Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 22. Oktober 2020

AND

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

NAND

AND aus NOR

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

NOT aus NOR

NOT aus NAND

Weitere Gates

Troncoro Garco	1		
NAND	NOR	XNOR	XOR
$C = \overline{A \wedge B}$ $A \downarrow \& \\ - C$	$D = \overline{A \vee B}$ $A \downarrow^{\geq 1} \qquad \qquad b-D$	$E = \overline{A \oplus B}$ $A = 1$ $B = 1$ $B = 1$	$F = A \oplus B$ $A = 1$ $B = 1$
»-L			1

A	В	QNAN C	n D	E Solve	вох F
0	0	1	1	1	0
0 1	0	1	0	0	1
1	1	0	0	1	0

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.

- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS \rightarrow PMOS.

Funktionsgleichung

parallel: ∨	Pull-Up: $y = 1$	alle $I: 0 \to I$ invert.
Serie: ∧	Pull-Down: $y = 0$	alle I : 1 \rightarrow Gl. inver

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$	
Eins-Th.	$A \lor 1 = 1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B)$	$=A\wedge B$	
Adsorp.	$A \lor (A \land B) = A$		
	$A \wedge (A \vee B)$	=A	
Nachbar.G.	$(A \wedge B) \vee (\overline{A})$	$\overline{A} \wedge B) = B$	
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$	

De Morgan

- 1. Regel $\overline{A \wedge B} = \overline{A} \vee \overline{B}$
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mögl. Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF $Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$ 1 Mint. erf. \rightarrow 1

KNF $Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$ 1 Maxt. erf. \rightarrow 0

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- XNOR: DNF \rightarrow De Morgan