Computing Linear Arithmetic Representation of Reachability Relation of One-counter Automata

Authors: Xie Li, Taolue Chen, Zhilin Wu and Mingji Xia

SETTA 2020: Guangzhou, China, November 24-28, 2020

Overview

► Introduction to One-counter Automata(OCA) and its Reachability Problem.

Overview

- Introduction to One-counter Automata(OCA) and its Reachability Problem.
- Computing the Reachability Relation of OCA.
- ► Introduction to Tool ORAREACH.
- Experimental Results of our Tool OCAREACH.

What is One-counter Automata(OCA)

- ▶ DFA with a **counter** where counter value is **non-negative**.
- lacktriangle Transitions: $q\stackrel{\mathtt{Op}}{\to} q'$ where $\mathtt{Op} \in \{\mathtt{add}(+1),\mathtt{add}(-1),\mathtt{zero}\}$

Example (OCA)

Semantic of OCA: A transition system where the configuration is of the form (q,c) and counter changes corresponds to OCA.

$$(q_1,c_1) \rightarrow_{\mathcal{A}} (q_2,c_2)$$

if $q_1 \stackrel{\mathrm{add}(+1)}{\longrightarrow} q_2$ in the OCA and $c_1+1=c2$, or if $q_1 \stackrel{\mathrm{zero}}{\longrightarrow} q_2$ and $c_1=c_2=0$.

Reachability

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Example

- $(q_3, 0) \text{ is reachable from } (q_0, 1).$
- $ightharpoonup (q_3,0)$ is not reachable from $(q_0,0)$

Due to the non-negative requirement, $(q_1, 1)$ is not reachable from $(q_0, 0)$

Weighted Directed Graph, Path Flow and Support

- An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.
- ▶ **Path**: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.
 - Weight of path
 - Drop of path
- **Flow**: a function $f: E \to \mathbb{N}$.

Example

- ightharpoonup path: $v_0 \cdot v_1 \cdot v_1$
- ▶ weight: +1
- ▶ drop: −1

Path Flow and Support

- s-t path flow: the flow corresponds to a path.
- ► Support: edge-induced subgraph of path.

Example

Support:

- Path: $v_0 \cdot v_1 \cdot v_1$
- ► Pathflow: $f(v_0, v_0) = 0$ $f(v_0, v_1) = 1$ $f(v_1, v_1) = 2$
- Weight: $w = \sum_{e \in E} f(e) \cdot \eta(e)$

The Difficulty of the Reachability Problem

NON-NEGATIVE

If we do not require the non-negative of counter.

- ► Flow is a path flow ⇔ Requirements on flow.
 - \triangleright $v_s \cdots v_t$ where $s \neq t$
 - $V_s \cdots V_s$
- Weight equals to the value change.

Non-negative implies the constraint: everywhere along the path, the counter need to be non-negative.

Certificate of the Reachability

Use **path flow** as certificate of OCA reachability problem.

- ► Type 1 Certificate
- ► Type 2 Certificate
- ► Type 3 Certificate

Edge Decomposition

Reachability Relation of OCA

Reachability Relation of OCA:

$$\phi_{\mathcal{A},q_s,q_t}(x_s,x_t)$$

How we Reduce the Reachability Relation to QFPA Formula

OCAREACH: Architecture

Experimental Evaluation