Udacity Deep Reinforcement Learning Project 2: Continuous Control

Marco Abramo

24th September 2025

1 Environment

We solved the **20-Agent Reacher environment**.

- Each agent has a 33-dimensional continuous state space.
- Actions are 4-dimensional continuous values in [-1, 1].
- Reward: +0.1 for each step the agent keeps its arm in the goal location.
- The task is solved when the average score across agents is ≥ 30 over 100 consecutive episodes.

2 Learning Algorithm

We implemented DDPG (Deep Deterministic Policy Gradient) with:

- Actor-Critic architecture
- Replay buffer of size 10⁶
- Batch size = 256
- Actor learning rate = 1×10^{-4} , Critic learning rate = 1×10^{-3} , weight decay = 1×10^{-2}
- Ornstein-Uhlenbeck noise with decaying scale
- Soft target updates $(\tau = 10^{-3})$
- Running state normalization
- TD3-lite tricks: target policy smoothing and noise clipping

3 Results

The agent solved the environment in 189 episodes:

- Final Avg(100) = 30.22
- Mean episode scores peaked above 30

Figure 1: Training curve of the DDPG agent on the 20-Agent Reacher environment.

4 Files

- train_20.py: training script
- ddpg_agent.py: agent implementation
- model.py: neural network architectures
- final_actor.pth, final_critic.pth: saved trained weights
- training_log_20.csv: episode logs
- training_curve.png: performance plot

5 Future Work

- Experiment with TD3 and SAC for even faster convergence.
- Try PER (Prioritized Experience Replay).
- Transfer these methods to financial time-series data.