Continuous Distributions Math 122

Binomial and Poisson

- Discrete Distributions
- Gaps between possible values
 - -0, 1, 2, 3, 4...
- Each possible value has nonzero probability

Continuous Random Variables

- Infinitely many possible values
- Possible values spread over a range with no gaps
- Probability of any single value 0
- Probability corresponds to area
 - Consider P(x<b) or P(a<x) or P(a<x<b)

Continuous Random Variables Probability = Area

 Finding probabilities corresponds to finding areas under smooth curves such as

 The curve is called the density curve or density function

Density Functions

- Every continuous random variable has a density function
- The total area under the function is 1
- To find P(a<x<b), we find the area under the function between a and b

Uniform Distribution $\min a$ max

Normal Distribution

Student t Distributions

Chi-Squared Distributions

F Distributions

Uniform Distribution

- Density function is a horizontal line from the minimum value of the random variable to the maximum value.
- The height of the line is selected so that the total area under the curve is 1

A random variable x is uniformly distributed from 1 to 4.

- Find P(x<3)
 = alea l-Bt of)
- =2x=
 - = 3/3
 - Find P(1<x<2)
- = 1x ±
- = +

A random variable x is uniformly distributed from 11 to 24.

• Find a so that P(x<a)=0.1 area a=12.3 a is to from 11 to 24 of the dist. from

A random variable x is uniformly distributed from 16 to 41.

Find a so that P(x>a)=0.01

$$a = 41 - .01 \times 25$$

= 40.75

A random variable x is uniformly distributed from 10 to 40.

• Find a and b which separate the middle 95% of values of x from the highest and lowest values.

$$w: JTA = .025 \times 30$$
 $= .75$
 $a = 10 + .75$
 10°
 10.75
 $5 = 40 - .75$
 39.25

 The Newport Power and Light Company provides electricity with voltages uniformly distributed between 123 and 125 volts.

Find the probability that a random voltage is

greater than 124.5

 The Newport Power and Light Company provides electricity with voltages uniformly distributed between 123 and 125 volts.

• Find a voltage which is greater than 99% of all voltages.

$$\frac{1}{123} = 124.98$$

