Random Algorithms for Random Things

Benedetto Jacopo Buratti - Homework I January 12, 2017

Abstract

This first homework covers the main concepts behind bayesian inference and some related issues. In the **first** and **second** exercises we focus on conjugate analysis, a classical approach to bayesian inference, used in the special occasion where the posterior distribution has the same distribution of the likelihood function. In the **third** and **fourth** exercise we introduce the Integral Transformation Formula, which will be the core, with unifrom pseudo-random numer generator of exercises **fifth** and **sixth** Finally in the **seventh**, **eighth** and **nineth** exercises we introduce and use the acceptance and rejection algorithm and apply in in a variety of situations.

Contents

Conjugate Analysis on Bernulli Sample	2
Parametric Space of Intrest	2
Ingredients for Bayesian Inference	2
Likelihood Function	2
Prior Distribution	2
Posterior Distribution	2
Conjugate Analysis on the Dugongs Sample	3
Likelihood	3
Maximum Likelihood Estimate	3
Vector of parameters of Interest	3
Maximum a Posteriori Estimates	3
Integral Transform Method	4
Parametric Space of Intrest	4
Beta-Bernoulli Conjugate analysis	5
Parametric Space of Intrest	5
Simulating a Pareto Distribution	6
First Moment in Closed Form	6
First Moment Computation using Monte Carlo	6
Approximate first moment up to precision 10^{-2}	6
Running Mean	6
Empirical Distribution vs Desired Target Distribution	
Beta-Bernoulli Conjugate analysis	7
Parametric Space of Intrest	7
rarametric space of intrest	'
Beta-Bernoulli Conjugate analysis	8
Parametric Space of Intrest	8
Beta-Bernoulli Conjugate analysis	9
Parametric Space of Intrest	9
Beta-Bernoulli Conjugate analysis	10
Parametric Space of Intrest	

Conjugate Analysis on Bernulli Sample

Parametric Space of Intrest

We define the Parametric Space of Intrest as:

Definition 1.1 A parametric space is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model.

Given the previous definition the parametric space of interest, which is the probability of success of a single event, is $\Theta \in [0,1]$

Ingredients for Bayesian Inference

Likelihood Function

The likelihood function for a series of Bernoulli experiment could be considered as a Binomial distribution, hence given the definition of likelihood:

Definition 1.2 The *likelihood function* of a set of parameter values, , given outcomes x, is equal to the probability of those observed outcomes given those parameter values. More specifically we define the likelihoodFor a iid sample in the following way:

$$\mathcal{L}_{x_1,\dots X_n}(\theta|x) = P(x|\theta) = \prod_{i=1}^{10} f(x_i|\theta)$$
(1)

Since our idd sample is generated by $X_i \sim Ber(p)$ which $f(x|\theta) = p$, therefore our 10 Bernoulli Trials' likelihood is:

$$\mathcal{L}_{\mathbf{x}}(\theta) = \prod_{i=1}^{10} \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^3 (1 - \theta)^7$$
 (2)

since in our case we have had 3 successess and 7 failures.

Prior Distribution

Since we have no particular information about the experiment we should use a non-informative prior, which ever distribution we use in the modelling.

Another important point to take into account before choosing the prior is that our process is generated by $X_i \sim Ber(p)$. This means that we are able to use conjugate analysis in order to choose a suitable prior.

Given those two element we know that given a $X_i \sim Ber(p)$ likelihood function and $X_i \sim Beta(s_1, s_2)$ as a prior, our postetior distribution would be distributed as a prior. Moreover, taking into account the requirement of non-informativeness of the prior we should use a Beta(0.5, 0.5).

Posterior Distribution

The core of Bayesian Inference is knowledge update via Bayes Theorem

Theorem 1.1 The Bayes Theorem states posterior probability of an event is the consequence of two antecedents, a prior probability and a "likelihood function" derived from a statistical model for the observed data.

Thanks to this theorem we are able to update knowledge about the parameter space θ .

$$\pi(\theta|x) \propto \theta^{3} (1-\theta)^{7} \cdot \theta^{-0.5} (1-\theta)^{-0.5} = \theta^{3.5} \theta^{7.5}$$
(3)

which is, as expected, $\pi(\theta|\mathbf{x}) \sim Beta(3.5, 7.5)$

\subsection(Bayesian Inference)

Now that we have a computed our posterior distribution we are able to perform bayesian inference using Beta(3.5, 7.5). Just to demosntrare the possibility we compute the following

Conjugate Analysis on the Dugongs Sample

Likelihood

First of all we to load the Dugongs into R:

```
## $x  
## [1] 1.0 1.5 1.5 1.5 2.5 4.0 5.0 5.0 7.0 8.0 8.5 9.0 9.5 9.5  
## [15] 10.0 12.0 12.0 13.0 13.0 14.5 15.5 15.5 16.5 17.0 22.5 29.0 31.5  
## ## $Y  
## [1] 1.80 1.85 1.87 1.77 2.02 2.27 2.15 2.26 2.47 2.19 2.26 2.40 2.39 2.41  
## [15] 2.50 2.32 2.32 2.43 2.47 2.56 2.65 2.47 2.64 2.56 2.70 2.72 2.57  
## ## $N  
## [1] 27  
As reported on dataset website Y_i \sim N(m_i,t), with:  
1. i=1,...,27
```

- $2. \ m_i = a bg^{X_i}$
- 3. a, b > 0
- 4. 0 < g < 1

Hence, according to definition 1.1 the likelihood for the given dataset is:

$$\mathcal{L}_{\mathbf{x}}(\theta) = \prod_{i=1}^{27} \theta^{x_i} \frac{1}{\sigma \sqrt{2\pi}} exp \frac{1}{2} \left(\frac{x_i - \alpha - s\beta \gamma^{x_i}}{\tau} \right)$$
 (4)

Maximum Likelihood Estimate

Now that we have the maximum likelihood estimate, we are able to compute the MLE using opt

Vector of parameters of Interest

Maximum a Posteriori Estimates

Integral Transform Method

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$

Simulating a Pareto Distribution

First Moment in Closed Form

Given a a random variable distributed $X \sim Par(2.5, 1)$ which density is:

$$F_X(x) = \begin{cases} 0 & -\infty < x < 0\\ 0.25 & 0 \le x < 1\\ 0.60 & 1 \le x < 2\\ 1 & x \ge 2 \end{cases}$$
 (5)

First Moment Computation using Monte Carlo

First of all we define our Pareto function:

$$#x = dcauchy(100, location = 2,5, scale = 1)$$
curve(dcauchy(x, 2,5, 1), -10, 10)

Approximate first moment up to precision 10^{-2}

Running Mean

Empirical Distribution vs Desired Target Distribution

Definition 1.1 A parametric space is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$

Parametric Space of Intrest

 $\textbf{Definition 1.1} \ \textbf{A} \ \textit{parametric space} \ \textbf{is the set of all possible combinations of values for all the different parameters contained in a particular mathematical model$