

Fast Parallel Algorithms for Statistical Subset Selection

Sharon Qian, Yaron Singer

Harvard University

Statistical Subset Selection

Goal: Select k out of n features or samples to maximize objective.

Notation: y: data labels, X: feature space, $\mathbf{w}^{(S)}$: weights s.t. $\operatorname{supp}(\mathbf{w}) \subseteq S$, $\mathbf{\Lambda} = \beta^2$ is an isotropic Gaussian prior and σ^2 as variance

• Feature Selection

$$\ell_{\text{reg}}(\mathbf{y}, \mathbf{w}^{(S)}) = \|\mathbf{y}\|_2^2 - \|\mathbf{y} - \mathbf{X}_S \mathbf{w}\|_2^2$$

Bayesian A-optimality

$$\ell_{\texttt{A-opt}}(\mathbf{y}, \mathbf{w}^{(S)}) = \operatorname{Tr}(\mathbf{\Lambda}^{-1}) - \operatorname{Tr}((\mathbf{\Lambda} + \sigma^{-2}\mathbf{X}_S\mathbf{X}_S^T)^{-1})$$

Previous Algorithms

Main drawback is that previous algorithms are **difficult to optimize** or are **highly sequential**.

- LASSO: to select k features, must tune regularization parameter
- Forward Step-wise Regression: while there is a constant factor approximation, sequential nature requires k iterations [2]

Main Question

Are there fast parallel algorithms for statistical subset selection?

$$S^* = \arg\max_{S \subseteq N: |S| \le k} f(S) = \arg\max_{S \subseteq N: |S| \le k} \ell(\mathbf{w}^{(S)})$$

Adaptive Complexity Model

Definition [1]: an algorithm is r-adaptive if it makes r rounds of **parallel** function evaluations.

adaptivity = measure of parallel runtime

Round 1	Round 2		Round r
$S_{1,1}$, $f(S_{1,1})$	$S_{2,1}$, $f(S_{2,1})$		$S_{r,1}$, $f(S_{r,1})$
$S_{1,2}$, $f(S_{1,2})$	$S_{2,2}$, $f(S_{2,2})$	• • •	$S_{r,2}$, $f(S_{r,2})$
• •	• •		• •
$S_{1,m}$, $f(S_{1,m})$	$S_{2,m}$, $f(S_{2,m})$		$S_{r,m}$, $f(S_{r,m})$

Novel Relaxation of Submodularity

Differential Submodularity

A function $f: 2^N \to_+$ is α -differentially submodular for $\alpha \in [0, 1]$, if there exist two submodular functions h, g s.t. for any $S, A \subseteq N$, we have that $g_S(A) \ge \alpha \cdot h_S(A)$ and

$$g_S(A) \le f_S(A) \le h_S(A)$$

Statistical Subset Selection Objectives are Differentially Submodular

• Feature Selection

 $f(S) = \ell_{reg}(\mathbf{w}^{(S)})$ is α -differentially submodular where

$$\alpha = (\frac{\lambda_{min}(2k)}{\lambda_{max}(2k)})^2$$

Bayesian A-optimality

 $f(S) = \ell_{A-opt}(\mathbf{w}^{(S)})$ is α -differentially submodular where

$$\alpha = \left(\frac{\beta^2}{\|\mathbf{X}\|^2 (\beta^2 + \sigma^{-2} \|\mathbf{X}\|^2)}\right)^2$$

Low Adaptivity Algorithm

Main Theorem

Let f be a monotone, α -differentially submodular function where $\alpha \in [0,1]$, then, for any $\epsilon > 0$, DASH is a $\log_{1+\epsilon/2}(n)$ adaptive algorithm that obtains the following approximation

$$f(S) \ge (1 - 1/e^{\alpha^2} - \epsilon)$$
OPT.

DASH

Uses adaptive sampling technique from submodular maximization.

Input: ground set N, number of iterations r, differential submodularity parameter α

- Initialize $S \leftarrow \emptyset$
- For r iterations
 - -Set threshold $t := (1 \epsilon)(f(O) f(S))$
 - -While $\mathbb{E}_{R \sim \mathcal{U}(X)}[f_S(R)] < \alpha^2 \frac{t}{r}$ (sampled set is below threshold)
 - **Discard** elements a from X s.t.

$$\mathbb{E}_{R \sim \mathcal{U}(X)}[f_{S \cup (R \setminus \{a\})}(a)] < \alpha(1 + \frac{\epsilon}{2})t/k\}$$

- $-\mathbf{Add}$ random sample R to S
- ullet Return S

Algorithm in Practice

- DASH achieves comparable solution in fewer rounds compared to traditional methods
- For larger values of k and computationally intensive oracle queries, DASH terminates more quickly

[1] Eric Balkanski and Yaron Singer.

-- Parallel SDS MA

-- SDS MA

- Top k

The adaptive complexity of maximizing a submodular function. *STOC*, 2018.

Number of Rounds

[2] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, Sahand Negahban, et al. Restricted strong convexity implies weak submodularity.

The Annals of Statistics, 46(6B):3539–3568, 2018.