STANFORD UNIVERSITY EE 102B Spring-2013

Lecture 05
FIR Filtering-Introduction
April 10, 2013

ASSIGNMENTS

- Reading for this Lecture:
 - SPF: Chapter 5
 - S&S:
- HW#01 and Lab #01 are due at 5pm in Packard 263.
- HW#02 and Lab #02 will be posted later today. They are due by 5pm, April 17, in Packard 263

Office Hours for Course Staff – Come see us.

- Ron Schafer: Mon. 2:00-3:00 pm and Weds. 4:00-5:00 pm in Packard 211
- Dookun Park: Tues. 1:30 ~ 3:30 pm in Packard 107
- Ruo Yu Gu (Roy): Mon. 4:00 ~ 6:00 pm in Packard 106
- https://class2go.stanford.edu/EE102B/ Spring2013/pages/staff

LECTURE OBJECTIVES

- REVIEW THE SPECTRUM CONCEPT
- INTRODUCE FILTERING CONCEPT
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS
 - FIR Filters
- Discrete convolution

4/10/13 EE 102B, Spring 2013, RWS

4/10/13

EE 102B, Spring 2013, RWS

Bandlimited Continuous-Time Signals

Bandlimited continuous-time signal

$$x(t) = \sum_{k=-N}^{N} a_k e^{j\omega_k t}$$

• Periodic signals: $\omega_k = k\omega_0 = (2\pi/T_0)k$

$$x(t) = \sum_{k=-N}^{N} a_k e^{jk\omega_0 t} \Leftrightarrow a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 t} dt$$

4/10/13

EE 102B, Spring 2013, RWS

Spectrum of a Bandlimited Continuous-Time Signal

 Spectrum: the collection of information required to construct $x(t) = \sum_{k=0}^{\infty} a_k e^{j\omega_k t}$

spectrum: $\{a_k, f_k\}$ or $\{a_k, \omega_k\}$

Bandlimited Discrete-Time Signals

Bandlimited discrete-time signal

$$x[n] = x(nT_s) = \sum_{k=-N}^{N} a_k e^{j\omega_k nT_s}$$

• Normalized frequency: $\hat{\omega} = \omega T_s$

$$x[n] = \sum_{k=-N}^{N} a_k e^{j\hat{\omega}_k n}$$

4/10/13

Spectrum of a Bandlimited Discrete-Time Signal

Spectrum: the collection of information $x[n] = \sum_{k=0}^{N} a_k e^{j\hat{\omega}_k n}$ required to construct

 $\{a_k,\hat{\omega}_k\}$ spectrum:

DIGITAL FILTERING

- Characterized SIGNALS (Fourier series)
- Converted to DIGITAL (sampling)
- Today: How to PROCESS them (DSP)?
- CONCENTRATE on the COMPUTER
 - ALGORITHMS, SOFTWARE (MATLAB) and HARDWARE (DSP chips, VLSI)

4/10/13 EE 102B, Spring 2013, RWS 9

DISCRETE-TIME SYSTEM

- OPERATE on x[n] to get y[n]
- WANT a GENERAL CLASS of SYSTEMS
 - ANALYZE the SYSTEM
 - TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN
 - SYNTHESIZE the SYSTEM

4/10/13 EE 102B, Spring 2013, RWS 10

DISCRETE-TIME SIGNAL Violing a LIST of NUMBERS

- x[n] is a LIST of NUMBERS
 - INDEXED by "n"

Note the straight-line connections between points.

4/10/13 EE 102B, Spring 2013, RWS

Some Discrete-Time Signals with Formulas

- Discrete-time signals are just sequences of numbers.
- Unit step
- Real exponential
- Complex exponential
- Impulse
- Can a discrete-time signal be discontinuous?

1/10/13 EE 102B, Spring 2013, RWS

D-T SYSTEM EXAMPLES

- SYSTEMS ARE OPERATORS:
 - POINTWISE OPERATORS
 - SQUARING: $y[n] = (x[n])^2$
 - MODULATION: y[n]=x[n]cos(ω_cn)
 - RUNNING AVERAGE
 - RULE: "the output at time n is the average of three consecutive input values"

4/10/13 EE 102B, Spring 2013, RWS 1

3-PT AVERAGE SYSTEM

- ADD 3 CONSECUTIVE NUMBERS
 - Do this for each "n"

the following input-output equation

Make a TABLE

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	n > 5
x[n]	0	0	0	2	4	6	4	2	0	0
y[n]	0	<u>2</u> 3	2	4	14 3	4	2	<u>2</u> 3	0	0

$$n=0$$
 $y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$

$$y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$$

PAST, PRESENT, FUTURE

Sec. 5.2 The Running Average Filter

123

Figure 5.4 The running-average filter calculation at time index n uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

ANOTHER 3-pt AVERAGER

- Uses "PAST" VALUES of x[n]
 - IMPORTANT IF "n" represents REAL TIME
 - WHEN x[n] & y[n] ARE STREAMS

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	6	7	<i>n</i> > 7
x[n]	0	0	0	2	4	6	4	2	0	0	0	0
y[n]	0	0	0	$\frac{2}{3}$	2	4	14 3	4	2	<u>2</u> 3	0	0

4/10/13 EE 102B, Spring 2013, RWS

18

GENERAL CAUSAL FIR FILTER

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

• For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

4/10/13 EE 102B, Spring 2013, RWS 19

GENERAL CAUSAL FIR FILTER

FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- FILTER ORDER is M
- FILTER "LENGTH" is L = M+1
 - NUMBER of FILTER COEFFS is L

4/10/13 EE 102B, Spring 2013, RWS 20

GENERAL CAUSAL FIR FILTER SLIDE a WINDOW across x[n] Causal because v[n] depends $v[n] = \sum b_{k} x[n-k]$ only on x[n] and past samples M-th Order FIR Filter Operation (Causal) $\star x[\ell]$ Running off the Data Weighted Sum Running over M + 1 points Zero Output onto the Data $\ell = n$ N - 1 $\ell = n - M$ x[n-M]x[n]4/10/13 21

Sequence Representation

UNIT IMPULSE RESPONSE

• FIR filter description usually given in terms of coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

What happens if input is a unit impulse?

4/10/13 EE 102B, Spring 2013, RWS 26

Example: 4-pt AVERAGER

- CAUSAL SYSTEM: USE PAST VALUES $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$
- INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$ $x[n] = \delta[n]$ $y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$
- OUTPUT is "IMPULSE RESPONSE"
 - y[n]=h[n] when $x[n]=\delta[n]$

4/10/13 EE 102B, Spring 2013, RWS 27

Unit Impulse Response

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

$$= h[n]$$

4/10/13 EE 102B, Spring 2013, RWS 28

SUM of Shifted Impulses

FIR IMPULSE RESPONSE

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

FIR means Finite-duration Impulse Response

n	n < 0	0	1	2	3		M	M + 1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

4/10/13 FF 102B, Spring 2013, RWS

Three Representations for a FIR filter

■ Use SHIFTED IMPULSES to write h[n]

$$h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$$

$$h[n]$$
2: Plot the values
$$b_{k} = \{1, -1, 2, -1, 1\}$$
The formula of the large state of the stat

True for any signal, x[n]

4/10/13 EE 102B, Spring 2013. RWS

FILTERING EXAMPLE

7-point AVERAGER

$$y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]$$

30

32

- Removes cosine
 - By making its amplitude (A) smaller
- 3-point AVERAGER
 - Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} (\frac{1}{3}) x[n-k]$$

4/10/13 EE 102B, Spring 2013. RWS

3-pt AVG EXAMPLE

POP QUIZ

- FIR Filter is "FIRST DIFFERENCE"
 - y[n] = x[n] x[n-1]
- What are filter coefficients?

$$b_k = \{1, -1\}$$

Find *h*[*n*]

$$h[n] = \delta[n] - \delta[n-1]$$

4/10/13

EE 102B, Spring 2013, RWS

MATLAB for FIR FILTER

- yy = conv(bb,xx)
 - VECTOR bb contains Filter Coefficients
 - DSP-First: yy = firfilt(bb,xx)
- FILTER COEFFICIENTS {b_k}

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

conv2 ()
for images

4/10/13 EE 102B, Spring 2013, RWS

What system does this implement?

- yy = conv([1,2,1],xx)
- How about this one?

$$yy = conv([1,2,1], conv([1,-1],xx))$$

4/10/13

EE 102B, Spring 2013, RWS

40

Discrete-Time Linear Systems

 A linear system obeys the principle of superposition

$$x[n] \mapsto y[n]$$

$$\alpha x[n] \mapsto \alpha y[n]$$
 (homogeneous)

$$x_1[n] \mapsto y_1[n]$$
 and $x_2[n] \mapsto y_2[n]$

$$x_1[n] + x_2[n] \mapsto y_1[n] + y_2[n]$$
 (additive)

$$\alpha x_1[n] + \beta x_2[n] \mapsto \alpha y_1[n] + \beta y_2[n]$$
 (superposition)

4/40/4

Stanford University, EE102B, Spring 2013

TESTING LINEARITY

Time-Invariant Systems

 A time-invariant system is one whose output is the same for a given input no matter when the input occurs.

$$x[n] \mapsto y[n]$$
$$x[n-n_0] \mapsto y[n-n_0]$$

 An LTI discrete-time system is both linear and time-invariant.

4/10/13

Stanford University, EE102B, Spring 2013

TESTING Time-Invariance

Derivation of Discrete Convolution

Represent x[n] in terms of impulses

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

Assume LTI system

$$\delta[n] \mapsto h[n]$$

$$\delta[n-k] \mapsto h[n-k]$$

$$x[k]\delta[n-k] \mapsto x[k]h[n-k]$$

$$x[n] = \sum_{k=0}^{\infty} x[k]\delta[n-k] \mapsto \sum_{k=0}^{\infty} x[k]h[n-k] = y[n]$$

4/10/13

EE 102B, Spring 2013, RWS

Discrete Convolution

LTI systems defined by convolution

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n] = (x * h)[n]$$

Discrete convolution is commutative

$$y[n] = \sum_{k = -\infty}^{\infty} h[k]x[n - k] = h[n] * x[n] = (h * x)[n]$$

Discrete Convolution and FIR Systems

LTI systems defined by convolution

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] = h[n] * x[n] = (h * x)[n]$$

 FIR system has finite-duration impulse response $h[n] = \begin{cases} b_n & n = 0, 1, ..., M \\ 0 & \text{otherwise} \end{cases}$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k] = h[n] * x[n] = \sum_{k=n-M}^{n} x[k] b_{n-k}$$

4/10/13 52 FF 102B, Spring 2013, RWS

4/10/13

EE 102B, Spring 2013, RWS

- Add, Multiply & Store

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

FIR STRUCTURE

Direct Form

Figure 5.13 Block-diagram structure for the *M*th order FIR filter.