Name:	

MASTERY QUIZ DAY 18

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

S1. Determine if the set of polynomials $\{x^2 + x, x^2 + 2x - 1, x^2 + 3x - 2\}$ is linearly dependent or linearly independent

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, the set is linearly dependent.

S3. Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $\text{RREF}(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\{-3x^2 - 8x, x^2 + 2x + 2\}$ is a basis for W.

S4. Let $W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\begin{bmatrix}3\\3\\6\\3\end{bmatrix},\begin{bmatrix}3\\-1\\3\\-2\end{bmatrix},\begin{bmatrix}7\\-1\\8\\-3\end{bmatrix}\right\}\right)$. Find the dimension of W.

Solution:

$$RREF \begin{pmatrix} \begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has two pivot columns, so W has dimension 2.

A1. Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4\end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$

A2. Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} e^x \\ e^y \end{bmatrix}$ is a linear transformation.

Solution: It is not linear. For example,

$$\begin{bmatrix} e^2 \\ 1 \end{bmatrix} = T \left(\begin{bmatrix} 2 \\ 0 \end{bmatrix} \right) \neq 2T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2e \\ 1 \end{bmatrix}$$

S1:

S3:

S4:

A1:

A2: