Distance Metric	Definition	Formula (Empirical Estimation)
Wasserstein Distance	Minimal transport from one distribution into another.	$\frac{1}{n}\sum_{i=1}^{n} y_{(i)}-y'_{(i)} $
Energy Distance	Difference between pairwise distances .	$\frac{2}{n^2} \sum_{i,j} y_i - y_j' _p - \frac{1}{n^2} \sum_{i,j} y_i - y_j _p - \frac{1}{n^2} \sum_{i,j} y_i' - y_j' _p$
Maximum Mean Discrepancy (MMD)	Generalisation of Energy Distance, with choice of kernel.	$\frac{1}{n(n-1)} \sum_{i \neq j}^{n} k(y_i, y_j') + \frac{1}{n(n-1)} \sum_{i \neq j}^{n} k(y_i', y_j') - \frac{2}{n^2} \sum_{i \neq j}^{n} k(y_i, y_j')$
Cramer-von Mises Distance (CvMD)	Area between the CDF of simulated and observed.	$\hat{C} = \frac{U}{2n^4} - \frac{4n^2 - 1}{12n}$ $\frac{U}{n} = \sum_{i=1}^{n} (r_{(i)} - i)^2 + \sum_{j=1}^{n} (s_{(j)} - j)^2$
Kullback-Leibler Divergence (KLD)	Log difference between densities.	$\frac{1}{n} \sum_{i=1}^{n} \ln \frac{\min_{j} \ y'_{i} - y_{j}\ }{\min_{j \neq i} \ y'_{i} - y'_{j}\ } + \ln \left(\frac{n}{n-1}\right)$

