# **Sundance Multiprocessor Technology Limited**

Form : QCF51 Template Date : 9 December 2021

| Unit / Module Description: | PC/104 Form-Factor Carrier for a KRIA SoM |
|----------------------------|-------------------------------------------|
| Unit / Module Number:      | EMC <sup>3</sup>                          |
| Document Issue Number:     | 1.1                                       |
| Original Issue Date:       | May 2022                                  |
| Original Author:           | Steven MATTU                              |

# Product Specification for EMC<sup>3</sup>

PC/104 Form-Factor Carrier for AMD's KRIA SoM

Sundance Multiprocessor Technology Ltd, Chiltern House, Waterside, Chesham, Bucks. HP5 1PS.

This document is the property of Sundance and may not be copied nor communicated to a third party without prior written permission.



© Sundance Multiprocessor Technology Limited 2023

03/01/2023 EMC3 - PC104 Carrier for KRIA

# **Revision History**

| Issue | Changes Made                 | Date     | Initials |
|-------|------------------------------|----------|----------|
| 1.0   | First release.               | 16/05/22 | SM       |
| 1.1   | Update to match last version | 03/01/23 | FC       |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |
|       |                              |          |          |

# **Table of Contents**

| 1 | 1 Introduction                                | 6  |
|---|-----------------------------------------------|----|
| 2 | 2 Related Documents                           | 6  |
| 3 | 3 Acronyms, Abbreviations and Definitions     | 7  |
| 4 | 4 Requirements                                | 8  |
|   | 4.1.1 EMC <sup>3</sup> Board Interfaces       | 8  |
|   | 4.1.2 KRIA SOM Interfaces                     | 9  |
|   | 4.1.3 MIO Banks                               | 11 |
|   | 4.1.4 Environmental                           | 14 |
| В | Board Description                             | 15 |
| 5 | 5 User Configuration and settings             | 15 |
|   | 5.1 Power ON/OFF                              | 15 |
|   | 5.2 Host or Device configuration for PCIe/104 | 16 |
|   | 5.3 Switch Positions                          | 16 |
|   | 5.4 JTAG Boot Mode Configurations             | 16 |
| 6 | 6 Block Diagram                               | 17 |
| 7 | 7 Circuit Description                         | 18 |
|   | 7.1 KRIA K26 System-on-Module                 |    |
|   | 7.1.1 DDR4 RAM                                | 19 |
|   | 7.1.2 Embedded Multimedia Card                | 19 |
|   | 7.1.3 QSPI                                    | 19 |
|   | 7.1.4 Zynq MPSoC Local Clock                  | 19 |
|   | 7.2 Clock Generator                           | 19 |
|   | 7.2.1 Differential Clock Outputs              | 19 |
|   | 7.2.2 Single Ended Clock Outputs              | 20 |
|   | 7.3 EMC <sup>3</sup> Power Supplies           | 20 |
|   | 7.4 Zynq Configuration                        | 22 |
|   | 7.5 External Storage Data                     | 22 |
|   | 7.6 Video Output                              | 22 |
|   | 7.7 USB3 Ports Type-C                         | 23 |
|   | 7.8 Wired network                             | 23 |
|   | 7.9 Wireless network connectivity             | 24 |
|   | 7.10 JTAG / UART                              | 26 |
|   | 7.11 Industrial CAN interface                 | 26 |
|   | 7.12 Raspberry Pi 22-Interfaces               | 26 |
|   | 7.13 IAS Camera Interfaces with ISP           | 28 |
|   |                                               |    |

| 7. | 14 PCIe/104 connectivity via OneBank           | 28 |
|----|------------------------------------------------|----|
| 7. | 15 High density connector                      | 29 |
| 7. | 16 Mini PCIe connector                         | 31 |
| 7. | 17 Audio CODEC                                 | 31 |
|    | 7.17.1Fan Connector (ALT)                      | 32 |
|    | 7.17.2LEDs                                     | 32 |
|    | 7.17.3PCIe                                     | 32 |
|    | 7.17.4USB                                      | 33 |
| 8  | Samtec Razor Beam connector                    | 34 |
| 9  | Board Clocking                                 | 36 |
| 10 | Board Reset                                    | 37 |
| 10 | 0.1 Power-On-Reset                             | 37 |
| 10 | 0.2 KRIA SoM reset pins                        | 37 |
| 11 | Verification, Review and Validation Procedures | 37 |
| 12 | Board parts                                    | 37 |
| 12 | 2.1 EMC <sup>3</sup> Top View                  | 37 |
| 12 | 2.2 EMC <sup>3</sup> Bottom View               | 40 |
| 13 | Current & Voltage Measurement                  | 41 |
| 14 | Physical Properties                            | 42 |
| 15 | Safety                                         | 42 |
| 16 | EMC                                            | 42 |
| 17 | Appendix                                       | 42 |
| 17 | 7.1 Host Logic selection                       | 42 |

| Table 1: EMC <sup>3</sup> Board Interfaces             | 8  |
|--------------------------------------------------------|----|
| Table 2: SOM interfaces                                | 9  |
| Table 3: Configuration switch positions                | 16 |
| Table 4: Boot Mode Configurations                      | 16 |
| Table 5: 100Mhz Differential Clock Outputs             | 19 |
| Table 6: Single Ended Clock Outputs                    | 20 |
| Table 7: SATA drive pinouts                            | 22 |
| Table 8: Video output pinouts                          | 23 |
| Table 9: USB3 pinouts                                  | 23 |
| Table 10: PL Ethernet pinouts                          | 23 |
| Table 11: PS Ethernet pinouts                          | 24 |
| Table 12: WiFi module pinouts                          | 24 |
| Table 13: JTAG / UART pinouts                          | 26 |
| Table 14: CAN BUS connections to SOM                   | 26 |
| Table 15: Raspberry Pi camera connections to SOM       | 26 |
| Table 16: OnSemi ISP connections to SOM                | 28 |
| Table 17: Host Logic for PCIe switching                | 42 |
|                                                        |    |
|                                                        |    |
| Figure 2: EMC³ Block Diagram                           | 17 |
| Figure 3: Block Diagram of the KRIA SOM                |    |
| Figure 4: KRIA K26 SOM                                 | 19 |
| Figure 5: PCI Express Lanes in Host and Device Mode    | 33 |
| Figure 6: USB Lanes in Host and Device mode            | 33 |
| Figure 7: EMC³ Clocking Distribution                   |    |
| Figure 8: EMC <sup>3</sup> PCB Top                     | 38 |
| Figure 9: EMC <sup>3</sup> PCB Bottom                  | 40 |
| Figure 1: Logic to switch PCIe between Host and Device | 43 |

#### 1 Introduction

The EMC³ is a carrier card designed to be populated with AMD's K26 SoM and is PCIe/104 "OneBank" compatible. The EMC³ is both a development platform and deployment solution for embedded AI and Vision applications targeted towards embedded HW & SW developers.

 ${\rm EMC^3}$  can be used as a complete stand-alone solution or be part of a stack of PC/104 boards.

The image processing input available on the EMC<sup>3</sup> includes x4 MIPI camera interfaces with an OnSemi Image Signal Processor per two MIPI cameras. In addition, there are x4 Raspberry Pi camera interfaces and x2 USB camera connectors.

Two 1Gb Ethernet ports provide high-speed connectivity, x1 PCIe Gen3 connections through the "OneBank" connector, x1 PCIe Gen3 available through the Samtec High-Speed connector and PCIe Gen2 connectivity through the mini PCIe connector.

Low-speed connections are available over the CAN interface and the GPIO. Wireless connectivity is available through the on-board WiFi module. Additional peripherals are available via the Mini-PCIe expansion socket, such as LoRaWAN, 5G or ADC/DAC modules.

Extensive data storage options are available through the connection of a SATA drive through the SATA connector on the  $EMC^3$ .

The primary purpose of this document is to aid in the basic understanding of the  $EMC^3$  populated with the K26 SoM.

More details will be provided with the User Guide, BSP, etc. All will be provided on a GitHub of Sundance.

#### 2 Related Documents

Ref #1

EMC<sup>3</sup> compliance matrix:

Compliance Matrix Sundance v1.0 EMC3\_HW Requirement Specification.xlsx

# 3 Acronyms, Abbreviations and Definitions

Analogue to Digital Converter ADC CAN Controller Area Network COTS Commercial Off the Shelf DAC Digital to Analogue Converter

Data Handling DH ECC Error-correcting code Electronic Industries Alliance EIA

EMC<sup>3</sup> Carrier card only

EMC<sup>3</sup>-K26 Carrier card populated with the KRIA K26 SOM

**FPGA** Field Programmable Gate Array

Gigabit Ethernet GigE

Gigabit Transceiver up to 12.5Gb/s GTH GTR Gigabit Transceiver up to 6Gb/s Zynq I/O bank, 1.8Vmax HP HR Zynq I/O bank, 3.3Vmax Inter-Integrated Circuit I2C

Integrated Circuit IC.

International Organization for Standardisation ISO

Image Signal Processor ISP JTAG Joint Test Action Group LVDS Low Voltage Differential Serial MDIO Management Data Input/Output

MEM Memory

MEMS Micro Electro-mechanical Systems Main On-Board Computer MOBC MPSoC Multi-Processor System on Chip

MPU Main Processor Unit NRZ Non-Return to Zero

NVMe Non-volatile memory express Specific PC/104 format standard OneBank Industry Standard Stackable form-factor PC/104

PCB Printed Circuit Board PIU Payload Interface Unit PLProgrammable Logic Processor System PS Radio Frequency Recommended Standard RF

RS

RS Reed Solomon, error-correcting codes

RΖ Return to Zero SATA Serial AT Attachment Shrunk Delta Ribbon SDR

Serial Gigabit Media Independent Interface **SGMII** 

Serial Peripheral Interface SPI

SSD Solid State Drive

STO Storage

SWaP Size, Weight and Power TBD To Be Determined TSN Time Sensitive Networking Transistor-Transistor logic TTL

UART Universal Asynchronous Receiver/Transmitter

uC Microcontroller USB Universal Serial bus

AMD Zynq Ultrascale+ FPGA Zynq

# 4 Requirements

## 4.1.1 EMC<sup>3</sup> Board Interfaces

Table 1: EMC<sup>3</sup> Board Interfaces

| Interface                                   | Description                                                                                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| External Data<br>storage*                   | On board direct connection to external SATA drive. SATA (3.1) Drive connection 1.5, 3.0 and 6.0Gb/s rates supported                            |
| Video Output                                | External display connection via DisplayPort 1.2a (1 lane) resolution up to 1920 x1080 @ 60FPS                                                  |
| USB 3.0                                     | x2 USB3.0 Type-C ports providing USB camera-capable inputs                                                                                     |
| Wired network connectivity                  | 1Gb Ethernet over Harting ix Industrial ethernet connector connected to the PS                                                                 |
|                                             | 1Gb Ethernet over Harting ix Industrial ethernet connector connected to the PL                                                                 |
| Wireless network connectivity               | Microchip WiFi module, 802.11 b/g/n                                                                                                            |
| JTAG / UART                                 | Integrated JTAG and device UART interface via USB2.0. Micro-USB connector                                                                      |
| Industrial Interface                        | ISO 11898-1 CAN 2.0A and CAN2.0B, CANBUS                                                                                                       |
| Raspberry Pi Camera<br>Interfaces           | x4 Raspberry Pi (22 pin at 4 lane MIPI) connector                                                                                              |
| IAS Camera<br>Interfaces with<br>OnSemi ISP | x4 MIPI camera inputs (at 3 lanes MIPI) configured with x2 camera inputs per OnSemi ISP.                                                       |
| PCIe/104<br>connectivity                    | EMC³ is a CPU board with connectivity to one or more peripheral boards. Connectivity is through the "OneBank" connector                        |
| High density connector                      | SAMTEC <u>SS4</u> - 60 pin high density connector with GPIO and x1 PCIe Gen3 interface. Compatible with <u>SE50</u> (PolarFire MiniPCIe Module |
| Mini PCIe                                   | x1 PCI Express (with SMBus), x1 USB 2.0                                                                                                        |
| Form Factor                                 | 90mm x 96mm "SpaceCube" & PCIe/104 "OneBank" compatible                                                                                        |
| Power consumption                           | <20W, depending on KRIA performance                                                                                                            |
| Operating voltage                           | Variable, from 12V                                                                                                                             |
| Total mass                                  | <350g, excluding the KRIA Module and heat-sinks/fans                                                                                           |
|                                             |                                                                                                                                                |

\*high speed switch to select either option

# 4.1.2 KRIA SOM Interfaces

Table 2: SOM interfaces

| Interface                | Physical<br>Location                      | Linked<br>Subsystem | Functional description                                                                                  |  |
|--------------------------|-------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------|--|
| QSPI                     | MIO bank 500<br>MIO[50]                   | PS                  | SOM QSPI memory                                                                                         |  |
| SD0                      | MIO bank 500<br>MIO[1323]                 | PS                  | SOM eMMC memory, MIO[1322] = eMMC,<br>MIO[23] = reset                                                   |  |
| SD1                      | MIO bank 500<br>MIO[3951]                 | PS                  | Micro SD card                                                                                           |  |
| I2C0                     | EMIO                                      | PL                  | OneBank SMB                                                                                             |  |
| I2C1                     | MIO bank 500<br>[MIO 2425]                | PS                  | SOM power management, EEPROM                                                                            |  |
| SPI0                     | EMIO                                      | PL                  | WiFi module                                                                                             |  |
| SPI1                     | MIO bank 500<br>MIO[119],<br>MIO[6]       | PS                  | Isolated SPI interface for TPM 2.0 security module                                                      |  |
| Power management         | MIO bank 501<br>MIO[34:32]                | PS                  | Fixed PMU SOM based power management                                                                    |  |
|                          | MIO bank 501<br>MIO[31].<br>MIO[35]       | PS                  | MIO35_WD_OUT and MIO31_SHUTDOWN:<br>Optional power management control signals for<br>use by CC designer |  |
| MIO User Defined<br>I/O  | MIO bank 501<br>MIO[30:26],<br>MIO[51:38] | PS                  | 19 user-defined multiplexed CPU connected I, pins                                                       |  |
| MIO User Defined<br>I/O  | MIO Bank 502<br>MIO[77:52]                | PS                  | 26 user-defined multiplexed CPU connected I/opins                                                       |  |
| DDR memory<br>controller | MIO bank 504                              | PS                  | SOM DDR4 memory                                                                                         |  |
| HDA                      | HDIO bank 45                              | PS                  | 21 user-defined high-density input/output pins                                                          |  |
| HDB                      | HDIO bank 43                              | PS                  | 24 user-defined high-density input/output pins                                                          |  |
| HDC                      | HDIO bank 44                              | PS                  | 24 user-defined high-density input/output pins                                                          |  |
| HPA                      | HPIO bank 66<br>HPA[0004]                 | PL                  | IAS MIPI interface HPA00_CC = MIPI clock, HPA[0104] = MIPI data                                         |  |
|                          | HPIO bank 66<br>HPA[0509]                 | PL                  | IAS MIPI interface HPA05_CC = MIPI clock, HPA[0609] = MIPI data                                         |  |
| НРВ                      | HPIO bank 64<br>HPC[0004]                 | PL                  | Raspberry PI camera interface HPC00_CC = clock, HPC[0104] = data                                        |  |
|                          | HPIO bank 64<br>HPC[0509]                 | PL                  | Raspberry PI camera interface HPC05_CC clock, HPC[0609] = data                                          |  |

|                     | HPIO bank 64 | PL | Raspberry PI camera interface HPC10_CC = clock, HPC[1114] = data     |
|---------------------|--------------|----|----------------------------------------------------------------------|
|                     | HPC[1014]    |    | CIOCK, 111 C[1114] = Udid                                            |
|                     | HPIO bank 64 | PL | Raspberry PI camera interface HPC15_CC =                             |
|                     | HPC[1519]    |    | clock, HPC[1419] = data                                              |
| HPC                 | HPIO bank 65 | PL | 21 user-defined high-performance input/output differential pin pairs |
| PS-GTR transceivers | PS GTR 505   | PS | MINI PCIe 1 lane                                                     |
|                     | GTR_0        |    |                                                                      |
| PS-GTR transceiver  | PS GTR 505   | PS | USB 3.0                                                              |
|                     | GTR_1        |    |                                                                      |
| PS-GTR transceiver  | PS GTR 505   | PS | SATA                                                                 |
|                     | GTR_2        |    |                                                                      |
| PS-GTR transceiver  | PS GTR 505   | PS | DisplayPort                                                          |
|                     | GTR_3        |    |                                                                      |
| GTH transceiver     | GTH QUAD     | PL | Samtec 60 pin connector                                              |
|                     | GTH_0        |    |                                                                      |
| GTH transceiver     | GTH QUAD     | PL | PCIe/104 OneBank Top connector in Device                             |
|                     | GTH_1        |    | mode.                                                                |
| GTH transceiver     | GTH QUAD     | PL | PCIe/104 OneBank bottom connector in Device                          |
|                     | GTH_2        |    | mode.                                                                |
| GTH transceiver     | GTH QUAD     | PL | PCIe/104 OneBank selectable between Top and                          |
|                     | GTH_3        |    | Bottom connector in Host mode.                                       |

# **Sundance Multiprocessor Technology Limited**

Form: QCF51 Template Date: 9 December 2021

## 4.1.3 MIO Banks

Pin location is fixed on Xilinx SOM

Pin location is defined on EMC3 carrier Board

Pin location is available to user

| Bank Number | Interface Type | MIO<br>number | Pin label   |
|-------------|----------------|---------------|-------------|
|             |                | 0             | sclk_out    |
|             |                | 1             | miso_mo1    |
|             | QSPI           | 2             | mo2         |
|             |                | 3             | mo3         |
|             |                | 4             | mosi_mi0    |
|             |                | 5             | n_ss_out    |
|             | SPI1           | 6             | sclk_out    |
|             |                | 7             | LED_DS35    |
|             | GPIO           | 8             | LED_DS36    |
|             |                | 9             | n_ss_out    |
|             | SPI1           | 10            | miso        |
|             |                | 11            | mosi        |
|             | GPIO           | 12            | FW_UEn      |
| 500         | eMMC (SD0)     | 13            | data[0]     |
|             |                | 14            | data[1]     |
|             |                | 15            | data[2]     |
|             |                | 16            | data[3]     |
|             |                | 17            | data[4]     |
|             |                | 18            | data[5]     |
|             |                | 19            | data[6]     |
|             |                | 20            | data[7]     |
|             |                | 21            | cmd_out     |
|             |                | 22            | clk_out     |
|             | GPIO           | 23            | eMMC_Rst    |
|             | I2C1           | 24            | scl         |
|             |                | 25            | sda         |
|             | mPCIE          | 26            | MPCIE_WAKEN |

|     |                       | 27 | dp_aux_data_out    |
|-----|-----------------------|----|--------------------|
|     | Display port          | 28 | dp_hot_plug_detect |
|     |                       | 29 | dp_aux_data        |
|     |                       | 30 | dp_aux_data_in     |
|     | PMU_GPI1              | 31 | SHUTDOWN           |
|     | PMU_GPO2              | 32 | FPD_Pwr_En         |
|     | PMU_GPO2 33 PL_Pwr_EN |    | PL_Pwr_EN          |
| 501 | PMU_GPO2              | 34 | PS_Pwr_En          |
|     | PMU_GPO1              | 35 | WD_OUT             |
|     | UART1                 | 36 | txd                |
|     |                       | 37 | rxd                |
|     | WIFI                  | 38 | EN_WIFI            |
|     |                       | 39 | sdio1_data_out[4]  |
|     |                       | 40 | sdio1_data_out[5]  |
|     |                       | 41 | sdio1_data_out[6]  |
|     |                       | 42 |                    |
|     |                       | 43 | SD_RESET_B         |
|     | SD1                   | 44 |                    |
|     |                       | 45 |                    |
|     |                       | 46 | sdio1_data_out[0]  |
|     |                       | 47 | sdio1_data_out[1]  |
|     |                       | 48 | sdio1_data_out[2]  |
|     |                       | 49 | sdio1_data_out[3]  |
|     |                       | 50 | sdio1_cmd_out      |
|     |                       | 51 | sdio1clk_out       |
|     |                       | 52 | ulpi_clk_in        |
|     |                       | 53 | ulpi_dir           |
|     |                       | 54 | ulpi_tx_data[2]    |
|     |                       | 55 | ulpi_nxt           |
|     |                       | 56 | ulpi_tx_data[0]    |
|     | USB0                  | 57 | ulpi_tx_data[1]    |
| 502 |                       | 58 | ulpi_stp           |
|     |                       | 59 | ulpi_tx_data[3]    |
|     |                       | 60 | ulpi_tx_data[4]    |
|     |                       | 61 | ulpi_tx_data[5]    |
|     |                       |    |                    |

|             | 62 | ulpi_tx_data[6] |
|-------------|----|-----------------|
|             | 63 | ulpi_tx_data[7] |
|             | 64 | SMB_ALERT       |
| SMB         | 65 | SMB_CLK         |
|             | 66 | SMB_DATA        |
|             | 67 |                 |
|             | 68 |                 |
|             | 69 |                 |
|             | 70 |                 |
|             | 71 |                 |
|             | 72 |                 |
| mPCIe       | 73 | MPCIE_RST_B     |
| ETHERNET PS | 74 | PS_ETH_RESET_B  |
| USB         | 75 | USB_HUB_RESET_B |
|             | 76 | USB_PHY_RESET_B |
| CAN0        | 77 | mioclk          |

# Sundance Multiprocessor Technology Limited

Form: QCF51 Template Date: 9 December 2021

Last Edited: 04/01/2023 22:50:00

## 4.1.4 Environmental

| Operating temperature     | -40 to +80°C                                                                                              |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------|--|
| Survivable temperature    | -45 to +80 °C                                                                                             |  |
| Sinusoidal Vibration Low  | 5-100Hz @ 2.5g                                                                                            |  |
| Sinusoidal Vibration High | 100-140 Hz @ 1.25g                                                                                        |  |
| Vibration                 | 8.03g RMS Vibration                                                                                       |  |
| Shock Test                | [30Hz@5g],[100Hz@100g],[700Hz@1500g],[1000Hz@2400g],[1500Hz@4000g],[5000Hz@4000g],[100<br>00Hz@2000g] TBC |  |
| Heated Vacuum Test        | Pressurised to 1e-05 mbar, -→ 3.5e-03 mbar and heated to 60C for thermal hotspot verification TBC         |  |

## **Board Description**

The EMC<sup>3</sup> carrier when populated with the KRIA SOM provides a completed embedded system targeted towards robotics and vison processing. The EMC<sup>3</sup> carrier card allows up to eight cameras connected via MIPI interfaces in addition to two USB3.0 Type-C camera inputs. These consist of x4 IAS camera interfaces which incorporate an OnSemi image processor per two inputs and x4 Raspberry Pi (22 pin) camera inputs.

The Zynq Ultracscale+ MPSoC provides AI Inference at lower power with low latency, vision processing applications can be implemented within the FPGA fabric or within the processor.

The EMC³ is equipped with high-speed connectivity allowing fast transfer of raw data or the results of AI inference and vision processing. The  $\frac{\text{SE50}}{\text{SE50}}$  interface incorporates a 60pin Samtec connector capable of PCIe Gen3 data transfers. The EMC³ carrier complies with PCIe/104 standards allowing interfacing to peripheral boards through the OneBank connector either Top mounting or bottom mounting utilising the x1 PCIe Gen3 lanes. Two wired ethernet connection at 1 Gb also facilitate in data transfer, with one connection to the PS and the other to the PL. The ethernet connection to the PL enables industrial ethernet control such Real-Time networking interfaces and Time Sensitive Networking (TSN).

Large data storage is available by using an external SSD via an onboard SATA connector.

Wireless connectivity is supplied via a 802.11 b/g/n WiFi module.

The mini PCIe connector allows the connection of additional peripheral cards.

The EMC<sup>3</sup> is defined a PCIe/104 processor which can sit at either the Top or Bottom of the stack. When the EMC<sup>3</sup> is configured as a HOST power is applied via the DC input with a range between 8.5V and 36V. Connections to peripheral boards are achieved through the OneBank connection either stacking up or down.

The EMC<sup>3</sup> can also function as a peripheral board which requires external powering.

# 5 User Configuration and settings

#### 5.1 Power ON/OFF

The EMC³ can be configured to either start-up automatically when power is applied to the DC input or to start-up when a momentary contact switch is activated.

By selecting the Slide Switch position 1 to the ON position the EMC3 will always startup when power is applied. When switch 1 is in the OFF position a momentary contact is required between the pins on J23. A short contact will power up the KRIA SOM, a longer contact of around 3 seconds will power down the KRIA SOM.

#### 5.2 Host or Device configuration for PCIe/104

The EMC³ can be configured to function as either a Host or Device card while complying with PCIe/104 specification.

The ability to select between a Host or Device is accomplished by the setting switch 1 to either ON or OFF.

When the EMC³ is operating in Host mode power is required on the DC input, this power all regulators for the EMC³ and also supplies power the OneBank connections. While operating in master mode the EMC³ can either be placed at the top or bottom of the stack. Switch position 6 specifies if the EMC³ is configured at the Top or Bottom of the stack.

When the EMC3 is selected as a Device power is not supplied through the DC input, power is taken from the OneBank connectors and used to power the regulators for the EMC3. The EMC³ will select the correct lanes for when stacking either above or below by utilising the Direction pin.

#### 5.3 Switch Positions

Table 3: Configuration switch positions

| Switch<br>Number | Function when ON                     | Function when OFF                      |
|------------------|--------------------------------------|----------------------------------------|
| 1                | Auto Power-On enabled                | Auto Power-On disabled                 |
| 2                | EMC <sup>3</sup> functions as a HOST | EMC <sup>3</sup> functions as a DEVICE |
| 3                | MODE 1 Enable <sup>1</sup>           | MODE 1 Disable <sup>1</sup>            |
| 4                | MODE 2 Enable <sup>1</sup>           | MODE 2 Enable <sup>1</sup>             |
| 5                | MODE 3 Enable <sup>1</sup>           | MODE 3 Enable <sup>1</sup>             |
| 6                | Host configured for TOP stack        | Host configured for BOTTOM stack       |

<sup>&</sup>lt;sup>1</sup> See JTAG Boot Mode Configuration for switch positions

## 5.4 JTAG Boot Mode Configurations

Table 4: Boot Mode Configurations

| Boot Mode     | MODE 1 | MODE 2 | MODE 3 |
|---------------|--------|--------|--------|
| JTAG          | 0      | 0      | 0      |
| QSPI (32 bit) | 0      | 0      | 1      |
| eMMC          | 0      | 1      | 1      |
| SD Card       | 1      | 1      | 1      |

# 6 Block Diagram



Figure 1: EMC<sup>3</sup> Block Diagram

**Commented [A1]:** GTH\_0 is going to Samtec and OneBank

Do we not have a GTH to Top and Bottom?

I think we have 'lost' a GTH, so can you find room for a Samtec FireFly? <u>Micro Flyover On-Board Optical Engine, FireFly<sup>TM</sup></u>

Commented [A2R1]: The onebank now uses x2 GTH lines with PCIe switches. The remaining GTH can

Commented [A3R1]: [Mention was removed] - Add a second red box for a OneBank Connector for bottom

support the Firefly connection

# 7 Circuit Description

When the EMC  $^{\!\!\!3}$  carrier card is populated with the KRIA K26 SOM the system is referred to the EMC  $^{\!\!\!\!3}$  -K26.

The KRIA K26 SOM utilises the Zynq Ultrascale+ MPSoC which contains memory and an integrated power solution. High speed interfaces to the Zynq Ultrascale+ MPSoC are available through the carrier card.

The following interface descriptions are available on the EMC<sup>3</sup>-K26.

#### 7.1 KRIA K26 System-on-Module



Figure 2: Block Diagram of the KRIA SOM



Figure 3: KRIA K26 SOM

#### 7.1.1 DDR4 RAM

The Zynq PS is directly connected to DDR4 RAM. The capacity of each memory is 4GB and organised as 64-bit non-ECC.

#### 7.1.2 Embedded Multimedia Card

Populated on the K26 SOM is a 16GB eMMC which provides sufficient storage for applications running on the MPSoC.

#### 7.1.3 QSPI

The SOM contains a 512Mb QSPI devices which will run the fist stage bootloader, this insures fast configuration of the MPSoC and peripherals prior to the second stage bootloader provided by either the eMMC or SD Card.

#### 7.1.4 Zynq MPSoC Local Clock

A  $33.33~\mathrm{MHz}$  oscillator is provided as a PS reference clock, this is a fixed frequency part.

#### 7.2 Clock Generator

The Texas Instruments SN65LVDS108DBTR clock generator can provide up to 8 clocks at 100 MHz differential. The clocks are used the EMC<sup>3</sup> in the following configuration.

#### 7.2.1 Differential Clock Outputs

Table 5: 100Mhz Differential Clock Outputs

| Clock Output | Speed  | Connection                |
|--------------|--------|---------------------------|
| AY / AZ      | 100MHz | Mini PCIe clock           |
| BY / BZ      | 100MHz | OneBank Top PCIe clock    |
| CY / CZ      | 100MHz | OneBank Bottom PCIe clock |
| DY / DZ      | 100MHz | GTH1 reference clock      |
| EY / EZ      | 100MHz | GTH2 reference clock      |
| FY / FZ      | 100MHz | GTR0 reference clock      |
| GY / GZ      |        |                           |
| HY / HZ      |        |                           |

#### 7.2.2 Single Ended Clock Outputs

Table 6: Single Ended Clock Outputs

| Clock Output | Speed  | Connection             |
|--------------|--------|------------------------|
| CLK0         | 24MHz  | Clock for OnSemi ISP 1 |
| CLK1         | 24MHz  | Clock for OnSemi ISP 2 |
| CLK2         | 25MHz  | PS ethernet PHY clock  |
| CLK3         | 25MHz  | PS ethernet PHY clock  |
| CLK4         | 25MHz  | USB HUB clock          |
| CLK5         | 24MHz  |                        |
| CLK6         | 100MHz |                        |
| CLK7         | 24MHz  | USB PHY clock          |

#### 7.3 EMC<sup>3</sup> Power Supplies

The EMC<sup>3</sup> is fitted with a 2.5mm DC jack connector with an input voltage range of 8.5V to 36V. The EMC<sup>3</sup> input voltage rail in equipped with a voltage controller protecting against a variety of system faults such as reverse current, reverse voltage, overcurrent, overvoltage/undervoltage and overtemperature conditions.

A switching-step-down regulator supplies the KRIA SOM with a 5V supply ( $V_{\text{CC\_SOM}}$ ), once the 5V regulator is within the specified range a power-good is asserted and POWER\_OFF\_C2M\_L signal is deserted.

The EMC³ provides voltage rails for the PS and PL with power good indication for each. After the KRIA SOM onboard power sequencing is complete the  $V_{\text{CCOEN\_PS\_M2C}}$  and  $V_{\text{CCOEN\_PL\_M2C}}$  signal are enabled by the SOM. The PS is supplied with 1.2V, 1.8V and 3.3V.

| e PL is supplied with 1.2V,1.8V<br>pplied with 1.0V and 2.5V. | , 3.3V and 2.75V. T | he Gigabit Ethernet PH | Y device is |
|---------------------------------------------------------------|---------------------|------------------------|-------------|

#### 7.4 Zynq Configuration

The KRIA SoM utilise both a primary and secondary boot device, this allows the isolation from the platform specific boot firmware and the application development. The primary boot device is the QSPI memory located on the KRIA SOM while the secondary boot device can be either the eMMC memory located on the KRIA SOM or the SD card located on the EMC<sup>3</sup>.

The primary boot device (QSPI) contains all necessary the elements packaged in a specific file format and file captured as BOOT.BIN, these elements are:

- FSBL: First-stage boot loader
- PMU: Platform management unit firmware
- ATF: Arm\* trusted firmware
- U-boot: Second-stage boot loader

U-boot provides the functionality for the handoff between the first and second stage bootloader. U-boot will scan both the eMMC and SD card for second stage boot, if both are present the option to select either is presented to the user.

The second stage boot device contains the operating system and associated files which can written to either the eMMC or SD card.

The EMC³ provides different boot configurations set by switches on the board, the configurations are listed below.

#### 7.5 External Storage Data

The EMC<sup>3</sup> has the option of connecting a SATA drive.

Table 7: SATA drive pinouts

| KRIA SOM PIN  | SATA Drive / M.2 Signals |
|---------------|--------------------------|
| GTR_DP2_M2C_P | A+ (Transmit +)          |
| GTR_DP2_M2C_N | A- (Transmit -)          |
| GTR_DP2_C2M_P | B+ (Receive +)           |
| GTR_DP2_C2M_N | B- (Receive -)           |

#### 7.6 Video Output

Video output is available on the EMC³ though an onboard DisplayPort interface. The DisplayPort utilises a single GTR transceiver TX lines which provides resolution up to  $1920 \times 1080$  at 60FPS.

Table 8: Video output pinouts

| KRIA SOM PIN  | Display data signals |
|---------------|----------------------|
| GTR_DP3_M2C_P | ML_Lane 0 (p)        |
| GTR_DP3_M2C_N | ML_Lane 0 (n)        |

#### 7.7 USB3 Ports Type-C

There are two USB ports provided on the  $EMC^3$  connected through a USB hub to one GTR transceiver pair. These USB3 ports allow the connection of USB3 devices to the KRIA SOM.

Table 9: USB3 pinouts

| KRIA SOM PIN  | SATA Drive / M.2 Signals |
|---------------|--------------------------|
| GTR_DP1_C2M_P | USB3UP_TXDM              |
| GTR_DP1_C2M_N | USB3UP_TXDP              |
| GTR_DP1_M2C_P | USB3UP_RXDM              |
| GTR_DP1_M2C_N | USB3UP_RXDP              |

## 7.8 Wired network

Wired network connectivity of 1Gb is provided through a HPC pins on the KRIA SOM for the PL and MIO pins for the PS.

Table 10: PL Ethernet pinouts

| KRIA SOM PIN | PL Ethernet PHY |
|--------------|-----------------|
| HPC00_CCN    | TX_EN/TX_CTL    |
| HPC06P_CLK   | GTX_CLK         |
| HPC01P       | TXD0            |
| HPC01N       | TXD1            |
| HPC02P       | TXD2            |
| HPC02N       | TXD3            |
| HPC03P       | MDC             |
| HPC03N       | MIO             |
| HPC06N       | RXD0            |
| HPC07P       | RXD1            |
| HPC07N       | RXD2            |

Commented [A4]: It's not 'only' "Camera Input"

**Commented [A5R4]:** Yes, it is standard USB3.0 inputs

**Commented [A6R4]:** [Mention was removed] - and my point was that could be used for everything "USB3" - and Output as well. Yes?

Commented [A7R4]: Ill check if USB3 can output, could use the same connector cables used by smartphones "USB-C -> HDMI"

| HPC08P        | RXD3         |  |
|---------------|--------------|--|
| HPC09P_CLK    | RX_DV/RX_CTL |  |
| HPC08N RX_CLK |              |  |

Table 11: PS Ethernet pinouts

| KRIA SOM PIN | PS Ethernet PHY |  |
|--------------|-----------------|--|
| MIO69        | TX_EN/TX_CTL    |  |
| MIO64        | GTX_CLK         |  |
| MIO65        | TXD0            |  |
| MIO66        | TXD1            |  |
| MIO67        | TXD2            |  |
| MIO68        | TXD3            |  |
| MIO76        | MDC             |  |
| MIO77        | MIO             |  |
| MIO71        | RXD0            |  |
| MIO72        | RXD1            |  |
| MIO73        | RXD2            |  |
| MIO74        | RXD3            |  |
| MIO75        | RX_DV/RX_CTL    |  |
| MIO70        | RX_CLK          |  |

# 7.9 Wireless network connectivity

The EMC³ is capable of connecting to a wireless network by the incorporation of a WiFi module.

Table 12: WiFi module pinouts

| KRIA SOM<br>PIN | Module Pin<br>number | Module signal name |
|-----------------|----------------------|--------------------|
| NC              | 1                    | GPIO_6             |
| NC              | 2                    | I2C_SCL            |
| NC              | 3                    | I2C_SDA            |
| HDA04           | 4                    | RESET_N            |
| HDB03           | 11                   | WAKE               |
| HDB04           | 13                   | IRQN               |
| NC              | 14                   | UART_TXD           |

| HDA19 | 15 | SPI_MOSI |
|-------|----|----------|
| HDA20 | 16 | SPI_SSN  |
| HDB02 | 17 | SPI_MISO |
| HDB01 | 18 | SPI_SCK  |
| NC    | 19 | UART_RXD |
| NC    | 21 | GPIO_1   |
| HDA18 | 22 | CHIP_EN  |
| NC    | 25 | GPIO_3   |
| NC    | 26 | GPIO_4   |
| NC    | 27 | GPIO_5   |
|       |    |          |

#### 7.10 JTAG / UART

A micro-USB connection to the EMC3 allows the UART serial communication to the KRIA SOM and JTAG programming/debugging.

Table 13: JTAG / UART pinouts

| KRIA SOM PIN | JTAG<br>Signal | JTAG<br>connector<br>pin | Description      |
|--------------|----------------|--------------------------|------------------|
| JTAG_TMS_C2M | TMS            | 4                        | Test Mode Select |
| JTAG_TCK_C2M | TCK            | 2                        | Test Clock       |
| JTAG_TDO_M2C | TDO            | 3                        | Test Data Out    |
| JTAG_TDI_C2M | TDI            | 4                        | Test Data In     |

#### 7.11 Industrial CAN interface

CAN-BUS connectivity is provided on the EMC<sup>3</sup> via a two-pin screw terminal connector.

Table 14: CAN BUS connections to SOM

| KRIA SOM PIN | CAN connections |
|--------------|-----------------|
| HDA01        | PHY_RX          |
| HDA02        | PHY_TX          |

#### 7.12 Raspberry Pi 22-Interfaces

Up to four Raspberry Pi cameras can be connected to the EMC<sup>3</sup> via the RPi camera 22pin connector, Molex 0.5mm FFC/FPC. Each connector supports 4 MIPI lanes connecting directly to the Zynq Ultrascale+ MPSoC HPB bank. The alternative use of connectors will be as GPIO from the Zynq.

Table 15: Raspberry Pi camera connections to SOM

| KRIA SOM<br>PIN | Rpi camera connections | Description                                    |
|-----------------|------------------------|------------------------------------------------|
| HPB00_CC_P      | CAMO_CK_P              | Cam 0 Pixel Clock Output Form Sensor Positive  |
| HPB00_CC_N      | CAM0_CK_N              | Cam 0 Pixel Clock Output Form Sensor Negaitive |
| HPB01_P         | CAM0_D0_P              | Cam 0 Pixel Data Lane0 Positive                |
| HPB01_N         | CAM0_D0_N              | Cam 0 Pixel Data Lane0 Negative                |
| HPB02_P         | CAM0_D1_P              | Cam 0 Pixel Data Lane1 Positive                |
| HPB02_N         | CAM0_D1_N              | Cam 0 Pixel Data Lane1 Negative                |

|            | 1         |                                                |
|------------|-----------|------------------------------------------------|
| HPB03_P    | CAM0_D2_P | Cam 0 Pixel Data Lane2 Positive                |
| HPB03_N    | CAM0_D2_N | Cam 0 Pixel Data Lane2 Negative                |
| HPBO4_P    | CAM0_D3_P | Cam 0 Pixel Data Lane3 Positive                |
| HPBO4_N    | CAM0_D4_N | Cam 0 Pixel Data Lane3 Negative                |
| HPB05_CC_P | CAM1_CK_P | Cam 1 Pixel Clock Output Form Sensor Positive  |
| HPB05_CC_P | CAM1_CK_N | Cam 1 Pixel Clock Output Form Sensor Negaitive |
| HPB06_P    | CAM1_D0_P | Cam 1 Pixel Data Lane0 Positive                |
| HPB06_N    | CAM1_D0_N | Cam 1 Pixel Data Lane0 Negative                |
| HPB07_P    | CAM1_D1_P | Cam 1 Pixel Data Lane1 Positive                |
| HPB07_N    | CAM1_D1_N | Cam 1 Pixel Data Lane1 Negative                |
| HPB08_P    | CAM1_D2_P | Cam 1 Pixel Data Lane2 Positive                |
| HPB08_N    | CAM1_D2_N | Cam 1 Pixel Data Lane2 Negative                |
| HPB09_P    | CAM1_D3_P | Cam 1 Pixel Data Lane3 Positive                |
| HPB09_N    | CAM1_D3_N | Cam 1 Pixel Data Lane3 Negative                |
| HPB10_CC_P | CAM2_CK_P | Cam 2 Pixel Clock Output Form Sensor Positive  |
| HPB10_CC_P | CAM2_CK_N | Cam 2 Pixel Clock Output Form Sensor Negaitive |
| HPB11_P    | CAM2_D0_P | Cam 2 Pixel Data Lane0 Positive                |
| HPB11_N    | CAM2_D0_N | Cam 2 Pixel Data Lane0 Negative                |
| HPB12_P    | CAM2_D1_P | Cam 2 Pixel Data Lane1 Positive                |
| HPB12_N    | CAM2_D1_N | Cam 2 Pixel Data Lane1 Negative                |
| HPB13_P    | CAM2_D2_P | Cam 2 Pixel Data Lane2 Positive                |
| HPB13_P    | CAM2_D2_N | Cam 2 Pixel Data Lane2 Negative                |
| HPB14_P    | CAM2_D3_P | Cam 2 Pixel Data Lane3 Positive                |
| HPB14_P    | CAM2_D3_N | Cam 2 Pixel Data Lane3 Negative                |
| HPB15_CC_P | CAM3_CK_P | Cam 3 Pixel Clock Output Form Sensor Positive  |
| HPB15_CC_P | CAM3_CK_N | Cam 3 Pixel Clock Output Form Sensor Negaitive |
| HPB16_P    | CAM3_D0_P | Cam 3 Pixel Data Lane0 Positive                |
| HPB16_N    | CAM3_D0_N | Cam 3 Pixel Data Lane0 Negative                |
| HPB17_P    | CAM3_D1_P | Cam 3 Pixel Data Lane1 Positive                |
| HPB18_N    | CAM3_D1_N | Cam 3 Pixel Data Lane1 Negative                |
| HPB19_P    | CAM3_D2_P | Cam 3 Pixel Data Lane2 Positive                |
| HPB19_P    | CAM3_D2_N | Cam 3 Pixel Data Lane2 Negative                |
| HPB14_P    | CAM3_D3_P | Cam 3 Pixel Data Lane3 Positive                |
| HPB14_P    | CAM2_D3_N | Cam 2 Pixel Data Lane3 Negative                |
|            |           |                                                |

#### 7.13 IAS Camera Interfaces with ISP

The EMC<sup>3</sup> provides two OnSemi ISPs each requiring 4-lane MIPI connections.

Table 16: OnSemi ISP connections to SOM

| KRIA SOM<br>PIN | IAS camera connections | Description    |
|-----------------|------------------------|----------------|
| HPA00_CC_P      | ISP0_CLK_DP            | Clock positive |
| HPA00_CC_N      | ISP0_CLK_DN            | Clock negative |
| HPA01_P         | ISP0_D0_DP             |                |
| HPA01_N         | ISP0_D0_DN             |                |
| HPA02_P         | ISP0_D1_DP             |                |
| HPA02_N         | ISP0_D1_DN             |                |
| HPA03_P         | ISP0_D2_DP             |                |
| HPA03_N         | ISP0_D2_DN             |                |
| HPA04_P         | ISP0_D3_DP             |                |
| HPA04_N         | ISP0_D4_DN             |                |
| HPA05_CC_P      | ISP1_CLK_DP            | Clock positive |
| HPA05_CC_P      | ISP1_CLK_DN            | Clock negative |
| HPA06_P         | ISP1_D0_DP             |                |
| HPA06_N         | ISP1_D0_DN             |                |
| HPA07_P         | ISP1_D1_DP             |                |
| HPA07_N         | ISP1_D1_DN             |                |
| HPA08_P         | IAS1_D2_DP             |                |
| HPA08_P         | ISP1_D2_DN             |                |
| HPA09_P         | ISP1_D3_DP             |                |
| HPA09_P         | ISP1_D4_DN             |                |

## 7.14 PCIe/104 connectivity via OneBank

The EMC3 is capable of configuration as either a CPU or peripheral board with connections available to other PCIe/104 boards. Connectivity is provided through the industry standard OneBank connector, which is equipped with an x1 Gen3 PCIe connection and USB2.0 connections to both the top and bottom OneBank connector, along with SMB, ATX control and power.

#### Top connections

|  | KRIA SoM PIN | OneBank | Pin Description | OneBank<br>PIn |  |
|--|--------------|---------|-----------------|----------------|--|
|--|--------------|---------|-----------------|----------------|--|

|               | USB_OC     | USB over-current              | 1  |
|---------------|------------|-------------------------------|----|
|               | USB_0p     | USB 2.0 connection            | 6  |
|               | USB_0n     | USB 2.0 connection            | 8  |
| GTH_DP1_C2M_P | PEx1_0Tp   | PCIe Transmitt positive       | 12 |
| GTH_DP1_C2M_N | PEx1_0Tn   | PCIe Transmitt negative       | 14 |
| GTH_DP1_M2C_P | PEx1_ORp   | PCIe Receive positive         | 24 |
| GTH_DP1_M2C_N | PEx1_ORn   | PCIe Receive negative         | 26 |
|               | PEx1_0Clkp | PCIe clock postive            | 36 |
|               | PEx1_0Clkn | PCIe clock neagtive           | 38 |
| GPIO66        | SMB_DAT    | System Management Bus - Data  | 47 |
| GPIO65        | SMB_CLK    | System Management Bus - Clock | 49 |
| GPIO64        | SMB_ALERT  | System Management Bus - Alert | 51 |

#### **Bottom connections**

| KRIA SoM PIN  | OneBank    | Pin Description               | OneBank<br>PIn |
|---------------|------------|-------------------------------|----------------|
|               | USB_OC     | USB over-current              | 1              |
|               | USB_0p     | USB 2.0 connection            | 6              |
|               | USB_0n     | USB 2.0 connection            | 8              |
| GTH_DP2_C2M_P | PEx1_0Tp   | PCIe Transmitt positive       | 12             |
| GTH_DP2_C2M_N | PEx1_0Tn   | PCIe Transmitt negative       | 14             |
| GTH_DP2_M2C_P | PEx1_ORp   | PCIe Receive positive         | 24             |
| GTH_DP2_M2C_N | PEx1_ORn   | PCIe Receive negative         | 26             |
|               | PEx1_0Clkp | PCIe clock postive            | 36             |
|               | PEx1_0Clkn | PCIe clock neagtive           | 38             |
| GPIO66        | SMB_DAT    | System Management Bus - Data  | 47             |
| GPIO65        | SMB_CLK    | System Management Bus - Clock | 49             |
| GPIO64        | SMB_ALERT  | System Management Bus - Alert | 51             |

## 7.15 High density connector

A Samtec 60 pin high density connector allows a connectivity to a pair of Ultrascale+GTH transceivers (16.3Gb/s) and GPIOs.

| KRIA SoM PIN | Samtec 60-Pin<br>extension | Description |
|--------------|----------------------------|-------------|
|              | extension                  |             |
|              | connector                  |             |

**Commented [A8]:** Want to add all the GND?

|                   | Г  |                 |
|-------------------|----|-----------------|
| GPIO67            | 7  | GPIO0           |
| GPIO68            | 9  | GPIO1           |
| GPIO69            | 11 | GPIO2           |
| GPIO70            | 13 | GPIO3           |
| GPIO71            | 15 | GPIO4           |
| GPIO72            | 17 | GPIO5           |
| GPIO73            | 23 | GPIO6           |
| GPIO74            | 25 | GPIO7           |
| HPA04_P           | 27 | GCLK+/ GPIO8    |
| HPA04_N           | 29 | GCLK-/ GPIO9    |
| GTH_DP0_M2C_P     | 12 | PCIe_TX+        |
| GTH_DP0_M2C_N     | 14 | PCIe_TX-        |
| GTH_DP0_C2M_P     | 18 | PCIe_RX+        |
| GTH_DP0_C2M_N     | 20 | PCIe_RX-        |
| GTH_REFCLK0_C2M_P | 36 | PCIe_REF_CLK+   |
| GTH_REFCLK0_C2M_N | 38 | PCIe_ REF_CLK - |
|                   |    |                 |

# 7.16 Mini PCIe connector

A PCIe edge connector on the carrier allows the connection mPCIe cards

| KRIA SoM PIN      | mPCIe pins | Description   |
|-------------------|------------|---------------|
| GPIO67            | 1          | mPCIe_WAKE    |
| GPIO68            | 7          | mPCIe_CLKREF  |
| GTR_REFCLK0_C2M_N | 11         | mPCIe_CLK-    |
| GTR_REFCLK0_C2M_P | 13         | mPCIe_CLK+    |
| GTR_DP0_C2M_N     | 23         | mPCIe_RX-     |
| GTR_DP0_C2M_P     | 25         | mPCIe_RX+     |
| GTR_DP0_M2C_N     | 31         | mPCIe_TX-     |
| GTR_DP0_M2C_P     | 33         | mPCIe_TX+     |
| GPIO73            | 23         | mPCIe_WDIS    |
| GPIO74            | 25         | mPCIe_RST     |
| HPA04_P           | 30         | mPCIe_SMB_CLK |
| HPA04_N           | 32         | mPCIe_SMB_DAT |

# 7.17 Audio CODEC

Xilinx Audio IP core provides input and output audio.

| KRIA SoM PIN | CODEC Pin | Description   |
|--------------|-----------|---------------|
| HDA05        | 29        | AUD_LRCLK     |
| HDA06        | 26        | AUD_ADC_SDATA |
| HDA07        | 27        | AUD_DAC_SDATA |
| HDA08_CC     | 28        | AUD_BCLK      |
| HDA00_CC     | 2         | AUD_MCLK      |

**Commented [A9]:** Surely this is a mistake? - Duplicated?

Commented [A10R9]: Corrected

#### 7.17.1 Fan Connector (ALT)

12V Fan Connector.

The fan is enabled by driving Zynq pin Y13 high. This connects to a DMG3406 N-channel MOSFET gate in a low-side configuration.

| KRIA SoM<br>PIN | Name               | Description            |
|-----------------|--------------------|------------------------|
| HDA20           | Fan Control<br>Pin | Active high enable pin |

#### 7.17.2 LEDs

Three green LEDs are connected to MIO pins 75-77.

They have a forward voltage of 1.9V and are driven from the 2.5V supply via a 120R resistor (giving a forward current of 5mA).

They can be disabled in the FPGA or alternatively not populated.

| KRIA SOM<br>PIN | Name             | Description            |
|-----------------|------------------|------------------------|
| GPIO75          | LED 0 Enable Pin | Active high enable LED |
| GPIO76          | LED 1 Enable Pin | Active high enable LED |
| GPIO77          | LED 2 Enable Pin | Active high enable LED |

#### 7.17.3 PCIe

The EMC³ board can operate in both Host and Device board modes. The PCIe/104 OneBank connector provides power (+5V and +3V3), global reset and PCI express connections to the KRIA SOM. In device mode the top and bottom PCIe links are connected to separate GTH transceivers on the SOM. When in Host mode a SOM transceiver is switched between link0 and link3 determined whether mounted on the top or bottom of the stack. When either link is selected to connect the GTH line the other link is configured as pass-through.

The following diagram shows the connectivity for both Host and Device mode.



Figure 4: PCI Express Lanes in Host and Device Mode

When in Host mode the PCIe channel is switched to link0 (Top) link3 (Bottom) is configured as pass-through. When in Host mode the PCIe channel is switched to link3 (Bottom) link0 (Top) is configured as pass-through. Setting switch position 6 configures the Host for top or bottom configuration.

When in device mode the DIR (direction pin) will detect if the board is above or below the Host and switch the lanes accordingly.

#### 7.17.4 USB

The EMC<sup>3</sup> can provide USB in both Host and Device modes.



Figure 5: USB Lanes in Host and Device mode

When in Host mode the USB channels are connected to the centre channel via a USB hub, this places the USB signal lane 0 when the Host is mounted at the bottom and on lane 1 when the Host is mounted on the top.

When is device mode the DIR (direction pin) will detect if the board is above the Host and switch the lanes accordingly.

# 8 Samtec Razor Beam connector

The EMC³ is fitted with a 60-pin expansion connector which provides an additional PCIe to the SOM, audio connections and GPIOs.

| Samtec Razor Beam<br>Pin | Description    |
|--------------------------|----------------|
| 7                        |                |
| 9                        |                |
| 11                       |                |
| 13                       |                |
| 15                       |                |
| 17                       |                |
| 19                       |                |
| 23                       |                |
| 25                       |                |
| 27                       | UART_RXD       |
| 29                       | UART_TXD       |
| 31                       | ISPO_TRIG      |
| 33                       | ISPO_PWM       |
| 35                       | ISP1_TRIG      |
| 37                       | ISP1_PWM       |
| 43                       | RIGHT_LINE_IN  |
| 45                       | LEFT_LINE_IN   |
| 47                       | RIGHT_LINE_OUT |
| 49                       | LEFT_LINE_OUT  |
| 51                       |                |
| 53                       |                |
| 55                       |                |
| 57                       |                |
| 59                       |                |
| 12                       | GTH0_TX+       |
| 14                       | GTH0_TX-       |
| 18                       | GTH0_RX+       |
| 20                       | GTH0_RX-       |
| 24                       |                |
| 26                       |                |

| 30 |                         |
|----|-------------------------|
| 32 |                         |
| 36 | SAMTEC_100MHz_SLOTCLK_P |
| 38 | SAMTEC_100MHz_SLOTCLK_N |
| 44 |                         |
| 46 |                         |
| 48 |                         |
| 50 |                         |
| 52 |                         |
| 54 |                         |
| 56 |                         |
| 58 |                         |

# 9 Board Clocking



Figure 6: EMC<sup>3</sup> Clocking Distribution

## 10 Board Reset

#### 10.1 Power-On-Reset

- 1. The SoM reset signal (PS\_POR\_L) is held in reset until the CC\_PS\_GOOD signal is asserted on the carrier.
- 2. All the PS and PL I/O device reset signals on the carrier are held in reset until 25ms after the PS and PL power domain are powered up and stable.
- 3. A hard reset is performed by momentarily connecting the power-on pin.

#### 10.2 KRIA SoM reset pins

| KRIA SoM Signal | Reset Signal    |
|-----------------|-----------------|
| MIO43           | SD_RESET_B      |
| MIO76           | USB_PHY_RESET_B |
| MIO75           | USB_HUB_RESET_B |
| MIO74           | PS_ETH_RESET_B  |
|                 |                 |
|                 |                 |
|                 |                 |

# 11 Verification, Review and Validation Procedures

See: https://www.sundance.com/about-sundance/iso9001-2015/

# 12 Board parts

#### 12.1 EMC<sup>3</sup> Top View



Figure 7: EMC³ PCB Top

| Callout | Features / Components                    | Notes               |
|---------|------------------------------------------|---------------------|
| 1       | KRIA SoM                                 |                     |
| 2       | USB-C connector                          |                     |
| 3       | USB-C connector                          |                     |
| 4       | Mini HDMI                                |                     |
| 5       | 2.5mm Power jack                         |                     |
| 6       | 1G Ethernet connectors                   | Connected to the PS |
| 7       | 1G Ethernet connectors                   | Connected to the PL |
| 8       | PCIe OneBank Top connector (22mm height) |                     |
| 9       | Industrial CAN connector                 |                     |
| 10      | Xilinx JTAG programmer                   |                     |
| 11      | Samtec 60-pin connector                  |                     |

#### **Commented [A11]:** Where are the IAS connectors?

**Commented [A12R11]:** There are 2 connectors under the KRIA at the top, they don't look very accessible and I missed them when labelling. Il find a better position.

**Commented [A13R11]:** [Mention was removed] - if it physically works, ie. can a 'Customer' fit a cable, then fine.

| 12 | SATA connector    |                                |
|----|-------------------|--------------------------------|
| 13 | 6 position Switch | EMC <sup>3</sup> board options |

# 12.2 EMC<sup>3</sup> Bottom View



Figure 8: EMC<sup>3</sup> PCB Bottom

| Callout | Features / Components         | Notes               |
|---------|-------------------------------|---------------------|
| 1       | Full size Mini-PCIe card      |                     |
| 2       | SD Card                       |                     |
| 3       | OneBank bottom connector      |                     |
| 4       | Raspberry Pi 22-pin connector |                     |
| 5       | Raspberry Pi 22-pin connector |                     |
| 6       | Raspberry Pi 22-pin connector | Connected to the PS |
| 7       | Raspberry Pi 22-pin connector | Connected to the PL |
| 8       | WiFi module                   |                     |
| 9       | Mini-PCIe connector           |                     |

# 13 Current & Voltage Measurement

| Device | Voltage | Current | Sensor | Switchable |
|--------|---------|---------|--------|------------|
|        |         | (max)   |        |            |

The following table shows the power rails that are voltage monitored.

# 14 Physical Properties

|                 |             | T . |
|-----------------|-------------|-----|
| Dimensions      | 90 x 96 mm  |     |
| Weight          |             |     |
| Supply Voltages | 8.5V to 36V |     |
| Supply Current  | 4 Amps      |     |
|                 |             |     |
|                 |             |     |
|                 |             |     |
|                 |             |     |
| MTBF            |             |     |

## 15 Safety

This module presents no hazard to the user when in normal use.

## **16 EMC**

This module is designed to operate from within an enclosed host system, which is built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system.

This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the output cables.

Short circuiting any output to ground does not cause the host PC system to lock up or reboot.

## 17 Appendix

#### 17.1 Host Logic selection

Table 17: Host Logic for PCIe switching

| HOST_EN | DIR | SEL1 | SEL2 |
|---------|-----|------|------|
| 0       | 0   | 0    | 1    |
| 0       | 1   | 1    | 0    |
| 1       | 0   | 1    | 1    |
| 1       | 1   | 1    | 1    |



Figure 9: Logic to switch PCIe between Host and Device