Tree-based methods for classification and regression

Regression trees

Dataset: $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_n, \vec{y}_n)$, where $x_i \in R \subseteq \mathbb{R}^p$ and $y_i \in \mathbb{R}$

Regression tree construction:

- Divide the predictor space, R, into disjoint regions, R_1, \ldots, R_J
- If a new observation, \vec{x} , falls into region R_j , set $\hat{r}(\vec{x})$ equal to the average y_i such that $x_i \in R_j$.

How do we subdivide the predictor space? recursive bisection

Given an index j and a *cutpoint* $s \in \mathbb{R}$, bisect R into two pieces:

$$R_0 = {\vec{x} \in R : x_j \le s}, \qquad R_1 = {\vec{x} \in R : x_j > s}$$

Then bisect R_0 and R_1 ...

Given an index j_0 and a cutpoint $s_0 \in \mathbb{R}$, bisect R_{00} into two pieces:

$$R_{00} = \{ \vec{x} \in R_0 : x_{j_0} \le s_0 \}, \qquad R_{01} = \{ \vec{x} \in R_0 : x_{j_0} > s_0 \}.$$

Given an index j_1 and a cutpoint $s_1 \in \mathbb{R}$, bisect R_{01} into two pieces:

$$R_{10} = \{\vec{x} \in R_1 : x_{j_1} \le s_1\}, \qquad R_{11} = \{\vec{x} \in R_1 : x_{j_1} > s_1\}$$

Then bisect R_{00} , R_{01} , R_{01} , and R_{10} ...

Etc...

Questions:

- How do we find the indices j, j_0 , j_1 , ... and the cutpoints s, s_0 , s_1 , ...?
- When do we stop?

Answers:

• For each pair (j, s), let $Var^{-}(j, s)$ and $Var^{+}(j, s)$ be the variances of

$$\{y_i : x_{i,j} \le s\}$$
 and $\{y_i : x_{i,j} > s\}$,

respectively.

Take (j, s) to be the pair that minimizes the total variance,

$$Var^-(j, s) + Var^+(j, s)$$
.

② Don't bisect a region if the number of training points it contains is smaller than some threshold.

Classification trees

Dataset
$$(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_n, \vec{y}_n)$$
, where $x_i \in R \subseteq \mathbb{R}^p, \quad y_i \in \{1, \dots, K\}.$

Classification tree construction:

- Divide the predictor space, R, into disjoint regions, R_1, \ldots, R_J
- If a new observation, \vec{x} , falls into region R_j , set $\hat{r}(\vec{x})$ equal to most common class label, y_i , for which $x_i \in R_j$.

Partition R via the same recusrive bisection procedure described for regression trees, except we replace the variance minimization criterion with one more suited to categorical response variables.

To bisect a region, R:

For class labels k, indices j, and cutpoints s, let

$$\begin{split} \widehat{p}_k(j,s) &= \frac{|\{i: x_i \in R, \ y_i = k\}|}{|\{i: x_i \in R\}|} \\ G(j,s) &= \sum_{k=1}^K \widehat{p}_k(j,s)(1-\widehat{p}_k(j,s)) \qquad \qquad \text{(Gini index)} \\ D(j,s) &= -\sum_{k=1}^K \widehat{p}_k(j,s)\log\widehat{p}_k(j,s) \qquad \qquad \text{(cross entropy)} \end{split}$$

Choose (j, s) to minimize either G(j, s) or D(j, s).

Gini index and cross entropy are examples of (im)purity measures.

Feature importance

Consider all the regions that split based on the j-th feature:

$$R_1, R_2, \ldots, R_{m_j}$$

Let

$$I_k = \{i : x_i \in R_k\}, \quad \bar{y}_k = \frac{1}{|I_k|} \sum_{i \in I_k} y, \quad SS_k = \sum_{i : x_i \in R_k} (y_i - \bar{y}_k)^2$$

Similarly, let SS'_k and SS''_k be the sums of squares associated to the regions, R'_k and R''_k , that R_k is split into. Then

$$\Delta_{j,k} := SS_k - SS_k' - SS_k'' \ge 0.$$

The absolute and relative importance of feature j are:

$$\Delta_j = \sum_{k=1}^{u_j} \Delta_{j,k}, \qquad \delta_j = \frac{\Delta_j}{\sum_{j=1}^p \Delta_j}$$