Roll No. 0007875193 10/12/7 Total Pages: 06

BBA/D-17

14585

BUSINESS MATHEMATICS BBA-104

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt Five questions in all. Q. No. 8 is compulsory.

कुल **पाँच** प्रश्नों के उत्तर दीजिए । प्रश्न संख्या 8 अनिवार्य है ।

1. (a) Prove that:

8

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

सिद्ध कीजिए कि:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

(b) If $x\sqrt{1+y} - y\sqrt{1+x} = 0$, $x \neq y$, prove that : 8

$$\frac{dy}{dx} = \frac{-1}{\left(1+x\right)^2}$$

यदि $\sqrt{1+y}-y\sqrt{1+x}$, $x \neq y$ तो सिद्ध कीजिए कि :

$$\frac{dy}{dx} = \frac{-1}{\left(1+x\right)^2}$$

(3-43/13)L-14585

P.T.O.

$$\frac{3}{x-6} + \frac{7}{x-2} = \frac{10}{x-4}$$

हल कीजिए:

$$\frac{3}{x-6} + \frac{7}{x-2} = \frac{10}{x-4}$$

- Find the number of 4 digit numbers which can be formed using the digit 1, 2, 5, 7, 9, 0 no digit being repeated.

 8
 37 चार अंकों की संख्या ज्ञात कीजिए जो अंक 1, 2, 5, 7, 9, 0 के प्रयोग द्वारा बनाये जा सकते हैं। किसी भी अंक का पुन: प्रयोग नहीं होना चाहिए।
- 3. (a) If $y = x \log y$, prove that :

$$\frac{dy}{dx} = \frac{y^2}{x(y-x)}$$

यदि $y = x \log y$, तो सिद्ध कीजिए कि :

$$\frac{dy}{dx} = \frac{y^2}{x(y-x)}$$

(b) Find the inverse of matrix $A = \begin{bmatrix} 2 & -1 & 3 \\ 2 & -3 & 2 \\ 3 & 3 & -4 \end{bmatrix}$. 8

आब्यूह
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 2 & -3 & 2 \\ 3 & 3 & -4 \end{bmatrix}$$
 का प्रतिलोम ज्ञात कीजिए ।

4. (a) Prove that:

Q

$$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$$

सिद्ध कीजिए कि :

$$p \leftrightarrow q = (p \to q) \land (q \to p)$$

- (b) Solve x + y + z = 6, y + 3z = 11, x + z = 2y by Cramer's rule.

 अभ्भर के नियम द्वारा x + y + z = 6, y + 3z = 11, x + z = 2y हल कीजिए 1
- 5. (a) Prove that the maximum value of the $\left(\frac{1}{x}\right)^x$ is $e^{1/e}$.

सिद्ध कि $\left(\frac{1}{x}\right)^x$ का अधिकतम मान $e^{1/e}$ है ।

(b) Find a matrix X such that:

. 0

$$\begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$$

आव्यूह X ज्ञात कीजिए इस प्रकार कि :

$$\begin{bmatrix} 1 & -4 \\ 3 & -2 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$$

7. (a) Find the term containing x^{12} in the expansion of

$$\left(x^2 + \frac{1}{x^3}\right)^{16}$$
.

$$\left(x^2 + \frac{1}{x^3}\right)^{16}$$
 के प्रसार में x^{12} वाला पद ज्ञात कीजिए ।

(b) Find the maxima and minima of the function

$$f(x) = \frac{x^4}{x-1}, \ x \neq 1$$

फलन
$$f(x) = \frac{x^4}{x-1}$$
, $x \neq 1$ का अधिकतम तथा न्यूनतम ज्ञात कीजिए ।

0007875191

(Compulsory Question) (अनिवार्य प्रश्न)

- 8. (a) If $A = \{a, b, c\}$, find the power set P(A). 2
 यदि $A = \{a, b, c\}$, तो P(A) का घात समुच्चय ज्ञात कीजिए ।
 - (b) Evaluate $\lim_{x \to 2} \frac{2x^2 + 4x + 3}{5 + x}$.

 $\lim_{x\to 2} \frac{2x^2 + 4x + 3}{5 + x}$ का मूल्यांकन कीजिए ।

- (c) Find the coefficient of x^5 in the expansion of $(x+3)^7$. $(x+3)^7$ के प्रसार में x^5 का गुणांक ज्ञात कीजिए ।
- (d) If α and β are roots of the equation $ax^2 + bx + c = 0$,

 Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.

 2

 यदि α तथा β समीकरण $ax^2 + bx + c = 0$ के मूल हैं,

 तो $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ का मान ज्ञात कीजिए।
- (e) Find the truth table of $\sim p$. $\wedge q$. 2 $\sim p$. $\wedge q$ की सत्य सारणी ज्ञात कीजिए ।
- (f) Evaluate ${}^5C_1 + {}^5C_2 + {}^5C_3 + {}^5C_4$. 2 ${}^5C_1 + {}^5C_2 + {}^5C_3 + {}^5C_4$ का मूल्यांकन कीजिए ।

P.T.O.

(g) If
$$y = x^x$$
, find $\frac{dy}{dx}$.

यदि $y = x^x$, तो $\frac{dy}{dx}$ ज्ञात कीजिए।

(h) If
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$, find AB. 2

$$a = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$, $AB = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$

L-14585

2