Reproducing Kernel Hilbert Spaces

Purpose

In this lecture we discuss:

- Feature maps
- Kernels
- Reproducing kernel Hilbert spaces
- Moore-Aronszajn theorem

Reproducing Kernel Hilbert Spaces

Suppose we have a feature space X and a Hilbert space G of prediction functions.

To each $x \in X$ we wish to associate a feature function $\kappa_x \in \mathcal{G}$.

To evaluate the loss of a learner $g = g_{\tau} \in \mathcal{G}$, we do not need to explicitly construct g — rather, it is only required that we can evaluate g at all the feature vectors x_1, \ldots, x_n of the training set τ .

A defining property of a Reproducting Kernel Hilbert Space G is that function evaluation at a point x can be performed by simply taking the inner product of g with feature function κ_x ; that is,

$$g(\mathbf{x}) = \langle g, \kappa_{\mathbf{x}} \rangle.$$

Reproducing Kernel

This property becomes particularly useful in light of the representer theorem, which states that the learner g itself can be represented as a *linear combination* of the set of feature functions $\{\kappa_{x_i}, i = 1, ..., n\}$.

Consequently, we can evaluate a learner g at the feature vectors $\{x_i\}$ by taking linear combinations of $\kappa(x_i, x_j) := \langle \kappa_{x_i}, \kappa_{x_j} \rangle$.

Collecting these inner products into a Gram matrix $\mathbf{K} = [\kappa(\mathbf{x}_i, \mathbf{x}_j), i, j = 1, \dots, n]$, we will see that the feature vectors

 $\{x_i\}$ only enter the loss minimization problem through **K**.

Definition: Reproducing Kernel Hilbert Space

For a non-empty set X, a Hilbert space \mathcal{G} of functions $g: X \to \mathbb{R}$ with inner product $\langle \cdot, \cdot \rangle_{\mathcal{G}}$ is called a reproducing kernel Hilbert space (RKHS) with reproducing kernel $\kappa: X \times X \to \mathbb{R}$ if:

- 1. for every $x \in \mathcal{X}$, $\kappa_x := \kappa(x, \cdot)$ is in \mathcal{G} ,
- 2. $\kappa(x,x) < \infty$ for all $x \in \mathcal{X}$,
- 3. for every $x \in X$ and $g \in \mathcal{G}$, $g(x) = \langle g, \kappa_x \rangle_{\mathcal{G}}$.

The main (third) condition is known as the reproducing property.

The function κ_x is called the representer of evaluation.

Properties of an RKHS

The reproducing kernel of a Hilbert space of functions is *unique*.

A reproducing kernel is *symmetric* functions: $\kappa(x, x') = \kappa(x', x)$.

A reproducing kernel κ is a positive semidefinite function, meaning that for every $n \ge 1$ and every choice of $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in \mathcal{X}$, it holds that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \, \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) \, \alpha_j \geqslant 0. \tag{1}$$

In other words, every Gram matrix **K** associated with κ is a positive semidefinite matrix; that is $\alpha^{\top} \mathbf{K} \alpha \ge 0$ for all α .

Alternative Characterization of an RKHS

Theorem: Continuous Evaluation Functionals Characterize a RKHS

An RKHS \mathcal{G} on a set \mathcal{X} is a Hilbert space in which every evaluation functional $\delta_x : g \mapsto g(x)$ is bounded.

Conversely, a Hilbert space \mathcal{G} of functions $\mathcal{X} \to \mathbb{R}$ for which every evaluation functional is bounded is an RKHS.

The fact that an RKHS has continuous evaluation functionals means that if two functions $g, h \in \mathcal{G}$ are "close" with respect to $\|\cdot\|_{\mathcal{G}}$, then their evaluations g(x), h(x) are close for every $x \in \mathcal{X}$.

Formally, convergence in $\|\cdot\|_{\mathcal{G}}$ norm implies pointwise convergence for all $x \in X$.

Proof

Note that, since evaluation functionals δ_x are linear operators, showing boundedness is equivalent to showing continuity.

Given an RKHS with reproducing kernel κ , suppose that we have a sequence $g_n \in \mathcal{G}$ converging to $g \in \mathcal{G}$, that is $||g_n - g||_{\mathcal{G}} \to 0$. We apply the Cauchy–Schwarz inequality and the reproducing property of κ to find that for every $x \in X$ and any n:

$$\begin{aligned} |\delta_{\boldsymbol{x}}g_{n} - \delta_{\boldsymbol{x}}g| &= |g_{n}(\boldsymbol{x}) - g(\boldsymbol{x})| = |\langle g_{n} - g, \kappa_{\boldsymbol{x}} \rangle_{\mathcal{G}}| \leq \|g_{n} - g\|_{\mathcal{G}} \|\kappa_{\boldsymbol{x}}\|_{\mathcal{G}} \\ &= \|g_{n} - g\|_{\mathcal{G}} \sqrt{\langle \kappa_{\boldsymbol{x}}, \kappa_{\boldsymbol{x}} \rangle_{\mathcal{G}}} = \|g_{n} - g\|_{\mathcal{G}} \sqrt{\kappa(\boldsymbol{x}, \boldsymbol{x})}. \end{aligned}$$

Noting that $\sqrt{\kappa(x,x)} < \infty$ by definition for every $x \in \mathcal{X}$, and that $\|g_n - g\|_{\mathcal{G}} \to 0$ as $n \to \infty$, we have shown continuity of δ_x , that is $|\delta_x g_n - \delta_x g| \to 0$ as $n \to \infty$ for every $x \in \mathcal{X}$.

Proof

Conversely, suppose that evaluation functionals are bounded.

Theorem: Riesz Representation Theorem

Any bounded linear functional ϕ on a Hilbert space \mathcal{H} can be represented as $\phi(h) = \langle h, g \rangle$, for some $g \in \mathcal{H}$.

Then from the Riesz representation theorem, there exists some $g_{\delta_x} \in \mathcal{G}$ such that $\delta_x g = \langle g, g_{\delta_x} \rangle_{\mathcal{G}}$ for all $g \in \mathcal{G}$ — the *representer* of evaluation.

If we define $\kappa(x, x') = g_{\delta_x}(x')$ for all $x, x' \in X$, then $\kappa_x := \kappa(x, \cdot) = g_{\delta_x}$ is an element of \mathcal{G} for every $x \in X$ and $\langle g, \kappa_x \rangle_{\mathcal{G}} = \delta_x g = g(x)$, so that the reproducing property is verified. \square

Moore-Aronszajn

Any finite function $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ can serve as a reproducing kernel as long as it is finite, symmetric, and positive semidefinite.

The corresponding (unique!) RKHS \mathcal{G} is the completion of the set of all functions of the form $\sum_{i=1}^{n} \alpha_i \kappa_{x_i}$ where $\alpha_i \in \mathbb{R}$ for all i = 1, ..., n.

Theorem: Moore-Aronszajn

Given a non-empty set X and any finite symmetric positive semidefinite function $\kappa: X \times X \to \mathbb{R}$, there exists an RKHS \mathcal{G} of functions $g: X \to \mathbb{R}$ with reproducing kernel κ . Moreover, \mathcal{G} is unique.

Existence Proof (Sketch)

The idea is to construct a pre-RKHS \mathcal{G}_0 from the given function κ that has the essential structure and then to extend \mathcal{G}_0 to an RKHS \mathcal{G} .

In particular, define G_0 as the set of finite linear combinations of functions κ_x , $x \in X$:

$$\mathcal{G}_0 := \left\{ g = \sum_{i=1}^n \alpha_i \, \kappa_{\boldsymbol{x}_i} \, \middle| \, \boldsymbol{x}_1, \ldots, \boldsymbol{x}_n \in \mathcal{X}, \, \alpha_i \in \mathbb{R}, \, n \in \mathbb{N} \right\}.$$

Define on G_0 the following inner product:

$$\langle f, g \rangle_{\mathcal{G}_0} := \left(\sum_{i=1}^n \alpha_i \, \kappa_{\boldsymbol{x}_i}, \sum_{j=1}^m \beta_j \, \kappa_{\boldsymbol{x}_j'} \right)_{\mathcal{G}_0} := \sum_{i=1}^n \sum_{j=1}^m \alpha_i \, \beta_j \, \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j').$$

Then G_0 is an inner product space.

Existence Proof (Sketch)

In fact, G_0 has the essential structure we require, namely that (i) evaluation functionals are bounded/continuous and (ii) Cauchy sequences in G_0 that converge pointwise also converge in norm.

We then enlarge \mathcal{G}_0 to the set \mathcal{G} of all functions $g: X \to \mathbb{R}$ for which there exists a Cauchy sequence in \mathcal{G}_0 converging pointwise to g and define an inner product on \mathcal{G} as the limit

$$\langle f, g \rangle_{\mathcal{G}} := \lim_{n \to \infty} \langle f_n, g_n \rangle_{\mathcal{G}_0},$$

where $f_n \to f$ and $g_n \to g$. To show that \mathcal{G} is an RKHS it remains to be shown that (1) this inner product is well defined; (2) evaluation functionals remain bounded; and (3) the space \mathcal{G} is complete.

Reproducing Kernels via Feature Mapping

In view of the Moore–Aronszajn theorem, to define an RKHS on a feature space X all all we need to specify is the reproducing kernel $\kappa: X \times X \to \mathbb{R}$; that is, specify a finite, symmetric, and positive semidefinite function.

The easiest way to do this is via a feature map $\phi : \mathcal{X} \to \mathbb{R}^p$, by defining $\kappa(x, x') := \langle \phi(x), \phi(x') \rangle$, where \langle , \rangle denotes the Euclidean inner product. This function is clearly finite and symmetric.

To verify that κ is positive semidefinite, let Φ be the matrix with rows $\phi(x_1)^{\top}, \dots, \phi(x_n)^{\top}$ and let $\alpha = [\alpha_1, \dots, \alpha_n]^{\top} \in \mathbb{R}^n$. Then,

$$\sum_{i=1}^n \sum_{i=1}^n \alpha_i \, \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) \, \alpha_j = \sum_{i=1}^n \sum_{i=1}^n \alpha_i \, \boldsymbol{\phi}^\top(\boldsymbol{x}_i) \, \boldsymbol{\phi}(\boldsymbol{x}_j) \, \alpha_j = \boldsymbol{\alpha}^\top \boldsymbol{\Phi} \boldsymbol{\Phi}^\top \boldsymbol{\alpha} = \|\boldsymbol{\Phi}^\top \boldsymbol{\alpha}\|^2 \geqslant 0.$$

Example: Linear Kernel

Taking the identity feature map $\phi(x) = x$ on $\mathcal{X} = \mathbb{R}^p$, gives the linear kernel

$$\kappa(x, x') = \langle x, x' \rangle = x^{\top}x'.$$

The RKHS of functions corresponding to the linear kernel is the space of linear functions on \mathbb{R}^p .

This space is isomorphic to \mathbb{R}^p itself.

Nonuniqueness of Feature Maps for a Kernel

Does a given kernel function correspond uniquely to a feature map? The answer is no, as the next example shows.

Let $\mathcal{X} = \mathbb{R}$ and consider feature maps $\phi_1 : \mathcal{X} \to \mathbb{R}$ and $\phi_2 : \mathcal{X} \to \mathbb{R}^2$, with $\phi_1(x) := x$ and $\phi_2(x) := [x, x]^{\top} / \sqrt{2}$. Then

$$\kappa_{\phi_1}(x, x') = \langle \phi_1(x), \phi_1(x') \rangle = xx',$$

but also

$$\kappa_{\phi_2}(x, x') = \langle \phi_2(x), \phi_2(x') \rangle = xx'.$$

Thus, we arrive at the same kernel function defined for the same underlying set X via two different feature maps.