

• Cofactor expansion. If A is an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

then

$$\det A = (-1)^{1+1} a_{11} \cdot \det A_{11}$$

$$+ (-1)^{1+2} a_{21} \cdot \det A_{21}$$

$$\cdots \qquad \cdots \qquad \cdots$$

$$+ (-1)^{1+n} a_{n1} \cdot \det A_{n1}$$

where A_{ij} is the matrix obtained by deleting the i^{th} row and j^{th} column of A.

• Cramer's Rule: If A is an $n \times n$ invertible matrix then

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det A_{ij}$

Proposition

Consider a matrix equation:

$$Ax = b$$

if A is an invertible matrix, $\det A = \pm 1$ and all entries of A and \mathbf{b} are integers, the the solution of this equation consists of integers.