《图深度学习》(ISBN 978-7-121-39478-2, 马耀 汤继良 著, 王怡琦 金卫 译, 电子工业出版社)勘误及更新更新时间: 截至2021.9.13

页码	行数	原书内容	更正内容或说明	更正版印次
I	-4	当任	担任	1-2
25	11	$m{h}[i] = d(v_i) \cdot m{f}[i] - \sum_{j=1}^N m{A}_{i,j} \cdot m{f}[i]$	$oldsymbol{h}[i] = d(v_i) \cdot oldsymbol{f}[i] - \sum_{j=1}^N oldsymbol{A}_{i,j} \cdot oldsymbol{f}[j]$	1-2
25	12	$= d(v_i) \cdot \boldsymbol{f}[i] - \sum_{v_j \in \mathcal{N}(v_i)} \boldsymbol{A}_{i,j} \cdot \boldsymbol{f}[i]$	$= d(v_i) \cdot \boldsymbol{f}[i] - \sum_{v_j \in \mathcal{N}(v_i)} \boldsymbol{A}_{i,j} \cdot \boldsymbol{f}[j]$	1-2
72	1	$f(v_i) = \boldsymbol{u}_i = \boldsymbol{e}_i^\top \boldsymbol{W}$	$f(v_i) = \boldsymbol{u}_i = \boldsymbol{W}^{\top} \boldsymbol{e}_i$	1-2
74	6	$f_{ ext{cen}}(v_i) = oldsymbol{u}_i = oldsymbol{e}_i^ op oldsymbol{W}_{ ext{cen}}$	$f_{ ext{cen}}(v_i) = oldsymbol{u}_i = oldsymbol{W}_{ ext{cen}}^ op oldsymbol{e}_i$	1-2
74	7	$f_{ ext{con}}(v_i) = oldsymbol{v}_i = oldsymbol{e}_i^ op oldsymbol{W}_{ ext{con}}$	$f_{\mathrm{con}}(v_i) = oldsymbol{v}_i = oldsymbol{W}_{\mathrm{con}}^ op oldsymbol{e}_i$	1-2
74	11	$p(v_{\text{con}} v_{\text{cen}}) = \frac{\exp(f_{\text{con}}(v_{\text{con}})^{\top}f_{\text{cen}}(v_{\text{cen}}))}{\sum_{v \in \mathcal{V}} \exp(f_{\text{con}}(v)f_{\text{cen}}(v_{\text{cen}})^{\top})}$	$p(v_{\text{con}} v_{\text{cen}}) = \frac{\exp(f_{\text{con}}(v_{\text{con}})^{\top}f_{\text{cen}}(v_{\text{cen}}))}{\sum_{v \in \mathcal{V}} \exp(f_{\text{con}}(v)^{\top}f_{\text{cen}}(v_{\text{cen}}))}$	1-2
89	3	$p(v_j v_i) = \frac{\exp(\boldsymbol{f}_{\text{con}}^{\top}(v_j)\boldsymbol{f}_{\text{cen}}(v_i))}{\sum_{v \in \mathcal{V}_{\text{nt}}} \exp(\boldsymbol{f}_{\text{con}}(v)\boldsymbol{f}_{\text{cen}}^{\top}(v_i))}$	$p(v_j v_i) = \frac{\exp(f_{\text{con}}(v_j)^{\top} f_{\text{cen}}(v_i))}{\sum_{v \in \mathcal{V}_{\text{nt}}} \exp(f_{\text{con}}(v)^{\top} f_{\text{cen}}(v_i))}$	1-2
90	-2	$oldsymbol{u}_i = oldsymbol{f}(v_i) = oldsymbol{e}_i^ op oldsymbol{W}$	$oldsymbol{u}_i = oldsymbol{f}(v_i) = oldsymbol{W}^ op oldsymbol{e}_i$	1-2
90	-1	$r_{d,i} = f_d(v_i) = e_i^{T} W_d, d = 1, \cdots, D$	$r_{d,i} = f_d(v_i) = W_d^{\top} e_i, d = 1, \cdots, D$	1-2
202	-4	$\boldsymbol{h}_i^{(l)} = \rho\left(\boldsymbol{m}_i^{(l-1)}\right) \odot \boldsymbol{a}_i^{(l-1)} + \boldsymbol{F}_i^{(l-1)} \odot \left(1 - \boldsymbol{a}_i^{(l-1)}\right)$	$oldsymbol{F}_i^{(l)} = ho\left(oldsymbol{m}_i^{(l-1)} ight)\odotoldsymbol{a}_i^{(l-1)} + oldsymbol{F}_i^{(l-1)}\odot\left(1-oldsymbol{a}_i^{(l-1)} ight)$	1-4
205	-1	缺少内容	点 v_i 相连的邻居节点集合。它可被如下定义: $\mathcal{N}_r(v_i) = \{v_j (v_j, r, v_i) \in \mathcal{E}\}.$	1-4