2016 年第七届全国大学生数学竞赛决赛 (数学类一、二年级) 试卷

一、填空题 (共4小题, 每小题5分, 共20分)

(1) 设 Γ 为形如下列形式的 2016 阶矩阵全体: 矩阵的每行每列只有一个非零元素,且该非零元素为 1,则 $\sum_{A \in \Gamma} |A| =$ _____.

(2) 令
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d} x$$
. 若 $\sum_{n=1}^{\infty} a_n^p$ 收敛,则 p 取值范围______.

(3) 设
$$D: x^2 + 2y^2 \le 2x + 4y$$
,则积分 $I = \iint_D (x+y) dx dy =$ ______.

(4) 若实向量
$$X=\left(a,b,c\right)$$
的三个分量 a,b,c 满足 $\left(\begin{matrix} a & b \\ 0 & c \end{matrix}\right)^{2016}=I_2$,则 $X=$ ______或_____

二、(本题 15 分) 在空间直角坐标系中,设S 为椭圆柱面 $x^2+2y^2=1$, σ 是空间中的平面,它与S 的交集为一个圆。求所有这样平面 σ 的法向量。

三、(本题 15 分) 设
$$A,B$$
为 n 阶实对称矩阵. 证明 $\operatorname{tr}\left(\left(AB\right)^2\right) \leq \operatorname{tr}\left(A^2B^2\right)$.

四、(本题 20 分) 设单位圆 Γ 的外切 n 边形 $A_1A_2\cdots A_n$ 各边与 Γ 分别切于 B_1,B_2,\cdots,B_n .

令
$$P_A,P_B$$
 分别表示多边形 $A_1A_2\cdots A_n$ 与 B_1,B_2,\cdots,B_n 的周长. 求证: $P_A^{\frac{1}{3}}P_B^{\frac{2}{3}}>2\pi$.

五、(本题 15 分) 设 $a\left(x\right),f\left(x\right)$ 为R上的连续函数,且对任意 $x\in R$ 有 $a\left(x\right)>0$. 已知

$$\int_0^\infty aig(xig)\mathrm{d}\,x = +\infty, \lim_{x o +\infty}rac{fig(xig)}{aig(xig)} = 0, y'ig(xig) + aig(xig)yig(xig) = fig(xig), x\in R$$

求证: $\lim_{x \to +\infty} y(x) = 0$.

六、(本题 15 分) 设f(x)是定义在R上的连续函数,且满足方程

$$xf\left(x
ight)=2\int_{rac{x}{2}}^{x}f\left(t
ight)\mathrm{d}\,t+rac{x^{2}}{4}.$$

求f(x).