Az informatikai biztonság alapjai

Pintér-Huszti Andrea

2020. szeptember 6.

Tartalom

- Fizikai védelem
 - Fizikai fenyegetések
 - Természeti csapások
 - Környezeti fenyegetések
 - Technikai fenyegetések
 - Emberi fizikai fenyegetések
 - Fizikai preventív, detektív, helyreállító kontrollok

Fizikai védelem

Fizikai védelem

- A fizikai védelem feladata azon fizikai erőforrások védelme, melyek az adatok tárolását, feldolgozását, továbbítását biztosítják. A védelmi intézkedések többsége preventív vagy detektív.
- Fizikai infrastruktúra (általános fogalom):
 - Informatikai rendszer hardver elemei: Adatfeldolgozó és tároló eszközök, adatátviteli és hálózati elemek és offline tároló eszközök. Ide soroljuk az informatikai rendszer dokumentációit is.
 - **Épületek**: Épületek, ahol az informatikai rendszer fizikai elemei megtalálhatóak.
 - Kiszolgáló rendszerek: Elektromos vezetékek, kommunikációs hálózatok,víz- és gázvezetékek.
 - Személyzet: Azon személyek, melyek az informatikai rendszer használói, fenntartói vagy működtetői.

Fizikai fenyegetések kategóriái

- Környezeti fenyegetések, természeti csapások
- Technikai fenyegetések
- Emberi fenyegetések

Természeti csapások

Tornádó forgószél

- szerkezeti kár, épületek tetejét veszélyezteti, kültéri berendezések sérülése, elvesztése
- a szél és repülő tárgyak okozhatnak kárt
- helyi közmű, és kommunikáció ideiglenes elvesztése
- a közmű szolgáltatások gyors helyreállítása követi

Trópusi ciklonok hurrikánok, trópusi viharok, tájfunok

- jelentős szerkezeti károk és kültéri berendezések sérülése
- közmű szolgáltatások, kommunikáció sérülése
- személyzet vészhelyzeti ellátása szükséges, generátor szükséges

Table 16.2 Fujita Tornado Intensity Scale

Category	Wind Speed Range	Description of Damage
F0	40–72 mph 64–116 km/hr	Light damage. Some damage to chimneys; tree branches broken off; shallow-rooted trees pushed over; sign boards damaged.
F1	73–112 mph 117–180 km/hr	Moderate damage. The lower limit is the beginning of hurricane wind speed; roof surfaces peeled off; mobile homes pushed off foundations or overturned; moving autos pushed off the roads.
F2	113–157 mph 181–252 km/hr	Considerable damage. Roofs torn off houses; mobile homes demolished; boxcars pushed over; large trees snapped or uprooted; light-object missiles generated.
F3	158–206 mph 253–332 km/hr	Severe damage. Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off ground and thrown.
F4	207–260 mph 333–418 km/hr	Devastating damage. Well-constructed houses leveled; structures with weak foundation blown off some distance; cars thrown and large missiles generated.
F5	261–318 mph 419–512 km/hr	Incredible damage. Strong frame houses lifted off foundations and carried considerable distance to disintegrate; automobile-sized missiles fly through the air in excess of 100 yards; trees debarked.

Table 16.3 Saffir/Simpson Hurricane Scale

Category	Wind Speed Range	Storm Surge	Potential Damage
1	74–95 mph 119–153 km/hr	4–5 ft 1–2 m	Minimal
2	96–110 mph 154–177 km/hr	6–8 ft 2–3 m	Moderate
3	111–130 mph 178–209 km/hr	9–12 ft 3–4 m	Extensive
4	131–155 mph 210–249 km/hr	13–18 ft –5 m	Extreme
5	>155 mph >249 km/hr	>18 ft >5 m	Catastrophic

Természeti csapások

Földrengés

- teljes rombolás, jelentős, hosszú ideig fennálló kár informatikai renszer épületeiben
- hardver, közmű, infrastruktúra megsemmisülése, megemelt padlók összeomlása
- személyzetet veszélyeztetik a törött üvegek, repülő tárgyak

Jégvihar

- Informatikai rendszer épületeinek megrongálódása
- közmű és kommunikáció megsérülése

Természeti csapások

Villám "Felhős nap volt, a szomszéd faluban villámlott. Mivel én közel lakom , ezért a telefonvonalaim a szomszéd faluba csatlakoznak. Elektromos lökéshullám érkezett...a modemem lángra kapott." (www.pcszerviz.com)

- egyszerű becsapódástól a katasztrófáig terjedhet
- elektromos vezetékek megsérülése, tűz keletkezhet

Árvíz

- árterületen, illetve alacsony szinten levő berendezések veszélyeztetettek
- hosszú ideig tartó sérülés, komoly takarítás szükséges

Környezeti fenyegetések - Nem megfelelő hőmérséklet

Olyan környezeti feltételek, melyek korlátozzák vagy megszakítják az informatikai rendszer szolgáltatását, vagy a tárolt adatokat

Nem megfelelő hőmérséklet

O A legtöbb számítógépes rendszert

10 és 32 fok közötti hőmérsékleten kell tárolni.

- Ezen az intervallumon kívül az erőforrás továbbra működőképes, de lehet, hogy nem megfelelő eredményeket ad.
- Ha a környezet hőmérséklete nagyon magas lesz, a számítógép nem lesz képes megfelelően hűteni magát és a belső komponensek sérülhetnek.
- Ha a hőmérséklet túl alacsony, bekapcsolásnál a rendszer hőtani sokkon esik át, mely integrált áramkörök sérüléséhez vezethet.
- Okostelefonok, digitális kamerák, táblagépek és laptopok stb. akkumulátorainak kapacitása is csökken, ha túl meleg vagy túl hideg van

Table 16.4 Temperature Thresholds for Damage to Computing Resources

Component or Medium	Sustained Ambient Temperature at which Damage May Begin
Flexible disks, magnetic tapes, etc.	38 °C (100 °F)
Optical media	49 °C (120 °F)
Hard disk media	66 °C (150 °F)
Computer equipment	79 °C (175 °F)
Thermoplastic insulation on wires carrying hazardous voltage	125 °C (257 °F)
Paper products	177 °C (350 °F)

Source: Data taken from National Fire Protection Association.

Környezeti fenyegetések - Nem megfelelő hőmérséklet és páratartalom

- Az eszköz belső hőmérséklete
 - A belső hőmérséklet jelentősen nagyobb, mint a szoba hőmérséklete
 - Saját hűtésük külső feltételektől is függ: pl. külső hűtés léte
- Magas páratartalom
 - A hidegből a meleg épületbe érve sincsenek azonnal biztonságban az eszközök, ekkor ugyanis pára csapódhat le a belsejükben.
 - Magas pára korróziót okozhat.
 - A vízcsepp a mágneses és optikai tárolókat is veszélyezteti.
 - A vízcseppek zárlatot okozhatnak az alkatrészekben. (vízálló táblagépek és okostelefonok)

Környezeti fenyegetések - Sztatikus elektromosság

"Összesen annyit csináltam, hogy leültem az éppen működő gépem mellé, és hoppá!. Amikor rátettem a kezemet az egérre, akkor az egér sztatikusan feltöltődött, miközben egy kicsit engem is megrázott. Az egér és a billentyűzet nem működtek tovább és észrevettem, hogy az egér elkezdett felmelegedni. Újraindítottam a PC-t, de amikor újrabootolt, nem működött sem, az egér sem a billentyűzet. Ezután, az egér annyira felmelegedett, hogy nem lehetett hozzányúlni!" (http://www.pcszerviz.com)

- Sztatikus elektromosság
 - A sztatikusan feltöltött személyek, tárgyak kárt okozhatnak az elektromos eszközökben.
 - Már a 10 voltos kisülések is kárt okozhatnak az áramkörökben.
 - Több száz voltos kisülések jelentős kárt okozhatnak.
 - Az emberi test jóval több elektromos ellenállás tárolására alkalmas, mint egy átlagos IC. Az emberi sztatikus kisülések több ezer voltot is elérhetik.

Környezeti fenyegetések - Tűz-, füst- és vízkárok

Tűz, füst

- emberi életre és a berendezésekre is vonatkozó fenyegetés
- a közvetlen láng és a hő is veszélyforrás
- mérgező gázok felszabadulása veszélyes az emberekre nézve
- tűzoltásból keletkező vízkár
- füstkár

Víz

- a számítógépes eszközöket, papírokat, elektromos tároló eszközöket veszélyezteti
- elektromos rövidzárlat keletkezhet
- mozgó vizek: vízvezetékek, eső, hó, jég okozta víz
- ha vízhálózat két szinttel van feljebb, akkor már nem annyira kockázatos
- árvíz sárt hagy maga után, nagyon nehéz a kitakarítása

Környezeti fenyegetések - Por

Por

- Általában ezzel a fenyegetéssel kevésbé foglalkozunk.
- A por és kosz mindenütt megtelepszik.
- Nagyobb a fenyegetés, ha környezetünkben kontrolált épület rombolások, vagy vihar van.
- Szellőzőréseken át bejutó por eltömíti a levegő szabad áramlásának útját, ezért a belső ventilátor nem tudja kellő hatékonysággal hűteni a működése során forróvá váló processzort.
- Megjegyzés: Laptopokat állandó hordozása miatt évente egyszer ki kell takaríttatni.

Rovarfertőzés

- élő organizmusok is fenyegetések: rovarok, penész, rágcsálók
- A penész mind a személyzetre, mind a berendezésekre is vonatkozó veszélyforrás.

Technikai fenyegetések - Elektromos teljesítmény

Feszültséghiány

- A berendezés kevesebb feszültséget kap, mint amennyire szüksége van a normál működéshez.
- A legtöbb számítógép ellenáll a kb. 20%-os feszültséghiánynak, még nem áll le, nem történik működésbeli hiba.
- Nagyobb feszütséghiány leállítja a rendszert.
- Komolyabb kár sérülés nem keletkezik, csak a szolgáltatás szakad meg.

Túlfeszültség

- áramszolgáltatási anomáliák, villámcsapás okozhatja
- processzorokban, memóriákban okozhat kárt

Technikai fenyegetések - Elektromágneses Interferencia

- Elektromágneses Interferencia Elektromos eszközök, más számítógépek elektromos zajt generálnak, mely kárt okozhat a saját számítógépünkben.
 - Ez a zaj a térben és elektromos vezetékeken is továbbítódik.
 - Zaj eredhet a közeli mikrohullámú antenna, vagy akár mobiltelefon révén is.

Emberi fizikai fenyegetések

Az emberi fizikai fenyegetések kevésbé kiszámíthatóak, mint más fizikai fenyegetések. Az emberek a rendszer leggyengébb pontjait keresik.

Jogosulatlan fizikai hozzáférés • Szerverek általában lezárt területen vannak, ahova való bejutás korlátozott. Néhány alkalmazottnak van jogosultsága.

> Jogosulatlan fizikai hozzáférés lopáshoz, vandalizmushoz és visszaéléshez vezethet.

Lopás

- berendezések eltulajdonítása, adatok megszerzése
- csatorna lehallgatása is ide tarozik

Vandalizmus

• berendezések tönkretevése

Visszaélés

• az erőforrások jogosulatlan használata

Fizikai preventív kontrollok

Általános preventív védekezés: felhők használata

- lokálisan lényegesen kevesebb erőforrásra van szükség
- a nagy mennyiségű adatok lokálisan nincsennek fizikai fenyegetéseknek kitéve

Cloud computing

Fizikai preventív, detektív kontrollok - Környezeti fenyegetések

Nem megfelelő hőmérséklet és páratartalom • Mérőeszközök segítségével a megfelelő környezetet el lehet érni. Ha az érték túllép a megengedett határon, akkor jelez is.

Vízkár

- Vízérzékelők elhelyezése a padlón és az emelt padlók alatt.
- Víz esetén automatikusan le kell, hogy kapcsolódjon az áram.

Por

 Ventillátor szűrő karbantartása és a helyiség tisztán tartása.

Fizikai preventív, detektív kontrollok - Környezeti fenyegetések

- Tűz, füst Tűzjelzők, megelőző intézkedések, tűz oltása Ritkán keletkezik katasztrófális tűz egy jól védett számítógépes helyiségben. Úgy kell a helyiséget kiválasztani, hogy minimális legyen a környezetében keletkező tűz, víz, füst kockázata. Védelmi intézkedések:
 - Közös falak legalább egy óra hosszat tűzálló legyenek.
 - Légkondicionállók úgy legyenek megtervezve, hogy a tüzet ne terjesszék.
 - Gyúlékony anyagokat ne tároljunk a helyiségben.
 - Kézi tűzoltókészülék legyen elérhető, egyértelműen jelezve, és rendszeresen tesztelt.
 - Automata tűzoltó rendszer is legyen telepítve.

Fizikai preventív, detektív kontrollok - Környezeti fenyegetések

Tűz, füst További intézkedések:

- Tűzjelzők vészjelet adjanak le a helyiségben és külső felügyeletnek is.
- Főkapcsoló szükséges és egyértelműen jelezve legyen.
- Menekülési útvonalak ki legyen függesztve.
- Fontos adatok, dokumentumok tűzálló kabinetben legyenek.
- Az adatok, programok up-to-date másolata más helyiségben legyen.
- Biztosítási cégek, tűzoltóság vizsgálja át az épületet.

Fizikai preventív, detektív kontrollok - Technikai fenyegetések

- Elektromos teljesítmény, Elektromágneses interferencia Szünetmentes tápegység kapcsolása minden egyes kritikus berendezéshez.
 - Szünetmentes tápegység elektromos áramot biztosít, ha megszűnik a hálózati áramforrás, áramingadozás van, vagy áramszünet lép föl.
 - A szünetmentes tápegység áthidalási ideje néhány perctől pár óráig terjed. Hosszabb kimaradások esetén generátor szükséges.

Fizikai preventív, detektív kontrollok - Emberi fenyegetések

- Csak az arra jogosult léphet be az épületbe. Nem vonatkozik az alkalmazottakra, jogosulatlan belső támadókra.
- Erőforrásokat tegyük zárható tárolókba, széfekbe, szobákba.
- Berendezéseket rögzítsük olyan tárgyakhoz, melyeket nem lehet elmozdítani.
- Mozdítható berendezéseket nyomkövetővel láthatunk el, mely jelzi, ha elhagyja a területet.
- Hordozható eszközök nyomkövetővel való ellátása, mely állandó monitorozást tesz lehetővé.
- A megfigyelő rendszer része az épületnek. Ezek a rendszerek valós idejű távoli megfigyelést és rögzítést jelent.

Fizikai helyreállító kontroll

Helyreállító kontroll A helyreállító kontroll hasonlít a *korrektív* kontrollhoz, csak komolyabb helyzetekben alkalmazzuk.

- A legfontosabb helyreállító intézkedés a másolatok készítése: Backups.
- A másolatok nem védenek az esetleges bizalmassági sérülésekkel szemben, de az adatok visszaállíthatóak.
- Hot site: Közel valós idejű szinkronizálással készített másolat, mely képes egyből átvenni a szolgáltatást.
- A víz, a füst, a tűz maga után hagy maradványokat, melyeket el kell takarítani.
 Speciális tisztítókat kell hívni.

