Mathematics for Computer Science Logic and Discrete Structures

Daniel Paulusma

Department of Computing Science

Introduction to Logic

(module based on slides by lain Stewart)

So what is logic?

- Every logic (for there are many!) comprises
 - formal language for making statements about certain objects
 - formal system for reasoning about properties of these objects.
- "Why do we need a special language? Why not English?"
 - English is so rich that it cannot be **formally** described.
 - The meaning of an English sentence can be ambiguous
 - "Fruit flies like a banana."
 - "I once shot an elephant in my pyjamas. How he got in my pyjamas I'll never know."

Objective

- to carry out precise and rigorous arguments about assertions and proofs, and to implement these arguments and proofs
- we need a language whose structure (syntax) can be precisely described and whose meaning (semantics) can be unambiguously defined.

So what is logic?

- Once the formulae of a logic have been defined, there are two fundamental aspects
 - a system of deduction by which proofs can be constructed
 - a proof system
 - a notion of meaning by which the truth (or falsity) of some property of some object can be determined
 - its semantics.
- Logic has history
 - Aristotle (384 BC 322 BC) is generally regarded as the founder of formal logic.
- The logics we will study are
 - propositional logic
 - first-order (or predicate) logic
 - though there are many other logics
 - e.g., modal logic, temporal logic, infinitary logic, second-order logic, ...
 - all of which have applications in Computer Science.

So what is logic?

- A logic generally has three components
 - syntax
 - the definition of the (well-formed) formulae of the logic
 - semantics
 - the association of meaning and truth to the formulae of the logic
 - proof system
 - the manipulation of formulae according to a system of rules.
- What we would like from the syntax, semantics and a proof system is that
 - all the "true" (semantics) formulae should be "provable" (syntax, proof system)
 - completeness
 - a formula that is "provable" (syntax, proof system) should be "true" (semantics)
 - soundness.
- We also want to check whether a formula is "true" or "provable" using a computer
 - even better, we want to do this "quickly".
- As we shall see, sometimes (most of the time?) our world is less than ideal ...

Logic in action: programming languages

- The syntax of a *programming language* determines
 - exactly which combinations of symbols constitute a legitimate program.
- Intuitively, assignments are of the form

```
- s := x + y or t := z - y or x := 4
and programs are sequences of assignments such as
- s := x + y; x := x - 3; t := z + z; z := z + t.
```

- We can give semantics to our programs as follows
 - initially, all variables have some given non-negative integer values
 - we execute the program, with the usual definitions of + and -.
- Thus, an input for a given program ρ is
 - a specification \mathbf{v} of a non-negative integer value for every variable of ρ .
- An input ν might be said to satisfy ρ if
 - throughout the execution of ρ with the variables initially valued by ν
 - no variable ever takes a negative value.

Logic in action: circuits

- A logic gate performs a Boolean operation on digital inputs
 - it provides the result of this operation as output.
- Logic gates are composed to form logic circuits
 - fundamental parts of computers.
- The (intended) behaviour of a logic circuit is modelled by a truth table
 - details the output of the circuit for every possible combination of inputs
- Propositional logic can be used to automatically realise a (possibly incomplete) specification of a logic circuit as a truth table.
 - Moreover, this can be done so that the use of components is minimized.

Logic in action: databases

- A database (a.k.a. table, relation) is a structured collection of logical records.
- A database query language
 - a language for asking (and answering) questions of this structured data.
- Almost all database query languages are built on SQL
 - e.g., a database Music might contain the following *records* (a.k.a. *tuples*, *rows*)

Group	Number	Genre	<u>Nationality</u>	<u>Active</u>
The Sound	4	post-punk	UK	no
Stereolab	8	mixed	mixed	no
Nick Cave	7	rock	Australia	yes
The Associates	4	new wave	UK	no

- here, each record has 5 *attributes* (a.k.a. *columns*, *properties*), each taking a value from a specific *domain*.
- SQL allows us query a database
 - e.g., SELECT Group, Genre FROM Music
- The expressive power of SQL is very closely related to that of predicate logic.

Logic in action: formal methods

- Formal methods
 - use of mathematically-based techniques for the specification and verification of computer systems prove that programs have certain properties don't just rely on testing.
- Model checking is a branch of formal methods where
 - a computer system is first modelled as some mathematical structure
 - then a specific property that this system *might* have is expressed by a formula of some logic.
- We then computationally verify as to whether the particular formula is satisfied by the mathematical model
 - that is, whether the actual computer system has the specific property.

Logic in action: formal methods

Microprocessor design

 all major microprocessor manufacturers use model checking methods as a part of their design process.

Design of data-communications protocol software

 model checkers have been used as rapid prototyping systems for validating new data-communications/security protocols.

· Critical software

 NASA uses model checking to look for bugs in code developed by the space program.

Operating systems

 Microsoft is using model checking to verify the correct functioning of new Windows device drivers.

A history lesson

- Looking forward
 - logic underpins much of modern Computer Science
 - e.g., AI, information retrieval, security, ...

... but the reason is because

- logic has its foundations firmly rooted in the past.
- During the late 1800's and early 1900's there was a concerted effort to completely formalize Mathematics and the notion of a mathematical proof.
- Gottlob Frege, a German mathematician, had attempted to show that all of Mathematics grew out of logic
 - in doing so, in 1879 he invented first-order predicate logic.
- His intention was to show that there was
 - a set of axioms (basic and obvious facts)
 - a set of logical rules (unambiguous)

so that

all true mathematical statements expressible
 in Frege's logic could be inferred from these axioms and using these rules.

Russell's Paradox

- However, in 1901 Bertrand Russell, a British philosopher, devised what is now known as Russell's Paradox
 - dealt a killing blow to Frege's hopes.
- In Frege's logical system, one could define certain sets of objects
 - Russell showed that the set R can be so defined

$$R = \{A \text{ is a set } : A \notin A\}.$$

- The paradox arises when one asks whether R ∉ R
 - if $R \notin R$ then R satisfies the premise to be in R
 - so $R \in R$
 - if $R \in R$ then R satisfies the premise to be in R
 - so *R* ∉ *R*.

Hilbert's Programme

• The general quest to formalize Mathematics culminated in *Hilbert's Programme*, named after the German mathematician *David Hilbert* who proposed it in 1921.

- Essentially, Hilbert believed that
 - all mathematical statements could be written in a formal language and manipulated according to formal rules
 - all true mathematical statements could be proved in the formalism
 - there would be an "algorithm" to decide whether any mathematical statement is true or not.
- Hilbert thought that there might be some sort of "computational" logic "defining" all of Mathematics.

Gödel's Incompleteness Theorems

- However, Hilbert's Programme was dealt a devastating blow in 1931 by the Austrian mathematician *Kurt Gödel* who proved what are now known as *Gödel's Incompleteness Theorems*.
- Essentially, *Gödel's First Incompleteness Theorem* shows that Hilbert's Programme is doomed to failure
 - in any acceptable logical system powerful enough to describe the arithmetic of the natural numbers
 - there are *true* things about the natural numbers that cannot be *proven* in the system.

An aside

- from 1940, Gödel and Einstein were colleagues at the Institute of Advanced Study at Princeton, USA
- in later life, Einstein confided that
 - "his own work no longer meant much; he came to the Institute merely ... to have the privilege of walking home with Gödel".

Logic and computation

- Part of Hilbert's Programme was to solve the Entscheidungsproblem which asks for
 - an "algorithm" that will take as input
 - a description of a formal language and
 - a mathematical statement in the language
 - produce as output
 - either "true" or "false", according to whether the statement is true or false.
- In 1936 Alonzo Church and in 1937 Alan Turing published independent papers showing that a general solution to the Entscheidungsproblem is impossible
 - Turing proved his result by reformulating Kurt Gödel's proofs but in the context of computation and using what are now known as *Turing machines*.
 - Church's notion of a computer was the *lambda calculus* which led to *functional* programming languages such as Haskell and LISP.

The Church-Turing Thesis

- Prompted by Hilbert's Programme and Gödel's Incompleteness Theorems
 - there was much activity in the 1930's around the notion of computation.

- As well as Gödel, Turing, and Church, other researchers had proposed different notions of computation (such as Rosser, Kleene, and Post)
 - all these notions were proven to be equivalent.

- The *Church-Turing Thesis* is the *thesis* that all of these (equivalent) notions of computation embody what it means to be computable
 - so, we not only have a definition of "computable" ...
 - ... but *proofs* that certain problems are "uncomputable" (or "unsolvable").

Computational complexity

- With the advent of the digital computer in the 1950's, the notion of *efficiently* computable rose to the fore, but it was not until the 1970's that notions such as
 - P, polynomial-time
 - "efficiently solvable"
 - NP, non-deterministic polynomial-time
 - · "efficiently checkable"

were precisely formulated and studied.

- Remarkably, in a letter from the 1950's from Kurt Gödel to John von Neumann, Gödel actually almost precisely defines the P versus NP problem
 - a computer science problem that had not at that time been formulated and that we still have not solved!
- An award of \$1 million has been offered by the Clay
 Mathematics Institute for a solution to the P versus NP problem.
- Logic lies at the heart of the P versus NP problem.