

=> d que

L4	22169	SEA FILE=REGISTRY ABB=ON	PLU=ON	1784.14/RID
L5	9577	SEA FILE=REGISTRY ABB=ON	PLU=ON	L4 AND DIONE?
L7	3767	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L5
L8	41184	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"ACRYLIC POLYMERS, USES"+PFT,NT/CT
L9	24870	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"POLYCARBONATES, USES"+PFT ,NT/CT
L10	92534	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"POLYESTERS, USES"+PFT,NT/ CT
L11	625142	SEA FILE=HCAPLUS ABB=ON	PLU=ON	POLYOLEFINS+PFT,NT/CT
L12	49945	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"POLYURETHANES, USES"+PFT, NT/CT
L13	18151	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"POLYVINYL ACETALS"+PFT,NT /CT
L14	12936	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"POLYVINYL BUTYRAL"+PFT,N T/CT
L15	219	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L7 AND ((L8 OR L9 OR L10 OR L11 OR L12 OR L13 OR L14))
L17	16585	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"LIGHT STABILIZERS"+PFT,NT /CT
L18	8000	SEA FILE=HCAPLUS ABB=ON	PLU=ON	"UV STABILIZERS"+PFT,NT/CT
L19	12	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L15 AND (L17 OR L18)
L20	39	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L15 AND STABILI?
L21	39	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L19 OR L20
L22	34	SEA FILE=HCAPLUS ABB=ON	PLU=ON	L21 AND (1840-2003)/PRY,AY ,PY

=> d l22 1-34 ibib ed abs hitstr hitind

L22 ANSWER 1 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2005:451365 HCAPLUS Full-text
 DOCUMENT NUMBER: 143:8571
 TITLE: Use of 4-cyano-naphthalene-1, 8-dicarboximide
 derivatives and related compounds to protect
 organic material from light damage
 INVENTOR(S): Schambony, Simon; Glaser, Alban; Sens, Ruediger;
 Boehm, Arno; Reichelt, Helmut
 PATENT ASSIGNEE(S): BASF Aktiengesellschaft, Germany
 SOURCE: PCT Int. Appl., 93 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2005047265	A1	20050526	WO 2004-EP12873	20041112

<--

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA,
 CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
 GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
 KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
 MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
 SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
 VC, VN, YU, ZA, ZM, ZW

RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW,
 AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ,
 DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL,
 PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN,
 GQ, GW, ML, MR, NE, SN, TD, TG
 DE 10353328 A1 20050616 DE 2003-10353328 20031114
 <--
 US 2005171252 A1 20050804 US 2004-770603 20040204
 EP 1687278 A1 20060809 EP 2004-818398 20041112
 <--
 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
 PT, IE, SI, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS
 CN 1902180 A 20070124 CN 2004-80040373 20041112
 <--
 BR 2004016474 A 20070306 BR 2004-16474 20041112
 <--
 JP 2007534781 T 20071129 JP 2006-538810 20041112
 <--
 MX 2006PA05334 A 20060719 MX 2006-PA5334 20060512
 <--
 US 2007100033 A1 20070503 US 2006-579441 20060515
 <--
 PRIORITY APPLN. INFO.: DE 2003-10353328 A 20031114
 <--
 ED Entered STN: 27 May 2005 US 2004-770603 A 20040204
 GI WO 2004-EP12873 W 20041112

OTHER SOURCE(S): MARPAT 143:8571
 ED Entered STN: 27 May 2005
 GI

- AB The present invention relates to naphthalene-1,8-dicarboxylic monoimides I, wherein R1 = H, alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, or heteroaryl and R2 = radical containing ≥ 1 π electron system containing a carbon atom and ≥ 1 further atom selected from carbon, oxygen, and nitrogen, with the proviso that the radical contains ≥ 1 atom other than carbon. Thus, 27.7 g 4-bromonaphthalene-1,8-dicarboxylic anhydride and 19.0 g 2,6-diisopropylaniline were reacted at 200° for 3 h to give 26.2 g 4-bromo-N-(2,6-diisopropylphenyl)naphthalene-1,8-dicarboximide with m.p. 277°, 24.8 g of which was reacted with 7.5 g copper cyanide at 210° for 4 h to give 15.6 g 4-cyano-N-(2,6-diisopropylphenyl)naphthalene-1,8-dicarboximide with λ_{max} 352 nm and m.p. 291°, the resulting compound (0.4%) was mixed with Polyclear T 94, kneaded, and extruded to give a test piece showing good UV protection.
- IT 852282-83-IP 852282-90-7P 852282-91-8P
 852282-92-9P 852282-93-0P 852282-94-1P

852282-95-2P 852282-96-3P 852282-97-4P

852282-98-5P

(UV absorber; preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)

RN 852282-89-4 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-[4-(1,1,3,3-tetramethylbutyl)phenoxy]- (CA INDEX NAME)

RN 852282-90-7 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-[4-(1-methylethyl)phenoxy]- (CA INDEX NAME)

RN 852282-91-8 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-[4-(1,1-dimethylpropyl)phenoxy]- (CA INDEX NAME)

RN 852282-92-9 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-phenyl-6-[4-(1,1,3,3-tetramethylbutyl)phenoxy]- (CA INDEX NAME)

RN 852282-93-0 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[4-(1-methylethyl)phenoxy]-2-phenyl- (CA INDEX NAME)

RN 852282-94-1 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[4-(1,1-dimethylpropyl)phenoxy]-2-phenyl- (CA INDEX NAME)

RN 852282-95-2 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(2-ethylhexyl)-6-[4-(1,1,3,3-tetramethylbutyl)phenoxy]- (CA INDEX NAME)

RN 852282-96-3 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(2-ethylhexyl)-6-[4-(1-methylethyl)phenoxy]- (CA INDEX NAME)

RN 852282-97-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[4-(1,1-dimethylpropyl)phenoxy]-2-(2-ethylhexyl)- (CA INDEX NAME)

RN 852282-98-5 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[4-(1,1,3,3-tetramethylbutyl)phenoxy]-2-(2,4,6-trimethylphenyl)- (CA INDEX NAME)

10

IT 187536-93-2P 852262-88-3P
(intermediate; preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)

RN 187536-93-2 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-bromo- (CA INDEX NAME)

RN 852282-88-3 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-chloro- (CA INDEX NAME)

IT 9002-88-4 9003-07-0, Polypropylene 9003-53-6
, Polystyrol 144C 9003-54-7, Acrylonitrile-styrene copolymer
9003-56-9, Acrylonitrile-butadiene-styrene copolymer
106677-58-1, Terluran GP 22
(preparation of cyanonaphthalenedicarboximide derivs. and related
compds. to protect organic material from light damage)
RN 9002-88-4 HCPLUS
CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1

CMF C2 H4

RN 9003-07-0 HCPLUS
CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1

CMF C3 H6

RN 9003-53-6 HCPLUS
CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5

CMF C8 H8

RN 9003-54-7 HCAPLUS
 CN 2-Propenenitrile, polymer with ethenylbenzene (CA INDEX NAME)

CM 1

CRN 107-13-1
 CMF C3 H3 N

CM 2

CRN 100-42-5
 CMF C8 H8

RN 9003-56-9 HCAPLUS
 CN 2-Propenenitrile, polymer with 1,3-butadiene and ethenylbenzene (CA INDEX NAME)

CM 1

CRN 107-13-1
 CMF C3 H3 N

CM 2

CRN 106-99-0
 CMF C4 H6

CM 3

CRN 100-42-5

CMF C8 H8

RN 106677-58-1 HCPLUS

CN 2-Propenenitrile, polymer with 1,3-butadiene and ethenylbenzene, graft
(CA INDEX NAME)

CM 1

CRN 107-13-1

CMF C3 H3 N

CM 2

CRN 106-99-0

CMF C4 H6

CM 3

CRN 100-42-5

CMF C8 H8

IC ICM C07D221-14

CC 37-6 (Plastics Manufacture and Processing)

Section cross-reference(s): 17, 45, 46, 62, 63

IT Light stabilizers

UV stabilizers

(preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)

IT Acrylic polymers, uses

Polycarbonates, uses

Polyesters, uses

Polyolefins

Polyurethanes, uses

Polyvinyl acetals
 Polyvinyl butyralis
 (preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)
 IT 852282-83-8P 852282-84-9P 852282-85-0P 852282-86-1P
 852282-87-2P 852282-89-4P 852282-90-7P
 852282-91-3P 852282-93-9P 852282-93-0P
 852282-94-1P 852282-95-2P 852282-96-3P
 852282-97-4P 852282-98-5P
 (UV absorber; preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)
 IT 187536-93-2P 852282-88-3P
 (intermediate; preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)
 IT 9002-88-4 9003-07-0, Polypropylene 9003-49-0,
 Polybutyl acrylate 9003-53-6, Polystyrol 144C
 9003-54-7, Acrylonitrile-styrene copolymer 9003-56-9
 , Acrylonitrile-butadiene-styrene copolymer 9003-63-8, Polybutyl methacrylate 9011-14-7, Polymethyl methacrylate 24936-68-3,
 Makrolon 2800, uses 24968-12-5, Polybutylene terephthalate
 25038-59-9, Polyclear T 94, uses 106677-58-1, Terluran GP 22
 (preparation of cyanonaphthalenedicarboximide derivs. and related compds. to protect organic material from light damage)
 REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 2 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2005:141200 HCPLUS Full-text
 DOCUMENT NUMBER: 142:254568
 TITLE: Methods and compositions for increasing the efficacy of biologically-active ingredients such as antitumor agents
 INVENTOR(S): Windsor, J. Brian; Roux, Stan J.; Lloyd, Alan M.; Thomas, Collin E.
 PATENT ASSIGNEE(S): Board of Regents, the University of Texas System, USA
 SOURCE: PCT Int. Appl., 243 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2005014777	A2	20050217	WO 2003-US32667	20031016
WO 2005014777	A3	20050915		<--
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JE, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,				

NE, SN, TD, TG CA 2502148	A1	20050217	CA 2003-2502148 <--	20031016
AU 2003304398	A1	20050225	AU 2003-304398 <--	20031016
EP 1576150	A2	20050921	EP 2003-816736 <--	20031016
EP 1576150	A3	20051102		
R: AT, BE, CH, PT, IE, SI, US 2006276339	DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK			
	A1	20061207	US 2006-531744 <--	20060123
PRIORITY APPLN. INFO.:			US 2002-418803P <--	P 20021016
			WO 2003-US32667 <--	W 20031016

ED Entered STN: 18 Feb 2005
 AB The invention provides methods and compns. for modulating the sensitivity of cells to cytotoxic compds. and other active agents. In accordance with the invention, compns. are provided comprising combinations of ectophosphatase inhibitors and active agents. Active agents include antibiotics, fungicides, herbicides, insecticides, chemotherapeutic agents, and plant growth regulators. By increasing the efficacy of active agents, the invention allows use of compns. with lowered concns. of active ingredients.
 IT 9003-28-5
 (Polyvis O-SH; methods and compns. for increasing efficacy of biol. active ingredients such as antitumor agents)
 RN 9003-28-5 HCPLUS
 CN 1-Butene, homopolymer (CA INDEX NAME)

CM 1

CRN 106-98-9
CMF C4 H8

IT 1491-41-4 2668-92-0 9003-18-3
 9003-27-4 9003-29-6 9010-77-2
 9017-80-5 25095-34-1
 (methods and compns. for increasing efficacy of biol. active ingredients such as antitumor agents)
 RN 1491-41-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[(diethoxyphosphinyl)oxy]- (CA INDEX NAME)

RN 2668-92-0 HCPLUS

CN Phosphorothioic acid, O-(1,3-dioxo-1H-benz[de]isoquinolin-2(3H)-yl)
O,O-diethyl ester (CA INDEX NAME)

RN 9003-18-3 HCPLUS

CN 2-Propenenitrile, polymer with 1,3-butadiene (CA INDEX NAME)

CM 1

CRN 107-13-1
CMF C3 H3 N

CM 2

CRN 106-99-0
CMF C4 H6

RN 9003-27-4 HCPLUS

CN 1-Propene, 2-methyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 115-11-7
CMF C4 H8

RN 9003-29-6 HCPLUS

10/579,441

CN Butene, homopolymer (CA INDEX NAME)

CM 1

CRN 25167-67-3

CMF C4 H8

CCI IDS

CM 2

CRN 106-97-8

CMF C4 H10

RN 9010-77-9 HCPLUS

CN 2-Propenoic acid, polymer with ethene (CA INDEX NAME)

CM 1

CRN 79-10-7

CMF C3 H4 O2

CM 2

CRN 74-85-1

CMF C2 H4

RN 9017-80-5 HCPLUS

CN Benzenemethanaminium, ar-ethenyl-N,N,N-trimethyl-, chloride (1:1),
homopolymer (CA INDEX NAME)

CM 1

CRN 26616-35-3

CMF C12 H18 N . Cl

CCI IDS

D1—CH=CH2

Me3+N—CH2—D1

● Cl⁻

RN 25085-34-1 HCPLUS
 CN 2-Propenoic acid, polymer with ethenylbenzene (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

H2C=CH—Ph

CM 2

CRN 79-10-7
 CMF C3 H4 O2

IT 9002-88-4
 (oxidized; methods and compns. for increasing efficacy of biol.
 active ingredients such as antitumor agents)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
 CMF C2 H4

H2C=CH2

IC ICM C12N
 CC 1-6 (Pharmacology)
 IT Stabilizing agents
 (Nuostabe V 1913; methods and compns. for increasing efficacy of
 biol. active ingredients such as antitumor agents)
 IT Amino acids, biological studies
 Aminoglycosides
 Androgens
 Asbestos
 Asphalt
 Bentonite, biological studies
 Canola oil
 Carbon black, biological studies
 Caseins, biological studies
 Castor oil
 Chlorinated natural rubber
 Coal tar
 Coconut oil
 Cod liver oil
 Collagens, biological studies
 Corn oil
 Corticosteroids, biological studies
 Cottonseed oil
 Creosote oil
 Cytokinins
 Diatomite
 Epoxy resins, biological studies
 Essential oils
 Feldspar-group minerals
 Fertilizers
 Gasoline
 Gelatins, biological studies
 Gibberellins
 Glycopeptides
 Granite, biological studies
 Growth regulators, plant
 Humic acids
 Jojoba oil
 Kaolin, biological studies
 Kerosene
 Lard
 Ligoine
 Lime (chemical)
 Linseed oil
 Macrolides
 Mica-group minerals, biological studies
 Naphthenic acids, biological studies
 Naphthenic oils
 Natural products, pharmaceutical
 Nitrile rubber, biological studies
 Olive oil
 Palm oil
 Paraffin oils
 Paraffin waxes, biological studies
 Peanut oil
 Perlite
 Petrolatum
 Petroleum hydrocarbons
 Petroleum resins
 Petroleum spirits

Phenols, biological studies
 Phosphoproteins
 Plastics, biological studies
 Polyamide fibers, biological studies
 Polyamides, biological studies
 Polyenes
 Polyoxyalkylenes, biological studies
 Polyvinyl butyrals
 Progestogens
 Protein hydrolyzates
 Pumice
 Pyrethrins
 Rape oil
 Resins
 Rosin
 Rubber, biological studies
 Safflower oil
 Sand
 Saponins
 Shale
 Shellac
 Silica gel, biological studies
 Soapstone
 Soybean oil
 Tall oil
 Tallow
 Tetracyclines
 Tung oil
 Turpentine
 Waxes
 Wood tar
 Zeins
 (methods and compns. for increasing efficacy of biol. active
 ingredients such as antitumor agents)
 IT 9003-28-5
 (Polyvis O-SH; methods and compns. for increasing efficacy of biol.
 active ingredients such as antitumor agents)
 IT 1314-13-2, Zinc oxide (ZnO), biological studies 1314-23-4, Zirconium
 oxide (ZrO₂), biological studies 1314-80-3, Phosphorus sulfide
 (P₂S₅) 1314-84-7, Zinc phosphide (Zn₃P₂) 1317-36-8, Lead oxide
 (PbO), biological studies 1317-38-0, Copper oxide (CuO), biological
 studies 1317-39-1, Copper oxide (Cu₂O), biological studies
 1318-00-9, Vermiculite (Mg_{0.33}[Mg₂₋₃(Al₀₋₁Fe₀₋₁)₀₋₁]Si_{2.33-3.33}Al_{0.67-1.67})(OH)2010.4H₂O) 1319-53-5, Malachite (Cu₂(CO₃)(OH)₂) 1319-77-3
 1320-67-8 1320-79-2 1322-98-1 1323-19-9 1327-31-7, Lead
 arsenate hydroxide (Pb₅(AsO₄)₃(OH)) 1327-43-1 1327-44-2
 1327-53-3, Arsenic oxide (As₂O₃) 1328-53-6, C.I. Pigment Green 7
 1330-16-1 1330-20-7, biological studies 1330-43-4, Boron sodium
 oxide (B₄Na₂O₇) 1330-85-4 1332-40-7 1332-65-6, Copper chloride
 hydroxide (Cu₂Cl(OH)₃) 1332-77-0, Boron potassium oxide (B₄K₂O₇)
 1333-08-0 1333-16-0 1333-22-8, Copper hydroxide sulfate
 (Cu₄(OH)₆(SO₄)) 1333-83-1, Sodium fluoride (Na(HF₂)) 1334-75-4
 1334-77-6 1335-30-4 1336-15-8, Calcium copper chloride oxide
 1336-21-6, Ammonium hydroxide ((NH₄)(OH)) 1340-69-8, Quaternium
 18-bentonite 1343-88-0 1343-98-2, Silicic acid 1344-00-9
 1344-08-7, Sodium sulfide (Na₂(Sx)) 1344-09-8 1344-28-1, Aluminum
 oxide (Al₂O₃), biological studies 1344-43-0, Manganese oxide (MnO),
 biological studies 1344-67-8, Copper chloride 1344-72-5
 1344-73-6 1344-74-7 1344-81-6, Calcium sulfide (Ca(Sx))
 1398-61-4, Chitin 1405-89-6, Bacitracin zinc 1420-07-1 1444-64-0

1454-85-9, 1-Heptadecanol	1461-22-9	1490-04-6	1491-41-4
1563-66-2	1570-64-5	1582-09-8	1594-56-5
1610-18-0	1634-78-2	1646-87-3	1646-88-4
1689-99-2	1701-93-5	1702-17-6	1746-01-6
1757-18-2	1762-95-4	1771-07-9	1776-83-6
1891-95-8	1897-45-6	1910-42-5	1912-24-9
dealkylated	1912-25-0	1912-26-1	1918-00-9
1918-02-1D, alkanolamine salt	1918-08-7	1918-11-2	1918-13-4
1918-16-7	1918-18-9	1928-43-4	1928-45-6
1928-57-0	1928-58-1	1929-73-3	1929-77-7
1940-43-8	1954-81-0	1966-58-1	1967-16-4
1982-69-0	1983-10-4	1984-06-1	2008-39-1
2016-48-0	2032-59-9	2032-65-7	2050-99-9
2104-64-5	2104-96-3	2122-70-5	2155-70-6
2163-79-3	2163-80-6	2164-07-0	2164-08-1
2179-25-1	2212-54-6	2212-63-7	2212-67-1
2235-54-3	2244-21-5	2275-06-1	2275-14-1
2279-64-3	2280-44-6D, D-Glucopyranose, oligomeric, decyl octyl		
glycosides	2282-34-0	2300-66-5	2302-17-2
2310-17-0	2312-76-7	2321-53-1	2327-02-8
2402-95-1	2425-06-1	2425-10-7	2425-25-4
2439-00-1	2439-99-8	2440-22-4	2463-84-5
2492-26-4	2497-06-5	2497-07-6	2532-49-2
2540-82-1	2544-94-7	2545-59-7	2545-60-0
2588-03-6	2588-04-7	2588-05-8	2588-06-9
2593-15-9	2595-54-2	2597-03-7	2597-92-4
2597-97-9	2600-69-3	2610-86-8	2624-17-1
2635-10-1	2636-26-2	2637-34-5, 2(1H)-Pyridinethione	2642-71-9
2650-18-2	2655-14-3	2655-15-4	2655-19-8
2668-92-0	2669-32-1	2674-91-1	2675-77-6
2686-99-9	2689-43-2	2699-79-8, Sulfuryl fluoride	2701-86-2
2703-13-1	2759-71-9	2764-72-9	2778-04-3
2797-51-5	2809-21-4	2813-95-8	2875-41-4D, N-alkyl derivs.
2893-78-9	2905-69-3	2917-32-0	2921-88-2
2941-55-1	2953-29-9	2961-61-7	2961-62-8
(methods and compns. for increasing efficacy of biol. active ingredients such as antitumor agents)			
IT 7600-50-2	7601-54-9	7631-89-2	7631-90-5
Nitric acid sodium salt, biological studies		7631-95-0	7631-99-4
7632-00-0		7632-04-4	
7632-05-5	7646-85-7, Zinc chloride (ZnCl ₂), biological studies		
7646-93-7	7647-01-0, Hydrochloric acid, biological studies		
7647-14-5, Sodium chloride (NaCl), biological studies		7647-15-6	
Sodium bromide (NaBr), biological studies		7664-38-2, Phosphoric acid, biological studies	
7664-39-3, Hydrofluoric acid, biological studies		7664-41-7, Ammonia, biological studies	
7664-93-9, Sulfuric acid, biological studies		7664-93-9, Potassium iodide (KI), biological studies	
7681-11-0, Sodium fluoride (NaF), biological studies		7681-49-4, Sodium fluoride (NaF), biological studies	
7681-52-9		7681-53-0	7681-57-4
7681-65-4, Copper iodide (CuI)		7681-82-5, Sodium iodide (NaI), biological studies	
7681-93-8		7696-12-0	7697-37-2, Nitric acid, biological studies
7700-17-6		7704-34-9, Sulfur, biological studies	
7705-08-0, Iron chloride (FeCl ₃), biological studies		7720-78-7	
7721-15-5	7722-64-7	7722-84-1, Hydrogen peroxide (H ₂ O ₂), biological studies	
7722-88-5		7723-14-0, Phosphorus, biological studies	
7726-95-6, Bromine, biological studies		7727-21-1	
7727-37-9, Nitrogen, biological studies		7727-43-7	7732-18-5,
Water, biological studies	7733-02-0	7738-94-5, Chromic acid (H ₂ CrO ₄)	
7757-79-1, Nitric acid potassium salt, biological studies			
7757-82-6, Sulfuric acid disodium salt, biological studies		7757-83-7	
7758-02-3, Potassium bromide (KBr), biological studies		7758-05-6	

- 7758-09-0 7758-11-4 7758-16-9 7758-19-2 7758-29-4 7758-87-4
 7758-89-6, Copper chloride (CuCl) 7758-98-7, Sulfuric acid
 copper(2+) salt (1:1), biological studies 7758-99-8 7761-88-8,
 Nitric acid silver(1+) salt, biological studies 7772-98-7
 7774-29-0, Mercury iodide (HgI₂) 7775-09-9 7775-11-3 7775-14-6
 7775-19-1 7775-27-1 7775-41-9, Silver fluoride (AgF) 7778-18-9
 7778-39-4, Arsenic acid (H₃AsO₄) 7778-44-1 7778-50-9 7778-53-2
 7778-54-3 7778-66-7 7778-70-3 7778-73-6 7778-77-0 7778-80-5,
 Sulfuric acid dipotassium salt, biological studies 7779-27-3
 7782-42-5, Graphite, biological studies 7782-49-2, Selenium,
 biological studies 7782-50-5, Chlorine, biological studies
 7782-63-0 7782-68-5, Iodic acid (HIO₃) 7783-06-4, Hydrogen sulfide
 (H₂S), biological studies 7783-18-8 7783-20-2, Sulfuric acid
 diammmonium salt, biological studies 7783-28-0 7783-33-7
 7783-85-9 7783-90-6, Silver chloride (AgCl), biological studies
 7783-96-2, Silver iodide (AgI) 7784-09-0 7784-24-9 7784-26-1
 7784-38-5 7784-40-9 7784-44-3 7784-46-5 7785-87-7 7785-88-8
 7786-30-3, Magnesium chloride (MgCl₂), biological studies 7786-34-7
 7786-80-3 7786-81-4 7789-00-6 7789-05-5 7789-12-0 7789-29-9,
 Potassium fluoride (KHF₂) 7789-38-0 7790-92-3, Hypochlorous acid
 7791-03-9 7791-18-6 7791-25-5, Sulfuryl chloride 7803-51-2,
 Phosphine 7803-63-6 8001-35-2, Toxaphene 8001-50-1, Stropane
 8003-06-3 8003-19-8D, derivs. 8004-87-3, C.I. Basic Violet 1
 8005-46-7 8011-63-0, Bordeaux mixture 8012-69-9 8013-17-0
 8015-35-8 8018-01-7 8022-00-2 8023-58-3, Sustane 3 8029-29-6,
 Bandane 8030-15-7, Turgasept 8030-53-3 8063-85-2 8064-49-1
 8065-36-9 8065-48-3 8066-01-1 8068-77-7 8070-76-6 8071-40-7
 8073-53-8 8075-57-8 8076-84-4 9000-07-1, Carrageenan
 9000-28-6, Gum ghatti 9000-30-0, Guar gum 9000-40-2, Carob gum
 9000-65-1, Gum tragacanth 9001-73-4, Papain 9002-86-2 9003-01-4
 9003-05-8 9003-11-6D, alkyl ethers, I₂ complexes 9003-18-3
 9003-27-4 9003-29-6 9004-32-4 9004-34-6,
 Cellulose, biological studies 9004-57-3 9004-58-4 9004-62-0
 9004-65-3 9004-67-5 9004-70-0 9004-82-4 9005-25-8D, Starch,
 α -type, amycol, biological studies 9005-38-3 9005-53-2,
 Lignin, biological studies 9006-42-2, Metiram 9010-77-9
 9012-76-4, Chitosan 9015-68-3, Asparaginase 9016-00-6,
 Poly[oxy(dimethylsilylene)] 9017-80-5 9038-29-3
 9080-17-5, Ammonium sulfide ((NH₄)₂(Sx)) 10007-85-9 10022-31-8
 10024-97-2, Nitrogen oxide (N₂O), biological studies 10025-67-9,
 Sulfur chloride (S₂Cl₂) 10025-85-1, Nitrogen chloride (NCI₃)
 10028-15-6, Ozone, biological studies 10028-22-5 10028-24-7
 10034-85-2, Hydriodic acid 10039-54-0 10042-84-9 10043-01-3
 10043-35-3, Boric acid (H₃BO₃), biological studies 10043-52-4,
 Calcium chloride (CaCl₂), biological studies 10043-67-1 10045-86-0
 10045-89-3 10049-04-4, Chlorine oxide (ClO₂) 10058-23-8
 10061-02-6 10101-39-0 10101-41-4 10101-50-5 10101-97-0
 10102-90-6 10103-46-5 10103-48-7 10103-50-1 10108-64-2,
 Cadmium chloride (CdCl₂) 10112-91-1, Mercury chloride (Hg₂Cl₂)
 10117-38-1 10124-36-4 10124-41-1 10124-43-3 10124-50-2
 10124-65-9 10125-13-0 10137-74-3 10138-04-2 10213-78-2
 10233-94-0 10248-55-2 10254-48-5 10257-54-2 10265-92-6
 10279-57-9 10290-12-7 10294-66-3 10309-97-4 10311-84-9
 10326-21-3 10326-24-6 10331-57-4 10361-16-7 10361-37-2, Barium
 chloride (BaCl₂), biological studies 10377-60-3 10380-28-6
 10389-50-1 10402-15-0 10402-16-1 10453-86-8 10486-00-7
 (methods and compns. for increasing efficacy of biol. active
 ingredients such as antitumor agents)
 IT 20859-73-8, Aluminum phosphide (AlP) 20940-37-8 21087-64-9
 21267-72-1 21351-39-3 21452-18-6 21540-35-2 21548-32-3

21564-17-0 21609-90-5 21645-51-2, Aluminum hydroxide (Al(OH)3),
 biological studies 21652-27-7 21689-84-9 21725-46-2 21832-25-7
 21908-53-2, Mercury oxide (HgO) 21921-96-0 21923-23-9
 22205-45-4, Copper sulfide (Cu2S) 22212-55-1 22212-56-2
 22221-10-9 22221-12-1 22221-14-3 22224-92-6 22232-15-1
 22232-20-8 22232-26-4 22232-28-6 22248-79-9 22259-30-9
 22323-45-1 22330-14-9 22439-40-3 22569-74-0 22781-23-3
 22894-47-9 22898-01-7 22936-75-0 22936-86-3 23031-36-9
 23103-98-2 23121-99-5 23135-22-0 23184-66-9 23214-92-8
 23319-66-6, biological studies 23422-53-9 23505-41-1 23526-02-5
 23560-59-0 23564-05-8 23564-06-9 23710-76-1 23947-60-6
 23950-58-5 23950-58-5D, metabolites 24017-47-8 24124-25-2
 24151-93-7 24307-26-4 24310-40-5 24310-41-6 24353-58-0
 24353-61-5 24556-64-7 24556-65-8 24579-73-5 24691-76-7
 24691-80-3 24927-67-1 24934-91-6 25013-16-5 25035-26-1
 25059-78-3 25085-34-1 25086-29-7 25154-52-3 25155-30-0
 25167-82-2 25167-83-3 25167-83-3D, alkylamine salt 25167-83-3D,
 coco-amine salt 25168-06-3 25168-15-4 25168-26-7 25171-63-5
 25182-03-0 25254-50-6 25311-71-1 25316-56-7 25322-20-7
 25322-68-3D, C10-C14 alkyl ethers, phosphates 25322-68-3D, alkyl
 ethers 25339-17-1, Isodecanol 25366-23-8 25402-06-6 25550-58-7
 25567-55-9 25568-84-7 25606-41-1 25655-41-8 25671-46-9
 25956-17-6 26002-80-2 26027-38-3 26062-79-3 26087-47-8
 26129-32-8 26172-55-4 26248-24-8 26259-45-0 26264-05-1
 26354-18-7 26389-78-6 26399-36-0 26419-73-8 26530-09-6
 26530-20-1 26532-22-9 26532-23-0 26532-24-1 26532-25-2
 26545-53-9 26617-87-8D, C10-18 alkyl derivs. 26617-87-8D, C12-15
 alkyl derivs. 26617-87-8D, alkyl derivs. 26628-22-8, Sodium azide
 (Na(N3)) 26648-01-1 26761-40-0 26836-07-7 26856-61-1
 26896-20-8, Neodecanoic acid 26952-20-5 27041-82-3 27041-84-5
 27176-87-0 27177-77-1 27193-28-8 27193-86-8 27236-65-3
 27252-87-5 27253-29-8 27304-13-8 27306-78-1 27323-41-7
 27386-64-3 27458-93-1, Isooctadecanol 27519-02-4 27541-88-4
 27554-26-3 27605-76-1 27636-20-0D, acetalized 27668-52-6
 27923-56-4 27954-37-6 27987-00-4 28079-04-1 28086-13-7
 28159-98-0 28217-97-2 28249-77-6 28300-74-5 28382-15-2
 28401-39-0 28434-00-6 28434-01-7 28558-32-9 28559-00-4
 28675-11-8 28730-17-8 28772-56-7 28801-69-6 28805-78-9
 28837-97-0 28855-27-8 28956-64-1 29012-39-3D, derivs.
 29061-61-8 29082-74-4 29091-05-2 29091-21-2 29173-31-7
 29232-93-7 29385-43-1 29450-57-5 29457-72-5 29672-19-3
 29804-22-6 29868-16-4 29871-13-4 29932-85-2 29973-13-5
 30043-49-3 30043-55-1 30087-47-9 30136-13-1 30143-22-7
 30284-78-7 30304-30-4 30507-70-1 30525-89-4, Paraformaldehyde
 30551-20-3, Dodecadienal 30560-19-1 30622-37-8 30820-22-5
 30864-28-9 30894-16-7 30979-48-7 30981-48-7 31089-39-1
 31218-83-4 31251-03-3 31291-59-5 31366-95-7 31366-97-9
 31393-98-3 31441-78-8, Purinethiol 31502-19-9 31512-74-0
 31632-68-5 31848-11-0 31895-21-3 31895-22-4 31972-43-7
 31972-44-8 32289-58-0 32345-29-2 32357-46-3 32407-99-1
 32426-10-1 32426-11-2 32534-66-0 32581-06-9 32771-64-5
 32861-85-1 32889-48-8 33113-08-5 33189-72-9 33213-65-9
 (methods and compns. for increasing efficacy of biol. active
 ingredients such as antitumor agents)
 IT 9062-88-4
 (oxidized; methods and compns. for increasing efficacy of biol.
 active ingredients such as antitumor agents)

DOCUMENT NUMBER: 141:244683
 TITLE: Multilayer golf ball with translucent cover
 INVENTOR(S): Morgan, William E.; Harris, Kevin M.; Ricci, Shawn
 PATENT ASSIGNEE(S): Acushnet Company, USA
 SOURCE: U.S. Pat. Appl. Publ., 35 pp.
 CODEN: USXECO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004176531	A1	20040909	US 2003-384422	20030307 ---
US 6949595	B2	20050927		
PRIORITY APPLN. INFO.:			US 2003-384422	20030307 ---

ED Entered STN: 10 Sep 2004

AB Title golf ball comprises a center, a cover, and, at least one intermediate layer disposed between the center and the cover, wherein the cover is formed from a substantially translucent composition comprising isocyanate and the intermediate layer is comprised of pigment. The cover is preferably formed from a polyurethane composition or a reaction product of isocyanate. The cover is further comprised at least one color stabilizer and/or an optical enhancer. Preferably, the intermediate layer contributes to the overall appearance of the ball and can contain pigment and/or optical brighteners.

IT 25608-26-8, Surlyn 8945

(Surlyn 7940-blends, inner cover layer; multilayer golf ball with translucent cover)

RN 25608-26-8 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, polymer with ethene, sodium salt (CA INDEX NAME)

CM 1

CRN 25053-53-6

CMF (C4 H6 O2 . C2 H4)x

CCI PMS

CM 2

CRN 79-41-4

CMF C4 H6 O2

CM 3

CRN 74-85-1

CMF C2 H4

H₂C=CH₂

IT 2478-20-6, Solvent Yellow 44
 (pigment, inner cover layer; multilayer golf ball with translucent cover)
 RN 2478-20-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-
 (CA INDEX NAME)

IC ICM C08L075-04
 INCL 524590000
 CC 38-3 (Plastics Fabrication and Uses)
 IT Amines, uses
 (hindered, light stabilizer; multilayer golf ball with translucent cover)
 IT Polysiloxanes, uses
 (light stabilizer; multilayer golf ball with translucent cover)
 IT Fluorescent brighteners
 Golf balls
 Light stabilizers
 Translucent materials
 UV stabilizers
 (multilayer golf ball with translucent cover)
 IT Polyureas
 Polyurethanes, uses
 (polyoxyalkylene, outer cover layer; multilayer golf ball with translucent cover)
 IT 25608-26-8, Surlyn 8945
 (Surlyn 7940-blends, inner cover layer; multilayer golf ball with translucent cover)
 IT 23328-53-2, Tinuvin 571 41556-26-7, Bis-(1,2,2,6,6-pentamethyl-4-piperidinyl)-sebacate 52829-07-9, Bis-(2,2,6,6-tetramethyl-4-piperidinyl)-sebacate 63843-89-0 65447-77-0, Dimethyl succinate-4-hydroxy-2,2,6,6-tetra-methyl-1-piperidine ethanol copolymer 79720-19-7, 3-Dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione 122586-52-1, Bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate 124172-53-8 164578-16-9, Methyl[3-((2,2,6,6-tetramethyl-4-piperidinyl)oxy)propyl]silanediol homopolymer 164648-93-5
 (light stabilizer; multilayer golf ball with translucent cover)

IT 2478-26-8, Solvent Yellow 44
 (pigment, inner cover layer; multilayer golf ball with translucent cover)

REFERENCE COUNT: 45 THERE ARE 45 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 4 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2004:739934 HCAPLUS Full-text
 DOCUMENT NUMBER: 141:244673
 TITLE: Multilayer golf ball with translucent polyurethane cover
 INVENTOR(S): Morgan, William E.; Harris, Kevin M.; Ricci, Shawn
 PATENT ASSIGNEE(S): USA
 SOURCE: U.S. Pat. Appl. Publ., 35 pp.
 CODEN: USXXCO
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004176185	A1	20040909	US 2003-384414 <--	20030307
US 2004180734	A1	20040916	US 2003-748209 <--	20031231
US 2004178534	A1	20040916	US 2003-748211 <--	20031231
PRIORITY APPLN. INFO.:			US 2003-384414 <--	A2 20030307

ED Entered STN: 10 Sep 2004

AB Title golf ball comprises a ball precursor and a substantially translucent cover comprising polyurethane and having greater than 80% of an outer surface thereof covered by dimples.

IT 25608-26-8, Surlyn 8945
 (Surlyn 7940-blends, inner cover layer; production of multilayer golf ball with translucent polyurethane cover)

RN 25608-26-8 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, polymer with ethene, sodium salt (CA INDEX NAME)

CM 1

CRN 25053-53-6
 CMF (C4 H6 O2 . C2 H4)x
 CCI PMS

CM 2

CRN 79-41-4
 CMF C4 H6 O2

CM 3

CRN 74-85-1
CMF C2 H4H2C=CH2

IT 2478-20-8, Solvent Yellow 44
 (inner cover layer; production of multilayer golf ball with translucent polyurethane cover)
 RN 2478-20-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-
 (CA INDEX NAME)

IC ICM A63B037-12
 ICS A63B037-14
 INCL 473371000; 473378000
 CC 38-3 (Plastics Fabrication and Uses)
 IT Amines, uses
 (hindered, light stabilizer; production of multilayer golf ball with translucent polyurethane cover)
 IT Polysiloxanes, uses
 (light stabilizer; production of multilayer golf ball with translucent polyurethane cover)
 IT Polyurethanes, uses
 (polyoxyalkylene-, outer cover layer; production of multilayer golf ball with translucent polyurethane cover)
 IT Golf balls
 Light stabilizers
 Translucent materials
 UV stabilizers
 (production of multilayer golf ball with translucent polyurethane cover)
 IT 25608-26-8, Surlyn 8945
 (Surlyn 7940-blends, inner cover layer; production of multilayer golf ball with translucent polyurethane cover)
 IT 41556-26-7, Tinuvin 765
 (UV stabilizers; production of multilayer golf ball with translucent polyurethane cover)
 IT 2478-20-8, Solvent Yellow 44

(inner cover layer; production of multilayer golf ball with translucent polyurethane cover)

IT 23328-53-2, Tinuvin 571 52829-07-9, Bis-(2,2,6,6-tetramethyl-4-piperidinyl)-sebacate 63843-89-0 65447-77-0, Dimethyl succinate-4-hydroxy-2,2,6,6-tetra-methyl-1-piperidine ethanol copolymer 79720-19-7, 3-Dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidine-2,5-dione 122586-52-1, Bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate 124172-53-8 164578-16-9, Methyl[13-(2,2,6,6-tetramethyl-4-piperidinyl)oxy]propyl]silanediol homopolymer 164648-93-5 (light stabilizer; production of multilayer golf ball with translucent polyurethane cover)

L22 ANSWER 5 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:739933 HCAPLUS Full-text

ACCESSION NUMBER: 2004.75555
DOCUMENT NUMBER: 141:344673

DOCUMENT NUMBER: 141:244672
TITLE: Multilayer golf ball with translucent cover containing polyurea

INVENTOR(S): Morgan, William E.; Harris, Kevin M.; Ricci, Shawn

INVENTOR(S): MOLY
PATENT ASSIGNEE(S): USA

PATENT ASSIGNEE(S): USA U.S. Pat. Appl. No. 35,000
SOURCE:

SOURCE: U.S. Pat. App.
SEARCHED INDEXED

CODEN:

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 2004176184	A1	20040909	US 2003-384412 -->	20030307
US 2005148409	A1	20050707	US 2005-70574 -->	20050302
PRIORITY APPLN. INFO.:			US 2003-384412	A1 20030307

ED Entered STN: 10 Sep 2004

AB Title golf ball comprises a ball precursor and a substantially translucent cover containing polyurea and having greater than 80% of an outer surface thereof covered by dimples. The golf ball includes a center, a translucent cover, and, optionally, at least one intermediate layer disposed between the center and the cover. The cover is preferably formed from a polyurethane composition or a reaction product of polyisocyanate. The cover is further comprised at least one color stabilizer and/or an optical enhancer. Preferably, the innermost layer contributes to the overall appearance of the ball and can contain pigment and/or optical brighteners.

IT 25608-26-8, Surlyn 8945

(Surlyn 7940-blends, inner cover layer; production of multilayer golf ball with translucent cover containing polyurea)

RN 25608-26-8 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, polymer with ethene, sodium salt (CA INDEX NAME)

CM 1

CRN 25053-53-6

CMF (C₄H₆O₂ · C₂H₄)_x

CCI PMS

CM 2

CRN 79-41-4
 CMF C4 H6 O2

CM 3

CRN 74-85-1
 CMF C2 H4

IT 2478-20-8, Solvent Yellow 44
 (pigment, inner cover layer; production of multilayer golf ball with translucent cover containing polyurea)
 RN 2478-20-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-
 (CA INDEX NAME)

IC ICM A63B037-12
 ICS A63B037-14
 INCL 473371000; 473378000
 CC 38-3 (Plastics Fabrication and Uses)
 IT Amines, uses
 (hindered, light stabilizer; production of multilayer golf ball with translucent cover containing polyurea)
 IT Polysiloxanes, uses
 (light stabilizer; production of multilayer golf ball with translucent cover containing polyurea)
 IT Fluorescent brighteners
 Golf balls
 Light stabilizers
 Translucent materials
 UV stabilizers
 (production of multilayer golf ball with translucent cover containing

- polyurea)
- IT 25608-26-8, Surlyn 8945
 (Surlyn 7940-blends, inner cover layer; production of multilayer golf ball with translucent cover containing polyurea)
- IT 41556-26-7, Tinuvin 765 52829-07-9, Bis-(2,2,6,6-tetramethyl-4-piperidinyl)-sebacate 63843-89-0, n-Butyl-(3,5-di-tert-butyl-4-hydroxybenzyl) bis(1,2,2,6,6-pentamethyl-4-piperidinyl) malonate 65447-77-0, Dimethyl succinate-4-hydroxy-2,2,6,6-tetra-methyl-1-piperidine ethanol copolymer 79720-19-7, 3-Dodecy1-1-(2,2,6,6-tetramethyl-4-piperidylpyrrolidone-2,5-dione 122586-52-1, Bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate 124172-53-8, N,N'-1,6-Hexanediylibis[N-(2,2,6,6-tetramethyl-4-piperidinyl)-formamide] 164578-16-9, Methyl[3-[(2,2,6,6-tetramethyl-4-piperidinyl)oxylpropyl]silanediol homopolymer 164648-93-5 (light stabilizer; production of multilayer golf ball with translucent cover containing polyurea)
- IT 2478-20-8, Solvent Yellow 44
 (pigment, inner cover layer; production of multilayer golf ball with translucent cover containing polyurea)

L22 ANSWER 6 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:852844 HCPLUS [Full-text](#)

DOCUMENT NUMBER: 139:351843

TITLE: Liquid ink and recording apparatus

INVENTOR(S): Ushirogouchi, Toru; Tanuma, Chiaki; Ohtsu, Kazuhiko; Akiyama, Ryozo; Hiroki, Masashi; Endo, Yoshito

PATENT ASSIGNEE(S): Toshiba Tec Kabushiki Kaisha, Japan; Kabushiki Kaisha Toshiba

SOURCE: Eur. Pat. Appl., 75 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1357159	A2	20031029	EP 2003-9283 <--	20030424
EP 1357159	A3	20040102		
R: AT, BE, CH, PT, IE, SI,	DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK			
JP 2004002668	A	20040108	JP 2003-4862 <--	20030110
US 2003231234	A1	20031218	US 2003-420534 <--	20030422
US 6959986 CN 1453317	B2 A	20051101 20031105	CN 2003-122927 <--	20030424
CN 1689810	A	20051102	CN 2005-10056237 <--	20030424
US 2005168556	A1	20050804	US 2005-95710 <--	20050331
US 7108367 US 2005168553	B2 A1	20060919 20050804	US 2005-96162 <--	20050331
US 7125112 US 2006274136	B2 A1	20061024 20061207	US 2006-502874 <--	20060811

PRIORITY APPLN. INFO.:

JP 2002-122864	A 20020424
<--	
JP 2003-4862	A 20030110
<--	
US 2003-420534	A3 20030422
<--	
CN 2003-122927	A3 20030424
<--	
US 2005-95710	A3 20050331

OTHER SOURCE(S): MARPAT 139:351843

ED Entered STN: 31 Oct 2003

AB There is disclosed a liquid ink comprising a photo acid generating agent that generates an acid upon irradiation with light, a coloring component, and ≥ 1 solvent that is polymerized in the presence of an acid. It is preferable that (i) the amount of the photo acid generating agent contained in the liquid ink falls within a range of 1-10 parts relative to 100 parts of the solvent, (ii) the coloring component consists of a pigment, and (iii) the solvent contains ≥ 50 parts of an acid polymerizable compound, wherein the acid polymerizable compound polymerized in the presence of the acid has an alicyclic skeleton and/or an aliphatic skeleton having a viscosity of ≤ 50 mPa·s and a b.p. of $\geq 150^\circ$ under room temperature and atmospheric pressure. Thus, an ink composition comprising an epoxy compound mixture, 5% carbon black, and 8% acid generating agent was used for an ink-jet printer, showing good pencil hardness and printing quality.

IT 85342-62-7

(polymerization catalyst; liquid inks with good pencil hardness and printing

(quality)

RN 85342-62-7 HCPLUS

CN Methanesulfonic acid, 1,1,1-trifluoro-, 1,3-dioxo-1H-benz[de]isoquinolin-2(3H)-yl ester (CA INDEX NAME)

IT 616885-13-3

(viscosity stabilizer; liquid inks with good pencil hardness and printing quality)

RN 616885-13-3 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[(dimethylamino)carbonyloxy]- (9CI) (CA INDEX NAME)

IC ICM C09D011-00
 ICS C08G065-10; C08G065-18; C08G065-14; C09D011-10; B41J002-435;
 C08G059-18

CC 42-12 (Coatings, Inks, and Related Products)
 Section cross-reference(s): 74, 77

IT Polyesters, uses
 (epoxy, crosslinked; liquid inks with good pencil hardness and
 printing quality)

IT Polyesters, uses
 (epoxy-polyether-, crosslinked; liquid inks with good pencil hardness
 and printing quality)

IT Amines, uses
 (tertiary, viscosity stabilizers; liquid inks with good
 pencil hardness and printing quality)

IT Quaternary ammonium compounds, uses
 (viscosity stabilizers; liquid inks with good pencil
 hardness and printing quality)

IT 74227-35-3, Bis[4-(diphenylsulfonylo)phenyl] sulfide
 bis(hexafluorophosphate) 75482-18-7 85342-62-7
 156360-76-8 362594-75-0, Uvacure 1591
 (polymerization catalyst; liquid inks with good pencil hardness and
 printing
 quality)

IT 62-53-3, Aniline, uses 100-37-8 121-69-7, N,N-
 Dimethylaminobenzene, uses 10581-12-1, Tetramethylammonium acetate
 616885-13-3 616885-14-4 616885-15-5
 (viscosity stabilizer; liquid inks with good pencil
 hardness and printing quality)

L22 ANSWER 7 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2003:771723 HCAPLUS Full-text
 DOCUMENT NUMBER: 139:299251
 TITLE: Heat-developable imaging materials with good image
 stability, their packaging materials, and
 image formation using them
 INVENTOR(S): Takeyama, Toshihsa
 PATENT ASSIGNEE(S): Konica Co., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 61 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2003280184	A	20031002	JP 2002-82917 ---	20020325

PRIORITY APPLN. INFO.:

JP 2002-82917

20020325

<--

ED Entered STN: 02 Oct 2003

AB The imaging material contains a image formation layer containing (A) nonphotosensitive organic Ag salts, (B) reducing agents, (C) ethylenically unsatd. polymerizable compds. or epoxy-containing polymerizable compds., and (D) photopolymn. initiators. The polymerizable compds. are preferably contained in heat-sensitive microcapsules. The image formation layer may further contain photog. Ag halides. The imaging materials are packaged by light-shielding and gas-barrier materials. The images are formed by (A) imagewise heating followed by irradiating or alternatively, (B) imagewise exposing, heating under light-shielded conditions, and irradiating.

IT 9005-09-8, Denka Vinyl 1000C

(coating containing, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)

RN 9005-09-8 HCPLUS

CN 2-Butenedioic acid (2Z)-, polymer with chloroethene and ethenyl acetate (CA INDEX NAME)

CM 1

CRN 110-16-7

CMF C4 H4 O4

Double bond geometry as shown.

CM 2

CRN 108-05-4

CMF C4 H6 O2

CM 3

CRN 75-01-4

CMF C2 H3 Cl

IT 25067-34-9, Soarnol 30L

(gas-barrier coating, packaging with; heat-developable imaging

10/579,441

materials having photolithog. compds. for stabilizing
images)
RN 25067-34-9 HCPLUS
CN Ethenol, polymer with ethene (CA INDEX NAME)

CM 1

CRN 557-75-5
CMF C2 H4 O

CM 2

CRN 74-85-1
CMF C2 H4

IT 9003-07-0, Polypropylene
(laminate, packaging with, Cenessy C 153-40, Pylen OT-P 2165;
heat-developable imaging materials having photolithog. compds. for
stabilizing images)
RN 9003-07-0 HCPLUS
CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1
CMF C3 H6

IT 9002-88-4, LDPE
(laminate, packaging with; heat-developable imaging materials
having photolithog. compds. for stabilizing images)
RN 9002-88-4 HCPLUS
CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
CMF C2 H4

H₂C=CH₂

IT 5551-72-4
 (photoacid generator; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 RN 5551-72-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[(4-methylphenyl)sulfonyloxy]- (CA INDEX NAME)

IC ICM G03F007-004
 ICS B41M005-30; G03C001-498; G03C001-76; G03C003-00; G03C005-08;
 G03F007-11; G03F007-26; G03F007-38
 CC 74-7 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 Section cross-reference(s): 38
 ST heat developable imaging photolithog image fixing; photog thermog epoxy photolithog image stability; thermal printing sheet gas barrier packaging
 IT Packaging materials
 (films, gas-impermeable, multilayer; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Thermal printing
 (heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Polyurethanes, uses
 (heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Photographic films
 (heat-developable; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Photography
 (heat-developing; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Microcapsules
 (heat-sensitive, photopolymerizable compds. containing; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Epoxy resins, uses
 (image formation layer containing; heat-developable imaging materials having photolithog. compds. for stabilizing images)
 IT Carbon black, uses
 (laminate containing, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)

- IT Polyesters, uses
 (laminate, packaging with, Toyobo Ester Film E 5100, Lumirror T 60; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Aminoplasts
 (microcapsule; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Light shields
 (packaging material; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Paper
 (packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Polyesters, uses
 (packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Cycloalkenes
 (polymers, laminate, Apel, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Thermal printing materials
 (sheets; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT Photolithography
 (stabilizing images by; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 24293-30-9 246246-21-9 300822-65-5 607708-87-2 607708-88-3
 607708-89-4 607708-90-7 607708-91-8
 (acid generator; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 3905-09-8, Denka Vinyl 1000C 29294-36-8, Vylon 300
 39278-79-0, Coronate L
 (coating containing, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 25067-34-9, Soarnol 30L 25249-59-6, Saran F 216
 (gas-barrier coating, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 92899-80-4P 101232-56-8P 142114-14-5P, Dipentaerythritol pentaacrylate-trimethylolpropane triacrylate copolymer 607708-92-9P
 607708-93-0P
 (image formation layer containing; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 3252-39-2, Bisphenol A dimethacrylate 15625-89-5, Trimethylolpropane triacrylate 16969-10-1, Phenyl glycidyl ether acrylate 29570-58-9, Dipentaerythritol hexaacrylate 40220-08-4, Aronix M 315
 60506-81-2, Dipentaerythritol pentaacrylate 67006-39-7, Newfrontier BR 42M 97666-48-3, Epo Toho YDCN 701
 (image formation layer containing; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 13463-67-7, Titania, uses
 (laminate containing, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 9003-07-0, Polypropylene
 (laminate, packaging with, Cenessy C 153-40, Pylen OT-P 2165; heat-developable imaging materials having photolithog. compds. for stabilizing images)
- IT 25038-59-9, PET polymer, uses

(laminate, packaging with, Toyobo Ester Film E 5100, Lumirror T 60; heat-developable imaging materials having photolithog. compds. for stabilizing images)
IT 7429-90-5, Aluminum, uses 9002-88-4, LDPE 200513-67-3, E
7075 (laminate, packaging with; heat-developable imaging materials having photolithog. compds. for stabilizing images)
IT 9003-08-1P, Formaldehyde-melamine copolymer (microcapsule; heat-developable imaging materials having photolithog. compds. for stabilizing images)
IT 37337-02-3, Takenate D 110N 104782-64-1, Takenate D 204EA (microcapsule; heat-developable imaging materials having photolithog. compds. for stabilizing images)
IT 5551-72-4 6293-66-9, Diphenyliodonium p-toluenesulfonate 41580-58-9 82424-53-1 110928-18-2 380848-50-0 (photoacid generator; heat-developable imaging materials having photolithog. compds. for stabilizing images)

L22 ANSWER 8 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2002:734999 HCPLUS Full-text
DOCUMENT NUMBER: 137:353644
TITLE: Fluorescent polymer made from chemical modification of poly(styrene-co-maleic anhydride)
AUTHOR(S): Wang, Kangcheng; Huang, Wei; Xia, Ping; Gao, Chao;
Yan, Deyue
CORPORATE SOURCE: School of Chemistry and Chemical Technology,
Shanghai Jiao Tong University, Shanghai, 200240,
Peop. Rep. China
SOURCE: Reactive & Functional Polymers (2002),
52(3), 143-148
CODEN: RFPOF6; ISSN: 1381-5148
PUBLISHER: Elsevier Science B.V.
DOCUMENT TYPE: Journal
LANGUAGE: English
ED Entered STN: 27 Sep 2002
AB Poly(styrene-co-maleic anhydride) (SMA) was modified by com. available fluorescent dye, 4-amino-N-(2,4-dimethylphenyl)-1,8-naphthalimide, to prepare fluorescent poly(styrene-co-maleimide) (SMI). FT-IR, UV-Vis and fluorescent spectra of this polymer were investigated. The polymer can emit strong yellow-green fluorescence (around 510 nm) and its thermal stability and solubility were improved. The number-averaged mol. weight (M_n) measured by GPC was about 1.8×10^5 relative to the polystyrene standard and the mol. weight distribution was 1.86. The glass transition temperature (T_g) determined by differential scanning calorimeter (DSC) was 150.8° , and 17° higher than the T_g (133.7°) of SMA. The influences of solvent, concentration, and quencher on the fluorescent behaviors of SMI are discussed too.
IT 2478-20-8DF, reaction product with maleic anhydride-styrene copolymer 9011-13-6DP, Maleic anhydride-styrene copolymer, reaction product with amino(dimethylphenyl)naphthalimide (fluorescence of chemical modified poly(styrene-co-maleic anhydride))
RN 2478-20-8 HCPLUS
CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-(CA INDEX NAME)

RN 9011-13-6 HCPLUS

CN 2,5-Furandione, polymer with ethenylbenzene (CA INDEX NAME)

CM 1

CRN 108-31-6

CMF C4 H2 O3

CM 2

CRN 100-42-5

CMF C8 H8

CC 36-5 (Physical Properties of Synthetic High Polymers)

Section cross-reference(s): 73

IT 2479-26-8DP, reaction product with maleic anhydride-styrene copolymer 9011-13-6DP, Maleic anhydride-styrene copolymer, reaction product with amino(dimethylphenyl)naphthalimide (fluorescence of chemical modified poly(styrene-co-maleic anhydride))

REFERENCE COUNT: 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 9 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:554517 HCPLUS Full-text

DOCUMENT NUMBER: 137:263731

TITLE: Colored microporous polyethylene films: effect of porous structure on dye adsorption

AUTHOR(S): Grabchev, Ivo; Moneva, Ivanka; Betcheva, Rositsa; Elyashevich, Galina

CORPORATE SOURCE: Institute of Polymers, Bulgarian Academy of Sciences, Sofia, 1113, Bulg.

SOURCE:

Materials Research Innovations (2002),
6(1), 34-37

PUBLISHER:

Springer-Verlag

DOCUMENT TYPE:

Journal

LANGUAGE:

English

ED Entered STN: 26 Jul 2002

AB Microporous polyethylene (PE) films with good mech. properties have been produced by high-speed extrusion from the melt followed by annealing, uniaxial stretching and thermal fixation. The films have pores of 0.15-0.45 μm size and relief on the scale of 1-2 μm . Coloration of the films with fluorescent dyes, 3-amino-benzanthrone and derivs. of 1,8-naphthalimide, was performed at the room temperature. The quantity of adsorbed dye depends upon the spin draw ratio of PE membranes and has an influence upon their color shade. The color effect is not observed in the case of only extruded or annealed PE films treated in the same way. The enhanced adhesion of the dyes on porous films is related to their high surface area. Specifically, the interactions between dye and polymer at pore walls provide color stability of the microporous films. The effect of relevant properties of both PE membranes (pores relief and lamellar thickness) and dye mols. (aspect ratio and cohesion) is discussed.

IT 9002-88-4, Polyethylene 151136-29-7,
 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(amino)-2-(2-propenyl)-
 160543-34-0, 1H-Benz[de]isoquinoline-1,3(2H)-dione,
 6-(methylamino)-2-(2-propenyl)- 160543-36-2,
 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(dimethylamino)-2-(2-
 propenyl)-
 (effect of porous structure on dye adsorption in colored
 microporous polyethylene films)

RN 9002-88-4 HCPLUS

CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1

CMF C2 H4

 $\text{H}_2\text{C}=\text{CH}_2$

RN 151136-29-7 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2-propenyl)- (9CI)
 (CA INDEX NAME)

RN 160543-34-0 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(methylamino)-2-(2-propenyl)-
 (9CI) (CA INDEX NAME)

RN 160543-36-2 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(dimethylamino)-2-(2-propenyl)- (9CI) (CA INDEX NAME)

CC 37-6 (Plastics Manufacture and Processing)
 IT 9002-88-4, Polyethylene 13456-80-9 151136-29-7,
 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(amino)-2-(2-propenyl)-
 160543-34-0, 1H-Benz[de]isoquinoline-1,3(2H)-dione,
 6-(methylamino)-2-(2-propenyl)- 160543-36-2,
 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(dimethylamino)-2-(2-
 propenyl)-
 (effect of porous structure on dye adsorption in colored
 microporous polyethylene films)

REFERENCE COUNT: 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L22 ANSWER 10 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2002:532043 HCPLUS Full-text
 DOCUMENT NUMBER: 137:233040
 TITLE: Chemical modification of poly(styrene-co-maleic
 anhydride) by some fluorescent organic molecules
 AUTHOR(S): Xia, Ping; Huang, Wei; Wang, Kangcheng; Gao, Chao;
 Yan, Deyue
 CORPORATE SOURCE: College of Chemistry and Chemical Technology,
 Shanghai Jiao Tong University, Shanghai, 200240,
 Peop. Rep. China
 SOURCE: Gaofenzi Xuebao (2002), (3), 385-388
 CODEN: GAXUE9; ISSN: 1000-3304
 PUBLISHER: Kexue Chubanshe
 DOCUMENT TYPE: Journal
 LANGUAGE: Chinese
 ED Entered STN: 17 Jul 2002

AB The poly (styrene-co-maleic anhydride) (SMA) was modified by some fluorescent organic mols. such as 2-amino-benzimidazol, 4-amino-antipyrine and 4-amino-N-(2,4-dimethylphenyl)-1,8-naphthalimide to prepare the fluorescent polymers (SMI). The FT-IR spectra of these polymers show a new carbonyl characteristic peak in imide ring appeared at 1722 cm⁻¹ and no amino group characteristic peaks appeared at 3300-3500 cm⁻¹. That is to say the chemical modification of SMA is successful. GPC and DSC results of the polymers obtained show that although the mol. weight of these polymers decreased a little in the chemical modification process, the thermal stability of these polymers was improved. On the other hand the fluorescence of these polymers can be quenched by the acidity because of the alkalescence of the organic hetero-ring containing nitrogen. These novel polymers can emit strong fluorescence and kept the excellent properties of SMA too. This is a convenient method to produce the fluorescent materials.

IT 2478-20-8P 9011-13-6DP, Maleic anhydride-styrene copolymer, reaction products with fluorescent heterocyclic compds. (modification of poly(styrene-co-maleic anhydride) by fluorescent organic mols.)
 RN 2478-20-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-(CA INDEX NAME)

RN 9011-13-6 HCPLUS
 CN 2,5-Furandione, polymer with ethenylbenzene (CA INDEX NAME)

CM 1
 CRN 108-31-6
 CMF C4 H2 O3

CM 2
 CRN 100-42-5
 CMF C8 H8

CC 35-8 (Chemistry of Synthetic High Polymers)
 IT 83-07-8DP, reaction products with maleic anhydride-styrene copolymer
 934-32-7DP, 1H-Benzimidazol-2-amine, reaction products with maleic
 anhydride-styrene copolymer 2478-20-8P 9011-13-6DP
 , Maleic anhydride-styrene copolymer, reaction products with
 fluorescent heterocyclic compds.
 (modification of poly(styrene-co-maleic anhydride) by fluorescent
 organic molis.)

L22 ANSWER 11 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:211850 HCAPLUS Full-text

DOCUMENT NUMBER: 136:217658

TITLE: Composition for coloring polymeric materials in
 bulk

INVENTOR(S): Shershukov, V. M.; Demin, N. Ya.

PATENT ASSIGNEE(S): Ukraine

SOURCE: Russ., No pp. given

CODEN: RUXXE7

DOCUMENT TYPE: Patent

LANGUAGE: Russian

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
RU 2150482	C1	20000610	RU 1999-103853 ----- <--	19990304
PRIORITY APPLN. INFO.:			RU 1999-103853 ----- <--	19990304

ED Entered STN: 21 Mar 2002

AB The invention discloses a composition for coloring polymeric materials in bulk comprising weight%: colorant containing active carboxy, amino, hydrazo, sulfonylamino or hydroxyethyl groups or mixture of colorants, 2.0-8.0; anticoagulating additive such as metal oxide or stearate, finely ground silica, clay or mixture thereof, 25.0-32.0; polyhedral alc., 16.0-18.0; organosilicon modifier, preferably di- or tetraethoxysiloxane, 16.0-18.0; polyethylene wax, 5.0-6.0; aliphatic or aromatic polycarboxylic acid anhydride, the balance up to 100%. The composition has increased thermal, anticaking, and hydrolytic stability, considerably improved coloring properties, and a wider range of polymeric materials being colored. The composition is useful for coloring not only polyolefins and plasticized polyvinyl chloride, but also polystyrene, copolymers thereof, and polyamides.

IT 51897-30-4 129277-16-3 281C12-12-C

(composition for coloring polymeric materials in bulk)

RN 51897-30-4 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-amino-6-(4-morpholinyl)- (CA
 INDEX NAME)

RN 129277-16-3 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[2,2-bis(hydroxymethyl)butoxy]- (CA INDEX NAME)

RN 281212-12-2 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[(2-hydroxyethyl)amino]- (CA INDEX NAME)

IT 9002-88-4
 (composition for coloring polymeric materials in bulk)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
 CMF C2 H4

IT 9003-53-6, Polystyrene

(composition for coloring polymeric materials in bulk)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

IC ICM C09K011-07
 ICS C09B067-00
 CC 37-6 (Plastics Manufacture and Processing)
 IT 56-81-5, Glycerol, uses 81-88-9, Rhodamine S 85-44-9, Phthalic anhydride 108-31-6, Maleic anhydride, uses 115-77-5, Pentaerythritol, uses 552-30-7, Trimellitic anhydride 998-30-1, Triethoxysilane 7325-85-1, Rhodamine 6Zh 18586-54-4 19223-63-3 20871-03-8 51897-30-4 70378-63-1, Reactive Turquoise 129277-16-3 152076-83-0 160251-78-5 281212-12-2 402725-94-4, Pigment Lightfast Yellow 3T (composition for coloring polymeric materials in bulk)
 IT 9002-86-4 (composition for coloring polymeric materials in bulk)
 IT 9003-53-6, Polystyrene (composition for coloring polymeric materials in bulk)

L22 ANSWER 12 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2001:629137 HCPLUS [Full-text](#)
 DOCUMENT NUMBER: 136:7701
 TITLE: Effect of polymer matrix on photo-stability of photo-luminescent dyes in multi-layer polymeric structures
 AUTHOR(S): Baumberg, I.; Berezin, O.; Drabkin, A.; Gorelik, B.; Kogan, L.; Voskobojnik, M.; Zaidman, M.
 CORPORATE SOURCE: ELAM Ltd, Jerusalem, 91450, Israel
 SOURCE: Polymer Degradation and Stability (2001), 73(3), 403-410
 CODEN: PDSTDW; ISSN: 0141-3910
 PUBLISHER: Elsevier Science Ltd.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 30 Aug 2001
 AB The present study considers the photo-stability of luminescent dyes in multi-layer coatings made of various polymers [low-d. polyethylene (LDPE), poly(vinyl chloride) (PVC) and poly(vinylidene fluoride) (PVDF)]. Dye stability is shown to depend on both the chemical structure of the colorant and the photo-stability of the polymer matrix. The influence of colorant self absorption on its photo-stability is shown. This effect was used to increase dye lightfastness in multi-layer coatings. In the case of a colored PVC intermediate layer covered by an upper PVDF layer it is possible either to decrease or to increase lightfastness depending on the presence of UV-absorbers in the upper layer and its thickness and flexibility. Use of blends of PVDF based polymers with colored PMMA substantially improves photo-stability of dyes compared to colorants introduced into pure PVDF.

IT 52821-24-6

(effect of polymer matrix on photostability of photoluminescent dyes in multi-layer polymeric structures)
 RN 52821-24-6 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(3-hydroxypropyl)-6-[(3-hydroxypropyl)amino]- (CA INDEX NAME)

IT 9002-88-4, LDPE
 (low-d., coatings; effect of polymer matrix on photostability of photoluminescent dyes in multi-layer polymeric structures)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
 CMF C2 H4

$\text{H}_2\text{C}=\text{CH}_2$

CC 42-13 (Coatings, Inks, and Related Products)
 Section cross-reference(s): 38, 73
 IT Stability
 (photo-; effect of polymer matrix on photostability of photoluminescent dyes in multi-layer polymeric structures)
 IT 82-38-2, Macrolon Red G 25152-49-2, Rhodamine 575 35773-43-4
 47724-48-1, Rhodamine 590 52821-24-6 79920-55-1, Day-Glo
 Potomac Yellow 838 100443-95-6 123174-58-3 151486-56-5
 181658-76-4, Lumogen F Red 240 223744-26-1, Day-Glo Orange 315
 (effect of polymer matrix on photostability of photoluminescent dyes in multi-layer polymeric structures)
 IT 9002-88-4, LDPE
 (low-d., coatings; effect of polymer matrix on photostability of photoluminescent dyes in multi-layer polymeric structures)
 REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 13 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2001:495334 HCPLUS Full-text

DOCUMENT NUMBER: 135:99836

TITLE: Chemical amplification-type resists for
 ≤0.15-μm design rules

INVENTOR(S): Yamana, Shinji

PATENT ASSIGNEE(S): NEC Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001188344	A	20010710	JP 1999-372657 -->	19991228
JP 3353885	B2	20021203		
US 2001009749	A1	20010726	US 2000-745469 -->	20001226
US 6566036	B2	20030520		
PRIORITY APPLN. INFO.:			JP 1999-372657 -->	A 19991228

ED Entered STN: 10 Jul 2001
 AB The resists are obtained by dissolving (A) 10-20 weight% (for total compns.) 1-ethoxyethyl-protected 4-hydroxystyrene base polymers with mol. weight 5000-20,000, (B) 1-15 weight% (for A) acid generators, and (C) 0.5-6.0 weight% (for A) polystyrene fillers with mol. weight 150-20,000 in solvents. The resists show good dimension- and shape-controlling properties.
 IT 9003-53-6, Polystyrene
 (fillers; chemical amplification-type resists containing ethoxyethyl-protected hydroxystyrene polymers for ≤0.15-μm design rules)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1
 CRN 100-42-5
 CMF C8 H8

IT 5551-72-4 83697-53-4 85342-62-7
 348628-75-1
 (photoacid generators; chemical amplification-type resists containing ethoxyethyl-protected hydroxystyrene polymers for ≤0.15-μm design rules)
 RN 5551-72-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[{[(4-methylphenyl)sulfonyl]oxy}- (CA INDEX NAME)

RN 83697-53-4 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[{(methylsulfonyl)oxy}- (CA INDEX NAME)

RN 85342-62-7 HCAPLUS

CN Methanesulfonic acid, 1,1,1-trifluoro-, 1,3-dioxo-1H-benz[de]isoquinolin-2(3H)-yl ester (CA INDEX NAME)

RN 348628-75-1 HCAPLUS

CN Cyclohexanesulfonic acid, 4-methyl-, 1,3-dioxo-1H-benz[de]isoquinolin-2(3H)-yl ester (CA INDEX NAME)

IC ICM G03F007-039

ICS G03F007-004; G03F007-38; H01L021-027

CC 74-5 (Radiation Chemistry, Photochemistry, and Photographic and Other

Reproductive Processes)

Section cross-reference(s): 38

ST chem amplified photoresist hydroxystyrene polymer dimensional stability; polystyrene far UV photoresist dimensional stability; ethoxyethyl protected hydroxystyrene polymer photoresist

IT 9003-53-6, Polystyrene

(fillers; chemical amplification-type resists containing ethoxyethyl-protected hydroxystyrene polymers for $\leq 0.15\text{-}\mu\text{m}$ design rules)

IT 5551-72-4 6293-66-9, Diphenyliodonium p-toluenesulfonate
13891-29-7, Triphenylsulfonium p-toluenesulfonate 41580-58-9
56530-39-3 57212-70-1 66003-76-7, Diphenyliodonium trifluoromethanesulfonate 66003-78-9, Triphenylsulfonium trifluoromethanesulfonate 63697-53-4 85342-62-7
201358-23-8 231955-29-6 348628-72-8 348628-73-9 348628-74-0
348628-75-1

(photoacid generators; chemical amplification-type resists containing ethoxyethyl-protected hydroxystyrene polymers for $\leq 0.15\text{-}\mu\text{m}$ design rules)

L22 ANSWER 14 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:481933 HCPLUS Full-text

DOCUMENT NUMBER: 135:78279

TITLE: Cationically polymerizable low-viscosity compositions containing polyorthoesters and epoxy compounds, and formation of coating films by radiation or heat

INVENTOR(S): Seko, Kenji; Isaka, Hisashi

PATENT ASSIGNEE(S): Kansai Paint Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2001181498	A	20010703	JP 1999-365871 ----- JP 1999-365871	19991224 ----- 19991224

PRIORITY APPLN. INFO.:

ED Entered STN: 05 Jul 2001

AB Title compns., which show good storage stability, good compatibility, and high solid concentration, contain (A) polyorthoesters manufactured by reacting R1C(OR2)3 (R1 = H, C1-4 alkyl; R2 = C1-4 alkyl; R2 may be different from one another) with α -glycols and/or β -glycols and other polyols, (B) epoxy compds., and (C) photosensitive acid generators. Thus, a clear solution containing 640:424:136 2-butyl-1,2-ethyl-1,3-propanediol-Me orthoformate- pentaerythritol copolymer, 720:960:720 2-ethylhexyl acrylate-glycidyl methacrylate-styrene copolymer, and DAICAT 11 (sulfonium salt-type photosensitive acid generator) was applied on a tin plate, dried, irradiated with a high-pressure Hg lamp, and heated at 140° for 3 min to give a solvent-resistant coating with gel fraction 90%.

IT 85342-62-7, NAI 105

(photosensitive acid generator; cationically polymerizable low-viscosity coating compns. containing polyorthoesters and epoxy compds.)

RN 85342-62-7 HCPLUS

CN Methanesulfonic acid, 1,1,1-trifluoro-, 1,3-dioxo-1H-benz[de]isoquinolin-2(3H)-yl ester (CA INDEX NAME)

IC ICM C08L071-00

ICS C08K005-1515; C09D005-00; C09D171-00

CC 42-7 (Coatings, Inks, and Related Products)

IT Polyesters, uses

(epoxy-polyether-; cationically polymerizable low-viscosity coating compns. containing polyorthoesters and epoxy compds.)

IT Epoxy resins, uses

Polyesters, uses
(polyether-; cationically polymerizable low-viscosity coating compns. containing polyorthoesters and epoxy compds.)

IT 75482-18-7, DAICAT 11 85342-62-7, NAI 105

(photosensitive acid generator; cationically polymerizable low-viscosity coating compns. containing polyorthoesters and epoxy compds.)

L22 ANSWER 15 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2000:894365 HCPLUS Full-text

DOCUMENT NUMBER: 134:178873

TITLE: Combinatorial testing of supported catalysts for the heterogeneous polymerization of olefins

AUTHOR(S): Stork, Martin; Herrmann, Andreas; Nemnich, Tanja; Klapper, Markus; Mullen, Klaus

CORPORATE SOURCE: Max-Planck-Institut fur Polymerforschung, Mainz, 55128, Germany

SOURCE: Angewandte Chemie, International Edition (2000), 39(23), 4367-4369

CODEN: ACIEF5; ISSN: 1433-7851

PUBLISHER: Wiley-VCH Verlag GmbH

DOCUMENT TYPE: Journal

LANGUAGE: English

ED Entered STN: 21 Dec 2000

AB Fluorescent probe-tagged catalyst systems were used for testing and direct comparison of silica supported heterogeneous catalysts for industrial olefin polymers. (ethylene-hexene). The truly combinatorial approach starts with tagging of supports with perylene fluorescent dyes, then mixing all catalysts into a single polymerization vessel containing the olefin monomer. The dyes used are perylene dyes, e.g., perlenemonoimide, benzantronyl-naphthaleneimide, etc., which have high chemical stability, high tendency to adsorb on silica, and high fluorescence quantum yield; the dyes do not interfere with polymerization. The metallocene catalysts used are dimethylsilylbis(2-methylbenzindienyl)zirconium dichloride, bis(n-butylcyclopentadienyl)zirconium dichloride, and ethylene-bis(indenyl)zirconium dichloride, supported on silica and activated with MAO.

During the olefin polymerization, each catalyst particle forms only one product granule through a particle growth process and can be considered as a microreactor. The different fluorescence of the dyes allows an exact assignment of the polymer granules resulting from each catalyst. The polymers obtained have the same properties as those obtained via a single catalyst route. The combinatorial approach can be implemented in conventional polymer synthesis and anal. facilities and catalyst sets can be enlarged because a wide variety of perylene dyes is available. The rapid testing method for supported metallocene catalysts under identical exptl. conditions is suitable for other heterogeneous polymerization processes. To create larger libraries of heterogeneous catalysts, online detection and characterization methods for polymer particles are required.

IT 25213-02-9P, Ethylene-hexene copolymer
(combinatorial method and library using fluorescence probes in
rapid testing of zirconocene/silica catalysts for heterogeneous
polymerization of olefins)

RN 25213-02-9 HCPLUS

CN 1-Hexene, polymer with ethene (CA INDEX NAME)

CM 1

CRN 592-41-6

CMF C6 H12

CM 2

CRN 74-85-1

CMF C2 H4

IT 189440-73-1
(fluorescent probe; combinatorial method and library using
fluorescence probes in rapid testing of zirconocene/silica
catalysts for heterogeneous polymerization of olefins)

RN 189440-73-1 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2,6-bis(1-methylethyl)phenyl]-6-(7-oxo-7H-benz[de]anthracen-3-yl)- (CA INDEX NAME)

CC 35-3 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 67
 IT 25213-02-9F, Ethylene-hexene copolymer
 (combinatorial method and library using fluorescence probes in
 rapid testing of zirconocene/silica catalysts for heterogeneous
 polymerization of olefins)
 IT 165550-61-8 189440-73-1
 (fluorescent probe; combinatorial method and library using
 fluorescence probes in rapid testing of zirconocene/silica
 catalysts for heterogeneous polymerization of olefins)
 REFERENCE COUNT: 38 THERE ARE 38 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L22 ANSWER 16 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2000:548867 HCPLUS Full-text
 DOCUMENT NUMBER: 133:178081
 TITLE: Light-resistant fireproofing styrene resin
 compositions
 INVENTOR(S): Xiao, Hongyang; Shi, Mingcheng; An, Benxue
 PATENT ASSIGNEE(S): Qimei Industrial Co., Ltd., Peop. Rep. China
 SOURCE: Faming Zuanli Shengqing Gongkai Shuomingshu, 15
 pp.
 DOCUMENT TYPE: Patent
 LANGUAGE: Chinese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
CN 1239112	A	19991222	CN 1998-102517 <--	19980617
PRIORITY APPLN. INFO.:			CN 1998-102517 <--	19980617

ED Entered STN: 11 Aug 2000
 AB The resin composition is composed of rubber-modified styrene type resin 100, incombustible organic matter 0.5-30, yellow dye or pigment (I) 0.000 5-1.2, organic dye or pigment (II) 0.000 05-1.2, UV absorbent and/or hindered amine-type photostabilizer 0-3, and inorg. filler 0.01-10 part. The incombustible organic matter is halo-containing organo-P compound, halogenated epoxide, phthalimide halide derivative, triazine halide derivative, tetrabromobisphenol or its derivative, indane halide derivative, and halogenated aliphatic compound. The yellow dye or pigment (I) is decolored after exposure on sunlight, and is naphthalic imides, mono methines, phthaloquinones, perylenes, perinones, anthraquinone, and/or monoazos dye, etc. The organic dye or pigment (II) is the complementary color of the yellow dye or pigment (I), and the difference of maximal absorption wavelength between dye or pigment (II) and (I) is 100- 350 nm. The UV absorbent is benzotriazoles, benzophenones, salicylates, and/or acrylic cyanides.
 IT 9002-88-4, Polyethylene
 (R 680; light-resistant fireproofing styrene resin compns.)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CRN 74-85-1
 CMF C2 H4

IT 9003-17-2
 (butadiene rubber, light-resistant fireproofing styrene resin
 compns.)
 RN 9003-17-2 HCPLUS
 CN 1,3-Butadiene, homopolymer (CA INDEX NAME)

CM 1

CRN 106-99-0
 CMF C4 H6

IT 9003-56-9
 (light-resistant fireproofing styrene resin compns.)
 RN 9003-56-9 HCPLUS
 CN 2-Propenenitrile, polymer with 1,3-butadiene and ethenylbenzene (CA
 INDEX NAME)

CM 1

CRN 107-13-1
 CMF C3 H3 N

CM 2

CRN 106-99-0
 CMF C4 H6

CM 3

CRN 100-42-5

CMF C8 H8

IT 2478-20-8, Diaresin Yellow 6G
 (pigment; light-resistant fireproofing styrene resin compns.)
 RN 2478-20-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-
 (CA INDEX NAME)

IT 9003-53-6, Polystyrene
 (polybutadiene-modified; light-resistant fireproofing styrene resin
 compns.)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

IC ICM C08L025-06
 ICS C08K005-3475
 CC 37-6 (Plastics Manufacture and Processing)
 IT Amines, uses
 (hindered, light stabilizer; light-resistant fireproofing
 styrene resin compns.)
 IT Azo dyes
 Dyes
 Fire-resistant materials
 Light stabilizers
 Pigments, nonbiological
 UV stabilizers
 (light-resistant fireproofing styrene resin compns.)
 IT 9002-83-4, Polyethylene 13463-67-7, R 680, uses

(R 680; light-resistant fireproofing styrene resin compns.)
 IT 9003-17-2
 (butadiene rubber, light-resistant fireproofing styrene resin
 compns.)
 IT 2440-22-4, Tinuvin p 52829-07-9, LS 770
 (light stabilizer; light-resistant fireproofing styrene
 resin compns.)
 IT 9003-56-9
 (light-resistant fireproofing styrene resin compns.)
 IT 2479-20-8, Diaresin Yellow 6G 4118-16-5, Kayaset Yellow E AR
 75216-43-2, Diaresin Yellow H2G 177020-91-6, Kayaset Yellow EL 2R
 (pigment; light-resistant fireproofing styrene resin compns.)
 IT 9003-53-6, Polystyrene
 (polybutadiene-modified; light-resistant fireproofing styrene resin
 compns.)

L22 ANSWER 17 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 2000:458598 HCPLUS Full-text

DOCUMENT NUMBER: 133:89192

TITLE: The plausible aromaticity of 1,8-naphthalimides:
 the enthalpy of formation of N-methyl-1,8-
 naphthalimide

AUTHOR(S): Roux, Maria Victoria; Jimenez, Pilar; Davalos,
 Juan Z.; Martin-Luengo, Maria Angeles; Rotello,
 Vincent M.; Cuello, Alejandro O.; Liebman, Joel F.

CORPORATE SOURCE: Instituto de Quimica Fisica "Rocasolano",
 C.S.I.C., Madrid, 28006, Spain

SOURCE: Structural Chemistry (2000), 11(1), 1-7
 CODEN: STCHES; ISSN: 1040-0400

PUBLISHER: Kluwer Academic/Plenum Publishers
 DOCUMENT TYPE: Journal

LANGUAGE: English

ED Entered STN: 09 Jul 2000

AB To understand the aromaticity of 1,8-naphthalimides, the enthalpies of
 combustion and sublimation of N-methyl-1,8-naphthalimide were determined. The
 numerical values are -6095.8 ± 3.5 and 109.7 ± 0.8 kJ mol $^{-1}$. The enthalpies of
 formation of condensed and gas phase N-methyl-1,8-naphthalimide are
 accordingly -306.1 ± 3.9 and -196.4 ± 4.0 kJ mol $^{-1}$. Naphthalimides enjoy some
 40 kJ mol $^{-1}$ of aromatic stabilization over that of the maleimides, shown to be
 nominally destabilized and modestly antiarom. in recently published
 thermochem. study.

IT 2382-08-3, N-Methyl-1,8-naphthalimide
 (combustion and formation enthalpy and sp. heat; enthalpy of
 formation of N-methyl-1,8-naphthalimide and plausible aromaticity
 of 1,8-naphthalimides)

RN 2382-08-3 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-methyl- (CA INDEX NAME)

IT 9002-83-4, Polyethylene
 (combustion enthalpy and sp. heat; enthalpy of formation of
 N-methyl-1,8-naphthalimide and plausible aromaticity of
 1,8-naphthalimides)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
 CMF C2 H4

IT 81-83-4, 1,8-Naphthalimide
 (enthalpy of formation of N-methyl-1,8-naphthalimide and plausible
 aromaticity of 1,8-naphthalimides)
 RN 81-83-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione (CA INDEX NAME)

CC 22-13 (Physical Organic Chemistry)
 Section cross-reference(s): 69
 IT Aromaticity
 Combustion enthalpy
 Formation enthalpy
 Heat capacity
 Stabilization energy
 Strain energy
 Sublimation enthalpy
 (enthalpy of formation of N-methyl-1,8-naphthalimide and plausible
 aromaticity of 1,8-naphthalimides)
 IT 2382-08-3, N-Methyl-1,8-naphthalimide
 (combustion and formation enthalpy and sp. heat; enthalpy of
 formation of N-methyl-1,8-naphthalimide and plausible aromaticity
 of 1,8-naphthalimides)
 IT 9002-88-4, Polyethylene
 (combustion enthalpy and sp. heat; enthalpy of formation of
 N-methyl-1,8-naphthalimide and plausible aromaticity of
 1,8-naphthalimides)
 IT 81-83-4, 1,8-Naphthalimide
 (enthalpy of formation of N-methyl-1,8-naphthalimide and plausible
 aromaticity of 1,8-naphthalimides)

REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L22 ANSWER 18 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1999;107109 HCPLUS Full-text
 DOCUMENT NUMBER: 130:197468
 TITLE: Fireproof styrene resin compositions with easy
 color control and improved light resistance
 INVENTOR(S): Hsiao, Hung Yang; Shih, Ming Cheng; Kishimoto,
 Manabu
 PATENT ASSIGNEE(S): Mitsubishi Chemical Industries Ltd., Japan; Chi
 Mei Corp.
 SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11035786	A	19990209	JP 1997-188672 <--	19970714
TW 506992	B	20021021	TW 1998-87105644 <--	19980414
PRIORITY APPLN. INFO.:			JP 1997-188672 <--	A 19970714

ED Entered STN: 16 Feb 1999

AB Title compns. comprise (A) rubber-modified styrene resins 100, (B) organic fireproofing agents 0.5-30, (C) light-fading yellow organic dyes or pigments 0.005-1.2, (D) organic dyes or pigments having a color complementary to the color of C 0.00005-1.2, (E) UV absorbers and/or steric hindrance amine-based light stabilizers 0-3, and (F) inorg. fillers 0.01-10 parts. Thus, butadiene rubber-modified acrylonitrile-styrene copolymer 100, EC 14 (brominated epoxy resin oligomer) 15, Sb203 5, chlorinated polyethylene 5, Kayaset Yellow EL 2R 0.002, Kayaset Blue N 0.0002, Tinuvin P 0.5, and R 680 1.5 parts were mixed, kneaded, and injection-molded to give a test piece showing ΔE 1.1 after 300-h UV irradiation, Izod impact strength 12 kg-cm/cm, and UL-94 fire resistance rating V-0.

IT 2478-20-8, Diaresin Yellow 6G

(fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)

RN 2478-20-8 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-
 (CA INDEX NAME)

IT 106677-58-1, Acrylonitrile-butadiene-styrene graft copolymer
 106974-54-3, Butadiene-styrene graft copolymer
 (fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)
 RN 106677-58-1 HCPLUS
 CN 2-Propenenitrile, polymer with 1,3-butadiene and ethenylbenzene, graft
 (CA INDEX NAME)

CM 1

CRN 107-13-1
 CMF C3 H3 N

CM 2

CRN 106-99-0
 CMF C4 H6

CM 3

CRN 100-42-5
 CMF C8 H8

RN 106974-54-3 HCPLUS
 CN Benzene, ethenyl-, polymer with 1,3-butadiene, graft (CA INDEX NAME)

CM 1

CRN 106-99-0
 CMF C4 H6

CM 2

CRN 100-42-5
CMF C8 H8

- IC ICM C08L051-04
 ICS C08K005-3495; C08K005-49; C08L025-00
 CC 37-6 (Plastics Manufacture and Processing)
 ST fire resistance acrylonitrile butadiene styrene polymer; ABS
 brominated epoxy resin fireproofing agent; yellow dye ABS resin color
 control; light stabilizer benzotriazole ABS graft polymer
 IT Fire-resistant materials
 Fireproofing agents
 Light stabilizers
 UV stabilizers
 (fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)
 IT Alicyclic compounds
 Epoxy resins, uses
 Epoxy resins, uses
 (halogenated, fireproofing agents; fireproof rubber-modified
 styrene resin compns. containing light-fading yellow dyes and light
 stabilizers for good light resistance)
 IT 79-94-7
 (PB 100, fireproofing agents; fireproof rubber-modified styrene
 resin compns. containing light-fading yellow dyes and light
 stabilizers for good light resistance)
 IT 13463-67-7, R 680, uses
 (fillers; fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)
 IT 2478-29-8, Diaresin Yellow 6G 4118-16-5, Kayaset Yellow E-AR
 17354-14-2, Kayaset Blue N 75216-43-2, Diaresin Yellow H 2G
 177020-91-6, Kayaset Yellow EL 2R
 (fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)
 IT 106677-58-1, Acrylonitrile-butadiene-styrene graft copolymer
 106974-54-3, Butadiene-styrene graft copolymer
 (fireproof rubber-modified styrene resin compns. containing
 light-fading yellow dyes and light stabilizers for good
 light resistance)
 IT 85-41-6D, Phthalimide, compds., halogenated 496-11-7D, Indane,
 derivs., halogenated 6542-67-2D, Triazines, compds., halogenated
 7723-14-0D, Phosphorus, compds., halogen-containing, uses 19186-97-1, CR
 900 21850-44-2, FG 3100 25637-99-4, Hexabromocyclododecane
 25713-60-4, SR 245 139638-58-7, Pratherm EC 14
 (fireproofing agents; fireproof rubber-modified styrene resin
 compns. containing light-fading yellow dyes and light
 stabilizers for good light resistance)
 IT 2440-22-4 52829-07-9, LS 770
 (light stabilizers; fireproof rubber-modified styrene
 resin compns. containing light-fading yellow dyes and light

stabilizers for good light resistance)

L22 ANSWER 19 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1999:44519 HCPLUS Full-text
 DOCUMENT NUMBER: 130:189232
 TITLE: Preparation, photochemical stability and
 photostabilizing efficiency of adducts of
 1,8-naphthaleneimide and hindered amine
 stabilizers in polymer matrixes
 AUTHOR(S): Chmela, S.; Danko, M.; Hrdloovic, P.
 CORPORATE SOURCE: Polymer Inst., Slovak Acad. Sci., Bratislava, 842
 36, Slovakia
 SOURCE: Polymer Degradation and Stability (1998
), Volume Date 1999, 63(1), 159-164
 CODEN: PDSTDW; ISSN: 0141-3910
 PUBLISHER: Elsevier Science Ltd.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 22 Jan 1999
 AB Adducts of 1,8-naphthaleneimide and hindered amine stabilizer (HAS) such as 1-R-substituted 2,2,6,6-tetramethyl-4-aminopiperidine were prepared where R is -H, -O-, -OH-, -COCH₃ and -OCOCH₃. The photochem. stability of adducts was determined at photolysis in isotactic polypropylene, polystyrene and poly(vinyl chloride). Their photostabilizing efficiency was determined at photooxidn. of isotactic polypropylene. The photochem. stability of the adducts is low in all matrixes. The N-oxy derivative was the most stable in all matrixes. The photolysis of all derivs. is the slowest in polystyrene. Intramolecularly combined chromophore/HAS are less effective stabilizers than in 1:1 mixture of separated components. The 1,8-naphthaleneimide chromophore decreases the stabilization efficiency of hindered amine structural units as compared to its absence.
 IT 84165-18-4P, N-Octadecyl-1,8-naphthaleneimide
 204853-35-0P, N-(2,2,6,6-Tetramethylpiperidin-4-yl)-1,8-naphthaleneimide 204853-38-3P, N-(1-Acetoxy-2,2,6,6-Tetramethylpiperidin-4-yl)-1,8-naphthaleneimide
 (photostability and stabilizing efficiency against
 polymer photooxidn. of hindered amines in polymer matrixes in
 presence of bound- and free naphthaleneimide chromophore)
 RN 84165-18-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-octadecyl- (CA INDEX NAME)

RN 204853-35-0 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(2,2,6,6-tetramethyl-4-piperidinyl)- (CA INDEX NAME)

RN 204853-38-3 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[1-(acetyloxy)-2,2,6,6-tetramethyl-4-piperidinyl]- (CA INDEX NAME)

IT 9003-07-0, Polypropylene 9003-53-6, Polystyrene
 (stabilizing efficiency of hindered amines in presence of
 bound- and free naphthaleneimide chromophore against polymers
 photooxidn.)

RN 9003-07-0 HCPLUS
 CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1
 CMF C3 H6

RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

- CC 74-1 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
- ST naphthaleneimide hindered amine adduct polymer stabilizer
photochem stability; polymer photodegrdn stabilizer
naphthaleneimide hindered amine adduct photolysis
- IT Polymer degradation
(photochem.; photostability and stabilizing efficiency
against polymer photobleaching of hindered amines in polymer
matrixes in presence of bound- and free naphthaleneimide
chromophore)
- IT Oxidation kinetics
(photooxidn.; photostability and stabilizing efficiency
against polymer photobleaching of hindered amines in polymer
matrixes in presence of bound- and free naphthaleneimide
chromophore)
- IT Photolysis
Photolysis kinetics
(photostability and stabilizing efficiency against
polymer photobleaching of hindered amines in polymer matrixes in
presence of bound- and free naphthaleneimide chromophore)
- IT Oxidation, photochemical
Photochemical bleaching
(stabilizers; stabilizing efficiency of
hindered amines in presence of bound- and free naphthaleneimide
chromophore against polymers photooxidn.)
- IT Light stabilizers
(stabilizing efficiency of hindered amines in presence of
bound- and free naphthaleneimide chromophore against polymers
photooxidn.)
- IT 81-84-5, 1,8-Naphthalenedicarboxylic acid anhydride
(photostability and stabilizing efficiency against
polymer photooxidn. of hindered amines in polymer matrixes in
presence of bound- and free naphthaleneimide chromophore)
- IT 10060-33-0P, Dimethyl 1,8-Naphthalenedicarboxylate 84165-13-4P
, N-Octadecyl-1,8-naphthaleneimide 204853-35-0P,
N-(2,2,6,6-Tetramethylpiperidin-4-yl)-1,8-naphthaleneimide
204853-36-1P, N-(1-Oxy-2,2,6,6-Tetramethylpiperidin-4-yl)-1,8-
naphthaleneimide 204853-37-2P, N-(1-Acetyl-2,2,6,6-
Tetramethylpiperidin-4-yl)-1,8-naphthaleneimide 204853-38-3P
, N-(1-Acetoxy-2,2,6,6-Tetramethylpiperidin-4-yl)-1,8-
naphthaleneimide
(photostability and stabilizing efficiency against
polymer photooxidn. of hindered amines in polymer matrixes in
presence of bound- and free naphthaleneimide chromophore)
- IT 9002-86-2, Poly(vinyl chloride) 9003-07-0, Polypropylene
9003-53-6, Polystyrene
(stabilizing efficiency of hindered amines in presence of
bound- and free naphthaleneimide chromophore against polymers
photooxidn.)
- REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR
THIS RECORD. ALL CITATIONS AVAILABLE IN THE
RE FORMAT

L22 ANSWER 20 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1998:427936 HCPLUS Full-text
 DOCUMENT NUMBER: 129:149626
 TITLE: Weather-resistant polycarbonate resin composition

INVENTOR(S): Oashi, Kazuhiro; Nishihata, Toru
 PATENT ASSIGNEE(S): Tsutsunaka Plastic Industry Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 10176103	A	19980630	JP 1996-339484 -->	19961219
PRIORITY APPLN. INFO.:			JP 1996-339484 -->	19961219

OTHER SOURCE(S): MARPAT 129:149626

ED Entered STN: 11 Jul 1998

AB The title compns. contain polycarbonates, specified triazine compound UV absorbents, and, as fluorescent whitening agents, 2l coumarin compound or naphthimide compound. The compns. have good weather resistance. A composition contained Iupilon E2000F, Tinuvin 1577, and Diaresin brilliant yellow 6G.

IT 2478-20-8, Diaresin brilliant yellow 6G

(weather-resistant polycarbonate resin composition)

RN 2478-20-8 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-(CA INDEX NAME)

IC ICM C08L069-00

ICS C08K005-15; C08K005-3417; C08K005-3492

CC 37-6 (Plastics Manufacture and Processing)

IT Fluorescent brighteners

UV stabilizers

(weather-resistant polycarbonate resin composition)

IT Polycarbonates, uses

(weather-resistant polycarbonate resin composition)

IT 2478-20-8, Diaresin brilliant yellow 6G 147315-50-2, Tinuvin

1577

(weather-resistant polycarbonate resin composition)

L22 ANSWER 21 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1998:132926 HCPLUS Full-text

DOCUMENT NUMBER: 128:250524

TITLE: Spectral characteristics and photochemical stability of fluorescence probes based on 1,8-naphthaleneimide in solution and in polymer

AUTHOR(S): Hrdloovic, Pavol; Chmela, Stefan; Danko, Martin
 CORPORATE SOURCE: Polymer Inst., Slovak Acad. Sci., Bratislava, 842
 36, Slovakia
 SOURCE: Journal of Photochemistry and Photobiology, A:
 Chemistry (1998), 112(2,3), 197-203
 CODEN: JPPCEJ; ISSN: 1010-6030
 PUBLISHER: Elsevier Science S.A.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 06 Mar 1998
 AB Fluorescence probes of type N-(1'-R-2',2',6',6'-tetramethyl-4'- piperidinyl)-1,8-naphthaleneimide exhibit spectral properties which are influenced by environment and substitution (R) on sterically hindered nitrogen of piperidine moiety. Absorption spectra of parent amine and its N substituted derivs. show the longest wavelength band around 340 nm (log.vepsiln..apprx.4.0) which is well resolved in cyclohexane. In polar methanol it is only slightly blue shifted. Substitution on sterically hindered nitrogen does not influence the absorption spectra in near UV region. Fluorescence spectra of the probes have maximum around 385 nm in methanol and comparable intensity as anthracene. In nonpolar cyclohexane the fluorescence intensity is low (more than 100+). In nonpolar isotactic polypropylene matrix the red shifted excimer like emission in the range 440-470 nm was observed. The N-oxy and N-hydroxy derivs. under the same conditions do not yield the excimer emission. In other polymer matrixes as polystyrene, poly(Me methacrylate) and polyvinylchloride similar emission as in methanol was observed, the emission in latter matrix being the most intense. The fluorescence lifetime in polar solvent and matrixes is less than 1 ns and deviates slightly from monoexponential. In nonpolar iPP, the fluorescence lives longer around 5 ns and its decay is more complex. Intermol. quenching of the probes by 1-oxy-2,2,6,6-tetramethyl-4'-hydroxypiperidine in methanol occurs at the rate which is above the diffusion controlled limit what might indicate the involvement of the polar medium in the process. Intramol. quenching, expressed as the ratio INH/INO for parent and oxidized amine resp., strongly depends on the medium as well. In polar methanol this ratio is about 30 while in polymer matrixes 2-4 only. Photolysis of probes doped in polymer matrixes with radiation above 300 nm revealed that the parent amine is about 3+ more stable as 1,8-naphthoic anhydride or N-octadecyl-1,8-naphthaleneimide.
 IT 84165-18-4 204853-35-0 204853-36-3
 204853-39-4
 (spectral characteristics and photochem. stability of
 fluorescence probes based on 1,8-naphthaleneimide in solution and in
 polymer matrix)
 RN 84165-18-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-octadecyl- (CA INDEX NAME)

RN 204853-35-0 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(2,2,6,6-tetramethyl-4-

piperidinyl)- (CA INDEX NAME)

RN 204853-38-3 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[1-(acetyloxy)-2,2,6,6-tetramethyl-4-piperidinyl]- (CA INDEX NAME)

RN 204853-39-4 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)- (CA INDEX NAME)

IT 9003-53-6, Polystyrene 25085-53-4, Isotactic polypropylene

(spectral characteristics and photochem. stability of fluorescence probes based on 1,8-naphthaleneimide in solution and in polymer matrix)

RN 9003-53-6 HCPLUS

CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
CMF C8 H8RN 25085-53-4 HCPLUS
CN 1-Propene, homopolymer, isotactic (CA INDEX NAME)

CM 1

CRN 115-07-1
CMF C3 H6

CC 74-1 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 IT Fluorescence
 Fluorescence quenching
 Photolysis
 Photolysis kinetics
 Solvent effect
 Steric effects
 (spectral characteristics and photochem. stability of
 fluorescence probes based on 1,8-naphthaleneimide in solution and in
 polymer matrix)
 IT 2226-96-2
 (spectral characteristics and photochem. stability of
 fluorescence probes based on 1,8-naphthaleneimide in solution and in
 polymer matrix)
 IT 81-84-5, 1,8-Naphthalenedicarboxylic acid anhydride 10060-33-0,
 1,8-Naphthalenedicarboxylic acid dimethyl ester 84165-16-4
 204853-35-0 204853-36-1 204853-37-2 204853-38-3
 204853-39-4
 (spectral characteristics and photochem. stability of
 fluorescence probes based on 1,8-naphthaleneimide in solution and in
 polymer matrix)
 IT 67-56-1, Methanol, properties 110-82-7, Cyclohexane, properties
 9002-86-2, Polyvinyl chloride 9003-53-6, Polystyrene
 9011-14-7, Polymethyl methacrylate 25085-53-4, Isotactic
 polypropylene
 (spectral characteristics and photochem. stability of
 fluorescence probes based on 1,8-naphthaleneimide in solution and in
 polymer matrix)
 REFERENCE COUNT: 24 THERE ARE 24 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

ACCESSION NUMBER: 1997:663657 HCPLUS Full-text
 DOCUMENT NUMBER: 127:363818
 TITLE: Internal photostabilization of polymeric solid-state dye lasers based on trichromophoric rhodamine 6G molecules
 AUTHOR(S): Costela, A.; Garcia-Moreno, I.; Tian, H.; Su, J.; Chen, K.; Amat-Guerri, F.; Carrascoso, M.; Barroso, J.; Sastre, R.
 CORPORATE SOURCE: Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, Madrid, 28006, Spain
 SOURCE: Chemical Physics Letters (1997), 277(4), 392-398
 CODEN: CHPLBC; ISSN: 0009-2614
 PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 18 Oct 1997

AB We report on the lasing action of a modified rhodamine 6G dye with two covalently bonded identical 1,8-naphthalimide groups in liquid solution in ethanol and in solid solns. in a methacrylate copolymer. When the solid samples are transversely pumped with 534 nm pulses at a repetition rate of 1 Hz, we observed that the presence of the naphthalimide groups results in a clear photostabilization of the material. Possible mechanisms for the photostabilization process are suggested.

IT 4116-90-9 6914-61-0
 (polymeric solid-state dye lasers using trichromophoric rhodamine 6G derivs. and comparison with model compds.)

RN 4116-90-9 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-bromo-2-methyl- (CA INDEX NAME)

RN 6914-61-0 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-propyl- (CA INDEX NAME)

CC 73-10 (Optical, Electron, and Mass Spectroscopy and Other Related Properties)
 Section cross-reference(s): 38, 41

IT Light stabilizers
 (dye lasers using naphthalimide groups for photostabilization of
 rhodamine 6G mols. in methacrylate copolymer matrix)

IT Acrylic polymers, uses
 (solid-state dye lasers using trichromophoric rhodamine 6G mols. in
 methacrylate copolymer matrix)

IT 4116-90-9 6914-61-6
 (polymeric solid-state dye lasers using trichromophoric rhodamine
 6G derivs. and comparison with model compds.)

REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR
 THIS RECORD. ALL CITATIONS AVAILABLE IN THE
 RE FORMAT

L22 ANSWER 23 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1995:814910 HCPLUS Full-text
 DOCUMENT NUMBER: 123:324148
 TITLE: A new radiation stable plastic scintillator
 AUTHOR(S): Senchishin, V. G.; Markley, F.; Lebedev, V. N.;
 Kovtun, V. E.; Koba, V. S.; Kuznichenko, A. V.;
 Tizkaja, V. D.; Budagov, J. A.; Bellettini, G.; et
 al.
 CORPORATE SOURCE: Institute for Monocrystals, Kharkov, 310001,
 Ukraine
 SOURCE: Nuclear Instruments & Methods in Physics Research,
 Section A: Accelerators, Spectrometers, Detectors,
 and Associated Equipment (1995), 364(2),
 253-7
 CODEN: NIMAEER; ISSN: 0168-9002
 PUBLISHER: Elsevier
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 27 Sep 1995
 AB The influence of various components of a plastic scintillator (high concns. of
 primary dopant, secondary fluor, diffusion enhancer and stabilizer) on its
 radiation hardness was exptl. determined. The diffusion enhancing technique
 was the most powerful tool for improving radiation hardness. A new
 polystyrene scintillator that decreases its light output by only 4% after 2.8
 Mrad irradiation was produced.
 IT 1742-95-6, 4-Aminonaphthalimide 6914-98-3,
 n-Phenylnaphthalimide
 (dopant; radiation stable plastic scintillator)
 RN 1742-95-6 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino- (CA INDEX NAME)

RN 6914-98-3 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-phenyl- (CA INDEX NAME)

IT 9003-53-6, Polystyrene
(radiation stable plastic scintillator)
RN 9003-53-6 HCPLUS
CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
CMF C8 H8

$$x_2 \in \mathcal{C}_M = \mathcal{A}_M$$

CC 71-7 (Nuclear Technology)
IT Phosphors
Polymerization
 Stabilizing agents
 (radiation stable plastic scintillator)
IT 92-06-8, m-Terphenyl 101-84-8, Diphenyloxide 852-38-0, PBD
1321-94-4, Methylnaphthalene 1742-95-6, 4-Aminonaphthalimide
4288-15-7, Tin caprylate 6914-98-3, n-Phenylnaphthalimide
170136-80-8, D 118 (fluor) 170136-81-9, D 172
 (dopant; radiation stable plastic scintillator)
IT 9003-53-6, Polystyrene
 (radiation stable plastic scintillator)

L22 ANSWER 24 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 1993:671838 HCPLUS Full-text
DOCUMENT NUMBER: 119:271838
TITLE: Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid
AUTHOR(S): Yanase, Noriko; Noguchi, Hiromichi; Asakura, Hideki; Suzuta, Tatsuo
CORPORATE SOURCE: Dep. Immunol. Serol., Tokyo Med. Coll., Tokyo, 160, Japan
SOURCE: Journal of Applied Polymer Science (1993), 50(5), 765-76
CODEN: JAPNAB; ISSN: 0021-8995
DOCUMENT TYPE: Journal
LANGUAGE: English
ED Entered STN: 25 Dec 1993
AB Magnetic latex particles were prepared by the emulsion polymerization of styrene at 70° in the presence of a com. ferrofluid containing surfactant-stabilized magnetite particles in the aqueous phase or its modification by ultrafiltration, using K2S2O8 as an initiator. The effects of diversified

variables such as the amts. of initiator, monomer, and additive (CaCl₂ and fluorescent dyes) on the polymerization reaction and particle characteristics were investigated. The general polymerization features were analogous to those of ordinary emulsion polymerization. Transmission electron microscopy revealed that when the com. ferrofluid was used, the magnetite particles localized in the latex particles and the magnetite content varied from particle to particle; when the ferrofluid was used after ultrafiltration, the magnetite particles were dispersed well in the latex particles.

IT 19125-99-6
 (emulsion polymerization of styrene with magnetite in presence of)
 RN 19125-99-6 HCPLUS
 CN 1H-Benz{de}isoquinoline-1,3(2H)-dione, 2-butyl-6-(butylamino)- (CA
 INDEX NAME)

IT 9003-53-6P, Polystyrene
 (magnetite-containing latexes of, preparation and characterization of)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)
 CM 1
 CRN 100-42-5
 CMF C8 H8

CC 35-4 (Chemistry of Synthetic High Polymers)
 Section cross-reference(s): 37
 IT 10043-52-4, Calcium chloride, uses 19125-99-6
 (emulsion polymerization of styrene with magnetite in presence of)
 IT 9003-53-6P, Polystyrene
 (magnetite-containing latexes of, preparation and characterization of)
 L22 ANSWER 25 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1993:436032 HCPLUS Full-text
 DOCUMENT NUMBER: 119:36032
 TITLE: Study of the radiation resistance of scintillators
 based on polystyrene
 AUTHOR(S): Britvich, G. I.; Vasil'chenko, V. G.; Peresypkin,
 A. I.; Rykalin, V. I.; Kornilovskaya, L. D.;
 Malinovskaya, S. A.; Skripkina, V. T.; Shershukov,
 V. M.; Yushko, E. G.; et al.
 CORPORATE SOURCE: Inst. Fiz. Vys. Energ., Serpukhov, Russia
 SOURCE: Pribory i Tekhnika Eksperimenta (1993),

(1), 109-17
CODEN: FRTEAJ; ISSN: 0032-8162DOCUMENT TYPE: Journal
LANGUAGE: Russian

ED Entered STN: 24 Jul 1993

AB The radiation resistance was studied of polystyrene scintillators with different scintillation additives. Samples of thickness 5 mm and diameter 25 mm were irradiated by γ -rays from a ^{137}Cs source in air at room temperature. Under these same conditions, a partial recovery of the light output of the irradiated samples was observed. More than 30 phosphors were studied. The most radiation-resistant ones were those with the secondary scintillation additives X25, X31, 3HF, and M3HF. The radiation resistance of a polystyrene scintillator can be increased by significantly increasing the concentration of the primary additive (up to 10%) and by adding naphthalene.

IT 81-83-4D, 1H-Benz[de]isoquinoline-1,3(2H)-dione, derivs.

18618-86-5 89393-97-5

(radiation resistance of scintillators based on polystyrene with additive of)

RN 81-83-4 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione (CA INDEX NAME)

RN 18618-86-5 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(4,5-dihydro-1,5-diphenyl-1H-pyrazol-3-yl)-2-phenyl- (CA INDEX NAME)

RN 89393-97-5 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(dimethylamino)-2-methyl- (CA INDEX NAME)

IT 9003-53-6, Polystyrene
 (scintillators based on, radiation resistance of)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

CC 71-7 (Nuclear Technology)

Section cross-reference(s): 38, 73

IT Gamma ray
 (stability of polystyrene scintillators with different
 additives exposed to)
 IT 81-83-4D, 1H-Benz[de]isoquinoline-1,3(2H)-dione, derivs.
 81-84-5D, 1H,3H-Naphtho[1,8-c]pyran-1,3-dione, derivs. 90-12-0
 91-20-3, Naphthalene, uses 92-71-7, PPO 92-94-4,
 1,1':4',1''-Terphenyl 94-41-7 273-53-0D, Benzoxazole, derivs.
 577-85-5 840-57-3 852-37-9 852-38-0 1806-34-4 2515-62-0
 2538-52-5 4061-32-9 6889-78-7 7128-64-5 15082-28-7
 19618-86-5 19429-39-1 27425-55-4 32444-53-4 40875-48-7
 41044-12-6 59715-47-8 61283-15-6 67223-55-6 87973-59-9
 89393-97-5 104788-78-5 108783-69-3 147125-92-6
 (radiation resistance of scintillators based on polystyrene with
 additive of)
 IT 9003-53-6, Polystyrene
 (scintillators based on, radiation resistance of)

L22 ANSWER 26 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1991:546583 HCPLUS Full-text

DOCUMENT NUMBER: 115:146583

TITLE: Coating compositions for fabrication of
 electrophotographic photoconductors

INVENTOR(S): Momotake, Hiroyuki; Sasagawa, Tomoyoshi; Koide,
 Tetsuhiro; Sugawa, Hiroshi

PATENT ASSIGNEE(S): Mitsui Toatsu Chemicals, Inc., Japan
 Jpn. Kokai Tokkyo Koho, 10 pp.

SOURCE: CODEN: JKXXAF

DOCUMENT TYPE: Patent
 Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 03024553	A	19910201	JP 1989-158298 ->-	19890622
JP 2815902	B2	19981027		
PRIORITY APPLN. INFO.:			JP 1989-158298 ->-	19890622
OTHER SOURCE(S):	MARPAT	115:146583		

ED Entered STN: 05 Oct 1991
 GI

AB The title coating compns. are dispersions of diazo dyes I (A = coupler group) in solvent solns. of poly(vinyl butyral). The invention includes similar dispersions in solvent solns. of vinyl chloride copolymers. These dispersions have high dispersed state and dispersion stability, and provide highly performing photoconductors. Thus, 2.5 g II was dispersed in 25 mL 10% solution of Bakelite XYHL in THF, and mixed with 30 mL THF. An Al plate was coated with this dispersion and dried to form a 0.5- μm -thick charge-generating layer. A charge-transporting layer containing a tetraphenylthiophene derivative and polycarbonate was coated on the charge-generating layer, to obtain a photoconductor that showed high layer adhesion. The photoconductor was chargeable to -1000 V, which decayed to -980 V after 2 s, and showed residual voltage -5 V and sensitivity (lx-s required for half decay of charged voltage) 1.5. These values were -980 V, -900 V, -5 V and 1.6, resp., after 1000 charge-photodischarge cycles. The coating composition showed no change on standing for 1 mo.

IT 136208-46-3 136208-49-6 136208-50-9

(diazo dye, electrophotog. photoconductors containing)

RN 136208-46-3 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-[[4-[2-[4-[5-[2-[4-[{(2,3-dihydro-5-hydroxy-2-methyl-1,3-dioxo-1H-benz[de]isoquinolin-6-yl)azo]phenyl]ethenyl]-2-benzoxazolyl]phenyl]ethenyl]phenyl]azo]-5-hydroxy-2-methyl- (9CI) (CA INDEX NAME)

RN 136208-49-6 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 5-[[4-[2-[4-[5-[2-[4-[(2,3-dihydro-6-hydroxy-2-methyl-1,3-dioxo-1H-benz[de]isoquinolin-5-yl)azolophenyl]ethenyl]-2-benzoxazolylphenyl]ethenyl]phenyl]azo]-6-hydroxy-2-methyl- (9CI) (CA INDEX NAME)

RN 136208-50-9 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-butyl-6-[(4-[2-[4-[5-[2-[4-[(2-butyl-2,3-dihydro-5-hydroxy-1,3-dioxo-1H-benz[de]isoquinolin-6-yl)azo]phenyl]ethenyl]-2-benzoxazolyl]phenyl]ethenyl]phenyl]azo]-5-hydroxy- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

IC ICM G03G005-06
 ICS C08K005-353; C08L029-14; C09D129-14; G03G005-05
 CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 IT Vinyl acetal polymers
 (butyrals, binders, charge-generating layer of
 electrophotog. photoconductors containing diazo dyes and)
 IT 117829-87-5 117829-89-7 117829-90-0 117829-92-2 117829-96-6
 119099-97-7 136208-44-1 136208-46-3 136208-47-4
 136208-48-5 136208-49-6 136208-50-9
 (diazo dye, electrophotog. photoconductors containing)

L22 ANSWER 27 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1987:460843 HCPLUS Full-text
 DOCUMENT NUMBER: 107:60843
 TITLE: Aqueous fluorescent inks for marking pens
 INVENTOR(S): Ando, Takafusa; Sakano, Naomi
 PATENT ASSIGNEE(S): Pilot Ink Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 61291664	A	19861222	JP 1985-132772 <--	19850618
JP 05045633	B	19930709		
PRIORITY APPLN. INFO.:			JP 1985-132772 <--	19850618

ED Entered STN: 21 Aug 1987
 AB Title inks comprise fluorescent pigments, alkali-soluble polymers, rosin ester emulsions, and covering pigments selected from TiO₂ or pearl pigments composed of TiO₂-coated mica. Thus, C.I. Basic Red 1 aqueous paste 40, TiO₂ aqueous paste 10, rosin pentaerythritol ester emulsion 1b, maleic acid-styrene copolymer 25, EtOH 4.8, ethylene glycol 3.0, triethanolamine 0.5, and water 1.7 parts were mixed to give a fluorescent pink ink having better dispersion stability and redispersibility than a control not containing the rosin ester emulsion.
 IT 25085-34-1, Acrylic acid-styrene copolymer 25300-64-5
 , Maleic acid-styrene copolymer
 (fluorescent marking inks containing, for good adhesion)
 RN 25085-34-1 HCPLUS
 CN 2-Propenoic acid, polymer with ethenylbenzene (CA INDEX NAME)

CM 1

CRN 100-42-5
CMF C8 H8

CM 2

CRN 79-10-7
CMF C3 H4 O2

RN 25300-64-5 HCPLUS
 CN 2-Butenedioic acid (2Z)-, polymer with ethenylbenzene (CA INDEX NAME)

CM 1

CRN 110-16-7
CMF C4 H4 O4

Double bond geometry as shown.

CM 2

CRN 100-42-5
CMF C8 H8

IT 2478-20-8, C.I. Solvent Yellow 44
 (fluorescent pigment, C.I. Solvent Yellow 44, aqueous marking inks containing rosin ester and titanium oxide and)

RN 2478-20-8 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-amino-2-(2,4-dimethylphenyl)-(CA INDEX NAME)

IC ICM C09D011-16

CC 42-12 (Coatings, Inks, and Related Products)

IT 79-10-7D, esters, polymer with styrene 100-42-5D, Styrene, polymer with acrylate esters 25085-34-1, Acrylic acid-styrene copolymer 25300-64-5, Maleic acid-styrene copolymer (fluorescent marking inks containing, for good adhesion)

IT 115-77-5D, Pentaerythritol, esters with rosin acids (fluorescent marking inks containing, for good dispersion stability)

IT 2478-20-8, C.I. Solvent Yellow 44 (fluorescent pigment, C.I. Solvent Yellow 44, aqueous marking inks containing rosin ester and titanium oxide and)

IT 56-81-5, Rosin acids, esters, uses and miscellaneous (with glycerol or pentaerythritol, fluorescent marking inks containing, for good dispersion stability)

L22 ANSWER 28 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1985:15050 HCPLUS Full-text
 DOCUMENT NUMBER: 102:15050

ORIGINAL REFERENCE NO.: 102:2409a,2412a
 TITLE: Electrophotographic printing toner
 PATENT ASSIGNEE(S): Nippon Kayaku Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 59114546	A	19840702	JP 1982-223990 <--	19821222
			JP 1982-223990 <--	19821222

PRIORITY APPLN. INFO.:
 ED Entered STN: 12 Jan 1985
 GI

AB An electrophotog. toner is described which contains a compound of the formula I (R = C1-9 straight or branched alkyl, C4-9 alkoxyalkyl, cyclohexyl, Ph which may have a Me, Et, MeO, or EtO substituent; R1 = C1-4 alkyl, C3-6 alkoxyalkyl; R2 = H, OR1). These compds., which are used as charge-controlling agents, have a high compatibility with binder resins and provide a toner with high specific charge, storage stability, hygroscopicity, and durability, and as the compds. are colorless, a toner having a desired color is obtained by the joint use of a pigment. Thus, a mixture of a methacrylate monomer-styrene copolymer 100, C black 20, and I (R = Me; R1 = Me; R2 = H) 5 parts was kneaded and pulverized to give a toner which showed stable charging properties after storage at 100% relative humidity for a week and gave high d. images.

IT 3271-05-4 22330-48-9 36780-16-2
 36785-26-9 61462-77-3 93672-60-7
 93672-61-8

(electrophotog. toner containing, as charge-controlling agent)

RN 3271-05-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-methoxy-2-methyl- (CA INDEX NAME)

RN 22330-48-9 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6,7-diethoxy-2-methyl- (CA INDEX NAME)

RN 36780-16-2 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-methoxy-2-(1-methylethyl)- (CA INDEX NAME)

RN 36785-26-9 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-ethoxy-2-(4-methylphenyl)- (CA INDEX NAME)

RN 81462-77-3 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-methoxy-2-phenyl- (CA INDEX

NAME)

RN 93672-60-7 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-ethoxy-2-[3-(hexyloxy)propyl]-
 7-methoxy- (CA INDEX NAME)

RN 93672-61-8 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(2-butoxyethoxy)-2-butyl-
 (CA INDEX NAME)

IT 9003-53-6
 (oligomeric, electrophotog. toner containing naphthalenedicarboximide
 derivative charge-controlling agent and)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

IC G03G009-08
 CC 74-3 (Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes)
 IT 3271-05-4 22330-48-9 36780-16-2
 36785-26-9 81462-77-3 93672-60-7
 93672-61-8
 (electrophotog. toner containing, as charge-controlling agent)
 IT 6994-46-3 9003-53-6
 (oligomeric, electrophotog. toner containing naphthalenedicarboximide derivative charge-controlling agent and)

L22 ANSWER 29 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1984:53188 HCAPLUS Full-text
 DOCUMENT NUMBER: 100:53188
 ORIGINAL REFERENCE NO.: 100:8137a,8140a
 TITLE: 1,3,5-Triaryl-2-pyrazolines and photostabilizers made from them
 AUTHOR(S): Markov, V. I.; Slezko, E. G.
 CORPORATE SOURCE: USSR
 SOURCE: Voprosy Khimii i Khimicheskoi Tekhnologii (1983), 70, 26-30
 CODEN: VKKCAJ; ISSN: 0321-4095
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 ED Entered STN: 12 May 1984
 AB The major impurity in tech. 1,3,5-triphenyl-2-pyrazoline (I) [742-01-8], used in the manufacture of daylight fluorescent pigments and dyes and in scintillation technol., was identified as 1,3,5-triphenylpyrazole (II) [2183-27-9], present in the amount of 3.6-4.8%. A purer I can be prepared by carrying out the synthesis from PhCHO, PhCOMe, and PhNNHH₂ in the presence of a reducing such as Na₂SO₃. II proved to be a better UV stabilizer for polypropylene [9003-07-0] than Tinuvin P or Tinuvin 326.
 IT 9003-07-0
 (UV stabilizers for, triphenylpyrazole as)
 RN 9003-07-0 HCAPLUS
 CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1
 CRN 115-07-1
 CMF C3 H6

$\text{H}_3\text{C}-\text{CH}=\text{CH}_2$

IT 78759-60-1
 (reaction of, with benzaldehyde and phenylhydrazine)
 RN 78759-60-1 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-acetyl-2-phenyl- (CA INDEX NAME)

CC 41-9 (Dyes, Organic Pigments, Fluorescent Brighteners, and Photographic Sensitizers)
 Section cross-reference(s): 28, 37, 45
 ST pyrazoline triphenyl purity; pyrazole triphenyl UV stabilizer ; UV stabilizer triphenylpyrazole
 IT Light stabilizers (UV, triphenylpyrazole, for polypropylene)
 IT 9003-07-0 (UV stabilizers for, triphenylpyrazole as)
 IT 98-86-2, reactions 99-91-2 78759-60-1 (reaction of, with benzaldehyde and phenylhydrazine)

L22 ANSWER 30 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1979:205785 HCAPLUS Full-text

Correction of: 1977:586075

DOCUMENT NUMBER: 90:205785 Correction of: 87:186075

ORIGINAL REFERENCE NO.: 90:32749a,32752a

TITLE: Quinoline derivatives

INVENTOR(S): Shimada, Keizo; Harada, Toshiaki; Koga, Masahiro

PATENT ASSIGNEE(S): Teijin Ltd., Japan

SOURCE: Ger. Offen., 58 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2706872	C3	19791025	DE 1977-2706872 <--	19770217
DE 2706872	B2	19790308		
DE 2706872	A1	19770825		
JP 52098757	A	19770818	JP 1976-15455 <--	19760217
JP 59001300	B	19840111		
JP 53000228	A	19780105	JP 1976-74394 <--	19760625
JP 53041324	A	19780414	JP 1976-115370 <--	19760928
JP 60012373	B	19850401		
JP 53045329	A	19780424	JP 1976-119878 <--	19761007
JP 53052538	A	19780513	JP 1976-127343 <--	19761025
PRIORITY APPLN. INFO.:			JP 1976-15455 <--	A 19760217
			JP 1976-74394	A 19760625

<--		
JP 1976-115370	A	19760928
<--		
JP 1976-119878	A	19761007
<--		
JP 1976-127343	A	19761025
<--		

ED Entered STN: 12 May 1984
 GI

AB Heat-stable, yellow quinophthalone pigments (I; R = Me, EtO, MeO, Cl, Br; R1 = H, Me; R2 = Cl, Br; X = o-C6H4, halo-substituted o-C6H4, C10H6, halo-substituted C10H6) are prepared and used to dye plastics and polyester fibers. Thus, reaction of crotonaldehyde [4170-30-3] with o-chloroaniline [95-51-2] in HCl to give 8-chloroquininaldehyde [3033-82-7], which was nitrated, reduced, and treated successively with phthalic anhydride [85-44-9] and 3,4,5,6-tetrachlorophthalic anhydride [117-08-8] to give I (R = R2 = Cl, R1 = H, X = o-C6H4; 5-substitution) [64485-80-9]. Other I were similarly prepared

IT 64485-46-7 64485-50-3
 (pigment, for fiber and plastics, preparation and spectra of)

RN 64485-46-7 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-bromo-2-[8-chloro-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-5-quinolinyl]- (CA INDEX NAME)

RN 64485-50-3 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[8-chloro-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-5-quinolinyl]- (CA INDEX NAME)

IT 64485-60-5 64485-63-8 64485-77-4
 (pigment, for fibers and plastics, preparation and spectra of)
 RN 64485-60-5 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[8-methoxy-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-5-quinolinyl]- (CA INDEX NAME)

RN 64485-63-8 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[8-methyl-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-5-quinolinyl]- (CA INDEX NAME)

RN 64485-77-4 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[8-chloro-4-methyl-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-6-quinolinyl]- (CA INDEX NAME)

IT 9002-88-4 9003-07-0 9003-53-6
 (pigments for, haloquinophthalones as)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
 CMF C2 H4

RN 9003-07-0 HCPLUS
 CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1
 CMF C3 H6

RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

H₂C = CH - Ph

IC C09B025-00
 CC 40-6 (Dyes, Fluorescent Whitening Agents, and Photosensitizers)
 ST quinophthalone dye heat stable; pigment quinophthalone heat stable;
 polyester fiber dye; heat stability quinophthalone dye;
 haloquinophthalone dye heat stable
 IT 64485-42-3 64485-43-4 64485-44-5 64485-45-6 64485-46-7
 64485-47-8 64485-48-9 64485-49-0 64485-50-3 64485-51-4
 64485-54-7 64485-55-8 64485-56-9
 (pigment, for fiber and plastics, preparation and spectra of)
 IT 64485-59-2 64485-60-5 64485-61-6 64485-62-7
 64485-63-8 64485-64-9 64485-65-0 64485-66-1 64485-70-7
 64485-71-8 64485-72-9 64485-73-0 64485-74-1 64485-75-2
 64485-76-3 64485-77-4 64485-78-5 64485-79-6 64513-36-6
 64513-37-7 64513-38-8 64513-39-9
 (pigment, for fibers and plastics, preparation and spectra of)
 IT 9002-86-2 9002-88-4 9003-07-0 3003-53-6
 (pigments for, haloquinophthalones as)

L22 ANSWER 31 OF 34 HCAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1977:108000 HCAPLUS Full-text

DOCUMENT NUMBER: 86:108000

ORIGINAL REFERENCE NO.: 86:17052h, 17053a

TITLE: Quinoline-based pigments

INVENTOR(S): Shimada, Keizo; Harada, Toshiaki; Koga, Masahiro

PATENT ASSIGNEE(S): Teijin, Ltd., Japan

SOURCE: Ger. Offen., 47 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2626271	A1	19761223	DE 1976-2626271	19760611
			<--	
DE 2626271	B2	19800911		
DE 2626271	C3	19810514		
JP 51146543	A	19761216	JP 1975-70220	19750612
			<--	
JP 58013578	B	19830314		
JP 51146544	A	19761216	JP 1975-70221	19750612
			<--	
JP 58013579	B	19830314		
JP 51147544	A	19761217	JP 1975-70752	19750613
			<--	
JP 58012904	B	19830310		
PRIORITY APPLN. INFO.:			JP 1975-70220	A 19750612
			<--	
			JP 1975-70221	A 19750612
			<--	
			JP 1975-70752	A 19750613
			<--	

ED Entered STN: 12 May 1984
GI

AB Yellow pigments with good thermal stability and weathering resistance have the general structure I, where R = H or Me, Z = 1,2-, 2,3-, or 1,8-naphthylene, optionally halo-substituted, and Zl = arylene, optionally arylsulfonyl- or halo-substituted. I are useful for coloring plastics by melt incorporation, and have better heat stability than similar pigments where both Z and Zl are tetrahalo-o-phenylene. Typical of .apprx.30 pigments, prepared by conventional condensation reactions, are I (R = H, Z = 1,8-C10H6, Zl = tetrachloro-o-phenylene) [61866-94-2] and I (R = H, Z = Zl = 1,2-C10H6) [61975-10-8]; IR-visible spectral data are given for all pigments.

IT 61975-28-8

(heat stability of, in polyethylene melts)

RN 61975-28-8 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-bromo-2-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

IT 61866-89-5D, brominated
(pigment, for plastics)

RN 61866-89-5 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

IT 61866-94-2
(pigment, for plastics, preparation and heat stability of)

RN 61866-94-2 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

IT 61866-82-8 61866-84-0 61866-85-1
61866-86-2 61866-88-4 61866-89-5
61966-16-3 61966-17-4 61975-06-2
61975-07-3 61975-08-4 61975-11-9
61975-12-0
(pigment, for plastics, preparation of)

RN 61866-82-8 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(4,5,6,7-tetrabromo-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61866-84-0 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 5-bromo-2-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61866-85-1 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-chloro-2-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61866-86-2 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(5,8-dibromo-2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61866-88-4 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 5-bromo-2-[2-(2,3-dihydro-1H-benz[e]inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61866-89-5 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61966-16-3 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(tetrabromo-2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl)-8-quinolinyl]- (9CI) (CA INDEX NAME)

4 (D1-Br)

RN 61966-17-4 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-[(4-bromophenyl)sulfonyl]-2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl]-8-quinolinyl- (9CI) (CA INDEX NAME)

RN 61975-06-2 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[4-methyl-2-(4,5,6,7-tetrachloro-2,3-dihydro-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61975-07-3 HCAPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-chloro-2-[4-methyl-2-(4,5,6,7-tetrachloro-2,3-dihydro-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61975-08-4 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-bromo-2-[4-methyl-2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61975-11-9 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[2-(2,3-dihydro-1,3-dioxo-1H-phenalen-2-yl)-8-quinolinyl]- (CA INDEX NAME)

RN 61975-12-0 HCAPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6,7-dibromo-2-[2-(4,5,6,7-tetrachloro-2,3-dihydro-1,3-dioxo-1H-inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

IT 61975-29-9

(pigment, for poly(methyl methacrylate))
 RN 61975-29-9 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 5-bromo-2-[2-(5,8-dibromo-2,3-dihydro-1,3-dioxo-1H-benz[f]inden-2-yl)-8-quinolinyl]- (CA INDEX NAME)

IT 9002-88-4 9003-07-0 9003-53-6
 9003-56-9
 (pigments for, naphthaliminoquinoline derivs. as)
 RN 9002-88-4 HCPLUS
 CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1
CME C2 H4

RN 9003-07-0 HCPLUS
 CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1
CME C3 H6

RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
CME C8 H8

RN 9003-56-9 HCPLUS
 CN 2-Propenenitrile, polymer with 1,3-butadiene and ethenylbenzene (CA
 INDEX NAME)

CM 1

CRN 107-13-1
 CMF C3 H3 N

CM 2

CRN 106-99-0
 CMF C4 H6

CM 3

CRN 100-42-5
 CMF C8 H8

IC C09B025-00
 CC 40-6 (Dyes, Fluorescent Whitening Agents, and Photosensitizers)
 Section cross-reference(s): 36
 ST quinoline deriv pigment; quinophthalone pigment; heat
 stability pigment; plastic pigment; indanylquinoline pigment;
 aminoquinoline imide pigment
 IT 61975-28-8
 (heat stability of, in polyethylene melts)
 IT 61366-89-5, brominated
 (pigment, for plastics)
 IT 61866-94-2 61966-18-5
 (pigment, for plastics, preparation and heat stability of)
 IT 61866-32-8 61866-84-0 61866-85-1
 61866-36-2 61866-88-4 61866-89-5
 61966-16-3 61966-17-4 61975-06-2

61975-07-3 61975-08-4 61975-10-8
 61975-11-9 61975-12-0 61975-13-1 61975-14-2
 61975-15-3 61975-16-4 61975-17-5 61975-18-6 61975-19-7
 61975-20-0 61975-21-1 61975-22-2 61975-23-3 61975-24-4
 61975-25-5 61975-26-6 61975-27-7 62031-71-4
 (pigment, for plastics, preparation of)
 IT 61975-29-9
 (pigment, for poly(methyl methacrylate))
 IT 9002-86-4 3003-07-0 9003-53-6
 9003-56-9
 (pigments for, naphthaliminoquinoline derivs. as)

L22 ANSWER 32 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1975:460241 HCPLUS [Full-text](#)
 DOCUMENT NUMBER: 83:60241
 ORIGINAL REFERENCE NO.: 83:9521a,9524a
 TITLE: Light stabilization of dyed polystyrenes
 by organic luminophors
 AUTHOR(S): Krasovitskii, B. M.; Knyaginina, I. P.; Barer, V.
 E.; Faidel, G. I.; Solomatina, L. V.; Vinogradova,
 N. P.
 CORPORATE SOURCE: USSR
 SOURCE: Plasticheskie Massy (1975), (4), 56-7
 CODEN: PLMSAI; ISSN: 0554-2901
 DOCUMENT TYPE: Journal
 LANGUAGE: Russian
 ED Entered STN: 12 May 1984
 GI For diagram(s), see printed CA Issue.
 AB Lightfastness of azo dyes in polystyrene (I) [9003-53-6], the depth of color,
 and the light resistance of I were improved by addition of organic
 luminophors, e.g., luminophor II [21357-92-6]. Addition of II to Fat Soluble
 Red S (III) [1229-55-6] prevented fading of the dye during 100-hr irradiation
 by uv light. Incorporation of II and III produced more ordered structure in I
 than that obtained by introducing only III. Identical structural changes
 occurred during aging of I containing II or Tinuvin P.
 IT 18618-86-5
 (luminophors, for light stabilization of colored
 polystyrene)
 RN 18618-86-5 HCPLUS
 CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 6-(4,5-dihydro-1,5-diphenyl-1H-
 pyrazol-3-yl)-2-phenyl- (CA INDEX NAME)

IT 9003-53-6
 (stabilization of colored, organic luminophors for)
 RN 9003-53-6 HCPLUS
 CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5
 CMF C8 H8

CC 36-6 (Plastics Manufacture and Processing)
 ST luminophor org polystyrene stabilization; dye
 stabilization org luminophor; color stabilization
 org luminophor; light stabilizer org luminophor
 IT Light stabilizers
 (organic luminophors, for colored polystyrene)
 IT Phosphors
 (organic, stabilization of colored polystyrene by)
 IT Fluorescent brighteners
 (stabilization of colored polystyrene by)
 IT 742-01-8 18618-86-5 21357-92-6 23749-58-8
 (luminophors, for light stabilization of colored
 polystyrene)
 IT 9093-53-6
 (stabilization of colored, organic luminophors for)

L22 ANSWER 33 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN
 ACCESSION NUMBER: 1967:491380 HCPLUS Full-text
 DOCUMENT NUMBER: 67:91380
 ORIGINAL REFERENCE NO.: 67:17247a,17250a
 TITLE: 1,8-Naphthalimide ultraviolet stabilizers
 for polymers
 INVENTOR(S): Dressler, Hans; Reabe, Kenneth G.
 PATENT ASSIGNEE(S): Koppers Co., Inc.
 SOURCE: U.S., 3 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3340225	----	19670905	US 1964-375949	19640617 <--

ED Entered STN: 12 May 1984
 GI For diagram(s), see printed CA Issue.
 AB Polymers are stabilized against uv light degradation by the title compds. (I),
 where R is H or OH, and R1 is OEt or H when I was added at 0.1-4 weight%.
 Thus, 40 g. 1,8-naphthalic anhydride, 22 g. o-aminophenol, 100 ml. BuOH, and
 100 ml. PhMe were refluxed for 6 hrs. while 3.1 ml. H2O was removed. The
 residue was slurried in PhMe and filtered to yield 47.2 g. product, which,
 when recrystd. from PhNO2, yielded 8.7 g. I (R1 = H, R = OH), m. 325-330°.
 This I (0.1 part) was blended with 100 parts polystyrene in a jar mill and the
 stabilized beads were extruded into pellets and formed into 2-in.-diameter
 disks by injection molding. The molded disks were exposed to uv radiation
 under a 325-w. lamp for 120 hrs. The yellowness index before exposure was 9.8
 and after exposure was 13.5, giving a yellowness factor of 3.7. A control
 without stabilizer had a yellowness index of 8.4 before exposure and 15.3

after exposure, giving a yellowness factor of 6.9. I (R = H, R1 = OEt) was also used and low-d. polyethylene was also stabilized.

IT 6917-30-2
 (as ultraviolet light stabilizer for ethylene polymers or
 styrene polymers)

RN 6917-30-2 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-(2-hydroxyphenyl)- (CA INDEX NAME)

IT 9002-88-4, uses and miscellaneous 9003-53-6, uses
 and miscellaneous
 (ultraviolet light stabilizers for, naphthalimide derivs.
 as)

RN 9002-88-4 HCPLUS

CN Ethene, homopolymer (CA INDEX NAME)

CM 1

CRN 74-85-1

CMF C2 H4

RN 9003-53-6 HCPLUS

CN Benzene, ethenyl-, homopolymer (CA INDEX NAME)

CM 1

CRN 100-42-5

CMF C8 H8

INCL 260045800
 CC 36 (Plastics Manufacture and Processing)
 ST NAPHTHALAMIDES UV STABILIZER; UV STABILIZER
 NAPHTHALAMIDES; POLYSTYRENE UV STABILIZING; POLYETHYLENE UV
 STABILIZING; PLASTIC UV STABILIZING
 IT Light, ultraviolet, chemical and physical effects
 (stabilizers, naphthalimide derivs. as, for ethylene

polymers or styrene polymers)
 IT 6917-36-2 15042-12-3
 (as ultraviolet light stabilizer for ethylene polymers or
 styrene polymers)
 IT 9062-88-4, uses and miscellaneous 9003-53-6, uses
 and miscellaneous
 (ultraviolet light stabilizers for, naphthalimide derivs.
 as)

L22 ANSWER 34 OF 34 HCPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1964:3313 HCPLUS Full-text

DOCUMENT NUMBER: 60:3313

ORIGINAL REFERENCE NO.: 60:560d-g

TITLE: Phosphonic and thiophosphonic acid esters

INVENTOR(S): Lorenz, Walter; Schrader, Gerhard

PATENT ASSIGNEE(S): Farbenfabriken Bayer A.-G.

SOURCE: 6 pp.

DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
GB 919908	-----	19630227	GB 1961-20458	19610606
			<--	
DE 1207931			DE	
PRIORITY APPLN. INFO.:			DE	19600607
			<--	

ED Entered STN: 22 Apr 2001

GI For diagram(s), see printed CA Issue.

AB A mixture of 64 g. naphthalimide, 39 g. 95% Et3N, and 165 ml. HCONMe₂s is stirred at room temperature for 30 min. To this stirred mixture, cooled at 20-5°, is added 43.5 g. methylthionophosphonic acid O-Me ester chloride. Stirring is continued for 30 min. at room temperature and 500 ml. water added. The product is worked up to give 72 g. (75%) I (R = Me, R' =MeO), m. 200° (decomposition). Similarly are prepared the following I (R, R', % yield, and m.p. given): Bu, MeO, -, -; ClCH₂, MeO, -, -; cyclohexyl, MoO, -, -; Ph, MoO, -, -; Et, MeO, 74.6, 162°; Et, EtO, 87.7, 159°; Me, EtO, 71, 194° (decomposition); Me₂C:CH, EtO, 78.4, 161° (decomposition); EtSCH:CH, EtO, 84.8, 166°. II-VII are also similarly prepared I-VII exhibit insecticidal activity, both by direct exposure and by systemic action

IT 74835-79-3R, Naphthalimide, N-hydroxy-, O-ethyl

methylphosphonothioate
 (preparation of)

RN 74835-79-3 HCPLUS

CN 1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[(ethoxymethylphosphinothiolyoxy]- (9CI) (CA INDEX NAME)

IT 9003-07-0, Propene polymers
 (stabilization of, by phosphonic acid esters)
 RN 9003-07-0 HCAPLUS
 CN 1-Propene, homopolymer (CA INDEX NAME)

CM 1

CRN 115-07-1
 CMF C3 H6

IC C07F
 CC 39 (Organometallic and Organometalloidal Compounds)
 IT 74835-79-3B, Naphthalimide, N-hydroxy-, O-ethyl
 methylphosphonothioate 89830-96-6P, Maleimide, N-hydroxy-, O-methyl
 methylphosphonothioate 91468-83-6P, 2,6-Piperazinedione, 1-hydroxy-,
 O-methyl methylphosphonothioate 91724-89-9P, Glutarimide,
 N-hydroxy-, O-methyl methylphosphonothioate 91746-44-0P,
 Succinimide, N-hydroxy-, O-methyl methylphosphonothioate
 93029-25-5P, Phthalimide, N-hydroxy-, O-methyl methylphosphonothioate
 93115-22-1P, 4-Cyclohexene-1,2-dicarboximide, N-hydroxy-, O-methyl
 methylphosphonothioate 96295-03-3P, Naphthalimide, N-hydroxy-,
 O-methyl (chloromethyl)phosphonothioate 97638-15-8P, Naphthalimide,
 N-hydroxy-, O-ethyl ethylphosphonothioate 98251-40-2P,
 Naphthalimide, N-hydroxy-, O-isopropyl ethylphosphonothioate
 98471-47-7P, Naphthalimide, N-hydroxy-, O-ethyl (2-
 methylpropenyl)phosphonothioate 98471-48-8P, Naphthalimide,
 N-hydroxy-, O-ethyl [2-(ethylthio)vinyl]phosphonothioate
 98471-49-9P, Naphthalimide, N-hydroxy-, O-ethyl (2-
 ethoxyvinyl)phosphonothioate 98562-15-3P, Naphthalimide, N-hydroxy-,
 O-methyl ethylphosphonothioate 98596-27-1P, Naphthalimide,
 N-hydroxy-, O-propyl methylphosphonothioate 98596-28-2P,
 Naphthalimide, N-hydroxy-, ethyl ethylphosphonate 98655-30-2P,
 Naphthalimide, N-hydroxy-, O-methyl phenylphosphonothioate
 106978-86-3P, Naphthalimide, N-hydroxy-, O-methyl
 cyclohexylphosphonothioate
 (preparation of)
 IT 9003-07-0, Propene polymers
 (stabilization of, by phosphonic acid esters)

=> d his nofile

(FILE 'HOME' ENTERED AT 13:22:53 ON 22 JAN 2008)

FILE 'HCAPLUS' ENTERED AT 13:23:02 ON 22 JAN 2008
 L1 1 SEA ABB=ON PLU=ON US20070100033/PN
 SEL RN

FILE 'REGISTRY' ENTERED AT 13:23:20 ON 22 JAN 2008
 L2 55 SEA ABB=ON PLU=ON (103597-45-1/BI OR 106677-58-1/BI OR
 136457-10-8/BI OR 140-66-9/BI OR 147315-50-2/BI OR
 1722-18-5/BI OR 178671-58-4/BI OR 1843-05-6/BI OR 187536-93
 -2/BI OR 2440-22-4/BI OR 24544-04-5/BI OR 24936-68-3/BI OR
 24968-12-5/BI OR 25037-45-0/BI OR 25038-59-9/BI OR
 25973-55-1/BI OR 26062-94-2/BI OR 2725-22-6/BI OR 3147-75-9
 /BI OR 35344-07-1/BI OR 36437-37-3/BI OR 3864-99-1/BI OR
 3896-11-5/BI OR 4053-08-1/BI OR 5232-99-5/BI OR 544-92-3/BI
 OR 6197-30-4/BI OR 70321-86-7/BI OR 81-86-7/BI OR
 852282-82-7/BI OR 852282-83-8/BI OR 852282-84-9/BI OR
 852282-85-0/BI OR 852282-86-1/BI OR 852282-87-2/BI OR
 852282-88-3/BI OR 852282-89-4/BI OR 852282-90-7/BI OR
 852282-91-8/BI OR 852282-92-9/BI OR 852282-93-0/BI OR
 852282-94-1/BI OR 852282-95-2/BI OR 852282-96-3/BI OR
 852282-97-4/BI OR 852282-98-5/BI OR 9002-88-4/BI OR
 9003-07-0/BI OR 9003-49-0/BI OR 9003-53-6/BI OR 9003-54-7/B
 I OR 9003-56-9/BI OR 9003-63-8/BI OR 9011-14-7/BI OR
 95-14-7/BI)

L3 18 SEA ABB=ON PLU=ON L2 AND ISOQUINOLINE?
 L4 22169 SEA ABB=ON PLU=ON 1784.14/RID
 L5 9577 SEA ABB=ON PLU=ON L4 AND DIONE?

FILE 'HCAPLUS' ENTERED AT 13:26:35 ON 22 JAN 2008
 L6 11 SEA ABB=ON PLU=ON L3
 L7 3767 SEA ABB=ON PLU=ON L5
 E ACRYLIC POLYMERS, USES/CT
 L8 41184 SEA ABB=ON PLU=ON "ACRYLIC POLYMERS, USES"+PFT,NT/CT
 E POLYCARBONATES, USES/CT
 L9 24870 SEA ABB=ON PLU=ON "POLYCARBONATES, USES"+PFT,NT/CT
 E POLYESTERS, USES/CT
 L10 92534 SEA ABB=ON PLU=ON "POLYESTERS, USES"+PFT,NT/CT
 E POLYOLEFINS/CT
 L11 625142 SEA ABB=ON PLU=ON POLYOLEFINS+PFT,NT/CT
 E POLYURETHANES, USES/CT
 L12 49945 SEA ABB=ON PLU=ON "POLYURETHANES, USES"+PFT,NT/CT
 E POLYVINYL ACETALS/CT
 L13 18151 SEA ABB=ON PLU=ON "POLYVINYL ACETALS"+PFT,NT/CT
 E POLYVINYL BUTYRALS/CT
 L14 12936 SEA ABB=ON PLU=ON "POLYVINYL BUTYRALS"+PFT,NT/CT
 L15 219 SEA ABB=ON PLU=ON L7 AND ((L8 OR L9 OR L10 OR L11 OR L12
 OR L13 OR L14))
 L16 1 SEA ABB=ON PLU=ON L15 AND L1
 E LIGHT STABILIZERS/CT
 L17 16585 SEA ABB=ON PLU=ON "LIGHT STABILIZERS"+PFT,NT/CT
 E UV STABILIZERS/CT
 L18 8000 SEA ABB=ON PLU=ON "UV STABILIZERS"+PFT,NT/CT
 L19 12 SEA ABB=ON PLU=ON L15 AND (L17 OR L18)
 L20 39 SEA ABB=ON PLU=ON L15 AND STABILI?
 L21 39 SEA ABB=ON PLU=ON L19 OR L20

L22

10/579,441
34 SEA ABB=ON PLU=ON L21 AND (1840-2003)/PRY,AY,PY