ODE-constrained mixture modeling

1.0

Generated by Doxygen 1.8.11

ii CONTENTS

Contents

1	ODE	MM Documentation	2
	1.1	Introduction	2
	1.2	Availability	2
	1.3	Installation	2
	1.4	Licensing	2
	1.5	Models	3
		1.5.1 Incorporation of mechanistic description of the mean	3
		1.5.2 Incorporation of mechanistic description of the mean and covariance	3
	1.6	Distributions	3
2	Con	version Reaction	3
3	Diffe	erential protein expression (one stage)	4
4	Influ	ence of extracellular scaffolds on pain signaling	4
5	Sub	population differences of sensory neurons	4
6	File	Index	4
	6.1	File List	4
7	File	Documentation	10
	7.1	collectConditions.m File Reference	10
		7.1.1 Detailed Description	11
		7.1.2 Function Documentation	11
	7.2	computeMixtureProbability.m File Reference	12
		7.2.1 Detailed Description	12
		7.2.2 Function Documentation	12
	7.3	distributions/logn/func_dmudxi_logn_mean.m File Reference	13
		7.3.1 Detailed Description	13
		7.3.2 Function Documentation	13
	7.4	distributions/logn/func_dmudxi_logn_median.m File Reference	14

	7.4.1	Detailed Description	14
	7.4.2	Function Documentation	14
7.5	distribu	tions/logn/func_dsigma2dxi_logn.m File Reference	15
	7.5.1	Detailed Description	15
	7.5.2	Function Documentation	15
7.6	distribu	tions/logn/func_dSigmadxi_logn.m File Reference	16
	7.6.1	Detailed Description	16
	7.6.2	Function Documentation	16
7.7	distribu	tions/logn/func_Sigma_logn.m File Reference	17
	7.7.1	Detailed Description	17
	7.7.2	Function Documentation	17
7.8	distribu	tions/logn/logoflognpdf.m File Reference	17
	7.8.1	Detailed Description	17
	7.8.2	Function Documentation	18
7.9	distribu	tions/logn/logofmvnpdf.m File Reference	18
	7.9.1	Detailed Description	18
7.10	distribu	tions/norm/func_dmudxi_norm.m File Reference	18
	7.10.1	Detailed Description	18
	7.10.2	Function Documentation	18
7.11	distribu	tions/norm/func_dsigma2dxi_norm.m File Reference	19
	7.11.1	Detailed Description	19
	7.11.2	Function Documentation	19
7.12	distribu	tions/norm/func_dSigmadxi_norm.m File Reference	20
	7.12.1	Detailed Description	20
	7.12.2	Function Documentation	20
7.13	distribu	tions/norm/func_Sigma_norm.m File Reference	21
	7.13.1	Detailed Description	21
	7.13.2	Function Documentation	21
7.14	distribu	tions/norm/logofnormpdf.m File Reference	21
	7.14.1	Detailed Description	22

iv CONTENTS

	7.14.2 Function Documentation	22
7.15	examples/conversion_reaction/data/generate_data_cr.m File Reference	22
	7.15.1 Detailed Description	22
7.16	examples/conversion_reaction/main_optimization_cr.m File Reference	23
	7.16.1 Detailed Description	23
7.17	examples/conversion_reaction/main_sampling_cr.m File Reference	23
	7.17.1 Detailed Description	23
7.18	examples/conversion_reaction/main_singlecell_prediction.m File Reference	23
	7.18.1 Detailed Description	24
	7.18.2 Function Documentation	24
7.19	examples/subpopulation_differences/main_singlecell_prediction.m File Reference	24
	7.19.1 Detailed Description	24
7.20	examples/conversion_reaction/model_SP_all.m File Reference	24
	7.20.1 Detailed Description	25
7.21	examples/conversion_reaction/model_SP_k1.m File Reference	25
	7.21.1 Detailed Description	25
7.22	examples/conversion_reaction/model_SP_k1k2.m File Reference	25
	7.22.1 Detailed Description	26
7.23	examples/conversion_reaction/model_SP_k1k3.m File Reference	26
	7.23.1 Detailed Description	26
7.24	examples/conversion_reaction/model_SP_k2.m File Reference	26
	7.24.1 Detailed Description	27
7.25	examples/conversion_reaction/model_SP_k2k3.m File Reference	27
	7.25.1 Detailed Description	27
7.26	examples/conversion_reaction/model_SP_k3.m File Reference	27
	7.26.1 Detailed Description	28
7.27	examples/conversion_reaction/models_RRE.m File Reference	28
	7.27.1 Detailed Description	28
7.28	examples/conversion_reaction/plot_cr.m File Reference	28
	7.28.1 Detailed Description	28

7.29	examples/conversion_reaction/plot_cr_SIAppendix.m File Reference	28
	7.29.1 Detailed Description	29
7.30	examples/conversion_reaction/plot_cr_variabilityReduction.m File Reference	29
	7.30.1 Detailed Description	29
	7.30.2 Function Documentation	29
7.31	examples/conversion_reaction/run_lppd_cr.m File Reference	29
	7.31.1 Detailed Description	30
	7.31.2 Function Documentation	30
7.32	examples/conversion_reaction/run_thermIntegration_cr.m File Reference	30
	7.32.1 Detailed Description	30
	7.32.2 Function Documentation	31
7.33	examples/conversion_reaction/sclogLikelihood_cr.m File Reference	31
	7.33.1 Detailed Description	31
	7.33.2 Function Documentation	32
7.34	examples/conversion_reaction/simulation/CR_log_syms.m File Reference	32
	7.34.1 Detailed Description	33
	7.34.2 Function Documentation	33
7.35	examples/conversion_reaction/simulation/CR_syms.m File Reference	33
	7.35.1 Detailed Description	33
	7.35.2 Function Documentation	33
7.36	examples/conversion_reaction/simulation/generate_simFiles_cr.m File Reference	34
	7.36.1 Detailed Description	34
7.37	examples/differential_protein_expression/data/generate_data_oneStage.m File Reference	34
	7.37.1 Detailed Description	34
7.38	examples/differential_protein_expression/main_oneStage_SP_1D.m File Reference	34
	7.38.1 Detailed Description	35
7.39	examples/differential_protein_expression/main_oneStage_SP_2D.m File Reference	35
	7.39.1 Detailed Description	35
7.40	examples/differential_protein_expression/plot_fit_oneStage.m File Reference	35
	7.40.1 Detailed Description	35

vi CONTENTS

7.41	examples/differential_protein_expression/plot_uncertainty_oneStage.m File Reference	36
	7.41.1 Detailed Description	36
7.42	examples/differential_protein_expression/simulation/generate_simFile_oneStage.m File Reference	36
	7.42.1 Detailed Description	36
7.43	examples/differential_protein_expression/simulation/oneStage_syms.m File Reference	36
	7.43.1 Detailed Description	36
	7.43.2 Function Documentation	36
7.44	examples/ECM_differences/data/load_datasets_PDL_Coll.m File Reference	37
	7.44.1 Detailed Description	37
7.45	examples/ECM_differences/generate_ECM_models.m File Reference	37
	7.45.1 Detailed Description	37
7.46	examples/ECM_differences/main_ECM_differences.m File Reference	37
	7.46.1 Detailed Description	38
7.47	examples/ECM_differences/plot_ECM_fit.m File Reference	38
	7.47.1 Detailed Description	38
7.48	examples/ECM_differences/plot_ECM_ranks.m File Reference	38
	7.48.1 Detailed Description	38
7.49	examples/ECM_differences/plot_ECM_valid.m File Reference	38
	7.49.1 Detailed Description	39
7.50	examples/ECM_differences/run_fittings_ECM.m File Reference	39
	7.50.1 Detailed Description	39
	7.50.2 Function Documentation	39
7.51	examples/ECM_differences/run_profile_ECM.m File Reference	39
	7.51.1 Detailed Description	40
7.52	examples/subpopulation_differences/dephosphorylation/exp_decay.m File Reference	40
	7.52.1 Detailed Description	40
7.53	examples/subpopulation_differences/dephosphorylation/import_dephospho_data.m File Reference	40
	7.53.1 Detailed Description	40
7.54	examples/subpopulation_differences/dephosphorylation/main_analysis_dephospho.m File Reference	40
	7.54.1 Detailed Description	41

CONTENTS vii

/ hh	- avamplec/cultipopulation differencec/dephacehory/ation/plot cultipop dephaceho cultiplement m	
7.00	examples/subpopulation_differences/dephosphorylation/plot_subpop_dephoshp_supplement.m File Reference	41
	7.55.1 Detailed Description	41
7.56	examples/subpopulation_differences/generate_nosubpop_file.m File Reference	41
	7.56.1 Detailed Description	41
7.57	examples/subpopulation_differences/generate_subpop_files.m File Reference	41
	7.57.1 Detailed Description	41
7.58	examples/subpopulation_differences/generate_subpop_TrkA.m File Reference	42
	7.58.1 Detailed Description	42
7.59	examples/subpopulation_differences/main_subpopulation_analysis.m File Reference	42
	7.59.1 Detailed Description	42
7.60	examples/subpopulation_differences/plot_subpop_fit.m File Reference	42
	7.60.1 Detailed Description	42
7.61	examples/subpopulation_differences/plot_subpop_profiles.m File Reference	42
	7.61.1 Detailed Description	43
7.62	examples/subpopulation_differences/plot_subpop_valid.m File Reference	43
	7.62.1 Detailed Description	43
7.63	examples/subpopulation_differences/run_fitting_subpop.m File Reference	43
	7.63.1 Detailed Description	43
	7.63.2 Function Documentation	44
7.64	examples/subpopulation_differences/run_logmarg_subpop.m File Reference	44
	7.64.1 Detailed Description	44
7.65	examples/subpopulation_differences/run_lppd_subpop.m File Reference	44
	7.65.1 Detailed Description	44
7.66	$examples/subpopulation_differences/simulation/generate_simFile_ErkSignaling.m~File~Reference~.$	45
	7.66.1 Detailed Description	45
7.67	examples/subpopulation_differences/simulation/ODEmodel_syms_sPsET_loglog.m File Reference	45
	7.67.1 Detailed Description	45
	7.67.2 Function Documentation	45
7.68	examples/two_stage_exandintrinsic/data/generate_data_twostage.m File Reference	45
	7.68.1 Detailed Description	46

viii CONTENTS

7.69	examples/two_stage_exandintrinsic/main_MA.m File Reference	46
	7.69.1 Detailed Description	46
7.70	examples/two_stage_exandintrinsic/main_MA_1subpop.m File Reference	46
	7.70.1 Detailed Description	46
7.71	examples/two_stage_exandintrinsic/main_MA_1subpop_extrinsic.m File Reference	47
	7.71.1 Detailed Description	47
7.72	examples/two_stage_exandintrinsic/main_RRE.m File Reference	47
	7.72.1 Detailed Description	47
7.73	examples/two_stage_exandintrinsic/simulation/compile_simFiles_geneExp.m File Reference	47
	7.73.1 Detailed Description	48
7.74	examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_extrinsic_syms.m File Reference	48
	7.74.1 Detailed Description	48
	7.74.2 Function Documentation	48
7.75	examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_MA_syms.m File Reference	48
	7.75.1 Detailed Description	49
	7.75.2 Function Documentation	49
7.76	examples/two_stage_exandintrinsic/simulation/modelDef_geneExp.m File Reference	49
	7.76.1 Detailed Description	49
7.77	examples/two_stage_exandintrinsic/simulation/modelDef_geneExp_extrinsic.m File Reference	49
	7.77.1 Detailed Description	50
7.78	examples/two_stage_exandintrinsic/simulation/RRE_geneExp_RRE_syms.m File Reference	50
	7.78.1 Detailed Description	50
	7.78.2 Function Documentation	50
7.79	generateODEMM.m File Reference	50
	7.79.1 Detailed Description	51
	7.79.2 Function Documentation	51
7.80	getLognMeanVar.m File Reference	52
	7.80.1 Detailed Description	53
	7.80.2 Function Documentation	53

7.81	getRREsigmas.m File Reference	53
	7.81.1 Detailed Description	54
	7.81.2 Function Documentation	54
7.82	getScalingFactors.m File Reference	55
	7.82.1 Detailed Description	55
	7.82.2 Function Documentation	55
7.83	getSigmaPointApp_status_mod.m File Reference	56
	7.83.1 Detailed Description	56
	7.83.2 Function Documentation	57
7.84	install_ODEMM.m File Reference	57
	7.84.1 Detailed Description	57
7.85	load_plot_settings.m File Reference	57
	7.85.1 Detailed Description	57
7.86	logLikelihood.m File Reference	57
	7.86.1 Detailed Description	58
	7.86.2 Function Documentation	58
7.87	plotODEMM.m File Reference	60
	7.87.1 Detailed Description	60
	7.87.2 Function Documentation	60
7.88	printParams.m File Reference	61
	7.88.1 Detailed Description	61
	7.88.2 Function Documentation	61
7.89	testSigmaPointApp_mod.m File Reference	62
	7.89.1 Detailed Description	62
	7.89.2 Function Documentation	62
Index		63

1 ODEMM Documentation

1.1 Introduction

Cellular heterogeneity occurs at multiple levels. To cover these levels, ODEMM combines mixuture modeling with mechanistic models for the individual subpopulations.

ODEMM offers

- models that are able to include mechanistic descriptions of the **means** of individual subpopulations, e.g., by reaction rate equations (RRE) (Hasenauer et al., PloS CB (2014), Loos et al., CMSB (2016)). For more details see below.
- Hierarchical population models that incorporate means and covariances of the individual subpopulations, e.g., provided by the sigma-point approximation or the moment-closure approximation. For more details see below.

1.2 Availability

ODEMM is a freely available MATLAB (MathWorks) toolbox available at https://github.com/ICB-DCM/\leftarrow ODEMM/. It can be retrieved by downloading the zip archive at https://github.com/ICB-DCM/ODEM\leftarrow M/archive/master.zip or cloning the git repository.

1.3 Installation

If the repository was cloned, install_ODEMM.m needs to be run to add the folders to the MATLAB search path. If the zip archive was downloaded the archive needs to be unzipped before executing install_ODEMM.m.

Toolboxes required for the examples

In principle, every simulation that provides means (and covariances) can be incorporated into ODEMM. For our examples, we used the simulations obtained by AMICI and calibrated the models using the parameter estimation toolbox PESTO.

- AMICI (simulation): https://github.com/ICB-DCM/AMICI
- PESTO (parameter estimation): https://github.com/ICB-DCM/PESTO
- SPToolbox (sigma-point approximation): https://github.com/ICB-DCM/SPToolbox (required for the examples incorporating means and covariances)
- CERENA (moment approximation): https://cerenadevelopers.github.io/CERENA/ (required for the example two_stage_exandintrinsic)

1.4 Licensing

See LICENSE file in the ODEMM source directory.

1.5 Models 3

1.5 Models

ODEMM implements different kinds of ODE constrained mixture models.

1.5.1 Incorporation of mechanistic description of the mean

If the mean of a subpopulation is described by, e.g., RRE, the variances of the measurements are treated as additional parameters. An example for setting up RRE constrained mixture models is given in models_RRE() which can be found in examples/conversion_reaction/.

1.5.2 Incorporation of mechanistic description of the mean and covariance

When not only a mechanistic description of the mean, but also of the covariance is provided by the simulation function for the individual subpopulations, a hierarchical population model can be created. In our examples, we assessed two approximations for obtaining the statistical moments of the subpopulations:

- Sigma-point approximation (/examples/conversion_reaction/models_SP)
- Moment-closure approximation (/examples/two_stage_exandintrinsic)

1.6 Distributions

For the mixture distribution, ODEMM implements

- · multivariate normal distributions and
- · multivariate log-normal distributions.

The density functions and corresponding functions required for the models can be found in /distributions.

2 Conversion Reaction

This example reproduces the results of the analysis of "Unraveling sources of heterogeneity" of Loos et al., Cell Systems (2018). In this example, models incorporating only the **mean** ($model_RRE.m$), and models incorporating **mean and variance** (e.g., $model_SP_k3.m$) are implemented. The latter allow for cell-to-cell variability of certain parameters of the model and incorporate the sigma-point approximation to obtain the statistical properties of the individual subpopulations.

First, the simulation file needs to be compiled using the MATLAB Toolbox AMICI. This can be done by running ./simulation/generate_simFiles_cr.m.

All models for this example are optimized within the function main_optimization_cr.m.

The Bayesian model selection is performed in main_sampling_cr.m.

The prediction of single-cell trajectories is performed in main_singlecell_prediction.m.

To reproduce the figures of the paper, run_plot_cr.m.

3 Differential protein expression (one stage)

This example reproduces the results of the analysis of "Identification of differential protein expression using multivariate data" of Loos et al., Cell Systems (2018).

First, the simulation file needs to be compiled using the MATLAB Toolbox AMICI. This can be done by running ./simulation/generate_simFile_oneStage.m.

The script $main_oneStage_SP_1D.m$ reproduces the results for model calibration bsaed on the marginal distributions. The script $main_oneStage_SP_2D.m$ reproduces the results for model calibration bsaed on the marginal distributions.

The figures of the paper can be reproduced with the scripts $plot_fit_oneStage.m$ and $plot_fit_outline$ uncertainty.m.

4 Influence of extracellular scaffolds on pain signaling

This example reproduces the results of the analysis of the "influence of extracellular scaffolds on sensitization signaling" of Loos et al., Cell Systems (2018).

First the simulation file needs to be compiled using the MATLAB Toolbox AMICI. This can be done by running ../subpopulation_differences/simulation/generate_simFile_ErkSignaling.m.

The main file for the analysis is main_ECM_differences.m.

5 Subpopulation differences of sensory neurons

This example reproduces the results of the analysis of "causal differences between subpopulations of cultured sensory neurons" of Loos et al., Cell Systems (2018).

First the simulation file needs to be compiled using the MATLAB Toolbox AMICI. This can be done by running ./simulation/generate_simFile_ErkSignaling.m.

The main file for the analysis is main_subpopulation_analysis.m.

6 File Index

6.1 File List

Here is a list of all documented files with brief descriptions:

collectConditions.m

This function collects all different conditions regarding input/differences between subpopulations/experiments and timepoints

computeMixtureProbability.m

Robust calculation of a mixture distribution likelihood

10

12

6.1 File List 5

generateODEMM.m This function generates a file that defines the ODE-constrained mixture model	50
<code>getLognMeanVar.m</code> This function calculations the mean and variances, and the corresponding derivatives of a multivariate log-normal distribution given the parameters μ and Σ	52
getRREsigmas.m This function defines the parameters needed for the parametrization of the variances in case Reaction Rate Equations are used for the mechanistic description of the means	53
getScalingFactors.m Calculates scaling factors for replicates such that the distance between the means in log-space are minimal	55
getSigmaPointApp_status_mod.m Modified version of the getSigmaPointApp.m function of the SPToolbox	56
install_ODEMM.m Script that adds the required paths to the MATLAB search path	57
load_plot_settings.m Functions to set font sizes and colors for the visualization	57
logLikelihood.m This function evaluates the likelihood function for a given model, data and parameter vector	57
plotODEMM.m Routine to plot the ODE-constrained mixture model	60
printParams.m Help function to print parameters names and values	61
testSigmaPointApp_mod.m Modified version of the testSigmaPointApp_status.m function of the SPToolbox	62
distributions/logn/func_dmudxi_logn_mean.m This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the mean of the (multivariate) log-normal distribution	13
distributions/logn/func_dmudxi_logn_median.m This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the median of the (multivariate) log-normal distribution. This should only be used for the case of using only a mechanistic description of the means of the observables	14
distributions/logn/func_dsigma2dxi_logn.m This function calcuatates the derivative of σ^2 in case of univariate measurements and a lognormal distribution assumption	15
distributions/logn/func_dSigmadxi_logn.m This function maps the means and covariances of the observables for a subpopulation to Σ of the multivariate log-normal distribution	16
distributions/logn/func_Sigma_logn.m This function maps the means and covariances to Σ of a (multivariate) log-normal distribution	17
distributions/logn/logoflognpdf.m Modified version of MATLAB function LOGNPDF such that the log-density is returned	17

distributions/logn/logofmvnpdf.m Modified version of MATLAB function MVNPDF such that the log-density is returned	18
distributions/norm/func_dmudxi_norm.m This function calculates the derivative of μ of the (multivariate) normal distribution	18
distributions/norm/func_dsigma2dxi_norm.m This function calculates the derivative of σ^2 in case of univariate measurements and a normal distribution assumption	19
distributions/norm/func_dSigmadxi_norm.m This function maps the means and variances to Σ of the multivariate normal distribution	20
distributions/norm/func_Sigma_norm.m This function maps the means and variances to Σ of the multivariate normal distribution	21
distributions/norm/logofnormpdf.m Modified version of MATLAB function NORMPDF such that the log-density is given back	21
examples/conversion_reaction/main_optimization_cr.m This is the main script for the first example, the conversion reaction. All Reaction Rate Equation (RRE) models are generated and their parameters are estimated by calling models_RRE.m. All SP models are estimated, for which e.g. model_SP_k1.m indicates that k1 has an additional cell-to-cell variability modeled by the Sigma point approximation	23
examples/conversion_reaction/main_sampling_cr.m This is the main script for the Bayesian model selection for the conversion reaction	23
examples/conversion_reaction/main_singlecell_prediction.m This script shows the analysis of the single-cell trajectory prediction. First the single-cell parameter based on one single-cell trajectory are sampled and the predicted results are visualized. Then the parameters are optimized for 100 single-cell trajectories. This analysis corresponds to Loos et al., Cell Systems (2018), Figure 3E-G	23
examples/conversion_reaction/model_SP_all.m This function generates model and estimates parameters for the model accounting for means and variances (using Sigma Points (SP). All kinetic parameters are assumed to vary between individual cells: k1: inter- and intra-subpopulation variable k2: cell-to-cell variable k3: cell-to-cell variable	
examples/conversion_reaction/model_SP_k1.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be: k1: inter- and intra-subpopulation variable k2: homogeneous k3: homogeneous	
examples/conversion_reaction/model_SP_k1k2.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be: k1: inter- and intra-subpopulation variable k2: cell-to-cell variable	

k3: homogeneous

25

6.1 File List 7

examples/conversion_reaction/model_SP_k1k3.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be: k1: inter- and intra-subpopulation variable k2: homogeneous k3: cell-to-cell variable	
26	
examples/conversion_reaction/model_SP_k2.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be: k1: subpopulation variable k2: cell-to-cell variable k3: homogeneous	26
examples/conversion_reaction/model_SP_k2k3.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be: k1: subpopulation variable k2: cell-to-cell variable	
k3: cell-to-cell variable	27
examples/conversion_reaction/model_SP_k3.m This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be: k1: subpopulation variable k2: homogenous k3: cell-to-cell variable	
This model is the ground truth	27
examples/conversion_reaction/models_RRE.m This function generates Reaction Rate Euqation model and estimates the parameters for the models with varying number of parameters for the variances	28
examples/conversion_reaction/plot_cr.m This script visualizes the results for the conversion reaction	28
examples/conversion_reaction/plot_cr_SIAppendix.m This script generates the figures for the supplement for the conversion reaction example	28
examples/conversion_reaction/plot_cr_variabilityReduction.m Clear all close all clc load_plot_settings	29
examples/conversion_reaction/run_lppd_cr.m This function runs the sampling for the log pointwise predictive density for the conversion reaction reaction example	29
examples/conversion_reaction/run_thermIntegration_cr.m This function runs thermodynamic integration for the conversion reaction example	30
examples/conversion_reaction/sclogLikelihood_cr.m This function provides the likelihood for the optimization of the single cell trajectory in the conversion reaction example	31
examples/conversion_reaction/data/generate_data_cr.m This script generates the artificial data of a conversion process	22
examples/conversion_reaction/simulation/CR_log_syms.m This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation	32

examples/conversion_reaction/simulation/CR_syms.m This function defines the model of the conversion process with the linear output, which is used for the Reaction Rate Equations	33
examples/conversion_reaction/simulation/generate_simFiles_cr.m This script generates the functions for the conversion reaction using the toolbox AMICI	34
examples/differential_protein_expression/main_oneStage_SP_1D.m This script generates the model for the 1-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO	34
examples/differential_protein_expression/main_oneStage_SP_2D.m This script generates the model for the 2-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO	35
examples/differential_protein_expression/plot_fit_oneStage.m This script visualizes the model fit for the two-dimensional data	35
examples/differential_protein_expression/plot_uncertainty_oneStage.m This script visualizes the confidence intervals for the one- and the two-dimensional models	36
examples/differential_protein_expression/data/generate_data_oneStage.m This script generates the artificial data of the differential gene protein expression	34
examples/differential_protein_expression/simulation/generate_simFile_oneStage.m Compilation of one stage simulation file	36
examples/differential_protein_expression/simulation/oneStage_syms.m This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation	36
examples/ECM_differences/generate_ECM_models.m This function generates the 128 hierarchical models accounting for all possible differences between the extracellular scaffolds. The underlying model for each scaffolds assumes interand intra-subpopulation variability of TrkA activity and cell-to-cell variability of relative Erk1/2 levels	37
examples/ECM_differences/main_ECM_differences.m Main script for the analysis of the influence of extracellular scaffolds on pain signaling in sensory neurons	37
examples/ECM_differences/plot_ECM_fit.m Visualization script for the results of the influence of extracellular scaffolds on pain signaling in sensory neurons	38
examples/ECM_differences/plot_ECM_ranks.m Visualization script for ranking of the models and differences	38
examples/ECM_differences/plot_ECM_valid.m Visualization script for the validation of the TrkA and Erk differences	38
examples/ECM_differences/run_fittings_ECM.m This function performs optimization for the all model accounting for differences between PDL and Coll	39
examples/ECM_differences/run_profile_ECM.m This function calculates the profile likelihoods for the final model accounting for differences in TrkA activity, Erk levels and Erk inactivation	39

6.1 File List

examples/ECM_differences/data/load_datasets_PDL_Coll.m Script for loading the datasets of extracellular scaffolds poly-D-lysin (PDL) and Collagen I (Coll)	37
examples/subpopulation_differences/generate_nosubpop_file.m Generate file for model without any subpopulations	41
examples/subpopulation_differences/generate_subpop_files.m Generation of all models accounting for subpopulation differences	41
examples/subpopulation_differences/generate_subpop_TrkA.m Generation of final model including differences in TrkA levels	42
examples/subpopulation_differences/main_singlecell_prediction.m Script for the single cell prediction for neurons cultured on poly-D-lysine	24
examples/subpopulation_differences/main_subpopulation_analysis.m Script for the analysis of subpopulation differences in sensory neurons cultured on poly-D-lysine	42
examples/subpopulation_differences/plot_subpop_fit.m Visualization script for the fits of cells on poly-D-lysine	42
examples/subpopulation_differences/plot_subpop_profiles.m Visualization script for the profile likelihoods	42
examples/subpopulation_differences/plot_subpop_ranks.m	??
examples/subpopulation_differences/plot_subpop_valid.m Visualization script for the validation Figure 5D-F of Loos et al., Cell Systems (2018)	43
examples/subpopulation_differences/run_fitting_subpop.m This function optimizes the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb	43
examples/subpopulation_differences/run_logmarg_subpop.m This function calculates the log marginals for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb	44
examples/subpopulation_differences/run_lppd_subpop.m This function calculates the log pointwise predictive density for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb	44
examples/subpopulation_differences/dephosphorylation/exp_decay.m Likelihood function for the fit of the dephosphorylation rate	40
examples/subpopulation_differences/dephosphorylation/import_dephospho_data.m Script for the import of the dephosphorylation data	40
examples/subpopulation_differences/dephosphorylation/main_analysis_dephospho.m Main script for the analysis of the dephosphorylation data	40
examples/subpopulation_differences/dephosphorylation/plot_subpop_dephoshp_supplement.m Visualization script for the dephosphorylation analysis	41
examples/subpopulation_differences/simulation/generate_simFile_ErkSignaling.m This script generates the functions for the NGF-induced Erk1/2 signaling using the toolbox AMICI	45
examples/subpopulation_differences/simulation/ODEmodel_syms_sPsET_loglog.m This function provides the model of NGF-induced Erk1/2 signaling. It is compiled using AMICI	45

examples/two_stage_exandintrinsic/main_MA.m This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods	46
examples/two_stage_exandintrinsic/main_MA_1subpop.m This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods	46
examples/two_stage_exandintrinsic/main_MA_1subpop_extrinsic.m This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods	47
examples/two_stage_exandintrinsic/main_RRE.m This script generates the model incorporating only the means by reaction rate equations, estimates the parameters and calculates the profile likelihoods	47
examples/two_stage_exandintrinsic/data/generate_data_twostage.m This script generates the data for the two stage gene expression example using the Stochastic Simulation Algorithm (SSA) implemented in the toolbox CERENA	45
examples/two_stage_exandintrinsic/simulation/compile_simFiles_geneExp.m This script generate the simulation files for the example of two stage gene expression including intrinsic and extrinsic noise. This requires the MATLAB Toolbox CERENA. The _syms.m files are generate using CERENA and the model definition files modelDef_geneExp.m for the reaction rate equations and the moment approximation, and modelDef_geneExp_extrinsic.m for the moment approximation with additional extrinsic noise	47
examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_extrinsic_syms.m This function provides the model definition for the moment approximation with additional extrinsic noise of the two stage gene expression. It is generated by the toolbox CERENA	48
examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_MA_syms.m This function provides the model definition for the moment approximation of the two stage gene expression. It is generated by the toolbox CERENA	48
examples/two_stage_exandintrinsic/simulation/modelDef_geneExp.m Model definition of the reaction network for the two stage gene expression	49
examples/two_stage_exandintrinsic/simulation/modelDef_geneExp_extrinsic.m Model definition of the reaction network for the two stage gene expression with additional extrinsic noise	49
examples/two_stage_exandintrinsic/simulation/RRE_geneExp_RRE_syms.m This function provides the model definition for the reaction rate equations of the two stage gene expression. It is generated by the toolbox CERENA	50

7 File Documentation

7.1 collectConditions.m File Reference

This function collects all different conditions regarding input/differences between subpopulations/experiments and timepoints.

Functions

mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, conditions >,mlhsInnerSubst< matlabtypesubstitute, D
 > collectConditions (matlabtypesubstitute D, matlabtypesubstitute M)

This function collects all different conditions regarding input/differences between subpopulations/experiments and timepoints.

7.1.1 Detailed Description

This function collects all different conditions regarding input/differences between subpopulations/experiments and timepoints.

7.1.2 Function Documentation

7.1.2.1 mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, conditions >,mlhsInnerSubst< matlabtypesubstitute, D > collectConditions (matlabtypesubstitute D, matlabtypesubstitute M)

This function collects all different conditions regarding input/differences between subpopulations/experiments and timepoints.

USAGE

[conditions,D] = collectConditions(D,M)

Parameters

D	data struct
М	model struct

Return values

conditions	conditions struct
D	updated data struct

Required fields of D:

- t -- time vector
- u -- vector of stimulations

Required fields of M:

- n_subpop -- number of subpopulations
- $u\left\{ s\text{,e}\right\} -\text{input vector capturing differences between subpopulations and experiments}$

Generated fields of D:

• c -- n_subpop x (n_u + n_differences) matrix linking condition to data

Generated fields of conditions:

• input -- (n_u + n_differences) x 1 input vector

```
• time -- 1 x n_t time vector
```

• sigma -- 1 x n_t vector of sigmas for condition c

Definition at line 17 of file collectConditions.m.

Referenced by generate_ECM_models(), generate_nosubpop_file(), generate_subpop_files(), generate_subpop_ $_$ TrkA(), logLikelihood(), main_MA(), main_MA_1subpop(), main_MA_1subpop_extrinsic(), main_oneStage_S \hookrightarrow P_1D(), main_oneStage_SP_2D(), main_RRE(), main_subpopulation_analysis(), model_SP_all(), model_SP_ \leftrightarrow k1(), model_SP_k1k2(), model_SP_k1k3(), model_SP_k2(), model_SP_k2k3(), model_SP_k3(), model_SRE(), plot_ECM_fit(), plot_subpop_fit(), plotODEMM(), run_fitting_subpop(), run_fittings_ECM(), run_logmarg_subpop(), run_lppd_subpop(), and run_profile_ECM().

7.2 computeMixtureProbability.m File Reference

Robust calculation of a mixture distribution likelihood.

Functions

mlhsInnerSubst< matlabtypesubstitute, varargout > computeMixtureProbability (matlabtypesubstitute varargin)

Robust calculation of a mixture distribution likelihood.

7.2.1 Detailed Description

Robust calculation of a mixture distribution likelihood.

7.2.2 Function Documentation

7.2.2.1 mlhslnnerSubst < matlabtypesubstitute, varargout > computeMixtureProbability (matlabtypesubstitute varargin)

Robust calculation of a mixture distribution likelihood.

USAGE

```
[logp,dlogpdxi] = computeMixtureProbability(w,q_i,H_i)
[logp] = computeMixtureProbability(w,q_i)
```

Parameters

```
varargin

1 computeMixtureProbability ( w, q_i, H_i )

Required Parameters for varargin:

• w (1 x n_s) vector with weights w<sub>s</sub>

• q_i (n x n_s) matrix with log(p_i) for every column

• H_i (n x n_xi x n_s) s.th. d(w_i*p_i)/dxi = p_i*H_i
```

Return values

logp	n x 1 scalar of loglikelihood
dlogpdxi	n x n_xi vector of gradient

Definition at line 17 of file computeMixtureProbability.m.

Referenced by logLikelihood(), run_lppd_cr(), and run_lppd_subpop().

7.3 distributions/logn/func_dmudxi_logn_mean.m File Reference

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the mean of the (multivariate) log-normal distribution.

Functions

• mlhsInnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_logn_mean (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute Sigma, matlabtypesubstitute dSigmadxi, matlabtypesubstitute xi, matlabtypesubstitute u, matlabtypesubstitute dim)

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the mean of the (multivariate) log-normal distribution.

7.3.1 Detailed Description

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the mean of the (multivariate) log-normal distribution.

7.3.2 Function Documentation

7.3.2.1 mlhslnnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_logn_mean (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute Sigma, matlabtypesubstitute dSigmadxi, matlabtypesubstitute xi, matlabtypesubstitute u, matlabtypesubstitute dim)

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the mean of the (multivariate) log-normal distribution.

Parameters

t	time vector (not used, included for consistency and possible extensions)
Х	vector of the means and covariances (not used, included for consistency and possible extensions)
dxdxi	derivatives of the means and covariances
Sigma	(not used, included for consistency and possible extensions)
dSigmadxi	(not used, included for consistency and possible extensions)
хi	parameter vector (not used, included for consistency and possible extensions)
и	input/stimulus (not used, included for consistency and possible extensions)
n_dim	dimension of measurements

Return values

	dmudxi	derivative of μ of the (multivariate) log-normal distribution	
--	--------	---	--

Definition at line 17 of file func dmudxi logn mean.m.

7.4 distributions/logn/func_dmudxi_logn_median.m File Reference

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the median of the (multivariate) log-normal distribution. This should only be used for the case of using only a mechanistic description of the means of the observables.

Functions

 mlhsInnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_logn_median (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute Sigma, matlabtypesubstitute d
 Sigmadxi, matlabtypesubstitute xi, matlabtypesubstitute u, matlabtypesubstitute dim)

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the median of the (multivariate) log-normal distribution. This should only be used for the case of using only a mechanistic description of the means of the observables.

7.4.1 Detailed Description

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the median of the (multivariate) log-normal distribution. This should only be used for the case of using only a mechanistic description of the means of the observables.

7.4.2 Function Documentation

7.4.2.1 mlhslnnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_logn_median (matlabtypesubstitute *t*, matlabtypesubstitute *x*, matlabtypesubstitute *dxdxi*, matlabtypesubstitute *Sigma*, matlabtypesubstitute *dsigmadxi*, matlabtypesubstit

This function calculates the derivative of μ of the (multivariate) log-normal distribution for the case of linking the mean of the observables to the median of the (multivariate) log-normal distribution. This should only be used for the case of using only a mechanistic description of the means of the observables.

Parameters

t	time vector (not used, included for consistency and possible extensions)
Х	vector of the means and covariances (not used, included for consistency and possible extensions)
dxdxi	derivatives of the means and covariances
Sigma	(not used, included for consistency and possible extensions)
dSigmadxi	(not used, included for consistency and possible extensions)
xi	parameter vector (not used, included for consistency and possible extensions)
и	input (not used, included for consistency and possible extensions)
n_dim	dimension of measurement

Return values

dmudxi	derivative of μ of the (multivariate) log-normal distribution
--------	---

Definition at line 17 of file func dmudxi logn median.m.

7.5 distributions/logn/func_dsigma2dxi_logn.m File Reference

This function calculates the derivative of σ^2 in case of univariate measurements and a log-normal distribution assumption.

Functions

• mlhsInnerSubst< matlabtypesubstitute, dsigma2dxi > func_dsigma2dxi_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute varargin)

This function calcuatates the derivative of σ^2 in case of univariate measurements and a log-normal distribution assumption.

7.5.1 Detailed Description

This function calculates the derivative of σ^2 in case of univariate measurements and a log-normal distribution assumption.

7.5.2 Function Documentation

7.5.2.1 mlhslnnerSubst< matlabtypesubstitute, dsigma2dxi> func_dsigma2dxi_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtype

This function calculates the derivative of σ^2 in case of univariate measurements and a log-normal distribution assumption.

```
USAGE: dsigma2dxi = func_dsigma2dxi_logn(t,x,dxdxi,xi) dsigma2dxi = func_dsigma2dxi_logn(t,x,dxdxi,xi,noise,dnoisedxi,'additive') dsigma2dxi = func_dsigma2dxi_logn(t,x,dxdxi,xi,noise,dnoisedxi,'multiplicative')
```

Parameters

time vector (not used, included for consistency and possible extensions)
vector of the means and variances (not used, included for consistency and possible extensions)
derivatives of the means and variances
parameter vector(not used, included for consistency and possible extensions)
noise: parameters for measurement noise
dnoisedxi: derivative of measurement noise
noisemodel: 'multiplicative' or 'additive'

Return values

	dsigma2dxi	derivative of σ^2 of a log-normal distribution	
--	------------	---	--

Definition at line 17 of file func_dsigma2dxi_logn.m.

7.6 distributions/logn/func_dSigmadxi_logn.m File Reference

This function maps the means and covariances of the observables for a subpopulation to Σ of the multivariate log-normal distribution.

Functions

• mlhsInnerSubst< matlabtypesubstitute, dSigmadxi > func_dSigmadxi_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and covariances of the observables for a subpopulation to Σ of the multivariate lognormal distribution.

7.6.1 Detailed Description

This function maps the means and covariances of the observables for a subpopulation to Σ of the multivariate log-normal distribution.

7.6.2 Function Documentation

7.6.2.1 mlhslnnerSubst< matlabtypesubstitute, dSigmadxi > func_dSigmadxi_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute axdxi, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and covariances of the observables for a subpopulation to Σ of the multivariate log-normal distribution.

USAGE

```
dSigmadxi = func_dSigmadxi_logn(t,x,dxdxi,xi,n_n_dim)
dSigmadxi = func_dSigmadxi_logn(t,x,dxdxi,xi,n_n_dim,noise,dnoisedxi,'multiplicative')
dSigmadxi = func_dSigmadxi_logn(t,x,dxdxi,xi,n_n_dim,noise,dnoisedxi,'additive')
```

Definition at line 17 of file func_dSigmadxi_logn.m.

7.7 distributions/logn/func_Sigma_logn.m File Reference

This function maps the means and covariances to Σ of a (multivariate) log-normal distribution.

Functions

• mlhsInnerSubst< matlabtypesubstitute, Sigma > func_Sigma_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and covariances to Σ of a (multivariate) log-normal distribution.

7.7.1 Detailed Description

This function maps the means and covariances to Σ of a (multivariate) log-normal distribution.

7.7.2 Function Documentation

7.7.2.1 mlhsInnerSubst< matlabtypesubstitute, Sigma > func_Sigma_logn (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and covariances to Σ of a (multivariate) log-normal distribution.

USAGE

```
Sigma = func_Sigma_logn(t,x,xi,n_dim)
Sigma = func_Sigma_logn(t,x,xi,n_dim,noise,'additive')
Sigma = func_Sigma_logn(t,x,xi,n_dim,noise,'multiplicative')
```

Definition at line 17 of file func_Sigma_logn.m.

7.8 distributions/logn/logoflognpdf.m File Reference

Modified version of MATLAB function LOGNPDF such that the log-density is returned.

Functions

mlhsInnerSubst< matlabtypesubstitute, logy > logoflognpdf (matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute sigma)

Modified version of MATLAB function LOGNPDF such that the log-density is returned.

7.8.1 Detailed Description

Modified version of MATLAB function LOGNPDF such that the log-density is returned.

7.8.2 Function Documentation

7.8.2.1 mlhsInnerSubst < matlabtypesubstitute, logy > logoflognpdf (matlabtypesubstitute *x*, matlabtypesubstitute *mu*, matlabtypesubstitute *sigma*)

Modified version of MATLAB function LOGNPDF such that the log-density is returned.

LOGNPDF Lognormal probability density function (pdf). Y = LOGNPDF(X,MU,SIGMA) returns values at X of the lognormal pdf with distribution parameters MU and SIGMA. MU and SIGMA are the mean and standard deviation, respectively, of the associated normal distribution. The size of Y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for MU and SIGMA are 0 and 1 respectively.

See also

LOGNCDF, LOGNFIT, LOGNINV, LOGNLIKE, LOGNRND, LOGNSTAT.

Definition at line 17 of file logoflognpdf.m.

Referenced by logLikelihood().

7.9 distributions/logn/logofmvnpdf.m File Reference

Modified version of MATLAB function MVNPDF such that the log-density is returned.

Functions

• mlhsInnerSubst< matlabtypesubstitute, varargout > logofmvnpdf (matlabtypesubstitute varargin)

Modified version of MATLAB function MVNPDF such that the log-density is returned.

7.9.1 Detailed Description

Modified version of MATLAB function MVNPDF such that the log-density is returned.

7.10 distributions/norm/func dmudxi norm.m File Reference

This function calculates the derivative of μ of the (multivariate) normal distribution.

Functions

mlhsInnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute Sigma, matlabtypesubstitute dSigmadxi, matlabtypesubstitute xi, matlabtypesubstitute u, matlabtypesubstitute n_dim)

This function calculates the derivative of μ of the (multivariate) normal distribution.

7.10.1 Detailed Description

This function calculates the derivative of μ of the (multivariate) normal distribution.

7.10.2 Function Documentation

7.10.2.1 mlhslnnerSubst< matlabtypesubstitute, dmudxi > func_dmudxi_norm (matlabtypesubstitute *t*, matlabtypesubstitute *x*, matlabtypesubstitute *dxdxi*, matlabtypesubstitute *Sigma*, matlabtypesubstitute *dsigmadxi*, matlabtypesubstitute *xi*, matlabtypesubstitute *u*, matlabtypesubstitute *n_dim*)

This function calculates the derivative of μ of the (multivariate) normal distribution.

Parameters

t	time vector (not used, included for consistency and possible extensions)
X	vector of means and variances (not used, included for consistency and possible extensions)
dxdxi	derivatives of means and variances
Sigma	(not used, included for consistency and possible extensions)
dSigmadxi	(not used, included for consistency and possible extensions)
xi	parameter vector (not used, included for consistency and possible extensions)
и	input (not used, included for consistency and possible extensions)
n_dim	dimension of measurement

Return values

C	lmudxi	derivative of μ of the (multivariate) normal distribution.
---	--------	--

Definition at line 17 of file func dmudxi norm.m.

7.11 distributions/norm/func_dsigma2dxi_norm.m File Reference

This function calculates the derivative of σ^2 in case of univariate measurements and a normal distribution assumption.

Functions

• mlhsInnerSubst< matlabtypesubstitute, dsigma2dxi > func_dsigma2dxi_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute xi, matlabtypesubstitute varargin)

This function calculates the derivative of σ^2 in case of univariate measurements and a normal distribution assumption.

7.11.1 Detailed Description

This function calculates the derivative of σ^2 in case of univariate measurements and a normal distribution assumption.

7.11.2 Function Documentation

7.11.2.1 mlhslnnerSubst< matlabtypesubstitute, dsigma2dxi > func_dsigma2dxi_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute xi, matlabtypesubsti

This function calculates the derivative of σ^2 in case of univariate measurements and a normal distribution assumption.

 $USAGE: dsigma2dxi = func_dsigma2dxi_norm(t,x,dxdxi,xi) \ dsigma2dxi = func_dsigma2dxi_norm(t,x,dxdxi,xi,noise,dnoisedxi, additive')$

Parameters

e vector (not used, included for consistency and possible extensions)	t
---	---

Parameters

X	vector of the means and variances of the observables (not used, included for consistency and possible extensions)
dxdxi	derivatives of the means and variances of the obsevables
xi	parameter vector(not used, included for consistency and possible extensions)
varargin	
	noise: parameter for measurement noise
	dnoisedxi: derivative of measurement noise
	noisemodel: (so far only 'additive' supported)

Return values

σ^2 of the normal distribution.	dsigma2dxi
--	------------

Definition at line 17 of file func_dsigma2dxi_norm.m.

7.12 distributions/norm/func_dSigmadxi_norm.m File Reference

This function maps the means and variances to Σ of the multivariate normal distribution.

Functions

 mlhsInnerSubst< matlabtypesubstitute, dSigmadxi > func_dSigmadxi_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and variances to Σ of the multivariate normal distribution.

7.12.1 Detailed Description

This function maps the means and variances to Σ of the multivariate normal distribution.

7.12.2 Function Documentation

7.12.2.1 mlhslnnerSubst< matlabtypesubstitute, dSigmadxi > func_dSigmadxi_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute varargin)

This function maps the means and variances to Σ of the multivariate normal distribution.

USAGE

Definition at line 17 of file func_dSigmadxi_norm.m.

7.13 distributions/norm/func_Sigma_norm.m File Reference

This function maps the means and variances to Σ of the multivariate normal distribution.

Functions

mlhsInnerSubst< matlabtypesubstitute, Sigma > func_Sigma_norm (matlabtypesubstitute t, matlabtypesubstitute x, matlabtypesubstitute xi, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function maps the means and variances to Σ of the multivariate normal distribution.

7.13.1 Detailed Description

This function maps the means and variances to Σ of the multivariate normal distribution.

7.13.2 Function Documentation

7.13.2.1 mlhslnnerSubst< matlabtypesubstitute, Sigma > func_Sigma_norm (matlabtypesubstitute *t*, matlabtypesubstitute *x*, matlabtypesubstitute *xi*, matlabtypesubstitute *n_dim*, matlabtypesubstitute *varargin*)

This function maps the means and variances to Σ of the multivariate normal distribution.

USAGE

Sigma = func_Sigma_norm(t,x,xi,n_dim,noise,'additive')

Parameters

t	time vector
X	vector including means and variances
xi	(not used, included for consistency and possible extensions)
n_dim	dimension of measurement
varargin	
	noise: parameter for measurement noise
	noisemodel: (so far only 'additive' supported)

Return values

Sigma	(n_t x n_dim x n_dim) Σ of the multivariate normal distribution.
-------	---

Definition at line 17 of file func_Sigma_norm.m.

7.14 distributions/norm/logofnormpdf.m File Reference

Modified version of MATLAB function NORMPDF such that the log-density is given back.

Functions

mlhsInnerSubst< matlabtypesubstitute, logy > logofnormpdf (matlabtypesubstitute x, matlabtypesubstitute x, matlabtypesubstitute sigma)

Modified version of MATLAB function NORMPDF such that the log-density is given back.

7.14.1 Detailed Description

Modified version of MATLAB function NORMPDF such that the log-density is given back.

7.14.2 Function Documentation

7.14.2.1 mlhslnnerSubst< matlabtypesubstitute, logy > logofnormpdf (matlabtypesubstitute *x,* matlabtypesubstitute *mu,* matlabtypesubstitute *sigma*)

Modified version of MATLAB function NORMPDF such that the log-density is given back.

NORMPDF Normal probability density function (pdf). Y = NORMPDF(X,MU,SIGMA) returns the pdf of the normal distribution with mean MU and standard deviation SIGMA, evaluated at the values in X. The size of Y is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for MU and SIGMA are 0 and 1 respectively.

See also

NORMCDF, NORMFIT, NORMINV, NORMLIKE, NORMRND, NORMSTAT.

Definition at line 17 of file logofnormpdf.m.

Referenced by logLikelihood().

7.15 examples/conversion_reaction/data/generate_data_cr.m File Reference

This script generates the artificial data of a conversion process.

Functions

• noret::substitute generate data cr ()

This script generates the artificial data of a conversion process.

7.15.1 Detailed Description

This script generates the artificial data of a conversion process.

7.16 examples/conversion_reaction/main_optimization_cr.m File Reference

This is the main script for the first example, the conversion reaction. All Reaction Rate Equation (RRE) models are generated and their parameters are estimated by calling models_RRE.m. All SP models are estimated, for which e.g. model_SP_k1.m indicates that k1 has an additional cell-to-cell variability modeled by the Sigma point approximation.

Functions

• noret::substitute main optimization cr ()

This is the main script for the first example, the conversion reaction. All Reaction Rate Equation (RRE) models are generated and their parameters are estimated by calling models_RRE.m. All SP models are estimated, for which e.g. model_SP_k1.m indicates that k1 has an additional cell-to-cell variability modeled by the Sigma point approximation.

7.16.1 Detailed Description

This is the main script for the first example, the conversion reaction. All Reaction Rate Equation (RRE) models are generated and their parameters are estimated by calling models_RRE.m. All SP models are estimated, for which e.g. model_SP_k1.m indicates that k1 has an additional cell-to-cell variability modeled by the Sigma point approximation.

7.17 examples/conversion_reaction/main_sampling_cr.m File Reference

This is the main script for the Bayesian model selection for the conversion reaction.

Functions

• noret::substitute main_sampling_cr ()

This is the main script for the Bayesian model selection for the conversion reaction.

7.17.1 Detailed Description

This is the main script for the Bayesian model selection for the conversion reaction.

7.18 examples/conversion_reaction/main_singlecell_prediction.m File Reference

This script shows the analysis of the single-cell trajectory prediction. First the single-cell parameter based on one single-cell trajectory are sampled and the predicted results are visualized. Then the parameters are optimized for 100 single-cell trajectories. This analysis corresponds to Loos et al., Cell Systems (2018), Figure 3E-G.

Functions

• noret::substitute main singlecell prediction ()

This script shows the analysis of the single-cell trajectory prediction. First the single-cell parameter based on one single-cell trajectory are sampled and the predicted results are visualized. Then the parameters are optimized for 100 single-cell trajectories. This analysis corresponds to Loos et al., Cell Systems (2018), Figure 3E-G.

7.18.1 Detailed Description

This script shows the analysis of the single-cell trajectory prediction. First the single-cell parameter based on one single-cell trajectory are sampled and the predicted results are visualized. Then the parameters are optimized for 100 single-cell trajectories. This analysis corresponds to Loos et al., Cell Systems (2018), Figure 3E-G.

7.18.2 Function Documentation

7.18.2.1 noret::substitute main_singlecell_prediction()

This script shows the analysis of the single-cell trajectory prediction. First the single-cell parameter based on one single-cell trajectory are sampled and the predicted results are visualized. Then the parameters are optimized for 100 single-cell trajectories. This analysis corresponds to Loos et al., Cell Systems (2018), Figure 3E-G.

Script for the single cell prediction for neurons cultured on poly-D-lysine.

Definition at line 17 of file main singlecell prediction.m.

References load_plot_settings(), and sclogLikelihood_cr().

7.19 examples/subpopulation_differences/main_singlecell_prediction.m File Reference

Script for the single cell prediction for neurons cultured on poly-D-lysine.

Functions

• noret::substitute main_singlecell_prediction ()

7.19.1 Detailed Description

Script for the single cell prediction for neurons cultured on poly-D-lysine.

7.20 examples/conversion_reaction/model_SP_all.m File Reference

This function generates model and estimates parameters for the model accounting for means and variances (using Sigma Points (SP).

All kinetic parameters are assumed to vary between individual cells:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable k3: cell-to-cell variable

Functions

• noret::substitute model SP all ()

This function generates model and estimates parameters for the model accounting for means and variances (using Sigma Points (SP).

All kinetic parameters are assumed to vary between individual cells:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable

k3: cell-to-cell variable

.

7.20.1 Detailed Description

This function generates model and estimates parameters for the model accounting for means and variances (using Sigma Points (SP).

All kinetic parameters are assumed to vary between individual cells:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable k3: cell-to-cell variable

7.21 examples/conversion_reaction/model_SP_k1.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneous k3: homogeneous

Functions

• noret::substitute model SP k1 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneousk3: homogeneous

7.21.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneous k3: homogeneous

•

7.22 examples/conversion_reaction/model_SP_k1k2.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable

k3: homogeneous.

Functions

noret::substitute model_SP_k1k2 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable k3: homogeneous.

7.22.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: cell-to-cell variable

k3: homogeneous.

7.23 examples/conversion reaction/model SP k1k3.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneous

k3: cell-to-cell variable

.

Functions

• noret::substitute model_SP_k1k3 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneous

k3: cell-to-cell variable

.

7.23.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)) The parameter are assumed to be:

k1: inter- and intra-subpopulation variable

k2: homogeneous

k3: cell-to-cell variable

.

7.24 examples/conversion_reaction/model_SP_k2.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variable

k2: cell-to-cell variable

k3: homogeneous.

Functions

noret::substitute model_SP_k2 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variable

k2: cell-to-cell variable

k3: homogeneous.

7.24.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variablek2: cell-to-cell variablek3: homogeneous.

7.25 examples/conversion_reaction/model_SP_k2k3.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variablek2: cell-to-cell variablek3: cell-to-cell variable.

Functions

• noret::substitute model SP k2k3 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variablek2: cell-to-cell variablek3: cell-to-cell variable.

7.25.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variablek2: cell-to-cell variablek3: cell-to-cell variable.

7.26 examples/conversion_reaction/model_SP_k3.m File Reference

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variable

k2: homogenousk3: cell-to-cell variable

This model is the ground truth.

Functions

• noret::substitute model SP k3 ()

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variable

k2: homogenous

k3: cell-to-cell variable

This model is the ground truth.

7.26.1 Detailed Description

This function generates the model and estimates the parameters in case of accounting for means and variances (using Sigma Points (SP)). The parameter are assumed to be:

k1: subpopulation variable

k2: homogenous

k3: cell-to-cell variable

This model is the ground truth.

7.27 examples/conversion reaction/models RRE.m File Reference

This function generates Reaction Rate Euqation model and estimates the parameters for the models with varying number of parameters for the variances.

Functions

• noret::substitute models_RRE ()

This function generates Reaction Rate Euqation model and estimates the parameters for the models with varying number of parameters for the variances.

7.27.1 Detailed Description

This function generates Reaction Rate Euqation model and estimates the parameters for the models with varying number of parameters for the variances.

7.28 examples/conversion_reaction/plot_cr.m File Reference

This script visualizes the results for the conversion reaction.

Functions

noret::substitute plot_cr ()

This script visualizes the results for the conversion reaction.

7.28.1 Detailed Description

This script visualizes the results for the conversion reaction.

7.29 examples/conversion_reaction/plot_cr_SIAppendix.m File Reference

This script generates the figures for the supplement for the conversion reaction example.

Functions

noret::substitute plot_cr_SIAppendix ()
 This script generates the figures for the supplement for the conversion reaction example.

7.29.1 Detailed Description

This script generates the figures for the supplement for the conversion reaction example.

7.30 examples/conversion_reaction/plot_cr_variabilityReduction.m File Reference

clear all close all clc load_plot_settings

Functions

noret::substitute plot_cr_variabilityReduction ()
 clear all close all clc load_plot_settings

7.30.1 Detailed Description

clear all close all clc load_plot_settings

7.30.2 Function Documentation

7.30.2.1 noret::substitute plot_cr_variabilityReduction ()

clear all close all clc load_plot_settings

% SP all

Definition at line 17 of file plot_cr_variabilityReduction.m.

Referenced by plot_cr_SIAppendix().

7.31 examples/conversion reaction/run lppd cr.m File Reference

This function runs the sampling for the log pointwise predictive density for the conversion reaction reaction example.

Functions

mlhsInnerSubst< matlabtypesubstitute, lppd > run_lppd_cr (matlabtypesubstitute model_name, matlabtypesubstitute burnin, matlabtypesubstitute nlter, matlabtypesubstitute saveFlag)

This function runs the sampling for the log pointwise predictive density for the conversion reaction reaction example.

7.31.1 Detailed Description

This function runs the sampling for the log pointwise predictive density for the conversion reaction reaction example.

7.31.2 Function Documentation

7.31.2.1 mlhslnnerSubst< matlabtypesubstitute, lppd > run_lppd_cr (matlabtypesubstitute model_name, matlabtypesubstitute burnin, matlabtypesubstitute nlter, matlabtypesubstitute saveFlag)

This function runs the sampling for the log pointwise predictive density for the conversion reaction reaction example.

USAGE

parameters_lppd = run_lppd_cr(model_name,burnin,nlter,saveFlag)

Parameters

model_name	string indicating model (RRE_timedep,RRE_subpop,	
	RRE_onlyone,SP_k1,SP_k2,SP_k3,SP_k1k2,SP_k1k3,SP_k2k3,orSP_all)	
burnin	number of burn-in steps for sampling	
nlter	number of total iterations for sampling	
saveFlag if results should be saved		

Return values

lppd	log pointwise predictive density
------	----------------------------------

Definition at line 17 of file run_lppd_cr.m.

References computeMixtureProbability(), and logLikelihood().

Referenced by main_sampling_cr().

7.32 examples/conversion_reaction/run_thermIntegration_cr.m File Reference

This function runs thermodynamic integration for the conversion reaction example.

Functions

 mlhsInnerSubst< matlabtypesubstitute, Q > run_thermIntegration_cr (matlabtypesubstitute model_name, matlabtypesubstitute burnin, matlabtypesubstitute nlter, matlabtypesubstitute saveFlag)

This function runs thermodynamic integration for the conversion reaction example.

7.32.1 Detailed Description

This function runs thermodynamic integration for the conversion reaction example.

7.32.2 Function Documentation

7.32.2.1 mlhsInnerSubst< matlabtypesubstitute, Q > run_thermIntegration_cr (matlabtypesubstitute model_name, matlabtypesubstitute burnin, matlabtypesubstitute nlter, matlabtypesubstitute saveFlag)

This function runs thermodynamic integration for the conversion reaction example.

USAGE

Q = run_thermIntegration_cr(model_name,burnin,nlter,saveFlag)

Parameters

model_name	string indicating model (RRE_timedep,RRE_subpop,RRE_onlyone,SP_k1,SP_k2,	
	SP_k3,SP_k1k2,SP_k1k3,SP_k2k3, or SP_all)	
burnin	number of burn-in steps for sampling	
nlter	number of total iterations for sampling	
saveFlag	if results should be saved	

Return values

Q	log marginal likelihood
---	-------------------------

Definition at line 17 of file run_thermIntegration_cr.m.

References logLikelihood().

Referenced by main_sampling_cr().

7.33 examples/conversion_reaction/sclogLikelihood_cr.m File Reference

This function provides the likelihood for the optimization of the single cell trajectory in the conversion reaction example.

Functions

mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, J >,mlhsInnerSubst< matlabtypesubstitute, dJ > sclogLikelihood_cr (matlabtypesubstitute t, matlabtypesubstitute y, matlabtypesubstitute xi, matlabtypesubstitute k2, matlabtypesubstitute m_k3, matlabtypesubstitute sigma_k3, matlabtypesubstitute sigma_noise, matlabtypesubstitute w, matlabtypesubstitute k1_1, matlabtypesubstitute k1_2, matlabtypesubstitute time-point)

This function provides the likelihood for the optimization of the single cell trajectory in the conversion reaction example.

7.33.1 Detailed Description

This function provides the likelihood for the optimization of the single cell trajectory in the conversion reaction example.

7.33.2 Function Documentation

7.33.2.1 mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, J>,mlhsInnerSubst< matlabtypesubstitute, dJ>> sclogLikelihood_cr (matlabtypesubstitute t, matlabtypesubstitute y, matlabtypesubstitute xi, matlabtypesubstitute k2, matlabtypesubstitute m_k3, matlabtypesubstitute sigma_k3, matlabtypesubstitute sigma_noise, matlabtypesubstitute w, matlabtypesubstitute k1_1, matlabtypesubstitute k1_2, matlabtypesubstitute timepoint)

This function provides the likelihood for the optimization of the single cell trajectory in the conversion reaction example.

USAGE

[J,dJ] = sclogLikelihood_cr(t,y,xi,k2,m_k3,sigma_k3,sigma_noise,w,k1_1,k1_2,timepoint)

Parameters

t	time for simulation	
У	data	
xi	single-cell parameter vector which is optimized	
k2	pre-optimized parameter value for k2	
m_k3	pre-optimized parameter value for m_k3	
sigma_k3	pre-optimized parameter value for sigma_k3	
sigma_noise	pre-optimized parameter value for sigma_noise	
W	pre-optimized parameter value for 2	
k1_1	pre-optimized parameter value for k1_1	
k1_2	pre-optimized parameter value for k1_2	
timepoint	on which time point the function should be evaluated, last, or first	

Return values

ſ	J	log-likelihood value
ſ	dJ	gradient of log-likelihood functoin

Definition at line 17 of file sclogLikelihood_cr.m.

Referenced by main_singlecell_prediction().

7.34 examples/conversion_reaction/simulation/CR_log_syms.m File Reference

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > CR_log_syms ()

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

7.34.1 Detailed Description

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

7.34.2 Function Documentation

7.34.2.1 mlhslnnerSubst< matlabtypesubstitute, model > CR_log_syms ()

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

Return values

model model struct used with amiwrap	
--------------------------------------	--

Generated fields of model:

Definition at line 17 of file CR log syms.m.

7.35 examples/conversion reaction/simulation/CR syms.m File Reference

This function defines the model of the conversion process with the linear output, which is used for the Reaction Rate Equations.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > CR_syms ()
 This function defines the model of the conversion process with the linear output, which is used for the Reaction Rate Equations.

7.35.1 Detailed Description

This function defines the model of the conversion process with the linear output, which is used for the Reaction Rate Equations.

7.35.2 Function Documentation

7.35.2.1 mlhsInnerSubst < matlabtypesubstitute, model > CR_syms ()

This function defines the model of the conversion process with the linear output, which is used for the Reaction Rate Equations.

Return values

model model struct used with amiwra	ap
-------------------------------------	----

Generated fields of model:

Definition at line 17 of file CR_syms.m.

7.36 examples/conversion_reaction/simulation/generate_simFiles_cr.m File Reference

This script generates the functions for the conversion reaction using the toolbox AMICI.

Functions

noret::substitute generate_simFiles_cr ()

This script generates the functions for the conversion reaction using the toolbox AMICI.

7.36.1 Detailed Description

This script generates the functions for the conversion reaction using the toolbox AMICI.

7.37 examples/differential_protein_expression/data/generate_data_oneStage.m File Reference

This script generates the artificial data of the differential gene protein expression.

Functions

noret::substitute generate_data_oneStage ()

This script generates the artificial data of the differential gene protein expression.

7.37.1 Detailed Description

This script generates the artificial data of the differential gene protein expression.

7.38 examples/differential_protein_expression/main_oneStage_SP_1D.m File Reference

This script generates the model for the 1-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

Functions

• noret::substitute main_oneStage_SP_1D ()

This script generates the model for the 1-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

7.38.1 Detailed Description

This script generates the model for the 1-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

7.39 examples/differential protein expression/main oneStage SP 2D.m File Reference

This script generates the model for the 2-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

Functions

noret::substitute main_oneStage_SP_2D ()

This script generates the model for the 2-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

7.39.1 Detailed Description

This script generates the model for the 2-dimensional measurements of the differential gene expression example using the sigma point approximation. The parameters are estimated and also the profile likelihoods are calculated using the toolbox PESTO.

7.40 examples/differential_protein_expression/plot_fit_oneStage.m File Reference

This script visualizes the model fit for the two-dimensional data.

Functions

noret::substitute plot_fit_oneStage ()

This script visualizes the model fit for the two-dimensional data.

7.40.1 Detailed Description

This script visualizes the model fit for the two-dimensional data.

7.41 examples/differential_protein_expression/plot_uncertainty_oneStage.m File Reference

This script visualizes the confidence intervals for the one- and the two-dimensional models.

Functions

noret::substitute plot_uncertainty_oneStage ()
 This script visualizes the confidence intervals for the one- and the two-dimensional models.

7.41.1 Detailed Description

This script visualizes the confidence intervals for the one- and the two-dimensional models.

7.42 examples/differential_protein_expression/simulation/generate_simFile_oneStage.m File Reference

Compilation of one stage simulation file.

Functions

noret::substitute generate_simFile_oneStage ()
 Compilation of one stage simulation file.

7.42.1 Detailed Description

Compilation of one stage simulation file.

7.43 examples/differential_protein_expression/simulation/oneStage_syms.m File Reference

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > oneStage_syms ()
 This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

7.43.1 Detailed Description

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

7.43.2 Function Documentation

7.43.2.1 mlhsInnerSubst< matlabtypesubstitute, model > oneStage_syms ()

This function defines the model of the conversion process with the logarithm of the output, which are used for the sigma point approximation.

Return values

model model struct used with amiwra	ap
-------------------------------------	----

Generated fields of model:

Definition at line 17 of file oneStage_syms.m.

7.44 examples/ECM differences/data/load datasets PDL Coll.m File Reference

Script for loading the datasets of extracellular scaffolds poly-D-lysin (PDL) and Collagen I (Coll).

Functions

noret::substitute load_datasets_PDL_Coll ()
 Script for loading the datasets of extracellular scaffolds poly-D-lysin (PDL) and Collagen I (Coll).

7.44.1 Detailed Description

Script for loading the datasets of extracellular scaffolds poly-D-lysin (PDL) and Collagen I (Coll).

7.45 examples/ECM_differences/generate_ECM_models.m File Reference

This function generates the 128 hierarchical models accounting for all possible differences between the extracellular scaffolds. The underlying model for each scaffolds assumes inter- and intra-subpopulation variability of TrkA activity and cell-to-cell variability of relative Erk1/2 levels.

Functions

noret::substitute generate_ECM_models ()

This function generates the 128 hierarchical models accounting for all possible differences between the extracellular scaffolds. The underlying model for each scaffolds assumes inter- and intra-subpopulation variability of TrkA activity and cell-to-cell variability of relative Erk1/2 levels.

7.45.1 Detailed Description

This function generates the 128 hierarchical models accounting for all possible differences between the extracellular scaffolds. The underlying model for each scaffolds assumes inter- and intra-subpopulation variability of TrkA activity and cell-to-cell variability of relative Erk1/2 levels.

7.46 examples/ECM_differences/main_ECM_differences.m File Reference

Main script for the analysis of the influence of extracellular scaffolds on pain signaling in sensory neurons.

Functions

noret::substitute main_ECM_differences ()
 Main script for the analysis of the influence of extracellular scaffolds on pain signaling in sensory neurons.

7.46.1 Detailed Description

Main script for the analysis of the influence of extracellular scaffolds on pain signaling in sensory neurons.

7.47 examples/ECM_differences/plot_ECM_fit.m File Reference

Visualization script for the results of the influence of extracellular scaffolds on pain signaling in sensory neurons.

Functions

noret::substitute plot_ECM_fit ()
 Visualization script for the results of the influence of extracellular scaffolds on pain signaling in sensory neurons.

7.47.1 Detailed Description

Visualization script for the results of the influence of extracellular scaffolds on pain signaling in sensory neurons.

7.48 examples/ECM_differences/plot_ECM_ranks.m File Reference

Visualization script for ranking of the models and differences.

Functions

noret::substitute plot_ECM_ranks ()
 Visualization script for ranking of the models and differences.

7.48.1 Detailed Description

Visualization script for ranking of the models and differences.

7.49 examples/ECM_differences/plot_ECM_valid.m File Reference

Visualization script for the validation of the TrkA and Erk differences.

Functions

noret::substitute plot_ECM_valid ()
 Visualization script for the validation of the TrkA and Erk differences.

7.49.1 Detailed Description

Visualization script for the validation of the TrkA and Erk differences.

7.50 examples/ECM_differences/run_fittings_ECM.m File Reference

This function performs optimization for the all model accounting for differences between PDL and Coll.

Functions

mlhsInnerSubst< matlabtypesubstitute, parameters > run_fittings_ECM ()
 This function performs optimization for the all model accounting for differences between PDL and Coll.

7.50.1 Detailed Description

This function performs optimization for the all model accounting for differences between PDL and Coll.

7.50.2 Function Documentation

7.50.2.1 mlhslnnerSubst< matlabtypesubstitute, parameters > run_fittings_ECM ()

This function performs optimization for the all model accounting for differences between PDL and Coll.

Return values

parameters	struct of parameters for each of the 128 models obtained by getMultiStarts.m

Generated fields of parameters:

Definition at line 17 of file run_fittings_ECM.m.

References collectConditions(), and logLikelihood().

Referenced by main_ECM_differences().

7.51 examples/ECM_differences/run_profile_ECM.m File Reference

This function calculates the profile likelihoods for the final model accounting for differences in TrkA activity, Erk levels and Erk inactivation.

Functions

mlhsInnerSubst< matlabtypesubstitute, parameters > run_profile_ECM ()
 This function calculates the profile likelihoods for the final model accounting for differences in TrkA activity, Erk levels and Erk inactivation.

7.51.1 Detailed Description

This function calculates the profile likelihoods for the final model accounting for differences in TrkA activity, Erk levels and Erk inactivation.

7.52 examples/subpopulation_differences/dephosphorylation/exp_decay.m File Reference

Likelihood function for the fit of the dephosphorylation rate.

Functions

mlhsInnerSubst< matlabtypesubstitute, J > exp_decay (matlabtypesubstitute k5, matlabtypesubstitute t, matlabtypesubstitute pErk)

Likelihood function for the fit of the dephosphorylation rate.

7.52.1 Detailed Description

Likelihood function for the fit of the dephosphorylation rate.

7.53 examples/subpopulation differences/dephosphorylation/import dephospho data.m File Reference

Script for the import of the dephosphorylation data.

Functions

noret::substitute import_dephospho_data ()
 Script for the import of the dephosphorylation data.

7.53.1 Detailed Description

Script for the import of the dephosphorylation data.

7.54 examples/subpopulation_differences/dephosphorylation/main_analysis_dephospho.m File Reference

Main script for the analysis of the dephosphorylation data.

Functions

noret::substitute main_analysis_dephospho ()
 Main script for the analysis of the dephosphorylation data.

7.54.1 Detailed Description

Main script for the analysis of the dephosphorylation data.

7.55 examples/subpopulation_differences/dephosphorylation/plot_subpop_dephoshp_supplement.m File Reference

Visualization script for the dephosphorylation analysis.

Functions

noret::substitute plot_subpop_dephoshp_supplement ()
 Visualization script for the dephosphorylation analysis.

7.55.1 Detailed Description

Visualization script for the dephosphorylation analysis.

7.56 examples/subpopulation_differences/generate_nosubpop_file.m File Reference

Generate file for model without any subpopulations.

Functions

noret::substitute generate_nosubpop_file ()
 Generate file for model without any subpopulations.

7.56.1 Detailed Description

Generate file for model without any subpopulations.

7.57 examples/subpopulation_differences/generate_subpop_files.m File Reference

Generation of all models accounting for subpopulation differences.

Functions

noret::substitute generate_subpop_files ()
 Generation of all models accounting for subpopulation differences.

7.57.1 Detailed Description

Generation of all models accounting for subpopulation differences.

7.58 examples/subpopulation_differences/generate_subpop_TrkA.m File Reference

Generation of final model including differences in TrkA levels.

Functions

noret::substitute generate_subpop_TrkA ()
 Generation of final model including differences in TrkA levels.

7.58.1 Detailed Description

Generation of final model including differences in TrkA levels.

7.59 examples/subpopulation_differences/main_subpopulation_analysis.m File Reference

Script for the analysis of subpopulation differences in sensory neurons cultured on poly-D-lysine.

Functions

noret::substitute main_subpopulation_analysis ()
 Script for the analysis of subpopulation differences in sensory neurons cultured on poly-D-lysine.

7.59.1 Detailed Description

Script for the analysis of subpopulation differences in sensory neurons cultured on poly-D-lysine.

7.60 examples/subpopulation_differences/plot_subpop_fit.m File Reference

Visualization script for the fits of cells on poly-D-lysine.

Functions

noret::substitute plot_subpop_fit ()
 Visualization script for the fits of cells on poly-D-lysine.

7.60.1 Detailed Description

Visualization script for the fits of cells on poly-D-lysine.

7.61 examples/subpopulation_differences/plot_subpop_profiles.m File Reference

Visualization script for the profile likelihoods.

Functions

noret::substitute plot_subpop_profiles ()
 Visualization script for the profile likelihoods.

7.61.1 Detailed Description

Visualization script for the profile likelihoods.

7.62 examples/subpopulation_differences/plot_subpop_valid.m File Reference

Visualization script for the validation Figure 5D-F of Loos et al., Cell Systems (2018).

Functions

noret::substitute plot_subpop_valid ()
 Visualization script for the validation Figure 5D-F of Loos et al., Cell Systems (2018).

7.62.1 Detailed Description

Visualization script for the validation Figure 5D-F of Loos et al., Cell Systems (2018).

7.63 examples/subpopulation_differences/run_fitting_subpop.m File Reference

This function optimizes the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

Functions

mlhsInnerSubst< matlabtypesubstitute, parameters > run_fitting_subpop (matlabtypesubstitute icomb)
 This function optimizes the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.63.1 Detailed Description

This function optimizes the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.63.2 Function Documentation

7.63.2.1 mlhslnnerSubst < matlabtypesubstitute, parameters > run_fitting_subpop (matlabtypesubstitute icomb)

This function optimizes the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

Generated fields of parameters:

Definition at line 17 of file run_fitting_subpop.m.

References collectConditions(), and logLikelihood().

7.64 examples/subpopulation_differences/run_logmarg_subpop.m File Reference

This function calculates the log marginals for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

Functions

mlhsInnerSubst< matlabtypesubstitute, logmarg > run_logmarg_subpop (matlabtypesubstitute icomb)
 This function calculates the log marginals for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.64.1 Detailed Description

This function calculates the log marginals for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.65 examples/subpopulation differences/run lppd subpop.m File Reference

This function calculates the log pointwise predictive density for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

Functions

mlhsInnerSubst< matlabtypesubstitute, lppd > run_lppd_subpop (matlabtypesubstitute icomb)
 This function calculates the log pointwise predictive density for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.65.1 Detailed Description

This function calculates the log pointwise predictive density for the model of NGF-induced Erk1/2 signaling accounting for the differences in subpopulations denoted by icomb.

7.66 exa	amples/subpopulation	differences/simulation/generate	simFile	ErkSignaling.m	File Refere	ence
----------	----------------------	---------------------------------	---------	----------------	-------------	------

This script generates the functions for the NGF-induced Erk1/2 signaling using the toolbox AMICI.

Functions

noret::substitute generate_simFile_ErkSignaling ()
 This script generates the functions for the NGF-induced Erk1/2 signaling using the toolbox AMICI.

7.66.1 Detailed Description

This script generates the functions for the NGF-induced Erk1/2 signaling using the toolbox AMICI.

7.67 examples/subpopulation_differences/simulation/ODEmodel_syms_sPsET_loglog.m File Reference

This function provides the model of NGF-induced Erk1/2 signaling. It is compiled using AMICI.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > ODEmodel_syms_sPsET_loglog ()
 This function provides the model of NGF-induced Erk1/2 signaling. It is compiled using AMICI.

7.67.1 Detailed Description

This function provides the model of NGF-induced Erk1/2 signaling. It is compiled using AMICI.

7.67.2 Function Documentation

7.67.2.1 mlhsInnerSubst< matlabtypesubstitute, model > ODEmodel_syms_sPsET_loglog ()

This function provides the model of NGF-induced Erk1/2 signaling. It is compiled using AMICI.

Generated fields of model:

Definition at line 17 of file ODEmodel_syms_sPsET_loglog.m.

7.68 examples/two_stage_exandintrinsic/data/generate_data_twostage.m File Reference

This script generates the data for the two stage gene expression example using the Stochastic Simulation Algorithm (SSA) implemented in the toolbox CERENA.

Functions

• noret::substitute generate_data_twostage ()

This script generates the data for the two stage gene expression example using the Stochastic Simulation Algorithm (SSA) implemented in the toolbox CERENA.

7.68.1 Detailed Description

This script generates the data for the two stage gene expression example using the Stochastic Simulation Algorithm (SSA) implemented in the toolbox CERENA.

7.69 examples/two_stage_exandintrinsic/main_MA.m File Reference

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

Functions

• noret::substitute main MA()

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.69.1 Detailed Description

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.70 examples/two_stage_exandintrinsic/main_MA_1subpop.m File Reference

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

Functions

noret::substitute main_MA_1subpop ()

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.70.1 Detailed Description

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.71 examples/two_stage_exandintrinsic/main_MA_1subpop_extrinsic.m File Reference

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

Functions

• noret::substitute main_MA_1subpop_extrinsic ()

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.71.1 Detailed Description

This script generates the model incorporating the moment approximation, estimates the parameters and calculates the profile likelihoods.

7.72 examples/two_stage_exandintrinsic/main_RRE.m File Reference

This script generates the model incorporating only the means by reaction rate equations, estimates the parameters and calculates the profile likelihoods.

Functions

noret::substitute main_RRE ()

This script generates the model incorporating only the means by reaction rate equations, estimates the parameters and calculates the profile likelihoods.

7.72.1 Detailed Description

This script generates the model incorporating only the means by reaction rate equations, estimates the parameters and calculates the profile likelihoods.

7.73 examples/two stage exandintrinsic/simulation/compile simFiles geneExp.m File Reference

This script generate the simulation files for the example of two stage gene expression including intrinsic and extrinsic noise. This requires the MATLAB Toolbox CERENA. The _syms.m files are generate using CERENA and the model definition files modelDef_geneExp.m for the reaction rate equations and the moment approximation, and model Def_geneExp_extrinsic.m for the moment approximation with additional extrinsic noise.

Functions

noret::substitute compile_simFiles_geneExp ()

This script generate the simulation files for the example of two stage gene expression including intrinsic and extrinsic noise. This requires the MATLAB Toolbox CERENA. The _syms.m files are generate using CERENA and the model definition files modelDef_geneExp.m for the reaction rate equations and the moment approximation, and modelDef← _geneExp_extrinsic.m for the moment approximation with additional extrinsic noise.

7.73.1 Detailed Description

This script generate the simulation files for the example of two stage gene expression including intrinsic and extrinsic noise. This requires the MATLAB Toolbox CERENA. The _syms.m files are generate using CERENA and the model definition files modelDef_geneExp.m for the reaction rate equations and the moment approximation, and model Def_geneExp_extrinsic.m for the moment approximation with additional extrinsic noise.

7.74 examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_extrinsic_syms.m File Reference

This function provides the model definition for the moment approximation with additional extrinsic noise of the two stage gene expression. It is generated by the toolbox CERENA.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > MEC_2_LD_2_c_geneExp_extrinsic_syms (matlabtype-substitute varargin)

This function provides the model definition for the moment approximation with additional extrinsic noise of the two stage gene expression. It is generated by the toolbox CERENA.

7.74.1 Detailed Description

This function provides the model definition for the moment approximation with additional extrinsic noise of the two stage gene expression. It is generated by the toolbox CERENA.

7.74.2 Function Documentation

7.74.2.1 mlhslnnerSubst< matlabtypesubstitute, model > MEC_2_LD_2_c_geneExp_extrinsic_syms (matlabtypesubstitute varargin)

This function provides the model definition for the moment approximation with additional extrinsic noise of the two stage gene expression. It is generated by the toolbox CERENA.

Generated fields of model:

Definition at line 17 of file MEC_2_LD_2_c_geneExp_extrinsic_syms.m.

7.75 examples/two_stage_exandintrinsic/simulation/MEC_2_LD_2_c_geneExp_MA_syms.m File Reference

This function provides the model definition for the moment approximation of the two stage gene expression. It is generated by the toolbox CERENA.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > MEC_2_LD_2_c_geneExp_MA_syms (matlabtypesubstitute varargin)

This function provides the model definition for the moment approximation of the two stage gene expression. It is generated by the toolbox CERENA.

7.75.1 Detailed Description

This function provides the model definition for the moment approximation of the two stage gene expression. It is generated by the toolbox CERENA.

7.75.2 Function Documentation

7.75.2.1 mlhsInnerSubst < matlabtypesubstitute, model > MEC_2_LD_2_c_geneExp_MA_syms (matlabtypesubstitute *varargin*)

This function provides the model definition for the moment approximation of the two stage gene expression. It is generated by the toolbox CERENA.

Generated fields of model:

Definition at line 17 of file MEC_2_LD_2_c_geneExp_MA_syms.m.

7.76 examples/two_stage_exandintrinsic/simulation/modelDef_geneExp.m File Reference

Model definition of the reaction network for the two stage gene expression.

Functions

noret::substitute modelDef_geneExp ()

Model definition of the reaction network for the two stage gene expression.

7.76.1 Detailed Description

Model definition of the reaction network for the two stage gene expression.

7.77 examples/two_stage_exandintrinsic/simulation/modelDef_geneExp_extrinsic.m File Reference

Model definition of the reaction network for the two stage gene expression with additional extrinsic noise.

Functions

noret::substitute modelDef_geneExp_extrinsic ()
 Model definition of the reaction network for the two stage gene expression with additional extrinsic noise.

7.77.1 Detailed Description

Model definition of the reaction network for the two stage gene expression with additional extrinsic noise.

7.78 examples/two_stage_exandintrinsic/simulation/RRE_geneExp_RRE_syms.m File Reference

This function provides the model definition for the reaction rate equations of the two stage gene expression. It is generated by the toolbox CERENA.

Functions

mlhsInnerSubst< matlabtypesubstitute, model > RRE_geneExp_RRE_syms (matlabtypesubstitute varargin)
 This function provides the model definition for the reaction rate equations of the two stage gene expression. It is generated by the toolbox CERENA.

7.78.1 Detailed Description

This function provides the model definition for the reaction rate equations of the two stage gene expression. It is generated by the toolbox CERENA.

7.78.2 Function Documentation

7.78.2.1 mlhsInnerSubst< matlabtypesubstitute, model > RRE_geneExp_RRE_syms (matlabtypesubstitute varargin)

This function provides the model definition for the reaction rate equations of the two stage gene expression. It is generated by the toolbox CERENA.

Generated fields of model:

Definition at line 17 of file RRE_geneExp_RRE_syms.m.

7.79 generateODEMM.m File Reference

This function generates a file that defines the ODE-constrained mixture model.

Functions

mlhsInnerSubst< matlabtypesubstitute, varargout > generateODEMM (matlabtypesubstitute D, matlabtypesubstitute D, matlabtypesubstitute M, matlabtypesubstitute parameters, matlabtypesubstitute conditions, matlabtypesubstitute varargin)

This function generates a file that defines the ODE-constrained mixture model.

- mlhsInnerSubst< matlabtypesubstitute, retstr > mtoc_subst_generateODEMM_m_tsbus_cotm_←
 replace_xi_x_u (matlabtypesubstitute symexpr)
- mlhsInnerSubst< matlabtypesubstitute, str_dzdxi > mtoc_subst_generateODEMM_m_tsbus_cotm
 _getStrDerivative2Terms (matlabtypesubstitute sym_expr, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute xi)
- mlhsInnerSubst< matlabtypesubstitute, str_dzdxi > mtoc_subst_generateODEMM_m_tsbus_cotm_

 getStrDerivative3Terms (matlabtypesubstitute deriv_name, matlabtypesubstitute sym_expr, matlabtypesubstitute s, matlabtypesubstitute e, matlabtypesubstitute x, matlabtypesubstitute dxdxi, matlabtypesubstitute sigma, matlabtypesubstitute dsigmadxi, matlabtypesubstitute xi)

7.79.1 Detailed Description

This function generates a file that defines the ODE-constrained mixture model.

7.79.2 Function Documentation

7.79.2.1 mlhslnnerSubst < matlabtypesubstitute, varargout > generateODEMM (matlabtypesubstitute *D*, matlabtypesubstitute *M*, matlabtypesubstitute *parameters*, matlabtypesubstitute *conditions*, matlabtypesubstitute *varargin*)

This function generates a file that defines the ODE-constrained mixture model.

USAGE

M = generateODEMM(D,M,parameters,conditions,options)

Parameters

D	data struct	
М	model struct	
parameters	parameters struct	
conditions	conditions struct obtained by collectConditions.m	
varargin		
	1 generateODEMM (, options)	
	Required Parameters for varargin:	
	options (options for the generation)	

Required fields of M:

- name -- name of the model
- model -- simulation file with input (T,theta,u) (e.g., generated by amiwrap of the toolbox AMICI), the first output needs to be the status of thesimulation (whether it failed or not) the 4th the simulation output, and the 6th the sensitivities

• sim_type -- simulation type ('RRE' for a mechanistic description of the mean, e.g., by reaction rate equations, 'HO' for a mechanistic description of the mean and covariance, e.g., by moment-closure approximation or sigma-point approximation)

- n_subpop -- number of subpopulations
- distribution { s,e} distribution assumption
 - = 'norm' for normal distribution assumption
 - = 'logn_median' for log-normal distribution assumption when mean of simulation linked to median of distribution
 - = 'logn_mean' for log-normal distribution assumption when mean of simulation is % linked to mean of distribution
- mean_ind{s,e} indices of simulation output describing the mean of the measurand(s) of experiment
- var_ind{s,e} indices of simulation output describing the variance (empty if RREs used)
- u (s,e) input vector describing differences between subpopulations and experiments
- sym -- symbolic description of properties of the model with fields
 - w{s,e}: weights of subpopulation s in experiment e
 - theta: parameter needed for simulation of individual subpopulations
 - scaling{r,e}: scaling factor for replicate r in experiment e, if the replicates are not considered seperately, use r=1
 - offset{r,e}: offset parameter for replicate r in experiment e

Required fields of D:

• conditions -- obtained by collectConditions.m

Required fields of parameters:

Optional fields of options:

- write_parameter -- write parameter definition in file (true by default)
- measurement_noise -- if measurement noise is included
 - = true
 - = false (default)
- replicates -- if individual replicates are modeled = true
 - = false (default)
- sigmas -- parametrization of the variance in case of using only a mechanistic description of the mean
 - = 'condition-dependent': (default) assign sigma for every time point
 - = 'time-independent': sigma stays the same for subpopulation and some dosage
 - = 'only-one': only one sigma for everything

Definition at line 17 of file generateODEMM.m.

Referenced by generate_ECM_models(), generate_nosubpop_file(), generate_subpop_files(), generate_subpop_index(), generate_subpop_index(), generate_subpop_index(), generate_subpop_index(), generate_subpop_index(), generate_subpop_files(), generate_subpop_files(), generate_subpop_index(), generate_subpop_files(), generate

7.80 getLognMeanVar.m File Reference

This function calculations the mean and variances, and the corresponding derivatives of a multivariate log-normal distribution given the parameters μ and Σ .

Functions

mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, Zout >,mlhsInnerSubst< matlabtypesubstitute, varargout >> getLognMeanVar (matlabtypesubstitute Z, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function calculations the mean and variances, and the corresponding derivatives of a multivariate log-normal distribution given the parameters μ and Σ .

7.80.1 Detailed Description

This function calculations the mean and variances, and the corresponding derivatives of a multivariate log-normal distribution given the parameters μ and Σ .

7.80.2 Function Documentation

7.80.2.1 mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, Zout >,mlhsInnerSubst< matlabtypesubstitute, varargout > > getLognMeanVar (matlabtypesubstitute Z, matlabtypesubstitute n_dim, matlabtypesubstitute varargin)

This function calculations the mean and variances, and the corresponding derivatives of a multivariate log-normal distribution given the parameters μ and Σ .

USAGE

```
[Zout] = getLognMeanVar(Z,n_dim)
[Zout,dZdthetaout] = getLognMeanVar(Z,n_dim,dZdtheta)
```

Parameters

Z	(n_dim + n_dim(n_dim+1)/2) x n_t vector with μ and Σ
n_dim	dimension of the multivariate log-normal distribution
varargin	
	1 getLognMeanVar (, dZdtheta)
	Required Parameters for varargin:
	• dZdtheta ((n_dim + n_dim(n_dim+1)/2) x n_theta x n_t derivative)

Return values

Zout	(n_dim + n_dim(n_dim+1)/2) x n_t vector with mean and coariance
dZdthetaout	derivative of Zout

Definition at line 17 of file getLognMeanVar.m.

Referenced by logLikelihood(), and plotODEMM().

7.81 getRREsigmas.m File Reference

This function defines the parameters needed for the parametrization of the variances in case Reaction Rate Equations are used for the mechanistic description of the means.

Functions

• mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, parameters >,mlhsInnerSubst< matlabtypesubstitute, conditions >,mlhsInnerSubst< matlabtypesubstitute, varargout >> getRREsigmas (matlabtypesubstitute parameters, matlabtypesubstitute conditions, matlabtypesubstitute varargin)

This function defines the parameters needed for the parametrization of the variances in case Reaction Rate Equations are used for the mechanistic description of the means.

7.81.1 Detailed Description

This function defines the parameters needed for the parametrization of the variances in case Reaction Rate Equations are used for the mechanistic description of the means.

7.81.2 Function Documentation

7.81.2.1 mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, parameters >,mlhsInnerSubst< matlabtypesubstitute, conditions >,mlhsInnerSubst< matlabtypesubstitute, varargout >> getRREsigmas (matlabtypesubstitute parameters, matlabtypesubstitute conditions, matlabtypesubstitute varargin)

This function defines the parameters needed for the parametrization of the variances in case Reaction Rate Equations are used for the mechanistic description of the means.

USAGE

[parameters,conditions] = getRREsigmas(parameters,conditions)
[parameters,conditions,D] = getRREsigmas(parameters,conditions,options,D,M)

Parameters

parameters	parameters struct
conditions	conditions struct (see collectConditions.m)
varargin	
	1 getRREsigmas (, options, D, M)
	Required Parameters for varargin:
	• options
	D data struct (see logLikelihood.m)
	M model struct (see generateODEMM.m)

Return values

parameters	updated parameters struct
conditions	updated conditions struct
D	updated data struct

Required fields of parameters:

Optional fields of options:

- sigmas --
 - = 'condition-dependent': (default) assign sigma for every time point
 - = 'time-dependent': one sigma for every subpopulation and time point
 - = 'only-one': only one sigma for everything
 - = 'subpopulation-specific': for every subpopulation one sigma
- boundaries -- boundaries for optimization for the sigma parameters with fields
 - min
 - max

Generated fields of parameters:

• names -- names for sigma parameters are added

Generated fields of D:

```
    sigma -- (if n_dim = 1)
    Sigma -- (if n_dim = 2)
```

Definition at line 17 of file getRREsigmas.m.

Referenced by main_RRE(), and models_RRE().

7.82 getScalingFactors.m File Reference

Calculates scaling factors for replicates such that the distance between the means in log-space are minimal.

Functions

mlhsInnerSubst< matlabtypesubstitute, s > getScalingFactors (matlabtypesubstitute varargin)
 Calculates scaling factors for replicates such that the distance between the means in log-space are minimal.

7.82.1 Detailed Description

Calculates scaling factors for replicates such that the distance between the means in log-space are minimal.

7.82.2 Function Documentation

 $7.82.2.1 \quad \text{mlhsInnerSubst} < \text{matlabtypesubstitute}, \ \text{s} > \text{getScalingFactors} \ (\ \text{matlabtypesubstitute} \ \textit{varargin} \)$

Calculates scaling factors for replicates such that the distance between the means in log-space are minimal.

USAGE

```
\begin{split} s &= getScalingFactors(\log, ExpC) \\ s &= getScalingFactors(\log, ExpC_1, ExpC_2) \end{split}
```

Parameters

varargin 1 getScalingFactors (ExpC) Required Parameters for varargin: • ExpC struct of experiments

Return values

s (1 x n_r) vector including scaling factor for every replicate

Required fields of ExpC:

- name -- string specifying the conditions
- time -- time point of measurement
- stimulus -- stimulus for measurement
- replicate -- struct of replicates
 - name: string specifying the replicate
 - measurands: names of measurands
 - ndata: matrices under different conditions (one row represents one observed cell with the data in the order of the measurands. The different rows provide measurement data for different cells)

Definition at line 17 of file getScalingFactors.m.

Referenced by load datasets PDL Coll().

7.83 getSigmaPointApp_status_mod.m File Reference

Modified version of the getSigmaPointApp.m function of the SPToolbox.

Functions

mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, status >,mlhsInnerSubst< matlabtypesubstitute, SP > getSigmaPointApp_status_mod (matlabtypesubstitute varargin)

Modified version of the getSigmaPointApp.m function of the SPToolbox.

7.83.1 Detailed Description

Modified version of the getSigmaPointApp.m function of the SPToolbox.

7.83.2 Function Documentation

7.83.2.1 mlhsSubst< mlhsInnerSubst< matlabtypesubstitute, status >,mlhsInnerSubst< matlabtypesubstitute, SP >> getSigmaPointApp_status_mod (matlabtypesubstitute *varargin*)

Modified version of the getSigmaPointApp.m function of the SPToolbox.

Generated fields of SP:

Definition at line 17 of file getSigmaPointApp_status_mod.m.

Referenced by testSigmaPointApp_mod().

7.84 install_ODEMM.m File Reference

Script that adds the required paths to the MATLAB search path.

Functions

noret::substitute install_ODEMM ()
 Script that adds the required paths to the MATLAB search path.

7.84.1 Detailed Description

Script that adds the required paths to the MATLAB search path.

7.85 load_plot_settings.m File Reference

Functions to set font sizes and colors for the visualization.

Functions

noret::substitute load_plot_settings ()
 Functions to set font sizes and colors for the visualization.

7.85.1 Detailed Description

Functions to set font sizes and colors for the visualization.

7.86 logLikelihood.m File Reference

This function evaluates the likelihood function for a given model, data and parameter vector.

Functions

• mlhsInnerSubst< matlabtypesubstitute, varargout > logLikelihood (matlabtypesubstitute xi, matlabtypesubstitute Xi, matlabtypesubstitute Varargin)

This function evaluates the likelihood function for a given model, data and parameter vector.

7.86.1 Detailed Description

This function evaluates the likelihood function for a given model, data and parameter vector.

7.86.2 Function Documentation

7.86.2.1 mlhsInnerSubst< matlabtypesubstitute, varargout > logLikelihood (matlabtypesubstitute *xi*, matlabtypesubstitute *M*, matlabtypesubstitute *D*, matlabtypesubstitute *varargin*)

This function evaluates the likelihood function for a given model, data and parameter vector.

USAGE

```
[...] = logLikelihood(xi,M,D,options,conditions,I)
[...] = logLikelihood(xi,M,D,options,conditions)
[...] = logLikelihood(xi,M,D,options)
[logL] = logLikelihood(...)
[logL, dlogL] = logLikelihood(...)
```

Parameters

xi	parameter values
М	model struct
D	data struct
varargin	
	1 logLikelihood (, options, conditions, I)
	Required Parameters for varargin:
	options struct
	 conditions generated by function collectConditions.m
	I indices for which of the data the likelihood function should be evaluated

Return values

logL	log-likelihood value
dlogL	gradient of log-likelihood function

Required fields of M:

• n_subpop -- number of subpopulations

- model -- simulation file with input (T,theta,u) (e.g., generated by amiwrap), the first output needs to be the status of the simulation, the 4th the simulation output and the 6th the sensitivities (n_t x n_obs x n theta)
- mean_ind -- indices of output for mean
- var_ind -- indices of output for variances (empty if using RREs)
- theta -- parameters needed for simulation dependend on xi and u the following fields of M are generated by generate ODEMM
- distribution { s,e} distribution assumption
 - = 'norm': normal distribution assumption
 - = 'logn_median': log-normal distribution assumption, mean of simulation linked to median of distribution
 - = 'logn mean': log-normal distribution assumption, mean of simulation linked to mean of distribution

The following fields are automatically added by generateODEMM.m

- dthetadxi -- gradient of theta
- mu { s,e} specification of mixture parameter mu for subpopulation s and experiment e
- dmudxi{s,e} gradient of mu
- sigma (s,e) specification of mixture parameter σ (M.Sigma in multivariate case (covariance matrix))
- dsigmadxi { s,e} gradient of sigma (M.dSigmadxi in multivariate case)
- w { s,e} specification of weights w_s
- dwdxi { s,e} gradient of weights
- scaling { r,e} scaling parameter of replicate r in experiment e
- dscalingdxi{r,e} gradient of scaling
- offset { r,e} offset
- doffsetdxi{r,e} gradient of offset

Required fields of D:

- n_dim -- dimension of the measurements
- t -- 1 x n t vector of timepoints
- u -- n_maxu x n_u vector of inputs with n_maxu: maximal number of inputs simulatenously used
- y -- n_u x n_t x n_cells x n_dim data matrix (only needed if replicates are merged and already scaled), dim is the dimension of the measurement
- c -- n_subpop x (n_u + n_differences) corresponding condition (automatically added by calling collectCondition.m)
- replicate(r).y n_u x n_t x n_cells x n_dim data matrix of replicate r in experiment e (only needed if individual replicates should be fitted)

Optional fields of options:

- use_robust -- robust calculation of mixture probability
 - = true: uses reformulation (default)
 - = false: classical calculation (not recommended)
- simulate_musigma -- true if simulation directly provides ...
- negLogLikelihood -- true if negativev log-likelihood required
- replicates -- true if replicates are fitted individually

Definition at line 17 of file logLikelihood.m.

References collectConditions(), computeMixtureProbability(), getLognMeanVar(), logoflognpdf(), logofmvnpdf(), and logofnormpdf().

Referenced by main_MA(), main_MA_1subpop(), main_MA_1subpop_extrinsic(), main_oneStage_SP_1 \leftarrow D(), main_oneStage_SP_2D(), main_RRE(), main_subpopulation_analysis(), model_SP_all(), model_SP_k1(), model_SP_k1(), model_SP_k2(), model_SP_k2(), model_SP_k2k3(), model_SP_k3(), model_SP_k3(), model_SP_k3(), run_ \leftarrow fitting_subpop(), run_fittings_ECM(), run_logmarg_subpop(), run_lppd_subpop(), run_profile_EC \leftarrow M(), and run_thermIntegration_cr().

7.87 plotODEMM.m File Reference

Routine to plot the ODE-constrained mixture model.

Functions

• mlhsInnerSubst< matlabtypesubstitute, varargout > plotODEMM (matlabtypesubstitute varargin)

Routine to plot the ODE-constrained mixture model.

- mlhsInnerSubst< matlabtypesubstitute, str_dose > mtoc_subst_plotODEMM_m_tsbus_cotm_getStr
 — Dose (matlabtypesubstitute D, matlabtypesubstitute e, matlabtypesubstitute d)
- noret::substitute mtoc_subst_plotODEMM_m_tsbus_cotm_evalModel (matlabtypesubstitute xi, matlabtypesubstitute M, matlabtypesubstitute D, matlabtypesubstitute e, matlabtypesubstitute r, matlabtypesubstitute d, matlabtypesubstitute X_c, matlabtypesubstitute options, matlabtypesubstitute conditions)
- noret::substitute mtoc_subst_plotODEMM_m_tsbus_cotm_evalPdf (matlabtypesubstitute M, matlabtypesubstitute D, matlabtypesubstitute e, matlabtypesubstitute d, matlabtypesubstitute k, matlabtypesubstitute options, matlabtypesubstitute legendflag, matlabtypesubstitute ind, matlabtypesubstitute lim, matlabtypesubstitute plotData)

7.87.1 Detailed Description

Routine to plot the ODE-constrained mixture model.

7.87.2 Function Documentation

7.87.2.1 mlhsInnerSubst < matlabtypesubstitute, varargout > plotODEMM (matlabtypesubstitute varargin)

Routine to plot the ODE-constrained mixture model.

USAGE

```
[...] = plotODEMM(D,M,xi)
[...] = plotODEMM(D,M,xi,options)
[...] = plotODEMM(D,M,xi,options,fh)
[fh] = plotODEMM(...)
[fh,fhm] = plotODEMM(...)
```

Parameters

varargin	
	D: data struct
	M: model struct
	xi: parameter vector
	options: plotting options
	fh: figure handle where the plots are added

Return values

fh	struct of function handles for each data set
fhm	struct of function handles for the plots of the marginals

Definition at line 17 of file plotODEMM.m.

References collectConditions(), and getLognMeanVar().

Referenced by main_MA(), main_MA_1subpop(), main_MA_1subpop_extrinsic(), main_RRE(), plot_cr(), plot_cr(\to SIAppendix(), plot_ECM_fit(), plot_fit_oneStage(), and plot_subpop_fit().

7.88 printParams.m File Reference

Help function to print parameters names and values.

Functions

• noret::substitute printParams (matlabtypesubstitute parameters, matlabtypesubstitute varargin)

Help function to print parameters names and values.

7.88.1 Detailed Description

Help function to print parameters names and values.

7.88.2 Function Documentation

7.88.2.1 noret::substitute printParams (matlabtypesubstitute parameters, matlabtypesubstitute varargin)

Help function to print parameters names and values.

USAGE

[] = printParams(parameters,xi)

Parameters

parameters	parameters struct
varargin	
	1 printParams (, xi)
	Required Parameters for varargin:
	xi parameter values printed together with parameter names

Required fields of parameters:

• name -- struct with names of parameters

Definition at line 17 of file printParams.m.

7.89 testSigmaPointApp_mod.m File Reference

 $Modified\ version\ of\ the\ testSigmaPointApp_status.m\ function\ of\ the\ SPToolbox.$

Functions

mlhsInnerSubst< matlabtypesubstitute, SP > testSigmaPointApp_mod (matlabtypesubstitute varargin)
 Modified version of the testSigmaPointApp_status.m function of the SPToolbox.

7.89.1 Detailed Description

Modified version of the testSigmaPointApp_status.m function of the SPToolbox.

7.89.2 Function Documentation

7.89.2.1 mlhsInnerSubst< matlabtypesubstitute, SP > testSigmaPointApp_mod (matlabtypesubstitute varargin)

 $Modified\ version\ of\ the\ testSigmaPointApp_status.m\ function\ of\ the\ SPToolbox.$

Generated fields of SP:

Definition at line 17 of file testSigmaPointApp_mod.m.

References getSigmaPointApp_status_mod().

Index

CR_log_syms	examples/conversion_reaction/model_SP_k3.m, 27
CR_log_syms.m, 33	examples/conversion_reaction/models_RRE.m, 28
CR_log_syms.m	examples/conversion_reaction/plot_cr.m, 28
CR_log_syms, 33	examples/conversion_reaction/plot_cr_SIAppendix.m,
CR_syms	28
CR_syms.m, 33	examples/conversion_reaction/plot_cr_variability ←
CR_syms.m	Reduction.m, 29
CR_syms, 33	examples/conversion_reaction/run_lppd_cr.m, 29
collectConditions	examples/conversion_reaction/run_thermIntegration_←
collectConditions.m, 11	cr.m, 30
collectConditions.m, 10	examples/conversion_reaction/sclogLikelihood_cr.m, 31
collectConditions, 11	examples/conversion_reaction/simulation/CR_log_←
computeMixtureProbability	syms.m, 32
computeMixtureProbability.m, 12	examples/conversion_reaction/simulation/CR_syms.m,
computeMixtureProbability.m, 12	33
computeMixtureProbability, 12	
conversion_reaction/main_singlecell_prediction.m	examples/conversion_reaction/simulation/generate_
main_singlecell_prediction, 24	simFiles_cr.m, 34
man_onglossn_prodistion, 2 r	examples/differential_protein_expression/data/generate ←
distributions/logn/func_Sigma_logn.m, 17	_data_oneStage.m, 34
distributions/logn/func dSigmadxi logn.m, 16	examples/differential_protein_expression/main_one ←
distributions/logn/func_dmudxi_logn_mean.m, 13	Stage_SP_1D.m, 34
distributions/logn/func_dmudxi_logn_median.m, 14	examples/differential_protein_expression/main_one ←
distributions/logn/func_dsigma2dxi_logn.m, 15	Stage_SP_2D.m, 35
distributions/logn/logoflognpdf.m, 17	examples/differential_protein_expression/plot_fit_one ←
distributions/logn/logofmvnpdf.m, 18	Stage.m, 35
distributions/norm/func_Sigma_norm.m, 21	examples/differential_protein_expression/plot_←
distributions/norm/func_dSigmadxi_norm.m, 20	uncertainty_oneStage.m, 36
distributions/norm/func_dmudxi_norm.m, 18	$examples/differential_protein_expression/simulation/generate \leftarrow$
distributions/norm/func_dsigma2dxi_norm.m, 19	_simFile_oneStage.m, 36
distributions/norm/logofnormpdf.m, 21	examples/differential_protein_expression/simulation/one ←
distributions/norm/logomormpai.m, 21	Stage_syms.m, 36
examples/ECM_differences/data/load_datasets_PDL	examples/subpopulation_differences/dephosphorylation/exp \leftarrow
_Coll.m, 37	_decay.m, 40
examples/ECM_differences/generate_ECM_models.m,	examples/subpopulation_differences/dephosphorylation/import-
37	_dephospho_data.m, 40
examples/ECM_differences/main_ECM_differences.m,	examples/subpopulation_differences/dephosphorylation/main -
37	_analysis_dephospho.m, 40
examples/ECM_differences/plot_ECM_fit.m, 38	examples/subpopulation_differences/dephosphorylation/plot←
examples/ECM_differences/plot_ECM_ranks.m, 38	_subpop_dephoshp_supplement.m, 41
examples/ECM_differences/plot_ECM_valid.m, 38	examples/subpopulation_differences/generate_←
examples/ECM_differences/run_fittings_ECM.m, 39	nosubpop_file.m, 41
examples/ECM_differences/run_profile_ECM.m, 39	examples/subpopulation_differences/generate_←
examples/conversion_reaction/data/generate_data_	subpop_TrkA.m, 42
cr.m, 22	examples/subpopulation_differences/generate_←
examples/conversion_reaction/main_optimization_cr.m,	subpop_files.m, 41
23	examples/subpopulation_differences/main_singlecell←
examples/conversion_reaction/main_sampling_cr.m, 23	prediction.m, 24
examples/conversion reaction/main singlecell \leftarrow	examples/subpopulation_differences/main_subpopulation←
prediction.m, 23	_analysis.m, 42
examples/conversion_reaction/model_SP_all.m, 24	examples/subpopulation_differences/plot_subpop_fit.m,
examples/conversion_reaction/model_SP_k1.m, 25	42
examples/conversion_reaction/model_SP_k1k2.m, 25	examples/subpopulation_differences/plot_subpop_
examples/conversion_reaction/model_SP_k1k3.m, 26	profiles.m, 42
examples/conversion_reaction/model_SP_k2.m, 26	examples/subpopulation_differences/plot_subpop_
examples/conversion_reaction/model_SP_k2k3.m, 27	valid.m, 43
	-

64 INDEX

examples/subpopulation_differences/run_fitting_ \leftarrow	func_dsigma2dxi_logn
subpop.m, 43	func_dsigma2dxi_logn.m, 15
examples/subpopulation_differences/run_logmarg_←	func_dsigma2dxi_logn.m
subpop.m, 44	func_dsigma2dxi_logn, 15
examples/subpopulation_differences/run_lppd_←	func_dsigma2dxi_norm
subpop.m, 44	func_dsigma2dxi_norm.m, 19
examples/subpopulation_differences/simulation/OD ←	func_dsigma2dxi_norm.m
Emodel_syms_sPsET_loglog.m, 45	func_dsigma2dxi_norm, 19
examples/subpopulation differences/simulation/generate	
_simFile_ErkSignaling.m, 45	generateODEMM.m, 50
examples/two_stage_exandintrinsic/data/generate_	generateODEMM, 51
data_twostage.m, 45	generateODEMM
examples/two_stage_exandintrinsic/main_MA.m, 46	generateODEMM.m, 51
examples/two_stage_exandintrinsic/main_MA_←	getLognMeanVar
1subpop.m, 46	getLognMeanVar.m, 53
examples/two_stage_exandintrinsic/main_MA_←	getLognMeanVar.m, 52
1subpop_extrinsic.m, 47	getLognMeanVar, 53
examples/two_stage_exandintrinsic/main_RRE.m, 47	getRREsigmas
examples/two_stage_exandintrinsic/simulation/MEC_	getRREsigmas.m, 54
2_LD_2_c_geneExp_MA_syms.m, 48	getRREsigmas.m, 53
examples/two_stage_exandintrinsic/simulation/MEC_	getRREsigmas, 54
2_LD_2_c_geneExp_extrinsic_syms.m, 48	getScalingFactors
examples/two_stage_exandintrinsic/simulation/RRE_	getScalingFactors.m, 55
geneExp_RRE_syms.m, 50	getScalingFactors.m, 55
$examples/two_stage_exand intrinsic/simulation/compile \hookleftarrow$	getScalingFactors, 55
_simFiles_geneExp.m, 47	getSigmaPointApp_status_mod
examples/two_stage_exandintrinsic/simulation/model ←	getSigmaPointApp_status_mod.m, 57
Def_geneExp.m, 49	getSigmaPointApp_status_mod.m, 56
examples/two_stage_exandintrinsic/simulation/model ←	getSigmaPointApp_status_mod, 57
Def_geneExp_extrinsic.m, 49	
_ -	install_ODEMM.m, 57
func_Sigma_logn	
func_Sigma_logn func_Sigma_logn.m, 17	load_plot_settings.m, 57
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m	load_plot_settings.m, 57 logLikelihood
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17	load_plot_settings.m, 57
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm	load_plot_settings.m, 57 logLikelihood
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigma_digma_norm, 21 func_dSigmadxi_logn	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf, 18
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigma_dusi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf logofnormpdf.m, 22 logofnormpdf.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm func_dSigmadxi_norm func_dSigmadxi_norm.m, 20	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_dSigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m, 20	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf, 18 logoflognpdf, 18 logofnormpdf logofnormpdf logofnormpdf, 22
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm, 20 func_dmudxi_logn_mean	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.ap
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf, 18 logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.ageneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_dSigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn.m func_dSigmadxi_norm func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_mean, 13	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.ageneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm.m func_dSigmadxi_norm, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m func_dmudxi_logn_mean.m func_dmudxi_logn_mean, 13 func_dmudxi_logn_median	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.y22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean, 13 func_dmudxi_logn_median func_dmudxi_logn_median.m, 14	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m, 22 logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_median func_dmudxi_logn_median.m, 14 func_dmudxi_logn_median.m	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_median.m func_dmudxi_logn_median.m, 14 func_dmudxi_logn_median.m func_dmudxi_logn_median.m func_dmudxi_logn_median, 14	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 main_singlecell_prediction
func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_median.m func_dmudxi_logn_median.m, 14 func_dmudxi_logn_median, 14 func_dmudxi_norm	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf.m, 22 logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 main_singlecell_prediction conversion_reaction/main_singlecell_prediction.m,
func_Sigma_logn func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigma_norm, 21 func_dSigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_median func_dmudxi_logn_median.m, 14 func_dmudxi_logn_median.m func_dmudxi_logn_median.m, 14 func_dmudxi_norm func_dmudxi_norm func_dmudxi_norm func_dmudxi_norm func_dmudxi_norm.m, 18	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 main_singlecell_prediction
func_Sigma_logn.m, 17 func_Sigma_logn.m func_Sigma_logn, 17 func_Sigma_logn, 17 func_Sigma_norm func_Sigma_norm.m, 21 func_Sigma_norm.m func_Sigma_norm, 21 func_Sigmadxi_logn func_dSigmadxi_logn.m, 16 func_dSigmadxi_logn.m func_dSigmadxi_logn, 16 func_dSigmadxi_norm func_dSigmadxi_norm.m, 20 func_dSigmadxi_norm.m func_dSigmadxi_norm.m, 20 func_dmudxi_logn_mean func_dmudxi_logn_mean.m, 13 func_dmudxi_logn_mean.m func_dmudxi_logn_median.m func_dmudxi_logn_median.m, 14 func_dmudxi_logn_median, 14 func_dmudxi_norm	load_plot_settings.m, 57 logLikelihood logLikelihood.m, 58 logLikelihood.m, 57 logLikelihood, 58 logoflognpdf logoflognpdf.m, 18 logoflognpdf.m logoflognpdf.m, 22 logofnormpdf.m, 22 logofnormpdf.m logofnormpdf, 22 MEC_2_LD_2_c_geneExp_MA_syms MEC_2_LD_2_c_geneExp_MA_syms.m, 49 MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms.m MEC_2_LD_2_c_geneExp_MA_syms, 49 MEC_2_LD_2_c_geneExp_extrinsic_syms MEC_2_LD_2_c_geneExp_extrinsic_syms.m, 48 MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms.m MEC_2_LD_2_c_geneExp_extrinsic_syms, 48 main_singlecell_prediction conversion_reaction/main_singlecell_prediction.m,

INDEX 65

```
ODEmodel_syms_sPsET_loglog.m, 45
ODEmodel syms sPsET loglog.m
    ODEmodel_syms_sPsET_loglog, 45
oneStage_syms
    oneStage_syms.m, 36
oneStage syms.m
    oneStage_syms, 36
plot cr variabilityReduction
    plot cr variabilityReduction.m, 29
plot_cr_variabilityReduction.m
    plot_cr_variabilityReduction, 29
plotODEMM.m, 60
    plotODEMM, 60
plotODEMM
    plotODEMM.m, 60
printParams
    printParams.m, 61
printParams.m, 61
    printParams, 61
RRE geneExp RRE syms
    RRE_geneExp_RRE_syms.m, 50
RRE_geneExp_RRE_syms.m
    RRE_geneExp_RRE_syms, 50
run_fitting_subpop
    run_fitting_subpop.m, 44
run_fitting_subpop.m
    run_fitting_subpop, 44
run_fittings_ECM.m
    run_fittings_ECM, 39
run_fittings_ECM
    run_fittings_ECM.m, 39
run_lppd_cr
    run_lppd_cr.m, 30
run_lppd_cr.m
    run_lppd_cr, 30
run thermIntegration cr
    run_thermIntegration_cr.m, 31
run_thermIntegration_cr.m
    run_thermIntegration_cr, 31
sclogLikelihood_cr
    sclogLikelihood cr.m, 32
sclogLikelihood cr.m
    sclogLikelihood cr, 32
testSigmaPointApp mod
    testSigmaPointApp_mod.m, 62
testSigmaPointApp_mod.m, 62
```

testSigmaPointApp_mod, 62