Theorem (3.2.4). Let f be the function defined by $f(x) = 2^x + 17$. f(x) is $\mathcal{O}(3^x)$.

Proof. Let g be the function defined by $g(x) = 3^x$. $17 < 3^3$, and clearly $2^x \le 3^x$, for all $x \ge 3$. So $2^x + 17 \le 3^x + 3^x$, for all x > 3. It follows from the definitions of f and g that $|f(x)| \le 2|g(x)|$, for all x > 3. Therefore, by definition, f(x) is $\mathcal{O}(3^x)$ with constant witnesses C = 2, and k = 3.