

Introduction

Welcome

Machine Learning

Machine Learning

- Grew out of work in Al
- New capability for computers

Examples:

- Database mining
 - Large datasets from growth of automation/web.
 - E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.
 - E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.

Machine Learning

- Grew out of work in Al

- Understanding human learning (brain, real AI).

Machine Learning

Introduction

What is machine learning

Machine Learning definition

 Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

 Tom Mitchell Learning Problem: A c is said to *learn* to some task T from experie and some pe e P, if its by P, improves performance with experied

"A computer program is said to *learn* from experience E with respect to

Machine learning algorithms:

- Supervised learning
- Unsupervised learning

Others: Reinforcement learning, recommender systems.

Also talk about: Practical advice for applying learning algorithms.

Machine Learning

Introduction

Supervised Learning

Housing price prediction.

Supervised Learning "right answers" given

Regression: Predict continuous valued output (price)

Breast cancer (malignant, benign)

- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape

• • •

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?

- Treat both as classification problems.
- Treat problem 1 as a classification problem, problem 2 as a regression problem.
- Treat problem 1 as a regression problem, problem 2 as a classification problem.
- O Treat both as regression problems.

Machine Learning

Introduction

Unsupervised Learning

Supervised Learning

Unsupervised Learning

Individuals

Individuals

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Cocktail party problem

Microphone #1:

Output #1:

Microphone #2:

Output #2:

Microphone #1: Output #1: ◆

Microphone #2:

Output #2:

Cocktail party problem algorithm

[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

Of the following examples, which would you address using an <u>unsupervised</u> learning algorithm? (Check all that apply.)

- Given email labeled as spam/not spam, learn a spam filter.
- Given a set of news articles found on the web, group them into set of articles about the same story.
- Given a database of customer data, automatically discover market segments and group customers into different market segments.
- Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.