See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/7801681

Insights into the Recognition and Association of Transmembrane α -Helices. The Free Energy of α -Helix Dimerization in Glycophorin A

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · JULY 2005

Impact Factor: 12.11 · DOI: 10.1021/ja050581y · Source: PubMed

CITATIONS

102 20

3 AUTHORS:

Jérôme Hénin

French National Centre for Scientific Resea..

36 PUBLICATIONS 1,095 CITATIONS

SEE PROFILE

READS

Andrew Pohorille

162 PUBLICATIONS 5,938 CITATIONS

SEE PROFILE

Chris Chipot

French National Centre for Scientific Resea...

163 PUBLICATIONS 11,787 CITATIONS

SEE PROFILE

Insights into the Recognition and Association of Transmembrane α -Helices. The Free Energy of α -Helix Dimerization in Glycophorin A [J. Am. Chem. Soc. 2005, 127, 8478-8484]. Jérôme Hénin, Andrew Pohorille, and Christophe Chipot*

Page 8481. Equation 3, which relates the association constant to the potential of mean force, contained an error: it was missing a factor of $^{1}/_{2}$ arising from the symmetry number of the homodimer. The correct equation reads

$$K_{\rm a} = \frac{1}{2} \int_0^{\xi_{\rm max}} \exp[-\beta G(\xi)] 2\pi \xi \, \mathrm{d}\xi$$
 (3)

The resulting 2-fold error in the association constant yielded a standard free energy of dissociation that was overestimated by 0.4 kcal/mol. This error is comparable to statistical precision and has no bearing on the conclusions of the work.

JA104328F

10.1021/ja104328f Published on Web 06/17/2010