CS 230 : Discrete Computational Structures Spring Semester, 2021

HOMEWORK ASSIGNMENT #4 **Due Date:** Wednesday, March 3

Suggested Reading: Rosen Sections 2.1 - 2.3; Lehman et al. Chapter 4.1, 4.3, 4.4.

For the problems below, explain your answers and show your reasoning.

- 1. [6 Pts] Let A and B be non-empty sets. Prove that if $A \neq B$, then $A \times B \neq B \times A$. The definition of the Cartesian Products described would be $\{(a,b)|a \in A \land b \in B\}$ and $\{(b,a)|b \in B \land a \in A\}$. If $A \neq B$, then there exists some (a, b) and (b, a) that are not equal. QED
- 2. [4 Pts] Prove that $(A \cup B) C = (A C) \cup (B C)$ using iff arguments and logical equivalences.

$$(A \cup B) - C$$

iff $(x \in A \lor x \in B) \land x \notin C$

Definition of \cup , Difference

iff $((x \in A \land x \notin C) \lor (x \in B \land x \notin C))$

Distribution

iff
$$(A-C) \cup (B-C)$$

Definition of \cup , Difference; QED

- 3. [8 Pts] Disprove the statements below.
 - (a) If (1) $A \cup C \subseteq B \cup C$ then (2) $A \subseteq B$. Suppose $A = \{1\}$, $B = \{2\}$, and $C - \{1\}$ $A \cup C = \{1\}$, $B \cup C = \{1, 2\}$ therefore $A \cup C \subseteq B \cup C$ (1) is satisfied. However, $A \nsubseteq B$; (1) does not imply (2). QED
 - (b) If (1) $A \cap C \subseteq B \cap C$ then (2) $A \subseteq B$. Suppose $A = \{1, 2\}$, $B = \{2\}$, and $C = \{2\}$ $A \cap C = \{2\}$, $B \cap C = \{2\}$ therefore $A \cap C \subseteq B \cap C$ (1) is satisfied. However, $A \not\subseteq B$; (1) does not imply (2). QED
- 4. [8 Pts] Prove by contradiction that if (U) $A \cup C \subseteq B \cup C$ and (I) $A \cap C \subseteq B \cap C$ then $A \subseteq B$.
 - (1) Suppose $A \not\subseteq B$. By definition, $\forall x (x \in A \to x \not\in B)$.
 - (2) Assuming $x \in A$, this means that x is also in $A \cup C$, which is a subset of $B \cup C$.
 - (3) (2) implies that $x \in B \lor x \in C$ To prove this, $x \in B \land x \in C$ must be true.
 - (4) Unfortunately, if $x \in A$, then $x \notin B$. (4) Contradicts (3), so A must be a subset of B. QED
- 5. [8 Pts] Prove that (H) $(A \cup B) (A \cap B) = (A B) \cup (B A)$ using subset argument. You may not use logical equivalences in your proof. Use general proof techniques like 'proof by contradiction' and 'proof by cases'.

- (1) LHS of (H) is simply removing all common elements of A and B from the combination of A and B.
- (2) RHS of (H) can be read as the combination of removing common elements of A and B from A and from B.
- (3) Combining everything in (2), we get that this combination will not contain common elements of A and B, but everything that is not common.
- (4) (1) and (3) are equivalent in English; QED
- 6. [4 Pts] Prove that f(n) = 5n + 9 is one-to-one, where the domain and co-domain of f is \mathcal{Z}^+ . Show that f is not onto.

f is definitely not onto because there exists a positive integer, for example 2, in the co-domain that can't be an output.

$$f$$
 is one-to-one if $\forall x \in Z^+, \forall y \in Z^+(f(x) = f(y) \to x = y)$

$$5x + 9 = 5y + 9$$
$$5x = 5y$$
$$x = y$$
$$QED$$

- 7. [4 Pts] Prove that f(m,n) = m+n+mn is onto, where the domain of f is $\mathcal{Z} \times \mathcal{Z}$ and the co-domain of f is \mathcal{Z} . Show that f is not one-to-one. Let $y \in Z$. If y = f(n,m), then y = m+n+mn. This implies that $n = \frac{y-m}{1+m}$ and $m = \frac{y-n}{1+n}$. so for every $y \in Z$, there exists some $m, n \in Z$ such that f(m,n) = y. QED f is not one-to-one because inputs (1,0) and (0,1) have the same output 1.
- 8. [8 Pts] Let g be a total function from A to B and f be a total function from B to C.
 - (a) If $f \circ g$ is one-to-one, then is g one-to-one? Prove or give a counter-example.
 - (1) Suppose $g \circ f$ and g is one-to-one.
 - (2) g(x) = g(y) for arbitrary $x, y \in A$
 - (3) Composing: f(g(x)) = f(g(y))
 - (4) Taking the inverse of $f \circ g$ of both sides gives x = y. This is consistent with supposition (1). QED
 - (b) If $f \circ g$ is onto, then is g onto? Prove or give a counter-example. Counter-example: If the output of f is just a one element set, then $f \circ g$ will always be onto, regardless of g. QED

For more practice, work on the problems from Sections 2.1 - 2.3; Lehman et al. Chapter 4.1, 4.3, 4.4.