3° de Secundaria Unidad 2 2024-2025

Última revisión del documento: 22 de marzo de 2025

— Practica la reposición a la Unidad 2

Nombre del alumno:	lombre del alumno: Fecha: Fecha:							
Aprendizajes:					ciór	n:		
🚨 Deduce información acerca de la estruct	Pregunta	1	2	3	4	5	6	
datos experimentales sobre propiedades	Puntos	10	10	10	5	10	10	
Representa y diferencia mediante esquen gía química, elementos y compuestos, as	Obtenidos							
culas.	J					11	Total	
🙎 Explica y predice propiedades físicas de	Puntos	10	10	10	10	10	105	
	se en modelos submicroscópicos sobre la estructura de átomos, moléculas o iones, y sus interacciones electrostáticas.							
Ejercicio 1						de '	10 ρι	ıntos
Relaciona cada concepto con su definición.								
	A Las sustancias se rej	presentan sólo	o con	símb	olos	atóm	icos.	
O Diagrama de esferas y barras.	B Esquema tridimensional en el que es posible identificar a los en-							
b Diagrama de esferas.	laces químicos.							
c Fórmula condensada.	a. C Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.							as que
d Fórmula estructural.	D Esquema tridimensi enlaces químicos.	onal en el que no es posible identificar a los						
Ejercicio 2 de 10 puntos								
Contesta a las siguientes preguntas, argume	ntando ampliamente tu re	espuesta				-		
_		_						
Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo. En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?							leo. Si el ra- de un	

de 10 puntos
s características que le corresponden.
Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
Elemento metálico con $Z=31$.
Elemento metaloide, ubicado en el tercer período de la tabla periódica.
Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
Elemento con 22 protones y 22 electrones.
Elemento de la familia de los Halógenos con 74 neutrones.
Elemento de la familia de metales alcalino-terreos con 138 neutrones.
Elemento no metálico con Z $=83$.
Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
Metal brillante utilizado en joyería.
Elemento metaloide, ubicado en el tercer período de la tabla periódica. Elemento conocido como gas noble y se encuentra en el período 1 de la table periódica. Elemento con 22 protones y 22 electrones. Elemento de la familia de los Halógenos con 74 neutrones. Elemento de la familia de metales alcalino-terreos con 138 neutrones. Elemento no metálico con $Z=83$. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.

Ejercicio 4	de 5 puntos
Relaciona la especie química con la can	tidad de protones y electrones de valencia .
\bigcirc Ión oxígeno (O ⁻)	20 protones y 2 electrones de valencia.
(B) Nitrógeno (N)	b 9 protones y 8 electrones de valencia.
	c 15 protones y 5 electrones de valencia.
© Silicio (Si)	d 8 protones y 7 electrones de valencia.
① Calcio (Ca)	e 34 protones y 6 electrones de valencia.
E Ión Fluor (F ⁻)	f 14 protones y 4 electrones de valencia.
F Oxígeno (O)	9 7 protones y 5 electrones de valencia.
	h 3 protones y 2 electrones de valencia.
(G) Neón (Ne)	i 8 protones y 6 electrones de valencia.
(H) Ión Litio (Li ⁺)	j 10 protones y 8 electrones de valencia.
(I) Fósforo (P)	
(J) Selenio (Se)	

Ejercicio 5 de 10 puntos

Relaciona la especie química con la cantidad de protones y electrones de valencia.

(A) Ión de Hierro (Fe³⁺)

 \bigcirc Ión de Nitrógeno (N³⁻)

 \bigoplus Ión de Azúfre (S²⁺)

E Litio (Li)

(I) Ión de Potasio (K⁺)

B Fósforo (P)

 \bigcirc Ión de Aluminio (Al^{3+})

(J) Ión de Cloro (Cl⁻)

 \bigcirc Ión de Flúor (F^-)

G Ión de Berilio (Be⁻)

- a _____ 13 protones y 8 electrones de valencia.
- b _____ 17 protones y 8 electrones de valencia.
- c _____ 9 protones y 8 electrones de valencia.
- d protones y 3 electrones de valencia.
- e _____ 16 protones y 4 electrones de valencia.

- f _____ 15 protones y 5 electrones de valencia.
- 9 _____ 26 protones y 2 electrones de valencia.
- h ______ 7 protones y 8 electrones de valencia.
- i _____ 3 protones y 1 electrón de valencia.
- j _____ 19 protones y 8 electrones de valencia.

Ejercicio 6

de 10 puntos

Completa la siguiente tabla determinando para cada especie, la cantidad de protones \bigoplus , neutrones \bigoplus y electrones \bigcirc .

Especie	Símbolo	\oplus	0	Θ
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

3 de 8

Ejercicio 7				10 puntos				
Escribe el grupo (familia), el período y el tipo de clasificación de los siguientes elementos. Después de realizar este ejercicio, ubica a cada elemento en la tabla								
	Elemento	Grupo/Familia	Período	Tipo				
	Paladio							
	Oro							
	Argón							
	Samario							

Talio

Ejercicio 8 de 10 puntos Relaciona el catión y anión que forman el compuesto iónico. a _____ Ca²⁺O²⁻ A Bromuro de Litio **b** _____ Ba²⁺O²⁻ B Óxido de Magnesio **c** _____ Fe²⁺O²⁻ C Yoduro de Potasio **d** _____ K+I-D Bromuro de Potasio e _____ Li⁺F⁻ f _____ K⁺Cl⁻ Óxido de Hierro 9 _____ Na⁺Br⁻ (F) Cloruro de Potasio h _____ Li⁺Br⁻ ⑥ Óxido de Calcio i ____ K⁺Br⁻ (H) Fluoruro de Litio j _____ Mg²⁺O²⁻ (I) Óxido de Bario J Bromuro de Sodio

Ejercicio 9	de 10 puntos							
Señala en cada uno de los enunciados si la sentencia es falsa o verdadera.								
 Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad. Verdadero Falso Los electrones de valencia se encuentran siempre en el último nivel de energía. 	 f La masa de un neutrón es similar a la del protón. ☐ Verdadero ☐ Falso 9 El número de masa representa la suma de protones y neutrones. ☐ Verdadero ☐ Falso 							
 □ Verdadero □ Falso c La fórmula H₂O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. 	h El número total de electrones en un átomo lo determina el grupo al que pertenece. Uerdadero Falso							
□ Verdadero □ Falso d Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.	 i En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia. □ Verdadero □ Falso 							
 □ Verdadero □ Falso e El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. □ Verdadero □ Falso 	j En la fórmula de la Taurina, 4C ₂ H ₇ NO ₃ S, el número 4 indica que hay 4 átomos de carbono. ☐ Verdadero ☐ Falso							

Ejercicio 10 de 10 puntos

Señala la opción que responde correctamente a la pregunta de cada uno de los siguientes incisos:

- Qué propiedades periódicas aumentan al recorrer un grupo de arriba hacia abajo en la tabla periódica?
 - A El carácter metálico y la electronegatividad
 - B El potencial de Ionización y el carácter metálico
 - © El carácter no metálico y el potencial de ionización
 - D La electronegatividad y la afinidad electrónica
 - (E) Ninguna de las anteriores
- **b** ¿Qué propiedades periódicas aumentan al desplazarnos en un período de izquierda a dere- cha en la tabla periódica?
 - A La electronegatividad y el tamaño atómico
 - B El radio atómico y el radio iónico
 - © El carácter metálico y la afinidad electrónica
 - D Potencial de ionización y electronegatividad
 - (E) Ninguna de las anteriores
- c En la tabla periódica, el tamaño atómico tiende a aumentar hacia la:
 - (A) Derecha y hacia arriba
 - (B) Derecha y hacia abajo
 - (C) Izquierda y hacia arriba
 - D Izquierda y hacia abajo

- d El tamaño de los átomos aumenta cuando:
 - A Se incrementa el número de período
 - B Disminuye el número de período
 - © Se incrementa el número de grupo
 - D Disminuye el número de bloque
 - (E) Ninguna de las anteriores
- e El radio atómico es la distancia que hay del núcleo de un átomo a su electrón más lejano ¿Cómo varía esta propiedad atómica en los elementos de la tabla periódica?
 - (A) Disminuye conforme nos desplazamos de izquierda a derecha a lo largo de un período
 - B Aumenta conforme nos desplazamos de arriba hacia abajo a lo largo de un grupo
 - C Aumenta conforme nos desplazamos de derecha a izquierda a lo largo de un período
 - (D) Todos son correctos

Ejercicio 11 ____ de 10 puntos

Completa la siguiente tabla:

Sustancia	a) Tipo de sustancia	b) Fórmula condensada
H H-C-H H-C-H	molecular	CH₄
Cu²+Cu²+ Cu²+Cu²+ Cu²+Cu²+		
Cl· Cl· Mg²+ Mg²+ Cl· Cl·		
O ²⁻ Ca ²⁺ O ²⁻ Ca ²⁺		
Ag <u>·</u> Ag <u>·</u> Ag <u>·</u> Ag <u>·</u> Ag·		
H H H H H H H H H H H H H H H H H H H		

18 VIIIA	$\overset{2}{H_{\text{elio}}}^{4.0025}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}{\overset{\text{Neon}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\overset{18}{A}\overset{39.948}{ ext{r}}$	$\overset{36}{Kr}\overset{83.8}{r}$	$\sum_{Xenón}^{54}$	$\mathop{Rad\acute{\text{ch}}}_{\text{Rad\acute{\text{ch}}}}$	118 294 Oganesón	$\overset{71}{\mathbf{Luterio}}$	$\frac{103}{L}$ 262 Lawrencio	
	17 VIIA	9 18.998 Fluor	\bigcup_{Cloro}^{17}	$\Pr_{\mathrm{Bromo}}^{35}$	53 126.9 Lodo	$\overset{85}{\mathrm{At}}_{\overset{210}{\mathrm{Astato}}}$	$\frac{117}{\mathrm{Teneso}}$	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\prod_{Tulio}^{69}	$\overset{\text{101}}{\text{Mondelevio}}$	
	15 VA	7 14:007 Nitrógeno	$\sum_{F\'esforo}^{15\ 30.974}$	${\overset{33}{\Lambda}}^{74.922}$	$\overset{51}{\mathbf{S}}\overset{121.76}{\mathbf{b}}$	$\overset{83}{\mathbf{Bismuto}}$	${\overset{115}{M}}{\overset{288}{C}}$	$\frac{68}{\text{Erbio}}$	$\overset{\text{100}}{F}\overset{257}{m}$	
	14 IVA	6 12.011 Carbono	$\overset{\text{14}}{\text{Silicio}}$	$\overset{32}{\text{Germanio}}$	$\mathop{Sn}_{\text{Estaño}}^{118.71}$	$\overset{82}{Pb}^{207.2}_{\text{Pbmo}}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{0}$	99 252 Einsteinio	
	13 IIIA	$\overset{5}{\mathbf{B}}$	$\prod_{\text{Aluminio}}^{13} 26.982$	$\overset{31}{\overset{69.723}{\text{Galio}}}$	$\frac{49}{Ln}$	\prod_{Talio}^{81}	$\underset{\text{Nihonio}}{\overset{113}{N}}$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\bigcup_{\text{Californio}}^{98}$	
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{\text{Mercurio}}_{\text{Mercurio}}$	$\overset{\text{112}}{C}\overset{285}{n}$	$\prod_{\text{Terbio}}^{65-158.93}$	$\frac{97}{Bk}$ Berkelio	
			11 IB	$\overset{29}{\overset{63.546}{\mathbf{U}}}$	$^{47}_{ extstyle A}$	$\overset{79}{\mathrm{Au}}_{\mathrm{Oro}}^{196.97}$	Roentgenio	$\overset{\text{64}}{\text{Gadolinio}}$	$\overset{96}{Cm}_{\text{Curio}}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \frac{58.693}{\text{1}}$	$\Pr^{46 \ 106.42}$	$\Pr^{78}_{\text{Platino}}$	Darmstadtio	63 151.96 Europio	$\underset{\text{Americio}}{Am}$	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\prod_{ ext{Iridio}}^{ ext{77}}$	$\underset{Meitnerio}{109} \overset{268}{26}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{P}\overset{244}{u}$	
		SS	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	\mathop{Rut}^{44} 101.07	$\overset{76}{\text{Osmio}}$	Hassio	$\overset{61}{Pm}\overset{145}{\text{Prometio}}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\sum_{\mathrm{Manganeso}}^{25} 54.938$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Renio}_{\text{Renio}}^{75}$	Bohrio	$\overset{60}{\text{Neodimio}}^{144.24}$	$\bigcup_{\text{Uranio}}^{92} 238.03$	
	Simbología:	Negro: Gris: S	6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$	$\stackrel{42}{\text{Nolybdeno}}$	$\frac{74}{W}$ Tungstenio	$\overset{106}{S}\overset{266}{8}$	$\sum_{\mathrm{Praseodymio}}^{59}$	$\overset{\text{91}}{P}\overset{231.04}{\text{a}}$	
	Sin	$\sum_{A_{ au}}^{\mathbf{Z}}$ Símbolo	5 VB	$\sum_{\text{Vanadio}}^{\textbf{23}} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{\text{Tantalo}}_{\text{Tantalo}}$	$\sum_{\text{Dubnio}}^{105} \sum_{\text{262}}^{262}$	$\overset{58}{\overset{140.12}{\overset{12}{\overset{60}{\mathbf{60$	90 232.04 Torio	
			4 IVB	22 47.867 Titanio	$\sum_{ m Circonio}^{40}$	$\prod_{Hafinio}^{72}$	$\underset{\text{Rutherfordio}}{\text{Rutherfordio}}$	$\sum_{ ext{Lantánido}}^{ ext{57}}$	$\overset{89}{Ac}^{227}$	
			3 IIIA	$\overset{21}{\mathbf{S}}\overset{44.956}{\mathbf{C}}$ Escandio	39 88.906 Yerio	57-71		s -terreos		nidos
	2 IIA	$\overset{4}{B}\overset{9.0122}{e}$	$\overline{\mathrm{Mg}}^{24.305}$	$\mathbf{C}^{20}_{\mathbf{a}}$	$\overset{38}{\mathrm{ST}}$ 87.62 $\overset{87.62}{\mathrm{C}}$	$\overset{56}{\mathbf{Bario}}_{\mathbf{ario}}$	$\mathop{\mathrm{Ra}}_{\mathrm{radio}}^{88}$	Alcalinc Alcalinc	de al .o	lobles dos/Actí
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{6.941}$	$\overset{11}{\overset{22.990}{\text{Na}}}$	$\overset{\textbf{19}}{\overset{39.098}{K}}$	$\mathop{Rbidio}\limits^{37\ 85.468}$	\sum_{Cesio}^{55}	$\overset{87}{Fr}^{223}_{rancio}$	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/Actínidos
	H	2	3	4	Ŋ	9	7			