Prawdopodobieństwo warunkowe

$$P(E|F) = \frac{P(E \cap F)}{P(F)} \tag{1}$$

$$P(E_1 \cap \dots \cap E_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$
 (2)

$$P(E) = \sum_{i=1}^{n} P(E|F_i)P(F_i) \text{ dla } \bigcap_{i=1}^{n} F_i = \Omega$$
(3)

	zmienne dyskretne	zmienne ciągłe
definicja	P(x) = P(X = x)	f(x) = F'(x)
obliczanie prawdopodobieństwa	$P(X \in A) = \sum_{x \in A} P(x)$	$P(X \in A) = \int_A f(x)dx$
skumulowana f. rozkładu	$F(x) = P(X \leqslant x) = \sum_{y \leqslant x} P(y)$	$F(x) = P(X \leqslant x) = \int_{-\infty}^{x} f(y) dy$
całkowite prawdopodobieństwo	$\sum_{x} P(x) = 1$	$\int_{-\infty}^{\infty} f(x)dx = 1$
wartość oczekiwana	$EX = \sum_{x} xP(x)$	$EX = \int x f(x) dx$
wariancja	$VarX = \sigma^2 = E[(X - \mu)^2]$	$VarX = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$

Nierówność Czebyszewa

$$P(|X - \mu| > \epsilon) \leqslant (\frac{\sigma}{\epsilon})^2 \tag{4}$$

Rozkłady dyskretne

Rozkład	P(x)	EX	VarX	
Bernoulli(p)		EX = p	VarX = pq	próba
	$P(x) = \begin{cases} p, & \text{for } x = 1\\ q = (1-p), & \text{for } x = 0 \end{cases}$			
Binomial(n,p)	$P(x) = \binom{n}{x} p^x (1-p)^{n-x} \text{ for } x = 0, 1, \dots$	EX = np	VarX = npq	liczba sukcesów z n prób
Geometric(p)	$ \begin{array}{ c c } \hline P(x) = (1-p)^{x-1}p \text{ for } x = 1, 2, \dots \\ P(X > k) = (1-p)^k \end{array} $	$EX = \frac{1}{p}$	$VarX = \frac{1-p}{p^2}$	liczba prób do sukcesu
$Poiss(\lambda)$	$P(x) = e^{-\lambda} \frac{\lambda^x}{x!} \text{ for } x = 0, 1, \dots$	$EX = \lambda$	$VarX = \lambda$	rozkład zdarzeń rzadkich

Rozkłady ciągłe

Rozkład	f(x), F(x)	EX	VarX	
Unif(a,b)	$f(x) = \frac{1}{b-a} \text{ for } a \leqslant x \leqslant b$	$EX = \frac{a+b}{2}$	$VarX = \frac{(b-a)^2}{12}$	
	$F(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } a \le x < b \\ 1, & \text{for } x \ge b \end{cases}$			
$\operatorname{Exp}(\lambda)$	$f(x) = \lambda e^{-\lambda x} \text{ for } x \ge 0$ $F(x) = 1 - e^{-\lambda x}$	$EX = \frac{1}{\lambda}$	$VarX = \frac{1}{\lambda^2}$	modelowanie czasu, brak pamięci
$\operatorname{Gamma}(\alpha,\lambda)$	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$ $F(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{x} t^{\alpha - 1} e^{-\lambda t} dt$	$EX = \frac{\alpha}{\lambda}$	$VarX = \frac{\alpha}{\lambda^2}$	łączny czas α niezależ- nych zdarzeń $\sim Exp(\lambda)$
N(μ, σ)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ $F(x) = \Phi(x) \text{ dla N}(0,1)$	$EX = \mu$	$VarX = \sigma^2$	

$$Bin(n,p) \approx Poiss(\lambda)$$
 (5)

$$P(T \leqslant t) = P(X \geqslant \alpha) \tag{6}$$

 $T \sim Gamma(\alpha, \lambda), X \sim Poiss(\lambda t)$

$$Binomial(n, p) = N(np, \sqrt{np(1-p)})$$

$$X_i \sim Bernoulli(p), S_n = \sum_{i=1}^n X_i, 0.05 \leqslant p \leqslant -.095$$
(7)

Rozkład łączny

$$F_{(X,Y)}(x,y) = P(X \leqslant x \cap Y \leqslant y)$$

$$f_{(X,Y)}(x,y) = \frac{\delta^2}{\delta x \delta y} F_{(X,Y)}(x,y)$$

	zmienne dyskretne	zmienne ciągłe
rozkłady brzegowe	$P(x) = \sum_{y} P(x, y)$ $P(y) = \sum_{x} P(x, y)$	$f(x) = \int_{Y} f(x, y) dy$ $f(y) = \int_{X} f(x, y) dx$
niezależność obliczanie prawdopodobieństwa	$ P(x,y) = P(x)P(y) $ $P((X,Y) \in A) = \sum_{(x,y)\in A} P(x,y) $	$f(x,y) = f(x)f(y)$ $\int \int_{(x,y)\in A} f(x,y)dxdy$

Centralne Twierdzenie Graniczne

$$Z_n = \frac{S_n - E(S_n)}{Std(S_n)} = \frac{S_n - n\mu}{\sqrt(n)\sigma} \to N(0, 1) \text{ for } n \text{ to } \infty$$

$$S_n = \sum_{i=1}^n X_i, E(X_i) = \mu, Std(X_i) = \sigma$$
(8)

Estymatory - Monte Carlo

dla
$$X, p = P(X \in A)$$

$$\hat{p} = \hat{P}(X \in A) = \frac{\#(X_i \in A)}{n}$$

$$E\hat{p} = \frac{1}{n}(np) = p$$

$$Std\hat{p} = \frac{1}{n}\sqrt{np(1-p)} = \sqrt{(\frac{p(1-p)}{n})}$$

Dokładność

$$P(|\hat{p} - p| > \epsilon) = P(\frac{|\hat{p} - p|}{\sqrt{\frac{p(1 - p)}{n}}} > \frac{\epsilon}{\sqrt{\frac{p(1 - p)}{n}}}) \approx 2\Phi(\frac{-\epsilon\sqrt{n}}{\sqrt{p(1 - p)}})$$

Estymacja średniej \bar{X} z X_1,\ldots,X_n ze wspólnym μ i σ

$$E\bar{X} = \frac{1}{n}(EX_1 + \dots + EX_n) = \frac{1}{n}n\mu = \mu$$

$$Var\bar{X} = \frac{1}{n^2}(Var(X_1) + \dots + Var(X_n)) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$$

Estymator wariancji

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Procesy Markowa

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$

Rozkład w czasie h: $P_h = P_0 * P^h$

Rozkład stacjonarny: $\pi P = \pi$, $\sum \pi_i = 1$

Estymacja: metoda momentów

k-ty moment z populacji
$$\mu_k = E(X^k)$$
 k-ty centralny moment z populacji
$$\mu_k' = E((X - \mu_1)^k)$$
 k-ty moment z próby
$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 k-ty centralny moment z próby
$$m_k' = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

$$\mu_1 = EX, \mu_2 = VarX, \mu_k = m_k$$

Estymacja: metoda największej wiarygodności

$$P(X = (X_1, \dots, X_n)) = P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i)$$

Szukamy ekstremum: $\frac{\delta P}{\delta \theta}(x)=0,$ używając logarytmu.

Przedziały ufności

$$\hat{\theta} \pm z_{\frac{\alpha}{2}} \sigma(\hat{\theta})$$
$$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$\bar{X} - \bar{Y} = z_{\frac{\alpha}{2}} \pm \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}$$

Rozkład t-studenta

 $t = \frac{\hat{\theta} = \theta}{s(\hat{\theta})} \leftarrow$ zastępujemy $Std(\hat{\theta})$ przez $S(\hat{\theta}),$ n-1 stopni swobody

$$\bar{X} \pm t_{\frac{\alpha}{2}}^{(n-1)} \frac{S}{\sqrt{n}}$$