In []:

In [198]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [199]:

a=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset.csv")
a

Out[199]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Pro
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	

374 rows × 13 columns

In [200]:

```
a=a.head(10)
```

Out[200]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Bl Pres:
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	12
1	2	Male	28	Doctor	6.2	6	60	8	Normal	12
2	3	Male	28	Doctor	6.2	6	60	8	Normal	12
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	14
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	14
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	14
6	7	Male	29	Teacher	6.3	6	40	7	Obese	14
7	8	Male	29	Doctor	7.8	7	75	6	Normal	12
8	9	Male	29	Doctor	7.8	7	75	6	Normal	12
9	10	Male	29	Doctor	7.8	7	75	6	Normal	12
4 (•

In [201]:

to find
a.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 10 entries, 0 to 9
Data columns (total 13 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	Person ID	10 non-null	int64
1	Gender	10 non-null	object
2	Age	10 non-null	int64
3	Occupation	10 non-null	object
4	Sleep Duration	10 non-null	float64
5	Quality of Sleep	10 non-null	int64
6	Physical Activity Level	10 non-null	int64
7	Stress Level	10 non-null	int64
8	BMI Category	10 non-null	object
9	Blood Pressure	10 non-null	object
10	Heart Rate	10 non-null	int64
11	Daily Steps	10 non-null	int64
12	Sleep Disorder	10 non-null	object
			-

dtypes: float64(1), int64(7), object(5)

memory usage: 1.1+ KB

In [202]:

```
# to display summary of statastic
a.describe()
```

Out[202]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Ste
со	unt 10.00000	10.000000	10.000000	10.000000	10.000000	10.000000	10.00000	10.0000
me	ean 5.50000	28.300000	6.590000	5.700000	51.700000	7.100000	77.40000	6070.0000
	std 3.02765	0.674949	0.846496	1.251666	19.465354	0.994429	6.41526	2989.6302
ı	min 1.00000	27.000000	5.900000	4.000000	30.000000	6.000000	70.00000	3000.0000
2	5% 3.25000	28.000000	5.950000	4.500000	32.500000	6.000000	71.25000	3125.0000
5	0% 5.50000	28.000000	6.200000	6.000000	51.000000	7.500000	76.00000	6100.0000
7	5% 7.75000	29.000000	7.425000	6.750000	71.250000	8.000000	84.25000	8000.0000
n	nax 10.00000	29.000000	7.800000	7.000000	75.000000	8.000000	85.00000	10000.0000
4 6								

In [203]:

```
# to display colum heading
a.columns
```

Out[203]:

In [204]:

sns.pairplot(a)

Out[204]:

<seaborn.axisgrid.PairGrid at 0x198cf314fa0>

In [172]:

```
sns.displot(a["Sleep Duration"])
```

Out[172]:

<seaborn.axisgrid.FacetGrid at 0x198cf088ee0>

In [205]:

Out[205]:

	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level
0	6.1	6	42	6
1	6.2	6	60	8
2	6.2	6	60	8
3	5.9	4	30	8
4	5.9	4	30	8
5	5.9	4	30	8
6	6.3	6	40	7
7	7.8	7	75	6
8	7.8	7	75	6
9	7.8	7	75	6

In [206]:

```
sns.heatmap(b.corr())
```

Out[206]:

<AxesSubplot:>

In [208]:

In [209]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [210]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[210]:

LinearRegression()

In [211]:

```
lr.intercept_
```

Out[211]:

7.3931193320857975

In [212]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[212]:

	Co-efficient
Sleep Duration	0.385826
Quality of Sleep	-0.195768
Physical Activity Level	0.019193
Stress Level	-0.445276

In [213]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[213]:

<matplotlib.collections.PathCollection at 0x198d38c8be0>

In [214]:

```
lr.score(x_test,y_test)
```

Out[214]:

0.8090804258450611

In [215]:

```
lr.score(x_train,y_train)
```

Out[215]:

1.0

```
In [216]:
from sklearn.linear_model import Ridge,Lasso
In [217]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[217]:
Ridge(alpha=10)
In [218]:
rr.score(x_test,y_test)
Out[218]:
0.9998166887016773
In [219]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[219]:
Lasso(alpha=10)
In [220]:
la.score(x_test,y_test)
Out[220]:
0.3565729646258119
In [221]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[221]:
ElasticNet()
In [222]:
en.coef_
Out[222]:
array([ 0.
                                  0.02763669, -0.
                                                           ])
                  , 0.
```

```
In [223]:
en.intercept_
Out[223]:
5.031153455462539
In [224]:
prediction=en.predict(x_test)
prediction
Out[224]:
array([6.19189464, 7.10390557, 7.10390557])
In [225]:
en.score(x_test,y_test)
Out[225]:
0.4926265327931927
EVALUATION METRICS
In [226]:
from sklearn import metrics
In [227]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.49469450185061997
In [228]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.3258465156061497
In [229]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.5708296730252814
In [ ]:
```