EDUARD SZÖCS

QUANTITATIVE ECOTOXICOLOGY

WITH R!

This document was created using \LaTeX , knitr and the tufte book class.

Copyright © 2013 Eduard Szöcs

 $This work is \ licensed \ under \ a \ Creative \ Commons \ Attribution-NonCommercial-Share A like \ 3.0 \ Unported \ License.$

First draft, October 2013

Contents

1	Introduction 9
2	The Measurement Process 11 2.1 Winsorized Mean and Standard Deviation 11 2.2 Probability Plotting 12
3	Bioaccumulation 13
4	Tests for Detection of Chronic Lethal and Sublethal Stress 15
5	Lethal and Other Quantal Responses to Stress 17 5.1 Fitting dose-response models 17
6	Population and Metapopulation Effects 19
7	Community Effects 21 7.1 Species Richness 21 7.2 Analysing mesocosm data 21 7.3 Species Sensitivity Distributions 21
	R Session Info 23

List of Figures

2.1 A histogramm of the so4 data.

List of Tables

1

Introduction

```
require(devtools)
install_github("qetx", "EDiLD")

require(qetx)
```

The Measurement Process

2.1 Winsorized Mean and Standard Deviation

The following sulfate concentrations (mg/L) were measured during a routine water quality survey of the Savannah River (South Carolina). The data is available in the qetx package ¹:

¹ Note that in this case you do not have to assign the data to a name.

```
data(so4)
```

```
## [1] 1.3 2.3 2.6 3.3 3.5 3.5 3.6 4.0 4.1 4.5 5.2 5.6

## [13] 5.7 6.1 6.2 6.5 6.9 7.1 7.7 7.9 9.9

length(so4)

## [1] 21

mean(so4)

## [1] 5.119

sd(so4)

## [1] 2.137
```

Figure 2.1: A histogramm of the so4 data.

So there are 21 measurements with a mean of 5.1 mg/L and a standard deviation of 2.1 mg/L.

Suppose we have a detection limit of 2.5 mg/L and want to winsorize values below LOD.

To compute winsorized values we use winsor function from the qetx package. This function takes a vector of values and a second argument specifying how many values should be winsorized (either by giving a LOD-value or the number of values on each side) ².

```
so4_w <- winsor(so4, lod = 2.5)
so4_w

## [1] 2.6 2.6 2.6 3.3 3.5 3.5 3.6 4.0 4.1 4.5 5.2 5.6
## [13] 5.7 6.1 6.2 6.9 6.5 7.1 7.7 7.7 7.7
## attr(,"width")
## [1] 2</pre>
```

```
mean(so4_w)

## [1] 5.081

sd(so4_w)

## [1] 1.792

sd_winsor(so4_w)
```

2.2 Probability Plotting

[1] 2.24

² Take a look what computations are performed by looking at the source of this function - type the function name into the console

3 Bioaccumulation

4
Tests for Detection of Chronic Lethal and Sublethal Stress

5 Lethal and Other Quantal Responses to Stress

5.1 Fitting dose-response models

Population and Metapopulation Effects

7 Community Effects

- 7.1 Species Richness
- 7.2 Analysing mesocosm data
- 7.3 Species Sensitivity Distributions

R Session Info

```
sessionInfo()
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-pc-linux-gnu (64-bit)
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8
## [2] LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8
## [6] LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8
## [8] LC_NAME=C
## [9] LC_ADDRESS=C
## [10] LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8
## [12] LC_IDENTIFICATION=C
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets
## [6] methods base
## other attached packages:
## [1] qetx_0.0.1 knitr_1.5
##
## loaded via a namespace (and not attached):
## [1] evaluate_0.5.1 formatR_0.9
                                    highr_0.2.1
## [4] stringr_0.6.2 tools_3.0.2
```