Lista de Exercícios – 1ª Unidade

Cálculo Diferencial e Integral 3 - Professor João Gondim

01. Considere a curva parametrizada por

$$\alpha(t) = \left(e^{t/2}\cos t, e^{t/2}\sin t\right), \qquad 0 \le t \le \frac{\pi}{2}.$$

- (a) Ache ds, o elemento de comprimento de arco da curva parametrizada α .
- (b) Calcule o comprimento desta curva.
- (c) Calcule

$$\int_{\alpha} y ds$$
.

02. Considere a curva C parametrizada por

$$r(t) = \left(\cos(t) + t \sin(t), \sin(t) - t \cos(t), \frac{1}{2}t^2\right), \qquad 0 \le t \le \ell$$

- (a) Para cada valor do parâmetro t encontre um vetor tangente e um vetor tangente unitário no ponto correspondente de C.
- **(b)** Encontre o comprimento da curva C.
- (c) Existe algum $a \in [0, \ell]$ tal que r(0) = r(a)? Justifique sua resposta.
- (d) Se f(x, y, z) = z, calcule $\int_C f(x, y, z) ds$.
- (e) Calcule a integral de linha $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$, onde $\vec{F} = x\vec{\imath} + y\vec{\jmath} + z^2\vec{k}$.

03. Seja C o quarto de elipse de equação

$$\frac{x^2}{16} + \frac{y^2}{25} = 1, \qquad x \ge 0, y \ge 0,$$

ou seja, aquele trecho da elipse localizado no primeiro quadrante, e considere a função escalar $f(x,y) = \frac{9}{10}xy$, definida em \mathbb{R}^2 .

- (a) Encontre uma parametrização r(t) de \mathcal{C} , o vetor tangente r'(t) e um vetor normal N no ponto r(t).
- **(b)** Calcule a integral $\int_C f(x,y)ds$ em relação ao comprimento de arco.
- (c) Calcule a integral $\int_C f(x,y)dy$ em relação à variável y.

04. Calcule o comprimento da curva C de parametrização $r(t) = (e^{t/2\pi} \cos t, e^{t/2\pi} \sin t)$ do ponto (1,0) ao ponto (e,0).

05. Sendo $\vec{F}(x,y,z) = (x,0,yz^2)$ e C o segmento de reta de A = (1,2,3) a B = (0,1,2), calcule

$$\int_C \vec{F} \cdot d\vec{r}$$

06. Considere a cicloide de parametrização $r(\theta) = (a(\theta - \sin \theta), a(1 - \cos \theta))$.

- (a) Calcule o comprimento do arco da cicloide para $0 \le \theta \le \pi$. Dica: Use a identidade $\operatorname{sen}\left(\frac{\theta}{2}\right) = \sqrt{\frac{1-\cos\theta}{2}}$.
- **(b)** Seja r(s) = (x(s), y(s)) a reparametrização pelo comprimento de arco da cicloide partindo de $\theta_0 = 0$. Encontre y(s).
- **07.** Considere a curva C de parametrização $r(t) = \left(\sin t t \cos t, \cos t + t \sin t, \frac{1}{2}t^2 \right)$, com $t \ge 0$.
 - (a) A curva está parametrizada pelo comprimento de arco? Justifique.
 - **(b)** Determine a função comprimento de arco a partir do ponto P = (0, 1, 0) no sentido de t crescente.
 - (c) Ache as coordenadas de um ponto Q da curva cuja distância, **sobre a curva**, ao ponto $P \in \pi^2/\sqrt{2}$.
- **08.** Seja γ a curva de interseção dos cilindros $x^2 + z^2 = 16$ e $y^2 + z^2 = 16$ entre os pontos $A = (2, 2, 2\sqrt{3})$ e $B = (2\sqrt{3}, 2\sqrt{3}, 2)$ e seja $\vec{F}(x, y, z) = (x^2 + z^2, x^2 + y^2, y^2 + z^2)$.
 - (a) Parametrize γ no sentido de A para B.
 - **(b)** Calcule $\int_C \vec{F} \cdot d\vec{r}$.
- **09.** Seja \vec{F} o campo de vetores em \mathbb{R}^3 dado por

$$\vec{F}(x, y, z) = (yz\cos(xz) + 1, \sin(xz) + 2, xy\cos(xz) + 3)$$

- (a) Determine um potencial para \vec{F} .
- **(b)** Calcule $\int_{\alpha} \vec{F} \cdot d\vec{r}$, onde α é o segmento de reta determinado pelos pontos A = (0,0,1) e B = (1,1,1).
- (c) Calcule a integral acima, desta vez sem usar o potencial do campo \vec{F} .
- **10.** Considere o campo vetorial $\vec{F}(x,y,z) = (2xyz + 1, x^2z + z, x^2y + y)$.
 - (a) Determine uma função potencial para \vec{F} .
 - **(b)** Calcule a integral de linha de \vec{F} ao longo da curva dada pela interseção do paraboloide $z = 4 x^2 y^2$ com o plano x y = 0, com $z \ge 0$.
- **11.** Seja C a curva dada pela interseção do cilindro $x^2 + y^2 = 1$ com a superfície $z = e^{xy}$, na região do espaço onde $x \ge 0$ e $y \ge 0$. Considere o campo de força

$$\vec{F}(x, y, z) = (yz^2, xz^2 + 1, 2xyz).$$

- (a) Encontre uma parametrização r(t) de \mathcal{C} , um vetor tangente a \mathcal{C} no ponto r(t) e os extremos de \mathcal{C} .
- **(b)** Encontre um potencial f(x, y, z) de $\vec{F}(x, y, z)$.
- (c) Calcule o trabalho feito pelo campo $\vec{F}(x,y,z)$ para mover uma partícula ao longo de C, utilizando o Teorema Fundamental do Cálculo para integrais de linha.
- 12. Considere o campo de vetores

$$\vec{F}(x,y) = \left(\frac{3x}{\sqrt{x^2 + y^4}}, \frac{6y^3}{\sqrt{x^2 + y^4}}\right).$$

- (a) Ache um potencial para \vec{F} .
- **(b)** Calcule o trabalho realizado por \vec{F} ao deslocar uma partícula ao longo do arco de circunferência $y = \sqrt{1 x^2}$ do ponto A = (1, 0) até o ponto $B = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
- 13. Considere o campo vetorial

$$\vec{F}(x,y) = \left(\frac{y^2}{1+x^2}, 2y \arctan(x) + 1\right).$$

- (a) $\vec{F}(x,y)$ é conservativo? Justifique sua resposta.
- **(b)** Determine uma função f tal que $\vec{F} = \nabla f$.
- (c) Calcule $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$, onde \mathcal{C} é dado por $r(t) = (t^2, 2t), 0 \le t \le 1$.
- 14. Considere o campo vetorial

$$\vec{F}(x,y) = \left(-\frac{y^3}{(x^2 + y^2)^2}, \frac{xy^2}{(x^2 + y^2)^2}\right)$$

em $\mathbb{R}^2 - \{(0,0)\}$ e sejam γ e δ , respectivamente, as circunferências $x^2 + y^2 = 1$ e $(x-1)^2 + y^2 = 4$ ambas percorridas no sentido anti-horário.

- (a) Esboce $\gamma \in \delta$ em \mathbb{R}^2 .
- **(b)** Calcule $\int_{\mathcal{V}} \vec{F} \cdot d\vec{r}$.
- (c) Sendo $\vec{F} = (P, Q)$, mostre que $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- (d) Use o Teorema de Green, com as devidas justificativas, para calcular $\int_{\delta} \vec{F} \cdot d\vec{r}$.
- **15.** Considere a cicloide $\gamma(t) = (t \sin t, 1 \cos t), 0 \le t \le 2\pi$.
 - (a) Calcule

$$\int_{\gamma B, 0} y dx - x dy$$

onde γB , O é o arco de cicloide entre os pontos O=(0,0) e $B=(2\pi,0)$, percorrido de B para O.

- **(b)** Mostre como podemos usar o Teorema de Green para calcular áreas delimitadas por curvas fechadas e, em seguida, calcule a área da região plana limitada superiormente pelo arco de cicloide do item anterior e inferiormente pelo eixo 0x.
- **16.** Use o Teorema de Green para calcular a área da elipse $b^2x^2 + a^2y^2 = a^2b^2$, a > 0, b > 0.
- **17.** Seja C a curva dada pelo gráfico da função $y = x\sqrt{1-x}$, $x \in [0,1]$ e considere o campo vetorial $\vec{F}(x,y) = ((y+1)^2, 2x + \sin^3 y)$.
 - (a) Encontre uma parametrização r(t) de C.
 - **(b)** Encontre uma parametrização $r_1(t)$ do segmento de reta ℓ que junta os extremos de C e encontre o vetor tangente a ℓ .
 - (c) Usando o Teorema de Green, calcule a integral de linha $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$.

(a) Use o Teorema de Green para mostrar que a área de uma região plana limitada por uma curva C, simples e fechada, percorrida no sentido anti-horário, é

$$A = \frac{1}{2} \int_{C} -y dx + x dy.$$

- **(b)** Calcule a área da região limitada pela curva $r(t) = (a \cos^3 t, a \sin^3 t)$, com $t \in [-\pi, \pi]$, onde a > 0.
- 19. Use o Teorema de Green e o exercício 16 para calcular

$$\int_C e^x \sin y \, dx + (e^x \cos y + 3x) dy,$$

onde C é a elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

- **20.** Considere o campo vetorial $\vec{F}(x,y) = \left(-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$.
 - (a) Calcule $\int_{\gamma} \vec{F} \cdot d\vec{r}$, onde γ é uma circunferência de raio arbitrário a: $r(t) = (a \cos t, a \sin t), \ 0 \le t \le 2\pi$.
 - **(b)** $\vec{F}(x,y)$ é conservativo? Justifique.
 - (c) Use o Teorema de Green e o resultado obtido nos itens anteriores para mostrar que $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = 2\pi$ para todo caminho fechado simples que circunde a origem.