Problem statement

You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

```
In [61]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
```

In [3]:

```
data=pd.read_csv('Mall_Customers.csv')
```

In [4]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
dtyp	es: int64(4), object(1)		
memo	ry usage: 7.9+ KB		

Univariate Analysis

In [6]:

```
plt.hist(data['Gender']);
plt.xlabel('Gender');
```



```
plt.hist(data['Age']);
plt.xlabel('Age');
```


In [8]:

```
plt.hist(data['Annual Income (k$)']);
plt.xlabel('Annual Income (k$)');
```


In [9]:

```
sns.boxplot(x=data['Annual Income (k$)'])
plt.xlabel('Annual Income (k$)');
```


In [10]:

```
plt.hist(data['Spending Score (1-100)']);
plt.xlabel('Spending Score (1-100)');
```


Bivariate Analysis

In [12]:

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Age"], y=data["Annual Income (k$)"]);
plt.xlabel('Age');
plt.ylabel('Annual Income (k$)');
```


In [13]:

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Age"], y=data["Spending Score (1-100)"]);
plt.xlabel('Age');
plt.ylabel('Spending Score (1-100)');
```


20 30 40 50 60 70 Age

Multi-variate Analysis

In [15]:


```
plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);
```


Descriptive Statistics

In [19]:

data.describe()

Out[19]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

In [21]:

data.skew()

C:\Users\vkedu\AppData\Local\Temp\ipykernel_8692\1188251951.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.skew()

Out[21]:

 CustomerID
 0.000000

 Age
 0.485569

 Annual Income (k\$)
 0.321843

 Spending Score (1-100)
 -0.047220

dtype: float64

In [22]:

data.kurt()

C:\Users\vkedu\AppData\Local\Temp\ipykernel_8692\2907027414.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

data.kurt()

Out[22]:

CustomerID -1.200000
Age -0.671573
Annual Income (k\$) -0.098487
Spending Score (1-100) -0.826629
dtype: float64

In [23]:

```
C:\Users\vkedu\AppData\Local\Temp\ipykernel_8692\445316826.py:1: FutureWarning: Dropping
of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in
a future version this will raise TypeError. Select only valid columns before calling the
reduction.
  data.var()
```

Out[23]:

```
CustomerID 3350.000000
Age 195.133166
Annual Income (k$) 689.835578
Spending Score (1-100) 666.854271
dtype: float64
```

Handling Missing Values

```
In [25]:
```

Outlier Handling

```
In [30]:
```

```
numeric_cols = ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']
def boxplots(cols):
    fig, axes = plt.subplots(3, 1, figsize=(15, 20))
    t=0
    for i in range(3):
        sns.boxplot(ax=axes[i], data=data, x=cols[t])
        t+=1
    plt.show()
def Flooring outlier(col):
    Q1 = data[col].quantile(0.25)
    Q3 = data[col].quantile(0.75)
    IQR = Q3 - Q1
    whisker width = 1.5
    lower whisker = Q1 - (whisker width*IQR)
    upper whisker = Q3 + (whisker width*IQR)
    data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]<lower_whi
sker,lower whisker,data[col]))
print('Before Outliers Handling')
print('='*100)
boxplots(numeric cols)
for col in numeric cols:
    Flooring outlier (col)
print('\n\n\nAfter Outliers Handling')
print('='*100)
boxplots(numeric cols)
```

Before Outliers Handling

After Outliers Handling

Encode Categorical Columns

```
In [32]:

data = pd.get_dummies(data, columns = ['Gender'])
data
Out[32]:
```

```
CustomerID Age Annual Income (k$) Spending Score (1-100) Gender_Female Gender_Male
```

0 1 19.0 15.00 39.0 0

-	-				_	-
1	CustomerID 2	Age 21.0	Annual Income (k\$) 15.00	Spending Score (1-100) 81.0	Gender_Female	Gender_Male
2	3	20.0	16.00	6.0	1	0
3	4	23.0	16.00	77.0	1	0
4	5	31.0	17.00	40.0	1	0
195	196	35.0	120.00	79.0	1	0
196	197	45.0	126.00	28.0	1	0
197	198	32.0	126.00	74.0	0	1
198	199	32.0	132.75	18.0	0	1
199	200	30.0	132.75	83.0	0	1

200 rows × 6 columns

Standard Scaling

```
In [34]:

data = data.drop(['CustomerID'], axis=1)
data
```

Out[34]:

Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male
19.0	15.00	39.0	0	1
21.0	15.00	81.0	0	1
20.0	16.00	6.0	1	0
23.0	16.00	77.0	1	0
31.0	17.00	40.0	1	0
35.0	120.00	79.0	1	0
45.0	126.00	28.0	1	0
32.0	126.00	74.0	0	1
32.0	132.75	18.0	0	1
30.0	132.75	83.0	0	1
	19.0 21.0 20.0 23.0 31.0 35.0 45.0 32.0	19.0 15.00 21.0 15.00 20.0 16.00 23.0 16.00 31.0 17.00 35.0 120.00 45.0 126.00 32.0 132.75	19.0 15.00 39.0 21.0 15.00 81.0 20.0 16.00 6.0 23.0 16.00 77.0 31.0 17.00 40.0 35.0 120.00 79.0 45.0 126.00 28.0 32.0 126.00 74.0 32.0 132.75 18.0	21.0 15.00 81.0 0 20.0 16.00 6.0 1 23.0 16.00 77.0 1 31.0 17.00 40.0 1 35.0 120.00 79.0 1 45.0 126.00 28.0 1 32.0 126.00 74.0 0 32.0 132.75 18.0 0

200 rows × 5 columns

In [36]:

```
scaler = StandardScaler()
sc = scaler.fit_transform(data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])
sc
```

Out[36]:

```
array([[-1.42456879, -1.74542941, -0.43480148],
```

```
[-1.28103541, -1.74542941, 1.19570407],
[-1.3528021 , -1.70708307, -1.71591298],
[-1.13750203, -1.70708307, 1.04041783],
[-0.56336851, -1.66873673, -0.39597992],
[-1.20926872, -1.66873673, 1.00159627],
[-0.27630176, -1.6303904, -1.71591298],
[-1.13750203, -1.6303904, 1.70038436],
[1.80493225, -1.59204406, -1.83237767],
[-0.6351352 , -1.59204406, 0.84631002],
[ 2.02023231, -1.59204406, -1.4053405 ],
[-0.27630176, -1.59204406, 1.89449216],
[1.37433211, -1.55369772, -1.36651894],
[-1.06573534, -1.55369772, 1.04041783],
[-0.13276838, -1.55369772, -1.44416206],
[-1.20926872, -1.55369772, 1.11806095],
[-0.27630176, -1.51535138, -0.59008772],
[-1.3528021 , -1.51535138, 0.61338066],
[ 0.94373197, -1.43865871, -0.82301709],
[-0.27630176, -1.43865871, 1.8556706],
[-0.27630176, -1.40031237, -0.59008772],
[-0.99396865, -1.40031237, 0.88513158], [ 0.51313183, -1.36196603, -1.75473454],
[-0.56336851, -1.36196603, 0.88513158],
[ 1.08726535, -1.24692702, -1.4053405 ],
[-0.70690189, -1.24692702, 1.23452563],
[0.44136514, -1.24692702, -0.7065524],
[-0.27630176, -1.24692702, 0.41927286],
[0.08253169, -1.20858069, -0.74537397],
[-1.13750203, -1.20858069, 1.42863343],
[ 1.51786549, -1.17023435, -1.7935561 ],
[-1.28103541, -1.17023435, 0.88513158],
[ 1.01549866, -1.05519534, -1.7935561 ],
[-1.49633548, -1.05519534, 1.62274124],
[ 0.7284319 , -1.05519534, -1.4053405 ],
[-1.28103541, -1.05519534, 1.19570407],
[0.22606507, -1.016849, -1.28887582],
[-0.6351352 , -1.016849
                          , 0.88513158],
[-0.20453507, -0.90180999, -0.93948177],
[-1.3528021, -0.90180999, 0.96277471],
[ 1.87669894, -0.86346365, -0.59008772],
[-1.06573534, -0.86346365, 1.62274124],
[ 0.65666521, -0.82511731, -0.55126616],
[-0.56336851, -0.82511731, 0.41927286],
[0.7284319, -0.82511731, -0.86183865],
[-1.06573534, -0.82511731, 0.5745591],
[0.80019859, -0.78677098, 0.18634349],
[-0.85043527, -0.78677098, -0.12422899],
[-0.70690189, -0.78677098, -0.3183368],
[-0.56336851, -0.78677098, -0.3183368],
[ 0.7284319 , -0.7100783 , 0.06987881],
[-0.41983513, -0.7100783, 0.38045129],
[-0.56336851, -0.67173196, 0.14752193],
[ 1.4460988 , -0.67173196, 0.38045129],
[0.80019859, -0.67173196, -0.20187212],
[ 0.58489852, -0.67173196, -0.35715836], [ 0.87196528, -0.63338563, -0.00776431], [ 2.16376569, -0.63338563, -0.16305055],
[-0.85043527, -0.55669295, 0.03105725], [ 1.01549866, -0.55669295, -0.16305055],
[ 2.23553238, -0.55669295, 0.22516505],
[-1.42456879, -0.55669295, 0.18634349],
[ 2.02023231, -0.51834661, 0.06987881],
[ 1.08726535, -0.51834661, 0.34162973],
[ 1.73316556, -0.48000028, 0.03105725],
[-1.49633548, -0.48000028, 0.34162973],
[0.29783176, -0.48000028, -0.00776431],
[2.091999, -0.48000028, -0.08540743],
[-1.42456879, -0.48000028, 0.34162973],
[-0.49160182, -0.48000028, -0.12422899],
[ 2.23553238, -0.44165394, 0.18634349],
 0.58489852, -0.44165394, -0.3183368],
[ 1.51786549, -0.4033076 , -0.04658587],
```

```
[ 1.51786549, -0.4033076 , 0.22516505],
 1.4460988 , -0.24992225, -0.12422899],
[-0.92220196, -0.24992225, 0.14752193],
[0.44136514, -0.24992225, 0.10870037],
[0.08253169, -0.24992225, -0.08540743],
[-1.13750203, -0.24992225, 0.06987881],
[ 0.7284319 , -0.24992225, -0.3183368 ],
[1.30256542, -0.24992225, 0.03105725],
[-0.06100169, -0.24992225, 0.18634349],
[2.02023231, -0.24992225, -0.35715836],
[0.51313183, -0.24992225, -0.24069368],
[-1.28103541, -0.24992225, 0.26398661],
[0.65666521, -0.24992225, -0.16305055],
[1.15903204, -0.13488324, 0.30280817],
[-1.20926872, -0.13488324, 0.18634349],
[-0.34806844, -0.0965369, 0.38045129],
[0.80019859, -0.0965369, -0.16305055],
[ 2.091999 , -0.05819057, 0.18634349],
[-1.49633548, -0.05819057, -0.35715836],
[ 0.65666521, -0.01984423, -0.04658587],
[0.08253169, -0.01984423, -0.39597992],
[-0.49160182, -0.01984423, -0.3183368],
[-1.06573534, -0.01984423, 0.06987881],
[ 0.58489852, -0.01984423, -0.12422899],
[-0.85043527, -0.01984423, -0.00776431],
[ 0.65666521, 0.01850211, -0.3183368 ],
[-1.3528021, 0.01850211, -0.04658587],
[-1.13750203, 0.05684845, -0.35715836],
[0.7284319, 0.05684845, -0.08540743],
[ 2.02023231, 0.05684845, 0.34162973],
[-0.92220196, 0.05684845, 0.18634349],
[0.7284319, 0.05684845, 0.22516505],
[-1.28103541, 0.05684845, -0.3183368],
              0.09519478, -0.00776431],
[ 1.94846562,
 1.08726535, 0.09519478, -0.16305055],
              0.09519478, -0.27951524],
 2.091999 ,
              0.09519478, -0.08540743],
 1.94846562,
              0.09519478, 0.06987881],
0.09519478, 0.14752193],
 1.87669894,
[-1.42456879,
[-0.06100169,
              0.13354112, -0.3183368],
[-1.42456879,
              0.13354112, -0.16305055],
[-1.49633548,
              0.17188746, -0.08540743],
[-1.42456879,
              0.17188746, -0.00776431],
              0.17188746, -0.27951524],
[ 1.73316556,
[ 0.7284319 , 0.17188746, 0.34162973],
[0.87196528, 0.24858013, -0.27951524],
[ 0.80019859, 0.24858013, 0.26398661],
[-0.85043527,
              0.24858013, 0.22516505],
              0.24858013, -0.39597992],
[-0.06100169,
[ 0.08253169,
              0.32527281, 0.30280817],
r 0.010765 ,
              0.32527281, 1.58391968],
[-1.13750203,
              0.36361914, -0.82301709],
              0.36361914, 1.04041783],
[-0.56336851,
[0.29783176, 0.40196548, -0.59008772],
              0.40196548, 1.73920592],
0.40196548, -1.52180518],
 0.08253169,
 1.4460988 ,
              0.40196548, 0.96277471],
0.40196548, -1.5994483],
[-0.06100169,
[ 0.58489852,
[ 0.010765 , 0.40196548, 0.96277471], [-0.99396865, 0.44031182, -0.62890928],
[-0.56336851, 0.44031182, 0.80748846],
[-1.3528021, 0.47865816, -1.75473454],
[-0.70690189, 0.47865816, 1.46745499],
[0.36959845, 0.47865816, -1.67709142],
[-0.49160182, 0.47865816, 0.88513158],
[-1.42456879, 0.51700449, -1.56062674],
[-0.27630176, 0.51700449, 0.84631002],
[1.30256542, 0.55535083, -1.75473454],
[-0.49160182, 0.55535083, 1.6615628],
[-0.77866858, 0.59369717, -0.39597992],
[-0.49160182, 0.59369717, 1.42863343],
[-0.99396865, 0.6320435, -1.48298362],
```

```
[-0.77866858,
               0.6320435 , 1.81684904],
               0.6320435 , -0.55126616],
[ 0.65666521,
[-0.49160182,
               0.6320435 , 0.92395314],
[-0.34806844,
               0.67038984, -1.09476801],
               0.67038984, 1.54509812],
0.67038984, -1.28887582],
[-0.34806844,
[ 0.29783176,
               0.67038984, 1.46745499],
[ 0.010765 ,
               0.67038984, -1.17241113],
[ 0.36959845,
[-0.06100169,
               0.67038984, 1.00159627],
               0.67038984, -1.32769738],
[ 0.58489852,
[-0.85043527,
                0.67038984, 1.50627656],
                0.67038984, -1.91002079],
[-0.13276838,
[-0.6351352 ,
               0.67038984, 1.079239391,
                0.67038984, -1.910020791,
[-0.34806844,
[-0.6351352,
               0.67038984, 0.88513158],
               0.70873618, -0.59008772],
[ 1.23079873,
               0.70873618, 1.27334719],
[-0.70690189,
               0.78542885, -1.75473454],
[-1.42456879,
               0.78542885, 1.6615628],
0.9388142, -0.93948177],
[-0.56336851,
[ 0.80019859,
               0.9388142 , 0.96277471],
[-0.20453507,
               0.97716054, -1.17241113],
[ 0.22606507,
              0.97716054, 1.73920592],
1.01550688, -0.90066021],
[-0.41983513,
[-0.20453507,
[-0.49160182,
               1.01550688, 0.49691598],
               1.01550688, -1.44416206],
[ 0.08253169,
[-0.77866858,
               1.01550688, 0.96277471],
[-0.20453507,
               1.01550688, -1.56062674],
[-0.20453507,
               1.01550688, 1.62274124],
               1.05385321, -1.44416206],
[ 0.94373197,
[-0.6351352 ,
               1.05385321, 1.38981187],
               1.05385321, -1.36651894],
[ 1.37433211,
               1.05385321, 0.72984534],
[-0.85043527,
               1.2455849 , -1.4053405 ],
[ 1.4460988 ,
                            1.54509812],
               1.2455849 ,
[-0.27630176,
               1.39897025, -0.7065524],
[-0.13276838,
               1.39897025, 1.38981187],
1.43731659, -1.36651894],
[-0.49160182,
[ 0.51313183,
[-0.70690189,
               1.43731659, 1.46745499],
               1.47566292, -0.43480148],
[ 0.15429838,
[-0.6351352 ,
               1.47566292, 1.81684904],
               1.5523556 , -1.01712489],
[ 1.08726535,
               1.5523556 , 0.69102378],
[-0.77866858,
               1.62904827, -1.28887582],
[ 0.15429838,
               1.62904827, 1.35099031],
1.62904827, -1.05594645],
[-0.20453507,
[-0.34806844,
[-0.49160182,
               1.62904827, 0.72984534],
[-0.41983513,
               2.01251165, -1.63826986],
               2.01251165, 1.58391968],
[-0.06100169,
               2.28093601, -1.327697381,
[ 0.58489852,
[-0.27630176,
               2.28093601, 1.11806095],
[0.44136514, 2.51101403, -0.86183865],
[-0.49160182, 2.51101403, 0.92395314],
[-0.49160182, 2.76985181, -1.25005425],
[-0.6351352, 2.76985181, 1.27334719]])
```

In [37]:

```
data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = sc
data
```

Out[37]:

Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male
0 -1.424569	-1.745429	-0.434801	0	1
1 -1.281035	-1.745429	1.195704	0	1
2 -1.352802	-1.707083	-1.715913	1	0
3 -1.137502	-1.707083	1.040418	1	0
4 0 500000	4 660707	0.005000		^

4	-U.DOJJOS Age	-1.000/3/ Annual Income (k\$)	-บ.395980 Spending Score (1-100)	Gender_Female	Gender_Male
				•••	•••
195	-0.276302	2.280936	1.118061	1	0
196	0.441365	2.511014	-0.861839	1	0
197	-0.491602	2.511014	0.923953	0	1
198	-0.491602	2.769852	-1.250054	0	1
199	-0.635135	2.769852	1.273347	0	1

200 rows × 5 columns

```
Clustering
In [39]:
TWSS = []
k = list(range(2,13))
for i in k:
    kmeans = KMeans(n clusters = i , init = 'k-means++')
    kmeans.fit(data)
    TWSS.append(kmeans.inertia)
TWSS
Out[39]:
[487.6586717274497,
 393.64978299868295,
 302.7542334541678,
 264.4053832507914,
 233.03386823093447,
 205.10124246839075,
 187.39595996551753,
 167.0398397965737,
 148.88636365194475,
 137.930832935199,
 127.33536880175306]
In [40]:
plt.plot(k, TWSS, 'ro--')
plt.xlabel('# Clusters')
plt.ylabel('TWSS')
Out[40]:
Text(0, 0.5, 'TWSS')
  500
  450
  400
  350
300
  250
  200
  150
```

In [41]:

```
model = KMeans(n clusters = 5)
```

8

Clusters

10

```
model.fit(data)
Out[41]:
```

KMeans(n_clusters=5)

Add the Cluster data with Primary dataset

In [44]:

```
mb = pd.Series(model.labels_)
data['Cluster'] = mb
data
```

Out[44]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male	Cluster
0	-1.424569	-1.745429	-0.434801	0	1	3
1	-1.281035	-1.745429	1.195704	0	1	3
2	-1.352802	-1.707083	-1.715913	1	0	0
3	-1.137502	-1.707083	1.040418	1	0	3
4	-0.563369	-1.668737	-0.395980	1	0	0
195	-0.276302	2.280936	1.118061	1	0	2
196	0.441365	2.511014	-0.861839	1	0	4
197	-0.491602	2.511014	0.923953	0	1	2
198	-0.491602	2.769852	-1.250054	0	1	4
199	-0.635135	2.769852	1.273347	0	1	2

200 rows × 6 columns

In [45]:

```
data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']] = scaler.inverse_transform
(data[['Age', 'Annual Income (k$)', 'Spending Score (1-100)']])
data
```

Out[45]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male	Cluster
0	19.0	15.00	39.0	0	1	3
1	21.0	15.00	81.0	0	1	3
2	20.0	16.00	6.0	1	0	0
3	23.0	16.00	77.0	1	0	3
4	31.0	17.00	40.0	1	0	0
195	35.0	120.00	79.0	1	0	2
196	45.0	126.00	28.0	1	0	4
197	32.0	126.00	74.0	0	1	2
198	32.0	132.75	18.0	0	1	4
199	30.0	132.75	83.0	0	1	2

200 rows × 6 columns

In [46]:

```
mb=pd.Series(model.labels_)
data
```

Out[46]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female	Gender_Male	Cluster
0	19.0	15.00	39.0	0	1	3
1	21.0	15.00	81.0	0	1	3
2	20.0	16.00	6.0	1	0	0
3	23.0	16.00	77.0	1	0	3
4	31.0	17.00	40.0	1	0	0
195	35.0	120.00	79.0	1	0	2
196	45.0	126.00	28.0	1	0	4
197	32.0	126.00	74.0	0	1	2
198	32.0	132.75	18.0	0	1	4
199	30.0	132.75	83.0	0	1	2

200 rows × 6 columns

Split Data Into Dependent & Independent Features

```
In [48]:
```

```
X=data.drop('Cluster',axis=1)
Y=data['Cluster']
X, Y
```

Out[48]:

(Age	Annual Income (k\$)	Spending Score (1-100)	Gender_Female \
0	19.0	15.00	39.0	0
1	21.0	15.00	81.0	0
2	20.0	16.00	6.0	1
3	23.0	16.00	77.0	1
4	31.0	17.00	40.0	1
			• • •	• • •
195	35.0	120.00	79.0	1
196	45.0	126.00	28.0	1
197	32.0	126.00	74.0	0
198	32.0	132.75	18.0	0
199	30.0	132.75	83.0	0

```
[200 rows x 5 columns],
0 3
1 3
2 0
3 3
4 0
```

```
Split the data into Training And Testing Data
In [50]:
X train, X test, Y train, Y test=train test split(X, Y, test size=0.2, random state=42)
X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
Out[50]:
((160, 5), (40, 5), (160,), (40,))
Train Model & Evaluate
In [52]:
model=DecisionTreeClassifier()
model.fit(X train, Y train)
Out[52]:
DecisionTreeClassifier()
Evaluate
In [54]:
model.score(X_train, Y_train)
Out[54]:
1.0
In [55]:
model.score(X_test, Y_test)
Out[55]:
0.975
```

In [56]:

```
Y_pred = model.predict(X_test)
```

In [57]:

```
accuracy_score(Y_pred, Y_test)
```

Out[57]:

0.975

In [58]:

```
print(classification_report(Y_pred, Y_test))
```

	precision	recall	f1-score	support
0	0.92	1.00	0.96	11
1	1.00	1.00	1.00	10
2	1.00	1.00	1.00	5
3	1.00	1.00	1.00	3

```
1.00
                        0.91
                                  0.95
                                             11
                                  0.97
                                             40
   accuracy
                     0.98
                                  0.98
  macro avg
                0.98
                                             40
           0.98
weighted avg
                         0.97
                                  0.97
                                             40
```

In [59]:

```
cm = confusion_matrix(Y_pred, Y_test)
cm
```

Out[59]:

In [60]:

```
sns.heatmap(cm, annot=True);
```


In []: