Codacity -Automated Code Review System

Presented to: Dr. Joumana Dargham

Submitted by: Team 9
Darsh Patel - 40232273
Prachi Kalpeshbhai Patel - 40291762
Krishna Alpeshkumar Patel - 40232651
Rikin Dipakkumar Chauhan - 40269431
Bharti Chhabra - 40294202

Table of Contents

Introduction

Project Plan Overview

Market Justification

Risk Management Overview

Feasibility & Viability

Budget Overview

Solution Highlights

Conclusion & Call to Action

Introduction

Problem

Did you know **80**% of software bugs are caused by poor reviews?

Manual code reviews are slow, inconsistent, and prone to human error.

Opportunity

Organizations need faster, reliable, and scalable solutions to ensure code quality in CI/CD workflows.

Solution

Codacity: a robust
Al-driven code review
system offering
real-time feedback,
seamless integrations,
and unmatched
consistency.

Market Analysis

Market Growth

The global software development market is growing at **10%+ annually,** driven by the increasing need for digital transformation.

Cost of Poor Code Quality

Average data breach costs:

\$10.93M in healthcare.

\$5.97M in finance.

Metric	Value	Source
Market Growth Rate	10%+ CAGR	Statista
Cost of Poor Code Quality	\$10.93M (healthcare)	IBM Data Breach Report 2023
Automation Adoption Rate	85% of DevOps teams	GitLab DevSecOps 2023

Assess the feasibility and viability of Codacity

Technical Feasibility

Evaluates whether the chosen technology stack, infrastructure, and integrations can support Codacity's requirements.

Includes the use of Python, TensorFlow, Django, React, cloud hosting, and secure APIs.

Operational Feasibility

Focuses on how Codacity will integrate into existing workflows without disrupting productivity.

Covers changes in roles, training needs, and strategies for smooth user adoption.

Economic Feasibility

Assesses whether the project is cost-effective in the short and long term.

Includes cost breakdown (development, operations) and revenue projections to determine ROI.

Technical Feasibility

Technology Stack

Python, TensorFlow, Django, React

Infrastructure

Cloud hosting (AWS/Google Cloud), GPU-accelerated servers

Security Measures

TLS/SSL encryption, RBAC, MFA

Selected technology Reward visual Representation

Operational Feasibility

Workflow Improvements

- Automated real-time code reviews
- Reduced developer workload on manual reviews
- Immediate feedback for faster issue resolution

User Adoption

 Gradual rollout with targeted training and phased feature introduction

Workflow chart before and after Codacity implementation

Economic Viability

Cost Analysis

- Development costs: \$366,000 (team, tools, infrastructure)
- Operational costs: \$76,000/year (hosting, support, maintenance)

ROI & Revenue Streams

- Subscription-based model at \$200/month/team
- Break-even in ~3 years with scalable growth

Graph illustrating costs vs. projected revenue over three years

Solution Highlights

Project Plan

Resource Allocation

- Development team focused on backend, frontend, and AI/ML components (70% of resources).
- QA team dedicated to testing and debugging (20% of resources).

Risk Assessment

Technical

- → Integration Challenge
- → Algorithm Inaccuracies
- → Scalability issues

Operational

- → Resource constraints
- → Reliance on third party API

Environment

→ Regulatory updates requiring operational adjustment

Market

- Competition from established players
- → User resistance to automation

Financial

- Budget Overruns
- → Economic instability
- → Market adoption delays

Risk Impact Analysis - Prioritized Risk

Risk	Impact	Likelihood
Data Security & Compliance Risk	Very High	Moderate
Algorithm Inaccuracy & ML Model Adaptability	Very High	High
Integration Complexity with CI/CD	High	Moderate
Increased Competition in Automated Code Review Solutions	High	High
Budget Overruns	High	Moderate

Risk Mitigation & Contingency Plan

Data Security Risk

Algorithm Inaccuracy

CI/CD Integration Market Competition

Economic Stability

Budget Overrun

Use robust encryption, regular audit & compliance partnership

Train ML model with real-world data and regular updates. Modular architecture with compatibilit y testing for seamless integration Incorporate user-driven features and highlight unique selling point

Offer flexible pricing model to retain customer during challenge

Establish a contingency fund and monitor allocation regularly

Contingency Plan 20% of budget for unseen issues (testing delays, scope creep).

Budget Breakdown

Budget Allocation Across SDLC Phases

Total Cost Breakdown

43.86 %

Human Resources

- 5 Backend Developer,
- **4 Frontend Developer**
- 3 Quality Analyst,
- 2 ML/Al Developer
- 1 Project Manager

20%

Contingency Plan

Al/ML Development & Testing
Cl/CD & Multi-Language Integration
Security Compliance & Audits
Scope Creep

29.36% Technology and Tools

Cloud Hosting Al/ML tools: TensorFlow Cl/CD Tools:Jenkins,Git Testing tools:Selenium, JIRA)

6.8%

External Services

Security Consultant Marketing Agency

Budget Allocation on Human Resources

Backend Developers

\$90/hour hour cost TotalCost: \$90/hour × 160 hours/month × 5

PM = \$72.000

OA/Testers

\$75/hour per hour cost TotalCost:\$75/hour × 160 hours/month × 2

PM = \$24,000

Frontend Developers

\$90/hour per hour cost TotalCost:\$90/hour × 160 hours/month × 4

PM = \$57.600

AI/ML Engineers

\$100/hour: per hour cost TotalCost: \$100/hour × 160 hours/month ×

3 PM = \$48,000

160 hours/month is used as a standard for full-time work, assuming 40 hours per week over 4 weeks.

Project Manager

\$110/hour per hour cost TotalCost:\$110/hour × 160 hours/month × 1 PM = \$17,600

3

Total Buget on **Human Resources:** \$219,200 = 43.86% of total project budget

Contingency Plan Cost Allocation

THANK YOU For watching this presentation

Feel free to ask any questions.

