

Université Libre de Bruxelles

Faculty of Applied Science IRIDIA

INFO-H-421: Heuristic Optimization

Implementation exercise 1: IIA for PFSP with WT Objective

Authors Ooms Aurélien

Tuesday $8^{\rm th}$ April, 2014

Academic year 2013 - 2014

Abstract

This work presents an implementation as well as a statistical study of iterative improvement algorithms for the permutation flow-shop scheduling problem (PFSP) with weighted tardiness objective.

Contents

1	Preliminary Remarks		
	1.1 Randomness		
2	Iterative Improvement		
	2.1 Average relative percentage deviation from the best known solutions 2.1.1 Init 2.1.2 Pivoting 2.1.3 Neighborhood 2.1.4 Remarks 2.2 Average computation time 2.2.1 Init 2.2.2 Pivoting 2.2.3 Neighborhood 2.2.4 Remarks		
3	Variable Neighborhood Descent		
	3.1 Average relative percentage deviation from the best known solutions 3.1.1 Init		
4	Student t-test and Wilcoxon test 4.1 Notes		
5	Running time optimizations 5.1 Delta evaluation		
6	Use cases 6.1 Regular usage		
\mathbf{A}	Average relative percentage deviation and computation time		
В	Statistical tests on average relative percentage deviation 1		

1 Preliminary Remarks

1.1 Randomness

The default pseudo-randomn number generator from the C++11 standard library is used. The seed used for all results shown in this report is --seed 0.

1.2 Computer spec

```
mem 3.6~\mathrm{GB}
proc AMD Athlon(tm) II Neo K325 Dual-Core Processor \times 2
os Ubuntu 13.10 64 bits
```

1.3 Abbreviations used in tables

```
II
    ./run/pfsp-ii
    ./run/pfsp-vnd
    --init slack
 S
    --init random
 R
    --pivoting first
 F
    --pivoting best
    --neighborhood exchange
    --neighborhood insert
  Ι
 Τ
    --neighborhood transpose
    --ordering tei
TEI
TIE
    --ordering tie
```

 $\rm e.g.\ VSFTIE\ means$./run/pfsp-vnd --init slack --pivoting first --ordering tie.

2 Iterative Improvement

2.1 Average relative percentage deviation from the best known solutions

2.1.1 Init

When used with --neighborhood transpose, slack heuristic gives always better results than random permutation. For other neighborhoods, results are mitigated.

2.1.2 Pivoting

The first improvement approach seems to give globally better results.

2.1.3 Neighborhood

The transpose neighborhood is the least scoring one for all instances and results vary greatly depending on the initial generated solution (combination with slack heuristic giving a better final result than random permutation). This can be explained by the fact that the transpose neighborhood is too local.

The insert neighborhood seems to be the best candidate in terms of solution quality.

The exchange neighborhood lies not too far from the insert neighborhood with a reasonable relative percentage deviation.

2.1.4 Remarks

IIRFI and IISFI are the best algorithms for all instances.

2.2 Average computation time

2.2.1 Init

Except for the transpose neighborhood for which runs are too short, for the same combination of other parameters the slack heuristic produces faster runs than a random permutation.

2.2.2 Pivoting

The best improvement approach seems to give globally faster runs.

2.2.3 Neighborhood

The transpose neighborhood gives the fastest runs for all instances and all combinations of other parameters.

For the same combination of other parameters the insert neighborhood runs slower than the exchange neighborhood.

2.2.4 Remarks

 $\ensuremath{\mathsf{IIRFE}}$ and $\ensuremath{\mathsf{IIRFI}}$ are (in order) the slowest algorithms for all instances.

3 Variable Neighborhood Descent

3.1 Average relative percentage deviation from the best known solutions

3.1.1 Init

Cannot conclude without statistical tests.

3.1.2 Ordering

Cannot conclude without statistical tests.

3.2 Average computation time

3.2.1 Init

Slack heuristic produces shorter runs.

3.2.2 Ordering

Cannot conclude without statistical tests.

3.3 Comparison with Iterative Improvement

VND doesn't reach the solution quality obtained with IIRFI or IISFI but gives generally good results compared to the exchange neighborhood used alone.

4 Student t-test and Wilcoxon test

4.1 Notes

In Appendix B, both Student t-test and Wilcoxon test p-values are reported. Observations are based on the Wilcoxon test p-values. Observations based on Student t-test p-values could have been made for relative percentage deviation, making the hypothesis of a normal distribution.

4.2 Observations on the relative percentage deviation

See Table 19, Table 20, Table 21, Table 22, Table 23 and Table 24.

Depending on the instances compared, IIRFE, IISBI, IISFE, IISFI are often tested probably similar to the VND approaches.

VND approaches are tested probably relatively close to each other (depending on instance sizes).

4.3 Observations on the running time

See Table 25, Table 26, Table 27, Table 28, Table 29 and Table 30.

List of tuples often tested probably close to each other

- 1. IIRBT, IISFT, IISBT
- 2. IISFE, VRFTEI
- 3. IIRBI, VRFTIE

5 Running time optimizations

5.1 Delta evaluation

Only the difference between the neighbour and the current solution is evaluated.

5.2 Cache locality

For jobs \times machines matrices, a single array is allocated. Row $\mathbf i$ column $\mathbf j$ is accessed through $[\mathbf i^*\mathbf w + \mathbf j]$ subscripting where $\mathbf w$ is the number of columns. The evaluations functions try to read and write data sequentially.

5.3 Remarks on neighborhood ordering

For the first improvement pivoting approach, the neighborhood ordering seems to have a significant influence. Perturbations close to the end of the schedule have little influence on the solution quality and evaluates rapidly whereas perturbations close to the beginning of the schedule have a high influence on the solution quality and evaluates slowly. For this implementation quality solution has been emphasized and neighborhood walking techniques have been chosen accordingly. The possibility of random neighborhood walks has not been explored.

6 Use cases

6.1 Regular usage

Iterative improvement

```
# ./run/pfsp-ii -init slack -pivoting first -neighborhood insert - data/in/100x20_9 -v
         --init {slack, random}
     --pivoting {first, best}
 --neighborhood
                 {exchange, insert, transpose}
         --seed long int[] default [high res clock::now()]
  -v, --verbose verbose output
     -h, --help show help
Variable neighborhood descent
# ./run/pfsp-vnd -init random -ordering tie - data/in/100x20_9 -v
        --init {slack, random}
    --pivoting {first, best} default first
    --ordering {tie, tei}
        --seed
                long int[] default [high res clock::now()]
 -v, --verbose
                verbose output
    -h, --help show help
```

6.2 Generate all data

Output in data/dev, data/tim, data/test and data/out.

```
# do/all +mytestname
```

A Average relative percentage deviation and computation time

Table 1: avg rel % dev and computation time for 100x20 instances

alg	avg rel % dev	avg time
IIRBE	12.8909	3889 ms
IIRBI	10.7560	8473 ms
IIRBT	143.5449	52 ms
IIRFE	3.5779	20675 ms
IIRFI	1.4422	22761 ms
IIRFT	140.0989	72 ms
IISBE	10.5009	2912 ms
IISBI	5.6719	$5691 \mathrm{\ ms}$
IISBT	41.6100	40 ms
IISFE	5.1229	6638 ms
IISFI	1.8223	$14620~\mathrm{ms}$
IISFT	38.3003	49 ms
VRFTEI	4.1919	$6503~\mathrm{ms}$
VRFTIE	4.6870	10437 ms
VSFTEI	6.9544	3168 ms
VSFTIE	4.1647	$4570 \mathrm{\ ms}$

Table 2: avg rel % dev and computation time for 100x20 instances (sorted by dev)

alg	avg rel % dev	avg time
IIRFI	1.4422	22761 ms
IISFI	1.8223	$14620~\mathrm{ms}$
IIRFE	3.5779	20675 ms
VSFTIE	4.1647	4570 ms
VRFTEI	4.1919	$6503~\mathrm{ms}$
VRFTIE	4.6870	10437 ms
IISFE	5.1229	6638 ms
IISBI	5.6719	$5691 \mathrm{\ ms}$
VSFTEI	6.9544	$3168 \mathrm{\ ms}$
IISBE	10.5009	2912 ms
IIRBI	10.7560	8473 ms
IIRBE	12.8909	3889 ms
IISFT	38.3003	49 ms
IISBT	41.6100	40 ms
IIRFT	140.0989	72 ms
IIRBT	143.5449	52 ms

Table 3: avg rel % dev and computation time for 100x20 instances (sorted by time)

alg	avg rel % dev	avg time
IISBT	41.6100	40 ms
IISFT	38.3003	49 ms
IIRBT	143.5449	52 ms
IIRFT	140.0989	72 ms
IISBE	10.5009	2912 ms
VSFTEI	6.9544	$3168 \mathrm{\ ms}$
IIRBE	12.8909	3889 ms
VSFTIE	4.1647	4570 ms
IISBI	5.6719	$5691 \mathrm{\ ms}$
VRFTEI	4.1919	$6503~\mathrm{ms}$
IISFE	5.1229	6638 ms
IIRBI	10.7560	8473 ms
VRFTIE	4.6870	10437 ms
IISFI	1.8223	$14620 \mathrm{\ ms}$
IIRFE	3.5779	20675 ms
IIRFI	1.4422	22761 ms

Table 4: avg rel % dev and computation time for 50x20 instances

alg	avg rel % dev	avg time
IIRBE	59.2969	302 ms
IIRBI	49.3596	600 ms
IIRBT	1033.8080	4 ms
IIRFE	25.7903	$1013 \mathrm{\ ms}$
IIRFI	15.2501	$1293 \mathrm{\ ms}$
IIRFT	990.2279	6 ms
IISBE	50.8140	139 ms
IISBI	24.7393	309 ms
IISBT	144.9350	4 ms
IISFE	33.9047	258 ms
IISFI	17.8570	624 ms
IISFT	141.1087	6 ms
VRFTEI	20.9437	380 ms
VRFTIE	20.2999	524 ms
VSFTEI	22.7949	173 ms
VSFTIE	22.1499	$208 \mathrm{\ ms}$

Table 5: avg rel % dev and computation time for 50x20 instances (sorted by dev)

alg	avg rel % dev	avg time
IIRFI	15.2501	$1293 \mathrm{\ ms}$
IISFI	17.8570	624 ms
VRFTIE	20.2999	524 ms
VRFTEI	20.9437	380 ms
VSFTIE	22.1499	208 ms
VSFTEI	22.7949	173 ms
IISBI	24.7393	309 ms
IIRFE	25.7903	1013 ms
IISFE	33.9047	258 ms
IIRBI	49.3596	$600 \mathrm{\ ms}$
IISBE	50.8140	139 ms
IIRBE	59.2969	$302 \mathrm{\ ms}$
IISFT	141.1087	6 ms
IISBT	144.9350	4 ms
IIRFT	990.2279	6 ms
IIRBT	1033.8080	4 ms

Table 6: avg rel % dev and computation time for 50x20 instances (sorted by time)

alg	avg rel % dev	avg time
IISBT	144.9350	4 ms
IIRBT	1033.8080	4 ms
IISFT	141.1087	$6 \mathrm{\ ms}$
IIRFT	990.2279	6 ms
IISBE	50.8140	$139 \mathrm{\ ms}$
VSFTEI	22.7949	$173 \mathrm{\ ms}$
VSFTIE	22.1499	$208 \mathrm{\ ms}$
IISFE	33.9047	$258 \mathrm{\ ms}$
IIRBE	59.2969	$302 \mathrm{\ ms}$
IISBI	24.7393	309 ms
VRFTEI	20.9437	$380 \mathrm{\ ms}$
VRFTIE	20.2999	$524 \mathrm{\ ms}$
IIRBI	49.3596	$600 \mathrm{\ ms}$
IISFI	17.8570	$624 \mathrm{\ ms}$
IIRFE	25.7903	$1013 \mathrm{\ ms}$
IIRFI	15.2501	$1293 \mathrm{\ ms}$

Table 7: avg rel % dev and computation time for 60x20 instances

alg	avg rel % dev	avg time
IIRBE	28.6631	$567 \mathrm{\ ms}$
IIRBI	17.3015	$1245 \mathrm{\ ms}$
IIRBT	346.7143	8 ms
IIRFE	11.7075	$2183 \mathrm{\ ms}$
IIRFI	5.6391	$2687 \mathrm{\ ms}$
IIRFT	337.2030	$13 \mathrm{\ ms}$
IISBE	26.1016	321 ms
IISBI	11.0622	694 ms
IISBT	87.5727	10 ms
IISFE	18.7445	692 ms
IISFI	7.4053	$1587 \mathrm{\ ms}$
IISFT	86.9753	9 ms
VRFTEI	8.2510	902 ms
VRFTIE	9.4924	$1223 \mathrm{\ ms}$
VSFTEI	11.0565	510 ms
VSFTIE	11.4802	495 ms

Table 8: avg rel % dev and computation time for 60x20 instances (sorted by dev)

alg	avg rel % dev	avg time
IIRFI	5.6391	$2687 \mathrm{\ ms}$
IISFI	7.4053	$1587 \mathrm{\ ms}$
VRFTEI	8.2510	902 ms
VRFTIE	9.4924	1223 ms
VSFTEI	11.0565	510 ms
IISBI	11.0622	694 ms
VSFTIE	11.4802	495 ms
IIRFE	11.7075	2183 ms
IIRBI	17.3015	$1245~\mathrm{ms}$
IISFE	18.7445	692 ms
IISBE	26.1016	321 ms
IIRBE	28.6631	$567 \mathrm{\ ms}$
IISFT	86.9753	9 ms
IISBT	87.5727	10 ms
IIRFT	337.2030	13 ms
IIRBT	346.7143	8 ms

Table 9: avg rel % dev and computation time for 60x20 instances (sorted by time)

alg	avg rel % dev	avg time
IIRBT	346.7143	8 ms
IISFT	86.9753	9 ms
IISBT	87.5727	10 ms
IIRFT	337.2030	13 ms
IISBE	26.1016	321 ms
VSFTIE	11.4802	495 ms
VSFTEI	11.0565	510 ms
IIRBE	28.6631	$567 \mathrm{\ ms}$
IISFE	18.7445	692 ms
IISBI	11.0622	694 ms
VRFTEI	8.2510	902 ms
VRFTIE	9.4924	$1223 \mathrm{\ ms}$
IIRBI	17.3015	1245 ms
IISFI	7.4053	$1587 \mathrm{\ ms}$
IIRFE	11.7075	2183 ms
IIRFI	5.6391	2687 ms

Table 10: avg rel % dev and computation time for 70x20 instances

alg	avg rel % dev	avg time
IIRBE	22.7553	$1062 \mathrm{\ ms}$
IIRBI	18.4159	2295 ms
IIRBT	282.1761	14 ms
IIRFE	11.5822	4131 ms
IIRFI	3.2664	$5667 \mathrm{\ ms}$
IIRFT	276.0339	21 ms
IISBE	23.8240	656 ms
IISBI	12.5178	$1258 \mathrm{\ ms}$
IISBT	79.7734	16 ms
IISFE	13.6888	$1567 \mathrm{\ ms}$
IISFI	4.9066	3317 ms
IISFT	72.7923	19 ms
VRFTEI	12.2226	$1523~\mathrm{ms}$
VRFTIE	7.7359	2372 ms
VSFTEI	13.0754	872 ms
VSFTIE	7.9641	1120 ms

Table 11: avg rel % dev and computation time for $70\mathrm{x}20$ instances (sorted by dev)

alg	avg rel % dev	avg time
IIRFI	3.2664	$5667 \mathrm{\ ms}$
IISFI	4.9066	3317 ms
VRFTIE	7.7359	2372 ms
VSFTIE	7.9641	1120 ms
IIRFE	11.5822	4131 ms
VRFTEI	12.2226	$1523~\mathrm{ms}$
IISBI	12.5178	$1258 \mathrm{\ ms}$
VSFTEI	13.0754	872 ms
IISFE	13.6888	$1567 \mathrm{\ ms}$
IIRBI	18.4159	2295 ms
IIRBE	22.7553	$1062~\mathrm{ms}$
IISBE	23.8240	656 ms
IISFT	72.7923	19 ms
IISBT	79.7734	16 ms
IIRFT	276.0339	21 ms
IIRBT	282.1761	14 ms

Table 12: avg rel % dev and computation time for 70x20 instances (sorted by time)

alg	avg rel % dev	avg time
IIRBT	282.1761	14 ms
IISBT	79.7734	16 ms
IISFT	72.7923	19 ms
IIRFT	276.0339	21 ms
IISBE	23.8240	656 ms
VSFTEI	13.0754	872 ms
IIRBE	22.7553	$1062 \mathrm{\ ms}$
VSFTIE	7.9641	1120 ms
IISBI	12.5178	$1258 \mathrm{\ ms}$
VRFTEI	12.2226	$1523~\mathrm{ms}$
IISFE	13.6888	$1567 \mathrm{\ ms}$
IIRBI	18.4159	2295 ms
VRFTIE	7.7359	2372 ms
IISFI	4.9066	3317 ms
IIRFE	11.5822	4131 ms
IIRFI	3.2664	5667 ms

Table 13: avg rel % dev and computation time for 80 x 20 instances

alg	avg rel % dev	avg time
IIRBE	22.7754	$1589 \mathrm{\ ms}$
IIRBI	14.9170	$3667 \mathrm{\ ms}$
IIRBT	201.0257	24 ms
IIRFE	8.2952	7078 ms
IIRFI	3.8864	9576 ms
IIRFT	195.8405	34 ms
IISBE	19.6925	$1047 \mathrm{\ ms}$
IISBI	11.0241	2203 ms
IISBT	58.9942	23 ms
IISFE	11.0078	2669 ms
IISFI	4.3316	5939 ms
IISFT	56.9208	25 ms
VRFTEI	7.4860	2759 ms
VRFTIE	9.4001	3865 ms
VSFTEI	7.5906	1536 ms
VSFTIE	6.6299	1962 ms

Table 14: avg rel % dev and computation time for 80x20 instances (sorted by dev)

alg	avg rel % dev	avg time
IIRFI	3.8864	9576 ms
IISFI	4.3316	5939 ms
VSFTIE	6.6299	$1962 \mathrm{\ ms}$
VRFTEI	7.4860	2759 ms
VSFTEI	7.5906	1536 ms
IIRFE	8.2952	$7078 \mathrm{\ ms}$
VRFTIE	9.4001	3865 ms
IISFE	11.0078	2669 ms
IISBI	11.0241	2203 ms
IIRBI	14.9170	$3667 \mathrm{\ ms}$
IISBE	19.6925	$1047~\mathrm{ms}$
IIRBE	22.7754	$1589 \mathrm{\ ms}$
IISFT	56.9208	$25 \mathrm{\ ms}$
IISBT	58.9942	23 ms
IIRFT	195.8405	34 ms
IIRBT	201.0257	24 ms

Table 15: avg rel % dev and computation time for 80x20 instances (sorted by time)

alg	avg rel % dev	avg time
IISBT	58.9942	23 ms
IIRBT	201.0257	24 ms
IISFT	56.9208	25 ms
IIRFT	195.8405	34 ms
IISBE	19.6925	$1047 \mathrm{\ ms}$
VSFTEI	7.5906	1536 ms
IIRBE	22.7754	$1589 \mathrm{\ ms}$
VSFTIE	6.6299	$1962 \mathrm{\ ms}$
IISBI	11.0241	2203 ms
IISFE	11.0078	2669 ms
VRFTEI	7.4860	2759 ms
IIRBI	14.9170	$3667 \mathrm{\ ms}$
VRFTIE	9.4001	3865 ms
IISFI	4.3316	5939 ms
IIRFE	8.2952	7078 ms
IIRFI	3.8864	9576 ms

Table 16: avg rel % dev and computation time for 90x20 instances

alg	avg rel % dev	avg time
IIRBE	15.2368	2607 ms
IIRBI	12.4893	5779 ms
IIRBT	160.2339	$38 \mathrm{\ ms}$
IIRFE	5.2240	12403 ms
IIRFI	2.5965	14820 ms
IIRFT	152.3347	54 ms
IISBE	14.5337	1675 ms
IISBI	8.6073	$3582~\mathrm{ms}$
IISBT	55.3209	36 ms
IISFE	8.2186	$4007 \mathrm{\ ms}$
IISFI	2.4010	9674 ms
IISFT	49.4902	38 ms
VRFTEI	5.7313	4584 ms
VRFTIE	5.7316	6610 ms
VSFTEI	8.2814	2200 ms
VSFTIE	3.7770	3155 ms

Table 17: avg rel % dev and computation time for 90x20 instances (sorted by dev)

alg	avg rel % dev	avg time
IISFI	2.4010	9674 ms
IIRFI	2.5965	14820 ms
VSFTIE	3.7770	3155 ms
IIRFE	5.2240	12403 ms
VRFTEI	5.7313	4584 ms
VRFTIE	5.7316	6610 ms
IISFE	8.2186	$4007 \mathrm{\ ms}$
VSFTEI	8.2814	2200 ms
IISBI	8.6073	3582 ms
IIRBI	12.4893	5779 ms
IISBE	14.5337	1675 ms
IIRBE	15.2368	2607 ms
IISFT	49.4902	38 ms
IISBT	55.3209	36 ms
IIRFT	152.3347	54 ms
IIRBT	160.2339	38 ms

Table 18: avg rel % dev and computation time for 90x20 instances (sorted by time)

alg	avg rel % dev	avg time
IISBT	55.3209	36 ms
IIRBT	160.2339	38 ms
IISFT	49.4902	$38 \mathrm{\ ms}$
IIRFT	152.3347	54 ms
IISBE	14.5337	$1675 \mathrm{\ ms}$
VSFTEI	8.2814	$2200 \mathrm{\ ms}$
IIRBE	15.2368	$2607 \mathrm{\ ms}$
VSFTIE	3.7770	3155 ms
IISBI	8.6073	3582 ms
IISFE	8.2186	$4007 \mathrm{\ ms}$
VRFTEI	5.7313	4584 ms
IIRBI	12.4893	5779 ms
VRFTIE	5.7316	$6610 \mathrm{\ ms}$
IISFI	2.4010	9674 ms
IIRFE	5.2240	12403 ms
IIRFI	2.5965	14820 ms

Statistical tests on average relative percentage deviation Μ

Table 19: Relative percentage deviation Student t-test and Wilcoxon test results for 100x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
10011	2.710e-01	1.524e-08	7.299e-06	9.121e-07	1.016e-08	2.685e-02	5.812e-04	1.345e-07	7.877e-07	8.000e-06	1.382e-07	7.797e-05	7.768e-05	7.835e-03	1.406e-04
IIRBE	3.750e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03	2.734e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	9.766e-03	1.953e-03
IGGII		1.245e-08	4.187e-04	3.503e-05	8.856e-09	8.318e-01	6.414e-03	1.243e-08	4.079e-03	6.356e-06	2.147e-07	1.780e-04	4.460e-04	8.312e-04	2.719e-06
IIKBI		1.953e-03	1.953e-03	1.953e-03	1.953e-03	8.457e-01	5.859e - 03	1.953e-03	9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TOOL			6.716e-09	6.484e-09	3.669e-02	9.167e-09	1.268e-08	1.684e-07	1.151e-08	1.177e-08	1.311e-07	1.231e-08	9.520e-09	6.346e-09	9.798e-09
IILDI			1.953e-03	1.953e-03	4.883e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
110				2.089e-03	4.719e-09	5.077e-05	4.458e-02	3.521e-09	1.150e-01	1.352e-01	1.574e-08	4.630e-01	2.435e-01	1.293e-02	5.366e-01
HEFE				5.859e-03	1.953e-03	1.953e-03	6.445e-02	1.953e-03	1.602e-01	8.398e-02	1.953e-03		4.922e-01	1.367e-02	9.219e-01
13 911					4.160e-09	1.089e-06	2.513e-03	2.875e-10	2.484e-03	7.081e-01	1.091e-09	1.489e-03	5.792e-03	6.210e-04	7.741e-03
IILLI					1.953e-03	1.953e-03	3.906e-03	1.953e-03	9.766e-03	4.316e-01	1.953e-03	5.859e-03	9.766e-03	1.953e-03	2.734e-02
TEGI						5.665e-09	8.383e-09	1.025e-07	8.389e-09	7.942e-09	6.886e-08	8.686e-09	6.998e-09	4.501e-09	6.820e-09
TIPLE						1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
110.011							2.246e-03	8.072e-09	3.344e-04	4.712e-06	2.172e-08	2.624e-04	8.200e-04	9.324e-03	9.774e-05
HSDE							5.859e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.367e-02	1.953e-03
10311								7.508e-09	7.040e-01	5.068e-03	2.898e-08	2.596e-01	4.658e-01	3.171e-01	2.172e-01
HSBI								1.953e-03	5.566e-01	9.766e-03	1.953e-03	1.934e-01	5.566e-01	2.754e-01	2.324e-01
тари									1.260e-08	1.288e-09	2.215e-02	1.379e-09	4.131e-09	4.390e-09	2.526e-09
Tacii									1.953e-03	1.953e-03	6.445e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TICEE										5.068e-03	2.364e-08	3.108e-01	6.394e-01	2.643e-01	3.856e-01
HOLE										9.766e-03	1.953e-03	4.316e-01	6.953e-01	2.754e-01	6.250e-01
TICEL											2.928e-09	1.704e-02	1.274e-02	2.193e-03	7.659e-03
IJSII											1.953e-03	1.367e-02	2.734e-02	1.953e-03	1.367e-02
TGET												6.471e-09	1.884e-08	8.078e-08	1.155e-08
IISEI												1.953e-03	1.953e-03	1.953e-03	1.953e-03
1777.777													5.878e-01	4.054e-02	9.657e-01
VELLEI													7.695e-01	3.711e-02	1.000e+00
VETTE														9.561e-02	5.217e-01
ALL THE														6.445e-02	4.922e-01
VCETEI															1.307e-02
VSF LEI															2.734e-02

Table 20: Relative percentage deviation Student t-test and Wilcoxon test results for 50x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
TODE	4.237e-01	2.105e-03	1.050e-03	2.888e-04	2.422e-03	4.176e-01	9.331e-03	1.136e-04	2.273e-02	4.383e-04	1.153e-03	3.938e-04	8.102e-04	5.302e-03	5.760e-04
IILDE	3.750e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.934e-01	9.766e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.906e-03	1.953e-03
IIBBI		2.042e-03	3.310e-02	9.663e-03	2.376e-03	9.005e-01	6.473e-02	7.896e-05	1.473e-01	2.763e-02	3.821e-04	2.944e-02	2.914e-02	4.773e-03	2.370e-02
		1.953e-03	9.766e-03	1.953e-03	1.953e-03	1.309e-01	1.953e-02	1.953e-03	1.309e-01	5.859e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.906e-03
TER			1.746e-03	1.649e-03	1.246e-02	2.102e-03	1.773e-03	3.078e-03	2.028e-03	1.726e-03	2.590e-03	1.786e-03	1.851e-03	1.931e-03	1.750e-03
TOTAL			1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIPFE				2.851e-04	2.002e-03	1.195e-03	8.242e-01	1.939e-05	1.346e-01	3.453e-02	7.125e-05	1.625e-01	2.223e-01	6.928e-01	2.367e-01
HILLE				1.953e-03	1.953e-03	3.906e-03	8.457e-01	1.953e-03	4.883e-02	2.734e-02	1.953e-03	3.223e-01	3.750e-01		3.223e-01
TEFT					1.887e-03	3.689e-04	1.055e-01	1.658e-05	4.674e-03	3.827e-01	4.462e-05	9.588e-02	2.941e-01	3.396e-01	1.458e-02
III					1.953e-03	1.953e-03	6.445e - 02	1.953e-03	1.367e-02	2.754e-01	1.953e-03	1.602e-01	2.324e-01	6.445e-02	3.711e-02
TEG						2.414e-03	2.026e-03	3.614e-03	2.338e-03	1.973e-03	3.046e-03	2.040e-03	2.115e-03	2.231e-03	2.007e-03
III						1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
110011							7.956e-06	1.524e-04	6.041e-02	4.349e-04	6.605e-04	5.566e-04	2.414e-04	2.784e-02	4.025e-03
HSDE							1.953e-03	1.953e-03	8.398e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	4.883e-02	3.906e-03
10011								4.882e-05	2.372e-01	2.058e-01	1.324e-04	5.017e-01	3.954e-01	8.571e-01	7.035e-01
IGGII								1.953e-03	2.754e-01	1.934e-01	1.953e-03	7.695e-01	6.250e-01	9.219e-01	8.457e-01
TEBT									1.039e-04	3.371e-05	7.044e-01	2.123e-05	3.938e-05	5.510e-05	3.188e-05
1001									1.953e-03	1.953e-03	6.953e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03
11C D.D.										7.951e-03	3.996e-04	3.635e-02	3.735e-02	6.278e-02	2.921e-02
HOLE										1.953e-02	1.953e-03	6.445e-02	1.953e-02	6.445e-02	1.953e-02
112.511											1.062e-04	3.966e-01	5.673e-01	5.752e-01	2.274e-01
IIGII											1.953e-03	3.223e-01	6.250e-01	3.223e-01	3.750e-01
TEET												9.295e-05	1.760e-04	2.172e-04	8.267e-05
1 1 2 1												1.953e-03	1.953e-03	1.953e-03	1.953e-03
17D D.T.D.I													8.011e-01	8.144e-01	7.479e-01
VEF LEI						_							8.457e-01	9.219e-01	9.219e-01
VEFTE														7.571e-01	7.111e-01
A ICE TIE														6.953e-01	1.000e+00
VSFTEI															9.212e-01 $6.250e-01$

Table 21: Relative percentage deviation Student t-test and Wilcoxon test results for 60x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
TIDDE	1.088e-02	1.531e-05	7.785e-04	1.762e-04	8.857e-06	5.297e-01	6.365e-04	1.351e-05	4.248e-03	8.829e-05	8.691e-05	1.454e-04	9.319e-04	2.005e-03	6.926e-04
HADE	9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	6.250e-01	1.953e-03	1.953e-03	5.859e-03	1.953e-03	1.953e-03	1.953e-03	5.859e-03	3.906e-03	1.953e-03
110 011		1.702e-05	6.335e-02	1.193e-03	9.910e-06	7.851e-03	1.163e-01	7.531e-06	5.632e-01	4.096e-03	5.040e-05	2.290e-03	8.653e-03	8.239e-02	1.858e-02
III		1.953e-03	6.445e-02	1.953e-03	1.953e-03	1.953e-02	8.398e-02	1.953e-03	9.219e-01	5.859e-03	1.953e-03	1.953e-03	9.766e-03	6.445e-02	4.883e-02
таап			1.818e-05	1.514e-05	2.360e-01	2.146e-05	1.628e-05	1.372e-04	1.445e-05	1.341e-05	1.823e-04	1.540e-05	1.544e-05	1.764e-05	1.483e-05
III			1.953e-03	1.953e-03	3.223e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIDEE				1.866e-03	1.105e-05	9.102e-05	7.374e-01	2.813e-06	4.483e-02	5.706e-02	1.190e-05	6.177e-02	3.345e-01	6.772e-01	9.351e-01
HILLE				3.906e-03	1.953e-03	1.953e-03	4.922e-01	1.953e-03	1.055e-01	4.883e-02	1.953e-03	6.445e-02	2.754e-01	5.566e-01	7.695e-01
ITDEL					9.408e-06	3.031e-07	1.928e-02	2.350e-06	1.192e-03	2.318e-01	1.029e-05	1.060e-01	2.052e-02	2.385e-02	2.151e-02
III					1.953e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	3.750e-01	1.953e-03	1.055e-01	2.734e-02	1.953e-02	9.766e-03
TIPET						1.328e-05	1.024e-05	8.720e-05	8.501e-06	8.282e-06	1.188e-04	9.320e-06	9.510e-06	1.079e-05	9.128e-06
IIPLI						1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
50511							1.239e-04	3.067e-05	3.208e-02	2.052e-06	1.306e-04	6.884e-06	1.021e-06	1.437e-05	5.026e-04
HSDE							1.953e-03	1.953e-03	6.445e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
112.01								3.926e-06	2.432e-02	2.464e-02	1.628e-05	2.502e-01	4.903e-01	9.978e-01	8.890e-01
IGGII								1.953e-03	9.766e-03	6.445e - 02	1.953e-03	1.934e-01	4.316e-01	8.457e-01	6.953e-01
тави									1.604e - 05	3.031e-06	8.624e-01	1.266e-06	4.423e-06	3.843e-06	5.824e-06
1921									1.953e-03	1.953e-03	6.953e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03
11C D.D.										2.584e-04	8.005e-05	2.694e - 03	6.378e-03	6.310e-02	5.017e-03
7.701										1.953e-03	1.953e-03	1.953e-03	9.766e-03	4.883e-02	5.859e-03
112.51											1.589e-05	6.365e-01	1.852e-01	1.504e-01	4.614e-02
11011											1.953e-03	6.953e-01	1.934e-01	1.602e-01	4.883e-02
TGEL												7.053e-06	2.286e-05	1.598e-05	3.296e-05
11351										_		1.953e-03	1.953e-03	1.953e-03	1.953e-03
VPFTEI													5.764e-01	2.669e-01	1.248e-01
V RF 1 E1													5.566e-01	2.754e-01	1.602e-01
VRFTIE														4.790e-01	4.337e-01
														3.223e-01	7.695e-01
VSFTEI															9.075e-01 $1.000e+00$

Table 22: Relative percentage deviation Student t-test and Wilcoxon test results for 70x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
IIRBE	4.802e-02	1.162e-06	2.569e-04	1.826e-06	1.234e-06	6.053e-01	2.531e-03	3.828e-07	4.157e-03	4.726e-05	1.669e-06	9.504e-04	2.198e-05	4.465e-03	2.234e-05
	1.367e-U2	1.953e-U3	3.906e-U3	1.953e-U3	1.953e-U3	4.922e-01	9.766e-U3	1.953e-U3	1.953e-03	1.953e-U3	I.953e-U3	T.953e-U3	1.953e-U3	5.859e-03	1.953e-U3
IIBBI		9.731e-07	4.090e-03	1.976e-05	1.069e-06	9.915e-02	4.887e-02	3.671e-07	3.688e-02	1.774e-04	1.842e-06	1.412e-02	2.819e-04	1.727e-02	1.841e-04
11111		1.953e-03	1.367e-02	1.953e-03	1.953e-03	1.602e-01	6.445e-02	1.953e-03	2.734e-02	1.953e-03	1.953e-03	2.734e-02	1.953e-03	2.734e-02	1.953e-03
TOOL			6.002e-07	4.380e-07	3.957e-02	1.093e-06	4.323e-07	7.573e-06	6.870e-07	5.121e-07	4.412e-06	5.514e-07	5.577e-07	6.608e-07	5.694e-07
TOWN			1.953e-03	1.953e-03	6.445e-02	1.953e-03									
TIDEE				3.350e-06	6.597e-07	1.990e-04	5.459e-01	1.616e-08	2.052e-01	2.225e-03	9.732e-08	6.513e-01	1.639e-02	4.280e-01	2.224e-03
III				1.953e-03	1.953e-03	1.953e-03	6.250e-01	1.953e-03	2.754e-01	1.953e-03	1.953e-03	8.457e-01	1.953e-02	6.250e-01	1.953e-03
TE					4.652e-07	1.008e-06	1.366e-04	1.072e-08	5.150e-06	2.959e-01	5.354e-08	1.025e-05	1.904e-04	5.106e-04	4.183e-04
III					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.750e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIDEL						1.161e-06	4.645e-07	8.887e-06	7.294e-07	5.449e-07	5.280e-06	5.804e-07	5.856e-07	7.100e-07	6.172e-07
IIULI					_	1.953e-03									
0011							2.730e-03	1.613e-07	9.739e-04	2.425e-05	1.127e-06	2.153e-04	1.016e-05	4.487e-03	1.397e-05
HSDE							9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	9.766e-03	1.953e-03
10011								9.832e-09	6.036e-01	2.375e-03	4.699e-08	8.837e-01	4.317e-02	7.857e-01	3.997e-02
IGGII								1.953e-03	6.250e-01	5.859e-03	1.953e-03	7.695e-01	4.883e-02	9.219e-01	6.445e-02
TGSII									7.166e-08	1.429e-08	1.540e-02	4.389e-08	3.659e-08	1.388e-08	3.203e-08
1921									1.953e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03
77571										2.626e-04	7.709e-07	1.302e-01	5.140e-05	7.157e-01	8.351e-04
HSFE										1.953e-03	1.953e-03	1.602e-01	1.953e-03	4.316e-01	1.953e-03
112.511											1.051e-07	2.180e-03	1.627e-01	4.541e-04	5.706e-02
IIGII											1.953e-03	3.906e-03	3.223e-01	1.953e-03	2.734e-02
FESTI												4.563e-07	2.649e-07	2.582e-07	2.153e-07
HSF I												1.953e-03	1.953e-03	1.953e-03	1.953e-03
170 071													3.083e-04	6.186e-01	3.844e-03
VEF IEI													1.953e-03	8.457e-01	3.906e-03
TETTE														2.467e-02	8.377e-01
VEF IIE														5.859e-03	9.219e-01
VSFTEI					_										2.173e-02
															a./ooe-no

Table 23: Relative percentage deviation Student t-test and Wilcoxon test results for 80x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
11.0	1.023e-03	5.018e-07	4.254e-05	1.666e-05	3.326e-07	2.318e-01	2.611e-04	1.621e-06	3.470e-04	2.035e-06	2.324e-06	2.979e-05	1.277e-04	1.631e-05	1.863e-05
IIRBE	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.750e-01	3.906e-03	1.953e-03	1.953e-03						
IGGII		3.666e-07	2.487e-03	1.303e-05	2.546e-07	6.311e-02	2.445e-02	1.644e-06	1.355e-02	5.893e-06	2.503e-06	3.741e-04	1.143e-02	6.523e-04	1.610e-04
III		1.953e-03	1.953e-03	1.953e-03	1.953e-03	4.883e-02	2.734e-02	1.953e-03	5.859e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-02	3.906e-03	1.953e-03
TOOL			3.341e-07	3.220e-07	3.368e-02	4.591e-07	4.841e-07	5.014e-06	3.318e-07	2.751e-07	3.713e-06	3.150e-07	2.157e-07	3.408e-07	4.089e-07
IIII			1.953e-03	1.953e-03	3.711e-02	1.953e-03	1.953e - 03	1.953e-03							
011				1.696e-03	2.404e-07	1.292e-04	4.879e-02	2.527e-07	3.822e-02	5.247e-04	4.154e-07	4.448e-01	3.823e-01	3.807e-01	3.044e-01
IILLE				3.906e-03	1.953e-03	1.953e-03	4.883e-02	1.953e-03	2.734e-02	1.953e-03	1.953e-03	3.750e-01	3.750e-01	4.316e-01	3.750e-01
TEGI					2.289e-07	2.427e-05	3.928e-04	2.361e-07	1.850e-05	6.612e-01	4.006e-07	2.020e-02	6.699e-03	1.274e-02	5.711e-02
III					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	7.695e-01	1.953e-03	3.711e-02	1.367e-02	1.367e-02	4.883e-02
TE						3.458e-07	3.615e-07	3.641e-06	2.403e-07	1.983e-07	2.607e-06	2.364e-07	1.485e-07	2.487e-07	2.935e-07
HPF I						1.953e-03	1.953e-03								
1011							3.857e-03	1.811e-06	2.081e-04	1.393e-05	4.590e-06	2.874e-05	1.319e-03	6.896e-05	1.348e-04
HSBE							9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03
TGDI								8.458e-07	9.916e-01	4.160e-06	1.514e-06	3.420e-03	4.318e-01	2.997e-02	1.218e-02
IGGII								1.953e-03	8.457e-01	1.953e-03	1.953e-03	5.859e-03	3.223e-01	4.883e-02	1.953e-02
тави									6.442e-07	1.599e-07	2.247e-02	3.126e-07	1.981e-07	3.382e-07	8.264e-08
TGCII									1.953e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	1.953e - 03	1.953e-03
00011										6.772e-05	1.192e-06	7.061e-03	2.914e-01	1.120e-02	6.836e-03
HOLE										1.953e-03	1.953e-03	5.859e-03	8.398e-02	9.766e-03	1.953e-02
13.511											2.600e-07	4.975e-04	5.602e-03	4.937e-03	8.980e-02
IIGII											1.953e-03	1.953e-03	1.953e-03	3.906e-03	1.934e-01
TGEL												5.905e-07	2.237e-07	5.321e-07	1.886e-07
11351												1.953e-03	1.953e-03	1.953e - 03	1.953e-03
17BETEL													2.813e-01	9.159e-01	5.094e-01
VEC IEI													4.316e-01		5.566e-01
VBFTE														2.486e-01	1.812e-01
111														4.922e-01	1.934e-01
VSFTEI															5.195e-01
10.															4.922e-01

Table 24: Relative percentage deviation Student t-test and Wilcoxon test results for 90x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
GGII	1.307e-01	4.570e-08	2.243e-06	2.742e-07	3.137e-08	6.574e-01	1.919e-03	2.810e-07	4.460e-06	1.110e-07	1.641e-06	6.462e-07	1.189e-05	4.742e-05	5.857e-07
IIRBE	1.602e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03	8.457e-01	1.953e-03								
IIRBI		4.421e-08	2.679e-04	4.974e-04	3.081e-08	2.059e-01	8.023e-02	2.127e-07	2.533e-02	1.945e-04	6.627e-07	8.784e-04	6.640e-04	6.566e-02	7.527e-04
		1.953e-03	1.953e-03	1.953e-03	1.953e-03	2.754e-01	4.883e-02	1.953e-03	3.711e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	4.883e-02	1.953e-03
IIRRT			3.184e-08	3.177e-08	2.748e-04	3.485e-08	5.426e-08	1.436e-07	4.314e-08	1.906e-08	3.939e-08	2.290e-08	2.082e-08	4.896e-08	3.372e-08
11111			1.953e-03												
TIPEE				1.651e-02	2.183e-08	5.428e-05	3.027e-02	2.730e-08	4.424e-03	4.007e-03	1.845e-07	4.366e-01	5.193e-01	2.463e-02	5.856e-02
IILE				2.734e-02	1.953e-03	1.953e-03	3.711e-02	1.953e-03	3.906e-03	9.766e-03	1.953e-03	4.316e-01	6.953e-01	2.734e-02	8.398e-02
ITDEL					2.227e-08	8.971e-06	3.371e-04	4.348e-08	2.602e-06	7.992e-01	2.874e-07	1.033e-02	1.726e-02	4.834e-05	9.990e-02
IILLI					1.953e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03		1.953e-03	3.711e-02	1.953e-02	1.953e-03	6.445e-02
TOOL						2.435e-08	3.908e-08	8.587e-08	3.051e-08	1.266e-08	2.142e-08	1.562e-08	1.322e-08	3.324e-08	2.280e-08
IILL						1.953e-03									
110011							4.514e-03	5.309e-08	9.671e-04	1.108e-05	5.393e-07	8.759e-05	6.046e-05	3.381e-03	5.464e-05
IISDE							9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.906e-03	1.953e-03	9.766e-03	1.953e-03
TIGDI								1.195e-07	7.905e-01	4.065e-04	7.558e-07	8.741e-02	5.297e-02	8.348e-01	6.182e-03
IISBI								1.953e-03		3.906e-03	1.953e-03	1.309e-01	6.445e-02		9.766e-03
TGSII									1.346e-07	1.299e-08	1.740e-03	2.618e-08	1.494e-08	9.236e-08	3.017e-08
1921									1.953e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
11011										1.559e-04	8.415e-07	2.209e-02	5.379e-02	9.380e-01	1.153e-04
IISFE										1.953e-03	1.953e-03	1.953e-02	4.883e-02		1.953e-03
TEEL											6.427e-08	5.193e-04	7.566e-04	6.247e-04	1.053e-01
TICIT											1.953e-03	1.953e-03	1.953e-03	1.953e-03	8.398e-02
TICET												1.342e-07	8.606e-08	8.799e-07	2.412e-07
TISET												1.953e-03	1.953e-03	1.953e-03	1.953e-03
TOPPET													9.997e-01	5.736e-02	4.898e-02
V NF 1 E1													8.457e-01	3.711e-02	6.445e-02
VDETE														1.043e-01	9.911e-02
A ICE TIE														1.055e-01	1.309e-01
VSFTEI															4.441e-05
															T.3006-00

Table 25: Computation time Student t-test and Wilcoxon test results for 100x20 instances

EI VSFTIE	-02 1.942e-01	-02 1.934e-01	-08 7.782e-06	-03 1.953e-03	-07 9.310e-07	-03 1.953e-03	-08 8.887e-08	-03 1.953e-03	-09 1.728e-08	-03 1.953e-03	-07 9.306e-07	-03 1.953e-03	-01 4.852e-03	-01 5.859e-03	-04 1.140e-01	-03 1.602e-01	-07 8.851e-07	-03 1.953e-03	-08 2.305e-04	-03 3.906e-03	-08 1.500e-07	-03 1.953e-03	-07 9.230e-07	-03 1.953e-03	-06 6.574e-05	-03 1.953e-03	-07 2.772e-05	-03 1.953e-03	2 5780-03
IE VSFTEI	-07 7.010e-02	-03 9.239e-02	-02 3.808e-08	-02 1.953e-03	-08 4.345e-07	-03 1.953e-03	-06 5.120e-08	-03 1.953e-03	-10 3.031e-09	-03 5.889e-03	-08 4.115e-07	-03 1.953e-03	-07 2.011e-01	-03 2.324e-01	-04 2.392e-04	-03 1.953e-03	-08 4.247e-07	-03 1.953e-03	-05 3.283e-08	-03 1.953e-03	-04 2.629e-08	-03 1.953e-03	-08 4.230e-07	-03 1.953e-03	-04 1.712e-06	-03 1.953e-03	5.017e-07	1.953e-03	
EI VRFTIE	-04 3.281e-07	-03 1.953e-03	-04 1.173e-02	-03 1.953e-02	-08 1.386e-08	-03 1.953e-03	-07 2.892e-06	-03 1.953e-03	-08 1.324e-10	-03 1.953e-03	-08 1.391e-08	-03 1.953e-03	-06 2.622e-07	-03 1.953e-03	-01 1.279e-04	-01 1.953e-03	-08 1.369e-08	-03 1.953e-03	-01 5.472e-05	-01 1.953e-03	-07 2.701e-04	-03 1.953e-03	-08 1.389e-08	-03 1.953e-03	5.175e-04	3.906e-03			
VRFTEI	e-09 2.591e-04	e-03 1.953e-03	9-11 1.530e-04	e-03 1.953e-03	e-01 1.851e-08	e-01 1.953e-03	e-08 2.419e-07	e-03 1.953e-03	e-10 5.548e-08	e-03 1.953e-03	e-02 1.761e-08	e-02 1.953e-03	e-08 4.440e-06	e-03 1.953e-03	e-08 1.837e-01	e-03 1.934e-01	e-02 1.822e-08	e-02 1.953e-03	e-10 7.375e-01	e-03 7.695e-01	e-09 7.216e-07	e-03 1.953e-03	1.899e-08	1.953e-03					
IISFT	1.905e-07 1.885e-09	1.953e-03 1.953e-03	4.506e-06 3.027e-11	1.953e-03 1.953e-03	.e-09 3.875e-01	953e-03 5.529e-01	'e-04 1.026e-08	1.953e-03 1.953e-03	3.753e-06 2.953e-10	1.953e-03 1.953e-03	4.122e-09 2.247e-02	1.953e-03 1.898e-02	3.916e-08 1.640e-08	1.953e-03 1.953e-03	'e-06 5.096e-08	1.953e-03 1.953e-03	4.228e-09 4.052e-02	1.953e-03 5.802e-02	'e-07 3.864e-10	1.953e-03 1.953e-03	4.366e-09	1.953e-03							
E IISFI	1.969e-05 1.903	1.953e-03 1.953	5.368e-04 4.500	3.906e-03 1.953	4.021e-10 4.251e-09	953e-03 1.953	2.382e-07 3.647e-04	1.953e-03 1.953	8.573e-09 3.753	1.953e-03 1.953	3.710e-10 4.122	1.953e-03 1.953	1.754e-07 3.916	.953e-03 1.953	9.162e-02 4.207e-06	1.602e-01 1.953	3.847e-10 4.228	1.953e-03 1.953	2.807e-07	1.953									
IISBT IISFE	1.917e-09 1.90	1.953e-03 1.9	2.868e-11 5.30	1.953e-03 3.90	8.267e-04 4.03	9.298e-03 1.9	1.021e-08 2.3	1.953e-03 1.93	2.907e-10 8.5'	1.953e-03 1.93	1.415e-03 3.7.	5.889e-03 1.9	1.769e-08 1.7	1.953e-03 1.9	5.287e-08 9.10	1.953e-03 1.60	3.8	1.9											
IISBI II	8.406e-04 1.	1.953e-03 1.	8.829e-05 2.	5.889e-03 1.	5.231e-08 8.	1.953e-03 9.	8.543e-07 1.	1.953e-03 1.	2.171e-08 2.	1.953e-03 1.	5.849e-08 1.	1.953e-03 5.	8.461e-06 1.	1.953e-03 1.	5.	1.													
IISBE	1.579e-03	1.953e-03	1.356e-08	1.953e-03	1.685e-08	1.953e-03	6.453e-08	1.953e-03	1.513e-09	1.953e-03	1.666e-08	1.953e-03																	
IIRFT	2.396e-09	1.953e-03	2.628e-11	1.953e-03	1.756e-02	2.484e-02	1.035e-08	1.953e-03	2.970e-10	1.953e-03																			
IIRFI	7.237e-10	1.953e-03	3.337e-08	1.953e-03	2.927e-10	1.953e-03	9.376e-02	8.398e-02																					
IIRFE	6.330e-08	1.953e-03	6.549e-07	1.953e-03	1.025e-08	1.953e-03																							
IIRBT	7 1.937e-09	3 1.953e-03	2.844e-11	1.953e-03																									
IIRBI	2.455e-07	1.953e-03																							H F		[i	ā	
	1	IIRBE		IIKBI	E	IIKBI	110	IIRFE	13 611	11111	110	III	1 1 1	HSBE	10.511	HSBI	TGSII	HSBI	110.011	HOLE	10011	HOLI	E	HOLI	770	VEFIE	VETTE	V D.F 1.1	

Table 26: Computation time Student t-test and Wilcoxon test results for 50x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IIRFT IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	IISFT VRFTEI VRFTIE VSFTEI VSFTIE	VSFTEI	VSFTIE
TIPPE	1.656e-06	1.263e-08	1.545e-06	1.513e-08	1.135e-08	8.581e-07	7.446e-01	1.476e-08	1.476e-01	3.994e-05	1.279e-08	5.195e-04	2.561e-05	8.430e-05	2.404e-03
III	1.953e-03	5.889e-03	1.953e-03	1.953e-03	5.889e-03	1.953e-03	6.953e-01	5.889e-03	1.934e-01	5.889e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03
IIRBI		3.966e-09 1 953e-03	4.275e-05 1 953e-03	8.370e-07 1 953e-03	3.777e-09 1 953e-03	5.180e-08 1 953e-03	1.973e-05	4.022e-09	1.676e-06 1.953e-03	5.265e-01 3.750e-01	4.018e-09	1.163e-04	4.855e-02	2.762e-07 1 953e-03	5.397e-07 1 953e-03
IIBBT			3.145e-08	7.917e-09	6.376e-02	1.216e-08	8.925e-09	1.000e+00	4.392e-06	2.440e-07	2.205e-02	6.670e-10	8.846e-10	2.078e-07	3.642e-07
111111			1.953e-03	1.953e-03	9.573e-02	5.889e-03	5.889e-03	9.428e-01	1.953e-03	1.953e-03	4.125e-02	5.889e-03	1.953e-03	1.953e-03	1.953e-03
TEFF				1.647e-02	2.960e-08	1.272e-07	1.478e-06	2.895e-08	5.003e-07	6.588e-04	3.038e-08	6.472e-06	3.659e-05	4.331e-07	2.219e-07
7 77 77				5.859e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
IIPEI					7.951e-09	1.607e-08	1.241e-07	8.446e-09	4.762e-08	2.437e-06	8.012e-09	80-9890'6	7.356e-07	3.148e-08	3.888e-08
111111					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIBET						1.902e-08	1.227e-08	6.131e-02	4.699e-06	2.664e-07		8.773e-10	1.153e-09	2.888e-07	4.339e-07
III						1.953e-03	1.953e-03	6.461e-02	1.953e-03	1.953e-03	6.768e-01	1.953e-03	1.953e-03	5.889e-03	1.953e-03
30311							2.872e-06	1.306e-08	1.245e-03	1.069e-06	1.388e-08	5.439e-09	3.249e-08	2.670e-02	5.761e-04
HSDE							1.953e-03	1.953e-03	5.859e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03	3.711e-02	8.004e-03
116.011								8.521e-09	1.578e-01	1.475e-04	7.885e-09	2.343e-03	7.511e-07	1.591e-04	3.604e-04
IISBI								5.889e-03	3.433e-01	1.953e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03	1.953e-03
тави									4.667e-06	2.548e-07	1.396e-02	7.834e-10	1.002e-09	2.836e-07	3.351e-07
1001									5.889e-03	1.953e-03	2.877e-02	1.953e-03	5.889e-03	1.953e-03	1.953e-03
33311										2.190e-06	4.954e-06	5.590e-03	1.581e-05	4.019e-03	1.514e-01
HOFE										1.953e-03	1.953e-03	1.953e-03	5.889e-03	5.859e-03	1.309e-01
112.51											2.601e-07	5.226e-04	6.227e-02	1.797e-06	5.826e-06
TICIL											1.953e-03	1.953e-03	8.398e-02	1.953e-03	1.953e-03
11011												7.063e-10	9.166e-10	3.249e-07	3.558e-07
IISEI												5.889e-03	1.953e-03	1.953e-03	1.953e-03
TOPPET													3.235e-04	7.888e-07	1.642e-06
VILL LEI													5.889e-03	5.889e-03	1.953e-03
VBFTIE														1.027e-07	2.973e-07
111														1.953e-03	1.953e-03
VSFTEI															1.158e-01 1.602e-01

Table 27: Computation time Student t-test and Wilcoxon test results for 60x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
G	4.518e-08	5.293e-09	9.211e-07	3.626e-10	6.049e-09	3.525e-04	3.223e-03	5.593e-09	1.150e-02	3.495e-07	4.868e-09	1.264e-04	2.587e-07	1.678e-01	1.297e-01
IIRBE	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	9.766e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	3.906e-03	1.953e-03	2.324e-01	1.533e-01
10 011		4.398e-11	6.715e-05	3.307e-08	4.128e-11	1.573e-08	1.023e-06	4.435e-11	2.553e-06	7.692e-03	4.175e-11	4.056e-05	6.802e-01	6.765e-08	1.211e-07
IIRBI		1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03	5.889e-03	1.367e-02	1.953e-03	1.953e-03	7.695e-01	1.953e-03	1.953e-03
TOOL			6.560e-08	6.422e-11	5.734e-03	6.814e-07	5.192e-09	2.259e-01	3.979e-08	3.827e-08	6.783e-01	9.421e-10	8.128e-09	1.890e-08	2.750e-06
IIII			1.953e-03	1.953e-03	1.867e-02	1.953e-03	1.953e-03	2.846e-01	1.953e-03	1.953e-03	4.133e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03
G				1.564e-03	6.536e-08	7.537e-07	1.149e-06	6.345e-08	2.265e-06	8.212e-03	6.247e-08	1.847e-06	1.493e-04	9.158e-07	1.907e-06
IILLE				9.766e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.367e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TE					7.004e-11	8.071e-10	8.099e-10	6.369e-11	1.055e-09	8.567e-06	5.993e-11	1.225e-09	1.152e-07	3.028e-10	1.971e-09
III					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIDET						8.964e-07	5.489e-09	2.011e-02	4.440e-08	3.990e-08	3.781e-02	9.426e-10	8.304e-09	2.359e-08	3.274e-06
IIULI						1.953e-03	1.953e-03	3.965e-02	1.953e-03	1.953e-03	4.643e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03
0.011							2.508e-05	8.076e-07	8.102e-05	7.527e-07	9.029e-07	3.737e-07	6.301e-07	3.126e-04	1.309e-02
HSBE							1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.367e-02
10011								5.026e-09	9.377e-01	8.596e-07	4.554e-09	4.612e-04	4.797e-06	1.878e-04	8.556e-03
IISBI								1.953e-03	1.000e + 00	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.220e-02
FGSII									4.155e-08	3.956e-08	4.770e-01	8.484e-10	8.491e-09	2.146e-08	3.235e-06
TOST									1.953e-03	1.953e-03	6.046e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TI OIL										3.913e-07	3.902e-08	1.997e-03	2.474e-05	3.147e-03	7.714e-03
HOLE										5.889e-03	1.953e-03	5.859e-03	1.953e-03	3.906e-03	1.367e-02
TGET											3.899e-08	1.701e-04	7.835e-04	9.300e-07	2.706e-07
IIGII											1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TGDI												8.026e-10	8.064e-09	1.912e-08	3.389e-06
TICLI												1.953e-03	1.953e-03	5.889e-03	1.953e-03
17D D.T.													3.228e-03	3.807e-06	3.969e-04
V DF 1 E1													5.859e-03	1.953e-03	3.906e-03
VETTE														4.138e-07	3.270e-07
A 14.														5.889e-03	1.953e-03
VSFTEI															7.937e-01
V OF LLL					_										

Table 28: Computation time Student t-test and Wilcoxon test results for 70x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT IISBE	IISBE	IISBI	IISBT IISFE		IISFI	IISFT	IISFI IISFT VRFTEI VRFTIE VSFTEI	VRFTIE	VSFTEI	VSFTIE
TIPPE	9.509e-07	1.580e-10	3.178e-08	1.195e-08	2.181e-10	1.840e-04	8.330e-03	1.454e-10	1.600e-03	6.176e-06	1.439e-10	1.560e-04	1.123e-06	3.734e-02	3.915e-01
HADE	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03	1.367e-02	1.953e-03	3.906e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	6.445e-02	4.316e-01
IIRBI		4.662e-09	7.460e-06	3.290e-07	5.164e-09	1.731e-07	1.677e-05	4.596e-09	1.442e-04	1.637e-03	4.759e-09	6.410e-06	5.498e-01	3.407e-07	1.108e-06
		1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.566e-01	1.953e-03	1.953e-03
Таап			1.978e-09	2.173e-09	4.566e-03	6.023e-07	1.128e-09	1.088e-01	1.625e-07	2.805e-07	2.973e-02	2.607e-09	6.076e-09	5.473e-06	1.009e-08
TOWER			1.953e-03	1.953e-03	1.240e-02	1.953e-03	1.953e-03	1.213e-01	1.953e-03	1.953e-03	8.113e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03
11 D D D				5.639e-06	2.023e-09	1.469e-08	1.483e-07	2.059e-09	1.625e-06	2.206e-02	2.069e-09	7.296e-08	1.964e-07	5.654e-08	1.753e-08
TILLE				1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	2.734e-02	1.953e-03	1.953e-03	1.953e-03	1.953e - 03	5.889e-03
TIPET					2.251e-09	9.110e-09	4.316e-08	2.169e-09	1.308e-07	5.058e - 05	2.156e-09	2.010e-08	1.773e-08	1.519e-08	1.283e-08
III					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e - 03	1.953e-03
TIBET						5.651e-07	1.269e-09	2.282e-01	1.728e-07	2.887e-07	7.536e-01	2.845e-09	6.270e-09	6.322e-06	1.219e-08
III						1.953e-03	1.953e-03	1.134e-01	1.953e-03	1.953e-03	4.136e-01	1.953e-03	1.953e-03	1.953e - 03	1.953e-03
20211							7.283e-05	7.001e-07	1.717e-06	5.957e-07	7.666e-07	5.034e-08	8.078e-08	6.902e-02	1.941e-04
IISDE							1.953e-03	5.889e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.602e-01	1.953e-03
ITEDI								1.061e-09	2.934e-02	2.003e-05	1.022e-09	3.322e-02	5.307e-05	8.459e-03	7.956e-02
IGSII								5.889e-03	3.711e-02	1.953e-03	1.953e-03	1.953e-02	1.953e-03	1.367e-02	1.309e-01
TEBI									1.616e-07	2.840e-07	1.115e-02	2.664e-09	6.314e-09	5.400e-06	1.054e-08
1									1.953e-03	1.953e-03	2.131e-02	1.953e-03	1.953e-03	1.953e - 03	1.953e-03
11271										1.694e-06	1.673e-07	6.202e-01	8.308e-04	3.852e-04	1.609e-03
IISFE										1.953e-03	1.953e-03	6.250e-01	1.953e-03	3.906e-03	5.859e-03
112511											2.891e-07	1.362e-05	5.557e-03	2.415e-06	2.822e-06
TIGIL											1.953e-03	1.953e-03	9.766e-03	1.953e - 03	1.953e-03
TGSII												2.803e-09	6.400e-09	5.692e-06	1.141e-08
1135.1												1.953e-03	1.953e-03	1.953e - 03	1.953e-03
TOPPET													3.300e-06	4.637e-05	3.122e-04
V DF 1 E1													1.953e-03	1.953e - 03	1.953e-03
VPETE														1.270e-06	4.341e-06
AILE TIE														1.953e-03	1.953e-03
VSFTEI															1.889e-02 1.367e-02

Table 29: Computation time Student t-test and Wilcoxon test results for 80x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT	IISFE	IISFI	IISFT	VRFTEI	VRFTIE	VSFTEI	VSFTIE
110 011	9.711e-09	3.154e-08	6.943e-09	1.080e-09	3.159e-08	5.328e-04	2.751e-03	3.242e-08	3.189e-04	8.509e-08	3.021e-08	8.106e-06	3.918e-05	7.418e-01	1.996e-02
IIKBE	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	6.953e-01	2.734e-02
10 011		4.472e-11	4.626e-07	7.319e-09	4.466e-11	3.605e-09	8.002e-07	3.798e-11	2.156e-04	2.697e-05	3.830e-11	3.367e-05	5.562e-01	1.767e-07	1.223e-08
IIRDI		1.953e-03	7.695e-01	1.953e-03	1.953e-03										
Tagii			5.302e-10	1.087e-10	8.743e-03	5.506e-09	2.240e-09	8.426e-01	2.055e-09	7.932e-10	7.329e-01	6.053e-09	6.433e-08	1.954e-07	2.459e-08
TOTH			5.889e-03	1.953e-03	1.437e-02	5.889e-03	1.953e-03	7.204e-01	1.953e-03	5.889e-03		1.953e-03	1.953e-03	1.953e-03	1.953e-03
TIDE				1.442e-06	5.260e-10	6.156e-09	3.156e-09	5.230e-10	7.274e-08	1.175e-02	5.633e-10	2.843e-09	5.040e-06	6.076e-09	3.851e-08
IILLE				1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.859e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
13 011					1.033e-10	9.280e-10	7.018e-10	1.093e-10	1.881e-09	2.918e-06	1.123e-10	1.105e-09	6.460e-08	1.853e-09	4.160e-09
11111					1.953e-03	1.953e-03	1.953e-03	1.953e-03							
TOOL						8.766e-09	2.550e-09	8.571e-02	2.110e-09	7.987e-10	9.632e-02	5.974e-09	6.590e-08	2.290e-07	2.875e-08
IILL						1.953e-03	1.953e-03	8.501e-02	1.953e-03	1.953e-03	6.445e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03
1100							1.484e-06	4.750e-09	6.113e-07	3.167e-09	4.246e-09	2.910e-06	1.205e-06	1.348e-03	9.226e-06
HSBE							1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03	1.953e-03	1.953e-03	1.953e-03
10011								1.904e-09	7.843e-03	6.778e-08	2.378e-09	3.227e-03	1.205e-04	5.348e-05	7.784e-02
IISBI								1.953e-03	2.734e-02	1.953e-03	1.953e-03	9.766e-03	1.953e-03	1.953e-03	1.602e-01
TGDI									2.082e-09	7.927e-10	5.855e-01	6.0000-09	6.818e-08	1.997e-07	2.209e-08
TGCII									1.953e-03	1.953e-03	3.319e-01	1.953e-03	1.953e-03	1.953e-03	1.953e-03
77.571										5.198e-08	2.179e-09	6.357e-01	1.737e-04	2.773e-05	2.747e-03
HSFE										1.953e-03	1.953e-03	1.000e + 00	1.953e-03	1.953e-03	9.766e-03
13.511											8.062e-10	4.780e-06	1.401e-05	4.425e-08	3.572e-07
HOLI											1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TGEL												6.430e-09	6.767e-08	2.110e-07	2.180e-08
TICIT												1.953e-03	1.953e-03	1.953e-03	1.953e-03
170071													5.249e-03	1.779e-05	4.028e-04
VEC IEI													3.906e-03	1.953e-03	1.953e-03
VBFTE														5.946e-06	1.653e-04
111														1.953e-03	1.953e-03
VSETEI															2.528e-03
V OF LEL															5.859e-03

Table 30: Computation time Student t-test and Wilcoxon test results for 90x20 instances

	IIRBI	IIRBT	IIRFE	IIRFI	IIRFT	IISBE	IISBI	IISBT IISFE	IISFE	IISFI	IISFT	VRFTEI VRFTIE		VSFTEI	VSFTIE
11001	5.456e-08	1.584e-09	9.800e-08	3.044e-09	1.788e-09	9.048e-05	5.371e-04	1.407e-09	5.648e-04	5.603e-09	1.320e-09	1.104e-05	2.026e-07	8.526e-02	2.422e-02
IILDE	1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.889e-03	1.953e-03	3.906e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	8.398e-02	3.711e-02
IIBBI		2.072e-10	3.053e-06	1.826e-07	2.231e-10	2.021e-08	4.401e-05	2.561e-10	2.456e-04	4.153e-07	2.479e-10	1.961e-04	2.371e-02	3.758e-07	4.925e-07
		1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	3.711e-02	1.953e-03	1.953e-03
T10 011			8.419e-09	1.287e-09	2.649e - 05	1.764e-09	1.822e-08	8.526e-01	2.195e-08	6.748e-11	9.778e-01	1.099e-10	2.814e-09	2.361e-06	1.891e-08
TITE			1.953e-03	1.953e-03	5.889e-03	1.953e-03	1.953e-03	9.593e-01	1.953e-03	1.953e-03		1.953e-03	1.953e-03	1.953e-03	1.953e-03
11 D D				1.094e-02	8.513e-09	2.903e-08	3.387e-07	8.109e-09	2.355e-07	6.478e-03	8.085e-09	5.571e-07	9.195e-06	1.203e-07	1.946e-07
HILLE				1.953e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.367e-02	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TEFT					1.290e-09	3.213e-09	1.246e-08	1.247e-09	4.613e-08	5.078e - 05	1.233e-09	8.670e-08	6.582e-08	2.165e-09	9.987e-09
TITLE					1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TT 0.11						1.695e-09	1.914e-08	3.001e-02	2.182e-08	6.766e-11	6.079e-02	1.090e-10	2.845e-09	2.464e-06	1.891e-08
TITLE						5.889e-03	1.953e-03	2.734e-02	1.953e-03	1.953e-03	8.528e-02	1.953e-03	1.953e-03	1.953e-03	5.889e-03
112.00							4.494e-06	1.632e-09	1.797e-06	4.802e-10	2.059e-09	1.860e-08	7.070e-08	5.391e-02	4.852e-05
HSDE							1.953e-03	1.953e-03	1.953e-03	1.953e-03	5.793e-03	1.953e-03	1.953e-03	8.398e-02	1.953e-03
ITCDI								1.746e-08	2.475e-01	8.054e-08	1.718e-08	3.974e-03	4.240e-05	2.376e-03	2.111e-01
IGCII								1.953e-03	2.408e-01	1.953e-03	1.953e-03	9.766e-03	1.953e-03	1.953e-03	2.754e-01
TESII									2.337e-08	7.983e-11	6.523e-01	1.513e-10	2.723e-09	2.464e-06	2.075e-08
1771									1.953e-03	1.953e-03		1.953e-03	1.953e-03	1.953e-03	1.953e-03
77.07.1										1.001e-08	2.452e-08	2.109e-02	1.182e-04	4.746e-05	6.471e-03
HOLE										1.953e-03	1.953e-03	1.953e-02	1.953e-03	1.953e-03	3.906e-03
112.511											7.830e-11	1.807e-09	3.017e-05	3.979e-10	2.014e-09
IIGII											1.953e-03	1.953e-03	1.953e-03	1.953e-03	1.953e-03
TEET												1.525e-10	2.688e-09	2.374e-06	2.124e-08
1.1011												1.953e-03	1.953e-03	1.953e-03	1.953e-03
17D D.T.D.I													1.923e-04	3.252e-06	1.749e-05
VEF LEI													1.953e-03	1.953e-03	1.953e-03
VETTE														4.334e-08	5.472e-08
A ICE TIE														1.953e-03	1.953e-03
VSFTEI															1.689e-04
															3.906e-03