제 2 교시

수학 영역

5지선다형

1. $\sqrt[3]{3} \times \sqrt[3]{9}$ 의 값은? [2점]

1

2

3 3

4

⑤ 5

크기는? [2점]

3. 반지름의 길이가 6이고 넓이가 15π 인 부채꼴의 중심각의

① $\frac{\pi}{6}$ ② $\frac{\pi}{3}$ ③ $\frac{\pi}{2}$ ④ $\frac{2}{3}\pi$ ⑤ $\frac{5}{6}\pi$

2. $\log_2 \sqrt{2} + \log_2 2\sqrt{2}$ 의 값은? [2점]

1

2 2

③ 3 ④ 4

⑤ 5

4. $\frac{\pi}{2} \le x \le \pi$ 일 때, 방정식 $\cos x = -\frac{1}{2}$ 의 해는? [3점]

① $\frac{\pi}{2}$ ② $\frac{2}{3}\pi$ ③ $\frac{3}{4}\pi$ ④ $\frac{5}{6}\pi$ ⑤ π

7. $(\sqrt{2})^{1+\log_2 3}$ 의 값은? [3점]

① $\sqrt{6}$ ② $2\sqrt{2}$ ③ $\sqrt{10}$ ④ $2\sqrt{3}$ ⑤ $\sqrt{14}$

5. 다음은 상용로그표의 일부이다.

수	 4	5	6	
:	:	:	:	
3.1	 .4969	.4983	.4997	
3.2	 .5105	.5119	.5132	
3.3	 .5237	. 5250	. 5263	

 $\log(3.14 \times 10^{-2})$ 의 값을 위의 표를 이용하여 구한 것은? [3점]

- ① -2.5119
- $\bigcirc 2.5031$
- 3 2.4737

- (4) -1.5119
- \bigcirc -1.5031

6. $\pi < \theta < \frac{3}{2}\pi$ 인 θ 에 대하여 $\cos \theta = -\frac{2}{3}$ 일 때, $\sin \theta$ 의 값은?

- ① $-\frac{\sqrt{5}}{3}$ ② $-\frac{1}{3}$ ③ $\frac{1}{3}$ ④ $\frac{\sqrt{5}}{3}$ ⑤ $\frac{\sqrt{7}}{3}$

8. $-1 \le x \le 2$ 에서 함수 $f(x)=a \times 2^{2-x}+b$ 의 최댓값이 5, 최솟값이 -2일 때, f(0)의 값은? (단, a>0이고, a와 b는 상수이다.) [3점]

1

② $\frac{3}{2}$

 $3 \ 2 \qquad 4 \frac{5}{2}$

⑤ 3

10. 세 양수 a, b, c에 대하여 함수 $y = a \tan bx + c$ 의 그래프가 그림과 같을 때, $a \times b \times c$ 의 값은? [3점]

9. 두 상수 a, b에 대하여 함수 $y = \log_2(x-a) + 1$ 의 그래프가 점 (7, b)를 지나고 점근선이 직선 x=3일 때, a+b의 값은? [3점]

① 3

2 4

35

4 6

⑤ 7

- **11.** 방정식 $2^{x-6} = \left(\frac{1}{4}\right)^{x^2}$ 의 모든 해의 합은? [3점]

- 12. 주어진 채널을 통해 신뢰성 있게 전달할 수 있는 최대 정보량을 채널용량이라 한다. 채널용량을 C, 대역폭을 W, 신호전력을 S, 잡음전력을 N이라 하면 다음과 같은 관계식이 성립한다고 한다.

$$C = W \log_2 \left(1 + \frac{S}{N} \right)$$

대역폭이 15, 신호전력이 186, 잡음전력이 a인 채널용량이 75일 때, 상수 a의 값은? (단, 채널용량의 단위는 bps, 대역폭의 단위는 Hz, 신호전력과 잡음전력의 단위는 모두 Watt이다.) [3점]

- ① 3 ② 4 ③ 5
- **4** 6
- 5 7

13. $0 \le x < 2\pi$ 일 때, 부등식 $3\sin x - 2 > 0$ 의 해가 $\alpha < x < \beta$ 이다. $\cos(\alpha + \beta)$ 의 값은? [3점]

- ① -1 ② $-\frac{1}{2}$ ③ 0 ④ $\frac{1}{2}$ ⑤ 1

14. x > 0에서 정의된 함수

$$f(x) = \begin{cases} 0 & (0 < x \le 1) \\ \log_3 x & (x > 1) \end{cases}$$

에 대하여 $f(t)+f\left(\frac{1}{t}\right)=2$ 를 만족시키는 모든 양수 t의 값의 합은? [4점]

- ① $\frac{76}{9}$ ② $\frac{79}{9}$ ③ $\frac{82}{9}$ ④ $\frac{85}{9}$ ⑤ $\frac{88}{9}$

15. 그림과 같이 $\overline{AB}=3$, $\overline{AC}=1$ 이고 $\angle BAC=\frac{\pi}{3}$ 인 삼각형 ABC가 있다. $\angle BAC$ 의 이등분선이 선분 BC와

삼각형 ABC가 있다. ∠BAC의 이등분선이 선분 BC와 만나는 점을 P라 할 때, 삼각형 APC의 외접원의 넓이는? [4점]

① $\frac{\pi}{4}$ ② $\frac{5}{16}\pi$ ③ $\frac{3}{8}\pi$ ④ $\frac{7}{16}\pi$ ⑤ $\frac{\pi}{2}$

16. 상수 k에 대하여 그림과 같이 직선 x = k(k > 1)이 두 함수 $y = \log_2 x$, $y = \log_a x (a > 2)$ 의 그래프와 만나는 점을 각각 A, B라 하고, 점 B를 지나고 x축에 평행한 직선이 함수 $y = \log_2 x$ 의 그래프와 만나는 점을 C라 하자. 함수 $y = \log_2 x$ 의 그래프가 x축과 만나는 점을 D라 할 때, 삼각형 ACB와 삼각형 BCD의 넓이의 비는 3:2이다. 상수 a의 값은? [4점]

17. $0 < \theta < \frac{\pi}{4}$ 인 임의의 실수 θ 에 대하여 그림과 같이 $\overline{AB} = 3$,

 $\angle ABC = \theta$, $\angle CAB = 3\theta$ 인 삼각형 ABC가 있다.

선분 BC 위에 점 D를 $\angle DAC = \theta$ 가 되도록 잡고, 선분 AC 위에 점 E를 $\angle EDC = \theta$ 가 되도록 잡는다.

다음은 삼각형 ADE의 넓이 $S(\theta)$ 를 구하는 과정이다.

 $\angle ABC = \theta$, $\angle DAB = 2\theta$ 이므로 $\angle BDA = \pi - 3\theta$ 이다.

삼각형 ABD에서 사인법칙에 의하여

$$\frac{\overline{AD}}{\sin \theta} = \frac{\overline{AB}}{(7)}$$

이므로 $\overline{AD} = \frac{3\sin\theta}{\boxed{(7)}}$ 이다.

또한 $\angle ADE = 2\theta$ 이므로

$$\overline{DE} = \boxed{(\downarrow)} \times \overline{AD}^2$$

이다. 따라서 삼각형 ADE의 넓이 $S(\theta)$ 는

$$S(\theta) = \frac{9}{2} \times \left(\frac{\sin \theta}{\sin 3\theta}\right)^3 \times \boxed{(\ddagger)}$$

이다.

위의 (가), (다)에 알맞은 식을 각각 $f(\theta)$, $g(\theta)$ 라 하고, (나)에 알맞은 수를 p라 할 때, $p \times f\left(\frac{\pi}{6}\right) \times g\left(\frac{\pi}{12}\right)$ 의 값은? [4점]

- ① $\frac{1}{12}$ ② $\frac{1}{6}$ ③ $\frac{1}{4}$ ④ $\frac{1}{3}$ ⑤ $\frac{5}{12}$

18. 반지름의 길이가 $\frac{4\sqrt{3}}{3}$ 인 원이 삼각형 ABC에 내접하고 있다.

원이 선분 BC와 만나는 점을 D라 하고 $\overline{BD}=12$, $\overline{DC}=4$ 일 때, 삼각형 ABC의 둘레의 길이는? [4점]

- ① $\frac{71}{2}$ ② 36 ③ $\frac{73}{2}$ ④ 37

19. 부등식

 $(\sqrt{2}-1)^m \ge (3-2\sqrt{2})^{5-n}$

을 만족시키는 자연수 m, n의 모든 순서쌍 (m, n)의 개수는?

[4점]

- 17
- 2 18
- ③ 19
- **4** 20
- ⑤ 21
- **20.** 자연수 n에 대하여 직선 y=1이 곡선 $y=2^x-1$,

직선 $y=-(1+\log_2 n)x+7$ 과 만나는 점을 각각 A, B라 하자. 두 점 A, B 사이의 거리를 f(n)이라 할 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

-<보 기>

- \neg . f(2)=2
- ㄴ. $f(n) \ge 1$ 을 만족시키는 n의 개수는 4이다.
- ㄷ. $|f(n)-1| \ge \frac{2}{3}$ 를 만족시키는 n의 개수는 245이다.
- 1 ∟
- 2 ⊏
- ③ ७, ∟

- ④ ¬, ⊏
- ⑤ 7, ∟, ⊏

21. 상수 k에 대하여 정의역과 공역이 각각 실수 전체의 집합인 함수

$$f(x) = \begin{cases} 2^{-x-2} - 2 & (x < k) \\ -\log_2(x+2) - 2 & (x \ge k) \end{cases}$$

가 일대일대응이다. 함수 g(x)를

$$g(x) = \begin{cases} \log_2(2-x) + 2 & (x < -k) \\ -2^{x-2} + 2 & (x \ge -k) \end{cases}$$

라 할 때, $f(a) \le b \le g(a)$ 를 만족시키는 정수 a, b의 모든 순서쌍 (a, b)의 개수는? (단, $-2 \le a \le 2$) [4점]

① 31 ② 33 ③ 35 ④ 37

⑤ 39

단답형

22. $5^{\frac{7}{3}} \div 5^{\frac{1}{3}}$ 의 값을 구하시오. [3점]

23. 방정식 $\log_3(x-2)=1$ 의 해를 구하시오. [3점]

24. $\tan \theta = \frac{1}{3}$ 일 때, $50\cos^2 \theta$ 의 값을 구하시오. [3점]

26. 함수 y=f(x)의 그래프는 함수 $y=\log_2 x$ 의 그래프를 x축의 방향으로 m만큼 평행이동한 후 직선 y=x에 대하여 대칭이동한 그래프와 일치한다. 함수 y=f(x)의 그래프가 점 (1,5)를 지날 때, f(m)의 값을 구하시오. (단, m은 상수이다.) [4점]

25. 함수 $y=2\sin\left(x-\frac{\pi}{3}\right)+k$ 의 그래프가 점 $\left(\frac{\pi}{6},2\right)$ 를 지날 때, 상수 k의 값을 구하시오. [3점] **27.** 1보다 큰 세 실수 a, b, c가

$$\log_a b = \frac{\log_b c}{2} = \frac{\log_c a}{3} = k \left(k \vdash \ \ \diamondsuit \uparrow \right)$$

를 만족시킬 때, $120k^3$ 의 값을 구하시오. [4점]

28. 두 자연수 a, b에 대하여 좌표평면 위에 두 점 $A(a, \log_4 b)$, $B(1, \log_8 \sqrt[4]{27})$ 이 있다. 선분 AB를 2:1로 외분하는 점이 곡선 $y\!=\!-\log_4(3\!-\!x)$ 위에 있고, 집합 $\{n \mid b\!<\!2^n\!\times\!a\leq 32b,\ n$ 은 정수 $\}$ 의 모든 원소의 합은 25이다. $a\!+\!b$ 의 최댓값을 구하시오. [4점]

29. $\overline{\rm DA} = 2\overline{\rm AB}$, $\angle {\rm DAB} = \frac{2}{3}\pi$ 이고 반지름의 길이가 1인 원에 내접하는 사각형 ABCD가 있다. 두 대각선 AC, BD의 교점을 E라 할 때, 점 E는 선분 BD를 3:4로 내분한다. 사각형 ABCD의 넓이가 $\frac{q}{p}\sqrt{3}$ 일 때, p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

30. 두 자연수 a, b에 대하여 세 함수

 $f(x)=\cos\pi x$, $g(x)=\sin\pi x$, h(x)=ax+b가 다음 조건을 만족시킨다.

- (가) $0 \le x \le 4$ 일 때, 방정식 $(f \circ h)(x) = (h \circ g) \left(\frac{3}{2}\right)$ 의 서로 다른 실근의 개수는 홀수이다.
- (나) $0 \le x \le 4$ 일 때, 방정식 $(f \circ h)(x) = (h \circ g)(t)$ 의 서로 다른 모든 실근의 합이 56이 되도록 하는 실수 t가 존재한다.

 $\frac{a \times b}{\cos^2 \pi t}$ 의 값을 구하시오. [4점]

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.