Liquid indicator for a storage battery with a flame barrier vent filter

Patent number:

DE2511426

Publication date:

1975-09-25

Inventor:

MELONE ROBERT R

Applicant:

ILLINOIS TOOL WORKS

Classification:

- international:

H01M10/48; H01M2/12; G01F23/04; G01N9/18;

B01D35/02

- european:

G01F23/292B2, H01M2/12B, H01M10/48C

Application number: DE19752511426 19750315
Priority number(s): US19740452081 19740318

Abstract not available for DE2511426 Abstract of correspondent: **US3915753**

A liquid level indicator made of a transparent rod with an upper viewing surface and a lower reflective surface and a battery cap that surrounds the upper portion of the rod is disclosed. The upper portion of the rod carries a large diameter rim having a gas passageway formed thereon and a small diameter rim with a baffle plate disposed above the gas passageway. The cap has a circular opening that surrounds the top of the rod and a lower circular channel which allows for the venting of battery gas upwardly through the circular opening. A porous filter constructed of a material having a low heat conductivity, such as polyvinyl flouride, is retained in place in the opening by a pair of resilient beads on the cap.

Also published as:

US3915753 (A1) JP50129064 (A) FR2265070 (A1) SE7502970 (L) SE410540 (B)

more >>

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

Offenlegungsschrift 25 11 426 0 @

Aktenzeichen: **②**

P 25 11 426.5

Anmeldetag:

15. 3.75

Offenlegungstag:

25. 9.75

3 Unionspriorität:

(3)

32 33 33

18. 3.74 USA 452081

(3) Bezeichnung:

Flüssigkeitsanzeiger für eine Speicherbatterie mit einem Ventilfilter als

Flammensperre

7 Anmelder:

Illinois Tool Works Inc., Chicago, III. (V.St.A.)

0 Vertreter:

Hauck, H.W., Dipl.-Ing. Dipl.-Wirtsch.-Ing.; Schmitz, W., Dipl.-Phys.;

Graalfs, E., Dipl.-Ing.; Wehnert, W., Dipl.-Ing.; Carstens, W., Dipl.-Phys.;

Pat.-Anwälte, 2000 Hamburg u. 8000 München

7 Erfinder:

Melone, Robert R., Rockford, Ill. (V.St.A.)

2511426

DR. ING. H. NEGENDANK (-1973) · DIPL-ING. H. HAUCK · DIPL-PHYS. W. SCHMITZ DIPL-ING. E. GRAALFS · DIPL-ING. W. WEHNERT · DIPL-PHYS. W. CARSTENS HAMBURG-MÜNCHEN

ZUSTELLUNGSANSCHRIFT: 2000 HAMBURG 36 · NEUER WALL 41
PLEASE REPLY TO: TOTAL (0.40) 26 74 98 TWO 20 41 15

TELEGR. NEGEDAPATENT HAMBURG

Illinois Tool Works, Inc. 8501 West Higgins Road

8000 MÜNCHEN 2 · MOZARTSTR. 23 TELEFON (089) 5 38 05 86 TELEGR. NEGEDAPATENT MÜNCHEN

Chicago, Ill. 60631/USA

HAMBURG, 13. März 1975

Flüssigkeitsanzeiger für eine Speicherbatterie mit einem Ventilfilter als Flammensperre

In Speicherbatterien gebildete Wasserstoff- und Sauerstoffgase können sich bis zu einem Druck aufbauen, der ausreicht, um die Füllkappen von den Batterien abzudrücken, und verursachen dadurch eine mögliche Explosionsgefahr. Um diese Schwierigkeit zu überwinden, sind bereits Batteriekappen mit kleinen Öffnungen zur Abgabe der Batteriegase an die Atmosphäre versehen worden. Jedoch entsteht beim unmittelbaren Entlüften einer Batteriekappe möglicherweise ein gefährlicher Zustand, da es möglich ist, daß sich die abgegebenen Gase entzünden und dadurch eine Explosion in der Batterie verursachen. Um dieses zu überwinden, sind bereits Batterieventilstöpsel für Batteriekappen benutzt worden, welche eine peräse Struktur hatten, die dem Gas einen Durchtritt durch die Außenseite der Batterie gestattet, jedoch eine Flammensperre bildet, die ein Übergreifen der Flammen in die Batterie verhindert, selange die Batteriekappe sich auf

Batterieventilstöpsel für Batteriekappen ohne Anzeigeeinrichtungen sind bereits unter Verwendung von gesintertem Silizium-karbid hergestellt worden. Obwohl Siliziumkarbid eine Flammensperrenstruktur bietet, ist es doch ein sehr hartes Material, das leicht bricht; und die Härte des Siliziumkarbids verursacht eine große Anzehl von Problemen bei der Herstellung. Außerdem ist Siliziumkarbid ein sehr guter Wärmeleiter, und wenn eine Flamme entzündet ist, dann schmilzt die von dem Filter auf die im allgemeinen aus Kunststoff hergestellte Batteriekappe übertragene Wärme die Kappe in sehr kurzer Zeit.

Es ist daher die Aufgabe der Erfindung, ein poröses Flammensperrfilter für eine Batteriekappe zu schaffen sowie einen Flüssigkeitzstandanzeigereinbau, wobei das Filter aus einem Material relativ geringer Wärmeleitfähigkeit hergestellt ist.

Ein besonderes Merkmal der Erfindung besteht in der Schaffung eines porösen Flammensperrfilters für eine Batteriekappe und eines Flüssigkeitsstandanzeigereinbaus, webei das poröse Filter die transparente Stange umgibt; welche den Flüssigkeitsstand-anzeiger bildet und durch die natürliche Elastizität der Kappe an seinem Platz gehalten wird, nachdem die Kappe über die Stange eingesetzt wurde.

Ein besonderer Vorteil der Erfindung besteht darin, daß ein typischer Einbau aus Flüssigkeitsstandanzeiger und Batteriekappe mit einem porösen Flammensperrfilter versehem wird;
welcher um die Anseigerstange berum in der Kappe befestigt ist, während zwei Ränder zur Bildung einer Dichtung mit der

Kappe zusammenarbeiten, bei der eine der Dichtungsrippen einen Gasdurchgang aufweist, welcher dem Gas einen Durchgang dort hindurch gestattet, während der andere Dichtungsrand ein nach außen vorstehendes Leitblech besitzt, das den Gasdurchgangsweg überlagert und dazu neigt, das Entweichen von Flüssigkeit durch das poröse Sperrfilter zu verhindern.

Weitere Merkmale und Vorzüge der Erfindung gehen aus der beigefügten Beschreibung und den Zeichnungen hervor. Es zeigen:

- Fig. 1 eine perspektivische Darstellung einer Kombination aus Flüssigkeitsstandanzeiger und Hydrometer sowie Batteriekappeneinbau mit einem Filter, das gemäß der Erfindung ausgelegt ist, und
- Fig. 2 einen Teilschnitt zur Darstellung des Inneren der Kappenkonstruktion nach Fig. 1, sowie des äußeren Teils der Stange, die durch die Kappe und das Hydrometergehäuse umgeben wird, wobei eine der beiden das Gehäuse bildenden Hälften entfernt ist.

Die Zeichnungen zeigen eine Ausführungsform der vorliegenden Erfindung, die insbesendere zur Verwendung in Verbindung mit Speicherbatterien geeignet ist. Der Anzeiger besteht aus einer langgestreckten transparenten Stange 10, die aus transparentem Kunststoffmaterial, wie beispielsweise Acrylnitrilstyrel gebildet ist, und die die einfallenden Lichtstrahlen 12 empfängt, welche stangenabwärts auf die untere Reflektions-flüche 14 übertragen werden, die in der verliegenden Aus-

führungsform die Form einer konischen Fläche mit einem eingeschlessenen Winkel von 90° hat. Die Lichtstrahlen 12 werden
von einem Abschnitt der Oberfläche waagerecht herüber zum
gegenüberliegenden Abschnitt der Oberfläche reflektiert und
dann nach eben zur Sichtfläche 16 am Oberteil der Stange 10
zurückgeführt, wenn die Stange nicht in eine Flüssigkeit
eingetaucht ist. Wenn die Stange in eine Flüssigkeit eingetaucht ist, dann wird die Reflektion dadurch verhindert.
Semit seigt die Sichtfläche 16, wenn ein helles Muster an
ihr wahrgenommen wird, an, daß der Pegel des überwachten
Behälters niedrig ist.

Der Stangenanzeiger 10 kann mit einem Hydrometer von der in dem Patent Nr. 3 597 973 von Ryder gezeigten Art kombiniert werden. Das Hydrometergehäuse 18 ist an dem unteren Ende der Stange 10 so befestigt, daß die Reflektionsfläche 14 in die Öffnung 20 des Hydrometergehäuses 18 hinein vorsteht. Das Hydremetergehäuse 18 kann aus zwei Gehäusehälften 21, 22 gebildet sein, welche durch Ultraschall miteinander verschweißt werden, und zwar mit Hilfe von Vorsprüngen 24, 26 auf dem Gehäuseabschnitt 22, die sich in entsprechende Öffnungen des anderen Gehäuseabschnitts 21 hineinerstrecken. Dementsprechend nehmen die Öffnungen 28, 30 Haltestifte von dem Gehäuseabschnitt 22 auf. Das Hydrometergehäuse ist vorsugsweise aus Kunststoffmaterial gebildet, beispielsweise Acrylnitrilstyrol mit einem Füllstoff, der ihm eine schwarze Färbung verleiht, so daß es nicht transparent ist. Das unter Ende der Stange 10 ist mit einer Rippe 32 versehen, welche in eine entsprechende Ausnehmung 34 in dem Gehäuseabschnitt 21,

22 hineinpaßt. In dem Gehäuse 18 wird eine kleine Kugel von geeigneter Schwerkraft, bestehend aus einem Material wie beispielsweise Silikongummi und von vorzugsweise heller Färbung wie grün oder orange zurückgehalten. Die Kugel 36 wird durch die Abschnitte 21, 22 geswungen, sich auf swei Wegen entlangzubewegen, die im allgemeinen durch die zu beiden Seiten der Vorsprünge 42 gebildeten Öffnungen 38, 40 begrenzt simd. Wenn die Kugel sich in der in Fig. 2 gezeigten Stellung befindet, dann hat das spezifische Gewicht einen geringen Wert. Wenn der Flüssigkeitsspiegel sich in der richtigen Höhe befindet, dann erscheint auf der Sichtfläche 16 ein dunkles Sichtmuster. Wenn sich die Kugel in die in punktierten Linien gezeigte Stellung 44 unterhalb der Spitze 46 der konischen Oberfläche 14 bewegt, dann erscheint an der Sichtfläche 16 kein dunkles Muster mehr. weil die Kugel für den Betrachter nicht unsichtbar ist. Dieses zeigt an, daß der Flüssigkeitsspiegel und das spezifische Gewicht beide befriedigend sind.

Die Batteriekappe 52 der Figuren 1 und 2 ist von allgemein typischer Konstruktion und besitst einen Kußeren Abschnitt 54 und einen inneren Abschnitt 56, der einen unteren Abschnitt leicht verminderter Dicke 58 aufweist. Die Anseigerstange 10 wird von einem Rand 60 relativ großen Durchmessers umgeben, der einstückig auf der Stange geformt sein kann und die Schulter 62 des inneren Abschnitts 46 erfaßt, um die Kappe su lagern und eine Dichtung swischen dem inneren Umfang des inneren Abschnitts 56 und dem Rand 60 su bilden.

Um die Aufwärtsbewegung des Gases an dem Rand 60 vorbei zu ermöglichen, ist in dem Rand ein Gaskanal 64 vorgesehen. Oberhalb des Randes 60 ist ein zweiter Rand 66 von geringerem Durchmesser angeerdnet, der wiederum einstückig mit der Stange 10 oder getrennt ven ihr ausgebildet und daran befestigt sein kann, und welcher ein nach außen verspringendes Leitblech 68 aufweist, das über dem Gaskanal 54 in dem Rand 60 angeerdmet ist. Die Kappe 52 besitzt eine elastische nach unten vorspringende Lippe 70, die beim Einsetzen der Kappe auf die Stange 10 mach innen durchgebogen wird, so das sie eine Dicktung gegen die Oberseite 72 des Randes 60 bildet. Oberhalb der Lippe 70 ist eine Nut 76 vergesehen, die in der Stange unmittelbar unterhalb der Sichtfläcke 16 gebildet ist. Die Innenwand 74 der Kappe 52 weist eine verstehende Rippe 68 auf, welche in die Nut 76 hineinpaßt, um die Batteriekappe 52 in ihren Platz auf der Stange 10 su verriegeln.

Das peröse Flammensperrfilter 80 wird an seinem Platz in dem Gehäuse befestigt, indem man es nach unten in den eberen Teil der langgestreckten öffnung 82 bis zu dem Punkt hineimdrückt, we die Schultern 84, 86 eine Verengung der Breite der öffnung 62 verursachen, se daß die Schultern 84, 86 die Bedenfläche 88 des Filters 80 aufnehmen. Die Kappe besitzt zwei Rippen 94, 96, die einstückig mit der Kappe 52 ausgebildet sind und in das elastische Filter 80 hinein versteßen, um es fest an seinem Platz in der Kappe 52 zu befestigen. Auf diese Weise wird die Eigenfederung des Filters 80 wirksam, so daß die Rippen 94, 96 fest in das Filter 80 hineingedrückt werden, wenn die Kappe 52 in der Öffnung 82 nach unten in die in Fig. 2 gezeigte

Stellung gedrückt wird.

Das poröse Flammensperfilter 80 ist vorzugsweise aus einem Material mit geringer Wärmeleitfähigkeit gebildet. Dann wird bei Zünden einer Flamme außerhalb der Batterie über dem Filter 80 die Wärmeleitung zur Kappe 52 verzögert in der Hoffnung, daß die Flamme gelöscht werden kann, bevor die Kappe zerstört ist. Das Filter 80 wird vorzugsweise aus Pelyvinylflourid hergestellt, mit einer Porösheit in der Größen- ordnung von 200 Mikron oder weniger.

Patentansprüche 3

- gestreckte Stango aus lichtdurchlässigem Material mit einer oberen Sichtfläche und einer unteren Reflektionsfläche, eine Kappe aus elastischem Material, die über dem oberen Abschnitt der Stange befostigt ist, um die Stange in ihrem Mittelpunkt aufsumekmen, eine die Stange umgebende Öffnung, welche mit dem Inneren des überwachten Behälters und mit der umgebenden Atmosphäre in Verbindung steht, sowie ein in dieser Öffnung befostigtes peröses Flammensperrfilter, webei die Kappe aus derart elastischem Material gebildet ist, daß bei Anerdmung der Kappe auf der Stange die Eigenfederung der Kappe einem Preßsitz mit dem Filter bildet, um das Filter an seinem Plats in der Kappe zu befestigen.
- 2. Flüssigkeitsstandemzeiger nach Ansprach 1, dadurch gekennzeichnet, daß das Filter aus Polyvinylflourid besteht.
- 3. Flüssigkeitsstendamzeiger mach Amspruch 1, dadurch gekennzeichnet, daß die Stange einen die umgebenden Rand relativ
 greßen Durchmessere aufweist, der mit dem Innenumfang eines
 unteren Abschnitts der Kappe zusammenwirkt, sowie einen sie
 umgebenden Rand relativ kleineren Durchmessers, welcher über
 dem Rand großen Durchmessers derart angeordnet ist, daß er
 eine elastische Dichtlippe auf der Kappe erfaßt, webei der
 Rand greßen Durchmessers eine Gasdurchgangsöffnung sum
 Durchtritt von Gas nach eben aufweist und der Rand kleinen

Durchmessers ein mit der Gasdurchgangsöffnung fluchtendes vorstehendes Leitblech aufweist.

- 4. Flüssigkeitsstandanzeiger nach Anspruch 3, dadurch gekennzeichnet, daß das Filter aus Pelyvinylfleurid besteht.
- 5. Flüssigkeitsstandanseiger gekennseichnet durch eine langgestreckte Stange aus lichtdurchlässigem Material mit einer
 oberen Sichtfläche und einer unteren Reflektiensfläche,
 einer die Stange umgebenden Kappe mit einer darin befindlichen Öffnung, welche die Stange umgibt und mit dem
 Inneren des überwachten Behälters und der umgebenden Atmesphäre in Verbindung ist, sewie einem perösen Flammensperrfilter, der aus Pelyvinylfleurid besteht und in diese
 Öffnung eingesetzt ist.
- 6. Flüssigkeitsstandanzeiger nach Anspruch 5, dadurch gekennzeichnet, daß die Stange einen sie umgebenden Rand ven relativ großem Durchmesser hat, der mit dem Innenumfang eines unteren Abschnitts der Kappe in Verbindung ist, sowie einen Rand von relativ kleinerem Durchmesser um die Stange herum, welcher oberhalb des Randes großen Durchmessers angeordnet ist, um eine elastische Dichtungslippe auf der Kappe zu erfassen, webel der Rand großen Durchmessers eine Gasdurchlaßdffnung aufweist, die es dem Gas gestattet, sich dert hindurch nach oben zu bewegen, und der Rand kleineren Durchmessers ein mit der Gasdurchgangsöffnung fluchtendes vorstehendes Leitblech aufweist.

19 Leerseite

BEST AVAILABLE COPY