

Introduction to Digital Design

Week 7: Clock, Latches, and Flip-Flops

> Yao Zheng Assistant Professor University of Hawai'i at Mānoa Department of Electrical Engineering

Overview

- · Sequential circuit
 - Output depends not just on present inputs but on past sequence of inputs.
- · SR Latch
 - Feedback circuit for bit storage.
 - Race condition and level-sensitive latch.
- · D Latch and D Flip-Flop
 - D Latch: inserted inverter ensures R always opposite of S
 - D Flip-Flop: bit storage that stores on clock edge.
- Clock signal
 - Flip-flop to generates periodic pulsing signal.
- · Basic register

2

SR latch can serve as bit storage in previous example of flight-attendant call button Call=1: sets Q to 1 Q stays 1 even after Call=0 Cancel=1: resets Q to 0 But, there's a problem...

Problem with Level-Sensitive D Latch • D latch still has problem (as does SR latch) - When C=1, through how many latches will a signal travel? - Depends on how long C=1 • Clk_A – signal may travel through multiple latches • Clk_B – signal may travel through fewer latches

Summary

- Sequential circuit
 - Output depends not just on present inputs but on past sequence of inputs.
- · SR Latch
 - Feedback circuit for bit storage.
 - Race condition and level-sensitive latch.
- D Latch and D Flip-Flop
 - D Latch: inserted inverter ensures R always opposite of S
 - D Flip-Flop: bit storage that stores on clock edge.
- Clock signal
 - Flip-flop to generates periodic pulsing signal.
- · Basic register

25