### MCQs MTH302 for practice

### Unit 1

Q.1 Let X be a random variable with E[X] = 2 and E[X(X-1)] = 8 then variance of X

- (a) 5
- (b) 4
- (c) 9
- (d) 6

Ans. (1)

Q.2 If X is a random variable, then Var(3X+7) is equal to

- (a) 3Var(X)
- (b) 3Var(X) + 7 (c) 3Var(X) + Var(7) (d) 9Var(X)

Ans: (

Q.3 If Var(X) = 3, then Var(2X+3) is

- (a)-21
- (b) 23 (c)12 (d) -12

Ans: (

4. The probability density function of a random variable (X, Y) is given by

 $f(x, y) = 2, 0 \le x \le y \le 1$ . The marginal distribution of Y is given by

(a) 
$$2y$$
,  $0 \le y \le 1$  (b)  $2x$ ,  $0 \le x \le 1$  (c)  $2y$ ,  $0 \le x \le y$  (d)  $2(1-x)$ ,  $0 \le x \le 1$ 

5.Let (X, Y) be a random variable with f(x, y) = 8xy, 0 < y < x < 1,

 $g(x) = 4x^3$ , 0 < x < 1 and  $h(y) = 4y(1 - y^2)$ , 0 < y < 1. The conditional distribution of X given Y is

(a) 
$$\frac{2x}{1-y^2}$$
,  $0 < x < y < 1$  (b)  $\frac{2x}{1-y^2}$ ,  $0 < y < x < 1$  (c)  $\frac{2y}{x^2}$ ,  $0 < y < x < 1$ 

(d) 
$$\frac{2y}{x^2}$$
,  $0 < x < y < 1$ .

6. Let *X* be random variable with distribution function

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Then  $P(0 \le 3X - 1 \le 1) =$ 

(A) 3/5 (B) 2/7 (C) 1/3 (D) 1 Q7. If the p.d.f of RV X given as  $f(x) = \begin{cases} kx^2 - 3, & 0 \le x \le 3 \\ 0, & otherwise \end{cases}$ , then value

of k is

- (A) -1
- (B) 10/9
- (C) 5/8
- (D) 9/7

Q8. 
$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha \le x \le \beta \\ 0, & otherwise \end{cases}$$
, if  $\alpha = -1, \beta = 2$ , then  $P\left(|X| \le \frac{1}{2}\right) = (A) \frac{1}{3}$  (B)  $\frac{1}{2}$  (C)  $\frac{5}{6}$  (D)  $\frac{2}{3}$ 

Q9. Graph of f(x) is shown below. For what value of  $\lambda$ , f(x) can be used as pdf.



- (A) 2/3
- (B) 3/4
- (C) 4/5
- (D)  $\frac{1}{2}$

Q10. If pdf of random variable *X* is given as  $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ , then value of distribution function F(x) at x = 1/3 is

- (A) 2/3
- (B) 3/8
- (C) 1/9
- (D)  $\frac{1}{2}$

11.If X and Y denote the random variables, then which is not random variable?

- (A)  $\pi(X-Y)$
- (B) X + Y
- (C) X Y
- (D) All of the above

12.If  $p(x) = \begin{cases} \frac{x}{15}, & x = 1, 2, 3, 4, 5 \\ 0, & otherwise \end{cases}$  then  $P\left(\frac{1}{2} < X < \frac{5}{2} \middle| X > 1\right)$ 

- (A) 1/7
- (B) 2/7
- (C) 3/7
- (D) 4/7

#### 13. Consider the statements:

- (i) For a discrete random variable X, the probability at a point is always vanish.
- (ii) For a continuous random variable X, the probability at a point is always vanish.
- (A) The statement (i) is correct but not (ii).
- (B) The statement (ii) is correct but not (i).
- (C) The statements (i) and (ii) both are correct.
- (D) Neither the statement (i) nor (ii) is correct.
- 14. Statement: The variance  $var(\pi) = \pi$ .

Reason: The variance is independent of change of origin.

- (A) Statement and reason both are correct.
- (B) Statement is correct but not the reason.
- (C) Reason is correct but not the statement.
- (D) Neither the statement nor the reason is correct.
- 15.The covariance  $Cov(\pi, -\pi)$  is
  - (A)  $-\pi^2$
  - (B)  $\pi^2$
  - (C)  $-\pi$
  - (D) Cov(1, -1)

16.

The random variable X has the following distribution. Then P(X = 10) is:

| x    | 1   | 2   | 4   | 10 |
|------|-----|-----|-----|----|
| P(x) | 0.3 | 0.2 | 0.2 | ?  |

(a) 0.2

(b) 0.5

(c) 0.3

(d) 0.1

17.If X is the discrete random variable and its pdf is given by f(x) = (x+2)/25, for X=1,2,3,4,5, then cdf F(3)=

a)7/25 b) 12/25 c) 13/25 d) none of these

- 18. Find the probability of getting 2 club cards when 2 cards randomly drawn without replacement from well shuffled pack of 52 cards.
- (a) 3/51
- (b) 3/52
- (c) 1/16
- (d) None of these
- 19. Find the probability of getting 2 club cards when 2 cards randomly drawn with replacement from well shuffled pack of 52 cards.
- (a) 3/51
- (b) 3/52
- (c) 1/16
- (d) None of these
- 20. Find the probability of hitting the target when up to 3 fires are shot from gun whose probability of hitting the target is 0.4.
- (a) 0.96
- (b) 0.348
- (c) 0.384
- (d) None of these
- 21.A random variable X has a mean  $\mu = 8$ , and Variance is 9, of any unknown

Probability distribution. Then  $P(|X - 8| \ge 4) \le$ 

- (a) can not be predicted from limited data
- (b) 9/16
- (c) 16/9
- (d) None of these
- 22.A random variable X has a mean ,  $\mu = 12$ , and Variance is 1, of any unknown

Probability distribution. Then  $P(9 < X < 15) \ge$ 

- (a) can not be predicted from limited data
- (b) 8/9
- (c) 1/9
- (d) None of these

23.

Let X and Y be continuous random variables with the joint probability density function

$$f(x,y) \ = \ \begin{cases} cx(1-x), & \text{if } 0 < x < y < 1, \\ 0, & \text{otherwise,} \end{cases}$$

Where c is a positive real constant. Then E(X) equals

(a)  $\frac{1}{5}$ 

(b)  $\frac{1}{4}$ 

(c)  $\frac{2}{5}$ 

(d)  $\frac{1}{3}$ 

24.

Let X and Y be continuous random variables with the joint probability density function

$$f(x, y) = \begin{cases} x + y, & \text{if } 0 < x < 1, 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Then  $P\left(X+Y>\frac{1}{2}\right)$  equals

(a)  $\frac{23}{24}$ 

(b)  $\frac{1}{12}$ 

(c)  $\frac{11}{12}$ 

(d)  $\frac{1}{24}$ 

Unit 2

- 1. The correlation coefficient r(X,Y) is 0.6. Find r(U,V), where  $U = \frac{X-2}{5}$  and  $V = \frac{Y-1}{7}$ .
  - (a) 0.4 (b) 0.66 (c) 0.6 (d) 0.5 Ans © 0.6

| 2. | The covariance between $X$ and $Y$ is 0.35, variance of $X$ is 1.1576 and variance of $Y$ is |  |  |  |  |
|----|----------------------------------------------------------------------------------------------|--|--|--|--|
|    | 1.6075. Find the correlation coefficient.                                                    |  |  |  |  |
|    | (a) 0.25 (b) 0.35 (c) 0.4 (d) 0.5                                                            |  |  |  |  |
|    | (b)                                                                                          |  |  |  |  |
|    | Q.3. Karl Pearson's Correlation Coefficient is also called                                   |  |  |  |  |
|    | (a) Rank Correlation (b) Product Moment Correlation (c) Both (a) and (b) (d)None             |  |  |  |  |
|    | Ana (Ana                                                                                     |  |  |  |  |

Q. Correlation Coefficient is independent of change of

(a) Origin but not of scale (b) Scale but not of Origin (c) Origin and Scale (d) None of these Ans:

Q5. Using the following information on a bivariate data set, regression line of Y on X is

$$\bar{X} = 1, \bar{Y} = 2, s_X = 3, s_Y = 9, r = 0.8$$

(Here *s* stands for standard deviation)

(A) 
$$Y = 1 + 2.4(X - 1)$$

(B) 
$$Y = 2 + 0.27(X - 1)$$

of the these

(C) 
$$Y = 1 + 0.27(X - 2)$$

(D) 
$$Y = 2 + 2.4(X - 1)$$

Q6. In the regression line Y = a + bX, where  $\bar{X} = 2.5, \bar{Y} = 5.5$  and a = 1.50, then value of b is

- (A) 1.75
- (B) 1.60
- (C) 2
- (D) 2.5

Q7. Two regression lines are given as 3X + 2Y = 26,6X + Y = 31, then ratio of variances of X to Y is

- $(A)\frac{1}{0}$
- (B)  $\frac{1}{4}$  (C)  $\frac{2}{5}$  (D)  $\frac{3}{8}$

Q8. Two regression lines are given as 3X + 2Y = 26, 6X + Y = 31, then correlation coefficient between X and Y is

- (A) 2
- (B) 2
- (C)  $\frac{1}{2}$  (D)  $-\frac{1}{2}$

Q9. Angle between the regression lines for two uncorrelated variables is

- (A)  $0^o$  (B)  $\frac{\pi}{2}$  (C)  $\frac{\pi}{4}$  (D)  $\frac{\pi}{3}$

10.If two lines of regression are x+3y-5=0 and 4x+3y-8=0, then the correlation coefficient between x and y is

- a) 1/3 b)  $\frac{1}{3}$  c)  $-\frac{1}{3}$  d)  $-\frac{3}{5}$
- 11.If the regression coefficients of regression equation of X on Y is 0.4 and of Y on X is 1.6, thrn the regression coefficient of U=3X on V=2Y is

a)0.4 b) 1.6 c) 1.066 d) 0.6

- 12. Two regression lines coincide if the correlation coefficient is
- (b) *Only positive perfect* (c) Only negative perfect (A) Perfect (d) all are possible
- 13. If Two regression lines coincide then possible angle between them is/are
- (A) 0 and  $\pi$
- (b) 0 but not  $\pi$
- (c)  $\pi$  but not 0
- (d) None
- 14. The regression coefficient of X on Y is defined by

- (a)  $r \frac{\sigma_Y}{\sigma_X}$  (b)  $\frac{\sigma_X}{r \, \sigma_Y}$  (c)  $r \frac{\sigma_X}{\sigma_Y}$  (d)  $r \left(\frac{\sigma_Y}{\sigma_X}\right)^2$
- 15. The product of two regression coefficients will be
  - (A) positive correlation only
  - (B) Negative correlation only
  - (C) May be positive or negative
  - (D) regression and correlation coefficient are not related.
- 16. The range of correlation and rank correlation coefficients is
  - (A) equal and positive but less than unity
  - (B) equal and negative but less than zero
  - (C) equal and lies between negative unity to positive unity
  - (A) not equal

For Spearman's rank correlation, if the correlation coefficient is 0.7 and  $\Sigma_{i=1}^n d_i^2 = 49.5$  then the value of sample size 'n' is:  $1. \quad 99$   $2. \quad 20$   $3. \quad 10$   $4. \quad 990$ 

## 18

# Unit 3

- 1. If the mean and variance of a binomial random variable are 11.25 and 2.8125, respectively, find the number of trials.
  - (a) 20 (b) 10 (c) 45 (d) 15
- 2. The mean and variance of a Binomial random variable are 2 and 1.2, respectively, find P(X = 0).
  - (a) 0.0778 (b) 0.0102 (c) 0.778 (d) 0.25



- Q4. The probability of any one letter being delivered to the wrong house is 0.01. On a randomly selected day Peter delivers 1000 letters. Using a Poisson approximation, find the probability that Peter delivers 12 letters to the wrong house.
- (A) 0.09478
- (B) 0.06241
- (C) 0.07729
- (D) 0.02447
- Q5. On the average, 1 in 800 computers crashes during a severe thunderstorm. A certain company had 4,000 working computers when the area was hit by a severe thunderstorm. Then the expected number of crashed computers is
- (A) 10
- (B) 20
- (C) 5
- (D) 15

6.Ten coins are tossed simultaneously. The probability of getting no head is

- (A)  $\left(\frac{1}{2}\right)^{10}$
- (B)  $\left(\frac{1}{10}\right)^{10}$
- (C)  $\left(\frac{1}{10}\right)^2$
- (D) None

7. Select the correct option regarding mean and variance of Poisson distribution.

- (A) Mean is greater than variance.
- (B) Mean is less than variance.
- (C) Mean is equal to variance.
- (D) Mean and variance both are equal to 1.

8. Select the correct option regarding mean and variance of Negative Binomial distribution.

- (A) Mean is greater than variance.
- (B) Mean is less than variance.
- (C) Mean is equal to variance.
- (D) Mean and variance both are equal to 1.

9.If a company producing the large number of items, then the probability of 4 defective items can be obtained by

- (A) Bernoulli distribution
- (B) Binomial distribution
- (C) Negative Binomial distribution
- (D) Poisson distribution
- 10. The moment generating function of r.v. X can be obtained from
- (A) Expectation of X
- (B) Variance of X
- (C) Expectation of tx
- (D) Expectation of exponential (tX)

11

Which of the following expressions represents the moment-generating function (MGF) of the negative binomial distribution?

a) 
$$M_X(t) = (1-p)^{k-1} \cdot p$$

b) 
$$M_X(t)=rac{pe^t}{1-(1-p)e^t}$$

c) 
$$M_X(t) = \left(rac{p}{1-qe^t}
ight)^t$$

b) 
$$M_X(t)=(1-p)$$
c)  $M_X(t)=rac{pe^t}{1-(1-p)e^t}$ 
c)  $M_X(t)=\left(rac{p}{1-qe^t}
ight)^r$ 
d)  $M_X(t)=\left(rac{q}{1-pe^t}
ight)^r$ 

What is the moment-generating function (MGF) of the geometric distribution?

a) 
$$M_X(t)=inom{k+r-1}{k}\cdot p^r\cdot q^k$$
 b)  $M_X(t)=inom{p}{1-qe^t}^r$  c)  $M_X(t)=(1-p)^{k-1}\cdot p$  d)  $M_X(t)=rac{pe^t}{1-(1-p)e^t}$ 

b) 
$$M_X(t) = \left(rac{p}{1-qe^t}
ight)^r$$

c) 
$$M_X(t) = (1-p)^{k-1} \cdot p$$

d) 
$$M_X(t)=rac{pe^t}{1-(1-p)e^t}$$

- [3) For Poisson distribution find P(2) given  $\lambda = 0.7[e^{-0.7} = 0.497]$ 
  - a) 0.13
- b) 0.14
- c) 0.12
- d) 0.9
- 1) If x is Poisson variate such that P(x=1) =2P(x=2). Then  $\lambda$  and  $\sigma$  are
  - a) 1 and 1
- b) 1 and 2
- c) 4 and 2 d) 2 and 1
- (5) 8% of people are left-handed. What is the probability that 2 or more of random sample of 25 are left-handed. [e-2 = 0.1353]
  - a) 0.692
- b) 0.595
- c) 0.729
- d) 0.525