Tutorial letter A03/0/2024

NUMERICAL METHODS I APM2613

Year module

Department of Mathematical Sciences

IMPORTANT INFORMATION:

This tutorial letter contains Questions for Assessment 3 - Interpolating polynomials and least-squares polynomials. Please read the relevant chapters and lessons before you attempt the assignment.

Note: This is a fully online module and therefore it is only available on myUnisa.

BARCODE

Question 1 [25 marks]

Consider the following data:

x	f(x)	f'(x)
0.1	-0.62049958	3.58502082
0.2	-0.28398668	3.14033271
0.3	0.00660095	2.66668043
0.4	0.24842440	2.16529366

- (1.1) Find an approximation to f(0.27) using the following forms of interpolating polynomial
 - (a) the Lagrange form.
 - (b) the Newton forward divided difference form.
 - (c) the Hermite form.
- (1.2) Comment on your observed comparison of the results.

Question 2 [40 marks]

Consider the following data

x	f(x)
0.3	-1.1518
-0.4	0.7028
0.5	-1.4845
0.00	0.13534

- (2.1) Use a third degree Lagrange interpolating polynomial to approximate f(0.55).
- (2.2) Use a Newton's divided-difference polynomial that interpolates all the points to approximate f(0.2), using the following criteria:
 - (a) Without rearranging the nodes;
 - (b) Rearranging the nodes in increasing order.
- (2.3) Compare the results obtained in (2.2) above.
- (2.4) Use the least-squares polynomial of degree two to approximate f(0.2) and compute the error. (Your system of normal equations must be explicit).
- (2.5) Use the least-squares function of the form $y=\alpha e^{\beta x}$ to approximate f(0.2) and compute the error.
- (2.6) Plot the graphs of the approximating polynomials in (2.2) -(2.4). Your graphs must be proper computer produced graphs.

Question 3 [15 marks]

Construct the natural cubic spline for the data below and use it to approximate f(0.3):

$$(-0.5, 5), (0, 15), (0.5, 9)$$

Question 4 [20 marks]

Consider the following set of data points in the table below:

i	x	y
0	10	10
1	50	15
2	75	60
3	90	100
4	105	140
5	150	200
6	180	140
7	190	120
8	160	100
9	130	80

(4.1) Using guidepoints of your choice from the data set, construct the connected Bezier curve from the set of points.

(Hint: Divide the set of points into three parts)

- (4.2) Draw the connected Bezier polynomial.
- (4.3) Why is the graph smoothly connected at points 3 and 6?