Exercise 1 (Exercise 1.a). Compute $s_2(T)$ where T is the tableau below:

Answer

We have

$$rw(T) = 34222331111222233.$$

With this, we can pair 3 and 2's as follows:

$$34222\overline{33111122}2233$$

and we can see we have 4 unpaired 2's and 2 unpaired 3's. By applying s_2 we wish to reflect this about the corresponding \mathfrak{sl}_2 chain to get 2 unpaired 2's and 4 3's. We have

$$34222331111222233 \xrightarrow{F_2} 34222331111222333 \xrightarrow{F_2} 34222331111223333$$

and this is the desired word. The corresponding tableau is

Exercise 2 (Exercise 1.b). Explain why it suffices to show that $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ when acting on tableaux, for all i.

Answer

Checking a braid relation of the form $s_i s_j s_i$ where $|j - i| \neq 1$ is unnecessary because in those cases s_i commutes with s_j .

Exercise 3 (Exercise 1.c). Show that, using the compatibility of JDT slides with crystal operators (which you may use as a fact), it suffices to show part 1 for i = 1, and therefore it suffices to work with \mathfrak{sl}_3 crystals, that is, tableaux whose letters are all 1, 2, 3.

Answer

Consider the following diagram:

$$\begin{array}{ccc} T & \xrightarrow{\operatorname{rem}} & \operatorname{skew}(T) & \xrightarrow{\operatorname{rect}} & T' \\ & & & \downarrow \operatorname{braid} \\ S & \xrightarrow{\operatorname{rem}} & \operatorname{skew}(S) & \xrightarrow{\operatorname{rect}} & S' \end{array}$$

where rem is the operation which removes all letters but i, i + 1, i + 2. This diagram commutes because the braid operation is a combination of raising and lowering operators and the removal plus rectification is a JDT.

So from this, we may relabel i, i + 1, i + 2 to 1, 2, 3 and then we can work on the tableau because the diagram commutes.

Exercise 4 (Exercise 2). Compute the chromatic symmetric function of the triangle graph, that is, the complete graph K_3 , and express it in terms of elementary symmetric functions and in terms of Schur functions.

Answer

Observe that $\chi(K_3)=3$ which means that there's no proper colorings with 1 or 2 colors. Thus we must color vertices 1,2,3 with colors $i,j,k\in\mathbb{N}$. However there's 3! ways of doing this, so that each monomial $x_ix_jx_k$ is accounted 3! times. We thus have that

$$X_{K_3} = 3!m_{(1,1,1)} = 3!s_{(1,1,1)} = 3!e_3.$$