

Stochastic Processes

Interpretation of CLT, What CLT is Not, Local CLT

Karthik P. N.

Assistant Professor, Department of Al

Email: pnkarthik@ai.iith.ac.in

14 February 2025

Weak Law of Large Numbers (WLLN)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Theorem (Weak Law of Large Numbers)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $\mathbb{E}[|X_1|] < +\infty$. Further, let $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \stackrel{\mathrm{p.}}{\longrightarrow} \mu.$$

More formally, for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\frac{S_n}{n}-\mu\right|>\varepsilon\right)=0.$$

Strong Law of Large Numbers (SLLN)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Theorem (Strong Law of Large Numbers)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with $\mathbb{E}[|X_1|] < +\infty$. Further, let $\mathbb{E}[X_1] = \mu$. Let

$$S_n = \sum_{i=1}^n X_i.$$

Then,

$$\frac{S_n}{n} \xrightarrow{\text{a.s.}} \mu.$$

More formally,

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mu\right)=1.$$

Central Limit Theorem (CLT)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $\{X_n\}_{n=1}^{\infty}$ be defined w.r.t. \mathscr{F} .

Theorem (Central Limit Theorem)

Let $\{X_n\}_{n=1}^{\infty}$ be i.i.d. with mean $\mathbb{E}[X_1] = \mu \in \mathbb{R}$ and $\mathrm{Var}(X_1) = \sigma^2 < +\infty$. Let $S_n = \sum_{i=1}^n X_i$. Then,

$$rac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} = rac{S_n - n\mu}{\sigma \sqrt{n}} \stackrel{\mathrm{d}}{\longrightarrow} X, \qquad X \sim \mathcal{N}(0, 1).$$

More formally,

$$\lim_{n o \infty} \mathbb{P}\left(rac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}(S_n)}} \le x
ight) = \int_{-\infty}^x rac{1}{\sqrt{2\pi}} \, e^{-rac{t^2}{2}} \, \mathsf{d}t \qquad orall x \in \mathbb{R}.$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\mathrm{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\operatorname{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$C_{Z_i}(s) =$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\operatorname{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$\mathcal{C}_{Z_i}(s) \quad = \quad 1 - rac{s^2}{2} + o(s^2), \qquad s \in \mathbb{R},$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\operatorname{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$egin{array}{lll} \mathcal{C}_{Z_i}(s) & = & 1-rac{s^2}{2}+o(s^2), & s \in \mathbb{R}, \ \mathcal{C}_{U_n}(s) & \end{array}$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\operatorname{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$egin{array}{lcl} \mathcal{C}_{Z_i}(s) &=& 1-rac{s^2}{2}+o(s^2), & s\in\mathbb{R}, \ \mathcal{C}_{U_n}(s) &=& \left(\mathcal{C}_{Z_1}\left(rac{s}{\sqrt{n}}
ight)
ight)^n = \left(1-rac{s^2}{2n}+o\left(rac{s^2}{n}
ight)
ight)^n \end{array}$$

$$Z_i = rac{X_i - \mathbb{E}[X_i]}{\sqrt{\operatorname{Var}(X_1)}}, \qquad U_n = rac{\sum_{i=1}^n Z_i}{\sqrt{n}}$$

$$egin{array}{lcl} \mathcal{C}_{Z_i}(s) &=& 1-rac{s^2}{2}+o(s^2), & s\in\mathbb{R}, \ \mathcal{C}_{U_n}(s) &=& \left(\mathcal{C}_{Z_1}\left(rac{s}{\sqrt{n}}
ight)
ight)^n = \left(1-rac{s^2}{2n}+o\left(rac{s^2}{n}
ight)
ight)^n \end{array}$$

$$\lim_{n\to\infty} C_{U_n}(s) = \lim_{n\to\infty} \left(1 - \frac{s^2}{2n} + o\left(\frac{s^2}{n}\right)\right)^n$$
 $= e^{\frac{-s^2}{2}}$

• From SLLN, we know that

$$\frac{S_n-\mathbb{E}[S_n]}{n}\stackrel{\text{a.s.}}{\longrightarrow} 0.$$

• From SLLN, we know that

$$\frac{S_n-\mathbb{E}[S_n]}{n}\stackrel{\text{a.s.}}{\longrightarrow} 0.$$

• Thus, the distribution of $S_n - \mathbb{E}[S_n]$, when divided by n, is degenerate for large n

• From SLLN, we know that

$$\frac{S_n-\mathbb{E}[S_n]}{n}\stackrel{\text{a.s.}}{\longrightarrow} 0.$$

- Thus, the distribution of $S_n \mathbb{E}[S_n]$, when divided by n, is degenerate for large n
- CLT: the distribution of $S_n \mathbb{E}[S_n]$, when divided by \sqrt{n} , is non-degenerate for large n

From SLLN, we know that

$$\frac{S_n-\mathbb{E}[S_n]}{n}\stackrel{\text{a.s.}}{\longrightarrow} 0.$$

- Thus, the distribution of $S_n \mathbb{E}[S_n]$, when divided by n, is degenerate for large n
- CLT: the distribution of $S_n \mathbb{E}[S_n]$, when divided by \sqrt{n} , is non-degenerate for large n
- According to CLT, for large n,

$$\mathbb{P}\left(rac{S_n - \mathbb{E}[S_n]}{\sigma\,\sqrt{n}} > t
ight) pprox \mathbb{P}(X > t), \qquad X \sim \mathcal{N}(0, 1)$$

Demonstration of CLT

What CLT is Not

• CLT is not a statement about convergence of the PDFs of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ to Gaussian PDF

What CLT is Not

- CLT is not a statement about convergence of the PDFs of $\frac{S_n n\mu}{\sigma\sqrt{n}}$ to Gaussian PDF
- If X_1, X_2, \ldots are discrete random variables, then $\frac{S_n n\mu}{\sigma\sqrt{n}}$ is a discrete random variable, and hence does not admit any PDF.

What CLT is Not

- CLT is not a statement about convergence of the PDFs of $\frac{S_n n\mu}{\sigma\sqrt{n}}$ to Gaussian PDF
- If X_1, X_2, \ldots are discrete random variables, then $\frac{S_n n\mu}{\sigma\sqrt{n}}$ is a discrete random variable, and hence does not admit any PDF.
- Even if X_1, X_2, \ldots are continuous random variables, and $\frac{S_n n\mu}{\sigma \sqrt{n}}$ admits a PDF, CLT does not make any claim about the convergence of these PDFs to the Gaussian PDF

Suppose that $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \operatorname{Unif}([-\sqrt{3}, \ +\sqrt{3}])$

• $\mathbb{E}[X_1] =$

Suppose that $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \mathrm{Unif}([-\sqrt{3}, \ +\sqrt{3}])$

- $\mathbb{E}[X_1] = 0$
- $Var(X_1) =$

Suppose that $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \text{Unif}([-\sqrt{3}, +\sqrt{3}])$

- $\mathbb{E}[X_1] = 0$
- $Var(X_1) = 1$
- $C_{X_1}(s) =$

Suppose that $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \mathrm{Unif}([-\sqrt{3}, \ +\sqrt{3}])$

- $\mathbb{E}[X_1] = 0$
- $Var(X_1) = 1$
- $\mathcal{C}_{X_1}(s) = \frac{\sin(s\sqrt{3})}{s\sqrt{3}}, \quad s \in \mathbb{R}.$

Suppose that $X_1, X_2, \cdots \overset{\text{i.i.d.}}{\sim} \text{Unif}([-\sqrt{3}, +\sqrt{3}])$

- $\mathbb{E}[X_1] = 0$
- $Var(X_1) = 1$
- $\mathcal{C}_{X_1}(s) = \frac{\sin(s\sqrt{3})}{s\sqrt{3}}, \quad s \in \mathbb{R}.$
- As per CLT,

$$C_{rac{S_n}{\sqrt{n}}}(s) \stackrel{n o \infty}{\longrightarrow} e^{-rac{s^2}{2}} \quad orall s \in \mathbb{R}.$$

No Convergence of PDFs for Previous Example

Local CLT

• In many practical examples where X_1, X_2, \ldots are continuous, one may observe convergence of PDFs of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ to the Gaussian PDF, but this is NOT to be interpreted as a consequence of the CLT

This may be a consequence of some stronger property playing in hindsight

Local CLT

• In many practical examples where X_1, X_2, \ldots are continuous, one may observe convergence of PDFs of $\frac{S_n - n\mu}{\sigma\sqrt{n}}$ to the Gaussian PDF, but this is NOT to be interpreted as a consequence of the CLT

This may be a consequence of some stronger property playing in hindsight

Theorem (Local Central Limit Theorem)

Suppose that $X_1, X_2, \cdots \stackrel{\text{i.i.d.}}{\sim} f_X$. W.l.o.g., let $\mathbb{E}[X_1] = 0$ and $\text{Var}(X_1) = 1$. Suppose that there exists $r \in \mathbb{N}$ such that

$$\int_{-\infty}^{\infty} |\mathcal{C}_{X_1}(s)|^r \, \mathsf{d} s < +\infty.$$

Then,

$$f_{rac{S_n}{\sqrt{n}}}(x) \stackrel{n o \infty}{\longrightarrow} rac{1}{\sqrt{2\pi}} e^{-rac{x^2}{2}} \qquad orall x \in \mathbb{R}.$$