The QR iteration method for quasiseparable matrices

Y. Eidelman, I. Gohberg
School of Mathematical Sciences,
Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel-Aviv University, Ramat-Aviv 69978, Israel
eideyu@post.tau.ac.il, gohberg@post.tau.ac.il

V. Olshevsky

Department of Mathematics,
University of Connecticut, 196 Auditorium Road Unit 3009,
Storrs, Connecticut 06269-3009, USA
olshevsky@math.uconn.edu

1 Introduction

2 Definitions

Let $\{a_k\}, k=1,\ldots,N$ be a family of matrices of sizes $r_k \times r_{k-1}$. For positive integers $i,j,\ i>j$ define the operation a_{ij}^{\times} as follows: $a_{ij}^{\times}=a_{i-1}\cdots a_{j+1}$ for $i>j+1,\ a_{j+1,j}^{\times}=I_{r_j}$. Let $\{b_k\}, k=1,\ldots,N$ be a family of matrices of sizes $r_{k-1}\times r_k$. For positive integers $i,j,\ j>i$ define the operation b_{ij}^{\times} as follows: $b_{ij}^{\times}=b_{i+1}\cdots b_{j-1}$ for $j>i+1,\ b_{i,i+1}^{\times}=I_{r_i}$. It is easy to see that

$$a_{ik}^{\times} = a_{ij}^{\times} a_{j+1,k}^{\times}, \quad i > j \ge k \tag{2.1}$$

and

$$b_{kj}^{\times} = b_{k,i+1}^{\times} b_{i,j}^{\times}, \quad k \le i < j.$$
 (2.2)

Let $R = \{R_{ij}\}_{i,j=1}^N$ be a matrix with block entries R_{ij} of sizes $m_i \times n_j$. Assume that the entries of this matrix are represented in the form

$$R_{ij} = \begin{cases} p_i a_{ij}^{\times} q_j, & 1 \le j < i \le N, \\ d_i, & 1 \le i = j \le N, \\ g_i b_{ij}^{\times} h_j, & 1 \le i < j \le N. \end{cases}$$
(2.3)

Here p_i $(i=2,\ldots,N)$, q_j $(j=1,\ldots,N-1)$, a_k $(k=2,\ldots,N-1)$ are matrices of sizes $m_i \times r'_{i-1}$, $r'_j \times n_j$, $r'_k \times r'_{k-1}$ respectively; these elements are said to be lower generators of the matrix R with orders r'_k $(k=1,\ldots,N-1)$. The elements g_i $(i=1,\ldots,N-1)$

1), h_j (j = 2, ..., N), b_k (k = 2, ..., N-1) are matrices of sizes $m_i \times r_i''$, $r_{j-1}'' \times n_j$, $r_{k-1}'' \times r_k''$ respectively; these elements are said to be upper generators of the matrix R with orders r_k'' , (k = 1, ..., N-1). The matrices d_k (k = 1, ..., N) of sizes $m_k \times n_k$ are said to be diagonal entries of the matrix R. We define also orders of generators r_k' , r_k'' for k = 0, N setting them to be zeros. For scalar matrices the generators p_i , g_i and q_j , h_j are rows and columns of the corresponding sizes. Set $n_L = \max_{1 \le k \le N-1} r_k'$, $n_U = \max_{1 \le k \le N-1} r_k''$, the matrix R is said to be lower quasiseparable of order n_L and upper quasiseparable of order n_U or quasiseparable of order (n_L, n_U) .

Formally, we use some calculation rules with matrices that have blocks with dimension zero. Aside from obvious rules, the product of an "empty" matrix of dimension $m \times 0$ and an empty matrix of dimension $0 \times n$ is a matrix of dimension $m \times n$ with all elements equal to 0. All further rules of block matrix multiplication remain consistent. Such operations are used in MATLAB.

3 The QR factorization

Let $R = \{R_{ij}\}_{i,j=1}^N$ be a matrix with entries from \mathbb{C} with given generators. We present here an algorithm for computing generators and diagonal entries of unitary matrix Q and upper triangular matrix S such that R = QS. The main part of the algorithm is based on the following result from [1].

Theorem 3.1 Let $R = \{R_{ij}\}_{i,j=1}^{N}$ be a scalar matrix with lower generators p_i (i = 2, ..., N), q_j (j = 1, ..., N-1), a_k (k = 2, ..., N-1) of orders r'_k (k = 1, ..., N-1), upper generators g_i (i = 1, ..., N-1), h_j (j = 2, ..., N), b_k (k = 2, ..., N-1) of orders r''_k (k = 1, ..., N-1) and diagonal entries d_k (k = 1, ..., N). Let us define the numbers ρ_k via recursive relations $\rho_N = 0$, $\rho_{k-1} = \min\{1 + \rho_k, r'_{k-1}\}$, k = N, ..., 2, $\rho_0 = 0$ and the numbers $m_k = 1, n_k = 1, \nu_k = 1 + \rho_k - \rho_{k-1}$, $\rho'_k = r''_k + \rho_k$, k = 1, ..., N.

The matrix R admits the factorization

$$R = VUS$$
.

where V is a unitary matrix represented in the block lower triangular form with blocks of sizes $m_i \times \nu_j$ (i, j = 1, ..., N), lower generators $(p_V)_i$ (i = 2, ..., N), $(q_V)_j$ (j = 1, ..., N-1), $(a_V)_k$ (k = 2, ..., N-1) of orders ρ_k (k = 1, ..., N-1) and diagonal entries $(d_V)_k$ (k = 1, ..., N), U is a unitary matrix represented in the block upper triangular form with blocks of sizes $\nu_i \times n_j$ (i, j = 1, ..., N), upper generators $(g_U)_i$ (i = 1, ..., N-1), $(h_U)_j$ (j = 2, ..., N), $(b_U)_k$ (k = 2, ..., N-1) of orders ρ_k (k = 1, ..., N-1) and diagonal entries $(d_U)_k$ (k = 1, ..., N) and S is an upper triangular matrix with upper generators $(g_S)_i$ (i = 1, ..., N-1), $(h_S)_j$ (j = 2, ..., N), $(b_S)_k$ (k = 2, ..., N-1) of orders ρ'_k (k = 1, ..., N-1) and diagonal entries $(d_S)_k$ (k = 1, ..., N).

The generators and the diagonal entries of the matrices V, U, S are determined using the following algorithm.

1.1. If $r'_{N-1} > 0$ set

$$X_N = p_N, \quad (p_V)_N = 1, \quad (h_S)_N = \begin{bmatrix} h_N \\ d_N \end{bmatrix},$$

 $(d_v)_N$ to be 1×0 empty matrix, Δ_N to be 0×1 empty matrix; if $r'_{N-1} = 0$ set X_N to be 0×0 empty matrix, $(p_V)_N$ to be 1×0 empty matrix,

$$(d_V)_N = 1$$
, $(h_S)_N = h_N$, $\Delta_N = d_N$.

1.2. For k = N - 1, ..., 2 perform the following. Compute the QR factorization

$$\left[\begin{array}{c} p_k \\ X_{k+1}a_k \end{array}\right] = V_k \left(\begin{array}{c} X_k \\ 0 \end{array}\right),$$

where V_k is a unitary matrix of sizes $(1 + \rho_k) \times (1 + \rho_k)$, X_k is a matrix of sizes $\rho_{k-1} \times r'_{k-1}$. Determine matrices $(p_V)_k$, $(a_V)_k$, $(d_V)_k$, $(q_V)_k$ of sizes $1 \times \rho_{k-1}$, $\rho_k \times \rho_{k-1}$, $1 \times \nu_k$, $\rho_k \times \nu_k$ from the partition

$$V_k = \left[\begin{array}{cc} (p_V)_k & (d_V)_k \\ (a_V)_k & (q_V)_k \end{array} \right].$$

Compute

$$h'_{k} = (p_{V})_{k}^{*} d_{k} + (a_{V})_{k}^{*} X_{k+1} q_{k}, \quad (h_{S})_{k} = \begin{bmatrix} h_{k} \\ h'_{k} \end{bmatrix}, \quad (b_{S})_{k} = \begin{pmatrix} b_{k} & 0 \\ (p_{V}^{*})_{k} g_{k} & (a_{V})_{k}^{*} \end{bmatrix},$$

$$\Theta_{k} = \begin{bmatrix} (d_{V})_{k}^{*} g_{k} & (q_{V})_{k}^{*} \end{bmatrix}, \quad \Delta_{k} = (d_{V})_{k}^{*} d_{k} + (q_{V})_{k}^{*} X_{k+1} q_{k}.$$

1.3. Set $V_1 = I_{\nu_1}$ and define matrices $(d_V)_1$, $(q_V)_1$ of sizes $1 \times \rho_1$, $\rho_1 \times \nu_1$ from the partition

$$V_1 = \left[\begin{array}{c} (d_V)_1 \\ (q_V)_1 \end{array} \right];$$

compute

$$\Delta_1 = \begin{pmatrix} d_1 \\ X_2 q_1 \end{pmatrix}, \ \Theta_1 = \begin{pmatrix} g_1 & 0 \\ 0 & I_{\rho_1} \end{pmatrix}.$$

Thus we have computed generators and diagonal entries of the natrix V and generators $(b_S)_k$, $(h_S)_k$ of the matrix S.

2.1. Compute the QR factorization

$$\left[\begin{array}{cc} \Delta_1 & \Theta_1 \end{array}\right] = U_1 \left[\begin{array}{cc} (d_S)_1 & (g_S)_1 \\ 0 & Y_1 \end{array}\right],$$

where U_1 is a unitary matrix of sizes $\nu_1 \times \nu_1$, $(d_S)_1$ is a number, $(g_S)_1$ is a row of size ρ'_1 , Y_1 is a matrix of sizes $\rho_1 \times \rho'_1$. Determine matrices $(d_U)_1$, $(g_U)_1$ of sizes $\nu_1 \times 1$, $\nu_1 \times \rho'_1$ from the partition

$$U_1 = \left[(d_U)_1 (g_U)_1 \right].$$

2.2. For k = 2, ..., N-1 perform the following. Compute the QR factorization

$$\begin{bmatrix} Y_{k-1}(h_S)_k & Y_{k-1}(b_S)_k \\ \Delta_k & \Theta_k \end{bmatrix} = U_k \begin{bmatrix} (d_S)_k & (g_S)_k \\ 0 & Y_k \end{bmatrix},$$

where U_k is a unitary matrix of sizes $(1 + \rho_k) \times (1 + \rho_k)$, $(d_S)_k$ is a number, $(g_S)_k$ is a row of size ρ'_k , Y_k is a matrix of sizes $\rho_k \times \rho'_k$.

2.3. If $r'_{N-1} > 0$ set $(d_U)_N = 1$ and $(h_U)_N$ to be 0×1 empty matrix; if $r'_{N-1} = 0$ set $(h_U)_N = 1$ and $(d_U)_N$ to be 0×1 empty matrix; compute

$$(d_S)_N = \left[\begin{array}{c} Y_{N-1}(h_S)_N \\ \Delta_N \end{array} \right].$$

Thus we have computed generators and diagonal entries of the matrix U and generators $(g_S)_k$ and diagonal entries $(d_S)_k$ of the matrix S.

Theorem 3.1 yields the QR-factorization of the matrix R, i.e. representation of R in the form R = QS with the unitary matrix Q = UV and the upper triangular matrix S. For the next considerations we should obtain generators of the matrix Q explicitly.

Theorem 3.2 Let $R = \{R_{ij}\}_{i,j=1}^{N}$ be a scalar matrix with lower generators p_i (i = 2, ..., N), q_j (j = 1, ..., N-1), a_k (k = 2, ..., N-1) of orders r'_k (k = 1, ..., N-1), upper generators g_i (i = 1, ..., N-1), h_j (j = 2, ..., N), b_k (k = 2, ..., N-1) of orders r''_k (k = 1, ..., N-1) and diagonal entries d_k (k = 1, ..., N). Let us define the numbers ρ_k via recursive relations $\rho_N = 0$, $\rho_{k-1} = \min\{1 + \rho_k, r'_{k-1}\}$, k = N, ..., 2, $\rho_0 = 0$ and the numbers $\rho'_k = r''_k + \rho_k$, k = 1, ..., N.

The matrix R admits the factorization

$$R = QS$$
,

where Q is a unitary matrix with lower generators $(p_Q)_i$ (i = 2, ..., N), $(q_Q)_j$ (j = 1, ..., N-1), $(a_Q)_k$ (k = 2, ..., N-1) of orders ρ_k (k = 1, ..., N-1), upper generators $(g_Q)_i$ (i = 1, ..., N-1), $(h_Q)_j$ (j = 2, ..., N), $(b_Q)_k$ (k = 2, ..., N-1) of orders ρ_k (k = 1, ..., N-1) also and diagonal entries $(d_Q)_k$ (k = 1, ..., N) and S is an upper triangular matrix with upper generators $(g_S)_i$ (i = 1, ..., N-1), $(h_S)_j$ (j = 2, ..., N), $(b_S)_k$ (k = 2, ..., N-1) of orders ρ'_k (k = 1, ..., N-1) and diagonal entries $(d_S)_k$ (k = 1, ..., N).

The generators and the diagonal entries of the matrices Q and S are determined using the following algorithm.

- 1. Using the algorithm from Theorem 3.1 compute generators and diagonal entries of the upper triangular matrix S and of the unitary block triangular matrices V and U such that R = VUS.
- 2. Compute generators and diagonal entries of the matrix Q = VU using generators and diagonal entries of the matrices V, U as follows.
 - 2.1. Compute

$$z_1 = (q_V)_1(g_U)_1,$$

$$(q_Q)_1 = (q_V)_1 (d_U)_1, \quad \alpha_1 = (a_V)_2 z_1,$$
 (3.1)

$$(d_O)_1 = (d_V)_1(d_U)_1, \quad \beta_1 = z_1,$$
 (3.2)

$$(g_Q)_1 = (d_V)_1(g_U)_1, \quad \gamma_1 = z_1(b_U)_2.$$
 (3.3)

Set $(a_V)_N = 0_{0 \times \rho_{N-1}}, (b_V)_N = 0_{\rho_{N-1} \times 0}.$

2.2. For i = 2, ..., N-1 perform the following. Set

$$(p_Q)_i = (p_V)_i, \quad (a_Q)_i = (a_V)_i, \quad (b_Q)_i = (b_U)_i, \quad (h_Q)_i = (h_U)_i.$$

Compute

$$z_i = (q_V)_i (g_U)_i,$$

$$(q_Q)_i = (q_V)_i (d_U)_i + \alpha_{i-1}(h_U)_i, \quad \alpha_i = (a_V)_{i+1} [z_i + \alpha_{i-1}(b_U)_i], \tag{3.4}$$

$$(d_Q)_i = (d_V)_i (d_U)_i + (p_V)_i \beta_{i-1} (h_U)_i, \quad \beta_i = z_i + (a_V)_i \beta_{i-1} (b_U)_i, \tag{3.5}$$

$$(g_Q)_i = (d_V)_i (g_U)_i + (q_V)_i \gamma_{i-1}, \quad \gamma_i = [z_i + (a_V)_i \gamma_{i-1}](b_U)_{i+1}.$$
 (3.6)

2.3. Set $(p_Q)_N = (p_V)_N$, $(h_Q)_N = (h_U)_N$. Compute

$$(d_Q)_N = (d_V)_N (d_U)_N + (p_V)_N \beta_{N-1}(h_U)_N.$$
(3.7)

Proof. We should justify the second stage of the algorithm. Let $Q = \{Q_{ij}\}_{i,j=1}^N$, $V = \{V_{ij}\}_{i,j=1}^N$, $U = \{U_{ij}\}_{i,j=1}^N$. For $N \ge i > j \ge 1$ since U is an upper triangular matrix and $(p_V)_i$ (i = 2, ..., N), $(q_V)_j$ (j = 1, ..., N-1), $(a_V)_k$ (k = 2, ..., N-1) are lower generators of the matrix V we have

$$Q_{ij} = \sum_{k=1}^{j} V_{ik} U_{kj} = \sum_{k=1}^{j} (p_V)_i (a_V)_{ik}^{\times} (q_V)_k U_{kj}.$$

Using the equality (2.1) we obtain

$$Q_{ij} = (p_V)_i (a_V)_{ij}^{\times} (q_Q)_j, \quad 1 \le j < i \le N$$

where

$$(q_Q)_j = \sum_{k=1}^j (a_V)_{j+1,k}^{\times} (q_V)_k U_{kj}, \quad j = 1, \dots, N-1.$$
 (3.8)

This implies that the matrix Q has the lower generators $(p_Q)_i = (p_V)_i$ (i = 2, ..., N), $(a_Q)_k = (a_V)_k$ (k = 2, ..., N - 1) and $(q_Q)_j$ (j = 1, ..., N - 1) defined in (3.8). This in particular means that the orders ρ_k (k = 1, ..., N - 1) of these generators are the same as for the matrix V. Now we must check that the generators $(q_Q)_j$ satisfy the relations (3.1), (3.4). Indeed for j = 1 we have

$$(q_Q)_1 = (a_V)_{2,1}^{\times} (q_V)_1 U_{11} = (q_V)_1 (d_U)_1$$

and for $j=2,\ldots,N-1$ using $U_{jj}=(d_U)_j$ and the fact that $(g_U)_i$ $(i=1,\ldots,N-1)$, $(h_U)_j$ $(j=2,\ldots,N)$, $(b_U)_k$ $(k=2,\ldots,N-1)$ are the upper generators of the matrix U we get

$$(q_Q)_j = \sum_{k=1}^{j-1} (a_V)_{j+1,k}^{\times} (q_V)_k (g_U)_k (b_U)_{kj}^{\times} (h_U)_j + (a_V)_{j+1,j}^{\times} (q_V)_j (d_U)_j = \alpha_{j-1} (h_U)_j + (q_V)_j (d_U)_j,$$

where

$$\alpha_{j-1} = \sum_{k=1}^{j-1} (a_V)_{j+1,k}^{\times} (q_V)_k (g_U)_k (b_U)_{kj}^{\times}.$$

We have

$$\alpha_1 = (a_V)_{3,1}^{\times}(q_V)_1(g_U)_1(b_U)_{2,1}^{\times} = (a_V)_2(q_V)_1(g_U)_1$$

and using the relations (2.1), (2.2) we obtain

$$\alpha_{j} = \sum_{k=1}^{j} (a_{V})_{j+2,k}^{\times}(q_{V})_{k}(g_{U})_{k}(b_{U})_{k,j+1}^{\times}$$

$$= (a_{V})_{j+2,j}^{\times}(q_{V})_{j}(g_{U})_{j}(b_{U})_{j,j+1}^{\times} + (a_{V})_{j+1}(\sum_{k=1}^{j-1} (a_{V})_{j+1,k}^{\times}(q_{V})_{k}(g_{U})_{k}(b_{U})_{kj}^{\times})(b_{U})_{j}$$

$$= (a_{V})_{j+1}(q_{V})_{j}(g_{U})_{j} + (a_{V})_{j+1}\alpha_{j-1})(b_{U})_{j}$$

which completes the proof of (3.1), (3.4).

For diagonal entries of the matrix Q we have

$$(d_Q)_1 = Q_{11} = V_{11}U_{11} = (d_V)_1(d_U)_1$$

and for $i = 2, \ldots, N$

$$Q_{ii} = \sum_{k=1}^{i} V_{ik} U_{ki} = V_{ii} U_{ii} + \sum_{k=1}^{i-1} V_{ik} U_{ki} = (d_V)_i (d_U)_i + (p_V)_i \beta_{i-1} (h_U)_i,$$

where

$$\beta_{i-1} = \sum_{k=1}^{i-1} (a_V)_{ik}^{\times} (q_V)_k (g_U)_k (b_U)_{ki}^{\times}$$

We have $\beta_1 = (q_V)_1(g_U)_1$ and using the relations (2.1), (2.2) we obtain

$$\beta_{i} = \sum_{k=1}^{i} (a_{V})_{i+1,k}^{\times}(q_{V})_{k}(g_{U})_{k}(b_{U})_{k,i+1}^{\times}$$

$$= (a_{V})_{i+1,i}^{\times}(q_{V})_{i}(g_{U})_{i}(b_{U})_{i,i+1}^{\times} + (a_{V})_{i}(\sum_{k=1}^{j-1} (a_{V})_{ik}^{\times}(q_{V})_{k}(g_{U})_{k}(b_{U})_{ki}^{\times})(b_{U})_{i}$$

$$= (q_{V})_{i}(g_{U})_{i} + (a_{V})_{i}\beta_{i-1})(b_{U})_{i}$$

which completes the proof of (3.2), (3.5), (3.7).

The proof of the relations (3.3), (3.6) is performed in the same way as the proof of (3.1), (3.4). \Box

Corollary 3.3 Let R be a quasiseparable of order (n_L, n_U) matrix with scalar entries and let R = QS be the factorisation obtained in Theorem 3.2. Then the unitary matrix Q is quasiseparable of order (n_L, n_L) at most and the upper triangular matrix S is upper quasiseparable of order $n_L + n_U$ at most.

Proof. By Theorem 3.2 the matrix Q has lower and upper generators of the orders ρ_k (k = 1, ..., N-1) defined by the relations

$$\rho_N = 0, \ \rho_{k-1} = \min\{1 + \rho_k, \ r'_{k-1}\}, \ k = N, \dots, 2$$
(3.9)

and by Theorem 3.1 the matrix S has upper generators of orders

$$\rho_k' = r_k'' + \rho_k, \ k = 1, \dots, N - 1. \tag{3.10}$$

From the inequalities $r'_k \leq n_L \ (k=1,\ldots,N-1)$ and the relations 3.9 it follows that

$$\rho_k \le r_k' \le n_L, \quad k = 1, \dots, N - 1$$
(3.11)

and hence the maximal order of generators of the matrix Q is not greater than n_L . Next from (3.10) and (3.11) we conclude that the maximal order of upper generators of the matrix S is not greater than $n_L + n_U$. \square

4 The QR iteration

We consider the QR iteration algorithm for matrices defined via generators. In each iteration step for a given matrix R and for a given real number σ the new iterant R_1 is obtained by the rule

$$\begin{cases} R - \sigma I = QS, \\ R_1 = \sigma I + QR, \end{cases}$$

where Q is a unitary matrix and S is an upper triangular matrix. We show that the matrix R_1 has lower generators with the same order as the lower generators of the matrix Q and hence these orders are not greater that the corresponding generators of the matrix R and obtain an algorithm for computation of these generators and the diagonal entries of the matrix R_1 .

Theorem 4.1 Let $R = \{R_{ij}\}_{i,j=1}^{N}$ be a scalar matrix with lower generators p_i (i = 2, ..., N), q_j (j = 1, ..., N-1), a_k (k = 2, ..., N-1) of orders r'_k (k = 1, ..., N-1), upper generators g_i (i = 1, ..., N-1), h_j (j = 2, ..., N), b_k (k = 2, ..., N-1) of orders r''_k (k = 1, ..., N-1) and diagonal entries d_k (k = 1, ..., N) and σ be a real number. Let us define the numbers

 $\rho_k \text{ via recursive relations } \rho_N = 0, \ \rho_{k-1} = \min\{1 + \rho_k, \ r'_{k-1}\}, \ k = N, \dots, 2, \ \rho_0 = 0. \ Define the matrix <math>R_1$ by the rule

$$\begin{cases} R - \sigma I = QS, \\ R_1 = \sigma I + QR, \end{cases}$$

where Q is a unitary matrix and S is an upper triangular matrix.

The matrix R_1 has lower generators of orders ρ_k (k = 1, ..., N - 1). These lower generators $p_i^{(1)}$ (i = 2, ..., N), $q_j^{(1)}$ (j = 1, ..., N - 1), $a_k^{(1)}$ (k = 2, ..., N - 1) and the diagonal entries $d_k^{(1)}$ (k = 1, ..., N) of the matrix R are determined using the following algorithm.

- 1. Apply to the matrix $R \sigma I$, which has the same lower and upper generators as the matrix R and the diagonal entries $d_k \sigma$ (k = 1, ..., N), the algorithm from Theorem 3.2, to compute the lower generators $(p_Q)_i$ (i = 2, ..., N), $(q_Q)_j$ (j = 1, ..., N 1), $(a_Q)_k$ (k = 2, ..., N 1) and the diagonal entries $(d_Q)_k$ (k = 1, ..., N) of the matrix Q and the upper generators $(g_S)_i$ (i = 1, ..., N 1), $(h_S)_j$ (j = 2, ..., N), $(b_S)_k$ (k = 2, ..., N 1) and the diagonal entries $(d_S)_k$ (k = 1, ..., N) of the matrix S.
 - 2. Compute the lower generators and the diagonal entries of the matrix Q as follows.
 - 2.1. Compute

$$z_N = (h_S)_N (p_Q)_N,$$

$$p_N^{(1)} = (d_S)_N(p_Q)_N, \quad \alpha_N = z_N(a_Q)_{N-1},$$
 (4.1)

$$d_N^{(1)} = (d_S)_N (d_Q)_N, \quad \beta_N = z_N, \tag{4.2}$$

 $Set (a_Q)_1 = 0_{\rho_1 \times 0}.$

2.2. For i = N - 1, ..., 2 perform the following. Set

$$q_i^{(1)} = (q_Q)_i, \quad a_i^{(1)} = (a_Q)_i.$$

Compute

$$z_i = (h_S)_i (p_Q)_i,$$

$$p_i^{(1)} = (d_S)_i(p_Q)_i + (g_S)_i\alpha_{i+1}, \quad \alpha_i = [(h_S)_i(p_Q)_i + (b_S)_i\alpha_{i+1}](a_Q)_{i-1}, \tag{4.3}$$

$$d_i^{(1)} = (d_S)_i (d_Q)_i + (g_S)_i \beta_{i+1} (q_Q)_i, \quad \beta_i = z_i + (b_S)_i \beta_{i+1} (a_Q)_i. \tag{4.4}$$

2.3. Set $q_1^{(1)} = (q_Q)_1$. Compute

$$d_1^{(1)} = (d_S)_1(d_Q)_1 + (g_S)_1\beta_2(q_Q)_1. \tag{4.5}$$

*Proof.*We should justify the second stage of the algorithm. Let $Q = \{Q_{ij}\}_{i,j=1}^N$, $S = \{S_{ij}\}_{i,j=1}^N$ and $R_1 = \{R_{ij}^{(1)}\}_{i,j=1}^N$. For $N \ge i > j \ge 1$ using the fact S is an upper triangular matrix and $(p_Q)_i$ (i = 2, ..., N), $(q_Q)_j$ (j = 1, ..., N-1), $(a_Q)_k$ (k = 2, ..., N-1) are lower generators of the matrix Q we have

$$R_{ij}^{(1)} = \sum_{k=i}^{N} S_{ik} Q_{kj} = \sum_{k=i}^{N} S_{ik} (p_Q)_k (a_Q)_{kj}^{\times} (q_Q)_j.$$

Using the equality (2.1) we obtain

$$R_{ij}^{(1)} = p_i^{(1)}(a_Q)_{ij}^{\times}(q_Q)_j, \quad 1 \le j < i \le N$$

where

$$p_i^{(1)} = \sum_{k=i}^{N} S_{ik}(p_Q)_k(a_Q)_{k,i-1}^{\times}, \quad i = 2, \dots, N.$$
(4.6)

This implies that the matrix $R^{(1)}$ has the lower generators $a_k^{(1)} = (a_Q)_k$ (k = 2, ..., N - 1), $q_j^{(1)} = (q_Q)_j$ (j = 1, ..., N - 1) and $p^{(1)}$ (i = 2, ..., N) defined in (4.6). This in particular means that the orders ρ_k (k = 1, ..., N - 1) of these generators are the same as for the matrix Q. Now we must check that the generators $p_i^{(1)}$ satisfy the relations (4.1), (4.3). Indeed for i = N we have

$$p_N^{(1)} = S_{NN}(p_Q)_N(a_Q)_{N,N-1}^{\times} = (d_S)_N(p_Q)_N$$

and for $i=N-1,\ldots,2$ using $S_{jj}=(d_S)_j$ and the fact that $(g_S)_i$ $(i=1,\ldots,N-1)$, $(h_S)_j$ $(j=2,\ldots,N)$, $(b_S)_k$ $(k=2,\ldots,N-1)$ are the upper generators of the matrix S we get

$$p_i^{(1)} = (g_S)_i \sum_{k=i+1}^N (b_S)_{ik}^{\times}(h_S)_k (p_Q)_k (a_Q)_{k,i-1}^{\times} + (d_S)_i (p_Q)_i (a_Q)_{i,i-1}^{\times} = (d_S)_i (p_Q)_i + (g_S)_i \alpha_{i+1},$$

where

$$\alpha_{i+1} = \sum_{k=i+1}^{N} (b_S)_{ik}^{\times} (h_S)_k (p_Q)_k (a_Q)_{k,i-1}^{\times}.$$

We have

$$\alpha_N = (b_S)_{N-1,N}^{\times}(h_S)_N(p_Q)_N(a_Q)_{N,N-2}^{\times} = (h_S)_N(p_Q)_N(a_Q)_{N-1}$$

and using the relations (2.1), (2.2) we obtain

$$\alpha_{i} = \sum_{k=i}^{N} (b_{S})_{i-1,k}^{\times}(h_{S})_{k}(p_{Q})_{k}(a_{Q})_{k,i-2}^{\times}$$

$$= (b_{S})_{i-1,i}^{\times}(h_{S})_{i}(p_{Q})_{i}(a_{Q})_{i,i-2}^{\times} + (b_{S})_{i}(\sum_{k=i+1}^{N} (b_{S})_{ik}^{\times}(h_{S})_{k}(p_{Q})_{k}(a_{Q})_{k,i-1}^{\times})(a_{Q})_{i-1}$$

$$= [(h_{S})_{i}(p_{Q})_{i} + (b_{S})_{i}\alpha_{i+1}](a_{Q})_{i-1}$$

which completes the proof of (4.1), (4.3).

For diagonal entries of the matrix S we have

$$d_N^{(1)} = R_{NN}^{(1)} = S_{NN}Q_{NN} = (d_S)_N(d_Q)_N$$

and for i = N - 1, ..., 1

$$R_{ii}^{(1)} = \sum_{k=i}^{N} S_{ik} Q_{ki} = S_{ii} Q_{ii} + \sum_{k=i+1}^{N} S_{ik} Q_{ki} = (d_S)_i (d_Q)_i + (g_S)_i \beta_{i+1} (h_S)_i,$$

where

$$\beta_{i+1} = \sum_{k=i+1}^{N} (b_S)_{ik}^{\times} (h_S)_k (p_Q)_k (a_Q)_{ki}^{\times}$$

We have $\beta_1 = (q_V)_1(g_U)_1$ and using the relations (2.1), (2.2) we obtain

$$\beta_{i} = \sum_{k=i}^{N} (b_{S})_{i-1,k}^{\times}(h_{S})_{k}(p_{Q})_{k}(a_{Q})_{k,i-1}^{\times}$$

$$= (b_{S})_{i-1,i}^{\times}(h_{S})_{i}(p_{Q})_{i}(a_{Q})_{i,i-1}^{\times} + (b_{S})_{i}(\sum_{k=i+1}^{N} (b_{S})_{ik}^{\times}(h_{S})_{k}(p_{Q})_{k}(a_{Q})_{ki}^{\times})(a_{Q})_{i} =$$

$$(h_{S})_{i}(p_{Q})_{i} + (b_{S})_{i}\beta_{i+1})(a_{Q})_{i}$$

which completes the proof of (4.2), (4.4), (4.5). \square

Corollary 4.2 Let R be a lower quasiseparable of order n_L matrix with scalar entries and let R_1 be the matrix obtained in Theorem 3.2. Then the unitary matrix Q is quasiseparable of order (n_L, n_L) at most and the upper triangular matrix S is upper quasiseparable of order $n_L + n_U$ at most.

Proof follows directly from Theorem 4.1 and Corollary 3.3.

Now assume that the matrix R is Hermitian. Then the new iterant R_1 is a Hermitian matrix which is quasiseparable of the same order as the matrix R. This means that for a quasiseparable of a given order Hermitian matrix, the result of QR iteration has the same structure as the original matrix. Moreover an algorithm for computation of this structure is given.

Theorem 4.3 Let $R = \{R_{ij}\}_{i,j=1}^{N}$ be a scalar Hermitian quasiseparable of order (n,n) matrix with lower generators p_i $(i=2,\ldots,N)$, q_j $(j=1,\ldots,N-1)$, a_k $(k=2,\ldots,N-1)$ of orders r'_k $(k=1,\ldots,N-1)$, upper generators q_i^* $(i=1,\ldots,N-1)$, p_j^* $(j=2,\ldots,N)$, a_k^* $(k=2,\ldots,N-1)$ and diagonal entries d_k $(k=1,\ldots,N)$ and σ be a real number. Define the matrix R_1 by the rule

$$\begin{cases} R - \sigma I = QS, \\ R_1 = \sigma I + QR, \end{cases}$$

where Q is a unitary matrix and S is an upper triangular matrix.

Then R_1 is a Hermitian quasiseparable of order (n, n) at most matrix and generators and diagonal entries of this matrix are obtained using the algorithm from Theorem 4.1.

References

[1] Y. Eidelman and I. Gohberg, A modification of the Dewilde-van der Veen method for inversion of finite structured matrices. *Linear Algebra and Application* 343-344: 419-450 (2002).