ECE 581 Homework 10

Due Thursday 5 AM November 5, 2015 (18 Total Hmwk points) Show work. Electronic Submission – Please submit via "Assignment" under Sakai

Problem 9-1 (5 points Total) A wide sense stationary random process, whose autocorrelation function is $R_X(\tau) = 2\delta(\tau)$, is the input to a linear time invariant linear system whose magnitude frequency response is $|H(j\omega)| = 3$ for $-100 \le \omega \le 100$ and zero otherwise. ($\omega = 2\pi f$)

- (a) (3 points) What is the power spectral density function, $S_Y(j\omega)$ of the output random process?
- (b) (2 points) Sketch and completely label $S_Y(j\omega)$ versus ω . What is the name of this random process?

Problem 9-2 (5 points Total) Consider an LTI system having an impulse response function $h(t) = 3e^{-2t}U(t)$ where U(t) is the unit step function. Let the input to this system be a white random process, X(t), with power spectral density $S_X(j\omega) = 16$..

- (a) (1 point) Find the mean of the system output.
- (b) (2 points) Find the variance of the system output.
- (c) (2 points) If the input is now a white Gaussian random process with power spectral density $S_X(j\omega) = 16$., write down the probability density function for the output Y(t).

Problem 9-3 (8 points Total). A LTI system is described by the impulse response $h(t) = e^{-at}U(t)$. The input is a white random process with autocorrelation function $R_X(\tau) = \frac{N_o}{2}\delta(\tau)$.

- (a) (2 points) Determine the autocorrelation function of the output random process $R_Y(\tau)$.
- (b) (2 points) What is the power spectral density function of the input?
- (c) (2 points) What is the power spectral density function of the output?
- (d) (2 points) Find the total average power of the output?

Reference: Problems 9-2, and 9-3 are from Therrien and Tummala (2012) chapter 10, problems 10.10, 10.11 (on closed reserve in Bostock)