Organische Chemie Lernzettel

Baden, Julian Hagemann, Florian

Gymnasium Mellendorf ABI Jahr 2027

23. September 2025

Inhaltsverzeichnis

1	Stoffklassen			
	1.1	Alkane	1	
	1.2	Halogenalkane	2	
	1.3	Alkene & Alkine	2	
	1.4	Alkohole	3	

1 Stoffklassen

1.1 Alkane

Alkane Sind eine Reihe **Kohlenstoffatome**, mit anliegenden **Wasserstoffatomen**. Die Reihe, welche die Alkane bilden, wenn man sie nach der Anzahl C-Atom ordnet, heißt "homologe Reihe"

Name	Molekülformel	Halbstrukturformel
Methan	CH_4	CH_3
Ethan	C_2H_6	$CH_3 \longrightarrow CH_3$
Propan	C_3H_8	$CH_3 \longrightarrow CH_2 \longrightarrow CH_3$
Butan	C_4H_10	$CH_3 - C_2H_2 - CH_3$
Pentan	C_5H_12	$CH_3 - C_3H_4 - CH_3$
Hexan	C_6H_14	$CH_3 - C_4H_6 - CH_3$
Heptan	C_7H_16	$CH_3 - C_5H_8 - CH_3$
Octan	C_8H_18	$CH_3 - C_6H_{10} - CH_3$
Nonan	C_9H_20	$CH_3 - C_7H_{12} - CH_3$
Decan	$C_{10}H_{2}2$	$CH_3 - C_8H_{14} - CH_3$

Innehalb der Homologen Reihe sind folgende Zusammenhänge zu erkennen:

- · Viskousität steigt
- Siede- & Schmelztemperatur steigt
- Dichte nimmt zu

Diese Zusammenhänge liegen an steigender Intensität von London- / Van-der-Waalskräfte mit steigender Kettenlänge.

Alkane besitzen folgene Eigenschaften:

- keine elektrische Leitfähigkeit
- sie sind unpolar

1 STOFFKLASSEN 2

1.2 Halogenalkane

Halogenalkane sind Alkane, denen durch **elektrophile Addition**, aus Alkenen, oder durch **radikalische Substitution**, aus Alkanen, ein Halogen addiert wurde.

Halogenalkane sind **lipophil**, ihre **Siedetemperatur ist höher als bei Alkanen**. Bei Mehrfachsubstutution / Mehrfachaddition werden die Halogenalkane **mit steigender Halogenanzahl reaktionsträger**.

Eine Nachweisreaktion für Halogenalkane ist die Beilsteinprobe.

1.3 Alkene & Alkine

Alkene sind Kohlenwasserstoffe, welche eine Doppelbindung zwischen zwei C-Atomen besitzen. Sie wie die Alkane benannt, besitzen aber eine **-en** Endung. Vor dieser Endung wird die Stelle der Mehrfachbindung geschrieben, z.B.: Pent-2-en.

Alkine bekommen hingegen die Ändung -in.

$$H$$
— C \equiv C — H Ethin

Wichtig bei Mehrfachsubstutution und Mehrfachaddition ist die Benennung mit cis- und trans-.

1 STOFFKLASSEN 3

Eine Nachweisreaktion für Mehrfachbindungen ist die Entfärbung von Bromwasser.

1.4 Alkohole

Alkohole sind Moleküle mit einer O-H-Gruppe (Hydroxygruppe). Sie entstehen durch die **nucleophile Substitution** von Halogenalkanen. Dlol kek