## Enhancing Object Detection Model Performance

#### USING THE OXFORD-IIIT PET DATASET

#### **Team Eagle GPT**

Varit Kobutra, Monica Joya, Angel Candelas, Aaron David, Saif UR Rehman Professor Patricia McManus Houston Community College 26 July, 2024



#### INTRODUCTION

Objective: Enhance the performance of an object detection model

Dataset: Oxford-IIIT Pet Dataset

Model: SSD MobileNet V2

#### **Key Steps:**





#### DATASET SELECTION

## Dataset Oxford-IIIT Pet Dataset

~7,000 *images* 

37
pet breeds

#### **Justification**

- Manageable size for limited computational resources
- Diverse and complex enough to provide a challenging task



| Breed                  | Count | Breed             | Coun |
|------------------------|-------|-------------------|------|
| rican Bulldog          | 200   | Abyssinian        |      |
| rican Pit Bull Terrier | 200   | Bengal            |      |
| et Hound               | 200   | Birman            |      |
| le                     | 200   | Bombay            |      |
| r                      | 199   | British Shorthair |      |
| uahua                  | 200   | Egyptian Mau      |      |
| sh Cocker Spaniel      | 196   | Main Coon         |      |
| sh Setter              | 200   | Persian           |      |
| nan Shorthaired        | 200   | Ragdoll           |      |
| t Pyrenees             | 200   | Russian Blue      |      |
| nese                   | 200   | Siamese           |      |
| nese Chin              | 200   | Sphynx            |      |
| hond                   | 199   | Total             |      |
| berger                 | 200   | 2.Cat Breeds      |      |
| ature Pinscher         | 200   |                   |      |
| foundland              | 196   | Family            | Cour |
| eranian                | 200   | Cat               |      |
|                        | 200   | Dog               |      |
| t Bernard              | 200   | Total             |      |
| yoed                   | 200   | 3.Total Pets      |      |
| tish Terrier           | 199   |                   |      |
|                        |       |                   |      |



#### DATA PREPROCESSING

#### Steps:

- Resizing images to 128x128 pixels
- Normalizing pixel values to [0, 1] range
- Applying random horizontal flips and brightness adjustments

Purpose: Enhance model generalization

```
# Data preprocessing and augmentation function
def preprocess_and_augment(data):
    image = tf.image.resize(data['image'], (128, 128))
    image = tf.image.random_flip_left_right(image)
    image = tf.image.random_brightness(image, 0.1)
    image = image / 255.0 # Normalize to [0, 1] range
    return image, data['objects']['label']
```



#### MODEL ARCHITECTURE

Base Model: SSD MobileNet V2

**Modifications:** 

- Added global average pooling layer
- Dense layer with ReLU activation
- Dropout layer for regularization
- Final dense layer for classification

**Compilation:** Adam optimizer, sparse categorical cross-entropy loss, accuracy metric



#### TRAINING AND EVALUATION

#### **Training:**

- **Epochs:** 10
- Metrics: Training loss, training accuracy, validation loss, validation accuracy

#### Results:

- Baseline Accuracy: Improved from 68.15% to 79.56%
- Fine-tuned Accuracy: Started at 83.72% and stabilized at 79.50%



#### FINE TUNING

#### Method:

- Unfreezing some layers of the base model
- Training with a lower learning rate

#### Results:

Significant improvement in accuracy



#### MODEL QUANTIZATION

Purpose: Reduce model size and increase

inference speed

**Method:** Post-training quantization

**Tool:** TensorFlow Lite

```
# Convert the model to TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()

# Save the quantized model
with open('model_quant.tflite', 'wb') as f:
    f.write(tflite_quant_model)
```



#### PERFORMANCE METRICS

#### **Baseline Training Results**

- Epoch 1/10:
  - Training Loss: 1.1051
  - Training Accuracy: 68.15%
  - ∘ Validation Loss: 0.7854
  - Validation Accuracy: 76.26%
- Epoch 10/10:
  - ∘ **Training Loss**: 0.0278
  - Training Accuracy: 99.27%
  - ∘ Validation Loss: 0.9785
  - Validation Accuracy: 78.30%



The enhanced model showed improved accuracy and reduced model size compared to the baseline model.



#### MEET THE TEAM



Planning & Advice
Varit (Henry) Kobutra

Henry focused on ensuring the project stayed on track and provided guidance on technical challenges.



Creative & Code
Monica Joya

Monica led the presentation and visual design, and handled significant portions of the coding tasks.



**Documentation** 

#### **Angel Candelas**

Angel was responsible for preparing detailed documentation and ensuring clarity and coherence in the project reports.



Research & Review

### **Aaron David & Saif UR Rehman**

Aaron and Saif conducted thorough research and critical evaluation of information, supporting the team with accurate and quality content.



The project effectively enhanced model performance through data preprocessing, fine-tuning, and quantization. These methods resulted in improved accuracy and efficiency, demonstrating practical applicability for object detection tasks.



# Thank you!

#### AN OBJECT DETECTION PRESENTATION

#### **Team Eagle GPT**

Varit Kobutra, Monica Joya, Angel Candelas, Aaron David, Saif UR Rehman Professor Patricia McManus Houston Community College 26 July, 2024



#### REFERENCES

- Chollet, F. (2018). Deep Learning with Python. Manning Publications.
- TensorFlow Datasets. (n.d.). *Oxford-IIIT Pet Dataset*. Retrieved from https://www.tensorflow.org/datasets/catalog/oxford\_iiit\_pet
- Parkhi, O. M., Vedaldi, A., Zisserman, A., & Jawahar, C. V. (2012). Cats and Dogs. *IEEE Conference on Computer Vision and Pattern Recognition*.

