FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuştean, Alexandra Otiman, Andrei Sipoş

Seminar 1

(S1.1) Fie T o mulțime și $A, B, X \subseteq T$ cu $A \cap B = \emptyset$ și $A \cup (B \setminus X) = B \cup X$. Să se arate că X = A.

Demonstrație: Arătăm egalitatea prin dublă incluziune.

Fie întâi $x \in X$. Atunci $x \in B \cup X = A \cup (B \setminus X)$. Cum $x \in X$, $x \notin B \setminus X$, deci $x \in A$. Luăm acum $x \in A$. Atunci $x \in A \cup (B \setminus X) = B \cup X$. Cum $A \cap B = \emptyset$, $x \notin B$, deci $x \in X$.

(S1.2) Fie $A = \{a, b, c, d\}$ şi $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}$ o relație binară pe A. Care este compunerea $R \circ R$? Care este inversa R^{-1} a lui R? Care dintre relațiile $R, R^{-1}, R \circ R$ poate fi relația subiacentă unei funcții de la A la A?

Demonstrație: Obținem

$$R \circ R = \{(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c)\},\$$

$$R^{-1} = \{(a, a), (a, b), (b, a), (c, a), (d, c)\}.$$

Niciuna dintre relațiile $R, R^{-1}, R \circ R$ nu poate descrie o funcție de la A la A, deoarece

- (i) $(a, b) \in R$ și $(a, c) \in R$;
- (ii) $(a, a) \in R^{-1}$ şi $(a, b) \in R^{-1}$;
- (iii) nu există y astfel încât $(d, y) \in R \circ R$.

De asemenea, se observă că o relație "validă" ar avea patru elemente, fapt ce nu e valabil pentru niciuna din relațiile de mai sus. \Box

- (S1.3) Dați exemplu de familie de submulțimi ale lui \mathbb{R} , indexată, pe rând, după:
 - (i) \mathbb{N}^* ;

- (ii) \mathbb{Z} ;
- (iii) $\{2, 3, 4\}$.

Determinați reuniunea și intersecția fiecărei familii date ca exemplu.

Demonstrație:

- (i) (a) $A_n = \{n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \emptyset$.
 - (b) $B_1 = \{0\}, B_2 = \mathbb{N}^*, B_3 = \mathbb{Q}$ şi $B_n = \mathbb{R}$ pentru orice $n \geq 5$. Atunci $\bigcup_{n \in \mathbb{N}^*} B_n = \mathbb{R}$, $\bigcap_{n \in \mathbb{N}^*} B_n = \emptyset$.
 - (c) $E_n = (-\frac{1}{n}, \frac{1}{n})$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} E_n = (-1, 1), \bigcap_{n \in \mathbb{N}^*} E_n = \{0\}$.
 - (d) $A_n = \{1\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.
 - (e) $A_n = \{1, 2, \dots, n\}$ pentru orice $n \in \mathbb{N}^*$. Atunci $\bigcup_{n \in \mathbb{N}^*} A_n = \mathbb{N}^*$, $\bigcap_{n \in \mathbb{N}^*} A_n = \{1\}$.
- (ii) $C_1 = (-\infty, 0), C_2 = \{0\}, C_{-n} = \{3\}$ pentru orice $n \ge 0, C_n = \{7\}$ pentru orice $n \ge 3$. Atunci $\bigcup_{n \in \mathbb{Z}} C_n = (-\infty, 0] \cup \{3\} \cup \{7\}, \bigcap_{n \in \mathbb{Z}} C_n = \emptyset$.
- (iii) $D_2 = \{0\}, D_3 = \{2\}, D_4 = \{3\}.$ Atunci $\bigcup_{x \in \{2,3,4\}} D_x = \{0,2,3\}, \bigcap_{x \in \{2,3,4\}} D_x = \emptyset.$

(S1.4) Dacă $(A_i)_{i\in I}$ este o familie de submulțimi ale unei mulțimi X, arătați următoarele (legile lui De Morgan):

- (i) $C_X \bigcup_{i \in I} A_i = \bigcap_{i \in I} C_X A_i$;
- (ii) $C_X \bigcap_{i \in I} A_i = \bigcup_{i \in I} C_X A_i$.

Demonstraţie:

- (i) Fie $x \in X$. Atunci $x \in C_X \bigcup_{i \in I} A_i \iff x \notin \bigcup_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcup_{i \in I} A_i \iff$ nu este adevărat că (există $i \in I$ a.î. $x \in A_i$) \iff pentru orice $i \in I$, $x \notin A_i \iff$ pentru orice $i \in I$, $x \in C_X A_i \iff x \in \bigcap_{i \in I} C_X A_i$.
- (ii) Fie $x \in X$. Atunci $x \in C_X \bigcap_{i \in I} A_i \iff x \notin \bigcap_{i \in I} A_i \iff$ nu este adevărat că $x \in \bigcap_{i \in I} A_i \iff$ nu este adevărat că (pentru orice $i \in I$, $x \in A_i$) \iff există $i \in I$ a.î. $x \notin A_i \iff$ există $i \in I$ a.î. $x \in C_X A_i \iff x \in \bigcup_{i \in I} C_X A_i$.