

第三讲 质数与合数

例1. 如果一个质数既可以表示成两个质数之和,又可以表示成两个质数之差,求所有这样的质数.

解: 因为此质数大于 2, 所以必定为奇数.

设此质数为p,由己知条件 $p = p_1 + p_2 = p_3 - p_4$,考虑奇偶性,可知 p_1, p_2 中有一个等于2,且 $p_4 = 2$.

不妨设 $p_3 = 2$,于是 $p = p_1 + 2 = p_3 - 2$,可知 p_1, p_2, p_3 除以 3 的余数互不相同,必有一个是 3 的倍数,

只能是 3. 因此 $p_1 = 3$,即满足条件的质数只有 5.

例2. 求所有的质数 p,使得 2p+1 和 4p+1 都是质数.

解: 考虑 p 除以 3 的余数.

若p除以3余1,则2p+1是3的倍数,且大于3,矛盾;

若p除以3余2,则4p+1是3的倍数,且大于3,矛盾.

因此p只能是3的倍数,于是p=3,经验证,满足要求.

- **例3.** (1) 求所有的整数 n,使得 $2n^2 3n 9$ 是质数.
 - (2) 求所有的整数 n,使得 $2n^2-3n-9$ 可表示为 p^k 的形式,其中 p 为质数, k 为正整数.
 - (1)解: 若 $2n^2 3n 9 = (2n + 3)(n 3)$ 为质数,则必有 |2n + 3| = 1 或 |n 3| = 1 ,分情况讨论即得满足条件的 n 为 n = 4 或 n = -2 .
 - (2) 解: 若 $2n^2 3n 9 = (2n+3)(n-3) = p^k$, 则有 $|2n+3| = p^\alpha$, $|n-3| = p^\beta$,

注意到 $(2n+3,n-3)=(9,n-3)\in\{1,3,9\}$

若(2n+3,n-3)=1,则|2n+3|和|n-3|分别为 1 和 p^k ,讨论可得 n=4,-2;

若(2n+3,n-3)=3,则p=3,且|2n+3|和|n-3|分别为3和 3^{k-1} ,讨论可得无解;

若(2n+3,n-3)=9,则p=3,且|2n+3|和|n-3|分别为9和 3^{k-2} ,讨论可得n=-6,12.

综上,满足要求的所有整数为 4,-2,-6,12.

例4. 给定正整数 a、b 和奇质数 p,其中 a,b 满足 $\left(a,b\right)=1$.求证: $\left(a+b,\frac{a^p+b^p}{a+b}\right)=1$ 或 p. 解:注意到 p 为奇数,因此有 $\frac{a^p+b^p}{a+b}=a^{p-1}-a^{p-2}b+a^{p-3}b^2-\dots-ab^{p-2}+b^{p-1}$,

又由
$$b \equiv -a \pmod{a+b}$$
 可得 $\frac{a^p + b^p}{a+b} \equiv pa^{p-1} \pmod{a+b}$,
于是 $\left(a+b, \frac{a^p + b^p}{a+b}\right) = \left(a+b, pa^{p-1}\right)$
再由 $(a,a+b) = (a,b) = 1$,即得 $\left(a+b, pa^{p-1}\right) = (a+b, p) = 1$ 或 p .

- 例5. (1) 求证:存在连续100个正整数,它们都是合数.
 - (2) 求证:存在连续100个正整数,它们中恰好有5个质数.
 - (1) 证: 考虑连续 100 个正整数 $101!+k,k=2,3,\cdots 101$.

对每个 $2 \le k \le 101$, 101!+k 都是 k 的倍数且大于 k, 因此这 100 个正整数都是合数.

(2) 证:用函数 f(n)表示从n开始连续 100个正整数中质数的个数.

由(1)可知f(101!+2)=0.

注意到 f(1) > 5,而对任意正整数 n,都有 $|f(n+1) - f(n)| \le 1$.

因此一定存在正整数 m, 1 < m < 101! + 2, 使得 f(m) = 5.

- **例6.** (1) 求证: 存在无穷多个质数 p, 使得方程 $x^2 + x + 1 = py$ 有整数解(x, y).
 - (2) 求证:存在无穷多个质数 p,使得方程 $x^2 + x + 2 = py$ 有整数解(x, y).
 - (1) 证: 对 p=3, 方程有解(1,1).

反证法,假设只有有限个质数 p 满足题目条件,设所有满足条件的质数为 p_1, p_2, \cdots, p_n ,

 $\diamondsuit x = p_1 p_2 \cdots p_n > 1$,任取 $x^2 + x + 1$ 的一个质因子 p,

则由 $p_i \mid x$ 可知 $(p_i, x^2 + x + 1) = 1, 1 \le i \le n$, 因此 $p \notin \{p_1, p_2, \dots, p_n\}$.

但对 p, 题目方程有解 $\left(x, \frac{x^2+x+1}{p}\right)$, 矛盾.

命题得证.

(2) 证: 对p=2,方程有解(0,1).

反证法,假设只有有限个质数 p 满足题目条件,设所有满足条件的质数为 p_1, p_2, \dots, p_n ,其中 $p_1 = 2$, p_2, \dots, p_n 为奇数.

令 $x = 4p_1p_2 \cdots p_n$, 则 $x^2 + x + 2$ 不是 4 的倍数且大于 2 , 因此不是 2 的幂.

任取 $x^2 + x + 2$ 的一个奇质因子 p,则由 $p_i \mid x$ 可知 $(p_i, x^2 + x + 2) = 1, 2 \le i \le n$,

因此 $p \notin \{p_1, p_2, \dots, p_n\}$.

但对 p, 题目方程有解 $\left(x, \frac{x^2+x+2}{n}\right)$, 矛盾. 命题得证.

例7. 已知质数 p 和正整数 n 满足: $\prod_{k=1}^{n} (k^2+1)$ 能被 p^2 整除. 求证: p < 2n. 证: 由 $p^2 \mid \prod_{k=1}^{n} (k^2+1)$ 可知存在 i 使得 $p^2 \mid i^2+1$ 或存在 i < j 使得 $p \mid i^2+1$ 且 $p \mid j^2+1$.

若存在 i 使得 $p^2 | i^2 + 1$, 则有 $p^2 \le i^2 + 1 < (i+1)^2$, 因此 $p < i+1 \le n+1 \le 2n$.

若存在i < j 使得 $p | i^2 + 1$ 且 $p | j^2 + 1$,则 $p | j^2 - i^2$,即p | (j - i)(j + i),

于是有 p|j-i 或 p|j+i. 由 j-i < j+i < 2n 即得 p < 2n.

例8. 数列 $\{a_n\}$ 满足: $a_1=2$, a_{n+1} 为 $a_1a_2\cdots a_n+1$ 的最大质因子.证明:该数列中任何一项都不等于 5.

证:由定义可知 $a_2=3$,且对所有 $n\geq 3$, a_n 都是奇数且不等于 3.

反证法, 假设存在 n 使得 $a_n = 5$,

则 $a_1a_2\cdots a_{n-1}+1$ 的质因子只能都是 5,即 $a_1a_2\cdots a_{n-1}+1=5^m$.

但由 a_2, \cdots, a_{n-1} 都是奇数可知 $a_1 a_2 \cdots a_{n-1} + 1 \equiv 3 \pmod{4}$,而 $5^m \equiv 1 \pmod{4}$,矛盾.

命题得证.