TEEE - Projeto de circuitos fotônicos em Silício Atividade 1 - Determinação do Neff dos modos TE e TM Aluno: Lucivaldo Barbosa de Aguiar Júnior

1. Considere um guia dielétrico formado por três camadas, com índices $n_1=1.45,\,n_2=3.45$ e $n_3=1.45$. A espessura do guia central é $0.25\mu m$ e o comprimento de onda do sinal é 1550 nm. Compare seus resultados com aqueles obtidos para análise do guia dielétrico simétrico. Determine os índices de refração efetivo de cada modo TE e TM.

Resposta: Adaptando um código feito em Python pelo professor da disciplina disponível em: gh/Lucivaldo1/atividade1TEEE, foi gerado um gráfico tanto para o modo TE quanto para o modo TM através do Transmission Matrix Method - TMM, em que os índices n_{eff} foram determinados inspecionando os pontos em que as curvas interceptam o eixo horizontal. O gráfico é exibido na Figura 1. A comparação foi feita ao determinar n_{eff} de forma analítica. n_{eff}

Figura 1: TMM exemplo 3

Os índices são apresentados na Tabela 1

Tabela 1: Índices obtidos.

Modo	n_{eff0}	n_{eff2}	n_{eff2}
TE	3.2015218	2.2119	1.44846
TM	3.64018	1.44846	-

Fonte: Dados obtidos inspecionando o gráfico.

 $^{^{1}}$ O índice n_{eff0} do modo TM presente na Tabela 1 foi encontrando expandido os limites do gráfico no eixo horizontal.

Tabela 2: Índices usando análise do guia simétrico e solução analítica.

Modo	n_{eff0}	n_{eff1}	n_{eff2}
TE	3.296279	2.635791	1.470600
TM	3.179707	2.102163	-

Fonte: Dados obtidos a partir dos códigos mostrados pelo professor durante as aulas.

2. Um guia dielétrico é formado por 5 camadas, cujos índices de refração são $n_c=1.45$, $n_1=1.56,\,n_2=1.45,\,n_3=1.56,\,n_s=1.45$, e espessuras iguais a $h1=0.75\mu m,\,h_2=0.50\mu m,\,h_3=0.75\mu m$, com sinal de comprimento de onda $\lambda_0=1.0\mu m$. Determine os índices de refração efetivo de cada modo TE. Esboce a componente y do campo elétrico para cada modo.

Resposta:

Para este caso, aplica-se o TMM para o modo TE, e obtêm-se diretamente as componentes E_y para cada índice. Para o modo TM é necessário derivar E_z e dividir pela impedância, para aí sim, encontrar a componente H_y . O gráfico ao aplicar o TMM nos dados fornecidos é apresentado na Figura 2

Figura 2: TMM exemplo 4

E os índices (obtidos por inspeção) são apresentados na Tabela 3 Nas Figuras 3 e 4, respectivamente, as amplitudes de E_y do modo TE.

Tabela 3: Índices obtidos.

Modo	n_{eff0}	n_{eff1}
TE	1.5215379	1.508509
TM	1.516064	1.452971

Fonte: Dados obtidos inspecionando o gráfico.

Figura 3: Ey para n_{neff0}

Para determinar \mathcal{H}_y utiliza-se as seguintes equações:

$$H_y = \frac{E_X}{\eta_{TM}}, E_x = -\frac{i\beta}{k_f^2} \partial_x E_z, \eta_{TM} = \frac{\beta}{\omega \epsilon}$$

Ou seja,

$$H_y = -\frac{i\beta}{k_f^2} \frac{\omega \epsilon}{\beta} \partial_x E_z$$

neste caso, $\omega=k_f$, assim:

$$H_y = -\frac{i\epsilon}{\omega} \partial_x E_z$$

Em que,

$$E_z = Ce^{i\omega(x-t_j)} - De^{-i\omega(x-t_j)}$$

Finalmente,

$$H_y = \epsilon \left[Ce^{i\omega(x-t_j)} - De^{-i\omega(x-t_j)} \right]$$

Figura 4: Ey para n_{neff1}

Determinando C e D, podemos esboçar ${\cal H}_y{}^2$. na Figura 5

Figura 5: Hy para $n_{neff}=1.516064$

 $^{^2\}epsilon_r$ foi considerado como $1.1294\cdot 10^{11}$