Ciencia de Datos con Python

Una breve introducción

Accuracy

Mide el performance del modelo:

$$accuracy = \frac{PrediccionesCorrectas}{TotalPredicciones(Correctas+Incorrectas)}$$

Caso de uso: Predicción de SPAM

		Predicciones	
		HAM	SPAM
Real	НАМ	970	7
	SPAM	11	12

Correctas	Total	Accuracy
982	1000	0,98

Datos Desbalanceados

Eventos raros, porcentaje de aparición bajo.

Confusion Matrix

Necesitamos nuevas métricas.

Métricas para clasificación

Precision

	Predicciones		
Real	Positivo	Negativo	
Positivo	VP	FN	
Negativo	FP	VN	

$$precision = \frac{VP}{VP+FP}$$

Recall

	Predicciones		
Real	Positivo	Negativo	
Positivo	VP	FN	
Negativo	FP	VN	

$$recall = \frac{VP}{VP + FN}$$

Probaremos las nuevas métricas en nuestro ejemplo.

Encontrando el equilibrio

F1-Score

$$F1 = 2 * \frac{precision*recall}{precision+recall}$$

RL para Clasificación Binaria

RL para Clasificación Binaria

La regresión logística nos devuelve probabilidades.

Probabilidad > 0.5 → target = 1

$$sig(t) = \frac{1}{1 + e^{-t}}$$

Sensibilidad y Especificidad

True Positive Ratio

TPR

False Positive Ratio

$$= \frac{FP}{TN + FP}$$

Puntos de Corte (Threshold)

Podemos variar el punto de corte

Resultado del modelo de regresión logística

- En realidad no es spam
- En realidad es spam

- En realidad no es spam
- En realidad es spam

La curva ROC

Si el punto de corte = 0:

o Todos son 1, además TPR = FPR = 1

Si el punto de corte = 1:

o Todos son 0, además TPR = FPR = 0

Validación Cruzada

Contáctame:

- in <u>walterpcasas</u>
- wperezc@uni.pe
- Surf Code

