CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 29 GENNAIO 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Sia f l'applicazione $n \in \mathbb{N}^* \longmapsto \operatorname{rest}(8, n) \in \mathbb{N}$.

- (i) Si determini l'immagine im $f = \overrightarrow{f}(\mathbb{N}^*)$ di f.
- (ii) Detto \Re_f il nucleo di equivalenza di f, si studi l'insieme quoziente \mathbb{N}^*/\Re_f , descrivendone esplicitamente tutte le classi, ciascuna con i rispettivi elementi.
- (iii) Sia Σ la relazione d'ordine definita in \mathbb{N}^* ponendo, per ogni $n, m \in \mathbb{N}^*$,

 $n \Sigma m : \iff n = m$ oppure $\operatorname{rest}(8, n)$ è un divisore proprio di $\operatorname{rest}(8, m)$.

Si determinino in (\mathbb{N}^*, Σ) eventuali minimo, massimo, elementi minimali, elementi massimali.

- (iv) Considerato il sottoinsieme $X = \{1, 3, 5, 6, 7, 9\}$ di \mathbb{N}^* , si disegni il diagramma di Hasse di (X, Σ) . Inoltre
 - (a) Per tutte le coppie $(x, y) \in X \times X$ di elementi non confrontabili tra loro, determinare inf $\{x, y\}$ e sup $\{x, y\}$.
 - (b) Spiegare perché (X, Σ) è un reticolo, e stabilire se è un reticolo complementato, determinando nel caso, per ogni $x \in X$, un complemento di x.
 - (c) Dedurre da (b) che (X, Σ) non è distributivo.

Esercizio 2. Si studi l'operazione binaria * definita in \mathbb{Z}_{210} ponendo, per ogni $a, b \in \mathbb{Z}_{210}$,

$$a * b = a + \overline{15}b$$
.

- (i) * è commutativa? È associativa?
- (ii) Esiste in $(\mathbb{Z}_{210}, *)$ un elemento neutro a destra, un elemento neutro a sinistra, un elemento neutro?
- (iii) Si verifichi che $T := \{\overline{15z} \mid z \in \mathbb{Z}\}$ è una parte chiusa in $(\mathbb{Z}_{210}, *)$.
- (iv) Che tipo di struttura è (T,*)? (un semigruppo, un monoide, un gruppo, nessuna di queste, ...; commutativa oppure no?).
- (v) Determinare gli $n \in \mathbb{N}$ tali che $12 \le n \le 16$ e \bar{n} sia invertibile in $(\mathbb{Z}_{210}, \cdot)$, calcolando \bar{n}^{-1} .

Esercizio 3.

- (i) Si verifichi che il polinomio $f = x^2 + x + \bar{9} \in \mathbb{Z}_{11}[x]$ è l'associato monico di $g = \bar{4}x^2 + \bar{4}x + \bar{3}$, determinando $k \in \mathbb{Z}_{11}$ tale che f = kg.
- (ii) Verificare che $I = \{s\bar{f} \mid s \in \mathbb{Z}_{11}[x]\}$ coincide con $J = \{h \in \mathbb{Z}_{11}[x] \mid h(\bar{1}) = h(-\bar{2}) = \bar{0}\}.$
- (iii) Determinate in I, se esiste,
 - (a) un polinomio h di grado 3 il cui insieme delle radici sia $\{\overline{1}, -\overline{2}\}$;
 - (b) un polinomio t di grado 3 che sia prodotto di due polinomi irriducibili;
 - (c) un polinomio irriducibile p di grado 3.
- (iv) Dopo aver elencato in modo esplicito gli elementi del sottoinsieme $T = \{c^2 \mid c \in \mathbb{Z}_{11}\}$ di \mathbb{Z}_{11} ed aver calcolato |T|, dire quali e quanti sono i polinomi irriducibili di $\mathbb{Z}_{11}[x]$ della forma $x^2 a$, con $a \in \mathbb{Z}_{11}$.
- (v) Nell'insieme J definito al punto (ii), si trovino, se possibile, polinomi u e v di grado 4 in modo che u sia il prodotto di due polinomi irriducibili e v sia il prodotto di tre polinomi irriducibili (in $\mathbb{Z}_{11}[x]$).