X	Υ	Z	¬X	¬Y	¬X ∨ Z ∨ ¬Y	X \ Y	$X \wedge Y \rightarrow Z$
Т	Т	Т	F	F	Т	Т	Т
Т	Т	F	F	F	F	Т	F
Т	F	Т	F	Т	Т	F	Т
Т	F	F	F	Т	Т	F	Т
F	Т	Т	Т	F	Т	F	Т
F	Т	F	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	F	Т
F	F	F	Т	Т	Т	F	Т

1b.

Α	В	С	D	A \wedge B	$C \wedge D$	$A \wedge B {\to} C \wedge D$	$\mathbf{A} \wedge \mathbf{B} {\to} \mathbf{C}$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	F	Т	F	F	Т
Т	Т	F	Т	Т	F	F	F
Т	Т	F	F	Т	F	F	F

Every row that A \wedge B \rightarrow C \wedge D is true, A \wedge B \rightarrow C is true.

1c.

- 1. Given: $A \land B \rightarrow C \land D$
- 2. If $A \land B$ then $C \land D$ because Modus Poneus
- 3. Then C because of step 2
- 4. Thus $A \land B \rightarrow C$

1d.

- 1. Given: $A \land B \rightarrow C \land D$
- 2. Is equal to $\neg(A \land B) \lor (C \land D)$
- 3. Distribution: ¬AV¬BVC∧D
- 4. Can derive clause: ¬AVC, ¬BVC
- 5. Meaning: A∧B→C

2a.

Observations:

 $O1Y \rightarrow (C1YVC1B)$

 $O1W \rightarrow (C1W \lor C1B)$

 $O2Y \rightarrow (C2Y \lor C2B)$

 $O2W \rightarrow (C2W \lor C2B)$

 $O3Y \rightarrow (C3Y \lor C3B)$

 $O3W \rightarrow (C3W \lor C3B)$

Labels:

 $L1W\rightarrow C1YVC1B$

L1Y→C1W V C1B

L1B→C1W V C1Y

L2W→C2Y V C2B

L2Y→C2W V C2B

L2B→C2W V C2Y

L3W→C3Y V C3B

L3Y→C3W V C3B

L3B→C3W V C3Y

Contains:

 $C1Y \rightarrow (\neg C2Y \land \neg C3Y)$

 $C1W \rightarrow (\neg C2W \land \neg C3W)$

 $C1B \rightarrow (\neg C2B \land \neg C3B)$

 $C2Y \rightarrow (\neg C1Y \land \neg C3Y)$

 $C2W \rightarrow (\neg C1W \land \neg C3W)$

 $C2B \rightarrow (\neg C1B \land \neg C3B)$

 $C3Y \rightarrow (\neg C1Y \land \neg C2Y)$

 $C3W \rightarrow (\neg C1W \land \neg C2W)$

 $C3B \rightarrow (\neg C1B \land \neg C2B)$

2b.

Given:

O1Y,L1W,O2W,L2Y,O3Y,L3B

- 1. O1Y→(C1Y V C1B)
- 2. L1W→C1Y V C1B
- 3. $O2W \rightarrow (C2W \lor C2B)$
- 4. L2Y→C2W V C2B
- 5. O3Y→(C3Y V C3B)
- 6. L3B→C3W V C3Y
- 7. This \rightarrow C3Y since (C3Y V C3B) \land (C3W V C3Y)
- 8. $C3Y \rightarrow \neg C1Y \land \neg C2Y \text{ so } C1B$
- 9. $C1B \rightarrow \neg C2B \land \neg C3B \text{ so } C2W$

```
2c.
```

- ¬O1YVC1YVC1B
- ¬O1WVC1WVC1B
- ¬O2Y V C2Y V C2B
- ¬O2W V C2W V C2B
- ¬O3Y V C3Y V C3B
- ¬O3W∨C3W∨C3B
- ¬L1WVC1YVC1B
- ¬L1YVC1WVC1B
- ¬L1BVC1WVC1Y
- ¬L2W V C2Y V C2B
- ¬L2Y V C2W V C2B
- ¬L2B V C2W V C2Y
- ¬L3W V C3Y V C3B
- ¬L3Y V C3W V C3B
- ¬L3B V C3W V C3Y
- $(\neg C1Y \lor \neg C2Y) \land (\neg C1Y \lor \neg C3Y)$
- $(\neg C1W \lor \neg C2W) \land (\neg C1W \lor \neg C3W)$
- $(\neg C1B \lor \neg C2B) \land (\neg C1B \lor \neg C3B)$
- $(\neg C2Y \lor \neg C1Y) \land (\neg C2Y \lor \neg C3Y)$
- $(\neg C2W \lor \neg C1W) \land (\neg C2W \lor \neg C3W)$
- $(\neg C2B \lor \neg C1B) \land (\neg C2B \lor \neg C3B)$
- $(\neg C3Y \lor \neg C1Y) \land (\neg C3Y \lor \neg C2Y)$
- $(\neg C3W \lor \neg C1W) \land (\neg C3W \lor \neg C2W)$
- $(\neg C3B \lor \neg C1B) \land (\neg C3B \lor \neg C2B)$

2d.

Given:

O1Y,L1W,O2W,L2Y,O3Y,L3B

- 1. O1Y →C1Y V C1B
- 2. L1W →C1Y V C1B
- 3. $O2W \rightarrow C2W \lor C2B$
- 4. L2Y →C2W V C2B
- 5. O3Y \rightarrow C3Y \vee C3B
- 6. L3B \rightarrow C3W \vee C3Y
- 7. $(C3YVC3B) \land (C3WVC3Y) \rightarrow C3Y$
- 8. $\neg C2W \rightarrow C1W \lor C3W$
- 9. $C3Y \rightarrow \neg C3W$ so C1W
- 10. C1W contradicts L1W \rightarrow C1Y V C1B (2) so the statement \neg C2W is false, which means C2W

3.

Fact list:

- 1. Rainy
- 2. HaveMountainBike
- 3. EnjoyPlayingSoccer (not useful with the given KB)
- 4. WorkForUniversity (not useful with the given KB)
- 5. WorkCloseToHome
- 6. HaveMoney
- 7. HertzClosed (opposite of HertzOpen so not directly useful)
- 8. AvisOpen
- 9. McDonaldsOpen (not useful with the given KB)

From Fact 2 and Rule e: HaveBike (10)

From Fact 8 and Rule m: CarRentalOpen (11)

From Fact 6 and Fact 11 and Rule k: CanRentCar (12)

From Fact 12 and Rule j: CanDriveToWork (13)

From Fact 13 and Rule b: CanGetToWork (14)

List of inferred propositions:

- 1. HaveBike
- 2. CarRentalOpen
- 3. CanRentCar
- 4. CanDriveToWork
- CanGetToWork

CanGetToWork is among them.

4.

- 1. GoalStack: CanGetToWork
- 2. GS: { CanBikeToWork, CanDriveToWork, CanWalkToWork } // pop CanGetToWork
- 3. GS: { HaveBike, WorkCloseToHome, Sunny, CanDriveToWork, CanWalkToWork } // pop CanBikeToWork
- 4. GS: { HaveMountainBike, Sunny, CanDriveToWork, CanWalkToWork} //PopHaveBike
- 5. GS: { WorkCloseToHome, Sunny, CanDriveToWork, CanWalkToWork} //Pop HaveMountainBike, fact
- 6. GS: { Sunny, CanDriveToWork, CanWalkToWork} // pop WorkCloseToHome, fact
- 7. GS: { CanDriveToWork, CanWalkToWork } // cant prove sunny, backtrack to other
- 8. GS: { OwnCar, CanRentCar, HaveMoney, TaxiAvailable, CanWalkToWork } // pop CanDriveToWork
- GS: { CanRentCar, HaveMoney, TaxiAvailable, CanWalkToWork } // does not own car, backtrack
- 10. GS: { HaveMoney, CarRentalOpen, HaveMoney, TaxiAvailable, CanWalkToWork } // popcan rent car
- 11. GS: { CarRentalOpen, HaveMoney, TaxiAvailable, CanWalkToWork } // pop have money, fact

- 12. GS: { HertzOpen, AvisOpen, HaveMoney, TaxiAvailable, CanWalkToWork } //pop CarRentalOpen
- 13. GS: { AvisOpen, HaveMoney, TaxiAvailable, CanWalkToWork } // pop HertzOpen, false, backtrack
- 14. GS: { HaveMoney, TaxiAvailable, CanWalkToWork } // pop AvisOpen, fact, proves CanDriveToWork, CanGetToWork is proven true