Low Rank Approximation Lecture 8

Daniel Kressner

Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch

Manifold optimization

General setting: Aim at solving optimization problem

$$\min_{X\in\mathcal{M}_r}f(X),$$

where \mathcal{M}_r is a manifold of rank-r matrices or tensors.

Goal: Modify classical optimization algorithms (line search, Newton, quasi-Newton, ...) to produce iterates that stay on \mathcal{M}_r .

Advantages over ALS:

- No need to solve subproblems, at least for first-order methods;
- ▶ Relatively straightforward local convergence analysis.

Two valuable resources:

Absil/Mahony/Sepulchre'2011: Optimization Algorithms on Matrix Manifolds. PUP, 2008. Available from https:

//press.princeton.edu/absil.

Manopt, a Matlab toolbox for optimization on manifolds. Available from https://manopt.org/.

Manifolds

For *open* set $\mathcal{U} \subset \mathcal{M}$, chart is bijective function $\varphi : \mathcal{U} \to \mathbb{R}^d$. Atlas of \mathcal{M} into \mathbb{R}^d is collection of charts $(\mathcal{U}_{\alpha}, \varphi_{\alpha})$ such that:

- for any α, β with $\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta} \neq \{\emptyset\}$, change of coordinates

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \mathbb{R}^d \to \mathbb{R}^d$$

is smooth (C^{∞}) on its domain $\varphi_{\alpha}(\mathcal{U}_{\alpha} \cap \mathcal{U}_{\beta})$.

Illustration taken from Wikipedia.

Manifolds

In the following, we assume that atlas is maximal. Proper definition of smooth manifold $\mathcal M$ needs further properties (topology induced by maximal atlas is Hausdorff and second-countable). See [Lee'2003] and [Absil et al.'2008].

Properties of \mathcal{M} :

- finite-dimensional vector spaces are always manifolds;
- $ightharpoonup d = dimension of <math>\mathcal{M}$;
- M does not need to be connected (in the context of smooth optimization makes sense to consider connected manifolds only);
- ▶ function $f: \mathcal{M} \to \mathbb{R}$ differentiable at point $x \in \mathcal{M}$ if and only if

$$f \circ \varphi^{-1} : \varphi(\mathcal{U}) \subset \mathbb{R}^d \to \mathbb{R}$$

is differentiable at $\varphi(x)$ for some chart (\mathcal{U}, φ) with $x \in \mathcal{U}$.

Manifolds: First examples

Lemma

Let \mathcal{M} be a smooth manifold and $\mathcal{N} \subset \mathcal{M}$ an open subset. Then \mathcal{N} is a smooth manifold (of equal dimension).

Proof: Given atlas for \mathcal{M} obtain atlas for \mathcal{N} by selecting charts (\mathcal{U}, φ) with $\mathcal{U} \subset \mathcal{N}$.

Example: $GL(n, \mathbb{R})$, the set of real invertible $n \times n$ matrices, is a smooth manifold.

EFY. Show that $\mathbb{R}_*^{m \times n}$, the set of real $m \times n$ matrices of full rank min $\{m, n\}$, is a smooth manifold.

EFY. Show that the set of $n \times n$ symmetric positive definite matrices is a smooth manifold.

Two main classes of matrix manifolds:

- ▶ embedded submanifolds of $\mathbb{R}^{m \times n}$; Example: Stiefel manifold of orthonormal bases.
- ▶ quotient manifolds; Example: Grassmann manifold $\mathbb{R}_*^{m \times n}/GL(n, \mathbb{R})$.

Will focus on embedded submanifolds (much easier to work with).

Immersions and submersion

Let $\mathcal{M}_1, \mathcal{M}_2$ be smooth manifolds and $F: \mathcal{M}_1 \to \mathcal{M}_2$. Let $x \in \mathcal{M}_1$ and $y = F(x) \in \mathcal{M}_2$. Choose charts φ_1, φ_2 around x, y. Then coordinate representation of F given by

$$\hat{F} := \varphi_2 \circ F \circ \varphi_1^{-1} : \mathbb{R}^{d_1} \to \mathbb{R}^{d_2}.$$

- ightharpoonup F is called smooth if \hat{F} is smooth.
- ▶ rank of F at $x \in \mathcal{M}_1$ defined as the rank of $D\hat{F}(\varphi(x_1))$ (Jacobian of \hat{F} at $\varphi(x_1)$)
- ▶ F is called an immersion if its rank equals d_1 at every $x \in \mathcal{M}_1$.
- ▶ F is called a submersion if its rank equals d_2 at every $x \in \mathcal{M}_1$.

Embedded submanifolds

Subset $\mathcal{N} \subset \mathcal{M}$ is called an embedded submanifold of dimension k in \mathcal{M} if for each point $p \in \mathcal{N}$ there is a chart (\mathcal{U}, φ) in \mathcal{M} such that all elements of $\mathcal{U} \cap \mathcal{N}$ are obtained by varying first k coordinates only. (See Chapter 5 of [Lee'2003] for more details.)

Theorem

Let \mathcal{M}, \mathcal{N} be smooth manifolds and let $F: \mathcal{M} \to \mathcal{N}$ be a smooth map with constant rank ℓ . Then each level set

$$F^{-1}(y) := \{x \in \mathcal{M} : F(x) = y\}$$

is a closed embedded submanifold of codimension ℓ in \mathcal{M} .

Corollaries:

- If F: M→ N is a submersion then each level is a closed embedded submanifold of codimension equal to the dimension of N.
- In fact, by open submanifold lemma, only need to check full rank condition of submersion for points in the level set (replace M by the open set for which F has full rank).

The Stiefel manifold

For $m \ge n$, consider the set of all $m \times n$ matrices with orthonormal columns:

$$St(m,n) := \{X \in \mathbb{R}^{m \times n} : X^T X = I_n\}.$$

Corollary

 $\operatorname{St}(m,n)$ is an embedded submanifold of $\mathbb{R}^{m\times n}$.

Proof: Define $F: \mathbb{R}^{m \times n} \to \operatorname{symm}(n)$ as $F: X \mapsto X^T X$, where $\operatorname{symm}(n)$ denotes set of $n \times n$ symmetric matrices. At $X \in \operatorname{St}(m,n)$, consider Jacobian

$$DF(X): H \mapsto X^T H + H^T X.$$

Given symmetric $Y \in \mathbb{R}^{n \times n}$, set H = XY/2. Then DF(X)[H] = Y; thus DF(X) is surjective.

EFY. What is the dimension of the Stiefel manifold?

The manifold of rank-k matrices

Locality of definition of embedded submanifolds implies the following lemma (Lemma 5.5 in [Lee'2003]).

Lemma

Let $\mathcal N$ be subset of smooth manifold $\mathcal M$. Suppose every point $p \in \mathcal N$ has a neighborhood $\mathcal U \subset \mathcal M$ such that $\mathcal U \cap \mathcal N$ is an embedded submanifold of $\mathcal U$. Then $\mathcal N$ is an embedded submanifold of $\mathcal M$.

Theorem

Given m > n, the set

$$\mathcal{M}_k = \{A \in \mathbb{R}^{m \times n} : \operatorname{rank}(A) = k\}$$

is an embedded submanifold of $\mathbb{R}^{m \times n}$ for every $0 \le k \le n$.

The manifold of rank-k matrices

Choose arbitrary $A_0 \in \mathcal{M}_k$. After a suitable permutation, may assume w.l.o.g. that

$$A_0 = egin{pmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{pmatrix}, \quad A_{11} \in \mathbb{R}^{k imes k} ext{ is invertible}.$$

This property remains true in an open neighborhood $U \subset \mathbb{R}^{m \times n}$ of A_0 . Factorize $A \in U$ as

$$A = \begin{pmatrix} I & 0 \\ A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix} \begin{pmatrix} I & A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix}.$$

Define $F:U\to\mathbb{R}^{(m-k)\times(n-k)}$ as $F:A\mapsto A_{22}-A_{21}A_{11}^{-1}A_{12}$. Then

$$F^{-1}(0) = U \cap \mathcal{M}_k$$
.

The manifold of rank-k matrices

For arbitrary $Y \in \mathbb{R}^{(m-k)\times (n-k)}$, we obtain that

$$DF(A)\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & Y \end{pmatrix} \end{bmatrix} = Y.$$

Thus, F is a submersion. In turn, $\mathcal{U} \cap \mathcal{M}_k$ is an embedded submanifold of \mathcal{U} . By lemma, \mathcal{M}_k is an embedded submanifold of $\mathbb{R}^{m \times n}$.

EFY. What is the dimension of \mathcal{M}_{k} ?

EFY. Is \mathcal{M}_k connected?

EFY. Prove that the set of symmetric rank-k matrices is an embedded submanifold of $\mathbb{R}^{n \times n}$. Is this manifold connected?

Tangent space

In the following, much of the discussion restricted to submanifolds \mathcal{M} embedded in vector space V with inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$.

Given smooth curve $\gamma: \mathbb{R} \to \mathcal{M}$ with $x = \gamma(0)$, we call $\gamma'(0) \in V$ a tangent vector at x. The tangent space $T_x \mathcal{M} \subset V$ is the set of all tangent vectors at x.

Lemma

 $T_x\mathcal{M}$ is a subspace of V.

Proof. If v_1, v_2 are tangent vectors then there are smooth curves γ_1, γ_2 such that $\gamma_1'(0) = v_1, \gamma_2'(0) = v_2$. To show that $\alpha v_1 + \beta v_2$ for $\alpha, \beta \in \mathbb{R}$ is again a tangent vector, consider chart (\mathcal{U}, φ) around x such that $\varphi(x) = 0$. Define

$$\gamma(t) = \varphi^{-1}(\alpha\varphi(\gamma_1(t)) + \beta\varphi(\gamma_2(t)))$$

for t sufficiently close to 0. Then $\gamma(0) = x$ and $\gamma'(0) = \alpha v_1 + \beta v_2$.

EFY. Prove that the dimension of $T_x \mathcal{M}$ equals the dimension of \mathcal{M} using a coordinate chart.

Tangent space

Application of definition to Stiefel manifold. Let

$$\gamma(t) = X + tY + \mathcal{O}(t^2)$$

be a smooth curve with $X \in St(m, n)$. To ensure that $\gamma(t) \in St(m, n)$, we require

$$I_n = \gamma(t)^T \gamma(t) = (X+tY)^T (X+tY) + \mathcal{O}(t^2) = I_n + t(X^T Y + Y^T X) + \mathcal{O}(t^2).$$

Thus, $X^TY + Y^TX = 0$ characterizes tangent space:

$$T_{X}St(m,n) = \{Y \in \mathbb{R}^{m \times n} : X^{T}Y = -Y^{T}X\}$$
$$= \{XW + X_{\perp}W_{\perp} : W \in \mathbb{R}^{n \times n}, W = -W^{T}, W_{\perp} \in \mathbb{R}^{(m-n) \times n}\}$$

where the columns of X_{\perp} form basis of span $(X)^{\perp}$

Tangent space

When \mathcal{M} is defined (at least locally) as level set of constant rank function $F:V\to\mathbb{R}^N$, we have

$$T_x \mathcal{M} = \ker(DF(x)).$$

Proof. Let $v \in T_x \mathcal{M}$, that is, there is a curve $\gamma : \mathbb{R} \to \mathcal{M}$ such that $\gamma(0) = x$ and $\gamma'(0) = v$. Then, by chain rule,

$$DF(x)[v] = DF(x)[\gamma'(0)] = \frac{\partial}{\partial t}F(\gamma(t))\Big|_{t=0} = 0,$$

because F is constant on \mathcal{M} . Thus, $T_x\mathcal{M} \subset \ker(DF(x))$, which completes the proof by counting dimensions.

Tangent space of \mathcal{M}_k

Recall that \mathcal{M}_k was obtained as level set of local submersion

$$F: A \mapsto A_{22} - A_{21}A_{11}^{-1}A_{12}.$$

Given $A \in \mathcal{M}_k$ consider SVD

$$A = \begin{pmatrix} U & U_{\perp} \end{pmatrix} \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V & V_{\perp} \end{pmatrix}^{T}.$$

We have

$$DF\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}[H] = H_{22}.$$

Thus, H is in the kernel if and only if $H_{22} = 0$. In terms of A this implies

$$T_{A}\mathcal{M}_{k} = \ker(DF(A)) = \begin{pmatrix} U_{k} & U_{\perp} \end{pmatrix} \begin{pmatrix} \mathbb{R}^{k \times k} & \mathbb{R}^{k \times (n-k)} \\ \mathbb{R}^{(m-k) \times k} & 0 \end{pmatrix} \begin{pmatrix} V_{k} & V_{\perp} \end{pmatrix}^{T}$$
$$= \{UMV^{T} + U_{p}V^{T} + UV_{p}^{T} : M \in \mathbb{R}^{k \times k}, U_{p}^{T}U = V_{p}^{T}V = 0\}.$$

EFY. Compute the tangent space for the embedded submanifold of rank-k symmetric matrices.

Riemannian manifold and gradient

For submanifold \mathcal{M} embedded in vector space V: Inner product $\langle \cdot, \cdot \rangle$ on V induces inner product on $T_x \mathcal{M}$. This turns \mathcal{M} into a Riemannian manifold.¹

The (Riemannian) gradient of smooth $f: \mathcal{M} \to \mathbb{R}$ at $x \in \mathcal{M}$ is defined as the unique element grad $f(x) \in T_x \mathcal{M}$ that satisfies

$$\langle \operatorname{grad} f(x), \xi \rangle = Df(x)[\xi], \quad \forall \xi \in T_x \mathcal{M}.$$

EFY. Prove that the Riemannian gradient satisfies the steepest ascent property
$$\frac{\operatorname{grad} f(x)}{\|\operatorname{grad} f(x)\|_2} = \underset{\xi \in Tx\mathcal{M}}{\operatorname{arg max}} Df(x)[\xi].$$

¹In general, for a Riemannian manifold one needs to have an inner product on $T_x\mathcal{M}$ that varies smoothly wrt x.

Riemannian gradient

For submanifold \mathcal{M} embedded in vector space V: The (Euclidean) gradient of f in V admits the decomposition

$$\nabla f(x) = P_x \nabla f(x) + P_x^{\perp} \nabla f(x),$$

where P_x , P_x^{\perp} are the orthogonal projections onto $T_x\mathcal{M}$, $T_x^{\perp}\mathcal{M}$. For every $\xi \in T_x\mathcal{M}$ we have

$$\langle P_{x} \nabla f(x), \xi \rangle = \langle \nabla f(x) - P_{x}^{\perp} \nabla f(x), \xi \rangle$$

$$= \langle \nabla f(x), \xi \rangle = Df(x)[\xi].$$

Hence.

grad
$$f(x) = P_x \nabla f(x)$$
.

The Riemannian gradient is the orthogonal projection of the Euclidean gradient onto the tangent space.

Riemannian gradient

Example: Given symmetric $n \times n$ matrix A, consider trace optimization problems

$$\min_{X \in St(n,k)} \operatorname{trace}(X^T A X)$$

Study first-order perturbation

$$\begin{aligned} & \operatorname{trace}((X+H)^T A(X+H)) - \operatorname{trace}(X^T A X) \\ = & \operatorname{trace}(H^T A X) + \operatorname{trace}(X^T A H) + \mathcal{O}(\|H\|^2) \\ = & 2\langle H, A X \rangle + \mathcal{O}(\|H\|^2). \end{aligned}$$

 \rightsquigarrow Euclidean gradient at X given by 2AX.

Note that skew(W) = $(W - W^T)/2$ is orth projection on skew-symmetric matrices. Thus,

$$P_X(Z) = (I - XX^T)Z + X \cdot \text{skew}(X^TZ).$$

$$\operatorname{grad} f(X) = P_X(\nabla f(X)) = 2(I - XX^T)AX + 2X \cdot \operatorname{skew}(X^T AX)$$
$$= 2(AX - XX^T AX).$$

Riemannian gradient

Example: For $A \in \mathcal{M}_k$ consider SVD $A = U\Sigma V^T$ with $\Sigma \in \mathbb{R}^{k \times k}$. Define orthogonal projections onto span(U), span(V), and their complements:

$$P_U = UU^T, \ P_U^{\perp} = I - UU^T, \ P_V = VV^T, \ P_V^{\perp} = I - VV^T.$$

Recall that

$$T_{A}\mathcal{M}_{k} = \{UMV^{T} + U_{p}V^{T} + UV_{p}^{T} : M \in \mathbb{R}^{k \times k}, U_{p}^{T}U = V_{p}^{T}V = 0\}$$

The three terms of the sum are orthogonal to each other and can thus be considered separately \leadsto Orthogonal projection onto $T_A\mathcal{M}_k$ given by

$$P_A(Z) = P_U Z P_V + P_U^{\perp} Z P_V + P_V^{\perp} Z P_U$$

EFY. Compute the Riemannian gradient of $f(A) = \|A - B\|_F^2$ on \mathcal{M}_k for given $B \in \mathbb{R}^{m \times n}$.

Line search: Concepts from Euclidean case

$$\min_{x\in\mathbb{R}^N}f(x),$$

Line search is optimization algorithm of the form

$$X_{j+1} = X_j + \alpha_k \eta_j$$

with search direction η_i and step size $\alpha_i > 0$.

► First-order optimal choice of η_j : $\eta_j = -\nabla f(x_j) \leadsto$ gradient descent.

Motivation for other choices: Faster local convergence (Newton-type methods), exact gradient computation too expensive, ...

Gradient-related search directions: $\langle \eta_j, \nabla f(x_j) \rangle < \delta < 0$ for all j.

Line search: Concepts from Euclidean case

Exact line search chooses

$$\alpha_j = \operatorname*{arg\,min}_{\alpha} f(x_j + \alpha_j \eta_j).$$

Only in exceptional cases simple optimization problem, e.g., admitting closed form solution.

```
EFY. Derive the closed form solution for exact line search applied to \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x + b^T x for symmetric positive A \in \mathbb{R}^{n \times n} and b \in \mathbb{R}^n.
```

Alternative: Armijo rule. Let $\beta \in (0,1)$ (typically $\beta = 1/2$) and $c \in (0,1)$ (e.g., $c = 10^{-4}$) be fixed parameters. Determine largest $\alpha_j \in \{1,\beta,\beta^2,\beta^3,\ldots\}$ such that

$$f(x_j + \alpha_j \eta_j) - f(x_j) \le c \alpha_j \nabla f(x_j)^T \eta_j$$

holds. (Such α_j always exists provided that η_j is descent direction, i.e., when $\langle \eta_j, \nabla f(x_j) \rangle < 0$.)

More details in [J. Nocedal and S. J. Wright. Numerical optimization. Second edition. Springer Series in Operations Research and Financial Engineering. Springer, 2006].

Line search: Extension to manifolds

$$\min_{x\in\mathcal{M}}f(x)$$

Cannot use line search $x_{k+1} = x_j + \alpha_j \eta_j$, simply because addition is not well defined in \mathcal{M} .

Idea:

Search along smooth curve $\gamma(\alpha) \in \mathcal{M}$ with $\gamma(0) = x_j$ and $\gamma'(0) = \eta_j \in T_{x_j}\mathcal{M}$.

Step in direction $x_j + \alpha \eta_j \in x_j + T_{x_j} \mathcal{M}$ and go back to manifold via retraction:

Tangent bundle $T\mathcal{M} := \bigcup_{x \in \mathcal{M}} T_x \mathcal{M}$

Definition

Mapping $R: T\mathcal{M} \to \mathcal{M}$ is called a retraction on \mathcal{M} if for every $X_0 \in \mathcal{M}$ there exists neighborhood \mathcal{U} around $(X_0, 0) \in T\mathcal{M}$ such that:

- 1. $\mathcal{U} \subset \text{dom}(R)$ and $R|_{\mathcal{U}} : \mathcal{U} \to \mathcal{M}$ is smooth.
- 2. R(x,0) = x for all $(x,0) \in U$.
- 3. $DR(x,0)[0,\xi] = \xi$ for all $(x,\xi) \in \mathcal{U}$.

Will write $R_x = R(x, \cdot) : T_x \mathcal{M} \to \mathcal{M}$ in the following.

Intuition behind definition:

Property 2 = retraction does nothing to elements on manifold.

Property 3 = retraction preserves direction of curves. Equivalent characterization: For every tangent vector $\xi \in T_x \mathcal{M}$, the curve

 $\gamma: \alpha \mapsto R_{\mathsf{x}}(\alpha \xi)$ satisfies $\gamma'(0) = \xi$.

EFY. What is a retraction for the manifold of invertible $n \times n$ matrices (trick question)?

Exponential maps are most natural choice of retraction from theoretical point of view but often too expensive/too cumbersome to compute.

In practice for matrix manifolds: Retractions are often built from matrix decompositions and metric projections.

Example St(n, k): Given $Y \in \mathbb{R}_*^{n \times k}$ (i.e., rank(Y) = k), the economy-sized QR decomposition

$$Y = XR, \quad X^TX = I_k, \quad R =$$

is unique provided that diagonal elements of R are positive. This defines a diffeomorphism

$$\phi: \mathsf{St}(n,k) \times \mathsf{triu}_+(k) \to \mathbb{R}^{n \times k}_*, \quad \phi: (X,R) \mapsto XR,$$

where ${\rm triu}_+(k)$ denotes upper triangular matrix with positive diagonal elements. Applying ϕ^{-1} just means computing the QR decomposition. Note that

$$\dim \operatorname{St}(n,k) + \dim \operatorname{triu}_+(k) = \dim \mathbb{R}_*^{n \times k}.$$

Abstract setting: Let $\mathcal M$ be embedded submanifold of vector space V and $\mathcal N$ smooth manifold such that

$$dim(\mathcal{M}) + dim(\mathcal{N}) = dim(V).$$

Assume there is diffeomorphism

$$\phi: \mathcal{M} \times \mathcal{N} \to V_*: (x, y) \mapsto \phi(x, y)$$

for some open subset V_* of V. Moreover, assume \exists neutral element $id \in \mathcal{N}$ such that $\phi(x, id) = x$ for all $x \in \mathcal{M}$.

Lemma

Under above assumptions,

$$R_{\mathsf{x}}(\eta) := \pi_1(\phi^{-1}(\mathsf{x} + \eta))$$

is a retraction on \mathcal{M} , where π_1 is projection onto first component: $\pi_1(x,y) = x$.

Proof of lemma. Need to verify three properties of retraction.

Property 1: Immediately follows from assumptions that $R_x(\xi)$ is defined and smooth for all ξ in a neighborhood of $0 \in T_x \mathcal{M}$.

Property 2: $R_x(0) := \pi_1(\phi^{-1}(x)) = \pi_1(x, id) = x$.

Property 3: Differentiating $x = \pi_1 \circ \phi^{-1}(\phi(x, id))$ we obtain for any $\xi \in T_x \mathcal{M}$ that

$$\xi = D(\pi_1 \circ \phi^{-1})[D\phi(x, id)[\xi, 0]]$$

= $D(\pi_1 \circ \phi^{-1})(x)[\xi] = DR_x(0)[\xi].$

For $z \in V$ sufficiently close to \mathcal{M} , metric projection is well defined:

$$P_{\mathcal{M}}(z) := \underset{x \in \mathcal{M}}{\operatorname{arg\,min}} \|z - x\|.$$

Corollary (Lewis/Malick'2008)

The map

$$R_{\mathsf{X}}(\eta) := P_{\mathcal{M}}(\mathsf{X} + \eta)$$

defines a retraction.

Examples for retractions based on metric projection:

- ▶ For St(n, k), polar factor $Y(Y^TY)^{-1/2}$ of $Y \in \mathbb{R}_*^{n \times k}$ defines a retraction.
- ▶ For rank-k matrix manifold \mathcal{M}_k , best rank-k approximation \mathcal{T}_k defines a retraction.

There are other choices; see [Absil/Oseledets'2015: Low-rank retractions: a survey and new results].

FY. For all examples discussed so far, develop algorithms that efficiently realize the retraction by exploiting the structure of $x+\eta$.

EFY. Find a retraction for the manifold of symmetric rank-k matrices.

Riemannian line search

$$x_{j+1} = R_{x_i}(\alpha_j \eta_j).$$

Assumption. Sequence $\{\eta_j\}$ is bounded and gradient related:

$$\limsup_{k\to\infty} \langle \operatorname{grad} f(x_j), \eta_j \rangle < 0.$$

Canonical choice: $\eta_i = -\operatorname{grad} f(x_i)$.

Extension of Armijo rule. Let $\beta \in (0,1)$ and $c \in (0,1)$ (e.g., $c = 10^{-4}$) be fixed parameters. Determine largest $\alpha_j \in \{1, \beta, \beta^2, \beta^3, \ldots\}$ such that

$$f(R_{x_j}(\alpha_j\eta_j)) - f(x_j) \le c\alpha_j \langle \operatorname{grad} f(x_j), \eta_j \rangle$$
 (1)

holds.

EFY. Show that the Armijo condition (1) can always be satisfied for sufficiently small α_j .

Riemannian line search

- 1: **for** j = 0,1,2,... **do**
- 2: Pick $\eta_j \in T_{x_i}\mathcal{M}$ such that sequence $\{\eta_j\}$ is gradient-related.
- 3: Choose $\alpha_j \in \{1, \beta, \beta^2, \beta^3, ...\}$ such that Armijo condition is satisfied.
- 4: Set $x_{i+1} = R_{x_i}(\alpha_i \eta_i)$.
- 5: end for

Convergence theory in Section 4.3 of [Absil'2008].

We call $x_* \in \mathcal{M}$ a critical point of f if grad $f(x_*) = 0$.

Theorem

Every accumulation point of $\{x_j\}$ is a critical point of cost function f.

More can be said if manifold (or at least level set) is compact.

Corollary

Assume that $\mathcal{L} = \{x \in \mathcal{M} : f(x) \le f(x_0)\}$ is compact. Then $\lim_{j \to \infty} \|grad f(x_j)\| \to 0$.

Note that \mathcal{M}_k is *not* compact and it is not clear a priori whether \mathcal{L} is compact..

Application to low-rank matrix and tensor completion

Matrix Completion

$$\mathsf{P}_{\Omega} \, A = \left[\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right] \stackrel{\mathsf{recover?}}{\leadsto} \, A$$

$$\mathsf{P}_{\Omega} : \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}, \quad \mathsf{P}_{\Omega} \, X = \begin{cases} X_{ij} & \text{if } (i,j) \in \Omega, \\ 0 & \text{else.} \end{cases}$$

$$\label{eq:definition} \begin{array}{ll} \min_X & \mathsf{rank}(X)\,, & X \in \mathbb{R}^{m \times n} \\ \\ \mathsf{subject to} & \mathsf{P}_\Omega\,X = \mathsf{P}_\Omega\,A \end{array}$$

Low-rank matrix completion: (→ NP-Hard)

$$egin{array}{ll} \min_X & {\sf rank}(X)\,, & X \in \mathbb{R}^{m imes n} \ & {\sf subject to} & {\sf P}_\Omega\,X = {\sf P}_\Omega\,{\sf A} \ & \end{array}$$

Nuclear norm relaxation: (→ convex, but expensive)

$$\min_{X} \ \|X\|_* = \sum_i \sigma_i \,, \qquad X \in \mathbb{R}^{m imes n}$$
 subject to $\mathsf{P}_\Omega \, X = \mathsf{P}_\Omega \, A$

Robust low-rank completion: (Assume rank is known)

$$\min_X \quad \frac{1}{2} \|\operatorname{P}_\Omega X - \operatorname{P}_\Omega A\|_F^2 \,, \qquad X \in \mathbb{R}^{m \times n}$$
 subject to $\operatorname{rank}(X) = k$

Huge body of work! Overview: http://perception.csl.illinois.edu/matrix-rank/

Setting

$$\begin{array}{ll} \text{minimize} & f(X) := \frac{1}{2} \|P_{\Omega}(X - A)\|_F^2 \\ \text{subject to} & X \in \mathcal{M}_k := \left\{X \in \mathbb{R}^{m \times n} : \mathrm{rank}(X) = k\right\} \end{array}$$

$$P_{\Omega}: \quad \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$$

$$X_{ij} \mapsto \left\{ \begin{array}{ll} X_{ij} & \text{if } (i,j) \in \Omega, \\ 0 & \text{if } (i,j) \notin \Omega. \end{array} \right.$$

Riemannian gradient given by:

$$\operatorname{grad} f(X) = P_{T_X \mathcal{M}_k} (P_{\Omega}(X - A))$$

with orthogonal projection $P_{T_X \mathcal{M}_k} : \mathbb{R}^{m \times n} \to T_X \mathcal{M}_k$.

Geometric nonlinear CG for matrix completion

```
Input: Initial guess X_0 \in \mathcal{M}_k.
   \eta_0 \leftarrow -\operatorname{grad} f(X_0)
   \alpha_0 \leftarrow \operatorname{argmin}_{\alpha} f(X_0 + \alpha \eta_0)
   X_1 \leftarrow R_{X_0}(\alpha_0 \eta_0)
   for i = 1, 2, ... do
       Compute gradient:
       \xi_i \leftarrow \operatorname{grad} f(X_i)
        Conjugate direction by PR+ updating rule:
       \eta_i \leftarrow -\xi_i + \beta_i \mathcal{T}_{X_{i-1} \to X_i} f(\eta_{i-1})
        Initial step size from linearized line search:
       \alpha_i \leftarrow \operatorname{argmin}_{\alpha} f(X_i + \alpha \eta_i)
       Armijo backtracking for sufficient decrease:
       Find smallest integer m \ge 0 such that
       f(X_i) - f(R_{X_i}(2^{-m}\alpha_i\eta_i)) > -1 \cdot 10^{-4} \langle \xi_i, 2^{-m}\alpha_i\eta_i \rangle
        Obtain next iterate:
       X_{i+1} \leftarrow R_{X_i}(2^{-m}\alpha_i\eta_i)
   end for
Cost/iteration: O((m+n)k^2 + |\Omega|k) ops.
```

Vector transport

Conjugate gradient method requires combination of gradients for subsequent iterates:

$$\operatorname{grad} f(X) \in T_X \mathcal{M}_k, \quad \operatorname{grad} f(Y) \in T_Y \mathcal{M}_k$$

$$\Rightarrow \quad \operatorname{grad} f(X) + \operatorname{grad} f(Y) ??? \stackrel{!}{\hookrightarrow}$$

Can be addressed by vector transport: $\mathcal{T}_{X \to Y}: \mathcal{T}_X \mathcal{M}_k \to \mathcal{T}_Y \mathcal{M}_k$ $\mathcal{T}_{X \to Y}(\xi) = P_{\mathcal{T}_Y \mathcal{M}_k}(\xi).$ $\mathcal{T}_{Y \mathcal{M}_k}(\xi) = P_{\mathcal{T}_Y \mathcal{M}_k}(\xi).$

Can be implemented in $O((m+n)k^2)$ ops.

Numerical experiments

- ► Comparison to LMAFit [Wen/Yin/Zhang'2010]. http://lmafit.blogs.rice.edu/.
- Oversampling factor OS = $|\Omega|/(k(2n-k))$.
- ▶ Purely academic example $A = A_L A_R^T$ with $A_L, A_R = \text{randn.}$

Influence of *n*

- Dashed lines: LMAFit. Solid lines: Nonlinear CG.
- ▶ time(1 iteration of Nonlinear CG)
 ≈ 2× time(1 iteration of LMAFit)

Influence of rank

- Dashed lines: LMAFit. Solid lines: Nonlinear CG.
- ▶ time(1 iteration of Nonlinear CG)
 ≈ 2× time(1 iteration of LMAFit)

Numerical experiments

- Comparison to LMAFit [Wen/Yin/Zhang'2010]. http://lmafit.blogs.rice.edu/.
- Oversampling factor OS = $|\Omega|/(k(2n-k)) = 8$.
- ▶ 8 000 × 8 000 matrix A is obtained from evaluating

$$f(x,y) = \frac{1}{1 + |x - y|^2}$$

on $[0,1] \times [0,1]$.

Influence of rank

▶ Hom: Start with k = 1 and subsequently increase k, using previous result as initial guess.

Tensor Completion

Low-rank tensor completion:

$$\label{eq:rank_problem} \begin{split} \min_{\mathcal{X}} \quad & \mathsf{rank}(\mathcal{X})\,, \qquad \mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d} \\ \mathsf{subject to} \quad & \mathsf{P}_\Omega\,\mathcal{X} = \mathsf{P}_\Omega\,\mathcal{A} \end{split}$$

Applications:

- Completion of multidimensional data, e.g. hyperspectral images, CT Scans
- Compression of multivariate functions with singularities

•

Manifold of Tensors of fixed multilinear rank

$$\begin{split} \mathcal{M}_{\boldsymbol{k}} &:= \big\{ \mathcal{X} \in \mathbb{R}^{n_1 \times \ldots \times n_d} : \text{rank}(\mathcal{X}) = \boldsymbol{k} \big\}, \\ \text{dim}(\mathcal{M}_{\boldsymbol{k}}) &= \prod_{i=1}^d k_i + \sum_{i=1}^d \Big(k_i n_i - \frac{k_i (k_i - 1)}{2} \Big). \end{split}$$

- ▶ $\mathcal{M}_{\mathbf{k}}$ is a smooth manifold. Discussed for more general formats in [Holtz/Rohwedder/Schneider'2012], [Uschmajew/Vandereycken'2012]
- ▶ Riemannian with metric induced by standard inner product $\langle \mathcal{X}, \mathcal{Y} \rangle = \langle \mathcal{X}_{(1)}, \mathcal{Y}_{(1)} \rangle$ (sum of element-wise product)

Manifold structure used in

- dynamical low-rank approximation [Koch/Lubich'2010], [Arnold/Jahnke'2012], [Lubich/Rohwedder/Schneider/Vandereycken'2012], [Khoromskij/Oseledets/Schneider'2012], . . .
- best multilinear approximation [Eldén/Savas'2009], [Ishteva/Absil/Van Huffel/De Lathauwer'2011], [Curtef/Dirr/Helmke'2012]

Gradients and Tangent Space $T_{\mathcal{X}}\mathcal{M}_{\mathbf{k}}$

Every ξ in the tangent space $T_{\mathcal{X}}\mathcal{M}_{\mathbf{k}}$ at $\mathcal{X} = \mathcal{C} \times_1 U \times_2 V \times_3 W$ can be written as:

$$\xi = \mathcal{S} \times_1 U \times_2 V \times_3 W$$

$$+ \mathcal{C} \times_1 U_{\perp} \times_2 V \times_3 W$$

$$+ \mathcal{C} \times_1 U \times_2 V_{\perp} \times_3 W$$

$$+ \mathcal{C} \times_1 U \times_2 V \times_3 W_{\perp}$$

for some $S \in \mathbb{R}^{k_1 \times k_2 \times k_3}$, $U_{\perp} \in \mathbb{R}^{n_1 \times k_1}$ with $U_{\perp}^T U = 0, \ldots$ Again, we obtain the Riemannian gradient of the objective function

$$f(\mathcal{X}) := \frac{1}{2} \| \, \mathsf{P}_{\Omega} \, \mathcal{X} - \mathsf{P}_{\Omega} \, \mathcal{A} \|_F^2$$

by projecting the Euclidean gradient into the tangent space:

$$\operatorname{grad} f(\mathcal{X}) = \mathsf{P}_{\mathcal{T}_{\mathcal{X}} \mathcal{M}_{\mathbf{k}}}(\mathsf{P}_{\Omega} \, \mathcal{X} - \mathsf{P}_{\Omega} \, \mathcal{A})$$

Retraction

Candidate for retraction: Metric projection

$$R_{\mathcal{X}}(\xi) = P_{\mathcal{X}}(\mathcal{X} + \xi) = \underset{\mathcal{Z} \in \mathcal{M}_{\mathbf{k}}}{\operatorname{arg\,min}} \|\mathcal{X} + \xi - \mathcal{Z}\|.$$

No closed-form solution available

- Replaced by HOSVD truncation.
- Seems to work fine.
- HOSVD truncation is a retraction [K./Steinlechner/Vandereycken'13].

Geometric Nonlinear CG for Tensor Completion

```
Input: Initial guess \mathcal{X}_0 \in \mathcal{M}_{\mathbf{k}}.
    \eta_0 \leftarrow -\operatorname{grad} f(\mathcal{X}_0)
    \alpha_0 \leftarrow \operatorname{argmin}_{\alpha} f(\mathcal{X}_0 + \alpha \eta_0)
    \mathcal{X}_1 \leftarrow R_{\mathcal{X}_0}(\alpha_0 \eta_0)
    for i = 1, 2, ... do
        Compute gradient:
        \xi_i \leftarrow \operatorname{grad} f(\mathcal{X}_i)
         Conjugate direction by PR+ updating rule:

\eta_i \leftarrow -\xi_i + \beta_i \mathcal{T}_{\chi_{i-1} \to \chi_i} f(\eta_{i-1})

         Initial step size from linearized line search:
        \alpha_i \leftarrow \operatorname{argmin}_{\alpha} f(\mathcal{X}_i + \alpha \eta_i)
        Armijo backtracking for sufficient decrease:
        Find smallest integer m \ge 0 such that
        f(\mathcal{X}_i) - f(R_{\mathcal{X}_i}(2^{-m}\alpha_i \eta_i)) > -1 \cdot 10^{-4} \langle \xi_i, 2^{-m}\alpha_i \eta_i \rangle
         Obtain next iterate:
        \mathcal{X}_{i+1} \leftarrow R_{\mathcal{X}_i}(2^{-m}\alpha_i \eta_i)
                                             Cost/iteration: O(nk^d + |\Omega|k^{d-1}) ops.
    end for
```

Reconstruction of CT Scan

 $199\times199\times150$ tensor from scaled CT data set "INCISIX", (taken from OSIRIX MRI/CT data base

[www.osirix-viewer.com/datasets/])

Slice of original tensor

Sampled tensor (6.7%)

HOSVD approx. of rank 21

Low-rank completion of rank 21

Compares very well with existing results w.r.t. low-rank recovery and speed, e.g., [Gandy/Recht/Yamada/'2011].

Hyperspectral Image

Set of photographs, (204 \times 268 px) taken across a large range of wavelengths. 33 samples from ultraviolet to infrared [Image data: Foster et al.'2004]

Stacked into a tensor of size $204 \times 268 \times 33$

10% of the Original Hyperspectral Imega Tensor, 16th Slice Size of Tensor is [204, 268, 33]

Completed Tensor, 16th Slice Final Rank is k = [50 50 6]

Here: Only 10% of entries known; [Signoretti et al.'2011] use 50%.

How many samples do we need?

Matrix case:

 $O(n \cdot \log^{\beta} n)$ samples suffice!

[Candès/Tao'2009]

 \Rightarrow Completion of tensor by applying matrix completion to matricization: $O(n^2 \log(n))$. Gives upper bound!

Tensor case:

Certainly: $|\Omega| \ll O(n^2)$ In all cases of convergence \rightarrow exact reconstruction.

Conjecture: $|\Omega| = O(n \cdot \log^{\beta} n)$

Robustness of Convergence

- ► Random 100 × 100 × 100 tensor of multilinear rank (4, 5, 6) perturbed by white noise.
- ▶ Upon convergence → reconstruction up to noise level.

Final remarks on Riemannian low-rank optimization

- Only discussed first-order methods. Fine for well-conditioned problems but slow convergence for ill-conditioned problems.
- ► Second-order methods (Newton-like) require Riemannian Hessian: painful and:
 - not of much help for well-conditioned problems (low-rank matrix completion).
 - linearized equations hard to solve efficiently for low-rank matrix and tensor manifolds.
- Low-rank matrices/tensors can also be viewed as products of quotient manifolds. Requires careful choice of metric to stay robust wrt small singular value σ_k [Ngo/Saad'2012], [Kasai/Mishra, ICML'2016].
- ▶ Lots of open problems concerning convergence analysis of low-rank Riemannian optimization!