Lecture 2: Basics of Algorithm Analysis

	TDT4121
i≡ topics	Runtime
created	@August 29, 2022 3:01 PM

Chapter 2 - Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource requirements—the amount of time and space they use—will scale with increasing input size.

Goals 🏁

The student should be able to:

- Understand the different definitions of an efficient algorithm
- Understand asymptotic notation and the asymptotic bounds O, Ω , Θ as well as their properties
- Understand how the stable matching problem is implemented using arrays and lists
- Have knowledge of common running-time bounds and some of the typical approaches that lead to them
- Understand what a priority queue is and how heaps are used to implement them

Computational Tractability

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious.

But once unlocked, they cast a brilliant new light on some aspect of computing." - *Francis Sullivan*

Polynomial-Time

Brute Force

For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.

- Typically takes 2^N time or worse for inputs of size N.
 - \circ This is N! for stable matching with n men and n women
- Unacceptable in practice.

Desirable scaling property

When the input size doubles, the algorithm should only slow down by some constant factor C.

• There exists constants c>0 and d>0 such that on every input of size N, its running time is bounded by cN^d steps.

An algorithm is poly-time if the above scaling property holds - choose $C=2^4\,.$

Worst case running time

Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time

Obtain bound on running time of algorithm on random input as a function of input size N.

• Hard (or impossible) to accurately model real instances by random distributions.

• Algorithm tuned for a certain distribution may perform poorly on other inputs.

Worst-case polynomial-time

An algorithm is efficient if its running time is polynomial

Justification - it really works in practice

- although $6,02*10^{23}*N^{20}$ is technically poly-time,it would be useless in practice
- In practice, the poly-time algorithms that people develop almost always have low constants and low exponents.
- Breaking through the exponential barrier of brute force typically exposes some crucial structure of the problem.

Exceptions

- Some poly-time algorithms do have high constants and/or exponents, and are useless in practice.
- Some exponential-time (or worse) algorithms are widely used because the worst-case instances seem to be rare.

Asymptotic Growth Rate

The **asymptotic** behaviour of a function f(n) (such as f(n) = c * n or $f(n) = c * n^2$, etc.) refers to the growth of f(n) as n gets large. We typically ignore small values of n, since we are usually interested in estimating how slow the program will be on large inputs. A good rule of thumb is: the slower the asymptotic growth rate, the better the algorithm (although this is often not the whole story).

Asymptotic Upper Bounds

T(n) is O(f(n)) if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$ we have $T(n)\leq c*f(n)$.

You can think of it as an "at most" statement

Asymptotic Lower Bounds

T(n) is $\Omega(f(n))$ if there exist constants c>0 and $n_0\geq 0$ such that for all $n\geq n_0$ we have $T(n)\leq c*f(n)$.

• You can think of it as an. "at least" statement

Asymptotically Tight Bounds

T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$

Big-O Complexity Chart

Properties of Asymptotic Growth Rates

Transitivity: A first property is *transitivity*: if a function f is asymptotically upper-bounded by a function g, and if g in turn is asymptotically upper-bounded by a function h, then f is asymptotically upper-bounded by h. A similar property holds for lower bounds. We write this more precisely as follows.

Example:

If
$$f=O(g)$$
 and $g=O(h)$, then $f=O(h)$ If $f=\Omega(g)$ and $g=\Omega(h)$, then $f=\Omega(h)$

 $n \log n \le n2$ for all $n \ge 1$.

Asymptotic Bounds for Some Common Functions

Polynomials: a0 + a1n + ... + ad nd is <math>(nd) if ad > 0

Polynomial time: Running time is for some constant d independent of the input size

n.

Logarithms: $O(\log a n) = O(\log b n)$ for any constants a, b > 0 can avoid specifying

the base

Logarithms. For every x > 0, $\log n = O(nx)$.

log grows slower than every polynomial

Exponentials: For every r > 1 and every d > 0, nd = O(rn).