MATH 560, Homework 8

Colin Roberts
October 31, 2017

Solutions

Problem 1. (§6.2 Problem 10.) Let W be a finite-dimensional subspace of an inner product space V. Prove that there exists a projection T on W along W^{\perp} that satisfies $\mathcal{N}(T) = W^{\perp}$. In addition, prove that $||T(v)|| \le ||v||$ for all $v \in V$. *Hint*: Use Theorem 6.6 and Exercise 10 of Section 6.1.

:

Proof (Problem.). Let $v \in V$ be equal to v = w + w' with $w \in W$ and $w' \in W^{\perp}$. By Theorem 6.6 we have, $V = W \oplus W^{\perp}$, and it follows that w and w' are uniquely defined. Then we define $T: V \to V$ by Tv = w. Then if $u \in W^{\perp}$ we have Tu = 0. Lastly, for the same arbitrary v we have

$$||T(v)|| = \langle Tv, Tv \rangle$$
$$= \langle w, w \rangle.$$

Note that if $v \in W$ then w' = 0 and ||T(v)|| = ||v|| else $w' \neq 0$ and we have that ||T(v)|| < ||v||. It then follows that $||T(v)|| \le ||v||$.

Problem 2. (§6.3 Problem 2(c).) For each of the following inner product spaces V (over \mathbb{F}) and linear transformations $g: V \to \mathbb{F}$, find a vector y such that $g(x) = \langle x, y \rangle$ for all $x \in V$.

$$V = P_2(\mathbb{R}) \text{ with } \langle f, h \rangle = \int_0^1 f(t)h(t)dt, \ g(f) = f(0) + f'(1)$$

:

Proof. Consider $f(t) = a_0 + a_1 t + a_2 t^2$ and $h(t) = b_0 + b_1 t + a_2 t^2$. Note that $f'(t) = a_1 + 2a_2 t$ and $f(0) = a_0$ and $f'(1) = a_1 + 2a_2$. Then

$$\begin{split} \langle f,h\rangle &= \int_0^1 (a_0+a_1t+a_2t^2)(b_0+b_1t+b_2t^2)dt \\ &= \int_0^1 (a_0b_0+a_0b_1t+a_0b_2t^2+a_1b_0t+a_1b_1t^2+a_1b_23^2+a_2b_0t^2+a_2b_1t^3+a_2b_2t^4)dt \\ &= \left[a_0b_0t+\frac{1}{2}a_0b_1t^2+\frac{1}{3}a_0b_2t^3+\frac{1}{2}a_1b_0t^2+\frac{1}{3}a_1b_1t^3+\frac{1}{4}a_1b_2t^4+\frac{1}{3}a_2b_0t^3+\frac{1}{4}a_2b_1t^4+\frac{1}{5}a_2b_2t^5\right]_0^1 \\ &= a_0b_0+\frac{1}{2}a_0b_1+\frac{1}{3}a_0b_2+\frac{1}{2}a_1b_0+\frac{1}{3}a_1b_1+\frac{1}{4}a_1b_2+\frac{1}{3}a_2b_0+\frac{1}{4}a_2b_1+\frac{1}{5}a_2b_2. \end{split}$$

Setting this equal to $f(0) + f'(1) = a_0 + a_1 + 2a_2$ yields

$$a_0 + a_1 + 2a_2 = a_0b_0 + \frac{1}{2}a_0b_1 + \frac{1}{3}a_0b_2 + \frac{1}{2}a_1b_0 + \frac{1}{3}a_1b_1 + \frac{1}{4}a_1b_2 + \frac{1}{3}a_2b_0 + \frac{1}{4}a_2b_1 + \frac{1}{5}a_2b_2$$

$$= a_0\left(b_0 + \frac{1}{2}b_1 + \frac{1}{3}b_2\right) + a_1\left(\frac{1}{2}b_0 + \frac{1}{3}b_1 + \frac{1}{4}b_2\right) + a_2\left(\frac{1}{3}b_0 + \frac{1}{4}b_1 + \frac{1}{5}b_2\right),$$

and we find $b_0 = 33$, $b_1 = -204$, and $b_2 = 210$. So $h(t) = 33 - 204t + 210t^2$.

Problem 3. (§6.3 Problem 4.) Complete the proof of Theorem 6.11.

Let V be an inner product space, and let T and U be linear operators on V. Then

- (a) $(T+U)^* = T^* + U^*$;
- (b) $(cT)^* = \overline{c}T^*$ for any $c \in \mathbb{F}$;
- (c) $(TU)^* = U^*T^*$;
- (d) $T^{**} = T$;
- (e) $I^* = I$.

•

Proof (a). Done in the text.

:

Proof (b). We have

$$\langle x, (cT)^* y \rangle = \langle (cT)x, y \rangle$$

$$= \langle c(Tx), y \rangle$$

$$= c \langle Tx, y \rangle$$

$$= c \langle x, T^* y \rangle$$

$$= \langle x, \overline{c}T^* y \rangle.$$

:

Proof (c). We have

$$\langle x, (TU)^* y \rangle = \langle (TU)x, y \rangle$$

$$= \langle T(Ux), y \rangle$$

$$= \langle Ux, T^* y \rangle$$

$$= \langle x, U^* T^* y \rangle.$$

:

Proof (d). Done in the text.

:

Proof (e). We have

$$\langle x, y \rangle = \langle Ix, y \rangle$$

= $\langle x, I^* y \rangle$
= $\langle x, Iy \rangle$

by the first line.

Problem 4. (§6.3 Problem 9.) Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. *Hint*: Recall that $\mathcal{N}(T) = W^{\perp}$.

:

Proof. Since T is the projection on W along W^{\perp} and $V = W \oplus W^{\perp}$, we have for $v \in V$ that v = w + w' with $w \in W$ and $w' \in W^{\perp}$. Then note that Tv = w. It follows that for $v_1, v_2 \in V$ we have

$$\begin{split} \langle Tv_1, v_2 \rangle &= \langle T(w_1 + w_1'), w_2 + w_2' \rangle \\ &= \langle w_1, w_2 + w_2' \rangle \\ &= \langle w_1, w_2 \rangle + \langle w_1, w_2' \rangle \\ &= \langle w_1, w_2 \rangle & \text{since } w_2' \in W^{\perp}. \end{split}$$

Finally,

$$\begin{split} \langle v_1, Tv_2 \rangle &= \langle w_1 + w_1', T(w_2 + w_2') \rangle \\ &= \langle w_1 + w_1', w_2 \rangle \\ &= \langle w_1, w_2 \rangle + \langle w_1', w_2 \rangle \\ &= \langle w_1, w_2 \rangle \qquad \qquad \text{since } w_1' \in W^{\perp}. \end{split}$$

Hence, $T = T^*$.

Problem 5. (\$**6.3 Problem 13.**) Let T be a linear on a finite-dimensional vector space V. Prove the following results.

- (a) $\mathcal{N}(T^*T) = \mathcal{N}(T)$. Deduce that rank $(T^*T) = \text{rank}(T)$.
- (b) $rank(T) = rank(T^*)$. Deduce from (a) that $rank(TT^*) = rank(T)$.
- (c) For any $n \times n$ matrix A, $rank(A^*A) = rank(AA^*) = rank(A)$.

:

Proof (a). Let $v \in \mathcal{N}(T)$. Then

$$\langle T^* T v, v \rangle = \langle T v, T v \rangle$$

= 0

since $v \in \mathcal{N}(T)$.

Thus a vector $v \in \mathcal{N}(T)$ is also in $\mathcal{N}(T^*T)$. Now let $v' \neq 0 \in \mathcal{R}(T)$, i.e., $v' \notin \mathcal{N}(T)$, then

$$\langle T^* T v', v' \rangle = \langle T v', T v' \rangle \neq 0$$

since $v' \in \mathcal{R}(T)$.

Thus if $v' \notin \mathcal{N}(T)$ then $v' \notin \mathcal{N}(T^*T)$. By both of the above, we have $\mathcal{N}(T) = \mathcal{N}(T^*T)$.

It follows that $rank(T^*T) = rank(T)$ by above, or by noting the dimension theorem. In other words,

$$\dim(V) = \operatorname{rank}(T) + \operatorname{nullity}(T)$$

$$= \operatorname{rank}(T^*T) + \operatorname{nullity}(T^*T)$$

$$\Longrightarrow \operatorname{rank}(T^*T) = \operatorname{rank}(T)$$
since $\operatorname{nullity}(T^*T) = \operatorname{nullity}(T)$.

:

Proof (b). Consider $v \neq 0 \in V$ and we have, by definition,

$$\langle T \nu, \nu \rangle = \langle \nu, T^* \nu \rangle.$$

If $v \in \mathcal{R}(T)$ then it follows that $v \in \mathcal{R}(T^*)$ else the above equality would not hold. Similarly, if $v \in \mathcal{N}(T)$ then, necessarily, $v \in \mathcal{N}(T^*)$, else, again, the above equality does not hold. It follows immediately that $\operatorname{rank}(T) = \operatorname{rank}(T^*)$.

By part (a) and the above proof, we have that $rank(T^*T) = rank(T) = rank(T^*)$. Then for $v \in V$ we have $\langle T^*Tv, T^*v \rangle = \langle Tv, TT^*v \rangle$. It follows that $rank(TT^*) = rank(T)$.

:

Proof (*c*). Fix a basis β for *V*. Then let $A = [T]_{\beta}$. Then since *T* was arbitrary and the choice of basis does not matter, we have that $\operatorname{rank}(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$ by parts (a) and (b).

Problem 6. (§6.4 Problem 13.) An $n \times n$ real matrix A is said to be a *Gramian* matrix if there exists a real (square) matrix B such that $A = B^T B$. Prove that A is a Gramian matrix if and only if A is symmetric and all of its eigenvalues are nonnegative. *Hint:* Apply Theorem 6.17 to $T = L_A$ to obtain an orthonormal basis $\{v_1, v_2, ..., v_n\}$ of eigenvectors with the associated eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. Define the linear operator U by $U(v_i) = \sqrt{\lambda_i} v_i$.

:

Proof. First, suppose that A is Gramian. Thus $A = B^T B$, and it follows immediately that A is self adjoint since A is real and $(B^T B)^T = B^T B$. This means that we have a basis $\beta = \{v_1, v_2, ..., v_n\}$ of orthonormal eigenvectors of A by Theorem 6.17. Let $T = L_A$ and then $[T]_{\beta} v_i = \lambda_i v_i$. In other words, $Av_i = \lambda_i v_i = B^T B v_i$. Then consider any eigenvalue λ_r and we have

$$\lambda_r = \langle Av_r, v_r \rangle$$

$$= \langle B^T B v_r, v_r \rangle$$

$$= \langle Bv_r, Bv_r \rangle$$

$$= \|Bv_r\|^2 = \|B\|^2 \ge 0.$$

Hence, all the eigenvalues are nonnegative.

For the converse, suppose that A is symmetric and all of its eigenvalues are nonnegative. A symmetric implies that $A^T = A$ and that we have a basis $\beta = \{v_1, v_2, ..., v_n\}$ of orthonormal eigenvectors and each eigenvalue λ_i is real. By supposition, these eigenvalues are also nonnegative. Define an operator U such that $U(v_i) = \sqrt{\lambda_i} v_i$ and then note that $A = Q^{-1}U^2Q$ where Q changes bases from the original basis of A to the basis of orthonormal eigenvectors. Then

$$\begin{split} \langle Av_i, v_i \rangle &= \langle U^2 v_i, v_i \rangle \\ &= \langle Uv_i, U^T v_i \rangle \\ &= \langle v_i, (U^T)^2 v_i \rangle \\ &= \langle (U^T)^2 v_i, v_i \rangle \end{split}$$

since every eigenvalue is real.

Hence $U = U^T$ and we have that $A = Q^{-1}U^2Q$. Letting UQ = B we have $B^TB = A$ and thus A is Gramian.