Name	LA ()	
------	--------	--

B. Results and data analysis (64 pts)

Table 1: Constant total mass (32 pts)

Paste the linear speed vs. time graph here.

Trial	M ₁ (kg)	M ₂ (kg)	a_{exp} (m/s^2)	F _{net} (N)	$M_1 + M_2$ (kg)	a_{theory} (m/s^2)	Percent error*
Run#1							
Run#2							
Run#3							

Calculate the net force $F_{\text{net}} = g(M_2 - M_1)$.

Calculate the theoretical acceleration $a_{\text{theory}} = g\left(\frac{M_2 - M_1}{M_1 + M_2}\right)$.

*** NOTE: Use $g = 9.81 \text{m/s}^2$ for all the calculations in this laboratory course. ***

* Percent error =
$$\frac{\left|a_{\text{exp}} - a_{\text{theory}}\right|}{a_{\text{theory}}} \times 100\%$$

Table 2: Constant net force (32 pts)

Paste the linear speed vs. time graph here.

Trial	M ₁ (kg)	M ₂ (kg)	a_{exp} (m/s^2)	F _{net} (N)	$M_1 + M_2$ (kg)	a theory (m/s ²)	Percent error
			(111/5)		(RS)	(111/5)	CHOI
Run#1							
Run#2							
Kull#2							
Run#3							
Kull#3							

 $\begin{array}{l} \bullet \quad \text{Calculate the net force} \ \ \mathbf{F}_{\text{net}} = g(M_2 - M_1) \,. \\ \\ \bullet \quad \text{Calculate the theoretical acceleration} \ \ a_{\textit{theory}} = g\Bigg(\frac{M_2 - M_1}{M_1 + M_2}\Bigg). \end{array}$

TA signature:

C.	Answer t	the following	questions afte	er the experiment	t (7	pts each)
					- (-	

2.	Compare the values of the percent error between the measured value of the acceleration and the theoretical value, as shown in Tables 1 and 2. What are the main sources of error in this experiment?
3.	Why is a better result obtained when you use a very large net force?
4.	In the calculation of the acceleration a, we have assumed that the pulley is frictionless. Can you find a simple way in the experiment to test whether this is true? If so, how to correct for it?