Answer all questions: (Full marks=100)

Section A (short questions)

- Evaluate the following limits.
- $\lim_{x\to 32} \sqrt[5]{x}$
- (b) $\lim_{x \to -2} (x^3 + 5x^2 3x + 1)$

[6 marks]

- 2. Evaluate the following limits:
- (a) $\lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$ (b) Evaluate $\lim_{x\to -\infty} \frac{4x-3}{x^2+2x-1}$

[7 marks]

- (a) Find $\int \left(3x^2 \frac{2}{x}\right) dx$. (b) Find $\int (3x + e^{-2x}) dx$.

[7 marks]

Find the area of the region bounded by the curve $y = x^3 + x^2 - 2x$ and the x-axis.

[8 marks]

5. Let $f(x) = 5x^2$. Find f'(1) from first principles.

[8 marks]

6. Find $\frac{dy}{dx}$ of the following functions.

(a)
$$y = (2 - \frac{5}{x})(5 + x^{\frac{2}{3}})$$

(b)
$$y = \frac{4x^2 - 3x + 3}{2x - 3}$$

[10 marks]

7. Find $\frac{dy}{dx}$ of the following functions and simplify the answers.

(a)
$$y = \cos(\sin\sqrt{x})$$

(b)
$$y = \tan(x\cos 2x)$$

[8 marks]

8. Find
$$\int \frac{\tan x - \sin^2 x}{\cot x - \cos^2 x} dx.$$

[8 marks]

9. Find the area of the region bounded by the curves $y = 2x^2 - 7$ and

$$y = -x^2 + 5$$
.

[8 marks]

Section B (Long Questions)

- 10. It is given that $g(x) = \frac{x^2 3x 10}{1 x}$.
- (a) Find the domain of g(x).
- **(b) (i)** Find the x- and y-intercepts of the curve y = g(x).
 - (ii) Find the turning points of the curve.
- (c) Find the range of values of x for which the curve is
 - (i) concave upwards,
 - (ii) concave downwards.
- (d) Find the asymptotes of the curve.
- (e) Using the results of (a) (d), sketch the curve y = g(x).

[15 marks]

- 11. (a) Using a suitable substitution, find $\int \tan^{n-2} x \sec^2 x \, dx$, where n is an integer and $n \ge 2$.
- **(b)** (i) Using (a), show that $\int_0^{\frac{\pi}{4}} \tan^n x \, dx = \frac{1}{n-1} \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx$, where n is an integer and $n \ge 2$.
 - (ii) Hence, evaluate $\int_0^{\frac{\pi}{4}} \tan^3 x \, dx$.
- (c) Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^3 x \, dx.$

[15 marks]

End of paper

The table of derivatives

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	ke^{kx}
$\ln x = \log_{\rm e} x$	1
$\sin x$	$\cos x$
$\sin kx$	$k\cos kx$
$\cos x$	$-\sin x$
$\cos kx$	$-k\sin kx$
$\tan x = \frac{\sin x}{\cos x}$	$\sec^2 x$
$\tan kx$	$k \sec^2 kx$
$\csc x = \frac{1}{\sin x}$	$-\csc x \cot x$
$\sec x = \frac{1}{\cos x}$	$\sec x \tan x$
$\cot x = \frac{\cos x}{\sin x}$	$-\csc^2 x$
$\sin^{-1} x$	$ \begin{array}{c} \frac{1}{\sqrt{1-x^2}} \\ \frac{-1}{\sqrt{1-x^2}} \\ \frac{1}{1+x^2} \end{array} $
$\cos^{-1} x$	$\frac{-1}{\sqrt{1-2}}$
$\tan^{-1} x$	$\frac{\sqrt{1-x^2}}{1}$
$\cosh x$	$\sinh x$
$\sinh x$	$\cosh x$
$\tanh x$	$\mathrm{sech}^2 x$
$\operatorname{sech} x$	$-\mathrm{sech}x\tanh x$
$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$
$\coth x$	$-\operatorname{cosech}^2 x$
$\cosh^{-1} x$	1
$\sinh^{-1} x$	$\frac{\sqrt{x^2-1}}{\sqrt{x^2+1}}$
$\tanh^{-1} x$	1

Table of Standard Integrals

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$
 9. $\int \sec^2 x \, dx = \tan x + C$

9.
$$\int \sec^2 x \, dx = \tan x + C$$

$$2. \int \frac{dx}{x} = \ln|x| + C$$

$$10. \int \csc^2 x \, dx = -\cot x + C$$

$$3. \int e^x dx = e^x + C$$

11.
$$\int \sec x \, dx = \ln \left| \sec x + \tan x \right| + C$$

$$4. \int \sin x \, dx = -\cos x + C$$

4.
$$\int \sin x \, dx = -\cos x + C$$
 12.
$$\int \csc x \, dx = \ln \left| \csc x - \cot x \right| + C$$

5.
$$\int \cos x \, dx = \sin x + C$$

5.
$$\int \cos x \, dx = \sin x + C$$
 13.
$$\int \sinh x \, dx = \cosh x + C$$

6.
$$\int \tan x \, dx = -\ln \left|\cos x\right| + C$$
 14.
$$\int \cosh x \, dx = \sinh x + C$$

14.
$$\int \cosh x \, dx = \sinh x + C$$

7.
$$\int \cot x \, dx = \ln \left| \sin x \right| + C$$

7.
$$\int \cot x \, dx = \ln \left| \sin x \right| + C$$
 15.
$$\int \tanh x \, dx = \ln \cosh x + C$$

8.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$

8.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C$$
 16. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \left(\frac{x}{a} \right) + C \quad (|x| < a)$

17.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1}\left(\frac{x}{a}\right) + C = \ln\left(x + \sqrt{x^2 + a^2}\right) + C'$$

18.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1}\left(\frac{x}{a}\right) + C = \ln\left(x + \sqrt{x^2 - a^2}\right) + C' \quad (x > a)$$

Linearity:
$$\int (\lambda f(x) + \mu g(x)) dx = \lambda \int f(x) dx + \mu \int g(x) dx$$

Integration by substitution:
$$\int f(u(x)) \frac{du}{dx} dx = \int f(u) du$$

Integration by parts:
$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$