# Generalised method of moments estimation of structural mean models

# Tom Palmer<sup>1,2</sup> Roger Harbord<sup>2</sup> Paul Clarke<sup>3</sup> Frank Windmeijer<sup>3,4,5</sup>

- 1. MRC Centre for Causal Analyses in Translational Epidemiology
- 2. School of Social and Community Medicine, University of Bristol
  - 3. CMPO, University of Bristol
  - 4. Department of Economics, University of Bristol, UK
    - CEMMAP/IFS, London

#### 15 September 2011





#### Outline

Generalised method of moments estimation of structural mean models . . . using instrumental variables

- ▶ Introduction to Mendelian randomization example
- Multiplicative structural mean model (MSMM)
  - ► G-estimation, identification, gmm syntax, example
- ► (double) Logistic SMM
  - gmm multiple equation syntax, example
- Summary
- ► MSMM: local risk ratios

#### Introduction to Mendelian randomization example

Mendelian randomization (Davey Smith & Ebrahim, 2003): use of genotypes robustly associated with exposures (from replicated genome-wide association studies,  $P < 5 \times 10^{-8}$ ) as instrumental variables



#### Introduction to Mendelian randomization example

Mendelian randomization (Davey Smith & Ebrahim, 2003): use of genotypes robustly associated with exposures (from replicated genome-wide association studies,  $P < 5 \times 10^{-8}$ ) as instrumental variables



#### Introduction to Mendelian randomization example

Mendelian randomization (Davey Smith & Ebrahim, 2003): use of genotypes robustly associated with exposures (from replicated genome-wide association studies,  $P < 5 \times 10^{-8}$ ) as instrumental variables



Copenhagen General Population study (N=55,523)

# Multiplicative SMM

X exposure/treatment

Y outcome

Z instrument

 $Y{X = 0}$  exposure/treatment free potential outcome

Robins, 1989, 1994; Robins, Rotnitzky, & Scharfstein, 1999; Hernán & Robins, 2006

$$\begin{split} \log(E[Y|X,Z]) - \log(E[Y\{0\}|X,Z]) &= \psi X \\ \frac{E[Y|X,Z]}{E[Y\{0\}|X,Z]} &= \exp(\psi X) \\ \psi : \text{ log causal risk ratio} \\ \text{Rearrange: } Y\{0\} &= Y \exp(-\psi X) \end{split}$$

#### MSMM G-estimation

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp \!\!\! \perp Z$$
 $Y \exp(-\psi X) \perp \!\!\! \perp Z$ 
 $Y \exp(-\psi X) - Y\{0\} \perp \!\!\! \perp Z$ 

#### MSMM G-estimation

Under the instrumental variable assumptions (Robins, 1989):

$$Y\{0\} \perp \!\!\!\perp Z$$
 $Y \exp(-\psi X) \perp \!\!\!\perp Z$ 
 $Y \exp(-\psi X) - Y\{0\} \perp \!\!\!\perp Z$ 

#### MSMM gmm syntax

 $gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3)$ 

# MSMM gmm output

```
. gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3) nolog
Final GMM criterion Q(b) = .0000425
GMM estimation
Number of parameters = 2
Number of moments = 4
Initial weight matrix: Unadjusted
                                              Number of obs = 55523
GMM weight matrix: Robust
                  Robust
               Coef. Std. Err. z P>|z| [95% Conf. Interval]
      /psi | .3104495 .1192332 2.60 0.009 .0767568 .5441423
      /ey0 | .5758842 .0388716 14.82 0.000 .4996973 .6520711
Instruments for equation 1: z1 z2 z3 _cons
```

# MSMM gmm output

# Causal risk ratio $\exp(\psi)$ & Hansen over-id test . lincom [psi]:\_cons, eform ( 1) [psi]\_cons = 0

. estat overid

Test of overidentifying restriction:

Hansen's J chi2(2) = 2.36125 (p = 0.3071)

# MSMM gmm syntax including analytic first derivatives

```
gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2 z3) ///
    deriv(/psi = -1*x*y*exp(-x*{psi})) ///
    deriv(/ey0 = -1)
```

Reduces runtime from 4.5 secs to 2.5 secs on 55000 obs

# MSMM alternative parameterisation

$$Y \exp(-X\psi - \log(Y\{0\})) - 1 = 0$$

- ► Same moment condition in ivpois (Mullahy, 1997; Nichols, 2007)
- Drukker, 2010: first syntax more numerically stable
- ► Also see Windmeijer & Santos Silva, 1997; Windmeijer, 2002, 2006; Clarke & Windmeijer, 2010
- ▶ Use X as instrument for itself  $\equiv$  Gamma regression (log link)
- ► Slightly different to Poisson regression moment condition:

$$Y - \exp(X\beta) \perp \!\!\! \perp Z$$

# MSMM 2<sup>nd</sup> syntax & ivpois output

```
. gmm (y*exp(-x*{psi} - {logey0}) - 1), instruments(z1 z2 z3) onestep nolog
                       Robust
            Coef. Std. Err. z P>|z| [95% Conf. Interval]
     /psi | .290323 .1184236 2.45 0.014 .058217 .5224291
   /logev0 | -.5404186 .0676225 -7.99 0.000 -.6729562 -.4078811
. ivpois y, endog(x) exog(z1 z2 z3)
           Coef. Std. Err. z P>|z| [95% Conf. Interval]
        x | .2903902 .1184242 2.45 0.014 .058283 .5224973
     _cons | -.540463 .0676208 -7.99 0.000 -.6729974 -.4079286
```

# MSMM 'endogenous' & Gamma (log link) output

```
. gmm (y*exp(-1*x*{psi}) - {logey0}) - 1), instruments(x) onestep nolog
                       Robust
                Coef. Std. Err. z P>|z| [95% Conf. Interval]
      /psi | .2974176 .0062505 47.58 0.000 .2851668 .3096684
    /logey0 | -.5444755 .0054942 -99.10 0.000 -.5552439 -.5337072
. glm y x, family(gamma) link(log) robust nolog
                      Robust
            Coef. Std. Err. z P>|z| [95% Conf. Interval]
        x | .2974176 .0062506 47.58 0.000 .2851667 .3096685
     _cons | -.5444755 .0054942 -99.10 0.000 -.555244 -.5337071
```

# (double) Logistic SMM

$$logit(p) = log(p/(1-p)), expit(x) = e^x/(1+e^x)$$

#### Goetghebeur, 2010

$$\begin{split} \mathsf{logit}(E[Y|X,Z]) - \mathsf{logit}(E[Y\{0\}|X,Z]) &= \psi X \\ \psi : \mathsf{log causal odds ratio} \\ \mathsf{Rearrange:} \ Y\{0\} &= \mathsf{expit}(\mathsf{logit}(Y) - \psi X) \end{split}$$

# (double) Logistic SMM

$$\operatorname{logit}(p) = \operatorname{log}(p/(1-p)), \ \operatorname{expit}(x) = e^x/(1+e^x)$$

#### Goetghebeur, 2010

$$\begin{split} \log & \mathrm{id}(E[Y|X,Z]) - \mathrm{logit}(E[Y\{0\}|X,Z]) = \psi X \\ & \psi : \ \ \mathrm{log\ causal\ odds\ ratio} \\ & \qquad \qquad \mathrm{Rearrange:}\ Y\{0\} = \mathrm{expit}(\mathrm{logit}(Y) - \psi X) \end{split}$$

- ► LSMM can't be estimated in a single step (Robins et al., 1999)
- ► LSMM estimator with first stage association model (Vansteelandt & Goetghebeur, 2003; Bowden & Vansteelandt, 2010):
  - ▶ logistic regression of *Y* on *X* & *Z* (& interactions: saturated)
  - ▶ predict Y
  - estimate LSMM using predicted Y

# (double) LSMM gmm syntax

$$invlogit(x) = expit(x) = e^x/(1+e^x)$$

#### Association model gmm syntax - logistic regression using GMM

```
gmm (y - invlogit({b0} + {xb:x z1 z2 z3 xz1 xz2 xz3})), ///
   instruments(x z1 z2 z3 xz1 xz2 xz3)
predict prres
gen xblog = logit(y - prres)
```

# (double) LSMM gmm syntax

$$invlogit(x) = expit(x) = e^x/(1 + e^x)$$

#### Association model gmm syntax - logistic regression using GMM

```
gmm (y - invlogit({b0} + {xb:x z1 z2 z3 xz1 xz2 xz3})), ///
   instruments(x z1 z2 z3 xz1 xz2 xz3)
predict prres
gen xblog = logit(y - prres)
```

#### Causal model gmm syntax

```
gmm (invlogit(xblog - x*{psi}) - {ey0}), instruments(z1 z2 z3)
```

Problem: causal model SEs incorrect - need to incorporate uncertainty from association model

# Association model output: gmm & logit

. gmm (y - invlogit({xb:x z1 z2 z3 xz1 xz2 xz3} + {b0})), instruments(x z1 z2 z3 xz1 xz2 xz3)

| <br>    | Coef.    | Robust<br>Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|---------|----------|---------------------|-------|-------|------------|-----------|
| /xb_x   | .9034697 | .0419769            | 21.52 | 0.000 | .8211965   | .9857428  |
| /xb_z1  | .0023852 | .0346439            | 0.07  | 0.945 | 0655155    | .070286   |
| /xb_z2  | 031613   | .0375747            | -0.84 | 0.400 | 105258     | .042032   |
| /xb_z3  | .0285799 | .0598671            | 0.48  | 0.633 | 0887574    | .1459173  |
| /xb_xz1 | .0500118 | .0509504            | 0.98  | 0.326 | 0498492    | .1498728  |
| /xb_xz2 | .06952   | .0543206            | 1.28  | 0.201 | 0369464    | .1759864  |
| /xb_xz3 | .0412161 | .0837708            | 0.49  | 0.623 | 1229716    | .2054038  |
| /b0     | .3295621 | .0285043            | 11.56 | 0.000 | . 2736947  | .3854295  |

. logit y x z1 z2 z3 xz1 xz2 xz3, nolog

| у     | Coef.    | Std. Err. | z     | P> z  | [95% Conf | . Interval] |
|-------|----------|-----------|-------|-------|-----------|-------------|
| x     | .9034696 | .0419769  | 21.52 | 0.000 | .8211964  | .9857428    |
| z1    | .0023852 | .0346439  | 0.07  | 0.945 | 0655155   | .070286     |
| z2    | 031613   | .0375747  | -0.84 | 0.400 | 105258    | .042032     |
| z3    | .0285799 | .0598671  | 0.48  | 0.633 | 0887574   | .1459173    |
| xz1   | .0500117 | .0509504  | 0.98  | 0.326 | 0498493   | .1498727    |
| xz2   | .06952   | .0543206  | 1.28  | 0.201 | 0369465   | .1759864    |
| xz3   | .041216  | .0837708  | 0.49  | 0.623 | 1229717   | .2054037    |
| _cons | .3295621 | .0285043  | 11.56 | 0.000 | .2736947  | .3854295    |

<sup>.</sup> matrix from = e(b)

<sup>.</sup> predict xblog, xb

### Causal model output

```
. gmm (invlogit(xblog - x*{psi}) - {ey0}), instruments(z1 z2 z3) nolog
                       Robust
             Coef. Std. Err. z P>|z| [95% Conf. Interval]
      /psi | .6331413 .0362588 17.46 0.000 .5620754 .7042073
      /ey0 | .6226167 .004652 133.84 0.000 .613499 .6317344
Instruments for equation 1: z1 z2 z3 _cons
. matrix from = (from,e(b))
```

Problem: causal model SEs incorrect - need to incorporate uncertainty from association model

# LSMM joint estimation

Joint estimation of association and causal models = correct SEs (Gourieroux, Monfort, & Renault, 1996)

#### LSMM gmm multiple equation syntax

# LSMM gmm multiple equation output

```
Number of parameters =
Number of moments
                      12
Initial weight matrix: Unadjusted
                                                   Number of obs
                                                                     55523
GMM weight matrix:
                     Robust
                           Robust
                  Coef.
                          Std. Err. z P>|z| [95% Conf. Interval]
      /xb_x |
                .9091545
                          .0418464
                                     21.73
                                             0.000
                                                       .8271371
                                                                  .9911719
     /xb_z1 |
               -.0207159
                          .0279367
                                     -0.74
                                             0.458
                                                      -.0754708
                                                                   .034039
     /xb z2 |
               -.0339566
                           .0343049
                                             0.322
                                                       -.101193
                                                                   .0332797
                                     -0.99
     /xb_z3 | -.0058356
                           .0550491
                                     -0.11
                                             0.916
                                                      -.1137299
                                                                   .1020586
    /xb xz1 |
              .039923
                           .0502901
                                     0.79
                                             0.427
                                                      -.0586438
                                                                   .1384898
    /xb xz2 l
                .0687247
                           .0542023
                                     1.27
                                             0.205
                                                      -.0375099
                                                                   .1749592
    /xb_xz3
              .0262868
                           .0826922
                                    0.32
                                             0.751
                                                       -.135787
                                                                   .1883605
        /b0 |
              .3425951
                           .0253272
                                     13.53
                                             0.000
                                                      .2929547
                                                                   .3922354
       /psi |
               1.05276
                          .4217043
                                    2.50
                                             0.013
                                                      .2262351
                                                                  1.879286
       /ev0 |
                .5656666
                           .0592065
                                       9.55
                                             0.000
                                                       .4496241
                                                                   .6817091
```

# LSMM gmm multiple equation output

```
Causal odds ratio exp(\psi) & Hansen over-id test
. lincom [psi]:_cons, eform
 (1) [psi]_cons = 0
              exp(b) Std. Err. z P>|z| [95% Conf. Interval]
        (1) | 2.86555 1.208415 2.50 0.013 1.25387 6.548825
. estat overid
 Test of overidentifying restriction:
 Hansen's J chi2(2) = 2.459 (p = 0.2924)
```

# LSMM gmm multiple equation syntax with derivatives

```
local p1 "invlogit({xb:} + {b0})"
local d1 "-1*'p1'*(1 - 'p1')"
local p2 "invlogit({xb:} + {b0} - x*{psi})"
local d2 "'p2'*(1 - 'p2')"
gmm (y - invlogit({xb:x z1 z2 z3 xz1 xz2 xz3} + {b0})) ///
    (invlogit({xb:} + {b0} - x*{psi}) - {ey0}), ///
    instruments(1:x z1 z2 z3 xz1 xz2 xz3) ///
    instruments(2:z1 z2 z3) ///
   winitial(unadjusted, independent) from(from) ///
   deriv(1/xb = 'd1') ///
   deriv(1/b0 = 'd1') ///
   deriv(2/xb = 'd2') ///
   deriv(2/b0 = 'd2') ///
   deriv(2/psi = -1*x*'d2') ///
   deriv(2/ev0 = -1)
```

Stata applies last step of chain rule to derivates of  $\{xb:\}$  i.e.  $\frac{\partial u}{\partial \beta_j} = \frac{\partial u}{\partial (x'\beta)} \times \frac{\partial (x'\beta)}{\partial \beta_j}$ See help gmm & manual P593–5

Reduces runtime from 155secs to 32secs on 55000 obs

### Summary

► Structural Mean Models estimated using IVs by G-estimation

$$Y{0} \perp \!\!\! \perp Z$$

- GMM estimation using multiple instruments
- ▶ Multiplicative SMM = ivpois
- Specifying analytic derivatives in gmm = faster!
- ▶ (double) logistic SMM estimation using multiple equations
- estat overid: Hansen J-test of joint validity of instruments
- SMMs: subtly different to additive residual IV estimators
  - ▶ RR:  $Y \exp(\psi X) \perp \!\!\! \perp Z$  (Cameron & Trivedi, 2009; Johnston, Gustafson, Levy, & Grootendorst, 2008)
  - ▶ OR:  $Y \expit(\psi X) \perp \!\!\! \perp Z$  (Foster, 1997; Rassen, Schneeweiss, Glynn, Mittleman, & Brookhart, 2009)
- ▶ Review of some of the methods (Palmer et al., 2011)

### Acknowledgements

- ► MRC Collaborative grant G0601625
- ► MRC CAiTE Centre grant G0600705
- ► ESRC grant RES-060-23-0011
- With thanks to Nuala Sheehan, Vanessa Didelez, Debbie Lawlor, Jonathan Sterne, George Davey Smith, Sha Meng, Neil Davies, Nic Timpson, Borge Nordestgaard.

#### References I

- Bowden, J., & Vansteelandt, S. (2010). Mendelian randomisation analysis of case-control data using structural mean models. *Statistics in Medicine*. (in press)
- Cameron, A. C., & Trivedi, P. K. (2009). *Microeconometrics using stata*. College Station, Texas: Stata Press.
- Clarke, P. S., & Windmeijer, F. (2010). Identification of causal effects on binary outcomes using structural mean models. *Biostatistics*, 11(4), 756–770.
- Davey Smith, G., & Ebrahim, S. (2003). 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease. *International Journal of Epidemiology*, 32, 1–22.
- Drukker, D. (2010). An introduction to GMM estimation using Stata. In *German stata users group meeting*. Berlin.
- Foster, E. M. (1997). Instrumental variables for logistic regression: an illustration. *Social Science Research*, 26, 487–504.
- Goetghebeur, E. (2010). Commentary: To cause or not to cause confusion vs transparency with Mendelian Randomization. *International Journal of Epidemiology*, 39(3), 918–920.
- Gourieroux, C., Monfort, A., & Renault, E. (1996). Two-stage generalized moment method with applications to regressions with heteroscedasticity of unknown form. *Journal of Statistical Planning and Inference*, 50(1), 37–63.
- Hernán, M. A., & Robins, J. M. (2006). Instruments for Causal Inference. An Epidemiologist's Dream? *Epidemiology*, 17, 360–372.

#### References II

- Imbens, G. W., & Angrist, J. D. (1994). Identification and Estimation of Local Average Treatment Effects. *Econometrica*, 62, 467–467.
- Johnston, K. M., Gustafson, P., Levy, A. R., & Grootendorst, P. (2008). Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Statistics in Medicine, 27, 1539–1556.
- Mullahy, J. (1997). Instrumental-variable estimation of count data models: Applications to models of cigarette smoking behaviour. *The Review of Economics and Statistics*, 79(4), 568–593.
- Nichols, A. (2007). *ivpois: Stata module for IV/GMM Poisson regression*. Statistical Software Components, Boston College Department of Economics. (available at http://ideas.repec.org/c/boc/bocode/s456890.html)
- Palmer, T. M., Sterne, J. A. C., Harbord, R. M., Lawlor, D. A., Sheehan, N. A., Meng, S., et al. (2011). Instrumental variable estimation of causal risk ratios and causal odds ratios in mendelian randomization analyses. *American Journal* of Epidemiology.
- Rassen, J. A., Schneeweiss, S., Glynn, R. J., Mittleman, M. A., & Brookhart, M. A. (2009). Instrumental Variable Analysis for Estimation of Treatment Effects With Dichotomous Outcomes. *American Journal of Epidemiology*, 169(3), 273–284.

#### References III

- Robins, J. M. (1989). Health services research methodology: A focus on aids. In L. Sechrest, H. Freeman, & A. Mulley (Eds.), (chap. The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies). Washington DC, US: US Public Health Service.
- Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. *Communications in Statistics: Theory and Methods*, *23*(8), 2379–2412.
- Robins, J. M., Rotnitzky, A., & Scharfstein, D. O. (1999). Statistical models in epidemiology: The environment and clinical trials. In M. E. Halloran & D. Berry (Eds.), (pp. 1–92). New York, US: Springer.
- Vansteelandt, S., & Goetghebeur, E. (2003). Causal inference with generalized structural mean models. *Journal of the Royal Statistical Society: Series B*, 65(4), 817–835.
- Windmeijer, F. (2002). ExpEnd, A Gauss program for non-linear GMM estimation of exponential models with endogenous regressors for cross section and panel data (Tech. Rep.). Centre for Microdata Methods and Practice.
- Windmeijer, F. (2006). *GMM for panel count data models* (Bristol Economics Discussion Papers No. 06/591). Department of Economics, University of Bristol, UK. Available from <a href="http://ideas.repec.org/p/bri/uobdis/06-591.html">http://ideas.repec.org/p/bri/uobdis/06-591.html</a>

#### References IV

Windmeijer, F., & Santos Silva, J. (1997). Endogeneity in Count Data Models: An Application to Demand for Health Care. *Journal of Applied Econometrics*, 12(3), 281–294.

#### Local risk ratios for MSMM

- ▶ Identification depends on NEM ... what if it doesn't hold?
- ▶ Alternative assumption of monotonicity:  $X(Z_k) \ge X(Z_{k-1})$
- ► Local Average Treatment Effect (LATE) (Imbens & Angrist, 1994)
  - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from  $Z_{k-1}$  to  $Z_k$



#### Local risk ratios for MSMM

- ▶ Identification depends on NEM . . . what if it doesn't hold?
- ▶ Alternative assumption of monotonicity:  $X(Z_k) \ge X(Z_{k-1})$
- ► Local Average Treatment Effect (LATE) (Imbens & Angrist, 1994)
  - effect among those whose exposures are changed (upwardly) by changing (counterfactually) the IV from  $Z_{k-1}$  to  $Z_k$



Similar result holds for MSMM: 
$$\exp(\psi)_{\text{Overall}} = \sum_{k=1}^{K} \tau_k \exp(\psi)_{k,k-1}$$

# Local risk ratios in example



Check:  $(0.10 \times 2.21) + (0.81 \times 1.11) + (0.09 \times 2.69) = 1.36$ 

# Compare SMMs with other estimators

|                                                        | RR (95% CI)                   | P over-id             |
|--------------------------------------------------------|-------------------------------|-----------------------|
| MSMM                                                   | 1.36 (1.08, 1.72)             | 0.31                  |
| $Y - \exp(\psi X) \perp \!\!\! \perp Z$                | 1.36 (1.07, 1.75)             | 0.30                  |
| Control function                                       | 1.36 (1.08, 1.71)             |                       |
|                                                        |                               |                       |
|                                                        | OR (95% CI)                   | P over-id             |
| (double) LSMM                                          | OR (95% CI) 2.87 (1.25, 6.55) | <i>P</i> over-id 0.29 |
| (double) LSMM $Y - expit(\psi X) \perp \!\!\! \perp Z$ | ,                             |                       |
| ,                                                      | 2.87 (1.25, 6.55)             | 0.29                  |