Harvard University Computer Science 20

Problem Set 6

PROBLEM 1

An CS20-incremental graph is built up in the following way. Start with a graph with a single vertex and no edges. The graph is incremented by repeatedly doing one of the following two steps: either add a new vertex that is not adjacent to any existing vertices, or add a new vertex that is adjacent to all of the existing vertices.

Prove by induction that if G is a CS20-incremental graph, you can assign each vertex u a rational number x_u with $0 < x_u < 1$ such that any two vertices v, w are adjacent in G if and only if $x_v + x_w \ge 1$. (Note: these numbers do not have to be assigned when creating G, just there is a way to assign the numbers to a given incremental graph G.)

Solution.

let us prove that for a CS20-incremental graph G, we can assign each vertex u a rational number x_u such that $0 < x_u < 1$ and any two vertices v and w are adjacent in G if and only if $x_v + x_w \ge 1$, through mathematical induction.

In other words (by contra-positive), (v and w are adjacent $\to x_v + x_w \ge 1$) and (v and w are not adjacent $\leftarrow x_v + x_w < 1$)

Base Case: n=1, the graph G has only one vertex and no edges. We can assign x_1 to be 0.5 such that if the one node in G is considered adjacent to itself, $x_1 + x_1 \ge 1$ or $0.5 + 0.5 \ge 1$.

Inductive hypothesis: Assume the statement is true for all CS20-incremental graphs with n vertices. We will prove it for a graph G with n+1 vertices.

Inductive step: Let G be a CS20-incremental graph with n+1 vertices. We will consider two cases for how G could be constructed from a graph G' with n vertices.

Case 1: Adding a vertex that is not adjacent to any existing vertices

In this case, let G' be the CS20-incremental graph with n vertices, and v be the n+1-th vertex.

In G, the new vertex v is not adjacent to any vertex in G'. To ensure that $x_v+x_i<1$ for all i (where i denotes vertices in G'), choose x_v such that $x_v\leq 1-\min(x)$ or more precisely if we consider $p,q\in\mathbb{Z}$ such that $\frac{p}{q}=\min(x)$, let $x_v=\frac{p}{q+1}$.

Now, any two vertices i and j in G' will satisfy $x_i+x_j\geq 1$ if and only if they are adjacent, as assumed by the inductive hypothesis. For v and any vertex i in G', $x_v+x_i<1$ which holds even for even the edge cases such was when we must consider the largest vertex in G (let $\frac{p}{q}=$ the largest vertex in G where $p,q\in\mathbb{Z}$): because $1-\frac{p}{q}+\frac{p}{q+1}\leq 1$, which is consistent with the fact that v is not adjacent to any vertex in G'. Therefore, the assignment $x_v=\frac{p}{q+1}$ satisfies the conditions that v and v are adjacent v and v and v are adjacent v and v are adjacent v and v and v and v are adjacent v and v and v are adjacent v and v and v and v are adjacent v and v and v and v and v and v and v are adjacent v and v

Case 2: Adding a vertex that is adjacent to all existing vertices

In this case, let G' be the CS20-incremental graph with n vertices, and v be the n+1-th vertex added. The new vertex v is adjacent to all vertices in G'. Let the vertices in G' have rational numbers x_1, x_2, \ldots, x_n such that $x_i + x_j \ge 1$ if and only if vertices i and j are adjacent.

Let us assign v a rational value $x_v=\frac{p+1}{q+1}$ where $p,q\in\mathbb{Z}$ and $\frac{p}{q}=1-\min(x)$. Since $\frac{p+1}{q+1}>\frac{p}{q}$, the sum of any two vertices (which must be adjacent) therefore will be $1-\frac{p}{q}+\frac{p+1}{q+1}\geq 1$. As a result the condition (v and w are adjacent $\to x_v+x_w\geq 1$) and (v and v are not adjacent v0 and v1 hold true.

Conclusion:

For any CS20-incremental graph G with n vertices, it is possible to assign each vertex a rational number x_u such that $0 < x_u < 1$ and any two vertices v and w are adjacent in G if and only if $x_v + x_w \ge 1$.

- Let A,B be two subsets of $\{1,2,\ldots,n\}$ with |A|>n/2 and |B|>n/2. Prove that $A\cap B$ is nonempty.
- Let G be an undirected graph on n vertices, where each vertex has degree at least n/2. Prove that G is connected.

Solution.

(1)

Let us prove that for two subsets A, B of $\{1, 2, \ldots, n\}$ with |A| > n/2 and |B| > n/2, $A \cap B$ is nonempty by contradiction.

Assume $A \cap B$ is empty.

Consider the cardinality of $A \cup B$. Since A and B are disjoint, we have

$$|A \cup B| = |A| + |B|$$

Given that $|A|>\frac{n}{2}$ and $|B|>\frac{n}{2},$ $|A|+|B|>\frac{n}{2}+\frac{n}{2}$

$$|A| + |B| > \frac{n}{2} + \frac{n}{2}$$

$$|A| + |B| > n$$

Unfortunately, the set $\{1, 2, \dots, n\}$ has only n elements

and $A \cup B$ cannot have more than n elements. This contradiction means that our assumption is false. Therefore, $A \cap B$ must be nonempty.

(2)

Let us prove that for an undirected graph G with n vertices, where each vertex has a degree at least n/2, that G is connected by contradiction.

Assume for contradiction that G is not connected. Then G can be partitioned into at least two non-empty disjoint subgraphs G_1 and G_2 such that there are no edges between G_1 and G_2 .

Let
$$|G_1| = k$$
 and $|G_2| = n - k$ therefore $1 \le k \le n - 1$.

Every vertex in G_1 has a degree of at least $\frac{n}{2}$. Therefore, each vertex in G_1 is connected to at least $\frac{n}{2}$ vertices. The maximum number of vertices a vertex in G_1 can be connected to within G_1 is k-1.

Since each vertex in G_1 has a degree of at least $\frac{n}{2}$, we must have $k-1 \geq \frac{n}{2}$. Similarly, for G_2 , each vertex must be connected to at least $\frac{n}{2}$ vertices, and the maximum number of vertices within G_2 is n-k-1. Therefore, we have

$$n-k-1 \ge \frac{n}{2}.$$

From $k-1 \geq \frac{n}{2}$, we get $k \geq \frac{n}{2} + 1$.

From $n-k-1 \geq \frac{n}{2}$, we get $n-k \geq \frac{n}{2}+1$, which implies $k \leq \frac{n}{2}-1$

These two inequalities $k \geq \frac{n}{2} + 1$ and $k \leq \frac{n}{2} - 1$ are contradictory. Therefore, our initial assumption that ${\cal G}$ is not connected must be false. Therefore, ${\cal G}$ must be connected.

Let G be a graph with n vertices and m edges. Prove by induction that G has at least m-n+1 cycles. (You may use the fact that a graph with n vertices and n or more edges has a cycle.)

Solution.

Let G be a graph with n vertices and m edges. We want to prove that G has at least m-n+1 cycles.

Base Case

Consider the case where m=n-1. A graph with n vertices and n-1 edges is a tree (since a tree with n vertices has exactly n-1 edges and no cycles). A tree has 0 cycles. For m=n-1: m-n+1=(n-1)-n+1=0 Thus, the number of cycles in a tree matches our claim for this base case.

Inductive Step

Assume the statement is true for a graph with n vertices and k edges, where $k \geq n-1$. Specifically, assume such a graph has at least k-n+1 cycles. We need to show that the statement holds for a graph with n vertices and k+1 edges. Consider a graph G' with n vertices and k+1 edges. Let e be an edge in G'. Remove the edge e from G' to obtain a graph G with n vertices and k edges.

By the inductive hypothesis, the graph G with n vertices and k edges has at least k-n+1 cycles. When the edge e is added back to G to form G', it either:

- 1) Creates a cycle, in which case the number of cycles in G' increases by 1, or
- 2) Connects two previously disconnected components, forming exactly one new cycle.

In either case, adding e results in exactly one additional cycle. Therefore, the number of cycles in G' is at least (k-n+1)+1=k-n+2.

For G' with k+1 edges, the number of cycles should be at least: (k+1)-n+1=k-n+2 Therefore, the inductive step holds true.

Conclusion

By mathematical induction, the statement holds for all graphs with n vertices and m edges. Therefore, any graph with n vertices and m edges has at least m-n+1 cycles.

Consider a rooted tree that has a special vertex (the root), and directed edges. The root vertex is connected to d additional nodes, which are called its children; the edges point up from the children to the root. Each child of the root in turn has d children, with those children directed up to the parent, and so on. This is called a rooted *d*-ary tree.

- ullet ind a formula for the number of total nodes of a rooted d-ary tree with k levels. (The root is level 0, the children of the root are level 1, etc. so k levels means the tree ends at level k-1.) The formula should NOT be expressed as a sum of $\approx k$ terms; simplify the epxression.
- Rooted d-ary trees are a good model for chain letter pyramid scams. Explain how to determine how much would be expected to make in the following chain letter, from the 1930s.

PROSPERITY	CLUB—"IN	GOD WE T	RUST"
1 Ed. gudd	2037	n. Theores	Jan antonis 9
2 Harry Crast			- Dan antonio 9
3. Mrs. g. M. Crayt		Delivol At	
1. James Crais	3811-	Q. Preso	a Jan antonin 7.
5. P. M. Pescy	3811-	Q- Press	Dan astonis 9
6. D. R. Brent	891	Liberty	Beaucout 7.
FAITI	H! HOPE!	CHARITY!	Beaumont
This chain was started in the hope copies of this letter leaving off the top nam the list, and give or mail a copy to five (5)	e and address and of your friends to	adding your own no whom you wish pro-	ame and address to the bottom of sperity to come.
In omitting the top name send that p as your name leaves the top of the list (if donations amounting to \$1,536.50.	erson ten (10c) ce the chain has not	nts wrapped in a pap been broken) you s	per as a charity donation. In turn should receive 15,625 letters with
NOW IS TH	IIS WORTH	A DIME TO	YOU?
HAVE THE FAITH YOUR FRIENDS HA	D AND THIS CHA	AIN WILL NOT BE	BROKEN TALLEY PRINTING CO

Solution. 1) $\sum d_{i=0}^{i^{k-1}} = \frac{d^k-1}{d-1}$: geometric sum 2) $0.1*5^6 = \$1,536.5$

Let R and S be equivalence relations on a set X.

- (A) Prove that $T = R \cap S$ is also an equivalence relation on X.
- (B) Is $V=R\cup S$ also an equivalence relation X? Prove it if it is, or show a counterexample if it is not.

Solution.

(A)

To prove that T is an equivalence relation, we need to show that it satisfies the properties of reflexivity, symmetry, and transitivity.

Reflexivity For T to be reflexive, we need to show that $\forall x \in X, (x,x) \in T$. Since R and S are equivalence relations, they are reflexive. Therefore, $\forall x \in X, (x,x) \in R$ and $(x,x) \in S$. By the definition of $T = R \cap S$, $\forall x \in X, (x,x) \in R \cap S$, which implies $(x,x) \in T$. therefore, T is reflexive. **Symmetry** For T to be symmetric, we need to show that $\forall x,y \in X, (x,y) \in T \implies (y,x) \in T$. Suppose $(x,y) \in T$. This means $(x,y) \in R$ and $(x,y) \in S$. Since R and R are symmetric, $(x,y) \in R \implies (y,x) \in R$ and $(x,y) \in R \implies (y,x) \in R$ and $(x,y) \in R \implies (x,x) \in R$ and $(x,y) \in R \implies (x,x) \in R$ and $(x,x) \in R \implies (x,x) \in R \implies (x,x) \in R$ and $(x,x) \in R \implies (x,x) \in R \implies (x,x) \in R$ and $(x,x) \in R \implies (x,x) \in R \implies ($

Transitivity For T to be transitive, we need to show that $\forall x,y,z\in X, (x,y)\in T\land (y,z)\in T\implies (x,z)\in T.$ Suppose $(x,y)\in T$ and $(y,z)\in T.$ Which means $(x,y)\in R$ and $(x,y)\in S$, and $(y,z)\in R$ and $(y,z)\in S$. Since R and S are transitive, $(x,y)\in R\land (y,z)\in R\implies (x,z)\in R$ and $(x,y)\in S\land (y,z)\in S\implies (x,z)\in S$. Therefore, $(x,z)\in R$ and $(x,z)\in S$, which implies $(x,z)\in R\cap S$, and hence $(x,z)\in T.$ therefore, T is transitive.

Since T satisfies reflexivity, symmetry, and transitivity, $T=R\cap S$ is an equivalence relation on X. (B)

To determine whether V is an equivalence relation, we need to check if it satisfies reflexivity, symmetry, and transitivity.

Reflexivity

For V to be reflexive, we need to show that $\forall x \in X, (x,x) \in V$. Since R and S are equivalence relations, they are reflexive. Therefore, $\forall x \in X, (x,x) \in R$ and $(x,x) \in S$. By the definition of $V = R \cup S$, $\forall x \in X, (x,x) \in R \cup S$, which implies $(x,x) \in V$. therefore, V is reflexive.

Symmetry

For V to be symmetric, we need to show that $\forall x,y\in X, (x,y)\in V\implies (y,x)\in V.$ Suppose $(x,y)\in V$. This means $(x,y)\in R$ or $(x,y)\in S$. Since R and S are symmetric, $(x,y)\in R\implies (y,x)\in R$ and $(x,y)\in S\implies (y,x)\in S.$ Therefore, $(y,x)\in R$ or $(y,x)\in S$, which implies $(y,x)\in R\cup S$, and hence $(y,x)\in V$. therefore, V is symmetric.

Transitivity

For V to be transitive, we need to show that $\forall x,y,z\in X, (x,y)\in V\land (y,z)\in V\implies (x,z)\in V.$ Suppose $(x,y)\in V$ and $(y,z)\in V.$ This means $(x,y)\in R$ or $(x,y)\in S.$ and $(y,z)\in R$ or $(y,z)\in S.$ We have several cases to consider: $1)(x,y)\in R$ and $(y,z)\in R.$ Since R is transitive, $(x,y)\in R\land (y,z)\in R\implies (x,z)\in R\subseteq V.$ 2) $(x,y)\in S$ and $(y,z)\in S.$ Since S is transitive, $(x,y)\in S\land (y,z)\in S\implies (x,z)\in S\subseteq V.$ 3) $(x,y)\in R$ and $(y,z)\in S.$ We cannot conclude $(x,z)\in V$ because (x,z) does not necessarily belong to either R or S. 4) $(x,y)\in S$ and $(y,z)\in R.$ Similarly, we cannot conclude $(x,z)\in V.$ Since V. fails to satisfy transitivity in cases 3 and 4, $V=R\cup S.$ is not necessarily an equivalence relation.

Counterexample

```
Let X = \{a,b,c\}. Define two equivalence relations: R = \{(a,a),(b,b),(c,c),(a,b),(b,a)\} S = \{(a,a),(b,b),(c,c),(b,c),(c,b)\} Then: R \cup S = \{(a,a),(b,b),(c,c),(a,b),(b,a),(b,c),(c,b)\}
```

In $R \cup S$:

 $(a,b)\in V\quad\text{and}\quad (b,c)\in V,\quad\text{but}\quad (a,c)\notin V$ Therefore, V is not transitive, and therefore, V is not an equivalence relation.

Bulgarian solitaire is a game played by one player. The game starts with 6 coins distributed in 1-6 piles. Then the player repeats the following step:

• Remove one coin from each existing pile and form a new pile.

The order of the piles doesn't matter, so the state can be described as a sequence of positive integers in non-increasing order adding up to 6. For example, the first two moves when a player begins with two piles of 3 coins are $(3,3) \to (2,2,2)$ and $(2,2,2) \to (3,1,1,1)$. On the next move, the last three piles disappear, creating piles of 4 and 2 coins.

- (A) Trace the sequence of moves starting from two initial piles of 3 until it repeats.
- (B) Draw as a directed graph the complete state space with six coins.
- (C) Show that if the stacks are of heights $n, n-1, \ldots 1$ for any arbitrary number of coins n, the next configuration is the same.

Solution.

(A

$$\begin{array}{c} (3,3) \to (2,2,2) \to (1,1,1,3) \to (4,2) \to (3,1,2) \to (2,1,3) \to (1,2,3) \to \cdots \to (1,2,3) \\ \text{(B)} \end{array}$$

(C)

If the stacks are the form where their heights are $n,n-1,\cdots,1$ the piles were always remain in that same state because there will always be a new stack of size n created, and each existing stack will be decremented by 1.

- 1) Each stack is decremented by 1 ie the stacks will have heights $n-1,n-2,\cdots,0$, however since there cannot be a zero height stack the total stack count decreases by 1. $\{n-1,n-2,\cdots,0\} \equiv \{n-1,n-2,\cdots,1\}$
- 2) We will create a new stack of size n from the coins removed from existing stacks. There will be n removed coins because there was originally n stacks, and we took 1 coin from each (therefore we have n spare coins to make a stack).

$$\{n\} \cup \{n-1, n-2, \cdots, 1\} = \{n, n-1, \cdots, 1\}$$

A robot named Wall-E wanders around a two-dimensional grid. He starts out at (0,0) and is allowed to take four different types of steps:

- 1. (+2, -1)
- 2. (-1, +2)
- 3. (+1,+1)
- 4. (-3, +0)

Thus, for example, Wall-E might walk as follows. The types of his steps are listed above the arrows:

$$(0,0) \xrightarrow{1} (2,-1) \xrightarrow{3} (3,0) \xrightarrow{2} (2,2) \xrightarrow{4} (-1,2)$$

Wall-E's true love, the fashionable and high-powered robot, Eve, awaits at (0,2)

- (A) Let Wall-E's movements be modeled by a state machine $M=\{\Sigma,S,\delta,s_0,F\}$. Σ is the set of four actions defined above. Recall that $\delta:(s_1,\sigma)\to s_2$, where $s_1,s_2\in S$ and $\sigma\in\Sigma$. And since we'll define success as Wall-E getting to Eve, we'll say that $F=\{(0,2)\}$. Provide definitions for:
 - 1. the state space S
 - 2. the transition relation $\delta:(s_1,\sigma)\to s_2$, where $s_1,s_2\in S$ and $\sigma\in\Sigma$ (you may define this relation by parts/cases), and
 - 3. s_0
- (B) Sadly, you can see that Wall-E will never be able to reach Eve. But Wall-E doesn't believe it. What preserved invariant could you use to prove to Wall-E that he can never reach Eve at (0,2)? *Hint:* The value x-y is not invariant, but how does it change?
- (C) Prove to Wall-E that he cannot reach Eve using your preserved invariant and Floyd's invariant principle.

Solution.

(A)

1. The state space S, is the list of all possible states Wall-E can inhabit.

 $\{x \in \mathbb{Z}^2 : \exists k_1, k_2, k_3, k_4 \in \mathbb{N}. x = (2k_1 - 1k_2 + 1k_3 - 3k_4, -1k_1 + 2k_2 + 1k_3 + 0k_4)\}$

ie. All possible compositions for state transitions 1,2,3,4.

2.
$$\delta((x,y),\sigma) = \begin{cases} (x+2,y-1), & \sigma = 1\\ (x-1,y+2) & \sigma = 2\\ (x+1,y+1) & \sigma = 3\\ (x-3,y) & \sigma = 4 \end{cases}$$

3. The start state ie. Wall-E's starting coordinate (0,0)

(B)

The invariant is that $x - y = 0 \pmod{3}$, where x and y are Wall-E's current coordinates.

Case 1:
$$(+2, -1)$$
:

$$(x,y) \to (x+2,y-1).$$

The change in x - y is (x + 2) - (y - 1) = x - y + 3.

Therefore, $(x-y) \pmod 3$ remains unchanged since $x-y+3 \equiv x-y \pmod 3$.

Case 2: (-1, +2):

$$(x,y) \to (x-1,y+2).$$

```
The change in x-y is (x-1)-(y+2)=x-y-3. Therefore, (x-y)\pmod 3 remains unchanged since x-y-3\equiv x-y\pmod 3. Case 3: (+1,+1): (x,y)\to (x+1,y+1). The change in x-y is (x+1)-(y+1)=x-y. Therefore, (x-y)\pmod 3 remains unchanged. Case 4: (-3,+0): (x,y)\to (x-3,y). The change in x-y is (x-3)-y=x-y-3. Therefore, (x-y)\pmod 3 remains unchanged since x-y-3\equiv x-y\pmod 3. (C) Wall-E starts at (0,0): let I be our invariant I=x-y=0-0=0 therefore, I=0\pmod 3. Eve is at (0,2): I=x-y=0-2=-2
```

Therefore, $I=-2\equiv 1\pmod 3$. The invariant $x-y\pmod 3$ remains unchanged for all the allowed moves of Wall-E. Since Wall-E starts at a position where $x-y\equiv 0\pmod 3$, he can only visit positions where $x-y\equiv 0\pmod 3$. However, Eve's position (0,2) corresponds to $x-y\equiv 1\pmod 3$. Wall-E can never reach Eve's position because the invariant values do not match.