Algorithm 2 Inner loop algorithm

```
Input
           : EnaD, PS
Output : \theta_{i,i}, P_{i,i}^D, EE_{i,i}^D
  1 : for i \in EnaD do
  2 :
               for k \in PS_i^D do
               Calculate P_{i,max}^R using (5), and obtain N_{max} using function A
  3 :
                     for j = 1: N_{max} do
  4 :
                              Initialize P_i^D as P_i^D(0), G_i^D as G_i^D(0)
  5 :
  6 :
                              Initialize t=0, I, \phi
                              obtain \theta_i(t) by calculating (14) using P_i^D(0)
  7 :
  8 :
                              while t < I
                                    Obtain P_i^D(t+1) using 	heta_i(t) to calculate (15)
  9 :
                                  Obtain \theta_i(t+1) using P_i^D(t+1) to calculate (14)
  10:
                                   if T_i^D - G_i^D(t)EC_i^D < \phi then
  11:
                                    \theta_{i,j} = \theta_i(t+1), P_{i,j}^D = P_i^D(t+1), EE_{i,j}^D = G_i^D(t)
  12:
  13:
                                           break iteration
  14:
                                   else
  15:
                                        Update all the Lagrange multipliers using (16)
                                        G_{i}^{D}(t+1) = \frac{T_{i}^{D}(\theta_{i}(t+1),P_{i}^{D}(t+1))}{EC_{i}^{D}(\theta_{i}(t+1),P_{i}^{D}(t+1))}, continue
  16:
  17:
                                     endif
  18:
                                       t = t + 1
  19:
                               end while
  20:
                           end for
  21:
                     end for
  22: end for
```

Algorithm 1 Pre-Matching Algorithm

Input : $D, C, P_k^C, P_{thresold}^1, P_{max}, T_{min}^D$

Output: PS, Inf D, EnaD

1: Initialize $EnaD = \emptyset$, $InfD = \emptyset$

2: for $i \in D$ do

 $PS_i^D = C$

4: for $k \in C$ do

5: obtain $\theta_{i,min}$ using (8), obtain $T_{i,max}^{D}$ using (7)

6: if $\theta_{i,min} \ge 1$ or $T_{i,max}^D \le T_{min}^D$ then

7: Remove current k from PS_i^D

8: end if

9: end for

10: if $PS_i^D = \emptyset$ then

11: add i to InfD

12: elseif $PS_i^D \neq \emptyset$ then

13: add i to EnaD

14: end if

15: add PS_i^D to PS

16: end for

Algorithm 4 Preference list

```
Input :P_i^{D*}, EE_i^{D*}, \theta_i^*, EnaD, C, PS
```

Output $: \Omega_i^D, \Omega_k^C$

1: $for i \in EnaD do$

2: $for k \in PS_i^D do$

3: $get\ EE_i^{D*}$ and place k into Ω_i^D in descending order of EE_i^{D*}

4: endfor

5: endfor

6:

7: $for k \in PS_i^D do$

8: $for i \in EnaD do$

9: obtain $P_{interference}$ caused by i using (17), and place i into $\Omega_{\mathbf{k}}^c$ in ascending order of $P_{interference}$

10: endfor

11: endfor

Simulation parameter	Value
Radius of Cellular Network	250m
Number of D2D links N	10~70
Number of CUE links M	10~70
D2D communication distance	10~70m
Path loss exponent	3
EH power segment $[Pth_1 Pth_2 Pth_3 Pth_4]$	[10 100 230.06 57368] uw
EH linear function coefficient $[k_1 \ k_2 \ k_3 \ k_4]$	[0 0.3899 0.6967 0.1427]
EH linear function intercept $[b_1 \ b_2 \ b_3 \ b_4]$	[0 -1.6613 -19.1737 108.2778]
Maximum harvested power Pharvested	250uw
Max transmission power P_{max}	23dBm
Circuit power consumption P_{cir}	20dBm
CUE transmission power P_k^C	23dBm
Initial Lagrange multipliers $\alpha, \beta, \gamma, \delta, \sigma$	0.1
Noise power N_0, N_1	-100dBm
Throughput requirement of D2D link i T_{min}^{D}	2bits/Hz
Throughput requirement of CUE k $T_{min}^{\mathcal{C}}$	1bit/Hz

Algorithm 5: One-to-one Stable Matching Algorithm

Input : $\Omega_i^D, \Omega_k^C, EnaD, C, PS$

Output : ϕ, ϕ^R

Step 1 : while $EnaD \neq \phi$ do Step 2 : $for i \in EnaD$ do

Step 3 : Let i propose its most preferred CUE $\Omega^{\mathrm{D}}_{\mathrm{i}}$ which should be the first

CUE in $\,\Omega_{i}^{D}$

Step 4 : $for k \in PS$

Step 6 : if k is the most preferred CUE for i then

Step 7 : if k receives only one proposal from D2D link i then

Step 8 : i will be matched with $k, \phi = (i, k)$

Step 9 : The matched i will be removed form EnaD

break

Step 10 : elseif k receives not only one proposal from different D2D

links then

Step 11 : if one of the D2D links lpha has only one preferred CUE

in its preference list then

Step 12 : α will be matched with k, $\phi = (i,k)$, it will be

removed from EnaD

Step 13 : elseif all the D2D links have more than one preferred

CUE in their preference lists *then*

Step 14 : The CUE k will be matched with its most

preferred D2D link i' from its preference list Ω_k^{C} , and the matched D2D link will be removed form

EnaD

Step 15 : end if

Step 15 : end if

Step 16 : else if k is the most preferred CUE for i then

Step 17 : continue

Step 18 : end if Step 19 : end for

Step 19 : end for Step 20 :

i deletes its most preferred CUE from $\,\Omega_{i}^{D}\,$

Step 21 : end for Step 22 : end while

Step 23 : Gather all the unmatched CUEs in ϕ_R

Algorithm 3 Out loop Algorithm

Input : $EnaD, PS, \theta_{i,j}, P_{i,j}^D, EE_{i,j}^D$

Output : P_i^{D*} , θ_i^* , EE_i^{D*}

1: $for i \in EnaD$

2: $for k \in PS_i^D$

3: Obtain $P_{i,max}^R$ using (5), and obtain N_{max}

4: $for j = 1: N_{max}$

5: $j^* = \arg\max\{EE_{i,1}^D, EE_{i,2}^D, ..., EE_{i,j}^D, ... EE_{i,N_{max}}^D\}$

6: Assign $P_i^{D*} = P_{i,j^*}^D E E_i^{D*} = E E_{i,j^*}^D, \theta_i^* = \theta_{i,j^*}$

7: end for

8: end for

9: end for