

EEE 51: Second Semester 2017 - 2018 Lecture 11

Differential Circuits

Today

Small signal analysis of differential circuits

Differential Amplifiers

After DC analysis → same small signal model

Differential vs. Common-Mode

The amplifier processes the two signals differently!

Small-signal equivalent circuit

The Differential Mode Half Circuit

Half-circuit analysis (DM)

Half-circuit analysis (DM)

$$v_{i1} - v_{be1} + v_{be2} - v_{i2} = \left(+\frac{v_{id}}{2}\right) - v_{be1} + v_{be2} - \left(-\frac{v_{id}}{2}\right) = 0$$

$$v_{id} = v_{i1} - v_{i2} = v_{be1} - v_{be2}$$

$$i_{x1} = -i_{x2}$$
 \longrightarrow $i_{x_1} = i_{x_2} = i_{x_2} = i_{x_2}$

Half-circuit analysis (DM)

Small-signal equivalent circuit

The Common-Mode Half Circuit

Half-circuit analysis (CM)

Half-circuit analysis (CM)

$$\frac{v_{oc}}{r_{\pi}} + \frac{v_x - v_{oc}}{r_o} - g_m \left(v_{ic} - v_x\right) = 0$$

$$\frac{v_{oc}}{R_L} = \frac{v_{ic} - v_x}{r_\pi}$$

$$v_{oc} = v_{ic} \cdot \frac{R_L}{R_L + r_o + r_\pi \left(1 + g_m r_o\right)}$$

Half-circuit analysis (CM)

$$A_{cm} = \frac{v_{oc}}{v_{ic}} = \frac{R_L}{R_L + r_o + r_\pi (1 + g_m r_o)}$$

$$A_{cm} \approx \frac{R_L}{r_{\pi}g_m r_o} \approx \frac{R_L}{\frac{\beta}{g_m}g_m r_o} \approx \frac{R_L}{\beta \cdot r_o} \approx 0$$

If current source is not ideal:

$$A_{cm} = -\frac{g_m R_L}{1 + 2 \cdot g_m R_{tail}}$$

14

$$R_{L}$$
 v_{C}
 v_{C

$$Ric = \frac{vic}{lic} = \frac{r_{tt} (1 + gm(2Rtair))}{2}$$

Next Meeting

- Finish up discussion of Differential Circuits
- Compound Amplifiers