Apuntes

Matemática 4to

July 31, 2025

1 Temas

1.1 Primer Trimestre

Factoreo. Conjuntos de números reales. Representación en recta numérica. Intervalos: abiertos, cerrados y semiabiertos. Potencia con exponente fraccionario. Propiedades de potenciación. Operaciones de potencia con exponente fraccionario. Radicales: concepto, semejantes y no semejantes. Extracción de factores de fuera del signo radical por simplificacion y por regla práctica.

2 Desarrollo

2.1 Factoreo

Hay 5 casos de factoreo conocidos, su finalidad es poder facilitar las expresiones algebráicas descomponiendolas en factores primos.

2.1.1 Factor comun

Se puede observar que en el polinomio, al separar en términos se observen factores que se repitan en todos o algunos de ellos. Es muy importante tener en cuenta el grado de los factores, siempre debe ser el menor posible. Por ejemplo:

$$xm^{2} + sm - am^{3} + sam = m(xm + s - am^{2} + sa)$$
$$2b^{2} - 32m^{3} = 2b^{2} - 2 \cdot 16m^{3} = 2(b^{2} - 16m^{3})$$

Ejercicio: $3mn^2h + 9nm^3 - 27hm^2$

2.1.2 Factor común en grupos

Igual que en el anterior, puedo ver dos o más factores que se repiten en los polinomios y me permiten escribirlos distintos. Por ejemplo:

$$jk + jt + ak + at + bk + bt = (jk + jt) + (ak + at) + (bk + bt)$$

$$= j(k+t) + a(k+t) + b(k+t) = (k+t)(j+a+b)$$

$$= (jk + ak + bk) + (jt + at + bt)$$

$$= k(j+a+b) + t(j+a+b) = (j+a+b)(k+t)$$

Ejercicio: $5h^2m + 8mn^2 + 10h + 16n$

$$5h^{2}m + 8mn^{2} + 10h + 16n = (5h^{2}m + 10h) + (8mn^{2} + 16n)$$
$$= (5h^{2}m + 2 \cdot 5h) + (8mn^{2} + 8 \cdot 2n)$$
$$= 5h(hm + 2) + 8n(mn + 2)$$

2.1.3 Trinomio cuadrado perfecto

Es el desarrollo del cuadrado de un binomio. Sue le conmunmente asociarse a la fórmula $(a+b)^2 = a^2 + b^2 + 2ab$ ¿De donde surge esa fórmula?:

$$(a+b)^2 = (a+b)(a+b) = (a \cdot a + a \cdot b + b \cdot a + b \cdot b)$$
$$= (a^2 + ab + ba + b^2) = (a^2 + b^2 + 2ab)$$

En caso de ser a o b negativas, entonces resulta en $(a-b)^2=a^2+b^2-2ab$

Ejercicio: $(7 + a^2)^2$

Nota: La propiedad de las potencia: potencia de potencia sucede de la siguiente manera:

$$(a^b)^c = a^{b \cdot c}$$

2.1.4 Cuatrinomio cubo perfecto

Es el desarrollo del cubo de un binomio, similar al caso anterior

$$(a+b)^3 = (a+b)(a+b)(a+b) = (a \cdot a + a \cdot b + b \cdot a + b \cdot b)(a+b)$$

$$= (a^2 + ab + ba + b^2)(a+b) = (a^2 + b^2 + 2ab)(a+b)$$

$$= (a^2 a + a^2 b + b^2 a + b^2 b + 2aba + 2abb)$$

$$= (a^3 + a^2 b + ab^2 + b^3 + 2a^2 b + 2ab^2)$$

$$= (a^3 + b^3 + 3a^2 b + 3ab^2)$$

En caso de ser a o b negativos resulta en $(a-b)^3 = a^3 - b^3 - 3a^2b + 3ab^2$

Ejercicio: $(3 + a^2x)^3$

$$(3+a^2x)^3 = 3^3 + (a^2x)^3 + 3 \cdot 3^2 \cdot a^2x + 3 \cdot 3 \cdot (a^2x)^2$$
$$= 27 + a^6x^3 + 27a^2x + 9a^4x^2$$

2.1.5 Diferencia de cuadrados

Al identificar dos números que son el cuadrado de otro puedo reescribirlos como el producto de su suma y diferencia. Es decir:

$$a^2 - b^2 = (a - b)(a + b)$$

Es importante destacar que si multiplico lo del parentesis vuelvo al primer término. Siempre es util identificar las propiedades de potencia para identificar cuadrados.

Por ejemplo:

$$64 - m^8 = 8^2 - (m^4)^2 (1)$$

$$= (8 - m^4)(8 + m^4) \tag{2}$$

Ejercicio: $9 - b^4$

2.2 Numeros reales: representación e Intervalos

Los números reales son aquellos que contienen todos los conjuntos de números anteriormente vistos: los naturales, enteros, racionales e irracionales, ($\mathbb{R} = \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}\}$), son infinitos y en sus intervalos se encuentran infinitos números. Corchetes y parentesis representan si el número está incluido o no en ese intervalo

Por ejemplo:

Intervalo abierto: (2,8) tanto el 2 como el 8 no están incluidos en ese intervalo Intervalo semiabierto: (2,8] el 8 si está incluido en el intervalo Intervalo cerrado: [2,8] tanto 2 como 8 están incluidos

En su representación también se guía de parentesis y corchetes sobre los números que están en el intervalo

2.3 Propiedades de la potenciación

Si bien tienen nombres complicados estas propiedades son bastantes conocidas, hay que tener muy en cuenta cuando pueden usarse y cuando no, ya sea por sumas y restas o multiplicación o división.

2.3.1 Potencias fraccionarias

Son aquellas potencias que mediante una fracción representan raices y potencias al mismo tiempo, el denominador hace de índice de la raíz y el numerador de exponente, es decir:

$$a^{\frac{b}{c}} = \sqrt[c]{a^b}$$

2.3.2 Potencia 0

Cualquier número elevado a la potencia 0, es 1, es decir $a^0 = 1$

$$1000^0 = 1$$
, $4534^0 = 1$, $12^0 = 1$

2.3.3 Potencia 1

Cualquier base con exponente 1 es igual a la misma base, es decir: $a^1 = a$

$$7474^1 = 7474$$
, $331^1 = 331$, $0^1 = 0$

Potencia negativa

al tener una potencia negativa, produce que las fracciones se inviertan para que el exponente sea positivo:

$$a^{-1} = \left(\frac{1}{a}\right), \quad \left(\frac{r}{t}\right)^{-3} = \left(\frac{t}{r}\right)^3 = \frac{t^3}{r^3}$$

Producto y división de potencias de igual base 2.3.5

Al encontrarnos dos potencias de igual base, podemos sumar sus exponentes o restarlos dependiendo si se están multiplicando o dividiendo respectivamente. Es decir:

Multiplicación: $a^b \cdot a^c = a^{b+c}$ División: $a^b: a^c = \frac{a^b}{a^c} = a^{b-c}$ Ambos: $a^b: a^c \cdot a^d = a^{b-c+d}$

Potencia de potencia

Dado una potencia elevada a otra sobre sí, resulta en la multiplicacion de sus exponentes, es decir:

$$(a^b)^c = a^{b \cdot c}$$

Algunos ejemplos:

$$(c^2)^5 = c^1 0, \quad (12^2 5)^0 = 1$$

Distribucón de potencia y raíz

Las potencias y raíces son distribuibles sólamente si hay multiplicación o división

División: $(a:b)^c = a^c:b^c$, $\sqrt[n]{\left(\frac{a}{b}\right)} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ Multiplicación: $(a \cdot b)^c = a^c \cdot b^c$, $\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Suma y resta: $(a + b)^c \neq a^c + b^c$, $(a - b)^{\frac{1}{2}} \neq \sqrt{a} - \sqrt{b}$

2.4 Fracciones: repaso

Suma y resta de fracciones:

Es importante priorizar que el denominador sea igual para las fracciones a sumar o restarlos, por lo tanto, para igualar denominadores podemos buscar un multiplo común menor ó si el mayor es múltiplo del menor puedo tomar ese como denominador:

numerador $\overline{denominador}$

(1)
$$\frac{3}{7} + \frac{6}{4} = \frac{12}{28} + \frac{42}{28} = \frac{12+42}{28} = \frac{54}{28}$$

(2) $\frac{7}{8} - \frac{1}{4} = \frac{7}{8} - \frac{2}{8} = \frac{7-2}{8} = \frac{5}{8}$
(3) $\frac{7}{8} - \frac{1}{4} \neq \frac{7-1}{8-4}$

(2)
$$\frac{7}{8} - \frac{1}{4} = \frac{7}{8} - \frac{2}{8} = \frac{7-2}{8} = \frac{5}{8}$$

$$(3) \quad \frac{7}{8} - \frac{1}{4} \neq \frac{7 - 1}{8 - 4}$$

2.4.2 Multiplicación y simplificación de fracciones

Para simplificar fracciones debo trabajar con una única fracción o puedo entre varias siempre y cuando se esté multiplicando, esta simplificación se dá entre numerador y denominador, jamás entre dos numeradores y dos denominadores:

$$(1) \quad \frac{27}{9} = \frac{3 \cdot 9}{9} = \frac{3}{1} = 3$$

(2)
$$\frac{45}{5} \cdot \frac{10}{9} = \frac{5 \cdot 9}{5} \cdot \frac{2 \cdot 5}{9} = \frac{5}{1} \cdot \frac{2}{1} = 10$$

2.4.3 División de fracciones

Al dividir fracciones se "voltea" la segunda fracción y la división pasa a ser multiplicación:

$$\frac{a}{b} : \frac{m}{n} = \frac{a}{b} \cdot \frac{n}{m}$$

2.5 Ejercicios a realizar:

Ejemplo

$$(1) \quad \sqrt{24+4\left(\frac{1}{2}\right)^2} : \left[\frac{39}{8} + \left(\frac{1}{2}\right)^3\right] \cdot (-1)^7 + \left(-\frac{1}{3}\right)^2 = \sqrt{24+4\frac{1}{4}} : \left[\frac{39}{8} + \frac{1}{8}\right] \cdot (-1) + \frac{1}{9}$$

$$= \sqrt{24+1} : \left[\frac{39+1}{8}\right] \cdot (-1) + \frac{1}{9}$$

$$= \sqrt{25} : \left[\frac{40}{8}\right] \cdot (-1) + \frac{1}{9}$$

$$= 5 : 5 \cdot (-1) + \frac{1}{9}$$

$$= -1 + \frac{1}{9}$$

$$= \frac{-9+1}{9} = -\frac{8}{9}$$

2.5.1 Ejercicios de factoreo:

$$(1) \quad (d^3m - 3)^2$$

(2)
$$m^2n5 + 15n^2h - 10n - 5n^3k$$

(3)
$$6ac - 4ad - 9bc + 6bd + 15c^2 - 10cd$$

(4)
$$x^2 - \frac{9}{25}$$

$$(5) (1+m^2p^2)^3$$

2.5.2 Ejercicios de Representación e intervalos de números reales

Representar

- (1) [2,6)
- (2) intervalo entre 6 y 9 que incluya ambos números
- (3) (-3,1)

Identificar el intervalo cerrado, abierto y semicerrado. Verdadero y falso:

(1) el tercer intervalo incluye a -3 (2) dos intervalos contienen a 6 (3) Hay menos números en el primer intervalo que en el segundo.

2.5.3 Propiedades de raíz y potencia

Resolver:

$$(1) \quad (5^{-2} - 4)$$

$$(2)$$
 $(3^2)^{\frac{1}{2}}$

(1)
$$(5^{-2} - 4)$$
 (2) $(3^2)^{\frac{1}{2}}$ (3) $\left(\frac{2}{3}\right)^3$

2.5.4 Ejercicios combinados

(1)
$$\left(\frac{1 - \frac{5}{4}}{\sqrt[3]{-\frac{11}{8}} - 2} + \sqrt{\left(\frac{1}{2}\right)^{-4}} \right)^{-1}$$

(2)
$$\left(\frac{\left(\frac{3}{5}\right)^4 \left(\frac{3}{5}\right)^{-3} + 1}{1 - \frac{2}{3 - \frac{1}{2}}}\right)^{-\frac{1}{3}}$$