Lecture 11

Backtracking Algorithm II

Lusi Li
Department of Computer Science
ODU

Reading for This Class: Chapter 6, Russell and Norvig

Review

- Last Class
 - Backtracking Algorithm I
 - Basic algorithms to solve CSPs
- This Class
 - Backtracking Algorithm II
 - Pruning space through propagating information
- Next Class
 - Games

Backtracking Search

- Idea 1: Only consider a single variable at each point
- Idea 2: Only consider values which do not conflict with assignment made so far
- Depth-first search for CSPs with these two improvements is called backtracking search

Backtracking search

function BACKTRACKING-SEARCH(csp) return a solution or failure

return BACKTRACK ({} , csp)

function BACKTRACK (assignment, csp) return a solution or failure

- if assignment is complete then return assignment
- var ← SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)
- for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 - if value is consistent with assignment according to CONSTRAINTS[csp] then

```
add {var=value} to assignment
result ← BACKTRACK(assignment, csp)
if result ≠ failure then return result
else remove {var=value} from assignment
```

- end if
- end for
- return failure

Improving Backtracking Efficiency

- For CSPs, general-purpose heuristic methods can give large gains in speed, e.g.,
 - Ordering:
 - Which variable should be assigned next?
 - minimum remaining values (MRV) heuristic
 - degree heuristic
 - In what order should its values be tried?
 - least constraining value heuristic
 - Inference (constraint propagation):
 - Can we detect inevitable failure early?
 - Structure:
 - Can we take advantage of problem structure?
 - They can be used in combination.

Variable Ordering

Static ordering

- Dynamic ordering
 - minimum remaining values (MRV) heuristic
 - choose variable with the fewest legal moves
 - "fail first"
 - degree heuristic
 - choose variable that is involved in the largest number of constraints on other unassigned variables
 - "tie-breaker"

Value Ordering Least constraining value (only)

(WA = red, NT = green, Q=red)

(WA = red, NT = green, Q=blue)

- Heuristic for selecting what value to try next
- Heuristic Rule: given a variable, choose the least constraining value
 - the one that rules out the fewest values in the remaining variables
 - leaves the maximum flexibility for subsequent variable assignments
- "Fail last": make it more likely to find a solution early
- Implementation: keep track of remaining legal values for other unassigned variables

Ordering

- Why fail first when selecting variables?
 - Prune large portions of tree early on
- Why fail last when selecting values?
 - Only need one solution, so examine probable values first

Propagate Information

- If we choose a value for one variable, that affects its neighbors
- And then potentially those neighbors...
- We can use this inference to prune the search space by removing inconsistent values

Idea:

- keep track of remaining legal values for unassigned variables.
- ONLY check neighbors of most recently assigned variable after each assignment and remove any inconsistent values from its neighbors
- Backtrack when any variable has no legal values

For the map coloring problem, suppose a variable and its value are selected randomly at each step.

Idea:

- keep track of remaining legal values for unassigned variables.
- ONLY check neighbors of most recently assigned variable after each assignment and remove any inconsistent values from its neighbors
- Backtrack when any variable has no legal values

- Assign {WA=red}
- Effects on neighbors of WA
 - NT can no longer be red
 - SA can no longer be red

Idea:

- keep track of remaining legal values for unassigned variables.
- ONLY check neighbors of most recently assigned variable after each assignment and remove any inconsistent values from its neighbors
- Backtrack when any variable has no legal values

- Assign {Q=green}
- Effects on other variables connected by constraints with Q
 - NT can no longer be green
 - SA can no longer be green
 - NSW can no longer be green

(We already have a failure, but FC is too simple to detect it now)

Idea:

- keep track of remaining legal values for unassigned variables.
- ONLY check neighbors of most recently assigned variable after each assignment and remove any inconsistent values from its neighbors
- Backtrack when any variable has no legal values

- Assign {V=blue}
- Effects on other variables connected by constraints with V
 - NSW can no longer be blue
 - SA is empty (no possible values!)
- Forward-checking has detected that SA has no legal values and backtracking can occur (restore the deleted values).

Forward checking

- Solving CSPs with combination of heuristics plus forward checking is more efficient than either approach alone.
- Propagates information from most recent assigned to unassigned neighbors
- But, doesn't provide early detection for all failures
 - NT and SA cannot both be blue!

Constraint Propagation

- Constraint propagation goes further than FC by repeatedly (recursively) enforcing constraints for all variables.
 - can detect failure earlier
- Main idea:
 - When you delete a value from a variable's domain, check all variables connected to it.
 - If any of them change, delete all inconsistent values connected to them, etc.
- Arc-consistency (AC) is a systematic procedure for constraint propagation

- An arc X→Y (connection between two variables X, Y in constraint graph) is consistent iff (iff = if and only if)
 - for every value x of X there is some value y of Y that is consistent with x

i.e., there is at least 1 value y of Y that allows (x ,y) to satisfy the constraint between
 X and Y

- AC-3 Algorithm for a binary CSP
 - Push all arcs X → Y on a queue
 - Each undirected constraint graph arc is two directed arcs
 - Undirected X-Y becomes directed $X \rightarrow Y$ and $Y \rightarrow X$
 - $X \rightarrow Y$ and $Y \rightarrow X$ both go on queue, separately
 - Pop one arc X → Y and remove any inconsistent values from X
 - If any change in X, put all arcs Z → X back on queue, where Z is any neighbor of X that is not equal to Y
 - (If X has no legal values, AC detects failure and backtrack!!) during search
 - Continue until queue is empty
- Simplest form of propagation makes each arc consistent

Arc consistency algorithm

```
function AC-3(csp) returns false if an inconsistency is found and true otherwise
  inputs: csp, a binary CSP with components (X, D, C)
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
     (X_i, X_i) \leftarrow \text{REMOVE-FIRST}(queue)
     if REVISE(csp, X_i, X_j) then
       if size of D_i = 0 then return false
       for each X_k in X_i. NEIGHBORS - \{X_i\} do
          add (X_k, X_i) to queue
  return true
function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i
  revised \leftarrow false
  for each x in D_i do
```

if no value y in D_j allows (x,y) to satisfy the constraint between X_i and X_j then delete x from D_i $revised \leftarrow true$

return revised

- X → Y is consistent iff
 - for every value x of X there is some allowed y of Y

Consider the state after $\{WA = red, Q=green\}$ SA \rightarrow NSW?

Consistent: because SA = blue and NSW = red satisfies all constraints on SA and NSW

- X → Y is consistent iff
 - for every value x of X there is some allowed y of Y
- Pop one arc X → Y and remove any inconsistent values from X

Consider state after {WA = red, Q=green}

 $\textbf{NSW} \rightarrow \textbf{SA?}$

Inconsistent because when NSW = blue, SA has no valid value then remove blue from NSW's domain, thus NSW \rightarrow SA is consistent

If X loses a value, neighbors of X need to be rechecked: put V → NSW on queue

- X → Y is consistent iff
 - for every value x of X there is some allowed y of Y
- Pop one arc X → Y and remove any inconsistent values from X
 - If any change in X, put all arcs Z \rightarrow X back on queue, where Z is any neighbor of X that is not equal to Y

Consider state after {WA = red, Q=green}

 $V \rightarrow NSW$?

Inconsistent because when V = red, NSW has no valid value then remove red from V's domain, thus $V \rightarrow NSW$ is consistent

If X loses a value, neighbors of X need to be rechecked: put $SA \rightarrow V$ on queue

- X → Y is consistent iff
 - for every value x of X there is some allowed y of Y
- Pop one arc X → Y and remove any inconsistent values from X
 - If any change in X, put all arcs Z \rightarrow X back on queue, where Z is any neighbor of X that is not equal to Y

Consider state after $\{WA = red, Q=green\}$ SA \rightarrow NT?

Inconsistent because when SA = blue, NT has no valid value then remove blue from SA's domain, and SA has no legal value! Failure! (Backtrack) AC detects failure earlier than FC

Arc consistency checking

- Can be run as a preprocessor, or after each assignment
 - As preprocessor before search: removes obvious inconsistencies
 - After each assignment: reduces search cost but increases step cost
- AC is run repeatedly until no inconsistency remains
 - Like Forward Checking, but exhaustive until quiescence
- Trade-off
 - Requires overhead to do; but usually better than direct search
 - In effect, it can successfully eliminate large (and inconsistent) parts of the state space more effectively than can direct search alone
- Need a systematic method for arc-checking
 - If X loses a value, neighbors of X need to be rechecked:
 - i.e., incoming arcs can become inconsistent again (outgoing arcs stay consistent).

Problem Structure

- Tasmania and mainland are independent subproblems.
- Any solution for the mainland combined with any solution for Tasmania yields a solution for the whole map.
- Independence can be ascertained by finding connected components of the constraint graph.

Summary

- Constraint satisfaction problems
- Backtracking Algorithm
 - Minimum remaining values
 - Degree heuristics
 - Least constraining values
 - Forward checking
 - Constraint propagation
 - Problem structure

What I want you to do

- Review Chapter 6
- Next week (No in-person Sessions)
 - 02/20 Games I in Zoom Meeting (Links in "Course Collaboration Tool" on Canvas)
 - 02/22 Cancelled
 - 02/27 Games II and midterm exam review
 - 02/29-03/01 Midterm Exam
 - Time duration: 3 hours
 - Open-book and open-note
 - Five Problems (100 points)
 - 1) Search problem: BFS, DFS, UCS, Greedy, A*
 - 2) Search Problem
 - 3) Local search- simulated annealing
 - 4) Constraint satisfaction problem
 - 5) Games

