Analisi II - prima parte

Serie numeriche

Serie di numeri reali o complessi

Problema:

Dare significato a somma di ∞ numeri reali o complessi assegnati come termini di una successione

Motivazione ed esempi

- Urti non elastici
 - 0 < q < 1
 - 1. La pallina si ferma? In un tempo finito?
 - 2. Se si, quanto è questo tempo?

$$s=rac{1}{2}gt^2$$
 , $t=\sqrt{rac{2s}{g}}$. $t_0=\sqrt{rac{2h}{g}}$, $t_1=2\sqrt{rac{2qh}{g}}=2t_0\sqrt{q}$, $t_2=2\sqrt{rac{2q^2h}{g}}=2t_0(\sqrt{q})^2$,... $t_n=2t_0(\sqrt{q})^n$ $T=t_o+t_1+...+t_n+...=t_0+2t_0(\sqrt{q}+(\sqrt{q})^2+...+(\sqrt{q})^n+...)$ T . finito o infinito?

- $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 1$
- 1+2+3+...
- $1,234 = 1 + 2 \cdot 0, 1 + 3 \cdot 0, 01 + 4 \cdot 0, 001; 1,5 = 1 + \frac{5}{10} + \frac{5}{100} + \dots$
- nastro elastico, formica

$$v=10cm/min$$

$$v=10cm/min$$
 $1\degree min=rac{10}{100}=rac{1}{10}$ di nastro

$$2\degree min = \frac{10}{100} + \frac{10}{200} = \frac{1}{10} + \frac{1}{2\cdot 10}$$
 di nastro

$$3\degree min = \frac{100}{100} + \frac{210}{2\cdot10} + \frac{10}{3\cdot10}$$
 di nastro

se raddoppio la lunghezza del nastro
$$2°min = \frac{10}{100} + \frac{10}{200} = \frac{1}{10} + \frac{1}{2 \cdot 10} \text{ di nastro} \\ 3°min = \frac{10}{100} + \frac{10}{2 \cdot 10} + \frac{10}{3 \cdot 10} \text{ di nastro} \\ n°min = \frac{10}{100} + \frac{10}{2 \cdot 10} + \frac{10}{3 \cdot 10} + \dots + \frac{1}{n \cdot 10} \text{ di nastro}$$

- 1. riuscirrà la formica ad arrivare all'altro estremo?
- 2. se si in quanto tempo?

Idea

$$(a_n)_n$$
 successione di addendi $a_1+a_2+...+a_n+...=?$ $s_2=a_1+a_2$ $s_5=a_1+a_2+a_3+a_4+a_5$... $\lim\limits_{n} s_n$

Definizione di serie di numeri reali

Sia $(a_n)_n$ una successione in \mathbb{R} . $orall n\in\mathbb{N}^+$ poniamo $s_1=a_1$, $s_n=a_1+a_2+...+a_n$ per $n\geq 2$

 s_n sarà la ridotta, parziale, n-esima.

La coppia $((a_n)_n,(s_n)_n)$ si dice serie di numeri reali di cui a_n è il termine generale e s_n è la ridotta n-esima e si indica con $\sum_i^n a_i$ oppure $a_1+a_2+a_3+...+a_n$

• Se esiste finito $\lim_n s_n = s \in \mathbb{R}$ si dice che la serie è **convergente** con somma s e si scrive $s - \sum_n s_n = s$

$$s=\sum_{i}^{+\infty}a_{n}$$

- ullet Se $\lim_n s_n = +\infty$ (o $-\infty$) si dice che la serie diverge a $+\infty$ (o $-\infty$)
- ullet se **non** esiste il $\lim_n s_n$, la serie si dice indeterminata

Esempi importanti

Serie geometrica

È la serie
$$a+ak+ak^2+ak^3+...=\sum_{n=0}^{+\infty}a\cdot k^n$$

con a
eq 0, $k \in \mathbb{R}$

Si ha
$$s_n=a+ak+ak^2+...+ak^n=$$

•
$$a\frac{1-k^n}{1-k}$$
 se $k \neq 1$

- $n \cdot a$ se k = 1 e quindi
- $ullet |k| < 1 \Rightarrow \lim_{n o +\infty} s_n = a \cdot rac{1}{1-k}$
- $ullet |k| = 1 \Rightarrow \sum_{n=0}^{+\infty} a \cdot k^n$ diverge
- ullet $k\geq 1$ diverge

ullet $k \leq -1$ oscilla, la serie è indeterminata

Esempio della pallina che cade

$$T = t_0 + t_1 + ... = t_o + 2t_o(1 + \sqrt{q} + (\sqrt{q})^2 + (\sqrt{q})^3) + ... + (\sqrt{q})^n + ...) o t_0 + 2t_0\sqrt{q}\frac{1}{1-\sqrt{q}}$$

Serie armonica

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{n=1}^{+\infty} \frac{1}{n}$$

si ha
$$s_n=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{n}=\int a(x)dx$$
, dove $a(\cdot)=\frac{1}{n}$ Considero la funzione $\frac{1}{x+1}$ e ho che $a(x)\geq \frac{1}{x+1}$ \Rightarrow area di $a(x)\geq$ area di $\frac{1}{x+1}$ Risulta $s_n=\int a(x)dx\geq \int \frac{1}{x+1}dx=[log(x+1)]_0^n$ se $n\to+\infty$, $(log(n+1)-log(0))\to+\infty\Rightarrow s_n$ diverge

Serie a termini non-negativi

Criterio del confronto

Serie armonica generalizzata

$$\sum rac{1}{n^p}$$
 converge se $p>1$, diverge altrimenti

Notazione di Landau

Siano $(a_n)_n$ e $(b_n)_n$ due successioni in $\mathbb R$, con $b_n
eq 0 orall n$ e $\lim_n a_n = \lim_n b_n = 0 \Rightarrow$

- $a_n=O(b_n)$ se esistono k>0 e n=1 e n=1 e n=1 t.c. $|a_n|\leq k|b_n|$, $\forall n\geq n=1$ (oppure $\frac{|a_n|}{|b_n|}\leq k$, cioè a_n tende più velocemente a zero più velocemente di b_n)
- $a_n = o(b_n)$ se $\lim_n \frac{a_n}{b_n} = 0$

Criterio dell'ordine di infinitesimo

Sia
$$\sum a_n$$
 , $a_n \geq 0$, $orall n$,

1. se esiste
$$p>1$$
 t.c. $a_n=O(rac{1}{n^p})$, allora a_n converge

2. se
$$\lim_n n \cdot a_n > 0$$
 (o $+\infty$), allora $\sum a_n$ diverge

Dimostrazione

1. Poichè
$$a_n=O(\frac{1}{n^p})$$
 esistono $k>0$ e $n\in\mathbb{N}^+$ t.c. $a_n=|a_n|< k\frac{1}{n^p}$, $\forall n\geq n$ Quini $\sum a_n$ è maggiorata dalla serie $\sum \frac{k}{n^p}$ convergente, dunque per il criterio del confronto $\sum_{n=n+1}^{+\infty}a_n$ converge e pertanto converge anche $\sum_{n=1}^{+\infty}a_n$

2. Poichè
$$\lim_n n \cdot a_n > 0$$
, per il teorema di permanenza del segno esiste $L > 0$ e $n \in \mathbb{N}^+$ t.c. $\forall n \geq n$, $n \cdot a_n > L \Leftrightarrow a_n \geq L \cdot \frac{1}{n}$ Essendo la serie $\sum \frac{1}{n}$ divergente anche $\sum_{n=1}^{+\infty} \frac{L}{n}$ diverge e per il criterio del confronto $\sum_{n=n+1}^{+\infty} a_n$ diverge, quindi diverge anche $\sum_{n=1}^{+\infty} a_n$

Criterio del rapporto

Sia
$$\sum a_n$$
, $a_n>0$, $orall n\in \mathbb{N}^+$
Se esite $k\in]0,1[$ t.c. $\dfrac{a_{n+1}}{a_n}\leq k$
allora la serie $\sum a_n$ converge

Dimostrazione

Si ha
$$a_2 \leq a_1 \cdot k$$
, $a_3 \leq a_2 \cdot k \leq a_1 \cdot k^2$, ... dunque $a_{n+1} < k^n a_1$, $orall n \in \mathbb{N}^+$

La serie è maggiorata dalla serie geometrica con ragione k < 1, la quale converge, ciò implica che $\sum a_n$ converge

Osservazione

sotto l'ipotesi del rapporto u ha che $a_n=o(\frac{1}{n^p})$, $\forall p>1$, perchè va a zero esponenzialmente

Osservazione₂

Non basta richiedere
$$a_{n+1} < a_n$$
, $orall n \in \mathbb{N}^+$ esempio: $\sum rac{1}{n}$, divergente

Corollario del criterio del rapport (con il limite)

Sia
$$\sum a_n \operatorname{\mathsf{con}} a_n > 0 orall n \in \mathbb{N}^+$$
, si ha

1. se esiste
$$\lim_n rac{a_{n+1}}{a_n} = L$$
, con $L < 1$, allora $\sum a_n$ converge

2. se esiste
$$\lim_n \frac{a_n}{a_n} = L$$
, con $L>1$, allora $\sum a_n$ diverge

Osservazione

se L=1nulla si può dire

Dimostrazione

1.
$$\lim_n \frac{a_{n+1}}{a_n} = L$$
 equivale a $(orall arepsilon < 0)(\exists \overset{-}{n})(orall n)(n) = \frac{1}{n} \Rightarrow |\frac{a_{n+1}}{a_n} - L| < arepsilon)$ $-arepsilon < \frac{a_{n+1}}{a_n} < arepsilon$, con $arepsilon$ preso t.c. $L + arepsilon < 1$ e quindi $\frac{a_{n+1}}{a_n} < L + arepsilon = K < 1$

Dunque per il criterio del rapporto $\sum_{n=n+1}^{+\infty} a_n$ converge, pertanto $\sum a_n$ converge

2. procedendo come nel caso 1. esiste
$$\bar{n}$$
 t.c. $\forall n > \bar{n}$

$$rac{a_{n+1}}{a_n}>L-arepsilon$$
, risulta $rac{a_{n+1}}{a_n}>L-arepsilon>1$, $orall n>ar{n}$ cioè $a_{n+1}>a_n>...>a_1>0$

Quindi
$$a_n
ot > 0 \Rightarrow \sum_{n=\bar{n}+1}^{+\infty} a_n$$
 diverge, pertanto anche $\sum a_n$ diverge

Criterio della radice

Sia
$$\sum a_n$$
 con $a_n>0 \forall n\in\mathbb{N}^+$ se esiste $k\in]0,1[$ t.c. $\sqrt[n]{a_n}$ ($\Leftrightarrow a_n\leq k^n$) $\forall n\in\mathbb{N}^+$ allora $\sum a_n$ converge

Corollario del criterio della radice (con il limite)

Se
$$\sum a_n$$
, con $a_n>0$, $orall n\in \mathbb{N}^+$ Si ha:

1. se esiste
$$\lim_n \sqrt[n]{a_n} = L$$
, con $L < 1$, $\sum a_n$ converge

2. se esiste
$$\lim_n \sqrt[n]{a_n} = L$$
 ,con $L > 1$, $\sum a_n$ diverge a $+\infty$

Criterio generale di Cauchy

Successioni

Sia
$$(a_n)_n$$
 una successione in $\mathbb R$ $\lim_n a_n = l \Leftrightarrow orall arepsilon > 0 \exists \overset{-}{n}$ t.c. $orall n \geq \overset{-}{n}$, $|a_n - L| < arepsilon$

Condizione di Cauchy

$$(a_n)_n$$
 verifica la condizione di Cauchy se

$$(orall arepsilon>0)(\exists ar{n})(orall n)(orall p)(n>ar{n}\Rightarrow |a_n-a_m|, dove $m=p+n$$$

Teorema

 $(a_n)_n$ è convergente $\Leftrightarrow a_n$ verifica la condizione di Cauchy

• Per le serie: Sia $\sum a_n$ in \mathbb{R} . Si ha $\sum a_n$ convergente \Leftrightarrow esiste finito $\lim_n s_n = s$ cioè $\lim_n a_n = l \Leftrightarrow \forall \varepsilon > 0 \exists \bar{n}$ t.c. $\forall n \geq \bar{n}$, $|s_n - s| < \varepsilon$ $\sum a_n$ è convergente (cioè s_n è convergente) $\Leftrightarrow s_n$ verifica la condizione di Cauchy $(\forall \varepsilon > 0)(\exists \bar{n})(\forall n)(\forall p)(n > \bar{n} \Rightarrow |s_n - s_{n+p}| < \varepsilon)$ Essendo $s_{n+p} - s_n = (a_{n+p} + a_{n+p-1} + \ldots + a_1) - (a_n + \ldots + a_1) = a_{n+1} + \ldots + a_{n+p}$ Allora la condizione di Cauchy diventa $(\forall \varepsilon > 0)(\exists \bar{n})(\forall n)(\forall p)(n > \bar{n} \Rightarrow |a_{n+1} + \ldots + a_{n+p}| < \varepsilon)$