Computer Systems Tutorial

December 8^{th} 2023

1 Preliminaries

Graph A graph is a pair of two sets: a set of *edges* and a set of *verticies* or nodes. We will denote it like (V, E) where elements of E are also pairs like (u, v) that stands for an edge from vertex u (the source) to vertex v (the target). We will then consider weighted graphs such that edges are of the form (u, w, v) where w denotes the weight of an edge, e.g. how 'costly' it is to follow that particular edge. A *path* from vertex u to vertex v in a graph is a sequence of nodes (v_1, \ldots, v_n) such that the first vertex in the sequence $v_1 = u$ and the last vertex is $v_n = v$ and there is an edge between v_i and v_{i+1} for all i < n.

Dijkstra Algorithm This algorithm finds the distances of shortest paths from one source vertex v to all other vertices in a weighted graph such that all weights are positive. The pseudo-code is given below.

```
# s is the source vertex
fun dijkstra(s):
# D stores distances from s to all other verticies
D = {}
S = {s}

for v in V:
    if (s,v) in E:
        D[v] = c(s,v) # c is the cost of the edge
    else:
        D[v] = float('inf')

while S != V:
    v = min(D) and v not in S
    S.add(v)

for (v,u) in E:
    D[u] = min(D[v] + c(v,u), D[u])
```

S is the set of currently visited vertices v' and it is guaranteed that the distance from s to $v' \in S$ is the shortest. Then the algorithm picks a vertex v not from S such that the distance to it from the source node is minimal across all candidates and updates the distances to all v's neighbours.

2 Exercises

Exercise 1 Find the distances of all shortest paths from source 1 in the graph below by using Dijkstra algorithm.

What is the set S at each step? What are the distances at each step?

Exercise 2 What is the complexity of the above algorithm in terms of V and E?

Exercise 3 Consider the following set of processes:

Process	Arrival Time	Burst time
P_1	0 ms	5 ms
P_2	2 ms	8 ms
P_3	3 ms	6 ms
P_4	5 ms	2 ms

What is the average response time assuming Round Robin CPU scheduling policy with a Time Quantum $(q=4~\mathrm{ms})$. Also, note that newly arriving processes are added to the tail of the ready queue. The response time is the time it takes for the process to be first allocated a CPU after it arrives.

Exercise 4 Suppose Host A wants to send a large file to Host B. The path from Host A to Host B has four links, of rates R1 = 12 Mbps, R2 = 15 Mbps, R3 = 8 Mbps and R4 = 25 Mbps. What will be the minimum end-to-end delay of transferring a video clip of 535 MegaBytes? (We assume that there is no store-and-forward delay on the routers connecting the links)

Exercise 5 In the SYNACK message of the TCP connection establishing handshake, the server sends a 1-byte TCP segment to the client. That segment has Sequence number = 900, SYN/ACKbits = 1. Which of the following TCP headers are correct for the corresponding ACK message from the client to the server?

- a) Sequence number = 901, Acknowledgement number = 901, SYNbit = 0, ACKbit = 1
- b) Sequence number = 500, Acknowledgement number = 901, SYNbit = 0, ACKbit = 1
- c) Sequence number = 901, Acknowledgement number = 483, SYNbit = 0, ACKbit = 1
- d) Sequence number = 483, Acknowledgement number = 901, SYNbit = 1, ACKbit = 1
- e) Sequence number = 901, Acknowledgement number = 901, SYNbit = 1, ACKbit = 1
- f) Sequence number = 901, Acknowledgement number = 483, SYNbit = 1, ACKbit = 1