PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2000-131610 (43)Date of publication of application: 12.05.2000

(51)Int.Cl. G02B 15/16

G02B 13/18

(21)Application number: 10-307337 (71)Applicant: SONY CORP

(22)Date of filing: 28.10.1998 (72)Inventor: SUEYOSHI MASASHI

(54) ZOOM LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a small-sized zoom lens of about threevariable power ratio suitable for a small-sized image pickup device such as a video camera and a digital still cameraetc.

SOLUTION: The zoom lens 1 is constituted of a 1st lens group GR1 whose refractive power is positive 2nd lens group GR2 whose refractive power is negativea 3rd lens group GR3 whose refractive power is positive and a 4th lens group GR4 whose refractive power is positive in order from an object side to an image field IMG sideand zooming is accomplished by moving the 2nd lens group GR2 and the 4th lens group GR4. In this casethe 1st lens group GR1 is constituted of a 1st single lens L1 whose refractive power is negativea prism P for bending an optical path and a 2nd single lens L2 whose refractive power is positive in order from the object side.

CLAIMS

[Claim(s)]

[Claim 1] The 1st lens group that has positive refracting power from the object side in order to the image surface side.

The 2nd lens group that has negative refracting power.

The 3rd lens group that has positive refracting power.

Positive refracting power.

It is the zoom lens provided with the above and was constituted by the 2nd lens of the 1st lens of a single lens in which the 1st lens group of the above has negative refracting power sequentially from the object sideprism with which an optical path is

bentand a single lens which has positive refracting power.

[Claim 2] The zoom lens according to claim 1 characterized by making it satisfy the following conditions.

ndL1>1.75nudL1<30however ndL1: — a refractive index in d line of the 1st lensand nudL1: — it is considered as an Abbe number in d line of the 1st lens.

[Claim 3]The zoom lens according to claim 1 constituting a field of at least 1 of the 1st lens according to an aspheric surface.

[Claim 4]The zoom lens according to claim 1 making into a convex a field it turned [field] to the object side of the 1st lens.

[Claim 5]The zoom lens according to claim 2 making into a convex a field it turned [field] to the object side of the 1st lens.

[Claim 6]The zoom lens according to claim 3 making into a convex a field it turned [field] to the object side of the 1st lens.

[Claim 7] The zoom lens according to claim 1 constituting the at least 1st of each fields of a lens which constitutes the 4th lens group according to an aspheric surface.

[Claim 8] The zoom lens according to claim 2 constituting the at least 1st of each fields of a lens which constitutes the 4th lens group according to an aspheric surface.

[Claim 9]The zoom lens according to claim 3 constituting the at least 1st of each

fields of a lens which constitutes the 4th lens group according to an aspheric surface.
[Claim 10]The zoom lens according to claim 4 constituting the at least 1st of each

fields of a lens which constitutes the 4th lens group according to an aspheric surface.

[Claim 11]The zoom lens according to claim 5 constituting the at least 1st of each fields of a lens which constitutes the 4th lens group according to an aspheric surface.

fields of a lens which constitutes the 4th lens group according to an aspheric surrace [Claim 12]The zoom lens according to claim 6 constituting the at least 1st of each

fields of a lens which constitutes the 4th lens group according to an aspheric surface. [Claim 13]A zoom lens indicated to claim 1 satisfying the following conditions.

 $4.5 < f_{GRI} / fw < 12$ however f_{GRI} . Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 14]A zoom lens indicated to claim 2 satisfying the following conditions.

 $4.5 < f_{GRI} / f_W < 12$ however f_{GRI} . Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 15]A zoom lens indicated to claim 3 satisfying the following conditions.

 $4.5 < f_{GRI}/fw < 12$ however f_{GRI} : Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 16]A zoom lens indicated to claim 4 satisfying the following conditions.

 $4.5 < f_{GRI} / fw < 12$ however f_{GRI} : Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 17]A zoom lens indicated to claim 5 satisfying the following conditions.

 $4.5 \zeta_{\text{GRI}} / \text{fw} \leq 12 \text{however } f_{\text{GRI}}. \text{ Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.}$

[Claim 18]A zoom lens indicated to claim 6 satisfying the following conditions.

 $4.5 < f_{GRI}$ /fw<12however f_{GRI} : Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 19]A zoom lens indicated to claim 7 satisfying the following conditions.

 $4.5 < f_{GRI}/f_W < 12$ however f_{GRI} . Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 20]A zoom lens indicated to claim 8 satisfying the following conditions.

 $4.5 < f_{GRI} / f_W < 12$ however f_{GRI} : Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 21] A zoom lens indicated to claim 9 satisfying the following conditions.

 $4.5\langle f_{GR_1}/fw \langle 12however\ f_{GR_1}$. Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 22]A zoom lens indicated to claim 10 satisfying the following conditions.

 $4.5 < f_{\text{GRI}} / \text{fw} < 12 \text{however } f_{\text{GRI}}$: Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 23]A zoom lens indicated to claim 11 satisfying the following conditions.

4.5⟨f_{GRI}/fw⟨12however f_{GRI}: Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

[Claim 24]A zoom lens indicated to claim 12 satisfying the following conditions.

 $4.5\langle f_{GRI}/fw\langle 12$ however f_{GRI} : Consider it as a focal distance of the 1st lens groupand a focal distance in a wide end of fw:lens whole system.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the optimal zoom lens with a variable power ratio of about 3 times for a small video cameraa digital still cameraetc. [0002]

[Description of the Prior Art]In recent yearsif it is in small imaging devices such as a video camera and a digital still cameramuch more miniaturization is called for and the lens for photography and the miniaturization according [especially a zoom lens] to shortening of an overall lengthetc. are called for in connection with this.

[0003] If it is in the above-mentioned lens for photographyand the thing for digital still cameras especiallythe demand to a zoom lens including the wide angle region whose field angle in a wide angle end is about 70-80 degrees is increasing with the miniaturizationand improvement in lens performance is also simultaneously called for corresponding to high-pixel-izing of an image sensor.

[0004]

[Problem(s) to be Solved by the Invention]As a small zoom lens for small imaging

devicesthere is a zoom lens of 2 group composition of the retrofocus type which comprises the 1st lens group that has a negative refractive indexand the 2nd lens group that has positive refracting power sequentially from the object side. Howeverif it is in the zoom lens of such 2 group compositionit is difficult to enlarge a variable power ratioand since an overall length also changes in connection with zooming operationas a small object for imaging equipmentit is disqualified.

[0005] There is a zoom lens of 4 group composition which comprises the 1st lens group that has positive refracting powerthe 2nd lens group (BARIETA) that has negative refracting powerthe 3rd lens group (compensator) that has positive refracting power sequentially from the object side. Howeversince an overall length becomes longthe zoom lens of such 4 group composition is disqualified as a small object for imaging equipment.

[0006] The 1st lens group that has positive refracting power sequentially from the zoom lens [which was indicated to JP8-248318A]i.e.objectsideLike the zoom lens of 4 group composition which comprises the 2nd lens group (BARIETA) that has negative refracting powerthe 3rd lens group (compensator) that has positive refracting powerand the 4th lens group (master) that has positive refracting powerArrange prism between the lenses of the position by the side of the object of the 1st lens groupand prism is inserted for the 1st lens group in betweenAlthough divide into the lens group which has positive refracting power in the object side at the negative and image surface sideand an afocal system is constituted and there are some which shortened order length by bending an optical path with prismThere was a problem that this type of zoom lens will have much composition number of sheets of a lensits overall length will moreover also still be longand a manufacturing cost will also become high. [0007] This invention makes it a technical problem to provide a small zoom lens with an optimal variable power ratio for small imaging equipmentsuch as a video camera and a digital still cameral of about 3 times in view of the above-mentioned problem. [8000]

Means for Solving the Problem]In order to solve an aforementioned problemthis invention zoom lensThe 1st lens group that has positive refracting power from the object side in order to the image surface sideand the 2nd lens group that has negative refracting powerIn a zoom lens which was made to perform zooming by comprising the 3rd lens group that has positive refracting powerand the 4th lens group that has positive refracting powerand moving the 2nd lens group of the aboveand the 4th lens groupThe 2nd lens of the 1st lens of a single lens which has negative refracting power for the 1st lens group sequentially from the object sideprism which bends an optical pathand a single lens which has positive refracting power constitutes.

[0009]Thereforeit becomes possible to miniaturize a zoom lens with an optimal variable power ratio [for small imaging equipmentsuch as a video camera and a digital still cameral of about 3 times.

[0010]

[Embodiment of the Invention]Belowthe embodiment of this invention zoom lens is described with reference to an accompanying drawing. As for <u>drawing 1</u> thru/or <u>drawing 4</u>the 1st embodiment (numerical example 1)<u>drawing 5</u>or <u>drawing 8</u> shows a 3rd embodiment (numerical example 3)respectivelyas for the 2nd embodiment (numerical example 2)drawing 9or drawing 12.

- [0011]Introduction and the common matter in each embodiment are explained. [0012]In the following explanationfrom the object sidecount "Si" and The i-th fieldRiThe curvature radius of the above-mentioned field Sithe spacing between the "di" object side to the i-th fieldand the i+1st fieldsThe refractive index in d line (wavelength of 587.6 nm) of the i-th lens (Li) and "nudLi" shall show the Abbe number in d line of the i-th lens (Li)fshall show the focal distance of the lens whole systemandas for "ndLi"Fno.shall show an open F value and "omega" half field angle. Howeveras for that by which PLP gasIRand CG were added after nd or nudthe refractive index or Abbe number of a cover glass of prisma low pass filteran infrared cut filterand an image sensor shall be shownrespectively.
- [0013]That from which a lens side is constituted by the aspheric surface is also contained in the lens used in each embodiment.
- [0014]If aspherical surface shape sets the curvature radius in "x" and a lens vertex to "r" and sets a cone constant to "kappa" for the depth (distance of the optical axis direction from the peak of a lens side) of an aspheric surfacex=(y²/r)/1+(1-kappa-y²/r²) \(^2+C4y^4+C6y^8+C8y^8+C10and y^10 \) shall define. C4C6C8and C10 are the 4th aspheric surface coefficients [6th /8th / 10th]respectively.
- [0015]The zoom lenses 12and 3 in the 1st thru/or the 3rd exampleAs shown in drawing 1drawing 5and drawing 94th lens group GR4 which has 1st lens group GR1 which has positive refracting power in order to the image surface IMG side2nd lens group GR2 which have negative refracting power3rd lens group GR3 which have positive refracting power4rd lens group GR3 which have positive refracting power4rd lens group GR3 which have positive refracting power from the object side is comprised. The prism with which the zoom lenses 1 thru/or 3 have been arranged [two lenses and in the meantime] to which 1st lens group GR1 changes from the 1st lens L1 and the 2nd lens L2three lenses and 3rd lens group GR3 to which 2nd lens group GR2 changes from the 3rd lens L3the 4th lens L4and the 5th lens L5 6th lens L6 and4th lens group GR4 is a thing of four nine group composition which has three lenses which comprise the 7th lens L7the 8th lens L8and the 9th lens L9respectively.
- [0016]It extracts between 2nd lens group GR2 and 3rd lens group GR3and low pass filter LP gas and cover glass CG of the infrared cut filters IR and CCD are arranged for ID sequentially from the object side between 4th lens group GR4 and the image surface IMG.
- [0017]And it is made to perform zooming by moving the above-mentioned 2nd lens group GR2 and 4th lens group GR4When carrying out zooming to a long focus

distance end (tele edge) from a short focal length end (wide angle end)2nd lens silver GR2 moves 4th lens group GR4 to the image surface side from the object side so that an image position may be held.

[0018]It succeeds in the focus adjustment of the zoom lenses 1 thru/or 3 by moving 4th lens group GR4.

[0019]The 2nd lens L2 of the single lens which has the 1st lens L1 of the single lens of the meniscus shape which has negative refracting powerthe prism P which bends 90 degrees of optical pathsand positive refracting power sequentially from the object side constitutes 1st lens group GR1.

[0020]As for the zoom lenses 1 thru/or 3it is preferred that satisfy the following conditional expressions 1 and conditional expressions 2or at least one field constitutes according to an aspheric surface among each field of the 1st lens L1 of a part.

ndL1>1.75 (conditional expression 1)

HoweverndL1 is a refractive index in d line of the 1st lens L1and nudL1 is an Abbe number in d line of the 1st lens L1.

[0021]The conditional expression 1 is for specifying the yield of a distortion aberration with the 1st lens L1 that is a single lens which has the negative refracting power which constitutes 1st lens group GR1 which has positive refracting power. If the value of ndL1 becomes the outside of the range specified by the conditional expression the yield of a distortion aberration will become large to the refracting power of 1st lens group GR1 neededand it will become impossible that isfor the aspheric surface of 4th lens group GR4 to amend this.

[0022]The conditional expression 2 is for specifying the yield of the chromatic aberration by L1 with the 1st lens that is a single lens which has the negative refracting power which constitutes 1st lens group GR1 which has positive refracting power. That isif the value of nudL1 becomes the outside of the range specified by the conditional expression 2the yield of the chromatic aberration within the 1st lens group GR1 that has positive refracting power will become largeand it will become difficult [the whole lens system] to amend this.

[0023]As for the field S1 by the side of the object of the 1st lens L1 of the zoom lenses 1 thru/or 3it is preferred that it is a convex towards the object side. This is because the negative distortion aberration which the above-mentioned field S1 generates on this concave surface S1 as it is concave towards the object side becomes large and it becomes difficult to amend this in the lens whole system. [0024]It is desirable that at least one field is constituted by the aspheric surface among each field of the lens which constitutes 4th lens group GR4 of the zoom lenses 1 thru/or 3and for at least one field of the lens especially located most in the image surface side to be constituted by the aspheric surface.

[0025] Thusif an aspheric surface constitutes at least one field among the lens sides

in the 4th lens group GR4Can amend now the negative distortion aberration in the wide angle end generated by 1st lens group GR1and by this. Power of the single lens (the 1st lens) L1 which has the negative refracting power of 1st lens group GR1 can be strengthened nowand a larger field angle can be obtained now.

[0026]As for the zoom lenses 1 thru/or 3it is preferred to constitute so that the following conditional expressions 3 may be satisfied.

4.5<f_{GRI}/fw<12 (conditional expression 3)

Howeverf_{GR1} is a focal distance of 1st lens group GR1and fw is a focal distance in the wide angle end of the lens whole system.

[0027]The conditional expression 3 specifies the ratio of the focal distance of 1st lens group GR1 which has positive refracting powerand the focal distance of the lens whole system. Namelyif the value of f_{can}/fw becomes 4.5 or lessthe positive power of 1st lens group GR1 will become strong too much. [whether with this single lens L2amendment of a spherical aberration becomes whether to be impossible by 2nd lens L2 power which has the positive refracting power in the 1st lens group GR1 and which is a single lens becoming largeand] Or the power of the 1st lens that is a single lens which has negative refracting power will become weakand sufficient wide field angle-ization will become difficult. If the value of f_{can}/fw becomes 12 or morethe positive power of 1st lens group GR1 will become weak too muchthe overall length of the zoom lenses 1 thru/or 3 will become longand a miniaturization will become difficult.

[0028]Nextthe peculiar matter of the zoom lenses 1 thru/or 3 concerning the 1st thru/or the 3rd example is explained.

[0029]Each numerical value of the zoom lens 1 is shown in Table 1. The field which wrote (ASP) in addition after the numerical value of Ri is constituted by the aspheric surface (Table 4 and 7 which are mentioned later are also the same.).

[0030] [Table 1]

[0031]As shown in the above-mentioned table 1 in connection with zooming of the zoom lens 1 and focusing operationthe spacing d7d12d15and d19 are variable (variable). Thereforeeach numerical value of d7 in the middle focal position (f= 9.0) of a wide angle end (f= 5.3) a tele edge (f= 15.6) and a wide angle endand a tele edged12d15and d19 and FNo.fand omega are shown in Table 2.

[Table 2]

[0033]The field S19 by the side of the field S14 by the side of the object of 6th lens L6 of 3rd lens group GR3 and the image surface of the 9th lens L9 of 4th lens group GR4 is constituted by the aspheric surface. The 4th aspheric surface coefficient C [6th /8th / 10th] 4 of the above-mentioned fields S14 and S19 and C6C8and C10 are shown in following Table 3.

[0034]

[Table 3]

[0035]"E" in the above-mentioned table 3 shall mean the exponential notation which uses 10 as a bottom. (Also setting to the Table 7 and 11 which are mentioned later the same.).

[0036]The figure showing the spherical aberration in the middle focal position and tele edge of a wide angle enda wide angle endand a tele edge of the zoom lens lastigmatismand a distortion aberration is shown in drawing 2 thru/or drawing 4 respectively. In a spherical aberration figurea solid line e line (wavelength of 546.1 nm)and a dotted line (dashed line with a shorter pitch) C line (wavelength of 656.3 nm)A value [in / the dashed line can set a dashed dotted line on d linecan be set to an F line (wavelength of 486.1 nm)and / in a two-dot chain line / g line (wavelength of 435.8 nm)] is shownand a value [in / a solid line can be set to a sagittal image surfaceand / in a dashed line / a meridional image surface] is shown in an astigmatic figure.

[0037]In the above-mentioned zoom lens 1it is also made to manufacture by constituting 4th lens group GR4 with the cemented lens of the three lenses L7L8and L9 easily by making small **** of the image surface by the eccentricity within the 4th lens group GR4.

[0038]Each numerical value of the zoom lens 2 is shown in Table 4.

[0039]

[Table 4]

[0040]As shown in the above-mentioned table 4in connection with zooming of the zoom lens 2and focusing operationthe spacing d7d12d15and d20 are variable (variable). Thereforeeach numerical value of d7 in the middle focal position (f= 9.0) of a wide angle end (f= 5.3)a tele edge (f= 15.5) and a wide angle endand a tele edged12d15and d20 and FNo.fand omega are shown in Table 5.

[0041] [Table 5]

[0042] The field S14 by the side of the object of 6th lens L6 of 3rd lens group GR3the field S19 by the side of the object of the 9th lens L9 of 4th lens group GR4and the field S20 by the side of the image surface are constituted by the aspheric surface.

The 4th aspheric surface coefficient C [6th / 8th / 10th] 4 of the above-mentioned field S14S19and S20 and C6C8and C10 are shown in following Table 6. [0043]

[Table 6]

[0044]The figure showing the spherical aberration in the middle focal position and tele edge of a wide angle enda wide angle endand a tele edge of the zoom lens 2 astigmatismand a distortion aberration is shown in drawing 6 thru/or drawing 8 respectively. In a spherical aberration figuree line and a dotted line show a value [in / the dashed line can set C line and a dashed dotted line on d linecan be set to an F lineand / in a two-dot chain line / g line Jand a solid line shows a value [in / a solid line can be set to a sagittal image surfaceand / in a dashed line / a meridional image surface] in an astigmatic figure.

[0045]In the zoom lens 2the aspheric surface lens made from a plastic is used for the 9th lens L9 of 4th lens group GR4and the zoom lens which can be cheaply manufactured with a miniaturization and highly efficient-ization is constituted. [0046]Each numerical value of the zoom lens 3 is shown in Table 7.

[0047]

[Table 7]

[0048]As shown in the above-mentioned table 7in connection with zooming of the zoom lens 3and focusing operationthe spacing d7d12d15and d19 are variable (variable). Thereforeeach numerical value of d7 in the middle focal position (f= 9.0) of a wide angle end (f= 5.3)a tele edge (f= 15.5) and a wide angle endand a tele edged12d15and d19 and FNo.fand omega are shown in Table 8.

0049]

[Table 8]

[0050]The field S19 by the side of the field S2 by the side of the image surface of the 1st lens L1 of the 1st lens groupthe field S14 by the side of the object of 6th lens L6 of 3rd lens group GR3and the image surface of the 9th lens L9 of 4th lens group GR4 is constituted by the aspheric surface. The 4th aspheric surface coefficient C [6th / 8th / 10th] 4 of the above-mentioned field S2S14and S19 and C6C8and C10 are shown in following Table 3.

[0051]

[Table 9]

[0052]He is trying to amend the spherical aberration in a curvature of field and a long focus distance region in the zoom lens 3by constituting the field S2 by the side of the image surface of the 1st lens L1 in the 1st lens group GR1 according to an aspheric surfaceas described above.

[0053]The figure showing the spherical aberration in the middle focal position and tele edge of a wide angle enda wide angle endand a tele edge of the zoom lens 3 astigmatismand a distortion aberration is shown in drawing 10 thru/or drawing 12 respectively. In a spherical aberration figuree line and a dotted line show a value [in / the dashed line can set C line and a dashed dotted line on d linecan be set to an F lineand / in a two-dot chain line / g line] and a solid line shows a value [in / a solid line can be set to a sagittal image surfaceand / in a dashed line / a meridional image surface] in an astigmatic figure.

[0054]In the above-mentioned zoom lens 3like the zoom lens 1 in the 1st example by constituting 4th lens group GR4 with the cemented lens of the three lenses L7L8and L9It is also made to manufacture easily by making small **** of the image surface by the eccentricity within the 4th lens group GR4.

[0055]Each numerical value for searching for the monograph affair of the conditional expressions 1 thru/or 3 of the zoom lenses 1 thru/or 3 shown in the above 1st thru/or the 3rd example and the value of a monograph affair type are shown in following Table 10. [0056]

Table 10

[0057]As for the zoom lenses 1 thru/or 3as the conditions of the conditional expressions 1 thru/or 3 are satisfied and it is shown in each aberration figure in the middle focal position and tele edge of a wide angle enda wide angle endand a tele edgevarious aberration is also amended with sufficient balanceso that clearly also from the above—mentioned table 10.

[0058]Thussince the field angle in a wide angle end fully includes a wide angle area with 74 degrees and various aberration is also amended goodthe zoom lenses 1 thru/or 3 are preferred as an object for digital still cameras which uses an image sensor with many pixel numbers especially.

[0059]The concrete shape and structure of each part which were shown in said embodiment are only what showed a mere example of the embodiment which hits that each carries out this inventionand the technical scope of this invention is not restrictively interpreted by these.

[0060]

[Effect of the Invention] So that clearly from the place indicated above this invention zoom lensThe 1st lens group that has positive refracting power from the object side in order to the image surface sideand the 2nd lens group that has negative refracting

powerIn the zoom lens which was made to perform zooming by comprising the 3rd lens group that has positive refracting powerand the 4th lens group that has positive refracting powerand moving the 2nd lens group of the aboveand the 4th lens group Since the 2nd lens of the 1st lens of the single lens which has negative refracting power for the 1st lens group sequentially from the object sidethe prism which bends an optical pathand the single lens which has positive refracting power constitutedA zoom lens with an optimal variable power ratio [for small imaging equipmentsuch as a video camera and a digital still camera] of about 3 times can be miniaturized.

[0061] If it is in the zoom lens indicated to claim 2Since it was made to satisfy the monograph affair of ndL1>1.75 and nudL1<30 when the refractive index in d line of the 1st lens and nudL1 were made into the Abbe number in d line of the 1st lens for ndL1the distortion aberration and chromatic aberration which are generated in the 1st lens group can be amended good.

[0062]Since the aspheric surface constituted the field of at least 1 of the 1st lens if it was in the zoom lens indicated to claim 3the spherical aberration in a curvature of field and a long focus distance region can be amended good.

[0063]Since the field it turned [field] to the object side of the 1st lens was made into the convex if it was in the invention indicated to claim 4 thru/or claim 6the negative distortion aberration from which amending in the lens whole system becomes difficult does not become large.

[0064]If it is in the invention indicated to claim 7 thru/or claim 12Since the aspheric surface constituted the at least 1st of each fields of the lens which constitutes the 4th lens groupSince the negative distortion aberration in the wide angle end generated from the 1st lens group 2 can be effectively amended nowit becomes possible to strengthen power of the negative single lens of the 1st lens groupand a larger field angle can be obtained.

[0065]If it is in the invention indicated to claim 13 thru/or claim 24Since it was made to satisfy the conditions of 4.55f_{GRI}/fw(12 when f_{GRI} was made into the focal distance of the 1st lens group and fw was made into the focal distance in the wide end of the lens whole systemamendment of a spherical aberrationwide-field-angle[sufficient]-izingand a miniaturization can be attained.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[<u>Orawing 1]</u>With <u>drawing 2</u> thru/or <u>drawing 4</u>a 1st embodiment of this invention zoom lens is shownand this figure is a schematic diagram showing lens constitution. [<u>Orawing 2</u>]It is a figure showing the spherical aberration in a wide angle endastigmatismand a distortion aberration. [<u>Drawing 3</u>] It is a figure showing the spherical aberration in the middle focal position of a wide angle end and a tele edgeastigmatismand a distortion aberration. Drawing 4lt is a figure showing the spherical aberration in a tele edgeastigmatismand

a distortion aberration.

[Drawing 5] With drawing 6 thru/or drawing 8a 2nd embodiment of this invention zoom

lens is shownand this figure is a schematic diagram showing lens constitution. [Drawing 6] It is a figure showing the spherical aberration in a wide angle

endastigmatismand a distortion aberration.

[<u>Drawing 7</u>]It is a figure showing the spherical aberration in the middle focal position of a wide angle end and a tele edgeastigmatismand a distortion aberration.

Drawing Bilt is a figure showing the spherical aberration in a tele edgeastigmatismand a distortion aberration.

[Drawing 9]With drawing 10 thru/or drawing 12a 3rd embodiment of this invention zoom lens is shownand this figure is a schematic diagram showing lens constitution. [Drawing 10] It is a figure showing the spherical aberration in a wide angle endastigmatismand a distortion aberration.

<u>[Drawing 11]</u> It is a figure showing the spherical aberration in the middle focal position of a wide angle end and a tele edgeastigmatismand a distortion aberration.

[Drawing 12] It is a figure showing the spherical aberration in a tele

edgeastigmatismand a distortion aberration.

[Description of Notations]

1 [— The 1st lens groupGR2 / — The 2nd lens groupGR3 / — The 3rd lens groupGR4 / — The 4th lens groupL1 / — The 1st lensL2 / — The 2nd lensP / — PrismIMG / — Image surface] — A zoom lens2 — A zoom lens3 — A zoom lensGR1

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-131610

(P2000-131610A) (43)公開日 平成12年5月12日(2000.5.12)

(51) Int.Cl.7	識別記号	ΡI	デーマコート*(参考)
G 0 2 B 15/16		G 0 2 B 15/16	2H087
13/18		13/18	

審査請求 未請求 請求項の数24 OL (全 15 頁)

(21)出顧番号	特職平10-307337	(71) 出職人	
(22)出順日	平成10年10月28日(1998, 10, 28)		ソニー株式会社 東京都品川区北品川6丁目7番35号
,		(72)発明者	末吉 正史 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内
		(74)代理人	100069051 弁理士 小松 祐治
			具件百に続く

裁兵員に続く

(54) 【発明の名称】 ズームレンズ

(57) 【要約】

【課題】 ビデオカメラ、デジタルスチルカメラ等の小型の撮像機器に最適な変倍比3倍程度の小型のズームレンズを提供する。

【解決手段】 物体側から側面 I M G側へと順に、正の 屈折力を有する第1 レンズ群 G R 1 と、負の屈折力を有 する第2 レンズ群 G R 2 と、正の屈折力を有する第3 レ ンズ群 G R 3 と、正の屈折力を有する第 4 レンズ群 G R 4 とから成り、第2 レンズ群と第4 レンズ群とを移動さ せることによりズーミングを行うようにしたイムレン ズにおいて、第1 レンズ様を物体側から順に、負の屈折 力を有する単レンズの第1 レンズし 1、光路を折り曲げ るプリズム P、正の屈折力を有する単レンズの第 2 レン ズし 2 によって構成した。

【特許請求の範囲】

【請求項1】 物体側から像面側へと順に、正の屈折力 を有する第1レンズ群と、

負の屈折力を有する第2レンズ群と、

正の屈折力を有する第3レンズ群と、

正の屈折力を有する第4レンズ群とから成り、

上記第2レンズ群と第4レンズ群とを移動させることに よりズーミングを行うようにされたズームレンズにおい

τ.

上記第1レンズ群が物体側から順に、負の屈折力を有す る単レンズの第1レンズ、光路を折り曲げるプリズム、 正の屈折力を有する単レンズの第2レンズによって構成 されたことを特徴とするズームレンズ。

【請求項2】 以下の条件を満足するようにしたことを 特徴とする請求項1に記載のズームレンズ。

ndL1>1.75

vdL1<30

但し、

ndl 1: 第1レンズのd線での屈折率。

v d L 1:第1レンズのd線でのアッベ数、

とする。

【請求項3】 第1レンズの少なくとも1の面を非球面 によって構成したことを特徴とする請求項1に記載のズ ームレンズ。

【請求項4】 第1レンズの物体側を向いた面を凸面と したことを特徴とする請求項1に記載のズームレンズ。 【請求項5】 第1レンズの物体側を向いた面を凸面と したことを特徴とする請求項2に記載のズームレンズ。 「鎌水頂6】 第1レンズの物体側を向いた面を凸面と したことを特徴とする諸求項3に記載のズームレンズ。 【糖求項7】第4レンズ群を構成するレンズの各面のう ち、少なくとも1面を非球面によって構成したことを特 徴とする請求項1に記載のズームレンズ。

【請求項8】第4レンズ群を構成するレンズの各面のう ち、少なくとも1面を非球面によって構成したことを特 徴とする請求項2に記載のズームレンズ。

[請求項9] 第4レンズ群を構成するレンズの各面のう ち、少なくとも1面を非球面によって構成したことを特

徴とする請求項3に記載のズームレンズ。 【請求項10】第4レンズ群を構成するレンズの各面の うち、少なくとも1面を非球面によって構成したことを

特徴とする請求項4に記載のズームレンズ。 【請求項11】第4レンズ群を構成するレンズの各面の

うち、少なくとも1面を非球面によって構成したことを 特徴とする請求項5に記載のズームレンズ。

【請求項12】第4レンズ群を構成するレンズの各面の うち、少なくとも1面を非球面によって構成したことを 特徴とする請求項6に記載のズームレンズ。

【請求項13】 以下の条件を満足することを特徴とす る請求項1に記載したズームレンズ。

4. 5 < f GR1/f w < 12

伯1...

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項14】 以下の条件を満足することを特徴とす る請求項2に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項15】 以下の条件を満足することを特徴とす る腊求項3に記載したズームレンズ。

4. 5 < f GR1/f w < 12

伯し..

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする.

【請求項16】 以下の条件を満足することを特徴とす る請求項4に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。 【鯖朮項17】 以下の条件を満足することを特徴とす

る請求項5に記載したズームレンズ。

4, 5 < f GR1/f w < 12

但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 レオス

【請求項18】 以下の条件を満足することを特徴とす る請求項6に記載したズームレンズ。

4. 5 < f GR1/f w < 12 但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項19】 以下の条件を満足することを特徴とす る請求項7に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項20】 以下の条件を満足することを特徴とす る請求項8に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項21】 以下の条件を満足することを特徴とす る請求項9に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1: 第1レンズ群の焦点距離、 fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項22】 以下の条件を満足することを特徴とす る請求項10に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、 とする。

【請求項23】 以下の条件を満足することを特徴とす る請求項11に記載したズームレンズ。

4. 5 < f GR1/f w < 12

f cp1: 第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【請求項24】 以下の条件を満足することを特徴とす る請求項12に記載したズームレンズ。

4. 5 < f GR1/f w < 12

但し、

f GR1:第1レンズ群の焦点距離、

fw:レンズ全系のワイド端での焦点距離、

とする。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、小型のビデオカメ ラ、デジタルスチルカメラ等に最適な、変倍比3倍程度 のズームレンズに関する。

[0002]

【従来の技術】近年、ビデオカメラ、デジタルスチルカ メラ等の小型撮像装置にあっては、より一層の小型化が 求められており、これに伴って、撮影用レンズ、特に、 ズームレンズは全長の短縮等による小型化が求められて いる。

【0003】また、上記撮影用レンズ、特に、デジタル スチルカメラ用のものにあっては、小型化と共に、広角 端での画角が70~80°程度の広角域を含むズームレ ンズに対する要求が高まっており、同時に、撮像素子の 高画素化に対応してレンズ性能の向上も求められてい

[0004]

【発明が解決しようとする課題】小型撮像装置用の小型 のズームレンズとしては、物体側から順に、負の屋折塞 を有する第1レンズ群と、正の屈折力を有する第2レン ズ群とから成るレトロフォーカスタイプの2群構成のズ ームレンズがある。しかし、このような2群構成のズー ムレンズにあっては、変倍比を大きくすることが難し く、また、ズーミング動作に伴って全長も変化するので 小型の撮像機器用としては不適格である。

【0005】また、物体側から順に、正の屈折力を有す る第1レンズ群と、負の屈折力を有する第2レンズ群 (パリエータ)と、正の屈折力を有する第3レンズ群 (コンペンセータ)と、正の屈折力を有する第4レンズ 群(マスター)とから成る4群構成のズームレンズがあ る。しかし、このような4群構成のズームレンズは、全 長が長くなってしまうため、小型の撮像機器用としては

不適格である。 [0006] 更に、特開平8-248318号公報に記 載されたズームレンズ、即ち、物体側から順に、正の屈 折力を有する第1レンズ群と、負の屈折力を有する第2 レンズ群 (バリエータ) と、正の屈折力を有する第3レ ンズ群(コンペンセータ)と、正の屈折力を有する第4 レンズ群(マスター)とから成る4群構成のズームレン ズのように、第1レンズ群の物体側の位置のレンズとレ ンズとの間にプリズムを配置し、第1レンズ群をプリズ ムを間に挟んで、物体側に負、像面側に正の屈折力を有 するレンズ群に分割してアフォーカル系を構成すると共 に、プリズムによって光路を折り曲げることによって前 後長を短縮するようにしたものもあるが、このタイプの ズームレンズは、レンズの構成枚数が多く、しかも依然 として全長も長く、製造コストも高くなってしまうとい う問題点があった。

【0007】本発明は、上記問題点に鑑み、ビデオカメ ラ、デジタルスチルカメラ等の小型の撮像機器に最適な 変倍比3倍程度の小型のズームレンズを提供することを 課題とする。

[0008]

【課題を解決するための手段】上記課題を解決するため に、本発明ズームレンズは、物体側から像面側へと順 に、正の屈折力を有する第1レンズ群と、負の屈折力を 有する第2レンズ群と、正の屈折力を有する第3レンズ 群と、正の屈折力を有する第4レンズ群とから成り、上 記第2レンズ群と第4レンズ群とを移動させることによ りズーミングを行うようにしたズームレンズにおいて、 第1レンズ群を物体側から順に、負の屈折力を有する単 レンズの第1レンズ、光路を折り曲げるプリズム、正の **屋折力を有する単レンズの第2レンズによって構成した** ものである。

【0009】従って、ビデオカメラ、デジタルスチルカ メラ等の小型の掃像機器に最適な変倍比3倍程度のズー ムレンズを小型化することが可能になる。

[0010]

【発明の実施の形態】以下に、本発明ズームレンズの実 施の形態について、添付図面を参照して説明する。尚、 図1万至図2は第1の実施の形態(数値実施例1)、図 5万至図12は第2の実施の形態(数値実施例2)、図9 乃至図12は第3の実施の形態(数値実施例3)をそれ ぞれ示すものである。

【0011】初めに、各実施の形態における共通の事項 について説明する。

【0012】尚、以下の説明において、「5i」は物体 側から数えてi番目の面、「Ri」は上記面Siの曲率 半径、「di」物体側からi番目の面とi+1番目の面 との間の面間隔、「ndLi」は第iレンズ(Li)の は線(波長587.6nm)での屈折率、「vdLi」 は第iレンズ(Li)のd線でのアッベ数 「fjはレ ンズ全系の焦点距離、「Fno.」は開放F値、「ω」 半画角を示すものとする。但し、ndXはvdの後に ア、LP、IR及びCGががはされたものは、それぞれ ブリズム、ローパスフィルタ、赤外カットフィルタ及び 撮像素子のカバーガラスの屈折率又はアッベ数を示すも のとする。

【0013】また、各実施の形態において用いられるレンズには、レンズ面が非球面によって構成されるものも含まれる。

【0014】非球面形状は、非球面の深さ(レンズ面の 頂点からの光軸方向の距離)を「x」、レンズ頂点での 曲率半径を「r」、円錐定数を「κ」とすると、

 $x = (y^2/r) / 1 + (1 - \kappa \cdot y^2/r^2)^{1/2} + C4$ $\cdot y^4 + C6 \cdot y^6 + C8 \cdot y^8 + C10 \cdot y^{10}$

によって定義されるものとする。尚、C4、C6、C8 及びC10は、それぞれ4次、6次、8次及び10次の 非球面係数である。

[0016] また、第2レンズ群GR2と第3レンズ群 GR3との間には絞り I Dが、第4レンズ群GR4と懐 面 I MGとの間には物体側から順に、ローバスフィルタ LP、赤外カットフィルタ I R及びCCDのカバーガラ スCGが配置されている。

【0017】そして、上記第2レンズ群GR2と第4レンズ群GR4とを移動させることによりズーミングを行うようにしたものがあり、短点に距離端(日海場)から 長焦点距離端(望遠端)にズーミングするときには、第2レン「駆GF2は物体側から像面側に、第4レンズ第(GR4は像位置を保持するように移動するものである。【0018】尚、ズームレンズ1万至3のフォーカス調整は、第4レンズ群GR4を移動させることによって為される。

[0019] 第1レンズ群GR1は、物体側から順に、 食の屈折力を有するメニスカス形状の単レンズの第1レ ンズL1、光路を90°折り曲げるブリズムP、正の屈 折力を有する単レンズの第2レンズL2によって構成し たものである。

[0020] ズームレンズ1万至3は、以下の条件式1 及び条件式2を満足するか、または、部第1レンズL1 の各面のうち、少なくとも1つの面が非球面によって構 成することが好ましい。

ndL1>1.75(条件式1)

v d L 1 < 30(条件式2)

但し、ndL1は第1レンズL1のd線での屈折率であり、vdL1は第1レンズL1のd線でのアッペ数である。

【0021】条件式1は、正の屋折力を有する第1レン 文群 GR 1を構成する負の屋折力を有する単レンズであ 名第1レンズに1による歪曲収差の発生量を視定するためのものである。即ち、ndl1の屋が条件式1によって 規定される歴明となるをし、必要とされる第1レンズ 群 GR 1の屋折力に対して歪曲収差の発生量が大きくなってしまい、これを第4レンズ群GR 4の非球節によって 材置でなってしまい。これを第4レンズ群GR 4の非球節によって 材置でなってしまう。

【0022】条件式2は、正の屋折力を有する第1レン 双背区R1を構成する負の屋折力を有する単レンズであ る第1レンズによる上1による色収差の発生重を規定す るためのものである。即ち、vdL1の値が条件式2に よって規定される範囲外となると、正の屋折力を有する 第1レンズ軒GR1内での色収差の発生量が大きくな り、これを補正することはレンズ系全体でも困難とな る。

【0023】また、ズームレンズ1乃至3の第1レンズ L1の物体側の面51は、物体側に向けてのであること が好ましい。これは、上記面51が物体側に向けて凹で あると、該凹面51で発生する負の歪曲収差が大きくな リ、これをレンズ全系で補正することが困難となるから である。

[0024] ズームレンズ1乃至3の第4レンズ群GR 4を構成するレンズの各面のうち、少なくとも1つの面 が非球面によって構成されること、特に、最も像面側に 位置するレンズの少なくとも1つの面が非球菌によって 構成されていることが望ましい。

【0025】 このように、第4レンズ群GR4内のレン 大面のうち、少なくとも1つの面を非球面によって構成 すると、第1レンズ群GR1によって発生する広角端に おける自の歪曲収差を補正することができるようにな り、これによって、第1レンズ祭日へ10角の脈折力を 有する単レンズ(第1レンズ)L1のパワーを強くする ことができるようになって、より広い画角を得ることが できるようになる。

【0026】更に、ズームレンズ1乃至3は、以下の条件式3を満足するように構成することが好ましい。

 4.5<f_{GR1}/fw<12 (条件式3)
 但し、f_{GR1}は第1レンズ群GR1の焦点距離であり、 fwはレンズ全系の広角端での焦点距離である。
 【0027】条件式3は、正の屈折力を有する第1レン

ズ群 GR1 の焦点距離とレンズ全系の焦点距離との比率 を規定するものである。即ち、fGR1/fwの値が 4.

5以下となると、第1レンズ群GR1の正のパワーが強

くなり過ぎて、第1レンス群GR1内の正の服折力を有 する単レンズである第2レンズL2パワーが大きくなっ て、この単レンズし2では球面収差の補正がさきなくな るか、又は、負の屈折力を有する単レンズである第1レ ンズのパワーが弱くなってしまって、十分な広画角化が 困難になってしまう。また、「GR/)「チャの値が12以 上になると、第1レンズ群GR1の正のパワーが弱くな り過ぎて、ズームレンズ1乃至3の全長が長くなってし まい、小型化が困難となる。

【0028】次に、第1万至第3の実施例に係わるズー ムレンズ1乃至3の固有の事項について説明する。

[0029] 表1にズームレンズ1の各数値を示す。 尚、Riの数値の後に(ASP)を付記した面は非球面 によって構成されたものである(後述する表4及び表7 も同様。)。

[0030]

【表 1 】

R1=35. 116	d1=1.8	ndL1=1.85000	ν dL1=23.5
R2=16. 675	d2=5. 5		
23- ==	d3=9. 5	ndP=1.56883	ν dP=56. 0
M=∞	d4=8. 5	ndP=1. 56888	ν dP=56. 0
25 = ==	d5=0.5		
R6=48. 647	d6-2.8	ndL2=1.76811	ν dL2=49. 7
R7=-38. 962	d7=variable		
E8=-64. 828	d8=1.1	ndL3=1.84000	v dl.3-43. 0
R9=14. 768	d9=1. 1	,	
R10-140. 620	d10=1. 1	ndL4=1.75359	ν dL4=51. 6
R11=8. 989	d11-2.0	ndL5=1.84666	ν dL5=23. 8
R12=83. 286	dl2=variable		
R18= ∞	d18=1.5		
R14=9. 334(ASP)	d14=2.0	nd1.6=1.80610	ν dL6=40. 7
R15=12. 687	d15=variable		
R16=7. 522	d15=3.0	ndl.7=1. 75955	ν dL7=50.8
R17=-40. 255	d17=1.5	ndL8=1. 84666	ν dL8=23. 8
118=8. 007	d18-8-8	ndL9=1. 69350	ν dL9=53. 3
R19=24. 197(ASP)	dl9=variable		
120= ==	d20=1.5	n4LP=1. 55282	ν dLP=63. 4
12]=••	d21=1. 2	ndIR=1. 51680	ν dIR=64. 2
122×∞	d22=1. 00		
123= ···	d28=0.75	ndCG=1. 55671	ν dCG=58. 6
E4	d24=1.0		
R25- ∞			

7、d 12、d 15及びd 19は可変(variable)である。従って、表2に広角端(f=5、3)、望遠端(f=15、6)及び広角端と望遠端とか中間焦点位置(f=9、0)におけるd 7、d 12、d 15及びd 19の各数値。並びに、FNo、、f及びωを示す。 [0032]

【表 2】

f	5. 3	9. 0	15. 5
FNo.	2.4	2.6	8.1
ω	37.0°	24. 0°	14.5"
d7	0.8	8. 36	13. 76
d12	15. 01	7. 45	2. 05
d15	7. 02	4. 98	2.0
d19	4.82	6. 88	9. 84

[0033] また、第3レンズ群GR3の第6レンズL 6の物体側の面514及び第4レンズ群GR4の第9レ ンズL9の像面側の面519は非球面によって構成され ている。以下の表3に上記面514及び519の4次、 6次、8次及び10次の非球面係数C4、C6、C8及 びC10を示す。

【表3】

[C XE]

	ĸ	C4	CB	C8	C10
S14(R14)	0	-0.91423-04	0. 8775E-05	-0. 4308E-06	0. 1590E-07
S19(R19)		0. 1217E-02	0. 2458E-04	0.12368-05	0. 1285E-07

【0035】尚、上記表3中の「E」は、10を底とする指数表現を意味するものとする。 (後述する表7及び表11においても同様。)。

【0036】図2乃至図4にズームレンズ1の広角端、 広角端と望遠端との中間焦点位置及び望遠端における球 面収差、非点収差及び歪軸収差を示す図をそれぞれ示 す。施、球面収差図において、実線は・線(浚長56 6、1nm)、点線(ピッチの短い方の破線)後はC線 (波長656、3nm)、一点鋼線はd線、破線はF線 (波長486、1nm)、二点鋼線はd線、波接45 5、8nm)における値を示すものであり、非点収差図 において、実線はサジタル像面、破線はメリディオナル 像面における値を示すものである。

【0037】上記ズームレンズ1においては、第4レンズ第GR4を3枚のレンズL7、L8及びL9の接合レンズによって構成することにより、第4レンズ群GR4内での偏心による像面の倒れをかさくし、製造をも容易にするようにしたものである。

【0038】表4にズームレンズ2の各数値を示す。 【0039】

【表4】

R1=43. 203	d1=2.0	ndL1=1.84668	ν dL1-23. 8
R2=16.054	d2-4.0		
R\$=∞	d8=9.5	adP=1.56883	ν dP≈56. 0
24= 00	d4-8.5	ndP=1.56883	ν dP=56.0
B5= 00	d5=0.5		
R6=40. 072	d6-2.3	ndl.2-1. 83500	v dL2=48. 0
R7=-40. 072	d7-variable		
R8=-130. 120	d8=1. 1	ndL3=1.83500	v dL3≈43. 0
R9-11. 909	d9=1. 29		
110= co	d10=1.0	ndL4=1.75859	ν dL4=51. 6
R11=7. 755	d11=2.2	ndL5=1.84686	ν dL5=28.8
R12=31. 164	dl2=variable		
R18=∞	d18=1.5		
R14=9.845(ASP)	d14=1.5	ndL8=1. 68350	ν dL6=58. 3
R15-18. 742	di5=variable		
R16-9. 080	d16=2. 5	ndL7=1. 69850	ν dL7=53. 3
R17=-9. 060	d17=1.0	ndL8=1. 84666	ν dL8-23.8
R18104. 131	418=4.75		
R19=85. 898 (ASP)	d19-1.0	ndL9=1. 49200	ν dL9=57.2
220-24. 197(ASP)	d20-variable		
1 21=∞	d21=1. 5	ndLP=1. 55282	ν dLP=68. 4
R22= ∞	d22-1. 2	ndIR=1. 51680	ν dIR=64. 2
128•∞	d23=1. 0		
124	d24-0.75	ndCG=1.55871	ν dCG=58. 8
125=	d25=1. 0		
R26= 00			

【0040】上記表4に示すように、ズームレンズ2の ズーミング及びフォーカシング動作(中つて面関階d 7、d12、d15及びは20対変(variabl e)である。従って、表5に広角端(f=5.3)、望 遠端(f=15.5)及び広角端と望遠端との中間焦点 位置(f=9.0)におけるd7、d12、d15及び d20の各数値、並びに、FNo、、f及び必を示す。 【0041】

【表5】

•			
f	5. 3	9.0	15.5
Flo.	2.8	8. 1	8.8
ω	87. 0°	24.0°	14.5°
d7	0.8	7. 17	11.4
d12	12. 65	6. 28	2.05
d15	8. 99	8.09	2.0
d20	8. 67	6.57	10.66

【0042】また、第3レンズ群GR3の第6レンズL 6の物体側の面514及び第4レンズ群GR4の第9レ ンズL9の物体側の面519及び像面側の面520は非 球面によって構成されている。以下の表6に上記面51 4、519及び520の4次、6次、8次及び10次の 非球面係数C4、C6、C8及びC10を示す。 【0043】

【表6】

	K	Ci	C8	C8	C10
S14(R14)	0	-0. 1224E-03	0. 9870E-05	-0. 1144E-05	0. 4671E-07
S19(R19)	0	-0. 9497E-03	0. 3720E-04	-0. 6771E-05	0. 3284E-06
S20(R20)	0	-0.54128-04	0. 7292E-04	-0. 8809E-05	0. 4530E-06

【0044】図6万圣図8にベームレンズ2の広角端、 広角端と望遠端との中間焦点位置及び望遠端における球 面収差、非点収差及び歪曲収度を示す図をそれぞれ示 す。尚、球面収差図において、実縁は e線、点縁はて 線、一点網線は 4線、破線は F線、二点類線は g線にお ける値を示すものであり、非点収差図において、実線は サジタル像面、破線はメリディオナル像面における値を 示すものであるり、 [0045] また、ズームレンズ2においては、第4レンズ群GR4の第9レンズL9にプラスチック製の非球面レンズを使用し、小型化、高性能化と共に、安価に製造できるズームレンズを構成している。
[0046] 表アにズームレンズ3の各数値を示す。

【0047】 【表7】

R1=36. 641	dl=1.8	ndL1=1. 85000	ν dL1=28. 5
R2-16. 216(ASP)	d2-5. 5		
13 ×∞	43-9.5	ndP=1.56883	ν dP=56. 0
Ri= co	d4=8.5	ndP=1.56888	ν dP=56. 0
E5×∞	d5=0.5		
P6=82. 208	d5=2. 8	ndL2-1. 76658	ν dL2-49. 9
R7=-54. 283	d7=variable		
R8=-53. 723	d8=1.1	ndL3=1.84000	ν dL3=43.0
R9-17. 458	d9=1.1		
R10= ∞	d10-1.0	ndL4=1. 84000	νdL4=48.0
R11=7. 863	d11-2.0	ndi.5=1.83916	ν dL5=28. 6
R12-48. 420	d12-variable		
R13= 00	d13=1.5		
#14-10. 484(ASP)	d14=2.0	ndL6=1. 80610	ν dL6=40.7
R15=15. 006	dl5=variable		
R16-7. 899	d16=3. 0	ndL7=1. 79554	ν dL7=46. 8
R17=-83. 011	d17=1.5	ndL8=1. 80688	ν dL8=25. 6
H18-6. 097	d18=8. 3	mdL9=1. 69850	ν dL9=58. 8
219-22. 005 (ASP)	di¶=variable		
220	d20-1. 5	ndLP=1.56232	ν dLP-63. 4
121 =00	421+1. 2	adIR=1.51680	v dIR=64. 2
E22+ 00	d22=1. 0		
223- w	d23-0. 75	ndCG=1.55871	ν dCG-58. 6
124	d24=1. 0		
25= co			***************************************

【0048】上記表7に示すように、ズームレンズ3のズーミング及びフォーカシング動作に伴って面関隔d 7、d12、d15及びd19は可変(variable)である。後つて、表8に広角端(f=5、3)、望遠端(f=15.5)及び広角端と望遠端との中間焦点位置(f=9、0)におけるd7、d12、d15及びd19の各数値、並びに、FNo、、f及びωを示す。

【表8】

1	f	5. 3	9. 0	15. 5
Γ	FNo.	2.4	2.6	8. 1
Γ	۵	87. 0°	24. 0°	14.5°
Γ	đ7	0.8	8. 08	18. 2
Γ	d12	14. 41	7. 12	2.0
Γ	d15	7. 28	5. 11	2.0
Γ	d19	5. 19	7. 84	10.45

【0050】また、第1レンズ群の第1レンズL1の像面側の面52、第3レンズ群CR3の第6レンズL60 面側の面52、第3レンズ群CR3の第6レンズL60 が体例の面514及び第4レンズ群CR4の第9レンズ L9の像面側の面S19は非球面によって構成されている。以下の表3に上記面52、S14及び519の4 次、6次、8次及び10次の非球面係数C4、C6、C 8及びC10を示す。

【0051】 【表9】

	, K	C4	CS	C8	C10
S2(B2)		-0. 4475E-05	0. 2083E-07	-0. 6283E-10	-0. 7920B-12
S14(R14)	0	-0. 6561E-04	0. 1709E-05	-0. 1885B-06	0. 6981E-08
S19(R19)	0	0. 1068E-02	0. 2442B-04	0. 4797B-06	0. 3475E-07

[0052] ズームレンズ3においては、上記したように、第1レンズ群GR1内の第1レンズL1の像面側の面 S Z を非球面によって構成することによって、像面湾面 S び長焦点距離域での球面収差を補正するようにしている。

[0053] 図10乃至図12にズームレンズ3の広角 端、広角端と望遠性20中間焦点位置及び望遠端におけ 場球面収差、非点収差及び歪曲収差を示す図をそれぞれ 示す。尚、野面収差図において、実線はe線、点線はC 線、一点網線はd線、破線はF線、二点網線はg線にお ける値を示すものであり、非点収差図において、実線は サジタル像面、破線はメリティナナル像面における値を サジタル像面、破線はメリティナナル像面における値を 示すものである。

(0054)上限ズームレンズ3においては、第1の実施例におけるズームレンズ1と同様に、第4レンズ群 係例におけるズームレンズ1と同様に、第4レンズ群 R4を3枚のレンズL7、L8及びL9の接合レンズに よって構成することにより、第4レンズ群GR4内での 偏心による機面の倒れを小さくし、製造をも容易にする ようにしたものである。

【0055】以下の表10に上記第1万至第3の実施例 に示したズームレンズ1万至3の条件式1万至3の各条 件を求めるための各数値及び各条件式の値を示す。

[0056] 【表10】

実施の形態	ndL1	νdLl	fgR1	fw	fgR1/fw
1	1.85000	23. 5	38. 29	5. 3	7. 22
2	1. 84868	23. 8	32.99	5.8	6. 22
3	1.85000	23. 5	38.94	5.8	6. 97

[0057] ズームレンズ1乃至3は、上記表10から も明らかなように、条件式17万至3の条件を満足し、また、各収差図に示すように、広角端、広角端と望遠端と の中間焦点位置及び望遠端において、各種収差もバラン 入良く補正されている。

[0058] このように、ズームレンズ1乃至3は、広 角端における画角が74°と、十分に広角領域を含むも のであり、各種収差も良好に補正されているため、特 に、画素数の多い撮像素子を使用したデジタルスチルカ メラ用として好道なものである。

[0059] 尚、前記実施の形態において示した各部の 具体的な形状及び構造は、何れも本発明を実施するに当 たっての具体化のほんの一例を示したのに過ぎず、こ れらによって本発明の技術的範囲が限定的に解釈される ことがあってはならないものである。

[0060]

【発明の効果】以上に配載したところから明らかなように本発明ズームレンズは、物体側から像面側へと順に、 にの展折力を有する第1レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第1レンズ群とから成り、上記 多第2レンズ群と第4レンズ群とから成り、上記 第2レンズ群と第4レンズ群とから成り、上記 ズーミングを行うようにしたズームレンズにおいて、第 1レンズ群を物体側から順に、負の屈折力を有する単立 メージを行うようにしたズームレンズにおいて、第 1レンズの第1レンズ、光路を折り曲げるブリズム、正の屈 折力を有する単レンズの第2レンズによって構成したの で、ビデオカメラ、デジタルスチルカメラ等の小型の機 像機器に最適な変倍比3倍程度のズームレンズを小型化 象者ことができる。

【0061】請求項2に記載したズームレンズにあっては、ndL1を第1レンズのd線での屈折率、vdL1を第1レンズのd線でのアッペ教とすると、ndL1>

1. 75、vdL1<30の各条件を満足するようにしたので、第1レンズ群で発生する歪曲収差及び色収差を良好に補正することができる。

[0062] 請求項3に記載したズームレンズにあって は、第1レンズの少なくとも1の面を非球面によって構 成したので、像面湾曲及び長焦点距離域における球面収 差を良好に補正することができる。

【0063】請求項4乃至請求項6に記載した発明にあっては、第1レンズの物体側を向いた面を凸面としたので、レンズ全系で補正することが困難となる負の歪曲収差が大きくなることがない。

[0064] 請求項7万至額求項12に記載した発明に あっては、第4レンズ群を構成するレンズの各面のう ち、少なくとも1面を非球面によって構成したので、第 1レンズ群ニより発生する広角端における負の歪曲収差 必効果的に相当することができるようになるので、第1 レンズ群の負の単レンズのパワーを強くすることが可能 になって、より広い画角を得ることができるようにな る。

[0065] 請求項13乃至請求項24に配載した発明にあっては、fGRで第1レンズ群の焦点距離、fwをレンズ全条のワイド端での焦点距離とすると、4、5 くfGR1/fw<12の条件を満足するようにしたので、球面収差の構正、十分な広副角化及び小型化を達成することができる。

【図面の簡単な説明】

【図1】図2万至図4と共に、本発明ズームレンズの第 1の実施の形態を示すものであり、本図はレンズ構成を 示す概略図である。

【図2】広角端における球面収差、非点収差及び歪曲収

差を示す図である。

【図3】広角端と望遠端との中間焦点位置における球面 収差。非点収差及び歪曲収差を示す図である。

【図4】望遠端における球面収差、非点収差及び歪曲収 差を示す図である。

【図5】図6乃至図8と共に、本発明ズームレンズの第 2の実施の形態を示すものであり、本図はレンズ構成を 示す概略図である。

【図6】広角端における球面収差、非点収差及び歪曲収 巻を示す図である。

【図7】広角端と望遠端との中間焦点位置における球面 収差、非点収差及び歪曲収差を示す図である。

【図8】望遠端における球面収差、非点収差及び歪曲収 差を示す図である。

【図9】図10万至図12と共に、本発明ズームレンズの第3の実施の形態を示すものであり、本図はレンズ構成を示す概略図である。

【図10】広角端における球面収差、非点収差及び歪曲 収差を示す図である。

【図11】広角端と望遠端との中間焦点位置における球面収差、非点収差及び歪曲収差を示す図である。

【図12】望遠端における球面収差、非点収差及び歪曲 収差を示す図である。 【符号の説明】

1…ズームレンズ、2…ズームレンズ、3…ズームレン ズ、GR1…第1レンズ群、GR2…第2レンズ群、G R3…第3レンズ群、GR4…第4レンズ群、L1…第 1レンズ、L2…第2レンズ、P…プリズム、IMG… 像面

【図6】

【図7】

フロントページの続き

F ターム(参考) 24087 KA03 MA15 PA06 PA07 PA19 PB09 QA02 QA06 QA17 QA21 QA26 QA32 QA37 QA42 QA45 RA05 RA12 RA32 RA41 RA43 SA23 SA27 SA29 SA32 SA33 SA65 SB03 SB14 SB22 SB34

TAO3