Mathematical Foundations of Computer Science

Project 13

Zilong Li

Student ID: 518070910095

May 31, 2021

Warmups

An eccentric collector of $2 \times n$ domino tilings pays \$4 for each vertical domino and \$1 for each horizontal domino. How many tilings are worth exactly \$m\$ by this criterion? For example, when m = 6 there are three solutions: \square , \square , and \square .

Solution. Like what has been done in (7.5), (7.4) could be transferred into

whose sequence is

$$\frac{1}{1-z^4-z^2} = \frac{1}{1-z^2-(z^2)^2} \leftrightarrow \langle 0, F_2, 0, F_3, 0, F_4, \dots \rangle$$

Thus, the number of solutions

$$N = \begin{cases} 0, & m \text{ is odd,} \\ F_{\frac{m}{2}+1}, & m \text{ is even} \end{cases}$$

where F is the Fibonacci number.

Give the generating function and the exponential generating function for the sequence $\langle 2, 5, 13, 35, \dots \rangle = \langle 2^n + 3^n \rangle$ in closed form.

Solution. The generating function for $\langle c^n \rangle$ is $\frac{1}{1-cz}$, according to linearity,

$$\langle 2^n + 3^n \rangle \leftrightarrow \frac{1}{1 - 2z} + \frac{1}{1 - 3z}$$

is its generating function.

The exponential generating function for $\langle c^n \rangle$ is

$$\hat{G}(z) = \sum_{n>0} c^n \frac{z^n}{n!} = \sum_{n>0} \frac{(cz)^n}{n!} = e^{cz}$$

Thus, the exponential generating function is

$$\langle 2^n + 3^n \rangle \hat{\leftrightarrow} e^{2z} + e^{3z}$$

What is $\sum_{n\geq 0} H_n/10^n$? 3

Solution. By (7.57),

$$\langle H_n \rangle \leftrightarrow \frac{1}{1-z} \ln \frac{1}{1-z}$$

The convergence radius R of $\langle H_n \rangle$ could be representated as

$$H_n = \sum_{k=1}^n \frac{1}{k} \le \sum_{k=1}^n 1 = n \Rightarrow R = \frac{1}{\limsup_{n \ge 0} \sqrt[n]{H_n}} = \frac{1}{1} = 1$$

(In fact, by recurrence we could get $1 = H_1 = H_0 + 1 \Rightarrow H_0 = 0$, which is satisfiable.) Since $\frac{1}{10} < 1$ is within the radius,

$$\sum_{n>0} \frac{H_n}{10^n} = \frac{1}{1 - \frac{1}{10}} \ln \frac{1}{1 - \frac{1}{10}} = \frac{10}{9} \ln \frac{10}{9}$$

4 The general expansion theorem for rational functions P(z)/Q(z) is not completely general, because it restricts the degree of P to be less than the degree of Q. What happens if P has a larger degree than this?

Solution. The problem could be reduced to the scenario where $\deg P < \deg Q$, by applying polynomial division:

$$\frac{P(z)}{Q(z)} = S(z) + \frac{R(z)}{Q(z)}$$

where $\deg R < \deg Q$. Since S(z) only influence finite amount of items (based on its degree), Rational Expansion Theorem can be applied on the second term.

Basics

6 Show that the recurrence (7.32) can be solved by the repertoire method, without using generating functions.

Solution.

$$g_0 = g_1 = 1;$$

 $g_n = g_{n-1} + 2g_{n-2} + (-1)^n,$

has the closed form of

それろうい

Case 1: $g_n = 2^n$

$$\alpha = 1
\beta = 2
2^{n} = 2^{n-1} + 2 \times 2^{n-2} + (-1)^{n} \gamma \Rightarrow \gamma = 0
g_{n} = A(n) + 2B(n) = 2^{n}$$
(1)

Case 2: $g_n = (-1)^n$

$$\alpha = 1$$

$$\beta = -1$$

$$(-1)^{n} = (-1)^{n-1} + 2(-1)^{n-2} + (-1)^{n} \gamma \Rightarrow \gamma = 0$$

$$g_{n} = A(n) - B(n) = (-1)^{n}$$
(2)

Case 3: $g_n = n(-1)^n$

$$\alpha = 0$$

$$\beta = -1$$

$$n(-1)^{n} = (n-1)(-1)^{n-1} + 2(n-2)(-1)^{n-2} + (-1)^{n}\gamma$$

$$\Rightarrow n = -n+1+2(n-2)+\gamma$$

$$\gamma = 3$$

$$g_{n} = -B(n) + 3C(n) = n(-1)^{n}$$
(3)

Combining Eq. (1) - (3), the solution is

$$A(n) = \frac{2^n + 2(-1)^n}{3}$$

$$B(n) = \frac{2^n - (-1)^n}{3}$$

$$C(n) = \frac{n(-1)^n}{3} + \frac{2^n - (-1)^n}{9}$$

So plug in $\alpha = 1, \beta = 1, \gamma = 1$, the closed form is found:

$$g_n = \frac{7}{9}2^n + \left(\frac{1}{3}n + \frac{2}{9}\right)(-1)^n$$

7 Solve the recurrence

$$g_{n} = \frac{1}{9}z^{2} + \left(\frac{1}{3}n + \frac{1}{9}\right)(-1)$$
 $g_{0} = 1$
 $g_{0} = g_{n-1} + 2g_{n-2} + \dots + ng_{0}$, for $n > 0$
 $f_{2n+2} = f_{2n-1}$

Solution. The recurrence can be representated by the single equation

Solution. The recurrence can be representated by the single equation
$$g_n = \sum_{i=0}^{n-1} (n-i)g_i + [n=0]$$

$$2F_2(n-i) + 4F_2(n-i) + 2F_2(n-i) + 3F_2(n-i) + 3F_2$$

F==F=(n-1)+2F=(n-) -+ nForman

Write down $G(z) = \sum_{n} g_n z^n$

$$G(z) = \sum_{n} g_{n} z^{n} = \sum_{n} \sum_{i=0}^{n-1} (n-i)g_{i} z^{n} + \sum_{n} [n=0] z^{n}$$

$$= 1 + \sum_{i} \sum_{j=0}^{n} i g_{n-i} z^{n}$$

$$= 1 + \sum_{i=1}^{n} \sum_{n=1}^{i=1} i g_{n-i} z^{n}$$

$$=1+\sum_{i=1}^{\infty}\sum_{n}^{n}ig_{n}z^{n+i}$$

$$=1+\sum_{i=1}^{\infty}iz^{i}\sum_{n}g_{n}z^{n}$$

$$=1+\sum_{i=1}^{\infty}iz^{i}G(z)$$
 2 $(n-1)$

$$= 1 + \frac{z}{(1-z)^2}G(z)$$

$$= \frac{1-2z+z^2}{1-3z+z^2}$$

$$G(z) = \frac{1 - 2z + z^2}{1 - 3z + z^2}$$
$$= 1 + \frac{z}{1 - 3z + z^2}$$

$$= 1 + \frac{z}{1 - 3z + z^{2}}$$

$$= 1 + \frac{z}{(1 - \beta_{1}z)(1 - \beta_{2}z)}$$

$$= 1 + \frac{z}{(1 - \beta_{1}z)(1 - \beta_{2}z)}$$

Theorem gives that

 $g_n = [n = 0] + a_1 \beta_1^n + a_2 \beta_2^n$

 $g_{n} = [n = 0] \cap \omega_{1/2}$ $a_{1} = \frac{-\beta_{1} \frac{1}{\beta_{1}}}{-3 + 2 \frac{1}{\beta_{1}}} = \frac{-\beta_{1}}{-3\beta_{1} + 2} = -\frac{1}{\sqrt{5}}$ (i+1) = 0

Thus,

$$g_n = [n = 0] + \frac{\beta_2^n + \beta_1^n}{\sqrt{5}}$$

where $\beta_1 = \frac{3+\sqrt{5}}{2}$, $\beta_2 = \frac{3-\sqrt{5}}{2}$. Notice that $\beta_1 = \hat{\Phi}^2$, $\beta_2 = \Phi^2$, thus,

$$g_n = [n = 0] + \frac{\Phi^{2n} - \hat{\Phi}^{2n}}{\sqrt{5}}$$
$$= [n = 0] + F_{2n}$$

where $F_n = \frac{\Phi^n - \hat{\Phi}^n}{\sqrt{5}}$ is the Fibonacci number.

 $g_n = [n=0] + \frac{\Phi^{2n} - \hat{\Phi}^{2n}}{\sqrt{5}}$. ZJ 8L