Package 'QTL.gCIMapping'

October 12, 2022

Type Package
Title QTL Genome-Wide Composite Interval Mapping
Version 3.4
Date 2022-02-24
Author Zhou Ya-Hui, Zhang Ya-Wen, Wen Yang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming
Maintainer Yuanming Zhang <soyzhang@mail.hzau.edu.cn></soyzhang@mail.hzau.edu.cn>
Description Conduct multiple quantitative trait loci (QTL) and QTL-by-environment interaction (QEI) mapping via ordinary or compressed variance component mixed models with randomor fixed QTL/QEI effects. First, each position on the genome is detected in order to obtain a negative logarithm P-value curve against genome position. Then, all the peaks on each effect (additive or dominant) curve or on each locus curve are viewed as potential maineffect QTLs and QEIs, all their effects are included in a multi-locus model, their effects are estimated by both least angle regression and empirical Bayes (or adaptive lasso) in backcross and F2 populations, and true QTLs and QEIs are identified by likelihood radio test. See Zhou et al. (2022) <doi:10.1093 bbab596="" bib=""> and Wen et al. (2018) <doi:10.1093 bbby058="" bib=""></doi:10.1093></doi:10.1093>
Encoding UTF-8
Depends R (>= $3.5.0$)
License GPL (>= 2)
Imports Rcpp (>= 0.12.17),methods,openxlsx,readxl,lars,stringr,data.table,glmnet,doParallel,foreach,MASS,qtl
LinkingTo Rcpp
NeedsCompilation yes
RoxygenNote 7.1.2
Repository CRAN
Date/Publication 2022-02-24 18:30:02 UTC
R topics documented:
DHdata 2 Dodata 2 F2data 3

2 Dodata

Index		18
	ZhouMethod_single_env	15
	ZhouMethod	
	ZhouF	12
	WenS	11
	WenF	
	WangS	8
	WangF	7
	Readdata	
	QTL.gCIMapping	5
	markerinsert	4

DHdata

DH example data

Description

GCIM format of DH dataset.

Usage

```
data(DHdata)
```

Details

Input file for WangF function.

Author(s)

Maintainer: Yuanming Zhangsoyzhang@mail.hzau.edu.cn

Dodata

Process raw data

Description

Process raw data

```
Dodata(
  fileFormat = NULL,
  Population = NULL,
  method = NULL,
  Model = NULL,
  readraw = NULL,
  MultiEnv = FALSE
)
```

F2data 3

Arguments

fileFormat Format of dataset.

Population Population type.

method "GCIM" or method "GCIM-QEI"

Model Random or fixed model.

readraw Raw data.

MultiEnv Whether to perform multi-environment analysis

Value

a list

Examples

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",
method="GCIM-QEI",filecov=NULL,
MCIMmap=NULL,MultiEnv=TRUE)
doda<-Dodata(fileFormat="GCIM",Population="F2",
method="GCIM-QEI",Model="Random",
readraw,MultiEnv=TRUE)</pre>
```

F2data

F2 example data from 2 environments

Description

GCIM format of F2 dataset whith GCIM-QEI method.

Usage

```
data(F2data)
```

Details

Input file for ZhouF function.

Author(s)

Maintainer: Yuanming Zhangsoyzhang@mail.hzau.edu.cn

4 markerinsert

markerinsert	To insert marker in genotype.
--------------	-------------------------------

Description

a method that can insert marker in genotype.

Usage

```
markerinsert(mp,geno,map,cl,gg1,gg2,gg0,flagRIL)
```

Arguments

mp	linkage map matrix after insert.
geno	genotype matrix.
map	linkage map matrix.
cl	walk speed.
gg1	raw covariate matrix.
gg2	code for type 1.
gg0	code for missing.
flagRIL	RIL population or not.

Author(s)

Zhang Ya-Wen, Wen Yang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, Wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, wang Shi-Bo, and Zhang Yuan-Ming Maintainer: Yuanming Zhangyuan-Ming Wang-Jun, wang Shi-Bo, and Zhangyuan-Ming Wang-Jungyuan-Ming Wang-Jungyuan-Ming Wang-Jungyuan-Ming Wang-Jungyuan-Ming Wang-Jungyuan-Ming Wang-Jungyuan-Mingyuan-yuanmingyuan-yuanmingyuan-yuanmingyuan-yuanmingyuan-yuanmingyuan-yuanmingyuan-yuanming<a hr

QTL.gCIMapping 5

QTL.gCIMapping

QTL Genome-Wide Composite Interval Mapping

Description

QTL Genome-Wide Composite Interval Mapping

Usage

```
QTL.gCIMapping(
  file = NULL,
  fileFormat = "GCIM",
  filecov = NULL,
 MCIMmap = NULL,
 Population = NULL,
 method = "GCIM-QEI",
 MultiEnv = FALSE,
 Model = "Random",
 WalkSpeed = 1,
 CriLOD = 3,
 CriDis = 5,
 Likelihood = "REML",
  SetSeed = 11001,
  flagrqtl = FALSE,
 DrawPlot = TRUE,
 PlotFormat = "jpeg",
 Resolution = "Low",
 Trait = NULL,
 dir = NULL,
 CLO = NULL
)
```

Arguments

file	File path and name in your computer.
fileFormat	Format for input file: GCIM, ICIM, Cart, or MCIM.
filecov	Covariate file of QTLIciMapping or QTLNetwork.
MCIMmap	Map file of QTLNetwork.
Population	Population type: F2, BC1, BC2, DH, RIL.
method	Method "GCIM" or method "GCIM-QEI".
MultiEnv	Whether to perform multi-environment analysis.
Model	Random or fixed model.
WalkSpeed	Walk speed for Genome-wide Scanning.
CriLOD	Critical LOD scores for significant QTL.

6 Readdata

CriDis The distance of optimization. This parameter is only for F2 population, including REML (restricted maximum Likelihood likelihood) and ML(maximum likelihood). SetSeed In which the cross validation experiment is needed. Generally speaking, the random seed in the cross-validation experiment was set as 11001. If some known genes are not identified by the seed, users may try to use some new random seeds. At this case, one better result may be obtained. flagrqtl This parameter is only for F2 population, flagrqtl="FALSE" in the first running. If the other software detects only one QTL in a neighborhood but this software finds two linked QTLs (one with additive effect and another with dominant effect) in the region, let flagrqtl="TRUE" DrawPlot This parameter is for all the populations, including FALSE and TRUE, Draw-Plot=FALSE indicates no figure output, DrawPlot=TRUE indicates the output of the figure against genome position. PlotFormat This parameter is for all the figure files, including *.jpeg, *.png, *.tiff and *.pdf. Resolution This parameter is for all the figure files, including Low and High. Trait Trait=1:3 indicates the analysis from the first trait to the third trait. dir This parameter is for the save path. CLO Number of CPUs.

Examples

```
data(F2data)
QTL.gCIMapping(file=F2data,Population="F2",
MultiEnv=TRUE,Model="Random",CriLOD=3,
Trait=1,dir=tempdir(),CLO=2)
```

Readdata

Read raw data

Description

Read raw data

```
Readdata(
   file = NULL,
   fileFormat = NULL,
   method = NULL,
   filecov = NULL,
   MCIMmap = NULL,
   MultiEnv = FALSE
)
```

WangF 7

Arguments

file Dataset input
fileFormat Format of dataset.

method "GCIM" or method "GCIM-QEI"

filecov Covariate file of QTLIciMapping or QTLNetwork.

MCIMmap Map file of QTLNetwork.

MultiEnv Whether to perform multi-environment analysis

Value

a list

Examples

```
data(F2data)
Readdata(file=F2data,fileFormat="GCIM",
method="GCIM-QEI",filecov=NULL,
MCIMmap=NULL,MultiEnv=TRUE)
```

WangF

To perform QTL mapping with wang method

Description

To perform QTL mapping with wang method

```
WangF(
   pheRaw = NULL,
   genRaw = NULL,
   mapRaw1 = NULL,
   yygg1 = NULL,
   flagRIL = NULL,
   cov_en = NULL,
   Population = NULL,
   WalkSpeed = NULL,
   CriLOD = NULL
)
```

8 WangS

Arguments

pheRaw phenotype matrix.
genRaw genotype matrix.
mapRaw1 linkage map matrix.

yygg1 the transformed covariate matrix.

flagRIL if RIL or not.

cov_en raw covariate matrix.

Population population flag.

WalkSpeed Walk speed for Genome-wide Scanning.
CritCOD Critical LOD scores for significant QTL.

Value

a list

Examples

```
data(DHdata)
readraw<-Readdata(file=DHdata,fileFormat="GCIM",
method="GCIM",filecov=NULL,MCIMmap=NULL,MultiEnv=FALSE)
DoResult<-Dodata(fileFormat="GCIM",Population="DH",
method="GCIM",Model="Random",readraw,MultiEnv=FALSE)
ws<-WangF(pheRaw=DoResult$pheRaw,genRaw=DoResult$genRaw,
mapRaw1=DoResult$mapRaw1,yygg1=DoResult$yygg1,
flagRIL=DoResult$flagRIL,cov_en=DoResult$cov_en,
Population="DH",WalkSpeed=1,CriLOD=2.5)</pre>
```

WangS

The second step of wang method

Description

The second step of wang method

```
WangS(
  flag = NULL,
  CriLOD = NULL,
  NUM = NULL,
  pheRaw = NULL,
  chrRaw_name = NULL,
  yygg = NULL,
  mx = NULL,
  phe = NULL,
```

WangS 9

```
chr_name = NULL,
  gen = NULL,
  mapname = NULL,
  CLO = NULL
)
```

Arguments

flag fix or random model.

Critical LOD scores for significant QTL.

NUM The number of trait.

pheRaw Raw phenotype matrix.

chrRaw_name raw chromosome name.

yygg covariate matrix.

mx raw genotype matrix.

phe phenotype matrix.

chr_name chromosome name.

gen genotype matrix.

mapname linkage map matrix.

CLO Number of CPUs.

Value

a list

```
data(DHdata)
readraw<-Readdata(file=DHdata,fileFormat="GCIM",
method="GCIM",filecov=NULL,MCIMmap=NULL,MultiEnv=FALSE)
DoResult<-Dodata(fileFormat="GCIM",Population="DH",
method="GCIM",Model="Random",readraw,MultiEnv=FALSE)
W1re<-WangF(pheRaw=DoResult$pheRaw,genRaw=DoResult$genRaw,
mapRaw1=DoResult$mapRaw1,yygg1=DoResult$yygg1,
flagRIL=DoResult$flagRIL,cov_en=DoResult$cov_en,
Population="DH",WalkSpeed=1,CriLOD=2.5)
ws<-WangS(flag=DoResult$flag,CriLOD=2.5,NUM=1,
pheRaw=DoResult$pheRaw,chrRaw_name=W1re$chrRaw_name,
yygg=W1re$yygg,mx=W1re$mx,phe=W1re$phe,
chr_name=W1re$chr_name,gen=W1re$gen,
mapname=W1re$mapname,CLO=1)</pre>
```

10 WenF

WenF

To perform QTL mapping with Wen method

Description

To perform QTL mapping with Wen method

Usage

```
WenF(
    pheRaw = NULL,
    genRaw = NULL,
    mapRaw1 = NULL,
    yygg1 = NULL,
    cov_en = NULL,
    WalkSpeed = NULL,
    CriLOD = NULL,
    dir = NULL
)
```

Arguments

pheRaw phenotype matrix.
genRaw genotype matrix.
mapRaw1 linkage map matrix.

yygg1 the transformed covariate matrix.

cov_en raw covariate matrix.

Walk speed for Genome-wide Scanning.
CritCOD Critical LOD scores for significant QTL.

dir file path in your computer.

Value

a list

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",
method="GCIM",filecov=NULL,MCIMmap=NULL,
MultiEnv=FALSE)
DoResult<-Dodata(fileFormat="GCIM",Population="F2",
method="GCIM",Model="Random",readraw,MultiEnv=FALSE)
wf<-WenF(pheRaw=DoResult$pheRaw,
genRaw=DoResult$genRaw,mapRaw1=DoResult$mapRaw1,
yygg1=DoResult$yygg1,cov_en=DoResult$cov_en,
WalkSpeed=1,CriLOD=2.5,dir=tempdir())</pre>
```

WenS 11

WenS

The second step of Wen method

Description

The second step of Wen method

Usage

```
WenS(
  flag = NULL,
  CriLOD = NULL,
 NUM = NULL,
  pheRaw = NULL,
  Likelihood = NULL,
  SetSeed = NULL,
  flagrqtl = NULL,
  yygg = NULL,
 mx = NULL,
  phe = NULL,
  chr_name = NULL,
  v.map = NULL,
  gen.raw = NULL,
  a.gen.orig = NULL,
  d.gen.orig = NULL,
  n = NULL,
  names.insert2 = NULL,
 X.ad.tran.data = NULL,
 X.ad.t4 = NULL,
  dir = NULL
)
```

Arguments

flag random or fix model.

CriLOD LOD score.

NUM the number of trait.

pheRaw raw phenotype matrix.

Likelihood likelihood function.

SetSeed random seed set in which, the cross validation is needed.

flagrqtl do CIM or not.

yygg covariate matrix.

mx raw genotype matrix.

phe phenotype matrix.

12 ZhouF

chr_name chromosome name. linkage map matrix. v.map raw genotype matrix. gen.raw additive genotype matrix. a.gen.orig d.gen.orig dominant genotype matrix. number of individual. names.insert2 linkage map after insert. X.ad.tran.data genotype matrix after insert. X.ad.t4 genotype matrix. dir file storage path.

Value

a list

Examples

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",</pre>
method="GCIM",filecov=NULL,MCIMmap=NULL,MultiEnv=FALSE)
DoResult<-Dodata(fileFormat="GCIM",Population="F2",</pre>
method="GCIM",Model="Random",readraw,MultiEnv=FALSE)
WEN1re<-WenF(pheRaw=DoResult$pheRaw,
genRaw=DoResult$genRaw,mapRaw1=DoResult$mapRaw1,
yygg1=DoResult$yygg1,cov_en=DoResult$cov_en,
WalkSpeed=1,CriLOD=2.5,dir=tempdir())
ws<-WenS(flag=DoResult$flag,CriLOD=2.5,NUM=1,
pheRaw=DoResult$pheRaw,Likelihood="REML",
SetSeed=11001,flagrqtl=FALSE,
yygg=WEN1re$yygg,mx=WEN1re$mx,phe=WEN1re$phe,
chr_name=WEN1re$chr_name, v.map=WEN1re$v.map,
gen.raw=WEN1re$gen.raw,
a.gen.orig=WEN1re$a.gen.orig,
d.gen.orig=WEN1re$d.gen.orig,n=WEN1re$n,
names.insert2=WEN1re$names.insert2,
X.ad.tran.data=WEN1re$X.ad.tran.data,
X.ad.t4=WEN1re$X.ad.t4,dir=tempdir())
```

ZhouF

To perform QTL mapping with Wen method

Description

To perform QTL mapping with Wen method

ZhouMethod 13

Usage

```
ZhouF(
  pheRaw = NULL,
  genRaw = NULL,
  mapRaw1 = NULL,
  WalkSpeed = NULL,
  CriLOD = NULL,
  dir = NULL
)
```

Arguments

pheRaw phenotype matrix.
genRaw genotype matrix.
mapRaw1 linkage map matrix.

WalkSpeed Walk speed for Genome-wide Scanning.
CritCOD Critical LOD scores for significant QTL.

dir file path in your computer.

Value

a list

Examples

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",
method="GCIM-QEI",filecov=NULL,
MCIMmap=NULL,MultiEnv=TRUE)
DoResult<-Dodata(fileFormat="GCIM",
Population="F2",method="GCIM-QEI",
Model="Random",readraw,MultiEnv=TRUE)
ZhouMatrices<-ZhouF(pheRaw=DoResult$pheRaw,
genRaw=DoResult$genRaw,
mapRaw1=DoResult$mapRaw1,
WalkSpeed=1,CriLOD=3,
dir=tempdir())</pre>
```

ZhouMethod

The second step of Zhou method for multiple environments

Description

The second step of Zhou method for multiple environments

14 ZhouMethod

Usage

```
ZhouMethod(
 Model = NULL,
  pheRaw = NULL,
  genRaw = NULL,
 mapRaw = NULL,
 CriLOD = NULL,
 NUM = NULL,
 EnvNum = NULL,
 yygg = NULL,
  genoname = NULL,
 Ax0 = NULL,
 Hx0 = NULL,
 Bx0 = NULL,
 Ax = NULL,
 Hx = NULL,
 Bx = NULL,
 dir = NULL,
 CriDis = NULL,
 CLO = NULL
)
```

Arguments

Model	Random or fixed model.
pheRaw	phenotype matrix.
genRaw	genotype matrix.
mapRaw	linkage map matrix.
CriLOD	Critical LOD scores for significant QTL.
NUM	The serial number of the trait to be analyzed.
En∨Num	The number of environments for each trait is a vector.
ууgg	covariate matrix.
genoname	linkage map matrix with pseudo markers inserted.
Ax0	AA genotype matrix.
Hx0	Aa genotype matrix.
Bx0	aa genotype matrix.
Ax	AA genotype matrix with pseudo markers inserted.
Hx	Aa genotype matrix with pseudo markers inserted.
Bx	aa genotype matrix with pseudo markers inserted.
dir	file storage path.
CriDis	The distance of optimization.
CLO	Number of CPUs.

Value

a list

Examples

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",</pre>
method="GCIM-QEI",filecov=NULL,
MCIMmap=NULL,MultiEnv=TRUE)
DoResult<-Dodata(fileFormat="GCIM",</pre>
Population="F2", method="GCIM-QEI",
Model="Random", readraw, MultiEnv=TRUE)
ZhouMatrices<-ZhouF(pheRaw=DoResult$pheRaw,</pre>
genRaw=DoResult$genRaw, mapRaw1=DoResult$mapRaw1,
WalkSpeed=1,CriLOD=3,dir=tempdir())
OutputZhou<-ZhouMethod(Model="Random",
pheRaw=DoResult$pheRaw,genRaw=DoResult$genRaw,
mapRaw=ZhouMatrices$mapRaw,CriLOD=3,NUM=1,
EnvNum=DoResult$EnvNum,yygg=DoResult$yygg1,
genoname=ZhouMatrices$genoname,
Ax0=ZhouMatrices$Ax0,Hx0=ZhouMatrices$Hx0,
Bx0=ZhouMatrices$Bx0,Ax=ZhouMatrices$Ax,
Hx=ZhouMatrices$Hx,Bx=ZhouMatrices$Bx,
dir=tempdir(),CriDis=5,CL0=2)
```

Description

The second step of Zhou method for single environment

```
ZhouMethod_single_env(
  Model = NULL,
  pheRaw = NULL,
  genRaw = NULL,
  mapRaw = NULL,
  CriLOD = NULL,
  NUM = NULL,
  yygg = NULL,
  genoname = NULL,
  Ax0 = NULL,
  Hx0 = NULL,
  Ax = NULL,
  Ax = NULL,
  Ax = NULL,
  Ax = NULL,
  Hx = NULL,
  Hx = NULL,
```

```
Bx = NULL,
dir = NULL,
CriDis = NULL,
CLO = NULL
```

Arguments

Model Random or fixed model.

pheRaw phenotype matrix.

genRaw genotype matrix.
mapRaw linkage map matrix.

Critical LOD scores for significant QTL.

NUM The serial number of the trait to be analyzed.

yygg covariate matrix.

genoname linkage map matrix with pseudo markers inserted.

Ax0 AA genotype matrix.

Hx0 Aa genotype matrix.

Bx0 aa genotype matrix.

Ax AA genotype matrix with pseudo markers inserted.

Hx Aa genotype matrix with pseudo markers inserted.

Bx aa genotype matrix with pseudo markers inserted.

dir file storage path.

CriDis The distance of optimization.

CLO Number of CPUs.

Value

a list

```
data(F2data)
readraw<-Readdata(file=F2data,fileFormat="GCIM",
method="GCIM-QEI",filecov=NULL,
MCIMmap=NULL,MultiEnv=FALSE)
DoResult<-Dodata(fileFormat="GCIM",Population="F2",
method="GCIM-QEI",Model="Random",
readraw,MultiEnv=FALSE)
ZhouMatrices<-ZhouF(pheRaw=DoResult$pheRaw,
genRaw=DoResult$genRaw,mapRaw1=DoResult$mapRaw1,
WalkSpeed=1,CriLOD=3,dir=tempdir())
OutputZhou<-ZhouMethod_single_env(Model="Random",
pheRaw=DoResult$pheRaw,genRaw=DoResult$genRaw,
mapRaw=ZhouMatrices$mapRaw,CriLOD=3,NUM=1,</pre>
```

yygg=DoResult\$yygg1,genoname=ZhouMatrices\$genoname, Ax0=ZhouMatrices\$Ax0,Hx0=ZhouMatrices\$Hx0, Bx0=ZhouMatrices\$Bx0,Ax=ZhouMatrices\$Ax, Hx=ZhouMatrices\$Hx,Bx=ZhouMatrices\$Bx, dir=tempdir(),CriDis=5,CLO=2)

Index

```
chr(DHdata), 2
DHdata, 2
\mathsf{Dodata}, \textcolor{red}{2}
F001 (F2data), 3
F002 (F2data), 3
F003 (F2data), 3
F2data, 3
marker (DHdata), 2
markerinsert, 4
pos (DHdata), 2
QTL.gCIMapping, 5
Readdata, 6
{\tt WangF}, \textcolor{red}{7}
WangS, 8
\text{WenF},\, \underline{10}
WenS, 11
ZhouF, 12
ZhouMethod, 13
{\tt ZhouMethod\_single\_env}, 15
```