4-1. Example: How to use PLL-IP core in Quartus

Follow "4-1 How to use PLL-IP core in Quartus.pdf" to study how to create and use PLL-IP core.

Requirements:

1. You do NOT need to include this example in your report.

4-2. Example: Simple VGA Display-1

Write a VGA driver and use the FPGA development board to drive the VGA display to display ten-color equal-width color bars. The VGA display mode is 640x480@60. The expected experimental result is the following figure.

Requirements:

- 2. Write the Verilog codes to build the required circuit.
- 3. Do the simulation to verify whether your designs and codes satisfy the required functions.
- 4. You need to test your designs in the development board.
- 5. You do NOT need to include this example in your report.

4-3. Simple VGA Display-2

Following experiment 4-2, implement a VGA driver by using the FPGA to display "M", "U", "S", and "T" on the VGA screen. The VGA display mode is 640x480@60.

Note:

- You may use some tools to generate the fonts in pixel, like "PCtoLCD2002" or some online tools (https://hungtcs-lab.github.io/text-to-lcd/#/text_processor or https://www.zhetao.com/fontarray.html).
- Do NOT forget to plan pins before download your design to the development board

Requirements:

- 1. Write the Verilog codes to build the required circuit.
- 2. Do the simulation to verify whether your designs and codes satisfy the required functions.
- 3. You need to test your designs in the development board
- 4. You need to include this experiment in your report. In your report, you need to include:
 - a) Introduction:

- i. Introduce the background. For example, you can introduce
 - what is the VGA,
 - what are the VGA interface and pins
 - VGA display principle
 - VGA timing standards
 - ..
- ii. Purpose of the experiment
- iii. Brief introduce your designs and key results
- iv. Contributions of your group members
- V. ..
- b) Materials and Methods: Show your FPGA solution. You need to show
 - i. Your designed structure block diagrams,
 - ii. Your designed signal waveforms,
 - iii. ...
- c) Results: Show your simulation and corresponding testing results. You need to show
 - i. How you build the testbenches,
 - ii. Testing inputs,
 - iii. Expected outputs,
 - iv. Actual outputs,
 - v. Differences between the expected outputs and the actual outputs,
 - vi. Expected values, actual values, and their differences of the important internal variables
 - vii. Testing results in the development board
 - viii. ...
- a) Discussions. This part is not essential in this experiment, but you can show:
 - i. If you find any bugs or problems that you can not solve in the given time, you can discuss them and show your possible solutions.
 - ii. If you find any interesting results, you can discuss them.
 - iii. ...
- d) Conclusion. You need to
 - i. Summarize all your designs and simulation results,
 - ii. Summarize the key discussions if you have
 - iii. ···
- e) References. This is a list of all the sources cited in the report, formatted according to a specific citation style. You need to use the IEEE reference format (http://journals.ieeeauthorcenter.ieee.org/wp-

content/uploads/sites/7/IEEE_Reference_Guide.pdf).

f) Appendices. This optional section can include codes, raw data, calculations, additional graphs, and other supplementary material that is relevant but not essential to the main report.