Week 11

- Combination with repetition
- Putting objects into boxes
- Pigeonhole Principle

Summary S. Par:

Arrangement of r objects chosen from n distinct objects

Ex: arrangement of 3 objects from 33---,104

Terminologies

r-permutation r-combination r-subset r-sequence

Notations

$$C(n^2 L) = \frac{(L-L)!}{(L-L)!}$$

eg:(3,9,9)

Name: 1- sequence

#;

e.g: {2x1, 1x9"9

Name: Y_ Collection

#: 7

e.g: (3,1,9) + (1,9,3)

Name: r-perm.

 $\#: b(n, x) = \frac{(u-x)!}{n!}$

 $= N \times (N-1) \times ... \times (N-r+1)$

e.g: {3,1,9} = {3,9,1}

Name: r_subset/r-cemb.

#: $C(n,r) = {n \choose r} = {n \choose r}! r!$

Hea: Livision rule

Combination with Repetition. Motivating Example

How many different 5-scoop ice creams can be made where each scoop is in Mint, choc, Vany9

Is repetition allowed? Les Does order matter? NO

Let's list all 2-5ccop ice-creams:

MM {2xm} | 1xM,1xC MC } 6 ways.

C C 2xC | 1xM,1xV MV | 1xC,1xV C V

Naive idea: Count ordered ice crems Livision (Does it work?) NO Unordered Ordered mapping (MMMMM MMMC 5 to 1 mapping / MMMCM 4xM, 1xC MMCMM MCMMM mospins CMMMM 3×M,2x(31, 2,3,4,5 41,34, 11,24, 13,56

Ideer:	An i	Cecyeum	بنے	Comple	etely	dete	rmined	by	the
		SCOOPS		_	_			J	
	,	, (• α	L we	really	are	about	is this	numb	ers.
3xM,1	XC, \underline{Y}	↓	hese	num bers	Shou	ll add	up to	5.	
			000	0					
Townstow	t inc	ialt:	11		$) \equiv a$	Ocating	5 (indis	itinguish	able)
Importar	W	2 m	V	C	3	Scoops	int 3	boxe?	2
3×M, 1	×V, 1	x(= L	000 M			<u> </u>		a Cation	n of
							5 to	ken iv	ito 3
#Ice crem	mS =	# alloca token	tion	04 5 3 L	2 Y - 9		Destes		
		Corel	D'WI						

Second Observation: Two more 1-1 correspondence which Seem stupid but infact useful. 7. bit string with exactly M = 1000 1 0 = 1000 1 0 = 1000 1 0 | = ₩ 100/000 = 100/000 2 ones. 100000 = 1100000

ice Greens = # allocation of 5 tokens into 3 boxes

= # 7-bit string with exactly 2 one. = $\begin{pmatrix} 7 \\ 2 \end{pmatrix}$

General Theorem.

1- The number of ways to place n "indistinguishable" objects into K boxes is (n+K-1)

Proof: Such allocations are in L1 Correspondence n+K-1 - bit String with exactly K-1.

2- The number of r-combinations of nobjects with repetition (also known as K-collection) is (n+K-1).

Proof: Such K-collections are in 1-1 Correspondence with allocation of n tokens into K boxes.

Another variation: what is objects are distinguishable

3 distinguishable object: 13 2 33

Put them into 2 diotinguishable boxes: | box | box 2

| B 2 | 3 | + | D 3 | | box 2 | | box 3 | | box 2 | | box 3 | | box 2 | | box 3 | | box 4 | | box 3 | | box 4 | | | box 4 | | box 4

Putting Objects Into Boxes # allocations of n "distinguishable" objects into K boxes Box 1 Box 2 C. cheuse a box for @ Cz: given C,, choose a box for 3 C_n: choose a box for m total # allocations = K

#allocations of n "indistinguishable" objects into K boxes.

$$= \binom{n_{4k-1}}{k-1}.$$

We had ofusies this previously.

Another Variation: Constraint that the it box for i=1,..., k must have ni objects.

Indistinguishable objects:

ways to allocate n indistinguishable objects into k boxes

S.t. the number of objects in box i is n; and $\frac{2^{k}}{i=1}n_{i}=n_{i}$ Only 1 way $\frac{n_{1}}{b_{1}}\frac{n_{2}}{b_{2}}\cdots\frac{n_{K}}{b_{K}}$

What about distinguishable objects?

Motivatiny Example

EX. How many ways are there to deal 4 unordered hands of 5 ands each from a deck of 52 Cards, ? Let's express this problem as an allocation Problem. What are objects and what are the boxes. FIFFITH 1 4 hands idea 1: 4x boxes, 20 cards
of ards (work in someway)

5-ard hand

12 - 5x boxes, 52 disting-11/14--- [52] idea2: $5 \times b$ oxes , 52 disting- $n_1 = n_2 = n_3 = n_4 = 5$, $n_5 = 32$ objects C. choose 5 ands from 52 ands Cz: choose 5 cords from the remaining 47 ands

C₅: "32" "" 32"

How Can we uniquely specify each allocation with a process of sequence of choices

ways = $\binom{52}{5} \times \binom{47}{5} \times \binom{42}{5} \times \binom{37}{5} \times \binom{32}{5} \times \binom{32}$

In general: n! ways

n! n! n! ways

to put n "distinguishable" objects into k boxes

with n: in; the box (provided Ini-n)

Summary: Alboation of n objects into K boxes.

(order in the box doesn't matter)

constraints? $(N_1, N_2, ..., N_K)$ (provided $\sum_{i=1}^{K} n_i = n$) 1/0 n | n2 ... nk! objects distinguishable

EX: How many distinct work can be made by rearranging the word ANAGRAM?

idea I: 7! Low total # Permutation of all lotters if Ais were distinguished items. If Ais were distinguished those A's = allocating 7 letter posisions into 5 boxes (one for each distinct letter) jdea 2: S.4. n = 3, $n_N = n_G = n_R = n_{M-1}$. na! ny! ... n! 3! !! !\ -.. !\

Remark. If boxes are indistinguishable, there are no closed form formula & skipped in this course > 10/1001 = 100/1001

eg.: how many ways to write to as a sum of 3 non negotive integers?

Digeonhde Principle (6.2)

Theorem: For any placement of K+1 objects into K boxes, there is always at least one box with at last 2 Objects.

Proof: prove by Godrapositive. Assume each box has at most one object. Then, we have at most K items.

Generalized PHP:

Theorem: If N objects are placed into K boxes, then there is at least one box Containing at least TN/K7 objects.

How Could Something So Trivial be Useful? Let's look at Some applications.

EX: Prove that in every group of 367 People, two people have the Same birthday. Proof: Basenuse there are only 366 possibly BD, and

we have 367 people, by PHP, there must be attenst two people with some BP.

Since, there could be n possible remainders when you divide on integer by n, by PHP, thre must be two numbers in the sequence with the same remainder. Choose i $\neq j$ S.t. $a_i \equiv a_i$ (nod n). WLG, assume $a_i > a_j$. observe that $a_i - a_j \equiv a_j$ (mod n). Hence, $n \mid a_i - a_j$, and $a_i - a_j$ it a positive $a_i - a_j \equiv a_j$ (mod n). Hence, $n \mid a_i - a_j$, and $a_i - a_j$ itsex with $a_i = a_j$.

Ex: If five distinct integers are chosen from 1,2,...,8.]

then, two of them must add up to 9.

Proof: Consider the following boxes

1,87, 92,71, 33,64,54,54

By PHP, by choosing 5 numbers, alway there exist two numbers that are when some box.

EX: Assum integers K and l s.t. gcd(K, l)=1. Assume $o \le a \le K$, and $o \le b \le l$. Prove that there exists an integer $o \le 2l \le Kl$ $\mathcal{X} = a \pmod{K}$ and $\mathcal{N} = b \pmod{l}$

Proof: Consider the integers $S_c = 0$, $S_r = 0+K$, $S_z = 0+2K$, ..., $S_r = 0+(l-1)K$ Assume by Contradiction that S_c 's are not congruent to b mod l. Hence, there are l-1 possible remainders. By PHP, there exists S_c and S_r that have the same remainder divided by l. $S_r = S_r$ (mod l). WlG $S_r > S_r$. Observe that

2/5:-5:-1/(a+ik)-(a+jk)-1/K(i-j)Since gcd(l,k)=1, then l|(i-j)| Since of $i-j \leqslant l-1$. X.