Relatório

Lucas Massaroppe 28/06/2019

Desafio B2W

Neste desafio foram consideradas duas bases de dados: (a) 'sales.csv' e (b) 'comp_prices.csv'. Em (a) consta informação transacional de nove produtos P_i , $i=1,\cdots,9$ para o ano de 2015 e em (b), contém dados de seis competidores C_i , $i=1,\cdots,6$, monitorados em horários diferentes, para as mesmas datas e produtos dos primeiros elementos.

Primeiramente analisaremos 'sales.csv' e, em uma segunda etapa, será dada atenção à 'comp_prices.csv', para que possamos assim fazer uma comparação entre as informações transacionais e os preços dos competidores.

Base 'sales.csv'

Como uma verificação rápida apresentamos as séries temporais dos nove produtos na Figura 1. Assim, podemos realizar o teste KPSS sobre cada uma delas a fim de saber se elas possuem raiz unitaria e tendência, ou seja, se são ou não estacionárias.

A tabela abaixo apresenta os resultados do teste KPSS.

Produto	Estatística	p-valor
P_1	0,14	0,07
P_2	0,17	0,02
P_3	0,53	< 0.01
P_4	0,04	> 0.10
P_5	0,26	< 0.01
P_6	0,08	> 0.10
P_7	0,42	< 0.01
P_8	0,09	> 0.10
P_9	0,06	> 0.10

Note que, de acordo com a hipótese nula do teste KPSS e utilizando um nível de significância $\alpha=1\%$, as séries dos produtos que apresentam p-valor menor do α são estacionárias, ou seja, P_3 , P_5 e P_7 .

Previsão das séries dos produtos

Para todas as séries temporais utilizamos três modelos de previsões: o linear ARIMA(p,d,q), o não-linear de suavização exponencial ETS e o de rede neural autorregresivo NNETAR(p,k). Para avaliar qual o melhor modelo entre os três, utilizamos o desvio padrão dos resíduos como métrica de comparação e mostramos na tabela a seguir.

Figure 1: Preço médio dos produtos.

Produto	ARIMA(p, d, q)	ETS	NNETAR(p, k)
P_1	ARIMA(1, 1, 1), $\widehat{\sigma_e} = 66.87$	$\text{ETS}(M, N, N), \widehat{\sigma_e} = 0.04$	NNETAR(4, 2), $\widehat{\sigma_e} = 0.04$
P_2	ARIMA(0, 1, 2), $\widehat{\sigma_e} = 32.21$	$ETS(A, N, N), \widehat{\sigma_e} = 33,56$	NNETAR(7,4), $\widehat{\sigma_e} = 0.04$
P_3	ARIMA(2, 1, 3), $\widehat{\sigma_e} = 71.28$	$ETS(A, N, N), \widehat{\sigma_e} = 72,13$	NNETAR(7, 4), $\widehat{\sigma_e} = 0.05$
P_4	ARIMA(0, 0, 0), $\widehat{\sigma_e} = 436,59$	$\text{ETS}(A, N, N), \widehat{\sigma_e} = 437,72$	NNETAR(1,1), $\widehat{\sigma_e} = 0.22$
P_5	ARIMA(0, 1, 1), $\widehat{\sigma_e} = 109,04$	$\mathrm{ETS}(M,N,N),\widehat{\sigma_e}=0.11$	NNETAR(4, 2), $\widehat{\sigma_e} = 0.08$
P_6	ARIMA(5, 1, 0), $\widehat{\sigma_e} = 231,71$	$\text{ETS}(M, A_d, N), \widehat{\sigma_e} = 0.12$	NNETAR(6, 4), $\widehat{\sigma_e} = 0.05$
P_7	ARIMA(0, 1, 1), $\widehat{\sigma_e} = 34.35$	$ETS(A, N, N), \widehat{\sigma_e} = 34.37$	NNETAR(8, 4), $\widehat{\sigma_e} = 0.03$
P_8	ARIMA(2, 1, 1), $\widehat{\sigma_e} = 29.99$	$\mathrm{ETS}(M,N,N),\widehat{\sigma_e}=0.05$	NNETAR(2, 2), $\widehat{\sigma_e} = 0.03$
P_9	ARIMA(1, 1, 1), $\widehat{\sigma_e} = 39,47$	$ETS(M, N, N), \widehat{\sigma_e} = 0.08$	NNETAR(6, 4), $\widehat{\sigma_e} = 0.06$

Portanto, pela tabela anterior, é possível concluir que o melhor modelo em todos casos é o NNETAR(p, k), pois

$$\widehat{\sigma_e}_{\text{NNETAR}(p, k)} < \widehat{\sigma_e}_{\text{ETS}} < \widehat{\sigma_e}_{\text{ARIMA}(p, d, q)},$$

em que se pode escrever o modelo NNETAR(p, k) da seguinte forma,

$$x(n) = f\left(\sum_{r=1}^{p} \mathbf{\Phi}_r \mathbf{x}(n-r)\right) + e(n),$$

em que, da rede neural, tem-se que, $\mathbf{x}(n-r)$ é um vetor $k \times 1$ com as respectivas entradas, $\mathbf{\Phi}_r$ sd matrizes de parâmetros de dimensão $k \times k$, k o numero de camadas, $f(\cdot)$ a função de ativação (que, no caso, é a sigmóide) e e(n) um processo independente, identicamente distributído, de média nula e variância σ_e^2 ($\{e(n)\}_{n \in \mathbb{Z}} \sim \text{i.i.d.}(0, \sigma_e^2)$).

Porém, pela experiência prévia de manipulação de dados anuais do candidato e modelos NNETAR(p,k) é necessário se modificar os parâmetros p e k dos modelos dos produtos P_i , $i=1,\cdots,9$, para que os mesmos sejam capazes de capturar a dinâmica não-linear dos processos.

Assim, como se trata de dados anuais e apesar de se possuir apenas um ano de dados, para ambos os parâmetros utilizam-se múltiplos de 12, ou seja p=k=24 para que se possa ter a restrição de o moelo conseguir capturar anualidade.

De fato, observe que na próxima tabela os valores de $\widehat{\sigma_e}_{\text{NNETAR}(p,k)}$ diminuem em todos os casos.

Produto	NNETAR(24, 24)
$\overline{P_1}$	$\widehat{\sigma_e} = 2.83 \times 10^{-5}$
P_2	$\widehat{\sigma_e} = 1.08 \times 10^{-4}$
P_3	$\widehat{\sigma_e} = 2.32 \times 10^{-4}$
P_4	$\widehat{\sigma_e} = 1.81 \times 10^{-4}$
P_5	$\widehat{\sigma_e} = 9.82 \times 10^{-5}$
P_6	$\widehat{\sigma_e} = 1.17 \times 10^{-2}$
P_7	$\widehat{\sigma_e} = 1.38 \times 10^{-3}$
P_8	$\widehat{\sigma_e} = 7.36 \times 10^{-5}$
P_9	$\widehat{\sigma_e} = 8.32 \times 10^{-5}$

Na Figura 6 a seguir, mostra-se a previsão realizada por esses modelos.

Na seção seguinte mostra-se o caso para os dados dos competidores.

Base 'comp_prices.csv'

Para os dados da base 'comp_prices.csv' fez-se necessário realizar uma redução de dimensionalidade.

Primeiramente, agrupou-se os dados em relação à forma de pagamento, ou seja, à prazo ou à vista, obtendo-se os gráficos da Figura 3. Assim, como se observa nessa figura, percebe-se que não há diferença entre as formas de pagamentos e podemos classficar as variáveis independente desta que estamos analisando.

Figure 2: Previsão dos preços médios dos produtos para os próximos 30 dias.

Figure 3: Tipo de pagamento dos competidores.

Figure 4: Pagamentos segundo os competidores e períodos diúrno (linha azul) e noturno (linha vermelha).

Já para investigar a importância de cada competidor, é importante aglomerar as variáveis acima e organizá-las indiferentemente dos produtos, porém mantendo ordem temporal, obtendo-se a Figura 5.

Pela Figura 5, percebe-se que não há diferenciação entre os períodos diurnos (linha azul) e noturno (linha vermelha) para todos os competidores. Logo, daqui para frente não será feita diferenciação entre essas variáveis (ou seja, C_i , $i = 1, \dots, 6$).

A seguir, mostra-se as séries temporais dos produtos aglomerados independentemente dos competidores.

Como percebe-se, aqui não diferenciação entre os períodos do dia e, portanto, para se obter apenas uma série por produto, utilizou-se a média entre os diúrnos e noturno, para se poder fazer a previsão dos preços como é mostrado na Figura ??, a seguir.

Assim como na seção anterior, aqui foram utilizados modelos NNETAR(p,k), com p=k=24 para que esse seja capaz de capturar dinâmicas tais como possíveis sazonalidades anuais dos preços e não-linearidades e por fim, na tabela seguinte mostra-se uma avalição dos modelos a partir dos desvios padrões de seus resíduos.

Figure 5: Séries dos produtos, mostrando os períodos diúrno (linha azul) e noturno (linha vermelha).

Figure 6: Previsão dos preços médios dos produtos para os próximos 30 dias.

Produto	NNETAR(24, 24)
$\overline{P_1}$	$\widehat{\sigma_e} = 1.72 \times 10^{-3}$
P_2	$\widehat{\sigma_e} = 5.74 \times 10^{-3}$
P_3	$\widehat{\sigma_e} = 5.79 \times 10^{-3}$
P_4	$\widehat{\sigma_e} = 9.10 \times 10^{-3}$
P_5	$\widehat{\sigma_e} = 2.97 \times 10^{-3}$
P_6	$\widehat{\sigma_e} = 1.63 \times 10^{-2}$
P_7	$\widehat{\sigma_e} = 1.05 \times 10^{-2}$
P_8	$\widehat{\sigma_e} = 7.47 \times 10^{-3}$
P_9	$\widehat{\sigma_e} = 8.28 \times 10^{-3}$

Portanto, comparando a última tabela com a última tabela da seção anterior é possível inferir que todos os modelos para os produtos da base de dados 'sales.csv' foram superiores, pois os desvios padrões dos resíduos dos modelos das previsões para os produtos $(P_i, i=1,\cdots,9)$ foram menores para os da B2W do que os dos competidores.

Assim, o poder preditivo dos dados fornecidos para a B2W são superiores do que para os da competição.