Department of Computer Engineering					
Program:	Computer Engineering	Course:	CMPE-443 IPCV		
Examination:	CEP	Session	2020		
Maximum Marks:	30	Semester:	7th		
Time allowed:	Till end of semester	Date:	16-11-2023		

Instructions

- You are to work in a team of two to three peers to do this project.
- •Only **one solution** to each problem must be given.
- •All necessary working must be clearly shown to receive full credit.
- •Solve the written portion of this project on this question paper. Use A4 white paper only, if extra pages
- are needed.

Sr. No	Description			Marks	
1	CLO: 3	Domain: Cognitive/5	PLO: 4	20	
	One of the applications of computer vision is to enable a computer to be able to recognize traffic signs. In this project you will be implementing a portion of this application. A template for the sign representing disabled people has been provided to you in the image handicapped.png. The image captured.png is a captured imaged which contains the sign representing disabled people. <i>Manually</i> find out the coordinates of the four vertices bounding the sign, in both, the template as well as the captured image. These are going to be your 'interesting points'.				
	 (a) Which technique can you use to get a computer to match the 4 pairs of corresponding interesting points in the template and the captured image? (b) Explain how you can find out the homography between the template and the captured image using the corresponding points in part (a). (c) Explain how you can use this homography to warp the the sign present in the captured image so that it matches the dimensions of that present in the template. 				
	Marks = $[4 + 8 + 8]$				
2	CLO: 3	Domain: Cognitive/5	PLO: 4	10	
	Implement your algorithms in Problem 1 parts (a) to (c) and show the result after warping the sign present in captured.png so that it matches the dimensions of that present handicapped.png.				