

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Comparação de dois grupos (qualitativo)

Testes para proporções

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

of a contrate Tours of a tourist

Discussão da aula passada

Discussão da leitura obrigatória da aula passada

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras

Anrofundamento

Sumário

- ① Observação x expectativa (1 proporção)
 - Objetivo da aula
 - Teste qui-quadrado para 1 proporção
- 2 Testes de independência para 2 proporções
 - Tabelas 2x2
 - Na prática
 - Tabelas maiores
 - Resumo
- 3 Aprofundamento
 - Aprofundamento

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Aprofundamento

Objetivo da aula

Considere a seguinte tabela de contingência:

	Lesão	Não tem lesão
Alongou-se	18	22
Não se alongou	211	189

Fonte: Larson & Farber 2013

- 4% dos que se alongaram tiveram lesão
- 48% dos que não se alongaram tiveram lesão

Pergunta

Como determinar se existe alguma relação entre as variáveis?

Isto é: o desfecho é independente da exposição?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra Objetivo da aula

para 1 proporção

-- ----

Exemplo 1

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Teste qui-quadrado

para 1 proporção

Se as frequências observadas forem iguais:

Expectativa x Realidade

- o diferença entre ambas (discrepância) = 0
- •

Observação

Quanto maior o valor de de χ^2 , maior a discrepância

Exemplo 1

Considere que 10% dos pacientes morrem após uma operação arriscada.

Em uma amostra de 75 pacientes, observou-se que 16 pacientes morreram após a operação.

- O número observado de óbitos em 75 pacientes foi 16.
- O número esperado seria $75 \times 10\% = 7.5$
- A discrepância nos óbitos foi 16 7.5 = 8.5

Questões

- Esse aumento reflete uma mudança real na mortalidade?
- Em uma amostra qualquer com 75 pacientes esperaríamos observar 7.5 óbitos
- Em uma amostra específica poderíamos observar mais ou menos que isso
- Provavelmente algo próximo de 7.5

Pergunta

Se a mortalidade for 10%, qual é a probabilidade de se observar 16 ou mais óbitos em uma amostra de 75 pacientes?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Objetivo da aula
Teste qui-quadrado
para 1 proporção

2 amostra

Aprofundament

- Podemos representar as contagens observadas e esperadas em uma tabela
- H₀: observamos uma amostra de uma população com 10% de mortalidade.
- \bullet As diferenças entre os dados observados e os esperados tem distribuição aproximadamente χ^2 (qui-quadrado)

Estatística de teste

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

Aprofundament

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra Objetivo da aula Teste qui-quadrado para 1 proporção

2 amostras

Expectativa x Realidade

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Teste qui-quadrado para 1 proporção

A razão $\frac{\text{observado}}{\text{esperado}}$ é um princípio **central** na Estatística¹

Tabela de frequências

Exemplo 1

		Observado	Esperado
-	Óbito	16	7.5
	Vivo	59	67.5
	Total	75	75

Estatística de teste:

$$\chi^2 = \frac{(16 - 7.5)^2}{7.5} + \frac{(59 - 67.5)^2}{67.5} =$$
$$= \frac{(8.5)^2}{7.5} + \frac{(-8.5)^2}{67.5} \approx 10.70$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Teste qui-quadrado para 1 proporção

Expectativa x Realidade

Se as frequências observadas forem iguais:

diferença entre ambas (discrepância) = 0

Quanto maior o valor de de χ^2 , maior a discrepância

Observação

• diferença² = 0 • $\chi^2 = 0$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Teste qui-quadrado para 1 proporção

Comparando as frequências

- H_0 : não houve alteração da mortalidade do procedimento.
- Estatística de teste para a amostra: $\chi^2 = 10.7$.
- O teste χ^2 retorna p = 0.0011.

Resultado

(...) a mortalidade observada foi diferente de 10% (p = 0.0011).

Comparação de dois

grupos (qualitativo) Felipe

Figueiredo

Teste qui-quadrado

para 1 proporção

¹Usada para comparação de valores quadráticos, incluindo variâncias

Tabelas de Contingência

Definição

Uma tabela de contingência mostra as frequências observadas para duas variáveis categóricas.

- Podemos calcular as frequências esperadas, baseado
 - no tamanho das amostras
 - na *H*₀
- Comparação: frequência observada × frequência esperada

A tabela do exemplo 1 (óbitos) não é uma tabela de contingência! (Por que?)

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amoetr

Tabelas 2x2

Tabelas maiores

Aprofundamento

Quais são as variáveis?

- Dependente: desfecho (categórica)
- Independente: tratamento (categórica)

Esta relação pode ser expressa como

 $progress\~ao \sim grupo$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

l amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores Resumo

Aprofundamento

Exemplo 2 (8.1)

Exemplo 8.1

AZT

Placebo

Frequências observadas:

doença progrediu

76

129

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiore Resumo

Aprofundamento

- Existe relação entre o uso do AZT e a progressão da doença?
- Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H₀)?

doença não progrediu

399

332

Exemplo 8.1

INTO

Comparação

de dois

grupos

(qualitativo)
Felipe
Figueiredo

1 amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores

- H₀: o AZT não é mais eficaz que o placebo
- Pergunta: assumindo a H₀, qual seria a frequência esperada para a progressão da doença?
- Em outras palavras: quantos pacientes tiveram progressão na doença, em relação ao total?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amoetra

Tabelas 2x2

Na prática Tabelas maiores Resumo

Aprofundamento

Tabelas de contingência 2x2

 Se a H₀ fosse verdadeira, esperaríamos que 104.0 pacientes tivessem a progressão da doença, usando o AZT.

Vamos começar pela primeira célula da tabela

- Mas observamos 76.
- Discrepância |104.0 76| = 28 pacientes
- Faltam os 3 outros valores esperados e discrepâncias
- Para simplificar, podemos usar a seguinte fórmula:

$$\textit{E} = \frac{\text{total por linha} \times \text{total por coluna}}{\text{total da tabela}}$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

Tabelas 2x2
Na prática

Na prática Tabelas maiores Resumo

Aprofundament

Tabelas de contingência 2x2

INTO

de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras Tabelas 2x2

Na prática Tabelas maiores

Aprofundamento

Frequências observadas:

	progrediu	não progrediu	total
AZT	76	399	475
Placebo	129	332	461
total	205	731	936

- Proporção esperada $E = \frac{205}{936} \approx 0.2190 = 21.90\%$
- Frequência esperada (número): $475 \times 0.2190 = 104.025 \approx 104.0$

Tabelas de contingência 2x2

Exemplo 8.1

Frequências observadas:

		progrediu	não progrediu	total
	AZT	76	399	475
	Placebo	129	332	461
	total	205	731	936

- AZT + Progressão = $\frac{205 \times 475}{936} = 104.0$
- AZT + Não progressão = $\frac{731 \times 475}{936} = 371.0$
- Placebo + Progressão = $\frac{205 \times 461}{936}$ = 101.0
- Placebo + Não progressão = $\frac{731 \times 461}{936} = 360.0$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2 Na prática

Resumo

Colocando os valores em uma tabela semelhante:

Exemplo 8.1

Frequências esperadas:

	progrediu	não progrediu	total
AZT	104.0	371.0	475.0
Placebo	101.0	360.0	461.0
total	205.0	731.0	936.0

Observe que os totais esperados devem ser iguais aos observados!

Comparação de dois grupos

(qualitativo) Felipe Figueiredo

Tabelas 2x2

Resumo

Teste de Hipótese

Exemplo 8.1

• AZT + P =
$$\frac{(76 - 104.0)^2}{104.0} = \frac{28^2}{104.0} \approx 7.54$$

• AZT + NP =
$$\frac{(399 - 371.0)^2}{371.0} = \frac{28^2}{371.0} \approx 2.11$$

Placebo + P =
$$\frac{(129 - 101.0)^2}{101.0} = \frac{28^2}{101.0} \approx 7.76$$
Placebo + NP = $\frac{(332 - 360.0)^2}{360.0} = \frac{28^2}{360.0} \approx 2.18$

Placebo + NP =
$$\frac{(332 - 360.0)^2}{360.0} = \frac{28^2}{360.0} \approx 2.18$$

$$\chi^2 = 7.54 + 2.11 + 7.76 + 2.18 = 19.59$$

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2

Teste de Hipótese

- *H*₀: a progressão é independente do grupo de tratamento • ou: não há relação entre o uso do AZT e a progressão da doença.
- Somamos as diferenças quadráticas entre o valor observado e o esperado

Quanto maior for o valor da estatística de teste, menor será o

• Calculamos a estatística de teste para a amostra e encontramos

$$\chi^2 = \frac{\sum (\text{observado} - \text{esperado})^2}{\text{esperado}}$$

- Quanto maior o valor de de χ^2 , maior a discrepância
- Fazemos o teste χ^2 e julgamos o p-valor

O teste Qui-Quadrado

p-valor.

 $\chi^2 = 19.59$

O resultado deste teste é p < 0.0001.

Comparação

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Tabelas 2x2

- de dois grupos (qualitativo)
- Felipe Figueiredo

Resumo

- Tabelas 2x2

O teste Qui-Quadrado

- INTO
- Comparação de dois grupos (qualitativo)

Felipe Figueiredo

omostro

Tabelas 2x2 Na prática

Tabelas maiores

Aprofundamento

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Tabelas 2x2

Resumo

- observados e os esperados.

 Resultado: devemos rejeitar a H_0
- Interpretação

Rejeitamos a hipótese de que o AZT não é mais eficiente que o placebo.

 Se a H₀ for verdadeira, temos uma chance menor que 0.01% de observar ao acaso uma discrepância tão grande entre os valores

O teste exato de Fisher

- Para as seguintes situações deve-se usar o teste exato de Fisher:
 - Quando se tem amostras pequenas
 - Quanto se tem amostras de tamanho moderado, e se tiver uma ferramenta computacional disponível
- Se sua amostra for enorme (milhares de dados), prefira o teste χ^2 , pois:
 - 1 o cálculo do teste exato de Fisher pode ser lento
 - a aproximação será boa

O teste Qui-Quadrado

- O teste χ^2 é apenas uma aproximação da distribuição dos dados, que pode ser usado para amostras grandes.
- Vantagem: simples
- Desvantagem: a aproximação é ruim para amostras pequenas
- Nunca usar se alguma célula da tabela tiver valor < 5

O teste indicado para este cenário é o teste exato de Fisher

Exemplo 2 (8.1)

Exemplo 8.1

Frequências observadas:

·	doença progrediu	doença não progrediu
AZT	76	399
Placebo	129	332

- Existe relação entre o uso do AZT e a progressão da doença?
- Ou: nessa amostra o AZT foi mais eficiente que o placebo (rejeitar H₀)?

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Tabelas 2x2 Na prática

Tabelas maiores

Aprofundamento

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2 Na prática

Tabelas maiore

Saída típica de um programa Comparação de dois grupos (qualitativo) Felipe Figueiredo Teste Qui-quadrado Pearson's Chi-squared test with Yates' Tabelas 2x2 continuity correction Na prática Resumo data: exemplo8.1 X-squared = 18.944, df = 1, Aprofundamento p-value = 1.346e-05

Saída típica de um programa Comparação de dois grupos (qualitativo) Felipe Teste exato de Fisher Figueiredo Fisher's Exact Test for Count Data data: exemplo8.1 p-value = 9.24e-06Na prática alternative hypothesis: true odds ratio Resumo is not equal to 1 95 percent confidence interval: 0.3512693 0.6818650 sample estimates: odds ratio 0.4905877

Tabelas de contingência maiores

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

Tabelas 2x2 Tabelas maiores

Resumo

E quando temos mais do que duas categorias?

E quando temos mais do que duas categorias?

Tabelas de contingência maiores

• Resposta: procedemos como no caso anterior, mas precisamos considerar os graus de liberdade do teste χ^2

$$gl = (l-1)(c-1) = (linhas - 1) \times (colunas - 1)$$

• Obs: no caso 2×2 temos $gl = (2-1) \times (2-1) = 1 \times 1 = 1$

Tabelas de contingência maiores

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Tabelas 2x2

Tabelas maiores

Exemplo 3

Em dois hospitais, os resultados de 575 autópsias foram comparados com as causas de morte listadas nos atestados. Um dos hospitais que participou do estudo era comunitário (A); o outro era universitário (B).

Hospital	Precisão confir- mada	Falta de informações	Recodificação incorreta
Α	157	18	54
В	268	44	34

Os resultados sugerem práticas diferentes no preenchimento de atestados de óbito nos dois hospitais?

Tabelas de contingência maiores

- *H*₀: Dentro de cada categoria do status do atestado, as proporções de atestados de óbitos no hospital A são idênticas ao hospital B.
- H₁: As proporções não são idênticas
- Graus de liberdade:

$$(I-1)\times(c-1)=(2-1)\times(3-1)=1\times2=2$$

Comparação

de dois

grupos

(qualitativo)

Felipe

Figueiredo

Na prática

Resumo

Tabelas maiores

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

Na prática

Tabelas maiores

Fonte: Aula Hacker & Simões (2008 - Fiocruz)

Quais são as variáveis?

INTO

- Dependente: qualidade do preenchimento (categórica)
- Independente: hospital (categórica)

Esta relação pode ser expressa como

preenchimento \sim hospital

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amoetra

2 amostras Tabelas 2x2 Na prática Tabelas maiores

Resumo

Aprofundamento

Tabelas de contingência maiores

- Estatística de teste $\chi^2 = 21.52$
- p-valor: *p* < 0.001
- Rejeitamos H_0 ao nível de significância de $\alpha = 0.05$.

Resultado

Há associação entre o hospital e o status do atestado.

Conclusão

Parece que o hospital A tem maior proporção de atestados incorretos.

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

amostra

2 amostras Tabelas 2x2 Na prática

Tabelas maiores

Aprofundamento

Tabelas de contingência maiores

Teste exato de Fisher

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2 Na prática

Na prática

Tabelas maiores

Aprofundamento

Teste Qui-quadrado

Pearson's Chi-squared test

Fisher's Exact Test for Count Data

alternative hypothesis: two.sided

data: exemplo3

data: exemplo3
p-value = 2.575e-05

X-squared = 21.523, df = 2, p-value = 2.12e-05

O teste de Fisher é um teste de independência entre os grupos

O teste Qui-quadrado é uma boa aproximação, para N grande

Resumo

INTO

Comparação de dois grupos (qualitativo)

> Felipe Figueiredo

1 amostra

2 amostras Tabelas 2x2 Na prática Tabelas maiores

Resumo

Aprofundamento

Leitura obrigatória

- Capítulo 26.
- Capítulo 27, pular a seção: Calculando o poder

Leitura recomendada

- O Capítulo 29: Outros testes de tabelas de contingência
- Capítulo 27, seção: Calculando o poder

Comparação de dois grupos (qualitativo)

Felipe Figueiredo

1 amostra

2 amostras

Aprofundamento

Aprofundamento