Data Structure for Disjoint Sets

21.1 Disjoint-set operations

Disjoint set data structure:

- 1. a data structure maintains a collection $S=\{S_1, S_2, ..., S_k\}$ of **disjoint dynamic** sets.
- 2. Each set is identified by a **representative**, which is some member of the set. In some applications, it doesn't matter which member is used as the representative; we only care that if we ask the representative of a set without modifying the set between the requests, we get the same answer. In other applications, there may be a representative rule for choosing the representative, such as choosing the smallest member in the set.
- 3. The following operations should be supported.

Make-Set(x): create a new set {x}.
Union(x, y): unite the two sets containing x, y.
Find-Set(x): return a pointer to the
representative of the set containing x.

- * n: number of Make-Set operations m: total number of Make-Set, Union, and Find-Set operation.
- * m≥n and the number of *Union* operations is at most n-1.

An application of disjoint-set data structures

Edge processed	d Collection of disjoint sets									
initial sets	{a}	{b}	{c}	{ <i>d</i> }	{e}	{ <i>f</i> }	{g}	{ <i>h</i> }	<i>{i}</i>	{ <i>j</i> }
(<i>b</i> , <i>d</i>)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	$\{h\}$	$\{i\}$	$\{j\}$
(<i>e</i> , <i>g</i>)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(a,c)	<i>{a,c}</i>	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	$\{f\}$		$\{h\}$	$\{i\}$	$\{j\}$
(h,i)	<i>{a,c}</i>	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
(<i>a</i> , <i>b</i>)	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$
(<i>b</i> , <i>c</i>)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$

(b)

CONNECTED-COMPONENTS (G)

- 1 for each vertex $v \in V[G]$
- do Make-Set(v)
- 3 for each edge $(u, v) \in E[G]$
- 4 **do if** FIND-SET $(u) \neq$ FIND-SET(v)
- 5 then UNION(u, v)

SAME-COMPONENT(u, v)

- 1 **if** FIND-SET(u) = FIND-SET(v)
- 2 then return TRUE
- 3 else return FALSE

21.2 Linked-list representation

(First object in a list is the representative.)

* Make-Set, Find-Set: O(1) time.

A simple implementation of Union(x, y)

(Appending the first list onto the second)

* $O(n^2)$ time for m=2n-1 operations.

Operation	Number of objects updated		
$MAKE-SET(x_1)$	1		
$MAKE-SET(x_2)$	1		
:	: :		
$MAKE-SET(x_n)$	1		
Union (x_1, x_2)	1		
UNION (x_2, x_3)	2		
Union (x_3, x_4)	3		
:	:		
$UNION(x_{n-1},x_n)$	n-1		

* Thus, the *amortized time* of each operation is O(n).

A weighted-union heuristic

- 1. Each representative stores the length of the list.
- 2. Append the smaller list onto the longer.

Theorem 21.1: Using the weighted-union heuristic, a sequence of *m Make-Set*, *Union*, and *Find-Set* operations takes $O(m+n\lg n)$ time, where *n* is the number of *Make-Set* operations.

Proof: After Make-Set(x) is performed, the list containing x has only one element. At the first time x's representative pointer is updated, the list containing x has at least two elements. Continuing on, we observe that after the k-th time x's representative is updated, the list containing x has at least 2^k elements. Since k= $O(\lg n)$, the time for all *Union* operations is at most $O(n\lg n)$. The time for each Make-Set and Find-Set operation is O(1). Thus, the theorem holds. Q.E.D.

21.3 Disjoint-set forests

(The root of a tree is the representative.)

Make-Set(x): O(1) time Find-Set(x): O(h) time, h is the height of the tree containing x. (**Find path:** $x \rightarrow root$) Union(x, y): The root of x points to the root of y.

 \rightarrow O(h) time.

Heuristics to improve the running time

1. *Union by rank*: the root of the smaller tree points to the root of the larger tree (according to heights).

rank[x]: height of x (number of edges in the longest path between x and a descendant leaf)

2. *Path compression*: During a Find-Set(*x*) operation, make each node on the find path point to the root. (It will not change any rank.)

Example: Find-Set(a)

Pseudo-code for disjoint-set forests

```
MAKE-SET(x)

1 p[x] \leftarrow x

2 rank[x] \leftarrow 0

UNION(x, y)

1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if rank[x] > rank[y]

2 then p[y] \leftarrow x

3 else p[x] \leftarrow y

4 if rank[x] = rank[y]

5 then rank[y] \leftarrow rank[y] + 1
```

```
FIND-SET(x)

1 if x \neq p[x]

2 then p[x] \leftarrow \text{FIND-SET}(p[x])

3 return p[x]
```

Effect of the heuristics on the running time

- 1. If only Union-by-rank is used, it can be easily shown that $O(m \log n)$ time is required.
- 2. If only path-compression is used, it can be shown (not proved here) that the running time is

$$\Theta(n+f\cdot(1+\log_{2+f/n}n)),$$

where *n* is the number of *Make-Set* operations and *f* is the number of *Find-Set* operations.

3. When both heuristics are used, the worst-case running time is $O(m\alpha(n))$, where $\alpha(n)$ is the very slowly growing inverse of Ackermann's function. Since $\alpha(n) \le 4$ for any conceivable application, we can view the running time as linear in m in all practical situations.

Ackermann's function and its inverse

* Let $g(i) = 2^2$ be a repeated exponentiation. (e.g., $g(4) = 2^{2^{2^{2^2}}}$.)

- * The function $\lg^* n = \min\{i \ge 0: \lg^{(i)} n \le 1\}$ is essentially the inverse of g(i). (e.g., $\lg^* 2^{2^{2^2}} = 5$.)
- * The Ackermann's function: for integer $i, j \ge 1$,

$$A(1, j) = 2^{j}$$
 for $j \ge 1$,
 $A(i, 1) = A(i-1, 2)$ for $i \ge 2$,
 $A(i, j) = A(i-1, A(i, j-1))$ for $i, j \ge 2$,

	j = 1	j = 2	j=3	<i>j</i> = 4
i = 1	21	2 ²	23	24
i = 2	2 ²	2^{2^2}	$j = 3$ 2^{3} $2^{2^{2}}$	2 ⁴ 2 ^{2^{2²}}
			2)	$2^{2} \cdot \cdot \cdot 2 \left\{ 2^{2} \cdot \cdot \cdot \cdot 2 \right\} = 2^{2} \cdot \cdot \cdot \cdot 2 \left\{ 2^{2} \cdot \cdot \cdot \cdot \cdot 2 \right\} = 2^{2} \cdot \cdot \cdot \cdot \cdot 2 \left\{ 2^{2} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \right\} = 2^{2} \cdot \cdot$
		$\frac{2}{16}$	$\{2, 2, \dots, 2\}$ 16	$\left\{\frac{2}{2}\right\}_{2^{2}}$. $\left\{\frac{2}{2}\right\}_{2^{2}}$
i = 3	2 ^{2²}	2^{2} .	2^2 .	2^2 .
	4 080			

- * Note that $A(2, j) = 2^2 = g(j)$ for all $j \ge 1$. Thus, $A(i, j) \ge g(j)$ for $i \ge 2$.
- * The inverse of Ackermann's function: $\alpha(n) = \min\{i \ge 1: A(i, 1) > \lg n\}.$
- * $A(4, 1) = A(3, 2) = g(16) >> 10^{80}$.
- * Since $A(4, 1) >> 10^{80}$, we have $\alpha(n) \le 4$ for all practical cases (unless lg $n > 10^{80}$).
- * $\lg^* n \le 5$ for all practical cases (unless $n > 2^{65536}$).
- * Since $A(i, 1) \ge g(i)$ for $i \ge 4$, $\alpha(n) = O(\lg^* n)$.

Homework: Ex. 21.4-4, Prob. 21-1, 21-3.