Komentáře k domácímu kolu kategorie Z6

1. Sněhurka připravuje svých 7 trpaslíků na přijímací zkoušky na SŠPT (Střední škola pro trpaslíky). V prvním cvičném diktátě udělali trpaslíci průměrně 35 chyb. Ve druhém udělal Štístko o 15 chyb méně než v prvním, Dřímal se zhoršil o 13 a Šmudla o 2 chyby. Kejchal se zlepšil o 9 a Prófa dokonce o 19 chyb. Zbylí dva trpaslíci udělali ve druhém diktátě stejný počet chyb jako v prvním. Kolik průměrně udělali trpaslíci chyb ve druhém diktátě?

Řešení. Označme x počet všech chyb všech trpaslíků dohromady. Štístko udělal ve druhém diktátě o 15 chyb méně (všech chyb by bylo x-15), Dřímal se zhoršil o 13 (x-15+13), Šmudla měl o 2 chyby víc (x-15+13+2), Kejchal se zlepšil o 9 (x-15+13+2-9) a Prófa o 19 chyb (x-15+13+2-9-19). Ve druhém diktátě bylo x-28 chyb, tj. o 28 chyb méně než v prvním diktátě. Tedy každý trpaslík udělal ve druhém diktátě průměrně o 4 chyby méně. Ve druhém diktátu udělal každý trpaslík průměrně 31 chyb.

2. Doplň do obrázku chybějící čísla tak, aby byl na každé cihličce (kromě těch v nejspodnější vrstvě) napsaný aritmetický průměr čísel ze dvou cihliček pod ní umístěných.

ŘEŠENÍ. Žáci budou úlohu experimentem a úvahou: např. bude-li chybějící číslo v dolní řadě 5, vyšlo by (ve 2. řadě shora) místo 2,5 číslo 4,5. Zvolíme tedy menší číslo např. 3 atd.

2. Řešení. Označme chybějící číslo ve spodní řadě jako x. Podle zadání pak můžeme pyramidu doplnit do tvaru Vzhledem k tomu, že číslo 2,5 má být aritmetickým

průměrem čísel $\frac{3+x}{2}$ a $\frac{5+x}{2}$ dostáváme rovnici

$$\frac{1}{2} \cdot \left(\frac{3+x}{2} + \frac{5+x}{2} \right) = 2.5.$$

Odtud plyne, že x=1 a další doplnění pyramidy je už snadné. Výsledná pyramida je tvaru

	2,8	125	
	2,5	3,125	
$\frac{1}{2}(3)$	$+x)\frac{1}{2}(5$	+x) 3,	25
3	x	5	1,5

3. Boris sestavil ze 32 zápalek obdélník (nikoliv čtverec). Jeho sestra vložila do obdélníku několik zápalek a tak ho rozdělila přesně na 7 čtverců. Kolik zápalek mohly měřit strany Borisova obdélníku? Všechny zápalky byly stejně dlouhé a žádnou nelámali.

Řešení. Rozměry všech obdélníků, které se dají postavit z 32 zápalek jsou:

$$1 \times 15$$
, 2×14 , 3×13 , 4×12 , 5×11 , 6×10 a 7×9 .

Na sedm čtverců se dají rozdělit tyto (uvádíme vždy jen jedno rozdělení).

 6×10

4. Od té doby, co si Novákovi koupili štěňátka Punťu a Alíka, chodili každý den na jednu procházku. Někdy s sebou vzali Punťu, někdy Alíka, ale nikdy oba pejsky zároveň. Na osmnácti procházkách s sebou nějakého pejska měli. Punťa zůstal doma čtrnáctkrát, Alík šestnáctkrát. Jak dlouho mají Novákovi Punťu a Alíka?

 7×9

ŘEŠENÍ 1. Děti mohou opět řešit úlohu experimentováním.

Řešení 2. Novákovi musí mít psy alespoň 18 dní, neboť na 18 procházkách nějakého psa měli. Označme p počet dní, kdy byl na procházce Punťa, a a počet dní, kdy byl na procházce Alík. Ze zadání vyplývá, že a+p=18. Protože Punťa zůstal doma 14krát, počet dní, kdy byl doma spolu a Alíkem, je 14-a. Alík zůstal doma 16krát, počet dní, kdy byl doma spolu s Punťou, je 16-p. Odtud plyne rovnost 14-a=16-p. Řešení dokončíme pomocí tabulky

p	4	5	6	7	8	9	10	11
a	14	13	12	11	10	9	8	7
14-a	0	1	2	3	4	5	6	7
16 - p	12	11	10	9	8	7	6	5

Z tabulky vidíme, že 6krát byli oba psy doma a víme, že 18krát byl některý z nich na procházce, tj. Novákovi mají psi 24 dní.

5. Finále podzimní soutěže o nejkrásnějšího draka se zúčastnili Adam, Barča a Zuzka. Každý z 22 porotců přidělil finalistům 1, 2 nebo 3 body — každému jiný počet. Tři body získal soutěžící za první místo, 2 body za druhé místo a 1 bod za třetí místo. Adam získal stejně prvních a třetích míst. Druhých míst měl o čtyři více než prvních. Barča a Zuzka získaly stejně prvních míst, avšak druhých míst měla Barča dvakrát více než Zuzka. Kdo vyhrál finále? Kolik získal bodů?

ŘEŠENÍ. Údaje vyplývající ze zadání zapíšeme do tabulky. Číslo v tabulce znamená počet rozhodčích, kteří přidělili danému soutěžícímu odpovídající počet bodů.

	1 bod	2 body	3 body
Adam	x	x+4	x
Barča	p	2z	y
Zuzka	\overline{q}	\overline{z}	y

Každému soutěžícímu přidělilo body 22 rozhodčích, tj. součet čísel v každé řádku je 22. Odtud je jasné (z rovnice 3x + 4 = 22), že Adamovi přidělilo 6 rozhodčích 1 bod, 10 rozhodčích 2 body a 6 rozhodčích 3 body. Tabulka má nyní tvar

	1 bod	2 body	3 body
Adam	6	10	6
Barča	p	2z	y
Zuzka	\overline{q}	\overline{z}	\overline{y}

Protože každý rozhodčí přidělil každému soutěžícímu jiný počet bodů, je i součet čísel v každém sloupci 22. Z prostředního sloupce dostaneme, že z=4.Z posledního sloupce plyne, že y=8. Odtud již snadno dopočítáme, že p=6 a q=10. Výsledná tabulka má tedy tvar

	1 bod	2 body	3 body	součet bodů
Adam	6	10	6	44
Barča	6	8	8	46
Zuzka	10	4	8	42

6. Kuba měl v krabici 100 stejně velkých dřevěných krychliček o hraně 1 dm. Z některých z nich sestavil velkou krychli a pět z jejích stěn obarvil na červeno. Pak
tuto krychli zboural a ze všech krychliček, z nichž byla vytvořená, postavil kvádr.
I tento kvádr měl právě pět svých stěn obarvených načerveno. Jaké rozměry měla
velká krychle a jaké kvádr?

ŘEŠENÍ. Nejprve si uvědomíme, jaké rozměry mohla mít krychle (maximálně 4×4) a potom kvádr složený ze stejného počtu krychliček.

krychle	$2 \times 2 \times 2$				
kvádr	$1 \times 2 \times 4$	$1 \times 1 \times 8$			
krychle	3×3	3×3			
kvádr	$1 \times 1 \times 27$	$1 \times 3 \times 9$			

krychle	$4 \times 4 \times 4$					
kvádr	$1 \times 1 \times 64$	$1 \times 2 \times 32$	$1 \times 4 \times 16$	$1 \times 8 \times 8$	$2 \times 2 \times 16$	$2 \times 4 \times 8$

Kdyby měla krychle s rozměry $2\times2\times2$ zabarvených 5 stěn na červeno, tak je složena ze 4 krychliček, které mají 3 stěny červené a ze 4 krychliček mající 2 stěny červené. K postavení kvádru $1\times2\times4$ s 5 červenými stranami ale potřebujeme 6 krychliček se 3 obarvenými stěnami. Takový kvádr tedy postavit nelze. Je-li však nenatřená stěna rozměru 2×4 , pak potřebujeme k postavení kvádru právě 4 krychličky a 3 červenými stěnami a 4 se dvěma a dostáváme jedno řešení. Po systematickém vyšetření jednotlivých možností dojdeme k dalšímu řešení. Velká krychle měla rozměry $4\times4\times4$ a kvádr $2\times4\times8$ (nebarevná stěna bude 4×8).