Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №5

По Вычислительной математике Вариант №9

Выполнил:

Таджеддинов Рамиль Эмильевич

Группа № Р3108

Поток № 1.3

Преподаватель:

Санкт-Петербург 2025

Содержание

1 Цель работы	2
2 Порядок выполнения работы	2
2.1 Вычислительная реализация задачи	2
2.2 Программная реализация задачи	6
2.2.1 Листинг программы	6
2.2.2 Результаты выполнения программы	6
3 Вывод	6

1 Цель работы

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

2 Порядок выполнения работы

2.1 Вычислительная реализация задачи

Выберем таблицу y = f(x)

	X	У	№ варианта	<i>X</i> ₁	<i>X</i> ₂
	1.05	0.1213		1.562	1.362
	1.15	1.1316			
	1.25	2.1459			
Таблица 1.4	1.35	3.1565	9		
1.7	1.45	4.1571			
	1.55	5.1819			
	1.65	6.1969			

Построим таблицу конечных разностей:

X_i	y_i	Δ1 <i>y</i> i	Δ 2 y i	∆ 3 <i>y</i> i	Δ 4 <i>y</i> i	Δ 5 y_i	Δ 6 y i
-------	-------	---------------	-----------------------	-----------------------	-----------------------	------------------	-----------------------

1.05	0.1213	1.0103	0.0040	-0.0077	0.0014	0.0391	- 0.1478
1.15	1.1316	1.0143	-0.0037	-0.0063	0.0405	-0.1087	
1.25	2.1459	1.0106	-0.0100	0.0342	-0.0682		
1.35	3.1565	1.0006	0.0242	-0.0340			
1.45	4.1571	1.0248	-0.0098				
1.55	5.1819	1.0150					
1.65	6.1969						

Вычислим значения функции для аргумента X_1 , используя первую или вторую интерполяционную формулу Ньютона:

Воспользуемся формулой Ньютона для интерполирования назад, так как $X_1 = 1.562$ лежит в правой половине отрезка

Для $X_1 = 1.562$ получаем:

$$t = \frac{(x - x_n)}{h} = \frac{1.562 - 1.65}{0.1} = -0.88$$

Интерполяционная формула:

$$N_{6}(x) = y_{6}$$

$$+t\Delta^{1}y_{5}$$

$$+\frac{t(t+1)}{2!}\Delta^{2}y_{4}$$

$$+\frac{t(t+1)(t+2)}{3!}\Delta^{3}y_{3}$$

$$+\frac{t(t+1)(t+2)(t+3)}{4!}\Delta^{4}y_{2}$$

$$+\frac{t(t+1)(t+2)(t+3)(t+4)}{5!}\Delta^{5}y_{1}$$

$$+\frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{6!}\Delta^{6}y_{0}$$

Подставляя значения получаем:

$$y(1.562) = \frac{6.1969}{+ - 0.88 \cdot 1.0150} + \frac{-0.88(-0.88 + 1)}{2!} \cdot -0.0098$$

$$+ \frac{-0.88(-0.88 + 1)(-0.88 + 2)}{3!} \cdot -0.0340$$

$$+ \frac{-0.88(-0.88 + 1)(-0.88 + 2)(-0.88 + 3)}{4!} \cdot -0.0682$$

$$+ \frac{-0.88(-0.88 + 1)(-0.88 + 2)(-0.88 + 3)(-0.88 + 4)}{5!} \cdot -0.1087$$

$$+ \frac{-0.88(-0.88 + 1)(-0.88 + 2)(-0.88 + 3)(-0.88 + 4)}{6!} \cdot -0.1478$$

$$\approx 5.2993$$

Вычислить значения функции для аргумента X_2 , используя первую или вторую интерполяционную формулу Гаусса:

Центральная точка:

$$\alpha = 1.35$$

Так как:

$$X_2 = 1.362 > 1.35$$

используем первую интерполяционную формулу Гаусса.

Для $X_2 = 1.362$ получаем:

$$t = \frac{(x - x_0)}{h} = \frac{1.362 - 1.05}{0.1} = 3.12$$

Интерполяционная формула:

$$P_{6}(x) = y_{0}$$

$$+t\Delta^{1}y_{0}$$

$$+\frac{t(t+1)}{2!}\Delta^{2}y_{-1}$$

$$+\frac{t(t+1)(t+2)}{3!}\Delta^{3}y_{-1}$$

$$+\frac{t(t+1)(t+2)(t+3)}{4!}\Delta^{4}y_{-2}$$

$$+\frac{t(t+1)(t+2)(t+3)(t+4)}{5!}\Delta^{5}y_{-2}$$

$$+\frac{t(t+1)(t+2)(t+3)(t+4)(t+5)}{6!}\Delta^{6}y_{-3}$$

Подставляя значения получаем:

$$y(1.362) = \frac{3.1565}{+3.12 \cdot 1.0006} + \frac{3.12(3.12+1)}{2!} \cdot -0.0100 + \frac{3.12(3.12+1)(3.12+2)}{3!} \cdot 0.0342 + \frac{3.12(3.12+1)(3.12+2)(3.12+3)}{4!} \cdot 0.0405 + \frac{3.12(3.12+1)(3.12+2)(3.12+3)(3.12+4)}{5!} \cdot -0.1087 + \frac{3.12(3.12+1)(3.12+2)(3.12+3)(3.12+4)(3.12+5)}{6!} \cdot -0.1478$$

$$\approx 5.0195$$

2.2 Программная реализация задачи

2.2.1 Листинг программы

2.2.2 Результаты выполнения программы

3 Вывод

В ходе работы я изучил основные методы интерполяции: метода Лагранжа, методы Ньютона, метода Гаусса, а также Стирлинга и Бесселя. Также я реализовал программу, которая используя данные методы решает задачу интерполяции функции по точкам и строит её график. В программе реализованы методы интерполяции Ньютона, Гаусса, Лагранжа, Бесселя и Стирлинга. Программы была запущена на различных входных данных, после чего результаты были проанализированы. В процессе проверки было обнаружено, что методы Бесселя и Стирлинга очень чувствительны к проверяемой точке и работают хорошо только для точек приближенных к центру. Это связано с быстрым ростом ошибки при использовании этих формул. Однако при взятии близких к центру точек они обеспечивают большую точность чем другие рассмотренные методы.