Claims

- 1. A mesogenic, cross-linkable mixture comprising:
 - i) a cross-linkable liquid crystalline host comprising at least one crosslinkable liquid crystalline compound, and
 - ii) at least one chiral or achiral rod shaped additive component, wherein said additive component has a rigid core and comprises at least two fused or linked, optionally substituted, non-aromatic, aromatic, carbocyclic or heterocyclic groups, and also comprises at least one optionally substituted alkyl residue, and at least one polymerizable group and wherein the additive component has a transition temperature to the isotropic state of 40 °C or lower.
- 2. A mixture according to claim 1, wherein the additive component has a transition temperature to the isotropic state of 20 °C or lower.
- 3. A mixture according to claim 1, wherein the additive component has a transition temperature to the isotropic state of 0 °C or lower.
- 4. A mixture according to any one of claims 1 to 3 having a clearing temperature of 30 °C or higher.
- 5. A mixture according to any one of claims 1 to 3 having a clearing temperature of 50 °C or higher.
- 6. A mixture according to any one of claims 1 to 5, wherein the liquid crystalline host has a clearing temperature of 50 °C or higher.
- 7. A mixture according to any preceding claim, wherein the additive component is a compound of formula (I):

$$A^{1}-C^{1}-(Z^{1}-C^{2})_{a1}-(Z^{2}-C^{3})_{a2}-(Z^{3}-C^{4})_{a3}-A^{2}$$
 A^{3}
 A^{4}
(I)

wherein:

A1 to A4

are independently from each other hydrogen, a polar group such as nitro, cyano, a halogen, an optionally substituted methyl group, or an optionally substituted hydrocarbon group of 2 to 40 C-atoms, in which one or more C-atoms may be replaced by a heteroatom, in such a way that oxygen atoms are not linked to one another,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group,

C¹ to C⁴

are independently from each other optionally substituted non-aromatic, aromatic, carbocyclic or heterocyclic groups, preferably connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ,

 Z^1 to Z^3

are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C=C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a1, a2 and a3 are independently from each other integers from 0 to 3, such that $1 \le a1 + a2 + a3 \le 3$,

with the proviso that the sequence:

$$A^{1}-C^{1}-(Z^{1}-C^{2})_{a1}-(Z^{2}-C^{3})_{a2}-(Z^{3}-C^{4})_{a3}-A^{2}$$

describes the long molecular axis of the rod shaped additive components.

8. A mixture according to claim 7, wherein the additive component is a compound of formula (I), wherein at least one of A¹ to A⁴ includes a polymerizable group, selected from a residue of formula (II):

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

wherein:

Р

Sp

k

is hydrogen or a polymerizable group selected from groups comprising CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, CH₂=C(Ph)-COO-, CH₂=CH-COO-Ph-, CH₂=CW-CO-NH-, CH₂=C(Ph)-CONH-, CH₂=C(COOR')-CH₂-COO-, CH₂=CH-OOC-, (Ph)-CH=CH-, CH₃-CH=N-(CH₂)_{m1}-, HO-, HS-, HO-(CH₂)_{m1}-, HS-(CH₂)_{m1}-, HO(CH₂)_{m1}COO-, HS(CH₂)_{m1}COO-, HWN-, HOC(O)-, CH₂=CH-Ph-(O)_{m2},

or hwc—ch

wherein:

W is H, F, Cl, Br or I or a C₁₋₆ alkyl group,

m1 is an integer having a value of from 1 to 9,

m2 is an integer having a value of 0 or 1,

R' is a C₁₋₆ alkyl group,

R" is a C_{1-6} alkyl group, methoxy, cyano, F, Cl, Br or I, is an optionally substituted straight or branched C_{1-30} alkylene group, in which one or more $-CH_{2-}$ groups may be replaced by a heteroatom and/or by a polar group and/or it is optionally possible that one or more carbon-carbon single bond(s) is/are replaced by a carbon-carbon double or a triple bond,

is an integer having a value of from 0 to 4,

χ is -O-, -S-, -NH-, -N(CH₃)-, -CH(OH)-, -CO-, -CH₂(CO)-, -SO-,

-CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -OCO-O-,

-S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-,

-CH₂O-, -CH=CH-, -C≡C-, or a single bond,

t is an integer having a value of 0 or 1.

 A mixture according to any one of claims 7 to 8, wherein at least one of A¹ to A⁴ of formula (I) is a group of formula (II):

 $P-(Sp)_{k}-(X)_{t}- \qquad \qquad (II)$

wherein:

Р

is a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more –CH₂– groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C=C-, -(CF₂)_r-, with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

10. A mixture according to any one of claims 7 to 9, wherein C¹ to C⁴ are preferably selected from:

$$(L)_{u1}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad N \longrightarrow L,$$

$$(L)_{u1}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad (L)_{u4}, \qquad (L)_{u4$$

wherein:

L is -CH3, -COCH3, -NO2, -CN or halogen,

u1 is 0, 1, 2, 3, or 4,

u2 is 0, 1, 2, or 3,

u3 is 0, 1, or 2.

11. A mixture according to any one of claims 7 to 10, wherein:

C¹ to C⁴ are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene,

A¹ to A⁴ independently from each other is hydrogen, a polar group such as cyano, nitro, a halogen, or a group of formula (II)

 $P-(Sp)_{k}-(X)_{t}- \qquad (II)$

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl Br or l,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more –CH₂– groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)r - , with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or l.

12. A mixture according to any one of claims 7 to 11, wherein:

A¹ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-COO-, wherein:

W is H or CH₃,

A² has the meaning of formula (II),

$$P-(Sp)_k-(X)_t$$
 - (II)

in which:

P is hydrogen or a polymerizable group such as as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C=C-,

with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1

A is hydrogen.

13. A mixture according to any one of claims 7 to 12, wherein:

A¹ has the meaning of formula (II),

$$P-(Sp)_k-(X)_t-$$
 (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C3-C16 alkylene group, optionally comprising at least one oxocarbonyl or group, or is a straight C2-C16
alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH2- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

 A^2 comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH₃,

A is hydrogen.

14. A mixture according to any one of claims 7 to 13, wherein:

A has the meaning of formula (II),

$$P-(Sp)_{k}-(X)_{t}- \qquad (II)$$

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH3,

A⁴ is hydrogen.

15. A mixture according to any one of claims 7 to 14, wherein:

A² has the meaning of formula (II),

 $P-(Sp)_k-(X)_t-(II)$

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH3,

Sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A³ comprises a polymerizable group such as $CH_2=CW$ -, $CH_2=CW$ -O-, or $CH_2=CW$ -COO-, wherein:

W is H or CH₃,

A is hydrogen.

16. A mixture according to any one of claims 7 to 15, wherein:

 A^{1} and A^{2} have the meaning of formula (II),

$$P-(Sp)_k-(X)_t-$$
 (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

 A^3 comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-,

wherein:

W Is H or CH₃,

A is hydrogen.

17. A mixture according to any one of claims 7 to 16, wherein at least one of A^{1} to A^{3} has the meaning of formula (II),

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, wherein:

W is H or CH3,

Sp has the meaning of formula (III)

$$R^{1}$$

 $(CH_{2})n^{1}$ - $(Y^{1})m^{1}$ - $(CH_{2})n^{2}$ - $(B^{1})m^{2}$ - $(CH_{2})n^{3}$ - $(Y^{2})m^{3}$ - $(CH_{2})n^{4}$
 R^{2}
(III)

wherein:

 Y^1 and Y^2 each independently represent -OCO- or -COO-, represents C or CH,

R¹ and R² each independently represent hydrogen or

a C₁-C₁₂ alkyl residue, preferably a

C1-C6 alkyl residue, such as a methyl,

ethyl, propyl, butyl, pentyl, hexyl or

isopropyl residue,

n1, n2, n3 and n4 are independently integers from 0

to 15, such that $0 \le n1 + n2 + n3 + n4 \le 15$,

m1, m2 and m3 are independently integers from 0 to 3, such that

 $1 \le m1 + m2 + m3 \le 3$ and

wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C \equiv C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Υ^1 or Υ^2 ,

- k is 1,
- X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,
- t is 1.
- 18. A mixture according to any one of claims 7 to 17, wherein at least one of A^{1} to A^{3} has the meaning of formula (II),

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

Sp has the meaning of formula (III)

$$R^1$$
 | (CH₂)n¹-(Y¹)m¹-(CH₂)n²-(B¹)m²-(CH₂)n³-(Y²)m³-(CH₂)n⁴ | R^2 (III)

wherein:

 Y^1 and Y^2 each independently represent -OCO- or -COO-, B^1 represents C or CH, R^1 is hydrogen represents a methyl, ethyl, propyl, butyl, pentyl or hexyl group and most preferably a methyl or ethyl group, R^2 are independently integers from 0 to 15, such that $0 \le n1 + n2 + n3 + n4 \le 15$, are independently integers from 0 to 3,

such that $1 \le m1 + m2 + m3 \le 3$, and

wherein:

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

- k is 1,
- X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,
- t is 1.
- 19. A mixture according to any one of claims 1 to 18 comprising further agents, such as cross-linking agents, stabilizing agents, initiators, dyes, other chiral or achiral additives and plasticizers.

20. A mixture according to any one of claims 1 to 19 in form of an elastomer, polymer gel, polymer network or polymer film.

- 21. A chiral or achiral rod shaped compound, wherein said compound has a rigid core and comprises at least two fused or linked, optionally substituted, non-aromatic, aromatic, carbocyclic or heterocyclic groups, and also comprises at least one optionally substituted alkyl residue, and also comprises at least one polymerizable group and has a transition temperature to the isotropic state of 40 °C or lower.
- 22. A compound according to claim 21, wherein the compound has a transition temperature to the isotropic state of 20 °C or lower.
- 23. A compound according to claims 21 to 22, wherein the compound has transition temperature to the isotropic state of 0 °C or lower.
- 24. A compound according to any one of claims 21 to 23 of formula (I):

$$A^{1}-C^{1}-(Z^{1}-C^{2})_{a1}-(Z^{2}-C^{3})_{a2}-(Z^{3}-C^{4})_{a3}-A^{2}$$
 A^{3}
 A^{4}
 A^{3}

wherein:

A¹ to A⁴

are independently from each other hydrogen, a polar group such as nitro, cyano, a halogen, an optionally substituted methyl group, or an optionally substituted hydrocarbon group of 2 to 40 C-atoms, in which one or more C-atoms may be replaced by a heteroatom, in such a way that oxygen atoms are not linked to one another,

with the proviso that at least one of A¹ to A⁴ comprises a polymerizable group,

C¹ to C⁴

are independently from each other optionally substituted non-aromatic, aromatic, carbocyclic or heterocyclic groups, preferably connected to each other at the opposite positions via the bridging groups Z^1 to Z^3 ,

z1 to z3 are independently from each other -CH(OH)-, -CO-, -CH₂(CO)-, -SO-, -CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -COCF₂-, -CF₂CO-, -S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH₂-CH₂-, -OCH₂-, -CH₂O-, -CH=CH-, -C=C-, -CH=CH-COO-, -OCO-CH=CH-, -CH=N-, -C(CH₃)=N-, -N=N- or a single covalent bond,

a1, a2 and a3 are independently from each other integers from 0 to 3, such that $1 \le a1 + a2 + a3 \le 3$,

with the proviso that the sequence:

$$A^1-C^1-(Z^1-C^2)_{a1}-(Z^2-C^3)_{a2}-(Z^3-C^4)_{a3}-A^2$$

describes the long molecular axis of the rod shaped additive components.

25. A compound according to claim 24, wherein at least one of A¹ to A⁴ includes a polymerizable group, selected from a residue of formula (II):

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

wherein:

Ρ

is hydrogen or a polymerizable group selected from groups comprising CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-, CH₂=C(Ph)-COO-, CH₂=CH-COO-Ph-, CH₂=CW-CO-NH-, CH₂=C(Ph)-CONH-, CH₂=C(COOR')-CH₂-COO-, CH₂=CH-OOC-, (Ph)-CH=CH-, CH₃-CH=N-(CH₂)_{m1}-, HO-, HS-, HO-(CH₂)_{m1}-, HS-(CH₂)_{m1}-, HO(CH₂)_{m1}COO-, HS(CH₂)_{m1}COO-, HWN-, HOC(O)-, CH₂=CH-Ph-(O)_{m2},

or O

wherein:

W is H, F, Cl, Br or I or a C₁₋₆ alkyl group, m1 is an integer having a value of from 1 to 9,

m2 is an integer having a value of 0 or 1,

R' is a C₁₋₆ alkyl group,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

Sp is an optionally substituted straight or branched C₁₋₃₀ alkylene

group, in which one or more -CH2- groups may be replaced by a

heteroatom and/or by a polar group and/or it is optionally

possible that one or more carbon-carbon single bond(s) is/are

replaced by a carbon-carbon double or a triple bond,

k is an integer having a value of from 0 to 4,

X is -O-, -S-, -NH-, -N(CH₃)-, -CH(OH)-, -CO-, -CH₂(CO)-, -SO-,

-CH₂(SO)-, -SO₂-, -CH₂(SO₂)-, -COO-, -OCO-, -OCO-O-,

-S-CO-, -CO-S-, -SOO-, -OSO-, -SOS-, -CH $_2$ -CH $_2$ -, -OCH $_2$ -,

-CH₂O-, -CH=CH-, -C≡C-, or a single bond,

t is an integer having a value of 0 or 1.

26. A compound according to any one of claims 24 or 25, wherein at least one of A¹ to A⁴ of formula (I) is a group of formula (II):

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

wherein:

P is a polymerizable group such as CH₂=CW-,

CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

Sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which

one or more -CH₂- groups present in the hydrocarbon chain

may be replaced, independently, by one or more groups

selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-,

-CH=CH-, -C≡C-, -(CF2)r -

with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10.

k is 1,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond,

more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

27. A compound according to any one of claims 24 to 26 wherein C¹ to C⁴ are preferably selected from:

$$(L)_{u1}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad N-N$$

$$(L)_{u1}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u1}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u2}, \qquad (L)_{u3}, \qquad (L)_{u4}, \qquad (L)_{u4},$$

wherein:

L being -CH3, -COCH3, -NO2, -CN or halogen,

u1 is 0, 1, 2, 3, or 4,

u2 is 0, 1, 2, or 3,

u3 is 0, 1, or 2.

28. A compound according to any one of claims 24 to 27, wherein:

c1 to c4 are selected from optionally substituted cyclohexyl or cyclohexylene, phenyl or phenylene, naphthyl or naphthylene or phenanthryl or phenanthrylene,

A¹ to A⁴ independently from each other is hydrogen, a polar group such as cyano, nitro, a halogen, or a group of formula (II),

 $P-(Sp)_{K}-(X)_{t}-$ (II)

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I,

sp is a C₁₋₂₂ branched or straight-chain alkylene group, in which one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH(OH)-, -SO₂-, -COO-, -OCO-, -OCO-O-, -CH=CH-, -C≡C-, -(CF₂)r -, with the proviso that no two oxygen atoms are directly linked to each other, and wherein r is an integer between 1 and 10,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or single bond,

t is 1.

with the proviso that at least one of A1 to A4 comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO- or

wherein:

W is H, CH₃, F, Cl, Br or I,

R" is a C₁₋₆ alkyl group, methoxy, cyano, F, Cl, Br or I.

29. A compound according to any one of claims 24 to 28, wherein:

A¹ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH₃,

A² has the meaning of formula (II),

 $P-(Sp)_k-(X)_t-$ (II)

in which:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight

C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1

A⁴ is hydrogen.

30. A compound according to any one of claims 24 to 29, wherein:

A¹ has the meaning of formula (II),

 $P-(Sp)_{k}-(X)_{t}$ - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=W-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

A² comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH₃,

A⁴ is hydrogen.

31. A compound according to any one of claims 24 to 30, wherein:

A¹ has the meaning of formula (II),

P-(Sp)k-(X)t- (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=W-COO-, wherein:

W is H or CH₃,

sp is a branched C3-C16 alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C2-C16 alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH2- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1,

CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH3,

A⁴ is hydrogen.

32. A compound according to any one of claims 24 to 31, wherein:

A² has the meaning of formula (II),

 $P-(Sp)_k-(X)_t$ - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

- is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C=C-, with the proviso that no two oxygen atoms are directly linked to each other,
- k is 1,
- X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,
- t is 1,

A³ comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH₃,

A is hydrogen.

33. A compound according to any one of claims 24 to 32, wherein: A^{1} and A^{2} have the meaning of formula (II),

 $P-(Sp)_k-(X)_t$ - (II)

wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O- or CH₂=CW-COO-, wherein:

W is H or CH₃,

- sp is a branched C₃-C₁₆ alkylene group, optionally comprising at least one oxocarbonyl or carbonlyoxy group, or is a straight C₂-C₁₆ alkylene group, comprising at least one oxocarbonyl or carbonyloxy group, wherein one or more -CH₂- groups present in the hydrocarbon chain may be replaced, independently, by one or more groups selected from -O-, -CH=CH-, -C≡C-, with the proviso that no two oxygen atoms are directly linked to each other,
- k is 1,
- X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,
- t is 1,
- A^3 comprises a polymerizable group such as CH₂=CW-, CH₂=CW-O-, or CH₂=CW-COO-, wherein:

W is H or CH3,

A⁴ is hydrogen.

34. A compound according to any one of claims 24 to 33, wherein at least one of A¹ to A³ has the meaning of formula (II),

 $P-(Sp)_k-(X)_t$ - (II)

wherein:

Р

is hydrogen or a polymerizable group such as

CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W

is H or CH3, .

Sp

has the meaning of formula (III)

$$R^1$$

 $(CH_2)n^1-(Y^1)m^1-(CH_2)n^2-(B^1)m^2-(CH_2)n^3-(Y^2)m^3-(CH_2)n^4$
 R^2
 (III)

wherein:

 γ^1 and γ^2

each independently represent -OCO- or -COO-,

в1

represents C or CH,

 ${\text{R}}^{1}$ and ${\text{R}}^{2}$

each independently represent hydrogen or a

C1-C12 alkyl residue, preferably a C1-C6 alkyl

residue, such as methyl, ethyl, propyl, butyl,

pentyl, hexyl or isopropyl residue,

n1, n2, n3 and n4

are independently integers from 0 to 15, such

that $0 \le n1 + n2 + n3 + n4 \le 15$,

m1, m2 and m3

are independently integers from 0 to 3, such that

 $1 \le m1 + m2 + m3 \le 3$ and

wherein

one or more -CH₂- groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 .

k is 1,

X is -O-, -CO-, -COO-, -OCO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

35. A compound according to any one of claims 24 to 34, wherein at least one of A¹ to A³ has the meaning of formula (II),

$$P-(Sp)_{k}-(X)_{t}-$$
 (II)

Wherein:

P is hydrogen or a polymerizable group such as CH₂=CW-, CH₂=CW-O-, CH₂=CW-COO-,

wherein:

W is H or CH3,

Sp has the meaning of formula (III)

$$R^{1}$$
 | (CH₂)n¹-(Y¹)m¹-(CH₂)n²-(B¹)m²-(CH₂)n³-(Y²)m³-(CH₂)n⁴ | R^{2} (III)

wherein:

Y¹ and Y² each independently represent –OCO- or –COO-,

B¹ represents C or CH,

R¹ is hydrogen,

R² represents a methyl, ethyl, propyl, butyl, pentyl or

hexyl group and most preferably a methyl or

ethyl group,

n1, n2, n3 and n4 are independently integers from 0 to 15, such

that $0 \le n1 + n2 + n3 + n4 \le 15$,

m1, m2 and m3 are independently integers from 0 to 3, such that

 $1 \le m1 + m2 + m3 \le 3$, and wherein

one or more -CH₂-groups present in the hydrocarbon chain of (III) may be replaced, independently, by one or more groups selected from -O-, -CH=CH- or -C=C-, with the proviso that the carbon-carbon double bond of P is not directly connected to the carbon atom of Y^1 or Y^2 ,

k is 1,

X is -O-, -CO-, -COO-, -CH=CH-, -C≡C-, or a single bond, more preferably -O-, -COO-, -OCO- or a single bond,

t is 1.

- 36. Use of a chiral or achiral rod shaped compound according to any one of claims 21 to 35 for the preparation of mesogenic polymer mixtures according to any one of claims 1 to 20.
- 37. Polymer networks prepared from a mixture according to any one of claims 1 to 20.
- 38. Liquid crystalline polymer films prepared from a mixture according to any one of claims 1 to 20.
- 39. Use of a polymer network according to claim 37 or a liquid crystalline polymer film according to claim 38 for the preparation of unstructured or structured optical and electro-optical components and multilayer systems.
- 40. Use of a mixture according to any one of claims 1 to 20 for the preparation of an elastomer, polymer gel, polymer network or polymer film.
- 41. Use of a polymer network according to claim 37 or of a liquid crystalline polymer film according to claim 38 for the manufacture of devices such as waveguides,

optical gratings, filters, retarders, polarizers, piezoelectric cells or thin film exhibiting non-linear optical properties.

42. Optical or electro-optical components comprising a polymer network according to claim 37 or a liquid crystalline polymer film according to claim 38.