22 - Misurabilità e Forte µ-Misurabilità di Funzioni

Premesse

> Notazioni: \mathcal{L}_n , μ

Sia $n \in \mathbb{N}$.

 \mathcal{L}_n denota l'insieme dei sottoinsiemi si \mathbb{R}^n , misurabili secondo Lebesgue.

Fissato $S \in \mathcal{L}_n$, si denota con $\mu(S)$ la misura di Lebesgue di S.

> Densità

Sia X uno spazio topologico.

Siano $A \subseteq X$, e $B \subseteq A$.

B si dice denso in A quando $\overline{B} = \overline{A}$ (dove la chiusura effettuata si considera per entrambi rispetto a X).

Q Osservazione

L'inclusione $\overline{A} \subseteq \overline{B}$ segue automaticamente dal fatto che $B \subseteq A$.

Dunque, B è denso in A se e solo se $\overline{B} \supseteq \overline{A}$.

Sia X uno spazio topologico.

Sia $A \subseteq X$.

A si dice separabile quando esiste $D \subseteq A$ al più numerabile e denso in A.

> Proprietà della separabilità

Sia X uno spazio topologico.

Si hanno i seguenti fatti:

- Fissato $A \subseteq X$ separabile, \overline{A} è separabile;
- Fissata una successione $\{A_n\subseteq X\}_{n\in\mathbb{N}}$ di insiemi separabili, $\bigcup_{n\in\mathbb{N}}A_n$ è separabile.
- Se X è metrizzabile, fissati $A \subseteq X$ separabile e $B \subseteq A$, B è separabile.
- Se X è metrizzabile, fissato $A \subseteq X$ totalmente limitato, A è separabile.

> Continuità della distanza da un insieme fissato

Sia (X, d) uno spazio metrico.

Sia $S \subseteq X$.

La mappa $d(\cdot,S):X o\mathbb{R}$ definita ponendo $x\mapsto d(x,S)$ è continua.

Misurabilità di funzioni

₩ Definizione: Funzione misurabile

Sia $T \in \mathscr{L}_n$.

Sia X uno spazio topologico.

Sia $f: T \to X$ una funzione.

f si dice ${f misurabile}$ quando

per ogni $A\subseteq X$ aperto, $f^{-1}(A)\in\mathscr{L}_n$.

Q Osservazione

f è misurabile se e solo se, per ogni $C \subseteq X$ chiuso, $f^{-1}(C) \in \mathscr{L}_n$.

Infatti, si hanno i seguenti fatti:

- Per ogni $S\subseteq X$, si ha $f^{-1}(X\smallsetminus S)=T\smallsetminus f^{-1}(S)$.
- Per ogni $M, N \in \mathscr{L}_n$, si ha $M \setminus N \in \mathscr{L}_n$.

Allora, se f è misurabile, per ogni $C \subseteq X$ chiuso sia $A = X \setminus C$, che dunque è aperto;

si ha $f^{-1}(C)=f^{-1}(X\smallsetminus A)=T\smallsetminus f^{-1}(A)\in\mathscr{L}_n.$

Viceversa, se $f^{-1}(C) \in \mathcal{L}_n$ è misurabile per ogni $C \subseteq X$ chiuso, per ogni $A \subseteq X$ aperto sia $C = X \setminus A$, che dunque è chiuso; si ha $f^{-1}(A) = f^{-1}(X \setminus C) = T \setminus f^{-1}(C) \in \mathcal{L}_n$.

Osservazione: Funzioni continue sono misurabili

Sia $T \in \mathscr{L}_n$.

Sia X uno spazio topologico.

Sia $f:T \to X$ una funzione continua.

Allora, f è misurabile.

Infatti, per ogni $A \subseteq X$ aperto si ha $f^{-1}(A)$ aperto in \mathbb{R}^n per ipotesi di continuità di f.

Poiché gli insiemi aperti in \mathbb{R}^n sono misurabili per definizione di μ , ne segue che $f^{-1}(A)$ è misurabile.

₩ Definizione: Dilatazioni di un insieme

Sia (X, d) uno spazio metrico.

Sia $S \subseteq X$.

Sia r > 0.

Si dice dilatazione di S di raggio r l'insieme

$$B(S,r) := \{x \in X: d(x,S) < r\}$$

Q Osservazione

Si osservano i seguenti fatti:

- $ullet \ B(S,r) = igcup_{x \in S} B(x,r);$
- B(S,r) è aperto.

Infatti, sia $x_0 \in \bigcup_{x \in S} B(x,r);$

esiste allora $ilde x \in S$ tale che $x_0 \in B(ilde x, r)$, ossia $d(x_0, ilde x) < r$.

Si ha allora $d(x_0,S) = \inf_{x \in S} d(x_0,x) \leq d(x_0, ilde{x}) < r$, per cui

 $x_0 \in B(S,r).$

Viceversa, sia $x_0 \notin \bigcup_{x \in S} B(x, r)$;

per ogni $x \in S$ si ha allora $x_0 \notin B(x,r)$, ossia $d(x_0,x) \geq r$.

Ne viene che $d(x_0,S)=\inf_{x\in S}d(x_0,x)\geq r$, per cui $x_0
otin B(S,r).$

Il primo punto è dunque acquisito;

da questo segue il secondo, in quanto B(S, r) si scrive allora come unione di aperti, e dunque è aperto.

Proposizione 22.1: Limite di funzioni misurabili è misurabile

Sia $T \in \mathscr{L}_p$.

Sia (X, d) uno spazio metrico.

Sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni misurabili da T in X.

Si supponga che $\{f_n\}_{n\in\mathbb{N}}$ converga puntualmente su T;

sia $f: T \to X$ il suo limite puntuale.

f è misurabile.

A Richiamo: Unione e intersezione numerabili di insiemi misurabili

Sia $\{S_n\}_{n\in\mathbb{N}}\subseteq\mathscr{L}_p$ una famiglia numerabile di insiemi misurabili.

Allora, $\bigcup_{n\in\mathbb{N}}S_n\in\mathscr{L}_n$, e $\bigcap_{n\in\mathbb{N}}S_n\in\mathscr{L}_n$.

Dimostrazione

Sia $C \subseteq X$ chiuso;

si provi che $f^{-1}(C) \in \mathscr{L}_n$.

Si vuole provare che $f^{-1}(C) = \bigcap_{h \in \mathbb{N}} \bigcup_{n \geq k} \bigcap_{n \geq k} f_n^{-1}\Big(B\big(C, \frac{1}{h}\big)\Big);$

così facendo, la tesi sarà acquisita in quanto:

- $B(C, \frac{1}{h})$ è aperto per ogni $h \in \mathbb{N}$, per quanto osservato sulle dilatazioni di un insieme;
- $f_n^{-1}\Big(B\big(C,\frac{1}{h}\big)\Big)\in \mathscr{L}_p$ per ogni $n\in\mathbb{N}$ e per ogni $h\in\mathbb{N}$, per il punto precedente ed essendo f_n misurabile per ogni $n\in\mathbb{N}$, per ipotesi;
- $\bigcap_{h\in\mathbb{N}}\bigcup_{k\in\mathbb{N}}\bigcap_{n\geq k}f_n^{-1}\Big(B\Big(C,\frac{1}{h}\Big)\Big)\in\mathscr{L}_p$ per il punto precedente e per quanto richiamato prima sull'unione e l'intersezione numerabili di insiemi misurabili.

Intanto, si osserva che, per ogni $t \in T$, si ha

$$t\inigcap_{h\in\mathbb{N}}igcup_{k\in\mathbb{N}}igcap_{n>k}f_n^{-1}\Big(Big(C,rac{1}{h}ig)\Big)$$

 \iff per ogni $h\in\mathbb{N}$, esiste $k\in\mathbb{N}$ tale che, per ogni $n\geq k$, valga $dig(f_n(t),Cig)<rac{1}{h}$

$$\iff \lim_n dig(f_n(t),Cig)=0$$
 $dig(f(t),Cig)=0$

 $\lim_n d\big(f_n(t),C\big) = d\big(f(t),C\big)$, in quanto la successione $\{f_n(t)\}_{n\in\mathbb{N}}$ converge per ipotesi a f(t) e $d(\cdot,C)$ è continua per le osservazioni preliminari

Dunque, basta mostrare che $t \in f^{-1}(C)$ se e solo se d(f(t), C) = 0.

Se $t \in f^{-1}(C)$, si ha $f(t) \in C$; dunque si ha evidentemente d(f(t), C) = 0.

Viceversa, se d(f(t), C) = 0, essendo C chiuso e $\{f(t)\}$ compatto si ha $C \cap \{f(t)\} \neq \emptyset$, cioè $f(t) \in C$.

La dimostrazione è perciò conclusa.

Proposizione 22.2: Criterio della misurabilità e dell'immagine separabile

Sia $T \in \mathscr{L}_p$.

Sia (X, d) uno spazio metrico.

Sia $f: T \to X$ una funzione.

Sono equivalenti le seguenti affermazioni:

- 1. f è misurabile e f(T) è separabile (ammette cioè un sottoinsieme denso al più numerabile);
- 2. Esiste una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili, convergente uniformemente in T a f, tale che $f_n(T)$ sia al più numerabile per ogni $n \in \mathbb{N}$;
- 3. Esiste una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili, convergente puntualmente in T a f, tale che $f_n(T)$ sia al più numerabile per ogni $n \in \mathbb{N}$.

\bigcap Dimostrazione: 2. \Rightarrow 3.

Si supponga che esiste una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili convergente uniformemente in T a f, tale che $f_n(T)$ sia al più numerabile per ogni $n \in \mathbb{N}$;

la tesi segue immediatamente dal fatto che la convergenza uniforme implica quella puntuale, e dunque $\{f_n: T \to X\}_{n \in \mathbb{N}}$ convergente anche puntualmente in T a f.

\bigcap Dimostrazione: $3. \Rightarrow 1.$

Si supponga l'esistenza di una successione $\{f_n: T \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili convergente puntualmente in T a f, tale che $f_n(T)$ sia al più numerabile per ogni $n \in \mathbb{N}$.

f è misurabile per la [Proposizione 22.1], essendo $\{f_n: T \to X\}_{n \in \mathbb{N}}$ per ipotesi una successione di funzioni misurabili convergente puntualmente in T a f.

Resta da provare che f(T) è separabile.

Essendo $f_n(T)$ al più numerabile per ogni $n \in \mathbb{N}$ per ipotesi, si ha che anche $\bigcup_{n \in \mathbb{N}} f_n(T)$ è al più numerabile, essendo unione numerabile di insiemi al più numerabili;

allora, l'insieme $\overline{\bigcup_{n\in\mathbb{N}}f_n(T)}$ è separabile, in quanto chiusura di un insieme al più numerabile (che dunque ha come sottoinsieme denso al più numerabile proprio l'insieme di cui si fa la chiusura).

Si osserva infine che $f(T)\subseteq\overline{\bigcup_{n\in\mathbb{N}}f_n(T)};$ infatti, per ogni $t\in T$ si ha $f(t)=\lim_n f_n(t)$ per ipotesi, e $\{f_n(t)\}_{n\in\mathbb{N}}\subseteq\bigcup_{n\in\mathbb{N}}f_n(T).$

Allora, f(T) è anch'esso separabile per l'osservazione preliminare, e la tesi è acquisita.

\bigcirc Dimostrazione: 1. \Rightarrow 2.

Si supponga f misurabile e f(T) separabile.

Sia $\{x_k\}_{k\in\mathbb{N}}\subseteq f(T)$ una successione densa in f(T), che esiste per ipotesi.

Per ogni $n,k\in\mathbb{N}$, si ponga $A_{n,k}=f^{-1}\Big(Big(x_k,rac{1}{n}ig)\Big).$

 $A_{n,k}$ è misurabile per ogni $n,k\in\mathbb{N}$, essendo $B\!\left(x_k,rac{1}{n}
ight)$ aperto e f misurabile per ipotesi.

Per ogni $n, k \in \mathbb{N}$, si definisca ora

$$B_{n,k} = egin{cases} A_{n,1} \;\;, & n=1 \ A_{n,k} \smallsetminus igcup_{i=1}^{n-1} A_{n,i} \;\;, & n>1 \end{cases}$$

Si ha:

- $B_{n,k}$ misurabile per ogni $n,k \in \mathbb{N}$, essendo misurabili gli insiemi $A_{n,k}$;
- $B_{n,h} \cap B_{n,k} = \emptyset$ per ogni $n \in \mathbb{N}$ e per ogni $h,k \in \mathbb{N}$ con $h \neq k$;
- $oldsymbol{igcup} oldsymbol{igcup} oldsymbol{A}_{n,k} = oldsymbol{igcup} oldsymbol{igcup}_{k\in\mathbb{N}} B_{n,k} ext{ per ogni } n\in\mathbb{N}.$

Si osserva anche che $\bigcup_{k\in\mathbb{N}}A_{n,k}=T$ per ogni $n\in\mathbb{N};$

infatti, vale \subseteq in quanto $A_{n,k}\subseteq T$ per ogni $n,k\in\mathbb{N}$, essendo $A_{n,k}=f^{-1}\Big(Big(y_k,rac{1}{n}ig)\Big)$ per definizione.

Viceversa, vale \supseteq in quanto, fissato $t \in T$ e fissato $n \in \mathbb{N}$, per costruzione di $\{x_k\}_{k \in \mathbb{N}}$ esiste $k \in \mathbb{N}$ tale che $d(f(x), y_k) < \frac{1}{n}$, ossia $f(t) \in B(x_k, \frac{1}{n})$, cioè $t \in f^{-1}(B(x_k, \frac{1}{n})) = A_{n,k}$.

Da queste tre proprietà segue che la famiglia $\{B_{n,k} \mid k \in \mathbb{N}\}$ è una partizione di T per ogni $n \in \mathbb{N}$.

per ogni $n \in \mathbb{N}$ si definisca ora la funzione $f_n : T \to X$ ponendo $f_n(t) = x_k$, con $k \in \mathbb{N}$ tale che $t \in B_{n,k}$. Si hanno i seguenti fatti:

- f_n è ben definita per ogni $n \in \mathbb{N}$, essendo k unico in quanto $\{B_{n,k} \mid k \in \mathbb{N}\}$ è una partizione di T.
- f_n è misurabile per ogni $n \in \mathbb{N}$; infatti, addirittura per ogni $S \subseteq X$ si ha $f_n^{-1}(S) = \bigcup_{k \in \mathbb{N} \ : \ x_k \in S} B_{n,k}$ per definizione di f_n ; tale insieme è misurabile in quanto unione al più numerabile degli insiemi $B_{n,k}$, misurabili.
- $f_n(T)$ è al più numerabile per ogni $n \in \mathbb{N}$, essendo $f_n(T) \subseteq \{x_k\}_{k \in \mathbb{N}}$.
- La successione $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente a f; infatti, fissati $n\in\mathbb{N}$ e $t\in T$ e posto $k\in\mathbb{N}$ tale che $t\in B_{n,k}$, si ha $d\big(f_n(t),f(t)\big)=d(x_k,f(t))<\frac{1}{n}$, essendo $t\in B_{n,k}\subseteq A_{n,k}=f^{-1}\Big(B\big(x_k,\frac{1}{n}\big)\Big)$.

La successione $\{f_n\}_{n\in\mathbb{N}}$ soddisfa allora le proprietà richieste dal punto 2. ; la tesi è perciò acquisita.

Forte μ -misurabilità di funzioni

\mathcal{H} Definizione: Funzione fortemente μ -misurabile

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

f si dice fortemente μ -misurabile quando

esiste $T_0 \subseteq T$ con $\mu(T_0) = 0$, tale che $f_{|T \setminus T_0|}$ è misurabile e $f(T \setminus T_0)$ è separabile.

Q Osservazione

In virtù della [Proposizione 22.2], f è fortemente μ -misurabile se e solo se:

- esistono $T_0 \subseteq T$ con $\mu(T_0) = 0$, e una successione $\{f_n : T \setminus T_0 \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili, convergente uniformemente in $T \setminus T_0$ a $f_{|T \setminus T_0}$, tale che $f_n(T \setminus T_0)$ sia al più numerabile per ogni $n \in \mathbb{N}$;
- esistono $T_0 \subseteq T$ con $\mu(T_0) = 0$, e una successione $\{f_n : T \setminus T_0 \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili, convergente puntualmente in $T \setminus T_0$ a $f_{|T \setminus T_0|}$, tale che $f_n(T \setminus T_0)$ sia al più numerabile per ogni $n \in \mathbb{N}$.

[prop] Proposizione 22.3: Forte μ -misurabilità di una combinazione lineare Sia $T\in \mathscr{L}_p$. Sia $(X,\|\cdot\|)$ uno spazio di Banach.

Siano $f, g: T \to X$ due funzioni fortemente μ -misurabili.

Siano $\alpha, \beta \in \mathbb{R}$.

Allora, $\alpha f + \beta g$ è fortemente μ -misurabile.

Proposizione 22.4: Limite quasi ovunque di funzioni fortemente μ -misurabili è fortemente μ -misurabile

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $\{f_n: T \to X\}_{n \in \mathbb{N}}$ una successione di funzioni fortemente μ -misurabili da T in X.

Si supponga che $\{f_n\}_{n\in\mathbb{N}}$ converga quasi ovunque su T;

sia f:T o X limite puntuale quasi-ovunque di $\{f_n\}_{n\in\mathbb{N}}$.

f è fortemente μ -misurabile.

Dimostrazione

Per ipotesi di convergenza di $\{f_n: T \to X\}_{n \in \mathbb{N}}$ a f quasi ovunque su T, sia $T_0 \subseteq T$ con $\mu(T_0) = 0$, tale che $\{f_n\}_{n \in \mathbb{N}}$ converga puntualmente a f su $T \setminus T_0$.

Fissato $n \in \mathbb{N}$, f_n è fortemente μ -misurabile per ipotesi;

esiste dunque $T_n \subseteq T$ con $\mu(T_n) = 0$, tale che $(f_n)_{|T \setminus T_n}$ è misurabile e $f_n(T \setminus T_n)$ è separabile.

Sia ora $ilde{T} = T_0 \cup igcup_{n \in \mathbb{N}} T_n$.

Per numerabile sub-additività della misura di Lebesgue, si ha $\mu(\tilde{T}) \leq \mu(T_0) + \sum_{n \in \mathbb{N}} \mu(T_n) = 0$; dunque, ne viene che $\mu(\tilde{T}) = 0$.

Inoltre, $(f_n)_{|T \setminus \tilde{T}}$ è misurabile per ogni $n \in \mathbb{N}$;

infatti, per ogni $A \subseteq X$ aperto si ha $(f_n)_{|T \setminus \tilde{T}}^{-1}(A) = (f_n)_{|T \setminus T_n}^{-1}(A) \cap (T \setminus \tilde{T})$ misurabile, in quanto $(f_n)_{|T \setminus T_n}$ è misurabile per costruzione di T_n , e $T \setminus \tilde{T}$ è misurabile.

Ne viene che $f_{|T \smallsetminus \tilde{T}}$ è misurabile.

Infatti, poiché $\{f_n\}_{n\in\mathbb{N}}$ converge puntualmente a f in $T\setminus T_0$ per costruzione di T_0 , essendo $T_0\subseteq \tilde{T}$ si ha a maggior ragione che

 $\{f_n\}_{n\in\mathbb{N}}$ converge puntualmente a f su $T\smallsetminus ilde T$;

la misurabilità di $f_{|T \smallsetminus \tilde{T}}$ segue allora dalla [Proposizione 22.1].

Infine, $f(T \setminus \tilde{T})$ è separabile.

Infatti, $f_n(T \setminus T_n)$ è separabile per ogni $n \in \mathbb{N}$ per costruzione di T_n ; ne viene allora che

$$\bigcup_{n\in\mathbb{N}}f_n(T\smallsetminus T_n)$$
 è separabile

$$\Longrightarrow \qquad \overline{\bigcup_{n\in\mathbb{N}}f_n(T\smallsetminus T_n)}$$
 è separabile

 $f(T \setminus \tilde{T})$ è Infatti, $f(T \setminus \tilde{T}) \subseteq \overline{\bigcup_{n \in \mathbb{N}} f_n(T \setminus T_n)}$ in quanto $f(t) = \lim_n f_n(t)$ per ogni $t \in T \setminus \tilde{T}$, separabile dunque è separabile essendo sottoinsieme di un insieme separabile

Avendo dedotto che $\mu(\tilde{T})=0,$ $f_{|T\smallsetminus \tilde{T}}$ è misurabile e $f(T\smallsetminus \tilde{T})$ è separabile, la tesi è acquisita.

Essendo unione numerabile di insiemi separabili

In quanto chiusura di un insieme separabile

Teorema 22.5: Teorema di Lusin

Sia $T \in \mathscr{L}_p \operatorname{con} \mu(T) < +\infty$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

Sono equivalenti le seguenti affermazioni:

- 1. f è fortemente μ -misurabile;
- 2. Per ogni $\varepsilon > 0$, esiste $K \subseteq T$ compatto con $\mu(T \setminus K) < \varepsilon$, tale che $f_{|K|}$ sia continua.

Osservazioni preliminari

Sia $T \in \mathscr{L}_p$.

Sia X uno spazio topologico.

Sia $f: T \to X$.

Sia $\{T_n\}_{n\in\mathbb{N}}\subseteq\mathscr{L}_p$ una successione tale che $\bigcup_{n\in\mathbb{N}}T_n=T$, e $f_{|T_n}$ sia misurabile per ogni $n\in\mathbb{N}$.

Allora, f è misurabile.

Infatti, fissato $A \subseteq X$ aperto, si ha

$$f^{-1}(A)=f^{-1}(A)\cap T$$
 Essendo $f^{-1}(A)\subseteq T$
$$=f^{-1}(A)\cap\bigcup_{n\in\mathbb{N}}T_n \qquad \text{Essendo }\bigcup_{n\in\mathbb{N}}T_n=T$$

$$=\bigcup_{n\in\mathbb{N}}f^{-1}(A)\cap T_n$$

$$=\bigcup_{n\in\mathbb{N}}f^{-1}_{|T_n}(A) \qquad \text{Essendo }f^{-1}_{|T_n}(A)=f^{-1}(A)\cap T_n \text{ per ogni }n\in\mathbb{N}$$

L'ultimo insieme è misurabile, in quanto unione numerabile di insiemi che sono misurabili per ipotesi di misurabilità di $f_{|T_n}$ per ogni $n \in \mathbb{N}$.

\bigcap Dimostrazione: 2. \Rightarrow 1.

Si supponga che, per ogni $\varepsilon>0$, esista $K\subseteq T$ compatto con $\mu(T\smallsetminus K)<\varepsilon$, tale che $f_{|K}$ sia continua.

Per ogni $n \in \mathbb{N}$, sia allora $K_n \subseteq T$ compatto con $\mu(T \setminus K_n) < \frac{1}{n}$, tale che $f_{|K_n|}$ sia continua.

In quanto continua, $f_{|K_n}$ è allora anche misurabile, per ogni $n \in \mathbb{N}$.

Inoltre, sempre per ogni $n \in \mathbb{N}$ si ha $f(K_n)$ compatto per compattezza di K_n e continuità di $f_{|K_n|}$; allora, $f(K_n)$ è totalmente limitato essendo compatto in uno spazio metrico, dunque separabile.

Sia
$$T_0=T\smallsetminusigcup_{n\in\mathbb{N}}K_n=igcap_{n\in\mathbb{N}}(T\smallsetminus K_n)$$
; per ogni $n\in\mathbb{N}$ si ha

 $\mu(T_0) \leq \mu(T \setminus K_n)$ Per monotonia della misura di Lebesgue, in quanto $T_0 \subseteq T \setminus K_n$ $< rac{1}{n}$ Per costruzione di K_n

Ne segue che $\mu(T_0) = 0$.

 $f_{\mid T \setminus T_0}$ è misurabile.

Infatti, dalla definizione di T_0 segue che $T \setminus T_0 = \bigcup_{n \in \mathbb{N}} K_n$; avendo osservato prima che $f_{|K_n}$ è misurabile per ogni $n \in \mathbb{N}$, dall'osservazione preliminare viene la misurabilità di $f_{|T \setminus T_0|}$.

 $f(T \setminus T_0)$ è separabile.

Infatti, dalla definizione di T_0 segue che $T \setminus T_0 = \bigcup_{n \in \mathbb{N}} K_n$; si ha dunque

$$f(T \smallsetminus T_0) = f\left(igcup_{n \in \mathbb{N}} K_n
ight) \subseteq igcup_{n \in \mathbb{N}} f(K_n).$$

Avendo osservato prima che $f(K_n)$ è separabile per ogni $n \in \mathbb{N}$, ne segue che $\bigcup_{n \in \mathbb{N}} f(K_n)$ è separabile in quanto unione numerabile di insiemi separabili, e dunque $f(T \setminus T_0)$ è separabile in quanto sottoinsieme di un insieme separabile.

Avendo dedotto che $\mu(T_0)=0$, $f_{|T\smallsetminus T_0|}$ è misurabile e $f(T\smallsetminus T_0)$ è separabile, la tesi è acquisita.

_

\triangleright Dimostrazione: 1. \Rightarrow 2.

Si supponga f fortemente μ -misurabile.

Ciò significa che esistono $T_0 \subseteq T$ con $\mu(T_0) = 0$, e una successione $\{f_n : T \setminus T_0 \to X\}_{n \in \mathbb{N}}$ di funzioni misurabili, convergente

uniformemente in $T \setminus I_0$ a $J_{|T \setminus T_0}$, tale the $J_n(T \setminus I_0)$ sia al più numerabile per ogni $n \in \mathbb{N}$.

Essendo al più numerabile, per ogni $n \in \mathbb{N}$ si ponga allora $f_n(T \setminus T_0) = \{\mathbf{x}_{n,k}\}_{k \in \mathbb{N}}$.

Si fissi adesso $\varepsilon > 0$.

Si fissi anche $n \in \mathbb{N}$.

Ricordando che $\mu(T) < +\infty$ per ipotesi, si osserva che vale

$$\bigcup_{k\in\mathbb{N}} f_n^{-1}\{\mathbf{x}_{n,k}\} = T \setminus T_0 \qquad \text{In quanto } \{\mathbf{x}_{n,k}\}_{k\in\mathbb{N}} = f_n(T \setminus T_0)$$

$$\Longrightarrow \lim_r \mu\left(\bigcup_{k=1}^r f^{-1}\{\mathbf{x}_{n,k}\}\right) = \mu(T \setminus T_0) \qquad \text{Per continuità verso l'alto della misura di Lebesgue}$$

$$\Longrightarrow \lim_r \mu\left((T \setminus T_0) \setminus \bigcup_{k=1}^r f_n^{-1}\{\mathbf{x}_k\}\right) = 0 \qquad \text{Per sottrattività della misura di Lebesgue}$$

Esiste allora
$$r_n\in\mathbb{N}$$
 tale che $\mu\left((T\smallsetminus T_0)\smallsetminusigcup_{k=1}^{r_n}f_n^{-1}\{\mathbf{x}_{n,k}\}
ight)<rac{arepsilon}{2^{n+1}}.$

Per ogni $k\in\{1,\ldots,r_n\}$, sia $H_{n,k}\subseteq f_n^{-1}\{\mathbf{x}_{n,k}\}$ compatto, tale che $\mu(f_n^{-1}\{\mathbf{x}_{n,k}\}\smallsetminus H_{n,k})<rac{arepsilon}{2^{n+1}r_n}.$

Si ha che:

• Tali $H_{n,k}$ esistono;

infatti, per definizione di μ si ha che $\mu(f_n^{-1}\{\mathbf{x}_{n,k}\}) = \sup\{H \subseteq f_n^{-1}\{\mathbf{x}_{n,k}\} : H \text{ chiuso e limitato}\};$ dunque, esiste $H_{n,k} \subseteq f_n^{-1}\{\mathbf{x}_{n,k}\}$ chiuso e limitato, cioè compatto essendo sottoinisieme di \mathbb{R}^p , tale che $\mu(f_n^{-1}\{\mathbf{x}_{n,k}\}) < \mu(H_{n,k}) + \frac{\varepsilon}{2^{n+1}r_n}$.

Segue allora dalla sottrattività di μ che $\mu(f_n^{-1}\{\mathbf{x}_{n,k}\} \setminus H_{n,k}) < \frac{\varepsilon}{2^{n+1}r}$.

•
$$H_{n,i}\cap H_{n,j}=arnothing$$
 per ogni $i,j\in\{1,\ldots,r_n\}$ con $i
eq j;$

infatti, si ha
$$H_{n,i}\subseteq f_n^{-1}\{\mathbf{x}_{n,i}\}$$
 per ogni $i\in\{1,\ldots,r_n\}$, e si ha $f_n^{-1}\{\mathbf{x}_{n,i}\}\cap f^{-1}\{\mathbf{x}_{n,j}\}=arnothing$ per ogni $i,j\in\{1,\ldots,r_n\}$ con $i\neq j$.

Sempre per ogni $k \in \{1, \ldots, r_n\}$, si definisca la funzione $\varphi_{n,k}: T \to [0;1]$ ponendo

$$arphi_{n,k}(t)=rac{digg(t,igcup_{1\leq i\leq r_n}H_{n,i}igg)}{d(t,\!H_{n,k})\!+\!digg(t,igcup_{1\leq i\leq r_n}H_{n,i}igg)} ext{ per ogni } t\in T; ext{ si ha che:}$$

• $\varphi_{n,k}$ è ben definita per ogni $k \in \{1, \ldots, r_n\};$ infatti, si ha evidentemente $\varphi_{n,k} \in [0;1]$.

Il denominatore è sempre strettamente positivo in quanto, se $d(t, H_{n,k}) = 0$, essendo H_k chiuso in quanto compatto si ha $t \in H_{n,k}$, dunque $t \notin \bigcup H_{n,i}$ in quanto gli $H_{n,i}$ sono a due a due disgiunti per quanto osservato prima, dunque

$$d\left(t,igcup_{\substack{1\leq i\leq r_n\ i
eq k}}H_i
ight)>0$$
 essendo $igcup_{\substack{1\leq i\leq r_n\ i
eq k}}H_i$ chiuso in quanto unione finita di compatti, che sono chiusi.

• $\varphi_{n,k}$ è continua per ogni $k \in \{1,\ldots,r_n\}$, essendo la distanza da un fissato insieme continua.

Si definisca ora la funzione $\psi_n: T \to X$ ponendo

$$\psi_n(t) = \sum\limits_{k=1}^{r_n} arphi_{n,k}(t) \, \mathbf{x}_{n,k}$$
 per ogni $t \in T$.

Si ha che:

•
$$\psi_n$$
 è continua, evidentemente;
• $\psi_n(t)=f_n(t)$ per ogni $t\in igcup_{k=1}^{r_n}H_{n,k}.$

Infatti, fissato $t \in \bigcup_{k=1}^{r_n}$, per quanto osservato prima sugli $H_{n,k}$ esiste un unico $k_0 \in \{1,\ldots,r_n\}$ tale che $t \in H_{n,k_0}$.

Ricordando che gli $H_{n,k}$ chiusi in quanto compatti, e che la distanza di un punto da un insieme chiuso nulla se e solo se tale punto vi appartiene, si ha allora che $\varphi_{n,k_0}=1$ e $\varphi_{n,k}=0$ per ogni $k\in\{1,\ldots,r_n\}$ con $k\neq k_0$.

Dunque, $\psi_n(t) = \mathbf{x}_{n,k_0}$;

d'altra parte, si ha $f_n(t)=\mathbf{x}_{n,k_0}$ in quanto $t\in H_{n,k_0}\in H_{n,k_0}\subseteq f^{-1}\{\mathbf{x}_{n,k_0}\}$ per costruzione.

Si ponga adesso $K_n = \bigcup_{k=1}^{r_n} H_{n,k}$; si ha che:

- K_n è compatto, essendo un sottoinsieme di \mathbb{R}^p chiuso e limitato in quanto unione finita degli $H_{n,k}$, chiusi e limitati in quanto compatti;
- $(f_n)_{|K_n}$ è continua, essendo pari a $(\psi_n)_{|K_n}$ ed essendo questa continua, per quanto osservato prima su ψ_n ;

Inoltre, si ha

$$\mu\left(\bigcup_{k=1}^{r_n} f_n^{-1}\{\mathbf{x}_{n,k}\} \setminus K_n\right)$$

$$\leq \sum_{k=1}^{r_n} \mu(f_n^{-1}\{\mathbf{x}_{n,k}\} \setminus K_n) \quad \text{Per finita sub-additività di } \mu$$

$$\leq \sum_{k=1}^{r_n} \mu(f_n^{-1}\{\mathbf{x}_{n,k}\} \setminus H_{n,k}) \quad \text{Per monotonia di } \mu, \text{ essendo } K_n \subseteq H_{n,k} \text{ per ogni } k \in \{1, \dots, r_n\} \text{ per costruzione di } K_n$$

$$< \sum_{k=1}^{r_n} \frac{\varepsilon}{2^{n+1}r_n} \quad \text{Per costruzione degli } H_{n,k}$$

$$= \frac{\varepsilon}{2^{n+1}}$$

da cui segue che

$$\muig((T \setminus T_0) \setminus K_nig)$$

$$\leq \mu\left((T \setminus T_0) \setminus igcup_n^{r_n} f_n^{-1}\{\mathbf{x}_{n,k}\}\right) + \mu\left(igcup_n^{r_n} f_n^{-1}\{\mathbf{x}_{n,k}\} \setminus K_n
ight)$$
 Per sub-additività di μ , in quanto

$$(T \setminus T_0) \setminus K_n = \left((T \setminus T_0) \setminus igcup_{k=1}^{'n} f_n^{-1} \{ \mathbf{x}_{n,k} \}
ight) \cup \left(igcup_{k=1}^{'n} f_n^{-1} \{ \mathbf{x}_{n,k} \}
ight)$$

$$<rac{arepsilon}{2^{n+1}}+rac{arepsilon}{2^{n+1}}=rac{arepsilon}{2^n}$$

Per costruzione di r_n , e per la catena di disuguaglianze appena ott

Si ponga infine $K = \bigcap_{n \in \mathbb{N}} K_n$; esso è compatto in quanto intersezione di compatti.

Si ha

$$\mu(T \setminus K) = \mu((T \setminus K) \setminus T_0)$$
 In quanto T_0 ha misura nulla per costruzione

$$=\muig((T\smallsetminus T_0)\smallsetminus Kig)$$

Facendo uso dell'uguaglianza insiemistica
$$(A \setminus B) \setminus C = (A \setminus C) \setminus B$$

$$=\mu\left((T\smallsetminus T_0)\smallsetminusigcap_{n\in\mathbb{N}}K_n
ight)$$

Per definizione di
$$K$$

$$=\mu\left(igcup_{n\in\mathbb{N}}(T\smallsetminus T_0)\smallsetminus K_n
ight)$$

In quanto
$$igcup_{n\in\mathbb{N}}(T\smallsetminus T_0)\smallsetminus K_n=(T\smallsetminus T_0)\smallsetminusigcap_{n\in\mathbb{N}}K_n$$

$$\leq \sum\limits_{n=1}^{+\infty} \muig((T \smallsetminus T_0) \smallsetminus K_nig)$$

$$<\sum_{n\in\mathbb{N}}rac{arepsilon}{2^n}$$

Per confronto delle serie numeriche, essendo $\mu \big(T \setminus (T_0 \cup K_n) \big) < \frac{\varepsilon}{2^n}$ per ogni $n \in \mathbb{N}$ per quanto osservato prima

 $=\varepsilon$

Dall'espressione della somma di una serie geometrica

Inoltre, $f_{|K}$ è continua.

Infatti, $(f_n)_{|K_n}$ è continua per ogni $n \in \mathbb{N}$, per quanto osservato prima sui K_n ;

allora, anche $(f_n)_{|K}$ è continua per ogni $n \in \mathbb{N}$, avendo $K \subseteq K_n$ per ogni $n \in \mathbb{N}$ dalla definizione di K.

Dal fatto che $\{f_n\}_{n\in\mathbb{N}}$ converge uniformemente a f per costruzione, segue quindi la continuità di $f_{|K}$, essendo limite uniforme di una successione di funzioni continue.

In corrispondenza a ε , il compatto K soddisfa perciò le proprietà richieste nella tesi, che dunque risulta acquisita.

Proposizione 22.6: Criterio di forte μ -misurabilità tramite la topologia debole

Sia $T \in \mathscr{L}_p$.

Sia $(X, \|\cdot\|)$ uno spazio di Banach.

Sia $f: T \to X$ una funzione.

Sono equivalenti le seguenti affermazioni:

- 1. f è fortemente μ -misurabile;
- 2. Esiste $T_0 \subseteq T$ con $\mu(T_0) = 0$, tale che $f_{|T \setminus T_0|}$ sia misurabile rispetto alla topologia debole, e $f(T \setminus T_0)$ sia separabile.

Dimostrazione

Sia f fortemente μ -misurabile.

Cioè, esiste $T_0 \subseteq T$ con $\mu(T_0) = 0$, tale che $f_{|T \setminus T_0|}$ sia misurabile rispetto alla topologia forte, e $f(T \setminus T_0)$ sia separabile.

Allora, $f_{|T \setminus T_0}$ è misurabile anche rispetto alla topologia debole, essendo questa meno fine di quella forte.

Dunque, l'implicazione $1. \Rightarrow 2.$ è acquisita.

Si provi ora l'implicazione $2. \Rightarrow 1..$

Si supponga quindi l'esistenza di $T_0 \subseteq T$ con $\mu(T_0) = 0$, per cui $f_{|T \setminus T_0|}$ è misurabile rispetto alla topologia debole, e $f(T \setminus T_0)$ è separabile.

Sia allora $D \subseteq f(T \setminus T_0)$ un insieme denso in $f(T \setminus T_0)$, al più numerabile, che esiste per ipotesi.

Sia $A\subseteq X$ aperto, e sia $V=\{(\mathbf{x},r)\in D\times \mathbb{Q}^+:\overline{B}(\mathbf{x},r)\subseteq A\}.$

Si osserva che $igcup_{(\mathbf{x},r)\in V}ig(\overline{B}(\mathbf{x},r)\cap f(T\smallsetminus T_0)ig)=A\cap f(T\smallsetminus T_0);$

infatti, vale \subseteq in quanto $\overline{B}(\mathbf{x},r)\subseteq A$ per ogni $(\mathbf{x},r)\in V$, per definizione di V.

Viceversa, si fissi $\mathbf{x}_0 \in A \cap f(T \setminus T_0)$.

Essendo A aperto e $\mathbf{x}_0 \in A$, esiste $r_0 \in \mathbb{Q}^+$ tale che $\overline{B}(\mathbf{x}_0, r_0) \subseteq A$;

inoltre, essendo $\mathbf{x}_0 \in f(T \setminus T_0)$, per costruzione di D si ha $D \cap B\left(\mathbf{x}_0, \frac{r_0}{2}\right) \neq \varnothing$.

Sia dunque $\tilde{\mathbf{x}} \in D \cap B\left(\mathbf{x}_0, \frac{r_0}{2}\right)$;

si ha allora $\mathbf{x}_0 \in B\left(\tilde{\mathbf{x}}, \frac{r_0}{2}\right) \subseteq \overline{B}\left(\tilde{\mathbf{x}}, \frac{r_0}{2}\right)$, e al contempo si osserva che $B\left(\tilde{\mathbf{x}}, \frac{r_0}{2}\right) \subseteq \overline{B}(\mathbf{x}_0, r_0)$ in quanto $\|\mathbf{x} - \tilde{\mathbf{x}}\| < \frac{r_0}{2}$ implica $\|x - x_0\| \le \underbrace{\|\mathbf{x} - \tilde{\mathbf{x}}\|}_{\leq r_0/2} + \underbrace{\|\tilde{\mathbf{x}} - \mathbf{x}_0\|}_{\leq r_0/2} < r_0$.

Allora, ne viene che $\left(\tilde{\mathbf{x}}, \frac{r_0}{2}\right) \in V$, e $\mathbf{x}_0 \in \overline{B}\left(\tilde{\mathbf{x}}, \frac{r_0}{2}\right)$; essendo anche $\mathbf{x}_0 \in f(T \setminus T_0)$, segue l'inclusione \supseteq .

Dall'uguaglianza insiemistica appena acquisita segue allora che l'insieme $f_{|T \setminus T_0}^{-1}(A) = \{t \in T \setminus T_0 : f(t) \in A\}$ è pari a

$$igcup_{(\mathbf{x},r)\in V}\{t\in T\smallsetminus T_0: f(t)\in \overline{B}(\mathbf{x},r)\}=igcup_{(\mathbf{x},r)\in V}f_{|T\smallsetminus T_0}^{-1}ig(\overline{B}(\mathbf{x}),rig).$$

Essendo $\overline{B}(\mathbf{x},r)$ chiuso e convesso, esso è debolmente chiuso per la [Proposizione 8.3], per ogni $(\mathbf{x},r) \in V$;

allora, $f_{|T \setminus T_0}^{-1}(\overline{B}(\mathbf{x}), r)$ è misurabile per ogni $(\mathbf{x}, r) \in V$ per ipotesi, e dunque $\bigcup_{(\mathbf{x}, r) \in V} f_{|T \setminus T_0}^{-1}(\overline{B}(\mathbf{x}), r)$ è misurabile in quanto unione al

più numerabile (essendo V numerabile) di insiemi misurabili.

Essendo $\bigcup_{(\mathbf{x},r)\in V} f_{|T\smallsetminus T_0}^{-1}ig(\overline{B}(\mathbf{x}),rig) = f_{|T\smallsetminus T_0}^{-1}(A)$, ne segue che $f_{|T\smallsetminus T_0}^{-1}(A)$ è misurabile.

Dall'aribrarietà di $A \subseteq X$ aperto viene la misurabilità di $f_{|T \setminus T_0}$.

La tesi è allora acquisita.