Amateur Pulsar Detection on a shoestring

using the RTL2832U DVB-T Dongle

Peter East www.y1pwe.co.uk/RAProgs/Pulsars.html

Introduction

- Pulsars
- Motivation
- Detection Issues and the RTL
- Some Successes
- An Affordable Pulsar Telescope
- Challenges and Improvements
- Conclusions

In 1967 Jocelyn Bell
Discovered the first pulsar
PSR J1919+21 with a
4 acre array of 2000 dipoles
tuned to 81.5MHz
Neutron stars
Fast rotation
High Magnetic field
Wide band energy bursts

The Plan - 2014

Beg real Data from a Big Antenna
Write some software, check SNR
Understand Radio Telescope Performance
Scale the System Parameters
Design Cheap Receiver and Antenna
Try it out

Argentine 30m Telescope

Pulsar Flux

- Pulsar power ~ 25 Jansky peak
- 1 Jansky = 10^{-26} watts per square metre per hertz.
- $T_J = J \times A/1380 \text{ }^{\circ}\text{K}$
- 1 Jansky = 0.00072°K/m²
- 25J (both polarisations) = 0.018°K/m²

http://www.y1pwe.co.uk/RAProgs/AmateurPulsarDetectionF.doc

Digital Radiometer Equation

$$\Delta T = \frac{T_{sys}}{\sqrt{Bt}}$$

$$= \frac{T_{sys}}{\sqrt{Bt / N}}$$

 $T_{sys} = T_{LNA} + T_{sky}$ B = RF bandwidth t = Integration timeN = Number of digital bins


```
Detection Process

Within the pulsar pulse:

The receiver noise = k(Tpul + Tsys)B
and outside = k(Tsys)B

Tpul and Tsys - pulsar and system noise temperatures.

k is Boltzsmann's Constant, B the RF bandwidth

Squaring the I and Q components (square-law detection)
results in both AC (\sqrt{BBv}) and DC (B) components.

DC

Tpul

Tsys
```


RTL2832U USB Dongle

- The RTL2832U is a 'high-performance' DVB-T (Digital Video Broadcasting Terrestrial) demodulator with a USB 2.0 interface.
- It outputs 8-bit I/Q-samples at bandwidths up to 2.4MHz and tunes over 25-1800MHz

RTL SDR Features

RTL SDR is cheap and cheerful

- but can be made better

Main Limitations:

- Basic crystal accuracy few parts /million
 - - replace with TCXO ~ 0.1ppm
- Temperature drift dissipates heat in use
 - - heatsinking and fans

Available Software

Data: Osmocom rtl tools rtl_sdr.exe

from: sdr.osmocom.org

Folding: rapulsar2.exe

from: y1pwe.co.uk/RAProgs

Display: Excel/MathCad

Testing: SDR# + Zadig Driver

from: sdrsharp.com

Professional: Tempo, Presto, Sigproc

from: pulsarastronomy.net

Amateur Pulsar Detection Systems			
Dish Diam RF Bandwidth Pulsar: 25Jy Peak	30m 2MHz 4°K	3m 2MHz 0.04°K	3m 6 Mhz 0.04°K
Observation Time	100sec	10800sec	7200sec
ΔT (100°K Tsys)	0.07°K	0.007 °K	0.005 °K
SNR (100bin Fold)	56	6	8

A Minimal RTL SDR System

- What can be achieved with the minimum outlay?
- Easy home construction
- Free software
- Just enough signal to detect and identify
- Can add daily results to improve SNR
- Open to all

RT Band Options

- 322-329MHz
- 406-410MHz ~ 0.75 Jansky mean
- 608-614MHz
- 1400-1427MHz ~ 0.1 Jansky mean
- 1660-1668MHz

Antenna Choice

- Dish Drift scan or tracking
 - $\sim 50-65\%$ efficient
 - Apertures >1.5m need solid base
 - Can be motorised may need to track source
 - Reflector wideband
- Yagi
 - − ~ 90% efficiency
 - Electrical aperture greater than physical area
 - Cheap, light and portable can be stacked
 - Narrow band

http://www.y1pwe.co.uk/RAProgs/pdf/QuadRTLReceiver.pdf

Data Processing – DOS cmd.exe

OsmoCom rtlsdr library & capture tool: 'rtl_sdr.exe'. The capture tool generates files containing raw IQ ADC data from the dongle in hex form (viewing software: 'hexdump.exe').

rtl_sdr22r data.bin -f 611e6 -g 42 -n 18e9

rapulsar2.exe processes this to carry out folding.

- It breaks data into blocks equal in time to the pulsar period
- Sums the blocks.
- Outputs a text file that can be viewed in Excel or MathCAD.

rapulsar2 data.bin data.txt 109 714.46389

RTL Data Processing Software

- rafft2.exe RF spectrum analysis
- filetrim2.exe Data file trimming
- cor tim2 n File start correlation
- pdetect2.exe square-law video detection
- rapulsar2.exe Pulsar period folding
- pafft2.exe Pulsar video spectrum analysis
- RFImit.exe RFI spectral line blanking
- pdetfilt2.exe Video RFI spectrum blanking
- de-dispers2co.exe Pulsar data de-dispersion

http://www.y1pwe.co.uk/RAProgs/RTLSoftwareToolsU4-6.doc

Finding and Validating

- Strong signal period search peak
- Weak Signal
 - Period search peaks
 - Shift data by one record optimise and compare
 - Change number of bins
 - Divide record in two and correlate sections
 - Cross correlate multiple bands
 - Two/three-period fold
 - Check improvement with within band de-dispersion
 - Check degradation with negative de-dispersion
 - Check pulse width

Challenges

- Scintillation frequency and time
- RF Interference RF and Video
- Transient spikes
- Weak Signals Folding process can find peaks in noise
- Validating low SNR Detections

Improvements

- Lower Tsys direct SNR improvement
- RTL Band flattening
- Longer Data Records
- Spectrum folding
- Rubidium/GPS locking multiple sessions
- User-Friendly/Automatic GUI

Conclusion

- Amateurs can detect strong Pulsars
- 3m Dish systems work well
- Detection with home-made Yagis is possible but more difficult
- RTLs make for an inexpensive Receiver
- Freely Available Acquisition and Processing Software

Or, if you have a problem,

• Find a friend with a BIGGER DISH

Pulsar Amateur Links

- Neutronstar Group
 - http://neutronstar.joataman.net/index.html
- Barga Observatory
 - http://iw5bhy.altervista.org/
- Y1PWE
 - http://www.y1pwe.co.uk/RAProgs/Pulsars.html