

Konstantin Tkachuk Abschluss-Vortrag WS 16/17

Gliederung

- Inhaltverzeichnis
- Motivation u. Grundlagen
 - Internet of Things
 - Smart Home
 - Task Automation Services
- Ziel(-erfüllung)
- Implementierung
- Evaluation
- Zusammenfassung & Ausblick

Hype cycle

Internet der Dinge

- Begriff im Jahre 1999 von Kevin Ashton erstmals eingeführt
- Ermöglicht durch große Verbreitung von RFID, IEEE 802.11, Bluetooth, QR Codes, etc.
- Zahlreiche Forschungsprojekte vom IERC, ITU und weiteren
- Suche nach Mehrwert durch Kombination mit unterschiedlichen anderen Technologien

Internet der Dinge

- IoT-A Architektur als Grundlage für andere Projekte
- OpenIoT Integration von IoT mit Cloud Computing durch Semantiken
- SmartAction –
 Projektübergreifende

 Zusammenarbeit

Internet der Dinge

- IoT-A Architektur als Grundlage für andere Projekte
- OpenIoT Integration von IoT mit Cloud Computing durch Semantiken
- SmartAction –
 Projektübergreifende

 Zusammenarbeit

Diese Arbeit: Smart Home ↔ TAS

Smart Home

- Teil von IoT
- Konzentriert sich auf die direkte Steuerung von Geräten/Services im Kontext eines Hauses
- Kommerziell
 - Unterstützung von begrenzter Anzahl von Geräten
- Open Source
 - Fokus auf maximale Offenheit
 - Bedarf fortgeschrittener technischer Kenntnisse

Task Automation Services (TAS)

- Automatisierung historisch eines der zentralen Ziele der Menschheit – von Mühlen bis Kaffeeautomaten
- Heute: Automatisierung von Serviceinteraktionen
- Task Automation Service:
 - Dienst, der die Orchestration von anderen Diensten ermöglicht
- Typische Merkmale
 - Device/Web Channels
 - Event-Condition-Action Regeln
 - Visuelle Regel-Editoren
 - Device-/Webdriven Rule Execution Profiles

Task Automation Services – Überblick

		Web					Smartphone				Home		
		Iftt	Zapier	CloudWork	Elastic.io	ItDuzzit	Wappwolf	On{x}	Tasker	Atooma	Automatelt	WigWag	Webee
Channels	Web channel support	✓	✓	✓	✓	✓	Few	Few	✓	✓	✓	✓	✓
	Device channel support	Few	×	×	×	*	×	✓	✓	✓	\checkmark	✓	✓
	Smartphone resources as channels	✓	*	×	*	×	×	✓	✓	✓	✓	×	*
	Public channels support	✓	×	×	✓	✓	×	✓	×	×	×	×	×
O	Pipe channel support	×	×	×	✓	*	Few	Few	*	*	×	×	×
	Group channel support	×	×	×	×	*	×	×	*	*	×	Few	×
	Device channel discovery	×	×	×	×	*	×	×	*	*	×	✓	Few
	Multi-event rules	×	×	×	×	*	×	✓	✓	×	×	✓	×
	Multi-action rules	×	*	×	✓	*	×	✓	✓	*	✓	✓	✓
	Chain rules	×	×	×	✓	*	Few	Few	*	*	×	×	×
Rules	Group rules	×	×	×	×	*	×	×	*	*	×	Few	*
B	Collision handling	×	×	×	×	×	×	×	×	×	×	×	×
	Predefined common rules	×	×	✓	×	✓	✓	×	*	*	✓	✓	✓
	Rule execution profile	WD	WD	WD	WD	WD	WD	DD	DD	DD	DD	DD	DD
	Visual rule editor	✓	✓	×	✓	\checkmark	✓	×	✓	✓	✓	✓	✓
S	Provides API	×	✓	×	\checkmark	×	×	×	×	×	×	×	×
TA	Programming language	×	×	×	✓	*	×	✓	Few	*	✓	✓	✓

^{*} \checkmark = supported; * = not supported; Few = few support; WD = Web-driven execution profile; and DD = device-driven execution profile.

3 unterschiedliche Typen

1.Web TAS

Automatisierung von
WebServiceinteraktionen in
der Cloud

- 2.TAS auf Smartphone
 Automatisierung von AppInteraktionen
- 3.(Smart-)Home
 Automatisierung von
 Geräten

Vergleich SmartHome und TAS

- Gemeinsamkeiten von Webbasierten TAS und SmartHome
 - Automatisierung von Geräten und Services
 - Event-Condition-Action Regeln kommen zum Einsatz
 - Visuelle Regeleditoren
- Unterschiede
 - Fokus der Automatisierung
 - On-premise vs. Cloud

Bis dato waren webbasierte TAS und SmartHome völlig unabhängig. Nun wurden sie kombiniert.

Mehrwert durch Kombination

- Zugriffsdaten werden lokal gelagert
 - → Datenschutz
- Geräte werden lokal gesteuert
 - → Funktionalität im Haus bleibt bei Verbindungsabbruch erhalten
 - → Reaktionszeiten von Geräten verbessert
- Komplexere Regeln/Szenarien ermöglichen
 - → Wiederverwendung von existierenden Funktionalitäten

Ziele der Arbeit

- Demonstrator entwickeln, der
 - Geräte im Haus direkt steuern kann
 - Bei vorhandener Internetverbindung ausgewählte Webservices automatisieren kann
 - Sämtliche Zugriffsdaten lokal speichert
 - Die Webservices in die Rule Engine integriert
 - → komplexe Szenarien ✓
 - Funktionalität in Demo Regeln demonstriert
 - GUI: Eine Möglichkeit bietet neue Regeln zur Laufzeit hinzuzufügen
 - On-premise auf einem Raspberry Pi 3 Model B läuft
- Evaluation des Demonstrators

Implementierung - Eclipse SmartHome

- Framework zur Entwicklung von eigenen SmartHome Lösungen
- Unterstützt Entwickler bei:
 - Discovery-Services
 - Bindings
 - Rule Engine
 - GUI
 - ...
- Wird in bekannten Lösungen eingesetzt, z.B. openHAB, Qivicon

OPEN & COMMERCIAL HARDWARE

EUROTECH

SIERRA

Implementierung

- ESH besteht aus >130 Bundles
- FLASH derzeit aus 7 weiteren.
- Integration von Webservices durch entsprechende Bindings
 - → Einholen neuer Informationen über Polling oder WebHooks
- Integration in Rule Engine durch Wiederverwendung existierender und Definition neuer Trigger/Conditions/Actions
- Definition neuer Regeln über JSON

Implementierung Video

Evaluation – Vergleich mit IFTTT und Zapier

- Allgemein
 - Mächtigkeit der Rule Engines
 - Datenschutz
- Datendurchsatz
 - Verschieben von Dateien in der Dropbox
 - Messung der Dauer
- Reaktionszeiten
 - Steuerung einer Philips Hue Lampe bei Tweet

Evaluation – Allgemein

FLASH:

- Rule Engine mächtiger, als IFTTT und Zapier
 - → deutlich Komplexere Regeln möglich
- Visueller Regeleditor fehlt neue Regeln über JSON
- DD vs. WD Ausführungsprofil
 - → keine arbiträren Eingrenzungen
- Sämtliche Zugriffsdaten werden lokal gelagert
 - → Datenschutz

Evaluation – Verschieben von Dateien in Dropbox

Evaluation – Verschieben von Dateien in Dropbox

Evaluation – Steuern von physchen Geräten

• Reaktionszeit bei Steuern einer Philips Hue Lampe bei Tweet

FLASH: ≈ 1 Sekunde

IFTTT: >10 Sekunden

Zapier: -

Zusammenfassung & Ausblick

- Durch Kombination von Smart Home und Task Automation Services lässt sich Mehrwert erzielen:
 - Bessere Reaktionszeiten
 - Zugriffsdaten nur lokal
 - Vergleichbarer Datendurchsatz
- Eclipse SmartHome ist gut als Grundlage für weitere Lösungen geeignet
- Mögliche Erweiterungen:
 Visueller Regeleditor, Kollisionsbehandlung, gemeinsames
 - Backend, bessere Datensicherung (Backups), ...