Assume we want to show: 5x + 10 is O(x)

Assume we want to show: 5x + 10 is O(x)For any C > 5: $5x + 10 \le C \cdot x$ for $x \ge \frac{10}{C-5}$

```
Assume we want to show: 5x + 10 is O(x)
For any C > 5: 5x + 10 \le C \cdot x for x \ge \frac{10}{C-5}
The valid witness pairs are \{(C, k) \mid C > 5, k \ge \frac{10}{C-5}\}.
```

Assume we want to show: 5x + 10 is O(x)For any C > 5: $5x + 10 \le C \cdot x$ for $x \ge \frac{10}{C-5}$ The valid witness pairs are $\{(C, k) \mid C > 5, k \ge \frac{10}{C-5}\}$.

Assume we want to show: $x^2 + 2x + 1$ is $O(x^2)$

Assume we want to show: x^2+2x+1 is $O(x^2)$ For any C>1: $x^2+2x+1\leq C\cdot x^2$ for $x\geq \frac{2+2\sqrt{C}}{2(C-1)}$

Assume we want to show: $x^2 + 2x + 1$ is $O(x^2)$ For any C > 1: $x^2 + 2x + 1 \le C \cdot x^2$ for $x \ge \frac{2 + 2\sqrt{C}}{2(C - 1)}$ The valid witness pairs are $\{(C, k) \mid C > 1, k \ge \frac{2 + 2\sqrt{C}}{2(C - 1)}\}$.

Assume we want to show: $x^2 + 2x + 1$ is $O(x^2)$

For any C > 1: $x^2 + 2x + 1 \le C \cdot x^2$ for $x \ge \frac{2 + 2\sqrt{C}}{2(C - 1)}$

The valid witness pairs are $\{(C,k) \mid C > 1, k \ge \frac{2+2\sqrt{C}}{2(C-1)}\}$.

