1. Import libraries

```
from sklearn.preprocessing import StandardScaler # standard scaler
from sklearn.decomposition import PCA # pca
from scipy.cluster.hierarchy import dendrogram, linkage # dendrograms
from sklearn.cluster import KMeans # k-means clustering
```

from sklearn.model_selection import train_test_split # train-test-split

- 2. Load data as "df"
- 3. Rename columns as Q1, Q2...

```
y=-1
for x in df.columns:
    y+=1
    print(f'\'Q{y}\',')
```

4. Explore data and heat maps (S 8b)

5. Data quality analysis

Questions:	Criteria:								
29,24	1	57,60	0	25,52	-1	32,2	1	15,30	-1
24,44	1	1,16	-1	19,49	-1	33,43	2	8,28	-1
34,39	1	16,34	-1	5,40	2	25,50	2	6,26	1
55,58	0	31,46	-1	2,7	2	16,36	2	10,20	1
56,59	0	31,6	-1	22,32	1	6,31	-1	1,16	-1

```
# Range +/-1 same direction (1)
 placeholder_lst=[]
        le x < lenght:
if df.loc[x, '024'] == 5 and df.loc[x, '029'] == 3:
    placeholder_lst.append(1)
elif df.loc[x, '024'] == 5 and df.loc[x, '029'] == 2:
    placeholder_lst.append(1)
elif df.loc[x, '024'] == 5 and df.loc[x, '029'] == 1:</pre>
       placeholder_lst.append(1)
elif df.loc[x, '024'] == 5 and df.loc[x, '029'] == 1.
placeholder_lst.append(1)
elif df.loc[x, '024'] == 4 and df.loc[x, '029'] == 2:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 3 and df.loc[x, '029'] == 1:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 3 and df.loc[x, '029'] == 5:

if df.loc[x, '024'] == 3 and df.loc[x, '029'] == 1:
placeholder_lst.append(1)
elif df.loc[x, '029'] == 1:
                                                                                                                       # Exact same question (0)
                                                                                                                       while x < lenght:
    if df.loc[x, 'Q55'] == 5 and df.loc[x, 'Q58'] != 5:</pre>
        placeholder_lst.append(1)
elif df.loc[x, '024'] == 3 and df.loc[x, '029'] == 5:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 3 and df.loc[x, '029'] == 1:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 2 and df.loc[x, '029'] == 4:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 2 and df.loc[x, '029'] == 5:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 1 and df.loc[x, '029'] == 3:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 1 and df.loc[x, '029'] == 4:
placeholder_lst.append(1)
elif df.loc[x, '024'] == 1 and df.loc[x, '029'] == 5:
placeholder_lst.append(1)
                                                                                                                                  placeholder_lst.append(1) elif df.loc[x, 'Q55'] == 4 and df.loc[x, 'Q58'] != 4:
                                                                                                                                  placeholder_lst.append(1)
elif df.loc[x, 'Q55'] == 3 and df.loc[x, 'Q58'] != 3:
                                                                                                                                  placeholder_lst.append(1)
elif df.loc[x, 'Q55'] == 2 and df.loc[x, 'Q58'] != 2:
                                                                                                                                  placeholder_lst.append(1)
elif df.loc[x, 'Q55'] == 1 and df.loc[x, 'Q58'] != 1:
                                                                                                                                            placeholder_lst.append(1)
         placeholder_lst.append(1)
else:
                                                                                                                                   else:
                                                                                                                                            placeholder_lst.append(0)
                 placeholder_lst.append(0)
                                                                                                                       df_2 = pd.DataFrame(placeholder_lst)
 df_1 = pd.DataFrame(placeholder_lst)
 # Range +/-1 reversed direction (-1)
                                                                                                                        # Range +/-2 same direction (2)
 placeholder_lst=[]
placeholder_[st=[]]
x=0
while x < lenght:
    if df.loc[x, '01'] == 5 and df.loc[x, '096'] == 5:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 5 and df.loc[x, '096'] == 4:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 5 and df.loc[x, '096'] == 3:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 4 and df.loc[x, '096'] == 5:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 4 and df.loc[x, '096'] == 4:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 3 and df.loc[x, '096'] == 5:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 3 and df.loc[x, '096'] == 1:
        placeholder_lst.append(1)
    elif df.loc[x, '01'] == 3 and df.loc[x, '096'] == 2:
        placeholder_lst.append(1)
                                                                                                                        placeholder_lst=[]
                                                                                                                        while x < lenght:</pre>
                                                                                                                                   if df.loc[x, '05'] == 5 and df.loc[x, '040'] == 2:
                                                                                                                                              placeholder_lst.append(1)
                                                                                                                                    elif df.loc[x, 05'] == 5 and df.loc[x, 040'] == 1:
                                                                                                                                              placeholder_lst.append(1)
                                                                                                                                    elif df.loc[x, 'Q5'] == 4 and df.loc[x, 'Q40'] == 1:
                                                                                                                                   placeholder_lst.append(1)
elif df.loc[x, 'Q5'] == 3 and df.loc[x, 'Q40'] == 5:
                                                                                                                                   placeholder_lst.append(1)
elif df.loc[x, 'Q5'] == 3 and df.loc[x, 'Q40'] == 1:
                                                                                                                                   placeholder_lst.append(1)
elif df.loc[x, 'Q5'] == 2 and df.loc[x, 'Q40'] == 5:
         elif df.loc(x, 'Q1') == 2 and df.loc(x, 'Q96') == 2:
placeholder_lst.append(1)
elif df.loc(x, 'Q1') == 2 and df.loc(x, 'Q96') == 1:
placeholder_lst.append(1)
elif df.loc(x, 'Q1') == 1 and df.loc(x, 'Q96') == 3:
placeholder_lst.append(1)
elif df.loc(x, 'Q1') == 1 and df.loc(x, 'Q96') == 2:
                                                                                                                                   placeholder_lst.append(1)
elif df.loc[x, 'Q5'] == 1 and df.loc[x, 'Q40'] == 4:
                                                                                                                                    placeholder_lst.append(1)
elif df.loc[x, 'Q5'] == 1 and df.loc[x, 'Q40'] == 5:
                  placeholder_lst.append(1) f df.loc[x, 'Q96'] == 1:
                                                                                                                                              placeholder_lst.append(1)
         elif df.loc[x, 'Q1'] == 1 and
placeholder_lst.append(1)
                                                                                                                                              placeholder_lst.append(0)
                 placeholder_lst.append(0)
                                                                                                                        df_3 = pd.DataFrame(placeholder_lst)
            = pd.DataFrame(placeholder_lst)
```

6. Drop the rows based on data quality

df = df.drop(df[df.score >= 2].index) **Depending on results

7. Feature Engineering

```
## Getting scores of the big 5 for every observation;

df['Extrovert'] = (2e + df['01]) - df['02] + df['01]) - df['03] + df['02] + df['02] + df['02] + df['02] + df['03]) - df['08] + df['03] - df['08] + df['03] + df['
```

8. Dropping demographics & Script 9 blanks

k-Means Clustering: If we know how many clusters we would like to build, we can take advantage of k-means clustering. This is a more robust way to create clusters and is also a technique that can be used to predict on new data.

9. Script 10

```
# concatenating cluster memberships with principal components
                                                                                                               clst_pca_df = pd.concat([customers_kmeans_pca,
                                                   # storing cluster centers
# TRANSFORMING our data after fit
                                                                                                                                  X_pca_df],
                                                                                                                                  axis = 1
X_scaled_pca = scaler.transform(X_pca_df) centroids_pca = customers_k_pca.cluster_centers_
                                                                                                               # checking results
                                                                                                               clst_pca_df
# converting scaled data into a DataFrame
                                                   # converting cluster centers into a DataFrame
pca_scaled = pd.DataFrame(X_scaled_pca)
                                                   centroids_pca_df = pd.DataFrame(centroids_pca)
                                                                                                               # concatenating demographic information with pca-clusters
                                                                                                               final_pca_clust_df = pd.concat([customers_df.loc[:, ['Channel', 'Region']],
                                                                                                                                       clst_pca_df],
                                                                                                                                       axis = 1
# reattaching column names
                                                   # renaming principal components
pca_scaled.columns = ['Herbivores',
                                                                                                               # renaming columns
                                                   centroids_pca_df.columns = ['Herbivores',
                           'Fancy Diners',
                                                                                                               final_pca_clust_df.columns = ['Channel',
                                                                                     'Fancy Diners',
                                                                                                                                      'Region',
                           'Winers'
                                                                                     'Winers'
                                                                                                                                      'Cluster'
                                                                                                                                      'Herbivores'.
                                                                                                                                      'Fancy Diners',
                                                                                                                                      'Winers'l
# checking pre- and post-scaling variance
print(pd.np.var(X pca df), '\n\n')
                                                   # checking results (clusters = rows, pc = columns)
print(pd.np.var(pca scaled))
                                                   centroids pca df.round(2)
                                                                                                               print(final_pca_clust_df.head(n = 5))
```

h	controlas_pca_arrioan		
Thinking	Communicating	Team Building	
Shows Self-Awareness	Speaks & Listens Skillfully	Fosters Collaborative Relationships Agreeableness	
Embraces Change Openness	Influences Confidently	Inspires Productivity	
Demonstrates Dynamic Thinking	Presents Ideas Effectively	Resolves Conflict Constructively Agreeableness	