Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: Е. В. Грибанов

Студент группы 321703

Проверил: В. Н. Тищенко

СОДЕРЖАНИЕ

B	ведение	3
1	Постановка задачи	4
2	Формализованные фрагменты теории реализация интерпретатора	
	sc-моделей пользовательских интерфейсов	5
3	Формальная семантическая спецификация библиографических ис-	
	точников	10
3	аключение	11
\mathbf{C}	писок использованных источников	12

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки.
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам.
- Оформление конкретных предложений по развитию текущей версии Стандарта интеллектуальных компьтерных систем и технологий их разработки.

1 ПОСТАНОВКА ЗАДАЧИ

Часть 2 Учебной дисциплины ''Представление и обработка информации в интеллектуальных системах''

- \Rightarrow библиографическая ссылка*:
 - Стандарт OSTIS
 - Толковый словарь по Искусственному интеллекту
 - $\Rightarrow URL^*$:

[http://raai.org/library/tolk/aivoc.html]

- ⇒ аттестационные вопросы*:
 - (• Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"
)

Вопрос 1 по Части 2 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- := [Реализация интерпретатора sc-моделей пользовательских интерфейсов]
- \Rightarrow библиографическая ссылка*:
 - Голенков В. В..СеманТПИСиСАК-2019ст
 - := [Семантические технологии проектирования интеллектуальных систем и семантических ассоциативных компьютеров]
 - Голенков В. В..ПроектОСТКПИС-2014ст
 - := [Проект открытой семнтической технологии компонентного проектирования интеллектуальных систем.]

2 ФОРМАЛИЗОВАННЫЕ ФРАГМЕНТЫ ТЕОРИИ РЕАЛИЗАЦИЯ ИНТЕРПРЕТАТОРА SC-МОДЕЛЕЙ ПОЛЬЗОВАТЕЛЬСКИХ ИНТЕРФЕЙСОВ

многоагентная система

- := [система агентов, которая занимается решением задач]
 - \Rightarrow пояснение*:

[агенты первого уровня должны обладать одинаковым уровнем знаний, но иметь разные алгоритмы, чтобы на выходе изменялся результат]

 \Rightarrow noschehue*:

[важно, что каждый из агентов работает на четко определенной для него области знаний и по четко определенным для него алгоритмам принятия решения]

- ⇒ свойства агентов первого уровня*:
 - { [агенты могут общаться между собой]
 - [агенты могут обмениваться алгоритмами]
 - [агенты могут содержать подагентов]
 - [агенты имеют главного агента, который выдает им общее задание]
 - [агенты могут обмениваться информацией полученной на задании, а главный агент собирает результаты]
 - \Rightarrow пояснение*:

[важно, что главный агент выбирается на конкурсной основе, то есть выбирается тот агент, который наиболее соответствуют заданию и его тематике]

} ⇒ nos

пояснение*:

[для хранения и обработки данных интеллектуальных агентов, могут быть использованы миварные технологии]

 \Rightarrow определение*:

[Мивары – это более общий формализм, чем семантические сети, онтологии и модель «сущность-связь»]

следует отличать*

- - [семантические сети]

 \Rightarrow библиографический источник*:

Белоусова А.И..ПодхокФМММСсИМ-2011ст

интерпретатор знаний и навыков

платформенная независимость системы

:= [способность системы децентрализовано работать на различных платформах]

 \Rightarrow пояснение*:

платформы = { • Windows

■ Linux
 ■ Mac
 }
 ⇒ пояснение*:
 способы достижения
 = { • четкое разделения унифицированной логико-семантической модели такой системы.
 • универсальный интерпретатор sc-моделей компьютерных систем.
 ⇒ разбиение*:
 { • программно обеспеченный интерпретатор
 • аппаратно обеспеченный интерпретатор
 }

интерпретатор языка SCP

- **≔** [Semantic Code Programming]
- ≔ [базовый процедурный язык программирования, ориентированный на обработку текстов SC-кода, хранимых в смысловой графовой ассоциативной памяти.]
- \Rightarrow noschehue*:

[требует наличие универсального интерпретатора]

фон-неймановская архитектура системы

- [аппаратная реализация описанной ранее программной модели с сохранением традиционных принципов хранения и обработки информации.]
- \Rightarrow noschehue*:

[Такой вариант реализации будет обладать существенно более высокой производительностью по сравнению с программной моделью, однако реализация семантических моделей представления и обработки информации на основе традиционной фон-неймановской архитектуры все еще будет обладать значительно более низкой производительностью по сравнению с реализацией интерпретатора в виде семантического ассоциативного компьютера.]

- *причины низкой производительности**:
 - € последовательная обработка, ограничивающая эффективность компьютеров физическими возможностями элементной базы
 - низкий уровень доступа к памяти
 - \Rightarrow noschehue*:

[Сложность и громоздкость выполнения процедуры ассоциативного поиска нужного фрагмента знаний. Ускорить процесс доступа можно путем создания специализированной ассоциативной памяти, обеспечивающей ассоциативный доступ к произвольным фрагментам хранимых знаний. Кроме того, актуальной становится задача реализации обеспечения параллелизма при выполнении поисковых операций]

- представление информации в памяти современных компьютеров
 - \Rightarrow пояснение*:

[современные компьютеры практически не апеллируют к семантике представляемой информации, что сильно затрудняет переработку знаний за счет необходимости учета большого количества деталей, касающихся способа представления информации в памяти, а не ее смысла]

}

семантический ассоциативный компьютер

- **≔** [CAK]
- [компьютер с нелинейной структурно перестраиваемой (графодинамической) ассоциативной памятью, переработка информации в которой сводится не к изменению состояния элементов памяти, а к изменению конфигурации связей между ними]
- \Rightarrow разбиение*:

принципы САК

- € в качестве внутреннего способа кодирования знаний, хранимых в памяти семантического ассоциативного компьютера, используется универсальный способ нелинейного смыслового представления знаний;
 - есть базовые агенты, которые не могут быть реализованы программно
 - все агенты работают над общей памятью одновременно
 - \Rightarrow примечание*:

[Более того, если для какого либо агента в некоторый момент времени в различных частях памяти возникает сразу несколько условий его применения, разные акты указанного агента в разных частях памяти могут выполняться одновременно (акт агента – это неделимый, целостный процесс деятельности агента)]

}

нелинейная память

- [память, в которой каждый элементарный фрагмент хранимого в памяти текста может быть инцидентен неограниченному числу других элементарных фрагментов этого текста]
- \Rightarrow примечание*:

[в данный момент тяжело создать подходящий тип нелинейной памяти, который подходил бы для специфических задач]

sc-машина

- := [ѕс-модель обработки знаний]
- := [абстрактная модель, в основе которой лежит SC-код]
- \Rightarrow noschehue*:

[Каждая такая модель представляет собой многоагентную систему]

- \Rightarrow составляющие модели*:
 - **{ ●** графодинамическая память
 - := [память, в которой хранятся и обрабатываются тексты SC-кода]
 - **≔** [sc-память]
 - коллектив агентов
 - \Rightarrow noschehue*:

[такие sc-агенты должны работать над общей для них sc-памятью, в системах написанных используя специфические языки программирования]

⇒ специфические языки программирования используемые sc-агентами*:

= {

- Семейство sc-языков программирования высокого и сверхвысокого уровня.
 - \Rightarrow noschehue*:

[Тексты программ этих языков хранятся в базе знаний ИС и описывают способы решения различных классов задач в соответствующих предметных областях.]

- Базовый sc-язык программирования, на котором описываются sc-агенты и интерпретации sc-языков программирования высокого и сверхвысокого уровня
- Язык программирования, на котором описывается интерпретатор базового sc-языка программирования.
 - \Rightarrow примечание*:

[Этот язык, в частности, может использоваться как язык микропрограмм для sc-компьютера, обеспечивающего аппаратную интерпретацию базового sc-языка программирования.]

}

sc-агент

:= [коллектив агентов, взаимодействующие друг с другом через общую sc-память]

}

 \Rightarrow область применения*:

- **{ ●** интерпретация программ различных sc-языков программирования высокого уровня
 - информационный поиск
 - реализация правил логического вывода, соответствующих самым различным логическим исчислениям
 - сведение задач к подзадачам
 - анализ качества хранимой базы знаний, в частности, ее корректности, полноты
- обнаружение и автоматическое склеивание синонимичных sc-элементов }

sc-модель интеллектуальной системы

- := [унифицированная логико-семантической моделб ИС]
- := [логическая система, построенная но основе абстрактной sc-машины]
- \Rightarrow включает*:
 - = { интегрированная совокупность всех знаний, которые необходимы для функционирования ИС и которые представлены в виде интегрированного sc-текста
 - \Rightarrow noяснение*:

[такую семантическую модель базы знаний можно называть sc-моделью базы знаний или sc-текстом базы знаний] • абстрактная sc-машина, в памяти которой хранится указанный sc-текст базы знаний }

3 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Голенков В.В..СеманТПИСиСАК-2019ст

- \Rightarrow авторы*:
 - Голенков В.В.
 - Гулякина Н.А
 - Давыденко И.Т.
 - Шункевич Д.В
- \Rightarrow ключевой знак*:
 - многоагентная система
 - интерпретатор знаний и навыков
 - платформенная независимость системы
 - интерпретатор языка SCP
 - фон-неймановская архитектура системы
 - семантический ассоциативный компьютер
 - нелинейная память
- \Rightarrow аннотация*:

[В статье проведен анализ проблемы обеспечения совместимости компьютерных систем, рассмотрены основные принципы, лежащие в основе технологии OSTIS, одной из задач которой является решение данной проблемы. Отдельное внимание уделено принципам построения семантических ассоциативных компьютеров, являющихся аппаратной реализацией интерпретатора логико-семантических моделей компьютерных систем, разрабатываемых по технологии OSTIS.]

Голенков В. В..ПроектОСТКПИС-2014ст

- \Rightarrow aвторы*:
 - Голенков В.В.
 - Гулякина Н. А
- \Rightarrow ключевой знак*:
 - *sc-машина*
 - sc-агент
 - sc-модель интеллектуальной системы
- \Rightarrow аннотация*:

[Статья является второй в цикле статей, посвященных рассмотрению открытого проекта, направленного на создание и развитие технологии компонентного проектирования интеллектуальных систем. В работе рассматривается унификация семантических моделей обработки знаний - моделей информационного поиска, моделей интеграции знаний, моделей решения задач, моделей трансляции семантических сетей во внешнее представление и обратно. На основе унифицированных семантических моделей интеллектуальных систем рассмотрена модель их компонентного проектирования, основанная на выделении многократно используемых компонентов интеллектуальных систем и на обеспечении платформенной независимости их проектирования. Рассмотрены также средства обеспечения открытого характера технологии проектирования интеллектуальных систем, методика их эволюционного проектирования и принципы построения метасистемы, предназначенной для комплексной поддержки проектирования интеллектуальных систем.]

ЗАКЛЮЧЕНИЕ

В ходе ознакомительной практики были приобретены ценные компетенции в сфере формализации текстового материала. Проведена тщательная работа по подбору соответствующей литературы, детальному разбору источников и выявлению ключевых элементов.

Изучен теоретический базис Стандарта OSTIS с целью последующей интеграции собственной формализации. Кроме того, строго соблюдались синтаксические правила оформления формализованной теории.

В процессе практической деятельности были дополнены уже существующие формализованные концепты в монографии посредством добавления примечаний, разъяснений и конкретных примеров. Параллельно была проведена формализация дополнительной информации, касающейся формальной онтологии множеств, связей и отношений.

В результате выполнения ознакомительной практики были приобретены необходимые знания и умения в области формализации текстовых данных с соблюдением установленных стандартов и требований.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] В.В. Голенков, Н.А. Гулякина. Проект открытой семнтической технологии компонентного проектирования интеллектуальных систем. Часть 2: унифицированные модели проектирования / Н.А. Гулякина В.В. Голенков. Белорусский государственный университет информатики и радиоэлектроники, 2014. С. 53.
- [2] В.В. Голенков Н.А. Гулякина, И.Т. Давыденко Д.В. Шункевич. Семантические технологии проектирования интеллектуальных систем и семантических ассоциативных компьютеров / И.Т. Давыденко Д.В. Шункевич В.В. Голенков, Н.А. Гулякина. Белорусский государственный университет информатики и радиоэлектроники, 2019. С. 50.