Mahatma Education Society's

PILLAI COLLEGE OF ARTS, COMMERCE & SCIENCE

(Autonomous)

Re-accredited "A" Grade by NAAC (3rd Cycle)

Project Completion Certificate

THIS IS TO CERTIFY THAT

SURAL SOMNATH SHETE

of M.Sc. Data Analytics Part – I has completed the project titled Laptop Price Prediction of subject Big Data Analytics under our guidance and supervision during the academic year 2023-24 in the department of Computer Science.

Project Guide Course Head of the

Coordinator Department

Mahatma Education Society's

Pillai College of Arts, Commerce & Science

Affiliated to University of Mumbai

NAAC Accredited 'A' grade (3 cycles)
Best College Award by University of Mumbai
ISO 9001:2015 Certified

MAHATMA EDUCATION SOCIETY'S

PILLAI COLLEGE OF ARTS, COMMERCE & SCIENCE (Autonomous)

NEW PANVEL

PROJECT REPORT ON "Laptop Price Prediction"

IN PARTIAL FULFILLMENT OF

MASTER OF SCIENCE IN DATA ANALYTICS

SEMESTER 1st-2023-24

PROJECT GUIDE
Prof. Omkar Sherkhane

SUBMITTED BY: SURAJ SHETE ROLL NO: 3143

CA-2 PROJECT

Dataset Description: -

- The Dataset contains 11 columns and 1000 rows.
- It contains data of laptops sales with detailed information
- It tells us about the CompanyName, TypeOfLaptop, Inches,
 ScreenResolution, Cpu, Ram, Memory, Gpu, OpSys, Weight and Price
- It may contain null values, unique values, categorical and numerical values.
- It may also contain false values or null rows and columns.
- In this model the predicted output will be "Price"

Analysis Tasks: -

- Using the above-mentioned dataset, we will perform all the phases of Data Science life cycle i.e., Data Understanding, Data Preparation, Data Visualization, Data Modelling and Model Evaluation
- The below table specifies the name of the columns, their data types, the feature is categorical or numerical.

Tools & Techniques used: -

- Tools: Google Collab
- Language used Python
- Exploratory Data Analysis
- Data Visualization
- Machine Learning for Model building

Table:

Column Name	Datatype	Categorical/N numerical/Unique
CompanyName	object	Categorical
TypeOfLaptop	object	Categorical
Inches	Float64	Numerical
ScreenResolution	object	Categorical
Сри	object	Categorical
Ram	object	Categorical
Memory	object	Categorical
Gpu	object	Categorical
OpSys	object	Categorical
Weight	float64	Numerical
Price	float64	Numerical

Code and Output with their Explanation:

Importing the required libraries and reading the dataset:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

Data Cleaning and Pre-processing:

```
df['CompanyName'].unique()
df['TypeOfLaptop'].unique()
df['ScreenResolution'].unique()
```


Checking for Unique Values using .unique() function

df.info()
df.shape

```
df.info()
<class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1000 entries, 0 to 999
     Data columns (total 11 columns):
      # Column
                              Non-Null Count Dtype
      0 CompanyName 1000 non-null object
1 TypeOfLaptop 1000 non-null object
2 Inches 1000 non-null float64
      3 ScreenResolution 1000 non-null object
      4 Cpu
                                1000 non-null object
      5 Ram 1000 non-null object
6 Memory 1000 non-null object
7 Gpu 1000 non-null object
      8 OpSys 1000 non-null object
9 Weight 1000 non-null float64
10 Price 1000 non-null float64
      dtypes: float64(3), object(8)
     memory usage: 86.1+ KB
[ ] df.shape
      (1000, 11)
```

Checking for null values: As no null values were detected

df.isna().sum()

Exploratory Data Analysis:

df.describe()

Count Plot for TypeOfLaptop and Screen Resolution:

```
# 1. Type of Laptop
type_count = df['TypeOfLaptop'].value_counts().reset_index()
type_count.columns = ['TypeOfLaptop', 'Count']
fig = px.bar(type count, x='TypeOfLaptop', y='Count', title='Distribution of
Laptop Types', labels={'Count': 'Number of Laptops', 'TypeOfLaptop': 'Type of
Laptop' })
fig.update layout(xaxis=dict(tickangle=45))
fig.show()
# 2. Screen Resolution
resolution count = df['ScreenResolution'].value counts().reset index()
resolution count.columns = ['ScreenResolution', 'Count']
fig = px.bar(resolution count, x='ScreenResolution', y='Count',
title='Distribution of Screen Resolutions', labels={'Count': 'Number of
Laptops', 'ScreenResolution': 'Screen Resolution'})
fig.update layout(xaxis=dict(tickangle=45))
fig.show()
```

```
# 1. Type of Laptop
type_count = df['TypeOfLaptop'].value_counts().reset_index()
type_count.columns = ['TypeOfLaptop', 'Count']
fig = px.bar(type_count, x='TypeOfLaptop', y='Count', title='Distribution of Laptop Types', labels={'Count': 'Number of Laptops', 'TypeOfLaptop': 'Type of Laptop'})
fig.show()

# 2. Screen Resolution
resolution_count = df['ScreenResolution'].value_counts().reset_index()
resolution_count.columns = ['ScreenResolution', 'Count']

fig = px.bar(resolution_count, x='ScreenResolution', y='Count', title='Distribution of Screen Resolutions', labels=('Count': 'Number of Laptops', 'ScreenResolution')
fig.ghow()
fig.ghow()
fig.ghow()
fig.ghow()
```


Scatter Plot for Numerical Values:

```
# Scatter Plot: Price vs. Weight
fig = px.scatter(df, x='Weight', y='Price', title='Scatter Plot: Weight vs.
Price', labels={'Weight': 'Laptop Weight', 'Price': 'Laptop Price'})
fig.show()

# Scatter Plot: Price vs. Inches
fig = px.scatter(df, x='Inches', y='Price', title='Scatter Plot: Inches vs.
Price', labels={'Inches': 'Screen Size (Inches)', 'Price': 'Laptop Price'})
fig.show()
```


Model Building and Label Encoding for

categorical attributes:

```
label_encoder = LabelEncoder()

df['CompanyName'] = label_encoder.fit_transform(df['CompanyName'])

df['TypeOfLaptop'] = label_encoder.fit_transform(df['TypeOfLaptop'])

df['ScreenResolution'] = label_encoder.fit_transform(df['ScreenResolution'])

df['Cpu'] = label_encoder.fit_transform(df['Cpu'])

df['Ram'] = label_encoder.fit_transform(df['Ram'])

df['Memory'] = label_encoder.fit_transform(df['Memory'])

df['Gpu'] = label_encoder.fit_transform(df['Gpu'])

df['OpSys'] = label_encoder.fit_transform(df['OpSys'])
```

	CompanyName	TypeOfLaptop	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price	
0	5	1	17.040680	5	6	0	15	1	0	2.064834	35844.099371	11.
1	3	0	16.542395	2	5	0	0	1	1	4.060656	37019.059051	
2	7	5	17.295294	2	9	3	3	1	0	2.901689	33329.360341	
3	5	0	11.526203	0	6	1	14	1	2	2.914843	68631.102486	
4	6	2	12.649634	2	5	3	15	0	2	4.341995	33842.479566	
5	1	5	15.543249	3	3	1	4	2	4	3.580368	83937.484249	
6	8	3	15.559451	0	9	3	15	1	3	4.050894	62896.017385	
7	2	4	17.806917	4	4	0	7	2	4	4.402627	35919.072831	
8	6	1	12.846039	5	7	0	1	2	0	3.700557	45011.851908	
9	6	4	15.204180	2	0	3	0	2	1	3.656769	52669.310830	

Selecting Target attributes for training and testing dataset:

```
x = df.iloc[:, :-1].values
x

y = df.iloc[:, 10].values
y
```

```
1.
            , 4.06065604],
            , 5. , 17.29529434, ..., 1. , 2.90168919],
     [ 7.
      0.
             , 3.
                       , 13.76128764, ..., 2.
     [ 8.
             , 4.04746848],
      2.
             , 4.
     [ 2.
                      , 11.03799989, ..., 1.
      1.
             , 3.66982456],
             , 3.
                       , 11.00584228, ..., 1.
     [ 4.
             , 4.79967463]])
```

Training and Testing of dataset:

```
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3,
random state=30)
```

```
x_train.size
```

Building Linear Regression Model:

```
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict(x_test)
```

```
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict(x_test)
```

Taking random Values for Predicting Profit:

```
#taking random values for prediction
#{'CompanyName': 7, 'TypeOfLaptop': 2, 'Inches': 17.295294, 'ScreenResolution':
2, 'Cpu': 9, 'Ram': 3, 'Memory': 3, 'Gpu': 0, 'OpSys': 2, 'Weight': 2.914843}
y_pred= lr.predict([[7, 2, 17.295294, 2, 9, 3, 3, 0, 2, 2.914843]])
print(y_pred) #predicting laptop price
```

```
print(y_pred) #predicting laptop price
[50357.05470517]
```

R2 Score for X_Train and X_Test:

```
r2_score = lr.score(x_train, y_train)
print("Training Score:", r2_score*100, "%")
r2_score = lr.score(x_test, y_test)
print("Testing Score:", r2_score*100, "%")
```

Evaluation of actual profit and the predicted profit:

```
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

# Assuming y_true contains the actual prices
y_true = df['Price']

# Make predictions and assume y_pred contains the predicted prices
y_pred = lr.predict(x)

# Calculate evaluation metrics
mae = mean_absolute_error(y_true, y_pred)
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_true, y_pred)

print(f"Mean Absolute Error (MAE): {mae}")
print(f"Mean Squared Error (MSE): {mse}")
print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared (R2): {r2}")
```

```
Mean Absolute Error (MAE): 11419.5391194173
Mean Squared Error (MSE): 189327690.67249292
Root Mean Squared Error (RMSE): 13759.639917980881
R-squared (R2): 0.0052540770276375826
```

Interpretation for Multi-linear Regression model:

Mean Absolute Error (MAE)	11419.5391194173
Mean Squared Error (MSE)	189327690.67249292
Root Mean Squared Error (RMSE)	13759.639917980881
R-squared (R2)	0.0052540770276375826