

Electronic Devices and Circuits Lab (EE2301) Experiment 7: MOSFET Characteristics

EE19BTECH11041, Srijith Reddy Pakala

Department of Electrical Engineering IIT Hyderabad

November 12, 2020

1 Aim

our aim is to understand MOSFET characteristics i.e. both output and transfer characteristics

MOSFET:

The metal—oxide—semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals.

Figure 1: **NMOSFET**

Figure 2: **PMOSFET**

NMOSFET(GROUP 1)

NMOSFET circuit diagram

• Given $R = 1k\Omega$ and $V_{id} = 0V$.

Output characteristics

- ullet Vary drain bias (V_{dd}) and measure the drain current (I_d) with a fixed gate bias (V_{gs}) .
- Now plot I_d vs V_{dd} for a fixed V_{gs} .

Transfer characteristics

- Vary gate bias (V_{gs}) and measure the drain current (I_d) with a fixed drain bias (V_{dd}) .
- Now plot I_d vs V_{gs} for a fixed V_{dd} .

2 Problem statement(Group 1)

- Group 1 NMOSFET
- Plot the I_D - V_D output characteristics ($V_G = 1, 2, 3, 4, 5 \text{ V}$) and mark the
- . important regions of operation.
- Plot the I_D - V_G transfer characteristics for $(V_D = 1, 2, 3, 4, 5 \text{ V})$.
- Explain the working of the MOSFET and the nature of the characteristics.

3 Procedure

NMOSFET-GROUP 1

Output characteristics

- First we need to write spice scripts for the NMOSFET circuit with given values and varying drain bias (V_{dd}) .
- Now we need to fix the gate bias(V_{gs}) and run dc simulation of drain bias(V_{dd}) and print the drain current(I_d).
- Now we need to do the same for 5 different gate bias(V_{gs}) values i.e. for $V_G = 1, 2, 3, 4, 5$ V.
- Now we need to plot the drain current (I_d) vs drain bias (V_{dd}) for the 5 different gate bias (V_{gs}) in the same figure using matlab or octave.

Transfer characteristics

- First we need to write spice scripts for the NMOSFET circuit with given values and varying gate bias (V_{gs}) .
- Now we need to fix the drain $bias(V_{dd})$ and run dc simulation of gate $bias(V_{gs})$ and print the drain current(I_d).
- Now we need to do the same for 5 different gate bias(V_{dd}) values i.e. for $V_D = 1, 2, 3, 4, 5$ V.
- Now we need to plot the drain current (I_d) vs gate bias (V_{dd}) for the 5 different drain bias (V_{dd}) in the same figure using matlab or octave.
- We should now analyze the obtained results and explain the circuit working.

4 Results and observations

Output characteristics

- In the above plot the drain current increases upto a value and then saturates at that value.
- As the value of V_G increases the current saturation value(I_{DS}) decreases and the saturation voltage decreases(V_{DS}) saturates quickly.
- The MOSFET used here is an enhancement type NMOSFET i.e. there is no n-channel initially between n-doped regions.
- The output characteristics are similar to the BJT but here it is voltage controlled whereas in BJT it is current controlled.

Transfer characteristics

- In the above plot the drain current (I_d) increases as the gate bias (V_G) increases.
- ullet As the value of V_{dd} increases the slope of the plot I_d vs V_G increases too.
- The plot looks like a parabola whose equation is given by.

$$I_D = k(V_G - V_T)^2 , V_G > V_T$$
 (1)

$$I_D = 0 , V_G \le V_T \tag{2}$$

where k is a constant and V_T is the value of V_G at which $I_D=0$.

ullet We can see from the graph that the value of k increases with increase in V_{dd} where as V_T doesn't.

Working the MOSFET circuit

- If V_{GS} is set at 0 V and a voltage applied between the drain and source of the device, the absence of an n-channel will result in a current of effectively zero amperes.
- Now if we set the both V_{DS} and V_{GS} at some positive voltage greater than 0 V, establishing the drain and gate at a positive potential with respect to the source. The positive potential at the gate will pressure the holes (since like charges repel) in the p-substrate along the edge of the SiO_2 layer to leave the area and enter deeper regions of the p-substrate, as shown in the figure.

Figure 3: n-Channel formation in the NMOSFET.

- As V_{GS} increases in magnitude, the concentration of electrons near the SiO_2 surface increases until eventually the induced n-type region can support a measurable flow between drain and source. The level of V_{GS} that results in the significant increase in drain current is called the threshold voltage and is given the symbol V_T .
- The above reasons explain the transfer characteristics of the NMOSFET circuit.

• Now if we hold V_{GS} constant and increase the level of V_{DS} , the drain current will eventually reach a saturation level, The leveling off of I_D is due to a pinching-off process depicted by the narrower channel at the drain end of the induced channel as shown in Figure 4.

Figure 4: Change in channel and depletion region with increasing level of V_{DS} for a fixed value of V_{GS}

- If V_{GS} is held fixed at some value such as 8 V and V_{DS} is increased from 2 to 5V, the voltage V_{DG} i.e V_{DS} - V_{GS} will drop from -6 to -3 V and the gate will become less and less positive with respect to the drain.
- This reduction in gate-to-drain voltage will in turn reduce the attractive forces for free carriers (electrons) in this region of the induced channel, causing a reduction in the effective channel width. Eventually, the channel will be reduced to the point of pinch-off and a saturation condition will be established.
- Even though the channel width is reduced the is high density of carriers for the current flow.
- The above reasons explain the output characteristics of the NMOSFET circuit.

5 Conclusions

- The saturation level for V_{DS} is related to the level of applied V_{DS} by $V_{DS_{sat}} = V_{GS}$ V_T .
- We also note that there is no current at gate (I_G) due to the insulating material.
- MOSFET is a voltage controlled device which is a lot fexible than BJT.
- Key advantage of a MOSFET is that it requires almost no input current to control the load current.
- The MOSFET is the most widely used type of transistor and the most critical device component in integrated circuit (IC) chips..

6 References

- Electronic devices and circuit theory by ROBERT BOYLESTAD and LOUIS .Link
- MOSFET-Wikipedia Link

Thank you