Leetcode

Hanhee Lee

June 9, 2025

Contents

1	Hov	v to ap	pproach a system design interview question?	2
	1.1	Back-o	of-the-envelope calculations	4
		1.1.1	Powers of 2 Table	4
		1.1.2	Latency numbers every programmer should know	

Leetcode Hanhee Lee

1 How to approach a system design interview question?

Process: The system design interview is an open-ended conversation. You are expected to lead it.

1. Outline use cases, constraints, and assumptions

- Gather requirements and scope the problem. Ask questions to clarify use cases and constraints. Discuss assumptions.
 - Who is going to use it?
 - How are they going to use it?
 - How many users are there?
 - What does the system do?
 - What are the inputs and outputs of the system?
 - How much data do we expect to handle?
 - How many requests per second do we expect?
 - What is the expected read to write ratio?

2. Create a high level design

- Outline a high level design with all important components.
- Sketch the main components and connections.
- Justify your ideas.

3. Design core components

- Dive into details for each core component.
- For example, if you were asked to design a URL shortening service, discuss:
 - Generating and storing a hash of the full URL
 - * MD5 and Base62
 - * Hash collisions
 - * SQL or NoSQL
 - * Database schema
 - Translating a hashed URL to the full URL
 - * Database lookup
 - API and object-oriented design

4. Scale the design

- Identify and address bottlenecks, given the constraints.
- For example, do you need the following to address scalability issues?
 - Load balancer
 - Horizontal scaling
 - Caching
 - Database sharding
- Discuss potential solutions and trade-offs. Everything is a trade-off. Address bottlenecks using principles of scalable system design.
- 5. Back-of-the-envelope calculations

•

1.1 Back-of-the-envelope calculations

1.1.1 Powers of 2 Table

Summary:

Power	Exact Value	Approx Value	Bytes
7	128		
8	256		
10	1,024	1 thousand	1 KB
16	65,536		$64~\mathrm{KB}$
20	1,048,576	1 million	1 MB
30	1,073,741,824	1 billion	1 GB
32	4,294,967,296		$4~\mathrm{GB}$
40	1,099,511,627,776	1 trillion	1 TB

Leetcode Hanhee Lee

1.1.2 Latency numbers every programmer should know

Summary:

Latency Comparison Numbers								
Operation	Time (ns)	Time (us)	Time (ms)	Notes				
L1 cache reference	0.5							
Branch mispredict	5							
L2 cache reference	7			14x L1 cache				
Mutex lock/unlock	25							
Main memory reference	100			20x L2 cache, $200x$ L1 cache				
Compress 1 KB with Zippy	10,000	10						
Send 1 KB over 1 Gbps network	10,000	10						
Read 4 KB randomly from SSD*	150,000	150		$\sim 1 \text{ GB/sec SSD}$				
Read 1 MB sequentially from memory	250,000	250						
Round trip within same datacenter	500,000	500						
Read 1 MB sequentially from SSD*	1,000,000	1,000	1	~1 GB/sec SSD, 4x memory				
HDD seek	10,000,000	10,000	10	20x datacenter roundtrip				
Read 1 MB sequentially from 1 Gbps	10,000,000	10,000	10	40x memory, 10x SSD				
Read 1 MB sequentially from HDD	30,000,000	30,000	30	120x memory, 30x SSD				
Send packet $CA \rightarrow NL \rightarrow CA$	150,000,000	150,000	150					

- 1 ns = 10^{-9} seconds 1 μ s = 10^{-6} seconds = 1,000 ns 1 ms = 10^{-3} seconds = 1,000 μ s = 1,000,000 ns
- \bullet Read sequentially from HDD at 30 MB/s
- \bullet Read sequentially from 1 Gbps Ethernet at 100 MB/s
- Read sequentially from SSD at 1 GB/s
- Read sequentially from main memory at 4 GB/s
- $\bullet~6-7$ world-wide round trips per second
- ullet 2,000 round trips per second within a data center