

Anti-Aging Scheduling in Single-Server Queues: A Systematic and Comparative Study

Zhongdong Liu

Center for Networked Computing (CNC)

Department of Computer & Information Sciences

Temple University

Joint work with

Liang Huang (Zhejiang University of Technology), **Bin Li** (University of Rhode Island) and **Bo Ji** (Temple University)

Freshness Matters

- Real-time services are ubiquitous
 - Intelligent transportation systems & vehicular networks
 - Sensor networks (for environment/health monitoring), wireless channel feedback, news feeds, weather updates, fare aggregating, etc.

(a) Intelligent vehicular networks

(b) Sensor networks

- A simple abstract model
 - Source/Server/Receiver (Monitor)
 - Performance of interest:

freshness of update at the monitor

the

- A simple abstract model
 - Source/Server/Receiver (Monitor)
 - Performance of interest: freshness of update at the monitor

the time elapsed

since generation

- Definition
 - At time t, the **Age-of-information (AoI)** $\Delta(t)$ is the "age" of the "youngest" update that was delivered to the receiver before time t
 - If update i is generated at t_i and delivered at t'_i

$$\Delta(t) = t - \max\{t_i : t_i' \le t\}$$

 AoI grows linearly and drops upon new update delivered

the

- A simple abstract model
 - Source/Server/Receiver (Monitor)
 - Performance of interest:
 freshness of update at the monitor

the time elapsed

since generation

- Definition
 - At time t, the **Age-of-information (AoI)** $\Delta(t)$ is the "age" of the "youngest" update that was delivered to the receiver before time t
 - If update i is generated at t_i and delivered at t'_i

$$\Delta(t) = t - \max\{t_i : t_i' \le t\}$$

 AoI grows linearly and drops upon new update delivered

the

latest

- A simple abstract model
 - Source/Server/Receiver (Monitor)
 - Performance of interest:
 freshness of update at the monitor

the time elapsed

since generation

- Definition
 - At time t, the **Age-of-information (AoI)** $\Delta(t)$ is the "age" of the "youngest" update that was delivered to the receiver before time t
 - If update i is generated at t_i and delivered at t'_i

$$\Delta(t) = t - \max\{t_i : t_i' \le t\}$$

 AoI grows linearly and drops upon new update delivered

Aol vs. Delay

- Low arrival rate
 - Empty buffer → low delay
 - Infrequent updates → large interarrival time & high AoI

- Large arrival rate
 - Full buffer → high delay
 - Become stale while waiting→ high AoI

Aol vs. Delay

Low arrival rate

Large arrival rate

In M/M/1 FCFS queues: [Kaul et al.,12]

- AoI first decreases, then increases with arrival rate
- Delay increases with arrival rate

Anlys Delay

Aol depends on both

- Queueing delay (how fast to deliver)
- Inter-arrival time (how often to generate)

In M/M/1 FCFS queues: [Kaul et al.,12]

- AoI first decreases, then increases with arrival rate
- Delay increases with arrival rate

Motivation & Position

Motivation & Position

Motivation & Position

Motivation & Position

Contributions

- Investigate the impact of scheduling policies on the AoI performance
- Summarize useful guidelines for the design of AoI-efficient policies
- Equivalence between some size-based and AoI-based policies

System model: G/G/1

System model: G/G/1

S:job size=service requirement

$$E[S] = \frac{1}{\mu}$$

- Performance metrics
 - Time Average AoI: $\Delta = \lim_{t \to \infty} \frac{1}{t} \int_0^t \Delta(\tau) d\tau$
 - Average Peak AoI (PAoI): $E[A] = \frac{1}{N} \sum_{i=0}^{N} A_i$

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

	Non-preemptive	Preemptive
Blind to Size	FCFS (First-Come-First-Served) LCFS (Last-Come-First-Served) RANDOM (Random-Order-Service)	PS (Processor-Sharing) LCFS_P
Uses Size	SJF (Shortest-Job-First)	SJF_P SRPT (Shortest-Remaining- Processing-Time)

Average AoI performance (with update size info.)

Weibull:
$$\mu = 1$$
 and $C^2 = \frac{\text{Var}(S)}{\text{E}[S]^2} = 10$

Observation 1: Size-based policies > Non-size-based policies

Average AoI performance (with update size info.)

Weibull:
$$\mu = 1$$
 and $C^2 = \frac{\text{Var}(S)}{\text{E}[S]^2} = 10$

Guideline 1: Prioritizing updates with small size

Arrival-time-based Policies

Average AoI performance (without update size info.)

Weibull: $\mu = 1$ and $C^2 = 10$

Arrival-time-based Policies

Average AoI performance (without update size info.)

Weibull: $\mu = 1$ and $C^2 = 10$

Guideline 2: Prioritizing recent updates

[Kaul et al., 2012; Costa et al., 2016]

Preemptive Policies

Average AoI performance (with service preemption)

Weibull: $\mu = 1$ and $C^2 = 10$

Observation 3:

Preemptive>Non-preemption

Weibull: $\mu = 1$ and $\rho = 0.7$

Observation 4:

Preemptive policies are less sensitive to update size variability

Preemptive Policies

Average AoI performance (with service preemption)

Weibull: $\mu = 1$ and $C^2 = 10$

Weibull: $\mu = 1$ and $\rho = 0.7$

Guideline 3: Allowing service preemption

[Kaul et al., 2012; Bedeway et al., 2016; Najm et al., 2018]

Current Guidelines

Summary of guidelines

	Non-preemptive	Preemptive
Blind to Size	Guideline 1: Prioritizing updates with small size	
Uses Size	Guideline 2: Prioritizin	ng recent updates
	Guideline 3: Allowing service preemption	

Current Guidelines

Summary of guidelines

Aol-based Policies

- Aol-based policies
 - AoI-Drop-Earliest (ADE): make next AoI drop the earliest
 - Aol-Drop-to-Smallest (ADS): making the next Aol drop to the smallest
 - AoI-Drop-Most (ADM): making the next AoI drop most

Aol-based Policies

Aol-based policies vs. non-Aol-based policies

Weibull: $\mu = 1$ and $C^2 = 10$

Aol-based Policies

Aol-based policies vs. non-Aol-based policies

Weibull: $\mu = 1$ and $C^2 = 10$

Guideline 4: Aol-based policies can further improve the Aol performance

- Informative policies
 - Informative policies only serve informative updates (can make Aol drop)
 - Almost all introduced policies have "informative" version

- Informative policies
 - Informative policies only serve informative updates (can make AoI drop)
 - Almost all introduced policies have "informative" version
- Informative policies vs. Non-informative policies

Weibull: $\mu = 1$ and $C^2 = 10$

- Informative policies
 - Informative policies only serve informative updates (can make Aol drop)
 - Almost all introduced policies have "informative" version
- Informative policies vs. Non-informative policies

Guideline 5: Prioritizing informative updates

[Costa et al., 2014; Pappas et al., 2015]

- Informative policies
 - Informative policies only serve informative updates (can make AoI drop)
 - Almost all introduced policies have "informative" version
- Informative policies vs. Non-informative policies

Guideline 5: Prioritizing informative updates

[Costa et al., 2014; Pappas et al., 2015]

Theoretical result

Proposition 1: In the G/M/1 queueing system, the AoI under LCFS_I is stochastically smaller than that under LCFS.

Preemptive, Informative, Aol-based Policies

Simulation results

Weibull: $\mu = 1$ and $C^2 = 10$

Sample path equivalence results

Proposition 2: SRPT_I is equivalent to ADE_PI.

Proposition 3: SJF_I is equivalent to ADE_I.

Conclusion

- Design Aol-efficient scheduling policies
 - Prioritizing small updates, allowing service preemption, prioritizing informative updates
- Equivalence between some size-based and AoI-based policies
 - SRPT_I = ADE_PI; SJF_I=ADE_I
- Delay-efficient

 Aol-efficient (for exogenous source)
 - High load: delay dominates
 Low load: interarrival dominates

Future Work

- Pursue more theoretical results
 - Does any informative policy always outperform its non-informative counterpart?
 - Can we derive the closed-form formulas of the average Aol/PAol for the Aol-efficient scheduling policies (such as SRPT)?
- Apply to more complex network
 - Does our guidelines hold for multi-server queues?
 - What's the performance of our policies/guidelines in a more complex network (e.g., multi-hop networks)?

Thank