Exercícios selecionados:

14.6 Exercícios

1. É dado o mapa de contornos mostrando a pressão barométrica em hectopascais (hPa) na Austrália em 28 de dezembro de 2004. Estime o valor da derivada direcional da função pressão em Alice Springs na direção de Adelaide. Quais são as unidades da derivada direcional?

2. O mapa de contorno mostra a temperatura máxima média em novembro de 2004 (em °C). Estime o valor da derivada direcional da função da temperatura em Dubbo, New South Wales, na direção de Sydney. Quais são as unidades?

- **3.** Uma tabela de valores do índice de sensação térmica W = f(T, v) é dada no Exercício 3 da Seção 14.3. Use-a para estimar o valor de $D_{\bf u} f(-20, 30)$, onde ${\bf u} = ({\bf i} + {\bf j})/\sqrt{2}$.
- **4–6** Determine a derivada direcional de f no ponto dado e na direção indicada pelo ângulo θ .

4.
$$f(x, y) = x^3y^4 - x^4y^3$$
, (1, 1), $\theta = \pi/6$

5.
$$f(x, y) = ye^{-x}$$
, $(0, 4)$, $\theta = 2\pi/3$

6.
$$f(x, y) = e^x \cos y$$
, $(0, 0)$, $\theta = \pi/4$

7-10

- (a) Determine o gradiente de f.
- (b) Calcule o gradiente no ponto *P*.
- (c) Determine a taxa de variação de f em P na direção do vetor \mathbf{u} .

7.
$$f(x, y) = \text{sen}(2x + 3y), \quad P(-6, 4), \quad \mathbf{u} = \frac{1}{2}(\sqrt{3}\mathbf{i} - \mathbf{j})$$

8.
$$f(x, y) = y^2/x$$
, $P(1, 2)$, $\mathbf{u} = \frac{1}{3}(2\mathbf{i} + \sqrt{5}\mathbf{j})$

9.
$$f(x, y, z) = xe^{2yz}$$
, $P(3, 0, 2)$, $\mathbf{u} = \langle \frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \rangle$

10.
$$f(x, y, z) = \sqrt{x + yz}$$
, $P(1, 3, 1)$, $\mathbf{u} = \langle \frac{2}{7}, \frac{3}{7}, \frac{6}{7} \rangle$

11–17 Determine a derivada direcional da função no ponto dado na direção do vetor \mathbf{v} .

11.
$$f(x, y) = e^x \operatorname{sen} y$$
, $(0, \pi/3)$, $\mathbf{v} = \langle -6, 8 \rangle$

12.
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, (1, 2), $\mathbf{v} = \langle 3, 5 \rangle$

13.
$$g(p,q) = p^4 - p^2 q^3$$
, (2, 1), $\mathbf{v} = \mathbf{i} + 3\mathbf{j}$

14.
$$g(r, s) = tg^{-1}(rs)$$
, $(1, 2)$, $\mathbf{v} = 5\mathbf{i} + 10\mathbf{j}$

15.
$$f(x, y, z) = xe^y + ye^z + ze^x$$
, $(0, 0, 0)$, $\mathbf{v} = \langle 5, 1, -2 \rangle$

16.
$$f(x, y, z) = \sqrt{xyz}$$
, $(3, 2, 6)$, $\mathbf{v} = \langle -1, -2, 2 \rangle$

17.
$$h(r, s, t) = \ln(3r + 6s + 9t), (1, 1, 1), \mathbf{v} = 4\mathbf{i} + 12\mathbf{j} + 6\mathbf{k}$$

18. Use a figura para estimar $D_{\mathbf{u}} f(2, 2)$.

- Determine a derivada direcional de $f(x, y) = \sqrt{xy}$ em P(2, 8)na direção de Q(5, 4).
- **20.** Determine a derivada direcional de f(x, y, z) = xy + yz + zx em P(1, -1, 3) na direção de Q(2, 4, 5).
- 21–26 Determine a taxa de variação máxima de f no ponto dado e a direção em que isso ocorre.
- **21.** $f(x, y) = 4y\sqrt{x}$, (4, 1)
- **22.** $f(s, t) = te^{st}$, (0, 2)
- **23.** f(x, y) = sen(xy), (1, 0)
- **24.** f(x, y, z) = (x + y)/z, (1,1,-1)
- **25.** $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, (3, 6, -2)
- **26.** f(p, q, r) = arctg(pqr), (1, 2, 1)
- 27. (a) Mostre que uma função diferenciável f decresce mais rapidamente em x na direção oposta à do vetor gradiente, ou seja, na direção de $-\nabla f(\mathbf{x})$.
 - (b) Utilize o resultado do item (a) para determinar a direção onde $f(x, y) = x^4y - x^2y^3$ decresce mais rápido no ponto (2, -3).
- 28. Determine as direções em que a derivada direcional de $f(x, y) = ye^{-xy}$ no ponto (0, 2) tem valor 1.
- 29. Determine todos os pontos nos quais a direção de maior variação da função $f(x, y) = x^2 + y^2 - 2x - 4y \text{ \'e } \mathbf{i} + \mathbf{j}$.
- 30. Próximo a uma boia, a profundidade de um lago com coordenadas (x, y) é $z = 200 + 0.02x^2 - 0.001y^3$, onde x, y, e z são medidos em metros. Um pescador que está em um pequeno barco parte do ponto (80, 60) em direção à boia, que está localizada no ponto (0, 0). A água sob o barco está ficando mais profunda ou mais rasa quando ele começa a se mover? Explique.
- **31.** A temperatura T em uma bola de metal é inversamente proporcional à distância do centro da bola, que tomamos como a origem. A temperatura no ponto (1, 2, 2) é de 120°.
 - (a) Determine a taxa de variação de T em (1, 2, 2) em direção ao ponto (2, 1, 3).
 - (b) Mostre que em qualquer ponto da bola a direção de maior crescimento na temperatura é dada por um vetor que aponta para a origem.
- **32.** A temperatura em um ponto (x, y, z) é dada por

$$T(x, y, z) = 200e^{-x^2 - 3y^2 - 9z^2}$$

onde T é medido em °C e x, y, z em metros.

- (a) Determine a taxa de variação da temperatura no ponto P(2, -1, 2) em direção ao ponto (3, -3, 3).
- (b) Qual é a direção de maior crescimento da temperatura em *P*?
- (c) Encontre a taxa máxima de crescimento em P.
- 33. Suponha que em uma certa região do espaço o potencial elétrico V seja dado por $V(x, y, z) = 5x^2 - 3xy + xyz$.
 - (a) Determine a taxa de variação do potencial em P(3, 4, 5) na direção do vetor $\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$.

- (b) Em que direção V varia mais rapidamente em P?
- (c) Qual a taxa máxima de variação em P?
- **34.** Suponha que você esteja subindo uma montanha cuja forma é dada pela equação $z = 1\ 000 - 0.005x^2 - 0.01y^2$, onde $x, y \in z$ são medidos em metros e você está em um ponto com coordenadas (60, 40, 966). O eixo x positivo aponta para o leste e o eixo y positivo aponta para o norte.
 - (a) Se você andar exatamente para o Sul, começará a subir ou a descer? A que taxa?
 - (b) Se você caminhar em direção ao Noroeste, começará a subir ou a descer? A que taxa?
 - (c) Em que direção a inclinação é maior? Qual é a taxa de elevação nessa direção? Qual é o ângulo que o início desse caminho faz em relação à horizontal?
- **35.** Seja f uma função de duas variáveis que tenha derivadas parciais contínuas e considere os pontos A(1, 3), B(3, 3), C(1, 7) e D(6, 15). A derivada direcional de f em A na direção do vetor \overrightarrow{AB} é 3, e a derivada direcional em A na direção \overrightarrow{AC} é 26. Determine a derivada direcional de f em A na direção do vetor AD.
- Um mapa topográfico de Blue River Pine Provincial Park em British Columbia é mostrado. Desenhe as curvas da descida mais íngreme do ponto A (descendo até o Mud Lake) e do ponto B.

© Department of Natural Resources Canada, Todos os direitos reservados

37. Mostre que a operação de calcular o gradiente de uma função tem a propriedade fornecida. Suponha que u e v sejam funções diferenciáveis de x e y e que a, b sejam constantes.

(a)
$$\nabla (au + bv) = a \nabla u + b \nabla v$$
 (b) $\nabla (uv) = u \nabla v + v \nabla u$

(b)
$$\nabla(uv) = u \nabla v + v \nabla u$$

(a)
$$\nabla (uu + bv) = u \nabla u + b \nabla v$$
 (b) $\nabla (uv) = u \nabla v + b \nabla v$ (c) $\nabla \left(\frac{u}{v}\right) = \frac{v \nabla u - u \nabla v}{v^2}$ (d) $\nabla u^n = nu^{n-1} \nabla u$

(d)
$$\nabla u^n = nu^{n-1} \nabla u$$

Esboce o vetor gradiente $\nabla f(4, 6)$ para a função f cujas curvas de nível são mostradas. Explique como você escolheu a direção e sentido e o comprimento desse vetor.

EXERCÍCIOS 14.6

1.
$$\approx 0,008 \text{ hPa/km}$$
 3. $\approx 0,778$ **5.** $2 + \sqrt{3}/2$

7. (a)
$$\nabla f(x, y) = \langle 2\cos(2x + 3y), 3\cos(2x + 3y) \rangle$$

(b)
$$(2, 3)$$
 (c) $\sqrt{3} - \frac{3}{2}$

9. (a)
$$\langle e^{2yz}, 2xze^{2yz}, 2xye^{2yz} \rangle$$
 (b) $\langle 1, 12, 0 \rangle$ (c) $-\frac{22}{3}$

11.
$$\frac{4-3\sqrt{3}}{10}$$
 13. $-8/\sqrt{10}$ **15.** $4/\sqrt{30}$

17.
$$\frac{23}{42}$$
 19. 2/5 **21.** $\sqrt{65}$, $\langle 1, 8 \rangle$

23.
$$1, \langle 0, 1 \rangle$$
 25. $1, \langle 3, 6, -2 \rangle$

27. (b)
$$\langle -12, 92 \rangle$$

29. Todos os pontos na reta
$$y = x + 1$$

31. (a)
$$-40/(3\sqrt{3})$$

33. (a)
$$32/\sqrt{3}$$
 (b) $\langle 38, 6, 12 \rangle$ (c) $2\sqrt{406}$

35.
$$\frac{327}{13}$$
 39. $\frac{774}{25}$

41. (a)
$$x + y + z = 11$$
 (b) $x - 3 = y - 3 = z - 5$

43. (a)
$$2x + 3y + 12z = 24$$
 (b) $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{12}$

45. (a)
$$x + y + z = 1$$
 (b) $x = y = z - 1$

55. Não **59.**
$$(-\frac{5}{4}, -\frac{5}{4}, \frac{25}{8})$$

63.
$$x = -1 - 10t$$
, $y = 1 - 16t$, $z = 2 - 12t$

67. Se
$$\mathbf{u} = \langle a, b \rangle$$
 e $\mathbf{v} = \langle c, d \rangle$, então $af_x + bf_y$ e $cf_x + df_y$ são conhecidas, portanto resolvemos as equações lineares por f_x e f_y