EJERCICIOS DE PROGRAMACION COMPETITIVA

EJERCICIO 01: Salario Bonus

Escriba un programa que lea el nombre de un vendedor, su salario fijo y el total de las ventas realizadas por él en el mes (en dinero). Considerando que el vendedor recibe un 15% de los productos vendidos, escribir el salario final (total) de cada vendedor a fin de mes.

- No olvide de imprimir un final de linea luego del resultado, de otra forma recibirá "*Presentation Error*".
- No olvide los espacios en blanco.

Entrada

La entrada contiene un texto (primer nombre del empleado), y dos valores de doble precisión, los cuales representan el salario del vendedor y el valor total vendido por él.

Salida

Imprimir el salario total del vendedor, de acuerdo, a los ejemplos.

Ejemplo de entrada	Ejemplo de salida
JOAO 500.00 1230.30	TOTAL = R\$ 684.54
PEDRO 700.00 0.00	TOTAL = R\$ 700.00
MANGOJATA 1700.00 1230.50	TOTAL = R\$ 1884.58

EJERCICIO 2: Fibonacci

La siguiente secuencia de números 0 1 1 2 3 5 8 13 21 ... se conoce como la secuencia de Fibonacci. A partir de entonces, cada número después de los primeros 2 es igual a la suma de los dos números anteriores. Escriba un algoritmo que lea un número entero N (N < 46) y que imprima los primeros N números de esta secuencia.

Aporte

El archivo de entrada contiene un número entero N (0 < N < 46).

Producción

Los números deben estar impresos en la misma línea, separados por un espacio en blanco. No hay espacio después del último número.

Ejemplo de entrada	Ejemplo de salida
5	0 1 1 2 3

EJERCICIO 3: Billetes y Monedas

Recibir un valor de punto flotante. Este valor representa un valor monetario. Luego de esto, calcular el menor número posible de *billetes* y *monedas* en los cuales su valor puede ser descompuesto. Los billetes a tener en cuenta son de 100, 50, 20, 10, 5, 2. Las monedas posibles son de 1 y 0.50. Mostrar el mensaje "NOTAS:" seguido de una lista de billetes y el mensaje "MONEDAS:" seguido de una lista de monedas.

Entrada

El archivo de entrada contiene un valor de punto flotante \mathbf{N} ($0 \le \mathbf{N} \le 1000000.00$).

Salida

Mostrar la mínima cantidad de billetes y monedas necesarias para cambiar el valor inicial, como en el ejemplo dado.

Ejemplo de Entradas		Ejem	plo de Sali	das	
576.73	NOTAS	:			
	5	nota(s)	de	R\$	100.00
	1	nota(s)	de	R\$	50.00
	1	nota(s)	de	R\$	20.00
	0	nota(s)	de	R\$	10.00
	1	nota(s)	de	R\$	5.00
	0	nota(s)	de	R\$	2.00
	MONEDA	AS:			
	1	moneda(s)	de	R\$	1.00
	1	moneda(s)	de	R\$	0.50
4.00	NOTAS	:			
	0	nota(s)	de	R\$	100.00
	0	nota(s)	de	R\$	50.00
	0	nota(s)	de	R\$	20.00
	0	nota(s)	de	R\$	10.00
	0	nota(s)	de	R\$	5.00
	2	nota(s)	de	R\$	2.00
	MONEDA	AS:			
	0	moneda(s)	de	R\$	1.00
	0	moneda(s)	de	R\$	0.50

Ejercicio 4: Número perfecto

En matemáticas, un número perfecto es un número entero para el cual la suma de todos sus divisores positivos (excluyéndose a sí mismo) es igual al número mismo. Por ejemplo, el número 6 es perfecto, porque 1+2+3 es igual a 6. Tu tarea es escribir un programa que lea números enteros e imprima un mensaje informando si estos números son perfectos o no.

Aporte

La entrada contiene varios casos de prueba. El primero contiene el número de casos de prueba **N** (1 \leq **N** \leq 100). Cada una de las siguientes **N** líneas contiene un número entero **X** (1 \leq **X** \leq 10 $^{\circ}$), que puede ser o no un número perfecto.

Producción

Para cada caso de prueba, imprima el mensaje (**X** es perfecto) o (**X** no es perfecto) de acuerdo con la especificación anterior.

Ejemplo de entrada	Ejemplo de salida
3 6	6 es perfecto 5 no es perfecto
5 28	28 es perfecto

Ejercicio 5: Vector

En este problema, su tarea es leer una matriz A[100]. Al final, imprima todas las posiciones de la matriz que almacenan un número menor o igual a 10 y el número almacenado en esa posición.

Aporte

La entrada contiene 100 números. Cada número puede ser entero, número de punto flotante, positivo o negativo.

Producción

Para cada número de la matriz que sea igual a 10 o menos, imprima "A [i] = x", donde i es la posición de la matriz y x es el número almacenado en la posición, con un dígito después del punto decimal.

Ejemplo de entrada	Ejemplo de salida
0	A[0] = 0,0
-5	A[1] = -5,0
63	A[3] = -8,5
-8.5	

Ejercicios 6: Cartas retiradas

Dado en una baraja ordenada de n cartas numeradas del 1 al n con la carta 1 en la parte superior y la carta n en la parte inferior.

La siguiente operación debe hace que el sistema te pida un número de ese rango, retirar las cartas impares desde 1 hasta la carta ingresada.

Cuando el sistema te pide en la segunda vez otra carta, se debe retirar las cartas pares desde 1 hasta la carta ingresada.

Cuando el sistema te pide en la tercera vez otra carta, se debe retirar las cartas múltiplos de 3 desde 1 hasta la carta ingresada.

Cuando ya te ha pedido 3 veces, te debe pedir una carta, y debe mostrar las cartas que no fueron retiradas.

Aporte

Cada línea contiene un número entero.

Producción

Para cada caso de prueba, mostrar las cartas rechazadas e indicar imprima dos líneas. La primera línea presenta la secuencia de cartas retiradas, cada número separado por una coma ',' y un espacio en blanco. La segunda línea mostrar la carta ingresada.

Ejemplo de Entrada	Ejemplo de Salida
7	Cartas retiradas: 1, 3, 5, 7
22	Carta ingresada: 7
15	Cartas retiradas: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
25	Carta ingresante: 22 Cartas retiradas: 3, 6, 9, 12, 15 Carta ingresante: 15 Resultados:
	Cartas no retiradas: 11, 13, 17, 19, 21, 23, 24, 25 Carta ingresante: 25