

计算机组织与体系结构

Computer Architectures

陆俊林

2024年春季学期

第十二讲 计算机系统先进技术

本讲要点

举例介绍计算机系统中使用的若干先进技术。

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I 片上互连结构的发展
- II 内存技术的发展
- III 中断机制的发展
- IV 芯片封装技术简介

芯片的复杂度和处理能力不断提高

未来单个芯片内将集成几百上千处理单元和存储单元

用于消费类电子的SoC的设计复杂度预测

系统芯片(Sytem-on-a-Chip, SoC)

将计算机或其他电子系统集成单一芯片的集成电路

桌面计算机(Intel P55主板芯片组)

Intel P55主板

片上总线的难以满足需求

- 示例:当主模块1长时间等待从模块2返回读数据时,造成了大量与此无关的传输无法发起:
 - 。 主模块2到从模块3的读传输
 - 。 主模块1到从模块2的写传输
 - 。 主模块1到从模块1的写传输

AMBA3.0-AXI的新特性

AXI: Advanced eXtensible Interface

- 1. burst-based transactions with only start address issued
- 2. separate read and write data channels
- 3. issue multiple outstanding addresses
- 4. out-of-order transaction completion
- 5. support for unaligned data
- 说明: AXI实质上并不是总线,而是介于总线和网络之间的互连结构,但通常仍称为总线

AXI的读通道

AXI的写通道

片上网络的兴起

片上网络的相关研究

花束型(torus)结构

二维网格结构的NOSTRUM

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- II 内存技术的发展
- III 中断机制的发展
- IV 芯片封装技术简介

SDRAM的典型规格

注: SDRAM, 又称SDR SDRAM DDR SDRAM, 又称DDR1 SDRAM

类型	典型规格(等效频率)	时间
SDRAM	PC66 / 100 / 133	1993年
DDR SDRAM	DDR-266 / 333 / 400	2000年
DDR2 SDRAM	DDR2-533 / 667 / 800	2003年
DDR3 SDRAM	DDR3-1066 / 1333 / 1600 /	2006年
DDR4 SDRAM	DDR4-2133/	2013年

● 示例: DDR3-1600

- 。等效时钟频率1600MHz
- 。传输带宽12.8GB/s
 - 1600MHz×64bit÷8

DDR SDRAM的基本原理

SDRAM系列的频率和带宽

	芯片标准	模组标准	核心频率	I/O频率	等效频率	带宽GB/s
	PC66(SDR)	PC-66	66MHz	66MHz	66MHz	0.53
	PC100(SDR)	PC-100	100MHz	100MHz	100MHz	0.80
	PC133(SDR)	PC-133	133MHz	133MHz	133MHz	1.06
	DDR-200	PC-2100	100MHz	100MHz	200MHz	1.6
	DDR-266	PC-2100	133MHz	133MHz	266MHz	2.1
	DDR-333	PC-2700	166MHz	166MHz	333MHz	2.7
	DDR-400	PC-3200	200MHz	200MHz	400MHz	3.2

注: 带宽按照位宽64-bit的内存模组计算

SDRAM系列的时序参数

	芯片标准 tRCD min(ns)		tRCD max(ns)	CL min(cycle)	CL max(cycle)
I	PC66(SDR)	30	30	2 (30ns)	3
	PC100(SDR)	20	30	2 (20ns)	3
	PC133(SDR)	15	23	2 (15ns)	3
	DDR-200	20	/	2 (20ns)	2.5
	DDR-266	20	/	2 (15ns)	2.5
	DDR-333	18	/	2 (12ns)	2.5
	DDR-400	15	/	2 (10ns)	3

SDR与DDR的性能对比(1)

PC133 核心频率133MHz 等效频率133MHz 带宽1.06GB/s

总计约60ns

DDR200 核心频率100MHz 等效频率200MHz 带宽1.6GB/s

SDR与DDR的性能对比(2)

PC133 核心频率133MHz 等效频率133MHz 带宽1.06GB/s

总计约50ns

DDR266 核心频率133MHz 等效频率266MHz 带宽2.1GB/s

DDR2 SDRAM的基本原理

SDRAM系列的频率和带宽(DDR1→DDR2)

芯片标准	模组标准	核心频率	I/O频率	等效频率	带宽GB/s
DDR-200	PC-2100	100MHz	100MHz	200MHz	1.6
DDR-266	PC-2100	133MHz	133MHz	266MHz	2.1
DDR-333	PC-2700	166MHz	166MHz	333MHz	2.7
DDR-400	PC-3200	200MHz	200MHz	400MHz	3.2
DDR2-400	PC2-3200	100MHz	200MHz	400MHz	3.2
DDR2-533	PC2-4200	133MHz	266MHz	533MHz	4.2
DDR2-667	PC2-5300	166MHz	333MHz	667MHz	5.3
DDR2-800	PC2-6400	200MHz	400MHz	800MHz	6.4

注: 带宽按照位宽64-bit的内存模组计算

DDR3 SDRAM的基本原理

SDRAM系列的时序参数(DDR2→DDR3)

芯片标准	tRCD min(ns)	tRCD max(ns)	CL min(cycle)	CL max(cycle)
DDR2-400	15	20	3 (15ns)	4
DDR2-533	11.25	15	3 (11ns)	4
DDR2-667	12	15	4 (12ns)	5
DDR2-800	10	15	4 (10ns)	6
DDR3-800	12.5	15	5 (13ns)	6
DDR3-1066	11.25	15	6 (11ns)	8
DDR3-1333	10.5	15	7 (10ns)	10
DDR3-1600	10	13.75	8 (10ns)	11

SDRAM时序参数tRCD

SDRAM时序参数CL

SDRAM内存发展路线图

DDR4 SDRAM如何工作?

DDR4 SDRAM

DDR4 SDRAM提升性能的要点

Bank Grouping技术

体现Bank Grouping技术的访存时序图

更低电压, 更低功耗

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I 片上互连结构的发展
- II 内存技术的发展
- III 中断机制的发展
- IV 芯片封装技术简介

PCI总线的中断信号

- ▶ PCI总线的中断信号属于边带信号
 - 。 边带信号: Sideband Signals
 - 。PCI总线规范没有明确规定如何使用这些信号

问题举例

举例:当PCI设备使用DMA方式写存储器时。该设备在最后一个数据离开其发送FIFO时,会认为DMA写操作已经完成。此时这个设备将通过INTx信号通知处理器。但是当处理器收到中断信号时,并不意味着PCI设备已经将数据写入存储器中

解决方案(1)

- ② PCI设备保证在数据到达目的地之后,再提交中断请求
 - 。PCI设备无法单纯通过硬件逻辑判断数据什么时候写入到存储器,需要使用"读刷新"的方法
 - PCI设备在提交中断请求之前,向DMA写的数据区域发出一个读请求,当PCI设备完成这个总线传输后,再向处理器提交中断请求
 - 。该方法硬件开销大,不容易实现,还将增加中断请求的延时

解决方案(2)

- ▶ 中断服务程序使用"读刷新"方法
 - 。中断服务程序在使用 "PCI设备写入存储器"的这些数据之前,对该设备进行读操作
 - 。该方法利用PCI总线的传送序规则,从而保证数据写入存储器
 - 。绝大多数处理器系统采用该方法

操作:中断服务程序先读取PCI设备中断状态寄存器,判断中断产生原因后,才对PCI设备写入的数据进行操作

作用:一方面可以获得设备的中断状态,另一方面是保证DMA写的数据最终到达存储器。如果不这样做,就可能产生数据完整性问题

"异步"中断所带来的数据完整性问题

❷ 现实情况:

。在操作系统中,即便中断服务程序没有先读取PCI设备的寄存器,一般不会出现问题

▶ 原因:

。在操作系统中,一个PCI设备从提交中断到处理器开始执行设备的中断 服务程序,所需时间较长,基本上可以保证此时数据已经写入存储器

▶ 隐患:

。虽然绝大多数时候不会出错,但是这个驱动程序依然有Bug存在,一旦 出错则难以定位

新的中断机制

● MSI中断机制

- 全称Message Signaled Interrupt
- 。当设备向一个特殊地址写入时,会向CPU产生一个中断,即MSI中断
- 。PCI 2.2中定义了MSI, PCI 3.0中引入MSI-X

❷ 支持情况

- 。在PCI总线中,必须支持INTx引脚中断,MSI机制是可选的
- 。在PCIe总线中,必须支持MSI/MSI-X机制,可以不支持INTx引脚中断

MSI中断机制

MSI机制的特点

❷ 优点

- ① 解决了多个设备共享中断信号的问题
 - INTx引脚通常是几个设备共享,操作系统内核必须调用相关的多个中断处理 函数,效率低
- ② 解决了每个功能设备只支持一个中断的问题
 - 中断服务程序需要查询设备来确定发生的事件,降低了中断处理的效率。通 过MSI,一个设备可以支持多个中断,这样可以为不同的使用不同的中断
- ③ "异步"中断的数据完整性问题
 - 使用MSI时,产生中断的写不能越过数据写,中断服务程序可以确信所有数据已经到达内存

▶ 缺点:要占用总线带宽

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I 片上互连结构的发展
- II 内存技术的发展
- III 中断机制的发展

IV 芯片封装技术简介

芯片制造过程示意

微连接技术举例

❷ 引线键合(Wire-bonding)

微连接技术举例

● 倒装片(Flip-chip)

DIP(Dual Inline-pin Package)

。双列直插式封装

- TSOP(Thin Small Outline Package)
 - 。薄型小尺寸封装

- QFP(Quad Flat Package)
 - 。四侧引脚扁平封装

- PGA(Pin Grid Array)
 - 。引脚网格阵列

- BGA(Ball Grid Array)
 - 。球栅阵列

计算机的组成

本讲到此结束,谢谢 欢迎继续学习本课程

计算机组织与体系结构 Computer Architectures 主讲:陆俊林

