אוטומטים 1 - סיכום תרגולים

תרגול 1

- חזרה על ההגדרות מהשיעור.
- $|L_1 \cdot L_2| \leq |L_1| \cdot |L_2|$:שפות מתקיים שפות בין שפות פשרשור בין שפות ullet
 - $L^0 = \{\varepsilon\}$, $L \cdot \{\varepsilon\} = L$, $L \cdot \emptyset = \emptyset$ •
 - היפוך שפה בשפה ביכת כל מילה בשפה. L^R
- . השפהויות של האפשרויות איטרציה (רק על שפות) ה $L^*=L^0\cup L^1\cup L^2\cup.....$
 - $\{0,1\}^* = \{\varepsilon,0,1,00,01,...\}$ -
- איטרציה תמיד (למעט שפה ריקה או המכילה מילה ריקה) יוצרת שפה אינסופית.

תרגילים - הוכח/ הפרך:

- $1100
 otin (L_1,L_2)^*$ אבל $1100 \in L_1^*L_2^*$ ואז $L_1 = \{1\}$, $L_2 = \{0\}$ ד"ג ר $(L_1 \cdot L_2) * = L_1L_2$
 - $(L_1 \cup L_2)^* = (L_1^* \cdot L_2^*)^* \bullet$
 - בראה הכלה דו־כיוונית –

$$(L_1 \cup L_2)^* \subseteq (L_1^* \cdot L_2^*)^*$$
 כיוון ראשון:

- $w\in \left(L_1\cup L_2
 ight)^n$ כך ש $n\in\mathbb{N}$ אזי: קיים ש $w\in \left(L_1\cup L_2
 ight)^*$ יהיהי -
- $w=x_1,x_2,....,x_n$ כך ש $x_1,x_2,x_3....x_n\in (L_1\cup L_2)$: מתקיים ש $x_1,x_2,x_3....x_n\in (L_1\cup L_2)$
- $^-$ (w המילה של התאמה (ע"פ ההתאמה ב $^+$ ומילים מ $^+$ ומילים מ $^+$ ומילים של לרצפים את לרצפים של מילים מ $^+$ לרצפים של $^+$ לרצפים של $^+$ לרצפים של מילים מ $^+$ לרצפים של מילים מילים מ $^+$ לרצפים של מילים מילים מ $^+$ לרצפים של מילים מ $^+$ לרצפים מ $^+$ לרצפים מילים מ $^+$ לרצפים מילים מ $^+$ לרצפים מ $^+$ לרצפים מ $^+$ לרצפים מילים מ $^+$ לרצפים מילים מ $^+$ לרצפים מילים מ $^+$ לרצפים מילים מילים
 - עבור i עבור $x_i \in L_1^m L_2^k \Leftarrow x_i \in L_1^* \cdot L_2^* \Leftarrow w = x_1, x_2....x_n \Leftarrow w \in (L_1^* \cdot L_2^*)^*$ עבור תהי
 - $y_j \in L_1, z_j \in L_2$ כאשר $x_i = y_1,, y_m z_1 z_k$ -
 - . שפות. איחוד איחוד $w \in \left(L_1 \cup L_2\right)^*$ ולכן L_2 או מ L_1 או מw המרכיבים את המרכיבים את u המרכיבים את שפות.

• הגדרות:

- x=yz ע כך ד $z\in L_2$ ת $y\in L_1$ אם קיימים $x\in L_1\cdot L_2$ שרשור
- $y_1.....y_n=x$ בך ש $y_1,y_2,....,y_n\in L$ אם קיימות $x\in L^n$ חזקה
 - $x\in L^n$ אם קיים $n\in\mathbb{N}$ כך ש $x\in L^*$ איטרציה

25/10/18 - 2 תרגול

אוטומטים:

. אוטומט התקבל לעיתים תתקבל לעיתים אוטומט הוא סופי דטרמינסטי, אוטומט הא אוטומט האוטומט אוטומט האוטומט אוטומט האוטומט אוטומט האוטומט הוטומט האוטומט האוטומט הוטומט האוטומט הוטומט האוטומט הוטומט האוטומ

- קבוצת המצבים Q
 - ב"א ⁻ ∑ •
- פונקצית המעברים δ
 - מצב התחלתי q_0
- מצבים המקבלים F

האוטומט מכיל מצבים Q קורא מילים אות אחרי אות מחליט להתקדם על פי פונקציית המעברים ועוצר בסוף הקלט באחד המצבים.

- . אז המילב מתקבלת אז המילב מתקבלת \bullet
 - אחרת, המילה לא מתקבלת

לדוגמה: ציור:

 $...\delta\left(q_{1},0
ight)=q_{1}$, $\delta\left(q_{0},1
ight)=q_{1}$, $\delta\left(q_{0},0
ight)=q_{0}$ (ע"פ הציור) פנוקציית המעברים

וגמאות:

- $L=\{w\in\{0,1\}| ext{not contain the seq' }11\ \}$ בנו אוטומט •
- $L = \{w \in \{a,b,c\} | \text{w start and end with same letter} \; \}$ בנו אוטומט •

 $L = \{w \in \{0.1\}^* | \text{between any couple of 1 has 3 digit of 0} \}$ בנו אוטומט

31/11/18 - 3 שיעור

• הערה: בקורס תמיד הא"ב, שפה, ומילה הינם סופיים.

אוטומט סופי דטרמינסטי:

דוגמה לשפה:

 $L = \{w \in \{a, b, c\}^* \mid \text{w start with a and end with b}\}$

:הראנו ש

$$ab \in L \qquad cab \notin L$$
$$a \notin L$$

שפה של אוטומט:

L(A) עבור אס"ד A' השפה של A'

$$L(A) = \left\{ w \in \sum^{*} \right\}$$
 ending and reading w in a
otumat in recvie mode $\right\}$

לדוגמא:

$$L(A) = \{ w \in \{0,1\}^* \mid \text{w length is odd } \}$$

מספר האות במילה # .2

$$L(A) = \{w \in \{a, b, c\}^* \mid |\#_a(w)) - \#_b(w)\} \le 3 \text{ all time} \}$$

08/11/18 - 4 שיעור

. נכונות. מכריע והכיחו מכריע בנו אוטומט , $L=\left\{\sigma\times\sigma|\sigma\in\left(a,b,c\right),x\in\left\{a,b,c\right\}^{*}\right\}$ מתונה השפה הבאה

: נוכיח הכלה דו הכלה גוכיח נוכיח נוכיח . L(A) = L:

 $:L(A)\subseteq L$ כיוון ראשון

 $\hat{\delta}:Q\times\sum^*\to Q$, $\delta:Q\times\sum\to Q$ תזכורת

- . $\hat{\delta}\left(q_{0},w
 ight)\in F$ לכן: $w\in L(A)$ תהי
 - נפצל למקרים:
- המע הנוסף, כדי להגיע מu לפי הגדרת פונ' המעברים של האוטומט, בהכרח התו האחרון של u הוא לפיכך כדי להגיע מ q_{aa} , קמים מעבר מ q_{aa} למצבים אחרים, ולפיכך נובע שהתו הראשון של א קיים מעבר מu בהכרח יש לעבור דרך מצב בu למצב בu ולכן התו הראשון של u הוא גם כן u ולכן u למצב בu למצב בu למצב u למצב בu ולכן התו הראשון של u הוא גם כן u ולכן u העביר את האוטטומט למצב בu
 - b באותו אופן עבור –
 - c באותו אופן עבור –

כיוון שני: $L\subseteq L(A)$ (יש מילה צריך להראות שהיא מגיעה למצב מקבל)

תו. מתחיימת באותו לכן $w \in L$ תהי תהי לכן $w \in L$

- נפצל למקרים:
- w מתחילה ומסתיימת בa : מכיוון שw מתחילה בa אז לפי פנוקציית המעברים, לאחר קריאת התו הראשון של w בור קריאת עבור קריאת מכיוון שלא ניתן כעת להגיע למצב אחר מa ומכיוון שa מסתיימת בa וכל המעברים עבור קריאת a תסתיים במצב במצב a ולכן תתקבל.
 - . b באותו אופן עבור –
 - . c באותו אופן עבור –

שאלה: נתונה השפה הבאה:

 $L = \{ w \in \{0,1\}^* \mid \text{w is binary number and } [w]_3 = 0 \}$

.. יוכו' $3=11\in L,0011,0110\in L$ וכר'

 $: \varepsilon \in L :$ הערה

L(A) = L צ"ל

 $\hat{\delta}\left(q_0,w
ight)=q_i\iff w$ מייצג שורך המילה i נותנת שארית i נותנת שלו ב i נותנת שהחלוקה שלו ב פינארי שהחלוקה שלו ב i הערות:

- הטענה פה יותר חזקה מהרגיל כייון שבכך אנחנו מוכיחים גם מה לא מתקבל, ולא רק מה מתקבל
 - בגלל שאנחנו מראים את השקילות אנחנו בפעם אחת את שני הכיוונים

בסיס (נחמיר):

- $\hat{\delta}\left(q_{0},w
 ight)=q_{0}$: מתקיים שי $\left|w
 ight|=0$ שארית $\left|w
 ight|=0$
 - $\delta\left(q_{0},w
 ight)=q_{0}$ שארית 0 ומתקיים , w=0
 - $\hat{\delta}\left(q_{0},w
 ight)=q_{1}$ שארית 1 ומתקיים w=1 \bullet

|m+1| נניח נכונות עבור כל המילים ונוכיח אווכיח ונוכיח בעבור מילים באורך אורך אורך בעד נניח נכונות עבור כל המילים

- 0,1,2 ונפצל למקרים לפי השאריות $w=x\sigma$ נסמן
 - (נגמר השיעור, תשלימו לבד....)

15/11/18 - 5 שיעור

שפות רגולריות

. נרצה לשאול מה המודל יכול לחשב ומה אס"ד (DFA), נרצה לשאול מה המודל יכול לחשב ומה לא

- שפות סופיות ־ כן
- שפות אינסופיות שהמשלימה שלהם סופית כן
 - חלק מהשפות האינסופית ־ גם כן.

? או לא $L = \{a^nb^m|n=m \mod 3\}$ האם $L = \{a^nb^m|n=m \mod 3\}$

 $L \in reg = \left\{ L \subseteq \sum^* | ext{exist an DFA for L}
ight\}$ במילים אחרות השאלה היא האם:

תשובה: כן, רגולרית

הוכחה: נבנה אס"ד....

דוגמאות:

- $|P\left(\sum^{*}\right)| = \aleph_0 \bullet$
- $L = \{1^p | \text{ p is primary}\} \bullet$

דוגמאות לשפות לא רגולריות:

- הוכחה בשיעור $L = \{a^nb^n|n>0\}$
 - :הוכחה $L_2=\left\{a^{n^2}|n\in\mathbb{N}
 ight\}$
- . n הוא Aכן המבצים מס' המכריע את המכריע המכריע קים ולכן הגולרית כן בשלילה בשלילה L
- נצור קבוצת מילים בגודל n ונרצה למצוא את המילה הn+1 לא חוקית שמגיע למצב כלשהו (שמעקרון שובך היונים יגיעו לאותו מצב)
 - מלים n+1יש הזו בקבוצה $a^{0^2}, a^{1^2},, a^{i^2}, ..., a^{n^2}$ הבאה בקבוצה כלומר כתבנון כלומר
 - . Q באותו מצב באותו סתיים היונים קיימות לפחות 2 מילים מתוך המלים הנ"ל שחישוב ב
 - i < j עם a^{i^2}, a^{j^2} :בה"כ –
 - :ש נקבל a^{2i+1} נשרשר ל 2- המלים את הסיומת -2

$$a^{i^2}a^{2i+1} = a^{i^2+2i+1} = a^{(i+1)^2} \in L$$

$$a^{j^2}a^{2i+1} = a^{j^2+2i+1} \notin L$$

- התירה החדשות מגיעות לאותו מצב בA ולכן קיבלנו שאותו מצב מקבל וגם לא, וזו סתירה אבל 2
 - לא רגולרית $L=\{a^nb^m|n
 eq m\}$ -
 - לא רגולרית $L=\left\{a^nb^b|m\leq n+10
 ight\}$ -
 - רית בעצם כל מילה רגולרית בעצם כל מילה $L = \{a^nb^n|n \neq m\}^*$

22/11/18 - 6 שיעור

סגירויות שפות רגולירות

- משלים רגולרית ע"י החלפת מצבים מקבלים ולא מקבלים
 - איחוד/חיתוך רגולריות הוכחה:
- $A_1 imes A_2$ ע"י אוטומט מכפלה: בהנתן A_1 אסד ל ל A_2 ל כך ש ע"י אוטומט מכפלה
- . אותה את ריצת A_2 את ריצת את המילה במקביל את על אותה את היצת –
- $q \in F$ או $p \in F$ אם"ם אם"ם יהיה מקבל אם בסגירות לאיחוד, כל מצב באוטומט או
- $q \in F$ וגם $p \in F$ מקבל אם"ם יהיה מקבלה המכפלה באוטומט (q,p) מצב כל בסיגרות בסיגרות
 - שרשור ז הוכחה בהמשך
 - רגולרית $L_1 ackslash L_2 = L_1 \cap ar{L_2}$ רגולרית •
 - (הגדרת הפרש סימטרי הגדרת הפרש רגולרי בולרי $L_1 \vartriangle L_2$
 - איטרציה ־ הוכחה בהמשך
 - היפוך ־ רגולרית

הוכח/הפרך

- עבור שפה subs(L) מכילה את כל תתי המילים של $Subs(L)=\left\{y\in\sum^*|\exists x,z\in\sum^*\ st.\ xyz\in L\right\}$ מכילה את כל תתי המילים של .1 המילים בשפה L אם L לא רוגלורית Subs(L) בהכרח לא רגולרית?
- Subs(L)= הינו הוכחנו בשיעור), ומצד אוהי שפה לא רגולרית (הוכחנו בשיעור) אוהי שפה לא רגולרית ומצד ווהי שפה $L=\{a^nb^n|n\in\mathbb{N}\}$ הינו בשיעור), ומצד ומצד לא נכון, ד"נ: ניקח את השפה $\{a^kb^m|k,m\in\mathbb{N}\}$
 - רגולרית אז $L_1 \cap L_2 = L_3$, $L_1 \cap L_2 = L_4$: הן רגלריות ומתקיים ב $L_2,...L_4$ אז הוכחה בה .2 הוכחה (משהו פה מוזר)

$$L_1 = (L_3 \backslash L_2) \cup (L_1 \cap L_2) = (L_3 \backslash L_2) \cup L_1$$

כאשר הביטוי האחרון הוא אוסף ביטויים של שפות רגולריות ומסגיריות גם L_1 רגולרית, כנדרש

אוטומט אי־דטרמינסטי

 $\delta(q_0, a) = \{q_1, q_2\}$ השוני הוא ש

כאשר אם יש יותר ממעבר אחד האוטומט לוקח בחשבון את כולם, אם אין מעברים בכלל האוטומט נתקע והמילה לא מתקבלת. $\{w\} = L(A)$ ואז ואז $|w\} = L(A)$

היתרון באס"ד שהוא מפשט את בניית האוטומט, דוגמה

 $\{a,b,c$ בנו אוטומט שפת כל המלים מעל $\{a,b,c\}$ המכילות את בנו אוטומט

<u>תרגיל</u>

 $w \in \{a,b,c\}^*$ בנו אוטומט א"ד לשפה בך האות הרביעית מהסוף בb היא בנו אוטומט א

11/18/29 - 7 שיעור

arepsilon חזרה קצרה על אסל"ד עם מסעי

$L(A) = \sum^*$ טענה

הוכחה

 $F\cap \delta\left(q_{0},w
ight)=\left\{q_{2}
ight\}, F\cap \delta\left(q_{1},w
ight)=\left\{q_{2}
ight\}\,w\in\sum^{*}$ נוכיח ש A מקבל כל מילה באינדוקציה על אורך המילה לומר לכל $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$ ובפרט הקבוצה מכילה את $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$ ובפרט המילים באורך $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$ ונוכיח בעבור מילים באורך $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$ ניח נכונות לכל המילים באורך $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$ ניח נכונות לכל המילים באורך $\delta\left(q_{0},\varepsilon\right)=\left\{q_{0},q_{1,q_{2}}
ight\}$

:ונפצל למקרים , $\sigma \in \sum |x| = n$ כאשר כאשר n+1

- $\sigma=0$ אם •
- אפשרות ראשונה:

$$\delta(q_0, w = \delta(q_0 0 x)) = \delta(\delta(q_0, 0), x) = \delta(\{q_0, q_1, q_2\}, x) \supseteq \delta(q_0, x)$$

 $F \cap \delta\left(q_0,w
ight) = \{q_2\}$ ולכן ולכן $F \cap \delta\left(q_0,x
ight) = \{q_2\}$ ומהנחת האינדוקציה

: אפשרות שנייה

$$\delta(q_1, w) = \delta(q_1 0 x) = \delta(\delta(q_1, 0), x) = \delta(\{q_0, q_1, q_2\}, x) \supseteq \delta(q_0, x)$$

 q_2 את מכילה א
 $\delta\left(q_1,w\right)$ גם אח מכילה מכילה מכילה מהנחת מהנחת מכילה מכילה מכילה אח

:(א+ב) אז $\sigma=1$ אז •

$$\delta(q_0, w) = \delta(q_1, w) = \delta(q_1, 1x) = \delta(\delta(q_1, 1), x) = \delta(\{q_1, q_2\}, x \supseteq \delta(q_1, x))$$

 q_{2} את מכילות מכילות הנחת האינדוקציה לכן ק
 $\delta\left(q_{0},w\right),\delta\left(q_{1},w\right)$ לכן לכן מכילות מכילה מכילות האינדוקציה הנחת האינדוקציה מכילה את

:תרגיל

עבור מצב $a\in \Sigma$ נגדיר מודל חדש הנקרא "אוטומט בור" מתקיים . $\delta\left(q,a\right)=\emptyset$ מתקיים מכל בור אם לכל בור אם הנקרא הוא מצב בור.

א. הוכיחו כי אם מרשים במודל זה בנוסף גם מסעי arepsilon , אז הוא שקול למודל הרגיל.

נוכיח שקילות בין המודל הרגיל למודל "אוטומט בורות", תהי שפה נוכיח שקילות בין המודל הרגיל למודל

- 1. אם קיים לה "אוטומט בורות" אז בפרט הוא מודל רגיל כי אוטומט רגיל הוא "אוטומט בורות" הוא מקרה פרטי של המודל הרגיל
 - 2. אם קיים לה אוטומט מהמדול הרגיל אזי נבנה "אוטומט בורות" באופן הבא:
 - עבור כל מצב מקבל $q \in F$ נהפוך אותו למצב רגיל •
 - $\delta_{new}\left(q,arepsilon
 ight)=\delta_{old}\left(q,arepsilon
 ight)\cup\left\{q_{F}
 ight\}$ נוסיף מצב מקבל יחיד q_{F} ועבור כל

. אם לא מרשים מסעי arepsilon , איזו תנאי צריכה לקיים שפה רגולית L שיהיה לה אוטומט מהמודל החדש?

פתרון:

 $arepsilon
otin L = \{arepsilon\}$ תנאי

- אז מעב מקבל יהיה q_0 אז $L=\{arepsilon\}$ אם •
- עבור פונה $q_1\in F$ בהינתן עבור כל בהינתן באופן בורות האוטומט בורות א"ד רגיל ל q_1 בהינתן אוטומט א"ד רגיל ל q_1 בבנה אוטומט בורות באופן הבא: עבור כל מקבל q_1 בהינתן מוחלט של q_1 כלומר כל כניסה ל q_1 תכנס גם ל q_1 וכל יציאה מ q_1 המהווה העתק מוחלט של q_1 כלומר כל כניסה ל q_1 מחק את כל היציאות מ q_1

6/12/18 ⁻ 8 שיעור

נזכר ברשימה האהובה שלנו:

סגירויות שפות רגולירות

- משלים ־ רגולרית ־ ע"י החלפת מצבים מקבלים ולא מקבלים
 - איחוד/חיתוך ־ רגולריות ־ הוכחה:
- $A_1 imes A_2$ ע"י אוטומט מכפלה: בהנתן A_1 אסד ל A_1 , ו A_2 ל A_2 כך ש
- . אותה את ריצת A_2 את ריצת את המילה המילה על המילה את ריצת A_1 אותה מילה.
- $q \in F$ או $p \in F$ אם"ם מקבל יהיה מקבל בסגירות באוטומט או באוטומט באוטומט בסגירות באיחוד, כל מצב
- $q \in F$ וגם $p \in F$ וגם יהיה מקבל אם"ם בסיגרות לחיתוך, כל מצב (q,p) באוטומט המכפלה יהיה
 - שרשור ז הוכחה בהמשך
 - רגולרית $L_1ackslash L_2=L_1\cap ar{L_2}$ רגולרית •
 - (הגדרת הפרש סימטרי רגולרי הערש הפרש הימטרי $L_1 \vartriangle L_2$
 - איטרציה ז הוכחה בהמשך
 - היפוך ־ רגולרית

היום נוכיח:

סגירות להיפוד:

 L^R אם לבנה ממנו אוטומט ל בהראות שבהנתן להראות צ"ל להראות אז בולרית, או L^R אם להראות אם להראות אם אוטומט ל

- .L את המקבל האוטומט $A=(Q,\sum,q_0,\delta,F)$ ויהא ויהא שפה עפה תהא \bot
 - $A^R = \left(Q \cup \left\{q_s
 ight\}, \sum, \delta_R, q_0
 ight)$ נגדיר את האוטומט הבא:
 - $\delta_{R}\left(q_{s},arepsilon
 ight)=F$ -
- - $A^R=L^R$ ש מעשה צ"ל להוכיח ullet
 - נוכיח באינדוקציה על אורך המילה ש:

 $w \in \sum^*$ נוכיח טענה חזקה יתר לכל

$$q \in \delta_R(p, w^R) \iff \delta(q, w) = p$$

 q_s ים arepsilon פרט מסעי arepsilon פרט מפרן עבור A_R כי לא הוספנו מסעי a פרט למסעי a פרט עבור w=arepsilon מכך ש אס"ד מתקיים a אס"ד מתקיים a ובאותן אופן עבור a מניח בעבור מילה באורך עד a ונוכיח מילה באורך עד a ונוכיח מילה באורך עד

|w|=n+1 תהי

$$\delta\left(q,w\right)=q \iff \delta\left(q,x\sigma\right)=p \iff \delta\left(\delta\left(q,x\right),\sigma\right)=p \iff \delta\left(r,\sigma\right)=p$$

$$\stackrel{4}{\iff} r \in \delta_{R}\left(p,\sigma\right) \land q \in \delta_{R}\left(r,x^{R}\right) \stackrel{2}{\iff} q \in \delta_{R}\left(\delta_{R}\left(p,\sigma\right),x^{R}\right) \stackrel{1}{\iff} q \in \delta_{R}\left(p,\sigma x^{R}\right)$$

 δ_R הגדרת האינדוקצה + הגדרת המילה. 2. הגדרת מעברים מורחבת. 3. סימון - 4. $\delta(q,x)=r$ הגדרת מעברים מורחבת. 1.

תרגיל - הוכח / הפרך:

אז L בהכרח אז בהכרח לא רגולרית. שפה המקיימת L שפה הגולריות כך ש $L_1\subseteq L_2$ אז אז $L_1\subseteq L_2$ אז א. תהיינה

<u>פתרון:</u>

 $L_2=\{a^nb^m|n,m\in\mathbb{N}\}\cup\{c^nd^n|n\in\mathbb{N}\}$, $L=\{a^nb^m|n,m\in\mathbb{N}\}$ $L_1=\{a^nb^n\}$ א נכון היינ: ניקח את $L_1\subseteq L\subseteq L_2$

- לא רגורלית $L_1 \bullet$
- וניח בשלילה שכן אז $\{c^nd^n|n\in\mathbb{N}\}$ ע מסגירות להפרש, מסגירות מסגירות בסתירה בסתירה בשלילה שכן אז ביתה. בסתירה למשפט שהוכחנו

ב. תהי או $extend(L)=\left\{v\in\sum^*|\exists y\in L,w\in\sum^*\ s.t.\ v=uw
ight\}$ גם היא בהכרח רגולרית ב. תהי עם היא

פתרון:

הטענה נכונה.

נשים לב ש extend(L) כאשר extend(L) כאשר שפה רגורלית מנתון, ו \sum^* רגולרית מנתון, שפה באשר שפה עפה $extend(L) = L \cdot \sum^*$ גם כן.

13/12/18 - 9 שיעור

למת הניפוח

כאשר נרצה להוכיח ששפה היא רגולרית על בסיס שפות כלשהם, לרוב נשתמש בתוכנות הסגירות למינהן, אך אם נרצה להראות ששפה אינה רגולרית לרוב נשתמש בלמת הניפוח

הלמה:

z=uvw קיים פירוק או בz=uvw קיים פירוק או המקיימת ב לכל z=uvw כך איז המקיים או רגולרית אז רגולרית או לכל ו

- $|uv| \leq n$.1
- $1 \leq |v|$.2
- 0 < i לכל $uv^i w \in L$.3

: תרגיל

1. הוכיחו שכל שפה סופית מקיימת את למת הניפוח:

נבחר $z \in L$, ולכן הטענה , $z \in L$, ולכן לא מתקיים לכל , וווהי מילה מילה שלא נמצאת בשפה, ולכן לא מתקיים לכל , ולכן הטענה מתקיימת באופן ריק.

- .2 את הלמה: עקיימת את מקיימת את הלמה: $L=\left\{w\in\left\{a,b,c\right\}^*|\mathrm{w}\ \mathrm{contain}\ \mathrm{'abc'}\ \right\}$.
 - $|z| \geq n$ נבחר את $z \in L$ תהי , n = 4 כש
 - :נפצל למקרים, abc את הרצף מכילה ש נובע ש $z \in L$ ש מכך •
- ואכן: ,w=x , $v=\sigma$, u=abc אז נבחר את $abc\cdot\sigma\cdot x$ אם -
 - |uv| = 4 < 4 (x)
 - $|v| = 1 \ge 1$ (2)
 - abc כי z' מכילה $z'=abc\cdot\sigma\cdot x\in L$ אז $i\in\mathbb{N}$ יהא (ג)
 - ואכן , $w=x\cdot abc\cdot y$, $v=\sigma$, $u=\varepsilon$ $\sigma\cdot x\cdot abc\cdot y$ אם -
 - $|uv|=1\leq 4$ (א)
 - $|v| = 1 \ge 1$ (2)
- abc מכילה z' כי $z'=\sigma\cdot x\cdot abc\cdot y\in L$ אז $i\in\mathbb{N}$ הא

איך מוכיחים ששפה לא רגולרית באמצעות למה הניפוח?

<u>דוגמה:</u>

ניקח את L אינה רגולרית , $L = \{a^nb^m|n < m\}$ ניקח את

. נניח בשלילה שL רגולרית, ולכן מקיימת את בשלילה סגיפוח. \bullet

- כלומר נרצה להראות ששלילת המשפט מתקיימת:

z=uvw כך ש: $z\in L$ המקיים את כך כך ש: $z\in L$ כך כך כך כך כלכל $n\in \mathbb{N}$

- $|uv| \leq n$.1
- $1 \leq |v|$.2
- $0 \leq i$ קיים $uv^iw \in L$.3
- : פירקו כלשהו בירקו $z = u \cdot v \cdot w$ יהא יהא ואז ואז n < n+1 כל כי כי $z = a^n b^{n+1}$ יהא נבחר את
 - $|uv| \leq n$.1
 - $|v| \ge 1$.2
 - : ונקבל שi=2 נבחר ($n\geq k\geq 1$) $v=a^k$ נבחר ונקבל ש \bullet

$$z' = a^{n+k} + b^{n+1} \Rightarrow z' \notin L$$

כי א חוו סתירה ,
$$n+1 \leq n+k$$

: גולרית: $L=\{a^nb^n|n\in\mathbb{N}\}:$ בוכיח ש

- . נניח ש L רגולרית ולכן מקיימת את למת היפוח \bullet
- $|z|=5n\geq n$, $z=a^nb^{4n}\in L$: יהא n מהלמה, מהלמה, ונבחר n
 - יים המקיים z=uvw יהא
 - $|uv| \leq n$.1
 - $|v| \ge 1$.2
 - $(1 \le k \le n)$ $v = a^k$ לפי 1,2 לפי
 - : נבחר i=0 ונקבל

$$z'=a^{n-k}b^{4n}\notin L$$

$$4(n-k) \neq 4n$$
 כי

20/12/18 - 10 שיעור

למת הניפוח:

פאלה: $L = \{a^p | \text{p is prime }\}$: שאלה

פתרון: L לא רגולרית, הוכחה:

- הניפוח את מקיימת ולכן רגולרית הניפוח L ש בשלילה ש
 - ,הקבוע המובטח הקבוע החלמה, חלכן יהא א ולכן יהא הקבוע החלמה, חלכן יהא הא
- נבחר אחד שכזה, כי ישנם ∞ ראשוניים (אוקלידס) ולכן מn בחור הראשוני הראשוני הראשוני הראשוני הראשוני מn הוא הראשוני הראשוני ו $z=a^p\in L$ הוא ולכן $|z|=p\geq n$
 - : פירוק המקיים א תz=uvw יהא פירוק •

$$|uv| \le n$$
 .1 $|v| \ge 1$.2

 $z'=a^{p+p|v|}=a^{p(1+|v|)}
otin L:$ נבחר i=p+1 נבחר 1,2 לפי

. ואו סתירה, $p \geq 2$ וכן $|v|+1 \geq 2$ פריק, מכך שp(1+|v|) כי -

 $L=\{a^nb^m|n
eq m\}$:שאלה

פתרון: L אינה רגולרית. הוכחה:

- הניפוח את מקיימת ולכן רגולרית בשלילה שL רגולרית הניפוח
 - . הקבוע המובטח מהלמה $n \in \mathbb{N}$ יולכן יהא
 - $|z|=\geq n$, $z=a^nb^{n!+n}\in L$ נבחר ullet
 - : פירוק מקיים א תz=uvw יהא פירוק ullet

$$|uv| < n$$
 .1

$$|v| \ge 1$$
 .2

סתירה $z'=a^{n+\left(\frac{n!}{|v|}+1-1\right)|v|}b^{n!+n}=a^{n+n!}b^{n!+n}\notin L:$ סתירה $i=\frac{n!}{|v|}+1$ נבחר 1,2 לפי 1,2

 $L = \left\{ xy | x,y \in \left\{ a,b,c
ight\}^*, \; |x| = |y|
ight\}$ שאלה: האם השפה הבאה רגולרית ? הוכיחו

כן. הינה רגולרית. הוכחה:

$$L = \{xy|x, y \in \{a, b, c\}^*, |x| = |y|\} = \{w|w \in \{a, b, c\}^*, |w| \text{ is even}\}$$

ולזה בנינו אוטומט בתרגולים קודמים.

 $L = \left\{w \in \left\{a, b, c\right\}^*, \; \#_a(w)
eq \#_b(w)
ight\}^2 = L'$ אאלה: האם השפה הבאה רגולרית ? שאלה הבאה הבאה הבאה הבאה הבאה אוניתו

$$L = \{w \in \{a, b, c\}^*, \ \#_a(w) \neq \#_b(w)\}^2 = \{\sum^* \setminus \{\varepsilon, a, b\}\}$$

הוכחת השוויון:

 $\left\{\sum^*\setminus\left\{arepsilon,a,b
ight\}
ight\}\subseteq L$ נראה צד אחד:

, $|x|\geq 0$ כאשר $w=x\cdot\sigma_1\cdot\sigma_2$ לכומר , w לכומר בתחונים של י נתבונן על 2 התווים ($w|\geq 2$), ולכן $w=x\cdot\sigma_1\cdot\sigma_2$, ולכן כאשר $w=x\cdot\sigma_1\cdot\sigma_2$ נפצל למקרים:

- $w\in L$ ולכן ה $\sigma_1\in L'$ ו , $x\cdot\sigma_1\in L'$ אז אז מכמות הa השונה כמות ה $x\cdot\sigma_1$
 - bה לכמות מיוה aה כמות כמות $x\cdot\sigma_1$ ב שווה \bullet

$$\sigma_1\sigma_2\in L'$$
 , $x\in L'$ נפרק $\sigma_1=\sigma_2$ אם $\sigma_1=\sigma_2$

 $\sigma_1 \neq \sigma_2$ ו a,b אם $x \cdot \sigma_1$ מכילה כמות אם $x \cdot \sigma_1$

$$\sigma_2 \in L'$$
 , $\sigma_1 \in L'$ נפרק $x = arepsilon$ *

. ההיה כמות שתהיה $\sigma\sigma_1\sigma_2\in L'$ ולכן 3 ולכן זו מילה או , $y\in L'$ $w=\underbrace{y\cdot\sigma}_x\cdot\sigma_1\cdot\sigma_2$ ולא אחרת, אחרת, אחרת, וכאן זו מילה אחרת, נתבונן ב

 $L = \{(01)^n 0 (10)^n | n \in \mathbb{N}\}$ שאלה: האם השפה הבאה רגולרית ? הוכיחו

תשובה: כן. הוכחה:

$$\{(01)^n 0(10)^n | n \in \mathbb{N}\} = \{0(10)^{2n} | n \in \mathbb{N}\}$$

DFA ולזה ניתן לבנות

שבוע 11 ⁻ 27/12/18

ביטויים רגולרים

ביטוי המורכב מ:

- arepsilon או אותיות הא"ב או 1.
- 2. פעולות: -(שרשור), + (איחוד), * (איטרציה)
 - 3. סוגריים

$$L\left[r
ight]=\sum^{*}$$
 נסמן

:דוגמאות

- $aabb \in L$ למשל $\sum = \{a,b\}$ $r_1 = (a+b)^*$
 - $r_2 = a^* + b^* \quad \bullet$
 - $r_3 = a^*b^* \bullet$

איך הופכים ביטוי לשפה?

- $L[\sigma] = {\sigma} \bullet$
- $L[(r_1 + r_2)] = L[r_1] \cup L[r_2] \bullet$
 - $L\left[\left(r_{1}\cdot r_{2}\right)\right] = L\left[r_{1}\right]\cdot L\left[r_{2}\right] \bullet$
 - $L[(r_1^*)] = (L[r_1])^* \bullet$

דוגמה

$$L[r_1] = L[(a+b)^*] = (L[(a+b)])^* = (L[a] \cup L[b])^* = (\{a\} \cup \{b\})^* = \{a,b\}^*$$

בניית ביטוי רגולרי עבור שפות

- $r_1 = \left((a+b+c) \left(a+b+c \right) \right)^*$ หน $L_1 = \left\{ w \in \left\{ a,b,c \right\}^* | \ |w| \ \mathrm{even}
 ight\}$ •
- $R_2 = (a+b)[(a+b)(a+b)(a+b)]^* L_1 = \{w \in \{a,b\}^* \mid [|w|]_3 = 1\}$
- $r_3 = (a+b+c)^* \cdot a \cdot b \cdot c \cdot (a+b+c)^* \ L_1 = \{w \in \{a,b,c\}^* | abc \in w\} \bullet$
 - $r_4 = ((b+c)^* \cdot (\varepsilon + a \cdot a^* \cdot c))^* \cdot a^* L_1 = \{w \in \{a, b, c\}^* | ab \notin w\} \bullet$

* = מעגר , \cdot = , מעבר , + = , שתי אותיות ע"פ: שתי הרגולרי את מעבר , אוטומט את נבנה דרך אותיות ע"פ: אותיות הביטוי

 $r_4=q_0$ ביטוי המגיע ל + q_1 ביטוי המגיע ל נבנה:

$$q_1 = q_0 \cdot a \cdot a^*$$
 , $q_0 = \left(\left(b + c \right)^* + \left(b + c \right)^* a a^* c \right)^*$

אלגוריתם לבניית ביטוי רגולרי לשפה כללית:

- 1. לבנות לשפה אוטומט א"ד כמה שיותר מינימאלי לאוטומט יהיה מצב מקבל יחיד שאינו ההתחלתי.
 - 2. המטרה: למחוק מהאוטומט את כל המצבים חוץ מההתחלתי והמקבל
 - איך מוחקים מצב?
 - + נאחד חצים עם אותיות נפרדות לביטוי רגיל של •

. בנה ביטוי רגולרי המתאר את ביטוי רגולרי השפה. בור $L_1=\left\{w\in\left\{a,b,c\right\}^*|\mathrm{num}\ \mathrm{of}\ \mathrm{a}\ \mathrm{and}\ \mathrm{b}\ \mathrm{equale}\ \mathrm{mod}\ 3\right\}$

• כעת נבנה ע"פ האלגוריתם:

<u>ולסיום:</u>

$$r_4 = (ab + (b + aa) (ba)^* (a + bb))^*$$

מרגול 12 ⁻ 03/01/19

נפתור שאלות מממבחנים:

רגלרית? $L_1 = \left\{ww^R|w\in\sum^*
ight\}$ האם השפה השפה היה היה $\Sigma = \{0,1\}$

פתרון: לא . הוכחה: (שלילת למת הניפוח)

- $w=0^n1^n$ עבור $z=0^n1^n1^n0^n$: נניח ש $z=0^n1^n1^n0^n$ אבור הקבוע מהלמה ת
 - : פירוק כלשהו המקיים שz=uvw ויהי ו $|z|=4n\geq n$
 - $|v| \ge 1$ -
 - $|uv| \le n$ -

- $z' = uv^0w = 0^{n-|v|}1^n1^n0^n
 otin L_1$ נבחר i = 0 נבחר -
- $|v| \geq 1$ כי כמות ה 0ים בסיום z' שונה מכמות ה סים בסיום כי כמות ה

בולרית? $L_2=\left\{b^nc^{2n}|2n^2-20n+100\leq 20-4n\right\}$.2

• נבדוק את התנאי

$$2n^{2} - 20n + 100 \le 20 - 4n$$

$$\downarrow \downarrow$$

$$n^{2} - 8n + 40 \le 0$$

$$\triangle < 0$$

$$\downarrow \downarrow$$

no solutions

. נדרש. $L_2=\left\{b^nc^{2n}|2n^2-20n+100\leq 20-4n\right\}=\phi$ לכן $L_2=\left\{b^nc^{2n}|2n^2-20n+100\leq 20-4n\right\}=\phi$

$$L_3 = \left\{egin{align*} 1 < n < 3 \ a^n b^m c^k d^l \mid & m = 3n \ [k]_3 = 1 \ [l]_2 = 0 \end{array}
ight\}$$
 .3

• מתקיים ש:

$$L_3 = \{a^2b^4\} \cdot \{c^k | [k]_3 = 1\} \cdot \{d^l | [l]_2 = 0\}$$

- $r_1 = aabbbb \bullet$
- $r_2 = c \left(ccc \right)^* \bullet$
 - $r_3 = (bb)^* \bullet$

כנדרש רגולרית*רגולרית*רגולרית*רגולית של ומסגירויות האר ומסגירוית, כנדרש רגולרית*רגולרית*רגולרית*רגולית יומסגירויות האר ומסגירויות של האר רגולרית

$$Shuffle\left(L_1,L_2\right)=\left\{u_1v_1u_2v_2,...,u_nv_n|n\geq 1,u_i\in L_1,v_i\in L_2\right\}\,L_1,L_2$$
 .4

הוכח/הפרך:

- רגולרית אתז shuffle רגולרית רגולרית רגולרית רגולרית אם
- רגולרית L_1, L_2 אז $Shuffle(L_1, b_1)$ (ב)

<u>פתרון:</u>

- (א) כן. הוכחה:
- בהתאמה r_1, r_2 . ה"ב מהן לכל קיים לכל , רגולרית ב"ב ב"ת נניח ש
 - $r_1r_2\left(r_1r_2
 ight)^*:Shuffle\left(L_1,L_2
 ight)$ פעת נבנה ה"ר לשפה ullet
 - (ב) לא. ד"נ: (הרעיון אחת רגולרית השניה לא, והרגולרית "בולעת" את הלא)
- רית ב $L_2=\{a^n|n\in\mathbb{N}\}$ לא רגולרית, $L_1=\{a^p| ext{p is prime }\}$ רגולרית
 - רגולרית $Shuffle\left(L_{1},L_{2}
 ight)=\left\{ a^{n}\Big| egin{array}{c} n\in\mathbb{N} \\ n\geq2 \end{array}
 ight\}$ לכן lacktriangle
 - . לא. L_1 רגולרית, וShuffle לא.

n שפה הבאה של למת הניפוח: תהי שפה הגולרית אזי קיים חוכיח בz שלכל מילה בz שאורכה לפחות שפה הוכיח שפה בz=uvw מהצורה קיים פירוק מהצורה בz=uvw

$$|uv| \le n$$
 (א)

$$|v|\geq 1, |u|\geq 2$$
 (ב)

$$u\cdot v^i\cdot w\in L\ i\in\mathbb{N}$$
 לכל (ג)

הוכחה:

- . מצבים k=|Q| שפה אס"ד עם L אס"ד לכן היולרית שפה L
 - . n = k + 2 :כבחר
- לכל $\sigma_i\in \sum$ כאשר כך שי: $z=\sigma_1\sigma_2,\sigma_3....\sigma_{k+2}x$ של תהיי תהבאות נגדיר את היירשו , $|Z|\geq k+2$ כאשר כל תהיי תהיי $x\in \sum^*$, $1\leq i\leq k+2$

$$z_2 = \sigma_1 \sigma_2$$
 -

$$z_3 = \sigma_1 \sigma_2 \sigma_3$$
 -

$$z_4 = \sigma_1 \sigma_2 \sigma_3 \sigma_4$$
 -

.... -

$$z_{k+2} = \sigma_1 \sigma_2 \sigma_{k+2}$$
 -

- . כעת, ישנן k+1 ריישות וכל קריאה של אחת מהן החל קריאה של דיישות וכל ריישות וכל פעת, ישנן אחת החל פריאה של היישות וכל היישות וכל היישות וכל היישות וכל החל מה
- $\delta\left(q_0,z_0
 ight)=0$ בישנן k+1 ריישות א מצבים באוטומט ולכן לפי עיקרון שובך היונים קיימים א בים באוטומט ולכן לפי עיקרון א פאר א $\delta\left(q_0,z_0
 ight)$
 - : נגדיר את הפירוק הבא: $\begin{cases} u=z_i\\ v=\sigma_{i+1},\sigma_{i+2},....\sigma_j\\ w=\sigma_{j+1},...\sigma_{k+2}x, \end{cases}$ נגדיר את הפירוק הבא: •

$$|uv|=j\leq k+2=n$$
 (א)

$$|v| = j - 1 \ge 1$$
 , $|u| = |2_i| = i \ge 2$ (2)

:i גוכיח באינדוקציה על (ג)

$$:i=0$$
 בסיס עבור

$$\delta\left(q_{0},uw\right)=\delta\left(\delta\left(q_{0},u\right),w\right)=\delta\left(\delta\left(q_{0},z_{i}\right),w\right)=\delta\left(\delta\left(q_{0},z_{j}\right),w\right)=\delta\left(\delta\left(q_{0},uv\right),w\right)=:uw$$
 בקבל את המילה
$$\delta\left(q_{0},uvw\right)=\delta\left(q_{0},uvw\right)=\delta\left(q_{0},z\right)\in F$$

$$z\in L$$
 כי -

$$\delta\left(q_{0},uv^{i}w\right)=\delta\left(\delta\left(q_{0},uv\right)v^{i-1}w\right)=\delta\left(\delta\left(q_{0},u\right)v^{i-1}w\right)=\delta\left(\delta\left(q_{0},uv^{i-1}w\right)\right)\in F$$
 צעד:

10/01/19 - 13 תרגול

מבחן תשע"ח מועד א

שאלה 1

האם השפות הבאות רגולריות:

$$\underline{L_1 = \left\{ x \in \{0, 1\} * | x = x^R \right\}} .1$$

תשובה: לא רגולרית. הוכחה:

- . נניח שכן. ויהי $n\in\mathbb{N}$ הקבוע המובטח הלמה.
- $|z|=3n\geq n$ נגדיר $z^R=z$ כי $z=0^n1^n0^n\in L_1$ נגדיר
 - $|v| \geq 1$ ו $uv \leq n$.1 פירוק המקיים z = uvw יהי
 - $(1 \le k \le n)$ $v = 0^k$ לפי 1 נובע ש
- סתירה $z' \neq 0^n 1^n 0^{n-k} = z^R$ כי $z \notin L_1$ והרי והרי $z' = 0^{n-k} 1^n 0^n$ ונקבל ש

$L_2 = \{(01)^n \mid n \bmod 4 = 0\}$.2

- : נבנה ב"ר
- $r_2 = (01010101) * -$
- בחה: הוכחה: $L_3 = \left(a^{j!}|j>0\right)$.3
- . מהלמה שכן. ויהיה $n\in\mathbb{N}$ הקבוע המובטח סהלמה.
- $|z|=n!\geq n$ ו $z^R=z$ כי $z=a^{n!}\in L_1$ נגדיר •
- $|v| \geq 1$ ו $|uv| \leq n$.1 פירוק המקיים z = uvw יהי
 - $(1 \le k \le n) \ v = a^k$ נובע ש ש
 - נקבל: i=2 נקבל:
 - $z'=a^{n!+k}
 otin L_3$ כי

$$n! \stackrel{k \ge 1}{<} n! + k \le n! + n \stackrel{n \ge 2}{\le} n! \cdot n \le n! (n+1) = n!$$

בשפה אינה אינה שלמה, ולכן אינה אינה בשפה n!+k סלומר

שאלה 2

הוכח/הפרד

- גם רגולרית? $extend(L) = \{w \in m\{0,1\} * | \exists x \in L, y \in \{0,1\} * s.t. \ w = xy\}$ גם רגולרית. 1.
- פתרון: נשים לב ש: אולרית, הו שרשור של שפות הולרית, אולרית, הולרית, ב $extend(L) = L \cdot \sum^*$ רגולרית, כנדרש
 - (בן: אז L רגולרית. אז extend(L) אפה כך ש פר .2
 - לא רגורלית אבל L לא רגולרית פextend(L) כי $extend(L)=L\cdot\sum^*$, $L=\{a^nb^n|n\in\mathbb{N}\}$.3

שאלה 3

הוכח/הפרך

רגולרית $L_1\cap L_2$ שפה רגולרית כך ש $L_1\cap L_2$ רגולרית .1

פתרון: דוגמה נגדרית

- $L_1 = \phi$, $L_2 = \{0^n a^n | n \in \mathbb{N}\}$ \bullet
- רית אז L_2 לא רגולרית L_1 רגולרית ו $L_2 = \phi$ אז $L_1 \cup L_2 = \phi$
- אז L אז אז L אז הולרית מעל כך ש \sum , \sum שפות אז רגולרית שפות .2 $L_1 = L_1 = L_2$ פתרון ד"נ:

- לא רגולרית מהכיתה לא $L_1 = \{a^nb^n|n\in\mathbb{N}\}$
- רגולרית מהכיתה $L=\{a^nb^m|n,m\in\mathbb{N}\}$
- $L_2 = \{a^n b^m | n, m \in \mathbb{N}\} \cup \{a^n c^n | n \in \mathbb{N}^+\} \bullet$
 - $L_1\subseteq L\subseteq L_2$: כעת מתקיים ש
 - תר להוכיח ש L_2 רגולרית –
- . נניח שכן אז: $\{a^nb^n|n\in\mathbb{N}\}=L_2ackslash L$ כי החיתוך ריק.
- רגולרית $^{-}$ סתירה. $\{a^nb^n|n\in\mathbb{N}\}$ פגם שגם נקבל הגולרית הגולרית רגולרית הנחה וL

שאלה 4

כתבו ביטוי רגולרי עבור השפות הבאות.

'aa' שלא מכילות רצף של $\{a,b\}$ שלא מכילות רצף של .1

$$r_1 = \underbrace{(b^*ab)^*}_{prefix} \underbrace{b^*(a+\varepsilon)}_{suffix}$$

היותר לכל אותיות בהן 4 שיש בהן $\{0,1\}$ מעל 2.

$$r_2 = (\varepsilon + 0 + 1 + 00 + 01 + \dots + 1010 + \dots + 1111)$$

מילה מילה בתת 101 שלא מכילות $\{0,1\}$ כתת מילה 3.

$$r_3 = (0 + 11^*00)^* (\varepsilon + 11^* (\varepsilon + 0))$$