Email: yunchen@utexas.edu Mobile: 512-206-6918

EDUCATION

The University of Texas at Austin

PhD, Electrical and Computer Engineering (GPA: 3.95/4.0)

Aug. 2018 - present

o Core Courses: Large Scale Optimization, Wireless Communications Lab, Digital Image Processing, Game Theory, Block-chain Technologies, Graph Theory, Reinforcement Learning, Data Mining, Digital Video.

Publications 1 4 1

- Y. Chen, X. Lin, T. Khan, M. Mozaffari, "A Deep Learning Approach to Efficient Drone Mobility Support", in The 2nd Workshop on Drone Assisted Wireless Communications for 5G and Beyond - co-located with ACM MobiCom 2020 (DroneCom 2020), London, United
- Y. Chen, N. Gonzalez-Prelcic, RW. Heath, "Collision-free UAV Navigation with a Monocular Camera Using Deep Reinforcement Learning", in 2020 IEEE International Workshop on Machine Learning for Signal Processing, Espoo, Finland, Sep. 2020.
- [Best Paper] Y. Chen, X. Lin, T. Khan, M. Mozaffari, "Efficient Drone Mobility Support Using Reinforcement Learning", in 2020 IEEE Wireless Communications and Networking Conference (IEEE WCNC 2020), Seoul, South Korea, May. 2020.
- Y. Chen, W. Yan, C. Li, Y. Huang, and L. Yang, "Personalized Optimal Bicycle Trip Planning Based on Q-learning Algorithm", in 2018 IEEE Wireless Communications and Networking Conference (IEEE WCNC 2018), Barcelona, Spain, Apr. 2018.
- Y. Wang, Y. Chen, H. Dai, Y. Huang, and L. Yang, "A Learning-Based Approach for Proactive Caching in Wireless Communication Networks", in The Ninth International Conference on Wireless Communications and Signal Processing, Nanjing, China, Oct. 2017.

ACADEMIC RESEARCH AND PROJECTS

Video Assisted UAV Ego-movement Tracking

Austin, TX

Feb. 2020 - May. 2020

- Analysed pixel transformations in image sequences for visual odometry.
- o Trained a DNN to predict pixel location and depth of sequential images using unsupervised learning.
- Predicted 6-DOF ego-motion for a UAV based on the video inputs from the on-board monocular camera.

Collision-free UAV Navigation with a Monocular Camera Using DRL

Austin, TX

Advisor - Prof. Robert Heath

Advisor - Prof. Alan Bovik

Feb. 2019 - Feb. 2020

Oct. 2018 - Dec. 2018

- Proposed a UAV navigation system based on object detection and deep reinforcement learning (DRL).
- Reduced the flight time and distance and avoided unnecessary turns for the UAV.
- Alleviated wrong predictions from the deep networks by combining object detection.

Monocular Camera Based Fitness Motion Correction

Austin, TX

Advisor - Prof. Alan Bovik

- Realized bone and joint recognition based on OpenPose framework.
- Performed 2D to 3D image transformation to get joint angles of human bodies.
- Realized correction of fitness motions (plank, squats, etc.) by analysing skeleton positions and joint angles.

Personalized Bicycle Trip Planning Based on Q-learning Algorithm

Nanjing, China

Santa Clara, CA

Excellent (Top 10) Graduation Project in SEU, Advisor - Prof. Luxi Yang

Mar. 2017 - Jun. 2017

- \circ Evaluated user preferences by predicting popularity of point of interest using Echo State Network.
- Generated overall optimal bicycle trips with the Q-learning algorithm.
- Proposed a novel algorithm for route augmentation while maintaining overall optimality.

Work Experience

•	Research Intern for Deep Learning Based A2G Communication Optimization	Austin, TX
	Ericsson Inc.	Jun. 2020 - present
•	Graduate Research Assistant	Austin, TX
	WNCG, ECE, UT Austin	Sep. 2019 - May. 2020

Research Intern for Drone Mobility Support Using Rinforcement Learning

Jun. 2019 - Aug. 2019 Austin, TX

Teaching Assistant of Probability and Random Process

ECE, UT Austin Jan. 2019 - May. 2019

Professional Skills

* Language: Python, Matlab, C++, HTML

* Framework: Tensorflow, Pytorch

* Platform: ROS

• Language: English (fluent), Mandarin (native)