Supervised Learning - FIFA 23

DTSA 5509 Final Project

Project Agenda

- 1. Project Introduction
- 2. Data Cleaning
- 3. Exploratory Data Analysis
- 4. Regression Modeling
- 5. Conclusion

1. Project Introduction

Dataset

- ☐ FIFA23 1st Edition Player Database
- ☐ From Kaggle Website
- ☐ Players' Information and Attributes

Goal

Predict Players' Market Value in the Game by Supervised Learning Methods

2. Data Cleaning

```
df = pd. read_csv(r'players_fifa23.csv')
print(df. shape)

(18539, 90)
```

Players ▶ 18539

Attributes > 90

2.1 Feature Description

IBRAHIMOVIC

5

Player	Detai	ils				AND					
PAC	58	SHO	85	PAS	76	DRI	77	DEF	34	PHY	72
Acceleration	55	Positioning	88	Vision	83	Agility	67	Interceptions	20	Jumping	77
Sprint Speed	61	Finishing	84	Crossing	71	Balance	51	Heading Acc.	82	Stamina	34
AcceleRATE Lengthy		Shot Power	86	FK. Acc.	74	Reactions	77	Def. Aware	28	Strength	85
		Long Shots	85	Short Pass	77	Ball Control	85	Stand Tackle	37	Aggression	84
		Volleys	87	Long Pass	72	Dribbling	75	Slide Tackle	24		
		Penalties	80	Curve	79	Composure	90				

95kg

MED/LOW Right

Flai

2.2 Cleaning Steps

Refill Missing Values

Remove Unrelevant

Delete Duplicates

	ID	Name	FullName	Age	Height	Weight	PhotoUrl	Nationality	Overall	Potential	 LMRating	CMRating
1469	246748	Aihen Muñoz	Aihen Muñoz Capellán	24	175	68	https://cdn.sofifa.net/players/246/748/23_60.png	Spain	75	80	 74	73
1480	248808	A. Hickey	Aaron Hickey	20	175	72	https://cdn.sofifa.net/players/248/808/23_60.png	Scotland	75	85	 73	72
1481	250842	J. Graterol	Joel Graterol	25	176	82	https://cdn.sofifa.net/players/250/842/23_60.png	Venezuela	75	81	 25	29
1485	251852	K. Adeyemi	Karim Adeyemi	20	177	75	https://cdn.sofifa.net/players/251/852/23_60.png	Germany	75	87	 76	68
1497	242663	S. Bornauw	Sebastiaan Bornauw	23	191	83	https://cdn.sofifa.net/players/242/663/23_60.png	Belgium	75	81	 62	63
1894	234999	Jean	Jean Paulo Fernandes Filho	26	188	97	https://cdn.sofifa.net/players/234/999/23_60.png	Brazil	75	78	 26	28
1895	244727	L. Tawamba	Léandre Tawamba	32	189	95	https://cdn.sofifa.net/players/244/727/23_60.png	Cameroon	75	75	 69	65
1896	228092	S. Berge	Sander Berge	24	195	96	https://cdn.sofifa.net/players/228/092/23_60.png	Norway	75	81	 73	75
1897	260599	A. Varela	Alan Varela	20	177	73	https://cdn.sofifa.net/players/260/599/23_60.png	Argentina	75	85	 72	75
1901	226045	J. Gallardo	Jesús Gallardo	27	176	73	https://cdn.sofifa.net/players/226/045/23_60.png	Mexico	75	75	 75	73

Create Dummy Variable

3. Exploratory Data Analysis

3.1 Checking Distribution

3.1 Checking Distribution

- The predicted values are heavily skewed to the left
- Most players show very low Market Values
- Close to normal distribution after log transformation

3.2 Checking Correlation

- General Rating is caculated by Specific Values
- We will remove the category ratings to avoid multicollinearity.

4. Regression Modeling

Linear Models

Linear

RIDGE

LASSO

Multi-Nominal

non-parametric Models

Decision Tree

KNN

SVM

Ensemble Models

Random Forest

Gradient Boosting

Adaboost

4.1 Linear Regression

- Although log transformation improves the performance
- Milan players still have an error rate around 40%.

R2 Score: 0.5013

MAE: 2430090

MSE: 21612327480836

Runing: 0.0554 s

R2 Score: 0.7453

MAE: 988093

MSE: 11036989963568

Runing: 0.0419 s

4.2 Multi-nominal Regression

- This model fits the market prices of players quite well.
- The error of Milan's players is mostly within 20%.

R2 Score: 0.7785

MAE: 1663694

MSE: 9601522135004

Running: 2.1948 s

R2 Score: 0.8763

MAE: 629980

MSE: 5359653235589

Running: 2.5147 s

4.3 KNN Regression

- **■** Log transformation make the result worse.
- Most of the predictions for Milan's players have a significant error.

R2 Score: 0.7428

MAE: 1094924

MSE: 11145900528328

Running: 3.535 s

R2 Score: 0.6932

MAE: 1122900

MSE: 13296664187068

Running: 3.164 s

4.4 Random Forest

- One of the best model based on the score and MAE
- But the predictions for high-value players are inaccurate.

R2 Score: 0.8933

MAE: 697402

MSE: 4623413076250

Running: 57.7969 s

R2 Score: 0.8769

MAE: 679591

MSE: 5334894705692

Running: 52.8876 s

4.5. Gradient Boosting Regression

- One of the best model based on the score and MAE
- The value of most of Milan's players has been predicted accurately.

R2 Score: 0.9147

MAE: 741671

MSE: 3694760751632

Running: 12.8189 s

R2 Score: 0.8883

MAE: 650905

MSE: 4839335412423

Running: 14.1918 s

Achieving a score of 90% and relatively accurate predictions.

- Present the performance of 10 models on the FIFA23 dataset
- > Sorted from best to worst according to their Score and MAE.

Gradient Boosting and Random Forest regression models achieve scores of around 90% and low MAE values on both the original and log-transformed targets.

The Multi-nominal and SVM regression models have the lowest MAE on log transformation, but they perform poorly on the original dataset.

Although Log transformation improves some performance, Linear regression model fits poorly on this dataset, and neither Ridge nor Lasso provide a significant improvement.

Decision Tree and KNN regression perform better on the original dataset than on the log-transformed dataset, which means that log transformation still loses some of the original data information.

Overall, the MAE of the models after log transformation is much lower, indicating that log transformation should be considered for variables with severe skewness when performing regression prediction.

5. Final Conclusion

No Free Lunch Theorem No perfect algorithm, only continuous experimentation to find the best method.

Ensemble Methods

Multiple weak models combined together often result in a stronger model.

Feature Engineering

Right feature leads to the successful result.

Supervised Learning - FIFA 23

Thank you for watching!

