

eεs(v) χε ε {0,1}

	Note: This is valid to	for any graph.
		for any graph. Useful when considering
	And we can rewrite the	the bipartite arouph
	max 5 Xe	U Relaxation
	s.t Ax < 1.	(1)
	re e fo,13	we have $A \rightarrow TU$
		we have $A \rightarrow TU$ we still need to show:
	A is an incidence matrix	of bipartite graph $\begin{bmatrix} A \end{bmatrix} \rightarrow TU$
	linear relaxation is	tight! (1) & (2) share equal
	max Z Xe	ope. val.
	s.t Ax \$1.	(2)
	0 = xe = e = E	
To condu	ide this, rewrite (1) a	s follows:
	max 5 Ne eff	
	S-t A X E	- 1 7
	LI J' I	1)
	$\chi \geqslant 0$	
	Side note:	
	Q:What will happen is	ohj. is non-linear?
	A: Things break down.	
		such problems do not
	need to lie on AN	EXTREME POINT

And our condusion now is related to EXTREME POINT

EXIREME POINT
Ex: Minimize weight Perfect Matching.
G=(V,E) ~> Graph.
We say that a matching is PERFECT if all vertices are
selected.
perfect not perfect
This prob. can be formulated as follows:
min \(\sum_{e \in E} \) \(\text{ce} \) \(\text{weight of vertex e} \)
ee E Vo C 1 VG V
s.t \(\Sigma \times \) \(\tim
xe ∈ {0,13 perfect (matching)
If a graph is bi-partite, then $A \longrightarrow TV \Rightarrow \begin{bmatrix} A \\ I \end{bmatrix} \longrightarrow TV$
⇒ Linear relaxation is tight
Carritanilly (2)
Specifically, (3) can be written as?
min $\geq \text{(e} \times \text{e}$ $\leq \text{(3)}$ $\leq \text{(4)} \times \text{(4)} \times \text{(5)}$
s.e $Ax=1$ what if $x>1?$

xe {on}

the relaxation is light

The Linear Relaxation is:

Directed Graph

Given a directed graph G=(V, E)

E is the set of arcs

(directed edges), the

node-arc incidence

matrix is the matrix

Whose rows are vertices,

| a b c d e 1 +1 -1 +1 -1 2 -1 +1 +1 3 + -1 -1

and columns are the arcs, and whose entries are.

A vertex i, edge $j = \begin{cases} +1, \text{ start from } i \\ -1, \text{ end at } i \end{cases}$

[Props]. Directed Graph incidence matrix is TU

Arbitrary

Pf: (use equitable bicolouring)

Let I be any subsets of rows of A.

Now, note that every aloum of A corresponds to

min
$$\sum_{e} le \times e$$

s.t $A \times = b$
 $\times \in \{0,1\}^{E}$

Travelling Salesman Problem > subtour estimation (TSP)

Let D=(VIE) ~> directed Graph Ce ~> cost of each edge The third constraint.

A tour => V1 -> V2 -> ·· -> Vk -> V1

$$Cost = Cv_1, v_2 + \cdots + Cv_{k-1}, v_k + Cv_k, v_1$$

Goal: Find the sequence of vertices to minimize the cost.

Notation: Let SCV, define:

TSP Formulation

及墨龙经过每下兰

Define y=d-2 Xext ↓ check $y_{\bar{j}} = \begin{cases} \pm 1, & j \in J \\ 0, & \text{otherwise} \end{cases}$ > use $y = d - 2 \times ext$. This implies that: Ay e {0,+1,-13m > use this to construct the equitable bicolouning partition J_= {j \in J : y_j = +1}

J_= {j \in J : y_j = -1}. equitable bicolouring Exams: 1 Unimodularity -> IP -> LR {x= Ax=b, x>0} A is $U \Rightarrow \{Ax = b, x \neq 0, x \in Z\} \xrightarrow{LR} \{Ax = b, x \neq 0\}$ 2 TU => {AXEB, XZO, XEZ} -> {AXEB, XZO} 3 Connection between TU \(\iftrace \) equitable colum bicolouring

when this thun coen he used!
中 Ax ≤b, x70, x€以 → 不常易直接得到
要从 A~> TU)if XE for13n
[A,I] ··· 等形式也是TU