# MC-202 Divisão e Conquista, MergeSort e Quicksort

Rafael C. S. Schouery rafael@ic.unicamp.br

Universidade Estadual de Campinas

 $2^{\circ}$  semestre/2023

#### Na unidade anterior...

Vimos três algoritmos de ordenação  $O(n^2)$ :

- selectionsort
- bubblesort
- insertionsort

E um algoritmo de ordenação  $O(n \lg n)$ 

• heapsort

Nessa unidade veremos mais dois algoritmos de ordenação

### Estratégia: recursão



Como ordenar a primeira metade do vetor?

- usamos uma função ordenar(int \*v, int 1, int r)
  - ordena o vetor das posições 1 a r (inclusive)
  - poderia ser um dos algoritmos vistos anteriormente
  - mas faremos algo mais simples e melhor
- executamos ordenar(v, 0, 4);

E se quiséssemos ordenar a segunda parte?

1

## Ordenando a segunda parte



Para ordenar a segunda metade:

executamos ordenar(v, 5, 9);

#### Ordenando todo o vetor

Se temos um vetor com as suas duas metades já ordenadas

• Como ordenar todo o vetor?



#### Intercalando



- Percorremos os dois subvetores
- Pegamos o mínimo e inserimos em um vetor auxiliar
- Depois copiamos o restante
- No final, copiamos do vetor auxiliar para o original

### Divisão e conquista

#### Observação:

- A recursão parte do princípio que é mais fácil resolver problemas menores
- Para certos problemas, podemos dividi-lo em duas ou mais partes

#### Divisão e conquista:

- Divisão: Quebramos o problema em vários subproblemas menores
  - ex: quebramos um vetor a ser ordenado em dois
- Conquista: Combinamos a solução dos problemas menores
  - ex: intercalamos os dois vetores ordenados

## Ordenação por intercalação (MergeSort)

#### Intercalação:

- Os dois subvetores estão armazenados em v:
  - O primeiro nas posições de 1 até m
  - O segundo nas posições de m + 1 até r
- Precisamos de um vetor auxiliar do tamanho do vetor
- Vamos considerar que o maior vetor tem tamanho MAX
  - Exemplo #define MAX 100

# Ordenação por intercalação (MergeSort)

```
1 void merge(int *v, int 1, int m, int r) {
    int aux[MAX]:
3 int i = 1, j = m + 1, k = 0;
   /*intercala*/
4
5 while (i <= m && j <= r)</pre>
    if (v[i] <= v[j])</pre>
         aux[k++] = v[i++];
7
8
    else
         aux[k++] = v[j++];
   /*copia o resto do subvetor que não terminou*/
10
    while (i <= m)
11
      aux[k++] = v[i++]:
12
    while (i \le r)
13
      aux[k++] = v[j++];
14
   /*copia de volta para v*/
15
  for (i = 1, k = 0; i <= r; i++, k++)
16
      v[i] = aux[k];
17
18 }
```

Quantas comparações são feitas?

- a cada passo, aumentamos um em i ou em j
- no máximo n := r l + 1

## Ordenação por intercalação (MergeSort)

#### Ordenação:

- Recebemos um vetor de tamanho n com limites:
  - O vetor começa na posição vetor [1]
  - O vetor termina na posição vetor[r]
- Dividimos o vetor em dois subvetores de tamanho n/2
- O caso base é um vetor de tamanho 0 ou 1

```
1 void mergesort(int *v, int 1, int r) {
2   int m = (1 + r) / 2;
3   if (1 < r) {
4     /*divisão*/
5   mergesort(v, 1, m);
6   mergesort(v, m + 1, r);
7   /*conquista*/
8   merge(v, 1, m, r);
9  }
10 }</pre>
```

# Simulação



# Tempo de execução para $n=2^l$



- No primeiro nível fazemos um merge com n elementos
- No segundo fazemos dois merge com n/2 elementos
- No (k-1)-ésimo fazemos  $2^k$  merge com  $n/2^k$  elementos
- No último gastamos tempo constante n vezes

# Tempo de execução para $n=2^l$



- No nível k gastamos tempo  $\leq c \cdot n$
- Quantos níveis temos?
  - Dividimos n por 2 até que fique menor ou igual a 1
  - Ou seja,  $l = \lg n$
- Tempo total:  $c n \lg n = O(n \lg n)$

### Tempo de execução para n qualquer



Qual o tempo de execução para n que não é potência de 2?

- Seja  $2^k$  a próxima potência de 2 depois de n
  - Ex: Se n = 3000, a próxima potência é 4096
- Temos que  $2^{k-1} < n < 2^k$ 
  - Ou seja,  $2^k < 2n$
- O tempo de execução para n é menor do que

$$c 2^k \lg 2^k \le 2cn \lg(2n) = 2cn(\lg 2 + \lg n) = 2cn + 2cn \lg n = O(n \lg n)$$

### Comparação entre mergesort e heapsort



#### mergesort é mais rápido do que o heapsort

- mas precisa de memória adicional
  - tanto para o vetor auxiliar O(n)
  - quanto para a pilha de recursão  $O(\lg n)$

## Quicksort - Ideia

- Escolhemos um pivô (ex: 4)
- Colocamos

### Quicksort

```
1 int partition(int *v, int 1, int r);
```

- escolhe um pivô
- coloca os elementos menores à esquerda do pivô
- coloca os elementos maiores à direita do pivô
- devolve a posição final do pivô

```
1 void quicksort(int *v, int 1, int r) {
2    int i;
3    if (r <= 1) return;
4    i = partition(v, 1, r);
5    quicksort(v, 1, i-1);
6    quicksort(v, i+1, r);
7 }</pre>
```

- Basta particionar o vetor em dois
- e ordenar o lado esquerdo e o direito

### Como particionar um vetor?

- Andamos da direita para a esquerda com um índice i
- De i até pos 1 ficam os menores do que o pivô
- De pos até r ficam os maiores ou iguais ao pivô
- Se o elemento em i for maior ou igual ao pivô
  - diminuímos pos e realizamos uma troca de i com pos
- No final, o pivô está em pos

```
1 int partition(int *v, int l, int r) {
2   int i, pivo = v[1], pos = r + 1;
3   for (i = r; i >= 1; i--) {
4     if (v[i] >= pivo) {
5       pos--;
6       troca(&v[i], &v[pos]);
7    }
8   }
9   return pos;
10 }
```

## Simulação do Quicksort



## Comparação com o mergesort e heapsort



O quicksort foi levemente mais rápido do que o mergesort

- Mas ainda poderíamos otimizar o código dos três...
- Ou seja, um poderia ficar melhor do que o outro

### Pior caso do QuickSort



O tempo de execução do Quicksort é, no pior caso:

$$c \cdot n + c \cdot (n-1) + \dots + c = c \sum_{i=0}^{n-1} (n-i) = c \sum_{j=1}^{n} j = c \frac{n(n+1)}{2} = O(n^2)$$

### Caso médio do QuickSort

Se o QuickSort é  $O(n^2)$ , como ele foi melhor que o HeapSort no experimento?

- Se o vetor for uma permutação aleatória de n números
- então o tempo médio (esperado) do QuickSort é  $O(n \lg n)$ 
  - Nesse caso, o pivô particiona bem o vetor

Ou seja, o pior caso do QuickSort é "raro" nesse experimento

- Isso nem sempre é verdade
  - as vezes, os dados estão parcialmente ordenados
  - exemplo: inserção em blocos em um vetor ordenado

Vamos ver duas formas de mitigar esse problema

#### Mediana de Três

No quicksort escolhemos como pivô o elemento da esquerda

- Poderíamos escolher o elemento da direita ou do meio
- Melhor ainda, podemos escolher a mediana dos três
  - já que a mediana do vetor particiona ele no meio

```
1 void quicksort_mdt(int *v, int 1, int r) {
    int i:
2
    if(r <= 1) return;</pre>
    troca(&v[(l+r)/2], &v[l+1]);
    if(v[1] > v[1+1])
       troca(&v[1], &v[1+1]);
                                    • trocamos v[(1+r)/2] com v[1+1]
     if(v[1] > v[r])
7
                                    • ordenamos v[1], v[1+1] e v[r]
       troca(&v[1], &v[r]);
8
    if(v[1+1] > v[r])
9
                                    • particionamos v[1+1], ···, v[r-1]
       troca(&v[l+1], &v[r]);
10
                                       v[1] já é menor que o pivô
    i = partition(v, l+1, r-1);
11
    quicksort_mdt(v, 1, i-1);
12
                                       - v[r] já é maior que o pivô
    quicksort_mdt(v, i+1, r);
13
14 }
```

### Quicksort Aleatorizado

```
1 int pivo_aleatorio(int 1, int r) {
    return 1 + (int)((r-1+1)*(rand() / ((double)RAND_MAX + 1)));
3 }
4
5 void quicksort ale(int *v, int 1, int r) {
    int i;
6
    if(r <= 1) return;</pre>
  troca(&v[pivo_aleatorio(1,r)], &v[1]);
8
    i = partition(v, 1, r);
9
  quicksort_ale(v, 1, i-1);
10
  quicksort_ale(v, i+1, r);
11
12 }
```

O tempo de execução depende dos pivôs sorteados

- O tempo médio é  $O(n \lg n)$ 
  - as vezes é lento, as vezes é rápido
  - mas n\(\tilde{a}\) depende do vetor dado

## Experimentos - Vetores aleatórios



quicksort\_ale adiciona um overhead desnecessário

### Experimentos - vetores quase ordenados



0,5% de trocas entre pares escolhidos aleatoriamentes

- quicksort\_mdt é melhor
  - é esperado já que para vetores ordenados ele é  $O(n \lg n)$

#### Conclusão

- O MergeSort é um algoritmo de ordenação  $O(n \lg n)$ 
  - Em geral, melhor do que o HeapSort
  - Mas precisa de espaço adicional O(n)
- O QuickSort é um algoritmo de ordenação  $O(n^2)$ 
  - Mas ele pode ser rápido na prática
  - Leva tempo  $O(n \lg n)$  (em média) para ordenar uma permutação aleatória
  - Sua versão aleatorizada é  $O(n \lg n)$  em média
    - Não importa qual é o vetor de entrada
  - Usar a mediana de três elementos como pivô pode melhorar o resultado
  - Precisa de espaço adicional O(n) para a pilha de recursão

# Comparação Assintótica

| Algoritmo     | Melhor Caso  | Caso Médio   | Pior Caso    | Memória |
|---------------|--------------|--------------|--------------|---------|
| BubbleSort    | O(n)         | $O(n^2)$     | $O(n^2)$     | O(1)    |
| SelectionSort | $O(n^2)$     | $O(n^2)$     | $O(n^2)$     | O(1)    |
| InsertionSort | O(n)         | $O(n^2)$     | $O(n^2)$     | O(1)    |
| HeapSort      | $O(n \lg n)$ | $O(n \lg n)$ | $O(n \lg n)$ | O(1)    |
| MergeSort     | $O(n \lg n)$ | $O(n \lg n)$ | $O(n \lg n)$ | O(n)    |
| QuickSort     | $O(n \lg n)$ | $O(n \lg n)$ | $O(n^2)$     | O(n)    |

#### Exercício

Faça uma versão do MergeSort para listas ligadas.

#### Exercício

Faça uma versão do QuickSort que seja boa para quando há muitos elementos repetidos no vetor.

 A ideia é particionar o vetor em três partes: menores, iguais e maiores que o pivô

#### Exercício

Implemente a função void mergeAB(int \*v, int \*a, int n, int \*b, int m) que dados vetores a e b de tamanho n e m faz a intercalação de a e b e armazena no vetor v. Suponha que v já está alocado e que tem tamanho maior ou igual a n+m.