Προσομοίωση και Μοντελοποίηση Δυναμικών Συστημάτων Εργασία 2

Ηλιάνα Κόγια (10090)

1 Θέμα 1ο

1.1 ερωτήματα α,β - θεωρητική ανάλυση

Δίνεται το σύστημα:

$$\dot{x} = -ax + bu$$
, $x_0 = 0$

όπου:

х: κατάσταση συστήματος

u: είσοδος

α,b : άγνωστες σταθερές παράμετροι

Στόχος αποτελεί η on-line εκτίμηση των παραμέτρων a,b. Με βάση τη Μέθοδο Κλίσης, σχεδιάζεται ένας εκτιμητής πραγματικού χρόνου των παραπάνω αγνώστων παραμέτρων.

Ανάλυση - μέθοδος κλίσης

Το Σύστημα γίνεται:

$$\dot{x} = +\alpha_m x - a_m x - ax + bu, \quad a_m > 0$$

ή

$$\dot{x} + \alpha_m x = (a_m - a)x + bu$$

εφαρμόζοντας Μ/Σ Laplace θα είναι:

$$(s+a_m)x = (a_m - a)x + bu$$

$$x = (a_m - a) \left[\frac{1}{s+a_m}\right] x + b \left[\frac{1}{s+a_m}\right] u$$

$$\theta^* = [a_m - a \quad b]^T$$

$$\varphi = \left[\frac{x}{s+a_m} \quad \frac{u}{s+a_m}\right]^T$$

Το σύστημα πλέον βρίσκεται στη παραμετροποιημένη μορφή:

$$x = \theta^{*T} \varphi$$

Θεωρούμε το σύστημα αναγνώρισης:

$$\hat{x} = \hat{\theta}^{*T} \varphi$$

Το σφάλμα αναγνώρισης είναι:

$$e = x - \hat{x}$$

ή

$$e = x - \hat{\theta}^{*T} \boldsymbol{\varphi}$$

ή

$$e = -(\hat{\boldsymbol{\theta}}^T - {\boldsymbol{\theta}}^{*T})\boldsymbol{\varphi}$$

ή

$$e = -\tilde{\theta}^T \varphi$$

με παραμετρικό σφάλμα:

$$ilde{ heta} = \hat{ heta} - heta^*$$

Για την εύρεση της αναδρομικής εκτίμησης $\hat{\vartheta}$ της ϑ^* με τη μέθοδο κλίσης απαιτείται η ελαχιστοποίηση ως προς $\hat{\vartheta}$ μιας κατάλληλης συνάρτησης κόστους του e.

Επιλέγουμε τη συνάρτηση κόστους:

$$K(\hat{\theta}) = \frac{e^2}{2}$$

Θέλουμε να λύσουμε, λοιπόν:

$$\arg\min_{\hat{\theta}} K(\hat{\theta})$$

και καθώς η $K(\hat{\vartheta})$ είναι κυρτή κάθε τοπικό ελάχιστο είναι και ολικό. Άρα:

$$\nabla K(\hat{\boldsymbol{\theta}}) = 0$$

$$\nabla K(\hat{\theta}) = (x - \hat{\theta}^{*T} \varphi)(-\varphi) = -e\varphi$$

Σύμφωνα με τη μέθοδο κλίσης είναι:

$$\dot{\hat{\theta}} = -\gamma \nabla K(\hat{\theta}) = \gamma e \varphi, \quad \gamma > 0$$

Επιπλέον, στο πεδίο του χρόνου θα είναι:

$$\varphi_1 = \frac{x}{s + a_m}$$

$$\Rightarrow \dot{\varphi}_1 = -a_m \, \varphi_1 + x$$

$$\varphi_2 = \frac{u}{s + a_m}$$

$$\Rightarrow \dot{\varphi}_2 = -a_m \, \varphi_2 + u$$

Άρα, για τη μέθοδο κλίσης αρκεί να λύσουμε το Σύστημα (στο πεδίο του χρόνου):

$$\begin{cases} \dot{x} = -ax + bu, & x(0) = 0\\ \dot{\varphi}_1 = -a_m \, \varphi_1 + x & \varphi_1(0) = 0\\ \dot{\varphi}_2 = -a_m \, \varphi_2 + u & \varphi_2(0) = 0\\ \dot{\hat{\theta}}_1 = \gamma e \varphi_1 & \dot{\hat{\theta}}_1(0) = 0\\ \dot{\hat{\theta}}_1 = \gamma e \varphi_2 & \dot{\hat{\theta}}_2(0) = 0 \end{cases}$$
(1.1)

Τελικά για τις εκτιμήσεις των αγνώστων παραμέτρων προκύπτει:

$$\hat{\theta}_1 = a_m - a \Rightarrow a = a_m - \hat{\theta}_1$$

$$b = \hat{\theta}_2$$

Ευστάθεια

Το πραγματικό σύστημα είναι ευσταθές, καθώς α > 0.

Όσον αφορά την ευστάθεια του συστήματος των

$$\hat{x} = \hat{\theta}^{*T} \boldsymbol{\varphi}$$

$$\dot{\hat{\theta}} = -\gamma \nabla K(\hat{\theta}) = \gamma e \varphi$$

θα έχουμε:

παραγωγίζουμε, αρχικά, το παραμετρικό σφάλμα:

$$\dot{ ilde{ heta}}=\dot{\hat{ heta}}-\dot{ heta}^*=\dot{\hat{ heta}}=\gamma e arphi=-\gamma ilde{ heta} arphi^2$$

Έτσι, για την ανάλυση της ευστάθειας χρησιμοποιούμε τη συνάρτηση Lyapunov:

$$V = \frac{\tilde{\theta}^2}{2} \ge 0$$

Η παράγωγος ως προς το χρόνο της V κατά μήκος της λύσης είναι:

$$\dot{V} = -\gamma \tilde{\theta}^2 \varphi^2 = -\gamma e^2 \le 0$$

άρα, προκύπτει $ilde{ heta}\in L_\infty$ και επειδή $ilde{ heta}^*$ είναι σταθερό $ilde{ heta}$ α ισχύει και $\hat{ heta}\in L_\infty$

Η V(t) είναι μεγαλύτερη ή ίση του 0 και φθίνουσα (διότι η παράγωγος της είναι $\dot{V} \leq 0$). Οπότε, προκύπτει ότι το όριο $\lim_{t\to\infty}V(\tilde{\theta})=V_\infty$. Ολοκληρώνοντας και τα δύο μέλη της $\dot{V}=-\gamma e^2$ εξάγουμε ότι $e\in L_2$. Ακόμη, επειδή $\hat{\theta},u,\phi\in L_\infty\Rightarrow\hat{x}\in L_\infty$ οπότε και $e=x-\hat{x}\in L_\infty$. Επιπλέον, ισχύει $\dot{e}=-\dot{\theta}\phi-\tilde{\theta}\dot{\phi}\in L_\infty$ Τελικά, $e\in L_2\cap L_\infty$ και $\dot{e}\in L_\infty$. Από λήμμα Barbalat, θα έχουμε $\lim_{t\to\infty}e(t)=0$ και συνεπώς θα ισχύει $\lim_{t\to\infty}\dot{\theta}=0$ (λόγω μηδενικής επί φραγμένης).

Η παραπάνω ανάλυση μας διασφαλίζει ότι $\hat{x} \to x$ και ότι ο ρυθμός μεταβολής των παραμέτρων $\hat{\theta}(t)$ θα μειώνεται με το χρόνο και θα συγκλίνει ασυμπτωματικά στο 0. Ωστόσο, αυτό δεν εξασφαλίζει οτι $\hat{\theta} \to \theta^*$. Ικανή και αναγκαία συνθήκη για να συγκλίνει εκθετικά το $\hat{\theta}$ στο θ^* αποτελεί η Συνθήκη Επιμένουσας Διέγερσης (ΣΕΔ).

1.2 Προσομοίωση με matlab

ερώτημα α

Η είσοδος του συστήματος είναι: $\mathbf{u} = 10$ Αρχικά, επιλέγουμε $a_m = a = 3$ και $\gamma = 10$

 Σ τα παραπάνω διαγράμματα είναι φανερή η σύγκλιση των εκτιμήσεων των δύο παραμέτρων a,b στις πραγματικές τους τιμές. Αυξάνουμε τη τιμή του γ:

Παρατηρούμε ότι για $a_m=a=3$ και $\mathbf{u}=10$ βρίσκουμε, με κάποια ακρίβεια, τις πραγματικές παραμέτρους και η αύξηση του γ από 10 σε 50 δεν επέφερε κάποια εμφανή αλλαγή στη σύγκλιση.

Μεταβάλλουμε τη τιμή του a_m ώστε να μην ισούται με το α:

Παρατηρούμε ότι οι παράμετροι δεν συγκλίνουν στις σωστές τιμές, αλλά υπάρχει αρκετή απόκλιση. Αυξάνουμε τη τιμή του γ και τον τελικό χρόνο της προσομοίωσης στα 100s:

Παρατηρούμε πως και σε αυτή την περίπτωση δεν πετυχαίνουμε $\hat{a} \to a$ και $\hat{b} \to b$, καθώς και τα δύο παραμετρικά σφάλματα δεν είναι αρκετά κοντά στο 0, μάλιστα δεν παρατηρείται μεγάλη διαφορά για $\gamma = 50$ και $\gamma = 150$.

Συνολικά, συμπεραίνουμε πως για $a_m \neq a$ και για $\mathbf{u} = 10$ δεν πετυχαίνουμε το στόχο μας όσο και αν αυξήσουμε τη τιμή του γ έχοντας είσοδο στο σύστημα $\mathbf{u} = 10$.

ερώτημα β Η είσοδος του συστήματος είναι: $\mathbf{u}=10\sin(3\mathbf{t})$ Δοχιμάζουμε, πρώτα, τις παραχάτω τιμές για τα a_m χαι γ

t (s)

10

20

60

50

Σε αντίθεση με την περίπτωση σταθερής εισόδου, για ημιτονοειδή είσοδο παρατηρούμε ότι για $a_m \neq a$ τα παραμετρικά σφάλματα συγκλίνουν στο 0 και οι παραμέτροι στις σωστές τιμές

(με αρχούντος μιχρό σφάλμα). Η ταχύτητα σύγκλισης εξαρτάται από την τιμή του γ. Έτσι, αυξάνουμε την τιμή του γ, ώστε να αυξήσουμε και τον ρυθμό σύγκλισης στο ϑ^*

Επαληθεύεται, λοιπόν, ότι για σταθερό a_m και για τη συγκεκριμένη είσοδο $\mathbf u$, όσο αυξάνουμε την τιμή του γ βλέπουμε βελτίωση στο ρυθμό σύγκλισης. Μεταβάλλουμε, τώρα την τιμή του a_m :

Παρατηρούμε ότι για $\gamma=100$ και $a_m=15$ συγκλίνουν ξανά οι εκτιμήσεις των παραμέτρων στις αντίστοιχες πραγματικές τιμές, αλλά πιο αργά σε σχέση με $\gamma=100$ και $a_m=4$. Έτσι, συμπεραίνουμε ότι όσο πιο πολύ απέχει η τιμή του a_m από το 3, απαιτείται και μεγαλύτερη τιμή του γ , ώστε να συγκλίνει ο αλγόριθμος στο ϑ^* σε κατάλληλο χρόνο. Για παράδειγμα, αν έχουμε $a_m=60$ το οποίο απέχει αρκετά από το 3, τότε απαιτείται σχετικά

μεγάλο γ ώστε να συγκλίνει εντός 100s. Τα διαγράμματα το επαληθεύουν:

Τέλος, ο καλύτερος ρυθμός σύγκλισης στις πραγματικές τιμές των παραμέτρων που βρέθηκε επιτυγχάνεται για $a_m=3$ και γ = 200:

Σύνοψη

Συμπεραίνουμε από όλα τα παραπάνω ότι για $\mathbf{u}=10$ δεν μπορούμε να εκτιμήσουμε σωστά τις παραμέτρους για $a_m \neq a$, για κανένα γ, το οποίο ϑ α ισχύει και πάντα στην πραγματικότητα, καθώς δεν γνωρίζουμε προφανώς την άγνωστη τιμή του α.

Αντίθετα, για είσοδο u = 10sin3t είναι εφικτό να καταλήξουμε στις πραγματικές τιμές των παραμέτρων

και για $a_m \neq a$ σε κατάλληλο χρόνο. (Ισχύει η $\Sigma E \Delta$). Επίσης, όσο πιο κοντά είναι το a_m στο α και το γ αρκούντος μεγάλο, πετυχαίνουμε ταχεία, σχετικά, σύγκλιση στο ϑ^* . Όταν, το a_m έχει μεγάλη απόκλιση από το α, τότε χρειάζονται μεγαλύτερες τιμές του γ για τη σύγκλιση.

2 Θέμα **2**⁰

Μέθοδος Lyapunov

2.1 Παράλληλη Δομή

Το πραγματικό σύστημα είναι:

$$\dot{x} = -ax + bu$$
, $x_0 = 0$

ή

$$\dot{x} = -\theta_1^* x + \theta_2^* u, \quad x_0 = 0$$

Η παράλληλη δομή περιγράφεται από διαφορική εξίσωση της μορφής:

$$\hat{\dot{x}} = -\hat{\theta}_1 \hat{x} + \hat{\theta}_2 u, \quad \hat{x}_0 = 0$$

Το σφάλμα αναγνώρισης ορίζεται ως:

$$e = x - \hat{x}$$

και παραγωγίζοντας ως προς το χρόνο έχουμε:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$\dot{e} = -\theta_1^* x + \theta_2^* u + \hat{\theta}_1 \hat{x} - \hat{\theta}_2 u$$

$$\dot{e} = -\theta_1^* x + \hat{\theta}_1 \hat{x} + (\theta_2^* - \hat{\theta}_2) u$$

$$\dot{e} = -\theta_1^* x + \hat{\theta}_1 \hat{x} - (\hat{\theta}_2 - \theta_2^*) u$$

$$\dot{e} = -\theta_1^* x + \hat{\theta}_1 \hat{x} - \tilde{\theta}_2 u$$

προσθαφαιρούμε τον όρο $\pm \theta_1 * \hat{\mathbf{x}}$ και έτσι προκύπτει:

$$\dot{e} = -\theta_1^*(x - \hat{x}) + (\hat{\theta}_1 - \theta_1^*)\hat{x} - \tilde{\theta}_2 u$$
$$\dot{e} = -\theta_1^* e + \tilde{\theta}_1 \hat{x} - \tilde{\theta}_2 u$$

Ευστάθεια

Θεωρούμε τη συνάρτηση Lyapunov:

$$V = \frac{1}{2}e^2 + \frac{1}{2\gamma_1}\tilde{\theta}_1^2 + \frac{1}{2\gamma_2}\tilde{\theta}_2^2 > 0, \quad \gamma_1, \ \gamma_2 > 0$$

παραγωγίζοντας ως προς το χρόνο έχουμε:

$$\dot{V}=e\dot{e}+rac{ ilde{ heta}_1\dot{ ilde{ heta}}_1}{\gamma_1}+rac{ ilde{ heta}_2\dot{ ilde{ heta}}_2}{\gamma_2}$$

2.2. Μιχτή Δομή

15

$$\dot{V} = -\theta_1^* e^2 + e \tilde{\theta}_1 \hat{x} - e \tilde{\theta}_2 u + \frac{\tilde{\theta}_1 \dot{\hat{\theta}}_1}{\gamma_1} + \frac{\tilde{\theta}_2 \dot{\hat{\theta}}_2}{\gamma_2}$$

Επιλέγονται:

$$\dot{\hat{\theta}}_1 = -\gamma_1 e \hat{x}$$

χαι

$$\dot{\hat{\theta}}_2 = \gamma_2 e u$$

Αντικαθιστώντας προκύπτει:

$$\dot{V} = -\theta_1^* e^2 \le 0$$

Με παρόμοια θεωρητική ανάλυση ευστάθειας που έγινε στο θέμα 1 καταλήγουμε στο ότι $\lim_{t\to\infty} \hat{\theta}=0$. Ωστόσο, για να συγκλίνουν οι εκτιμήσεις εκθετικά στο ϑ^* , ικανή και αναγκαία συνθήκη είναι η $\Sigma E \Delta$.

Επομένως, αρχεί να λύσουμε το Σύστημα στο πεδίο του χρόνου:

$$\begin{cases} \dot{x} = -ax + bu, & x(0) = 0\\ \dot{\hat{\theta}}_{1} = -\gamma_{1}e\hat{x} & \dot{\hat{\theta}}_{1}(0) = 0\\ \dot{\hat{\theta}}_{1} = \gamma_{2}eu & \dot{\hat{\theta}}_{2}(0) = 0\\ \dot{\hat{x}} = -\hat{\theta}_{1}\hat{x} + \hat{\theta}_{2}u, & \hat{x}_{0} = 0 \end{cases}$$

$$(2.1)$$

$$\hat{\theta}_{1} = \hat{a}$$

$$\hat{\theta}_{2} = \hat{b}$$

2.2 Μικτή Δομή

Η μικτή δομή περιγράφεται από διαφορική εξίσωση της μορφής:

$$\hat{x} = -\hat{\theta}_1 x + \hat{\theta}_2 u + \theta_m (x - \hat{x}), \quad \hat{x}_0 = 0, \quad \theta_m > 0$$

Ομοίως με την ανάλυση της παραπάνω (Π) δομής θα έχουμε για το σφάλμα αναγνώρισης στη μικτή δομή:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$\dot{e} = -\theta_1^* x + \theta_2^* u + \hat{\theta}_1 x - \hat{\theta}_2 u - \theta_m (x - \hat{x})$$

$$\dot{e} = (\hat{\theta}_1 - \theta_1^*) x - (\hat{\theta}_2 - \theta_2^*) u - \theta_m (x - \hat{x})$$

$$\dot{e} = \tilde{\theta}_1 x - \tilde{\theta}_2 u - \theta_m (x - \hat{x})$$

$$\dot{e} = -\theta_m e + \tilde{\theta}_1 x - \tilde{\theta}_2 u$$

Ευστάθεια

Θεωρούμε τη συνάρτηση Lyapunov:

$$V = \frac{1}{2}e^2 + \frac{1}{2\gamma_1}\tilde{\theta}_1^2 + \frac{1}{2\gamma_2}\tilde{\theta}_2^2 > 0, \quad \gamma_1, \ \gamma_2 > 0$$

παραγωγίζοντας ως προς το χρόνο έχουμε:

$$\dot{V}=e\dot{e}+rac{ ilde{ heta}_1\dot{ ilde{ heta}}_1}{\gamma_1}+rac{ ilde{ heta}_2\dot{ ilde{ heta}}_2}{\gamma_2}$$

$$\dot{V} = -\theta_m e^2 + e\tilde{\theta}_1 x - e\tilde{\theta}_2 u + \frac{\tilde{\theta}_1 \dot{\hat{\theta}}_1}{\gamma_1} + \frac{\tilde{\theta}_2 \dot{\hat{\theta}}_2}{\gamma_2}$$

Επιλέγονται:

$$\dot{\hat{\theta}}_1 = -\gamma_1 ex$$

και

$$\dot{\hat{ heta}}_2 = \gamma_2 e u$$

Αντικαθιστώντας προκύπτει:

$$\dot{V} = -\theta_m e^2 < 0$$

Επομένως, αρχεί να λύσουμε το Σύστημα στο πεδίο του χρόνου:

$$\begin{cases} \dot{x} = -ax + bu, & x(0) = 0\\ \dot{\hat{\theta}}_1 = -\gamma_1 ex & \dot{\hat{\theta}}_1(0) = 0\\ \dot{\hat{\theta}}_1 = \gamma_2 eu & \dot{\hat{\theta}}_2(0) = 0\\ \dot{\hat{x}} = -\hat{\theta}_1 x + \hat{\theta}_2 u + \theta_m (x - \hat{x}), & \hat{x}_0 = 0 \end{cases}$$

$$(2.2)$$

$$\hat{\theta}_1 = \hat{a}$$

$$\hat{\theta}_2 = \hat{b}$$

2.3 Προσομοίωση παρουσία θορύβου

Θεωρητικά:

$$(\Pi): \dot{\hat{\theta}}_1 = -e\hat{x} = \hat{x}^2 - x\hat{x}$$

Στην (Π) δομή ο προσθετικός θόρυβος έχει σαν αποτέλεσμα το $\hat{\theta}_1$ να εξαρτάται από το η.

(M):
$$\hat{\theta}_2 = -ex = x^2 - x\hat{x}$$

Στην (M) δομή ο προσθετικός θόρυβος έχει σαν αποτέλεσμα το $\hat{\theta}_2$ να εξαρτάται από το η^2 . Αρα, αναμένουμε η μικτή δομή να εμφανίζει μεγαλύτερη ευαισθησία στο θόρυβο.

(Π) δομή

Αρχικά, με μέθοδο trial and error επιλέγουμε τιμές:

$$\gamma_1 = 6$$

και

$$\gamma_2 = 2$$

Σημείωση: Μπορεί να μην πετυχαίνουμε πολύ καλό ρυθμό σύγκλισης, αλλά απαφεύγουμε μεγάλες τιμές των $\gamma_{1,2}$ καθώς ο θόρυβος θα αυξανόταν σημαντικά. Οι γραφικές παραστάσεις χωρίς ύπαρξη θορύβου είναι:

Παρατηρούμε ότι συγκλίνουν τα a,b στις πραγματικές τιμές. Άρα, ισχύει η $\Sigma E \Delta$.

Οι γραφικές παραστάσεις με x = x + n, f = 40, no = 0.5 είναι:

Παρά την προσθήκη θορύβου η (Π) δομή λειτουργεί καλά, καθώς εκτιμώνται σωστά οι παράμετροι με κάποιες ταλαντώσεις στη σύγκλιση γύρω από τη πραγματική τιμή. Μεταβάλλουμε, τα f και ηο.

Αυξάνουμε, αρχικά, το ηο

Οι γραφικές παραστάσεις με ύπαρξη προσθετικού θορύβου $(x = x + n, f = 40, \eta o = 2)$ είναι:

Οι γραφικές παραστάσεις με ύπαρξη προσθετικού θορύβου (x = x + n, f = 40, ηo = 4) είναι:

Σύμφωνα με τα παραπάνω διαγράμματα, διαπιστώνουμε ότι όταν η τιμή ηο αυξάνεται, οι εκτιμήσεις των παραμέτρων παρουσιάζουν σφάλμα. Η εκτίμηση του a εμφανίζει κάποια απόκλιση και η εκτίμηση του b εμφανίζει ταλάντωση γύρω από το 0.5

 Δ ιατηρούμε σταθερό το ηο και μεταβάλλουμε το f. Οι γραφικές παραστάσεις με ύπαρξη προσθετικού θορύβου $(x=x+n, f=20, \eta o=0.5)$ είναι:

Οι γραφικές παραστάσεις με ύπαρξη προσθετικού θορύβου (x = x + n, f = 60, ηo = 0.5) είναι:

Από τα παραπάνω διαγράμματα, διαπιστώνουμε ότι αυξάνοντας τη συχνότητα f (=60) δεν επηρεάζεται σημαντικά την εκτίμηση των παραμέτρων, ενώ όταν μειώνουμε τη συχνότητα f (=20) οι εκτιμήσεις των a και b παρουσιάζουν πιο έντονες ταλαντώσεις γύρω από τις πραγματικές τιμές.

(Μ) δομή

Πρώτα, με μέθοδο trial and error επιλέγουμε τιμές:

 $\gamma_1 = 6$

και

 $\gamma_2 = 1$

και

 $\theta_m = 2$

Οι γραφικές παραστάσεις χωρίς ύπαρξη θορύβου είναι:

Οι γραφικές παραστάσεις με ύπαρξη προσθετικού θορύβου (x=x+n, f=40, no=0.5) είναι:

Είναι προφανές, ότι οι ταλαντώσεις κατά τη σύγκλιση στη (M) δομή είναι πολύ περισσότερες και μάλιστα στην παράμετρο α, για το δεδομένο θ_m , υπάρχει σχετικά μεγάλη απόκλιση από την τιμή 3, ενώ στο b ταλαντώνει έντονα γύρω από την πραγματική τιμή. Στην περίπτωση της μικτής δομής επιπλέον έχει σημασία και η τιμή του θ_m .

Σύγκριση Δομών

Όπως ήταν αναμενόμενο και από τη θεωρητική ανάλυση, η (Π) δομή υπερτερεί παρουσία θορύβου.

Ωστόσο, όταν μεταβάλλονται τα ηο και f παρατηρούμε και σε αυτή τη δομή επιπλέον ταλαντώσεις κατά τη σύγκλιση.

3 Θέμα **3**⁰

3.1 Θεωρητική ανάλυση

Μέθοδος Lyapunov (για συστήματα μεγαλύτερης τάξης)

Δίνεται σύστημα δεύτερης τάξης:

$$\dot{x} = Ax + Bu$$

$$\Rightarrow \dot{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} x + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u, \quad x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

x: καταστάσεις συστήματος

u: είσοδος

Α<0, Β : σταθεροί, άγνωστοι πίνακες

Σχεδιάζεται εκτιμήτης πραγματικού χρόνου μεικτής δομής.

Η διαφορική εξίσωση του συστήματος αναγνώρισης είναι:

$$\hat{x} = \hat{A}x + \hat{B}u + \Theta_m(x - \hat{x}), \quad \hat{x}_0 = 0$$

όπου Θ_m θετικά ορισμένος πίνακας

Το σφάλμα αναγνώρισης είναι:

$$e = x - \hat{x}$$

και παραγωγίζοντας ως προς το χρόνο έχουμε:

$$\dot{e} = \dot{x} - \dot{\hat{x}}$$

$$\dot{e} = Ax + Bu - \hat{A}x - \hat{B}u - \Theta_m(x - \hat{x})$$

Παραμετρικά σφάλματα:

$$\tilde{A} = \hat{A} - A, \quad \tilde{B} = \hat{B} - B$$

 $\Rightarrow \dot{e} = -\tilde{A}x - \tilde{B}u - \Theta_{m}(x - \hat{x})$

Θεωρούμε τη συνάρτηση Lyapunov:

$$V = \frac{1}{2}e^{T}e + \frac{1}{2}tr\{\tilde{A}^{T}\Gamma_{1}^{-1}\tilde{A}\} + \frac{1}{2}tr\{\tilde{B}^{T}\Gamma_{2}^{-1}\tilde{B}\}$$

Παραγωγίζοντας ως προς το χρόνο έχουμε:

$$\dot{V} = e^T \dot{e} + tr\{\tilde{A}^T \Gamma_1^{-1} \dot{\hat{A}}\} + tr\{\tilde{B}^T \Gamma_2^{-1} \dot{\hat{B}}\}$$

$$\dot{V} = -e^T \tilde{A} x - e^T \tilde{B} u - e^T \Theta_m e + tr\{\tilde{A}^T \Gamma_1^{-1} \dot{\hat{A}}\} + tr\{\tilde{B}^T \Gamma_2^{-1} \dot{\hat{B}}\}$$

Από τις ιδιότητες του ίχνους (trace) έχουμε:

$$e^T \tilde{A} x = tr \{ \tilde{A} x e^T \}$$

$$e^T \tilde{B} u = tr \{ \tilde{B} u e^T \}$$

άρα,

$$\dot{V} = -e^T \Theta_m e - tr\{\tilde{A}xe^T\} - tr\{\tilde{B}ue^T\} + tr\{\tilde{A}^T \Gamma_1^{-1} \dot{\hat{A}}\} + tr\{\tilde{B}^T \Gamma_2^{-1} \dot{\hat{B}}\}$$
$$\dot{V} = -e^T \Theta_m e - tr\{-\tilde{A}xe^T + \tilde{A}^T \Gamma_1^{-1} \dot{\hat{A}} + \tilde{B}^T \Gamma_2^{-1} \dot{\hat{B}} - \tilde{B}ue^T\}$$

Επιλέγουμε:

$$\dot{\hat{A}} = \Gamma_1 e x^T$$

και

$$\dot{\hat{B}} = \Gamma_2 e u^T$$

Επομένως, αντικαθιστώντας προκύπτει:

$$\dot{V} = -e^T \Theta_m e < 0$$

διότι $\Theta_m > 0$

Στις παρακάτω γραφικές παραστάσεις έχουν επιλεχθεί με τη μέθοδο trial and error ο θετικά ορισμένος πίνακας Θ_m και οι τιμές $\gamma_1=60, \gamma_2=40$ που αποτελούν τα στοιχεία της διαγωνίου των πινάκων $\Gamma 1$ και $\Gamma 2$ (θετικά ορισμένοι και διαγώνιοι) αντίστοιχα.

Οι γραφικές παραστάσεις παρουσιάζονται παρακάτω.

Από τις παραπάνω παραστάσεις καταλήγουμε στο συμπέρασμα ότι η $\Sigma E \Delta$ ισχύει, καθώς ο αλγόριθμος βρίσκει τις αναμενόμενες τιμές των αγνώστων παραμέτρων.