Algorithms for Data Science CSOR W4246

Eleni Drinea Computer Science Department

Columbia University

Network flows

Outline

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

Today

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

Modeling transportation networks

Source: Communications of the ACM, Vol. 57, No. 8

Can model a fluid network or a highway system by a **graph**: edges carry *traffic*, nodes are *switches* where traffic gets diverted.

Flow networks

A flow network G = (V, E) is a directed graph such that

- 1. Every edge has a capacity $c_e \ge 0$. A1: integer capacities
- 2. There is a single source $s \in V$. A2: no edge enters s
- 3. There is a single sink $t \in V$. A3: no edge leaves t

Two more assumptions for the purposes of the analysis

- A4: If $(u, v) \in E$ then $(v, u) \notin E$.
- ▶ A5: Every $v \in V \{s,t\}$ is on some s-t path. Hence G has $m \ge n - 1$ edges.

An example flow network

Flows

Given a flow network G, an s-t flow f in G is a function

$$f: E \to R^+$$
.

Intuitively, the flow f(e) on edge e is the amount of traffic that edge e carries.

Two kinds of constraints that every flow must satisfy

- 1. Capacity constraints: for all $e \in E$, $0 \le f(e) \le c_e$.
- 2. Flow conservation: for all $v \in V \{s, t\}$,

$$\sum_{(u,v)\in E} f(u,v) = \sum_{(v,w)\in E} f(v,w)$$
 (1)

In words, the flow into node v equals the flow out of v, or

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

A cleaner equation for flow conservation constraints

Define

1.
$$f^{\text{out}}(v) = \sum_{e \text{ out of } v} f(e)$$

2.
$$f^{\text{in}}(v) = \sum_{e \text{ into } v} f(e)$$

So we can rewrite equation (1) as: for all $v \in V - \{s, t\}$

$$f^{\text{in}}(v) = f^{\text{out}}(v) \tag{2}$$

The value of a flow

Definition 1.

The value of a flow f, denoted by |f|, is

$$|f| = \sum_{e \text{ out of } s} f(e) = f^{\text{out}}(s)$$

Exercise: show that $|f| = f^{in}(t)$.

An example flow of value 20

A flow f of value 20.

A flow of value 30

A (max) flow of value 30.

Max flow problem

Input: (G, s, t, c) such that

- G = (V, E) is a flow network;
- ▶ $s, t \in V$ are the source and sink respectively;
- ightharpoonup c is the (integer-valued) capacity function.

Output: a flow of maximum possible value

s-t cuts in flow networks

Definition 2.

An s-t cut (S,T) in G is a bipartition of the vertices into two sets S and T, such that $s \in S$ and $t \in T$.

A natural upper bound for the max value of a flow

- ▶ Flow f must cross (S,T) to go from source s to sink t.
- ▶ So it uses some (at most all) of the capacity of the edges crossing from S to T.

► So, intuitively, the value of the flow cannot exceed

$$\sum_{e \text{ out of } S} c_{\epsilon}$$

Max flow and min cut

Definition 3.

The capacity c(S,T) of an s-t cut (S,T) is defined as

$$c(S,T) = \sum_{\text{e out of } S} c_e.$$

 \triangle Note asymmetry in the definition of c(S,T)!

So, *intuitively*, the value of the max flow is upper bounded by the capacity of *every* cut in the flow network, that is,

$$\max_{f} |f| \le \min_{(S,T) \text{ cut in } G} c(S,T) \tag{3}$$

Applications of max-flow and min-cut

- ► Find a set of edges of smallest capacity whose deletion disconnects the network (min cut)
- ▶ Bipartite matching (max flow) coming up
- ► Airline scheduling (max flow)
- ▶ Baseball elimination (max flow)
- ▶ Distribution of goods to cities (max flow)
- ► Image segmentation (min cut)
- Survey design (max flow)
- ▶ ...

Today

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

"Undoing" flow

A flow f of value 20.

Goal: undo 10 units of flow along (u, v), divert it along (u, t).

Pushing flow back

- "Push back" 10 units of flow along (v, u).
- ▶ Send 10 more units from s to t along the green path edges (s, v), (v, u), (u, t).
- ▶ New flow f' (on the right) with value 30.

Pushing flow forward and backward

By pushing flow back on (v, u), we created an s-t path on which we are pushing flow

- **b** forward, on edges with leftover capacity (e.g., (s, v));
- **backward**, on edges that are already carrying flow so as to divert it to a different direction (e.g., (u, v)).

The residual graph G_f

Definition 4.

Given flow network G and flow f, the residual graph G_f has

- \blacktriangleright the same vertices as G;
- ▶ for every edge $e = (u, v) \in E$ with $f(e) < c_e$, an edge e = (u, v) with residual capacity $c_f(e) = c_e f(e)$ (forward edge);
- ▶ for every edge $e = (u, v) \in E$ such that f(e) > 0, an edge $e^r = (v, u)$ in G_f with residual capacity $c_f(e^r) = f(e)$ (backward edge).

So G_f has $\leq 2m$ edges and every $e \in G_f$ has $c_f(e) > 0$.

Example residual graph

Left: a graph G and a flow f of value 20.

Right: the residual graph G_f for flow network G and flow f.

The residual graph G_f as a roadmap for augmenting f

- 1. Let P be a simple s-t path in G_f .
- 2. Augment f by pushing extra flow on P.

Question: How much flow can we push on P without violating capacity constraints in G_f ?

The residual graph G_f as a roadmap for augmenting f

- 1. Let P be a **simple** s-t path in G_f .
- 2. Augment f by pushing extra flow on P.

Question: How much flow can we push on P without violating capacity constraints in G_f ?

Definition 5.

The **bottleneck** capacity c(P) of a simple path P is the minimum residual capacity of **any** edge of P. In symbols

$$c(P) = \min_{e \in P} c_f(e).$$

The residual graph G_f as a roadmap for augmenting f

- 1. Let P be a **simple** s-t path in G_f .
- 2. Augment f by pushing extra flow on P.

Question: How much flow can we push on P without violating capacity constraints in G_f ?

Definition 5.

The **bottleneck** capacity c(P) of a simple path P is the minimum residual capacity of **any** edge of P. In symbols

$$c(P) = \min_{e \in P} c_f(e).$$

Answer: The max amount of flow we can safely push on **every** edge of P is c(P).

The augmented flow f'

Let P be an augmenting path in the residual graph G_f .

We obtain an **augmented flow** f' as follows:

- 1. For a **forward** edge $e \in P$, set f'(e) = f(e) + c(P)
- 2. For a backward edge $e^r = (u, v) \in P$, let $e = (v, u) \in G$; set f'(e) = f(e) c(P)
- 3. For $e \in E$ but not in P, f'(e) = f(e).

Claim 1.

f' is a flow.

Pseudocode for subroutine Augment

Input: a flow f, and an augmenting path P in G_f **Output:** the augmented flow f'

```
\begin{aligned} \operatorname{Augment}(f,P) & \text{for each edge } (u,v) \in P \text{ do} \\ & \text{if } e = (u,v) \text{ is a forward edge then} \\ & f(e) = f(e) + c(P) \\ & \text{else} \\ & f(v,u) = f(v,u) - c(P) \\ & \text{end if} \\ & \text{end for} \\ & \text{return } f \end{aligned}
```

Today

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

The Ford-Fulkerson algorithm

```
Ford-Fulkerson(G = (V, E, c), s, t)
  for all e \in E do f(e) = 0
  end for
  while there is an s-t path in G_f do
     Let P be a simple s-t path in G_f
     f' = Augment(f, P)
     Set f = f'
     Set G_f = G_{f'}
  end while
  Return f
```

Running time analysis

The algorithm terminates if the following facts are both true.

Fact 6.

Every iteration of the while loop returns a flow increased by an integer amount.

Fact 7.

There is a finite upper bound to the flow.

Running time analysis

The algorithm terminates if the following facts are both true.

Fact 6.

Every iteration of the while loop returns a flow increased by an integer amount.

Fact 7.

There is a finite upper bound to the flow.

Proof of Fact 7.

Let U be the largest edge capacity, that is, $U = \max_{e} c_{e}$. Then

$$|f| \le \sum_{e \text{ out of } s} c_e \le nU.$$

f increases by an integer amount after Augment(f, P)

Proof of Fact 6.

It follows from the following claims.

Claim 2.

During execution of the Ford-Fulkerson algorithm, the flow values $\{f(e)\}$ and the residual capacities in G_f are all integers.

Claim 3.

Let f be a flow in G and P a simple s-t path in G_f with residual capacity c(P) > 0. Then after Augment(f, P)

$$|f'| = |f| + c(P) \ge |f| + 1.$$

f increases by an integer amount after Augment(f, P)

Proof of Claim 3.

Recall that $|f| = f^{\text{out}}(s)$.

- 1. Since P is an s-t path, it contains some edge out of s, say (s, u).
- 2. Since P is simple, it does not contain any edge entering s (P is in G_f , where there could be edges entering s!).
- 3. Since no edge enters s in G, (s, u) is a forward edge in G_f , thus its augmented flow is $f(s, u) + c(P) \ge f(s, u) + 1$.
- 4. Since no other edge going out of s is updated, it follows that the value of f' is

$$|f'| = |f| + c(P) \ge |f| + 1.$$

Running time of Ford-Fulkerson

- 1. Claim 3 guarantees at most nU iterations.
- 2. The running time of each iteration is bounded as follows:
 - ▶ O(m+n) to create G_f using adjacency list representation.
 - ▶ O(m+n) to run BFS or DFS to find the augmenting path.
 - ▶ O(n) for Augment(f, P) since P has at most n-1 edges.
 - \Rightarrow Hence one iteration requires O(m) time.

The running time of Ford-Fulkerson is O(mnU).

Definition 8 (Pseudo-polynomial algorithms).

An algorithm is pseudo-polynomial if it is polynomial in the size of the input when the **numeric** part of the input is encoded in **unary**.

Remark 1.

Ford-Fulkerson is a pseudo-polynomial time algorithm.

Problems with pseudo-polynomial running times

Improved algorithms

- ▶ FF can be made polynomial: use BFS instead of DFS
 - ► Edmonds-Karp: $O(nm^2)$, Dinitz: $O(n^2m)$, other improvements: $O(nm \log n)$, $O(n^3)$
- ▶ Unit capacities: $O(\min\{m^{3/2}, mn^{2/3}\})$ [EvenTarjan1975]
 - ▶ Improved for sparse graphs: $\tilde{O}(m^{10/7})$ [Madry2013]
- ▶ Integral capacities: $O(\min\{m^{3/2}, mn^{2/3}) \log (n^2/m) \log U)$ [GoldbergRao1998]
 - ▶ Improved: $\tilde{O}(m\sqrt{n}\log^2 U)$ [LeeSidfort2014]; also improves for dense graphs with unit capacities
- ▶ **Real** capacities: $O(nm \log (n^2/m))$
 - ▶ Improved: O(nm) [Orlin2013]

Today

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

A natural upper bound for the max value of a flow

▶ An s-t cut (S,T) in G is a bipartition of the vertices into two sets S and T, such that $s \in S$ and $t \in T$.

- ▶ The capacity c(S,T) of s-t cut (S,T) is $\sum_{e \text{ out of } S} c_e$.
- ► Then intuitively

$$\max_{f} |f| \le \min_{(S,T) \text{ cut in } G} c(S,T) \tag{4}$$

Roadmap for proving optimality of Ford-Fulkerson

Let f be the flow *upon termination* of the Ford-Fulkerson algorithm. Recall that $|f| = f^{\text{out}}(s)$.

1. Exhibit a specific s-t cut (S^*, T^*) in G such that

$$|f| = \text{capacity of the cut } (S^*, T^*)$$

- 2. Show that |f| cannot exceed the capacity of **any** cut in G.
- 3. Conclude that f is a maximum flow.
 - ▶ And (S^*, T^*) is a cut of minimum capacity.

Ford-Fulkerson terminates when $\not\exists s$ -t path in G_f

Consider the residual graph G_f upon termination of the algorithm. Let (S^*, T^*) be the cut in G_f where

- \triangleright S^* is the set of nodes reachable from the source s;
- ▶ T^* contains every other node.

Is (S^*, T^*) also a cut in G?

On the cut (S^*, T^*)

1. (S^*, T^*) is an s-t cut: that is, $s \in S^*$, $t \in T^*$. Why?

2. In G_f , no edge crosses from S^* to T^* . Why?

3. Hence, if $e = (x, y) \in E$ with $x \in S^*$ and $y \in T^*$, then $f(e) = c_e$ (thus $e \notin E_f$).

4. Similarly, if $e' = (u, v) \in E$ with $u \in T^*$ and $v \in S^*$, then f(e') = 0. Why?

On the cut (S^*, T^*)

- 1. (S^*, T^*) is an s-t cut: that is, $s \in S^*$, $t \in T^*$. Why? Because there is no s-t path in G_f .
- 2. In G_f , no edge crosses from S^* to T^* . Why? If (u, v) crosses from S^* to T^* , thus $u \in S^*, v \in T^*$, then \exists s-v path in G_f . Hence $v \in S^*$; contradiction.
- 3. Hence, if $e = (x, y) \in E$ with $x \in S^*$ and $y \in T^*$, then $f(e) = c_e$ (thus $e \notin E_f$).
- 4. Similarly, if $e' = (u, v) \in E$ with $u \in T^*$ and $v \in S^*$, then f(e') = 0. Why?

 If f(e') > 0, then $(v, u) \in E_f$, with $c_f(v, u) = f(e') > 0$. Contradicts our second observation.

Our observations on (S^*, T^*) in a diagram

In G, every edge e crossing from S^* to T^* satisfies $f(e)=c_e$ (of course, such e does not appear in G_f). Every edge e' in G crossing from T^* to S^* satisfies f(e')=0.

Definition 9.

The net flow across an s-t cut (S,T) is the amount of flow leaving the cut minus the amount of flow entering the cut

$$f^{\text{out}}(S) - f^{\text{in}}(S),$$
 (5)

where

1.
$$f^{\text{out}}(S) = \sum_{e \text{ out of } S} f(e)$$

2. $f^{\text{in}}(S) = \sum_{e \text{ into } S} f(e)$

2.
$$f^{\text{in}}(S) = \sum_{e \text{ into } S} f(e)$$

Net flow across (S^*, T^*) equals capacity of (S^*, T^*)

$$f^{\text{out}}(S^*) - f^{\text{in}}(S^*) = \sum_{e \text{ out of } S^*} f(e) - \sum_{e \text{ into } S^*} f(e)$$
$$= \sum_{e \text{ out of } S^*} c_e - 0$$
$$= c(S^*, T^*)$$
(6)

Roadmap revisited

Let f be the flow upon termination of the Ford-Fulkerson algorithm.

1. Exhibit a specific s-t cut (S^*, T^*) in G such that the

$$|f| = c(S^*, T^*).$$

Not quite there yet!

- We exhibited (S^*, T^*) with net flow equal to its capacity.
- We need to relate the net flow across (S^*, T^*) to |f| (that is, the flow out of s).
- ▶ In particular, if we showed them equal, then we'd have $|f| = c(S^*, T^*)$.
- 2. Show that |f| cannot exceed the capacity of any cut in G.
- 3. Conclude that f is a maximum flow.

net flow across any s-t cut = |f|

Recall that

$$f^{\text{out}}(S) = \sum_{e \text{ out of } S} f(e)$$

$$ightharpoonup f^{\mathrm{in}}(S) = \sum_{e \text{ into } S} f(e)$$

▶ net flow across $(S,T) \triangleq f^{\text{out}}(S) - f^{\text{in}}(S)$

Lemma 10.

Let f be any s-t flow, and (S,T) any s-t cut. Then

$$|f| = f^{out}(S) - f^{in}(S).$$

Proof of Lemma 10

First, rewrite the flow out of s in terms of the flow on the vertices on S:

$$|f| = f^{\text{out}}(s) = \sum_{v \in S} \left(f^{\text{out}}(v) - f^{\text{in}}(v) \right)$$
 (7)

since

- $f^{\mathrm{in}}(s) = 0;$
- ▶ for every $v \in S \{s\}$, the terms in the right-hand side of (7) cancel out because of flow conservation constraints.

Next, rewrite the right-hand side of equation 7 in terms of the *edges* that participate in these sums.

There are three types of edges.

Proof of Lemma 10 (cont'd)

- 1. Edges with both endpoints in S: such edges appear once in the first sum in equation 7 and once in the second, hence their flows cancel out.
- 2. Edges with the tail in S and head in T (out of S): such edges contribute to the first sum, $\sum_{v \in S} f^{\text{out}}(v)$, in equation 7 so they appear with a +.
- 3. Edges with the tail in T and head in S (into S): such edges contribute to the second sum, $\sum_{v \in S} f^{in}(v)$, in equation 7 so they appear with a -.

In effect, the right-hand side of equation 7 becomes

$$\sum_{e \text{ out of } S} f(e) - \sum_{e \text{ into } S} f(e).$$

The lemma follows.

The value of a flow cannot exceed capacity of any cut

Corollary 11.

Let f be any s-t flow and (S,T) any s-t cut. Then

$$|f| \le c(S,T).$$

Proof.

$$|f| = f^{\text{out}}(S) - f^{\text{in}}(S) \le f^{\text{out}}(S) \le c(S, T).$$

Putting everything together

▶ By Corollary 11, the value of a flow cannot exceed the capacity of any cut; in particular,

$$|f| \le c(S^*, T^*).$$

▶ By Lemma 10, |f| equals the net flow across any s-t cut; in particular,

$$|f| = f^{\text{out}}(S^*) - f^{\text{in}}(S^*).$$

▶ From (6), the net flow across (S^*, T^*) equals $c(S^*, T^*)$. Hence the above becomes

$$|f| = f^{\text{out}}(S^*) - f^{\text{in}}(S^*) = c(S^*, T^*).$$

⇒ Thus the flow computed by Ford-Fulkerson is a maximum flow because it cannot be increased anymore.

The max-flow min-cut theorem

Theorem 12.

If f is an s-t flow such that there is no s-t path in G_f , then there is an s-t cut (S^*, T^*) in G such that $|f| = c(S^*, T^*)$. Therefore, f is a max flow and (S^*, T^*) is a cut of min capacity.

Theorem 13 (Max-flow Min-cut).

In every flow network, the maximum value of an s-t flow equals the minimum capacity of an s-t cut.

Integrality theorem

Recall the following claim.

Claim 4.

During execution of the Ford-Fulkerson algorithm, the flow values $\{f(e)\}$ and the residual capacities in G_f are all integers.

Combine with Theorem 12 to conclude:

Theorem 14 (Integrality theorem).

If all capacities in a flow network are integers, then there is a maximum flow for which every flow value f(e) is an integer.

Today

- 1 Flow networks
 - Applications
- 2 The residual graph and augmenting paths
- 3 The Ford-Fulkerson algorithm for max flow
- 4 Correctness of the Ford-Fulkerson algorithm
- 5 Application: max bipartite matching

Bipartite Matching

Matchings

Definition 15.

A matching M is a subset of edges where every vertex in $X \cup Y$ appears at most once.

Example: $\{(x_1, y_2), (x_2, y_3), (x_3, y_4), (x_5, y_5)\}$ is a matching.

Perfect matching: every vertex in $X \cup Y$ appears exactly once.

▶ Not always possible: e.g., $|X| \neq |Y|$.

Maximum matching still desirable in applications.

▶ If we had an algorithm to find maximum matching then we could also find a perfect matching, if one exists (why?).

Finding maximum matchings in bipartite graphs

Idea: Use the Ford-Fulkerson algorithm to find maximum (or perfect) matchings in bipartite graphs.

Strategy: reformulate the problem as a max flow problem which we know how to solve (reduction).

To this end, we need to transform our input bipartite graph into a flow network.

A diagram of the algorithm for max bipartite matching

Remark 2.

- 1. The reduction R must be efficient (polynomial in the size of G).
- 2. G and G' should be equivalent, in the sense that G has a max matching of size k if and only if the max flow in G' has value k.

Deriving a flow network given a bipartite graph

Given a bipartite graph $G = (X \cup Y, E)$, we construct a flow network G' as follows.

- ightharpoonup Add a source s.
- ightharpoonup Add a sink t.
- ightharpoonup Add (s, x) edges for all $x \in X$.
- ▶ Add (y, t) edges for all $y \in Y$.
- ▶ Direct all $e \in E$ from X to Y.
- ▶ Assign to every edge capacity of 1.

The flow network for the example bipartite graph

Computing matchings in G from flows in G'

- $G = (X \cup Y, E)$ is the bipartite graph
- \triangleright G' is the derived flow network

Claim 5.

The size of the maximum matching in G equals the value of the maximum flow in G'. The edges of the matching are the edges that carry flow from X to Y in G'.

Proof of Claim 5

The claim follows if we show the following two statements (why?).

- 1. (\Rightarrow Forward direction) For any matching M in G, we can construct a flow f in G' with value equal to the size of M, that is, |f| = |M|.
- 2. (\Leftarrow Reverse direction) Given a max flow f' in G', we can construct a matching M' in G, with size equal to the value of the max flow, that is, |M'| = |f'|.

$(1. \Rightarrow)$ From a matching M to a flow f with |f| = |M|

Let |M| = k.

Given matching M (the red edges in G), construct an integral flow f in G', such that the value of f equals the number of edges in M.

$(1. \Rightarrow)$ From a matching M to a flow f with |f| = |M|

Let |M| = k. Send one unit of flow along each of the k edge-disjoint s-t paths that use the edges in M; then |f| = k.

Given matching M (the red edges in G), construct the integral flow f in G'. Then the value of f equals the number of edges in M.

$(2. \Leftarrow)$ From max flow f' to M' with |M'| = |f'|

Given integral max flow f' in G', construct a matching M' in G so that the number of edges in M' equals the value of f'.

Given a max flow f' in G' with |f'| = k, we want to select a set of edges M' in G so that M' is a matching of size k.

- ▶ By the integrality theorem, there is an integer-valued flow *f* of value *k*.
- ▶ Then for every edge e, f(e) = 0 or f(e) = 1 (why?).
- ▶ Define the following matching M':

$$M' = \{e = (x, y) : x \in X, y \in Y \text{ and } f(e) = 1\}.$$

Obtaining a matching M' from an integral flow f

Given integral flow f in G', construct matching M' (the red edges in G), so that the number of edges in M' equals the value of f.

M' is a matching of size k

We need to show the following two facts.

- 1. Fact 1: M' is a matching.
- 2. Fact 2: M' has size k.

Proof of Fact 1.

Must show that every node in G' appears at most once in M'.

- Each node in X is the tail of at most one edge in M' (flow conservation constraints).
- Each node in Y is the head of at most one edge in M' (flow conservation constraints).

M' has size k

Proof of Fact 2.

- ▶ Consider the cut (S,T) where $S = \{s\} \cup X$, $T = Y \cup \{t\}$.
- ► We will compute its net flow.
 - 1. By definition, the net flow of (S,T) is

$$f^{\text{out}}(S) - f^{\text{in}}(S) = |M'|$$

since

- ightharpoonup the only edges that carry flow out of S are the edges in M';
- \blacktriangleright the flow into S is 0 (no edges enter S).
- 2. By Lemma 10, the net flow across (S,T) equals |f|; hence net flow across (S,T)=k.
- \Rightarrow Thus |M'| = k.

Time for finding max matching in bipartite graphs

- 1. Ford-Fulkerson: O(mnU) = O(mn)
- 2. Improved: $O(m\sqrt{n})$ [HopcroftKarp, Karzanov 1973]
- 3. Improved further for sparse (m = O(n)) graphs: $\tilde{O}(m^{10/7})$ [Madry2013]

Perfect matchings in bipartite graphs with |X| = |Y| = n (Hall's theorem)

Is there a matching of size n, that is, a perfect matching in G?

A necessary condition for a perfect matching to exist

For every subset A of nodes in X, there are at least as many neighbors of A in Y. In symbols, $\forall A \subseteq X, |N(A)| \ge |A|$.

Is this a sufficient condition as well?

That is, if G does not have a perfect matching, is there always a subset $A \subseteq X$ such that |N(A)| < |A|?

- \triangleright Given bipartite G, transform it into a flow network G'.
- \triangleright Run Ford-Fulkerson on G'.
- ▶ Assume $\max |f| < n$. We want to exhibit a set A as above.
- ▶ Since $\max |f| < n$, we know that $\min_{(S,T)} c(S,T) = \max |f| < n$.
- \triangleright Consider the residual graph G_f upon termination of FF.
- ▶ Define the cut (S^*, T^*) as before, that is, S^* consists of all vertices reachable from s and T^* of everything else.
- ▶ We claim that the set $A = S^* \cap X$ satisfies |A| > |N(A)|.

A max flow in G'

The residual graph upon termination of FF

Define the cut (S^*, T^*) where S^* consists of all vertices reachable from s in G_f and T^* of everything else.

Here S^* consists of the blue vertices.

The set A that satisfies |A| > |N(A)|

Clearly S^* consists of s, some vertices in X (why?) and possibly some vertices in Y. We set $A = S^* \cap X$.

The residual graph slightly rearranged to group the vertices in A together.

Augmenting S^* to include all neighbors of A

Note that S^* might contain some neighbors of A. Augment S^* by moving *all* neighbors of A into S^* . Let S' be the resulting set, T' = V - S'.

Blue nodes belong to S': among them, nodes with red contour are in A and nodes with green contour in N(A). Silver nodes belong to T'.

How does c(S', T') compare to $c(S^*, T^*)$?

For every node u we move from T^* to S'

- we add 1 to $c(S^*, T^*)$ because of the edge (u, t) that now crosses from S' to T';
- ▶ we subtract at least 1 from $c(S^*, T^*)$ because u is a neighbor of at least one node $v \in A$, hence the edge (v, u) no longer crosses from S^* to T^* .

Hence $c(S', T') < c(S^*, T^*)$.

Since (S^*, T^*) is a min cut, and $\max |f| < n$, we have

$$c(S', T') < n.$$

The capacity of (S', T')

What exactly is the capacity of (S', T')?

- ▶ n |A| edges cross from $s \in S'$ to T'
- ▶ |N(A)| edges cross from S' to $t \in T'$

Hence
$$c(S', T') = n - |A| + |N(A)|$$
.

Since c(S', T') < n, we have

$$n - |A| + |N(A)| < n.$$

Hence

$$|A| > |N(A)|.$$