Линейная Алгебра

Латыпов Владимир

September 15, 2021

Contents

1	Вве	дение	3
2	as		3
3	(5
4	Пол	ярная и сферическая система координат	6
5	Преобразования координат		6
	5.1	Параллельный перенос, сдвиг	6
	5.2	Поворот на плоскости	7
	5.3	Поворот координат в пространстве	7

1 Введение

Преподаватель: Кучерук E. A. EMail: kucheruk.e.a@gmail.com Литература по линейной алгебры:

Геометрия Александров Ильин Позняк Линейная алгебра

2 as

Вектор - класс направленных отрезков, определён с точностью до точки приложения.

Линейные операции:

- $\cdot \vec{c} = \vec{a} + \vec{b}$
- $\cdot \ \forall \alpha \in \mathbb{R} : \vec{(a)} \times \alpha$

Свойства линейных операций/аксиомы линейного пространства:

- 1. Коммутативность
- 2. Ассоциативность
- 3. Существование нулевого элемента (нуль-вектор)
- 4. Существование противоположного элемента для каждого $\forall \vec{A}: \vec{A}: \vec{A}+\vec{\overline{A}}=0$
- 5. Ассоциативность умножения вектора на скаляр: $\beta imes (\vec{A} imes \alpha) = \beta imes (\vec{A} imes \alpha)$
- 6. Дистрибутивность умножения на скаляр относительно сложения чисел: $(\alpha+\beta) imes \vec{v} = \alpha \vec{v} + \beta \vec{v}$
- 7. Дистрибутивность умножения на скаляр относительно сложения векторов: $(\vec{a}+\vec{b}) imes lpha = lpha \vec{a} + lpha \vec{b}$

Два вектора коллинеарны $\vec{a} \parallel \vec{b} \Longleftrightarrow \dots$

Линейная комбинация векторов:

$$\overline{combination} = \sum_{i=1}^{n} \alpha_i \times \vec{v_i} \tag{1}$$

Комбинация векторов тривиальна, если $\forall \alpha_i = 0$ Иначе — нетривиальная система.

Система векторов линейно независима, если любая нулевая линейная комбинация тривиальна. Иначе система линейно зависима (например, если есть коллинеарные).

Если есть хотя бы один нуль-вектор, система тоже линейно зависима (берём коэффициент О при нём).

Если объединить линейно зависимую с любой, получится линейно зависимая.

Если система линейно зависима, один из векторов - линейная комбинация каких-то других.

$$\alpha_n \neq 0 \tag{2}$$

$$\exists x_i$$
: (3)

$$\vec{v}_n = \sum \vec{v}_i = \frac{1}{\alpha_n} \tag{4}$$

Пусть есть прямая. На ней: Базис - любой ненулевой вектор.

Пусть есть плоскость. На ней: Базис - любая упорядоченная пара неколлинеарных векторов.

Пусть есть пространствао. На ней: Базис - упорядоченная тройка некомплананых векторов.

 α_i - координаты вектора в базисе.

Теорема: Любой вектор пространства может быть разложен по базису, причём единственным образом. Как в пространстве, так и на прямой с полскостью.

Доказательство: Базис - векторы \vec{e}_i Добавим к ним вектор x. Так как была

$$x = \sum_{i=1}^{n} x_i \times \vec{e_i}$$

х. Тогда полученная система векторов будет линейно зависимой и вектор х может быть линейно выражен через векторы формула: формула, где формула - некоторые числа. Так мы получили разложение вектора х по базису. Осталось доказать, что это разложение единственно.

Докажем несколько теорем, далее работать будем с координатами.

Следствия теоремы о единственности разложения:

- $\cdot \vec{a} = \vec{b} \iff \forall i < n : \vec{a}_i = \vec{b}_i$
- $m{\cdot}$ $\vec{a}+\vec{b}=\vec{c} \Longleftrightarrow orall i < n: \vec{a}_i+\vec{b}_i=\vec{c}_i$, доказываетсчя через аксиомы линейного пространства
- $\cdot \vec{b} = \alpha \times \vec{a}, \alpha \in \mathbb{R} \iff \vec{b}_i = \alpha \times \vec{b}_i$
- $\cdot \ \vec{a} \parallel \vec{b}, \vec{a} \neq \vec{0} \Longleftrightarrow \tfrac{b_1}{a_1} = \tfrac{b_2}{a_2} = \tfrac{b_3}{a_3} = \ldots = \alpha \in \mathbb{R}$
- Система коллинеарных векторов ($\geq n+1$) всегда линейно зависимая (для плоскости либо все коллинеарны, либо 2 неколлинеарных, тогда можно ввести базис, выразив один через другие, для пространства аналогично, только 3 и некомпларнарные)

 $ec{l_1},ec{l_2},ec{l_3}$ базис $V_3\ \forall v\in V_3$ $\exists ! \forall i\in\{\ 1,\ 2,\ 3\ \} \alpha_i\in\mathbb{R}: \vec{\cdot}$

3 (

пСистема координат на плоскости и в пространстве) говорят, что в V_3 введена д.с.к (декартова сис коорд), если в пространстве есть точка О (начало системы коордтнат), зафиксирован базис $\vec{l_1}, \vec{l_2}, \vec{l_3}$ некомпланарные.

Оси кординат - прямые, проходящие через начало координат в направлении базисных векторов.

Координаты точки - всё равно что координаты радиус-вектора. Геометрически - для нахождения координат проводим (правило параллелограмма) плоскости или вектора параллельные тому, чему нужно.

Координаты вектора = кординаты конца - координаты начала

Задача: Пусть есть вектор, заданный координатами конца и начала ($A=(a_1,a_2,a_3),B=(b_{1,2}\,,b_3)$). Нужно найти точку $M=(m_1,m_2,m_3):\frac{AM}{MB}=\frac{\lambda}{\mu}$

Распишем, тогда:

$$m_i = \frac{\lambda b_i + \mu a_i}{\lambda + \mu}$$

Для середины - понятно, что.

В дальнейшем будем рассматривать ортонормированную декартовую систему координат (о.н.д.с.к.). Все единичной длины.

Будем обозначать $ec{i},ec{j},ec{k}.$

$$\vec{a} = (a_1, a_2, a_3) \tag{5}$$

$$a_0 = \frac{\vec{a}}{|a|} = (\frac{a_1}{\sqrt{\dots}}, \frac{a_2}{\sqrt{\dots}}, \frac{a_3}{\sqrt{\dots}}) = (\cos(\alpha), \cos(\beta), \cos(\gamma)) \tag{6}$$

Направляющие коснусы (углов вектора с осями координат)

$$\cos(\gamma) + \cos(\beta) + \cos(\alpha) = 1 \tag{7}$$

4 Полярная и сферическая система координат

ПСК определяется точкой и полярным лучём отсчёта из этой точки.

Связь между полярной и декартовой системой координат.

- 1. r=arphi задаёт спираль Архимеда
- 2. Лемниската Бернулли:

$$(x^2 + y^2)^2 = (x^2 - y^2) (8)$$

$$r^{4} = r^{2}(\cos^{2}(\varphi) - \sin(\varphi)) = r^{2}(\cos(2\varphi))$$

$$r = \sqrt{2\varphi}$$

$$(9)$$

$$r = \sqrt{2\varphi} \tag{10}$$

3. ...

5 Преобразования координат

5.1 Параллельный перенос, сдвиг

Происходит лишь перенос точки приложения

$$\begin{cases} O' = (x_0, y_0, z_0) \text{ in old system} \\ M = OM = (x, y, z) \\ M = O'M = (x', y', z') \\ \begin{cases} x = x' + x_0 \\ y = y' + y_0 \\ z = z' + z_0 \end{cases} \end{cases} \tag{11}$$

5.2 Поворот на плоскости

$$\begin{cases} Old &- OXY \\ New &- OX'Y' \\ M = (x,y) \\ M = (x',y') \\ \begin{cases} x' = r\cos(\varphi) \\ y' = r\sin(\varphi) \\ \begin{cases} x = r\cos(\varphi + \alpha) = \dots = x'\cos(\alpha) - y'\sin(\alpha) \\ y = r\sin(\varphi + \alpha) = \dots = x'\sin(\alpha) + y'\cos(\alpha) \end{cases} \end{cases}$$

$$(12)$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
 (13)

5.3 Поворот координат в пространстве

$$\vec{e_1} = (\cos(\alpha_1), \cos(\beta_1), \cos(\gamma_1)) \tag{14} \label{eq:e1}$$

$$\vec{e_2} = (\cos(\alpha_1), \cos(\beta_1), \cos(\gamma_1)) \tag{15}$$

$$\vec{e_1} = (\cos(\alpha_3), \cos(\beta_3), \cos(\gamma_3)) \tag{16}$$

$$x'\vec{e_1} + y'\vec{e_2} + y'\vec{e_3} = x'(\cos(alpha_1)\vec{i} + \cos(alpha_1)\vec{j} + ...) +$$
 (17)