

Using De-embedding Techniques for Analyzing Die-to-Die Interconnects through Interposer Technology

Milad Seyedi

Supervisor: Prof. N. Masoumi

Advisor: Dr. M. R. Nezhadahmadi

CIARS Project, University of Waterloo SEPTEMBER 9, 2021

Outline of the Paper

- 1. Abstract
- 2. Introduction
- 3. Main Sections
- 4. Conclusion
- 5. References

- 1. L-2L Method for Microstrip
- 2. 2x-Through or Modified Method for other Signaling Schemes
- 3. Propose a New Optimized Structure in terms of Signal Integrity Issues (Loss, Reflection, Crosstalk)

بررسی اتصالات تراشه به تراشه در اینترپوزر

- انتخاب جنس و ساختار اینتریوزر
- شبیهسازی ساختارهای مختلف اتصالات پر کاربرد در بستر اینترپوزر و بررسی یکپارچگی سیگنال در آنها
- ارائه روشی بر اساس نتایج شبیهسازی و کارهای پیشین برای مدلسازی سریع و دقیق اتصالات تراشه به تراشه

ساختار اینترپوزر آلی (Organic Interposer)

Microstrip → Bump + Pad + Trace Stripline → Bump + Pad + Via + Trace

4 لایه بالای اینترپوزر با جزئیات بیشتر

معمولا ساختار متداولی که برای مسیرکشی خطوط پر سرعت خطوط مایکرواستریپ و استریپ لاین هستند که به ترتیب با رنگهای بنفش و سیز مشخص شدهاند.

Organic Int.

3.7

 $\frac{0.013}{4.83 \times 10^7}$

12 µm

 $12/12 \, \mu m$

σ_{GT} σ_{M}	$\epsilon_{\rm r}$
tanδ H	tanδ
T _S	$\sigma_{ m M}$
ε _r Η	Н
GB↓	T_{S}
	T _{CD} /T _{CT}

مشخصات پار امتر های اتصال تر اشه به سابستریت

Source: B. Dehlaghi Jadid. Parallel Ultra-Short Reach Die-to-Die Links. PhD Thesis, University of Toronto, Canada, 2017

Source: B. Dehlaghi Jadid. Parallel Ultra-Short Reach Die-to-Die Links. PhD Thesis, University of Toronto, Canada, 2017

مور د استفاده قر ار میگیر د.

سیگنالهای برسرعت و 4 لایه وسط که اندازه

مشخصه بزرگتری نیز نسبت به سایر لایهها دارند برای مسیر کشی سیگنالهای تغذیه و توان

نحوه انتقال سيكنال

- مدلاسيون 2-PAM
- سیگنال تکسر
- سيگنال ديفرانسيلي

• ساختار خطوط انتقال

نمای جانبی خطوط مایکرواستریپ و استریپ لاین در نظر گرفته شده در حالتهای مختلف همراه با نمایش فضای اشغال شده توسط هر کدام برای داشتن امپدانسهای 50 و 100 اهم به ترتیب در حالت تکسر و دیفرانسیلی

جزئیات نمونهای از ساختارهای اتصالات در نظر گرفته شده

اتصال تراشه به تراشه (Trace + Bump + Pad)

جزئیات نمونهای از ساختارهای اتصالات در نظر گرفته شده

اتصال تراشه به تراشه (Trace + Bump + Pad)

نحوه اعمال پورتهای ورودی خروجی

• ديفرانسيلي:

$$R_{T} = 100\Omega, V_{DD} = \pm 0.5V$$

$$R_T = 50\Omega$$
, $V_{DD} = 1V$

نتایج شبیهسازی مایکرواستربپ تکسر

تلفات تزريقى تلفات بازگشتی

دو كاناله

تک کاناله

نتایج شبیهسازی استریپلاین تکسر

تلفات تزریقی تک کاناله تلفات بازگشتی

دو كاناله

نتایج شبیهسازی تکسر دو کاناله

نویز همشنوایی سر نزدیک

نویز همشنوایی سر دور

استريپلاين

نتایج شبیهسازی تکسر دو کاناله محافظت شده با زمین

نویز همشنوایی سر نزدیک نویز همشنوایی سر دور

مايكرواستريپ

استريپلاين

نتایج شبیهسازی دیفرانسیلی دو کاناله محافظت شده با زمین

نویز همشنوایی سر نزدیک نویز همشنوایی سر دور

مايكرواستريپ

استريپلاين

نمودار درختی تمامی شبیهسازیهای انجام شده

مقایسه نتایج شبیهسازی اتصالات در حالت دوکاناله

Single-Ended with GND Shields

Differential with GND Shields

مقایسه نتایج شبیهسازی اتصالات در حالت دوکاناله

نتایج عددی برای حالت تکسر		Microstrip line				Stripline			
		\$21 (@50GHz)	\$11 (Max)	NEXT (Max)	FEXT (Max)	\$21 (@50GHz)	\$11 (Max)	NEXT (Max)	FEXT (Max)
Single-ended	Trace	-9 dB	-19 dB	-23 dB	-3 dB	-4 dB	-24 dB	-21 dB	-37 dB
	Trace + Bump	-12.5 dB	-17 dB	-20 dB	-3 dB	-4.4 dB	-13 dB	-21 dB	-30 dB
Single-ended with GND Shields	Trace	-2.7 dB	-18 dB	-38 dB	-17 dB	-4 dB	-23 dB	-82 dB	-64 dB
	Trace + Bump	-2.9 dB	-18 dB	-30 dB	-19 dB	-4.4 dB	-14 dB	-40 dB	-40 dB

نتایج عددی برای حالت دیفرانسیلی		Microstrip line				Stripline			
		S21 (@50GHz)	\$11 (Max)	NEXT (Max)	FEXT (Max)	S21 (@50GHz)	\$11 (Max)	NEXT (Max)	(Max)
Differential	Trace	-3.7 dB	-27 dB	-32 dB	-13 dB	-4.1 dB	-30 dB	-28 dB	-42 dB
	Trace + Bump	-3.9 dB	-16 dB	-25 dB	-13 dB	-4.6 dB	-12 dB	-28 dB	-42 dB
Differential with GND Shields	Trace	-2.5 dB	-24 dB	-53 dB	-31 dB	-4 dB	-33 dB	-89 dB	-70 dB
	Trace + Bump	-2.6 dB	-15 dB	-44 dB	-31 dB	-4.6 dB	-12 dB	-60 dB	-60 dB

جمعبندى

• خلاصهای از نتایج بدست آمده از شبیهسازیهای ساختارهای مختلف مایکرواستریپ و استریپ لاین در حالت با و بدون بامپ در انترین در انت با و بدون بامپ در انترین آن در انترین از ترین از ترین در انترین از ترین در انترین از در انترین انت

اينتريوزر آلي:

اتصال تراشه به تراشه (Trace + Bumps)	خط انتقال (Trace)	پارامترهای یکپار <i>چگی</i> سیگنال
استریپلاین تکسر	استريپلاين تکسر	کمترین فضای اشغالی
مایکرواستریپ دیفرانسیلی محافظت شده با زمین	مایکرواستریپ دیفرانسیلی محافظت شده با زمین	كمترين تلفات
مایکرواستریپ تکسر	همه ساختارها تقريبا مشابه	كمترين ضريب انعكاس
استریپ V ین دیفرانسیلی محافظت شده با زمین $S11_{max} = -12 dB$ بامپ و ویا $NEXT_{max} = -60 dB$	استریپلاین دیفرانسیلی محافظت شده با زمین $ m S11_{max} = -33dB$ $ m NEXT_{max} = -90dB$	بیشترین مصونیت در برابر نویز همشنوایی

- اثر مخرب "بامپ" و "ویا" روی نویز همشنوایی و ضریب انعکاس ساختار استریپلاین خصوصا در حالت دیفرانسیلی محافظت شده با زمین
 - عدم بررسی تغییر پارامترهای ساختارهای شبیهسازی شده همچون ε_r ، $tan\delta$ ، ارتفاع سابستریت، امپدانس خطوط و ...
 - عدم بررسی و مقایسه اتصالات در سایر فناوریهای اینترپوزر همچون سیلکون، گلس و سرامیک

References

[1] B. Dehlaghi Jadid. Parallel Ultra-Short Reach Die-to-Die Links. PhD Thesis, University of Toronto, Canada, 2017.

[2] B. C. Wadell, Transmission Line Design Handbook, Artech House Inc., 1991.

Thank you