SISTEMAS MICROPROCESSADOS I

Prof.: João Castelo

UNIDADE CENTRAL DE PROCESSAMENTO

PROCESSAMENTO

- Realizado pela Unidade Central de Processamento (UCP ou processador)
- UCP é formada por
 - Unidade de Controle (UC): controla e coordena o fluxo de operações
 - Unidade Lógica Aritmética (ULA): realiza as operações aritméticas, lógicas e tomada de decisão
 - Regitradores: auxilia e agiliza o processamento armazenando informações temporariamente

PROCESSAMENTO

- Processamento é feito através do ciclo busca-execução:
 - UC busca (copia) instrução na memória cache ou na memória principal
 - Executa a instrução com auxílio da ULA
 - Busca a instrução seguinte
 - Executar essa nova instrução
 - etc

CICLO DE VIDA — CPU FETCH — DECODE — EXECUTE

ARQUITETURA

- Arquitetura: atributos do sistema visíveis ao programador
 - Ex.: Conjunto de Instruções, tamanho dos tipos de dados, mecanismos de E/S, técnicas de endereçamento de memória, etc.

ARQUITETURA - PRINCETON VS. HARVARD

- O departamento de defesa dos EUA precisavam de máquinas que fizessem cálculos com eficiência durante a II Guerra
- As universidades de Princeton e de Harvard propuseram soluções
 - John von Neumann, Princeton
 - Howard Aiken, Harvard

ARQUITETURA DE VON NEUMANN

- Entrada captar informações para o processo de computação
- Saída exibir o resultado da computação de maneira inteligível
- Processamento (CPU) realizar as operações necessárias à computação
- Armazenamento (Memória) Armazenar dados intermediários para a computação

ARQUITETURA DE VON NEUMANN

ARQUITETURA — VON NEUWANN

ARQUITETURA HARVARD

- Duas memórias diferentes e independentes
 - Instruções e dados
- Permite realizar acessos simultâneos às memórias facilita a implementação de pipeline.
- Tende a executar as instruções em menos ciclos de relógio
- Memória de programa geralmente maior do que a de dados

REVISANDO PIPELINE

REVISANDO PIPELINE

ARQUITETURA HARVARD

PRINCETON VS. HARVARD

Von-Neumann Architecture

Harvard Architecture

PRINCETON VS. HARVARD

- A diferença entre as arquiteturas é o propósito da memória.
- A arquitetura de Princeton é mais simples, porém gera maior "gargalo" o processador fica "fazendo nada" a cada acesso de memória.
- A arquitetura de Harvard é um pouco mais complexa, porém mais eficiente
 - Permite palavra de instrução de tamanho diferente do que a palavra de dados

ARQUITETURA DE MICROCONTROLADORES

- Microcontroladores tendem à utilização de:
 - arquitetura Harvard
 - conjunto de instruções

RISC - REDUCE INSTRUCTION SET COMPUTING

- Instruções simples e com formato fixo;
- Normalmente l instrução por ciclo de clock;
- Poucas instruções;
- Poucos modos de endereçamento;
- Execução mais simples
 - Menos sinais de controle por instrução

CISC — COMPLEX INSTRUCTION SET COMPUTING

- Instruções complexas
- Muitas instruções
- Muitos modos de endereçamento
- Normalmente mais de 1 instrução por ciclo de clock
- Execução mais complexa
 - Mais sinais de controle por instrução

VANTAGENS RISC

- Etapa de decodificação tão simples que pode, em alguns casos, ser eliminada;
- Com um número menor de instruções, os parâmetros destas podem ser agregados no opcode (código de máquina de uma instrução), simplificando inclusive o FETCH.
- Utiliza o conceito de pipeline, forçando a iniciar a execução de uma instrução por ciclo de clock, desprezando seu término.
- Simplificação dos circuitos eletrônicos.

VANTAGENS CISC

- Apesar do conjunto de instruções ser muito grande, oferece um número maior de instruções ("ferramentas") ao programador Assembly;
- Menor quantidade de instruções são necessárias para desenvolver um programa (programas ocupam menos memória).

ARQUITETURA DE MICROCONTROLADORES

- Microcontroladores tendem à utilização de:
 - arquitetura Harvard
 - conjunto de instruções **RISC**
 - Todas as instruções executadas em um único ciclo de máquina