

L= = 1, [2+262] + Mgraso - 2 k2+ krLo - 2 KLo2 + 2m, [-2+262+R262+2R; \$sn(0-4)+2R6\$66(04) - M29 (-1000 - R004) L = 2m, 12+2m, 202 + m, growb - 1 kr2+ KrLo-2 KLo2 + 2m2 + 2m, 202 + 1 m2 R2 + m2 R + 6 sm (0-4) + MzRrosos(Op) + Mzgraso + Mzg Roso dolong OL - m ÓZr + m 62r + m gaso + OL - m, r + Mz r + Mz R \$ sin (0-\$) $\frac{d}{dt} \frac{\partial L}{\partial r} = -m_{x} R \partial^{2} \cos(\theta - \phi) + m_{x} R \partial^{2} \sin(\theta - \phi) + m_{x} R \partial^{2} \cos(\theta - \phi)$ m, O r+m, O r+m, S cont + M2 g cos O - R(r-lo) = m, r + m, r + m, r + sin(0-+) -m, r + 2 cos (0-+)

	Thus.
	-m2 Right +m2 Risin (0-0) +2m2 Rio (0-6) +m2 Rio (0-0) -m2 Rio (0-0) =-m2 gRsind
	The idea from hore is to get (i, 0, t). We we his to get (i, 0, t), then (r, 0, 0) and have (2, 1, 4, 1, 2) iteratively.
Λ	Think the easiest was to do this is by solving a matrix; first reasonage all L[7] to make it the subject. The BAS for all L[7]:
	(Θ'+gωθ)(n,+n2)-K++LD+M2R+ ω(Θ-+) -grsinθ(n,+m2)-m2R-+ β'sin(Θ-+)-2riθ(m,+m2) -2m2Riθω(Θ-+)+m2R-Θ'sin(Θ-+)-m2Rsin+.
- Υ · Ψ	
fon LI from L from L	[OBJ (Γ) (SOPJ (Θ) (SOPJ (Φ)) [Γ]: [M , $+M$] O M , R S M
	M Jamreanased [[2]
	$\begin{bmatrix} \dot{c} \\ \dot{\phi} \end{bmatrix} = M^{-1} A$