WEST Search History

Hide items Restore Clear Cancel

DATE: Monday, February 21, 2005

Hide?	<u>Set</u> Name	Query	<u>Hit</u> Count
	DB=I	PGPB,USPT,USOC,EPAB,JPAB,DWPI; PLUR=YES; OP=ADJ	
	L25	WO-200215913\$.did.	1
	DB=B	EPAB; PLUR=YES; OP=ADJ	
	L24	WO-200215913-A1.did.	0
	DB=1	PGPB,USPT,USOC,EPAB,JPAB,DWPI; PLUR=YES; OP=ADJ	_
	L23	L22 and polyanionic polymer	3
	L22	L21 and treat\$4	91
	L21	L20 and trauma	102
	L20	franklin.inv. or cowling.inv. or hubbell.inv. or van de wetering.inv.	18103
	DB=	PGPB; PLUR=YES; OP=ADJ	
		US-20030007951\$.did.	1
	DB=	USPT; PLUR=YES; OP=ADJ	0
	L18	US-20030007951\$.did.	0
	L17	L16 and 15	16
	L16	111 and (18 or 17 or 16)	886
	L15	14 and 15	5
	L14	L13 and (15 or 19)	7
	L13	14 and (18 or 17 or 16)	24
	L12	15 and 17	9
	L11	L10 and treat\$4	886
	L10	L9 and 18	1022
	L9	carbopol	6855
	L8	adhesion	185338
	L7 -	surgical wound	1617
	L6	trauma	28015
	L5	polyanionic polymer	274
	L4	13 or 12 or 11	39
0	L3	US-6083930-\$.DID. OR US-6034140-\$.DID. OR US-6127348-\$.DID. OR US-6133325-\$.DID. OR US-6017301-\$.DID. OR US-0641717-\$.DID. OR US-5994325-\$.DID. OR US-5906997-\$.DID. OR US-5705178-\$.DID. OR US-5705177-\$.DID.	10
		US-5939208-\$.DID. OR US-5423736-\$.DID. OR US-5306504-\$.DID. OR US-	

L2	5204110-\$.DID. OR US-5160328-\$.DID. OR US-5154706-\$.DID. OR US-5920158-\$.DID. OR US-0575177-\$.DID. OR US-0705178-\$.DID. OR US-0080893-\$.DID. OR US-6010692-\$.DID. OR US-0588566-\$.DID. OR US-5665477-\$.DID. OR US-5350573-\$.DID. OR US-0514006-\$.DID.	15
Ll	US-4596858-\$.DID. OR US-4666983-\$.DID. OR US-5078994-\$.DID. OR US-5126409-\$.DID. OR US-0522946-\$.DID. OR US-5385983-\$.DID. OR US-5397567-\$.DID. OR US-5455027-\$.DID. OR US-5677276-\$.DID. OR US-5779696-\$.DID. OR US-5912228-\$.DID. OR US-5942487-\$.DID. OR US-6039940-\$.DID. OR US-6086843-\$.DID.	14

END OF SEARCH HISTORY

Hit List

Clear:: Generate Collection :: Print: EwdiRers:: Bkwd Refs:::

Search Results - Record(s) 1 through 9 of 9 returned.

☐ 1. Document ID: US 6756362 B2

L12: Entry 1 of 9

File: USPT

Jun 29, 2004

DOCUMENT-IDENTIFIER: US 6756362 B2

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis

by anionic polymers

Detailed Description Text (53):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (124):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition-of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (125):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

☐ 2. Document ID: US 6417173 B1

L12: Entry 2 of 9

File: USPT

Jul 9, 2002

DOCUMENT-IDENTIFIER: US 6417173 B1

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Drawing Description Text (64):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (71):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (72):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full	Title Citation	Front Review	Classification	Date Refer	nce Barrers	## Y Y	Claims	10010	[rfalor [re
	3. Docume	nt ID: US 61	27348 A					<u></u>	
L12:	Entry 3 of	9		File	: USPT		Oct	3,	2000

DOCUMENT-IDENTIFIER: US 6127348 A

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Detailed Description Text (54):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (128):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan splfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (129):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full Title Citation	Front Beview Classifica	ition Crate Berefence	Claims FoolC Graw C
4. Docume	ent ID: US 6083930 A	A	
L12: Entry 4 of	, 9	File: USPT	Jul 4, 2000

DOCUMENT-IDENTIFIER: US 6083930 A

** See image for Certificate of Correction **

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Detailed Description Text (55):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or

inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (126):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (127):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full	Title Citation	Front Review	Classification	Date	Reference		Claims	\$50 4 C	: Errand Erd
	5. Docume	ent ID: US 60	20326 A					***************************************	
L12:	Entry 5 of	9			File: V	JSPT	Feb	1,	2000

DOCUMENT-IDENTIFIER: US 6020326 A

TITLE: Method for inhibition of bone growth by anionic polymers

Detailed Description Text (54):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (131):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves

were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (132):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full Title Citation Front Review Classification	Cate Reference	Claims 1990 traw to
☐ 6. Document ID: US 5994325 A L12: Entry 6 of 9	File: USPT	Nov 30, 1999

DOCUMENT-IDENTIFIER: US 5994325 A

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Detailed Description Text (53):

The invention provides for application of an inhibitory composition or inhibitory-adhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a <u>surgical wound</u>. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (123):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic

acid).

Detailed Description Text (124):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full	Title Ci	ation Fro	nt Review	Classification	(rate	Reference		<u> </u>	laima	10010	[13m; [m
	7. Doc		D: US 57	051 78 A		File:	USPT		Jan	6,	1998

DOCUMENT-IDENTIFIER: US 5705178 A

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Detailed Description Text (55):

The anionic polymers of the present invention are useful in a method of inhibiting the tethering and compression of peripheral nerves which can occur as a result of extraneural scar formation following surgical intervention. This method comprises administering said anionic polymer to the site of the surgical wound. In another embodiment, the inhibitory composition may be used in the treatment of patients with peripheral nerve injury so that the regeneration of nerves may be enhanced by the minimization of scarring, by administering said anionic polymer to the site of peripheral nerve injury.

Detailed Description Text (60):

The invention provides for application of an inhibitory composition or inhibitoryadhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a surgical wound. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat. an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (141):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran

sulfate and pentosan polysulfate), and another polyanionic polymer, alginic acid.

Detailed Description Text (142):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 13, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full Title Citation Front Review Classification	frate Reference 84 20 400	Claims 1500C Eraos Do
☐ 8. Document ID: US 5705177 A		
L12: Entry 8 of 9	File: USPT	Jan 6, 1998

DOCUMENT-IDENTIFIER: US 5705177 A

L12: Entry 8 of 9

TITLE: Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

Detailed Description Text (55):

The invention provides for application of an inhibitory composition or inhibitoryadhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a surgical wound. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (135):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite Outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (136):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl

groups. As shown in Table 13, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full Title Citation Front Review Classification	Pate Reference	Claims 1000C Praw (w
☐ 9. Document ID: US 5605938 A	File: USPT	Feb 25, 1997

DOCUMENT-IDENTIFIER: US 5605938 A

TITLE: Methods and compositions for inhibition of cell invasion and fibrosis using

dextran sulfate

L12: Entry 9 of 9

Detailed Description Text (53):

The invention provides for application of an inhibitory composition or inhibitoryadhesive composition by surgical procedures. The inhibitory anionic polymer or inhibitory-adhesive may be applied to a surgical wound. The anionic polymer or inhibitory-adhesive may be directly applied to sites of tissue injury, or to coat an entire organ or to close a surgical incision. Where suitable, administration of the inhibitory anionic polymer or inhibitory-adhesive composition may be made by orthroscopic procedures.

Detailed Description Text (121):

PC-12 cells primed with NGF were plated in 96-well plates. Test solutions were added to the wells and the cells were scored 2 days later as (+) if neurites of at least two cell bodies diameter in length were present on the majority of the cells, and (-) if no or only short processes were present. Complete dose-response curves were generated for each test compound and the results were expressed as IC.sub.100 (g/ml), i.e., the minimum concentration at which the compound caused 100% inhibition of neurite outgrowth (Table 10). The lack of toxicity by each compound tested was confirmed as follows: microscopically, no evidence of cell death and detachment was seen; cells did not stain positive for trypan blue; and removal of the inhibitory compound from the culture medium resulted in neurite outgrowth. The compounds tested included GAGs (heparin, dermatan sulfate, chondroitin sulfate A, keratan sulfate and hyaluronic acid), sulfated carbohydrate polymers (dextran sulfate and pentosan polysulfate), and another polyanionic polymer (e.g., alginic acid).

Detailed Description Text (122):

A compound's relative inhibitory potency in vitro appeared to positively correlate with sulfur content. The contribution of the sulfur functional group is most clearly demonstrated by comparing the activity of dextran sulfate to that of dextran. The sulfur found as sulfate on the GAGs most likely affects cell invasion by anionic charge density. To test this hypothesis, we used alginic acid (alginate), a polyanionic polymer with a negative charge due only to carboxyl groups. As shown in Table 10, alginic acid also inhibits cell migration. These results indicate that an active inhibitory element of a given polymer is its anionic (negative) charge density.

Full Title Citation Front	Review Cla	assitication Date	Reference	Claime	15000	ferance for
	_					

Glear Generate Collection Print Fixed Reis	Bkwd/Refs Generate OACS;
Term	Documents
(5 AND 7).USPT.	9
(L5 AND L7).USPT.	9

Display Format: KWIC

Previous Page Go to Doc# Next Page