SCC0284 / SCC5966 Sistemas de Recomendação

Aula 06: Filtragem Baseada em Conhecimento

(<u>mmanzato@icmc.usp.br</u>)

Quando usar?

• Quando número de avaliações é baixo

Quando usar?

- Quando intervalo de tempo é importante
 - Itens que evoluem com rapidez

- Mudanças no estilo de vida ou situação familiar

Quando usar?

• Quando usuários querem definir explicitamente suas necessidades

 Quando usuários não têm familiaridade com o domínio

• Tipos de entrada em recomendação

- Abordagens normalmente exploram o diálogo entre usuário e sistema
 - Usuários especificam os requisitos
 - Sistema identifica soluções, podendo explicá-las se solicitado
 - Se nenhuma solução satisfatória é encontrada, usuários alteram (parte dos) requisitos

- Duas abordagens principais:
 - Baseada em restrições
 - Conjunto de regras é definido explicitamente
 - Recomendação deve seguir essas regras
 - Baseada em casos
 - Utiliza diferentes tipos de métricas de similaridade
 - Recuperação de itens similares aos requisitos formulados pelo usuário

- Em geral, ambas abordagens têm conhecimento de domínio
 - Informações sobre requisitos do usuário e caraterísticas dos itens

Domínio: câmeras digitais

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

Ex. Requisitos do usuário:

- * A câmera deve custar menos de 300 euros
- A câmera deve ser propícia para fotografar esportes

Baseada em restrições

- Recomendação baseada em restrições pode ser modelada como um CSP (Constraint Satisfaction Problem)
- Um CSP é definido como uma tripla (V, D, C), onde:
 - V : conjunto de variáveis
 - D : conjunto de domínios finitos para essas variáveis
 - C : conjunto de regras que descreve as combinações possíveis das variáveis
- Uma solução para CSP é a atribuição de um valor para cada variável em V que satisfaçam todas as regras em C

- Dada a tripla (V, D, C), podemos expandir o modelo como:
 - CSP (V = $V_C \cup V_{PROD}$, D, C = $C_R \cup C_F \cup C_{PROD} \cup REQ$)
 - V_C: Variáveis do usuário
 - V_{PROD}: Variáveis do produto
 - C_R: Restrições do usuário
 - C_F: Compatibilidade entre restrições do usuário e características dos produtos
 - C_{PROD}: Características dos produtos
 - REQ: Requisitos do usuários

- CSP ($V = V_C \cup V_{PROD}$, D, $C = C_R \cup C_F \cup C_{PROD} \cup REQ$)
 - − Dois conjuntos de variáveis (usuários e itens): $V = V_C \cup V_{PROD}$
 - V_C: {min-opt-zoom(3x..12x), usage(digital, small-print, large-print), photography(sports, portrait, macro)}
 - V_{PROD}: {price(0..1000), mpix(3.0..12.0), opt-zoom(3x..12x), lcd-size(2.5..3.0), movies(yes, no), sound(yes, no), waterproof(yes, no)}

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

- CSP (V = $V_C \cup V_{PROD}$, D, C = $C_R \cup C_F \cup C_{PROD} \cup REQ$)
 - − Três conjuntos de regras: $C = C_R \cup C_F \cup C_{PROD}$
 - $C_F : \{usage=large-print \rightarrow mpix>7\}$ (compatibilidade usuário/item)
 - − C_R: {photography=sports → min-opt-zoom>9x} (restrições usuário)
 - C_{PROD}: {(id=p1 ^ price=148 ^ mpix=8.0 ^ opt-zoom=4x ^ lcd-size=2.5 ^ movies=no ^ sound=no ^ waterproof=yes} v ... v (id=p8 ^ price=278 ^ mpix = 9.1 ^ opt-zoom=10x ^ lcd-size=3 ^ moves=yes ^ sound=yes ^ waterproof=yes)

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

- CSP (V = $V_C \cup V_{PROD}$, D, C = $C_R \cup C_F \cup C_{PROD} \cup REQ$)
 - REQ : {usage=large-print, photography=sports}
 - usage=large-print → mpix>7
 - photography=sports → min-opt-zoom>9x
 - RES: $\{P_3, P_4, P_8\}$

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

Obs. Equivalente a realizar consultas conjuntivas numa tabela do banco de dados:

 $\delta_{\text{[mpix>7, opt-zom>9x]}}(P)$

onde:

P: tabela do banco de dados

 δ : operador de seleção

[mpix>7, opt-zoom>9x] : critérios de seleção

- Utilizam-se métricas de similaridade que indicam quanto as propriedades do item satisfazem os requisitos do usuário
- Dado um item p e um requisito r ∈ REQ:

$$sim(p, REQ) = \frac{\sum_{r \in REQ} w_r \cdot sim(p, r)}{\sum_{r \in REQ} w_r}$$

- onde:
 - w_r: peso de importância para o requisito r
 - sim(p, r): é a distância entre o valor de atributo $\phi_r(p)$ (e.g. $\phi_{mpix}(p) = 8.0$) e o requisito r

- Na prática, há propriedades que o usuário deseja maximizar (e.g. mpixel) e propriedades que deseja minimizar (e.g. preço)
- Assim:

$$sim(p,r) = \frac{\phi_r(p) - \min(r)}{\max(r) - \min(r)}$$

$$p/ \text{ atributos que devem ser } \frac{\max(p,r) - \min(r)}{\max(r) - \min(r)}$$

$$p/ \text{ atributos que devem ser } \frac{\max(p,r) - \min(p,r)}{\max(p,r) - \min(p,r)}$$

$$p/ \text{ atributos que devem ser } \frac{\min(p,r) - \min(p,r)}{\min(p,r) - \min(p,r)}$$

$$p/ \text{ atributos que devem ser } \frac{\min(p,r) - \min(p,r)}{\min(p,r) - \min(p,r)}$$

$$p/ \text{ atributos que devem ser } \frac{\min(p,r) - \min(p,r)}{\min(p,r) - \min(p,r)}$$

$$p/ \text{ atributos multi-valorados (e.g. gêneros ou categorias de um item)}$$

• Exemplo

- Usando a filtragem baseada em casos, recomende uma lista de câmeras para o usuário segundo os seguintes requisitos:
 - REQ = {mpix > 8.0, price < 200, opt-zoom = 10x}
 - $w_{mpix} = w_{price} = w_{opt.zoom} = 1$

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

• Exemplo

- $REQ = \{mpix > 8.0, price < 200, opt-zoom = 10x\}$
- Similaridade com p₁:

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

$$\begin{aligned} ∼(p_1, REQ) \\ &= \frac{sim(p_1, mpix) + sim(p_1, price) + sim(p_1, opt.zoom)}{3} \\ &= \frac{8 - 7.1}{10 - 7.1} + \frac{278 - 148}{278 - 148} + 1 - \frac{\left|4 - 10\right|}{12 - 3} \\ &= 0.54 \end{aligned}$$

- Fluxo de interação:
 - 1) Usuário especifica suas preferências iniciais
 - 2) Quando requisitos suficientes forem coletados, o sistema calcula as recomendações
 - 3) Usuário pode revisar seus requisitos, ressubmetendo-os para cálculo de novas recomendações

- Fluxo de interação:
 - 1) Usuário especifica suas preferências iniciais
 - 2) Quando requisitos suficientes forem coletados, o sistema calcula as recomendações
 - 3) Usuário pode revisar seus requisitos, ressubmetendo-os para cálculo de novas recomendações
- E se o sistema não encontrar nenhuma resposta?

- Fluxo de interação:
 - 1) Usuário especifica suas preferências iniciais
 - 2) Quando requisitos suficientes forem coletados, o sistema calcula as recomendações
 - 3) Usuário pode revisar seus requisitos, ressubmetendo-os para cálculo de novas recomendações
- E se o usuário não souber especificar seus requisitos?

- Fluxo de interação:
 - 1) Usuário especifica suas preferências iniciais
 - 2) Quando requisitos suficientes forem coletados, o sistema calcula as recomendações
 - 3) Usuário pode revisar seus requisitos, ressubmetendo-os para cálculo de novas recomendações
- Como ranquear os itens selecionados de acordo com os requisitos?

- Uso de valores padrão (default values)
 - Auxilia usuários que não sabem como especificar certos atributos
 - Podem ser usados para manipular usuários a escolherem certas opções
 - Tipos de valores padrão:
 - Estáticos
 - Dependentes
 - Derivados

- Exemplo
 - Log de interação:

user	price	opt-zoom	lcd-size
u_1	400	10x	3.0
u ₂	300	10x	3.0
u ₃	150	4x	2.5
u ₄	200	5x	2.7
u ₅	200	5x	2.7

Únicos requisitos conhecidos para novo usuário: price < 250 ^ opt-zoom = 9x

→ Que valor padrão poderia ser especificado para lcd-size?

- Exemplo
 - Estratégia: 1-Nearest neighbor

$$sim(u_{1}, REQ)$$

$$= \frac{sim(u_{1}, price) + sim(u_{1}, opt.zoom)}{2}$$

$$= \frac{\max(price) - \phi_{price}(u_{1})}{\max(price) - \min(price)} + 1 - \frac{\left|\phi_{opt.zoom}(u_{1}) - opt.zoom\right|}{\max(opt.zoom) - \min(opt.zoom)}$$

$$= \frac{\frac{400 - 400}{400 - 150} + 1 - \frac{\left|10 - 9\right|}{10 - 4}}{2}$$

$$= \frac{sim(u_{2}, REQ) = 0.61 \longrightarrow \text{lcd-size=3.0}}{sim(u_{3}, REQ) = 0.56}$$

$$sim(u_{4}, REQ) = 0.56$$

$$sim(u_{5}, REQ) = 0.56$$

- Sugestão de requisitos
 - Nem todos usuários querem especificar valores para todas as propriedades
 - Porém, isso pode dificultar na escolha do melhor item
 - Pode-se usar o conceito de popularidade de acordo com requisições formuladas anteriormente (na sessão):

$$popularidade(atributo, pos) = \frac{\#seleções(atributo, pos)}{\#sessões}$$

onde:

- atributo : requisito especificado
- pos : ordem da interação na sessão

Exemplo

ID	pos: 1	pos: 2	pos: 3	pos: 4	pos: 5	pos: 6	•••
1	price	opt-zoom	mpix	movies	lcd-size	sound	
2	price	opt-zoom	mpix	movies	lcd-size	-	•••
3	price	mpix	opt-zoom	lcd-size	movies	sound	•••
4	mpix	price	opt-zoom	lcd-size	movies	-	
5	mpix	price	lcd-size	opt-zoom	movies	sound	

popularidade(price, pos: 1) = 0.6 popularidade(mpix, pos: 1) = 0.4

Assim, para o primeiro requisito, sugestiona-se o atributo price.

- Problema de solução não encontrada
 - $-\delta_{\text{[price<=150, opt-zoom=5x, sound=yes, waterproof=yes]}}(P) = \emptyset$
 - Como resolver?

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P_6	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

- Problema de solução não encontrada
 - Resolução por meio de diagnóstico baseado em modelo (MBD)
 - Dados P = {p₁, p₂, ..., p_n} e REQ = {r₁, r₂, ..., r_m}, onde $\delta_{[REQ]}(P) = \emptyset$, calcula-se um conjunto de diagnósticos

$$\Delta = \{d_1, d_2, ..., d_k\}$$

onde $\delta_{[REQ-di]}(P) \neq \emptyset$ para qualquer $d_i \in \Delta$.

Um diagnóstico é um conjunto mínimo de requisitos

$$\{r_1, r_2, ..., r_l\} = d \subseteq REQ$$

que precisam ser alterados para que $\delta_{[REQ-d]}(P) \neq \emptyset$

- Problema de solução não encontrada
 - O cálculo de um diagnóstico $d_i \in \Delta$ é baseado na determinação e resolução de conjuntos conflitantes (CS).
 - Um CS é um subconjunto mínimo $\{r_1, r_2, ..., r_l\} \subseteq REQ$ tal que $\delta_{[CS]}(P) = \emptyset$.
 - CS mínimo é dado pela inexistência de um CS' tal que CS' ⊂ CS

• Exemplo

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

 $\delta_{\text{[r1: price} <=150, r2: opt-zoom=5x, r3: sound=yes, r4: waterproof=yes]}(P) = \emptyset$

Conjuntos conflitantes (mínimos):

$$CS1 = \{r_1, r_2\}$$
 (já que $\delta_{[CS1]}(P) = \emptyset$)

$$CS2 = \{r_2, r_4\}$$
 (já que $\delta_{[CS2]}(P) = \emptyset$)

CS3 =
$$\{r_1, r_3\}$$
 (já que $\delta_{[CS3]}(P) = \emptyset$)

Exemplo

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

 $\delta_{\text{[r1: price} <=150, r2: opt-zoom=5x, r3: sound=yes, r4: waterproof=yes]}(P) = \emptyset$

Conjuntos conflitantes (mínimos):

$$CS1 = \{r_1, r_2\} \quad \text{(já que } \delta_{\text{[CS1]}}(P) = \emptyset \text{)}$$

$$CS2 = \{r_2, r_4\} \quad \text{(já que } \delta_{\text{[CS2]}}(P) = \emptyset \text{)}$$

$$CS3 = \{r_1, r_3\} \quad \text{(já que } \delta_{\text{[CS3]}}(P) = \emptyset \text{)}$$

CS2 =
$$\{r_2, r_4\}$$
 (já que $\delta_{[CS2]}(P) = \emptyset$)

CS3 =
$$\{r_1, r_3\}$$
 (já que $\delta_{[CS3]}(P) = \emptyset$)

Por ser mínimo, cada CS pode ser resolvido eliminando um de seus requisitos!

(1) $CS_1 = \{r_1, r_2\}$

Exemplo

$$\begin{cases} cs1 = \{r_1, r_2\} \\ cs2 = \{r_2, r_4\} \\ cs3 = \{r_1, r_3\} \end{cases}$$

$$\begin{cases} r_2\} \\ \{r_3\} \\ \{r_4\} \end{cases}$$

$$\begin{cases} r_1\} \\ \{r_2\} \end{cases}$$

$$\begin{cases} r_2\} \\ \{r_3\} \end{cases}$$

$$d_1 = \{r_1, r_2\} \qquad d_2 = \{r_1, r_4\} \neq d_3 = \{r_2, r_3\} \end{cases}$$

Assim, os diagnósticos derivados a partir dos conjuntos conflitantes (CS1, CS2 e CS3) são: $\Delta = \{d_1: \{r_1, r_2\}, d_2: \{r_1, r_4\}, d_3: \{r_2, r_3\}\}$

• Para propor reparo a partir do conjunto de diagnósticos, basta fazer:

 $- \ \pi_{[atributos(d)]} \delta_{[REQ\text{-}d]}(P)$

• Exemplo: d₁: {r₁, r₂}

id	price(€)	mpix	opt-zoom	LCD-size	movies	sound	waterproof
P ₁	148	8.0	4×	2.5	no	no	yes
P ₂	182	8.0	5×	2.7	yes	yes	no
P ₃	189	8.0	10×	2.5	yes	yes	no
P ₄	196	10.0	12×	2.7	yes	no	yes
P ₅	151	7.1	3×	3.0	yes	yes	no
P ₆	199	9.0	3×	3.0	yes	yes	no
P ₇	259	10.0	3×	3.0	yes	yes	no
P ₈	278	9.1	10×	3.0	yes	yes	yes

$$\pi_{[atributos(d1)]} \delta_{[REQ-d1]}(P) =$$

 $\pi_{[price, opt-zoom]}\delta_{[r3: sound=yes, r4: waterproof=yes]}(P) = \{price=278, opt-zoom=10x\}$

Sistemas atuais...

- A filtragem baseada em conhecimento, atualmente, é mais conhecida como Sistemas de Recomendação Conversacionais
- Ganharam notoriedade devido ao avanço de assistentes pessoais (Siri, Alexa, etc.)
- Por outro lado:
 - Esses assistentes ainda carecem do estabelecimento de um diálogo com várias interações
 - Abordagens de SR conversacionais não se restringem a uma modalidade específica de interação

Arquitetura típica

Arquitetura típica

- Considerando a arquitetura típica, é possível explorar diferentes mecanismos implementados em cada módulo:
 - Entrada e saída (I/O)
 - Intenção do usuário
 - Modelagem das preferências
 - Estados possíveis do diálogo
 - Conhecimento de domínio
 - Uso de fontes externas (e.g. bases de conhecimento)

Modalidades de I/O

Intenção do usuário

- Durante o diálogo, o usuário pode:
 - Iniciar/finalizar diálogo
 - Chit-chat
 - Prover/revisar preferências
 - Pedir uma recomendação
 - Pedir uma explicação
 - Fornecer feedback da recomendação
 - Etc.

Modelagem das preferências

- Durante o diálogo, o sistema obtém as preferências (longocurto prazo) do usuário
 - Preferências sobre um item
 - "Vi o filme Curinga e achei o máximo!"
 - Preferências sobre as facetas de um item
 - "Não gosto muito de anime!"

Estados possíveis do diálogo

- O sistema precisa manter o controle do estado do diálogo para poder decidir a próxima ação
 - Geralmente, utilizam-se máquinas de estados finitas

Informações adicionais

- O sistema também pode utilizar:
 - Conhecimento de domínio
 - Bases de conversação
 - Histórico de interações
 - Bases de conhecimento (WikiData, WikiPedia, WordNet, etc.)
 - Etc.

Avaliação de SR Conversacionais

Recursos para desenvolvimento

- Chatbots
 - DialogFlow (Google)
 - Wit.ai (Facebook)
 - Watson Assistant (IBM)
 - Bot Framework (Microsoft)
- Bases de domínio
 - Movielens, Netflix, etc. (filmes)
 - Amazon reviews (vários domínios)
 - Last.fm, spotify, etc. (músicas)
 - Goodreads (livros)

- Bases de conversação
 - ReDial (filmes)
 - MultiWOZ (restaurantes/viagens)
 - MMD (fashion)
 - OpenDialKG (vários domínios)
- Bases de conhecimento
 - Wikipedia
 - WordNet
 - Wikiquote
 - Citysearch

Referências

- Dietmar Jannach, Markus Zanker, Alexander Felfernig, Gerhard Friedrich. *Recommender Systems: An Introduction*. Cambridge University Press, 2010.
- Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, Li Chen. A Survey on Conversational Recommender Systems. Arxiv. 2020.

SCC0284 / SCC5966 Sistemas de Recomendação

Aula 06: Filtragem Baseada em Conhecimento

(<u>mmanzato@icmc.usp.br</u>)

