Breast Cancer Wisconsin (Diagnostic)

Mohammad Al-Ajlouni C0849924

Assignment 2

AML 1413

Instructor: Kritika Dahiya

Problem Statement

The purpose of the task is to classify breast cancer using classification and compare the result with statistical model.

Data Set Information

Features are computed from a digitized image of a breast mass's fine needle aspirate (FNA).

They describe the characteristics of the cell nuclei present in the image.

The separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method that uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

Attribute Information

Analysis

```
df = pd.read_csv('breast-cancer.csv')
df.isna().sum()
id
                             0
diagnosis
                             0
radius mean
                             0
texture mean
                             0
perimeter_mean
                             0
area mean
                             0
smoothness mean
                             0
compactness mean
                             0
concavity_mean
                             0
concave points_mean
                             0
symmetry mean
fractal dimension mean
                             0
radius se
                             0
texture se
                             0
perimeter_se
                             0
                             0
area_se
smoothness se
                             0
compactness se
concavity_se
                             0
                             0
concave points se
symmetry_se
                             0
fractal_dimension_se
                             0
radius worst
texture worst
perimeter worst
                             0
area worst
smoothness worst
                             0
compactness_worst
                             0
concavity_worst
                             0
concave points worst
symmetry_worst
                             0
fractal_dimension_worst
                             0
Unnamed: 32
                           569
dtype: int64
df.drop(columns = ['id', 'Unnamed: 32'],inplace = True)
```

After reading the data we notice that there are no null values, and we will drop the Id.

And this is how the data looks after converting the M and B into 1 and 0:

df['diagnosis'].unique()

'concave points_worst'],

dtype='object')

```
array(['M', 'B'], dtype=object)
df['diagnosis'] = df['diagnosis'].map({"M":1,"B":0})
sns.countplot(x = 'diagnosis',data=df)
plt.show()
   350
   300
   250
 를 200
   150
   100
    50
     0
                   ò
                                             i
                             diagnosis
 table_corr = df.corr()
  table_corr_2 = pd.DataFrame(table_corr).query('diagnosis > 0.7')
 table_corr_2.index
 Index(['diagnosis', 'radius_mean', 'perimeter_mean', 'area_mean',
        'concave points_mean', 'radius_worst', 'perimeter_worst', 'area_worst',
```

Anything with a correlation is less than 0.7 won't be used.

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactn
diagnosis	1.000000	0.730029	0.415185	0.742636	0.708984	0.358560	0.596534
radius_mean	0.730029	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124
texture_mean	0.415185	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702
perimeter_mean	0.742636	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936
area_mean	0.708984	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502
smoothness_mean	0.358560	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123
compactness_mean	0.596534	0.506124	0.236702	0.556936	0.498502	0.659123	1.00000
concavity_mean	0.696360	0.676764	0.302418	0.716136	0.685983	0.521984	0.88312
concave points_mean	0.776614	0.822529	0.293464	0.850977	0.823269	0.553695	0.83113
symmetry_mean	0.330499	0.147741	0.071401	0.183027	0.151293	0.557775	0.60264
fractal_dimension_mean	-0.012838	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	0.56536
radius_se	0.567134	0.679090	0.275869	0.691765	0.732562	0.301467	0.49747
texture_se	-0.008303	-0.097317	0.386358	-0.086761	-0.066280	0.068406	0.04620
perimeter_se	0.556141	0.674172	0.281673	0.693135	0.726628	0.296092	0.54890
area_se	0.548236	0.735864	0.259845	0.744983	0.800086	0.246552	0.45565
smoothness_se	-0.067016	-0.222600	0.006614	-0.202694	-0.166777	0.332375	0.13529
compactness_se	0.292999	0.206000	0.191975	0.250744	0.212583	0.318943	0.73872
concavity_se	0.253730	0.194204	0.143293	0.228082	0.207660	0.248396	0.57051
concave points_se	0.408042	0.376169	0.163851	0.407217	0.372320	0.380676	0.64226
symmetry_se	-0.006522	-0.104321	0.009127	-0.081629	-0.072497	0.200774	0.22997
fractal_dimension_se	0.077972	-0.042641	0.054458	-0.005523	-0.019887	0.283607	0.50731
radius_worst	0.776454	0.969539	0.352573	0.969476	0.962746	0.213120	0.53531
texture_worst	0.456903	0.297008	0.912045	0.303038	0.287489	0.036072	0.24813
perimeter_worst	0.782914	0.965137	0.358040	0.970387	0.959120	0.238853	0.59021
area_worst	0.733825	0.941082	0.343546	0.941550	0.959213	0.206718	0.50960
smoothness_worst	0.421465	0.119616	0.077503	0.150549	0.123523	0.805324	0.56554
compactness_worst	0.590998	0.413463	0.277830	0.455774	0.390410	0.472468	0.86580
concavity_worst	0.659610	0.526911	0.301025	0.563879	0.512606	0.434926	0.81627
concave points_worst	0.793566	0.744214	0.295316	0.771241	0.722017	0.503053	0.81557
symmetry_worst	0.416294	0.163953	0.105008	0.189115	0.143570	0.394309	0.51022
fractal_dimension_worst	0.323872	0.007066	0.119205	0.051019	0.003738	0.499316	0.68738

Many of our features have linear dependence and normal distribution.

```
plt.figure(figsize=(20,14))
sns.pairplot(df,diag_kind = "kde", markers = "+", hue = "diagnosis", palette='viridis')
plt.show()
```


We clearly see that there are high indicators for malignant neoplasms and our classifier can determine benign and malignant neoplasms.

Machine Learning Algorithms

Four machine learning algorithms were used as follows:

f_score = pd.DataFrame({'f1 score' :[f_forest,f_logreg,f_xgb],'model': m})

- 1) Random Forest
- 2) Logistic Regression
- 3) XgBoost
- 4) Neural network (keras sequential)

```
clf_forest = RandomForestClassifier()
clf_log = LogisticRegression(solver = 'liblinear')
clf_xgb = XGBClassifier(objective ='binary:logistic')

clf = [clf_forest,clf_log,clf_xgb]

for i in clf:
    i.fit(X_train,y_train)
```

[17:22:26] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3. 0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly se t eval_metric if you'd like to restore the old behavior.

```
y_forest = clf_forest.predict(X_test)
y_logreg = clf_log.predict(X_test)
y_xbg = clf_xgb.predict(X_test)

m = ['random forest', 'logistic regression', 'xgboost']
f_forest = f1_score(y_test,y_forest)
f_logreg = f1_score(y_test,y_logreg)
f_xgb = f1_score(y_test,y_xbg)
```

```
history = model.fit(X_test,y_test,
epochs=30)
```

```
history_score = pd.DataFrame(history.history)
plt.plot(history_score[['binary_accuracy']])
plt.grid()
plt.show()
```


predict = model.predict(X_test)

 $f_score.loc[len(f_score)] = [f1_score(y_test,np.rint(predict)), 'Neural network']$

f_score

model	f1 score	
random forest	0.919708	0
logistic regression	0.924242	1
xgboost	0.900000	2
Neural network	0.851064	3

```
y_forest = clf_forest.predict(X_test)
y_logreg = clf_log.predict(X_test)
y_xbg = clf_xgb.predict(X_test)
y_logreg
array([1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
       1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
       0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,
       0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
       0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
       1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1], dtype=int64)
y forest
array([1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0,
       0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
       1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
       1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
                                                           0, 1, 0, 1,
       0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,
       0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
       0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,
       0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0,
       1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1], dtype=int64)
y_xbg
array([1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0,
       0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
       1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
       1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1,
       0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,
       0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,
       0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0,
       1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1], dtype=int64)
predict
array([[0.6415359],
       [0.1112051],
       [0.13520536],
       [0.377199 ],
       [0.46747422],
       [0.08948678],
       [0.12892291],
       [0.15521216],
       [0.18692917],
      [0.4840555],
       [0.95222604],
      [0.13963908],
       [0.18843445],
       [0.6095203],
      [0.5036391],
       [0.5075569],
       [0.5804636],
       [0.38034436],
       [0.16678724],
```


Conclusion

- F1-score is the highest for logistic regression. The neural network shows minimal results.
 It makes sense to evaluate these algorithms if you use machine learning algorithms without their default settings.
- 2) The roc-auc metric shows high results in a neural network. for binary classification, this metric shows itself best because it displays the true and constant ability of the model to predict.
- 3) Graphs of the importance of features are constructed and they have different weights for different models, this is due to the peculiarities of their mathematics. The graphs of the random forest and xgboost are similar, this is due to the fact that they are based on the construction of decision trees.

References

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data/code

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic %29