- Niels Bohr

3

સુરેખ નિયતસંબંધ (Linear Regression)

विषयवस्तु :

- 3.1 પ્રસ્તાવના
- 3.2 સુરેખ નિયતસંબંધ મૉડેલ
- 3.3 નિયતસંબંધ રેખાનું અન્વાયોજન
 - 3.3.1 વિકીર્ણ આકૃતિની રીત
 - 3.3.2 ન્યૂનતમ વર્ગોની રીત
- 3.4 નિયતસંબંધના અભ્યાસની ઉપયોગિતા
- 3.5 સહવિચરણ અને સહસંબંધાંક પરથી નિયતસંબંધાંક
- 3.6 નિશ્વાયકતાનો આંક
- 3.7 નિયતસંબંધાંકના ગુણધર્મો
- 3.8 નિયતસંબંધના ઉપયોગમાં રાખવી પડતી સાવચેતી

3.1 પ્રસ્તાવના

આપણે અગાઉના પ્રકરણ 2માં સહસંબંધનો અભ્યાસ કર્યો. તેમાં આપણે જોયુ કે સહસંબંધાંક દ્વારા બે ચલ વચ્ચે સંબંધ ઋણ છે કે ધન છે તેનો ખ્યાલ આવે છે. ઉપરાંત તેમની વચ્ચેની નિકટતાનું સંખ્યાત્મક માપ પણ મળે છે, પરંતુ સહસંબંધાંક પરથી એક ચલની જ્ઞાત કિંમત માટે તેને અનુરૂપ બીજા ચલની અપેક્ષિત કે અનુમાનિત કિંમત મેળવી શકાતી નથી. ઘણી વખત જયારે બે ચલ વચ્ચે કોઈ સંબંધ હોય ત્યારે એક ચલની જ્ઞાત કિંમત પરથી બીજા ચલની અંદાજિત કે અનુમાનિત કિંમત તે સંબંધનો ઉપયોગ કરી મેળવવાની જરૂરિયાત ઊભી થાય છે.

દા.ત., આપણે જાણીએ છીએ કે કોઈ વસ્તુના જાહેરાત-ખર્ચ અને તે વસ્તુના વેચાણ વચ્ચે સહસંબંધ છે. હવે જાહેરાત-ખર્ચની કોઈ કિંમતને અનુરૂપ વસ્તુના વેચાણ વિશે અનુમાન કરવુ હોય તો ફક્ત સહસંબંધ પરથી તે મેળવી શકાતું નથી. આ માટે નિયતસંબંધનો ઉપયોગ કરવો જરૂરી બને છે.

નિયતસંબંધ (Regression)નો શાબ્દિક અર્થ 'પ્રતિગમન' અથવા 'સરેરાશ કિંમત તરફ પરત આવવું' એવો થાય છે. માનવ આનુવંશિકતાના અભ્યાસ દરમિયાન સર ફ્રાન્સિસ ગોલ્ટન નામના આંકડાશાસ્ત્રીએ સૌપ્રથમ 'નિયતસંબંધ' પદનો ઉપયોગ કર્યો. પિતા અને પુખ્તવયના પુત્રની 1000 જોડ માટે ઊંચાઈની માહિતી એકઠી કરી તેમણે નીચેના રસપ્રદ તારણો મેળવ્યાં.

- (i) વધુ ઊંચાઈવાળા પિતાના પુત્રો વધુ ઊંચાઈ અને ઓછી ઊંચાઈવાળા પિતાના પુત્રો ઓછી ઊંચાઈ ધરાવે છે.
- (ii) વધુ ઊંચાઈ ધરાવતા પિતાના સમૂહની સરેરાશ ઊંચાઈ કરતા તેમના પુત્રોની સરેરાશ ઊંચાઈ ઓછી છે.
- (iii) ઓછી ઊંચાઈ ધરાવતા પિતાના સમૂહની સરેરાશ ઊંચાઈ કરતા તેમના પુત્રોની સરેરાશ ઊંચાઈ વધુ છે.

ઉપરનાં તારણો પરથી સ્પષ્ટ છે કે, પુત્રોની ઊંચાઈ તેમના પિતાની ઊંચાઈના સંદર્ભમાં પીછેહઠ વલણ દર્શાવે છે. આ વલણને લીધે જ માનવજાત ઠીંગણા અને ખૂબ ઊંચા માણસો એવા બે ભાગોમાં વહેંચાઈ નથી. આ પ્રકારના સંબંધને દર્શાવવા સર ફ્રાન્સિસ ગોલ્ટને 'નિયતસંબંધ' એવું નામ આપ્યું.

નિયતસંબંધ એ બે સહસંબંધિત ચલ વચ્ચેનો વિધેયાત્મક સંબંધ છે. હવે આપણે બે ચલ વચ્ચે કાર્ય-કારણનો સંબંધ છે એવી પૂર્વધારણા લઈ તે ચલ વચ્ચેના નિયતસંબંધનો અભ્યાસ કરીશું.

3.2 સુરેખ નિયતસંબંધ મોડેલ (Linear Regression Model)

કોઈ સંબંધ કે સમસ્યાને રજૂ કરતા એક કે તેથી વધુ સમીકરણોના સમૂહને મૉડેલ કહેવાય છે. કાર્ય-કારણનો સંબંધ ધરાવતા બે ચલ વચ્ચેના સંબંધને દર્શાવતા આંકડાશાસ્ત્રીય મૉડેલને નિયતસંબંધ મૉડેલ કહે છે. સામાન્ય રીતે કાર્ય-કારણનો સંબંધ ધરાવતા ચલમાં કારણ સ્વરૂપ ચલને X વડે દર્શાવાય છે. તેને આપણે નિરપેક્ષ અથવા કારણભૂત (explanatory) ચલ કહીશું. જ્યારે કાર્ય-સ્વરૂપ ચલને Y વડે દર્શાવાય છે, તેને આપણે સાપેક્ષ અથવા અસરયુક્ત (explained) ચલ કહીશું. નીચેનાં ઉદાહરણો દ્વારા નિરપેક્ષ ચલ અને સાપેક્ષ ચલનો અર્થ સમજીએ.

- (i) 'જાહેરાત-ખર્ચ' અને 'વેચાણ' વચ્ચેના સંબંધમાં સામાન્ય રીતે 'જાહેરાત-ખર્ચ' વધે (કે ઘટે) તેને કારણે વેચાણ પણ વધે (કે ઘટે) છે. તેથી આપણે 'જાહેરાત-ખર્ચ'ને નિરપેક્ષ ચલ X તરીકે અને 'વેચાણ'ને સાપેક્ષ ચલ Y તરીકે લઈશું.
- (ii) કોઈ વિસ્તારમાં 'વરસાદ' અને 'ચોખાની ઊપજ' વચ્ચેના સંબંધમાં સ્પષ્ટ છે કે, 'ચોખાની ઊપજ' એ 'વરસાદ' પર આધાર રાખે છે. તેથી આપણે 'વરસાદ'ને નિરપેક્ષ ચલ X તરીકે અને 'ચોખાની ઊપજ'ને સાપેક્ષ ચલ Y તરીકે લઈશું.

નિયતસંબંધ મૉડેલમાં સાપેક્ષ ચલ Yને નિરપેક્ષ ચલ Xના કોઈ યોગ્ય ગાણિતિક વિધેય દ્વારા રજૂ કરવામાં આવે છે. હવે આપણે સુરેખ નિયતસંબંધ મૉડેલને નીચે મુજબ વ્યાખ્યાયિત કરીશું.

$$Y = \alpha + \beta X + u$$

જ્યાં, $\gamma = સાપેક્ષ ચલ$

 $X = \operatorname{fl} 2$

 α = અચળાંક

 β = અચળાંક

u = મૉડેલનો વિક્ષેપ (disturbance) ચલ

અહીં, u એ બે ચલ X અને Y વચ્ચે સુરેખ સંબંધની અપૂર્ણતા દર્શાવે છે. પ્રાકૃતિક વિજ્ઞાન (Natural Science) જેમકે ગણિતમાં સંપૂર્ણ સુરેખ સંબંધ શક્ય છે. તેથી દેખીતું છે કે આ કિસ્સામાં વિક્ષેપ ચલ uની કિંમત 0 થશે. બીજા શબ્દોમાં કહીએ તો જો બે ચલ X અને Y વચ્ચે સંપૂર્ણ સહસંબંધ હોય તો નિયતસંબંધ મૉડેલ $Y=\alpha+\beta X$ થાય. પરંતુ વેપાર, અર્થશાસ્ત્ર અને સામાજિક વિજ્ઞાનમાં બે ચલ વચ્ચે સામાન્ય રીતે સંપૂર્ણ સુરેખ સંબંધ જોવા મળતો નથી કારણ કે સહસંબંધિત ચલો પર અન્ય પરિબળોની અસર પણ થાય છે. એટલે કે જ્યારે X અને Y ચલ વચ્ચે આંશિક સહસંબંધ હોય ત્યારે નિયતસંબંધ મૉડેલનું સ્વરૂપ $Y=\alpha+\beta X+u$ થાય છે. ઉપર્યુક્ત ચર્ચા પરથી સુરેખ નિયતસંબંધને સરળ શબ્દોમાં નીચે મુજબ વ્યાખ્યાયિત કરી શકાય.

''બે સહસંબંધિત ચલો વચ્ચેનો ગાણિતિક કે વિધેયાત્મક સુરેખ સંબંધ કે જેના દ્વારા નિરપેક્ષ ચલની કોઈ આપેલી (જ્ઞાત) કિંમત માટે તેને અનુરૂપ સાપેક્ષ ચલની કિંમતનું અનુમાન થઈ શકે તેને **સુરેખ નિયતસંબંધ** કહે છે.''

3.3 નિયતસંબંધ રેખાનું અન્વાયોજન (Fitting of Regression Line)

બે સહસંબંધિત ચલોની વિકીર્ણ આકૃતિમાં જો બધાં બિંદુઓ કોઈ રેખાની આસપાસ જ હોય તો આપણે કહી શકીએ કે, ચલો વચ્ચે સુરેખ નિયતસંબંધ છે. બે ચલો વચ્ચેનો સંબંધ દર્શાવતી આવી રેખા મેળવવાની પદ્ધતિને નિયતસંબંધ રેખાનું અન્વાયોજન કહે છે.

નિયતસંબંધ રેખાના અન્વાયોજન માટે બે રીતો છે : (1) વિકીર્શ આકૃતિની રીત (2) ન્યૂનતમ વર્ગોની રીત

3.3.1 વિકીર્ણ આકૃતિની રીત

ધારો કે સહસંબંધિત ચલ X અને Y નાં અવલોકનોની n ક્રમિત જોડ $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ છે. આ માહિતી પરથી વિકીર્ણ આકૃતિ દોરવામાં આવે છે. હવે વિકીર્ણ આકૃતિનાં લગભગ બધાં જ બિંદુઓની શક્ય તેટલી નજીકથી પસાર થાય તેવી એક રેખા દોરવામાં આવે છે. જો Y સાપેક્ષ ચલ અને X નિરપેક્ષ ચલ હોય તો આવી રેખાને Y ની X પરની નિયતસંબંધ રેખા કહેવાય છે અને તે પરથી નિરપેક્ષ ચલ X ની આપેલી કિંમત પરથી તેને અનુરૂપ સાપેક્ષ ચલ Y ની અનુમાનિત કિંમત મેળવી શકાય છે. આ પ્રકારની રેખા દોરવા માટે કોઈ ગણતરીની જરૂર પડતી નથી. તેથી નિયતસંબંધ રેખાના અન્વાયોજનની આ સરળ અને ઝડપી રીત છે. પરંતુ આમ કરવામાં એક સમસ્યા ઉદ્ભવે છે. જુદી-જુદી વ્યક્તિઓ જુદી-જુદી રેખા દોરી શકે અને તેથી નિરપેક્ષ ચલ X ની એક જ કિંમત માટે જુદી-જુદી વ્યક્તિઓ સાપેક્ષ ચલ Y ની કિંમત વિશે જુદા-જુદા અનુમાનો મેળવી શકે. નીચેની વિકીર્ણ આકૃતિ પરથી આ બાબત સરળતાથી સમજી શકાય છે.

એક જ માહિતી પરથી બનતી નીચેની વિકીર્ણ આકૃતિમાં બે જુદી-જુદી વ્યક્તિઓએ બે જુદી-જુદી રેખા l_1 અને l_2

દોરી છે. અહીં જોઈ શકાય છે કે નિરપેક્ષ ચલ X ની કોઈ કિંમત 'a' માટે તેને અનરૂપ સાપેક્ષ ચલ Y ની અનુમાનિત કિંમત રેખા l_1 પરથી ' y_1 ' મળશે જયારે રેખા l_2 પરથી તે ' y_2 ' મળશે. આમ નિરપેક્ષ ચલ X ની એક જ કિંમત માટે તેને અનુરૂપ સાપેક્ષ ચલ Y ની જુદી-જુદી રેખા પરથી જુદી-જુદી અનુમાનિત કિંમત મળે છે. તેથી આ રીત વ્યક્તિલક્ષી (subjective) છે તેમ કહી શકાય. આ રીતથી મળતી નિયતસંબંધ રેખાને શ્રેષ્ઠ અન્વાયોજિત રેખા ન કહી શકાય કેમ કે તેનાથી સાપેક્ષ ચલની શ્રેષ્ઠ અનુમાનિત કિંમત જ મળે છે તેવી

કોઈ ખાત્રી નથી. શ્રેષ્ઠ અન્વાયોજિત નિયતસંબંધ રેખા મેળવવા માટે ન્યૂનતમ વર્ગોની રીતનો ઉપયોગ કરવામાં આવે છે.

3.3.2 ન્યૂનતમ વર્ગોની રીત

ધારો કે બે સહસંબંધિત ચલો X (નિરપેક્ષ ચલ) અને Y (સાપેક્ષ ચલ)નાં અવલોકનોની n ક્રમિત જોડ $(x_1,y_1),(x_2,y_2),....,(x_n,y_n)$ મેળવેલી છે. ન્યૂનતમ વર્ગોની રીત સમજવા માટે આ માહિતીની વિકીર્ણ આકૃતિ દોરીશું.

જો X અને Y વચ્ચેના સુરેખ નિયતસંબંધને દર્શાવતી શ્રેષ્ઠ રેખાનું સમીકરણ $\hat{y} = a + bx$ હોય, તો આ રેખાના અચળાંકો a અને b ન્યૂનતમ વર્ગોની રીતથી નીચે મુજબ મેળવી શકાય છે.

ધારો કે ચલ Xની $x_1, x_2, x_3, \ldots, x_n$ કિંમતોને અનુરૂપ ચલ Y ની રેખા પરથી મેળવેલ અનુમાનિત કિંમતો $\hat{y}_1, \hat{y}_2, \hat{y}_3, \ldots, \hat{y}_n$ છે અને ચલ Y ની અવલોક્તિ કિંમતો $y_1, y_2, y_3, \ldots, y_n$ છે. હવે X ની કોઈ કિંમત $X = x_i$ ને અનુરૂપ Y ની અનુમાનિત કિંમત $\hat{y}_i = a + bx_i$ થાય. ચલ Y ની

અવલોકિત કિંમત y_i અને અનુમાનિત કિંમત \hat{y}_i વચ્ચેના ઊભા (vertical) અંતર (y-અક્ષને સમાંતર અંતર)ને અનુમાનની ત્રુટિ (error) કહે છે. તેને e_i વડે દર્શાવાય છે.

∴
$$e_i = y_i - \hat{y}_i = y_i - (a + bx_i) = y_i - a - bx_i$$

જ્યાં, $i = 1, 2, 3, \dots, n$

સ્પષ્ટ છે કે રેખાની ઉપરની બાજુનાં બિંદુઓ માટે ત્રુટિ ધન થશે અને રેખાની નીચેની બાજુના બિંદુઓ માટે ત્રુટિ ઋણ થશે અને જે બિંદુઓ રેખા પર હોય તેવાં બિંદુઓ માટે ત્રુટિ શૂન્ય થશે.

હવે અન્વાયોજિત રેખા $\hat{y} = a + bx$ (Yની X પરની નિયતસંબંધ રેખા)ના અચળાંકો a અને bની કિંમતો એવી રીતે મેળવવામાં આવે છે કે જેથી ત્રુટિઓના વર્ગોનો સરવાળો ઓછામાં ઓછો એટલે કે ન્યૂનતમ થાય.

અર્થાત્
$$\Sigma e_i^2 = \Sigma (y_i - \hat{y}_i)^2 = \Sigma (y_i - a - bx_i)^2$$
 ન્યૂનતમ થાય.

બીજગણિતની સરળ પદ્ધતિથી આપણે a અને bની તેવી કિંમતો મેળવી શકીએ છીએ જે સરળતા ખાતર અનુગ (suffix) i ને અવગણતા નીચે મુજબ છે.

$$b = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{\Sigma(x-\overline{x})^2}$$

$$= \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

$$\Rightarrow x = \overline{y} - b\overline{x}$$

આ રીતે મેળવેલી રેખા $\hat{y} = a + bx$ વિકીર્ષ આકૃતિનાં બધાં જ બિંદુઓની શક્ય તેટલી નજીકથી પસાર થતી રેખા છે. નિયતસંબંધ રેખા મેળવતી વખતે ત્રુટિઓના વર્ગોનો સરવાળો ન્યૂનતમ કરવામાં આવે છે. તેથી આ રીતને **ન્યૂનતમ વર્ગોની રીત** કહે છે.

આ રીતથી મળતી b ની કિંમતને Y ની X પરથી નિયતસંબંધ રેખાનો નિયતસંબંધાંક (regression coefficient) કહે છે. તેને નિયતસંબંધ રેખાનો ઢાળ (slope) પણ કહે છે અને અચળાંક a ને નિયતસંબંધ રેખાનો અંતઃખંડ (intercept) કહે છે.

નિયતસંબંધાંક b નું અર્થઘટન

b =ચલ X ની કિંમતમાં એક એકમ ફેરફાર કરવાથી ચલ Y ની કિંમતમાં થતો અનુમાનિત ફેરફાર એટલે કે, જ્યારે b > 0. નિરપેક્ષ ચલ X ની કિંમતમાં એક એકમનો વધારો થાય તો સાપેક્ષ ચલ Y ની કિંમતમાં

b એકમોનો અંદાજિત વધારો થાય.

જ્યારે b < 0, િનરપેક્ષ ચલ X ની કિંમતમાં એક એકમનો વધારો થાય તો સાપેક્ષ ચલ Y ની કિંમતમાં |b| એકમોનો અંદાજિત ઘટાડો થાય.

અત્રે નોંધનીય છે કે, ન્યૂનતમ વર્ગોની રીત દ્વારા મેળવાયેલી નિયતસંબંધ રેખા શ્રેષ્ઠ અન્વાયોજિત રેખા તરીકે પણ ઓળખાય છે.

- **નોંધ** : (1) નિયતસંબંધાંક b ને b_{yx} વડે પણ દર્શાવી શકાય છે. જરૂરિયાત ન જણાય તો સામાન્ય રીતે નિયતસંબંધાંકને આપણે ફક્ત b વડે જ દર્શાવીશું.
 - (2) જો વિકીર્ણ આકૃતિમાં બધાં જ બિંદુઓ એક જ રેખા પર હોય તો બધાં જ બિંદુઓ માટે ત્રુટિ શૂન્ય થાય તેથી સાપેક્ષ ચલ y ની અનુમાનિત કિંમત \hat{y} એ જ તેની પ્રાપ્ત અવલોકિત કિંમત થાય. તેથી નિયતસંબંધ રેખાનું સ્વરૂપ $\hat{y} = a + bx$ ને બદલે y = a + bx પણ લખી શકાય. સ્પષ્ટ છે કે આ સંજોગોમાં b > 0 હોય તો સહસંબંધાંક r ની કિંમત 1 થાય અને b < 0 હોય તો સહસંબંધાંક r ની કિંમત -1 થાય.

(સમજૂતી માટે વધારાની માહિતી

સામાન્ય રીતે નિયતસંબંધ રેખા માટે 'શ્રેષ્ઠ અન્વાયોજિત રેખા'ને બદલે ફક્ત 'અન્વાયોજિત રેખા' એવો ઉલ્લેખ કરવામાં આવે છે.

હવે આપણે નિયતસંબંધ રેખા મેળવવાનાં કેટલાંક ઉદાહરણો જોઇએ.

ઉદાહરણ1 : કોઈ ચોક્કસ કંપનીની એક મૉડેલની કારનું આયુષ્ય (વપરાશના વર્ષ) અને તેનો સરેરાશ વાર્ષિક નિભાવ ખર્ચ માટે મેળવેલા અવલોકનો નીચે મુજબ છે.

કારનું આયુષ્ય (વર્ષ)	2	4	6	8
સરેરાશ વાર્ષિક નિભાવ ખર્ચ (હજાર ₹)	10	20	25	30

આ પરથી નિભાવ ખર્ચની કારના આયુષ્ય પરની નિયતસંબંધ રેખા મેળવો. જો કારનું આયુષ્ય 10 વર્ષ હોય તો નિભાવ ખર્ચનું અનુમાન પણ મેળવો.

અહીં, 'કારનું આયુષ્ય'એ નિરપેક્ષ ચલ છે. તેથી તેને ચલ X વડે દર્શાવીશુ અને 'નિભાવ ખર્ચ'એ સાપેક્ષ ચલ છે, તેથી તેને Y વડે દર્શાવીશું. માહિતી જોતા આપણે નિયતસંબંધ રેખા શોધવા માટે નીચે મુજબ કોષ્ટક બનાવીશું

	કારનું આયુષ્ય (વર્ષ) <i>x</i>	નિભાવ ખર્ચ (હજાર ₹) <i>y</i>	хy	x ²
	2	10	20	4
	4	20	80	16
	6	25	150	36
	8	30	240	64
કુલ	20	85	490	120

120

$$\overline{x} = \frac{\sum x}{n} = \frac{20}{4} = 5, \ \overline{y} = \frac{\sum y}{n} = \frac{85}{4} = 21.25$$

હવે નિયતસંબંધાંક નીચે મુજબ શોધીએ

$$b = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

$$= \frac{4(490) - (20)(85)}{4(120) - (20)^2}$$

$$= \frac{1960 - 1700}{480 - 400}$$

$$= \frac{260}{80}$$

$$= 3.25$$

$$b = 3.25$$

હવે $\overline{x}, \overline{y}$ અને bની કિંમતો aના સૂત્રમાં મૂકતાં,

$$a = \overline{y} - b \overline{x}$$
= 21.25 - 3.25 (5)
= 21.25 - 16.25

$$\therefore a = 5$$

તેથી, 'નિભાવખર્ચ' (Y) ની 'કારના આયુષ્ય' (X) પરની નિયતસંબંધની રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 5 + 3.25 x$$

$$X = 10$$
 મૂકતાં,

$$\hat{y} = 5 + 3.25(10)$$

$$=5+32.5=37.5$$

$$\therefore \hat{y} = 37.5$$

આમ, જ્યારે કારનું આયુષ્ય વર્ષ 10 વર્ષ હોય ત્યારે તેનો અનુમાનિત નિભાવખર્ચ ₹ 37.5 હજાર થાય.

નોંધ : b=3.25 છે તેથી કહી શકાય કે દર વર્ષે (Xમાં એકમ ફેરફાર) થવાથી, કારના નિભાવખર્ચમાં અંદાજે ₹ 3.25 હજાર નો વધારો (Yમાં થતો ફેરફાર) થાય છે.

ઉદાહરણ 2 : એક કંપનીના જુદા-જુદા પ્રકારના લૅપટૉપનું માસિક વેચાણ (સો એકમોમાં) અને તેના નફા (લાખ ₹ માં)ની છેલ્લા છ માસની વીગત નીચે મુજબ છે.

માસ	1	2	3	4	5	6
વેચાયેલા લેંપટૉપની સંખ્યા (સો એકમો) x	5	7	5	12	8	3
નફો (લાખ ₹) <i>y</i>	8	9	10	15	10	6

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો. ઉપરાંત X=7 માટે Y ની કિંમતના અનુમાનમાં થતી ત્રુટિ શોધો.

	વેચાયેલા લૅપટૉપની સંખ્યા (સો એકમો) <i>x</i>	નફો (લાખ ₹) <i>y</i>	xy	x^2
	5	8	40	25
	7	9	63	49
	5	5 10		25
	12	15	180	144
	8	10	80	64
	3	6	18	9
કુલ	40	58	431	316

$$\overline{x} = \frac{\sum x}{n} = \frac{40}{6} = 6.67; \ \overline{y} = \frac{\sum y}{n} = \frac{58}{6} = 9.67$$

હવે, નિયતસંબંધાંક bની કિંમત નીચે મુજબ શોધીએ.

$$b = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

$$= \frac{6(431)-(40)(58)}{6(316)-(40)^2}$$

$$= \frac{2586 - 2320}{1896 - 1600}$$

$$=\frac{266}{296}$$

= 0.8986

$$\approx 0.90$$

$$\therefore b \approx 0.90$$

હવે $\overline{x},\overline{y}$ અને bની કિંમતો a ના સૂત્રમાં મૂકતાં,

$$a = \overline{y} - b\overline{x}$$

$$=9.67-0.90(6.67)$$

$$=9.67-6.003$$

$$=3.667$$

$$\therefore a \approx 3.67$$

આમ Yની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 3.67 + 0.9x$$

હવે X=7 માટે ત્રુટિ શોધવા, સૌ પ્રથમ તેને અનુરૂપ Y ની અનુમાનિત કિંમત મેળવીએ.

122

$$X=7$$
 મૂકતાં

$$\hat{y} = 3.67 + 0.9(7)$$

$$=3.67+6.3$$

હવે આપેલી માહિતી પરથી આપણે જોઈ શકીએ છીએ કે, X=7ને અનુરૂપ Yની અવલોકિત કિંમત 9 છે.

$$\therefore$$
 ત્રુટિ $e = y - \hat{y}$
= 9 – 9.97

ઉદાહરણ 3 : એક કંપનીની કારના સર્વિસ સેન્ટરમાં અકસ્માત પામેલી કારના સમારકામ માટે લાગતો સમય અને સમારકામના ખર્ચ વચ્ચેનો સંબંધ જાણવા માટે નીચે મુજબ માહિતી એકઠી કરવામાં આવી છે.

કારના સમારકામનો સમય (માનવકલાકો)	32	40	25	29	35	43
સમારકામનું ખર્ચ (હજાર ₹)	25	35	18	22	28	46

આ પરથી Y (સમારકામનું ખર્ચ)ની X (સમારકામનો સમય) પરની નિયતસંબંધ રેખા મેળવો. જો કારને સમારકામ માટે 50 કલાક લાગતા હોય, તો તેના સમારકામના ખર્ચનું અનુમાન મેળવો.

અહીં
$$n=6$$
, $\overline{x}=\frac{\Sigma x}{n}=\frac{204}{6}=34$ અને $\overline{y}=\frac{\Sigma y}{n}=\frac{174}{6}=29$

	સમારકામ સમય (માનવકલાકો) <i>x</i>	સમારકામનું ખર્ચ (હજાર ₹) <i>y</i>	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
	32	25	-2	-4	8	4
	40	35	6	6	36	36
	25	18	- 9	-11	99	81
	29	22	- 5	- 7	35	25
	35	28	1	-1	-1	1
	43	46	9	17	153	81
કુલ	204	174	0	0	330	228
		•		-		

$$b = \frac{\Sigma(x-\overline{x})(y-\overline{y})}{\Sigma(x-\overline{x})^2}$$
$$= \frac{330}{228}$$
$$= 1.4474$$
$$\approx 1.45$$

$$\therefore b \approx 1.45$$

હવે
$$\overline{x}$$
, \overline{y} અને b ની કિંમતો a ના સૂત્રમાં મૂકતાં, $a = \overline{y} - b \overline{x}$

$$= 29 - 1.45(34)$$

$$= 29 - 49.3$$

$$\therefore a = -20.3$$

આમ, Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = -20.3 + 1.45x$$

$$X = 50$$
 મૂકતાં,

$$\hat{y} = -20.3 + 1.45 (50)$$

$$= -20.3 + 72.5$$

$$\hat{y} = 52.2$$

આમ, જ્યારે સમારકામનો સમય 50 કલાક હોય ત્યારે સમારકામનો અનુમાનિત ખર્ચ 52.2 (હજાર ₹) થાય.

સ્વાધ્યાય 3.1

 એક વસ્તુના ભાવ (₹માં) અને તેની માંગ (સો એકમોમાં) વિશે નીચે આપેલી માહિતી પરથી માંગની ભાવ પરની નિયતસંબંધ રેખા મેળવો અને જ્યારે ભાવ ₹ 20 હોય, ત્યારે માંગનું અનુમાન મેળવો.

ભાવ (₹)	12	14	15	16	18	21
માંગ (સો એકમોમાં)	18	12	10	8	7	5

2. કાર બનાવતી કંપનીના કારના એક મૉડેલ માટે કાર વપરાશના સમય અને કારના સરેરાશ વાર્ષિક નિભાવ ખર્ચ વચ્ચેના સંબંધનો અભ્યાસ કરવા માટે નીચે મુજબ માહિતી મેળવવામાં આવી.

કાર	1	2	3	4	5	6
કાર-વપરાશનો સમય (વર્ષ) x	3	1	2	2	5	3
સરેરાશ વાર્ષિક નિભાવ ખર્ચ (હજાર ₹) <i>y</i>	10	5	8	7	13	8

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો. જ્યારે કાર-વપરાશનો સમય 5 વર્ષ હોય ત્યારે વાર્ષિક નિભાવખર્ચનું અનુમાન અને તેની ત્રુટિ શોધો.

 કોઈ એક વર્ષમાં પાંચ જિલ્લામાં થયેલા સરેરાશ વરસાદ (સેમીમાં) અને પાકનું કુલ ઉત્પાદન (ટનમાં) વિશે માહિતી નીચે આપેલી છે.

સરેરાશ વરસાદ (સેમી)	25	32	38	29	31
પાક (ટન)	84	90	95	88	93

આ પરથી પાકના ઉત્પાદનની વરસાદ પરની નિયતસંબંધ રેખા શોધો અને જો સરેરાશ વરસાદ 35 સેમી હોય, તો થતા પાકના ઉત્પાદનનું અનુમાન મેળવો.

4. યંત્ર પર કામ કરતા કારીગરોનો અનુભવ અને તેમનાં કાર્ય-કૌશલ્ય આંક (performance ratings) વિશે માહિતી નીચે આપી છે.

કારીગર	1	2	3	4	5	6	7	8
અનુભવ $\left(\operatorname{a\acute{h}}\right) x$	12	5	10	3	18	4	12	16
કાર્ય-કૌશલ્ય આંક y	83	75	80	78	89	68	88	87

આ પરથી કાર્ય-કૌશલ્ય આંકની અનુભવ પરની નિયતસંબંધ રેખાની ગણતરી કરો અને કોઈ એક કારીગરનો અનુભવ 7 વર્ષ હોય, તો કાર્ય-કૌશલ્ય આંક વિશે અનુમાન કરો.

*

3.4 નિયતસંબંધના અભ્યાસની ઉપયોગિતા

નિયતસંબંધની કેટલીક ઉપયોગિતા નીચે મુજબ છે.

- (1) બે સહસંબંધિત ચલો વચ્ચેનો વિધેયાત્મક સંબંધ જાણી શકાય છે.
- (2) એક વખત વિધેયાત્મક સંબંધ પ્રસ્થાપિત થઈ જાય પછી નિરપેક્ષ ચલ X ની જ્ઞાત કિંમત પરથી સાપેક્ષ ચલ Y ની અજ્ઞાત કિંમતનું અનુમાન મેળવી શકાય છે.
- (3) આપણે નિરપેક્ષ ચલ X ની કિંમતમાં થતા એકમ ફેરફારથી ચલ Y માં થતો અંદાજિત ફેરફાર જાણી શકીએ છીએ.
- (4) નિયતસંબંધ રેખા પરથી સાપેક્ષ ચલની અનુમાનિત કિંમત શોધવામાં થતી ભૂલ (ત્રુટિ) જાણી શકાય છે. અર્થશાસ્ત્રીઓ, આયોજનકારો, ધંધાર્થીઓ, વહીવટકર્તાઓ, સંશોધનકારો વગેરેને નિયતસંબંધ ખૂબ જ ઉપયોગી બને છે.

નિયતસંબંધાંકની ગણતરી માટેની ટૂંકી રીત

જયારે X અને Y ની કિંમતો પ્રમાણમાં મોટી હોય અને/અથવા અપૂર્ણાંક હોય ત્યારે x^2, xy જેવાં પદોની ગણતરી મુશ્કેલ બને છે. આ સંજોગોમાં વૈકલ્પિક સૂત્ર વાપરી શકાય છે. આ સૂત્ર નિયતસંબંધાંકના નીચેના ગુણધર્મ પર આધારિત છે.

ગુ**ગ્રધર્મ** : નિયતસંબંધાંક ઊગમબિંદુ પરિવર્તનથી સ્વતંત્ર છે. પરંતુ માપ (scale)ના પરિવર્તનથી સ્વતંત્ર નથી.

જો Yની X પરની નિયતસંબંધ રેખાનો નિયતસંબંધાંક $b=b_{yx}$ હોય, તો ઉપરના ગુણધર્મ પરથી તેનાં ટૂંકી રીતે સૂત્રો નીચે મુજબ લખી શકાય.

(1) જો
$$u = x - A$$
 અને $v = y - B$ હોય તો

$$b = b_{yx} = b_{vu} = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2}$$
 થાય.

(2) જો
$$u = \frac{x-A}{c_x}$$
 અને $v = \frac{y-B}{c_y}$ હોય તો

$$b = b_{yx} = b_{vu} \cdot \frac{c_y}{c_x} = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$
 થાય.

અહીં, A,B,c_x અને c_y અચળાંકો છે અને $c_x>0,c_y>0$

ઉદાહરણ4 : એક સમૂહના વ્યક્તિઓની માસિક આવક (હજાર ₹માં) અને માસિક ખર્ચ (હજાર ₹માં) વચ્ચેનો સંબંધ જાણવા માટે તે સમૂહમાંથી સાત વ્યક્તિઓના નિદર્શ પરથી નીચેની માહિતી મળે છે.

વ્યક્તિ	1	2	3	4	5	6	7
માસિક આવક (હજાર₹)	60	70	64	68	62	65	72
માસિક ખર્ચ (હજાર₹)	50	59	57	50	53	58	60

આ માહિતી પરથી વ્યક્તિઓની માસિક ખર્ચની માસિક આવક પરની નિયતસંબંધ રેખા મેળવો. જો સમૂહમાં કોઈ વ્યક્તિની માસિક આવક 75 હજાર ₹ હોય, તો તેના માસિક ખર્ચનું અનુમાન મેળવો.

માસિક ખર્ચની માસિક આવક પરની નિયતસંબંધ રેખા મેળવવાની હોઈ 'માસિક ખર્ચ'ને ચલ Y અને 'માસિક આવક'ને ચલ X વડે દર્શાવીશું.

અહીં
$$\bar{x} = \frac{\Sigma x}{n} = \frac{461}{7} = 65.86$$
 અને $\bar{y} = \frac{\Sigma y}{n} = \frac{387}{7} = 55.29$

તેથી આપણે A=65 અને B=55 લઈ u અને v નીચે મુજબ વ્યાખ્યાયિત કરી શકીએ.

$$u = x - A = x - 65$$
 અને $v = y - B = y - 55$

	માસિક આવક (હજાર ₹) <i>x</i>	માસિક ખર્ચ (હજાર ₹) <i>y</i>	u = x - 65	v = y - 55	uv	u^2
	60	50	- 5	- 5	25	25
	70	59	5	4	20	25
	64	57	-1	2	-2	1
	68	50	3	– 5	-15	9
	62	53	-3	-2	6	9
	65	58	0	3	0	0
	72	60	7	5	35	49
કુલ	461	387	6	2	69	118

ટૂંકી રીતે *b*ની કિંમત નીચે મુજબ શોધી શકાય

$$b = b_{yx} = b_{vu} = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2}$$

$$= \frac{7(69) - (6)(2)}{7(118) - (6)^2}$$

$$= \frac{483 - 12}{826 - 36}$$

$$= \frac{471}{790}$$

$$= 0.5962$$

$$\therefore b \approx 0.60$$

હવે,
$$a = \overline{y} - b\overline{x}$$

= 55.29 - 0.60 (65.86)
= 55.29 - 39.516
= 15.774

$$\therefore a = 15.77$$

આમ, Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 15.77 + 0.60x$$

$$X = 75$$
 Hadi,
 $\hat{y} = 15.77 + 0.60(75)$
 $= 15.77 + 45$
 $= 60.77$

$$\hat{y} = 60.77$$

તેથી જો કોઈ વ્યક્તિની માસિક આવક 75 હજાર ₹ હોય તો તેનો અંદાજિત માસિક ખર્ચ 60.77 હજાર ₹ થાય. ઉદાહરણ 5 : ઉદાહરણ 1માં આપેલ માહિતી માટે, નિભાવખર્ચ (૪)ની કારના આયુષ્ય (૪) પરની નિયતસંબંધ રેખા ટૂંકી રીતનો ઉપયોગ કરી મેળવો.

કારનું આયુષ્ય (વર્ષ) x	2	4	6	8
નિભાવખર્ચ (હજાર <i>₹</i>) <i>y</i>	10	20	25	30

અહીં, X ની બધી જ કિંમતોને 2 વડે અને Y ની બધી જ કિંમતોને 5 વડે નિઃશેષ ભાગી શકાય છે. અને $\overline{x}=5$ અને $\overline{y}=21.25$ છે. તેથી આપણે $A=4, B=20, c_x=2, c_y=5$ લઈશું.

હવે u અને v નીચે મુજબ વ્યાખ્યાયિત કરીએ.

$$u = \frac{x - A}{c_x} = \frac{x - 4}{2}$$
 અને $v = \frac{y - B}{c_y} = \frac{y - 20}{5}$

	x	У	$u=\frac{x-4}{2}$	$v=\frac{y-20}{5}$	uv	u^2
	2	10	-1	-2	2	1
	4	20	0	0	0	0
	6	25	1	1	1	1
	8	30	2	2	4	4
કુલ	20	85	2	1	7	6

$$b = b_{vu} \cdot \frac{c_y}{c_x} = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$

$$= \frac{4(7) - 2(1)}{4(6) - (2)^2} \times \frac{5}{2}$$

$$= \frac{28 - 2}{24 - 4} \times \frac{5}{2}$$

$$= \frac{26}{20} \times \frac{5}{2}$$

b = 3.25

હવે
$$a = \overline{y} - b\overline{x} = 21.25 - 3.25(5) = 21.25 - 16.25 = 5$$

Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 5 + 3.25x$$

નોંધ : અહીં આપણે જોઈ શકીએ છીએ કે, $b_{vu}=\frac{26}{20}=1.3$, પણ જયારે $\frac{c_y}{c_x}=\frac{5}{2}$ વડે ગુણવામાં આવે ત્યારે આપણને $b=1.3\times\frac{5}{2}=3.25$ (ઉદાહરણ 1માં મેળવ્યા મુજબ) મળે છે. તેથી આપણે સમજી શકીએ છીએ કે, જ્યારે ચલ X અને/અથવા Y ના માપ (scale)નું પરિવર્તન કરવામાં આવે તો b મેળવવા માટે b_{vu} ને $\frac{c_y}{c_x}$ વડે ગુણવા જરૂરી બને છે.

ઉદાહરણ 6 : ગુજરાત રાજ્યની એક યુનિવર્સિટીમાં ચાલુ વર્ષે વિદેશથી ભણવા માટે આવેલા વિદ્યાર્થીઓમાંથી સાત વિદ્યાર્થીઓનો એક નિદર્શ લઈ તેમના બુદ્ધિમત્તાનો આંક (I.Q.) અને તેમણે 75 ગુણની પરીક્ષામાં મેળવેલ ગુણની માહિતી નીચે આપેલી છે.

વિદ્યાર્થી	1	2	3	4	5	6	7
I.Q. x	85	95	100	90	110	125	70
ગુણ <i>y</i>	46	50	50	45	60	70	40

આ પરથી y ની x પરની નિયતસંબંધ રેખા મેળવો અને કોઈ વિદ્યાર્થીનો I.Q. 120 હોય, તો તેના ગુ \mathbb{R} નું અનુમાન કરો. તદુપરાંત I.Q. 100 હોય ત્યારે અનુમાનમાં થતી ત્રુટિ શોધો.

અહીં,
$$n=7$$
, $\overline{x}=\frac{\Sigma x}{n}=\frac{675}{7}=96.43$, $\overline{y}=\frac{\Sigma y}{n}=\frac{361}{7}=51.57$

X અને Y ની કિંમતો મોટી, તેમનાં મધ્યકો અપૂર્ણાંક અને X ની બધી જ કિંમતો 5 વડે નિઃશેષ ભાગી શકાય તેવી હોવાથી આપણે ટૂંકી રીતનો ઉપયોગ કરીશું.

A = 95, B = 50, $c_x = 5$, $c_y = 1$ લઈ આપણે u અને v નીચે મુજબ વ્યાખ્યાયિત કરીએ.

$$u = \frac{x-A}{c_x} = \frac{x-95}{5}$$
 અને $v = \frac{y-B}{c_y} = \frac{y-50}{1} = y-50$

			,			
	I.Q.	<i>ો</i> હો	$u = \frac{x - 95}{5}$	v = y - 50	uv	u^2
	85	46		-4	8	4
	95	50	0	0	0	0
	100	50	1	0	0	1
	90	45	-1	- 5	5	1
	110	60	3	10	30	9
	125	70	6	20	120	36
	70	40	- 5	-10	50	25
ા	675	361	2	11	213	76

128

$$b = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$

$$= \frac{7(213)-(2)(11)}{7(76)-(2)^2} \times \frac{1}{5}$$

$$=\frac{1491-22}{532-4}\times\frac{1}{5}$$

$$=\frac{1469}{528}\times\frac{1}{5}$$

$$=\frac{1469}{2640}$$

= 0.5564

$$\therefore b \approx 0.56$$

હવે
$$a = \overline{y} - b\overline{x}$$

$$=51.57-0.56(96.43)$$

$$=51.57 - 54.0008$$

$$= -2.4308$$

$$\therefore a \simeq -2.43$$

તેથી, Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = -2.43 + 0.56x$$

$$X = 120$$
 મૂકતાં,

$$\hat{y} = -2.43 + 0.56(120)$$

$$=-2.43+67.2$$

તેથી જ્યારે કોઈ વિદ્યાર્થીનો I.Q. 120 હોય ત્યારે તેના ગુણ અંદાજે 65 થાય.

હવે I.Q. (X) = 100 માટે ત્રુટિ શોધવા સૌપ્રથમ Y ની અનુમાનિત કિંમત \hat{y} મેળવવી પડે.

$$\hat{y} = -2.43 + 0.56x$$

$$X = 100$$
 elai,

$$\hat{y} = -2.43 + 0.56(100)$$

$$= -2.43 + 56$$

$$\therefore \quad \hat{y} = 53.57 \quad \text{Quantum}$$

પરંતુ X=100 ને અનુરૂપ Y ની અવલોકન પરથી મળતી કિંમત 50 છે. (આપેલી માહિતી જુઓ.)

$$\therefore$$
 ત્રુટિ $e = y - \hat{y}$
= $50 - 53.57$

નોંધ: અત્રે યાદ રાખવું જરૂરી છે કે નિરપેક્ષ ચલ (X) ની ફક્ત તે જ કિંમતો માટે ત્રુટિ શોધી શકાય છે કે જેના માટે તેને અનુરૂપ સાપેક્ષ ચલ (Y) ની પ્રાપ્ત અવલોકિત કિંમતો જ્ઞાત હોય.

અહીં આ ઉદાહરણમાં X=120ને અનુરૂપ Yની કિંમતના અનુમાનમાં થતી ત્રુટિ શોધી ન શકાય કેમકે X=120ને અનુરૂપ Yની પ્રાપ્ત અવલોકિત કિંમત જ્ઞાત નથી.

ઉદાહરણ 7 : સુરેખ સહસંબંધ પ્રકરણના ઉદાહરણ 12ની માહિતી અને ગણતરી પરથી નફાની વેચાણ પરની નિયતસંબંધ રેખા મેળવો જયારે વેચાણ 3 કરોડ ₹ હોય ત્યારે થતા નફાનું અનુમાન કરો.

તે ઉદાહરણ પરથી આપણે જાણીએ છીએ કે,

$$u = \frac{x-A}{c_x} = \frac{x-2}{0.1}$$
 અને $v = \frac{y-B}{c_y} = \frac{y-5600}{100}$

$$c_x = 0.1$$
 અને $c_y = 100$

અત્રે નોંધીએ કે ગણતરીમાં સરળતા ખાતર (x-A)ને 10 વડે ગુણ્યા હતા પરંતુ c_x એ (x-A)ના છેદમાં હોવાથી c_x ની કિંમત $\frac{1}{10}=0.1$ થાય.

 $(\cdot \cdot \cdot \ 10$ વડે ગુણવા એટલે જ $\frac{1}{10} = 0.1$ વડે ભાગવા.)

હવે
$$b = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$

$$= \frac{9(121)-(0)(1)}{9(60)-(0)^2} \times \frac{100}{0.1}$$

$$=\frac{1089}{540}\times\frac{100}{0.1}$$

$$=\frac{108900}{54}$$

= 2016.6667

$$b \approx 2016.67$$

હવે
$$a = \overline{y} - b\overline{x}$$

$$=5611.11-2016.67(2)$$

$$= 5611.11 - 4033.34$$

$$\therefore a = 1577.77$$

તેથી નફ્રો (Y) ની વેચાણ (X) પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 1577.77 + 2016.67x$$

$$X = 3$$
 Herei,
 $\hat{y} = 1577.77 + 2016.67(3)$
 $= 1577.77 + 6050.01$
 $\therefore \hat{y} = 7627.78$

આમ, જ્યારે વેચાણ 3 કરોડ ₹ થાય ત્યારે અનુમાનિત નફો 7627.78 (હજાર ₹) થાય.

પ્રવૃત્તિ

તમે ધોરણ 12માં અભ્યાસ કરતા હોવ તે વર્ષના જૂનથી ડિસેમ્બર માસ દરમિયાન તમારી માસિક કૌટુંબિક આવક અને માસિક ખર્ચની વીગતો એકઠી કરો. તે પરથી માસિક ખર્ચની માસિક આવક પરની નિયતસંબંધ રેખા મેળવો. તે પરથી પછીના વર્ષના જાન્યુઆરી માસની આવક માટે તે માસના ખર્ચનું અનુમાન કરો. જાન્યુઆરી માસના અંતે ખરેખર ખર્ચ કેટલો થાય છે તે ચકાસો અને તમારા અનુમાનમાં થયેલી ત્રુટિ શોધો.

3.5 સહવિચરણ અને સહસંબંધાંક પરથી નિયતસંબંધાંક

જ્યારે બે ચલો X અને Yની દ્વિચલ માહિતી માટે મધ્યક, પ્રમાણિત વિચલન (અથવા વિચરણ), સહવિચરણ, સહસંબંધાંક જેવા સારસૂચક માપ (summary measures) જાણતા હોઈએ ત્યારે નિયતસંબંધાંક અને નિયતસંબંધ રેખા નીચે મુજબ શોધી શકાય છે.

(1) જ્યારે \overline{x} , \overline{y} , s_x^2 (અથવા s_x), s_y^2 (અથવા s_y) અને Cov(x,y) જેવાં માપો જાણતા હોઈએ ત્યારે,

$$b = \frac{\text{સહિવયરણ } (x, y)}{x + \text{j (વયરણ }} = \frac{Cov(x, y)}{s_x^2}$$

અને
$$a = \overline{y} - b\overline{x}$$

જયાં
$$Cov(x, y) = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{n} = \frac{\Sigma xy - n \overline{x} \overline{y}}{n}$$

$$s_x^2 = \frac{\sum (x - \overline{x})^2}{n} = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2 = \frac{\sum x^2}{n} - \overline{x}^2$$

$$s_y^2 = \frac{\sum (y - \overline{y})^2}{n} = \frac{\sum y^2}{n} - \left(\frac{\sum y}{n}\right)^2 = \frac{\sum y^2}{n} - \overline{y}^2$$

(2) જ્યારે $\overline{x}, \overline{y}, r, s_x$ (અથવા s_x^2), અને s_y (અથવા s_y^2) જેવાં માપ જાણતા હોઈએ ત્યારે,

$$b = r \cdot \frac{y + y \cdot x \cdot a}{x + y \cdot x \cdot a} = r \cdot \frac{s_y}{s_x}$$

અને
$$a = \overline{y} - b\overline{x}$$

a અને b ની કિંમતો મૂકી, Y ની X પરની નિયતસંબંધ રેખા એટલે કે $\hat{y} = a + bx$ મેળવી શકાય. હવે આપણે કેટલાંક સારસૂચક માપ આપેલાં હોય અને નિયતસંબંધ રેખા શોધવાની હોય તેવાં ઉદાહરણો લઈએ.

ઉદાહરણ 8 : દસ જુદા જુદા વિસ્તારમાં ચોમાસા દરિમયાન પડેલા વરસાદ સેમીમાં (X) અને બાજરીની ઊપજ ક્વિન્ટલ પ્રતિ હેક્ટરમાં (Y) વચ્ચેના સંબંધનો અભ્યાસ કરવા માટે મેળવેલી માહિતી પરથી નીચે મુજબનાં માપ મળે છે.

$$n = 10, \overline{x} = 40, \overline{y} = 175, s_x = 12, Cov(x, y) = 360$$

આ પરથી ઊપજ Yની વરસાદ X પરની નિયતસંબંધ રેખા મેળવો

અહીં
$$Cov(x, y) = 360$$
 અને $s_x = 12$: $s_x^2 = 144$

$$b = \frac{Cov(x, y)}{s_x^2}$$

$$=\frac{360}{144}$$

$$\therefore b = 2.5$$

અને
$$a = \overline{y} - b\overline{x}$$

$$= 175 - 2.5(40)$$

$$=175-100$$

$$\therefore a = 75$$

આમ Yની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 75 + 2.5x$$

ઉદાહરણ 9 : કુટુંબની વાર્ષિક આવક (X) અને મ્યુચ્યુઅલ ફંડમાં કુટુંબનું વાર્ષિક રોકાણ (Y) એ બે ચલો વચ્ચેનો અભ્યાસ કરવા એક શહેરમાંથી મેળવેલો 100 કુટુંબોની નિદર્શ માહિતીનો સાર નીચે દર્શાવ્યો છે.

X =કુટુંબની વાર્ષિક આવક (લાખ ₹ માં)

y = કુટુંબનું મ્યુચ્યુઅલ ફંડમાં વાર્ષિક રોકાણ (હજાર ₹ માં)

$$\overline{x} = 5.5$$
, $\overline{y} = 40.5$, $s_x = 1.2$, $s_y = 12.8$, $r = 0.65$

આ માહિતી પરથી કુટુંબના મ્યુચ્યુઅલ ફંડમાં રોકાણની કુટુંબની વાર્ષિક આવક પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ કુટુંબની વાર્ષિક આવક 4.5 લાખ ₹ હોય, તો તેનો મ્યુચ્યુઅલ ફંડમાં વાર્ષિક રોકાણનું અનુમાન મેળવો.

અહીં
$$n = 100, \overline{x} = 5.5, \overline{y} = 40.5$$

$$s_x = 1.2$$
, $s_y = 12.8$ અને $r = 0.65$

હવે
$$b = r \cdot \frac{s_y}{s_x}$$

= $0.65 \times \frac{12.8}{1.2}$
= 6.9333

$$\therefore b \approx 6.93$$

અને
$$a = \overline{y} - b\overline{x}$$

= 40.5 - 6.93 (5.5)
= 40.5 - 38.115
= 2.385

$$\therefore$$
 $a \approx 2.39$

આમ Yની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 2.39 + 6.93x$$

$$X = 4.5$$
 44sdi,

$$\hat{y} = 2.39 + 6.93(4.5)$$

$$= 2.39 + 31.185$$

$$= 33.575$$

$$\hat{y} \simeq 33.58$$

તેથી, જ્યારે કોઈ કુટુંબની વાર્ષિક આવક 4.5 લાખ ₹ હોય ત્યારે મ્યુચ્યુઅલ ફંડનું વાર્ષિક અંદાજિત રોકાણ 33.58 હજાર ₹ થાય.

ઉદાહરણ 10 : એક બોલપેન બનાવતી કંપનીની છેલ્લા વર્ષના દરેક માસના અંતે બોલપેનનો ભાવ (₹માં) અને તે સમયે બોલપેનના પુરવઠા (એકમોમાં)ની નીચે આપેલી માહિતી પરથી જ્યારે બોલપેનનો ભાવ 40 ₹ હોય ત્યારે તેના પુરવઠાનું અનુમાન મેળવો.

વીગત	ભાવ (x)	પુરવઠો (<i>y</i>)			
સરેરાશ	30	500			
વિચરણ	25	10,000			
r = 0.8					

અહીં
$$\overline{x}=30, \ \overline{y}=500, \ s_x^2=25, \ s_y^2=10000$$
 અને $r=0.8$

$$s_x^2 = 25$$
 હોવાથી $s_x = 5$

$$s_y^2 = 10000$$
 હોવાથી $s_y = 100$

અહીં ભાવ X = 40 માટે પુરવઠો Y ની કિંમતનું અનુમાન કરવાનું હોઈ આપણે Y ની X પરની નિયત સંબંધ રેખા મેળવીશું.

$$b = r \cdot \frac{s_y}{s_x}$$

$$= 0.8 \times \frac{100}{5}$$

$$\therefore b = 16$$

$$a = \overline{y} - b\overline{x}$$

= 500 - 16 (30)
= 500 - 480

$$\therefore$$
 $a = 20$

આમ Yની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\therefore \quad \hat{y} = 20 + 16x$$

$$X = 40$$
 મૂકતાં,

$$\hat{y} = 20 + 16(40)$$

$$= 20 + 640$$

તેથી, ભાવ ₹ 40 અનુરૂપ પુરવઠાનું અનુમાન 660 એકમો થશે.

ઉદાહરણ 11 : દક્ષિણ ભારતના એક રાજ્યમાં એક વ્યક્તિ ખાદ્ય પદાર્થમાંથી બનતી ચમચીનું ઉત્પાદન કરે છે. વપરાશ બાદ તે ચમચી ખાઈ શકાય તેવી હોય છે. પ્રાયોગિક ધોરણે તેણે કોઈ રાજ્યમાં તે ચમચી વેચાણ અર્થે રજૂ કરેલ છે. છેલ્લા છ મહિનામાં સરેરાશ ભાવ (₹માં) અને તેની માંગ (સો એકમોમાં) પરથી નીચેના પરિણામો મળે છે.

$$n = 6, \Sigma x = 45, \Sigma y = 122, \Sigma x^2 = 439, \Sigma xy = 605$$

આ માહિતી પરથી ચમચીની માંગ (Y)ની ભાવ (X) પરની નિયતસંબંધ રેખા શોધો. અને ભાવ ₹ 10 હોય ત્યારે ચમચીની માંગનું અનુમાન કરો.

⇒tell
$$\overline{x} = \frac{\Sigma x}{n} = \frac{45}{6} = 7.5$$
, $\overline{y} = \frac{\Sigma y}{n} = \frac{122}{6} = 20.33$

$$b = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

$$= \frac{6(605) - (45)(122)}{6(439) - (45)^2}$$

$$= \frac{3630 - 5490}{2634 - 2025}$$

$$= \frac{-1860}{609}$$

$$= -3.0542$$
∴ $b \approx -3.05$

$$a = \overline{y} - b\overline{x}$$

$$= 20.33 - (-3.05)(7.5)$$

$$= 20.33 + 22.875$$

$$= 43.205$$

 $a \simeq 43.21$

આમ Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 43.21 - 3.05x$$

$$X = 10$$
 મૂકતાં,

$$\hat{y} = 43.21 - 3.05(10)$$

$$= 43.21 - 30.5$$

$$\hat{y} = 12.71$$

તેથી, જ્યારે ભાવ ₹ 10 હોય ત્યારે અનુમાનિત માંગ 12.71 (સો એકમો) હોય.

ઉદાહરણ 12 : એક કંપની દ્વારા ઉત્પાદિત પવનચક્કી દ્વારા વીજળી ઉત્પાદિત કરતા એક એકમમાં જુદા-જુદા સમયે પવનની ગતિ (કિમી પ્રતિ કલાક) અને વીજળી-ઉત્પાદન (વૉટ) વિશેનાં પાંચ અવલોકનો નોંધવામાં આવ્યાં, તે પરથી નીચે મુજબ માહિતી મળે છે :

પવનની ગતિ = X કિમી પ્રતિ કલાક

વીજળી-ઉત્પાદન = Y વૉટ

$$\overline{x} = 20, \ \overline{y} = 186, \ \Sigma xy = 23200, \ s_x^2 = 50$$

આ માહિતી પરથી વીજળીના ઉત્પાદન (Y)ની પવનની ગતિ (X) પરની નિયતસંબંધ રેખા મેળવો. જો પવનની ગતિ 25 કિમી પ્રતિ કલાક હોય ત્યારે અંદાજિત વીજળીનું ઉત્પાદન મેળવો.

અહીં,
$$n = 5$$
, $\Sigma xy = 23200$, $\overline{x} = 20$, $\overline{y} = 186$ અને $s_x^2 = 50$

હવે
$$b = \frac{Cov(x, y)}{s_x^2}$$

$$= \frac{\sum xy - n \, \overline{x} \, \overline{y}}{n \cdot s_x^2}$$

$$= \frac{23200 - 5(20)(186)}{5(50)}$$

$$= \frac{23200-18600}{250}$$

$$=\frac{4600}{250}$$

$$b = 18.4$$

$$a = \overline{y} - b\overline{x}$$

$$= 186 - 18.4 (20)$$

$$= 186 - 368$$

$$\therefore a = -182$$

આમ Yની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = -182 + 18.4x$$

$$X = 25$$
 भू \sin ,

$$\hat{y} = -182 + 18.4(25)$$

$$= -182 + 460$$

$$\hat{y} = 278$$

તેથી, જ્યારે પવનની ગતિ 25 કિમી પ્રતિકલાક હોય ત્યારે અંદાજે 278 વૉટ વીજળીનું ઉત્પાદન થાય.

સ્વાધ્યાય 3.2

1. કપાસના પાક પર ખાતરના વપરાશની અસર જાણવા માટે કરેલા એક અભ્યાસમાંથી નીચે મુજબ માહિતી મળે છે.

ખાતરનો વપરાશ ($oldsymbol{10}$ ક્રિગ્રા) $oldsymbol{x}$	28	35	25	24	20	25	20
કપાસનો પાક હેકટરદીઠ (ક્વિન્ટલ) y	128	140	115	120	105	122	100

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો અને ખાતરનો વપરાશ 300 કિગ્રા થયો હોય તો હેક્ટર દીઠ કપાસના પાકનું અનુમાન મેળવો.

2. પિતા અને પુત્રની ઊંચાઈ વચ્ચેનો સંબંધ ચકાસવા માટે પિતા અને પુખ્ત વયના પુત્રની આઠ જોડની નીચે આપેલી માહિતી પરથી પુત્રની ઊંચાઈની પિતાની ઊંચાઈ પરની નિયતસંબંધ રેખા મેળવો.

પિતાની ઊંચાઈ (સેમી) x	167	169	171	168	173	166	167	165
પુત્રની ઊંચાઈ (સેમી) <i>y</i>	158	170	169	172	170	168	164	167

જ્યારે કોઈ પિતાની ઊંચાઈ 170 સેમી હોય ત્યારે તેના પુત્રની ઊંચાઈનું અનુમાન કરો.

3. સમુદ્રસપાટીથી સ્થળની ઊંચાઈ (altitude) અને તે સ્થળે હવામાં અસરકારક ઑક્સિજનના પ્રમાણ વિશેની નીચેની માહિતી પરથી અસરકારક ઑક્સિજનના પ્રમાણ (Y)ની સમુદ્રસપાટીથી ઊંચાઈ (X) પરની નિયતસંબંધ રેખા મેળવો. (305 H)ટર $\simeq 1000 \text{ ફૂટ})$

સ્થળની ઊંચાઈ (305 મીટર) x	0	1	2	3	4	5	6
અસરકારક ઑક્સિજન (%) y	20.9	20.1	19.4	17.9	17.9	17.3	16.6

જો કોઈ સ્થળની સમુદ્રસપાટીથી ઊંચાઈ 7 એકમ (1 એકમ = 305 મીટર) હોય તો ત્યાં હવામાં અસરકારક ઑક્સિજનની ટકાવારીનો અંદાજ મેળવો.

4. એક મોટા શહેરના ઘરમાં વપરાશની જગ્યા અને માસિક ભાડા વચ્ચેનો સંબંધ જાણવા માટે નીચે પ્રમાણે માહિતી એકઠી કરવામાં આવી છે.

વપરાશની જગ્યા (ચોરસ મીટર) x	55	60	75	80	100	120	140
માસિક ભાડુ ['] (₹) <i>y</i>	18,000	19,000	20,000	20,000	25,000	30,000	50,000

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ ઘરની વપરાશની જગ્યા 110 ચોરસ મીટર હોય, તો તેનું માસિક ભાડું કેટલું હશે, તેનું અનુમાન કરો.

5. એક મોલમાં પ્રતિદિન આવતા ગ્રાહકોની સંખ્યા અને વેચાણ (દસ હજાર ₹) વચ્ચેનો સંબંધ જાણવા માટે નીચે મુજબ નિદર્શ માહિતી મળે છે.

ગ્રાહકોની સંખ્યા <i>x</i>	50	70	100	70	150	120
વેચાણ (દસ હજાર <i>₹</i>) <i>y</i>	2.0	2.0	2.5	1.4	4.0	2.5

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ એક દિવસે 80 ગ્રાહકો તે મોલની મુલાકાત લે તો મોલમાં કેટલું વેચાણ થયું હશે તેનું અનુમાન કરો.

6. એક શહેરમાં કાપડના ધંધામાં કાર્યરત દસ પેઢીનો સરેરાશ વાર્ષિક નફો (લાખ ₹માં) અને સરેરાશ વાર્ષિક વહીવટી-ખર્ચ (લાખ ₹માં)ની માહિતી નીચે મુજબ છે.

વીગત	નફો (લાખ ₹ માં) <i>x</i>	વહીવટી-ખર્ચ (લાખ ₹ માં) <i>y</i>
મધ્યક	60	25
પ્રમાણિત વિચલન	6	3
	સહવિચરણ =	10.4

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો.

7. ગુજરાતના જુદા જુદા તાલુકામાં પડેલ સરેરાશ વરસાદ (સેમીમાં) અને મકાઈની ઊપજ (ક્વિન્ટલ પ્રતિ હેક્ટર માં) વચ્ચેનો સંબંધ જાણવા એકઠી કરેલી માહિતી પરથી નીચેના પરિણામો મળે છે.

વીગત	વરસાદ	મકાઈની ઊપજ			
	(સેમી) <i>x</i>	(ક્વિન્ટલ પ્રતિ હેક્ટર) <i>y</i>			
મધ્યક	82	180			
વિચરણ	64	225			
સહસંબંધાંક = 0.82					

જ્યારે વરસાદ 60 સેમી પડે ત્યારે થતી મકાઈની ઊપજનું અનુમાન મેળવો.

 કાંડા ઘડિયાળની બૅટરી (સૅલ)ના ભાવ ₹માં (X) અને તેનો પુરવઠા સો એકમોમાં (Y) વચ્ચેના સંબંધનો અભ્યાસ કરવા એકઠી કરેલી માહિતી પરથી નીચેના પરિણામો મળે છે.

$$n = 10$$
, $\Sigma x = 130$, $\Sigma y = 220$, $\Sigma x^2 = 2288$, $\Sigma xy = 3467$

આ માહિતી પરથી Y ની X પરની નિયતસંબંધ રેખા શોધો અને ભાવ ₹ 16 હોય ત્યારે પુરવઠાનું અનુમાન કરો.

9. એક શહેરમાં ઉનાળામાં જુદા જુદા છ દિવસો દરમિયાન મહત્તમ તાપમાન (X) અને આઇસક્રીમનું વેચાણ (Y)ની વીગત પરથી નીચે મુજબ માહિતી મળે છે.

મહત્તમ તાપમાન = X (ડિગ્રી સેલ્સિયસમાં)

આઇસક્રીમનું વેચાણ = Y (લાખ ₹માં)

$$\overline{x} = 40, \ \overline{y} = 1.2, \ \Sigma xy = 306, \ s_x^2 = 20$$

આ માહિતી પરથી આઇસક્રીમના વેચાણની મહત્તમ તાપમાન પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ દિવસનું મહત્તમ તાપમાન 42 ડિગ્રી સેલ્સિયસ હોય, તો તે દિવસે આઇસક્રીમના વેચાણનો અંદાજ મેળવો.

3.6 નિશ્વાયકતાનો આંક (Coefficient of Determination)

આપણે જાણીએ છીએ કે નિયતસંબંધ એ બે સહસંબંધિત ચલ વચ્ચેનો વિધેયાત્મક સંબંધ છે અને નિરપેક્ષ ચલની કોઈ કિંમત માટે તેને અનુરૂપ સાપેક્ષ ચલની કિંમતનું અનુમાન કરવા તે ઉપયોગી છે. આવા અનુમાનની વિશ્વસનીયતા જાણવા માટેનું એક માપ નિશ્વાયકતાનો આંક છે.

ધારો કે Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = a + bx$ છે, તો સાપેક્ષ ચલ Y ની અવલોકન પરથી મળતી અવલોકિત કિંમતો y અને તેને અનુરૂપ નિયતસંબંધ રેખા પરથી મળેલી તેની અનુમાનિત કિંમતો \hat{y} વચ્ચેના સહસંબંધાંકના વર્ગને **નિશ્ચાયકતાનો આંક** કહે છે. તેને R^2 વડે દર્શાવાય છે.

$$\therefore R^2 = \left[r(y, \, \hat{y}) \right]^2$$

સહેલાઈથી ચકાસી શકાય છે કે, અહીં બે ચલ વચ્ચેના સંબંધના અભ્યાસમાં R^2 નું મૂલ્ય $r^2(x,y)$ એટલે કે r^2 જેટલું જ થાય છે.

$$R^2 = [r(y, \hat{y})]^2$$

$$= [r(y, a + bx)]^2$$

$$= [r(y, x)]^2$$

$$= [r(x, y)]^2$$

આમ, $R^2=r^2$ હોવાથી આપણે કહી શકીએ કે સાપેક્ષ ચલ Yની અનુમાનિત કિંમતની વિશ્વસનીયતા મુખ્યત્વે X અને Y વચ્ચેના સહસંબંધાંક પર આધાર રાખે છે.

જો $r=\pm 1$ હોય તો $R^2=r^2=1$ થાય અને X અને Y વચ્ચે સંપૂર્ણ સુરેખ સહસંબંધ થાય. તેથી આપણે કહી શકીએ કે નિયતસંબંધ રેખા પરથી મેળવેલ Yની અનુમાનિત કિંમત 100 % વિશ્વસનીય છે. પરંતુ જો r=0 હોય તો $R^2=r^2=0$ અને X અને Y વચ્ચે સુરેખ સહસંબંધ નથી, તેથી આપણે કહી શકીએ કે, નિયતસંબંધ રેખા પરથી મેળવેલ Y ની અનુમાનિત કિંમત બિલકુલ વિશ્વસનીય નથી.

ઉપરની ચર્ચા પરથી સ્પષ્ટ છે કે, R^2 ની મોટી કિંમત બે ચલ વચ્ચે ઘનિષ્ઠ સુરેખ સહસંબંધ દર્શાવે છે. તેથી નિશ્ચાયકતાના આંક (R^2) પરથી સુરેખ નિયતસંબંધની ધારણા યોગ્ય છે કે કેમ તે ચકાસી શકાય છે. જો R^2 ની કિંમત 1 ની નજીક હોય તો X અને Y વચ્ચેનો સંબંધ સુરેખ નિયતસંબંધ છે એવી ધારણા યોગ્ય ગણાય અને જો R^2 ની કિંમત 0ની નજીક હોય તો X અને Y વચ્ચેનો સંબંધ સુરેખ છે એવી ધારણા યોગ્ય ગણાય નહિ.

સાપેક્ષ ચલ Y માં થતા કુલ ફેરફારમાંથી કેટલું ચલન નિયતસંબંધ રેખા દ્વારા સમજાવી શકાય તે નિશ્ચયતાના આંક પરથી મળે છે. દા.ત., જો કોઈ માહિતી માટે r=0.9 હોય તો નિશ્ચાયકતાનો આંક $(0.9)^2=0.81$ થાય અને તેથી $r^2\times 100\,\%=81\,\%$ થાય, એટલે કહી શકાય કે ચલ Y માં થતા કુલ ચલનમાંથી $81\,\%$ ચલનની સમજૂતી નિયતસંબંધ રેખા પરથી મળે છે. તેથી આપણે કહી શકીએ કે પસંદ કરેલું નિયતસંબંધનું સુરેખ મૉડેલ આ માહિતી માટે યોગ્ય છે.

ઉદાહરણ 13 : નીચેના કોષ્ટકમાં જુદી-જુદી કંપનીમાં કામ કરતા તકનિકી કારીગરોનો અનુભવ (વર્ષમાં) અને તેમના માસિક પગાર (હજાર ₹માં) આપેલા છે.

અનુભવ (વર્ષ) x	12	8	16	20	5	14	10
માસિકપગાર (હજાર ₹) <i>y</i>	22	15	25	30	12	24	20

આ માહિતી પરથી નિશ્વાયકતાના આંકની ગણતરી કરો તેમજ અનુભવ અને માસિક પગાર વચ્ચે સુરેખ નિયતસંબંધની ધારણા ચકાસો.

138

અહીં,
$$n=7$$
, $\overline{x}=\frac{\Sigma x}{n}=\frac{85}{7}=12.14$, $\overline{y}=\frac{\Sigma y}{n}=\frac{148}{7}=21.14$

	અનુભવ (વર્ષ) <i>x</i>	માસિક પગાર (હજાર ₹) <i>y</i>	хy	x^2	y ²
	12	22	264	144	484
	8	15	120	64	225
	16	25	400	256	625
	20	30	600	400	900
	5	12	60	25	144
	14	24	336	196	576
	10	20	200	100	400
કુલ	85	148	1980	1185	3354

$$R^{2} = r^{2} = \left[\frac{n \sum xy - (\sum x) (\sum y)}{\sqrt{n \sum x^{2} - (\sum x)^{2}} \cdot \sqrt{n \sum y^{2} - (\sum y)^{2}}} \right]^{2}$$

$$= \left[\frac{7(1980) - (85) (148)}{\sqrt{7(1185) - (85)^{2}} \cdot \sqrt{7(3354) - (148)^{2}}} \right]^{2}$$

$$= \frac{[13860 - 12580]^{2}}{[8295 - 7225] \cdot [23478 - 21904]}$$

$$= \frac{(1280)^{2}}{(1070) \cdot (1574)}$$

$$= \frac{1638400}{1684180}$$

$$= 0.9728$$

 $\therefore R^2 \simeq 0.97$

 R^2 ની કિંમત 0.97 છે. 1ની ખૂબ નજીક છે. તેથી આપણે કહી શકીએ કે, અનુભવના વર્ષ અને પગાર માસિક વચ્ચે સુરેખ નિયતસંબંધ છે એ ધારણા યોગ્ય ગણાય.

નોંધ : ઉપરના ઉદાહરણમાં u=x-A અને v=y-B (જ્યાં A અને B અનુકૂળ અચળ કિંમતો) લઈને પણ R^2 શોધી શકાય.

ઉદાહરણ 14 : વસ્તીની ગીચતા અને ચામડીના દર્દોથી પીડાતી વ્યક્તિઓની સંખ્યા વચ્ચેનો સંબંધ જાણવા છ શહેરો માટે વસ્તીની ગીચતા (ચો કિમીદીઠ) અને ચામડીનાં દર્દોથી પીડાતા દર્દીઓ (દર હજારે) વિશે નીચે મુજબ માહિતી મળે છે.

ગીચતા (ચો કિમીદીઠ) <i>x</i>	12,000	14,500	19,000	17,500	13,500	16,000
દર્દીઓની સંખ્યા (દર હજારે) <i>y</i>	80	60	90	80	40	30

આ માહિતી પરથી Y અને X પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ શહેરની ગીચતા 15000 (ચો કિમીદીઠ) હોય તો તેમાં ચામડીનાં દર્દીથી પીડાતા દર્દીઓની સંખ્યાનું અનુમાન કરો. આ નિયતસંબંધ મૉડેલની વિશ્વસનીયતા ચકાસો.

અહીં,
$$n = 6, \overline{x} = \frac{\Sigma x}{n} = \frac{92500}{6} = 15416.67;$$
 $\overline{y} = \frac{\Sigma y}{n} = \frac{380}{6} = 63.33$

આપણે જોઈ શકીએ છીએ કે, ચલ X ની કિંમતો 500ના ગુણકમાં અને ચલ Y ની કિંમતો 10ના ગુણકમાં છે. તેથી $A=15000,\ B=60,\ c_x=500,\ c_y=10$ લઈ આપણે ટૂંકી રીતનો ઉપયોગ કરીશું. હવે આપણે u અને v નીચે મુજબ વ્યાખ્યાયિત કરીએ.

$$u = \frac{x - A}{c_x} = \frac{x - 15000}{500}$$
 અને $v = \frac{y - B}{c_y} = \frac{y - 60}{10}$

	ગીચતા	દર્દીઓની સંખ્યા	и	ν			
	(ચો ક્રિમી દીઠ)	(દર હજારે)	$= \frac{x - 15000}{x - 15000}$	$=\frac{y-60}{}$	uv	u^2	v^2
	x	у	_ 500	10			
	12000	80	- 6	2	-12	36	4
	14500	60	-1	0	0	1	0
	19000	90	8	3	24	64	9
	17500	80	5	2	10	25	4
	13500	40	-3	-2	6	9	4
	16000	30	2	-3	– 6	4	9
કુલ	92500	380	5	2	22	139	30

$$b = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$

$$= \frac{6(22) - (5)(2)}{6(139) - (5)^2} \times \frac{10}{500}$$

$$= \frac{132 - 10}{834 - 25} \times \frac{1}{50}$$

$$= \frac{122}{809} \times \frac{1}{50}$$

$$= \frac{122}{40450}$$

 $\therefore b \approx 0.003$

$$a = \overline{y} - b\overline{x}$$
= 63.33 - 0.003 (15416.67)
= 63.33 - 46.25

$$\therefore a = 17.08$$

$$Y$$
ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 17.08 + 0.003 x$$

$$X = 15000$$
 Hyai,

$$\hat{y} = 17.08 + 0.003(15000)$$

$$=17.08+45$$

$$\hat{y} = 62.08$$

તેથી કોઈ શહેરની ગીચતા 15000 હોય, તો તેમાં ચામડીનાં દર્દથી પીડાતા દર્દીઓની અનુમાનિત સંખ્યા દર હજારે $62.08 \simeq 62\,$ થાય.

હવે નિયતસંબંધ મૉડેલની વિશ્વસનીયતા નિશ્ચાયકતાના આંક R^2 પરથી ચકાસી શકાય છે. તેથી આપણે તે મેળવીએ

$$R^{2} = r^{2} = \left[\frac{n\Sigma uv - (\Sigma u) (\Sigma v)}{\sqrt{n\Sigma u^{2} - (\Sigma u)^{2}} \cdot \sqrt{n\Sigma v^{2} - (\Sigma v)^{2}}} \right]^{2}$$

$$= \frac{\left[6(22) - (5)(2) \right]^{2}}{\left[6(139) - (5)^{2} \right] \left[6(30) - (2)^{2} \right]}$$

$$= \frac{(122)^{2}}{(809)(176)}$$

$$= \frac{14884}{142384}$$

$$= 0.1045$$

 $R^2 \simeq 0.10$

 R^2 ની કિંમત 0ની ખૂબ નજીક હોવાથી નિયતસંબંધ મૉડેલ વિશ્વસનીય છે તેમ કહી શકાય નહિ.

3.7 નિયતસંબંધાંકના ગુણધર્મ

- (1) સહસંબંધાંક r અને નિયતસંબંધાંક b બંનેનાં ચિક્ષો સમાન હોય છે.
- તેથી $b=r\cdot \frac{s_y}{s_x}$ પરથી સમજી શકાય છે, કે r નું ચિક્ત હશે તે જ ચિક્ત b નું પણ થશે.)
- (2) નિયતસંબંધાંક એ ઊગમબિંદુ પરિવર્તનથી સ્વતંત્ર છે પરંતુ માપ (scale) પરિવર્તનથી સ્વતંત્ર નથી. (આ ગુણધર્મની વિસ્તૃત ચર્ચા નિયતસંબંધાંકની ગણતરીની ટૂંકી રીતની સમજૂતીમાં કરેલ છે.)
- **નોંધ** : Y ની X પરની નિયતસંબંધ રેખા હંમેશાં $\left(\overline{x}, \overline{y}\right)$ બિંદુમાંથી પસાર થાય છે.

ઉદાહરણ 15 : પિતાની ઊંચાઈ સેમીમાં (X) અને પુખ્ત વયના પુત્રની ઊંચાઈ સેમીમાં (Y) વચ્ચેનો સંબંધ જાણવાના પ્રયોગમાં એક નિદર્શમાં છ પિતા-પુત્રની જોડ પસંદ કરવામાં આવે છે. તે પરથી મળતાં પરિશામો નીચે મુજબ છે.

$$\Sigma x = 1020, \ \Sigma y = 990, \ \Sigma (x - 170)^2 = 60, \ \Sigma (y - 165)^2 = 105$$

 $\Sigma (x - 170) (y - 165) = 45$

આ માહિતી પરથી પુખ્ત વયના પુત્રની ઊંચાઈ (Y)ની પિતાની ઊંચાઈ (X) પરની નિયતસંબંધ રેખા મેળવો. તેમજ નિયતસંબંધ મૉડેલની વિશ્વસનીયતા ચકાસો.

$$\overline{x} = \frac{\Sigma x}{n} = \frac{1020}{6} = 170$$

$$\overline{y} = \frac{\Sigma y}{n} = \frac{990}{6} = 165$$

$$\therefore \Sigma (x - 170)^2 = \Sigma (x - \overline{x})^2 = 60$$

$$\Sigma (y - 165)^2 = \Sigma (y - \overline{y})^2 = 105$$

$$\Sigma (x - 170) (y - 165) = \Sigma (x - \overline{x}) (y - \overline{y}) = 45$$

$$\therefore b = \frac{\Sigma (x - \overline{x}) (y - \overline{y})}{\Sigma (x - \overline{x})^2}$$

$$= \frac{45}{60}$$

$$\therefore b = 0.75$$

$$a = \overline{y} - b\overline{x}$$

$$a = y - bx$$

$$=165-0.75(170)$$

$$=165-127.5$$

$$\therefore a = 37.5$$

આમ, Y ની X પરની નિયતસંબંધ રેખા

$$\hat{y} = a + bx$$

$$\hat{y} = 37.5 + 0.75 x$$

હવે, નિયતસંબંધ મૉડેલની વિશ્વસનીયતા ચકાસવા નિશ્ચાયકતાનો આંક R^2 મેળવીએ.

$$R^{2} = \left[\frac{\Sigma(x-\overline{x})(y-\overline{y})}{\sqrt{\Sigma(x-\overline{x})^{2}} \cdot \sqrt{\Sigma(y-\overline{y})^{2}}}\right]^{2}$$

$$= \frac{(45)^{2}}{(60)(105)}$$

$$= \frac{2025}{6300}$$

$$= 0.3214$$

$$R^2 \simeq 0.32$$

 R^2 ની કિંમત 0થી નજીક હોવાથી આ નિયતસંબંધ મૉડેલ વિશ્વસનીય છે તેમ કહી શકાય નહિ.

- ઉદાહરણ 16 : (i) જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y}=12-1.5\,x$ હોય અને X નો મધ્યક 6 હોય, તો Y નો મધ્યક શોધો. (ii) જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y}=11.5+0.65\,x$ હોય અને $\overline{y}=18$ હોય, તો \overline{x} ની કિંમત શોધો.
- (i) આપણે જાણીએ છીએ કે, નિયતસંબંધ રેખા $(\overline{x}, \overline{y})$ બિંદુમાંથી હંમેશાં પસાર થાય છે. તેથી નિયતસંબંધ રેખાના સમીકરણમાં x ની જગ્યાએ \overline{x} મૂકતાં જે \hat{y} મળે તે જ \overline{y} થાય અથવા \hat{y} ની જગ્યાએ \overline{y} મૂકતાં જે x મળે તે જ \overline{x} થાય.

 $\hat{y} = 12 - 1.5 x$ માં x ની જગ્યાએ $\overline{x} = 6$ મુકતાં,

$$\hat{y} = 12 - 1.5(6)$$

$$\hat{y} = 12 - 9$$

$$\therefore \hat{y} = 3$$
 તેથી $\overline{y} = 3$

આમ, Y નો મધ્યક 3 થાય.

(ii) ઉપરની ચર્ચા મુજબ $\hat{y} = 11.5 + 0.65 x$ માં \hat{y} ને બદલે $\overline{y} = 18$ મૂકતાં, જે x મળે તે \overline{x} થશે. $\hat{y} = 11.5 + 0.65 x$ માં $\hat{y} = \overline{y} = 18$ મૂકતાં,

$$18 = 11.5 + 0.65 x$$

$$\therefore 6.5 = 0.65 x$$

$$\therefore \quad x = \frac{6.5}{0.65}$$

$$\therefore x = 10 \text{ dell } \overline{x} = 10$$

આમ, X નો મધ્યક 10 થાય.

- ઉદાહરણ 17 : (i) જો $\overline{x}=5, \overline{y}=11$ અને b=1.2 હોય, તો Y ની X પરની નિયતસંબંધ રેખા મેળવો. (ii) જો $\overline{x}=60, \overline{y}=75$ અને $s_x^2:Cov(x,y)=5:3$ હોય, તો Y ની X પરની નિયતસંબંધ રેખા મેળવો અને તે પરથી X=65 માટે Y ની કિંમતનું અનુમાન મેળવો.
 - (i) અહીં b=1.2 તથા $\overline{x}=5$ અને $\overline{y}=11$ છે.

હવે,
$$a = \overline{y} - b\overline{x}$$

$$\therefore a = 11 - 1.2(5)$$

$$=11-6$$

$$\therefore a = 5$$

Yની X પરની નિયતસંબંધ રેખા નીચે મુજબ મળે.

$$\hat{y} = a + bx$$

$$\hat{y} = 5 + 1.2 x$$

(ii) અહીં
$$\bar{x} = 60, \ \bar{y} = 75$$
 અને $s_x^2 : Cov(x, y) = 5:3$ છે.

$$s_x^2 : Cov(x, y) = 5:3$$

$$\therefore \frac{s_x^2}{Cov(x, y)} = \frac{5}{3} \text{ All } \frac{Cov(x, y)}{s_x^2} = \frac{3}{5}$$

હવે,
$$b = \frac{Cov(x, y)}{s_x^2} = \frac{3}{5} = 0.6$$

અને
$$a = \overline{y} - b\overline{x}$$

$$=75-0.6(60)$$

$$=75-36$$

$$\therefore a = 39$$

Y ની X પરની નિયતસંબંધ રેખા નીચે મુજબ મળે.

$$\hat{y} = a + bx$$

$$\therefore \quad \hat{y} = 39 + 0.6 x$$

$$X = 65$$
 Hૂકતાં,

$$\hat{y} = 39 + 0.6 (65)$$

$$=39 + 39$$

$$\hat{y} = 78$$

આમ, X = 65 માટે Y ની અનુમાનિત કિંમત 78 થાય.

ઉદાહરણ 18: (i) Y ની X પરની અન્વાયોજિત નિયતસંબંધ રેખા $\hat{y}=50+3.5\,x$ છે. જો આ રેખાના અન્વાયોજનમાં એક અવલોકન (16,108)નો ઉપયોગ થયો હોય, તો X=16 માટે Y ની અનુમાનિત કિંમતની ત્રુટિ શોધો. (ii) જો $\hat{y}=22+0.8\,x$ રેખાના અન્વાયોજનમાં એક અવલોકન (10,30)નો ઉપયોગ થયો હોય, તો

X=10 માટે Y ની અનુમાનિત કિંમતની ત્રુટિ શોધો. ત્રુટિના જવાબ પરથી આપ શું તારવી શકો ?

(i)
$$\hat{y} = 50 + 3.5 x$$
 Hi $X = 16$ Heati,

$$\hat{y} = 50 + 3.5(16)$$

$$=50+56$$

$$\therefore \hat{y} = 106$$

અને અવલોકિત માહિતી પરથી X=16 માટે Y=108 છે.

$$\therefore$$
 સુટિ $e = y - \hat{y}$

$$=108-106$$

$$\therefore e=2$$

આમ, X = 16 માટે Yની અનુમાનિત કિંમતની ત્ર્ટિ 2 થાય.

(ii)
$$\hat{y} = 22 + 0.8 x \text{ Hi}$$
 $X = 10 \text{ Heati,}$

$$\hat{y} = 22 + 0.8 (10)$$

$$= 22 + 8$$

$$\therefore \hat{y} = 30$$

અને અવલોકિત માહિતી પરથી X=10 માટે Y=30 છે.

$$\therefore$$
 ત્રુટિ $e = y - \hat{y}$

$$=30-30$$

$$\therefore e=0$$

આમ, X=10 માટે Y ની અનુમાનિત કિંમતની ત્રુટિ 0 થાય છે.

અહીં, ત્રુટિની કિંમત શૂન્ય મળે છે તેથી આપણે કહી શકીએ કે, બિંદુ (10,30) એ અન્વાયોજિત રેખા $\hat{y}=22+0.8x$ પર જ આવેલું હોય.

નોંધ : ન્યૂનતમ વર્ગોની રીતે મળતી નિયતસંબંધ રેખાથી ઉપરની તરફ આવેલા બિંદુ માટે ત્રુટિ ધન, નીચે તરફ આવેલા બિંદુ માટે ત્રુટિ ઋણ અને રેખા પર આવેલા બિંદુ માટે ત્રુટિ શૂન્ય થાય.

- ઉદાહરણ 19: (i) જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y}=25+3x$ હોય અને Cov(x,y)=48 હોય તો X નું પ્રમાણિત વિચલન મેળવો. જો Y નું પ્રમાણિત વિચલન 15 હોય તો નિશ્ચાયકતાનો આંક પણ શોધો. (ii) ઉપરના પ્રશ્નમાં આપેલી નિયતસંબંધ રેખા માટે જો Y ની કિંમતમાં અંદાજે 15 એકમોનો વધારો કરવો હોય, તો X ની કિંમતમાં કેટલા એકમોનો વધારો કરવો પડે ?
 - (i) y ની x પરની નિયતસંબંધ રેખા $\hat{y} = 25 + 3x$ ને તેના સામાન્ય સ્વરૂપ $\hat{y} = a + bx$ સાથે સરખાવતાં નિયતસંબંધાંક b = 3 મળે છે. હવે Cov(x, y) = 48 આપેલ હોવાથી

$$b = \frac{Cov(x, y)}{s_x^2}$$

$$\therefore \quad 3 = \frac{48}{s_x^2}$$

$$\therefore s_x^2 = 16$$

$$\therefore s_x = 4$$

આમ, X નું પ્રમાણિત વિચલન 4 થાય.

હવે Y નું પ્રમાશિત વિચલન $s_y = 15$ આપેલ છે.

તેથી, નિશ્ચાયકતાનો આંક
$$R^2 = \left[rac{Cov(x,y)}{s_x \cdot s_y}
ight]^2$$

$$R^2 = \left[\frac{48}{4 \times 15}\right]^2 = (0.8)^2 = 0.64$$
 થાય.

બીજી રીત :

$$b = r \cdot \frac{s_y}{s_x}$$

$$\therefore 3 = r \cdot \frac{15}{4}$$

$$\therefore r = \frac{3 \times 4}{15}$$

$$r = 0.8$$

$$\therefore R^2 = r^2 = (0.8)^2 = 0.64$$

- (ii) અહીં, $\hat{y}=25+3x$ છે અને નિયતસંબંધાંક b=3 છે. જે દર્શાવે છે કે X ની કિંમતમાં એક એકમનો વધારો થાય તો Y ની અનુમાનિત કિંમતમાં 3 એકમનો વધારો થાય. તેથી જો Y ની કિંમતમાં અંદાજે 15 એકમોનો વધારો કરવો હોય તો X ની કિંમતમાં $\frac{15}{3}=5$ એકમોનો વધારો કરવો પડે.
- ઉદાહરણ 20 : (i) જો Yની X પરની નિયતસંબંધ રેખા $\hat{y}=\frac{x}{2}+5$ અને $s_y:s_x=5:8$ હોય તો નિશ્વાયકતાનો આંક મેળવો. (ii) જો Yની X પરની નિયતસંબંધ રેખા 4x+5y-65=0 હોય તો નિયતસંબંધાંક bની કિંમત શોધો.
 - (i) Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = \frac{x}{2} + 5 = \frac{1}{2} \cdot x + 5$ ને સામાન્ય સ્વરૂપ $\hat{y} = a + bx$ સાથે સરખાવતાં

$$b = \frac{1}{2}$$
 મળે છે.

હવે,
$$s_y: s_x = 5:8$$

$$\therefore \frac{s_y}{s_x} = \frac{5}{8}$$

અને
$$b = r \cdot \frac{s_y}{s_x}$$

$$\therefore \quad \frac{1}{2} = r \cdot \frac{5}{8}$$

$$\therefore \quad r = \frac{1}{2} \times \frac{8}{5}$$

$$r = 0.8$$

$$\therefore$$
 નિશ્ચાયકતાનો આંક $R^2 = r^2 = (0.8)^2 = 0.64$ થાય.

(ii) Yની X પરની નિયતસંબંધ રેખા 4x + 5y - 65 = 0 આપેલી છે.

હવે તેને તેના સામાન્ય સ્વરૂપમાં ફેરવીએ.

$$4x + 5y - 65 = 0$$

$$\therefore 5y = 65 - 4x$$

$$\therefore y = \frac{65 - 4x}{5}$$

$$\therefore y = \frac{65}{5} - \frac{4x}{5}$$

$$\therefore y = 13 - 0.8x$$

હવે તેને $\hat{y} = a + bx$ સાથે સરખાવતાં b = -0.8 મળે છે.

ઉદાહરણ 21 :

(i) જો
$$b_{yx} = 0.85$$
, $u = x - 15$ અને $v = y - 20$ હોય, તો b_{vu} ની કિંમત શોધો.

(ii) જો
$$u = \frac{x-5}{3}$$
, $v = \frac{y-8}{5}$ અને $b_{yx} = 0.9$ હોય, તો b_{vu} ની કિંમત શોધો.

(iii) જો
$$u = 10(x-4.5)$$
, $v = \frac{y-50}{10}$ અને $b_{yx} = 0.25$ હોય, તો b_{vu} ની કિંમત શોધો.

(iv) જો
$$u=5(x-40), v=2(y-18)$$
 અને $b_{yx}=1.6$ હોય, તો b_{vu} ની કિંમત શોધો. ઉપર્યુક્ત બધા જ પ્રશ્નોના ઉકેલ માટે નિયતસંબંધાંકના નીચેના ગુણધર્મનો ઉપયોગ કરીશું :

$$lack n$$
 જો $u=x-A$ અને $v=y-B$ હોય, તો $b_{yx}=b_{vu}$

$$lack$$
 જો $u=rac{x-A}{c_x}$ અને $v=rac{y-B}{c_y}$ હોય, તો $b_{yx}=b_{vu}\cdotrac{c_y}{c_x}$

(i)
$$u = x - 15 = x - A$$
 અને $v = y - 20 = y - B$ હોવાથી
$$\therefore b_{vu} = b_{yx} = 0.85 \quad \text{% ધાય.}$$

(ii)
$$u = \frac{x-5}{3} = \frac{x-A}{c_x}$$
 અને $v = \frac{y-8}{5} = \frac{y-B}{c_y}$ હોવાથી

$$b_{yx} = b_{vu} \cdot \frac{c_y}{c_x}$$
 : $b_{vu} = b_{yx} \cdot \frac{c_x}{c_y} = 0.9 \times \frac{3}{5} = 0.54$ થાય.

(iii)
$$u = 10(x - 4.5) = \frac{x - 4.5}{\frac{1}{10}} = \frac{x - A}{c_x}$$
 અને $v = \frac{y - 50}{10} = \frac{y - B}{c_y}$ હોવાથી

$$b_{yx} = b_{yu} \cdot \frac{c_y}{c_x}$$
 $\therefore b_{yu} = b_{yx} \cdot \frac{c_x}{c_y} = 0.25 \times \frac{\left(\frac{1}{10}\right)}{10} = 0.25 \times \frac{1}{100} = 0.0025$ થાય.

$$b_{yx} = b_{vu} \cdot \frac{c_y}{c_x}$$
 : $b_{vu} = b_{yx} \cdot \frac{c_x}{c_y} = 1.6 \times \frac{\left(\frac{1}{5}\right)}{\left(\frac{1}{2}\right)} = 1.6 \times \frac{2}{5} = 0.64$ થાય.

3.8 નિયતસંબંધના ઉપયોગમાં રાખવી પડતી સાવચેતી

આપણે જાણીએ છીએ કે નિયતસંબંધ એ બે સહસંબંધિત ચલ વચ્ચેનો વિધેયાત્મક સંબંધ છે અને તેથી તેના પરથી સાપેક્ષ ચલની કિંમતનું અનુમાન કરી શકાય છે. વ્યાવહારિક ક્ષેત્રો જેવાં કે અર્થશાસ્ત્ર, વેપાર, ઉદ્યોગો, શિક્ષણ, મનોવિજ્ઞાન, સમાજશાસ્ત્ર, તબીબી, આયોજન વગેરેમાં નિર્ણય-ઘડતર માટે નિયતસંબંધ ખૂબ ઉપયોગી છે. નિયતસંબંધનો ખૂબ બહોળા પ્રમાણમાં ઉપયોગ થાય છે પરંતુ તેના ઉપયોગમાં કેટલીક સાવચેતી રાખવી જરૂરી છે.

- (1) સાપેક્ષ ચલના અનુમાનની વિશ્વસનીયતા નિશ્ચાયકતાના આંક $\left(R^2\right)$ પરથી ચકાસી શકાય છે. તેથી આપણે નિશ્ચાયકતાના આંક પરથી નિયતસંબંધ સુરેખ છે તે ચકાસ્યા બાદ જ મેળવેલ અનુમાનનો ઉપયોગ કરવો જોઈએ.
- (2) નિયતસંબંધના અભ્યાસમાં ધ્યાનમાં રાખવી જરૂરી અન્ય બાબત એ છે કે, વિકીર્ણ આકૃતિ કે ન્યૂનતમ વર્ગોની રીત પરથી મળતા નિયતસંબંધનો ઉપયોગ નિરપેક્ષ ચલની આપેલી કિંમતોથી બહુ દૂરની કિંમતો માટે ન થવો જોઈએ.

દા.ત., જો કોઈ માહિતી પરથી વરસાદ અને ઘઉંની ઊપજ વચ્ચે ગાઢ પ્રમાણમાં સહસંબંધ જોવા મળે તો કહી શકાય કે, જેમ વરસાદ વધે તેમ ઘઉંની ઊપજ પણ વધે. હવે આપેલી માહિતી પરથી મેળવેલ નિયતસંબંધનો ઉપયોગ વરસાદની કોઈ કિંમત પરથી તેને અનુરૂપ ઘઉંની ઊપજનું અનુમાન મેળવવું હોય તો તે કિંમત માહિતીમાં વરસાદની આપેલી કિંમતોની આસપાસ નજીકની હોય તો જ ઘઉંની ઊપજનું યોગ્ય અનુમાન મળી શકે છે. જો ખૂબ વધુ વરસાદ પડે તો પાકને નુકસાન થાય અને તેથી ઘઉંની ઊપજ ઘટી પણ શકે છે. આવા સમયે ઉપર્યુક્ત નિયતસંબંધ પરથી સાપેક્ષ ચલ (ઊપજ)નું અનુમાન ખોટું પડી શકે છે.

સારાંશ

- અભ્યાસ હેઠળના બે ચલ વચ્ચે કાર્ય-કારણનો સંબંધ છે તે પૂર્વધારણા લઈ નિયતસંબંધનો અભ્યાસ કરવામાં આવે છે.
- નિયતસંબંધ : બે સંબંધિત ચલો વચ્ચેનો વિધેયાત્મક સંબંધ.
- સુરેખ નિયતસંબંધ : બે સંબંધિત ચલો વચ્ચેનો એવો વિધેયાત્મક સંબંધ કે જેમાં ચલની કિંમતોમાં (લગભગ)
 અચળ પ્રમાણમાં ફેરફાર થતો હોય એટલે કે તે સંબંધ કોઈ સુરેખા દ્વારા નિશ્ચિત કરી શકાય.
- નિયતસંબંધ પરથી નિરપેક્ષ ચલની કોઈ જ્ઞાત કિંમત માટે તેને અનુરૂપ સાપેક્ષ ચલની કિંમતનું અનુમાન થઈ
 શકે છે.
- નિયત સંબંધાંક : નિરપેક્ષ ચલની કિંમતમાં એક એકમ ફેરફાર કરવાથી સાપેક્ષ ચલની કિંમત થતો અંદાજિત ફેરફાર. તેને નિયતસંબંધ રેખાનો ઢાળ પણ કહે છે.
- ત્રુટિ : સાપેક્ષ ચલની કિંમતના અનુમાનમાં થતી ભૂલ.
- નિશ્ચાયકતાનો આંક : સાપેક્ષ ચલ Y ની અવલોકિત કિંમતો અને તેની અનુમાનિત કિંમતો વચ્ચેનો સહસંબંધાંકનો વર્ગ. બે ચલોના કિસ્સામાં તેની કિંમત નિરપેક્ષ ચલ X અને સાપેક્ષ ચલ Y વચ્ચેના સહસંબંધાંકના વર્ગ જેટલી જ થાય છે.
- નિશ્ચાયકતાના આંક પરથી સાપેક્ષ ચલ Y માં થતા કુલ ફેરફારમાંથી કેટલું ચલન નિયતસંબંધ રેખા દ્વારા સમજાવી
 શકાય તે જાણી શકાય છે અને નિયતસંબંધ મોડલની વિશ્વસનીયતા પણ જાણી શકાય છે.
- નિયતસંબંધનો ઉપયોગ નિરપેક્ષ ચલની આપેલી કિંમતોથી બહુ દૂરની કિંમતો માટે ન થવો જોઈએ.

148

સૂત્રોની યાદી :

નિયતસંબંધ રેખાનું સમીકરણ

$$\hat{y} = a + bx$$

જ્યાં, $b = b_{yx} =$ નિયતસંબંધાંક

(1)
$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

(2)
$$b = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{n\Sigma x^2 - (\Sigma x)^2}$$

(3)
$$b = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2}$$
 અહીં, $u = x - A$ અને $v = y - B$

(4)
$$b = \frac{n\Sigma uv - (\Sigma u)(\Sigma v)}{n\Sigma u^2 - (\Sigma u)^2} \times \frac{c_y}{c_x}$$
 અહીં, $u = \frac{x - A}{c_x}$ અને $v = \frac{y - B}{c_y}$

$$(5) \quad b = r \cdot \frac{s_y}{s_x}$$

(6)
$$b = \frac{Cov(x, y)}{s_x^2}$$

$$(7) \quad a = \overline{y} - b\overline{x}$$

(8) નિશ્વાયકતાનો આંક
$$R^2 = \left[r(y,\hat{y})\right]^2 = \left[r(x,y)\right]^2 = r^2$$

સ્વાધ્યાય 3

વિભાગ A

નીચે આપેલ બહુવિકલ્પ પ્રશ્નો માટે સાચા વિકલ્પની પસંદગી કરો :

- 1. નીચેના પૈકી કયો વિકલ્પ, બે ચલ વચ્ચેનો વિધેયાત્મક સંબંધ દર્શાવે છે ?
 - (a) સહસંબંધ
- (b) નિયતસંબંધ
- (c) મધ્યક
- (d) વિચરણ
- 2. નિયતસંબંધની શ્રેષ્ઠ અન્વાયોજિત રેખા કઈ રીતથી મેળવાય છે ?
 - (a) ન્યૂનતમ વર્ગોની રીત

(b) કાર્લ પિયર્સનની રીત

(c) મહત્તમ વર્ગોની રીત

(d) બાઉલીની રીત

3.	પ્રચલિત સંકેતમાં $b_{\scriptscriptstyle yx}$ એટલે શું ?	
	(a) અંતઃખંડ	(b) સાપેક્ષ ચલ
	(c) X ની કિંમતમાં એક એકમનો ફેરફાર કરવાથી	Y ની કિંમતમાં થતો અંદાજિત ફેરફાર
	(d) Y ની કિંમતમાં એક એકમનો ફેરફાર કરવાથી	X ની કિંમતમાં થતો અંદાજિત ફેરફાર
4.	નીચેના પૈકી કયો વિકલ્પ સાચો છે ?	
	(a) $b_{yx} = r \cdot \frac{s_x}{s_y}$ (b) $b_{yx} = r \cdot \frac{s_y^2}{s_x^2}$	(c) $b_{yx} = \frac{Cov(x, y)}{s_y^2}$ (d) $b_{yx} = r \cdot \frac{s_y}{s_x}$
5.	નિયતસંબંધ રેખા કયા બિંદુમાંથી હંમેશાં પસાર થાય	છે ?
	(a) $(\overline{x}, \overline{y})$ (b) $(0, \overline{y})$	(c) $(\bar{x}, 0)$ (d) $(0, 0)$
6.	Y ની X પરની નિયતસંબંધ રેખાના કિસ્સામાં અનુ	માનની ત્રુટિ <i>e</i> શું થાય ?
	(a) $y - \hat{y}$ (b) $\hat{x} - \hat{y}$	(c) $x - \hat{x}$ (d) $\hat{y} - \hat{x}$
7.	જો વસ્તુનું વેચાણ એ તેના જાહેરાત ખર્ચ પર આધ	ાર રાખે તો કઈ નિયતસંબંધ રેખાનો ઉપયોગ થાય
	(a) જાહેરાત-ખર્ચની વેચાણ પરની નિયતસંબંધ રેખ	l.
	(b) જાહેરાત-ખર્ચની જાહેરાત-ખર્ચ પરની નિયતસંબંધ	ા રેખા
	(c) વેચાણની જાહેરાત-ખર્ચ પરની નિયતસંબંધ રેખ	L
	(d) વેચાણની વેચાણ પરની નિયતસંબંધ રેખા	
8.	નીચેના પૈકી Y ની X પરની નિયતસંબંધ રેખા કર્દ	
	(a) $\hat{y} = a + bx + cx^2$ (b) $\hat{x} = c + by$	(c) $\hat{y} = a + bx$ (d) $\hat{y} = a + bx^2$
9.	સહસંબંધાંક (r)ની કઈ કિંમત માટે નિયતસંબંધાંકની	કિંમત શૂન્ય થાય છે ?
	(a) 1 (b) -1	(c) $\frac{1}{2}$ (d) 0
10.	બે ચલ વચ્ચેના નિયતસંબંધના અભ્યાસમાં નિશ્ચાયકત	ાનો આંક એટલે શું ?
	(a) બે પ્રમાણિત વિચલનોનો ગુણાકાર	(b) સહસંબંધાંકનો વર્ગ
	(c) સહવિચરણનો વર્ગ	(d) બે વિચરણોનો ગુણાકાર
11.	જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = 10 + 3x$ હોય	તો $X\!=\!20$ માટે Y ની કિંમતનું અનુમાન કેટલું થાય $!$
	(a) 13 (b) 60	(c) 70 (d) 203
12.	જો Y ની X પરની નિયતસંબંધ રેખા $2x+3y-5$	$0\!=\!0$ હોય તો b_{yx} ની કિંમત કેટલી થાય ?
	(a) $\frac{3}{2}$ (b) $-\frac{3}{2}$	(c) $-\frac{2}{3}$ (d) 2
13.	Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = 30 - 1.5x$	છે. જો $\overline{x}=10$ હોય તો \overline{y} ની કિંમત કેટલી થાય
	(a) 28.5 (b) 20	(c) 15 (d) 45
14.	જો $u = \frac{x-15}{10}$ અને $v = \frac{y-50}{2}$ હોય અને $b_{yx} = \frac{y-50}{2}$	$=7.5$ હોય તો b_{vu} ની કિંમત કેટલી થાય ?
	(a) 7.5 (b) 1.5	(c) 37.5 (d) 150
15.	જો $r=0.8$ હોય તો સાપેક્ષ ચલના કુલ ચલનનો કેટલા	ભાગ નિયતસંબંધ મૉડેલ દ્વારા સમજાવી શકાય છે ?
	(a) 80 % (b) 64 %	(c) 36 % (d) 20 %

(150)

વિભાગ B

નીચેના પ્રશ્નોના એક વાક્યમાં જવાબ આપો :

- 1. સુરેખ નિયતસંબંધની વ્યાખ્યા આપો.
- 2. નિયતસંબંધાંકની વ્યાખ્યા આપો.
- 3. સુરેખ નિયતસંબંધ મૉડેલ જણાવો.
- 4. નિયતસંબંધ રેખાના સંદર્ભમાં ત્રુટિ એટલે શું ?
- 5. નિયતસંબંધની શ્રેષ્ઠ અન્વાયોજિત રેખા મેળવવા માટેની રીતનું નામ જણાવો.
- 6. નિયતસંબંધાંક શેના પરિવર્તનથી સ્વતંત્ર છે ?
- 7. નિયતસંબંધાંક શેના પરિવર્તનથી સ્વતંત્ર નથી ?
- 8. જો કોઈ નિદર્શ બિંદુ અન્વાયોજિત રેખા પર પડતું હોય તો ત્રુટિની કિંમત કેટલી થાય ?
- 9. માપ (સ્કેલ)ના પરિવર્તનથી જો x અને y બંને ચલની કિંમતો બમણી કરવામાં આવે, તો નિયતસંબંધાંક બદલાશે ?
- **10.** જો r = 0.5, $s_x = 2$, $s_y = 4$ હોય, તો નિયતસંબંધાંક b_{yx} ની કિંમત કેટલી થશે ?
- 11. નિયતસંબંધ રેખા $\hat{y} = 31.5 + 1.85x$ પરથી X = 10 માટે Yની કિંમતનું અનુમાન કરો.
- **12.** જો y=a+bx, જયાં b>0 એ Y અને X વચ્ચેનો સંબંધ દર્શાવે તો r ની કિંમત કેટલી થાય ?
- 13. જો y=5-3x એ Y અને X વચ્ચેનો સંબંધ દર્શાવે તો r ની કિંમત કેટલી થાય ?

વિભાગ C

નીચેના પ્રશ્નોના જવાબ આપો :

- 1. નિયતસંબંધ રેખા $\hat{y} = a + bx$ માં અચળાંકો a અને b ને શું કહે છે ?
- 2. નિયતસંબંધ રેખા $\hat{y} = 23.2 1.2x$ ના અન્વાયોજનમાં એક અવલોકન (6, 17)નો ઉપયોગ થયો હોય, તો X = 6 માટે Yની અનુમાનિત કિંમતની ત્રુટિ શોધો.
- **3**. જો $\overline{x} = 30$, $\overline{y} = 20$ અને b = 0.6 હોય, તો Y ની X પરની નિયતસંબંધ રેખાનો અંતઃખંડ શોધો અને તે રેખાનું સમીકરણ લખો.
- **4.** જો $b_{yx} = 5$ હોય તો તેનું અર્થઘટન શું થાય ?
- 5. જો $b=1.5,\,r=0.8$ અને X નું પ્રમાણિત વિચલન 1.6 હોય, તો Y નું પ્રમાણિત વિચલન શોધો.
- **6.** જો Yની X પરની નિયતસંબંધ રેખા પરનો નિયતસંબંધાંક 0.6 હોય તથા X અને Y ના પ્રમાણિત વિચલન અનુક્રમે 5 અને 3 હોય તો નિશ્ચાયકતાનો આંક શોધો.
- 7. જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = 35 + 2x$ અને Cov(x, y) = 50 હોય તો Xનું પ્રમાણિત વિચલન શોધો.
- 8. અગાઉના પ્રશ્ન (7)માં આપેલી નિયતસંબંધ રેખા માટે જો Y ની કિંમતમાં 10 એકમો વધારવા હોય તો X ની કિંમતમાં કેટલા એકમોનો વધારો કરવો પડે ?
- 9. જો $\overline{x} = 10$, $\overline{y} = 25$, $\Sigma(x-10)(y-25) = 120$ અને $\Sigma(x-10)^2 = 100$ હોય, તો Y ની X પરની નિયતસંબંધ રેખા માટે a અને b ની કિંમત મેળવો.
- **10.** નિયતસંબંધ રેખાના એક અભ્યાસમાંથી મળતી માહિતીમાં જો $b_{yx} = 0.75, u = 6(x-20)$ અને v = 2(y-15) હોય તો b_{yu} ની કિંમત કેટલી થાય ?

વિભાગ D

નીચેના પ્રશ્નોના જવાબ આપો :

- યોગ્ય ઉદાહરણ આપી 'બે ચલ વચ્ચે કાર્ય-કારણનો સંબંધ છે'એ વિધાન સમજાવો તેમજ નિરપેક્ષ અને સાપેક્ષ ચલ વ્યાખ્યાયિત કરો.
- 2. નિયતસંબંધ રેખાના અન્વાયોજન માટેની વિકીર્ણ આકૃતિની રીત સમજાવો અને તેની મર્યાદા જણાવો.
- 3. નિયતસંબંધ રેખાના અન્વાયોજન માટેની ન્યુનતમ વર્ગોની રીત સમજાવો.
- 4. નિયતસંબંધની ઉપયોગિતા જણાવો.
- 5. નિયતસંબંધાંકના ગુણધર્મો જણાવો અને નિયતસંબંધ રેખા હંમેશાં કયા બિંદુમાંથી પસાર થાય છે તે જણાવો.
- 6. સમજાવો : નિશ્ચાયકતાનો આંક
- 7. નિયતસંબંધના ઉપયોગમાં રાખવી પડતી સાવચેતી જણાવો.
- **8.** જો બે સંબંધિત ચલ X અને Y માટે $\Sigma (x-\overline{x})^2 = 80, \Sigma (x-\overline{x})(y-\overline{y}) = 60, \overline{x} = 8, \overline{y} = 10$ હોય, તો Y ની X પરની નિયતસંબંધ રેખા મેળવો.
- 9. જો $\overline{x}=30$, $\overline{y}=50$, r=0.8 અને X અને Y ના પ્રમાણિત વિચલન અનુક્રમે 2 અને 5 હોય, તો Y ની X પરની નિયતસંબંધ રેખા મેળવો.
- **10.** જો Y ની X પરની નિયતસંબંધ રેખા $\hat{y} = 11 + 3x$ અને $s_x : s_y = 3:10$ હોય, તો નિશ્વાયકતાનો આંક શોધો અને Y માં થતા કુલ ચલનમાંથી કેટલું ચલન નિયતસંબંધ મૉડેલ પરથી સમજાવી શકાય છે તે જણાવો.
- 11. જો પ્રચલિત સંકેતોમાં n=7, $\Sigma u=2$, $\Sigma v=25$, $\Sigma u^2=160$ અને $\Sigma uv=409$ હોય તો Yની X પરની નિયતસંબંધ રેખાનો નિયતસંબંધાંક શોધો અને તેનું અર્થઘટન કરો.
- **12.** જો $b_{yx} = 0.8$ હોય તો નીચેના u અને v માટે b_{yu} ની કિંમત શોધો :
 - (i) u = x 105 અને v = y 90
 - (ii) $u = \frac{x-1400}{100}$ અને $v = \frac{y-750}{50}$
 - (iii) u = 10(x-4.6) અને v = y-75
- 13. એક દ્વિચલ માહિતી માટે નીચે મુજબનાં પરિણામો મળે છે.

વીગત	x	у
અવલોકનોની સંખ્યા	8	
મધ્યક	100	100
મધ્યકમાંથી લીધેલા વિચલનોના વર્ગોનો સરવાળો	130	145
મધ્યકમાંથી લીધેલા વિચલનોના ગુણાકારોનો સરવાળો	115	

આ પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો.

નીચેનાના ઉકેલ મેળવો :

1. એક I.T. કંપનીના મૅનેજરે સાત માર્કેટિંગ એક્ઝિક્યુટિવના નોકરીના વર્ષ અને તેમની માસિક આવક વિશે નીચે મુજબ માહિતી એકઠી કરી.

નોકરીના વર્ષ	10	6	8	5	9	7	11
માસિક આવક (દસ હજાર ₹)	11	7	9	5	6	8	10

આ માહિતી પરથી માર્કેટિંગ એક્ઝિક્યુટિવની માસિક આવકની તેમની નોકરીના વર્ષ પરની નિયતસંબંધ રેખા મેળવો.

2. કોઈ એક વસ્તુ માટે ભાવ (₹માં) અને તેનો પુરવઠા (સો એકમોમાં)ની એકઠી કરેલી માહિતી નીચે મુજબ છે.

ભાવ (₹)	59	60	61	62	64	57	58	59
પુરવઠો (સો એકમો)	78	82	82	79	81	77	78	75

આ માહિતી પરથી પુરવઠાની ભાવ પરની નિયતસંબંધ રેખા મેળવો.

 ઑનલાઇન શોપિંગની સગવડ આપતી એક કંપનીના છેલ્લા વર્ષના માસિક જાહેરાત-ખર્ચ અને વેચાણની વીગત પરથી નીચે મુજબ માહિતી મળે છે.

વીગત	જાહેરાત ખર્ચ (દસ હજાર ₹)	વેચાણ (લાખ ₹)					
મધ્યક	10	90					
પ્રમાણિત વિચલન	3	12					
	r = 0.8						

આ પરથી વેચાણની જાહેરાતના ખર્ચ પરની નિયતસંબંધ રેખા મેળવો.

4. સામાન્ય રીતે ઓછો વરસાદ પડતો હોય તેવા એક વિસ્તારમાં છેલ્લાં દસ વર્ષ દરમ્યાન પડેલા સરેરાશ વરસાદ અને કોઈ પાકની પ્રતિ એકર ઊપજની વીગત પરથી નીચેના પરિણામો મળે છે.

29 0	વરસાદ	પાકની ઊપજ					
વીગત	(સે મી)	(કિગ્રા)					
મધ્યક	18	970					
પ્રમાણિત વિચલન	2	38					
સહસંબંધાંક = 0.6							

આ પરથી જો સરેરાશ વરસાદ 20 સેમી હોય તો પાકની ઊપજ વિશે અનુમાન કરો.

એક મ્યુચ્યુઅલ ફંડ કંપનીએ છેલ્લાં સાત વર્ષમાં શૅરબજારમાં કરેલા રોકાણ (લાખ ₹માં) અને તેના તે રોકાણના
 છ માસ બાદ તેની બજારકિંમત (લાખ ₹માં)ની વીગતો નીચે મુજબ મળે છે.

વીગત	રોકાણ (લાખ ₹) <i>x</i>	છ માસ બાદ બજાર કિંમત (લાખ ₹) <i>y</i>					
મધ્યક	40	50					
વિચરણ	100	256					
સહવિચરણ = 80							

આ માહિતી પરથી Y ની X પરની નિયત સંબંધ રેખા મેળવો અને કોઈ વર્ષમાં શૅરબજારમાં 45 લાખ ₹નું રોકાણ કરવામાં આવે તો છ માસ બાદ તેની બજાર કિંમત વિશે અનુમાન મેળવો.

વિભાગ F

નીચેનાના ઉકેલ મેળવો :

1. કોઈ વસ્તુની માંગ અને તેના ભાવ વિશે એકઠી કરેલી નીચેની માહિતી પરથી માંગની ભાવ પરની નિયતસંબંધ રેખા મેળવો. જો એ વસ્તુનો ભાવ ₹ 40 હોય તો તેની માંગ કેટલી હશે તેનો અંદાજ મેળવો.

ભાવ (₹)			1	37	l				
માંગ (સો એકમો)	12	18	15	12	17	13	13	15	12

2. આઠ કારીગરોનો યંત્ર પર કામ કરવાનો અનુભવ (વર્ષમાં) અને તેમણે દર 100 એકમોમાં ઉત્પાદિત કરેલા ખામીરહિત એકમોને આધારે મેળવેલ દેખાવ મૂલ્ય (Performance Rating))ની વીગત નીચે મુજબ છે.

કારીગરનો અનુભવ (વર્ષ)	5	12	15	8	20	18	22	25
દેખાવ મૂલ્ય	80	82	85	81	90	90	95	97

આ પરથી દેખાવ મૂલ્યની અનુભવ પરની નિયતસંબંધ રેખા મેળવો અને જો કોઈ કારીગરનો અનુભવ 17 વર્ષ હોય, તો તેના દેખાવ મૂલ્યનો અંદાજ મેળવો.

 છૂટક કામ કરી આવક મેળવતાં શ્રમજીવી કુટુંબોમાંથી પાંચ કુટુંબોની દૈનિક આવક (₹માં) અને તેમનો વપરાશ ખર્ચ (₹માં)નીચે મુજબ છે.

દૈનિક આવક (₹)	200	300	400	600	900
વપરાશ ખર્ચ (₹)	180	270	320	480	700

આ પરથી વપરાશ-ખર્ચની દૈનિક આવક પરની નિયતસંબંધ રેખા મેળવો. જો કોઈ કુંટુંબની દૈનિક આવક ₹ 500 હોય તો તેના વપરાશ-ખર્ચનું અનુમાન કરો.

4. જાહેરાત અભિયાનની અસર જાણવા એક પેઢી દ્વારા નીચે મુજબ માહિતી એકઠી કરવામાં આવી.

વર્ષ	1	2	3	4	5	6	7	8
જાહેરાત ખર્ચ(દસ હજાર ₹)	12	15	15	23	24	38	42	48
વેચાલ (કરોડ₹)	5	5.6	5.8	7	7.2	8.8	9.2	9.5

આ પરથી વેચાણની જાહેરાત ખર્ચ પરની નિયતસંબંધ રેખા શોધો. જ્યારે જાહેરાત ખર્ચ ₹ 5,00,000 હોય ત્યારે થતા વેચાણનું અનુમાન મેળવો.

5. બાંધકામ ક્ષેત્રે આઠ જુદી-જુદી કાર્યરત કંપનીઓએ એક વર્ષમાં મેળવેલા કામની સંખ્યા અને તેના વાર્ષિક નફાની વીગતો નીચે મુજબ છે.

કામની સંખ્યા	2	5	9	12	6	4	8	10
વાર્ષિક નફો (લાખ ₹)	100	300	700	1000	350	250	700	750

આ પરથી વાર્ષિક નફાની કામની સંખ્યા પરની નિયતસંબંધ રેખા શોધો. સુરેખ નિયતસંબંધ મૉડેલની વિશ્વસનીયતા ચકાસો.

- **6.** નીચે આપેલી માહિતી પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો અને X = 30 માટે Y ની કિંમતનો અંદાજ મેળવો. n = 10, Σx = 250, Σy = 300, Σxy = 7900, Σx^2 = 6500
- 7. એક માહિતી માટે નીચે મુજબનાં પરિણામો મળે છે.

$$n = 12$$
, $\Sigma x = 30$, $\Sigma y = 5$, $\Sigma x^2 = 670$, $\Sigma xy = 344$

પાછળથી એવું માલૂમ પડ્યું કે એક અવલોકનની જોડ (10, 14)ને બદલે (11, 4) લેવાઈ ગઈ હતી તો ઉપર્યુક્ત માપોને સુધારી તે પરથી Y ની X પરની નિયતસંબંધ રેખા મેળવો અને X=5 માટે Y નું અનુમાન કરો.

Sir Francis Galton (1822 –1911)

Sir Francis Galton was an English Victorian statistician, progressive, polymath, sociologist, psychologist, anthropologist, eugenicist, tropical explorer, geographer, inventor, meteorologist, protogeneticist and psychometrician. He was knighted in 1909.

Galton produced over 340 papers and books. He also created the statistical concept of correlation and widely promoted regression toward the mean. He was the first to apply statistical methods to the study of human differences and inheritance of intelligence, and introduced the use of questionnaires and surveys for collecting data on human communities, which he needed for genealogical and biographical works and for his anthropometric studies.

He was a pioneer in eugenics, coining the term itself and the phrase "nature versus nature". His book Hereditary Genius (1869) was the first social scientific attempt to study genius and greatness.

As an investigator of the human mind, he founded psychometrics (the science of measuring mental faculties) and differential psychology and the lexical hypothesis of personality. He devised a method for classifying fingerprints that proved useful in forensic science.