This week on the problem set you will get practice thinking about potential functions and calculating line integrals.

Homework: The homework will be due on Monday 25 November. It will consist of questions:

*Numbers in parentheses indicate the question has been taken from the textbook:

J. Rogawski, C. Adams, *Calculus, Multivariable*, 3rd Ed., W. H. Freeman & Company,

and refer to the section and question number in the textbook.

- 1. (Section 17.4) 2, 3, 5, 8, 9, 10, 13, 14, 17, 18, 27, 30, 34, 37, 40, 41*, 46* 48*. (questions are the same in previous versions)
- 2. (Section 17.5) 1, 6, 7, 12, 17, 18, 21, 22, 31*, 35. (questions are the same in previous versions)
- 3. Consider the line segment (x,0,0) where $x \in [-1,1]$ in \mathbb{R}^3 . Imagine this line segment moving up with its centre on the z-axis, rotating parallel to the xy-plane at constant speed. It completes one full revolution when it gets to $z = 2\pi$. What surface area is swept out by the rotating line segment? You may wish to use the fact that

$$\frac{d}{dt}\left(t\sqrt{1+t^2} + \sinh^{-1}(t)\right) = 2\sqrt{1+t^2}$$

and that \sinh^{-1} is an odd function and $\sinh(1) = \ln(1 + \sqrt{2})$.

Solution: We parameterise the surface using the following strategry. Say that at time t the line segment is at height z=t, so G(s,t)=(?,?,t). At z=t for $t\in[0,2\pi]$ we know that out line segment as rotated t radians from it's starting point. So it's projection onto the xy-plane is $(s\cos t, s\sin t)$. Thus our parameterisation is

$$G(s,t) = (s\cos t, s\sin t, t) \text{ for } (s,t) \in \mathcal{D} = [-1,1] \times [0,2\pi].$$

From this we calculate

$$\mathbf{T}_{s} = \langle \cos t, \sin t, 0 \rangle$$

$$\mathbf{T}_{t} = \langle -s \sin t, s \cos t, 1 \rangle$$

$$\mathbf{N} = \langle \sin t, -\cos t, s \rangle$$

and so

$$\|\mathbf{N}\| = \sqrt{1 + s^2}$$

Thus the surface area is

$$\iint_{S} 1 \, dS = \iint_{D} \sqrt{1 + s^{2}} \, dA_{st}$$

$$= \int_{0}^{2\pi} \int_{-1}^{1} \sqrt{1 + s^{2}} \, ds \, dt$$

$$= \pi \left[s\sqrt{1 + s^{2}} + \sinh^{-1} s \right]_{-1}^{1}$$

$$= 2\pi \left(\sqrt{2} + \sinh^{-1}(1) \right) = 2\pi \left(\sqrt{2} + \ln(1 + \sqrt{2}) \right)$$

- 4. Let $\mathbf{F}\left\langle y(ye^{x+y^2}-1)+x^2,2y(1+y^2)e^{x+y^2}+x\right\rangle$ and let \mathcal{C} be the portion of $y=1-x^2$ oriented left to right.
 - (a) Parameterise C and write $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ as a single integral. Do not try and evaluate.

Solution: A parameterisation is $\mathbf{r} = (t, 1 - t^2)$ for $t \in [-1, 1]$ and so $\mathbf{r}'(t) = \langle 1, -2t \rangle$. The integral becomes

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{-1}^{1} (1 - t^2)((1 - t^2)e^{t^4 - 2t^2 + t + 1} - 1) + t^2 - 2t \left(2(1 - t^2)(2 - 2t^2 + t^4)e^{t^4 - 2t^2 + t + 1} + t\right) dt$$

$$= \int_{-1}^{1} (4t^7 - 12t^5 + t^4 + 16t^3 - 2t^2 - 8t + 1)e^{t^4 - 2t^2 + t + 1} - 1 dt$$

(b) Now let \mathcal{L} be the straight line from (-1,0) to (1,0) oriented left to right and let \mathcal{D} be the region bounded by the x-axis and \mathcal{C} . Use Green's theorem to relate the integrals of \mathbf{F} over \mathcal{C} and \mathcal{L} to an integral over \mathcal{D} . Use this to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

Solution: By looking at the picture we see that $\mathcal{L} - \mathcal{C}$ is a closed curve that is the boundary of \mathcal{D} (including orientation matching). Thus by Green's theorem

$$\int_{\mathcal{L}} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{L}-\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \nabla \times \mathbf{F} \ dA$$

A calculation shows that $\nabla \times \mathbf{F} = 2$. Thus

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} - \iint_{\mathcal{D}} 2 \, dA$$

The double integral is easy to evaluate:

$$\iint_{\mathcal{D}} 2 \, dA = 2 \int_{-1}^{1} \int_{0}^{1-x^2} \, dy \, dx = \frac{8}{3}.$$

The curve \mathcal{L} is parameterised by $\mathbf{r}(t)=(t,0)$ for $t\in[-1,1]$. So $\mathbf{r}'(t)=\langle 1,0\rangle$. So

$$\int_{\mathcal{L}} \mathbf{F} \cdot d\mathbf{r} = \int_{-1}^{1} t^2 dt = \frac{2}{3}.$$

So we get $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \frac{2}{3} - \frac{8}{3} = -2$

(c) Path (almost)-independence for non-conservative vector fields. More generally, suppose C_1 and C_2 are two oriented curves with the same endpoints, and \mathbf{F} is a vector field that is defined everywhere on the region \mathcal{D} between C_1 and C_2 . If \mathbf{F} is conservative we know that $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = 0$. If \mathbf{F} is not conservative, what is

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r}?$$

Solution: One of $C_1 - C_2$ or $C_2 - C_1$ will be the boundary of \mathcal{D} . Suppose it is $C_1 - C_2$. Then by Green's theorem

$$\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1 - \mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \nabla \times \mathbf{F} \ dA.$$

*The questions marked with an asterisk are more difficult or are of a form that would not appear on an exam. Nonetheless they are worth thinking about as they often test understanding at a deeper conceptual level.