Модель «Физика. 8 класс»

Данная модель позволяет решать задачи по физике, предлагаемые школьной программой 8-ого класса. Структурно модель состоит из трех подклассов, соответствующих тематике решаемых задач:

- тепловые явления;
- электрические и электромагнитные явления;
- световые явления.

Подкласс «Тепловые явления» используется для решения задач, связанных с изменением температуры тел и взаимосвязанными процессами.

Данный класс содержит следующие параметры:

Nº	Обозначение	Тип	Описание
п/п			
1.	Q	число	количество теплоты [Дж]
2.	m	число	масса [кг]
3.	Δt	число	$(t_2 - t_1)$ - разность температур [°C]
4.	t1	число	начальная температура [°C]
5.	t2	число	конечная температура [°C]
6.	С	число	удельная теплоемкость [Дж /кг · С]
7.	q	число	удельная теплота сгорания топлива [Дж /кг]
8.	λ	число	(λ) удельная теплота плавления [Дж/кг]
9.	L	число	удельная теплота парообразования [Дж/кг]
10.	Qпл	число	количество теплоты при плавлении [Дж]
11.	Qнг	число	количество теплоты при нагревании [Дж]
12.	Qcr	число	количество теплоты при сгорании [Дж]
13.	Qпар	число	количество теплоты при парообразовании
			[Дж]
14.	V	число	объем тела/жидкости/газа [м³]
15.	ρ	число	плотность тела/жидкости/газа[кг/м³]
16.	кпд	число	коэффициент полезного действия [%]
17.	Ап	число	полезная работа [Дж]
18.	Аз	число	затраченная работа [Дж]

Решим следующую задачу:

Определите КПД двигателя трактора, которому для выполнения работы $1,89\cdot10^7$ Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания $4,2\cdot10^7$ Дж/кг.

Запустите приложение. Кликните по меню «Файл» и выберите соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по классу «Тепловые явления» и выберите в контекстном меню пункт «Тестирование модели». В открывшейся вкладке «Тест: Тепловые явления» найдите параметры с указанным названием и заполните поля «Значения» соответствующими числами:

Объект	Значение	Найти
Тепловые явле	ения	
L	Число	
m	1,5	
q	42000000	
Q	Число	
Qнг	Число	
Qпар	Число	
Qпл	Число	
Qcr	Число	
t1	Число	
t2	Число	
V	Число	
Δt	Число	
λ	Число	
ρ	Число	
Аз	Число	
An	18900000	
кпд	Число	
c	Число	

Далее, отметьте флажок столбца «Найти» в строке с искомым параметром. В данном случае, это параметр «КПД», так как по условию задачи требуется найти именно его.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

В вкладке «Консоль» появится соответствующий вывод:

```
Шаг № 0
Описание правила: Расчет затраченной работы при сгорании (A3 = mq)
Входные параметры:
m=1.5;
q=42000000;
Формула:
y=a*b
Результат: Аз=63000000;
Шаг № 1
Описание правила: Расчет КПД по известной работе (n=Aп/A3*100)
Входные параметры:
A\pi = 18900000;
A<sub>3</sub>=63000000;
Формула:
y=100*a/b
Результат: КПД=30;
```

Полученный результат соответствует аналитическому решению:

КПД =
$$\frac{A_{\Pi}}{A_{3}} \cdot 100\% = \frac{A_{\Pi}}{qm} \cdot 100\% = \frac{1,89 \cdot 10^{7} \text{ Дж}}{4,2 \cdot 10^{7} \frac{\text{Дж}}{\text{кг}} \cdot 1,5 \text{ кг}} \cdot 100\% = 0,3 \cdot 100\%$$
= 30%

Подкласс «Электрические и электромагнитные явления» используется для решения задач, связанных с понятиями силы тока, напряжения, сопротивления.

Данный класс содержит следующие параметры:

Nº	Обозначение	Тип	Описание
п/п			
1.	1	число	сила тока [А]
2.	q_эл	число	электрический заряд [Кл]
3.	t	число	время [с]
4.	U	число	напряжение [В]
5.	А	число	работа [Дж]
6.	R	число	сопротивление [Ом]
7.	ρ	число	удельное сопротивление [Ом·мм²/м]
8.	dl	число	длина [м]
9.	S	число	площадь поперечного сечения [мм²]
10.	Ai	число	работа тока [Дж]
11.	Р	число	мощность [Вт]
12.	Qi	число	кол-во теплоты, выделяемое проводником с
			током [Дж]

Решим следующую задачу:

Сила тока в железном проводнике длиной 150 мм и площадью поперечного сечения 0,02 мм 2 равна 250 мА. Какое напряжение на концах проводника, если удельное сопротивление железа — 0,098 Ом·мм 2 /м.

Запустите приложение. Кликните по меню «Файл» и выберите соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по классу «Электрические и электромагнитные явления» и выберите в контекстном меню пункт «Тестирование модели». В открывшейся вкладке «Тест: Электрические и электромагнитные явления» найдите параметры с указанным названием и заполните поля «Значения» соответствующими числами:

бъект	Значение	Найти
Электрические и электромагнитные	явления	
Ai	Число	
dl	0,15	
1	0,25	
P	Число	
q_эл	Число	
Qi	Число	
R	Число	
S	0,02	
t	Число	
U	Число	
ρ	0,098	
Α	Число	

Далее, отметьте флажок столбца «Найти» в строке с искомым параметром. В данном случае, это параметр «U» (напряжение), так как по условию задачи требуется найти именно его.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

ект	Значение	Найти
лектрические и электромагнитные я	вления	
Ai	Число	
dl	0,15	
1	0,25	
P	Число	
q_ эл	Число	
Qi	Число	
R	0.735	
S	0,02	
t	Число	
U	0.18375	✓
ρ	0,098	
A	Число	

В вкладке «Консоль» появится соответствующий вывод:

y=a*b

Результат: U=0.18375;

Шаг № 0 Описание правила: Расчет сопротивления по известным параметрам проводника (R=ro*dl/s)Входные параметры: $\rho = 0.098$; dl=0.15;s=0.02;Формула: y=a*b/cРезультат: R=0.735; Шаг № 1 Описание правила: Расчет напряжения по закону Ома (U=IR) Входные параметры: I=0.25;R=0.735;Формула:

Полученный результат соответствует аналитическому решению:

$$U = IR = I \frac{\rho \cdot \Delta l}{S} = 250 \cdot 10^{-3} \text{ A} \cdot \frac{0.098 \frac{0 \text{ m} \cdot \text{mm}^2}{\text{m}} \cdot 150 \cdot 10^{-3} \text{ m}}{0.02 \text{ mm}^2} = 0.18375 \text{ B}$$

Подкласс «Световые явления» используется для решения задач, связанных с расчетом параметров линз.

Данный класс содержит следующие параметры:

Nº п/п	Обозначение	Тип	Описание
1.	D	число	оптическая сила линзы [дптр]
2.	F	число	фокусное расстояние линзы [м]
3.	d	число	расстояние от предмета до линзы [м]
4.	f	число	расстояние от линзы до изображения [м]

Решим следующую задачу:

Расстояние от предмета до тонкой линзы равно 5 м, а расстояние от линзы до изображения равно 20 м. Чему равен фокус линзы и ее оптическая сила?

Запустите приложение. Кликните по меню «Файл» и выберите соответствующую модель. Слева в списке объектов щелкните правой кнопкой мыши по классу «Световые явления» и выберите в контекстном меню пункт «Тестирование модели». В открывшейся вкладке «Тест: Световые явления» найдите параметры с указанным названием и заполните поля «Значения» соответствующими числами:

Далее, отметьте флажки столбца «Найти» в строках с искомыми параметрами. В данном случае, это параметры «D» (оптическая сила) и «F» (фокусное расстояние), так как по условию задачи требуется найти именно их.

После выполнения этих действий, нажмите на кнопку "Запустить".

В случае успеха, следующие параметры примут данные значения (они будут выделены красным цветом):

 Световые явл 	тения	
d	5	
D	0.25	✓
f	20	
F	4	✓

В вкладке «Консоль» появится соответствующий вывод:

Шаг № 0

Описание правила: Расчет фокусного расстояния по известным расстояниям до линзы (F=df/(d+f))

Входные параметры:

d=5;

f=20;

Формула:

y=a*b/(a+b)

Результат: F=4;

Шаг № 1

Описание правила: Расчет оптической силы по известным расстояниям до линзы (D=(d+f)/df)

Входные параметры:

d=5;

f=20;

Формула:

y=(a+b)/a/b

Результат: D=0.25;

Полученный результат соответствует аналитическому решению:

$$F = \frac{d \cdot f}{d + f} = \frac{5 \text{ M} \cdot 20 \text{ M}}{5 + 20 \text{ M}} = 4 \text{ M}$$
 $D = \frac{1}{F} = \frac{1}{4 \text{ M}} = 0,25 \text{ дптр}$