Elements of Programming Interviews

Task 16.1

Variant 6

Oleksii Symon

28-12-2017

Task

You have 2n disks of n different sizes, two of each size. You cannot place a larger disk on a smaller disk, but can place a disk of equal size on top of the other. Compute the minimum number of moves to transfer the 2n disks from P1 to P2.

Solution

To move 2n disks from P1 to P2

- 1. Move 2n-2 disks from P1 to P3
- 2. Move 2 disks from P1 to P2
- 3. Move 2n-2 disks from P3 to P2

We get a recurrence relation

$$a_{2n} = 2a_{2n-2} + 2$$

Which can be solved using plug-and-chug method

$$a_{2n} = 2 * (2a_{2n-4} + 2) + 2$$

$$a_{2n} = 4a_{2n-4} + 4 + 2$$

$$a_{2n} = 4 * (2a_{2n-6} + 2) + 4 + 2$$

$$a_{2n} = 8a_{2n-6} + 8 + 4 + 2$$

Which gives us the equation

$$a_{2n} = 2^{k-1} * (2a_{2n-2k} + 2) + 2^{k-1} + 2^{k-2} + \dots + 2^{1}$$

As $a_0 = 0$ we get

$$a_{2n} = 2^k + 2^{k-1} + 2^{k-2} + \dots + 2^1$$

$$= \sum_{k=1}^n 2^k$$

$$= \left(\frac{1 - 2^{n+1}}{1 - 2}\right) - 1 = 2^{n+1} - 2$$