Search and Refine During Think:

Autonomous Retrieval-Augmented Reasoning of LLMs arxiv.org/abs/2505.11277

在SEARCH + TIR推理时,让LLM对检索结果先精炼再推理

开源代码: https://github.com/syr-cn/AutoRefine Yaorui Shi^{1*}, Sihang Li^{1*}, Chang Wu¹, Zhiyuan Liu², Junfeng Fang², Hengxing Cai^{3†}, An Zhang¹, Xiang Wang^{1†},

> ¹ University of Science and Technology of China ² National University of Singapore

³ DP Technology

本文提出AutoRefine,简单来说,在TIR (Tool-Integrated Reasoning)任务中当tool是search tool 时,作者考虑到检索返回的文档会包含不相关信息,对于推理没有帮助,为此让IIm先对检索文档做 refine,可以理解为一种信息摘要/过滤/压缩,然后再继续推理。为了更好的让llm做refine,还设计了

背景

refine reward.

本文属于TIR (Tool-Integrated Reasoning)方向的工 作,注意本文的tool是向量检索模型,也算是一种 search tool吧,在之前search tool类型的TIR工作 中,基本上都是把检索的文档数据直接拼接到IIm的 prompt中,让llm继续做reasoning,作者这为检索得 到的文档中含有和推理不相关的信息,这些不相关信息。 息对推理可能并没有什么用,因此设计了一个refine stage,即所谓的"Search-and-Refine-During-Think"。

任务:单跳和多跳QA

- 框架: verl, 实验对象: Qwen2.5-3B Base/Instruct,强化学习算法: GRPO
- RLVR reward function: 1) answer是否正确的answer reward,计算的是预测answer和ground truth的 F1值; 2)二值型的refine信息reward

$$\mathcal{R}_{\mathsf{Ans}} = \mathsf{F1}(o_{\mathsf{ans}}, a) = rac{2|o_{\mathsf{ans}} \cap a|}{|o_{\mathsf{ans}}| + |a|} \quad \mathcal{R}_{\mathsf{Ret}} = \mathbb{I}(a \cap o_{\mathsf{refine}} = a)$$

$$\mathcal{R}_{Overall} = egin{cases} \mathcal{R}_{Ans}, & ext{if } \mathcal{R}_{Ans} > 0 \ 0.1, & ext{if } \mathcal{R}_{Ans} = 0 ext{ and } \mathcal{R}_{Ret} > 0 \ 0. & ext{if } \mathcal{R}_{Ans} = \mathcal{R}_{Ret} = 0 \end{cases}$$

思考

一般的search 类 型TIR推理轨迹 包含<think>. <search>, <doc>, <answer>等tag, 本文多了个 <refine>

部分实验结果

Table 1: (RQ1) Accuracy comparison of AutoRefine versus baseline methods with Qwen2.5-3B [3]

Methods	Single-Hop QA			Multi-Hop QA				
	NQ	TriviaQA	PopQA	HotpotQA	2Wiki	Musique	Bamboogle	Avg.
w/o Retreival								
Direct Generation	0.106	0.288	0.108	0.149	0.244	0.020	0.024	0.134
SFT	0.249	0.292	0.104	0.186	0.248	0.044	0.112	0.176
R1-Instruct [5]	0.210	0.449	0.171	0.208	0.275	0.060	0.192	0.224
R1-Base [5]	0.226	0.455	0.173	0.201	0.268	0.055	0.224	0.229
w/ Single-Hop Retrieval								
Naive RAG [37]	0.348	0.544	0.387	0.255	0.226	0.047	0.080	0.27
w/ Multi-Hop Retrieval								
Search-ol [18]	0.238	0.472	0.262	0.221	0.218	0.054	0.320	0.25
IRCoT [34]	0.111	0.312	0.200	0.164	0.171	0.067	0.240	0.18
ReSearch-Instruct [21]	0.365	0.571	0.395	0.351	0.272	0.095	0.266	0.33
ReSearch-Base [21]	0.427	0.597	0.430	0.305	0.272	0.074	0.128	0.319
Search-R1-Instruct [19]	0.397	0.565	0.391	0.331	0.310	0.124	0.232	0.33
Search-R1-Base [19]	0.421	0.583	0.413	0.297	0.274	0.066	0.128	0.312
AutoRefine-Instruct	0.436	<u>0.597</u>	<u>0.447</u>	0.404	0.380	0.169	0.336	0.39
AutoRefine-Base	0.467	0.620	0.450	0.405	0.393	0.157	0.344	0.405

对于search tool返回的文档问题,之前读过的 ZeroSearch也考虑过,毕竟互联网上的信息质 量参差不齐,所以解决文档质量问题是很有必 要的,当然本文并非用搜索引擎从互联网检索

信息,而是用向量模型从本身就高质量的 Wikipedia数据(还是2018年dump)中做检索,我 个人认为更多的是从过滤不相关数据角度提升 效果而非质量,由此也延伸出一个问题,如果 对搜索引擎返回的文档让IIm去refine,是否合 对于不懂的知识,如何去判断相关/质量呢?