

Motion Planning | Graph Search Exercise Autonomous Mobile Robots

Martin Rufli – IBM Research GmbH

Margarita Chli, Paul Furgale, Marco Hutter, Davide Scaramuzza, Roland Siegwart

Worked Exercise | the A* algorithm

0	A_Star(Graph G, Heur H, Node Start, Node Goal)
1	Queue.init(BIN_MIN_HEAP, H)
2	Queue.push(Start)
3	while Queue is not empty:
4	Node curr = Queue.pop()
5	if curr is Goal return
6	Closed.push(curr)
7	Nodes next = expand(curr)
8	for all next not in Closed:
9	Queue.push(next)

Elements in HEAP

Closed List

Graph Search | 2

Worked Exercise | the A* algorithm


```
0 A_Star(Graph G, Heur H, Node Start, Node Goal)
     Queue.init(BIN_MIN_HEAP, H)
     Queue.push(Start)
    while Queue is not empty:
       Node curr = Queue.pop()
       if curr is Goal return
       Closed.push(curr)
       Nodes next = expand(curr)
       for all next not in Closed:
         Queue.push(next)
```

Elements in HEAP

Closed List | C2 C3