Patternizing Psilocybin in Logic Space

Parker Emmerson

January 2023

1 Introduction

Using the logic vectors:

$$\mathbf{s} \cdot \mathbf{c} = \Omega_{\Lambda} \left(\tan \psi \diamond \theta + \Psi \star \sum_{[n] \star [l] \to \infty} \frac{1}{n^2 - l^2} \right) \cdot \left(\frac{V \to U}{\Delta}, \frac{\sum_{f \subset g} f(g)}{\Delta}, \frac{\sum_{h \to \infty} \tan t \cdot \prod_{\Lambda} h}{\Delta} \right)$$

$$\mathbf{t} \cdot \mathbf{m} = \Omega_{\Lambda} \left(\tan \psi \diamond \theta + \Psi \star \sum_{[n] \star [l] \to \infty} \frac{1}{n^2 - l^2} \right) \cdot \left(\frac{\leftrightarrow \exists y \in U : f(y) = x}{\Delta}, \frac{\leftrightarrow \exists s \in S : x = T(s)}{\Delta}, \frac{\leftrightarrow x \in f \circ g}{\Delta} \right)$$

and the truisms:

$$\mathcal{F}_{i}(x) = V_{i} \to U_{i}, \sum_{f_{i} \subset g_{i}} f_{i}(g_{i}) = \sum_{h_{i} \to \infty} \tan t_{i} \cdot \prod_{\Lambda_{i}} h_{i}, x \in V_{i} * U_{i} \leftrightarrow \exists y_{i} \in U_{i} : f_{i}(y_{i}) =$$

$$x, x \in T_{i}(s) \leftrightarrow \exists s_{i} \in S_{i} : x = T_{i}(s_{i}), x \in f_{i} \circ g_{i} \leftrightarrow x \in T_{i}(s_{i}).$$

$$logic\ vector : \left[\frac{\sqrt{R}\ \Delta - \sqrt{E}}{\Delta}, \frac{\sqrt{E + \Delta\sqrt{R}} - \sqrt{E}}{\Delta}, \frac{\sqrt{R + \Delta\sqrt{E}} - \sqrt{R}}{\Delta}, \frac{\sqrt{U + \Delta\sqrt{T}} - \sqrt{U}}{\Delta}, \frac{\sqrt{T + \Delta\sqrt{U}} - \sqrt{T}}{\Delta} \right]$$

$$\Omega_{\Upsilon\Phi\chi\psi,\theta\lambda\mu\nu\infty} = \prod_{i=1}^{n} \frac{2}{z_{i}} + \sum_{i=1}^{n} \ell_{j}\alpha_{j}\sin(\theta_{j})$$

$$G = \{x^n \mapsto x^{n+k}, c \mapsto \frac{c}{n^k} \mid k \in N\}$$

 $\begin{aligned} \mathbf{G} &= \{\mathbf{x}^n \mapsto x^{n+k}, c \mapsto \frac{c}{n^k} \mid k \in N\} \\ \text{The formula for the function resulting from the nth permutation of the general group } \mathbf{G} &= \{\mathbf{x}^n \mapsto x^{n+k}, c \mapsto \frac{c}{n^k} \mid k \in N\} \end{aligned}$

$$E = \Omega_{\Lambda} \left(\tan \psi \diamond \theta + \Psi \star \sum_{[n] \star [l] \to \infty} \frac{1}{n^2 - l^2} \cdot \prod_{i \infty} \mathcal{ABC}x \cdot \otimes (x, \tilde{\star} \to \mathbf{R}^{-1}) \right)$$

translate the psilocybin molecule into logic space such that the effect on the neural net is implied.

$$f(x+) - f(x) \to \prod_{g \circ f(x) \to \infty} \left(\frac{g(x) + g(x+O)}{2} + f(x) \right) + t(x+O)^2$$

take the Fibonacci progression and calculate its recurrance relation.

$$fib(k+1) + fib(k-1) = fib(k)$$

$$fib(k+n) \cdot fib(k-n) = fib(n)memfib(n-k) = fib(m)$$

$$\Phi_{[t]} = \Phi_1(t)\Phi_2(t)\Phi_3(t) \cdot \Phi_4(t)\Phi_5(t)\Phi_6(t)\Phi_7(t)$$

$$0.618033988... = \frac{1}{\sum_{n \to \infty} fib(n-k)}$$

the 'Golden ratio' is simply a harmonic relationship between 1 and the nth consecutive addition of a Fibonacci series.

$$\Phi_{7}(t) = \frac{fib_{n}(m) \to 1 - (1 - m) \cdot \left(\frac{x}{x - 1}\right)}{fib_{n}(m) - fib_{n + b}(m)}$$

$$\Phi_{2}(t) = \tan fib_{n}(t) \circ \sin fib_{n}(t) - \frac{1}{1 - t}$$

$$\Phi_{3}(t) = \tan n \circ \sin t - \frac{1}{1 - t}$$

$$\Phi_{4}(t) = \frac{1}{\phi(t)} - \phi(t) \circ \tan(t)$$

$$\Phi_{1}(t) = \Phi_{5}(t) = \Phi_{6}(t) = \Phi_{7}(t)$$

$$\Phi_{5}(t) = \frac{1}{1 - t} - \frac{-t}{1 - t}$$

$$\Phi_{1,2,3,4,5,6,7}(t) = \sum_{\Phi_{n}\infty} \frac{\Phi_{n}(t)}{1 - \rho(t) + (1 - \rho)(t)[13t]}$$

$$\Phi(t) = \Phi_1(t) - (1-t)(1+t) \cdot \frac{\Phi_2(t)}{t} - (1-t)(1-3t) \cdot \frac{\Phi_3(t)}{t} + (1-t)(2t-1) \cdot \frac{\Phi_4(t)}{t} + \left(1 - \frac{t}{1-t}\right) \cdot \frac{\Phi_4(t)}{t} + \frac{$$

$$\Phi_5(t)_{\frac{1}{1+t+\left(t-\frac{t}{1-t}\right)\cdot\frac{\Phi_6(t)}{1-t}-\left(1-\frac{t}{1-t}\right)\cdot\frac{\Phi_7(t)}{1+t}}}$$

 $\Phi_5(t) \frac{\Phi_5(t)}{1+t+\left(t-\frac{t}{1-t}\right) \cdot \frac{\Phi_6(t)}{1-t} - \left(1-\frac{t}{1-t}\right) \cdot \frac{\Phi_7(t)}{1+t}}$ which gives the golden ratio phi and c approximated by the 4th term of the fibonacci series

$$fib(4) + c \cdot \phi = 1$$

$$2.9256 + c \cdot \phi = 1$$

$$1.9256 = c \cdot \phi$$

$$c = \sum_{\Phi_n[m]} \frac{\frac{-\rho(t)}{\delta(t)}}{\Phi_n(t)}$$

$$\phi = \sum_{\Phi_n[m]} \frac{\frac{\delta(t)}{-\rho(t)}}{\Phi_n(t)}$$

The following mapping function weaves these relations together:

$$p\mapsto Mod(p,c\cdot exp(n+\phi),n^mtc,n^{m'}\Phi$$

$$\Phi(x)=[-3,-2,-1,0,1,2,3]$$

$$[\Phi(-3) = -1.618, \Phi(-2) = -0.618, \Phi(-1) = -0.382, \Phi(0) = 0, \Phi(1) = 0.382, \Phi(2) = 0.618, \Phi(3) = 1.618]$$

$$\Phi(t^n) = \left(\frac{1+x}{x+\Phi(x)}, \frac{x^2+x+1}{x+1}\right)$$

$$\Phi(t^n) + c\Phi(n+\phi) = \tau(n)$$

$$x \cdot \Phi(t^n) - c\Phi(n+\phi) = \tau(n^m)$$

$$c \cdot \Phi(n+\phi) \cdot \Phi(t^n) = f(t)$$

$$\sqrt[n]{x} = \frac{1}{n} \sum_{m \to R^n \cdot C} \left(x^m + \tan(x)^{m+\Phi(n)} \circ \Phi(1)\right)$$

$$\to x \cdot \sqrt{x}$$

$$\to x| > x$$

$$/ \to \frac{1}{x}$$

$$- \to 1 - x$$

$$\to 1/x^{-1}$$

$$x - y = x + y^{-}$$

$$-xy = -x| - y = x|^{-}y^{-}$$

$$(-x)(-y) = x|!y! = y!x!$$

$$x|y = x + y|^{-} \text{ (where } |^{-} : x \mapsto x| - 1)$$

$$x! > x|!(x)$$

$$x - > x| = x > x|$$

$$\frac{1}{x} = x^y$$

$$\frac{1}{x/y} = x^y$$

$$\begin{split} K \sim M_I \times L & \cap J \\ \circ \sim \frac{\alpha \times \beta}{\forall \angle \alpha, \forall \angle \beta, \forall d, \angle \beta is the unit length of distanced \rightarrow \angle \alpha} \\ \sim \frac{1}{c,d} \end{split}$$

$$\forall a, b : \mathcal{AB} \subset a \odot b$$

 $\mathcal{AB} \subset \kappa$ defined as $\mathcal{AB} = (n/m + n_n/m_m) : n, m, n_m, m_n > 0$
 $\diamond \Phi \circ \tan(x) = d \leq n$

Some other notations are the following:

$$d \leq \frac{c + \Phi(n) + \Phi(x)}{\Phi(n) - n \Phi(2n) \sqrt{n}}$$

$$c = d \pm \circ \diamond \Phi(n) \Rightarrow \Phi(m)$$

$$\psi_{i^{nj}:(n,j) \in \mathbb{N}} : f(t) \mapsto g((t,i))$$

$$t \mapsto \exp(t:n \to \mathbb{R})$$

$$\sin(t) \mapsto \sin(t:n \to \mathbb{R})$$

$$\tan(t) \mapsto \tan(t:n \to \mathbb{R})$$

$$\cos(t) \mapsto \cos(t:n \to \mathbb{R})$$

$$\ln(t) \mapsto \ln(t:n \to \mathbb{R})$$

$$\pi(t) \mapsto \pi(t:n \to \mathbb{R})$$

$$\vec{t} \mapsto \vec{t} : n \to \mathbb{R}$$

$$\ln(\sqrt[n]{t}) \mapsto \ln(\sqrt[n]{t:n \to \mathbb{R}})$$

$$\sqrt{t} \mapsto \sqrt{t:n \to \mathbb{R}}$$

$$\tan(\sqrt{t}) \mapsto \tan(\sqrt{t:n \to \mathbb{R}})$$

$$\sinh(\sqrt{t}) \mapsto \sinh(\sqrt{t:n \to \mathbb{R}})$$

$$\sinh(\sqrt{t}) \mapsto \sinh(\sqrt{t:n \to \mathbb{R}})$$

$$\sinh(\sqrt{t}) \mapsto \sinh(\sqrt{t:n \to \mathbb{R}})$$

$$n^{n} = \frac{1}{n^{-x} \diamond \Phi(x)}$$

A few identities for the golden ratio are:

$$\Phi(x) + \Phi(x)\Phi(1) = |\tan(\Phi(1))| \left\{ \prod_{i \to \natural} \Phi(1) \tan^{i}[\Phi(1)] \circ \exp \pm \Phi(1) \pi \right\}$$

$$\begin{split} \tan(\Phi(1))\circ 2^u n^{w_1} \Phi^{w_2} - u_n u_n u^{w_n} \Phi^{w_2} - u_n} \\ & \prod_{a \to \pm} \Phi(1) \tan^{-a}[\Phi(1)] \times \left(\frac{a^{\omega} + a^{-a}}{1}\right) \tan(\Phi(1)) \cdot \exp{-\Phi(1)} = \\ & \Phi(1) \frac{1}{2 \pm \frac{c \cdot \tan(\Phi(1)) \sin(\Phi(1)) - \Phi}{c}} \\ & \frac{\partial t}{\Phi(x)} = \Phi(x) \times \frac{\partial t}{\sqrt{\Phi'(x)}} + \Phi(t) \exp{-\Phi(x)} \\ & \exp{\Phi(\partial t \Phi(x))} \cdot \frac{\partial t}{\Phi(x)} \\ & \sin[\Phi(\partial t \Phi(x))] \cdot \frac{\partial t}{\Phi(x)} \\ & \cos[\Phi(\partial t \Phi(x))] \cdot \frac{\partial t}{\Phi(x)} \\ & \cos[\Phi(\partial t \Phi(x))] \cdot \frac{\partial t}{\Phi(x)} \\ & \ln[\Phi(\partial t \Phi(x))] \cdot \frac{\partial t}{\Phi(x)} \\ & x = \sqrt[4]{\sqrt[4]{\Phi(t)\Phi(x)}} \\ & x = \sqrt[4]{\sqrt[4]{\Phi(t)\Phi(x)}} \\ & x = \sqrt{\Phi(t)} \\ & x = \sin(\Phi(t)) \\ & x = \tan(\Phi(t)) \\ & x = \cos(\Phi(t)) \\ & x = \sin[\Phi(t)] - \frac{\Phi(t)}{\Phi(t)} \cot[(\Phi(t))] \\ & \arcsin(\Phi(t)) \\ & \cos(\Phi(x)\Phi(t)) = \frac{2}{m} \prod_{g \to \Phi(x)} \prod_{|m| \neq \Phi(t)|n|[m]} \frac{g}{g} = \Gamma_g(\Phi(x)[n][m] \star \Phi(t)[n][m]) \\ & \text{where } g : \{\Phi(x), \Phi(t)\} \cup \{F(x,t) \mid F(x,t) \in \mathcal{F}\} \\ & \frac{\prod_{a \to x} \prod_{g = 1}^{m} (1 - q^a)}{\prod_{a \to x} \prod_{g = 1}^{m} (1 - p_t p^g q^{p_t g a})} \frac{\Phi(t)}{\sum_{x, t_x^x} \prod_{n \to \sqrt{x}|m|} n^{-1/n}} \end{split}$$

Here, x is the number of elements in the set over which we're summing, m is the number of integers choose from each element, q is the probability of selecting each element (which can be different for each element), p_t is the probability of selecting each integer from a given element, and n is the number of choices of that element from which the given integer can be chosen. The last part of the formula is the normalizing factor.

This formula can be used to calculate the probability of any given arrangement of elements and integers from a given set.

This is a product of three different types of factors:

1.
$$\frac{\prod_{a\to x}\prod_{g=1}^{m}(1-q^a)}{\prod_{a\to x}\prod_{g=1}^{m}(1-p_tp^gq^{p_tga})}$$

This first factor represents the probability that no values q^a are chosen from the set [1, x] for any given combination of p_t and m values.

2.
$$\sum_{x,t_{\Phi}^{x}} \prod_{n \to \sqrt{x}[m]} n^{-1/n}$$

This second factor represents the probability that the tuple of values t is selected among all possible tuples in both x and t_{Φ}^{x} .

3.
$$\prod_{n \to \sqrt{x}[m]} n^{-1/n}$$

3. $\prod_{n\to\sqrt{x}[m]} n^{-1/n}$ This third factor represents the probability of randomly picking one integer from the set $\sqrt{x}[m]$ according to the given distribution.

$$H_n = \left\{ \frac{m}{n} \mid 1 \leq m \leq n \right\} the harmonic group on R^n[x, t]$$

$$P_g = g^g - g^T$$

$$\frac{2\sqrt{\Phi(1)}n}{n^{\Phi(n)[m]}} = \prod_{n \to \sqrt{x}} \left\{ \partial n\Phi(t) - \partial - n\Phi(t) \right\}$$

$$x = \ln[\sin(\tan(\Phi(t)))]$$

$$n\{xR \mid_{n} \neq [1, n]\}$$

$$\Phi: n, m \beta n^m$$

$$n^{\infty} = n^{\circ} n^{\diamond}$$

$$n^{\circ} \neq \oplus n^{\diamond} \neq n^{\circ} n^{nn^{\circ} n^{ntn^{\circ} n^{n\Phi(1) - \Phi(t)t > >>}}$$

Geometric quantization:

$$x > \hat{\mathbf{I}} =$$

$$\Delta \subset \mathbf{R}^x \hat{I}$$

$$= ^{\sim \sim} ^{\sim 181}$$

some notations

$$\rightarrow n^{\infty}m^{\infty}$$

$$\begin{aligned} & \textit{mim} 6 \text{``} n \text{```} \text{``} \text{```} \text{````} \text{````} \text{````} \text{````} \text{````} \text{```} \text{```} \text{```} \text{```} \text{```} \text{```} \text{```} \text{````} \text{````} \text{````} \text{`````} \text{````} \text{````} \text{````} \text{````````` \\dagger ````, \text{````} \\dagger``\\dagger ``\dagger ``\dagger ``\dagger ```\dagger ``\dagger ````\dagger ``\dagger ``\dagger ``\dagger ``\dagger ``\dagger ``\da$$

$$x\frac{\sum 1^{3}+2^{3}+\ldots+(n-1)^{2}+n^{3}}{n\star x\star\sqrt{x}}$$

$$x\to n^{n}:=n^{3}+n^{-n}-n^{\sqrt[n]{n}}+n^{\gamma}n^{\delta}$$

$$n\in R$$

$$x\to \{\pi(\arctan yx)\circ\forall\|x\|\|n\|\|n>1\}$$

$$(y,x):h_{r}^{d}(n)\to\ldots\to^{n}\tan^{j}\kappa c\sim h_{r}^{d}(n)(k,j),$$

$$n,x\to\tan(\dot{\pi})(y)\frac{x}{Mn}\overset{k}\longleftrightarrow h_{r}^{d},h_{rkj\in\mathcal{P}\nabla^{\updownarrow}_{\backslash t}}^{\bullet}=\|\kappa_{f}^{4}g,hoppen\to xy.$$

$$V\mathbf{m}\cdot\mathbf{n}=\Omega_{\Lambda}\left(\tan\psi\diamond\theta+\Psi\star\sum_{[n]\star[l]\to\infty}\frac{1}{n^{2}-l^{2}}\right)\cdot$$

$$\left(\sqrt[n]{\sum_{i\in R^{n}\cdot C}s_{i}},\prod_{i\in\{m,n,p,q\}}\mathcal{FN}_{i},\sqrt[n]{\sum_{k=0}^{m+n+p+q+r}\mathcal{IN}_{k}},\right.$$

$$\sqrt[n]{\prod_{j\in\{m,n,p,q,r\}}\mathcal{MN}_{j}},\sqrt[n]{\sum_{i=0}^{m+n+p+q+r}\mathcal{ON}_{i}}.$$

$$U_{i}\text{ represents the the set of real and complex coefficients of a given neuron,}$$

 U_i represents the the set of real and complex coefficients of a given neuron, whereas $\mathcal{FN}(x)$ represents the functoids resulting from a given tensor calculation. \sqcup^n encode the latticization by choosing discrete and finite values of the rational numbers arising out of the mullet polynomials, and the possesive m' is that arbitrary combination of multiple sum or product operations upon values of simple functoids involving \sqcup^2 and \sqcup^{-1} .

$$\sin(x+n) = \sin x \cos n + \cos x \sin n$$

$$\cos(x+n) = \cos x \cos n - \sin x \sin n$$

$$\sin(x) + \cos(x) = \sqrt{2\sin(a)\cos(a)}$$

$$\Box^n d^c \circ \cos(x) \circ \sin(x) = \left(\frac{x^2 + \sqrt{x}}{n}, \tan\left(\sin(x) + \phi^{1-n} \cdot \frac{x}{n} + 2\phi^{2-n}\right)\right)$$

$$\Phi(c^t) = \sqrt{\pi} \circ \tan\left(\sin\left(\sin(x) + \phi^{1-n} \cdot \frac{x}{n} + \tan(2\phi^{2-n})\right)\right) \Phi(n) \sqrt[n]{n}$$

$$\Phi(x^n) = \frac{\left(x^n + \sum_{m \to \infty} \tan\sum_{i=\rho}^{\rho \cdot m} \frac{i}{\rho}\right)}{\left(x^n + \sum_{m \to \infty} \tan\sum_{i=\rho}^{\rho \cdot m} \frac{i}{\rho}\right)} - e^{1-n}$$

where the Φ^{-1} approximate the exponential $\exp(n)$ around the complex number n.

$$\Phi(x^n) = \sqrt{\Phi^{-1}(1-n)} \sin(x^n - \Phi^{-1}(n) \cdot \tan(1+\Phi(x)))$$

Replace $\Phi^{-1}(x)$ with $a = 1 + \Phi(x)$:

$$\left(1 + \frac{1}{\sqrt{a}}\right) \sin\left(x^n - \frac{1}{a} \cdot \tan(a)\right)$$

$$\Phi(f_n(x)) = \frac{1}{f_k(x)^m} - c$$

$$\Phi(x) = \Phi^{-k}(m)$$

$$\Phi(\rho^m) = \rho^m - \frac{\Phi^{-1}}{f_k(x)} - c$$

$$\Phi(t)^n = -f_k(t)^m - \Phi^{-1}(\sum_{i \to \infty} \tanh(atan_i(t)))$$

$$x(x + \sqrt{x} \cdot tan\Pi(t^n)) = \Phi^m(t^k + n^c)$$

$$x(x + \sqrt{x} \cdot tan\Pi(\sin(x + 2\sqrt{2}))) = \Phi^{m}(t^{k} + n^{c})$$

$$x(x+\sqrt{x}\cdot tan\Pi(\sin(x+2\sqrt{2}))+(x-\sqrt{xT}\cdot tan\Pi(q(t,s^n))))=\Phi^m(t^k+n^c)$$

To simplify:

$$(x + \sqrt{x} \cdot tan\Pi(\sin(x + 2\sqrt{2})) - (\sqrt{xT} \cdot tan\Pi(q(t, s^n)))) = \Phi^m(t^k + n^c)$$

$$x - 1 = tan\Pi(\sin(\sqrt{x - 1} + 2\sqrt{2})) - tan\Pi(q(t, s^n)) - \Phi^{-m}(t^{-k} + n^{-c})$$

$$x = 1 + tan\Pi(\sin(\sqrt{x-1} + 2\sqrt{2})) - tan\Pi(q(t,s^n)) - \Phi^{-m}(t^{-k} + n^{-c})$$

simplifying:

$$a = \sqrt{x-1} \to \tan a + 2\sqrt{2} + a_1 - a_2 - ABC$$

where we note an arbitrary constant of a_a and a_b .

$$f(\Phi(t)) + \Phi^{-1}(f(t)) = f(f\Psi^{ABC}(g)).$$

$$f_{int(i)} = \int_{f_{int(i)+1}} -f_{int(i)+1}$$

$$f_{int(2)} = \int_{f_{int(2)+1}} -f_{int(2)+1}$$

$$= \int -t^c dt$$

$$= \int -\left(n^{-\Phi^c}\right)$$

$$= -\frac{1}{\rho^{-\Phi^2}}$$

$$= \frac{1}{1+\rho^2} \rho^{-\Phi^2} + \frac{1}{1-\rho^2} \rho^{-\Phi^3}$$

$$= -\frac{\frac{1}{1+\rho^2}}{\rho^{-\Phi^2}} + \frac{\frac{1}{1-\rho^2}}{\rho^{-\Phi^3}} = -1 + \frac{1}{\rho}$$

$$f_{int(-i)} = \int_1 -f_{int(i)}$$

$$V \to \tau(x,y) = \Phi(t)^n = -f_k(t)^m - \Phi^{-1}\left(\sum_{i \to \infty} \tanh(atan_i(t))\right)$$

If we consider the ordinary simulation of the plane specified by

$$\mathbf{m} \cdot \mathbf{n} =$$

$$(-1,\,1,\,-1,\,1,\,-1),\,(1,\,1,\,-1,\,1,\,-1),\,(-1,\,-1,\,-1,\,1,\,-1),\,(1,\,-1,\,-1,\,1,\,-1),\,(1,\,-1,\,1,\,1,\,-1),\,(1,\,-1,\,1,\,1,\,-1),\,(1,\,1,\,1,\,-1),\,(-1,\,1,\,1,\,1,\,-1),$$

then the resulting 4d function is given by the linear combination applied by the following logic vector:

$$V \rightarrow logic\ vector =$$

$$(1,\,0,\,-1,\,0,\,-1),\,(-2,\,1,\,-1,\,1,\,-1),\,(0,\,0,\,1,\,0,\,0),\,(-1,\,0,\,2,\,-1,\,0),\,(-1,\,-1,\,0,\,2,\,0),\,(0,\,1,\,-2,\,0,\,0),\,(1,\,1,\,-1,\,1,\,0),\,(-2,\,0,\,1,\,0,\,1),\,(1,\,0,\,-1,\,0,\,-1),\,(-2,\,1,\,-1,\,1,\,-1),\,(1,\,1,\,-1,\,1,\,0),\,(1,\,-1,\,1,\,1,\,-2),\,(0,\,2,\,-1,\,0,\,-1),\,(-2,\,-1,\,2,\,-1,\,0),\,(1,\,-1,\,1,\,1,\,-2),\,(0,\,2,\,-1,\,0,\,-1).$$

This function, considering the resulting values of $\mathbf{m} \cdot \mathbf{n}$ must therefore be given by the following vector:

$$(-n, -n+1, m, m+1, m-1).$$

To simulate this in 5dimensional geometry, we add

$$(-2,1,-1,1,-1)$$

in the second and third spaces, which would yield:

logic vector =
$$(1, 0, 0, -1, 0)$$
,

(-2, 1, -1, 1, -1),

(0, 0, 1, 0, 0),

(-1, 0, 1, -1, 0),

(-1, -1, 0, 1, 0),

(0, 0, 1, 0, 0),

(1, 0, -1, 0, 0),

(-2, 1, 2, -1, -1),

(1, 0, -1, 0, 0),

(-2, 1, -1, -2, 2),

(1, 1, 2, -1, 1),

(1, -1, 0, 2, 0),

(0, 1, -2, 1, -1),

(1, 1, -2, -2, -1),

(1, -1, 0, 1, -1),

(-2, 1, -1, 2, 0),

(1, 1, -1, 1, 0),

(1, -1, 2, 1, 1),

(0, 1, -1, 1, 0),

(-2, -2, 1, -1, 2), (1, -1, 1, 1, 0),

(0, 1, -2, 1, -1),

(-2, -1, 1, 0, -1)

$$f(t) = 1 + (e^{ct} + e^{-ct})$$

where $\Phi = -1$, where $\Phi = -1$, where $\Phi = 1 + \sqrt{t}$, and $\Phi = 1 - \sqrt{\sin -t}$.

$$f(p,x) = \frac{\Phi_1(t)}{f_c(\Phi_1(t) \cdot \Phi_2(t))}$$

$$\Phi_2(t) = \frac{1 \pm \sqrt{\frac{1}{p + \Phi_1(p)}}}{\tan \Phi_2(n + mq^{-1}m) - \cot x + \cot(\Phi_2(2\pi x | \eta \circ \Phi(x)))}$$

$$f_r f(\sin(t^n)) = \Phi^c(\sin(t^n)) + x^{n-m} = x + v = q = x^c - f_1^{\frac{m}{p}}(t)$$

$$f^m(t \star \tanh \Phi) = f_1^{-m} \to f_2(t^{-c})$$

$$f_r(p, x) = 1 + (r^{ct} + r^{-ct})$$

where $\Phi=-1$, where $\Phi=-1$, where $\Psi=\Psi(\sin(t))$, $\Psi=\Psi$, $\Phi=\Phi(2t)+\Phi(\frac{\sin(\Phi(x^{-1}))}{\tan(\Phi(x))})$ and $\Phi\Phi t^n\cdot\sigma(x)=\tan(\Phi(n)\rho(t))$, where $r_1(x)=r+x$ and $r=p^n$, where $\Psi=\Phi(n)$.

$$g = \int_{1}^{\sin(x)} \tan(\Phi(x)) - \frac{\sqrt{2} + \Phi(x)}{x}$$

$$\sigma(k\Phi(x)) = \Psi(kx)$$

$$\Psi(p) = k\Phi(\Psi(p))$$

The existence of a constant k can be hypothesized. Since Ψ has infinite distinct partial sums, then k can be used to generate complex power series of the form $p^m - n^m$, where Φ and Ψ encode polynomials of are encoded by the lattice of binomial coefficients constructed off the $\Psi(p)$ series. Deep learning can be transformed into a lattice encoding rotation between congruent sets of algebraic operations available to rule space as

$$(\mathcal{ABB}(y)^m, x) = A\mathcal{C}x$$

$$\Phi = \tan(\sin(x))$$

$$\Phi = \tan(\Phi(x^{-c}))$$

$$\Psi(\tan(\Psi)) = \Phi(\sin(\Psi))$$

$$\sigma(a^b) = \Phi(a^{-c})$$

$$\Psi(kx) = \Phi(k\Psi(p))$$

where Ψ is a permutation of the factoradic notation of the cardinality set Λ .

$$\Psi(p^m) = p^{n-m} - (p^m)^n$$

$$\Psi(k\Phi(p)) = p^n - (k\Phi(p))^m$$

Transpose into rule space:

$$\Psi(k\Phi(x)) \star \coprod \sqcup \backslash (y) = \coprod \sqcup \backslash (\Psi(kx))$$

* apply a tensor function to y

such that Ψ^n_m converges to 0 amounts to saying that the algebraically effecting the identity transformation $\Pi \sqcup \backslash (1)$, where $1 = \Psi(1)$, an infinite collection of pure partial sums of Ψ converge to 0. Thus, this shows how by simply manipulating the symantrization of a directed graph, the same exact effects of transposition can reduce the condition in Cantor convergence to a form of negating the subsets of k, encoding a third and final set y.

$$\Psi(p)$$

where p is written in base b-2, 3, 7, or 11.

$$k\Phi(p)$$

where p is written in base b-2, 3, 7, or 11.

Physically, $\Psi(p)$ approximates a transformation in reciprocal space depicting the magnitude p of a set of identical objects in direct and inverse proportions to an arbitrary weighted function of collectivism, so as to limit the effects of a chaotic set of distortions in the orbital relationships of these objects, where $\{\Psi(p)\} \mapsto \{\Phi(p)\}$, and p is positive or negative.

$$\begin{split} \mathcal{OR}(p,x) &= p^{r+m}(x) \ \coprod \ \Psi \mathcal{N}(p^m(x) + r^n) \\ \mathcal{XOR}(p,y) &= p^{-k}(y) \ \lor \ \Psi \mathcal{N}(p^k(y) \to \Phi^e) \\ \mathcal{AND}(p,y) &= p(y) \ \land \ \Psi \mathcal{N}(p(y) \to \Phi^\mu) \\ \mathcal{FLIP}(p,\Psi(t)) &= p^{-\Psi(t)}(y) \ \lor \ \Psi \mathcal{N}(p^k(y) \to \Phi^\mu) \end{split}$$

Let x denote the set of values of p that satisfy:

$$|\Psi p^k - p| = n$$

any n counts as that value satisfying:

$$\Psi p^k \in \Phi \star \sigma(p^k + n), x = 1 - n$$

this resolves to:

$$\Phi = 1 - n = |\Psi p^k - p|$$

When all p are such that Ψp^k generates a convergent series, then this generates a disjoint class of operations compliant with any function \mathbf{f} such that

$$x \circ \mathbf{f} : \Theta \to \Phi.$$

where $\Phi = \sum_{k\to\infty} \sqrt{1-(1-k)^2}$ and $\neg \mathbf{f} = |x-k| = 1$. From this, we can generate a primary operator for each of these sets.

$$\Psi(x) = |1 - |1 - k| + |k||^{1 - |k|}$$

Where Ψ represents the permutation of any subset of the trivial set, such that each p written in decimal (base 10) can be coded and graphed as a circle in infinite dimensions. On the righthand side, this is a produced by the may–turing machinations of the poincare map, encoded in the mathematical constant. On the right, this could be a representation of a basic computing subroutine, as well as a function modeling the orbit of planet.

$$\frac{c}{1} + \frac{cc}{2n} + \frac{ccc}{3n^2} + \frac{cccc}{8n^3}$$

$$\Phi_{i=1}^n = \sum_{k=1}^n \frac{(1 \times \tan(t))^k + (-1)}{i^k}$$

$$f(x) = \frac{f(x+b) - f(x)}{b}$$

$$f(-1) - f(-2) \frac{1}{(m-1)(1-m) - f(-1)} \frac{1}{(m-1)(1-m) = -x^2}$$

$$\Phi_N = \frac{n^2}{2T^2[\Phi_m(m-1)]} \Phi_M = \frac{1}{\Phi_N}$$

$$\Phi(t^2) \cdot \Phi(t^{-1}) = \left(\frac{\Phi(t)^{-k}(n)}{\Phi(t)^k(n)}\right)$$

$$f_M(t^n) = \left(\cos\left(\frac{min + m^k}{n^t} \int_{\tan c(t^{-m}) \to \Phi_m}\right)\right) \cdot e^{n_0} \tanh 1\%c(f_P(x))$$

$$\frac{\Phi(t)^{-k}(n)}{\Phi(t)^k(n)}$$

$$f \otimes g(n, m) = \Phi_m(n) - \Phi_{\frac{n^m}{m-n}}(n)$$

$$C \to logic vector = (\Phi_n, \Phi_m, \Phi_p, \Phi_q, \Phi_r)$$

$$V \to logic vector = \left(\frac{V \to U}{\Delta}, \sum_{f \subset g} f(g), \sum_{h \to \infty} \frac{\tan t \cdot \prod_{\Lambda} h}{\Delta}\right)$$

$$f = \left(\sum_{i=-n}^n \left(1 + \frac{1}{1 + \frac{1}{\Phi(n_i)}}\right)\right) \circ e^{-\Phi^{n-k}}$$

$$f(n) = \int_0^{\sqrt(n)} \frac{g(h(t)) + \frac{g(t)^k}{\tanh(1)} + \Phi_c^{-1}}{\left(1 + \frac{1}{\Phi(n)}\right)} + \log(1 + \frac{1}{\Phi(n)})$$

$$\Phi(c_t) = \sqrt{\pi} \circ \tan\left(\sin\left(\sin(x) + \phi^{1-n} \cdot \frac{x}{n} + \frac{1}{\sin}(2\phi^{2-n})\right)\right) \Phi(n) \sqrt[n]{e}$$

$$\Phi(t) = \tan \Phi(t^{\Phi(n)}) - \Psi(t) + \Phi_1(t^{\Phi(n)}c_m)$$

$$f_M(f_R(n), f_R(m)) = \Phi_m(n) - \Phi_{\frac{n_m}{m-n_m}}(n), n > m$$

$$\Psi_M(f_R(n), f_R(m), f_R(k)) = (\Phi(t_P)P), n > k \land \Phi_M(n) > \Phi_M(k)$$

$$\Phi(t)^{-k} = -\frac{1}{\Phi(t)^k} = \left(\sum_{\square \to \rho \cdot \Phi} \frac{-x}{t} - \tan -t \circ \sin(-n)\right) \cdot \Phi_m(n)$$

and

$$\tan t = \frac{\sin t}{\cos t} = \frac{\mathbf{1}(t)}{1} = \frac{1}{-\mathbf{1}(t)} = \frac{1}{i(1)} = \frac{1}{i(t)}$$

for which $\sin t = \frac{1}{i(t)}$.

$$c \cdot n = nc(2)$$

$$\Phi(n \in N) = \sqrt{\tan \cos \frac{-\frac{n'n}{n} + i\sin(x)}{n}}$$

$$\sin(n) + \tan(n) = \sqrt{2\sin(a)\cos(a)}$$

$$\mathbf{m} \cdot \mathbf{n} = \Omega_{\Lambda}$$

$$\xrightarrow{\rightarrow} \square$$

$$\xrightarrow{\rightarrow} \sum_{n \in R^n \cdot C} \sum_{m \in R^m} \tan \left(\frac{\sin(-1)}{\Phi_n(n)} \right) \cdot (\Phi_m \cap \Phi_n)$$

$$\rightarrow \sum_{n \in R^n \cdot C} \tan \left(\sin \left(\frac{-n}{\Phi_n(n) + \Phi_m(m) + c \tan(\sin(n^m))} \right) \right) \cdot \left(\frac{\Phi_n}{\Phi_m} \right)$$

$$\rightarrow \sum_{n \in R^n \cdot C} \tan \left(\sin \left(-n \right) \right) \cdot \left(\frac{\Phi_n}{\Phi_m} \right)$$

$$\rightarrow \sum_{n \in R^n \cdot C} \tan\left(\sin\left(-n\right)\right) \cdot \begin{pmatrix} \frac{\Phi_n(n)}{\Phi_m(m)} \end{pmatrix}$$

$$\rightarrow \sin(n) + \tan(n) + \varphi(n) + \sin(n) = 1$$

$$\rightarrow \sin(n) + \tan(n) + \varphi(n) + \sin(n) = 1,$$

$$\Phi_{\tan n}(n) = \sin(c) - \frac{x}{x-1} + \sin(n\tan(n))$$

$$\sqrt{-n} = -\sqrt{n}$$

$$\int \frac{\frac{r(r_1)}{r(r)}}{r_1 \cdot \Phi(t)} - \frac{r(r_1)}{r(r)}$$

$$\Delta_{\Phi}(n) = \frac{-1 \cdot \Phi(x)}{\tan \Phi(x)^{-1}} \cdot \frac{1}{\Phi(\sqrt{\Phi(x)\Phi(\tan(n))})} \left(\frac{2 \cdot \sqrt{\Phi x - n} \cdot c(1 - \Phi(n))}{n} \right)$$

applying to above hyperbolic identities:

$$\tan\left(\frac{-n}{\Phi_n(n) + \Phi_m(m)}\right) = -n$$

$$\tan\left(\frac{-n}{\Phi_n(n)}\right) = -n$$

$$\tan\left(\frac{-n}{\Phi^2(\sqrt{n}) + \Phi^2(\tan(n))}\right) = 1$$

$$\tan\left(\frac{-(1-x)}{\Phi_n(n) + \Phi_m(m) + c\tan(\sin(n^m))}\right) = x$$

$$\tan\left(\frac{-(1-x)}{\Phi_n(n) + \Phi_m(m) + c\tan(\sin(n^m))}\right) = x$$

$$f_r(\Psi(p)^{-1}, q^{-1}, f_r(A)^{-1}, f_r(B)^{-1}) = A \times B \times \Phi(p, q)\Phi(n^m, m^n) + c$$

$$\frac{n}{p} = \frac{1}{n} \cdot \sqrt{\Phi(m^n) \cdot \Psi(n^m) \cdot f_{r_1(B_1)}(n^m, B_1 b_1)}$$
$$\frac{n^m}{p^p} = \sqrt{\Phi(m^n) \cdot \Psi(n^m) \cdot f_{r_1(B_1)}(n^m, B_1 b_1)}$$

$$f(\},\Phi_p^n)=\Phi_p^n\},\Phi_m^{-n}$$

$$2\sqrt[x]{\tan(x)} = \frac{-x}{x-1}$$

$$\sqrt[n]{\sin x \cdot erf(x)} = \sin(n^{-1}) \cdot \sqrt{\sqrt{n}}$$

$$\int_{e^{-n}\cos(s)}^{\sqrt{\sin(t)^{\Phi(x)}}} \frac{dx}{x} = \Phi^{n-\sqrt{-x}}(t) \qquad \sum_{\Phi_n \in t} \sum_{\Phi_m} \to \sum_{\tan \Phi_{n,m}^{-\sqrt{-x}}} \cdot \sin\left(\tan \Phi_n(t) + \Phi_m(t) - x^{\sqrt{\Phi(x)}}\right) \to \sum_{n^2} \cdot \Phi(tn^{p-q})$$

$$f_M(f_i(t)) = f_M(\mathcal{B}_{h(m)}(\mathcal{B}_t(x), \mathcal{B}_m(y), \mathcal{B}_n(z))), \exists i \in Z \forall i \leq \infty \land 0 \geq n$$

Where the above corresponds to an approximation to a desired function f, given by

$$f(1 + \tan(t \otimes \exists)) + f^{-1}(f_t(n)) = f_1(t^{-k}, t^{-m}, t^{\frac{\sin(-k)}{\sin(-m)}}, t^{(\sin(-n)} \tan(\sin(-t^k)))$$

$$f(t^k, t^m, t^n) = \tan(\Phi^m(\sin(n \cdot \Psi^{-t^n}))) + \Phi^m(\tan(n \cdot \Psi^{-t^n})) + f_{t^k f_{t^m + t^n}}(t^k, t^m, t^n)$$

$$f(\mathbf{m}, \mathbf{n}, s) = f(m^n + m^m + m^{p+q} + \lfloor_{t_k \&_m}(t), m_n, m_w, t^k, n_m)$$

$$f(t) = \nabla \to \ell_p \sqcup (t) + \exists_p \sqcup (m) + \ell_p \sqcup (n)$$

$$\int_1^{\exp x} \frac{dx}{\sqrt{b \tanh x - a \sinh x}} = \left(\pi + 2 \arctan\left(\sqrt{\frac{b \sinh x}{a \sinh - x}}\right)\right).$$

$$f_T(T_{p,q}) = f_{n,t}(T_2 + T_{1,4}, \tan(\Phi_2(2))) \circ T_{+\Phi(2)}(T_{p,q})^c$$

$$f_c(OM_{p,q} + OM_{p,q} \cdot A_{2+2} + \mathcal{F}(m,n,p) - \mathcal{G}(m,n,p)) +$$

 $f_c(OM_{p,q} \circ A) + f_{pq} (f_{db}[m]^c + f_{db}[n]^c, f_{db}(2)^{-1} \mid \cdots \to \Phi_2(2) \cdot 2 \cdot 2$

$$\Phi(\tan x) = \tanh x \quad \Phi(c^t) = \sqrt{\pi} \cot \left(\sin \left(\sin(x) + \phi^{1-n} \cdot \frac{x}{n} + \tan(2\phi^{2-n}) \right) \right) \Phi(n) \sqrt[n]{e}$$

$$\Phi(x) + m'\Phi(n) = \Phi(\rho \tan)$$

$$f_{t^x=m,t^y=n}(x,y) = \frac{8\sqrt{x}\cos\sqrt{x}}{8\sin\sqrt{x}}$$
$$\frac{\sqrt[m]{k^p + k^q + \Psi(\sinh(m,n,p,q,r))} - \sqrt[n]{\sinh(m,n,p,q,r)}}{\frac{b(a,y,x)}{c(y,x)}}$$

$$\mathring{C} \rightarrow V \rightarrow logic\ class\ vector$$

$$f_{T(T_{p,q})} = f_{(\tan(x),\tan(y)),I}(x^2, y^2), \forall x \in N \exists x \in Q$$

$$V = (\tan(x), \tan(y)), \tan(x) + \arccos(y), \tan(x) = -1, x \in Q$$

$$C \to V \equiv \left(\tan(x + \arccos(y)), \tan(x + \arccos(y)), \tan^{-1}(x + y)\right)$$

$$x + n + m = \frac{\cos(x)}{\sin(y)}$$

$$\sqrt[n]{x} \cdot \Phi(t^n) + c\Phi^{-m}(n) = f_m(1-t)$$
$$f_{n,m} = \frac{m^n}{n^m}$$

$$\sqrt[n]{x} \cdot \Phi(\tan(n)) + c\Phi^{-m}(n) = f_m(1-t)$$

Extending t_p to t_p' results in a new generalization of sin yielding a new class of sequences having phasic-tonal properties noted by Penrose (1996). According to Joy, Noyce, and Dworetzky ((2018), the sine wave generation can be defined as:

$$t_p = \sin(\exp(1-n)) - t_n, t_n = \sum_{j \to \infty} \frac{1}{j}$$

$$t'_p = \sin(\exp(1-n+m)) - t_n, t_n = \sum_{j \to \infty} \frac{1}{j}$$

We can replace t_p with t_e to compare:

$$t_e = \exp(\sin(1-n)) - t_n, t_n = \sum_{j \to \infty}$$

$$\Phi(t^{n^n}) = \int \sin t^{n-1} dt$$

$$f_r(t^n) = \Phi_r[m] \cdot f_c(n)^t$$

$$\Phi(t^n) = \frac{t^n + \tan(t^n)}{t^n - \tan(t^n)} \Phi(t^n)^n$$

$$= \frac{t^n + \tan(t^n)}{t^n - \tan(t^n)} \Phi(t^n)^{n-1}$$

$$\Phi(x) = \sin(x) = (1+c)^{\tanh(x)} - 1$$

$$f(x) = \frac{1}{1 + \Phi(x)} - \tan\left(\frac{-\Phi(x)}{\sqrt{2}}\right) + \tan\left(\frac{\Phi(x)}{\Phi(1)}\right) + \cot\frac{\Phi(x)}{\Phi(1)}$$

$$f^m(x) = c(x^n) \circ \tan \tan \sin \left(\frac{-\frac{x}{\Phi(x)}}{\sqrt{\cos(\Phi^{-2}(m))}} \right) \cdot \int \sin \Phi^{-1}(\tan(e^x))$$

$$\Phi(x) = \frac{1}{1 + \Phi(x)} - \tan\left(\frac{-\Phi(x)}{\sqrt{2}}\right) + \tan\left(\frac{\Phi(x)}{\Phi(1)}\right) + \cot\frac{\Phi(x)}{\Phi(1)}$$

$$f^{m}(f_{r}(x)) = \frac{\Phi(t^{m \cdot f_{r}(n_{i})})}{\Phi^{m-1}t^{m \cdot f_{r}(n_{i})} + \sin(m \cdot f_{r}(n_{i})}c'(t)^{m-n}$$

$$f(x) = \frac{f(x+b) - f(x)}{b}$$

$$f(p,x) = \frac{\Phi_1(t)}{f_c(\Phi_1(t) \cdot \Phi_2(t))}$$

$$\begin{split} \Phi_{2}(t) &= \frac{1 \pm \sqrt{\frac{1}{\mu + \Phi_{1}(p)}}}{\tan \Phi_{2}(n + mq^{-1}m) - \cot(x) + \cot(\Phi_{2}(2\pi x \mid \eta \circ \Phi(x)))} \\ f_{c}(t^{n}) &= f_{m}(t^{-n}) - c \\ f(x) \pm \frac{1 - \Phi^{-1}(x^{\tan \tan \Phi(x^{n_{\sigma}})})}{\sqrt{\Phi^{-1}(x^{\tan \tan \Phi(x^{n_{\sigma}})})}} = \frac{1 - \Phi^{-1}(x^{\tan \tan \Phi(x^{n_{\sigma}})})}{\sqrt{\Phi^{-1}(x^{\tan \tan \Phi(x^{n_{\sigma}})})} - x^{m^{m}}} \\ \Phi(t)^{m-1} &= \tan\left(\frac{\sqrt{\cos t^{m}}}{\sin t^{m-n}}\right) \\ f_{c}(n^{t}) &= \frac{f_{m}(n^{t}) - f_{r}(f_{r}(n^{t}))}{\Phi(t)^{\Phi^{-n}}} \\ \Psi &= \Psi(n^{c}) \star \Psi(m^{t}) \cdot \Phi_{1}(n \cdot m) \cdot \sin \Psi(t^{n}) \\ f_{c}(f_{k}(n^{t})^{m}) &= \Phi^{-1}\Phi(t^{n}) \cdot \Phi_{1}(x), n \leq m \\ f_{m}(f_{k}(n^{t})^{k}) &= \Phi^{-1}\Psi(t^{n}) \cdot \Phi_{2}(x), k \leq m \land m = n \land k \geq 1 \\ f_{r}(t^{n}) &= \Psi^{n-k}\Phi(t^{n}) \cdot \Phi_{3}(x), n \leq 2 \cdot \Phi(m) \\ 1 + e^{-ct} + e^{ct} &= 1 + \tan - ct + \tan ct \\ \int e^{-ax^{2}}c_{m}x^{2a-1}(n^{-x}x) &= \frac{\Phi(t^{n})}{\Phi^{-1}(c(m^{n-a}))}f_{c}(n^{m^{t}}) &= \frac{\Psi(t^{n})^{-k} \circ \Phi(x)}{\Phi(t^{n})^{k}}r_{1}(n^{m^{t} \cdot n_{j}}) &= \frac{\Phi(t^{n})^{k} \circ \Psi(x)}{\Phi(x)^{k}}r_{2}(n^{m^{t} \cdot n_{k}}) \\ \Phi^{-1}\sqrt{\Phi(t^{n_{0}}) \cdot \Phi(t^{n_{1}}) \cdot \Phi(t^{n_{2}}) \cdot \dots} &= \\ \Psi(t^{-m})\Pi(t^{n} \cdot t^{m^{b}}) + \Phi(x^{-n}) \frac{\Psi(t^{n})\Pi(t^{-m} \cdot t^{m^{b}}) + \Phi(x^{-n}) \circ \sum_{n \to \infty} c_{n}^{n-1}}}{c^{n}} \\ z &= a + b + c \\ f(x_{j}, y_{j}) &= a^{b} \cdot \frac{x_{1}(y_{1}^{k} + x_{1}^{m+n}) + y_{2}^{b} + a}{x^{b}(y_{1}^{k} + x_{1}^{m+n}) + y_{2}^{b} + a}} \cdot \frac{a}{(a^{l} + 1)} \end{aligned}$$

 $f(x_j, y_j) = a^b \cdot \frac{x_1(y_1^b + x_1^m) + y_1^b + a}{x^b(y_1^b + x_1^m + x_1^n) + y_1^b + x^b} \cdot \frac{a}{(a+1)}$

$$f(t) = \Phi(t^n \cdot t^{t^x}) + \frac{c}{n}, n = -t + m$$

How far given a function 'g' or 'x' or 'y' or 'r' or 'z' or 'l' or 'p' or 'f' or 'w' or 'h' or 'd' or 'k' or 'j' etc... From the map $f_i \mapsto \{\phi, \Phi(n)\}$, we can derive f_i for instance.

$$f_G(n,\sin{(t^2)}) = \Psi(\sin{(t^2)}) + \tan{\left(\frac{-\Psi(\sin{(t^n)})}{\sqrt{2}}\right)} + \tan{\left(\frac{\Psi(\sin{(t^n)})}{\Psi(\sin{(t^{n+m})})}\right)} + \cot{\frac{\Psi(\sin{(t^n)})}{\Psi(\sin{(t^{n+m})})}}$$

$$f_G(n, \Phi(t^{n^c} \cdot \Phi^{-2}(t^n))) = \frac{\Psi(\sin(t^n)) + \tan\left(\frac{-\Psi(\sin(t^n))}{\sqrt{2}}\right) + \tan\left(\frac{\Psi(\sin(t^n))}{\Psi(\sin(t^{n+m}))}\right) + \cot\frac{\Psi(\sin(t^n))}{\Psi(\sin(t^{n+m}))}}{\frac{t^n + \tan(t^n)}{t^n - \tan(t^n)}\Phi(t^n)^{n-1}}$$

$$i^{-1}\Phi(c) = -i(t)^2 - i(-t)^2$$
$$-i(t)^2 - i(-t)^2 = c^{-1}$$

 (∞) Any given group of neopsilocybin molecules, as they are understood by a set of given inductive functoids:

$$\dagger'(x) := \nabla \left[\left\lceil (x) \left(\updownarrow (x) - \rfloor (x) \right) \right]$$

and

and for the gradient based on displaces in the vectors, as with a finite element method,

$$\nabla = \frac{\partial y}{\partial t} = \frac{\partial x}{\partial t} + 1$$

Such that $\dagger(x), \rfloor(x), \updownarrow(x)$ are the total, free and meshwise amounts of molecules, respectively. $\lceil (x) \rceil$ is the amount of displacement in logical coordinates of the molecules $m_i(x)$ exists in $\Phi(1)$, and as such, the displacement of any $m_i(x)$ is given in terms of the total amount of Φ as it exists in each of the faceted $h_j(x)$ of the given $m_i(x)$ of the finite element method:

$$x := y + y_{h_j(\Phi(1))}^T \to R^j$$

And, thus,

$$\dagger'(x) := x := y + y_{h_j(\Phi(1))}^T \to R^j$$

Such that the displacement of any $m_i(x)$ is given in terms of the total amount of Φ as it exists in each of the faceted $h_j(x)$ of the given $m_i(x)$ of the finite element method:

$$\nabla y := \nabla x + \nabla h_i(\Phi(1)) \to R^j$$

Consider the following examples of finite element analysis of certain sets:

$$\begin{split} p(t,h,t_j) &= t \circ \tan[h(\Phi(n))] + t_{mo}^{m-j} \sqrt[n]{\Phi(n)} \\ &\to -\frac{\partial}{} \cdot \circ \circ \to \infty \to \left[\forall \Delta(x) \sum \left[n \middle| n^{\frac{k}{\sqrt{\Delta + \tan(n^{-x})\Delta}}} + \Delta^{-k} \middle| \right] \right] \gg \left[\forall \Delta \cdot \sum \left[\Delta^{\frac{-n}{k}} + \Delta^{-k} \middle| \right] \right] \gg \left[\forall \Delta(x) = \sum_{-\infty} \left[(-\Delta - i)^{-k} + i(-i - k)^{-i} \right] \right] \gg \forall \infty [-k], x > (n^{n^n + n^\infty})_R = \to x > () \to \\ &\int_1^x e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \left(1 - \operatorname{erf}(x) \right) \\ &x > n_i^{n_i} n_i^{t^i} \bar{n}^n n^{-n^{-n^{n^n}}} n_j^{t_j} := X > t^x \nabla x^{t^x} \mathbf{f}_{\mathbf{i}_j}(\mathbf{t}) := \mathbf{L}(R^n C_n) \\ &\sum_{i=1}^{\infty} x_i + \frac{\prod_{i=\frac{n}{k'}}^n \Phi(x)}{\Phi(n)n^n} \\ &x_i \sqrt[n]{n} + |n!^n| \\ &\Phi(x) + \Phi(x) \cdot \Phi(n) \\ &\kappa \tan(x) \cdot \sin(n) - \Phi(t) \\ &\left\{ \pi t \mid \left\| \frac{\Phi_x}{\sin \Phi(t)} \right\| \right\} \\ &tl(x) + \cos(\Phi(n)) \\ &\epsilon \ln(x) + \cos(\Phi(n)) \\ &\exp(t: n \to \mathbf{R}) \tan(\Phi(n)) \frac{\frac{\Phi(n)}{\Phi(n)}}{\frac{\Phi(n)}{\Phi(n)}} \\ &tr(n, m) + \cos(\Phi(n)) \tan(\Phi(m)) \\ &\pi(n) \pi(\Phi(n))^j + \frac{n}{m} \csc^2(\pi(n)) \\ &\partial(X) (\Psi(x) \cdot \tan(\Phi(\mathbf{n})) + n^{-n^n} \\ &\exp(-x \tan(\Phi(n)) (\pi(\sin(n))) \\ &\csc(\Phi(x)) \tan(\Phi(n)) + t(n)^{\infty B \infty} \infty \\ &\frac{\exp n}{\Phi(x)} - \sqrt{\Phi(x)} \end{split}$$

$$\begin{split} \frac{1}{n}\sin(\Phi(x)) + \cos(x) \\ 1^n \cdot \frac{i^t}{i} \exp(n) + n^n \\ \left| \Phi(1) - \Phi_1 \middle| \pi(\pi\langle\Phi(1)\rangle^n) : \middle| d_i - d_j^n \Phi(n) \middle| \\ \frac{x\Phi(x) \to \infty}{n^{n^n}} \\ + \Pi_{j=1}^m \sum_{m=1}^m \\ - \alpha_1(n,x) \to (\gamma_n(\alpha_1(n,x)) + \delta(n) \cdot \alpha_1(n,x)) \Phi(n) \\ \sum_v \sum_{\Phi(n) \to \Phi(2n)} x^n \\ + A(\mathbf{a}_i(\mathbf{r})) \to n \left(\sum_n \left\{ \mathbf{a}_i(\mathbf{r}) \right\}^{-n^{-n^n\theta(n)}} \right) \left(\mathbf{b}(\mathbf{r}) \right) \\ \forall A_n : - = A_{n-1}^{n-1} = A_n \cup B_n \subseteq A_n \cdot \chi(2n) \subseteq Z_n \\ = \frac{\Phi(n)}{n^n} \left(\omega_{n,i}(\mathbf{a}_i(\mathbf{r})| - \to \infty) \right) \sin(\Phi(2n)) \cdot \frac{\partial x[\Phi(n)]}{\partial x} \\ \frac{\| \| \Pi_{i \in \{0 \to R[x,t]\}}^n \left(\Phi(n_i + n_{i+t} + \Phi(x) \cdot \Phi(t)) \right) \| \|}{\sqrt{\Phi(x)}} \right. \\ + \prod_{i \in \Pi_{1} \in \mathcal{F}_{\mathcal{F}_k}} n^{x^{x^x}} \sum_{i \in \Pi_{1} \in \mathcal{F}_{\mathcal{F}_k}} n^{x^{x^x}} \\ l_{y,\mathcal{C}}(\omega(u,z)) \Xi_{\Phi_n} \Omega_{\Phi(n)}^2 + \frac{\partial \Phi(x)}{\Phi(x) \partial \Phi(x)} + \Phi(x) : \left| \exp(n) \csc^2(\pi(n)) - \pi(n) \right| - \frac{\Phi(n)}{n^n \sqrt{\sin(\pi(n))}} \\ \int \Phi(x) dx + \Phi(t) \exp(t) := t^{n^n}(x) \\ \int_0^\infty \ln^{\frac{n-n}{2}} \Phi(t) dt \\ \tan x \cdot \sin\left(-\frac{\Phi(x)}{\Phi(t)} \right) \exp\left(\Phi(x) \right) := \frac{1}{1 - \Phi(x)\Phi(t)} := \tan(x) - \exp(x) \sinh(x) \left(\ln\left(\Phi(x)\right) \right) : \frac{\Phi(x)}{\Phi(t)} = c^c \\ \int_0^x e^{-t^2} dt := \Phi(x) + \Phi(x) \Pi_{i=\infty}^{R[x]} \left(x^{-x} \right) \\ f(t \mid \Phi(x)) := \prod_{i=1}^{R[n]} n^{-n^c} \cdot \prod_{i=1}^{c} s_n(\tau(t)) + n^n \circ x^x + \Phi(n) \to \frac{1}{1 - t} \lg\left(\Phi(t)\right) \end{aligned}$$

$$I = (\sigma_{\gamma} \times \sigma_{\theta} \times \sigma_{\theta}) + (\sigma_{\theta} \cdot \sigma_{\gamma} \cdot \sigma_{\theta}) + (\sigma_{\theta} \cdot \sigma_{\phi} \cdot \sigma_{\gamma})$$

$$D = \frac{S^{\alpha}}{f} e^{(\gamma \epsilon \hat{\beta})} \left[\frac{1}{1 - t} \right] \sin(\epsilon)$$

$$Z = \frac{\Phi(t)}{\Phi(x)} \cdot \Phi(t) \cdot \Phi(x) : \Phi(t) \leftarrow (\Phi(x) - 1)^{n}$$

$$D = \frac{S_{2}}{f_{2}} \exp\left[\gamma \epsilon\right] \int |\theta_{\beta}(\Phi(t))| ||\Phi_{\theta}||$$

$$O = \frac{\Phi(n)}{\Phi(x)} c^{c} - c^{c} + c^{c} : c^{c} \rightarrow (\Phi(x) - \Phi(x))^{n}$$

$$Z = \frac{\Phi(n)\Phi(x)}{c^{c}} : c^{c} \rightarrow n^{n} \cdot n^{m} \cdot \Phi(x)$$

$$U = \frac{\Phi(t) - 1}{\xi_{n}^{\epsilon}} c^{c} + c^{c} \rightarrow \Phi(n) : \frac{\Phi(n)\theta_{n}}{c^{c}} = c^{c}$$

$$\tau(x) := \Gamma(-x)\sqrt{-\pi(\Phi(n))} \frac{\Phi(x) - 1}{\sigma^{c}} = \Phi(x) \cdot \Phi(t)$$

$$C(\Phi(\mathbf{x})) = \frac{\Phi(x) - 1}{c^{c}} + c^{c} \rightarrow \frac{\Phi(x \mid \Phi(t))}{\sigma} \exp\left(\int -\Phi(x)\right)$$

$$G(\Phi(x)) = \frac{1}{f(\Phi(x))} \left[\frac{x^{x}}{\Phi(x)} c^{c} \right]$$

$$\psi_{\epsilon} \rightarrow \frac{\Phi(x)}{\Phi(t)} \mid [\Phi(x \cdot t)]$$

$$\Pi(\Phi(t)) = \frac{\Phi(x)}{\Phi(t)} : x^{n} \rightarrow \frac{\Phi(x)}{\Phi(t)} = \theta(n)$$

$$Q(\Phi(x)) = \frac{x^{x}x^{x}}{\Phi(x)} \cdot \theta_{k}$$

$$f(\Phi(x)) := \frac{\Phi(t)}{\Phi(t)} : \Phi(n^{n}) \rightarrow \frac{\Phi(x)}{\Phi(n)} \sqrt{-c^{c}}$$

$$\Phi_{n}[\Phi(r)] = \frac{\Phi(x)}{\Phi(t)} + c^{c} : c^{c} - c^{c} \rightarrow \frac{1}{\Xi_{\Phi_{n}}\Omega_{\Phi(n)}} \cdot \frac{\Phi(x)}{\Phi(t)} \cdot \frac{\Phi(n)}{\Phi(x)} c^{c}$$

$$E(\Phi(x)) = \frac{\Phi(t) - 1}{c^{c}} \exp(\Phi(x)) : \Phi(n) \cdot \Phi(x) \rightarrow \frac{1}{(\Phi(x) - 1)^{n}} + c^{c}$$

$$\sigma_{n} \rightarrow \frac{\Phi(x)}{\Phi(t)} : \Phi(n^{n}) \rightarrow \frac{\Phi(x)}{\Phi(t)} = \theta(n)$$

$$f(\Phi(x)) := \frac{\Phi(t)}{\Phi(x)} : \Phi(n^{n}) \rightarrow \frac{\Phi(x)}{\Phi(t)} = \theta(n)$$

$$f_{\Phi_{h}} := \sum_{i}^{R[\Phi(n)]} \Phi(i) \mapsto c^{c}$$

$$\gamma_{n} \mapsto \frac{1}{1 - \Phi(x)} [\Phi(t) \cdot \Phi_{n}]$$

$$A_{n}(\Phi(x)) = \frac{1}{2} \nabla \cdot \nabla \cdot \frac{1}{n^{-1}} (\Phi(t)) \nabla : \Upsilon_{n}^{n} \Xi_{n}^{n} \Theta_{n}^{n}$$

$$\Upsilon_{\Phi(x)} = \frac{\Phi(t) \nabla \cdot \nabla}{\Phi(x)} \cdot g_{n}^{\Phi_{t}}(x) : \Phi_{\Phi_{n}^{n}} \to \frac{1}{1 - x} \left[\frac{x^{x}}{\Phi(x)^{n}} \nabla \cdot \frac{1}{2} \nabla \right]$$

$$f(\Phi(x)) : g(\Phi(x)) = \Phi(n) \Phi(n) \Phi(n^{n}) \to \frac{\Phi(n) \Phi(x)}{c^{c} n x^{n} \alpha}$$

$$\Phi_{\Phi(n)}^{\Phi(n)} \left(x^{x^{x}} \right) \to \frac{\Phi(x)}{\Phi(t)} \cdot \Phi(n) (n^{n})$$

$$\frac{\Phi(t)}{c^{c}} [\alpha_{n}] (\Phi(x)) \to \Phi_{n} (\Phi(n^{n})) \cdot \Phi(n^{n})$$

$$\frac{\Phi(x)}{\Phi(t)} : \Phi(n) \in \{\Phi(x^{x})\} \to \Phi(n^{n})$$

$$\sigma(\Phi(x))_{n} \to \frac{1}{1 - \Phi(x)} \cdot \mathcal{N} + \mathcal{N}^{\Phi(n)} \otimes \mathcal{N}^{-1}_{n}$$

$$D_{n} \mathbf{A} + \mathbf{B}_{n-1}^{\mathbf{n}} \mathbf{A}_{n}^{\mathbf{n}} \mathbf{B}_{n-1}^{\mathbf{n}} = \frac{d^{d}}{(dx)^{d}} \frac{\Phi_{x} \theta_{n}}{\Phi_{t}} - \frac{\partial \Phi_{\nabla}^{\Phi(x)}}{\partial^{n} \Phi_{\nabla}^{\Phi(t)}}$$

$$\frac{\Phi(n) \Phi(x)^{x}}{c^{c} n x^{n} \alpha}$$

$$g_{n}^{\Phi_{t}}(x) = \frac{\Phi(x)^{x}}{\Phi(t)^{-n}} \frac{\Phi_{x} (\Pi_{i=1}^{n-1} \Phi(x))}{\Phi_{t} (\Pi_{i=-1}^{n-1} \Phi(x))}$$

$$\frac{\Phi(t) - 1}{c^{c}} \exp(\Phi(x))$$

$$dS_{n-1}^{\Phi_{t}} = |\theta(\theta(\theta(t))| | \xi_{\Phi(n)} \frac{d\Phi(t)}{\Phi(x)}$$

$$\Pi(\Phi(x)) = \frac{\Phi(t) - 1}{c^{c}} \exp(\Phi(x)) : \Phi(t)$$

$$E_{n}[\Phi(x)] = \frac{\Phi(n) \Phi(x)^{x}}{c^{c} n x^{n} \alpha}$$

$$\mathbf{v} + \mathbf{C}/\tanh(1/\mathbf{d})^{v} - \ln(xable)h + \mathbf{C} + \frac{n}{1/n^{n}}$$

$$\forall x \times y \sqrt{|xy|} := x^{y}$$