# Notes

January 30, 2015

## 2.3 homework

1,2,15,17,19

# recap/finish

spanning subgraph H of G such that V(H) = G(H)weighted graph one in which the edges are given a value greedy algorithm gives a minimal spanning tree

## example



### algorithm

choose an edge of least weight, choose another edge of least weight not creating a cycle, repeat, stop when H is a spanning tree



a vertex cut is a subset  $S \subseteq V(G)$  such that k(G - S) > k(G)

if S is of minimal cadinality, we say G is |S|-connected. if we have a cut vertex the graph is 1-connected. if G is disconnected, then it is 0-connected. nonseparable means more than 2-connected



the notation for connectedness is  $\kappa(G)$ 

question: what is  $\kappa(k_n)$ ? (connectedness of a complete graph order n) removing any vertex gives  $k_{n-1}$  and so on. so we just define it to be  $\kappa(k_n)$  is n-1. analog is 0!=1.

edge connectedness: an edge cut is a set  $S \subseteq E(G)$  such that k(G-S) > k(G).

if S is of minimal cardinality, then we say G is |S|-edge-connected, denote  $\lambda(G) = |S|$ 



## theorem

for every simple graph  $\kappa(G) \leq \lambda(G) \leq \delta(G)$ 

#### proof

case 1: G is disconnected, then  $\kappa(G) = \lambda(G) = 0$  and  $\delta(G) = 0$ 

case 2: G is the complete graph. what is the  $\lambda(k_n)$ ? it is n-1. we can remove n-1 to disconnect a single vertex. removing less leaves something connected because  $\delta(G) = n-1$ . and so  $\kappa(k_n) = n-1 = \lambda(k_n) = \delta(k_n)$  case 3: every thing else. in this case  $\delta(G) \leq n-2$  because it's not complete, and so there is a vertex of degree less than n-1. pick a vertex v such that  $\deg(v) = \delta(G)$ . remove all incident edges to disconnect the graph, and so  $\lambda(G) \leq \deg(G) = \delta(G) \leq n-2$ . showing the last inequality is harder.

# corollary

if G is a graph such that the order of G is n and the size is m  $m \ge n-1$  then  $\kappa(G) \le \left\lfloor \frac{2m}{n} \right\rfloor$ 

#### proof

 $\sum d(v) = 2m$  so the average degree is  $\frac{2m}{n}$ . By theorem  $\kappa(G) \leq \delta(G)$  and since  $\frac{2m}{n}$  is average  $\delta(G) \leq \lfloor 2m/n \rfloor$ 

#### 2.4 homework

1,2,9,13,14