

CheatSheet: Révision / Explications SQL

IUT Aix-Marseille

Rappel du schéma relationnel de la BD AIRBASE :

```
- PILOTE (NUMPIL : D_NUMPIL, NOMPIL: D_NOMPIL, ADR : D_VILLE, SAL : D_SAL)
- AVION (NUMAV : D_NUMAV, NOMAV : D_NOMAV, CAP : D_CAP, LOC : D_VILLE)
- VOL (NUMVOL : D_NUMVOL, NUMPIL : D_NUMPIL, NUMAV : D_NUMAV, VILLE_DEP
: D VILLE, VILLE ARR : D VILLE, H DEP : D HEURE, H ARR : D HEURE)
```

Convention:

Les clés primaires sont soulignées et les clés étrangères sont en italique gras.

Dans les énoncés, vous aurez parfois une explication de ce qu'est la données (sans exemple). Ici on remarquera que PILOTE.ADR est une Ville ET QUE AVION.LOC est aussi une ville. Cela voudra dire que l'on a des **données de même type**, et par extension que l'on peut faire des **Jointures**.

Représentation Schéma (juste pour des explications)

AVION

donnez la liste des avions dont la	3	AIRBU
capacité est supérieure à 350 passagers	4	AIRBL

NUMAV	NOMAV	САР	LOC
1	AIRBUS	430	Marseille
2	BOEING	510	Marseille
3	AIRBUS	470	Paris
5 4	AIRBUS	110	Paris
5	BOEING	116	Marseille

Quels sont les numéros et noms des avions localisés à Paris ?

R1a = SELECTION (AVION / CAP > 350)

== Filtre des avions & (toutes colonnes!)

NUMAV	NOMAV	CAP	LOC
1	AIRBUS	430	Marseille
2	BOEING	510	Marseille
3	AIRBUS	470	Paris

réponse :

R1a = SELECTION (AVION / CAP > 350)

R1 = SELECTION (AVION / LOC = 'Paris')

NUMAV	NOMAV	САР	LOC
3	AIRBUS	470	Paris
4	AIRBUS	110	Paris

R2 = PROJECTION (R1 / NUMAV, NOMAV)

NUMAV	NOMAV
3	AIRBUS
4	AIRBUS

/!\ on filtre R1 et non la table avion pour R2 car ce sont les avions localisé à <u>paris</u> (et pas les autres)

réponse :

R1 = SELECTION (AVION / LOC = 'Paris')

R2 = PROJECTION (R1 / NUMAV, NOMAV)

AVION

Quels sont les avions (numéro et nom) localisés à Paris ou

dont la capacité est inférieure à 350 passagers ?

XXXX **ou** BBBBB C'est de l'UNION ©

NUMAV	NOMAV	САР	LOC
1	AIRBUS	430	Marseille
2	BOEING	510	Marseille
3	AIRBUS	470	Paris
4	AIRBUS	110	Paris
5	BOEING	116	Marseille

R1 = SELECTION (AVION / LOC = 'PARIS')

NUMAV	NOMAV	CAP	LOC	
3	AIRBUS	470	Paris	×
4	AIRBUS	110	Paris	

S1 = SELECTION (AVION / CAP < 150)

NUMAV	NOMAV	CAP	LOC
4	AIRBUS	110	Paris
5	BOEING	116	Marseille

R2 = PROJECTION (R1 / NUMAV, NOMAV)

réponse :		
, , , , , , , , , , , , , , , , , , , ,	NUMAV	NOMAV
R2 = PROJECTION (R1 / NUMAV, NOMAV)	3	AIRBUS
S1 = SELECTION (AVION / CAP < 150) S2 = PROJECTION (S1 / NUMAV, NOMAV)	4	AIRBUS

S2 = PROJECTION (S1 / NUMAY, NOMAY)

NUMAV	NOMAV
4	AIRBUS
5	BOEING

T = UNION (R2, S2)

NUMAV	NOMAV
3	AIRBUS
4	AIRBUS

T = UNION (R2, S2)

AVION

Quels sont les avions (numéro et nom) BOEING et AIRBUS ?

XX = 10 ET XX = 15 c'est aussi de l'union si on traite la même table ! (relation) ©

NUMAV	NOMAV	CAP	LOC
1	AIRBUS	430	Marseille
2	BOEING	510	Marseille
3	AIRBUS	470	Paris
4	AIRBUS	110	Paris
5	BOEING	116	Marseille
6	CESSNA	8	Lyon
7	BOMBARDIER	12	Marseille

R1 = SELECTION (AVION / NOMAV = 'AIRBUS')

NUMAV	NOMAV	CAP	LOC
1	AIRBUS	430	Marseille
3	AIRBUS	470	Paris
4	AIRBUS	110	Paris

S1= SELECTION (AVION / NOMAV = 'BOEING')

NUMAV	NOMAV	САР	LOC
2	BOEING	510	Marseille
5	BOEING	116	Marseille

T = UNION (R2, S2)

		N	NUMAV	NUMAV NOMAV	NUMAV NOMAV CAP
OMAV		1	1	1 AIRBUS	1 AIRBUS 430
RBUS		3	3	3 AIRBUS	3 AIRBUS 470
		4	4	4 AIRBUS	4 AIRBUS 110
		2	2	2 BOEING	2 BOEING 510
DEING		5	5	5 BOEING	5 BOEING 116
F	RBUS RBUS RBUS	RBUS RBUS RBUS 5	RBUS RBUS 2 5	TAIRBUS AIRBUS AIRBUS AIRBUS AIRBUS BOEING BOEING	1 AIRBUS 430 3 AIRBUS 470 4 AIRBUS 110 2 BOEING 510 5 BOEING 116

BOEING T1 = PROJECTION (T / NUMAV, NOMAV)

réponse :

R1 = SELECTION (AVION / NOMAV = 'AIRBUS')

S1 = SELECTION (AVION / NOMAV = 'BOEING')
T - LINION (P1 S1)

T = UNION (R1, S1)

T1 = PROJECTION (T / NUMAV, NOMAV)

Le	langage Algébrique (TD1 + 2)	VOL
----	------------------------------	-----

NUMVOL	NUMAV	NUMPIL	V_DEP	V_ARR	H_DEP	H_ARR
1	2	1	Marseille	Paris	9h10	11h43
2	3	2	Paris	Lyon	14h00	15h31
3	5	3	Marseille	Lyon	9h50	10h56
4	7	1	Paris	Marseille	10h00	11h56
5	3	2	Lyon	Paris	20h15	21h10

NOMAV CAP LOC **NUMAV** Marseille **AIRBUS** 430 **BOEING** 510 Marseille **AIRBUS** 470 **Paris AIRBUS Paris** 110 5 **BOEING** Marseille 116 **CESSNA** 8 Lyon Marseille **BOMBARDIER** 12

AVION

BeHigh

Quels sont les numéro des avions qui ne sont PAS en service ?

un avion en service est un avion affecté à un vol

R1 = PROJECTION (VOL / NUMAV) 7

réponse :

R1 = PROJECTION (VOL / NUMAV)

\$1 = PROJECTION (AVION / NUMAV)

T = DIFFERENCE (\$1,R1)

S1 – R1 = avion qui ne sont pas en vol R1 – S1 = avion qui vol qui ne sont pas dans la table AVIONS! (impossible car NUMAV est une clé étrangère de AVION) La clé doit exister dans la table à laquelle elle fait référence!

3

5

3

5

NUMAV

7

NUMAV

4

6

T = DIFFERENCE (S1, R1)

S1 = PROJECTION (AVION / NUMAV)

Quels sont à l'exception de DURAND, les pilotes (Numéros) en service ?

VOL

NUMVOL	NUMAV	NUMPIL	V_DEP	V_ARR	H_DEP	H_ARR
1	2	1	Marseille	Paris	9h10	11h43
2	3	2	Paris	Lyon	14h00	15h31
3	5	3	Marseille	Lyon	9h50	10h56
4	7	4	Paris	Marseille	10h00	11h56
5	3	2	Lyon	Paris	20h15	21h10

R1 = JOINTURE (VOL, S1 / NUMPIL = NUMPIL)

NUMVOL	NUMAV	NUMPIL	V_DEP	V_ARR	H_DEP	H_ARR	NUMPIL	NOMPIL	SAL	ADR
1	2	1	Marseille	Paris	9h10	11h43	1	MARTIN	1500	Marseille
3	5	3	Marseille	Lyon	9h50	10h56	3	DAVID	1800	Paris
4	7	4	Paris	Marseille	10h00	11h56	4	DUBOIS	3400	Paris

PILOTES

NUMPIL	NOMPIL	SAL	ADR
1	MARTIN	1500	Marseille
2	DURAND	2500	Marseille
3	DAVID	1800	Paris
4	DUBOIS	3400	Paris
5	DUPOND	2500	Marseille
6	DURAND	4450	Lyon
7	DUPUIS	4800	Marseille

S1 = SELECTION (PILOTE / NOMPIL != 'DURAND')

NUMPIL	NOMPIL	SAL	ADR
1	MARTIN	1500	Marseille
3	DAVID	1800	Paris
4	DUBOIS	3400	Paris
5	DUPOND	2500	Marseille
7	DUPUIS	4800	Marseille

réponse :

S1 = SELECTION (PILOTE / NOMPIL != 'DURAND')

R1 = JOINTURE (VOL, S1 / NUMPIL = NUMPIL)

T = PROJECTION (R1 / NUMPIL)

T = PROJECTION (R1 / NUMPIL)

NUMPIL

1

3

Quels sont les pilotes (Numéros) en service ?

V()L
----	----

NUMVOL	NUMAV	NUMPIL	V_DEP	V_ARR	H_DEP	H_ARR
1	2	1	Marseille	Paris	9h10	11h43
2	3	2	Paris	Lyon	14h00	15h31
3	5	3	Marseille	Lyon	9h50	10h56
4	7	4	Paris	Marseille	10h00	11h56
5	3	2	Lyon	Paris	20h15	21h10

R1 = PROJECTION (VOL / NUMPIL)

ici une *jointure est recommandé*! mais **on peut aussi faire une Intersection**

ATTENTION, une intersection n'est possible QUE entre 2 relations de **même SCHEMA**!

NUMPIL

1

2

3

4

3

T = INTERSECTION (R1, S1)

PILOTES

NUMPIL	NOMPIL	SAL	ADR
1	MARTIN	1500	Marseille
2	DURAND	2500	Marseille
3	DAVID	1800	Paris
4	DUBOIS	3400	Paris
5	DUPOND	2500	Marseille
6	DURAND	4450	Lyon
7	DUPUIS	4800	Marseille

S1 = PROJECTION (PILOTE / NUMPIL)

réponse :

S1 = PROJECTION (PILOTE / NUMPIL)

R1 = PROJECTION (VOL / NUMPIL)

T = INTERSECTION (R1, S1)

Quels sont les avions (numéro) pilotés par TOUS les pilotes ?

par tous les
C'est une DIVISION

tous les pilotes = 1, 2 et 3

PILOTES

NUMPIL	NOMPIL	SAL	ADR
1	MARTIN	1500	Marseille
2	DURAND	2500	Marseille
3	DAVID	1800	Paris

S1 = PROJECTION (PILOTES / NUMPIL)

Dans notre relation R1, seul l'avion 2 est piloté par tous nos pilotes!

NUMPIL 1 2

T = DIVISION (R1, S1)

NUMAV

VOL

NUMVOL	NUMAV	NUMPIL	V_DEP	V_ARR	H_DEP	H_ARR
1	2	1	Marseille	Paris	9h10	11h43
2	2	2	Paris	Lyon	14h00	15h31
3	5	3	Marseille	Lyon	9h50	10h56
4	7	1	Paris	Marseille	10h00	11h56
5	3	2	Lyon	Paris	20h15	21h10
6	2	3	Marseille	Lyon	9h50	10h56
7	4	1	Paris	Marseille	10h00	11h56
8	3	1	Lyon	Paris	20h15	21h10

R1 = PROJECTION (VOL / NUMPIL, NUMAV)

NUMAV	NUMPIL			
2	1			
2	2			
2	3			
3	1			
3	2			
4	1			
5	3			
7	1			

par souci de visuel, je vous ais fait un TRI sur <u>NUMAV</u> puis <u>NUMPIL</u>

1ere forme normale: Une relation R, est en 1NF SI et SEULEMENT SI tous les attributs sont atomiques (monovalué)

2eme forme normale: Une Relation R1 est en 2NF <u>SI et seulement si elle est en 1NF</u> ET qu'il n'y a <u>aucunes dépendances interdite</u> sur R1. (X → A, X fait partie d'une clef ET A n'est qu'un attribut)

3eme forme normale: Une Relation R2 est en 3NF <u>SI et seulement si elle est en 2NF</u> ET qu'il n'y a <u>aucunes dépendances interdite</u> sur R2. ($X \rightarrow A$, X n'est pas une clé ou ne contient pas de clef ET A n'est qu'un attribut non clef!)

On sait que : L'étudiant définit la plaque Le modèle définit la marque ID est la clé primaire!

ID	Etudiant	Marque	Modele	Plaque
1	Chiheb	Mercedes	CLA	AB123CD
2	Aurore	Tesla	Model S	EF456GH
3	Mathis	Renault	Twingo 1	IJ789KL

1NF => OK car tout est atomique

2NF => OK car clé simple, qui définit tout !

3NF => NON car X (modele) définit A (marque) et marque / modele ne sont pas des clés

Le langage Algébrique (TD3)

Ц BeHigh

Réflexivité : X → X

Augmentation : Si X \rightarrow Y Alors X, W \rightarrow Y

X	Υ	w
CLA	Mercedes	Classe C
318 D	Bmw	Série 3
Campus	Renault	Clio

Transitivité : Si $X \rightarrow Y$ et $Y \rightarrow Z$ Alors $X \rightarrow Z$

Х	Υ	Z
CLA	Mercedes	Classe C
318 D	Bmw	Série 3
Campus	Renault	Clio

Pseudo-transitivité: SI X \rightarrow Y et Y, Z \rightarrow T Alors X, Z \rightarrow T

X	Υ	Z	Т
CLA	Mercedes	Classe C	Berline
318 D	Bmw	Série 3	Berline
Campus	Renault	Clio	Citadine

Union : Si $X \rightarrow Y$ et $X \rightarrow Z$ Alors $X \rightarrow Y$, Z

Х	Υ	Z
CLA	Mercedes	Classe C
318 D	Bmw	Série 3
Campus	Renault	Clio

Décomposition : Si $X \rightarrow Y$, Z Alors $X \rightarrow Y$ et $X \rightarrow Z$

Х	Υ	Z
CLA	Mercedes	Classe C
318 D	Bmw	Série 3
Campus	Renault	Clio

Exemple: La relation suivante **PIECES** (NUM_PIECE, PRIX, TAUX_TVA, LIBELLE, CATEGORIE)

F = {NUM_PIECE → PRIX; NUM_PIECE → LIBELLE; CATEGORIE → TAUX_TVA; LIBELLE → CATEGORIE}

NIM_PIECE	PRIX	TAUX_TVA	LIBELLE	CATEGORIE
1	10	10%	Pack Lait	Alimentaire
2	5,5	20%	Boulon 25	Quincaillerie
3	3,75	10%	Farine	Alimentaire
4	9,99	20%	Tourne Vis	Quincaillerie

Le langage Algébrique (TD3) **Explications Exercice 5**

 $R1(\underline{A},\underline{B},C,D,E,F) \qquad \qquad \{B\rightarrow C\;;\; D\rightarrow E\;; D\rightarrow F\}$ $R2(\underline{G},\underline{H},\underline{I},J,K,L,M,N) \qquad \{M\rightarrow N\;;\; \underline{I},\underline{I}\rightarrow K\}$ R2(G, H, I, J, K, L, M, N)

$$\{B \rightarrow C; D \rightarrow E; D \rightarrow F\}$$

 $\{M \rightarrow N; I, J \rightarrow K\}$

Α	В	С	D	E	F
<u>Marseille</u>	<u>Anthony</u>	06XXYYVV	PEUGEOT	508	Diesel
<u>Aix</u>	<u>Chiheb</u>	07XXYYVV	MERCEDES	CLA	Essence

G	Н	1	J	K	L	M	N
Pro.	B.D.D	Anthony	IUT Aix	Gr. 1	Non	508	Peugeot
Enseignant	B.D.D	Lotfi	IUT Aix	Gr. 2	Oui	CLK	Mercedes

