Problem 1.

Let ξ be a nonnegative real number. Compute $\int_{-\infty}^{\infty} \frac{e^{ix\xi}}{x^2+1} dx$.

Problem 2.

Let f be an entire function. Suppose that there is an $\alpha \in (0, \infty)$ and a C > 0 so that $|f(z)| \leq C|z|^{\alpha}$ for all $|z| \geq 1$. Show that f is a polynomial.

Problem 3.

Let f be an entire function. Suppose that $\lim_{z\to\infty} f(z) = \infty$. Show that f is a polynomial.

Problem 4.

Let $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. Suppose that $f : \overline{\Omega} \to \mathbb{C}$ is continuous, and that $f|_{\Omega}$ is holomorphic. Suppose that $|f(iy)| \le 1$ for all $y \in \mathbb{R}$ and $|f(z)| \le 2$ for all $z \in \Omega$. Show that in fact $|f(z)| \le 1$ for all $z \in \Omega$.

Hint: For $\varepsilon > 0$, consider $f_{\varepsilon}(z) = \frac{f(z)}{1+\varepsilon z}$. Show that $|f_{\varepsilon}| \le 1$ for every $\varepsilon > 0$.

Problem 5.

Recall that if U is a open subset of \mathbb{C} and \mathcal{G} is family of holomorphic functions on U then we say that \mathcal{G} is *normal*, if given any sequence $(f_n)_n$ in \mathcal{G} there is a subsequence $(f_{n_k})_k$ and a holomorphic function $g \colon U \to \mathbb{C}$ with $f_{n_k} \to_{k \to \infty} g$ uniformly on compact subsets of U.

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$. Suppose that \mathcal{F} is a family of holmorphic functions on \mathbb{D} and that $\sup_{f\in\mathcal{F}}|f(0)|<\infty$. Show that \mathcal{F} is normal if and only if $\{f':f\in\mathcal{F}\}$ is normal.

1