

## Evaluasi Model Machine Learning Menggunakan Dataset Student Score

Data Series 15.0 Al Machine Learning Dibimbing

Muhammad Aziz Habiburrahim







#### 01 IMPORT LIBRARY AND RESOURCE



Pertama-tama, terlebih dahulu melakukan kode import library meliputi pandas, numpy, matplotlib.pyplot, seaborn dan kode import resource meliputi sklearn.model\_selection, sklearn.linear\_model, sklearn.tree, sklearn.ensemble, sklearn.metrics, google.colab.

```
[27] # import libraries and resources
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.tree import DecisionTreeRegressor
   from sklearn.ensemble import RandomForestRegressor
   from sklearn.metrics import mean_squared_error, r2_score
   from google.colab import sheets
```



#### 01 IMPORT LIBRARY AND RESOURCE



Setelah import, lakukan kode untuk mendeteksi dataset yang akan dipakai menggunakan pd.read\_csv. Pastikan sudah mengupload file CSV pada bagian content.

[18] # read the dataset using pandas
 data = pd.read\_csv('/content/student\_scores\_dataset.csv')









Setelah dataset terbaca oleh system, lakukan pencarian informasi data yang diperlukan. [29] # general information about the dataset
 data.info()
 data.describe()

[24] # this displays the top 100 rows of the data
 data.head(100)

[31] # convert data to spreadsheets
 sheet = sheets.InteractiveSheet(df=data)









Cek distribusi nilai dari tiap pelajaran yg terdiri dari Matematika, Sejarah, Fisika, Kimia, Biologi, Inggris dan Geografi. Distribusi menunjukkan interval nilai dengan banyaknya siswa memperoleh nilai tersebut.

- [32] # check the distribution of math values
   sns.histplot(data['math\_score'], kde=True)
   plt.title('Distribution of Math Values')
   plt.show()
- [33] # check the distribution of history values
   sns.histplot(data['history\_score'], kde=True)
   plt.title('Distribution of History Values')
   plt.show()
- [34] # check the distribution of physics values
   sns.histplot(data['physics\_score'], kde=True)
   plt.title('Distribution of Physics Values')
   plt.show()
- [36] # check the distribution of chemistry values
   sns.histplot(data['chemistry\_score'], kde=True)
   plt.title('Distribution of Chemistry Values')
   plt.show()
- [37] # check the distribution of biology values
   sns.histplot(data['biology\_score'], kde=True)
   plt.title('Distribution of Biology Values')
   plt.show()
- [38] # check the distribution of english values
   sns.histplot(data['english\_score'], kde=True)
   plt.title('Distribution of English Values')
   plt.show()
- [39] # check the distribution of geography values
   sns.histplot(data['geography\_score'], kde=True)
   plt.title('Distribution of Geography Values')
   plt.show()











Cek hubungan grafik antara dari dua setiap kolom menggunakan sns.pairplot yang berukuran 12 x 12.

[41] # check the relationship between features
 sns.pairplot(data)
 plt.show()







# 02 EXPLORATORY DATA ANALYSIS Illuma



Cek duplikat data pada dataset student score, lakukan kode untuk mengecek duplikat menggunakan drop\_cuplicates.

```
[42] # check duplicated data
    print("Number of Duplicate Data:", data.duplicated().sum())
    data = data.drop_duplicates()
```

→ Number of Duplicate Data: 0









Cek nilai yang bermasalah pada dataset, lakukan kode untuk megecek nilai yang bermasalah menggunakan data.isnull.

```
[43] # check missing value handling
    print("Check Missing Values:")
    print(data.isnull().sum())
```

```
→ Check Missing Values:
    first name
    last_name
    email
    gender
    part time job
    absence days
    extracurricular activities
    weekly self study hours
    career aspiration
    math score
    history_score
    physics_score
    chemistry score
    biology score
    english score
    geography score
    dtype: int64
```







Cek nilai setiap pelajaran menggunakan visualisasi boxplot dengan kode sns.boxplot untuk melihat rentang nilai rata rata.

- [44] # visualisasi boxplot math score
   sns.boxplot(data['math\_score'])
   plt.title('Boxplot of Math Score')
   plt.show()
- [45] # visualisasi boxplot history score
   sns.boxplot(data['history\_score'])
   plt.title('Boxplot of History Score')
   plt.show()
- [46] # visualisasi boxplot physics score
   sns.boxplot(data['physics\_score'])
   plt.title('Boxplot of Physics Score')
   plt.show()
- [47] # visualisasi boxplot chemistry score
   sns.boxplot(data['chemistry\_score'])
   plt.title('Boxplot of Chemistry Score')
   plt.show()
- [48] # visualisasi boxplot biology score
   sns.boxplot(data['biology\_score'])
   plt.title('Boxplot of Biology Score')
   plt.show()
- [49] # visualisasi boxplot english score
   sns.boxplot(data['english\_score'])
   plt.title('Boxplot of English Score')
   plt.show()
- [50] # visualisasi boxplot geography score
   sns.boxplot(data['geography\_score'])
   plt.title('Boxplot of Geography Score')
   plt.show()









#### 04 MACHINE LEARNING MODELLING



Lakukan split data atau variabel baru untuk melakukan testing model dari setiap pelajaran. Pada kode di bawah merupakan kode untuk pelajaran matematika, untuk pelajaran lainnya silahkan disesuaikan

```
[51] # assume the 'weekly_self_study_hours' column as a feature and 'math_score' as a
X = data[['weekly_self_study_hours']]
Ymath = data['math_score']

# split data into training and testing
X_train, X_test, Ymath_train, Ymath_test = train_test_split(X, Ymath, test_size=0.2, random_state=42)
```

#### 04 MACHINE LEARNING MODELLING



Lakukan training tes model yang terdiri dari Linear Regression, Decision Tree Regressor dan Random Forest Regressor

```
[58] # linear regression
lr = LinearRegression()
lr.fit(X_train, Ymath_train)
Ymath_pred_lr = lr.predict(X_test)

# decision tree regressor
dt = DecisionTreeRegressor(random_state=42)
dt.fit(X_train, Ymath_train)
Ymath_pred_dt = dt.predict(X_test)

# random forest regressor
rf = RandomForestRegressor(random_state=42)
rf.fit(X_train, Ymath_train)
Ymath_pred_rf = rf.predict(X_test)
```





#### 04 MACHINE LEARNING MODELLING



Lakukan evaluasi model dengan skor MSE dan R2 menggunakan evaluate\_model. Lalu pilihlah model terbaik dengan skor R2 tertinggi dan skor MSE terendah.

```
[60] # functions for model evaluation

def evaluate_model(Ymath_test, Ymath_pred, model_name):

    mse = mean_squared_error(Ymath_test, Ymath_pred)
    r2 = r2_score(Ymath_test, Ymath_pred)
    print(f"{model_name} - MSE: {mse:.2f}, R2 Score: {r2:.2f}")

evaluate_model(Ymath_test, Ymath_pred_lr, "Linear Regression")
    evaluate_model(Ymath_test, Ymath_pred_dt, "Decision Tree Regressor")

evaluate_model(Ymath_test, Ymath_pred_rf, "Random Forest Regressor")

Linear Regression - MSE: 139.04, R2 Score: 0.16
Decision Tree Regressor - MSE: 144.23, R2 Score: 0.13
Random Forest Regressor - MSE: 144.83, R2 Score: 0.13
```



#### **05 CONCLUSIONS**



Dari ke 7 pelajaran, dapat disimpulkan bahwa model terbaik untuk Linear Regression ada 3, Random Forest Regressor ada 3, dan Decision Tree Regressor ada 1.

Math: The best model is Linear Regression with the lowest MSE (111.61) and highest R2 (0.07) Score.

History: The best model is Linear Regression with the lowest MSE (49.50) and highest R2 (0.04) Score.

Physics: The best model is Random Forest Regressor with the lowest MSE (144.33) and highest R2 (0.04) Score.

Chemistry: The best model is Random Forest Regressor with the lowest MSE (143.91) and highest R2 (0.07) Score.

Biology: The best model is Random Forest Regressor with the lowest MSE (172.19) and highest R2 (0.01) Score.

English: The best model is Linear Regression with the lowest MSE (129.57) and highest R2 (0.06) Score.

Geography: The best model is Decision Tree Regressor with the lowest MSE (130.56) and highest R2 (0.04) Score.



### Thanks!

Do you have any questions? azizhabibrahim@gmail.com

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik





