α	•	4 1	r 0		4 •	
Stu	A DY	1t I	Inta	nrn	19fi	nn
MU	uu			.,	Iau	1711

tact information on eDimension).

Name:	Student ID:
Due Date: 9 Oct 11:59pm.	
Submit answers on eDimension in pdf forma	tt. Submission without student information will NOT
be marked! Any questions regarding the hom	nework can be directed to the TA through email (con-

Week 4

Exercise 1

You are given a list of n numbers and you like to design a sorting algorithm that uses BSTs. In particular, you construct a corresponding BST by inserting the keys of the list one by one, and then output the nodes using an in-order traversal of the tree.

Question 1

The complexity of this is:

- (A) $\Theta(n)$
- (B) $\Theta(n \log n)$
- (C) $\Theta(n^2)$

Question 2

Suppose that you use a balanced BST instead. Then the complexity will be:

- (A) $\Theta(n)$
- (B) $\Theta(n \log n)$
- (C) $\Theta(n^2)$

Exercise 2

In the runway scheduling problem when we insert a new event with time t in the already existing BST we follow a certain path from the root of the tree.

- 1. The consistency condition about $|t t_i| \ge 3$ for all existing times t_i in the tree can be maintained by only considering nodes along the path of the insertion. (T/F)
- 2. We augment the information of the nodes of a balanced BST so that we can answer more questions about the keys stored in the BST in:

(A)
$$O(\log n)$$

(B) $O(n)$

Exercise 3

- 1. Suppose we have n keys stored as a Max-Heap and an AVL tree. Since both have a maximum depth of $O(\log n)$, searching if k is in the set of keys takes the same time complexity. (TF)
- 2. A Max-Heap captures the same information as a balanced BST regarding the ordering of the keys of the nodes. (TF)
- 3. Outputing the keys in increasing order from a given Min-Heap and a balanced BST take the same time complexity. (TF)
- 4. The maximum height difference between the leaves of any AVL tree is 1. (T.F)