HW4 Report

B05901084 電機三 劉容均

Circuit Diagram

Simulation

Disscusion

一、第一階段

公式裡的乘數分別是 1、5、-9,1 不需要做乘法在此階段可先與-76 相加,而 5 和 9 用二進位可以表示為 101、110111,9 可拆成-2(110)、7(111),且因乘數固定,可以用移位和加法取代,因此在這階段做4*i_im1+1*i_im1、i_im2-76、(-4)*i_im3+2*i_im3、

二、第二階段

將 4*i_im1+1*i_im1、i_im2-76 相加,(-4)*i_im3+2*i_im3、 4*i im3+2*i im3+1*i im3 移位相加組合成(-9) *i im3。

三、第三階段

將前面的結果相加,即可得到結果。

4*i im3+2*i im3+1*i im3 °

四、優化

一些已知的輸入可以被簡化,例如原本的 full adder 如果有一個輸入已知,可以簡化成 EO 和 AND。此外還有 FD 的設置,經過各種的測試,得到目前的設置為最佳的結果。每個 bit 有可能在某個 module 走比較長但在下一個 module 走比較短,所以單從最長的 critical path 切成三等份可能會造成其他 path 的 time violation。此外因為我的設計是呈樹狀分別計算後組合成結果,若在第一或第二階段設置 pipeline 會耗費大量 gate,為符合作業 cycle 規定,衡量後將第三個 pipeline 設置在最終輸出處。最後利用 nWave 和測資找出 violation 的特例,並加上 2 bits 的 carry skip(4bit 並沒有比較快),加上去後效果顯著(前面的圖沒有標記,carry skip 分別裝在 add_2 的 FA2,3、FA4,5、FA8,9、mul7 的底層 FA5,6)。