Table of Contents

- 1. <u>Data Science Lifecycle</u>
- 2. Python Fundamentals
 - 3. Central Tendency
- 4. Pandas Fundamentals
 - 5. <u>Distributions</u>
 - 6. Data Visualization
- 7. Seaborn Fundamentals
 - 8. Data Collection
 - 9. HTML
 - 10.<u>CSS</u>
 - 11. JavaScript
 - 12. <u>D3</u>
- 13. Data Stories: Introduction
- 14. Data Stories: Central Insights
 - 15. Data Stories: Narrative

Data Science Lifecycle

- 1. Data scientists use techniques to transform data into a visual representation that can be easier to understand by humans
- 2. Data science platform market is expected to grow by upwards of 20% annually.
- 3. Data science generally falls under math, statistics, and computer science.
- 4. The Life Cycle
 - a. Question
 - b. Collect Data
 - c. Wrangle Data
 - d. Analyze Data
 - e. Visualize Information
 - f. Communicate Information
- 5. All steps in the life cycle are all fluid

9/5/23

Python Fundamentals

- 1. Datasets
 - a. The collection of data
 - b. Types of datasets
 - i. Lists
 - 1. Ordered, changeable, duplicates allowed
 - ii. Dictionaries
 - 1. Ordered, changeable, duplicates not allowed
 - iii. Sets
 - 1. Unordered, unchangeable*, duplicates not allowed
 - iv. Tuples
 - Unordered, unchangeable, duplicates allowed
- 2. Representing datasets with code
 - a. Column-oriented
 - Grouping by features
 - b. Row-oriented
 - i. Grouping by a single observation

3. Indexing

- a. Used to access values of a collection type
- b. Python syntax to access values
 - i. List
 - name[index]
 - ii. Dictionary
 - 1. name[key]
 - iii. Set
 - 1. for loop
 - iv. Tuple
 - 1. Name[index]

4. Iteration

- a. Can repeat processes with loops or recursion in Python
- b. Python loop types
 - i. While loop
 - 1. while condition: statements
 - ii. For loop
 - 1. for thing in collection: statements

5. Useful methods

- a. Dictionaries
 - i. values()
 - ii. items()
 - iii. keys()
- b. <u>Lists</u>
 - i. len()
 - ii. append()
 - iii. sort()
- c. Other
 - i. range()
 - ii. print()
 - iii. split()
 - iv. type()
 - v. int()
 - vi. str()

Central Tendency

- Measures of Central Tendency
 - Statistical measures that help describe the behavior of a collection of data points
 - b. Mean
 - i. The average of all the values in a dataset
 - ii. Summation of all the values, divided by the count of values
 - iii. Can be misleading, because outliers skew the result
 - c. Median
 - i. The value in the direct center of a sorted dataset
 - ii. Gives a more proportional representation of data that excludes outliers
 - d. Mode
 - i. The most frequently occurring value in a dataset
 - ii. Most useful in a relatively large sample size
- 2. The center of a dataset is a good measure of determining the behavior or distribution of a dataset
 - a. Gives examples of a whole dataset, not data points individually.
- 3. Distribution
 - a. Shows how often data occurs in a dataset
- 4. Outliers
 - a. Unusually large or small values
 - b. Skew the result of a mean in a dataset
- 5. Bimodal
 - a. When two values are most common
- 6. Unimodal
 - a. When one value is the most common value
- 7. Symmetric distribution
 - a. When the mean and median are the same
- 8. Skewed distribution
 - a. When the dataset is offset by outliers, causing the mean to be an inaccurate representation of the population

Pandas Fundamentals

- 1. Pandas
 - a. Pandas is a python library that can make analyzing data easier.
- 2. Dataframes
 - a. A pandas object that is used to store a dataset
 - b. Information is organized in rows and columns
 - c. Dataframs simplify common operations such as sorting data
- 3. Series
 - a. A pandas object used to create dataframes
 - b. Seen as a one-dimensional list of data
 - i. Think of it as a single column of a dataframe
- 4. Indexing into Dataframes
 - a. df.loc[]
 - i. name.loc[row_label, col_label]
 - b. df.iloc[]
 - i. name.iloc[row_index, col_index]
- Selection
 - a. The process of accessing a subset of a dataframe
 - b. Can select subsets using loc and iloc
- 6. Filtering
 - a. Selecting values of a dataset where certain conditions are true
 - b. df[condition]
- 7. Combining Dataframes
 - a. Concatenating
 - i. Naively combines along an axis
 - b. Merge
 - i. Combine through a shared column
 - c. Join
 - i. Combine using shared indices
 - ii. Inner Join
 - 1. Keep similar pieces
 - iii. Left Outer Join
 - 1. Keep the left
 - iv. Right Outer Join
 - 1. Keep the right

- v. Full Outer Join
 - 1. Keep everything

9/19/23

Distributions

- 1. Distributions
 - a. Graphs that tell us about some characteristic of a population
 - b. Mean and median are important parts of the graphs
 - c. Tells us about the shape and spread of data
- 2. Normal distribution
 - a. The mean, median, and mode are all the same
 - b. Empirical Rule
 - i. 68% of data is within 1 standard deviation from the mean
 - ii. 95% within 2 standard deviations
 - iii. 99.7% within 3 standard deviations
 - c. Unimodal
 - i. Only one peak
- 3. Standard deviation
 - a. The average distance between any point and the mean
- 4. Skewed distribution
 - a. Skew is towards outliers
 - i. Can be seen on graphs by a "tail"
- 5. Bimodal
 - a. Has two peaks on a graph
- 6. Uniform distribution
 - a. Each value has the same frequency

10/2/23

Data Visualization

- 1. Data Visualizations
 - a. A graph or picture that helps humans understand important patterns in a dataset

Seaborn Fundamentals

- 1. Seaborn
 - a. A python library that can make visualizing data easier
- 2. Bar Charts
 - a. A graph type that uses bars to depict a value associated with a category
- 3. Histogram
 - a. A graph that shows the frequency distribution of a variable in a dataset
- 4. Scatterplots
 - a. A graph that uses points to show the relationship between 2 quantitative variables in a dataset.

10/13/23

Data Collection

- 1. Techniques
 - a. Observe a sample
 - b. Survey a sample
 - c. Experiment on a sample
 - d. Use data that somebody else has responsibly collected
- 2. Sourcing Digital Datasets: API Requests
 - a. The act of using HTTP requests in order to access datasets collected and maintained by other people
 - b. Common HTTP requests:
 - i. GET
 - 1. Requests for information
 - 2. Only retrieves data
 - 3. Does not modify data
 - ii. POST
 - 1. Modify the underlying data
 - 2. Create new resources
 - iii. PUT
 - 1. Modify the underlying data
 - 2. Update existing resources

- iv. DELETE
 - 1. Remove existing resources
- 3. Sourcing Digital Datasets: Web Scraping
 - a. The act of extracting data from websites using the structure of its HTML
 - b. Scraping and crawling exists in legal gray zones
 - i. The TOS determines the legality of web scraping

10/30/23

HTML

- 1. Hypertext Markup Language
 - a. Used to display content on a webpage
 - b. Look for angled brackets <>!
- 2. General Page Structure
 - a. Two major sections
 - i. Head
 - 1. Contains important metadata
 - ii. Body
 - 1. All content that is seen on a page
- 3. Tag Structure
 - a. HTML is made up of tags
 - b. Each tag does something different
 - c. Most have an opening and closing tag
 - d. Example:
 - i. <h1>Content</h1>
 - 1. Gives a large heading
- 4. Tag Attributes
 - a. Some tags need more information in order to work
 - i. To do this, you need to use attributes.
 - 1. Example:
 - a.
- 5. Important Metadata Tags and Attributes
 - a. Tags:
 - i. <title>?</title>
 - ii. <meta name = "?" content = "?">
 - iii. k rel = "?" href = "?">

- b. Attributes
 - i. alt = "description"
 - ii. lang = "?"
- 6. Accessibility
 - a. We want to make sure that our websites are accessible to as many people as possible
 - i. Use these practices
 - b. Considerations
 - i. Low bandwidth users
 - ii. Visually impaired users
 - iii. Low English proficiency users

11/7/23

CSS

- 1. Cascading Style Sheets
 - a. Used to style the content on a web page
 - b. Look for curly braces {}!
- 2. General Structure
 - a. Two major sections
 - i. Selector
 - 1. Targeted HTML tag
 - a. General
 - b. Class
 - c. ID
 - ii. Property
 - 1. Style to be applied
- 3. Class Selectors
 - a. Used to select a subset of the HTML tags used
 - b. Has more priority than the generic HTML tag selector
 - c. Start selector with a period (.) in order to use
- 4. ID Selectors
 - a. Used to style a single HTML tag used
 - b. Has the most priority of all selectors
 - c. Start selector with a hashtag (#) in order to use
- 5. The Box Model

- a. Every HTML Tag makes a box
- b. Boxes can be styled with CSS to change the default layout of every webpage
- 6. Accessibility
 - a. We want to make sure that our websites are accessible to as many people as possible
 - i. Use these practices
 - b. Considerations
 - i. Low bandwidth users
 - ii. Visually impaired users
 - iii. Low English proficiency users

11/13/23

JavaScript

- 1. JS
- a. JavaScript is the programming language of the web
- b. Used to give websites behavior

11/21/23

D3

- 1. <u>D3</u>
 - a. A JavaScript library that is used to create beautiful and interactive data visualizations

12/4/23

Data Stories: Introduction

- 1. What purpose does an introduction serve?
 - a. Allows the audience to know the question being asked
 - b. Provides context and important background information to the topic
 - c. Hooks the reader, tailored towards audience
 - d. Outlines how the question will be answered

- e. Defines the tone and flow of the narrative
- 2. Characteristics of a strong introduction
 - a. Includes at least one piece of background information
 - b. Includes a hook (appealing and engaging UI/UX, intriguing content)
 - c. Concise and short (try to keep around a paragraph)
 - d. Presents the question or topic, but intentionally keeps out data and answer to force user engagement
 - e. Builds credibility (certifications, data sources, past projects, reference personal anecdotes)

12/8/23

Data Stories: Central Insights

- 1. Importance of a clear central insight
 - a. Gives story direction
 - b. Helps the writing process because it lets you know where to go
 - c. Maintains focus
 - d. Explicitly defines takeaways to let the reader know what to do with the information
 - i. Helps readers grasp the point of the story
 - ii. Tells readers what they action they should take regarding the information
 - iii. Ensures that readers are concluding what you want them to conclude
 - e. Without a central insight, there is no point to writing a data story
- 2. Characteristics of a great central insight
 - a. Clear and comprehensible
 - i. Think about grammar
 - ii. Engaging
 - b. Actionable
 - i. Should be relevant to the audience you want to present to
 - 1. Relevance builds throughout the story
 - c. Comprehensive
- 3. What to avoid in a central insight
 - a. Bad grammar (not understandable / not clear)
 - b. Don't include the raw analysis

- Simplify the analysis in a way that makes the next steps easy to understand
- c. Too long / not engaging
- d. Don't be vague
 - i. Make sure you list set takeaways
- e. Doesn't relate to question or analysis (off-topic)
 - i. Don't show bias
 - ii. Make sure you are honest!
- f. Don't be too general
 - The insight should be actionable by most people, but being too general makes it not specific enough for there to be an effective actionable insight.

12/12/23

Data Stories: Narrative

- 1. Narrative Structures
 - a. Aristotle
 - i. Beginning, Middle, End
 - b. Freytag's Pyramid
 - i. Aristotle, but with exposition and resolution
 - ii. Has inciting action to go from exposition to rising action
 - iii. Has resolving action to go from falling action to conclusion/resolution
 - c. Campbell's Hero Journey
 - i. Focuses on the development of a hero over time
 - ii. 3 stages
- 2. Story Points
 - a. Change Over Time
 - i. Shows how a variable changes over a given period of time
 - b. Relationship
 - i. Shows how variables impact each other
 - c. Intersection
 - i. Shows when variables surpass or fall below other variables
 - d. Project Forward

- i. Predicts what will happen in the future using trends found in the data
- e. Compare and Contrast
 - i. Shows how two variables are similar or different
- f. Drill Down
 - i. Start high-level or broad, and then get more specific
- q. Zoom Out
 - i. Start specific, and show how that trend applies at a higher-level
- h. Cluster
 - i. Describes what data has in common
- i. Outlier
 - i. Describes a difference in a trend- something that is uncommon