HV2 - Drar Ettlinger - Levy

O Iterative teachiques are more efficient for large systems, hoses less memory because they don't use storing the full matrix.

Iterative ten techniques also works well with matrices with alot of tenses

The first of the state of the s		
	•	1
X	۵	X ₁ = 50c+0+3.0 = 29.41
Xz.	٥	X2 - 100+5.0+2.0 - 9.52
X,	O	(1) /= 10 +5.0 +5.0

Li

Herafirm 2

$$\chi_1^{(2)} = \frac{2}{14} (500 + 2.9.52 + 3.4.36) = 70.77$$

$$\chi^{(3)} = \frac{1}{n} \left(500 + 2.16.85 + 3.10.21 \right) = 33.17$$

the condition to convert is if the system is dominated by it main variable , the absolute value of ahumber in front of the variable must be biggersthen the sum of the absolute velocity in the vow.

$$\chi_1 = -\frac{2 + \chi_3 - 4 \chi_4}{-1}$$

$$\chi_{1}^{(0)} = -2+0-4\cdot(-10) = -62$$

$$X_3 = \frac{60.75(-16)}{12} = 0$$

Heratin 2

$$k'' = -2+0 - 4. + 10 = -62$$

also for iteration 1 ...

differences: jacob; updates variables simultaneously
6 auss - Seidel updates variables immediately

Advantages: tacobi easy for pavallen 6245-Seibel Converges Laster

Disadvantages: Jacobi Slower

Garss-Seifel can be less stable comparelto Jacobi

(like in the extraise)

b) Sol (successive over relaxtion) is like bours - seiled

method for solving I near system equations, but faster,

it exils a relaxation factory to adjust the solution for each stage

b) it is advises to use for when gauss-Scidel is working but slowly. (it is NOT always better, if w is picked waring So it can be unstable and slow-