

Bayes theorem

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

-Conditional probability

* The probability of the occurrence of an event A given that an event B has already occurred is called the conditional probability of A given B.

* Denoted by P(AIB)

$$P(A|B) = \frac{P(A\cap B)}{P(B)}$$
 if $P(B) \neq 0$

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$P(A|B) = P(A)$$

Examples

Problem!: Consider a set of patients coming for treatment in a certain clinic. Let A denote the event that a "Patient has liver disease" and B the event that a "Patient is an alcoholic". It is known from experience that 10% of the patients entering the clinic have liver disease and 5% of the patients are alcoholic. Also among those patients diagnosed with liver disease, 7% are alcoholics. Given that a patient is alcoholic, what is the poobability that he will have liver disease ?

Ans)

A - Patient has liver desease.

B - Palient is an alchoholic.

$$= \frac{0.07 \times 0.1}{0.05} = 0.14$$

Problem 2: Three factories A, B, C
of an electric bulb manufacturing company
produce respectively 35%, 35% and 30%
of the total output. Approximately
1.5%, 1% and 2% of the bulbs produced
by these factories are known to be defective
If a randomly selected bulb manufactured
by the company was found to be defective,
What is the probability that the bulb was
manufactures in factory A ?

ms)

A - Manufacturing a bulb from factory A

B - Manufacturin a bulb from factory B

C - Manufacturi a bulb from factory C.

D - A bulb is defective.

P(A) = 35% = .35 P(B) = 35% = .35 P(C) = 30% = .3 P(D|A) = 1.5% = .015 P(D|B) = 1% = 0.01 P(D|B) = 1% = 0.02 P(D|C) = 2% = 0.02 P(D|A) = 0.03 P(D|A) = 0.03 P(D|A) = 0.03 P(D|A) = 0.03 P(D|A) = 0.03

Naive Bayes Algorithm (Bayesian Classifier)

Assumption

Bayes thearens

All features are independent - The presence or absence of a feature does not influence the presence or absence of any other feature.

Class conditional independence — It means that if the class is known, knowing one feature does not give additional ability to predict another feature.

How to choose the most appropriate class label of an instance, $X = (x_1, x_2, ..., x_n)$?

Suppose we have a training set consisting of N examples having n features. Let the features be named as $(F_1, F_2, ..., F_n)$ and feature vector is of the form $(f_1, f_2, ..., f_n)$. A class label is associated with each example. Let the class labels are $\{c_1, c_2, ..., c_p\}$.

Let our instance be x=(x,x2,...xn)

To determine the most appropriate class label, we compute the following conditional probabilities:

 $P(c_1|X)$, $P(c_2|X)$, ..., $P(c_p|X)$

and choose the maximum among them.

Let the maximum probability be $P(c_i|X)$,

then we choose C_i as the most appropriate

Class label for X.

How to find the above conditional probabilities.?

We apply bayes theorem here: i.e $P(c_{R}|X) = \frac{P(X|c_{k}) P(c_{R})}{P(X)}$

X is given as $X = (x_1, x_2, \ldots, x_n)$.

So we can write

 $P(c_{k}|X) = \frac{P(x_{1}|c_{k})P(x_{2}|c_{k})\cdots P(x_{n}|c_{k})P(c_{k})}{P(x_{1})P(x_{2})\cdots P(x_{n})}$

Since the denominator $P(n_i)P(n_i) - ... P(ocn)$ is independent of the class labels, we have

 $P(CK|X) \propto P(2L|CK) P(2L|CK) - - P(2L|CK) \cdot P(CK)$ Hence we need to find the value $P(2L|CK) P(2L|CK) - P(2L|CK) \cdot P(CK) / K = 1,2, - P.$

where $P(C_k) = \frac{No. of examples with class label C_k}{Total no. of examples.}$

P(25/Ck) = No. of examples with jth feature equal to my and class label Ck
No. of examples with class label Ck.

Naive bayes Algorithm

Let the training set having n features

Fi, Fz, ... Fin and feature vector (fi, fz, ... fn).

Let the class labels {c, cz, ... cp}. and

Let the instance having feature vectors $X = (x_1, x_2, -x_1)$.

Step 1: Compute the probabilities p(ch)

step 2: Form a table showing the conditional probabilities.

P(fi|Ck), P(fi|Ch) -- . P(fn|Ck)

for all values of fi, for fin and for k=1,2,...p.

Step 3: Compute the products $2k = P(x_1|c_k) P(x_2|c_k) \dots P(x_n|c_k) P(c_k)$ for $k = 1, 2, \dots, p$.

Step 4: Find j such 2; = max(2, 2, ...2e)

Step 5: Assign the class label cj to the instance X:

Animal Arimal Fish Fish Bind	3 6 2 6 8 8	Randy No No	Slow Slow
Aprimal Biand	No	No	but
Animal	Z Z	2 2	low
Class lakel	Chawl	No No	ask ask

Ams) Construction of a substantial Fast Slow No stead of a grant But Slow No stead But I o a 2 for X ? [Use Bayesian Classifier] Which class label is most appropriate Let instance X= (Slow, Ranely, No). Fly Grandy No Yes No

Step1: Computation of probability of each class (ck), k=1,2,3.

P(CK) = No. of samples with class latel Ck

Total No. of samples.

Bind The The

1 200

0

w

W

0 0

$$P(Animal) = \frac{5}{12}$$

$$P(Bird) = \frac{4}{12}$$

$$P(Fish) = \frac{3}{12}$$

Step 2: Construction of complitional probability

= No. of samples with fi&Cx

# ram				No.	st so	mple	8	With	CR.
	Swim		Fly			Crawl			
Class	Fast	Slow	No	Short	Long	Rarely	No	Yes	No
Animal	12/5	2/5	1/5	%5	0/5	1/5	4/5	3/5	3/5
Bind	1/4	0/4	3/4	2/4	1/4	%	1/4	0/4	44
Fish	1/2	2/3	1%	19/3	1/3	%	3/3	1/3	3/3

Step 3: Computation of conditional probability P(CK|X), k=1,2,3

X = (Slow, Rarely, No.)

$$= \frac{2}{5} * \frac{1}{5} * \frac{3}{5} * \frac{5}{12} = 0.02$$

$$=\frac{2}{3}*\frac{0}{3}*\frac{2}{3}*\frac{3}{12}$$

Step 4: Manimum poobability is P(Animal X) = 0.02.

At Animal -> X (slow), Rarels, No)