ECOGRID EU: A REAL-TIME MARKET DEMONSTRATION PROJECT TO FACILITATE THE INTEGRATION OF RENEWABLES

Presentation at: Jornada Renovables

PRESENTATION BY: SALVADOR PINEDA

CENTER FOR ELECTRIC POWER AND ENERGY

- CEE established 15 August 2012 as a merger of existing units:
 - Center for Electric Technology, DTU Electrical Engineering
 - Intelligent Energy Systems, Risø National Laboratory for Sustainable Energy
- Main competences
 - Electric Power Engineering
 - Automation and control
 - Information and Communication Technology
 - Electricity markets
- A strong university centers within its field
 - Staff: 85 persons incl. PhD-students
 - Covers discipline oriented research as well as national lab type application-driven research and proof-of-concept
- Strategic partnerships

CONTENT

THE CHALLENGES OF TOMORROW

ECOGRID: A REAL-TIME MARKET SOLUTION

BORNHOLM: A UNIQUE DEMONSTRATION SITE

INCREASE OF WIND INSTALLED CAPACITY WORLDWIDE

Source: Global Wind Energy Council (2011)

SPAIN: LEADING COUNTRY ON WIND INTEGRATION

TOP 10 CUMULATIVE CAPACITY DEC 2011

Country	MW	% SHARE
China**	62,733	26.3
USA	46,919	19.7
Germany	29,060	12.2
Spain	21,674	9.1
India	16,084	6.7
France**	6,800	2.9
Italy	6,747	2.8

Source: Global Wind Energy Council (2011)

SPAIN: LEADING COUNTRY ON WIND INTEGRATION

Source: Red Eléctrica de España

SPAIN: LEADING COUNTRY ON WIND INTEGRATION

16/04/12

Source: Red Eléctrica de España

DENMARK: LEADING COUNTRY ON WIND INTEGRATION

Source: US Department of Energy

SIGNIFICANT WIND PRODUCTION FORECAST ERROR

FIGURE 16: WIND FORECAST ERROR IN SPAIN

Source: Red Eléctrica de España

IMPERATIVE NEED FOR ADDITIONAL BALANCING POWER

TRANSMISSION CAPACITY

FLEXIBLE GENERATION

STORAGE

FLEXIBLE DEMAND

■ ECOGRID OBJECTIVE: TO USE FLEXIBLE DEMAND RESPONSE OF END-CUSTOMERS TO REDUCE THE IMPACT OF THE VARIABILITY AND UNCERTAINTY OF THE RENEWABLE PRODUCTION ON THE OPERATION OF THE POWER SYSTEM

OTHER SOLUTIONS

END-CUSTOMERS CAN PROVIDE BALANCING POWER

RETAILERS SELLS THE BALANCING POWER OF THE CUSTOMERS TO TSO

TSO BUYS BALANCING POWER TO THE RETAILERS TO BALANCE WIND

OTHER SOLUTIONS

OTHER SOLUTIONS

END-CUSTOMERS CAN PROVIDE BALANCING POWER

RETAILERS SELLS THE BALANCING POWER OF THE CUSTOMERS TO TSO

TSO BUYS BALANCING POWER TO THE RETAILERS TO BALANCE WIND

END-CUSTOMERS CAN PROVIDE BALANCING POWER

TSO BUYS BALANCING POWER TO THE CUSTOMERS TO BALANCE WIND

WHY?

TO OFFER FLEXIBLE END-CUSTOMERS A TRANSPARENT AND CLEAR PRODUCT TO TRADE THEIR FLEXIBILITY WITH THE SYSTEM

CHALLENGE

END-CUSTOMERS CANNOT SUBMIT BIDS TO BUY ELECTRICITY. IT IS DIFFICULT TO DETERMINE NUMERICALLY THE UTILITY FUNCTION OF A HOUSEHOLD.

SOLUTION

END-CUSTOMERS WILL CONTINUOUSLY RECEIVE THE ELECTRICITY PRICE AT WHICH THEY WILL BE CHARGED BEFOREHAND.

CHALLENGE

TSO HAS TO FORECAST THE RESPONSE OF END-CUSTOMERS TO PRICES TO MAINTAIN THE BALANCE IN THE SYSTEM. HOWEVER, THIS RESPONSE IS:

- TIME VARIANT
- UNCERTAIN
- DYNAMIC

SOLUTION

TO PUBLISH ONE PRICE EVERY 5 MINUTES IN ORDER TO TAKE CORRECTIVE ACTIONS WHEN THE FORECAST OF THE DEMAND RESPONSE IS NOT ACCURATE ENOUGH.

QUESTIONS

- How much balancing power can we obtain from flexible end-customers?
- CAN WE USE FLEXIBLE DEMAND OF END-CUSTOMERS TO REDUCE WIND POWER PRODUCTION FLUCTUATIONS?
- How much does the system benefit?
- How much is the flexible customers saving?

INTERCONNECTED WITH THE NORDIC POWER MARKET OPERATED BY THE LOCAL

MUNICIPAL OWNED DSO, ØSTKRAFT

ELIGIBLE RD&D INFRASTRUCTURE & **FULL SCALE TEST** LABORATORY

DEMAND & STATIONARY

STORAGE OPTIONS

Property	Value					
Customers						
Number of customers	~28.000					
Number of customers (> 100.000 kWh/year)	~300					
Total energy consumed	268 GWh					
Peak load	55 MW					
Low-carbon energy resources						
Wind power plants	30 MW					
CHP/biomass	16 MW					
PV (roll-out under project)	2.0 MW					
Biogas plant	2.0 MW					
Electric vehicles (under roll-out)	·					
Grid						
60 kV grid	131 km					
Number of 60/10 kV substations	16					
10 kV grid	914 km					
Number of 10/0.4 kV substations	1006					
0.4 grid	1.887 km					
Communication						
Fiber network between 60/10 kV substations	131 km					
District heating						
Number of district heating systems	5					
Total heat demand (in 2007)	560 GWh					
Operation						
Normal operation mode	Interconnected Nordel					
Island operation capability	Continuous					

Reference group	Manual houses	Automatic houses	Aggregator	Smart businesses
200 households	400-500 households	700 households	500 households	100 commercial/public customers
No access to specific information or smart equipment	Receiving market price information/prognosis	Installation of appliances responding to market price signals/prognosis (heat pumps or electric heating)	Installation of multiple connected appliances responsive to price signals	Smart meter and appliances
No response	Manual response to price changes	Automatic response	Direct control by aggregator	Automatic/manual response

Some M€ 40 National funding to related projects

Lyngby & Ballerup Campus

Risø Campus

Østkraft (Bornholm)

THANKS FOR YOUR ATTENTION!

QUESTIONS?

