CPE201 Digital Design

By Benjamin Haas

Class 17: Latches and Troubleshooting 2

Latches

- Stores a state
 - Memory (1-bit)!
- Bistable Multivibrator
 - 2 stable states
- Feedback

SR (Set-Reset) Latch

- State machine
- S = Set
- R = Reset
- Q = Output

Truth table for an active-LOW input \overline{S} - \overline{R} latch.

Inputs		Outputs		
\overline{S}	\overline{R}	Q	$\overline{\mathcal{Q}}$	Comments
1	1	NC	NC	No change. Latch remains in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition

SR Latch

Active-HIGH input S-R latch

Active-LOW input \bar{S} - \bar{R} latch

Set

Latch starts out RESET (Q = 0).

Latch starts out SET (Q = 1).

Two possibilities for the SET operation

Reset

Latch starts out SET (Q = 1).

Latch starts out RESET (Q = 0).

Two possibilities for the RESET operation

No Change & Invalid

No-change condition

Invalid condition

Symbol & Example

(a) Active-HIGH input S-R latch

(b) Active-LOW input \overline{S} - \overline{R} latch

Logic symbols for the S-R and $\overline{S}-\overline{R}$ latch.

Debouncing Switches

Debouncing Switches

Real Chip – 74HC279A

Gated SR Latch

Now with Enable!

Example

D Latch

Data Latch – saves D state when Enable

Example

A Node

- Electrically the same on all points of the wire
- Shorts vs Opens

Checking Interconnects

Other Checks

- Power
- Ground
- Inputs
- Outputs
- Wires?

Signal Tracing

Glitches

• Any undesired short duration voltage or current spike $A \longrightarrow A \wedge \overline{A}$

- Also called a race conditio
- Most common at signal changes

Example

Point 1: waveforms on expanded time base

Strobing

Use the Enabl

Reading

- This lecture
 - Sections 5.7, 6.11, 7.1
- Next lecture
 - Sections 7.2-7.4