Imperial College London

MATH 50006 Winter 2022

Department of Mathematics Lecturer: P.-F. Rodriguez p.rodriguez@imperial.ac.uk

Tutorials Lead (Senior GTA): Yuriy Shulzhenko yuriy.shulzhenko16@imperial.ac.uk

Graduate Teaching Assistants (GTAs):

John McCarthy j.mccarthy18@imperial.ac.uk
Riccardo Carini r.carini19@imperial.ac.uk
Soham Karwa s.karwa19@imperial.ac.uk
William Turner william.turner17@imperial.ac.uk

Exercise Sheet 3

- 1. Show the following.
 - a) Any continuous function from \mathbb{R} to \mathbb{R} is Borel-measurable (i.e. $(\mathcal{B}(\mathbb{R}), \mathcal{B}(\mathbb{R}))$ -measurable).
 - **b)** Any non-decreasing function from \mathbb{R} to \mathbb{R} is Borel-measurable.
 - c) Let f be a differentiable function from (0,1) to \mathbb{R} . Then f' is Borel measurable.
- **2.** (σ -algebra generated by functions).
 - a) Let X be a space, (Y, \mathcal{Y}) a measurable space and $f: X \to Y$. Define

$$\sigma(f) = \{ f^{-1}(A) : A \in \mathcal{Y} \}$$

Show that $\sigma(f)$ is a σ -algebra (the smallest σ -algebra on X such that f is measurable).

b) Let Y be a set and $(Y_i, \mathcal{B}_i)_{i \in I}$ be a family of measurable spaces. In the sequel, for an arbitrary family of functions $f_i: Y \to Y_i, i \in I$, we define

$$\sigma(f_i, i \in I) \stackrel{\text{def.}}{=} \sigma(\bigcup_{i \in I} \sigma(f_i)).$$

Let (X, \mathcal{A}) be a measurable space and $g: X \to Y$. Show that g is measurable from (X, \mathcal{A}) to $(Y, \sigma(f_i, i \in I))$ if and only if, for all $i \in I$, $f_i \circ g$ is measurable from X to Y_i .

- **3.** Let (X, \mathcal{A}) be a measurable space. We consider a sequence of Borel measurable maps $f_n: X \to \mathbb{R}, n \geq 1$.
 - a) Show that the set

$$\{x \in X : (f_n(x))_{n>1} \text{ converges in } \mathbb{R}\}\$$

is measurable.

- **b)** Show that if $(f_n)_{n\geq 1}$ converges pointwise, that is, for all $x\in\mathbb{R}$, $(f_n(x))_{n\geq 1}$ converges in \mathbb{R} , then the map $\lim_{n\to\infty} f_n$ is Borel measurable from (X,\mathcal{A}) to \mathbb{R} .
- c) Let $a \in \mathbb{R}$. Prove the Borel measurability of the map $g: X \to \mathbb{R}$ defined by

$$g(x) := \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if } (f_n(x))_{n \ge 1} \text{ converges in } \mathbb{R} \\ a & \text{otherwise.} \end{cases}$$

4. (Approximating the measure of a set, cf. Proposition 1.22).

Let \mathcal{A} be an algebra on a space X and μ a measure on $(X, \sigma(\mathcal{A}))$, which is σ -finite on \mathcal{A} , i.e. there exists a sequence of sets S_1, S_2, \ldots such that $X = \bigcup_{n=1}^{\infty} S_n, S_n \in \mathcal{A}$ and $\mu(S_n) < \infty$ for all $n \geq 1$. Show that for all $\varepsilon > 0$ and $A \in \sigma(\mathcal{A})$, there exist mutually disjoint sets A_1, A_2, \ldots with $A_n \in \mathcal{A}$ for all $n \geq 1$ such that

$$A \subset \bigcup_{n=1}^{\infty} A_n$$
 and $\mu \Big(\bigcup_{n=1}^{\infty} (A_n \setminus A)\Big) < \varepsilon$.