Homework 1

February 11, 2022 Jose Carlos Munoz

excersize 1) we know that

$$x_1 = 2$$

$$x_2 = 3$$

$$o = x_1 * x_2$$

$$\frac{\delta L}{\delta o} = 5$$

To find $\frac{\delta L}{\delta x_1}$ and $\frac{\delta L}{\delta x_2}$ we use the Chain rule which gives us $\frac{\delta L}{\delta o} \frac{\delta o}{\delta x_1}$ and $\frac{\delta L}{\delta o} \frac{\delta o}{\delta x_2}$ respectively. It can be derived that $\frac{\delta o}{\delta x_1}$ and $\frac{\delta o}{\delta x_2}$ are x_2 and x_1 respectively Therefore we can solve for both

$$\frac{\delta L}{\delta x_1} = \frac{\delta L}{\delta o} \frac{\delta o}{\delta x_1}$$

$$= 5 * x_2$$

$$= 5 * 3$$

$$\frac{\delta L}{\delta x_2} = \frac{\delta L}{\delta o} \frac{\delta o}{\delta x_2}$$

$$= 5 * x_1$$

$$= 5 * 2$$

$$\frac{\delta L}{\delta x_1} = 15$$

$$\frac{\delta L}{\delta x_2} = 10$$

excersize 2)

We know that $\vec{w_1} = 0.1$, $w_2 = 0.5$, $w_3 = 0.4$, $w_4 = 0.3$, $w_5 = 0.2$, $w_6 = 0.6$. The Hidden Layer and Actrivation Layer both have the activation function as $y_n(z) = \frac{1}{1+e^{-1}}$. The Loss function is $L = \frac{1}{2}(y - \hat{y})^2$.

Our starting point is $\begin{pmatrix} 0.82 \\ 0.23 \end{pmatrix} = 0$

$$2x - 5y = 8$$
$$3x + 9y = -12$$