Математическая Статистика

Лекции

Автор конспектов: Чубий Савва Андреевич

Преподаватель: Горяинова Елена Рудольфовна

2024-2025

2025-01-10	_
Введение	2
Определения	2
Эмпирическая функция распределения	
Свойства	
Гистограмма	-

2025-01-10

- Введение -----

- Теория вероятностей: по известной модели ищем параметры
- Математическая статистика: по наблюдаемой величине строим модель

– Определения ——

Опр. Однородной выборкой объема N называется случайный вектор $X=(X_1,...,X_n)$, компоненты которого — независимые и одинокого распределенные.

Примечание: в ближайшее время будем обсуждать только однородные выборки.

Опр. Компоненты однородной выборки называются элементами выборки.

Опр. Если все элементы выборки $X_1,...,X_n$ выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или выборка порождена случайной величиной ξ .

Примечание: обычно $F_{\xi}(x)$ мы не знаем. Часто известно только семейство распределения: например, «гауссово» или «непрерывное».

Опр. Детерминированный вектор $x=(x_1,...,x_n)$, где X_i есть реализация СВ $X_i, i=\overline{1...n}$ называется **реализацией выборки** X.

Опр. Выборочным пространством S называется множество всех возможных реализаций выборки.

Опр. Пара (S,\mathcal{F}) , где \mathcal{F} – семейство распределений, порождающих X, называется **моделью**.

Опр. Упорядочим реализацию $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$.

Пусть СВ X_k есть такой элемент выборки, реализация которого, который при любой реализации $X_1,...,X_n$, принимает значение $X_{(k)}$.

Тогда пос-ть $X_{(1)},...,X_{(n)}$ называется **вариационным рядом** выборки, а $X_{(k)}-k$ -ой порядковой статистикой.

Опр. Порядковые статистики $X_{(1)}$ и $X_{(n)}$ называются экстремальными.

Когда мы зафиксируем конкретную реализацию, $X_{(i)}$ станет числом, до этого $X_{(i)}$ — CB.

— Эмпирическая функция распределения —

Опр. Пусть $X_1,...,X_n$ соответствует распределению $F_\xi(x)$, тогда функция:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(x_k \le x)$$

называется эмпирической функцией распределения.

Свойства

- $\bullet \ E\hat{F}_n(x) = P(x_k \leq x) = F_\xi(x)$
- По УЗБЧ:

$$\frac{1}{n} \sum_{k=1}^{n} I(x_k \leq x) \overset{\text{\tiny II. H.}}{\underset{n \to \infty}{\longrightarrow}} F_{\xi}(x)$$

Гистограмма

 $x_1,...,x_n$ — реализация

Для построения гистограммы:

- 1. Разбить \mathbb{R}^1 на m+2 не пересекающихся интервала
- 2. Обычно рассматривают **размах** выборки $r=x_{(n)}-x_{(1)}$ 3. Первый и последний интервалы $(\left(-\infty,x_{(1)}\right)$ и $\left(x_{(n)},+\infty\right)$) пустые, остальные длинны равной $\Delta = \frac{r}{m}$
- 4. Для каждого интервала вычисляем частоту попаданию в него: ν_k
- 5. На каждом интервале строим прямоугольник высотой $h_k = \frac{\nu_k}{\Delta}$

При увеличении m гистограмма стремится к плотности.

Гистограмма ростов

$$x_{(1)} = 163$$

$$x_{(39)} = 203$$

$$m = 5$$

$$r = 203 - 163 = 40$$

$$\Delta = 8$$

Интервал	Частота	Высота
[163, 171)	$\frac{8}{39}$	
[171, 179)	$\frac{11}{39}$	
[179, 187)	$\frac{18}{39}$	
[187, 195)	$\frac{1}{39}$	
[195, 203)	$\frac{1}{39}$	

100 наблюдений = 7 интервалов