Please check the examination details belo	ow before ente	ring your candidate information	
Candidate surname		Other names	
Centre Number Candidate Nu	ımber		
Pearson Edexcel Interi	nation	al Advanced Level	
Thursday 9 May 202	.4		
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA11/01R	
Morning (Time: 1 hour 30 minutes) Mathematics		WMA11/01R	
	reference	100	
Mathematics International Advanced Su	reference	100	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1	ъ.	- 1
	H 111	വ

$$\int \left(\frac{1}{2}x^3 + \frac{3}{\sqrt{x}} - 4\right) \mathrm{d}x$$

• . •					1 .	0
writing ;	your	answer	1n	simp	lest	form.

Question 1 continued	
	(Total for Question 1 is 4 marks)

2. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

(a) Solve

$$5(x+3) > 4(2x-5)$$

(2)

(b) (i) Write

$$x^2 - 6x + 1$$

in the form $(x + a)^2 + b$ where a and b are constants.

(ii) Hence solve

$$x^2 - 6x + 1 \geqslant 0$$

(4)

(c) Hence find the values of x that satisfy both

$$5(x+3) > 4(2x-5)$$
 and $x^2 - 6x + 1 \ge 0$

(1)

Question 2 continued	
	(Total for Question 2 is 7 marks)

In this question you must show all stages of your working.
 Solutions relying on calculator technology are not acceptable.

$$y = x^3 + 96\sqrt{x} + 5 x > 0$$

(a) Find $\frac{dy}{dx}$, giving each term in simplest form.

(3)

(b) Find the solution of the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 0$$

writing the answer in the form 2^k where k is a constant.

(3)

Question 3 continued	
(Total for Question	3 is 6 marks)
(10tai 101 Question	. V 15 V marks

4. The curve C has equation

$$y = \frac{2}{x} + 3x - 4 \qquad x \neq 0$$

The straight line l has equation

$$y = kx + 2$$

where k is a constant.

(a) Show that l meets C when

$$(k-3)x^2 + 6x - 2 = 0$$

(2)

(b) Hence find the value of k for which l is a tangent to C

(3)

Question 4 continued	
(Total	al for Question 4 is 5 marks)

5.	In this question you must show all stages of your working.	
٥.		
	Solutions relying on calculator technology are not acceptable.	
	(a) Fully factorise	
	$9x^3 - 10x^2 + x$	
		(2)
	(b) Hence solve	
	$9 \times 27^{y} - 10 \times 9^{y} + 3^{y} = 0$	
		(3)

Question 5 continued	
(То	tal for Question 5 is 5 marks)

Diagram not drawn to scale

6.

Figure 1

Figure 1 shows a sketch of the entrance to a tunnel.

The shape of the entrance consists of a sector BCDF, of a circle centre F, joined to two congruent (identical) triangles ABF and EDF.

Given that

AFE is a straight line

$$AF = FE = 6.4 \,\mathrm{m}$$

$$FB = FD = 6.2 \,\mathrm{m}$$

angle BFD = 2.275 radians

(a) Show that angle AFB = 0.433 radians to 3 decimal places.

(1)

(b) Find the perimeter of the entrance to the tunnel, *ABCDEFA*, in metres, to one decimal place.

(4)

(c) Find the cross-sectional area of the entrance to the tunnel, *ABCDEFA*, in m², to one decimal place.

(4)

Question 6 continued		

Question 6 continued		

Question 6 continued	
(Total for	r Question 6 is 9 marks)
(Total 10)	Question o is / marks)

Figure 2

The straight line l_1 shown in Figure 2 has equation 5y = 2x + 10

The points A and B lie on l_1 such that

- point A lies on the y-axis
- point *B* has *x* coordinate 10
- (a) Find the distance AB writing your answer as a fully simplified surd.

(3)

The straight line l_2 also shown in Figure 2

- passes through B
- is perpendicular to l_1
- (b) Find an equation for l_2 writing your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

Line l_2 crosses the x-axis at the point C.

Point D is such that the points A, B, C and D form the vertices of a rectangle, shown shaded in Figure 2.

(c) Find the area of rectangle ABCD.

(3)

DO NOT WRITE IN THIS AREA

Question 7 continued

Question 7 continued		

Question 7 continued	
	(Total for Question 7 is 10 marks)
	(10th 101 Question / 15 10 marks)

8. A curve C with equation y = f(x) passes through the point R(4, 13).

Given that

$$f'(x) = 2(x-3)(3x+2)$$

(a) use integration to find f(x), giving your answer in simplest form.

(5)

(b) Given that f(x) can be written in the form

$$(x-3)^2(px+q)$$

find the value of the constant p and the value of the constant q.

(2)

(c) Sketch the graph of y = f(2x), showing the coordinates of any points where the curve touches or crosses the coordinate axes.

(4)

Question 8 continued

Question 8 continued		

Question 8 continued	
	(Total for Question 8 is 11 marks)

Figure 3

Figure 3 shows a sketch of

- the curve with equation $y = \tan\left(x \frac{\pi}{6}\right)$ for $0 \le x \le 2\pi$
- part of the straight line *l* with equation $y = \pi x$
- (a) State the number of solutions of the equation

(i)
$$\tan\left(x - \frac{\pi}{6}\right) = \pi - x$$
 in the interval $0 \leqslant x \leqslant 2\pi$

(ii)
$$\tan\left(x - \frac{\pi}{6}\right) = \pi - x$$
 in the interval $0 \leqslant x \leqslant 100\pi$

(iii)
$$\tan\left(x - \frac{\pi}{6}\right) = \pi + x$$
 in the interval $0 \le x \le 2\pi$

(3)

The line with equation x = a, shown in Figure 3, is the asymptote to the curve with the smallest positive x coordinate.

(b) State the value of *a*

(1)

The line with equation x = b, also shown in Figure 3, is the asymptote to the curve with the second smallest positive x coordinate.

The line l meets x = a at point P and meets x = b at point Q as shown in Figure 3.

(c) Find the midpoint of the line segment PQ.

(4)

Question 9 continued	
	(Total for Question 9 is 8 marks)

10. In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

The curve C has equation

$$y = \frac{2}{3}x^3 - 25x - \frac{56}{x} + \frac{194}{3} \qquad x > 0$$

The point P, which lies on C, has coordinates (2, -8)

(a) Show that an equation of the tangent to C at P is

$$y = -3x - 2$$

(5)

The point Q also lies on C.

Given that the tangent to C at Q is parallel to the tangent to C at P,

(b) find, using algebra and showing your working, the exact x coordinate of Q.

(5)

Question 10 continued				

Question 10 continued		
	(Total for Question 10 is 10 mayles)	
(Total for Question 10 is 10 marks)		
	TOTAL FOR PAPER IS 75 MARKS	

