Aula 15a

Recorte de Retas (Clipping) <u>Cohen-Sutherland</u>

Quando um objeto 2D vai ser traçado na tela ou em uma janela, é preciso desenhar apenas a porção do objeto que está dentro dos limites da tela ou janela

Esta determinação é diferente para cada tipo de objeto

Pontos

O processo é rápido e muito simples, bastando apenas verificar se as coordenadas do ponto x,y satisfazem

 $xmin \le x \le xmax$ e $ymin \le y \le ymax$

Segmentos de Retas

Exige mais cálculos e testes do que o processo anterior Embora seja necessário considerar apenas as partes finais da linha e não todos os pontos do segmento

Neste exemplo:

AB e CD devem ser descartados

EF deve ser desenho por inteiro

GH e IJ devem ser recortados em dois pontos

KL deve ser recortado em um ponto

Possível solução

Checar as interseções dos segmentos de retas (usando a equação paramétrica), com as retas que definem a janela

O problema com esta abordagem é uma grande quantidade de cálculos em ponto flutuante, considerando muitos segmentos que deveriam ser descartados de início

Um algoritmo eficiente deve realizar alguns testes iniciais com o segmento de reta, de modo a realizar os cálculos de interseção apenas naqueles que isto faz sentido

Alguns segmentos podem ser completamente desenhados de imediato, como EF

Por outro lado, segmentos como

AB e CD devem ser imediatamente

descartados

Algoritmo do Cohen-Sutherland

Foi projetado para identificar eficientemente quais segmentos de retas podem ser completamente aceitos ou descartados, reduzindo os cálculos de interseções para um conjunto reduzido de segmentos de retas

O algoritmo considera as oito áreas ao redor da janela, atribuindo códigos à cada uma destas áreas

Usando estes códigos, cada segmento de reta recebe dois códigos, de acordo com a posição de seus pontos de início e

O algoritmo é:

1º Passo

Atribuir códigos aos pontos extremos dos segmentos de retas:

```
se x < XL, então, bit 4 = 1, caso contrário, bit 4 = 0
```

se x > XR, então, bit 3 = 1, caso contrário, bit 3 = 0

se y < YB, então, bit 2 = 1, caso contrário, bit 2 = 0

se y > YT, então, bit 1 =1, caso contrário, bit 1 =0

2º Passo

Verificar se é totalmente visível:

se os dois códigos associados às duas extremidades do segmento de reta forem zero, então o segmento é totalmente visível

exemplo: E=0000

F=0000

 \rightarrow {se cod₁ = cod₂ = 0}

3º Passo

Verificar se o segmento de reta é totalmente invisível, ou seja, completamente acima, abaixo, à direita ou a esquerda da janela

Isto é feito se $(cod_1 AND cod_2) \neq 0$ ex.

MN (0010) AND (0110) = $0010 \neq 0$ (completamente invisível) IJ (0100) AND (0010) = 0000 = 0(**não é** completamente invisível)

4º Passo

Verificar se um dos pontos extremos do segmento de reta está dentro da janela acima abaixo à direita à esquerda

Ex1. KL → cod1 = 0000 e cod2 = 0010 então, calcular interseção apenas à direita

Ex2. PQ → cod1 = 0000 e cod2 = 0110 então, calcular interseção à direita e abaixo

5º Passo

A linha pode ser parcialmente visível, então é preciso calcular

$$m$$
 e as equações $m = \frac{y2 - y1}{x2 - x1}$ $\log o$, $y = m.(x-x1) + y1$

ou
$$x = (y-y1)/m + x1$$

para obter as quatro interseções abaixo, usando:

Esquerda: $(XL,Y) \rightarrow Y = M.(XL-X1) + Y1$

Direita: $(XR,Y) \rightarrow Y = M.(XR-X1) + Y1$

Acima: $(X,YT) \rightarrow X = (YT-Y1)/M + X1$

Abaixo: $(X,YB) \rightarrow X = (YB-Y1)/M + X1$

Esquerda:

$$(XL,Y) \rightarrow Y = M.(XL-X1) + Y1$$

$$(-1, Y) \rightarrow Y = 2/3 \cdot [-1 - (-3/2)] + 1/6 = 1/2 ok, pois YB \le 1/2 \le YT$$

Direita:

$$(XR,Y) \rightarrow Y = M.(XR-X1) + Y1$$

$$(1, Y) \rightarrow Y = 2/3 \cdot [1 - (-3/2)] + 1/6 = 11/6 \text{ fora, pois } 11/6 > YT$$

Acima:

$$(X,YT) \rightarrow X = (YT-Y1)/M + X1$$

$$(X, 1) \rightarrow X = (1-1/6)/(2/3) + (-3/2) = -1/4$$
 ok, pois $XL \le -1/4 \le XR$

Abaixo:

$$(X,YB) \rightarrow X = (YB-Y1)/M + X1$$

$$(X,-1) \rightarrow X = (-1-1/6)/(2/3) + (-3/2) = -13/4$$
 fora, pois -13/4

Deve-se traçar a reta de (-1,1/2) até (-1/4,1)