CSS 422 Hardware and Computer Organization

Sequential Circuit

Professor: Yang Peng

The slides are re-produced by the courtesy of Dr. Arnie Berger and Dr. Wooyoung Kim

Topics

- Sequential Circuit
 - Chapter 4, 5 by Berger
 - Chapter 3 by Null
 - Flip-Flop
 - Excitation table and K-maps
 - Design registers

Example: 2-Binary Counter

- To design a 2-binary counter system with logic gates
- 2-binary counter system
 - Input: one control bit
 - Output: 2 bits that are stored in the system
 - If input is 0, then the 2 bits stay the x = 0 same
 - If input is 1, then the 2 bits are counted up and if they reach the maximum, then they are reset to 0

Can we make this with combinational logic gates?

What is missing in the combinational circuit to design this system?

Combinational vs. Sequential

• **Combinational** circuit

- The current output state depends only on the input states
- It does not provide memory or state information, except ROM

Sequential circuits

- The current output depends on the current input and the past history of inputs/outputs
- The most common type of sequential circuit is the synchronous type
- Edge-triggered Flip-Flop: synchronous (clocked) sequential circuit
- Interconnection of flip-flops and gates

Asynchronous vs. Synchronous

Asynchronous logic

The change in the state depends on the input variables

Synchronous logic

- With millions of logic gates, we need to synchronize the change of logic state with some master signal – clock
- Suppose we need to move data from memory to register to do arithmetic addition. How the computer will know the sequence of the work?
- We need a system that works according to the order of tasks as time goes → synchronous sequential circuit design

Clocks and Time

- The *clock* in a digital system is an electronic analog of the pendulum which synchronizes the circuits
 - Clock signal is the master control signal
 - Circuit output changes on the rising or falling edges of a clock pulse
- Frequencies are the inverse of time (speed)
 - Hz = the number of cycles per second: how to compute the time per each cycle?
 - -1 kilohertz (KHz) = 10^3 Hz (cycle per second)
 - -1 megahertz (MHz) = 10^6 Hz
 - 1 gigahertz (GHz) = 10^9 Hz
 - -1 terahertz (THz) = 10^{12} Hz

Clocks and Pulses

Clocks are continuous streams of pulses

- Duty cycle = $t_{PH} / (t_{PH} + t_{PL}) \times 100\%$
 - The clock signal shown above has a 50% duty cycle
 - The clock signal shown below has a 25% duty cycle
 - Period: The time to complete one clock cycle
 - Period = t_{cycle}
 - Frequency: The inverse of the period, f = 1/period

A Real Clock

 Note that signal fidelity is not an issue. As long as the logic 1 is greater than 2.5 volts and logic 0 is less than 1 volt, the pulse will be properly interpreted

Pulse Rise Time Measurement

Propagation Delay

- Why can't we simply rev-up the clock on your PC to as higher as you want?
 - Answer: Gates require a finite amount of time to switch state when their inputs change
- Consider the inverter gate below

The propagation delay (time delay from input change to output

change) 類DO ょ 0.00s 10.0g/ FD1 SIU $\Delta t = 12.60 \text{ns}$ $\Delta t = 12.60 ns$ $1/\Delta t = 79.37 MHz$

Basic Units for Sequential Circuit

- Logic Gates: the building blocks of combinational circuit
- Flip-Flops: the building blocks of sequential circuit
 - Flip-flops are actually built with logical gates
- Before we study flip-flops, let's start with a latch
- Latch: Use the feedback functionality
 - Feedback: Bringing the output back to an input
 - Lock the gate pair into a new state
 - Transition is triggered by the application of the *input pulse*

Sequential Circuit Design

 A sequential circuit can be a combination of combinational circuits and flipflops

Block diagram of a sequential circuit

- Because the sequential circuit involves state transition, we have different types of tables for this circuit
- **State Table**: Based on the **input and current state**, give **the next state** information (similar to truth table)
- **Characteristic Table**: Give the state transition information based on inputs
- **Excitation Table**: Inputs are the current and next states, and outputs are input signals

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - When S = 1 and R = 0, Q becomes 1

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - When S = 0 and R = 1, Q becomes 0

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - When S = 0 and R = 0, the output will be "locked"

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - What if S=1 and R=1, simultaneously?

Α	В	NOR	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - What if S=1 and R=1, simultaneously?

Α	В	NOR	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - What if S=1 and R=1, simultaneously?

Α	В	NOR	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - What if S=1 and R=1, simultaneously?

Α	В	NOR	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- A circuit that remembers previous input values states
- S-R Latch: two stable states Set and Reset
- Regardless of previous states,
 - When S is 1 and R is 0, Q becomes 1
 - When S is 0 and R is 1, Q becomes 0
 - When S=R=0, the output will be "locked"
 - When S=R=1, the output will be in "race condition" (forbidden state)

SR Latch

(a)	State	Table	e

Current Inputs SR	Current State Q _n	Next State Q _{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	_
11	1	_

(b) Characteristic Table

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	_

(c) Response to Series of Inputs

t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

Gated SR Latches

- How to resolve the forbidden condition when S=R=1?
- Does this solve the forbidden condition problem?
 - When E is 0 (at logic low), the problem is solved

Clocked SR Latches

- SR Latch is an asynchronous operation, yet
- Preventing the latch from changing state, except at

"certain specific time"

- Only when clock is up, the latch is sensitive to S or R
- How to resolve the forbidden condition when S=R=1?
 - When the clock is down, the problem is solved

Gated JK Latch

- Avoid the SR latch's instability by preventing the inputs being 1 at the same time
 - "Toggle" does not cause the race condition, which is just OK but not perfect.
- In this case, all possible combinations of input values are valid

E	J	K	ď	Ισ
1	0	0	latch	latch
1	0	1	0	1
1	1	0	1	0
1	1	1	toggle	toggle
0	0	0	latch	latch
0	0	1	latch	latch
0	1	0	latch	latch
0	1	1	latch	latch

Clocked JK Latch

- Avoid the SR latch's instability by preventing the inputs being 1 at the same time
- In this case, all possible combinations of input values are valid

C	J	K	Q	Q
\neg	0	0	latch	latch
۲	0	1	0	1
7	1	0	1	0
\vdash	1	1	toggle	toggle
х	0	0	latch	latch
х	0	1	latch	latch
х	1	0	latch	latch
х	1	1	latch	latch

Gated D Latches

- Avoid the SR latch's instability by giving R as the inverse of S
- D: input the current data
- Q: output the stored value

Clocked D Latches

- Avoid the SR latch's instability by giving R as the inverse of S
- D: input the current data
- Q: output the stored value
- To **load** the current value of D, just give a **positive pulse** on the clock line
- What if D changes while the clock stays in HIGH (active)?

Propagation Delay

• The **propagation delay** (time delay from input change to output change)

$$\Delta t = 12.60 ns$$

Rising-Edge Pulse Detector

Falling-Edge Pulse Detector

J-K Flip-Flop

Only allow the output to change at a clock pulse

D Flip-Flop

Only allow the output to change at a clock pulse

Latches vs. Flip-Flops

- Latch lacks a mechanism to shift control to the clock edge
- The state changes when the clock is active

Level-Triggered

Flip-Flop: State transition occurs when the clock transitions
 from 0 to 1 (rising) or from 1 to 0 (falling)

Edge Triggered

- It's called a Flip-flop because output Q is flipped back and forth
- Sometimes Flip-Flops and latches are used as the same
- But in our class, we make the difference clear
- Without further specification, we use Rising Edge as a trigger in this class

Characteristic Table for FF

Name	Graphical Symbol	Characteristic Table
S-R	S Q \rightarrow Ck R \overline{Q}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J-K	J _ Q	$\begin{array}{c cccc} J & K & Q_{n+1} \\ \hline 0 & 0 & Q_n \\ 0 & 1 & 0 \\ 1 & 0 & \frac{1}{Q_n} \\ 1 & 1 & \overline{Q_n} \\ \end{array}$
D	D Q	$ \begin{array}{c cccc} D & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Basic Flip-Flops and the characteristic table

Sequential Circuit Design

 A sequential circuit can be a combination of combinational circuits and flipflops

Block diagram of sequential circuit

- Because the sequential circuit involves state transition, we have different types of tables for this circuit
- **State Table**: Based on the input and current state, give the next state information (like truth table)
- **Characteristic Table**: Give the state transition information based on inputs
- Excitation Table: Inputs are the current and next states, and outputs are input signals (S, R, J, K) → why do we need this table?

Excitation Table for Flip-Flops

SR flip-flop			•	D flip-flop			
Q(t)	Q(t+1)	s	R		Q(t)	Q(t+1)	D
0	0	0	×		0	0	0
0	1	1	0		0	1	1
1	0	0	1		1	0	0
1	1	×	0		1	1	1

JK mp-mop	JΚ	flip-flop
-----------	----	-----------

Q(t)	Q(t+1)	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

T flip-flop

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0
		l

Excitation Table

- Excitation table (inverted characteristic table)
 - Input: current state and next state
 - Output: S R or J K or D the control bit(s) of FF
- Necessity
 - FF is a feedback system
 - The transition information goes back to the states for inputs (S, R, etc.)
 - If you know the excitation table, you know how the sequential circuit can be built

Block diagram of a generic sequential circuit

Example of a Sequential Circuit

What does this circuit do?

Draw a state table to analyze a sequential circuit

How to draw a state table?

State Table

From the sequential circuit, can we build a state table?

A(t)	B(t)	(input) w	(output) Y	A(t+1)	B(t+1)
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	0	1	0

How to draw a state machine from a state table?

State Machine/Diagram

From the state table, can we build a state machine?

A(t)	B(t)	(input) w	(output) Y	A(t+1)	B(t+1)
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	0	1	0

How to design a sequential circuit?

Design a Sequential Circuit

- Design a sequential circuit
- 1. Draw a **State Machine** (state diagram)
- 2. Figure out the *Inputs* and *Outputs*
- 3. Build a **State Table** and derive an **Excitation Table**
- 4. Derive a **Boolean Equation** using **K-map**
- 5. Build the **sequential circuit**

Let's design a 2-bit binary counter

 A sequence of repeated binary states 00, 01, 10, 11 whenever the input is 1.

2-bit Binary Counter – State Machine

2-bit Binary Counter – Input/Output

- Input (control signal): w
- Output (# of FF): 2 (2 bits)
- Suppose we are using JK FFs
- Then we need two J's and two K's
- In the state machine, you can build a state table
- The next states are connected to JK's
- We need an extended table → excitation table

Present state (t)		Input	Next sta	nte (t+1)
А	В	W	Α	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

2-bit Binary Counter – State Table

- Input (control signal): w
- Output (# of FF): 2 (2 bits)
- Suppose we are using JK FFs
- Then we need two J's and two K's
- In the state machine, you can build a state table
- The next states are connected to JK's
- We need an extended table → excitation table

Present state (t)		Input	Next sta	ite (t+1)
А	В	W	Α	В
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

2-bit Binary Counter – Excitation Table 1

Q(t)	Q(t+1)	J	К
0	0	0	Χ
0	1	1	X
1	0	X	1
1	1	X	0

Reference:

JK FF's excitation Table

Presen (t		Input	Next (t+		Fl	lip-floր	o input	ts
Α	В	W	Α	В	J _A	K_A	J _B	K _B
0	0	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	0	0				

Extended table based on the state table

2-bit Binary Counter – Excitation Table 2

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Reference:

JK FF's excitation Table

Presen	t state t)	Input	Next (t+		Fl	lip-flo _l	o input	ts
А	В	W	А	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	1	0	X	X	0
0	1	1	1	0	1	X	X	1
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Excitation table with J and K inputs

2-bit Binary Counter – Excitation Table 3

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	Χ	0

Reference:

JK FF's excitation Table

You cannot control the next state: So, not an input nor an output

Presen (1	t state	Input			Fl	lip-floլ	o input	ts
Α	В	W	А	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	1	0	X	X	0
0	1	1	1	0	1	X	X	1
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	Х	1	X	1

Excitation table with the "Next state" been removed

2-bit Binary Counter – Boolean Equation

$$J_A = Bw$$

	~B~w	~Bw	Bw	B~w
~A	X	X	Х	X
Α			1	

$$K_A = Bw$$

	~B~w	~Bw	Bw	B~w
~A		1	Х	Х
Α		1	Х	Х
			•	•

$$J_B = w$$

	~B~x	~Bw	Bw	B~w
~ A	X	Х	1	
Α	X	Х	1	

$$K_B = w$$

2-bit Binary Counter – Sequential Circuit

Example of a Sequential Circuit

What does this circuit do?

Draw a state table to analyze a sequential circuit

A(t)	B(t)	(input) w	(output) Y	A(t+1)	B(t+1)
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	0	1	0

Examples of complicated sequential circuits

D flip-flop connected in a divide-by-two configuration

The "D" FF as a Counting Element

- A 4-bit binary *ripple counter*
 - the pulses "ripple" through the circuit

- Each "D" FF divides the incoming clock frequency by 2
- RESET sets all Q output to 0 without a clock signal (asynchronous)
- Counts as fast as the first stage can toggle, but cannot be read until the count has rippled through to the last stage
- Can build counter/dividers of any length, any binary divisor
 - Clock frequency at output Q3 equals fclockin ÷ 16

"D" FF as a Shift Register

- Shift register moves data through successive stages on each clock pulse
- Used for serial data communications, multiplication, image processing
- Basis for UART (Universal Asynchronous Receiver/Transmitter)
- Data can be read in serial and then read out in parallel
- Serial data communications limit the number of signal wires needed to transmit byte-wide

"D" Flip-Flop as a Storage Register

An 8-bit Storage Register

The Storage Register with Busses

More on Storage Registers

- The storage register provides a stable location to store data moving along buses
 - Data on buses are transitory
 - The width of a storage register typically matches the width of the data path
 - May be 4, 8, 16, 32, 64 or 128 bits wide
 - Registers interface data between a computer and the outside world
 - Registers are the key data holders in computers and microprocessors
 - A computer's architecture is often defined by organization of the storage registers
- Two variety of storage registers: "D" type and Latch

First In First Out (FIFO) Data Storage

Summary

- Gate is a fundamental building block of all digital systems
- Flip-flop is a basic unit for sequential circuit, which are built using gates and a clock
- Design a sequential circuit system
 - Draw a state diagram
 - Draw a state table
 - Build K-maps to derive Boolean equations
 - Draw a circuit diagram based on the equations