INSTRUCTIVO N° 12: REGRESION LOGISTICA

Base Teórica: Gráfico de la Regresión Logística

Usos:

- Diagnóstico de enfermedades.
- Detección si es spam o no
- Si o No de las devoluciones.

Observemos esta transformación de las curvas:

Curva ROC:

Cuánto más área abarca la curva es mejor por la mayor precisión.

CONCLUSION: Es la representación de la razón o proporción de verdaderos positivos (VPR = Razón de Verdaderos Positivos) frente a la razón o proporción de falsos positivos (FPR = Razón de Falsos Positivos)

1. Importamos las librerías y el dataset de "iris" proveniente de seaborn.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#Iris es un dataframe de ejemplo
iris = sns.load_dataset("iris")
```

2. Para observar los resultados y su contenido:

3. Si deseamos hacer consultas podemos utilizar el head para mostrar el contenido de iris, pero la regresión logística trabaja con 1 ó 0 así que especies hay 3 valores por tanto eliminamos un valor (setosa) del grupo (de la columna "especies").

Por tanto, iris_v no contendrá la palabra setosa.

4. Ahora exploramos la data de iris_v para saber si es una población homogénea.

Observemos que puede que algunos puntos se ajusten a la curva de la regresión logística teóricamente hablando.

5. Construyamos los X como Y, eliminando la columna de las especies.

```
#Eliminamos la columna species
X = iris_v.drop('species', axis=1)
Y = iris_v['species']
```

6. Preparamos el modelo con los datos separados en el paso anterior.

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=30)
```

- 0.30 en test_size genera 30% de valores hacia la validación
- 0.30 en random_state con una aleatorización del 30%
 - 7. Entrenamos el modelo con los datos separados en el paso anterior.

```
from sklearn.linear_model import LogisticRegression
logmodel = LogisticRegression()
logmodel.fit(X_train, y_train)
```


8. Ahora empezaremos al uso del modelo para generar las predicciones.

```
#Iniciamos los test para predicciones

predicciones = logmodel.predict(X_test)

print(predicciones)

In [6]: print(predicciones)

['versicolor' 'virginica' 'versicolor' 'virginica' 'virginica' 'virginica' 'virginica' 'virginica' 'virginica' 'versicolor' 'versicolor' 'virginica' 'versicolor' 'versicolor'
```

9. Luego analizamos las métricas asociadas a la precisión, sensibilidad, puntuación. La relación entre y_test y predicciones para analizar la cercanía.

10. Según la matriz de confusión

Matriz de confusión

Por tanto, prácticamente no hay predicciones erradas.

11. Ahora vamos implementar la curva ROC para obtener quienes forman parte de 1 ó 0 en base a las predicciones. (1 es acierto y 0 es falla)

```
#Ahora vamos a obtener la curva ROC
from sklearn.metrics import roc_curve
y_pred_prob = logmodel.predict_proba(X_test)[:,1]

#Se debe escoger una de las 2 columnas virginica ó versicolor
#porque los valores fluctuarán entre 0 y 1
#donde 0 se asigna a una columna y 1 hacia otra columna
roc_curve(y_test, y_pred_prob, 'virginica')
```

12. Obtenemos el Falso-Positivo, Verdadero-Positivo y threshold (umbral de cercanía). Representados como fpr, tpr, threshold respectivamente.

13. Dibujamos la curva ROC.

```
#Dibujamos
plt.plot(fpr, tpr, color = 'red', label = 'Curva ROC')
plt.plot([0,1],[0,1], color = 'blue', linestyle = '--')
plt.xlabel('FPR')
plt.title('Curva ROC')

Curva ROC

10
08
04
06
08
10
FPR
```

No se nota la "curva" propia de la curva ROC, pero podemos realizar un cambio en el paso 6. Para luego aplicarlo en la ejecución de los scripts. from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=100)

