Điện Tử Tương Tự

Analog Electronics

EE2110

Một số phần tử trong mạch điện tử

- 1. Điện Trở R
- 2. Tụ Điện C
 - ❖ ký hiệu :
 - ✓ C1: Tụ thường (không phân cực)
 - ✓ C2: Tụ hóa (Tụ phân cực)
 - ✓ C3: Tụ trị số biến thiên
 - Hình ảnh các loại tụ thường gặp

Một số phần tử trong mạch điện tử

C (pF) = Hai chữ số x 10^(Mũ số thứ 3)

3. Cuộn Cảm – L (mH)

❖ Ký hiệu

___________L2

______L3

Lưu ý:

U_L= L * di/dt

Khái niệm cơ bản về điốt

❖ Ký hiệu:

K: Cathode

Diode tunnel (Tunnel diode)

Diode quang (Photodiode)

- Cấu tạo điôt thông thường
 - > Tạp chất bán dẫn N:

Loại N: Semi (Si, Ge) + nhóm V

(timony, arsenic, and phosphorus)

:đa số

Lỗ trống (+): thiểu số

> Tạp chất bán dẫn P:

Loại P: Semi (Si, Ge) + nhóm III

(boron, gallium, and indium)

:Thiểu số e (-)

Lỗ trống (+): đa số

Hình ảnh tạp chất N, P

❖ Ghép P-N:

- ❖ V_D= 0.7Vdc (Si);
- ❖ V_D= 0.3Vdc (Ge)

- Xét địot khi có điện trường ngoài
 - Khi điện trường thuận

$$|_{\Sigma} = |_{\text{ng}} + I_D$$

> Khi điện trường ngược

$$I_{\Sigma} = I_{\text{ng}} - I_{D} << 0$$

$$I_{\Sigma} = I_{ng} - I_{D} \approx 0$$

❖ Đặc tính V-A

$$I_D=f(U_D)$$

$$I_D = I_s(e^{kV_D/T_K} - 1)$$

Is: Dòng ngược (mA)

$$k = 11,600/\eta$$
 with $\eta = 1$ for Ge

$$\eta = 2$$
 for Si

$$T_K = T_C + 273^{\circ}$$

$$V_D = 0.7 Vdc (Si)$$
;

$$V_D = 0.3 Vdc (Ge)$$

- ❖ Nguyên lý làm việc Diode chỉnh lưu :
 - ► U_{AK} > V_D : I_{AK} tăng nhanh: Điốt dẫn (thông)
 - Vz < U_{AK} < V_D : I_{AK} ≈ 0 : Điốt khóa (cắt)
 - ▶ UAK < Vz < 0: IAK tăng ngược chiều: Điốt bị đánh thủng</p>

❖ Đặc tính V-A Diode thay đổi theo nhiệt độ

❖ Mô hình hóa Điốt

$$r_{\rm av} = \frac{\Delta V_d}{\Delta I_d} \bigg|_{
m pt. \ to \ pt.}$$

Ứng dụng về diode chỉnh lưu:

❖ Mạch ghim giữ điện áp

Ứng dụng về diode chỉnh lưu:

Bài tập mạch ghim giữ điện áp (vẽ dạng điện áp đầu ra của các mạch sau)

Ứng dụng về diode chỉnh lưu:

- ❖ Mạch chỉnh lưu:
 - ➤ Mạch chỉnh lưu ½ ck

Nửa ck +

Nửa ck -

Mạch chỉnh lưu ½ Ck khi có ảnh hưởng tụ điện

half-wave

Mạch chỉnh lưu ½ Ck khi có ảnh hưởng tụ điện

Ứng dụng về diode chỉnh lưu:

- ❖ Mạch chỉnh lưu:
 - Mạch chỉnh lưu cầu

Nửa ck +

Nửa ck -

Bài tập Diode (vẽ dạng điện áp đầu ra của các mạch sau)

- ❖ Sơ đồ mạch ổn áp: Uv : Udc
- ❖ Xác định trang thái on/off của điốt ổn áp

❖ Xác định V

:

$$V = V_L = \frac{R_L V_i}{R + R_L}$$

- ❖ Nếu V_L < V_Z : ổn áp (Off)
- ❖ Nếu V_L > V_z : ổn áp (On)

♦ Nếu V_L > V_Z : ổn áp (On) :

$$V_L = V_Z$$

$$I_R = I_Z + I_L$$

$$I_Z = I_R - I_L$$

$$I_L = \frac{V_L}{R_I}$$
 and $I_R = \frac{V_R}{R} = \frac{V_i - V_L}{R}$

- ❖ Hướng dẫn tính toán thiết kế mạch ổn áp
 - ➤ Hãy thiết kế và tính toán mạch ổn áp nguồn (R=????)

Biết : Uv = 12Vdc +/- 10% ; Vz = 5.1Vdc; R_L = 2.2kΩ

❖ Bài tập tính toán mạch ổn áp :

Tính V_L , V_R , I_Z , and P_Z .

Với RL = $1.2k\Omega$ và RL = $3.3k\Omega$

LED- LED 7Seg – Led ma trận

❖ Ký hiệu :

Iled: dòng điện qua Led (5 – 10mA) Uled: điện áp Led tiêu thụ : 1.8- 2Vdc

LED- LED 7Seg – Led ma trận

- ❖ Sơ đồ mạch Led đơn:
- ❖ Cách tính toán lựa chọn điện trở:

$$R = \frac{(Vcc - Uled)}{Iled}$$

- ❖ Led 7 Seg 14 seg
 - > A chung (AC)
 - ➤ K chung (KC)

LED- LED 7Seg – Led ma trận

- ❖ Sơ đồ mạch Led 7seg:
- ❖ Mạch giải mã led 7seg:
 - Mạch giải mã bằng phần mềm) sử dụng bộ Vi xử lý, Vi điều khiển
 - Mạch giải mã bằng phần cứng sử dụng các IC

IC 7447 : Led A Chung IC 7448: Led K Chung

❖ Led ma trân

❖ Các biểu thức liên quan:

Muốn Transistor hoạt động : phải đặt các điện áp 1 chiều vào các cực của Transistor theo quy định (phân cực thuận)

$$I_E = I_C + I_B$$

I_в rất nhỏ (vài chục μA)

$$I_C \cong I_E$$

❖ Các biểu thức liên quan:

Hệ số Khuếch đai dòng điện: β

Hệ số Truyền đạt dòng điện :α

$$\beta_{\rm dc} = \frac{I_C}{I_B}$$

$$\alpha_{\rm dc} = \frac{I_C}{I_E}$$

Biểu thức quan hệ giữa :α, β

$$I_E = I_C + I_B$$

$$\frac{I_C}{\alpha} = I_C + \frac{I_C}{\beta}$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\beta = \alpha\beta + \alpha = (\beta + 1)\alpha$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

❖ Nguyên tắc hoạt động Transistor:

Dăt điện áp Ube > 0.7Vdc → I_B đủ lớn (vài chục μA) làm cho CΞ E → Uce ≈0, Ic, Ie ≠ 0 : Transistor dẫn (mở, thông)
 Đắt điện áp Ube < 0.7Vdc → I_B nhỏ (vài μA) làm cho C≠ E → Uce ≠ 0, Ic, Ie ≈ 0 : Transistor cắt (khóa, đóng)
 I_B Ià dòng điện đk : Transistor mở / cắt

PNP

- Đặt điện áp Ube < 0.7Vdc → I_B đủ lớn (vài chục µA) làm cho CΞ E → Uce ≈0, Ic, Ie ≠ 0 : Transistor dẫn (mở, thông)
- Đặt điện áp Ube > 0.7Vdc → I_B nhỏ (vài μA) làm cho C≠ E → Uce ≠ 0, Ic, Ie ≈ 0 : Transistor cắt (khóa, đóng)
- ♣ l_B là dòng điện đk : Transistor mở / cắt

❖ Đặc tính V-A: (transistor- NPN): Ic = f (Uce) khi I_B = const → họ đường cong

- ❖ V1 : Vùng bão hòa (Uce ≈ 0 , Ic tăng theo Ib)
- ❖ V2: Vùng thấp dòng (lc ≈ 0, không phụ thuộc Uce)
- ❖ V3 Vùng quá dòng (Ice tăng, không phụ thuộc Uce)
- ❖ V4 Vùng quá áp (Uce tăng, không phụ thuộc vào Ice)
- ❖ V5 Vùng quá công suất (quá dòng, quá áp)
- ❖ V6 Vùng làm việc ổn định của Transistor

Đường tải tĩnh và điểm làm việc:

- ❖ Đường tải tĩnh là đường thẳng thể hiện lc = f (Uce) khi xét mạch ở chế độ một chiều, không có tín hiệu đầu vào hoặc tín hiệu đầu vào nhỏ không đáng kể
- ❖ Điểm làm việc : Giao của đường tải tĩnh với V-A nằm trong V6

Bài tập:

❖ Cho sơ đồ mạch Transistor(dưới) và đặc tính V-A (trên):

> Dòng phản hồi:

$$V_{CC} - I'_{C}R_{C} - I_{B}R_{B} - V_{BE} - I_{E}R_{E} = 0$$

$$V_{CC} - \beta I_{B}R_{C} - I_{B}R_{B} - V_{BE} - \beta I_{B}R_{E} = 0$$

$$V_{CC} - V_{BE} - \beta I_{B}(R_{C} + R_{E}) - I_{B}R_{B} = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + \beta (R_C + R_E)}$$

> Mạch phân áp:

Mạch trở về dòng lb cố định:

$$E_{\rm Th} - I_B R_{\rm Th} - V_{BE} - I_E R_E = 0$$

$$I_B = \frac{E_{\rm Th} - V_{BE}}{R_{\rm Th} + (\beta + 1)R_E}$$

❖ Bài Tập 1: cho đặc tính V-A sau: tính toán thiết kế mạch ổn định dòng lb theo phương án dòng lb cố định:

Tính Vcc, Rc, Rb

❖ Giải BT1:

$$V_{CE} = V_{CC} = 20 \text{ V} \text{ at } I_C = 0 \text{ mA}$$

$$I_C = \frac{V_{CC}}{R_C} \text{ at } V_{CE} = 0 \text{ V}$$

$$R_C = \frac{V_{CC}}{I_C} = \frac{20 \text{ V}}{10 \text{ mA}} = 2 \text{ k}\Omega$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$R_B = \frac{V_{CC} - V_{BE}}{I_B} = \frac{20 \text{ V} - 0.7 \text{ V}}{25 \mu \text{A}} = 772 \text{ k}\Omega$$

❖ Bài Tập 2: Cho sơ đồ mạch như hình vẽ.

Tính Ic, Uce

❖ Giải BT2 : Cho sơ đồ mạch như hình vẽ.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + \beta(R_{C} + R_{E})}$$

$$= \frac{10 \text{ V} - 0.7 \text{ V}}{250 \text{ k}\Omega + (90)(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)}$$

$$= \frac{9.3 \text{ V}}{250 \text{ k}\Omega + 531 \text{ k}\Omega} = \frac{9.3 \text{ V}}{781 \text{ k}\Omega}$$

$$= 11.91 \mu\text{A}$$

$$I_{C} = \beta I_{B} = (90)(11.91 \mu\text{A})$$

$$= 1.07 \text{ mA}$$

$$V_{CE} = V_{CC} - I_{C}(R_{C} + R_{E})$$

$$= 10 \text{ V} - (1.07 \text{ mA})(4.7 \text{ k}\Omega + 1.2 \text{ k}\Omega)$$

$$= 10 \text{ V} - 6.31 \text{ V}$$

$$= 3.69 \text{ V}$$

❖ Bài Tập 3: Cho sơ đồ mạch như hình vẽ.

Tính Uce

❖ Các cách mắc Transistor

C Chung

E Chung

B Chung

Mô hình hóa Transistor

❖ Transistor chế độ xung

Sinh viên đọc tài liệu và trả lời các ý sau

- ❖ Cấu tạo chung JFET (n-JFET, p-JFET):
- ❖ Nguyên tắc hoạt động n-JFET, p-JFET:
- ❖ Đặt tính V_{GS} (I_D), V_{DS} (I_D):
- ❖ Cấu tạo chung MOSFET (n-MOSFET, p-MOSFET):
- ❖ Nguyên tắc hoạt động n-MOSFET, p-MOSFET)
- ❖ Đặt tính V_{GS} (I_D), V_{DS} (I_D):

❖ n-JFET:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}^*}{V_P}\right)^2$$
constants

$$R_i > 100 \text{ M}\Omega$$

 C_i : (1 – 10) pF

Trở kháng đầu vào và điện dung đầu vào

❖ n-MOSFET:

$$R_i > 10^{10} \Omega$$

 C_i : $(1 - 10) \text{ pF}$

Trở kháng đầu vào và điện dung đầu vào

Ôn định điện áp cực Gate (G) -1

Туре	Configuration	Pertinent Equations	Graphical Solution
JFET Fixed-bias	V_{GG}	$\begin{split} V_{GSQ} &= -V_{GG} \\ V_{DS} &= V_{DD} - I_D R_S \end{split}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
JFET Self-bias	R_{G}	$V_{GS} = -I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$Q\text{-point} = \begin{bmatrix} I_D \\ I_{DSS} \\I'_D \\ V_{P} \mid V'_{GS} \end{bmatrix} 0 \qquad V_{GS}$

Ôn định điện áp cực Gate (G) -2

Туре	Configuration	Pertinent Equations	Graphical Solution
JFET Voltage-divider bias	R_1 R_D R_D	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	$\begin{array}{c c} I_D \\ I_{DSS} \\ \hline V_G \\ \hline V_P & 0 & V_G & V_{GS} \end{array}$
JFET Common-gate	R_D	$V_{GS} = V_{SS} - I_D R_S$ $V_{DS} = V_{DD} + V_{SS} - I_D (R_D + R_S)$	$Q\text{-point} \qquad \begin{array}{c} I_D \\ I_{DSS} \\ \hline V_{SS} \\ \hline R_S \\ \end{array}$ $0 V_{SS} V_{GS}$

Ôn định điện áp cực Gate (G)-3

Туре	Configuration	Pertinent Equations	Graphical Solution
$ JFET (V_{GSQ} = 0 V) $		$V_{GSQ} = 0 \text{ V}$ $I_{DQ} = I_{DSS}$	$Q\text{-point} I_{DSS}$ $V_{GSQ} = 0 \text{ V}$ $V_{P} 0 V_{GS}$
JFET $(R_D = 0 \ \Omega)$	R_G	$V_{GS} = -I_D R_S$ $V_D = V_{DD}$ $V_S = I_D R_S$ $V_{DS} = V_{DD} - I_S R_S$	$Q\text{-point} - I_D$ $V_P \mid V'_{GS} \mid 0 \qquad V_{GS}$
Depletion-type MOSFET Fixed-bias	V_{DD} R_D	$V_{GSQ} = +V_{GG}$ $V_{DS} = V_{DD} - I_D R_S$	I_{DSS} Q -point V_{P} V_{GG} V_{GS}

Ôn định điện áp cực Gate (G)-4

Туре	Configuration	Pertinent Equations	Graphical Solution
Depletion-type MOSFET Voltage-divider bias	$\begin{bmatrix} R_1 & R_D \\ R_D \end{bmatrix}$	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_S R_S$ $V_{DS} = V_{DD} - I_D (R_D + R_S)$	V_{G} I_{D} I_{D} I_{D} I_{D} I_{D} I_{D} I_{D} I_{D} I_{D}
Enhancement type MOSFET Feedback configuration	R_G	$V_{GS} = V_{DS}$ $V_{GS} = V_{DD} - I_D R_D$	$I_{D(\text{on})} - I_{D}$ $Q\text{-point}$ $0 V_{GS(\text{Th})} V_{GS(\text{on})} $
Enhancement- type MOSFET Voltage-divider bias	$ \begin{array}{c} $	$V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$ $V_{GS} = V_G - I_D R_S$	$\begin{array}{c c} V_G & I_D \\ \hline Q\text{-point} \\ \hline 0 & V_{GS(\text{Th})} & V_G & V_{GS} \end{array}$

1.Mạch khuếch đại

- ❖ Đ/N: mạch KĐ là mạch điện tử dùng để biến đổi tín hiệu có biên độ đầu vào nhỏ thành tín hiệu đầu ra có biên độ lớn hơn.
- Łưu ý: Tín hiệu vào có thể gồm : Tín hiệu có ích + nhiễu Tín hiệu ra = (T/h vào + nhiễu) x A A : là hệ số khuếch đại

Mạch KĐ : luôn phải lưu ý đến chống nhiễu

❖ Nguồn cung cấp :±Vcc

- ❖ Một số thông số của mạch KĐ
 - \rightarrow Hệ số KĐ lúc hở mạch : A ($-\infty \div +\infty$)
 - ➤ Ii : Dòng điện đầu vào
 - ➤ Zi : Tổng trở đầu vào (→∞)
 - Vi : Điện áp đầu vào
 - > Io : Dòng điện đầu ra
 - ➤ Zo : Tổng trở đầu ra (→ -∞)
 - > Vo : Điện áp đầu ra

- ightharpoonup Hệ số KĐ dòng điện = $\frac{Io}{Ii}$
- ightharpoonup Hệ số KĐ điện áp = $\frac{Vo}{Vi}$

- ❖ Mạch phản hồi:
 - > Đ/N : Mạch P/h là mạch lấy 1 phần tín hiệu đầu ra đưa ngược trở về đầu vào làm cho tín hiệu đầu vào tăng lên hoặc giảm đi
 - ✓ Nếu tín hiệu đầu vào giảm đi: P/h âm (-)
 - (sử dụng trong các mạch KĐ)
 - √ Nếu tín hiệu đầu vào tăng lên: P/h dương (+) (sử dụng trong các mạch tạo dao động, Trigo smith)
- ❖ Mạch phản hồi âm (-):

$$K = X_F/Y$$

$$E = X - X_F = X - KY$$

$$(X - KY)A_1 = Y.$$

$$\frac{Y}{X} = \frac{A_1}{1 + KA_1}.$$

❖ Mạch phản hồi dương (+):

$$\frac{Y}{X} = \frac{A_1}{1 - KA_1}.$$

Mạch phản hồi

Input 1

Input 2

VN

Ud

Khuếch đại thuật toán: OPAM- OP

Input 1: P (+) Pos

Input 2: N (-) Neg

Output: Vo

Ud: điện áp sai lệch giữa P, N

 $Ud = VP-V_N \rightarrow 0$

Hệ số KĐ lúc hở mạch : A

A ($10^3 \div 10^6$) – Công nghiệp

A ($10^9 \div 10^{12}$) – y tế, quân sự,

trụ hàng không

Trỏ kháng vào : Lớn (vài trăm M__,

Trở kháng ra : nhỏ (vài Ω)

Nguyen Tuan Ninh - 3I - SEE - HUST

ninh.nguyentuan@hust.edu.vn

Output

Vo

- Một số IC OPAM : LM 324, TL 084, μA 741, OP07,
- ❖ Tín hiệu đầu vào không đảo

❖ Tín hiệu đầu vào đảo

❖ Tín hiệu đầu vào vi sai

❖ Hệ số khuếch đại đồng pha (CMRR- Common mode rejection ratio)

Khi tín hiệu ngược pha

$$V_d = V_{i_1} - V_{i_2}$$

Khi tín hiệu đồng pha

$$V_c = \frac{1}{2}(V_{i_1} + V_{i_2})$$

Điện áp đầu ra:

$$V_o = A_d V_d + A_c V_c$$

 V_d = difference voltage

 $V_c = \text{common voltage}$

 A_d = differential gain of the amplifier

 A_c = common-mode gain of the amplifier

❖ Hệ số khuếch đại đồng pha (CMRR- Common mode rejection ratio)

Khi tín hiệu ngược pha lý tưởng

$$V_{i_1} = -V_{i_2} = V_s$$

$$V_d = V_{i_1} - V_{i_2} = V_s - (-V_s) = 2V_s$$

$$V_c = \frac{1}{2}(V_{i_1} + V_{i_2}) = \frac{1}{2}[V_s + (-V_s)] = 0$$

$$V_o = A_d V_d + A_c V_c = A_d (2V_s) + 0 = 2 A_d V_s$$

Khi tín hiệu đồng pha lý tưởng

$$V_{i_1} = V_{i_2} = V_s$$

$$V_d = V_{i_1} - V_{i_2} = V_s - V_s = 0$$

$$V_c = \frac{1}{2}(V_{i_1} + V_{i_2}) = \frac{1}{2}(V_s + V_s) = V_s$$

$$V_o = A_d V_d + A_c V_c = A_d(0) + A_c V_s = A_c V_s$$

Lưu ý trường hợp:

$$V_{i_1} = -V_{i_2} = V_s = 0.5 \text{ V}$$

$$V_{i_1} = V_{i_2} = V_s = 1 \text{ V},$$

❖ Hệ số khuếch đại đồng pha (CMRR- Common mode rejection ratio)

$$CMRR = \frac{A_d}{A_c}$$

CMRR (log) = 20 log₁₀
$$\frac{A_d}{A_c}$$
 (dB)

$$V_o = A_d V_d + A_c V_c = A_d V_d \left(1 + \frac{A_c V_c}{A_d V_d} \right)$$

 $V_o = A_d V_d \left(1 + \frac{1}{\text{CMRR}} \frac{V_c}{V_d} \right)$

Bài tâp: Tính CMRR của hình sau:

Bài tâp: cho Vi1 = 150μ V , Vi2 = 140μ V , Ad = 4000. Tính Vo với các trường hợp

1.CMRR = 100

2.CMRR = 100000

❖ Đặc tính KĐ của OPAM

VD:

Cho Mạch KĐTT(Opam)

Hệ số KĐ Ku = 1000 lần, Vi = 1.5V. Tính Vo

Mạch Ứng Dụng KĐTT

- 1. Mạch KĐ Đảo
- $\blacksquare \quad \text{KDLT: } U_d = V_P V_N = 0$ $V_P = V_N \quad (2)$
- Theo sơ đồ mạch:

$$V_P = 0 \tag{3}$$

Thay (3) vào (2) vào (1)

$$\frac{U_V}{R_1} + \frac{U_r}{R_f} = 0$$

$$U_r = -\frac{R_f}{R_1} * U_v$$

$$U_r = K_U * U_v = -\frac{R_f}{R_1} * U_v$$

Mạch Ứng Dụng KĐTT

2. Mạch KĐ không Đảo

$$\sum_{i} I_{N} = I_{O} + I_{f} = 0$$

$$= \frac{0 - V_{N}}{R_{1}} + \frac{U_{r} - V_{N}}{R_{f}} = 0 (1)$$

Khuếch đại lý tưởng:

$$U_d = V_P - V_N = 0$$
$$V_p = V_N (2)$$

Theo sơ đồ mạch:

$$V_P = U_v$$
 (3)

$$V_P = U_v$$
 (3)
Thay (3) vào (2) vào (1):
$$\frac{0 - U_v}{R_1} + \frac{U_r - U_v}{R_f} = 0$$

$$U_r = \left(1 + \frac{R_f}{R_1}\right) * U_v$$
 Trong đó: $K_U = \left(1 + \frac{R_f}{R_1}\right) > 0$

Dao Dong Thach Anh (Crystal)

Mô hình hóa thạch anh

$$f_{\rm S} = \frac{1}{2\pi \sqrt{L_{\rm S}C_{\rm S}}}$$

$$f_{p} = \frac{1}{2\pi \sqrt{L_{S} \left(\frac{C_{p}C_{S}}{C_{p}+C_{S}} \right)}}$$

Crystal Oscillators Q-factor

$$Q = \frac{X_L}{R} = \frac{2\pi f L}{R}$$

$$L = 5,533 H;$$

$$C_P = 5pF;$$

$$C_s = 0.01 \text{ pF}$$

$$R_s = 50\Omega$$

Dao Dong Thach Anh (Crystal)

Sơ đồ mạch thạch anh $R_1 = 1M\Omega$ Schmitt Inverter Out Square Wave f (MHz) 33pF 5kΩ 22pF 1kΩ 15 500Ω 20 10pF 270Ω C₁ 30pF OSC1 CPU XT Microprocessor 1-20MHz