Algorithms and Satisfiability

7. Satisfiability, Part I: Principles and Basic Algorithms
How to Think About What is True or False

Álvaro Torralba

Spring 2023

Thanks to Jörg Hoffmann for slide sources

Satisfiability Introduction **Basics Applications** Normal Forms Resolution Davis-Putnam Conclusion 00000 0000 0000 0000000 000 000000 00000 00

Agenda

- Introduction
- 2 Satisfiability
- Basics
- 4 Applications
- Normal Forms
- 6 Resolution
- The Davis-Putnam (Logemann-Loveland) Procedure
- Conclusion

So far...

- Openion of the programming of
- Greedy Algorithms
- Omputational geometry algorithms: sweeping techniques
- External-memory algorithms and data structures
- Parallel algorithms
- Amortized analysis
- →Techniques to make efficient algorithms and analyze their performance

What if an efficient algorithm does not exist?

What to do when you can't find an efficient algorithm?¹

"I can't find an efficient algorithm, I guess I'm just too dumb."

In this lecture:

In this lecture we will study algorithms for:

- Satisfiability: Given a Boolean formula, is it satisfiable? →NP-complete
- Classical Planning: Can we achieve our goal by applying a sequence of actions?
 - →**PSPACE**-complete
- \rightarrow These problems cannot be solved in polynomial time (unless **P=NP**)!

But that is only worst case assymptotic complexity...

- Do the interesting real-world instances pertain to the worst case?
- Are interesting real-world instances small enough so that we can solve them?

Satisfiability Conclusion Introduction Basics **Applications** Normal Forms Resolution Davis-Putnam 00000 0000 0000 000000 00000 0000000 000 00

You say I can't solve that? Hold my beer!

"We TOLD you it was hard." "Yeah, but now that I'VE tried, we KNOW it's hard." XKCD.com/1831

Two Questions

What algorithms can we use to solve these hard problems?

→Explored in the Lectures and Exercises

How to solve these hard problems in practice using solvers?

- →Explored in the mini-projects
 - Preparation: Install tool in your computer
 - (shorter) Lecture
 - Project: Use a solver to solve some problems
 - Optional: submit your solution to receive feedback
 - Exam relevant!: in 2021 no one submitted their solution and at least half of the students failed to answer the exam question!

The SAT Problem

SAT

Is a propositional logic formula ϕ satisfiable?

- Propositional Logic: Satisfiability can refer to many different logics.
 In this course, we focus on one of the simplest!
- Satisfiable: A formula is satisfiable if it is possible to find an interpretation (assignment) that makes the formula true.
- →Does there exist an assignment that makes the formula true? Examples:
 - $(x \lor y) \land (\neg x \lor \neg y)$, Yes! x = 0, y = 1
 - $(x \vee y) \wedge (\neg x) \wedge (\neg y)$, No!

Our Agenda for This Topic

 \rightarrow Our treatment of the topic "SAT Solving" consists of Chapters 7 and 8.

- This Chapter: Basic definitions and concepts; resolution; DPLL.
 - \rightarrow Sets up the framework. Resolution is the quintessential reasoning procedure underlying most successful solvers.
- Chapter 8: Clause learning; practical problem structure.
 - \rightarrow State-of-the-art algorithms for satisfiability in propositional logic, and an important observation about how they behave.
- Mini-project: SAT modulo theories (SMT)
 - → Extension beyond propositional formulas!

Chapter 7: Satisfiability I

Our Agenda for This Chapter

- Basics: What's the SAT problem about?
 - → Introduces what our problem is about.
- Applications: What is all this useful for?
 - \rightarrow Brief description of some of the applications of SAT.
- **Resolution:** How does resolution work? What are its properties?
 - → Formally introduces the most basic reasoning method.
- The Davis-Putnam (Logemann-Loveland) Procedure: How to systematically test satisfiability?
 - \rightarrow The quintessential SAT solving procedure, DPLL.

Chapter 7: Satisfiability I

Syntax of Propositional Logic

ightarrow Atoms Σ in propositional logic = Boolean variables.

Definition (Syntax). Let Σ be a set of atomic propositions. Then:

- 1. \perp and \top are Σ -formulas. ("False", "True")
- 2. Each $P \in \Sigma$ is a Σ -formula. ("Atom")
- 3. If φ is a Σ -formula, then so is $\neg \varphi$. ("Negation")

If φ and ψ are Σ -formulas, then so are:

- 4. $\varphi \wedge \psi$ ("Conjunction")
- 5. $\varphi \lor \psi$ ("Disjunction")
- 6. $\varphi \rightarrow \psi$ ("Implication")
- 7. $\varphi \leftrightarrow \psi$ ("Equivalence")

Notation: Atoms and negated atoms are called literals. Operator precedence: $\neg > \dots$ (we'll be using brackets except for negation).

Semantics of Propositional Logic

Definition (Interpretation). Let Σ be a set of atomic propositions. An interpretation of Σ , also called a truth assignment, is a function $I: \Sigma \mapsto \{1,0\}$. We set:

$$\begin{split} I &\models \top \\ I \not\models \bot \\ I &\models P & \textit{iff} \quad P^I = 1 \\ I &\models \neg \varphi & \textit{iff} \quad I \not\models \varphi \\ I &\models \varphi \land \psi & \textit{iff} \quad I \models \varphi \; \textit{and} \; I \models \psi \\ I &\models \varphi \lor \psi & \textit{iff} \quad I \models \varphi \; \textit{or} \; I \models \psi \\ I &\models \varphi \to \psi & \textit{iff} \quad if \; I \models \varphi, \; then \; I \models \psi \\ I &\models \varphi \leftrightarrow \psi & \textit{iff} \quad I \models \varphi \; \textit{if} \; \textit{and} \; \textit{only} \; \textit{if} \; I \models \psi \end{split}$$

If $I \models \varphi$, we say that I satisfies φ , or that I is a model of φ . The set of all models of φ is denoted by $M(\varphi)$.

Semantics of Propositional Logic: Examples

Example

Formula: $\varphi = [(P \lor Q) \leftrightarrow (R \lor S)] \land [\neg (P \land Q) \land (R \land \neg S)]$

 \rightarrow For I with I(P)=1, I(Q)=1, I(R)=0, I(S)=0, do we have $I\models\varphi$? No: $(P\vee Q)$ is true but $(R\vee S)$ is false, so the left-hand side of the conjunction is false and the overall formula is false.

Example

Formula: $\varphi = InSatisfiabilityClass \rightarrow HavingAGreatTime$

 \rightarrow For I with I(InSatisfiabilityClass) = 0, I(HavingAGreatTime) = 1, do we have $I \models \varphi$? Yes: $\varphi = \psi_1 \rightarrow \psi_2$ is true iff either ψ_1 is false, or ψ_2 is true (i.e., $\psi_1 \rightarrow \psi_2$ has the same models as $\neg \psi_1 \lor \psi_2$).

Terminology

Satisfiability

A formula φ is:

- satisfiable if there exists I that satisfies φ .
- ullet unsatisfiable if φ is not satisfiable.
- falsifiable if there exists I that doesn't satisfy φ .
- valid if $I \models \varphi$ holds for all I. We also call φ a tautology.

Equivalence

Formulas φ and ψ are equivalent, $\varphi \equiv \psi$, if $M(\varphi) = M(\psi)$.

Entailment

Formula φ entails ψ ($\varphi \models \psi$), if $M(\psi) \subseteq M(\varphi)$.

General Problem Solving using SAT

model problem in logic → use off-the-shelf SAT solver

- "Any problem that can be formulated as SAT."
- Very successful using propositional logic and modern solvers for SAT! (Propositional satisfiability testing, Chapter 8.)

Introduction Satisfiability **Basics Applications** Davis-Putnam Normal Forms Resolution Conclusion 00000 000 0000 0000 000000 00000 0000000 00

Applications

Lots of interesting problems can be formulated as SAT!

- Lots of NP problems
- Scheduling
- Hardware Verification
- Logical Deduction
- Planning (Chapter 12)

And we can even extend this by considering SAT modulo theories (mini project)

Example Application: Hardware Verification

Example

- Counter, repeatedly from c=0 to c=2.
- 2 bits x_1 and x_0 ; $c = 2 * x_1 + x_0$.
- ("FF" Flip-Flop, "D" Data IN, "CLK" Clock)
- To Verify: If c < 3 in current clock cycle, then c < 3 in next clock cycle.

Step 1: Encode into propositional logic.

- Propositions: x_1, x_0 ; and x'_1, x'_0 (value in next cycle).
- Transition relation: $x_1' \leftrightarrow x_0$; $x_0' \leftrightarrow \neg(x_1 \lor x_0)$.
- Initial state: $\neg(x_1 \land x_0)$. Error property: $x_1' \land x_0'$.

Step 2: Transform to CNF, encode as set Δ of clauses.

$$\rightarrow \{ \{ \neg x_1', x_0 \}, \{ x_1', \neg x_0 \}, \{ x_0', x_1, x_0 \}, \{ \neg x_0', \neg x_1 \}, \{ \neg x_0', \neg x_0 \}, \{ \neg x_1, \neg x_0 \}, \{ x_1' \}, \{ x_0' \} \}$$

Step 3: Call a SAT solver (up next).

Example Application: Logical Deduction (Wumpus)

Example

00000

- The player cannot see the entire board, only if there is Stench or Breeze on the current cell.
- **To Verify:** After visiting [2,1] and [1,2], are we sure cell [2,2] is free?.

Step 1: Encode into propositional logic.

- ullet Propositions: Stench[i,j], Breeze[i,j], Wumpus[i,j], Pit[i,j];
- Knowledge Base: $KB = \bigwedge_{i,j} Wumpus[i,j] \implies Stench[i,j+1] \land Stench[1,2] \land \dots$
- Question: $Q = \neg (Wumpus[2,2] \land Pit[2,2])$.

Step 2: Transform $KB \wedge \neg(Q)$ to CNF, encode as set Δ of clauses.

Step 3: Call a SAT solver (up next). If unsatisfiable, then we can conclude Q.

The Truth Table Method

Want: Determine whether φ is satisfiable, valid, etc.

Method: Build the truth table, enumerating all interpretations of Σ .

Example

Is $\varphi = ((P \vee H) \wedge \neg H) \rightarrow P$ valid?

P	Н	$P \lor H$	$(P \vee H) \wedge \neg H$	$(P \lor H) \land \neg H \to P$
0	0	0	0	1
0	1	1	0	1
1	0	1	1	1
1	1	1	0	1

 \rightarrow Yes. φ is true for all possible combinations of truth values.

 \rightarrow Is this a good method for answering these questions? No! For N propositions, the truth table has 2^N rows. [Satisfiability (validity) testing is **NP**-hard (**co-NP**-hard), but that pertains to worst-case behavior.]

Satisfiability Introduction Basics **Applications** Normal Forms Conclusion Resolution 00000 000 0000 0000 00000 00000 0000000 00

Normal Forms

The two quintessential normal forms: (there are others as well)

 A formula is in conjunctive normal form (CNF) if it consists of a conjunction of disjunctions of literals:

$$\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} l_{i,j} \right)$$

 A formula is in disjunctive normal form (DNF) if it consists of a disjunction of conjunctions of literals:

$$\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} l_{i,j} \right)$$

 \rightarrow Given a propositional formula φ , we can in polynomial time construct a CNF/DNF formula ψ that is satisfiable if and only if φ is. (Proof omitted)

Introduction

00000

Transformation to Normal Form

Basics

0000

CNF Transformation (DNF Transformation: Analogously)

Exploit the equivalences:

- $(\varphi_1 \wedge \varphi_2) \vee (\psi_1 \wedge \psi_2)] \equiv [(\varphi_1 \vee \psi_1) \wedge (\varphi_2 \vee \psi_1) \wedge (\varphi_1 \vee \psi_2) \wedge (\varphi_2 \vee \psi_2)]$ (Distribute "\v" over "\\")

```
Example: ((P \lor H) \land \neg H) \rightarrow P (eliminate \rightarrow): \neg ((P \lor H) \land \neg H) \lor P (move \neg inwards): (\neg (P \lor H) \lor H) \lor P ((\neg P \land \neg H) \lor H) \lor P (distr. "\lor" over "\land"): (((\neg P \lor H) \land (\neg H \lor H))) \lor P (distr. "\lor" over "\land"): (((\neg P \lor H \lor P) \land (\neg H \lor H \lor P)))
```

- → Note: The formula may grow exponentially! ("Distribute" step)
- → However, satisfiability-preserving CNF transformation is polynomial!

Questionnaire

Question!

A CNF formula is ...

- (A): Valid iff at least one disjunction is valid.
- (C): Satisfiable if at least one disjunction is satisfiable.

- (B): Valid iff every disjunction is valid.
- (D): Satisfiable if every disjunction is satisfiable.
- \rightarrow (A): No, other parts of the global conjunction may be false under any one given interpretation.
- \rightarrow (B): Yes: The CNF is a conjunction of valid formulas, so is valid itself. (Compare the CNF transformation of the example formula on slide 26).
- \rightarrow (C): No since we need *all* disjuncts to be satisfied together.
- \rightarrow (D): No since we need all disjuncts to be satisfied together *by the same interpretation*.

Clausal Form

 \rightarrow For the remainder of this chapter, we assume that the input is a set \triangle of clauses: (The same will be assumed in Chapter 8)

Terminology and Notation

- A literal l is an atom or the negation thereof (e.g., $P, \neg Q$); the negation of a literal is denoted \overline{l} (e.g., $\overline{\neg Q} = Q$).
- A clause C is a disjunction of literals. We identify C with the set of its literals (e.g., $P \vee \neg Q$ becomes $\{P, \neg Q\}$).
- We identify a CNF formula ψ with the set Δ of its clauses (e.g., $(P \vee \neg Q) \wedge R$ becomes $\{\{P, \neg Q\}, \{R\}\}\}$).
- The empty clause is denoted \square .
- o An interpretation I satisfies a clause C iff there exists $l \in C$ such that $I \models l$. I satisfies Δ iff, for all $C \in \Delta$, we have $I \models C$.

Satisfiability in the Clausal Form: Rim Cases

It's normally simple ...

• E.g., I with I(P)=0, I(Q)=0, I(R)=0 does not satisfy $\Delta=\{\{P,\neg Q\},\{R\}\}.$

... but can be confusing in the "rim cases":

- Does there exist I so that $I \models \square$? No, there exists no literal $l \in \square$ that we can satisfy.
- With $\Delta = \{\Box\}$, does there exist I so that $I \models \Delta$? No, because we can't satisfy \Box .
- With $\Delta = \{\}$, does there exist I so that $I \models \Delta$? Yes, because I satisfies all clauses $C \in \Delta$ (trivial as there is no clause in Δ).

Deduction

Basic Concepts in Deduction

- Inference rule: Rule prescribing how we can infer new formulas.
 - ightarrow For example, if the KB is $\{\ldots,(arphi
 ightarrow\psi),\ldots,arphi,\ldots\}$ then ψ can be deduced using the inference rule $\dfrac{arphi,arphi
 ightarrow\psi}{\psi}$.
- Calculus: Set \mathcal{R} of inference rules.
- **Derivation**: φ can be derived from KB using \mathcal{R} , KB $\vdash_{\mathcal{R}} \varphi$, if starting from KB there is a sequence of applications of rules from \mathcal{R} , ending in φ .
- **Soundness**: \mathcal{R} is sound if all derivable formulas do follow logically: if $KB \vdash_{\mathcal{R}} \varphi$, then $KB \models \varphi$.
- Completeness: \mathcal{R} is complete if all formulas that follow logically are derivable: if $KB \models \varphi$, then $KB \vdash_{\mathcal{R}} \varphi$.

 \rightarrow If \mathcal{R} is sound and complete, then to check whether KB $\models \varphi$, we can check whether KB $\vdash_{\mathcal{R}} \varphi$.

The Resolution Rule

Definition (Resolution Rule). Resolution uses the following inference rule (with exclusive union $\dot{\cup}$ meaning that the two sets are disjoint):

$$\frac{C_1\dot{\cup}\{l\}, C_2\dot{\cup}\{\bar{l}\}}{C_1\cup C_2}$$

If Δ contains parent clauses of the form $C_1\dot{\cup}\{l\}$ and $C_2\dot{\cup}\{\bar{l}\}$, the rule allows to add the resolvent clause $C_1\cup C_2$. l and \bar{l} are called the resolution literals.

Example: $\{P, \neg R\}$ resolves with $\{R, Q\}$ to $\{P, Q\}$.

Lemma. The resolvent follows from the parent clauses.

Proof. If $I \models C_1 \dot{\cup} \{l\}$ and $I \models C_2 \dot{\cup} \{\bar{l}\}$, then I must make at least one literal in $C_1 \cup C_2$ true.

Theorem (Soundness). If $\Delta \vdash D$, then $\Delta \models D$. (Direct from Lemma.)

 \rightarrow What about the other direction? Is the resolvent equivalent to its parents? No, because to satisfy the resolvent it is enough to satisfy one of C_1, C_2 . E.g.: Setting I(P)=0 and I(Q)=1, we satisfy $\{P,Q\}$ but do not satisfy $\{P,\neg R\}$ when setting the resolution literal to I(R)=1.

Introduction Satisfiability Basics **Applications** Resolution Davis-Putnam Normal Forms Conclusion 0000 00000 000 0000 000000 0000 0000000 00

Using Resolution: A Simple Example

 $\Delta = \{ \{\neg Q, \neg P\}, \{P, \neg Q, \neg R, \neg S\}, \{Q, \neg S\}, \{S\}, \{R, \neg S\} \}$ Derive \square by applying the resolution rule.

Using Resolution: A Frequent Mistake

Question: Given clauses $C_1 \dot{\cup} \{P,Q\}$ and $C_2 \dot{\cup} \{\neg P, \neg Q\}$, can we resolve them to $C_1 \cup C_2$?

Answer: NO!

Observation 1: Consider $\Delta = \{\{P,Q\}, \{\neg P, \neg Q\}\}$, and assume we were able to resolve as above. Then we could derive the empty clause. However, Δ is satisfiable (e.g. P := T, Q := F), so this deduction would be unsound.

Observation 2: The proof of the lemma on slide 32 is not valid for the hypothetical resolution of $C_1 \dot{\cup} \{P,Q\}$ and $C_2 \dot{\cup} \{\neg P, \neg Q\}$ to $C_1 \cup C_2$.

This is due to Observation 1: An interpretation can set, e.g., P := T, Q := F, satisfying both $\{P,Q\}$ and $\{\neg P, \neg Q\}$ together, avoiding the need to satisfy either of C_1 or C_2 .

Chapter 7: Satisfiability I

Questionnaire

Question!

What are resolvents of $\{P, \neg Q, R\}$ and $\{\neg P, Q, R\}$?

```
(A): \{Q, \neg Q, P, R\}.
```

(B): $\{P, \neg P, R, S\}$.

(C): $\{R\}$.

(D): $\{Q, \neg Q, R\}$.

- \rightarrow (A): No. If we resolve on P then it disappears completely.
- \rightarrow (B): No. By resolving on Q we get this clause except S, and although the larger clause always is sound as well of course, we are not allowed to deduce it by the rule.
- \rightarrow (C): No. If we resolve on P then we get both Q and $\neg Q$ into the clause, similar if we resolve on Q.
- \rightarrow We can resolve on only ONE literal at a time, cf. slide 34.
- \rightarrow (D): Yes, this is what we get by resolving on P.

00000

0000

The DPLL Procedure

Call on input Δ and the empty partial interpretation I:

```
function DPLL(\Delta, I) returns a partial interpretation I, or "unsatisfiable"
/* Unit Propagation (UP) Rule: */
  \Delta' := a \text{ copy of } \Delta; I' := I
  while \Delta' contains a unit clause C = \{l\} do
      extend I^{\prime} with the respective truth value for the proposition underlying l
      simplify \Delta' /* remove false literals and true clauses */
/* Termination Test: */
  if \square \in \Delta' then return "unsatisfiable"
  if \Delta' = \{\} then return I'
/* Splitting Rule: */
  select some proposition P for which I' is not defined
  I'':=I' extended with one truth value for P; \Delta'':= a copy of \Delta'; simplify \Delta''
  if I''' := \mathsf{DPLL}(\Delta'', I'') \neq "unsatisfiable" then return I'''
  I'':=I' extended with the other truth value for P; \Delta'':=\Delta'; simplify \Delta''
  return DPLL(\Delta'', I'')
```

 \rightarrow In practice, of course one uses flags etc. instead of "copy".

DPLL: Example (Vanilla1)

$$\Delta = \{ \{P, Q, \neg R\}, \{\neg P, \neg Q\}, \{R\}, \{P, \neg Q\} \}$$

- UP Rule: $R \mapsto 1$ $\{\{P,Q\}, \{\neg P, \neg Q\}, \{P, \neg Q\}\}$
- Splitting Rule:
- 2a. $P \mapsto 0$ $\{\{Q\}, \{\neg Q\}\}$
- 3a. UP Rule: $Q \mapsto 1$ $\{\Box\}$

- 2b. $P \mapsto 1$ $\{\{\neg Q\}\}$
- 3b. UP Rule: $Q \mapsto 0$

DPLL: Example (Vanilla2)

$$\Delta = \{ \{\neg Q, \neg P\}, \{P, \neg Q, \neg R, \neg S\}, \{Q, \neg S\}, \{R, \neg S\}, \{S\} \}$$

- UP Rule: $S \mapsto 1$ $\{\{\neg Q, \neg P\}, \{P, \neg Q, \neg R\}, \{Q\}, \{R\}\}\}$
- ② UP Rule: $Q \mapsto 1$ $\{\{\neg P\}, \{P, \neg R\}, \{R\}\}$

Properties of DPLL

Unsatisfiable case:

- What can we say if "unsatisfiable" is returned?
 - \rightarrow In this case, we know that Δ is unsatisfiable: Unit propagation is sound, in the sense that it does not reduce the set of solutions. (= Soundness of calculus, cf. next two slides.)

Satisfiable case:

- What can we say when a partial interpretation *I* is returned?
 - \rightarrow Any extension of I to a complete interpretation satisfies Δ . (By construction, I suffices to satisfy all clauses.)

DPLL is an example of a successful algorithmic pattern: Search + Inference

- DPLL \approx Search = Backtracking, with Inference() = unit propagation.
- Unit propagation is sound: It does not reduce the set of solutions.
 (Also: = Soundness of calculus, cf. next slide.)

UP = Unit Resolution

The Unit Propagation (UP) Rule ...

```
while \Delta' contains a unit clause \{l\} do extend I' with the respective truth value for the proposition underlying l simplify \Delta' /* remove false literals */
```

... corresponds to a calculus:

Definition (Unit Resolution). Unit Resolution is the calculus consisting of the following inference rule:

$$\frac{C\dot{\cup}\{\bar{l}\},\{l\}}{C}$$

That is, if Δ contains parent clauses of the form $C \dot{\cup} \{\bar{l}\}$ and $\{l\}$, the rule allows to add the resolvent clause C.

 \rightarrow Unit propagation = Resolution restricted to the case where one of the parent clauses is unit.

UP/Unit Resolution: Soundness/Completeness

Soundness:

- Need to show: If Δ' can be derived from Δ by UP, then $\Delta \models \Delta'$.
- Yes, because any derivation made by unit resolution can also be made by (full) resolution, which we already know has this property.
- (Intuitively: if Δ' contains the unit clause $\{l\}$, then l must be made true so $C\dot{\cup}\{\bar{l}\}$ implies C.)

Completeness:

- Need to show: If $\Delta \models \Delta'$, then Δ' can be derived from Δ by UP.
- No. UP makes only limited inferences, as long as there are unit clauses. It does not guarantee to infer everything that can be inferred.
- Example: $\{\{P,Q\}, \{P,\neg Q\}, \{\neg P,Q\}, \{\neg P,\neg Q\}\}\$ is unsatisfiable but UP cannot derive the empty clause \square .

Chapter 7: Satisfiability I

Satisfiability Introduction Basics Resolution Davis-Putnam Conclusion Applications Normal Forms 000000 00000 000 0000 0000 000000 00000 00

Questionnaire

Example

- Counter, repeatedly from c=0 to c=2.
- To Verify: If c < 3 in current clock cycle, then c < 3 in next clock cycle.
- $\Delta = \{\{\neg x_1', x_0\}, \{x_1', \neg x_0\}, \{x_0', x_1, x_0\}, \{\neg x_0', \neg x_1\}, \{\neg x_0', \neg x_0\}, \{\neg x_1, \neg x_0\}, \{x_1'\}, \{x_0'\}\}$

Question!

How many recursive calls to DPLL are made on Δ ?

(A): 0

(B): 1

(C): 4

(D): 11

 \to The correct answer is (B): UP derives the empty clause (via $\{x_1'\}$, $\{\neg x_1', x_0\}$, $\{\neg x_0', \neg x_0\}$, $\{x_0'\}$) in the first recursive call, so exactly 1 search node is generated.

Summary

- SAT: Is a propositional logic formula ϕ satisfiable?
 - Hard problem in general (NP-hard)
 - Many applications
- Propositional logic formulas are built from atomic propositions, with the connectives "and, or, not".
- Every propositional formula can be brought into conjunctive normal form (CNF), which can be identified with a set of clauses.
- Resolution is a deduction procedure based on trying to derive the empty clause. It is refutation-complete, and can be used to prove KB $\models \varphi$ by showing that KB $\cup \{\neg \varphi\}$ is unsatisfiable.
- SAT solvers decide satisfiability of CNF formulas. This can be used for deduction, and is highly successful as a general problem solving technique (e.g., in Verification).
- DPLL = backtracking with inference performed by unit propagation (UP),
 which iteratively instantiates unit clauses and simplifies the formula.

Further Reading

The main material for the course are the post-handouts. If you are interested on more detailed overview of the topic, you can check these books:

- The Art of Computer Programming by Donald E. Knuth, Vol 4. Section 7.2.2.2
- Handbook of Satisfiability, Hans van Maaren, Armin Biere, Toby Walsh.