Problemas Tema 5: LMD. Algebra Relacional

1. Dadas las relaciones R, S y T definidas por:

R		
Α	В	
а	b	
b	С	
Ь	е	

S		
В	C	
b	С	
е	a	
b	d	

se pide hallar:

- a. $R \cup S$
- b. R-S
- c. RXS
- d. R⋈S
- e. $\sigma_{(A=C)}(R \times S)$
- $f. S \div T$
- 2. Dado el siguiente esquema de base de datos:
 - PROVEEDORES (<u>IDP</u>, NOMBREP, CAT, CIUDAD): Datos de los proveedores de componentes para la fabricación de artículos y su ciudad de residencia
 - COMPONENTES (<u>IDC</u>, NOMBREC, COLOR, PESO, CIUDAD): Información de las piezas usadas en la fabricación de artículos, indicándose el lugar de fabricación.
 - ARTICULOS (<u>IDA</u>, NOMBREA, CIUDAD): Información sobre los diferentes artículos que se fabrican y el lugar de montaje de los mismos.
 - ENVIOS (<u>IDP</u>, <u>IDC</u>, <u>IDA</u>, CANTIDAD): Suministros realizados por los diferentes proveedores para la elaboración del artículo correspondiente.

Con la siguiente información almacenada:

PROVEEDORES

IDP	NOMBREP	CAT	CIUDAD
P1	Grupo K	20	Segovia
P2	ABB	10	Barcelona
Р3	AKROS	30	Segovia
P4	DEFA	20	Segovia
P5	SECOIN	30	Soria

ARTICULOS

IDA	NOMBREA	CIUDAD
A1	Impresora	Barcelona
A2	Scanner	Málaga
А3	Terminal	Soria
A4	Perforadora	Soria
A5	Clasificadora	Segovia
A6	Troqueladora	Madrid
A7	Mezcladora	Segovia

COMPONENTES

IDC	NOMBREC	COLOR	PESO	CIUDAD
C1	хза	VERDE	12	Segovia
C2	B85	ROJO	17	Barcelona
С3	C4B	ROJO	17	Málaga
C4	C4B	AZUL	14	Segovia
C5	VA8	ROJO	12	Barcelona
C6	C30	AZUL	19	Segovia

ENVÍOS

IDP	IDC	IDA	CANTIDAD
P1	C1	A1	20
P1	C1	A4	70
P2	СЗ	A1	40
P2	С3	A2	20
P2	С3	А3	20
P2	СЗ	A4	50
P2	СЗ	A5	60
P2	С3	A6	40
P2	СЗ	A7	80
P2	C5	A2	10
Р3	СЗ	A1	20
Р3	C4	A2	50
P4	C6	А3	30

P4	C6	A7	30
P5	C2	A2	20
P5	C2	A4	10
P5	C 5	A4	50
P5	C5	A7	10
P5	C6	A2	20
P5	C1	A4	10
P5	СЗ	A4	20
P5	C4	A4	80
P5	C 5	A5	40
P5	C6	A4	50

Se pide realizar las siguientes consultas. Para resolver cada consulta debes seguir estos pasos:

- Representa la consulta mediante una expresión algebraica relacional (ten en cuenta que pueden existir varias expresiones algebraicas correctas para la misma consulta).
- 2. Obtén manualmente los resultados para los datos de ejemplo.
- 3. Obtén manualmente los resultados de tu expresión algebraica relacional.
- 4. Comprueba que los resultados de 2 y 3 son iguales.
- 5. Piensa si para otros datos de ejemplo tu expresión sería correcta. No debes de fiarte de los datos del ejemplo, puede que con los datos actuales el resultado sea correcto pero que con datos diferentes tu consulta no funcione.

La solución que facilites debe de ser correcta para cualquier conjunto de datos que pueda almacenar nuestra base de datos de manera consistente.

- a. Obtener los valores de idP para los proveedores que suministran para el artículo A1 el componente C1
- b. Obtener los valores de idA para los artículos que usan algún componente que se puede obtener con el proveedor P1
- c. Obtener los valores de idP para los proveedores que suministran para un artículo de Segovia o Barcelona un componente Rojo
- d. Obtener los valores de idC para los componentes suministrados para algún artículo de Segovia por un proveedor de Segovia
- e. Seleccionar los colores de componentes suministrados por el proveedor P1.
- f. Seleccionar los datos de envío y nombre de ciudad de aquellos envíos que cumplan que el artículo, proveedor y componente son de la misma ciudad.
- 3. Dado el siguiente esquema de base de datos:
 - PROGRAMADORES (<u>DNI</u>, Nombre, Direccion, Telefono).
 - ANALISTAS (<u>DNI</u>, Nombre, Direccion, Telefono).
 - DISTRIBUCION (CodigoProy, DNIEmp, Horas).

• PROYECTOS (<u>Codigo</u>, Descripcion, DniDir).

Con la siguiente información almacenada:

PROGRAMADORES

DNI	Nombre	Dirección	Teléfono
1	Jacinto	Jazmín 4	91-8888888
2	Herminia	Rosa 4	91-777777
3	Calixto	Clavel 3	91-1231231
4	Teodora	Petunia 3	91-6666666

ANALISTAS

DNI	Nombre	Dirección	Teléfono
4	Teodora	Petunia 3	91-6666666
5	Evaristo	Luna 1	91-1111111
6	Luciana	Júpiter 2	91-8888888
7	Nicodemo	Plutón 3	NULL

DISTRIBUCION

CodigoProy	DNIEmp	Horas
P1	1	10
P1	2	40
P1	4	5
P2	4	10
P3	1	10
P3	3	40
P3	4	5
P3	5	30
P4	4	20
P4	5	10

PROYECTOS

Codigo	Descripción	DNIDir
P1	Nómina	4
P2	Contabilidad	4
P3	Producción	5
P4	Clientes	5
P5	Ventas	6

Se pide realizar las siguientes consultas. Para resolver cada consulta debes seguir estos pasos:

- 1. Representa la consulta mediante una expresión algebraica relacional (ten en cuenta que pueden existir varias expresiones algebraicas correctas para la misma consulta).
- 2. Obtén manualmente los resultados para los datos de ejemplo.

- 3. Obtén manualmente los resultados de tu expresión algebraica relacional.
- 4. Comprueba que los resultados de 2 y 3 son iguales.
- 5. Piensa si para otros datos de ejemplo tu expresión sería correcta. No debes de fiarte de los datos del ejemplo, puede que con los datos actuales el resultado sea correcto pero que con datos diferentes tu consulta no funcione.

La solución que facilites debe de ser correcta para cualquier conjunto de datos que pueda almacenar nuestra base de datos de manera consistente.

Para cada consulta debes de facilitar la expresión algebraica relacional y el resultado de aplicarla a los datos de ejemplo.

- a. Obtener los códigos de proyectos en los que trabaja el empleado con DNI 4.
- b. Obtener todos los empleados de la empresa.
- c. Obtener el nombre de los directores de proyecto que sean analistas.
- d. Obtener nombres, direcciones y teléfonos de los empleados que dirigen algún proyecto.
- e. Obtener el DNI de todos los empleados.
- f. Obtener el DNI de los empleados que son a la vez programadores y analistas.
- g. Obtener el DNI de los empleados sin trabajo (ni están asignados a proyectos ni son directores de ellos).
- h. Obtener el código de los proyectos sin analistas asignados.
- i. Obtener el DNI de los analistas que dirijan proyectos pero que no sean programadores.
- j. Obtener la descripción de los proyectos con los nombres de los programadores y horas asignados a ellos.
- k. Obtener el listado de teléfonos compartidos por empleados (sólo hay que indicar el número de teléfono)
- 4. Dado el siguiente esquema relacional de una base de datos de empresas y sus empleados:

```
SEDE (NomComp, Ciudad)<sup>1</sup>
```

TRABAJA (NomEmp, NomComp, Sueldo)²

VIVE (NomEmp, Calle, Ciudad)

JEFES (NomEmp, NomJefe)³

Se pide expresar las siguientes consultas usando expresiones del álgebra relacional:

- a. Nombre de todos los empleados que trabajan en IBM.
- b. Nombre de todos los empleados que no trabajan en IBM.
- c. Nombre, calle y ciudad de los empleados de IBM que ganen más de 2.000 €.
- d. Nombre de los empleados que viven en la misma ciudad en la que trabajan.
- e. Empleados que viven en la misma ciudad y calle que su jefe.

¹ Una empresa puede tener varias sedes por distintas ciudades

² Un empleado puede trabajar para varias empresas a la vez

³ Un empleado puede tener varios jefes

- f. Nombre de aquellas empresas que tienen sede en cada una de las ciudades en las que tiene sede IBM.
- 5. Considera el siguiente modelo relacional y expresa en algebra relacional las peticiones que se indican:

CLIENTES(<u>NCliente</u>, Nombre, Dirección, Teléfono, Población): Información sobre cada posible cliente de nuestra empresa.

PRODUCTO(<u>CodProducto</u>, Descripcion, Precio): Información sobre cada producto de la empresa.

VENTA(<u>IdVenta</u>, CodProducto, NCliente, Cantidad): Relaciona las dos tablas anteriores utilizando el atributo codProducto para indicar el producto que se venda, y el atributo NCliente para indicar el cliente al que vendimos el producto.

- a. Realizar una consulta que muestre el nombre de los clientes de Palencia.
- b. Indicar el código y descripción de los productos cuyo código coincida con su descripción.
- c. Obtener el nombre de los clientes junto con el identificador de venta y la cantidad vendida, de aquellos productos de los que se vendieron más de 500 unidades.
- d. Nombre de los clientes que no han comprado nada.
- e. Códigos de productos que no se han comprado nunca en Palencia.
- f. Códigos de productos que se han vendido tanto en Palencia como en Valladolid.