

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Demonstrație

- \square Deoarece (T, \rightarrow) este noetherian, știm că orice element are o formă normală.
- ☐ Arătăm că orice element are o formă normală unică.

Propoziție (6) - Lema lui Newman

Fie (T, \rightarrow) sistem de rescriere.

noetherian + local confluent ⇒ confluent

Demonstrație

- Deoarece (T, \rightarrow) este noetherian, știm că orice element are o formă normală.
- ☐ Arătăm că orice element are o formă normală unică.
- □ Fie M mulţimea elementelor care au cel puţin două forme normale diferite:

$$M = \{t \mid n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2, n_1, n_2 \text{ în formă normală } \}.$$

Demonstrație (cont.)

```
(\star) pt. or. t \in M, există t' \in M a.î. t \to t'.
```

Demonstrație (cont.)

☐ Demonstrăm următoarea proprietate:

```
(\star) pt. or. t \in M, există t' \in M a.î. t \to t'.
```

 \square Fie $t \in M$.

Demonstrație (cont.)

```
(\star) pt. or. t \in M, există t' \in M a.î. t \to t'.
```

- \square Fie $t \in M$.
- Atunci ex. n_1 și n_2 în formă normală a.î. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2$.

Demonstrație (cont.)

```
(\star) pt. or. t \in M, există t' \in M a.î. t \to t'.
```

- \square Fie $t \in M$.
- Atunci ex. n_1 și n_2 în formă normală a.î. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2$.
- \square Pres. $n_1 \leftarrow t \rightarrow n_2$:
 - Din local confluență, obținem $n_1 \downarrow n_2$.
 - Cum n_1 și n_2 în formă normală, obținem $n_1 = n_2$ (contradicție).

Demonstrație (cont.)

$$(\star)$$
 pt. or. $t \in M$, există $t' \in M$ a.î. $t \to t'$.

- \square Fie $t \in M$.
- Atunci ex. n_1 și n_2 în formă normală a.î. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2$.
- \square Pres. $n_1 \leftarrow t \rightarrow n_2$:
 - Din local confluență, obținem $n_1 \downarrow n_2$.
 - Cum n_1 și n_2 în formă normală, obținem $n_1 = n_2$ (contradicție).
- \square Pres. $n_1 \leftarrow t \stackrel{*}{\rightarrow} n_2$:
 - Atunci există t_2 a.î. $n_1 \leftarrow t \rightarrow t_2 \stackrel{*}{\rightarrow} n_2$.
 - Din local confluența, obținem $n_1 \downarrow t_2$.
 - Cum n_1 în formă normală, obținem $t_2 \stackrel{*}{\rightarrow} n_1$.
 - Deci $t_2 \in M$ și $t \to t_2$.

Demonstrație (cont.)

$$(\star)$$
 pt. or. $t \in M$, există $t' \in M$ a.î. $t \to t'$.

- \square Fie $t \in M$.
- Atunci ex. n_1 și n_2 în formă normală a.î. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2, n_1 \neq n_2$.
- \square Pres. $n_1 \leftarrow t \rightarrow n_2$:
 - Din local confluență, obținem $n_1 \downarrow n_2$.
 - Cum n_1 și n_2 în formă normală, obținem $n_1 = n_2$ (contradicție).
- \square Pres. $n_1 \leftarrow t \stackrel{*}{\rightarrow} n_2$:
 - Atunci există t_2 a.î. $n_1 \leftarrow t \rightarrow t_2 \stackrel{*}{\rightarrow} n_2$.
 - Din local confluenţa, obţinem $n_1 \downarrow t_2$.
 - Cum n_1 în formă normală, obținem $t_2 \stackrel{*}{\rightarrow} n_1$.
 - Deci $t_2 \in M$ și $t \to t_2$.
- \square Pres. $n_1 \stackrel{*}{\leftarrow} t \rightarrow n_2$:
 - Atunci există t_1 a.î. $n_1 \stackrel{*}{\leftarrow} t_1 \leftarrow t \rightarrow n_2$.
 - Din local confluență, obținem $t_1 \downarrow n_2$ și, mai departe, $t_1 \stackrel{*}{\rightarrow} n_2$.
 - Deci $t_1 \in M$ și $t \to t_1$.

Demonstrație (cont.)

- \square (*) pt. or. $t \in M$, există $t' \in M$ a.î. $t \to t'$. Pres. $n_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} n_2$:
- Atunci există t_1, t_2 a.î. $n_1 \stackrel{*}{\leftarrow} t_1 \leftarrow t \rightarrow t_2 \stackrel{*}{\rightarrow} n_2$.
- Din local confluență, obținem $t_1 \downarrow t_2$.
- Deci ex. n_3 în formă normală a.î. $t_1 \stackrel{*}{\to} n_3$ și $t_2 \stackrel{*}{\to} n_3$.
- Deoarece $n_1 \neq n_2$, deducem că $n_3 \neq n_1$ sau $n_3 \neq n_2$.
- Dacă $n_3 \neq n_1$, atunci $t_1 \in M$ și $t \rightarrow t_1$.
- □ Dacă $n_3 \neq n_2$, atunci $t_2 \in M$ și $t \rightarrow t_2$.

Demonstrație (cont.)

- \square Arătăm unicitatea formei normale, i.e. $M = \emptyset$.
 - □ Pres. prin absurd că $M \neq \emptyset$. Atunci există $t_1 \in M$.
 - \square Din (\star) , ex. $t_2 \in M$ a.î. $t_1 \rightarrow t_2$.
 - \square Prin inducție, obținem un șir $\{t_i\}_{i\in\mathbb{N}}$ de elemente din M a.î.

$$t_1 \to t_2 \to \ldots \to t_n \to \ldots$$

ceea ce contrazice faptul că (T, \rightarrow) este noetherian.

- □ Pres. $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2$. Cum t are o unică formă normală n, obținem $t_1 \stackrel{*}{\rightarrow} n \stackrel{*}{\leftarrow} t_2$. Deci $t_1 \downarrow t_2$.
- \square În concluzie, (T, \rightarrow) este confluent.

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \quad \Leftrightarrow \quad \mathit{fn}(t) = \mathit{fn}(t')$$

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \quad \Leftrightarrow \quad \mathit{fn}(t) = \mathit{fn}(t')$$

Demonstrație

(=)

- \square Dacă fn(t) = fn(t'), atunci evident $t \downarrow t'$.
- \square Aplicăm Propoziția (1) și obtinem $t \stackrel{*}{\leftrightarrow} t'$.

Propoziție (7)

Fie (T, \rightarrow) sistem de rescriere complet.

$$t \stackrel{*}{\leftrightarrow} t' \Leftrightarrow fn(t) = fn(t')$$

Demonstrație

- (⇐)
 - \square Dacă fn(t) = fn(t'), atunci evident $t \downarrow t'$.
 - \square Aplicăm Propoziția (1) și obtinem $t \stackrel{*}{\leftrightarrow} t'$.
- (\Rightarrow)
 - \square Cum (T, \rightarrow) este complet, este confluent și or. element are o unică formă normală. Din Propoziția (4), este Church-Rosser.
 - \square Deoarece $t \stackrel{*}{\leftrightarrow} t'$, obţinem că $t \downarrow t'$, i.e. există w a.î. $t \stackrel{*}{\rightarrow} w \stackrel{*}{\leftarrow} t'$.
 - \square Fie *n* unica formă normală a lui w.
 - \square În concluzie, $t \stackrel{*}{\rightarrow} n \stackrel{*}{\leftarrow} t'$, deci fn(t) = fn(t').

Observații

□ Terminarea unui sistem de rescriere este nedecidabilă.
 □ echivalentă cu oprirea maşinilor Turing
 □ Pentru sisteme de rescriere particulare putem decide terminarea.
 □ diverse metode
 □ Pentru sisteme de rescriere care se termină, confluența este decidabilă.
 □ algoritmul Knuth-Bendix

Pe săptămâna viitoare!