

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

Отчёт по практическим работам

по дисциплине «Проектирование и разработка нейронных сетей»

Студент группы: ИКБО-04-22

<u>Егоров Л.А.</u> (Ф.И.О. студента)

Принял старший преподаватель

<u>Семёнов Р.Э.</u> (Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 ОБУЧЕНИЕ ПО ПРАВИЛАМ ХЕББА	4
1.1 Входные данные	4
1.2 Результат работы алгоритма	4
2 ДЕЛЬТА-ПРАВИЛО	6
2.1 Входные данные	6
2.2 Результат работы алгоритма	6
3 ОБРАТНОЕ РАСПРОСТРАНЕНИЕ ОШИБКИ	8
3.1 Входные данные	8
3.2 Результат работы алгоритма	8
4 НЕЙРОННЫЕ СЕТИ НА РАДИАЛЬНО-БАЗИСНЫХ ФУНКЦИЯХ	11
4.1 Входные данные	11
4.2 Результат работы алгоритма	11
5 КАРТЫ КОХОНЕНА	12
5.1 Входные данные	12
5.2 Результат работы алгоритма	12
6 НЕЙРОННЫЕ СЕТИ ВСТРЕЧНОГО РАСПРОСТРАНЕНИЯ	14
6.1 Входные данные	14
6.2 Результат работы алгоритма	14
7 РЕКУРРЕНТНЫЕ НЕЙРОННЫЕ СЕТИ	15
7.1 Входные данные	15
7.2 Результат работы алгоритма	
8 СВЁРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ	17
8.1 Входные данные	17
8.2 Результат работы алгоритма	17
ЗАКЛЮЧЕНИЕ	18
ПРИЛОЖЕНИЯ	19

ВВЕДЕНИЕ

Нейронные сети, вдохновленные структурой человеческого мозга, совершили революцию в мире технологий, проникнув во все сферы нашей жизни. От распознавания лиц на смартфонах до прогнозирования погоды, от перевода языков до создания реалистичных изображений — нейросети стали неотъемлемой частью современного мира.

Нейронные сети активно применяются в различных областях, от медицины и финансов до развлечений и образования. За нейронными сетями лежит будущее во многих сферах жизнедеятельности общества.

Нейронные сети являются подклассом алгоритмов машинного обучения, и называются глубоким обучением. Цель данной дисциплины изучить принципы работы, архитектуры нейросетей и алгоритмы их оптимизации (обучения).

1 ОБУЧЕНИЕ ПО ПРАВИЛАМ ХЕББА

Правила Хебба, сформулированные в 1949, гласят:

- 1. Если сигнал персептрона неверен и равен нулю, то необходимо увеличить веса тех входов, на которые была подана единица.
- 2. Если сигнал персептрона неверен и равен единице, то необходимо уменьшить веса тех входов, на которые была подана единица.

В этой практической работе была построена модель перцептрона и обучена в соответствие с правилами Хебба.

1.1 Входные данные

Для данной работы используется датасет с отказами сердца в зависимости от различных данных о здоровье пациента. Часть датасета представлена в Таблице 1.1.1.

Таблица 1.1.1 — Датасет heart.csv

age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
41	0	1	130	204	0	0	172	0	1.4	2	0	2	1

Эти данные преобразованы с помощью Z-нормализации (1.1).

$$z = \frac{x - \mu}{\sigma} \tag{1.1}$$

1.2 Результат работы алгоритма

Нейрон обучен за 100 эпох с коэффициентом α , равным 0.0005. Результат обучения представлен на Рисунках 1.2.1 — 1.2.2. Код программы представлен в Листинге A.1.

Рисунок 1.2.1 — Изменение точности

Рисунок 1.2.2 — Точность на тестовом датасете

2 ДЕЛЬТА-ПРАВИЛО

Дельта правило является улучшенной версией алгоритма Хебба. По сравнению со своим предшественником дельта правило имеет параметр, отвечающий за скорость сходимости метода обучения, называемый скоростью обучения.

2.1 Входные данные

Для данной работы используется датасет с отказами сердца в зависимости от различных данных о здоровье пациента. Часть датасета представлена в Таблице 1.1.1.

Эти данные преобразованы с помощью Міптах нормализации (2.1).

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}} \tag{2.1}$$

2.2 Результат работы алгоритма

Нейрон обучен за 100 эпох с коэффициентом α , равным 0.0005. Результат обучения представлен на Рисунках 2.2.1 — 2.2.2. Код программы представлен в Листинге Б.1.

Рисунок 2.2.1 — Изменение точности

Рисунок 2.2.2 — Точность на тестовом датасете

3 ОБРАТНОЕ РАСПРОСТРАНЕНИЕ ОШИБКИ

Алгоритм обратного распространения ошибки (backpropagation) — это метод обучения искусственных нейронных сетей, который используется для минимизации ошибки предсказания путем корректировки весов сети. Он работает в два этапа: прямое распространение сигнала для вычисления выхода сети и обратное распространение ошибки для обновления весов на основе градиента функции потерь. Алгоритм эффективен и широко применяется в задачах машинного обучения, таких как классификация и регрессия.

3.1 Входные данные

Для данной работы используется датасет с отказами сердца в зависимости от различных данных о здоровье пациента. Часть датасета представлена в Таблице 1.1.1.

Эти данные преобразованы с помощью Minmax нормализации (2.1).

3.2 Результат работы алгоритма

Характеристики нейронной сети:

- количество скрытых слоёв: 2;
- нейронов в первом скрытом слое: 6;
- нейронов во втором скрытом слое: 3;
- активационные функции в скрытых слоях: relu;
- активационная функция на выходном слое: *sigmoid*;
- скорость обучения: 0.01;
- количество эпох: 100.

Результат обучения представлен на Рисунках 3.2.1 - 3.2.3. Код программы представлен в Листинге В.1.

Рисунок 3.2.1 — Изменение точности

Эпоха: 98/100

Ошибка: 0.052330846764291575 Точность: 85.53719008264463%

Эпоха: 99/100

Ошибка: 0.052242864544710235 Точность: 85.9504132231405%

Эпоха: 100/100

Ошибка: 0.05216094088067376 Точность: 85.9504132231405%

Точность на тестовом датасете: 81.9672131147541%

(wonw)

Рисунок 3.2.3 — Точность на тестовом датасете

4 НЕЙРОННЫЕ СЕТИ НА РАДИАЛЬНО-БАЗИСНЫХ ФУНКЦИЯХ

RBF-сети — это тип нейронных сетей, который использует радиально-базисные функции в качестве функций активации в скрытом слое. RBF-сети хорошо справляются с аппроксимацией нелинейных функций, и они менее чувствительны к шуму в данных.

4.1 Входные данные

Для данной работы используется датасет с отказами сердца в зависимости от различных данных о здоровье пациента. Часть датасета представлена в Таблице 1.1.1.

Эти данные преобразованы с помощью Minmax нормализации (2.1).

4.2 Результат работы алгоритма

Характеристики нейронной сети:

- количество радиально-базисных функций: 10;
- скорость обучения: 0.01;
- количество эпох: 100.

Результат обучения данной нейронной сети представлен на Рисунке 4.2.1. Код программы представлен в Листинге Г.1

• \$ python main.py
Точность: 80.57851239669421%
Точность на тестовом наборе: 75.40983606557377%

Рисунок 4.2.1 — Точность RBF-сети

5 КАРТЫ КОХОНЕНА

SOM (Карты Кохонена) — это тип нейронных сетей, который используется для неконтролируемого обучения и визуализации данных. Карты самоорганизации работают на основе конкуренции между нейронами и подходят для группировки 2-мерных данных, такие как изображения. Также их можно применять и для данных больших размерностей, поскольку карта Кохонена переведёт эти данные на двумерную сетку.

5.1 Входные данные

Для данной работы используется датасет с отказами сердца в зависимости от различных данных о здоровье пациента. Часть датасета представлена в Таблице 1.1.1.

Эти данные преобразованы с помощью Міптах нормализации (2.1).

5.2 Результат работы алгоритма

Характеристики карты Кохонена:

- размер сетки: 10×10 ;
- $\sigma = 0.3$;
- lr = 0.5.

Результат обучения представлен на Рисунке 5.2.1. Код программы представлен в Листинге Д.1.

Рисунок 5.2.1 — Карта Кохонена

6 НЕЙРОННЫЕ СЕТИ ВСТРЕЧНОГО РАСПРОСТРАНЕНИЯ

Сети встречного распространения (Counterpropagation Networks, CPN) — это гибридные нейронные сети, сочетающие элементы самоорганизующихся карт Кохонена и многослойного перцептрона. Они используются для задач классификации, кластеризации и аппроксимации данных. СРN состоят из двух основных слоев: входной слой выполняет кластеризацию (Кохонен), а выходной слой осуществляет точное сопоставление (слой Гроссберга). Основное преимущество — быстрое обучение и эффективность в задачах, где требуется как кластеризация, так и точное предсказание.

6.1 Входные данные

Для датасета возьмём классификацию цветов Ириса. Данный датасет состоит из трёх разделимых классов, которые легко разделимы между собой, поэтому сеть встречного распространения покажет в этой задаче хороший результат.

6.2 Результат работы алгоритма

Результат обучения представлен на Рисунке 6.2.1. Код программы представлен в Листинге E.1.

Epoch: 96/100 Epoch: 97/100 Epoch: 98/100 Epoch: 99/100 Epoch: 100/100 Точность на тестовом наборе: 0.90

Рисунок 6.2.1 — Точность на тестовом датасете

7 РЕКУРРЕНТНЫЕ НЕЙРОННЫЕ СЕТИ

Рекуррентные нейронные сети (Recurrent Neural Networks, RNN) — это тип нейронных сетей, предназначенных для обработки последовательностей данных. Они имеют циклы в своей структуре, что позволяет сохранять информацию о предыдущих состояниях и использовать её для анализа текущих данных. RNN применяются в задачах, где важна временная зависимость, таких как обработка текста, речи, временных рядов. Основной недостаток — сложность обучения изза проблемы исчезающего или взрывающегося градиента.

7.1 Входные данные

В качестве задачи возьмём классификацию отзывов на IMDB на положительные и отрицательные. Датасет IMDb (Internet Movie Database) — это популярный набор данных, содержащий 50 000 отзывов на фильмы, размеченных на положительные (25 000) и отрицательные (25 000). Каждый отзыв представляет собой текстовую последовательность, где слова преобразованы в целочисленные индексы, соответствующие их частоте в датасете. Датасет часто используется для задач бинарной классификации текста, таких как анализ тональности (sentiment analysis). Данные разделены на обучающую и тестовую выборки по 25 000 отзывов каждая.

7.2 Результат работы алгоритма

Характеристики модели представлены на Рисунке 7.2.1. Результат обучения представлен на Рисунке 7.2.2. Код программы представлен в Листинге Ж.1.

Model: "sequential"		
Layer (type)	Output Shape	Param #
embedding (Embedding)	?	0 (unbuilt)
simple_rnn (SimpleRNN)	?	0 (unbuilt)
dense (Dense)	?	0 (unbuilt)

Рисунок 7.2.1 — Характеристики модели

```
Epoch 1/3

391/391 — 35s 85ms/step - accuracy: 0.5610 - loss: 0.6699 - val_accuracy: 0.7633 - val_loss: 0.4953

Epoch 2/3

391/391 — 32s 82ms/step - accuracy: 0.8214 - loss: 0.4093 - val_accuracy: 0.7762 - val_loss: 0.4877

Epoch 3/3

391/391 — 32s 83ms/step - accuracy: 0.8111 - loss: 0.4169 - val_accuracy: 0.7147 - val_loss: 0.5440

Точность на тестовых данных: 0.7147
```

Рисунок 7.2.2 — Результат обучения

8 СВЁРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Свёрточные нейронные сети (Convolutional Neural Networks, CNN) — это тип нейронных сетей, разработанный для обработки данных с grid-структурой, таких как изображения. Они используют свёрточные слои для автоматического извлечения локальных признаков (например, края, текстуры) и pooling-слои для уменьшения размерности. CNN эффективны в задачах компьютерного зрения, таких как классификация изображений, обнаружение объектов и сегментация, благодаря их способности учитывать пространственные иерархии признаков.

8.1 Входные данные

Датасет MNIST (Modified National Institute of Standards and Technology) — это классический набор данных, содержащий 70 000 изображений рукописных цифр от 0 до 9. Каждое изображение имеет размер 28×28 пикселей в градациях серого. Датасет разделён на обучающую выборку (60 000 изображений) и тестовую выборку (10 000 изображений).

8.2 Результат работы алгоритма

Результат обучения представлен на Рисунке 8.2.1. Код программы представлен в Листинге И.1.

```
Epoch 1/5
844/844 — 13s 14ms/step - accuracy: 0.8591 - loss: 0.4810 - val_accuracy: 0.9838 - val_loss: 0.0582
Epoch 2/5
844/844 — 11s 13ms/step - accuracy: 0.9800 - loss: 0.0660 - val_accuracy: 0.9877 - val_loss: 0.0419
Epoch 3/5
844/844 — 10s 12ms/step - accuracy: 0.9869 - loss: 0.0416 - val_accuracy: 0.9865 - val_loss: 0.0458
Epoch 4/5
844/844 — 10s 12ms/step - accuracy: 0.9909 - loss: 0.0303 - val_accuracy: 0.9882 - val_loss: 0.0467
Epoch 5/5
844/844 — 10s 12ms/step - accuracy: 0.9908 - loss: 0.0266 - val_accuracy: 0.9908 - val_loss: 0.0383
313/313 — 10s 3ms/step - accuracy: 0.9857 - loss: 0.0399
Точность на тестовых данных: 0.9896000027656555
```

Рисунок 8.2.1 — Результат обучения

ЗАКЛЮЧЕНИЕ

В результате практических работ были изучены алгортимы и оптимизации нейронных сетей и их архитектуры.

Важно отметить, что глубокое обучение — это динамично развивающаяся область. Постоянные исследования и разработки новых алгоритмов и архитектур нейронных сетей продолжаются, и полученные в рамках данной дисциплины знания являются отправной точкой для дальнейшего изучения и освоения новых технологий.

ПРИЛОЖЕНИЯ

Приложение А — Реализация обучения по правилам Хебба

Приложение Б — Реализация дельта-правила

Приложение В — Реализация обратного распространения ошибки

Приложение Г — Реализация сети на радиально-базисных функциях

Приложение Д — Реализация карты Кохонена

Приложение Е — Реализация сети встречного распространения

Приложение Ж — Реализация рекуррентной нейронной сети

Приложение И — Реализация свёрточной нейронной сети

Приложение А

Реализация обучения по правилам Хебба

Листинг A.1 - Kod файла main.py

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
class StupidNeuralNetwork:
           init
                  (self):
        \overline{\text{se}}lf.weights: np.ndarray = None
        self.b: np.ndarray = None
self.lr = 0.0005
         self.epochs = 100
        init weights(self, input_size: int, output_size: int):
If self.weights is None:
             self.weights = np.zeros(shape=(input size, output size))
         if self.b is None:
             self.b = -np.random.random()
    def train(self, dataset: np.ndarray, target: np.array):
         self.dataset = dataset
        self. init weights(self.dataset.shape[1], 1)
         accuracy_list = []
         for epoch in range (self.epochs):
             print(f"Epoch: {epoch + 1}/{self.epochs}")
for row, target_value in zip(self.dataset, target):
                  result = row @ self.weights + self.b
                  result = (result > 0).astype(np.int8)
                  if result != target_value:
                      if result == 0:
                           self.weights += self.lr * np.reshape(row, (-1, 1))
                           self.b += self.lr
                           self.weights -= self.lr * np.reshape(row, (-1, 1))
                           self.b -= self.lr
             epoch_result = self.dataset @ self.weights + self.b
             epoch result = (epoch result > 0).astype(np.int8).reshape(-1)
             accuracy = (epoch result == target).mean() * 100
             accuracy list.append(accuracy)
         plt.plot(range(1, self.epochs + 1), accuracy list)
        plt.show()
    def test(self, data: np.ndarray, target: np.array):
    result = data @ self.weights + self.b
         result = (result > 0).astype(np.int8).reshape(-1)
        print(result)
         accuracy = (result == target).mean() * 100
        return accuracy
class Dataset:
          init (self) -> None:
        self._max: pd.DataFrame = None
self._min: pd.DataFrame = None
        self._std: pd.DataFrame = None
         self. mean: pd.DataFrame = None
         self.weights: np.ndarray = None
    def normalize data(self, df: pd.DataFrame):
         self.df = df
         if self. max is None:
```

Окончание Листинга А.1

```
self. max = self.df.max()
         if self. min is None:
    self. min = self.df.min()
if self. std is None:
    self. std = self.df.std()
         if self. mean is None:
              self._mean = self.df.mean()
          # self.df = (self.df - self._min) / (self._max - self._min)
          # self.df = (self.df > 0.5).\overline{astype(np.int8)}
         self.df = (self.df - self._mean) / self._std
self.df = (self.df > 0).astype(np.int8)
     def prepare dataset(self):
         self.train_target = self.df['output'].to_numpy()
self.train_data = self.df.drop(columns=['output']).to_numpy()
         self.train_data, self.test_data, self.train_target, self.test_target = (
               shuffle=True,
                                    random_state=78498,
                                    test s\overline{i}ze=0.2))
def main():
     df = pd.read csv('../dataset/heart.csv')
    dataset = Dataset()
     dataset.normalize data(df)
    dataset.prepare_dataset()
    nn = StupidNeuralNetwork()
    nn.train(dataset.train data, dataset.train target)
    accuracy = nn.test(dataset.test_data, dataset.test_target)
print(f'Accuracy: {accuracy:.2f}%')
     name
             _ == '__main__':
    main()
```

Приложение Б

Реализация дельта-правила

Листинг Б.1 — Код файла таіп.ру

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
class StupidNeuralNetwork:
          init
                 (self):
        \overline{\text{self.weights:}} np.ndarray = None
        self.b: np.ndarray = None
self.lr = 0.01
        self.epochs = 100
        init weights(self, input_size: int, output_size: int):
If self.weights is None:
             self.weights = np.random.random(size=(input size, output size))
        if self.b is None:
             self.b = -np.random.random(size=(output size, 1))
    def train(self, dataset: np.ndarray, target: np.ndarray):
        self.dataset = dataset
        self. init weights(self.dataset.shape[-1], target.shape[-1])
        accuracy list = []
        batch_size = len(target)
        for epoch in range (self.epochs):
             print(f"Epoch: {epoch + 1}/{self.epochs}")
                          for row, target value in zip(np.split(self.dataset,
self.dataset.shape[0] // batch size),
                                 np.split(target, target.shape[0] // batch size)):
                 result = row @ self.weights + self.b
                 result = (result > 0).astype(np.int8)
                 loss = target value - result
                 self.weights += self.lr * (row.T @ loss)
                 self.b += self.lr * loss.mean(axis=0)
             epoch result = self.dataset @ self.weights + self.b
             epoch_result = (epoch_result > 0).astype(np.int8)
             accuracy = (epoch_result == target).mean() * 100
             accuracy_list.append(accuracy)
        plt.plot(range(1, self.epochs + 1), accuracy list)
        plt.show()
    def test(self, data: np.ndarray, target: np.array):
        result = data @ self.weights + self.b
        result = (result > 0).astype(np.int8).reshape(-1)
        print(result)
        accuracy = (result == target).mean() * 100
        return accuracy
class Dataset:
          _init__(self) -> None:
        \overline{\text{se}}lf. \overline{\text{max}}: pd.DataFrame = None
        self._min: pd.DataFrame = None
        self._std: pd.DataFrame = None
        self._mean: pd.DataFrame = None
self.weights: np.ndarray = None
    def normalize_data(self, df: pd.DataFrame):
        self.df = df
```

Окончание Листинга Б.1

```
if self._max is None:
              self._max = self.df.max()
         if self. min is None:
    self. min = self.df.min()
if self. std is None:
         self._std = self.df.std()
if self._mean is None:
    self._mean = self.df.mean()
         self.df = (self.df - self._min) / (self._max - self._min)
self.df = (self.df > 0.5).astype(np.int8)
# self.df = (self.df - self._mean) / self._std
         # self.df = (self.df > 0).as\overline{t}ype(np.int8)
    def prepare dataset(self):
         self.train_target = self.df['output'].to_numpy().reshape((-1, 1))
         self.train_data = self.df.drop(columns=['output']).to numpy()
        self.train target,
                                  shuffle=True,
                                  random state=78498,
                                  test s\overline{i}ze=0.2))
def main():
    df = pd.read csv('../dataset/heart.csv')
    dataset = Dataset()
    dataset.normalize_data(df)
    dataset.prepare dataset()
    nn = StupidNeuralNetwork()
    nn.train(dataset.train_data, dataset.train_target)
    accuracy = nn.test(dataset.test_data, dataset.test_target)
    print(f'Accuracy: {accuracy}%')
    name == ' main ':
if _
    main()
```

Приложение В

Реализация обратного распространения ошибки


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
class StupidLayer:
   def __init__(self, size: tuple[int], lr: float = 0.01, activate: str = 'relu'):
        \overline{\text{input size}} = \text{size}[0]
        \overline{\text{output}} size = \overline{\text{size}}[1]
        self.weights = np.random.random(size=(input size, output size)) - 0.5
        self.b = np.random.random(size=(output size, )) - 0.5
        self.lr = lr
        activate func = {'relu': lambda x: np.maximum(0, x),
                            'sigmoid': lambda x: 1 / (1 + np.exp(-x))
        derivative = {'relu': lambda x: (x > 0).astype(np.int8),
                        'sigmoid': lambda x: x * (1 - x)}
        self.activate = activate func[activate]
        self.deriv = derivative[activate]
        self.input: np.ndarray
self.output: np.ndarray
    def forward(self, data: np.ndarray):
    self.input = data.copy()
        self.output = self.input @ self.weights + self.b
         self.output = self.activate(self.output)
        return self.output
    def back_prop(self, next_loss: np.ndarray) -> np.ndarray:
         self.delta = self.deriv(self.output) * next loss
         return self.delta @ self.weights.T
    def calculate weights(self):
         self.weights = self.lr * self.input.T @ self.delta
         self.b -= self.lr * self.delta.sum(axis=0)
class StupidNeuralNetwork:
          init__(self, epochs=100, batch_size: int | None = None):
         \overline{\text{self.layers}} = []
         self.epochs = epochs
        self.batch size = batch size
    def create layers(self, input size: int, output size: int):
         self.layers = [StupidLayer((input_size, 6), activate='relu'),
                         StupidLayer((6, 3), activate='relu'),
                         StupidLayer((3, output size), activate='sigmoid')]
    def forward(self, row: np.ndarray):
    for layer in self.layers:
             row = layer.forward(row)
        return row
    def backward(self, target: np.ndarray, result: np.ndarray):
         loss deriv = (result - target)
        for Tayer in reversed (self.layers):
             loss deriv = layer.back prop(loss deriv)
        for layer in self.layers:
             layer.calculate weights()
    def train(self, dataset: np.ndarray, target: np.ndarray):
         self.create layers(dataset.shape[1], target.shape[1])
```

```
accuracy list = []
         epoch loss list = []
               self.batch size = len(dataset) if self.batch size is None else
self.batch size
         for epoch in range(self.epochs):
              print(f"Эποχά: {epoch + 1}/{self.epochs}")
              epoch_loss = []
              for i in range(0, len(dataset), self.batch_size):
                   X_batch = dataset[i:i + self.batch_size]
                   y batch = target[i:i + self.batch \overline{s}ize]
                   result = self.forward(X batch)
                   loss = 0.5 * ((y batch - result) ** 2).mean()
                   epoch loss.append(loss)
                   self.backward(y batch, result)
              avg loss = np.mean(epoch loss)
              print(f'Ошибка: {avg loss}')
              epoch loss list.append(avg loss)
              predictions = self.forward(dataset)
              predictions = (predictions >= 0.5).astype(np.int8)
              accuracy = (predictions == target).mean() * 100 print(f'Точность: {accuracy}%')
              accuracy_list.append(accuracy)
         plt.plot(range(1, self.epochs + 1), accuracy list)
         plt.title('Точность')
         plt.show()
         plt.plot(range(1, self.epochs + 1), epoch_loss_list)
plt.title('Ошибка')
         plt.show()
    def test(self, data: np.ndarray, target: np.ndarray):
         result = self.forward(data)
         result = (result >= 0.5).astype(np.int8)
         accuracy = (result == target).mean() * 100
print(f'Точность на тестовом датасете: {accuracy}%')
         return accuracy
class Dataset:
           init (self) -> None:
         self. max: pd.DataFrame = None
self. min: pd.DataFrame = None
         self._std: pd.DataFrame = None
         self._mean: pd.DataFrame = None
         self.weights: np.ndarray = None
    def normalize data(self, df: pd.DataFrame):
         self.df = df
if self._max is None:
    self._max = self.df.max()
         if self. min is None:
         self._min = self.df.min()
if self._std is None:
    self._std = self.df.std()
         if self. mean is None:
              self. mean = self.df.mean()
         self.df = (self.df - self. min) / (self. max - self. min)
         # self.df = (self.df > 0.5).astype(np.int8)
# self.df = (self.df - self._mean) / self._std
         \# self.df = (self.df > 0).as\overline{t}ype(np.int8)
    def prepare_dataset(self):
         self.train_target = self.df['output'].to_numpy().reshape((-1, 1))
self.train_data = self.df.drop(columns=['output']).to_numpy()
```

Окончание Листинга В.1

Приложение Г

Реализация сети на радиально-базисных функциях

Листинг $\Gamma.1$ — Код файла таіп.ру

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.cluster import KMeans
class RBFNetwork:
          init (self, input dim, hidden dim, output dim, lr=0.01, epochs=100):
        self.input dim = input dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
self.lr = lr
        self.epochs = epochs
    def init centers(self, dataset: np.ndarray):
        kmeans = KMeans(n clusters = self.hidden dim, random state = 78498)
        kmeans.fit\_predict(dataset)
        self.centers = kmeans.cluster_centers_
    @staticmethod
    def gaussian_rbf(x, center, beta):
        return n\overline{p}.linalg.norm(x - center)
    def compute rbf layer(self, X):
        \# Рассчитываем радиально-базисные функции для входного слоя
        beta = 1.0 # Параметр ширины RBF
        RBF output = np.zeros((X.shape[0], self.hidden dim))
        for i, sample in enumerate(X):
             for j, center in enumerate(self.centers):

RBF_output[i, j] = self.gaussian_rbf(sample, center, beta)
        return RBF output
    def fit(self, X, y):
    RBF_output = self.compute_rbf_layer(X)
        self.weights = np.linalg.pinv(RBF output) @ y
    def forward(self, X):
        # Вычисляем выход RBF слоя и итоговый выход сети
        RBF output = self.compute rbf layer(X)
        output = RBF_output @ self.weights
        return output
    def train(self, dataset: np.ndarray, target: np.ndarray):
        self.init centers(dataset)
        self.fit(dataset, target)
predictions = self.forward(dataset)
        predictions = (predictions >= 0.5).astype(np.int8)
        accuracy = (predictions == target).mean() * 100
        print(f'Точность: {accuracy}%')
    def predict(self, X):
        output = self.forward(X)
        return output
class Dataset:
    def
         init
                (self):
        self._max = None
self._min = None
    def normalize_data(self, df):
        if self. max is None:
```

Окончание Листинга Г.1

```
self. max = df.max()
         if self. min is None:
             self._min = df.min()
         self.df = (df - self. min) / (self. max - self. min)
    def prepare dataset(self):
        self.train_target = self.df['output'].to_numpy().reshape((-1, 1))
self.train_data = self.df.drop(columns=['output']).to_numpy()
           self.traIn_data, self.test_data, self.train_target, self.test_target
= train_test_split(
             self.train_data,
             self.train target,
             shuffle=True,
             random_state=78498,
             test_s\overline{i}ze=0.2
         )
def main():
    df = pd.read csv('../dataset/heart.csv')
    dataset = Dataset()
    dataset.normalize data(df)
    dataset.prepare dataset()
    lr=0.0\overline{1}
                            epochs=100)
    rbf net.train(dataset.train data, dataset.train target)
    predictions = rbf_net.predict(dataset.test_data)
    predictions = (predictions >= 0.5).astype(\(\bar{n}p.int8\))
    accuracy = (predictions == dataset.test_target).mean() * 100 print(f"Точность на тестовом наборе: {accuracy}%")
    __name__ == '__main__':
__main()
if _
```

Приложение Д

Реализация карты Кохонена

Листинг Д.1 — Код файла таіп.ру

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import matplotlib.pyplot as plt
class SOM:
        __init__(self, map_size, input_size, sigma=0.3, learning_rate=0.5):
self.map_size = map_size
        self.input size = input size
        self.sigma = sigma
        self.learning_rate = learning_rate
self.weights = np.random.rand(map size[0], map size[1], input size)
    def find bmu(self, x):
        distances = np.linalg.norm(self.weights - x, axis=2)
        return np.unravel index(np.argmin(distances), distances.shape)
    def neighborhood function(self, bmu, iteration):
        t1 = 1000
        t2 = 1000
        sigma_t = self.sigma * np.exp(-iteration / t1)
        learning_rate_t = self.learning_rate * np.exp(-iteration / t2)
          dist_sq = np.sum((np.indices(self.map_size).T - np.array(bmu)).T **
2, axis=0)
        return learning rate t * np.exp(-dist sq / (2 * sigma t ** 2))
    def train(self, data, iterations):
""" Обучение SOM """
        for iteration in tqdm(range(iterations)):
             for x in data:
                 bmu = self.find bmu(x)
                 nh func = self.neighborhood_function(bmu, iteration)
                 self.weights += nh func[:, :, np.newaxis] * (x - self.weights)
    def visualize(self, data):
        plt.figure(figsize=(7, 7))
             plt.pcolor(np.linalg.norm(self.weights, axis=2).T, cmap='bone r',
alpha=0.2)
        plt.colorbar()
        for x in data:
             bmu = self.find bmu(x)
             plt.text(bmu[1]^+ 0.5, bmu[0] + 0.5, '.', color=plt.cm.Reds(x[0]),
fontdict={'weight': 'bold', 'size': 11})
        plt.show()
class Dataset:
          init
                 (self):
        self._max = None
self._min = None
    def normalize data(self, df):
        if self. max is None:
    self. max = df.max()
        if self. \overline{m}in is None:
             self. min = df.min()
        self.df = (df - self. min) / (self. max - self. min)
    def prepare dataset (self):
        self.train target = self.df['output'].to numpy().reshape((-1, 1))
```

Окончание Листинга Д.1

```
self.train data = self.df.drop(columns=['output']).to numpy()
         self.train_data, self.test_data, self.train_target, self.test_target
shuffle=True,
           random_state=78498,
test_size=0.2
        )
def main():
    df = pd.read csv('../dataset/heart.csv')
    dataset = Dataset()
    dataset.normalize data(df)
    dataset.prepare_dataset()
    som_shape = (10, 10)
som = SOM(som_shape,
                                   dataset.train data.shape[1], sigma=0.3,
learning_rate=0.5)
    som.train(dataset.train data, 100)
    som.visualize(dataset.train data)
if __name__ == '__main__':
   __main()
```

Приложение Е

Реализация сети встречного распространения

Листинг E.1 - Kod файла main.py

```
import numpy as np
from sklearn.datasets import load iris
from sklearn.model selection import train test split
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import accuracy score
class CPN:
          init (self, input size, hidden size, output size):
        self.input size = input size
        self.hidden size = hidden size
        self.output size = output size
        self.weights kohonen = np.random.rand(input size, hidden size)
        self.weights grossberg = np.random.rand(hidden size, output size)
    def train kohonen(self, data, epochs=100, learning rate=0.1):
        for epoch in range (epochs):
            for x in data:
                bmu index = np.argmax(np.dot(x, self.weights_kohonen))
                   self.weights kohonen[:, bmu index] += learning rate * (x -
self.weights kohonen[:, bmu_index])
    def train_grossberg(self, data, labels, epochs=100, learning rate=0.1):
        for epoch in range (epochs):
            print(f'Epoch: {epoch + 1}/{epochs}')
            for x, label in zip(data, labels):
                hidden output = np.dot(x, self.weights kohonen)
                hidden output = hidden output == np.max(hidden output)
                hidden output = hidden output.astype(int)
                output = np.dot(hidden output, self.weights grossberg)
                error = label - output
              self.weights grossberg += learning rate * np.outer(hidden output,
error)
    def predict(self, data):
        predictions = []
        for x in data:
            hidden_output = np.dot(x, self.weights_kohonen)
            hidden output = hidden_output == np.max(hidden_output)
            hidden output = hidden output.astype(int)
            output = np.dot(hidden_output, self.weights_grossberg)
            predictions.append(np.argmax(output))
        return np.array(predictions)
def main():
   iris = load iris()
   X = iris.data
    y = iris.target
    X = (X - X.mean(axis=0)) / X.std(axis=0)
    X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
    encoder = OneHotEncoder(sparse output=False)
    y train one hot = encoder.fit \overline{t}ransform(y train.reshape(-1, 1))
    y test one hot = encoder.transform(y_test.reshape(-1, 1))
    input size = X train.shape[1]
```

Окончание Листинга Е.1

```
hidden_size = 10
output_size = y_train_one_hot.shape[1]
cpn = CPN(input_size, hidden_size, output_size)
cpn.train_kohonen(X_train, epochs=100, learning_rate=0.1)
cpn.train_grossberg(X_train, y_train_one_hot, epochs=100, learning_rate=0.1)

predictions = cpn.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f"Точность на тестовом наборе: {accuracy:.2f}")

if __name__ == '__main__':
    main()
```

Приложение Ж

Реализация рекуррентной нейронной сети

Листинг Ж.1 — Код файла таіп.ру

```
import tensorflow as tf
from tensorflow.keras.datasets import imdb
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, SimpleRNN, Dense
from tensorflow.keras.preprocessing import sequence
max features = 5000
max\overline{len} = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x train = sequence.pad sequences(x train, maxlen=maxlen)
x test = sequence.pad sequences(x test, maxlen=maxlen)
model = Sequential()
model.add(Embedding(input dim=max features,
output dim=32, input length=maxlen))
model.add(SimpleRNN(units=32, return sequences=False))
model.add(Dense(units=1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary crossentropy', metrics=['accuracy'])
model.summary()
batch\_size = 64
epochs = 3
model.fit(x_train, y_train,
validation_data=(x_test, y_test))
                                       batch size=batch size,
                                                                     epochs=epochs,
loss, accuracy = model.evaluate(x_test, y_test, verbose=0) print(f"Точность на тестовых данных: {accuracy:.4f}")
```

Приложение И

Реализация свёрточной нейронной сети

Листинг U.1 - Kod файла таіп.py

```
import tensorflow as tf
from tensorflow import keras
from keras import layers, models
from keras.datasets import mnist
from keras.utils import to_categorical
(x train, y train), (x test, y test) = mnist.load data()
x_{train} = x_{train.astype('float32')} / 255.0
x_{test} = x_{test.astype('float32')} / 255.0
x_{train} = x_{train.reshape((x_{train.shape[0], 28, 28, 1))}
x test = x test.reshape((x test.shape[0], 28, 28, 1))
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
model = models.Sequential()
\label{local_model_add} $$ \mbox{model.add(layers.Conv2D(32, (3, 3), activation='relu', input\_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) $$ $$ \mbox{model.add(layers.MaxPooling2D((2, 2)))} $$
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='adam',
                 loss='categorical crossentropy',
                 metrics=['accuracy'])
model.fit(x train, y train, epochs=5, batch size=64, validation split=0.1)
test loss, test acc = model.evaluate(x test, y test)
print(f"Точность на тестовых данных: {test_acc}")
```