1. naloga

V času načrtovanja sistema predvidimo, da bodo na računalniku tekli štirje procesi (P1-P4). Ti bodo med izvajanjem potrebovali različne vire (R1-R4). števnost virov v računalniškem sistemu je: R1 – 3, R2 – 2, R3 – 2, R4 – 1. Potrebe so podane v naslednji matriki (v vrsticah so procesi, v stolpcih pa viri):

$$\left[\begin{array}{cccc} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right]$$

Trenutno ima P1 v lasti dva vira R1, po en vir R2 in R3, P2 ima v lasti vir R1, P4 pa ima v lasti R4.

S pomočjo grafa alociranja virov preverite, ali je prišlo do smrtnega objema? Narišite graf in odgovor argumentirajte.

2. naloga

Tisti, ki ste pridno spremljali predavanja (ali se učili) ste spoznali dva pristopa za izogibanje smrtnemu objemu. Eden od teh je zavrnitev zagona novega procesa. Na preprostem računalniku v Južnokorejskem avtomobilu iz leta 1999 poganjamo tri procese P1 - P3, ki potrebujejo vire R1 – R6. Potrebe so podane v matriki C, trenutne alokacije (lastništva virov po procesih) pa v matriki A. Pri obeh matrikah so procesi podani po vrsticah, viri pa po stolpcih. Števnost virov v tem avtomobilskem računalniku je podana z vektorjem R.

$$C = \left[\begin{array}{cccccc} 1 & 3 & 2 & 1 & 1 & 0 \\ 3 & 2 & 1 & 1 & 1 & 1 \\ 3 & 0 & 2 & 4 & 2 & 0 \end{array} \right]$$

$$A = \left[\begin{array}{cccccc} 1 & 2 & 1 & 1 & 1 & 0 \\ 3 & 2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 4 & 2 & 0 \end{array} \right]$$

$$R = \begin{bmatrix} 8 & 6 & 3 & 5 & 3 & 1 \end{bmatrix}$$

- (a) Ali lahko poženemo tudi proces P4, C(P4) = [110010], brez nevarnosti smrtnega objema? Odgovor argumentirajte!
- (b) Kakšna je pomankljivost pristopa zavrnitve zagona novega procesa?
- (c) Kateri drugi pristop ste tisti, ki ste se učili, še spoznali?

3. naloga

Na računalniku teče pet procesov (P1-P5). Ti med izvajanjem potrebujejo različne vire (R1-R6). Števnost virov v računalniškem sistemu je: R1 – 3, R2 – 2, R3 – 2, R4 – 1, R5 – 1, R6 – 1. Potrebe so podane v naslednji matriki (v vrsticah so procesi, v stolpcih pa viri):

Trenutno ima P1 v lasti dva vira R1, po en vir R2, R3 in R6, P2 ima v lasti vir R1, P4 ima v lasti R4, P5 ima v lasti R3 in R5.

Zapišite sled delovanja Bančniškega algoritma. Vsak korak sledi delovanja obrazložite. Ali je to stanje v sistemu varno (angl. safe state)?

4. naloga

Na računalniku tečejo štirje procesi (P1-P4). Ti med izvajanjem potrebujejo različne vire (R1-R5). števnost virov v računalniškem sistemu je: R1 – 1, R2 – 1, R3 – 1, R4 – 1, R5 – 2. Potrebe so podane v naslednji matriki (v vrsticah so procesi, v stolpcih pa viri):

Trenutno ima P1 v lasti R1, R2 in R5, P4 ima v lasti R5.

Zapišite sled delovanja algoritma za zaznavo smrtnega objema. Ali je prišlo v sistemu do smrtnega objema?

5. naloga

Po postopku Sistem prijateljev (angl. Buddy System) narišite razdeljevanje pomnilnika velikosti 512 KB za primer naslednjih zahtev: A – 60 KB, B – 256 KB, C – 128 KB, sprosti B, D – 50 KB, sprosti C, E – 30 KB, sprosti A, sprosti E, sprosti D. V vsaki vrstici skice, ki predstavlja delovanje posameznega koraka algortima, pazite na pravilno velikost celic.

6. naloga

Na sliki 1 imamo diagram izkoriščenosti posameznih sistemskih virov pri uniprogramiranju za 3 izvajajoče procese (prvi se izvaja 3 časovne enote, drugi 1, tretji 2 časovni enoti). Narišite diagram izkoriščenosti v sistemu z multiprogramiranjem. Izračunajte izkoriščenosti virov za oba primera!

Slika 1: Diagram izkoriščenosti.

7. naloga

Izračunajte učinek multiprogramiranja v primerjavi z uniprogramiranjem za naslednji primer:

	zahteva 1	zahteva 2	zahteva 3
procesorske zahteve	80%	5%	10%
trajanje	5 min.	10 min.	10 min.
pomnilniške zahteve	100 M	50 M	$25 \mathrm{M}$
potrebuje disk?	ne	ne	da
potrebuje terminal?	ne	da	ne
potrebuje tiskalnik?	ne	ne	da

Na voljo imamo 200 M pomnilnika. Izračunati morate: uporabo procesorja v %, uporabo pomnilnika v %, uporabo diska v %, uporabo tiskalnika v %, čas celotnega izvajanja v minutah ter zmogljivost v zahtevah/uro, in sicer tako za primer uniprogramiranja, kot za primer multiprogramiranja. Pomagate si lahko z utilizacijskim histogramom za vsak vir.

Kateri dodatni strojni značilnosti smo potrebovali, da smo lahko implementirali podporo multiprogramiranju?