

Généralités

- Bien que les icônes permettent de se passer des commandes, celles-ci sont indispensables pour comprendre le fonctionnement du système et réaliser des scripts
- UNIX est sensible à la casse !

Généralités

Syntaxe d'une commande UNIX :

```
<commande> [-Ab3i] [/usr/tmp]
```

nom commande

options

arguments

Espace OBLIGATOIRE

```
■ Ex :
ls -ali /root
```

Généralités

- Le système de fichier est géré par le noyau
- Sous UNIX tout est fichier!
- Les fichiers peuvent être :
 - des fichiers de données (ou ordinaire) sur disque
 - des répertoires
 - des fichiers spéciaux pour la gestion de certaines ressources du système (par exemple, lorsqu'un périphérique d'E/S autorise des opérations d'ouverture, d'écriture, de lecture, on y accède généralement par un fichier spécial de type device)

Fichiers

- Fichiers UNIX traditionnels:
 - Les fichiers ordinaires : -
 - Les répertoires :
 - Les fichiers spéciaux :
 - Les liens symboliques : 1
 - Les named pipes (FIFO) communication
 - inter-processus:
 - Les sockets (réseau):

- les données d'un fichier forment une suite non structurée d'octets
- caractéristiques associées :
 - date de sa création
 - date dernière modification
 - Propriétaire
 - la taille
 - etc ...
- Caractéristiques regroupées dans un descripteur de fichier, appelé noeud d'index (i-node ou index-node).

Numéro i-node type de fichier (-, d, b, c, p) droits d'accès (rwxrwxrwx) Nombre de liens identifiant utilisateur identifiant groupe taille fichier (octets) 13 adresses de blocs de données date dernier accès date dernière modification date dernière modification d'un attribut

Ex: doc1.txt

date de création, date dernière modif ...

Ceci est un petit texte

i-node: 203124

contenu

Commandes associées :

ls fichier ... list

affiche le contenu des répertoires (à un niveau) et les noms des fichiers passés en argument, c'est_à-dire fichier ..., ou s'il n'y a pas d'argument, tous les fichiers du sauf répertoire courant ceux

commençant par un point.

cat fichier ... [concatenate]

affiche le contenu des fichiers fichier ...

cp fichier1 fichier2 copy

copie fichier1 dans fichier2

mv fichier1 fichier2

move

renomme fichier1 en fichier2

rm fichier [remove]

détruit le fichier fichier; irréversible.

■ Commande 1s -1

Un répertoire ou catalogue (directory) est un fichier qui contient une liste de noms de fichiers, parmi lesquels on peut trouver des sous-répertoires, et ainsi de suite (arborescence logique).

Répertoires type

/bin	commandes UNIX de base	Sh, cat, who tty, lp, passwd, group		
/dev	fichiers spéciaux (périphs)			
/etc	administration du système			
/lib	bibliothèques objet			
/lost+found	fichiers orphelins (fsck)			
/mnt	répertoire de montage			
/tmp	fichiers temporaires			
/root	répertoire de l'administrateur			
/usr	utilitaires (man, lib, bin, tmp)	split, tr		

- Un répertoire est un fichier ordinaire, il possède donc un i-node
- Il contient un ensemble de couples (nom, i-node)
- chaque nom est un lien vers un i-node donné.

■ La commande ls –i permet de connaître les i-nodes

40324

203124

Prog1.c

Doc1.txt

- Un répertoire est géré par le système comme un fichier ordinaire
- La création de répertoire est subordonnées aux droits d'accès
- Chaque répertoire est subordonné à un répertoire père noté :
- Le répertoire courant est désigné par : .
- Le répertoire de connexion est désigné par : ~

- Notion de chemin d'accès 2 types :
 - Chemin absolu : commence TOUJOURS par /
 - Ex:/usr/local/bin
 - Chemin relatif : part du répertoire courant (jamais de / au début)
 - ■Ex: user/Info1/dupont
 - ■Ex2: ../home/diard

Commandes associées :

<mark>mkdir</mark> répertoire

[make directory] crée un répertoire.

rmdir répertoire

[remove directory]

détruit le répertoire si il est vide et si ce n'est pas votre répertoire courant.

cd répertoire

[change directory]

change de répertoire courant. Sans argument rapatrie dans le répertoire de connexion.

du

pwd

[print working directory] affiche le chemin absolu

répertoire courant.

In fichier1 fichier2

[link]

établit un nouveau lien sur le fichier fichier1.

Commandes associées :

ls –F

ls –C

cp fichier ... rép

mv fichier ... rép

affiche les noms de fichiers suivis du caractère'/' s'il s'agit d'un répertoire, et du caractère '*' s'il s'agit d'un fichier ayant la permission d'exécution.

affiche les noms de fichiers par colonnes.

copie tous les fichiers *fichier* ... dans le répertoire *rép*.

déplace tous les fichiers *fichier* ... dans le répertoire *rép*.

- Le fichiers spéciaux ne contiennent pas de données
- Ils fournissent un mécanisme qui rend les périphériques accessibles à l'aide de nom de fichier

■ Ex:

I		Périphérique	type
•		1 cripricrique	сурс
ı	/dev/cdrom	Lecteur cédérom	b
ı	/dev/sda1	Clé USB	b
ı	/dev/fd0	Lecteur disquette	b
ı	/dev/ttya	Interface série	С
ı	/dev/hda1	Partition 1 du disque hda	b
	/dev/tty1	Terminal 1	С

- Accès aux périphériques :
- Ex: cdrom

mkdir /mnt/cdrom

Création du répertoire de montage

mount -t iso9660 /dev/cdrom /mnt/cdrom

Format de données

périphérique

Point de montage

- Accès aux périphériques :
- Ex: clé usb

mkdir /mnt/usb

Création du répertoire de montage

mount -t vfat /dev/sda1 /mnt/usb

Format de données FAT32 périphérique

Point de montage

- Liste des fichiers montés : mount
- Libérer le point de montage : umount /dev/cdrom

```
Accès direct au périphériques :
cat /etc/passwd /dev/tty1
echo «bonjour» > /dev/tty1
echo «bonjour» > /dev/ttya
```

Liens

- Possibilité d'affecter plusieurs noms au même fichier (les noms différents ont le même i-node, donc correspondent aux mêmes données)
- Commande ln
- Syntaxe:
- ln [-s] <original> <fichier lié>
- Nombre de liens sur un fichier accessible par la commande :

ls -il

Liens

```
2 possibilités :
  Lien dur (hard link):
 ln f1 f2
les fichiers ont le même i-node (limité à un seul FS)
■ Lien symbolique (soft link):
ln -s f1 f2
raccourci (FS différents ou non)
Le fichier de destination d'un soft link
n'existe pas forcément. Ex : cas ou le
support physique n'est pas toujours
disponible
```

Noms de fichiers

- Les noms de fichier ont une longueur
 <= 255 octets</p>
- Un nom de fichier est une suite de caractères ASCII terminée par un zéro binaire
- Les nom de fichier peuvent contenir tous les caractères à l'exception de NULL \0 et /.
- Attention aux caractères de signification spéciale pour le shell (&\$@-*!|?)
- Attention à la casse

Droits d'accès

- On distingue 3 modes d'accès UNIX :
- read : lire le contenu
- write: modifier le contenu
- execute : exécuter (si le code est exécutable)

ACCES	FICHIER	REPERTOIRE		
r	Lire le contenu	Lire le contenu		
w	Modifier le contenu	Modifier le contenu		
×	exécuter	pénétrer		

Classes d'accès

- 3 classes de base :
 - Utilisateur (u) droits d'accès du propriétaire
 - Groupe (g) droits d'accès pour les membres du groupe
 - Autres (others) (o) droits d'accès pour tous les autres utilisateurs du système

Manipulation des droits

■ Affichage : commande ls -l si les droits sont présents, présence de la lettre correspondante r, w ou x, sinon -

ls -1 test1

-rw-r--r-- 1 albert info1A 76 nov 7 14:23 test1

Modification des droits

```
Symbolique :
+ : rajoute un droit
- : retranche un droit
, : opérateur de cumul
```

```
chmod u+x toto
chmod u-x toto
chmod u-w toto
chmod u+rw,go-rw toto
chmod a+x toto
```

Modification des droits

- Numérique (octale) :
 - Une valeur octale = droit d'accès sur 3 bits

symboles	rwx	rw-	r-x	r	-wx	-w-	x	
binaire								
octal	7	6	5	4	3	2	1	0

Ex:

chmod 744 toto chmod 511 toto

Modification des droits

- Seuls le propriétaire de l'objet et root peuvent modifier les droits de l'objet
- Différence en les deux modes de représentation :
 - Symbolique relatif aux droits précédents
 - Numérique absolu

Modification de la propriété

- On peut modifier l'appartenance des fichiers :
 - Utilisateur : chown
 - chown user fichier
 - Groupe : chgrp
 - chgrp groupe2 fichier
- La règle est de respecter les droits UNIX ou d'être root

Droits par défaut

- A la création de fichiers et de répertoires, assignation de droits par défaut.
- La commande umask permet de modifier les droits initiaux tel que :
- Répertoire :
 Droits effectifs = 777 <umask>
- Fichier:
 Droits effectifs = 666 <umask>

Niveau de sécurité

- umask 000 → irresponsable
- umask 077 → paranoïaque
- □ umask 022 → raisonnable
- Ex:

Avec Umask = 022, les droits par défaut des répertoires sont drwxr-xr-x

et sur les fichiers -rw-r--r--

Bonne protection :

les droits d'accès sur les fichiers doivent être cohérents avec ceux sur les répertoires