constant
$$b > 0$$
, $b \neq 1$
We will define a function $f(x) = b^x$
 $Ex: f(x) = \lambda^x$, $f(x) = (\frac{1}{5})^x$.

We will define bx for any real number x.

Steps:

Properties:

Properties:

No.
$$b^{2} = b^{2} + b^{2} = b^{2} + b^{2} = 32$$

The property 1 to hold when the property 1 to hold when

Want:
$$(b^{\frac{1}{n}})^n = b^{\frac{1}{n}} = b^{\frac{1}{n}}$$

Want: $(b^{\frac{1}{n}})^n = b^{\frac{1}{n}} = b^{\frac{1}{n}}$

Want: $b^{\frac{1}{n}} = \sqrt[n]{b}$

Want: $b^{\frac{1}{n}} = (b^{\frac{1}{n}})^{-1} = \frac{1}{2\sqrt{2}}$

Want: $(b^{\frac{1}{n}})^m = b^{\frac{1}{2}}$

Define: $(b^{\frac{1}{n}})^m = (b^{\frac{1}{n}})^m$
 $(a + b)^m = (b^{\frac{1}{n}})^m$

6
$$T = 3.14159...$$
 $\sqrt{2} = 1.414...$

To define

 b^{*} , look at is the list

 b^{3} , $b^{3.1}$, $b^{3.14}$, $b^{3.1415}$...

look at what number

the numbers in this
list are approaching approach a this is how we define b. Exponential Functions This way, flx) has some nice properties $b^{m+n} = b^{m} \cdot b^{n} z$ For all real $(b^{m})^{n} = b^{mn} s$ numbers m and n. $Ex: (b^{\pi})^{\sqrt{3}} = b^{\pi\sqrt{3}}$ $(b^{\pi})^{-50} = b^{-\frac{50}{2}}$

Exponential about
$$h / beay$$

$$f(x) = b^{x}, \quad \text{where } b > 0, \quad b \neq 1.$$

$$x_{old} \quad x_{new} = x_{old} + 1$$

How are
$$f(x_{old})$$
 and $f(x_{new})$ related?
Yold Ynew $b = b \cdot b^{y}$
Ynew $= f(x_{new}) = f(x_{old} + i)$ where x and y are any y are any y are y are y

$$y_{\text{new}} = f(x_{\text{new}}) = f(x_{\text{old}} + i)$$

$$= b^{x_{\text{old}}} + i$$

$$= b^{x_{\text{old}}} \cdot b^{i}$$

$$= y_{\text{old}} \cdot b$$

$$b = b \cdot b$$

where x and

y are any

(ea) ± 1 s

Am When x increases by 1, y gets multiplied by b.

Ex:
$$f(x) = 3^{x}$$

 $f(4)$ and $f(5)$
= 3.3.3.3 = 3.3.3.3.3

Ex:
$$f(x) = 5^{\times}$$
 means that

 $f(x)$ gets multiplied by a factor of 5

when x in creases by 1.

Ex:
$$f(x) = \left(\frac{1}{2}\right)^x$$
 gets halved
flx) gets multiplied by a factor of $\frac{1}{2}$
whenever x increases by 1.

$$f(x) = b^{x}$$
 has the property that when $x=0$, $f(x) = 1$.

In general, you have $f(x) = a \cdot b^{x}$, which is also considered an exponential for. This for has the property flust $f(x+1) = a \cdot b^{x+1}$ Interpret base the growth $= a \cdot b^{x} \cdot b$ factor (b < 1) or the decay factor (b < 1)

Interpret a:
$$f(0) = a \cdot b^0 = a \cdot 1 = a$$

Some quantity increased X to a year Since year. In that year, the quantity was a. In nyears? After $a + \frac{x}{100} \cdot a = (1 + \frac{x}{100})a$ After n years $f(n) = a(1 + \frac{x}{100})^n$ quantity growth exponential function. $1 + \frac{x}{100}$ exponential growth

Ex: Sales decreasing 5% a year.

Initially, Gales were &a.

What are sales after a years?

 $x_{0.95}$ | Tuitial a = $(1 - \frac{5}{100})a$ | Actor | $a - \frac{5}{100}a = \frac{95}{100}a$ | year | $x_{0.95}$ |

Lyears $\left(1-\frac{5}{100}\right)\left(1-\frac{5}{100}\right)a$ x.95/1 amt after lyear After n $\left(1-\frac{5}{100}\right)^{11}a$ years, $a(1-\frac{x}{100})^n$ and after n years Start off with a, decrease by x/b a year. exponential decay with a decay factor of $1-\frac{x}{bo}$