DATOS MACROECONOMICOS DE SUDÁFRICA

By: Ael-Dev

Diccionario de variables:

- GDP (PIB)
- INF (tasa de inflación)
- INT (tasa de interés)

Leer dataset

Warning: The following named parsers don't match the column names: dates, GDP,
U

head(data)

Date <chr></chr>	gdp <dbl></dbl>	inf <dbl></dbl>	int <dbl></dbl>
1981/02	982319	2.228504	2.073281
1981/03	996616	5.101777	2.643333
1981/04	1002834	3.599360	2.946432
1982/01	993543	2.493895	3.576928
1982/02	985253	4.101902	3.758169
1982/03	985001	2.797385	3.851869
6 rows			

Se observa que los datos son trimestrales

Análisis exploratorio de los datos (EDA)

```
library(tseries)
```

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
```

```
# Convertir las series a objeto ts gdp \leftarrow ts(data\$gdp, start = c(1981, 2), freq = 4) # Se establece el inicio en el año 1981, se gundo trimestre, con una frecuencia de 4 (trimestral). inf \leftarrow ts(data\$inf, start = c(1981, 2), freq = 4) int \leftarrow ts(data\$inf, start = c(1981, 2), freq = 4)
```

```
dat.mts=cbind(gdp, inf, int) # Combinar series en matriz dat.mts
plot(dat.mts) # Graficar las series temporales
```

dat.mts


```
# Con autoplot:
library(ggplot2) # Cargar librería ggplot2
library(ggfortify) # Cargar librería ggfortify
```

```
## Warning: package 'ggfortify' was built under R version 4.3.3
```

dim(X_test) # Mostrar dimensiones de X_test

Dividir la serie en conjunto de entrenamiento y prueba

```
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

n_obs=10 # nro de obs
end=dim(dat.mts)[1] # indice final del ultimo dato del dataset
X_train = dat.mts [1:(end-n_obs),] # Crear conjunto de entrenamiento
X_test = dat.mts [(end-n_obs+1):end,] # Crear conjunto de prueba
```

```
## [1] 10 3
```

Se obtiene 10 datos reservados y 3 columnas

Prueba de estacionariedad

- H0: Serie = Estacionria
- H1: Serie != Estacionaria

```
apply(X_train, 2, adf.test) # Realizar prueba ADF por columnas en X_train
```

```
## $gdp
##
##
    Augmented Dickey-Fuller Test
##
## data: newX[, i]
## Dickey-Fuller = -0.92653, Lag order = 4, p-value = 0.9462
## alternative hypothesis: stationary
##
##
## $inf
##
    Augmented Dickey-Fuller Test
##
## data: newX[, i]
## Dickey-Fuller = -3.701, Lag order = 4, p-value = 0.02723
## alternative hypothesis: stationary
##
##
## $int
##
   Augmented Dickey-Fuller Test
##
##
## data: newX[, i]
## Dickey-Fuller = -3.4262, Lag order = 4, p-value = 0.05361
## alternative hypothesis: stationary
```

- Se observa que GDP e INT no son estacionarias.
- INF si es estacionaria

Estudiar un modelo para ver la relación entre la tasa de inflación y la tasa de interés INF e INT

```
# para así que obviar el hecho
# de que GDP no sea estacionaria porque no la vamos a utilizar
X_train_new <- X_train[,2:3] # Seleccionar columnas relevantes para el modelo</pre>
```

VAR modeling

```
# Identificación del orden del modelo
library(vars)
## Warning: package 'vars' was built under R version 4.3.3
## Loading required package: MASS
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: urca
## Loading required package: lmtest
VARselect(X_train_new, type = "none", lag.max = 12) # Seleccionar orden del modelo VAR
```

```
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
##
                     2
##
## $criteria
##
## AIC(n) -2.88980087 -3.09900126 -3.14959503 -3.0958107 -3.04221385 -3.00203620
## HQ(n) -2.84883184 -3.01706320 -3.02668793 -2.9319345 -2.83736869 -2.75622201
## SC(n) -2.78869762 -2.89679476 -2.84628527 -2.6913977 -2.53669759 -2.39541669
## FPE(n) 0.05558779 0.04509754 0.04288017 0.0452651 0.04778441 0.04978557
##
                   7
                                           9
                                                      10
## AIC(n) -3.04317179 -3.06059055 -3.00932952 -2.95051387 -2.89561743 -2.84588843
## HQ(n) -2.75638857 -2.73283830 -2.64060823 -2.54082355 -2.44495808 -2.35426004
         -2.33544903 -2.25176454 -2.09940025 -1.93948136 -1.78348166 -1.63264941
## FPE(n) 0.04783598 0.04708475 0.04966319 0.05280794 0.05596551 0.05904546
```

Según el criterio AIC es que se debe considerar hasta 3 retrasos (orden 3)

Creando el modelo VAR

```
##
## VAR Estimation Results:
## =========
## Endogenous variables: inf, int
## Deterministic variables: const
## Sample size: 114
## Log Likelihood: -140.413
## Roots of the characteristic polynomial:
## 0.8438 0.8438 0.5384 0.5179 0.5179 0.0106
## Call:
## vars::VAR(y = X train new, type = "const", lag.max = 10, ic = "AIC")
##
##
## Estimation results for equation inf:
## ============
## inf = inf.l1 + int.l1 + inf.l2 + int.l2 + inf.l3 + int.l3 + const
##
##
         Estimate Std. Error t value Pr(>|t|)
## inf.l1 0.498461 0.097259 5.125 1.33e-06 ***
## int.l1 0.569913 0.349463 1.631 0.1059
## inf.l2 0.008638 0.105312
                             0.082
                                     0.9348
## int.12 -0.911124 0.560890 -1.624 0.1072
## inf.13 0.243582 0.093113 2.616 0.0102 *
## int.l3 0.487111 0.334374 1.457
                                     0.1481
## const
         0.109249 0.321186 0.340
                                     0.7344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.8855 on 107 degrees of freedom
## Multiple R-Squared: 0.527, Adjusted R-squared: 0.5005
## F-statistic: 19.87 on 6 and 107 DF, p-value: 1.745e-15
##
##
## Estimation results for equation int:
## =============
## int = inf.l1 + int.l1 + inf.l2 + int.l2 + inf.l3 + int.l3 + const
##
        Estimate Std. Error t value Pr(>|t|)
##
## inf.l1 0.03690 0.02825 1.306 0.1943
## int.l1 1.33982 0.10151 13.200 <2e-16 ***
## inf.12 -0.01411 0.03059 -0.461 0.6456
## int.12 -0.38785   0.16292 -2.381   0.0191 *
## int.l3 -0.03479 0.09712 -0.358
                                    0.7209
                   0.09329 2.475
## const
         0.23088
                                    0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.2572 on 107 degrees of freedom
## Multiple R-Squared: 0.9151, Adjusted R-squared: 0.9103
## F-statistic: 192.2 on 6 and 107 DF, p-value: < 2.2e-16
##
##
```

```
##
## Covariance matrix of residuals:
## inf int
## inf 0.78404 0.07849
## int 0.07849 0.06615
##
## Correlation matrix of residuals:
## inf int
## inf 1.0000 0.3447
## int 0.3447 1.0000
```

Diagnosis del modelo (Portmanteau test para objetos var)

```
bv.serial= serial.test(var.a) # Realizar test Portmanteau
bv.serial
```

```
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var.a
## Chi-squared = 39.307, df = 52, p-value = 0.9026
```

P-value es > 0.05, por lo que no es necesario realizar la diferenciación

Grafico de la diagnosis

```
plot(bv.serial, names = "int") # Graficar resultados para variable int
```


Residuals of int

PACF of Residuals

ACF of squared Residuals

PACF of squared Residuals

plot(bv.serial, names = "inf") # Graficar resultados para variable inf

Histogram and EDF

ACF of Residuals

PACF of Residuals

ACF of squared Residuals

PACF of squared Residuals

predictions <- predict(var.a, n.ahead = 10, ci = 0.90) # Realizar pronósticos a 10 periodos
con intervalo de confianza del 90%
plot(predictions, names = "int") # Graficar pronósticos para variable int</pre>

Forecast of series int

predictions <- predict(var.a, n.ahead = 10, ci = 0.90) # Realizar pronósticos a 10 periodos
en el futuro, con intervalo de confianza del 90%
plot(predictions, names = "inf") # Graficar pronósticos para variable inf</pre>

Forecast of series inf

Otro gráfico fanchart(predictions, names = "int") # Gráfico adicional para variable int

Fanchart for variable int

Fanchart for variable inf

Evaluación del modelo

```
pred=predictions$fcst
rmse=sqrt(mean((X_test[,2]-pred$inf)^2))
cat('RMSE inf: ', rmse)
```

```
## RMSE inf: 1.410843
```

```
rmse=sqrt(mean((X_test[,3]-pred$int)^2))
cat('RMSE int: ', rmse)
```

```
## RMSE int: 1.202069
```

Se observa que los resultdos para RMSE son aceptables

Entrenando con todos los datos

```
##
## VAR Estimation Results:
## =========
## Endogenous variables: inf, int
## Deterministic variables: const
## Sample size: 124
## Log Likelihood: -145.197
## Roots of the characteristic polynomial:
## 0.8681 0.8681 0.5206 0.5206 0.4745 0.03618
## Call:
## vars::VAR(y = dat.mts[, 2:3], type = "const", lag.max = 10, ic = "AIC")
##
##
## Estimation results for equation inf:
## ============
## inf = inf.l1 + int.l1 + inf.l2 + int.l2 + inf.l3 + int.l3 + const
##
##
          Estimate Std. Error t value Pr(>|t|)
## inf.l1 0.501210 0.093216 5.377 3.93e-07 ***
## int.l1 0.542232 0.333551 1.626 0.10672
## inf.12 0.001997 0.101176 0.020 0.98428
## int.12 -0.877584 0.539561 -1.626 0.10654
## inf.13 0.244784 0.088920 2.753 0.00685 **
## int.13 0.469499 0.320319 1.466 0.14541
## const
          0.154976
                  0.263580 0.588 0.55769
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.8556 on 117 degrees of freedom
## Multiple R-Squared: 0.5452, Adjusted R-squared: 0.5218
## F-statistic: 23.37 on 6 and 117 DF, p-value: < 2.2e-16
##
##
## Estimation results for equation int:
## =============
## int = inf.l1 + int.l1 + inf.l2 + int.l2 + inf.l3 + int.l3 + const
##
         Estimate Std. Error t value Pr(>|t|)
##
## inf.l1 0.03598 0.02709 1.328 0.1868
## int.l1 1.35979 0.09695 14.026 <2e-16 ***
## inf.l2 -0.01444 0.02941 -0.491 0.6244
## int.12 -0.40311   0.15683 -2.570   0.0114 *
## inf.l3 -0.01759 0.02585 -0.681 0.4974
## int.l3 -0.01943 0.09311 -0.209
                                     0.8351
          0.16099
## const
                    0.07661 2.101
                                     0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.2487 on 117 degrees of freedom
## Multiple R-Squared: 0.9322, Adjusted R-squared: 0.9288
## F-statistic: 268.3 on 6 and 117 DF, p-value: < 2.2e-16
##
##
```

```
##

## Covariance matrix of residuals:

## inf int

## inf 0.73214 0.07237

## int 0.07237 0.06185

##

## Correlation matrix of residuals:

## inf int

## inf 1.0000 0.3401

## int 0.3401 1.0000
```

```
## Diagnosis del modelo (Portmanteau test para objetos var)
bv.serial= serial.test(var.a) # Realizar test Portmanteau nuevamente
plot(bv.serial, names = "int") # Graficar resultados para variable int
```


plot(bv.serial, names = "inf") # Graficar resultados para variable inf

Histogram and EDF

ACF of Residuals

PACF of Residuals

ACF of squared Residuals

PACF of squared Residuals

Forecasting usando el modelo VAR (Hallando los pronósticos)
predictions <- predict(var.a, n.ahead = 10, ci = 0.95) # Realizar pronósticos a futuro con i
ntervalo de confianza del 95%</pre>

plot(predictions, names = "int") # Graficar pronósticos para variable int

Forecast of series int

Forecasting usando el modelo VAR (Hallando los pronósticos)
predictions <- predict(var.a, n.ahead = 10, ci = 0.95) # Realizar pronósticos a futuro con
intervalo de confianza del 95%
plot(predictions, names = "inf") # Graficar pronósticos para variable inf</pre>

Forecast of series inf

Más adelante en el futuro "n.ahead=50"
predictions <- predict(var.a, n.ahead = 50, ci = 0.95) # Realizar pronósticos a futuro con
intervalo de confianza del 95%
plot(predictions, names = "int") # Graficar pronósticos para variable int</pre>

Forecast of series int

#"n.ahead=50"
predictions <- predict(var.a, n.ahead = 50, ci = 0.95) # Realizar pronósticos a futuro con
intervalo de confianza del 95%
plot(predictions, names = "inf") # Graficar pronósticos para variable inf</pre>

Forecast of series inf

Tamaño de los intervalos de confianza

diff_IC_int=predictions\$fcst\$int[,3]-predictions\$fcst\$int[,2] # Calcular Longitud de IC par
a variable int

plot(diff_IC_int, main="Longitud de los IC vs cantidad de pronósticos a futuro - INT", xlab = 'Cantidad de datos pronosticados en el futuro', ylab='Longitud del IC') # Graficar Longitud de IC vs cantidad de pronósticos futuros para variable int

Longitud de los IC vs cantidad de pronósticos a futuro - INT

Cantidad de datos a futuro a predecir 8 a 10.

diff_IC_inf=predictions\$fcst\$inf[,3]-predictions\$fcst\$inf[,2] # Calcular longitud de IC par a variable inf

plot(diff_IC_inf, main="Longitud de los IC vs cantidad de pronósticos a futuro - INF", xlab ='Cantidad de datos pronosticados en el futuro', ylab='Longitud del IC') # Graficar longitu d de IC vs cantidad de pronósticos futuros para variable inf

Longitud de los IC vs cantidad de pronósticos a futuro - INF

Cantidad de posibles valores a futuro a predecir 10

• A mayor cantidad de datos al futuro a predecir mayor error, por lo tanto se perderá precisión y poder predictivo