INTRODUÇÃO À MATEMÁTICA E IA

Exercícios: Geometria Analítica

Diretoria de Matemática Diretor: Manuel F. Junior

Membro: Yann N. G. Nóbrega

tail.ufpb@gmail.com

https://aria.ci.ufpb.br/tail/

Sumário

Ponto, Reta e Plano

Exemplo

Exemplo

Exemplo

Distância Euclidiana

Distância Manhattan

Exemplos

Métodos de Avaliação de Regressão

 R^2

MSE

RMSE

MAE

Aplicação Prática

Ponto, Reta e Plano

Pontos: Começamos com o objeto mais simples, o ponto, sendo este com função de determinar localização no espaço, porém com dimensão nula (0), ou seja, por definição, podemos dizer que um ponto não possui Volume, Área ou Comprimento.

Ponto

Figura: Gráfico de pontos em um espaço bidimensional

Ponto, Reta e Plano

Retas:

$$ax + b = y$$

As retas são conjuntos de pontos, de tal forma que não formem uma curva. Dentro dessas retas, podemos calcular a distância entre eles, agora definindo um **segmento de reta** entre eles. Encontramos as retas, muitas vezes, como a equação vista acima, ax + b = y, essa forma é como veremos bem comum no cálculo de regressões, um tópico de muita importância.

Reta

Figura: Gráfico da Reta e sua composição de pontos

Ponto, Reta e Plano

Planos: O plano é um conjunto de retas e pontos, de modo que apenas um único plano passa por duas retas paralelas não coincidentes.
Outra forma de definir um plano é a partir de uma reta e um ponto não coincidentes, ou seja, o ponto não pertence à reta. Podemos ter num plano infinitas retas e pontos. De modo contrário aos últimos dois itens, a interseção entre dois planos não paralelos gera uma única reta. Entre três planos define-se um único ponto ou três retas, dependendo da forma que se encontrarem.

Plano

- A distância Euclidiana será a mais utilizada!
- Muitos a conhecem, no plano, como Teorema de Pitágoras.
- Na 3° ou maiores dimensões utilizamos o Teorema várias vezes.
- Vamos mostrar a generalização para n dimensões

Essa é a forma mais usual de se calcular a distância entre dois pontos, normalmente calculamos (muitas vezes sem nem se dar conta) com a decomposição do vetor posição em planos e com o uso sequencial do Teorema de Pitágoras. O cálculo da distância euclidiana é dado a partir da generalização do teorema para *n* dimensões, mostrado na seguinte expressão:

$$d(P,Q) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Sendo, $P = (x_1, x_2, x_3, \dots, x_n)$ e $Q = (y_1, y_2, y_3, \dots, y_n)$. Onde n é o número de dimensões.

▶ Unidimensional: para o caso unidimensional (n = 1), temos o mais trivial, onde calculamos a distância entre dois pontos. Pela fórmula, temos o seguinte:

$$d(P,Q) = \sqrt{(x_1 - y_1)^2} = |x_1 - y_1|$$

Sendo $P = x_1$ e $Q = y_1$.

▶ **Bidimensional:** Para o caso bidimensional (n = 2), a fórmula torna-se uma junção aplicação mais ampla do teorema de Pitágoras, tal que:

$$d(A,B) = d_{AB} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Sendo
$$A = (x_1, x_2)$$
 e $B = (y_1, y_2)$.

► Tridimensional: Para o caso tridimensional (n=3), devemos utilizar uma forma ainda mais geral para o teorema de Pitágoras, dado por:

$$d(P,Q) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

Onde
$$P = (x_1, x_2, x_3)$$
 e $Q = (y_1, y_2, y_3)$

► Também conhecida como geometria do táxi.

Figura: Distância Manhattan e Euclidiana

- ► A distância prática entre 2 pontos não é a reta que os liga
- Quantas unidades no eixo x mais a quantidade no eixo y.

Figura: Distância Manhattan e Euclidiana

$$d(P_0, P_1) = |P_1 - P_0|$$

$$P_0 = (x_0, y_0, z_0, \dots, w_0)$$

$$P_1 = (x_1, y_1, z_1, \dots, w_1)$$

$$d(P_0, P_1) = |x_1 - x_0| + |y_1 - y_0| + |z_1 - z_0| + \cdots + |w_1 - w_0|$$

Qual a distância Manhattan entre os pontos:

$$P_1 = (0,3,7) e$$

$$P_2 = (4, 0, -5)$$

Exemplos

Utilizamos a definição da distância:

$$d(P_0, P_1) = |0 - 4| + |3 - 0| + |7 - (-5)|$$
$$d(P_0, P_1) = |4 + 3 + 12|$$

Ou, combinando as duas contas antes de operar:

$$d(P_0,P_1)=19$$

A Regressão

Métodos de Avaliação de Regressão

$$\begin{array}{c|c}
8.1 \\
6.8 \\
7.0 \\
7.4 \\
7.7 \\
7.5 \\
7.6 \\
8.0
\end{array}$$

$$\hat{Y} = \begin{vmatrix} 7.4 \\ 7.3 \\ 7.4 \\ 7.2 \\ 7.8 \\ 7.6 \\ 7.5 \\ 7.8 \end{vmatrix}$$

Vamos encontrar os seguintes valores:

- $ightharpoonup R^2$
- ► MSE
- ► RMSE
- ► MAE

Coeficiente de Determinação (R²)

- Avalia a variabilidade da variável dependente (Y) que é explicada pelo nosso modelo, baseado na variável independente (X).
- ▶ Definimos \bar{y} , y_i e $\hat{y_i}$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

► O R² é então:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{d(Y, Y)^{2}}{d(Y, \bar{Y})^{2}}$$

Coeficiente de Determinação (R^2)

$$\bar{y} = \frac{(8.1 + 6.8 + 7.0 + 7.4 + 7.7 + 7.5 + 7.6 + 8.0)}{8} = 7.5125$$

$$num = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 1.01$$

$$den = \sum_{i=1}^{n} (y_i - \bar{y})^2 = 1.408755$$

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} = 0.2830524$$

Erro Quadrático Médio (MSE):

► O MSE é a distância da estimativa do nosso modelo para os valores verdadeiros dos dados, da seguinte forma:

$$MSE = \frac{1}{n} \cdot d(Y, \hat{Y})^2$$

Erro Quadrático Médio (MSE):

$$MSE = ((8.1 - 7.4)^2 + (6.8 - 7.3)^2 + (7.0 - 7.4)^2 + (7.4 - 7.2)^2 +$$

$$+(7.7 - 7.8)^2 + (7.5 - 7.6)^2 + (7.6 - 7.5)^2 + (8.0 - 7.8)^2)/8 = 1.01/8$$

$$MSE = 0.12625$$

Raiz do Erro Quadrático Médio (RMSE):

► A Raiz do MSE é a raiz da distância da estimativa do nosso modelo para os valores verdadeiros dos dados, da seguinte forma:

$$RMSE = \sqrt{\frac{1}{n}} \cdot d(Y, \hat{Y})^2$$

Raiz do Erro Quadrático Médio (RMSE):

$$RMSE = \sqrt{MSE} = \sqrt{0.12625}$$
$$RMSE = 0.3553$$

Erro Absoluto Médio (MAE):

 \blacktriangleright É a média das distâncias entre os valores preditos (\hat{Y}) e reais (Y):

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - \hat{y}_i| = \frac{1}{n} \cdot \sum_{i=1}^{n} d(y_i, \hat{y}_i)$$

Erro Absoluto Médio (MAE):

$$MAE = (|8.1 - 7.4| + |6.8 - 7.3| + |7.0 - 7.4| + |7.4 - 7.2| +$$

 $+|7.7 - 7.8| + |7.5 - 7.6| + |7.6 - 7.5| + |8.0 - 7.8|)/8 = 2.3/8$
 $MAE = 0.2875$

No Python:

- from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
- r2 = r2_score(Y_true, Y_pred)
- mse = mean_squared_error(Y_true, Y_pred)
- rmse = mean_squared_error(Y_true, Y_pred, squared = False)
- mae = mean_absolute_error(Y_true, Y_pred)

