

K. J. Somaiya College of Engineering, Mumbai-77

Department of Computer Engineering

Batch: E-2 Roll No.: 16010123325

Experiment / assignment / tutorial No. 4

TITLE: To study and implement Non Restoring method of division

AIM: The basis of algorithm is based on paper and pencil approach and the operation involve repetitive shifting with addition and subtraction. So the main aim is to depict the usual process in the form of an algorithm.

Expected OUTCOME of Experiment: (Mention CO/CO's attained here)

Books/ Journals/ Websites referred:

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, TataMcGraw-Hill.
- **2.** William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- **3**. Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.

Pre Lab/ Prior Concepts:

The Non Restoring algorithm works with any combination of positive and negative numbers.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Flowchart for Non Restoring of Division(Students need to draw)

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Example: (Handwritten solved problem needs to uploaded)

26÷ 12			
Q T KM			
M= ODIIC	00 9=011	-M Halab	
	7 011		-M = 110100
Α	9	n	
000000	011010	6	
000000	110101		
110100	110101		
110100	110100	5	
horos	[tootoot]		
101001	10100	5	101001
110101	10100		001100
110101	1010000	4	110101
101011	010000	4	101011
110111	01000 1	and the second	001100
110111	010000	3	110111
101110	100001	3	011161
111010	10000		001100
111010	100000	2	
			111
110101	00000	2	110101
000001	00000		001100
000001	000001	1	00 00 01
<u>000010</u>	00001		000010
110110	00001		110100
110110	000010	0	110118
110110	0000		
	000010	0	116110
000010	1		000100
6 Remains	der La Quotie		000010
=2		DOM5	

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Code:

```
#include <bits/stdc++.h>
using namespace std;
#define uint unsigned int
void nonRestoringDivision(uint dividend, uint divisor, uint *quotient,
uint* remainder) {
    uint acc = 0;
    uint q = dividend;
    uint n = sizeof(uint) * 8;
    for (int i = 0; i < n; ++i) {
        acc = (acc << 1) | ((q >> (n-1)) & 1);
        q <<= 1;
        acc -= divisor;
        if (acc & (1 << (n-1))) {
            acc += divisor;
            q |= 1;
    *quotient = q;
    *remainder = acc;
int main() {
    uint dividend, divisor;
    uint quotient, remainder;
    cout << "Enter Dividend: ";</pre>
    cin >> dividend;
    cout << "Enter Divisor: ";</pre>
    cin >> divisor;
    if (divisor == 0) {
        cerr << "Error: Division by Zero.\n";</pre>
        return 1;
```


K. J. Somaiya College of Engineering, Mumbai-77


```
nonRestoringDivision(dividend, divisor, &quotient, &remainder);
cout << "Quotient: " << quotient << '\n';
cout << "Remainder: " << remainder << '\n';
}</pre>
```

Output:

```
PS C:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs\"; if

($?) { g++ non-restoring-division.cpp -o non-restoring-division }; if ($?) { .\non-restoring-division }

Enter Divisor: 12

Quotient: 2

Remainder: 2

PS C:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs>

PS C:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs>

PS C:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs> cd "c:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs> if ($?) { .\non-restoring-division }

Enter Dividend: 12

Enter Divisor: 3

Quotient: 4

Remainder: 0

PS C:\Users\Shrey\OneDrive\Desktop\KJSCE\SEM-3\COA\Programs>
```

Conclusion

The above experiment highlights the implementation of Non-Restoring Division algorithm using C++.

Post Lab Descriptive Questions

What are the advantages of non-restoring division over restoring division?

Non-restoring division offers several advantages over restoring division:

- 1. **Speed**: Non-restoring division generally results in faster computation. Unlike restoring division, it eliminates the need for additional steps to restore the original value after a failed subtraction, reducing the overall number of operations.
- 2. **Simplified hardware**: Non-restoring division requires less hardware complexity since it avoids the back-and-forth adjustment of the remainder in restoring division.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

Date:		