Two Blocks on a Frictionless Half-Ramp

Benjamin Bauml

Spring 2024

This material is borrowed/adapted from Chapter 7 of the Student Workbook for Physics for Scientists and Engineers.

XX-1: Two Blocks on a Frictionless Half-Ramp

Consider the situation depicted below. Friction is negligible for the blocks and surface, and we will assume the strings and pulley are ideal (massless, frictionless, etc.).

(a) Draw a free-body diagram for each block.

I will indicate the half-ramp with the subscript R and the string with the subscript S.

This is one problem where it is imperative <u>not</u> to use G for "ground" to indicate the surface beneath the blocks. If you do, the force on block A by the ground will have a very unfortunate symbol: \vec{F}_{AG} . It may be rather uncomfortable to accidentally write something that looks like a slur in front of your students.

(b) Indicate the Newton's third law pairs.

There are no third law pairs. \vec{F}_{AS}^T and \vec{F}_{BS}^T are equal in magnitude, but they are not opposite in direction, and they are not directly between boxes A and B, instead going through the string and pulley between them.

However, since these two forces are equal in magnitude (due to the ideality of the pulley and the string), I will simplify my notation by giving their magnitudes a single symbol: $F^T = F_{AS}^T = F_{BS}^T$.

(c) Find the normal force on each block.

In order to do this, I will write out Newton's second law in the y-direction for both blocks. Neither is accelerating perpendicular to the surface, so the net force in this direction is zero.

$$F_{A,y}^{net} = F_{AR,y}^{N} + F_{AE,y}^{g} \qquad F_{B,y}^{net} = F_{BR,y}^{N} + F_{BE,y}^{g}$$

$$0 = F_{AR}^{N} - m_{A}g\cos\theta \qquad 0 = F_{BR}^{N} - m_{B}g$$

$$F_{AR}^{N} = m_{A}g\cos\theta \qquad F_{BR}^{N} = m_{B}g$$

(d) Find the acceleration of the two blocks.

Both blocks accelerate in the x-direction, and since they are attached, they must have the same magnitude of acceleration. Also, since their coordinate systems agree on which direction along the surface is +x, the accelerations will also share the same sign. As such, I will use a single symbol for both accelerations: $a = a_{A,x} = a_{B,x}$.

$$F_{A,x}^{net} = F_{AS,x}^T + F_{AE,x}^g$$

$$F_{B,x}^{net} = F_{BS,x}^T$$

$$m_A a_{A,x} = F^T - m_A g \sin \theta$$

$$m_B a_{B,x} = -F^T$$

$$m_B a = -F^T$$

Adding these two equations together gives us

$$(m_A + m_B)a = F^T - m_A g \sin \theta + (-F^T) = -m_A g \sin \theta$$
$$a = -\frac{m_A}{m_A + m_B} g \sin \theta$$

The negative sign lets us know that these blocks will accelerate to the left.

In the special case where $m_B \ll m_A$, the fraction $\frac{m_A}{m_A+m_B}$ approaches 1, and we get $a=g\sin\theta$, which is the acceleration we expect from an object freely sliding down a ramp (which we expect to be the limiting case when there is no additional mass attached to A). Conversely, if $m_B \gg m_A$, then $\frac{m_A}{m_A+m_B} \approx \frac{m_A}{m_B} \approx 0$, and the blocks don't move. This we also expect, as a massive enough block B should not allow block A to move it, thus preventing any sliding.

(e) Find the tension in the string.

We already know from part (d) that $F^T = -m_B a$, so we can substitute our answer for the acceleration into this to obtain

 $F^T = \frac{m_A m_B}{m_A + m_B} g \sin \theta.$

If we wanted to do more algebra, we could also start with both equations from (d) and solve them for F^T instead of for a:

$$m_A a = F^T - m_A g \sin \theta$$
 $m_B a = -F^T$ $m_A m_B a = m_B F^T - m_A m_B g \sin \theta$ $m_A m_B a = -m_A F^T$

Subtracting the right hand equation from the left hand equation gives us

$$m_A m_B a - m_A m_B a = m_B F^T - m_A m_B g \sin \theta - (-m_A F^T)$$
$$0 = (m_A + m_B) F^T - m_A m_B g \sin \theta$$
$$F^T = \frac{m_A m_B}{m_A + m_B} g \sin \theta.$$

Our answer is positive (for all sensible angles from 0° to 90°), which should be the case for a magnitude of a vector. Sometimes, when we do force analysis and get a negative number, it just tells us that the direction we assumed for a force is backward from what it actually is, but in this case, getting a negative magnitude would tell us that something was wrong. After all, tension cannot push.

For $m_A \gg m_B$, we obtain $F^T \approx \frac{m_A m_B}{m_A} g \sin \theta = m_B g \sin \theta$. In this situation (as I mentioned in part (d)), block A is accelerating at $g \sin \theta$ down the ramp, so the force on block B needs to be just perfect to get it accelerating at $g \sin \theta$ to keep up.

Conversely, for $m_B \gg m_A$, we obtain $F^T \approx \frac{m_A m_B}{m_B} g \sin \theta = m_A g \sin \theta$. In this situation, both blocks are stationary (B is too massive to move), so the tension needs to be strong enough to counteract the x-component of the force of gravity on A and hold it in place.