On the Downstream Performance of Compressed Word embeddings

Avner May, Jian Zhang, Tri Dao, Chris Ré
Stanford University

Word embedding

Word embedding is a memory-intensive feature representation

Word embedding compression

Compression is critical for deployment under memory budget

Deep compositional code learning (DCCL)¹

2. Andrews et al. 2015

• Kmeans²

2.09	-0.98	1.48	0.09		3	0	2	1		1.96	
0.05	-0.14	-1.08	2.12		1	1	0	3		1.48	
-0.91	1.92	0	-1.03		0	3	1	0		-0.04	
1.87	0	1.53	1.49		3	0	2	2		-0.97	ı
Centroid index									C	Centroid	t

- Dimension reduction (e.g. PCA)
- Uniform quantization

Pearson et al. 1901

4. Pearson et al. 1901

Key research questions

What determines the *model accuracy* of models trained with Compressed word embeddings?

How to optimize the *model accuracy* under *memory* budgets for the compressed word embeddings?

A new quality measure of compression word embedding Eigenspace overlap (EO)

$$\mathcal{E}(X, \tilde{X}) := \frac{1}{\max(d, k)} \|U^T \tilde{U}\|_F^2$$

Uncompressed and compressed embedding $X \in \mathbb{R}^{n \times d}$ $\tilde{X} \in \mathbb{R}^{n \times k}$

SVD
$$X = U\Lambda V^T,\, \tilde{X} = \tilde{U}\tilde{\Lambda}\tilde{V}^T$$

Intuition

More similar *spans of left singular vectors*, better model acc. relative to uncompressed embeddings

In the context of fixed design linear regression

Test MSE of fixed design regressors

$$\mathbb{E}_{\bar{y}}\left[\mathcal{R}_{\bar{y}}(\tilde{X}) - \mathcal{R}_{\bar{y}}(X)\right] = \mathcal{O}\Big(1 - \mathcal{E}(X, \tilde{X})\Big)$$

Label vector sampled from Span(U)

Uncompressed embedding X

Compressed embedding \tilde{X}

Theory sketch

Model acc. can be bounded in terms of eigenspace overlap

Beyond fixed design regression

Empirical observation

EO attains better correlation with downstream model acc.

Beyond fixed design regression

Empirical observation

EO explains the *strong performance* of simple *uniform quantization*

Eigenspace overlap as an embedding selection criterion

Which compressed word embedding attains better model accuracy?

Table 1. Selection error rate of quality measures as embedding selection criteria

Dataset	SQuAD		SST-1		MNLI	QQP	
Embedding	GloVe	fastText	GloVe	fastText	BERT WordPiece	BERT WordPiece	
PIP loss ¹	0.32	0.37	0.32	0.40	0.31	0.32	
$\Delta^{^{2}}$	0.34	0.58	0.39	0.57	0.32	0.33	
$1-\mathcal{E}$	0.17	0.11	0.19	0.20	0.10	0.10	

Utility

Up to 2X lower selection error than existing quality measures

Summary

Theoretical connection b/w eigenspace overlap & model acc. for FDR setting Strong empirical correlations b/w eigenspace overlap & model acc. beyond FDR

Guide selection of compressed embeddings with improved model acc.

Understanding the statistical performance