22. Orthogonal Polynomials

URS W. HOCHSTRASSER 1

Contents

Mathematical Properties
22.1. Definition of Orthogonal Polynomials
22.2. Orthogonality Relations
22.3. Explicit Expressions
22.4. Special Values
22.5. Interrelations
22.6. Differential Equations
22.7. Recurrence Relations
22.8. Differential Relations
22.9. Generating Functions
22.10. Integral Representations
22.11. Rodrigues' Formula
22.12. Sum Formulas . ,
22.13. Integrals Involving Orthogonal Polynomials
22.14. Inequalities
22.15. Limit Relations
22.16. Zeros
22.17. Orthogonal Polynomials of a Discrete Variable
Numerical Methods
References
Fable 22.1. Coefficients for the Jacobi Polynomials $P_n^{(\alpha,\beta)}(x)$ $n=0(1)6$
Table 22.2. Coefficients for the Ultraspherical Polynomials $C_n^{(\alpha)}(x)$ and for x^n in Terms of $C_m^{(\alpha)}(x)$
Table 22.3. Coefficients for the Chebyshev Polynomials $T_n(x)$ and for x^n in Terms of $T_m(x)$
Table 22.4. Values of the Chebyshev Polynomials $T_n(x)$
Table 22.5. Coefficients for the Chebyshev Polynomials $U_n(x)$ and for x^n in Terms of $U_m(x)$
Table 22.6. Values of the Chebyshev Polynomials $U_n(x)$ $n=0(1)12, x=.2(.2)1, 10D$

¹ Guest Worker, National Bureau of Standards, from The American University. (Presently, Atomic Energy Commission, Switzerland.)

22. Orthogonal Polynomials

Mathematical Properties

22.1. Definition of Orthogonal Polynomials

A system of polynomials $f_n(x)$, degree $[f_n(x)] = n$, is called orthogonal on the interval $a \le x \le b$, with respect to the weight function w(x), if

22.1.1

$$\int_{a}^{b} w(x)f_{n}(x)f_{m}(x)dx=0$$

$$(n \neq m; n, m=0, 1, 2, ...)$$

The weight function $w(x)[w(x) \ge 0]$ determines the system $f_n(x)$ up to a constant factor in each polynomial. The specification of these factors is referred to as standardization. For suitably standardized orthogonal polynomials we set

22.1.2

$$\int_{a}^{b} w(x)f_{n}^{2}(x)dx = h_{n}, f_{n}(x) = k_{n}x^{n} + k'_{n}x^{n-1} + \dots$$

$$(n=0,1,2,\dots)$$

These polynomials satisfy a number of relationships of the same general form. The most important ones are:

Differential Equation

22.1.3
$$g_2(x)f_n'' + g_1(x)f_n' + a_nf_n = 0$$

where $g_2(x)$, $g_1(x)$ are independent of n and a_n a constant depending only on n.

Recurrence Relation

22.1.4
$$f_{n+1} = (a_n + xb_n)f_n - c_n f_{n-1}$$

where

22.1.5

$$b_n = \frac{k_{n+1}}{k_n}$$
, $a_n = b_n \left(\frac{k'_{n+1}}{k_{n+1}} - \frac{k'_n}{k_n} \right)$, $c_n = \frac{k_{n+1}k_{n-1}h_n}{k_n^2h_{n-1}}$

Rodrigues' Formula

22.1.6
$$f_n = \frac{1}{e_n w(x)} \frac{d^n}{dx_n} \{ w(x) [g(x)]^n \}$$

where g(x) is a polynomial in x independent of n. The system $\left\{\frac{df_n}{dx}\right\}$ consists again of orthogonal polynomials.

FIGURE 22.1. Jacobi Polynomials $P_n^{(\alpha,\beta)}(x)$, $\alpha=1.5$, $\beta=-.5$, n=1(1)5.

22.2. Orthogonality Relations

	$f_n(x)$	Name of Polynomial	а	b	w(x)	Standardization	h.,	Remarks
22.2.1	$P_n^{(\alpha,\beta)}(x)$	Jacobi	-1	1	$(1-x)^{\alpha}(1+x)^{\beta}$	$P_n^{(\alpha,\beta)}(1) = {n+\alpha \choose n}$	$\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{n!\Gamma(n+\alpha+\beta+1)}$	$\alpha > -1, \beta > -1$
22.2.2	$G_n(p, q, x)$	Jacobi	0	1	$(1-x)^{p-q}x^{q-1}$	$k_n = 1$	$\frac{n!\Gamma(n+q)\Gamma(n+p)\Gamma(n+p-q+1)}{(2n+p)\Gamma^2(2n+p)}$	p-q>-1, q>0
22.2.3	$C_n^{(\alpha)}(x)$	Ultraspherical (Gegenbauer)	-1	1	$(1-x^2)^{\alpha-\frac{1}{2}}$	$C_n^{(a)}(1)$ $= {n+2\alpha-1 \choose n}$ $(\alpha \neq 0)$	$\frac{\pi^{2^{1-2\alpha}\Gamma(n+2\alpha)}}{n!(n+\alpha)[\Gamma(\alpha)]^2} \alpha \neq 0$	α>-1
					•	$C_n^{(0)}(1) = \frac{2}{n}$, $C_0^{(0)}(1) = 1$	$\frac{2\pi}{n^2} \alpha = 0$	
22.2.4	$T_n(x)$	Chebyshev of the first kind	-1	1	$(1-x^2)^{-\frac{1}{2}}$	$T_n(1)=1$	$\begin{cases} \frac{\pi}{2} & n \neq 0 \\ \pi & n = 0 \end{cases}$	
22.2.5	$U_n(x)$	Chebyshev of the second kind	-1	1	$(1-x^2)^{\frac{1}{2}}$	$U_n(1)=n+1$	$\frac{\pi}{2}$	80
22.2.6	$C_n(x)$	Chebyshev of the first kind	-2	2	$\left(1-\frac{x^2}{4}\right)^{-\frac{1}{2}}$	$C_n(2)=2$	$\begin{cases} 4\pi & n \neq 0 \\ 8\pi & n = 0 \end{cases}$	
22.2.7	$S_n(x)$	Chebyshev of the second kind	-2	2	$\left(1-\frac{x^2}{4}\right)^{\frac{1}{4}}$	$S_n(2) = n+1$	#	
22.2.8	$T_n^*(x)$	Shifted Chebyshev of the first kind	0	1	(x-x2)-1	$T_n^*(1)=1$	$\begin{cases} \frac{\pi}{2} & n \neq 0 \\ \pi & n = 0 \end{cases}$	
22.2.9	$U_n^*(x)$	Shifted Chebyshev of the second kind	0	1	(x-x2) 1	$U_n^*(1) = n+1$	* * * * * * * * * * * * * * * * * * *	
22.2.10	$P_n(x)$	Legendre (Spherical)	-1	1	1	$P_n(1)=1$	$\frac{2}{2n+1}$	
22.2.11	$P_n^*(x)$	Shifted Legendre	0	1	1		$\frac{1}{2n+1}$	

^{*}See page 11.

22.2. Orthogonality Relations—Continued

22.2.12	$L_n^{(a)}(x)$	Generalized Laguerre	0	80	e-xxa	$k_n = \frac{(-1)^n}{n!}$	$\frac{\Gamma(\alpha+n+1)}{n!}$	$\alpha > -1$
22.2.13	$L_n(x)$	Laguerre	0	ω	e-s	$k_n = \frac{(-1)^n}{n!}$	1	
22.2.14	$H_n(x)$	Hermite	- 8	80	e-z2	$e_n = (-1)^n$	$\sqrt{\pi}2^n n!$	
22.2.15	$He_n(x)$	Hermite	- &	ω	e - 1	$e_n = (-1)^n$	$\sqrt{2\pi}n!$	

[•]See page 11.

22.3. Explicit Expressions

$$f_n(x) = d_n \sum_{m=0}^{N} c_m g_m(x)$$

	$f_n(x)$	N	d_n	c	$g_m(x)$	k.	Remarks	
22.3.1	$P_{n}^{(\alpha,\beta)}(x)$	n	1 2"	$\binom{n+\alpha}{m}\binom{n+\beta}{n-m}$	$(x-1)^{n-m}(x+1)^m$	$\frac{1}{2^n} \binom{2n+\alpha+\beta}{n}$	$\alpha > -1, \beta > -1$	
22.3.2	$P_{n}^{(\alpha,\beta)}(x)$	n	$\frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)}$	$\binom{n}{m} \frac{\Gamma(\alpha+\beta+n+m+1)}{2^m\Gamma(\alpha+m+1)}$	(x-1) m	$\frac{1}{2^n}\binom{2n+\alpha+\beta}{n}$	$\alpha > -1, \beta > -1$	
22.3.3	$G_{\mathbf{n}}(p, q, x)$	n	$\frac{\Gamma(q+n)}{\Gamma(p+2n)}$	$(-1)^m \binom{n}{m} \frac{\Gamma(p+2n-m)}{\Gamma(q+n-m)}$	x **-**	1.	p-q>-1, q>0	
22.3.4	$C_n^{(a)}(x)$	$\begin{bmatrix} \frac{n}{2} \end{bmatrix}$	$\frac{1}{\Gamma(\alpha)}$	$(-1)^m \frac{\Gamma(\alpha+n-m)}{m!(n-2m)!}$	$(2x)^{n-2m}$	$\frac{2^n}{n!} \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$	$\alpha > -\frac{1}{2}, \ \alpha \neq 0$	
22.3.5	$C_{\bullet}^{(0)}(x)$	$\left[\frac{n}{2}\right]$	1	$(-1)^m \frac{(n-m-1)!}{m!(n-2m)!}$	$(2x)^{n-2m}$	$\frac{2^n}{n} \qquad n \neq 0$	$n \neq 0, C_0^{(0)}(1) = 1$	
22.3.6	$T_{\pi}(x)$	$\left[\frac{n}{2}\right]$	$\frac{n}{2}$	$(-1)^m \frac{(n-m-1)!}{m!(n-2m)!}$	$(2x)^{n-2m}$	2 ⁿ⁻¹		
22.3.7	$U_n(x)$	$\left[\frac{n}{2}\right]$	1	$(-1)^m \frac{(n-m)!}{m!(n-2m)!}$	$(2x)^{n-2m}$	2"		
22.3.8	$P_n(x)$	$\left[\frac{n}{2}\right]$	1 2n	$(-1)^m \binom{n}{m} \binom{2n-2m}{n}$	x n-2m	$\frac{(2n)!}{2^n(n!)^2}$		
22.3.9	$L_n^{(\alpha)}(x)$	n	1	$(-1)^m \binom{n+\alpha}{n-m} \frac{1}{m!}$	x ^m	$\frac{(-1)^n}{n!}$	$\alpha > -1$	
22.3.10	$H_n(x)$	$\left[\frac{n}{2}\right]$	n!	$(-1)^{m} \frac{1}{m!(n-2m)!}$ $(-1)^{m} \frac{1}{m!2^{m}(n-2m)!}$	$(2x)^{n-2m}$	2 ⁿ	see 22.11	
22.3.11	$He_n(x)$	$\left[\begin{bmatrix} \frac{n}{2} \end{bmatrix} \right]$	n!	$(-1)^m \frac{1}{m!2^m(n-2m)!}$	x n-2 m	1		

FIGURE 22.2. Jacobi Polynomials $P_n^{(\alpha,\beta)}(x)$, $\alpha=1(.2)2, \beta=-.5, n=5$.

FIGURE 22.3. Jacobi Polynomials $P_n^{(\alpha,\beta)}(x)$, $\alpha=1.5$, $\beta=-.8(.2)0$, n=5.

Explicit Expressions Involving Trigonometric Functions

$$f_n(\cos\theta) = \sum_{m=0}^n a_m \cos(n-2m)\theta$$

	$f_{\pi}(\cos \theta)$	a _m	Remarks
22.3.12	$C_n^{(a)}(\cos \theta)$	$\frac{\Gamma(\alpha+m)\Gamma(\alpha+n-m)}{m!(n-m)![\Gamma(\alpha)]^2}$	α≠0
22.3.13	$P_n(\cos \theta)$	$\frac{1}{4^n} \binom{2m}{m} \binom{2n-2m}{n-m}$	

22.3.14
$$C_n^{(0)}(\cos \theta) = \frac{2}{n} \cos n\theta$$

22.3.15
$$T_n(\cos \theta) = \cos n\theta$$

22.3.16
$$U_n(\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}$$

FIGURE 22.4. Gegenbauer (Ultraspherical) Polynomials $C_n^{(\alpha)}(x)$, $\alpha = .5$, n = 2(1)5.

22.4. Special Values

	22.4. Special Values								
	$f_n(x)$	$f_n(-x)$	f _n (1)	$f_n(0)$	$f_0(x)$	$f_1(x)$			
22.4.1	$P_n^{(\alpha,\beta)}(x)$	$(-1)^n P_n^{(\beta,\alpha)}(x)$	$\binom{n+\alpha}{n}$ *		1	$\frac{1}{2}[\alpha-\beta+(\alpha+\beta+2)x]$			
22.4.2	$C_{\mathbf{n}}^{(a)}(x)$ $\alpha \neq 0$	$(-1)^n C_n^{(\alpha)}(x)$	$\binom{n+2\alpha-1}{n}$	$\begin{cases} 0, \ n = 2m + 1 \\ (-1)^{n/2} \frac{\Gamma(\alpha + n/2)}{\Gamma(\alpha)(n/2)!}, \ n = 2m \end{cases}$	1	$2\alpha x$			
22.4. 3	$C_{n}^{(0)}(x)$	$(-1)^{n}C_{n}^{(0)}(x)$	$\frac{2}{n}$, $n \neq 0$	$\begin{cases} \frac{(-1)^m}{m}, n=2m \neq 0\\ 0, n=2m+1 \end{cases}$	1	2x			
22.4.4	$T_n(x)$	$(-1)^n T_n(x)$	1	$ \begin{cases} (-1)^m, & n=2m \\ 0, & n=2m+1 \end{cases} $	1	x			
22.4.5	$U_n(x)$	$(-1)^n U_n(x)$	n+1	$ \begin{cases} (-1)^m, & n=2m \\ 0, & n=2m+1 \end{cases} $	1	2x			
22.4.6	$P_n(x)$	$(-1)^n P_n(x)$	1	$\begin{cases} \frac{(-1)^m}{4^m} {2m \choose m}, & n=2m^* \\ 0, & n=2m+1 \end{cases}$	1	x			
22.4.7	$L_n^{(a)}(x)$			$\binom{n+\alpha}{n}$	1	$-x+\alpha+1$			
22.4.8	$H_n(x)$	$(-1)^n H_n(x)$		$\begin{cases} (-1)^m \frac{(2m)!}{m!}, & n=2m \\ 0, & n=2m+1 \end{cases}$	1	2x			

FIGURE 22.5. Gegenbauer (Ultraspherical) Polynomials $C_n^{(\alpha)}(x)$, $\alpha = .2(.2)1$, n=5.

22.5. Interrelations

Interrelations Between Orthogonal Polynomials of the Same Family

Jacobi Polynomials

22.5.1

$$P_n^{(\alpha,\beta)}(x) = \frac{\Gamma(2n+\alpha+\beta+1)}{n!\Gamma(n+\alpha+\beta+1)}G_n\left(\alpha+\beta+1,\beta+1,\frac{x+1}{2}\right)$$

22.5.2

$$G_n(p,q,x) = \frac{n!\Gamma(n+p)}{\Gamma(2n+p)} P_n^{(p-q,q-1)}(2x-1)$$
 (see [22.21]).

22.5.3

$$F_n(p,q,x) = (-1)^n n! \frac{\Gamma(q)}{\Gamma(q+n)} P_n^{(p-q,q-1)}(2x-1)$$
 (see [22.13]).

Ultraspherical Polynomials

22.5.4
$$C_n^{(0)}(x) = \lim_{\alpha \to 0} \frac{1}{\alpha} C_n^{(\alpha)}(x)$$

Chebyshev Polynomials

22.5.5
$$T_n(x) = \frac{1}{2}C_n(2x) = T_n^*\left(\frac{1+x}{2}\right)$$

22.5.6
$$T_n(x) = U_n(x) - xU_{n-1}(x)$$

22.5.7
$$T_n(x) = xU_{n-1}(x) - U_{n-2}(x)$$

22.5.8
$$T_n(x) = \frac{1}{2} [U_n(x) - U_{n-2}(x)]$$

22.5.9
$$U_n(x) = S_n(2x) = U_n^* \left(\frac{1+x}{2}\right)$$

22.5.10
$$U_{n-1}(x) = \frac{1}{1-x^2} [xT_n(x) - T_{n+1}(x)]$$

22.5.11
$$C_n(x) = 2T_n\left(\frac{x}{2}\right) = 2T_n^*\left(\frac{x+2}{4}\right)$$

22.5.12
$$C_n(x) = S_n(x) - S_{n-2}(x)$$

22.5.13
$$S_n(x) = U_n\left(\frac{x}{2}\right) = U_n^*\left(\frac{x+2}{4}\right)$$

22.5.14
$$T_n^*(x) = T_n(2x-1) = \frac{1}{2} C_n(4x-2)$$

(see [22.22]).

22.5.15
$$U_n^*(x) = S_n(4x-2) = U_n(2x-1)$$

(see [22.22]).

Generalized Laguerre Polynomials

22.5.16
$$L_n^{(0)}(x) = L_n(x)$$

22.5.17
$$L_n^{(m)}(x) = (-1)^m \frac{d^m}{dx^m} [L_{n+m}(x)]$$

Hermite Polynomials

22.5.18
$$He_n(x) = 2^{-n/2} H_n\left(\frac{x}{\sqrt{2}}\right)$$

(see [22.20]).

22.5.19
$$H_n(x) = 2^{n/2} He_n(x\sqrt{2})$$

(see [22.13], [22.20]).

Interrelations Between Orthogonal Polynomials of Different Families

Jacobi Polynomials

22.5.20

$$P_n^{(\alpha-\frac{1}{2},\alpha-\frac{1}{2})}(x) = \frac{\Gamma(2\alpha)\Gamma(\alpha+n+\frac{1}{2})}{\Gamma(2\alpha+n)\Gamma(\alpha+\frac{1}{2})} C_n^{(\alpha)}(x)$$

22.5.21

$$P_n^{(\alpha,\frac{1}{2})}(x) = \frac{(\frac{1}{2})_{n+1}}{\sqrt{\frac{x+1}{2}} (\alpha + \frac{1}{2})_{n+1}} C_{2n+1}^{(\alpha+\frac{1}{2})} \left(\sqrt{\frac{x+1}{2}}\right)$$

22.5.22
$$P_n^{(\alpha, -\frac{1}{2})}(x) = \frac{(\frac{1}{2})_n}{(\alpha + \frac{1}{2})_n} C_{2n}^{(\alpha + \frac{1}{2})} \left(\sqrt{\frac{x+1}{2}} \right)$$

22.5.23
$$P_n^{(-\frac{1}{2},-\frac{1}{2})}(x) = \frac{1}{4^n} {2n \choose n} T_n(x)$$

22.5.24
$$P_n^{(0,0)}(x) = P_n(x)$$

Ultraspherical Polynomials

22.5.25

$$C_{2n}^{(\alpha)}(x) = \frac{\Gamma(\alpha+n)n!2^{2n}}{\Gamma(\alpha)(2n)!} P_n^{(\alpha-\frac{1}{2},-\frac{1}{2})} (2x^2-1)$$

$$(\alpha \neq 0)$$

$$C_{2n+1}^{(\alpha)}(x) = \frac{\Gamma(\alpha+n+1)n!2^{2n+1}}{\Gamma(\alpha)(2n+1)!} x P_n^{(\alpha-\frac{1}{2},\frac{1}{2})}(2x^2-1)$$

$$(\alpha \neq 0)$$

22.5.27

$$C_n^{(\alpha)}(x) = \frac{\Gamma(\alpha + \frac{1}{2})\Gamma(2\alpha + n)}{\Gamma(2\alpha)\Gamma(\alpha + n + \frac{1}{2})} P_n^{(\alpha - \frac{1}{2}, \alpha - \frac{1}{2})}(x)$$

$$(\alpha \neq 0)$$

22.5.28

$$C_n^{(0)}(x) = \frac{2}{n} T_n(x) = 2 \frac{(n-1)!}{\Gamma(n+\frac{1}{2})} \sqrt{\pi} P_n^{(-\frac{1}{2}, -\frac{1}{2})}(x)$$
 *

Chebyshev Polynomials

22.5.29
$$T_{2n+1}(x) = \frac{n!\sqrt{\pi}}{\Gamma(n+\frac{1}{2})} x P_n^{(-\frac{1}{2},\frac{1}{2})} (2x^2-1)$$

22.5.30
$$U_{2n}(x) = \frac{n!\sqrt{\pi}}{\Gamma(n+\frac{1}{n})} P_n^{(\frac{1}{2},-\frac{1}{2})} (2x^2-1)$$

22.5.31
$$T_n(x) = \frac{n!\sqrt{\pi}}{\Gamma(n+\frac{1}{n})} P_n^{(-\frac{1}{2},-\frac{1}{2})}(x)$$

22.5.32
$$U_n(x) = \frac{(n+1)!\sqrt{\pi}}{2\Gamma(n+\frac{3}{2})} P_n^{(\frac{1}{2},\frac{1}{2})}(x)$$

 $T_n(x)$

FIGURE 22.6. Chebyshev Polynomials $T_n(x)$, n=1(1)5.

^{*}See page II.

Legendre Polynomials

22.5.35
$$P_n(x) = P_n^{(0.0)}(x)$$

22.5.36
$$P_n(x) = C_n^{(1/2)}(x)$$

22.5.37

$$\frac{d^m}{dx^m} [P_n(x)] = 1 \cdot 3 \dots (2m-1) C_{n-m}^{(m+\frac{1}{2})}(x) \qquad (m \le n)$$

Generalized Laguerre Polynomials

22.5.38
$$L_n^{(-1/2)}(x) = \frac{(-1)^n}{n!2^{2n}} H_{2n}(\sqrt{x})$$

22.5.39
$$L_n^{(1/2)}(x) = \frac{(-1)^n}{n! 2^{2n+1} \sqrt{x}} H_{2n+1}(\sqrt{x})$$

Hermite Polynomials

22.5.40
$$H_{2m}(x) = (-1)^m 2^{2m} m! L_m^{(-1/2)}(x^2)$$

22.5.40
$$H_{2m}(x) = (-1)^m 2^{2m} m! L_m^{(-1/2)}(x^2)$$

22.5.41 $H_{2m+1}(x) = (-1)^m 2^{2m+1} m! x L_m^{(1/2)}(x^2)$

Orthogonal Polynomials as Hypergeometric Functions (see chapter 15) $f_n(x)=dF(a, b; c; g(x))$

For each of the listed polynomials there are numerous other representations in terms of hypergeometric functions.

Boomoo	Tunctions.					
	$f_n(x)$	ď	а	b	c	g(x)
22.5.42	$P_n^{(\alpha,\beta)}(x)$	$\binom{n+\alpha}{n}$	-n	$n+\alpha+\beta+1$	α+1	$\frac{1-x}{2}$
22.5.43	$P_n^{(\alpha,\beta)}(x)$	$\binom{2n+\alpha+\beta}{n}\left(\frac{x-1}{2}\right)^n$	-n	$-n-\alpha$	$-2n-\alpha-\beta$	$\frac{2}{1-x}$
22.5.44	$P_n^{(\alpha,\beta)}(x)$	$\binom{n+\alpha}{n}\left(\frac{1+x}{2}\right)^n$	-n	$-n-\beta$	α+1	$\frac{x-1}{x+1}$
22.5.45	$P_n^{(\alpha,\beta)}(x)$	$\binom{n+\beta}{n} \left(\frac{x-1}{2}\right)^n$	-n	$-n-\alpha$	β+1	$\frac{x+1}{x-1}$
22.5.46	$C_n^{(a)}(x)$	$\frac{\Gamma(n+2\alpha)}{n!\Gamma(2\alpha)}$	-n	$n+2\alpha$	α+ <u>1</u>	$\frac{1-x}{2}$
22.5.47	$T_n(x)$	1	-n	n	1	$\frac{1-x}{2}$
22.5.48	$U_{n}(x)$	n+1	-n	n+2 *	3/2	$\frac{1-x}{2}$
22.5.49	$P_n(x)$	1	-n	n+1	1	$\frac{1-x}{2}$
22.5.50	$P_n(x)$	$\binom{2n}{n} \left(\frac{x-1}{2}\right)^n$	-n	-n	-2n	$\frac{2}{1-x}$
22.5.51	$P_n(x)$	$\binom{2n}{n}\left(\frac{x}{2}\right)^n$	$-\frac{n}{2}$	$\frac{1-n}{2}$	1/2 - n	$\frac{1}{x^2}$
22.5.52	$P_{2n}(x)$	$(-1)^n \frac{(2n)!}{2^{2n}(n!)^2}$	-n	$n+\frac{1}{2}$	1	x2
22.5.53	$P_{2n+1}(x)$	$(-1)^{n} \frac{(2n+1)!}{2^{2n}(n!)^{2}} x$	-n	$n+\frac{3}{2}$	3 2	x2

Orthogonal Polynomials as Confluent Hypergeometric Functions (see chapter 13)

22.5.54
$$L_n^{(\alpha)}(x) = {n+\alpha \choose n} M(-n, \alpha+1, x)$$

Orthogonal Polynomials as Parabolic Cylinder Functions (see chapter 19)

22.5.55
$$H_n(x) = 2^n U\left(\frac{1}{2} - \frac{1}{2}n, \frac{3}{2}, x^2\right)$$

22.5.56
$$H_{2m}(x) = (-1)^m \frac{(2m)!}{m!} M\left(-m, \frac{1}{2}, x^2\right)$$

22.5.57

*
$$H_{2m+1}(x) = (-1)^m \frac{(2m+1)!}{m!} 2xM(-m, \frac{3}{2}, x^2)$$

FIGURE 22.8. Legendre Polynomials $P_n(x)$, n=2(1)5.

22.5.58

$$H_n(x) = 2^{n/2} e^{x^2/2} D_n(\sqrt{2}x) = 2^{n/2} e^{x^2/2} U\left(-n - \frac{1}{2}, \sqrt{2}x\right)$$

22.5.59
$$He_n(x) = e^{x^2/4}D_n(x) = e^{x^2/4}U\left(-n-\frac{1}{2},x\right)$$

Orthogonal Polynomials as Legendre Functions (see chapter 8)

22.5.60

$$C_n^{(\alpha)}(x) =$$

$$\frac{\Gamma(\alpha+\frac{1}{2})\Gamma(2\alpha+n)}{n!\Gamma(2\alpha)} \left[\frac{1}{4} (x^2-1)\right]^{\frac{1}{4}-\frac{\alpha}{2}} P_{n+\alpha-\frac{1}{2}}^{(\frac{1}{2}-\alpha)}(x)$$

$$(\alpha \neq 0)$$

FIGURE 22.9. Laguerre Polynomials $L_n(x)$, n=2(1)5.

FIGURE 22.10. Hermite Polynomials $\frac{H_n(x)}{n^3}$, n=2(1)5.

^{*}See page II.

22.6. Differential Equations

$$g_2(x)y'' + g_1(x)y' + g_0(x)y = 0$$

	$oldsymbol{y}$	$g_1(x)$	$g_1(x)$	$g_0(x)$
22.6.1	$P_n^{(\alpha,\beta)}(x)$	$1-x^2$	$\beta-\alpha-(\alpha+\beta+2)x$	$n(n+\alpha+\beta+1)$
22.6.2	$(1-x)^{\alpha}(1+x)^{\beta}P_{n}^{(\alpha,\beta)}(x)$	$1-x^2$	$\alpha-\beta+(\alpha+\beta-2)x$	$(n+1)(n+\alpha+\beta)$
22.6.3	$(1-x)^{\frac{\alpha+1}{2}}(1+x)^{\frac{\beta+1}{2}}P_n^{(\alpha,\beta)}(x)$	1	0	$\frac{1}{4} \frac{1-\alpha^{2}}{(1-x)^{2}} + \frac{1}{4} \frac{1-\beta^{2}}{(1+x)^{2}} + \frac{2n(n+\alpha+\beta+1)+(\alpha+1)(\beta+1)}{2(1-x^{2})}$
22.6.4	$\left(\sin\frac{x}{2}\right)^{\alpha+\frac{1}{2}}\left(\cos\frac{x}{2}\right)^{\beta+\frac{1}{2}}P_n^{(\alpha,\beta)}\left(\cos x\right)$	1	0	$\frac{\frac{1-4\alpha^{2}}{16\sin^{2}\frac{x}{2}} + \frac{1-4\beta^{2}}{16\cos^{2}\frac{x}{2}}}{+\left(n + \frac{\alpha+\beta+1}{2}\right)}$
22.6.5	$C_n^{(\alpha)}(x)$	1-x2	$-(2\alpha+1)x$	$n(n+2\alpha)$
22.6.6	$(1-x^2)^{\alpha-\frac{1}{2}}C_n^{(\alpha)}(x)$	1-x2	$(2\alpha-3)x$	$(n+1)(n+2\alpha-1)$
22.6.7	$(1-x^2)^{\frac{\alpha}{2}+\frac{1}{4}} C_n^{(\alpha)}(x)$	ì	0	$\frac{(n+\alpha)^2}{1-x^2} + \frac{2+4\alpha-4\alpha^2+x^2}{4(1-x^2)^2}$
22.6.8	$(\sin x)^{\alpha}C_n^{(a)}(\cos x)$	1	0	$(n+\alpha)^2 + \frac{\alpha(1-\alpha)}{\sin^2 x}$
22.6.9	$T_n(x)$	1-x2	-x	n²
22.6.10	$T_n(\cos x)$	1	0	n^2
22.6.11	$\frac{1}{\sqrt{1-x^2}} T_n(x); U_{n-1}(x) - *$	1-x2	-3x	n^2-1
22.6.12	$U_{n}(x)$	1-x2	-3x	n(n+2)
22.6.13	$P_{\pi}(x)$	1-x2	-2a	n(n+1)
22.6.14	$\sqrt{1-x^2}P_n(x)$	1	О	$\frac{n(n+1)}{1-x^2} + \frac{1}{(1-x^2)^2}$
22.6.15	$L_n^{(a)}(x)$	x	$\alpha+1-x$	n
22.6.16	$e^{-z}x^{\alpha/2}L_n^{(\alpha)}(x)$ *	x	2 +1	$n + \frac{\alpha}{2} + 1 - \frac{\alpha^2}{4x}$ $\frac{2n + \alpha + 1}{2x} + \frac{1 - \alpha^2}{4x^2} - \frac{1}{4}$
22.6.17	$e^{-x/2}x^{(\alpha+1)/2}L_n^{(\alpha)}(x)$	1	0	
22.6.18	$e^{-x^2/2}x^{\alpha+\frac{1}{2}}L_n^{(\alpha)}(x^2)$	1	0	$4n+2\alpha+2-x^2+\frac{1-4\alpha^2}{4x^2}$
22.6.19	$H_n(x)$	1	-2x	2n
22.6.20	$e^{-\frac{x^2}{2}}H_n(x)$	1	0	$2n+1-x^2$
22.6.21	$He_n(x)$	1	-x	n

^{*}See page II.

22.7. Recurrence Relations

Recurrence Relations With Respect to the Degree n

$$a_{1n}f_{n+1}(x) = (a_{2n} + a_{3n}x)f_n(x) - a_{4n}f_{n-1}(x)$$

	f_n	a _{1n}	a _{2n}	a _{3n}	a _{in}
22.7.1	$P_{\pi}^{(\alpha,\beta)}(x)$	$2(n+1)(n+\alpha+\beta+1) \\ (2n+\alpha+\beta)$	$(2n+\alpha+\beta+1)(\alpha^2-\beta^2)$	$(2n+\alpha+\beta)_3$	$2(n+\alpha)(n+\beta) \\ (2n+\alpha+\beta+2)$
22.7.2	$G_n(p, q, x)$	$(2n+p-2)_4(2n+p-1)$	$-[2n(n+p)+q(p-1)] (2n+p-2)_3$	$(2n+p-2)_4 \ (2n+p-1)$	$ \begin{array}{c c} n(n+q-1)(n+p-1) \\ (n+p-q)(2n+p+1) \end{array} $
22.7.3	$C_n^{(\alpha)}(x)$	n+1	0	$2(n+\alpha)$	$n+2\alpha-1$
22.7.4	$T_n(x)$	1	0	2	1
22.7.5	$U_n(x)$	1	0	2	1
22.7.6	$S_n(x)$	1	0	1	1
22.7.7	$C_n(x)$	1	0	1	1
22.7.8	$T_n^*(x)$	1	-2	4	1
22.7.9	$U_n^{\bullet}(x)$	1	-2	4	1
22.7.10	$P_n(x)$	n+1	.0	2n+1	n
22.7.11	$P_n^*(x)$	n+1	-2n-1	4n+2	n
22.7.12	$L_n^{(\alpha)}(x)$	n+1	$2n+\alpha+1$	-1	$n+\alpha$
22.7.13	$H_n(x)$	1	0	2	2n
22.7.14	$He_n(x)$	1	0	1	n

Miscellaneous Recurrence Relations

Jacobi Polynomials

$$\left(n + \frac{\alpha}{2} + \frac{\beta}{2} + 1 \right) (1 - x) P_n^{(\alpha + 1, \beta)}(x)$$

$$= (n + \alpha + 1) P_n^{(\alpha, \beta)}(x) - (n + 1) P_{n+1}^{(\alpha, \beta)}(x)$$

22.7.16

$$\left(n + \frac{\alpha}{2} + \frac{\beta}{2} + 1 \right) (1 + x) P_n^{(\alpha, \beta + 1)}(x)$$

$$= (n + \beta + 1) P_n^{(\alpha, \beta)}(x) + (n + 1) P_{n+1}^{(\alpha, \beta)}(x)$$

22.7.17

$$(1-x)P_n^{(\alpha+1,\beta)}(x)+(1+x)P_n^{(\alpha,\beta+1)}(x)=2P_n^{(\alpha,\beta)}(x)$$

22.7.18

$$(2n+\alpha+\beta)P_n^{(\alpha-1,\beta)}(x) = (n+\alpha+\beta)P_n^{(\alpha,\beta)}(x)$$
$$-(n+\beta)P_{n-1}^{(\alpha,\beta)}(x)$$

22.7.19

$$(2n+\alpha+\beta)P_n^{(\alpha,\beta-1)}(x) = (n+\alpha+\beta)P_n^{(\alpha,\beta)}(x) + (n+\alpha)P_{n-1}^{(\alpha,\beta)}(x)$$

22.7.20
$$P_n^{(\alpha,\beta-1)}(x) - P_n^{(\alpha-1,\beta)}(x) = P_{n-1}^{(\alpha,\beta)}(x)$$

Ultraspherical Polynomials

99 7 91

$$2\alpha(1-x^2)C_{n-1}^{(\alpha+1)}(x) = (2\alpha+n-1)C_{n-1}^{(\alpha)}(x) - nxC_n^{(\alpha)}(x)$$

$$= (n+2\alpha)xC_n^{(\alpha)}(x) - (n+1)C_{n+1}^{(\alpha)}(x)$$

22.7.23
$$(n+\alpha)C_{n+1}^{(\alpha-1)}(x) = (\alpha-1)[C_{n+1}^{(\alpha)}(x) - C_{n-1}^{(\alpha)}(x)]$$

Chebyshev Polynomials

22.7.24

$$2T_m(x)T_n(x) = T_{n+m}(x) + T_{n-m}(x) \qquad (n \ge m)$$

22.7.25

$$2(x^2-1)U_{n-1}(x)U_{n-1}(x)=T_{n+m}(x)-T_{n-m}(x) \\ (n \ge m)$$

22.7.26

$$2T_m(x)U_{n-1}(x)=U_{n+m-1}(x)+U_{n-m-1}(x)$$
 $(n>m)$

22.7.27

$$2T_n(x)U_{m-1}(x)=U_{n+m-1}(x)-U_{n-m-1}(x) \qquad (n>m)$$

22.7.28
$$2T_n(x)U_{n-1}(x)=U_{2n-1}(x)$$

^{*}See page II.

Generalized Laguerre Polynomials

22.7.29

$$L_n^{(\alpha+1)}(x) = \frac{1}{x} \left[(x-n) L_n^{(\alpha)}(x) + (\alpha+n) L_{n-1}^{(\alpha)}(x) \right]$$

22.7.30
$$L_n^{(\alpha-1)}(x) = L_n^{(\alpha)}(x) - L_{n-1}^{(\alpha)}(x)$$

22.7.31

$$L_n^{(\alpha+1)}(x) = \frac{1}{x} \left[(n+\alpha+1) L_n^{(\alpha)}(x) - (n+1) L_{n+1}^{(\alpha)}(x) \right]$$
22.7.32

22.7.32
$$L_n^{(\alpha-1)}(x) = \frac{1}{n+\alpha} \left[(n+1) L_{n+1}^{(\alpha)}(x) - (n+1-x) L_n^{(\alpha)}(x) \right]$$

22.8. Differential Relations

$$g_1(x)\frac{d}{dx}f_n(x) = g_1(x)f_n(x) + g_0(x)f_{n-1}(x)$$

	f _n	g:	g 1	go
22.8.1	$P_n^{(\alpha,\beta)}(x)$	$(2n+\alpha+\beta)(1-x^2)$	$n[\alpha-\beta-(2n+\alpha+\beta)x]$	$2(n+\alpha)(n+\beta)$
22.8.2	$C_n^{(\alpha)}(x)$	1-x2	-nx	$n+2\alpha-1$
22.8.3	$T_{\pi}(x)$	1-x2	-nx	n
22.8.4	$U_n(x)$	1-x2	-nx	n+1
22.8.5	$P_n(x)$	1-x2	-nx	n
22.8.6	$L_n^{(\alpha)}(x)$	x .	n	$-(n+\alpha)$
22.8.7	$H_n(x)$	1	0	2n
22.8.8	$He_n(x)$	1	0	n

22.9. Generating Functions

$$g(x,z) = \sum_{n=0}^{\infty} a_n f_n(x) z^n$$

$$R = \sqrt{1 - 2xz + z^2}$$

		n=0		
	$f_n(x)$	a _n	g(x,z)	Remarks
22.9.1	$P_n^{(\alpha,\beta)}(x)$	2	$R^{-1}(1-z+R)^{-\alpha}(1+z+R)^{-\beta}$	z <1
22.9.2	$C_n^{(a)}(x)$	$\frac{2^{\frac{1}{2}-\alpha}\Gamma(\alpha+\frac{1}{2}+n)\Gamma(2\alpha)}{\Gamma(\alpha+\frac{1}{2})\Gamma(2\alpha+n)}$	$R^{-1}(1-xz+R)^{\frac{1}{2}-a}$	$ z < 1, \alpha \neq 0$
22.9.3	$C_n^{(\alpha)}(x)$	1	$R^{-2\alpha}$	$ z < 1, \alpha \neq 0$
22.9.4	$C_n^{(0)}(x)$	1	$-\ln R^2$	z <1
22.9.5	$C_n^{(\alpha)}(x)$	$\frac{\Gamma(2\alpha)}{\Gamma(\alpha+\frac{1}{2})\Gamma(2\alpha+n)}$	$e^{z \cos \theta} \left(\frac{z}{2} \sin \theta\right)^{\frac{1}{2}-\alpha} J_{\alpha-\frac{1}{2}}(z \sin \theta)$	$x = \cos \theta$
22.9.6	$T_n(x)$	2	$\left(\frac{1-z^2}{R^2}+1\right)$	-1 < x < 1 $ z < 1$
22.9.7	$T_n(x)$	$\frac{\sqrt{2}}{4^n}\binom{2n}{n}$	$R^{-1}(1-xz+R)^{1/2}$	-1 < x < 1 $ z < 1$ $ z < 1$
22.9.8	$T_n(x)$	$\frac{1}{n}$	$1-\frac{1}{2}\ln R^2$	$\begin{array}{c c} a_0 = 1 \\ -1 < x < 1 \\ z < 1 \end{array}$
22.9.9	$T_n(x)$	1	$\frac{1-xz}{R^2}$	-1 < x < 1 $ z < 1$
22.9.10	$U_n(x)$	1	R^{-2}	-1 < x < 1 $ z < 1$
22.9.11	U n(x)	$\frac{\sqrt{2}}{4^{n+1}} \binom{2n+2}{n+1}$	$\frac{1}{R} (1-xz+R)^{-1/2} \qquad *$	$a_0 = 1 \\ -1 < x < 1 \\ z < 1$ $-1 < x < 1 \\ z < 1$ $-1 < x < 1 \\ z < 1$ $-1 < x < 1 \\ z < 1$

^{*}See page II.

22.9. Generating Functions-Continued

$$g(x,z) = \sum_{n=0}^{\infty} a_n f_n(x) z^n$$
 $R = \sqrt{1 - 2xz + z^2}$

	$f_n(x)$	an	g(x, z)	Remarks
22.9.12	$P_n(x)$	1	R-1	-1 < x < 1 $ z < 1$
22 .9.13	$P_n(x)$	$\frac{1}{n!}$	$e^{z \cos \theta} J_0(z \sin \theta)$	$x = \cos \theta$
22.9.14	$S_n(x)$	1	$(1-xz+z^2)^{-1}$	-2 < x < 2 $ z <$
22.9. 15	$L_n^{(a)}(x)$	1	$(1-z)^{-z-1}\exp\left(\frac{xz}{z-1}\right)$	z <1
2.9.16	$L_n^{(a)}(x)$	$\frac{1}{\Gamma(n+\alpha+1)}$	$(xz)^{-\frac{1}{2}\alpha}e^{z}J_{\alpha}[2(xz)^{1/2}]$	
22.9.17	$H_n(x)$	$\frac{1}{n!}$	63==-=3	
2.9.18	$H_{2n}(x)$	$\frac{(-1)^n}{(2n)!}$	$e^z \cos (2x\sqrt{z})$ *	
2.9.19	$H_{2n+1}(x)$	$\frac{(-1)^n}{(2n+1)!}$	$z^{-1/2}e^x \sin(2x\sqrt{z})$ *	

22.10. Integral Representations

Contour Integral Representations

 $f_n(x) = \frac{g_0(x)}{2\pi i} \int_C [g_1(z, x)]^n g_2(z, x) dz$ where C is a closed contour taken around z = a in the positive sense

	$f_n(x)$	$g_0(x)$	$g_1(z,x)$	$g_2(z,x)$	а	Remarks
22.10.1	$P_n^{(\alpha,\beta)}(x)$	$\frac{1}{(1-x)^{\alpha}(1+x)^{\beta}}$	$\frac{z^2-1}{2(z-x)}$	$\frac{(1-z)^{\alpha}(1+z)^{\beta}}{z-x}$	x -	± 1 outside C
22.10.2	$C_n^{(\alpha)}(x)$	1	1/z	$(1-2xz+z^2)^{-\alpha}z^{-1}$	0	Both zeros of $1-2xz+z^2$ outside C , $\alpha>0$
22.10.3	$T_n(x)$	1/2	1/z	$\frac{1-z^2}{z(1-2xz+z^2)}$	0	Both zeros of $1-2xz+z^2$ outside C
22.10.4	$U_n(x)$	1	1/z	$\frac{1}{z(1-2xz+z^2)}$.0	Both zeros of $1-2xz+z^2$ outside C
22.10.5	$P_n(x)$	1	1/z	$\frac{1}{z} (1 - 2xz + z^2)^{-1/2}$	0	Both zeros of $1-2xz+z^2$ outside C
22.10.6	$P_n(x)$	1/2 ⁿ	$\frac{z^2-1}{z-x}$	$\frac{1}{z-x}$	x	
22 .10.7	$L_n^{(lpha)}(x)$	e*x-a	$\frac{z}{z-x}$	$\frac{z^{\alpha}}{z-x} e^{-x}$ $e^{-x} \left(1 + \frac{z}{x}\right)^{\alpha} 1/z$	x	Zero outside C
22.10.8	$L_{n}^{(lpha)}(x)$	1	$1+\frac{x}{z}$	$e^{-z}\left(1+\frac{z}{x}\right)^{\alpha}1/z$	0	z = -x outside C
22.10.9	$H_n(x)$	n!	1/z	e ²⁼¹⁻¹²	0	

Miscellaneous Integral Representations

22.10.10
$$C_n^{(\alpha)}(x) = \frac{2^{(1-2\alpha)}\Gamma(n+2\alpha)}{n![\Gamma(\alpha)]^2} \int_0^{\pi} [x+\sqrt{x^2-1}\cos\phi]^n(\sin\phi)^{2\alpha-1}d\phi \quad (\alpha>0)$$

22.10.11
$$C_n^{(\alpha)}(\cos\theta) = \frac{2^{1-\alpha}\Gamma(n+2\alpha)}{n![\Gamma(\alpha)]^2} (\sin\theta)^{1-2\alpha} \int_0^{\theta} \frac{\cos(n+\alpha)\phi}{(\cos\phi-\cos\theta)^{1-\alpha}} d\phi \quad (\alpha > 0)$$

^{*}See page II.

22.10.12
$$P_n(\cos \theta) = \frac{1}{\pi} \int_0^{\pi} (\cos \theta + i \sin \theta \cos \phi)^n d\phi$$
 22.10.14 $L_n^{(\alpha)}(x) = \frac{e^z x^{-\frac{\alpha}{2}}}{n!} \int_0^{\infty} e^{-it^{n+\frac{\alpha}{2}}} J_{\alpha}(2\sqrt{tx}) dt$ 22.10.13 $P_n(\cos \theta) = \frac{\sqrt{2}}{\pi} \int_0^{\pi} \frac{\sin (n + \frac{1}{2})\phi d\phi}{(\cos \theta - \cos \phi)^{\frac{1}{2}}}$ 22.10.15 $H_n(x) = e^{x^2} \frac{2^{n+1}}{\sqrt{\pi}} \int_0^{\infty} e^{-i^2} t^n \cos \left(2xt - \frac{n}{2}\pi\right) dt$

22.11. Rodrigues' Formula

$$f_n(x) = \frac{1}{a_n \rho(x)} \frac{d^n}{dx^n} \{ \rho(x) (g(x))^n \}$$

The polynomials given in the following table are the only orthogonal polynomials which satisfy this formula.

	$f_n(x)$	a _n	$\rho(x)$	g(x)
22.11.1	$P_n^{(\alpha,\beta)}(x)$	$(-1)^{n}2^{n}n!$	$(1-x)^{\alpha}(1+x)^{\beta}$	1-x2
22.11.2	$C_n^{(\alpha)}(x)$	$(-1)^{n}2^{n}n!\frac{\Gamma(2\alpha)\Gamma(\alpha+n+\frac{1}{2})}{\Gamma(\alpha+\frac{1}{2})\Gamma(n+2\alpha)}$	$(1-x)^{\alpha}(1+x)^{\beta}$ $(1-x^2)^{\alpha-\frac{1}{2}}$	$1-x^2$
22.11.3	$T_n(x)$	$(-1)^n 2^n \frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi}} *$	$(1-x^2)^{-\frac{1}{2}}$	1-x2
22.11.4	$U_n(x)$	$\frac{(-1)^{n}2^{n+1} \frac{\Gamma(n+\frac{3}{2})}{(n+1)\sqrt{\pi}}}{(-1)^{n}2^{n}n!}$	$(1-x^2)^{\frac{1}{2}}$	1-x2
22.11.5 22.11.6	$P_n(x)$ $L_n^{(\alpha)}(x)$	$(-1)^{n}2^{n}n!$	$e^{-z}x^{\alpha}$	$\begin{array}{c} 1-x^2 \\ x \end{array}$
22.11.7 22.11.8	$H_n(x)$ $He_n(x)$	(-1) ⁿ (-1) ⁿ	e^{-x^2} $e^{-x^2/2}$	1

22.12. Sum Formulas Christoffel-Darboux Formula

22.12.1

$$\sum_{m=0}^{n} \frac{1}{h_{m}} f_{m}(x) f_{m}(y) = \frac{k_{n}}{k_{n+1} h_{n}} \frac{f_{n+1}(x) f_{n}(y) - f_{n}(x) f_{n+1}(y)}{x - y}$$

Miscellaneous Sum Formulas (Only a Limited Selection Is Given Here.)

22.12.2
$$\sum_{m=0}^{n} T_{2m}(x) = \frac{1}{2} [1 + U_{2n}(x)]$$

22.12.3
$$\sum_{m=0}^{n-1} T_{2m+1}(x) = \frac{1}{2} U_{2n-1}(x)$$

22.12.4
$$\sum_{m=0}^{n} U_{2m}(x) = \frac{1 - T_{2n+2}(x)}{2(1-x^2)}$$

22.12.5
$$\sum_{m=0}^{n-1} U_{2m+1}(x) = \frac{x - T_{2n+1}(x)}{2(1-x^2)}$$

22.12.6
$$\sum_{m=0}^{n} L_{m}^{(\alpha)}(x) L_{n-m}^{(\beta)}(y) = L_{n}^{(\alpha+\beta+1)}(x+y)$$

22.12.7
$$\sum_{m=0}^{n} {n+\alpha \choose m} \mu^{n-m} (1-\mu)^m L_{n-m}^{(\alpha)}(x) = L_n^{(\alpha)}(\mu x)$$

22.12.8

$$H_n(x+y) = \frac{1}{2^{n/2}} \sum_{k=0}^n \binom{n}{k} H_k(\sqrt{2}x) H_{n-k}(\sqrt{2}y)$$

22.13. Integrals Involving Orthogonal Polynomials

22.13.1

$$2n \int_0^x (1-y)^{\alpha} (1+y)^{\beta} P_n^{(\alpha,\beta)}(y) dy \\ = P_{n-1}^{(\alpha+1,\beta+1)}(0) - (1-x)^{\alpha+1} (1+x)^{\beta+1} P_{n-1}^{(\alpha+1,\beta+1)}(x)$$

22.13.2

$$\frac{n(2\alpha+n)}{2\alpha} \int_0^x (1-y^2)^{\alpha-\frac{1}{2}} C_n^{(\alpha)}(y) dy$$

$$= C_{n-1}^{(\alpha+1)}(0) - (1-x^2)^{\alpha+\frac{1}{2}} C_{n-1}^{(\alpha+1)}(x)$$

22.13.3
$$\int_{-1}^{1} \frac{T_n(y)dy}{(y-x)\sqrt{1-y^2}} = \pi U_{n-1}(x)$$

22.13.4
$$\int_{-1}^{1} \frac{\sqrt{1-y^2}U_{n-1}(y)dy}{(y-x)} = -\pi T_n(x)$$

22.13.5
$$\int_{-1}^{1} (1-x)^{-1/2} P_n(x) dx = \frac{2^{3/2}}{2n+1}$$

$$22.13.6 \qquad \int_0^{\pi} P_{2n}(\cos\theta) d\theta = \frac{\pi}{16^n} {2n \choose n}^2$$

22.13.7
$$\int_0^{\pi} P_{2n+1}(\cos\theta) \cos\theta d\theta = \frac{\pi}{4^{2n+1}} {2n \choose n} {2n+2 \choose n+1}$$

^{*}See page II.

22.13.8

$$\int_{0}^{1} x^{\lambda} P_{2n}(x) dx = \frac{(-1)^{n} \Gamma\left(n - \frac{\lambda}{2}\right) \Gamma\left(\frac{1}{2} + \frac{\lambda}{2}\right)}{2\Gamma\left(-\frac{\lambda}{2}\right) \Gamma\left(n + \frac{3}{2} + \frac{\lambda}{2}\right)} \quad (\lambda > -1)$$

$$\int_{0}^{1} x^{\lambda} P_{2n+1}(x) dx = \frac{(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)}{2\Gamma\left(n + 2 + \frac{\lambda}{2}\right) \Gamma\left(\frac{1}{2} - \frac{\lambda}{2}\right)}$$

$$(\lambda > -2)$$

$$x' \text{ maximum point nearest to } \frac{\beta - \alpha}{\alpha + \beta + 1}$$

$$(\lambda > -2)$$

$$(\lambda > -2)$$

22.13.10

$$\int_{-1}^{x} \frac{P_n(t)dt}{\sqrt{x-t}} = \frac{1}{(n+\frac{1}{2})\sqrt{1+x}} \left[T_n(x) + T_{n+1}(x) \right]$$

22.13.11

$$\int_{x}^{1} \frac{P_{n}(t)dt}{\sqrt{t-x}} = \frac{1}{(n+\frac{1}{2})\sqrt{1-x}} \left[T_{n}(x) - T_{n+1}(x) \right]$$

22.13.12
$$\int_{x}^{\infty} e^{-t} L_{n}^{(\alpha)}(t) dt = e^{-x} [L_{n}^{(\alpha)}(x) - L_{n-1}^{(\alpha)}(x)]$$

22.13.13

$$\Gamma(\alpha+\beta+n+1)\int_{0}^{x}(x-t)^{\beta-1}t^{\alpha}L_{n}^{(\alpha)}(t)dt$$

$$=\Gamma(\alpha+n+1)\Gamma(\beta)x^{\alpha+\beta}L_{n}^{(\alpha+\beta)}(x)$$

$$(\Re\alpha>-1, \Re\beta>0)$$

22.13.14

$$\int_0^x L_m(t)L_n(x-t)dt = \int_0^x L_{m+n}(t)dt = L_{m+n}(x) - L_{m+n+1}(x)$$

22.13.15
$$\int_{0}^{z} e^{-t^{2}} H_{n}(t) dt = H_{n-1}(0) - e^{-x^{2}} H_{n-1}(x)$$

22.13.16
$$\int_0^x H_n(t)dt = \frac{1}{2(n+1)} \left[H_{n+1}(x) - H_{n+1}(0) \right]$$

22.13.17
$$\int_{-\infty}^{\infty} e^{-t^2} H_{2m}(tx) dt = \sqrt{\pi} \frac{(2m)!}{m!} (x^2 - 1)^m$$

22.13.18

$$\int_{-\infty}^{\infty} e^{-\iota^2} t H_{2m+1}(tx) dt = \sqrt{\pi} \, \frac{(2m+1)!}{m!} \, x(x^2-1)^m$$

22.13.19
$$\int_{-\infty}^{\infty} e^{-t^2} t^n H_n(xt) dt = \sqrt{\pi} n! P_n(x)$$

22.13.20

$$\int_0^\infty e^{-t^2} [H_n(t)]^2 \cos(xt) dt = \sqrt{\pi} 2^{n-1} n! e^{-\frac{1}{2}x^2} L_n\left(\frac{x^2}{2}\right)$$

22.14. Inequalities

22.13.8
$$\int_{0}^{1} x^{\lambda} P_{2n}(x) dx = \frac{(-1)^{n} \Gamma\left(n - \frac{\lambda}{2}\right) \Gamma\left(\frac{1}{2} + \frac{\lambda}{2}\right)}{2\Gamma\left(-\frac{\lambda}{2}\right) \Gamma\left(n + \frac{3}{2} + \frac{\lambda}{2}\right)} \quad (\lambda > -1)$$
22.13.9
$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(1 + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(n + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(n + \frac{\lambda}{2}\right)$$

$$(-1)^{n} \Gamma\left(n + \frac{1}{2} - \frac{\lambda}{2}\right) \Gamma\left(n + \frac{\lambda}{2}\right)$$

$$(-1)^$$

22.14.2

$$|C_n^{(\alpha)}(x)| \le \begin{cases} \binom{n+2\alpha-1}{n} & (\alpha > 0) \\ |C_n^{(\alpha)}(x')| & \left(-\frac{1}{2} < \alpha < 0\right) \end{cases}$$

x'=0 if n=2m; x'=maximum point nearest zero if n=2m+1

22.14.3

$$|C_n^{(\alpha)}(\cos\theta)| < 2^{1-\alpha} \frac{n^{\alpha-1}}{(\sin\theta)^{\alpha}\Gamma(\alpha)} (0 < \alpha < 1, 0 < \theta < \pi)$$

22.14.4
$$|T_n(x)| \le 1$$
 $(-1 \le x \le 1)$

$$22.14.5 \qquad \left| \frac{dT_n(x)}{dx} \right| \le n^2 \qquad (-1 \le x \le 1)$$

22.14.6
$$|U_n(x)| \le n+1$$
 $(-1 \le x \le 1)$

22.14.7
$$|P_n(x)| \le 1$$
 $(-1 \le x \le 1)$

22.14.8
$$\left| \frac{dP_n(x)}{dx} \right| \le \frac{1}{2} n(n+1)$$
 $(-1 \le x \le 1)$

22.14.9
$$|P_n(x)| \le \sqrt{\frac{2}{\pi n}} \frac{1}{\sqrt[4]{1-x^2}} \quad (-1 < x \le 1)^*$$

22.14.10

$$P_n^2(x) - P_{n-1}(x)P_{n+1}(x) < \frac{2n+1}{3n(n+1)} \qquad (-1 \le x \le 1)$$

22.14.11

$$P_n^2(x) - P_{n-1}(x)P_{n+1}(x) \ge \frac{1 - P_n^2(x)}{(2n-1)(n+1)}$$

$$(-1 \le x \le 1)$$

22.14.12
$$|L_n(x)| \le e^{x/2}$$
 $(x \ge 0)$

22.14.13
$$|L_n^{(\alpha)}(x)| \le \frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+1)} e^{x/2} \quad (\alpha \ge 0, x \ge 0)$$

22.14.14

$$|L_n^{(\alpha)}(x)| \le \left[2 - \frac{\Gamma(\alpha + n + 1)}{n! \Gamma(\alpha + 1)}\right] e^{x/2} \quad (-1 < \alpha < 0, x \ge 0)$$

^{*}See page II.

22.14.15
$$|H_{2m}(x)| \le e^{x^2/2} 2^{2m} m! \left[2 - \frac{1}{2^{2m}} {2m \choose m} \right]$$

22.14.16
$$|H_{2m+1}(x)| \le xe^{x^2/2} \frac{(2m+2)!}{(m+1)!} \quad (x \ge 0)$$

22.14.17
$$|H_n(x)| < e^{x^2/2} k 2^{n/2} \sqrt{n!}$$
 $k \approx 1.086435$

22.15. Limit Relations

22.15.1

$$\begin{split} \lim_{n \to \infty} \left[\frac{1}{n^{\alpha}} P_n^{(\alpha, \, \beta)} \left(\cos \frac{x}{n} \right) \right] \\ = & \lim_{n \to \infty} \frac{1}{n^{\alpha}} P_n^{(\alpha, \, \beta)} \left(1 - \frac{x^2}{2 \, n^2} \right) = \left(\frac{2}{x} \right)^{\alpha} J_{\alpha}(x) \end{split}$$

22.15.2
$$\lim_{n\to\infty} \left\lceil \frac{1}{n^{\alpha}} L_n^{(\alpha)} \left(\frac{x}{n} \right) \right\rceil = x^{-\alpha/2} J_{\alpha}(2\sqrt{x})$$

22.15.3
$$\lim_{n\to\infty} \left[\frac{(-1)^n \sqrt{n}}{4^n n!} H_{2n} \left(\frac{x}{2\sqrt{n}} \right) \right] = \frac{1}{\sqrt{\pi}} \cos x$$

22.15.4
$$\lim_{n\to\infty} \left[\frac{(-1)^n}{4^n n!} H_{2n+1} \left(\frac{x}{2\sqrt{n}} \right) \right] = \frac{2}{\sqrt{\pi}} \sin x$$

22.15.5
$$\lim_{\beta \to \infty} P_n^{(\alpha,\beta)} \left(1 - \frac{2x}{\beta} \right) = L_n^{(\alpha)}(x)$$

22.15.6
$$\lim_{\alpha \to \infty} \frac{1}{\alpha^{n/2}} C_n^{(\alpha)} \left(\frac{x}{\sqrt{\alpha}} \right) = \frac{1}{n!} H_n(x)$$

For asymptotic expansions, see [22.5] and [22.17].

22.16. Zeros

For tables of the zeros and associated weight factors necessary for the Gaussian-type quadrature formulas see chapter 25. All the zeros of the orthogonal polynomials are real, simple and located in the interior of the interval of orthogonality.

Explicit and Asymptotic Formulas and Inequalities

Notations:

$$x_m^{(n)} m \text{ th zero of } f_n(x) (x_1^{(n)} < x_2^{(n)} < \dots < x_n^{(n)})$$

 $\theta_m^{(n)} = \arccos x_{n-m+1}^{(n)} (0 < \theta_1^{(n)} < \theta_2^{(n)} < \dots < \theta_n^{(n)} < \pi)$

 $j_{\alpha, m}$, mth positive zero of the Bessel function $J_{\alpha}(x)$ $0 < j_{\alpha,1} < j_{\alpha,2} < \dots$

s 	$f_n(x)$	Relation
22.16.1	$P_n^{(\alpha,\beta)}(\cos\theta)$	$\lim_{n\to\infty} n\theta_m^{(n)} = j_{\alpha,m} \qquad (\alpha > -1, \beta > -1)$
22.16.2	$C_n^{(\alpha)}(x)$	$x_{m}^{(n)} = 1 - \frac{j_{\alpha-\frac{1}{2},m}^{2}}{2n^{2}} \left[1 - \frac{2\alpha}{n} + O\left(\frac{1}{n^{2}}\right) \right]$
22.16.3	$C_n^{(\alpha)}(\cos\theta)$	$\frac{(m+\alpha-1)\pi}{n+\alpha} \le \theta_m^{(n)} \le \frac{m\pi}{n+\alpha} \qquad (0 \le \alpha \le 1)$
22.16.4	$T_n(x)$	$x_m^{(n)} = \cos \frac{2m-1}{2n} \pi$
22.16.5	$U_n(x)$	$x_m^{(n)} = \cos \frac{m}{n+1} \pi$
22.16.6	$P_n(\cos \theta)$	$\begin{cases} \frac{2m-1}{2n+1} & \pi \leq \theta_m^{(n)} \leq \frac{2m}{2n+1} & \pi \\ \theta_m^{(n)} = \frac{4m-1}{4n+2} & \pi + \frac{1}{8n^2} \cot \frac{4m-1}{4n+2} & \pi + O(n^{-3}) \end{cases}$
22.16.7	$P_n(x)$	$\begin{cases} x_{m}^{(n)} = 1 - \frac{j_{0,m}^{2}}{2n^{2}} \left[1 - \frac{1}{n} + O(n^{-2}) \right] \\ x_{m}^{(n)} = 1 - \frac{4\xi_{m}^{(n)}}{2n + 1 + \xi_{m}^{(n)}}; \; \xi_{m}^{(n)} = \frac{j_{0,m}^{2}}{4n + 2} \left[1 + \frac{j_{0,m-2}^{2}}{12(2n + 1)^{2}} \right] + O\left(\frac{1}{n^{5}}\right) \end{cases}$
22.16.8	$L_n^{(\alpha)}(x)$	$\begin{cases} x_{\rm m}^{\rm (n)} = 1 - \frac{j_{0,m}^2}{2n^2} \left[1 - \frac{1}{n} + O(n^{-2}) \right] \\ x_{\rm m}^{\rm (n)} = 1 - \frac{4\xi_{\rm m}^{\rm (n)}}{2n + 1 + \xi_{\rm m}^{\rm (n)}}; \; \xi_{\rm m}^{\rm (n)} = \frac{j_{0,m}^2}{4n + 2} \left[1 + \frac{j_{0,m-2}^2}{12(2n + 1)^2} \right] + O\left(\frac{1}{n^5}\right) \\ \begin{cases} x_{\rm m}^{\rm (n)} > \frac{j_{\alpha,m}^2}{4k_n} \\ x_{\rm m}^{\rm (n)} < \frac{k_m}{k_n} \left(2k_m + \sqrt{4k_m^2 + \frac{1}{4} - \alpha^2} \right) \\ x_{\rm m}^{\rm (n)} = \frac{j_{\alpha,m}^2}{4k_n} \left(1 + \frac{2(\alpha^2 - 1) + j_{\alpha,m}^2}{48k_n^2} \right) + O(n^{-5}) \end{cases} $

For error estimates see [22.6].

22.17. Orthogonal Polynomials of a Discrete Variable

In this section some polynomials $f_n(x)$ are listed which are orthogonal with respect to the scalar product

22.17.1
$$(f_n, f_m) = \sum_i w^*(x_i) f_n(x_i) f_m(x_i)$$
.

The x_i are the integers in the interval $a \le x_i \le b$ and $w^*(x_i)$ is a positive function such that

 $\sum_{i} w^{*}(x_{i})$ is finite. The constant factor which is still free in each polynomial when only the orthogonality condition is given is defined here by the explicit representation (which corresponds to the Rodrigues' formula)

22.17.2
$$f_n(x) = \frac{1}{r_n w^*(x)} \Delta^n[w^*(x)g(x, n)]$$

where $g(x, n) = g(x)g(x-1) \dots g(x-n+1)$ and g(x) is a polynomial in x independent of n.

Name	a	b	w*(x)	r _n	g(x, n)	Remarks
Chebyshev	0	N-1	1	1/n!	$\binom{x}{n}\binom{x-N}{n}$	
Krawtchouk	0	N	$p^xq^{N-x}\binom{N}{x}$	$(-1)^n n!$	$\frac{q^n x!}{(x-n)!}$	p, q>0; $p+q=$
Charlier	0	80	$\frac{e^{-a}a^x}{x!}$	$(-1)^n\sqrt{a^nn!}$	$\frac{x!}{(x-n)!}$	a>0
Meixner	0	8	$\frac{c^*\Gamma(b+x)}{\Gamma(b)x!}$	c ⁿ	$\frac{x!}{(x-n)!}$	b>0, 0 <c<1< td=""></c<1<>
Hahn	0	8	$\frac{\Gamma(b)\Gamma(c+x)\Gamma(d+x)}{x!\Gamma(b+x)\Gamma(c)\Gamma(d)}$	n!	$\frac{x!\Gamma(b+x)}{(x-n)!\Gamma(b+x-n)}$	

For a more complete list of the properties of these polynomials see [22.5] and [22.17].

Numerical Methods

22.18. Use and Extension of the Tables

Evaluation of an orthogonal polynomial for which the coefficients are given numerically.

Example 1. Evaluate $L_6(1.5)$ and its first and second derivative using Table 22.10 and the Horner scheme.

	1	-36	450	-2400	5400	-4320	. 720
x = 1.5		1. 5	-51.75	597. 375	-2703. 9375	4044. 09375	<u>-413. 859375</u>
	1	-34. 5	398. 25	-1802. 625	2696. 0625	-275. 90625	306. 140625
1.5		1. 5	-49. 5	523. 125	-1919. 25	1165. 21875	$L_6 = \frac{306.140625}{720} = .42519 53$
	1	-33.0	348. 75	-1279. 500	776. 8125	889. 3125	
1.5		1. 5	-47.25	452. 250	-1240. 875		$L_{6}' = \frac{889.3125}{720} = 1.23515625$
	1	-31.5	301. 50	-827. 250	-464. 0625		$L_6'' = 2 \frac{[-464.0625]}{720}$ $= -1.28906 25$

Evaluation of an orthogonal polynomial using the explicit representation when the coefficients are not given numerically.

If an isolated value of the orthogonal polynomial $f_n(x)$ is to be computed, use the proper explicit expression rewritten in the form

 $f_n(x) = d_n(x)a_0(x)$

and generate $a_0(x)$ recursively, where

$$a_{m-1}(x)=1-\frac{b_m}{c_m}f(x)a_m(x)$$
 $(m=n, n-1, ..., 2, 1, a_n(x)=1).$

The $d_n(x)$, b_m , c_m , f(x) for the polynomials of this chapter are listed in the following table:

$f_n(x)$	$d_n(x)$	<i>b</i> _m	C _m	f(x)
$P_n^{(\alpha,\beta)}$	$\binom{n+\alpha}{n}$	$(n-m+1)(\alpha+\beta+n+m)$	$2m(\alpha+m)$	1-x
$C_{2n}^{(a)}$	$(-1)^n \frac{(\alpha)_n}{n!}$	$2(n-m+1)(\alpha+n+m-1)$	m(2m-1)	x2
$C_{2n+1}^{(lpha)}$	$(-1)^n \frac{(\alpha)_{n+1}}{n!} 2x$	$2(n-m+1)(\alpha+n+m)$	m(2m+1)	x2
T_{2n}	(-1)*	2(n-m+1)(n+m-1)	m(2m-1)	x2
T_{2n+1}	$(-1)^n(2n+1)x$	2(n-m+1)(n+m)	m(2m+1)	x2
U_{2n}	(-1) ⁿ	2(n-m+1)(n+m)	m(2m-1)	x2
U_{2n+1}	$(-1)^{n}2(n+1)x$	2(n-m+1)(n+m+1)	m(2m+1)	x2
P_{2n}	$\frac{(-1)^n}{4^n} \binom{2n}{n}$	(n-m+1)(2n+2m-1)	m(2m-1)	x2
P_{2n+1}	$\frac{(-1)^n}{4^n} \binom{2n+1}{n} (n+1)x$	(n-m+1)(2n+2m+1)	m(2m+1)	x2
$L_n^{(\alpha)}$	$\binom{n+\alpha}{n}$	n-m+1	$m(\alpha+m)$	x
H_{2n}	$(-1)^n \frac{(2n)!}{n!}$	2(n-m+1)	m(2m-1)	x2
H_{2n+1}	$(-1)^n \frac{(2n+1)!}{n!} 2x$	2(n-m+1)	m(2m+1)	x2

Example 2. Compute $P_8^{(1/2,3/2)}(2)$. Here $d_8 = {8.5 \choose 8} = 3.33847$, f(2) = -1.

m	8	7	6	5	4	3	2	1	0	
am bm cm	1 18 136	1. 132353 34 105	1. 366667 48 78	1. 841026 60 55	3. 008392 70 36	6. 849651 78 21	26. 44156 84 10	223. 1091 88 3	6545. 533 90 0	

 $P_8^{(1/2,3/2)}(2) = d_8 a_0(2) = (3.33847)(6545.533) = 21852.07$

Evaluation of orthogonal polynomials by means of their recurrence relations

Example 3. Compute $C_n^{(\frac{1}{2})}(2.5)$ for n=2,3,4,5,6.

From Table 22.2 $C_0^{(\frac{1}{2})}=1$, $C_1^{(\frac{1}{2})}=1.25$ and from 22.7 the recurrence relation is

$$C_{n+1}^{(\frac{1}{4})}(2.5) = \left[5(n+\frac{1}{4})C_n^{(\frac{1}{4})}(2.5) - (n-\frac{1}{2})C_{n-1}^{(\frac{1}{4})}(2.5)\right] \frac{1}{n+1}.$$

n	2	3	4	5	6
$C_n^{(\frac{1}{2})}(2.5)$	3. 65625	13. 08594	50. 87648	207. 0649	867. 7516

Check: Compute $C_6^{(\frac{1}{6})}(2.5)$ by the method of Example 2.

Change of Interval of Orthogonality

In some applications it is more convenient to use polynomials orthogonal on the interval [0, 1]. One can obtain the new polynomials from the ones given in this chapter by the substitution $x=2\bar{x}-1$. The coefficients of the new polynomial can be computed from the old by the following recursive scheme, provided the standardization is not changed.

$$f_n(x) = \sum_{m=0}^n a_m x^m$$
, $f_n^*(x) = f_n(2x-1) = \sum_{m=0}^n a_m^* x^m$

then the a_m^* are given recursively by the a_m through the relations

$$a_m^{(j)} = 2a_m^{(j-1)} - a_{m+1}^{(j)}; \ m = n-1, \ n-2, \ldots, j; \ j=0, 1, 2, \ldots, n$$

 $a_m^{(-1)} = a_m/2, \ m = 0, 1, 2, \ldots, n$
 $a_n^{(j)} = 2^j a_n, j = 0, 1, 2, \ldots, n \text{ and } a_m^{(m)} = a_m^*; \ m = 0, 1, 2, \ldots, n.$

Example 4. Given $T_5(x) = 5x - 20x^3 + 16x^5$, find $T_5^*(x)$.

j	5	4	3	2	1	0
-1	8=a ₅ ⁽⁻¹⁾	0	$-10=a_2^{(-1)}$	0	$2.5 = a_1^{(-1)}$	0
0 1 2 3 4 5	$ \begin{array}{c} 16 \\ 32 \\ 64 \\ 128 \\ 256 \\ 512 = a_{5}^{\bullet} \end{array} $	-16 -64 -192 -512 $-1280=a$	-4 56 304 1120=a;	$-48 \\ -400 = a_2^{\bullet}$	$50=a_i^*$	$-1=a_0^*$

Hence, $T_5^*(x) = 512x^5 - 1280x^4 + 1120x^3 - 400x^2 + 50x - 1$.

22.19. Least Square Approximations

Problem: Given a function f(x) (analytically or in form of a table) in a domain D (which may be a continuous interval or a set of discrete points).2 Approximate f(x) by a polynomial $F_n(x)$ of given degree n such that a weighted sum of the squares of the errors in D is least.

Solution: Let $w(x) \ge 0$ be the weight function chosen according to the relative importance of the errors in different parts of D. Let $f_m(x)$ be orthogonal polynomials in D relative to w(x), i.e. $(f_m, f_n) = 0$ for $m \neq n$, where

$$(f,g) = \begin{cases} \int_{D} w(x)f(x)g(x)dx \\ & \text{if } D \text{ is a continuous interval} \\ \sum_{m=1}^{N} w(x_{m})f(x_{m})g(x_{m}) \\ & \text{if } D \text{ is a set of } N \text{ discrete points } x_{m}. \end{cases}$$

Then

$$F_n(x) = \sum_{m=0}^n a_m f_m(x)$$

where

$$a_m = (f, f_m)/(f_m, f_m).$$

D a Continuous Interval

Example 5. Find a least square polynomial of degree 5 for $f(x) = \frac{1}{1+x}$, in the interval $2 \le x \le 5$, using the weight function

$$w(x) = \frac{1}{\sqrt{(x-2)(5-x)}}$$

which stresses the importance of the errors at the ends of the interval.

Reduction to interval [-1,1], $t=\frac{2x-7}{3}$

$$w(x(t)) = \frac{2}{3} \frac{1}{\sqrt{1-t^2}}$$

From 22.2, $f_m(t) = T_m(t)$ and

$$a_{m} = \frac{4}{3\pi} \int_{-1}^{1} \frac{1}{\sqrt{1 - t^{2}}} \frac{1}{t + 3} T_{m}(t) dt \qquad (m \neq 0)$$

$$a_{0} = \frac{2}{3\pi} \int_{-1}^{1} \frac{1}{\sqrt{1 - t^{2}}} \frac{dt}{t + 3}$$

 $^{^{2}} f(x)$ has to be square integrable, see e.g. [22.17].

^{*}See page II.

SO

Example 7. Economize $f(x)=1+x/2+x^2/3+x^3/4+x^4/5+x^5/6$ with R=.05. From Table 22.3

$$f(x) = \frac{1}{120} [149T_0(x) + 32T_2(x) + 3T_4(x)] + \frac{1}{96} [76T_1(x) + 11T_3(x) + T_5(x)]$$

 $\bar{f}(x) = \frac{1}{120} [149T_0(x) + 32T_2(x)] + \frac{1}{96} [76T_1(x) + 11T_3(x)]$

since $|\tilde{f}(x) - f(x)| \le \frac{1}{40} + \frac{1}{96} < .05$

References

Texts

- [22.1] Bibliography on orthogonal polynomials, Bull. of the National Research Council No. 103, Washington, D.C. (1940).
- [22.2] P. L. Chebyshev, Sur l'interpolation. Oeuvres, vol. 2, pp. 59-68.
- [22.3] R. Courant and D. Hilbert, Methods of mathematical physics, vol. 1, ch. 7 (Interscience Publishers, New York, N.Y., 1953).
- [22.4] G. Doetsch, Die in der Statistik seltener Ereignisse auftretenden Charlierschen Polynome und eine damit zusammenhängende Differentialdifferenzengleichung, Math. Ann. 109, 257-266 (1934).
- [22.5] A. Erdélyi et al., Higher transcendental functions, vol. 2, ch. 10 (McGraw-Hill Book Co., Inc., New York, N.Y., 1953).
- [22.6] L. Gatteschi, Limitazione degli errori nelle formule asintotiche per le funzioni speciali, Rend. Sem. Mat. Univ. Torina 16, 83-94 (1956-57).
- [22.7] T. L. Geronimus, Teoria ortogonalnikh mnogochlenov (Moscow, U.S.S.R., 1950).
- [22.8] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr. 2, 4-34 (1949).
- [22.9] St. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, ch. 4 (Chelsea Publishing Co., New York, N.Y., 1951).
- [22.10] M. Krawtchouk, Sur une généralisation des polynomes d'Hermite, C.R. Acad. Sci. Paris 187, 620-622 (1929).
- [22.11] C. Lanczos, Trigonometric interpolation of empirical and analytical functions, J. Math. Phys. 17, 123-199 (1938).
- [22.12] C. Lanczos, Applied analysis (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1956).
- [22.13] W. Magnus and F. Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, ch. 5, 2d ed. (Springer-Verlag, Berlin, Germany, 1948).

[22.14] J. Meixner, Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. 9, 6-13 (1934).

[22.15] G. Sansone, Orthogonal functions, Pure and Applied Mathematics, vol. IX (Interscience Publishers, New York, N.Y., 1959).

[22.16] J. Shohat, Théorie générale des polynomes orthogonaux de Tchebichef, Mém. Soc. Math. 66 (Gauthier-Villars, Paris, France, 1934).

[22.17] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications 23, rev. ed. (1959).

[22.18] F. G. Tricomi, Vorlesungen über Orthogonalreihen, chs. 4, 5, 6 (Springer-Verlag, Berlin, Germany, 1955).

Tables -

- [22.19] British Association for the Advancement of Science, Legendre Polynomials, Mathematical Tables, Part vol. A (Cambridge Univ. Press, Cambridge, England, 1946). P_n(x), x=0(.01)6, n=1(1)12, 7-8D.
- [22.20] N. R. Jörgensen, Undersögelser over frekvensflader og korrelation (Busck, Copenhagen, Denmark, 1916). Hen(x), x=0(.01)4, n=1(1)6, exact.
- [22.21] L. N. Karmazina, Tablitsy polinomov Jacobi (Izdat. Akad. Nauk SSSR., Moscow, U.S.S.R., 1954). $G_n(p, q, x), x=0(.01)1, q=.1(.1)1, p=1.1(.1)3, n=1(1)5, 7D.$
- [22.22] National Bureau of Standards, Tables of Chebyshev polynomials $S_n(x)$ and $C_n(x)$, Applied Math. Series 9 (U.S. Government Printing Office, Washington, D.C., 1952). x=0(.001)2, n=2(1)12, 12D; Coefficients for $T_n(x)$, $U_n(x)$, $C_n(x)$, $S_n(x)$ for n=0(1)12.

[22.23] J. B. Russel, A table of Hermite functions, J. Math. Phys. 12, 291-297 (1933). $e^{-x^2/2}H_n(x)$, x=0(.04)1(.1)4(.2)7(.5)8, n=0(1)11, 5D.

[22.24] N. Wiener, Extrapolation, interpolation and smoothing of stationary time series (John Wiley & Sons, Inc., New York, N.Y., 1949). $L_n(x)$, n=0(1)5, x=0(.01).1(.1)18(.2)20(.5)21(1)26(2)30, 3-5D.