Optimization

Wenxiao Yang*

 $^{\ast}\textsc{Department}$ of Mathematics, University of Illinois at Urbana-Champaign

2022

目录

1	Unconstrained Optimization			2
	1.1	Conditions for Optimality		2
	1.2	Globa	l minimizer, Local minimizer	2
	1.3	Optimization in \mathbb{R}		2
		1.3.1	Theorem 1: differentiable f, x^* is a local minimizer $\Rightarrow f'(x^*) = 0 \dots \dots$	2
		1.3.2	Theorem 2: $f'(x^*) = 0, f''(x^*) \ge 0, \ \forall x \in [a, b] \Rightarrow x^*$ is a global minimizer on	
			$[a,b]; f'(x^*) = 0, f''(x^*) \ge 0 \Rightarrow x^* \text{ is a local minimizer } \dots \dots \dots \dots$	2
	1.4	Optim	nization in \mathbb{R}^n	3
		1.4.1	Necessary Conditions for Optimality: Local Minimum $\Rightarrow \nabla f(x^*) = 0 \dots \dots$	3
		1.4.2	The first-derivative test in \mathbb{R}^n : $\phi'_u(t) = \nabla f(x+tu) \cdot u \dots \dots$	4
		1.4.3	Theorem 4: ∇f is continuous, x^* is a global minimizer of $f \Rightarrow \nabla f(x^*) = 0$	4
		1.4.4	The second-derivative test in \mathbb{R}^n	4
		1.4.5	Hessian matrix	4
		1.4.6	Theorem 5: Hf is continuous, $\nabla f(x^*) = 0$, $u^T Hf(x^*)u \geq 0, \forall u \Rightarrow x^*$ is a	
			global minimizer of f	5
	1.5	Minim	nizing over other sets	5
		1.5.1	Theorem 7: ∇f is continuous, x^* (interior of D) is a local minimizer of f	
			$\Rightarrow \nabla f(x^*) = 0$	5
		1.5.2	Theorem 8: Hf is continuous, x^* (interior of D) $\nabla f(x^*) = 0$, $\exists r \text{ s.t. } u^T Hf(x^*)u \geq 0$	
			$0, \forall x \in B(x^*, r), \forall u \Rightarrow x^*$ is a local minimizer of f	5

1 Unconstrained Optimization

1.1 Conditions for Optimality

Function: $f: \mathbb{R}^n \to \mathbb{R}^n$, $x \in \&$, $\& \subseteq \mathbb{R}^n$.

Terminology: x^* will always be the optimal input at some function.

1.2 Global minimizer, Local minimizer

Definition 1.

Say x^* is a global minimizer(minimum) of f if $f(x^*) \leq f(x), \forall x \in \&$.

Say x^* is a unique global minimizer(minimum) of f if $f(x^*) < f(x), \forall x \neq x^*$.

Say x^* is a local minimizer(minimum) of f if $\exists r > 0$ so that $f(x^*) \leq f(x)$ when $||x - x^*|| < r$.

A minimizer is <u>strict</u> if $f(x^*) < f(x)$ for all relevant x.

1.3 Optimization in \mathbb{R}

1.3.1 Theorem 1: differentiable f, x^* is a local minimizer $\Rightarrow f'(x^*) = 0$

Theorem 1. If f(x) is differentiable function and x^* is a local minimizer, then $f'(x^*) = 0$.

证明.

Def of $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Def of local minimizer: $f(x^*) - f(x) \ge 0, |x^* - x| < r$

when
$$0 < h < r$$
, $\frac{f(x+h)-f(x)}{h} \ge 0$; when $-r < h < 0$, $\frac{f(x+h)-f(x)}{h} \le 0$. Then $f'(x) = 0$.

1.3.2 Theorem 2: $f'(x^*) = 0, f''(x^*) \ge 0, \ \forall x \in [a,b] \Rightarrow x^*$ is a global minimizer on [a,b]; $f'(x^*) = 0, f''(x^*) \ge 0 \Rightarrow x^*$ is a local minimizer

Theorem 2. If $f : \mathbb{R} \to \mathbb{R}$ is a function with a continuous second derivative and x^* is a critical point of f (i.e. f'(x) = 0), then:

- (1): If $f''(x) \ge 0$, $\forall x \in \mathbb{R}$, then x^* is a global minimizer on \mathbb{R} .
- (2): If $f''(x) \ge 0$, $\forall x \in [a, b]$, then x^* is a global minimizer on [a, b].
- (3): If we only know $f''(x^*) \ge 0$, x^* is a local minimizer.

proof of theorem 2.

- $(1)f(x) = f(x^*) + f'(x^*)(x x^*) + \frac{1}{2}f''(\xi)(x x^*)^2 = f(x^*) + 0 + something \ non \ negative \geq f(x^*) \ \forall x \in \mathbb{R}^n$
- (2) Similar to (1)
- $(3)f''(x^*) \ge 0, \ f'' \text{ continuous} \Rightarrow \exists r \text{ s.t. } f''(x) \ge 0 \ \forall x \in [x^* \frac{r}{2}, x^* + \frac{r}{2}], \text{ then } x \text{ is a local minimizer.} \quad \Box$

1.4 Optimization in \mathbb{R}^n

1.4.1 Necessary Conditions for Optimality: Local Minimum $\Rightarrow \nabla f(x^*) = 0$

A base point x, we consider an arbitrary direction u. $\{x + tu | t \in \mathbb{R}\}$ For $\alpha > 0$ sufficiently small:

1.
$$f(x^*) \le f(x^* + \alpha u)$$

2.
$$g(\alpha) = f(x^* + tu) - f(x^*) \ge 0$$

3. $g(\beta)$ is continuously differentiable for $\beta \in [0, \alpha]$

By chain rule,

$$g'(\beta) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x^* + \beta u) u_i$$

By Mean Value Theorem,

$$g(\alpha) = g(0) + g'(\beta)\alpha$$
 for some $\beta \in [0, \alpha]$

Thus

$$g(\alpha) = \alpha \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x^* + \beta u) u_i \ge 0$$

$$\Rightarrow \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x^* + \beta u) u_i \ge 0$$

Letting $\alpha \to 0$ and hence $\beta \to 0$, we get

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x^*) u_i \ge 0 \text{ for all } u \in \mathbb{R}^n$$

By choosing $u = [1, 0, ..., 0]^T$, $u = [-1, 0, ..., 0]^T$, we get

$$\frac{\partial f(x^*)}{\partial x_1} \ge 0, \ \frac{\partial f(x^*)}{\partial x_1} \le 0 \Rightarrow \frac{\partial f(x^*)}{\partial x_1} = 0$$

Similarly, we can get

$$\nabla f(x^*) = \left[\frac{\partial f(x^*)}{\partial x_1}, \frac{\partial f(x^*)}{\partial x_2}, \dots, \frac{\partial f(x^*)}{\partial x_n}\right]^T = 0$$

A base point x, we consider an arbitrary direction u. $\{x + tu | t \in \mathbb{R}\}$

We define the restriction of f to the line through x in the direction of u to be the function:

$$\phi_u(t) = f(x + tu)$$

Lemma 1. x^* is a global minimizer of f iff for all u, t = 0 is the global minimizer of $\phi_u(t)$ 证明.

$$(\Rightarrow) \phi_u(0) = f(x^*) \le f(x^* + tu) = \phi_u(t)$$

$$(\Leftarrow)$$
 Let $X \in \mathbb{R}^n$, $u = X - x^*$. $\phi_u(0) \le \phi_u(1) \Rightarrow f(x^*) \le f(x^* + u) = f(x)$

1.4.2 The first-derivative test in \mathbb{R}^n : $\phi'_u(t) = \nabla f(x + tu) \cdot u$

First derivative of $f: \mathbb{R}^n \to \mathbb{R}$, Easier: $\phi'_u(t)$?

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}^n$:

$$\frac{\partial f(\mathbf{g}(t))}{\partial t} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{g}(t)) \frac{d}{dt} g_i(t)$$

$$\frac{\partial \phi_u(t)}{\partial t} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} (x + tu) u_i$$

The gradient of $f: \nabla f(x) = (\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_d})^T \Rightarrow \phi'_u(t) = \nabla f(x + tu) \cdot u$

<u>Fine print</u>: Chain rule only works when all $\frac{\partial f}{\partial x_k}$ exists and are continuous.

Example 1. $f(x,y) = x^2 + 3xy - 1$, $x^* = (0,0)$, u = (3,2) $\phi_u(t) = f(x^* + tu) = f(3t, 2t) = 27t^2 - 1$ $\phi'_u(t) = 54t$ $\nabla f(x,y) = (2x + 3y, 3x)$

$$\phi_u'(t) = \nabla f(x + tu) \cdot u = 54t$$

1.4.3 Theorem 4: ∇f is continuous, x^* is a global minimizer of $f \Rightarrow \nabla f(x^*) = 0$

Theorem 3 (Theorem 2.1). Given a function $f: \mathbb{R}^n \to \mathbb{R}$, if ∇f is continuous and x^* is a global minimizer of f, then $\nabla f(x^*) = 0$. (When $\nabla f(x^*) = 0$, we call x^* a critical point of f.)

 x^* is a global minimizer $\Rightarrow x^*$ is a critical point, inverse may not true.

1.4.4 The second-derivative test in \mathbb{R}^n

$$\phi'_u(t) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x+tu)u_i$$

$$\phi_u''(t) = \sum_{i=1}^n \sum_{j=1}^n u_i u_j \frac{\partial^2 f}{\partial x_i \partial x_j} (x + tu)$$

1.4.5 Hessian matrix

Define Hessian matrix of f and write Hf. That is,

$$\phi_u''(t) = u^T H f(x + tu) u$$

<u>Fine print</u>: Chain rule only works when all $\frac{\partial^2 f}{\partial x_i \partial x_j}$ exists and are continuous. ($\Rightarrow Hf$ is continuous)

1.4.6 Theorem 5: Hf is continuous, $\nabla f(x^*) = 0$, $u^T Hf(x^*)u \geq 0, \forall u \Rightarrow x^*$ is a global minimizer of f

Theorem 4. Given a function $f: \mathbb{R}^n \to \mathbb{R}$, if Hf is continuous and x^* is a critical point of f. If for any u, that $u^T H f(x^*) u \geq 0$. Then x^* is a global minimizer of f.

proved by Taylor

Theorem 5 (Taylor). Given a function $f: \mathbb{R}^n \to \mathbb{R}$, if Hf is continuous and x^* is a critical point of f, then

$$f(x) = f(x^*) = \nabla f(x^*)(x - x^*) + \frac{1}{2}(x - x^*)^T H f(z)(x - x^*)$$

for some z on the line between x and x^*

1.5 Minimizing over other sets

What if the domain of $f: D \subset \mathbb{R}^n$

- (1): want x^* to be in the interior of D, not on the boundary (want to be able to "look" from x^* in any direction.)
- (2): want x^* to "see" all other points in D using straight line u.

Convexity

good domain e.g. Ball: $B(x^*, r) = \{x | ||x - x^*|| < r\}$

1.5.1 Theorem 7: ∇f is continuous, x^* (interior of D) is a local minimizer of $f \Rightarrow \nabla f(x^*) = 0$

Theorem 6 (Theorem 4.1, 类似 Theorem 2.1). Suppose $f: D \to \mathbb{R}$ has continuous ∇f and x^* is not on the boundary of D. If x^* is a local minimizer of f, then x^* is a critical point of $f: \nabla f(x^*) = 0$

1.5.2 Theorem 8: Hf is continuous, x^* (interior of D) $\nabla f(x^*) = 0$, $\exists r \text{ s.t. } u^T Hf(x^*)u \geq 0, \forall x \in B(x^*, r), \forall u \Rightarrow x^*$ is a local minimizer of f

Theorem 7. Given a function $f: D \to \mathbb{R}$, if Hf is continuous and x^* is a critical point of f in the interior of D. Suppose $\exists r$ s.t. for any u, that $u^T Hf(x^*)u \geq 0$ whenever $x \in B(x^*, r) \subset D$. Then x^* is a local minimizer of f.