Fourier Transform

Definitions

- [Fourier Transform] $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d), \, \mathcal{F}: \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$
 - o Let $f \in C_0^{\infty}(\mathbb{R}^d)$, the Fourier transform of f is $\mathcal{F}[f](\xi) = \hat{f}(\xi) \coloneqq \int_{\mathbb{R}^d} f(x)e^{-i\xi \cdot x} dx$
 - o Let $f \in \mathcal{S}(\mathbb{R}^d)$, the Fourier transform of f is $\mathcal{F}[f](\xi) = \hat{f}(\xi) := \int_{\mathbb{R}^d} f(x)e^{-i\xi \cdot x} dx$
 - o Let $u \in \mathcal{S}'(\mathbb{R}^d)$, the Fourier transform of f is $\langle \mathcal{F}[u], \phi \rangle_{\mathcal{E}} = \langle u, \mathcal{F}^* \overline{\phi} \rangle$ for $\phi \in \mathcal{S}(\mathbb{R}^d)$
 - Typically, approximate u via $(u_n)_n \to u$ for $u_n \in L^1(\mathbb{R}^d)$. Then compute $\mathcal{F}[u_n]$ via formula, then compute $\mathcal{F}[u] = \lim_{n \to \infty} \mathcal{F}[u_n]$
- [Adjoint] $\mathcal{F}^*[f](x) = \int_{\mathbb{R}^d} f(\xi) e^{i\xi \cdot x} \frac{\mathrm{d}\xi}{(2\pi)^d}$
 - $\circ \quad \mathcal{F}: (\mathbb{R}^d_{x}, \mathbb{C}) \to (\mathbb{R}^d_{\xi}, \mathbb{C})$
 - $\circ \quad \mathcal{F}^*: \left(\mathbb{R}^d_{\xi}, \mathbb{C}\right) \to \left(\mathbb{R}^d_{\chi}, \mathbb{C}\right)$
 - $\circ \quad \langle \mathcal{F}f, g \rangle_{\xi} = \langle f, \mathcal{F}^*g \rangle$
 - $\circ \langle f, g \rangle_{\xi} = \int_{\mathbb{R}^d} f \bar{g} \frac{\mathrm{d}\xi}{(2\pi)^d}$
 - $\circ \langle f, g \rangle = \int_{\mathbb{R}^d} f \, \bar{g} \, \, \mathrm{d}x$
 - $\circ \quad \mathcal{F}^*[f](x) = \int_{\mathbb{R}^d} f(\xi) e^{i\xi \cdot x} \frac{\mathrm{d}\xi}{(2\pi)^d}$
 - o Let $u \in \mathcal{S}'(\mathbb{R}^d)$, $\langle \mathcal{F}^*u, \phi \rangle := \langle u, \mathcal{F}\phi \rangle_{\mathcal{E}}$ for $\phi \in \mathcal{S}(\mathbb{R}^d)$
 - o $\mathcal{F}^*[f](x) = \frac{1}{(2\pi)^d} \mathcal{F}[f](-x)$ (but rarely think of it this way)
- [Inverse Fourier Transform]
 - o Let $\hat{f} \in \mathcal{S}(\mathbb{R}^d)$, the inverse Fourier transform $F^{-1}[\hat{f}](x) = f(x) \coloneqq \int_{\mathbb{R}^d} \hat{f}(\xi) e^{i\xi \cdot x} \frac{\mathrm{d}\xi}{(2\pi)^d}$
- [Time Space]
 - $\circ \langle a,b\rangle_X = \int_{\mathbb{R}^d} a\overline{b} \, \mathrm{d}x$
- [Frequency Space] \mathbb{R}^d_{ξ} with measure $\frac{\mathrm{d}\xi}{(2\pi)^d}$
 - $\circ \langle a, b \rangle_{\xi} = \int_{\mathbb{R}^d} a \bar{b} \frac{\mathrm{d}\xi}{(2\pi)^d}$
- $\bullet \quad [\mathsf{Schwarz} \; \mathsf{Class}] \; \mathcal{S}(\mathbb{R}^d;\mathbb{C}) = \left\{ \phi \in \mathcal{C}^\infty(\mathbb{R}^d;\mathbb{C}) \colon \sup_{x \in \mathbb{R}^d} \left| x^\alpha \partial^\beta \phi \right| < \infty \; \forall \alpha,\beta \right\}$
 - o "rapidly decreasing functions"
 - o [Convergence] A sequence $(\phi_n)_n \to \phi$ if $|x^\alpha \partial^\beta (\phi_n \phi)| \to 0 \ \forall \alpha, \beta$ multi-indices
 - Closed under Fourier transform i.e. $\mathcal{F}: \mathcal{S}(\mathbb{R}^d; \mathbb{C}) \to \mathcal{S}(\mathbb{R}^d; \mathbb{C})$
 - $\mathcal{F}^*: \mathcal{S}(\mathbb{R}^d; \mathbb{C}) \to \mathcal{S}(\mathbb{R}^d; \mathbb{C})$
 - o $C_0^{\infty}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d; \mathbb{C})$ and is dense
 - $\circ \quad \mathcal{S}(\mathbb{R}^d;\mathbb{C}) \subset \mathcal{S}'(\mathbb{R}^d;\mathbb{C})$
- [Tempered Distribution] $S'(\mathbb{R}^d;\mathbb{C})$ is the dual space of $S(\mathbb{R}^d;\mathbb{C})$. It is the set of continuous conjugate-linear functional on $S(\mathbb{R}^d;\mathbb{C})$
 - $\circ\quad \text{i.e. given } \left(\phi_j\right)_j \to \phi, \ \lim_{j\to\infty}\langle u,\phi_j\rangle = \langle u,\phi\rangle \ \text{for } \left(\phi_j\right)_j,\phi \in \mathcal{S}(\mathbb{R}^d;\mathbb{C})$
 - $\circ \quad \langle u, \phi \rangle_{\xi} \coloneqq \frac{1}{(2\pi)^d} u(\phi) \text{ for } u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C}), \, \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C})$
 - o "slowly growing": each derivative of T grows at most as fast as some polynomial
 - $\circ \quad T \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C}) \Leftrightarrow T : \mathcal{S}(\mathbb{R}^d; \mathbb{C}) \to \mathbb{C}$
 - $\bigcirc \quad \exists k, C_k \text{ s.t. } |T(\phi)| \le C_k \|\phi\|_k \ \forall \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C})$
 - $||\phi||_k = \max_{|\alpha|+|\beta| \le k} \sup_{x \in \mathbb{R}^d} x^{\alpha} \partial^{\beta} \phi$
 - $\circ \quad \text{If } (\phi_n)_n, \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C}) \text{ with } (\phi_n)_n \to \phi \text{ in } \mathcal{S}(\mathbb{R}^d; \mathbb{C}), \text{ then } \lim_{i \to \infty} \langle u, \phi_i \rangle = \langle u, \phi \rangle$
 - $\text{Given } u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C}), \, \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C}), \, \langle u, \phi \rangle_{\xi} = \frac{1}{(2\pi)^d} u(\phi) = \int u \bar{\phi} \, \frac{\mathrm{d}\xi}{(2\pi)^d}$
 - $\qquad \text{Given } u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C}), \, \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C}), \, \langle \mathcal{F}u, \phi \rangle_{\xi} \coloneqq \langle u, \mathcal{F}^*\phi \rangle$

- $\circ \quad \text{Given } u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C}), \, \phi \in \mathcal{S}(\mathbb{R}^d; \mathbb{C}), \, \langle \mathcal{F}^* u, \phi \rangle \coloneqq \langle u, \mathcal{F} \phi \rangle_{\mathcal{E}}$
- $\circ \quad \mathcal{S}'(\mathbb{R}^d) \subset \mathcal{D}(\mathbb{R}^d)$
- [Convolution] Let $f \in \mathcal{S}'(\mathbb{R}^d)$, $g \in \mathcal{S}(\mathbb{R}^d; \mathbb{C})$. Then $(f * g)(x) = \langle f, \bar{g}(x \cdot) \rangle$
 - $\circ \quad \mathcal{F}[f * g] = \mathcal{F}[f]\mathcal{F}[g]$
- [Fourier Multiplier] Let $T: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ be a linear operator. Then T is a Fourier multiplier operator if $\exists m \in \mathcal{S}'(\mathbb{R}^d)$ s.t. $\mathcal{F}[Tf] = m\mathcal{F}[f]$
 - [Symbol] Say m is the symbol of T

Theorems

- [8.3] Let $f \in L^1(\mathbb{R}^d)$.
 - o $\mathcal{F}[f]$ is well-defined by $\mathcal{F}[f] = \int_{\mathbb{R}^d} f(y) e^{-i\xi \cdot y} dy$.
 - $\circ \sup_{\xi} |\mathcal{F}[f](\xi)| = ||\mathcal{F}[f]||_{L^{\infty}} \le ||f||_{L^{1}} = \int_{\mathbb{R}^{d}} |f(y)| dy$
 - $\quad \text{o} \quad \text{If } f, \partial_{x^j} f \in L^1(\mathbb{R}^d) \text{, then } \mathcal{F}\big[\partial_{x^j} f\big] = i \xi_j \mathcal{F}[f]$
 - o If $f, \partial_{x^j} f \in L^1(\mathbb{R}^d)$, then $\mathcal{F}[f]$ continuously differentiable in ξ_i and $\mathcal{F}[x^j f] =$ $i\partial_{\xi_i}\mathcal{F}[f]$
- Any tempered distribution is of finite order.
- [Fourier Inversion] Let $f \in \mathcal{S}(\mathbb{R}^d; \mathbb{C})$, then $f = \mathcal{F}^*\mathcal{F}[f] = \mathcal{F}\mathcal{F}^*[f]$
- [Fourier Inversion] Let $f \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C})$, then $f = \mathcal{F}^*\mathcal{F}[f] = \mathcal{F}\mathcal{F}^*[f]$
- [Plancherel] Let $f \in \mathcal{S}(\mathbb{R}^d)$, then $\langle f, g \rangle = \int_{\mathbb{R}^d} f(x) \overline{g(x)} dx = \int_{\mathbb{R}^d} \mathcal{F}[f] \overline{\mathcal{F}[g]} \frac{d\xi}{(2\pi)^d} =$ $\langle \mathcal{F}[f], \mathcal{F}[g] \rangle_{\mathcal{E}}$
 - \circ Let $f \in L^2(\mathbb{R}^d)$, then $\langle f, g \rangle = \langle \mathcal{F}[f], \mathcal{F}[g] \rangle_{\xi}$
 - o Let $f \in L^2(\mathbb{R}^d)$, then $\langle f, g \rangle_{\xi} = \langle \mathcal{F}^*[f], \mathcal{F}^*[g] \rangle$
- [Schwarz Representation Theorem] For any $u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C})$, there is a finite collection $u_{\alpha,\beta} : \mathbb{R}^d \to \mathbb{C}$ of bounded continuous functions, $|\alpha| + |\beta| \le k$ s.t. $u = \sum_{|\alpha| + |\beta| \le k} x^\beta \partial^\alpha u_{\alpha,\beta}$
- [1.3] Suppose $u \in \mathcal{S}'(\mathbb{R}^d; \mathbb{C})$ and $x_i u = 0 \ \forall j$, then $u = c\delta(x)$ for some constant c
- [1.3] Fourier transform extends by continuity from dense subspace $\mathcal{S}'(\mathbb{R}^d;\mathbb{C}) \subset L^2(\mathbb{R}^d)$ to an isomorphism $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$
- [Parseval]
- A homogeneous distribution on \mathbb{R}^d is a tempered distribution
- [8.12] A bounded linear operator $T: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is translation-invariant if and only if it is a Fourier multiplier operator with a symbol $m \in L^{\infty}(\mathbb{R}^d)$
- [8.17] Let u be a harmonic function on \mathbb{R}^d that is also a tempered distribution. Then u is a polynomial.

Examples

- $e^{-\|x\|^2} \in \mathcal{S}(\mathbb{R}^d; \mathbb{C})$
- $\delta_0 = \frac{1}{(2\pi)^d} \mathcal{F}^*[1] = \mathcal{F}^{-1}[1]$ $\mathcal{F}^{-1} = \frac{1}{(2\pi)^d} \mathcal{F}^*$
- $\mathcal{F}[1] = 2\pi\delta_0$

Energy Methods

Definitions

- [Schrödinger]
 - $\circ \quad i\partial_t u \Delta u = f \text{ in } \mathbb{R}^{1+d}_+$
 - $o \quad u = g \text{ on } \{t = 0\} \times \mathbb{R}^d_+$
- [Translation Operator] Let $y \in \mathbb{R}^d$ and $u \in L^1_{loc}(\mathbb{R}^d)$. Then $\tau_y u(x) \coloneqq u(x-y)$
 - o Let $u \in \mathcal{D}'(U)$, then $\tau_y u$ is implicitly defined via: $\langle \tau_y u, \phi \rangle \coloneqq \langle u, \tau_{-y} \phi \rangle$
- [Open Covering] Let $U \subset \mathbb{R}^d$. A collection $\{V_j\}_{j \in \mathcal{J}}$ of open sets $V_j \subset U$ (w.r.t. the subspace topology) is an open covering if $U = \bigcup_{j \in \mathcal{J}} V_j$
- [Smooth Partition of Unity] A collection of functions $\{\chi_j\}_{j\in\mathcal{J}}$ is a smooth partition of unity subordinate to $\{V_j\}_{j\in\mathcal{J}}$ if:
 - o χ_j is smooth $\forall j \in \mathcal{J}$
 - supp $\chi_j \subset V_j$
 - o $\chi_i(x) \in [0,1] \ \forall x \in U$
 - o $\sum_{i\in\mathcal{I}}\chi_i(x)=1$ and at most finitely many summands are non-zero

A Priori Estimates

- [Heat] $\frac{1}{2} \int_{U} |u(t_1)|^2 dx + \int_{t_0}^{t_1} \int_{U} ||\nabla u||^2 dx dt = \frac{1}{2} \int_{U} |u(t_0)|^2 dx + \int_{t_0}^{t_1} \int_{\partial U} (v \cdot \nabla u) u dS dt + \int_{t_0}^{t_1} \int_{U} fu dx dt$
- [Heat] Let $f \in L^1_t\Big((0,T); L^2(\mathbb{R}^d)\Big)$ and $g \in L^2(\mathbb{R}^d)$. Then, the solution $u \in C_t\Big([0,T], L^2(\mathbb{R}^d)\Big)$ and $Du \in L^2\Big((0,T) \times \mathbb{R}^d\Big)$ is unique. Moreover, exists C > 0 s.t. $\sup_{t \in [0,T]} \|u(t)\|_{L^2(\mathbb{R}^d)} + \|Du\|_{L^2\big((0,T) \times \mathbb{R}^d\big)} \le C\left(\|g\|_{L^2(\mathbb{R}^d)} + \|f\|_{L^1\big((0,T);L^2(\mathbb{R}^d)\big)}\right)$
- [Heat] Let $D^{\alpha}f \in L^1_t\Big((0,T); L^2(\mathbb{R}^d)\Big)$ and $D^{\alpha}g \in L^2(\mathbb{R}^d) \ \forall |\alpha| \leq k$. Then, the unique solution to the heat equation $u \in C_t\Big([0,T], L^2(\mathbb{R}^d)\Big)$ and $Du \in L^2\Big((0,T) \times \mathbb{R}^d\Big)$ also obeys $D^{\alpha}u \in C_t\Big([0,T]; L^2(\mathbb{R}^d)\Big)$ and $DD^{\alpha}u \in L^2\Big((0,T) \times \mathbb{R}^d\Big)$. Moreover, exists $C_k > 0$ s.t.

$$\sum_{\alpha: |\alpha| \le k} \left(\sup_{t \in [0,T]} \|D^{\alpha} u(t)\|_{L^{2}(\mathbb{R}^{d})} + \|DD^{\alpha} u\|_{L^{2}((0,T) \times \mathbb{R}^{d})} \right) \le C_{k} \sum_{\alpha: |\alpha| \le k} \left(\|D^{\alpha} g\|_{L^{2}(\mathbb{R}^{d})} + \|D^{\alpha} f\|_{L^{1}((0,T);L^{2}(\mathbb{R}^{d}))} \right)$$

- o Prove via applying energy method to $D^{\alpha}u$ since $D^{\alpha}(\partial_t \Delta) = (\partial_t \Delta)D^{\alpha}$
- [Wave]
 - $\circ \quad \text{[Local Energy Identity]} \ \partial_t \left(\frac{1}{2} (\partial_t u)^2 + \frac{1}{2} \sum_{j=1}^d \left(\partial_j u \right)^2 \right) = \sum_{j=1}^d \partial_j \left(\partial_j u \partial_t u \right) f \partial_t u = \nabla \cdot \left(\partial_t u \nabla u \right) f \partial_t u$
 - $0 \frac{1}{2} \int_{\mathbb{R}^d} ((\partial_t u)^2 (t_1) + \|\nabla u(t_1)\|^2) \, dx = \frac{1}{2} \int_{\mathbb{R}^d} ((\partial_t u)^2 (t_0) + \|\nabla u(t_0)\|^2) \, dx \int_{t_0}^{t_1} \int_{\mathbb{R}^d} f \, \partial_t u \, dx \, dt$
- $$\begin{split} \bullet \quad & [\text{Schr\"{o}dinger}] \text{ Let } f \in L^1_t\Big((0,T); L^2(\mathbb{R}^d)\Big) \text{ and } g \in L^2(\mathbb{R}^d). \text{ The solution } u \in \\ & C_t\Big([0,T]; L^2(\mathbb{R}^d)\Big) \text{ to the Schr\"{o}dinger equation is unique. Moreover, } \exists \mathcal{C} > 0 \text{ s.t.} \\ & \sup_{t \in [0,T]} \lVert u(t) \rVert_{L^2(\mathbb{R}^d)} \leq \mathcal{C}\left(\lVert g \rVert_{L^2(\mathbb{R}^d)} + \lVert f \rVert_{L^1\big((0,T);L^2(\mathbb{R}^d)\big)}\right) \end{aligned}$$
- [Schrödinger] Let $D^{\alpha}f \in L^1_t\Big((0,T);L^2(\mathbb{R}^d)\Big)$ and $D^{\alpha}g \in L^2(\mathbb{R}^d) \ \forall |\alpha| \leq k$. Then, the unique solution to the Schrödinger equation $u \in \mathcal{C}_t\Big([0,T];L^2(\mathbb{R}^d)\Big)$ also obeys $D^{\alpha}u \in \mathcal{C}_t([0,T];L^2(\mathbb{R}^d))$

$$\frac{22R}{C_t\Big([0,T];L^2(\mathbb{R}^d)\Big). \text{ Moreover, } \exists C_k > 0 \text{ s.t. } \sum_{\alpha:|\alpha| \leq k} \sup_{t \in [0,T]} \|D^\alpha u(t)\|_{L^2(\mathbb{R}^d)} \leq C_k \sum_{\alpha:|\alpha| \leq k} \Big(\|D^\alpha g\|_{L^2(\mathbb{R}^d)} + \|D^\alpha f\|_{L^1\big((0,T);L^2(\mathbb{R}^d)\big)}\Big)$$

Theorems (L^p Spaces)

• Let $1 \le p < \infty$. $C_0(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$.

Tools

- $\int_{U} u \Delta v = \int_{\partial U} (v \cdot \nabla v) u \int_{U} \nabla u \cdot \nabla v$
- $\int_{U} u \Delta u = \int_{\partial U} (v \cdot \nabla u) u \int_{U} ||\nabla u||^{2}$
- [Hölder] $||fg||_1 \le ||f||_p ||g||_q$
- [Young] Let $a, b \ge 0$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$ with equality if and only if $a^p = b^q$
- [Minkowski] Let $1 \le p < \infty$. Then $\|f + g\|_{L^p} \le \|f\|_{L^p} + \|g\|_{L^p}$
- Let $u \in \mathcal{D}'(\mathbb{R}^d)$. Then $\{\phi_{\epsilon} * u\}_{\epsilon \to 0}$ provides an approximation of u by smooth functions.
 - $\circ \phi_{\epsilon} * u \in C^{\infty}(\mathbb{R}^d)$
 - $\phi_{\epsilon} * u \to u \text{ in } \mathcal{D}'(\mathbb{R}^d) \text{ as } \epsilon \to 0$
 - $O D^{\alpha}(\phi_{\epsilon} * u) = \phi_{\epsilon} * D^{\alpha}u$
- [Mollifier] Let $\phi \in C_0^{\infty}(\mathbb{R}^d)$
 - $\circ \quad \int_{\mathbb{R}^d} \phi = 1$

Sobolev Spaces

Definitions

- [Sobolev Space $W^{k,p}(U)$] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1,\infty]$. The <u>Sobolev space</u> with regularity index k and integrability index p is denoted $W^{k,p}(U) = \{u \in \mathcal{D}'(U) : D^{\alpha}u \in L^p \ \forall \alpha \text{ s. t. } |\alpha| \leq k\}$
 - $\hspace{0.5cm} \circ \hspace{0.5cm} \left[\operatorname{Norm} \right] \left\| u \right\|_{W^{k,p}(U)} \coloneqq \begin{cases} \left(\sum_{\alpha: |\alpha| \leq k} \left\| D^{\alpha} u \right\|_{L^{p}}^{p} \right)^{\frac{1}{p}}, \; p < \infty \\ \sum_{\alpha: |\alpha| \leq k} \left\| D^{\alpha} u \right\|_{L^{\infty}}, \; p = \infty \end{cases}$
 - o [Convergence] $(u_n) \to u$ in $W^{k,p}(U)$ if $||u_n u||_{W^{k,p}(U)} \to 0$
 - Space of functions possessing sufficiently many derivatives and equipped with a norm that measures both size and regularity of the function
 - Remark: $L^p \equiv W^{0,p}$
- $[W_0^{k,p}(U)] W_0^{k,p}(U) = \{ u \in W^{k,p}(U) : \exists u_j \in C_0^{\infty}(U) \text{ s.t. } (u_j)_j \to u \text{ in } W^{k,p}(U) \}$
 - o $W_0^{k,p}(U)$ is the closure of $C_0^{\infty}(U)$ in $W^{k,p}(U)$
 - o Intuitively, $W_0^{k,p}(U)$ is a closed subspace of $W^{k,p}(U)$ containing functions whose values at the boundary ∂U vanish up to all relevant orders
- $[H^k(U)]$ Define $H^k(U) := W^{k,2}(U)$ i.e. p = 2
 - o $H^k(U)$ is a Hilbert space w.r.t $\langle \cdot, \cdot \rangle_{H^k(U)} \coloneqq \langle \cdot, \cdot \rangle_{W^{k,2}(U)}$
 - $\circ \quad \langle u, v \rangle_{H^k(U)} \coloneqq \sum_{\alpha: |\alpha| \le k} \int_U D^{\alpha} u \cdot D^{\alpha} v \, dx$
 - $\circ \quad H_0^k(U) \coloneqq W_0^{k,2}(U)$
- [Hölder Space $C^{0,\alpha}(K)$] Let $K \subset \mathbb{R}^d$ be closed. Let $\alpha \in (0,1)$. Let $f \in C(K)$.
 - $\circ \quad [[\cdot]_{\mathcal{C}^{0,\alpha}(K)}] \text{ Define the } \underline{\text{H\"older semi-norm of regularity } \underline{\alpha}} \text{ for } f \in \mathcal{C}(K) \text{ as: } [f]_{\mathcal{C}^{0,\alpha}(K)} \coloneqq \sup \left\{ \frac{|f(x) f(y)|}{|x y|^{\alpha}} \colon x, y \in K, x \neq y \right\}$
 - $\circ \quad [\|\cdot\|_{\mathcal{C}^{0,\alpha}(K)}] \text{ Define the } \underline{\text{H\"older norm}} \ \|\cdot\|_{\mathcal{C}^{0,\alpha}(K)} \text{ as: } \|f\|_{\mathcal{C}^{0,\alpha}(K)} \coloneqq \|f\|_{L^{\infty}} + [f]_{\mathcal{C}^{0,\alpha}(K)}$ Then, the $\underline{\text{H\"older space}} \text{ is } \mathcal{C}^{0,\alpha}(K) = \big\{ f \in \mathcal{C}(K) \colon \|f\|_{\mathcal{C}^{0,\alpha}(K)} < \infty \big\}, \text{ equipped with norm } \|\cdot\|_{\mathcal{C}^{0,\alpha}(K)}$
 - \circ $\|\cdot\|_{L^{\infty}}$ controls the amplitude, $[f]_{C^{0,\alpha}(K)}$ controls the frequency
 - $f \in C^{0,\alpha}(K)$ if f bounded, continuous and obeys Hölder continuity bound i.e. $|f(x) f(y)| \le C|x y|^{\alpha}$ for some C > 0 and $\forall x, y \in K$
- [Hölder Space $C^{k,\alpha}(K)$] The <u>Hölder space</u> is $C^{k,\alpha}(K) = \{f \in C^k(K): \sum_{\beta:|\beta| \le k} \|\partial_{\beta} f\|_{C^{0,\alpha}(K)} < \infty \}$, equipped with norm $\|\cdot\|_{C^{k,\alpha}(K)}$
 - $\circ \|f\|_{C^{k,\alpha}(K)} = \sum_{\beta: |\beta| \le k} \|\partial_{\beta} f\|_{C^{0,\alpha}(K)}$
- [Morrey] Let $d . Then <math>\exists$ constant $c_{p,d}$ s.t. $\|u\|_{c^{0,\frac{p-d}{p}}(\mathbb{R}^d)} \le c_{d,p} \|u\|_{W^{1,p}(\mathbb{R}^d)} \ \forall u \in C^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$
 - Take $f \in \mathcal{C}^1(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ with $d < q < \infty$. Then $[f]_{\dot{\mathcal{C}}^\alpha} \le c \|Df\|_{L^p}$, where $\alpha = 1 \frac{d}{q}$
 - o i.e. $W^{1,p}(\mathbb{R}^d) \subset C^{0,\frac{p-d}{p}}(\mathbb{R}^d)$

Theorems

- [Properties of Sobolev Space] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty]$.
 - $(W^{k,p}(U), \|\cdot\|_{W^{k,p}(U)})$ is complete i.e. it is a Banach space
 - $\circ \quad \left(H^k(U), \left<\cdot, \cdot\right>_{H^k(U)}\right) \text{ is complete i.e. it is a Hilbert space}$
 - o $u \in H^k(\mathbb{R}^d)$ if and only if $\left\| (1 + \|\xi\|^2)^{\frac{k}{2}} \hat{u}(\xi) \right\|_{L^2} \in L^2(\mathbb{R}^d)$
 - $= \exists C_{d,k} \text{ s.t. } C_{d,k}^{-1} ||u||_{H^k(\mathbb{R}^d)} \leq \left\| (1 + ||\xi||^2)^{\frac{k}{2}} \widehat{u}(\xi) \right\|_{L^2(\mathbb{R}^d)} \leq C_{d,k} ||u||_{H^k(\mathbb{R}^d)}$

- [11.3] Let $1 \le p < \infty$. The mapping $y \mapsto \tau_y$ is continuous as a linear map on $L_p(\mathbb{R}^d)$
 - o Equivalently, $\forall u \in L^p(\mathbb{R}^d)$, $\lim_{y \to 0} ||\tau_y u u||_{L^p(\mathbb{R}^d)} = 0$
 - o Prove by $\frac{\epsilon}{3}$ argument
- [11.4] Let $u \in L^p(\mathbb{R}^d)$, then $\phi_{\epsilon} * u \to u$ in $L^p(\mathbb{R}^d)$
- [11.5] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. If $u \in W^{k,p}(\mathbb{R}^d)$, then $(\phi_{\epsilon} * u)_{\epsilon \to 0} \to u$ in $W^{k,p}(\mathbb{R}^d)$. $C^{\infty}(\mathbb{R}^d)$ is dense in $W^{k,p}(\mathbb{R}^d)$
- [11.7] Let U be a nonempty subspace in \mathbb{R}^d and $\{V_j\}_{j\in\mathcal{J}}$ be an open covering of U. Then \exists smooth partition of unity subordinate to $\{V_j\}_{j\in\mathcal{J}}$.
- [11.9] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Let $U \subset \mathbb{R}^d$ be a domain. If $u \in W^{k,p}(U)$, then \exists sequence $(u_j)_i \in C^\infty(U)$ s.t. $(u_j)_i \to u$ in $W^{k,p}(\mathbb{R}^d)$
 - o i.e. $C^{\infty}(U)$ is dense in $W^{k,p}(U)$
 - o $u \in W^{k,p}(U)$ can be approximated by smooth functions
- [11.10] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Let $U \subset \mathbb{R}^d$ be a C^1 domain. If $u \in W^{k,p}(U)$, then \exists sequence $(u_j)_i \in C^{\infty}(\overline{U})$ s.t. $(u_j)_i \to u$ in $W^{k,p}(\mathbb{R}^d)$.
 - o i.e. $C^{\infty}(\overline{U})$ is dense in $W^{k,p}(U)$
 - o $u \in W^{k,p}(U)$ can be approximated by functions smooth up to and including boundary of U
- [11.11] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Let $\chi \in C_0^\infty(\mathbb{R}^d)$ with $\chi(0) = 1$. If $u \in W^{k,p}(\mathbb{R}^d)$, then $\chi\left(\frac{x}{R}\right)u \to u$ in $W^{k,p}(\mathbb{R}^d)$ as $R \to \infty$.
 - o $u \in W^{k,p}(\mathbb{R}^d)$ can be approximated by compactly supported functions
- [11.12] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Then $C_0^{\infty}(\mathbb{R}^d)$ is dense in $W^{k,p}(\mathbb{R}^d)$ i.e. $W_0^{k,p}(\mathbb{R}^d) = W^{k,p}(\mathbb{R}^d)$
 - o Warning: this fails for any other C^1 domain U
- [Extension Mapping 11.13] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Let U be a C^k domain in \mathbb{R}^d and V be a domain in \mathbb{R}^d s.t. $\overline{U} \subset V$. Then \exists linear mapping $\mathcal{E}: W^{k,p}(U) \to W^{k,p}(\mathbb{R}^d)$ with the following properties:
 - $\quad \text{$\mathcal{E}$ is bounded i.e. } \exists \mathcal{C}_{d,k,p,U,V} > 0 \text{ s.t. } \forall u \in W^{k,p}(U), \ \|\mathcal{E}[u]\|_{W^{k,p}(\mathbb{R}^d)} \leq \mathcal{C}_{d,k,p,U,V} \|u\|_{W^{k,p}(U)}$
 - $\circ \quad \mathcal{E}[u]|_{U} = u$
 - supp $\mathcal{E}[u] \subset V$
 - i.e. we can extend an element $u \in W^{k,p}(U)$ to a larger space $W^{k,p}(\mathbb{R}^d)$
 - \mathcal{E} is the extension map
- [11.20 Gagliardo-Nirenberg-Sobolev for $C_0^{\infty}(\mathbb{R}^d)$] Let $d \geq 2$ and $u \in C_0^{\infty}(\mathbb{R}^d)$, then $\|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \leq \|Du\|_{L^1(\mathbb{R}^d)}$
 - \circ Upshot: can bound some L^{p^*} norm of u with the L^1 norm of Du
 - $\circ W^{1,1}(U) \subset L^{\frac{d}{d-1}}(U)$
- [Gagliardo-Nirenberg-Sobolev] Let $1 \le p < d$. Then \exists constant $c_{p,d}$ s.t. $||u||_{L^{\frac{pd}{d-p}}(\mathbb{R}^d)} \le c_{p,d} ||Du||_{L^p(\mathbb{R}^d)} \forall u \in C_0^1(\mathbb{R}^d)$.
 - o Upshot: can bound some L^{p^*} norm of u with the L^p norm of Du, provided p < d o $W^{1,p}(U) \subset L^{\frac{pd}{d-p}}(U)$
- [11.22 Loomis-Whitney] Let $f_1, \ldots, f_d \colon \mathbb{R}^{d-1} \to \mathbb{R}$ where $f_j \coloneqq f_j \left(x^1, \ldots, \hat{x}^j, \ldots, x^d \right)$ measurable. Then $\int_{\mathbb{R}^d} \prod_{i=1}^d |f_i| \, \mathrm{d} x_1 \ldots \mathrm{d} x_d \le \prod_{i=1}^d \|f_i\|_{L^{d-1}(\mathbb{R}^{d-1})}$
 - $\circ \left(\int_{\mathbb{R}^d} |g_1|^{\frac{1}{d-1}} \dots |g_d|^{\frac{1}{d-1}} dx_1 \dots dx_d \right)^{d-1} \le \prod_{i=1}^d ||g_i||_{L^1(\mathbb{R}^{d-1})}$

- Prove via integrating one variable at a time, then repeat Hölder
- [11.26 Sobolev Inequalities for $W^{1,p}(U)$, $1 \le p < d$] Let $U \subset \mathbb{R}^d$ be a domain and $1 \le p < d$ $d. p^* = \frac{pd}{d-p}$. Then:
 - $\circ \quad W_0^{1,p}(U) \subset L^{\frac{pd}{d-p}}(U)$
 - $\circ \quad \forall u \in W_0^{1,p}(U), \ \exists \ \text{constant} \ c_{d,p} \ \text{s.t.} \ \|u\|_{L^{\frac{pd}{d-p}}(U)} \leq c_{d,p} \|Du\|_{L^p(U)}$
 - o If U is in addition a bounded C^1 domain, then:
- $[p^* = \infty]$
 - o If d = 1, $||f||_{L^{\infty}} \le c ||\nabla f||_{L^{1}}$
 - o If d=2, Sobolev embedding fails i.e. $\|f\|_{L^\infty}$ is not a constant factor of $\|\nabla f\|_{L^d}$
- [11.30 Properties of Hölder Space] Let $K \subset \mathbb{R}^d$ be closed. Let $k \in \mathbb{N} \cup \{0\}$ and $\alpha \in (0,1)$.
 - o $(C^{k,\alpha}(K), \|\cdot\|_{C^{k,\alpha}(K)})$ is a Banach space (complete normed space)
 - $\circ \ \|u\|_{C^k(K)} \leq \|u\|_{C^{k,\alpha}(K)} \leq C\|u\|_{C^{k+1}(K)}$
 - $\circ \quad \text{For } 0 < \alpha' < \alpha, \|u\|_{C^{k,\alpha'}(K)} \le c\|u\|_{C^{k,\alpha}(K)}$
 - i.e. $0 < \alpha' < \alpha \Rightarrow C^{k,\alpha}(K) \subset C^{k,\alpha'}(K)$
 - $\quad \circ \quad \mathsf{For} \ L \subset K, \ \|u\|_{\mathcal{C}^{k,\alpha}(L)} \leq \|u\|_{\mathcal{C}^{k,\alpha}(K)}$
 - i.e. $L \subset K \Rightarrow C^{k,\alpha}(K) \subset C^{k,\alpha}(L)$
- [11.27] Let $u \in C^1(\overline{B_r(x)})$. Then $\frac{1}{|B_r(x)|} \int_{B_r(x)} |u(y) u(x)| \, \mathrm{d}y \le \frac{1}{d\alpha(d)} \int_{B_r(x)} \frac{\|Du(y)\|}{\|x y\|^{d-1}} \, \mathrm{d}y$
 - $|u(x)| \le c \int_{\mathbb{R}^d} \frac{\|Du(y)\|}{\|x-y\|^{d-1}} \, \mathrm{d}y$
- [11.31] Let $u \in C^{\infty}(\mathbb{R}^d) \cap W^{1,p}(\mathbb{R}^d)$ and p > d. Then \exists constant $c_{d,p} > 0$ s.t.

$$||u||_{c^{0,\frac{p-d}{p}}(\mathbb{R}^d)} \le c_{d,p} ||u||_{W^{1,p}(\mathbb{R}^d)}$$

- $\circ \quad \text{i.e. } W^{1,p}(\mathbb{R}^d) \subset C^{0,\frac{p-a}{p}}(\mathbb{R}^d)$
- [11.32 Sobolev Inequalities for $W^{1,p}(U)$, p>d] Let $U\subset \mathbb{R}^d$ be a domain and let p>d. Let $\alpha = 1 - \frac{d}{n}$. Then:
 - For any $u \in W_0^{1,p}(U)$, \exists function $u^* \in C^{0,\alpha}(\overline{U})$ agreeing with u almost everywhere in U. Moreover, \exists constant $c_{d,p} > 0$ s.t. $||u||_{\mathcal{C}^{0,\alpha}(\overline{U})} \leq c_{d,p} ||u||_{W^{1,p}(U)}$
 - O Assume in addition that U is bounded C^1 domain. Then for any $u \in W^{1,p}(U)$, \exists function $u^* \in C^{0,\alpha}(\overline{U})$ that agrees with u almost everywhere in U. Moreover, \exists constant $c_{d,p,U}$ s.t. $||u||_{C^{0,\alpha}(\overline{U})} \le c_{d,p,U}||u||_{W^{1,p}(U)}$
- [Sobolev Inequality for $W^{k,p}$ 11.39] Let $k \in \mathbb{N} \cup \{0\}$ and $p \in [1, \infty)$. Assume U is either (1) a domain in \mathbb{R}^d and $u \in W_0^{k,p}(U)$ or (2) bounded C^k domain in \mathbb{R}^d and $u \in W^{k,p}(U)$. Then the following holds:
 - Let $l \in \mathbb{N} \cup \{0\}$ s.t. $l \leq k$ and $q \in [1, \infty)$. If $\frac{d}{q} l \geq \frac{d}{n} k$, then $u \in W^{l,q}(U)$.
 - Moreover, \exists constant $c_{d,k,l,p,q,U}$ s.t. $\|u\|_{W^{l,q}(U)} \leq c_{d,k,l,p,q,U} \|u\|_{W^{k,p}(U)}$ • i.e. if $l \le k$ and $\frac{d}{a} - l \ge \frac{d}{n} - k$, $W^{k,p}(U) \subset W^{l,q}(U)$
 - Let $l \in \mathbb{N} \cup \{0\}$ s.t. $l \leq k$ and $\alpha \in (0,1)$. If $-l \alpha \geq \frac{d}{n} k$, then \exists function $u^* \in \mathbb{N}$ $C^{k,\alpha}(U)$ s.t. $u^*=u$ almost everywhere in U. Moreover, \exists constant $c_{d,k,l,p,\alpha,U}$ s.t. $||u^*||_{C^{l,\alpha}(U)} \le c_{d,k,l,p,\alpha,U} ||u||_{W^{k,p}(U)}$
 - i.e. if $l \le k$ and $-l \alpha \ge \frac{d}{p} k$, $W^{k,p}(U) \subset C^{l,\alpha}(U)$

Toolbox

- [Young] Let $a, b \ge 0$ and p, q > 1 s.t. $\frac{1}{p} + \frac{1}{q} = 1$. Then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$, with equality if and only if $a^p = b^q$
- [Hölder] Let $1 \le p, q \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Let $u \in L^p(U), v \in L^p(U)$. Then $||uv||_{L^1} = \int_{U} |uv| \mathrm{d}x \le ||u||_{L^p} ||v||_{L^q}$
- Let U be bounded, $f \in L^r(U)$ for $1 \le r \le p$. Then \exists constant c_U s.t. $\|f\|_{L^r(U)} \le c_U \|f\|_{L^p(U)}$
- [Generalised Hölder] Let $1 \leq p_1, \ldots, p_m \leq \infty$ with $\sum_{i=1}^{\infty} \frac{1}{p_i} = 1$. Let $u_k \in L^{p_k}(U)$ for $k=1,\ldots,m$. Then $\|u_1\ldots u_k\|_{L^1} = \int_U |u_1\ldots u_k| \mathrm{d}x \leq \prod_{i=1}^k \|u_i\|_{L^{p_i}(U)}$

Exam

Dimensional analysis