Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2021/2022 Corso di Laurea in Ingegneria Fisica

Prova di autovalutazione/simulazione esame di Analisi 3, 9/11/2021 - Prof. I. FRAGALÀ

TEST 1. (8 punti)

Stabilire quali delle seguenti affermazioni sono vere, per la successione di funzioni di variabile reale definita da

$$f_n(x) = (1 - nx)\chi_{[0,1/n]}$$
.

- a. f_n converge puntualmente a 0 per ogni $x \in \mathbb{R}$
- b. f_n converge puntualmente a 0 per quasi ogni $x \in \mathbb{R}$
- c. f_n converge a 0 in $L^p(\mathbb{R})$ per ogni $p \in [1, +\infty)$
- d. f_n converge a 0 in $L^{\infty}(\mathbb{R})$

TEST 2. (8 punti)

Stabilire quali dei seguenti operatori $T:X\to Y$ sono lineari continui:

e.
$$X = (C^0([-1,1]), \|\cdot\|_{\infty}), Y = (\mathbb{R}, |\cdot|)$$
 e $T(f) = f(0)$.

f.
$$X = (C^0([-1,1]), \|\cdot\|_1), Y = (\mathbb{R}, |\cdot|) \in T(f) = f(0).$$

g.
$$X = (C^0([-1,1]), \|\cdot\|_1), Y = (\mathbb{R}, |\cdot|) \in T(f) = \int_{-1}^1 |f|.$$

h.
$$X = (L^1(\mathbb{R}), \|\cdot\|_1), Y = (L^1(\mathbb{R}), \|\cdot\|_1) \in T(f) = \chi_{[-1,1]} * f$$

ESERCIZIO (10 punti) Calcolare il seguente integrale in campo complesso:

$$\int_{Q_4(0)} \frac{e^{\frac{1}{z^2}}}{(z^2 - 2i)^2} \, \mathrm{d}z,$$

dove $Q_l(z_0)$ è bordo del quadrato di lato l con centro (incrocio delle diagonali) nel punto z_0 , percorso una volta in senso orario.

TEORIA (6 punti)

- (i) Siano $f \in g$ in $C_0^{\infty}(\mathbb{R})$. Stabilire per quali $p \in [1, +\infty]$ si ha che f * g appartiene a $L^p(\mathbb{R})$, e se il supporto di f * g è compatto.
- (ii) Sia $f: \mathbb{R}^+ \to \mathbb{C}$ una funzione C^{∞} . Mostrare che la funzione $g: \mathbb{C} \to \mathbb{C}$ definita come g(z) := f(|z|) è olomorfa in \mathbb{C} se e solo se f è costante.