ГУАП

КАФЕДРА № 43

ОТЧЕТ			
ЗАЩИЩЕН С ОЦЕН	ІКОЙ		
ПРЕПОДАВАТЕЛЬ			
к.т.н., доцен	IT		В. В. Мышко
должность, уч. степен	ь, звание	подпись, дата	инициалы, фамилия
		v	
	ОТЧЕТ О ЛА	АБОРАТОРНОЙ РА	БОТЕ
Статистическое оценивание числовых характеристик законов распределения			
случайных величин			
по курсу: Обработка экспериментальных данных			
DA FORM DI HIO HIII			
РАБОТУ ВЫПОЛНИ	1.71		
СТУДЕНТ гр. №	41313	HO WHILIAN WOTTE	М. Д. Быстров
		подпись, дата	инициалы, фамилия

Цель работы

На основе массива экспериментальных данных найти оценку математического ожидания случайной величины, проверить качество оценивания по заданной доверительной вероятности и заданной максимальной вероятной погрешности.

Задание на лабораторную работу

- 1. Найти оценку математического ожидания по массиву экспериментальных данных (табл. 1.1).
- 2. Построить 95-процентный доверительный интервал для исследуемой случайной величины.
- 3. Выполнить отсеивание аномальных наблюдений, не попадающих в 95процентный доверительный интервал.
- 4. Найти уточненную оценку математического ожидания после отсеивания аномальных наблюдений.
 - 5. Проверить качество оценивания математического ожидания:
- по заданной доверительной вероятности (табл. 1.2) построить доверительный интервал для математического ожидания;
- по заданной максимальной вероятной погрешности (табл. 1.2) найти доверительную вероятность попадания математического ожидания в интервал, определяемый указанной погрешностью.

Вариант 4.

Массив экспериментальных данных:

0,3 0,7 1,3 2,8 5,1 7,6 4,9 4,7 3,2 1,8 0,5 0,2

Доверительная вероятность, $\beta = 0.95$

Максимальная вероятная погрешность, $\epsilon\beta=0.14$

Математические формулы

Формула мат. ожидания:
$$\tilde{\mathbf{M}}_{\hat{x}} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 (1)

Дисперсия:
$$\tilde{D}_{\hat{x}} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \tilde{M}_{\hat{x}})^2$$
 (2)

CKO:
$$\tilde{\sigma}_{\hat{x}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \tilde{M}_{\hat{x}})^2}$$

Двухсигмовый (95%) интервал: $I_{0,95} = \left[\tilde{M}_{\hat{x}} - 2\tilde{\sigma}_{\hat{x}}; \tilde{M}_{\hat{x}} + 2\tilde{\sigma}_{\hat{x}}\right]$ (4)

Доверительная вероятность по заданной максимальной вероятной

$$\beta = P(\left|\tilde{\mathbf{M}}_{\hat{x}} - \mathbf{M}_{\hat{x}}\right| \le \varepsilon_{\beta}) = 2\Phi_{0}\left(\frac{\varepsilon_{\beta}}{\sigma\left[\tilde{\mathbf{M}}_{\hat{x}}\right]}\right) = 2\Phi_{0}\left(\frac{\varepsilon_{\beta}\sqrt{n}}{\tilde{\sigma}_{\hat{x}}}\right)$$
(5)

погрешности:

Максимальная вероятная погрешность при заданной доверительной

$$\varepsilon_{\beta} = \sigma \left[\tilde{\mathbf{M}}_{\hat{x}} \right] \cdot t_{\beta} = \frac{\tilde{\sigma}_{\hat{x}}}{\sqrt{n}} t_{\beta}$$

вероятности:

Результат выполнения работы

1. Оценка математического ожидания по массиву экспериментальных данных

Используется формула (1)

Код расчета:

```
def M(data):
    """Математитическое ожидание - среднее арифметическое"""
    s = 0.0
    for v in data:
        s += v
    m = s / len(data)
    return m

# экспериментальные данные
experimental_data = [0.3, 0.7, 1.3, 2.8, 5.1, 7.6, 4.9, 4.7, 3.2, 1.8, 0.5, 0.2]

m = M(experimental_data)
print(f"Mатематическое ожидание - {m}")
```

Результат:

Математическое ожидание - 2.758333333333333

2. Построить 95-процентный доверительный интервал для исследуемой случайной величины.

Используются формулы (3), (4)

Код расчета:

```
def D(data):
    """Дисперсия"""
    m = M(data)
    s = 0.0
    for v in data:
        s += (v - m) ** 2
    d = s / (len(data) - 1)
    return d

def SKO(data):
    """Среднее квадратичное отклонение"""
    return math.sqrt(D(data))

def DSI(data):
    """Двухсигмовый интервал (95% интервал)"""
    m = M(data)
    sko = SKO(data)
```

```
return [m - 2 * sko, m + 2 * sko]

I_95 = DSI(experimental_data)
print(f"95% интервал - f{I_95}")
```

Результат:

95% интервал - [-2.007040511265628, 7.523707177932294]

3. Выполнить отсеивание аномальных наблюдений, не попадающих в 95-процентный доверительный интервал.

Код расчета:

```
clean_data = [v for v in experimental_data if v >= I_95[0] and v <= I_95[1]] print(f"Очищенные данные - {clean_data}")
```

Результат:

Очищенные данные - [0.3, 0.7, 1.3, 2.8, 5.1, 4.9, 4.7, 3.2, 1.8, 0.5, 0.2]

Элемент массива данных 7,6 не попал в доверительный интервал и признается аномальным (подлежащим удалению).

4. Найти уточненную оценку математического ожидания после отсеивания аномальных наблюдений.

Используется формула (1)

Код расчета:

```
m_corrected = M(clean_data)
print(f"Скорректированное математическое ожидание - {m_corrected}")
```

Результат:

Скорректированное математическое ожидание - 2.31818181818183

- 5. Проверить качество оценивания математического ожидания:
 - по заданной доверительной вероятности (табл. 1.2) построить доверительный интервал для математического ожидания;

Используется формула (6)

Доверительная вероятность, $\beta = 0.95$

Код расчетов:

```
# доверительный интервал для мат. ожидания
# по заданной доверительной вероятности

# сначала надо найти максимальную вероятную погрешность
# по заданной доверительной вероятности (формула 23)

sko = SKO(clean_data)
```

```
n_sqrt = math.sqrt(len(clean_data))
e = sko / n_sqrt * 1.96 # 1.96 - t-коэфф при д.в. = 0.95 (приложение 4)

# далее посчитать доверительный интервал мат. ожидания

I_M_95 = [m_corrected - e, m_corrected + e]

print(f"Максимальная вероятная погрешность при заданной довер. вероятности {B} = {e}")

print(f"Доверительный интервал мат. ожидания - {I_M_95}")
```

Результат:

Максимальная вероятная погрешность при заданной довер. вероятности 0.95 = 1.1348377478959655

Доверительный интервал мат. ожидания - [1.1833440702858529, 3.453019566077784]

Значение квантиля нормального распределения взято из приложения 4.

Таким образом, математическое ожидание случайной величины (генеральной совокупности), из которой извлечена исследуемая выборка, находится с доверительной вероятностью не менее, чем 0,95 в интервале [1.1833440702858529, 3.453019566077784].

- по заданной максимальной вероятной погрешности (табл. 1.2) найти доверительную вероятность попадания математического ожидания в интервал, определяемый указанной погрешностью.

Используется формула (5)

Максимальная вероятная погрешность, $\epsilon \beta = 0.14$

Код расчета:

```
# ищем значение для подстановки в функцию Лапласа (формула 22)

x = E_B * n_sqrt / sko

# округленное до 2-х знаков после запятой значение X

x = 0.24

# значение функции Лапласа из приложения 2

F_0_3 = 0.0948

# вычисленная доверительная вероятность

B_2 = 2 * F_0_3
```

I_ = [m_corrected - E_B, m_corrected + E_B] print(f"Мат ожидание величины находится в интервале {I_} с дов. вероятностью не менее {B 2}")

Результат:

Мат ожидание величины находится в интервале [2.178181818181818, 2.458181818181818] с дов. вероятностью не менее 0.1896

Значение функции Лапласа взято из приложения 2 для аргумента, округленного до двух знаков после запятой.

Таким образом, математическое ожидание случайной величины (генеральной совокупности), из которой извлечена исследуемая выборка, находится в интервале [2.1781818181818] с вероятностью не менее, чем 0.1896.

Анализ полученных результатов и выводы

В ходе выполнения первой лабораторной работы проведено статистическое оценивание числовых характеристик законов распределения случайных величин.

Определены статистические оценки для набора экспериментальных данных. Проведена очистка экспериментальных данных с помощью двухсигмового интервала. Произведено уточнение оценок на очищенном наборе данных.

Качество оценивания математического ожидания проверено с помощью расчета доверительных интервалов, исходя из заданных доверительной вероятности и максимальной вероятной погрешности. Приведена трактовка полученных результатов.

Список литературы

- 1. Статистические методы обработки экспериментальных данных [Текст] : Учеб. пособие / В. И. Сеньченков. СПб. : ГУАП, 2006 (СПб.). 243 с. Библиогр.: с. 227 (12 назв.). 100 экз. **ISBN** 5-8088-0213-X
- 2. Теория вероятностей и математическая статистика : учеб. пособие / Е. А. Трофимова, Н. В. Кисляк, Д. В. Гилёв ; [под общ. ред. Е. А. Трофимовой] ; М-во образования и науки Рос. Федерации, Урал. федер. ун-т. Екатеринбург : Изд-во Урал. ун-та, 2018. 160 с. ISBN 978-5-7996-2317-3