

BUNDE~~RE~~REPUBLIK DEUT~~CH~~LAND01 / 02
(404)

EP 00 08129

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 199 39 578.0

Anmeldetag: 20. August 1999

Anmelder/Inhaber: Biosyn Arzneimittel GmbH, Fellbach/DE

Bezeichnung: Nukleinsäuremolekül, umfassend eine für ein Hämocyanin kodierende Nukleinsäuresequenz

IPC: C 07 K, A 61 K, C 12 Q

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 30. November 2000
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Nukleinsäuremolekül, umfassend eine für ein Hämocyanin kodierende Nukleinsäuresequenz

Die vorliegende Erfindung betrifft ein Nukleinsäuremolekül, umfassend eine für ein Hämocyanin, eine Hämocyanin-Domäne oder ein Fragment mit den immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin kodierende Nukleinsäuresequenz, diese umfassende Konstrukte, die Nukleinsäuresequenzen oder die Konstrukte umfassende Wirtszellen, Verfahren zum Herstellen von Hämocyanin-Polypeptiden und rekombinante Hämocyanin-Polypeptide.

Hämocyanin ist ein blaues Kupferprotein, das frei gelöst im Blut zahlreicher Mollusken und Arthropoden auftritt und den Sauerstoff transportiert. Von den Mollusken enthalten die Cephalopoden, Chitonen, die meisten Gastropoden sowie einige Bivalvia Hämocyanin. Hämocyanin ist bei den Arthropoden typisch für Arachniden, Xiphosuren, malakostrake Crustaceen und *Scutigera*. Zahlreiche Insektenarten weisen Proteine auf, die sich von Hämocyanin ableiten. Hämocyanine liegen extrazellulär vor und flottieren in der Hämolymphe.

Während das Arthropoden-Hämocyanin bei elektronenmikroskopischer Untersuchung einen Durchmesser von maximal 25 nm hat und eine Untereinheit ein Molekulargewicht von 75.000 Da aufweist, sind Molluskencyanine viel größer. So hat z.B. das Hämocyanin von *Megathura* einen Durchmesser von 35 nm und ist aus 2 Untereinheiten zusammengesetzt. Jede Untereinheit hat ein Molekulargewicht von ca. 400.000 Da und ist in acht sauerstoffbindende Domänen aufgeteilt, die jeweils ein Molekulargewicht von ca. 50.000 Da haben. Die Domänen unterscheiden sich immunologisch. Diese Domänen können durch limitierte Proteolyse aus der Untereinheit freigesetzt werden.

Das im Elektronenmikroskop sichtbare Hämocyanin der Gastropoden hat ein Molekulargewicht von ca. 8 Mio. Da und ist ein Di-Dekamer. Im Gegensatz hierzu ist das Hämocyanin der Cephalopoden als isoliertes Dekamer angeordnet, das sich auch in der Quartärstruktur deutlich vom Hämocyanin der Gastropoden unterscheidet.

Von besonderem immunologischen Interesse ist das Hämocyanin der kalifornischen Schlüssellochschncke *Megathura crenulata*, einer „Keyhole Limpet“. Das Hämocyanin wird deshalb auch als Keyhole Limpet Hemocyanin (KLH) bezeichnet. Hämocyanine sind sehr starke Antigene. Die Immunisierung eines Vertebraten führt zu einer bisher wenig verstandenen, unspezifischen Aktivierung des Immunsystems. Durch die allgemeine Aktivierung des Immunsystems ist es dann möglich, auch eine Immunreaktion gegenüber anderen, bisher tolerierten Fremdstrukturen zu erreichen. KLH wird vor allem als Hapten-Träger verwendet, um so die Bildung von Antikörpern gegen das Hapten zu erreichen.

Neben *Megathura crenulata* gehört auch das Seeohr *Haliotis tuberculata* zur im Hinblick auf die Evolution relativ alten Gruppe der Archaeogastropoda. Es ist bekannt, daß auch *Haliotis* Hämocyanin produziert.

KLH ist ein Gemisch aus zwei unterschiedlichen Hämocyaninen, die als KLH1 und KLH2 bezeichnet werden. Die Untereinheit des KLH1 ist ein 390 kDa Polypeptid, das aus acht globulären Domänen besteht, die entsprechend ihrer Reihenfolge in der Untereinheit mit 1 a bis 1 h bezeichnet werden. KLH2 hingegen weist ein Molekulargewicht von 350 kDa auf und enthält nach neuesten Daten ebenfalls 8 Domänen, die als 2 a bis 2 h bezeichnet werden. *In vivo* bildet jede Art von Untereinheit Homo-Oligomere, wohingegen Hetero-Oligomere nicht beobachtet wurden.

Durch limitierte Proteolyse und gekreuzte Immunelektrophorese der Untereinheit von KLH1 und KLH2 wurden amino-, interne und carboxy-terminale Domänen erhalten, deren amino-terminale Sequenz bestimmt wurde (Söhngen et al., Eur. J. Biochem. 248 (1997), 602-614; Gebauer et al., Zoology 98(1994), 51-68). Die erhaltenen Sequenzen erlauben jedoch nicht den Entwurf sequenzspezifischer Primer und/oder Sonden, die für eine Hybridisierung mit genomicscher DNA Erfolg versprechen. Obwohl beide KLH-Typen seit 1991 bzw. 1994 bekannt sind, konnte daher bisher keine Primärstruktur aufgeklärt werden.

Auf DNA-Ebene ist bisher in bezug auf Mollusken nur die cDNA-Sequenz der Hämocyanin-Untereinheit aus dem Cephalopoden *Octopus dofleini* bekannt (Miller et al., J. Mol. Biol. 278 (1998), 827-842). *Octopus dofleini* ist phylogenetisch von den Archaeogastropoden sehr weit entfernt. Eine Hämocyanin-Gensequenz aus Mollusken ist bisher überhaupt nicht bekannt.

Wie von Miller et al. supra, beschrieben, ist es sowohl schwierig, eine einzige funktionelle Domäne (Funktionelle Einheit = Domäne; auch „funktionelle Domäne“ genannt) zu isolieren als auch Gewebe zu erhalten, das zur Aufreinigung von mRNA für die cDNA-Sequenzierung geeignet ist.

Bei der Analyse des Hämocyanins aus *Megathura crenulata* besteht eine weitere Schwierigkeit darin, daß die Versuchstiere ein Alter von 4 bis 8 Jahren erreicht haben müssen, um ihnen erstmals Hämolymphe entnehmen zu können. Nach Entnahme der Hämolymphe wird Hämocyanin bei diesen Tieren nicht nachproduziert. Bisher ist nicht bekannt, wie die Hämocyaninsynthese stimuliert werden könnte. Darüber hinaus ist die Zucht von *Megathura* äußerst aufwendig, da hierfür spezielle Strömungsbecken erforderlich sind.

Es ist daher eine Aufgabe der vorliegenden Erfindung, Mittel und Wege bereitzustellen, um Hämocyanin und/oder Domänen davon in ausreichender Menge und kostengünstig produzieren zu können. Dies umfaßt die weitere Aufgabe, ein Verfahren anzugeben, mit dem dieses Hämocyanin hergestellt werden kann.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Nukleinsäure-Molekül, umfassend eine für ein Hämocyanin, eine Hämocyanin-Domäne oder ein funktionelles Fragment davon mit den immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins kodierende Nukleinsäuresequenz, wobei die Nukleinsäuresequenz ausgewählt ist aus

(a) der Gruppe der nachfolgend angegebenen DNA-Sequenzen bzw. der ihnen entsprechenden RNA-Sequenzen:

in SEQ ID NO:1 (HtH1 Domäne a + Signalpeptid),
SEQ ID NO:2 (HtH1 Domäne b),
SEQ ID NO:3 (HtH1 Domäne c),
SEQ ID NO:4 (HtH1 Domäne d),
SEQ ID NO:5 (HtH1 Domäne e),
SEQ ID NO:6 (HtH1 Domäne f),
SEQ ID NO:7 (HtH1 Domäne g),
SEQ ID NO:8 (HtH1 Domäne h),
SEQ ID NO:9 (partielle HtH2 Domäne b),
SEQ ID NO:10 (HtH2 Domäne c),
SEQ ID NO:11 (HtH2 Domäne d),
SEQ ID NO:12 (HtH2 Domäne e),
SEQ ID NO:13 (HtH2 Domäne f),
SEQ ID NO:14 (HtH2 Domäne g),
SEQ ID NO:15 (HtH2 Domäne h),
SEQ ID NO:16 (partielle KLH1 Domäne b),
SEQ ID NO:17 (KLH1 Domäne c),
SEQ ID NO:18 (KLH1 Domäne d),
~~SEQ ID NO:19 (partielle KLH1 Domäne e),~~
SEQ ID NO:20 (KLH2 Domäne b),
SEQ ID NO:21 (KLH2 Domäne c),
SEQ ID NO:22 (partielle KLH2 Domäne d),
SEQ ID NO:23 (KLH2 Domäne g),
SEQ ID NO:24 (partielle KLH2 Domäne h);

(b) Nukleinsäuresequenzen, die mit dem Gegenstrang einer Nukleinsäuresequenz nach (a) hybridisieren und für ein Polypeptid kodieren, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;

(c) Nukleinsäuresequenzen, die aufgrund des genetischen Codes zu den unter (a) und (b) definierten DNA-Sequenzen degeneriert sind und für ein Polypeptid kodieren,

das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;

- (d) Nukleinsäuresequenzen, die mit einer der unter (a) bis (c) angegebenen Nukleinsäuresequenzen hybridisieren und deren Gegenstrang für ein Polypeptid kodiert, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;
- (e) Nukleinsäuresequenzen, die wenigstens 60 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen sind;
- (f) Varianten der unter (a) bis (e) angegebenen Sequenzen, wobei die Varianten Additionen, Deletionen, Insertionen oder Inversionen aufweisen und für ein Polypeptid kodieren, das die immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin aufweist; und
- (g) Kombinationen mehrerer der unter (a) bis (f) angegebenen DNA-Sequenzen.

Im nachfolgenden werden einige Begriffe näher erläutert, um klarzustellen, wie sie im ~~Zusammenhang der vorliegenden Anmeldung verstanden werden sollen.~~

Der Begriff "Hämocyanin", so, wie er nachfolgend in der Beschreibung verwendet wird, umfaßt vollständiges Hämocyanin, Hämocyanin-Domänen und/oder Fragmente, Hämocyanin-Mutanten und Fusionsproteine. In bezug auf die Fusionsproteine sind insbesondere solche umfaßt, bei denen die Fusion Hämocyanin und Antigene umfaßt.

Unter „Domänen“ werden funktionelle Teilsequenzen der Hämocyanin-Untereinheiten verstanden, die beispielsweise durch limitierte Proteolyse voneinander abgetrennt werden können. Weiterhin können sie unterschiedliche immunologische Eigenschaften aufweisen.

Mit den „immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin“ ist die Eigenschaft eines Polypeptids gemeint, in gleicher Weise wie wenigstens eine Domäne von Hämocyanin eine immunologische Antwort des Empfängers zu induzieren, der mit dem Polypeptid immunisiert wird. Unter „immunologischer Antwort“ werden hier T- und/oder B-Zell-Antworten gegen Hämocyanin-Epitope verstanden, wie beispielsweise eine Antikörperproduktion. Die immunologische Reaktion kann beispielsweise beobachtet werden durch Immunisieren eines Säugers, wie z.B. einer Maus, einer Ratte oder eines Kaninchens mit dem entsprechenden Polypeptid und Vergleich der Immunantwort auf das zur Immunisierung verwendete Polypeptid mit der Immunantwort auf natürliche Hämocyanine.

Der Begriff "Antigen" umfaßt erfindungsgemäß sowohl Haptene, als auch schwache und starke Antigene. Haptene sind dadurch charakterisiert, daß sie Substanzen niedriger Molekülmasse (kleiner als 4000 Da) sind, jedoch ohne Kopplung an ein Trägermolekül nicht in der Lage sind, eine immunologische Reaktion auszulösen. Schwache Antigene sind Substanzen, die selbst bereits eine immunologische Reaktion auslösen können, deren Potential, eine immunologische Reaktion auslösen zu können, durch Kopplung mit einem Träger-Molekül auf Protein- und/oder DNA-Ebene, noch erhöht werden kann.

~~"His-Tag" bedeutet eine Sequenz von wenigstens 6 Histidin-Aminosäuren, die durch entsprechende Klonierung und Fusion mit einer exprimierbaren Sequenz zu einem Fusionsprotein mit wenigstens 6 His-Resten am NH₂-Terminus führt, das leicht durch Komplexierung mit einer Ni²⁺-Säule aufgereinigt werden kann.~~

"Klonierung" soll alle im Stand der Technik bekannten Klonierungsmethoden umfassen, die hier zum Einsatz kommen könnten, die jedoch nicht alle im einzelnen beschrieben werden, weil sie zum selbstverständlichen Handwerkszeug des Fachmanns gehören.

„Varianten“ einer Nukleinsäure umfassen Additionen, Deletionen, Insertionen oder Inversionen und kodieren für ein Polypeptid, das die immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin aufweist. Varianten können künstlich oder natürlich sein. Ein Beispiel für natürliche Varianten stellen allelische Varianten dar.

Unter "rekombinanter Expression in einer geeigneten Wirtszelle" sollen alle im Stand der Technik bekannten Expressionsmethoden in bekannten Expressionssystemen verstanden werden, die hier zum Einsatz kommen könnten, jedoch nicht alle im einzelnen beschrieben werden, weil sie zum selbstverständlichen Handwerkszeug des Fachmanns gehören.

Die im erfindungsgemäßen Nukleinsäuremolekül enthaltene Nukleinsäuresequenz kann genomische DNA, cDNA oder synthetische DNA sein, wobei unter synthetischen DNA-Sequenzen auch solche verstanden werden, die modifizierte Internukleosid-Bindungen enthalten. Weiter kann es sich bei den Nukleinsäuresequenzen um RNA-Sequenzen handeln, was z.B. für die Expression mittels rekombinanter Vektorsysteme erforderlich sein kann. Die Nukleinsäuresequenzen gemäß (b) sind beispielsweise erhältlich durch Verwenden einer nachweisbar markierten Sonde, die einer der unter (a) angegebenen Sequenzen oder einem Fragment bzw. deren Gegenstrang entspricht, zum Screening von cDNA-/genomischen DNA-Bibliotheken aus Mollusken oder Arthropoden. Die der cDNA-Bibliothek zugrundeliegende mRNA ist vorzugsweise aus Mollusken-Geweben zu erhalten, die Hämocyanin besonders stark exprimieren, wie z.B. Mantel-Gewebe aus Gastropoden und Branchialdrüsengewebe aus Cephalopoden.

Die Identifizierung positiver cDNA-/genomischer DNA-Klone erfolgt gemäß Standardverfahren. Vgl. Maniatis et al., Molecular Cloning (1989) Cold Spring Harbor Laboratory Press.

In einer bevorzugten Ausführungsform wird die unter (b) oder (d) angegebene Hybridisierung unter stringenten Bedingungen durchgeführt. Stringente Hybridisierungsbedingungen sind z.B. 68°C über Nacht in 0,5 x SSC; 1% Blockierungsreagenz (Boehringer Mannheim); 0,1 % Natriumlaurylsarcosinat und nachfolgendem Waschen mit 2 x SSC; 0,1 % SDS.

In einer bevorzugten Ausführungsform werden Nukleinsäuresequenzen bereitgestellt, die wenigstens 60 % homolog zu einer der unter (a) angegebenen Nukleinsäurese-

quenzen sind. Bevorzugt sind die Nukleinsäuresequenzen wenigstens 80 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen. Besonders bevorzugt sind die Nukleinsäuresequenzen wenigstens 90 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen. Insbesondere sind die Nukleinsäuresequenzen wenigstens 95 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen.

Erfindungsgemäß bedeutet der Ausdruck „Homologie“ Homologie auf DNA-Ebene, die gemäß bekannter Verfahren, z.B. der computergestützten Sequenzvergleiche (Basic local alignment search tool, S.F. Altschul et al., J. Mol. Biol. 215 (1990), 403-410) bestimmt werden kann.

Der dem Fachmann bekannte Ausdruck „Homologie“ bezeichnet den Grad der Verwandtschaft zwischen zwei oder mehr Nukleinsäuremolekülen, der durch die Übereinstimmung zwischen den Sequenzen bestimmt wird. Der Prozentsatz der „Homologie“ ergibt sich aus dem Prozentsatz identischer Bereiche in zwei oder mehr Sequenzen unter Berücksichtigung von Lücken oder anderen Sequenzbesonderheiten.

Die Homologie miteinander verwandter Nukleinsäuremoleküle kann mit Hilfe bekannter Verfahren bestimmt werden. In der Regel werden spezielle Computerprogramme mit den besonderen Anforderungen Rechnung tragenden Algorithmen eingesetzt.

Bevorzugte Verfahren zur Bestimmung der Homologie erzeugen zunächst die größte Übereinstimmung zwischen den untersuchten Sequenzen. Computerprogramme zur Bestimmung der Homologie zwischen zwei Sequenzen umfassen, sind jedoch nicht eingeschränkt auf, das GCG Programmpaket, einschließlich GAP (Devereux, J., et al., Nucleic Acids Research 12 (12): 387 (1984); Genetics Computer Group University of Wisconsin, Madison, (WI)); BLASTP, BLASTN und FASTA (Altschul, S. et al., J. Molec Biol 215:403/410 (1990)). Das BLAST X Programm kann vom National Centre for Biotechnology Information (NCBI) und aus weiteren Quellen bezogen werden (BLAST Handbuch, Altschul S., et al., NCB NLM NIH Bethesda MD 20894; Altschul, S., et al., J. Mol. 215:403/410 (1990)). Auch der bekannte Smith Waterman-Algorithmus kann zur Bestimmung von Homologien verwendet werden.

Bevorzugte Parameter für den Nukleinsäuresequenz-Vergleich umfassen die nachstehenden:

Algorithmus:	Needleman und Wunsch, J. Mol. Biol 48:443-453 (1970)
Vergleichsmatrix:	Übereinstimmung (matches) = + 10, Nichtübereinstimmung (mismatch) = 0
Lücken-Wert (Gap Penalty):	50
Lückenlängen-Wert: (Gap Length Penalty):	3

Das GAP-Programm ist auch zur Verwendung mit den vorstehenden Parametern geeignet. Die vorstehenden Parameter sind die Fehler-Parameter (default parameters) für Nukleinsäuresequenz-Vergleiche.

Weitere beispielhafte Algorithmen, Lücken-Öffnungs-Werte (gap opening penalties), Lükkenausdehnungs-Werte (gap extension penalties), Vergleichsmatrizen einschließlich der im Programm-Handbuch, Wisconsin-Paket, Version 9, September 1997, genannten können verwendet werden. Die Auswahl wird von dem durchzuführenden Vergleich abhängen und weiterhin davon, ob der Vergleich zwischen Sequenzpaaren, wobei GAP oder Best Fit bevorzugt sind, oder zwischen einer Sequenz und einer umfangreichen Sequenz-Datenbank, wobei FASTA oder BLAST bevorzugt sind, durchgeführt wird.

Eine mit dem oben genannten Algorithmus ermittelte Übereinstimmung von 60 % wird im Rahmen dieser Anmeldung als 60 % Homologie bezeichnet. Entsprechendes gilt für höhere Homologiegrade.

In einer bevorzugten Ausführungsform ist die erfindungsgemäße DNA-Sequenz eine Kombination mehrerer der unter (a) bis (f) angegebenen DNA-Sequenzen, die durch dem Fachmann bekannte Fusion und gegebenenfalls Klonierung erhalten werden können. Diese Kombination sind von besonderem Interesse, da sie besonders immunogen sind. Insbesondere sind Kombinationen bevorzugt, die mehrere oder alle Domänen in der in der Untereinheit natürlicherweise vorkommenden Reihenfolge (a bis h) aufweisen.

Besonders bevorzugt sind dabei Ausführungsformen, in denen die für die Domänen kodierenden Nukleinsäuresequenzen direkt im Raster aneinandergekoppelt sind.

Weiterhin werden Konstrukte bereitgestellt, die die erfindungsgemäßen Nukleinsäuremoleküle umfassen. In einer bevorzugten Ausführungsform umfaßt das erfindungsgemäße Konstrukt einen zur Expression geeigneten Promotor, wobei die Nukleinsäuresequenz unter der Kontrolle des Promoters steht. Die Wahl des Promoters hängt vom zur Expression verwendeten Expressionssystem ab. Generell sind konstitutive Promotoren bevorzugt, jedoch sind auch induzierbare Promotoren wie z.B. der Metallothionein-Promotor möglich.

In einer weiterhin bevorzugten Ausführungsform umfaßt das Konstrukt ferner eine Antigen-kodierende Nukleinsäuresequenz, die direkt mit der erfindungsgemäßen Hämocyanin-Nukleinsäure verbunden ist. Die Antigen-kodierende Sequenz kann sowohl 5' als auch 3' relativ zur Hämocyanin-Sequenz oder auch an beiden Enden gelegen sein. Sie schließt im gleichen Leseraster entweder unmittelbar an die Hämocyanin-Sequenz an oder ist durch einen Nukleinsäure-Linker unter Wahrung des Leserasters mit ihr verbunden. Durch die Fusion der Antigen-kodierenden Sequenz mit der Hämocyanin-Sequenz ist die Bildung eines Fusionsproteins beabsichtigt, in dem die Antigen-kodierende Sequenz kovalent mit der Hämocyanin-Sequenz verbunden ist. Das erfindungsgemäße Antigen ist hierbei ein medizinisch relevantes Antigen, das beispielsweise ausgewählt ist aus: Tumorantigenen, Virusantigenen und Antigenen bakterieller oder parasitärer Pathogene. Tumorantigene können hierbei beispielsweise Rb und p53 sein. Vorzugsweise stammen die Virusantigene aus immunologisch relevanten Viren, wie z.B. Influenza-Virus, Hepatitis-Virus und HIV. Pathogenantigene sind unter anderem solche aus Säugerpathogenen, insbesondere humanpathogenen Organismen, wie z.B. Plasmodium. Bakterielle Antigene können z.B. von *Klebsiella*, *Pseudomonas*, *E. coli*, *Vibrio cholerae*, *Chlamydia*, *Streptococci* oder *Staphylococci* stammen.

In einer weiteren bevorzugten Ausführungsform umfaßt das Konstrukt ferner wenigstens ein Teil eines Vektors, insbesondere regulatorische Regionen, wobei der Vektor ausge-

wählt ist aus : Bacteriophagen wie λ -Derivaten, Adenoviren, Vaccinia-viren, Baculoviren, SV40-Viren und Retroviren, vorzugsweise MoMuLV (Moloney Murine Leukemia Virus).

Ferner ist ein Konstrukt bevorzugt, das zusätzlich eine His-Tag-kodierende DNA-Sequenz umfaßt, die bei Expression des Konstrukts zur Bildung eines Fusionsproteins mit einem His-Tag am NH₂-Terminus des Hämocyanins führt, welches die Aufreinigung des Proteins an einer Nickel-Säule durch Chelat-Bildung erleichtert.

Ferner stellt die Erfindung Wirtszellen bereit, die das Konstrukt enthalten und die zur Expression des Konstruktes geeignet sind. Im Stand der Technik sind zahlreiche prokaryontische und eukaryontische Expressionssysteme bekannt, wobei die Wirtszellen beispielsweise ausgewählt sind aus prokaryontischen Zellen wie *E. coli* oder *B. subtilis*, aus eukaryontischen Zellen wie Hefezellen, Insektenzellen und Säugerzellen, z.B. CHO-Zellen, COS-Zellen oder HeLa-Zellen, sowie Derivaten davon. Im Stand der Technik sind beispielsweise bestimmte CHO-Produktionslinien bekannt, deren Glykosylierungsmuster im Vergleich zu CHO-Zellen verändert sind. Die durch die Verwendung Glykosylierungs-defizienter oder Glykosylierungs-verringerter Wirtszellen erhaltenen Hämocyanine verfügen möglicherweise über zusätzliche Epitope, die bei vollständiger Glykosylierung ansonsten dem Immunsystem des Empfängers nicht zugänglich sind, so daß Hämocyanine mit verringelter Glykosylierung unter Umständen eine erhöhte Immunogenität aufweisen.

Gegenstand der vorliegenden Erfindung ist weiter ein Verfahren zum Herstellen eines Hämocyanin-Polypeptids. Dazu wird das erfindungsgemäße Nukleinsäuremolekül und/oder das Konstrukt in einer geeigneten Wirtszelle exprimiert und das Protein aus der Wirtszelle oder dem Medium mittels üblicher Verfahren isoliert.

Dem Fachmann sind zahlreiche Verfahren zur Expression von DNA-Sequenzen bekannt; vergleiche Recombinant Gene Expression Protocols in Methods in Molecular Biology, Band 62, Humana Press Totowa New Jersey (1995). Die Expression kann sowohl konstitutiv als auch induzierbar sein, wobei Induktoren wie beispielsweise IPTG und Zn²⁺ dem Fachmann bekannt sind. Das hergestellte Hämocyanins kann, falls ein His-

Tag an den NH₂-Terminus des Hämocyanin fusioniert wurde, durch Chelat-Bildung an einer Nickel-Säule aufgereinigt werden. Verfahren zum Aufreinigen von Hämocyanin, insbesondere KLH, finden sich in Harris et al., Micron 26 (1995), 201-212. Vorzugsweise wird das Hämocyanin durch Ionenaustausch-Chromatographie und/oder Gelfiltrations-chromatographie aufgereinigt. Die Durchführung dieser Maßnahmen ist dem Fachmann bekannt.

In einer weiteren bevorzugten Ausführungsform wird das erfindungsgemäß hergestellte Hämocyanin modifiziert. Die Modifikationen umfassen hierbei die Di-, Oligo- und Polymerisierung des monomeren Ausgangsprodukts beispielsweise durch Quervernetzung, z.B. durch Dicyclohexylcarbodiimid oder Pegylierung oder Assoziation (self assembly). Die somit hergestellten Di-, Oligo- und Polymere können voneinander durch Gelfiltration abgetrennt werden. Insbesondere beabsichtigt ist die Bildung von Dekameren, Didekameren oder Multi-Dekameren. Weitere Modifikationen umfassen Seitenketten-Modifikationen, beispielsweise von ε-Amino-Lysin-Resten des Hämocyanins, oder Ami-no- bzw. Carboxy-terminale Modifikationen. Besonders bevorzugt ist die Modifikation des Hämocyanins durch kovalente Bindung an ein Antigen, wobei das Antigen stöchiometrisch oder nicht-stöchiometrisch mit dem Hämocyanin umgesetzt sein kann. Das Antigen ist vorzugsweise ausgewählt aus Tumorantigenen, Virusantigenen und Pathogenantigenen wie oben ausgeführt. Weitere Modifikationen umfassen posttranskriptionale Ereignisse, z.B. die Glykosylierung oder die partielle oder vollständige Deglykosylierung des Proteins.

In einer bevorzugten Ausführungsform ist das erhaltene Hämocyanin bei rekombinanter Expression in Prokaryonten oder Glykosylierungs-defizienten Eukaryonten nicht-glykosyliert. Ebenfalls in Betracht gezogen wird erfindungsgemäß Hämocyanin, das durch rekombinante Expression in zur Glykosylierung fähigen Eukaryonten wie Hefezellen, Insektenzellen oder Säugerzellen, wie CHO-Zellen oder HeLa-Zellen, glykosyliert ist.

In einer weiteren Ausführungsform werden Hämocyanin-Polypeptide zur Verfügung gestellt, die eine Aminosäuresequenz umfassen, wobei die Aminosäuresequenz von einer oder mehreren der erfindungsgemäßen Nukleinsäuremoleküle kodiert wird.

Bevorzugt werden Hämocyanin-Polypeptide zur Verfügung gestellt, die wenigstens eine aus der folgenden Gruppe ausgewählte Aminosäuresequenz umfassen:

SEQ ID NO:25 (HtH1 Domäne a + Signalpeptid),
SEQ ID NO:26 (HtH1 Domäne b),
SEQ ID NO:27 (HtH1 Domäne c),
SEQ ID NO:28 (HtH1 Domäne d),
SEQ ID NO:29 (HtH1 Domäne e),
SEQ ID NO:30 (HtH1 Domäne f),
SEQ ID NO:31 (HtH1 Domäne g),
SEQ ID NO:32 (HtH1 Domäne h),
SEQ ID NO:33 (partielle HtH2 Domäne b),
SEQ ID NO:34 (HtH2 Domäne c),
SEQ ID NO:35 (HtH2 Domäne d),
SEQ ID NO:36 (HtH2 Domäne e),
~~SEQ ID NO:37 (HtH2 Domäne f),~~
SEQ ID NO:38 (HtH2 Domäne g),
SEQ ID NO:39 (HtH2 Domäne h),
SEQ ID NO:40 (partielle KLH1 Domäne b),
SEQ ID NO:41 (KLH1 Domäne c),
SEQ ID NO:42 (partielle KLH1 Domäne d),
SEQ ID NO:43 (partielle KLH1 Domäne e),
SEQ ID NO:44 (KLH2 Domäne b),
SEQ ID NO:45 (KLH2 Domäne c),
SEQ ID NO:46 (partielle KLH2 Domäne d),
SEQ ID NO:47 (KLH2 Domäne g),
SEQ ID NO:48 (partielle KLH2 Domäne h),

oder ein Fragment einer dieser Sequenzen, das die immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin aufweist.

In einer weiteren Ausführungsform stellt die Erfindung Hämocyanin-Polypeptide, erhältlich durch das rekombinante Herstellungsverfahren oder Modifikationen davon, bereit.

Bevorzugt sind Hämocyanin-Polypeptide, die jede der Sequenzen SEQ ID NO: 25 bis 32 umfassen, und Hämocyanin-Polypeptide, die die Sequenzen SEQ ID NO: 33 bis 39 umfassen. Besonders bevorzugt handelt es sich bei diesen Hämocyanin-Polypeptiden um Hämocyanin 1 oder 2 aus *Haliotis tuberculata*.

Insbesondere bevorzugt ist Hämocyanin 1 aus *Haliotis tuberculata*, das ein scheinbares Molekulargewicht von 370 kDa in SDS-PAGE unter reduzierenden Bedingungen aufweist. Weiterhin ist insbesondere Hämocyanin 2 aus *Haliotis tuberculata* bevorzugt, das ein scheinbares Molekulargewicht von 370 kDa in SDS-PAGE PAGE unter reduzierenden Bedingungen aufweist. Die Hämocyanine sind durch das in den Beispielen beschriebene selektive Dissoziationsverfahren aus Gesamt-Hämocyanin aus *Haliotis tuberculata* erhältlich.

Weiterhin bevorzugt sind Hämocyanin-Polypeptide, die jede der Sequenzen SEQ ID NO: 40 bis 43 umfassen, und Hämocyanin-Polypeptide, die jede der Sequenzen SEQ ID NO: 44 bis 48 umfassen.

Besonders bevorzugt handelt es sich bei diesen Hämocyanin-Polypeptiden um vollständiges Hämocyanin 1 (KLH1) oder 2 (KLH2) aus *Megathura crenulata*.

Weiterhin wird nicht-glykosyliertes und glykosyliertes Hämocyanin-Polypeptid, erhältlich durch Expression in zur Glykosylierung fähigen bzw. unfähigen Wirtszellen, bereitgestellt. Je nach vorgesehener Verwendung des Hämocyanin-Polypeptids kann das Glykosylierungsmuster von Hefe, insbesondere methylotropher Hefe, von COS- oder HeLa-Zellen bevorzugt sein.

Die Erfindung betrifft weiterhin pharmazeutische Zusammensetzungen, die die erfindungsgemäßen Nukleinsäuremoleküle und physiologisch verträgliche Zusatzstoffe, die im Stand der Technik bekannt sind, enthalten. Vorzugsweise werden die pharmazeutischen Zusammensetzungen zur unspezifischen Immunstimulierung in Form einer Gentherapie eingesetzt, wobei nach Transformation mit einem geeigneten Vektor Hämocyanin-Polypeptide exprimiert werden und zur Antigenisierung des Gewebes dienen.

Insbesondere sieht die vorliegende Erfindung die Verwendung eines erfindungsgemäßen Nukleinsäuremoleküls, das mit einer Antigen-kodierenden DNA-Sequenz verbunden ist, zur spezifischen Immunisierung gegen dieses Antigen vor. Die Immunisierung beruht hierbei, ohne an diese Theorie gebunden zu sein, auf der unspezifischen Stimulierung des Immunsystems durch Hämocyanin-Polypeptid-Epitope und die weitergehende spezifische Immunisierung durch Erkennung von Antigen-Epitopen durch das Immunsystem.

Eine solche Immunisierung ist besonders wertvoll im Hinblick auf Pathogen-Antigene, ganz besonders aber im Hinblick auf Tumorantigene. Die Anwendbarkeit der erfindungsgemäßen pharmazeutischen Zusammensetzung zur Behandlung von Tumorerkrankungen ergibt sich auch aus der Kreuzreakтивität der gebildeten Hämocyanin-
~~spezifischen Antikörper mit Kohlenhydratresten, die auf der Oberfläche von Tumoren~~
auftreten, wie z.B. dem Thomsen-Friedenreich-Antigen, das bei der Mehrzahl von humanen Tumoren wie Epithelialkarzinomen, Ovarialkarzinom, Kolonrektalkarzinom, Mammakarzinom, Bronchialkarzinom und Harnblasenkarzinom auftritt.

Weiterhin können die erfindungsgemäßen pharmazeutischen Zusammensetzungen zum Behandeln von parasitären Erkrankungen wie Schistosomiasis und für die Kokain-Mißbrauchsvorsorge eingesetzt werden.

Als weitere Ausführungsform der vorliegenden Erfindung werden pharmazeutische Zusammensetzungen zur Verfügung gestellt, die ein erfindungsgemäßes Hämocyanin-Polypeptid in Verbindung mit einem oder mehreren physiologisch verträglichen Zusatzmitteln enthalten. Wie oben bereits erwähnt, kann ein solches Hämocyanin-Poly-

peptid aus einer vollständigen Hämocyanin-Untereinheit, aus einer oder mehreren Domänen sowie aus einem oder mehreren Fragmenten solcher Domänen bestehen, vorausgesetzt, daß diese Fragmente noch die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist. Eine solche pharmazeutische Zusammensetzung eignet sich durch die entweder unspezifische Immunstimulation, die allein auf das Hämocyanin zurückzuführen ist, oder durch die spezifische Immunreaktion auf mit dem Hämocyanin assoziierte Antigene z.B. als Antiparasitenmittel, Antivirusmittel oder Antitumormittel. So kann sie z.B. zum Behandeln von Schistosomiasis, Epithelialkarzinomen, Ovarialkarzinom, Kolonrektalkarzinom, Mammakarzinom, Bronchialkarzinom und Harnblasenkarzinomen eingesetzt werden, eignet sich jedoch auch zum Behandeln von Bluthochdruck. Die Behandlung von Bluthochdruck wird erreicht, indem eine Immunisierung mit Hilfe von erfindungsgemäß Hämocyanin- β -adrenergen-Rezeptorpeptid-Konstrukten und/oder Fusionsproteinen durchgeführt wird.

In einer weiteren Ausführungsform werden die erfindungsgemäß pharmazeutischen Zusammensetzungen als Impfstoffe verwendet. Sie können somit einen wertvollen Beitrag zur Prophylaxe von durch bekannte Pathogene verursachte Erkrankungen leisten. Dies gilt insbesondere für pharmazeutische Zusammensetzungen, in denen ein Hämocyanin-Polypeptid an ein Virus, Virusbestandteil, abgetötete Bakterien, Bakterienbestandteile, insbesondere Oberflächenproteine aus Virus- oder Bakterienhüllen, DNA, DNA-Bestandteile, anorganische oder organische Moleküle, z.B. Kohlenhydrate, Peptide und/oder Glykoproteine gebunden ist.

Gemäß einer weiteren bevorzugten Ausführungsform wird die erfindungsgemäß pharmazeutische Zusammensetzung zur Kokain-Mißbrauchsvorsorge verwendet.

Zur Applikation sowohl der erfindungsgemäß Nukleinsäuremoleküle als auch der Hämocyanin-Polypeptide eignen sich insbesondere Liposomen. Dementsprechend umfaßt die vorliegende Erfindung Liposomen, die ein erfindungsgemäßes Nukleinsäuremolekül, ein erfindungsgemäßes Konstrukt oder ein erfindungsgemäßes Hämocyanin-Polypeptid umfassen.

Dem Fachmann sind verschiedene Verfahren zum Herstellen von Liposomen, die für pharmazeutische Zwecke verwendbar sind, bekannt. Die Selektivität der die erfindungsgemäßen Nukleinsäuremoleküle oder Hämocyanin-Polypeptide enthaltenden Liposomen kann durch den zusätzlichen Einbau von Zellerkennungsmolekülen in die Liposomen erhöht werden, die selektiv an Zielzellen binden. Hierzu eignen sich insbesondere Rezeptorliganden, die an Rezeptoren der Zielzellen binden, oder, besonders im Fall von Tumoren, Antikörper, die gegen Oberflächenantigene der jeweils anvisierten Zielzellen gerichtet sind.

Die erfindungsgemäßen Hämocyanin-Polypeptide sind außerdem als Trägermolekül für Arzneistoffe, wie z. B. Cytostatika, vorgesehen. Die Vergrößerung des Molekulargewichtes verlängert die physiologische Halbwertszeit der Arzneistoffe erheblich, da der Verlust durch Ultrafiltration in der Niere deutlich verringert ist.

Die Zubereitung der Impfstoffe erfolgt nach dem Fachmann bekannten Verfahren; in einigen Ausführungsformen ist die zusätzliche Verwendung von Adjuvanzien wie z. B. Freundsches Adjuvant oder Polysacchariden vorgesehen.

Die Erfindung stellt ferner Antikörper bereit, die spezifisch mit dem erfindungsgemäßen Hämocyanin-Polypeptid reagieren und erhältlich sind durch Immunisieren eines Versuchstieres mit einem Hämocyanin-Polypeptid. Polyklonale Antikörper können durch Immunisieren beispielsweise von Kaninchen und anschließendem Gewinnen von Antiseren erhalten werden. Monoklonale Antikörper können gemäß Standardverfahren durch Immunisieren von z.B. Mäusen, Gewinnen und Immortalisieren der Milzzellen und Klonieren der Hybridome, die für Hämocyanin spezifische Antikörper produzieren, erhalten werden.

Weiterhin wird ein Screening-Verfahren zum Identifizieren von Tumor-spezifischer DNA in einer Zelle bereitgestellt, das die Schritte umfaßt:

- a) das Inkontaktbringen zellulärer DNA und/oder zellulären Proteins mit einer Sonde umfassend das erfindungsgemäße Nukleinsäuremolekül und/oder den erfindungsgemäßen Antikörper und
- b) das Nachweisen der spezifischen Bindung.

Vorzugsweise ist der nachzuweisende Tumor ein Harnblasenkarzinom, Epithelialkarzinom, Ovarialkarzinom, Mammakarzinom, Bronchialkarzinom oder Kolonrektalkarzinom.

Es ist beabsichtigt, mit den nachfolgenden Figuren und Beispielen die Erfindung zu erläutern, diese jedoch in keiner Weise einzuschränken. Dem Fachmann sind aufgrund der Beschreibung und der Beispiele weitere Ausführungsformen zugänglich, die ebenfalls umfaßt sind.

Fig. 1 zeigt die Charakterisierung und Aufreinigung von *Haliotis tuberculata*

Hämocyanin (HtH):

- (a) Elektronenmikroskopie von negativ gefärbtem Gesamt-HtH, das durch Ultrazentrifugation von Zell-freier Hämolymphe aufgereinigt wurde;
- (b) SDS-Polyacrylamid-Gelelektrophorese (7,5 % Polyacrylamid) von HtH1 im Vergleich zu KLH (MW 370 kDa);
- (c) Native Polyacrylamid-Gelektrophorese (5 % Polyacrylamid) der HtH-Untereinheiten-Präparation, wobei die Anode am unteren Rand liegt;
- (d) Gekreuzte Immunelektrophorese der beiden HtH-Untereinheiten unter Verwendung von anti-HtH-Antikörpern aus Kaninchen;
- (e) Elektronenmikroskopie der verbleibenden HtH1-Didekamere (weiße Pfeile) nach der selektiven Dissoziation von HtH2 (schwarze Pfeile);
- (f) Elutionsprofil der Gelfiltrationschromatographie (Biogel A15m) in Gegenwart von Ammoniummolybdat/Polyethylenglykol-Lösung (pH 5,9) nach der selektiven Dissoziation von HtH2 in seine Untereinheit und nachfolgender Anreicherung von HtH1 durch Ultrazentrifugation;

- (g) Native Polyacrylamid-Gelelektrophorese (6,5 % Polyacrylamid) von durch Gelchromatographie aufgereinigten HtH1- und HtH2-Untereinheiten im Vergleich zum Ausgangsmaterial;
- (h,i) Gekreuzte Immunelektrophorese von chromatographisch aufgereinigten HtH-Untereinheiten; und
- (j,m) Gekreuzte Immunelektrophorese der aufgereinigten HtH-Untereinheiten unter Verwendung von anti-KLH-Antikörpern aus Kaninchen, die für KLH1 bzw. KLH2 spezifisch sind.

Fig. 2 zeigt die Untersuchung der Untereinheiten-Organisation von HtH1, wobei für die Immunelektrophorese anti-HtH1-Antikörper aus Kaninchen verwendet wurden und die Anode sich auf der linken Seite befand:

- (a) Gekreuzte Immunelektrophorese nach limitierter Proteolyse von HtH1 mit Hilfe von Elastase;
- (b) SDS-Polyacrylamid-Gelelektrophorese (7,5 % Polyacrylamid) von Elastase-gespaltener HtH1-Untereinheit;
- (c,d,g-j,l,n,p) Gekreuzte Immunelektrophorese der Elastase-Spaltprodukte der HtH1-Untereinheit;
- (e) Gekreuzte Immunelektrophorese nach limitierter Proteolyse von HtH1 mit Hilfe von V8 Protease;

- (f) SDS-Polyacrylamid-Gelelektrophorese (7,5 % Polyacrylamid) von V8 Protease-gespaltener HtH1-Untereinheit und
- (k,m,o) Gekreuzte Immunelektrophorese nach limitierter Proteolyse von HtH1 mit Hilfe der drei angegebenen Proteasen.

Fig. 3 zeigt die Auftrennung von proteolytischen Spaltprodukten der Untereinheit HtH1 mit Hilfe von HPLC.

Fig. 4 zeigt die cDNA-Sequenz von HtH1 in Verbindung mit der Intronstruktur.

Fig. 5 zeigt die abgeleitete Primärstruktur von HtH1.

Fig. 6 zeigt die cDNA-Sequenz von HtH2 in Verbindung mit der Intronstruktur.

Fig. 7 zeigt die abgeleitete Primärstruktur von HtH2.

Fig. 8 zeigt die cDNA-Sequenz von KLH1 in Verbindung mit der Intronstruktur.

Fig. 9 zeigt die abgeleitete Primärstruktur von KLH1.

Fig. 10 zeigt die cDNA-Sequenz von KLH2 in Verbindung mit der Intronstruktur.

Fig. 11 zeigt die abgeleitete Primärstruktur von KLH2.

BEISPIELE

Material und Methoden

1. Gewinnen der Hämolymphe und Isolieren von Hämocyanin

Individuen des europäischen Seeohrs *Haliotis tuberculata* aus dem Bereich der französischen Atlantikküste wurden von S.M.E.L (Blainville sur Mer, Frankreich) und der Firma Biosyn (Fellbach, Deutschland) bereitgestellt. Die Tiere wurden in einem 300 l Seewasser-Aquarium bei 17 ° C gehalten und mit Braunalgen gefüttert. Zur Entnahme der Hämolymphe wurden die Seeohren in einem verschlossenen Plastiksack auf Eis gestellt. Nach einer Stunde waren große Volumina an Hämolymphe durch ihre Haut sezerniert worden. Es stellte sich heraus, daß das durch dieses Verfahren erhaltene Hämocyanin identisch ist mit dem Hämocyanin, das durch Einschneiden einer Mulde in den Fuß heruntergekühlter Meeresschnecken unter Verwendung einer Skalpellklinge gesammelt werden konnte. Die Blutzellen wurden von der Hämolymphe durch Zentrifugation bei 800 g über 30 min bei 4 ° C abgetrennt. Das gesamte Hämocyanin wurde sofort danach durch präparative Ultrazentrifugation bei 30000 g über 4 Stunden bei 4 ° C sedimentiert. Der Überstand wurde verworfen und das blaue Hämocyanin-Pellet wurde

über Nacht in "Stabilisierungs-Puffer" (0,05 M Tris, 5 mM CaCl₂, 5 mM MgCl₂, 0,15 M NaCl, 1 mM PMSF, pH 7,4) suspendiert und bei 4 ° C gelagert.

Intaktes HtH1 wurde unter Verwendung des von Harris et al., 1995, supra, beschriebenen Verfahrens aus dem gesamten HtH durch selektive Dissoziation von HtH2 in Ammoniummolybdat/Polyethylenglykol (1%/0,2%)-Lösung, pH 5,9 und nachfolgender Ultrazentrifugation erhalten. Das entstandene, teilweise aufgereinigte HtH1-Pellet wurde aufgelöst und durch Gelfiltration auf einer Biogel A15m-Vorrichtung zur Homogenität aufgereinigt. Der letzte Schritt ergab geringe Mengen von aufgereinigtem HtH2. Natives HtH1 und HtH2 wurde durch Dialyse gegen "Dissoziationspuffer" (0,13 M Glycin/NaOH, pH 9,6) bei 4 ° C über Nacht quantitativ in die Untereinheiten dissoziiert; die Gegenwart von EDTA war nicht erforderlich. 1 mM PMSF wurde bei jeder Stufe der Aufreinigung hinzugefügt, um die Proteolyse zu hemmen.

2. Elektronenmikroskopie

Konventionelles "negative staining" wurde mit dem Einzel-Tropfen-Verfahren (Harris und Horne in Harris, J.R. (Herausgeber) Electron microscopy in biology, (1991), IRL Press Oxford, S. 203-228) durchgeführt. Kohlenstoffträger-Filme wurde anfänglich über 20 Sekunden ~~glühentladen, um sie hydrophil und für das Protein adsorptiv zu machen. Man~~ lässt die Proteinproben an den Kohlenstofffilmen über 60 Sekunden adsorbieren. Sodann werden die Puffersalze durch sequentielles Waschen mit vier aufeinanderfolgenden 20 µl Wassertropfen entfernt. Die Gitter werden schließlich mit einem 20 µl Tropfen 5 % wäßrigen Ammoniummolybdates, enthaltend 1 % Trehalose (pH 7,0) negativ gefärbt und bei Raumtemperatur trocknen gelassen. Für die elektronenmikroskopische Untersuchung wird ein Zeiss EM 900 Transmissionselektronenmikroskop verwendet.

3. Polyacrylamid-Gel-Elektrophorese und Immunelektrophorese

SDS-Polyacrylamid-Gel-Elektrophorese (SDS-PAGE) wurde gemäß des Verfahrens von Laemmli (Nature 227 (1970), 670-685) durchgeführt. Zur nativen PAGE wurde ein alkalisches System gemäß Markl et al. (1979) J. Comp. Physiol. 133 B, 167-175 mit einem

0,33 M Tris/Borat, pH 9,6 als Gelpuffer und 0,065 M Tris/Borat, pH 9,6 als Elektrodenpuffer verwendet. Gekreuzte und "crossed-line" Immunelektrophorese (IE) wurden gemäß Weeke (Scand. J. Immunol. 2 (1973), Suppl. 1, 47-56) bzw. Kroll (Scand. J. Immunol. 2, Suppl. 1 (1973), 79-81) durchgeführt. Kaninchenantikörper wurden von Charles River Deutschland (Kisslegg, Deutschland) gegen dissoziiertes Gesamt-HtH und aufgereinigtes HtH1 erzeugt. Das Immunisierungsverfahren wurde durchgeführt gemäß Markl und Winter (J. Comp. Physiol. 159B (1989), 139-151).

4. Limitierte Proteolyse und Isolierung der Fragmente

Die limitierte Proteolyse wurde bei 37 ° C in 0,13 M Glycin/NaOH, pH 9,6 durch Hinzufügen eines der nachstehenden Enzyme (Sigma, Deisenhofen, Deutschland), die in 0,1 M NH₄HCO₃, pH 8,0 gelöst waren, durchgeführt: *Staphylococcus aureus* V8-Protease Typ XVII (8400), Papain Typ II aus Papaya-Milch (P-3125), Rinder-Pankreas-Elastase Typ IV (E-0258), Chymotrypsin und Trypsin. Die Hämocyanin-Konzentration lag zwischen 1 und 10 mg/ml. Die Endkonzentration des Enzyms betrug 2 % (Gewicht/Gewicht). Die Proteolyse wurde nach 5 Stunden durch Einfrieren auf -20 ° C beendet. Das HPLC-Verfahren wurde auf einer Vorrichtung von Applied Biosystems (BAI, Bensheim, Deutschland) durchgeführt, die mit einem Modell-1000S-Dioden-Array-Detektor ausgestattet war. Die proteolytischen Fragmente wurden auf kleine Mono-Q-Anionentauscher-Säule aufgetragen (Pharmacia, Freiburg, Deutschland), die mit 0,02 M Tris/HCl, pH 8,0 äquilibriert worden war und mit einem linearen Natriumchlorid-Gradienten (0,0 M - 0,5 M CaCl) im gleichen Puffer bei einer Flußrate von 1 ml/min eluiert wurden. Alternativ wurden die proteolytischen Fragmente durch Ausschneiden der Banden aus nativen PAGE-Gelen (Markl et al., 1979) J. Comp. Physiol. 133 B, 167-175 isoliert, nachdem sie zuvor mit dem Roti-White-System (Roth, Karlsruhe, Deutschland) gemäß Fernandez-Patron et al. (1995) Anal. Biochem. 224, 203-211 invers-gefärbt worden waren. Zur nachfolgenden Spaltung mit einem zweiten Enzym wurden die isolierten Fragmente zuerst Übernacht gegen 0,13 M Glycin/NaOH, pH 9,6 dialysiert, um NaCl zu entfernen.

5. Aminosäuresequenzanalyse

Die durch das HPLC-Verfahren erhaltenen Proteine wurden in SDS-enthaltendem Probenpuffer denaturiert und durch SDS-PAGE (Laemmli, 1970, *supra*; 7,5 % Polyacrylamid) aufgetrennt. Um die Blockierung des NH₂-Terminus zu verhindern wurde 0,6 % (Gewicht/Gewicht) Thioglykolsäure zum Kathodenpuffer (Walsh et al., *Biochemistry* 27 (1988), 6867-6876) hinzugefügt. Die Proteinbanden wurden durch Elektro-Transfer auf ProBlot-Membranen (Applied Biosystems, Deutschland) in einer vertikalen Blotting-Kammer übertragen (25 mM Borat-Puffer, pH 8,8, enthaltend 2 mM EDTA; 10 min/100 mA, 15 min/200 mA, 12 h/300 mA). Der Nachweis der einzelnen Polypeptide auf den Membranen wurde mit der Ponceau-S-Färbung durchgeführt. Die interessierenden Polypeptid-Banden wurden ausgeschnitten und in einer 477A-Protein-Sequenziervorrichtung von Applied Biosystems sequenziert. Die Mengen der auf die Sequenziervorrichtung aufgetragenen Polypeptide lag im unteren pmol-Bereich.

6. cDNA-Klonierung und Sequenzanalyse

Eine Lambda-cDNA-Expressionsbibliothek wurde aus Poly(A⁺)-RNA aus *Haliotis* Mantelgewebe unter Verwendung des Vektors Lambda ZAP Express[®] gemäß den Herstelleranweisungen (Stratagene, Heidelberg, Deutschland) hergestellt. Die Klone wurden unter Verwendung von HtH-spezifischen Kaninchenantikörpern isoliert. Die Nukleotidsequenzierung wurde auf beiden Strängen unter Verwendung des Taq Dye deoxy Terminator[®]-Systems durchgeführt. Die Anordnung der Sequenzen wurde mit der Software CLUSTAL W (1.7)[®] und TREEVIEW[®] (Thompson et al., *Nucl. Acids Res.* 22 (1994), 4673-4680) durchgeführt.

Beispiel 1:

Isolierung von HtH und Auftrennung zweier unterschiedlicher Typen (HtH1 und HtH2)

Die Hämolymphe wurde aus adulten Seeohren gewonnen. Die Blutzellen wurden durch Zentrifugation entfernt und das Hämocyanin wurde sodann durch Ultrazentrifugation sedimentiert. Das blaue Hämocyanin-Pellet wurde in "Stabilisierungspuffer" (pH 7,4) wieder aufgelöst und in der Elektronenmikroskopie untersucht (Figur 1a). Es bestand

hauptsächlich aus typischen Di-Dekameren, begleitet von einem kleinen Anteil an Dekameren und Tridekameren. Die Denaturierung in 2 % SDS in Gegenwart reduzierender Substanzen und anschließender SDS-PAGE-Trennung ergab eine einzige Bande, die dem Polypeptid mit einem scheinbaren Molekulargewicht von 370 kDa entsprach, welches nur geringfügig unterhalb des scheinbaren Untereinheiten-Gewichts von KLH (Figur 1b) liegt. Die vollständige Dissoziation der Oligomere wie der Di-Dekamere in die nativen Polypeptide (Untereinheiten) wurde erreicht durch Übernacht-Dialyse von HtH gegen "Dissoziationspuffer" (pH 9,6). Natives PAGE-Verfahren, das auf diese Proben angewendet wurde, ergab eine Haupt- und eine Neben-Komponente (Figur 1c). Die gekreuzte Immunelektrophorese (gekreuzte IE) unter Verwendung von gegen aufgereinigtes Gesamt-HtH-erzeugten polyklonalen Kaninchen-Antikörpern zeigte zwei Komponenten, die immunologisch unterschiedlich sind, jedoch die klassische Reaktion einer teilweise immunologischen Identität aufweisen (Figur 1d). Ihre präparative Isolierung (Figur 1e-i) zeigte, daß sie die Untereinheiten von zwei unterschiedlichen HtH-Typen darstellen, bezeichnet als HtH1 und HtH2, und die Muster der nativen PAGE- und gekreuzten IE-Verfahren konnten jeder einzelnen zugeordnet werden (Figur 1c, d).

Die Auftrennung von HtH1 und HtH2 wurde gemäß des Verfahrens zur selektiven Dissoziation gemäß Harris et al., 1995, supra, durchgeführt. In Ammoniummolybdat/Polyethylenglykol war HtH1 im Oligomeren-Zustand (Di-Dekamere) vollständig stabil, wohingegen HtH2 vollständig in die Untereinheiten dissoziierte (Figur 1e). Dies ermöglichte die quantitative Sedimentation von HtH1 in der Ultrazentrifuge, wohin gegen der größte Teil des HtH2 im Überstand verblieb. Aus dem wieder aufgelösten Pellet wurden große Mengen an HtH1 durch Gelfiltrationschromatographie zur Homogenität aufgereinigt, welche auch geringe Mengen an reinem HtH2 ergab (Figur 1f). Die Fraktionen wurden durch native PAGE (Figur 1g) und gekreuzte IE (Figur 1h, i) untersucht. Das Verfahren der selektiven Dissoziation von HtH2 entfernte sämtliche Tri-Dekamere aus den Proben, welches nahelegt, daß die letzteren aus HtH2, jedoch nicht aus HtH1 aufgebaut sind (Figur 1e). Das selektive Dissoziationsverhalten von HtH2 und auch die Fähigkeit, Aggregate zu bilden, die größer als *in vivo* -Di-Dekamere sind, entspricht den Eigenschaften von KLH2. Umgekehrt ähnelt die Stabilität von HtH1 unter diesen Bedingungen und seine Unfähigkeit, sich zu größeren Aggregaten als Di-Dekameren zu assemblieren,

dem Verhalten von KLH1. Diese Verwandtschaft wird weiter belegt durch die Reaktion von Anti-KLH1 bzw. Anti-KLH2 Antikörpern gegen die beiden HtH-Typen (Figur 1j-m).

Beispiel 2:

Analyse der Organisation der HtH1-Untereinheit

Die acht funktionellen Einheiten (FU's, häufig als "funktionelle Domänen" bezeichnet), die eine Mollusken-Hämocyanin-Untereinheit bilden, unterscheiden sich in der Primärstruktur und weisen keine immunologische Kreuz-Reaktivität auf, wie sich aus gekreuzter IE ergibt. Im Fall der aufgereinigten HtH1 Untereinheit (Figur 1g, h) wurden geringe Konzentrationen fünf unterschiedlicher Proteasen (Elastase, V8-Protease, Papain, Trypsin und Chymotrypsin) verwendet, welche die Peptid-Bindungen zwischen benachbarten FU's von KLH1 und KLH2 gespalten hatten (Gebauer et al., 1994, supra, Söhngen et al., 1997, supra). Die Spaltprodukte wurden durch gekreuzte IE und SDS-PAGE (Fig. 2) untersucht. Elastase-Behandlung erzeugt acht einzelne FU's, abgeleitet aus der Anzahl an unterschiedlichen Immunpräzipitations-Gipfeln in der gekreuzten IE (Fig. 2a) und mit dem scheinbaren Molekulargewicht von ca. 50 kDa des Hauptteils der Spaltprodukte in SDS-PAGE (Fig. 2b). Ein weiterer Präzipitationsgipfel wurde als FU-Dimer erkannt, welches durch unvollständige Spaltung des Segments ab (Fig. 2a) entstand.

Durch HPLC-Verfahren mit einer Mono-Q-Säule (Fig. 3a) wurden zwei der Elastase-Spaltprodukte in einer ausreichenden Reinheit erhalten, um durch "crossed-line-IE" ihre klare Zuordnung zu zwei der acht Präzipitationsgipfel (Fig. 2c,d) zu ermöglichen. Die anderen vier Proteasen wiesen unterschiedliche Spaltmuster auf, die aus Gemischen einzelner FU's und größerer Fragmente, enthaltend zwei, drei oder mehrere FU's bestanden (z.B. Fig. 2 e,f). Viele von ihnen waren durch das HPLC-Verfahren in ausreichender Menge angereichert (Fig. 3b-e), um ihre Identifikation in ihren entsprechenden SDS-PAGE- und gekreuzten IE-Mustern zu ermöglichen. Eine Anzahl dieser Komponenten wurde N-terminal durch Blot-Transfer von SDS-Gelen auf ProBlot®-Membrane (Tabelle I) sequenziert. Die Resultate wurden mit N-terminalen Sequenzen verglichen, die aus dem scheinbar orthologen Protein in *Megathura crenulata*, KLH1 (Tabelle I), erhalten worden waren, von dem die vollständige FU-Anordnung verfügbar ist (Söhngen et al., 1997, supra; vgl. Fig. 5b). Das Ergebnis des gesamten Ansatzes führte zur Bestimmung der vollständigen FU-Anordnung innerhalb der HtH1-Untereinheit (Fig. 2a).

Insbesondere ergab die Spaltung der HtH1-Untereinheit (1-abcdefgh) mit V8-Protease vier Präzipitationsgipfel in der gekreuzten IE (Fig. 2e). Das SDS-PAGE-Verfahren zeigte fünf unterschiedliche Fragmente (Fig. 2f): 220 kDa (5 FU's), 185 kDa(4 FU's), 100 kDa (2 FU's), 55 kDa(1 FU) und 46 kDa(1 FU). Das 100 kDa-Fragment wurde durch das HPLC-Verfahren (Fig. 3b) isoliert und durch N-terminale Sequenzierung als 1-ab identifiziert, da die Sequenz identisch zu derjenigen der intakten Untereinheit war (Tabelle I). In dem "crossed-line" IE-Verfahren verschmolz 1-ab mit drei Präzipitationsgipfeln des Elastase-Spaltmusters. Aufgrund der Auswertung ergab sich, daß sie die Fragmente 1-ab, 1-a bzw. 1-b darstellen (Fig. 2g). Jedoch verblieb es unklar, welcher Gipfel 1-a und welcher 1-b darstellt. In einem zweiten Schritt wurde das HPLC-aufgereinigte 1-ab durch Elastase in seine Komponenten-FU's gespalten, aus denen eine durch das native PAGE-Gel-Streifenverfahren eluiert werden konnte und dem Elastase-Muster durch das "crossed-line" IE-Verfahren (Fig. 2h) zugeordnet und N-terminal sequenziert wurde. Diese Komponente wies die gleiche N-terminale Sequenz wie die gesamte Untereinheit auf und war deshalb identisch zu 1-a. Somit ist die zweite FU des 100 kDa-Fragments 1-b (Fig. 2a; Tabelle I). Ebenso wurden HPLC-aufgereinigtes 1-c und 1-h erhalten (Fig. 3b), durch N-terminale-Sequenzähnlichkeiten zu den entsprechenden FU's in KLH1 (Tabelle I) identifiziert und durch das "crossed-line" IE-Verfahren ihren entsprechenden Präzipitationsgipfeln in dem Elastase-Muster zugeordnet (Fig. 2i,j). Weiterhin wurden 1-a, 1-b, 1-c und 1-h identifiziert (Fig. 2a). Unter Verwendung von Papain zur Untereinheiten-Spaltung wurden fünf unterschiedliche Gipfel in dem gekreuzten IE-Verfahren (Fig. 2k) erhalten. Aus einer solchen Probe wurde ein 100 kDa-Fragment (2 FU's) durch das HPLC-Verfahren (Fig. 3c) aufgereinigt, welches gemäß des "crossed-line" IE-Verfahrens das bereits identifizierte FU 1-h und eine der vier noch nicht identifizierten FU's enthielt und deshalb 1-gh darstellen muß (Figs. 2k, 3c). Tatsächlich wies dieses Fragment eine N-terminale Sequenz auf, die Ähnlichkeiten zu KLH1-g (Tabelle I) zeigte. Zur weiteren Bestätigung wurde das HPLC-aufgereinigte Fragment 1-gh mit Elastase in seine Bestandteil-FU's gespalten, aus denen 1-g aufgereinigt und durch N-terminale Sequenzierung identifiziert wurde. Es wurde durch "crossed-line" IE-Verfahren seinem Gipfel in dem Elastase-Spaltmuster zugeordnet (Fig. 2l).

Das 220 kDa-Fragment aus der V8-Protease-Spaltung (Fig. 2e, f) wurde HPLC-aufgereinigt (Fig. 3b) und fusionierte im "crossed-line" IE-Verfahren mit 1-h, 1-g und drei noch nicht identifizierten Gipfeln des Elastase-Spaltmusters. Weiterhin wurde das 185 kDa-Fragment in ausreichender Reinheit erhalten (Fig. 2e, f; 3b), und es wurde gezeigt, daß sie die gleichen Komponenten mit Ausnahme von 1-h enthielten. Dies legte nahe, daß das 22 kDa und das 185 kDa-Fragment 1-defgh bzw. 1-defg sind. Tatsächlich war die N-terminale Sequenz praktisch identisch und zeigte weiterhin Ähnlichkeit zu KLH1-d (Tabelle I). Die Spaltung der Hth1-Untereinheit mit Trypsin ergab eine Vielzahl an Komponenten in dem Molekulargewichtsbereich von ein bzw. zwei FU's (Fig. 2m). Mehrere der Komponenten wurden in HPLC-Faktionen angereichert (Fig. 3d). Ein 100 kDa-Fragment erwies sich als besonders nützlich, da es die gleiche N-terminale Sequenz wie das Fragment 1-defg aus der V8-Protease-Spaltung aufwies (Tabelle I); deshalb sollte das 100 kDa-Fragment 1-de darstellen. In dem "crossed-lined" IE-Verfahren fusionierte diese Komponente mit zwei der drei noch nicht identifizierten FU-Gipfeln des Elastase-Spaltmusters (Fig. 2n), welches deshalb 1-d und 1-e darstellen sollte, und somit eine einzige Möglichkeit für 1-f übrig ließ. Das "crossed-line" IE-Verfahren zeigte auch, daß in der 1-de Fraktion weiterhin FU 1-f vorhanden war (Fig. 2n). Die Identifikation von 1-f bestätigte durch Spaltung der Untereinheit mit Chymotrypsin (Fig. 2o) und nachfolgendem HPLC-Verfahren (Fig. 3e). Diese Spaltung ergab unter anderem ein 95 kDa-Fragment (2 FU's) welches im "crossed-line" IE-Verfahren mit 1-g und einem zweiten Gipfel (Fig. 2p) fusionierte und deshalb entweder 1-gh (welches ausgeschlossen werden konnte, da 1-h bereits identifiziert war), oder 1-fg (welches sinnvoll erscheint aufgrund des weiteren betreffenden Peaks, der zu dem verbleibenden Kandidaten identisch war) sein könnte. Tatsächlich zeigte dieses Fragment eine neue N-terminale Sequenz, welche in gewisser Weise zu KLH1-f ähnlich ist (Tabelle I). Das letzte Problem bestand nun darin, die zwei verbleibenden FU-Gipfel 1-d bzw. 1-e zuzuordnen. Dies wurde unter Verwendung von HPLC-isolierten FU's aus Proben gelöst, in denen die Untereinheit mit Elastase gespalten worden war. (Fig. 2c, d; 3a). Die saurere Komponente in dem gekreuzten IE-Verfahren war 1-d abgeleitet aus seiner N-terminalen Sequenz, welche identisch ist mit der von 1-defgh (Fig. 2c; Tabelle I), wohingegen die basischere Komponente des 1-d/1-g-Paars eine neue N-terminale Sequenz (Tabelle I) aufwies und des-

halb 1-e (Fig. 2a) sein mußte. Somit war die Struktur der funktionellen Einheiten der Untereinheit HtH1 aufgeklärt.

Beispiel 3:

Vergleich der Molekulargewichte und N-terminalen Sequenzen der biochemisch isolierten funktionellen Einheiten (FU's) aus HtH1 und KLH1. Die unterschiedlichen FU's, jede mit einer intakten binukleären Kupfer-Bindungsstelle, wurden durch limitierte Proteolyse als globuläre Segmente aus ihrer größeren Einheit freigesetzt; vgl. Abschnitt "Isolierung und Analyse der Einheiten aus HtH1". Die KLH1-Daten wurden aus Söhngen et al., supra, entnommen. Die Zuordnung als tatsächliche Einheit erfolgte aufgrund des Molekulargewichtes und des immunologischen Verhaltens (vgl. Fig. 2). Das ungewöhnlich niedrige Molekulargewicht von isoliertem HtH1-d könnte bedeuten, daß ein großes Peptid C-terminal abgespalten wurde.

TABELLE I

Funktionelle Einheit	Masse (kDa)	N-terminale Sequenz
HtH1-a	53	DNVVRKDVS H LT D DEVQ
KLH1-a	50	ENLVRKDVERL
HtH1-b	48	?
KLH1-b	45	?
HtH1-c	46	FEDEKHS L R I R K NVD S LTP E ENTNERLR

TABELLE I

Funktionelle Einheit	Masse (kDa)	N-terminale Sequenz
KLH1-c	45	KVPRSRL I R K NVD R LTPSE
HtH1-d	40	VEEV T GASH I R K N L D L NTGEM
KLH1-d	50	EVTSANR I R K N I ENLS
HtH1-e	49	ILDHDHEEEIL V R K NIIDLSP
KLH1-e	50	?

HtH1-f	50	KLNSRKHTPNRV R HELSSLSSRDIASLKA
KLH1-f	45	HHLSXNKVR H DLSTL
HtH1-g	45	DHQSGSIAGSGVRKD V NTLTKAETDNLRE
KLH1-g	45	SSMAGHF V RKDINTLTP
HtH1-h	55	DEHHDDRLADVL I RKEVDFL S LQEANAIKD
KLH1-h	60	HEDHHEDIL V RKNIHSL

Beispiel 4:

Klonierung von Hämocyanin-cDNA

1. Zur Klonierung der cDNA von Hämocyanin wurde mRNA aus dem Mantelgewebe des jeweiligen Mollusken isoliert. Der erste cDNA-Strang wurde durch reverse Transkription mit Oligo(dT) als Primer erhalten. Der zweite Strang wurde durch konventionelle Synthese mit random Primern erhalten. Die so erhaltene cDNA wurde in einen Lambda-Expressionsvektor kloniert unter Bildung einer cDNA-Expressionsbibliothek. Unter Verwendung eines anti-Hämocyanin-Antikörpers wurde die Bibliothek unter geeigneten Bedingungen abgesucht, wobei positive Klone erhalten wurden. Diese positiven Klone wurden isoliert, sequenziert und charakterisiert.
2. Aus dem N-terminalen Bereich eines erhaltenen positiven Klons wurde eine cDNA-Sonde hergestellt, mit der die cDNA-Bibliothek abgesucht wurde. Die erhaltenen positiven Klone werden wiederum isoliert, sequenziert und charakterisiert.
3. Um noch weiter 5' gelegene Sequenzen zu erhalten, wurde eine weitere Expressionsbibliothek aus cDNA hergestellt, die mit Hilfe einer Kombination von Hämocyanin-spezifischen und „random“-Primern erhalten wurde. Diese cDNA-Bibliothek wurde mit cDNA-Sonden, die den „N-terminalen“ Bereichen der unter (2.) erhaltenen positiven Klone entsprechen, abgesucht. Die erhaltenen positiven Klone wurden isoliert, sequenziert und charakterisiert.

Beispiel 5:**Klonierung von Hämocyanin-Genen**

Genomische DNA wurde gemäß Standardverfahren isoliert. Die PCR-Reaktion wurde mit Hilfe von Hämocyanin-spezifischen Primern durchgeführt, um die Genabschnitte der interessierenden Hämocyanine zu amplifizieren. Die erhaltenen Amplifikationsprodukte wurden in einen geeigneten Vektor (beispielsweise pGem T oder pGem T easy (Promega, Mannheim) kloniert, sequenziert und charakterisiert.

Beispiel 6:**Rekombinante Expression von Hämocyanin**

Mit einem cDNA-Klon, der die kodierende Sequenz für HtH-1d enthält, wurde eine PCR-Reaktion durchgeführt, um spezifisch die kodierende Sequenz der Domäne 1d zu amplifizieren. Als Primer wurden synthetisch hergestellte Oligonukleotide verwendet. Primer 1 (stromaufwärts) umfaßt sechs Nukleotide des Endes der Domäne HtH-1c, eine SacI-Schnittstelle und 12 Nukleotide des Endes der Domäne HtH-1d. Primer 2 (stromabwärts) umfaßt sechs Nukleotide des Anfangs der Domäne HtH1-e, eine SalI-Schnittstelle und eine HtH1-d spezifische Sequenz.

PCR-Bedingungen: 2 min 95°C
 30 sec 95°C
 30 sec 55°C
 1 min 72°C
 35 Zyklen
 10 min 72°C

Das Amplifikat wurde in dem pGEM T easy PCR Klonierungsvektor (Promega) in XL-1 Blue (Stratagene) kloniert. Nach Isolation des rekombinanten Plasmids und Restriktion mit SacI und SalI konnte die cDNA der Domäne 1d isoliert werden. Der Expressionsvektor pQE30 (Qiagen) wurde ebenfalls mit den entsprechenden Enzymen restriktiert.

Anschließend wurde die Ligation zwischen der HtH-1d-cDNA (restringiert mit *SacI* und *SaII*) und pQE (restringiert mit *SacI* und *SaII*) durchgeführt. Somit ist eine gerichtete Klonierung der cDNA, kodierend für HtH-1d, in einen Expressionsvektor möglich. Die Expression von HtH1-d in pQE in XL-1 Blue erfolgt gemäß Herstelleranleitung. Die Expression weiterer HtH1-, HtH2- oder KLH1- oder KLH2-Domänen kann analog erfolgen.

SEQUENZPROTOKOLL

<110> Biosyn Arzneimittel GmbH
<120> Nukleinsäuremolekül, umfassend eine für ein Hämocyanin kodierende Nukleinsäuresequenz

<130> P30370B-01996

<140>
<141>

<160> 48

<170> PatentIn Ver. 2.1

<210> 1
<211> 126
<212> DNA
<213> Hal

<220>
<223> HtH1-a

<400> 1

ggcttggta gttctactc gtcgcccggc tggcgaaaaa tggagcagac aacgtcgta 60
gaaaggacgt gagtcaccc acggatgacg aggtgcaagc tctccacggc gcctccatg 120
acgtcaactgc atctacaggc cctctgagtt tcgaagacat aacatcttac catgcccac 180
cagcgtcgta tgactacaag ggacggaaaga tcgctctgt tgcacccggc atgcccagtt 240
tcccccttctg gcacaggggca tatgtcggtcc aagccgagcg ggcactgttgc tccaaacggc 300
agactgtcgaa aatgccttac tgggactgga cgccaaacgct gactcacttac ccatactcttgc 360
tgactgaacc catctacatt gacagtaaag gtggaaaggc tcaaaccac tactggtacc 420
gcggcgagat agcgttcatc aataagaaga ctgcgcgagc tgcacccggc tgcctattcg 480
agaaggtgga gcctggtcac tacacacatc ttatggagac tgcctcgac gctctcgaaac 540
aggacgaatt ctgtaaattt gaaatccagt tcgagttggc tcataatgtt atccattact 600
tggttggcgaa taaatttggaa tattcaatgtt caaacttggaa atacaccccttcc taagccccca 660
tcttttttttttccaccatccc aacgttggc gcttttttttgc catctggcag cgttttttccagg 720
aactgcgagg aaagaatcccc aatgtcaatgg actgtgcaca tgaactcgctt caccagcaac 780
tccaaacctt ccacaggggac agcaatccag tccagctcac aaaggaccac tcgacacccgt 840
ctgaccttctt tgattacaaa caacttggat acagctacga cagtttttttccaaatggaa 900
tgacgcccaga acagctgaaa acagaacttag acgaacgcac tcccaaaagaa cgtgcgttttgc 960
caagcttccg actcaatggc ttgggggtt ctggccaaatgtt tggatgttat gcatgtgtcc 1020
ctgatgtatc tccacgcgtt gatgactact gcaatggggc aggcgacttc ttcatcttgc 1080
ggggtcaaaatcgaaatggccg tggagattctt acagaccctt cttctatgtt gtaactgtt 1140
cggtacatca ccttggatgtt ccgctaaatgtt gcaactacta tgcacccggc accaactgtt gcctaccgac 1200
gcgtgaatgg cacagcactt tcacctgtat ttcttccatc accaactgtt gcctaccgac 1260
ctqqqaaaq

<210> 2

<211> 1257

<212> DNA

<213> *Haliothis tuberculata*

<220>

<223> HtH1-b

<400> 2

```

gtcaccttga cccacctgtg catcatcgcc acgatgacga tcttattgtt cgaaaaata 60
tagatcatt gactcgtgaa gaggaatacg agctaaggat ggctctggag agattccagg 120
ccgacacatc cgttgatggg taccaggcta cagtagagta ccatggcctt cctgctcggt 180
gtccacgacc agatgcaaaa gtcaggttgc cctgttgtat gcatggcatg gcatccttc 240
ctcaactggca ccggctgttc gttaccagg tggaaagatgc tcttgtacgg cgtggatcgc 300

```

ctatcggtgt tccttaatgg gactggacaa aacctatgac tcaccccca gacttggcat 360
 caaatgagac gtacgtagac ccgtatggac atacacatca taatccattc tcaatgcaa 420
 atatatctt tgaggagggc caccatcaca cgagcaggat gatagattcg aaactgtttg 480
 ccccaagtcgc ttttggggag cattccatc tggttgcgg aatccgtac gcatttgagc 540
 aggaagattt ctgcacttt gagattcagt ttgagttgt ccataattct attcatgcgt 600
 ggataggcgg ttccgaagat tactccatgg ccaccctgca ttacacagcc ttgacccca 660
 ttttctaccc tcatcattcc aatgtcgatc gtctatgggc aatctggcaa gctcttcaaa 720
 tcaggagaca caagccatata caagccact gtgcacagtc tggaaacag ttgccaatga 780
 agccatttgc tttccatca cctcttaaca acaacgagaa gacacatagt cattcagtcc 840
 cgactgacat ttatgactac gaggaagtgc tgcactacag ctacgatgt ctaacgtttg 900
 gtgggatgaa ctttgaagaa atagaagaag ctatacatct cagacaacag catgaacgag 960
 tcttcgcggg atttctcctt gctgaatag gaacatctgc acttggatgc attttcataa 1020
 ataaaccggg gaaccaacca ctcaaagctg gagatattgc cattcttgc ggtgccaagg 1080
 aaatgccttg ggcgtttgac cgcttgtata aggtcgaaat aactgactca ttgaagacac 1140
 tttctctcga tgcgtatggc gattatgaag tcactttaa aattcatgt atgcacggaa 1200
 acgcttgcgta tacggacctg attccacacg cagcagttgt ttctgagcca gctcacc 1257

<210> 3

<211> 1242

<212> DNA

<213> *Haliotis tuberculata*

<220>

<223> HtH1-c

<400> 3

ctacccccc ggtatggaaaag cacagcttac gaatcagaaaa aatgtcgac agcttgcactc 60
 ctgaagaaaac aatgaactg cgtaaagccc tggagttct tggaaatgt ctaactgcag 120
 gtggattcaa tcagcttggc gccttccatg gagagcctaa atggccctt aatccctgaag 180
 cggagcacaa gtttgcattgc tggatccatg gcatggctgt tttccctcat tggcacaggc 240
 ttcttgcctt ccaggcggag aatgtctta gaaagcatgg gtacagtggt gctctaccat 300
 actgggattt gactcgcccc ctttcccaac ttcttgcattt gtttgcattt gaggcgtata 360
 cagatcccttc cgaccatcac gtgaagcata accccgtggt caatggccac atcgatcac 420
 taaatcagga taccacccaa agcgtacggg aggttcttca tcaacaacct gaatttggac 480
 atttcacggg tatttgcctt caagtttgcattt tagcatttca acaagatgc ttctgttcgt 540
 ttgaatgca gtatgagatt tccctataatt ttatccatgc acttggatgg ggaaccgacg 600
 cttatggcat ggcattgcgtt agatatacag catacgatcc aatcttttc ttgcatttca 660
 caaacaccga caggatctgg gctatttgc aatccctgca aaaatacaga ggcacaccgt 720
 acaacactgc caactgcgcc atagaatcta tgagaaggcc cctgcaacca ttggactaa 780
 gcagtgccat taaccctgac agaattccca gagacatgc tatcccgtt gatgtcttca 840
 actatacgatc taacccttcat tacgtatgtt ataccctggg atttaatggt ttgtcgatgt 900
 cacaacttgc tagagatgtt gaaaaatca agagtacgc aagagtattt gctggattct 960
 tgcttgcggg gattaaaaaa tctgtcttgc tggaaatttgc agtttgcattt ccacctgata 1020
 attgtcataa agcaggggag ttttatctac tcggggacga aacagatgtt gcttggccct 1080
 atgaccgact tttcaagtat gatattactc aggttctggc agcaaaaccat ctacacttct 1140
 atgatcatct cttcatttcgc tacgaagtct ttgatctttaa aggagtgtt gttggacttg 1200
 acctgttcca cactgcaat gtggatcatgtt attccggcac ag 1242

<210> 4

<211> 1239

<212> DNA

<213> *Haliotis tuberculata*

<220>

<223> HtH1-c

<400> 4

gcaccctgtga tcgtgataac tacgttgcgg aagttactgg ggccagtcattt atcaggaaga 60
 atttgcacgc cctcaataacc ggagaaatgg aaagccttag agtgcattt ctgcataattc 120
 aggacgacgg aacatgttgc tctattgcctt agtaccatgg caaaccaggc aatgtcaat 180
 tgaatgtca taatatttgcg tggatccatgc atggatgcctt taccttcccc cagtggcaca 240
 gactgtatgtt gtttgcgggat gagaatgttgc tccctaaacag gggatctggt gttggctgttc 300
 cttactggga gtggactgtt cccatagacc atctacccatca ttgcatttgc gatgtcaacat 360
 acttcaatttcccgacaaacag cggatgttgc tccctaaacag gggatctggt gttggacttg 420
 ttgaaaacgc agtccacaaca agggacccac aagccgggtt cttcaactca gattatgtt 480
 atgagaatgtt ttacttgcg ctggatgttgc gggatctggt gttggacttg 540

agcttggcca	taacgcactt	cattccatgc	tgggaggtaa	agggcagttac	tccatgtcct	600
ccctggacta	ttctcggtt	gatcccgtct	tcttcctaca	tcatgccaac	acggacagac	660
tgtggcaat	ctggcaggaa	ctacaagat	tccgagaact	gccttatgaa	gaagcgaact	720
gtgcaatcaa	cctcatgcat	caaccactga	agccgttca	tgatccacat	gagaatcacg	780
acaatgtcac	tttggaaatac	tcaaaaaccac	aggacggatt	cgactaccag	aaccacttcg	840
gatacaagta	tgacaacctt	gagttccatc	acttatctat	cccaagtctt	gatgctaccc	900
tgaagcaaag	gagaaatcac	gacagagtgt	ttgcgggctt	ccttcttcat	aacataggaa	960
cttctgtcga	cataactatc	tacatatgtc	tgcctgacgg	acggcgtggc	aatgactgca	1020
gtcatgaggc	gggaacattc	tatatcctcg	gagggcggaaac	agagatgcct	tttatcttg	1080
accgtttgt	taaatttgaa	atcaccaaac	cactgcaaca	gttaggagtc	aagctgcatt	1140
gtggagttt	cgaactggag	cttgagatca	aggcataacaa	cggttccat	ctggatcccc	1200
ataccttga	tccaactatc	atctttgaac	ctggaaacag			1239

<210> 5
<211> 1260
<212> DNA
<213> *Haliothis tuberculata*

<220>
<223> HtH1-e

```

>400> 5
tacccatat ctgggaccac gaccatgagg aagagatact tgcaggaag aatataattg 60
ttttagcccc aaggggagagg gtttctctag tcaaagctt gcaaagaatg aagaatgatc 120
gtccgcgtga tgggtaccaa gccattgcct cttccatgc cctgccccca ctctgtccca 180
atccatctgc agtcacccgt tatgcttgct gtgtccatgg catggctaca tttccccagt 240
ggcacagact gtacactgtt caggttcagg atgcctgag gagacatggt tcacttgtt 300
gtattcccta ctgggactgg acaaaaaccag tcaacgagtt acccgagctt ctttcttcag 360
caacattttt tcatccaaatc cgaaatattt atatttcaaa tccatccctc ggggctgaca 420
tagaatttga aggacccggc gttcatacag agaggcacat aaatactgag cgcctgtt 480
acagtgggaa tcacgtacggc taccacaact gtttcttcga aactgttctc ttgtcttgg 540
aacaggaaaga ttactgcgtat ttgaaatac aatttggat agcccaataat ggcattccaca 600
catggattgg tggaaagcgc astatatggca tggcacacct tcaactatgc tcatatgatc 660
caattttcta catccacat tcacagacgg acagaatatg ggttatttgg caagagctgc 720
agaagtacag gggcttatct gtttccggaa caaactgtgc cattgaacat atgagaacac 780
ccttgaagcc tttcagctt gggccaccc tcaatttggaa tagtcatacg caagaatatt 840
caaaggctga ggacacgtt gactataaga agtttggata cagatatgtat agtctggat 900
tggagggggcg atcaatttct cgcatggatg aacttatcca gcagagacag gagaaagaca 960
gaactttgc aggttcctc cttaaagggtt ttgttacatc cgcatctgt tcatttgcag 1020
tttgcagatg tgatcacacc tggaaatgtt cgccgttattt cactattctg ggaggatcag 1080
ccgaaatgcc atggggcatcc gacaggctttt ataaatgtatga cattactaaa actcttcacg 1140
acatgaacct gaggcacgag gacactttct ctatagacgt aactatcacg tcttacaatg 1200
aaacatgtact ctccggagac ctcattcaga cgcctccat tatattgtt cctggacgcc 1260

```

```
210> 6
211> 1251
<212> DNA
<213> Haliothis tuberculata
```

<220>
<223> HtH1-f

```

<400> 6
ataaactcaa ctcacggaaa catacaccta acagagtccg ccatgagcta agtagcctta 60
gttcccgta catagcaagc ttgaaggcag cttgacaag ccttcaacat gataatggg 120
ctgatggta tcaagctatt gtcgccttc atggcgttcc tgccgagtgc cacgagccat 180
ctggacgtga gatcgccctgt tgcatccacg gcatggcgac gtttcctcac tggcaccgg 240
tgtacactct gcagttggag caagcgtgc gcagacacgg gtccagtggt gctgttccat 300
actgggactg gaccaagcca atcaccgaac tgccacacat tctgacagac ggagaatatt 360
atgacgttq gaaaaatgcc gtcttgccca atccgttgc aagagggtat gtaaaaattta 420
aagatgcatt tacgggtgaga aatgtccagg aaagtctgtt caaaatgtca agttttggaa 480
agcactcgct tctgtttgac caggcttgt tgctcttga acaaactgac tactgtgact 540
tcgaagttca gttgaagtg atgcataaca cgatccattt tctcgttagga gggcgtcaaa 600
cgtacgcctt ctccctctctc gagtatccct catacgatcc aatcttcttt attcaccact 660
cgtttgtga caaaaatatgg gctgtatggc aagaactgca aagcaggaga catctacagt 720
ttaqaacagc tgattgtgct gtgggcctca tgggtcaggc aatgaggcct ttcaacaagg 780

```

atttcaacca caacttc accaagaagc acgcagtccc taata gta tttgattatg 840
 aagatcttgg ctataactat gacaacctt aaatcagtgg tttaaactta aatgagatcg 900
 aggcgttaat agcaaaacgc aagtccatg ctagactt tgctgggttc ctgttgggt 960
 gatttaggaac ttccggctgat atacatctgg aaatttgcac gacatcgaa aactgccc 1020
 atgctgtgt gattttcattt cttggagggtt ctgcagatg gcattggca tacaaccgc 1080
 tctacaagta tgacattaca gaagcattgc aggaatttga catcaaccct gaagatgtt 1140
 tccatcgta tgaaccattt ttccctgaggt tgcgttgc tgcgttgc 1200
 ttccatcgta tcacatccac cagccaaacga taatctatga accaggcgaa g 1251

<210> 7
 <211> 1209

<212> DNA
 <213> Haliotis tuberculata

<220>
 <223> HtH1-g

<400> 7
 atcaccatga cgaccatcaag tcgggaagca tagcaggatc cggggtccgc aaggacgtga 60
 acacccgtac taaggctgaa accgacaacc tgaggaggc gctgtgggt gtcatggcag 120
 accacgggtcc caatggctt caagctattt ctgccttcca tggaaaacca gctttgtgtc 180
 ccatggctga tggccacaac tactcatgtt gtaactcaccg catggctacc ttcccacact 240
 gcacatcgccct ctacaccaag cagatggagg atgcaatgag ggcgcgtgg tctcatgtcg 300
 cctggcccta ctgggactgg actgctgcct tcacccacact gccaacactg gtcaccgaca 360
 ggacacaaa ccccttccaa catggacaca ttgattatct caatgtcagc acaactcgat 420
 ctcccccaga catgctgttc aacgaccggc agcatggatc agagtgcgtt ttctacagac 480
 aagtctctt agctctggaa caaaactgatt tctgcaaaatt cgaagtcag tttgagataa 540
 cccacaatgc catccattcc tggacagggt gccacagccc ctacggatg tccactctcg 600
 acttcactgc ctacgatcc ctcttctggc ttccaccactc caacaccgac agaatctggg 660
 ctgtctggca agctttgcaaa gaatacagag gacttccata caaccatgcc aattgtgaga 720
 tccaggaat gaaaacgccc ctgaggcctt tcagtgcacgat tatcaaccac aacccagtca 780
 caaaggctaa cgcgaagcca ttagatgtgt tcgagatataa tcgggtgagc ttccagtacg 840
 acaacactcat ttccatggc tacagtttcc cggaaacttgc tcgcgtgctt gaagaaaagaa 900
 aggaggagga cagaatattt gctgccttc ttctcagtgg aatcaagcgt agtgctgatg 960
 tagtgttcga catatgccaa ccagaacacg aatgtgtgtt cgcaggact ttgcgtattt 1020
 tggggggggaa gctagaaatg ccctggctt tcgacagact gttccgtat gatataccca 1080
 aggtgatgaa gcagctacac ctgaggcattt actctgactt taccttcagg gtgaagattt 1140
 tcggcaccga cgaccacgag ttcccttccat acagtgtcaaa agcaccaact attgaattt 1200
 aaccggcg 1209

<210> 8
 <211> 1535

<212> DNA
 <213> Haliotis tuberculata

<220>
 <223> HtH1-h

<400> 8
 tgcacagagg cggaaaccac gaagatgaac accatgatga cagactcgca gatgtccctga 60
 tcagggaaaga agttgacttc ctctccctgc aagaggccaa cgcaattaag gatgcactgt 120
 acaagctcca gaatgacgac agtaaagggg gctttggggc catagctggc tattcacgggt 180
 atcctaataat gtgtccagaa agaggatccg acaagatcc ctgctgtgc cacggaaatgc 240
 ccgttccccc ccactggcac cgcctgcata ccattcagat ggagagatg ctggaaaacc 300
 atggctctcc aatgggcattt ctttactggg attggacaaa gaagatgtcg agtcttccat 360
 ctttcttgg agattccagc aacaacaacc ctttctacaa atattacatc cggggcgtgc 420
 agcacaaac aaccaggggac attaatacaga gactctttaa tcaaaccac tttgggtgaat 480
 ttgattacctt atattacatc actctgcaag tcctggagga aaactcgatc tttgactttg 540
 aagttcgttca tgagatcctc cataacggcc tccactccctg gcttggagga actggaaagt 600
 attccatgtc taccctggag cattccgcct ttgaccctgtt cttcatgatt caccactcg 660
 gtttggatag aatctggatc ctttggcaga agttgcacaaa gataagaatg aagccttact 720
 acgcatttggaa ttgtgctggc gacagactta tggaaagaccc cctgcataccc ttcaactacg 780
 aaaccgttaa tgaagatgaa ttccacccgca tcaactctt cccaaacgata ctgtttgacc 840
 actacagggtt caactatgaa tacgataaca tgagaatcag gggtcaggac atacatgaac 900
 ttgaagatgg aattcaggaa ttaagaaaaca aagatcgatc atttgtgtt tttgtttgt 960
 cgggcttacg gatatacgat acagtgtcaaa accggcgaa gatatacgatc 1020

acgaaagaata	tgcaggagaa	tttgcagttt	tgggagggtga	gaaggagatg	ccgtgggcat	1080
atgaaagaat	gctgaaattt	gacatctccg	atgctgtaca	caagcttcac	gtgaaagatg	1140
aagacatccg	ttttagagtg	gttgttactg	cctacaacgg	tgacgttggt	accaccaggc	1200
tgtctcagcc	attcatcgtc	caccgtccag	cccatgtggc	tcacgacatc	ttggtaatcc	1260
cagtaggtgc	gggcatgac	cttccgccta	aagtctgt	aaagagcggc	acccaaagtgc	1320
agtttacacc	aatagattcg	tcggtaaca	aagcaatggt	ggagctggc	agctatactg	1380
ctatggctaa	atgcatcggt	ccccctttct	cttaccacgg	cttgaactg	gacaaagtct	1440
acagcgtcga	tcacggagac	tactacattg	ctgcaggatc	ccacgcgttg	tgtgagcaga	1500
acctcaggct	ccacatccac	gtggaacacg	agtatg			1535

<210> 9
<211> 1003

<212> DNA

<213> Hal

2237

225 MHz

<400> 9

cacagactgt	tcgtcaccca	ggtggaaagat	gcttcgtatca	ggcgaggatt	ccctataggg	60
gtccccctact	gggactggac	tcagccatcg	gcccatttc	caggacttc	agacaacgc	120
acctataagag	atccatcatcg	cggggacacgc	agacacaacc	ccttccacga	tgttgaattt	180
cccttggaaa	atggacgtac	agaacgtcac	ccagatgtat	gattgttga	acaaccttta	240
ttggcaaac	atacgctct	cttcgacagt	atagtctatg	cttttgagca	ggaggacttc	300
ggcgattttg	aagtcaatt	tgagatgacc	cataataata	ttcacgcctg	gattgggtgc	360
ggcgagaagt	attccatgtc	ttctctacac	tacacagcct	tcgaccctat	cttctacatt	420
cgtcacttca	acactgaccg	gctctggca	atttggcaag	cgttgcagat	acgaagaaaac	480
aggccttaca	aggcttattg	tgcttggct	gaggaacgcc	agcctctcaa	acctttcgcc	540
ttcagttccc	cactgaacaa	caacgaaaaaa	acctacgaaa	actcggtgcc	caccaacgtt	600
tacgactacg	aaggagtctt	tggctatact	tatgtatgacc	tcaacttcgg	gggcatggac	660
ctgggtcagc	ttgaggaaata	catccagagg	cagagacaga	gagacaggac	ctttgctgtt	720
ttctttctgt	catatattgg	tacatcagcg	aatgttggaa	tcattataga	ccatgggact	780
cttcataacct	ccgtgggcac	gtttgctgtt	cttggcggag	agaaggagat	gaaatgggaa	840
tttgaccgtt	tgtacaaata	ttagattaca	gatgaactga	ggcaacttaa	tctccgtgt	900
gatgtatgtt	tcagcatctc	tgttaaagta	actgtatgtt	atggcagtga	gctgtccctct	960
gaactcatcc	catctgtc	tatcatcttc	gaacgaagcc	ata		1003

<210> 10

<211> 1251

<212> DNA

<213> *Haliotis tuberculata*

<220>

<223> HtH2-c

<400> 10

```

tggaccatca ggaccggcat catgacacaaa tcatttagaa aaatgttgat aatcttacac 60
ccgaggaat taattctctg aggccggcaa tggcagacct tcaatcagac aaaaccgccc 120
gtggatttcca gcaaattgtc gctttcacg gggaaaccaa atggtgccca agtcccgtg 180
ctgagaagaa gttctcttcg tgtgtccatg gaatggctgt cttccctcac tggcacagac 240
tcctgaccgt gcaaggcgag aatgcctga gaaagcatgg atgtctcgga gctctccct 300
actgggactg gactcggccc ctgtctcacc tacctgattt ggttttggta agtagcagaa 360
ctacaccgt gccatattcc accgttggaa cccgaaaccc ctggtacagc ggcacatattg 420
atacagttgg tggacaca acaagaagcg tccgtcaaga actgtatgaa gctcttggat 480
ttggccatTA tactggggTC gctaagcaag tgcttctggc ttggagcag gatgacttct 540
gtgatttga agtccagttt gagatagctc acaaattcat tcacgctt gtcggcggaa 600
gcgagccata tggtatggcg tcactccgtt acactactta tgatccaatt ttctacctcc 660
atcatttcaa cactgacaga ctctgggcta tatggcaggc tctacaaaag tacaggggca 720
aaccttacaa ttccggcaac tgcgcattt ctcttatgag aaaaccccta caaccctt 780
gtctgactga tgagatcaac ccggatgtg agacaagaca gcatgctgtt ccttcagtg 840
tctttgatta caagaacaac ttcaattatg aatatgacac cttgacttc aacggactat 900
caatctccca gctggaccgt gaaactgtcac ggagaaagtc tcatgacaga gtatttggcg 960
gatTTTGT gcatggattt cagcagctg cactagttaa attcttgc tgcaaatcag 1020
atgatgactg tgaccactat gctggtaat tctacatcct tggtgatgaa gctgaaatgc 1080
catgggctA tgatcgtctt tacaatatg agatcactga gcaagtcata gccctggatc 1140
tacacatcgg agatagattc ttcatcagat acgaagcggt tgatcttcat ggtacaagtc 1200

```

ttgaaagcaa catc cc aaacccctg tcatacatga cgaasggca g 1251

<210> 11
<211> 1244
<212> DNA
<213> *Haliotis tuberculata*

<220>
<223> HtH2-d

<400> 11
gtcaccatca ggctgacgag tacgacgaag ttgttaactgc tgcaagccac atcagaaaaga 60
atttaaaaga tctgtcaaag ggagaagtag agagcctaag gtctgccttc ctgcaacttc 120
agaacgacgg agtctatgag aatattgcca agttccacgg caagctggg ttgtgtatg 180
ataacggctcg caaggttgcg tggatgcg caccctcccc cagtggcaca 240
ggctctatgt cctccaggtg gagaatgctt tgctggagag aggatctgcc gtctctgtgc 300
catactggga ctggactgaa acatttacag agctgccatc tttgattgct gaggctaccc 360
atttcaattc cctgtcaacaa acgtttgacc ctaatcctt cttcagaggt aaaatcagtt 420
ttgagaatgc tggatgcg cgtatcccc agcctgagct gtacgatc ac agtactact 480
accaaaacgt catgttgggt tttgaacagg acaactactg cgacttcgag atacagttt 540
agatgggtca caatgttctc catgcttggc ttgggtggaa agctacttat tctatcc 600
ctcttgatta ttctgcattc gaccctgtgt tttcccttca ccatgcgaac acagatagat 660
gtggccat ctggcaggag ctgcagaggt acaggaagaa gcccataatc gaagcggatt 720
tgccattaa cctaattgcgc aaacctctac atcccttgcg caacatgtat ctcaatcatg 780
atcctgttaac ctttaataac tcaaaaacccat ctgatggctt tgactaccag aacaacttt 840
gatacaagta tgacaacccat gagttcaatc atttcgtat tccctggctt gaagaaatca 900
ttcgatttgcg acaacgtcaa gatcgatgtt ttgcaggatt cctcccttcac aacattggga 960
catccgaac tggatgcg ttcgtgttgc tcccttaccac cagcgggtgag caaaactgtg 1020
aaaacaaaagc cggacacattt gccgtactcg gaggagaaac agagatggcg tttcatttt 1080
acagactcta caggtttgac atcagtgaaa cactgaggga cctcggcata cagctggaca 1140
gccatgactt tgacctcagc atcaagattc aaggagtaaa tggatccatc ctgtatccac 1200
acatccgtcc agagccatcc ttgatttttgc tgcctgggtc aagt 1244

<210> 12
<211> 1255
<212> DNA
<213> *Haliotis tuberculata*

<220>
<223> HtH2-e

<400> 12
tctttccctgc gtcctgtatgg gcattcagat gacatccctt tgagaaaaga agtgaacacgc 60
ctgacaacca gggagactgc atctctgatc catgctctga aaagtatgca ggaagaccat 120
tcacccgtacg gttccaagc cattgcctct ttccatgctc tgccaccact ctgccccttca 180
ccatctgcacg ctcaccgtta tgcttgctgt gtccacggca tggctacatt tccccagttgg 240
cacagattgt acactgtaca gttccaggat gcactgagga gacatgggc tacggtaggt 300
gtaccgtattt gggattggct gcgacccgcgat ttcacccatc cagagttgtt caccatggag 360
acataccatg atattttggat taacagagat ttccccaatc ctttctacca accaaatatt 420
gagtttgaag gaaaaacat tacaacagag agagaatgtca ttgcagacaa actttttgtc 480
aaaggtggac acgttttgcg taaaactgggtt cttccaaacaa gccatccctag cgctgagcag 540
gaaaactact gtgactttgcg gattcgtttt gaaaattcttc acaacggcgat tcacacgtgg 600
gtcggaggca gtcgtaccta ctctatcgat catcttcatc acgcattctca cgacccttctt 660
ttctacccatc accatccatc gacagaccgtt atttggcaatc tctggcaaga actccaggaa 720
cagagaggcgc tctcgggtgc tgaggctcact tggatctcg agcaaatgag agaaccattt 780
aaggcccttca gcttcggcgc tccttataac tggaaatcgc tcacacaggaa ttctccctca 840
cccgaggaca ctttcgacta caggaatgtt ggatgtatgat atgacaatattt agaatttccctg 900
ggaatgtcgat ttgtgtatgat ggatcaatac attattgtatc atcaagaaaa tgatagatg 960
ttcgctgggtt ccctgttgcg tggatccggat ggttccgcattt cagttatattt ccagggtttgt 1020
agagctgtatc ccacatgtca ggatgttgcg tacttcaccg ttcttgggtt cagttgtatc 1080
atggcgtggg catttgcacg gctttacaaa tatgacatca ctgaaactct ggagaaaatg 1140
cacccatcgat atgatgtatc cttccatc tctgtcgtatc tgaccgcacaa caacggaaactt 1200
gtcctgagca gcaatgtatc cccaaacccatc agtgcgtatc tccagcggggg acatc 1255

<210> 13
<211> 1248

<212> DNA
<213> *Haliothis tuberculata*

<220>
<223> HtH2-f

<400> 13

gtgacataaaa	taccaggagc	atgtcaccga	accgtgttcg	ccgtgagctg	agcgatctgt	60
ctcgcgaggga	cctgtctagt	ctcaagctg	ctctgcgaga	cctacaggag	gatgatggcc	120
ccaaacggata	ccaggctctt	gcagcctcc	atgggctacc	agcaggctgc	catgatagcc	180
ggggaaatga	gatcgcatgt	tgcattcacg	ggatgccgac	cttccccag	tggcacagac	240
tgtacaccct	gcagttggag	atggctctga	ggagacatgg	atcatctgtc	gccatcccct	300
actgggactg	gacaaggcct	atctccgaac	tcccctcgct	cttcaccagc	cctgagttt	360
atgaccctatg	gcatgtatgt	gtggtaaaca	accattctc	caaagtttt	gtcaaatttg	420
caaataccta	cacagtaaga	gacccacagg	agatgctgtt	ccagctttgt	gaacatggag	480
agtcaatcct	ctatgagcaa	actcttcttg	ctcttgagca	aaccgactac	tgtgatttt	540
aggtacagtt	tgaggtcctc	cataacgtga	tccactacct	tgttggtgga	cgtcagacct	600
acgcattgtc	ttctctgcat	tatgcctcct	acgacccatt	cttctttata	caccattcct	660
ttgtggataa	gatgtgggta	gtatggcaag	ctcttcaaaa	gaggaggaaa	cttccatata	720
agcgagctga	ctgtgtgtc	aacctaata	ctaaaccaat	gaggccattt	gactccgata	780
tgaatcagaa	cccattcaca	aaatgcacg	cagttcccaa	cacacttat	gactacgaga	840
cactgtacta	cagctacat	aatctcgaaa	tagttggcag	gaatctcgac	cagcttcagg	900
rtgaatatga	cagaaggaga	agccacgatc	gcgttttgc	tggatttttg	cttcgtggaa	960
cggaacttc	tgctgtatgtc	aggttttgg	ttttagaaaa	tggaaatgac	tgccacaggg	1020
gttgaataat	tttcattctta	ggtgagcca	aggaaatgcc	atggtcattt	gacagaaaact	1080
tcaagtttga	tatcaccat	gtactcgaga	atgttggcat	tagcccaag	gacgtgtttt	1140
atgttggat	gccatcttta	atcaagggtt	agatccatgc	tgtttaacaag	accatgatac	1200
cgtcgtctgt	qatccccqcc	ccaactatca	tctattctcc	tggggaaq		1248

<210> 14

<211> 1207

<212> DNA

<212> BAK

<220>

<223> HtH2-q

<400> 14

tcgcgcgtgc	tgacagtgcg	cactctgcc	acattgctgg	ctctgggggt	aggaaggacg	60
tcacgaccc	cactgtgtct	gagaccgaga	acctaagaca	ggcttcaa	ggtgtcatcg	120
<u>atgatactgg</u>	<u>trccaaatgg</u>	<u>taccaagcaa</u>	<u>tagcatccct</u>	<u>ccacggaa</u> gt	<u>cctccaaatgt</u>	180
gcgagatgaa	cggccgcaag	gttgcctgtt	gtgctcacgg	tatggccccc	ttcccacact	240
ggcacagact	gtatgtgaag	cagatggaaag	atgcccgtgc	tgaccacggg	tcacatatacg	300
gcatccctta	ctgggactgg	acaactgcct	tcacagagtt	acccgcctt	gtcacagact	360
ccgagaacaa	tcccttccat	gagggtcgca	ttgatcatct	cggtgtaacc	acgtcacgtt	420
ccccccagaga	catgctgttt	aacgaccagg	agcaaggatc	agagtcgttc	ttctatagac	480
aagtccctct	ggcttggag	cagactgact	actgcccagt	cgaagtccag	tttgagctga	540
cccacaacgc	cattcactcc	tggacaggtg	gacgtagccc	ttacggaaatg	tcgaccctcg	600
agtccacacgc	ctacgatcct	ctcttctggc	ttcaccactc	caacaccggac	agaatctggg	660
ctgtctggca	agcactgcag	aaataccggag	gactcccccata	caacgaagca	cactgtgaaa	720
tccagggttc	gaaacagccc	ttgaggccat	tcaacatgta	catcaaccac	aatccaatca	780
ccaagactaa	tgccaggcct	atcgattcat	ttgattatga	gagggttaac	tatcagatg	840
acacccttag	cttccatggt	aagagcatcc	ctgaactgaa	tgacctgtc	gaggaaagaa	900
aaagagaaga	gagaacattt	gctgcctcc	ttcttcgtgg	aatcgggtgc	agtgtgtatg	960
tcgtctttga	catcgccgg	cccaatggtg	actgtgtctt	tgccaggaaacc	tttgcgtgtgc	1020
tgggagggga	gctagaaaatg	ccttgggtct	tcgacagact	gttccgcata	gacatcacca	1080
gagtcatgaa	tcagctccat	ctccagtagt	attcagattt	cagtttcagg	gtgaagcttg	1140
ttgccacccaa	tggcaactgag	cttcatcag	accttctcaa	gtcaccaaca	attgaacatg	1200
aacttqg						1207

<210> 15

<211> 1546

<212> DNA

<213> *Haliotis tuberculata*

5220>

<223> HtH2-h

<400> 15

agccccacaga	ggaccagttg	aagaaacaga	agtcaactcgc	caacatactg	acggcaatgc	60
acactttcat	cgttaaggaag	ttgattcgt	gtccctggat	gaagcaaaca	acttgaagaa	120
tgcccttac	aagctacaga	acgaccacag	tctaacggga	tacgaagcaa	tctctggta	180
ccatggatac	cccaatctgt	gtccggaga	aggcgtgac	aaaatacccc	tgctgcgtcc	240
ccggatgggc	atcttcctt	actggcacag	actttgacc	attcaactgg	aaagagctct	300
tgagcacaat	ggtgcactgc	ttgggttcc	ttactgggc	tggaacaagg	acctgtcg	360
actgcccggc	ttcttctccg	actccagaa	caacaatccc	tacttcaagt	accacatcgc	420
cggtgttgg	cacgacacccg	tcagagagcc	aactagtctt	atataaacc	agccccaaat	480
ccatggttat	gattatctct	attacctagc	attgaccacg	cttgaagaaa	acaattactg	540
ggacttttag	gttcagttatg	agatcttca	caacgcgtc	cactcctggc	ttggaggatc	600
ccagaagttat	tccatgtcta	ccctggagta	ttcggcctt	gaccctgtct	ttatgtatcc	660
tcactcgggt	ctagacagac	tttggatcat	ctggcaagaa	cttcagaaga	tcaggagaaa	720
gccctacaaac	ttcgctaaat	gtgcttatca	tatgtggaa	gagccactgg	cgccttcag	780
ctatccatct	atcaaccagg	acgagttcac	ccgtgccaac	tccaaggcctt	ctacagttt	840
tgacagccat	aagttcggct	accattacga	taaactgaat	tttagagggt	acagatccca	900
agaactcaac	acaatcatca	atgacttgg	aaacacagac	agaatctacg	caggatttgt	960
tttgtcaggg	atcggtagt	ctgctagtgt	caagatctat	ctccgaacag	atgacaatga	1020
cgaagaagg	ggaactttca	ctgtcctgg	aggagagagg	gaaatgcat	gggcctacga	1080
gcgagtttc	aagtatgaca	tcacagaggt	tgcagataga	ctaaaattta	agttatgggg	1140
caccctta	attcggaa	ctggagatca	catccttacg	aatggaatcg	gtggtaaaca	1200
gagcctacc	caaatacctt	catcatctac	agacctgcca	atcatgacta	cgatgttctt	1260
gttatccag	tanggaagaa	accttcacat	ccctcccaa	gttgcgtca	agaaaggcac	1320
ccgcatcgag	ttccacccag	tcgtatgattc	agttacgaga	ccagttgtt	atcttggaaag	1380
ctacactgca	ctcttcaact	gtgtggtacc	accgttcaca	taccacggat	tcgaactgaa	1440
ccacgtctat	tctgtcaagc	ctggtgacta	ctatgttact	ggacccacga	gagaccttgc	1500
ccagaatgca	gatgtcagga	ttcatatcca	tggttggaggat	gagtaa		1546

<210> 16

<211> 967

<212> DNA

<213> *Meqathura crenulata*

<220>

<223> KLH1-b

<400> 16

gcccattacgt actgggactg gactgaaccc atgacacaca ttccgggtct ggcaggaaac 60
aaaattatg tggatttca tgggtgcattcc cacacaaaatc cttttcatag ttcatgtatt 120
gcatttgaag aaaatgtcc ccacacccaa agacaaatag atcaaagact ctttaaaccc 180
gctaccttg gacaccacac agacctgttc aaccagattt tggatgcctt tgaacaagaa 240
gattactgtg actttgaagt ccaatttgag attaccata acacgatca cgcttggaca 300
ggaggaagcg aacatttctc aatgtcgcc ctacattaca cagctttcgta tccttggtt 360
tactttcacc attctaacgt tgatcgctt tggccgtt ggcaagcctt acatgaga 420
ccgcataaac cctacaggc cactgcgc atatcttgg aacatatgc tctgaaaacca 480
ttcgcccttt catctccctt taacaataac gaaaagactc atgccaaatgc catgcacaaac 540
aagatctacg actatgaaaa tggctccat tacacatacg aagatttaaat tttggaggc 600
atctctctgg aaaacataga aaagatgtc cagaaaaacc agcaagaaga cagaatataat 660
gcccgtttc tcctggctgg catacgtact tcagcaaatg ttgatatctt cattaaaact 720
accgattccg tgcacataca ggctggaaaca ttgcagtgc tcgggtggaaag caaggaaatg 780
aagtggggat ttgatcgctg tttcaagttt gacatcacgc acgttttggaa agatctcgat 840
ctcaactgtg atggcgattt cgaagttact gttgacatca ctgaagtcga tggaaactaaa 900
cttgcacatcca gtcttattcc acatgttctt gtcattcgat agcatgcacg tggtaagctg 960
aatatag 967

<210> 17

<211> 1242

<212> DNA

<213> *Megathura crenulata*

<220>

<223> KLH1-c

<400> 17

ttaaatttga	caaagtgc	aggagtc	ttattcg	aaatgt	cgtttgag	60
ccgaggagat	gaatgaa	cgtaaagcc	tagcctt	aaaaggag	aaaagtgc	120
gtggatttca	gcagcttgg	gcattccat	gggagccaa	atgggtgc	agtcccga	180
catctaaaaa	atttgcc	tgtgttcac	gcatgtctgt	gttccctc	tggcatcg	240
tgttgacgg	tcaagatgaa	aatgcttga	gacgacatgg	ctacgatgg	gcttgc	300
actgggattt	gaccctctc	cttaatcacc	ttcccgaact	ggcagatcat	gagaagtac	360
tcgaccctg	agatggggta	gagaagcata	acccttgg	cgatggcat	atagatac	420
tcgacaaaac	aacaacaaga	agtgttcaga	ataaaactt	cgaacagc	gagtttgg	480
attatacaag	cattgccaaa	caagtactgc	tagcgttgg	acaggaca	ttctgtact	540
ttgaaatcca	atatgagatt	gcccataact	acatccatgc	acttgttag	ggcgctc	600
cttatggtat	ggcatcgctt	cgctacactg	ctttgatcc	actattctac	ttgcata	660
ctaatacaga	tcgttatatgg	gcaatatggc	aggcttaca	gaagtacaga	ggaaaaccgt	720
acaacgttgc	taactgtgt	gttacatcga	tgagagaacc	tttgcacca	tttggcc	780
ctgccaat	caacacagac	catgtaa	aggagcatt	agtgcattc	aacgtttt	840
attacaagac	caatttcaat	tatgaatat	acactttgg	atthaacgg	ctctcaat	900
ctcagttgaa	taaaaagctc	gaagcgata	agagccaa	cagg	gcaggc	960
tgttatctgg	tttcaagaaa	tcatctt	ttaaattca	tatttgacc	gatagcag	1020
actgtcaccc	cgctggagag	ttttac	tgggtgatg	aaacgagat	ccatggg	1080
acgatagagt	cttcaaatat	gacataacc	aaaaactcca	cgatctaa	ctgcata	1140
aagaccactt	ctacattgac	tatgaagtat	ttgacctt	accagca	ctgggaaa	1200
atttgttcaa	qcaagccttca	gtcattcat	aaccaagaat	ag		1242

<210> 18
<211> 1236
<212> DNA
<213> Mega

<220>
<223> KLH1-d

<210> 19
<211> 241
<212> DNA
<213> *Megathura crenulata*

<220>
<223> KLH1-e

```
<400> 19
attctgcccc cacagatgat ggacacactg aaccagtgat gattcgcaaa gatatcacac 60
aattggacaa gcgtcaacaa ctgtcaactgg tggaaagccct cgagtccatg aaagccgacc 120
attcatctga tgggttccag gcaatcgctt cttccatgc tcttccttcct ctttgtccat 180
caccagctgc ttcaaaqaggg tttgcgtgct gcgtccatgg catgccaacc ttcccgcaat 240
```

<210> 20
 <211> 949
 <212> DNA
 <213> *Megathura crenulata*

<220>
 <223> KLH2-b

<400> 20
 ggcctgcccct actgggattg gaccatgcc aatgagtcatt tgccagaact ggctacaagt 60
 gagacctacc tcgatccagt tactgggaa actaaaaaca acccttcca tcacgccccaa 120
 gtggcgttt aaaaatgggt aacaagcagg aatccctgatg ccaaactttt tatgaaacca 180
 acttacggag accacactta cctcttcgac agcatgatc acgcatttga gcaggaagac 240
 ttctgcact ttgaagtcca atatgagctc acgcataatg caatacatgc atgggttga 300
 ggcagtgaaa agtattcaat gtcttctt cactacactg cttttgatcc tatattttac 360
 ctccatcaact caaatgttga tcgtctctgg gccatTTggc aagctttca aatcaggaga 420
 ggcaagtctt acaaggccca ctgcgcctcg tctcaagaaa gagaaccatt aaagccttt 480
 gcattcagtt ccccaactgaa caacaacgag aaaacgtacc acaactctgt ccccaactaac 540
 gtttatgact atgtgggagt tttgactat cgtatgatg accttcagtt tggcggtatg 600
 accatgtcag aacttgagga atatattcac aagcagacac aacatgatag aacctttgca 660
 gattttcc tttcatatat tggAACatca gcaagcgtag atatcttcat caatcgagaa 720
 gtcatgata aatacaaagt gggagttt gtagtacttg gtggatccaa agaaatgaaa 780
 tggggctttg atagaatgta caagtatgag atcactgagg ctctgaagac gctgaatgtt 840
 gcagtgatg atgggttcag cattactgtt gagatcacccg atgttgatgg atctccccca 900
 tctgcagatc tcattccacc tcctgctata atcttgaac gtggatcatg 949

<210> 21
 <211> 760
 <212> DNA
 <213> *Megathura crenulata*

<220>
 <223> KLH2-c

<400> 21
 ctgatccaa agactttggc catagcagaa aaatcaggaa agccgttgat tctctgacag 60
 tcgaagaaca aacttcgttg aggcgagcta tggcagatct acaggacgac aaaacatca 120
~~ggggtttcca~~ ~~geagattgea~~ ~~geatteeaaeg~~ ~~gagaacaaaa~~ ~~atgggttcca~~ ~~agcccccaag~~ 180
 cggagaaaaa atttgcattgc tggatgtcatg gaatggctgt tttccctcac tggcacagat 240
 tgctgacagt tcaaggagaa aatgccttgc gaaaacatgg cttaactgggt ggactgccc 300
 actgggactg gactcgatca atgagcggcc ttccacattt tggatgtcatg cttacttaca 360
 atgatgtcat ttccagccag gaagaagata acccatggca tcatgttcatc atagactctg 420
 ttgggcattga gatgtgcgtg atgatcttta tcaatcttctt ggtttcggtc 480
 actacacaga tattgcacaa caagtccctt tggcctttga gcaggacagt ttctgtgatt 540
 ttgaggtaca atttgaattt gcccataattt tcatatgc actgattgggt ggtaacgaac 600
 catacagtat gtcattttt aggtatacta catacgatcc aatcttctt ttcgaccact 660
 ccagtagaca ccgactttgg gccatctggc aagcaatcac tagtgcggcc gcctgcagg 720
 cgaccataag ggagagctcc caacgcgttg gatgcaatct 760

<210> 22
 <211> 323
 <212> DNA
 <213> *Megathura crenulata*

<220>
 <223> KLH2-d

<400> 22
 gttcacacca ggctgtatgaa tatcgtgagg cagtaacaag cgcttagccac ataagaaaaa 60
 atatccggaa cctctcagag ggagaattt agagcatca atctgtttc ctccaaattt 120
 aaaaagaggg tatatatgaa aacattgca agttccatgg aaaaccagga ctttgtgaac 180
 atgatggaca tcctgttgct tggatgttcc atggcatgccc caccttcccc cactggcaca 240
 gactgtacgt tcattcaggtt gagaatgcgc tcattagaac agggatctgca gttgtgttc 300

Ser Phe Glu Asp Ile Thr Ser Tyr His Ala Ala Pro Ala Ser Cys Asp
 50 55 60
 Tyr Lys Gly Arg Lys Ile Ala Cys Cys Val His Gly Met Pro Ser Phe
 65 70 75 80
 Pro Phe Trp His Arg Ala Tyr Val Val Gln Ala Glu Arg Ala Leu Leu
 85 90 95
 Ser Lys Arg Lys Thr Val Gly Met Pro Tyr Trp Asp Trp Thr Gln Thr
 100 105 110
 Leu Thr His Leu Pro Ser Leu Val Thr Glu Pro Ile Tyr Ile Asp Ser
 115 120 125
 Lys Gly Gly Lys Ala Gln Thr Asn Tyr Trp Tyr Arg Gly Glu Ile Ala
 130 135 140
 Phe Ile Asn Lys Lys Thr Ala Arg Ala Val Asp Asp Arg Leu Phe Glu
 145 150 155 160
 Lys Val Glu Pro Gly His Tyr Thr His Leu Met Glu Thr Val Leu Asp
 165 170 175
 Ala Leu Glu Gln Asp Glu Phe Cys Lys Phe Glu Ile Gln Phe Glu Leu
 180 185 190
 Ala His Asn Ala Ile His Tyr Leu Val Gly Gly Lys Phe Glu Tyr Ser
 195 200 205
 Met Ser Asn Leu Glu Tyr Thr Ser Tyr Asp Pro Ile Phe Phe Leu His
 210 215 220
 His Ser Asn Val Asp Arg Leu Phe Ala Ile Trp Gln Arg Leu Gln Glu
 225 230 235 240
 Leu Arg Gly Lys Asn Pro Asn Ala Met Asp Cys Ala His Glu Leu Ala
 245 250 255
 His Gln Gln Leu Gln Pro Phe Asn Arg Asp Ser Asn Pro Val Gln Leu
 260 265 270

Thr Lys Asp His Ser Thr Pro Ala Asp Leu Phe Asp Tyr Lys Gln Leu
 275 280 285
 Gly Tyr Ser Tyr Asp Ser Leu Asn Leu Asn Gly Met Thr Pro Glu Gln
 290 295 300
 Leu Lys Thr Glu Leu Asp Glu Arg His Ser Lys Glu Arg Ala Phe Ala
 305 310 315 320
 Ser Phe Arg Leu Ser Gly Phe Gly Ser Ala Asn Val Val Val Tyr
 325 330 335
 Ala Cys Val Pro Asp Asp Pro Arg Ser Asp Asp Tyr Cys Glu Lys
 340 345 350
 Ala Gly Asp Phe Phe Ile Leu Gly Gln Ser Glu Met Pro Trp Arg
 355 360 365
 Phe Tyr Arg Pro Phe Phe Tyr Asp Val Thr Glu Ala Val His His Leu
 370 375 380
 Gly Val Pro Leu Ser Gly His Tyr Tyr Val Lys Thr Glu Leu Phe Ser
 385 390 395 400

Val Asn Gly Thr Ala Leu Ser Pro Asp Leu Leu Pro Gln Pro Thr Val
 405 410 415

Ala Tyr Arg Pro Gly Lys
 420

<210> 26
 <211> 419
 <212> PRT
 <213> *Haliotis tuberculata*

<220>
 <223> HtH1-b

<400> 26
 Gly His Leu Asp Pro Pro Val His His Arg His Asp Asp Asp Leu Ile
 1 5 10 15

Val Arg Lys Asn Ile Asp His Leu Thr Arg Glu Glu Glu Tyr Glu Leu
 20 25 30

Arg Met Ala Leu Glu Arg Phe Gln Ala Asp Thr Ser Val Asp Gly Tyr
 35 40 45

Gln Ala Thr Val Glu Tyr His Gly Leu Pro Ala Arg Cys Pro Arg Pro
 50 55 60

Asp Ala Lys Val Arg Phe Ala Cys Cys Met His Gly Met Ala Ser Phe
 65 70 75 80

Pro His Trp His Arg Leu Phe Val Thr Gln Val Glu Asp Ala Leu Val
 85 90 95

Arg Arg Gly Ser Pro Ile Gly Val Pro Tyr Trp Asp Trp Thr Lys Pro
 100 105 110

Met Thr His Leu Pro Asp Leu Ala Ser Asn Glu Thr Tyr Val Asp Pro
 115 120 125

Tyr Gly His Thr His His Asn Pro Phe Phe Asn Ala Asn Ile Ser Phe
 130 135 140

Glu Glu Gly His His His Thr Ser Arg Met Ile Asp Ser Lys Leu Phe
 145 150 155 160

Ala Pro Val Ala Phe Gly Glu His Ser His Leu Phe Asp Gly Ile Leu
 165 170 175

Tyr Ala Phe Glu Gln Glu Asp Phe Cys Asp Phe Glu Ile Gln Phe Glu
 180 185 190

Leu Val His Asn Ser Ile His Ala Trp Ile Gly Gly Ser Glu Asp Tyr
 195 200 205

Ser Met Ala Thr Leu His Tyr Thr Ala Phe Asp Pro Ile Phe Tyr Leu
 210 215 220

His His Ser Asn Val Asp Arg Leu Trp Ala Ile Trp Gln Ala Leu Gln
 225 230 235 240

Ile Arg Arg His Lys Pro Tyr Gln Ala His Cys Ala Gln Ser Val Glu
 245 250 255

Gln Leu Pro Met Lys Pro Phe Ala Phe Pro Ser Pro Leu Asn Asn

260

265

270

Glu Lys Thr His Ser His Ser Val Pro Thr Asp Ile Tyr Asp Tyr Glu
 275 280 285

Glu Val Leu His Tyr Ser Tyr Asp Asp Leu Thr Phe Gly Gly Met Asn
 290 295 300

Leu Glu Glu Ile Glu Glu Ala Ile His Leu Arg Gln Gln His Glu Arg
 305 310 315 320

Val Phe Ala Gly Phe Leu Leu Ala Gly Ile Gly Thr Ser Ala Leu Val
 325 330 335

Asp Ile Phe Ile Asn Lys Pro Gly Asn Gln Pro Leu Lys Ala Gly Asp
 340 345 350

Ile Ala Ile Leu Gly Gly Ala Lys Glu Met Pro Trp Ala Phe Asp Arg
 355 360 365

Leu Tyr Lys Val Glu Ile Thr Asp Ser Leu Lys Thr Leu Ser Leu Asp
 370 375 380

Al Asp Gly Asp Tyr Glu Val Thr Phe Lys Ile His Asp Met His Gly
 385 390 395 400

Asn Ala Leu Asp Thr Asp Leu Ile Pro His Ala Ala Val Val Ser Glu
 405 410 415

Pro Ala His

<210> 27

<211> 414

<212> PRT

<213> *Haliotis tuberculata*

<220>

<223> HtH1-c

<400> 27

Pro Thr Phe Glu Asp Glu Lys His Ser Leu Arg Ile Arg Lys Asn Val
 1 5 10 15

Asp Ser Leu Thr Pro Glu Glu Thr Asn Glu Leu Arg Lys Ala Leu Glu
 20 25 30

Leu Leu Glu Asn Asp His Thr Ala Gly Gly Phe Asn Gln Leu Gly Ala
 35 40 45

Phe His Gly Glu Pro Lys Trp Cys Pro Asn Pro Glu Ala Glu His Lys
 50 55 60

Val Ala Cys Cys Val His Gly Met Ala Val Phe Pro His Trp His Arg
 65 70 75 80

Leu Leu Ala Leu Gln Ala Glu Asn Ala Leu Arg Lys His Gly Tyr Ser
 85 90 95

Gly Ala Leu Pro Tyr Trp Asp Trp Thr Arg Pro Leu Ser Gln Leu Pro
 100 105 110

Asp Leu Val Ser His Glu Gln Tyr Thr Asp Pro Ser Asp His His Val
 115 120 125

Lys His Asn Pro Trp Phe Asn Gly His Ile Asp Thr Val Asn Gln Asp
 130 135 140
 Thr Thr Arg Ser Val Arg Glu Asp Leu Tyr Gln Gln Pro Glu Phe Gly
 145 150 155 160
 His Phe Thr Asp Ile Ala Gln Gln Val Leu Leu Ala Leu Glu Gln Asp
 165 170 175
 Asp Phe Cys Ser Phe Glu Val Gln Tyr Glu Ile Ser His Asn Phe Ile
 180 185 190
 His Ala Leu Val Gly Gly Thr Asp Ala Tyr Gly Met Ala Ser Leu Arg
 195 200 205
 Tyr Thr Ala Tyr Asp Pro Ile Phe Phe Leu His His Ser Asn Thr Asp
 210 215 220
 Arg Ile Trp Ala Ile Trp Gln Ser Leu Gln Lys Tyr Arg Gly Lys Pro
 225 230 235 240
 Tyr Asn Thr Ala Asn Cys Ala Ile Glu Ser Met Arg Arg Pro Leu Gln
 245 250 255
 Pro Phe Gly Leu Ser Ser Ala Ile Asn Pro Asp Arg Ile Thr Arg Glu
 260 265 270
 His Ala Ile Pro Phe Asp Val Phe Asn Tyr Arg Asp Asn Leu His Tyr
 275 280 285
 Val Tyr Asp Thr Leu Glu Phe Asn Gly Leu Ser Ile Ser Gln Leu Asp
 290 295 300
 Arg Glu Leu Glu Lys Ile Lys Ser His Glu Arg Val Phe Ala Gly Phe
 305 310 315 320
 Leu Leu Ser Gly Ile Lys Lys Ser Ala Leu Val Lys Phe Glu Val Cys
 325 330 335
 Thr Pro Pro Asp Asn Cys His Lys Ala Gly Glu Phe Tyr Leu Leu Gly
 340 345 350

Asp Glu Asn Glu Met Ala Trp Ala Tyr Asp Arg Leu Phe Lys Tyr Asp
 355 360 365
 Ile Thr Gln Val Leu Glu Ala Asn His Leu His Phe Tyr Asp His Leu
 370 375 380
 Phe Ile Arg Tyr Glu Val Phe Asp Leu Lys Gly Val Ser Leu Gly Thr
 385 390 395 400
 Asp Leu Phe His Thr Ala Asn Val Val His Asp Ser Gly Thr
 405 410

<210> 28
 <211> 413
 <212> PRT
 <213> Haliotis tuberculata

<220>
 <223> HtH1-d

<400> 28
 Gly Thr Arg Asp Arg Asp Asn Tyr Val Glu Glu Val Thr Gly Ala Ser
 5 10 15
 1

His Ile Arg Lys Asn Leu Asn Asp Leu Asn Thr Gly Glu Met Glu Ser
 20 25 30

Leu Arg Ala Ala Phe Leu His Ile Gln Asp Asp Gly Thr Tyr Glu Ser
 35 40 45

Ile Ala Gln Tyr His Gly Lys Pro Gly Lys Cys Gln Leu Asn Asp His
 50 55 60

Asn Ile Ala Cys Cys Val His Gly Met Pro Thr Phe Pro Gln Trp His
 65 70 75 80

Arg Leu Tyr Val Val Gln Val Glu Asn Ala Leu Leu Asn Arg Gly Ser
 85 90 95

Gly Val Ala Val Pro Tyr Trp Glu Trp Thr Ala Pro Ile Asp His Leu
 100 105 110

Pro His Phe Ile Asp Asp Ala Thr Tyr Phe Asn Ser Arg Gln Gln Arg
 115 120 125

Tyr Asp Pro Asn Pro Phe Phe Arg Gly Lys Val Thr Phe Glu Asn Ala
 130 135 140

Val Thr Thr Arg Asp Pro Gln Ala Gly Leu Phe Asn Ser Asp Tyr Met
 145 150 155 160

Tyr Glu Asn Val Leu Leu Ala Leu Glu Gln Glu Asn Tyr Cys Asp Phe
 165 170 175

Glu Ile Gln Phe Glu Leu Val His Asn Ala Leu His Ser Met Leu Gly
 180 185 190

Gly Lys Gly Gln Tyr Ser Met Ser Ser Leu Asp Tyr Ser Ala Phe Asp
 195 200 205

Pro Val Phe Phe Leu His His Ala Asn Thr Asp Arg Leu Trp Ala Ile
 210 215 220

~~Trp Gin Glu Leu Gln Arg Phe Arg Glu Leu Pro Tyr Glu Glu Ala Asn~~
 225 230 235 240

Cys Ala Ile Asn Leu Met His Gln Pro Leu Lys Pro Phe Ser Asp Pro
 245 250 255

His Glu Asn His Asp Asn Val Thr Leu Lys Tyr Ser Lys Pro Gln Asp
 260 265 270

Gly Phe Asp Tyr Gln Asn His Phe Gly Tyr Lys Tyr Asp Asn Leu Glu
 275 280 285

Phe His His Leu Ser Ile Pro Ser Leu Asp Ala Thr Leu Lys Gln Arg
 290 295 300

Arg Asn His Asp Arg Val Phe Ala Gly Phe Leu Leu His Asn Ile Gly
 305 310 315 320

Thr Ser Ala Asp Ile Thr Ile Tyr Ile Cys Leu Pro Asp Gly Arg Arg
 325 330 335

Gly Asn Asp Cys Ser His Glu Ala Gly Thr Phe Tyr Ile Leu Gly Gly
 340 345 350

Glu Thr Glu Met Pro Phe Ile Phe Asp Arg Leu Tyr Lys Phe Glu Ile
 355 360 365

Thr Lys Pro Leu Gln Gln Leu Gly Val Lys Leu His Gly Gly Val Phe
 370 375 380

Glu Leu Glu Leu Glu Ile Lys Ala Tyr Asn Gly Ser Tyr Leu Asp Pro
 385 390 395 400

His Thr Phe Asp Pro Thr Ile Ile Phe Glu Pro Gly Thr
 405 410

<210> 29

<211> 420

<212> PRT

<213> Haliotis tuberculata

<220>

<223> HtH1-e

<400> 29

Asp Thr His Ile Leu Asp His Asp His Glu Glu Glu Ile Leu Val Arg
 1 5 10 15

ys Asn Ile Ile Asp Leu Ser Pro Arg Glu Arg Val Ser Leu Val Lys
 20 25 30

Ala Leu Gln Arg Met Lys Asn Asp Arg Ser Ala Asp Gly Tyr Gln Ala
 35 40 45

Ile Ala Ser Phe His Ala Leu Pro Pro Leu Cys Pro Asn Pro Ser Ala
 50 55 60

Ala His Arg Tyr Ala Cys Cys Val His Gly Met Ala Thr Phe Pro Gln
 65 70 75 80

Trp His Arg Leu Tyr Thr Val Gln Val Gln Asp Ala Leu Arg Arg His
 85 90 95

Gly Ser Leu Val Gly Ile Pro Tyr Trp Asp Trp Thr Lys Pro Val Asn
 100 105 110

Glu Leu Pro Glu Leu Leu Ser Ser Ala Thr Phe Tyr His Pro Ile Arg
 115 120 125

Asn Ile Asn Ile Ser Asn Pro Phe Leu Gly Ala Asp Ile Glu Phe Glu
 130 135 140

Gly Pro Gly Val His Thr Glu Arg His Ile Asn Thr Glu Arg Leu Phe
 145 150 155 160

His Ser Gly Asp His Asp Gly Tyr His Asn Trp Phe Phe Glu Thr Val
 165 170 175

Leu Phe Ala Leu Glu Gln Glu Asp Tyr Cys Asp Phe Glu Ile Gln Phe
 180 185 190

Glu Ile Ala His Asn Gly Ile His Thr Trp Ile Gly Gly Ser Ala Val
 195 200 205

Tyr Gly Met Gly His Leu His Tyr Ala Ser Tyr Asp Pro Ile Phe Tyr
 210 215 220

Ile His His Ser Gln Thr Asp Arg Ile Trp Ala Ile Trp Gln Glu Leu
 225 230 235 240

Gln Lys Tyr Arg Gly Leu Ser Gly Ser Glu Ala Asn Cys Ala Ile Glu

245

250

255

His Met Arg Thr Pro Leu Lys Pro Phe Ser Phe Gly Pro Pro Tyr Asn
 260 265 270

Leu Asn Ser His Thr Gln Glu Tyr Ser Lys Pro Glu Asp Thr Phe Asp
 275 280 285

Tyr Lys Lys Phe Gly Tyr Arg Tyr Asp Ser Leu Glu Leu Glu Gly Arg
 290 295 300

Ser Ile Ser Arg Ile Asp Glu Leu Ile Gln Gln Arg Gln Glu Lys Asp
 305 310 315 320

Arg Thr Phe Ala Gly Phe Leu Leu Lys Gly Phe Gly Thr Ser Ala Ser
 325 330 335

Val Ser Leu Gln Val Cys Arg Val Asp His Thr Cys Lys Asp Ala Gly
 340 345 350

Tyr Phe Thr Ile Leu Gly Gly Ser Ala Glu Met Pro Trp Ala Phe Asp
 355 360 365

Arg Leu Tyr Lys Tyr Asp Ile Thr Lys Thr Leu His Asp Met Asn Leu
 370 375 380

Arg His Glu Asp Thr Phe Ser Ile Asp Val Thr Ile Thr Ser Tyr Asn
 385 390 395 400

Gly Thr Val Leu Ser Gly Asp Leu Ile Gln Thr Pro Ser Ile Ile Phe
 405 410 415

Val Pro Gly Arg
 420

<210> 30

<211> 417

<212> PRT

<213> Haliotis tuberculata

<220>

<223> HtH1-f

<400> 30

His Lys Leu Asn Ser Arg Lys His Thr Pro Asn Arg Val Arg His Glu
 1 5 10 15

Leu Ser Ser Leu Ser Ser Arg Asp Ile Ala Ser Leu Lys Ala Ala Leu
 20 25 30

Thr Ser Leu Gln His Asp Asn Gly Thr Asp Gly Tyr Gln Ala Ile Ala
 35 40 45

Ala Phe His Gly Val Pro Ala Gln Cys His Glu Pro Ser Gly Arg Glu
 50 55 60

Ile Ala Cys Cys Ile His Gly Met Ala Thr Phe Pro His Trp His Arg
 65 70 75 80

Leu Tyr Thr Leu Gln Leu Glu Gln Ala Leu Arg Arg His Gly Ser Ser
 85 90 95

Val Ala Val Pro Tyr Trp Asp Trp Thr Lys Pro Ile Thr Glu Leu Pro
 100 105 110

His Ile Leu Thr Asp Gly Glu Tyr Tyr Asp Val Trp Gln Asn Ala Val
 115 120 125

Leu Ala Asn Pro Phe Ala Arg Gly Tyr Val Lys Ile Lys Asp Ala Phe
 130 135 140

Thr Val Arg Asn Val Gln Glu Ser Leu Phe Lys Met Ser Ser Phe Gly
 145 150 155 160

Lys His Ser Leu Leu Phe Asp Gln Ala Leu Leu Ala Leu Glu Gln Thr
 165 170 175

Asp Tyr Cys Asp Phe Glu Val Gln Phe Glu Val Met His Asn Thr Ile
 180 185 190

His Tyr Leu Val Gly Gly Arg Gln Thr Tyr Ala Phe Ser Ser Leu Glu
 195 200 205

Tyr Ser Ser Tyr Asp Pro Ile Phe Phe Ile His His Ser Phe Val Asp
 210 215 220

Lys Ile Trp Ala Val Trp Gln Glu Leu Gln Ser Arg Arg His Leu Gln
 225 230 235 240

Phe Arg Thr Ala Asp Cys Ala Val Gly Leu Met Gly Gln Ala Met Arg
 245 250 255

Pro Phe Asn Lys Asp Phe Asn His Asn Ser Phe Thr Lys Lys His Ala
 260 265 270

Val Pro Asn Thr Val Phe Asp Tyr Glu Asp Leu Gly Tyr Asn Tyr Asp
 275 280 285

Asn Leu Glu Ile Ser Gly Leu Asn Leu Asn Glu Ile Glu Ala Leu Ile
 290 295 300

Ala Lys Arg Lys Ser His Ala Arg Val Phe Ala Gly Phe Leu Leu Phe
 305 310 315 320

Gly Leu Gly Thr Ser Ala Asp Ile His Leu Glu Ile Cys Lys Thr Ser
 325 330 335

Glu Asn Cys His Asp Ala Gly Val Ile Phe Ile Leu Gly Gly Ser Ala
 340 345 350

Glu Met His Trp Ala Tyr Asn Arg Leu Tyr Lys Tyr Asp Ile Thr Glu
 355 360 365

Ala Leu Gln Glu Phe Asp Ile Asn Pro Glu Asp Val Phe His Ala Asp
 370 375 380

Glu Pro Phe Phe Leu Arg Leu Ser Val Val Ala Val Asn Gly Thr Val
 385 390 395 400

Ile Pro Ser Ser His Leu His Gln Pro Thr Ile Ile Tyr Glu Pro Gly
 405 410 415

Glu

<210> 31
 <211> 403
 <212> PRT
 <213> Haliotis tuberculata

<220>

<223> HtH1-g

<400> 31

Asp His His Asp Asp His Gln Ser Gly Ser Ile Ala Gly Ser Gly Val
 1 5 10 15

Arg Lys Asp Val Asn Thr Leu Thr Lys Ala Glu Thr Asp Asn Leu Arg
 20 25 30

Glu Ala Leu Trp Gly Val Met Ala Asp His Gly Pro Asn Gly Phe Gln
 35 40 45

Ala Ile Ala Ala Phe His Gly Lys Pro Ala Leu Cys Pro Met Pro Asp
 50 55 60

Gly His Asn Tyr Ser Cys Cys Thr His Gly Met Ala Thr Phe Pro His
 65 70 75 80

Trp His Arg Leu Tyr Thr Lys Gln Met Glu Asp Ala Met Arg Ala His
 85 90 95

Gly Ser His Val Gly Leu Pro Tyr Trp Asp Trp Thr Ala Ala Phe Thr
 100 105 110

His Leu Pro Thr Leu Val Thr Asp Thr Asp Asn Asn Pro Phe Gln His
 115 120 125

Gly His Ile Asp Tyr Leu Asn Val Ser Thr Thr Arg Ser Pro Arg Asp
 130 135 140

Met Leu Phe Asn Asp Pro Glu His Gly Ser Glu Ser Phe Phe Tyr Arg
 145 150 155 160

Gln Val Leu Leu Ala Leu Glu Gln Thr Asp Phe Cys Lys Phe Glu Val
 165 170 175

Gln Phe Glu Ile Thr His Asn Ala Ile His Ser Trp Thr Gly Gly His
 180 185 190

~~Ser Pro Tyr Gly Met Ser Thr Leu Asp Phe Thr Ala Tyr Asp Pro Leu~~
 195 200 205

~~Phe Trp Leu His His Ser Asn Thr Asp Arg Ile Trp Ala Val Trp Gln~~
 210 215 220

~~Ala Leu Gln Glu Tyr Arg Gly Leu Pro Tyr Asn His Ala Asn Cys Glu~~
 225 230 235 240

~~Ile Gln Ala Met Lys Thr Pro Leu Arg Pro Phe Ser Asp Asp Ile Asn~~
 245 250 255

~~His Asn Pro Val Thr Lys Ala Asn Ala Lys Pro Leu Asp Val Phe Glu~~
 260 265 270

~~Tyr Asn Arg Leu Ser Phe Gln Tyr Asp Asn Leu Ile Phe His Gly Tyr~~
 275 280 285

~~Ser Ile Pro Glu Leu Asp Arg Val Leu Glu Glu Arg Lys Glu Glu Asp~~
 290 295 300

~~Arg Ile Phe Ala Ala Phe Leu Leu Ser Gly Ile Lys Arg Ser Ala Asp~~
 305 310 315 320

~~Val Val Phe Asp Ile Cys Gln Pro Glu His Glu Cys Val Phe Ala Gly~~
 325 330 335

Thr Phe Ala Ile Leu Gly Gly Glu Leu Glu Met Pro Trp Ser Phe Asp
 340 345 350
 Arg Leu Phe Arg Tyr Asp Ile Thr Lys Val Met Lys Gln Leu His Leu
 355 360 365
 Arg His Asp Ser Asp Phe Thr Phe Arg Val Lys Ile Val Gly Thr Asp
 370 375 380
 Asp His Glu Leu Pro Ser Asp Ser Val Lys Ala Pro Thr Ile Glu Phe
 385 390 395 400
 Glu Pro Gly

<210> 32
 <211> 511
 <212> PRT
 <213> *Halictis tuberculata*

<220>
 <223> *HtH1-h*

<400> 32
 Val His Arg Gly Gly Asn His Glu Asp Glu His His Asp Asp Arg Leu
 1 5 10 15
 Ala Asp Val Leu Ile Arg Lys Glu Val Asp Phe Leu Ser Leu Gln Glu
 20 25 30
 Ala Asn Ala Ile Lys Asp Ala Leu Tyr Lys Leu Gln Asn Asp Asp Ser
 35 40 45
 Lys Gly Gly Phe Glu Ala Ile Ala Gly Tyr His Gly Tyr Pro Asn Met
 50 55 60
 Cys Pro Glu Arg Gly Thr Asp Lys Tyr Pro Cys Cys Val His Gly Met
 65 70 75 80

Pro Val Phe Pro His Trp His Arg Leu His Thr Ile Gln Met Glu Arg
 85 90 95

Ala Leu Lys Asn His Gly Ser Pro Met Gly Ile Pro Tyr Trp Asp Trp
 100 105 110

Thr Lys Lys Met Ser Ser Leu Pro Ser Phe Phe Gly Asp Ser Ser Asn
 115 120 125

Asn Asn Pro Phe Tyr Lys Tyr Ile Arg Gly Val Gln His Glu Thr
 130 135 140

Thr Arg Asp Val Asn Gln Arg Leu Phe Asn Gln Thr Lys Phe Gly Glu
 145 150 155 160

Phe Asp Tyr Leu Tyr Tyr Leu Thr Leu Gln Val Leu Glu Glu Asn Ser
 165 170 175

Tyr Cys Asp Phe Glu Val Gln Tyr Glu Ile Leu His Asn Ala Val His
 180 185 190

Ser Trp Leu Gly Gly Thr Gly Gln Tyr Ser Met Ser Thr Leu Glu Tyr
 195 200 205

Ser Ala Phe Asp Pro Val Phe Met Ile His His Ser Ser Leu Asp Arg

210

215

220

Ile Trp Ile Leu Trp Gln Lys Leu Gln Lys Ile Arg Met Lys Pro Tyr
 225 230 235 240

Tyr Ala Leu Asp Cys Ala Gly Asp Arg Leu Met Lys Asp Pro Leu His
 245 250 255

Pro Phe Asn Tyr Glu Thr Val Asn Glu Asp Glu Phe Thr Arg Ile Asn
 260 265 270

Ser Phe Pro Ser Ile Leu Phe Asp His Tyr Arg Phe Asn Tyr Glu Tyr
 275 280 285

Asp Asn Met Arg Ile Arg Gly Gln Asp Ile His Glu Leu Glu Glu Val
 290 295 300

Ile Gln Glu Leu Arg Asn Lys Asp Arg Ile Phe Ala Gly Phe Val Leu
 305 310 315 320

Ser Gly Leu Arg Ile Ser Ala Thr Val Lys Val Phe Ile His Ser Lys
 325 330 335

Asn Asp Thr Ser His Glu Glu Tyr Ala Gly Glu Phe Ala Val Leu Gly
 340 345 350

Gly Glu Lys Glu Met Pro Trp Ala Tyr Glu Arg Met Leu Lys Leu Asp
 355 360 365

Ile Ser Asp Ala Val His Lys Leu His Val Lys Asp Glu Asp Ile Arg
 370 375 380

Phe Arg Val Val Val Thr Ala Tyr Asn Gly Asp Val Val Thr Thr Arg
 385 390 395 400

Leu Ser Gln Pro Phe Ile Val His Arg Pro Ala His Val Ala His Asp
 405 410 415

Ile Leu Val Ile Pro Val Gly Ala Gly His Asp Leu Pro Pro Lys Val
 420 425 430

Val Val Lys Ser Gly Thr Lys Val Glu Phe Thr Pro Ile Asp Ser Ser
 435 440 445

Val Asn Lys Ala Met Val Glu Leu Gly Ser Tyr Thr Ala Met Ala Lys
 450 455 460

Cys Ile Val Pro Pro Phe Ser Tyr His Gly Phe Glu Leu Asp Lys Val
 465 470 475 480

Tyr Ser Val Asp His Gly Asp Tyr Tyr Ile Ala Ala Gly Thr His Ala
 485 490 495

Leu Cys Glu Gln Asn Leu Arg Leu His Ile His Val Glu His Glu
 500 505 510

<210> 33

<211> 334

<212> PRT

<213> Haliotis tuberculata

<220>

<223> HtH2-b

<400> 33

His Arg Leu Phe Val Thr Gln Val Glu Asp Ala Leu Ile Arg Arg Gly
 1 5 10 15

Ser Pro Ile Gly Val Pro Tyr Trp Asp Trp Thr Gln Pro Met Ala His
 20 25 30

Leu Pro Gly Leu Ala Asp Asn Ala Thr Tyr Arg Asp Pro Ile Ser Gly
 35 40 45

Asp Ser Arg His Asn Pro Phe His Asp Val Glu Val Ala Phe Glu Asn
 50 55 60

Gly Arg Thr Glu Arg His Pro Asp Ser Arg Leu Phe Glu Gln Pro Leu
 65 70 75 80

Phe Gly Lys His Thr Arg Leu Phe Asp Ser Ile Val Tyr Ala Phe Glu
 85 90 95

Gln Glu Asp Phe Cys Asp Phe Glu Val Gln Phe Glu Met Thr His Asn
 100 105 110

Asn Ile His Ala Trp Ile Gly Gly Glu Lys Tyr Ser Met Ser Ser
 115 120 125

Leu His Tyr Thr Ala Phe Asp Pro Ile Phe Tyr Leu Arg His Ser Asn
 130 135 140

Thr Asp Arg Leu Trp Ala Ile Trp Gln Ala Leu Gln Ile Arg Arg Asn
 145 150 155 160

Arg Pro Tyr Lys Ala His Cys Ala Trp Ser Glu Glu Arg Gln Pro Leu
 165 170 175

Lys Pro Phe Ala Phe Ser Ser Pro Leu Asn Asn Asn Glu Lys Thr Tyr
 180 185 190

Glu Asn Ser Val Pro Thr Asn Val Tyr Asp Tyr Glu Gly Val Leu Gly
 195 200 205

Tyr Thr Tyr Asp Asp Leu Asn Phe Gly Gly Met Asp Leu Gly Gln Leu
 210 215 220

Glu Glu Tyr Ile Gln Arg Gln Arg Asp Arg Thr Phe Ala Gly
 225 230 235 240

Phe Phe Leu Ser His Ile Gly Thr Ser Ala Asn Val Glu Ile Ile
 245 250 255

Asp His Gly Thr Leu His Thr Ser Val Gly Thr Phe Ala Val Leu Gly
 260 265 270

Gly Glu Lys Glu Met Lys Trp Gly Phe Asp Arg Leu Tyr Lys Tyr Glu
 275 280 285

Ile Thr Asp Glu Leu Arg Gln Leu Asn Leu Arg Ala Asp Asp Val Phe
 290 295 300

Ser Ile Ser Val Lys Val Thr Asp Val Asp Gly Ser Glu Leu Ser Ser
 305 310 315 320

Glu Leu Ile Pro Ser Ala Ala Ile Ile Phe Glu Arg Ser His
 325 330

<212> PRT

<213> Haliotis tuberculata

<220>

<223> HtH2-c

<400> 34

Ile	Asp	His	Gln	Asp	Pro	His	His	Asp	Thr	Ile	Ile	Arg	Lys	Asn	Val
1					5				10				15		

Asp	Asn	Leu	Thr	Pro	Glu	Glu	Ile	Asn	Ser	Leu	Arg	Arg	Ala	Met	Ala
					20				25			30			

Asp	Leu	Gln	Ser	Asp	Lys	Thr	Ala	Gly	Gly	Phe	Gln	Gln	Ile	Ala	Ala
					35			40				45			

Phe	His	Gly	Glu	Pro	Lys	Trp	Cys	Pro	Ser	Pro	Asp	Ala	Glu	Lys	Lys
					50		55				60				

Phe	Ser	Cys	Cys	Val	His	Gly	Met	Ala	Val	Phe	Pro	His	Trp	His	Arg
					65		70			75		80			

Leu	Leu	Thr	Val	Gln	Gly	Glu	Asn	Ala	Leu	Arg	Lys	His	Gly	Cys	Leu
					85				90			95			

Gly	Ala	Leu	Pro	Tyr	Trp	Asp	Trp	Thr	Arg	Pro	Leu	Ser	His	Leu	Pro
					100			105			110				

Asp	Leu	Val	Leu	Val	Ser	Ser	Arg	Thr	Thr	Pro	Met	Pro	Tyr	Ser	Thr
					115			120			125				

Val	Glu	Ala	Arg	Asn	Pro	Trp	Tyr	Ser	Gly	His	Ile	Asp	Thr	Val	Gly
					130		135			140					

Val	Asp	Thr	Thr	Arg	Ser	Val	Arg	Gln	Glu	Leu	Tyr	Glu	Ala	Pro	Gly
					145		150		155			160			

Phe	Gly	His	Tyr	Thr	Gly	Val	Ala	Lys	Gln	Val	Leu	Leu	Ala	Leu	Glu
					165			170			175				

Gln	Asp	Asp	Phe	Cys	Asp	Phe	Glu	Val	Gln	Phe	Glu	Ile	Ala	His	Asn
					180			185			190				

Phe	Ile	His	Ala	Leu	Val	Gly	Gly	Ser	Glu	Pro	Tyr	Gly	Met	Ala	Ser
						195		200			205				

Leu	Arg	Tyr	Thr	Thr	Tyr	Asp	Pro	Ile	Phe	Tyr	Leu	His	His	Ser	Asn
					210		215			220					

Thr	Asp	Arg	Leu	Trp	Ala	Ile	Trp	Gln	Ala	Leu	Gln	Lys	Tyr	Arg	Gly
					225		230			235			240		

Lys	Pro	Tyr	Asn	Ser	Ala	Asn	Cys	Ala	Ile	Ala	Ser	Met	Arg	Lys	Pro
					245				250			255			

Leu	Gln	Pro	Phe	Gly	Leu	Thr	Asp	Glu	Ile	Asn	Pro	Asp	Asp	Glu	Thr
					260			265			270				

Arg	Gln	His	Ala	Val	Pro	Phe	Ser	Val	Phe	Asp	Tyr	Lys	Asn	Asn	Phe
					275			280			285				

Asn	Tyr	Glu	Tyr	Asp	Thr	Leu	Asp	Phe	Asn	Gly	Leu	Ser	Ile	Ser	Gln
					290			295			300				

Leu	Asp	Arg	Glu	Leu	Ser	Arg	Arg	Lys	Ser	His	Asp	Arg	Val	Phe	Ala
					305			310			315			320	

Gly Phe Leu Leu His Gly Ile Gln Gln Ser Ala Leu Val Lys Phe Phe
 325 330 335
 Val Cys Lys Ser Asp Asp Asp Cys Asp His Tyr Ala Gly Glu Phe Tyr
 340 345 350
 Ile Leu Gly Asp Glu Ala Glu Met Pro Trp Gly Tyr Asp Arg Leu Tyr
 355 360 365
 Lys Tyr Glu Ile Thr Glu Gln Leu Asn Ala Leu Asp Leu His Ile Gly
 370 375 380
 Asp Arg Phe Phe Ile Arg Tyr Glu Ala Phe Asp Leu His Gly Thr Ser
 385 390 395 400
 Leu Gly Ser Asn Ile Phe Pro Lys Pro Ser Val Ile His Asp Glu Gly
 405 410 415
 Ala

<210> 35
 <211> 415
 <212> PRT
 <213> *Haliotis tuberculata*

 <220>
 <223> Hth2-d

 <400> 35
 Gly His His Gln Ala Asp Glu Tyr Asp Glu Val Val Thr Ala Ala Ser
 1 5 10 15

 His Ile Arg Lys Asn Leu Lys Asp Leu Ser Lys Gly Glu Val Glu Ser
 20 25 30

 Leu Arg Ser Ala Phe Leu Gln Leu Gln Asn Asp Gly Val Tyr Glu Asn
 35 40 45

Ile Ala Lys Phe His Gly Lys Pro Gly Leu Cys Asp Asp Asn Gly Arg
 50 55 60

 Lys Val Ala Cys Cys Val His Gly Met Pro Thr Phe Pro Gln Trp His
 65 70 75 80

 Arg Leu Tyr Val Leu Gln Val Glu Asn Ala Leu Leu Glu Arg Gly Ser
 85 90 95

 Ala Val Ser Val Pro Tyr Trp Asp Trp Thr Glu Thr Phe Thr Glu Leu
 100 105 110

 Pro Ser Leu Ile Ala Glu Ala Thr Tyr Phe Asn Ser Arg Gln Gln Thr
 115 120 125

 Phe Asp Pro Asn Pro Phe Phe Arg Gly Lys Ile Ser Phe Glu Asn Ala
 130 135 140

 Val Thr Thr Arg Asp Pro Gln Pro Glu Leu Tyr Val Asn Arg Tyr Tyr
 145 150 155 160

 Tyr Gln Asn Val Met Leu Val Phe Glu Gln Asp Asn Tyr Cys Asp Phe
 165 170 175

 Glu Ile Gln Phe Glu Met Val His Asn Val Leu His Ala Trp Leu Gly

180	185	190
Gly Arg Ala Thr Tyr Ser Ile Ser Ser Leu Asp Tyr Ser Ala Phe Asp		
195	200	205
Pro Val Phe Phe Leu His His Ala Asn Thr Asp Arg Leu Trp Ala Ile		
210	215	220
Trp Gln Glu Leu Gln Arg Tyr Arg Lys Lys Pro Tyr Asn Glu Ala Asp		
225	230	235
Cys Ala Ile Asn Leu Met Arg Lys Pro Leu His Pro Phe Asp Asn Ser		
245	250	255
Asp Leu Asn His Asp Pro Val Thr Phe Lys Tyr Ser Lys Pro Thr Asp		
260	265	270
Gly Phe Asp Tyr Gln Asn Asn Phe Gly Tyr Lys Tyr Asp Asn Leu Glu		
275	280	285
Phe Asn His Phe Ser Ile Pro Arg Leu Glu Glu Ile Ile Arg Ile Arg		
290	295	300
Gln Arg Gln Asp Arg Val Phe Ala Gly Phe Leu Leu His Asn Ile Gly		
305	310	315
Thr Ser Ala Thr Val Glu Ile Phe Val Cys Val Pro Thr Thr Ser Gly		
325	330	335
Glu Gln Asn Cys Glu Asn Lys Ala Gly Thr Phe Ala Val Leu Gly Gly		
340	345	350
Glu Thr Glu Met Ala Phe His Phe Asp Arg Leu Tyr Arg Phe Asp Ile		
355	360	365
Ser Glu Thr Leu Arg Asp Leu Gly Ile Gln Leu Asp Ser His Asp Phe		
370	375	380
Asp Leu Ser Ile Lys Ile Gln Gly Val Asn Gly Ser Tyr Leu Asp Pro		
385	390	395
His Ile Leu Pro Glu Pro Ser Leu Ile Phe Val Pro Gly Ser Ser		
405	410	415

<210> 36
 <211> 418
 <212> PRT
 <213> Haliotis tuberculata

<220>
 <223> HtH2-e

<400> 36
 Ser Phe Leu Arg Pro Asp Gly His Ser Asp Asp Ile Leu Val Arg Lys
 1 5 10 15

Glu Val Asn Ser Leu Thr Thr Arg Glu Thr Ala Ser Leu Ile His Ala
 20 25 30

Leu Lys Ser Met Gln Glu Asp His Ser Pro Asp Gly Phe Gln Ala Ile
 35 40 45

Ala Ser Phe His Ala Leu Pro Pro Leu Cys Pro Ser Pro Ala Ala
 50 55 60

His Arg Tyr Ala Cys Cys Val His Gly Met Ala Thr Phe Pro Gln Trp
 65 70 75 80

His Arg Leu Tyr Thr Val Gln Phe Gln Asp Ala Leu Arg Arg His Gly
 85 90 95

Ala Thr Val Gly Val Pro Tyr Trp Asp Trp Leu Arg Pro Gln Ser His
 100 105 110

Leu Pro Glu Leu Val Thr Met Glu Thr Tyr His Asp Ile Trp Ser Asn
 115 120 125

Arg Asp Phe Pro Asn Pro Phe Tyr Gln Ala Asn Ile Glu Phe Glu Gly
 130 135 140

Glu Asn Ile Thr Thr Glu Arg Glu Val Ile Ala Asp Lys Leu Phe Val
 145 150 155 160

Lys Gly Gly His Val Phe Asp Lys Leu Val Leu Gln Thr Ser His Pro
 165 170 175

Ser Ala Glu Gln Glu Asn Tyr Cys Asp Phe Glu Ile Gln Phe Glu Ile
 180 185 190

Leu His Asn Gly Val His Thr Trp Val Gly Gly Ser Arg Thr Tyr Ser
 195 200 205

Ile Gly His Leu His Tyr Ala Phe Tyr Asp Pro Leu Phe Tyr Leu His
 210 215 220

His Phe Gln Thr Asp Arg Ile Trp Ala Ile Trp Gln Glu Leu Gln Glu
 225 230 235 240

Gln Arg Gly Leu Ser Gly Asp Glu Ala His Cys Ala Leu Glu Gln Met
 245 250 255

Arg Glu Pro Leu Lys Pro Phe Ser Phe Gly Ala Pro Tyr Asn Trp Asn
 260 265 270

Gln Leu Thr Gln Asp Phe Ser Arg Pro Glu Asp Thr Phe Asp Tyr Arg
 275 280 285

Lys Phe Gly Tyr Glu Tyr Asp Asn Leu Glu Phe Leu Gly Met Ser Val
 290 295 300

Ala Glu Leu Asp Gln Tyr Ile Ile Glu His Gln Glu Asn Asp Arg Val
 305 310 315 320

Phe Ala Gly Phe Leu Leu Ser Gly Phe Gly Gly Ser Ala Ser Val Asn
 325 330 335

Phe Gln Val Cys Arg Ala Asp Ser Thr Cys Gln Asp Ala Gly Tyr Phe
 340 345 350

Thr Val Leu Gly Gly Ser Ala Glu Met Ala Trp Ala Phe Asp Arg Leu
 355 360 365

Tyr Lys Tyr Asp Ile Thr Glu Thr Leu Glu Lys Met His Leu Arg Tyr
 370 375 380

Asp Asp Asp Phe Thr Ile Ser Val Ser Leu Thr Ala Asn Asn Gly Thr
 385 390 395 400

Val Leu Ser Ser Ser Leu Ile Pro Thr Pro Ser Val Ile Phe Gln Arg
 405 410 415

Gly His

<210> 37

<211> 416

<212> PRT

<213> Haliotis tuberculata

<220>

<223> HtH2-f

<400> 37

Arg Asp Ile Asn Thr Arg Ser Met Ser Pro Asn Arg Val Arg Arg Glu
1 5 10 15Leu Ser Asp Leu Ser Ala Arg Asp Leu Ser Ser Leu Lys Ser Ala Leu
20 25 30Arg Asp Leu Gln Glu Asp Asp Gly Pro Asn Gly Tyr Gln Ala Leu Ala
35 40 45Ala Phe His Gly Leu Pro Ala Gly Cys His Asp Ser Arg Gly Asn Glu
50 55 60Ile Ala Cys Cys Ile His Gly Met Pro Thr Phe Pro Gln Trp His Arg
65 70 75 80Leu Tyr Thr Leu Gln Leu Glu Met Ala Leu Arg Arg His Gly Ser Ser
85 90 95Val Ala Ile Pro Tyr Trp Asp Trp Thr Lys Pro Ile Ser Glu Leu Pro
100 105 110Ser Leu Phe Thr Ser Pro Glu Tyr Tyr Asp Pro Trp His Asp Ala Val
115 120 125Val Asn Asn Pro Phe Ser Lys Gly Phe Val Lys Phe Ala Asn Thr Tyr
130 135 140Thr Val Arg Asp Pro Gln Glu Met Leu Phe Gln Leu Cys Glu His Gly
145 150 155 160Glu Ser Ile Leu Tyr Glu Gln Thr Leu Leu Ala Leu Glu Gln Thr Asp
165 170 175Tyr Cys Asp Phe Glu Val Gln Phe Glu Val Leu His Asn Val Ile His
180 185 190Tyr Leu Val Gly Gly Arg Gln Thr Tyr Ala Leu Ser Ser Leu His Tyr
195 200 205Ala Ser Tyr Asp Pro Phe Phe Ile His His Ser Phe Val Asp Lys
210 215 220Met Trp Val Val Trp Gln Ala Leu Gln Lys Arg Arg Lys Leu Pro Tyr
225 230 235 240Lys Arg Ala Asp Cys Ala Val Asn Leu Met Thr Lys Pro Met Arg Pro
245 250 255Phe Asp Ser Asp Met Asn Gln Asn Pro Phe Thr Lys Met His Ala Val
260 265 270Pro Asn Thr Leu Tyr Asp Tyr Glu Thr Leu Tyr Tyr Ser Tyr Asp Asn
275 280 285

Leu Glu Ile Gly Gly Arg Asn Leu Asp Gln Leu Gln Ala Glu Ile Asp
 290 295 300
 Arg Ser Arg Ser His Asp Arg Val Phe Ala Gly Phe Leu Leu Arg Gly
 305 310 315 320
 Ile Gly Thr Ser Ala Asp Val Arg Phe Trp Ile Cys Arg Asn Glu Asn
 325 330 335
 Asp Cys His Arg Gly Gly Ile Ile Phe Ile Leu Gly Gly Ala Lys Glu
 340 345 350
 Met Pro Trp Ser Phe Asp Arg Asn Phe Lys Phe Asp Ile Thr His Val
 355 360 365
 Leu Glu Asn Ala Gly Ile Ser Pro Glu Asp Val Phe Asp Ala Glu Glu
 370 375 380
 Pro Phe Tyr Ile Lys Val Glu Ile His Ala Val Asn Lys Thr Met Ile
 385 390 395 400
 Pro Ser Ser Val Ile Pro Ala Pro Thr Ile Ile Tyr Ser Pro Gly Glu
 405 410 415

<210> 38
 <211> 402
 <212> PRT
 <213> Halictis tuberculata

 <220>
 <223> HtH2-g

 <400> 38
 Gly Arg Ala Ala Asp Ser Ala His Ser Ala Asn Ile Ala Gly Ser Gly
 1 5 10 15

Val Arg Lys Asp Val Thr Thr Leu Thr Val Ser Glu Thr Glu Asn Leu
 20 25 30
 Arg Gln Ala Leu Gln Gly Val Ile Asp Asp Thr Gly Pro Asn Gly Tyr
 35 40 45
 Gln Ala Ile Ala Ser Phe His Gly Ser Pro Pro Met Cys Glu Met Asn
 50 55 60
 Gly Arg Lys Val Ala Cys Cys Ala His Gly Met Ala Ser Phe Pro His
 65 70 75 80
 Trp His Arg Leu Tyr Val Lys Gln Met Glu Asp Ala Leu Ala Asp His
 85 90 95
 Gly Ser His Ile Gly Ile Pro Tyr Trp Asp Trp Thr Thr Ala Phe Thr
 100 105 110
 Glu Leu Pro Ala Leu Val Thr Asp Ser Glu Asn Asn Pro Phe His Glu
 115 120 125
 Gly Arg Ile Asp His Leu Gly Val Thr Thr Ser Arg Ser Pro Arg Asp
 130 135 140
 Met Leu Phe Asn Asp Pro Glu Gln Gly Ser Glu Ser Phe Phe Tyr Arg

145	150	155	160
Gln Val Leu Leu Ala Leu Glu Gln Thr Asp Tyr Cys Gln Phe Glu Val			
165	170	175	
Gln Phe Glu Leu Thr His Asn Ala Ile His Ser Trp Thr Gly Gly Arg			
180	185	190	
Ser Pro Tyr Gly Met Ser Thr Leu Glu Phe Thr Ala Tyr Asp Pro Leu			
195	200	205	
Phe Trp Leu His His Ser Asn Thr Asp Arg Ile Trp Ala Val Trp Gln			
210	215	220	
Ala Leu Gln Lys Tyr Arg Gly Leu Pro Tyr Asn Glu Ala His Cys Glu			
225	230	235	240
Ile Gln Val Leu Lys Gln Pro Leu Arg Pro Phe Asn Asp Asp Ile Asn			
245	250	255	
His Asn Pro Ile Thr Lys Thr Asn Ala Arg Pro Ile Asp Ser Phe Asp			
260	265	270	
Tyr Glu Arg Phe Asn Tyr Gln Tyr Asp Thr Leu Ser Phe His Gly Lys			
275	280	285	
Ser Ile Pro Glu Leu Asn Asp Leu Leu Glu Glu Arg Lys Arg Glu Glu			
290	295	300	
Arg Thr Phe Ala Ala Phe Leu Leu Arg Gly Ile Gly Cys Ser Ala Asp			
305	310	315	320
Val Val Phe Asp Ile Cys Arg Pro Asn Gly Asp Cys Val Phe Ala Gly			
325	330	335	
Thr Phe Ala Val Leu Gly Gly Glu Leu Glu Met Pro Trp Ser Phe Asp			
340	345	350	
Arg Leu Phe Arg Tyr Asp Ile Thr Arg Val Met Asn Gln Leu His Leu			
355	360	365	

Gln Tyr Asp Ser Asp Phe Ser Phe Arg Val Lys Leu Val Ala Thr Asn
370 375 380

Gly Thr Glu Leu Ser Ser Asp Leu Leu Lys Ser Pro Thr Ile Glu His
385 390 395 400

Glu Leu

<210> 39
<211> 515
<212> PRT
<213> Haliotis tuberculata

<220>
<223> HtH2-h

<400> 39
Gly Ala His Arg Gly Pro Val Glu Glu Thr Glu Val Thr Arg Gln His
1 5 10 15

Thr Asp Gly Asn Ala His Phe His Arg Lys Glu Val Asp Ser Leu Ser
20 25 30

Leu Asp Glu Ala Asn Asn Leu Lys Asn Ala Leu Tyr Lys Leu Gln Asn
 35 40 45

Asp His Ser Leu Thr Gly Tyr Glu Ala Ile Ser Gly Tyr His Gly Tyr
 50 55 60

Pro Asn Leu Cys Pro Glu Glu Gly Asp Asp Lys Ile Pro Leu Leu Arg
 65 70 75 80

Pro Arg Met Gly Ile Phe Pro Tyr Trp His Arg Leu Leu Thr Ile Gln
 85 90 95

Leu Glu Arg Ala Leu Glu His Asn Gly Ala Leu Leu Gly Val Pro Tyr
 100 105 110

Trp Asp Trp Asn Lys Asp Leu Ser Ser Leu Pro Ala Phe Phe Ser Asp
 115 120 125

Ser Ser Asn Asn Asn Pro Tyr Phe Lys Tyr His Ile Ala Gly Val Gly
 130 135 140

His Asp Thr Val Arg Glu Pro Thr Ser Leu Ile Tyr Asn Gln Pro Gln
 145 150 155 160

Ile His Gly Tyr Asp Tyr Leu Tyr Tyr Leu Ala Leu Thr Thr Leu Glu
 165 170 175

Glu Asn Asn Tyr Trp Asp Phe Glu Val Gln Tyr Glu Ile Leu His Asn
 180 185 190

Ala Val His Ser Trp Leu Gly Gly Ser Gln Lys Tyr Ser Met Ser Thr
 195 200 205

Leu Glu Tyr Ser Ala Phe Asp Pro Val Phe Met Ile Leu His Ser Gly
 210 215 220

Leu Asp Arg Leu Trp Ile Ile Trp Gln Glu Leu Gln Lys Ile Arg Arg
 225 230 235 240

Lys Pro Tyr Asn Phe Ala Lys Cys Ala Tyr His Met Met Glu Glu Pro
 245 250 255

Leu Ala Pro Phe Ser Tyr Pro Ser Ile Asn Gln Asp Glu Phe Thr Arg
 260 265 270

Ala Asn Ser Lys Pro Ser Thr Val Phe Asp Ser His Lys Phe Gly Tyr
 275 280 285

His Tyr Asp Asn Leu Asn Val Arg Gly His Ser Ile Gln Glu Leu Asn
 290 295 300

Thr Ile Ile Asn Asp Leu Arg Asn Thr Asp Arg Ile Tyr Ala Gly Phe
 305 310 315 320

Val Leu Ser Gly Ile Gly Thr Ser Ala Ser Val Lys Ile Tyr Leu Arg
 325 330 335

Thr Asp Asp Asn Asp Glu Glu Val Gly Thr Phe Thr Val Leu Gly Gly
 340 345 350

Glu Arg Glu Met Pro Trp Ala Tyr Glu Arg Val Phe Lys Tyr Asp Ile
 355 360 365

Thr Glu Val Ala Asp Arg Leu Lys Ile Lys Leu Trp Gly His Pro Leu
 370 375 380

Thr Ser Gly Thr Gly Asp His Ile Leu Thr Asn Gly Ile Gly Gly Lys
385 390 395 400

Gln Glu Pro Thr Gln Ile Leu Ser Ser Thr Asp Leu Pro Ile Met
405 410 415

Thr Thr Met Phe Leu Leu Ser Gln Xaa Gly Arg Asn Leu His Ile Pro
420 425 430

Pro Lys Val Val Val Lys Lys Gly Thr Arg Ile Glu Phe His Pro Val
435 440 445

Asp Asp Ser Val Thr Arg Pro Val Val Asp Leu Gly Ser Tyr Thr Ala
450 455 460

Leu Phe Asn Cys Val Val Pro Pro Phe Thr Tyr His Gly Phe Glu Leu
465 470 475 480

Asn His Val Tyr Ser Val Lys Pro Gly Asp Tyr Tyr Val Thr Gly Pro
485 490 495

Thr Arg Asp Leu Cys Gln Asn Ala Asp Val Arg Ile His Ile His Val
500 505 510

Glu Asp Glu
515

<210> 40

<211> 322

<212> PRT

<213> Megathura crenulata

<220>

<223> KLH1-b

<400> 40

Gly Leu Pro Tyr Trp Asp Trp Thr Glu Pro Met Thr His Ile Pro Gly
1 5 10 15

Leu Ala Gly Asn Lys Thr Tyr Val Asp Ser His Gly Ala Ser His Thr
20 25 30

Asn Pro Phe His Ser Ser Val Ile Ala Phe Glu Glu Asn Ala Pro His
35 40 45

Thr Lys Arg Gln Ile Asp Gln Arg Leu Phe Lys Pro Ala Thr Phe Gly
50 55 60

His His Thr Asp Leu Phe Asn Gln Ile Leu Tyr Ala Phe Glu Gln Glu
65 70 75 80

Asp Tyr Cys Asp Phe Glu Val Gln Phe Glu Ile Thr His Asn Thr Ile
85 90 95

His Ala Trp Thr Gly Gly Ser Glu His Phe Ser Met Ser Ser Leu His
100 105 110

Tyr Thr Ala Phe Asp Pro Leu Phe Tyr Phe His His Ser Asn Val Asp
115 120 125

Arg Leu Trp Ala Val Trp Gln Ala Leu Gln Met Arg Arg His Lys Pro
130 135 140

Tyr Arg Ala His Cys Ala Ile Ser Leu Glu His Met His Leu Lys Pro
145 150 155 160

Phe Ala Phe Ser Ser Pro Leu Asn Asn Asn Glu Lys Thr His Ala Asn
 165 170 175
 Ala Met Pro Asn Lys Ile Tyr Asp Tyr Glu Asn Val Leu His Tyr Thr
 180 185 190
 Tyr Glu Asp Leu Thr Phe Gly Gly Ile Ser Leu Glu Asn Ile Glu Lys
 195 200 205
 Met Ile His Glu Asn Gln Gln Glu Asp Arg Ile Tyr Ala Gly Phe Leu
 210 215 220
 Leu Ala Gly Ile Arg Thr Ser Ala Asn Val Asp Ile Phe Ile Lys Thr
 225 230 235 240
 Thr Asp Ser Val Gln His Lys Ala Gly Thr Phe Ala Val Leu Gly Gly
 245 250 255
 Ser Lys Glu Met Lys Trp Gly Phe Asp Arg Val Phe Lys Phe Asp Ile
 260 265 270
 Thr His Val Leu Lys Asp Leu Asp Leu Thr Ala Asp Gly Asp Phe Glu
 275 280 285
 Val Thr Val Asp Ile Thr Glu Val Asp Gly Thr Lys Leu Ala Ser Ser
 290 295 300
 Leu Ile Pro His Ala Ser Val Ile Arg Glu His Ala Arg Gly Lys Leu
 305 310 315 320
 Asn Arg

<210> 41
 <211> 414
 <212> PRT
 <213> Megathura crenulata

<220>
 <223> KLH1-c

<400> 41
 Val Lys Phe Asp Lys Val Pro Arg Ser Arg Leu Ile Arg Lys Asn Val
 1 5 10 15

Asp Arg Leu Ser Pro Glu Glu Met Asn Glu Leu Arg Lys Ala Leu Ala
 20 25 30

Leu Leu Lys Glu Asp Lys Ser Ala Gly Gly Phe Gln Gln Leu Gly Ala
 35 40 45

Phe His Gly Glu Pro Lys Trp Cys Pro Ser Pro Glu Ala Ser Lys Lys
 50 55 60

Phe Ala Cys Cys Val His Gly Met Ser Val Phe Pro His Trp His Arg
 65 70 75 80

Leu Leu Thr Val Gln Ser Glu Asn Ala Leu Arg Arg His Gly Tyr Asp
 85 90 95

Gly Ala Leu Pro Tyr Trp Asp Trp Thr Ser Pro Leu Asn His Leu Pro
 100 105 110

Glu Leu Ala Asp His Glu Lys Tyr Val Asp Pro Glu Asp Gly Val Glu
 115 120 125
 Lys His Asn Pro Trp Phe Asp Gly His Ile Asp Thr Val Asp Lys Thr
 130 135 140
 Thr Thr Arg Ser Val Gln Asn Lys Leu Phe Glu Gln Pro Glu Phe Gly
 145 150 155 160
 His Tyr Thr Ser Ile Ala Lys Gln Val Leu Leu Ala Leu Glu Gln Asp
 165 170 175
 Asn Phe Cys Asp Phe Glu Ile Gln Tyr Glu Ile Ala His Asn Tyr Ile
 180 185 190
 His Ala Leu Val Gly Gly Ala Gln Pro Tyr Gly Met Ala Ser Leu Arg
 195 200 205
 Tyr Thr Ala Phe Asp Pro Leu Phe Tyr Leu His His Ser Asn Thr Asp
 210 215 220
 Arg Ile Trp Ala Ile Trp Gln Ala Leu Gln Lys Tyr Arg Gly Lys Pro
 225 230 235 240
 Tyr Asn Val Ala Asn Cys Ala Val Thr Ser Met Arg Glu Pro Leu Gln
 245 250 255
 Pro Phe Gly Leu Ser Ala Asn Ile Asn Thr Asp His Val Thr Lys Glu
 260 265 270
 His Ser Val Pro Phe Asn Val Phe Asp Tyr Lys Thr Asn Phe Asn Tyr
 275 280 285
 Glu Tyr Asp Thr Leu Glu Phe Asn Gly Leu Ser Ile Ser Gln Leu Asn
 290 295 300
 Lys Lys Leu Glu Ala Ile Lys Ser Gln Asp Arg Phe Phe Ala Gly Phe
 305 310 315 320
 Leu Leu Ser Gly Phe Lys Lys Ser Ser Leu Val Lys Phe Asn Ile Cys
 325 330 335
 Thr Asp Ser Ser Asn Cys His Pro Ala Gly Glu Phe Tyr Leu Leu Gly
 340 345 350
 Asp Glu Asn Glu Met Pro Trp Ala Tyr Asp Arg Val Phe Lys Tyr Asp
 355 360 365
 Ile Thr Glu Lys Leu His Asp Leu Lys Leu His Ala Glu Asp His Phe
 370 375 380
 Tyr Ile Asp Tyr Glu Val Phe Asp Leu Lys Pro Ala Ser Leu Gly Lys
 385 390 395 400
 Asp Leu Phe Lys Gln Pro Ser Val Ile His Glu Pro Arg Ile
 405 410

<210> 42

<211> 411

<212> PRT

<213> Megathura crenulata

<220>

<223> KLH1-d

<400> 42
 Gly His His Glu Gly Glu Val Tyr Gln Ala Glu Val Thr Ser Ala Asn
 1 5 10 15
 Arg Ile Arg Lys Asn Ile Glu Asn Leu Ser Leu Gly Glu Leu Glu Ser
 20 25 30
 Leu Arg Ala Ala Phe Leu Glu Ile Glu Asn Asp Gly Thr Tyr Glu Ser
 35 40 45
 Ile Ala Lys Phe His Gly Ser Pro Gly Leu Cys Gln Leu Asn Gly Asn
 50 55 60
 Pro Ile Ser Cys Cys Val His Gly Met Pro Thr Phe Pro His Trp His
 65 70 75 80
 Arg Leu Tyr Val Val Val Val Glu Asn Ala Leu Leu Lys Lys Gly Ser
 85 90 95
 Ser Val Ala Val Pro Tyr Trp Asp Trp Thr Lys Arg Ile Glu His Leu
 100 105 110
 Pro His Leu Ile Ser Asp Ala Thr Tyr Tyr Asn Ser Arg Gln His His
 115 120 125
 Tyr Glu Thr Asn Pro Phe His His Gly Lys Ile Thr His Glu Asn Glu
 130 135 140
 Ile Thr Thr Arg Asp Pro Lys Asp Ser Leu Phe His Ser Asp Tyr Phe
 145 150 155 160
 Tyr Glu Gln Val Leu Tyr Ala Leu Glu Gln Asp Asn Phe Cys Asp Phe
 165 170 175
 Glu Ile Gln Leu Glu Ile Leu His Asn Ala Leu His Ser Leu Leu Gly
 180 185 190
 Gly Lys Gly Lys Tyr Ser Met Ser Asn Leu Asp Tyr Ala Ala Phe Asp
 195 200 205

Pro Val Phe Phe Leu His His Ala Thr Thr Asp Arg Ile Trp Ala Ile
 210 215 220
 Trp Gln Asp Leu Gln Arg Phe Arg Lys Arg Pro Tyr Arg Glu Ala Asn
 225 230 235 240
 Cys Ala Ile Gln Leu Met His Thr Pro Leu Gln Pro Phe Asp Lys Ser
 245 250 255
 Asp Asn Asn Asp Glu Ala Thr Lys Thr His Ala Thr Pro His Asp Gly
 260 265 270
 Phe Glu Tyr Gln Asn Ser Phe Gly Tyr Ala Tyr Asp Asn Leu Glu Leu
 275 280 285
 Asn His Tyr Ser Ile Pro Gln Leu Asp His Met Leu Gln Glu Arg Lys
 290 295 300
 Arg His Asp Arg Val Phe Ala Gly Phe Leu Leu His Asn Ile Gly Thr
 305 310 315 320
 Ser Ala Asp Gly His Val Phe Val Cys Leu Pro Thr Gly Glu His Thr
 325 330 335
 Lys Asp Cys Ser His Glu Ala Gly Met Phe Ser Ile Leu Gly Gly Gln
 340 345 350

Thr Glu Met Ser Phe Val Phe Asp Arg Leu Tyr Lys Leu Asp Ile Thr
 355 360 365

Lys Ala Leu Lys Lys Asn Gly Val His Leu Gln Gly Asp Phe Asp Leu
 370 375 380

Glu Ile Glu Ile Thr Ala Val Asn Gly Ser His Leu Asp Ser His Val
 385 390 395 400

Ile His Ser Pro Thr Ile Leu Phe Glu Ala Gly
 405 410

<210> 43

<211> 111

<212> PRT

<213> Megathura crenulata

<220>

<223> KLH1-e

<400> 43

Asp Ser Ala His Thr Asp Asp Gly His Thr Glu Pro Val Met Ile Arg
 1 5 10 15

Lys Asp Ile Thr Gln Leu Asp Lys Arg Gln Gln Leu Ser Leu Val Lys
 20 25 30

Ala Leu Glu Ser Met Lys Ala Asp His Ser Ser Asp Gly Phe Gln Ala
 35 40 45

Ile Ala Ser Phe His Ala Leu Pro Pro Leu Cys Pro Ser Pro Ala Ala
 50 55 60

Ser Lys Arg Phe Ala Cys Cys Val His Gly Met Pro Thr Phe Pro Gln
 65 70 75 80

Trp His Arg Leu Tyr Thr Val Gln Phe Gln Asp Ser Leu Arg Lys His
 85 90 95

Gly Ala Val Val Gly Leu Pro Tyr Trp Asp Trp Thr Leu Pro Arg
 100 105 110

<210> 44

<211> 317

<212> PRT

<213> Megathura crenulata

<220>

<223> KLH2-b

<400> 44

Gly Leu Pro Tyr Trp Asp Trp Thr Met Pro Met Ser His Leu Pro Glu
 1 5 10 15

Leu Ala Thr Ser Glu Thr Tyr Leu Asp Pro Val Thr Gly Glu Thr Lys
 20 25 30

Asn Asn Pro Phe His His Ala Gln Val Ala Phe Glu Asn Gly Val Thr
 35 40 45

Ser Arg Asn Pro Asp Ala Lys Leu Phe Met Lys Pro Thr Tyr Gly Asp
 50 55 60

His	Thr	Tyr	Leu	Phe	Asp	Ser	Met	Ile	Tyr	Ala	Phe	Glu	Gln	Glu	Asp
65															80
Phe Cys Asp Phe Glu Val Gln Tyr Glu Leu Thr His Asn Ala Ile His															
	85								90					95	
Ala Trp Val Gly Gly Ser Glu Lys Tyr Ser Met Ser Ser Leu His Tyr															
	100							105					110		
Thr Ala Phe Asp Pro Ile Phe Tyr Leu His His Ser Asn Val Asp Arg															
	115							120					125		
Leu Trp Ala Ile Trp Gln Ala Leu Gln Ile Arg Arg Gly Lys Ser Tyr															
	130							135					140		
Lys Ala His Cys Ala Ser Ser Gln Glu Arg Glu Pro Leu Lys Pro Phe															
	145							150					155		160
Ala Phe Ser Ser Pro Leu Asn Asn Asn Glu Lys Thr Tyr His Asn Ser															
	165							170					175		
Val Pro Thr Asn Val Tyr Asp Tyr Val Gly Val Leu His Tyr Arg Tyr															
	180							185					190		
Asp Asp Leu Gln Phe Gly Gly Met Thr Met Ser Glu Leu Glu Glu Tyr															
	195							200					205		
Ile His Lys Gln Thr Gln His Asp Arg Thr Phe Ala Gly Phe Phe Leu															
	210							215					220		
Ser Tyr Ile Gly Thr Ser Ala Ser Val Asp Ile Phe Ile Asn Arg Glu															
	225							230					235		240
Gly His Asp Lys Tyr Lys Val Gly Ser Phe Val Val Leu Gly Gly Ser															
	245							250					255		
Lys Glu Met Lys Trp Gly Phe Asp Arg Met Tyr Lys Tyr Glu Ile Thr															
	260							265					270		
Glu Ala Leu Lys Thr Leu Asn Val Ala Val Asp Asp Gly Phe Ser Ile															
	275							280					285		

Thr	Val	Glu	Ile	Thr	Asp	Val	Asp	Gly	Ser	Pro	Pro	Ser	Ala	Asp	Leu
290								295					300		

Ile	Pro	Pro	Pro	Ala	Ile	Ile	Phe	Glu	Arg	Gly	His	Ala
305												

<210> 45
 <211> 411
 <212> PRT
 <213> Megathura crenulata

<220>
 <223> KLH2-c

<400> 45
 Asp Ala Lys Asp Phe Gly His Ser Arg Lys Ile Arg Lys Ala Val Asp
 1 5 10 15

Ser Leu Thr Val Glu Glu Gln Thr Ser Leu Arg Arg Ala Met Ala Asp
 20 25 30

Leu Gln Asp Asp Lys Thr Ser Gly Gly Phe Gln Gln Ile Ala Ala Phe
 35 40 45

His Gly Glu Pro Lys Trp Cys Pro Ser Pro Glu Ala Glu Lys Lys Phe
 50 55 60

Ala Cys Cys Val His Gly Met Ala Val Phe Pro His Trp His Arg Leu
 65 70 75 80

Leu Thr Val Gln Gly Glu Asn Ala Leu Arg Lys His Gly Phe Thr Gly
 85 90 95

Gly Leu Pro Tyr Trp Asp Trp Thr Arg Ser Met Ser Ala Leu Pro His
 100 105 110

Phe Val Ala Asp Pro Thr Tyr Asn Asp Ala Ile Ser Ser Gln Glu Glu
 115 120 125

Asp Asn Pro Trp His His Gly His Ile Asp Ser Val Gly His Asp Thr
 130 135 140

Thr Arg Asp Val Arg Asp Asp Leu Tyr Gln Ser Pro Gly Phe Gly His
 145 150 155 160

Tyr Thr Asp Ile Ala Gln Gln Val Leu Leu Ala Phe Glu Gln Asp Ser
 165 170 175

Phe Cys Asp Phe Glu Val Gln Phe Glu Ile Ala His Asn Phe Ile His
 180 185 190

Ala Leu Ile Gly Gly Asn Glu Pro Tyr Ser Met Ser Ser Leu Arg Tyr
 195 200 205

Thr Thr Tyr Asp Pro Ile Phe Phe Leu His His Ser Ser Thr Asp Arg
 210 215 220

Leu Trp Ala Ile Trp Gln Ala Leu Gln Lys Tyr Arg Gly Lys Pro Tyr
 225 230 235 240

Asn Thr Ala Asn Cys Ala Ile Ala Ser Met Arg Lys Pro Leu Gln Pro
 245 250 255

Phe Gly Leu Asp Ser Val Ile Asn Pro Asp Asp Glu Thr Arg Glu His
 260 265 270

Ser Val Pro Phe Arg Val Phe Asp Tyr Lys Asn Asn Phe Asp Tyr Glu
 275 280 285

Tyr Glu Ser Leu Ala Phe Asn Gly Leu Ser Ile Ala Gln Leu Asp Arg
 290 295 300

Glu Leu Gln Arg Arg Lys Ser His Asp Arg Val Phe Ala Gly Phe Leu
 305 310 315 320

Leu His Glu Ile Gly Gln Ser Ala Lys His Asn Val Ser Asp Cys Asp
 325 330 335

His Tyr Ala Gly Glu Phe Tyr Ile Leu Gly Asp Glu Ala Glu Met Pro
 340 345 350

Trp Arg Tyr Asp Arg Val Tyr Lys Tyr Glu Ile Thr Gln Gln Leu His
 355 360 365

Asp Leu Asp Leu His Val Gly Asp Asn Phe Phe Leu Lys Tyr Glu Ala
 370 375 380

Phe Asp Leu Asn Gly Gly Ser Leu Gly Gly Ser Ile Phe Ser Gln Pro
 385 390 395 400

Ser Val Ile Phe Glu Pro Ala Ala Gly Met Phe
405 410

<210> 46
<211> 109
<212> PRT
<213> Megathura crenulata

<220>
<223> KLH2-d

<400> 46
Gly Ser His Gln Ala Asp Glu Tyr Arg Glu Ala Val Thr Ser Ala Ser
1 5 10 15
His Ile Arg Lys Asn Ile Arg Asp Leu Ser Glu Gly Glu Ile Glu Ser
20 25 30
Ile Arg Ser Ala Phe Leu Gln Ile Gln Lys Glu Gly Ile Tyr Glu Asn
35 40 45
Ile Ala Lys Phe His Gly Lys Pro Gly Leu Cys Glu His Asp Gly His
50 55 60
Pro Val Ala Cys Cys Val His Gly Met Pro Thr Phe Pro His Trp His
65 70 75 80
Arg Leu Tyr Val Leu Gln Val Glu Asn Ala Leu Leu Glu Arg Gly Ser
85 90 95
Ala Val Ala Val Pro Tyr Trp Asp Trp Thr Leu Pro Arg
100 105

<210> 47
<211> 329
<212> PRT
<213> Megathura crenulata

<220>
<223> KLH2-g

<400> 47
Met Ala Val Phe Pro His Trp His Arg Leu Phe Val Lys Gln Met Glu
1 5 10 15
Asp Ala Leu Ala Ala His Gly Ala His Ile Gly Ile Pro Tyr Trp Asp
20 25 30
Trp Thr Ser Ala Phe Ser His Leu Pro Ala Leu Val Thr Asp His Glu
35 40 45
Asn Asn Pro Phe His His Gly His Ile Gly His Leu Asn Val Asp Thr
50 55 60
Ser Arg Ser Pro Arg Asp Met Leu Phe Asn Asp Pro Glu Gln Gly Ser
65 70 75 80
Glu Ser Phe Phe Tyr Arg Gln Val Leu Leu Thr Leu Glu Gln Thr Asp
85 90 95
Phe Cys Gln Phe Glu Val Gln Phe Glu Leu Thr His Asn Ala Ile His
100 105 110

Ser Trp Thr Gly His Thr Pro Tyr Gly Met Ser Ser Leu Glu Tyr
 115 120 125
 Thr Ala Tyr Asp Pro Leu Phe Tyr Leu His His Ser Asn Thr Asp Arg
 130 135 140
 Ile Trp Ala Ile Trp Gln Ala Leu Gln Lys Tyr Arg Gly Leu Pro Tyr
 145 150 155 160
 Asn Ala Ala His Cys Asp Ile Gln Val Leu Lys Gln Pro Leu Lys Pro
 165 170 175
 Phe Ser Glu Ser Arg Asn Pro Asn Pro Val Thr Arg Ala Asn Ser Arg
 180 185 190
 Ala Val Asp Ser Phe Asp Tyr Glu Lys Phe Asn Tyr Gln Tyr Asp Thr
 195 200 205
 Leu Thr Phe His Gly Leu Ser Ile Pro Glu Leu Asp Ala Met Leu Gln
 210 215 220
 Glu Arg Lys Lys Glu Glu Arg Thr Phe Ala Ala Phe Leu Leu His Gly
 225 230 235 240
 Phe Gly Ala Ser Ala Asp Val Ser Phe Asp Val Cys Thr Pro Asp Gly
 245 250 255
 His Cys Ala Phe Ala Gly Thr Phe Ala Val Leu Gly Gly Glu Leu Glu
 260 265 270
 Met Pro Trp Ser Phe Glu Arg Leu Phe Arg Tyr Asp Ile Thr Lys Val
 275 280 285
 Leu Lys Gln Met Asn Leu His Tyr Asp Ser Glu Phe His Phe Glu Leu
 290 295 300
 Lys Ile Val Gly Thr Asp Gly Thr Glu Leu Pro Ser Asp Arg Ile Lys
 305 310 315 320
 Ser Pro Thr Ile Glu His His Gly Gly
 325

<210> 48
 <211> 103
 <212> PRT
 <213> Megathura crenulata

<220>
 <223> KLH2-h

<400> 48
 Gly His Asp His Ser Glu Arg His Asp Gly Phe Phe Arg Lys Glu Val
 1 5 10 15

Gly Ser Leu Ser Leu Asp Glu Ala Asn Asp Leu Lys Asn Ala Leu Tyr
 20 25 30

Lys Leu Gln Asn Asp Gln Gly Pro Asn Gly Tyr Glu Ser Ile Ala Gly
 35 40 45

Tyr His Gly Tyr Pro Phe Leu Cys Pro Glu His Gly Glu Asp Gln Tyr
 50 55 60

Ala Cys Cys Val His Gly Met Pro Val Phe Pro His Trp His Arg Leu
 65 70 75 80

His Thr Ile Gln Phe Glu Arg Ala Leu Lys Glu His Gly Ser His Leu
85 90 95

Gly Leu Pro Tyr Trp Asp Trp
100

Patentansprüche

1. Nukleinsäure-Molekül, umfassend eine für ein Hämocyanin, eine Hämocyanin-Domäne oder ein funktionelles Fragment davon mit den immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins kodierende Nukleinsäuresequenz, wobei die Nukleinsäuresequenz ausgewählt ist aus

(a) der Gruppe der nachfolgend angegebenen DNA-Sequenzen bzw. der ihnen entsprechenden RNA-Sequenzen:

in SEQ ID NO:1 (HtH1 Domäne a + Signalpeptid),

SEQ ID NO:2 (HtH1 Domäne b),

SEQ ID NO:3 (HtH1 Domäne c),

SEQ ID NO:4 (HtH1 Domäne d),

SEQ ID NO:5 (HtH1 Domäne e),

SEQ ID NO:6 (HtH1 Domäne f),

SEQ ID NO:7 (HtH1 Domäne g),

SEQ ID NO: 8 (HtH1 Domäne h),

SEQ ID NO:9 (partielle HtH2 Domäne b),

SEQ ID NO:10 (HtH2 Domäne c),

SEQ ID NO:11 (HtH2 Domäne d),

SEQ ID NO:12 (HtH2 Domäne e),

SEQ ID NO:13 (HtH2 Domäne f),

SEQ ID NO:14 (HtH2 Domäne g),

SEQ ID NO:15 (HtH2 Domäne h),

SEQ ID NO:16 (partielle KLH1 Domäne b),

SEQ ID NO:17 (KLH1 Domäne c),

SEQ ID NO:18 (KLH1 Domäne d),

SEQ ID NO:19 (partielle KLH1 Domäne e),

SEQ ID NO:20 (KLH2 Domäne b),

SEQ ID NO:21 (KLH2 Domäne c),

SEQ ID NO:22 (partielle KLH2 Domäne d),

SEQ ID NO:23 (KLH2 Domäne g),

SEQ ID NO:24 (partielle KLH2 Domäne h);

- (b) Nukleinsäuresequenzen, die mit dem Gegenstrang einer Nukleinsäuresequenz nach (a) hybridisieren und für ein Polypeptid kodieren, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;
- (c) Nukleinsäuresequenzen, die aufgrund des genetischen Codes zu den unter (a) und (b) definierten DNA-Sequenzen degeneriert sind und für ein Polypeptid kodieren, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;
- (d) Nukleinsäuresequenzen, die mit einer der unter (a) bis (c) angegebenen Nukleinsäuresequenzen hybridisieren und deren Gegenstrang für ein Polypeptid kodiert, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist;
- (e) Nukleinsäuresequenzen, die wenigstens 60 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen sind;
- (f) ~~Varianten der unter (a) bis (d) angegebenen Sequenzen, wobei die Varianten gegenüber den unter (a) bis (d) angegebenen Sequenzen Additionen, Deletionen, Insertionen oder Inversionen aufweisen und für ein Polypeptid kodieren, das die immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin aufweist;~~ und
- (g) Kombinationen mehrerer der unter (a) bis (f) angegebenen DNA-Sequenzen.

2. Nukleinsäuremolekül gemäß Anspruch 1, **dadurch gekennzeichnet**, daß die unter (b) oder (d) angegebene Hybridisierung unter stringenten Bedingungen durchgeführt wird.

3. Nukleinsäuremolekül gemäß Anspruch 1, **dadurch gekennzeichnet**, daß das unter (e) angegebene Nukleinsäuremolekül wenigstens 80 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen ist.
4. Nukleinsäuremolekül gemäß Anspruch 1, **dadurch gekennzeichnet**, daß das unter (e) angegebene Nukleinsäuremolekül wenigstens 90 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen ist.
5. Nukleinsäuremolekül gemäß Anspruch 1, **dadurch gekennzeichnet**, daß das unter (e) angegebene Nukleinsäuremolekül wenigstens 95 % homolog zu einer der unter (a) angegebenen Nukleinsäuresequenzen ist.
6. Nukleinsäuremolekül gemäß einem der Ansprüche 1 bis 5, **dadurch gekennzeichnet**, daß es ein Desoxyribonukleinsäuremolekül ist.
7. Konstrukt, umfassend ein Nukleinsäuremolekül gemäß einem der Ansprüche 1 bis 6.
8. Konstrukt gemäß Anspruch 7, weiterhin umfassend einen zur Expressionskontrolle geeigneten Promotor, wobei die für ein Hämocyanin, eine Hämocyanin-Domäne oder ein funktionelles Fragment davon kodierende Nukleinsäuresequenz unter der Kontrolle des Promotors steht.
9. Konstrukt gemäß Anspruch 7 oder 8, weiterhin umfassend eine für ein Antigen kodierende Nukleinsäuresequenz, die direkt mit der für ein Hämocyanin, eine Hämocyanin-Domäne oder ein funktionelles Fragment davon kodierenden Nukleinsäuresequenz verbunden ist.
10. Konstrukt gemäß Anspruch 9, wobei das Antigen ausgewählt ist aus: Tumorantigenen, Virusantigenen und Antigenen bakterieller oder parasitärer Pathogene.

11. Konstrukt gemäß einem der Ansprüche 7 bis 10, wobei das Konstrukt wenigstens einen Teil eines Vektors enthält, wobei der Vektor ausgewählt ist aus: Bakteriophagen, Adenoviren, Vacciniaviren, Baculoviren, SV40-Virus und Retroviren.
12. Konstrukt gemäß einem der Ansprüche 7 bis 11, wobei das Konstrukt weiterhin eine His-Tag-kodierende Nukleinsäuresequenz umfaßt und die Expression des Konstrukts zur Bildung eines Fusionsproteins mit einem His-Tag führt.
13. Wirtszelle, enthaltend ein Konstrukt gemäß einem der Ansprüche 7 bis 12, wobei die Wirtszelle eine zur Expression des Konstrukts geeignete prokaryontische oder eukaryontische Zelle ist.
14. Wirtszelle gemäß Anspruch 13, **dadurch gekennzeichnet**, daß die prokaryontische Wirtszelle ausgewählt ist aus E. coli und Bacillus subtilis.
15. Wirtszelle gemäß Anspruch 13, **dadurch gekennzeichnet**, daß die eukaryontische Wirtszelle ausgewählt ist aus Hefezellen, Insektenzellen und Säugerzellen, bevorzugt aus CHO-Zellen, COS-Zellen und HeLa-Zellen.
16. Verfahren zum Herstellen eines Hämocyanin-Polypeptides, wobei das Nukleinsäuremolekül gemäß einem der Ansprüche 1 bis 6 und/oder das Konstrukt gemäß einem der Ansprüche 7 bis 12 in einer geeigneten Wirtszelle exprimiert wird und das Protein gegebenenfalls isoliert wird.
17. Verfahren gemäß Anspruch 16, **dadurch gekennzeichnet**, daß das hergestellte Hämocyanin-Polypeptid natürlich oder chemisch modifiziert wird.
18. Verfahren gemäß Anspruch 17, **dadurch gekennzeichnet**, daß die Modifikation eine Quervernetzung oder eine kovalente Bindung an ein Antigen ist.

19. Verfahren gemäß einem der Ansprüche 16 bis 18, **dadurch gekennzeichnet**, daß die Expression in einer Wirtszelle gemäß einem der Ansprüche 13 bis 15 durchgeführt wird.

20. Hämocyanin-Polypeptid, umfassend eine Aminosäuresequenz, die von einem oder mehreren der Nukleinsäuremoleküle nach einem der Ansprüche 1 bis 6 kodiert wird.

21. Hämocyanin-Polypeptid gemäß Anspruch 20, umfassend wenigstens eine aus der folgenden Gruppe ausgewählte Aminosäuresequenz:

SEQ ID NO:25 (HtH1 Domäne a + Signalpeptid),

SEQ ID NO:26 (HtH1 Domäne b),

SEQ ID NO:27 (HtH1 Domäne c),

SEQ ID NO:28 (HtH1 Domäne d),

SEQ ID NO:29 (HtH1 Domäne e),

SEQ ID NO:30 (HtH1 Domäne f),

SEQ ID NO:31 (HtH1 Domäne g),

SEQ ID NO:32 (HtH1 Domäne h),

SEQ ID NO:33 (partielle HtH2 Domäne b),

~~SEQ ID NO:34 (HtH2 Domäne c),~~

SEQ ID NO:35 (HtH2 Domäne d),

SEQ ID NO:36 (HtH2 Domäne e),

SEQ ID NO:37 (HtH2 Domäne f),

SEQ ID NO:38 (HtH2 Domäne g),

SEQ ID NO:39 (HtH2 Domäne h),

SEQ ID NO:40 (partielle KLH1 Domäne b),

SEQ ID NO:41 (KLH1 Domäne c),

SEQ ID NO:42 (partielle KLH1 Domäne d),

SEQ ID NO:43 (partielle KLH1 Domäne e),

SEQ ID NO:44 (KLH2 Domäne b),

SEQ ID NO:45 (KLH2 Domäne c),

SEQ ID NO:46 (partielle KLH2 Domäne d),

SEQ ID NO:47 (KLH2 Domäne g),

SEQ ID NO:48 (partielle KLH2 Domäne h),

oder ein Fragment einer dieser Sequenzen, das die immunologischen Eigenschaften wenigstens einer Domäne eines Hämocyanins aufweist.

22. Rekombinantes Hämocyanin-Polypeptid, erhältlich durch das Verfahren gemäß einem der Ansprüche 16 bis 19 oder Modifikationen davon.

23. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 22, **dadurch gekennzeichnet**, daß es die Sequenzen SEQ ID NO: 25 bis 32 umfaßt und Hämocyanin 1 aus *Haliotis tuberculata* ist.

24. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 22, **dadurch gekennzeichnet**, daß es die Sequenzen SEQ ID NO: 33 bis 39 umfaßt und Hämocyanin 2 aus *Haliotis tuberculata* ist.

25. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 23, **dadurch gekennzeichnet**, daß es ein scheinbares Molekulargewicht von 370 KDa in SDS-PAGE unter reduzierenden Bedingungen aufweist.

26. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 24, **dadurch gekennzeichnet**, daß es ein scheinbares Molekulargewicht von 370 KDa in SDS-PAGE unter reduzierenden Bedingungen aufweist.

27. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 21, **dadurch gekennzeichnet**, daß das Hämocyanin-Polypeptid die Sequenzen SEQ ID NO: 40 bis 43 umfaßt und KLH1 aus *Megathura crenulata* ist.

28. Rekombinantes Hämocyanin-Polypeptid gemäß Anspruch 21, **dadurch gekennzeichnet**, daß das Hämocyanin-Polypeptid die Sequenzen SEQ ID NO: 44 bis 48 umfaßt und KLH2 aus *Megathura crenulata* ist.

29. Rekombinantes Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 28, **dadurch gekennzeichnet**, daß es kovalent an Viren, Virenbestandteile, Bakterien, Bakterienbestandteile, DNA, DNA-Bestandteile, anorganische oder organische Moleküle wie z. B. Kohlenhydrate Peptide und/oder Glykoproteine gebunden ist.

30. Rekombinantes Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 29, **dadurch gekennzeichnet**, daß das Hämocyanin-Polypeptid nicht-glykosyliert ist.

31. Rekombinantes Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 29, **dadurch gekennzeichnet**, daß das Hämocyanin-Polypeptid glykosyliert ist.

32. Pharmazeutische Zusammensetzung, enthaltend ein Nukleinsäuremolekül gemäß einem der Ansprüche 1 bis 6 und/oder ein Konstrukt gemäß einem der Ansprüche 7 bis 12 und physiologisch verträgliche Zusatzmittel.

33. Pharmazeutische Zusammensetzung gemäß Anspruch 32, **dadurch gekennzeichnet**, daß sie zur gentherapeutischen Behandlung von Tumoren verwendet wird.

34. ~~Pharmazeutische Zusammensetzung, enthaltend ein Hämocyanin-Polypeptid nach~~ einem der Ansprüche 20 bis 31 und physiologisch verträgliche Zusatzmittel.

35. Pharmazeutische Zusammensetzung gemäß Anspruch 34, **dadurch gekennzeichnet**, daß sie als Antiparasitenmittel, Antivirusmittel oder als Antitumormittel verwendet wird.

36. Pharmazeutische Zusammensetzung nach Anspruch 34, **dadurch gekennzeichnet**, daß sie zum Behandeln einer der folgenden Erkrankungen verwendet wird: Schistosomiasis, Bluthochdruck, Oberflächen-Harnblasenkarzinomen, Epithelkarzinomen, Ovarialkarzinom, Mammakarzinom, Bronchialkarzinom und Kolonrektalkarzinom.

37. Pharmazeutische Zusammensetzung nach Anspruch 34, **dadurch gekennzeichnet**, daß sie als Impfstoff verwendet wird.

38. Pharmazeutische Zusammensetzung gemäß Anspruch 34, **dadurch gekennzeichnet**, daß sie zur Kokain-Mißbrauchsvorsorge verwendet wird.

39. Verwendung von Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 31 als Trägerstoff für Arzneimittel.

40. Liposom, umfassend ein Nukleinsäuremolekül gemäß einem der Ansprüche 1 bis 6, ein Konstrukt gemäß einem der Ansprüche 7 bis 12 und/oder ein Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 31.

41. Liposom gemäß Anspruch 40, **dadurch gekennzeichnet**, daß das Liposom weiterhin Zellerkennungsmoleküle umfaßt.

42. Antikörper, erhältlich durch Immunisieren eines Versuchstieres mit dem rekombinanten Hämocyanin-Polypeptid gemäß einem der Ansprüche 20 bis 31.

43. Screening-Verfahren zum Identifizieren von Tumor-spezifischer DNA in einer Zelle umfassend:

a) das Inkontaktbringen zellulärer DNA und/oder zellulären Proteins mit einer Sonde umfassend die Nukleinsäuresequenz gemäß einem der Ansprüche 1 bis 6 und/oder des Antikörpers gemäß Anspruch 42 und

b) das Nachweisen der spezifischen Bindung.

44. Screening-Verfahren gemäß Anspruch 43, **dadurch gekennzeichnet**, daß der nachzuweisende Tumor Harnblasenkarzinom, Epithelialkarzinom, Ovarialkarzinom, Mammakarzinom, Bronchialkarzinom oder Kolonrektalkarzinom ist.

Zusammenfassung

Nukleinsäuremolekül, umfassend eine für ein Hämocyanin kodierende Nukleinsäuresequenz

Die vorliegende Erfindung betrifft ein Nukleinsäuremolekül, umfassend eine für ein Hämocyanin, eine Hämocyanin-Domäne oder ein Fragment mit den immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin kodierende Nukleinsäuresequenz.

Weiterhin betrifft die Erfindung Konstrukte, die das Nukleinsäuremolekül und gegebenenfalls einen zur Expressionskontrolle geeigneten Promotor enthalten. In einer bevorzugten Ausführungsform enthält das Konstrukt ferner eine für ein Antigen kodierende Nukleinsäuresequenz. Die Erfindung betrifft außerdem Wirtszellen, die diese Nukleinsäuremoleküle und/oder Konstrukte enthalten. Die Erfindung betrifft ferner die rekombinante Expression der Nukleinsäuremoleküle und/oder Konstrukte in den Wirtszellen. Weiterhin betrifft die Erfindung Hämocyanin, eine Hämocyanin-Domäne, ein Fragment mit den immunologischen Eigenschaften wenigstens einer Domäne von Hämocyanin und Hämocyanin-Fusionsproteine, die von den Nukleinsäuremolekülen und/oder Konstrukten kodiert werden. Die Erfindung betrifft weiterhin pharmazeutische Zusammensetzungen, die die Nukleinsäuremoleküle und/oder Hämocyanin, eine Hämocyanin-Domäne, ein Fragment davon oder ein Fusionsprotein, enthalten. Weiterhin betrifft die Erfindung Liposomen, die die Nukleinsäuremoleküle und/oder Hämocyanin, eine Hämocyanin-Domäne, ein Fragment davon oder ein Fusionsprotein, enthalten. Ferner betrifft die Erfindung Antikörper, die durch Immunisieren eines Versuchstieres mit dem Hämocyanin, einer Hämocyanin-Domäne, einem Fragment davon oder einem Fusionsprotein, erhältlich sind, und deren Verwendung in Screening-Verfahren zum Identifizieren von Tumoren.

Fig. 1

Fig. 2

Fig. 3

Figur 4

cDNA-Sequenz in Verbindung mit Intronstruktur des HtH1

Domäne a

GGCTGTTCACTTCAGCTCGCCCTTGTGGCGGGGGCTGGAGCAGACAACTCGTCAG
 AAAGGACGTGAGTCACCTCACGGATGACGAGGTGCAAGCTCTCCACGGCGCCCTCCATGAC
 GTCACTGCATCTACAGGGCCTCTGAGTTCAAGACATAACATCTTACCATGCCGACCAAG
 CGTGTGTGACTACAAGGGACGGAAGATCGCCTGCTGTCCACGGTATGCCAGTTCCC
 CTTCTGGCACAGGGCATATGTCGTCCAAGCCGAGCGGGACTGTTGTCAAACGGAAGACT
 GTCGAATGCCTTACTGGGACTGGACGCAAACGCTGACTCACTTACCATCTTGTGACTG
 AACCCATCTACATTGACAGTAAAGGTGAAAGGCTAAACCAACTACTGGTACCGCGGCGA
 GATAGCGTTCATCAATAAGAAGACTGCGCAGCTGTAGATGATCGCCTATTGAGAAGGTG
 GAGCCTGGTCACTACACACATCTTATGGAGACTGTCCTCGACGCTCTGAACAGGACGAAT
 TCTGTAAATTGAAATCCAGTTGAGTTGGCTCATATGCTATCCATTACTTGGTTGGCGG
 TAAATTGAAATTCAATGTCAAACTTGGAAATACACCTCTACGACCCATCTTCTCCTC
 CACCACTCCAACGTTGACCGCCTTCGCATCTGGCAGCGTCTCAGGAACGCGAGGAA
 AGAATCCCAATGCAATGGACTGTCACATGAACTCGCTCACAGCAACTCCAACCCCTCAA
 CAGGGACAGCAATCCAGTCCAGCTCACAAAGGACCACTCGACACCTGCTGACCTTTGAT
 TACAAACAACCTGGATACAGCTACGACAGCTTAAACCTGAATGGAATGACGCCAGAACAGC
 TGAAAACAGAACTAGACGAACGCCACTCCAAAGAACGTCGTTGCAAGCTCCGACTCAG
 TGGCTTGGGGTTCTGCCAACGTTGTTGCTATGCATGTTGCTGATGATGATCCACGC
 AGTGTGACTACTGCGAGAAAGCAGCGACTTCTTATTCTGGGGTCAAAGCGAAATGC
 CGTGGAGATTCTACAGACCCCTTCTTATGATGTAACGAGCGGTACATCACCTTGGAGT
 CCCGCTAAAGTGGCCACTACTATGTGAAAACAGAACTCTTACGCGTGAATGGCACAGCACTT
 TCACCTGATCTTCTCAACCAACTGTTGCCTACCGACCTGGGAAAG

Domäne b

GTCACCTTGACCCACCTGTGCATCATGCCACGATGACGATCTTATTGTTGAAAAAATAT
 AGATCATTGACTCGTGAAGAGGAATACGAGCTAAGGATGGCTCTGGAGAGATTCCAGGCC
 GACACATCCGTTGATGGGTACCAAGGCTACAGTAGAGTACCATGGCCTTCCTGCTGTTGTC
 CACCGACAGATGCAAAAGTCAAGGTTGGCTGTTGATGCACTGGCATGGCATGGCTTCTTCTCA
 CTGGCACCGGCTGTTGTTACCCAGGTGGAAGAGTGCCTTGATGGCGTGGATGCCCTATC
 GGTGTTCTTATTGGGACTGGACAAAACCTATGACTCACCTCCAGACTTGGCATCAAATG
 AGACGTACGTAGACCCGTATGGACATACACATCATAATCCATTCTCAATGCAAATATATC
 TTTTGAGGAGGGACACCACACACGAGCAGGATGATAGATTGAAACTGTTGCCAGTC
 GCTTTGGGAGCATTCCATCTGTTGATGGAATCCTGTACGCATTGAGCAGGAAGATT
 TCTGCGACTTGGAGATTGAGTTGAGTTAGTCCATAATTCTATTGCGTGGATAGGC
 TTCCGAAGATTACTCCATGGCCACCCCTGCATTACACAGCCTTGACCCATTCTACCTT
 CATCATTCCAATGTCGATCGTCTATGGCAATCTGCAAGCTTCAAATCAGGAGACACA
 AGCCATATCAAGCCCACGTGCACAGTCTGGAACAGTTGCAATGAAGCCATTGCTTT
 CCCATCACCTCTAACAAACAACGAGAAGACACATAGTCATTGAGTCCGACTGACATTAT
 GACTACGAGGAAGTGTGCACTACAGCTACGATGATCTAACGTTGGTGGGATGAACCTG
 AAGAAATAGAAGAAGCTATACATCTCAGACAACAGCATGAACGAGTCTCGCGGGATTCT
 CCTTGCTGGAATAGGAACATCTGCACTTGTGACATTTCATAAAATAACCGGGGAACCAA
 CCACTCAAAGCTGGAGATATTGCCATTCTGGTGGTGCAGGAAATGCCCTGGCGTTG
 ACCGCTGTATAAGGTGAAATAACTGACTCATTGAAGACACCTTCTCGATGTCGATGG
 AGATTATGAAGTCACTTAAAATTGATGACGAGACACTTCTCGATGTCGATGGACCTG
 ATTCCACACGCAGCTGTTCTGAGCCAGCTCACC

Intron b/c

GTAAGTAAATTACAAAATTGGTGTCTTAACATACCTAAGTATTCAATCGTTAGCGTG
 TACCTATCTGCATAATGCAATACCCCTGACTCCATATAAGTATAGTATATTACTCTGGT
 AAAACAAACAAATTGAAAACAAGAGTGGACGTGTTATGATTCTTTCATCTTGGT
 TCGTTGTGTAATGCCACAGCCAGCAATTCCAGATATATAGCGACGGTCTATGAATACTCCA
 GTCTGGACCAGACAATCGTGTGGAATGGTTAGGCACATTATATCAAATTCAATTGTTGAAG
 ATATGAGTTATGAGGTACAATGTTGTCTGTTACCCGTGTCAGTAGTACGTCATTCA
 TGACTGAAATCTCTCAACGCCGTTAGCAATAATAGGCTCAGTAGTATTCAACCAATTAC
 AATCAGTAGAAAATTCTCTATACTATTCTATGTTGCATCCTGATATCCCTATGCAAAAAT
 TAGTCATCTAATATAATCATTTCGATAAATACTTGGGCAAACAAATCAATGTAACATCT
 ATTTCTTCAG

Domäne c

CTACCTTGAGGATGAAAAGCACAGCTTACGAATCAGAAAAAATGTCGACAGCTGACTCC
 TGAAGAAACAAATGAACCTGCTAAAGCCCTGGAGCTTCTTAAAATGATCATACTGCAGGT
 GGATTCAATCAGCTGGCGCTTCCATGGAGAGCCTAAATGGTGCCTAAATCCTGAAGCGG
 AGCACAAAGGTTGCATGCTGTCTCATGGCATGGCTTTCCCTCATGGCACAGGCTTCT
 TGCTCTCCAGGGAGAATGCTCTAGAAAGCATGGGTACAGTGGTGCCTACCCATACTGG
 GATTGGACTGCCCTTCCCAACTTCCATGGCTGATCTGGTTAGTCATGAGCAGTACAGATC
 CTTCCGACCATCACGTGAAGCATAACCGTGGTCAATGCCACATCGATACAGTAAATCA
 GGATACCACCAGAACGCTACGGAGGATCTTATCAACAAACCTGAATTGGACATTCACG
 GATATTGCTCAACAAGTCCTCTAGCATTAGAACAGATGACTCTGTTGAAGTGC
 AGTATGAGATTCCCATAATTATCCATGCACTTGTTAGGAGGAACCGACGCTTATGGCAT
 GGCATCGCTGAGATATACAGCATACTGGCATCATTCAAAACACCGAC
 AGGATCTGGCTATTGGCAATCCCTGCAAAATACAGAGGGCAAACCGTACAACACTGCCA
 ACTGCCCATAGAATCTATGAGAAGGCCCTGCAACCATTGGACTAACGAGTGCCTAA
 CCCTGACAGAACATCACCAGAGAGCATGCTATCCGTTGATGTCCTCAACTATAGAGATAAC
 CTTCATTACGTATATGATACCTGGAAATTAAATGGTTGTCGATTCACAACCTGATAGAG
 AGCTGGAAAAAATCAAGAGTCAGGAAAGAGTATTGCTGGATCTGCTGTCGGGATTAA
 AAAATCTGCTTGTGAAATTGAAAGTTGTTACTCCACCTGATAATTGTCATAAAGCAGGG
 GAGTTTATCTACTCGGGGACGAAAACGAGATGGCTGGCCATGACCGACTTTCAAGT
 ATGATATTACTCAGGTTCTGGAAGCAAACCATCTACACTTCTATGATCATCTCTTCAATTG
 CTACGAAGTCTTGATCTTAAAGGAGTGAGTTGGGAACCTGACCTGTTCCACACTGCAAAT
 GTGGTACATGATTCCGGCACAG

Intron c/d

GTACGTGGATTGATTACATAGCAATGCTATATGATTCTAGTAATTACAACCTCAAGTCAT
 GTAGCCGTTTAGATTGCATTACATCAAACAGCATTGGATTAATTGGGGATTGTCCAGG
 CCGCATTATGTTGCATTCCGAAAATAGTTGTGTCAGTGTCCACGTTAAAATTAAACCA
 TTTAATCATATTAGGGATAATTAAATAGATGTTAGTGTCTTATTCAATTGTTACA
 GTGGACAGTCACCAAGGACATATTACTCTATAGATAACACAAACACCAATTAAACCCCTG
 CTTGGAAAGTCTAACTTTCCCCACAG

Domäne d

GCACCCGTGATCGTGATAACTACGTTGAAGAAGTTACTGGGGCCAGTCATATCAGGAAGAA
 TTTGAACGACCTCAATAACCGGAGAAATGGAAAGCCTAGAGCTGCTTCCGTACATTCA
 GACGACGGAACATATGAATCTATTGCCAGTACCATGGCAAACCCAGGCAAATGTCAATTGA
 ATGATCATAATTGCGTGTGTCATGGTATGCCTACCTCCCCAGTGGCACAGACT
 GTATGTGGTTAGGTGGAGAATGCTCTCCTAAACAGGGATCTGGTGTGGCTGTTCCATTAC

TGGGAGTGGACTGCTCCATAGACCCTACCTCATTGATGATGCAACATACTTC
ATTCCCGACAACAGCGGTACGACCTAACCCCTTCTCAGGGAAAGGTTACTTTGAAAA
CGCAGTCACAACAAGGGACCCACAAGCCGGCTTCACTCAGATTATATGTATGAGAAT
GTTTACTTGACTGGAGCAGGAAAATTATTGTGACTTTGAAATTCAAGTTGAGCTTGTTC
ATAACGCACTTCATTCCATGCTGGAGGTAAAGGGCAGTACTCCATGTCCTCCCTGGACTA
TTCTCGTTGATCCCCTTCTTACATCATGCCAACACGGACAGACTGTGGCAATC
TGGCAGGAACATACAAAGATTCCGAGAACTGCCTTATGAAGAAGCGAACTGTGCAATCAACC
TCATGCATCAACCACTGAAGCCGTTCACTGATCCACATGAGAATCACGACAATGTCAC
GAAATACTCAAACACAGGACGGATTGACTACCCAGAACCACTCGGATACAAGTATGAC
AACCTTGAGTTCCATCACTTATCTATCCAAAGTCTTGTGCTACCCGAAAGGAGAA
ATCACGACAGAGTGTGCGGGCTTCTCTCATAACATAGGAACCTGCTGACATAAC
TATCTACATATGTCGCTGACGGACGGCGTGGCAATGACTGCAGTCATGAGGCGGGAAACA
TTCTATATCCTGGAGGCGAAACAGAGATGCCTTTATCTTGACCGTTGTATAAAATTG
AAATCACCAAACCACTGCAACAGTTAGGAGTCAGACTGCATGGTGGAGTTTCGAACGG
GCTTGAGATCAAGGCATACAACGGTCCATCTGGATCCCCATACCTTGATCCAACATAC
ATCTTGAAACCTGGAACAG

Intron d/e

GTAATGCCATCTTAAATACAGTTGTCGTTAAATTATATGTCGTTACAACACCCATAC
CTTGAATTGAGGTAAATACATCACTTGATATTGATAATGTAATGGTAATTGTTCTTGGTTGT
AAAACCGTTCTGGGTGTTATTCACTATCCACCTGGTGGATAGTGAGTAAACACATTG
GTTTAATATGGGTATCTAATGGACAGTGAAAGTGTGCTGGCTAGGCAGATACTTGGTTCT
GTGAATGGAGGTAGTAGAAAGGGGTTTGATGATTGCAG

Domäne e

ATACCCATATCTGGACCACGACCATGAGGAAGAGATACTTGTCAAGGAAGAAATATAATTGA
TTTGAGCCCAAGGGAGAGGGTTCTAGTCAAAGCTTGCAGGAATGAAGAATGATCGC
TCCGCTGATGGGTACCAAGCATTGCCCTTCCATGCCCTGCCACACTGTCCCAATC
CATCTGCAGCTCACCGTTATGCTTGTGTCCATGCCATGGCTACATTCCCCAGTGGCA
CAGACTGTACACTGTCAGGTTCAAGGATGCCCTGAGGAGACATGGTCACTTGTGGTATT
CCTTACTGGGACTGGACAAAACAGTCAACGAGTTACCCGAGCTTCTTCAGCAACAT
TTTATCATCCAACTCGGAATATTAATTTCAAACTCATTCTGGGCTGACATAGAATT
TGAAGGACCAGGGCATTACAGAGAGGCACATAAATACTGAGGCCTGTTCACAGTGGG
GATCATGACGGATACCACAACACTGGTTCTTCGAAACTGTTCTCTTGCTTGGAACAGGAAG
ATTACTGCGATTGAAATACAATTGAGATAGCCCATATGGCATCCACACATGGATTGG
TGGAAAGCGCAGTATATGGCATGGACACCTTCACTATGCATCATATGATCCAATTCTAC
ATCCACCATTACAGACGGACAGAATATGGCTATTGGCAAGAGCTGCAGAAGTACAGGG
GTCTATCTGGTTCGGAAGCAAACGTGCCATTGAACATATGAGAACACCCCTGAAGCCTT
CAGCTTGGGCCACCCATACAATTGAAATAGTCATACGCAAGAATATTCAAAGCCTGAGGAC
ACGTTGACTATAAGAAGTTGGATACAGATATGATAGTCTGGATTGGAGGGCGATCAA
TTTCTCGCATTGATGAACCTATCCAGCAGAGACAGGGAGAAAGACAGAACCTTGCAGGGTT
CCTCCTTAAAGGTTGGTACATCCGCATCTGTGTCAATTGCAAGTTGCAGAGTTGATCAC
ACCTGTAAAGATGCGGGCTATTCACTATTCTGGGAGGATCAGCCGAAATGCCATGGCATT
TCGACAGGCTTATAAGTATGACATTACTAAACTCTCACGACATGAACCTGAGGCACGA
GGACACTTCTCTATAGACGTAACATCACGTCTAACATGGAACAGTACTCTCGGGAGAC
CTCATTCAAGACGCCCTCATTATATTGTACCTGGACGCC

Intron e/f

GTGAGTACCTGTTGCACTAAGACTTCTGAGGCTAAAAGTGTAAAGAAATATCAATTATT
TCAATTCACCCCAAACTTGAAAACGGTACCTATATAGGTTAACTTTTGCTACAGTAAACT
GAACATACCTACACATTCATGAAATGATCTCTCAATATTTCACCAACAG

Domäne f

ATAAACTCAACTCACGGAAACATACACCTAACAGAGTCCGCCATGAGCTAAGTAGCCTTAG
 TTCCCGTACATAGCAAGCTTGAAGGCAGCTTGACAAGCCTAACATGATAATGGGACT
 GATGGTTATCAAGCTATTGCTGCCCTCATGGCGTCTGCGAGTGCCACGAGCCATCTG
 GACGTGAG

Intron f (1)

GTAAATTACAGAGCTTATGAAGTGTTCAGAGTGAAGAGACCAAGATATACTTATACC
 CAAAACTAGCTAGCAACAGACGATTCACCTGTTCCGGACACTTGTATTATACTGTTGGAT
 CCCAAGGTAAACGGAAACGTAACCGAGAACATCAGTCCGTAAAGTGAGTGAGTTGGGG
 CTTAACGTGCACTCAGCAATACCCAGCTATGTGGCGACTCTCAGATTTACTGCTGGAGG
 AGAACCTACATAGCCCCGTTAACCCGTGTGGTATGTAGTAAGACCAGCGCGCATGGCTG
 GTATCTGACGGACGAAGGGTGGCGCTGCACGTATTCCAGTGGTACAACACTGCACCCCCAAT
 TTCACCGACCGGAGAACTGATCTCCCCTCGGAGATATCGCCTGCCTCCACGGGATTCGA
 ACTCGGTGACCTTCAAGCCAGCGCGCTCTAGCGGGGGCGATTAGAGGTTNAAGGCCGACG
 GCTCTACCACCTTAACATCCCCCGCCCCACTCCTGACGGAAATGTTATAATTAGCCT
 TTGTTTCTTATTAAACACTCTGGCAGATTTCTATAGATAATGGATTACATGTAGACA
 GTCTCCCATTGTTGTAACTGGTAGTCAAGAGTTAGAATCTGAATACATTCTCCAAGATGGA
 TCAAGGAAAACAATAATTACTTGATGTTGAG

Domäne f (2)

ATCGCCTGTTGCATCCACGGCATGGCAGCTTCCACTGGCACCGGTTGTACACTCTGC
 AGTTGGAGCAAGCGCTGCCAGACACGGGTCAGTGGTGTGCTGTTCCATACTGGGACTGGAC
 CAAGCCAATCACCGAACACTGCCACACATTCTGACAGACGGAGAACATTATGACGTTGGCAA
 AATGCCGTCTGGCCAATCCGTTGCAAGAGGTTATGTGAAAATTAAAGATGCATTACGG
 TGAGAAAATGTCCAGGAAAGTCTGTTCAAAATGTCAAGTTGGAAAGCACTCGCTCTGTT
 TGACCAAGGCTTGTGGCTCTTGAAACAAACTGACTACTGTGACTTCGAAGTTGAA
 GTGATGCATAACACGATCCATTATCTCGTAGGAGGGGTCAAACGTACGCCCTCTCCTCTC
 TCGAGTATTCTCATACGATCCAATCTTCTTATTCAACCCTCGTTGACA AAAATATG
 GGCTGTATGGCAAGAACGCAAGGAGACATCTACAGTTAGAACAGCTGATTGTGCT
 GTGGGCCTCATGGGTAGGCAATGAGGCCTTCAACAAGGATTCAACCACAACTCGTTCA
 CCAAGAACGACGCAGTCCTAACAGTATTGATTATGAAGAGATCTGGCTATAACTATGA
 CAACCTTGAAATCAGTGGTTAAACTTAAATGAGATCGAGGGCTTAATAGCAAACGCAAG
 TCACATGCTAGAGTCTTGCTGGCTCCTGTTGGATTAGGAACCTCGGCTGATATAC
 ATCTGGAAATTGCAAGACATCGAAAACGATGCCATGATGCTGGTGTGATTTCATCCTGG
 AGGTTCTGCAGAGATGCATTGGGCATACACCGCCTCTACAAGTATGACATTACAGAAGCA
 TTGCAGGAATTGACATCAACCCCTGAAGATGTTCCATGCTGATGAACCATTTCCTGA
 GGCTGTCGGTTGTGCTGTAATGGAACGTGCAATTCCATCGTCTCATCTCACCAAGCCAAC
 GATAATCTATGAACCAGGGCAAG

Intron f/g

GTGAGATATATGCAAATTGAATGTTGTCAGATGCGTTGTTACATTATATGCTTGGAAAT
 TGTCTGAACGAATAACAGTGGAAATAACCAAAAGCTGAAAAAATAAAAAGATATATACTTCAT
 TCTGAATTGTCAGTATTGCTGACCCAAAAACACGTTATCCATGTCGACACTATATTGCC
 TTTCTGAATCTGAGACTGCGTTATGTTCTAACATCACGAAATATGGTATACAGGTTGTG
 TATCTGTAGAATACCCAAGGCAGAATTAAAGGGTACACCCCTGTTAACACAG

Domäne $g(1)$

ATCACCATGACGACCATCAGTCGGGAAGCATAGCAGGATCCGGGGTCCCGAAGGACGTGAA
CACCTTGACTAAGGCTGAGACCGACAACCTGAGGGAGGCCTGTGGGGTGTATGGCAGAC
CACGGTCCCAATGGCTTCAGCTATTGCTGCTTCCATGGAAAACCAGCTTGTGTCCCA
TGCCTGATGGCCACAACTAACCATGTTGACTCACGGCATGGCTACCTTCCCACACTGGCA
TCGCCTCTACACCAAGCAGATGGAGGATGCAATGAGGGCGCATGGGTCTCATGTGGCCTG
CCCTACTGGGACTGGACTGCTGCCTCACCCACCTGCCAACACTGGTCACCGACACGGACA
ACAACCCCTTCCAACAT

Intron g(2)

GTAAGAGCGGGGTAGGGATGGGTGGTAGGGGGTGGGTGTTCTATTACTTCCCCTTCAC
TTGTATGAAATGGATAACCTGGCTGCATCCCAATTGCGTGATCGATTCTCTTCGATTCA
CTCGTGCATTAGACTGCCTTATTACTATAGTAGTTAGAATGTTGCTCAGTGCGCCGTTA
AACAACTAATACACAAAACCGCATTGTTTATATGGTCACTCTACTGTTTATACCGTATA
TGTATGTTCCGACTCACTGGTGGTGCCTACATTCTACTGTCACACTGAGAGGCCATGTT
CTCAGATGTGAAATGTTGAAAGCCGTTCTACATAATATTGCAGGAATACCATTGTTAG
AATGTAGTCAAACAGGTAACAATCTGTTAGTGAGCCCAGTTCGAGGTTGCCTGTAGGGTG
TAGTCCAACAGGTAGGCAGTCATAAGCATAGTTTAAGCATTAGATCATCTATAATT
AACCATGGTTAGCCGCTATGTTAGTTAATCCAGTATAAGTTAGAACTGTTATATTTC
GAAGGGAAAGTGAGTAAATCCTTATTCCTGACTACCATTAAATAGATTCCCAATGACTCC
ATTCAACTCCTAACATCACTGCTCTTCACAG

Domäne g(2)

GGACACATTGATTATCTCAATGTCAGCACAACCTCGATCTCCCCGAGACATGCTGTCACAG
ACCCCGAGCATGGATCAGAGTCGTTCTCTACAGACAAGTCCTCTAGCTCTGGAACAAAC
TGATTCTGCAAATTGAAAGTTGAGATAACCCACAATGCCATCCATTCTGGACAG
GGTGGCCACAGCCCCACTACGGAAATGTCACACTCGACCTCACTGCCTACGATCCTCTTCT
GGCTTCACCACTCCAACACCGACAGAAATCTGGGCTGTCGGCAAGCTTGCAGAAATACAG
AGGACTTCCATACAACCATGCCAATTGTGAGATCCAGGCAATGAAAACGCCCTGAGGCCT
TTCAGTGACGGATATCAACACAAACCCACTCACAAACCTAACCCCAACCCATTAGATGTC
TCGAGTATAATCGGTTGAGCTTCCAGTACGACAACCTCATCTTCCATGGATACAGTATTCC
GGAACCTGATCGCGTCTGAAGAAAGAAAGGAGGAGGACAGAAATATTGCTGCCTTCCT
CTCAGTGGAAATCAAGCGTAGTGTGATGTAGTGTTCGACATATGCCAGCCAGAACACGAAT
GTGTGTTGCGAGGGACTTTGCGATTTGGGAGGGGAGCTAGAAATGCCCTGGTCCTCGA
CAGACTGTTCCGCTATGATATCACCAAGGTGATGAAGCAGCTACACCTGAGGCATGACTCT
GACTTTACCTTCAGGGTGAAGAGATTGTCGGCACCGACGACCACGAGCTTCCTTCAGACAGTG
TCAAAGCACCACATTGAATTGAACCGGGCG

Intron g/h

GTGAGTACGACAGGCATTCTAGTAAAAACCTACTTTGGTAAAAGGTCGAGAAATCACT
TGAAGCAACAACATGATTGTAAACGCCTATTACACGTGAACATGTCACACCCGGTATGCG
CGTTAATGGACATGCCTCTGTTAATGAAAGGGTAAGTACATGTTATGGGATGGATG
GGAGCCACCTGTCCAATTCTAGGTCCCTAGGATCCCAGTTCGCTAGGAATCCCTGAT
TAATGCCTTGTGAATTCCCTGGAATTGTCCTGGCCAAATTTCACAAACCGCCCCGAA
TATACCTTGGAAATAATTGGGCTAAGGGTGGGCTTTAAGGACCAAGAACCCAAACCTAA
ACCCCAACCCATTTCACCCATTCCAGGTTTGTACCAAATAAAAGGTTCCA
CTTTGAGGAAACCTTAAGGGTCTTTCAGGGCTTTCTTCTGGGAATCCAAT
TCCGGGGAAACAAAATACATATATTCAACAGACCTTGGTCAAATTATATAATTCCGAC
TTCATGTCATAGGTTGTCTTCTCCTACACAG

Domäne h

TGCACAGAGGCGGAAACCACGAAGATGAACACCATGATGACAGACTCGCAGATGTCCTGAT
 CAGGAAAGAAGTTGACTTCCTCTCCCTGCAAGAGGCCAACGCAATTAAAGGATGCACTGTAC
 AAGCTCCAGAAATGACGACAGTAAAGGGGCTTGAGGCCATAGCTGGCTATCACGGGTATC
 CTAATATGTGTCCAGAAAGAGGTACCGACAAGTATCCCTGCTGTGTCACGGAAATGCCGT
 GTTCCCCCACTGGCACCGCCTGCATACCATTCAAGATGGAGAGAGCTCTGAAAAAACATGGC
 TCTCCAATGGCATTCCCTACTGGGATTGGACAAAGAAGATGTCGACTTCCATCTTCT
 TTGGAGATTCCAGCAACAACACCCTTCTACAAATATTACATCCGGGGCGTGCAGCACGA
 ACAACACCAGGGACATTAATCAGAGACTCTTAATCAAACCAAGTTGGTGAATTGATTAC
 CTATATTACCTAATCTGCAAGTCTGGAGGAAACTGTAATGTGACTTTGAAGTTCACT
 ATGAGATCCTCCATAACGCCGTCACTCCTGGCTGGAGGAACGGAAAGTATCCATGTC
 TACCCCTGGAGCATTGGCCTTGGACCCCTGTCTCATGATTCAACACTCGAGTTGGATAGA
 ATCTGGATCCTTGGCAGAAGTTGCAAAAGATAAGAATGAAGCCTTACACGCAATTGGATT
 GTGCTGGCGACAGACTTATGAAAGACCCCTGCATCCCTCAACTACGAAACCGTTAATGA
 AGATGAATTACCGCATCAACTCTTCCAAGCATACTGTTGACCAACTACAGGTTAAC
 TATGAATACGATAACATGAGAATCAGGGTCAGGACATACATGAACCTGAAGAGGTAATT
 AGGAATTAAGAAACAAAGATCGCATATTGCTGGTTTGTCTGGGTTACGGATATC
 AGCTACAGTGAAGTATTCAATTCACTGGAAACGATACAGTACGAAAGAATATGCAGGA
 GAATTGCACTTTGGGAGGTGAGAAGGAGATGCCGTGGCATATGAAAGAATGTCAGGAAAT
 TGGACATCTCCGATGCTGTACACAAGCTCACGTGAAAGATGAAGACATCCGTTAGAGT
 GGTTGTTACTGCCTACAACGGTGACGTTACCACCGAGCTGTCTCAGCCATTCACTGTC
 CACCGTCCAGCCCAGTGGCTCACGACATCTGGTAATCCCAGTAGGTGCGGGCCATGACC
 TTCCGGCTAAAGTCGTAGTAAAGAGCGGCACCAAGTCGAGTTACACCAATAGATTGTC
 GGTGAACAAAGCAATGGTGGAGCTGGCAGCTATACTGCTATGGCTAAATGCATGTTCCC
 CCTTCTCTTACACGGCTTGAACGGACAAAGTCTACAGCGTCATCACGGAGACTACT
 ACATTGCTGCAGGTACCCACGCCTGTGAGCAGAACCTCAGGCTCCACATCCACGTGGA
 ACACGAGTAG

3' UTR

TTCACAG

Inton. UTR

GTGAGGAGAAGGCCAGGCTAGCAGGGCAATGGATGAAGGAAATAGGGCAAAGGGAATA
 GCAGTACACCACGACATTCCAACCTCCTCAGAAACTAATATAGCCTTAATACAACC
 AGCCAAGACTCAACGGCAGCCGGGTGGGGGATTGGTGGCTGCTGTTTCAGACCAGGG
 TGCAAAATATCAGTGCAGCAATCAACATGTTGCGTGTACAGACACTGACACAGCAGTCATTG
 AACCTGCAGACCCATAACAGGAAATGGGCAGATACGATCAAAGACAGTGTAAAATAGGG
 ATAAGTAGGCATATGCAACCACCTGATGGAAATGAAAGGGTAAGTTAAACCCGGCTA
 CCAAAGGTCCAATGGTCCCTAACCCAGCTACGCTATCCCTCAATTTCAGTATTGAGCT
 GATTCTGTCGAGTTCATGTAACGTATACTTCTGTATTATTACAG

3' UTR

GTTGCTATGCCGACTGCGCTATATTGGTGAACGAGACGATGAGGACATCTGAAAGAGTT
 CGCCAAGTGTGAGGTACGGAAAGTATTGAGCTAACAAATGATGATTCAAAAT
 GACTTGGCGCTAGGACAAAGACATAATTGATCAGCACCCCTGTGCACCAACTCTTGT
 GCTGCAAACGTCTGACAAGCGACACGTCAATCAACAAGCTGTCAAACACTCAAGTGGATGTA
 ACTAGAATCGTGGCCATCGTTACAAAGTATTGACAGATGTCACACATGATGGCGAGAA
 AACTTAACTTTAATGACCTAGAGTGAATTGAAATATGTAATATATTCTCAAAG
 ACTCAGCTGAACATATTGTTGGATAACACATCAATTCCCTCAACAAAATGCTTATCTTCAC
 ATGGATGTATGTAATGTGGCCGGCAATAAGTATATGTATAA
 A

Figur 5

Abgeleitete Primärstruktur des HtH1

Signalpeptid

LVQFLLVALVAGAGA

Domäne a

DNVVRKDVSHTDDEVQALHGALHDVTASTGPLSFEDITSYHAAPASCDYKGRKIACCVHG
 MPSFPFWHRAYVVQAERALLSKRKTGVMPYWDWTQTLTHLPSLVTEPIYIDSKGKAQTNW
 WYRGEIAFINKKTARAVDDRLFEKVEPGHYTHLMETVLDALEQDEFCKFEIQFELAHNAIH
 YLVGGKFEYSMSNLEYTSYDPIFLHHNSNDRLFAIWQRLQELRGKPNAMDCAHELHQ
 LQPFNRDSNPVQLTKDHSTPADLFDYKQLGYSYDSLNLNGMTPPEQLKTTELDERHSKERAFA
 SFRLSGFGGSANVVVYACVPDDPRSDDYCEKAGDFFILGGQSEMPWRFYRPFFYDVTEAV
 HHLGVPLSGHYYVKTELFVNGTALSPDLPQPTVAYRPGK

Domäne b

GHLDPPVHHRHDDDLIVRKNIDHLTREEEYELRMLERFQADTSVDGYQATVEYHGLPARC
 PRPDAKVRFACCMHGMASFPHWHLFVTQVEDALVRRGSPIGVPYWDWTKPMTHLPDLASN
 ETYVDPYGHTHHNPFFNANISFEEGHHTSRMIDSKLFAPVAFGEHSHLFDGILYAFEQED
 FCDFEIQFELVHNSIHAWIGGSEDSMATHYAFDPIFYLLHHSNDRLWAIWQALQIRRH
 KPYQAHCAQSVEQLPMKPFAPSPLNNEKTHSHSVPTDIYDYEVLHYSYDDLTFGGMNL
 EEIEEAIHLRQQHERVFAGFLLAGIGTSALVDIFINKPGNQLKAGDIAILGGAKEMPWAF
 DRLYKVEITDSLKTLSDLVDGDYEVTFKIHDMHGNALTDLIPHAAVVSEPAH

Domäne c

PTFEDEKHSLRIRKNVDSLTPPEETNELRKAELLENDHTAGGFNQLGAFHGEPKWCPNPEA
 EHKVACCVHGMASFPHWHLRLLALQAENALRKHGSGALPYWDWTRPLSQLPDLVSHEQYTD
 PSDHHVKHNPFNNGHIDTVNQDTRSVREDLYQQPEFGHFTDIAQQVLLALEQDDFCSFEV
 QYEISHNFIHALVGGTDAYGMASLRYTAYDPIFFLHHSNTDRIWAIWQSLQKYRGKPYNTA
 NCAIESMRRPLQPFGLSSAINPDRITREHAIPFDVFNYRDNLHYVYDTLEFNGLSISQLDR
 ELEKIKSHERVFAGFLLSGIKKSALVKFEVCTPPDNCHKAGEFYLLGDENEMAWAYDRLFK
 YDITQVLEANHLHFYDHLFIRYEVFDLKGVSLGTDLFHTANVVHDSGT

Domäne d

GTRDRDNYVEEVTGASHIRKNLNDLNTGEMESLRAAFLHIQDDGTYESIAQYHGKPGKCQL
 NDHNIACCVHGMPTFPQWHRLYVVQVENALLNRGSGVAVPYWEWTAPIDHLPFIDDATYF
 NSRQQRYDPNPFGRGVTFENAVTTRDPQAGLFNSDYMENVLLALEQENYCDFEIQFELV
 HNALHSMMLGGKGQYSMSSLDYSAFDPVFFLHHANTDRLWAIWQELQRFRREL PYEEANCAIN
 LMHQPLKPFSDPHENHDNVTLKYSKPQDGFDYQNHFGYKYDNEFHHLISPLDATLKQRR
 NHDRVFAGFLLHNIGTSADITIYICLPDGRGNDCSHEAGTFYILGGETEMPFI FDRLYKF
 EITKPLQQLGVKLHGGVFELELEIKAYNGSYLDPHTFDPTIIFEPGT

Domäne e

DTHILDHDHEEEILVRKNIIDLSPRERVSLVKALQRMKNDRSADGYQAIASFHALPPLCPN
PSAAHRYACCVHGMATFPQWHLRYTVQVQDALRRHGLVGIPYWDWTKPVNELPELSSAT
FYHPIRNINISNPFLGADIEFEGPGVTERHINTERLFHSGDHDGYHNWFFETVLFALOE
DYCDFEIQFEIAHNGIHTWIGGSAYGMGHLHYASYDPIFYIHSQTDRIWAIWQELQKYR
GLSGSEANCAIEHMRTPLKPFSGPPYNLSHTQEYSKPEDTFDYKKFGYRYDSLELEGRS
ISRIDELEIQQRQEKDRTFAGFLLKGFGTSASVSLQVCRVDHTCKDAGYFTILGGSAEMPWA
FDRLYKYDITKTLHDMNLRHEDTFSIDVTITSYNGTVLSGDLIQTPSIIFVPGR

Domäne f

HKLNSRKHTPNVRHESSLSSRDIASLKAALTSLQHDNGTDGYQAIAAFHGVPACHEPS
GREIACCIHGMATFPWHRLYTLQLEQALRRHGSVAVPYWDWTKPITEPHILTDGEYYD
VWQNAVLANPFARGYVKIKDAFTVRNVQESLFKMSSFGKHSLLFDQALLALEQTDYCDFEV
QFEVMHNTIHYLVGGRQTYAFSSLEYSSYDPIFFIHHSFVDKIWAVWQELQSRRHLQFR
DCAVGLMGQAMRPFNKDFNHSFTKKHAVPNTVFDYEDLGYNYDNLEISGLNLNEIEALIA
KRKSHARVFAGFLLFGLTSADIHLEICKTSENCHDAGVIFILGGSAEMHWAYNRLYKYDI
TEALQEFDINPEDVFHADEPFFLRLSVAVNGTVIPSSHLDQPTIIYEPGE

Domäne g

DHHDDHQSGSIAGSGVRKDVTNTLKAETDNLREALWGVMDHGPNFQAIAAFHGKPALCP
MPDGHNYSCTHGMATFPWHRLYTKQMEDAMRAHGSVGLPYWDWTAFTHLPTLVTDTD
NNPFQHGHIDYLNVSTTRSPRDMLFNDPEHGSESFFYRQVLLALEQTDCKFEVQFEITHN
AIHSWTGGHPYGMSTLDFTAYDPLFWLHSNTDRIWAVWQALQEYRGLPYNHANCEIQAM
KTPLRPFSDDINHNPVTKANAKPLDVFEYNRLSFQYDNLIFHGYSIPELDRVLEERKEEDR
IAFAFLLSGIKRSADVVDICQPEHECVFAGTFAILGGELEMPWSFDRLFRYDITKVMQ
HLRHDSDFTRVKIVGTDDHELPDSVKAPTIEFEPG

Domäne h

VHRCGGNHEDEHHDRILADVLIRKEVDFLSLQEANAIKDALYKLQNDDSKGGFEAIAGYHGY
PNMCPERGTDKYPCCVHGMPPHWRLLHTIQMERALKNHGSPMCIPYWDWTKKMSLPSF
FGDSSNNNPFYKYYIRGVQHETTRDVNQRLFNQTKFGEFDYLYYLTLQVLEENSYCDFEVQ
YEILHNAVHSWLGGTGQYSMSTLEYSAFDPVFMIIHSSLDRIWILWQKLQKIRMKPYYALD
CAGDRLMKDPLHPFNYETVNEDEFTRINSFPSILFDHYRFNYEYDNMRIRGQDIHELEEV
QELRNKDRIFAGFVLSGLRISATVKVFIHSKNTSHEEYAGEFAVLGGEKEMPWAYERMLK
LDISDAVHKLHVKDEDIFRVVVTAYNGDVVTTRLSQPFIVHRPAHDLVIPVGAGHD
LPPKVVVKSGTKVEFTPIDSSVNKAMVELGSYTAMAKCIVPPFSYHGFELDKVYSDHG
YIAAGTHALCEQNLRLHIHVEHE

Figur 6

cDNA-Sequenz in Verbindung mit Intronstruktur des HtH2

Domäne b

CACAGACTGTTCGTCACCCAGGTGGAAGATGCTCTGATCAGGCGAGGATGCCCTATAGGGG
 TCCCCTACTGGGACTGGACTCAGCCTATGGCGATCTCCAGGACTTGAGACAACGCCAC
 CTATAGAGATCCCCTACAGCAGGGACAGCAGACACAACCCCTTCCACGATGTTGAAGTTGCC
 TTTGAAAATGGACGTACAGAACGTACCCAGATAGTAGATTGTTGAACAACCTTATTG
 GCAAACATACGCGTCTCTCGACAGTATAGTCTATGCTTTGAGCAGGAGGACTCTGCGA
 TTTGAAAGTTCAATTGAGATGACCCATAATAATATTACGCCTGGATTGGTGGCGGCGAG
 AAGTATTCCATGTCTCTACACTACACAGCCTCGACCCCTATCTTCTACCTCGTCACT
 CCAACACTGACCGGCTCTGGCAATTGGCAAGCGTTGCAGATAACGAAGAACAGGCCTTA
 CAAGGCTATTGTGCTTGGTCTGAGGAACGCCAGCCTCTCAAACCTTGCCTTCAGTTCC
 CCACTGAACAAACAGAAAAACCTACGAAAACCTCGGTGCCACCAACGTTACGACTACG
 AAGGAGTCCTGGCTATACTTATGATGACCTCAACTCGGGGATGGACCTGGTCAGCT
 TGAGGAATACATCCAGAGGCAGAGACAGAGACAGGACCTTGCTGGTTCTGTCA
 CATATTGGTACATCAGCGAATGTTGAAATCATTATAGACCATGGACTCTTCATACCTCCG
 TGGGCACGTTGCTTTGGCATTGGCGAGAGAAGGAGATGAAATGGGATTGACCGTTGTA
 CAAATATGAGATTACAGATGAACTGAGGCAACTTAATCTCCGTGCTGATGATGTTTCAGC
 ATCTCTGTTAAAGTAACGTGATGTTGATGGCAGTGGCTGCTCTGAACCTACATCCCAC
 CTGCTATCATCTCGAACGAAGCCATA

Intron b/c

GTAAGTAGCTACCTGTTATTCAATTTCGCTTGCAATCAATTCAATTGAGCTTGAAA
 TTCAATAATTGTTGCTTGCATGGCTGAAAACCAATTGAACTCTTCTTCAGGTGCG
 AACTCAAATAATAATCACTAATTGTTATGCACGCCGTAGGGCATACATACTATATCCAC
 ATCGGTCACTCAAAATGCAAACAAATTGCTTATTCCGTTGGACAGCAAACCCCTT
 TCCTGTAATCTGCCTTGGCATCCACTGGAATTAAATGTTGACTGGAATTGATACTGGCT
 CTCTCTTGCAAGAGTTAATATCTATAGTTGTAATCTTATGATTGCTATTATAT
 TCGACAGGATGCTATAACACACCCCTAGACTATTGATGCCACTGTTGATTGTTCCATT
 TATTATTATAACAGAACATGGCTGTAATTTCACCTCCAG

Domäne c

TTGACCATCAGGACCCGCATCATGACACAATCATTAGGAAAATGTTGATAATCTTACACC
 CGAGGAAATTAAATTCTCTGAGGCGGGCAATGGCAGACCTTCATCAGACAAAACGCCGGT
 GGATTCCAGCAAATTGCTGCTTTCACGGGAAACCAAATTGGTGCCTCAAGTCCGATGCTG
 AGAAGAAGTTCTCCTGCTGTCCATGGAATGGCTGCTTCCCTCACTGGCACAGACTCCT
 GACCGTGCAAGGGGAGAATGCCCTGAGAAAGCATGGATGTCTGGAGCTCTCCCTACTGG
 GACTGGACTCGGCCCCCTGTCACCTACCTGATTGTTGTTGTAAGTAGCAGAACTACAC
 CGATGCCATATTCCACCGTGGAACGCCGAACCCCTGGTACAGCGGCCATATTGATAACAGT
 TGGTGTGACACAACAAGAGCGTCCGTCAAGAACTGTATGAGAGCTCCTGGATTGGCCAT
 TATACTGGGTCGCTAACAGCAAGTGTCTGGCTTGGAGCAGGATGACTTCTGTGATTTG
 AAGTCCAGTTGAGATAGCTACAAATTCAATTGACGCTCTGTCGGCGAACGAGCCATA
 TGGTATGGCGTCACTCCGTTACACTTATGATCCAATTCTACCTCCATCATTCTAAC
 ACTGACAGACTCTGGCTATATGGCAGGCTACAAAAGTACAGGGGCAAACCTTACAATT
 CCGCCAACACTGCCATTGCTTCTATGAGAAAACCCCTACAAACCCCTTGGCTGACTGATGA
 GATCAACCCGGATGATGAGACAGACAGCATGCTGTCCTTCAGTGTCTTGATTACAAG
 AACAAACTCAATTATGAAATATGACACCCTGACTTCACGGACTATCAATCTCCAGCTGG
 ACCGTGAACGTGACGGAGAAAGTCTCATGACAGAGTATTGCCGGATTGCTGCATGG

TATTCAGCAGTCTGCACTAGTTAAATTCTTGTCTGCAAATCAGATGATGACTGTGACCAC
 TATGCTGGTGAATTCTACATCCTGGTATGAAAGCTGAAATGCCATGGGCTATGATCGTC
 TTTACAAATATGAGATCACTGAGCAGCTCAATGCCCTGGATCTACACATCGGAGATAGATT
 CTTCATCAGATAACGAAGCGTTGATCTCATGGTACAAGTCTTGAAGCAACATCTCCCC
 AACCTTCTGTACATGACGAAGGGCAG

Intron c/d

GTGAGAACATTGATAATAGTTCAAATgAAGTATATCCGATTCAAGCTGTCGATACAAGATg
 AGATACATAATCACAATGTTGATTAGATATCTCTTAATTAAATGCCGCTTTATCAA
 TATTCGAGCAATCCTCAGCAACATACACCAGCAAATGTTCATCAACAGACTATATTATT
 TAATCTTTAAAAATCCTTCTGTTATAAAACTTAAAGTATCGAATTCCCTGAATG
 CGTCTCTGCAGCATATAGTTAAGTTGTTCTGTCAAG

Domäne d

GTCACCACAGGCTGACGGAGTACGACGAAGTTGTAAGTGCAGGCCACATCAGAAAGAA
 TTTAAAAGATCTGTCAAAGGGAGAAGTAGAGAGAGCCTAAGGTCTGCCTCCCTGCAACTTCAG
 AACGACGGAGTCTATGAGAATATTGCCAAGTTCCACGGCAAGCCTGGTTGTGATGATA
 ACGGTCGAAGGTTGCCTGTTGTCATGGAATGCCACCTCCCCAGTGGCACAGGCT
 CTATGTCCTCCAGGTGGAGAATGCTTGCTGGAGAGAGGATCTGCCGTCCTGTGCCATAC
 TGGGACTGGACTGAAACATTACAGAGCTGCCATCTTGATTGCTGAGGCTACCTATTCA
 ATTCCCGTCAACAAACGTTGACCCCTAATCCTTCTCAGAGGTAACAGGTTGAGAA
 TGCTGTTACAACACGTGATCCCCAGCCTGAGCTGTACGTTAACAGGTTACTACCAAAAC
 GTCATGTTGGTTTGAACAGGACAACACTGCGACTTCGAGGATACAGTTGAGATGGTTC
 ACAATGTTCTCCATGCTTGGCTGGAGAGCTACTTATTCTATTCTCTGATT
 TTCTGCATTGACCCCTGTGTTTCTCACCCTGCGAACACAGATAGATTGTGGCCATC
 TGGCAGGAGCTGCAGAGGTACAGGAAGAAGCCATACAATGAAGCGGATTGTGCCATTAACC
 TAATGCGCAAACCTCTACATCCCTCGACAAACAGTGATCTCAATCATGATCCTGTAACCTT
 TAAATACTCAAAACCCACTGATGGCTTTGACTACCAGAACACTTGGATAACAAGTATGAC
 AACCTGAGTTCAATCATTTCAGTATTCCCAGGCTTGAAGAAATCATTGTTATTAGACAAC
 GTCAAGATCGTGTGTTGCAGGATTCCCTCACAACATTGGGACATCGCAACTGTTGA
 GATATTGCTCTGTGTCCTACCACCAGCGGTGAGCAAAACTGTGAAAACAAGCCGGAACA
 TTTGCCGTACTGGAGGAGAAACAGAGATGGCTTCTATTGACAGAGACTCTACAGGTTTC
 ACATCAGTAAACACTGAGGGACCTCGGCATACAGCTGGACAGCCATGACTTGCACCTCAG
 CATCAAGATTCAAGGAGTAAATGGATCCCTACCTTGATCCACACATCCTGCCAGAGCCATCC
 TTGATTTGTGCCTGGTTCAAGT

Intron d/e

AAGAAAGTTCACTGTCTAAATCTTTTATGATAGAGGGTAGAGAAAGTGGAGACAATGT
 GACAATATATTGAATAAAAGTTGTTAAAATTATAACTCTCATAAGTTCATATTATGCTGA
 AGCTGTAGCCATCTATAACTGTGTAACATGAAATGTTAAGACATTAACCTAAATACTTCAG
 CTGATAACAAACAAATGTTAACATACAGTCATGTAACATTCTATCTTAGGTTATA
 GCATAAACACTCAGAGATAACAGTGACGAAAACCTCTATTAAATATTTCAGGT

Domäne e

TCTTCTCGCTGATGGCATTAGATGACATCCTGTGAGAAAAGAAGTGAACAGCC
 TGACAACCAGGGAGACTGCATCTGATCCATGCTCTGAAAAGTATGCAGGAAGACCATT
 ACCTGACGGGTTCCAAGCCATTGCTCTTCCATGCTCTGCCACCACTCTGCCCTTCACCA
 TCTGCAGCTCACCGTTATGCTGCTGTCCACGGCATGGCTACATTCCCCAGTGGCACA
 GATTGTACACTGTACAGTCCAGGATGCAGTGAGGAGACATGGAGCTACGGTAGGTGTACC
 GTATTGGGATTGGCTGCAGCGACTCACCTACCAAGAGCTTGTACCATGGAGACATAC

CATGATATTGGAGTAACAGAGATTCCCCAATCCTTCTACCAAGCCAATATTGAGTTG
 AAGGAGAAAACATTACAACAGAGAGAGAAGTCATTGAGACAAACTTTGTCAAAGGTGG
 ACACGTTTGATAAACCTGGTCTTCAAACAAGCCATCCTAGCGCTGAGCAGGAAAAC
 TGTGACTTTGAGATTCACTGAAATTCTTCACAACGGCGTCACACGTGGTCGGAGGCA
 GTCGTACCTACTCTATCGGACATCTCATTACGCATTCTACGACCCTCTTCTACCTTCA
 CCATTCCAGACAGACCGTATTGgGCAATCTGGCAAGAACTCCAGGAACAGAGAGGGCTC
 TCGGGTGATGAGGCTCACTGTGCTCGAGCAAATGAGAGAACATTGAAGCCTTCAGCT
 TCGGCCTCCTATAACTGGAATCAGCTCACACAGGATTCTCCCGACCCGAGGACACCTT
 CGACTACAGGAAGTTGGTTATGAATATGACAATTAGAATTCTGGGAATGTCAGTTGCT
 GAACTGGATCAATAACATTATTGAACATCAAGAAAATGATAGAGTATTGCTGGGTCCTGT
 TGAGTGGATTGGAGGTTCCGCATCAGTTAATTCCAGGTTGAGCTGATCCACATG
 TCAGGATGCTGGTACTTCACCCTCTGGTGGCAGTGCAGATGGCTGGGATTTGAC
 AGGCTTACAAATATGACATTACTGAAACTCTGGAGAAAATGCACCTCGATATGATGATG
 ACTTCACAATCTCTGTCAGTCTGACCAGCCAACACGGAACGTGCTGAGCAGCAGTCTAAT
 CCCAACACCGAGTGTATATTCCAGCGGGGACATC

Intron e/f

AAGTAGTAAACTGCTCAGATTGTTTCATAATTACTCCACTATTAAGTAAAAGTACTAGT
 AATTCAATAGTACTGTTCACAGAGAAATGTAACACAATAGACCACAGAGTCCTTGTAA
 ACGCCTTGGCTTGGTAAGTCTGAGGTTGGTACTGATGGAAAGCTAAAATATATTTG
 ACAG

Domäne f(1)

GTGACATAAATACCAGGAGCATGTCACCGAACCGTGGCCGTGAGCTGAGCGATCTGTC
 TCGAGGGACCTGTCTAGTCTCAAGTCTGCTCTGCAGACCTACAGGAGGATGATGGCCCC
 AACGGATACCAGGCTCTGAGCCTTCCATGGCTACCAGCAGGCTGCCATGATAGCCGGG
 GAAATGAGAT

Intron f

ATATTAAAGTATTATCTTACGCATGACCCCTGACCCATTATTATTTTAATCCTATGAT
CAAACATTTACTTAGACTGGCTTGTGAGCCCCAGGCAAAATGCACTGTAAAATACACTGA
 CAGAGGATTAGGCATTCTGGGAGTACTGTATAGTTAGTGCATACATATTAGCGTCCCT
 CACTAAAACGAATCTCTGAATGCTATCAATTAAAGATCATGATGCTTGTGTCTACT
 GTATTAAAATGGTGTAAAGATTGCAATTACAATATACACAAACACGTTCTGCATCTC
 GGAGAATGCAATCTTGTACGCGTCTGTTCATATTATGCATGTAGTTGCAC
 TACTTAGCGTCCAATAAACCAATTACACAAACAAACGATTTAGGAATGTGA
 CTGTAGCTGCAACGAATACCTGATCCTTGTCCAGAT

Domäne f(2)

CGCATGTTGCATTACGGGATGCCGACCTCCCCCAGTGGCACAGACTGTACACCCCTGCAG
 TTGGAGATGGCTCTGAGGAGACATGGATCATCTGTCGCCATCCCCTACTGGACTGGACAA
 AGCCTATCTCGAACCTCCCTCGCTCTCACCAAGGCTTGTCAAATTGCAAATACCTACACAGTA
 TGCTGTGGTAAACAACCCATTCTCAAAGGTTGTCAAATTGCAAATACCTACACAGTA
 AGAGACCCACAGGAGATGCTGTTCACTGAGTATTGACATGGAGAGTCACACGTTCTATGAGC
 AAAACTCTTCTGCTCTGAGCAAACCGACTACTGTGATTTGAGGTACAGTTGAGGTCC
 CCATAACGTGATCCACTACCTGTGGTGGACGTCAGACCTACGCATTGTCTCTGCAT
 TATGCCTCCTACGACCCATTCTTCTTATACACCATTCTTGTGGATAAGATGTGGTAG
 TATGGCAAGCTCTCAAAGAGGAGGAAACTCCATACAAGCGAGCTGACTGTgCTGTCAA
 CCTAATGACTAAACCAATGAGGCCATTGACTCCGATATGAATCAGAACCCATTACAAAG
 ATGCACGCAGTTCCAACACACTCTATGACTACGAGACACTGTACTACAGCTACGATAATC
 TCGAAATAGGTGGCAGGAATCTGACCAGCTCAGGCTGAAATTGACAGAAGCAGAAGCCA

CGATCGCGTTTGCTGGATTCTGCTTCGTGGAATCGGAACCTCTGCTGATGTCAGGTTT
 TGGATTGTAGAAATGAAAATGAC'TGCCACAGGGTGGAAATAATTTCATCTTAGGTGGAG
 CCAAGGAAATGCCATGGTCATTGACAGAAACTTCAAGTTGATATCACCCATGTACTCGA
 GAATGCTGGCATTAGCCCAGAGGACGTGTTGATGCTGAGGAGCCATTATATCAAGGTT
 GAGATCCATGCTGTTAACAAAGACCATGATACCGTCGTCTGTGATCCCAGCCCCAACTATCA
 TCTATTCTCCTGGGGAAAG

Intron f/g

GTGAGAGAACCACTAATAGCTACTGTCTACAAAGAATGTGTCATTTAAAGACCTGACTGT
 AGGCCGATGGCTGCTGTCATCTCCTCCGCTCCTCCTGTTCCCTCCGAAGGGTCA
 GCTTCAGGTTCTCTGCAATATGCCAACGAGACCTCCTGAGCAGGCAGTATATACGTA
 AGGGAAAGCAAGTATGGACCATCGCGCGCATGTAGAGATAACATGATCAGCTGCTGCTG
 TCCACTCCTGTCAGACAATGAGATAAACATGAATAACAGTATTACTCAGCAGCGTTCCAATT
 TTCAACCCTCGTATTTATTAAAAAAAGGAATTTTAAATATATTTCCTGTTGAAATA
 TTTTAGTAACTGTTAACGATATAGAGTGGAGTAGTGACGCTTATTTCGGtTCATTCTCG
 AAACAAAAATATAATAGTCCACTGAACTCTCTAAATTGTTTACAACCTCAACTGCCA
 CAGACGTAATCCCTCACGTTATTTGAGCTGACAACGTGTTGAATTGAGTGTCCGAAT
 TCTAAATAAGCATGTATATATTACGTCTCATGCAAGTAATATATGTTAACTGATGACGT
 CACTGGTGACCACTGATTTAGTCCTTGTCTAAATTGCACTTCTGTTGTCACGGGGAC
 GGTGGGAAGCCAGGTTCTCCTGTCACGCTGAATATCCGTTGCAATCCCCACATGGGT
 ACAAAAGTGTGATGCCTATTCCTGGTGTCCCCCACCGTGATATTGCTGGAATAAGTGGCTTA
 ATACCATAACACTCAGCTATTGTCACACTACTGCCACCGGCTCACACCTCTGATGCTTC
 TGTTCTATCCAG

Domäne g (1)

GTCGCGCTGCTGACAGTGCACACTGCCAACATTGCTGGCTCTGGGGTGAGGAAGGACGT
 CACGACCCCTCACTGTGTCAGGACCGAGAACCTAACAGACAGGCTCTCAAGGTGTCATCGAT
 GATACTGGTCCCAATGGTTACCAAGCAATAGCATCCTCACCGGAAGTCCTCCAATGTGCG
 AGATGAAACGGCCGCAAGGTTGCCTGTTGCTCACG

Intron g (1)

GTAATTAAATGGATGTGAAGTCAAATGTCGAGGGTATAATAAGGATTTAAATAACTTCAGTCG
 TGTAATACTGTATGACATGTGTATTGGATGGTGAGGTATTACAGGTATAAGGCCAGTGT
 GTGTTGGGACGGTTACTTTCTGCACTAGTAATAAGCATTGTATTTAGCTAGCTTTATCA
 TATAACTTTAGTTTCAGGTTGtGGCAATTGAAATCGAAATTTCATTCAGGTAA
 TCGCACTCGTGTGTNAGAATAGTTACTATGCTGCATTGAGAATAACACTATAGTAATAAAG
 CATATCATACAGTAAGAATAACACTATAGTAATAAAAGTATATCATNCAGTAAGAATGTCA
 TGTATGATAAATAGTTATCACACTCGTGTGTTAGAATGGTTACTATCCAGGAATAAC
 CACTATGTATTACATGTATATTGGGCAGTGTAAGTAGTAGCATTGTATTTAAATCAGTAT
 ATCGTGCTTCAAAACACCAGGATATGGGTATACAGTGGCAGTGTAAGTAGCAACATT
 GTATATTAAATCAGTATATCGTACTTCAAAACACCAGGATTATGGGTATACAGTGGCAG
 TGTAAGTAGTAGCATTGTATTTAAATCAGTATATCGTACTTCAAAACACCAGGATATAAT
 TCAGTATATCGTGTCTAAAACACCAGGATATAATTCAAGTATATCGTGTCTCAAAACACCA
 GGATATATGGGATATACAGTGCAGGTTGCATACACCTCCACCCCTTACAG

Domäne g (2)

GTATGGcCTCCTCCcACACTGGCACAGACTGTATGTGAAGCAGATGGAAGATGCCCTGGC
 TGACCAACGGGTACATATCGGCATCCCTACTGGGACTGGACAACTGCCTCACAGAGTTA
 CCCGCCCTGTCACAGACTCCGAGAACAAATCCCTCCATGAG

Intron g (2)

GTCAGTTAGTCTCCTGAGCTAACGATAACCAATTCTATTTGAGAACACGATG
 ACGAGAAAACAAGCAATATAGATATAGATGCAGTATAGATCAAGTTAATGAATTCTTGCT
 ATATGTTGTTGTAATAAACTTAAAGAAAACGAGAGCATGCACACAAATGAAACAAACAA
 TTATGTTGTTGATAGGAATATGATATATGATTTGGGGCTGACGTGAGCAGGGTTGAAGG
 GACAGTTTACATGTCAGTAACACTGGGAGTATTCTTGATCCACAATATAGTTTCAATT
 GTGTTCAGCAGTTACAACATTATACATACATTACGTGtAACATGCTTCTTGTC
 CTCTTGCCAG

Domäne g (3)

GGTCGCATTGATCATCTCGGTGTAACCACGTACGTCACGTTCCCCAGAGACATGCTGTTAACG
 ACCCAGAGCAAGGATCAGAGTCGTTCTCTATAGACAAGTCCTGGCTTGGAGCAGAC
 TGACTACTGCCAGTTGAGTCCAGTTGAGCTGACCCACAACGCCATTCACTCCTGGACA
 GGTGGACGTAGCCTTACGGAATGTCGACCTCGAGTTCACAGCCTACGATCCTCTCT
 GGCTTCAACCACCTCAACACCGACAGAATCTGGGCTGCTGGCAAGCAGTGCAGAAATACCG
 AGGACTCCCATAAACGAAGCACACTGTGAAATCCAGGTTCTGAAACAGCCCTTGAGGCCA
 TTCAACGATGACATCAACACACAATCCAATCACCAAGACTAATGCCAGGCCATCGATTCA
 TTGATTATGAGAGGTTAACTATCAGTATGACACCCCTAGCTCCATGTTAAGAGCATTCCC
 TGAACTAATGACCTGCTCGAGGAAAGAAAAGAGAAGAGAGAACATTGCTGCTTCCTT
 CTTCGTTGGAATCGGTTGCAAGTGTGATGTCGTTGACATCTGCCGCCAATGGTGA
 GTGTTGCAAGAACCTTGCTGCTGGGAGGGAGCTaGAAATGCCCTGGTCTTCGA
 CAGACTGTTCCGCTATGACATCACCAAGACTGATGAATCAGCTCATCTCAGTATGATTCA
 GATTTCAGTTCAAGGGTGAAGCTGTTGCCACCAATGGCACTGAGCTTCATCAGACCTTC
 TCAAGTCACCAACAATTGAACATGAACATTGG

Intron g/h

GTATGTTATCTTATCATCAAATGTGATCAGATACTGGAGACGTTTCATATTAACCTGG
 TCAGCATTAGTTGATGATTTGGTGCATGTTGACGACAAGGAGTCAGCATTAAACACATT
 CAACACATCTTAAATCTGATATGAGAAGGAAATAATTGATCCAGTATTGATGATTGAAGT
 TAGATTAACAGTGAAGATATACCAAGTTGATAATCGTATAAAACAGTAGCAGAAATTGTA
 TCAGTGAAGAAACTAAATGTGGGAAGGGCAACGCCAACAGCAGATTAGATTACGATCGTGTGCT
 AGAATAATTCAAAATAACCCAGACGTCGGAAATGTGGTTGTATGGCAATGGTTACGATT
 AATTGCTAACATGCACGATTACCTATTCAG

Domäne h

AGCCCACAGAGGACCAGTTGAAGAACAGAACAGAACGACTCGCAACATACTGACGGCAATGCA
 CACTTTATCGTAAGGAAGTTGATTGCTGTCCTGGATGAAGCAAACAACTGAAAGAATG
 CCCTTACAAGCTACAGAACGACCACAGTCTAACGGGATACGAAGCAATCTCTGGTTACCA
 TGGATACCCCAATCTGTGTCGGAAGAAGGGGATGACAAAATACCCCTGCTGCGTCCCCGG
 ATGGGCATCTTCCTTACTGGCACAGACTCTTGACCACTCAACTGGAAAGAGCTCTTGAGC
 ACAATGGTGCAGTGGTCTTACTGGGACTGGAACAAAGGACCTGTCGTACTGCC
 GGCAGTCTCTCGACTCCAGCAACAAACATCCCTACTCAAGTACCAACATGCCGGTGT
 GGTCAAGCACCGTCAGAGAGCCAATGTTATATATAACCAAGCCCCAAATCCATGGTT
 ATGATTATCTTACCTAGCATTGACCAAGCTGAAAGAAAACAATTACTGGGACTTTGA
 GGTCAGTATGAGATCCTCCACAACGCCGTCACCTCTGGCTGGAGGATCCCAGAAGTAT
 TCCATGTCACCCCTGGAGTATTGCGCCTTGACCCCTGTTATGATCCTCACTCGGGTC
 TAGACAGACTTGGATCATCTGGCAAGAACCTCAGAACAGATCAGGAGAAAGCCCTACA
 CGCTAAATGTGTTATCATATGATGGAAGAGCCACTGGCGCCCTCAGCTATCCATCTATC
 AACCAAGGAGCTCACCCGTGCCAACTCCAAGCCTTACAGTTTGACAGCCATAAGT

TCGGCTACCATACGATAACCTGAATGTTAGAGGTACAGCATCCAAGAACTCAACACAAT
 CATCAATGACTTGAGAACACAGACAGAACAGATCTACGCAGGATTGTTGTCAGGCATCGGT
 ACGTCTGCTAGTGTCAAGATCTATCTCGAACAGATGACAATGACGAAGAAGTGGAACTT
 TCACTGTCCTGGGAGGAGAGGGAAATGCCATGGGCCTACGAGCGAGTTCAAGTATGA
 CATCACAGAGGTTGCAGATAGACTAAAATTAAAGTATGGGACACCCTTAACCTCGGA
 ACTGGAGATCACATCCTACGAATGGAATCGGTGGAAACAAGAGCCTACCCAAATCCTT
 CATCATCTACAGACCTGCCAATCATGACTACGATGTTCTTGTATCCCAGTANGGAAGAAA
 CCTTCACATCCCTCCAAAGTTGTCGTCAAGAAAGGCACCCGCATCGAGTTCCACCCAGTC
 GATGATTCACTTACGAGACCAGTTGATCTTGGAAAGCTACACTGCACCTTCAACTGTG
 TGGTACCAACCGTTCACATACCAACGGATTGAACTGAACCACGTCTATTGTCAAGCCTGG
 TGACTACTATGTTACTGGACCCACGAGAGACCTTGCAGAATGCAGATGTCAGGATTCA
 ATCCATGTTGAGGATGAGTAA

3' UTR

CGCAACAGGT

Intron UTR

GAGATAAGAAACCCCTCTAACAGTAATACGACACCACATTACAGCTAACATGATTGCCA
 TCGATTTTCATGTGAGTATACTGCTTTCAGTTCTACATAATTGTTTTCAAATCAA
 GTTTAGCAAATGAATCTACTGGAAAATAGGGTAGGGTAGCCAAGTGGTTAAAGCGGT
 ACTGATCACGCCAAAGACGAGTGTCTAACCTGCATGGTACAAAGTGAAGACCATTGCT
 GGTGCTACCGCCGTAATATTGTTTAGTATTGCTAAACTTATACTCACCCATGCGCTG
 TAAAAGTGGATAATAATCATATTCAACAAAAGCACAAAACCATTTCATTTCATGAAAG
 CCTCTGTTCACCTGAAAGACGCAAGAGAACATAGTTCTAACATTATTCAGACATTG
 GAAATGTCCTGCACGTGAAACCATATATCCTTGAAATTACGACTGCATCGTATACA
 ATTATGATATAAAATTAAAACATTAT

3' UTR

TTCTGGTCTCCACATATTCACATATCAGCACCAATGGTTCGAAGGGACATTGGCGTTCT
 TCTCTGGCAATGCATTCAATACAACATTGAAAATGACTTCAGCATATCAGTGTGCTTCGA
 ACGTGTCCGGAAGTACTCAAATGTGCTATGACTGAATTATTGTACATACATAACTTATTG
 ATGTTCAATAAAATGTTGAAACGAAAAAAAAAAAAAAAAAAAAAA

Figur 7

Abgeleitete Primärstruktur des HtH2

Domäne b

HRLFVTQVEDALIRRGSPIGVPYWDWTQPMALPGLADNATYRDPISGDSRHNPFDVEVA
 FENGRTERHPDSRLFEQPLFGKHTRLFDSIVYAFEQEDFCDFEVQFEMTHNNIHAWIGGGE
 KYSMSSLHYTAFDPIFYLRHSNTDRLWAIWQALQIRRNRPYKAHCWSEERQPLKPFafss
 PLNNNEKTYENSVPNVYDYEGVLGYTYDDLNFGGMDLGQLEEYIQRQRQRDRTFAGFFLS
 HIGTSANVEIIIDHGTLHTSGTFAVLGGEKEMKWGFDRLYKYEITDELRLQLNLRADDVFS
 ISVKVTDVDGSELSSELIPSAIIFERSH

Domäne c

IDHQDPHHDTIIRKNVDNLTPEEINSLRRAMADLQSDKTAGGFQQIAAFHGEPKWCPSpDA
 EKKFSCCVHGMAVFPHWHRLLTQGENALRKHGCLGALPYWDWTRPLSHLPDLVLVSSRTT
 PMPYSTVEARNPWYSGHIDTVGVDTRSVRQELYEAPFGHVTGVAKQVLLALEQDDFCDF
 EVQFEIAHNFIHALVGGSEPYGMASLRYTTYDPIFYLHHSNTDRLWAIWQALQKYRGKPYN
 SANCAIASMRKPLQPFGLTDEINPDDETRQHAVPFSVFDYKNNFNYEYDTLDFNGLSISQL
 DRELSRRKSHDRVFAFGLLHGQQSALVKFFVCKSDDCDHYAGEFYILGDEAEMPWGYDR
 LYKYEITEQLNALDLHIGDRFFIRYEAFDLHGTSLGSNIFPKPSVIHDEGA

Domäne d

GHHQADEVVTAASHIRKNLKDL SKGEVESL RSAFLQLQNDGVYENIAKFHGKPGCDD
 NGRKVACCVHGMPTFPQWHLRYVLQVENALLERGSAVSPYWDWTETFTELPSLIAEATYF
 NSRQQTFDPNPFFRGKISFENAVTTRDPQPELYVNRYYYQNVMVFEQDNYCDFEIQFEMV
 HNVLHAWLGG GRATYSISSLQDYSAFDPVFFLHHANTDRLWAIWQELQRYRKPYNEADCAIN
 LMRKPLHPFDNSDLNHDPTFKYSKPTDGFYQNNFGYKYDNLEFNHFSIPRLEIIRIQ
 RQDRVFAGFLLHNICTSATVEIFVCVPTTSGEONCENKAGTEAVLGGETEMAFHFDRLYRF
 DISETLRDLGIQLDSHDFDLSIKIQGVNGSYLDPHILPEPSLIFVPGSS

Domäne e

SFLRPDGHSDDILVRKEVNSLTTRETASLIHALKSMQEDHSPDGFQAIASFHALPPLCPSP
 SAAHRYACCVHGMATFPQWHLRYTVQFQDALRRHGATVGVPYWDWLRPQSHLPELVTMETY
 HDIWSNRDFPNPFYQANIEFEGENITTEREVIADKL FVKGHHVFDKLVLQTSHPSAEQENY
 CDFEIQFEILHNGVHTWVGGSR TYSIGHLYAFDPLFYLHHFQTDRIWAIWQELQEQRGL
 SGDEAHCALEQMREPLKPFSGAPYNWNQLTQDFSRPEDT FDYRKFGYEYDNLEFLGMSVA
 ELDQYIIEHQENDRVFAGFLLSGFGGSASVNQVCRADSTCQDAGYFTVLGGS AEMA WAFD
 RLYKYDITETLEKMHLRYDDDFTISVSLTANNGTVLSSLIPTPSVIFQRGH

Domäne f

RDINTRSMSPNRVRRELSDLSARDLSSLK SALRDLQEDDGPNQYQALAAFHGLPAGCHDSR
 GNEIACCIHGMPTFPQWHLRYTLQLEMA LRRHGSSVAIPYWDWTKPISELP SLFTSPEYYD
 PWHDADVNNPFSKG FVKFANTYTVRDPQEMLFQLCEHGESILYEQTLLALEQTDYCDFEVQ
 FEV LHNVIHYLVGGRQTYALSSLHYASYDPFFFIIHHSFVDKMWVVWQALQKRRKLPYKRA
 CAVNLMTKPMRPFDSDMNQNPFTKMHAVPNTLYDYETLYSYDNLEIGGRNLDQLQAEIDR

SRSHDRVAGFLLRGIGTSADVRFWICRNENDCHRGGIIFILGGAKEMPWSFDRNFKDIT
HVLENAGISPEDVDAEFPYIKVEIHAVNKTMISSVIPAPTIIYSPGE

Domäne g

GRAADSAHSANIAGSGVRKDVTTLVSETENLRQALQGVIDDTGPNGYQAIASFHGSPPMC
EMNGRKVACCAHGMASFPHWHLVVKQMEDALADHGSHIGIPYWDWTTAFTELPALVTDSE
NNPFHEGRIDHLGVTTSRSPRDMLFNDPEQGSESFFYRQVLLALEQTDYCQFEVQFELTHN
AIHSWTGGRSPYGMSTLEFTAYDPLFWLHHSNTDRIWAVWQALQKYRGLPYNEAHCEIQVL
KQPLRPFNDDINHNPIKTNARPIDSFDYERFNYQYDTLSFHGKSIPELNDLLEERKREER
TFAAFLLRGIGCSADVFDICRPNQDCVFAVLTGGELEMPWSFDRLFYDITRVMNQL
HLQYDSDFSFRVKLVATNGTELSSDLLKSPTIEHEL

Domäne h

GAHGPVEETEVTRQHTDGNAHFHRKEVDSLDEANNLKNALYKLQNDHSLTGYEAISGY
HGYPNLCPEEGDDKIPLLRPRMGIFPYWHRLLTQLERALEHNGALLGVPYWDWNKDLSSL
PAFFSDSSNNNPYFKYHIAGVGHDVTREPTSLIYNQPOIHGYDYLYLALTTLENNYWDF
EVQYEILHNAVHSWLGGSQKYSMSTLEYSAFDPVFMILHSGLDRLWIIWQELQKIRRKPYN
FAKCAYHMMEEPLAPFSYPSINQDEFTRANSKPSTVFDSHKFGYHYDNLNVRGHSIQELNT
IINDLRNTDRIYAGFVLSGIGTSASVKIYLRTDDNDEEVGFTVLGGEREMPWAYERVFKY
DITEVADRLKIKLWGHPLTSGTGDHILTNGIGGKQEPQTQILSSSTDLPIMTTMFLLSQXGR
NLHIPPKVVVKKGTRIEFHPVDDSVTRPVVVLGSYTALFNCVVPPFTYHGFELNHVYSVKP
GDYYVTGPTRDLCQNADVRIIHVEDE

Figur 8

cDNA-Sequenz in Verbindung mit Intronstruktur des KLH1

Domäne b

GGCCTACCGTACTGGGACTGGACTGAACCCATGACACACACATTCCGGGTCTGGCAGGAAACA
 AACTATGTGGATTCTCATGGTGCATCCCACACAAATCCTTTCATAGTTAGTGCATTGC
 ATTTGAAGAAAATGCTCCCACACCAAAAGACAAATAGATCAAAGACTCTTAAACCGCT
 ACCTTGGACACCACACAGACCTGTCACCAGATTGTATGCCTTGAAACAAGAAGATT
 ACTGTGACTTTGAAGTCCAATTGAGATTACCCATAACACGATTACGCTTGGACAGGAGG
 AAGCGAACATTCTCAATGTCGTCCTACATTACACAGCTTCGATCCTTGTTACTTT
 CACCATTCTAACGTTGATCGTCTTGGGCCCTTGGCAAGCCTACAGATGAGACGGCATA
 AACCTACAGGGCCCCTGCGCCATATCTGGAACATATGCATCTGAAACCATTGCCTT
 TTCATCTCCCCTTAACAATAACGAAAAGACTCATGCCAATGCCATGCCAAACAAGATCTAC
 GACTATGAAAATGTCCTCATTACACATACGAAGATTAAACATTGGAGGCATCTCTGG
 AAAACATAGAAAAGATGATCCACGAAAACCAGCAAGAAGACAGAAATATATGCCGTTTCT
 CCTGGCTGGCATACTGACTTCAGCAAATGTTGATATCTCATTAAAACATCGATTCCGTG
 CAACATAAGGCCTGGAACATTGCACTGCTCGTGGAGCAAGGAAATGAAGTGGGGATTG
 ATCGCTTTCAAGTTGACATCACGCACGTTTGAAGATCTGATCTCACTGCTGATGG
 CGATTTCGAAGTTACTGTTGACATCACTGAAGTCGATGGAACTAAACTGCATCCAGTCTT
 ATTCCACATGCTCTGTCAATTGAGCATGCACTGGTAAGCTGAATAGAG

Intron b/c

GTTTGTAATAATTATGTAGAATTCTTACCTCAGAATAAGATGAGGTACATGGGTTTG
 CAAAACATTACGTTGAAATTAAATTAAATAATACCGGACCCCACTGGTACATATTAT
 CTTTATAACGATAATAGCGATGATGATGATGATGATGATGATGATGATGATGATGATGATAATg
 ATgATGCCGGTATTGCACTGAAATTCCAGCCACTTAGATGACACCCTAAAGGTGCAGAAAGT
 ATAaCAATTAGATTGCGTTGCATCTGTGATGCGTGTGCTTAAccAAAAGTCAAATAA
 AAGTGCACACCCCTAGTTATTGATAGAGCCTTTACGATAAGAACAAATGTAATAA
 ATTAGAACATAACTGAAACCTCCGAAAGAAGGCTGTTGTCAGAGAGAGGTATGACATGA
 TTGACTTATAAACCTGTGCTTCTATATTGGAACTGTCCACTTCTTGTGTACTG
 TAATCACATCGCACTATGGCTGCAAGACGTGTACGAGTACACTATATACTTACCTAATGAC
 CAACACAAAGGCTGGCTTTGTTAATATTGTTATTGACAGAAATAAACACAGAAATTCCAGC
 ATTGGCTGGTGTATTAGCAAAACACCGATATGACACTCATGTTTATTACATTTC
 AG

Domäne c

TTAAATTGACAAAGTGCACAGGAGTCGTCCTATTGAAAGGAAATGTAGACCGTTGAGCCC
 CGAGGAGATGAATGAACCTCGTAAAGCCCTAGCCTACTGAAAGAGGACAAAGTGCCTGGT
 GGATTCAGCAGCTGGTGCATTCCATGGGAGCCAAATGGTGTCTAGTCCCAGCAT
 CTAAAAAAATTGCGCTGCTGTGTTACGGCATGTGTTCCCTCACTGGCATCGACTGTT
 GACGGTTCAGAGTAAAATGCTTGAGACGACATGGCTACGATGGAGCTTGCCTACTGG
 GATTGGACCTCCCTTTAATCACCTCCGAACTGGCAGATCATGAGAAGTACGTCGACC
 CTGAAGATGGGTAGAGAACATAACCTGGTTCGATGGTCAATAGATAACAGTCGACAA
 AACACAAACAAGAAGTGTTCAGAATAAAACTCTCGAACAGCCTGAGTTGGTCATTATA
 AGCATTGCCAAACAAGTACTGCTAGCGTTGGAACAGGACAATTCTGTGACTTGAATCC
 AATATGAGATTGCCATAACTACATCCATGCACCTGTTGAGGAGGCGCTAGCCTTATGGTAT
 GGCATCGCTCGCTACACTGCTTTGATCCACTATTCTACTTGCATCACTCTAAACAGAT
 CGTATATGGCAATATGGCAGGTTACAGAAAGTACAGAGGAAACCGTACAACGTTGCTA
 ACTGTGCTGTTACATCGATGAGAGAACCTTGCAACCATTGGCCTCTGCCAATATCAA
 CACAGACCATGTAACCAAGGAGCATTCAAGTGTGATTACAAGACCAAT

TTCAATTATGAATATGACACTTGGAAATTAAACGGCTCTCAATCTCTCAGTTGAATAAAA
 AGCTCGAAGCGATAAAGAGCCAAGACAGGTTCTTGAGGCTTCCTGTTATCTGGTTCAA
 GAAATCATCTCTGTTAAATTCAATATTGCACCGATAGCAGCAACTGTCACCCGCTGGA
 GAGTTTACCTCTGGGTGATGAAAACGAGATGCCATGGGCATACGATAGAGTCTTCAAAT
 ATGACATAACCGAAAAACTCCACGATCTAAAGCTGCATGCAGAAGACCACTTCTACATTGA
 CTATGAAGTATTGACCTTAAACAGCAAGCCTGGAAAAGATTGTTCAAGCAGCCTCA
 GTCATTATGAACCAAGAATAG

Intron c/d

GTACTTGTATATGTTCGAATATTGCCGATACCTTCAATATATACCTTATCAAAGTAA
 TTGATTAATCTGAAGTATTTCTTCCAGTAGAGATTGAGTGTGATACAACAAGAATTGCG
 CCCTGTTGTATGTCACTTTATTTCATCAAACGATCGAAGTGAGCTGCCATGCCACAAAT
 GGGGTCTCTGTAACCTCTCGTATGGGTATAGATTATAGACGTGGCAGACCTTACGTA
 TAACTAATATTGTTGTAATGTCGTTCA

Domäne d

GTCAACCATGAAGGCGAAGTATATCAAGCTGAAGTAACCTCTGCCAACCGTATTGAAAAAA
 CATTGAAAATCTGAGCCTTGGTGAACTCGAAAGTCTGAGAGCTGCCCTGGAAATTGAA
 AACGATGGAACCTACGAATCAATAGCTAAATTCCATGGTAGGCCCTGGTTGTGCCAGTTAA
 ATGGTAACCCCATCTCTGTTGTCCATGGCATGCCACTTTCCCTACTGGCACAGACT
 GTACGTGGTTGTCGTTGAGAATGCCCTCTGAAAAAAAGGATCATCTGTAGCTGTTCCCTAT
 TGGGACTGGACAAAACGAATCGAACATTACCTCACGACTGATTTCAGACGCCACTTACTACA
 ATTCCAGGCAACATCACTATGAGACAAACCCATTCCATCATGGCAAATCACACACGAGAA
 TGAAATCACTACTAGGGATCCAAGGACAGCCTCTCCATTCACTACTTTACGAGCAG
 GTCCTTACGCCCTGGAGCAGGATAACTCTGTGATTGAGATTCACTGGAGATATTAC
 ACAATGCATTGCATTCTTACTTGGTGGCAAAGGTTAAATATTCCATGTCAAACCTTGATTA
 CGCTGCTTTGATCCTGTGTTCTCCTCATCACGCAACGACTGACAGAATCTGGCAATC
 TGGCAAGACCTCAGAGGTTCCGAAAACGCCATACCGAGAAGCGAATTGCGCTATCCAAT
 TGATGCCACACGCCACTCAGCCGTTGATAAGAGCGACAACAATGACGAGGCAACGAAAAC
 GCATGCCACTCCACATGATGGTTGAATATCAAACAGCTTGGTTATGCTTACGATAAT
 CTGGAACCTGAATCACTACTCGATTCTCAGCTTGATCACATGCTGCAAGAAAGAAAAGGC
 ATGACAGAGTATTGCTGGCTTCCCTTCACAAATTGGAAActCTGCCGATGGCCATGT
 ATTTGTATGTCCTTCAACTGGGGACACACGAAGGACTGCAGTCATGAGGCTGGTATGTC
 TCCATCTAGGGCGTCAAACGGAGATGTCCTTGTATTGACAGACTTTACAAACTTGACA
 TAACTAAAGCCTTGGAAAAGAACGGTGTGCACCTGCAAGGGGATTGATCTGGAAATTGA
 GATTACGGCTGTGAATGGATCTCATCTAGACAGTCATGTCATCCACTCTCCACTATACTG
 TTTGAGGCCGGAACAG

Intron d/e

GTAACATTTGTCACTGTAACCAACAACGACTGCAGTCTATTGCAATTACGATAATAACAA
 TTTTGAAATATATCTTATTAAAGCAAAGGTTCTAGAGACAAACAGCCGGCTCTAATTAA
 TTTTTGAACTTACGCTGAGTAAAGATCTGCAAATGGCAACCCCTACCTATACTATTAAA
 AATATAATGTTACATTGTTAATAAAACTTCATATTCTGTTGCAG

Domäne e

ATTCTGCCACACAGATGATGGACACACTGAACCAGTGTGATTGCAAAAGATATCACACA
 ATTGGACAAGCGTCAACAACACTGTCAGTGGTGAAGGCCCTCGAGTCCATGAAAGCCGACCAT
 TCATCTGATGGGTTCCAGGCAATCGCTCCTCCATGCTCTCCTCTTGTCCATCAC
 CAGCTGCTCAAAGAGGTTGCGTGCCTGGCATGCCAACCTCCCGCAATG

Figur 9

Abgeleitete Primärstruktur des KLH1

Domäne b

GLPYWDWTEPMTHIPLAGNKTYVDSHGASHTNPFHSSVIAFEENAPHTKRQIDQRLFKA
 TFGHHTDLFNQILYAFEQEDYCDFEVQFEITHNTIHWATGGSEHFSMSSLHYTAFDPLFYF
 HHSNVDRLWAVWQALQMRRHKPYRAHCAISLEHMHLKPFAFSSPLNNNEKTHANAMPNKIY
 DYENVLHYTYEDLTFGGISLENIEKMIHENQQEDRIYAGFLLAGIRTSANVDIFIKTTDSV
 QHKAGTFAVLGGSKEMKWGFDRVFKFDITHVLKDLDLTADGDFEVTVDITEVDGTLASSL
 I PHASVIREHARGKLN R

Domäne c

VKFDKVPRSRLIRKNVDRILSPEEMNELRKALALLKEDKSAGGFQQLGAFHGEPKWCPSP
 SKKFACCVHGMSPFHWRLLTVQSENALRRHGYDGALPYWDWTSPLNHLPELADHEKYVD
 PEDGVEKHNPFWDGHIDTVDKTTTRSVQNKLFEPFEGHYTSIAKQVLLALEQDNFCDFEI
 QYEIAHNYIHALVGGAQPYGMASLRYTAFDPLFYLHHSNTDRIWAIWQALQKYRGKPYNVA
 NCAVTSMREPLQPFGLSANINTDHVTKEHSVPFNVDYKTNFNYEYDTLEFNGLSISQLNK
 KLEAIKSQDRFFAGFLLSGFKSSLVKFNICTDSSNCHPAGEFYLLGDENEMPWAYDRVFK
 YDITEKLHDLKLHAEDHFYIDYEVFDLKPA SLGKDLFKQPSVIHEPRI

Domäne d

GHHEGEVYQAEVTSANRIRKNIENLSLGELESLRAAFLEIENDGTYESIAKFHGSPGLCQL
 NGNPISCCVHGMPTFPWHRLYVVVVENALLKKGSSVAVPYWDWTKRIEHLPHLISDATYY
 NSRQHYYETNPFHGKITHENEITTRDPKDSLHFSDYFYEQVLYALEQDNFCDFEIQLEIL
 HNALHSLLGGKGKYSMSNLDYAAFDPVFFLHATTDRIWAIWQDLQRFRKRPYREANCAIQ
 LMHITPLQPFDKSDNNDEATKTHATPHDGFEYQNSFGYAYDNLELNHYSTIPOLDHMLQERKR
 HDRVFAGFLLHNIGTSADGHVFVCLPTGEHTKDCSHEAGMFSILGGQTEMSFVFDRLYKLD
 ITKALKKNGVHLQGDFDLEIEITAVNGSHLD SHVIHSPTILFEAG

Domäne e

DSAHTDDGTEPVMIKRDITQLDKRQQLSLVKALESMKADHSSDGFQAIASFHALPPLCPS
 PAASKRFACCVHGMPTFPQWHRLYTVQFQDSLRLKHGAVVGLPYWDWTIPLR

Figur 10

cDNA-Sequenz in Verbindung mit Intronstruktur des KLH2

Domäne b

GGCCTGCCCTACTGGGATTGGACCATGCCAATGAGTCATTGCCAGAACTGGCTACAAGTG
 AGACCTACCTCGATCCAGTTACTGGGGAACTAAAAACAACCCCTTCATCACGCCAAGT
 GGCCTTGAAAATGGTGTAAACAAGCAGGAATCCTGATGCCAAACTTTTATGAAACCAACT
 TACGGAGACCACACTTACCTCTCGACAGCATGATCTACGCATTGAGCAGGAAGACTTCT
 GCGACTTGAAGTCCAATATGAGCTCACGCATAATGCAATACATGCATGGGTTGGAGGCAG
 TGAAAAGTATTCAATGTCTTCTTCACTacacTGCTTTGATCCTATATTACCTCCAT
 CACTCAAATGTTGATCGTCTCTGGGCCATTGGCAAGCTCTCAAATCAGGAGAGGCAAGT
 CTTACAAGGCCACTGCGCCTCGTCTCAAGAAAGAGAACCTAAAGCCTTGCATTCA
 TTCCCCACTGAACAACAACGAGAAAACGTACCACAACACTCTGCCCCACTAACGTTATGAC
 TATGTGGAGTTGCACTATCGATATGATGACCTTCAGTTGGCGGTATGACCATGTCAG
 AACTTGAGGAATATATTACAAGCAGACACAACATGATAGAACCTTGCAGGATTCTCCT
 TTCATATATTGGAACATCAGCAAGCGTAGATATCTTCATCAATCGAGAAGGTATGATAAA
 TACAAAGTGGGAAGTTGTAGTACTGGTGGATCCAAGAAATGAAATGGGGCTTGATA
 GAATGTACAAGTATGAGATCACTGAGGCTCTGAAGACGCTGAATGTTGCAGTGGATGATGG
 GTTCAGCATTACTGTTGAGATCACCAGATGTTGATGGATCTCCCCATCTGCAGATCTCATT
 CCACCTCCTGCTATAATCtTTGAGCTGGTCAcTG

Intron 2b/c

AGGTATTTAAAAAAGTAATAAAACCaTATTTGAATGCGTTTATGAAATATCGTGTGAC
 TGGTTCTTTAGTTACATGGAGTGTAAACAACATGCTCCATCAGTTGACATATACTGCTCAC
 ACAAAAGTAAGGGATATTGATAATGATAACAAATATAATCAAAGCGGTATACTATCAAGA
 CTTATTACACATAATTACAGGTGAAGGGAGGTGTGATCGTGTCACTGATCAGGTTGAGGCC
 AGAGAAGTCCCAGTTGAGTCTGCAGAAGATGATGTTAGGCATGGGTCGAATCACCAA
 AATCACATGACTCAATAACGGTTGGACCACCTCGAGCGACGATGCAAGCAGTAGAGCGT
 CTACGCATGCTCTGATAAGGGACCAATCTGTCCTGGGAATCAGtccccACTCCTCTT
 GTAGTGCACGCTCATTCTGCTACGGTCTGGTACCTGCTATCGGgtCTTGATCCGTAT
 CCCAAGGATGTCACACATGTTCAAgGTGAGAGGTGCGGGAACATCGCTGCCACGGTaa
 GGTCTGAATTGATGCCGTTGAAAGTGAGCTCTGACAACCTGAGCATGGtGAGCTCTGACCG
 TTGTCGTCCTGAAAGATGAATcCAGCTcCaTGAcAGCGAGCAaGGCAGGACGTGTTGGT
 CAATGCAGTTGTCCTGCAGTACACACCTGTCACTGCCACTCACAAGCGTGTAGATCTGT
 ACGACCAAGTCATGGAGATCCCAGGCCACATCATAACGGACCCCTATCCATACCGATCATGA
 GCCACCATAGCGTCTTGATGACGTTCTCCCTGTCGCTCGACATCCTcACACGGCAA
 AAGGAACGTGGACTCGTCACTGAACATGACATTAGCCAACCTGGCACTGTCCACCGCTGA
 TGTTGGCGAGACCATTCCAGTCAGCTCTCGGTGTCGGTTCATCGATAACACGACGT
 AAGGTCTGCGGGCGTGCAAGACGGCTCTATGCAGGGATTCGGATTGTCGGGTGCTAAC
 TCTGATCCCAGGGCTGCTGAAGTTGATGCTGGATCTGTGTCGGATTGAGATGGCGATT
 CTTAGGACTGTTGAGATGATGAATCGATCTTGACTTATGGTGGTACGACTGGTACCCGGCTGATTAC
 TTCGTTGTCCTATCCTGCACTCTCCAGTTGTCGGTACGCTCTGGTACCCGGCTGATTAC
 TGACTGAGAATATCCATCTGCCGTGCGACATGAGCCTGTTGGCCAGCCTGAAGCATTG
 CAATGCCAGAGACGCTCTCAAAAGTCATTGACGCGATGGtTTCTGTTCAAAATGACA
 GCGTAAAACAGtTTTGGtGCTTTATGCTTCCAGACGAGCATGAAAAACACGTTCTATgGG
 TCGtGCACACCTACATGACAAGtGtGAAAGtGACTTGcACCCCTTGTGTTGTCGGATG
 CACACTCTGTTACGTACTGATGCGATTGGCGTCTAAACATGTTTGGCGTCTAAACATG
 TTTCTGCTGATGATTCAATACTATTTGTCATATTCTGGCATCAAACCAAACACAGTG
 AAATATATTCAATATCCCCTACTTGTGAGTAGTATAGATCACTGCAGACAACATATA

GACAAtGCAgtTaCaCCGTCAACAATCCCAGTCATTAATTATGATGaCaCTTCCACACATA
 GTGTCAGTGATTGTAATCAaCTGTACACACTTTCCCGTGAACATTCAAGGATCTATATGA
 CTAAATATATAACATTAGTATACGTGCAGTTGTATCGCTACGACATTGTTGTAACCTCT
 TGTTTAATCATTTaACAG

Domäne c

CTGATGCCAAAGaCTTTGgCCATAGCAGAAAAATCAGgAAAGcCGTTGATTcTcTGACAGT
 CgAAGAACAAAcTTCGTTGAGgCGAGcTATGgCAGATcTACAGGACGACAAAACATCAGGG
 GGTTCCAGCAGATTGcAGCATTCCACGGAGAACAAAATGGTGTCCAAGCCCCgAAGCGG
 AGAAAAAAATTGcATGCTGTGTTCATGGAATGGCTGTTCCCTCACTGGCACAGATTGCT
 GACAGTTCAAGGAGAAAATGCTCTGAGGAAACATGGCTTACTGGTGGACTGCCCTACTGG
 GACTGGACTCGATCAATGAGCGCCCTTCCACATTTGTTGCTGATCCTACTTACAATGATG
 CTATTCCAGCAGGAAGAAGATAACCCATGGCATTGTCACATAGACTCTGTTGGGCA
 TGATACTACAAGAGATGTGCGTGTGATCTTATCAATCTCTGGTTTCGGTCACTACACA
 GATATTGACAACAAGTCCTCTGGCCTTGAGCAGGACAGTTCTGTGATTGAGGTAC
 AATTGAAATTGCCATAATTTCATACATGCACTGATTGGTGTAAACGAACCATAACAGTAT
 GTCATCTTGAGGTATACTACATACGATCCAATCTTCTTGCACCACTCCAGTACAGAC
 CGACTTGGCCATCTGGCAAGCAATCACTAGTGCAGGCGCCTGCAGGTCGACCATAAGGG
 AGAGCTCCCAACGCgtTGGAtGCAATCT

Domäne g

ATGGCTGTGTTCCGCACTGGCACAGACTGTTGTGAAACAGATGGAGGACGCACTTGCTG
 CTCATGGAGCTCATATTGGCATACCATACTGGGATTGGACAAGTGCCTTAGTCATCTGCC
 CGCCCTAGTGACTGACCACGAGAACATCCCTTCAACCAC

Intron g (2)

GTATGTGTCAAATGTTAGGAAC TGCTTATCCATTACAATTACGAGTACAAAATGA
 AAACGGAAACTGTGTGACCTCGAAAAGTGCATCTTAAAGGATGCAATGTACACAATAAA
 ATGCTCCGATAAAAGCGATGGCTAGAAATCATTTCCCTCTAATTCCCTTCACACAGCT
 CGGTTGTTAAGTAGGAACAAGTCTCTGCAAAAACATCACAAATAAGAGAACACAGAA
 AAAACCTCATTCTGTTCTGTATCCGAAATGAAATTACAATTCTTCAATTATAG

Domäne g

GGCCATATTGGTCATCTGAATGTGGACATCTCGATCTCAAGAGACATGCTGTTAATG
 ATCCTGAACAAGGCTCAGAATCATCTTCTACAGACAGGTTCTTGACTCTAGAACAGAC
 AGACTTCTGCCAATTGAAGTTCAAGTTGAACCTACACACAATGCCATCCACTCTGGACT
 GGAGGACATACTCCATATGAATGTCACTGGAAATATAACAGCATATGATCCACTCTTT
 ATCTCCACCATTCCAACACTGATGTCATCTGGCCATCTGGCAGGACTCCAGAAATATAG
 AGGTCTCCATACAACGCAGCTCACTGCGATATccaagtctgaaacaacctcTTAACCA
 TTCAGCGAGTCCAGGAATCCAAACCCAGTCACCAGAGCCAATTCTAGGGCCGTTGATTCA
 TTGATTATGAGAAATTCAATTCAATATGACACACTTACCTTCCACGGACTTCTATCCC
 AGAACTTGATGCCATGCTCAAGAGAGAACAGGAAGAGAGAACATTGCAGCCTTCTG
 TTGCACGGATTGGCGCCAGTGCTGATGTTGCTGATGTCACACCTGATGGTCATT
 GTGCCTTGCTGGAACCTCGCGGTACTTGGTGGGAGCTTGAGATGCCCTGGTCCTTGA
 AAGATTGTTCCGTTACGATATCACAAAGGTCTCAAGCAGATGAATCTCACTATGATTCT
 GAGTTCCACTTGAGTTGAAGATTGTTGGCACAGATGGAACAGAACTGCCATGGATCGTA
 TCAAGAGCCCTACCATTGAACACCATGGAGGAG

Intron g/h

GTATGTTTGAGATCCACATAATCTTCTACCCCTGCTCTATTCTAATGCTCTTCAATACAC
AATTATATAGCCTTGAGCTTCAGATGTATTACGGACAGGCATTACAGTATAACATGTAAT
ATGGTTTCTGCTATTGCAAAAATTGTGTCCTATCTCTGTTCAAGATCATCATGGCGGTGA
CACCTAG

Domäne h

GTCACGATCACAGTGAACGTCACGATGGATTTTCAAGGAAGGAAGTCGGTCCCTGTCCCT
GGATGAAGCCAATGACCTTAAAAATGCACTGTACAAGCTGCAGAATGATCAGGGTCCCAAT
GGATATGAATCAATAGCCGGTTACCATGGCTATCCATTCTCTGCCCTGAACATGGTGAAG
ACCAGTACGCATGCTGTCCACCGGAATGCCTGTATTCCACATTGGCACAGACTTCATAC
AATCCAGTTGAGAGAGCTCTCAAAGAACATGGTTCTCATTTGGGTCTGCCACTGGGAC
TGGAC

Figur 11

Abgeleitete Primärstruktur von KLH2

Domäne b

GLPYWDWTMPMSHLP ELATSETYLD PVTGETKNNPFHHAQVAFENGVTSRNPDAKL FMKPT
 YGDHTYLFDSMIYAFEQEDFCDFEVQYELTHNAIHAWVGSEKYSMSSLHYTAFDPIFY LH
 HSNVDRLWAIWQALQIRRGKSYKAHCASSQEREPLKPF AFSPLNNNEKTYHNSVPTNVYD
 YVGVLHYRYDDLQFGGTMSELEEYIHKQTQH DRTFAGFFLSYIGTSASVDIFINREGHDK
 YKVGSFVVLGGSKEMKWGFDRMYKYEITEALKTLNVAVDDGFSITVEITDVGSPPSADLI
 PPPAIIFERGHA

Domäne c

DAKDFGHSRKIRKAVDSLVEEQTSLRRAMADLQDDKTSGGFQQIAAFHGEPKWCPSPEAE
 KKFACCVHGM AVFPHW RLTVQGENALRKHGTGGLPYWDWTRSMSALPHVADPTYNDA
 ISSQEEDNPWHGHIDS VGHDTTRDVRDDLYQSPGF GHYTDIAQQVLLA FEQDSFCDFEVQ
 FEIAHNFIHALIGGNEPYSMSSLRYTTYDPIFFLHSSTDRLWAIWQALQKYRGKPYNTAN
 CAIASMRKPLQPFGLDSVINPDDETREHSV FRVFDYKNNFDYEYESLAFNGLSIAQLDRE
 LQRRKSHDRV FAGFLLHEIGQSAKHNVSDCDHYAGEFYILGDEAEMPWRYDRVYKYEITQQ
 LHDL DLHVGDNF FLKYEA FDLNGGSLGGSIFS QPSVIFEP AAGMF

Domäne d

GSHQADEYREAVTSASHIRKNIRD LSEGEIESIRSAFLQIQKEGIYENIAKFHGKPG LCEH
 DGHPVACCVHGMPTFPHW RLTVLQVENALLERGSAVAVPYWDWTLPR

Domäne g

MAVPHW RL FVKQMEDALAAHGAHIGIPYWDWTSAFSHLPALVTDHENNP FHGHIGHLN
 VDTSRSPR DMLFNDPEQGSESFFYRQVLLTLEQTDFCQFEVQFELTHNAIHSWTGGHTPYG
 |MSSLEYTAYDPLFYLHHSNTDRIWAIWQALQKYRGLPYNAAHCDIQLKQPLKPFSESRNP
 NPVTRANSRAVDSFDYEKFNYQYDTLTFHGLSIPELDAMLQERKKEERTFAAFL LHGF GAS
 ADVSFDVCTPDGHCAFAGTFAVLGGELEMPWSFERLFRYDITKVLQMNLHYDSEFHFELK
 IVGTDGTELP SDRIKSPTIEHHGG

Domäne h

GHDHSERHDGFFRKEVGSLSLDEANDLKNALYKLQNDQGPNGYESIAGYHGPFLCPEHGE
 DQYACCVHGM PVFPHW RLHTIQFERALKEHGS HGLPYWDW