A Test Suite for Compliance Testing of Software Support for the Synthetic Biology Open Language

Meher Samineni Chris Myers

University of Utah

9th International Workshop on Bio-Design Automation August 10th, 2017

Introduction

- Standards establish guidelines for data to be easily exchanged.
- They allow data reproducibility and seamless communication of data between software applications.
- Compliance testing ensures correct usage within applications.
- This talk describes a methodology for compliance testing for the Synthetic Biology Open Language (SBOL) standard.

Synthetic Biology Open Language Standard (SBOL)

SBOL Software Survey

- Distributed to application developers within the SBOL Community.
- The purpose of this survey is to gain an accurate and current list of applications that support SBOL.
- These results will be used as the applications to evaluate the created methodology for software compliance.
- The survey is still open for new responses:
 - http://sbolstandard.org/software/tools/
- The survey contains three main types of questions:
 - General overview information of the application,
 - The functionality and usage of the application, and
 - Current support of SBOL within the application.

Structural vs Functional Support within Applications

What level does this software work at?

Software Application Functionality

Programming Languages Used

Software Libraries

SBOL Visual Support

Does this software tool support SBOL Visual?

Applications Able To Export SBOL Data

Applications Able To Import SBOL Data

Software Survey Summary

	l <u>.</u> . l						SBOL			
	Function					١.,	Import			
Name	K	S	V	G	М	٧	1	2	1	2
BOOST		•					•	•	•	•
Cello				•	•	•				•
DeviceEditor		•	•	•	•	•		•		
DNAPlotLib			•			•	•	•	•	•
D-VASim					•					
Eugene		•		•		•	•		•	
Finch	•	•	•	•		•				•
GeneGenie		•							•	
GenoCAD	•	•		•		•		•		•
Graphviz			•			•				
iBioSim			•	•	•	•	•	•	•	•
ICE	•	•	•			•		•		•
i5		•			•		•		•	
MoSeC		•		•					•	
Parts&Pools				•	•					
Pigeon			•			•				
Pinecone	•	•						•		•
Pool Designer		•						•		
Proto BioCompiler			•	•	•				•	
SBOL-GB Converter									•	
SBOL Validator										
SBOLDesigner								•	•	
SBOLme										
ShortBol										
SynBioHub										
Tellurium	1		-			Ī	-	-		-
TinkerCell		•		•		١.		•		
VisBOL			•	•	•		•		•	
VirtualParts			•		_	•		•		
virtuairaitS	•			•	•	•	•		•	•

LEGEND

- K Knowledge Management
- S Sequence Design
- V Visualization
- G Genetic Design
- M Modeling

Testing SBOL Compliance

- Survey responses self-reported by application developer.
- Methodology required to test software compliance.
- SBOL Visual must be manually inspected.
- SBOL export can be checked using the SBOL Validator.
- SBOL import best done using a round-trip test.

Simple Round-trip Test

Extended Round-trip test

Analysis of Current SBOL Example Test Suite

- Mixture of published SBOL files and files created to test libSBOLj.
- Analyzed it to determine proportion of SBOL data model covered.
- Organized the examples within groups of clusters based on the same type of data contained.
- Created a partially order set relationship between the clusters.

Cluster 1 3(28) Cluster 2 1(4) Cluster 3 2(1)

Cluster 2 1(4) Cluster 3 2(1)

Analysis Result for the SBOL Test Suite

Analysis Result Summary

Graph Statistics				
SBOL Examples	88			
SBOL Data Classes	19			
Maximum Data Classes	15 (79%)			
Data Classes Tested	19 (100%)			
Structural Only Examples	61 (69%)			
Functional Examples	27 (31%)			

Future Work

- Create more examples representing different data class combinations.
- Collect more examples using functional data classes.
- Apply testing methodology to various SBOL applications to accurately and automatically determine their compliance to the SBOL standard.
- TOMORROW: Please join us at the 2nd Annual SBOL Introductory Workshop.

Acknowledgments

Zhen Zhang (Florida)

Chris Myers

The National Science Foundation under Grant No. CCF-1218095 and DBI-1356041.