

CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES

2002

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

Morning Session Monday 12 August 2002

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 15
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1–10
- All questions are of equal value

Disclaimer

Every effort has been made to prepare these 'Trial' Higher School Certificate Examinations in accordance with the Board of Studies document Principles for Setting HSC Examinations in a Standards-Referenced Framework (BOS Bulletin, Vol 8, No 9, Nov/Dec 1999), and Principles for Developing Marking Guidelines Examinations in a Standards Referenced Framework (BOS Bulletin, Vol 9, No 3, May 2000). No guarantee warranty is made or implied that the 'Trial' Examination papers mirror in every respect the actual HSC Examination question paper in any or a courses to be examined. These papers do not constitute 'advice' nor can they be construed as authoritative interpretations of Board of Studies intentions. The CSSA accepts no liability for any reliance use or purpose related to these 'Trial' question papers. Advice on HSC examination issues only to be obtained from the NSW Board of Studies.

Total marks (120) Attempt Questions 1 – 10 All questions are of equal value

Answer each question in a SEPARATE writing booklet.

Question 1 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Evaluate
$$\frac{x^3 + y^4}{y^2}$$
 if $x = \left(\frac{2}{5}\right)^{\frac{1}{3}}$ and $y = \left(\frac{3}{5}\right)^{\frac{1}{3}}$.

Give your answer in fractional form.

(b) Express 0.23 as a fraction in simplest form.

2

2

(c) Factorise $40 - 5y^3$

2

(d) Solve $x^2 + 4x - 1 = 0$ leaving your answer in simplest surd form.

3

(e) (i) Solve $4^{7} = 32$.

2

(ii) Hence, or otherwise, write down the value of log_432 .

Question 2 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Differentiate with respect to x:

(i)
$$5x + \frac{3}{x^2}$$

(ii)
$$e^{2x^2+3}$$

(iii)
$$\frac{3x}{\sin x}$$

The diagram shows the points A (-5, 5) and C (1, 3) and D (-4, -2). B is a point on the y axis.

(ii) Find the midpoint of
$$AC$$
.

(iii) Show that the equation of the perpendicular bisector of
$$AC$$
 is $3x - y + 10 = 0$.

(iv) Find the coordinates of B given that B lies on
$$3x - y + 10 = 0$$
.

(v) Show that the point
$$D(-4, -2)$$
 lies on $3x - y + 10 = 0$.

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Find
$$\int \frac{x}{x^2 + 5} dx$$

2

(b) Evaluate
$$\int_{0}^{\frac{\pi}{8}} \sec^{2} 2x \, dx$$

2

(c) Find the equation of the normal to the curve $y = x \log_e x$ at the point (e, e).

4

(d)

NOT TO SCALE

In the diagram AB is 32 cm, AD is 38 cm and CD is 26 cm. \angle BAD is 30° and \angle CBD is 42°.

(i) Use the cosine rule to find the length of BD.

2

(ii) Hence, find the size of \(\subseteq BCD \) to the nearest degree.

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) The second term of a geometric series is 120 and the fifth term is 50.625.
 - (i) Find the common ratio and the first term of the series.

2

(ii) Find the limiting sum of the series.

- 1
- (iii) Hence, find the difference between the limiting sum and the sum of the first 40 terms giving your answer in scientific notation correct to 2 significant figures.

2

- (b) For the quadratic equation $x^2 + kx 3x + 2 k = 0$.
 - (i) find the value of the discriminant in terms of k,

1

(ii) explain why the roots of this quadratic equation are real for all values of k.

(c)

NOT TO SCALE

ABCDEFGH is a regular octagon.

(i) Explain clearly why $\angle ABC$ is 135° .

1

(ii) Calculate the size of ZGAH.

1

(iii) Using (i), or otherwise, calculate the size of ∠CGF.

1

(iv) Hence, calculate the size of $\angle AGC$.

(8)

The diagram shows two concentric circles with centre O. The radius of the larger circle is 8.2 cm.

(i) Calculate the area of sector COD.

1

(ii) The area of the sector AOB is 18.4 cm^2 . Calculate the radius of this sector AOB.

2

(iii) Calculate the area of triangle COB.

2

(b) Let
$$f(x) = 3x^2 + 1$$
.

(i) Copy the following table and supply the missing values.

1

2

х	0	0.2	0.4	0.6	0.8	,
f(x)	1					4

(ii) Use these six values of the function and the trapezoidal rule to find the approximate value of

 $\int_{0}^{1} (3x^{2}+1) dx$.

Question 5 continues on page 8

Question 5 (continued)

Marks

(c) The population P of a town is growing at a rate proportional to the town's current population. The population at time t years is given by $P = A e^{kt}$, where A and k are constants.

The population 20 years ago was 100 000 people and today the population of the town is 150 000 people.

(i) Find the value of A.

1

(ii) Find the value of k.

1

(iii) Find the population that will be present 20 years from now.

2

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) Consider the curve given by $y = x^3 + 3x^2 9x 5$.
 - (i) Find $\frac{dy}{dx}$.

1

(ii) Find the coordinates of the two stationary points.

2

(iii) Determine the nature of the stationary points.

2

(iv) Sketch the curve for the domain $-5 \le x \le 3$.

2

(v) By drawing an appropriate line on your graph, or otherwise, solve

2

$$x^3 + 3x^2 - 9x + 5 = 0.$$

(b) Calculate the exact volume generated when the region enclosed by the curve

3

$$y = 1 + 2e^{-x} \text{ for } 0 \le x \le 1,$$

is rotated about the x axis.

Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

- (a) A bag contains 5 blue balls, 4 red balls, 2 yellow balls and 1 green ball.
 Three balls are selected at random without replacement from the bag.
 Calculate the probability that
 - (i) the three balls drawn are blue,

1

(ii) the three balls drawn are of the same colour,

2

(iii) exactly two of the balls drawn are blue.

2

(b) A particle is projected vertically upwards from a point 2 metres above horizontal ground. The displacement at time t seconds is given by

$$x = 24.5t - 4.9t^2$$
, $t \ge 0$.

(i) Find an expression for the velocity of the particle.

1

(ii) Find when the particle comes to rest.

2

(iii) Hence, find the greatest height of the particle above the ground.

2

(iv) Find the length of time for which the particle is at least 21.6 metres above the ground.

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

(a) A function y = f(x) is continuous for all values. After finding the first and second derivatives a student discovers the following, for all values of x.

2

When
$$x < 2$$
, $f'(x) < 0$ and $f''(x) > 0$
When $x = 2$, $f'(x) = 0$ and $f''(x) = 0$
When $x > 2$, $f''(x) < 0$ and $f''(x) < 0$.

Draw a neat sketch of y = f(x), showing all the important characteristics of the function given that f(2) = 0.

(b) The graphs of the functions $y = 4 - x^2$ and $y = x^2 - 2x$.

(i) Describe, using inequalities, the shaded region.

1

(ii) By solving simultaneously, show that the points of intersection are at x = -1 and x = 2.

2

(iii) Calculate the area of the shaded region.

2

Question 8 continues on page 12

Question 8 (continued)

Marks

3

- (c) On a factory production line a tap opens and closes to fill containers with liquid. As the tap opens, the rate of flow increases for the first 10 seconds according to the relation $R = \frac{6t}{50}$, where R is measured in L/sec. The rate of flow then remains constant until the tap begins to close. As the tap closes, the rate of flow decreases at a constant rate for 10 seconds, after which time the tap is fully closed.
 - (i) Show that, while the tap is fully open, the volume in the container at any time is given by

$$V = \frac{6}{5}(t-5).$$

(ii) For how many seconds must the tap remain fully open in order to exactly fill a 120L container with no spillage.

End of Question 8

Question 9 (12 marks) Use a SEPARATE writing booklet.

Marks

2

(a) ABCD is a rectangle and $AE \perp BD$. AE = 5 cm and DE = 2 cm.

- (i) Copy the diagram and prove that triangles AED and BCD are similar.
- (ii) Hence, show that $AD^2 = BD.DE$.
- (iii) Find the area of ABCD.
- (b) A closed water tank in the shape of a right cylinder is to be constructed with a surface area of 54π cm². The height of the cylinder is h cm and the base radius is r cm.
 - (i) Show that the height of the water tank in terms of r is given by $h = \frac{27}{r} r$
 - (ii) Show that the volume V that can be contained in the tank is given by $V = 27\pi r \pi r^{\lambda}$
 - (iii) Find the radius r cm which will give the cylinder its greatest possible volume. Justify your answer.

Marks Ouestion 10 (12 marks) Use a SEPARATE writing booklet. Show that $x = \frac{\pi}{8}$ is a solution of $\sin 2x = \cos 2x$. 1 (a) (i) On the same set of axes, sketch the graphs of the functions 2 (ii) $y = \sin 2x$ and $y = \cos 2x$ for $-\pi \le x \le \pi$. (iii) Hence, find graphically the number of solutions of $\tan 2x = 1$ 1 for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. (iv) Use your graphs to solve $\tan 2x \le 1$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$. 1 Mr and Mrs Matthews decide to borrow \$250 000 to buy a house. Interest is (b) calculated monthly on the balance still owing, at a rate of 6.06% per annum. The loan is to be repaid at the end of 15 years with equal monthly repayments of SM. Let SA_n be the amount owing after the *n*th repayment. 1 Derive an expression for A_{60} . (i) 2 Find the value of M. (ii)

End of paper

(iii) Hence, calculate the amount still owing after 5 years of payment at this

(iv) At the end of five years, the interest rate is increased to 7.2% per annum and Mr and Mrs Matthews change their payments to \$1800 per month. How many more months are needed to pay off the remainder of the loan?

raic.

2

(b) Let
$$x = 0.23333...$$
 (1) $10x = 2.33333...$ (2)

$$\begin{array}{c} y_{x} = 2.1 \\ x = \frac{21}{96} = \frac{7}{30} \\ \text{i.e. } 0.23 = \frac{7}{30} \end{array}$$

$$S = \frac{\alpha}{1 - r} = \frac{0.03}{1 - 0.1} = \frac{0.03}{0.9} = \frac{1}{30}$$

$$0.23 = 0.2 + \frac{1}{30} = \frac{6}{30} + \frac{1}{30} = \frac{7}{30}$$

(a)
$$40 - 5y^2$$

 $= 5(8 - y^2)$
 $= 5(2 - y)(4 + 2y + y^2)$
 $= 5(2 - y)(4 + 2y + y^2)$

(d)
$$x^2 + 4x - 1 = 0$$
 (e) (i) $x^2 + 32$
 $x = \frac{-4 \pm \sqrt{20}}{2}$ $2^4 = 2^4$
 $x = \frac{-4 \pm 2\sqrt{5}}{2}$ $2x = 5$
 $x = \frac{-4 \pm 2\sqrt{5}}{2}$ $x = 2.5$

x=-2±45

$$= 5(8-y^{2})$$

$$= 5(2-y)(4+2y+y^{2})$$

$$x^{2}+4x-1=0 \qquad (e) \qquad (i) \qquad 4^{2}-32$$

$$x = \frac{-4\pm\sqrt{20}}{2}$$

$$x = \frac{-4\pm2\sqrt{5}}{2}$$

$$x = \frac{-4\pm2\sqrt{5}}{2}$$

$$x = \frac{-3\pm\sqrt{5}}{2}$$

$$x = \frac{-4\pm\sqrt{5}}{2}$$

$$\frac{2}{5} + \frac{9}{25} = \frac{4}{15}$$

$$\frac{3}{3} = \frac{4}{15}$$

$$\int_{10x} x = 0.23333... 0$$

$$\int_{10x} x = 2.33333... 0$$

(2)—(1):

$$9x = 2.1$$

 $x = \frac{21}{90} = \frac{7}{30}$
i.e. $0.23 = \frac{7}{30}$
OR $0.23 = 0.233333...$
 $-0.2 + (0.03 + 0.003 + 0.0003 + 0.00003 + ...)$
... Infinite sum of a genmente progression,

finite sum of a geometric progression,

$$v = 0.03$$
, $r = \frac{0.093}{0.03} = 0.1$
 $S = \frac{a}{1 - r} = \frac{0.03}{1 - 0.1} = \frac{0.03}{0.9} = \frac{1}{30}$

$$S = 0.03 - 0.03 - 1$$

$$1 - r = 0.1 - 0.9 - 30$$

$$0.23 = 0.2 + \frac{1}{30} - \frac{6}{30} + \frac{1}{30} - \frac{7}{30}$$

$$0 \frac{d}{dt} \left(\frac{3}{3x + \frac{3}{x^2}} \right)$$

(vi) Midpoint of
$$BD = \left(\frac{0 + (-4)}{2}, \frac{10 + (-2)}{2}\right) = (-2, 4).$$

Since II and D both He on the perpendicular disceler of AC and the midpoint of BD is equal to the midpoint of AC then the diagonals AC and BD bisect each other at right angles.

$$0 \qquad \frac{1}{m!} \left(5x + 3x^{-2} \right)$$

$$=3-\frac{2}{6}$$

$$=3-(x^{-3})$$

(ii)
$$\frac{d}{dx}\left(e^{2x^2+2x}\right)$$
= $4xe^{2x+2x}$

(iii)
$$\frac{d}{dt} \left(\frac{3x}{\sin x} \right) = \frac{\sin x x^3 - 3x x \cos x}{\sin^2 x}$$

Gradient of
$$4C = \frac{3-5}{1+5} = \frac{-2}{6} = \frac{1}{3}$$

الريزوناx = ر (ء)

(ii) Midpoint of
$$AC = \left(\frac{-5+1}{2}, \frac{5+3}{2}\right) = (-2, 4)$$
,

) Use
$$y = y_1 = y_1 (x - x_1)$$
, with $(x_1, y_1) = (-2, 4)$ and $y_1 = 3$.

(v) Substitute
$$D = 0$$
, (i.e., -2) into $3x = y + 10 = 0$, i.e., $-2 = 10 = 0$, $-2 = 0$, $-2 = 0$, $-2 = 0$, i.e., or the line.

Question 3
$$\int_{X^{\frac{1}{2}+\frac{1}{2}}} dt = \frac{1}{2} \int_{X^{\frac{1}{2}+\frac{1}{2}}} dt$$
(a)

$$(0c \ln \sqrt{x^2 + 3} + C).$$

(b)
$$\iint_{\mathbb{R}} \sec^2 2\pi dx = \begin{bmatrix} 1 & \tan 2x \\ 2 & \tan 2x \end{bmatrix}_0^{\frac{1}{2}}$$

$$= \frac{1}{2} \tan \frac{1}{2} - \frac{1}{2} \tan 0$$

$$m_1 = 1 + \log_x e^{-x} + 1 + 1 = 2$$

$$m_1 = -\frac{1}{m_1} = -\frac{1}{2}$$

$$\text{Equation of normal is}$$

$$\text{From } = -\frac{1}{2}(x-c)$$

~ 30CD - 29.31...* sin G sm 42° 19.02173 26

:. <BCD = 29 ° (namest degree).

 $a = \frac{120}{r} = \frac{120}{0.75} = 160$

: the first term, a * 160.

11)

1 . F 1-0.75

 $\frac{160}{0.25} = 640$

... the finiting sum, S. = 640

Ξ

20df = 180 - 135*

: 20.00-225,

:. ZABC = 135°,

Question 4 9

ar = 120 ar = 50.625

ar 120

, 512

. the common ratio, $r = \frac{1}{4} = 0.3$

Đ 3

.. for a regular octagon, interior angle = 180"

= 135

Z

Ξ

1.48 2.08 2.92

0.00640 %() (7*2) cot x 10 --

(i) 2+K-X-1-1-1 $x^2 + x(k-3) + (2-k) = 0$

∠4017×135°-(67,5"+22,5")

.. ¿COP - 67.5

~ 240C - 45"

ď

G = 1, 0 = 2 - 3, 2 = 2 - 2 4=6-400

Question 5

E

(i) Arrests a sector = \(\frac{1}{2} r^2 \text{0} = \frac{1}{2} x \text{8.1}^2 x \frac{\pi}{2} \]

K - 2k + 1 # F + 8 - 6 + 40 - 5 + 46 =(4-17-41)(2-4)

5 A=K - 2K+1

3 For real roots, N - 4ac > 0 for all k

Now 4-24-1-(4-1) ic. 12-24+120 for all &

and (1-1) 20 far all &

;, the roots are real for all values of &

Por a regular polygon, interior angle = 180 *-

80

: milius of sector AOB = 5.9 cm (2 s.f.)

(iii) Area ACOB = $\frac{1}{2}$ (8.2)(5.9) sin $\frac{\pi}{2}$

.. Ares of ACOB = 21 cm² (nearest cm²) =21 (M86 ... MI)

 $h = \frac{1}{S}$ (ii)

Trepezoidal rule:

 $\int_{0}^{1} (3x^{2} + 1) dx \approx \frac{h}{2} [f(0) + 2[f(0.2) + f(0.4) + f(0.6) + f(0.8)] + f(1)]$ $-\frac{1}{10} \left[1 + 2 \left\{ 1.12 + 1.48 + 2.08 + 2.92 \right\} + 4 \right]$ = 2.02

(ii) Area AOR = 170 = 18,4

2 18.4×2 = 36.8 + 3 = 35.14)4...

. r = 5.928 ... cm

.. Area of secur COD = 35 cm2 (neares) cm2

=35,2067...cm

$$900\,001 = V$$

When
$$t = 20$$
, $P = 150000$

By substitution into
$$P = Ae^{k}$$
.

.. the curve is concave up and (1, -10) is a relative minimum,

$$150000 - 1000000e^{26k}$$

$$k = \frac{\ln 1.5}{20} = 0.02027...$$

$$1.k = 0.0203 (3 s.f.)$$

$$-225000$$

: population that will be present 20 years from now is 225 000.

Stationary points when
$$\frac{dy}{dt} = 0$$
.

That is,
$$(x^2 + 2x - 3) = 0$$

$$(x+3)(x-1)=0,$$

Stationary points are (-3, 22) and (1, -10).

$$\frac{dx^{1}}{dx^{2}} = 6x + 6$$

When
$$x = -3$$
, $\frac{d^3y}{dx^2} = -18 + 6 < 0$,

hat is,
$$(x^2 + 2x - 3) = 0$$

When
$$x = -3$$
, $\frac{d^2y}{dx^2} = -18 + 6 < 0$,

Solutions are x = - 5 mid x = 1

(b)
$$V = X \int_{0}^{1/2} x^{2} dx = \pi \prod_{i=1}^{n} (1+2e^{-x})^{2} dx$$

$$= \pi \int_{0}^{1/2} (1+3e^{-x}+3e^{-2x}) dx$$

. Volume = x(7 - 4e - 2e - 2) unit

Question ?

(ii)
$$F(886) + F(RRR) = \frac{1}{22} + \left(\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}\right) = \frac{1}{22} + \frac{1}{55} = \frac{7}{110}$$

(iii)
$$P(B,B,NB) + P(NB,B,B) + P(B,NB,B) = 3\left(\frac{5}{12} \times \frac{4}{11} \times \frac{7}{10}\right) = \frac{7}{22}$$

Ξ

Particle comes to rest when
$$v=0$$
,

9.81 = 24.5

$$t = 2.5$$
 seconds.

However, if the particle is projected from 2 metres above the ground then greatest height is
$$32.625$$
 metres.

(iv) For particle to be at least 21.6 meters above the ground,

and $24.5i - 4.9i^2 \ge 19.6$

∴ 1 ≪ f≪ 4 seconds

in the particle is at least 21.6 metres above the ground for 3 seconds.

7"(a)	×
Decreasing Concave Up	2000 Patrick P
Point of milection	12
Decreasing Concave down	>2

		.,
	,	A PARTY OF THE PAR
	Į	
	Markburgether	•
	1	
1		

Also f(2) = 0

- Ē
- (i) For the first 10 seconds, $\frac{dV}{dt} = \frac{6t}{50}$

When r=0, r=0

When t = 10 seconds, $V = \frac{3(10)^2}{50} = 6$ Littes

Question 8 continued

and so, $\frac{dV}{dt} = \frac{6(10)}{50} = \frac{6}{5}L/anc$

After 10 seconds, rate of Now remains constant

ale Service

: 6- 6100 C

When r = 10, r = 6

x = -1 or x = 2.

(iii) Aim =
$$\int_{1}^{2} (4-x^2-x^2+2x) dx$$

$$= \left[\frac{2x^2+x^2}{3x^2+x^2}\right]^2$$

1-5=95 r = 100 seconds

10 - 13 m 114

$$= \left[\frac{4x - \frac{2x}{3} + x^2}{3}\right]_{-1}^{2} \left[-4 + \frac{2}{3} + 1\right]$$

= 9 square units.

" h= 10 = 01-30 = 61-31.

- i. lap mass remain fully open for 90 seconds.

Question 9

- :: AAED II ABCD (equiungular). CADE = CBBC (Alternate angles on parallel lines, AD|| BC) LAED - LECD = 90" (AE L ED and AMCD is a rectangle)
- (ii) AMED III ABCD.

Now BC = AO (opposite sides of sectangle are equal)

AD = BOLDE

(iii)
$$AD = \sqrt{25 + 4} = \sqrt{29} \text{ cm}$$

 $\therefore BDDE = 29$

BDx 2 = 29

200 × 14.5 cm

... Area ABCD = 14.5 x 5 = 72.5 cm²

٥

548 = 2m2+2m4

$$h = \frac{54n - 2\pi r^2}{2nr}$$

$$h = \frac{27}{r}$$

inite's Care

V-27m-m

アーシブロアーエア

$$\frac{dV}{dx} = 27x - 3\pi r^2$$

But r > 0, so r = 3 cm.

When
$$r = 3$$
, $\frac{d^2y}{dr^2} = -6\pi(3) < 0$.

$$\frac{dV}{dt} = 0, \qquad 27\pi - 3\pi^2$$

$$\frac{dV}{dr} = 0, \qquad \therefore \quad 27\pi = 0$$

$$V = 0, \qquad \therefore \quad 27\pi - 3\pi r^2 = 0$$

$$\frac{dV}{dt^2} = -6\pi c$$

$$\frac{dV}{dr} = 27\pi - 3\pi r^2$$

$$\frac{dV}{dr} = 27\pi - 3\pi r^2$$

$$\frac{dV}{dr} = 27u + 3\pi r^2$$

$$\frac{dV}{dr} = 0, \qquad 27\pi - 3\pi r^2 = 0$$

$$\frac{dV}{dr} = 27\pi - 3\pi r^2$$

$$\frac{dV}{dr} = 27\pi - 3\pi r^2$$

$$\frac{dV}{dr} = 27\pi - 3\pi r^2$$

Greatest possible volume Foccurs when dr wh and

$\lim 2x = 1 \text{ when } \frac{\sin 2x}{\cos 2x} = 1$

That is, when xin 2x meas 2x for - 1 < x < 1.

From the diagram, it can be soon that the curves beve two points of intersection for

Therefore, the equation tan
$$2r = 1$$
 fins two solutions for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

$$\lim_{n \to \infty} 2x \le 1 \text{ when sin } 2x \le \cos 2x \text{ for } -\frac{3n}{8} < x < \frac{\pi}{8}.$$

3

of 7.2% per annual with monthly repayments of \$1800,

Approximately 169 months are needed to pay off the remainder of the losn.

 $190236.7605 \times 1.006'' = 1800 \times \frac{(1.006'' - 1)}{9.006}$

190236.7605 x 1.006" + 300000 x (1.006" -1)

300000 300000 **- 190236.**7605

300000 In 300000 - 190236.7605 la1.006

1.006

n = 168.07836

9

$$A_{60} = 250000 \times 1.00505^{10} - MT = 1.00505 + ... + 1.00505^{10}$$

(4) (1) LHS:
$$\sin 2x = \sin \frac{2\pi}{8} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

That is,
$$\sin 2x = \cos 2x$$
 when $x = \frac{\pi}{8}$.

 Ξ

Antount still owing after 5 years, .. The monthly represent is \$2117.25 to the nearest cont.

 $\hat{\mathbf{E}}$

: M=2117.7548571

... Asp = 190236.7605 $d_{50} = 250000 \times 1.0050 s^{60} - 2117.7545571 \times \frac{(1.0050 s^{60} - 0)}{(1.0050 s - 1)}$

A The attitution with owing after 5 years is \$190236,76 to the neurest cent, After 5 years, number of months needed to pay off remainder of loan at interest rate

 $\therefore M = \frac{(250000 \times 1.00505^{1/3}) \times 0.00505}{(1.00505^{1/3} - 1)}$ $= 250000 \times 1.00505^{140} - M_X \cdot \frac{(1.00505^{140} - 1)}{(1.100505 - 1)} = 0$

If the laan is to be repaid at the end of 15 years then $A_{800}\approx0$.

... 40 = 250000 x 1.00505 6 - 14 x (1.00505 6 - 1).