Week 6

> A complex amplitude coefficient &:

1 Aol² $\alpha_0 = A_0 e^{i(2\pi ft + \phi_0)}$ is the prob. of corresponding phase measure. to the oth qubit

Croquemon (

Frequency of the wave and the time passed

- A reminder that e part is just a phose, so it does not affect the measurement prob. directly.

- But the phases can be utilized in the form of constructive | destructive interference. [wing superpost + enturals]

-> Fousier Transform can be used to decompose an asbitrary wave function into its components of pure orthogonal (fourier bossis) functions.

(For quantum)

computational GFT, Fourier basis

 $\Rightarrow QFT_{N=2^{m}} |\chi\rangle = \frac{1}{\sqrt{N}} \left(|0\rangle + e^{\frac{2\pi i}{2}\chi} |1\rangle \right) \otimes |\chi\rangle = |\chi_{1}\chi_{2}...\chi_{n}\rangle \qquad \left(|0\rangle + e^{\frac{2\pi i}{2^{2}}\chi} |1\rangle \right) \otimes |\chi\rangle = |\chi_{1}\chi_{2}...\chi_{n}\rangle$

 $(10) + e^{\frac{2\pi i}{2n}} \times (11) = (2)$

+ Fourier basis is a way of encoding

-> Phase estimation converts the phase informan into complitudes, which can be measured wring many obsestations.

$$5 \div 3 = quotient = 1$$
 and remainder = 2

$$x \equiv y \pmod{3} \Rightarrow x = 3k + y$$
For k

- (1) Pick a number "a" that is opposime with N.
- (2) find the 'order' γ of the function α^{γ} (mod N) $= smallest \gamma s.t. <math>\alpha^{\gamma} = 1 \pmod{N}$

$$\geq$$
 smallest x s.t. $a^{*} \equiv 1 \pmod{r}$

if & is even: (3) mext pagedr X = a M2 (mod N) if x+1 \$ 0 (mod N): of EP,24, at least one is contained in sgcd(x+1,N), }

(gcd(x-1,N)) [See else: find another a ex: Factoring 15 > 15 = [111] (four bits) step-1: a = 13 step-2: find the period & in 13 (mod 15) $x \text{ in } x = 0,1,2,3,..., 13^{x} \pmod{15}$ = 1,13,4,7,1,...T=4 : a = 1 (mod N) >+=8 step-3: $\chi = a^{1/2} \pmod{N} = 13^{1/2} \pmod{15}$ = 4 (mod 15) X+1=4+1 = 5 (mod 15) qcd (x+1,N) = qcd (5,15) = 5 gcd (x-1, N) = gcd (3,15) = 3

 $\{P, 2Y = \{3, 5\}\}$

By solving the periodicity r s.t. $q^r \equiv 1 \pmod{N}$, we can find the factors of N.

* $f_{a,n}$ (x) $\equiv a^{\chi}$ (mod N) O(y) = (ay mod N)

(x) (w) fain (x)

 \rightarrow Why $q^{\frac{\pi}{2}}$ (mod N) = x and solve could be a gcd of $\{x+1,N\}$ orland $\{x-1,N\}$?

dr mod N = 1

:. (ar=1) mod N = 0

 $(\alpha^{\gamma}-1) = (\alpha^{\gamma/2}-1)(\alpha^{\gamma/2}+1)$ here, we need γ to be even, else retry.