Examen¹ la Geometrie I, seria 10, 26.01.2024

Nume și prenume: _ Grupa: __

I. Decideți dacă următoarele afirmații sunt adevărate sau false, justificând pe scurt alegerea:

- 1. În planul \mathbb{R}^2 , dreptele $(d_1): x-4y=0$ și $d_2=\{(1-4t,3-t)\mid t\in\mathbb{R}\}$ sunt perpendiculare. (0,5p)
- Funcția $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (5xy + 2, x + y 1) este o aplicație afină. (0,5p)
- 3. În spațiul \mathbb{R}^3 , planul (π_{α}) : $\alpha x + 2y 3z = 1$ și dreapta $d_{\alpha} = \{(1 2t, 3 + \alpha t, 5) \mid t \in \mathbb{R}\}$ nu se intersectează pentru niciun $\alpha \in \mathbb{R}$. (0,5p)
- **4.** Pentru orice două cercuri $\mathcal{C}_1, \mathcal{C}_2 \subset \mathbb{R}^2$, există o omotetie $f: \mathbb{R}^2 \to \mathbb{R}^2$ astfel încât $f(\mathcal{C}_1) = \mathcal{C}_2$. (0,5p)
- În planul \mathbb{R}^2 , dacă $(d_{\alpha}): x + y = \alpha$, atunci există o conică nedegenerată \mathcal{C} astfel încât $|\mathcal{C} \cap d_{\alpha}| = 1$, pentru orice (0,5p)
- 6. Dacă $f: \mathbb{R}^2 \to \mathbb{R}^2$ este o izometrie afină astfel încât $f \circ f \circ f = \mathrm{id}_{\mathbb{R}^2}$, atunci f are un punct fix. (0,5p)

II. Redactați rezolvările complete:

- 1. În planul \mathbb{R}^2 , fie punctele $A=(0,0), B=(6,4), C_{\alpha}=(3,\alpha)$ unde $\alpha\in\mathbb{R}$ $(\alpha\neq 2)$ este un parametru.
- a) Determinați coordonatele punctelor G_{α} , H_{α} care sunt, respectiv, centrul de greutate și ortocentrul triunghiului ABC_{α} . (1p)
- b) Determinați ecuația bisectoarei unghiului $\widehat{BAC_1}$. (1p)
- c) Pentru ce valori ale lui α avem $AH_{\alpha}||BG_{\alpha}$? (0,5p)
- 2. În \mathbb{R}^2 considerăm conica

$$(C_{\alpha}): x^2 - y^2 + 2(\alpha + 1)x + 2y - 1 = 0.$$

(1p)

- a) Ce tip de conică este C_0 ? Justificați răspunsul.
- b) Determinați toate valorile lui α pentru care conica \mathcal{C}_{α} este tangentă la dreapta (d): x=y. (1p)
- c) Dați exemplu, dacă există, de valoare a lui α pentru care conica \mathcal{C}_{α} admite măcar un punct singular. (0,5p)
- 3. Fie $\mathcal{E}_1, \mathcal{E}_2$ două conice nedegenerate distincte de ecuații respectiv

$$(\mathcal{E}_1): F_1(x,y) = 0, (\mathcal{E}_2): F_2(x,y) = 0.$$

astfel încât există punctele distincte $A \neq B$ cu proprietățile: $\{A, B\} \subset \mathcal{E}_1 \cap \mathcal{E}_2$ și $\mathcal{E}_1, \mathcal{E}_2$ au tangente comune în A, B, \mathcal{E}_3

$$T_A \mathcal{E}_1 = T_A \mathcal{E}_2, T_B \mathcal{E}_1 = T_B \mathcal{E}_2.$$

Fie \mathcal{C} o conică de ecuație (\mathcal{C}) : F(x,y)=0 astfel încât $\{A,B\}\subset\mathcal{C}$ și

$$T_A \mathcal{C} = T_A \mathcal{E}_2, T_B \mathcal{C} = T_B \mathcal{E}_2.$$

Arătați că există $\alpha_1, \alpha_2 \in \mathbb{R}$ astfel încât $F = \alpha_1 F_1 + \alpha_2 F_2$.

⁽¹p)

¹Se acordă 1 punct din oficiu. Redactați subiectele pe foi separate. Timp de lucru: 2 ore. Succes!