

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

Modul: Decision Tree Learning (DTL)

Variable (Attribute) Types

Source: DataMining Concepts and Techniques by Jiawei Han, Micheline Kamber, Jian Pei

Pembelajaran Mesin (Machine Learning)

Numeric

Quantitative (measurable quantity) -> Integer or Real Values

Interval Scaled (equal-size units, have order)

Ratio-Scaled
(inherent zero
point, a value can
be multiple of
another value)

- Temperature
- Calendar dates

- Years of experience
- Weight
- Number of words

3

Nominal/Categorical

Symbols or Name of things

Do not have meaningful order

Can represent names with numbers → not to be used quantitatively

- Occupation Type
- Zip Code
- Student_ID

Binary

Only two categories or states (Boolean if states: true and false)

Symmetric: equally valuable and carry the same weight

Asymmetric: not equally important

- Gender
- HIV Positive/ negative

1 red,	green,	blue	
2 1,	Ø,	\eth	
3 0,	1,	8	
4 0,	0,	1	

Ordinal

Have meaningful order/ ranking of possible values

useful for registering subjective assessments of qualities

- Drink Size: small, medium, large
- Customer Satisfaction: 1, 2, 3, 4, 5
 - Grades: E,D,C,BC,B,AB,A

May be obtained from discretization of numeric quantities

Discrete vs Continuous

has a finite set of values: Drink size, Age, Medical test,

has a countably infinite set of values:
Customer ID, Zip code

Modul: Decision Tree Learning (DTL)

What, Why, and When

Source: Machine Learning, Tom Mitchell

Pembelajaran Mesin (Machine Learning)

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

WHAT is DTL

Method for approximating discrete-valued target functions

Can be represented as set of if-then rules

DTL Representation

- Each internal node represents test of an attributes
- Branch descending from the node corresponds to one possible value
- Leaf/ terminal nodes represents classification result

Represent a disjunction of conjunctions of constraints on the attribute values of instances

(outlook=sunny ∧ humidity=normal)

- ∨ (outlook=overcast)
- ∨ (outlook=rain ∧ wind=weak)

WHY DTL

Method for approximating discrete-valued target functions

Represented by Decision Tree or If-Then Rules

pola data bisa dibaca Igsg sm manusia

Robust to Noisy Data

noisy data tdk berpengaruh krn data bsr

Capable of learning disjunctive expression

- Popular of inductive inference algorithms
- Have been successfully applied to a broad range of tasks: learning to diagnose medical cases, learning to assess credit risk of loan applicants

When we use DTL → Appropriate Problems for DTL

data berlabel

Instances are represented by attribute-value pairs

For continuous attribute: discretization

The target function has discrete output values

Disjunctive descriptions may be required

The training data may contain errors

The training data may contain missing attribute values

Modul: Decision Tree Learning (DTL)

Basic DTL Algorithm (ID3)

Source: Machine Learning, Tom Mitchell

Pembelajaran Mesin (Machine Learning)

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

ID3 Algorithm

EDUNEX ITB

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	$_{ m High}$	Strong	No
D3	${\bf O vercast}$	Hot	$_{ m High}$	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	${\bf O vercast}$	Cool	Normal	Strong	Yes
D8	Sunny	Mild	$_{ m High}$	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	${\bf O vercast}$	Mild	$_{ m High}$	Strong	Yes
D13	${\it O vercast}$	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Best Attribute

"Ideally" can classify the training examples into subsets, which has the same class

Modul: Decision Tree Learning (DTL)

Information Gain

Source: Machine Learning, Tom Mitchell

Pembelajaran Mesin (Machine Learning)

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

Entropy (Information Content)

Measurement in **Information Theory** → impurity of an arbitrary collection of samples

S = set of training examples **Entropy: the** minimum number of bits of information needed to encode the classification of an arbitrary member of S

$$Entropy(S) \equiv \sum_{i=1}^{c} -p_i \log_2 p_i$$

- S: set of training examples
- c: number of classes
- p_i: proportion of S belonging to class i

Entropy for S with 2 values/ classes

S contains positive examples and negative examples

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Entropy o: all examples belong to a class (no surprises, no message need be sent)

Entropy 1: $p_+ = p_-$ (1 bit is required to indicate the class of the drawn example)

Entropy for S with n values/ classes

Target attribute has n values: entropy can be as large as $\log_2 n$

Information Gain

Gain(S,A) = expected reduction of entropy due to sorting A

S: set of training examples; A: an attribute

Find A which has maximum Gain(S,A)

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Find the 'best' Attribute:
max(Gain(S,Outlook),
 Gain(S,Temperature),
 Gain(S,Humidity),
 Gain(S,Wind))

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.940$$

= 0.246

$$Gain(S, Outlook) = Entropy(S) - \sum_{v \in value \ of \ Outlook} \frac{S_v}{S} Entropy(S_v)$$

$$= 0.940 - \left[\frac{5}{14}Entropy(Sunny) + \frac{4}{14}Entropy(Overcast) + \frac{5}{14}Entropy(Rain)\right]$$

$$= 0.940 - \left[\left(\frac{5}{14} \left(-\frac{2}{5} log_2 \frac{2}{5} - \frac{3}{5} log_2 \frac{3}{5} \right) \right) + \left(\frac{4}{14} \left(-\frac{4}{4} log_2 \frac{4}{4} - \frac{0}{4} log_2 \frac{0}{4} \right) \right) + \left(\frac{5}{14} \left(-\frac{3}{5} log_2 \frac{3}{5} - \frac{2}{5} log_2 \frac{2}{5} \right) \right) \right]_{22}$$

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	$_{ m High}$	Strong	No
D3	${\bf O vercast}$	Hot	$_{ m High}$	Weak	Yes
D4	Rain	Mild	$_{ m High}$	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	${\bf O vercast}$	Cool	Normal	Strong	Yes
D8	Sunny	Mild	$_{ m High}$	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	${\bf O vercast}$	Mild	$_{ m High}$	Strong	Yes
D13	${\bf O vercast}$	Hot	Normal	Weak	Yes
D14	Rain	Mild	$_{ m High}$	${\rm Strong}$	No

Find the 'best' Attribute:
max(Gain(S,Outlook),
 Gain(S,Temperature),
 Gain(S,Humidity),
 Gain(S,Wind))

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.940$$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in value \ of \ Humidity} \frac{S_v}{S} Entropy(S_v)$$

$$= 0.940 - \left[\frac{7}{14}Entropy(High) + \frac{7}{14}Entropy(Normal)\right]$$

$$= 0.940 - \left[\left(\frac{7}{14} \left(-\frac{3}{7} log_2 \frac{3}{7} - \frac{4}{7} log_2 \frac{4}{7} \right) \right) + \left(\frac{7}{14} \left(-\frac{6}{7} log_2 \frac{6}{7} - \frac{1}{7} log_2 \frac{1}{7} \right) \right) \right]$$

$$= 0.151$$

Find the 'best' Attribute:
max(Gain(S,Outlook),
 Gain(S,Temperature),
 Gain(S,Humidity),
 Gain(S,Wind))

Gain(S, Outlook) = 0.246

Gain(S, Humidity) = 0.151

Gain(S, Temperature) = 0.029

Gain(S, Wind) = 0.048

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	${\bf O vercast}$	Hot	$_{ m High}$	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	${\rm Strong}$	No
D7	${\bf O vercast}$	Cool	Normal	${\rm Strong}$	Yes
D8	Sunny	Mild	$_{ m High}$	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	$_{ m High}$	Strong	Yes
D13	${\bf O vercast}$	Hot	Normal	Weak	Yes
D14	Rain	Mild	$_{ m High}$	${\rm Strong}$	No

Find the 'best' Attribute: max(Gain(S,Temperature), Gain(S,Humidity), Gain(S,Wind))

$$Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in value \ of \ Humidity} \frac{S_v}{S} Entropy(S_v)$$

$$= 0.971 - \frac{3}{5}Entropy(High) - \frac{2}{5}Entropy(Normal)$$

$$=0.971 - [(\frac{3}{5}(-\frac{0}{3}log_2\frac{0}{3} - \frac{3}{3}log_2\frac{3}{3}) + (\frac{2}{5}(-\frac{2}{2}log_2\frac{2}{2} - \frac{0}{2}log_2\frac{0}{2}))]$$

=	0.	9	7	1
_	υ.	J	/	1

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	$_{ m High}$	${\rm Strong}$	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

$$Gain(S, Humidity) = 0.971$$

$$Gain(S, Temperature) = 0.571$$

$$Gain(S, Wind) = 0.020$$

Exercise (Class: Aktivitas)

No	Deadline?	Ada Hangout?	Malas?	Aktivitas
1	Urgent	ya	Ya	Kumpul-kumpul
2	Urgent	Tidak	Ya	Belajar
3	Dekat	ya	Ya	Kumpul-kumpul
4	Tidak ada	Ya	Tidak	Kumpul-kumpul
5	Tidak ada	Tidak	Ya	Jalan-jalan ke mall
6	Tidak ada	Ya	Tidak	Kumpul-kumpul
7	Dekat	Tidak	Tidak	Belajar
8	Dekat	Tidak	Ya	Nonton TV
9	Dekat	Ya	Ya	Kumpul-kumpul
10	Urgent	Tidak	Tidak	Belajar

THANK YOU

