Programme de colle n°26

Intégration

- 1) Subdivisions, fonctions en escaliers, intégrale d'une fonction continue sur un segment.
- 2) Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$. Alors $x \mapsto \int_{-\pi}^x f$ est une primitive de f.
- 3) TOUT sur le calcul intégral (réviser le chapitre vu en début d'année).
- 4) Sommes de Riemann, méthode des rectangles.
- 5) Inégalité de Taylor-Lagrange.

Applications linéaires

- 1) Définition, noyau, image.
- 2) Vocabulaire: isomorphisme, endomorphisme, automorphisme.
- 3) Espaces vectoriels isomorphes, défaut d'injectivité/surjectivité dû aux dimensions.
- 4) Théorème du rang.
- 5) Si $f \in \mathcal{L}(E, F)$ avec dim $E = \dim F$ (finie) alors f injective ssi f surjective ssi f bijective.
- 6) Projecteurs et symétries.

Questions de cours

1) Calculer certaines des intégrales suivantes :

(a)
$$I = \int_0^{\frac{\pi}{2}} e^x \cos(x) \ dx$$

(a)
$$I = \int_0^{\frac{\pi}{2}} e^x \cos(x) dx$$
 (c) $I = \int_0^1 \frac{x+1}{1+x+x^2} dx$ (e) $I = \int_{-2}^2 \frac{x^5}{2+x^4} dx$ (b) $I = \int_0^{\frac{\pi}{2}} \cos^2 x dx$ (d) $I = \int_{-1}^0 \frac{2}{(2-5x)^4} dx$ (f) $I = \int_0^1 \sin\left(\sqrt{t}\right) dt$

(e)
$$I = \int_{-2}^{2} \frac{x^5}{2 + x^4} dx$$

(b)
$$I = \int_0^{\frac{\pi}{2}} \cos^2 x \ dx$$

(d)
$$I = \int_{-1}^{0} \frac{2}{(2-5x)^4} dx$$

(f)
$$I = \int_0^1 \sin\left(\sqrt{t}\right) dt$$

- 2) Soit $F(x) = \int_0^x \ln(e^t + 1) dt$. Montrer que F est bien définie et de classe \mathcal{C}^1 sur \mathbb{R} . Déterminer le signe de F puis dresser son tableau de variations.
- 3) Calculer la limite des suites $S_n = \sum_{k=0}^{n-1} \frac{1}{n+k}$, $U_n = \sum_{k=0}^{n} \frac{n}{n^2+k^2}$ et $V_n = \sum_{k=0}^{n} \frac{k}{n^2+k^2}$.
- 4) Énoncer l'inégalité de Taylor-Lagrange, l'appliquer à la fonction exponentielle puis en déduire $\lim_{n\to+\infty}\sum_{k=1}^{n}\frac{b^k}{k!}$
- 5) Soient E, F deux \mathbb{K} -espaces vectoriels avec dim E finie. Soient $f \in \mathcal{L}(E, F)$ et S un supplémentaire de $\ker f$ dans E. Montrer que $\tilde{f} \colon \begin{array}{ccc} S & \longrightarrow & \operatorname{Im} f \\ x & \mapsto & f(x) \end{array}$ est un isomorphisme. En déduire le théorème du rang.
- 6) Montrer que les applications suivantes sont linéaires puis déterminer leur noyau et leur image :

(a)
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,x-y)$

(a)
$$f_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 (b) $f_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x,y) \longmapsto (x+y,x-y)$

7) Montrer que $p \in \mathcal{L}(\mathbb{R}^2)$ avec p(x,y) = (2x - y, 2x - y) est un projecteur. Donner ses éléments caractéristiques.