UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma C - 2023/1Prova da área I

1-4	5	6	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- $\bullet\,$ Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

fasta do operator \vec{v} . f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$\vec{\nabla} imes \left(\vec{F} + \vec{G} \right) = \vec{\nabla} imes \vec{F} + \vec{\nabla} imes \vec{G}$
4.	$\vec{\nabla} (fg) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes \left(ec{ abla} f ight) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla} \varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}''(t)\ }$			
Vetor binormal	$ec{B} = rac{ec{r}'(t) imes ec{r}''(t)}{\ ec{r}'(t) imes ec{r}''(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{d\vec{T}}{\frac{dt}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$$\begin{array}{lll} \frac{d\vec{T}}{ds} & = & \kappa \vec{N} \\ \\ \frac{d\vec{N}}{ds} & = & -\kappa \vec{T} & +\tau \vec{B} \\ \\ \frac{d\vec{B}}{ds} & = & -\tau \vec{N} \end{array}$$

• Questão 1 (0.5 ponto cada item) Considere a hélice circular não uniforme dada por:

$$\vec{r}(t) = \cos(t)\vec{i} + \sin(t)\vec{j} + \pi^2 \ln(t)\vec{k}, \quad t > 0.$$

Marque a resposta correta para cada coluna.

Tangente unitário em $t=\pi$:

()
$$\vec{T}(\pi) = \frac{-\vec{j} + \pi \vec{k}}{\sqrt{1 + \pi^2}}$$

()
$$\vec{T}(\pi) = \frac{-\vec{j} + \pi \vec{k}}{\sqrt{2 + \pi^2}}$$

()
$$\vec{T}(\pi) = \frac{\pi \vec{i} - \vec{j} + \vec{k}}{\sqrt{2 + \pi^2}}$$

()
$$\vec{T}(\pi) = \frac{\vec{i} + \pi \vec{j} + \vec{k}}{\sqrt{1 + \pi^2}}$$

$$(\)\ \vec{T}(\pi) = \frac{\vec{i} + \pi \vec{j} + \vec{k}}{\sqrt{2 + \pi^2}}$$

Curvatura em $t = \pi$:

$$(\)\ \kappa(\pi) = \frac{2+\pi^2}{\pi}$$

()
$$\kappa(\pi) = \frac{\pi}{\pi}$$

() $\kappa(\pi) = \frac{\sqrt{2 + \pi^2}}{\sqrt{1 + \pi^2}}$

()
$$\kappa(\pi) = \frac{\sqrt{2+\pi^2}}{\sqrt{(1+\pi^2)^3}}$$

$$(\)\ \kappa(\pi) = \frac{1}{\pi}$$

()
$$\kappa(\pi) = \frac{2 + \pi^2}{1 + \pi^2}$$

Binormal unitário em $t = \pi$:

()
$$\vec{B}(\pi) = \frac{-\vec{j} + \pi \vec{k}}{\sqrt{1 + \pi^2}}$$

()
$$\vec{B}(\pi) = \frac{-\vec{j} + \pi \vec{k}}{\sqrt{2 + \pi^2}}$$

$$(\)\ ec{B}(\pi) = rac{\pi ec{i} - ec{j} + ec{k}}{\sqrt{2 + \pi^2}}$$

()
$$\vec{B}(\pi) = \frac{\vec{i} + \pi \vec{j} + \vec{k}}{\sqrt{1 + \pi^2}}$$

()
$$\vec{B}(\pi) = \frac{\vec{i} + \pi \vec{j} + \vec{k}}{\sqrt{2 + \pi^2}}$$

Torção em $t = \pi$:

$$(\)\ \tau(\pi)=\frac{2+\pi^2}{\pi}$$

()
$$\tau(\pi) = \frac{\sqrt{2+\pi^2}}{\sqrt{1+\pi^2}}$$

()
$$\tau(\pi) = \frac{\sqrt{2+\pi^2}}{\sqrt{(1+\pi^2)^3}}$$

$$(\)\ \tau(\pi) = \frac{1}{\pi}$$

()
$$\tau(\pi) = \frac{2+\pi^2}{1+\pi^2}$$

• Questão 2 (0.5 ponto cada item) Uma mosca viaja sobre uma trajetória $\vec{r}(t)$ com velocidade $\vec{v}(t)$ e aceleração $\vec{a}(t) = 2\cos(t)\vec{i} + 2\sin(t)\vec{j}$, $0 \le t \le 2\pi$. Sabendo que a velocidade da abelha no ponto t = 0 é $\vec{v}(0) = -\vec{j}$, marque a resposta correta para cada coluna.

Componente tangencial da aceleração: a_T

()
$$a_T = \frac{4 - 2\cos(t)}{\sqrt{5 - 4\cos(t)}}$$

$$() a_T = \frac{4 - 2\cos(t)}{\sqrt{(5 - 4\cos(t))^3}}$$

()
$$a_T = \frac{2 \operatorname{sen}(t)}{\sqrt{(5 - 4 \cos(t))^3}}$$

()
$$a_T = \frac{8 + 2\operatorname{sen}(t) + 2\cos(t)}{\sqrt{5 - 4\cos(t)}}$$

()
$$a_T = \frac{2 \operatorname{sen}(t)}{\sqrt{5 - 4 \cos(t)}}$$

() N.D.A

Componente normal da aceleração: a_N

()
$$a_N = \frac{4 - 2\cos(t)}{\sqrt{5 - 4\cos(t)}}$$

()
$$a_N = \frac{4 - 2\cos(t)}{\sqrt{(5 - 4\cos(t))^3}}$$

()
$$a_N = \frac{2 \operatorname{sen}(t)}{\sqrt{(5 - 4 \cos(t))^3}}$$

()
$$a_N = \frac{8 + 2\operatorname{sen}(t) + 2\cos(t)}{\sqrt{5 - 4\cos(t)}}$$

()
$$a_N = \frac{2 \operatorname{sen}(t)}{\sqrt{5 - 4 \cos(t)}}$$

() N.D.A

• Questão 3 (0.5 ponto cada item) Considere a linha poligonal fechada C no plano xy formada pelos pontos $P_0(1,0,1),\ P_1(3,0,1)$ e $P_2(2,1,1),$ no sentido $P_0\to P_1\to P_2\to P_0,$ e o campo $\vec{F}=-(z^3+1)y\vec{i}+(z^2+1)x\vec{j}+xye^z\vec{k}.$

Rotacional

$$(\)\ \vec{\nabla}\times\vec{F}=(xe^{z}-2zx+e^{z})\vec{i}-(3z^{2}y-ye^{z}+e^{z}+1)\vec{j}+(z^{3}+z^{2}+2)\vec{k}$$

()
$$\vec{\nabla} \times \vec{F} = (xe^z - 2zx + e^z)\vec{i} - (3z^2y - ye^z + e^z)\vec{j} + (z^3 + z^2)\vec{k}$$

()
$$\vec{\nabla} \times \vec{F} = (xe^z - 2zx)\vec{i} - (3z^2y - ye^z)\vec{j} + (z^3 + z^2 + 2)\vec{k}$$

()
$$\vec{\nabla} \times \vec{F} = xe^z\vec{i} - 3zy\vec{j} + (z^3 + z^2)\vec{k}$$

()
$$\vec{\nabla} \times \vec{F} = xe^z\vec{i} - 3e^z\vec{j} + 4\vec{k}$$

Integral de linha

$$() \oint_C \vec{F} \cdot d\vec{r} = 1$$

()
$$\oint_C \vec{F} \cdot d\vec{r} = 2$$

()
$$\oint_C \vec{F} \cdot d\vec{r} = 4$$

()
$$\oint_C \vec{F} \cdot d\vec{r} = 8$$

()
$$\oint_C \vec{F} \cdot d\vec{r} = 16$$

- Questão 4 (0.5 ponto cada item) A figura ao lado apresenta o corte z=0 de um campo $\vec{F}(x,y)=F_2(x,y)\vec{j}$ e as seguintes quatro curvas orientadas: C_1 é um círculo, C_2 é um segmento de reta, C_3 é uma elipse e C_4 é a união de dois segmentos de reta. Considere também
 - o plano S_1 dado por $x=0, -2 \le y \le 2, -2 \le z \le 2$, orientado no
 - o plano S_2 dado por $y=0,\,-2\leq x\leq 2,\,-2\leq z\leq 2,$ orientado no sentido de $-\vec{j}$.
 - o plano S_3 dado por $z=0,\,-2\leq x\leq 2,\,-2\leq y\leq 2,$ orientado no sentido de $-\vec{k}$.

Marque a resposta correta para cada coluna.

Integral de linha:

Integral de Superfície:

()
$$\int_{C_1} \vec{F} \cdot d\vec{r} < 0$$

$$(\quad)\iint_{S_1} \vec{F} \cdot \vec{n} dS = \iint_{S_2} \vec{F} \cdot \vec{n} dS > 0$$

$$(\quad) \int_{C_2} \vec{F} \cdot d\vec{r} = 0$$

$$(\)\ \int_{C_2} \vec{F} \cdot d\vec{r} = 0 \qquad \qquad (\)\ \iint_{S_2} \vec{F} \cdot \vec{n} dS > \iint_{S_2} \vec{F} \cdot \vec{n} dS > 0$$

$$(\quad) \int_{C_4} \vec{F} \cdot d\vec{r} = 0$$

$$(\quad) \quad \int_{C_4} \vec{F} \cdot d\vec{r} = 0 \qquad \qquad (\quad) \quad \iint_{S_3} \vec{F} \cdot \vec{n} dS < 0$$

$$(\quad) \int_{C_3} \vec{F} \cdot d\vec{r} > 0$$

$$(\quad) \ \int_{C_3} \vec{F} \cdot d\vec{r} > 0 \qquad \qquad (\quad) \ \iint_{S_2} \vec{F} \cdot \vec{n} dS < 0$$

$$(\quad) \ \int_{C_3} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r}$$

$$(\)\ \int_{C_3} \vec{F} \cdot d\vec{r} > \int_{C_2} \vec{F} \cdot d\vec{r} \qquad (\)\ \iint_{S_1} \vec{F} \cdot \vec{n} dS > \iint_{S_2} \vec{F} \cdot \vec{n} dS = 0$$

- () A curva C_3 possui somente dois valores para a curvatura.
- () A curvatura é zero sobre C_1 e C_2 .
- () A curvatura não é constante para C_1 e C_3
- () A curva C_4 tem dois valores para curvatura e um ponto onde a curvatura não está bem definida.
- () A curvatura é zero sobre C_2 e sobre C_4 , com exceção de um ponto sobre C_4 .

Divergente:

() $\nabla \cdot \vec{F} > 0$ em todos os pontos.

0

-1

() $\nabla \cdot \vec{F} > 0$ somente no primeiro quadrante.

-1

0 X

Campo \vec{F}

- () $\nabla \cdot \vec{F} = 0$ somente no primeiro quadrante.
- () $\nabla \cdot \vec{F} < 0$ em todos os pontos.
- () $\nabla \cdot \vec{F} < 0$ no primeiro quadrante e $\nabla \cdot \vec{F} > 0$ no terceiro quadrante.
- Questão 5 (1.0 ponto) Seja a curva no plano xy dada pela gráfico de uma função suficientemente diferenciável f(x):

$$y = f(x)$$
.

Mostre que curvatura como função de x é dada pela expressão:

$$\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}.$$

Empregue essa fórmula à função $f(x) = \sqrt{1-x^2}, -1 \le x \le 1$ e interprete geometricamente.

- Questão 6 (3.0 pontos) Considere a região V limitada lateralmente por $z=\sqrt{x^2+y^2}$, inferiormente por z=1 e superiormente por z=2. Sejam S a superfície que limita V orientada para fora e $\vec{F}=x\vec{i}+y\vec{j}+z^2\vec{k}$
 - a) (1.5 ponto) Calcule o fluxo via parametrização direta da superfície. (sem usar o teorema da divergência)
 - b) (1.5 ponto) Calcule o fluxo via teorema da divergência.