

2006-2007 学年第 2 学期

期中考试统一用答题册

题号	 1 1	三(1)	三(2)	三(3)	三(4)	总分
成绩						
阅卷人签字						
校对人签字						

考试	课程	基础物理学(1)	
班	级	学号	
姓	名	成 绩	

2007年5月19日

- 一. 选择题 (每题 3 分, 共 30 分)
- 1. 某喷气式飞机以 v_0 的速率在空气中水平飞行时,引擎吸入的空气和燃料混合燃烧后生成 的气体相对于飞机以速率u向后喷出.设喷气机原有质量为M、消耗燃料的质量为dm,同 时吸入空气的质量为 dm_1 ,则对于飞机(含燃料)和吸入空气组成的系统而言,动量守恒方 程在水平方向(前进方向为正)的投影式为:
 - (A) $Mv_0 = (M + dm)(v_0 + dv) + (-dm)(v_0 u) + dm_1(u v_0)$.
 - (B) $Mv_0 = (M + dm)(v_0 + dv) + (-dm + dm_1)(v_0 u)$.
 - (C) $Mv_0 = (M dm)(v_0 + dv) + (-dm + dm_1)(v_0 u)$
 - (D) $Mv_0 = (M + dm)(v_0 dv) + (-dm)(v_0 u) + dm_1(v_0 u)$

Γ 7

- 对功的概念有以下几种说法: 2.
 - (1) 保守力作正功时,系统内相应的势能增加,
 - (2) 质点运动经一闭合路径,保守力对质点作的功为零.
 - (3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 在上述说法中:
 - (A) (1)、(2)是正确的.
- (B) (2)、(3)是正确的.
- (C) 只有(2)是正确的.
- (D) 只有(3)是正确的.

]

- 3. 一轻弹簧,上端固定,下端挂有质量为m的重物,其自由振动的周期为T. 今已知振子 离开平衡位置为x时,其振动速度为v,加速度为a.则下列计算该振子劲度系数的公式中, 错误的是:
 - (A) $k = mv_{\text{max}}^2 / x_{\text{max}}^2$. (B) k = mg / x.
 - (C) $k = 4\pi^2 m/T^2$. (D) k = ma/x.

Γ 7

- 4. 用余弦函数描述一简谐振子的振动. 若其速度~时间 $(v\sim t)$ 关系曲线如图所示,则振动的初相位为
 - (A) $\pi/6$.
- (B) $\pi/3$.
- (C) $\pi/2$.
- (D) $2\pi/3$.
- (E) $5\pi/6$.

Γ 7

- 5. 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为
 - (A) kA^2 .
- (B) $\frac{1}{2}kA^2$.
- (C) $(1/4)kA^2$.
- (D) 0.

Γ] 6. 图为沿x 轴负方向传播的平面简谐波在t=0 时刻的波形. 若波 的表达式以余弦函数表示,则o点处质点振动的初相为

(B) $\frac{1}{2}\pi$.

(D) $\frac{3}{2}\pi$.

Γ]

7. 如图所示, S_1 和 S_2 为两相干波源,它们的振动方向均垂直于图 面,发出波长为 λ 的简谐波,P 点是两列波相遇区域中的一点,已 知 $\overline{S_1P} = 2\lambda$, $\overline{S_2P} = 2.2\lambda$, 两列波在 P 点发生相消干涉. 若 S_1 的振动方程为 $y_1 = A\cos(2\pi t + \frac{1}{2}\pi)$,则 S_2 的振动方程为

(A) $y_2 = A\cos(2\pi t - \frac{1}{2}\pi)$. (B) $y_2 = A\cos(2\pi t - \pi)$.

(C)
$$y_2 = A\cos(2\pi t + \frac{1}{2}\pi)$$
. (D) $y_2 = 2A\cos(2\pi t - 0.1\pi)$.

Γ 7

8. 声源 S 和接收器 R 均沿 x 方向运动,已知两者相对于媒质的运动速率均为 v,如图所示.设 声波在媒质中的传播速度为u,声源振动频率为v,则接收器测得的频率v。为

(A)
$$\frac{u+v}{u-v}v_S$$
.

(B)
$$\frac{u-v}{u+v}v_s$$
.

(C)
$$\frac{u+v}{u}v_s$$
. (D) $\frac{u-v}{u}v_s$.

(D)
$$\frac{u-v}{u}v_s$$

(E) v_S .

] Γ

9. 若频率为 1200 Hz 的声波和 400 Hz 的声波有相同的振幅,则此两声波的强度之比是

- (A) 1:3
- (B) 1:1
- (C) 3:1
- (D) 9:1

10. 一水桶底部开有一小孔,水由孔中漏出的出口速度为 v. 若桶内水的高度不变,但使水 桶以 g/4 的加速度上升,则水由孔中漏出的出口速度为

- (A) v/4.
- (B) $\sqrt{3}v/2$.
- (C) $\sqrt{5}v/2$.
- (D) 5v/4.

[]

二. 填空题(每题3分,共30分	二.	填空题	(每题3	分,	共30分
------------------	----	-----	------	----	------

- 1. 距河岸(看成直线)500 m 处有一艘静止的船,船上的探照灯以转速为 n=1 r/min 转动. 当 光束与岸边成 60° 角时,光束沿岸边移动的速度 v= .
- 2. 图中,沿着半径为 R 圆周运动的质点,所受的几个力中有一个是恒力 \bar{F}_0 ,方向始终沿 x 轴正向,即 $\bar{F}_0=F_0\bar{i}$. 当质点从 A 点沿逆时针方向走

过 3 /4 圆周到达 B 点时,力 \vec{F}_0 所作的功为 W=_____.

- 3. 一物体的质量为 m,它相对于观察者 O 的运动速度为 \bar{v} ,相对于观察者 O' 的速度为 \bar{v}' , O 相对于 O' 的速度为 \bar{V} ,则 O 和 O' 所测得的质点动能 E_K 和 E_K' 之间的关系为 E_K' =
- 4. 质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动. 所受外力方向沿x 轴正向,大小为F = kx. 物体从原点运动到坐标为x0 的点的过程中所受外力冲量的大小为
- 5. 半径为 20 cm 的主动轮,通过皮带拖动半径为 50 cm 的被动轮转动,皮带与轮之间无相对滑动. 主动轮从静止开始作匀角加速转动. 在 4 s 内被动轮的角速度达到 $8\pi rad \cdot s^{-1}$,则主动轮在这段时间内转过了______圈.
- 6. 一杆长 $l=50~{\rm cm}$,可绕通过其上端的水平光滑固定轴 O 在竖直平面内转动,相对于 O 轴的转动惯量 $J=5~{\rm kg} \cdot {\rm m}^2$. 原来杆静止并自然下垂. 若在杆的下端水平射入质量 $m=0.01~{\rm kg}$ 、

速率为 v=400 m/s 的子弹并嵌入杆内,则杆的角速度为 $\omega=$ _______.

7. 一点波源作简谐振动,周期为(1/100) s,此振动以 v = 400 m/s 的速度向四周传播,在距离波源 1 m 处质点振动的振幅为 5×10^{-6} m,媒质均匀且不吸收能量.以波源经平衡位置向

正方向运动时作为计时零点,则此波动沿某一波线的波动表达式为 y = _____.

8. 沿弦线传播的一入射波在 x = L 处 (B 点)发生反射,反射点为自由端 (如图).设波在传播和反射过程中振幅不变,且反射波的表达式为 $y_2 = A\cos 2\pi(\nu t + \frac{x}{\lambda})$,则入射波的表达式为 $y_1 = \underline{\hspace{1cm}}$.

9. 一横波在均匀柔软弦上传播, 其表达式为 $y = 0.02\cos\pi (5 x^{-200} t)$ (SI)

若弦的线密度 $\mu = 50 \text{ g/m}$,则弦中张力为______

10. 如图所示,一列平面波入射到两种介质的分界面上. AB 为 t 时刻的波前. 波从 B 点传播到 C 点需用时间 τ . 已知波在介质 1 中的速度 u_1 大于波在介质 2 中的速度 u_2 . 试根据惠更斯原理 定性地画出 $t+\tau$ 时刻波在介质 2 中的波前.

三. 计算题(共40分)

1. (本题 15 分)有一质量为 m_1 、长为 l 的均匀细棒,静止平放在滑动摩擦系数为 μ 的水平桌面上,它可绕通过其端点 O 且与桌面垂直的固定光滑轴转动。另有一水平运动的质量为 m_2 的小滑块,从侧面垂直于棒与棒的另一端 A 相碰撞,设碰撞时间极短。已知小滑块在碰撞前后的速度分别为 \bar{v}_1 和 \bar{v}_2 ,如图所示。求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕 O 点的转动惯量 $J=\frac{1}{3}m_1l^2$)

2. (本题 5 分)两个人分别在一根质量为m 的均匀棒的两端,将棒抬起,并使其保持静止,今其中一人突然撒手,求在刚撒开手的瞬间,另一个人对棒的支持力f.

3. (本题 15 分)在一轻弹簧下端悬挂 $m_0 = 100$ g 砝码时,弹簧伸长 8 cm. 现在这根弹簧下端悬挂 m = 250 g 的物体,构成弹簧振子. 将物体从平衡位置向下拉动 4 cm,并给以向上的 21 cm/s 的初速度(令这时 t = 0). 选 x 轴向下,求振动方程的数值式.

- 4. (本题 5 分)由振动频率为 400 Hz 的音叉在两端固定拉紧的弦线上建立驻波. 这个驻波共有三个波腹,其振幅为 0.30 cm. 波在弦上的速度为 320 m/s.
 - (1) 求此弦线的长度.
 - (2) 若以弦线中点为坐标原点,试写出弦线上驻波的表达式.