Quiz 6

(15 minutes on Tuesday, 27 Oct 2020)

- **1.** [12 points] Determine if the following statements are True or False (<u>no need</u> to show your work):
 - (a) If $y' = \sec x$ and y = 1 at x = 0, then $y = \ln(e|\sec x + \tan x|)$.
 - (b) If f(x) = 1 |x|, then $\int_{-1}^{1} f(x) dx = 2$.
 - (c) For any $\varepsilon > 0$, if $\delta = \varepsilon$, then $|x y| < \delta \implies |\sin x \sin y| < \varepsilon$ for all $x, y \in \mathbb{R}$.

Show your work for the questions below:

- 2. [10 points] Calculate the following indefinite integrals:
 - (a) $\int (2x^5 \sqrt[3]{6x+1}) dx$
 - (b) $\int x \sin x dx$ (hint: get the derivative of $x \cos x$)
- **3.** [12 points] Define $f(x) = x^2$ if $0 \le x < 1$ and f(1) > 1. Partition interval [0,1] by $P_n : 0 = x_0 < x_1 < \dots < x_n = 1$ with $x_k = k/n$, $k = 1, 2, \dots, n$.
 - (a) Determine the maximum Riemann sum $U_n = f(c_1)\Delta x_1 + \dots + f(c_n)\Delta x_n$ under P_n based on n and f(1), where $c_k \in [x_{k-1}, x_k]$ and $\Delta x_k = x_k x_{k-1}, \ k = 1, 2, \dots, n$. Does U_n depend on the value of f(1)?
 - (b) Find the limit of U_n as $n \to \infty$. Does this limit depend on the value of f(1)? Reminder: $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$.
- **4.** [6 points] A function f(x) is defined by

$$f(x) = \begin{cases} 3, & -1 \le x < 0 \\ \sqrt{4 - x^2}, & 0 \le x \le 2 \end{cases}$$

Use known formulae of areas to calculate $\int_{-1}^{2} f(x)dx$.