

STM32 Clocks

1

G V V Sharma*

CONTENTS

1	Comp	onents							1
	1.1	HSE				•			1
2	PLL								2

Abstract—This manual shows how to manage clocks in arm using STM32F103C8T6.

1 Components

Component	Value	Quantity
Breadboard		1
Resistor	220 Ω	1
		1
STM32F103C8T6		
Seven Segment	Common	1
Display	Anode	
Jumper Wires		20

TABLE 1.0: Components

Problem 1.1. List all available clocks in the STM32F103C8T6 blue pill.

Solution: See Table 1.1.

Clock	Location	Type	Frequency
HSI	Internal	RC	8Mhz
LSI	Internal	RC	32.768 kHz
HSE	External	Crystal	8Mhz

TABLE 1.1: STM32F103C8T6 Clock Types

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Problem 1.2. Make connections as shown in Table 1.2.

STM32	Seven Segment Display
3.3V	COM (through resistor)
PA1	DOT

TABLE 1.2: Pin Connections

1.1 HSE

Problem 1.3. Execute the following program

https://github.com/gadepall/ STM32F103C8T6/blob/master/ examples/clocks/ hse_systick_blink.c

Problem 1.4. Explain the following instruction

|RCC->CR| = 0x00010000;

Solution: Fig. 1.4 shows the RCC- >CR register. The above instruction enables the HSE crystal, which is 8 MHz for the STM32F103C8T6.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved						PLLON		Rese	erved		CSS ON	HSE BYP	HSE RDY	HSE ON
	r rw											rw	rw	r	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	HSICAL[7:0]								н	SITRIM[4	:0]		Res.	HSI RDY	HSION
r	r	r	r	r	r	r	r	rw	rw	rw	rw	rw		r	rw

Fig. 1.4: RCC Clock Control Register (RCC->CR)

Problem 1.5. Explain the following instruction

 $|RCC->CFGR| = 0 \times 000000001;$

Solution: Fig. 1.5 shows the RCC->CFGR register. The above instruction makes the HSE as the system clock through SW = 01.

Problem 1.6. Verify that HSE is the system clock by checking that SWS = 01.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					MCO[2:0]			USB PRE		PLLM	PLL XTPRE	PLL SRC		
					rw rw rw				rw	rw rw rw rw				rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCP	ADCPRE[1:0] PPRE2[2:0]				PPRE1[2:0]				HPR	[3:0]		SWS[1:0]		SW	[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	r	r	rw	rw

Fig. 1.5: RCC clock Configuration Register (RCC->CFGR)

2 PLL

Problem 2.1. Make the PLL as the system clock.

Solution:

```
RCC->CFGR = 0x00000010;
```

Problem 2.2. Choose the PLL input as HSE.

```
RCC->CFGR =0x00010010;
```

Problem 2.3. Enable PLL

Solution:

```
RCC->CR = 0x01010000;
```

Problem 2.4. Execute the following code.

```
https://github.com/gadepall/
STM32F103C8T6/blob/master/
examples/clocks/
pll_systick_blink.c
```

Problem 2.5. Make the PLL output = 24 MHz.