

Systemy Analagowe i Cyfrowe

LAB nr 3

Filtry aktywne – filtr środkowoprzepustowy

Autorzy:	Aleksander Łyskawa 275462 Kacper Karkosz 275495
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	pon 13:15-15:30
Prowadzący:	dr inż. Marek Kukawczyński
Data:	04.09.2024

1 Temat ćwiczenia

Zadaniem do wykonania było zaprojektowanie filtru aktywnego pasmowoprzepustowego o zadanych parametrach:

- f = 1.8 [kHz]
- Q = 8[-]
- $K = 2 \left[\frac{V}{V} \right]$

Do realizacji projektu wykorzystano wzmacniacz TKL061, do którego dobrano rezystory i kondensatory o odpowiednich parametrach.

Następnie przeprowadzono badania na zaprojektowanym układzie, aby uzyskać następujące charakterystyki:

- przebieg czasowy
- charakterystyki częstotliwościowe $\left|K_{U}\right|=f(f)$ oraz $\phi=f(f)$
- wykres zależności napięcia wyjściowego od czasu
- wykres zależności modułu napięcia wejściowego od czasu

Charakterystyki zostały wyznaczone na podstawie:

- symulacji w programie LTSpice
- pomiarów na fizycznie zbudowanym układzie

1.1 Dobór elementów RC

Założyliśmy, że $C_2 = C_4 = 10 [nF]$, wtedy:

$$R_3 = \frac{Q}{f \cdot \pi \cdot C} = \frac{8}{3,14 \cdot 1,8 \cdot 10^3 \cdot 10^{-9} \cdot 10} = 141,54 [k\Omega] \approx 150 [k\Omega]$$

$$R_5 \approx R_3 = 150 \left[k\Omega \right] \tag{1}$$

$$R_1 = \frac{R_3}{2 \cdot K} = \frac{150 \cdot 10^3}{2 \cdot 2} = 37, 5 [k\Omega] \approx 39 [k\Omega]$$
 (2)

$$R_3 = \frac{Q}{2 \cdot f \cdot \pi \cdot C \cdot (2Q^2 - K)} = 561, 68 \, [\Omega] \approx 560 \, [\Omega]$$

1.2 Rzeczywiste wartości elementów RC

Rzeczywiste wartości elementów RC zostały zmierzone przy użyciu multimetru, i wynosiły odpowiednio:

- $R_5 = 149, 22 [k\Omega]$
- $R_3 = 148,95 [k\Omega]$
- $R_1 = 39,06 [k\Omega]$
- $R_6 = 544, 4 [\Omega]$
- $C_2 = 9,74 [nF]$
- $C_4 = 9,67 [nF]$

1.3 Schemat w LTSpice

Rysunek 1 przedstawia schemat filtru wykonany w programie LTSpice.Kolorem czarnym zostal oznaczony sygnal wejsciowy a kolorem czerwonym kolor wyjsciowy.

Rys. 1: Schemat w LTSpice

2 Charakterystyka czasowa w LTSpice

Rysunek 2 przedstawia charakterystykę czasową uzyskaną w programie LTSpice.

Rys. 2: Charakterystyka czasowa

3 Charakterystyki fazowe

Ryunek 3 przedstawia wykres zależności fazy od częstotliwości w programie LTSpice, natomiast Rysunek 4 przedstawia wykres zależności fazy od częstotliwości rzeczywistego układu.

Rys. 3: Charakterystyka fazowa wykonana w LTSpice

Rys. 4: Charakterystyka fazowa rzeczywistego układu

4 Charakterystyki amplitudowe

Rysunek 5 przedstawia wykres zależności wzmocnienia od częstotliwości w programie LTSpice, natomiast Rysunek 6 przedstawia wykres zależności wzmocnienia od częstotliwości rzeczywistego układu. Tabela 1 zawiera punkty pomiarowe użyte do wygenerowania charakterystyk.

Rys. 5: Charakterystyka amplitudowa wykonana w LTSpice

Rys. 6: Charakterystyka amplitudowa rzeczywistego układu

Tab. 1: Tabela pomiarowa do Rysunków nr 4 i 6

	f	Uwe	Uwy	ф	K	φwyskalowane
	[Hz]	[V]	[V]	[°]	[V/V]	[°]
	170,4	2,080	0,045	92,4	0,02	-92
	340	2,080	0,090	91,6	0,04	-92
	420	2,080	0,115	91,4	0,06	-91
	700	2,080	0,200	91	0,10	-91
	1000	2,080	0,360	96,5	0,17	-97
	1200	2,040	0,528	98,5	0,26	-99
	1400	2,040	0,836	104	0,41	-104
	1600	2,040	1,620	118	0,79	-118
	1650	2,040	2,000	124	0,98	-124
	1680	2,040	2,260	130	1,11	-130
f _d ->	1704	0,572	0,712	136	1,24	-136
	1750	0,504	0,760	148	1,51	-148
	1780	0,504	0,840	161	1,67	-161
f ₀ ->	1811	0,504	0,888	176	1,76	-176
	1830	0,504	0,888	-175	1,76	-185
	1860	0,504	0,840	-160	1,67	-200
	1890	0,504	0,760	-148	1,51	-212
	1920	0,512	0,680	-139	1,33	-221
fg->	1941	0,576	0,704	-132	1,22	-228
	2000	0,504	0,495	-121	0,98	-239
	3000	0,508	0,110	-95	0,22	-265
	4000	0,508	0,068	-95	0,13	-265
	6000	2,040	0,156	-89,5	0,08	-271
	10000	2,040	0,090	-89,5	0,04	-271
	13000	2,040	0,070	-87	0,03	-273
	16000	2,040	0,058	-87	0,03	-273
	18000	2,040	0,052	-87	0,03	-273

5 Wykresy zależności napięcia wyjściowego od czasu

Rysunek 7 przedstawia wykres zależności napięcia wyjściowego od czasu, natomiast Rysunek 8 przedstawia wykres zależności modułu napięcia wyjściowego od czasu. Wykresy zostały wykonane na podstawie Tabeli nr. 2.

Rys. 7: Wykres zależności modułu napięcia wyjściowego od czasu

Tab. 2: Tabela pomiarowa do wykresów 8 i 9

t	U _{wy}	Uwy	
[ms]	[V]	[V]	
0,12	-0,200	0,200	
0,40	0,168	0,168	
0,68	-0,140	0,140	
0,96	0,116	0,116	
1,24	0,092	0,092	
1,48	-0,076	0,076	
1,80	0,060	0,060	
2,04	-0,048	0,048	
2,32	0,040	0,040	
2,60	-0,032	0,032	
2,88	0,028	0,028	
3,16	-0,028	0,028	
3,44	0,016	0,016	
3,72	-0,016	0,016	
4,00	0,012	0,012	
4,28	-0,008	0,008	
4,56	0,008	0,008	
4,80	-0,008	0,008	

6 Obliczenia

6.0.1 Dobroć układu

Z pomiarów na oscyloskopie odczytaliśmy wartość $f_{\acute{s}r}$, dla której układ przyjmuje największe wzmocnienie i wynosi 1,73 [kHz]. Jest to wartość zbliżona do wartości zakładanej równej 1,8 [kHz]. Zmierzone wartości f_g i f_d wynosiły odpowiednio 1,81 [kHz] i 1,61 [kHz]. Na podstawie tych danych możemy obliczyć dobroć układu:

$$Q = \frac{f_{\$r}}{f_q - f_d} = \frac{1,73}{0,2} = 8,65 [-]$$

Obliczona dobroć układu wynosi 8,65. Jest to wartość z rozsądną dokładnością bliska wartości zadanej w kryteriach ćwiczenia, która wynosiła 8.

6.0.2 Wzmocnienie

$$K = \frac{U_{wy}(f_{\pm r})}{U_{we}(f_{\pm r})} = \frac{0,888}{0,504} = 1,76 \left[\frac{V}{V}\right]$$

Obliczone wzmocnienie układu jest równe 1,76 $\left[\frac{V}{V}\right]$. Jest to wartość z rozsądną dokładnością bliska wartości zadanej w kryteriach ćwiczenia, która wynosiła 2 $\left[\frac{V}{V}\right]$.

7 Transmitancje

Transmitancję układu można policzyć na dwa sposoby:

- za pomocą równania linii trendu z Rysunku 9
- za pomocą wartości elementów naszego układu

7.1 Obliczanie za pomocą równania linii trendu

Rownanie ma postać $y=0,2237\cdot e^{-0.0728x}$. Zatem A = 0,2237 i $\alpha=0,0728$. Podstawiamy do wzoru:

$$u(t) = Ae^{-\alpha t} \cdot \sin(2\pi ft) = 0,2237^{-0.0728t} \cdot \sin(2\pi \cdot 1,73t)$$

$$H(s) = \frac{L\{u(t)\}}{1/s} = 0.02237s \cdot \frac{3,46}{(s+0.0728)^2 + 3,46^2} = \frac{1935s}{25000000s^2 + 3640000s + 299422496}$$

7.2 Obliczanie za pomocą wartości elementów

$$H(s) = \frac{\frac{s}{R_1 C_4}}{s^2 + s(\frac{1}{R_3 C_4} + \frac{1}{R_3 C_2}) + \frac{\frac{1}{R_1} + \frac{R_1}{R_6}}{R_3 C_4 C_2}} = \frac{7890s}{29831580s^2 + 2983158s + 2056254328}$$

Wyniki transmitancji powinny byc sobie równe. W naszym wypadku zauważyć można znaczące różnice, które mogą wynikać z niedokładengo odczytu danych z oscyloskopu.

8 Wnioski

- Rzeczywista wartość dobroci (Q=8,65) różni się od wartości założonej przy projekcie (Q=8). Może to sugerować nieidealność dobranych elementów.
- Wzmocnienie filtru, zakładane na poziomie $2\left[\frac{V}{V}\right]$, w rzeczywistym układzie wyniosło $2,64\left[\frac{V}{V}\right]$. Podobnie jak w przypadku dobroci, różnica ta może być wynikiem niedoskonałości dobranych elementów.
- Różnice w transmitancji obliczonej dwoma sposobami mogą być wynikiem błędów pomiarowych.
- Pomimo nieznacznych różnic między charakterystykami fazowymi oraz amplitudowymi uzyskanymi przy pomocy symulacji i pomiarów, można stwierdzić, że układ został poprawnie zaprojektowany, a wartości elementów - odpowiednio dobrane.