Mathematik und Simulation

Lage starrer Körper und Drehungen im Raum

1

Prof. Dr. Thomas Schneider

Stand: 13.03.2023

Inhalt

- 1 Koordinatensysteme im Raum
 - Kartesische Koordinatensysteme
 - Kugelkoordinaten "geographische Variante"
- 2 Beschreibung der Lage von Objekten im Raum
- 3 Räumliche Drehungen
 - Wiederholung: Abbildungsmatrix für ebene Drehungen
 - Matrizen für Drehungen um (Welt-)Koordinatenachsen
 - Drehungen um beliebige Drehachsen
 - Euler-Winkel: Variante Pan –Tilt Roll
 - Verfahren zur Drehachsen- und Drehwinkelbestimmung
 - Abschließende Bemerkungen

Kartesische Systeme

- Bei einem kartesischen Koordinatensystem $K = (O; b_1, b_2, b_3)$ sind die Achsen orthogonal zueinander; das heißt, die drei Basisvektoren stehen paarweise senkrecht aufeinander.
- zwei Möglichkeiten: rechtshändige und linkshändige Systeme.

1/77

Kartesische Systeme – Konventionen

Konvention – Rechtssystem

Ein Koordinatensystem $K = (O; b_1, b_2, b_3)$ heißt **Rechtssystem** oder **rechtshändiges Koordinatensystem**, wenn jeder Basisvektor aus seinem Vorgänger durch eine Drehung um 90° **gegen** den Uhrzeigersinn (also mit Drehwinkel + 90°) hervorgeht.

Rechte-Daumen-Regel: Zeigt der Daumen in Richtung der Drehachse, so weisen die übrigen (gekrümmten) Finger in die positive Drehrichtung.

Konvention – Linkssystem

Jeder Basisvektor geht aus seinem Vorgänger durch eine Drehung um 90° im Uhrzeigersinn (also mit Drehwinkel -90°) hervor.

Kartesische Systeme - Handregeln

Jeweilige Hand definiert Koordinatensystem: Daumen (x) – Zeigefinger (y) – Mittelfinger (z)

Abbildung: Linkssystem, definiert durch die Finger der linken Hand

Abbildung: Rechtssystem, definiert durch die Finger der rechten Hand

3/77

Anwendungen kartesischer Koordinatensysteme

Anwendungen

- Rechtssysteme sind gebräuchlich in der Mathematik und Physik, vgl. auch Kreuzprodukt: Daumen \vec{p} , Zeigefinger $\vec{q} \rightsquigarrow \text{Mittelfinger } \vec{p} \times \vec{q}$.
- Linkssysteme werden z.B. in der Computergraphik verwendet:
 - Bildschirm: x, y-Ebene
 - vom Betrachter weg: z-Achse

Kugelkoordinaten – geographische Variante

Jeder Punkt der Einheitskugel wird mit zwei Winkelkoordinaten beschrieben. Wir verwenden hierzu die Konvention, die z.B. in http://de.wikipedia.org/wiki/Kugelkoordinaten unter "Andere Varianten" beschrieben ist.

Kugelkoordinaten – geographische Variante

Definition der Winkel

Azimutwinkel φ : Winkel, den die x-y-Projektion des gegebenen Einheitsvektors mit der positiven x-Achse einschließt. Der Winkel φ entspricht dem geographischen Längengrad.

Latitudinalwinkel θ : Winkel zwischen der x-y-Ebene und dem gegebenen Einheitsvektor. Der Winkel θ entspricht dem geographischen Breitengrad.

Kugelkoordinaten – geographische Variante

Achtung:

Besonders in der Physik werden oft sog. sphärische Polarkoordinaten verwendet. Dann bezeichnet oft θ oder auch Ψ den *Polarwinkel* zwischen \vec{u} und der *z*-Achse. In englischsprachigen Lehrbüchern sind zudem mitunter die Rollen von φ und θ vertauscht.

Kugelkoordinaten – geographische Variante

Kugelkoordinaten für Einheitsvektoren im Raum

Für jeden Vektor
$$\hat{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 mit Länge 1 gibt es Winkel θ und φ mit

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \cos(\varphi) \\ \cos(\theta) & \sin(\varphi) \\ \sin(\theta) \end{pmatrix}.$$

Kugelkoordinaten für Vektoren im Raum

Für jeden Vektor
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 mit Länge $r = \sqrt{x^2 + y^2 + z^2}$ gibt es Winkel θ und φ mit

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{r} \cos(\theta) \cos(\varphi) \\ \mathbf{r} \cos(\theta) \sin(\varphi) \\ \mathbf{r} \sin(\theta) \end{pmatrix}.$$

Kugelkoordinaten – geographische Variante

Rechnerisches Verfahren zur Ermittlung von Kugelkoordinaten

Es sei ein Vektor $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \neq 0$ gegeben. Wir bezeichnen die **Projektion von** u **in die** x-y-**Ebene** mit u'. Es ist also $u' = \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix}$.

Außer im Sonderfall u'=0

• ist der Latitudinalwinkel θ der Winkel zwischen u' und u; mit Symbolen ausgedrückt:

$$\theta = \measuredangle (u', u)$$
.

• ist der Azimutwinkel φ der Winkel zwischen \hat{x} und u', d.h.

$$\varphi = \measuredangle (\hat{\mathbf{x}}, \mathbf{u}')$$
.

Kugelkoordinaten – geographische Variante

Rechnerisches Verfahren zur Ermittlung von Kugelkoordinaten

Die Kugelkoordinaten θ und φ eines vorgelegten Vektors $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \neq 0$ sind wie folgt:

• Wir berechnen zunächst den **Polarwinkel** $\Psi = \measuredangle(u, \hat{z})$ zwischen u und der positiven z-Achse mit der Formel

$$\cos(\Psi) = \frac{u \cdot \hat{z}}{\|u\| \|\hat{z}\|} = \frac{u_3}{\sqrt{u_1^2 + u_2^2 + u_3^2}}$$

und setzen $\theta := 90^{\circ} - \Psi$.

- Bemerkung: Falls $u_1=u_2=0$ gilt, so zeigt u in die positive oder negative z-Richtung, der Winkel φ ist dann nicht eindeutig bestimmt, man kann z.B. $\varphi=0^\circ$ wählen. Für $u_3>0$ ergibt sich $\cos{(\Psi)}=1$, also $\Psi=0$ und $\theta=+90^\circ$; für $u_3<0$ folgt entsprechend $\cos{(\Psi)}=-1$, also $\Psi=180^\circ$ und $\theta=-90^\circ$.
- Für $(u_1, u_2) \neq (0, 0)$ ist

$$\varphi = \measuredangle \left(\textbf{\textit{u}}', \hat{\textbf{\textit{x}}} \right) = \begin{cases} & \arccos \left(\frac{\textbf{\textit{u}}' \cdot \hat{\textbf{\textit{x}}}}{\|\textbf{\textit{u}}'\| \|\hat{\textbf{\textit{x}}}\|} \right) = & \arccos \left(\frac{\textbf{\textit{u}}_1}{\sqrt{\textbf{\textit{u}}_1^2 + \textbf{\textit{u}}_2^2}} \right), & \text{falls } \textbf{\textit{u}}_2 \geq 0 \\ - \arccos \left(\frac{\textbf{\textit{u}}' \cdot \hat{\textbf{\textit{x}}}}{\|\textbf{\textit{u}}'\| \|\hat{\textbf{\textit{x}}}\|} \right) = - \arccos \left(\frac{\textbf{\textit{u}}_1}{\sqrt{\textbf{\textit{u}}_1^2 + \textbf{\textit{u}}_2^2}} \right), & \text{falls } \textbf{\textit{u}}_2 < 0, \end{cases}$$

(für negative Werte von u_2 vergeben wir also negative Azimutwinkel).

Kugelkoordinaten – geographische Variante

Hörsaalübung

Zeichnen Sie den Einheitswürfel in Parallelprojektion. Bestimmen Sie die Werte von r, θ und φ für jeden der folgenden Würfeleckpunkte.

$$A = (1, 0, 1)$$

$$B = (1, 1, 0)$$

$$C = (0, 1, 1)$$

$$D = (0, 0, 1)$$

Lage von Objekten im Raum

Ausgangssituation

Wir nehmen an, dass ein festes kartesisches Weltkoordinatensystem (WKS) mit Ursprung O festgelegt ist. Die Lage der Objekte im Raum wird bezüglich dieses Koordinatensystems beschrieben. Wir ignorieren zunächst Verschiebungen, betrachten also nur die **Orientierung** bzgl. des Weltkoordinatensystems (WKS).

Möglichkeiten

- Führe ein kartesisches Objektkoordinatensystem (OKS) $(\vec{u}, \vec{v}, \vec{w})$ ein und spezifiziere die Objektbasisvektoren bezüglich des WKS.
- Gebe eine Drehung bzw. eine orthogonale 3×3 -Matrix M an, welche das WKS in das OKS überführt.
- Gebe eine Drehachse $\langle \hat{\mathbf{v}} \rangle$ und einen Drehwinkel α so an, dass die Drehung $D_{\langle \hat{\mathbf{v}} \rangle, \alpha}$ das WKS in das OKS überführt.
- Spezifiziere eine Sequenz von Standarddrehungen, z.B.
 - Pan-, Tilt-, Roll-Bewegung bzw.
 - Gier-, Nick-, Roll-Bewegung.

Ebene Drehungen

Erinnerung an Mathematik 1, Kapitel 7

Abbildungsmatrix für ebene Drehung

Gesucht wird die Abbildungsmatrix $[D_{O,\alpha}]$ einer ebenen Drehung von $D_{O,\alpha}$.

$$\begin{pmatrix} -\sin(\alpha) \\ \cos(\alpha) \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= D_{0,\alpha}(e_2) \mathbf{e_2}$$

$$= \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \end{pmatrix}$$

$$\sin(\alpha) = y$$

$$= \begin{bmatrix} \cos(\alpha) \\ \sin(\alpha) \end{bmatrix}$$

$$\sin(\alpha) = y$$

$$= \cos(\alpha) + \sin(\alpha)$$

$$\sin(\alpha) = y$$

Abbildungsmatrizen linearer Abbildungen

Erinnerung an Mathematik 1, Kapitel 7

Aufstellen einer Abbildungsmatrix:

Zur Aufstellung der Abbildungsmatrix einer linearen Abbildung $L: \mathbb{R}^n \to \mathbb{R}^n$ geht man wie folgt vor:

- Man betrachtet die Bilder $L(\overrightarrow{e_1}), L(\overrightarrow{e_2}), \ldots, L(\overrightarrow{e_n})$ der Standardbasisvektoren $(\overrightarrow{e_1}, \overrightarrow{e_2}, \ldots, \overrightarrow{e_n})$ unter der Abbildung L.
- Jeden dieser Bildvektoren stellt man bezüglich der Standardbasis $E = (\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_n})$ dar. Man sucht also zu jedem Bildvektor $L(\overrightarrow{e_k})$ Koeffizienten a_{1k} , a_{2k} bis a_{nk} so, dass die Gleichung $L(\overrightarrow{e_k}) = a_{1k} \overrightarrow{e_1} + a_{2k} \overrightarrow{e_2} + \dots + a_{nk} \overrightarrow{e_n}$ erfüllt ist.
- Wir fassen diese Koeffizienten jeweils zu einem Spaltenvektor $\overrightarrow{a_k}$ zusammen:

$$\overrightarrow{a_k} = egin{pmatrix} a_{1k} \ a_{2k} \ dots \ a_{nk} \end{pmatrix}$$

Diese Spaltenvektoren bilden die Abbildungsmatrix A:

$$A = \left[\overrightarrow{a_1} \ \overrightarrow{a_2} \ \dots \overrightarrow{a_n}\right].$$

14/77

Drehungen um die Koordinatenachsen

Herleitung der Abbildungsmatrizen

Hörsaalübung

Stellen Sie die Abbildungsmatrizen für die Drehungen um jede der drei Koordinatenachsen auf:

 $D_{\hat{x}, \alpha}$

 $D_{\hat{y},\,eta}$

 $D_{\hat{z},\,\gamma}$

Drehungen um die Koordinatenachsen

Herleitung der Abbildungsmatrizen

Hörsaalübung – Lösung

• Drehung um die x-Achse mit Drehwinkel α :

$$D_{\hat{\mathbf{x}},\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

Drehung um die y-Achse mit Drehwinkel β:

$$D_{\hat{y},\beta} = \begin{bmatrix} \cos(\beta) & \mathbf{0} & \sin(\beta) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin(\beta) & \mathbf{0} & \cos(\beta) \end{bmatrix}$$

• Drehung um die z-Achse mit Drehwinkel γ :

$$D_{\hat{z},\gamma} = egin{bmatrix} \cos{(\gamma)} & -\sin{(\gamma)} & 0 \ \sin{(\gamma)} & \cos{(\gamma)} & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Eigenschaften (räumlicher) Drehungen

Drehungen sind Drehungen sind

- längentreu
- winkeltreu
- orientierungstreu

Das heißt, für jede Drehung D gilt:

- Wird ein Vektor a durch D gedreht, so ist die Länge ||D(a)|| des gedrehten Vektors stets gleich der Länge ||a|| des Ausgangsvektors.
- Für je zwei Vektoren $a \neq O$ und $b \neq 0$ ist der Winkel $\angle (D(a), D(b))$ zwischen den gedrehten Vektoren gleich dem Winkel $\angle (a, b)$.
- Sind drei Vektoren (a,b,c) im Raum linear unabhängig und liegt c im gleichen Halbraum wie $a \times b$, so sind (D(a),D(b),D(c)) ebenfalls linear unabhängig und D(c) liegt im gleichen Halbraum wie $D(a) \times D(b)$.

Eigenschaften (räumlicher) Drehungen

Kriterium für Orientierungstreue:

Drei Vektoren (a, b, c) im Raum seien linear unabhängig.

• Wenn c im gleichen Halbraum wie $a \times b$ liegt, so gilt

$$c \cdot (a \times b) > 0$$
 oder gleichwertig hierzu $(a \times b) \cdot c > 0$.

- Orientierungstreue lässt sich somit rechnerisch ermitteln:
- Eine Abbildung D mit Abbildungsmatrix D = (u, v, w) bzgl. eines rechtshändigen Koordinatensystems ist orientierungstreu, wenn

$$(u \times v) \cdot w > 0$$

gilt.

Definition:

Für eine Abbildung D mit Abbildungsmatrix D = (u, v, w) setzen wir

$$det(D) := (u \times v) \cdot w$$

und nennen den Ausdruck det(D) die **Determinante** von D.

Eigenschaften (räumlicher) Drehungen

Drehungen sind Drehungen sind

- längentreu
- winkeltreu
- orientierungstreu

Das heißt insbesondere:

- Ist \hat{u} ein Einheitsvektor, gilt also $\|\hat{u}\| = 1$, so ist auch $\|D(\hat{u})\| = 1$.
- Stehen die Vektoren u und v senkrecht aufeinander, so gilt dies auch für D(u) und D(v).
- Gilt $w = u \times v$, so auch $D(w) = D(u) \times D(v)$.

Eigenschaften der Abbildungsmatrizen

Konsequenz

Ist [D] die Abbildungsmatrix einer räumlichen Drehung D (bzgl. eines rechtshändigen Koordinatensystems), so

- hat jeder der drei Spaltenvektoren von [D] die Länge 1,
- stehen die Spaltenvektoren von [D] paarweise zueinander senkrecht,
- ist die Matrix [D] orthogonal, d.h.

$$[D] \cdot [D]^{\mathsf{T}} = E = [D]^{\mathsf{T}} \cdot [D],$$

- gilt $[D]^T = [D]^{-1}$.
- gilt det(D) = 1.

Eigenschaften der Abbildungsmatrizen

Satz

Jede orthogonale 3×3 -Matrix $[u \ v \ w]$ mit $w = u \times v$ beschreibt eine Drehung.

Bemerkung

- Zu **jeder** orthogonalen 3×3 -Matrix $R = [u \ v \ w]$ mit $w = u \times v$ lässt sich eine Achsenvektor \hat{a} und ein Drehwinkel φ so finden, dass $[D_{\hat{a},\varphi}] = R$ gilt.
- Dies kann etwa durch Bestimmung der sog. **Eigenvektoren** und **Eigenwerte** der Matrix *R* geschehen, eine Technik, die wir im Rahmen dieses Kurses nicht studieren werden.
- Stattdessen nutzen wir hierzu eine geometrisch motivierte Technik, vgl. Folien 69 ff.

Beispiele orthogonaler Matrizen

Hörsaalübung:

Die Matrizen
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ und $C = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ sind alle orthogonal.

- Zeigen Sie, dass nur die Matrix A die Bedingung $w = u \times v$ erfüllt und somit eine Drehung beschreibt.
- Erkennen Sie, welche Abbildungen durch B und C dargestellt werden?

Eigenschaften der Abbildungsmatrizen

Drehungen und Inverse

• Für jede Drehung $D_{\hat{a},\,\varphi}$ mit Drehwinkel φ ist

$$D_{\hat{a},-\varphi} \circ D_{\hat{a},\varphi} = \mathrm{id} = D_{\hat{a},\varphi} \circ D_{\hat{a},-\varphi}.$$

Denn wenn um eine feste Drehachse erst mit dem Winkel φ und dann mit dem Winkel $-\varphi$ gedreht wird oder umgekehrt, so sind am Ende alle Punkte wieder in der Ausgangslage.

• Für die Abbildungsmatrix $[D_{\hat{a},\,arphi}]$ von $D_{\hat{a},\,arphi}$ heißt das:

$$\left[D_{\hat{a},-\varphi}\right]\cdot\left[D_{\hat{a},\varphi}\right] = E = \left[D_{\hat{a},\varphi}\right]\cdot\left[D_{\hat{a},-\varphi}\right]$$

und somit

$$\left[D_{\hat{a},\varphi}\right]^{-1} = \left[D_{\hat{a},-\varphi}\right].$$

Eigenschaften der Abbildungsmatrizen

Bemerkung

Die uns bekannten Matrizen für Drehungen um die Koordinatenachsen $[D_{\hat{x},\alpha}]$, $[D_{\hat{y},\beta}]$ und $[D_{\hat{z},\gamma}]$ haben die genannten Eigenschaften:

• $\left[D_{\hat{\chi},\alpha}\right] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$ ist orthogonal und

$$\begin{bmatrix} D_{\hat{\mathbf{x}},\alpha} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & \sin(\alpha) \\ 0 & -\sin(\alpha) & \cos(\alpha) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-\alpha) & -\sin(-\alpha) \\ 0 & \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} = \begin{bmatrix} D_{\hat{\mathbf{x}},-\alpha} \end{bmatrix} = \begin{bmatrix} D_{\hat{\mathbf{x}},\alpha} \end{bmatrix}^{-1}.$$

Entsprechend gilt

$$\left[\boldsymbol{\mathit{D}}_{\hat{\boldsymbol{y}},\,\beta}\right]^{\mathsf{T}} = \left[\boldsymbol{\mathit{D}}_{\hat{\boldsymbol{y}},\,-\beta}\right] = \left[\boldsymbol{\mathit{D}}_{\hat{\boldsymbol{y}},\,\beta}\right]^{-1}$$

und

$$\left[D_{\hat{z},\gamma}\right]^{\mathsf{T}} = \left[D_{\hat{z},-\gamma}\right] = \left[D_{\hat{z},\gamma}\right]^{-1}.$$

Anwendungsbeispiel: Orientierung eines Flugzeugs

Bewegungen um Flugzeugachsen

- Es sei gegeben ein kartesisches Weltkoordinatensystem $(\hat{x}, \hat{y}, \hat{z})$.
- Wir führen im Flugzeug ein lokales Koordinatensystem $(\hat{x}_F, \hat{y}_F, \hat{z}_F)$ ein.
- Der Vektor \hat{x}_F zeige in Richtung der Längsachse des Flugzeugs zur Nase hin, der Vektor \hat{y}_F markiere die Fluzeugquerachse (zur linken Tragfläche hin), \hat{z}_F die Hochachse. Dann ist $\hat{x}_F \times \hat{y}_F = \hat{z}_F$.

Zur Verdeutlichung:

Eine Drehung

- mit Drehachse \hat{x}_F ist eine *Roll*-Bewegung (diese wird durch Betätigung des *Querruders* bewirkt)
- mit Drehachse \hat{y}_F ist eine *Nick*-Bewegung (*Höhenruder*),
- mit Drehachse \hat{z}_F ist eine *Gier*-Bewegung (*Seitenruder*).

Anwendungsbeispiel: Kameraorientierung

Kameraorientierung

- Es sei gegeben ein kartesisches Weltkoordinatensystem $(\hat{x}, \hat{y}, \hat{z})$.
- Kameras sind üblicherweise auf einem Stativ montiert, bei denen die Drehachse für Pan-Bewegungungen festgelegt ist; wir legen fest, dass diese Drehachse mit der Welt-z-Achse übereinstimmt. In der Kamerahalterung befindet sich ein Gelenk, das das Auf- und Abschwenken (*Tilt*) der Kamera ermöglicht. Dieses Gelenk werde mitbewegt, wenn eine Pan-Drehung durchgeführt wird.
- Wir führen in einer Kamera ein lokales Koordinatensystem $(\hat{x}_K, \hat{y}_K, \hat{z}_K)$ ein.
- Der Vektor \hat{x}_K zeige in Richtung der optischen Achse (Längsachse) der Kamera, und zwar vom Sensor in Richtung des Objektivs, \hat{y} markiere die Kameraquerachse, \hat{z}_K die Hochachse. Es gelte $\hat{x}_K \times \hat{y}_K = \hat{z}_K$.

Zur Verdeutlichung:

Eine Drehung

- mit Drehachse \hat{z} ist eine **Pan**-Bewegung,
- mit Drehachse \hat{x}_K ist eine **Roll**-Bewegung.

Die Achse der **Tilt**-Bewegung geht aus der Welt-y-Achse durch die Pan-Bewegung hervor. Ihr Achsenvektor stimmt im Allgemeinen weder mit \hat{y} noch mit $\hat{y}_{\mathcal{K}}$ überein.

Anwendungsbeispiel: Kameraorientierung

Aufgabe

Anfänglich sei das Kamerakoordinatensystem am Weltkoordinatensystem ausgerichtet, d.h.

$$\hat{\mathbf{x}}_{\mathsf{K}} = \hat{\mathbf{x}}, \qquad \hat{\mathbf{y}}_{\mathsf{K}} = \hat{\mathbf{y}}, \qquad \hat{\mathbf{z}}_{\mathsf{K}} = \hat{\mathbf{z}}.$$

Gesucht ist nun eine Drehung *D*, welche die Kamera in die folgende Orientierung überführt:

- **1** $D(\hat{x}_K) = D(\hat{x})$ zeige in die Richtung des Vektors $\hat{x} + \hat{y} + \hat{z}$.
- 2 $D(\hat{y}_K) = D(\hat{y})$ liege in der x-y-Ebene.
- 3 $D(\hat{z}_K) = D(\hat{z})$ habe eine positive z-Komponente.

Die letzten beiden Bedingungen bedeuten, dass die Kamera **nicht** um ihre Längsachse gedreht werden soll (keine *Roll*-Bewegung).

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungswege

Wir stellen zwei Lösungswege für diese Aufgabe vor:

- Direkte Bestimmung der Drehmatrix [D]
- Zerlegung von *D* in zwei Drehungen, jeweils um Koordinatenachsen des Weltkoordinatensystems.

Anwendungsbeispiel: Kameraorientierung

Aufgabe - Lösungsweg 1

Zur Bestimmung der Drehmatrix [D] untersuchen wir, wie die Drehung D die drei Basisvektoren \hat{x} , \hat{y} und \hat{z} des Weltkoordinatensystems abbbildet:

Aus der Anfangsorientierung $\hat{x}_K = \hat{x}$ und unserer ersten Forderung " $D(\hat{x}_K)$ zeige in die Richtung des Vektors $\hat{x} + \hat{y} + \hat{z}$ " folgt, dass es eine Zahl k > 0 gibt mit

$$\begin{bmatrix} D \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 1, Schritt 1

Mit

$$\begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ k > 0$$

folgt

$$\begin{bmatrix} D_{11} \\ D_{21} \\ D_{31} \end{bmatrix} = \begin{pmatrix} k \\ k \\ k \end{pmatrix}, \ k > 0$$

Da die Matrix [D] orthogonal zu sein hat, muss ihr erster Spaltenvektor die Länge 1 besitzen. Somit folgt

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 1, Schritt 2

Aus der Anfangsorientierung $\hat{y}_K = \hat{y}$ und der zweiten Forderung " $D(\hat{y}_K) = liege$ in der x-y-Ebene" folgt, dass die z-Koordinate des Bildvektors gleich Null ist:

$$\begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \qquad \stackrel{\sim}{\longrightarrow} \qquad \begin{bmatrix} D_{21} \\ D_{22} \\ D_{32} \end{bmatrix} = \begin{pmatrix} a \\ b \\ 0 \end{pmatrix}.$$

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 1, Schritt 2

Da [D] orthogonal ist,

- muss $1^2 = \left\| \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} \right\|^2 = a^2 + b^2 + 0^2$ gelten,
- müssen die Spaltenvektoren $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}$ und $\begin{pmatrix} a \\ b \\ 0 \end{pmatrix}$ aufeinander senkrecht stehen.

Das heißt,
$$0 = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ 0 \end{pmatrix} = \frac{1}{\sqrt{3}} \left(a + b \right) \rightsquigarrow a = -b.$$

Mit der Normierungsbedingung $a^2+b^2=1$ folgt $2a^2=1$, somit $a^2=\frac{1}{2}=b^2$ und daraus $a=\frac{1}{\sqrt{2}},\ b=-\frac{1}{\sqrt{2}}$ oder $a=-\frac{1}{\sqrt{2}},\ b=\frac{1}{\sqrt{2}}$.

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 1, Schritt 3

Somit kommen für den zweiten Spaltenvektor von [D] die alternativen Möglichkeiten $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{-1} \\ 0 \end{pmatrix}$ und $\begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ in Frage.

Um hier die Entscheidung zu treffen, verwenden wir

- die dritte Anforderung " $D(\hat{z}_K) = D(\hat{z})$ habe eine positive z-Komponente "
- sowie die Bedingung

$$\begin{bmatrix} D_{11} \\ D_{21} \\ D_{31} \end{bmatrix} \times \begin{bmatrix} D_{12} \\ D_{22} \\ D_{32} \end{bmatrix} = \begin{bmatrix} D_{13} \\ D_{23} \\ D_{33} \end{bmatrix}.$$

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 1, Schritt 3

Im ersten Fall ergibt sich

$$\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2} \cdot \sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix},$$

im zweiten Fall

$$\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2} \cdot \sqrt{3}} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}.$$

Ergebnis

Die gesuchte Drehmatrix hat die Gestalt

$$\begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 2

Wir führen eine geeignete Drehung um die (Welt)-y-Achse, gefolgt von einer Drehung um die (Welt)-z-Achse durch. Hierbei werden wir uns der Kugelkoordinaten des Ziellagevektors $\hat{x} + \hat{y} + \hat{z}$ bedienen.

Bemerkung

Wir könnten die Kamera auch in die Ziellage bringen, indem wir eine **Pan**-Bewebung (Drehung um die Welt- \hat{z} -Achse), gefolgt von einer **Tilt**-Bewegung. Die *Tilt*-Achse läge nach der *Pan*-Bewebung jedoch nicht mehr auf der Welt-y-Achse. Wir hätten (jedenfalls derzeit noch) Schwierigkeiten, die *Tilt*-Bewegung mit einer Matrix bezüglich des Weltkoordinatensystems darzustellen.

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 2, Schritt 1

Bestimmen Sie den Azimutwinkel φ sowie die Werte von $\cos(\theta)$ und $\sin(\theta)$ für den Vektor $\hat{x} + \hat{y} + \hat{z}$ mit Koordinatenvektor $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$:

- Zeichnen Sie eine Seitenansicht des Dreiecks bestehend aus dem Ursprung (an dem der Winkel θ anliegt), dem Vektor $g = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, dessen Projektion g' in die x-y-Ebene und dem zugehörigen Lot.
- Ermitteln Sie die Längen der Dreiecksseiten und hieraus die Werte von $\cos(\theta)$ und $\sin(\theta)$.
- Bestimmen Sie den Winkel φ zwischen dem Projektionsvektor g' und der x-Achse.

Aufgabe – Lösungsweg 2, Schritt 1

Es ist
$$\varphi = 45^{\circ}$$
, $\cos(\theta) = \frac{\sqrt{2}}{\sqrt{3}}$ und $\sin(\theta) = \frac{1}{\sqrt{3}}$.

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 2, Schritt 2

• Stellen Sie die Drehmatrizen $[D_{\hat{z},\varphi}]$ und $[D_{\hat{y},-\theta}]$ (warum das negative Vorzeichen?) auf und berechnen Sie das Matrixprodukt

$$\left[D_{\hat{z},\varphi}\right]\cdot\left[D_{\hat{y},-\theta}\right]$$
.

 Vergleichen Sie die resultierende Drehmatrix mit der Matrix, die Sie auf dem Lösungsweg 1 gewonnen haben.

Anwendungsbeispiel: Kameraorientierung

Aufgabe – Lösungsweg 2, Ergebnis

$$\text{Mit } \left[D_{\hat{z},\,\varphi} \right] = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\text{und } \left[D_{\hat{y},\,-\theta} \right] = \begin{bmatrix} \cos(-\theta) & 0 & \sin(-\theta) \\ 0 & 1 & 0 \\ -\sin(-\theta) & 0 & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{3}} & 0 & \frac{\sqrt{2}}{\sqrt{3}} \end{bmatrix}$$

Aufgabe

Aufgabe:

Die Kamera befinde sich nun in einer durch die Produktionsbedingungen vorgegebenen Orientierung, und zwar

$$\hat{x}_{\mathcal{K}} = egin{pmatrix} 0 \\ rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix} \qquad \hat{y}_{\mathcal{K}} = egin{pmatrix} 0 \\ -rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix} \qquad \hat{z}_{\mathcal{K}} = egin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Gesucht ist nun eine Drehung R, welche die Kamera in die "Normallage" ohne Tilt und Roll zurückführt, dabei ist ein Pan-Winkel von 45° gewünscht. In Formeln:

•
$$R(\hat{x}_{K}) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
.
• $R(\hat{z}_{K}) = \hat{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

•
$$R(\hat{z}_K) = \hat{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
.

Drehungen um beliebige Drehachsen

Drehungen um beliebige Drehachsen

Es sei \hat{a} ein beliebiger Einheitsvektor und es sei δ ein Drehwinkel. Wir wollen die Drehung $D_{\hat{a},\delta}$ beschreiben.

Idee: Wir zerlegen die Drehung $D_{\hat{\mathbf{a}},\delta}$ nach dem Dreischrittverfahren:

Schritt 1: Drehung, welche den Vektor â auf eine der Koordinatenachsen legt,

Schritt 2: Drehung um diese Koordinatenachse mit Drehwinkel δ

Schritt 3: Rückdrehung so, dass dass die Drehachse in die Ausgangslage zurückgeführt wird.

Drehungen um beliebige Drehachsen

Drehungen um beliebige Drehachsen

Wir entscheiden uns dafür, den Achsenvektor â im ersten Schritt auf die **x-Achse** zu drehen. Zur Durchführung dieses Schrittes

- ermitteln wir die Kugelkoordinaten φ und θ des Vektors $\hat{\mathbf{a}}$,
- drehen wir den Achsenvektor $\hat{\mathbf{a}}$ in die x-z-Ebene mit Hilfe von $D_{\hat{z},-\varphi}$ und erhalten das Zwischenergebnis $\vec{\mathbf{a}}':=D_{\hat{z},-\varphi}(\hat{\mathbf{a}})$,
- drehen wir den Zwischenvektor \vec{a}' auf die x-Achse vermöge $D_{\hat{y},+\theta}$.

Insgesamt gilt also

$$\left(D_{\hat{\mathbf{y}},\,+ heta} \circ D_{\hat{\mathbf{z}},\,-arphi}
ight) (\hat{\mathbf{a}}) = \hat{\mathbf{x}}.$$

Bemerkung:

Anwendung der Rechte-Hand-Regel ergibt, dass die Drehungen $D_{\hat{z},-\varphi}$ (Minus-Zeichen) und $D_{\hat{y},+\theta}$ (Plus-Zeichen) auszuführen sind.

Drehungen um beliebige Drehachsen

Probe zu Schritt 1: $\left(D_{\hat{y},+\theta}\circ D_{\hat{z},-\varphi}\right)(\hat{\mathbf{a}})=\hat{\mathbf{x}}$

Wenn r = 1, φ und θ die Kugelkoordinaten des Vektors $\hat{\mathbf{a}}$ sind, so gilt

$$\hat{\mathbf{a}} = \begin{pmatrix} \cos(\theta) \cos(\varphi) \\ \cos(\theta) \sin(\varphi) \\ \sin(\theta) \end{pmatrix}.$$

Wir wollen uns dies an der Tafel klarmachen.

Drehungen um beliebige Drehachsen

Probe zu Schritt 1: $\left(D_{\hat{y},+\theta}\circ D_{\hat{z},-\varphi}\right)(\hat{\mathbf{a}})=\hat{\mathbf{x}}$, Alternative zur folgenden Folie:

Wir bestimmen die Matrix

$$M := \left[D_{\hat{y},\, heta} \, \circ \, D_{\hat{z},\,-arphi}
ight] \, = \, \left[D_{\hat{y},\, heta}
ight] \cdot \left[D_{\hat{z},\,-arphi}
ight]$$

sowie $M \cdot (\hat{\mathbf{a}})$.

Drehungen um beliebige Drehachsen

Probe zu Schritt 1: $(D_{\hat{\mathbf{v}}_{\cdot}+\theta} \circ D_{\hat{\mathbf{z}}_{\cdot}-\varphi})(\hat{\mathbf{a}}) = \hat{\mathbf{x}}$

• Wenn φ und θ (sowie r=1) die Kugelkoordinaten des Vektors \hat{a} sind, so gilt

$$\hat{\mathbf{a}} = \begin{pmatrix} \cos(\theta) \cos(\varphi) \\ \cos(\theta) \sin(\varphi) \\ \sin(\theta) \end{pmatrix}.$$

• Dann hat $\vec{\boldsymbol{a}}' := D_{\hat{\boldsymbol{z}}, -\varphi}\left(\hat{\boldsymbol{a}}\right)$ die Koordinaten

$$\begin{bmatrix} \cos(\varphi) & \sin(\varphi) & \mathbf{0} \\ -\sin(\varphi) & \cos(\varphi) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \begin{pmatrix} \cos(\theta) & \cos(\varphi) \\ \cos(\theta) & \sin(\varphi) \\ \sin(\theta) \end{pmatrix} = \begin{pmatrix} \cos(\theta) \cdot \left(\cos^2(\varphi) + \sin^2(\varphi)\right) \\ \cos(\theta) \cdot \left(-(\sin(\varphi)) \cdot \cos(\varphi) + \cos(\varphi) \cdot \sin(\varphi)\right) \\ \sin(\theta) \end{bmatrix} = \begin{pmatrix} \cos(\theta) \\ \mathbf{0} \\ \sin(\theta) \end{pmatrix}.$$

• Berechnung von $D_{\hat{y},\,\theta}\left(\vec{a}'\right)$ ergibt schließlich:

$$\begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \end{bmatrix} \cdot \begin{pmatrix} \cos(\theta) \\ 0 \\ \sin(\theta) \end{pmatrix} = \begin{pmatrix} \cos^2(\theta) + \sin^2(\theta) \\ 0 \\ -\sin(\theta) \cdot \cos(\theta) + \cos(\theta) \cdot \sin(\theta) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Drehungen um beliebige Drehachsen

Schritt 3:

Für Schritt 1 haben wir die Abbildung $D_{\hat{\mathbf{y}},+\theta} \circ D_{\hat{\mathbf{z}},-\varphi}$ mit der Eigenschaft $(D_{\hat{\mathbf{y}},+\theta} \circ D_{\hat{\mathbf{z}},-\varphi})(\hat{\mathbf{a}}) = \hat{\mathbf{x}}$ verwendet. Für Schritt 3 benötigen wir die inverse Drehung, die aus $\hat{\mathbf{x}}$ wieder $\hat{\mathbf{a}}$ macht. Anschaulich ist klar, dass diese inverse Drehung durch

$$D_{\hat{\mathbf{z}},\,arphi}\circ D_{\hat{\mathbf{y}},\,- heta}$$

gegeben ist. Wir können dies auch durch eine Folge algebraischer Umformungen nachprüfen:

$$\begin{split} D_{\hat{y},-\theta} \circ \left(D_{\hat{y},+\theta} \circ D_{\hat{z},-\varphi}\right) &= \left(D_{\hat{y},-\theta} \circ D_{\hat{y},+\theta}\right) \circ D_{\hat{z},-\varphi} \\ &= & \operatorname{id} \circ D_{\hat{z},-\varphi} = D_{\hat{z}-\varphi} \\ \leadsto & \left(D_{\hat{z},\varphi} \circ D_{\hat{y},-\theta}\right) \circ \left(D_{\hat{y},+\theta} \circ D_{\hat{z},-\varphi}\right) = D_{\hat{z},\varphi} \circ \left(D_{\hat{y},-\theta} \circ D_{\hat{y},+\theta} \circ D_{\hat{z},-\varphi}\right) \\ &= & D_{\hat{z},\varphi} \circ D_{\hat{z}-\varphi} = \operatorname{id}, \end{split}$$

also gilt

$$\hat{\mathbf{a}} = \left(D_{\hat{\mathbf{z}},\,arphi} \circ D_{\hat{\mathbf{y}},\,- heta}
ight) \left(\hat{\mathbf{x}}
ight).$$

Drehungen um beliebige Drehachsen

Zerlegung von $D_{\hat{\mathbf{a}},\delta}$:

Es ergibt sich somit die folgende Zerlegung von $D_{\hat{\mathbf{a}},\delta}$ in eine Folge von fünf Drehungen:

$$D_{\hat{\mathbf{a}}} = \underbrace{D_{\hat{\mathbf{z}}, +arphi} \circ D_{\hat{\mathbf{y}}, - heta}}_{ ext{Schritt 3}} \circ \underbrace{D_{\hat{\mathbf{x}}, +\delta}}_{ ext{Schritt 2}} \circ \underbrace{D_{\hat{\mathbf{y}}, + heta} \circ D_{\hat{\mathbf{z}}, -arphi}}_{ ext{Schritt 1}}.$$

Plan und Ziel:

Wir werden nun das Produkt der Matrizen dieser fünf Drehungen bilden, um die Abbildungsmatrix für die Drehung $D_{\hat{\mathbf{a}},\delta}$ zu erhalten.

Drehungen um beliebige Drehachsen

Matrix für Schritt 3: $D_{\hat{\mathbf{z}},+\varphi} \circ D_{\hat{\mathbf{y}},-\theta}$

$$\begin{split} \left[D_{\hat{\mathbf{z}}, +\varphi} \right] \cdot \left[D_{\hat{\mathbf{y}}, -\theta} \right] &= \begin{bmatrix} \cos(\varphi) - \sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta) & 0 - \sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta) & \cos(\varphi) - \sin(\varphi) - \sin(\theta) & \cos(\varphi) \\ \cos(\theta) & \sin(\varphi) & \cos(\varphi) - \sin(\theta) & \sin(\varphi) \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \end{split}$$

Matrix für Schritt 1:
$$D_{\hat{\mathbf{y}},\,+ heta}\circ D_{\hat{\mathbf{z}},\,-arphi}=\left(D_{\hat{\mathbf{z}},\,+arphi}\circ D_{\hat{\mathbf{y}},\,- heta}
ight)^{-1}$$

Da die eben ermittelte Matrix (wie **jede** Drehmatrix) **orthogonal** ist, erhalten wir ihre jetzt gesuchte Inverse durch **Transposition**:

$$\begin{split} \left[D_{\hat{\mathbf{y}}, +\theta} \circ D_{\hat{\mathbf{z}}, -\varphi} \right] &= \begin{bmatrix} \cos(\theta) \cos(\varphi) - \sin(\varphi) - \sin(\theta) \cos(\varphi) \\ \cos(\theta) \sin(\varphi) & \cos(\varphi) - \sin(\theta) \sin(\varphi) \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}^\mathsf{T} \\ &= \begin{bmatrix} \cos(\theta) \cos(\varphi) & \cos(\theta) \sin(\varphi) & \sin(\theta) \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ -\sin(\theta) \cos(\varphi) - \sin(\theta) \sin(\varphi) \cos(\theta) \end{bmatrix} \end{split}$$

Drehungen um beliebige Drehachsen

Abbildungsmatrix von $D_{\hat{\mathbf{a}}, \delta}$:

Das Matrixprodukt

$$R := \left[D_{\hat{\mathbf{a}},\delta}\right] = \underbrace{\left[D_{\hat{\mathbf{z}},+\varphi} \circ D_{\hat{\mathbf{y}},-\theta}\right]}_{\text{Schritt 3}} \cdot \underbrace{\left[D_{\hat{\mathbf{x}},+\delta}\right]}_{\text{Schritt 2}} \cdot \underbrace{\left[D_{\hat{\mathbf{y}},+\theta} \circ D_{\hat{\mathbf{z}},-\varphi}\right]}_{\text{Schritt 1}}$$

muss nun ausgerechnet werden.

Matrixprodukt

Wir beginnen mit dem Produkt der mittleren und der rechten Matrix:

$$\left[\boldsymbol{D}_{\hat{\mathbf{x}},+\delta}\right]\cdot\left[\boldsymbol{D}_{\hat{\mathbf{y}},+\theta}\circ\boldsymbol{D}_{\hat{\mathbf{z}},-\varphi}\right]=\left[\begin{smallmatrix}1&0&0\\0&\cos(\delta)&-\sin(\delta)\\0&\sin(\delta)&\cos(\delta)\end{smallmatrix}\right]\cdot\left[\begin{smallmatrix}\cos(\theta)&\cos(\varphi)&\cos(\theta)\sin(\varphi)&\sin(\theta)\\-\sin(\varphi)&\cos(\varphi)&0\\-\sin(\theta)\cos(\varphi)&-\sin(\theta)\sin(\varphi)\cos(\theta)\end{smallmatrix}\right]$$

Drehungen um beliebige Drehachsen

Produkt $\left[D_{\hat{\mathbf{x}},+\delta}\right]\cdot\left[D_{\hat{\mathbf{y}},+ heta}\circ D_{\hat{\mathbf{z}},-arphi} ight]$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\delta) & -\sin(\delta) \\ 0 & \sin(\delta) & \cos(\delta) \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta) & \cos(\varphi) & \cos(\theta) & \sin(\varphi) & \sin(\theta) \\ -\sin(\varphi) & \cos(\varphi) & 0 \\ -\sin(\theta) & \cos(\varphi) & -\sin(\theta) & \sin(\varphi) & \cos(\theta) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & \cos(\varphi) & \cos(\varphi) & \sin(\varphi) & \sin(\varphi) \\ -\cos(\delta) & \sin(\varphi) & +\sin(\delta) & \sin(\theta) & \cos(\varphi) & \cos(\delta) & \cos(\varphi) & +\sin(\delta) & \sin(\varphi) & -\sin(\delta) & \cos(\theta) \\ -\sin(\delta) & \sin(\varphi) & -\cos(\delta) & \sin(\theta) & \cos(\varphi) & \sin(\delta) & \cos(\varphi) & -\cos(\delta) & \sin(\theta) & \sin(\varphi) & \cos(\delta) & \cos(\theta) \end{bmatrix}$$

Vereinfachung der Notation

Zur Abkürzung verwenden wir die kartesischen Koordinaten des Achsenvektors â:

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} \cos(\theta) \cos(\varphi) \\ \cos(\theta) \sin(\varphi) \\ \sin(\theta) \end{pmatrix}$$

$$\sim \Rightarrow \begin{bmatrix} a_1 & a_2 & a_3 \\ -\cos(\delta) \sin(\varphi) + \sin(\delta) \sin(\theta) \cos(\varphi) & \cos(\delta) \cos(\varphi) + \sin(\delta) \sin(\theta) \sin(\varphi) & -\sin(\delta) \cos(\theta) \\ -\sin(\delta) \sin(\varphi) - \cos(\delta) \sin(\theta) \cos(\varphi) & \sin(\delta) \cos(\varphi) - \cos(\delta) \sin(\theta) \sin(\varphi) & \cos(\delta) \cos(\theta) \end{bmatrix}$$

Drehungen um beliebige Drehachsen

Produkt R

$$R = \begin{bmatrix} a_1 - \sin(\varphi) - \sin(\theta) \cos(\varphi) \\ a_2 \cos(\varphi) - \sin(\theta) \sin(\varphi) \\ a_3 & 0 & \cos(\theta) \end{bmatrix}$$

$$\cdot \begin{bmatrix} a_1 & a_2 & a_3 \\ -\cos(\delta) \sin(\varphi) + \sin(\delta) \sin(\theta) \cos(\varphi) & \cos(\delta) \cos(\varphi) + \sin(\delta) \sin(\theta) \sin(\varphi) & -\sin(\delta) \cos(\theta) \\ -\sin(\delta) \sin(\varphi) - \cos(\delta) \sin(\theta) \cos(\varphi) & \sin(\delta) \cos(\varphi) - \cos(\delta) \sin(\theta) \sin(\varphi) & \cos(\delta) \cos(\theta) \end{bmatrix}$$

Ergebnis (nach einiger Rechnung)

$$\begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{a}},\,\delta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_1^2\right) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_2 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_2^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_2^2\right) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_1 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_2 \cdot \sin(\delta) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_1 \cdot \sin(\delta) & \boldsymbol{a}_3^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_3^2\right) \end{bmatrix}$$

Drehungen um beliebige Drehachsen

Hörsaalübung:

Testen Sie die eben abgeleitete Formel

$$\begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{a}},\,\delta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_1^2\right) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_2 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_2^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_2^2\right) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_1 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_2 \cdot \sin(\delta) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_1 \cdot \sin(\delta) & \boldsymbol{a}_3^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_3^2\right) \end{bmatrix}$$

auf Plausibilität, indem Sie die Werte

•
$$\hat{\mathbf{a}} = \hat{\mathbf{x}}, \ \delta = \alpha$$

•
$$\hat{\mathbf{a}} = \hat{\mathbf{y}}, \ \delta = \beta$$
,

•
$$\hat{\mathbf{a}} = \hat{\mathbf{z}}, \ \delta = \gamma$$

einsetzen.

Drehungen um beliebige Drehachsen

Hörsaalübung

Setzen Sie in die abgeleitete Formel

$$\begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{a}},\,\delta} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_1^2\right) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_2 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_2 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_3 \cdot \sin(\delta) & \boldsymbol{a}_2^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_2^2\right) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_1 \cdot \sin(\delta) \\ \boldsymbol{a}_1 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) - \boldsymbol{a}_2 \cdot \sin(\delta) & \boldsymbol{a}_2 \cdot \boldsymbol{a}_3 \cdot (1 - \cos(\delta)) + \boldsymbol{a}_1 \cdot \sin(\delta) & \boldsymbol{a}_3^2 + \cos(\delta) \cdot \left(1 - \boldsymbol{a}_3^2\right) \end{bmatrix}$$

den Vektor $\hat{\mathbf{a}} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ und den Winkel $\delta = 120^\circ$ mit $\cos{(120^\circ)} = -\frac{1}{2}$ und $\sin{(120^\circ)} = \frac{\sqrt{3}}{2}$ ein. Sie erhalten eine verblüffend einfache Matrix, diskutieren Sie, wie diese den Einheitswürfel abbildet.

Ende 3. Sitzung MIB (10.04.2018).

Erinnerung Lage von Objekten im Raum

Ausgangssituation

Es sei ein ein festes kartesisches Weltkoordinatensystem (WKS) mit Ursprung O festgelegt.

Möglichkeiten

- Führe ein kartesisches Objektkoordinatensystem (OKS) $(\vec{u}, \vec{v}, \vec{w})$ ein und spezifiziere die Objektbasisvektoren bezüglich des WKS.
- Gebe eine Drehung bzw. eine orthogonale 3×3 -Matrix M an, welche das WKS in das OKS überführt.
- Gebe eine Drehachse $\langle \hat{\mathbf{v}} \rangle$ und einen Drehwinkel α so an, dass die Drehung $D_{\langle \hat{\mathbf{v}} \rangle, \alpha}$ das WKS in das OKS überführt.
- Spezifiziere eine Sequenz von Standarddrehungen, z.B.
 - Pan-, Tilt-, Roll-Bewegung bzw.
 - Gier-, Nick-, Roll-Bewegung.

Erinnerung Kameraorientierung

Kameraorientierung

- Es sei gegeben ein kartesisches Weltkoordinatensystem $(\hat{x}, \hat{y}, \hat{z})$.
- Kameras sind üblicherweise auf einem Stativ montiert, bei denen die Drehachse für Pan-Bewegungungen festgelegt ist; wir legen fest, dass diese Drehachse mit der Welt-z-Achse übereinstimmt. In der Kamerahalterung befindet sich ein Gelenk, das das Auf- und Abschwenken (*Tilt*) der Kamera ermöglicht. Dieses Gelenk werde mitbewegt, wenn eine Pan-Drehung durchgeführt wird.
- Wir führen in einer Kamera ein lokales Koordinatensystem $(\hat{x}_K, \hat{y}_K, \hat{z}_K)$ ein.
- Der Vektor \hat{x}_K zeige in Richtung der optischen Achse (Längsachse) der Kamera, und zwar vom Sensor in Richtung des Objektivs, \hat{y} markiere die Kameraquerachse, \hat{z}_K die Hochachse. Es gelte $\hat{x}_K \times \hat{y}_K = \hat{z}_K$.

Zur Verdeutlichung:

Eine Drehung

- mit Drehachse \hat{z} ist eine **Pan**-Bewegung,
- mit Drehachse \hat{x}_K ist eine **Roll**-Bewegung.

Die Achse der **Tilt**-Bewegung geht aus der Welt-y-Achse durch die Pan-Bewegung hervor. Ihr Achsenvektor stimmt im Allgemeinen weder mit \hat{y} noch mit \hat{y}_K überein.

Euler-Winkel

Variante Pan - Tilt - Roll

Wir nehmen an, dass eine Kamera anfänglich am Weltkoordinatensystem ausgerichtet ist, d.h. $\hat{\mathbf{x}}_K = \hat{\mathbf{x}}, \ \hat{\mathbf{y}}_K = \hat{\mathbf{y}}, \ \hat{\mathbf{z}}_K = \hat{\mathbf{z}}$ und betrachten die folgende Sequenz von Drehungen:

- Pan: Drehung (um die Kamera-Hochachse) mit Achsenvektor $\hat{\mathbf{z}}_K = \hat{\mathbf{z}}$ und Drehwinkel γ ,
- Tilt: Drehung (um die Kamera-Querachse) mit Achsenvektor $\hat{\mathbf{y}}'_{\mathcal{K}}$ und Drehwinkel β ,
- Roll: Drehung (um die Kamera-Längsachse) mit Achsenvektor $\hat{\mathbf{x}}_{\mathcal{K}}''$ und Drehwinkel α .

Nachdem eine Pan-Bewegung mit Winkel $\gamma \neq 0$ ausgeführt ist, stimmt der Kamera-y-Achsenvektor nicht mehr mit dem Welt-y-Achsenvektor und damit auch **nicht** mit dem **ursprünglichen** Kamera-y-Achsenvektor überein, daher die Bezeichnung $\hat{\mathbf{y}}'_{K}$, usw.

Euler-Winkel: Variante Pan – Tilt – Roll

Darstellung der Drehungen

Pan: Vor und während der Pan-Bewegung stimmt die Kamera-z-Achse (um die gedreht wird) mit der Welt-z-Achse überein, aso gilt

$$D_{\hat{\mathbf{z}}_{\mathcal{K}},\,\gamma}=D_{\hat{\mathbf{z}},\,\gamma}.$$

Tilt: Nach erfolgter *Pan*-Bewegung steht die Kamera-*y*-Achse im Winkel γ zur Welt-*y*-Achse. Der Achsenvektor $\hat{\mathbf{y}}'_{K}$ hat die Kugelkoordinaten $\theta = 0$ und $\varphi = 90^{\circ} + \gamma$. Wir können die *Tilt*-Bewegung nach dem Dreischrittverfahren wie folgt darstellen:

$$D_{\hat{\mathbf{y}}_{\mathbf{K}}',\,eta} = D_{\hat{\mathbf{z}},\,\gamma} \circ D_{\hat{\mathbf{y}},\,eta} \circ D_{\hat{\mathbf{z}},\,-\gamma}.$$

Roll: Nachdem zuerst die *Pan*-Bewegung und danach die *Tilt*-Bewegung erfolgt ist, hat sich die Kamera-x-Achse von der Ausgangslage $\hat{\mathbf{x}}_K = \hat{\mathbf{x}}$ über die Zwischenlage $\hat{\mathbf{x}}_K'$ in die Endlage $\hat{\mathbf{x}}_K''$ bewegt. Der Achsenvektor $\hat{\mathbf{x}}_K''$ hat die Kugelkoordinaten $\theta = -\beta$ und $\varphi = \gamma$. Wir stellen die *Roll*-Bewegung nach dem Dreischrittverfahren wie folgt dar:

$$D_{\hat{\mathbf{x}}_{K}^{\prime\prime},\,\alpha}=D_{\hat{\mathbf{z}},\,\gamma}\circ D_{\hat{\mathbf{y}},\,\beta}\circ D_{\hat{\mathbf{x}},\,\alpha}\circ D_{\hat{\mathbf{y}},\,-eta}\circ D_{\hat{\mathbf{z}},\,-\gamma}.$$

Euler-Winkel: Variante Pan – Tilt – Roll

Kombination der drei Drehungen

$$\begin{split} &\underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{y}}_{K}',\beta}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}}_{K},\gamma}}_{Pan} \\ &= \underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{y}}_{K}',\beta}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}},\gamma}}_{Pan} \\ &= \underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta} \circ D_{\hat{\mathbf{z}},-\gamma}}_{Tilt} \circ D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{z}},\gamma} \\ &= \underbrace{D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta} \circ D_{\hat{\mathbf{x}},\alpha} \circ D_{\hat{\mathbf{y}},-\beta} \circ D_{\hat{\mathbf{z}},-\gamma}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta} \circ D_{\hat{\mathbf{z}},-\gamma}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}},\gamma}}_{Pan} \\ &= D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta} \circ D_{\hat{\mathbf{x}},\alpha} \circ D_{\hat{\mathbf{y}},-\beta} \circ \underbrace{(D_{\hat{\mathbf{z}},-\gamma} \circ D_{\hat{\mathbf{z}},\gamma})}_{id} \circ D_{\hat{\mathbf{y}},\beta} \circ \underbrace{(D_{\hat{\mathbf{z}},-\gamma} \circ D_{\hat{\mathbf{z}},\gamma})}_{id} \\ &= D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta} \circ D_{\hat{\mathbf{x}},\alpha} \underbrace{O_{\hat{\mathbf{y}},-\beta} \circ D_{\hat{\mathbf{y}},\beta}}_{id} \end{aligned}$$

Euler-Winkel: Variante Pan – Tilt – Roll

Kombination der drei Drehungen – Ergebnis

$$\underbrace{D_{\hat{\mathbf{x}}_{K}'',\,\alpha}}_{\textit{Roll}} \circ \underbrace{D_{\hat{\mathbf{y}}_{K}',\,\beta}}_{\textit{Tilt}} \circ \underbrace{D_{\hat{\mathbf{z}}_{K},\,\gamma}}_{\textit{Pan}} = D_{\hat{\mathbf{z}},\,\gamma} \circ D_{\hat{\mathbf{y}},\,\beta} \circ D_{\hat{\mathbf{x}},\,\alpha}$$

Das heißt, die Sequenz der Drehungen um die Kamerkoordinatenachsen liefert die gleiche Orientierung wie drei Drehungen um die Weltkoordinatenachsen, die Reihenfolge ist hierbei genau umgekehrt.

Euler-Winkel: Variante Pan – Tilt – Roll

Satz über die Zerlegung von Drehungen

1 Wir können jede beliebige Drehung D in der Form

$$D = D_{\hat{\mathbf{z}},\,\gamma} \circ D_{\hat{\mathbf{y}},\,eta} \circ D_{\hat{\mathbf{x}},\,lpha}$$

darstellen.

Wir können jede beliebige Kameraorientierung durch eine Folge von Drehungen um Kameraachsen

$$\underbrace{D_{\hat{\mathbf{x}}_{K}^{\prime\prime},\,\alpha}^{\prime\prime}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{y}}_{K}^{\prime},\,\beta}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}}_{K},\,\gamma}}_{Pan}$$

erreichen.

Zur Begründung

Wir werden im Folgenden zu jeder gegebenen Drehmatrix $[D] = [u \ v \ w]$ die sogenannten **Euler-Winkel** (α, β, γ) bestimmen lernen.

Euler-Winkel: Variante Pan – Tilt – Roll

Satz über Euler-Winkel, Teil 1

• Es sei eine Drehung D durch ihre Abbildungsmatrix

$$[D]_K = [\mathbf{u} \, \mathbf{v} \, \mathbf{w}] = \left[egin{matrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{smallmatrix}
ight]$$

bzgl. des **Weltkoordinatensystems** *K* gegeben.

- Das bedeutet $\left(D\left(\hat{\mathbf{x}}\right)\right)_{K} = \mathbf{u}, \quad \left(D\left(\hat{\mathbf{y}}\right)\right)_{K} = \mathbf{v}, \quad \left(D\left(\hat{\mathbf{z}}\right)\right)_{K} = \mathbf{w}.$
- Es sei ferner \mathbf{u}' die Projektion des Vektors \mathbf{u} in die x-y-Ebene, d.h. $\mathbf{u}' = \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix}$.
- Schließlich sei $\mathbf{k} := \hat{\mathbf{z}} \times \mathbf{u}$ der sogenannte Knotenvektor (\bigstar).
- Wir betrachten zunächst den Fall $\mathbf{u}' \neq 0$ (d.h. \mathbf{u} zeigt **nicht** in Richtung der z-Achse von K), verwenden den Azimutwinkel φ und den Latitudinalwinkel θ des Vektors \mathbf{u} sowie den Winkel \angle (\mathbf{k} , \mathbf{v}) (vgl. Folie 63) und setzen:

$$\gamma := \varphi, \qquad \beta := -\theta, \qquad \alpha := egin{cases} \measuredangle(\mathbf{k}, \mathbf{v}) & \text{falls } \mathbf{v}_3 \geq \mathbf{0}, \\ -\measuredangle(\mathbf{k}, \mathbf{v}) & \text{falls } \mathbf{v}_3 < \mathbf{0}. \end{cases}$$

Dann gilt $D = D_{\hat{\mathbf{z}}, \gamma} \circ D_{\hat{\mathbf{y}}, \beta} \circ D_{\hat{\mathbf{x}}, \alpha}$

Euler-Winkel: Variante Pan – Tilt – Roll

★ Bemerkung

Der Vektor **k** steht senkrecht auf $\hat{\mathbf{z}}$ und auf **u**. Er liegt somit auf der Schnittgeraden (Knotenlinie) der Ebene \mathbf{u}^{\perp} und der Ebene \mathbf{z}^{\perp} (x-y-Ebene). Durch die Drehungen $D_{\hat{\mathbf{y}}'_{K},\beta} \circ D_{\hat{\mathbf{z}}_{K},\gamma} = D_{\hat{\mathbf{z}},\gamma} \circ D_{\hat{\mathbf{y}},\beta}$ wird $\hat{\mathbf{y}}$ auf **k** abgebildet. Da andererseits

$$\mathbf{v} = D\left(\hat{\mathbf{y}}\right) = \underbrace{\left(\underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}^{"}}_{Roll} \circ \underbrace{D_{\hat{\mathbf{y}}_{K}',\beta}^{"}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}}_{K},\gamma}^{"}}_{Pan}\right)}_{\mathbf{\hat{y}}}\left(\hat{\mathbf{y}}\right)$$

$$= \underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}^{"}}_{Roll}\left(\underbrace{\underbrace{D_{\hat{\mathbf{y}}_{K}',\beta}^{"}}_{Tilt} \circ \underbrace{D_{\hat{\mathbf{z}}_{K},\gamma}^{"}}_{Pan}}_{Pan}\right)\left(\hat{\mathbf{y}}\right)\right) = \underbrace{D_{\hat{\mathbf{x}}_{K}'',\alpha}^{"}}_{Roll}\left(\mathbf{k}\right)$$

gilt, bestimmt $\angle (\mathbf{k}, \mathbf{v})$ den Rollwinkel α .

Bemerkung

Von zwei gegebenen Vektoren im Raum lässt sich der Betrag des Winkels bestimmen, vgl. Folie 63. Das Vorzeichen muss durch eine Fallunterscheidung gesetzt werden, vgl. Folie 64.

61/77

Orientierte Winkel im Raum

Winkel zwischen zwei Vektoren im Raum

Der Winkel $\angle \left(\vec{a}, \vec{b}\right)$ zwischen zwei Vektoren $\vec{a} \neq 0$ und $\vec{b} \neq 0$ im Raum wird wie folgt ermittelt:

• Falls $\vec{a} \times \vec{b} \neq 0$ gilt, so verwenden wir dieses Kreuzprodukt als Drehachsenvektor. Wenn dann $D_{\vec{a} \times \vec{b}, \, \alpha}$ den Vektor \vec{a} auf den Vektor \vec{b} abbildet, so ist

$$\measuredangle\left(\vec{a},\vec{b}\right)=\alpha.$$

• Falls $\vec{a} \times \vec{b} = 0$, so

$$\measuredangle\left(\vec{a},\vec{b}\right) = \begin{cases} 0 & \text{falls } \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|\|\vec{b}\|} = 1\\ 180^{\circ} & \text{falls } \frac{\vec{a}\cdot\vec{b}}{\|\vec{a}\|\|\vec{b}\|} = -1. \end{cases}$$

Anschaulich:

Man stellt sich vor, dass \vec{a} und \vec{b} starr miteinander verbunden sind. Wenn man dann \vec{a} und \vec{b} so "auf die Zeichenebene legt", dass $\vec{a} \times \vec{b}$ nach oben zeigt, welche Drehung muss man durchführen, um \vec{a} dorthin zu drehen, wo \vec{b} liegt?

Orientierte Winkel im Raum

Orientierter Winkel zwischen zwei Vektoren im Raum

Um einen **orientierten Winkel** zwischen zwei Vektoren $\vec{a} \neq 0$ und $\vec{b} \neq 0$ im Raum zu erhalten, muss die Ebene, in der die beiden Vektoren liegen, etwa durch die Wahl eines Normaleneinheitsvektors $\hat{\bf n}$ orientiert werden.

- Falls dann $\vec{a} \times \vec{b}$ ein **positives** Vielfaches von $\hat{\bf n}$ ist (also in die gleiche Richtung zeigt wie $\hat{\bf n}$), so ist der **orientierte Winkel** gleich $+ \angle \left(\vec{a}, \vec{b} \right)$.
- Falls $\vec{a} \times \vec{b}$ ein **negatives** Vielfaches von $\hat{\bf n}$ ist (also in die zu $\hat{\bf n}$ entgegengesetzte Richtung zeigt), so ist der **orientierte Winkel** gleich $-\angle \left(\vec{a}, \vec{b}\right)$.

Beispiel

Auf Folie 64 wurde der Roll-Winkel α ermittelt. Hier ist jeweils zu prüfen, ob $\mathbf{k} \times \mathbf{v}$ in die gleiche Richtung wie \mathbf{u} zeigt. Dies ist wegen

$$\begin{aligned} \boldsymbol{k} \times \boldsymbol{v} &= \left(\hat{\boldsymbol{z}} \times \boldsymbol{u} \right) \times \boldsymbol{v} \\ &= \left(\hat{\boldsymbol{z}} \cdot \boldsymbol{v} \right) \, \boldsymbol{u} - \left(\boldsymbol{u} \cdot \boldsymbol{v} \right) \, \hat{\boldsymbol{z}} \\ &= \left(\hat{\boldsymbol{z}} \cdot \boldsymbol{v} \right) \, \boldsymbol{u} = \boldsymbol{\nu}_3 \, \boldsymbol{u} \end{aligned}$$

dann der Fall, wenn $v_3 > 0$ gilt.

Euler-Winkel: Variante Pan – Tilt – Roll

Satz über Euler-Winkel, Teil 1 (alternative Darstellung)

Es sei eine Drehung D durch ihre Abbildungsmatrix

$$[D]_{\mathcal{K}} = [\mathbf{u} \ \mathbf{v} \ \mathbf{w}] = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$$

bzgl. des **Weltkoordinatensystems** K gegeben, d.h. $\left(D\left(\hat{\mathbf{x}}\right)\right)_K = \mathbf{u}, \quad \left(D\left(\hat{\mathbf{y}}\right)\right)_K = \mathbf{v}, \quad \left(D\left(\hat{\mathbf{z}}\right)\right)_K = \mathbf{w}.$

• Es sei Ψ der **Polarwinkel** des Vektors **u**, d.h. $\Psi = \measuredangle \left(\hat{\mathbf{z}}, \mathbf{u} \right)$. Dann setzen wir

$$heta = 90^{\circ} - \Psi$$
 und $eta := - heta = \Psi - 90^{\circ}$

- Es sei ferner \mathbf{u}' die Projektion des Vektors \mathbf{u} in die x-y-Ebene, d.h. $\mathbf{u}' = \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix}$, und es sei $\mathbf{k} := \hat{\mathbf{z}} \times \mathbf{u}$ der Knotenvektor.
- Für den Fall $\mathbf{u}' \neq 0$ setzen wir:

$$\gamma := \begin{cases} \measuredangle \left(\hat{\mathbf{x}}, \mathbf{u}' \right) & \text{falls } u_2 \geq 0, \\ -\measuredangle \left(\hat{\mathbf{x}}, \mathbf{u}' \right) & \text{falls } u_2 < 0. \end{cases},$$

$$\alpha := \begin{cases} \measuredangle \left(\mathbf{k}, \mathbf{v} \right) & \text{falls } v_3 \geq 0, \\ -\measuredangle \left(\mathbf{k}, \mathbf{v} \right) & \text{falls } v_3 < 0. \end{cases}$$

Dann gilt $D = D_{\hat{\mathbf{z}}, \gamma} \circ D_{\hat{\mathbf{y}}, \beta} \circ D_{\hat{\mathbf{x}}, \alpha}$

Euler-Winkel: Variante Pan – Tilt – Roll

Satz über Euler-Winkel, Teil 2

Es sei weiterhin $[D]_K = [\mathbf{u} \mathbf{v} \mathbf{w}] = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$ und $\mathbf{u}' = \begin{pmatrix} u_1 \\ u_2 \\ 0 \end{pmatrix}$. Wir müssen nun noch die verbleibenden Sonderfälle $\mathbf{u} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ und $\mathbf{u} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ betrachten:

• Für $\mathbf{u} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ ergibt sich $\Psi = \mathbf{0}^{\circ}$ und somit $\beta = -9\mathbf{0}^{\circ}$.

Panwinkel γ und Rollwinkel α sind nicht eindeutig bestimmt. Vielmehr gilt für jede Kombination von α und γ mit $\alpha + \gamma = \measuredangle\left(\hat{\mathbf{y}},\mathbf{v}\right)$ die Gleichung

$$D = D_{\hat{\mathbf{z}}, \gamma} \circ D_{\hat{\mathbf{y}}, \beta} \circ D_{\hat{\mathbf{x}}, \alpha}.$$

• Für $\mathbf{u} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ ergibt sich $\Psi = 180^{\circ}$ und somit $\beta = 90^{\circ}$.

Panwinkel γ und Rollwinkel α sind auch hier nicht eindeutig bestimmt. Vielmehr gilt für jede Kombination von α und γ mit $-\alpha + \gamma = \measuredangle\left(\hat{\mathbf{y}}, \mathbf{v}\right)$ die Gleichung

$$D = D_{\hat{\mathbf{z}}, \gamma} \circ D_{\hat{\mathbf{y}}, \beta} \circ D_{\hat{\mathbf{x}}, \alpha}.$$

Um Eindeutigkeit herzustellen, können wir z.B. vereinbaren, dass

$$\alpha = \mathbf{0}^{\circ}$$
 und $\gamma = \measuredangle \left(\hat{\mathbf{y}}, \mathbf{v} \right)$

gelten soll.

Euler-Winkel: Variante Pan - Tilt - Roll

Hörsaalübung

Betrachten Sie die in Übungseinheit 1 eingeführte Drehung *D* mit Abbildungsmatrix

und bestimmen Sie hierzu die Euler-Winkel α , β und γ .

Euler-Winkel: Variante Pan – Tilt – Roll

Hörsaalübung – Lösung

Anhand der Abbildungsmatrix $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ der Drehung *D* lesen wir ab:

$$\hat{\mathbf{x}} \mapsto \hat{\mathbf{y}} := \mathbf{u}$$

$$\hat{\mathbf{y}}\mapsto\hat{\mathbf{z}}:=\mathbf{v}$$

$$\hat{\mathbf{z}}\mapsto\hat{\mathbf{x}}:=\mathbf{w}$$

Da $\mathbf{u} = \hat{\mathbf{y}}$ (bereits) in der x-y-Ebene liegt, gilt auch für auch seine Projektion $\mathbf{u}' = \hat{\mathbf{y}}$.

Somit ist $\Psi = 90^{\circ}$ und $\beta = 0^{\circ}$.

Ferner gilt $\mathbf{k} = \hat{\mathbf{z}} \times \mathbf{u} = \hat{\mathbf{z}} \times \hat{\mathbf{y}} = -\hat{\mathbf{x}}$. Somit gilt

$$\gamma = + \measuredangle \left(\hat{\mathbf{x}}, \mathbf{u}' \right) = + \measuredangle \left(\hat{\mathbf{x}}, \hat{\mathbf{y}} \right) = 90^{\circ},$$

$$\alpha = + \measuredangle (\mathbf{k}, \mathbf{v}) = \measuredangle (-\hat{\mathbf{x}}, \hat{\mathbf{z}}) = 90^{\circ}.$$

Ergebnis: $D = D_{\hat{\mathbf{z}},90^{\circ}} \circ D_{\hat{\mathbf{y}},0^{\circ}} \circ D_{\hat{\mathbf{x}},90^{\circ}}$.

Hörsaalübung – Probe:

Rechnen Sie das Matrixprodukt $[D_{\hat{\mathbf{z}},90^{\circ}}] \cdot [D_{\hat{\mathbf{y}},0^{\circ}}] \cdot [D_{\hat{\mathbf{x}},90^{\circ}}]$ aus.

Drehachsen- und Drehwinkelbestimmung

Drehachsenbestimmung

Auf Folie 21 haben wir festgestellt: Zu **jeder** orthogonalen 3×3 -Matrix $R = [u \ v \ w]$ mit $w = u \times v$ lässt sich ein Achsenvektor \hat{a} und ein Drehwinkel φ so finden, dass $[D_{\hat{a},\varphi}] = R$ gilt.

Vorgehensweise zur Bestimmung eines Achsenvektors

Ist \vec{a} ein Achsenvektor von $R \neq E_3$, so gilt

$$R \cdot \vec{a} = \vec{a} = E_3 \cdot \vec{a}$$

 $\Rightarrow R \cdot \vec{a} - E_3 \cdot \vec{a} = 0 \text{ bzw. } (R - E_3) \cdot \vec{a} = 0$
 $\Rightarrow \begin{bmatrix} R_{11} - 1 & R_{12} & R_{13} \\ R_{21} & R_{22} - 1 & R_{23} \\ R_{31} & R_{32} & R_{33} - 1 \end{bmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$

Man erkennt anhand der letzten Gleichung, dass der Vektor $(\vec{a}) = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ auf jedem der **Zeilenvektoren** $z_1 = (R_{11}-1 R_{12} R_{13}), z_2 = (R_{21} R_{22}-1 R_{23})$ und $z_3 = (R_{31} R_{32} R_{33}-1)$ der Matrix $R - E_3$ senkrecht steht.

Drehachsen- und Drehwinkelbestimmung

Vorgehensweise zur Bestimmung eines Achsenvektors:

Wir werten die Gleichung $\begin{bmatrix} R_{11}-1 & R_{12} & R_{13} \\ R_{21} & R_{22}-1 & R_{23} \\ R_{31} & R_{32} & R_{33}-1 \end{bmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ aus.

Für jeden der drei Zeilenvektoren $z_1 = (R_{11}-1 \ R_{12} \ R_{13}), \ z_2 = (R_{21} \ R_{22}-1 \ R_{23})$ und $z_3 = (R_{31} \ R_{32} \ R_{33}-1)$ der Matrix $R - E_3$ gilt

$$z_1^{\mathsf{T}} \cdot \vec{a} = 0, \quad z_2^{\mathsf{T}} \cdot \vec{a} = 0, \quad z_3^{\mathsf{T}} \cdot \vec{a} = 0$$

Wir nutzen dies zur Bestimmung des Achsenvektors und setzen

$$\vec{a} := z_1^\mathsf{T} \times z_2^\mathsf{T},$$

falls $z_1^T \times z_2^T \neq \vec{0}$ gilt. Ansonsten^a setzen wir

$$\vec{a} := z_2^\mathsf{T} \times z_3^\mathsf{T}$$
 bzw. $\vec{a} := z_3^\mathsf{T} \times z_1^\mathsf{T}$.

^aWenn R nicht gerade gleich der Einheitsmatrix E_3 ist, hat die Matrix $R - E_3$ den Rang 2, d.h. es kann **nicht** vorkommen, dass mehr als eines der Kreuzprodukte $z_i^T \times z_i^T$ gleich Null ist.

Drehachsen- und Drehwinkelbestimmung

Drehwinkelbestimmung

Ist für eine gegebene orthogonale 3×3 -Matrix $R = [u \ v \ w]$ mit $w = u \times v$ ein Achsenvektor \hat{a} bekannt, so lässt sich der Drehwinkel δ finden mit der Eingenschaft, dass $[D_{\hat{a},\delta}] = R$ gilt.

Vorgehensweise 1 zur Bestimmung des Drehwinkels bei geg. Achsenvektor

Ist \vec{a} ein Achsenvektor von $R \neq E_3$,

- so wähle einen Vektor \vec{b} , der kein Vielfaches von \vec{a} ist,
- berechne $\vec{c} := \vec{b} \times \vec{a}$,
- berechne $\vec{c}' := R \cdot \vec{c}$ sowie den Betrag des Winkels δ zwischen \vec{c} und \vec{c}' mit der Gleichung

$$\cos(\delta) = \frac{\vec{c} \cdot \vec{c}'}{\|\vec{c}\| \|\vec{c}'\|}.$$

• Das Vorzeichen von δ ermittelt sich wie folgt:

$$\begin{aligned} &\text{Ist } (\vec{c} \times \vec{c}') \cdot \vec{a} > 0 \text{, so ist } \delta := + \arccos\left(\frac{\vec{c} \cdot \vec{c}'}{\|\vec{c}\| \|\vec{c}'\|}\right). \\ &\text{Ist dagegen } (\hat{c} \times \hat{c}') \cdot \hat{a} < 0 \text{, so ist } \delta := - \arccos\left(\frac{\vec{c} \cdot \vec{c}'}{\|\vec{c}\| \|\vec{c}'\|}\right). \end{aligned}$$

70/77

Drehachsen- und Drehwinkelbestimmung

Ein Satz über Drehmatrizen

An den Matrizen für Drehungen um Koordinatenachsen

$$\begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{\chi}},\,\alpha} \end{bmatrix} = \begin{bmatrix} \begin{smallmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}, \; \begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{y}},\,\beta} \end{bmatrix} = \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}, \; \begin{bmatrix} \boldsymbol{D}_{\hat{\boldsymbol{z}},\,\gamma} \end{bmatrix} = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

leiten wir die folgende Vermutung ab:

Für die sogenannte **Spur** $Sp(R) := R_{11} + R_{22} + R_{33}$ jeder Drehmatrix R gilt

$$Sp(R) = 2 \cos(\delta) + 1,$$

wobei δ der zu R gehörige Drehwinkel ist.

Begründung

Wir betrachten die Matrix $D_{\hat{a},\delta}$ mit normierten Drehachsenvektor \hat{a} und Drehwinkel δ auf Folie 50. Für die Spur diese Matrix ergibt sich

$$Sp(D_{\hat{a},\delta}) = a_1^2 + a_2^2 + a_3^2 + \cos(\delta) \cdot (3 - a_1^2 - a_2^2 - a_3^2 = 1 + \cos(\delta) \cdot (3 - 1) = 1 + 2 \cdot \cos(\delta).$$

Drehachsen- und Drehwinkelbestimmung

Bestimmung des Betrags des Drehwinkels δ :

Durch Umstellen der Beziehung

$$Sp(D) = 2 \cos \delta + 1,$$

erhalten wir

$$\cos \delta = \frac{Sp(D) - 1}{2} = \frac{D_{11} + D_{22} + D_{33} - 1}{2}$$

$$\rightsquigarrow |\delta| = \arccos\left(\frac{Sp(D) - 1}{2}\right)$$

Das Vorzeichen des Winkels δ bestimmen wir, wie auf Folie 74 dargestellt.

Drehachsen- und Drehwinkelbestimmung

Zur Bestimmung des Vorzeichens des Drehwinkels ...

- betrachten wir die Darstellung der Drehmatrix $D_{\hat{a},\delta}$ mit normierten Drehachsenvektor \hat{a} und Drehwinkel δ auf Folie 50.
- Die Wahl des Vorzeichens des Drehwinkels hängt (natürlich) mit der Wahl des Drehachsenvektors \hat{a} bzw. seines Gegenvektors zusammen. Um hier eine konsistente Wahl zu treffen, gehen wir wie folgt vor:
 - Wir bestimmen mit der eben geschilderten Vorgehensweise einen normierten Drehachsenvektor \hat{a} sowie den Betrag $|\delta|$ des Drehwinkels.
 - Wir setzen in die Formel für $D_{\hat{a},\delta}$ die Komponenten (a_1, a_2, a_3) des Drehachsenvektors sowie $|\delta|$ in das Matrixelement (2,1) oder (3,1) ein und prüfen, ob der Wert dieses Eintrags gleich dem entsprechenden Eintrag der gegebenen Matrix R ist. Wenn das so ist, gilt $\delta = |\delta|$ andernfalls $\delta = -|\delta|$.
 - Sollte der Achsenvektor ein Vielfaches von \hat{x} sein, so setzt man $|\delta|$ in den Eintrag (3,2) oder (2,3) ein.

Drehachsen- und Drehwinkelbestimmung

Alternative zur Bestimmung des Vorzeichens des Drehwinkels ...

- Falls der Achsenvektor \vec{a} kein Vielfaches von \hat{x} ist, so lässt sich dem Drehwinkel δ ein Vorzeichen im Sinne der Rechte-Hand-Regel wie folgt zuordnen:
- Man betrachtet das Kreuzprodukt $\hat{x} \times \hat{u}$.
- Zeigt dieses Kreuzprodukt-Vektor in den gleichen Halbraum wie \vec{a} , ist also $(\hat{x} \times \hat{u}) \cdot \vec{a}$ positiv, so setzen wir $\delta = +\arccos\left(\frac{\operatorname{Sp}(D)-1}{2}\right)$.
- Ist dagegen $(\hat{x} \times \hat{u}) \cdot \vec{a}$ negativ, so ist $\delta = -\arccos\left(\frac{\operatorname{Sp}(D)-1}{2}\right)$.

Drehachsen- und Drehwinkelbestimmung

Hörsaalübungen:

Bestimmen Sie jeweils Drehachse und Drehwinkel für die Drehungen mit den folgenden Drehmatrizen:

$$\begin{bmatrix} D_1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{und} \quad \begin{bmatrix} D_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Wenn Sie Vorgehensweise 1 zur Drehwinkelbestimmung nutzen, können Sie z.B. $c := \hat{z} \times \vec{a}$ wählen.

Drehachsen- und Drehwinkelbestimmung

Weiterführendes:

- Wie ist der Fall zu behandeln, dass R gleich der Einheitsmatrix E₃ ist? Wie müsste man diesen Fall in einem Programm-Code zur Bestimmung von Drehachse und Drehwinkel abfangen?
- Überprüfen / begründen Sie, ob / dass jeder der Vektoren

$$\begin{pmatrix} R_{11}-1 \\ R_{12} \\ R_{13} \end{pmatrix} \times \begin{pmatrix} R_{21} \\ R_{22}-1 \\ R_{23} \end{pmatrix}, \quad \begin{pmatrix} R_{21} \\ R_{22}-1 \\ R_{23} \end{pmatrix} \times \begin{pmatrix} R_{31} \\ R_{32} \\ R_{33}-1 \end{pmatrix}, \quad \begin{pmatrix} R_{31} \\ R_{32} \\ R_{33}-1 \end{pmatrix} \times \begin{pmatrix} R_{11}-1 \\ R_{12} \\ R_{13} \end{pmatrix}$$

alle drei skalaren Gleichungen erfüllt, die sich durch Auswerten der Komponenten von

$$\begin{bmatrix} R_{11} - 1 & R_{12} & R_{13} \\ R_{21} & R_{22} - 1 & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} \cdot \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

ergeben, vgl. Folie 69.

• Überprüfen Sie die Behauptungen auf Folie 70 bzgl. des Betrags und des Vorzeichens des Drehwinkels.

Bemerkungen

Invarianz der Parameteranzahl

Jede Drehung im Raum lässt sich unabhängig von der gewählten Darstellung durch drei reelle Parameter charakterisieren.

- Ein Drehachsenvektor $\hat{\mathbf{a}}$ wird durch zwei Winkelkoordinaten θ, φ spezifiziert, der Drehwinkel δ ist der dritte Parameter.
- Nach Vorgabe der Reihenfolge stellen drei Euler-Winkel drei reelle Parameter dar.
- Soll eine Drehmatrix [D] = (u, v, w) angegeben werden, kann der Einheitsvektor u durch zwei Winkelkoordinaten θ, φ vorgegeben werden; der Vektor v muss in der zu u senkrechten Ebene u^{\perp} liegen und kann durch einen Winkel bzgl. einer ausgezeichnten Referenzlage in u^{\perp} spezifiziert werden. Zum Beispiel kann man im Falle $u = \hat{\mathbf{z}}$ den orientierten Winkel $\angle (\hat{\mathbf{y}}, v)$ wählen und im Falle $u \neq \hat{\mathbf{z}}$ den Winkel $\angle (u \times u', v)$, wobei u' die Projektion von u in die x-y-Ebene ist. Der dritte Vektor w ist dann schon durch die Bedingung $w = u \times v$ eindeutig bestimmt.

