Login | Register | Claim Your Subscription | Subscribe

• A low carbob

- A low-carbohydrate, ketogenic diet extends longevity in adult male mice
- Motor function, memory, and muscle mass are preserved in aged ketogenic mice
- Protein acetylation is increased in the liver and skeletal muscle of ketogenic mice

Summary

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention. The ketogenic diet (KD) significantly increased median lifespan and survival compared to controls. In aged mice, only those consuming a KD displayed preservation of physiological function. The KD increased protein acetylation levels and regulated mTORC1 signaling in a tissue-dependent manner. This study demonstrates that a KD extends longevity and healthspan in mice.

Keywords:

ketogenic diet, longevity, healthspan, low-carbohydrate diet, aging, lifespan, ketones, ketone bodies, beta-hydroxybutyrate, memory

acetyl
motor function
memory

tumor incidence

adult onset
weight gain

To access this article, please choose from the options below

Log In

Login to existing account

Forgot password?

Register

Create a new account

Read-It-Now

Now available: purchase access to all research journal HTML articles for 6 or 36 hours. Click here to explore this opportunity.

Purchase Access to this Article

PDF Download and 24 Hours Online Access

Claim Access

If you are a current subscriber with Society Membership or an Account Number, claim your access now.

Subscribe to this Journal

Purchase a subscription to gain access to this and all other articles in this journal.

Received: January 20, 2017; Received in revised form: May 4, 2017; Accepted: August 7, 2017; Published: September 5, 2017; corrected online: April 9, 2018 © 2017 Elsevier Inc.

Mari Rec

<u>.</u>

Kits

Meta

Int

I III JAK

P5

Access this article on ScienceDirect

Linked Articles

A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice

Lopez-Dominguez and colleagues
Cell Metabolism, Vol. 27, Issue 5, p1156
Full-Text HTML | PDF

Quick Links About Cell Press

Advertisers

Recruitment Ads Contact Us Newsroom Careers **Customer Service** Terms & Conditions Privacy Policy Use of Cookies Mobile

Accessibility

Research Journals

Current Biology

Molecular Cell

Immunity

iScience

Joule

Neuron

Structure

Developmental Cell

Cancer Cell Cell Cell Chemical Biology Cell Host & Microbe Cell Metabolism Cell Reports

Cell Stem Cell Cell Systems Chem

Reviews Journals: Trends In...

Biochemical Sciences Biotechnology Cancer Cell Biology Cognitive Sciences **Ecology & Evolution**

Genetics

Immunology Microbiology

Molecular Medicine Neurosciences Parasitology

Pharmacological Sciences Endocrinology & Metabolism Plant Science

Partner Journals

in

AJHG

Biophysical Journal EBioMedicine Heliyon Molecular Plant

Molecular Therapy Family

Stem Cell Reports

Cell Metabolism ISSN: 1550-4131

Copyright © 2018 Elsevier Inc. except certain content provided by third parties