두산 Rokey Boot Camp

스터디 주간 활동 보고서

팀명	Robo:Loop	제출자 성명	홍송은		
참여 명단	전효재, 홍송은, 김사웅				
모임 일시	2025 년 06 월 17 일 16 시 40 분 ~ 17 시 40 분				
장소	온라인 구글 미팅 출석 인원 3		3		
학습목표	 ROS2 의 핵심 도구(rqt, 노드, 토픽, 서비스, 파라미터)의 기본 개념을 실습을 통해 익힌다. rqt_graph 를 활용하여 노드와 토픽의 구조 및 상호작용을 시각적으로 이해한다. 토픽, 서비스, 파라미터 관련 명령어와 실습 예제를 통해 ROS2 통신 모델의 동작 원리를 습득한다. 				
학습내용	■ 클라이언트 서버가 응답 ■ 서비스 서비 순차적으로	합(Response)을 버는 동시에 여 . 응답 나이언트가 하니	성(Request)을 서버에 보내면,		

- 일회성, 빠른 명령 수행에 적합
- 토픽(Topic)과의 비교
 - 서비스: 요청-응답(1:1), 단발성, 응답 필수
 - 토픽: 게시-구독(1:N), 지속적 데이터 스트리밍, 응답 없음
- 。 주요 명령어

목적	명령어
서비스 목록 조회	ros2 service list
서비스 타입 확인	ros2 service type <service_name></service_name>
서비스 호출	ros2 service call <service_name> <service_type> <arguments></arguments></service_type></service_name>
서비스 인터페이스 구조 확인	ros2 interface show <type_name></type_name>

2. Parameter

- 개념
 - 노드의 설정값 및 구성 정보를 의미
 - 노드별로 독립적 공간에 저장·관리
 - 실행 중 파라미터 조회, 변경, 저장 가능
- 。 주요 명령어 파라미터의 영속성
 - ros2 param set 명령으로 세션 내에서 값 설정
 - 노드 종료 시 파라미터 초기화됨
 - ros2 param dump 로 .yaml 파일로 저장
 - ros2 param load 로 재적용 가능
 - 노드 실행 시 --ros-args --params-file <파일경로>로 초기 파라미터 자동 적용 가능

```
ros2 param dump <node_name>
ros2 param dump /turtlesim > turtlesim.yaml

→ 현재 실행 중인 노드에만 적용, 노드 종료 시 초기화
rokey@rokey-550XBE:-$ ros2 param dump /turtlesim > turtlesim.yaml
rokey@rokey-550XBE:350XBE:-$ cat turtlesim.yaml
/turtlesim:
ros_parameters:
background_b: 255
background_g: 86
background_r: 150
qos_overrides:
/parameter_events:
publisher:
depth: 1000
durability: volatile
history: keep_last
reliability: reliable
use_sim_time: false
```

• 전효재

- o rqt
- 설치: sudo apt install '~nros-humble-rqt*'
- 실행: rqt
- turtle 실행: ros2 run turtlesim turtlesim_node
- rqt 에서 r,g,b 값으로 선의 색상 조정
- width 로 선의 굵기, off 로 선을 그리는지 안그리는지
 선택

- 터틀봇이 2 개 이상일때 제어방법
 - ros2 run turtlesim turtle_teleop_key --ros-args -r /turtle1/cmd_vel:=/turtle2/cmd_vel
- o node
 - ros 시스템의 가장 작은 실행 단위

- 하나의 노드는 센서 읽기, 제어 신호 보내기, 이미지 처리. 거북이 조종같은 하나의 기능을 수행함
- o ros2 node list
 - 현재 있는 node 의 구성을 알 수 있다.

• 김사웅

- 토픽(Topic)은 ROS 에서 노드 간 메시지를 전달하는 주제 기반 통신 경로임
- 퍼블리셔 또는 서브스크라이버 중 하나만 생성되어도 해당토픽은 자동 생성됨
- 퍼블리셔는 특정 주제에 대해 메시지를 발행
- 서브스크라이버는 관심 있는 주제의 메시지만 수신
- /turtle1/cmd vel 은 속도 명령을 위한 표준 토픽 이름
- ros2 topic pub 명령으로 토픽에 메시지를 주기적으로 발행
- o rotate_absolute 액션은 거북이를 특정 각도로 회전시키는 기능
- 토픽은 중간 통로이자 메시지 분류 태그 역할

활동평가	전효재	rqt 를 이용해서 선의 색이나 굵기 같은 데이터값을 조정하는 방법을 익혔다. rqt 는 인터페이스에서의 방법이고 이후 내용을 스터디를 통해 rqt, node 와 토픽, 서비스의 관계나 차이에 대해 알고 이해할수 있었다.
	홍송은	서비스와 토픽을 비교하며 각각 어떤 상황에서 사용하기 적합한지, 구조적, 기능적 차이점을 자세히 이해함. 파라미터의 영속성 개념을 바탕으로 노드 설정값을 실시간으로 조회하고 동적으로

		변경하면서, 필요 시 재사용할 수 있는 과정을 익힘. 향후 대면 실습 수업에서 실제 로봇에 적용하고 프로젝트를 원활하게 진행할 수 있도록 다양한 명령어 실습과 반복 학습을 꾸준히 이어갈 예정임.
	김사웅	ROS 의 토픽 시스템을 보며, 복잡한 로봇 간 통신도 주제 기반 (Pub/Sub) 모델을 통해 직관적이고 유연하게 처리할 수 있음. 퍼블리셔나 서브스크라이버만 생성하면 자동으로 토픽이 등록되는 구조 덕분에 개발이 훨씬 간편하고, 실제 로봇 제어에도 확장성이 있음.
과제	 ROS2 Humble 튜토리얼을 바탕으로 선택한 주제의 실습을 완료 ○ 1) 간단한 publisher 와 subscriber 작성 ○ 2) 간단한 service 와 client 작성 ○ 3) 사용자 정의 msg 및 srv 파일 생성 ○ 4) 사용자 정의 인터페이스 구현 ● 실습 과정에서 활용한 명령어, 확인한 결과, 개념 설명 등을 정리하여 PDF 로 제출 ○ 정리 내용에는 개념 요약 + 실습 스크린샷 또는 설명 포함 ○ 필요 시 스터디 시간에 실습 내용 직접 시연 가능 	
향후 계획	• 人 • C	ROS2의 기본 통신 구조(topic, service)를 Python 으로 구현하며 작동 원리 학습 사용자 정의 인터페이스(msg/srv) 생성 및 빌드 시스템과의 연계 방식 익히기 인터페이스 정의 후 colcon build 와 source install/setup.bash 과정 실습을 통해 빌드 시스템 이해 각 단계별 실습 결과를 rqt_graph 등으로 확인하며 구조적 이해 심화

