Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

symbole	symbole du	prononciation
usuel	DM	
0	r	fé
1	N	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	+	nau
10	\$	je
11	1	ei
Ш	X	ing/i ng
+	1	ti
_	Y	al
×	M	dag
÷	1	lag
\in	\$	so
\forall	K	per
П	₿	ber
>	M	man
> < < < < < < < < < < < < < < < < < < <	M	e
>	ΜX	maning
<u> </u>	ΜX	ehwing
#	*	naing
C	k	suz
D	4	zus

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}} \underset{x \to \mathbb{M}}{\overset{}{\boxtimes}} \mathbb{N} \uparrow \mathbf{3} \uparrow \frac{\mathbf{3}^{\, \flat}}{\, \flat \, !} \uparrow \dots \uparrow \frac{\mathbf{3}^{\, \mathbf{B}}}{\, \mathbf{B} \, !} + o \Big(\mathbf{3}^{\, \mathbf{B}} \Big)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème > : nombres algébrique et extensions de corps

Partie I. extensions de corps

N= $^{\circ}$ \cap . Premiers exemples a.

il est évidant que $\mathbb R$ est stable un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

$$\complement \, \mathbf{9}, \mathbf{4} \, \mathbf{\tilde{S}} \, \mathbf{R}, \mathbf{4} \, \mathbf{\tilde{S}} \, \mathbf{9} \, \mathbf{\hat{1}} \, \mathbf{1} \Leftrightarrow \mathbf{4} \, \mathbf{\tilde{S}} \, \mathrm{Vect}((\mathbb{N}, \mathbb{M}), (\mathbb{M}, i))$$

Ainsi comme (\mathbb{N}, \mathbb{N}) et (\mathbb{N}, i) ne sont pas colinéaire, $\mathrm{Vect}((\mathbb{N}, \mathbb{N}), (\mathbb{N}, i))$ forme une base de \mathbb{N} Ainsi $[\mathbb{N}: \mathbb{R}] \$