Asociación Venezolana de Competencias Matemáticas ACM

Soluciones

Guía 1 (Ángulos y Congruencia de Triángulos)

Problemas Resueltos

1. Se tienen los ángulos consecutivos $\angle AOB$, $\angle BOC$ y $\angle COD$, siendo: $\angle AOC = 47^{\circ}$, $\angle BOD = 51^{\circ}$, y $\angle AOD = 80^{\circ}$. Hallar la medida del $\angle BOC$.

Solución: Primero calculamos la medida de $\angle COD$. $\angle COD = \angle AOD - \angle AOC = 80^{\circ} - 47^{\circ} = 33^{\circ}$. Entonces $\angle BOC = \angle BOD - \angle COD = 51^{\circ} - 33^{\circ} = 18^{\circ}$.

2. Hallar la medida de un ángulo, sabiendo que su complemento y suplemento suman 208°.

Solución: Sea x la medida del ángulo pedido. Entonces, según el enunciado $(90^{\circ} - x) + (180^{\circ} - x) = 208^{\circ}$. Entonces, $270^{\circ} - 2x = 208^{\circ}$) de donde $2x = 62^{\circ}$ y de allí $x = 31^{\circ}$.

3. El doble del complemento de un ángulo, más el triple del suplemento del mismo, es 500° . Hallar la medida del ángulo.

Solución: Sea x la medida del ángulo pedido. Entonces, según el enunciado $2(90^{\circ} - x) + 3(180^{\circ} - x) = 500^{\circ}$. Entonces, $180^{\circ} - 2x + 540^{\circ} - 3x = 500^{\circ}$) de donde $720^{\circ} - 5x = 500^{\circ}$ y de allí $5x = 220^{\circ}$ concluyendo que $x = 44^{\circ}$.

4. El suplemento del complemento de un ángulo es igual a 3/2 de la diferencia entre el suplemento y el complemento de dicho ángulo.

Solución: Sea x la medida del ángulo pedido. Entonces, según el enunciado:

$$180^{\circ} - (90^{\circ} - x) = \frac{3}{2} [(180^{\circ} - x) - (90^{\circ} - x)]$$

Efectuando:

$$90^{\circ} + x = \frac{3}{2}[180^{\circ} - x - 90^{\circ} + x]$$
$$90^{\circ} + x = \frac{3}{2}(90^{\circ})$$
$$90^{\circ} + x = 135^{\circ}$$
$$x = 45^{\circ}.$$

5. Dada la recta \overrightarrow{PQ} y un punto O sobre ella, a un mismo lado se trazan los rayos \overrightarrow{OA} y \overrightarrow{OB} , tal que \overrightarrow{OA} sea interior al $\angle POB$ y $\angle AOP = 54^{\circ}$. Hallar la medida de $\angle AOB$ si $\angle QOB$ es el suplemento del triple de $\angle BOA$. Solución: Según el enunciado:

$$\angle POA + \angle AOB + \angle BOQ = 180^{\circ}$$

Entonces $54^{\circ} + x + (180^{\circ} - 3x) = 180^{\circ}$ de donde se obtiene que $x = 27^{\circ}$.

6. Hallar la medida del $\angle AFE$ si los segmentos AB y CD son paralelos y se sabe que $\angle EFG = 100^\circ$ y $\angle DIH = 3 \angle BFG$.

Solución: Primero hallamos el valor de $\angle BFG$. Si trazamos una paralela a los segmentos AB y CD por el punto G tendríamos que los ángulos $\angle FGI = \angle BFG + \angle GID$ dado los ángulos alternos internos que se generan. Por tanto, $100^\circ = \angle BFG + 180^\circ - 3\angle BFG$, de donde se obtiene que $\angle BFG = 40^\circ$. Luego, $\angle EFB = 100^\circ - \angle BFG$ entonces $\angle EFB = 60^\circ$ y por ello $\angle AFE = 120^\circ$.

7. En la figura $\widehat{AE}=192^{\circ}$ y $\widehat{BFD}=140^{\circ}$. Hallar la medida del \widehat{BMD} .

Solución: En la menor circunferencia, $\angle ACE = \frac{\widehat{BFD}}{2}$ por ser el $\angle BCD$ inscrito. Por ello, $\angle ACE = 70^{\circ}$. En la mayor circunferencia, $\angle ACE = \frac{\widehat{AE} - \widehat{BMD}}{2}$ por ser el $\angle BCD$ exterior. Por ello, $70^{\circ} = \frac{192^{\circ} - \widehat{BMD}}{2}$ de donde

8. En la figura, $AH = FH, \angle AHB = \angle FHB$. Probar que $\angle HAB = \angle HFB$.

 $\widehat{BMD} = 52^{\circ}.$

Solución: Como todo segmento es congruente consigo mismo $\overline{HB} \cong \overline{HB}$. Por hipótesis se sabe $AH = FH, \angle AHB = \angle FHB$ por tanto, por el postulado LAL se tiene que $\triangle AHB \cong \triangle FHB$ y por ello, $\angle HAB = \angle HFB$.

9. En la figura AB = BC; AE = CD y $\angle BED \cong \angle BDE$. Halle el valor de x.

Solución: Observando los segmentos que son congruentes se tiene que $\triangle ABC$ es isósceles, por tanto, $\angle ACB = \angle BAC = 3x$. Por otro lado, que $\angle BED \cong \angle BDE$ nos dice que $\triangle BED$ es isósceles por lo que EB = DB. Entonces, dado que AB = BC; AE = CD y EB = DB, por el postulado LLL se tiene que $\triangle BCD \cong ABE$. Como consecuencia se tiene que $\angle BCD = \angle BAE = 5x$. Observando lo que ocurre en el ángulo C se tiene que $\angle BCD$ es par lineal de $\angle ACB$ entonces, $3x + 5x = 180^\circ$ de donde se obtiene que $x = 22,5^\circ$.

10. En la figura, AD = BC; BD = CD y el $\triangle CDR$ es equilátero. Hallar x.

Solución: Trazamos primero \overline{BR} . Utilizando la información suministrada se puede obtener lo siguiente: $\angle BCR = 40^\circ$ ya que el ángulo DCR mide 60° por pertencer a un triángulo equilátero. El $\angle DBC = 20^\circ$ por ser el triángulo BCD es isósceles. Por tanto, el $\angle BDR = 80^\circ$ porque la suma de los ángulos internos de un triángulo es 180° . De esta forma, el $\angle ADB = 40^\circ$. Ahora aplicando el postulado LAL el triángulo BRC es congruente al triángulo ABD ya que AD = BC, BD = RC y $\angle ADB = \angle BCR$. Entonces obtenemos que $x = \alpha$. Como el triángulo BDR es isósceles, el $\angle BDR = 20^\circ + \alpha$. Por ello, $2(20^\circ + \alpha) + 80^\circ = 180^\circ$ entonces $\alpha = 30^\circ$, y por tanto, $x = 30^\circ$.

Problemas Propuestos

1. Sean los ángulos consecutivos $\angle AOB, \angle BOC, \text{ y } \angle COD, \text{ siendo } 2(\angle AOB) = 3(\angle COD); \angle AOB = 92^{\circ} \text{ y}$ $\angle BOD = 76^{\circ}.$ Hallar la medida del $\angle BOC.$

Solución: Por hipótesis, $2\angle AOB = 3\angle COD$. Como se puede ver en la figura 2(92 - x) = 3(76 - x). resolviendo se tiene que 184 - 2x = 228 - 3x de donde x = 44.

2. Las medidas de dos ángulos suplementarios son entre sí, como 3 a 7. Hallar el complemento del menor.

Solución: Sea x la medida del menor. El suplemente medirá entonces 180 - x. Según el enunciado, $\frac{x}{180-x} = \frac{3}{7}$. Resolviendo, x = 54 por lo que el complemento es 90 - 54 = 36.

3. El doble de la medida de un ángulo es igual al triple de la medida de su complemento. Hallar la medida del ángulo.

Solución: Sea x la medida del ángulo. Entonces, del enunciado, planteeamos 2x = 3(90 - x). Efectuando 2x = 270 - 3x de donde 5x = 270 por lo que x = 54.

- 4. Si los 3/2 del complemento de un ángulo α es igual al suplemento del complemento del mismo ángulo. Hallar α . Solución: Según enunciado planteamos la ecuación: $\frac{3}{2}(90-\alpha)=180-(90-\alpha)$ de donde se tiene que $135-\frac{3}{2}\alpha=90+\alpha$ luego $135-90=\frac{3}{2}\alpha+\alpha$, por lo que $45=\frac{5\alpha}{2}$ y por ello $\alpha=18$.
- 5. Hallar la medida de un ángulo tal que el triple de su complemento sea igual al suplemento de su mitad.

Solución: Sea x la medida del ángulo pedido. Del enunciado planteamos la ecuación $3(90 - x) = 180 - \frac{x}{2}$. Resolviendo se obtiene $270 - 3x = 180 - \frac{x}{2}$ y de alli $90 = \frac{5x}{2}$ que nos lleva a x = 36.

6. La suma de las medidas de dos ángulos es 80° y el complemento de la medida del primero es igual al doble de la medida del segundo. Calcular la diferencia de dichos ángulos.

Solución: Sean x e y las medidas de los ángulos en mención. Por dato, x + y = 80. También se tiene que 90 - x = 2y entonces x + 2y = 90. Pero separando convenientemente x + y + y = 90 donde 80 + y = 90 obteniendo que y = 10. Luego x = 70 y la diferencia pedida es 60.

7. En la figura $\angle BOD = 80^{\circ}$ y $\angle AOD - \angle AOB = 12^{\circ}$. Halle la medida del $\angle BOC$.

Solución: Primero hallamos la medida de $\angle AOB$ y luego $\angle BOC$. Sabemos que $\angle AOD + \angle AOB + \angle BOD = 360$. Luego $\angle AOD + \angle AOB + 80 = 360$ de donde $\angle AOD + \angle AOB = 270$. Además por dato, $\angle AOD - \angle AOB = 12$. Restando miembro a miembro las dos ecuaciones se tiene que $\angle AOB - (-\angle AOB) = 280 - 12$ por lo que $2\angle AOB = 268$ llegando a que $\angle AOB = 134$. Finalmente, $\angle BOC = 180 - \angle AOB$ lo que nos da que $\angle BOC = 46$.

8. La diferencia entre la suma de suplementos y la suma de complementos de dos ángulos que se diferencian en 20° , es igual al doble de la suma de dichos ángulos.

Solución: Sea x la medida del ángulo mayor. Luego, el menor mide (x-20). Según enunciado, [(180-x)+180-(x-20)]-[90-x+90-(x-20)]=2[x+(x-20)] donde el primer corchete representa la suma de suplementos, el segundo la suma de complementos y la igualdad la suma de los ángulos. Efectuando [380-2x]-[200-2x]=2[2x-20] se obtiene 180=4x-40 de donde x=55.

9. Los segmentos OA y OB son radios de una circunferencia de centro O. Sobre el menor arco \widehat{AB} se toma el punto F. Si el ángulo AFB mide 130° , hallar la medida del ángulo AOB.

Solución: Consideremos la figura a continuación.

Sabemos que por ser ángulo central $\angle AOB = \angle AFB$. También, $\angle AFB = \frac{\widehat{AMB}}{2}$ por ángulo inscrito. Luego, $130 = \frac{\widehat{AMB}}{2}$ por lo que $\widehat{AMB} = 260$. Luego $\widehat{AFB} = 360 - \widehat{AMB}$ entonces $\widehat{AFB} = 100$. Reemplazando en la primera ecuación del ángulo central se tienen $\angle AOB = 100$.

10. La figura muestra dos circunferencias congruentes. $\widehat{CD}=164^{\circ}$. Hallar la medida del $\angle BAE$.

Solución: Para la circunferencia $EBCD: \angle A = \frac{\widehat{CD} - \widehat{BME}}{2}$ por ángulo exterior, entonces $\angle A = \frac{164 - \widehat{BME}}{2}$

De la circunferencia $\widehat{BAEN}: \angle A = \frac{\widehat{BNE}}{2}$ por ángulo inscrito, entonces $\widehat{BNE} = 2\angle A$. Pero por ser congruentes las circunferencias $\widehat{BME} = \widehat{BNE}$ por lo que $\widehat{BME} = 2\angle A$. Finalmente, $\angle A = \frac{164 - 2\angle A}{2}$ de donde $\angle A = 41$.

11. En la figura, \overline{AE} intersecta a \overline{BD} en C, tal que AC = DC y BC = EC. Demostrar que $\angle EAB \cong \angle CDE$.

Solución: De la figura, se tiene que $\angle DCE = \angle ACB$ por ser opuesto por el vértice. Por dato, se tiene que AC = DC y BC = EC. Por tanto, por el teorema LAL de congruencia de triángulos se tiene que $\triangle DCE \cong \triangle ABC$. Por ello, $\angle EAB \cong \angle CDE$.

12. En la figura, AB = CD, y $\angle DCA = \angle BAC$. Demostrar que $\angle ACB = \angle DAC$.

Solución: Los $\triangle DCA$ y $\triangle BAC$ son congruentes por el teorema LAL de congruencia de triángulos dado que por dato AB = CD, y $\angle DCA = \angle BAC$ y ambos triángulos comparten el lado AC. Por tanto, todos los ángulos son congruentes a su correspondiente por lo que $\angle ACB = \angle DAC$.

13. En la figura, $\triangle ADB$, $\triangle AFC$ y $\triangle BEC$ son triángulos equiláteros; calcular $\angle DFE$, si el ángulo ABC es recto.

Solución: Lo que estamos buscando es el $\angle DFE = 60 + x + y$. Ahora bien, como $\angle DAF = 60 - \angle FAB$ y $\alpha = 60 - \angle FAB$ se tiene que el $\angle DAF = \alpha$. Por el teorema LAL de congruencia de triángulos se tiene que $\triangle DAF \cong \triangle BAC$ y por ello, $x = \beta$. Análogamente, $\angle FCE = 60 - \angle BCF$ y $\beta = 60 - \angle BCF$ se tiene que el $\angle FCE = \beta$. Por el teorema LAL de congruencia de triángulos se tiene que $\triangle FEC \cong \triangle ABC$ y por ello, $y = \alpha$. Además en el $\triangle ABC$, $\alpha + \beta = 90^{\circ}$. Finalmente, $\angle DFE = 60^{\circ} + x + y = 60^{\circ} + \beta + \alpha = 60^{\circ} + 90^{\circ} = 150^{\circ}$.

14. En la figura AE = EC; $\overline{AE} \perp \overline{EC}$; $\overline{AB} \perp \overline{BC}$; $\overline{ED} \perp \overline{DC}$. Si BC = 3 y ED = 5, Hallar AB.

Solución: Trazamos \overline{AQ} perpendicular a la prolongación de \overline{DE} . Entonces, si $\angle ECD = \beta$ y $\angle CED = \alpha$ puesto que $\alpha + \beta = 90$ se obtiene que $\angle AEQ = \beta$ por ser complemento de α y $\angle QAE = \alpha$ por ser complemento de β . Por ALA se tiene que $\triangle AQE \cong \triangle EDC$ por lo que AQ = ED y por ello AQ = 5. Enseguida, CD = BD - BC pero BD = AQ = 5 por lo que CD = 2. y luego como QE = CD entonces QE = 2. Finalmente AB = QD por lo que AB = QE + ED entonces, AB = 7.

15. En la base de un triángulo isósceles ABC, (AB = BC), se toma un punto cualquiera P, y se trazan $\overline{PE} \perp \overline{AB}$, $\overline{PF} \perp \overline{BC}$. Si \overline{AH} es altura, demostrar que AH = PE + PF.

Solución: Para demostrar que lo propuesto, se realizará el trazo, como se observa en la figura, de $\overline{AQ} \perp \overline{FP}$. Entonces $\angle QAC = \angle ACB$ por alternos internos ya que $\overline{AQ} \parallel \overline{BC}$. Luego, $\triangle AQP \cong \triangle AEP$ y por ello, PQ = PE. Así, AH = QF pero QF = QP + PF por lo que AH = PE + PF que es lo que se quería demostrar. Se puede probar también, por reducción al absurdo, que si uno toma un punto P fuera del segmento base del triángulo isósceles, la relación no se cumple dado que AH es una constante y es la que determina la proporción entre los lados PE y PF. Ahora bien, el problema explícitamente propone que se coloque el punto P en la base pero de no haberse determinado así, se debe buscar el punto P que cumpla con la condición.

16. En la figura AE = EC = BC. Hallar la medida del $\angle ABC$ en función de r.

Solución: Trazamos \overline{BE} , $\overline{CH} \perp \overline{BE}$ y $\overline{EF} \perp \overline{AB}$ por lo que BH = HA = a. Ahora bien $\triangle AFE \cong \triangle EHC$ entonces EF = a luego, en el $\triangle BFE$: BE = 2EF. Luego $\angle FBE = 30$. Además, $\angle HBC = 90 - r$ en el $\triangle HBC$. Entonces $\angle ABC = \angle FBE + \angle HBC$, por lo que $\angle ABC = 30 + 90 - r$ y por ello $\angle ABC = 120 - r$.

