

Optimistic Policy Optimization via Multiple Importance Sampling

Matteo Papini Alberto Maria Metelli Lorenzo Lupo Marcello Restelli

11th June 2019 Thirty-sixth International Conference on Machine Learning, Long Beach, CA, USA **Policy Optimization**

- **■** Parameter space $\Theta \subseteq \mathbb{R}^d$
- lacksquare A parametric **policy** for each $m{\theta} \in \Theta$
- **Each** inducing a distribution p_{θ} over **trajectories**
- lacksquare A **return** R(au) for every trajectory au
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

Policy Optimization

1

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over **trajectories**
- lacksquare A **return** R(au) for every trajectory au
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

Policy Optimization

.

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A **return** R(au) for every trajectory au
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A return R(au) for every trajectory au
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- lacksquare A return R(au) for every trajectory au
- Goal: $\max_{\theta \in \Theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

- Parameter space $\Theta \subseteq \mathbb{R}^d$
- A parametric **policy** for each $\theta \in \Theta$
- **Each** inducing a distribution p_{θ} over trajectories
- **A return** $R(\tau)$ for every trajectory τ
- Goal: $\max_{\boldsymbol{\theta} \in \Theta} J(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}} \left[R(\tau) \right]$
- Iterative optimization (e.g., gradient ascent)

- **Exploration-exploitation trade-off**
- The underlying Markov process is often continuous
- Undirected exploration: entropy bonus [3]
- **Directed** exploration: pseudo-counts [1]

- **Exploration-exploitation trade-off**
- The underlying Markov process is often continuous
- Undirected exploration: entropy bonus [3]
- **Directed** exploration: pseudo-counts [1]

- **Exploration-exploitation trade-off**
- The underlying Markov process is often continuous
- Undirected exploration: entropy bonus [3]
- **Directed** exploration: pseudo-counts [1

- **Exploration-exploitation trade-off**
- The underlying Markov process is often continuous
- Undirected exploration: entropy bonus [3]
- **Directed** exploration: pseudo-counts [1]

- Exploration-exploitation trade-off
- The underlying Markov process is often continuous
- Undirected exploration: entropy bonus [3]
- Directed exploration: pseudo-counts [1]

Lack of theoretical guarantees

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- Continuous MAB [4]: we *need* structure
- Arm correlation [6] through trajectory distributions

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [4]
- Arm correlation [6] through trajectory distributions

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [4]
- Arm correlation [6] through trajectory distributions

Policy Optimization as a MAB

3

- **Arms:** parameters θ
- **Payoff:** expected return $J(\theta)$
- **Continuous MAB** [4]
- Arm correlation [6] through trajectory distributions

OPTIMIST 4

A UCB-like index [5]:

$$B_t(\boldsymbol{\theta}) = \underbrace{\check{J}_t(\boldsymbol{\theta})}_{\text{ESTIMATE}}$$

a truncated multiple importance sampling estimator [8, 2]

A UCB-like index [5]:

$$B_t(oldsymbol{ heta}) = \underbrace{\check{J}_t(oldsymbol{ heta})}_{ extbf{ESTIMATE}}$$

a truncated multiple importance sampling estimator [8, 2]

EXPLORATION BONUS:

distributional distance from previous solutions

OPTIMIST ⁴

A UCB-like index [5]:

$$B_t(\boldsymbol{\theta}) = \underbrace{\widecheck{J}_t(\boldsymbol{\theta})}_{ extbf{ESTIMATE}}$$

a truncated multiple importance sampling estimator [8, 2]

$$C\sqrt{\frac{d_2(p_{\theta}\|\Phi_t)\log\frac{1}{\delta_t}}{t}}$$

EXPLORATION BONUS:

distributional distance from previous solutions

■ Select
$$\theta_t = \arg \max_{\theta \in \Theta} B_t(\theta)$$

$$Regret(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$$

■ Compact, *d*-dimensional parameter space ⊖

Under mild assumptions on the policy class, with high probability

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

$$Regret(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$$

Compact, d-dimensional parameter space Θ

Under mild assumptions on the policy class, with high probability

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

$$Regret(T) = \sum_{t=0}^{T} J(\boldsymbol{\theta}^*) - J(\boldsymbol{\theta}_t)$$

Compact, d-dimensional parameter space Θ

Under mild assumptions on the policy class, with high probability:

$$Regret(T) = \widetilde{\mathcal{O}}\left(\sqrt{dT}\right)$$

Empirical Results

Caveats

- Easy implementation only for parameter-based exploration [7]
- **.**.

Thank You for Your Attention!

Poster #103

Code: github.com/WolfLo/optimist

Contact: matteo.papini@polimi.it

Web page: t3p.github.io/icml19

- Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016). Unifying count-based exploration and intrinsic motivation. In *Advances in Neural Information Processing Systems*, pages 1471–1479.
- [2] Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. (2013). Bandits with heavy tail. IEEE Transactions on Information Theory, 59(11):7711–7717.
- [3] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, pages 1856–1865.
- [4] Kleinberg, R., Slivkins, A., and Upfal, E. (2013). Bandits and experts in metric spaces. arXiv preprint arXiv:1312.1277.
- [5] Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. *Advances in applied mathematics*, 6(1):4–22.
- [6] Pandey, S., Chakrabarti, D., and Agarwal, D. (2007). Multi-armed bandit problems with dependent arms. In *Proceedings of the 24th international conference on Machine learning*, pages 721–728. ACM.
- [7] Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., and Schmidhuber, J. (2008). Policy gradients with parameter-based exploration for control. In *International Conference on Artificial Neural Networks*, pages 387–396. Springer.
- [8] Veach, E. and Guibas, L. J. (1995). Optimally combining sampling techniques for Monte Carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95, pages 419–428. ACM Press.