DECISION TREE ALGORITHM

Predicting whether a Customer would be granted a loan or not depending on various parameters.

Date	27/04/2021
Name	Vinit Ravichandran Iyer

Content List

Sr No	Description	Page No
1	Introduction	3
2	Source Code	4
3	Output	22
4	Inference	23

Introduction

Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems. It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.

In a Decision tree, there are two nodes, which are the Decision Node and Leaf Node. Decision nodes are used to make any decision and have multiple branches, whereas Leaf nodes are the output of those decisions and do not contain any further branches.

The decisions or the test are performed on the basis of features of the given dataset. It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions. It is called a decision tree because, similar to a tree, it starts with the root node, which expands on further branches and constructs a tree-like structure.

A Decision tree is mainly used over datasets for two reasons. Namely, Decision Trees usually mimic human thinking ability while making a decision, so it is easy to understand. The logic behind the decision tree can be easily understood because it shows a tree-like structure. The Following decision tree algorithm "decides" whether a customer will receive a loan from the bank or not.

Source Code

1. Importing Libraries

Input	import numpy as np
	import matplotlib.pyplot as plt
	import seaborn as sea
	import pandas as pd

2. Importing the Dataset

Input	data = pd.read_csv("Loan_Data.csv")
	data.head()

Output

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0	LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0
4											>

3. Understanding the Data

Input	data.columns							
Output	<pre>Index(['Loan_ID', 'Gender', 'Married', 'Dependents', ' Education'</pre>							
	Education',							
	'Self_Employed', 'ApplicantIncome', 'Coapplican							
	tIncome', 'LoanAmount',							
	'Loan_Amount_Term', 'Credit_History', 'Property							
	_Area', 'Loan_Status'],							
	dtype='object')							
Input	data.dtypes							
Output	Loan_ID object							
1	Gender object							
	Married object							
	Dependents object							
	Education object							
	Self_Employed object							
	ApplicantIncome int64							
	CoapplicantIncome float64							
	LoanAmount float64							
	Loan Amount Term float64							
	Credit History float64							
	Property Area object							
	Loan Status object							
	dtype: object							
Input	data.shape							
Output	(614, 13)							

Input	data.isnull().sum()
Output	Loan_ID 0
1	Gender 13
	Married 3
	Dependents 15
	Education 0
	Self_Employed 32
	ApplicantIncome 0
	CoapplicantIncome 0
	LoanAmount 22
	Loan_Amount_Term 14
	Credit_History 50
	Property_Area 0
	Loan_Status 0
	dtype: int64
	 There are missing values in Gender, Married, Dependents, Self_Employed, LoanAmount, Loan_Amount_Term and Credit_History features. For numerical variables: imputation using mean or median For categorical variables: imputation using mode
Input	data.head(2)

Loa	n_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0 LP00	1002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
1 LP00	1003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0
4											

Input	data['Gender'].fillna(data['Gender'].mode()[0], inplace=True) data['Married'].fillna(data['Married'].mode()[0], inplace=True) data['Dependents'].fillna(data['Dependents'].mode()[0], inplace=True) data['Self_Employed'].fillna(data['Self_Employed'].mode()[0], inplace=True)							
	data['Credit_History'].fillna(data['Credit_History'].mode()[0], inplace=True)							
	data['Loan_Amount_Term'].value_counts()							
Output	360.0 512 180.0 44 480.0 15 300.0 13 84.0 4 240.0 4 120.0 3 36.0 2 60.0 2 12.0 1 Name: Loan_Amount_Term, dtype: int64							
Input	data['Loan_Amount_Term'].fillna(data['Loan_Amount_Term'].mode()[0], inplace=True) data['LoanAmount'].fillna(data['LoanAmount'].median(), inplace=True)							

Input	data.isnull().sum()	
Output	Loan_ID	0
1	Gender	0
	Married	0
	Dependents	0
	Education	0
	Self Employed	0
	ApplicantIncome	0
	CoapplicantIncome	0
	LoanAmount	0
	Loan_Amount_Term	0
	Credit History	0
	Property Area	0
	Loan_Status	0
	dtype: int64	
Input	data.head(2)	

Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History
0 LP001002	Male	No	0	Graduate	No	5849	0.0	NaN	360.0	1.0
1 LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0

4. Univariate Analysis

Input	data['Loan_Status'].value_counts()						
Output	Y 422						
1	N 192						
	Name: Loan_Status, dtype: int64						
Input	data['Loan_Status'].value_counts(normalize=True)						
Output	Y 0.687296						
- · · · · ·	N 0.312704						
	Name: Loan_Status, dtype: float64						
Input data['Loan_Status'].value_counts().plot.bar()							

- The loan of 422 people out of 614 was approved The approval rate is around 68.73%

Categorical Variables

Input	plt.figure(1)
	plt.subplot(221)
	data['Gender'].value_counts(normalize=True).plot.bar(figsize=(20,10),
	title= 'Gender')
	plt.subplot(222)
	data['Married'].value_counts(normalize=True).plot.bar(title=
	'Married')
	plt.subplot(223)
	data['Self_Employed'].value_counts(normalize=True).plot.bar(title=
	'Self_Employed')
	plt.subplot(224)
	data['Credit_History'].value_counts(normalize=True).plot.bar(title=
	'Credit_History')
	plt.show()

Output

It can be inferred from the above bar plots that:

- 81.76% applicants in the dataset are male.
- Around 65.31% of the applicants in the dataset are married.
- Around 13.36% applicants in the dataset are self employed.
- Around 85.5% applicants have repaid their debts.

Input	data['Gender'].value_counts()
Output	Male 502
1	Female 112
	Name: Gender, dtype: int64

Input	data['Married'].value_counts()
Output	Yes 401
1	No 213
	Name: Married, dtype: int64

Input	data['Married'].value_counts()
Output	Yes 401
1	No 213
	Name: Married, dtype: int64

Input	data['Self_Employed'].value_counts()
Output	No 532
	Yes 82
	Name: Self_Employed, dtype: int64

Input	data['Credit_History'].value_counts()
Output	1.0 525
T	0.0 89
	Name: Credit_History, dtype: int64

Ordinal Variables

Input	plt.figure(1)
	plt.subplot(131)
	data['Dependents'].value_counts(normalize=True).plot.bar(figsize=(24,6),
	title= 'Dependents')
	plt.subplot(132)
	data['Education'].value_counts(normalize=True).plot.bar(title=
	'Education')
	plt.subplot(133)
	data['Property_Area'].value_counts(normalize=True).plot.bar(title=
	'Property_Area')
	plt.show()

Output

Following inferences can be made from the above bar plots:

- 58.63% of the applicants don't have any dependents.
- 78.18% of the applicants are Graduate.
- Majority (37.95%) of the applicants are from Semiurban area.

Input	data['D	ependents'].value_counts()
Output	0	360
1	1	102
	2	101
	3+	51
	Name:	Dependents, dtype: int64

Input	data['Education'].value_counts()
Output	Graduate 480
1	Not Graduate 134
	Name: Education, dtype: int64

Input	data['Property_Area'].value_counts()
Output	Semiurban 233
1	Urban 202
	Rural 179
	Name: Property_Area, dtype: int64

• Numericals Variables

Input	plt.figure(1)
	plt.subplot(121)
	sea.histplot(data['ApplicantIncome']);
	plt.subplot(122)
	data['ApplicantIncome'].plot.box(figsize=(16,5))
	plt.show()

Output

- It can be inferred that most of the data in the distribution of applicant income is towards left which means it is not normally distributed.
- The boxplot confirms the presence of a lot of outliers/extreme values. This can be attributed to the income disparity in the society

Input	data.boxplot(column='ApplicantIncome', by = 'Education')
	plt.suptitle("")

We can see that there are a higher number of graduates with very high incomes, which are appearing to be the outliers.

Input	plt.figure(1)
	plt.subplot(121)
	sea.histplot(data['CoapplicantIncome']);
	plt.subplot(122)
	data['CoapplicantIncome'].plot.box(figsize=(16,5))
	plt.show()

Output

- Majority of coapplicant's income ranges from 0 to 5000. We also see a lot of outliers in the coapplicant income and it is not normally distributed.

Input	plt.figure(1)
	plt.subplot(121)
	df=data.dropna()
	sea.histplot(df['LoanAmount']);
	plt.subplot(122)
	df['LoanAmount'].plot.box(figsize=(16,5))
	plt.show()

- Outliers are present
- the distribution is fairly normal.
- 5. Bivariate Analysis
- Categorical Variable vs Target Variable

Input	Gender=pd.crosstab(data['Gender'],data['Loan_Status'])
	Gender.div(Gender.sum(1).astype(float), axis=0).plot(kind="bar",
	stacked=True, figsize=(4,4))

It can be inferred that the proportion of male and female applicants is more or less same for both approved and unapproved loans.

T4	Manifel ad an articleta FM and did for an Character
Input	Married=pd.crosstab(data['Married'],data['Loan_Status'])
	Dependents=pd.crosstab(data['Dependents'],data['Loan_Status'])
	Education=pd.crosstab(data['Education'],data['Loan_Status'])
	Self_Employed=pd.crosstab(data['Self_Employed'],data['Loan_Status'])
	Married.div(Married.sum(1).astype(float), axis=0).plot(kind="bar",
	stacked=True, figsize=(4,4))
	plt.show()
	Dependents.div(Dependents.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True)
	plt.show()
	Education.div(Education.sum(1).astype(float), axis=0).plot(kind="bar",
	stacked=True, figsize=(4,4))
	plt.show()
	Self_Employed.div(Self_Employed.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True, figsize=(4,4))
	plt.show()

- Proportion of married applicants is higher for the approved loans.
- Distribution of applicants with 1 or 3+ dependents is similar across both the categories of Loan_Status.
- There is nothing significant we can infer from Self_Employed vs Loan_Status plot.

Input	Credit_History=pd.crosstab(data['Credit_History'],data['Loan_Status'])
	Property_Area=pd.crosstab(data['Property_Area'],data['Loan_Status'])
	Credit_History.div(Credit_History.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True, figsize=(4,4))
	plt.show()
	Property_Area.div(Property_Area.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True)
	plt.show()

- It seems people with credit history as 1 are more likely to get their loans approved.
- Proportion of loans getting approved in semiurban area is higher as compared to that in rural or urban areas.
- Numerical Variable vs Target Variable

Input	data.groupby('Loan_Status')['ApplicantIncome'].mean().plot.bar()
Output	

There is not visible difference between the mean income of people for which the loan has been approved vs the mean income of people for which the loan has not been approved.

Input	bins=[0,2500,4000,6000,81000]
	group=['Low','Average','High', 'Very high']
	data['Income_bin']=pd.cut(data['ApplicantIncome'],bins,labels=group)
	Income_bin=pd.crosstab(data['Income_bin'],data['Loan_Status'])
	Income_bin.div(Income_bin.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True)
	plt.xlabel('ApplicantIncome')
	P = plt.ylabel('Percentage')

Output

Analysing bins for the applicant income variable based on the values in it and the corresponding loan status for each bin.It can be inferred that Applicant income does not affect the chances of loan approval

Input	bins=[0,1000,3000,42000]
	group=['Low','Average','High']
	data['Coapplicant_Income_bin']=pd.cut(data['CoapplicantIncome'],
	bins,labels=group)
	Coapplicant_Income_bin=pd.crosstab(data['Coapplicant_Income_bin'],
	data['Loan_Status'])
	Coapplicant_Income_bin.div(Coapplicant_Income_bin.sum(1).
	astype(float), axis=0).plot(kind="bar", stacked=True)
	plt.xlabel('CoapplicantIncome')
	P = plt.ylabel('Percentage')

coapplicant's income is less the chances of loan approval are high

Input	data['Total_Income']=data['ApplicantIncome']+data['CoapplicantIncome']
	bins=[0,2500,4000,6000,81000]
	group=['Low','Average','High', 'Very high']
	data['Total_Income_bin']=pd.cut(data['Total_Income'],bins,labels=group)
	Total_Income_bin=pd.crosstab(data['Total_Income_bin'],data['Loan_Status'])
	Total_Income_bin.div(Total_Income_bin.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True)
	plt.xlabel('Total_Income')
	P = plt.ylabel('Percentage')

Output

Proportion of loans getting approved for applicants having low Total_Income is very less as compared to that of applicants with Average, High and Very High Income.

Input	bins=[0,100,200,700]
	group=['Low','Average','High']
	data['LoanAmount_bin']=pd.cut(data['LoanAmount'],bins,labels=group)
	LoanAmount_bin=pd.crosstab(data['LoanAmount_bin'],data['Loan_Status'])
	LoanAmount_bin.div(LoanAmount_bin.sum(1).astype(float),
	axis=0).plot(kind="bar", stacked=True)
	plt.xlabel('LoanAmount')
	P = plt.ylabel('Percentage')

the proportion of approved loans is **higher** for **Low and Average Loan Amount** as compared to that of High Loan Amount

Input	data=data.drop(['Income_bin', 'Coapplicant_Income_bin', 'LoanAmount_bin', 'Total_Income_bin', 'Total_Income'], axis=1) data['Dependents'].replace('3+', 3,inplace=True) data['Loan_Status'].replace('N', 0,inplace=True) data['Loan_Status'].replace('Y', 1,inplace=True)
	matrix = data.corr() f, ax = plt.subplots(figsize=(9, 6)) sea.heatmap(matrix, vmax=.8, square=True, cmap="BuPu")

- Highly correlated variables are (ApplicantIncome LoanAmount)
- Also (Credit_History Loan_Status). is higly correlated
- LoanAmount is also correlated with CoapplicantIncome.

6. Feature Engineering

Input	data['LoanAmount_log'] = np.log(data['LoanAmount'])
	data['LoanAmount_log'].hist(bins=20)

Output

the distribution looks much closer to normal and effect of extreme values has been significantly subsided.

Input	data['Total_Income']=data['ApplicantIncome']+data['CoapplicantIncome']
	sea.histplot(data['Total_Income']);

Output

Distribution is shifted towards left, i.e., the distribution is right skewed.

Input	data['Total_Income_log'] = np.log(data['Total_Income'])
	sea.histplot(data['Total_Income_log']);

- After taking the log transformation to make the distribution normal. Now the distribution looks much closer to normal

Input	data['EMI']=data['LoanAmount']/data['Loan_Amount_Term']
	sea.histplot(data['EMI']);

Output

Input	data['Balance Income']=data['Total_Income']-(data['EMI']*1000)
	sea.histplot(data['Balance Income']);

Input	data=data.drop(['ApplicantIncome', 'CoapplicantIncome',
	'LoanAmount', 'Loan_Amount_Term'], axis=1)

- drop the variables which we used to create these new features.
- because the correlation between those old features and these new features will be very high
- removing correlated features will help in reducing the noise too.

1	nput			data.l	nead()							
O	utput											
	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	Credit_History	Property_Area	Loan_Status	LoanAmount_log	Total_Income	Total_Incor
0	LP001002	Male	No	0	Graduate	No	1.0	Urban	1	4.852030	5849.0	8.
1	LP001003	Male	Yes	1	Graduate	No	1.0	Rural	0	4.852030	6091.0	8.
2	LP001005	Male	Yes	0	Graduate	Yes	1.0	Urban	1	4.189655	3000.0	8.
3	LP001006	Male	Yes	0	Not Graduate	No	1.0	Urban	1	4.787492	4941.0	8.
4	LP001008	Male	No	0	Graduate	No	1.0	Urban	1	4.948760	6000.0	8.
4												+

7. Building the Model

Input uata-uata.urop(Loan_ID ,axis-1)	Inp	put	data=data.drop('Loan_ID',axis=1)
--	-----	-----	----------------------------------

Loan Id is not a significant variable and it is not required as a feature for building model

Input	$X = data.drop('Loan_Status',1)$
	y = data.Loan_Status

Loan Status is target variabel so seggregating it

Input	X=pd.get_dummies(X)
	data=pd.get_dummies(data)

Dummy variables for Categorical Variable so each category can be given as a seperate feature to the model

Input	from sklearn import tree
	from sklearn.model_selection import StratifiedKFold
	from sklearn.metrics import accuracy_score
	import graphviz
	i=1
	kf = StratifiedKFold(n_splits=5,random_state=3,shuffle=True)
	accuracy_list = []
	for train_index,test_index in kf.split(X,y):
	<pre>print(' of kfold {}'.format(i,kf.n_splits))</pre>
	$xtr,xvl = X.loc[train_index],X.loc[test_index]$
	ytr,yvl = y[train_index],y[test_index]
	model = tree.DecisionTreeClassifier(random_state=1)

	<pre>model.fit(xtr, ytr) pred_test = model.predict(xvl) score = accuracy_score(yvl,pred_test) accuracy_list.append(score) print('accuracy_score',score) i+=1</pre>
Output	1 of kfold 5 accuracy_score 0.6829268292682927 2 of kfold 5 accuracy_score 0.6422764227642277
	3 of kfold 5 accuracy_score 0.7642276422764228
	4 of kfold 5 accuracy_score 0.74796747967
	accuracy_score 0.6721311475409836
Input	<pre>mean_accuracy = sum(accuracy_list)/ len(accuracy_list) print (mean_accuracy)</pre>
Output	0.7019059043049447

Mean Accuracy for the model is around 0.70

Input	data.	data.info()						
Output	<pre><class 'pandas.core.frame.dataframe'=""></class></pre>							
-	RangeIndex: 614 entries, 0 to 613							
		columns (total 22 column						
	#	Column	Non-Null Count	Dtype				
	0	Credit_History	614 non-null	float64				
	1	Loan_Status	614 non-null	int64				
	2	LoanAmount_log						
	3	Total_Income	614 non-null	float64				
	4	Total_Income_log	614 non-null					
	5	EMI	614 non-null					
	6	Balance Income						
	7	Gender_Female						
	8	Gender_Male	614 non-null	uint8				
	9	Married_No	614 non-null	uint8				
	10	Married_Yes		uint8				
	11	Dependents_3	614 non-null	uint8				
	12	Dependents_0	614 non-null	uint8				
	13	Dependents_1	614 non-null	uint8				
	14	Dependents_1 Dependents_2	614 non-null	uint8				
	15	Education Graduate	614 non-null	uint8				
	16	Education_Not Graduate	614 non-null	uint8				
	17	Self Employed No	614 non-null	uint8				
	18	Self_Employed_Yes	614 non-null	uint8				
	19	Property_Area_Rural		uint8				
	20	Property Area Semiurban						
	21	Property Area Urban		uint8				
	dtyp	es: float64(6), int64(1),						
		ry usage: 42.7 KB						

Input	X.head()
-------	----------

	Credit_History	LoanAmount_log	Total_Income	Total_Income_log	EMI	Balance Income	Gender_Female	Gender_Male	Married_No	Married_Yes	 Depen
0	1.0	4.852030	5849.0	8.674026	0.355556	5493.444444	0	1	1	0	
1	1.0	4.852030	6091.0	8.714568	0.355556	5735.444444	0	1	0	1	
2	1.0	4.189655	3000.0	8.006368	0.183333	2816.666667	0	1	0	1	
3	1.0	4.787492	4941.0	8.505323	0.333333	4607.666667	0	1	0	1	
4	1.0	4.948760	6000.0	8.699515	0.391667	5608.333333	0	1	1	0	

5 rows × 21 columns

←

Input	y.head()						
Output	0 1 1 0 2 1 3 1 4 1 Name: Loan_Status, dtype: int64						
Input	from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X, y, random_state=0) clf = DecisionTreeClassifier(max_depth = 2, random_state = 0) clf.fit(X_train, Y_train) clf.predict(X_test)						
Output	<pre>array([1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</pre>						

Input	from sklearn import tree						
	from sklearn.model_selection import StratifiedKFold						
	from sklearn.metrics import accuracy_score						
	import graphviz						
	i=1						
	kf = StratifiedKFold(n_splits=5,random_state=3,shuffle=True)						
	accuracy_list = []						
	for train_index,test_index in kf.split(X,y):						
	* '*'						
	print(of kfold {}'.format(i,kf.n_splits))						
	xtr,xvl = X.loc[train_index],X.loc[test_index]						
	ytr,yvl = y[train_index],y[test_index]						
	model = tree.DecisionTreeClassifier(random_state=1)						
	model.fit(xtr, ytr)						
	pred_test = model.predict(xvl)						
	score = accuracy_score(yvl,pred_test)						
	accuracy_list.append(score)						
	print('accuracy_score',score)						
	i+=1						
Output	1 of kfold 5						
	accuracy_score 0.6829268292682927						
	2 of kfold 5						
	accuracy_score 0.6422764227642277						
	3 of kfold 5						
	accuracy_score 0.7642276422764228						
	4 of kfold 5						
	accuracy_score 0.74796747967						
	5 of kfold 5						
	accuracy score 0.6721311475409836						
Input	mean_accuracy = sum(accuracy_list)/ len(accuracy_list)						
Input	print (mean accuracy)						
Output	0.7019059043049447						
Juipui							

Input	tree.plot_tree(clf);

Inference

The given decision tree clearly shows the classification and probability of customers being granted a loan based on the various factors which affect the decision as seen by the nodes of the Decision tree.

The kfold method also determines how accurate the decision tree is based on the test data after working on the training data set. Accordingly the given output Decision Tree has a high accuracy of 70% thus justifying the accuracy of the given decision tree.