Insertion Sort

Code

```
1
    function insertionSort(A: number[]) {
2
        for(let j = 1; j < A.length; j++) {
3
            const key = A[j];
4
            // insert A[j] into the sorted sequence A.slice(0, j - 1)
 5
            let i = j - 1;
            while (i \ge 0 \& A[i] > key) {
 6
 7
                A[i + 1] = A[i];
8
                i--;
9
            }
10
            A[i + 1] = key;
11
        }
12
        return A;
13
    }
```

Design

- uses an incremental approach
 - having sorted the subarray A.slice(0, j 1), we insert the single element A[j] into its proper place

Correctness

- refer to the <u>code</u>
- notice that j holds the "current card" being sorted into the "hand"
- we state properties of subarray A.slice(0, j 1) as a **loop invariant**
 - \circ the subarray A.slice(0, j 1) are elements originally in positions 0 through j-1 but in sorted order
- to understand why an algorithm is correct, we must show 3 things about a loop invariant
 - 1. **initialization**: it is true prior to first iteration of the loop
 - 2. **maintenance**: if it is true before an iteration of the loop, it remains true before the next iteration
 - 3. **termination**: when the loop terminates, the invariant gives us a useful property that helps show the algorithm is correct
- applying this to insertionSort
 - 1. **initialization**: j = 1 before the first iteration such that A.slice(0, j 1) consists of a single element A[0] such that the subarray is trivially sorted
 - 2. **maintenance**: (informally) the body of the for loop moves A[j 1], A[j 2], A[j 3], and so on by one position to the right until it finds the proper position for A[j] such that A.slice(0, j) will hold elements originally in positions 0 through j but in sorted order. Thus, incrementing j for the next iteration of the for loop preserves the loop invariant

Runtime Analysis

Counting Approach for Iterative Algorithms

- on approach for *iterative algorithms* is to count the number of times each statement is executed
- ullet define constants c for the execution time of each statement
- ullet finally, develop a function describing runtime as a function of the problem size n

line number	cost	times	comments
2	c_2	n	The for loop condition check runs n times.
3	c_3	n-1	Its body breaks before the last check.
5	c_5	n-1	
6	c_6	$\sum_{j=2}^n t_j$	t_j is the number of times the while loop test is executed for $ {f j} $ (i.e. at most 1 the first time, 2 the second, etc)
7	c_7	$\sum_{j=2}^n (t_j-1)$	
8	c_8	$\sum_{j=2}^n (t_j-1)$	
19	c_{10}	n-1	

Developing a Function

$$egin{align} T(n) &= c_2 n + c_3 (n-1) + c_5 (n-1) + c_6 \sum_{j=2}^n t_j \ &+ c_7 \sum_{j=2}^n (t_j-1) + c_8 \sum_{j=2}^n (t_j-1) + c_{10} (n-1) \ \end{gathered}$$

Best Case

ullet in the *best case*, the array sorted and $t_j=1$ for all j such that

$$egin{aligned} & \circ & \sum_{j=2}^n t_j = (n-1) \cdot 1 \ & \circ & \sum_{j=2}^n (t_j-1) = 0 \ & T(n) = c_2 n + c_3 (n-1) + c_5 (n-1) + c_6 (n-1) + c_{10} (n-1) \ & = an+b \end{aligned}$$

In the best case, we have **linear growth function**.

Worst Case

- ullet in the *worst case*, the array is in reverse order such that the $t_j=j$ for all j
- ullet recall that the sum of an arithmetic series is $S_n=rac{n}{2}\cdot(a_1+a_n)$
 - \circ where n is the number of terms in the series
 - \circ a_1 is the first term
 - $\circ \ a_n$ is the last term
- thus

$$\sum_{j=2}^{n} t_j = \sum_j j = \frac{n-1}{2} (2+n) = (n-1)(n+2)/2$$

$$\sum_{j=2}^{n} (t_j - 1) = \sum_j (j-1) = \frac{n-1}{2} (1+n-1) = n(n-1)/2$$

$$T(n) = c_2 n + c_3 (n-1) + c_5 (n-1)$$

$$+ c_6 (n-1)(n+2)/2 + c_7 n(n-1)/2 + c_8 n(n-1)/2 + c_{10} (n-1)$$

$$= an^2 + bn + c$$

In the worst case, we have **quadratic polynomial function**.

Average Case

In the average case, $t_j=j/2$ for all j and it will also yield a quadratic polynomial function.