ML Study

합성곱 신경망의 구성요소

컴퓨터교육과 정솔 2024.06.03.(화)

합성곱 신경망의 연산

예제1 다음과 같은 input과 filter가 주어졌을 때 특성맵을 계산하시오. (단, stride = (1,1))

문제1 다음과 같은 input과 filter가 주어졌을 때 특성맵을 계산하시오. (단, stride = (2, 2))

(5, 5) 입력					(3, 3) 캐널			
3	0	9	1	2		2	0	1
5	1	2	0	7		2	0	1
8	2	4	1	3		2	0	1
2	1	5	3	6				
4	1	6	2	7				

합성곱 신경망 (Convolution NN)

학습 목표

- 정의 : 필터(Filter), 특성맵(Feature map), 패딩(Padding), 스트라이드(Stride)
- 과정 : **합성곱(Convolution) 연산**, 풀링(Pooling) 연산
- 합성곱 신경망의 과정을 이해하고 필요성을 설명할 수 있다.

합성곱 연산과 필터의 역할

패딩Padding

input의 배열 주위를 가상의 원소로 채우는 것 (주로 0) **필요성**

패딩이 없다면 모서리와 가운데 입력값이 연산에 반영되는 횟수에 차이가 나게 됨 패딩의 종류

• Vaild : 패딩 안함 (기본값)

• Same: 입력과 특성맵이 같은 모양의 배열이 되도록 0을 패딩

예제2 다음 input에 (2, 2) filter가 주어졌을 때 Same padding을 하기 위한 방법은?

+) PADDING 전후 모서리의 원소들이 연산에 참여하는 횟수 비교

3	1	0	7
6	4	8	2
4	5	1	1
3	2	5	8

풀링Pooling

특성맵의 주어진 크기의 구획에서 가장 큰 값을 고르거나 평균값을 계산하여 가로세로 크기를 줄이는 연산 종류 : 최대 풀링, 평균 풀링

예제3 다음 특성맵에서 (2, 2) 최대 풀링을 적용한 결과는?

2	5	7	3
3	9	0	5
6	2	1	4
4	8	6	0

컬러 이미지를 사용한 합성곱 (3차원 input과 3차원 kernel)

케라스의 합성곱의 입력 : 3차원배열 (1차원일 경우 변환)

경우1

경우2

