WSN localization with Senseless

Peter De Cauwer Tim Van Overtveldt

hogeschool antwerpen

Team

- Students:
 - Peter De Cauwer
 - > Tim Van Overtveldt

- Promotors:
 - Jeroen Doggen
 - Jerry Bracke
 - Maarten Weyn

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Contributions

- Expand Senseless framework to incorporate localization with RSSI
 - Compare different algorithms
 - > Test the influence of the orientation of a node
- Interface this framework to Scala

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Wireless Sensor Network

 A wireless sensor network (WSN) is a wireless network consisting of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants.

Motivation

What?

- To determine the physical coordinates of a group of sensor nodes in a wireless sensor network (WSN)
- Due to application context and massive scale, use of GPS is unrealistic, therefore, sensors need to self-organize a coordinate system

Mhàs

- To report data that is geographically meaningful
- Services such as routing rely on location information; geographic routing protocols; context-based routing protocols, location-aware services

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Applications

- Environmental monitoring (air, water, soil chemistry, surveillance)
 - > REDWOOD
- Home automation (smart home)
- Inventory tracking (in warehouses, laboratories)

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

RTLS - Definitions

- Anchor Nodes:
 - Nodes that know their coordinates a priori
 - By use of GPS or manual placement
 - For 2D three and 3D four anchor nodes are needed
- Goal: to position a blind node by using pair-wise measurements with the anchor nodes.
 - > Anchor-based

RTLS - 2 phases

- 1. Determine the distances between blind nodes and anchor nodes.
- 2. Derive the position of each node from its anchor distances.

RTLS - Phase 1

- Range-less
 - Connectivity
 - > Hop Count
 - Sum-Dist
 - Dv-Hop
 - Euclidean
- Range-based
 - Ranging methods

RTLS - Phase 1 - Range-based

- OTOA
- TDOA
- RTT
- AOA
- RSS

RTLS - Phase 1 - Range-based

- OTOA
- TDOA
- RTT
- AOA
- RSS

Phase 1 – Range-based (RSS)

- Radio signals attenuate with distance
- Available in most radios
 - No extra cost
- Poor accuracy
 - > Difficult to model

RSS - Errors

- Environmental errors
 - > Multipath
 - Shading
 - > Interference
 - Gaussian noise

RSS - Errors

- O Device errors
 - Transmitter variability
 - Receiver variability
 - > Antenna orientation

RSS - Model

- Different models
 - log-distance path loss model
- - P_T Transmitted power [dBm]
 - RSS Received Signal Strength[dBm]
 - > P(d0) Path loss in dBm at a distance of d0
 - > n Path loss exponent
 - d Distance between two nodes[m]
 - > d(0) Reference distance[m]: 1m
 - Xo Gaussian random variable

RTLS - Phase 2

- Range-based algorithms
 - > Trilateration
 - > MinMax

- Range-less algorithms
 - > CL
 - > WCL

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Framework

- Product of the thematic ICT week:
 - > WSN Middleware
 - Software framework:
 - WSN (Telos rev. B & Sun Spot)
 - Controller + database
 - GUI
 - > Distributed

Framework

- Data interface to the WSNs and GUIs
 - > XML
- Database
 - Stored Procedures
- Localization algorithms
 - Centralized

Framework - Technologies

- WSN
 - > TinyOS
 - > TelosB
 - Xubuntos
- WSN XML Parser
 - Java
- Controller, GUI
 - C#
 - > .NET 3.5
- Interfaces
 - > XML over TCP
 - WCF (http)

WSN - Telos rev. B

- TI MSP430 microcontroller with 10kB RAM
 - > Ultra low-power
- IEEE 802.15.4 compliant radio
- Integrated temperature, light, humidity and voltage sensor
- Programmable via USB interface
- TinyOS 2.X compatible
- Integrated antenna

WSN - TinyOS

- Most popular OS for Wireless Sensor Networks
- Open source
- Energy efficient low power
 - > Hurry up and go to sleep!
 - > Split phase commands
- Multi-platform

WSN - TinyOS

- Primary functions:
 - Sensing
 - Actuating
 - Communication
 - Collection
 - Dissemination

TinyOS - nesC

- TinyOS is competely programmed in nesC
 - Interfaces
 - Tasks
 - atomic
- nesC is a C dialect
- .nc
- Source code passes through a preprocessor
 - > C-code
- GCC

TinyOS

- Still very experimental & academic
- Limited support
- No development environment
 - No debugger
 - > Printf library

WSN

- Three different roles:
 - > Root Node
 - > Anchor Node
 - Blind Node

WSN

- Three different messages:
 - > Sensor
 - Location
 - Status

WSN - Sensor message

- Battery (voltage)
- Light
- Humidity
- Temperature
- Button pressed
- Mote ID

WSN - Location message

- Mote id
- Anmoteid
- VANs
- VANr
- Hop count
- RSSI

WSN - Status message

- Mote id
- Active
- AN
- Posx
- Posy
- Samplerate
- locRate
- leds
- o power
- frequency

WSN - Parser

Database

- MySQL 5.0 database
 - ODBC
 - Stored Procedures

Controller

- Core of the system
- Gatekeeper to the database
- Central gathering point
- Localization support
- Interface to SCALA

Controller - WSN Engine panel

Scala

- RTLS Middleware
 - Next presentation
- Seamless integration of different locating systems

- Engine: our system
- Middleware: Scala.Core
- GUI: SUI

Scala - Engine

Scala

- Communication happens via a WCF service
 - http
 - Several interfaces
 - Tag Information
 - Event
 - Query
 - Map
 - Roughly based on the ANSI RTLS API

Scala - Data

- Location
 - > X
 - > Y
 - Map
 - Accuracy

Scala - Data

- Temperature
- Humidity
- Light
- Button state

GUI

- Monitoring
- Controlling the WSN:
 - Active
 - Anchor node
 - Coordinates
 - Sample rate of location and sensor message
 - > Leds

GUI - Monitor

GUI - Graphs

GUI - Control panel

GUI - Options

WSN Monitor				
Monitor Graph WSN Admin Options About				
Controller	Polling rates			
IP localhost	Sensor Refreshrate 5		5000	
Port 1900	Loc. Refreshrate		1000	
Connect Disconnect	Graph Re	freshrate	5000	
SensorFetch	Control param			
SensorTimeOut	X:	Min:	Max:	
SensorFetch rate 60000		0.0	1000.0	
TimeOut Time 0_ 10:00:00	Y:	0.0	1000.0	
	LocRate:	100	50000	
	SensorRate:	1000	60000	
No Connection				.::

Overview

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Overview

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Localization

- o 2 phases:
 - Ranging + calibration
 - > Algorithms

Localization - Ranging

- RSS(d) = P(d0) 10 n $\log(d / d0)$
 - > RSS Received Signal Strength[dBm]
 - > P(d0) Path loss in dBm at a distance of d0
 - > n Path loss exponent
 - > d Distance between two nodes[m]
 - > d(0) Reference distance[m]: 1m

Configure anchor nodes with dissemination protocol

Confirmation with a status message

Broadcast in order to measure RSSI

Send back RSSI with the collection protocol

Localization – calibration (LS)

- - > RSS Received Signal Strength[dBm]

$$\begin{bmatrix} RSS1 \\ \vdots \\ \vdots \\ RSSi \end{bmatrix} = \begin{bmatrix} -1 & -10log \frac{d1}{d0} \\ \vdots & \vdots \\ \vdots & \vdots \\ -1 & -10log \frac{di}{d0} \end{bmatrix} \times \begin{bmatrix} P(d0) \\ n \end{bmatrix}$$

$$\alpha \qquad \beta \qquad \Omega$$

$$\Omega = (\beta^T \times \beta)^{-1} \times \beta^T \times \alpha$$

Localization - Algorithms

Trilateration

Min-Max

CL

• WCL

Trilateration

- Lateration needs (in theory) distance measurements from:
 - > 3 non-collinear references to compute a 2D position

Oircle:

$$(x-x1)^2 + (y-y1)^2 = r1^2$$

.

$$(x-xk)^2 + (y-yk)^2 = rk^2$$

$$2 \times \begin{bmatrix} x^{2} - x^{1} & y^{2} - y^{1} \\ \vdots & \vdots \\ xk - x^{1} & yk - y^{2} \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^{2^{2}} - x^{1^{2}} + y^{2^{2}} - y^{1^{2}} + r^{1^{2}} - r^{2^{2}} \\ \vdots & \vdots \\ xk^{2} - x^{1^{2}} + yk^{2} - y^{1^{2}} + r^{1^{2}} - rk^{2} \end{bmatrix}$$

$$\alpha \qquad \beta \qquad \qquad \beta$$

$$\Omega = \frac{1}{2} (\beta^T \times \beta)^{-1} \times \beta^T \times \alpha$$

Min-Max

Lateration is computation-heavy; a good simplification models around each anchor node a bounding box and estimates position at the intersection of boxes

Centroid localization

- Coarse grained localization
- calculate the unknown position as the centroid of the anchor nodes within their communication range

Weighted CL

 A weight is coupled to the position of each anchor node by its RSS.

$$Weight = \frac{1}{RSS^g}$$

Localization - methods

- Antenna orientation
 - Onboard External
 - > 20°
 - > Outdoor
 - > 1 & 5 meter

Algorithms (outdoor)

Overview

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Overview

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Results – Orientation

Results - Orientation

Outdoor positioning

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Conclusion

- Successfully enhanced the framework and implemented different localization algorithms
- Made a working interface to Scala
- Made a WSN Configuration Tool

 Spent too much time on the framework, too few on the algorithms

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

Future work

- Simplify the framework
- Distributed?
- Database and object integrity / ORM
- Implement interfaces with WCF
- Event-based
- C-based serial forwarder under Windows
- More algorithms!
- Implement algorithms distributed
- Find / help develop tool to make developing WSN applications more simple and less time-consuming

Live Demo!

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A

- Contributions
- Motivation
- Applications
- WSN as a RTLS
- Framework
- Localization
- Results
- Conclusion
- Future work
- Q&A