DEPARTMENT OF MATHEMATICS

MTL 122: Real and Complex Analysis

Minor - 1

Marks - 25

I. Answer any three of the following. All questions carry equal marks. [15 Marks]

(a) Prove that every bounded sequence in \mathbb{R} has a convergent subsequence

sequence

(a) Let A be a subset of a metric space (X, d). Show that $x \in \overline{A}$ if and only if $d(x, A) = \inf\{d(x, y) : y \in A\} = 0$.

- (c) Prove that in a metric space (X,d), X and \emptyset are the only two clopen (both closed and open) sets if and only if every continuous function $j: X \to \{0,1\}$ is considered to be a discrete metric space.
 - (d) For two non-empty subsets A and B of \mathbb{R} , define $A+B=\{a+b:a\in A\mid b\in F\}$. Show that if A and B are compact, then A+B is compact. Give an example where A and B are closed but A+B is not.
 - II. State whether the following are True or False. All questions carry equal marks. Justify your assertion. [16 Marks] [no marks will be awarded if justification is not given]
 - (1) Let $X = \{a, b, c, d, e\}$ with the discrete metric. Then $A = \{a, c, d, e\}$ is dense in X.
 - (2) Consider the space \mathbb{N} , the set of natural numbers, as a subspace of \mathbb{R} . Then \mathbb{N} is a Baire space.
 - (3) Let (X, d) be a metric space. For $A \subset X$, define $\chi_A : X \to \{0,1\}$ as

 $\chi_A(x) = \begin{cases} 1 & x \in A, \\ 0 & \text{otherwise.} \end{cases}$

Then χ_A is continuous iff A is both open and closed.

- (4) The sequence $\{\sqrt[n]{e}\}$, where e = 2.17... is convergent.
- (5) \mathbb{Q} is homeomorphic to \mathbb{N} , both considered as subspaces of \mathbb{R} .