

Ejercicio 2. Sea $\Sigma = \{0, 1, 2, 3, \dots, 9\}$ un alfabeto, probar que los siguientes lenguajes son regulares dando una gramática regular que los genere: a) $L_{\mathbb{N}} = \{0, 1, 2, 3, \dots\}$ (el lenguaje de los números naturales) b) $L_{\mathbb{Z}} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ (el lenguaje de los números enteros) c) L_{float} el lenguaje de los números flotantes. P) Sea $G=(N,\Sigma,P,S)$, donde: Gramática Regular: • $N=\{S\}$: Un único no terminal. Sea $G=(N,\Sigma,P,S)$, donde: • $\Sigma = \{0,1,2,\ldots,9\}$: Alfabeto de dígitos. ullet $N=\{S,A\}$: Con S como símbolo inicial y A como un auxiliar. • P: Producciones, definidas como: • $\Sigma = \{0,1,2,\ldots,9,-\}$: Alfabeto extendido con el símbolo de signo negativo (-). $S o ext{dígitos} \mid ext{dígitos} \; S$ P: Producciones, definidas como: Específicamente: Explicación: S: Símbolo inicial. - S permite generar 0, cualquier número positivo (A), o cualquier número negativo (-A). Explicación: Esta gramática genera cualquier número natural permitiendo producir una cadena de A genera cualquier número natural diferente de 0. uno o más dígitos. Sea $G=(N,\Sigma,P,S)$, donde: • $N=\{S,A,B\}$: Con S como símbolo inicial y A,B auxiliares. + $\Sigma = \{0,1,2,\ldots,9,-,.\}$: Alfabeto extendido con el signo negativo (–) y el punto decimal (ullet P: Producciones, definidas como: $S o A.B \mid -A.B$ $B
ightarrow 0 \mid 1 \mid 2 \mid \ldots \mid 9 \mid 0B \mid 1B \mid \ldots \mid 9B$ Explicación: • S genera números flotantes positivos (A.B) o negativos (-A.B). A genera la parte entera del número (una secuencia de dígitos). B genera la parte fraccionaria del número (una secuencia de dígitos). **Ejercicio 3.** Sea $\Sigma = \{a, b\}$ un alfabeto, probar que $L = \{\alpha : |\alpha| \ es \ impar\} \in LR^{\Sigma}$ dando una gramática regular Gtal que L(G) = L, y luego, probar que efectivamente se cumple dicha igualdad mediante inducción. Paso 1: Construcción de la gramática regular La gramática regular $G=(N,\Sigma,P,S)$ es la siguiente: Paso 2: Validación de L(G)=LInducción sobre la longitud de las cadenas (n) • $\Sigma = \{a,b\}$: Alfabeto. Probaremos que Producciones: 1 S genera cadenas de longitud impar 2. A genera cadenas de longitud par. Base del caso (n=1): Explicación de la gramática: + S genera aA o bA, y luego A puede generar arepsilon: ${\cal S}$ genera cadenas con un número impar de símbolos. Esto se logra al alternar entre ${\cal S}$ Longitud = 1 (impar). ullet A genera cadenas de longitud par (siendo un estado intermedio que puede volver a S con un Paso inductivo: Supongamos que: • $\, S$ genera cadenas de longitud impar (2k+1). • A genera cadenas de longitud par (2k). 1. S genera cadenas de longitud impar para 2k+3. 2. A genera cadenas de longitud par para 2k+2. **1.** S: Si S o aA, y A genera una cadena de longitud 2k, entonces: Longitud total = 1(de a) + 2k = 2k + 1 (impar).**2.** A: Si A o aS , y S genera una cadena de longitud 2k+1 , entonces: Longitud total = 1(de a) + 2k + 1 = 2k + 2 (par).Por lo tanto, la gramática genera alternadamente cadenas de longitud impar y par, cumpliendo la

