Problem 3.31

(a) P(SAT) = P(S) n P(T)

True

If: Let Sond T be sets. Let $A \in P(S \cap T)$.

Then $A \subseteq S \cap T$ by def of power set. This

Implies that $A \subseteq S$ and $A \subseteq T$ by def of

Subset and intersection. But But then through $A \in P(S)$ and $A \in P(T)$ by def of power set.

Thus, $A \in P(S) \cap P(T)$ by def of intersection.

Therefore, $P(S \cap T) \subseteq P(S) \cap P(T)$.

Thm 3.42: Let EAX3xES be a collection of Sets.

PF: Let EARBARA be collection of sets,

(CE) Let $X \in (U A_x)^C$. Then $X \notin U A_x$. This implies that $X \notin A_x$ for all $X \notin A$ (by logical DeMorgan's).

But then $X \notin A_x$ for all $X \notin A$. Hence $X \notin A \land A_x$, and so $(U A_x)^C \in A \land A_x$.

(2) "Unzip" above. Note: Use of logical DeMogan's Shifts a sentence.