How to calculate 2-Tailed Programs
In They - Test statiste T under Ho has
Very Low or very High values of "t" Would be considered exidence against Ho.
dilennana: t can oil be big or small (it can't be in booth tails at once)
Approaches to hardle this:
1) Simply take t and - t
to put in both tails.
$p = P(T \leq - t) + P(T \geq t)$
- (+1) 0 (t) A assumes T distribution is Symmetric & centeel at O.
1a) (similar)
absolute value the district
P = P(T 2 t)
This basically makes the same of

take the one tailed p-value and dable it Millimus over iden is t could have 315765 well been equally extreme in the other direction. A Does hot assume symmetry or center at O A works well for MC tests in R: 2 * Min (mean(Ts >=t), mean(Ts <=t)) assuming Ts is a vector of Simulated t values t is the observed test state. (More Complicatar) find a value in the oppositetail with equal . same height "(ikelihord" A more compliated A does not work well with MC methods Debasation ideas from Fisher

$$X_{i} \sim \text{Bernoulli}(P)$$

$$E(X_{i}) = \frac{\lambda_{i} + \lambda_{i} + \dots + \lambda_{n}}{n} = \frac{\lambda_{i} + \lambda_{i} + \dots + \lambda_{n}}{n}$$

$$E(X_{i}) = \frac{\lambda_{i} + \lambda_{i} + \dots + \lambda_{n}}{n} = \frac{\lambda_{i} + \lambda_{i} + \dots + \lambda_{n}}{n}$$

$$E(X_{i}) = \frac{\lambda_{i} + \lambda_{i} + \dots + \lambda_{n}}{n}$$

$$= \frac{\lambda_{i} + \lambda_{i} + \lambda_{i} + \lambda_{i}}{n}$$

$$= \frac{\lambda_{i} + \lambda_{i}}{n}$$

$$= \frac{\lambda_{i}}{n}$$

$$= \frac{\lambda_{i} + \lambda_{i}}{n}$$

$$= \frac{\lambda_{$$

$$X_1$$
 (first widget) $E(X_1) = P$
 X_2 (Mean for N) $E(X) = P$

What is the variance of a Bein(p)?

$$\frac{\chi}{\rho(X=x)} \frac{\rho(x-\mu)^2}{(\alpha-\mu)^2}$$

$$\frac{\chi}{\rho(X=x)} \frac{(\alpha-\mu)^2}{(\alpha-\mu)^2}$$

$$\frac{\chi}{\rho(x-\mu)} = \frac{(\rho)^2 - \rho^2}{(1-\rho)^2}$$

$$\frac{(\rho)^2 - \rho^2}{\rho(1-\rho)^2}$$

$$= \rho(1-\rho) \left(\frac{\rho}{\rho}\right) + 1-\rho^2$$

$$= \rho(1-\rho)$$