4.4-3

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 4T(n/2 + 2) + n. Use the substitution method to verify your answer.

4.4-4

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1. Use the substitution method to verify your answer.

4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n. Use the substitution method to verify your answer.

4.4-6

Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn, where c is a constant, is $\Omega(n \lg n)$ by appealing to a recursion tree.

4.4-7

Draw the recursion tree for $T(n) = 4T(\lfloor n/2 \rfloor) + cn$, where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

4.4-8

Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n-a) + T(a) + cn, where $a \ge 1$ and c > 0 are constants.

4.4-9

Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$, where α is a constant in the range $0 < \alpha < 1$ and c > 0 is also a constant.

4.5 The master method for solving recurrences

The master method provides a "cookbook" method for solving recurrences of the form

$$T(n) = aT(n/b) + f(n),$$
 (4.20)

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function. To use the master method, you will need to memorize three cases, but then you will be able to solve many recurrences quite easily, often without pencil and paper.

The recurrence (4.20) describes the running time of an algorithm that divides a problem of size n into a subproblems, each of size n/b, where a and b are positive constants. The a subproblems are solved recursively, each in time T(n/b). The function f(n) encompasses the cost of dividing the problem and combining the results of the subproblems. For example, the recurrence arising from Strassen's algorithm has a = 7, b = 2, and $f(n) = \Theta(n^2)$.

As a matter of technical correctness, the recurrence is not actually well defined, because n/b might not be an integer. Replacing each of the a terms T(n/b) with either $T(\lfloor n/b \rfloor)$ or $T(\lceil n/b \rceil)$ will not affect the asymptotic behavior of the recurrence, however. (We will prove this assertion in the next section.) We normally find it convenient, therefore, to omit the floor and ceiling functions when writing divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Before applying the master theorem to some examples, let's spend a moment trying to understand what it says. In each of the three cases, we compare the function f(n) with the function $n^{\log_b a}$. Intuitively, the larger of the two functions determines the solution to the recurrence. If, as in case 1, the function $n^{\log_b a}$ is the larger, then the solution is $T(n) = \Theta(n^{\log_b a})$. If, as in case 3, the function f(n) is the larger, then the solution is $T(n) = \Theta(f(n))$. If, as in case 2, the two functions are the same size, we multiply by a logarithmic factor, and the solution is $T(n) = \Theta(n^{\log_b a} \log_b a) = \Theta(f(n) \log_b a)$.

Beyond this intuition, you need to be aware of some technicalities. In the first case, not only must f(n) be smaller than $n^{\log_b a}$, it must be *polynomially* smaller.

That is, f(n) must be asymptotically smaller than $n^{\log_b a}$ by a factor of n^{ϵ} for some constant $\epsilon > 0$. In the third case, not only must f(n) be larger than $n^{\log_b a}$, it also must be polynomially larger and in addition satisfy the "regularity" condition that $af(n/b) \leq cf(n)$. This condition is satisfied by most of the polynomially bounded functions that we shall encounter.

Note that the three cases do not cover all the possibilities for f(n). There is a gap between cases 1 and 2 when f(n) is smaller than $n^{\log_b a}$ but not polynomially smaller. Similarly, there is a gap between cases 2 and 3 when f(n) is larger than $n^{\log_b a}$ but not polynomially larger. If the function f(n) falls into one of these gaps, or if the regularity condition in case 3 fails to hold, you cannot use the master method to solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the master theorem applies and write down the answer.

As a first example, consider

$$T(n) = 9T(n/3) + n.$$

For this recurrence, we have a=9, b=3, f(n)=n, and thus we have that $n^{\log_b a}=n^{\log_3 9}=\Theta(n^2)$. Since $f(n)=O(n^{\log_3 9-\epsilon})$, where $\epsilon=1$, we can apply case 1 of the master theorem and conclude that the solution is $T(n)=\Theta(n^2)$.

Now consider

$$T(n) = T(2n/3) + 1,$$

in which a=1, b=3/2, f(n)=1, and $n^{\log_b a}=n^{\log_{3/2} 1}=n^0=1$. Case 2 applies, since $f(n)=\Theta(n^{\log_b a})=\Theta(1)$, and thus the solution to the recurrence is $T(n)=\Theta(\lg n)$.

For the recurrence

$$T(n) = 3T(n/4) + n \lg n ,$$

we have a=3, b=4, $f(n)=n\lg n$, and $n^{\log_b a}=n^{\log_4 3}=O(n^{0.793})$. Since $f(n)=\Omega(n^{\log_4 3+\epsilon})$, where $\epsilon\approx 0.2$, case 3 applies if we can show that the regularity condition holds for f(n). For sufficiently large n, we have that $af(n/b)=3(n/4)\lg(n/4)\leq (3/4)n\lg n=cf(n)$ for c=3/4. Consequently, by case 3, the solution to the recurrence is $T(n)=\Theta(n\lg n)$.

The master method does not apply to the recurrence

$$T(n) = 2T(n/2) + n \lg n ,$$

even though it appears to have the proper form: a = 2, b = 2, $f(n) = n \lg n$, and $n^{\log_b a} = n$. You might mistakenly think that case 3 should apply, since

 $f(n) = n \lg n$ is asymptotically larger than $n^{\log_b a} = n$. The problem is that it is not *polynomially* larger. The ratio $f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^{ϵ} for any positive constant ϵ . Consequently, the recurrence falls into the gap between case 2 and case 3. (See Exercise 4.6-2 for a solution.)

Let's use the master method to solve the recurrences we saw in Sections 4.1 and 4.2. Recurrence (4.7),

$$T(n) = 2T(n/2) + \Theta(n),$$

characterizes the running times of the divide-and-conquer algorithm for both the maximum-subarray problem and merge sort. (As is our practice, we omit stating the base case in the recurrence.) Here, we have $a=2, b=2, f(n)=\Theta(n)$, and thus we have that $n^{\log_b a}=n^{\log_2 2}=n$. Case 2 applies, since $f(n)=\Theta(n)$, and so we have the solution $T(n)=\Theta(n \lg n)$.

Recurrence (4.17),

$$T(n) = 8T(n/2) + \Theta(n^2),$$

describes the running time of the first divide-and-conquer algorithm that we saw for matrix multiplication. Now we have a=8, b=2, and $f(n)=\Theta(n^2)$, and so $n^{\log_b a}=n^{\log_2 8}=n^3$. Since n^3 is polynomially larger than f(n) (that is, $f(n)=O(n^{3-\epsilon})$ for $\epsilon=1$), case 1 applies, and $T(n)=\Theta(n^3)$.

Finally, consider recurrence (4.18),

$$T(n) = 7T(n/2) + \Theta(n^2) ,$$

which describes the running time of Strassen's algorithm. Here, we have a=7, b=2, $f(n)=\Theta(n^2)$, and thus $n^{\log_b a}=n^{\log_2 7}$. Rewriting $\log_2 7$ as $\lg 7$ and recalling that $2.80 < \lg 7 < 2.81$, we see that $f(n)=O(n^{\lg 7-\epsilon})$ for $\epsilon=0.8$. Again, case 1 applies, and we have the solution $T(n)=\Theta(n^{\lg 7})$.

Exercises

4.5-1

Use the master method to give tight asymptotic bounds for the following recurrences.

a.
$$T(n) = 2T(n/4) + 1$$
.

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$
.

c.
$$T(n) = 2T(n/4) + n$$
.

d.
$$T(n) = 2T(n/4) + n^2$$
.

11 Hash Tables

Many applications require a dynamic set that supports only the dictionary operations INSERT, SEARCH, and DELETE. For example, a compiler that translates a programming language maintains a symbol table, in which the keys of elements are arbitrary character strings corresponding to identifiers in the language. A hash table is an effective data structure for implementing dictionaries. Although searching for an element in a hash table can take as long as searching for an element in a linked list— $\Theta(n)$ time in the worst case—in practice, hashing performs extremely well. Under reasonable assumptions, the average time to search for an element in a hash table is O(1).

A hash table generalizes the simpler notion of an ordinary array. Directly addressing into an ordinary array makes effective use of our ability to examine an arbitrary position in an array in O(1) time. Section 11.1 discusses direct addressing in more detail. We can take advantage of direct addressing when we can afford to allocate an array that has one position for every possible key.

When the number of keys actually stored is small relative to the total number of possible keys, hash tables become an effective alternative to directly addressing an array, since a hash table typically uses an array of size proportional to the number of keys actually stored. Instead of using the key as an array index directly, the array index is *computed* from the key. Section 11.2 presents the main ideas, focusing on "chaining" as a way to handle "collisions," in which more than one key maps to the same array index. Section 11.3 describes how we can compute array indices from keys using hash functions. We present and analyze several variations on the basic theme. Section 11.4 looks at "open addressing," which is another way to deal with collisions. The bottom line is that hashing is an extremely effective and practical technique: the basic dictionary operations require only O(1) time on the average. Section 11.5 explains how "perfect hashing" can support searches in O(1) worst-case time, when the set of keys being stored is static (that is, when the set of keys never changes once stored).

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the universe U of keys is reasonably small. Suppose that an application needs a dynamic set in which each element has a key drawn from the universe $U = \{0, 1, \ldots, m-1\}$, where m is not too large. We shall assume that no two elements have the same key.

To represent the dynamic set, we use an array, or *direct-address table*, denoted by T[0..m-1], in which each position, or *slot*, corresponds to a key in the universe U. Figure 11.1 illustrates the approach; slot k points to an element in the set with key k. If the set contains no element with key k, then T[k] = NIL.

The dictionary operations are trivial to implement:

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT (T, x)

 $1 \quad T[x.key] = x$

DIRECT-ADDRESS-DELETE(T, x)

1 T[x.key] = NIL

Each of these operations takes only O(1) time.

Figure 11.1 How to implement a dynamic set by a direct-address table T. Each key in the universe $U = \{0, 1, \ldots, 9\}$ corresponds to an index in the table. The set $K = \{2, 3, 5, 8\}$ of actual keys determines the slots in the table that contain pointers to elements. The other slots, heavily shaded, contain NIL.

For some applications, the direct-address table itself can hold the elements in the dynamic set. That is, rather than storing an element's key and satellite data in an object external to the direct-address table, with a pointer from a slot in the table to the object, we can store the object in the slot itself, thus saving space. We would use a special key within an object to indicate an empty slot. Moreover, it is often unnecessary to store the key of the object, since if we have the index of an object in the table, we have its key. If keys are not stored, however, we must have some way to tell whether the slot is empty.

Exercises

11.1-1

Suppose that a dynamic set S is represented by a direct-address table T of length m. Describe a procedure that finds the maximum element of S. What is the worst-case performance of your procedure?

11.1-2

A **bit vector** is simply an array of bits (0s and 1s). A bit vector of length m takes much less space than an array of m pointers. Describe how to use a bit vector to represent a dynamic set of distinct elements with no satellite data. Dictionary operations should run in O(1) time.

11.1-3

Suggest how to implement a direct-address table in which the keys of stored elements do not need to be distinct and the elements can have satellite data. All three dictionary operations (INSERT, DELETE, and SEARCH) should run in O(1) time. (Don't forget that DELETE takes as an argument a pointer to an object to be deleted, not a key.)

11.1-4 *

We wish to implement a dictionary by using direct addressing on a *huge* array. At the start, the array entries may contain garbage, and initializing the entire array is impractical because of its size. Describe a scheme for implementing a direct-address dictionary on a huge array. Each stored object should use O(1) space; the operations SEARCH, INSERT, and DELETE should take O(1) time each; and initializing the data structure should take O(1) time. (*Hint:* Use an additional array, treated somewhat like a stack whose size is the number of keys actually stored in the dictionary, to help determine whether a given entry in the huge array is valid or not.)

11.2 Hash tables

The downside of direct addressing is obvious: if the universe U is large, storing a table T of size |U| may be impractical, or even impossible, given the memory available on a typical computer. Furthermore, the set K of keys *actually stored* may be so small relative to U that most of the space allocated for T would be wasted.

When the set K of keys stored in a dictionary is much smaller than the universe U of all possible keys, a hash table requires much less storage than a direct-address table. Specifically, we can reduce the storage requirement to $\Theta(|K|)$ while we maintain the benefit that searching for an element in the hash table still requires only O(1) time. The catch is that this bound is for the *average-case time*, whereas for direct addressing it holds for the *worst-case time*.

With direct addressing, an element with key k is stored in slot k. With hashing, this element is stored in slot h(k); that is, we use a **hash function** h to compute the slot from the key k. Here, h maps the universe U of keys into the slots of a **hash table** T[0..m-1]:

$$h: U \to \{0, 1, \dots, m-1\}$$
,

where the size m of the hash table is typically much less than |U|. We say that an element with key k hashes to slot h(k); we also say that h(k) is the hash value of key k. Figure 11.2 illustrates the basic idea. The hash function reduces the range of array indices and hence the size of the array. Instead of a size of |U|, the array can have size m.

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k_2 and k_5 map to the same slot, they collide.

11.2 Hash tables 257

Figure 11.3 Collision resolution by chaining. Each hash-table slot T[j] contains a linked list of all the keys whose hash value is j. For example, $h(k_1) = h(k_4)$ and $h(k_5) = h(k_7) = h(k_2)$. The linked list can be either singly or doubly linked; we show it as doubly linked because deletion is faster that way.

There is one hitch: two keys may hash to the same slot. We call this situation a *collision*. Fortunately, we have effective techniques for resolving the conflict created by collisions.

Of course, the ideal solution would be to avoid collisions altogether. We might try to achieve this goal by choosing a suitable hash function h. One idea is to make h appear to be "random," thus avoiding collisions or at least minimizing their number. The very term "to hash," evoking images of random mixing and chopping, captures the spirit of this approach. (Of course, a hash function h must be deterministic in that a given input k should always produce the same output h(k).) Because |U| > m, however, there must be at least two keys that have the same hash value; avoiding collisions altogether is therefore impossible. Thus, while a well-designed, "random"-looking hash function can minimize the number of collisions, we still need a method for resolving the collisions that do occur.

The remainder of this section presents the simplest collision resolution technique, called chaining. Section 11.4 introduces an alternative method for resolving collisions, called open addressing.

Collision resolution by chaining

In *chaining*, we place all the elements that hash to the same slot into the same linked list, as Figure 11.3 shows. Slot j contains a pointer to the head of the list of all stored elements that hash to j; if there are no such elements, slot j contains NIL.

The dictionary operations on a hash table T are easy to implement when collisions are resolved by chaining:

CHAINED-HASH-INSERT (T, x)

1 insert x at the head of list T[h(x.key)]

CHAINED-HASH-SEARCH (T, k)

1 search for an element with key k in list T[h(k)]

CHAINED-HASH-DELETE (T, x)

1 delete x from the list T[h(x.key)]

The worst-case running time for insertion is O(1). The insertion procedure is fast in part because it assumes that the element x being inserted is not already present in the table; if necessary, we can check this assumption (at additional cost) by searching for an element whose key is x. key before we insert. For searching, the worst-case running time is proportional to the length of the list; we shall analyze this operation more closely below. We can delete an element in O(1) time if the lists are doubly linked, as Figure 11.3 depicts. (Note that CHAINED-HASH-DELETE takes as input an element x and not its key k, so that we don't have to search for x first. If the hash table supports deletion, then its linked lists should be doubly linked so that we can delete an item quickly. If the lists were only singly linked, then to delete element x, we would first have to find x in the list T[h(x.key)] so that we could update the next attribute of x's predecessor. With singly linked lists, both deletion and searching would have the same asymptotic running times.)

Analysis of hashing with chaining

How well does hashing with chaining perform? In particular, how long does it take to search for an element with a given key?

Given a hash table T with m slots that stores n elements, we define the **load** factor α for T as n/m, that is, the average number of elements stored in a chain. Our analysis will be in terms of α , which can be less than, equal to, or greater than 1.

The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot, creating a list of length n. The worst-case time for searching is thus $\Theta(n)$ plus the time to compute the hash function—no better than if we used one linked list for all the elements. Clearly, we do not use hash tables for their worst-case performance. (Perfect hashing, described in Section 11.5, does provide good worst-case performance when the set of keys is static, however.)

The average-case performance of hashing depends on how well the hash function h distributes the set of keys to be stored among the m slots, on the average.

11.2 Hash tables 259

Section 11.3 discusses these issues, but for now we shall assume that any given element is equally likely to hash into any of the m slots, independently of where any other element has hashed to. We call this the assumption of **simple uniform hashing**.

For
$$j = 0, 1, ..., m - 1$$
, let us denote the length of the list $T[j]$ by n_j , so that $n = n_0 + n_1 + \cdots + n_{m-1}$, (11.1) and the expected value of n_j is $E[n_j] = \alpha = n/m$.

We assume that O(1) time suffices to compute the hash value h(k), so that the time required to search for an element with key k depends linearly on the length $n_{h(k)}$ of the list T[h(k)]. Setting aside the O(1) time required to compute the hash function and to access slot h(k), let us consider the expected number of elements examined by the search algorithm, that is, the number of elements in the list T[h(k)] that the algorithm checks to see whether any have a key equal to k. We shall consider two cases. In the first, the search is unsuccessful: no element in the table has key k. In the second, the search successfully finds an element with key k.

Theorem 11.1

In a hash table in which collisions are resolved by chaining, an unsuccessful search takes average-case time $\Theta(1+\alpha)$, under the assumption of simple uniform hashing.

Proof Under the assumption of simple uniform hashing, any key k not already stored in the table is equally likely to hash to any of the m slots. The expected time to search unsuccessfully for a key k is the expected time to search to the end of list T[h(k)], which has expected length $E[n_{h(k)}] = \alpha$. Thus, the expected number of elements examined in an unsuccessful search is α , and the total time required (including the time for computing h(k)) is $\Theta(1 + \alpha)$.

The situation for a successful search is slightly different, since each list is not equally likely to be searched. Instead, the probability that a list is searched is proportional to the number of elements it contains. Nonetheless, the expected search time still turns out to be $\Theta(1 + \alpha)$.

Theorem 11.2

In a hash table in which collisions are resolved by chaining, a successful search takes average-case time $\Theta(1+\alpha)$, under the assumption of simple uniform hashing.

Proof We assume that the element being searched for is equally likely to be any of the n elements stored in the table. The number of elements examined during a successful search for an element x is one more than the number of elements that

11.3 Hash functions

In this section, we discuss some issues regarding the design of good hash functions and then present three schemes for their creation. Two of the schemes, hashing by division and hashing by multiplication, are heuristic in nature, whereas the third scheme, universal hashing, uses randomization to provide provably good performance.

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of simple uniform hashing: each key is equally likely to hash to any of the *m* slots, independently of where any other key has hashed to. Unfortunately, we typically have no way to check this condition, since we rarely know the probability distribution from which the keys are drawn. Moreover, the keys might not be drawn independently.

Occasionally we do know the distribution. For example, if we know that the keys are random real numbers k independently and uniformly distributed in the range $0 \le k < 1$, then the hash function

$$h(k) = \lfloor km \rfloor$$

satisfies the condition of simple uniform hashing.

In practice, we can often employ heuristic techniques to create a hash function that performs well. Qualitative information about the distribution of keys may be useful in this design process. For example, consider a compiler's symbol table, in which the keys are character strings representing identifiers in a program. Closely related symbols, such as pt and pts, often occur in the same program. A good hash function would minimize the chance that such variants hash to the same slot.

A good approach derives the hash value in a way that we expect to be independent of any patterns that might exist in the data. For example, the "division method" (discussed in Section 11.3.1) computes the hash value as the remainder when the key is divided by a specified prime number. This method frequently gives good results, assuming that we choose a prime number that is unrelated to any patterns in the distribution of keys.

Finally, we note that some applications of hash functions might require stronger properties than are provided by simple uniform hashing. For example, we might want keys that are "close" in some sense to yield hash values that are far apart. (This property is especially desirable when we are using linear probing, defined in Section 11.4.) Universal hashing, described in Section 11.3.3, often provides the desired properties.

Interpreting keys as natural numbers

Most hash functions assume that the universe of keys is the set $\mathbb{N}=\{0,1,2,\ldots\}$ of natural numbers. Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers. For example, we can interpret a character string as an integer expressed in suitable radix notation. Thus, we might interpret the identifier pt as the pair of decimal integers (112,116), since p = 112 and t = 116 in the ASCII character set; then, expressed as a radix-128 integer, pt becomes $(112 \cdot 128) + 116 = 14452$. In the context of a given application, we can usually devise some such method for interpreting each key as a (possibly large) natural number. In what follows, we assume that the keys are natural numbers.

11.3.1 The division method

In the *division method* for creating hash functions, we map a key k into one of m slots by taking the remainder of k divided by m. That is, the hash function is

$$h(k) = k \mod m$$
.

For example, if the hash table has size m = 12 and the key is k = 100, then h(k) = 4. Since it requires only a single division operation, hashing by division is quite fast.

When using the division method, we usually avoid certain values of m. For example, m should not be a power of 2, since if $m = 2^p$, then h(k) is just the p lowest-order bits of k. Unless we know that all low-order p-bit patterns are equally likely, we are better off designing the hash function to depend on all the bits of the key. As Exercise 11.3-3 asks you to show, choosing $m = 2^p - 1$ when k is a character string interpreted in radix 2^p may be a poor choice, because permuting the characters of k does not change its hash value.

A prime not too close to an exact power of 2 is often a good choice for m. For example, suppose we wish to allocate a hash table, with collisions resolved by chaining, to hold roughly n=2000 character strings, where a character has 8 bits. We don't mind examining an average of 3 elements in an unsuccessful search, and so we allocate a hash table of size m=701. We could choose m=701 because it is a prime near 2000/3 but not near any power of 2. Treating each key k as an integer, our hash function would be

$$h(k) = k \mod 701.$$

11.3.2 The multiplication method

The *multiplication method* for creating hash functions operates in two steps. First, we multiply the key k by a constant A in the range 0 < A < 1 and extract the

Figure 11.4 The multiplication method of hashing. The w-bit representation of the key k is multiplied by the w-bit value $s = A \cdot 2^w$. The p highest-order bits of the lower w-bit half of the product form the desired hash value h(k).

fractional part of kA. Then, we multiply this value by m and take the floor of the result. In short, the hash function is

$$h(k) = \lfloor m (kA \bmod 1) \rfloor ,$$

where " $kA \mod 1$ " means the fractional part of kA, that is, kA - |kA|.

An advantage of the multiplication method is that the value of m is not critical. We typically choose it to be a power of 2 ($m=2^p$ for some integer p), since we can then easily implement the function on most computers as follows. Suppose that the word size of the machine is w bits and that k fits into a single word. We restrict A to be a fraction of the form $s/2^w$, where s is an integer in the range $0 < s < 2^w$. Referring to Figure 11.4, we first multiply k by the w-bit integer $s = A \cdot 2^w$. The result is a 2w-bit value $r_1 2^w + r_0$, where r_1 is the high-order word of the product and r_0 is the low-order word of the product. The desired p-bit hash value consists of the p most significant bits of r_0 .

Although this method works with any value of the constant A, it works better with some values than with others. The optimal choice depends on the characteristics of the data being hashed. Knuth [211] suggests that

$$A \approx (\sqrt{5} - 1)/2 = 0.6180339887...$$
 (11.2)

is likely to work reasonably well.

As an example, suppose we have k = 123456, p = 14, $m = 2^{14} = 16384$, and w = 32. Adapting Knuth's suggestion, we choose A to be the fraction of the form $s/2^{32}$ that is closest to $(\sqrt{5} - 1)/2$, so that $A = 2654435769/2^{32}$. Then $k \cdot s = 327706022297664 = (76300 \cdot 2^{32}) + 17612864$, and so $r_1 = 76300$ and $r_0 = 17612864$. The 14 most significant bits of r_0 yield the value h(k) = 67.

★ 11.3.3 Universal hashing

If a malicious adversary chooses the keys to be hashed by some fixed hash function, then the adversary can choose n keys that all hash to the same slot, yielding an average retrieval time of $\Theta(n)$. Any fixed hash function is vulnerable to such terrible worst-case behavior; the only effective way to improve the situation is to choose the hash function randomly in a way that is independent of the keys that are actually going to be stored. This approach, called $universal\ hashing$, can yield provably good performance on average, no matter which keys the adversary chooses.

In universal hashing, at the beginning of execution we select the hash function at random from a carefully designed class of functions. As in the case of quick-sort, randomization guarantees that no single input will always evoke worst-case behavior. Because we randomly select the hash function, the algorithm can behave differently on each execution, even for the same input, guaranteeing good average-case performance for any input. Returning to the example of a compiler's symbol table, we find that the programmer's choice of identifiers cannot now cause consistently poor hashing performance. Poor performance occurs only when the compiler chooses a random hash function that causes the set of identifiers to hash poorly, but the probability of this situation occurring is small and is the same for any set of identifiers of the same size.

Let \mathcal{H} be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,\ldots,m-1\}$. Such a collection is said to be *universal* if for each pair of distinct keys $k,l \in U$, the number of hash functions $h \in \mathcal{H}$ for which h(k) = h(l) is at most $|\mathcal{H}|/m$. In other words, with a hash function randomly chosen from \mathcal{H} , the chance of a collision between distinct keys k and l is no more than the chance 1/m of a collision if h(k) and h(l) were randomly and independently chosen from the set $\{0,1,\ldots,m-1\}$.

The following theorem shows that a universal class of hash functions gives good average-case behavior. Recall that n_i denotes the length of list T[i].

Theorem 11.3

Suppose that a hash function h is chosen randomly from a universal collection of hash functions and has been used to hash n keys into a table T of size m, using chaining to resolve collisions. If key k is not in the table, then the expected length $\mathrm{E}\left[n_{h(k)}\right]$ of the list that key k hashes to is at most the load factor $\alpha=n/m$. If key k is in the table, then the expected length $\mathrm{E}\left[n_{h(k)}\right]$ of the list containing key k is at most $1+\alpha$.

Proof We note that the expectations here are over the choice of the hash function and do not depend on any assumptions about the distribution of the keys. For each pair k and l of distinct keys, define the indicator random variable

11.3-3

Consider a version of the division method in which $h(k) = k \mod m$, where $m = 2^p - 1$ and k is a character string interpreted in radix 2^p . Show that if we can derive string x from string y by permuting its characters, then x and y hash to the same value. Give an example of an application in which this property would be undesirable in a hash function.

11.3-4

Consider a hash table of size m = 1000 and a corresponding hash function $h(k) = \lfloor m (kA \mod 1) \rfloor$ for $A = (\sqrt{5} - 1)/2$. Compute the locations to which the keys 61, 62, 63, 64, and 65 are mapped.

11.3-5 *

Define a family \mathcal{H} of hash functions from a finite set U to a finite set B to be ϵ -universal if for all pairs of distinct elements k and l in U,

$$\Pr\{h(k) = h(l)\} \le \epsilon$$
,

where the probability is over the choice of the hash function h drawn at random from the family \mathcal{H} . Show that an ϵ -universal family of hash functions must have

$$\epsilon \geq \frac{1}{|B|} - \frac{1}{|U|} \ .$$

11.3-6 *

Let U be the set of n-tuples of values drawn from \mathbb{Z}_p , and let $B = \mathbb{Z}_p$, where p is prime. Define the hash function $h_b: U \to B$ for $b \in \mathbb{Z}_p$ on an input n-tuple $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ from U as

$$h_b(\langle a_0, a_1, \dots, a_{n-1} \rangle) = \left(\sum_{j=0}^{n-1} a_j b^j\right) \bmod p$$
,

and let $\mathcal{H} = \{h_b : b \in \mathbb{Z}_p\}$. Argue that \mathcal{H} is ((n-1)/p)-universal according to the definition of ϵ -universal in Exercise 11.3-5. (*Hint:* See Exercise 31.4-4.)

11.4 Open addressing

In *open addressing*, all elements occupy the hash table itself. That is, each table entry contains either an element of the dynamic set or NIL. When searching for an element, we systematically examine table slots until either we find the desired element or we have ascertained that the element is not in the table. No lists and

no elements are stored outside the table, unlike in chaining. Thus, in open addressing, the hash table can "fill up" so that no further insertions can be made; one consequence is that the load factor α can never exceed 1.

Of course, we could store the linked lists for chaining inside the hash table, in the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of open addressing is that it avoids pointers altogether. Instead of following pointers, we *compute* the sequence of slots to be examined. The extra memory freed by not storing pointers provides the hash table with a larger number of slots for the same amount of memory, potentially yielding fewer collisions and faster retrieval.

To perform insertion using open addressing, we successively examine, or **probe**, the hash table until we find an empty slot in which to put the key. Instead of being fixed in the order $0, 1, \ldots, m-1$ (which requires $\Theta(n)$ search time), the sequence of positions probed *depends upon the key being inserted*. To determine which slots to probe, we extend the hash function to include the probe number (starting from 0) as a second input. Thus, the hash function becomes

$$h: U \times \{0, 1, \dots, m-1\} \to \{0, 1, \dots, m-1\}$$
.

With open addressing, we require that for every key k, the **probe sequence**

$$\langle h(k,0), h(k,1), \dots, h(k,m-1) \rangle$$

be a permutation of $(0, 1, \ldots, m-1)$, so that every hash-table position is eventually considered as a slot for a new key as the table fills up. In the following pseudocode, we assume that the elements in the hash table T are keys with no satellite information; the key k is identical to the element containing key k. Each slot contains either a key or NIL (if the slot is empty). The HASH-INSERT procedure takes as input a hash table T and a key k. It either returns the slot number where it stores key k or flags an error because the hash table is already full.

```
HASH-INSERT(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T[j] == NIL

5 T[j] = k

6 return j

7 else i = i + 1

8 until i == m

9 error "hash table overflow"
```

The algorithm for searching for key k probes the same sequence of slots that the insertion algorithm examined when key k was inserted. Therefore, the search can

terminate (unsuccessfully) when it finds an empty slot, since k would have been inserted there and not later in its probe sequence. (This argument assumes that keys are not deleted from the hash table.) The procedure HASH-SEARCH takes as input a hash table T and a key k, returning j if it finds that slot j contains key k, or NIL if key k is not present in table T.

```
HASH-SEARCH(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T[j] == k

5 return j

6 i = i + 1

7 until T[j] == \text{NIL or } i == m

8 return \text{NIL}
```

Deletion from an open-address hash table is difficult. When we delete a key from slot i, we cannot simply mark that slot as empty by storing NIL in it. If we did, we might be unable to retrieve any key k during whose insertion we had probed slot i and found it occupied. We can solve this problem by marking the slot, storing in it the special value DELETED instead of NIL. We would then modify the procedure HASH-INSERT to treat such a slot as if it were empty so that we can insert a new key there. We do not need to modify HASH-SEARCH, since it will pass over DELETED values while searching. When we use the special value DELETED, however, search times no longer depend on the load factor α , and for this reason chaining is more commonly selected as a collision resolution technique when keys must be deleted.

In our analysis, we assume *uniform hashing*: the probe sequence of each key is equally likely to be any of the m! permutations of (0, 1, ..., m - 1). Uniform hashing generalizes the notion of simple uniform hashing defined earlier to a hash function that produces not just a single number, but a whole probe sequence. True uniform hashing is difficult to implement, however, and in practice suitable approximations (such as double hashing, defined below) are used.

We will examine three commonly used techniques to compute the probe sequences required for open addressing: linear probing, quadratic probing, and double hashing. These techniques all guarantee that $\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle$ is a permutation of $\langle 0,1,\ldots,m-1 \rangle$ for each key k. None of these techniques fulfills the assumption of uniform hashing, however, since none of them is capable of generating more than m^2 different probe sequences (instead of the m! that uniform hashing requires). Double hashing has the greatest number of probe sequences and, as one might expect, seems to give the best results.

Linear probing

Given an ordinary hash function $h': U \to \{0, 1, ..., m-1\}$, which we refer to as an *auxiliary hash function*, the method of *linear probing* uses the hash function

$$h(k,i) = (h'(k) + i) \bmod m$$

for i = 0, 1, ..., m - 1. Given key k, we first probe T[h'(k)], i.e., the slot given by the auxiliary hash function. We next probe slot T[h'(k) + 1], and so on up to slot T[m-1]. Then we wrap around to slots T[0], T[1], ... until we finally probe slot T[h'(k) - 1]. Because the initial probe determines the entire probe sequence, there are only m distinct probe sequences.

Linear probing is easy to implement, but it suffers from a problem known as *primary clustering*. Long runs of occupied slots build up, increasing the average search time. Clusters arise because an empty slot preceded by i full slots gets filled next with probability (i + 1)/m. Long runs of occupied slots tend to get longer, and the average search time increases.

Quadratic probing

Quadratic probing uses a hash function of the form

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \bmod m,$$
(11.5)

where h' is an auxiliary hash function, c_1 and c_2 are positive auxiliary constants, and $i=0,1,\ldots,m-1$. The initial position probed is T[h'(k)]; later positions probed are offset by amounts that depend in a quadratic manner on the probe number i. This method works much better than linear probing, but to make full use of the hash table, the values of c_1 , c_2 , and m are constrained. Problem 11-3 shows one way to select these parameters. Also, if two keys have the same initial probe position, then their probe sequences are the same, since $h(k_1,0) = h(k_2,0)$ implies $h(k_1,i) = h(k_2,i)$. This property leads to a milder form of clustering, called **secondary clustering**. As in linear probing, the initial probe determines the entire sequence, and so only m distinct probe sequences are used.

Double hashing

Double hashing offers one of the best methods available for open addressing because the permutations produced have many of the characteristics of randomly chosen permutations. *Double hashing* uses a hash function of the form

$$h(k,i) = (h_1(k) + ih_2(k)) \mod m$$
,

where both h_1 and h_2 are auxiliary hash functions. The initial probe goes to position $T[h_1(k)]$; successive probe positions are offset from previous positions by the

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$. Since $14 \equiv 1 \pmod 13$ and $14 \equiv 3 \pmod 11$, we insert the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

amount $h_2(k)$, modulo m. Thus, unlike the case of linear or quadratic probing, the probe sequence here depends in two ways upon the key k, since the initial probe position, the offset, or both, may vary. Figure 11.5 gives an example of insertion by double hashing.

The value $h_2(k)$ must be relatively prime to the hash-table size m for the entire hash table to be searched. (See Exercise 11.4-4.) A convenient way to ensure this condition is to let m be a power of 2 and to design h_2 so that it always produces an odd number. Another way is to let m be prime and to design h_2 so that it always returns a positive integer less than m. For example, we could choose m prime and let

$$h_1(k) = k \mod m,$$

$$h_2(k) = 1 + (k \mod m'),$$

where m' is chosen to be slightly less than m (say, m-1). For example, if k=123456, m=701, and m'=700, we have $h_1(k)=80$ and $h_2(k)=257$, so that we first probe position 80, and then we examine every 257th slot (modulo m) until we find the key or have examined every slot.

When m is prime or a power of 2, double hashing improves over linear or quadratic probing in that $\Theta(m^2)$ probe sequences are used, rather than $\Theta(m)$, since each possible $(h_1(k), h_2(k))$ pair yields a distinct probe sequence. As a result, for

such values of m, the performance of double hashing appears to be very close to the performance of the "ideal" scheme of uniform hashing.

Although values of m other than primes or powers of 2 could in principle be used with double hashing, in practice it becomes more difficult to efficiently generate $h_2(k)$ in a way that ensures that it is relatively prime to m, in part because the relative density $\phi(m)/m$ of such numbers may be small (see equation (31.24)).

Analysis of open-address hashing

As in our analysis of chaining, we express our analysis of open addressing in terms of the load factor $\alpha = n/m$ of the hash table. Of course, with open addressing, at most one element occupies each slot, and thus $n \le m$, which implies $\alpha \le 1$.

We assume that we are using uniform hashing. In this idealized scheme, the probe sequence $\langle h(k,0), h(k,1), \ldots, h(k,m-1) \rangle$ used to insert or search for each key k is equally likely to be any permutation of $\langle 0,1,\ldots,m-1 \rangle$. Of course, a given key has a unique fixed probe sequence associated with it; what we mean here is that, considering the probability distribution on the space of keys and the operation of the hash function on the keys, each possible probe sequence is equally likely.

We now analyze the expected number of probes for hashing with open addressing under the assumption of uniform hashing, beginning with an analysis of the number of probes made in an unsuccessful search.

Theorem 11.6

Given an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$, assuming uniform hashing.

Proof In an unsuccessful search, every probe but the last accesses an occupied slot that does not contain the desired key, and the last slot probed is empty. Let us define the random variable X to be the number of probes made in an unsuccessful search, and let us also define the event A_i , for $i=1,2,\ldots$, to be the event that an ith probe occurs and it is to an occupied slot. Then the event $\{X \ge i\}$ is the intersection of events $A_1 \cap A_2 \cap \cdots \cap A_{i-1}$. We will bound $\Pr\{X \ge i\}$ by bounding $\Pr\{A_1 \cap A_2 \cap \cdots \cap A_{i-1}\}$. By Exercise C.2-5,

$$\Pr\{A_1 \cap A_2 \cap \dots \cap A_{i-1}\} = \Pr\{A_1\} \cdot \Pr\{A_2 \mid A_1\} \cdot \Pr\{A_3 \mid A_1 \cap A_2\} \cdots$$

$$\Pr\{A_{i-1} \mid A_1 \cap A_2 \cap \dots \cap A_{i-2}\}.$$

Since there are n elements and m slots, $\Pr\{A_1\} = n/m$. For j > 1, the probability that there is a jth probe and it is to an occupied slot, given that the first j-1 probes were to occupied slots, is (n-j+1)/(m-j+1). This probability follows

12 Binary Search Trees

The search tree data structure supports many dynamic-set operations, including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and DELETE. Thus, we can use a search tree both as a dictionary and as a priority queue.

Basic operations on a binary search tree take time proportional to the height of the tree. For a complete binary tree with n nodes, such operations run in $\Theta(\lg n)$ worst-case time. If the tree is a linear chain of n nodes, however, the same operations take $\Theta(n)$ worst-case time. We shall see in Section 12.4 that the expected height of a randomly built binary search tree is $O(\lg n)$, so that basic dynamic-set operations on such a tree take $\Theta(\lg n)$ time on average.

In practice, we can't always guarantee that binary search trees are built randomly, but we can design variations of binary search trees with good guaranteed worst-case performance on basic operations. Chapter 13 presents one such variation, red-black trees, which have height $O(\lg n)$. Chapter 18 introduces B-trees, which are particularly good for maintaining databases on secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sections show how to walk a binary search tree to print its values in sorted order, how to search for a value in a binary search tree, how to find the minimum or maximum element, how to find the predecessor or successor of an element, and how to insert into or delete from a binary search tree. The basic mathematical properties of trees appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown in Figure 12.1. We can represent such a tree by a linked data structure in which each node is an object. In addition to a *key* and satellite data, each node contains attributes *left*, *right*, and *p* that point to the nodes corresponding to its left child,

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x. key, and the keys in the right subtree of x are at least x. key. Different binary search trees can represent the same set of values. The worst-case running time for most search-tree operations is proportional to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary search tree with height 4 that contains the same keys.

its right child, and its parent, respectively. If a child or the parent is missing, the appropriate attribute contains the value NIL. The root node is the only node in the tree whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the *binary-search-tree property*:

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $y.key \le x.key$. If y is a node in the right subtree of x, then $y.key \ge x.key$.

Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller than 6. The same property holds for every node in the tree. For example, the key 5 in the root's left child is no smaller than the key 2 in that node's left subtree and no larger than the key 5 in the right subtree.

The binary-search-tree property allows us to print out all the keys in a binary search tree in sorted order by a simple recursive algorithm, called an *inorder tree walk*. This algorithm is so named because it prints the key of the root of a subtree between printing the values in its left subtree and printing those in its right subtree. (Similarly, a *preorder tree walk* prints the root before the values in either subtree, and a *postorder tree walk* prints the root after the values in its subtrees.) To use the following procedure to print all the elements in a binary search tree T, we call INORDER-TREE-WALK (T.root).

INORDER-TREE-WALK (x)

- 1 if $x \neq NIL$
- 2 INORDER-TREE-WALK (x. left)
- 3 print x.key
- 4 INORDER-TREE-WALK (x.right)

As an example, the inorder tree walk prints the keys in each of the two binary search trees from Figure 12.1 in the order 2, 5, 5, 6, 7, 8. The correctness of the algorithm follows by induction directly from the binary-search-tree property.

It takes $\Theta(n)$ time to walk an n-node binary search tree, since after the initial call, the procedure calls itself recursively exactly twice for each node in the tree—once for its left child and once for its right child. The following theorem gives a formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1

If x is the root of an n-node subtree, then the call INORDER-TREE-WALK(x) takes $\Theta(n)$ time.

Proof Let T(n) denote the time taken by INORDER-TREE-WALK when it is called on the root of an n-node subtree. Since INORDER-TREE-WALK visits all n nodes of the subtree, we have $T(n) = \Omega(n)$. It remains to show that T(n) = O(n).

Since INORDER-TREE-WALK takes a small, constant amount of time on an empty subtree (for the test $x \neq \text{NIL}$), we have T(0) = c for some constant c > 0.

For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose left subtree has k nodes and whose right subtree has n - k - 1 nodes. The time to perform INORDER-TREE-WALK(x) is bounded by $T(n) \le T(k) + T(n-k-1) + d$ for some constant d > 0 that reflects an upper bound on the time to execute the body of INORDER-TREE-WALK(x), exclusive of the time spent in recursive calls.

We use the substitution method to show that T(n) = O(n) by proving that $T(n) \le (c+d)n + c$. For n = 0, we have $(c+d) \cdot 0 + c = c = T(0)$. For n > 0, we have

$$T(n) \leq T(k) + T(n-k-1) + d$$

$$= ((c+d)k+c) + ((c+d)(n-k-1)+c) + d$$

$$= (c+d)n + c - (c+d) + c + d$$

$$= (c+d)n + c,$$

which completes the proof.

Exercises

12.1-1

For the set of {1, 4, 5, 10, 16, 17, 21} of keys, draw binary search trees of heights 2, 3, 4, 5, and 6.

12.1-2

What is the difference between the binary-search-tree property and the min-heap property (see page 153)? Can the min-heap property be used to print out the keys of an n-node tree in sorted order in O(n) time? Show how, or explain why not.

12.1-3

Give a nonrecursive algorithm that performs an inorder tree walk. (*Hint:* An easy solution uses a stack as an auxiliary data structure. A more complicated, but elegant, solution uses no stack but assumes that we can test two pointers for equality.)

12.1-4

Give recursive algorithms that perform preorder and postorder tree walks in $\Theta(n)$ time on a tree of n nodes.

12.1-5

Argue that since sorting n elements takes $\Omega(n \lg n)$ time in the worst case in the comparison model, any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(n \lg n)$ time in the worst case.

12.2 Querying a binary search tree

We often need to search for a key stored in a binary search tree. Besides the SEARCH operation, binary search trees can support such queries as MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR. In this section, we shall examine these operations and show how to support each one in time O(h) on any binary search tree of height h.

Searching

We use the following procedure to search for a node with a given key in a binary search tree. Given a pointer to the root of the tree and a key k, TREE-SEARCH returns a pointer to a node with key k if one exists; otherwise, it returns NIL.

Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the path $15 \rightarrow 6 \rightarrow 7 \rightarrow 13$ from the root. The minimum key in the tree is 2, which is found by following *left* pointers from the root. The maximum key 20 is found by following *right* pointers from the root. The successor of the node with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

```
TREE-SEARCH(x, k)

1 if x == NIL or k == x.key

2 return x

3 if k < x.key

4 return TREE-SEARCH(x.left, k)

5 else return TREE-SEARCH(x.right, k)
```

The procedure begins its search at the root and traces a simple path downward in the tree, as shown in Figure 12.2. For each node x it encounters, it compares the key k with x.key. If the two keys are equal, the search terminates. If k is smaller than x.key, the search continues in the left subtree of x, since the binary-search-tree property implies that k could not be stored in the right subtree. Symmetrically, if k is larger than x.key, the search continues in the right subtree. The nodes encountered during the recursion form a simple path downward from the root of the tree, and thus the running time of TREE-SEARCH is O(h), where h is the height of the tree.

We can rewrite this procedure in an iterative fashion by "unrolling" the recursion into a **while** loop. On most computers, the iterative version is more efficient.

```
ITERATIVE-TREE-SEARCH (x, k)

1 while x \neq \text{NIL} and k \neq x. key

2 if k < x. key

3 x = x. left

4 else x = x. right

5 return x
```

Minimum and maximum

We can always find an element in a binary search tree whose key is a minimum by following *left* child pointers from the root until we encounter a NIL, as shown in Figure 12.2. The following procedure returns a pointer to the minimum element in the subtree rooted at a given node x, which we assume to be non-NIL:

```
TREE-MINIMUM(x)

1 while x.left \neq NIL

2 x = x.left

3 return x
```

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a node x has no left subtree, then since every key in the right subtree of x is at least as large as x. key, the minimum key in the subtree rooted at x is x. key. If node x has a left subtree, then since no key in the right subtree is smaller than x. key and every key in the left subtree is not larger than x. key, the minimum key in the subtree rooted at x resides in the subtree rooted at x. left.

The pseudocode for TREE-MAXIMUM is symmetric:

```
TREE-MAXIMUM(x)

1 while x.right \neq NIL

2 x = x.right

3 return x
```

Both of these procedures run in O(h) time on a tree of height h since, as in TREE-SEARCH, the sequence of nodes encountered forms a simple path downward from the root.

Successor and predecessor

Given a node in a binary search tree, sometimes we need to find its successor in the sorted order determined by an inorder tree walk. If all keys are distinct, the successor of a node x is the node with the smallest key greater than x. key. The structure of a binary search tree allows us to determine the successor of a node without ever comparing keys. The following procedure returns the successor of a node x in a binary search tree if it exists, and NIL if x has the largest key in the tree:

```
TREE-SUCCESSOR (x)

1 if x.right \neq NIL

2 return TREE-MINIMUM (x.right)

3 y = x.p

4 while y \neq NIL and x == y.right

5 x = y

6 y = y.p

7 return y
```

We break the code for TREE-SUCCESSOR into two cases. If the right subtree of node x is nonempty, then the successor of x is just the leftmost node in x's right subtree, which we find in line 2 by calling TREE-MINIMUM(x.right). For example, the successor of the node with key 15 in Figure 12.2 is the node with key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of node x is empty and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x. In Figure 12.2, the successor of the node with key 13 is the node with key 15. To find y, we simply go up the tree from x until we encounter a node that is the left child of its parent; lines 3–7 of TREE-SUCCESSOR handle this case.

The running time of TREE-SUCCESSOR on a tree of height h is O(h), since we either follow a simple path up the tree or follow a simple path down the tree. The procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also runs in time O(h).

Even if keys are not distinct, we define the successor and predecessor of any node x as the node returned by calls made to TREE-SUCCESSOR(x) and TREE-PREDECESSOR(x), respectively.

In summary, we have proved the following theorem.

Theorem 12.2

We can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR so that each one runs in O(h) time on a binary search tree of height h.

Exercises

12.2-1

Suppose that we have numbers between 1 and 1000 in a binary search tree, and we want to search for the number 363. Which of the following sequences could *not* be the sequence of nodes examined?

- *a.* 2, 252, 401, 398, 330, 344, 397, 363.
- **b.** 924, 220, 911, 244, 898, 258, 362, 363.
- *c.* 925, 202, 911, 240, 912, 245, 363.
- d. 2, 399, 387, 219, 266, 382, 381, 278, 363.
- e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2

Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM.

12.2-3

Write the TREE-PREDECESSOR procedure.

12.2-4

Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Professor Bunyan claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a smallest possible counterexample to the professor's claim.

12.2-5

Show that if a node in a binary search tree has two children, then its successor has no left child and its predecessor has no right child.

12.2-6

Consider a binary search tree T whose keys are distinct. Show that if the right subtree of a node x in T is empty and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x. (Recall that every node is its own ancestor.)

12.2-7

An alternative method of performing an inorder tree walk of an n-node binary search tree finds the minimum element in the tree by calling TREE-MINIMUM and then making n-1 calls to TREE-SUCCESSOR. Prove that this algorithm runs in $\Theta(n)$ time.

12.2-8

Prove that no matter what node we start at in a height-h binary search tree, k successive calls to TREE-SUCCESSOR take O(k+h) time.

12.2-9

Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y be its parent. Show that y.key is either the smallest key in T larger than x.key or the largest key in T smaller than x.key.

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a binary search tree to change. The data structure must be modified to reflect this change, but in such a way that the binary-search-tree property continues to hold. As we shall see, modifying the tree to insert a new element is relatively straightforward, but handling deletion is somewhat more intricate.

Insertion

To insert a new value ν into a binary search tree T, we use the procedure TREE-INSERT. The procedure takes a node z for which $z.key = \nu$, z.left = NIL, and z.right = NIL. It modifies T and some of the attributes of z in such a way that it inserts z into an appropriate position in the tree.

```
TREE-INSERT (T, z)
    y = NIL
    x = T.root
 3
    while x \neq NIL
 4
         y = x
 5
        if z. key < x. key
 6
             x = x.left
 7
         else x = x.right
 8
    z..p = v
 9
    if v == NIL
10
         T.root = z
                          // tree T was empty
    elseif z. key < v. key
11
12
         v.left = z
13
    else y.right = z
```


Figure 12.3 Inserting an item with key 13 into a binary search tree. Lightly shaded nodes indicate the simple path from the root down to the position where the item is inserted. The dashed line indicates the link in the tree that is added to insert the item.

Figure 12.3 shows how TREE-INSERT works. Just like the procedures TREE-SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of the tree and the pointer x traces a simple path downward looking for a NIL to replace with the input item z. The procedure maintains the *trailing pointer* y as the parent of x. After initialization, the **while** loop in lines 3–7 causes these two pointers to move down the tree, going left or right depending on the comparison of z. key with x. key, until x becomes NIL. This NIL occupies the position where we wish to place the input item z. We need the trailing pointer y, because by the time we find the NIL where z belongs, the search has proceeded one step beyond the node that needs to be changed. Lines 8–13 set the pointers that cause z to be inserted.

Like the other primitive operations on search trees, the procedure TREE-INSERT runs in O(h) time on a tree of height h.

Deletion

The overall strategy for deleting a node z from a binary search tree T has three basic cases but, as we shall see, one of the cases is a bit tricky.

- If z has no children, then we simply remove it by modifying its parent to replace z with NIL as its child.
- If z has just one child, then we elevate that child to take z's position in the tree by modifying z's parent to replace z by z's child.
- If z has two children, then we find z's successor y—which must be in z's right subtree—and have y take z's position in the tree. The rest of z's original right subtree becomes y's new right subtree, and z's left subtree becomes y's new left subtree. This case is the tricky one because, as we shall see, it matters whether y is z's right child.

The procedure for deleting a given node z from a binary search tree T takes as arguments pointers to T and z. It organizes its cases a bit differently from the three cases outlined previously by considering the four cases shown in Figure 12.4.

- If z has no left child (part (a) of the figure), then we replace z by its right child, which may or may not be NIL. When z's right child is NIL, this case deals with the situation in which z has no children. When z's right child is non-NIL, this case handles the situation in which z has just one child, which is its right child.
- If z has just one child, which is its left child (part (b) of the figure), then we replace z by its left child.
- Otherwise, z has both a left and a right child. We find z's successor y, which lies in z's right subtree and has no left child (see Exercise 12.2-5). We want to splice y out of its current location and have it replace z in the tree.
 - If y is z's right child (part (c)), then we replace z by y, leaving y's right child alone.
 - Otherwise, y lies within z's right subtree but is not z's right child (part (d)). In this case, we first replace y by its own right child, and then we replace z by y.

In order to move subtrees around within the binary search tree, we define a subroutine TRANSPLANT, which replaces one subtree as a child of its parent with another subtree. When TRANSPLANT replaces the subtree rooted at node u with the subtree rooted at node v, node u's parent becomes node v's parent, and u's parent ends up having v as its appropriate child.

```
TRANSPLANT (T, u, v)

1 if u.p == NIL

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v \neq NIL

7 v.p = u.p
```

Lines 1–2 handle the case in which u is the root of T. Otherwise, u is either a left child or a right child of its parent. Lines 3–4 take care of updating u.p.left if u is a left child, and line 5 updates u.p.right if u is a right child. We allow v to be NIL, and lines 6–7 update v.p if v is non-NIL. Note that TRANSPLANT does not attempt to update v.left and v.right; doing so, or not doing so, is the responsibility of TRANSPLANT's caller.

Figure 12.4 Deleting a node z from a binary search tree. Node z may be the root, a left child of node q, or a right child of q. (a) Node z has no left child. We replace z by its right child r, which may or may not be NIL. (b) Node z has a left child l but no right child. We replace z by l. (c) Node z has two children; its left child is node l, its right child is its successor y, and y's right child is node x. We replace z by y, updating y's left child to become l, but leaving x as y's right child. (d) Node z has two children (left child l and right child r), and its successor $y \neq r$ lies within the subtree rooted at r. We replace y by its own right child x, and we set y to be x's parent. Then, we set y to be y's child and the parent of y.

With the TRANSPLANT procedure in hand, here is the procedure that deletes node z, from binary search tree T:

```
TREE-DELETE (T, z)
    if z. left == NIL
 2
         TRANSPLANT(T, z, z. right)
 3
    elseif z. right == NIL
 4
         TRANSPLANT(T, z, z, left)
 5
    else y = \text{TREE-MINIMUM}(z.right)
 6
         if y.p \neq z
 7
             TRANSPLANT(T, y, y.right)
 8
             v.right = z.right
 9
             y.right.p = y
10
         TRANSPLANT(T, z, y)
         v.left = z..left
11
12
         y.left.p = y
```

The TREE-DELETE procedure executes the four cases as follows. Lines 1–2 handle the case in which z has a left child but no right child. Lines 5–12 deal with the remaining two cases, in which z has two children. Line 5 finds node y, which is the successor of z. Because z has a nonempty right subtree, its successor must be the node in that subtree with the smallest key; hence the call to TREE-MINIMUM(z.right). As we noted before, y has no left child. We want to splice y out of its current location, and it should replace z in the tree. If y is z's right child, then lines 10–12 replace z as a child of its parent by y and replace y as a child of its parent by y's right child and turn z's right child into y's right child, and then lines 10–12 replace z as a child of its parent by y and replace y's left child.

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs in O(h) time on a tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3

We can implement the dynamic-set operations INSERT and DELETE so that each one runs in O(h) time on a binary search tree of height h.

Exercises

12.3-1

Give a recursive version of the TREE-INSERT procedure.

12.3-2

Suppose that we construct a binary search tree by repeatedly inserting distinct values into the tree. Argue that the number of nodes examined in searching for a value in the tree is one plus the number of nodes examined when the value was first inserted into the tree.

12.3-3

We can sort a given set of n numbers by first building a binary search tree containing these numbers (using TREE-INSERT repeatedly to insert the numbers one by one) and then printing the numbers by an inorder tree walk. What are the worst-case and best-case running times for this sorting algorithm?

12.3-4

Is the operation of deletion "commutative" in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.

12.3-5

Suppose that instead of each node x keeping the attribute x.p, pointing to x's parent, it keeps x.succ, pointing to x's successor. Give pseudocode for SEARCH, INSERT, and DELETE on a binary search tree T using this representation. These procedures should operate in time O(h), where h is the height of the tree T. (*Hint:* You may wish to implement a subroutine that returns the parent of a node.)

12.3-6

When node z in TREE-DELETE has two children, we could choose node y as its predecessor rather than its successor. What other changes to TREE-DELETE would be necessary if we did so? Some have argued that a fair strategy, giving equal priority to predecessor and successor, yields better empirical performance. How might TREE-DELETE be changed to implement such a fair strategy?

★ 12.4 Randomly built binary search trees

We have shown that each of the basic operations on a binary search tree runs in O(h) time, where h is the height of the tree. The height of a binary search

13 Red-Black Trees

Chapter 12 showed that a binary search tree of height h can support any of the basic dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR, MINIMUM, MAXIMUM, INSERT, and DELETE—in O(h) time. Thus, the set operations are fast if the height of the search tree is small. If its height is large, however, the set operations may run no faster than with a linked list. Red-black trees are one of many search-tree schemes that are "balanced" in order to guarantee that basic dynamic-set operations take $O(\lg n)$ time in the worst case.

13.1 Properties of red-black trees

A *red-black tree* is a binary search tree with one extra bit of storage per node: its *color*, which can be either RED or BLACK. By constraining the node colors on any simple path from the root to a leaf, red-black trees ensure that no such path is more than twice as long as any other, so that the tree is approximately *balanced*.

Each node of the tree now contains the attributes *color*, *key*, *left*, *right*, and *p*. If a child or the parent of a node does not exist, the corresponding pointer attribute of the node contains the value NIL. We shall regard these NILs as being pointers to leaves (external nodes) of the binary search tree and the normal, key-bearing nodes as being internal nodes of the tree.

A red-black tree is a binary tree that satisfies the following *red-black properties*:

- 1. Every node is either red or black.
- 2. The root is black.
- 3. Every leaf (NIL) is black.
- 4. If a node is red, then both its children are black.
- 5. For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.

Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in red-black tree code, we use a single sentinel to represent NIL (see page 238). For a red-black tree T, the sentinel T.nil is an object with the same attributes as an ordinary node in the tree. Its color attribute is BLACK, and its other attributes—p, left, right, and key—can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL are replaced by pointers to the sentinel T.nil.

We use the sentinel so that we can treat a NIL child of a node x as an ordinary node whose parent is x. Although we instead could add a distinct sentinel node for each NIL in the tree, so that the parent of each NIL is well defined, that approach would waste space. Instead, we use the one sentinel T.nil to represent all the NILs—all leaves and the root's parent. The values of the attributes p, left, right, and key of the sentinel are immaterial, although we may set them during the course of a procedure for our convenience.

We generally confine our interest to the internal nodes of a red-black tree, since they hold the key values. In the remainder of this chapter, we omit the leaves when we draw red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any simple path from, but not including, a node x down to a leaf the **black-height** of the node, denoted bh(x). By property 5, the notion of black-height is well defined, since all descending simple paths from the node have the same number of black nodes. We define the black-height of a red-black tree to be the black-height of its root.

The following lemma shows why red-black trees make good search trees.

Lemma 13.1

A red-black tree with n internal nodes has height at most $2 \lg(n + 1)$.

Proof We start by showing that the subtree rooted at any node x contains at least $2^{bh(x)} - 1$ internal nodes. We prove this claim by induction on the height of x. If the height of x is 0, then x must be a leaf (T.nil), and the subtree rooted at x indeed contains at least $2^{bh(x)} - 1 = 2^0 - 1 = 0$ internal nodes. For the inductive step, consider a node x that has positive height and is an internal node with two children. Each child has a black-height of either bh(x) or bh(x) - 1, depending on whether its color is red or black, respectively. Since the height of a child of x is less than the height of x itself, we can apply the inductive hypothesis to conclude that each child has at least $2^{bh(x)-1} - 1$ internal nodes. Thus, the subtree rooted at x contains at least $(2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1 = 2^{bh(x)} - 1$ internal nodes, which proves the claim.

To complete the proof of the lemma, let h be the height of the tree. According to property 4, at least half the nodes on any simple path from the root to a leaf, not

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a red-black tree is either red or black, the children of a red node are both black, and every simple path from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown as a NIL, is black. Each non-NIL node is marked with its black-height; NILs have black-height 0. (b) The same red-black tree but with each NIL replaced by the single sentinel *T.nil*, which is always black, and with black-heights omitted. The root's parent is also the sentinel. (c) The same red-black tree but with leaves and the root's parent omitted entirely. We shall use this drawing style in the remainder of this chapter.

including the root, must be black. Consequently, the black-height of the root must be at least h/2; thus,

$$n > 2^{h/2} - 1$$
.

Moving the 1 to the left-hand side and taking logarithms on both sides yields $\lg(n+1) \ge h/2$, or $h \le 2\lg(n+1)$.

As an immediate consequence of this lemma, we can implement the dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in $O(\lg n)$ time on red-black trees, since each can run in O(h) time on a binary search tree of height h (as shown in Chapter 12) and any red-black tree on n nodes is a binary search tree with height $O(\lg n)$. (Of course, references to NIL in the algorithms of Chapter 12 would have to be replaced by T.nil.) Although the algorithms TREE-INSERT and TREE-DELETE from Chapter 12 run in $O(\lg n)$ time when given a red-black tree as input, they do not directly support the dynamic-set operations INSERT and DELETE, since they do not guarantee that the modified binary search tree will be a red-black tree. We shall see in Sections 13.3 and 13.4, however, how to support these two operations in $O(\lg n)$ time.

Exercises

13.1-1

In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on the keys $\{1, 2, ..., 15\}$. Add the NIL leaves and color the nodes in three different ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.

13.1-2

Draw the red-black tree that results after TREE-INSERT is called on the tree in Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a red-black tree? What if it is colored black?

13.1-3

Let us define a *relaxed red-black tree* as a binary search tree that satisfies red-black properties 1, 3, 4, and 5. In other words, the root may be either red or black. Consider a relaxed red-black tree T whose root is red. If we color the root of T black but make no other changes to T, is the resulting tree a red-black tree?

13.1-4

Suppose that we "absorb" every red node in a red-black tree into its black parent, so that the children of the red node become children of the black parent. (Ignore what happens to the keys.) What are the possible degrees of a black node after all

its red children are absorbed? What can you say about the depths of the leaves of the resulting tree?

13.1-5

Show that the longest simple path from a node x in a red-black tree to a descendant leaf has length at most twice that of the shortest simple path from node x to a descendant leaf.

13.1-6

What is the largest possible number of internal nodes in a red-black tree with black-height k? What is the smallest possible number?

13.1-7

Describe a red-black tree on n keys that realizes the largest possible ratio of red internal nodes to black internal nodes. What is this ratio? What tree has the smallest possible ratio, and what is the ratio?

13.2 Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a redblack tree with n keys, take $O(\lg n)$ time. Because they modify the tree, the result may violate the red-black properties enumerated in Section 13.1. To restore these properties, we must change the colors of some of the nodes in the tree and also change the pointer structure.

We change the pointer structure through **rotation**, which is a local operation in a search tree that preserves the binary-search-tree property. Figure 13.2 shows the two kinds of rotations: left rotations and right rotations. When we do a left rotation on a node x, we assume that its right child y is not T.nil; x may be any node in the tree whose right child is not T.nil. The left rotation "pivots" around the link from x to y. It makes y the new root of the subtree, with x as y's left child and y's left child as x's right child.

The pseudocode for LEFT-ROTATE assumes that $x.right \neq T.nil$ and that the root's parent is T.nil.

13.2 Rotations 313

Figure 13.2 The rotation operations on a binary search tree. The operation LEFT-ROTATE(T, x) transforms the configuration of the two nodes on the right into the configuration on the left by changing a constant number of pointers. The inverse operation RIGHT-ROTATE(T, y) transforms the configuration on the left into the configuration on the right. The letters α , β , and γ represent arbitrary subtrees. A rotation operation preserves the binary-search-tree property: the keys in α precede x.key, which precedes the keys in β , which precede y.key, which precedes the keys in γ .

```
LEFT-ROTATE (T, x)
 1 y = x.right
                               /\!\!/ set v
 2 x.right = y.left
                               # turn y's left subtree into x's right subtree
    if y.left \neq T.nil
 4
         y.left.p = x
    y.p = x.p
                               /\!\!/ link x's parent to y
 6
   if x.p == T.nil
 7
         T.root = v
 8
    elseif x == x.p.left
 9
         x.p.left = y
10 else x.p.right = y
                                /\!\!/ put x on y's left
    y.left = x
11
12 x.p = y
```

Figure 13.3 shows an example of how LEFT-ROTATE modifies a binary search tree. The code for RIGHT-ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-ROTATE run in O(1) time. Only pointers are changed by a rotation; all other attributes in a node remain the same.

Exercises

13.2-1

Write pseudocode for RIGHT-ROTATE.

13.2-2

Argue that in every n-node binary search tree, there are exactly n-1 possible rotations.

Figure 13.3 An example of how the procedure LEFT-ROTATE(T, x) modifies a binary search tree. Inorder tree walks of the input tree and the modified tree produce the same listing of key values.

13.2-3

Let a, b, and c be arbitrary nodes in subtrees a, b, and b, respectively, in the left tree of Figure 13.2. How do the depths of a, b, and b change when a left rotation is performed on node b in the figure?

13.2-4

Show that any arbitrary n-node binary search tree can be transformed into any other arbitrary n-node binary search tree using O(n) rotations. (*Hint:* First show that at most n-1 right rotations suffice to transform the tree into a right-going chain.)

13.2-5 ★

We say that a binary search tree T_1 can be **right-converted** to binary search tree T_2 if it is possible to obtain T_2 from T_1 via a series of calls to RIGHT-ROTATE. Give an example of two trees T_1 and T_2 such that T_1 cannot be right-converted to T_2 . Then, show that if a tree T_1 can be right-converted to T_2 , it can be right-converted using $O(n^2)$ calls to RIGHT-ROTATE.

13.3 Insertion 315

13.3 Insertion

We can insert a node into an n-node red-black tree in $O(\lg n)$ time. To do so, we use a slightly modified version of the TREE-INSERT procedure (Section 12.3) to insert node z into the tree T as if it were an ordinary binary search tree, and then we color z red. (Exercise 13.3-1 asks you to explain why we choose to make node z red rather than black.) To guarantee that the red-black properties are preserved, we then call an auxiliary procedure RB-INSERT-FIXUP to recolor nodes and perform rotations. The call RB-INSERT(T, T) inserts node T, whose T0 is assumed to have already been filled in, into the red-black tree T1.

```
RB-INSERT(T, z)
   y = T.nil
    x = T.root
3
    while x \neq T.nil
4
        y = x
5
        if z.key < x.key
6
             x = x.left
7
        else x = x.right
    z..p = v
9
    if v == T.nil
10
        T.root = z
    elseif z. key < y. key
11
12
        v.left = z
13
    else y.right = z
14 z.left = T.nil
    z.right = T.nil
    z.color = RED
    RB-INSERT-FIXUP(T, z)
```

The procedures TREE-INSERT and RB-INSERT differ in four ways. First, all instances of NIL in TREE-INSERT are replaced by T.nil. Second, we set z.left and z.right to T.nil in lines 14–15 of RB-INSERT, in order to maintain the proper tree structure. Third, we color z red in line 16. Fourth, because coloring z red may cause a violation of one of the red-black properties, we call RB-INSERT-FIXUP(T,z) in line 17 of RB-INSERT to restore the red-black properties.

T.root.color = BLACK

```
RB-INSERT-FIXUP(T, z)
    while z..p.color == RED
 2
         if z.p == z.p.p.left
 3
             y = z.p.p.right
 4
             if v.color == RED
 5
                                                                       // case 1
                  z.p.color = BLACK
                                                                        // case 1
 6
                  v.color = BLACK
 7
                  z..p.p.color = RED
                                                                        // case 1
 8
                  z = z \cdot p \cdot p
                                                                        // case 1
 9
             else if z == z.p.right
10
                                                                       // case 2
                      z = z.p
11
                      LEFT-ROTATE (T, z)
                                                                        // case 2
12
                  z.p.color = BLACK
                                                                        // case 3
                                                                        // case 3
13
                  z.p.p.color = RED
14
                  RIGHT-ROTATE(T, z, p, p)
                                                                        // case 3
15
         else (same as then clause
```

To understand how RB-INSERT-FIXUP works, we shall break our examination of the code into three major steps. First, we shall determine what violations of the red-black properties are introduced in RB-INSERT when node *z* is inserted and colored red. Second, we shall examine the overall goal of the **while** loop in lines 1–15. Finally, we shall explore each of the three cases¹ within the **while** loop's body and see how they accomplish the goal. Figure 13.4 shows how RB-INSERT-FIXUP operates on a sample red-black tree.

with "right" and "left" exchanged)

Which of the red-black properties might be violated upon the call to RB-INSERT-FIXUP? Property 1 certainly continues to hold, as does property 3, since both children of the newly inserted red node are the sentinel T.nil. Property 5, which says that the number of black nodes is the same on every simple path from a given node, is satisfied as well, because node z replaces the (black) sentinel, and node z is red with sentinel children. Thus, the only properties that might be violated are property 2, which requires the root to be black, and property 4, which says that a red node cannot have a red child. Both possible violations are due to z being colored red. Property 2 is violated if z is the root, and property 4 is violated if z's parent is red. Figure 13.4(a) shows a violation of property 4 after the node z has been inserted.

¹Case 2 falls through into case 3, and so these two cases are not mutually exclusive.

13.3 Insertion 317

Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node z after insertion. Because both z and its parent z.p are red, a violation of property 4 occurs. Since z's uncle y is red, case 1 in the code applies. We recolor nodes and move the pointer z up the tree, resulting in the tree shown in (b). Once again, z and its parent are both red, but z's uncle y is black. Since z is the right child of z.p, case 2 applies. We perform a left rotation, and the tree that results is shown in (c). Now, z is the left child of its parent, and case 3 applies. Recoloring and right rotation yield the tree in (d), which is a legal red-black tree.

The **while** loop in lines 1–15 maintains the following three-part invariant at the start of each iteration of the loop:

- a. Node z is red.
- b. If z.p is the root, then z.p is black.
- c. If the tree violates any of the red-black properties, then it violates at most one of them, and the violation is of either property 2 or property 4. If the tree violates property 2, it is because z is the root and is red. If the tree violates property 4, it is because both z and z.p are red.

Part (c), which deals with violations of red-black properties, is more central to showing that RB-INSERT-FIXUP restores the red-black properties than parts (a) and (b), which we use along the way to understand situations in the code. Because we'll be focusing on node z and nodes near it in the tree, it helps to know from part (a) that z is red. We shall use part (b) to show that the node z.p.p exists when we reference it in lines 2, 3, 7, 8, 13, and 14.

Recall that we need to show that a loop invariant is true prior to the first iteration of the loop, that each iteration maintains the loop invariant, and that the loop invariant gives us a useful property at loop termination.

We start with the initialization and termination arguments. Then, as we examine how the body of the loop works in more detail, we shall argue that the loop maintains the invariant upon each iteration. Along the way, we shall also demonstrate that each iteration of the loop has two possible outcomes: either the pointer z moves up the tree, or we perform some rotations and then the loop terminates.

Initialization: Prior to the first iteration of the loop, we started with a red-black tree with no violations, and we added a red node z. We show that each part of the invariant holds at the time RB-INSERT-FIXUP is called:

- a. When RB-INSERT-FIXUP is called, z is the red node that was added.
- b. If *z.p* is the root, then *z.p* started out black and did not change prior to the call of RB-INSERT-FIXUP.
- c. We have already seen that properties 1, 3, and 5 hold when RB-INSERT-FIXUP is called.

If the tree violates property 2, then the red root must be the newly added node z, which is the only internal node in the tree. Because the parent and both children of z are the sentinel, which is black, the tree does not also violate property 4. Thus, this violation of property 2 is the only violation of red-black properties in the entire tree.

If the tree violates property 4, then, because the children of node z are black sentinels and the tree had no other violations prior to z being added, the

13.3 Insertion 319

violation must be because both z and z.p are red. Moreover, the tree violates no other red-black properties.

Termination: When the loop terminates, it does so because *z.p* is black. (If *z* is the root, then *z.p* is the sentinel *T.nil*, which is black.) Thus, the tree does not violate property 4 at loop termination. By the loop invariant, the only property that might fail to hold is property 2. Line 16 restores this property, too, so that when RB-INSERT-FIXUP terminates, all the red-black properties hold.

Maintenance: We actually need to consider six cases in the **while** loop, but three of them are symmetric to the other three, depending on whether line 2 determines z's parent z.p to be a left child or a right child of z's grandparent z.p.p. We have given the code only for the situation in which z.p is a left child. The node z.p.p exists, since by part (b) of the loop invariant, if z.p is the root, then z.p is black. Since we enter a loop iteration only if z.p is red, we know that z.p cannot be the root. Hence, z.p.p exists.

We distinguish case 1 from cases 2 and 3 by the color of z's parent's sibling, or "uncle." Line 3 makes y point to z's uncle z.p.p.right, and line 4 tests y's color. If y is red, then we execute case 1. Otherwise, control passes to cases 2 and 3. In all three cases, z's grandparent z.p.p is black, since its parent z.p is red, and property 4 is violated only between z and z.p.

Case 1: z's uncle y is red

Figure 13.5 shows the situation for case 1 (lines 5–8), which occurs when both z.p and y are red. Because z.p.p is black, we can color both z.p and y black, thereby fixing the problem of z and z.p both being red, and we can color z.p.p red, thereby maintaining property 5. We then repeat the **while** loop with z.p.p as the new node z. The pointer z moves up two levels in the tree.

Now, we show that case 1 maintains the loop invariant at the start of the next iteration. We use z to denote node z in the current iteration, and z' = z.p.p to denote the node that will be called node z at the test in line 1 upon the next iteration.

- a. Because this iteration colors z.p.p red, node z' is red at the start of the next iteration.
- b. The node z'.p is z.p.p.p in this iteration, and the color of this node does not change. If this node is the root, it was black prior to this iteration, and it remains black at the start of the next iteration.
- c. We have already argued that case 1 maintains property 5, and it does not introduce a violation of properties 1 or 3.

Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP. Property 4 is violated, since z and its parent z.p are both red. We take the same action whether (a) z is a right child or (b) z is a left child. Each of the subtrees α , β , γ , δ , and ε has a black root, and each has the same black-height. The code for case 1 changes the colors of some nodes, preserving property 5: all downward simple paths from a node to a leaf have the same number of blacks. The **while** loop continues with node z's grandparent z.p.p as the new z. Any violation of property 4 can now occur only between the new z, which is red, and its parent, if it is red as well.

If node z' is the root at the start of the next iteration, then case 1 corrected the lone violation of property 4 in this iteration. Since z' is red and it is the root, property 2 becomes the only one that is violated, and this violation is due to z'.

If node z' is not the root at the start of the next iteration, then case 1 has not created a violation of property 2. Case 1 corrected the lone violation of property 4 that existed at the start of this iteration. It then made z' red and left z'.p alone. If z'.p was black, there is no violation of property 4. If z'.p was red, coloring z' red created one violation of property 4 between z' and z'.p.

Case 2: z's uncle y is black and z is a right child Case 3: z's uncle y is black and z is a left child

In cases 2 and 3, the color of z's uncle y is black. We distinguish the two cases according to whether z is a right or left child of z.p. Lines 10–11 constitute case 2, which is shown in Figure 13.6 together with case 3. In case 2, node z is a right child of its parent. We immediately use a left rotation to transform the situation into case 3 (lines 12–14), in which node z is a left child. Because

15.1-2

Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the *density* of a rod of length i to be p_i/i , that is, its value per inch. The greedy strategy for a rod of length n cuts off a first piece of length i, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n-i.

15.1-3

Consider a modification of the rod-cutting problem in which, in addition to a price p_i for each rod, each cut incurs a fixed cost of c. The revenue associated with a solution is now the sum of the prices of the pieces minus the costs of making the cuts. Give a dynamic-programming algorithm to solve this modified problem.

15.1-4

Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution, too.

15.1-5

The Fibonacci numbers are defined by recurrence (3.22). Give an O(n)-time dynamic-programming algorithm to compute the nth Fibonacci number. Draw the subproblem graph. How many vertices and edges are in the graph?

15.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem of matrix-chain multiplication. We are given a sequence (chain) $\langle A_1, A_2, \ldots, A_n \rangle$ of n matrices to be multiplied, and we wish to compute the product

$$A_1 A_2 \cdots A_n . \tag{15.5}$$

We can evaluate the expression (15.5) using the standard algorithm for multiplying pairs of matrices as a subroutine once we have parenthesized it to resolve all ambiguities in how the matrices are multiplied together. Matrix multiplication is associative, and so all parenthesizations yield the same product. A product of matrices is *fully parenthesized* if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses. For example, if the chain of matrices is $\langle A_1, A_2, A_3, A_4 \rangle$, then we can fully parenthesize the product $A_1A_2A_3A_4$ in five distinct ways:

```
(A_1(A_2(A_3A_4))),

(A_1((A_2A_3)A_4)),

((A_1A_2)(A_3A_4)),

((A_1(A_2A_3))A_4),

(((A_1A_2)A_3)A_4).
```

How we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product. Consider first the cost of multiplying two matrices. The standard algorithm is given by the following pseudocode, which generalizes the SQUARE-MATRIX-MULTIPLY procedure from Section 4.2. The attributes *rows* and *columns* are the numbers of rows and columns in a matrix.

```
MATRIX-MULTIPLY (A, B)
1
   if A. columns \neq B. rows
2
        error "incompatible dimensions"
3
   else let C be a new A.rows \times B.columns matrix
4
        for i = 1 to A. rows
5
             for j = 1 to B. columns
6
                  c_{ii} = 0
7
                  for k = 1 to A. columns
8
                      c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
9
        return C
```

We can multiply two matrices A and B only if they are *compatible*: the number of columns of A must equal the number of rows of B. If A is a $p \times q$ matrix and B is a $q \times r$ matrix, the resulting matrix C is a $p \times r$ matrix. The time to compute C is dominated by the number of scalar multiplications in line 8, which is pqr. In what follows, we shall express costs in terms of the number of scalar multiplications.

To illustrate the different costs incurred by different parenthesizations of a matrix product, consider the problem of a chain $\langle A_1,A_2,A_3\rangle$ of three matrices. Suppose that the dimensions of the matrices are 10×100 , 100×5 , and 5×50 , respectively. If we multiply according to the parenthesization $((A_1A_2)A_3)$, we perform $10\cdot 100\cdot 5=5000$ scalar multiplications to compute the 10×5 matrix product A_1A_2 , plus another $10\cdot 5\cdot 50=2500$ scalar multiplications to multiply this matrix by A_3 , for a total of 7500 scalar multiplications. If instead we multiply according to the parenthesization $(A_1(A_2A_3))$, we perform $100\cdot 5\cdot 50=25,000$ scalar multiplications to compute the 100×50 matrix product A_2A_3 , plus another $10\cdot 100\cdot 50=50,000$ scalar multiplications to multiply A_1 by this matrix, for a total of 75,000 scalar multiplications. Thus, computing the product according to the first parenthesization is 10 times faster.

We state the *matrix-chain multiplication problem* as follows: given a chain $(A_1, A_2, ..., A_n)$ of *n* matrices, where for i = 1, 2, ..., n, matrix A_i has dimension

 $p_{i-1} \times p_i$, fully parenthesize the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications.

Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices. Our goal is only to determine an order for multiplying matrices that has the lowest cost. Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications (such as performing only 7500 scalar multiplications instead of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic programming, let us convince ourselves that exhaustively checking all possible parenthesizations does not yield an efficient algorithm. Denote the number of alternative parenthesizations of a sequence of n matrices by P(n). When n=1, we have just one matrix and therefore only one way to fully parenthesize the matrix product. When $n \geq 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts, and the split between the two subproducts may occur between the kth and (k+1)st matrices for any $k=1,2,\ldots,n-1$. Thus, we obtain the recurrence

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$
 (15.6)

Problem 12-4 asked you to show that the solution to a similar recurrence is the sequence of *Catalan numbers*, which grows as $\Omega(4^n/n^{3/2})$. A simpler exercise (see Exercise 15.2-3) is to show that the solution to the recurrence (15.6) is $\Omega(2^n)$. The number of solutions is thus exponential in n, and the brute-force method of exhaustive search makes for a poor strategy when determining how to optimally parenthesize a matrix chain.

Applying dynamic programming

We shall use the dynamic-programming method to determine how to optimally parenthesize a matrix chain. In so doing, we shall follow the four-step sequence that we stated at the beginning of this chapter:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

We shall go through these steps in order, demonstrating clearly how we apply each step to the problem.

Step 1: The structure of an optimal parenthesization

For our first step in the dynamic-programming paradigm, we find the optimal substructure and then use it to construct an optimal solution to the problem from optimal solutions to subproblems. In the matrix-chain multiplication problem, we can perform this step as follows. For convenience, let us adopt the notation $A_{i...j}$, where $i \leq j$, for the matrix that results from evaluating the product $A_iA_{i+1}\cdots A_j$. Observe that if the problem is nontrivial, i.e., i < j, then to parenthesize the product $A_iA_{i+1}\cdots A_j$, we must split the product between A_k and A_{k+1} for some integer k in the range $i \leq k < j$. That is, for some value of k, we first compute the matrices $A_{i...k}$ and $A_{k+1...j}$ and then multiply them together to produce the final product $A_{i...j}$. The cost of parenthesizing this way is the cost of computing the matrix $A_{i...k}$, plus the cost of computing $A_{k+1...j}$, plus the cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that to optimally parenthesize $A_iA_{i+1}\cdots A_j$, we split the product between A_k and A_{k+1} . Then the way we parenthesize the "prefix" subchain $A_iA_{i+1}\cdots A_k$ within this optimal parenthesization of $A_iA_{i+1}\cdots A_j$ must be an optimal parenthesization of $A_iA_{i+1}\cdots A_k$. Why? If there were a less costly way to parenthesize $A_iA_{i+1}\cdots A_k$, then we could substitute that parenthesization in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$ to produce another way to parenthesize $A_iA_{i+1}\cdots A_j$ whose cost was lower than the optimum: a contradiction. A similar observation holds for how we parenthesize the subchain $A_{k+1}A_{k+2}\cdots A_j$ in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$: it must be an optimal parenthesization of $A_{k+1}A_{k+2}\cdots A_j$.

Now we use our optimal substructure to show that we can construct an optimal solution to the problem from optimal solutions to subproblems. We have seen that any solution to a nontrivial instance of the matrix-chain multiplication problem requires us to split the product, and that any optimal solution contains within it optimal solutions to subproblem instances. Thus, we can build an optimal solution to an instance of the matrix-chain multiplication problem by splitting the problem into two subproblems (optimally parenthesizing $A_i A_{i+1} \cdots A_k$ and $A_{k+1} A_{k+2} \cdots A_j$), finding optimal solutions to subproblem instances, and then combining these optimal subproblem solutions. We must ensure that when we search for the correct place to split the product, we have considered all possible places, so that we are sure of having examined the optimal one.

Step 2: A recursive solution

Next, we define the cost of an optimal solution recursively in terms of the optimal solutions to subproblems. For the matrix-chain multiplication problem, we pick as our subproblems the problems of determining the minimum cost of parenthesizing $A_i A_{i+1} \cdots A_j$ for $1 \le i \le j \le n$. Let m[i,j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$; for the full problem, the lowest-cost way to compute $A_{1..n}$ would thus be m[1,n].

We can define m[i,j] recursively as follows. If i=j, the problem is trivial; the chain consists of just one matrix $A_{i..i}=A_i$, so that no scalar multiplications are necessary to compute the product. Thus, m[i,i]=0 for $i=1,2,\ldots,n$. To compute m[i,j] when i< j, we take advantage of the structure of an optimal solution from step 1. Let us assume that to optimally parenthesize, we split the product $A_iA_{i+1}\cdots A_j$ between A_k and A_{k+1} , where $i\leq k< j$. Then, m[i,j] equals the minimum cost for computing the subproducts $A_{i..k}$ and $A_{k+1..j}$, plus the cost of multiplying these two matrices together. Recalling that each matrix A_i is $p_{i-1}\times p_i$, we see that computing the matrix product $A_{i..k}A_{k+1..j}$ takes $p_{i-1}p_kp_j$ scalar multiplications. Thus, we obtain

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$
.

This recursive equation assumes that we know the value of k, which we do not. There are only j-i possible values for k, however, namely $k=i,i+1,\ldots,j-1$. Since the optimal parenthesization must use one of these values for k, we need only check them all to find the best. Thus, our recursive definition for the minimum cost of parenthesizing the product $A_i A_{i+1} \cdots A_j$ becomes

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$
(15.7)

The m[i, j] values give the costs of optimal solutions to subproblems, but they do not provide all the information we need to construct an optimal solution. To help us do so, we define s[i, j] to be a value of k at which we split the product $A_i A_{i+1} \cdots A_j$ in an optimal parenthesization. That is, s[i, j] equals a value k such that $m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i$.

Step 3: Computing the optimal costs

At this point, we could easily write a recursive algorithm based on recurrence (15.7) to compute the minimum cost m[1,n] for multiplying $A_1A_2\cdots A_n$. As we saw for the rod-cutting problem, and as we shall see in Section 15.3, this recursive algorithm takes exponential time, which is no better than the brute-force method of checking each way of parenthesizing the product.

Observe that we have relatively few distinct subproblems: one subproblem for each choice of i and j satisfying $1 \le i \le j \le n$, or $\binom{n}{2} + n = \Theta(n^2)$ in all. A recursive algorithm may encounter each subproblem many times in different branches of its recursion tree. This property of overlapping subproblems is the second hallmark of when dynamic programming applies (the first hallmark being optimal substructure).

Instead of computing the solution to recurrence (15.7) recursively, we compute the optimal cost by using a tabular, bottom-up approach. (We present the corresponding top-down approach using memoization in Section 15.3.)

We shall implement the tabular, bottom-up method in the procedure MATRIX-CHAIN-ORDER, which appears below. This procedure assumes that matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n. Its input is a sequence $p = \langle p_0, p_1, ..., p_n \rangle$, where p.length = n + 1. The procedure uses an auxiliary table m[1..n, 1..n] for storing the m[i, j] costs and another auxiliary table s[1..n-1,2..n] that records which index of k achieved the optimal cost in computing m[i,j]. We shall use the table s to construct an optimal solution.

In order to implement the bottom-up approach, we must determine which entries of the table we refer to when computing m[i,j]. Equation (15.7) shows that the cost m[i,j] of computing a matrix-chain product of j-i+1 matrices depends only on the costs of computing matrix-chain products of fewer than j-i+1 matrices. That is, for $k=i,i+1,\ldots,j-1$, the matrix $A_{i...k}$ is a product of k-i+1 < j-i+1 matrices and the matrix $A_{k+1...j}$ is a product of j-k < j-i+1 matrices. Thus, the algorithm should fill in the table m in a manner that corresponds to solving the parenthesization problem on matrix chains of increasing length. For the subproblem of optimally parenthesizing the chain $A_iA_{i+1}\cdots A_j$, we consider the subproblem size to be the length j-i+1 of the chain.

```
MATRIX-CHAIN-ORDER (p)
```

```
1 \quad n = p.length - 1
 2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
    for i = 1 to n
 3
 4
         m[i,i] = 0
 5
    for l = 2 to n
                               # l is the chain length
         for i = 1 to n - l + 1
 6
 7
             j = i + l - 1
 8
             m[i, j] = \infty
 9
             for k = i to i - 1
                  q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
10
11
                  if q < m[i, j]
12
                      m[i,j] = q
13
                      s[i, j] = k
    return m and s
```


Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n=6 and the following matrix dimensions:

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of scalar multiplications to multiply the 6 matrices is $m[1, 6] = 15{,}125$. Of the darker entries, the pairs that have the same shading are taken together in line 10 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13,000 ,\\ m[2,3] + m[4,5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 &= 7125 ,\\ m[2,4] + m[5,5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11,375 \end{cases}$$

$$= 7125 .$$

The algorithm first computes m[i,i] = 0 for i = 1,2,...,n (the minimum costs for chains of length 1) in lines 3–4. It then uses recurrence (15.7) to compute m[i,i+1] for i = 1,2,...,n-1 (the minimum costs for chains of length l = 2) during the first execution of the **for** loop in lines 5–13. The second time through the loop, it computes m[i,i+2] for i = 1,2,...,n-2 (the minimum costs for chains of length l = 3), and so forth. At each step, the m[i,j] cost computed in lines 10–13 depends only on table entries m[i,k] and m[k+1,j] already computed.

Figure 15.5 illustrates this procedure on a chain of n=6 matrices. Since we have defined m[i,j] only for $i \leq j$, only the portion of the table m strictly above the main diagonal is used. The figure shows the table rotated to make the main diagonal run horizontally. The matrix chain is listed along the bottom. Using this layout, we can find the minimum cost m[i,j] for multiplying a subchain $A_i A_{i+1} \cdots A_i$ of matrices at the intersection of lines running northeast from A_i and

northwest from A_j . Each horizontal row in the table contains the entries for matrix chains of the same length. MATRIX-CHAIN-ORDER computes the rows from bottom to top and from left to right within each row. It computes each entry m[i, j] using the products $p_{i-1}p_kp_j$ for k = i, i + 1, ..., j - 1 and all entries southwest and southeast from m[i, j].

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER yields a running time of $O(n^3)$ for the algorithm. The loops are nested three deep, and each loop index (l, i, and k) takes on at most n-1 values. Exercise 15.2-5 asks you to show that the running time of this algorithm is in fact also $\Omega(n^3)$. The algorithm requires $\Theta(n^2)$ space to store the m and s tables. Thus, MATRIX-CHAIN-ORDER is much more efficient than the exponential-time method of enumerating all possible parenthesizations and checking each one.

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar multiplications needed to compute a matrix-chain product, it does not directly show how to multiply the matrices. The table s[1..n-1,2..n] gives us the information we need to do so. Each entry s[i,j] records a value of k such that an optimal parenthesization of $A_iA_{i+1}\cdots A_j$ splits the product between A_k and A_{k+1} . Thus, we know that the final matrix multiplication in computing $A_{1..n}$ optimally is $A_{1..s[1,n]}A_{s[1,n]+1..n}$. We can determine the earlier matrix multiplications recursively, since s[1,s[1,n]] determines the last matrix multiplication when computing $A_{1..s[1,n]}$ and s[s[1,n]+1,n] determines the last matrix multiplication when computing $A_{s[1,n]+1..n}$. The following recursive procedure prints an optimal parenthesization of $\langle A_i, A_{i+1}, \ldots, A_j \rangle$, given the s table computed by MATRIX-CHAIN-ORDER and the indices i and j. The initial call PRINT-OPTIMAL-PARENS (s, 1, n) prints an optimal parenthesization of $\langle A_1, A_2, \ldots, A_n \rangle$.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

In the example of Figure 15.5, the call PRINT-OPTIMAL-PARENS (s, 1, 6) prints the parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$.

Exercises

15.2-1

Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is (5, 10, 3, 12, 5, 50, 6).

15.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY (A, s, i, j) that actually performs the optimal matrix-chain multiplication, given the sequence of matrices (A_1, A_2, \ldots, A_n) , the s table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call would be MATRIX-CHAIN-MULTIPLY (A, s, 1, n).)

15.2-3

Use the substitution method to show that the solution to the recurrence (15.6) is $\Omega(2^n)$.

15.2-4

Describe the subproblem graph for matrix-chain multiplication with an input chain of length n. How many vertices does it have? How many edges does it have, and which edges are they?

15.2-5

Let R(i, j) be the number of times that table entry m[i, j] is referenced while computing other table entries in a call of MATRIX-CHAIN-ORDER. Show that the total number of references for the entire table is

$$\sum_{i=1}^{n} \sum_{j=i}^{n} R(i,j) = \frac{n^3 - n}{3}.$$

(Hint: You may find equation (A.3) useful.)

15.2-6

Show that a full parenthesization of an n-element expression has exactly n-1 pairs of parentheses.

15.3 Elements of dynamic programming

Although we have just worked through two examples of the dynamic-programming method, you might still be wondering just when the method applies. From an engineering perspective, when should we look for a dynamic-programming solution to a problem? In this section, we examine the two key ingredients that an opti-

mization problem must have in order for dynamic programming to apply: optimal substructure and overlapping subproblems. We also revisit and discuss more fully how memoization might help us take advantage of the overlapping-subproblems property in a top-down recursive approach.

Optimal substructure

The first step in solving an optimization problem by dynamic programming is to characterize the structure of an optimal solution. Recall that a problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems. Whenever a problem exhibits optimal substructure, we have a good clue that dynamic programming might apply. (As Chapter 16 discusses, it also might mean that a greedy strategy applies, however.) In dynamic programming, we build an optimal solution to the problem from optimal solutions to subproblems. Consequently, we must take care to ensure that the range of subproblems we consider includes those used in an optimal solution.

We discovered optimal substructure in both of the problems we have examined in this chapter so far. In Section 15.1, we observed that the optimal way of cutting up a rod of length n (if we make any cuts at all) involves optimally cutting up the two pieces resulting from the first cut. In Section 15.2, we observed that an optimal parenthesization of $A_i A_{i+1} \cdots A_j$ that splits the product between A_k and A_{k+1} contains within it optimal solutions to the problems of parenthesizing $A_i A_{i+1} \cdots A_k$ and $A_{k+1} A_{k+2} \cdots A_j$.

You will find yourself following a common pattern in discovering optimal substructure:

- 1. You show that a solution to the problem consists of making a choice, such as choosing an initial cut in a rod or choosing an index at which to split the matrix chain. Making this choice leaves one or more subproblems to be solved.
- 2. You suppose that for a given problem, you are given the choice that leads to an optimal solution. You do not concern yourself yet with how to determine this choice. You just assume that it has been given to you.
- 3. Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- 4. You show that the solutions to the subproblems used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique. You do so by supposing that each of the subproblem solutions is not optimal and then deriving a contradiction. In particular, by "cutting out" the nonoptimal solution to each subproblem and "pasting in" the optimal one, you show that you can get a better solution to the original problem, thus contradicting your supposition that you already had an optimal solution. If an optimal

solution gives rise to more than one subproblem, they are typically so similar that you can modify the cut-and-paste argument for one to apply to the others with little effort.

To characterize the space of subproblems, a good rule of thumb says to try to keep the space as simple as possible and then expand it as necessary. For example, the space of subproblems that we considered for the rod-cutting problem contained the problems of optimally cutting up a rod of length i for each size i. This subproblem space worked well, and we had no need to try a more general space of subproblems.

Conversely, suppose that we had tried to constrain our subproblem space for matrix-chain multiplication to matrix products of the form $A_1A_2\cdots A_j$. As before, an optimal parenthesization must split this product between A_k and A_{k+1} for some $1 \le k < j$. Unless we could guarantee that k always equals j-1, we would find that we had subproblems of the form $A_1A_2\cdots A_k$ and $A_{k+1}A_{k+2}\cdots A_j$, and that the latter subproblem is not of the form $A_1A_2\cdots A_j$. For this problem, we needed to allow our subproblems to vary at "both ends," that is, to allow both i and j to vary in the subproblem $A_iA_{i+1}\cdots A_j$.

Optimal substructure varies across problem domains in two ways:

- 1. how many subproblems an optimal solution to the original problem uses, and
- 2. how many choices we have in determining which subproblem(s) to use in an optimal solution.

In the rod-cutting problem, an optimal solution for cutting up a rod of size n uses just one subproblem (of size n-i), but we must consider n choices for i in order to determine which one yields an optimal solution. Matrix-chain multiplication for the subchain $A_iA_{i+1}\cdots A_j$ serves as an example with two subproblems and j-i choices. For a given matrix A_k at which we split the product, we have two subproblems—parenthesizing $A_iA_{i+1}\cdots A_k$ and parenthesizing $A_{k+1}A_{k+2}\cdots A_j$ —and we must solve *both* of them optimally. Once we determine the optimal solutions to subproblems, we choose from among j-i candidates for the index k.

Informally, the running time of a dynamic-programming algorithm depends on the product of two factors: the number of subproblems overall and how many choices we look at for each subproblem. In rod cutting, we had $\Theta(n)$ subproblems overall, and at most n choices to examine for each, yielding an $O(n^2)$ running time. Matrix-chain multiplication had $\Theta(n^2)$ subproblems overall, and in each we had at most n-1 choices, giving an $O(n^3)$ running time (actually, a $\Theta(n^3)$ running time, by Exercise 15.2-5).

Usually, the subproblem graph gives an alternative way to perform the same analysis. Each vertex corresponds to a subproblem, and the choices for a sub-

16.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence of choices. At each decision point, the algorithm makes choice that seems best at the moment. This heuristic strategy does not always produce an optimal solution, but as we saw in the activity-selection problem, sometimes it does. This section discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was a bit more involved than is typical. We went through the following steps:

- 1. Determine the optimal substructure of the problem.
- 2. Develop a recursive solution. (For the activity-selection problem, we formulated recurrence (16.2), but we bypassed developing a recursive algorithm based on this recurrence.)
- 3. Show that if we make the greedy choice, then only one subproblem remains.
- 4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur in either order.)
- 5. Develop a recursive algorithm that implements the greedy strategy.
- 6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming underpinnings of a greedy algorithm. For example, in the activity-selection problem, we first defined the subproblems S_{ij} , where both i and j varied. We then found that if we always made the greedy choice, we could restrict the subproblems to be of the form S_k .

Alternatively, we could have fashioned our optimal substructure with a greedy choice in mind, so that the choice leaves just one subproblem to solve. In the activity-selection problem, we could have started by dropping the second subscript and defining subproblems of the form S_k . Then, we could have proven that a greedy choice (the first activity a_m to finish in S_k), combined with an optimal solution to the remaining set S_m of compatible activities, yields an optimal solution to S_k . More generally, we design greedy algorithms according to the following sequence of steps:

- 1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- 2. Prove that there is always an optimal solution to the original problem that makes the greedy choice, so that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy choice, what remains is a subproblem with the property that if we combine an optimal solution to the subproblem with the greedy choice we have made, we arrive at an optimal solution to the original problem.

We shall use this more direct process in later sections of this chapter. Nevertheless, beneath every greedy algorithm, there is almost always a more cumbersome dynamic-programming solution.

How can we tell whether a greedy algorithm will solve a particular optimization problem? No way works all the time, but the greedy-choice property and optimal substructure are the two key ingredients. If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm for it.

Greedy-choice property

The first key ingredient is the *greedy-choice property*: we can assemble a globally optimal solution by making locally optimal (greedy) choices. In other words, when we are considering which choice to make, we make the choice that looks best in the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic programming, we make a choice at each step, but the choice usually depends on the solutions to subproblems. Consequently, we typically solve dynamic-programming problems in a bottom-up manner, progressing from smaller subproblems to larger subproblems. (Alternatively, we can solve them top down, but memoizing. Of course, even though the code works top down, we still must solve the subproblems before making a choice.) In a greedy algorithm, we make whatever choice seems best at the moment and then solve the subproblem that remains. The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to subproblems. Thus, unlike dynamic programming, which solves the subproblems before making the first choice, a greedy algorithm makes its first choice before solving any subproblems. A dynamic-programming algorithm proceeds bottom up, whereas a greedy strategy usually progresses in a top-down fashion, making one greedy choice after another, reducing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a globally optimal solution. Typically, as in the case of Theorem 16.1, the proof examines a globally optimal solution to some subproblem. It then shows how to modify the solution to substitute the greedy choice for some other choice, resulting in one similar, but smaller, subproblem.

We can usually make the greedy choice more efficiently than when we have to consider a wider set of choices. For example, in the activity-selection problem, as-

suming that we had already sorted the activities in monotonically increasing order of finish times, we needed to examine each activity just once. By preprocessing the input or by using an appropriate data structure (often a priority queue), we often can make greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

A problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems. This property is a key ingredient of assessing the applicability of dynamic programming as well as greedy algorithms. As an example of optimal substructure, recall how we demonstrated in Section 16.1 that if an optimal solution to subproblem S_{ij} includes an activity a_k , then it must also contain optimal solutions to the subproblems S_{ik} and S_{kj} . Given this optimal substructure, we argued that if we knew which activity to use as a_k , we could construct an optimal solution to S_{ij} by selecting a_k along with all activities in optimal solutions to the subproblems S_{ik} and S_{kj} . Based on this observation of optimal substructure, we were able to devise the recurrence (16.2) that described the value of an optimal solution.

We usually use a more direct approach regarding optimal substructure when applying it to greedy algorithms. As mentioned above, we have the luxury of assuming that we arrived at a subproblem by having made the greedy choice in the original problem. All we really need to do is argue that an optimal solution to the subproblem, combined with the greedy choice already made, yields an optimal solution to the original problem. This scheme implicitly uses induction on the subproblems to prove that making the greedy choice at every step produces an optimal solution.

Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal substructure, you might be tempted to generate a dynamic-programming solution to a problem when a greedy solution suffices or, conversely, you might mistakenly think that a greedy solution works when in fact a dynamic-programming solution is required. To illustrate the subtleties between the two techniques, let us investigate two variants of a classical optimization problem.

The **0-1** knapsack problem is the following. A thief robbing a store finds n items. The ith item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take? (We call this the 0-1 knapsack problem because for each item, the thief must either

take it or leave it behind; he cannot take a fractional amount of an item or take an item more than once.)

In the *fractional knapsack problem*, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item. You can think of an item in the 0-1 knapsack problem as being like a gold ingot and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1 problem, consider the most valuable load that weighs at most W pounds. If we remove item j from this load, the remaining load must be the most valuable load weighing at most $W-w_j$ that the thief can take from the n-1 original items excluding j. For the comparable fractional problem, consider that if we remove a weight w of one item j from the optimal load, the remaining load must be the most valuable load weighing at most W-w that the thief can take from the n-1 original items plus w_j-w pounds of item j.

Although the problems are similar, we can solve the fractional knapsack problem by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To solve the fractional problem, we first compute the value per pound v_i/w_i for each item. Obeying a greedy strategy, the thief begins by taking as much as possible of the item with the greatest value per pound. If the supply of that item is exhausted and he can still carry more, he takes as much as possible of the item with the next greatest value per pound, and so forth, until he reaches his weight limit W. Thus, by sorting the items by value per pound, the greedy algorithm runs in $O(n \lg n)$ time. We leave the proof that the fractional knapsack problem has the greedychoice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack problem, consider the problem instance illustrated in Figure 16.2(a). This example has 3 items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3 weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is 6 dollars per pound, which is greater than the value per pound of either item 2 (5 dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore, would take item 1 first. As you can see from the case analysis in Figure 16.2(b), however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Taking item 1 doesn't work in the 0-1 problem because the thief is unable to fill his knapsack to capacity, and the empty space lowers the effective value per pound of his load. In the 0-1 problem, when we consider whether to include an item in the knapsack, we must compare the solution to the subproblem that includes the item with the solution to the subproblem that excludes the item before we can make the

The professor can carry two liters of water, and he can skate *m* miles before running out of water. (Because North Dakota is relatively flat, the professor does not have to worry about drinking water at a greater rate on uphill sections than on flat or downhill sections.) The professor will start in Grand Forks with two full liters of water. His official North Dakota state map shows all the places along U.S. 2 at which he can refill his water and the distances between these locations.

The professor's goal is to minimize the number of water stops along his route across the state. Give an efficient method by which he can determine which water stops he should make. Prove that your strategy yields an optimal solution, and give its running time.

16.2-5

Describe an efficient algorithm that, given a set $\{x_1, x_2, \dots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

16.2-6 ★

Show how to solve the fractional knapsack problem in O(n) time.

16.2-7

Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_i be the ith element of set A, and let b_i be the ith element of set B. You then receive a payoff of $\prod_{i=1}^{n} a_i^{b_i}$. Give an algorithm that will maximize your payoff. Prove that your algorithm maximizes the payoff, and state its running time.

16.3 Huffman codes

Huffman codes compress data very effectively: savings of 20% to 90% are typical, depending on the characteristics of the data being compressed. We consider the data to be a sequence of characters. Huffman's greedy algorithm uses a table giving how often each character occurs (i.e., its frequency) to build up an optimal way of representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly. We observe that the characters in the file occur with the frequencies given by Figure 16.3. That is, only 6 different characters appear, and the character a occurs 45,000 times.

We have many options for how to represent such a file of information. Here, we consider the problem of designing a *binary character code* (or *code* for short)

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

Figure 16.3 A character-coding problem. A data file of 100,000 characters contains only the characters a–f, with the frequencies indicated. If we assign each character a 3-bit codeword, we can encode the file in 300,000 bits. Using the variable-length code shown, we can encode the file in only 224,000 bits.

in which each character is represented by a unique binary string, which we call a *codeword*. If we use a *fixed-length code*, we need 3 bits to represent 6 characters: a = 000, b = 001, ..., f = 101. This method requires 300,000 bits to code the entire file. Can we do better?

A *variable-length code* can do considerably better than a fixed-length code, by giving frequent characters short codewords and infrequent characters long codewords. Figure 16.3 shows such a code; here the 1-bit string 0 represents a, and the 4-bit string 1100 represents f. This code requires

$$(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000$$
 bits

to represent the file, a savings of approximately 25%. In fact, this is an optimal character code for this file, as we shall see.

Prefix codes

We consider here only codes in which no codeword is also a prefix of some other codeword. Such codes are called *prefix codes*.³ Although we won't prove it here, a prefix code can always achieve the optimal data compression among any character code, and so we suffer no loss of generality by restricting our attention to prefix codes.

Encoding is always simple for any binary character code; we just concatenate the codewords representing each character of the file. For example, with the variable-length prefix code of Figure 16.3, we code the 3-character file abc as 0.101.100 = 0101100, where "·" denotes concatenation.

Prefix codes are desirable because they simplify decoding. Since no codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous. We can simply identify the initial codeword, translate it back to the original char-

³Perhaps "prefix-free codes" would be a better name, but the term "prefix codes" is standard in the literature.

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with a character and its frequency of occurrence. Each internal node is labeled with the sum of the frequencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code $a = 000, \ldots, f = 101$. (b) The tree corresponding to the optimal prefix code $a = 0, b = 101, \ldots, f = 1100$.

acter, and repeat the decoding process on the remainder of the encoded file. In our example, the string 001011101 parses uniquely as $0 \cdot 0 \cdot 101 \cdot 1101$, which decodes to aabe.

The decoding process needs a convenient representation for the prefix code so that we can easily pick off the initial codeword. A binary tree whose leaves are the given characters provides one such representation. We interpret the binary codeword for a character as the simple path from the root to that character, where 0 means "go to the left child" and 1 means "go to the right child." Figure 16.4 shows the trees for the two codes of our example. Note that these are not binary search trees, since the leaves need not appear in sorted order and internal nodes do not contain character keys.

An optimal code for a file is always represented by a *full* binary tree, in which every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full binary tree: it contains codewords beginning 10..., but none beginning 11.... Since we can now restrict our attention to full binary trees, we can say that if C is the alphabet from which the characters are drawn and all character frequencies are positive, then the tree for an optimal prefix code has exactly |C| leaves, one for each letter of the alphabet, and exactly |C| - 1 internal nodes (see Exercise B.5-3).

Given a tree T corresponding to a prefix code, we can easily compute the number of bits required to encode a file. For each character c in the alphabet C, let the attribute c. freq denote the frequency of c in the file and let $d_T(c)$ denote the depth

of c's leaf in the tree. Note that $d_T(c)$ is also the length of the codeword for character c. The number of bits required to encode a file is thus

$$B(T) = \sum_{c \in C} c. freq \cdot d_T(c) , \qquad (16.4)$$

which we define as the *cost* of the tree T.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix code called a *Huffman code*. In line with our observations in Section 16.2, its proof of correctness relies on the greedy-choice property and optimal substructure. Rather than demonstrating that these properties hold and then developing pseudocode, we present the pseudocode first. Doing so will help clarify how the algorithm makes greedy choices.

In the pseudocode that follows, we assume that C is a set of n characters and that each character $c \in C$ is an object with an attribute c.freq giving its frequency. The algorithm builds the tree T corresponding to the optimal code in a bottom-up manner. It begins with a set of |C| leaves and performs a sequence of |C|-1 "merging" operations to create the final tree. The algorithm uses a min-priority queue Q, keyed on the freq attribute, to identify the two least-frequent objects to merge together. When we merge two objects, the result is a new object whose frequency is the sum of the frequencies of the two objects that were merged.

```
HUFFMAN(C)
1 n = |C|
  O = C
3
   for i = 1 to n - 1
       allocate a new node z.
5
       z.left = x = EXTRACT-MIN(Q)
       z.right = v = EXTRACT-MIN(O)
6
7
       z.freq = x.freq + y.freq
8
       INSERT(Q,z)
   return EXTRACT-MIN(Q)
                              // return the root of the tree
```

For our example, Huffman's algorithm proceeds as shown in Figure 16.5. Since the alphabet contains 6 letters, the initial queue size is n = 6, and 5 merge steps build the tree. The final tree represents the optimal prefix code. The codeword for a letter is the sequence of edge labels on the simple path from the root to the letter.

Line 2 initializes the min-priority queue Q with the characters in C. The for loop in lines 3–8 repeatedly extracts the two nodes x and y of lowest frequency

Figure 16.5 The steps of Huffman's algorithm for the frequencies given in Figure 16.3. Each part shows the contents of the queue sorted into increasing order by frequency. At each step, the two trees with lowest frequencies are merged. Leaves are shown as rectangles containing a character and its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the edges connecting the root to the leaf for that letter. (a) The initial set of n = 6 nodes, one for each letter. (b)–(e) Intermediate stages. (f) The final tree.

from the queue, replacing them in the queue with a new node z representing their merger. The frequency of z is computed as the sum of the frequencies of x and y in line 7. The node z has x as its left child and y as its right child. (This order is arbitrary; switching the left and right child of any node yields a different code of the same cost.) After n-1 mergers, line 9 returns the one node left in the queue, which is the root of the code tree.

Although the algorithm would produce the same result if we were to excise the variables x and y—assigning directly to z. left and z. right in lines 5 and 6, and changing line 7 to z. freq = z. left. freq + z. right. freq—we shall use the node

names x and y in the proof of correctness. Therefore, we find it convenient to leave them in.

To analyze the running time of Huffman's algorithm, we assume that Q is implemented as a binary min-heap (see Chapter 6). For a set C of n characters, we can initialize Q in line 2 in O(n) time using the BUILD-MIN-HEAP procedure discussed in Section 6.3. The **for** loop in lines 3–8 executes exactly n-1 times, and since each heap operation requires time $O(\lg n)$, the loop contributes $O(n \lg n)$ to the running time. Thus, the total running time of HUFFMAN on a set of n characters is $O(n \lg n)$. We can reduce the running time to $O(n \lg \log n)$ by replacing the binary min-heap with a van Emde Boas tree (see Chapter 20).

Correctness of Huffman's algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that the problem of determining an optimal prefix code exhibits the greedy-choice and optimalsubstructure properties. The next lemma shows that the greedy-choice property holds.

Lemma 16.2

Let C be an alphabet in which each character $c \in C$ has frequency c.freq. Let x and y be two characters in C having the lowest frequencies. Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal prefix code and modify it to make a tree representing another optimal prefix code such that the characters x and y appear as sibling leaves of maximum depth in the new tree. If we can construct such a tree, then the codewords for x and y will have the same length and differ only in the last bit.

Let a and b be two characters that are sibling leaves of maximum depth in T. Without loss of generality, we assume that $a.freq \le b.freq$ and $x.freq \le y.freq$. Since x.freq and y.freq are the two lowest leaf frequencies, in order, and a.freq and b.freq are two arbitrary frequencies, in order, we have $x.freq \le a.freq$ and $y.freq \le b.freq$.

In the remainder of the proof, it is possible that we could have x.freq = a.freq or y.freq = b.freq. However, if we had x.freq = b.freq, then we would also have a.freq = b.freq = x.freq = y.freq (see Exercise 16.3-1), and the lemma would be trivially true. Thus, we will assume that $x.freq \neq b.freq$, which means that $x \neq b$.

As Figure 16.6 shows, we exchange the positions in T of a and x to produce a tree T', and then we exchange the positions in T' of b and y to produce a tree T''

Introduction

Graph problems pervade computer science, and algorithms for working with them are fundamental to the field. Hundreds of interesting computational problems are couched in terms of graphs. In this part, we touch on a few of the more significant ones.

Chapter 22 shows how we can represent a graph in a computer and then discusses algorithms based on searching a graph using either breadth-first search or depth-first search. The chapter gives two applications of depth-first search: topologically sorting a directed acyclic graph and decomposing a directed graph into its strongly connected components.

Chapter 23 describes how to compute a minimum-weight spanning tree of a graph: the least-weight way of connecting all of the vertices together when each edge has an associated weight. The algorithms for computing minimum spanning trees serve as good examples of greedy algorithms (see Chapter 16).

Chapters 24 and 25 consider how to compute shortest paths between vertices when each edge has an associated length or "weight." Chapter 24 shows how to find shortest paths from a given source vertex to all other vertices, and Chapter 25 examines methods to compute shortest paths between every pair of vertices.

Finally, Chapter 26 shows how to compute a maximum flow of material in a flow network, which is a directed graph having a specified source vertex of material, a specified sink vertex, and specified capacities for the amount of material that can traverse each directed edge. This general problem arises in many forms, and a good algorithm for computing maximum flows can help solve a variety of related problems efficiently.

When we characterize the running time of a graph algorithm on a given graph G=(V,E), we usually measure the size of the input in terms of the number of vertices |V| and the number of edges |E| of the graph. That is, we describe the size of the input with two parameters, not just one. We adopt a common notational convention for these parameters. Inside asymptotic notation (such as O-notation or Θ -notation), and *only* inside such notation, the symbol V denotes |V| and the symbol E denotes |E|. For example, we might say, "the algorithm runs in time O(VE)," meaning that the algorithm runs in time O(|V||E|). This convention makes the running-time formulas easier to read, without risk of ambiguity.

Another convention we adopt appears in pseudocode. We denote the vertex set of a graph G by G. V and its edge set by G. E. That is, the pseudocode views vertex and edge sets as attributes of a graph.

22 Elementary Graph Algorithms

This chapter presents methods for representing a graph and for searching a graph. Searching a graph means systematically following the edges of the graph so as to visit the vertices of the graph. A graph-searching algorithm can discover much about the structure of a graph. Many algorithms begin by searching their input graph to obtain this structural information. Several other graph algorithms elaborate on basic graph searching. Techniques for searching a graph lie at the heart of the field of graph algorithms.

Section 22.1 discusses the two most common computational representations of graphs: as adjacency lists and as adjacency matrices. Section 22.2 presents a simple graph-searching algorithm called breadth-first search and shows how to create a breadth-first tree. Section 22.3 presents depth-first search and proves some standard results about the order in which depth-first search visits vertices. Section 22.4 provides our first real application of depth-first search: topologically sorting a directed acyclic graph. A second application of depth-first search, finding the strongly connected components of a directed graph, is the topic of Section 22.5.

22.1 Representations of graphs

We can choose between two standard ways to represent a graph G=(V,E): as a collection of adjacency lists or as an adjacency matrix. Either way applies to both directed and undirected graphs. Because the adjacency-list representation provides a compact way to represent *sparse* graphs—those for which |E| is much less than $|V|^2$ —it is usually the method of choice. Most of the graph algorithms presented in this book assume that an input graph is represented in adjacency-list form. We may prefer an adjacency-matrix representation, however, when the graph is *dense*—|E| is close to $|V|^2$ —or when we need to be able to tell quickly if there is an edge connecting two given vertices. For example, two of the all-pairs

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Figure 22.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

shortest-paths algorithms presented in Chapter 25 assume that their input graphs are represented by adjacency matrices.

The *adjacency-list representation* of a graph G = (V, E) consists of an array Adj of |V| lists, one for each vertex in V. For each $u \in V$, the adjacency list Adj[u] contains all the vertices v such that there is an edge $(u, v) \in E$. That is, Adj[u] consists of all the vertices adjacent to u in G. (Alternatively, it may contain pointers to these vertices.) Since the adjacency lists represent the edges of a graph, in pseudocode we treat the array Adj as an attribute of the graph, just as we treat the edge set E. In pseudocode, therefore, we will see notation such as G.Adj[u]. Figure 22.1(b) is an adjacency-list representation of the undirected graph in Figure 22.1(a). Similarly, Figure 22.2(b) is an adjacency-list representation of the directed graph in Figure 22.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists is |E|, since an edge of the form (u, v) is represented by having v appear in Adi[u]. If G is

an undirected graph, the sum of the lengths of all the adjacency lists is 2|E|, since if (u, v) is an undirected edge, then u appears in v's adjacency list and vice versa. For both directed and undirected graphs, the adjacency-list representation has the desirable property that the amount of memory it requires is $\Theta(V+E)$.

We can readily adapt adjacency lists to represent *weighted graphs*, that is, graphs for which each edge has an associated *weight*, typically given by a *weight function* $w: E \to \mathbb{R}$. For example, let G = (V, E) be a weighted graph with weight function w. We simply store the weight w(u, v) of the edge $w(u, v) \in E$ with vertex v in w adjacency list. The adjacency-list representation is quite robust in that we can modify it to support many other graph variants.

A potential disadvantage of the adjacency-list representation is that it provides no quicker way to determine whether a given edge (u, v) is present in the graph than to search for v in the adjacency list Adj[u]. An adjacency-matrix representation of the graph remedies this disadvantage, but at the cost of using asymptotically more memory. (See Exercise 22.1-8 for suggestions of variations on adjacency lists that permit faster edge lookup.)

For the *adjacency-matrix representation* of a graph G=(V,E), we assume that the vertices are numbered $1,2,\ldots,|V|$ in some arbitrary manner. Then the adjacency-matrix representation of a graph G consists of a $|V| \times |V|$ matrix $A=(a_{ij})$ such that

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{otherwise}. \end{cases}$$

Figures 22.1(c) and 22.2(c) are the adjacency matrices of the undirected and directed graphs in Figures 22.1(a) and 22.2(a), respectively. The adjacency matrix of a graph requires $\Theta(V^2)$ memory, independent of the number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix in Figure 22.1(c). Since in an undirected graph, (u, v) and (v, u) represent the same edge, the adjacency matrix A of an undirected graph is its own transpose: $A = A^{T}$. In some applications, it pays to store only the entries on and above the diagonal of the adjacency matrix, thereby cutting the memory needed to store the graph almost in half.

Like the adjacency-list representation of a graph, an adjacency matrix can represent a weighted graph. For example, if G=(V,E) is a weighted graph with edgeweight function w, we can simply store the weight w(u,v) of the edge $(u,v) \in E$ as the entry in row u and column v of the adjacency matrix. If an edge does not exist, we can store a NIL value as its corresponding matrix entry, though for many problems it is convenient to use a value such as 0 or ∞ .

Although the adjacency-list representation is asymptotically at least as space-efficient as the adjacency-matrix representation, adjacency matrices are simpler, and so we may prefer them when graphs are reasonably small. Moreover, adja-

cency matrices carry a further advantage for unweighted graphs: they require only one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for vertices and/or edges. We indicate these attributes using our usual notation, such as v.d for an attribute d of a vertex v. When we indicate edges as pairs of vertices, we use the same style of notation. For example, if edges have an attribute f, then we denote this attribute for edge (u, v) by (u, v).f. For the purpose of presenting and understanding algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be another story entirely. There is no one best way to store and access vertex and edge attributes. For a given situation, your decision will likely depend on the programming language you are using, the algorithm you are implementing, and how the rest of your program uses the graph. If you represent a graph using adjacency lists, one design represents vertex attributes in additional arrays, such as an array d[1..|V|] that parallels the Adj array. If the vertices adjacent to u are in Adj[u], then what we call the attribute u.d would actually be stored in the array entry d[u]. Many other ways of implementing attributes are possible. For example, in an object-oriented programming language, vertex attributes might be represented as instance variables within a subclass of a Vertex class.

Exercises

22.1-1

Given an adjacency-list representation of a directed graph, how long does it take to compute the out-degree of every vertex? How long does it take to compute the in-degrees?

22.1-2

Give an adjacency-list representation for a complete binary tree on 7 vertices. Give an equivalent adjacency-matrix representation. Assume that vertices are numbered from 1 to 7 as in a binary heap.

22.1-3

The *transpose* of a directed graph G = (V, E) is the graph $G^{\mathsf{T}} = (V, E^{\mathsf{T}})$, where $E^{\mathsf{T}} = \{(v, u) \in V \times V : (u, v) \in E\}$. Thus, G^{T} is G with all its edges reversed. Describe efficient algorithms for computing G^{T} from G, for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

22.1-4

Given an adjacency-list representation of a multigraph G=(V,E), describe an O(V+E)-time algorithm to compute the adjacency-list representation of the "equivalent" undirected graph G'=(V,E'), where E' consists of the edges in E with all multiple edges between two vertices replaced by a single edge and with all self-loops removed.

22.1-5

The *square* of a directed graph G=(V,E) is the graph $G^2=(V,E^2)$ such that $(u,v)\in E^2$ if and only G contains a path with at most two edges between u and v. Describe efficient algorithms for computing G^2 from G for both the adjacency-list and adjacency-matrix representations of G. Analyze the running times of your algorithms.

22.1-6

Most graph algorithms that take an adjacency-matrix representation as input require time $\Omega(V^2)$, but there are some exceptions. Show how to determine whether a directed graph G contains a *universal sink*—a vertex with in-degree |V|-1 and out-degree 0—in time O(V), given an adjacency matrix for G.

22.1-7

The *incidence matrix* of a directed graph G=(V,E) with no self-loops is a $|V|\times |E|$ matrix $B=(b_{ij})$ such that

$$b_{ij} = \begin{cases} -1 & \text{if edge } j \text{ leaves vertex } i, \\ 1 & \text{if edge } j \text{ enters vertex } i, \\ 0 & \text{otherwise}. \end{cases}$$

Describe what the entries of the matrix product BB^T represent, where B^T is the transpose of B.

22.1-8

Suppose that instead of a linked list, each array entry Adj[u] is a hash table containing the vertices v for which $(u, v) \in E$. If all edge lookups are equally likely, what is the expected time to determine whether an edge is in the graph? What disadvantages does this scheme have? Suggest an alternate data structure for each edge list that solves these problems. Does your alternative have disadvantages compared to the hash table?

22.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph and the archetype for many important graph algorithms. Prim's minimum-spanning-tree algorithm (Section 23.2) and Dijkstra's single-source shortest-paths algorithm (Section 24.3) use ideas similar to those in breadth-first search.

Given a graph G=(V,E) and a distinguished *source* vertex s, breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from s. It computes the distance (smallest number of edges) from s to each reachable vertex. It also produces a "breadth-first tree" with root s that contains all reachable vertices. For any vertex v reachable from s, the simple path in the breadth-first tree from s to v corresponds to a "shortest path" from s to v in s, that is, a path containing the smallest number of edges. The algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier. That is, the algorithm discovers all vertices at distance k from s before discovering any vertices at distance k+1.

To keep track of progress, breadth-first search colors each vertex white, gray, or black. All vertices start out white and may later become gray and then black. A vertex is *discovered* the first time it is encountered during the search, at which time it becomes nonwhite. Gray and black vertices, therefore, have been discovered, but breadth-first search distinguishes between them to ensure that the search proceeds in a breadth-first manner. If $(u, v) \in E$ and vertex u is black, then vertex v is either gray or black; that is, all vertices adjacent to black vertices have been discovered. Gray vertices may have some adjacent white vertices; they represent the frontier between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing only its root, which is the source vertex s. Whenever the search discovers a white vertex v in the course of scanning the adjacency list of an already discovered vertex u, the vertex v and the edge (u, v) are added to the tree. We say that u is the **predecessor** or **parent** of v in the breadth-first tree. Since a vertex is discovered at most once, it has at most one parent. Ancestor and descendant relationships in the breadth-first tree are defined relative to the root s as usual: if u is on the simple path in the tree from the root s to vertex v, then u is an ancestor of v and v is a descendant of u.

¹We distinguish between gray and black vertices to help us understand how breadth-first search operates. In fact, as Exercise 22.2-3 shows, we would get the same result even if we did not distinguish between gray and black vertices.

The breadth-first-search procedure BFS below assumes that the input graph G=(V,E) is represented using adjacency lists. It attaches several additional attributes to each vertex in the graph. We store the color of each vertex $u \in V$ in the attribute u.color and the predecessor of u in the attribute $u.\pi$. If u has no predecessor (for example, if u=s or u has not been discovered), then $u.\pi=\mathrm{NIL}$. The attribute u.d holds the distance from the source s to vertex u computed by the algorithm. The algorithm also uses a first-in, first-out queue Q (see Section 10.1) to manage the set of gray vertices.

```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
 2
 3
        u.d = \infty
 4
        u.\pi = NIL
   s.color = GRAY
 6 \quad s.d = 0
 7 s.\pi = NIL
   O = \emptyset
 9 ENQUEUE(Q, s)
10
    while Q \neq \emptyset
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
             if v.color == WHITE
13
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  v.\pi = u
17
                  ENQUEUE(Q, v)
18
        u.color = BLACK
```

Figure 22.3 illustrates the progress of BFS on a sample graph.

The procedure BFS works as follows. With the exception of the source vertex s, lines 1–4 paint every vertex white, set u.d to be infinity for each vertex u, and set the parent of every vertex to be NIL. Line 5 paints s gray, since we consider it to be discovered as the procedure begins. Line 6 initializes s.d to 0, and line 7 sets the predecessor of the source to be NIL. Lines 8–9 initialize Q to the queue containing just the vertex s.

The **while** loop of lines 10–18 iterates as long as there remain gray vertices, which are discovered vertices that have not yet had their adjacency lists fully examined. This **while** loop maintains the following invariant:

At the test in line 10, the queue Q consists of the set of gray vertices.

Figure 22.3 The operation of BFS on an undirected graph. Tree edges are shown shaded as they are produced by BFS. The value of u.d appears within each vertex u. The queue Q is shown at the beginning of each iteration of the **while** loop of lines 10–18. Vertex distances appear below vertices in the queue.

Although we won't use this loop invariant to prove correctness, it is easy to see that it holds prior to the first iteration and that each iteration of the loop maintains the invariant. Prior to the first iteration, the only gray vertex, and the only vertex in Q, is the source vertex s. Line 11 determines the gray vertex u at the head of the queue Q and removes it from Q. The **for** loop of lines 12–17 considers each vertex v in the adjacency list of u. If v is white, then it has not yet been discovered, and the procedure discovers it by executing lines 14–17. The procedure paints vertex v gray, sets its distance $v \cdot d$ to $u \cdot d + 1$, records u as its parent $v \cdot \pi$, and places it at the tail of the queue Q. Once the procedure has examined all the vertices on u's

adjacency list, it blackens u in line 18. The loop invariant is maintained because whenever a vertex is painted gray (in line 14) it is also enqueued (in line 17), and whenever a vertex is dequeued (in line 11) it is also painted black (in line 18).

The results of breadth-first search may depend upon the order in which the neighbors of a given vertex are visited in line 12: the breadth-first tree may vary, but the distances d computed by the algorithm will not. (See Exercise 22.2-5.)

Analysis

Before proving the various properties of breadth-first search, we take on the somewhat easier job of analyzing its running time on an input graph G=(V,E). We use aggregate analysis, as we saw in Section 17.1. After initialization, breadth-first search never whitens a vertex, and thus the test in line 13 ensures that each vertex is enqueued at most once, and hence dequeued at most once. The operations of enqueuing and dequeuing take O(1) time, and so the total time devoted to queue operations is O(V). Because the procedure scans the adjacency list of each vertex only when the vertex is dequeued, it scans each adjacency list at most once. Since the sum of the lengths of all the adjacency lists is $\Theta(E)$, the total time spent in scanning adjacency lists is O(E). The overhead for initialization is O(V), and thus the total running time of the BFS procedure is O(V+E). Thus, breadth-first search runs in time linear in the size of the adjacency-list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds the distance to each reachable vertex in a graph G = (V, E) from a given source vertex $s \in V$. Define the *shortest-path distance* $\delta(s, \nu)$ from s to ν as the minimum number of edges in any path from vertex s to vertex ν ; if there is no path from s to ν , then $\delta(s, \nu) = \infty$. We call a path of length $\delta(s, \nu)$ from s to ν a *shortest path*² from s to ν . Before showing that breadth-first search correctly computes shortest-path distances, we investigate an important property of shortest-path distances.

²In Chapters 24 and 25, we shall generalize our study of shortest paths to weighted graphs, in which every edge has a real-valued weight and the weight of a path is the sum of the weights of its constituent edges. The graphs considered in the present chapter are unweighted or, equivalently, all edges have unit weight.