

Pablo Alcain

pabloalcain@gmail.com

Estado del arte:
Desarrollos actuales en HPC

¿Qué es HPC?

High Performance Computing (Computación de Alto Desempeño)

OK, pero... ¿qué quiere decir alto?

Para ver si algo es de alto desempeño tenemos que compararlo con otra cosa

En general, vamos a hablar de HPC cuando nos interese que el resultado sea rápido.

¿Cuánto vamos a resignar porque el resultado sea rápido? Casi todo

HPC vs Ciencias de la Computación

Históricamente eran lo mismo

Hoy en día, la mayoría de los desarrolladores HPC no son computólogos (??)

Combinación de software viejo con hardware nuevo

Está muy bueno saber HPC, pero...

... no es fácil. Requiere desarrollar una intuición

...; no hace falta! Alcanza con saber hablar con un HPCista (??)

¿Dónde se usa HPC?

En un celular

En una laptop

En la computadora de escritorio

En un cluster de computadoras

En una supercomputadora

En la nube

¿Para qué se usa HPC?

Para poder aprovechar el hardware que tenemos

Para poder decidir qué hardware comprar

Para obtener resultados en simulaciones extremas

Para simulaciones intensivas en las condiciones ya utilizadas

Para interfaces que se usan poco

Para no escribir software modular, reutilizable y portable

¿Para qué se usa HPC?

Para poder aprovechar el hardware que tenemos

Para poder decidir qué hardware comprar

Para obtener resultados en simulaciones extremas

Para simulaciones intensivas en las condiciones ya utilizadas

Para interfaces que se usan poco

Para no escribir software modular, reutilizable y portable

HPC en una computadora de escritorio

ProcesadoresSin tiempo que perder

Conexiones Clave para el éxito

Sistema operativo Elige cómo se conecta

HPC en una computadora de escritorio

Características

Multicore (¡requiere saber paralelizar!)

Generalmente, memoria uniforme (UMA)

Podrían tener NUMA (aún más complejo)

Usos

Programas de producción científica

Pruebas de casos sencillos antes de...

HPC en un cluster

ComputadorasSin tiempo que perder

Conexiones Clave para el éxito

Nodo maestro Elige cómo se conecta

HPC en un cluster

Características

Muchas computadoras comunicadas

Son todos (hoy en día) NUMA

Le pertenece a cada grupo de investigación

Usos

Programas de producción científica de HPC

Pruebas de casos más complejos antes de...

HPC en una supercomputadora

HPC en una supercomputadora

Características

Computadoras muy potentes; sacar turno

Son vNUMA

Aceleradores

Usos

Sólo programas de eficiencia comprobable

Problemas realmente muy grandes

¿Por qué aceleran?

Son masivamente paralelos ~ 10TFlop (un cluster de CPU)

Mucho acceso a los detalles (~ "microarquitectura" del procesador)

Son más baratas por FLOP que el procesador equivalente

¿Por qué no aceleran?

Difíciles de programar

No todos los algoritmos se pueden usar

¿Por qué aceleran?

Son masivamente paralelos ~ 10TFlop (un cluster de CPU)

Mucho acceso a los detalles (~ "microarquitectura" del procesador)

Son más baratas por FLOP que el procesador equivalente

¿Por qué no aceleran?

Difíciles de programar

No todos los algoritmos se pueden usar

Pablo Alcain

pabloalcain@gmail.com

Estado del arte:
Desarrollos actuales en HPC