

HALL EFFECT

Experiment No. 2 (Procedure)

Procedure: -

- 1. Adjust position of Hall probe to be perpendicular to the pole pieces of the electromagnets.
- 2. Switch on the electromagnet. Increase the current through the electromagnet and measure the magnetic field B using the Gaussmeter. Adjust B to the desired value (1000G).
- 3. Place the sample in pole pieces of the electromagnet such that it is perpendicular to the magnetic field. Keeping B constant, vary current I through the sample in suitable steps and note corresponding values of voltage V.
- 4. Switch off the electromagnet. Keep the sample away from electromagnet. Measure voltage V_0 without field for the same current values as in step 3. Hall voltage $V_H = V V_0$.
- 5. Plot V_H versus I and find the slope m.
- 6. Find Hall coefficient R_H= md/ B
- 7. Also find charge carrier density 'n' using $n=1/R_{\rm H}e$.

Observations: -

- 1. Thickness of the probe (Given), d=0.5 mm= 0.0005 m
- 2. Constant magnetic field (B)

Observation Table: -

Sr. No.	I (mA)	Voltage with B V (mV)	Voltage without B V (mV)	Hall Voltage VH = V - V (mV)
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Graph and Calculations: -

- 1. Draw VH versus I and find the slope m.
- 2. Using the numerical method, outlined using an example below, to find the slope m. Calculate

a)
$$R_H = md/B$$

b)
$$n = 1 / e R_H$$

3. Write results and conclusion.