FR2771103

Publication Title:

Isolated DNA encoding sodium channel of the nervous system

Abstract:

Isolated DNA sequences (I) of 5908 bp (1, from rat) and 856 bp (3, human). Independent claims are also included for the following: (a) expression vector containing (I); (b) host cell transformed with this vector; (c) recombinant DNA (Ia) including a sequence derived from (I); (d) sodium channel protein (II) encoded by (I) or its allelic variants; (e) use of (II) for identifying inhibitors of sodium channel proteins that are resistant to tetrodotoxin (TTX); (f) mono- or poly-clonal antibodies (Ab) directed against (II); and (g) diagnostic kits containing (Ia) able to hybridize specifically to (I).

Data supplied from the esp@cenet database - http://ep.espacenet.com

BEST AVAILABLE COPY

ட

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) Nº de publication :

(à n'utiliser que pour les

commandes de reproduction)

98 14551

2 771 103

(21) Nº d'enregistrement national :

Int Cl6: C 12 N 15/12, C 12 N 5/10, 15/85, C 07 K 14/47, 16/ 18, C 12 Q 1/68

(12)

DEMANDE DE BREVET D'INVENTION

A1

- (22) Date de dépôt : 19.11.98.
- (30) Priorité: 20.11.97 US 00066225.
- (71) Demandeur(s): F. HOFFMANN-LA ROCHE AG AKTIENGESELLSCHAFT - CH.
- Date de mise à la disposition du public de la demande: 21.05.99 Bulletin 99/20.
- Liste des documents cités dans le rapport de recherche préliminaire : Ce dernier n'a pas été établi à la date de publication de la demande.
- (60) Références à d'autres documents nationaux apparentés:
- (2) Inventeur(s): DIETRICH PAUL SHARTZER, FISH LINDA MARIE, KHARE REENA, RABERT DOUGLAS KENNETH et SANGAMESWARAN LAKSHMI.
- (73) Titulaire(s) :
- (74) Mandataire(s): REGIMBEAU.
- SEQUENCE D'ADN CODANT POUR UNE PROTEINE DE CANAL SODIQUE, SA PRODUCTION ET SON UTILISATION.
- (57) L'invention décrit l'isolement d'une nouvelle séquence d'acide nucléique codant pour un canal sodique mammalien dépendant du potentiel, de préférence résistant à la tétrodo-toxine. Elle décrit également des produits polypeptidiques d'expression recombinante de ces séquences, des vecteurs d'expression comprenant la séquence d'ADN et des cellules d'expression comprenant la sequence d'ADN et des ceilles hôtes transformées par ces vecteurs d'expression. D'autres aspects de la présente invention sont des peptides dont les séquences sont basées sur les séquences d'aminoacides déduites de ces séquences d'ADN, des anticorps spécifiques de ces protéines et de ces peptides, des procédés pour la détection et la détermination quantitative de telles pour la détection et la détermination quantitative de telles pour la détection et la détermination quantitative de telles pour la determination quantitative de telles pour la determination quantitative de t protéines et d'acides nucléiques correspondants. Un autre aspect de l'invention est l'utilisation de ce canal sodique dépendant du potentiel, de préférence résistant à la tétrodotoxine, comme cible thérapeutique pour des composés.

Séquence d'ADN codant pour une protéine de canal sodique, sa production et son utilisation

10

25

La présente invention concerne d'une façon générale des protéines de canaux sodiques et plus particulièrement 5 une nouvelle séquence d'acide nucléique codant pour une sous-unité α mammalienne d'une protéine de canal sodique de tissu nerveux, dépendant du potentiel, de préférence résistante à la tétrodotoxine. La présente invention concerne en outre sa production par la technique de recombinaison.

L'unité de base d'information transmise d'une partie du système nerveux à une autre est un seul potentiel d'action ou influx nerveux. La "ligne de transmission" pour ces influx est l'axone ou fibre nerveuse. L'excitabilité électrique de la membrane du nerf s'est avérée 15 dépendre du système de perméabilité ionique sensible à la tension de la membrane, qui lui permet d'utiliser l'énerque emmagasinée dans des gradients de concentration ionique. L'activité électrique du nerf est déclenchée par une dépolarisation de la membrane, qui ouvre à travers la 20 membrane des canaux qui sont hautement sélectifs pour les ions sodium, qui sont ensuite entraînés vers l'intérieur par le gradient électrochimique. Parmi les nombreux canaux ioniques, le canal sodique dépendant du potentiel ou sensible au potentiel est l'un des plus étudiés. Il s'agit

d'une protéine transmembranaire qui est essentielle pour la production de potentiels d'action dans des cellules excitables. Un excellent article de synthèse sur les canaux ioniques est donné par Catterall, TINS 16(12), 500-506 (1993).

Les ADNc pour plusieurs canaux de Na ont été clonés et séquencés. Numa et coll., Annals of the New York Academy of Sciences 479, 338-355 (1986), décrivent un ADNC provenant de l'organe électrique de l'anguille et deux ADNc différents provenant du cerveau de rat. Rogart, US-A-5 380 836, décrit un ADNc provenant de tissu cardiaque de rat; voir également Rogart et coll., Proc. Natl. Acad. Sci. 86, 8170-8174 (1989). Les séquences de PN1 et de ses orthologues chez l'homme (hNE) et le lapin (Na[†]) 15 ont été publiées (voir par exemple Klugbauer et coll., EMBO J. 14, 1084-1090 (1995) et Belcher et coll., Proc. Natl. Acad. Sci. USA 923, 11034-11038 (1995)]. La séquence de PN1 de rat cloné à partir de ganglions de la racine dorsale (GRD) et son expression de fonction ont été 20 décrites [voir par exemple Sangameswaran et coll., J. Biol. Chem. 272, 14805-14809 (1997)]. D'autres canaux sodiques clonés comprennent les types I et II (Noda et coll., Nature 320, 188-192 (1986)], IIa [Auld et coll., Neuron 1, 449-461 (1988)] et III [Kayano et coll., FEBS Lett. 228, 187-194 (1988)] de cerveau de rat, les canaux sodiques de muscle squelettique (SkM1) [Trimmer et coll., Neuron 3, 33-49 (1989)], NaCh6 de rat [Schaller et coll., J. Neurosci. 15, 3231-3242 (1995)], le canal sodique type III de nerf périphérique (rPN3) (Sangameswaran et 30 coll., J. Biol. Chem. 271, 5953-5956 (1996), également dénommé SNS, Akopian et coll., Nature 379, 257-262 (1996)), le canal atypique de rat [Felipe et coll., J. Biol. Chem. 269, 30125-30131 (1994)] et le canal sodique glial de rat [Akopian et coll., FEBS Lett. 400, 183-187 35 (1997)].

_ 3 -

Ces études ont montré que la séquence d'aminoacides du canal sodique avait été conservée pendant une lonque période d'évolution. Ces études ont également révélé que le canal était un seul polypeptide contenant quatre séquences répétées internes, ou domaines homologues (domaines I-IV) ayant des séquences d'aminoacides similaires. Chaque domaine se replie en six segments transmembranaires hélicoidaux et prédits: cinq sont des segments hydrophobes et un est un segment hautement chargé, 10 comportant de nombreux résidus lysine et arginine chargés positivement. Ce segment hautement chargé est le quatrième segment transmembranaire dans chaque domaine (le segment S4) et est susceptible d'être impliqué dans l'activation par le potentiel. Les chaînes latérales chargées positivement sur le segment S4 sont susceptibles de s'apparier avec les chaînes latérales chargées négativement sur les cinq autres segments, de sorte que la dépolarisation de la membrane peut déplacer la position d'une hélice par rapport à l'autre, ce qui ouvre le canal. Des sous-20 unités accessoires peuvent modifier la fonction du canal.

15

25

35

On a découvert l'utilité thérapeutique de matériels recombinants issus de l'ADN des nombreux canaux sodiques. Par exemple, US-A-5 132 296 (Cherksey) décrit des canaux sodiques purifiés qui se sont révélés utiles en tant qu'outils diagnostiques et thérapeutiques.

Des isoformes de canaux sodiques sont divisées en "sous-familles". On utilise le terme "isoforme" pour désigner des protéines de canaux sodiques distinctes mais étroitement apparentées, c'est-à-dire celles ayant une homologie d'aminoacides d'environ 60-80 %. Ces dernières manifestent également une forte homologie de fonctions. On utilise le terme "sous-familles" pour désigner des canaux sodiques distincts qui ont une homologie d'aminoacides d'environ 80-95 %. On utilise des combinaisons de plusieurs facteurs pour déterminer les distinctions au sein

- 4 -

d'une sous-famille, par exemple, la rapidité d'un canal, la localisation chromosomique, les données d'expression, l'homologie avec d'autres canaux au sein d'une même espèce, et l'homologie avec un canal de la même sous-famille entre des espèces différentes. Une autre considération est une affinité pour la tétrodotoxine ("TTX"). La TTX est une toxine très puissante provenant du tétrodon, ou poisson-globe, qui bloque la transmission des influx nerveux le long des axones et dans les membranes excitables des fibres nerveuses. La TTX se fixe au canal sodique et arrête le flux des ions sodium.

Des études utilisant la TTX comme sonde ont éclairé beaucoup le mécanisme et la structure des canaux sodiques. Il existe trois sous-types de canaux sodiques qui sont définis par l'affinité pour la TTX, qui peut être mesurée par les valeurs de la CI_{50} : canaux sodiques sensibles à la TTX ($\text{CI}_{50} = 1\text{--}30 \text{ nM}$), canaux sodiques insensibles à la TTX ($\text{CI}_{50} = 1\text{--}5 \ \mu\text{M}$) et canaux sodiques résistants à la TTX ($\text{CI}_{50} \ge 50 \ \mu\text{M}$).

Les potentiels d'action insensibles à la TTX ont été étudiés d'abord dans le muscle squelettique de rat (Redfern et coll., Acta Physiol. Scand. 82, 70-78 (1971)]. Ces potentiels d'action ont été ensuite décrits dans d'autres tissus mammaliens, y compris le muscle squelettique mammalien de nouveau-né, le muscle cardiaque mammalien, des cellules de ganglions de la racine dorsale de souris in vitro et en culture, des cellules L6 et de muscle squelettique mammalien en culture [voir Rogart, Ann. Rev. Physiol. 43, 711-725 (1980)].

Les neurones des ganglions de la racine dorsale de rat possèdent à la fois des courants de canaux sodiques sensibles à la TTX (CI₅₀ ~ 0,3 nM) et des courants de canaux sodiques résistants à la TTX (CI₅₀ ~ 100 μM), comme décrit par Roy et coll. dans J. Neurosci. 12, 2104-2111
(1992)]. On a également mesuré des courants sodiques

résistants à la TTX dans des ganglions pétreux et des ganglions plexiformes de rat [voir Ikeda et coll., J. Neuro-physiol. 55, 527-539 (1986) et Stea et coll., Neurosci. 47, 727-736 (1992). Les électrophysiologistes pensent qu'un autre canal sodique résistant à la TTX reste à découvrir.

Bien que l'on connaisse des ADNc provenant de cerveau, de coeur et de muscle squelettique de rat, l'identification et l'isolement d'ADNc à partir de tissu nerveux sensitif périphérique, tel que des ganglions de la racine dorsale, ont été gênés par la difficulté du travail avec un tel tissu.

10

20

25

30

35

La présente invention fournit de nouvelles séquences purifiées et isolées d'acide nucléique, codant pour des protéines de canaux sodiques de tissu nerveux, de préférence résistantes à la TTX, qui sont fortement exprimées dans des ganglions plexiformes et des ganglions de la racine dorsale de l'adulte, moins fortement exprimées dans le cerveau, la moelle épinière et les ganglions cervicaux supérieurs, et ne sont pas exprimées dans le nerf sciatique, le coeur ou le muscle squelettique. Sous des formes actuellement préférées, les nouvelles séquences d'ADN comprennent des séquences d'ADNc codant pour la protéine de canal sodique de tissu nerveux de rat. Un aspect de la présente invention est la sous-unité α de cette protéine de canal sodique.

L'invention a également pour objet l'ADN, l'ADNc et l'ARNm issus des séquences d'acide nucléique de l'invention, et l'ARNc issu de l'ARNm. En particulier, deux séquences d'ADNc ensemble codent pour le canal sodique entier de tissu nerveux de rat.

La présente invention englobe également d'autres formes d'ADN, telles que de l'ADN génomique, de l'ADN préparé par synthèse chimique partielle ou totale à partir de nucléotides, et de l'ADN comportant des délétions ou des

mutations.

15

30

35

Encore un autre aspect de l'invention est la nouvelle protéine de canal sodique de rat, résistante à la TTX, et des fragments de celle-ci, codés par l'ADN de la présente invention.

Un autre aspect de la présente invention consiste en des polynucléotides et oligonucléotides recombinants comprenant une séquence d'acide nucléique issue de la séquence d'ADN de la présente invention.

Un autre aspect de l'invention est un procédé de stabilisation de l'ADNc entier qui code pour la séquence de la protéine de l'invention.

Un autre aspect de l'invention comprend des vecteurs d'expression comprenant l'ADN de l'invention, des cellules hôtes transformées ou transfectées par ces vecteurs et une banque d'ADNc de ces cellules hôtes.

La présente invention englobe également un essai pour la détection d'inhibiteurs de la protéine de canal potassique, comprenant la mise en contact d'un composé, soupçonné être un inhibiteur, avec un canal sodique exprimé, et la mesure de l'activité du canal sodique.

On fournit en outre un procédé d'inhibition de l'activité du canal sodique résistant à la TTX, comprenant l'administration d'une quantité efficace d'un composé ayant une valeur CI_{50} de 10 μM ou moins.

De plus, on fournit des procédés d'utilisation de l'ADN pour la production d'anticorps monoclonaux et d'anticorps polyclonaux, destinés à être utilisés en tant que cibles moléculaires pour la découverte de médicaments, en tant que marqueurs hautement spécifiques d'antigènes spécifiques, comme molécules détectrices, dans des essais diagnostiques, et pour des utilisations thérapeutiques, telles que le soulagement de la douleur, en tant que sonde du canal PN5 dans un autre tissu mammalien, dans la conception d'agents thérapeutiques et dans le criblage de

thérapies.

15

20

25

La présente invention est illustrée à l'aide des dessins ci-annexés. Sur ces dessins:

Les figures 1A-E représentent la séquence native d'ADNc de 5 908 nucléotides codant pour le canal sodique type 5 ("PN5") de rat (SEQ ID n° 1), issu de deux clones d'ADNc chevauchants, désignés par 26.2 et 1.18.

Les figures 2A-F représentent la séquence d'aminoacides déduite de PN5 (SEQ ID n° 2, représentée dans le 10 code d'aminoacides à trois lettres). Les figures 2G-H, représentant la séquence d'aminoacides déduite de PN5 dans le code d'aminoacides à une seule lettre, montrent également les domaines homologues (I-IV); les segments transmembranaires (S1-S6) supposés; l'aminoacide conférant la résistance à TTX (*); les sites de N-glycosylation (*); le site de phosphorylation à la protéine kinase A (PKA) dépendant de cAMP (o) et le codon de terminaison (*).

La figure 3A représente une séquence de 856 paires de bases pour le PN5 humain (SEQ ID n° 3). La figure 3B représente la comparaison de séquence d'aminoacides du fragment hPN5 avec le PN5 de rat.

La figure 4 représente la séquence de la nouvelle sonde de domaine IV de canal sodique (SEQ ID nº 4).

Les figures 5A-E représentent la séquence de 5 334 nucléotides modifiée pour la stabilité et l'expression (SEO ID nº 5). Les nucléotides 24 à 5 518 constituent la région de 5 295 pb codant pour une protéine à 1 765 aminoacides.

La figure 6 représente la carte de clonage de PN5. 30 La présente invention concerne une séquence d'acide nucléique purifiée et isolée codant pour une nouvelle protéine de canal sodique mammalienne, de préférence résistante à la TTX. L'expression "ADN purifié et isolé" signifie de l'ADN qui est essentiellement exempt, c'est-à-dire contient moins d'environ 30 %, de préférence moins d'envi-

ron 10 %, et encore mieux de préférence moins d'environ 1 %, de l'ADN auquel est associé à l'état naturel l'ADN d'intérêt. Les techniques pour déterminer la pureté sont bien connues dans le domaine et comprennent, par exemple, la cartographie de restriction, l'électrophorèse en gel d'agarose et la centrifugation en gradient de CsCl.

Le terme "ADN" est destiné à comprendre l'ADNc, ou ADN complémentaire, qui consiste en séquences d'ADN simple brin ou double brin, produites par transcription inverse 10 d'ARNm isolé à partir d'une cellule donneuse ou par synthèse chimique. Par exemple, le traitement d'ARNm par une transcriptase inverse, telle que la transcriptase inverse d'AMV ou la transcriptase inverse de M-MuLV, en présence d'une amorce oligonucléotidique, donnera un duplex ARN-ADN pouvant être traité par de la RNase H, de l'ADN polymérase et de l'ADN ligase, pour donner de l'ADNc double brin. Si on le désire, l'ADNc double brin peut être dénaturé par des techniques classiques, telles qu'un chauffage, pour donner de l'ADNc simple brin. Le terme "ADNc" comprend de 20 l'ADN qui est une copie complémentaire de l'ARNm existant dans la nature, ainsi que des copies complémentaires de variants de l'ARNm existant dans la nature, qui ont la même activité biologique. Les variants comprennent, par exemple, des insertions, des délétions, des séquences à codons dégénérés et des allèles.

Un "ARNc" correspondant à l'ARNm transcrit à partir d'une séquence d'ADN codant pour la sous-unité α d'une nouvelle protéine de canal sodique, de préférence résistante à la TTX, est envisagé par la présente invention. Le terme "ARNC" désigne un ARN qui est une copie de l'ARNm trancrit par une cellule.

25

30

35

En particulier, l'invention englobe de l'ADN comportant les versions natives des séquences nucléotidiques indiquées sur les figures 1A-E (SEQ ID n° 1), désigné ici par canal sodique type 5 (PN5). Les figures 1A-E représentent le produit de construction d'ADNc à 5 908 nucléotides, comprenant un cadre de lecture ouvert de 5 298 bases (y compris le codon d'arrêt) (SEQ ID n° 1). Le résidu nucléotidique 79 représente le site d'initiation et de traduction, et le résidu 5367 représente la fin du codon d'arrêt.

L'invention englobe également des versions modifiées de PN5, et en particulier la version représentée sur les figures 5A-E (SEQ ID n° 5). Le clone SalI-XbaI de 10 5 334 nucléotides est dépourvu de la plupart des séquences non traduites, du cadre de lecture ouvert de 5 298 nucléotides partant du nucléotide 24 et se terminant au nucléotide 5321. Les codons d'initiation et d'arrêt sont soulignés, comme le sont les mutations traductionnellement 15 silencieuses au niveau des nucléotides 3932, 3935, 3941, 3944 et 3947, qui ont été introduites pour bloquer un réarrangement dans cette région pendant la croissance dans E. coli.

La séquence nucléotidique de SEQ ID n° 1

20 (figures 1A-E) correspond aux ADNc de rat. Une recherche d'homologie a montré que le canal sodique le plus étroitement apparenté se trouvait dans le canal cardiaque de rat, avec une homologie de 72,5 %. Les canaux les plus étroitement apparentés qui viennent ensuite sont rPN1, avec 72 %, et les types I et III de cerveau de rat, avec 71,8 % et 71,3 %, respectivement. Les homologies avec rPN3a, hPN3, rPN4, rPN4a, le type II de cerveau de rat et le muscle squelettique de rat vont chacune environ de 70 à 71 %.

En outre, un clone de 856 paires de bases (SEQ ID n° 3), tel que représenté sur la figure 3A, a été isolé à partir d'une banque d'ADNc de ganglions de la racine dorsale (GRD) humains, et est étroitement apparenté à la séquence d'aminoacides de PN5 de rat, avec une identité de 79 % et une homologie de 86 %. La séquence de PN5 humain couvre la région entre IIIS1 et l'interdomaine III/IV, qui

inclut la vanne d'inactivation rapide (à savoir IFM) qui est localisée dans l'interdomaine III/IV.

Le terme "banque d'ADNc" désigne une collection de clones, habituellement dans un bactériophage ou, moins communément, dans des plasmides bactériens, contenant des copies d'ADNc de séquences d'ARNm issues d'une cellule donneuse ou d'un tissu donneur.

On pense que les homologues supplémentaires du nouveau canal sodique de rat, résistant à la TTX, décrit ici, sont également exprimés dans un autre tissu mammalien.

10

30

35

L'analyse northern blot (exemple 5) indique que PN5 est codé par un transcrit de ~ 6,5 kb.

La séquence d'aminoacides déduite de PN5, représentée sur les figures 2A-F (SEQ ID n° 2), manifeste les caractéristiques structurales primaires d'une sous-unité α 15 d'un canal sodique dépendant du potentiel, résistant à la TTX. Les figures 2G-H représentent les domaines homologues (I-IV); les segments transmembranaires (S1-S6) supposés; l'aminoacide conférant la résistance à la TTX (*); les 20 sites de N-glycosylation (•); et les sites de phosphorylation à la PKA cAMP-dépendants (o). Des séquences d'ADN codant pour les polypeptides de protéine de canal sodique identiques, analogues ou variants allèles du système nerveux, par utilisation, au moins en partie, de codons dégénérés, sont également envisagées par la présente invention. 25

Une caractéristique intéressante de cette séquence d'aminoacides déduite est que l'aminoacide qui est le plus responsable de la sensibilité à la TTX est localisé à la position 355 et n'est pas aromatique. Dans les canaux sodiques de type du cerveau humain et de rat, dans le canal du muscle squelettique et dans PN1 et PN4, cet aminoacide est la tyrosine ou la phénylalanine, et ces canaux sont tous sensibles à la TTX. Dans PN3 et PN5, l'aminoacide est la sérine. Etant donné que PN3 est très résistant à la TTX, l'implication est que PN5 est égale-

ment un canal résistant à la TTX. Le canal cardiaque comporte un résidu cystéine à cette position et est "insensible" à la TTX.

Bien que PN5 contienne toutes les caractéristiques 5 distinctives d'un canal sodique dépendant du potentiel, il a des caractéristiques structurales spécifiques qui le distinguent des autres canaux sodiques. Par exemple, DIIS4 comporte 5 aminoacides basiques conservés dans tous les canaux sodiques qui pourraient jouer un rôle significatif 10 dans les aspects de détection de potentiel de la fonction de canal. Dans PN5, le premier aminoacide basique est remplacé par un résidu alanine. De même, dans DIIIS4, PN5 comporte 5 aminoacides basiques au lieu des six qui sont présents dans d'autres séquences de canaux sodiques, le 15 dernier résidu arginine étant remplacé par un résidu glutamine. Dans DIIIS3, le segment transmembranaire ne contient que 18 aminoacides, par opposition à 22 aminoacides dans les autres canaux. En outre, la courte boucle de liaison (4 aminoacides) entre S3 et S4 dans DIII est même plus courte, en raison d'une délétion de 3 aminoacides. Ce raccourcissement de S3 et de la boucle de liaison a été confirmé par la conception d'amorces dans la région appropriée de la séquence pour un essai de RT-PCR (réaction d'amplification en chaîne par polymérase-transcription inverse) à partir de GRD de rat, et séquençage du fragment d'ADN amplifié. Un tel essai a été effectué pour confirmer la séquence d'une autre région de PN5, dans la boucle DIVS5-S6, où il y avait une délétion d'un peptide de 8 aminoacides.

On a effectué une analyse de distribution tissulaire d'ARN, par une réaction d'amplification en chaîne par polymérase-transcription inverse (RT-PCR amorcée par oligonucléotide), à partir des systèmes nerveux périphérique et central de rat, en particulier à partir de GRD de rat. On a étudié huit types de tissus principaux quant à

l'expression des gènes PN5 spécifiques correspondants aux positions 5651-5903 de SEQ ID nº 1 (figures 1A-E). L'ARNm de PN5 était présent dans cinq des tissus étudiés: le cerveau, la moelle épinière, GRD, les ganglions plexiformes 5 et les ganglions cervicaux supérieurs. PN5 n'était pas présent dans les tissus restants étudiés: le tissu de nerf sciatique, le tissu de muscle squelettique ou cardiaque. PN5 s'est révélé être le plus fort dans GRD et les ganglions plexiformes, ce qui a conduit les demandeurs à penser que le GRD était enrichi en PN5. PN5 présente des différences considérables d'abondance parmi un ensemble de tissus. PN5 a un gradient d'expression avec une forte expression dans les GRD. PN5 a un gradient d'expression comme les autres canaux, mais une distribution plus limitée.

L'invention comprend non seulement la protéine entière exprimée par les séquences d'ADNc de SEQ ID n° 1, 2 et 3, mais comprend également des fragments de protéines. Ces fraqments peuvent être obtenus par coupure des protéines entières ou par l'utilisation de plus courtes séquences d'ADN ou de plus courts polynucléotides, pour exprimer le fragment recherché.

15

20

25

30

35

Tel qu'utilisé ici, le terme "polynucléotide" désigne une forme polymère de nucléotides de longueur quelconque, qu'il s'agisse de ribonucléotides ou de désoxyribonucléotides. Ce terme désigne seulement la structure primaire de la molécule. Ainsi, ce terme comprend de l'ADN simple brin et de l'ADN double brin, ainsi que de l'ARN double brin et de l'ARN simple brin. Il comprend également des formes modifiées, par exemple par méthylation et/ou par coiffage, et des formes non modifiées du polynucléotide.

En outre, le terme "polynucléotide" et destiné à comprendre un polynucléotide recombinant qui est d'origine génomique, d'ADNc, semi-synthétique ou synthétique, qui,

en vertu de son origine ou d'une manipulation, n'est pas associé à la totalité ou une partie du polynucléotide auquel il est associé dans la nature et/ou est lié à un polynucléotide autre que celui auquel il est lié dans la nature.

En conséquence, l'invention comprend également des polynucléotides qui peuvent être utilisés pour produire des polypeptides ayant une longueur d'environ 10 à 1 500, de préférence de 10 à 100 aminoacides. L'isolement et la 10 purification de tels polypeptides recombinants peuvent être effectués par des techniques qui sont bien connues dans le domaine, par exemple des séparations chromatographiques préparatives ou la chromatographie d'affinité. En outre, des polypeptides peuvent également être produits par des moyens synthétiques qui sont bien connus dans la technique....

15

L'invention permet la manipulation de matériels génétiques par des techniques de recombinaison, pour produire des polypeptides qui possèdent les caractéristiques structurales et fonctionnelles de la nouvelle sous-unité α de canal sodique dépendant du potentiel, résistante à la TTX, rencontrée dans des nerf sensitifs. On peut utiliser la mutagénèse dirigée sur site pour obtenir de tels polypeptides recombinants. Par exemple, on peut insérer spéci-25 fiquement des oligonucléotides synthétiques, ou les mettre spécifiquement à la place d'oligonucléotides existants, dans le segment du gène d'intérêt, pour produire des gènes codant pour et exprimant un mutant spécifique. On peut également insérer des oligonucléotides dégénérés au hasard 30 et on peut utiliser des techniques de visualisation de phages pour identifier et isoler des polypeptides ayant une propriété fonctionnelle d'intérêt.

En outre, la présente invention envisage des polynucléotides recombinants ayant une longueur d'environ 15 à 35 20 kb, de préférence de 10 à 15 kb, comprenant une

séquence d'acide nucléique issue de l'ADN de l'invention.

Le terme "issu" d'une séquence désignée se réfère à une séquence d'acide nucléique qui est composée d'une séquence d'environ au moins 6 à 8 nucléotides, de préférence d'au moins 10 à 12 nucléotides et en particulier d'au moins 15 à 20 nucléotides qui correspondent à une région de la séquence désignée, c'est-à-dire sont homologues ou complémentaires de celle-ci. La séquence dérivée n'est pas nécessairement dérivée physiquement de la séquence nucléotidique indiquée, mais peut être issue d'une autre manière, y compris, par exemple, la synthèse chimique ou la réplication d'ADN ou la transcription inverse, techniques qui sont basées sur l'information fournie par les séquences de base dans la ou les régions desquelles est issu le polynucléotide.

Un test d'expression néonatal a été effectué avec F11, une lignée de cellules de fusion conçue à partir de GRD de rat nouveau-né, soudée à une lignée cellulaire de souris, N18TG, provenant de Massachusetts General Hospital. F11 répond à des agents trophiques, tels que le NGF (facteur de croissance des neurones), par extension de dendrites. On a constaté que PN5 était présent à la fois dans F11 native et F11 traitée par NGF, ce qui a conduit les demandeurs à penser que le canal sodique était exprimé à l'état natif dans F11.

Une hybridation in situ d'ARNm de PN5 avec un tissu de GRD de rat donne une localisation principalement dans les petits neurones et les neurones moyens, avec une absence dans les neurones de grande taille.

On a également cartographié PN5 jusqu'à sa localisation cytogénétique sur des préparations de chromosomes de souris. PN5 est localisé sur le même chromosome que le canal cardiaque et PN3.

En général, les canaux sodiques comprennent une sous-unité α et deux sous-unités β . Les sous-unités β

30

peuvent moduler la fonction du canal. Toutefois, étant donné que la sous-unité α est tout ce qui est requis pour que le canal soit totalement fonctionnel, l'expression de 1'ADNc dans SEQ ID nº 1 (figures 1A-E) donnera une pro-5 téine totalement fonctionnelle. Le gène codant pour la sous-unité β_1 dans le tissu de nerf périphérique s'est révélé être identique à celui rencontré dans le coeur, le cerveau et le muscle squelettique de rat. L'ADNc de la sous-unité β_1 n'est pas décrit ici, puisqu'il est bien 10 connu dans la technique [voir Isom et coll., Neuron 12, 1183-1194 (1994)]. Toutefois, il doit être entendu qu'en combinant la séquence connue codant pour la sous-unité β_1 avec la séquence de la sous-unité α décrite ici, il est possible d'obtenir un canal sodique PN5 complet, dépendant du potentiel, de préférence résistant à la TTX.

La présente invention comprend également des vecteurs d'expression comprenant l'ADN ou l'ADNc décrit plus haut, des cellules hôtes transformées par ces vecteurs d'expression, capables de produire le canal sodique de l'invention, ainsi que des banques d'ADNc comprenant de telles cellules hôtes.

15

20

30

35

Le terme "vecteur d'expression" signifie tout élément génétique, par exemple un plasmide, un chromosome, un virus, se comportant comme une unité autonome d'expression 25 de polynucléotide dans une cellule ou étant rendu capable de réplication par insertion dans un chromosome d'une cellule hôte, et auquel est attaché un autre segment polynucléotidique, de manière à provoquer la réplication et/ou l'expression du segment attaché. Des vecteurs appropriés comprennent, mais sans se limiter à ceux-ci, des plasmides, des bactériophages et des cosmides. Les vecteurs contiendront les séquences polynucléotidiques qui sont nécessaires pour effectuer la ligature ou l'insertion du vecteur dans une cellule hôte désirée et pour effectuer l'expression du segment attaché. De telles séquences diffèrent en fonction de l'organisme hôte ou comprendront des séquences de promoteurs pour effectuer la transcription, des séquences d'activateurs pour accroître la transcription, des séquences de sites de liaison au ribosome et 5 des séquences de terminaison de transcription et de traduction.

L'expression "cellule hôte" se réfère en général à des organismes procaryotes ou eucaryotes et comprend tout organisme apte à la transformation ou à la transfection, qui est capable d'exprimer une protéine et peut être, ou a été, utilisé en tant que receveur de vecteurs d'expression ou d'autre ADN transféré. On peut également contraindre des cellules hôtes à exprimer une protéine par injection directe d'ARNC exogène, pouvant être traduit en la protéine d'intérêt. Une cellule hôte préférée est l'ovocyte de Xenopus.

10

15

Le terme "transformé" se réfère à toute méthode connue pour l'insertion de séquences d'ADN ou d'ARN étranger dans une cellule hôte procaryote. Le terme "transfecté" se réfère à toute méthode connue pour l'insertion 20 de séquences d'ADN ou d'ARN étranger dans une cellule hôte eucaryote. De telles cellules transformées ou transfectées comprennent des cellules transformées ou transfectées de façon stable, dans lesquelles l'ADN inséré est rendu capable de réplication dans la cellule hôte. Elles com-25 prennent également des cellules exprimant temporairement, qui expriment pendant des durées limitées l'ADN ou l'ARN inséré. La technique de transformation ou de transfection dépend de la cellule hôte qui est transformée. Elle peut 30 comprendre l'encapsidation du polynucléotide dans un virus ainsi que l'introduction directe du polynucléotide, comme par exemple par lipofection ou micro-injection. La transformation ou la transfection peut entraîner l'incorporation de l'ADN inséré dans le génome de la cellule hôte ou le maintien de l'ADN inséré dans la cellule hôte, sous 35

forme de plasmide. Des méthodes de transformation sont bien connues dans la technique et comprennent, mais sans se limiter à celles-ci, l'infection virale, l'électroporation, la lipofection et l'introduction directe provoquée par le phosphate de calcium.

Il doit être entendu que la présente invention est destinée à inclure d'autres formes de vecteurs d'expression, de cellules hôtes et de techniques de transformation servant à des fonctions équivalentes et bien connues dans la technique.

L'invention concerne également un essai d'inhibiteurs de la nouvelle protéine de canal sodique résistante à la TTX, comprenant la mise en contact d'un composé, soupçonné être un inhibiteur, avec un canal sodique exprimé, et la mesure de l'activité du canal sodique. Le composé peut être un composé pratiquement pur d'origine synthétique, mis en contact dans un milieu aqueux, ou le composé peut être une substance existant dans la nature, de sorte que le milieu d'essai est un extrait d'origine biologique, comme par exemple un extrait de cellules végétales, animales ou microbiennes. L'activité PN5 peut être mesurée par des méthodes telles que l'électrophysiologie (mise sous tension à l'aide de deux électrodes ou mise sous tension par patch clamp de cellules entières à l'aide d'une seule électrode), essais de flux d'ions guanidinium et essais de liaison à des toxines. Un "inhibiteur" est défini en général par la quantité entraînant une diminution de plus de 50 % de l'activité PN5, de préférence une diminution de plus de 70 % de l'activité PN5, encore mieux une diminution de plus de 90 % de l'activité PN5.

Il existe de nombreuses utilisations de l'invention, dont quelques unes sont décrites ci-dessous:

1. Sonde pour canaux mammaliens

10

15

20

25

30

Comme mentionné plus haut, on pense que des homo-35 logues supplémentaires du nouveau canal sodique de rat résistant à la TTX, décrit ici, sont également exprimés dans un tissu mammalien, en particulier dans un tissu humain. On peut utiliser comme sonde les ADNc entiers de canaux sodiques PN5 de rat de la présente invention pour découvrir s'il existe dans le tissu humain de nouveaux canaux sodiques supplémentaires, dépendants du potentiel, de préférence résistants à la TTX, et, s'ils existent, pour faciliter l'isolement des ADNc codant pour la protéine humaine.

Les homologues humains des canaux PN5 de rat, 10 résistants à la TTX, peuvent être clonés à l'aide d'une banque d'ADNc de GRD humain. Les GRD humains sont obtenus lors d'une autopsie. On homogénéise le tissu congelé et on extrait l'ARN avec de l'isothiocyanate de guanidine [Chirgwin et coll., Biochemistry 18, 5294-5299 (1979)]. L'ARN est fractionné en fonction de la taille sur un gradient de saccharose, pour l'enrichissement en ARNm de grande taille, car les sous-unités α du canal sodique sont codées par des transcrits de grande taille (7-11 kb). On prépare de l'ADNc double brin en utilisant le nécessaire 20 d'ADNc SuperScript Choice (GIBCO BRL) avec de l'oligo(dT) ou des amorces hexamères au hasard. On ligature les seqments de liaison EcoRI sur l'ADNc double brin, qui est ensuite phosphorylé. On construit la banque d'ADNc par ligature de l'ADNc double brin dans le vecteur bactério-25 phage λ ZAP II (Stratagene), suivie d'encapsidation dans des particules phagiques.

On étale les phages sur des plaques de 150 mm, sur un tapis de bactéries XLI-Blue MRF' (Stratagene) et on fait des répliques des plages sur des membranes en Nylon Hybond N (Amersham). Les filtres sont hybridés avec des sondes d'ADNc de PN5 de rat, par des techniques classiques, et détectés par autoradiographie ou chimilumines cence. Le signal produit par les sondes PN5 de rat s'hybridant avec des clones humains positifs, à une forte

30

35

stringence, devrait être plus fort que ceux obtenus avec des sondes de canal sodique de cerveau de rat s'hybridant avec ces clones. Les plages positives sont purifiées davantage par dilution limitante et criblées à nouveau par 5 hybridation ou PCR. La cartographie de restriction et la réaction d'amplification en chaîne par polymérase identifieront des clones chevauchants qui peuvent être assemblés par des techniques classiques en l'homologue humain complet de PN5 de rat. Le clone humain peut être exprimé par injection d'ARNc trancrit in vitro à partir du clone d'ADNc complet dans des ovocytes de Xenopus, ou par transfection d'une lignée cellulaire mammalienne avec un vecteur contenant l'ADNc lié à un promoteur approprié.

2. Anticorps contre PN5

10

35

15 Les polypeptides de l'invention sont très utiles pour la production d'anticorps dirigés contre PN5. Ces anticorps peuvent être utilisés dans une chromatographie d'affinité pour purifier des protéines recombinantes ou des polypeptides recombinants de canaux sodiques, ou ils peuvent être utilisés en tant qu'outil de recherche. Par exemple, des anticorps fixés à une molécule rapporteuse peuvent être utilisés dans des techniques de coloration histochimique, pour identifier d'autres tissus et d'autres types cellulaires dans lesquels les PN5 sont présents, ou ils peuvent être utilisés pour identifier des régions fonctionnelles ou d'épitopes de la protéine de canal sodique de l'invention.

Les anticorps peuvent être monoclonaux ou polyclonaux et peuvent être produits par des techniques qui sont bien connues dans le domaine. Des anticorps polyclonaux sont produits comme suit: on utilise un conjugué immunogène, comprenant PN5 ou un fragment de celui-ci, éventuellement lié à une protéine porteuse, pour immuniser un mammifère choisi, tel que la souris, le rat, la chèvre, etc. On recueille et traite selon des techniques connues

du sérum provenant du mammifère immunisé, pour séparer la fraction d'immunoglobuline.

Des anticorps monoclonaux sont produits par la technique classique d'hybridomes, basée sur celle rappor5 tée par Kohler et Milstein dans Nature 256, 495-497
(1975). Des cellules spléniques sont obtenues à partir d'un animal hôte immunisé avec la protéine PN5 ou un fragment de celle-ci, éventuellement liées à une substance porteuse. Des cellules hybrides sont formées par fusion de ces cellules spléniques avec une lignée de myélome appropriée, et cultivées. Les anticorps produits par les cellules hybrides sont criblés en fonction de leur aptitude à se lier à des protéines PN5 exprimées.

On peut utiliser un certain nombre de techniques de criblage bien connues dans le domaine, comme par exemple des méthodes de criblage par essai immunoenzymatique direct ou indirect utilisant un corps adsorbé. On soumet ensuite les cellules hybrides produisant de tels anticorps à un reclonage ou à des conditions de forte dilution, afin de sélectionner une cellule hybride secrétant une population homogène d'anticorps spécifiques de l'une ou l'autre protéine de PN5.

En outre, des anticorps peuvent être suscités par clonage et expression de séquences nucléotidiques ou de versions mutées de celles-ci, codant au moins pour les séquences d'aminoacides requises pour la fixation spécifique d'anticorps naturels, et ces protéines exprimées peuvent être utilisées en tant qu'immunogènes. Les anticorps peuvent comprendre l'immunoglobuline complète ou un fragment de celle-ci. Les anticorps peuvent être liés à un groupe rapporteur, comme décrit plus haut à propos des polynucléotides.

L'exemple 10 illustre la mise en pratique de la production d'un anticorps.

3. Cibles thérapeutiques pour des composés pour le traitement de troubles et essais de ceux-ci

La présente invention englobe également l'utilisation de la nouvelle sous-unité α de canal sodique dépendant du potentiel, de préférence résistante à la TTX, en tant que cible thérapeutique pour des composés destinés au traitement de troubles du système nerneux, sur la base des données de localisation de RT-PCR. Les troubles comprennent, mais sans se limiter à ceux-ci, l'épilepsie, une lésion due à une attaque cérébrale, une lésion cérébrale, la neuropathie diabétique, une lésion traumatique, la douleur neuropathique chronique et la neuropathie associée au SIDA.

4. Conception d'agents thérapeutiques à base de PN5 inhi-15 biteur et essais de ceux-ci

La présente invention est également orientée vers ... l'inhibition de l'activité de PN5 dans des tissus du cerveau, de la moelle épinière, de ganglions de la racine dorsale, de ganglions plexiformes et de ganglions cervi-20 caux supérieurs. Toutefois, il doit être entendu que des études ultérieures peuvent révéler que PN5 est présent dans d'autres tissus, et, en tant que tels, ces tissus peuvent également être des zones cibles. Par exemple, la détection d'ARNm de PN5 dans des ganglions plexiformes suggère que PN5 peut conduire des courants de sodium résistants à la TTX dans ces ganglions et d'autres ganglions sensitifs du système nerveux.

25

30

En outre, il s'est avéré que des protéines qui ne sont pas normalement exprimées dans certains tissus sont exprimées dans un état pathologique. En conséquence, la présente invention est destinée à englober l'inhibition de PN5 dans des tissus et des types cellulaires dans lesquels la protéine est normalement exprimée, et dans des tissus et des types cellulaires dans lesquels la protéine n'est exprimée qu'au cours d'un état pathologique.

Par exemple, on pense que des canaux sodiques résistants à la TTX jouent un rôle clé dans la transmission d'influx nerveux en relation avec des signaux sensoriels tels que la douleur et la pression. Cette information facilitera la conception d'agents thérapeutiques qui peuvent être ciblés vers une zone déterminée, telle qu'un tissu nerveux périphérique.

La protéine recombinante de la présente invention peut être utilisée pour l'essai d'agents thérapeutiques potentiels ayant l'aptitude à inhiber le canal sodique d'intérêt. En particulier, elle serait utile pour inhiber sélectivement la fonction de canaux sodiques dans des tissus nerveux périphériques responsables de la transmission de signaux de douleur et de pression sans affecter en même temps la fonction de canaux sodiques dans d'autres tissus, tels que le coeur et le muscle. Une telle sélectivité permettrait le traitement de la douleur sans provoquer d'effets secondaires dus à des complications cardiaques ou neuromusculaires. En conséquence, il serait utile d'avoir des séquences d'ADN codant pour des canaux sodiques exprimées sélectivement dans un tissu nerveux périphérique.

5. Analgésique

10

15

20

35

Les canaux sodiques dans le tissu nerveux périphérique jouent un rôle important dans la transmission d'influx nerveux, et sont par conséquent un outil pour comprendre la transmission de la douleur neuropathique. La douleur neuropathique se répartit en deux composantes: l'allodynie, dans laquelle un stimulus normalement non douloureux le devient, et l'hyperalgésie, dans laquelle un stimulus habituellement normalement douloureux devient extrêmement douloureux.

Dans des études de localisation tissulaire, l'ARNm de PN5 se trouve dans les petits neurones et les neurones moyens de GRD. L'ARNm de PN5 est également présent dans le cerveau et la moelle épinière. L'inhibition de ses activi-

tés peut faciliter la prévention de troubles tels que les maux de tête et les migraines. La possibilité d'inhiber l'activité de ces canaux sodiques, c'est-à-dire de réduire la conduction d'influx nerveux, affectera l'aptitude du nerf à transmettre les influx douloureux. L'inhibition sélective des canaux sodiques dans des neurones sensitifs tels que GRD permettra l'arrêt d'influx douloureux sans effets secondaires indésirables provoqués par l'inhibition des canaux sodiques dans d'autres tissus tels que le cer-10 veau et le coeur. En outre, certaines maladies sont provoquées par des canaux sodiques qui produisent des influx à une fréquence extrêmement élevée. La possibilité de réduire l'activité du canal peut alors éliminer ou atténuer la maladie. En conséquence, on peut cribler des composés thérapeutiques potentiels par des méthodes bien connues dans la technique, pour découvrir s'ils peuvent inhiber l'activité du canal sodique recombinant de l'invention [Barram M. et coll., Naun-Schmiedeberg's Archives of Pharmacology 347, 125-132 (1993), et McNeal E.T. et coll., J. Med. Chem. 28, 381-388 (1985)]. Pour des études similaires avec le récepteur d'acétylcholine, voir Claudio et coll., Science 238, 1688-1694 (1987).

15

25

30

35

Par exemple, on peut soulager la douleur par inhibition de l'activité du nouveau canal sodique, de préférence résistant à la TTX, par administration d'une quantité thérapeutiquement efficace d'un composé ayant une CI₅₀ d'environ 10 μM ou moins, de préférence ≤ 1 μM. Des composés thérapeutiques potentiels sont identifiés sur la base de leur aptitude à inhiber l'activité de PN5. En conséquence, l'essai mentionné plus haut peut être utilisé pour identifier des composés ayant une CI₅₀ thérapeutiquement efficace.

Le terme "CI₅₀" désigne la concentration d'un composé qui est requise pour inhiber à 50 % l'activité de PN5 exprimée, lorsque l'activité est mesurée par électrophysiologie, essais de flux et essais de liaison à des toxines, comme mentionné plus haut.

6. Essais de diagnostic

20

25

30

35

Les techniques de biologie moléculaire de base utilisées dans la mise en oeuvre de la présente invention,
telles que l'isolement d'ARN, d'ADN et de plasmides, la
digestion par des enzymes de restriction, la construction
et le sondage d'une banque d'ADNC, le séquençage de
clones, la construction de vecteurs d'expression, la
transformation de cellules, le maintien et le développement de cultures cellulaires et d'autres techniques générales, sont bien connues dans le domaine, et on peut trouver les descriptions de ces techniques dans des manuels
généraux de laboratoire, tels que Molecular Cloning: A
Laboratory Manual par Sambrook et coll. (Cold Spring
Harbor Laboratory Press, 2° édition, 1989).

Par exemple, les polynucléotides de l'invention peuvent être liés à une "molécule rapporteuse", pour la formation d'une sonde polynucléotidique utile pour des analyses northern et Southern blot et des hybridations in situ.

L'expression "molécule rapporteuse" désigne une entité chimique pouvant être détectée par un moyen de détection approprié, comprenant, mais sans se limiter à ceux-ci, des moyens spectrophotométriques, chimilumines-cents, immunochimiques ou radiochimiques. Les polynucléotides de la présente invention peuvent être conjugués à une molécule rapporteuse par des techniques bien connues dans le domaine. Normalement, la molécule rapporteuse contient un groupe fonctionnel approprié à l'attachement au polynucléotide ou à l'incorporation dans celui-ci. Les groupes fonctionnels appropriés à l'attachement du groupe rapporteur sont habituellement des esters activés ou des agents d'alkylation. Des détails techniques pour l'attachement de groupes rapporteurs sont bien connus dans le

domaine; voir par exemple Matthews J.A., Batki A., Hynds C. et Kricka L.J., Anal. Biochem. 151, 205-209 (1985) et Engelhardt et coll., EP-A-0 302 175.

La présente invention est illustrée par les 5 exemples descriptifs et non limitatifs ci-après.

Abréviations

Les abréviations suivantes sont utilisées dans les exemples et ont les significations données ci-dessous.

ASB : albumine de sérum bovin

10 EDTA: acide éthylènediaminetétraacétique, sel tétrasodique

GRD : ganglions de la racine dorsale

MEN : MOPS 20 mM, EDTA 1 mM, acétate de sodium 5 mM, pH 7,0

15 MOPS: acide 3-(N-morpholino)propanesulfonique (Sigma Chemical Company)

PN5 : canal sodique 5 de nerf périphérique

SDS : dodécylsulfate de sodium

SNP : système nerveux périphérique

20 Solution de Denhardt: 0,02 % d'ASB, 0,02 % de polyvinylpyrrolidone, 0,02 % de Ficoll (0,1 g d'ASB, 0,1 g de
Ficoll, 0,1 g de polyvinylpyrrolidone pour 500 ml)

SSC : NaCl 150 mM, citrate de sodium 15 mM, pH 7,0

SSPE: NaCl 80 mM, phosphate de sodium 10 mM,

25 éthylènediaminetétraacétate 1 mM, pH 8,0

TEV : pince de tension à deux électrodes

TTX : tétrodotoxine (Sigma Chemical Company).

EXEMPLES

Les exemples ci-après illustrent la mise en pra-30 tique de l'invention.

Matériels

35

Le plasmide pBK-CMV a été obtenu auprès de Stratagene (La Jolla, CA, USA); le plasmide pBSTA est décrit par Goldin et coll. dans Methods in Enzymology (Rudy & Iverson éditeurs) 207, 279-297; le plasmide pCInéo a été obtenu auprès de Promega (Madison, WI, USA); et le plasmide pCRII a été obtenu auprès d'Invitrogen (Carlsbad, CA, USA).

Le plasmide vecteur d'expression dans des ovocytes pBSTAcIIr a été construit à partir de pBSTA par insertion d'un lieur oligonucléotidique synthétique; le plasmide pKK232-8 a été obtenu auprès de Pharmacia Biotech (Piscataway, NJ, USA); le plasmide pCRII a été obtenu auprès d'Invitrogen (San Diego, CA, USA). Les lignées cellulaires de *E. coli* compétentes STBL2^M et SURE[®] ont été obtenues auprès de Gibco/BRL et Stratagene, respectivement.

EXEMPLE 1

Obtention d'ARN à partir de GRD, de cerveau et de moelle 15 épinière de rat

20

25

30

35

Sous un microscope à dissection, on a prélevé les GRD lombaires n° 4 et n° 5 (L4 et L5), le cerveau et la moelle épinière de rats Sprague-Dawley mâles adultes anesthésiés. Les tissus ont été congelés dans de la glace carbonique et homogénéisés à l'aide d'un homogénéisateur Polytron; on a extrait l'ARN par la méthode à l'isothiocyanate de guanidine [voir Chomczynksi et coll., Anal. Biochemistry 162, 156-159 (1987)]. On a dissous l'ARN total (5 μ g de chaque échantillon) dans du tampon MEN contenant 50 % de formamide, 6,6 % de formaldéhyde et dénaturé à 65°C pendant 5-10 minutes. On a soumis l'ARN à une électrophorèse sur un gel d'agarose à 0,8 % contenant 8,3 % de formaldéhyde, dans du tampon MEN. Le tampon d'électrode était du tampon MEN contenant 3,7 % de formaldéhyde; on a fait fonctionner le gel à 50 V pendant 12-18 heures.

On a soumis à l'électrophorèse dans des colonnes parallèles du gel des marqueurs de taille moléculaire, comprenant les ARN ribosomiques 18S et 28S et des marqueurs d'ARN (GIBCO BRL). Leurs positions ont été détermi-

nées par coloration au bromure d'éthidium $(0,5~\mu\text{g/ml})$ de la colonne excisée, suivie d'une photographie sous lumière UV.

Après l'électrophorèse, on a rincé le gel dans SSC 5 2x et on a transféré l'ARN sur une membrane de Duralose (Stratagene) avec SSC 20x, par action capillaire; la membrane a été chauffée sous vide pendant 1 heure à 80°C.

EXEMPLE 2

Sonde provenant de IIA de cerveau de rat

10

15

20

On a synthétisé in vitro une sonde d'ARNc marquée au ³²P, complémentaire des nucléotides 4637-5868 de la séquence de sous-unité α de canal sodique IIA de cerveau de rat, avec de l'ARN polymérase de T7 (Pharmacia), en utilisant de l'ADN matrice de pEAF8 (Noda et coll., Nature 320, 188-192 (1986)) qui avait été linéarisé à l'aide de BstEII.

On peut trouver des protocoles pour chaque technique mentionnée ci-dessus dans Molecular Cloning: A Laboratory Manual par Sambrook et coll. (Cold Spring Harbor Laboratory Press, 2° édition, 1989).

EXEMPLE 3

Hybridation d'ARN avec la sonde provenant de IIA de cerveau de rat

La membrane de l'exemple 1 a été préhybridée pen25 dant 16 heures à 42°C dans 50 % de formamide, SSC 5×,
phosphate de sodium 50 mM, pH 7,1, solution de Denhardt
1×, 0,5 % de SDS et 1 mg/ml d'ADN de spermatozoides de
saumon cisaillé, dénaturé par la chaleur. La membrane a
été hybridée pendant 18 heures à 42°C dans 50 % de forma30 mide, SSC 5×, phosphate de sodium 50 mM, pH 7,1, solution
de Denhardt 1×, 0,5 % de SDS et 200 µg/ml d'ADN de spermatozoides de saumon cisaillé, dénaturé par la chaleur, avec
la sonde d'ARNc marquée au 32°P (environ 1-3×10 cpm/ml)
décrite dans l'exemple 2.

On a rincé la membrane pendant 20 minutes avec SSC 2x, 0,1 % de SDS, à la température ambiante, et on l'a ensuite lavée successivement avec SSC 2x, 0,1 % de SDS à 55°C pendant 30 minutes; SSC 0,2x, 0,1 % de SDS à 65°C 5 pendant 30 minutes; SSC 0,2x, 0,1 % de SDS à 70°C pendant 30 minutes et SSC 0,2x, 0,1 % de SDS, 0,1 % de pyrophosphate de sodium à 70°C pendant 20 minutes. Le filtre a été exposé contre un film Kodak X-omat AR à -80°C, avec des écrans amplificateurs, pendant jusqu'à 2 semaines.

La sonde de pEAF8 s'est hybridée avec les ARNm dans l'échantillon de GRD, avec des tailles de 11 kb, 9,5 kb, 7,3 kb et 6,5 kb, estimées sur la base de leurs positions par rapport aux étalons.

EXEMPLE 4

Nouvelle sonde de domaine IV de canal sodique 15

10

25

La sonde a été obtenue comme suit: on a effectué une RT-PCR sur de l'ARN isolé à partir de GRD de rat, en utilisant des amorces oligonucléotides dégénérées qui étaient conçues sur la base des homologies entre les 20 canaux sodiques connus dans le domaine IV. Les produits de domaine IV ont été clonés dans un vecteur plasmidique, transformés dans E. coli, et on a isolé des colonies individuelles. Les produits de PCR spécifiques du domaine IV, obtenus à partir de plusieurs de ces colonies, ont été séquencés individuellement. La nouvelle séquence de domaine IV clonée était la suivante (SEQ ID n° 4):

- CTCAACATGG TTACGATGAT GGTGGAGACC GACGAGCAGG GCGAGGAGAA 1
- GACGAAGGTT CTGGGCAGAA TCAACCAGTT CTTTGTGGCC GTCTTCACGG 51
- 101 GCGAGTGTGT GATGAAGATG TTCGCCCTGC GACAGTACTA TTTCACCAAC
- 151 GGCTGGAACG TGTTCGACTT CATAGTGGTG ATCCTGTCCA TTGGGAGTCT 30
 - 201 GCTGTTTCT GCAATCCTTA AGTCACTGGA AAACTACTTC TCCCCGACGC
 - 251 TCTTCCGGGT CATCCGTCTG GCCAGGATCG GCCGCATCCT CAGGCTGATC
 - 301 CGAGCAGCCA AGGGGATTCG CACGCTGCTC TTCGCCCTCA TGATGTCCCT
 - 351 GCCCGCCCTC TTCAACATCG GCCTCCTCCT CTTCCTCGTC ATGTTCATCT
- 401 ACTCCATCTT CGGCATGGCC AGCTTCGCTA ACGTCGTGGA CGAGGCCGGC 35

- 451 ATCGACGACA TGTTCAACTT CAAGACCTTT GGCAACAGCA TGCTGTGCCT
- 501 GTTCCAGATC ACCACCTCGG CCGGCTGGGA CGGCCTCCTC AGCCCCATCC
- 551 TCAACACGGG GCCTCCCTAC TGCGACCCCA ACCTGCCCAA CAGCAACGGC
- 601 TCCCGGGGGA ACTGCGGGGG CCCGGCGGTG GGCATCATCT TCTTCACCAC
- 651 CTACATCATC ATCTCCTTCC TCATCGTGGT CAACATGTAT ATCGCAGTCA
 - 701 TC

Cette séquence a été marquée au ³²P par amorçage au hasard.

EXEMPLE 5

10 Hybridation d'ARN avec la nouvelle sonde 3'-UTR de canal sodique

On a préparé une empreinte northern blot avec 10 μq d'ARN total provenant de cerveau, de moelle épinière et de GRD de rats. L'empreinte a été hybridée avec une sonde d'ARNc provenant de la région non traduite en 3' (3'-UTR). La 3'-UTR a été clonée dans le vecteur pSP73, et l'ARNc a été transcrit à l'aide d'un nécessaire Trans Probe T (Pharmacia Biotech) et de [32P]-UTP. L'empreinte a été préhybridée pendant 2 heures à 65°C dans une solution con-20 tenant SSC 5x, solution de Denhardt 1x, 0,5 % de SDS, phosphate de sodium 50 mM, pH 7,1, 1 mg/ml d'ADN de spermatozoides de saumon et 50 % de formamide. L'hybridation a été effectuée à 45°C pendant 18 heures dans la solution ci-dessus, mis à part que l'ADN de spermatozoides de saumon a été inclus à une concentration de 200 μ g/ml et qu'on 25 a ajouté la sonde marquée au 32 p à raison de 7,5x10⁵ cpm/ml de solution. L'empreinte a été ensuite lavée trois fois avec SSC 2x et 0,1 % de SDS à la température ambiante, une fois avec SCC 0,2x et 0,1 % de SDS à 65°C pendant 20 minutes, et une fois avec SSC 0,2x, 0,1 % 30 de SDS et 0,1 % de pyrophosphate de sodium à 65°C pendant 20 minutes. L'empreinte a été analysée sur un appareil PhosphoImager (BioRad), après une exposition de 2 jours. Les résultats ont indiqué qu'il y avait un signal de bande de ~ 6,5 kb, présent dans le cerveau, seulement dans la 35

colonne contenant de l'ARN provenant de GRD. En raison de la faible abondance d'ARN de PN5, comme l'a montré l'essai de RT-PCR, la bande de 6,5 kb n'était pas décelable dans le cerveau ni la moelle épinière.

EXEMPLE 6

5

15

20

30

Construction et criblage d'une banque d'ADNc provenant de GRD de rat

On a préparé une banque d'ADNc adaptée à EcoRI à partir d'ARN poly(A) de GRD de rat Sprague-Dawley mâle 10 adulte normal, en utilisant le système SuperScript Choice (GIBCO BRL). L'ADNc (> 4 kb) a été sélectionné par fractionnement en gradient de saccharose, comme décrit par Kieffer, Gene 109, 115-119 (1991). L'ADNc a été ensuite ligaturé dans le vecteur Zap Express (Stratagene) et encapsidé à l'aide de l'extrait d'encapsidation dans λ Gigapack II XL (Stratagene). De même, on a synthétisé une banque d'ADNc de GRD de > 2 kb.

Les phages (3,5×10⁵) ont été criblés par hybridation sur filtre avec une sonde marquée au 32 p [rBIIa, bases 4637-5868 comme suit, d'Auld et coll., Neuron 1, 449-461 (1988)]. Les filtres ont été hybridés dans 50 % de formamide, SSPE5x, solution de Denhardt 5x, 0,5 % de SDS, 250 μg/ml d'ADN de spermatozoides de saumon cisaillé, dénaturé, et phosphate de sodium 50 mM, à 42°C, et lavés 25 dans SSC $0.5 \times /0.1$ % de SDS, à 50°C.

Des empreintes Southern blot de plasmides digérés par EcoRI ont été hybridées avec la sonde d'ADN marquée au ³²P (SEQ ID n° 4). Les filtres ont été ensuite hybridés à 42°C dans 50 % de formamide, SSC 6x, solution de Denhardt 5x, 0,5 % de SDS et 100 μ g/ml d'ADN de spermatozoides de saumon cisaillé, dénaturé, et ont été lavés dans SSC $0.1 \times /0.1$ % de SDS, à 65°C.

On a excisé des clones positifs in vivo dans pBK-CMV, en utilisant le système ExAssist/XLOLR (Stratagene).

EXEMPLE 7

Clones et analyse des nucléotides

On a isolé des clones d'ADNc, 26.2 et 25.1, à partir de la banque d'ADNc, et on a isolé le clone 1.18 à partir de la banque d'ADNc de GRD de > 2 kb. Par analyse de la séquence, 26.2 est apparu comme étant un ADNc complet codant pour un nouveau canal sodique, et 25.1 s'étendait du domaine II à la 3'-UTR. Toutefois, chacun comportait une délétion qui tronquait la région codante. Le clone 1.18 comportait la région non traduite en 3', en plus de l'extrémité C-terminale de la séquence d'aminoacides déduite de PN5. Le produit de construction dans le vecteur d'expression pBSTACIIr consistait en séquences provenant de 26.2 et 1.18.

On a obtenu l'homologie de PN5 avec les autres canaux sodiques connus en utilisant le programme GAP/Best Fit (GCG):

	Canal	% de similarité	% d'identité
	PN3a	71	54
20	hPN3	71	55
	PN4	71	53
	PN4a	71	53
	PN1	72	55
	Type I de cerveau de rat	72	55
	Type II de cerveau de rat	71	54
	Type III de cerveau de rat	71	54
	Canal cardiaque de rat	73	56
	Canal de muscle squelet-		
	tique de rat	71	53
30	0		1.00

³⁰ Stabilisation de l'ADN complet de PN5

La culture de fragments de PN5 a pu être réalisée dans des conditions classiques, mais la culture de plasmides contenant des produits de construction complets de

A. Milieux, lignées cellulaires de *E. coli* et conditions de culture

PN5 (dans pCInéo, pBSTAcIIr et d'autres vecteurs) ne pouvait pas être effectuée sans utilisation de milieux de culture spéciaux, de conditions particulières et de souches spéciales de E. coli. Les conditions suivantes se sont révélées être optimales: (1) utilisation de E. coli STBL2[™] pour la transformation primaire après des réactions de ligature et pour une culture à grande échelle; (2) le milieu solide était FM 0,5x (voir ci-dessous) + LB 1x (1 % de tryptone, 0,5 % d'extrait de levure, 0,5 % de NaCl) + 10 15 g/l de gélose, ou FM 1x + LB = 0.5x; (3) le milieu liquide était de façon optimale FM 1x + LB 0,5x; (4) on a utilisé 100 μg/ml de carbénicilline pour tous les milieux, étant donné qu'elle était moins rapidement métabolisée que l'ampicilline; (5) la température pour la croissance ne 15 devait pas être supérieure à 30°C, normalement de 24-26°C; cela demandait de plus longues durées de culture que celles normalement utilisées, allant de 24 à 72 heures. Milieu de congélation 2x (FM 2x):

	$K_2^{HPO}_4$		12,6 g
20	Citrate trisodique		0,9 g
	${ m MgSO}_4$.7 ${ m H}_2{ m O}$		0,18 g
	$(NH_4)2SO_4$		1,8 g
	$^{ ext{KH}}_2^{ ext{PO}}_4$		3,6 g
	Glycérol		88 g
25	н ₂ 0	complément	à 1 l

30

35

FM 2x et les composants restants du milieu sont préparés séparément, stérilisés par passage à l'autoclave, refroidis jusqu'à au moins 60°C, et ajoutés ensemble pour la formation du milieu final. La carbénicilline est préparée à raison de 25 mg/ml de H₂O et stérilisée par filtration. FM 2x a été décrit en premier lieu pour la préparation de suspensions de base congelées de cellules bactériennes [Practical Methods in Molecular Biology, Schleif R.F.et Wensing P.C., Springer-Verlag, New York (1981), p. 201-202].

B. Vecteurs d'expression

Afin d'obtenir une stabilité accrue de l'ADNc complet, on a modifié le vecteur d'expression pBSTAcIIr d'ovocytes pour réduire le nombre de copies de plasmides lors de la culture dans E. coli et pour réduire la poursuite de la transcription à partir de séquences du vecteur, qui pourrait conduire à une expression cryptique toxique de la protéine PN5 (Brosius J., Gene 27, 151-160 (1984)]. On a fait digérer pBSTAcIIr par PvuII. Le fragment de 755 pb, contenant le promoteur de T7, la 5'-UTR de β -globine, le site de clonage multiple, la 3'-UTR de β -globine et le promoteur de T3, a été ligaturé avec le fragment de 3,6 kb contenant l'origine de réplication, le gène de résistance à l'ampicilline, les terminateurs de $transcription rrnBT_1$ et $rrnBT_1T_2$ de pKK232-8, qui avait été digéré complètement par Smal et digéré partiellement par PvuII et traité par de la phosphatase intestinale de crevette pour empêcher l'autoligature. Le plasmide résultant, dans lequel l'orientation du fragment pBSTA était telle que le promoteur de T7 était le plus rapproché du terminateur rrnBT,, a été identifié par cartographie de restriction, est dénommé pHQ8. Comme dans le cas de pBSTA, le sens de la transcription du gène de résistance à l'ampicilline et de l'origine de réplication de pHQ8 est 25 opposé à celui de la cassette d'expression du gène, et la présence du terminateur rrnBT₁ devrait réduire toute poursuite de lecture restante à partir du vecteur, dans la cassette d'expression conduite par le promoteur de T7. C. Assemblage d'ADNc complet pour l'expression

Etant donné que pBK-CMV.26.2 comporte une délétion de 58 pb (correspondant aux pb 4346 à 4403 de SEQ ID n° 1) et que la séquence de pBK-CMV.1.18 commence au niveau de la pb 4180 de SEQ ID n° 1, pBK-CMV.1.18 pouvait être utilisé pour "réparer" pBK-CMV.26.2. On a mis au point une stratégie pour assembler un ADNC complet provenant des

clones pBK-CMV.26.2 et pBK-CMV.1.18 en trois segments, en tronquant la 5'-UTR et la 3'-UTR et en introduisant des sites de restriction uniques aux extrémités 5' et 3' dans le processus. L'extrémité 5' a été engendrée par PCR à 5 partir de 26.2, en tronquant la 5'-UTR, par incorporation d'un site SalI juste en amont du codon d'initiation. Le segment central était un fragment de restriction provenant de 26.2. L'extrémité 3' a été préparée par PCR de chevauchement à partir de 26.2 et 1.18, et incorporation d'un site XbaI juste en aval du codon d'arrêt. On a fait digé-10 rer ces segments au niveau de sites uniques de restriction, et on les a assemblés dans pBSTAcIIr. Ce produit de construction semblait avoir une séquence correcte, mais, après reclonage en tant que fragment SalI-XbaI dans pCInéo, on a trouvé deux types d'isolats, un comportant une délétion et un comportant une insertion de 8 pb. Un nouvel examen du clone pBSTAcIIr a montré que la séquence était "mixte" dans cette région, de sorte que le clone devait avoir été réarrangé. On a découvert que l'insertion de 8 pb était une répétition de l'un des membres d'une duplication de 8 pb dans la séquence native, formant une triple répétition de 8 pb dans l'isolat réarrangé. De nombreuses tentatives de clonage ont inévitablement donné naissance à ce réarrangement. On a utilisé la PCR de chevauchement pour introduire des mutations silencieuses dans l'une des répétitions de 8 pb, et un fragment contenant cette région a été inclus lorsque la région codant pour PN5 a été assemblée dans HQ8, la version à faible nombre de copies de pBSTAcIIr, pour donner le plasmide HR-1. Cette séquence s'est avérée être stable (voir figures 5A-E, SEQ ID nº 5).

20

25

30

35

On a préparé le fragment de l'extrémité 5' par PCR, en utilisant comme matrice l'ADN de pBK-CMV.26.2 et les amorces 4999 (CTTGGTCGACTCTAGATCAGGGTGAAGATGGAGGAG; site SalI souligné, homologie avec PN5 en italiques, correspondant aux pb 58-77 de SEQ ID n° 1; codon d'initiation en gras) et 4927 (GTCTTCTAGATGAGGGTTCAGTCATTGTG, correspondant aux pb 1067 à 1047 de SEQ ID N°1), suivie de purification en gel, digestion par SalI et KpnI (site KpnI au niveau des pb 1003-1008, SEQ ID n° 1) et purification en gel.

Le fragment central de 3,1 kb a été préparé par digestion de l'ADN de pBK-CMV.26.2 par KpnI et AatII (site AatII à 4133-4138), suivie d'une purification en gel.

Le fragment de l'extrémité 3' a été préparé comme suit: la PCR à l'aide des amorces 4837 (TCTGGGAAGTTTGGAAG, 10 correspondant aux pb 3613 à 3629 de SEQ ID n° 1) et 4931 (GACCACGAAGGCTATGTTGAGG, correspondant aux pb 4239 à 4218 de SEQ ID n° 1) sur l'ADN de pBK-CMV.26.2 en tant que matrice a donné un fragment de 0,6 kb. La PCR, à l'aide 15 des amorces 4930 (CCTCAACATAGCCTTCGTGGTC, correspondant aux pb 4218 à 4239 de SEQ ID n° 1) et 4929 (GTCTTCTAGATGAGGGTTCAGTCATTGTG, site XbaI souligné, homologie avec PNR en italiques, correspondant aux pb 5386 à 5365 de SEQ ID nº 1, codon d'arrêt en gras) sur l'ADN de 20 pBK-CMV.1.18 en tant que matrice, a donné un fragment de 1,2 kb, introduisant un site XbaI à 7 pb du codon d'arrêt. L'extrémité 3' du fragment 4837-4931 complète donc exactement l'extrémité 5' du fragment 4930-4929. Ces deux fragments ont été purifiés en gel, et une fraction de chaque a été réunie en tant que matrice dans une réaction PCR, à l'aide des amorces 4928 (CAAGCCTTTGTGTTCGAC, correspondant aux pb 4084 à 4101 de SEQ ID n° 1) et 4929, pour donner un fragment de 1,3 kb. Ce fragment a été purifié en gel, digéré par AatII et XbaI, et le fragment de 1,2 kb a été purifié en gel.

Le fragment de l'extrémité 3' a été cloné dans pBSTAcIIr digéré par AatII et XbaI. Un isolat a été digéré par SalI et KpnI et ligaturé avec le fragment de l'extrémité 5'. Le plasmide résultant, après vérification de la séquence, a été digéré par KpnI et AatII et ligaturé avec

le fragment central de 3,1 kb, pour donner pBSTAcIIr.PN5 (clone 21). pBSTAcIIr.PN5 (clone 21) a été digéré par SalI et XbaI, pour libérer le fragment PN5 de 5,3 kb, qui a été cloné dans pCInéoII digéré par SalI et XbaI. On a trouvé 5 de multiples isolats, dont GPII-1, qui a été séquencé complètement, était caractéristique et contenait un insert de 8 pb. Cet insert CAGAAGAA, après la pb 3994 de SEQ ID n° 1, convertissait la répétition directe de cette séquence en cet emplacement en une triple répétition 10 directe, provoquant un déplacement dans le cadre de lecture. Dans une tentative pour réparer ce défaut, on a fait digérer pBSTAcIIr.PN5 (clone 21) par NheI (pb 2538-2543, SEQ ID n° 1) et XhoI (pb 4828-4833, SEQ ID n 1), pour obtenir un fragment de 6,2 kb, et avec AatII et XhoI, pour obtenir un fragment de 0,7 kb qui a été ligaturé avec le 15 fragment de 1,6 kb résultant de la digestion de pBK-CMV.26.2 par AatII et NheI. Bien qu'on n'ait trouvé aucun isolat totalement correct, un isolat, HA-4, comportait seulement un seul changement de base, une délétion de la C à la pb 4827 (SEQ ID n° 1), adjacente au site XhoI. 20

Afin d'éviter que se produise le réarrangement par insertion de 8 pb, on a introduit trois mutations silencieuses dans la répétition en 5', et deux mutations supplémentaires dans une série de T seraient également introduites, comme indiqué ci-dessous (pb 3982 à 4014, SEQ ID n° 1; sites de mutation soulignés, répétitions de 8 pb dans la séquence native en italiques):

25

30

35

séquence native GAC ATT TTT ATG ACA GAA GAA CAG AAG AAA TAT
Asp Ile Phe Met Thr Glu Glu Gln Lys Lys Tyr

séquence mutante GAC ATC TTC ATG ACT GAG GAG CAG AAG AAA TAT
Etant donné que l'isolat HA-4 comportait la
séquence répétée directe native [par opposition à, par
exemple, pBSTAcIIr.PN5 (clone 21)] et que la région voisine du défaut du site XhoI n'était pas impliquée, on l'a
utilisé comme ADN matrice pour les réactions PCR sui-

vantes. L'amorce P5-3716S

15

30

35

(CCGAAGCCAATGTAACATTAGTAATTACTCGTG, correspondant aux pb 3684 à 3716, SEQ ID n° 1) a été appariée avec l'amorce P5-3969AS (GCTCCTCAGTCATGAAGATGTCTTGGCCACCTAAC, correspon-

5 dant aux pb 4003 à 3969, SEQ ID n° 1, les bases mutées sont soulignées), pour donner un produit de 320 pb. L'amorce P5-4017S

(GGCCAAGACATCTTCATGACTGAGGAGCAGAAGAAATATTAC, correspondent aux pb 3976 à 4017, SEQ ID n° 1; les bases mutées sont 10 soulignées) a été appariée avec l'amorce P5-4247AS (CTCAAAGCAAAGACTTTGATGAGACACTCTATGG, correspondant aux pb 4280 à 4247, SEQ ID n° 1), pour donner un produit de 305 pb. L'extrémité 3' du fragment de 320 pb avait donc un segment de 28 pb correspondant exactement à l'extrémité 5' du fragment de 305 pb. Les deux bandes ont été purifiées en gel, et une fraction de chaque a été réunie, dans une nouvelle réaction PCR, avec les amorces P5-3716S et P5-4247AS, pour donner un produit de 597 pb, qui a été

cloné T/A dans le vecteur pCRII. On a trouvé l'isolat 20 HO-7, qui avait la séquence recherchée. On a effectué une quadruple ligature pour assembler le PN5 modifié complet:

On a fait digérer par SalI et XbaI le vecteur d'expression HQ-8 dans des ovocytes, pour obtenir un fragment vecteur de 4,4 kb, GPII-1; on a fait digérer GPII-1 par Sall et Mlul, pour obtenir un fragment de 3,8 kb contenant la moitié 5' de PN5; on a fait digérer HO-7 par MluI (pb 3866 à 3871, SEQ ID n° 1) et AatII, pour obtenir un fragment de 0,3 kb contenant la région répétée de 8 pb mutante de PN5; on a fait digérer GPII-1 par AatII et XbaI, pour obtenir le segment 3' restant de 1,3 kb de PN5. Une partie du mélange réactionnel de ligature a été transformé dans des cellules Stable 2 de E. coli. Parmi les isolats de 9,6 kb contenant tous les quatre fragments, HR-1 a été séquencé et s'est révélé comporter la séquence de 5,4 kb recherchée. Ces isolats se développaient bien et ne manifestaient pas de tendance au réarrangement. La séquence de cette version construite de PN5 est représentée sur les figures 5A-E (SEQ ID n° 5).

EXEMPLE 8

5 PNR humain

On a isolé un clone de 856 pb (figure 3A, SEQ ID n° 3) à partir d'une banque d'ADNc de ganglions de la racine dorsale (GRD) humains, qui est très étroitement apparenté à PN5 de rat, avec une identité de 79 % en ce qui concerne la séquence d'aminoacides. La séquence de PN5 humain couvre la région entre IIIS1 et l'interdomaine III/IV, qui comprend la vanne d'inactivation rapide (à savoir IFM), qui est localisée dans l'interdomaine III/IV.

On a construit la banque d'ADNc de GRD à partir

d'ARN total de GRD 4 et 5 lombaires qui était amorcé au
hasard. L'ADNc du premier brin a été synthétisé à l'aide
de transcriptase inverse SuperScript II (GIBCO BRL), et la
synthèse du second brin a été effectuée à l'aide d'ADN
polymérase de T4. Des segments de raccord EcoRI ont été
ligaturés avec les extrémités des ADNc double brin, et les
fragments ont été clonés dans le vecteur ZAP II
(Stratagene). La banque a été criblée à l'aide de PN3 de
rat marqué à la digoxigénine, PN1 de rat et des sondes hH1
de coeur humain. Les clones positifs ont été séquencés et
comparés à des séquences connues de canaux sodiques
humains et de rat. Seul le clone précité a été identifié
en tant que séquence de PN5 humain.

	Canal	de similarité	% d'identité
	Cerveau humain (HBA)	76	69
30	Coeur humain (hH1)	81	74
	Coeur atypique humain	60	52
	Muscle squelettique humain	80	71
	Neuroendocrine humaine	78	71
	PN3 humain	77	70
35	PN1 de rat	79	72

Canal	% de similarité	% d'identité
PN3 de rat	. 78	71
PN4 de rat	78	70
PN5 de rat	86	79

La figure 3B compare la séquence d'aminoacides du fragment hPN5 avec la séquence d'aminoacides de PN5 de rat, dans la région appropriée.

EXEMPLE 9

Distribution tissulaire par RT-PCR

5

On a isolé à partir de rats Sprague-Dawley mâles adultes normaux, anesthésiés, des tissus de cerveau, de moelle épinière, de GRD, de ganglions plexiformes, de ganglions cervicaux supérieurs, de nerf sciatique, de coeur et de muscle squelettique, et on les a conservés à -80°C.

On a isolé l'ARN de chaque tissu à l'aide de RNAzol (Tel-Test Inc.). L'ADNc amorcé au hasard a été transcrit par transcription inverse à partir de 500 mg d'ARN provenant

de chaque tissu. L'amorce directe (CAGATTGTGTTCTCAGTACATTCC) et l'amorce inverse

20 (CCAGGTGTCTAACGAATAAATAGG) ont été conçues à partir de la région non traduite en 3', pour donner un fragment de 252 paires de bases. Les paramètres de cycle étaient 94°C/2 minutes (dénaturation), 94°C/30 s, 65°C/30 s et 72°C/1 min (35 cycles) et 72°C/4 min. Les produits de 25 réaction ont été analysés sur un gel d'agarose à 4 %.

Un témoin positif et un témoin sans matrice ont été également inclus. On a également amplifié par pCR de l'ADNc provenant de chaque tissu, en utilisant des amorces spécifiques de la glycéraldéhyde-3-phosphate déshydrogénase, pour montrer la viabilité de la matrice, comme décrit par Tso et coll., Nucleic. Acid Res. 13, 2485-2502 (1985).

Le profil de distribution tissulaire de rPN5 par analyse par RT-PCR d'ARN provenant de tissus choisis de rat, était le suivant:

	• • •		
	Tissu	RT-PCR	(35 cycles)
	Cerveau		+
	Moelle épinière		+
	GRD		+++
5	Ganglions plexiformes		+++
•	Ganglions cervicaux supérieurs		+
	Nerf sciatique		-
	Coeur		-
	Muscle squelettique		-
10	F11 non traité		+
	Fl1 traité		+

PN5 a été également détecté après seulement 25 cycles (24 + 1) dans les mêmes cinq tissus que cidessus, en la même abondance relative.

15 EXEMPLE 10

Anticorps

Un peptide synthétique (26 aminoacides dans les interdomaines II et III - résidus 977 à 1002) a été conjugué avec KLH et l'anticorps a été suscité chez des lapins. L'antisérum a été ensuite purifié par affinité. PN5 constitue une sous-famille de nouveaux gènes de canaux sodiques; ces gènes sont différents de ceux détectables avec d'autres sondes (par exemple les sondes PEAF8 et PN3).

25 Il doit être bien entendu que la description qui précède n'a été donnée qu'à titre illustratif et non limitatif et que toutes variantes ou modifications peuvent y être apportées sans sortir pour autant du cadre général de présente invention, tel que défini dans les revendications ci-annexées.

LISTE DES SEQUENCES

(1)	INFORMATIONS	GENERALES:
-----	--------------	------------

(I) DEMANDERESSE:
· •	

- (A) NOM: F. HOFFMANN-LA ROCHE AG
- 5 (B) RUE: Grenzacherstrasse 124
 - (C) VILLE: Bâle
 - (D) ETAT: BS
 - (E) PAYS: Suisse
 - (F) CODE POSTAL: CH-4010
- 10 (G) TELEPHONE: 061-6884256
 - (H) TELECOPIEUR: 061-6881395
 - (I) TELEX: 962292/965542 hlr ch
 - (II) TITRE DE L'INVENTION: Séquence d'ADN codant pour une protéine de canal sodique, sa production et son utilisation
 - (III) NOMBRE DES SEQUENCES: 5
 - (IV) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: disque souple
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D'EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release n° 1.0, version 1.30
 - (2) INFORMATIONS POUR SEQ ID nº 1:
 - (I) CARACTERISTIQUES DE LA SEQUENCE:
- 25 (A) LONGUEUR: 5 908 paires de bases
 - (B) TYPE: acide nucléique
 - (C) TYPE DE BRIN: simple
 - (D) TOPOLOGIE: linéaire
 - (II) TYPE DE MOLECULE: ADNC
- 30 (III) HYPOTHETIQUE: non

15

- (IV) ANTISENS: non
- (VI) SOURCE D'ORIGINE:
 - (A) ORGANISME: rat
- (B) TYPE DE TISSU: ganglions de la racine dor-35 sale

(C) TYPE DE CELLULE: nerf périphérique (XI) DESCRIPTION DE LA SEQUENCE: SEQ ID nº 1: GAAGTCACAG GAGTGTCTGT CAGCGAGAGG AAGAAGGGAG AGTTTACTGA 51 GTGTCTTCTG CCCCTCCTCA GGGTGAAGAT_GGAGGAGGG TACTACCCGG 101 TGATCTTCCC GGACGAGCGG AATTTCCGCC CCTTCACTTC CGACTCTCTG 151 GCTGCCATAG AGAAGCGGAT TGCTATCCAA AAGGAGAGGA AGAAGTCCAA AGACAAGGCG GCAGCTGAGC CCCAGCCTCG GCCTCAGCTT GACCTAAAGG 201 251 CCTCCAGGAA GTTACCTAAG CTTTATGGTG ACATTCCCCC TGAGCTTGTA 10 301 GCGAAGCCTC TGGAAGACCT GGACCCATTC TACAAAGACC ATAAGACATT 351 CATGGTGTTG AACAAGAAGA GAACAATTTA TCGCTTCAGC GCCAAGCGGG CCTTGTTCAT TCTGGGGCCT TTTAATCCCC TCAGAAGCTT AATGATTCGT 401 15 ATCTCTGTCC ATTCAGTCTT TAGCATGTTC ATCATCTGCA CGGTGATCAT . 451 CAACTGTATG TTCATGGCGA ATTCTATGGA GAGAAGTTTC GACAACGACA 501 TTCCCGAATA CGTCTTCATT GGGATTTATA TTTTAGAAGC TGTGATTAAA 551 ATATTGGCAA GAGGCTTCAT TGTGGATGAG TTTTCCTTCC TCCGAGATCC 601 20 GTGGAACTGG CTGGACTTCA TTGTCATTGG AACAGCGATC GCAACTTGTT 651 TTCCGGGCAG CCAAGTCAAT CTTTCAGCTC TTCGTACCTT CCGAGTGTTC 701 AGAGCTCTGA AGGCGATTTC AGTTATCTCA GGTCTGAAGG TCATCGTAGG 751 TGCCCTGCTG CGCTCGGTGA AGAAGCTGGT AGACGTGATG GTCCTCACTC 801 25 TCTTCTGCCT CAGCATCTTT GCCCTGGTCG GTCAGCAGCT GTTCATGGGA 851 ATTCTGAACC AGAAGTGTAT TAAGCACAAC TGTGGCCCCA ACCCTGCATC 901 951 CAACAAGGAT TGCTTTGAAA AGGAAAAAGA TAGCGAAGAC TTCATAATGT 30 1001 GTGGTACCTG GCTCGGCAGC AGACCCTGTC CCAATGGTTC TACGTGCGAT 1051 AAAACCACAT TGAACCCAGA CAATAATTAT ACAAAGTTTG ACAACTTTGG 1101 CTGGTCCTTT CTCGCCATGT TCCGGGTTAT GACTCAAGAC TCCTGGGAGA 1151 GGCTTTACCG ACAGATCCTG CGGACCTCTG GGATCTACTT TGTCTTCTTC

		1201	TTCGTGGTGG	TCATCTTCCT	GGGCTCCTTC	TACCTGCTTA	ACCTAACCCT
		1251	GGCTGTTGTC	ACCATGGCTT	ATGAAGAACA	GAACAGAAAT	GTAGCTGCTG
		1301	AGACAGAGGC	CAAGGAGAAA	ATGTTTCAGG	AAGCCCAGCA	GCTGTTAAGG
	5	1351	GAGGAGAAGG	AGGCTCTGGT	TGCCATGGGA	ATTGACAGAA	GTTCCCTTAA
		1401	TTCCCTTCAA	GCTTCATCCT	TTTCCCCGAA	GAAGAGGAAG	TTTTTCGGTA
		1451	GTAAGACAAG	AAAGTCCTTC	TTTATGAGAG	GGTCCAAGAC	GGCCCAAGCC
		1501	TCAGCGTCTG	ATTCAGAGGA	CGATGCCTCT	AAAAATCCAC	AGCTCCTTGA
1	10	1551	GCAGACCAAA	CGACTGTCCC	AGAACTTGCC	AGTGGATCTC	TTTGATGAGC
		1601	ACGTGGACCC	CCTCCACAGG	CAGAGAGCGC	TGAGCGCTGT	CAGTATCTTA
		1651	ACCATCACCA	TGCAGGAACA	AGAAAAATTC	CAGGAGCCTT	GTTTCCCATG
1	5	1701	TGGGAAAAAT	TTGGCCTCTA	AGTACCTGGT	GTGGGACTGT	AGCCCTCAGT
		1751	GGCTGTGCAT	AAAGAAGGTC	CTGCGGACCA	TCATGACGGA	TCCCTTTACT
		1801	GAGCTGGCCA	TCACCATCTG	CATCATCATC	AATACCGTTT	TCTTAGCCGT
		1851	GGAGCACCAC	AACATGGATG	ACAACTTAAA	GACCATACTG	AAAATAGGAA
2	20	1901	ACTGGGTTTT	CACGGGAATT	TTCATAGCGG	AAATGTGTCT	CAAGATCATC
		1951	GCGCTCGACC	CTTACCACTA	CTTCCGGCAC	GGCTGGAATG	TTTTTGACAG
		2001	CATCGTGGCC	CTCCTGAGTC	TCGCTGATGT	GCTCTACAAC	ACACTGTCTG
	_	2051	ATAACAATAG	GTCTTTCTTG	GCTTCCCTCA	GAGTGCTGAG	GGTCTTCAAG
2	!5	2101	TTAGCCAAAT	CCTGGCCCAC	GTTAAACACT	CTCATTAAGA	TCATCGGCCA
		2151	CTCCGTGGGC	GCGCTTGGAA	ACCTGACTGT	GGTCCTGACT	ATCGTGGTCT
		2201	TCATCTTTTC	TGTGGTGGGC	ATGCGGCTCT	TCGGCACCAA	GTTTAACAAG
3	0	2251	ACCGCCTACG	CCACCCAGGA	GGGGGCCAGG	CGGCGCTGGC	ACATGGATAA
		2301	TTTCTACCAC	TCCTTCCTGG	TGGTGTTCCG	CATCCTCTGT	GGGGAATGGA
		2351	TCGAGAACAT	GTGGGGCTGC	ATGCAGGATA	TGGACGGCTC	CCCGTTGTGC
		2401	ATCATTGTCT	TTGTCCTGAT	AATGGTGATC	GGGAAGCTTG	TGGTGCTTAA
3	5	2451	CCTCTTCATT	GCCTTGCTGC	TCAATTCCTT	CAGCAATGAG	GAGAAGGATG

GGAGCCTGGA AGGAGAGACC AGGAAAACCA AAGTGCAGCT AGCCCTGGAT 2501 2551 CGGTTCCGCC GGGCCTTCTC CTTCATGCTG CACGCTCTTC AGAGTTTTTG TTGCAAGAAA TGCAGGAGGA AAAACTCGCC AAAGCCAAAA GAGACAACAG 2601 AAAGCTTTGC TGGTGAGAAT AAAGACTCAA TCCTCCCGGA TGCGAGGCCC 2651 5 TGGAAGGAGT ATGATACAGA CATGGCTTTG TACACTGGAC AGGCCGGGGC 2701 TCCGCTGGCC CCACTCGCAG AGGTAGAGGA CGATGTGGAA TATTGTGGTG 2751 AAGGCGGTGC CCTACCCACC TCACAACATA GTGCTGGAGT TCAGGCCGGT 2801 10 GACCTCCCTC CAGAGACCAA GCAGCTCACT AGCCCGGATG ACCAAGGGGT 2851 TGAAATGGAA GTATTTTCTG AAGAAGATCT GCATTTAAGC ATACAGAGTC 2901 CTCGAAAGAA GTCTGACGCA GTGAGCATGC TCTCGGAATG CAGCACAATT 2951 3001 GACCTGAATG ATATCTTTAG AAATTTACAG AAAACAGTTT CCCCCAAAAA 15 GCAGCCAGAT AGATGCTTTC CCAAGGGCCT TAGTTGTCAC TTTCTATGCC 3051 ACAAAACAGA CAAGAGAAAG TCCCCCTGGG TCCTGTGGTG GAACATTCGG 3101 3151 AAAACCTGCT ACCAAATCGT GAAGCACAGC TGGTTTGAGA GTTTCATAAT CTTTGTTATT CTGCTGAGCA GTGGAGCGCT GATATTTGAA GATGTCAATC 3201 20 TCCCCAGCCG GCCCCAAGTT GAGAAATTAC TAAGGTGTAC CGATAATATT 3251 TTCACATTTA TTTTCCTCCT GGAAATGATC CTGAAGTGGG TGGCCTTTGG 3301 3351 ATTCCGGAGG TATTTCACCA GTGCCTGGTG CTGGCTTGAT TTCCTCATTG 25 3401 TGGTGGTGTC TGTGCTCAGT CTCATGAATC TACCAAGCTT GAAGTCCTTC 3451 CGGACTCTGC GGGCCCTGAG ACCTCTGCGG GCGCTGTCCC AGTTTGAAGG AATGAAGGTT GTCGTCTACG CCCTGATCAG CGCCATACCT GCCATTCTCA 3501 ATGTCTTGCT GGTCTGCCTC ATTTTCTGGC TCGTATTTTG TATCTTGGGA 3551 30 GTAAATTTAT TTTCTGGGAA GTTTGGAAGG TGCATTAACG GGACAGACAT 3601 3651 AAATATGTAT TTGGATTTTA CCGAAGTTCC GAACCGAAGC CAATGTAACA 3701 TTAGTAATTA CTCGTGGAAG GTCCCGCAGG TCAACTTTGA CAACGTGGGG 3751 AATGCCTATC TCGCCCTGCT GCAAGTGGCA ACCTATAAGG GCTGGCTGGA 35

	3801	AATCATGAAT	GCTGCTGTCG	ATTCCAGAGA	GAAAGACGAG	CAGCCGGACT
	3851	TTGAGGCGAA	CCTCTACGCG	TATCTCTACT	TTGTGGTTTT	TATCATCTTC
	3901	GGCTCCTTCT	TTACCCTGAA	ССТСТТТАТС	GGTGTTATTA	TTGACAACTT
5	3951	CAATCAGCAG	CAGAAAAAGT	TAGGTGGCCA	AGACATTTTT	ATGACAGAAG
	4001	AACAGAAGAA	ATATTACAAT	GCAATGAAAA	AGTTAGGAAC	CAAGAAACCT
	4051	CAAAAGCCCA	TCCCAAGGCC	CCTGAACAAA	TGTCAAGCCT	TTGTGTTCGA
	4101	CCTGGTCACA	AGCCAGGTCT	TTGACGTCAT	CATTCTGGGT	CTTATTGTCT
10	4151	TAAATATGAT	TATCATGATG	GCTGAATCTG	CCGACCAGCC	CAAAGATGTG
	4201	AAGAAAACCT	TTGATATCCT	CAACATAGCC	TTCGTGGTCA	TCTTTACCAT
	4251	AGAGTGTCTC	ATCAAAGTCT	TTGCTTTGAG	GCAACACTAC	TTCACCAATG
15	4301	GCTGGAACTT	ATTTGATTGT	GTGGTCGTGG	TTCTTTCTAT	CATTAGTACC
	4351	CTGGTTTCCC	GCTTGGAGGA	CAGTGACATT	TCTTTCCCGC	CCACGCTCTT
	4401	CAGAGTCGTC	CGCTTGGCTC	GGATTGGTCG	AATCCTCAGG	CTGGTCCGGG
	4451	CTGCCCGGGG	AATCAGGACC	CTCCTCTTTG	CTTTGATGAT	GTCTCTCCCC
20	4501	TCTCTCTTCA	ACATCGGTCT	GCTGCTCTTC	CTGGTGATGT.	TCATTTACGC
	4551	CATCTTTGGG	ATGAGCTGGT	TTTCCAAAGT	GAAGAAGGGC	TCCGGGATCG
	4601	ACGACATCTT	CAACTTCGAG	ACCTTTACGG	GCAGCATGCT	GTGCCTCTTC
	4651	CAGATAACCA	CTTCGGCTGG	CTGGGATACC	CTCCTCAACC	CCATGCTGGA
25	4701	GGCAAAAGAA	CACTGCAACT	CCTCCTCCCA	AGACAGCTGT	CAGCAGCCGC
	4751	AGATAGCCGT	CGTCTACTTC	GTCAGTTACA	TCATCATCTC	CTTCCTCATC
	4801	GTGGTCAACA	TGTACATCGC	TGTGATCCTC	GAGAACTTCA	ACACAGCCAC
30	4851	GGAGGAGAGC	GAGGACCCTC	TGGGAGAGGA	CGACTTTGAA	ATCTTCTATG
30	4901	AGGTCTGGGA	GAAGTTTGAC	CCCGAGGCGT	CGCAGTTCAT	CCAGTATTCG
	4951	GCCCTCTCTG	ACTTTGCGGA	CGCCCTGCCG	GAGCCGTTGC	GTGTGGCCAA
	5001	GCCGAATAAG	TTTCAGTTTC	TAGTGATGGA	CTTGCCCATG	GTGATGGGCG
35	5051	ACCGCCTCCA	TTGCATGGAT	GTTCTCTTTG	CTTTCACTAC	CAGGGTCCTC

	5101	GGGGACTCCA GCGGCTTGGA TACCATGAAA ACCATGATGG AGGAGAAGTT
	5151	TATGGAGGCC AACCCTTTTA AGAAGCTCTA CGAGCCCATA GTCACCACCA
	5201	CCAAGAGGAA GGAGGAGGAG CAAGGCGCCG CCGTCATCCA GAGGGCCTAC
5	5251	CGGAAACACA TGGAGAAGAT GGTCAAACTG AGGCTGAAGG ACAGGTCAAG
	5301	TTCATCGCAC CAGGTGTTTT GCAATGGAGA CTTGTCCAGC TTGGATGTGG
•	5351	CCAAGGTCAA GGTTCACAAT GACTGAACCC TCATCTCCAC CCCTACCTCA
	5401	CTGCCTCACA GCTTAGCCTC CAGCCTCTGG CGAGCAGGCG GCAGACTCAC
10	5451	TGAACACAGG CCGTTCGATC TGTGTTTTTG GCTGAACGAG GTGACAGGTT
	5501	GGCGTCCATT TTTAAATGAC TCTTGGAAAG ATTTCATGTA GAGAGATGTT
	5551	AGAÄGGGACT GCAAAGGACA CCGACCATAA CGGAAGGCCT GGAGGACAGT
4.5	5601	CCAACTTACA TAAAGATGAG AAACAAGAAG GAAAGATCCC AGGAAAACTT
15	5651	CAGATTGTGT TCTCAGTACA TCCCCCAATG TGTCTGTTCG GTGTTTTGAG
) ************************************	5701	TATETGACCT GCCACATGTA GCTCTTTTTT GCATGTACGT CAAAACCCTG
	5751	CAGTAAGTTG ATAGCTTGCT ACGGGTGTTC CTACCAGCAT CACAGAATTG
20	5801	GGTGTATGAC TCAAACCTAA AAGCATGACT CTGACTTGTC AGTCAGCACC
	5851	CCGACTTTCA GACGCTCCAA TCTCTGTCCC AGGTGTCTAA CGAATAAATA
	5901	GGTAAAAG
	(3) II	NFORMATIONS POUR SEQ ID n° 2:
0=		(I) CARACTERISTIQUES DE LA SEQUENCE:
25		(A) LONGUEUR: 1 765 aminoacides
		(B) TYPE: aminoacide
		(C) TYPE DE BRIN: -
		(D) TOPOLOGIE: sans rapport
	((II) TYPE DE MOLECULE: protéine
30	(I	II) HYPOTHETIQUE: oui
	((VI) SOURCE D'ORIGINE:
		(A) ORGANISME: rat
		(B) TYPE DE TISSU: ganglions de la racine dor-
		sale
35		(C) TYPE DE CELLULE: nerf périphérique

	(XI)	DE	SCR	IPTI	ON I	DE I	ıa s	EQU	ENCE	: s	EQ :	ID n	. 2	:		
	Met	Glu	ı Glu	ı Arg	Tyr	Tyr	Pro	val	Ile	Phe	Pro	Asp	Glu	Arg	Asn	Phe
	1				5.					10					15	
_	Ar	g Pr	o Ph	e Th	r Sei	: As	p Se	r Le	u Al	a Ala	a Il	e Glu	ı Ly	s Ar	g Ile	≥ Ala
5				20					25			•		30		
	11	e Gl		s Glu) Arc	Ly:	s Ly	s Se	r Ly	s Ası	b Ly	s Ala	a Ala	a Ala	Glu	Pro
		_	35					40					45			
	GI		o Ar	g Pro) Gln	Let		p Le	u Ly:	s Ala	a Se	r Arg	, Ly:	s Let	Pro	Lys
10	I o	50	- 1 .		. 71 -	_	55					60				
	65		. 613	y ASE	, iie	70	Pr	0 G11	u Let	ı Val		Lys	Pro) Leu	Glu	λsp
			o Pro	o Phe	Tyr			n ui.	. 1	. The	75				_	80 Lys
				,	85	Dy 3	, ,,	P 111.	s Lys	90	Pne	net:	. vai	. Leu		Lys
	Ly	s Arg	y Thi	: Ile		Arc	. Ph	e Sei	: Ala		. A~c	בוג י	Ĭ. o v	, Dha	.95 . 11a	Leu
15				100		•			105			, ,,,,,	Dec	110		Ded
	C).	. D			_											
	GIÀ	Pro) Pne		Pro	Leu	Arg			Met	Ile	Arg	Ile	Ser	Val	His
	Ser	. Val			Mor	Dha	71.	120					125			
20		130		Ser	ne ¢	rne	135		Cys	Thr	Val		Ile	λsn	Cys	Met
	Phe			Asn	Ser	Met			Ser	Pha	7-2	140	.	- 1 -	_	
	145					150		,	001		155	ASII	ASP	116	Pro	
	Tyr	Val	Phe	Ile	Gly	Ile	Tyr	Ile	Leu	Glu		Val	Ile	Lvs	710	160
					165					170				-,-	175	220
25	Ala	Arg	Gly	Phe	Ile	Val	Asp	Glu	Phe	Ser	Phe	Leu	Arg	Asp	Pro	Trp
				180					185					190		
	Asn	Trp		Asp	Phe	Ile	Val	Ile	Gly	Thr	Ala	Ile	Ala	Thr	Cys	Phe
	D	~ 1	195					200					205			
20	Pro	GIA	Ser	Gln	Val .			Ser	Ala	Leu	Arg	Thr	Phe	Arg	Val	Phe
30	A-a	210	ī au	Tree :			215		_ •			220				
	225	.,,,,	₽€U	Lys i		330 116	ser	val	île			Leu	Lys	Val	Ile	Val
		Ala	Leu :	Leu /			Va 1	Lve	Lvc		235					240
	•		'		245		1	-y 3		250 250	val	Asp '	Val	Met '		Leu
35	Thr .	Leu .	Phe (Cys L		er :	lle	Phe .			Val (siv (3) o d	c) n i	255	7h -
				260					265	- -		~ . y (270	יבט ו	rne

	Met () I Y	TIE	Leu	ASN	GIN	Lys	Cys	TIE	rys	HIS	ASII	Cys	GIÅ	Pro	Asr
			275					280					285			
	Pro A	Ala :	Ser	Asn	Lys	Asp	Cys	Phe	Glu	Lys	Glu	Lys	Asp	Ser	Glu	Asp
	2	90					295					300				
5	Phe I	(le)	Met	Cys	Gly	Thr	Trp	Leu	Gly	Ser	Arg	Pro	Cys	Pro	Asn	Gly
	305					310					315					320
.•	Ser 1	Thr (Cys	Asp	Lys	Thr	Thr	Leu	Asn	Pro	Asp	Asn	Asn	Tyr	Thr	Lys
					325					330					335	
	Phe A	sp /	Asn	Phe	Gly	Trp	Ser	Phe	Leu	Ala	Met	Phe	Arg	Val	Met	The
10				340					345					350		
	Gln A	sp :	Ser	Trp	Glu	Arg	Leu	Tyr	Arg	Gln	Ile	Leu	Arg	Thr	Ser	Gly
		:	355					360					365			
	Ile T	yr 1	Phe	Val	Phe	Phe	Phe	Val	Val	Val	Ile	Phe	Leu	Gly	Ser	Phe
	3	70					375					380				
15	Tyr L	eu !	Leu	Asn	Leu	Thr	Leu	Ala	Val	Val	Thr	Met	Ala	Tyr	Glu	Glu
	385					390					395					400
	Gln A	sn)	Arg	Asn	Val	Ala	Ala	Glu	Thr	Glu	Ala	Lys	Glu	Lys	Met	Phe
					405					410				• -	415	
	Gln (Glu	Ala	Gln	Gln	Leu	Leu	Arg	Glu	Glu	Lys	Glu	Ala	Leu	Val	Ala
20				420					425					430		
	Met (Gly	Ile	Asp	Arg	Ser	Ser	Leu	Asn	Ser	Leu	Gln	Ala	Ser	Ser	Phe
			435					440					445			
	Ser 1	n										Th~				
	001	PIO	Lys	Lys	Arg	Lys	Phe	Phe	Gly	Ser	Lys	1	Arg	Lys	Ser	Phe
25		450	Lys	Lys	Arg	Lys	Phe 455	Phe	Gly	Ser	Lys	460	Arg	Lys	Ser	Phe
20		450					455					460				
20	4	450					455					460				
20	Phe 1	450 1et .	Arg	Gly	Ser	Lys 470	455 Thr	Ala	Gln	Ala	Ser 475	460 Ala	Ser	Asp	Ser	Glu 480
20	Phe 1 465	450 det .	Arg	Gly	Ser	Lys 470	455 Thr	Ala	Gln	Ala	Ser 475	460 Ala	Ser	Asp	Ser	Glu 480
	Phe 1 465	150 det . Asp .	Arg Ala	Gly Ser	Ser Lys 485	Lys 470 Asn	455 Thr Pro	Ala Gln	Gln Leu	Ala Leu 490	Ser 475 Glu	460 Ala Gln	Ser Thr	Asp Lys	Ser Arg 495	Glu 480 Leu
30	Phe 1 465 Asp 1	150 det . Asp .	Arg Ala	Gly Ser	Ser Lys 485	Lys 470 Asn	455 Thr Pro	Ala Gln	Gln Leu	Ala Leu 490	Ser 475 Glu	460 Ala Gln	Ser Thr	Asp Lys	Ser Arg 495	Glu 480 Leu
	Phe 1 465 Asp 1	450 Het . Asp .	Arg Ala Asn	Gly Ser Leu 500	Ser Lys 485 Pro	Lys 470 Asn Val	455 Thr Pro	Ala Gln Leu	Gln Leu Phe 505	Ala Leu 490 Asp	Ser 475 Glu Glu	460 Ala Gln His	Ser Thr Val	Asp Lys Asp 510	Ser Arg 495 Pro	Glu 480 Leu Leu
	Phe A	450 Het . Asp . Gln .	Arg Ala Asn Gln 515	Gly Ser Leu 500 Arg	Ser Lys 485 Pro	Lys 470 Asn Val	455 Thr Pro Asp	Ala Gln Leu Ala 520	Gln Leu Phe 505 Val	Ala Leu 490 Asp	Ser 475 Glu Glu	460 Ala Gln His	Ser Thr Val Thr 525	Asp Lys Asp 510 Ile	Ser Arg 495 Pro	Glu 480 Leu Leu Met
	Phe 1 465 Asp 7 Ser 0	450 Het . Asp . Gln .	Arg Ala Asn Gln 515	Gly Ser Leu 500 Arg	Ser Lys 485 Pro	Lys 470 Asn Val	455 Thr Pro Asp	Ala Gln Leu Ala 520	Gln Leu Phe 505 Val	Ala Leu 490 Asp	Ser 475 Glu Glu	460 Ala Gln His	Ser Thr Val Thr 525	Asp Lys Asp 510 Ile	Ser Arg 495 Pro	Glu 480 Leu Leu Met

	Leu	Ala	Ser	Lys	Tyr	Leu	Val	Trp	Asp	Cys	Ser	Pro	Gln	Trp	Leu	Cys
	545					550					555					560
	Ile	Lys	Lys	Val	Leu	Arg	Thr	Ile	Met	Thr	Asp	Pro	Phe	Thr	Glu	Leu
					565					570					575	
5	Ala	Ile	Thr	Ile	Cys	Ile	Ile	Ile	Asn	Thr	Val	Phe	Leu	Ala	Val	Glu
				580					585					590		
	His	His	Asn	Met	Asp	Asp	Asn	Leu	Lys	Thr	Ile	Leu	Lys	Ile	Gly	Asn
			595					600					605			
	Trp	Val	Phe	Thr	Gly	Ile	Phe	Ile	Ala	Glu	Met	Cys	Leu	Lys	lle	Ile
10		610					615					620				
	Ala	Leu	Asp	Pro	Tyr	His	Tyr	Phe	Arg	His	Gly	Trp	Asn	Val	Phe	Asp
	625					630					635					640
	Ser	Ile	Val	Ala	Leu	Leu	Ser	Leu	Ala	λsp	Val	Leu	Tyr	Asn	Thr	Leu
					645					650					655	
15	Ser	Asp	Asn	Asn	λrg	Ser	Phe	Leu	Ala	Ser	Leu	Arg	Val	Leu	Arg	Val
 			<u> </u>	660	** ***	*******			665					670		
	Phe	Lys	Leu	Ala	Lys	Ser	Trp	Pro	Thr	Leu	Asn	Thr	Leu	Ile	Lys	Ile
			675					680					685			
	Ile	Gly	His	Ser	Val	Gly	Ala	Leu	Gly	Asn	Leu	Thr	Val	Val	Leu	Thr
20		690					695					700				
	Ile	Val	Val	Phe	Ile	Phe	Ser	Val	Val	Gly	Met	Arg	Leu	Phe	Gly	Thr
	705					710					715					720
	Lys	Phe	Asn	Lys	Thr	Ala	Tyr	Ala	Thr	Gln	Glu	Arg	Pro	Arg	Arg	Arg
25					725					730					735	
25	Trp	His	Met	Asp	Asn	Phe	Tyr	His	Ser	Phe	Leu	Val	Val	Phe	Arg	Ile
				740					745					750		
	Leu	Cys	Gly	Glu	Trp	Ile	Glu	Asn	Met	Trp	Gly	Cys	Met	Gln	Asp	Met
			755					760					765			
30	Asp	Gly	Ser	Pro	Leu	Cys	lle	Ile	Val	Phe	Val	Leu	Ile	Met	Val	Ile
30		770					775					780				
	Gly	Lys	Leu	Val	Val	Leu	Asn	Leu	Phe	Ile	Ala	Leu	Leu	Leu	Asn	Ser
	725					790					795					800
	Phe	Ser	Asn	Glu	Glu	Lys	Asp	Gly	Ser	Leu	Glu	Gly	Glu	Thr	Arg	Lys
. =					805					810					815	

	Thr	Lys	Val	GÌn	Leu	Ala	Leu	Asp	Arg	Phe	Arg	Arg	Ala	Phe	Ser	Phe
				820					825					830		
	Met	Leu	His	Ala	Leu	Gln	Ser	Phe	Cys	Cys	Lys	Lys	Cys	Arg	Arg	Lys
			835					840					845			
5	Asn	Ser	Pro	Lys	Pro	Lys	Glu	Thr	Thr	Glu	Ser	Phe	Ala	Gly	Glu	Asn
5		850					855					860				
	Lys	Asp	Ser	Ile	Leu	Pro	Asp	Ala	Arg	Pro	Trp	Lys	Glu	Tyr	Asp	Thr
	865					870					875					880
	λsp	Met	Ala	Leu	Tyr	Thr	Gly	Gln	Ala	Gly	Ala	Pro	Leu	Ala	Pro	Leu
10					885					890					895	
10	Ala	.Glu	Val	Glu	Asp	Asp	Val	Glu	Tyr	Cys	Gly	Glu	Gly	Gly	Ala	Leu
				900					905					910		
	Pro	Thr	Ser	Gln	His	Ser	Ala	Gly	Val	Gln	Ala	Gly	Asp	Leu	Pro	Pro
			915					920					925			
15	Glu	Thr	Lys	Gln	Leu	Thr	Ser	Pro	Asp	λsp	Gln	Gly	Val	Glu	Met	Glu
		930					935					940				
	Val	Phe	Ser	Glu	Glu	Asp	Leu	His	Leu	Ser	Ile	Gln	Ser	Pro	Arg	Lys
	945					950					955					960
	Lys	Ser	Asp	Ala	Val	Ser	Met	Leu	Ser	Glu	Cys	Ser	Thr	Ile	Asp	Lev
20					965					970					975	
	λsn	λsp	Ile	Phe	Arg	Asn	Leu	Gln	Lys	Thr	Val	Ser	Pro	Lys	Lys	Gln
				980					985					990		
	PIO	Asp	Arg	Cys	Phe	Pro	Lys	Gly	Leu	Ser	Cys	His	Phe	Leu	Cys	His
			995	•				1000					1005	•		
25	Lys	Thr	Asp	Lys	Arg	Lys	Ser	Pro	Trp	Val	Leu	Trp	Trp	Asn	Ile	Arg
		1010)				1015	5				102	כ			
	Lys	Thr	Cys	Tyr	Gln	Ile	Val	Lys	His	Ser	Trp	Phe	Glu	Ser	Phe	Ile
	1025	5				1030)				1035	5				1040
	Ile	Phe	Val	Ile	Leu	Leu	Ser	Ser	Gly	Ala	Leu	Ile	Phe	Glu	Asp	Val
30					1045	5				105)				105	5
	Asn	Leu	Pro	Ser	Arg	Pro	Gln	Val	Glu	Lys	Leu	Leu	Arg	Cys	Thr	Asp
				1060)				105	5				1070)	
	Asn	Ile	Phe	Thr	Phe	Ile	Phe	Leu	Leu	Glu	Met	Ile	Leu	Ly's	Trp	Val
			1075	5				1080)				1089	5		

	Ala	Phe	Gly	Phe	·Arg	·Arg	Tyr	Phe	Thr	Ser	Ala	Trp	Cys	Trp	Leu	Asp
		109	0				109	5				110	0			
	Phe	Leu	Ile	Val	Val	Val	Ser	Val	Leu	Ser	Leu	Met	Asn	Leu	Pro	Ser
	110	5				111	0				111	5				1120
-	Leu	Lys	Ser	Phe	Arg	Thr	Leu	Arg	Ala	Leu	Arg	Pro	Leu	Arg	Ala	Leu
5					112					113					113	
	Ser	Gln	Phe	Glu	Gly	Met	Lys	Val	Val	Val	Tyr	Ala	Leu	Ile	Ser	λla
				114					114					115		
	Ile	Pro			Leu	Asn	Val			Val	Cys	Leu	Ile	Phe	Trp	Leu
10			1155					116					116			
.0	Val			Ile	Leu	Gly	Val	Asn	Leu	Phe	Ser	Gly	Lys	Phe	Gly	Arg
		1170					1179					118				
			Asn	Gly	Thr			Asn	Met	Tyr	Leu	Яsр	Phe	Thr	Glu	
	1189				_	1190					119					1200
15	Pro	Asn	Arg	Ser			λsn	Ile	Ser	Asn	Tyr	Ser	Trp	Lys	Val	Pro
				_	1205					1210					1215	
•	Gln	Val	Asn			Asn	Va-l				Tyr	Leu	Ala	Leu	Leu	Gln
				1220					1225					1230		
	Val	Ala			Lys	Gly	Trp			Ile	Met	λsn	λla	Ala	Val	Asp
20	_		1235					1240					1245			
	Ser			Lys	Asp	Glu			Asp	Phe	Glu			Leu	Tyr	Ala
	_	1250					1255					1260				
			Tyr	Phe	Val			Ile	Ile	Phe			Phe	Phe	Thr	
	1265				_	1270					1275					1280
25	ASN	Leu	Phe	Ile			Ile	Ile	Asp			Asn	Gln	Gln	Gln	Lys
					1285	i				1290)				1295	5
	Lys	Leu	Gly	Gly	Gln	Asp	Ile	Phe	Het	Thr	Glu	Glu	Gln	Lys	Lys	Tyr
				130	0				130	5				131	0	
	Tyr	Asn	Ala	Met	Lys	Lys	Leu	Gly	Thr	Lys	Lys	Pro	Gln	Lys	Pro	Ile
30			1315	5		•		132	0				132	5		
	Pro	Arg	Pro	Leu	Asn	Lys	Cys	Gln	Ala	Phe	Val	Phe	Asp	Leu	Val	Thr
		1330	כ				133	5				134	0			
	Ser	Gln	Val	Phe	Asp	Val	Ile	Ile	Leu	Gly	Leu	Ile	Val	Leu	λsn	Met
	1349	5				135	0				135	5				1360

	Ile	lle	Met	: Mét	: Ala	Gli	ı Sei	Ala	Asp	Glr	Pro	Lys	Asp	Val	. Lys	Lys
					136	55				137	70				137	75
	Thr	Phe	Asp	Ile	Leu	Asr	lle	: Ala	Phe	Val	Val	Ile	Phe	Thr	Ile	Glu
				138	0				138	5				139	0	
5	Cys	Leu	Ile	Lys	Val	Phe	Ala	Leu	Arg	Gln	His	Tyr	Phe	Thr	Asn	Gly
			139					140					140			
	Trp	Asn	Leu	Phe	Asp	Cys	Val	Val	Val	Val	Leu	Ser	Ile	Ile	Ser	Thr
		141					141					142				
	Leu	Val	Ser	Arg	Leu	Glu	Asp	Ser	Asp	Ile	Ser	Phe	Pro	Pro	Thr	Leu
10	142					143					143					1440
	Phe	Arg	Val	Val	Arg	Leu	Ala	Arg	Ile	Gly	Arg	Ile	Leu	Arg	Leu	Val
					144					145					145	
	Arg	λla	Ala	Arg	Gly	Ile	Arg	Thr	Leu	Leu	Phe	Ala	Leu	Met	Met	Ser
				146					146					147		
15	Leu	Pro	Ser	Leu	Phe	Asn	Ile	Gly	Leu	Leu	Leu	Phe	Leu	Val	Met	Phe
			147.					148					148			
-	Ile	Tyr	Ala	Ile	Phe	Gly	Met	Ser	Trp	Phe	Ser	Lys	Val	Lys	Lys	Gly
		1490					149					150				
			Ile	Аsp	Asp	Ile	Phe	Asn	Phe	Glu	Thr	Phe	Thr	Gly	Ser	Met
20	1505					151					151					1520
	Leu	Cys	Leu	Phe	Gln	Ile	Thr	Thr	Ser	λla	Gly	Trp	Asp	Thr	Leu	Leu
					1525					153					153	
	Asn	Pro	Met	Leu	Glu	Ala	Lys	Glu	His	Cys	Asn	Ser	Ser	Ser	Gln	Asp
				1540					1549					155		
25	Ser	Cys	Gln	Gln	Pro	Gln	Ile	Ala	Val	Val	Tyr	Phe	Val	Ser	Tyr	Ile
			1555					1560					156			٠.
	Ile	Ile	Ser	Phe	Leu	Ile	Val	Val	Asn	Met	Tyr	Ile	Ala	Val	Ile	Leu
		1570	ı				1575	5				1580)			
	Glu	Asn	Phe	Asn	Thr	Ala	Thr	Glu	Glu	Ser	Glu	Asp	Pro	Leu	Gly	Glu
30	1585	,				1590)		-		1599	5				1600
	Asp	λsp	Phe	Glu	Ile	Phe	Tyr	Glu	Val	Trp	Glu	Lys	Phe	Asp	Pro	Glu
					1605	i				1610)				1615	5
	Ala	Ser	Gln	Phe	Ile	Gln	Tyr	Ser	Ala	Leu	Ser	Asp	Phe	Ala	Asp	λla
				1620	1				1625					1630)	
35	Leu	Pro	Glu	Pro	Leu	Arg	Val	Ala	Lys	Pro	Asn	Lys	Phe	Gln	Phe	Leu

- 53 **-**

		1635					1640					1645						
			Val	Met	Asp	Leu	Pro	Met	Val	Met	Gly	Asp	Arg	Leu	His	Cys	Net	Asp
				165	0				165	5				166	0			
5	;		Val	Leu	Phe	Ala	Phe	Thr	Thr	λrg	Val	Leu	Gly	Asp	Ser	Ser	Gly	Leu
			166	5				167	0				167	5				1680
÷			Asp	Thr	Met	Lys	Thr	Met	Met	Glu	Glu	Lys	Phe	Met	Glu	Ala	Asn	Pro
							1689	5				169	0				1699	5
			Phe	Lys	Lys	Leu	Tyr	Glu	Pro	Ile	Val	Thr	Thr	Thr	Lys	Arg	Lys	Glu
10						1700)				170	5				171	0	
			Glu	Glu	Gln	Gly	Ala	Ala	Val	Ile	Gln	Arg	Ala	Tyr	Arg	Lys	His	Met
					1715	5				1720)				172	5		
			Glu	Lys	Met	Val	Lys	Leu	Arg	Leu	Lys	Asp	Arg	Ser	Ser	Ser	Ser	His
				1730					173					1740				
15			Gln	Val	Phe	Cys	Asn	Gly	Asp	Leu	Ser	Ser	Leu	Asp	Val	Ala	Lys	Val
			1745	5				1750)				1755	5				1760
•			Lys	Val	His	Asn	Asp							• •				
							1765	5										
		(4)) IN	FOR	MATI	ONS	POI	JR S	EQ	ID r	ı° 3	:						
20		(4) INFORMATIONS POUR SEQ ID n° 3: (I) CARACTERISTIQUES DE LA SEQUENCE:																
		(A) LONGUEUR: 856 paires de bases																
						TY												
					(C)	TY	PE I	DE B	RIN	: នរំ	mpl	e						
					(D)	TO	POLO	GIE	: 1	inéa	ire							
25			(II)	TYF	E D	E MC	DLEC	ULE	: AI	Nc							
			(I	II)	HYP	OTH	ETIÇ	QUE :	no	n								
			(IV)	ANT	ISE	NS:	non										
			(VI)	SOU	RCE	D'C	RIG	INE	:								
					(A)	OR	GANI	SME	: h	umai	.n							
30					(B)	TY	PE D	E T	ISSU	J: g	rang	lior	ns d	le 1	a ra	acin	e d	or-
						sa:				_	_							
					(C)	TY	PE D	E C	ELL	JLE :	ne	rf p	eri	phé	riqu	16		
			(X)	I) E		RIP								_	_			
	1	GC.	ጥር እሳ	ここりて	ייתיב	CCC	ር እ ርሳ	ע ביים	תי איתי	ጥጥ스 ፣	, a.c. >	mo:	መጥረት ፡		.m. ~			
35	•	30		JCAC	,	اییی	CACI	GA	IVI	I I G	AMG A	ı I'G'	TTC	4CCT	T G	AGA.	ACCA	LAC

	51	CCAAAATCCA AGAATTACTA AATTGTACTG ACATTATTT TACACATATT
	101	TTTATCCTGG AGATGGTACT AAAATGGGTA GCCTTCGGAT TTGGAAAGTA
	151	TTTCACCAGT GCCTGGTGCT GCCTTGATTT CATCATTGTG ATTGTCTCTG
5	201	TGACCACCCT CATTAACTTA ATGGAATTGA AGTCCTTCCG GACTCTACGA
	251	GCACTGAGGC CTCTTCGTGC GCTGTCCCAG TTTGAAGGAA TGAAGGTGGT
	301	GGTCAATGCT CTCATAGGTG CCATACCTGC CATTCTGAAT GTTTTGCTTG
10	351	TCTGCCTCAT TTTCTGGCTC GTATTTTGTA TTCTGGGAGT ATACTTCTTT
10	401	TCTGGAAAAT TTGGGAAATG CATTAATGGA ACAGACTCAG TTATAAATTA
	451	TACCATCATT ACAAATAAAA GTCAATGTGA AAGTGGCAAT TTCTCTTGGA
	501	TCAACCAGAA AGTCAACTTT GACAATGTGG GAAATGCTTA CCTCGCTCTG
15	551	CTGCAAGTGG CAACATTTAA GGGCTGGATG GATATTATAT ATGCAGCTGT
	601	TGATTCCACA GAGAAAGAAC AACAGCCAGA GTTTGAGAGC AATTCACTCG
	651	GTTACATTTA CTTCGTAGTC TTTATCATCT TTGGCTCATT CTTCACTCTG
	701	AATCTCTTCA TTGGCGTTAT CATTGACAAC TTCAACCAAC AGCAGAAAAA
20	751	GTTAGGTGGC CAAGACATTT TTATGACAGA AGAACAGAAG AAATACTATA
	801	ATGCAATGAA AAAATTAGGA TCCAAAAAAC CTCAAAAACC CATTCCACGG
	851	CCCGTT
25		
	(5) IN	FORMATIONS POUR SEQ ID n° 4:
		(I) CARACTERISTIQUES DE LA SEQUENCE:
		(A) LONGUEUR: 702 paires de bases
		(B) TYPE: acide nucléique
30		(C) TYPE DE BRIN: simple

- (C) TYPE DE BRIN: simple
- (D) TOPOLOGIE: linéaire
- (II) TYPE DE MOLECULE: RT-PCR
 - (A) DESCRIPTION: /desc = "sonde d'ADN/ domaine IV"
- (III) HYPOTHETIQUE: non 35

```
(IV) ANTISENS: non
          (VI) SOURCE D'ORIGINE:
               (A) ORGANISME: rat
               (B) TYPE DE TISSU: ganglions de la racine dor-
 5
                   sale
               (C) TYPE DE CELLULE: nerf périphérique
         (XI) DESCRIPTION DE LA SEQUENCE: SEQ ID nº 4:
          CTCAACATGG TTACGATGAT GGTGGAGACC GACGAGCAGG GCGAGGAGAA
          GACGAAGGTT CTGGGCAGAA TCAACCAGTT CTTTGTGGCC GTCTTCACGG
10
     101 GCGAGTGTGT GATGAAGATG TTCGCCCTGC GACAGTACTA TTTCACCAAC
     151 GGCTGGAACG TGTTCGACTT CATAGTGGTG ATCCTGTCCA TTGGGAGTCT
     201 GCTGTTTCT GCAATCCTTA AGTCACTGGA AAACTACTTC TCCCCGACGC
     251 TCTTCCGGGT CATCCGTCTG GCCAGGATCG GCCGCATCCT CAGGCTGATC
     301 CGAGCAGCCA AGGGGATTCG CACGCTGCTC TTCGCCCTCA TGATGTCCCT
15
     351 GCCCGCCCTC TTCAACATCG GCCTCCTCCT CTTCCTCGTC ATGTTCATCT
     401 ACTCCATCTT CGGCATGGCC AGCTTCGCTA ACGTCGTGGA CGAGGCCGGC
     451 ATCGACGACA TGTTCAACTT CAAGACCTTT GGCAACAGCA TGCTGTGCCT
     501 GTTCCAGATC ACCACCTCGG CCGGCTGGGA CGGCCTCCTC AGCCCCATCC
     551 TCAACACGGG GCCTCCCTAC TGCGACCCCA ACCTGCCCAA CAGCAACGGC
20
     601 TCCCGGGGGA ACTGCGGGAG CCCGGCGGTG GGCATCATCT TCTTCACCAC
     651 CTACATCATC ATCTCCTTCC TCATCGTGGT CAACATGTAT ATCGCAGTCA
     701 TC
    (6) INFORMATIONS POUR SEQ ID nº 5:
25
          (I) CARACTERISTIQUES DE LA SEQUENCE:
              (A) LONGUEUR: 5 334 paires de bases
              (B) TYPE: acide nucléique
              (C) TYPE DE BRIN: simple
              (D) TOPOLOGIE: linéaire
30
         (II) TYPE DE MOLECULE: RT-PCR
              (A) DESCRIPTION: ADNC
        (III) HYPOTHETIQUE: non
         (IV) ANTISENS: non
```

(VI) SOURCE D'ORIGINE:

(A) ORGANISME:

(B) TYPE DE TISSU:

(C) TYPE DE CELLULE:

(XI) DESCRIPTION DE LA SEQUENCE: SEQ ID nº 5:

1 GTCGACTCTA GATCAGGGTG AAGATGGAGG AGAGGTACTA CCCGGTGATC 5 51 TTCCCGGACG AGCGGAATTT CCGCCCCTTC ACTTCCGACT CTCTGGCTGC 101 CATAGAGAAG CGGATTGCTA TCCAAAAGGA GAGGAAGAAG TCCAAAGACA 151 AGGCGGCAGC TGAGCCCCAG CCTCGGCCTC AGCTTGACCT AAAGGCCTCC 201 AGGAAGTTAC CTAAGCTTTA TGGTGACATT CCCCCTGAGC TTGTAGCGAA 10 251 GCCTCTGGAA GACCTGGACC CATTCTACAA AGACCATAAG ACATTCATGG 301 TGTTGAACAA GAAGAGAACA ATTTATCGCT TCAGCGCCAA GCGGGCCTTG 351 TTCATTCTGG GGCCTTTTAA TCCCCTCAGA AGCTTAATGA TTCGTATCTC 15 401 TGTCCATTCA GTCTTTAGCA TGTTCATCAT CTGCACGGTG ATCATCAACT 451 GTATGTTCAT GGCGAATTCT ATGGAGAGA GTTTCGACAA CGACATTCCC 501 GAATACGTCT TCATTGGGAT TTATATTTTA GAAGCTGTGA TTAAAATATT 551 GGCAAGAGGC TTCATTGTGG ATGAGTTTTC CTTCCTCCGA GATCCGTGGA 20 601 ACTGGCTGGA CTTCATTGTC ATTGGAACAG CGATCGCAAC TTGTTTTCCG GGCAGCCAAG TCAATCTTTC AGCTCTTCGT ACCTTCCGAG TGTTCAGAGC 651 701 TCTGAAGGCG ATTTCAGTTA TCTCAGGTCT GAAGGTCATC GTAGGTGCCC 751 TGCTGCGCTC GGTGAAGAAG CTGGTAGACG TGATGGTCCT CACTCTCTTC 25 801 TGCCTCAGCA TCTTTGCCCT GGTCGGTCAG CAGCTGTTCA TGGGAATTCT 851 GAACCAGAAG TGTATTAAGC ACAACTGTGG CCCCAACCCT GCATCCAACA 901 AGGATTGCTT TGAAAAGGAA AAAGATAGCG AAGACTTCAT AATGTGTGGT 30 951 ACCTGGCTCG GCAGCAGACC CTGTCCCAAT GGTTCTACGT GCGATAAAAC

1001 CACATTGAAC CCAGACAATA ATTATACAAA GTTTGACAAC TTTGGCTGGT CCTTTCTCGC CATGTTCCGG GTTATGACTC AAGACTCCTG GGAGAGGCTT 1051 TACCGACAGA TCCTGCGGAC CTCTGGGATC TACTTTGTCT TCTTCTTCGT 1101 1151 GGTGGTCATC TTCCTGGGCT CCTTCTACCT GCTTAACCTA ACCCTGGCTG 1201 TTGTCACCAT GGCTTATGAA GAACAGAACA GAAATGTAGC TGCTGAGACA 1251 GAGGCCAAGG AGAAAATGTT TCAGGAAGCC CAGCAGCTGT TAAGGGAGGA 1301 GAAGGAGGCT CTGGTTGCCA TGGGAATTGA CAGAAGTTCC CTTAATTCCC TTCAAGCTTC ATCCTTTTCC CCGAAGAAGA GGAAGTTTTT CGGTAGTAAG 1401 ACAAGAAGT CCTTCTTTAT GAGAGGGTCC AAGACGGCCC AAGCCTCAGC 1451 GTCTGATTCA GAGGACGATG CCTCTAAAAA TCCACAGCTC CTTGAGCAGA 1501 CCAAACGACT GTCCCAGAAC TTGCCAGTGG ATCTCTTTGA TGAGCACGTG 1551 GACCCCTCC ACAGGCAGAG AGCGCTGAGC GCTGTCAGTA TCTTAACCAT 1601 CACCATGCAG GAACAAGAAA AATTCCAGGA GCCTTGTTTC CCATGTGGGA 1651 AAAATTTGGC CTCTAAGTAC CTGGTGTGGG ACTGTAGCCC TCAGTGGCTG 1701 TGCATAAAGA AGGTCCTGCG GACCATCATG ACGGATCCCT TTACTGAGCT 1751 GGCCATCACC ATCTGCATCA TCATCAATAC CGTTTTCTTA GCCGTGGAGC 1801 ACCACAACAT GGATGACAAC TTAAAGACCA TACTGAAAAT AGGAAACTGG 1851 GTTTTCACGG GAATTTTCAT AGCGGAAATG TGTCTCAAGA TCATCGCGCT 1901 CGACCCTTAC CACTACTTCC GGCACGGCTG GAATGTTTTT GACAGCATCG 1951 TGGCCCTCCT GAGTCTCGCT GATGTGCTCT ACAACACACT GTCTGATAAC 2001 AATAGGTCTT TCTTGGCTTC CCTCAGAGTG CTGAGGGTCT TCAAGTTAGC 2051 CAAATCCTGG CCCACGTTAA ACACTCTCAT TAAGATCATC GGCCACTCCG 2101 TGGGCGCGCT TGGAAACCTG ACTGTGGTCC TGACTATCGT GGTCTTCATC TTTTCTGTGG TGGGCATGCG GCTCTTCGGC ACCAAGTTTA ACAAGACCGC 2201 CTACGCCACC CAGGAGCGGC CCAGGCGGCG CTGGCACATG GATAATTTCT 2251 ACCACTCCTT CCTGGTGGTG TTCCGCATCC TCTGTGGGGA ATGGATCGAG 2301 AACATGTGGG GCTGCATGCA GGATATGGAC GGCTCCCCGT TGTGCATCAT 2351 TGTCTTTGTC CTGATAATGG TGATCGGGAA GCTTGTGGTG CTTAACCTCT

2401 TCATTGCCTT GCTGCTCAAT TCCTTCAGCA ATGAGGAGAA GGATGGGAGC 2451 CTGGAAGGAG, AGACCAGGAA AACCAAAGTG CAGCTAGCCC TGGATCGGTT 2501 CCGCCGGGCĆ TŤCTCCTTCA TGCTGCACGC TCTTCAGAGT TTTTGTTGCA 2551 AGAAATGCAG GAGGAAAAAC TCGCCAAAGC CAAAAGAGAC AACAGAAAGC 2601 TTTGCTGGTG AGAATAAAGA CTCAATCCTC CCGGATGCGA GGCCCTGGAA 2651 GGAGTATGAT ACAGACATGG CTTTGTACAC TGGACAGGCC GGGGCTCCGC TGGCCCCACT CGCAGAGGTA GAGGACGATG TGGAATATTG TGGTGAAGGC 2701 2751 GGTGCCCTAC CCACCTCACA ACATAGTGCT GGAGTTCAGG CCGGTGACCT 2801 CCCTCCAGAG ACCAAGCAGC TCACTAGCCC GGATGACCAA GGGGTTGAAA 2851 TGGAAGTATT TTCTGAAGAA GATCTGCATT TAAGCATACA GAGTCCTCGA 2901 AAGAAGTCTG ACGCAGTGAG CATGCTCTCG GAATGCAGCA CAATTGACCT 2951 GAATGATATC TTTAGAAATT TACAGAAAAC AGTTTCCCCC AAAAAGCAGC 3001 CAGATAGATG CTTTCCCAAG GGCCTTAGTT GTCACTTTCT ATGCCACAAA 3051 ACAGACAAGA GAAAGTCCCC CTGGGTCCTG TGGTGGAACA TTCGGAAAAC 3101 CTGCTACCAA ATCGTGAAGC ACAGCTGGTT TGAGAGTTTC ATAATCTTTG 3151 TTATTCTGCT GAGCAGTGGA GCGCTGATAT TTGAAGATGT CAATCTCCCC 3201 AGCCGGCCC AAGTTGAGAA ATTACTAAGG TGTACCGATA ATATTTTCAC 3251 ATTTATTTC CTCCTGGAAA TGATCCTGAA GTGGGTGGCC TTTGGATTCC 3301 GGAGGTATTT CACCAGTGCC TGGTGCTGGC TTGATTTCCT CATTGTGGTG 2251 GTGTCTGTGC TCAGTCTCAT GAATCTACCA AGCTTGAAGT CCTTCCGGAC TCTGCGGGCC CTGAGACCTC TGCGGGCGCT GTCCCAGTTT GAAGGAATGA 3401 AGGTTGTCGT CTACGCCCTG ATCAGCGCCA TACCTGCCAT TCTCAATGTC 3501 TTGCTGGTCT GCCTCATTTT CTGGCTCGTA TTTTGTATCT TGGGAGTAAA 3551 TTTATTTTCT GGGAAGTTTG GAAGGTGCAT TAACGGGACA GACATAAATA 3601 TGTATTTGGA TTTTACCGAA GTTCCGAACC GAAGCCAATG TAACATTAGT 3651 AATTACTCGT GGAAGGTCCC GCAGGTCAAC TTTGACAACG TGGGGAATGC 3701 CTATCTCGCC CTGCTGCAAG TGGCAACCTA TAAGGGCTGG CTGGAAATCA 3751 TGAATGCTGC TGTCGATTCC AGAGAGAAAG ACGAGCAGCC GGACTTTGAG

3801 GCGAACCTCT ACGCGTATCT CTACTTTGTG GTTTTTATCA TCTTCGGCTC 3851 CTTCTTTACC CTGAACCTCT TTATCGGTGT TATTATTGAC AACTTCAATC 3901 AGCAGCAGAA AAAGTTAGGT GGCCAAGACA TCTTCATGAC TGAGGAGCAG 3951 AAGAAATATT ACAATGCAAT GAAAAAGTTA GGAACCAAGA AACCTCAAAA 4001 GCCCATCCCA AGGCCCCTGA ACAAATGTCA AGCCTTTGTG TTCGACCTGG 4051 TCACAAGCCA GGTCTTTGAC GTCATCATTC TGGGTCTTAT TGTCTTAAAT 4101 ATGATTATCA TGATGGCTGA ATCTGCCGAC CAGCCCAAAG ATGTGAAGAA 4151 AACCTTTGAT ATCCTCAACA TAGCCTTCGT GGTCATCTTT ACCATAGAGT 4201 GTCTCATCAA AGTCTTTGCT TTGAGGCAAC ACTACTTCAC CAATGGCTGG 4251 AACTTATTTG ATTGTGTGGT CGTGGTTCTT TCTATCATTA GTACCCTGGT 4301 TTCCCGCTTG GAGGACAGTG ACATTTCTTT CCCGCCCACG CTCTTCAGAG 4351 TCGTCCGCTT GGCTCGGATT GGTCGAATCC TCAGGCTGGT CCGGGCTGCC 4401 CGGGGAATCA GGACCCTCCT CTTTGCTTTG ATGATGTCTC TCCCCTCTCT 4451 CTTCAACATC GGTCTGCTGC TCTTCCTGGT GATGTTCATT TACGCCATCT 4501 TTGGGATGAG CTGGTTTTCC AAAGTGAAGA AGGGCTCCGG GATCGACGAC ATCTTCAACT TCGAGACCTT TACGGGCAGC ATGCTGTGCC TCTTCCAGAT AACCACTTCG GCTGGCTGGG ATACCCTCCT CAACCCCATG CTGGAGGCAA 4651 AAGAACACTG CAACTCCTCC TCCCAAGACA GCTGTCAGCA GCCGCAGATA 4701 GCCGTCGTCT ACTTCGTCAG TTACATCATC ATCTCCTTCC TCATCGTGGT 4751 CAACATGTAC ATCGCTGTGA TCCTCGAGAA CTTCAACACA GCCACGGAGG 4801 AGAGCGAGGA CCCTCTGGGA GAGGACGACT TTGAAATCTT CTATGAGGTC 4851 TGGGAGAAGT TTGACCCCGA GGCGTCGCAG TTCATCCAGT ATTCGGCCCT 4901 CTCTGACTTT GCGGACGCCC TGCCGGAGCC GTTGCGTGTG GCCAAGCCGA 4951 ATAAGTTTCA GTTTCTAGTG ATGGACTTGC CCATGGTGAT GGGCGACCGC 5001 CTCCATTGCA TGGATGTTCT CTTTGCTTTC ACTACCAGGG TCCTCGGGGA 5051 CTCCAGCGGC TTGGATACCA TGAAAACCAT GATGGAGGAG AAGTTTATGG 5101 AGGCCAACCC TTTTAAGAAG CTCTACGAGC CCATAGTCAC CACCACCAAG 5151 AGGAAGGAGG AGGAGCAAGG CGCCGCCGTC ATCCAGAGGG CCTACCGGAA

- 60 -

5201	ACACATGGAG	AAGATGGTCA	AACTGAGGCT	GAAGGACAGG	TCAAGTTCA
5251	CGCACCAGGT	GTTTTGCAAT	GGAGACTTGT	CCAGCTTGGA	TGTGGCCAA
5301	GTCAAGGTTC	ACAATGAC <u>TG</u>	BACCCTCATC	TAGA	

REVENDICATIONS

- 1. Séquence d'ADN isolée, caractérisée en ce qu'elle comprend la séquence nucléotidique indiquée dans SEQ ID n° 1 et SEQ ID n° 3.
- 2. ADN selon la revendication 1, caractérisé en ce que ladite séquence d'ADN code pour une protéine de canal sodique ou un fragment de celle-ci.
- 3. ADN selon la revendication 2, caractérisé en ce que ladite protéine de canal sodique est la sous-unité α 10 ou un fragment de celle-ci.
 - 4. ADN selon la revendication 3, caractérisé en ce que ladite protéine de canal sodique est résistante à la tétrodotoxine.
- 5. ADN selon la revendication 3 ou 4, caractérisé 15 en ce que ladite protéine de canal sodique se rencontre chez des mammifères.
 - 6. ADN selon la revendication 3 ou 4, caractérisé en ce que ladite protéine de canal sodique se rencontre chez le rat.
- 7. ADN selon la revendication 3 ou 4, caractérisé en ce que ladite protéine de canal sodique se rencontre chez l'homme.
 - 8. ADN selon la revendication 1, caractérisé en ce que ledit ADN est de l'ADNc.
- 9. ADN selon la revendication 1, caractérisé en ce que ledit ADN est de l'ADN synthétique.
 - 10. Vecteurs d'expression, caractérisés en ce qu'ils comprennent l'ADN de la revendication 8.
- 11. Vecteurs d'expression, caractérisés en ce 30 qu'ils comprennent l'ADN synthétique de la revendication 9.
 - 12. Cellules hôtes transformées par les vecteurs d'expression de la revendication 10.
- 13. Cellules hôtes transformées par les vecteurs 35 d'expression de la revendication 11.

- 14. Polynucléotide recombinant, caractérisé en ce qu'il comprend une séquence d'acide nucléique provenant de la séquence d'ADN de la revendication 1.
- 15. Protéine de canal sodique codée par un ADN selon les revendications 1 à 9 ou des variants allèles de celui-ci.
 - 16. Protéine de canal sodique résistante à la tétrodotoxine, codée par un ADN selon les revendications 1 à 9 ou des variants allèles de celui-ci.
- 17. Protéine selon la revendication 16, caractérisée en ce qu'elle comprend la séquence d'aminoacides indiquée dans SEQ ID n° 2.
- 18. Procédé d'identification d'inhibiteurs de la protéine de canal sodique résistante à la tétrodotoxine, caractérisé en ce qu'il comprend la mise en contact d'un composé, soupçonné être un tel inhibiteur, avec la protéine de canal sodique de la revendication 16, et la mesure de l'activité de ladite protéine de canal sodique exprimée.
- 19. Anticorps poly- et/ou monoclonaux, suscités contre une protéine de canal sodique résistante à la tétrodotoxine, codée par un ADN des revendications 1 à 9 ou des variants allèles de celui-ci.
- 20. Nécessaire de diagnostic, caractérisé en ce qu'il comprend un polynucléotide selon la revendication 14, capable de s'hybrider spécifiquement avec une protéine de canal sodique résistante à la tétrodotoxine ou un fragment d'une telle protéine.
- 21. Utilisation d'une séquence d'ADN isolée selon 30 les revendications 1 à 9, pour l'identification d'un composé soupçonné être un inhibiteur de protéine de canal sodique résistante à la tétrodotoxine.

1/27 Figure 1A: SEQ ID NO:1

GAAGTCACAG GAGTGTCTGT CAGCGAGAGG AAGAAGGGAG AGTTTACTGA GTGTCTTCTG ·CCCTCCTCA GGGTGAAGAT GGAGGAGAGG TACTACCCGG 51 TGATCTTCCC GGACGAGCGG AATTTCCGCC CCTTCACTTC CGACTCTCTG 101 GCTGCCATAG AGAAGCGGAT TGCTATCCAA AAGGAGAGGA AGAAGTCCAA 151 AGACAAGGCG GCAGCTGAGC CCCAGCCTCG GCCTCAGCTT GACCTAAAGG 201 CCTCCAGGAA GTTACCTAAG CTTTATGGTG ACATTCCCCC TGAGCTTGTA 251 GCGAAGCCTC TGGAAGACCT GGACCCATTC TACAAAGACC ATAAGACATT 301 CATGGTGTTG AACAAGAAGA GAACAATTTA TCGCTTCAGC GCCAAGCGGG 351 CCTTGTTCAT TCTGGGGCCT TTTAATCCCC TCAGAAGCTT AATGATTCGT 401 ATCTCTGTCC ATTCAGTCTT TAGCATGTTC ATCATCTGCA CGGTGATCAT 451 CAACTGTATG TTCATGGCGA ATTCTATGGA GAGAAGTTTC GACAACGACA 501 TTCCCGAATA CGTCTTCATT GGGATTTATA TTTTAGAAGC TGTGATTAAA 551 ATATTGGCAA GAGGCTTCAT TGTGGATGAG TTTTCCTTCC TCCGAGATCC 601 GTGGAACTGG CTGGACTTCA TTGTCATTGG AACAGCGATC GCAACTTGTT 651 TTCCGGGCAG CCAAGTCAAT CTTTCAGCTC TTCGTACCTT CCGAGTGTTC 701 751 AGAGCTCTGA AGGCGATTTC AGTTATCTCA GGTCTGAAGG TCATCGTAGG TGCCCTGCTG CGCTCGGTGA AGAAGCTGGT AGACGTGATG GTCCTCACTC 801 TCTTCTGCCT CAGCATCTTT GCCCTGGTCG GTCAGCAGCT GTTCATGGGA 851 ATTCTGAACC AGAAGTGTAT TAAGCACAAC TGTGGCCCCA ACCCTGCATC 901 CAACAAGGAT TGCTTTGAAA AGGAAAAAGA TAGCGAAGAC TTCATAATGT 951 GTGGTACCTG GCTCGGCAGC AGACCCTGTC CCAATGGTTC TACGTGCGAT 1001 1051 AAAACCACAT TGAACCCAGA CAATAATTAT ACAAAGTTTG ACAACTTTGG 1101 CTGGTCCTTT CTCGCCATGT TCCGGGTTAT GACTCAAGAC TCCTGGGAGA 1151 GGCTTTACCG ACAGATCCTG CGGACCTCTG GGATCTACTT TGTCTTCTTC 1201 TTCGTGGTGG TCATCTTCCT GGGCTCCTTC TACCTGCTTA ACCTAACCCT

Figure 1B: SEQ ID NO:1 GGCTGTTGTC ACCATGGCTT ATGAAGAACA GAACAGAAAT GTAGCTGCTG 1251 AGACAGAGGC CAAGGAGAAA ATGTTTCAGG AAGCCCAGCA GCTGTTAAGG 1301 GAGGAGAAGG AGGCTCTGGT TGCCATGGGA ATTGACAGAA GTTCCCTTAA 1351 TTCCCTTCAA GCTTCATCCT TTTCCCCGAA GAAGAGGAAG TTTTTCGGTA 1401 GTAAGACAAG AAAGTCCTTC TTTATGAGAG GGTCCAAGAC GGCCCAAGCC 1451 TCAGCGTCTG ATTCAGAGGA CGATGCCTCT AAAAATCCAC AGCTCCTTGA 1501 1551 GCAGACCAAA CGACTGTCCC AGAACTTGCC AGTGGATCTC TTTGATGAGC ACGTGGACCC CCTCCACAGG CAGAGAGCGC TGAGCGCTGT CAGTATCTTA 1601 1651 ACCATCACCA TGCAGGAACA AGAAAAATTC CAGGAGCCTT GTTTCCCATG 1701 TGGGAAAAAT TTGGCCTCTA AGTACCTGGT GTGGGACTGT AGCCCTCAGT 1751 GGCTGTGCAT AAAGAAGGTC CTGCGGACCA TCATGACGGA TCCCTTTACT 1801 GAGCTGGCCA TCACCATCTG CATCATCATC AATACCGTTT TCTTAGCCGT 1851 GGAGCACCAC AACATGGATG ACAACTTAAA GACCATACTG AAAATAGGAA 1901 ACTGGGTTTT CACGGGAATT TTCATAGCGG AAATGTGTCT CAAGATCATC 1951 GCGCTCGACC CTTACCACTA CTTCCGGCAC GGCTGGAATG TTTTTGACAG 2001 CATCGTGGCC CTCCTGAGTC TCGCTGATGT GCTCTACAAC ACACTGTCTG 2051 ATAACAATAG GTCTTTCTTG GCTTCCCTCA GAGTGCTGAG GGTCTTCAAG TTAGCCAAAT CCTGGCCCAC GTTAAACACT CTCATTAAGA TCATCGGCCA 2101 CTCCGTGGGC GCGCTTGGAA ACCTGACTGT GGTCCTGACT ATCGTGGTCT 2151 TCATCTTTTC TGTGGTGGGC ATGCGGCTCT TCGGCACCAA GTTTAACAAG 2201 2251 ACCGCCTACG CCACCCAGGA GCGGCCCAGG CGGCGCTGGC ACATGGATAA 2301 TTTCTACCAC TCCTTCCTGG TGGTGTTCCG CATCCTCTGT GGGGAATGGA 2351 TCGAGAACAT GTGGGGCTGC ATGCAGGATA TGGACGGCTC CCCGTTGTGC 2401 ATCATTGTCT TTGTCCTGAT AATGGTGATC GGGAAGCTTG TGGTGCTTAA

3/27 Figure 1C: SEQ ID NO:1

2451	CCTCTTCATT	GCCTTGCTGC	TCAATTCCTT	CAGCAATGAG	GAGAAGGATG
2501	GGAGCCTGGA	AGGAGAGACC	AGGAAAACCA	AAGTGCAGCT	AGCCCTGGAT
2551	CGGTTCCGCC	GGGCCTTCTC	CTTCATGCTG	CACGCTCTTC	AGAGTTTTTG
2601	TTGCAAGAAA	TGCAGGAGGA	AAAACTCGCC	AAAGCCAAAA	GAGACAACAG
2651	AAAGCTTTGC	TGGTGAGAAT	AAAGACTCAA	TCCTCCCGGA	TGCGAGGCCC
2701	TGGAAGGAGT	ATGATACAGA	CATGGCTTTG	TACACTGGAC	AGGCCGGGGC
2751	TCCGCTGGCC	CCACTCGCAG	AGGTAGAGGA	CGATGTGGAA	TATTGTGGTG
2801	AAGGCGGTGC	CCTACCCACC	TCACAACATA	GTGCTGGAGT	TCAGGCCGGT
2851	GACCTCCCTC	CAGAGACCAA	GCAGCTCACT	AGCCCGGATG	ACCAAGGGGT
2901	TGAAATGGAA	GTATTTTCTG	AAGAAGATCT	GCATTTAAGC	ATACAGAGTC
2951	CTCGAAAGAA	GTCTGACGCA	GTGAGCATGC	TCTCGGAATG	CAGCACAATT
3001	GACCTGAATG	ATATCTTTAG	AAATTTACAG	AAAACAGTTT	CCCCCAAAAA
3051	GCAGCCAGAT	AGATGCTTTC	CCAAGGGCCT	TAGTTGTCAC	TTTCTATGCC
3101	ACAAAACAGA	CAAGAGAAAG	TCCCCTGGG	TCCTGTGGTG	GAACATTCGG
3151	AAAACCTGCT	ACCAAATCGT	GAAGCACAGC	TGGTTTGAGA	GTTTCATAAT
3201	CTTTGTTATT	CTGCTGAGCA	GTGGAGCGCT	GATATTTGAA	GATGTCAATC
3251	TCCCCAGCCG	GCCCCAAGTT	GAGAAATTAC	TAAGGTGTAC	CGATAATATT
3301	TTCACATTTA	TTTTCCTCCT	GGAAATGATC	CTGAAGTGGG	TGGCCTTTGG
3351	ATTCCGGAGG	TATTTCACCA	GTGCCTGGTG	CTGGCTTGAT	TTCCTCATTG
3401	TGGTGGTGTC	TGTGCTCAGT	CTCATGAATC	TACCAAGCTT	GAAGTCCTTC
3451	CGGACTCTGC	GGGCCCTGAG	ACCTCTGCGG	GCGCTGTCCC	AGTTTGAAGG
3501	AATGAAGGTT	GTCGTCTACG	CCCTGATCAG	CGCCATACCT	GCCATTCTCA
3551	ATGTCTTGCT	GGTCTGCCTC	ATTTTCTGGC	TCGTATTTTG	TATCTTGGGA
3601	GTAAATTTAT	TTTCTGGGAA	GTTTGGAAGG	TGCATTAACG	GGACAGACAT

Figure 1D: SEQ ID NO:1

AAATATGTAT	TTGGATTTTA	CCGAAGTTCC	GAACCGAAGC	CAATGTAACA
TTAGTAATTA	CTCGTGGAAG	GTCCCGCAGG	TCAACTTTGA	CAACGTGGGG
AATGCCTATC	TCGCCCTGCT	GCAAGTGGCA	ACCTATAAGG	GCTGGCTGGA
AATCATGAAT	GCTGCTGTCG	ATTCCAGAGA	GAAAGACGAG	CAGCCGGACT
TTGAGGCGAA	CCTCTACGCG	TATCTCTACT	TTGTGGTTTT	TATCATCTTC
GGCTCCTTCT	TTACCCTGAA	CCTCTTTATC	GGTGTTATTA	TTGACAACTT
CAATCAGCAG	CAGAAAAAGT	TAGGTGGCCA	AGACATTTTT	ATGACAGAAG
AACAGAAGAA	ATATTACAAT	GCAATGAAAA	AGTTAGGAAC	CAAGAAACCT
CAAAAGCCCA	TCCCAAGGCC	CCTGAACAAA	TGTCAAGCCT	TTGTGTTCGA
CCTGGTCACA	AGCCAGGTCT	TTGACGTCAT	CATTCTGGGT	CTTATTGTCT
TAAATATGAT	TATCATGATG	GCTGAATCTG	CCGACCAGCC	CAAAGATGTG
AAGAAAACCT	TTGATATCCT	CAACATAGCC	TTCGTGGTCA	TCTTTACCAT
AGAGTGTCTC	ATCAAAGTCT	TTGCTTTGAG	GCAACACTAC	TTCACCAATG
GCTGGAACTT	ATTTGATTGT	GTGGTCGTGG	TTCTTTCTAT	CATTAGTACC
CTGGTTTCCC	GCTTGGAGGA	CAGTGACATT	TCTTTCCCGC	CCACGCTCTT
CAGAGTCGTC	CGCTTGGCTC	GGATTGGTCG	AATCCTCAGG	CTGGTCCGGG
CTGCCCGGGĢ	AATCAGGACC	CTCCTCTTTG	CTTTGATGAT	GTCTCTCCCC
TCTCTCTTCA	ACATCGGTCT	GCTGCTCTTC	CTGGTGATGT	TCATTTACGC
CATCTTTGGG	ATGAGCTGGT	TTTCCAAAGT	GAAGAAGGGC	TCCGGGATCG
ACGACATCTT	CAACTTCGAG	ACCTTTACGG	GCAGCATGCT	GTGCCTCTTC
CAGATAACCA	CTTCGGCTGG	CTGGGATACC	CTCCTCAACC	CCATGCTGGA
GGCAAAAGAA	CACTGCAACT	CCTCCTCCCA	AGACAGCTGT	CAGCAGCCGC
AGATAGCCGT	CGTCTACTTC	GTCAGTTACA	TCATCATCTC	CTTCCTCATC
GTGGTCAACA	TGTACATCGC	TGTGATCCTC	GAGAACTTCA	ACACAGCCAC
	TTAGTAATTA AATGCCTATC AATCATGAAT TTGAGGCGAA GGCTCCTTCT CAATCAGCAG AACAGAAGAA CAAAAGCCCA CCTGGTCACA TAAATATGAT AAGAAAACCT AGAGTGTCTC GCTGGAACTT CTGGTTTCCC CAGAGTCGTC CAGAGTCGTC CTGCCCGGGG TCTCTTCA CATCTTTGGG ACGACATCTT CAGATAACCA AGATAACCA GGCAAAAGAA AGATAGCCGT	TTAGTAATTA CTCGTGGAAG AATGCCTATC TCGCCCTGCT AATCATGAAT GCTGCTGTCG TTGAGGCGAA CCTCTACGCG GGCTCCTTCT TTACCCTGAA CAATCAGCAG CAGAAAAAGT AACAGAAGAA ATATTACAAT CAAAAGCCCA TCCCAAGGCC CCTGGTCACA AGCCAGGTCT TAAATATGAT TATCATGATG AAGAAAACCT TTGATATCCT AGAGTGTCTC ATCAAAGTCT CTGGTTCCC GCTTGGAGA CAGAGTCGTC CGCTTGGAGC CTGCCCGGGG AATCAGGACC TCTCTCTTCA ACATCGGTCT CATCTTTGGG ATGACTGT ACGACATCTT CAACTTCGAG CAGATAACCA CTTCGGCTG CAGATAACCA CTTCGGCTGG GGCAAAAGAA CACTGCAACT AGATAGCCGT CGTCTACTTC	TTAGTAATTA CTCGTGGAAG GTCCCGCAGG AATGCCTATC TCGCCCTGCT GCAAGTGGCA AATCATGAAT GCTGCTGTCG ATTCCAGAGA TTGAGGCGAA CCTCTACGCG TATCTTACT GGCTCCTTCT TTACCCTGAA CCTCTTATC CAATCAGCAG CAGAAAAAGT TAGGTGGCCA AACAGAAGAA ATATTACAAT GCAATGAAAA CAAAAGCCCA TCCCAAGGCC CCTGAACAAA CCTGGTCACA AGCCAGGTCT TTGACGTCAT TAAATATGAT TATCATGATG GCTGAATCAG AGAGAACCT ATTGATATCCT CAACATAGCC AGAGTCTC ATCAAAGTCT TTGCTTTGAG CTGGTTCCC GCTTGGAGGA CAGTGACATT CAGAGTCGTC GCTTGGAGGA CAGTGACATT CAGAGTCGTC CGCTTGGCTC GGATTGCTC CTGCCCGGGG AATCAGGACC CTCCTCTTC CATCTTTGG ATGACGTCT GCTGCTCTC CATCTTTGGG ATGACTGGT TTTCCAAAGT ACGACATCTT CAACTTCGAG ACCTTTACGG CAGATAACCA CTTCGGCTGG CTGGGATACC GGCAAAAGAA CACTGCAACT CCTCCCCA AGATAGCCGT CGTCTACTC GTCAGTTACA	AAATATGTATTTGGATTTTACCGAAGTTCCGAACCGAAGCTTAGTAATTACTCGTGGAAGGTCCCGCAGGTCAACTTTGAAATGCCTATCTCGCCCTGCTGCAAGTGGCAACCTATAAGGAATCATGAATGCTGCTGCGATTCCAGAGAGAAAGACGAGTTGAGGCGAACCTCTACGCGTATCTCTACTTTGTGGTTTTGGCTCCTTCTTTACCCTGAACCTCTTACTGGTGTTATTACAATCAGCAGCAGAAAAAGTTAGGTGGCCAAGACATTTTTAACAGAAGAAATATTACAATGCAATGAAAAAGTTAGGAACCCAAAAGCCCATCCCAAGGCCCCTGAACAAATGTCAAGCCTCCTGGTCACAAGCCAGGTCTTTGACGTCATCATTCTGGGTAAGAAAACCTTTGATATCCTCAACAATAGCTTCGTGGTCAAGAGTGTCCATCAAAGTCTTTGCTTTGAGGCAACACTACGCTGGAACTTATTTGATTGTGTGGTCGTGTTCTTTCTATCTGGTTTCCCGCTTGGAGGACAGTGACATTTCTTTCCCGCCAGAGTCGTCGCTTGGAGGACAGTGACATTTCTTTCCCGCCAGAGTCGTCACATCGGTCGGATTGGTCCTTGGTGATGTCTCCCCGGGGAATCAGGACCCTCCTCTTTGCTTGGTGATGTCATCTTTGGGACATCGGTCGCTGCTCTTCCTGGTGATGTCAGACATCTTCAACATCCGAGACCTTTACGGGCAGCATGCTCAGATAACCACTTCGGCTGCTGGGATACCCTCCTCAACCGGCAAAAAGACACTGCAACTCTCCTCCAACCAGACAGCTGTAGATAGCCGTCTTCACTCCCAGACAGCTGTAGACAGCTGTAGATAGCCGTCGTCACTTCCAGACAGCTCTCAGCAACTTCC

Figure 1E: SEQ ID NO: 1 GGAGGAGAGC GAGGACCCTC TGGGAGAGGA CGACTTTGAA ATCTTCTATG 4851 AGGTCTGGGA GAAGTTTGAC CCCGAGGCGT CGCAGTTCAT CCAGTATTCG 4901 GCCCTCTCTG ACTTTGCGGA CGCCCTGCCG GAGCCGTTGC GTGTGGCCAA 4951 GCCGAATAAG TTTCAGTTTC TAGTGATGGA CTTGCCCATG GTGATGGGCG 5001 ACCGCCTCCA TTGCATGGAT GTTCTCTTTG CTTTCACTAC CAGGGTCCTC 5051 GGGGACTCCA GCGGCTTGGA TACCATGAAA ACCATGATGG AGGAGAAGTT 5101 TATGGAGGCC AACCCTTTTA AGAAGCTCTA CGAGCCCATA GTCACCACCA 5151 CCAAGAGGAA GGAGGAGGAG CAAGGCGCCG CCGTCATCCA GAGGGCCTAC 5201 CGGAAACACA TGGAGAAGAT GGTCAAACTG AGGCTGAAGG ACAGGTCAAG TTCATCGCAC CAGGTGTTTT GCAATGGAGA CTTGTCCAGC TTGGATGTGG 5301 CCAAGGTCAA GGTTCACAAT GACTGAACCC TCATCTCCAC CCCTACCTCA CTGCCTCACA GCTTAGCCTC CAGCCTCTGG CGAGCAGGCG GCAGACTCAC 5401 TGAACACAGG CCGTTCGATC TGTGTTTTTG GCTGAACGAG GTGACAGGTT 5451 GGCGTCCATT TTTAAATGAC TCTTGGAAAG ATTTCATGTA GAGAGATGTT 5501 AGAAGGGACT GCAAAGGACA CCGACCATAA CGGAAGGCCT GGAGGACAGT 5551 CCAACTTACA TAAAGATGAG AAACAAGAAG GAAAGATCCC AGGAAAACTT 5601 CAGATTGTGT TCTCAGTACA TCCCCCAATG TGTCTGTTCG GTGTTTTGAG 5651 TATGTGACCT GCCACATGTA GCTCTTTTTT GCATGTACGT CAAAACCCTG 5701 CAGTAAGTTG ATAGCTTGCT ACGGGTGTTC CTACCAGCAT CACAGAATTG 5751 GGTGTATGAC TCAAACCTAA AAGCATGACT CTGACTTGTC AGTCAGCACC 5801 CCGACTTTCA GACGCTCCAA TCTCTGTCCC AGGTGTCTAA CGAATAAATA 5851 5901 GGTAAAAG

Figure 2A: SEQ ID NO: 2

Met	Glu	Glu	Arg	Tyr	Туг	Pro	Val	Ile	Phe	Pro	Asp	Glu .	Arg	Asn	Phe
1				5 -					10					15	
Arg	Pro	Phe	Thr	Ser	Asp	Ser	Leu	Ala	Ala	Ile	Glu	Lys	Arg	Ile	Ala
			20					25					30		
Ile	Gln	Lys	Glu	Arg	Lys	Lys	Ser	Lys	Asp	Lys	Ala	Ala	Ala	Glu	Pro
		35					40					45			
Gln	Pro	Arg	Pro	Gln	Leu	Asp	Leu	Lys	Ala	Ser	Arg	Lys	Leu	Pro	Lys
	50					55					60				
Leu	Tyr	Gly	Asp	Ile	Pro	Pro	Glu	Leu	Val	Ala	Lys	Pro	Leu	Glu	Asp
65					70					75					80
Leu	Asp	Pro	Phe	Tyr	Lys	Asp	His	Lys	Thr	Phe	Met	Val	Leu	Asn	Lys
				85					90					95	
Lys	Arg	Thr	Ile	Tyr	Arg	Phe	Ser	Ala	Lys	Arg	Ala	Leu	Phe	Ile	Leu
			100					105					110		
Gly	Pro	Phe	Asn	Pro	Leu	Arg	Ser	Leu	Met	Ile	Arg	lle	Ser	Val	His
		115					120					125			
Ser	Val	Phe	Ser	Met	Phe	Ile	Ile	Суѕ	Thr	Val	Ile	Ile	Asn	Cys	Met
	130			•		135					140				
Phe	Met	Ala	Asn	Ser	Met	Glu	Arg	Ser	Phe	Asp	Asn	Asp	Ile	Pro	Glu
145					150					155					160
Туг	Val	Phe	Ile	Gly	Ile	Tyr	Ile	Leu	Glu	Ala	Val	Ile	Lys	Ile	Leu
				165					170					175	
Ala	Arg	Gly	Phe	Ile	Val	Asp	Glu	Phe	Ser	Phe	Leu	Arg	Asp	Pro	Trp
			180					185					190		
Asn	Trp	Leu	Asp	Phe	Ile	Val	Ile	Gly	Thr	Ala	Ile	Ala	Thr	. Cys	Phe
		195					200					205			
Pro	Gly	Ser	Gln	Val	Asn			Ala	Leu	Arg	Thr	Phe	Arg	Val	Phe
	210					215					220				
Arg	Ala	Leu	Lys	Ala	Ile	Ser	· Val	Ile	Ser	Gly	Leu	Lys	Val	Ile	Val
225	,				230	•				235	,				240
Gly	⁄ Ala	Leu	Leu	Arg	Ser	Va]	Lys	Lys	Leu	val	Asp	· Val	Met	. Val	Leu
				245	5				250)				25	5 5
Thr	Leu	Phe	Cys	Leu	Ser	Ile	Phe	Ala	Leu	val	. Gly	Gln	Glr	Leu	Phe
			260)				265	5				270)	
Met	Gly	Ile	Leu	Asn	Gln	Lys	Cys	Ile	Lys	His	Asr	Cys	Gly	/ Pro	Asn
		275					280)				285	5		

Pro Ala Ser Asn Lys Asp Cys Phe Glu Lys Glu Lys Asp Ser Glu Asp 290 295 295 295 295 300

Phe Ile Met Cys Gly Thr Trp Leu Gly Ser Arg Pro Cys Pro Asn Gly 305 310 310 315 315 320

Figure 2B: SEQ ID NO: 2

						A 1,	guic	20.	SEQ	10 1	· · ·	•			
Ser	Thr	Cys	Asp	Lys	Thr	Thr	Leu	Asn	Pro	Asp	Asn	Asn	Tyr	Thr	Lys
				325					330					335	
Phe	Asp	Asn	Phe	Gly	Trp	Ser	Phe	Leu	Ala	Met	Phe	Arg	Val	Met	Thr
			340					345					350		
Gln	Asp	Ser	Trp	Glu	Arg	Leu	Tyr	Arg	Gln	Ile	Leu	Arg	Thr	Ser	Gly
		355					360					365			
Ile	Tyr	Phe	Val	Phe	Phe	Phe	Val	Val	Val	Ile	Phe	Leu	Gly	Ser	Phe
	370					375					380				
Tyr	Leu	Leu	Asn	Leu	Thr	Leu	Ala	Val	Val	Thr	Met	Ala	Tyr	Glu	Glu
385					390					395					400
Gln	Asn	Arg	Asn	Val	Ala	Ala	Glu	Thr	Glu	Ala	Lys	Glu	Lys	Met	Phe
				405					410					415	
Gln	Glu	Ala	Gln	Gln	Leu	Leu	Arg	Glu	Glu	Lys	Glu	Ala	Leu	Val	Ala
			420					425					430		
Met	Gly	Ile	Asp	Arg	Ser	Ser	Leu	Asn	Ser	Leu	Gln	Ala	Ser	Ser	Phe
		435					440					445			
Ser	Pro	Lys	Lys	Arg	Lys	Phe	Phe	Gly	Ser	Lys	Thr	Arg	Lys	Ser	Phe
	450					455					460				
Phe	Met	Arg	Gly	Ser	Lys	Thr	Ala	Gln	Ala	Ser	Ala	Ser	Asp	Ser	Glu
465					470					475					480
Asp	Asp	Ala	Ser	Lys	Asn	Pro	Gln	Leu	Leu	Glu	Gln	Thr	Lys	Arg	Leu
				485					490					495	
Ser	Gln	Asn	Leu	Pro	Val	Asp	Leu	Phe	Asp	Glu	His	Val	Asp	Pro	Leu
			500					505					510		
His	Arg	Gln	Arg	Ala	Leu	Ser	Ala	Val	Ser	Ile	Leu	Thr	Ile	Thr	Met
		515					520					525			
Gln	Glu	Gln	Glu	Lys	Phe	Gln	Glu	Pro	Cys	Phe	Pro	Cys	Gly	Lys	Asn
	530					535					540				
Leu	Ala	Ser	Lys	Tyr	Leu	Val	Trp	Asp	Cys	Ser	Pro	Gln	Trp	Leu	Cys
545					550					5 5 5					560
Ile	Lys	Lys	Val	Leu	Arg	Thr	Ile	Met	Thr	Asp	Pro	Phe	Thr	Glu	Leu
				565					570					575	
Ala	Ile	Thr	Ile	Cys	Ile	Ile	Ile	Asn	Thr	Val	Phe	Leu	Ala	Val	Glu
			580	-				585					590		
His	His	Asn		Aso	Asp	Asn	Leu		Thr	Ile	Leu	Lvs		Glv	Asn
				م د				_ , _				_, ,		,	

-595 600 605

Trp Val Phe Thr Gly Ile Phe Ile Ala Glu Met Cys Leu Lys Ile Ile

Figure 2C: SEQ ID NO: 2

Ala	Leu	Asp	Pro	Tyr	His	Tyr	Phe	Arg	His	Gly	Trp	Asn	Val	Phe	Asp
625					630					635					640
Ser	Ile	Val	Ala	Leu	Leu	Ser	Leu	Ala	Asp	Val	Leu	Tyr	Asn	Thr	Leu
				645					650					655	
Ser	Asp	Asn	Asn	Arg	Ser	Phe	Leu	Ala	Şer	Leu	Arg	Val	Leu	Arg	Val
			660					665					670	•	
Phe	Lys	Leu	Ala	Lys	Ser	Trp	Pro	Thr	Leu	Asn	Thr	Leu	Ile	Lys	Ile
		675					680					685			
Ile	Gly	His	Ser	Val	Gly	Ala	Leu	Gly	Asn	Leu	Thr	Val	Val	Leu	Thr
	690					695					700				
Ile	Val	Val	Phe	Ile	Phe	Ser	Val	Val	Gly	Met	Arg	Leu	Phe	Gly	Thr
705					710					715					720
Lys	Phe	Asn	Lys	Thr	Ala	Tyr	Ala	Thr	Gln	Glu	Arg	Pro	Arg	Arg	Arg
				725					730					735	
Trp	His	Met	Asp	Asn	Phe	Tyr	His	Ser	Phe	Leu	Val	Val	Phe	Arg	Ile
			740					745					750		
Leu	Cys	Gly	Glu	Trp	Ile	Glu	Asn	Met	Trp	Gly	Cys	Met	Gln	Asp	Met
		755					760					765			
Asp	Gly	Ser	Pro	Leu	Cys	Ile	Ile	Val	Phe	Val	Leu	lle	Met	Val	Ile
	770					775					780				
Gly	Lys	Leu	Val	Val	Leu	Asn	Leu	Phe	Ile	Ala	Leu	Leu	Leu	Asn	Ser
785					790					795					800
Phe	Ser	Asn	Glu	Glu	Lys	Asp	Gly	Ser	Leu	Glu	Gly	Glu	Thr	Arg	Lys
				805					810					815	
Thr	Lys	Val	Gln	Leu	Ala	Leu	Asp	Arg	Phe	Arg	Arg	Ala	Phe	Ser	Phe
			820					825					830		
Met	Leu	His	Ala	Leu	Gln	Ser	Phe	Cys	Cys	Lys	Lys	Суѕ	Arg	Arg	Lys
		835					840					845			
Asn	Ser	Pro	Lys	Pro	Lys	Glu	Thr	Thr	Glu	Ser	Phe	Ala	Gly	Glu	Asn
	850					855					860				
Lys	Asp	Ser	Ile	Leu	Pro	Asp	Ala	Arg	Pro	Trp	Lys	Glu	Tyr	λsp	Thr
865					870					875					880
Asp	Met	Ala	Leu	Tyr	Thr	Gly	Gln	Ala	Gly	Ala	Pro	Leu	Ala	Pro	Leu
				885					890					895	

11/27 Ala Glu Val Glu Asp Asp Val Glu Tyr Cys Gly Glu Gly Gly Ala Leu

12/27 Figure 2D: SEQ ID NO: 2

Pro	Thr	Ser	Gln	His'	Ser	Ala	Gly	Val	Gln	Ala	Gly	Asp	Leu	Pro	Pro
		915					920					925			
Glu	Thr	Lys	Gln	Leu	Thr	Ser	Pro	Asp	Asp	Gln	Gly	Val	Glu	Met	Glu
	930					935					940				
Val	Phe	Ser	Glu	Glu	Asp	Leu	His	Leu	Ser	Ile	Gln	Ser	Pro	Arg	Lys
945					950					955					960
Lys	Ser	Asp	Ala	Val	Ser	Met	Leu	Ser	Glu	Cys	Ser	Thr	Ile	Asp	Leu
				965					970					975	
Asn	Asp	Ile	Phe	Arg	Asn	Leu	Gln	Lys	Thr	Val	Ser	Pro	Lys	Lys	Gln
			980					985					990		
Pro	Asp	Arg	Cys	Phe	Pro	Lys	Gly	Leu	Ser	Cys	His	Phe	Leu	Cys	His
		995					1000)				100	5		
Lys	Thr	Asp	Lys	Arg	Lys	Ser	Pro	Trp	Val	Leu	Trp	Trp	Asn	Ile	Arg
	1010)				1015	5				102)			
Lys	Thr	Cys	Tyr	Gln	Ile	Val	Lys	His	Ser	Trp	Phe	Glu	Ser	Phe	Ile
1029	5				1030)				103	5				1040
Ile	Phe	Val	Ile	Leu	Leu	Ser	Ser	Gly	Ala	Leu	Ile	Phe	Glu	Asp	Val
				1049	5				105	0				105	5
Asn	Leu	Pro	Ser	Arg	Pro	Gln	Val	Glu	Lys	Leu	Leu	Arg	Cys	Thr	Asp
			106	כ				106	5				107	0	
Asn	Ile	Phe	Thr	Phe	Ile	Phe	Leu	Leu	Glu	Met	Ile	Leu	Lys	Trp	Val
		1075	5				108	0				108	5		
Ala	Phe	Gly	Phe	Arg	Arg	Tyr	Phe	Thr	Ser	Ala	Trp	Cys	Trp	Leu	Asp
	109	0				109	5				110	0			
Phe	Leu	Ile	Val	Val	Val	Ser	Val	Leu	Ser	Leu	Met	Asn	Leu	Pro	Ser
110	5				111	0				111	5				1120
Leu	Lys	Ser	Phe	Arg	Thr	Leu	Arg	Ala	Leu	Arg	Pro	Leu	Arg	Ala	Leu
				112	5				113	0				113	5
Ser	Gln	Phe	Glu	Gly	Met	Lys	Val	Val	Val	Tyr	Ala	Leu	Ile	Ser	Ala
			114	0		-		114	5	=			115	0	
Ile	Pro	Ala	Ile	Leu	Asn	Val	Leu	Leu	Val	Cys	Leu	Ile	Phe	Trp	Leu
		115	5				116	0				116	5		
Val	Phe	Cys	Ile	Leu	Gly	Val	Asn	Leu	Phe	Ser	Gly	Lys	Phe	Gly	Arg
	117	0				117	5				118	0			
Cys	Ile	Asn	Gly	Thr	Asp	Ile	Asn	Met	Tyr	Leu	Asp	Phe	Thr	Glu	Val

13/27

Pro Asn Arg Ser Gln Cys Asn Ile Ser Asn Tyr Ser Trp Lys Val Pro

14/27 Figure 2E: SEQ ID NO: 2

Gln	Val	Asn	Phe	λsṗ	Asn	Val	Gly	Asn	Ala	Tyr	Leu	Ala	Leu	Leu	Gln
			1220					1225					1230		
Val	Ala	Thr	Tyr	Lys	Gly	Trp	Leu	Glu	Ile	Met	Asn	Ala	Ala	Val	Asp
		1235					1240					1245			
Ser	Arg	Glu	Lys	Asp	Glu	Gln	Pro	Asp	Phe	Glu	Ala	Asn	Leu	Tyr	Ala
	1250					1255					1260				
Tyr	Leu	Tyr	Phe	Val	Val	Phe	Ile	lle	Phe	Gly	Ser	Phe	Phe	Thr	Leu
1265					1270					1279					1280
Asn	Leu	Phe	Ile	Gly	Val	Ile	Ile	Asp	Asn	Phe	Asn	Gln	Gln	Gln	Lys
				1285	5				1290)				1299	5
Lys	Leu	Gly	Gly	Gln	Asp	Ile	Phe	Met	Thr	Glu	Glu	Gln	Lys	Lys	Tyr
			1300)				1309	5				1310)	
Tyr	Asn	Ala	Met	Lys	Lys	Leu	Gly	Thr	Lys	Lys	Pro	Gln	Lys	Pro	Ile
		1315	5				1320)				1325	5		
Pro	Arg	Pro	Leu	Asn	Lys	Cys	Gln	Ala	Phe	Val	Phe	Asp	Leu	Val	Thr
	1330)				1335	5				134)			
Ser	Gln	Val	Phe	Asp	Val	Ile	Ile	Leu	Gly	Leu	Ile	Val	Leu	Asn	Met
1345	5				135	כ				135	5				1360
Ile	Ile	Met	Met	Ala	Glu	Ser	Ala	Asp	Gln	Pro	Lys	Asp	Val	Lys	Lys
				1369	5				137	0				137	5
Thr	Phe	Asp	Ile	Leu	Asn	Ile	Ala	Phe	Val	Val	Ile	Phe	Thr	Ile	Glu
			1380	כ				138	5				139	0	
Cys	Leu	Ile	Lys	Val	Phe	Ala	Leu	Arg	Gln	His	Tyr	Phe	Thr	Asn	Gly
		1395	5				140	0				140	5 .		
Trp	Asn	Leu	Phe	Asp	Cys	Val	Val	Val	Val	Leu	Ser	Ile	Ile	Ser	Thr
	1410)				141	5				142	0			
Leu	Val	Ser	Arg	Leu	Glu	Asp	Ser	Asp	Ile	Ser	Phe	Pro	Pro	Thr	Leu
1425	5				143	0				143	5				144
Phe	Arg	Val	Val	Arg	Leu	Ala	Arg	Ile	Gly	Arg	Ile	Leu	Arg	Leu	Val
				144	5				145	0	:			145	5
Arg	Ala	Ala	Arg	Gly	Ile	Arg	Thr	Leu	Leu	Phe	Ala	Leu	Met	Met	Ser
			146	0				146	5				147	0	
Leu	Pro	Ser	Leu	Phe	Asn	Ile	Gly	Leu	Leu	Leu	Phe	Leu	Val	Met	Phe
		147	5				148	0				148	5		
Ile	Tyr	Ala	Ile	Phe	Gly	Met	Ser	Trp	Phe	Ser	Lys	Val	Lys	Lys	Gly

Ser Gly Ile Asp Asp Ile Phe Asn Phe Glu Thr Phe Thr Gly Ser Met - 1510

16/27 Figure 2F: SEQ ID NO: 2

Leu	Cys	Leu	Phe	Gln	Ile	Thr	Thr	Ser	Ala	Gly	Trp	Asp	Thr	Leu	Leu
				1525	5				1530)				1535	5
Asn	Pro	Met	Leu	Glu	Ala	Lys	Glu	His	Cys	Asn	Ser	Ser	Ser	Gln	λsp
			1540)				1545	5				1550)	
Ser	Cys	Gln	Gln	Pro	Gln	Ile	Ala	Val	Val	Tyr	Phe	Val	Ser	Tyr	lle
		1555	5				1560)				156	5		
Ile	Ile	Ser	Phe	Leu	Ile	Val	Val	Asn	Met	Tyr	lle	Ala	Val	Ile	Leu
	1570)				1575	5				1580)			
Glu	Asn	Phe	Asn	Thr	Ala	Thr	Glu	Glu	Ser	Glu	Asp	Pro	Leu	Gly	Glu
1589	5				1590)				1599	5				1600
Asp	Asp	Phe	Glu	Ile	Phe	Tyr	Glu	Val	Trp	Glu	Lys	Phe	Asp	Pro	Glu
				1605	5				161	0				161	5
Ala	Ser	Gln	Phe	Ile	Gln	Tyr	Ser	Ala	Leu	Ser	Asp	Phe	Ala	Asp	λla
			1620)				162	5				163	0	
Leu	Pro	Glu	Pro	Leu	Arg	Val	Ala	Lys	Pro	Asn	Lys	Phe	Gln	Phe	Leu
		1635	5				1640	ס				164	5		
Val	Met	Asp	Leu	Pro	Met	Val	Met	Gly	Asp	Arg	Leu	His	Cys	Met	Asp
	1650	ס				165	5				166	0			
Val	Leu	Phe	Ala	Phe	Thr	Thr	Arg	Val	Leu	Gly	Asp	Ser	Ser	Gly	Leu
166	5				167	0				167	5				1680
Asp	Thr	Met	Lys	Thr	Met	Met	Glu	Glu	Lys	Phe	Met	Glu	Ala	Asn	Pro
				168	5		•		169	0				169	5
Phe	Lys	Lys	Leu	Tyr	Glu	Pro	Ile	Val	Thr	Thr	Thr	Lys	Arg	Lys	Glu
			170	0				170	5			•	171	0	
Glu	Glu	Gln	Gly	Ala	Ala	Val	Ile	Gln	Arg	Ala	Tyr	Arg	Lys	His	Met
		171	5				172	0	٠			172	5		
Glu	Lys	Met	Val	Lys	Leu	Arg	Leu	Lys	Asp	Arg	Ser	Ser	Ser	Ser	His
	173	0				173	5				174	0			
Gln	Val	Phe	Cys	Asn	Gly	Asp	Leu	Ser	Ser	Leu	Asp	Val	Ala	Lys	Val
174			•			0				175					1760
		His	Asn	Asp											
,				176											

17/27 Figure 2G: SEQ ID NO:2

1	MEERYYPVIF PDERNFRPFT SDSLAAIEKR IAIQKERKKS KDKAAAEPQP
51	RPQLDLKASR KLPKLYGDIP PELVAKPLED LDPFYKDHKT FMVLNKKRTI
101	YRFSAKRALF ILGPFNPLRS LMIRISVHSV FSMFIICTVI INCMFMANSM
151	ERSFDNDIPE YVFIGIYILE AVIKILARGF IVDEFSFLRD PWNWLDFIVI
201	GTAIATCFPG SQVNLSALRT FRVFRALKAI SVISGLKVIV GALLRSVKKL
251	VDVMVLTLFC LSIFALVGQQ LFMGILNQKC IKHNCGPNPA SNKDCFEKEK
301	DSEDFIMCGT WLGSRPCPNG STCDKTTLNP DNNYTKFDNF GWSFLAMFRV
351	MTQDSWERLY RQILRTSGIY FVFFFVVVIF LGSFYLLNLT LAVVTMAYEE
401	QNRNVAAETE AKEKMFQEAQ QLLREEKEAL VAMGIDRSSL NSLQASSFSP
451	KKRKFFGSKT RKSFFMRGSK TAQASASDSE DDASKNPQLL EQTKRLSQNL O
501	PVDLFDEHVD PLHRQRALSA VSILTITMQE QEKFQEPCFP CGKNLASKYL
551	VWDCSPQWLC IKKVLRTIMT DPFTELAITI CIIINTVFLA VEHHNMDDNL
601	KTILKIGNWV FTGIFIAEMC LKIIALDPYH YFRHGWNVFD SIVALLSLAD
651	VLYNTLSDNN RSFLASLRVL RVFKLAKSWP TLNTLIKIIG HSVGALGNLT
701	VVLTIVVFIF SVVGMRLFGT KFNKTAYATQ ERPRRRWHMD NFYHSFLVVF
751	RILCGEWIEN MWGCMQDMDG SPLCIIVFVL IMVIGKLVVL NLFIALLLNS
801	FSNEEKDGSL EGETRKTKVQ LALDRFRRAF SFMLHALQSF CCKKCRRKNS
851	PKPKETTESF AGENKDSILP DARPWKEYDT DMALYTGQAG APLAPLAEVE
901	DDVEYCGEGG ALPTSQHSAG VQAGDLPPET KQLTSPDDQG VEMEVFSEED
951	LHLSIQSPRK KSDAVSMLSE CSTIDLNDIF RNLQKTVSPK KQPDRCFPKG
1001	LSCHFLCHKT DKRKSPWVLW WNIRKTCYQI VKHSWFESFI IFVILLSSGA
1051	LIFEDVNLPS RPQVEKLLRC TDNIFTFIFL LEMILKWVAF GFRRYFTSAW
1101	CWLDFLIVVV SVLSLMNLPS LKSFRTLRAL RPLRALSQFE GMKVVVYALI
1151	SAIPAILNVL LVCLIFWLVF CILGVNLFSG KFGRCINGTD INMYLDFTEV
1201	PNRSQCNISN YSWKVPQVNF DNVGNAYLAL LQVATYKGWL EIMNAAVDSR
1251	• • • EKDEQPDFEA NLYAYLYFVV FIIFGSFFTL NLFIGVIIDN FNQQQKKLGG

18/27 Figure 2H: SEQ ID NO: 2

1301	QDIFMTEEQK	KYYNAMKKLG	TKKPQKPIPR	PLNKCQAFVF	DLVTSQVFDV
1351				LNIAFVVIFT	
	IVS1			IVS2	
1401	RQHYFTNGWN	LFDCVVVVLS	IISTLVSRLE	DSDISFPPTL	FRVVRLARIG
		IVS3		-1	
1451				LLLFLVMFIY	
	IVS4		1	IVS	5
1501	VKKGSGIDDI	FNFETFTGSM	LCLFQITTSA	GWDTLLNPML	EAKEHCNSSS
	1 0				•
1551	QDSCQQPQIA	VVYFVSYIII	SFLIVVNMYI	AVILENFNTA	TEESEDPLGE
		IV	S6		
1601	DDFEIFYEVW	EKFDPEASQF	IQYSALSDFA	DALPEPLRVA	KPNKFQFLVM
1651	DI DMIMODPI.	нсмолл.ға ет	TRVI GDSSGI.	DTMKTMMEEK	FMEANPEKKL
1651	DLPMVMGDRL	HCMDVLFAFT	TRVLGDSSGL	DTMKTMMEEK	FMEANPFKKL
				DTMKTMMEEK MVKLSLKDRS	

Figure 3A: SEQ ID NO:3 GCTGAGCAGT GGGGCACTGA TATTTGAAGA TGTTCACCTT GAGAACCAAC CCAAAATCCA AGAATTACTA AATTGTACTG ACATTATTTT TACACATATT TTTATCCTGG AGATGGTACT AAAATGGGTA GCCTTCGGAT TTGGAAAGTA 101 TTTCACCAGT GCCTGGTGCT GCCTTGATTT CATCATTGTG ATTGTCTCTG 151 TGACCACCCT CATTAACTTA ATGGAATTGA AGTCCTTCCG GACTCTACGA 201 GCACTGAGGC CTCTTCGTGC GCTGTCCCAG TTTGAAGGAA TGAAGGTGGT 251 GGTCAATGCT CTCATAGGTG CCATACCTGC CATTCTGAAT GTTTTGCTTG 301 TCTGCCTCAT TTTCTGGCTC GTATTTTGTA TTCTGGGAGT ATACTTCTTT TCTGGAAAAT TTGGGAAATG CATTAATGGA ACAGACTCAG TTATAAATTA 401 TACCATCATT ACAAATAAAA GTCAATGTGA AAGTGGCAAT TTCTCTTGGA TCAACCAGAA AGTCAACTTT GACAATGTGG GAAATGCTTA CCTCGCTCTG 501 CTGCAAGTGG CAACATTTAA GGGCTGGATG GATATTATAT ATGCAGCTGT TGATTCCACA GAGAAAGAAC AACAGCCAGA GTTTGAGAGC AATTCACTCG 601 GTTACATTTA CTTCGTAGTC TTTATCATCT TTGGCTCATT CTTCACTCTG AATCTCTTCA TTGGCGTTAT CATTGACAAC TTCAACCAAC AGCAGAAAAA

GTTAGGTGGC CAAGACATTT TTATGACAGA AGAACAGAAG AAATACTATA

ATGCAATGAA AAAATTAGGA TCCAAAAAAC CTCAAAAACC CATTCCACGG

851 CCCGTT

701

751

20/27 Figure 3B: SEQ ID NO:3

(Ligne (Ligne	supérieure: PN5 humain) inférieure: PN5 de rat)	
1		5
1001	LSCHFLCHKTDKRKSPWVLWWNIRKTCYQIVKHSWFESFIIFVILLSSGA	1050
6	LIFEDVHLENOPKIQELLNCTDIIFTHIFILEMVLKWVAFGFGKYFTSAW	55
1051	LIFEDVNLPSRPQVEKLLRCTDNIFTFIFLLEMILKWVAFGFRRYFTSAW	1100
56	CCLDFIIVIVSVTTLINLMELKSFRTLRALRPLRALSOFEGMKVVVNALI	105
1101	CWLDFLIVVVSVLSLMNLPSLKSFRTLRALRPLRALSQFEGMKVVVYALI	1150
106	GAIPAILNVLLVCLIFWLVFCILGVYFFSGKFGKCINGTDSVINYTII	153
1151	SAIPAILNVLLVCLIFWLVFCILGVNLFSGKFGRCINGTDINMYLDFTEV	1200
154	TNKSQCESGNFSWINQKVNFDNVGNAYLALLQVATFKGWMDIIYAAVDST	203
1201	PNRSQCNISNYSWKVPQVNFDNVGNAYLALLQVATYKGWLEIMNAAVDSR	1250
204	EKEQOPEFESNSLGYIYFVVFIIFGSFFTLNLFIGVIIDNFNQQKKLGG	253
1251	EKDEQPDFEANLYAYLYFVVFIIFGSFFTLNLFIGVIIDNFNQQQKKLGG	1300

Figure 4: SEQ ID NO:4

1	CTCAACATGG	TTACGATGAT	GGTGGAGACC	GACGAGCAGG	GCGAGGAGAA
51	GACGAAGGTT	CTGGGCAGAA	TCAACCAGTT	CTTTGTGGCC	GTCTTCACGG
101	GCGAGTGTGT	GATGAAGATG	TTCGCCCTGC	GACAGTACTA	TTTCACCAAC
151	GGCTGGAACG	TGTTCGAcTT	CATAGTGGTG	ATCCTGTCCA	TTGGGAGTCT
201	GCTGTTTCT	GCAATCCTTA	AGTCACTGGA	AAACTACTTC	TCCCCGACGC
251	TCTTCCGGGT	CATCCGTCTG	GCCAGGATCG	GCCGCATCCT	CAGGCTGATC
301	CGAGCAGCCA	AGGGGATTCG	CACGCTGCTC	TTCGCCCTCA	TGATGTCCCT
351	GCCCGCCCTC	TTCAACATCG	GCCTCCTCCT	CTTCCTCGtC	ATGTTCATCT
401	ACTCCATCTT	CGGCATGGCC	AGCTTCGCTA	ACGTCGTGGA	CGAGGCCGGC
451	ATCGACGACA	TGTTCAACTT	CAAGACCTTT	GGCAACAGCA	TGCTGTGCCT
501	GTTCCAGATC	ACCACCTCGG	CCGGCTGGGA	CGGCCTCCTC	AGCCCCATCC
551	TCAACACGGG	GCCTCCCTAC	TGCGACCCCA	ACCTGCCCAA	CAGCAACGGC
601	TCCCGGGGGA	ACTGCGGGAG	CCCGGCGGTG	GGCATCATCT	TCTTCACCAC
651	CTACATCATC	ATCTCCTTCC	TCATCGTGGT	CAACATGTAT	ATCGCAGTCA
701	TC			•	

Figure 5A: SEQ ID NO: 5

1	GTCGACTCTA	GATCAGGGTG	AAG <u>ATG</u> GAGG	AGAGGTACTA	CCCGGTGATC
51	TTCCCGGACG	AGCGGAATTT	CCGCCCCTTC	ACTTCCGACT	CTCTGGCTGC
101	CATAGAGAAG	CGGATTGCTA	TCCAAAAGGA	GAGGAAGAAG	TCCAAAGACA
151	AGGCGGCAGC	TGAGCCCCAG	CCTCGGCCTC	AGCTTGACCT	AAAGGCCTCC
201	AGGAAGTTAC	CTAAGCTTTA	TGGTGACATT	CCCCTGAGC	TTGTAGCGAA
251	GCCTCTGGAA	GACCTGGACC	CATTCTACAA	AGACCATAAG	ACATTCATGG
301	TGTTGAACAA	GAAGAGAACA	ATTTATCGCT	TCAGCGCCAA	GCGGGCCTTG
351	TTCATTCTGG	GGCCTTTTAA	TCCCCTCAGA	AGCTTAATGA	TTCGTATCTC
401	TGTCCATTCA	GTCTTTAGCA	TGTTCATCAT	CTGCACGGTG	ATCATCAACT
451	GTATGTTCAT	GGCGAATTCT	ATGGAGAGAA	GTTTCGACAA	CGACATTCCC
501	GAATACGTCT	TCATTGGGAT	TTATATTTTA	GAAGCTGTGA	TTAAAATATT
551	GGCAAGAGGC	TTCATTGTGG	ATGAGTTTTC	CTTCCTCCGA	GATCCGTGGA
601	ACTGGCTGGA	CTTCATTGTC	ATTGGAACAG	CGATCGCAAC	TTGTTTTCCG
651	GGCAGCCAAG	TCAATCTTTC	AGCTCTTCGT	ACCTTCCGAG	TGTTCAGAGC
701	TCTGAAGGCG	ATTTCAGTTA	TCTCAGGTCT	GAAGGTCATC	GTAGGTGCCC
751	TGCTGCGCTC	GGTGAAGAAG	CTGGTAGACG	TGATGGTCCT	CACTCTCTTC
801	TGCCTCAGCA	TCTTTGCCCT	GGTCGGTCAG	CAGCTGTTCA	TGGGAATTCT
851	GAACCAGAAG	TGTATTAAGC	ACAACTGTGG	CCCCAACCCT	GCATCCAACA
901	AGGATTGCTT	TGAAAAGGAA	AAAGATAGCG	AAGACTTCAT	AATGTGTGGT
951	ACCTGGCTCG	GCAGCAGACC	CTGTCCCAAT	GGTTCTACGT	GCGATAAAAC
1001	CACATTGAAC	CCAGACAATA	ATTATACAAA	GTTTGACAAC	TTTGGCTGGT
1051	CCTTTCTCGC	CATGTTCCGG	GTTATGACTC	AAGACTCCTG	GGAGAGGCTT
1101	TACCGACAGA	TCCTGCGGAC	CTCTGGGATC	TACTTTGTCT	TCTTCTTCGT

23/27 Figure 5B: SEQ ID NO: 5

1151	GGTGGTCATC	TTCCTGGGCT	CCTTCTACCT	GCTTAACCTA	ACCCTGGCTG
1201	TTGTCACCAT	GGCTTATGAA	GAACAGAACA	GAAATGTAGC	TGCTGAGACA
1251	GAGGCCAAGG	AGAAAATGTT	TCAGGAAGCC	CAGCAGCTGT	TAAGGGAGGA
1301	GAAGGAGGCT	CTGGTTGCCA	TGGGAATTGA	CAGAAGTTCC	CTTAATTCCC
1351	TTCAAGCTTC	ATCCTTTTCC	CCGAAGAAGA	GGAAGTTTTT	CGGTAGTAAG
1401	ACAAGAAAGT	CCTTCTTTAT	GAGAGGGTCC	AAGACGGCCC	AAGCCTCAGC
1451	GTCTGATTCA	GAGGACGATG	ССТСТААААА	TCCACAGCTC	CTTGAGCAGA
1501	CCAAACGACT	GTCCCAGAAC	TTGCCAGTGG	ATCTCTTTGA	TGAGCACGTG
1551	GACCCCCTCC	ACAGGCAGAG	AGCGCTGAGC	GCTGTCAGTA	TCTTAACCAT
1601	CACCATGCAG	GAACAAGAAA	AATTCCAGGA	GCCTTGTTTC	CCATGTGGGA
1651	AAAATTTGGC	CTCTAAGTAC	CTGGTGTGGG	ACTGTAGCCC	TCAGTGGCTG
1701	TGCATAAAGA	AGGTCCTGCG	GACCATCATG	ACGGATCCCT	TTACTGAGCT
1751	GGCCATCACC	ATCTGCATCA	TCATCAATAC	CGTTTTCTTA	GCCGTGGAGC
1801	ACCACAACAT	GGATGACAAC	TTAAAGACCA	TACTGAAAAT	AGGAAACTGG
1851	GTTTTCACGG	GAATTTTCAT	AGCGGAAATG	TGTCTCAAGA	TCATCGCGCT
1901	CGACCCTTAC	CACTACTTCC	GGCACGGCTG	GAATGTTTTT	GACAGCATCG
1951	TGGCCCTCCT	GAGTCTCGCT	GATGTGCTCT	ACAACACACT	GTCTGATAAC
2001	AATAGGTCTT	TCTTGGCTTC	CCTCAGAGTG	CTGAGGGTCT	TCAAGTTAGC
2051	CAAATCCTGG	CCCACGTTAA	ACACTCTCAT	TAAGATCATC	GGCCACTCCG
2101	TGGGCGCGCT	TGGAAACCTG	ACTGTGGTCC	TGACTATCGT	GGTCTTCATC
2151	TTTTCTGTGG	TGGGCATGCG	GCTCTTCGGC	ACCAAGTTTA	ACAAGACCGC
2201	CTACGCCACC	CAGGAGCGGC	CCAGGCGGCG	CTGGCACATG	GATAATTTCT
2251	ACCACTCCTT	CCTGGTGGTG	TTCCGCATCC	TCTGTGGGGA	ATGGATCGAG
2301	AACATGTGGG	GCTGCATGCA	GGATATGGAC	GGCTCCCCGT	TGTGCATCAT

24/27 Figure 5C: SEQ ID NO: 5

2351	TGTCTTTGTC	CTGATAATGG	TGATCGGGAA	GCTTGTGGTG	CTTAACCTCT
2401	TCATTGCCTT	GCTGCTCAAT	TCCTTCAGCA	ATGAGGAGAA	GGATGGGAGC
2451	CTGGAAGGAG	AGACCAGGAA	AACCAAAGTG	CAGCTAGCCC	TGGATCGGTT
2501	CCGCCGGGCC	TTCTCCTTCA	TGCTGCACGC	TCTTCAGAGT	TTTTGTTGCA
2551	AGAAATGCAG	GAGGAAAAAC	TCGCCAAAGC	CAAAAGAGAC	AACAGAAAGC
2601	TTTGCTGGTG	AGAATAAAGA	CTCAATCCTC	CCGGATGCGA	GGCCCTGGAA
2651	GGAGTATGAT	ACAGACATGG	CTTTGTACAC	TGGACAGGCC	GGGGCTCCGC
2701	TGGCCCCACT	CGCAGAGGTA	GAGGACGATG	TGGAATATTG	TGGTGAAGGC
2751	GGTGCCCTAC	CCACCTCACA	ACATAGTGCT	GGAGTTCAGG	CCGGTGACCT
2801	CCCTCCAGAG	ACCAAGCAGC	TCACTAGCCC	GGATGACCAA	GGGGTTGAAA
2851	TGGAAGTATT	TTCTGAAGAA	GATCTGCATT	TAAGCATACA	GAGTCCTCGA
2901	AAGAAGTCTG	ACGCAGTGAG	CATGCTCŢCG	GAATGCAGCA	CAATTGACCT
2951	GAATGATATC	TTTAGAAATT	TACAGAAAAC	AGTTTCCCCC	AAAAAGCAGC
3001	CAGATAGATG	CTTTCCCAAG	GGCCTTAGTT	GTCACTTTCT	ATGCCACAAA
3051	ACAGACAAGA	GAAAGTCCCC	CTGGGTCCTG	TGGTGGAACA	TTCGGAAAAC
3101	CTGCTACCAA	ATCGTGAAGC	ACAGCTGGTT	TGAGAGTTTC	ATAATCTTTG
3151	TTATTCTGCT	GAGCAGTGGA	GCGCTGATAT	TTGAAGATGT	CAATCTCCCC
3201	AGCCGGCCCC	AAGTTGAGAA	ATTACTAAGG	TGTACCGATA	ATATTTTCAC
3251	ATTTATTTTC	CTCCTGGAAA	TGATCCTGAA	GTGGGTGGCC	TTTGGATTCC
3301	GGAGGTATTT	CACCAGTGCC	TGGTGCTGGC	TTGATTTCCT	CATTGTGGTG
2251	GTGTCTGTGC	TCAGTCTCAT	GAATCTACCA	AGCTTGAAGT	CCTTCCGGAC
3401	TCTGCGGGCC	CTGAGACCTC	TGCGGGCGCT	GTCCCAGTTT	GAAGGAATGA
3451	AGGTTGTCGT	CTACGCCCTG	ATCAGCGCCA	TACCTGCCAT	TCTCAATGTC
3501	TTGCTGGTCT	GCCTCATTTT	CTGGCTCGTA	TTTTGTATCT	TGGGAGTAAA

25/27 Figure 5D: SEQ ID NO: 5

3551	TTTATTTTCT	GGGAAGTTTG	GAAGGTGCAT	TAACGGGACA	GACATAAATA
3601	TGTATTTGGA	TTTTACCGAA	GTTCCGAACC	GAAGCCAATG	TAACATTAGT
3651	AATTACTCGT	GGAAGGTCCC	GCAGGTCAAC	TTTGACAACG '	TGGGGAATGC
3701	CTATCTCGCC	CTGCTGCAAG	TGGCAACCTA	TAAGGGCTGG	CTGGAAATCA
3751	TGAATGCTGC	TGTCGATTCC	AGAGAGAAAG	ACGAGCAGCC	GGACTTTGAG
3801	GCGAACCTCT	ACGCGTATCT	CTACTTTGTG	GTTTTTATCA	TCTTCGGCTC
3851	CTTCTTTACC	CTGAACCTCT	TTATCGGTGT	TATTATTGAC	AACTTCAATC
3901	AGCAGCAGAA	AAAGTTAGGT	GGCCAAGACA	TCTTCATGAC	<u>TGAG</u> GA <u>G</u> CAG
3951	AAGAAATATT	ACAATGCAAT	GAAAAAGTTA	GGAACCAAGA	ААССТСАААА
4001	GCCCATCCCA	AGGCCCCTGA	ACAAATGTCA	AGCCTTTGTG	TTCGACCTGG
4051	TCACAAGCCA	GGTCTTTGAC	GTCATCATTC	TGGGTCTTAT	TGTCTTAAAT
4101	ATGATTATCA	TGATGGCTGA	ATCTGCCGAC	CAGCCCAAAG	ATGTGAAGAA
4151	AACCTTTGAT	ATCCTCAACA	TAGCCTTCGT	GGTCATCTTT	ACCATAGAGT
4201	GTCTCATCAA	AGTCTTTGCT	TTGAGGCAAC	ACTACTTCAC	CAATGGCTGG
4251	AACTTATTTG	ATTGTGTGGT	CGTGGTTCTT	TCTATCATTA	GTACCCTGGT
4301	TTCCCGCTTG	GAGGACAGTG	ACATTTCTTT	CCCGCCCACG	CTCTTCAGAG
4351	TCGTCCGCTT	GGCTCGGATT	GGTCGAATCC	TCAGGCTGGT	CCGGGCTGCC
4401	CGGGGAATCA	GGACCCTCCT	CTTTGCTTTG	ATGATGTCTC	TCCCCTCTCT
4451	CTTCAACATC	GGTCTGCTGC	TCTTCCTGGT	GATGTTCATT	TACGCCATCT
4501	TTGGGATGAG	CTGGTTTTCC	AAAGTGAAGA	AGGGCTCCGG	GATCGACGAC
4551	ATCTTCAACT	TCGAGACCTT	TACGGGCAGC	ATGCTGTGCC	TCTTCCAGAT
					CTGGAGGCAA
				GCTGTCAGCA	
					TCATCGTGGT

26/27 Figure 5E: SEQ ID NO: 5

4751	CAACATGTAC	ATCGCTGTGA	TCCTCGAGAA	CTTCAACACA	GCCACGGAGG
4801	AGAGCGAGGA	CCCTCTGGGA	GAGGACGACT	TTGAAATCTT	CTATGAGGTC
4851	TGGGAGAAGT	TTGACCCCGA	GGCGTCGCAG	TTCATCCAGT	ATTCGGCCCT
4901	CTCTGACTTT	GCGGACGCCC	TGCCGGAGCC	GTTGCGTGTG	GCCAAGCCGA
4951	ATAAGTTTCA	GTTTCTAGTG	ATGGACTTGC	CCATGGTGAT	GGGCGACCGC
5001	CTCCATTGCA	TGGATGTTCT	CTTTGCTTTC	ACTACCAGGG	TCCTCGGGGA
5051	CTCCAGCGGC	TTGGATACCA	TGAAAACCAT	GATGGAGGAG	AAGTTTATGG
5101	AGGCCAACCC	TTTTAAGAAG	CTCTACGAGC	CCATAGTCAC	CACCACCAAG
5151	AGGAAGGAGG	AGGAGCAAGG	CGCCGCCGTC	ATCCAGAGGG	CCTACCGGAA
5201	ACACATGGAG	AAGATGGTCA	AACTGAGGCT	GAAGGACAGG	TCAAGTTCAT
5251	CGCACCAGGT	GTTTTGCAAT	GGAGACTTGT	CCAGCTTGGA	TGTGGCCAAG
5301	GTCAAGGTTC	ACAATGAC <u>TG</u>	AACCCTCATC	TAGA	

27/27 Figure 6

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.