

Master in Computer Vision Barcelona

Project Module 6 Coordination

Video Surveillance for Road Traffic Monitoring J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu/xavier.giro@upc.edu

Team 5 Final presentation

Eloi Bové, Jordi Burgués, Albert Jiménez, Arnau Roche

1 - MTSC tracking

- 1.1 Methods
- 1.2 Results and discussion

2 - MTMC tracking

- 2.1 Tracking pipeline
- 2.2 Vehicle embeddings
- 2.3 Matching algorithm
- 2.4 Results and discussion

3 - Conclusions

3.1 Summary and conclusions

1.1 MTSC tracking - Methods

Maximum Overlap Tracking

T5: Eloi Bové

Track objects with an IoU greater than a certain threshold.

Week 3 results: **IDF1=0.774**, MOTA=0.764

Kalman Filter Tracking

Track objects based on a constant velocity model that also takes into account the object size and aspect ratio. Based on SORT [1]

Week 3 results: IDF1=0.714, MOTA=0.821

- Maximum overlap provided higher IDF1 in previous weeks. However, the new ground truth favors the Kalman filter approach.
- Having a good single camera tracking will be key for our multi camera tracking system.

T5: Eloi Bové

Summary of the obtained results

	IDF1 (SEQ 3)							
Camera	c010	c011	c012	c013	c014	c015	Average IDF1	Weighted IDF1 average
Number of frames	1923	2031	2156	2185	2275	16	Average IDI 1	
SSD-512 + Overlap	0.3422	0.3737	0.0863	0.4489	0.3889	1.0	0.4400	0.3292
Yolo3 + Overlap	0.4361	0.2284	0.0442	0.2416	0.5091	0.5925	0.3420	0.2923
Mask RCNN + Overlap	0.4920	0.1810	0.0701	0.6643	0.5709	1.0	0.4964	0.3998
SSD-512 + Kalman	0.4326	0.3003	0.1422	0.3175	0.3260	1.0	0.4197	0.3023
Yolo3 + Kalman	0.6397	0.3101	0.0257	0.2170	0.6477	0.6666	0.4178	0.3660
Mask RCNN + Kalman	0.6461	0.3470	0.1097	0.6607	0.6029	1.0	0.5611	0.4738

c012 perspective

c014 perspective

All in all, the best results are provided by the Kalman tracking with Mask RCNN detections, and this method will be used as the baseline for our Multi Camera Tracking system.

2.1 MTMC tracking - General Pipeline

We implemented the following **pipeline** in order to track **multiple cars** across **multiple cameras**:

T5: Jordi Burgués

We have performed metric learning to obtain meaningful embeddings to compare cars from different cameras in sequence 03. **Two strategies** to compute these embeddings:

- → Inference on pre-trained model with the VeRi dataset^[2]
- → Using AI City data:
 - Dataset creation with our own car crops
 - Training of a Triplet Network from scratch using our dataset
 - Inference on our trained model

over 50k images, 776 vehicles, 20 cameras 24 hour recordings

over 44k images
184 vehicles
36 cameras
3-4 minutes recording

2.2 MTMC tracking - Vehicle Embeddings

TRIPLET NETWORK

- Both models used for embedding computation use a Triplet Network^[3] with a Triplet Loss
- A triplet network uses an anchor, a positive and a negative sample as inputs (triplets)
- **Metric learning**: learn embeddings such that the positive sample is closer to the anchor than the negative sample is, by some margin value

T5: Jordi Burgués

MODEL TRAINING

- Using the aforementioned Triplet Network we have performed metric learning from scratch by training a ResNet-18 architecture with our own dataset of cars (extracted from Al City):
 - S01 and S04 as training data → 37984 images
 - \circ S03 as validation data \rightarrow 6170 images

TRAINING PARAMS

LR: 1e-3, with decay

scheduler every 20 epochs

Epochs: 46 Batch size: 32 Optimizer: SGD

Triplet Loss

Training and validation images are resized to 224x224

Embedding computation when the model yields minimum validation loss

2.2 MTMC tracking - Vehicle Embeddings

T5: Jordi Burgués

MODEL INFERENCE

- With the pretrained model on VeRi^[3] and our trained model on cars from Al City, we can visualize the embeddings inferred by the Triplet Network, which will be used as feature vectors for car re identification
- Every embedding has 512 dimensions → t-SNE to 2 dimensions for the sake of visualization

[3]: Pranoy Radhakrishnan: https://github.com/pranoyr/vehicle-reid

2.2 MTMC tracking - Vehicle Embeddings

MODEL INFERENCE

• By generating triplets of images, we can perform inference with our trained model and compute the anchor-positive, d(a,p), and anchor-negative, d(a,n), L2 distances for evaluation

2.3 MTMC tracking - Matching Algorithm

Before we actually match the **tracklets**, we filter out some to improve the results and make the car re-identification simpler. Particularly, we detect and **delete tracklets** corresponding to **parked cars**:

Tracklets:

Pseudo-code to **remove** tracklets of **parked cars**:

for tracklet in tracklets:

if median(tracklet.movement_list) < 2.75:</pre>

self.parked = True

remove tracklet

c, c, are the bounding box centers

The vehicle movement is estimated by the squared difference of the BB centers.

2.3 MTMC tracking - Matching Algorithm

Tracklets are arranged in **order of appearance** and **matched**, if possible, with **previous tracklets** based on the **embedding statistics**.

A tracklet can be matched to another from the **untracked** or **tracked** list **indistinctly**. If it is matched to an **untracked tracklet**, a **new ID** is generated. At the end, **untracked tracklets** are **discarded**.

Summary of our results

Metric	IDF1	IDP	IDR	Precision (detection)	Recall (detection)
Our model + squared distance	0.436278	0.49365	0.390853	0.787792	0.623743
VeRi model + squared distance	0.385309	0.497345	0.319007	0.818249	0.536653

Summary of our results

MTMC tracking - Conclusions

MTSC tracking

- Mask RCNN works better than SSD/Yolo3, and Kalman filter approach outperforms maximum overlap method.
- Longitudinal car movements are better tracked with our method than transversal ones, presumably because they appear more time on camera.
- The GT is not suited for MTSC: results are better than metrics show.

MTMC tracking

- Our trained embeddings outperform the pre-trained VeRi ones as they are more specific to our testing scenario.
- Camera synchronization is key to assist vehicle re-identification with temporal constraints.
- Spatial constraints could be applied, but they would be specific to each scenario.

MTSC and MTMC

- Both MTSC and MTMC results could be improved by making our tracking algorithm more robust to missed detections.
- Parked car removal improves tracking results and makes car re-identification easier.

Thank you!

