2-a) Para realizar o diagrama de contato precisamos primeiramente identificar qual será a saída do sistema dado um número finito de entradas. Pelo problema, sabe-se que será usado uma entrada de quatro bits $B_1B_2B_3B_4$ e que a saída do sistema lógico deve apresentar sinal alto sempre que o número binário for maior que 0010 e menor que 1001. Com os parâmetros definidos foi, então, gerada a tabela verdade da proposição e em seguida aplicada no Mapa de *Karnaugh* para se obter uma proposição lógica, já simplificada, que tenho como saída o valor lógico definido, assim, obtém-se:

Criação de circuito lógico pelo método de Mapa de Karnaugh para questão 2-A													
Tabela da Verdade					Mapa de Karnaugh								
B_1	B ₂	B ₃	B ₄	F(B ₁ B ₂ B ₃ B ₄)			B_1B_2						
0	0	0	0	0			00	01	11	10			
0	0	0	1	0		00	0	1	0	1			
0	0	1	0	0	B ₃ B ₄	B ₃ B ₄	B ₃ B ₄	B ₃ B ₄	01	0	1	0	0
0	0	1	1	1					11	1	1	0	0
0	1	0	0	1		10	0	1	0	0			
0	1	0	1	1	$F(B_1B_2B_3B_4) =$	(∼ B ₁ ∧ E	B_2) V ($\sim B_1 \Lambda$	$B_3 \wedge B_4) \vee (B_4)$	$B_1 \wedge \sim B_2 \wedge \sim$	$B_3 \wedge \sim B_4$)			
0	1	1	0	1									
0	1	1	1	1									
1	0	0	0	1	-								
1	0	0	1	0									
1	0	1	0	0									
1	0	1	1	0									
1	1	0	0	0									
1	1	0	1	0									
1	1	1	0	0									
1	1	1	1	0									

b) Neste caso, o projeto envolve o controle do abrir e fechar das portas de um elevador, para isso, é sabido que o sistema possui 4 sensores, S S1 S2 S3, onde S1 S2 e S3 indicam o andar em que o elevador se encontra enquanto o sensor S indica se o mesmo está se movendo (S = 1) ou parado (S = 0), portanto, tem-se que para o elevador possa abrir a porta faz-se necessário que o elevador esteja parado (S = 0) e que esteja em um andar um único andar, ou seja, S1 S2 e S3 = (0 0 1; 0 1 0; 1 0 0). Determinados os estados de saída alto para as entradas de interesse foi construída a tabela a seguir:

Criação de circuito lógico pelo método de Mapa de Karnaugh para questão 2-B												
Tabela da Verdade					Mapa de Karnaugh							
S	S1	S2	S3	F(SS1S2S3)	SS1							
0	0	0	0	0	•		00	01	11	10		
0	0	0	1	1		00	0	1	0	0		
0	0	1	0	1	S2S3	S2S3	1 0 S2S3	01	1	0	0	0
0	0	1	1	0				11	0	0	0	0
0	1	0	0	1		10	1	0	0	0		
0	1	0	1	0	E/\$\$1\$3\$3\-	F(SS1S2S3)=						
0	1	1	0	0	r(3313233)=							
0	1	1	1	0								
1	0	0	0	0								
1	0	0	1	0								
1	0	1	0	0								
1	0	1	1	0								
1	1	0	0	0								
1	1	0	1	0								
1	1	1	0	0								
1	1	1	1	0								

c) Para a climatização de um ambiente um laboratório usará um sistema com 3 sensores, 3 bits de entrada, (UTC, Umidade; Temperatura e Circulador), e terá como resposta o acionamento ou não acionamento de uma válvula (V).

Para a construção do modelo foi definido as seguintes variáveis lógicas e seus estados:

 $T = 1 \rightarrow$ temperatura abaixo do limite; $U = 1 \rightarrow$ umidade acima de 10%; $C = 1 \rightarrow$ circulador ligado $V = 1 \rightarrow$ válvula de ar aberta.

Foi definido, também, as seguintes restrições para acionamento da válvula se:

- A umidade estiver abaixo de 10% e a temperatura estiver acima do limite, ou - A umidade estiver abaixo de 10% e a temperatura estiver abaixo do limite e o circulador estiver ligado.

Partindo-se das informações dadas, será abordada três possíveis soluções para a questão. Primeiramente, para o modelo 1, temos onde apenas as restrições dadas são seguidas, ou seja, a válvula irá se ativar quando o sinal de entrada for, seguindo a ordem TUC, 00X ou 101, assim, a válvula será aberta em 3 dos 8 bits disponíveis, e está representada no modelo que se encontra na tabela 2-C.1. O segundo caso trata-se de um modelo onde, para redução de custos de construção, adicionou-se mais um saída lógica alta 100, tabela 2-C.2, ou seja, a válvula também será acionada quando a temperatura encontrar-se abaixo do limite, a umidade estiver abaixo de 10% e o circulador estiver desligado, a principal vantagem de se adicionar essa condição será na implicação do modelo lógico onde se fará necessário o uso de apenas um contato. O terceiro modelo trata-se de um sistema mais robusto, visto que o problema a ser resolvido é manter a temperatura abaixo de 40°, para isso a válvula também será acionada sempre que a temperatura ultrapassar os 40°, portanto, sempre que T=0 a válvula será acionada, garantindo que a temperatura fique dentro do limite estabelecido e as restrições dadas continuem sendo cumpridas, essa modelagem encontra-se definida na tabela 2-C.3.

		Criação de ci	rcuito lógico p	elo método d	le Mapa de K	arnaugh para c	questão 2-C.1					
	Tabela da Verdade				Mapa de Karnaugh							
Т	U	С	F(TUC)=V			TU						
0	0	0	1			00	01	11	10			
0	0	1	1	С	0	1	0	0	0			
0	1	0	0		1	1	0	0	1			
0	1	1	0	F(TUC)=	F(TUC)= (~U \lambda C) \lambda (~T \lambda ~U)							
1	0	0	0									
1	0	1	1									
1	1	0	0									
1	1	1	0									
			rcuito lógico p	elo método d	le Mapa de K	arnaugh para c	questão 2-C.2					
	Tabela da	Verdade		Mapa de Karnaugh								
T	U	С	F(TUC)=V					ΓU				
0	0	0	1			00	01	11	10			
0	0	1	1	С	0	1	0	0	1			
0	1	0	0		1	1	0	0	1			
0	1	1	0	F(TUC)=			~ U					
1	0	0	1									
1	0	1	1									
1	1	0	0									
1	1	1	0									
			rcuito lógico p	elo método d	le Mapa de K	arnaugh para c						
		Verdade		Mapa de Karnaugh								
T	U	С	F(TUC)=V				TI	1				
0	0	0	1			00	01	11	10			
0	0	1	1	С	0	1	1	0	0			
0	1	0	1		1	1	1	0	1			
0	1	1	1	F(TUC)=		~	TV (~ U A C	:)				
1	0	0	0									
1	0	1	1									
1	1	0	0									
1	1	1	0									