

Why

We want to talk about several objects in order.

Definition

A list (or finite sequence, string, n-tuple) is a family (correspondence) whose index set is $\{1, \ldots, n\}$ for $n \in \mathbb{N}$. The length (or size) of a list is the size of its index set, n. When the codomain of the sequence is a set A, we say that the sequence is in A or that it is a sequence of elements of A.

If $a: \{1, \ldots, n\} \to A$ is a sequence, we refer to a(k) as the kth term (or entry, or $element^1$) of a.

Notation

Since the natural numbers are ordered, we regularly denote finite sequences from left to right between parentheses. For example, we denote $a: \{1, \ldots, 4\} \to A$ by (a_1, a_2, a_3, a_4) . a(k) is the kth term. Following the convention with functions, we regularly usually denote a(n) by a_n

Orderings and numberings

Let A be a set with |A| = n. A sequence $a : \{1, ..., n\} \to A$ is an *ordering* of A if a is invertible. In this case, we call the inverse a *numbering* of A. An ordering associates with each number a unique object and a numbering associates with each

 $^{^{1}\}mathrm{We}$ avoid this terminology because it conflicts with sets.

object a unique number (the object's *index*).

Relation to Direct Products

A natural direct product is a product of a sequence of sets. We denote the direct product of a sequence of sets A_1, \ldots, A_n by $\prod_{i=1}^n A_i$. If each A_i is the same set A, then we denote the product $\prod_{i=1}^n A_i$ by A^n . The set of sequences in a set A is the direct product A^n .

Natural unions and intersections

We denote the family union of the finite sequence of sets A_1 , ..., A_n by $\bigcup_{i=1}^n A_i$. Similarly, we denote the intersection by $\bigcap_{i=1}^n A_i$

Slices

An index range for a list s of length n is a pair (i, j) for which $1 \le i < j \le n$. The slice corresponding to the index range (i, j) is the length j - i sequence s' defined by $s'_1 = s_i$, $s'_2 = s_{i+1}, \ldots, s'_j = s_{i+j-1}$. We denote the (i, j)-slice of s by $s_{i:j}$. If i = 1 we use $s_{:j}$ and if j = n we use $s_{i:}$ as shorthands for the slices $s_{1:j}$ and $s_i : n$.

