Term Premia and Credit Risk in Emerging Markets: The Role of U.S. Monetary Policy

Pavel Solís

December 9, 2020

Johns Hopkins University

U.S. Monetary Policy Spillovers

Asset price effects of U.S. monetary policy abroad

- Stocks
- Exchange rates
- Bonds
 - Foreign currency (FC)
 - Local currency (LC)

By 2018, 90% of EM sovereign debt issued in LC (IMF-WB)

Do Sovereigns Default on Local Currency Debt?

Research Questions

How to decompose the sovereign yields of emerging markets (EM)?

How does U.S. monetary policy transmit to EM yields?

- Does it influence expectations of future policy rates?
- Does it affect the term premium?
- Does it impact creditworthiness?

Relevance

Understand transmission channels to mitigate undesired impacts

In 2020 due to Covid crisis:

- 36 sovereign downgrades, mostly EM
- 44 sovereigns with negative outlooks
- EM public debt projected to be above 60% of GDP (IMF)

Traditional Yield Curve Decomposition

Proposed EM Yield Curve Decomposition

U.S. Monetary Policy Spillovers

- 1. EM yields' response is economically significant, yet delayed
 - · Response in EM slower than in U.S.
- 2. All three components react to U.S. monetary policy
 - EM central banks expected to follow Fed's monetary stance
 - EM term premia response similar to AE term premia
 - Fiscal implications in EM of U.S. monetary policy
- 3. Unconventional policies limit EM monetary autonomy along curve
 - Global financial cycle more relevant at the long end

Related Literature

Synthetic yields and covered interest rate parity deviations

• Du and Schreger (2016); Du, Im, and Schreger (2018a); Du, Tepper, and Verdelhan (2018b)

Sovereign default in EM local currency bonds

• Reinhart and Rogoff (2011); Du and Schreger (2016); Erce and Mallucci (2018); Ottonello and Perez (2019)

Global financial cycle

• Rey (2013); Turner (2014); Obstfeld (2015); Kalemli-Özcan (2019); Kolasa and Wesołowski (2020)

Spillovers of U.S. monetary policy to EM yields

• Hausman and Wongswan (2011); Bowman, Londono, and Sapriza (2015); Curcuru, Kamin, Li, and Rodriguez (2018); Albagli, Ceballos, Claro, and Romero (2019); Adrian, Crump, Durham, and Moench (2019)

Yield Curves

Nominal Yield Curves

Bloomberg Fair Value par yield curves o Zero-coupon yield curves ($y_{t,n}^{LC}$)

• But credit risk in $y_{t,n}^{LC}$

Approach: Synthetic LC yields $(\widetilde{y}_{t,n}^{LC})$ as free of credit risk

• Swap U.S. Treasury yields into LC using currency derivatives

Assumption: Frictionless financial markets (Du and Schreger, 2016)

- Arbitrageurs have access to U.S. and LC bonds
- Derivatives have no counterparty risk
- U.S. yields are free of default risk

Synthetic Yield Curves

$$\widetilde{\mathbf{y}}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}} = \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathsf{US}} +
ho_{\mathsf{t},\mathsf{n}}$$

 $\widetilde{y}_{t,n}^{LC}$: n-period zero-coupon synthetic yield of a country in LC at time t $y_{t,n}^{US}$: n-period zero-coupon yield of the U.S. in USD at time t $\rho_{t,n}$: n-period foreign exchange forward premium from USD to LC at time t

• < 1 Year: Currency forwards

$$(forward_{t,n} - spot_t)/n$$

- ≥ 1 Year: Cross-currency swaps
 - · Cross-currency basis swaps
 - Interest rate swaps

Deviations from CIP (Covered Interest Parity)

$$\phi_{\mathsf{t},\mathsf{n}} = \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}} - \widetilde{\mathbf{y}}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}}$$

Measures:

- Sovereign credit risk in EM Du and Schreger (2016)
- Convenience yield for advanced economies (AE)
 Du, Im, and Schreger (2018a)
- Financial market frictions for banks
 Du, Tepper, and Verdelhan (2018b)

Here: Emphasis on $\widetilde{y}_{t,n}^{LC}$

Data

15 EM countries:

Brazil, Colombia, Hungary, Indonesia, Israel, Korea, Malaysia, Mexico, Peru,
 Philippines, Poland, Russia, Thailand, Turkey, South Africa

Daily data starting in January 2000 to January 2019

Maturities (in years): 0.25, 0.5, 1, 2, ..., 10

Sources for synthetic yields:

- $y_{t,n}^{US}$: Gürkaynak, Sack, and Wright (2007); CRSP Risk-Free Rates
- $\rho_{t,n}$: Bloomberg; Datastream

Descriptive Statistics

		3M	6M	1Y	2Y	5Y	10Y	
	Emerging Markets							
Nominal Yields	Average	5.1	5.3	5.4	5.7	6.3	6.8	
	S. Dev.	3.2	3.3	3.2	3.2	3.0	2.9	
Nommar Tields			Adva	nced Econ	omies			
	Average	2.0	2.1	2.1	2.3	2.7	3.2	
	S. Dev.	2.1	2.1	2.1	2.1	2.0	1.8	
	Emerging Markets							
Countle atic Violate	Average	5.1	5.2	5.3	5.3	5.8	6.3	
	S. Dev.	4.3	4.1	4.0	3.7	3.4	3.2	
Synthetic Yields	Advanced Economies							
	Average	1.6	1.7	1.8	2.0	2.5	3.2	
	S. Dev.	2.1	2.1	2.2	2.1	2.0	2.0	

Notes: All figures are expressed in annualized percentage points. Advanced economies: Australia, Canada, Denmark, Germany, Japan, Norway, New Zealand, Sweden, Switzerland and the U.K.

Affine Term Structure Model

Model Overview

Standard discrete-time nominal affine term structure model

• Assumes default-free bonds \rightarrow Synthetic yields $(\widetilde{y}_{t,n}^{LC})$ for EM

Intuition:

- Yields driven by pricing factors X_t
- Dynamics of pricing factors ($\mathbb P$ and $\mathbb Q$ measures)
- No-arbitrage restrictions ensure consistency

Model augmented with survey data

EM Yield Decomposition

Fitted synthetic yields

$$y_{t,n}^{\mathbb{Q}} = A_n^{\mathbb{Q}} + B_n^{\mathbb{Q}} X_t,$$

Average expected future short rate

$$y_{t,n}^{\mathbb{P}} = A_n^{\mathbb{P}} + B_n^{\mathbb{P}} X_t,$$

Term premium

$$au_{\mathsf{t},\mathsf{n}} = \mathbf{y}^{\mathbb{Q}}_{\mathsf{t},\mathsf{n}} - \mathbf{y}^{\mathbb{P}}_{\mathsf{t},\mathsf{n}}.$$

Credit risk compensation

$$\phi_{\mathsf{t},\mathsf{n}} = \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathsf{LC}} - \mathbf{y}_{\mathsf{t},\mathsf{n}}^{\mathbb{Q}}$$

Weak Identification

Yields accurately identify $\{\mu^{\mathbb{Q}}, \Phi^{\mathbb{Q}}\}$, yet $\{\mu^{\mathbb{P}}, \Phi^{\mathbb{P}}\}$ poorly identified

- · Bond yields are persistent
- Unstable yield decompositions

Solutions: Survey data, parameter restrictions, bias-corrected estimators Surveys provide robust decompositions of AE yields (Guimarães, 2014)

Important for EM yields due to small sample sizes

Survey Data

No data on long-term forecasts for EM short rates

Implied forecast for EM short rates using existing data

- EM inflation expectations: 5 years ahead and long-term
 - Twice a year from Consensus Economics (CE)
- Implied long-term expectations of U.S real interest rate
 - T-bill rate, CPI inflation from Survey of Professional Forecasters (SPF)

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Model Estimation

Estimate parameters by MLE with monthly data

• Joslin, Singleton, and Zhu (2011) normalization

Estimate survey-augmented model by Kalman filter (missing data)

Surveys as 'noisy' expectations measures (Kim and Orphanides, 2012)

Standard errors by delta method

Estimate daily pricing factors

EM Yield Decomposition

Average EM Yield Curve Decomposition

10Y

10Y

Term Premium and Inflation Uncertainty

Term premium compensates for inflation uncertainty (Wright, 2011)
Inflation higher and more volatile in EM than AE (Ha et al., 2019)

Is inflation uncertainty relevant for EM term premia?

$$\tau_{i,t} = \alpha_i + \beta_1 \sigma_{i,t}^{\pi} + \beta_2 \mathbf{g}_{i,t} + \mathbf{u}_{i,t},$$

 $\sigma^\pi_{i,t}$ of π permanent component in UCSV model (Stock and Watson, 2007)

EM Term Premia and Inflation Uncertainty

	6 Me	onths	1 Y	ear	2 Ye	ars	5 Yea	ars	10 Ye	ars
UCSV-Perm	93.0 (52.2)	75.3 (49.5)	85.7* (37.1)	83.2 (43.7)	88.7*** (24.7)	97.8** (31.6)	103.1*** (15.3)	124.2*** (18.7)	121.9*** (16.1)	151.3*** (18.3)
GDP Growth		-2.56 (3.37)		-2.62 (4.00)		-1.91 (3.53)		-2.14 (1.67)		-3.97* (1.55)
Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Lags	3	3	3	3	3	3	3	3	3	3
No. Countries	15	14	15	14	15	14	15	14	15	14
Observations	870	796	870	796	870	796	870	796	870	796
\mathbb{R}^2	0.04	0.03	0.04	0.03	0.05	0.05	0.10	0.11	0.11	0.15

Notes: Driscoll-Kraay standard errors are in parenthesis. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

U.S. Monetary Policy Spillovers

The Yield Curve Channel

Long-term yields influenced by global forces

• Global financial cycle (Rey, 2013)

Unconventional monetary policies abroad affect EM yields

- Long-term via the term premium (Turner, 2014)
- Short-term via risk spillovers (Kalemli-Özcan, 2019)

EM monetary autonomy:

Declines along the yield curve (Obstfeld, 2015)

Implications of Yield Curve Channel

Long-term EM yields comove more than short-term ones

Direct relationships at different maturities

- U.S. term premium o EM term premium
- U.S. expected future short rates \rightarrow EM expected future short rates

Cross relationships at the short end

• U.S. term premium \rightarrow EM expected future short rates

EM Yields Comovement

Is There A Yield Curve Channel?

$$\mathbf{y}_{i,t} = \alpha_i + \gamma_1' \mathbf{z}_{i,t}^1 + \gamma_2' \mathbf{z}_{i,t}^2 + \mathbf{u}_{i,t}$$

 $y_{i,t}$: nominal EM yields and their three components

 α_i : country fixed effects

 $z_{i,t}^1$: U.S. yield curve decomposition (Kim and Wright, 2005)

 $z_{i,t}^2$: Global and domestic drivers

- VIX, EPU (Baker et al., 2016) & global activity (Hamilton, 2019) indexes
- Policy rate, inflation, unemployment, exchange rate (standardized)

Drivers of Emerging Market Nominal Yields and Their Components

	Nominal	E. Short Rate	Term Premium	Credit Risk			
	10Y						
U.S. Term Premium	0.97***	0.54***	0.85***	-0.42***			
	(0.14)	(0.08)	(0.09)	(0.11)			
U.S. E. Short Rate	0.17	0.25***	0.08	-0.17**			
	(0.09)	(0.05)	(0.06)	(0.06)			
Local Policy Rate	0.24***	0.30***	0.01	-0.06***			
	(0.03)	(0.02)	(0.02)	(0.02)			
Log(Vix)	49.95***	-20.18	30.13**	40.01***			
	(12.63)	(10.45)	(10.49)	(9.59)			
R^2	0.68	0.71	0.49	0.23			
	2Y						
U.S. Term Premium	1.59***	1.68***	0.58***	-0.68**			
	(0.22)	(0.17)	(0.17)	(0.21)			
U.S. E. Short Rate	-0.03	-0.02	0.05	-0.06			
	(0.04)	(0.03)	(0.03)	(0.04)			
Local Policy Rate	0.64***	0.56***	0.13***	-0.05			
	(0.03)	(0.03)	(0.02)	(0.03)			
Log(Vix)	46.41***	-20.29	-9.10	75.79***			
	(8.16)	(13.92)	(7.68)	(11.92)			
R^2	0.80	0.75	0.35	0.29			
Fixed Effects	Yes	Yes	Yes	Yes			
Lags	4	4	4	4			
No. Countries	15	15	15	15			
Observations	2194	2194	2194	2194			

Notes: Driscoll–Kraay standard errors in parenthesis. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Drivers of Emerging Market Nominal Yields and Their Components

	Nominal	E. Short Rate	Term Premium	Credit Risk			
	10Y						
U.S. Term Premium	0.97***	0.54***	0.85***	-0.42***			
	(0.14)	(0.08)	(0.09)	(0.11)			
U.S. E. Short Rate	0.17	0.25***	0.08	-0.17**			
	(0.09)	(0.05)	(0.06)	(0.06)			
Local Policy Rate	0.24***	0.30***	0.01	-0.06***			
	(0.03)	(0.02)	(0.02)	(0.02)			
Log(Vix)	49.95***	-20.18	30.13**	40.01***			
	(12.63)	(10.45)	(10.49)	(9.59)			
R^2	0.68	0.71	0.49	0.23			
	2Y						
U.S. Term Premium	1.59***	1.68***	0.58***	-0.68**			
	(0.22)	(0.17)	(0.17)	(0.21)			
U.S. E. Short Rate	-0.03	-0.02	0.05	-0.06			
	(0.04)	(0.03)	(0.03)	(0.04)			
Local Policy Rate	0.64***	0.56***	0.13***	-0.05			
	(0.03)	(0.03)	(0.02)	(0.03)			
Log(Vix)	46.41***	-20.29	-9.10	75.79***			
	(8.16)	(13.92)	(7.68)	(11.92)			
R^2	0.80	0.75	0.35	0.29			
Fixed Effects	Yes	Yes	Yes	Yes			
Lags	4	4	4	4			
No. Countries	15	15	15	15			
Observations	2194	2194	2194	2194			

Notes: Driscoll–Kraay standard errors in parenthesis. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Drivers of Emerging Market Nominal Yields and Their Components

	Nominal	E. Short Rate	Term Premium	Credit Risk			
	10Y						
U.S. Term Premium	0.97***	0.54***	0.85***	-0.42***			
	(0.14)	(0.08)	(0.09)	(0.11)			
U.S. E. Short Rate	0.17	0.25***	0.08	-0.17**			
	(0.09)	(0.05)	(0.06)	(0.06)			
Local Policy Rate	0.24***	0.30***	0.01	-0.06***			
	(0.03)	(0.02)	(0.02)	(0.02)			
Log(Vix)	49.95***	-20.18	30.13**	40.01***			
	(12.63)	(10.45)	(10.49)	(9.59)			
R^2	0.68	0.71	0.49	0.23			
		2	2Y				
U.S. Term Premium	1.59***	1.68***	0.58***	-0.68**			
	(0.22)	(0.17)	(0.17)	(0.21)			
U.S. E. Short Rate	-0.03	-0.02	0.05	-0.06			
	(0.04)	(0.03)	(0.03)	(0.04)			
Local Policy Rate	0.64***	0.56***	0.13***	-0.05			
	(0.03)	(0.03)	(0.02)	(0.03)			
Log(Vix)	46.41***	-20.29	-9.10	75.79***			
	(8.16)	(13.92)	(7.68)	(11.92)			
R^2	0.80	0.75	0.35	0.29			
Fixed Effects	Yes	Yes	Yes	Yes			
Lags	4	4	4	4			
No. Countries	15	15	15	15			
Observations	2194	2194	2194	2194			

Notes: Driscoll–Kraay standard errors in parenthesis. *, **, ***, asterisks respectively indicate significance at the 10%, 5% and 1% level.

Drivers of Emerging Market Nominal Yields and Their Components

	Nominal	E. Short Rate	Term Premium	Credit Risk	
	10Y				
U.S. Term Premium	0.97***	0.54***	0.85***	-0.42***	
	(0.14)	(0.08)	(0.09)	(0.11)	
U.S. E. Short Rate	0.17	0.25***	0.08	-0.17**	
	(0.09)	(0.05)	(0.06)	(0.06)	
Local Policy Rate	0.24***	0.30***	0.01	-0.06***	
	(0.03)	(0.02)	(0.02)	(0.02)	
Log(Vix)	49.95***	-20.18	30.13**	40.01***	
	(12.63)	(10.45)	(10.49)	(9.59)	
R^2	0.68	0.71	0.49	0.23	
	2Y				
U.S. Term Premium	1.59***	1.68***	0.58***	-0.68**	
	(0.22)	(0.17)	(0.17)	(0.21)	
U.S. E. Short Rate	-0.03	-0.02	0.05	-0.06	
	(0.04)	(0.03)	(0.03)	(0.04)	
Local Policy Rate	0.64***	0.56***	0.13***	-0.05	
	(0.03)	(0.03)	(0.02)	(0.03)	
Log(Vix)	46.41***	-20.29	-9.10	75.79***	
	(8.16)	(13.92)	(7.68)	(11.92)	
R^2	0.80	0.75	0.35	0.29	
Fixed Effects	Yes	Yes	Yes	Yes	
Lags	4	4	4	4	
No. Countries	15	15	15	15	
Observations	2194	2194	2194	2194	

Notes: Driscoll–Kraay standard errors in parenthesis. *, **, ***, asterisks respectively indicate significance at the 10%, 5% and 1% level.

U.S. Monetary Policy Surprises

Asset price changes in 2-hour windows around FOMC meetings

- Target: federal funds futures contracts
- Forward guidance: residual of 8th Eurodollar yield on target surprise
- Asset purchases: residual of 10Y Treasury yield on previous surprises

Measuring the Effects on EM Yields

Panel local projections:

$$\mathbf{y}_{i,t+h} - \mathbf{y}_{i,t-1} = \alpha_{h,i} + \sum_{j=1}^{3} \beta_{h}^{j} \epsilon_{t}^{j} + \gamma_{h} \Delta \mathbf{y}_{i,t-1} + \eta_{h} s_{i,t-1} + u_{i,t+h}$$

- $y_{i,t}$: 10Y and 2Y nominal EM yields and their components
- h = 0, 1, ..., 45 days
- $\alpha_{h,i}$: country fixed effects
- ϵ_t^j : three types of monetary policy surprises
- $s_{i,t-1}$: one-day lag in the exchange rate

Effects of Target Easing on EM Yields

→ US

Effects of Forward Guidance Easing on EM Yields: Pre-GFC

→ US

Effects of Forward Guidance Easing on EM Yields: Post-GFC

Effects of Asset Purchase Easing on EM Yields

▶ US

Conclusions

Conclusions

Three-part decomposition of EM yields

- Average expected short rates
- Term premium
- Credit risk compensation

U.S. monetary policy **spillovers** to EM yields

- 1. Responses are economically significant yet delayed
- 2. Reassessment of policy rate expectations and repricing of risks
- 3. Evidence of a yield curve channel since 2008

Appendix

Credit Risk in Local Currency Yields

Asset Pricing

Under no arbitrage $\rightarrow \exists$ a stochastic discount factor $M_{t+1} > 0$

 M_{t+1} prices all nominal bonds under probability measure \mathbb{P}

$$P_{t,n} = \mathrm{E}_t^{\mathbb{P}}\left[\mathsf{M}_{t+1}\mathsf{P}_{t+1,n-1}
ight]$$

 $M_{t+1} \rightarrow \exists$ a risk-neutral measure $\mathbb Q$ defined as

$$P_{t,n} = \mathrm{E}_{t}^{\mathbb{Q}} \left[\exp \left(-i_{t} \right) P_{t+1,n-1} \right]$$

Stochastic Discount Factor

Stochastic discount factor

$$\mathbf{M}_{t+1} = \exp\left(-i_t - \frac{1}{2}\lambda_t'\lambda_t - \lambda_t'\nu_{t+1}^{\mathbb{P}}\right)$$

Market prices of risk

$$\lambda_t = \lambda_0 + \lambda_1 X_t$$

One-period interest rate

$$\mathbf{i}_{\mathsf{t}} = \delta_0 + \delta_1' \mathbf{X}_{\mathsf{t}}$$

Bond Pricing

Pricing factors under P measure

$$\mathbf{X}_{t+1} = \boldsymbol{\mu}^{\mathbb{P}} + \boldsymbol{\Phi}^{\mathbb{P}} \mathbf{X}_{t} + \boldsymbol{\Sigma} \boldsymbol{\nu}_{t+1}^{\mathbb{P}}$$

Bond prices

$$P_{t,n} = \exp\left(A_n + B_n X_t\right),\,$$

$${\sf A_n}={\cal A}(\delta_0,\delta_1,\mu^{\mathbb{P}},\Phi^{\mathbb{P}},\Sigma,{m n})$$
 , ${\sf B_n}={\cal B}(\delta_1,\Phi^{\mathbb{P}},{m n})$

Pricing factors under $\mathbb Q$ measure

$$\mathbf{X}_{t+1} = \mu^{\mathbb{Q}} + \Phi^{\mathbb{Q}} \mathbf{X}_t + \Sigma \nu_{t+1}^{\mathbb{Q}}$$

Survey-Augmented Model

Expected average short rate

$$y_{t,n}^e = \frac{1}{n} \mathrm{E}_t^{\mathbb{P}} \left[\sum_{j=0}^{n-1} i_{t+j} \right] = A_n^e + B_n^e X_t,$$

Forward rate from *n* to *m* periods hence

$$f_{t,n|m}^e = rac{1}{m-n} \mathrm{E}_{\mathrm{t}}^{\mathbb{P}} \left| \sum_{j=n}^{m-1} i_{t+j} \right| = A_{n|m}^e + B_{n|m}^e X_{\mathrm{t}}.$$

EM Yields Comovement

Connectedness Index (Diebold and Yilmaz, 2014)

	Nominal	E. Short Rate	Term Premium	Credit Risk
U.S. Term Premium	0.97***	0.54***	0.85***	-0.42***
	(0.14)	(0.08)	(0.09)	(0.11)
U.S. E. Short Rate	0.17	0.25***	0.08	-0.17**
	(0.09)	(0.05)	(0.06)	(0.06)
Policy Rate	0.24***	0.30***	0.01	-0.06***
	(0.03)	(0.02)	(0.02)	(0.02)
Inflation	15.26***	1.77	7.06***	6.43***
	(2.27)	(1.56)	(1.36)	(1.73)
Unemployment	23.88***	1.14	10.74***	12.00***
	(3.43)	(2.09)	(1.65)	(2.23)
LC per USD (Std.)	41.58***	33.11***	22.07***	-13.61***
	(5.74)	(3.52)	(3.18)	(3.85)
Log(Vix)	49.95***	-20.18	30.13**	40.01***
	(12.63)	(10.45)	(10.49)	(9.59)
Log(EPU U.S.)	7.08	-3.81	-0.44	11.32**
	(5.58)	(2.69)	(2.72)	(3.93)
Log(EPU Global)	-61.04**	-38.72***	-19.64	-2.68
	(20.51)	(6.98)	(11.75)	(10.72)
Global Ind. Prod.	1.16	0.79	-0.10	0.46
	(1.13)	(0.86)	(0.46)	(0.93)
Fixed Effects	Yes	Yes	Yes	Yes
Lags	4	4	4	4
No. Countries	15	15	15	15
Observations	2194	2194	2194	2194
R^2	0.68	0.71	0.49	0.23

Notes: Driscoll–Kraay standard errors in parenthesis.

	Nominal	E. Short Rate	Term Premium	Credit Risk
U.S. Term Premium	1.59***	1.68***	0.58***	-0.68**
	(0.22)	(0.17)	(0.17)	(0.21)
U.S. E. Short Rate	-0.03	-0.02	0.05	-0.06
	(0.04)	(0.03)	(0.03)	(0.04)
Policy Rate	0.64***	0.56***	0.13***	-0.05
	(0.03)	(0.03)	(0.02)	(0.03)
Inflation	8.91***	-0.15	7.40**	1.67
	(2.25)	(2.58)	(2.25)	(2.50)
Unemployment	9.39**	-0.62	0.04	9.97***
	(2.91)	(2.14)	(1.61)	(2.14)
LC per USD (Std.)	27.18***	25.67***	17.86***	-16.36**
	(4.84)	(4.86)	(4.04)	(4.91)
Log(Vix)	46.41***	-20.29	-9.10	75.79***
	(8.16)	(13.92)	(7.68)	(11.92)
Log(EPU U.S.)	8.42*	-0.66	-7.01*	16.10***
	(3.82)	(3.91)	(2.79)	(4.15)
Log(EPU Global)	-60.39***	-44.01***	-10.88	-5.50
,	(13.69)	(9.62)	(9.32)	(12.88)
Global Ind. Prod.	2.61***	0.36	-1.16*	3.41***
	(0.68)	(0.93)	(0.57)	(0.76)
Fixed Effects	Yes	Yes	Yes	Yes
Lags	4	4	4	4
No. Countries	15	15	15	15
Observations	2194	2194	2194	2194
R^2	0.80	0.75	0.35	0.29

 $Notes: \ {\it Driscoll-Kraay} \ {\it standard} \ {\it errors} \ {\it in} \ {\it parenthesis}.$

Effects of Target Easing on U.S. Yields

4 EM

Effects of Forward Guidance Easing on U.S. Yields: Pre-GFC

■ EM

Effects of Forward Guidance Easing on U.S. Yields: Post-GFC

■ EM

Effects of Asset Purchase Easing on U.S. Yields

■ EM