CHIMIE, ONDES ET MÉCANIQUE DU POINT

Jeudi 1^{er} février 2024 - Durée 4h

- * La calculatrice est autorisée.
- * Il sera tenu le plus grand compte du soin, de la présentation, et de la rédaction.
- * Chaque réponse doit être justifiée. Toute application numérique doit être précédée d'une expression littérale en fonction des données de l'énoncé.

I. Pile au lithium de Philae

L'année 2014 a été marquée par la mission Rosetta au cours de laquelle la sonde du même nom est entrée en orbite autour de la comète 67P/Churyumov-Gerasimenko, surnommée Tchouri, après un voyage de 10 ans. Une fois sur orbite, la sonde Rosetta a largué l'atterrisseur Philae qui s'est posé sur la surface de la comète afin de l'étudier.

L'énergie électrique nécessaire à Philae est fournie par une pile au lithium comprenant N=32 cellules, branchées en parallèle, utilisant le couple lithium-chlorure de thionyle (Li - SOCl₂). L'ensemble doit fournir E=835 W.h au moment du déploiement de Philae, c'est-à-dire la séquence d'une durée $\tau\approx 1/2$ h suivant la séparation du module de Rosetta et précédent sa descente vers la comète, au cours de laquelle l'atterrisseur a déployé son train d'atterrissage et son antenne.

La pile au lithium fonctionne grâce à une réaction entre le lithium solide et le chlorure de thionyle liquide, ce qui donne du soufre et du dioxyde de soufre, tous deux dissous dans $SOCl_2$ (on notera en indice « solv » pour « solvaté »), ainsi que du chlorure de lithium LiCl solide.

- 1. Écrire l'équation de la réaction de fonctionnement de la pile.
- 2. La constante d'équilibre de cette réaction est de l'ordre de $K^0 \approx 10^{233}$ à 25 °C.
 - a) Écrire le quotient de la réaction en fonction des activités des différents constituants, puis en fonction des concentrations des constituants.
 - On rappelle que le solvant est le chlorure de thionyle.
 - b) Initialement, seuls les réactifs sont présents. Que vaut le quotient de réaction à t=0?
 - c) Que vaut le quotient de réaction une fois l'équilibre atteint?
 - d) Que peut-on alors conclure de la valeur de K⁰ à 25 °C?
 - e) Est-il possible que la pile s'arrête de fonctionner alors que l'équilibre n'est pas atteint?
- 3. La « capacité » (charge totale pouvant circuler) d'une cellule vaut $Q_{cell} = 1,0$ A.h, et le réactif limitant est le lithium. Sachant que pour une mole de lithium il circule dans le circuit d'utilisation 4 moles d'électrons, déterminer la masse de lithium initialement présente dans une cellule, ainsi que la masse minimale de chlorure de thionyle dans une cellule.
- 4. À partir des données de l'énoncé, et en considérant que la pile est usée à la fin de son utilisation, déterminer l'intensité moyenne I_{moy} ayant circulé dans le circuit d'utilisation de la pile, ainsi que la puissance moyenne P_{moy} consommée par ce circuit.

Données:

* Masses molaires:

 $M(Li) = 6,94 \text{ g.mol}^{-1}$; $M(O) = 16,0 \text{ g.mol}^{-1}$; $M(S) = 32,1 \text{ g.mol}^{-1}$; $M(Cl) = 35,5 \text{ g.mol}^{-1}$.

- * Charge élémentaire : $e = 1, 6.10^{-19}$ C
- \star Nombre d'Avogadro : $\mathcal{N}_{\rm A}=6,02.10^{23}~{\rm mol^{-1}}$
- * Température de fusion de SOCl₂ à pression atmosphérique : $\theta_{\text{fus}} = -104, 5$ °C

II. Célérité et enregistrement d'un son

- 1. Une onde sonore est une onde mécanique longitudinale. Justifier cette affirmation.
- 2. La célérité du son dans l'air vérifie une loi du type $v = k P^{\alpha} \rho^{\beta}$ où P est la pression du gaz au repos et ρ sa masse volumique.
 - a) Déterminer α et β .
 - b) On assimile l'air à un gaz parfait de masse molaire M_{air} à la température T.
 - i. Déterminer la célérité v en fonction de k, R, T et M_{air} .
 - ii. On suppose l'air constitué (en fraction molaire ou en volume) de $x(O_2) = 20 \%$ de $O_{2(g)}$ et de $x(N_2) = 80 \%$ de $N_{2(g)}$. Déterminer M_{air} en fonction de ces proportions ainsi que des masses molaires $M(O_2)$ et $M(N_2)$. Application numérique.

On donne pour l'air $k = \sqrt{\gamma_{\text{air}}}$ (où γ_{air} est un coefficient lié à l'atomicité du gaz).

- 3. Calculer la célérité du son $v_{\rm th}$ dans l'air à 20 °C avec trois chiffres significatifs.
- 4. Une expérience (à 20 °C) de détermination de la célérité du son consiste à produire un claquement en S et à enregistrer les tensions délivrées par deux microphones M_A et M_B (S, M_A , M_B alignés et M_A , M_B distants de $d_1 = (1, 50 \pm 0, 02)$ m) sur un oscilloscope. On constate un décalage temporel $\tau = (4, 38 \pm 0, 02)$ ms.

Déterminer littéralement puis calculer (avec trois chiffres significatifs) la célérité $v_{\rm exp}$ accompagnée de son incertitude $u(v_{\rm exp})$ du son dans l'air. Comparer $v_{\rm th}$ et $v_{\rm exp}$.

Pour la suite, on gardera la valeur v_{exp} que l'on notera v. On pourra par ailleurs garder v dans les expressions littérales.

- 5. Un haut-parleur émet en S dans l'air environnant à 20 °C une onde sonore sinusoïdale de période temporelle T, de période spatiale λ et d'amplitude A. S est l'origine de l'axe des x, ce dernier passant par le point M. On place un microphone en M, d'abscisse $x_{\rm M}$ telle que $x_{\rm M}-x_{\rm S}=x_{\rm M}=2,0$ m.
 - a) Écrire le signal y(S,t) décrivant l'onde en S. On prendra la phase nulle à l'origine des temps et de l'espace. Quelle est l'expression de la phase $\varphi(S,t)$ du signal en S?
 - b) Écrire alors y(M, t). Quelle est l'expression de la phase $\varphi(M, t)$ du signal en M?
 - c) Quelle est l'expression, en fonction de $x_{\rm M}$ et de λ , du déphasage $\Delta \varphi = \varphi({\rm M},t) \varphi({\rm S},t)$?
 - d) Pour quelles fréquences f_{pha} les vibrations du haut-parleur et du microphone sont-elles en phase? Quelles sont les trois plus petites valeurs de f_{pha} ?
 - e) Pour quelles fréquences f_{opp} les vibrations du haut-parleur et du microphone sont-elles en opposition de phase? Quelles sont les trois plus petites valeurs de f_{opp} ?
- 6. La fréquence est fixée à f = 500 Hz.
 - a) Calculer $\Delta \varphi$ à cette fréquence.
 - b) Tracer les courbes correspondant à ce que l'on voit à l'oscilloscope (voie Y_1 : tension hautparleur; voie Y_2 : tension microphone).
 - c) Comment peut-on mesurer le déphasage $\Delta \varphi$ entre les deux signaux visualisés?
 - d) De quelle distance d' doit-on déplacer au minimum le microphone pour pouvoir superposer les deux courbes?

Données:

- $\star M(N) = 14 \text{ g.mol}^{-1} \text{ et } M(O) = 16 \text{ g.mol}^{-1}$
- * À 20 °C, $\gamma_{air} = 1,40$
- \star Constante d'état des gaz parfaits : R = 8,314 J.K⁻¹.mol⁻¹
- * Supposons que l'on calcule $y(x_1, x_2) = a x_1^{\alpha} x_2^{\beta}$. L'incertitude-type u(y) de y est telle que

$$\frac{u(y)}{y} = \sqrt{\left(\alpha \frac{u(x_1)}{x_1}\right)^2 + \left(\beta \frac{u(x_2)}{x_2}\right)^2}$$

III. Manège

Dans le référentiel terrestre \mathcal{R} , on définit un repère Oxyz avec un axe (Oz) vertical ascendant. La figure ci-contre est une vue de dessus.

Un manège est constitué de deux plateformes circulaires horizontales de même rayon R : l'une est immobile par rapport au référentiel terrestre, sa circonférence passe par l'origine O du repère et son centre est sur l'axe (Ox); l'autre peut rouler sans glisser autour de la première.

Un enfant, assimilé à un point M, a pris place sur le manège, en un point de la circonférence de la plateforme mobile. M décrit alors une trajectoire contenue dans le plan horizontal (Oxy) et décrite par l'équation polaire :

$$r(\theta) = 2R(1 + \cos \theta)$$

On suppose de plus que la vitesse angulaire ω est maintenue constante, soit $\theta = \omega t$ à partir de l'instant initial t = 0.

1. Trajectoire

Reproduire sur un schéma les axes du plan et le cercle représentant la plateforme fixe. Placer sur ce schéma les quatre points de la trajectoire de M correspondant aux angles $\theta=0$ (ce point sera noté A), $\theta=\frac{\pi}{2}$ (point B), $\theta=\pi$ (point C), $\theta=\frac{3\pi}{2}$ (point D), puis dessiner l'allure de la trajectoire complète (cette courbe s'appelle une cardioïde).

Ajouter la base cylindrique (vecteurs $\overrightarrow{e_r}, \overrightarrow{e_\theta}, \overrightarrow{e_z}$) au point D.

2. Vitesse

- a) Déterminer, en fonction du temps t et des deux constantes R et ω , les composantes du vecteur vitesse $\overrightarrow{v}(M)$ dans $\mathscr R$ dans la base cylindrique. Dessiner ce vecteur au point D.
- b) Montrer que la norme de la vitesse s'écrit $||\overrightarrow{v}|| = 4R\omega \left|\cos\left(\frac{\omega t}{2}\right)\right|$.
- c) En quel point l'enfant risque-t-il de se faire le plus mal s'il est ejecté (vitesse maximale), et dans quelle direction serait-il alors éjecté?
- d) En quel point l'enfant pourra-t-il essayer de descendre du manège (vitesse nulle)?

3. Accélération

- a) Déterminer, en fonction du temps t et des deux constantes R et ω , les composantes du vecteur accélération $\overrightarrow{\gamma}(M)$ dans \mathscr{R} dans la base cylindrique.
- b) Déterminer ces composantes au point D puis dessiner le vecteur accélération en ce point.
- c) Déterminer la norme de l'accélération en fonction de t, R et ω .
- d) Il n'existe pas de sensation absolue de vitesse, en revanche ce qu'on ressent fortement est l'accélération que l'on subit.

En quel point l'enfant risque-t-il le plus de se sentir mal?

IV. Parcours mouvementé

On considère un palet qu'on assimilera à un point matériel (M, m) avec m = 100 g. Ce palet est lancé sur une piste représentée figure ci-après composée d'une portion rectiligne AB, inclinée d'un angle $\alpha = 30^{\circ}$ par rapport à l'horizontale, et d'une portion circulaire BCD, de rayon r = 2, 0 m et d'angle $\widehat{DOB} = \frac{\pi}{2} + \alpha$.

Le sens de rotation positive est le sens horaire et $\theta = 0$ quand M est en C.

Le palet est lancé depuis le point A à t=0 avec la vitesse $\overrightarrow{v_{\rm A}}=v_{\rm A}\overrightarrow{u_{\rm X}}$ telle que $v_{\rm A}=6,5~{\rm m.s^{-1}}$, et il glisse sans frottement sur la piste. On désigne par $g=10~{\rm m.s^{-2}}$ l'intensité du champ de pesanteur, et on négligera les éventuels effets de l'air sur le mouvement du palet.

- 1. On s'intéresse dans un premier temps au parcours de la rampe AB. Pour cela, on utilise le repère $(A, \overrightarrow{u_X}, \overrightarrow{u_Y})$ représenté sur la figure ci-avant.
 - a) Établir l'expression de l'accélération $\overrightarrow{\gamma}$ en fonction des forces qui s'exercent sur le système.
 - b) Exprimer le vecteur position \overrightarrow{AM} dans le repère choisi en fonction de X(t), et en déduire les vecteurs vitesse \overrightarrow{v} et accélération $\overrightarrow{\gamma}$.
 - c) Déduire successivement des questions précédentes la vitesse v(t) et la position X(t) du palet le long de la rampe.
 - d) Exprimer en fonction de v_A , g, r et α la durée τ au bout de laquelle le point \mathbf{B} est atteint, puis calculer cette durée. On montrera que le point \mathbf{B} n'est atteint que si $v_A \geqslant v_{A,\ell_1}$, et on exprimera la vitesse initiale minimale v_{A,ℓ_1} en fonction de g, r et α .

Effectuer l'application numérique, et indiquer si la condition est vérifiée.

REMARQUE : On obtient deux valeurs de τ : l'une correspond au passage par $\mathbf B$ lors de la montée, l'autre lors de la descente si la piste se prolongeait plus haut et que le palet s'arrête et redescende.

- e) Conclure en déterminant la vitesse $v_{\rm B}$ atteinte en B en fonction de $v_{\rm A}, g, r$ et α . Effectuer l'application numérique.
- f) Déterminer l'expression de la norme N de l'action normale de la piste sur le palet. Effectuer l'application numérique.

- 2. On étudie à présent le parcours de la portion courbe BCD. On se placera en coordonnées polaires planes $(O, \overrightarrow{u_r}, \overrightarrow{u_\theta})$ représentées sur la figure ci-avant. On effectue un changement d'origine des temps en posant $t' = t \tau$, et afin d'alléger l'écriture, on notera t au lieu de t'.
 - a) En écrivant le principe fondamental de la dynamique, établir l'équation qui lie $\ddot{\theta}$ et θ .
 - b) Intégrer cette équation en utilisant la méthode du facteur intégrant (multiplication de l'équation par $\dot{\theta}$) et en déduire que $\dot{\theta}$ s'écrit :

$$\dot{\theta} = \sqrt{\frac{2g}{r} \left[\cos(\alpha) - \cos(\theta) \right] + \frac{v_{\rm B}^2}{r^2}}$$

- c) Déterminer l'expression de l'action normale $N'(\theta)$ exercée par la piste sur le palet.
- d) En déduire à quelle condition sur v_B il n'y aura pas décollage avant le sommet ; puis la condition correspondante sur v_A : on déterminera une vitesse limite v_{A,ℓ_2} fonction de g, r et α en précisant s'il s'agit d'une limite inférieure ou supérieure, au-delà de laquelle le palet décolle avant d'arriver en C. Calculer numériquement v_{A,ℓ_2} et indiquer si la condition est vérifiée.
- e) On note E le point de la piste situé entre C et D où le palet quitte la piste. Déterminer l'expression $\theta_{\rm E}$ de l'angle θ correspondant, en fonction de α , $v_{\rm B}$, g et r. Effectuer l'application numérique (on donnera le résultat en degrés).
- f) En déduire l'expression du vecteur vitesse $\overrightarrow{v_{\rm E}}$ dans la base $(O, \overrightarrow{u_r}, \overrightarrow{u_{\theta}})$, ainsi que l'expression de $v_{\rm E} = ||\overrightarrow{v_{\rm E}}||$ en fonction de α , $v_{\rm B}$, g et r. Effectuer l'application numérique.
- 3. Le palet a désormais quitté la piste. On pose t''=0 l'instant où ceci se produit, et comme précédemment on notera t au lieu de t''. On se place dans le repère (O, x, z), et on note β l'angle entre $\overrightarrow{u_x}$ et $\overrightarrow{v_E}$.
 - a) Exprimer l'angle β en fonction de $\theta_{\rm E}$.
 - b) Indiquer le nom générique qu'on donne au mouvement du palet dans cette troisième phase.
 - c) Expliquer uniquement avec des arguments physiques (donc sans calculs!) pourquoi il est inutile d'introduire un troisième axe (O, y) pour étudier le mouvement du palet.
 - d) Établir les coordonnées x(t) et z(t) du palet en fonction de $v_{\rm E}$, β , r et g (et t!).
 - e) Déterminer l'instant τ' où le palet touche le sol, en fonction de $v_{\rm E}$, β , r et g. Calculer τ' .
 - f) L'objectif est que le palet arrive dans un trou circulaire, centré sur le point F situé à 28 cm de D. Le trou a un un diamètre $2 \ell = 10$ cm. Indiquer si le trou est atteint.