#### **Project #01- Monte Carlo Simulation**

Name: Swathi Gangi

Email: gangsw@oregonstate.edu

**Project Number: 01** 

Project Name: Monte Carlo Simulation

## 1. Provide a close estimate of the actual probability

|   | 1000   | 5000   | 10000  | 15000  | 20000  | 25000  | 30000  | 35000  | 40000  | 45000  | 50000  |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 20.83  | 19.91  | 19.94  | 20.05  | 19.87  | 19.77  | 20.06  | 19.73  | 19.4   | 19.81  | 19.78  |
| 2 | 41.15  | 40.11  | 40.21  | 40.31  | 39.88  | 39.81  | 39.61  | 39.87  | 39.7   | 39.42  | 39.56  |
| 4 | 68.68  | 79.93  | 80     | 79.99  | 79.32  | 79.39  | 79.8   | 79.85  | 79.68  | 79.57  | 79.65  |
| 6 | 94.75  | 120.67 | 119.83 | 119.93 | 120.12 | 119.42 | 119.84 | 119.24 | 119.11 | 118.95 | 119.64 |
| 8 | 140.62 | 157.56 | 157.02 | 158.44 | 157.97 | 158.36 | 158.24 | 158.17 | 159.56 | 156.95 | 158.44 |
|   |        |        |        |        |        |        |        |        |        |        |        |

The actual probability based on the maximum performance and the number of trials is 23.35%.

## 2. Good graph of performance vs number of trials



The graph shows how performance (MegaTrials/Sec) changes when we increase the number of trials.

#### 3. Good graph of performance vs number of threads



The graph shows how performance (MegaTrials/Sec) changes with different number of threads.

## 4. Compute Fp, the Parallel Fraction

To calculate Fparallel, we use this formula from Amdahl's Law.

$$F_p = \frac{N}{N-1} \cdot \left(1 - \frac{1}{S}\right)$$

Number of Threads = 8

# Speedup = performance with 8 threads / performance with 1 thread

I have considered the performances for the 45000 trials

$$S = 156.95/19.81$$

$$S = 7.92$$

$$Fp = 8/7 * (1-1/7.92)$$

$$Fp = 0.998$$

## 5. Compute Smax, the maximum Speedup

Smax = 1/1 - Fp

- = 1/1-0.998
- = 1/0.004
- = 500