

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{16} - u^{15} + \dots - 2u + 1 \rangle$$

 $I_2^u = \langle u^6 + 2u^4 + u^3 + u^2 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{16} - u^{15} + 7u^{14} - 7u^{13} + 20u^{12} - 20u^{11} + 27u^{10} - 27u^9 + 12u^8 - 12u^7 - 8u^6 + 8u^5 - 6u^4 + 6u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} - 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{15} + 7u^{13} + \dots - 3u^{2} + u \\ -u^{15} - 7u^{13} + \dots + 3u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{15} 4u^{14} + 28u^{13} 24u^{12} + 76u^{11} 56u^{10} + 88u^9 52u^8 + 8u^7 + 4u^6 64u^5 + 28u^4 24u^3 4u^2 + 20u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$u^{16} + u^{15} + \dots + 2u + 1$
c_3, c_6, c_8 c_9	$u^{16} + 2u^{15} + \dots + u + 2$
c_4	$u^{16} + 9u^{15} + \dots + 2u + 1$
c_5,c_{10}	$u^{16} + u^{15} + \dots + u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	$y^{16} + 13y^{15} + \dots + 2y + 1$
c_3, c_6, c_8 c_9	$y^{16} - 18y^{15} + \dots + 19y + 4$
c_4	$y^{16} - 3y^{15} + \dots - 2y + 1$
c_5,c_{10}	$y^{16} + 9y^{15} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.913611 + 0.024079I	-12.72960 - 4.85972I	-13.14726 + 3.11789I
u = 0.913611 - 0.024079I	-12.72960 + 4.85972I	-13.14726 - 3.11789I
u = 0.186298 + 1.238560I	2.77285 - 2.45923I	-2.72504 + 3.25382I
u = 0.186298 - 1.238560I	2.77285 + 2.45923I	-2.72504 - 3.25382I
u = 0.048176 + 1.278470I	4.14984 - 1.95072I	-0.93886 + 4.17042I
u = 0.048176 - 1.278470I	4.14984 + 1.95072I	-0.93886 - 4.17042I
u = -0.255012 + 1.283570I	0.60263 + 6.60937I	-6.51664 - 7.40663I
u = -0.255012 - 1.283570I	0.60263 - 6.60937I	-6.51664 + 7.40663I
u = -0.650102 + 0.127920I	-3.75337 + 3.37292I	-12.93248 - 5.20888I
u = -0.650102 - 0.127920I	-3.75337 - 3.37292I	-12.93248 + 5.20888I
u = -0.427423 + 1.281870I	-4.90049 + 4.73480I	-6.47201 - 3.02289I
u = -0.427423 - 1.281870I	-4.90049 - 4.73480I	-6.47201 + 3.02289I
u = 0.434047 + 1.303760I	-8.59381 - 9.67514I	-9.50822 + 5.97678I
u = 0.434047 - 1.303760I	-8.59381 + 9.67514I	-9.50822 - 5.97678I
u = 0.250406 + 0.342321I	-0.577111 - 1.084380I	-7.75949 + 5.90127I
u = 0.250406 - 0.342321I	-0.577111 + 1.084380I	-7.75949 - 5.90127I

II.
$$I_2^u = \langle u^6 + 2u^4 + u^3 + u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{4} + u^{3} - u^{2} + u \\ -u^{3} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{4} - u^{2} - 1 \\ -u^{3} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{5} + u^{4} - u^{3} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} - u + 1 \\ -u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -10

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5 c_7, c_{10}	$u^6 + 2u^4 - u^3 + u^2 - u - 1$
c_3, c_6, c_8 c_9	$(u^2-u-1)^3$
<i>C</i> ₄	$u^6 + 4u^5 + 6u^4 + u^3 - 5u^2 - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_7, c_{10}	$y^6 + 4y^5 + 6y^4 + y^3 - 5y^2 - 3y + 1$
c_3, c_6, c_8 c_9	$(y^2 - 3y + 1)^3$
C ₄	$y^6 - 4y^5 + 18y^4 - 35y^3 + 43y^2 - 19y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.896795	-8.88264	-10.0000
u = -0.248003 + 1.088360I	-0.986960	-10.0000
u = -0.248003 - 1.088360I	-0.986960	-10.0000
u = 0.448397 + 1.266170I	-8.88264	-10.0000
u = 0.448397 - 1.266170I	-8.88264	-10.0000
u = 0.496006	-0.986960	-10.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$(u^6 + 2u^4 - u^3 + u^2 - u - 1)(u^{16} + u^{15} + \dots + 2u + 1)$
$c_3, c_6, c_8 \ c_9$	$((u^2 - u - 1)^3)(u^{16} + 2u^{15} + \dots + u + 2)$
c_4	$ (u6 + 4u5 + 6u4 + u3 - 5u2 - 3u + 1)(u16 + 9u15 + \dots + 2u + 1) $
c_5,c_{10}	$(u^6 + 2u^4 - u^3 + u^2 - u - 1)(u^{16} + u^{15} + \dots + u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	$(y^6 + 4y^5 + 6y^4 + y^3 - 5y^2 - 3y + 1)(y^{16} + 13y^{15} + \dots + 2y + 1)$
$c_3,c_6,c_8 \ c_9$	$((y^2 - 3y + 1)^3)(y^{16} - 18y^{15} + \dots + 19y + 4)$
c_4	$(y^6 - 4y^5 + \dots - 19y + 1)(y^{16} - 3y^{15} + \dots - 2y + 1)$
c_5, c_{10}	$(y^6 + 4y^5 + 6y^4 + y^3 - 5y^2 - 3y + 1)(y^{16} + 9y^{15} + \dots + 2y + 1)$