

CSE 847 - Federated Semi-Supervised Learning in Image Classification

Bao Hoang and Manh Tran

1. Introduction

- Fully labeled datasets are often limited in real-world scenarios.
 - => Semi-supervised learning (SSL) can utilize unlabeled data to improve model performance.
- Privacy constraints prevent data sharing between clients to central server.
 - => Federated learning algorithm enables model training without sharing data, thus preserving data privacy.
- This project focuses on investigate semi-supervised and also adapting them to the federated learning setting.

2. Outline

- In this project, we investigate 4 semi-supervised methods:
 - 1. Self-training
 - 2. Mean Teachers
 - 3. FixMatch
 - 4. MixMatch
- We also implement Federated Average as federated algorithm.
- We evaluate performance using 3 computer vision architectures (Simple CNN, ResNet-18, and DenseNet-121) on 3 datasets (CIFAR-10, STL-10, Cat and Dog).

3. Self-training

- In each iteration, a supervised model is trained on the labeled data (1), then it is used to generate pseudo-labels for the unlabeled data (2).
- The most confident pseudo-labeled samples are added to the labeled dataset (3, 4), which is then used for training in the subsequent iteration.

4. Mean-Teachers

- The Mean Teacher algorithm train a student and teacher model.
- The student model minimizes a classification loss on labeled data (1) and a consistency loss aligning its outputs with the teacher model's on unlabeled data (2, 3, 4).
- The teacher model's weights are updated via an Exponential Moving Average (EMA) of the student's (7):

$$\theta_t \leftarrow \alpha \theta_t + (1 - \alpha) \theta_s$$

5. FixMatch

- FixMatch uses two types of augmentations: "weak" and "strong," for unlabeled data (1).
- FixMatch generates pseudo-labels from "weak" augmentations (3), then calculates the cross-entropy loss with "strong" augmentations (4).
- It also combines this with the cross-entropy loss of the labeled dataset (2) to compute the final loss (5).

6. MixMatch

MixMatch utilizes the MixUp formula to generate MixUp images (1) and MixUp labels (3).

$$\hat{x} = \lambda x_i + (1 - \lambda) x_j$$

$$\hat{y} = \lambda y_i + (1-\lambda)y_j$$

MixUp labels are generated using pseudo-labels (2) of unlabeled images and the labels of labeled images.

Finally, the loss is computed using the MixUp images and labels (4).

7. Federated Average

FedAvg has three main steps:

- 1. Each client trains locally using their own data.
- Then, the clients send their model parameters to the central server, which aggregates the parameters.
- 3. Finally, the server broadcasts the aggregated model back to the clients, and the process continues from step 1.

8. Experimentals Setting

- For the CIFAR-10 and Cat-Dog datasets, we split the training dataset into 10% labeled and 90% unlabeled data.
- For the STL-10 dataset, the labeled and unlabeled sets are already predefined.

- For the CIFAR-10 and Cat-Dog datasets, we also evaluate the "golden baseline" performance by training with 100% of the labeled training data.
- For the STL-10 dataset, we do **not** evaluate the "golden baseline" as the unlabeled dataset remains unlabeled.

9. Centralized Setting Results

Table 1. Accuracy of Semi-Supervised Learning Methods on Different Datasets With Different Model Architectures in Centralized Setting

Methodology	CIFAR-10	STL-10	Cat And Dogs
Simple CNN			
Baseline	67.94%	68.14%	70.14%
Golden Baseline	82.01%	-	81.76%
Self-training	69.14%	69.38%	72.61%
Mean teacher	68.71%	70.59%	72.27%
FixMatch	70.70%	69.71%	72.81%
MixMatch	72.35%	71.75%	74.34%
ResNet-18			
Baseline	68.53%	75.55%	71.38%
Golden Baseline	85.84%	-	88.83%
Self-training	70.45%	77.61%	72.52%
Mean teacher	70.64%	74.38%	67.08%
FixMatch	75.12%	80.20%	76.91%
MixMatch	79.33%	80.86%	81.30%
DenseNet-121			
Baseline	67.00%	75.70%	73.46%
Golden Baseline	87.56%	-	88.38%
Self-training	70.09%	77.05%	74.35%
Mean teacher	70.23%	75.52%	70.79%
FixMatch	75.95%	77.37%	73.15%
MixMatch	79.92%	80.32%	81.90%

- Semi-supervised methods
 outperform standard baseline,
 showing the importance of unlabeled data.
- FixMatch and MixMatch outperform other semi-supervised methods due to strong data augmentation and consistency regularization.
- Semi-supervised methods are weaker than the golden baseline, emphasizing the need for high-quality labeled data.

10. Decentralized Setting Results

- Performance across all methods, models, and datasets is generally lower in decentralized settings compared to centralized ones, highlighting the benefits of centralized data for model learning.
- MixMatch and self-training maintain
 effectiveness in decentralized
 settings, though algorithms like
 FixMatch and Mean Teacher degrade
 significantly when collaboration
 depends on sharing model parameters.

Table 2. Accuracy of Semi-Supervised Learning Methods on Different Datasets With Different Model Architectures In Decentralized Setting

Methodology	CIFAR-10	STL-10	Cat And Dogs
Simple CNN			
Baseline	61.41%	62.00%	69.85%
Golden Baseline	76.84%	_	80.82%
Self-training	68.24%	69.42%	74.59%
Mean teacher	62.23%	61.98%	68.51%
FixMatch	65.15%	63.04%	71.91%
MixMatch	69.66%	68.50%	72.12%
ResNet-18			
Baseline	62.80%	71.04%	68.51%
Golden Baseline	82.89%	_	85.91%
Self-training	70.51%	76.62%	74.84%
Mean teacher	61.23%	68.94%	59.71%
FixMatch	70.04%	75.85%	67.47%
MixMatch	74.01%	73.56%	80.20%
DenseNet-121			
Baseline	61.56%	72.09%	70.54%
Golden Baseline	84.32%	_	86.90%
Self-training	68.56%	76.00%	73.55%
Mean teacher	61.48%	69.73%	66.68%
FixMatch	70.70%	73.23%	67.42%
MixMatch	75.81%	74.85%	80.37%

11. Conclusion

- Semi-supervised methods are effective in settings where labeled images are scarce but there are many unlabeled images.
- Although some semi-supervised methods are advanced, they still cannot compare to fully-labeled baselines, indicating that labeled datasets continue to play a significant role.
- Decentralized settings are challenging for training effective machine learning models compared to centralized settings due to the constraints on data sharing.

Thank you for listening