

PROJECT OVERVIEW

- Objective: Develop a model to classify SMS messages as spam or ham
- Dataset: SMS Spam Collection Dataset
- Approach: Data preprocessing, model training, and evaluation

DATA EXPLORATION

- /uciml/sms-spam-collection-dataset
- 5,572 text samples
- 87% ham 13% spam

TEXT PREPROCESSING

STEPS:

Lowercase conversion

- stop word removal
- special character removal
- lemmatization

tokenization

Sample cleaned data:						
	text	cleaned_text				
0	Go until jurong point, crazy Available only	go jurong point crazy available bugis n great				
1	Ok lar Joking wif u oni	ok lar joking wif u oni				
2	Free entry in 2 a wkly comp to win FA Cup fina	free entry wkly comp win fa cup final tkts st				
3	U dun say so early hor U c already then say	u dun say early hor u c already say				
4	Nah I don't think he goes to usf, he lives aro	nah dont think go usf life around though				

FEATURE ENGINEERING

MESSAGE LENGTH ANALYSIS:

- Ham a larger distribution
 of short messages with
 extremely long outliers
- Spam Message length on average is roughly double
 Ham. Extremely short outliers.

TIME SERIES ANALYSIS

MODEL TRAINING PROCESS

- Vectorization: TF-IDF
- Models tested: Naive Bayes, Logistic Regression, Random Forest, SVM
- Training/Test split: 75/25

MODEL COMPARISON

PERFORMANCE IN %

• Naive Bayes: 96.48%

• Logistic Regression: 94.97%

• Random Forest: 97.42%

• SVM: 97.34%

BEST PERFORMANCE

RANDOM FOREST

- True Positives = 1202
- False Negatives = 0
- False Positives = 36
- True Negatives = 155

DETAILED METRICS

Final Evaluation on Test Set: Classification Report:						
	precision	recall	f1-score	support		
ham spam	0.97 1.00	1.00 0.81	0.99 0.90	1202 191		
accuracy macro avg weighted avg	0.99 0.97	0.91 0.97	0.97 0.94 0.97	1393 1393 1393		

KEY FINDINGS

- 1. High Model Accuracy: The best-performing model achieved an accuracy of 97.42% on the test set. This significantly exceeds the project requirement of 75%. All models tested had accuracies above 94%
- 2. Excellent Ham Detection: The final evaluation shows perfect recall (1.00) for ham messages, meaning the model correctly identified 100% of legitimate messages.
- 3. Strong Spam Precision: The model achieved perfect precision (1.00) for spam messages. This means that when the model classified a message as spam, it was correct 100% of the time.

MODEL TUNING

HYPER PERAMETER TUNING BEST MODEL - RANDOM FOREST

```
Hyperparameter Tuning Results:
Best parameters: {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 10, 'n_estimators': 300}
Best cross-validation score: 0.9744
Original model score: 0.9742
Improvement over original model: 0.0002
```

- A whopping 00.02% (Better than nothing)
- The model already performed extremely well.
- Little room for improvement

FUTURE IMPROVEMENT

ADDITIONAL TUNING

- Feature Importance Analysis
- Cross-validation
- Threshold adjustment optimize the model's precision recall trade-off

DEEP LEARNING APPROACHES

• Experiment with neural networks, particularly recurrent neural networks (RNNs) or transformers, which can capture sequential information in text.

PRACTICAL EXAMPLE

- SPAM MESSAGE ANALYSIS (DMS, FB, IG, ETC, NOT JUST SMS)
- IMAGE NOT TEXT ANALYSIS
- DEEP LEARNING LLM
 - 1. Image Upload to Web Interface
 - 2. Image to OCR API to extract text
 - 3. Return
 - 4. Text to LLM for Analysis
 - 5. Return Safe Output and Print Analysis

#