Programátorská príručka k modelu variačného autoenkódera

Táto kapitola popisuje implementáciu skriptu vae_gui.py, ktorý realizuje trénovanie variačného autoenkódera s vlastným sGUI. Model je navrhnutý na generovanie a rekonštrukciu medicínskych obrazových dát, pričom umožňuje skúmanie rôznych konfigurácií hyperparametrov a generovanie nových vzoriek z latentného priestoru. Implementácia VAE využíva knižnicu PyTorch.

Skript vyžaduje nasledujúce Python knižnice:

- torch, torchvision
- matplotlib, numpy, pandas
- PIL (Pillow), opency-python (cv2)
- tkinter, csv, os

Potrebné závislosti možno inštalovať príkazom:

pip install torch torchvision matplotlib numpy pandas pillow opencv-python

Predspracovanie datasetu

Dataset je pred vstupom do modelu predspracovaný. Po načítaní je na obrázky aplikovaných niekoľko transformácií:

- Nastavenie jednotnej veľkosti obrázkov (img_size = 128), ktoré zabezpečuje, že všetky
 obrázky vstupujúce do modelu budú mať rovnaké rozmery, čo je dôležité pre správne
 spracovanie neurónovou sieťou.
- Prevedenie obrázka z formátu sPIL Image (ktorý má formát dĺžka x šírka x kanály) na formát vektora vhodného pre PyTorch (ktorý má tvar kanály x dĺžka x šírka). V prípade RGB sa prevádza obrázok na tvar (3, 128, 128).

• Normalizácia obrázka, ktorá škáluje hodnoty pixelov do rozsahu [-1, 1] odčítaním priemeru (mean = [0.5]) a delením štandardnou odchýlkou (std = [0.5]).

Parametre sGUI

sGUI umožňuje konfigurovať nasledujúce hyperparametre:

Parameter	Тур	Predvolená hodnota	Popis
img_size	int	128	Veľkosť vstupných obrázkov v pi-
			xeloch
latent_dim	int	750	Veľkosť latentného priestoru
batch_size	int	10	Veľkosť dávky
num_epochs	int	25	Počet tréningových epoch
α	float	5.0	Váha pre rekonštrukčnú stratu
β	float	1.0	Váha pre KL divergenciu
γ	float	10.0	Váha pre stratu rozmazania
lr	float	0.0001	Rýchlosť učenia
in_channels	int	3	Počet vstupných kanálov (RGB)
depth	int	4	Počet konvolučných vrstiev
file_path	str		Cesta k datasetu
log_file	str	"./vae_training_log.csv"	Cesta k sCSV logu
model_save_dir	str	"./vae_checkpoints"	Cesta pre ukladanie modelov
output_dir	str	"./output_images"	Cesta pre ukladanie generovaných
			obrázkov

Tabuľka 1: Prehľad nastaviteľných parametrov sGUI

Implementácia modelu

Model VAE pozostáva z dvoch častí (enkóder a dekóder) a procesu reparametrizácie:

Enkóder: Postupne prijíma dávky vstupných snímkov, ktorej veľkosť je určená parametrom $batch_size$ a postupne znižuje ich priestorové dimenzie pomocou niekoľkých konvolučných vrstiev (počet určený parameterom depth, striedajúcich sa s ReLU funkciami. Veľkosť filtra je nastavená na 4, veľkosť kroku na 2 a výplň na 1. Výstup je vyrovnaný (angl. flattened) a spracovaný plne prepojenými vrstvami na výpočet μ (stredná hodnota) a $\log \sigma^2$ (logaritmus rozptylu latentného priestoru).

Reparametrizácia: Po vzorkovaní z latentného priestoru pomocou funkcie reparameterize (implementácia triku reparametrizácie, ktorý umožňuje spätnú propagáciu), prechádza latentný vektor (z) plne prepojenou vrstvou (fc_decode) , aby sa opäť preformátoval späť na vhodnú veľkosť pre dekóder.

Dekóder: Rekonštruuje pôvodný obrázok z latentnej reprezentácie cez transponované konvolučné vrstvy striedajúce sa s ReLU vrstvami. Veľkosť filtra je nastavená na 4, veľkosť kroku na 2 a výplň na 1. Výstup je normalizovaný cez aktivačnú funkciu Tanh do rozsahu [-1, 1].

Celkovým výstupom siete sú 3 prvky, a to dva vektory - stredná hodnota (mu) a logaritmus rozptylu (logvar), parametre normálneho rozdelenia pre latentné premenné v rámci VAE - a rekonštruovaný obrázok s rozmermi $(in \ channels, imq \ size, imq \ size)$.

Funkcia straty

Celková strata kombinuje tri zložky:

- 1. **Rekonštrukčná strata:** MSE chyba medzi originálnym a rekonštruovaným obrázkom, vážená parametrom α .
- 2. **KL divergencia:** Divergencia medzi latentným rozdelením a štandardnou normálnou distribúciou, vážená parametrom β .
- 3. **Strata rozmazania:** Penalizácia nízkeho rozptylu Laplacianovej variancie, vážená parametrom γ .

Priebeh tréningu

Tréning je riadený funkciou run vae training a obsahuje nasledujúce kroky:

- 1. Detekcia zariadenia (GPU).
- 2. Načítanie datasetu cez vlastnú triedu MedicalImageDataset.
- 3. Inicializácia modelu, optimalizátora Adam a škálovača gradientov.
- 4. Obnovenie stavu z najnovšieho kontrolného bodu (ak existuje).
- 5. Tréningová slučka na určitý počet epoch num_epochs:
 - Výpočet straty.
 - Aktualizácia parametrov.
 - Logovanie stratových metrík po každej epoche do sCSV súboru (číslo epochy a hodnoty).
 - Uloženie kontrolného bodu modelu.
- 6. Vizualizácia priebehu straty.
- 7. Generovanie nových dát vzorkovaním náhodných latentných vektorov z, a spracuje ich cez dekodér, aby získal rekonštruované obrázky.
- 8. Vizualizácia generovaných obrázkov v mriežke 8x8 a ich uloženie do priečinku ./out-put_images.

Počas tréningu je aplikovaný nástroj z knižnice PyTorch, škálovač gradientu, ktorý zrýchluje tréningový proces, šetrí pamäťové a časové zdroje a zároveň udržiava presnosť modelu.

Dynamicky upravuje rozsah hodnôt spätného šírenia gradientov počas tréningu modelu, aby sa predišlo podtečeniu malých čísel v prípade použitia 16-bitovej presnosti. Pri použití zmiešanej presnosti (mixed precision) s float16 namiesto štandardnej float32 sa výrazne znižuje pamätová náročnosť a zvyšuje sa rýchlosť výpočtov, čo je výhodné najmä pri tréningu na grafických kartách. Škálovač automaticky zisťuje vhodnú mierku a v prípade, že dôjde k numerickej nestabilite (napríklad výskyt NaN), túto mierku upraví.

Poznámky

- Uistite sa, že *file_path* ukazuje na adresár s sJPEG obrázkami.
- Parameter img_size musí byť deliteľný 2
depth, aby sa predišlo nezhodám v rozmeroch VAE.
- Súbor log_file by mal mať príponu sCSV. Ak neexistuje, bude vytvorený.
- Ak neexistujú adresáre $model_save_dir$ a $output_dir$, tak sú taktiež vytvorené.

Pre ďalšiu pomoc skontrolujte výstup konzoly pre chybové hlásenia alebo konzultujte dokumentáciu PyTorch a Tkinter.