A Mode-sum Representation of the Singular Green Function and its Derivatives via the Hadamard Parametrix

MSc Dissertation Presentation

Eoin Scanlon

School of Mathematical Sciences Technological University Dublin

June 4, 2021

Presentation Overview

- 1. Quantum Field Theory in Curved Spacetimes
- 2. Expansion in Extended Coordinates
- 3. Mode-Sum Representation of the Hadamard Parametrix
- 4. Derivatives of the Renormalised Green Function
- 5. Conclusion and Further Work

Spherically Symmetric Spacetime and Einstein Field Equations

The spacetime background chosen in [Taylor and Breen, 2017] has the line element

$$ds^{2} = f(r)d\tau^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$

for general f(r).

Wick rotation $t \rightarrow -i\tau$ results in *Euclidean* metric.

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi G T_{ab}.$$

Spacetime Curvature

All of the information about the curvature of a spacetime is contained within the Ricci curvature tensor R_{ab} and the scalar curvature R, both dependent on the metric g_{ab} .

"Spacetime tells matter how to move; matter tells space-time how to curve".

The Semiclassical Einstein Field Equations

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi G \langle T_{ab} \rangle$$

where $\langle T_{ab} \rangle = \langle \psi | T_{ab} | \psi \rangle$ is a **divergent quantity**. Using *point-splitting* we can define the expectation value (with respect to a Hadamard quantum state $|\psi\rangle$) of T_{ab} as

$$\langle \psi | T_{ab} | \psi \rangle = \lim_{x \to x'} \tau_{ab} [-iG(x, x')]$$

where

$$\tau^{ab} = (1 - 2\xi)g_{b'}^{\ b}\nabla^{a}\nabla^{b'} + (2\xi - \frac{1}{2})g^{ab}g_{c'}^{\ c}\nabla^{c'}\nabla_{c} - 2\xi\nabla^{a}\nabla^{b} + 2\xi g^{ab}\nabla_{c}\nabla^{c} + \xi(R^{ab} - \frac{1}{2}Rg^{ab}) - \frac{m^{2}}{2}g^{ab}.$$

Green Function and its Mode-Sum Representation

In its simplest terms, the Green function G propagates the particle from state $\phi(y, t_y)$ to $\phi(x, t_x)$, and is defined as

$$\phi(x,t_x) = \int G(x,t_x,y,t_y)\phi(y,t_y)dy$$

In this work, we assign the Green function the mode-sum form

$$G(x,x') = \frac{\kappa}{8\pi^2} \sum_{n=-\infty}^{\infty} e^{in\kappa\Delta\tau} \sum_{l=0}^{\infty} (2l+1) P_l(\cos\gamma) g_{nl}(r,r')$$

where $g_{nl}(r, r')$ is known as the radial Green function, satisfying

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2f\frac{d}{dr}g_{nl}(r,r')\right) - \left(\frac{n^2\kappa^2}{f} + \frac{l(l+1)}{r^2} + m^2 + \xi R\right)g_{nl}(r,r') = \frac{\delta(r-r')}{r^2}$$

The Hadamard Parametrix and Renormalisation

For d=4, the Green function for the singular propagator G_s is defined as

$$G_{s}(x,x') = \frac{1}{8\pi^{2}} \left(\frac{U(x,x')}{\sigma(x,x')} + V(x,x') \log \left(\frac{2\sigma(x,x')}{\ell^{2}} \right) \right)$$

which is a **Hadamard state**. The terms $\sigma(x, x')$ and $\log(\sigma(x, x'))$ are problematic in the **coincidence limit**.

By expressing $G_s(x,x')$ as a mode-sum, we may regularise the Green function by

$$G_{reg}(x, x') = G(x, x') - G_{s}(x, x')$$

subtracting mode-by-mode in the code.

Recursion Relations and Boundaries

We further assume the Hadamard ansatz for U and V as

$$U(x,x') = U_0(x,x')$$
 , $V(x,x') = \sum_{p=0}^{1} V_p(x,x')\sigma^p$.

Applying the wave equation we derive the recursion relation

$$(\Box - m^2 - \xi R)V_p = 2(p+1)V_{p+1}\sigma^{;a}\Delta^{\frac{1}{2}}_{;a}\Delta^{-\frac{1}{2}} - 2(p+1)\nabla_a V_{p+1}\sigma^{;a} - (p+1)(2p+4)V_{p+1}$$

and boundary conditions

$$U_0 = \Delta^{\frac{1}{2}}$$

and

$$(\Box - m^2 - \xi R)U_0 - 2\nabla^a V_0 \sigma_{:a} - 2\nabla_a U_0 \Delta^{-\frac{1}{2}} + 2V_0 = 0.$$

Extended Coordinates

A unique expansion of $\sigma(x, x')$ is chosen in the form

$$\sigma = \sum_{ijk} \sigma_{ijk}(r) w^i \Delta r^j s^k$$

where

$$w^2=rac{2}{\kappa^2}(1-\cos\kappa\Delta au) \qquad , \qquad s^2=f(r)w^2+2r^2(1-\cos\gamma).$$

Using the defining equation $\sigma^a \sigma_a = 2\sigma$ to determine the coefficients $\sigma_{ijk}(r)$, we obtain σ in extended coordinates to the correct order using ϵ as a bookkeeping mechanism as

$$\sigma = \sum_{ijk} \sigma_{ijk}(r) \epsilon^{i+j+k} w^i \Delta r^k s^k.$$

Expansion in $(w, s, \Delta r)$

Then, by assuming similar expansions for U(x,x') and V(x,x') as

$$U_0(x,x^{'}) = \sum_{ijk} u^{(0)}_{ijk}(r) \epsilon^{i+j+k} w^i \Delta r^j s^k \qquad , \qquad V_p(x,x^{'}) = \sum_{ijk} v^{(p)}_{ijk}(r) \epsilon^{i+j+k} w^i \Delta r^j s^k$$

and by calculating the quantities $\Box \sigma$, $\sigma^a \nabla_a U_0$, $\Box U_0$ and $\sigma^a \nabla_a V_0$ in Mathematica, we can solve for the coefficients u^0_{ijk} , v^0_{ijk} and v^1_{ijk} .

Direct and Tail Parts of the Hadamard Expansion

Setting $\Delta r=0$ in Mathematica, we look at each of the terms in the expansion in extended coordinates. The **direct** parts of the expansion are those from the U/σ term, and the **tail** parts are from the $V \log(2\sigma/\ell^2)$ term.

The expansion is written then as

$$\frac{U}{\sigma} + V \log \left(\frac{2\sigma}{\ell^2}\right) = \sum_{i=0}^{2} \sum_{j=0}^{i} \mathcal{D}_{ij}^{(+)}(r) \epsilon^{2i-2} \frac{w^{2i+2j}}{s^{2+2j}} + \mathcal{D}_{11}^{(-)}(r)
+ \log \left(\frac{2\sigma}{\ell^2}\right) \sum_{i=0}^{1} \sum_{j=0}^{i} \mathcal{T}_{ij}^{(l)}(r) \epsilon^{2i} s^{2i-2j} w^{2j} + \sum_{i=1}^{1} \sum_{j=0}^{i} \mathcal{T}_{ij}^{(p)}(r) \epsilon^{2i} s^{2i-2j} w^{2j}
+ \sum_{i=1}^{1} \sum_{j=0}^{1-i} \mathcal{T}_{ij}^{(r)}(r) \epsilon^{2i} s^{-2j-2} w^{2i+2j+2}$$

and we calculate each of the direct and tail coefficients.

Regularisation of the Direct Terms

We assume a Fourier frequency and multipole decomposition of the form

$$\frac{w^{2i\pm 2j}}{s^{2\pm 2j}} = \sum_{n=-\infty}^{\infty} e^{in\kappa\Delta\tau} \sum_{l=0}^{\infty} (2l+1)P_l(\cos\gamma) \Psi_{nl}^{(\pm)}(i,j\mid r).$$

By inverting, integrating and using specific completeness relations as identified in the literature, we obtain

$$\Psi_{nl}^{(\pm)}(i,j\mid r) = \frac{\kappa}{2\pi} \frac{2^{i-1}(-1)^j}{\kappa^{2i\pm 2j} r^{2\pm 2j} \Gamma(1\pm j)} \int_0^{2\pi/\kappa} (1-\cos\kappa t)^{i\pm j} e^{-in\kappa t} (z^2-1)^{\mp j/2} Q_l^{\pm j}(z) dt.$$

Regularisation of the Direct Terms - Ψ_{nl}

By choosing a suitable value of $\eta(r)$, we can rewrite $Q_I(z)$ without a time dependency by using the theorem [Gradshteyn, 2007]

$$Q_{l}(z) = P_{l}(\eta)Q_{l}(\eta) + 2\sum_{p=1}^{\infty} (-1)^{p} P_{l}^{-p}(\eta)Q_{l}^{p}(\eta)\cos p\kappa t,$$

and calculate

$$\Psi_{nl}^{(+)}(i,j\mid r) = \frac{2^{i-j-1}}{\kappa^{2i+2j}r^{2+2j}\Gamma(1+j)} \sum_{m=0}^{i} \sum_{s=0}^{m} \frac{i!}{s!(i-m)!(m-s)!} \frac{(-1)^{m}}{2^{m}} \left(\frac{1}{\eta} \frac{\partial}{\partial \eta}\right)^{j} \times \left[P_{l}(\eta)Q_{l}(\eta)\delta_{m,2s+n} + (-1)^{(2s+n-m)}P_{l}^{(m-2s-n)}(\eta)Q_{l}^{(2s+n-m)}(\eta) + (-1)^{(m-2s-n)}P_{l}^{(2s+n-m)}(\eta)Q_{l}^{(m-2s-n)}(\eta) \right].$$

Regularisation of the Direct Terms - Ψ_{nl}

Employing the identity [Gradshteyn, 2007]

$$(z^2 - 1)^{j/2} Q_l^{-j} = \sum_{k=0}^{j} \frac{(-1)^k}{2^{j+1}} {j \choose k} \frac{2l + 2j - 4l + 1}{(l - k + \frac{1}{2})_{j+1}} Q_{l+j-2k}(z)$$

and performing similar calculations, we obtain

$$\Psi_{nl}^{(-)}(i,j\mid r) = \frac{\kappa}{2\pi} \frac{2^{i-1}(-1)^{j}}{\kappa^{2i-2j}r^{2-2j}\Gamma(1-j)} \sum_{k=0}^{J} \frac{(-1)^{k}}{2^{j+1}} {j \choose k} \frac{2l+2j-4k+1}{(l-k+\frac{1}{2})_{j+1}}$$

$$\times \sum_{m=0}^{i-j} \sum_{s=0}^{m} \frac{(i-j)!(-1)^{m}}{s!(i-j-m)!(m-s)!2^{m}} \Big[P_{l+j-2k}(\eta)Q_{l+j-2k}(\eta)\delta_{m,2s+n} + (-1)^{(2s+n-m)}$$

$$\times P_{l+j-2k}^{(m-n-2s)}(\eta)Q_{l+j-2k}^{(2s+n-m)}(\eta) + (-1)^{(m-2s-n)}P_{l+j-2k}^{(2s+n-m)}(\eta)Q_{l+j-2k}^{(m-2s-n)}(\eta) \Big].$$

Regularisation of the Tail Terms

We assume an expansion of the form

$$s^{2i-2j}w^{2j}\log\left(\frac{s^2}{l^2}\right) = \sum_{n=-\infty}^{\infty} e^{in\kappa\Delta\tau} \sum_{l=0}^{\infty} (2l+1)P_l\cos\gamma\chi_{nl}(i,j|r)$$

and using completeness relations we can represent the tail regularisation parameters [Taylor and Breen, 2017] as

$$\chi_{nl}(i,j|r) = \frac{\kappa}{4\pi} \int_0^{2\pi/\kappa} \int_{-1}^1 w^{2j} e^{-in\kappa\Delta\tau} \log\left(\frac{s^2}{l^2}\right) s^{2i-2j} P_l(x) dx d\Delta\tau.$$

Regularisation of the Tail Terms - l > k

We may then make use of some unique identities and find that (where $\alpha = l + i - j - 2k + 1$):

$$\chi_{nl}(i,j|r) = \frac{2^{j-1}r^{2i-2j}(i-j)!}{\kappa^{2j}} \sum_{k=0}^{i-j+1} (-1)^k {i-j+1 \choose k} \frac{(\alpha+\frac{1}{2})}{(l-k+\frac{1}{2})_{i-j+2}}$$

$$\times \sum_{m=0}^{j} \sum_{s=0}^{m} \frac{j!}{s!(j-m)!(m-s)!} \frac{(-1)^m}{2^m} \Big[P_{\alpha}(\eta) Q_{\alpha}(\eta) \delta_{m,2s+n} + P_{\alpha}^{(m-n-2s)}(\eta) Q_{\alpha}^{(2s+n-m)}(\eta) + (-1)^n P_{\alpha}^{(2s+n-m)}(\eta) Q_{\alpha}^{(m-2s-n)}(\eta) \Big].$$

Regularisation of the Tail Terms - $l \le k$

With "Olver's definition of the associated Legendre function of the second kind" $\mathcal{Q}(z)$ defined as

$$\mathcal{Q}_{l}^{-\lambda-1}(z) = \frac{e^{(\lambda+1)\pi i} Q_{l}^{-\lambda-1}(z)}{\Gamma(l-\lambda)}$$

rather than the standard Q(z), we then obtain for the case where $l \leq k$

$$\chi_{nl}(i,j|r) = \frac{\kappa}{2\pi} \left(\frac{2}{\kappa^2}\right)^j (2r)^{i-j} (-1)^l \left[\frac{d}{d\lambda} (\lambda + 1 - l)_l \left(\frac{2r^2}{\ell^2}\right)^{\lambda - i + j} \int_0^{2\pi/\kappa} (1 - \cos\kappa\tau)^j e^{-in\kappa\Delta\tau} \right] \times (z^2 - 1)^{\frac{1}{2}(\lambda + 1)} \mathcal{Q}_l^{-\lambda - 1}(z) d\Delta\tau \Big]_{\lambda = i - j}.$$

for $1 \le k$.

Mode-Sum Prescription of Singular Green Function

The mode-sum description of the singular Green function is then given by

$$G_{s}(x,x') = \frac{1}{8\pi^{2}} \sum_{n=-\infty}^{\infty} e^{in\kappa\Delta\tau} \sum_{l=0}^{\infty} (2l+1) P_{l}(\cos\gamma) \left\{ \sum_{i=0}^{2} \sum_{j=0}^{i} \mathcal{D}_{ij}^{(+)}(r) \Psi_{nl}^{(+)}(i,j\mid r) + \sum_{i=0}^{2} \sum_{j=0}^{i} \mathcal{D}_{ij}^{(-)}(r) \Psi_{nl}^{(-)}(i,j\mid r) + \sum_{i=0}^{1} \sum_{j=0}^{i} \mathcal{T}_{ij}^{(l)}(r) \chi_{nl}(i,j\mid r) + \sum_{j=0}^{1} \mathcal{T}_{1j}^{(p)}(r) \chi_{nl}(1,j\mid r) + \mathcal{T}_{10}^{(r)}(r) \Psi_{nl}^{(-)}(2,0\mid r) \right\} + \mathcal{O}(\epsilon^{4}\log\epsilon).$$

The Renormalised Green Function \dots (1)

We may now define the renormalised Green function as

$$G_{ren}(x, x^{'}) = \lim_{x \to x^{'}} \left(G_{E}(x, x^{'}) - G_{s}(x, x^{'}) \right)$$

and the diagonal components of the point-split renormalised expectation value of the energy-stress tensor are given by as

$$egin{aligned} \left\langle T^{
u}_{\;\;
u}
ight
angle_{\mathit{ren}\;; lpha lpha'} G_{\mathit{ren}\;;
u
u'} + (2 \xi - rac{1}{2}) g^{lpha lpha'} G_{\mathit{ren}\;; lpha lpha'} - 2 \xi g^{
u
u} G_{\mathit{ren}\;;
u
u} \ + 2 \xi g^{lpha lpha} G_{\mathit{ren}\;; lpha lpha} + \xi (R^{
u}_{\;\;
u} - rac{1}{2} R) G_{\mathit{ren}} - rac{m^2}{2} G_{\mathit{ren}} + rac{2 v_1}{8 \pi^2} \ \end{aligned}$$

noting that this is not a summation over ν . v_1 is a function of R_{abcd} , R, g_{ab} , ξ , and m.

The Renormalised Green Function ...(2)

In the coincidence limit during the calculation of the renormalised Green function, $\Delta \tau \to 0$ and $\gamma \to 0$, thus $e^{in\kappa\Delta\tau} \to 1$ and $P_I(\cos\gamma) \to 1$, and we obtain

$$G_{ren} = \frac{1}{8\pi^{2}} \sum_{n=-\infty}^{\infty} \sum_{l=0}^{\infty} (2l+1) \left\{ N_{nl} p_{nl}(r) q_{nl}(r) - \sum_{i=0}^{2} \sum_{j=0}^{i} \mathcal{D}_{ij}^{(+)}(r) \stackrel{[d]}{\Psi}_{nl}^{(+)}(i,j \mid r) - \sum_{i=0}^{2} \sum_{j=0}^{i} \mathcal{D}_{ij}^{(-)}(r) \stackrel{[d]}{\Psi}_{nl}^{(-)}(i,j \mid r) - \sum_{i=0}^{1} \sum_{j=0}^{i} \mathcal{T}_{ij}^{(l)}(r) \stackrel{[d]}{\chi}_{nl}^{(i,j \mid r)} - \sum_{j=0}^{1} \mathcal{T}_{1j}^{(p)}(r) \stackrel{[d]}{\chi}_{nl}^{(1,j \mid r)} - \mathcal{T}_{10}^{(r)}(r) \stackrel{[d]}{\Psi}_{nl}^{(-)}(2,0 \mid r) \right\}.$$

Derivatives of the Renormalised Green Function \dots (1)

The following derivatives are then calculated in the dissertation, which is an extension of the previous work and a necessary step towards the renormalised stress-energy tensor:

$$g^{tt'}G_{ren;tt'}$$
 $g^{\phi\phi}G_{ren;\phi\phi}$ $g^{\theta\theta}G_{ren;\phi\phi}$ $g^{\theta\theta}G_{ren;\theta}$ $g^{\theta\theta}G_{ren;\theta}$ $g^{\theta\theta'}G_{ren;\theta}$

Note that we cannot calculate $g^{rr'}G_{ren;rr'}$, as earlier in the expansion we set $\Delta r=0$. We select $f(r)=1-\frac{2M}{r}$ and calculate these derivatives explicitly.

Derivatives of the Renormalised Green Function ...(2)

We also calculate the following derivatives of the direct and tail coefficient terms, explicitly for our choice of f(r):

$$\frac{\partial \mathcal{D}_{ij}^{(+)}(r)}{\partial r} \\
\frac{\partial \mathcal{D}_{ij}^{(-)}(r)}{\partial r} \\
\frac{\partial \mathcal{T}_{ij}^{(r)}(r)}{\partial r}$$

and the derivatives of the regularisation terms:

$$\frac{\partial \Psi_{nl}^{(d)}(i,j|r)}{\partial r}$$
$$\frac{\partial \Psi_{nl}^{(i,j|r)}}{\partial \psi_{nl}(i,j|r)}$$

$$\frac{\partial_{X_{nl}(i,j|r)}^{[d]}}{\partial r}, l > k$$

$$\frac{\partial_{X_{nl}(i,j|r)}^{[d]}}{\partial r}, l \leq k$$

 $\frac{\partial \mathcal{T}_{ij}^{(I)}(r)}{\partial r} = 0$

 $\frac{\partial \mathcal{T}_{ij}^{(p)}(r)}{\partial r}$

Conclusion

• We sought to approximate a full theory of quantum gravity via semiclassical gravity.

The Hadamard Parametrix for the Singular Propagator

$$G_{s} = \frac{1}{8\pi^{2}} \left(\frac{U}{\sigma} + V \log \left(\frac{2\sigma}{\ell^{2}} \right) \right)$$

- We worked through Taylor and Breen's novel expansion of σ using extended coordinates w and s, with $\Delta r = 0$.
- We calculated a mode sum over modes n and l for G_s , classifying the terms as either **direct** (from $\frac{U}{\sigma}$) or **tail** (from $V \log \left(\frac{2\sigma}{\ell^2}\right)$), keeping track of the order of ϵ and of its form as a function of (w,s).
- By assuming Fourier frequency and and multipole decompositions, we were able to derive regularisation terms for both direct and tail components of the expansion.
- Our mode-sum expansion was then a product of direct and tail coefficients and regularisation terms, which could then be subtracted from the Euclidean mode-sum.
- Worked towards a calculation of $\langle T_{\mu\nu} \rangle_{ren}$, by calculating some of the derivatives $g^{\mu\nu}G_{ren;\mu\nu}$ and $g^{\mu\nu'}G_{ren;\mu\nu'}$.

Further Work

This work was a logical extension of the work of Taylor and Breen, working towards a renormalised stress-energy tensor rather than the renormalised vacuum polarisation value in [Taylor and Breen, 2017]. Some of the next steps required for a calculation of the stress-energy tensor would include

- Calculating $g^{rr'}G_{ren;rr'}$.
- Calculating the Riemann tensor R^a_{bcd} and Ricci scalar R.
- Having calculated a renormalised stress-energy tensor, the next step would be to solve the semi-classical Einstein field equations, hence finding a first order approximation to quantum gravity.

Thank you for your time.

References

Taylor and Breen (2017)

A Mode-Sum Prescription for Vacuum Polarization in Even Dimensions Physical Review D 96, 105020 (2017)

Gradshteyn, I. S. and Ryzhik, I. M. (2007)

Table of Integrals, Series, and Products

Elsevier/Academic Press, Amsterdam