Maxima and Minima

1 In Open Interval

Let y = f(x). The algorithm of finding maxima or minima is:

I Find
$$\frac{dy}{dx} = f'(x)$$

II Put f'(x) = 0 and solve for $x = c_1, c_2, c_3 \cdots c_n$. These are possible points for maxima or minima.

III Find f''(x) or second derivative. Consider $x = c_1$.

- If $f''(x) < 0 \Rightarrow \text{Maxima}$
- If $f''(x) > 0 \Rightarrow \text{Minima}$
- If $f''(x) = 0 \Rightarrow$ Find f'''(x) or third derivative.

IV If $f'''(x) \neq 0$, neither maxima nor minima. Check for $x = c_2, c_3 \cdots c_n$

V If f'''(x) = 0, find f^{iv} or fourth derivative.

VI Consider $x = c_2$.

- If $f^{iv}(x) < 0 \Rightarrow \text{Maxima}$
- If $f^{iv}(x) > 0 \Rightarrow \text{Minima}$
- If $f^{iv}(x) = 0 \Rightarrow$ Find $f^{v}(x)$ or fifth derivative.

VII This process goes on.

2 In Closed Interval (Local Maxima and Minima)

Let y = f(x) defined on [a, b]. The Algorithm of finding Local Maxima or Minima is:

I Find
$$\frac{dy}{dx} = f'(x)$$

II Put f'(x) = 0 and solve for $x = c_1, c_2, c_3 \cdots c_n$

III Put Values in f(x) and obtain values f(a), $f(c_1)$, $f(c_2)$, \cdots $f(c_n)$, f(b)

IV The maximum and minimum values in the above list are Local maxima and minima for the function y = f(x) in the range [a, b] and the corresponding value $a \cdots c_n \cdots b$ is the point of local maxima or local minima.