- 1. Is n^2 an asymptotically-tight bound of $n^2/(\lg n)$? of $(n^{2.5})/400$? (Briefly explain. 6%)
- 2. The algorithm for finding the maximum subarray that crosses the midpoint of Array A[1 ... n] includes the main routine of FIND-MAXIMUM-SUBARRAY(A, low, high), which calls FIND-MAX-CROSSING-SUBARRAY(A, low, mid, high), as follows. Complete the six (6) missing statements in FIND-MAX-CROSSING-SUBARRAY below. (12%)

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)// Find a maximum subarray of the form A[i ...mid]. $left\text{-}sum = -\infty$ sum = 0for i = mid downto low sum = sum + A[i]// Find a maximum subarray of the form A[mid + 1 ... j]. $right\text{-}sum = -\infty$ sum = 0for j = mid + 1 to high sum = sum + A[j]// Return the indices and the sum of the two subarrays. return (max-left, max-right, left-sum + right-sum)

- Derive the tight lower and upper <u>bounds</u> of the following recurrences: $T(n) = 2 \cdot T(n/4) + T(n/2) + c \cdot n$ (10%) $T(n) = 2 \cdot T(n/2) + n \cdot \lg(n)$. (8%)
- 4. For any *n*-key B-tree of height *h* and with the minimum node degree of $t \ge 2$, prove that *h* is no larger than $\log_t \frac{n+1}{2}$. (Hint: consider the number of keys stored in each tree level.) (12%)
- 5. The utilization efficiency of a hash table depends heavily on its hashing function(s) employed. Describe with a <u>diagram</u> to illustrate how a <u>multiplication method</u> of hashing works on a machine with the word size of w bits for a hash table with 2^p entries, p < w. (10%) Explain briefly (1) how <u>perfect hashing</u> works, and (2) how <u>Cuckoo hashing</u> works under two hash functions of h_1 and h_2 . (12%)

Give <u>an example</u> that yields the worst-case time complexity under QUICKSORT and briefly describe a simple modification to QUICKSORT for curbing such worst-case scenarios. (10%)

6. RANDOMIZED-SELECT below is based on RANDOMIZED-PARTITION to pick the i^{th} ranked element among n array elements with linear time complexity on an average. Complete the missing 3 statements in the code. (8%)

RANDOMIZED-SELECT
$$(A, p, r, i)$$

if $p == r$

return $A[p]$
 $q = \text{RANDOMIZED-PARTITION}(A, p, r)$

1.

if $i == k$ // pivot value is the answer

return $A[q]$

elseif $i < k$

else 2.

else 3.

Briefly state how to select the i^{th} ranked element among n array elements with O(n) time complexity in the worst case? (10%)

7. Given two hash functions of h_1 and h_2 for <u>Cuckoo hashing</u> under two tables, T_1 and T_2 , describe the <u>steps involved</u> in <u>inserting</u> a record with the key of K_{new} . (10%)

<u>Cuckoo hashing</u> can be analyzed by the Cuckoo graph, whose nodes denote table entries and links connect pairs of nodes where given keys can be held. State when a new key can be <u>inserted successfully</u> based on the Cuckoo graph. (5%)

Good Luck!

Chance - Heaf Soot example.