https://github.com/physicell-training/ws2021

Session 3: Phenotype & Diffusion

Aneequa Sundus y @AneequaSundus

Furkan Kurtoglu > @FKurtogluSysBio

PhysiCell Project

July 26, 2021

Agenda:

- Introduction
- Diffusion in PhysiCell(Microenvironment)
- Cell Phenotype
 - Cell Motility
 - Cell Mechanics
 - Cell Volume

Key parts of a PhysiCell model (1)

Microenvironment (stage):

- diffusing substrates
 - ♦ diffusion coefficient
 - ♦ decay rate
 - boundary conditions
 - ◆ Defined in XML configuration file

Cell Definitions (types of players):

- name
- default phenotype (more on next page)
- defined in XML configuration file

A note about time steps

 PhysiCell is designed to account for the multiple time scales inherent to these problems, and has 3 time scales:

• $\Delta t_{ m diffusion}$	diffusion, secretion, and uptake	(default: 0.01 min)
• $\Delta t_{ m mechanics}$	cell movement	(default: 0.1 min)
$lacksquare$ $\Delta t_{ m cell}$	phenotype and volume changes	(default: 6 min)

• This allows some efficiency improvements: not all functions need to be evaluated at each time step.

• See the PhysiCell method paper. (Oddly, not in the User Guide (yet).)

Microenvironment

- Boundary Conditions
 - By default, Von Neuman boundaries
 - Dirichlet's conditions and fine tuning
 - Dirichlet's nodes

- Define all substrates in the environment
 - Diffusion rate constant
 - Decay Rate

XML config file Microenvironment

```
<microenvironment setup>
    <variable name="oxygen" units="mmHg" ID="0">
        <physical parameter set>
           <diffusion coefficient units="micron^2/min">100000.0</diffusion coefficient>
           <decay rate units="1/min">0.1</decay rate>
       </physical parameter set>
       <initial condition units="mmHg">38.0</initial condition>
       <Dirichlet boundary condition units="mmHg" enabled="false">10.0/Dirichlet boundary condition>
     <Dirichlet options>
     <boundary value ID="xmin" enabled="true">10.0/boundary value>
     <boundary value ID="xmax" enabled="true">100.0/boundary value>
     <boundary value ID="ymin" enabled="false">100.0/boundary value>
     <boundary value ID="ymax" enabled="false">100.0/boundary value>
     <boundary value ID="zmin" enabled="false" hidden="true">100.0/boundary value>
     <boundary value ID="zmax" enabled="false" hidden="true">100.0/boundary value>
</Dirichlet_options>
```

Microenvironment App

https://nanohub.org/resources/microenvnmtr

Cell phenotype

- One of the most critical data elements in a PhysiCell Cell is phenotype
- Hierarchically organize key behavioral elements:
 - Phenotype
 - ◆ cycle: advancement through a cell cycle model
 - ◆ death: one or more types of cell death
 - ◆ volume: cell's volume regulation
 - ◆ geometry: cell's radius and surface area
 - ♦ mechanics: adhesion and resistance to deformation ("repulsion")
 - ◆ motility: active motion (other than "passive" mechanics)
 - ◆ secretion: both release and uptake of chemical substrates. Interfaces with BioFVM
 - ♦ intracellular: used for interacting with intracellular models. See Sessions 10-11.
 - ◆ molecular: a place to store internalized substrates

Documentation: User Guide, Sec. 10

Phenotype: Mechanics

- Mechanics keeps parameters for adhesion and "repulsion"
 - Key parameter: maximum adhesion distance
 - ♦ a multiple of the cell's radius
 - (as a multiple of the cell's radius)
- Default model uses potential functions, but this can be supplemented or replaced.

Documentation: User Guide 11.5

Cell definition: mechanics

- Options give you some easy ways to override the cell-cell adhesion strength to accomplish other calibration goals:
 - **set_relative_equilibrium_distance** lets you choose the equilibrium cell-cell spacing, as a multiple of the cell radius. It will automatically choose a cell_cell_adhesion_strength to meet your selected equilibrium spacing.
 - 2.0 would have an equilibrium spacing of 2 cell radii (radius of cell 1 + radius of cell 2). Don't exceed this!
 - 1.8 or 1.9 is more typical.
 - **set_absolute_equilibrium_distance** allows you to choose this equilibrium distance in absolute (dimensional) units. This may or may not make sense as the cell changes size!

mechanics app demo

https://nanohub.org/tools/trmechanics/

Phenotype: Motility

- Motility controls biased random migration
 - Migration speed s
 - Bias direction d_{bias}
 - Migration bias $0 \le b \le 1$
 - If b = 1, deterministic motion
 - If b = 0, purely Brownian motion
 - Persistence time T_{per}

$$\mathbf{v}_{\text{mot}} \sim s(b\mathbf{d}_{\text{bias}} + (1-s)\mathbf{d}_{\text{rand}})$$

Cell definition: motility

- If "enabled" is set to false, the cell will not be motile, regardless of what speed you give it above.
- If you set use_2D to true, then the cell restricts its motile motion to its current z-plane.
- chemotaxis allows you to use out-of-the-box chemotaxis:
 - set enabled to true to use this.
 - use "substrate" to choose which chemical factor it follows.
 - use direction = 1 to go up the gradient, and -1 to go against the gradient
 - Important!!! If the "substrate" does not match something defined in the microenvironment above, the initialization will fail.

motility app demo

https://nanohub.org/tools/trmotility/

Phenotype: Volume

- volume records the cell's sub-volumes:
 - nuclear and cytoplasmic
 - solid vs. fluid
 - calcified fraction
 - key parameters
- a very simple default model to regulate volume based on ODEs
 - Change the parameters, target values based on environment and cell state

$$\frac{dV_F}{dt} = r_F (V_F^* - V_F)$$

$$\frac{dV_{NS}}{dt} = r_N (V_{NS}^* - V_{NS})$$

$$\frac{dV_{CS}}{dt} = r_C (V_{CS}^* - V_{CS})$$

Documentation: User Guide 11.3

Cell definition: Phenotype: Volume

- This gives both the steady-state "target" volume of the cell type and the initial volume for any cells you place in the simulation.
- Use the change rates to control how quickly cells move towards their target volume.
- The relative rupture volume is mostly useful to death models.
- Distinguish between State variables vs Target Parameters

Phenotype: Volume app demo

https://nanohub.org/tools/volumetr

Next Session

- Cell Phenotype Continued
 - Cell Cycle
 - Cell Death
 - Cell Secretion and Uptake

Funding Acknowledgements

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

Training Materials:

Administrative supplement to NCI U01CA232137 (Year 2)