CourseraMachineLearning

M_Raess March 18, 2017

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(rpart)
library(rpart.plot)
library(rattle)
## Rattle: A free graphical interface for data mining with R.
## Version 4.1.0 Copyright (c) 2006-2015 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
library(corrplot)
set.seed(666)
```

In this project, I will predict the manner, in which an exercise was executed (A, B, C, D, or E) - the "classe"-variable.

First, we have to read in the data.

```
train_pml0 <- read.csv("./pml-training.csv", header = TRUE, na.strings = c("NA", ""))
test_pml <- read.csv("./pml-testing.csv", header = TRUE, na.strings = c("NA", ""))
load("ML_data.RData")</pre>
```

Having read in the data, we need to do some data cleaning first (it is important to remember to apply the same steps to the testing set later!!).

1. For prediction, we will first have to inspect the variables to find out which ones are useful.

str(train_pml) reveals that there are several variables that are set to factor, while they actually appear to
have numeric values. We find that some variables are indeed useless (levels(train_pml\$kurtosis_yaw_belt)),
while others have a wide range of numberic values.

The outout of the for loop shows us which variables are truly useless. They will now be removed.

```
vars <- c(
   "X", "user_name", "raw_timestamp_part_1", "raw_timestamp_part_2",
   "kurtosis_yaw_belt", "skewness_yaw_belt", "amplitude_yaw_belt", "cvtd_timestamp",
   "kurtosis_yaw_dumbbell", "skewness_yaw_dumbbell", "amplitude_yaw_dumbbell",
   "kurtosis_yaw_forearm", "skewness_yaw_forearm", "amplitude_yaw_forearm")

train_pml <- train_pml0[, -which(names(train_pml0) %in% vars)]</pre>
```

Now, we convert the factor variables to numberic

```
vars_fact <- c(
    "kurtosis_roll_belt", "kurtosis_picth_belt", "skewness_roll_belt",
    "skewness_roll_belt.1", "max_yaw_belt", "min_yaw_belt",
    "kurtosis_roll_arm", "kurtosis_picth_arm", "kurtosis_yaw_arm",
    "skewness_roll_arm", "skewness_pitch_arm", "skewness_yaw_arm",
    "kurtosis_roll_dumbbell", "kurtosis_picth_dumbbell", "skewness_roll_dumbbell",
    "skewness_pitch_dumbbell", "max_yaw_dumbbell", "min_yaw_dumbbell",
    "kurtosis_roll_forearm", "kurtosis_picth_forearm", "skewness_roll_forearm",
    "skewness_pitch_forearm", "max_yaw_forearm", "min_yaw_forearm")

for (v in vars_fact) {
    train_pml[[v]] <- as.numeric(as.character(train_pml[[v]]))
}</pre>
```

Since there are still a lot of variables (146), we will further reduce the number of variables

The near zero variance (NZV) variables are also removed and the ID variables as well.

```
NZV <- nearZeroVar(train_pml)
train_pml <- train_pml[,-NZV]
dim(train_pml)</pre>
```

We are now down to 119 variables. Onto, removing variables that are mostly NA

```
data_NA <- sapply(train_pml, function(x) mean(is.na(x))) > 0.95
train_pml <- train_pml[, data_NA==FALSE]

dim(train_pml)</pre>
```

Finally, we remove variables only used for identification (vars 1:5)

```
library(dplyr)
train_pml <- select(train_pml, -c(1:5))
dim(train_pml)</pre>
```

And we are down to 49 variables total to be used in our analysis.

2. Data sets and exploratory data analysis

First, we break the $train_pml$ dataset up into a train and a validation set.

```
set.seed(666)
inTrain <- createDataPartition(train_pml$classe, p = 0.7, list = FALSE)</pre>
```

```
train <- train_pml[inTrain,]
validation <- train_pml[-inTrain,]</pre>
```

Let's see which variables are strongly correlated.

```
cor_matrix <- cor(train[,-49])
corrplot(cor_matrix, order = "alphabet", method = "square", type = "lower", tl.cex = 0.6, tl.col = rgb(</pre>
```


Figure 1: Correlation matrix

Since there are only a few strong correlations, PCA will not be applied and I will move forward with the train and validation datasets

3. Model building

Three ML methods will be applied: Random forest, a generalized boosted model, and a decision tree model. Finally, all three models will be combined to see if their combination produces even better results.

Random forest

conf mat rf

```
set.seed(666) # for reproducability

rf_control <- trainControl(method = "cv", number = 3, verboseIter = FALSE) # crossvalidation will be us

mod_rf <- train(classe ~ ., data = train, method = "rf", trControl = rf_control)

mod_rf$finalModel

Prediction on validation set

predict_rf <- predict(mod_rf, newdata=validation)
conf_mat_rf <- confusionMatrix(predict_rf, validation$classe)</pre>
```

Generalized boosted model

```
gbm_control <- trainControl(method = "repeatedcv", number = 5, repeats = 1) # repeated crossvalidation
mod_gbm <- train(classe ~ ., data = validation, method = "gbm", trControl = gbm_control, verbose = FALS
mod_gbm$finalModel

Prediction on validation set
predict_gbm <- predict(mod_gbm, newdata=validation)</pre>
```

Decision tree model

conf_mat_gbm

```
mod_dt <- rpart(classe ~ ., data = train, method = "class")
fancyRpartPlot(mod_dt, main = "Decision Tree", sub = "Classe ~ all vars")
Prediction on validation set
predict_dt <- predict(mod_dt, newdata=validation, type="class")
conf_mat_dt <- confusionMatrix(predict_dt, validation$classe)
conf_mat_dt</pre>
```

conf_mat_gbm <- confusionMatrix(predict_gbm, validation\$classe)</pre>

4. Outcome

We can see that the Random Forest outperforms both the gbm and the decision tree in terms of accuracy (0.9893 vs. 0.9602, and 0.6658 respectively) - the latter performs worst.

5. Applying mod_rf to our testing set

The Random Forest model will be applied to predict the 20 quiz results (testing dataset):

```
predict_test <- predict(mod_rf, newdata=test_pml)
predict_test</pre>
```