CSE4203: Computer Graphics Chapter – 8 (part - A) Graphics Pipeline

Mohammad Imrul Jubair

Outline

- Rasterization
- The Graphics Pipeline
- Line Drawing Algorithm

Rasterization (1/2)

- The previous several chapters have established the mathematical skeleton for object-order rendering.
 - drawing objects one by one onto the screen
- Each geometric object is considered in turn and find the pixels that it could have an effect on.

Rasterization (2/2)

• The process of finding all the pixels in an image that are occupied by a geometric primitive is called **rasterization**.

Graphics Pipeline (1/5)

 The sequence of operations that is required, starting with objects and ending by updating pixels in the image, is known as the graphics pipeline.

M. I. Jubair

5

Graphics Pipeline (2/5)

- Two quite different examples of graphics pipelines with very different goals are the
 - hardware pipelines used to support interactive rendering via APIs like
 OpenGL and Direct3D
 - the software pipelines used in film production, supporting APIs like RenderMan (by Pixar).

Graphics Pipeline (3/5)

- Hardware pipelines:
 - run fast enough to react in real time for games,
 visualizations, and user interfaces.
- Software pipelines:
 - render the highest quality animation and visual effects possible and scale to enormous scenes
 - but take much more time to do so

Graphics Pipeline (4/5)

- Remarkable amount is shared among most pipelines
- This chapter attempts to focus on these common fundamentals

Graphics Pipeline (5/5)

Application Command Stream Vertex Processing Transformed Geometry Rasterization Fragments Fragment Processing Blending Framebuffer Image Display

Bresenham's Line Drawing Algorithm

Scenario (1/2)

```
Given,
Start point (X0,Y0)
End point (X1,Y1)
```


Scenario (2/2)

```
Given,
Start point (X0,Y0)
End point (X1,Y1)
```


Scenario (2/2)

```
Given,
    Start point (X0, Y0)
    End point (X1,Y1)
                                                 (X1, Y1)
                                                          Assume,
                                                              X1 ≥ X0
                                     (XQ, Y0)
                                                              And,
                                                              Slope, m≤1
                                                              [in 1st octant]
```

How it works (1/9)

How it works (2/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (3/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (4/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (5/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (6/9)

Next pixel is chosen (from E or NE) to build the line successively

How it works (7/9)

How it works (8/9)

How it works (9/9)

Next pixel is chosen (from E or NE) to build the line successively

Implicit Equation of a Line (1/5)

$$Y = mX + B$$

$$or, Y = \frac{dy}{dx} * X + B$$

$$or, Ydx = Xdy + Bdx$$

$$or, Xdy - Ydx + Bdx = 0$$

$$or, aX + bY + c = 0 \text{ [here, } a = dy, b = -dx, c = Bdx]$$

$$F(X,Y) = aX + bY + c = 0$$

Implicit Equation of a Line (2/5)

$$Y = mX + B$$

$$or, Y = \frac{dy}{dx} * X + B$$

$$or, Y dx = X dy + B dx$$

$$or, X dy - Y dx + B dx = 0$$

$$or, aX + bY + c = 0 \text{ [here, } a = dy, b = -dx, c = B dx]$$

$$F(X,Y) = aX + bY + c = 0$$

$$(X,Y)$$

Implicit Equation of a Line (3/5)

If F(X,Y)=0, the point (X,Y) on lying on the line

Implicit Equation of a Line (4/5)

If F(X,Y)=0, the point (X,Y) on lying on the line

If F(X,Y) > 0, the point (X,Y) is under the line

Implicit Equation of a Line (5/5)

If F(X,Y)=0, the point (X,Y) on lying on the line

If F(X,Y) > 0, the point (X,Y) is under the line

If F(X,Y) < 0, the point (X,Y) is above the line

Midpoint Criteria (1/7)

Midpoint Criteria (2/7)

Midpoint Criteria (3/7)

if **d=0**, then midpoint is on the line

Midpoint Criteria (4/7)

if **d = 0**, then midpoint is on the line

If **d > 0**, then midpoint M is below the line

Midpoint Criteria (5/7)

if **d = 0**, then midpoint is on the line

If **d > 0**, then midpoint M is below the line

If **d < 0**, then midpoint M is above the line

Midpoint Criteria (6/7)

If **d > 0**, then midpoint **M** is below the line

If **d ≤0**, then midpoint *M* is above the line

Midpoint Criteria (7/7)

If **d ≤0**, then midpoint Mis above the line, and **E** is closer to line,

So, E is selected

If **d > 0**, then midpoint Mis below the line, and **NE** is closer to line, **So**, **NE** is selected

Successive Updating for E (1/4)

$$d_1 = F(M_1)$$

= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

Successive Updating for E (2/4)

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}+0.5)$$

$$= a(X_{p}+1) + b(Y_{p}+0.5) + c$$

$$IF d_{1} \le 0, select E(X_{p} = X_{p}+1, Y_{p})$$

$$d_{2} = F(M_{2})$$

Successive Updating for E (3/4)


```
d_1 = F(M_1)
     = F(X_p+1, Y_p+0.5)
     = a(X_p+1) + b(Y_p+0.5) + c
IF d_1 \le 0, select E(X_p = X_p + 1, Y_p)
d_2 = F(M_2)
     = F(X_p+2, Y_p+0.5)
     = a(X_p+2) + b(Y_p+0.5) + c
     = aX_p + 2a + bY_p + 0.5b + c
     = aX_p + a + bY_p + 0.5b + c + a
     = [a(X_p+1) + b(Y_p+0.5) + c] + a
     = d_1 + a
```

Successive Updating for E (4/4)

Every iteration after selecting E,

we can successively update our decision variable with-

$$d_{NEW} = d_{OLD} + a$$

= $d_{OLD} + dy$

Successive Updating for NE (1/4)

$$d_1 = F(M_1)$$

= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

IF $d_1 > 0$, select NE $(X_p = X_p + 1, Y_p = Y_p + 1)$

Successive Updating for NE (2/4)

$$d_1 = F(M_1)$$

= $F(X_p+1, Y_p+0.5)$
= $a(X_p+1) + b(Y_p+0.5) + c$

IF $d_1 > 0$, select NE $(X_p = X_p + 1, Y_p = Y_p + 1)$

$$d_2 = F(M_2)$$

Successive Updating for NE (3/4)


```
d_1 = F(M_1)
     = F(X_p+1, Y_p+0.5)
     = a(X_p+1) + b(Y_p+0.5) + c
IF d_1 > 0, select NE (X_p = X_p + 1, Y_p = Y_p + 1)
d_2 = F(M_2)
     = F(X_p+2, Y_p+1.5)
    [ .... Perform the
    intermediate steps...]
     = d_1 + (a + b)
```

Successive Updating for NE (4/4)

Every iteration after selecting NE,

we can successively update our decision variable with-

$$d_{NEW} = d_{OLD} + (a + b)$$
$$= d_{OLD} + (dy - dx)$$

Midpoint Criteria with Successive Updating (1/1)

If d ≤0, then:

- midpoint M is above the line,
- Eiscloser to line, Eis selected

Do:

$$d = d + \Delta E$$
, Where, $\Delta E = dy$

If d > 0, then:

- midpoint M is below the line,
- NE is closer to line, NE is selected

Do:

$$d = d + \Delta NE$$
, Where, $\Delta NE = dy - dx$

Bresenham's Midpoint Algorithm (1/2)

```
while (x \le x1)
    if d <= 0 /* Choose E*/
         d = d + \Delta E;
    else /* Choose NE */
         y = y + 1
         d = d + \Delta NE
    Endif
    x = x + 1
    PlotPoint(x, y)
end while
```

Bresenham's Midpoint Algorithm (2/2)

```
while (x \le x1)
    if d \le 0 /* 'd' is not initialized!*/
         d = d + \Delta E;
    else /* Choose NE */
         y = y + 1
         d = d + \Delta NE
    Endif
    x = x + 1
    PlotPoint(x, y)
end while
```

Initializing the Decision Variable (1/3)

$$d_{INIT} = F(M)$$

$$= F(X_0+1, Y_0+0.5)$$

$$= a(X_0+1) + b(Y_0+0.5) + c$$

$$= aX_0 + a + bY_0 + 0.5b + c$$

$$= aX_0 + bY_0 + c + a + 0.5b$$

$$= (aX_0 + bY_0 + c) + a + 0.5b$$

$$= F(X_0, Y_0) + a + 0.5b$$

$$= a + 0.5b$$

$$= dy - 0.5dx$$

Initializing the Decision Variable (2/3)

$$d_{INIT} = F(M)$$

$$= F(X_0+1, Y_0+0.5)$$

$$= a(X_0+1) + b(Y_0+0.5) + c$$

$$= aX_0 + a + bY_0 + 0.5b + c$$

$$= aX_0 + bY_0 + c + a + 0.5b$$

$$= (aX_0 + bY_0 + c) + a + 0.5b$$

$$= F(X_0, Y_0) + a + 0.5b$$

$$= a + 0.5b$$

$$= dy - 0.5dx$$

(there is floating point. floating point operation is slower than integer operation)

Initializing the Decision Variable (3/3)

$$d_{INIT} = dy - 0.5dx = 2dy - dx$$

 $\Delta E = 2dy$
 $\Delta NE = 2(dy - dx)$

2 is multiplied with d_{INIT} to remove the floating point.

- Observe that, ΔE and ΔNE also multiplied by 2 as those two will be added with d_{INIT} depending on condition.
- Only the sign of the decision variable *d* is needed to select E or NE pixel, not their values.

Bresenham's Midpoint Algorithm (1/1)

Given:

```
Start point (x0,y0) End point (x1,y1)
```

Initialization:

```
x = x0, y = y0;

dx = x1-x0; dy = y1-y0;

d = 2dy - dx;

\Delta E = 2dy; \Delta NE = 2(dy - dx);

PlotPoint(x, y);
```

```
<u>Loop:</u>
while (x \leq x1)
    if d <=0/* Choose E*/
         d = d + \Delta E;
    else /* Choose NE */
         y = y + 1;
         d = d + \Delta NE;
    Endif
    x = x+1;
    PlotPoint(x, y);
end while
```

Example (1/10)

Start point (5, 8) End point (9,11)

Example (2/10)

Start point (5, 8) End point (9,11)

$$dy = 3, dx = 4$$

 $d = 2dy - dx = 2$
 $\Delta E = 2dy = 6$
 $\Delta NE = 2(dy - dx) = -2$

d	2		
(X, Y)			

Example (3/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

d	2		
(X, Y)	NE(6,9)		

d > 0, NE

52

Example (4/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

 $d = 2 + \Delta NE$

d	2	0	
(X, Y)	NE(6,9)		

Example (5/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

d	2	0	
(X, Y)	NE(6,9)	E(7,9)	

 $d \le 0, E$

54

Example (6/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

$$d = o + \Delta E$$

	d	2	0	6	
(2	X, Y)	NE(6,9)	E(7,9)		

Example (7/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

d	2	0	6	
(X, Y)	NE(6,9)	E(7,9)	NE(8,10)	

d > 0, NE

Example (8/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

$$d = 6 + \Delta NE$$

d	2	0	6	4
(X, Y)	NE(6,9)	E(7,9)	NE(8,10)	

Example (9/10)

$$\Delta E = 2dy = 6$$

 $\Delta NE = 2(dy - dx) = -2$

d	2	0	6	4
(X, Y)	NE(6,9)	E(7,9)	NE(8,10)	NE(9,11)

d > 0, NE

Example (10/10)

$$\Delta E = 2dy = 6$$
$$\Delta NE = 2(dy - dx) = -2$$

Start point (5, 8) End point (9,11)

d	2	0	6	4
(X, Y)	NE(6,9)	E(7,9)	NE(8,10)	NE(9,11)

d > 0, NE

Rest of the Octant (1/2)

- Find which octant, based on slopes
- See the relations between start and end points

Rest of the Octant (2/2)

Modify the algorithm accordingly -

(1) plot(x, y)	(2) swap(x, y); plot(y, x)
(5) x=-x; y=-y;	(6) x=-x; y=-y;
plot(-x, -y)	swap(x, y); plot(-y, -x)

```
(3) x=-x;

swap(x, y); plot(-y, x)

(4) x=-x; plot(-x, y)

(7) y=-y;

swap(x, y); plot(y, -x)

(8) y=-y;

plot(x, -y)
```

```
//example:
if (m>1 && y1<y0) //oct == 6
   x0 = -x0;
   x1 = -x1;
   y0 = -y0;
   y1 = -y1;
[x0, y0] = swap(x0, y0);
[x1, y1] = swap(x1, y1);
//line drawing algorithm
plot(-y, -x);
```

Code (1/1)

• https://github.com/imruljubair/bresenhamsAlgorithm

M. I. Jubair

62

Practice Problem

- Rewrite the midpoint algorithm that works for all the octant.
- Perform the midpoint algorithm for a line with two points (5, 8) and (-9, -11).