Proposición 0.1. Una transformación lineal $T\colon V\to V$ y su matriz asociada A_T tienen los mismos autovalores.

Demostración. Sea λ un autovalor de T y $v \in V$ un autovector correspondiente a λ , entonces

$$\begin{split} A_T(x_v) &= \psi(T(v)) & \text{(por la proposición)} \\ &= \psi(\lambda v) = \lambda \psi(v) \\ &= \lambda x_v \end{split}$$

Esto prueba que λ es un autovector de A_T .

Recíprocamente, sea λ un autovalor de A_T y $x \in \mathbb{K}^n$ un correspondiente autovector. Existe entonces un vector $v \in V$ tal que $\psi(v) = x$ (pues ψ es un isomorfismo), de donde

$$\psi(T(v)) = \psi(T(v))$$
 (por la proposición)
= $\psi(\lambda v) = \lambda \psi(v)$
= $\lambda(x_v)$

siendo ψ inyectiva, resulta $T(v) = \lambda v$. Como $v \neq 0$, λ es autovalor de T.

Corolario. Si $A, P \in \mathbb{K}^{n \times n}$ y P es inversible, entonces A y $P^{-1}AP$ tienen los mismos autovalores.

Demostración. Es suficiente observar que A y $P^{-1}AP$ son matrices asociadas a una misma transformación lineal.

La existencia de de autovalores de una transformación lineal depende del cuerpo \mathbb{K} y de la dimensión del espacio vectorial, como se muestra en el siguiente ejemplo.

Ejemplo. La transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (-y,x) no posee autovalores en \mathbb{R} .

En efecto, supongamos que $\lambda\in\mathbb{R}$ es un autovalor de T y $v=(a,b)\neq 0$ un correspondiente autovector. Por definición

$$(-b,a) = T(a,b) = \lambda(a,b)$$

ecuación que no posee solución en \mathbb{R} .

1 Tiangulación de Matrices. El Teorema de Cayley-Hamilton

Definición. Diremos que una matriz $A \in \mathbb{K}^{n \times n}$ es **triangulable** si es semejante a una matriz triangular(superior). Una transformación lineal $T: V \to V$ es **triangulable** si existe una base de V en la que la matriz asociada a T es triangular.

Un asistente importante sobre la estructura de una matriz es el siguiente.

Proposición 1.1. sea $\mathbb{K}=\mathbb{C}$. Toda transformación lineal $T:V\to V$ es triangulable.

Demostración. Esta demostración se hará por inducción sobre n=dimV. Si n>1, suponemos que la proposición es valida para todo espacio vectorial de dimensión n-1. Consideremos la transformación lineal $T^{\triangledown}:V^*\to V^*$, definida por $T^{\triangledown}(f)=foT$, para $f\in V^*$.

Sea $\lambda \in \mathbb{C}$ un autovalor de T^{\triangledown} y y $g \in V^{*}$ un correspondiente autovector, esto es

$$T^{\nabla} = \lambda g, \ g \neq 0$$

El subespacio de V

$$S = v \in V/g(v) = 0$$

tiene dimensión n-1 y es invariante por $T(T(s)\subset S)$. Por hipótesis inductiva, S posee una base $\{v_1,\ldots,v_n\}$ en la que T se escribe como

$$T(v_1) = \lambda_1 v_1$$

$$T(v_2) = a_{12}v_1 + \lambda_2 v_2$$

$$\vdots$$

$$\vdots$$

$$T(v_{n-1}) = a_{1,n-1}v_1 + \dots + \lambda_{n-1}v_{n-1}$$

Si a los vectores $v_1,...,v_n$ agregamos un vector v_n a fin de completar una base de V, con la expresión

 $T(v_n)=a_{1n}v_1,...,\lambda v_n$

la matriz asociada a T, en la base $\{v_1,...,v_n\}$ es triangular superior.