Interval Query

Time Limit: 1 Second Memory Limit: 2048 MB

If you have seen the easy version of this problem in this class before, the only difference between the two versions is that we removed the constraint $\forall i \in \{2, ..., m\}, l_{i-1} \leq l_i$ and $r_{i-1} \leq r_i$.

You are asked to solve a classic problem: given an array a_1, \ldots, a_n of n elements and m intervals $(l_1, r_1), \ldots, (l_m, r_m)$ $(\forall i \in \{1, \ldots, m\}, l_i \leq r_i)$. For each interval (l_i, r_i) , find the maximum element of a_{l_i}, \ldots, a_{r_i} .

Input

The first line contains two integers n and m ($1 \le n \le 10^5$, $1 \le m \le 5 \times 10^6$) - the number of elements in the array and the number of intervals.

The second line contains n integers $a_1, \ldots a_n$ $(1 \le a_i \le 10^9)$ - the elements in the array.

The next line describes the first query l_1, r_1 $(1 \le l_1 \le r_1 \le n)$, and a seed s $(1 \le s \le n)$. Since the number of queries could be very large, you are asked to get the following query by $l_{i+1} = (l_i + s) \mod n + 1$ and $r_{i+1} = (r_i + s) \mod n + 1$. If the resulting l_{i+1} is greater than r_{i+1} , swap the values of l_{i+1} and r_{i+1} .

Output

Output a single integer denoting the sum of the maximum elements in each interval.

Sample Inputs

			-			•		
5	3							
3	2	1	5	4				
1	3	1						

\mathbf{Sample}	le C)uti	puts
Janp		, au	Puc

13

Note

The queries are:

- 13
- 35
- 25