CARGO TRACING AND BUSINESS ANALYSIS

Group Id- 23

Guide- Prof. Kirankumari Sinha

1514068- Saurabh Baj 1514074- Niyati Daftary 1514080- Jayesh Gaur 1514085- Aditya Jawalikar

SOFTWARE PROJECT MANAGEMENT PLAN

Contents

1	INT	TRODUCTION	4
	1.1	Project Overview	4
	1.2	Project Deliverables	5
2	PR	OJECT ORGANIZATION	6
	2.1	Software Process Model	6
	2.2	Roles and Resposibilities	
	2.3	Tools and Techniques	
3	PR	OJECT MANAGEMENT PLAN	9
	3.1	Tasks	9
		3.1.1 Task 1 - Requirement analysis	Ĉ
		3.1.2 Task 2 - Software requirement specification	
		3.1.3 Task 3 - Software design document	
		3.1.4 Task 4 - System Test Document	
		3.1.5 Task 5 - Coding and Hardware Integration	
	3.2	Risk Table	
	3.3	Risk Template	
	3.4	Risk Template	
	3.5	Risk Template	
	3.6	Risk Template	
4	TIN	METABLE	15

1 INTRODUCTION

1.1 Project Overview

Today's world is growing at a very faster rate with the help of Technology. A lot of different industries are using the latest technology to increase their growth, thus boosting globalization. The sellers are producing goods in one country and selling the same in other country, thus making huge profits. As huge quantity of cargo is shipped everyday by different sellers, people tend to lose some of it. Besides, such a huge transport of material from once place to another can also be studied thoroughly and the trade can be modified to maximize profit. Thus to help the sellers, we are proposing a Cargo Tracing and Business Analysis System.

1.2 Project Deliverables

Deliverables	Description	Delivery Date
Software Project Management Plan	A complete formal project plan, including technical and managerial processes that will be implemented in the development and delivery of the system	30/09/2018
Software Requirements Specification	A formal document detailing the functional and non-functional requirements of the system	30/09/2018
Software Design Specification	A formal document detailing the component designs as well as the relationships among components	05/10/2018
Software Test Document	Formal documentation detailing scenarios that must be followed in order to ensure that the product software is satisfactorily tested.	14/10/2018
Implementation of frontend and hardware components.	Software files to form the backbone of the system and their integration into the hardware used	14/02/2019
Final Presentation	A demonstration of the product software and a presentation of the project experi- ence	March 2019

2 PROJECT ORGANIZATION

2.1 Software Process Model

The process model used is Prototype Process Model Prototype is a working model of software with some limited functionality. The prototype does not always hold the exact logic used in the actual software application and is an extra effort to be considered under effort estimation. Prototyping is used to allow the users evaluate developer proposals and try them out before implementation. It also helps understand the requirements which are user specific and may not have been considered by the developer during product design.

Start Requirement gathering Quick Design Building Prototype

Stop Engineer Product Refining Prototype Customer evaluation

Prototyping Model

Figure 1: Prototype Model

2.2 Roles and Resposibilities

Roles	Responsibilities					
Project	Motivate the team members to perform their tasks in a organized manner					
Co-ordinator	Help the team in allocating deadlines					
Project	Works with the team to help formulate the application strategy					
Project Guide	Approves the project documents					
Guide	Helps the team in analysing the project from every perspective and set the goals					
	Plans, organizes, and coordinates the team project					
	Schedules and prepares team meetings					
Project	Resolves conflicts					
Manager	Works as a link between team members					
	Monitors and reports the weekly status of the team					
	Ensures that project deliverables are met					
Application	Designs a web application to the problem statement that satisfies the requirements					
Designer	Assists the Technical Writers in documenting the design					
	Develops the android application					
Application	Determines the data needs for the solution					
Developer	Determines what hardware and tools are necessary					
	Fixes bugs found by the Testers					
Database	Develops and populates Databases					
Developer	Ensures proper operation and interaction with entire system application					
Tester	Tests all the application modules					
Technical	Coordinates the project documents and their review by all team members					
writer	Collects, proofreads, and integrates document parts					
willer	Generates the final version of all the documents					

2.3 Tools and Techniques

- $\bullet~$ LATEX for SRS, SPMP, SDD, STD
- Gantt project for planning and to prepare the time-line chart
- Rational rose for UML diagrams
- Microsoft powerpoint for presentation for the users and project personnel
- ullet Python-based kivy framework
- MATLAB to implement the image-processing algorithms
- Python-based image processing libraries

3 PROJECT MANAGEMENT PLAN

3.1 Tasks

3.1.1 Task 1 - Requirement analysis

Description

Definition of the different requirements which will help the users get a good gist of the project. It provides the basic understanding of the problem and nature of the solution.

Deliverables and milestones

The task provides a lis0t of the various requirements and their analysis for paving the path of design phase.

Resources needed

Effort, time and knowledge about the software.

Dependencies and constraints

The requirements must be documented , testable and related to the needs and defined to a level sufficient for system design.

Risks and contingencies

If the team does not have knowledge about the software, then it can gather the information by communicating with the experts in that field.

3.1.2 Task 2 - Software requirement specification

Description

Description of the behaviour of the system to be developed and the features in the scope of the project.

Deliverables and milestones

SRS delineates the features of the project and serves as a guide to the developers.

Resources needed

Latex

Dependencies and constraints

SRS should be documented in a way understandable to other developers to identify the aspects of the system.

Risks and contingencies

There is a high amount of risk if the SRS is not well documented as the features of the system will not be clear.

3.1.3 Task 3 - Software design document

Description

The structure of the software to satisfy the requirements. It specifies the software structure, components, interfaces and data necessary for implementation.

Deliverables and milestones

Architecture design, data design, interface and procedural design.

Resources needed

Latex for documentation and IBM Rational Rose for designing purposes

Dependencies and constraints

SDD is developed according to the SRS, so the SRS should provide an entire overview of the system

Risks and contingencies

Risk is involved if the design does not follow the requirements . The design can be revised by proper communication among the development team.

3.1.4 Task 4 - System Test Document

Description

Specifies the approach that ensures that the features are adequately tested.

Deliverables and milestones

The document includes all the test cases with results done after finishing the development.

Resources needed

Latex and software test plan

Dependencies and constraints

STD should give entire description about features to be tested, amount of testing in order to save time of the testing team

Risks and contingencies

The risk is when the STD does not cover the entire system as this might cause major problem in the future which can be avoided by developing test cases for entire section wise coverage.

3.1.5 Task 5 - Coding and Hardware Integration

Description

Actual programming and functionalities of the application

Deliverables and milestones

The different modules and components of the system.

Resources needed

Arduino, RFID tags and sensors.

Dependencies and constraints

Coding phase depends on the SRS and SDD and should be flexible.

Risks and contingencies

Developers may have insufficient amount of knowledge.

3.2 Risk Table

Risks	Category	Probability	Impact	Preventive measures
Server Crash	TI	10%	1	Maintain a distributed server system
Computer crash	TI	20%	3	Powerful computers capable of handling high load
Late delivery	BU	30%	2	Implementation of basic functionality first and par- allelism in work
Deviation from Software Engineering Standards	PI	50%	2	Proper design standards and principles must be fol- lowed
Poor Quality Documentation	BU	50%	2	Proper understanding of the requirements
Lack of Database Stability	TI	40%	2	Update DB Structure as the traffic grows
Software failure	TI	20%	1	Maximize portability
Staff is inexperienced	ST	40%	3	Self-learning using various resources providing cor- rect knowledge
No internet Connection	TI	10%	1	Maintain a backup hotspot/tethering service
Conflict with other traffic	TI	10%	1	Shield the high frequency signals from external noise
Failure of Scanner	TI	30%	2	Facilities of updating the database manually.
Damage of RFID	TI	20%	2	Attach the RFIDs in such a way they aren't easily accessible.

Impact Values: 1 – Catastrophic

- 2 Critical
- 3 Marginal
- 4 Negligible

3.3 Risk Template

Risk information sheet						
Risk ID: 1	Date:	September 30,	Probability: 40%	Impact:2		
	2019					
Description:						
The database maintain	ned may	not be stable which	h may lead to Database	Instability.		
Refinement/Contex	t:					
Sub-condition 1: The information gathered was misinterpreted.						
Mitigation/Monitoring:						
1. Re-gather the information from the user.						
2. Understand with modules are improper and correct them.						
Management/Contingency plan/Trigger:						
Contact the team leader and make a new increment with all the respective changes needed.						
Current status:						
Mitigation steps have been initialized.						
Originator: Assigned:						

3.4 Risk Template

Risk information sheet							
Risk ID:2	Date:September	30,	Probability:10%	Impact:1			
	2019						
Description:							
The internet connectio	n fails.						
Refinement/Contex	t:						
Sub-condition 1: Co	Sub-condition 1: Connection fails due to fault at the ISP.						
Sub-condition 2: Th	Sub-condition 2: There is some lose contact of cables to the modem.						
Mitigation/Monitoring:							
1. Contact the ISP pro	1. Contact the ISP provider and resolve the issues.						
2. Fix the cable properly							
Management/Contingency plan/Trigger:							
Provide some alternative solution for internet like hotspot. Or make a provision for offline data storage.							
Current status:							
Mitigation steps have been initialized.							
Originator: Assigned:							

3.5 Risk Template

Risk information sheet							
Risk ID:3	Date:September	30,	Probability:30%	Impact:2			
	2019						
Description:							
The scanners fail to re-	The scanners fail to read the RFIDs.						
Refinement/Contex	t:						
Sub-condition 1: RF	ID / Scanner interface	e is ta	ampered.				
Sub-condition 2: Inc	Sub-condition 2: Incompatible scanner and RFIDs						
Mitigation/Monitoring:							
1. Make sure the interface is clean. Check if the RFID is not damaged.							
2. Try scanning the same RFID on another sensor or scan another RFID on the sensor.							
Management/Contingency plan/Trigger:							
Get technical assistance as soon as possible. Find out the problem location (Scanner or RFID) and take							
actions accordingly							
Current status:							
Mitigation steps have been initialized.							
Originator: Assigned:							

3.6 Risk Template

Risk information sheet							
Risk ID:4	Date:September	30,	Probability:20%	Impact:2			
	2019						
Description:							
RFID tag gets damage	ed.						
Refinement/Contex	t:						
Sub-condition 1: Th	ne RFID tag is missin	g from	a cargo when it reache	es a scanner.			
Sub-condition 2: Th	ne tag is damaged due	e to we	eather conditions / mish	nandling, etc.			
Mitigation/Monitor	Mitigation/Monitoring:						
1. Try to identify the	1. Try to identify the cargo with the marking on it.						
2. Wait for the user to raise a ticket when he notices that one of his cargo containers has not reached							
the desired destination yet. The cargo can then be linked with the ticket and the right identity of it can							
be found. A new RFID can be associated to it at this point and the tracing can continue as before.							
Management/Contingency plan/Trigger:							
Have spare RFIDs at all counters.							
Current status:							
Mitigation steps have been initialized.							
Originator: Assigned:							

4 TIMETABLE

Figure 2: Gantt Chart

| Separation | Separa