Leow Wee Kheng
CS4243 Computer Vision and Pattern Recognition

Principal Component Analysis

Given a set of data...

Basics of PCA

- \mathbf{x}_i is m-dimensional vector (data point), i = 1, ..., N.
- Mean vector m is

$$\mathbf{m} = E\{\mathbf{x}\} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$$

Covariance matrix R is

Shift vectors so that centroid is at origin

$$\mathbf{R} = E\{\overline{(\mathbf{x} - \mathbf{m})}(\mathbf{x} - \mathbf{m})^T\}$$
$$= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{m})(\mathbf{x}_i - \mathbf{m})^T$$

- R is real and symmetric.
 - \circ Can apply eigen-decomposition to find q_j, λ_j such that

$$\mathbf{R} \mathbf{q}_j = \lambda_j \mathbf{q}_j \quad j = 1, \dots, m$$

 \circ eigenvectors \mathbf{q}_j are orthonormal

$$\mathbf{q}_j^T \mathbf{q}_j = 1$$

$$\mathbf{q}_j^T \mathbf{q}_k = 0 \text{ for } k \neq j$$

 \bigcirc eignvalues λ_j are sorted such that $\lambda_j \geq \lambda_{j+1}$

Assemble eigenvectors into a matrix

$$Q = [q_1, \dots, q_m]$$

 \bullet Then, can transform \mathbf{x}_i into new vector \mathbf{y}_i

$$\mathbf{y}_i = \mathbf{Q}^T (\mathbf{x}_i - \mathbf{m}) = \sum_{j=1}^m (\mathbf{x}_i - \mathbf{m})^T \mathbf{q}_j \ \mathbf{q}_j$$
o So,
$$\mathbf{y}_i = [y_{i1}, \dots, y_{ij}, \dots, y_{im}]^T$$

where y_{ij} is the projection of $\mathbf{x}_i - \mathbf{m}$ on \mathbf{q}_j

$$y_{ij} = (\mathbf{x}_i - \mathbf{m})^T \mathbf{q}_j$$

- y_{ij} is principal component of y_i along q_j
- \circ y_{ij} are independent or uncorrelated

 \odot Original \mathbf{x}_i can be recovered from \mathbf{y}_i

$$\mathbf{x}_i = \mathbf{Q}\,\mathbf{y}_i + \mathbf{m} = \sum_{j=1}^m y_{ij}\mathbf{q}_j + \mathbf{m}$$

- Notes:
 - $\mathbf{O} \mathbf{x}_i \neq \mathbf{y}_i + \mathbf{m}$
 - \mathbf{x}_i is in the input space
 - \mathbf{v}_i is in the eigenspace spanned by \mathbf{q}_i

Properties of PCA

 \bullet Mean \mathbf{m}_{v} over all \mathbf{y}_{i} is $\mathbf{0}$

$$\mathbf{m}_{y} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{y}_{i} = \mathbf{Q} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} - \mathbf{m} \right) = 0$$

• Variance σ_j^2 along \mathbf{q}_j is λ_j (exercise)

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N y_{ij}^2$$
$$= \mathbf{q}_j^T \mathbf{R} \mathbf{q}_j = \lambda_j$$

- Since $\lambda_1 \geq \cdots \geq \lambda_m$, so $\sigma_1 \geq \cdots \sigma_m$
 - q₁ gives orientation of largest variation
 - q₂ gives orientation of largest variation orthogonal to q₁ (2nd largest variation)
 - o q_i gives orientation of largest variation orthogonal to $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{j-1}$ (j-th largest variation)
 - \mathbf{Q}_m is orthogonal to all other eigenvectors (least variation)

data points

centriod at origin

principal components

another example

principal components

Major Axes

Can apply PCA to find major axes of objects.

Major Axes

- Be careful!
- What's the first principal orientation of cylinder?

Dimensionality Reduction

Can just keep the first l largest dimensions.

How many dimensions to keep?

 \bullet Total variance of $\hat{\mathbf{x}}_i$ is

$$\sum_{j=1}^{l} \sigma_j^2 = \sum_{j=1}^{l} \lambda_j$$

 Keep enough so that ratio R of unaccounted variance is small

$$R = \frac{\sum_{j=l+1}^{m} \sigma_j^2}{\sum_{j=1}^{m} \sigma_j^2} = \frac{\sum_{j=l+1}^{m} \lambda_j}{\sum_{j=1}^{m} \lambda_j}$$

Summary

- PCA extracts principal components
 - Orientation of largest variations.
 - Most significant dimensions.
- Can be used for
 - Computing principal variations.
 - Identifying major axes.
 - Dimensionality reduction.