↔ Lycée de Dindéfélo ↔			A.S.: 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 09/12/2024	Durée : 4 heures
Devoir n° 1 Du 1 ^{er} Semestre			

Exercice 1: $0,5 \times 8 = 4$ points

- 1) Énoncer le théorème des valeurs intermédiaires.
- 2 Énoncer le théorème d'existence et d'unicité d'une solution.
- 3 Énoncer le théorème de l'inégalité des accroissements finis (IAF).
- 4 Si $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = a \ (a \neq 0) \text{ alors } \dots$
- 5 Si $\lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0} = +\infty$ alors ...
- 6 Si $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = 0$ alors ...
- 7 Si $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = \beta \in \mathbb{R}^*$ et $\lim_{x \to +\infty} [f(x) \beta x] = +\infty$ alors ...
- 8 Si f est continue et strictement décroissante sur $]-\infty;b]$, alors $f(]-\infty;b])=...$

Exercice 2: 4 points

1 Calculer les limites suivantes : $(3 \times 1 \text{ pt})$

$$\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - 1}{\sin 2x} \; ; \quad \lim_{x \to 0} \frac{\cos x - 1}{x^3 + x^2} \; ; \quad \lim_{x \to 1} \frac{\sqrt{x + 3} - \sqrt{5 - x}}{\sqrt{2x + 7} - \sqrt{10 - x}}.$$

2 Donner les primitives des fonctions f et g respectivement sur \mathbb{R} et $\mathbb{R} \setminus \{1, 2\}$. (2 × 0,5 pt)

$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3$$
; $g(x) = \frac{1 - x^2}{(x^3 - 3x + 2)^3}$.

Problème: 12 points

Partie A:

Soit f la fonction définie par :

$$f(x) = x - 2 - \sqrt{x^2 - 2x}.$$

- 1 Déterminer D_f . (0,5 pt)
 - a Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$. (0,25 pt), (0,5 pt)
 - **b** Étudier la branche infinie de la courbe (C_f) au voisinage de $-\infty$. (0,75 pt)

- c Interpréter la limite de f au voisinage de $+\infty$. (0,75 pt)
- 2 Étudier la dérivabilité de la fonction f à droite de 2 et à gauche de 0, puis interpréter géométriquement les résultats obtenus. (2 pt)
 - Justifier la dérivabilité de la fonction sur $]-\infty,0[\cup]2,+\infty[$, puis montrer que pour tout $x\in]-\infty,0[\cup]2,+\infty[$: $f'(x)=\frac{\sqrt{x^2-2x}-(x-1)}{\sqrt{x^2-2x}}.$ (1,5 pt)
 - **b** Montrer que : $\forall x \in]-\infty, 0], f'(x) > 0$ et $\forall x \in]2, +\infty[, f'(x) < 0.$ (1 pt)
 - c Dresser le tableau de variations de la fonction f. (1,25 pt)
- 3 Tracer la courbe (C_f) dans un repère orthonormé (O, \vec{i}, \vec{j}) . (1,25 pt)

Partie B:

On considère la fonction g la restriction de la fonction f sur $[2, +\infty[$:

- Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J que l'on déterminera . (0,5 pt)
- **b** Calculer $g^{-1}(2-2\sqrt{2})$. (On donne : $g(4)=(2-2\sqrt{2})$. (0,75 pt)
- C Déterminer $g^{-1}(x)$ pour tout $x \in J$. (0,5 pt)
- d Tracer la courbe $(C_{g^{-1}})$ dans le même repère orthonormé (O, \vec{i}, \vec{j}) . (0,5 pt)