RL: Policy Search

Gradient-free Optimization

Marius Lindauer

Winter Term 2021

Policy optimization

- \blacktriangleright Policy based reinforcement learning is an optimization problem over θ
- \leadsto Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
- ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - ▶ Hill climbing
 - ► Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)

Lindauer RL: Gradient-free, Winter Term 2021

Policy optimization

- lacktriangle Policy based reinforcement learning is an optimization problem over heta
- \leadsto Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
- ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - ▶ Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)
- gradient-free optimizers are (often) designed for
 - ▶ many function evaluations → possible in RL
 - ightharpoonup parallel computation ightarrow possible in RL
 - ightharpoonup a few to hundreds of dimensions ightharpoonup RL?

Policy optimization

- \blacktriangleright Policy based reinforcement learning is an optimization problem over θ
- \leadsto Find policy parameters θ^* that maximize $V(s_0,\theta^*)$
- ▶ We can use gradient-free approaches (a.k.a. black-box optimization)
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method
 - Covariance Matrix Adaptation (CMA)
- gradient-free optimizers are (often) designed for
 - ▶ many function evaluations → possible in RL
 - ightharpoonup parallel computation ightarrow possible in RL
 - ▶ a few to hundreds of dimensions → RL?
- if we encode the policy π_{θ} as a DNN, we might have millions of dimensions (i.e., parameters in θ)

RL: Gradient-free. Winter Term 2021

Lindauer