```
Mój kod
```

```
In [1]:
             import csv
          2
             import numpy as np
          3
             import pandas as pd
             import matplotlib.pyplot as plt
             from sklearn import linear model,preprocessing
             from sklearn.pipeline import Pipeline
          7
             from sklearn.preprocessing import PolynomialFeatures
             from sklearn.linear model import LinearRegression
             import time
In [2]:
             data = pd.read csv("outfile.csv")
             data.head(10)
           X_Val
                     Y_Val
         0 180
                  99.074074
         1 184
                  99.074074
         2 188
                  99.074074
         3 192
                  99.074074
         4 196
                  99.074074
         5 200
                  99.074074
         6 204
                  99.074074
         7 208
                  99.074074
                  99.074074
         8 212
         9 216
                  99.074074
In [3]:
             X_Val = data.iloc [:, 0]
            Y Val = data.iloc[:,1]
          3 X_Val =X_Val.as_matrix()
          4 Y_Val =Y_Val.as_matrix()
         E:\Users\sticz\Anaconda3\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: Method .as_matrix will be
         version. Use .values instead.
           This is separate from the ipykernel package so we can avoid doing imports until
         E:\Users\sticz\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: FutureWarning: Method .as_matrix will be
         version. Use .values instead.
           after removing the cwd from sys.path.
```

```
In [4]:
             start time = time.time()
          2
          3
             X Val = data.iloc [:, 0]
            X Val =X Val.as matrix()
          4
             model = Pipeline([('poly', PolynomialFeatures(degree=18)),
          6
                                    ('linear', LinearRegression(fit intercept=True, normalize= Tru
             model = model.fit(X Val.reshape(-1, 1), Y Val.reshape(-1, 1))
          8
          9
             elapsed time sk = time.time() - start time
         10
         11
             elapsed time sk
         E:\Users\sticz\Anaconda3\lib\site-packages\ipykernel_launcher.py:4: FutureWarning: Method .as_matrix will be
         version. Use .values instead.
           after removing the cwd from sys.path.
          0.013889551162719727
In [5]:
             model.named steps['linear'].coef #Współczynniki wielomianu
          array([[ 0.00000000e+00, -2.07438708e+01, 1.41300383e-01,
                 -5.39264394e-04, 1.31448642e-06, -2.20692276e-09,
                  2.67830261e-12, -2.42283563e-15, 1.66529922e-18,
                 -8.79638579e-22, 3.59110429e-25, -1.13392794e-28,
                  2.75710114e-32, -5.10696434e-36, 7.06724590e-40,
                 -7.06828626e-44, 4.82254212e-48, -2.00728286e-52,
                  3.84342654e-57]])
In [6]:
             Xz = np.arange(1,5000)
             Predykcje = model.predict(Xz.reshape(-1, 1))
          3 Predykcje
          array([[1348.24411015],
                [1327.92038527],
                [1307.87285531],
                [ 126.5464373 ],
                [ 126.70464042],
                [ 126.86382011]])
```

1	Predykcje df = pd.DataFrame(Predykcje)
2	Predykcje_df.head(50)
•	•
	0
	1348.244110
	1327.920385
	1307.872855
	1288.098363
	1268.593781 1249.356013
	1230.381993
	1211.668686
	1193.213084
	1175.012211
	1157.063120
	1139.362891
	1121.908635
	1104.697491
	1087.726625
	1070.993233
	1054.494537
17	1038.227787
18	1022.190261
19	1006.379264
20	990.792127
21	975.426209
22	960.278893
23	945.347591
24	930.629740
25	916.122801
26	901.824262
27	887.731637
28	873.842464
29	860.154306
30	846.664751
31	833.371410
32	820.271920
33	807.363942
34	794.645158
35	782.113279
36	769.766033
37	757.601175
38	745.616484
৭০	733 800757
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31

```
In [8]:
             Xz = pd.DataFrame(Xz)
             Χz
                0
         0
              2
         1
              3
              5
         4994 4995
         4995 4996
         4996 4997
         4997 4998
         4998 4999
        4999 rows × 1 columns
In [9]:
             #model.score(Predykcje, Y_Val, sample_weight=None)
In [10]:
             result = pd.concat([Xz, Predykcje df], axis=1, join='inner')
             result.to csv('porazka.csv',index=False,header=False)
In [11]:
             result
                   1348.244110
         1
              2
                   1327.920385
         2
              3
                   1307.872855
                   1288.098363
         3
              4
              5
                   1268.593781
         4994 4995 126.230031
         4995 4996 126.386281
         4996 4997 126.546437
         4997 4998 126.704640
         4998 4999 126.863820
        4999 rows × 2 columns
          Własna implementacja
In [12]:
             X = np.arange(1,5000)
```

```
[n [13]:
             Wielomianki = np.polyfit(X Val, Y Val, 18)
             Wielomianki #wspolczynniki wielomianow
          E:\Users\sticz\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: RankWarning: Polyfit may be poorly condi
           """Entry point for launching an IPython kernel.
          array([ 4.40560841e-58, -1.93714767e-53, 3.72364500e-49, -4.01317313e-45,
                 2.49337414e-41, -6.58703646e-38, -2.76996220e-34, 3.74065277e-30,
                -1.97467120e-26, 6.55903341e-23, -1.49134491e-19, 2.35315966e-16,
                -2.52395554e-13, 1.73937158e-10, -6.76156722e-08, 8.81668753e-06,
                 2.83949183e-03, -1.04141348e+00, 1.88806722e+02])
In [14]:
              def Mein(x):
          2
                  power = 0 #potegi
          3
                  suma = 0
                  for w in reversed(Wielomianki):
          4
          5
                       if(power == 0):
          6
                            suma += w
          7
                       else:
          8
                            res = w*x**power
          9
                            suma +=res
         10
                       power +=1
         11
                  return suma
In [15]:
             Mein(4000)
          168.22003739327192
In [16]:
          1
              def do listy(X):
          2
                  lista = []
                  for a in range(X.size):
          4
                       wyniczek = Mein(a)
          5
                       lista.append(wyniczek)
          6
                  return lista
In [17]:
             start time = time.time()
             lista = do listy(X)
              elapsed time moje = time.time() - start time
          4
             elapsed time moje
          0.4627692699432373
In [18]:
             moje wyniki df = pd.DataFrame(lista)
```

```
[n [19]:
           1 moje_wyniki_df
               188.806722
          1
               187.768157
          2
               186.735323
               185.708270
          3
               184.687047
          4994 124.418402
          4995 124.570158
          4996 124.721839
          4997 124.873432
          4998 125.024772
         4999 rows × 1 columns
In [20]:
              moj_result = pd.concat([Xz, moje_wyniki_df], axis=1, join='inner')
              moj_result
              moj_result.to_csv('mojaporazka.csv',index=False,header=False)
In [21]:
              moj result
                            0
               1
                    188.806722
          0
               2
                    187.768157
          1
          2
               3
                    186.735323
                    185.708270
               5
                    184.687047
          4994 4995 124.418402
          4995 4996 124.570158
          4996 4997 124.721839
          4997 4998 124.873432
          4998 4999 125.024772
         4999 rows × 2 columns
```

Viva la fiesta i espania

27.04.2020, 23:20 6 z 18

```
[n [22]:
           1
               import csv
           2
               import numpy as np
           3
               import pandas as pd
               import matplotlib.pyplot as plt
           4
           5
               from sklearn import linear model, preprocessing
           6
               from sklearn.pipeline import Pipeline
           7
               from sklearn.preprocessing import PolynomialFeatures
           8
               from sklearn.linear model import LinearRegression
In [23]:
           1
               data = pd.read csv("ElectionData.csv")
               data.head(10)
                                time territoryName totalMandates availableMandates numParishes numParishesAp
             TimeElapsed
                           2019-10-06
                                      Território
          0 0
                                                     0
                                                                    226
                                                                                        3092
                                                                                                      1081
                           20:10:02
                                      Nacional
                           2019-10-06
                                      Território
                                                                                                      1081
          1 0
                                                                    226
                                                                                        3092
                           20:10:02
                                      Nacional
                           2019-10-06
                                      Território
                                                                                                      1081
          2 0
                                                     0
                                                                    226
                                                                                        3092
                           20:10:02
                                      Nacional
                           2019-10-06
                                      Território
                                                                                                      1081
          3 0
                                                     0
                                                                    226
                                                                                        3092
                           20:10:02
                                      Nacional
                           2019-10-06 Território
          4 0
                                                     0
                                                                    226
                                                                                        3092
                                                                                                      1081
                           20:10:02
                                      Nacional
                           2019-10-06 Território
                                                     0
                                                                    226
                                                                                        3092
                                                                                                      1081
          5 0
                           20:10:02
                                      Nacional
                           2019-10-06 Território
                                                                                                      1081
                                                     0
                                                                    226
                                                                                        3092
          6 0
                           20:10:02
                                      Nacional
                           2019-10-06 Território
                                                                                                      1081
                                                     0
                                                                    226
                                                                                        3092
          7 0
                           20:10:02
                                      Nacional
                           2019-10-06 Território
                                                                                                      1081
          8 0
                                                     0
                                                                    226
                                                                                        3092
                           20:10:02
                                      Nacional
                           2019-10-06
                                      Território
                                                     0
                                                                    226
                                                                                        3092
                                                                                                      1081
                           20:10:02
                                      Nacional
          10 rows × 28 columns
```

```
In [24]:
             data teritorio = data.query('territoryName == "Território Nacional"')
          2
             data_teritorio = data_teritorio.loc[:, ["TimeElapsed", "Party", "Mandates", "FinalM
          3
             data_teritorio
                               Party Mandates FinalMandates
               TimeElapsed
                            PS
                                     0
                                               106
         0
                            PPD/PSD 0
         1
               0
                                               77
         2
               0
                            B.E.
                                               19
         3
                            CDS-PP 0
               0
                                               5
         4
               0
                            PCP-PEV 0
                                               12
                                     ...
         21256 265
                            PURP
                                     0
                                               0
         21257 265
                            PDR
                                     0
                                               0
                            PPM
         21258 265
                                     0
                                               0
         21259 265
                            PTP
                                     0
                                               0
         21260 265
                            MAS
                                               0
        1134 rows × 4 columns
In [25]:
          1 data_teritorio.Party.unique()
          array(['PS', 'PPD/PSD', 'B.E.', 'CDS-PP', 'PCP-PEV', 'PAN', 'CH',
                'R.I.R.', 'PCTP/MRPP', 'A', 'L', 'IL', 'JPP', 'NC', 'PDR', 'PNR',
                'PURP', 'PPM', 'MPT', 'PTP', 'MAS'], dtype=object)
```

```
[n [26]:
            PS = data teritorio.query('Party == "PS"')
            PPD PSD = data teritorio.query('Party == "PPD/PSD"')
         3 BE = data teritorio.query('Party == "B.E."')
            CDS PP = data teritorio.query('Party == "CDS-PP"')
            PCP PEV = data teritorio.query('Party == "PCP-PEV"')
         5
            PAN = data teritorio.query('Party == "PAN"')
            CH = data teritorio.query('Party == "CH"')
            RIR = data teritorio.query('Party == "R.I.R."')
         8
            PCTP MRPP = data teritorio.query('Party == "PCTP/MRPP"')
            A = data teritorio.query('Party == "A"')
        10
            L = data teritorio.query('Party == "L"')
        11
            IL= data teritorio.query('Party == "IL"')
        12
            JPP = data teritorio.query('Party == "JPP"')
        13
            NC = data teritorio.query('Party == "NC"')
        14
            PDR = data teritorio.query('Party == "PDR"')
        15
            PNR = data teritorio.query('Party == "PNR"')
        16
        17
            PURP = data teritorio.query('Party == "PURP"')
            PPM = data teritorio.query('Party == "PPM"')
        18
            MPT = data teritorio.query('Party == "MPT"')
        19
            PTP = data teritorio.query('Party == "PTP"')
            MAS = data teritorio.query('Party == "MAS"')
In [27]:
            lista partii = [PS, PPD PSD, BE, CDS PP, PCP PEV, PAN, CH, RIR,
         2
                                 PCTP MRPP, A, L, IL, JPP, NC, PDR, PNR, PURP, PPM, MPT, PTP, MAS]
```

In	[28]:	1	#lista_partii[19]
		2	DQ

ļ				
	TimeElapsed	Party	Mandates	FinalMandates
0	0	PS	0	106
386	5	PS	0	106
772	10	PS	0	106
1158	15	PS	0	106
1544	20	PS	0	106
1930	25	PS	0	106
2316	30	PS	0	106
2702	35	PS	0	106
3105	40	PS	6	106
3508	45	PS	8	106
3911	50	PS	9	106
4314	55	PS	14	106
4717	60	PS	16	106
5120	65	PS	16	106
5523	70	PS	21	106
5926	75	PS	21	106
6329	80	PS	22	106
6732	85	PS	29	106
7135	90	PS	34	106
7538	95	PS	36	106
7941	100	PS	39	106
8344	105	PS	39	106
8747	110	PS	47	106
9150	115	PS	49	106
9553	120	PS	53	106
9956	125	PS	58	106
10359	130	PS	65	106
10762	135	PS	67	106
11165	140	PS	68	106
11568	145	PS	73	106
11971	150	PS	75	106
12374	155	PS	80	106
12777	160	PS	84	106
13180	165	PS	86	106
13583	170	PS	87	106
13986	175	PS	87	106
14389	180	PS	90	106
14792	185	PS	91	106
15195	190	PS	92	106
15502	105	PS	02	106

Lab3Cw1 - Jupyter Notebook

In []:	1										

```
[n [29]:
            def partie funkcja():
         2
                lista partii = [PS, PPD PSD, BE, CDS PP, PCP PEV, PAN, CH, RIR,
         3
                                 PCTP MRPP, A, L, IL, JPP, NC, PDR, PNR, PURP, PPM, MPT, PTP, MAS]
                lista wspolczynnikow = []
         4
         5
                lista predykcji = []
         6
                lista X Val = []
         7
                lista Y Val = []
         8
                lista results = []
         9
                for a in range (0,21):
        10
        11
                    print(a)
                     time = lista partii[a].iloc[:,0]
        12
                    X Val = time.as matrix()
        13
        14
                    mandates = lista partii[a].iloc[:, 2]
        15
                    Y Val = mandates.as matrix()
        16
        17
                    model = Pipeline([('poly', PolynomialFeatures(degree=18)),
        18
                                     ('linear', LinearRegression(fit intercept=True, normalize=
        19
                    model = model.fit(X Val.reshape(-1, 1), Y Val.reshape(-1, 1))
        20
        21
        22
                    wspolczynniki = model.named steps['linear'].coef
        23
                    predykcje = model.predict(X Val.reshape(-1, 1))
        24
        25
                    lista wspołczynnikow.append(wspołczynniki)
        26
        27
                    lista Y Val.append(Y Val)
        28
        29
        30
                    predykcje df = pd.DataFrame(predykcje).astype(int)
        31
                    lista predykcji.append(predykcje)
        32
        33
                    X Val pd = pd.DataFrame(X Val)
        34
                    lista X Val.append(X Val pd)
        35
        36
        37
                    lista Y Val.append(Y Val)
        38
                    Y Val df = pd.DataFrame(Y Val)
        39
                     result = pd.concat([X_Val_pd, predykcje_df,Y_Val_df], axis=1, join='inne
        40
                    lista results.append(result)
        41
        42
        43
                     a+=1
```

```
In [30]:
             lista_wspolczynnikow,lista_predykcji,lista_X_Val,lista_Y_Val,lista_results = par
         1
         2
         3
         5
         8
         9
         10
         12
         13
         14
         15
         16
         17
         18
         19
         20
         E:\Users\sticz\Anaconda3\lib\site-packages\ipykernel launcher.py:13: FutureWarning: Method .as matrix will h
```

In [31]:	1	li	sta	_results[2]	#time,	mandaty	predykcja,	mandaty	rzezczywistosc
		0	0	0					
	0	0	0	0					
	1	5	0	0					
	2	10	0	0					
	3	15	0	0					
	4	20	0	0					
	5	25	0	0					
	6	30	0	0					
	7	35	0	0					
	8	40	0	0					
	9	45	0	0					
	10	50	0	0					
		55	0	0					
		60	0	0					
		65	0	0					
		70 75	0	0					
		75 80	0	0					
		85	1	0					
		90	1	2					
		95	1	2					
		100		2					
		105		2					
		110		2					
	23	115	2	2					
	24	120	3	3					
	25	125	4	6					
	26	130	5	6					
	27	135	6	7					
	28	140	7	7					
		145		8					
		150							
		155							
		160							
		165							
		170							
		175							
		180							
		185 190							
		195							
		200							

```
In [32]:
              #najwieksze partie - predykcje mandatow
             predykcja_partia_PS = lista_results[0].iloc[:, 1].values.tolist()
          3
             predykcja_partia_PPD = lista_results[1].iloc[:, 1].values.tolist()
          4
             predykcja partia BE = lista results[2].iloc[:, 1].values.tolist()
          5 predykcja partia PS
          [0,
          Ο,
           Ο,
           Ο,
           Ο,
           Ο,
           Ο,
           1,
           4,
           7,
           10,
           13,
           15,
           17,
           19,
           21,
           24,
           28,
           31,
           35,
           38,
           42,
           45,
           49,
           53,
           57,
           62,
           66,
           70,
           73,
           76,
           79,
           82,
           84,
           86,
           88,
           90,
           90,
           91,
           92,
           92,
           93,
           95,
           97,
           98,
           99,
           99,
           99,
           99,
           100,
           100,
           101,
           103,
           105]
```

15 z 18 27.04.2020, 23:20

```
[n [33]:
             def binary_search(item_list,mid):
          2
                 first = item list[0]
          3
                 last = item list[-1]
                 szukany = last
          4
          5
                 print(item list[mid])
          6
                 if szukany - item list[mid] <= 30 :</pre>
          7
                     print('got it')
          8
                     return item list[mid], mid
          9
                 else:
                     if szukany < item list[mid]:</pre>
        10
        11
                              mid = mid - 1
                              return binary search(item list,mid)
        12
        13
                     else:
        14
                              mid = mid + 1
        15
        16
                              return binary_search(item_list,mid)
        17
In [34]:
            mid = int(len(predykcja_partia_PS)/2)
            a, b = binary_search(predykcja_partia_PS,mid)
          3
            wynik_PS = lista_results[0].iloc[b, :]
          4
            mid = int(len(predykcja partia PPD)/2)
          6
            c,d = binary search(predykcja partia PPD,mid)
            wynik_PPD = lista_results[1].iloc[d, :]
          8
          9
            mid = int(len(predykcja_partia_BE)/2)
        10
            d,e = binary_search(predykcja_partia_BE, mid)
            wynik BE = lista results[2].iloc[e, :]
         66
         70
         73
         76
         got it
         49
         got it
         got it
In [35]:
            wynik PS #timestamp - 150
             150
         0
              76
              75
         Name: 30, dtype: int64
```

```
In [36]:
          1 wynik_PPD #timestamp - 135
          0
              135
          0
              49
          0
               49
          Name: 27, dtype: int64
In [37]:
             wynik_BE #timestamp - 135, bo binary search szuka od srodka, a mandatow jest <
              135
          0
                6
          Name: 27, dtype: int64
          Implementacja Sk-learn jest wielokrotnie szybsza, oraz wykazuje większą dokładność na tym zk
In [ ]:
          1
In [ ]:
```