Interrogation écrite n°01

NOM: Prénom: Note:

1. Déterminer la nature de l'intégrale $I = \int_0^{+\infty} \frac{\cos t}{t^2 + 1} dt$.

Tout d'abord, $t\mapsto \frac{\sin t}{t^2+1}$ est continue sur \mathbb{R}_+ . De plus, $\frac{\sin t}{t^2+1} = \mathcal{O}\left(\frac{1}{t^2}\right)$. Or $t\mapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ donc $t\mapsto \frac{\sin t}{t^2+1}$ également. Comme $\mapsto \frac{\sin t}{t^2+1}$ est continue sur \mathbb{R}_+ , I converge.

2. Déterminer la nature de l'intégrale $I = \int_0^1 \frac{\ln t}{t^2} dt$.

Remarquons que $\frac{1}{t^2} = o\left(\frac{\ln t}{t^2}\right)$. Comme $t \mapsto \frac{1}{t^2}$ n'est pas intégrable sur]0,1], $t \mapsto \frac{\ln t}{t^2}$ dt diverge. Or cette fonction est constamment négative sur]0,1] donc I diverge.

3. Justifier la convergence et calculer la valeur de $I = \int_0^{+\infty} te^{-t} dt$.

Remarquons que $t\mapsto te^{-t}$ est continue sur \mathbb{R}_+ . De plus, $te^{-t}=0$ $\left(\frac{1}{t}^2\right)$ par croissances comparées. Or $t\mapsto\frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ donc $t\mapsto te^{-t}$ est intégrable sur \mathbb{R}_+ i.e. I converge. Les fonctions $t\mapsto t$ et $t\mapsto -e^{-t}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+ et $\lim_{t\to +\infty} -te^{-t}$ donc, par intégration par parties,

$$I = -\left[te^{-t}\right]_0^{+\infty} + \int_0^{+\infty} e^{-t} dt = \int_0^{+\infty} e^{-t} dt = \left[-e^{-t}\right]_0^{+\infty} = 1$$

4. Justifier la convergence et calculer la valeur de $I = \int_0^{+\infty} \frac{e^t dt}{1 + e^{2t}}$ par un changement de variable.

On effectue le changement de variable $u=e^t$ i.e. $t=\ln(u)$. Comme \ln est une bijection strictement croissante de $[1,+\infty[$ sur $[0,+\infty[$, I est de même nature que $J=\int_1^{+\infty}\frac{\mathrm{d}t}{1+t^2}$ et I=J en cas de convergence. Comme une primitive de $t\mapsto \frac{1}{1+t^2}$ est arctan qui admet une limite finie en $+\infty$, J converge et

$$I = J = [\arctan(t)]_1^{+\infty} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

5. Déterminer un équivalent simple de $f: x \mapsto \int_{x}^{1} \frac{\ln(1+t)}{t^2+t^3} dt$ en 0+.

Remarquons que $\frac{\ln(1+t)}{t^2+t^3} \underset{t\to 0^+}{\sim} \frac{1}{t}$. Or $t\mapsto \frac{1}{t}$ est positive sur]0,1] et $\int_0^1 \frac{1}{t}$ dt diverge. Ainsi

$$f(x) = \int_{x}^{1} \frac{\ln(1+t)}{t^{2}} dt \underset{x \to 0^{+}}{\sim} \int_{x}^{1} \frac{dt}{t} = -\ln(x)$$

6. Déterminer un équivalent simple de $f: x \mapsto \int_{x}^{+\infty} \frac{\arctan t}{t^2 + t^3} dt$ en $+\infty$.

Remarquons que $\frac{\arctan t}{t^2+t^3} \underset{t\to 0^+}{\sim} \frac{\pi}{2t^3}$. Or $t\mapsto \frac{\pi}{2t^3}$ est positive sur]0,1] et $\int_0^1 \frac{\pi}{2t^3}$ dt converge. Ainsi

$$f(x) = \int_{x}^{+\infty} \frac{\arctan t}{t^2 + t^3} dt \sim \int_{x \to 0 + \infty}^{+\infty} \int_{x}^{+\infty} \frac{\pi}{2t^3} dt = \frac{\pi}{4x^2}$$