Separation of Variables in Cylindrical Polar Coordinates

Seeking separable solution

$$\chi(\rho, \varphi, z) = P(\rho)\Phi(\varphi)Z(z)$$

$$Z'' - l^2 Z = 0$$
 solution $Z_l(z)$

$$\Phi'' + m^2 \Phi = 0 \qquad \text{solution } \Phi_m(\varphi)$$

and
$$\rho(\rho P')' + (k^2 + l^2)\rho^2 P - m^2 P = 0$$
call this n^2
solution $P_{nm}(\rho)$

 $\chi(\rho, \varphi, z) = \sum_{lmn} a_{lmn} P_{nm}(\rho) \Phi_m(\varphi) Z_l(z), \text{ with } n^2 = k^2 + l^2$

(generalized sum — not clear yet what l, m, n really are)

Separation of Variables in Cylindrical Polar Coordinates

• z and φ equations are easy to solve:

$$Z'' - l^2 Z = 0 \implies Z_l(z) = e^{\pm lz}$$
 (l may be real or complex)
 $\Phi'' + m^2 \Phi = 0 \implies \Phi_m(\varphi) = e^{\pm im\varphi}$

- ϕ is an angular coordinate, so the solution must be periodic
 - $\implies m$ must be an <u>integer</u>
- Left with the radial equation

$$\rho(\rho P')' + (n^2 \rho^2 - m^2)P = 0$$

$$\Rightarrow \rho^2 P'' + \rho P' + (n^2 \rho^2 - m^2)P = 0$$

$$\Rightarrow x^2 P'' + x P' + (x^2 - m^2)P = 0$$

Bessel's Equation

$$\Rightarrow P_{nm}(\rho) = J_m(n\rho)$$

Zeros of Bessel Functions

	n=1	<i>n</i> =2	<i>n</i> =3	n=4
<i>m</i> =0	2.40	5.52	8.65	11.79
m=1	3.83	7.02	10.17	13.32
m=2	5.14	8.42	11.62	14.80
m=3	6.38	9.76	13.02	16.22

- zeros of J_m interleave those of J_m
- ordering is irregular
- turning points eta_{mn} also tabulated

m n

Vibration of a Circular Membrane

- Same problem as before, but in a different geometry.
- Seek separable solution: $u(r, \theta) = R(r)\Theta(\theta)$
- where $\Theta'' + m^2 \Theta = 0$ $r^2 R'' + r R' + (k^2 r^2 m^2) R = 0$
- Solutions have the form

$$u(r,\theta) = \begin{cases} J_m(kr)\cos m\theta \\ J_m(kr)\sin m\theta \end{cases}$$

• Boundary condition at r = a

$$\implies J_m(ka) = 0$$

 $\implies ka$ is a zero of J_m

 $\Rightarrow ka = \alpha_{mn}$ for some integer n.

Vibration of a Circular Membrane

• Recall that $k = \omega c$, where ω is frequency, so the fundamental mode is

$$u_0(r, \theta) = J_0(\alpha_{01}r/a)$$
, with $\omega_0 = \alpha_{01}c/a$

The next few, in order, are

$$u_1(r,\theta) = J_1(\alpha_{11}r/a) \begin{cases} \cos \theta \\ \sin \theta \end{cases}$$
, with $\omega_1 = \alpha_{11}c/a$

$$u_2(r,\theta) = J_2(\alpha_{21}r/a) \begin{cases} \cos 2\theta \\ \sin 2\theta \end{cases}$$
, with $\omega_2 = \alpha_{21}c/a$

$$u_3(r,\theta) = J_0(\alpha_{02}r/a), \text{ with } \omega_3 = \alpha_{02}c/a$$
 "etc."

QUESTION: What are the next 2 modes, ordered by frequency?

Just ordering the solutions in ω .

Zeros of Bessel Functions

	n=1	n=2	n=3	n=4
<i>m</i> =0	2.40	5.52	8.65	11.79
m=1	3.83	7.02	10.17	13.32
<i>m</i> =2	5.14	8.42	11.62	14.80
m=3	6.38	9.76	13.02	16.22

- zeros of J_m interleave those of J_m
- ordering is irregular
- turning points β_{mn} also tabulated

m n

Vibration of a Circular Membrane

$$u_0(r,\theta) = J_0(\alpha_{01}r/a)$$
, with $\omega_0 = \alpha_{01}c/a$ $u_1(r,\theta) = J_1(\alpha_{11}r/a) \begin{cases} \cos\theta \\ \sin\theta \end{cases}$, with $\omega_1 = \alpha_{11}c/a$ $u_2(r,\theta) = J_2(\alpha_{21}r/a) \begin{cases} \cos 2\theta \\ \sin 2\theta \end{cases}$, with $\omega_2 = \alpha_{21}c/a$ $u_3(r,\theta) = J_0(\alpha_{02}r/a)$, with $\omega_3 = \alpha_{02}c/a$

• According to the table, next terms are (3,1) and (1,2):

$$u_4(r,\theta) = J_3(\alpha_{31}r/a) \begin{cases} \cos 3\theta \\ \sin 3\theta \end{cases}$$
, with $\omega_4 = \alpha_{31}c/a$
 $u_5(r,\theta) = J_1(\alpha_{12}r/a) \begin{cases} \cos \theta \\ \sin \theta \end{cases}$, with $\omega_5 = \alpha_{12}c/a$

Vibration of a Circular Membrane

 Solving the IV problem: as with the square membrane, the full solution is a weighted sum of normal-mode solutions:

$$u(r,\theta,t) = \sum_{m,n} (A_{mn} \cos m\theta + B_{mn} \sin m\theta) J_m \left(\frac{\alpha_{mn}r}{a}\right) e^{i\omega_{mn}t}$$

where $\omega_{mn} = \alpha_{mn}c/a$

Complete the solution by fitting the initial conditions:

$$u(r,\theta,0) = \sum_{m,n} (A_{mn} \cos m\theta + B_{mn} \sin m\theta) J_m \left(\frac{\alpha_{mn}r}{a}\right)$$

- Fourier-Bessel series for A_{mn} and B_{mn}
 - know how to invert the Fourier series
 - will return to this problem later to invert the Bessel series

Aside: Fourier and Bessel Series

Fourier series solution to the vibrating string/membrane is of the form

$$f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{a}\right)$$

(more generally, sines and cosines).

Radial Bessel series solution to the vibrating membrane is of the form

$$f(r) = \sum_{n=1}^{\infty} A_n J_m \left(\frac{\alpha_{mn} r}{a} \right)$$

• Note that J_m here plays the <u>same</u> role as sine or cosine as a basis for the expansion, and the sum is over the zeros of sine $(n\pi)$ or J_m (α_{mn}) — <u>same</u> basic structure. The m in J_m relates to the second sum over the angular variables.

Laplace's Equation in (Cylindrical) Polars

- Separate the potential ϕ as $\phi(\rho, \phi, z) = P(\rho)\Phi(\phi)Z(z)$
- Same derivation as before leads to

$$Z'' - l^2 Z = 0 \implies Z_l(z) = e^{\pm lz}$$
 (l may be real or complex)
 $\Phi'' + m^2 \Phi = 0 \implies \Phi_m(\varphi) = e^{\pm im\varphi}$ (m must be an integer)
 $\rho(\rho P')' + (l^2 \rho^2 - m^2)P = 0$ ($k = 0$, so now $n = l$)
 $\Rightarrow P_{mn}(\rho) = J_m(l\rho)$

• In 2D (i.e. Laplace in a circle), l=0, so $(\rho \to r, \phi \to \theta)$

$$r(rP')' - m^2P = 0$$

$$\implies r^2 P'' + rP' - m^2 P = 0$$

$$\Rightarrow P(r) = r^{\pm m}$$

Example (2D): Laplace's Equation in a Circle

- Problem: $\phi(r,\theta)$, $\nabla^2 \phi = 0$, $\phi(a,\theta) = f(\theta)$
- Interior solution is (assuming regular, so omitting negative powers of r)

$$\phi(r,\theta) = \sum_{m=0}^{\infty} r^m \left(A_m \cos m\theta + B_m \sin m\theta \right)$$

 Again, coefficients come from the boundary conditions and inversion of the Fourier series:

$$A_m = \frac{1}{\pi} \int_0^{2\pi} d\theta \ f(\theta) \cos m\theta, \qquad B_m = \frac{1}{\pi} \int_0^{2\pi} d\theta \ f(\theta) \sin m\theta$$

• e.g. suppose $f(\theta) = \phi_0 \cos 2\theta$

then $B_m = 0$ for all m, $A_m = 0$ unless m = 2, so

$$A_2 a^2 = \frac{\phi_0}{\pi} \int_0^{2\pi} d\theta \cos^2 2\theta = \phi_0$$

$$\Rightarrow \phi(r,\theta) = \phi_0 \left(\frac{r}{a}\right)^2 \cos 2\theta$$

Example (3D): Diffusion Equation in a Long Cylinder

- Long uniform cylinder (i.e. infinitely long), radius a, initially at internal temperature T_0 , immersed in liquid of temperature 0.
- IC and BC are independent of z, so this is really a 2D problem.
- Seek separated solution with $\chi(\rho, \varphi)e^{-\kappa k^2 t}$ time dependence, as before, to find

$$\nabla^2 \chi + k^2 \chi = 0 \implies \chi(\rho, \varphi) = \sum_{k,m} A_{km} J_m(k\rho) e^{im\varphi}$$

• but axisymmetric, so only m=0 survives

$$\Rightarrow \chi(\rho) = \sum_{k} A_k J_0(k\rho)$$

- BC at $\rho = a \Rightarrow J_0(ka) = 0$, so $k_n a = \alpha_{0n}$ $\Rightarrow T(\rho, \theta) = \sum_n A_n J_0(\alpha_{0n}\rho/a) \ e^{-\kappa k_n^2 t}$
- Coefficients A_n entail another Bessel series for the ICs.

Example (3D): Laplace's Equation in a Cylinder

- Finite uniform cylinder, radius a, potential ϕ on all surfaces except the top is 0, potential on top (z=h) is ϕ_0 .
- Expect solution to be a sum of terms of the form $\phi_{ml}(\rho,\varphi,z) = J_m(\lambda\rho) e^{\pm im\varphi} e^{\pm \lambda z}$ shorthand
- Problem is axisymmetric, so expect m=0.
- Boundary condition at $\rho = a \implies \lambda a = \alpha_{0l}$, l integer.
- Boundary condition at $z = 0 \implies \sinh \lambda z$ solution.

$$\Rightarrow \phi_{ml}(\rho, \varphi, z) = \sum_{l} A_{l} J_{0}\left(\frac{\alpha_{0l} \rho}{a}\right) \sinh\left(\frac{\alpha_{0l} z}{a}\right)$$

• Coefficients A_n again entail a Bessel series for the remaining BC at z=h.

Separation of Variables in Spherical Polar Coordinates

- Spherical polars: r, θ, φ
- Helmholtz: $\nabla^2 \chi + k^2 \chi = 0$

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \chi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \chi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \chi}{\partial \varphi^2} + k^2 \chi = 0$$

• Seek separable solution $\chi(r, \theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$

$$\Rightarrow \frac{1}{r^2 R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{r^2 \Theta \sin \theta} \frac{d}{dr} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \frac{1}{r^2 \Phi \sin^2 \theta} \frac{d^2 \Phi}{d\varphi^2} + k^2 = 0$$

$$\frac{\Phi''}{\Phi} = -m^2$$
, so $\Phi'' + m^2 \Phi = 0$, so $\Phi = e^{\pm im\varphi}$, where m is an integer

Separation of Variables in Spherical Polar Coordinates

• The r, θ equations are

$$\frac{1}{r^2 R} (r^2 R')' + \frac{1}{r^2 \Theta \sin \theta} (\sin \theta \Theta')' - \frac{m^2}{r^2 \sin^2 \theta} + k^2 = 0$$

• Once again, separate into $f(r) = g(\theta)$, to find

$$\frac{1}{\Theta \sin \theta} (\sin \theta \, \Theta')' - \frac{m^2}{\sin^2 \theta} = \text{constant} = l(l+1)$$

$$\Rightarrow \frac{1}{\sin \theta} (\sin \theta \, \Theta')' - \frac{m^2 \Theta}{\sin^2 \theta} = l(l+1)\Theta \, .$$

With this separation constant, the radial equation becomes

$$\frac{1}{r^2}(r^2R')' + \left(k^2 - \frac{l(l+1)}{r^2}\right)R = 0.$$

Look first at the angular equation.

The Associated Legendre Equation

• In the θ equation, set $\mu = \cos \theta$, so $d\mu = -\sin \theta d\theta$ and

$$(1 - \mu^2) \frac{d^2 \Theta}{d\mu^2} - 2\mu \frac{d\Theta}{d\mu} + \left[l(l+1) - \frac{m^2}{1 - \mu^2} \right] \Theta = 0.$$

- This is the <u>Associated Legendre Equation</u>
 - solutions are $P_l^m(\mu)$
- Very common to combine the angular solutions:

$$Y_l^m(\theta, \varphi) = P_l^m(\cos \theta)e^{\pm im\varphi}$$

Easy to show that

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial Y_m^m}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y_l^m}{\partial\varphi^2} + l(l+1)Y_l^m = 0.$$

- "Angular part" of the Helmholtz solution (note no k dependence).
- The Y_l^m are called <u>spherical harmonics</u>

Legendre Functions

- Will study general properties in more detail later, and we'll see that l must also be integral, with $|m| \leq l$
- The first few (with conventional normalization $P_l^0(1) = 1$) are

$$\begin{split} P_0^0(\mu) &= 1 \\ P_1^0(\mu) &= \mu = \cos \theta \\ P_1^1(\mu) &= \sqrt{1 - \mu^2} = \sin \theta \\ P_2^0(\mu) &= \frac{1}{2}(3\mu^2 - 1) = \frac{1}{4}(1 + 3\cos 2\theta) \\ P_2^1(\mu) &= 3\mu\sqrt{1 - \mu^2} = \frac{3}{2}\sin 2\theta \\ P_2^2(\mu) &= 3(1 - \mu^2) = \frac{3}{2}(1 - \cos 2\theta) \end{split}$$
 pair with $\cos 2\varphi \sin 2\varphi$

"etc."

Spherical Harmonics

- Spherical harmonics $Y_l^m(\theta, \varphi) = P_l^m(\cos \theta) e^{\pm im\varphi}$
- First few (with standard normalization, explained later) are

$$Y_0^0(\theta,\varphi) = \sqrt{\frac{1}{4\pi}}$$

$$Y_1^0(\theta,\varphi) = \sqrt{\frac{3}{4\pi}}\cos\theta$$

$$Y_1^{\pm 1}(\theta,\varphi) = \mp \sqrt{\frac{3}{8\pi}}\sin\theta \, e^{\pm i\varphi}$$

$$Y_2^0(\theta,\varphi) = \sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1)$$

$$Y_2^{\pm 1}(\theta,\varphi) = \mp \sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta \, e^{\pm i\varphi}$$

$$Y_2^{\pm 2}(\theta,\varphi) = \mp \sqrt{\frac{15}{32\pi}}\sin^2\theta \, e^{\pm 2i\varphi}$$

Basis functions for expansion of <u>any</u> field on the surface of a sphere:

$$f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{lm} Y_l^m (\theta, \varphi)$$

Radial Equation

• The radial equation is

$$\frac{1}{r^2} (r^2 R')' + \left(k^2 - \frac{l(l+1)}{r^2}\right) R = 0$$

$$\Rightarrow R'' + \frac{2}{r} R' + \left(k^2 - \frac{l(l+1)}{r^2}\right) R = 0.$$

• Let $u = r^{\frac{1}{2}} R$, so

$$R = r^{-\frac{1}{2}} u$$

$$R' = r^{-\frac{1}{2}} u' - \frac{1}{2} r^{-\frac{3}{2}} u$$

$$R'' = r^{-\frac{1}{2}} u'' - r^{-\frac{3}{2}} u' + \frac{3}{4} r^{-\frac{5}{2}} u$$

• multiply equation by $r^{\frac{1}{2}}$ and substitute

Radial Equation

$$\left(u'' - r^{-1}u' + \frac{3}{4}r^{-2}u \right) + \left(2r^{-1}u' - r^{-2}u \right) + \left(k^2 - \frac{l(l+1)}{r^2} \right)u = 0$$

$$\Rightarrow u'' + \frac{u'}{r} + \left[k^2 - \frac{l(l+1) + \frac{1}{4}}{r^2} \right] = 0$$

$$\Rightarrow u'' + \frac{u'}{r} + \left[k^2 - \frac{\left(l + \frac{1}{2} \right)^2}{r^2} \right] = 0.$$

• Recall that $J_m(x)$ satisfies

$$x^2y'' + xy' + (x^2 - m^2)y = 0$$

so $J_m(kr)$ satisfies

$$r^2y'' + ry' + (k^2r^2 - m^2)y = 0.$$

Spherical Bessel function

Hence

$$u_l(r) = J_{l+\frac{1}{2}}(kr)$$
 so the solution is $R_l(r) = r^{-\frac{1}{2}}u_l(r) \neq j_l(kr)$

Spherical Bessel Functions

Conventional definition of <u>spherical Bessel functions</u>

$$j_l(x) = \left(\frac{\pi}{2x}\right)^{1/2} J_{l+\frac{1}{2}}(x)$$
, so

• First few:

$$J_{\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \sin x \qquad j_{0}(x) = \frac{\sin x}{x}$$

$$J_{-\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \cos x \qquad j_{-1}(x) = \frac{\cos x}{x}$$

$$J_{\frac{3}{2}}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(\frac{\sin x}{x} - \cos x\right) \qquad j_{1}(x) = \frac{\sin x}{x^{2}} - \frac{\cos x}{x}$$

$$J_{-\frac{3}{2}}(x) = \left(\frac{2}{\pi x}\right)^{1/2} \left(-\frac{\cos x}{x} - \sin x\right) \qquad j_{-2}(x) = -\frac{\cos x}{x^{2}} - \frac{\sin x}{x}$$

Spherical Bessel Functions

- Negative indices are singular at x = 0.
- Regular functions:
- Again, ordering of zeros starts off simple but soon becomes 5 complicated.
- Standard functions, zeros tabulated in Python.

Particle in a Sphere

• Reminder: for a quantum-mechanical particle in a box, with V=0 inside the box and $\psi=0$ on the boundary, the wave function satisfies

$$\nabla^2 \psi + k^2 \psi = 0$$
, where $k^2 = \frac{2mE}{\hbar^2}$

• In a sphere, radius a, the general solution is a linear combination of modes of the form

$$\psi_{lmn} = j_l(kr) Y_l^m(\theta, \varphi) \sim j_l(kr) P_l^m(\cos \theta) e^{\pm im\varphi}$$

where l, m are integers, with $l \geq 0$, $-l \leq m \leq l$

- $\psi = 0$ on the boundary $\implies j_l(ka) = 0$
- Function with the lowest first zero is j_0 , with $k_0a=\pi$, so the ground-state energy is (l=m=0)

$$E_0 = \frac{\hbar^2 k_0^2}{2m} = \frac{\hbar^2 \pi^2}{2ma^2}$$
, with $\psi_0 = j_0 \left(\frac{\pi r}{a}\right) = \frac{\sin \pi r/a}{\pi r/a}$

Particle in a Hemisphere

- Hemisphere, radius a, flat face at $\theta = \frac{\pi}{2}$, axisymmetric.
- Wave function again satisfies

$$\nabla^2 \psi + k^2 \psi = 0$$
, where $k^2 = \frac{2mE}{\hbar^2}$

General solution is a linear combination of modes of the form

$$\psi_{lmn} = j_l(kr) Y_l^m(\theta, \varphi) \sim j_l(kr) P_l^m(\cos \theta) e^{\pm im\varphi}$$

- Axisymmetry \Rightarrow expect m=0, but now l=0 won't do because of the boundary condition on the flat face need $\sim\cos\theta$ behavior: need l odd
- $\psi = 0$ on the spherical surface $\implies j_l(ka) = 0$
- Suitable function with the lowest first zero is $j_1(kr)$, with $\tan k_0 a = k_0 a$, so $k_0 a = 4.49 = \beta$ (say), and the ground-state energy is

$$E_0 = \frac{\hbar^2 k_0^2}{2m} = \frac{\hbar^2 \beta^2}{2ma^2}$$
, with $\psi_0 = j_1 \left(\frac{\beta r}{a}\right) = \frac{\sin \beta r/a}{\beta^2 r^2/a^2} - \frac{\cos \beta r/a}{\beta r/a}$

Laplace's Equation in a Sphere

- Previous derivation of the radial equation fails when k=0.
- Radial equation becomes

$$\frac{1}{r^2}(r^2R')' - \frac{l(l+1)}{r^2}R = 0$$

• Solution is easily found:

$$R(r) = r^l$$
 or r^{-l-1}

General solution is a linear combination of modes of the form

$$\phi_{lmn} = \left(A_l r^l + B_l r^{-l-1}\right) Y_l^m(\theta, \varphi)$$

• e.g. look for an interior solution (r < a), expect ϕ to be non-singular, so $B_l = 0$ $\phi(r, \theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_l r^l Y_l^m(\theta, \varphi)$

Boundary condition

$$\phi(a, \theta, \varphi) = f(\theta, \varphi)$$

Laplace's Equation in a Sphere

Evaluating the general solution at the boundary

$$\Rightarrow f(\theta, \varphi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} A_l a^l Y_l^m(\theta, \varphi)$$

- Laplace series for f analogous to Fourier expansion of BCs in 2D.
- For simple cases, can just read off the answer

$$f = \text{constant} \implies \text{only } Y_0^0 \text{ contributes}$$
 $f = \cos \theta \implies Y_1^0$
 $f = \sin \theta \cos \varphi \implies Y_1^{\pm 1}$
etc.

Need a robust way to invert the series – to come!

PDEs and Coordinate Systems

	Cartesian	(Cylindrical) Polar	Spherical Polar
Hyperbolic	1D string ✓ 2D membrane ✓ 3D volume	Circular membrane ✓ Wave in cylinder	Wave in sphere ✓
Elliptic	Laplace in square ✓ Laplace in cube	Laplace in circle ✓ Laplace in cylinder ✓	Laplace in sphere ✓ Sphere in E-field ✓
Parabolic	Diffusion in square Diffusion in cube ✓	Diffusion in cylinder ✓	Diffusion in sphere ✓
Schrödinger*	Particle in line Particle in rectangle Particle in cuboid	Particle in a circle Particle in a cylinder	Particle in sphere Particle in hemisphere