Claims

•		
	[c1]	1.An electric motor cooling assembly, comprising:
		a housing;
		a stator disposed within the housing, the stator operable for generating a
	,	magnetic field;
		a rotor disposed within the housing, the rotor operable for receiving the
		magnetic field and generating a torque;
		a winding operatively connected to the stator;
		an end-winding integrally formed with the winding;
		a jet impingement device operable for exposing the end-winding to a
		temperature controlled stream of fluid.
	[c2]	2.The assembly of claim 1, wherein the jet impingement device comprises an
		inlet, the inlet operable for introducing and exposing the temperature
		controlled stream of fluid to the end-winding.
	[c3]	3.The assembly of claim 1, wherein the jet impingement device comprises an
		outlet, the outlet operable for removing fluid from the housing.
	[c4]	4. The assembly of claim 2, wherein the inlet comprises a nozzle, the nozzle
		operable for directing the temperature controlled stream of fluid to the end-
		winding.
	[c5]	5.The assembly of claim 1, wherein the temperature controlled stream of fluid
		comprises air.
	[c6]	6.The assembly of claim 1, wherein the jet impingement device comprises a
		temperature controlled fluid generating device.
	[c7]	7.The assembly of claim 1, wherein the jet impingement device comprises a
		pathway for the temperature controlled fluid from the temperature controlled
		fluid generating device to the inlet.
	[c8]	
	[-0]	8.A method for transferring heat between a stream of fluid impinging the
		surface of an electric motor end-winding and an electric motor end-winding.

comprising:

controlling the temperature of a volume of fluid; establishing a stream of fluid from the volume of fluid to an inlet; delivering the temperature controlled fluid from the inlet to the end-winding such that heat is transferred between the surface of the end-winding and the stream of fluid impinging the surface of the end-winding; and removing fluid from the electric motor via an outlet.

- [c9] 9.The method of claim 8, wherein the temperature controlled fluid comprises air.
- [c10] 10.The method of claim 8, wherein the temperature controlled fluid is generated in a fluid generating device.
- [c11] 11.The method of claim 10, wherein the fluid generating device comprises a pathway for the temperature controlled fluid from the temperature controlled fluid generating device to the inlet.
- [c12] 12.An electric motor, comprising:
 - a housing;
 - a stator disposed within the housing, the stator operable for generating a magnetic field;
 - a rotor disposed within the housing, the rotor operable for receiving the magnetic field and generating a torque;
 - a winding operatively connected to the stator;
 - an end-winding comprising the ends of the stator winding, integrally formed with the winding;
 - a jet impingement device operable for exposing the end-winding to a temperature controlled stream of fluid.
- [c13] 13.The electric motor of claim 12, wherein the housing comprises an inlet, the inlet operable for introducing and exposing the temperature controlled fluid to the end-winding.
- [c14] 14.The electric motor of claim 12, wherein the housing comprises an outlet operable for removing fluid from the housing.

- [c15] 15.The electric motor of claim 13, wherein the inlet comprises a nozzle, the nozzle operable for directing the temperature controlled stream of fluid to the end-winding.
- [c16] 16.The electric motor of claim 12, wherein the temperature controlled stream of fluid comprises air.
- [c17] 17.The electric motor of claim 12, wherein the jet impingement device comprises a temperature controlled fluid generating device.
- [c18] 18. The electric motor of claim 12, wherein the jet impingement device comprises a pathway for the temperature controlled fluid from the temperature controlled fluid generating device to the inlet.