

Universidade de Brasília Campus Universitário Darcy Ribeiro

Disciplina: Circuitos Digitais (116351)

Semestre: 2/2013

Horário: Diurno – Turma A - Sexta 10:00 11:50

Local: LINF

4º EXPERIMENTO

Filipe Cunha Oliveira – 12/0011395

Samuel Sousa Almeida – 12/0062003

1. OBJETIVOS

Os objetivos do presente relatório são de usar o sistema Quartus II para a implementação de circuitos com comparadores de palavras binárias com as técnicas utilizadas em relatórios passados de simplificação e montagem.

2. INTRODUÇÃO

Um comparador é um circuito combinatório operativo. Ele permite comparar grandezas de dois números binarios. Um comprimento de uma palavra binária é o número de bits que a compõem

Um comparador tem como saída 1 se os comprimentos forem iguais, caso contrário a saída sera 0. Ele também pode possuir três saídas:

se A=B ou

se A>B ou

se A<B

Para uma boa realização de um circuito combinacional é necessário seguir alguns passos,como os mostrados abaixo:

- a) Descrever sistema;
- b) Elaborar tabela da verdade;
- c) Obter funções booleanas a partir da tabela da verdade;
- d) Simplificar funções booleanas obtidas ;
- e) Elaborar diagrama lógico.

Dessa maneira ,fica mais intuitivo a realização da montagem e análise do circuito

3. MATERIAL UTILIZADO

Software computacional Quartus II,em sua versão 9.1;

) II.

3. PROCEDIMENTOS

PARTE 1

- 3.1. Usando apenas portas NAND de DUAS entradas, projete um comparador de palavras de *3 bit*s e complete a tabela da verdade para A_i e B_i e obtenha a equação para Z_i;
- 3.2. Minimize a função obtida anteriormente;
- 3.3. Faça um diagrama lógico parcial. Implemente-o e verifique se o resultado combina com o resultado da tabela da verdade;
- 3.4. Faça um diagrama lógico total.Implemente-o;
- 3.5. Comente os resultados obtidos.

PARTE 2

- 3.6. Y_3 , sendo que $Y_1 = 1$ para A > B, $Y_2 = 1$ para A = B e $Y_3 = 1$ para A < B (A e B são A_0 e A_1 e B são B_0 e B_1);
- 3.7. Faça uma tabela da verdade parcial e obtenha funções parciais;
- 3.8. Minimize a função obtida anteriormente;
- 3.9. Faça o diagrama lógico parcial. Implemente-o e verifique se o resultado combina com o resultado da tabela da verdade;
- 3.10. Faça o diagrama lógico total de acordo com a figura abaixo.Implemente-o;

3.11. Comente os resultados obtidos.

4. DADOS E ANÁLISE

PARTE 1

O circuito da figura foi montado graças ao programa Quartus II .Aqui embaixo se encontra a tabela da verdade também.

Entradas		Saída
А	В	Y ₁
0	0	1
0	1	0
1	0	0
1	1	1

A expressão booleana ficou então como $\overline{(A\iota.(\overline{B\iota})+(\overline{A\iota}).B\iota)}$

Aplicou-se De Morgan e foi visto que ela ficou $(\overline{(A\iota)} + B\iota).(A\iota + \overline{B\iota})$

Logo abaixo se encontra o diagrama lógico parcial(comparação do par de bits(A_i, B_i));

Logo abaixo se encontra o diagrama lógico total implementado

Usando as funcionalidades do Quartus II é possível de comparar os resultados da tabela da verdade mais acima com a implementação do diagrama no programa.

É possível perceber a similaridade da tabela verdade feita com os resultados do programa Quartus II, obtendo sucesso na implementação do comparador de *3 bits*

PARTE 2
As entradas foram testadas e a tabela da verdade foi preenchida

	Entradas				Saída		
A1	B ₁	A ₀	B ₀	Y ₁	Y ₂	Y ₃	
0	0	0	0	0	1	0	
0	0	0	1	0	0	1	
0	0	1	0	1	0	0	
0	0	1	1	0	1	0	
0	1	0	0	0	0	1	
0	1	0	1	0	0	1	
0	1	1	0	0	0	1	
0	1	1	1	0	0	1	
1	0	0	0	1	0	0	
1	0	0	1	1	0	0	
1	0	1	0	1	0	0	

1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	0	0	1
1	1	1	0	1	0	0
1	1	1	1	0	1	0

As expressões encontradas estão logo abaixo(possui a original e a minimizada pelo mapa de Karnaugh):

$$Y1 = \overline{ABCD} + ABCD + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$Y1 = ACD + AB + BCD$$

$$Y2 = \overline{ABCD} + AB\overline{CD} + \overline{ABCD} + ABCD$$

$$Y3 = \overline{A}\overline{B}\overline{C}D + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + \overline{A}BC\overline{D} + \overline{A}B\overline{C}D$$

$$Y3 = \overline{ACD} + \overline{BCD} + \overline{AB}$$

Logo abaixo se encontra o diagrama lógico parcial:

Logo abaixo se encontra o diagrama lógico total implementado

Usando as funcionalidades do Quartus II é possível de comparar os resultados da tabela da verdade mais acima com a implementação do diagrama no programa.

O mesmo ocorre na semelhança de resultados entre a tabela verdade e a do programa. Mais uma vez, foi implementado corretamente o comparador de 2 bits

CONCLUSÃO

Foi estudado nesse relatório o uso de comparadores de *bits*, bem como o uso da ferramenta Quartus II para a implementação de circuitos. Foram usados métodos conhecidos da síntese de circuitos combinacionais já vistos em aulas teóricas. Pode-se afirmar que, com a semelhança dos resultados nas tabelas verdades com as tabelas do Quartus II que foi um experimento de bastante sucesso

5. TESTE DE AUTO-AVALIAÇÃO (RESPOSTAS CORRETAS ESTARÃO EM NEGRITO)

1. Implemente um comparador de palavras de 4 bits em que a saída seja 1 somente quando A = B. Use 4 portas XOR e obtenha um diagrama com um total de 5 portas, como o da Figura 2. A porta de saída será uma:

Figura 2

- a) NAND de 4 entradas.
- b) NOR de 4 entradas.
- c) AND de 4 entradas.
- d) OR de 4 entradas.
- 2. Implemente um comparador de palavras de 4 bits em que a saída seja 1 somente quando A ≠ B. Use 4 portas XOR e obtenha um diagrama com um total de 5 portas, como o da Figura 2. A porta de saída será uma:
- a) NAND de 4 entradas.
- b) NOR de 4 entradas.
- c) AND de 4 entradas.
- d) OR de 4 entradas.
- 3. Implemente um comparador de palavras de 4 bits em que a saída seja 1 somente quando A = B. Use apenas portas XOR de 2 entradas. O diagrama terá no mínimo:

a) 6 portas XOR.
b) 7 portas XOR.
c) 8 portas XOR.
d) NDA
4. No company de malo majo de Obito de itama O O de mante compañas entel de
4. No comparador de palavras de 2 bits do item 2.2 da parte experimental, se usássemos apenas portas AND de duas entradas, portas OR de duas entradas e NOT, teríamos um circuito com (suponha que as entradas possuam seus complementos disponíveis):
a) 7 portas AND, 4 portas OR e 4 NOT.
b) 9 portas AND, 3 portas OR e 2 NOT.
c) 10 portas AND, 4 portas OR e 2 NOT.
d) 11 portas AND, 4 portas OR e 2 NOT.
5. Utilizando-se somente portas XOR, podemos implementar portas:
a) NOT.
b) OR e NOT.
c) AND e NOT.
d) NDA