

MEMS 1049 Mechatronics

(Modifications to this syllabus may be required during the semester. Any changes to the syllabus will be announced in class or posted on the course website.)

Instructor: Qi (Michael) Lu, Ph.D. Lab Engineer: Senbao Lin

Office: Zone 4-218 Office: Zone 3-321B

Email: gi.lu@scupi.cn Email: senbao.lin@scupi.cn

Grading Teaching Assistant: Lab Teaching Assistants: Hongping Li adolhong@163.com You Mu 2286630964@qq.com

Office Hours: Wednesday 12:00 - 2:00 PM

Thursday 1:00 - 2:00 PM

Note: when emailing the instructor, lab engineer or the teaching assistants, please

• Include the course number, your name and your student number in the subject field of your message;

• Use your university email account.

Lecture time/location: Thursday 10:15 - 11:55 AM/Zone 3-311

Laboratory location: Zone 3-116

Laboratory times: Tuesday 1:50 PM- 3:20 PM

Tuesday 3:30 PM-5:00 PM

Catalog Description:

3 Credits; An introduction to mechatronics, or the interfacing of mechanical and electrical systems. Focus is on embedded controllers and their programming, actuators, sensors, and integration of these components to create a complete functional automated mechatronic system. Gain hands-on experience with mechatronic system modelling, control algorithm design and implementation.

Course Objective:

At the completion of this course, students will be able to

- Develop an understanding of a laboratory environment and safe practice techniques.
- Become familiar with mechatronic systems, feedback control principle, the integration of the electronics with the mechanical system.
- Learn how to use data acquisition hardware, software and their interfacing.
- Learn how to use the high-level graphical programming tools to implement realtime computation tasks.
- Design and implement a mechatronics system.

Preferred Prerequisites:

ME 1045 Automatic Controls, ME 1041 Mechanical Measurements 1

Website: https://learn.scupi.cn/

Topics Covered:

Topic 1: Graphical Programming Tools

Graphical Programming Tools Environment Application Programming Using Loops Data Structure Modularity

Topic 2: Sensors

Angular Displacement Distance and Proximity Pressure Contact Inertial Measurement

Topic 3: Actuators

DC Motor Modelling DC Motor Position Control

Topic 4: Control System

Inverted Pendulum Modelling Pole Placement Optimal Control-Linear Quadratic Regulator Swing-Up Hybrid Control

Course Schedule:

Week	Lecture	Lab			
1	March 4	March 9			
1	Course Introduction	Lab Safety			
2	March 11	March 16			
2	Graphical Programming Tools	No Lab			
2	March 18	March 23			
3	Graphical Programming Tools	No Lab			

4	March 25	March 30				
4	Graphical Programming Tools	No Lab				
-	April 1	April 6				
5	Angular Displacement	Lab 1				
-	April 8	April 13				
6	Distance and Proximity	Lab 2				
7	April 15	April 20				
7	Pressure	Lab 3				
8	April 22	April 27				
8	Contact	Lab 4				
9	April 29	May 4				
9	Inertial Measurement	Lab 5				
10	May 6	May 11				
10	DC Motor Control	Lab 6				
11	May 13	May 18				
11	Inverted Pendulum Modelling	Lab 7				
12	May 20	May 25				
12	Pole Placement	Lab 8				
13	May 27	June 1				
13	Optimal Control	Lab 9				
14	June 3	June 8				
14	Swing-Up Hybrid Control	Lab 10				
15	June 10	June 15				
13	Project	Project				
16	June 17	June 22				
10	Project	Project				
17	June 24	June 29				
1 /	Project	Project				
18	July 1					
10	Project Demo					

Course Gradings:

•	Studio work	20 %
•	Lab reports	40 %
•	Final project	40%
	 Demonstration 	
	 Peer review 	10 %
	 Instructor/TA grading 	10 %
	• Report	
	Peer review	10 %
	 Instructor/TA grading 	10 %

• Instructor/TA grading 10 %

Note: 4-student group for studio, lab reports and project submission, every group member receive the same score

Grading Scale:

Letter	A	A-	B+	В	B-	C+	С	C-	D+	D	F
Percentage (%)	100~90	89~85	84~80	79~76	75~73	72~70	69~66	65~63	62~61	60	<60

Class Policies:

- On-time attendance at all class activities is expected. Student is responsible for any
 material that was covered, and any changes to the exam dates and homework
 assignments announced in class.
- In general, no late assignment or make up exams will not be accepted. If you have a serious conflict with an exam schedule, you must discuss it with the instructor and take the exam early. Failure to contact the instructor prior to the exam or assignment due date will result in a zero on that exam/assignment. Exams missed due to a serious illness or a family emergency (these must be documented) will be dealt with on a case-by-case basis according to the University Policy.
- Any questions regarding the grading discrepancy should be brought up within a week of returning the homework or exam.
- Violations of academic integrity include, but are not limited to, cheating, plagiarism, or misrepresentation in oral or written form. Such violations will be dealt with severely, in accordance with University policy.

Laboratory Policies:

• Students must attend all scheduled labs. Absence will result in a zero on that lab report. Exceptions will be made for a valid excuse consistent with University Policy. If you cannot attend a laboratory, you must contact the instructor prior to the lab session to reschedule. While in the laboratory, all safety guidelines and procedures must be followed. Failure to comply with safe laboratory practices will result in removal from the course.