

Lecture 5 - Capacitors and Inductors

Capacitors

Storage element that stores energy in electric field

Parallel plate capacitor

 (a) As current flows through a capacitor, charges of opposite signs collect on the respective plates

Does DC voltage generate current flow through a capacitor?

Does AC voltage generate current flow through a capacitor?

Lecture 5

V-I Relationship of Capacitors

$$i = C\frac{dv}{dt}$$

Example

Stored Energy

· The instantaneous power delivered to the capacitor is

The energy stored in a capacitor is:

Capacitor Response

[Source: Berkeley] Lecture 5

Capacitors in Series

Combining In-Series Capacitors

Capacitors in Parallel

Voltage Division

$$v_1 = \left(\frac{C_2}{C_1 + C_2}\right) v_{\rm S}$$
$$v_2 = \left(\frac{C_1}{C_1 + C_2}\right) v_{\rm S}$$

Inductors

- A storage element that stores energy in magnetic field.
 - They have applications in power supplies, transformers, radios, TVs, radars, and electric motors.
- Any conductor has inductance, but the effect is typically enhanced by coiling the wire up.

(a) Toroidal inductor

(b) Coil with an iron-oxide slug that can be screwed in or out to adjust the inductance

(c) Inductor with a laminated iron core

 $L = \frac{N^2 \mu S}{I}$

V-I Relationship of Inductors

Energy Stored in an Inductor

The power delivered to the inductor is:

The energy stored is:

Inductor Response

Important Property of Inductors

Inductors in Series

Lecture 5

Inductors in Parallel

Combining In-Parallel Inductors

Lecture 5

Example

Integrator

Differentiator

Analog Computer

$$\frac{d^2v_o}{dt^2} + 3\frac{dv_o}{dt} + 2v_o = 4\cos 10t, \qquad t > 0$$

subject to $v_o(0) = 2$, $v'_o(0) = 0$.

Lecture 5 21

Summary of Capacitors and Inductors

Table 5-4: Basic properties of R, L, and C.

Property	R	L	C
i – υ relation	$i = \frac{v}{R}$	$i = \frac{1}{L} \int_{t_0}^t v dt' + i(t_0)$	$i = C \frac{dv}{dt}$
υ-i relation	v = iR	$\upsilon = L \frac{di}{dt}$	$\upsilon = \frac{1}{C} \int_{t_0}^t i \ dt' + \upsilon(t_0)$
p (power transfer in)	$p = i^2 R$	$p = Li \frac{di}{dt}$	$p = C \upsilon \frac{d\upsilon}{dt}$
w (stored energy)	0	$w = \frac{1}{2}Li^2$	$w = \frac{1}{2}Cv^2$
Series combination	$R_{\rm eq}=R_1+R_2$	$L_{\rm eq} = L_1 + L_2$	$\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}$
Parallel combination dc behavior	$\frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2}$ no change	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2}$ short circuit	$C_{\text{eq}} = C_1 + C_2$ open circuit
de beliavior	no change	Short circuit	open circuit
Can υ change instantaneously?	yes	yes	no
Can i change instantaneously?	yes	no	yes