Formelsammlung—Numerische Methoden

Tim Hilt Emil Slomka

15. Juni 2020

Inhaltsverzeichnis

T	Line	eare Gleichungssysteme	1
	1.1	Jacobi-Iteration	1
		1.1.1 Jacobi-Iteration in Matrix-Vektor-Notation	1
		1.1.2 Vorgehen	1
	1.2		2
		1.2.1 Diagonaldominanz	2
		1.2.2 Spektralradius	2
	1.3	Gauss-Seidel-Iteration	2
2	Nic	ht-lineare Gleichungssysteme	2
3	Inte	erpolation und Approximation	2
4	Nui	merische Integration	2
5	Opt	timierung	2
6	Gev	wöhnliche Differenzialgleichungen	2

1 Lineare Gleichungssysteme

Die unten beschriebenen Verfahren suchen Lösungen für die x-Werte.

1.1 Jacobi-Iteration

1.1.1 Jacobi-Iteration in Matrix-Vektor-Notation

L: Lower part of Matrix

D: Extracted Diagonal

U: Upper part of Matrix

$$\mathbf{x}^{(k+1)} = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

Achtung: Wenn bei der Jacobi-Iteration alle Startwerte = 0 sind muss Nur der zweite Term $\mathbf{D}^{-1}\mathbf{b}$ betrachtet werden!!!

1.1.2 Vorgehen

- 1. Stelle einzelne Gleichungen auf
- 2. Auflösen nach den Variablen der jeweiligen Zeile
- 3. Links steht jetzt die Variable der nächsten Iteration, rechts stehen die vorhergehenden Werte.
- 4. Gleichungen ausrechnen

1.2 Konvergenz

Die untenstehenden Kriterien stellen das Konvergenzkriterium für beide Iterationsverfahren dar. Es gilt sowohl für das Jacobi- als auch für das Gauss-Seidel-Verfahren und für beliebige Startwerte.

1.2.1 Diagonaldominanz

Eine Matrix ist dann diagonaldominant, wenn in allen Zeilen der Betrag des Diagonalelements der Matrix größer ist als die Summe des Betrages der restlichen Elemente.

$$\sum_{j \neq k} |a_{ij}| < |a_{kk}| \text{ für } k = 1, \dots, n.$$

1.2.2 Spektralradius

$$\rho(\mathbf{A}) = \max_{j=1,\dots,n} |\lambda_j| = \max(|-\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})|)$$

- \Rightarrow Die Iteration konvergiert, wenn $|\rho(\mathbf{A})| < 1$
- \Rightarrow Je kleiner der Spektralradius, desto schneller die Konvergenz

1.3 Gauss-Seidel-Iteration

- 2 Nicht-lineare Gleichungssysteme
- 3 Interpolation und Approximation
- 4 Numerische Integration
- 5 Optimierung
- 6 Gewöhnliche Differenzialgleichungen