Jaypee University of Engineering & Technology, Guna (M.P) Department of Computer Science & Engineering

Course: Computer Organization & Architecture (B. Tech. IV/VI Sem, Code: CS107/18B11CI414)

Tutorial-5
Topic: Register Transfer & Microoperations

- 1. Design a common bus system using multiplexers and tri-states buffers for sharing data with CPU coming from five, 4-bit source registers.
- 2. Design 2-bit logic circuit which performs following four logical micro operations:

Selection lines S ₁ S ₀	Micro operations
00	АΛВ
01	AVB
10	A⊕B
11	\overline{B}

3. Design 4-bit shift logic circuit which performs following micro operations:

Selection lines S ₁ S ₀	Micro operations
00	shl B
01	ashr A
10	Cir A
11	Cil B

4. Design a 2-bit, 8-operation Arithmetic Logic Unit (ALU) which performs following operations as given in the table. Consider C_{in} as initial carry of full adder.

Control Lines	Micro operations
$S_1S_0C_{in}$	
000	Increment : $F = A + 3$
001	Subtract: $F = A - B$
010	Addition: $F = A + B$
011	Decrement: $F = A - 2$
100	AND: $F = A\Lambda B$
101	$XOR: F = A \oplus B$
110	logical left shift of B: F = shl B
111	logical right shift of A: $F = shr A$

COA Tutorial Dr. Rahul Pachauri