

Streaming Weak Submodularity: Interpreting Neural Networks on the Fly

Ethan R. Elenberg Alexandros G. Dimakis Moran Feldman The University of Texas at Austin The Open University of Israel

Amin Karbasi Yale University

BACKGROUND

Streaming Algorithm:

- ullet One pass over N input elements
- Maintain at most o(N) elements in memory $\max_{|S| \le k} f(S)$
- Worst case/random stream order
- Randomized/deterministic algorithm
- Approximation ratio $\mathbb{E}[f(S)] \ge R \cdot f(OPT)$

Assumptions:

- $f(A) \ge 0, \forall A$ Nonnegative
- Monotone $f(B \mid A) \ge 0, \quad \forall A, B$
- γ_k -weakly submodular $\gamma_r \triangleq \min_{\substack{L,S \subseteq \mathcal{N}: \ |L|,|S \setminus L| \leq r}} \frac{\sum_{j \in S \setminus L} f(j \mid L)}{f(S \mid L)}$

PROOF TECHNIQUES

• Example Function: $f_k(S) = \min\{2 \cdot |S \cap U| + 1, 2 \cdot |S \cap V|\}$

$$U = \{u_1, \dots, u_k\}$$
 $V = \{v_1, \dots, v_k\}$ $D = \{w_1, \dots, w_d\}$

$$D = \{w_1, \dots, w_d\}$$

$$(\gamma_{2k} = 0.5 , f_{\text{max}} = 2k)$$

- Worst case order begins with only elements from $U \cup D$
- ullet Sublinear streaming algorithms must drop many u before any v arrive
- Approximation ratio is arbitrarily small for large k

Approximation Ratios:

• Let ${\mathcal E}$ be the event f(S) < au (balanced if $\Pr[{\mathcal E}] = 2 - \sqrt{2 - e^{-\gamma/2}}$)

 $\mathbb{E}[f(S)] \ge (1 - \Pr[\mathcal{E}]) \cdot \tau$

 $\mathbb{E}[f(S)] \ge \frac{1}{2} \cdot \left(\gamma \cdot [\Pr[\mathcal{E}] - e^{-\gamma/2}] \cdot f(OPT) - 2\tau \right)$

• Show one instance is guaranteed to be a good approximation

FUTURE WORK

- Tighten approximation bounds
- ullet Analyze additional classes of algorithms: randomized, γ input
- Combinatorial interpretability for fairness, adversarial examples, ...

SUMMARY

Many discrete optimization applications have a very large ground set or an expensive function evaluation oracle. We design and analyze streaming algorithms for the general class of weakly submodular set functions:

- Worst case stream order: No randomized streaming algorithm using sublinear memory can maximize a 0.5-weakly submodular function with constant approximation ratio
- Random stream order: Greedy, deterministic streaming algorithm for weak submodular maximization with constant approximation ratio
- Experimental Evaluation: Nonlinear sparse regression and interpretability of black-box neural networks

EXPERIMENTAL RESULTS

Sparse logistic regression: Compute pairwise products of features as needed

Interpretability: Select image segments which maximize label's likelihood

$$\max_{|S| \le k} \text{ softmax_score}(\text{Image}_S)$$

Transfer Learning (InceptionV3 flower classification)

Original Image

Segmented Image

Interpretation for "daisy" (top label)

Comparison with LIME

STREAMING GREEDY ALGORITHMS

Discrete Derivative of a test element w.r.t. current solution:

$$f(i \mid A) \triangleq f(A \cup i) - f(A)$$

ThresholdGreedy

- Initialize $S = \emptyset$
- ullet Add incoming element u if discrete derivative exceeds threshold

$$|S| < k$$
 and $f(u \mid S) \ge \tau/k$

STREAK

- Compute running maximum singleton $f(u_m) = m$
- Run and update $\mathcal{O}(\varepsilon^{-1}\log k)$ instances of ThresholdGreedy, with exponentially spaced thresholds

$$\tau \in \{(1-\varepsilon)^i \mid i \in \mathbb{Z} \text{ and } (1-\varepsilon)m/(9k^2) \le (1-\varepsilon)^i \le mk\}$$

• Return the output of best instance or the best singleton

$$\max\{S_{I^*}, u_m\}$$

MAIN RESULTS

Worst Case Impossibility

ullet For every constant $c\in(0,1]$, there exists a 0.5-weakly submodular set function f(S) such that any randomized algorithm which uses o(N) memory to solve $\max_{|S| \le k} f(S)$ has an approximation ratio less than $\,c\,$.

Average Case Guarantees

Memory $\mathcal{O}(k)$ $\mathcal{O}(\varepsilon^{-1}k\log k)$	Algorithm	THRESHOLDGREEDY	Streak
	Approximation Ratio	$\tau \cdot (\sqrt{2 - e^{-\gamma/2}} - 1)$	$(1-\varepsilon)\gamma \cdot \frac{3-e^{-\gamma/2}-2\sqrt{2-e^{-\gamma/2}}}{2}$
	Memory	$\mathcal{O}(k)$	$\mathcal{O}(\varepsilon^{-1}k\log k)$
Running Time $\mathcal{O}(Nf)$ $\mathcal{O}(Nf\varepsilon^{-1}\log k)$	Running Time	$\mathcal{O}(Nf)$	$\mathcal{O}(Nf\varepsilon^{-1}\log k)$

REFERENCES

- [1] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. "Streaming Submodular Meets Maximization: Massive Data Summarization on the Fly." in KDD. 2014.
- [2] Abhimanyu Das and David Kempe. "Submodular meets Spectral: Greedy Algorithms for Subset Selection," in ICML, 2011. [3] Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand Negahban. "Restricted Strong Convexity Implies Weak Submodularity," in NIPS workshop on Learning in High Dimensions with Structure, 2016. https://arxiv.org/abs/1612.00804
- [4] Marco Rulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You? Explaining the Predictions of Any Classifier," in KDD, 2016.