排名(coci)

Time:1s

Mem:128MB

Description

第三场 COCI 比赛就要开始了。

为了猜测每一位选手的排名,我们规定:如果 A 第一场、第二场分数都严格高于 B,那么 A 第三场的分数不会小于 B。

在每一场比赛,选手都有机会获得 0 到 650 分(包括这一场,第三场)。总排行榜是根据三场的总分来决定的。如果选手总分相同,那么他们将获得相同的排名。举一个例子:有五个选手,总分分别为 1000,1000,900,900,800,那他们的排名分别为 1,1,3,3,5。

现在我们知道每一个选手前两场的分数,你能猜测一下第三场 COCI 结束后,每一位选手在总排行榜上的最高和最低排名么?

Input

第一行包含一个整数 n,表示选手的个数。

接下来 n 行,每行包含两个整数 a,b($0 \le a,b \le 650$),分别表示这个选手前两轮的分数。

Output

输出包含 n 行,对于每一个选手,每行输出两个整数,分别表示该选手最高排名和最低排名。

Sample

5	10
250 180	650 550
250 132	550 554
220 123	560 512

132 194	610 460
220 105	610 456
	650 392
	580 436
	650 366
	520 456
	490 456
1 3	1 4
1 3	18
3 5	28
1 5	2 7
3 5	29
	1 10
	4 10
	1 10
	5 10
	5 10

Hint

对于 30%的数据: n<=5000.

对于 60%的数据: n<=50000.

对于 100%的数据: n<=500000.

疯狂传染病(ill)

Time:2s

Mem:128MB

Description

可怕的流感在 AC 之城爆发了! AC 之城有 M 个居民, 每个人有一个 ID

编号,从0到M-1。由于病毒十分强大,每个人可能被多次感染。在流

感爆发第一天,病毒携带者被我们称作"病原体",他们的编号已知,

病毒要靠他们传播。

在接下来的每一天,如果有一个前一天感染病毒的、编号为 a 的病人,

以及一个编号为 b 的"病原体",那么编号为 p 的居民将在今天被感染,

其中 p=(a*b)%M。另外, a 和 b 不一定要严格相同。

举一个例子,假设AC之城有101个居民,其中5号和50号为"病原

体"。在第一天,感染病毒的人为5号和50号。第二天,25号、48号

(250%101)和76号(2500%101)将被感染。第三天,77号将成为在这天被

感染的人中的一个((48*50)%101=77)。

现在,我们想要知道,将在第 K 天被感染?

Input

输入第一行包括三个正整数 K、M、N.

分别表示询问的天数、城中的总人数以及"病原体"的个数。

输入第二行包括 N 个用空格分开的正整数,表示"病原体"的编号。数字保证合法,并且从小到大给出。

Output

输出仅一行,表示在第K天被感染(包括被再次感染)的居民的编号。编号要按照从小到大的顺序输出。

Sample

1 100 3	2 100 3	10 101 2
1 2 3	1 2 3	5 50
1 2 3	123469	36 44 57 65

Hint

对于 30%的数据: k<=500,m<=500.

对于 60%的数据: k<=20000,m<=1000.

对于 100%的数据: k<=10¹⁸,m<=1500.

毯子(blanket)

时间限制: 2 Sec 内存限制: 512 MB

题目描述

N 块矩形毯子铺在地上。0 秒时(0,0)处有一桶油倒了,然后开始流呀流,每秒往八个方向扩散一个单位。注意,这里的坐标描述一个单元格,不表示点。M 个询问,每次问一个时间点被油染到的毯子面积(若有毯子重叠,面积也要累加,如一个单位格被三个毯子覆盖,那么被油染到之后就算 3 个单位面积)。

输入

第一行一个整数 N 表示毯子数。

接下来 N 行,每行四个整数 x1,y1,x2,y2。其中(x1,y1)表示毯子左下角格子的坐标,(x2,y2)表示毯子右上角格子的坐标。任何一块毯子都不覆盖(0,0)下一行一个整数 M 表示询问数

下一行 M 个整数,表示每个询问的时间点,严格升序。

输出

对于每一个询问,输出一行一个整数表示该时间点被油染到的毯子的总面积。

样例

3	5
-2 1 1 2	15
1021	
-3 -3 -2 0	
2	
12	
4	0
5 1 8 4	5
-8 1 -5 4	14
-10 2 10 3	18
6 0 8 10	70
6	100
123479	

提示

样例 1 的 0、1、2 秒的状况

编号。	N.	M.	•	٥
2. 3.	1<=N<=50.	1<=M<=50	-50<=x1<=x2<=50 -50<=y1<=y2<=50	0<=询问的时间点 <=50。
4. 5.	1<=N<=1,000	1<=M<=1,000	-1,000<=x1<=x2<=1,000 -1,000<=y1<=y2<=1,000	0<=询问的时间点 <=1,000。
6. 7.			-100,000<=x1<=x2<=100,000 -1,000<=y1<=y2<=1,000	0<=询问的时间点 <=100,000。
8. 9.	1<=N<=100,000.	1<=M<=100,000.	-1,000,000<=x1<=x2<=1,000,000 -1,000,000<=y1<=y2<=1,000,000	0<=询问的时间点 <=1,000,000