MS-E1992 Harmonic Analysis

Exercise 6

Lien Tran - 510299

January 18, 2019.

1. (a) Assume that w is a weight for which there are constants m and M with $0 \le m \le M < \infty$ such that $m \le w(x) \le M$ for almost every $x \in \mathbb{R}^n$. Show that $w \in A_p$ for every p with $1 \le p < \infty$.

Proof. Assume that w is a weight, that is, $w \in L^1_{loc}(\mathbb{R}^n)$ and $w \geq 0$ almost everywhere in \mathbb{R}^n , for which there are constants m and M with $0 \leq m \leq M < \infty$ such that $m \leq w(x) \leq M$ for almost every $x \in \mathbb{R}^n$.

• Case p=1, there is a contant $c \geq \frac{M}{m}$ such that

$$w(x) \le c m$$
 for almost every $x \in \mathbb{R}^n$

This implies

$$\frac{1}{|Q|} \int_{Q} w(x) dx \le c \, m \le c \operatorname{ess \, inf}_{x \in Q} w(x).$$

Thus $w \in A_1$ and

$$\frac{1}{w(x)} \le c \frac{|Q|}{w(Q)}$$

• Case $1 , since <math>m \le w(x) \le M$ for almost every $x \in \mathbb{R}^n$, we get

$$\frac{1}{|Q|} \int_{Q} w(x) dx \le M$$
and $\left(\frac{1}{|Q|} \int_{Q} w(x)^{1-p'} dx\right)^{p-1} \le \frac{|Q|}{w(Q)}$

Implies

$$\int_Q w(x) dx \Big(\int_Q w(x)^{1-p'} dx \Big)^{p-1} \leq M \frac{|Q|}{w(Q)}.$$

(b) Assume that g is a Lebesgue measurable function with the properties $g(x) \geq 0$ for almost every $x \in \mathbb{R}^n$, $g \in L^{\infty}(\mathbb{R}^n)$ and $\frac{1}{g} \in L^{\infty}(\mathbb{R}^n)$. Show that if $w \in A_p$, then $gw \in A_p$.

Proof. Since $g \in L^{\infty}(\mathbb{R}^n)$, we get

$$\int_{Q} g(x)w(x)dx \leq \operatorname*{ess\,sup}_{x \in \mathbb{R}^{n}} g(x) \int_{Q} w(x)dx,$$

and since $\frac{1}{a} \in L^{\infty}(\mathbb{R}^n)$

$$\begin{split} \Big(\int_{Q} \left(g(x) w(x) \right)^{1-p'} dx \Big)^{p-1} &= \Big(\int_{Q} \left(\frac{1}{g(x)} \right)^{p'-1} w(x)^{1-p'} dx \Big)^{p-1} \\ &\leq \left(\text{ess sup } \frac{1}{g(x)} \right)^{(p'-1)(p-1)} \Big(\int_{Q} w(x)^{1-p'} dx \Big)^{p-1} \\ &\leq \Big(\frac{1}{\text{ess inf}} \sum_{x \in \mathbb{R}^{n}} g(x) \Big(\int_{Q} w(x)^{1-p'} dx \Big)^{p-1} \\ &\leq \text{ess inf } g(x) \Big(\int_{Q} w(x)^{1-p'} dx \Big)^{p-1}. \end{split}$$

Thus

$$\int_{Q} g(x)w(x)dx \Big(\int_{Q} \Big(g(x)w(x) \Big)^{1-p'} dx \Big)^{p-1} \\
\leq \underset{x \in \mathbb{R}^{n}}{\operatorname{ess inf}} g(x) \underset{x \in \mathbb{R}^{n}}{\operatorname{ess sup}} g(x) \int_{Q} w(x)dx \Big(\int_{Q} w(x)^{1-p'} dx \Big)^{p-1}.$$

2. Let $1 \leq p < \infty$ and assume that $w \in A_p$. Show that $w^{\delta} \in A_p$ for every δ with $0 < \delta < 1$.

Proof. • Case p = 1, the assumption that $w \in A_1$ implies that

$$\int_Q w(x)^\delta \, dx \le c \, (\operatorname*{ess\,inf}_{x \in Q} w(x))^\delta = c \, \operatorname*{ess\,inf}_{x \in Q} w(x)^\delta.$$

This shows $w^{\delta} \in A_1$ and

$$\frac{1}{w(x)^{\delta}} \le c \frac{|Q|}{w(Q)}$$

• Case $1 Since <math>0 < \delta < 1$, we have $\frac{1}{\delta} > 1$, by Holder inequality, we get

$$\begin{split} \int_{Q} w(x)^{\delta} dx &\leq \frac{1}{|Q|} \Big(\int_{Q} \left(w(x)^{\delta} \right)^{\frac{1}{\delta}} dx \Big)^{\delta} \Big(\int_{Q} 1^{\frac{1}{1-\delta}} dx \Big)^{1-\delta} \\ &= |Q|^{\delta} \left(\int_{Q} w(x) dx \right)^{\delta} = \Big(\int_{Q} w(x) dx \Big)^{\delta} < \infty, \end{split}$$

and

$$\begin{split} \int_{Q} \left(w(x)^{\delta} \right)^{1-p'} dx &= \int_{Q} \left(w(x)^{1-p'} \right)^{\delta} dx \\ &\leq \left(\int_{Q} w(x)^{1-p'} dx \right)^{\delta} < \infty, \end{split}$$

Thus,

$$\int_{Q} w(x)^{\delta} dx \left(\int_{Q} \left(w(x)^{\delta} \right)^{1-p'} dx \right)^{p-1} \\
\leq \left(\int_{Q} w(x) dx \right)^{\delta} \left(\int_{Q} w(x)^{1-p'} dx \right)^{\delta(p-1)}.$$

3. Let $1 \leq p < \infty$ and assume that $w \in A_p$.

(a) Show that for any $0 < \alpha < 1$ there exists $0 < \beta < 1$ such that for every Lebesgue measurable set $A \subset Q$ with $\omega(A) \leq \beta w(Q)$ we have $|A| \leq \alpha |Q|$.

Proof. Let $A \subset Q$ be a Lebesgue measurable set with $w(A) \leq \beta w(Q)$, we have

$$\begin{split} \frac{w(A)}{|Q|} &= \frac{1}{|Q|} \int_Q \chi_A(x) w(x) \, dx \\ &\leq \frac{1}{|Q|} \Big(\int_Q \chi_A^{\frac{1+\delta}{\delta}} \, dx \Big)^{\frac{\delta}{1+\delta}} \Big(\int_Q w(x)^{1+\delta} \, dx \Big)^{\frac{1}{1+\delta}}, \quad (\delta > 0) \text{(H\"older's inequality)} \\ &\leq \frac{1}{|Q|} \, |A|^{\frac{\delta}{1+\delta}} \, |Q|^{\frac{1}{1+\delta}} \, \Big(\int_Q w(x)^{1+\delta} \, dx \Big)^{\frac{1}{1+\delta}} \\ &\leq c \, \Big(\frac{|A|}{|Q|} \Big)^{\frac{\delta}{1+\delta}} \int_Q w(x) \, dx \quad \text{(Reverse H\"older's inequality)} \\ &= c \, \frac{1}{|Q|} \Big(\frac{|A|}{|Q|} \Big)^{\frac{\delta}{1+\delta}} w(Q) \end{split}$$

Plug $Q \setminus A$ into the above result, we get

$$c\left(1 - \frac{|A|}{|Q|}\right)^{\frac{\delta}{1+\delta}} \ge \frac{w(Q) - w(A)}{w(Q)} \ge \frac{w(Q) - \beta w(Q)}{w(Q)} = (1 - \beta).$$

Raise both sides to the power $\frac{1+\delta}{\delta}$

$$1 - \frac{|A|}{|Q|} \ge \left(\frac{1 - \beta}{c}\right)^{\frac{1 + \delta}{\delta}}$$

which implies

$$\frac{|A|}{|Q|} \le 1 - \left(\frac{1-\beta}{c}\right)^{\frac{1+\delta}{\delta}}$$

Choose δ so small such that $\alpha = 1 - \left(\frac{1-\beta}{c}\right)^{\frac{1+\delta}{\delta}} < 1$.

(b) Show that for any $0 < \alpha < 1$ there exists $0 < \beta < 1$ such that for every Lebesgue measurable set $A \subset Q$ with $|A| \le \alpha |Q|$ we have $\omega(A) \le \beta w(Q)$.

Proof. Let $1 \leq p < \infty$ and assume that $w \in A_p$, if $A \subset Q$ is Lebesgue measurable set, we have

$$w(Q) \Big(\frac{|A|}{|Q|}\Big)^p \le c \, w(A)$$

Plug $Q \setminus A$ into the above result, we get

$$c\frac{w(Q) - w(A)}{w(Q)} \ge \left(1 - \frac{|A|}{|Q|}\right)^p \ge \left(1 - \frac{\alpha |Q|}{|Q|}\right)^p \ge (1 - \alpha)^p$$

which implies,

$$\frac{w(A)}{w(Q)} \le 1 - \frac{(1-\alpha)^p}{c} =: \beta.$$

4. Show that cubes may be replaced with balls in the definition of the A_p weights with $1 \le p < \infty$ and that these definitions give the same classes of weights.

Proof. The motivation of Muckenhoupt weight arises from the purpose of looking for a weight such that Hardy-Littlewood maximal operator is of weighted strong type (p, p) with $1 \le p < \infty$,

$$\int_{\mathbb{R}^n} (Mf(x))^p w(x) \, dx \le \int_{\mathbb{R}^n} |f(x)|^p w(x) dx$$

for every $f \in L^1_{loc}(\mathbb{R}^n)$ and the corresponding weak type (p,p) estimate, with 1

$$w(\lbrace x \in \mathbb{R}^n : Mf(x) > t \rbrace) = \int_{x \in \mathbb{R}^n : Mf(x) > t} w(x) dx$$
$$\leq \frac{c}{t^p} \int_{\mathbb{R}^n} |f(x)|^p w(x) dx, \quad t > 0,$$

for every $f \in L^1_{loc}(\mathbb{R}^n)$ hold true. The Hardy-Little maximal operator

$$Mf(x) = \sup \frac{1}{|B|} \int_{B} |f(y)| \ dy,$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$ containing x. Following the analysis in lecture note (p.54), we end up with

$$\left(\frac{1}{|B|} \int_{B} |f(x)| dx\right)^{p} w(B) \le c \int_{B} |f(x)|^{p} w(x) dx,$$

which is equivalent to

$$\int_{B} |f(x)| dx = \frac{1}{|B|} \int_{B} |f(x)| dx$$

$$\leq c \left(\frac{1}{w(B)} \int_{B} |f(x)|^{p} w(x) dx\right)^{\frac{1}{p}}$$

if $A \subset B$ is a measure set, choose $f = \mathcal{X}_A$, we get

$$w(B) \left(\frac{|A|}{|B|}\right)^p \le cw(A)$$

• The case p = 1, we have

$$\int_{B} w(x)dx \le \operatorname*{ess\,inf}_{x \in B} w(x)$$

Since we can cover a ball B by a Q, we get

$$\int_{B} w(x)dx \le c \int_{Q} w(x)dx \le c \underset{x \in Q}{\operatorname{ess inf}} \ w(x) \le c \underset{x \in B}{\operatorname{ess inf}} \ w(x),$$

for any ball B in \mathbb{R}^n .

• The case 1 , an analogous analysis to lecture note (p.58), we get

$$\int_{B} w(x)dx \left(\int_{B} w(x)^{1-p'} dx \right)^{p-1} \le c$$

for every ball $B \in \mathbb{R}^n$. Similarly, cover a ball B by a Q , we get

$$\int_{B} w(x) dx \left(\int_{B} w(x)^{1-p'} dx \right)^{p-1} \le \int_{Q} w(x) dx \left(\int_{Q} w(x)^{1-p'} dx \right)^{p-1} \le c$$

- 5. Let $w : \mathbb{R}^n \to [0, \infty], w(x) = |x|^{\alpha}$.
 - (a) Show that $w \in A_p$ with $1 whenever <math>-n < \alpha < n(p-1)$.

Proof. Let $Q(y,l) \subset \mathbb{R}^n$ be a cube containing x, we observe that $Q(y,l) \subset B(y,\sqrt{n}l)$, thus

$$\int_{Q} w(x) dx = \frac{1}{|Q(y,l)|} \int_{Q(y,l)} |x|^{\alpha} dx \le \frac{1}{|Q(y,l)|} \int_{B(y,\sqrt{n}l)} |x|^{\alpha} dx
\le \frac{1}{|Q(y,l)|} \int_{B(0,|y|+\sqrt{n}l)} |x|^{\alpha} dx = \frac{1}{|Q(y,\sqrt{n}l)|} \int_{0}^{|y|+l} \int_{\partial B(0,r)} |r|^{\alpha} dS dr
= \frac{1}{|Q(y,l)|} \omega_{n-1} \int_{0}^{|y|+\sqrt{n}l} r^{\alpha} \cdot r^{n-1} dr
= \frac{\omega_{n-1}}{\alpha+n} (|y| + \sqrt{n}l)^{\alpha} < \infty \text{ if } -n < \alpha,$$

where ω_{n-1} denotes n-1-dimensional surface measure of the unit sphere. Similarly,

$$\int_{Q} w(x)^{1-p'} dx = \frac{1}{|Q(y,l)|} \int_{Q(y,l)} |x|^{\alpha(1-p')} dx \le \frac{1}{|Q(y,l)|} \int_{B(y,\sqrt{n}l)} |x|^{\alpha(1-p')} dx
\le \frac{1}{|Q(y,l)|} \int_{B(0,|y|+l)} |x|^{\alpha(1-p')} dx
= \frac{1}{|Q(y,l)|} \int_{0}^{|y|+\sqrt{n}l} \int_{\partial B(0,r)} |r|^{\alpha(1-p')} dS dr
= \frac{1}{|Q(y,l)|} \omega_{n-1} \int_{0}^{|y|+\sqrt{n}l} r^{\alpha(1-p')} \cdot r^{n-1} dr
= \frac{\omega_{n-1}}{\alpha(1-p')+n} (|y|+\sqrt{n}l)^{\alpha(1-p')} < \infty$$

if $\alpha(1-p')+n>0 \iff \alpha<\frac{-n}{1-p'}=\frac{n}{p'-1}=n(p-1),$ where p and p' are Hölder conjugate.

Thus by multiplying the previous two inequality, we conclude $w \in A_p$ with $1 whenever <math>-n < \alpha < n(p-1)$.

(b) Show that $w \in A_1$ whenever $-n < \alpha \le 0$. Let $Q(y, l) \subset \mathbb{R}^n$ be a cube containing x, we observe that $Q(y, l) \subset B(y, \sqrt{n}l) :=$

$$B(y,r)$$
, thus

$$\begin{split} \int_{Q} w(x) \, dx &= \frac{1}{|Q(y,l)|} \int_{Q(y,l)} |x|^{\alpha} \, dx \leq \frac{1}{|Q(y,l)|} \int_{B(y,r)} |x|^{\alpha} \, dx \\ &= \frac{|y|^{n}}{|Q(y,l)|} \int_{B(\frac{y}{|y|},\frac{r}{|y|})} ||y| \, z|^{\alpha} \, dz \quad (COV: z = \frac{x}{|y|} \implies |y|^{n} \, dz = dx) \\ &= \frac{|y|^{n+\alpha}}{|Q(y,l)|} \int_{B(\frac{y}{|y|},\frac{r}{|y|})} |z|^{\alpha} \, dz \\ &= \frac{|y|^{n}}{|Q(y,l)|} w(y) \int_{B(\frac{y}{|y|},\frac{r}{|y|})} |z|^{\alpha} \, dz \end{split}$$