Теоретические модели вычислений ДЗ №1: Регулярные языки и конечные автоматы

Студент группы А-13а-19 Башлыков М.С. ${\rm April}\ 2022$

1 Задание №1. Построить конечный автомат, распознающий язык

1.
$$L = \{\omega \in \{a, b, c\}^* | |\omega|_c = 1\}$$

Так как нам нужен лишь один символ "с", то просто будем ждать прочтения этого символа. Если же нам встретится ещё один символ "с", покинем конечное состояние:

2. $L = \{ \omega \in \{a, b\}^* | |\omega|_a \le 2, |\omega|_b \ge 2 \}$

Построим отдельно ДКА для $L_1=\{\omega\in\{a,b\}^*||\omega|_a\leq 2\}$ и для $L_2=\{\omega\in\{a,b\}^*||\omega|_b\geq 2\},$ а затем получим их прямое произведение:

 L_1 : Будем менять состояние при чтении a, а при чтении b переходить в то же самое состояние. При этом начальное состояние и состояния при первых двух чтениях a будут конечными, а уже третье считывание приведёт к непринимающему состоянию.

 L_2 : Будем аналогично менять состояния при считывании символа b и входить в то же самое состояние при считывании a. Однако здесь непринимающими будут состояния до считывания b и после первого считывания символа b, второй же символ b приведёт нас в конечное состояние.

Тогда итоговый ДКА будет являться прямым произведением:

3. $L = \{\omega \in \{a, b\}^* | |\omega|_a \neq |\omega|_b\}$

Это нерегулярный язык, а значит, для него нельзя построить ДКА. Докажем, применив лемму о разрастании:

- (a) Рассмотрим дополнение к языку: $\neg L = \{\omega \in \{a,b\}^* | |\omega|_a = |\omega|_b\}.$
- (b) Пусть $\neg L$ регулярный. Тогда выполняется лемма о разрастании.
- (c) Зафиксируем $n \in N$. Пусть $\omega = a^n b^n$. Тогда $\omega \in \neg L$ и $|\omega| \ge n$.
- (d) Рассмотрим всевозможные разбиения слова $\omega = xyz$ такие, что $|xy| \le n$ и $y \ne \lambda$:

$$x = a^{l}, 0 \le l \le n - 1$$

$$y = a^{m}, 1 \le m \le n - l$$

$$z = a^{n-l-m}b^{n}$$

Тогда при k=2 $xy^kz\notin \neg L$, т.к. тогда $xy^kz=xy^2z=a^{l+2m+n-l-m}b^n=a^{n+m}b^n$ и $n+m\neq m$, т.е. для слова xy^kz не выполяется условие $|\omega|_a=|\omega|_b$. Следовательно, лемма о разрастании не выполняется. Т.к. для дополнения языка не выполняется лемма о разрастании, то оно не является регулярным, следовательно, и изначальный язык не является регулярным.

4. $L = \{\omega \in \{a, b\}^* | \omega\omega = \omega\omega\omega\}$

Исходя из определения этого языка, если $|\omega|=x$, то получается, что $2x=|\omega\omega|=|\omega\omega\omega|=3x$, следовательно, x=0, т.е. ДКА должен допускать лишь пустые слова:

2 Задание №2. Построить конечный автомат, используя прямое произведение

1. $L_1 = \{\omega \in \{a,b\}^* | |\omega|_a \ge 2 \wedge |\omega|_b \ge 2\}$ Построим ДКА отдельно для каждого условия, а затем возьмём их прямое произведение.

 $L_{11} = \{\omega \in \{a, b\}^* | |\omega|_a \ge 2\}:$

 $L_{12} = \{ \omega \in \{a, b\}^* | |\omega|_b \ge 2 \}:$

Прямое произведение:

2.
$$L_2 = \{ \omega \in \{a, b\}^* | |\omega|_a \ge 3 \land |\omega|_b \}$$

3.
$$L_3 = \{\omega \in \{a,b\}^* | |\omega|_a \wedge |\omega|_b\}$$

4. $L_4 = \neg L_3$ ДКА может быть получен аналогично п. 1.3, но затем нужно инвертировать состояния:

5. $L_5=L_2\setminus L_3$ Т.к. $A\setminus B=A\cap \neg B,$ а $L_4=\neg L_3,$ то нам остаётся построить прямое произведение ДКА для L_2 и L_4

3 Задание №3. Построить минимальный ДКА по регулярному выражению

1. $(ab + aba)^*a$

2. $a(a(ab)^*b)^*(ab)^*$

3. $(a + (a + b)(a + b)b)^*$

4. $(b+c)((ab)^*c+(ba)^*)^*$

5. $(a+b)^+(aa+abab+bb+baba)(a+b)^+$

4 Задание №4. Определить, является ли язык регулярным или нет

1. $L=\{(aab)^nb(aba)^m|n\geq 0,\ m\geq 0\}$ Язык является регулярным, т.к. можно построить ДКА, распознающий его:

- 2. $L=\{uaav|u\in\{a,b\}^*,\ v\in\{a,b\}^*,\ |u|_b\geq |v|_a\}$ Язык не является регулярным. Докажем, применив лемму о разрастании:
 - (a) Рассмотрим дополнение к языку: $\neg L$.
 - (b) Пусть $\neg L$ регулярный. Тогда выполняется лемма о разрастании.
 - (c) Зафиксируем $n\in N$. Пусть $\omega=b^{2n}aaa^{2n+1}$. Тогда $\omega\in \neg L$ и $|\omega|\geq n$.
 - (d) Рассмотрим всевозможные разбиения слова $\omega=xyz$ такие, что $|xy|\leq n$ и $y\neq \lambda$: $x=b^l, 0\leq l\leq n-1$ $y=b^m, 1\leq m\leq n-l$ $z=b^{2n-l-m}aaa^{2n+1}$

Тогда при k=2 $xy^kz\notin \neg L$, т.к. тогда $xy^kz=xy^2z=b^{l+2m+2n-l-m}aaa^{2n+1}=b^{2n+m}aaa^{2n+1}$ и $2n+m\geq 2n+1$, т.е. для слова xy^kz выполяется условие $|u|_b\geq |v|_a\}$ и $xy^kz\in L$. Следовательно, лемма о разрастании не выполняется.

Т.к. для дополнения языка не выполняется лемма о разрастании, то оно не является регулярным, следовательно, и изначальный язык не является регулярным.

- 3. $L = \{a^m w | w \in \{a,b\}^*, \ 1 \leq |w|_b \leq m\}$ Язык не является регулярным. Докажем, применив лемму о разрастании:
 - (a) Рассмотрим дополнение к языку: $\neg L$.
 - (b) Пусть $\neg L$ регулярный. Тогда выполняется лемма о разрастании.
 - (c) Зафиксируем $n \in N$. Пусть $\omega' = a^n b^{n+1}$. Тогда $\omega' \in \neg L$ и $|\omega'| \ge n$.
 - (d) Рассмотрим всевозможные разбиения слова $\omega'=xyz$ такие, что $|xy|\leq n$ и $y\neq\lambda$: $x=a^l, 0\leq l\leq n-1$ $y=a^m, 1\leq m\leq n-l$ $z=a^{n-l-m}b^{n+1}$

 $a^{n+m}b^{n+1}$ и $n+m\geq n+1$, т.е. для слова xy^kz выполяется условие: $\omega'=a^{n+m}b^{n+1}=a^{n+m}\omega$ и $1\leq |\omega|_b\leq n+m$, т.е. $\omega'\in L$. Следовательно, лемма о разрастании не выполняется.

Т.к. для дополнения языка не выполняется лемма о разрастании, то оно не является регулярным, следовательно, и изначальный язык не является регулярным.

- 4. $L = \{a^k b^m a^n | k = n \lor m > 0\}$ Язык не является регулярным. Докажем, применив лемму о разрастании:
- 5. $L = \{ucv|u\in\{a,b\}^*,\ v\in\{a,b\}^*,\ u\neq v^R\}$ Язык не является регулярным. Докажем, применив лемму о разрастании:
 - (a) Рассмотрим дополнение к языку: $\neg L$.

разрастании не выполняется.

- (b) Пусть $\neg L$ регулярный. Тогда выполняется лемма о разрастании.
- (c) Зафиксируем $n\in N$. Пусть $\omega=a^{2n+2}ca^{n+1}$. Тогда $\omega\in L$ и $|\omega|\geq n$.
- (d) Рассмотрим всевозможные разбиения слова $\omega=xyz$ такие, что $|xy|\leq n$ и $y\neq \lambda$: $x=a^l, 0\leq l\leq n-1$ $y=a^m, 1\leq m\leq n-l$ $z=a^{2n+2-l-m}ca^{n+1}$

Тогда при k=2 $xy^kz\notin \neg L$, т.к. тогда $xy^kz=xy^2z=a^{l+2m+2n+2-l-m}ca^{n+1}=a^{2n+2+m}ca^{n+1}$ и $1\leq m\leq n$, т.е. $1\leq (2n+2+m)mod(n+1)\leq n$. Следовательно, для слова xy^kz выполяется условие: $\omega=ucv|u\in\{a,b\}^*,\ v\in\{a,b\}^*,\ u\neq v^R\}$, т.е. $\omega'\in L$. Следовательно, лемма о

Т.к. для дополнения языка не выполняется лемма о разрастании, то оно не является регулярным, следовательно, и изначальный язык не является регулярным.