Compression Jpeg (1/3)

Principe

Codage du contenu fréquentiel « perceptible »

Compression Jpeg (2/3)

Chaine complète

Compression Jpeg (3/3)

94	94	94	94	94	94	94	94	
90	91	92	93	94	94	94	94	
				90		01	92	
203	201	196	179	158	12		106	
92	65	82	176	20	atia	175	177	
28	10	31	17	SY	.52	175	74	
199	188	202	204	15	165	58	25	
192	193	190	192	154	47	27	31	

Transformée en cosinus

Changement d'espace et « simplification »

Bloc 8×8

coefficient DC

996,13 75,11 -123,06 50,57 39,88 13,67 -15,19 -1,40 -122,05 -84,56 121,19 -27,83 -31,88 -3,89 10,27 -0,08 -98,84 148,55 6,40 -42,46 -5,07 -19,66 10 4,80 -24,01 -218,45 -76,09 67,08 8,07 22,27 16,13 -8,17 70,38 39,24 29,75 -44,52 16,13 16,13 16,13 16,13 16,13 16,13 16,13 16,13 16,13 16,02 -5,54 -89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62 10,98 -11,74 25,11 1,49 9,46 -8,00 14,95 -2,36		_							
-98,84 148,55 6,40 -42,46 -5,07 -19,66 10 4,80 -24,01 -218,45 -76,09 67,08 8,07 22,27 16,13 -8,17 70,38 39,24 29,75 -44,52 16,13 ,24 7,89 73,17 135,83 -0,77 2,11 -30,3 4,40 26,02 -5,54 -89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62	996,13	75,11	-123,06	50,57	39,88	13,67	-15,19	-1,40	
-24,01 -218,45 -76,09 67,08 8,07 22,27 tiel -8,17 70,38 39,24 29,75 -44,52 16,13 73,17 135,83 -0,77 2,11 -30,3 frequency 26,02 -5,54 -89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62	-122,05	-84,56	121,19	-27,83	-31,88	-3,89	10,27	-0,08	
70,38 39,24 29,75 -44,52 16,13 7,89 73,17 135,83 -0,77 2,11 -30,3 4 26,02 -5,54 -89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62	-98,84	148,55	6,40	-42,46	-5,07	-19,66		4,80	
-89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62	-24,01	-218,45	-76,09	67,08	8,07	22,27	ntier	-8,17	
-89,35 -69,77 -0,04 13,08 12,25 16,44 -26,65 3,62	70,38	39,24	29,75	-44,52	16,13	Salle	,24	7,89	
	73,17	135,83	-0,77	2,11	-30,3	41601	26,02	-5,54	
10,98 -11,74 25,11 1,49 9,46 -8,00 14,95 -2,36	-89,35	-69,77	-0,04	13,08	12,25	16,44	-26,65	3,62	
	10,98	-11,74	25,11	1,49	9,46	-8,00	14,95	-2,36	

$$F_{Q} = E \left[\frac{F}{\alpha \times Q} \right]$$

fonction non-linéaire du facteur de qualité (1 à 99)

matrice (normalisée ou au choix) atténuant une gamme désirée de fréquences

Quantification

entiers faibles et ✓ plages de 0 → codage efficace

Transformée (discrète) en cosinus

Transformée 1d

$$F(k) = W(k) \sum_{n=0}^{N-1} f(n) \cos\left(\pi k \frac{2n+1}{2N}\right)$$

Transformée directe

Rappel : transformée de Fourier

$$F(k) = \sum_{n=0}^{N-1} f(n)e^{-j2\pi k \frac{n}{N}}$$

base d'exponentielles → base de cosinus

- coefficients réels pour un signal réel
- transformation réversible

$$f(n) = \sum_{k=0}^{N-1} W(k) F(k) \cos\left(\pi k \frac{2n+1}{2N}\right)$$

Transformée 2d

$$F(u,v) = W(u,v) \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cos\left(\pi u \frac{2m+1}{2M}\right) \cos\left(\pi v \frac{2n+1}{2N}\right)$$

Interprétation fréquentielle

Quantification

Performances

Simulation Jpeg (1/3)

- Charger et visualiser une image (ex : cameraman.tif)
- Simulation pour un bloc
 - Sélectionner un bloc (imagette) de taille 8×8 à partir d'un point indiqué par un clic de souris (fonction *ginput*) et le visualiser
 - Recentrer la donnée (« -128 »), appliquer la DCT (fonction dct2) et afficher la matrice de coefficients résultante
 - Appliquer la quantification (matrice et facteur de qualité au choix, fonction *fix* pour la troncature) et afficher la matrice de coefficients résultante (avant codage)
 - Réaliser la reconstruction (déquantification, DCT inverse avec la fonction *idct2* et recentrage « +128 »), visualiser l'imagette obtenue et la comparer à l'imagette initiale
- Réitérer la chaîne complète pour plusieurs blocs caractéristiques de « faible » ou « fort » contenu fréquentiel

Simulation Jpeg (2/3)

- Simulation pour une image entière
 - Appliquer le procédé complet à l'ensemble des blocs 8×8 pavant une image (fonction *blkproc*)
 - Visualiser les images des différentes étapes
 - Coefficients DC et AC avant et après quantification
 - Coefficients AC seuls avant et après quantification
 - Image reconstruite
- Analyse des performances (quantité d'information)
 - Calculer l'entropie de l'image initiale et de l'image reconstruite pour un facteur de qualité donné
 - Calculer et tracer la courbe d'entropie pour toutes les valeurs entières possibles (1 à 99) du facteur de qualité

Simulation Jpeg (3/3)

- Analyse des performances (fidélité d'information)
 - Calculer le rapport signal sur bruit (PSNR) pour un facteur de qualité donné
 - Calculer et tracer la courbe du rapport signal sur bruit pour toutes les valeurs entières possibles (1 à 99) du facteur de qualité

$$PSNR = 20\log_{10} \frac{255}{MSE}$$
 avec $MSE^2 = \overline{(I - I_c)^2}$

- Analyse des performances (compression)
 - Comparer (fonction *imfinfo*) les tailles du fichier initial et du fichier obtenu par le compresseur Jpeg de *Matlab* (fonction *imwrite*)
 - Calculer et tracer les courbes du facteur de compression et du taux de compression pour toutes les valeurs entières possibles (1 à 99) du facteur de qualité