Readings

§5.2 The Laplace Transform: Definitions and Basic Calculations

§5.3 The Laplace Transform and Initial-Value Problems

Upcoming Deadlines:

Sunday, April 11, 11:59 p.m.: Quiz 10 (§5.2 §5.3, Canvas) Friday, April 16, 5 p.m.: Homework 11 (Gradescope)

Homework Exercises:

1. (Laplace transform from the definition)

Let $f(t) = te^{3t}$. Calculate the Laplace transform $F(s) = \mathcal{L}[f(t)]$ directly from the definition and indicate the values of s for which the integral defining F(s) converges.

2. (Laplace transform)

For each of the following functions, calculate its Laplace transform $F(s) = \mathcal{L}[f(t)]$ using the linearity of \mathcal{L} together with the basic formulas summarized at the end of §5.2.

(a)
$$f(t) = -3t + e^{-3t} - 5\sin 6t$$

(b)
$$f(t) = e^{2t+3}$$

(c)
$$f(t) = \sin\left(t + \frac{\pi}{6}\right)$$
 (*Hint*: Use trig identities.)

3. (Inverse transform)

For each of the following functions, calculate its inverse transform $f(t) = \mathcal{L}^{-1}[F(s)]$ using the linearity of \mathcal{L}^{-1} together with the basic formulas summarized at the end of §5.2.

(a)
$$F(s) = \frac{1}{3s+1}$$

(b)
$$F(s) = \frac{3}{s^2 + 1} - \frac{20}{s^4} + \frac{3}{s}$$

4. (First differentiation formula)

Use the first differentiation formula to find an expression for the Laplace transform $\mathcal{L}[x]$, where x is the solution of the given initial-value problem.

(a)
$$(D-1)x = e^{3t}$$
, $x(0) = 3$

(b)
$$(D^2 - 1)x = e^{2t}$$
, $x(0) = 0$, $x'(0) = 1$

(c)
$$(D^2 + 1)x = \cos 3t$$
, $x(0) = 0$, $x'(0) = 3$

5. (Partial fraction decompostion)

Find the inverse transform of $F(s) = \frac{s+4}{s^2+4s+3}$.

6. (Initial-value problem)

Use the Laplace tranform to solve the initial-value problem:

$$(D^2+4)x = t$$
, $x(0) = -1$, $x'(0) = 0$.

(End of Homework 11)