Кислоты, их классификация и свойства

Разделение кислот на группы по различным признакам представлено в таблице 10.

КЛАССИФИКАЦИЯ КИСЛОТ

Таблица 10

Признак классификации	Группы кислот	Примеры	
Наличие кисло- рода в кислотном остатке	Кислород- содержащие	$\mathrm{H_{3}PO_{4}}$, $\mathrm{HNO_{3}}$	
	Бескислородные	H ₂ S, HCl, HBr	
Основность	Одноосно́вные	HCl, HNO ₃	
	Двухосно́вные	H ₂ S, H ₂ SO ₄	
	Трёхосно́вные	H_3PO_4	
Растворимость в воде	Растворимые	$\mathrm{H_2SO_4}$, $\mathrm{H_2S}$, $\mathrm{HNO_3}$	
	Нерастворимые	$\mathrm{H_2SiO_3}$	
Летучесть	Летучие	$\mathrm{H_2S}$, HCl , $\mathrm{HNO_3}$	
	Нелетучие	$\mathrm{H_2SO_4}, \mathrm{H_2SiO_3}, \mathrm{H_3PO_4}$	
Степень электро- литической диссо- циации	Сильные	$\mathrm{H_2SO_4}$, HCl , $\mathrm{HNO_3}$	
	Слабые	$\mathrm{H_2S}$, $\mathrm{H_2SO_3}$, $\mathrm{H_2CO_3}$	
Стабильность	Стабильные	$\mathrm{H_2SO_4}$, $\mathrm{H_3PO_4}$, HCl	
	Нестабильные	$\mathrm{H_2SO_3}$, $\mathrm{H_2CO_3}$, $\mathrm{H_2SiO_3}$	

При обычных условиях кислоты могут быть твёрдыми (фосфорная H_3PO_4 , кремниевая H_2SiO_3) и жидкими (в чистом виде жидкостью будет серная кислота H_2SO_4).

Такие газы, как хлороводород HCl, бромоводород HBr, сероводород H_2S , в водных растворах образуют соответствующие кислоты.

Вы уже знаете, что угольная H_2CO_3 и сернистая H_2SO_3 кислоты существуют только в водных растворах, так как являются слабыми и нестойкими. Они легко разлагаются на оксиды углерода (IV) и серы (IV) — CO_2 и SO_2 соответственно — и воду. Поэтому выделить эти кислоты в чистом виде невозможно.

Часто путают понятия «летучесть» и «устойчивость» (стабильность). Летучими называют кислоты, молекулы которых легко переходят в газообразное состояние, т. е. испаряются. Например, соляная кислота является летучей, но устойчивой, стабильной кислотой; нелетучая нерастворимая кремниевая кислота при стоянии разлагается на воду и оксид кремния (IV) SiO₂.

Водные растворы соляной, азотной, серной, фосфорной и ряда других кислот не имеют окраски. Водные растворы хромовой кислоты ${
m H_2CrO_4}$ имеют жёлтую окраску, марганцевой кислоты ${
m HMnO_4}$ — малиновую.

Однако, какими бы разными ни были кислоты, все они образуют при диссоциации катионы водорода, которые и обусловливают ряд общих свойств: кислый вкус, изменение окраски индикаторов (лакмуса и метилового оранжевого), взаимодействие с другими веществами.

Типичные реакции кислот

- Кислота + основание → соль + вода. (реакция обмена)
- 2. Кислота + оксид металла \longrightarrow соль + вода. (реакция обмена)
- 3. Кислота + металл → соль + водород. (реакция замещения)
- Кислота + соль → новая кислота + новая соль. (реакция обмена)

Основания, их классификация и свойства

Разделение оснований на группы по различным признакам представлено в таблице 11.

Все основания, кроме раствора аммиака в воде, представляют собой твёрдые вещества, имеющие различную окраску. Например, гидроксид кальция $Ca(OH)_2$ белого цвета, гидроксид меди (II) $Cu(OH)_2$ голубого цвета, гидроксид никеля (II) $Ni(OH)_2$ зелёного цвета, гидроксид железа (III) $Fe(OH)_3$ красно-бурого цвета и т. д.

Водный раствор аммиака $\mathrm{NH_3} \cdot \mathrm{H_2O}$, в отличие от других оснований, содержит не катионы металла, а слож-

Признак классификации	Группы оснований	Примеры
Растворимость в воде	Растворимые основания (щёлочи)	NaOH, KOH, Ca(OH) ₂ , Ba(OH) ₂
	Нерастворимые ос- нования	Cu(OH) ₂ , Fe(OH) ₂
Степень электро-	Сильные ($\alpha \longrightarrow 1$)	Щёлочи
литической диссо- циации	Слабые ($\alpha \longrightarrow 0$)	Водный раствор ам- миака NH ₃ • H ₂ O
Кислотность (чис-	Однокислотные	NaOH, KOH
ло гидроксогрупп)	Двухкислотные	Fe(OH) ₂ , Cu(OH) ₂

ный однозарядный катион аммония NH_4^+ и существует только в растворе (этот раствор вам известен под названием нашатырного спирта). Он легко разлагается на аммиак и воду:

$$NH_3 \cdot H_2O \Longrightarrow NH_3 \uparrow + H_2O.$$

Однако, какими бы разными ни были основания, все они состоят из ионов металла и гидроксогрупп, число которых равно степени окисления металла.

Все основания, и в первую очередь щёлочи (сильные электролиты), образуют при диссоциации гидроксидионы ОН⁻, которые и обусловливают ряд общих свойств: мылкость на ощупь, изменение окраски индикаторов (лакмуса, метилового оранжевого и фенолфталеина), взаимодействие с другими веществами.

Типичные реакции оснований

- 1. Основание + кислота соль + вода. (реакция обмена)
- Щёлочь + оксид неметалла → соль + вода. (реакция обмена)
- 3. Щёлочь + соль → новое основание + новая соль. (реакция обмена)

Первая реакция (универсальная) была рассмотрена в § 38.

Оксиды, их классификация и свойства

Понятие «оксиды» включает бесконечное разнообразие веществ: жидкие, например оксид водорода, или вода; твёрдые, например оксид кремния (IV) — песок и множество разновидностей кварца, среди которых халцедон и аметист, горный хрусталь и морион; газообразные, например оксиды углерода (IV) и (II) — углекислый и угарный газы.

По своим химическим свойствам все оксиды подразде-

ляют на солеобразующие и несолеобразующие.

Несолеобразующими оксидами называют такие оксиды, которые не взаимодействуют ни с кислотами, ни с щелочами и не образуют солей.

Несолеобразующих оксидов немного. В их состав входят элементы-неметаллы, например:

оксиды азота (I) и (II) — N_2 О и NO, оксид углерода (II) — CO и некоторые другие.

Солеобразующими оксидами называют такие оксиды, которые взаимодействуют с кислотами или основаниями и образуют при этом соль и воду.

Среди солеобразующих оксидов различают оксиды *основные*, *кислотные* и *амфотерные*. С последними вы будете знакомиться в 9 классе.

Основные оксиды — это такие оксиды, которым соответствуют основания.

Например,

MgO соответствует Mg(OH)2,

Na₂O — NaOH,

BaO — Ва(OH)₂ и т. д.

К основным оксидам относят оксиды металлов с не большими степенями окисления (+1 и +2), т. е. оксиды металлов IA и IIA группы Периодической системы Д. И. Менделеева, HgO, MnO и некоторые другие. Все основные оксиды представляют собой твёрдые вещества.

Типичные реакции основных оксидов

- 1. Осно́вный оксид + кислота \longrightarrow соль + вода. (реакция обмена)
- a) $3\text{Na}_2\text{O} + 2\text{H}_3\text{PO}_4 = 2\text{Na}_3\text{PO}_4 + 3\text{H}_2\text{O};$ 6) $\text{CuO} + 2\text{HNO}_2 = \text{Cu(NO}_2)_2 + \text{H}_2\text{O}.$

Кислотные оксиды — это такие оксиды, которым соответствуют кислоты.

К кислотным оксидам относят оксиды неметаллов:

1203	COOTBETCTBYET	\mathbf{n}_{1} 0 ₂ ,
N_2O_5		HNO3,
SO_2	_	H_2SO_3 ,
SO_3	_	H2SO4,
SiO_2	_	H2SiO3
CO_2	_	H2CO3,
PoOs	_	H ₃ PO ₄ ,

COOTTOTTOTTOT HNO

а также оксиды металлов с большим значением степени окисления, например:

 ${\rm CrO_3}$ соответствуют хромовая ${\rm H_2CrO_4}$ и дихромовая ${\rm H_2Cr_2O_7}$ кислоты,

 $\dot{\text{Mn}}_2\text{O}_7$ — марганцевая кислота HMnO_4 .

Типичные реакции кислотных оксидов

- 1. Кислотный оксид + основание \longrightarrow соль + вода. (реакция обмена)
- a) $SO_2 + 2NaOH = Na_2SO_3 + H_2O;$
- 6) $N_2O_5 + Ca(OH)_2 = Ca(NO_3)_2 + H_2O$.

2. Кислотный оксид + основный оксид \longrightarrow соль. (реакция соединения) а) $SO_3 + K_2O = K_2SO_4$;

6) $CO_2 + CaO = CaCO_3$.

3. Кислотный оксид + вода \longrightarrow кислота. (реакция соединения) а) $N_2O_5 + H_2O = 2HNO_3$;

б) $P_2O_5 + 3H_2O = 2H_3PO_4$ (рис. 145).

Однако эта реакция возможна только в том случае, если кислотный оксид растворим в воде. А если взять оксид кремния (IV), то реакция практически не пойдёт: $SiO_9 + H_9O \neq H_9SiO_3$.

Соли, их классификация и свойства

Из всех неорганических соединений соли являются наиболее многочисленным классом веществ. Это твёрдые вещества, они отличаются друг от друга по цвету и растворимости в воде.

Соли — это класс химических соединений, состоящих из ионов металла и ионов кислотного остатка.

В начале XIX в. шведский химик Й. Берцелиус сформулировал определение солей как продуктов реакций кислот с основаниями, или соединений, полученных заменой атомов водорода в кислоте металлом. По этому признаку различают соли средние, кислые и основные.

Средние соли — это продукты полного замещения атомов водорода в кислоте на металл.

Именно с этими солями вы уже знакомы и знаете их номенклатуру. Например:

Na₂CO₃ — карбонат натрия,

Al(NO₃)₃ — нитрат алюминия,

 $\mathrm{CuSO_4}$ — сульфат меди (II) и т. д.

Диссоциируют такие соли на катионы металла и анионы кислотного остатка:

$$Na_2CO_3 = 2Na^+ + CO_3^{2-}$$
.

Кислые соли — это продукты неполного замещения атомов водорода в кислоте на металл.

К кислым солям относят, например, питьевую соду $NaHCO_3$, состоящую из катиона металла Na^+ и кислотного однозарядного остатка HCO_3^- . Для аналогичной кислой соли кальция формулу записывают так: $Ca(HCO_3)_2$.

Названия этих солей складывают из названий средних солей с прибавлением слова $\mathcal{E}u\partial po$ -, например: $Mg(HSO_4)_2$ — гидросульфат магния.

Диссоциируют кислые соли следующим образом:

$$NaHCO_3 = Na^+ + HCO_3^-,$$

 $Mg(HSO_4)_2 = Mg^{2+} + 2HSO_4^-.$

Основные соли — это продукты неполного замещения гидроксогрупп в основании на кислотный остаток.

Например, к таким солям относится знаменитый малахит $(CuOH)_2CO_3$, о котором вы читали в сказах П. Бажова. Он состоит из двух гидроксокатионов $CuOH^+$ и двухзарядного аниона кислотного остатка CO_3^{2-} .

Катион $CuOH^+$ имеет заряд 1+, поэтому в молекуле два таких катиона и один двухзарядный анион CO_3^{2-} объединены в электронейтральную соль.

Названия таких солей будут такими же, как и у средних солей, но с прибавлением слова гидроксо-, например (CuOH)₂CO₃ — гидроксокарбонат меди (II) или AlOHCl₂ — гидроксохлорид алюминия. Подавляющее большинство осно́вных солей нерастворимы или малорастворимы. Последние диссоциируют так:

$$AlOHCl_2 = AlOH^{2+} + 2Cl^{-}$$
.

Типичные реакции средних солей

- 1. Соль + кислота \longrightarrow другая соль + другая кислота. (реакция обмена)
- 2. Соль + щёлочь другая соль + другое основание. (реакция обмена)
- 3. $Cоль_1 + соль_2 \longrightarrow соль_3 + соль_4$. (реакция обмена: в реакцию вступают две соли, в результате получаются две другие соли)
 - Соль + металл → другая соль + другой металл. (реакция замещения)

Первые две реакции обмена уже были подробно рассмотрены в § 38 и 39.