

Машинное обучение в науках о Земле

Михаил Криницкий

krinitsky.ma@phystech.edu

K.T.H.

Зав. лабораторией машинного обучения в науках о Земле МФТИ с.н.с. Института океанологии РАН им. П.П. Ширшова

Общий принцип обучения по прецедентам (оптимизация функции

ошибки)

$$x \in \mathbb{X}$$
 — объекты, objects

$$y \in \mathbb{Y}$$
 — ответы, labels

$$\mathcal{F} \colon \mathbb{X} \to \mathbb{Y}$$
 — искомая закономерность

$$\mathcal{T}\colon \{x_i;y_i\}$$
 — «обучающая выборка» (прецеденты), train dataset

Найти:
$$\widehat{\mathcal{F}}$$
: $\{x_i\} \rightarrow \{y_i\}$

один из способов решения:

$$\mathcal{L}(\hat{\mathcal{F}}(x))$$
 — функционал ошибки (эмпирического риска, потерь), Loss function

$$\widehat{y_i} = \widehat{\mathcal{F}}(x_i) = f(\vec{p}, x_i)$$
 — функционально задаваемая зависимость. **Предположение** исследователя о виде закономерности. Иногда задается параметрически, \vec{p} — вектор параметров.

$$\mathcal{L} = L(\vec{p}, \mathcal{T})$$
 — функция ошибки $\hat{p} = \operatorname*{argmin} ig(L(\vec{p}, \mathcal{T})ig)$ $\widehat{\mathcal{F}} = f(\hat{p}, x)$

Общий принцип обучения по прецедентам (оптимизация функции ошибки)

$$x \in \mathbb{X}$$
 — объекты, objects $y \in \mathbb{Y}$ — ответы, labels $\mathcal{F} \colon \mathbb{X} o \mathbb{Y}$ — искомая закономерность

 $\mathcal{T}\colon \{x_i;y_i\}$ — «обучающая выборка» (прецеденты), train dataset

Найти:
$$\widehat{\mathcal{F}}$$
: $\{x_i\} \rightarrow \{y_i\}$

один из способов решения:

$$\mathcal{L}(\widehat{\mathcal{F}}(x))$$
 — функционал ошибки

Чем руководствоваться при выборе

исследователя о виде закономерности. Иногда задается параметрически. $\vec{\hat{v}}$ — вектор параметров

$$\mathcal{L} = L(\vec{p}, \mathcal{T})$$
 — функция ошибки $\hat{p} = \operatorname*{argmin} ig(L(\vec{p}, \mathcal{T})ig)$
 $\widehat{\mathcal{T}} = f(\hat{n}, x)$

Обучение по прецедентам: вероятностная постановка

принцип максимального правдоподобия maximum likelihood estimation

 $\overrightarrow{x_i}$ - признаковое описание объектов $\overrightarrow{y_i}$ - признаковое описание ответов $p(\overrightarrow{x}, \overrightarrow{y})$ – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве $X \times Y$

 \mathcal{T} : $\{\overrightarrow{x_i}; \overrightarrow{y_i}\}$ — «обучающая выборка» (прецеденты), train dataset

Обучение по прецедентам: вероятностная постановка

принцип максимального правдоподобия maximum likelihood estimation

 $m{x_i}$ - признаковое описание объектов $m{y_i}$ - признаковое описание ответов $p(m{x}, m{y})$ – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве $X \times Y$ $\phi(m{x}, m{y}, m{\theta})$ - модель плотности распределения, предлагаемая

 $\mathcal{T}\colon \{oldsymbol{x_i}; oldsymbol{y_i}\}$ — «обучающая выборка» (прецеденты), train dataset

исследователем

 $\Pi peдположение! \\
(x_i, y_i) - выбираются из <math>p(x, y)$ независимо и случайно

Обучение по прецедентам: вероятностная постановка

принцип максимального правдоподобия maximum likelihood estimation

 $m{x_i}$ - признаковое описание объектов $m{y_i}$ - признаковое описание ответов $p(m{x}, m{y})$ – (искомая, аппроксимируемая) совместная плотность распределения событий на множестве $X \times Y$ $\phi(m{x}, m{y}, m{\theta})$ - модель плотности распределения, предлагаемая исследователем

 $\mathcal{T}\colon \{x_{\pmb{i}}; y_{\pmb{i}}\}$ — «обучающая выборка» (прецеденты), train dataset

 $\Pi peдположение! \\
(x_i, y_i) - выбираются из <math>p(x, y)$ независимо и случайно

MLE

 $\phi(x_i,y_i, heta)$ - правдоподобие для одного экземпляра выборки

$$L(\{m{x_i}\},\{m{y_i}\},m{ heta})=\prod_{i=1}^N\phi(m{x_i},m{y_i},m{ heta})$$
 - правдоподобие выборки $heta^*=rgmax\,L(\{m{x_i}\},\{m{y_i}\},m{ heta})$

Функция потерь определяется видом модели плотности распределения $\phi(x,y,\theta)$, предложенной исследователем!

Правдоподобие выборки $L(\boldsymbol{\theta}, \mathcal{T})$ – максимизировать (в пространстве параметров Θ)

Функцию потерь $\mathcal{L}(\boldsymbol{\theta}, \mathcal{T})$ – минимизировать (в пространстве параметров Θ)