Transformation∫ intégrale∫

V – Fourier et signaux

G. Chênevert

17 octobre 2023

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Échantillonnage

Rappel : Transformée de Fourier

Pour tout signal x(t) convenable, on a une représentation

$$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi i f t} df$$

avec

$$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$$

(Convenable : x(t) et $\hat{x}(f)$ sont limites de fonctions intégrables)

Exemples de transformées

•
$$x(t) = \Pi_T(t)$$
 \Longrightarrow $\widehat{x}(f) = T \operatorname{sinc}(\pi T f)$

$$\bullet \ \ \textit{x}(t) = \mathsf{sinc}(t) \qquad \Longrightarrow \qquad \widehat{\textit{x}}(f) = \pi \, \Pi_{\frac{1}{\pi}}(f) \qquad \qquad (\mathcal{A}(\textit{x}) = \pi \, \, \mathsf{ah} \, \, \mathsf{bon})$$

•
$$x(t) = \delta(t)$$
 \Longrightarrow $\widehat{x}(f) = 1$

•
$$x(t) = 1 \implies \widehat{x}(f) = \delta(f)$$

•
$$x(t) = \delta(t - t_0)$$
 \Longrightarrow $\widehat{x}(f) = e^{-2\pi i t_0 f}$

•
$$x(t) = e^{2\pi i f_0 t}$$
 \Longrightarrow $\widehat{x}(f) = \delta(f - f_0)$

Propriétés de la transformation de Fourier

Notons $\mathcal{F}(x)$ la transformée de Fourier d'un signal x.

- Linéarité : $\mathcal{F}(a \cdot x + b \cdot y) = a \cdot \mathcal{F}(x) + b \cdot \mathcal{F}(y)$
- Retard : $\mathcal{F}(x(t-a)) = e^{-2\pi i a f} \mathcal{F}(x)$
- ullet Modulation par une onde pure : $\mathcal{F}(e^{2\pi \mathrm{i} a t} x(t)) = \mathcal{F}(x)(f-a)$
- Dérivation temporelle : $\mathcal{F}(x') = 2\pi i f \mathcal{F}(x)$
- Dérivation fréquentielle : $\mathcal{F}(x)' = \mathcal{F}(-2\pi i t x)$
- Parité : $\mathcal{F}(x(-t)) = \mathcal{F}(x)(-f)$
- Transformée inverse : $\mathcal{F}(\mathcal{F}(x(t))) = x(-t)$ i.e. $x(t) = \mathcal{F}(\widehat{x}(-t))$

Fourier et convolution

Comme pour la transformation $\mathcal L$ de Laplace, on a

$$\mathcal{F}(x * y) = \mathcal{F}(x) \cdot \mathcal{F}(y).$$

Par contre, cette fois on peut aussi dire que

$$\mathcal{F}(x) * \mathcal{F}(y) = \mathcal{F}(x \cdot y).$$

Symétrie profonde entre les deux domaines (temporel et fréquentiel)

dans MATLAB : conv(x, y) est implémenté via ifft(fft(x). * fft(y))!

- !

Exemple : transformée d'une dérivée

On a dit:

$$\widehat{x'}(f) = 2\pi i f \cdot \widehat{x}(f).$$

Mais aussi:

- $x' = (\delta * x)' = \delta' * x$
- $\widehat{\delta}'(f) = 2\pi i f \cdot \widehat{\delta}(f) = 2\pi i f$
- donc $\widehat{x'}(f) = \widehat{\delta'}(f) \cdot \widehat{x}(f) = 2\pi i f \cdot \widehat{x}(f)$.

C'est tout à fait cohérent!

- (

Exemple : transformées de sin et cos

On se rappelle que

$$\cos(2\pi t) = \frac{e^{2\pi it} + e^{-2\pi it}}{2}.$$

Par combinaison linéaire on a donc

$$\widehat{\cos(2\pi t)} = \frac{\delta(f-1) + \delta(f+1)}{2}.$$

De même:

$$\widehat{\sin(2\pi t)} = \frac{\delta(f-1) - \delta(f+1)}{2i}.$$

7

Exemple : transformées de sin et cos

Dans les deux cas, spectre d'amplitude :

Exemple : transformée d'une porte (de nouveau)

Exemple : transformée d'une porte (de nouveau)

$$\Pi_T(t) = u(t + T/2) - u(t - T/2)$$
 $\widehat{\Pi_T}(f) = T \operatorname{sinc}(\pi f T)$
 \downarrow

$$\Pi'_{T}(t) = \delta(t + T/2) - \delta(t - T/2) \longrightarrow \widehat{\Pi'_{T}}(f) = e^{+\pi i f T} - e^{-\pi i f T}$$
$$= 2i \sin(\pi f T) = 2\pi i f \widehat{\Pi_{T}}(f)$$

Attention!

Mais où est passée la constante d'intégration ?

Fonctions vs signaux

Nous savons que

$$x(t) \cdot \delta(t-a) = x(a) \cdot \delta(t-a).$$

En particulier :

$$x(a) = 0 \implies x(t) \cdot \delta(t - a) = 0.$$

- Inversement (x étant une fonction et y un signal), si on a $x(t) \cdot y(t) = 0$ alors :
 - il faut que y soit nulle partout où $x(t) \neq 0$;
 - il se peut que y présente des Diracs aux zéros de x.

Exemple

$$x(t) \cdot y(t) = 0 \implies y(t) = k \delta(t+1) + \ell \delta(t-1)$$

Refermons la porte

D'une part,

$$\widehat{\Pi(t) + C} = \widehat{\Pi}(f) + C \delta(f)$$

• D'autre part,

$$\widehat{\Pi}'(f) = 2\pi i f \widehat{\Pi}(f) = 2i \sin(\pi f T)$$

$$\implies \widehat{\Pi}(f) = T \operatorname{sinc}(\pi T f) + C \delta(f).$$

• Reste à déterminer la valeur de C : par exemple avec la condition initiale

$$\widehat{\Pi}(0) = A(\Pi) = T.$$

Signaux d'énergie finie

Définition

L'énergie d'un signal
$$x$$
 est $E(x) := \int_{-\infty}^{+\infty} |x(t)|^2 dt$.

(Les mathématiciens parlent de « norme L^2 »)

Théorème (Plancherel)

Si x et y sont des signaux d'énergie finie, alors \widehat{x} et \widehat{y} le sont aussi et

$$\int_{-\infty}^{+\infty} x(r)\,\widehat{y}(r)\,dr = \int_{-\infty}^{+\infty} \widehat{x}(s)\,y(s)\,ds.$$

Identité un peu curieuse car on brise la sémantique des variables!

Signaux d'énergie finie

$$\int_{-\infty}^{+\infty} x(r)\,\widehat{y}(r)\,\mathrm{d}r = \int_{-\infty}^{+\infty} \widehat{x}(s)\,y(s)\,\mathrm{d}s$$

Cas particulier : r = t, s = f, $\hat{y} = \overline{x}$, donc $y = \overline{\hat{x}}$ (vérifier!), alors :

Corollaire (identité de Parseval)

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{x}(f)|^2 df$$

i.e.
$$E(x) = E(\hat{x})$$

Identité de Parseval : interprétation

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{x}(f)|^2 df$$

 \mathcal{F} est une transformation unitaire (préservant les normes).

Le spectre n'est qu'une représentation d'un phénomène physique :

- on lit l'énergie aussi bien sur l'axe des t que des f,
- on mesure la quantité d'énergie qui passe à une fréquence précise.
- \implies interprétation de $|\widehat{x}(f)|^2$ en tant que densité d'énergie

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Échantillonnage

Spectre d'un signal périodique

Soit x(t) un signal T-périodique (donc typiquement d'énergie infinie!) :

$$x(t) = x(t+T)$$

alors

$$\widehat{x}(f) = e^{2\pi i fT} \cdot \widehat{x}(f)$$

$$(1 - e^{2\pi i fT}) \cdot \widehat{x}(f) = 0$$

donc $\widehat{x}(f)$:

- est nulle presque partout;
- sauf quand $2\pi ifT$ est multiple entier de $2\pi i$ où elle possède d'éventuels Diracs.

Spectre d'un signal périodique

En d'autres termes :

$$\widehat{x}(f) = \sum_{n=-\infty}^{+\infty} c_n \, \delta(f - f_n)$$

οù

$$f_n := \frac{n}{T} = n f_1$$

$$\implies x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{2\pi i f_n t}$$

On vient de refaire toute la théorie des séries de Fourier en 10 lignes!

Autre point de vue

Détaillons le calcul

Soit x(t) un signal T-périodique et m(t) un motif pour x (restriction à un intervalle de longueur T).

Alors:

$$x(t) = \cdots + m(t+2T) + m(t+T) + m(t) + m(t-T) + m(t-2T) + \cdots$$

$$=\sum_{n\in\mathbb{Z}}m(t-nT)=\sum_{n\in\mathbb{Z}}\delta(t-nT)*m(t)=\left(\underbrace{\sum_{n\in\mathbb{Z}}\delta(t-nT)}_{\text{$|$}\perp\text{$|$}\perp\text{$|$}\perp}\right)*m(t)$$

 \bigsqcup_{T} : **peigne de Dirac** de période T (caractère cyrillique « cha »)

Détaillons le calcul

$$x(t) = \coprod_{T} (t) * m(t)$$

$$\implies \widehat{x}(f) = \widehat{\coprod}_T(f) \cdot \widehat{m}(f).$$

Ne reste plus qu'à expliciter $\widehat{\coprod}_{\mathcal{T}}$. Mais le calcul direct ne nous aide pas trop :

$$\widehat{\coprod}_T = \int_{-\infty}^{+\infty} \coprod_T (t) e^{-2\pi i f t} dt = \sum_{n \in \mathbb{Z}} e^{-2\pi i n f T} \quad (??)$$

Par propriétés

- \coprod_T est T-périodique, on aura donc : $\widehat{\coprod_T}(f) = \sum_n c_n \, \delta(f f_n)$;
- \coprod_T est invariante par multiplication par $e^{2\pi i f_1 t}$: $\widehat{\coprod_T}(f)$ est f_1 -périodique

$$\widehat{\coprod}_{T}(f) = c \sum_{n} \delta(f - f_{n}) = c \coprod_{f_{1}} (f);$$

• En considérant l'aire sous $\Pi_T \cdot \bigsqcup_T$, on vérifie (exercice!) que $c = f_1 = \frac{1}{T}$.

Transformée de \bigsqcup

On a donc montré :

$$\widehat{\coprod_T(t)} = \frac{1}{T} \underline{\coprod}_{\frac{1}{T}}(f) = f_1 \underline{\coprod}_{f_1}(f).$$

En particulier, pour T=1:

$$\widehat{\coprod(t)} = \coprod(f) \quad (!)$$

Retour au calcul

Retour au calcul

$$x(t) = \coprod_{T} (t) * m(t)$$

$$\widehat{x}(f) = f_1 \coprod_{f_1} (f) \cdot \widehat{m}(f)$$

$$\widehat{x}(f) = f_1 \sum_{n} \delta(f - f_n) \cdot \widehat{m}(f)$$

$$\widehat{x}(f) = f_1 \sum_{n} \widehat{m}(f_n) \delta(f - f_n)$$

Coefficients de Fourier

En comparant cette dernière expression avec

$$\widehat{x}(f) = \sum_{n} c_n \, \delta(f - f_n),$$

on trouve

$$c_n = f_1 \, \widehat{m}(f_n) = \frac{1}{T} \widehat{m}(\frac{n}{T}) = \frac{1}{T} \int_a^{a+T} m(t) \, e^{-\frac{2\pi i n t}{T}} \, \mathrm{d}t$$

C'est précisément la définition qu'on avait donné des coefficients de Fourier!

Cas particulier : $x(t) = \coprod_{T} (t)$

D'après le raisonnement ci-dessus, où par calcul direct, on a

$$\widehat{\coprod}_{T}(f) = f_1 \coprod_{f_1} (f) = f_1 \sum_{n=-\infty}^{+\infty} \delta(f - \frac{n}{T})$$

et donc

$$\coprod_{T}(f) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} e^{\frac{2\pi i n}{T}t}$$

Spectre discret constant : $c_n = \frac{1}{T}$ pour tout $n \in \mathbb{Z}$.

Si on part d'un spectre constant : $c_n = \frac{1}{T}$ pour tout n

La reconstruction donne ce qu'on appelle le noyau de Dirichlet :

$$D_N(t) := rac{1}{T} \sum_{n=-N}^N e^{2\pi \mathrm{i} n f_1 t} = rac{\sin{(2N+1)\pi f_1 t}}{T \sin{\pi f_1 t}} \underset{N o \infty}{\longrightarrow} igsqcup_T(t)$$

Noyau de Dirichlet

Au menu aujourd'hui

Propriétés de Fourier

Signaux périodiques

Échantillonnage

Multiplication par un peigne

Nous savons ce qui se passe quand on convolue un signal par un peigne de Dirac.

(Ça le périodise).

Que se passe-t-il si on le multiplie?

$$x(t) \cdot \bigsqcup_{T}(t) = x(t) \cdot \sum_{n=-\infty}^{+\infty} \delta(t - nT) = \sum_{n=-\infty}^{+\infty} x(nT) \, \delta(t - nT)$$

On obtient le signal x(t) échantillonné à tous les multiples de T!

$$f_{\rm e} = \frac{1}{T}$$
 fréquence d'échantillonnage

Spectre du signal échantillonné

Si $y(t) = \sum_{n} x_n \delta(t - nT) = x(t) \cdot \bigsqcup_{T} (t)$ est la version échantillonnée de x, alors

$$\widehat{y}(f) = \sum_{n} x_n e^{2\pi i n T f}$$

est $f_1 = \frac{1}{T}$ périodique.

On peut dire plus :

$$\widehat{y}(f) = f_1 \coprod_{f_1} (f) * \widehat{x}(f)$$

c'est la f_1 -périodisation de $\frac{1}{T} \widehat{x}(f)$.

Résumé

Signal périodique ⇒ spectre discret

 $\mathsf{Signal}\;\mathsf{discret}\;\Longrightarrow\;\mathsf{spectre}\;\mathsf{p\acute{e}riodique}$

$$x(t) = \coprod_{T} (t) * m(t) \implies \widehat{x}(f) = f_1 \coprod_{f_1} (f) \cdot \widehat{m}(f)$$

$$y(t) = \coprod_{T} (t) \cdot x(t) \implies \widehat{y}(f) = f_1 \coprod_{f_1} (f) * \widehat{x}(f)$$