Report No: CCISE181205405

FCC REPORT

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE Smart phone

Model No.: N6201L, G4

Trade mark: NUU

FCC ID: 2ADINN6201L

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 14 Dec., 2018

Date of Test: 14 Dec., to 22 Dec., 2018

Date of report issued: 25 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Dec., 2018	Original

Tested by: Quen (hen Date: 25 Dec., 2018

Test Engineer

Reviewed by: Date: 25 Dec., 2018

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	8
	5.5	MEASUREMENT UNCERTAINTY	8
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	8
	5.7	LABORATORY FACILITY	8
	5.8	LABORATORY LOCATION	8
	5.9	TEST INSTRUMENTS LIST	9
6	TES	ST RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.	.1 Restricted Band	48
	6.7.	.2 Unwanted Emissions out of the Restricted Bands	57
	6.8	FREQUENCY STABILITY	
7	TES	ST SETUP PHOTO	71
R	FU	T CONSTRUCTIONAL DETAILS	72

Test Summary

Test Item	Section in CFR 47	Test Result			
Antenna requirement	15.203 & 15.407 (a)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass			
26dB Occupied Bandwidth	15.407 (a) (5)	Pass			
6dB Emission Bandwidth	15.407(e)	Pass			
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass			
Band Edge	15.407(b)	Pass			
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass			
Frequency Stability	15.407(g)	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Manufacturer	Sun Cupid Technology (HK) Ltd.	
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.	
Factory:	SUNCUPID (ShenZhen) Electronic Ltd	
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.	

5.2 General Description of E.U.T.

Product Name:	LTE Smart phone
Model No.:	N6201L, G4
Operation Frequency:	Band 1: 5150MHz-5250MHz, Band 4: 5725MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac: 1 Band 4: 802.11a/802.11n20: 5, 802.11n40: 2, 802.11ac: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac: 80MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11ac):	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi
Power supply:	Rechargeable Li-ion Battery DC 3.85V, 3750mAh
AC adapter:	Model: HJ-FC001K7-US Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2000mA / DC 9.0V, 2000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	N6201L, G4 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas , They all have two memory configurations, 1:6G(RAM) + 64G(ROM); 2: 6G(RAM) + 128G(ROM).

Operation Frequency each of channel							
	Band 1						
802.11a/8	02.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
		Ba	and 4				
802.11a/8	02.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/8	802.11a/802.11n20		802.11n40		1ac
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				
		Band	4		
802.11a/8	302.11n20	802.11n40		802.11ac	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz
Middle channel	5785MHz	Highest channel	5795MHz		
Highest channel	5825MHz				

5.3 Test environment and test mode

5.3 Test environment and test mode				
Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100	% duty cycle transmitting with modulation.		
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
Per-scan all kind of data rate, and	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		6.5 Mbps		
802.11n40		13.5 Mbps		
802.11ac		29.3 Mbps		

Report No: CCISE181205405

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Ve	ersion: 6.110919k)
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-10-2018	11-09-2019
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-07-2018	03-06-2019
Signal Generator	R&S	SMR20	1008100050	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2018	10-30-2019
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2018	09-23-2019
Simulated Station	Rohde & Schwarz	CMW500	140493	07-16-2018	07-15-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b)

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15	5 207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH			
Limit:	Frequency range (MHz)	Limit (c	dBuV)	
	0.15-0.5	Quasi-peak 66 to 56*	0.15-0.5	
	0.15-0.5	56	0.13-0.3	
	5-30	60	5-30	
	* Decreases with the loga		7 77	
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data:

Product name:	LTE Smart phone	Product model:	N6201L
Test by:	Carey	Test mode:	5G Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

D	4-
Kemat	No.

.comun.	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu∀	dBu₹	<u>dB</u>	
1	0.150	40.07	0.18	10.78	51.03	66.00	-14.97	QP
2	0.150	29.29	0.18	10.78	40.25	56.00	-15.75	Average
3	0.162	37.52	0.17	10.77	48.46	65.34	-16.88	QP
4	0.219	21.00	0.15	10.76	31.91	52.88	-20.97	Average
1 2 3 4 5 6 7 8 9	0.226	33.04	0.14	10.75	43.93	62.61	-18.68	QP
6	0.573	29.99	0.12	10.76	40.87	56.00	-15.13	QP
7	0.582	20.90	0.12	10.76	31.78	46.00	-14.22	Average
8	0.621	22.13	0.13	10.77	33.03	46.00	-12.97	Average
9	2.435	27.05	0.15	10.94	38.14		-17.86	
10	2.736	16.92	0.16	10.93	28.01	46.00	-17.99	Average
11	11.438	31.69	0.32	10.93	42.94		-17.06	
12	12.784	20.58	0.32	10.92	31.82	50.00	-18.18	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	LTE Smart phone	Product model:	N6201L	
Test by:	Carey	Test mode:	5G Wi-Fi Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	₫B	₫B	dBu₹	dBu∀	<u>dB</u>	
0.158	40.62	0.98	10.77	52.37	65.56	-13.19	QP
0.158	28.50	0.98	10.77	40.25	55.56	-15.31	Average
0.226	33.85	0.94	10.75	45.54			
0.226	22.85	0.94	10.75	34.54	52.61	-18.07	Average
0.535	33.65	0.97	10.76	45.38			
0.535	23.47	0.97	10.76	35.20	46.00	-10.80	Average
0.579	33.15	0.97	10.76	44.88	56.00	-11.12	QP
1.628	29.83	0.98	10.93	41.74	56.00	-14.26	QP
1.662	19.13	0.98	10.94	31.05	46.00	-14.95	Average
2.664	20.68	0.99	10.93	32.60	46.00	-13.40	Average
10.847	33.21	1.00	10.93	45.14	60.00	-14.86	QP
11.139	21.31	0.99	10.93	33.23	50.00	-16.77	Average
	MHz 0. 158 0. 158 0. 226 0. 226 0. 535 0. 535 0. 579 1. 628 1. 662 2. 664 10. 847	Freq Level MHz dBuV 0.158 40.62 0.158 28.50 0.226 33.85 0.226 22.85 0.535 33.65 0.535 23.47 0.579 33.15 1.628 29.83 1.662 19.13 2.664 20.68 10.847 33.21	Freq Level Factor MHz dBuV dB 0.158 40.62 0.98 0.158 28.50 0.98 0.226 33.85 0.94 0.226 22.85 0.94 0.535 33.65 0.97 0.535 23.47 0.97 0.579 33.15 0.97 1.628 29.83 0.98 1.662 19.13 0.98 2.664 20.68 0.99 10.847 33.21 1.00	MHz dBuV dB dB 0.158 40.62 0.98 10.77 0.158 28.50 0.98 10.77 0.226 33.85 0.94 10.75 0.226 22.85 0.94 10.75 0.535 33.65 0.97 10.76 0.579 33.15 0.97 10.76 1.628 29.83 0.98 10.93 1.662 19.13 0.98 10.94 2.664 20.68 0.99 10.93 10.847 33.21 1.00 10.93	MHz dBuV dB dB dBuV 0.158 40.62 0.98 10.77 52.37 0.158 28.50 0.98 10.77 40.25 0.226 33.85 0.94 10.75 45.54 0.226 22.85 0.94 10.75 34.54 0.535 33.65 0.97 10.76 45.38 0.535 23.47 0.97 10.76 45.38 0.579 33.15 0.97 10.76 44.88 1.628 29.83 0.98 10.93 41.74 1.662 19.13 0.98 10.94 31.05 2.664 20.68 0.99 10.93 32.60 10.847 33.21 1.00 10.93 45.14	MHz dBuV dB dB dBuV dBuV 0.158 40.62 0.98 10.77 52.37 65.56 0.158 28.50 0.98 10.77 40.25 55.56 0.226 33.85 0.94 10.75 45.54 62.61 0.226 22.85 0.94 10.75 34.54 52.61 0.535 33.65 0.97 10.76 45.38 56.00 0.535 23.47 0.97 10.76 44.88 56.00 0.579 33.15 0.97 10.76 44.88 56.00 1.628 29.83 0.98 10.93 41.74 56.00 1.662 19.13 0.98 10.94 31.05 46.00 2.664 20.68 0.99 10.93 32.60 46.00 10.847 33.21 1.00 10.93 45.14 60.00	MHz dBuV dB dB dBuV dBuV dB 0.158 40.62 0.98 10.77 52.37 65.56 -13.19 0.158 28.50 0.98 10.77 40.25 55.56 -15.31 0.226 33.85 0.94 10.75 45.54 62.61 -17.07 0.226 22.85 0.94 10.75 34.54 52.61 -18.07 0.535 33.65 0.97 10.76 45.38 56.00 -10.62 0.535 23.47 0.97 10.76 45.38 56.00 -10.80 0.579 33.15 0.97 10.76 44.88 56.00 -11.12 1.628 29.83 0.98 10.93 41.74 56.00 -14.26 1.662 19.13 0.98 10.93 31.05 46.00 -14.95 2.664 20.68 0.99 10.93 32.60 46.00 -13.40 10.847 33.21 1.00

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1: 24dBm Band 4: 30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

	Band 1						
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	-1.61					
802.11a	Middle	-1.76	24.00	Pass			
	Highest	-1.96					
	Lowest	-1.88					
802.11n20	Middle	-1.98	24.00	Pass			
	Highest	-2.27					
000 44 = 40	Lowest	-2.44	24.00	Door			
802.11n40	Highest	-2.73	24.00	Pass			
802.11ac80	Lowest	-1.61	24.00	Pass			

Band 4						
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result		
	Lowest	-2.07				
802.11a	Middle	-2.01	30.00	Pass		
	Highest	-2.05				
	Lowest	-2.26				
802.11n20	Middle	-2.17	30.00	Pass		
	Highest	-2.06		<u> </u>		
000 11540	Lowest	-3.19	20.00	Door		
802.11n40	Highest	-3.41	30.00	Pass		
802.11ac80	Lowest	-2.58	30.00	Pass		

Test plot as follows:

Band 1:

Band 4:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)		
Test Method:	ANSI C63.10:2013 and KDB 789033		
Limit:	Band 1/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band 1:

		26dB Emission B				
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT80)	Limit	Result
Lowest	20.40	20.40	40.64			
Middle	20.48	20.40		81.28	N/A	PASS
Highest	19.52	20.00	39.52			
		99% Occupy Bandwidth (MHz)				
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.88	17.68	36.00			
Middle	16.88	17.68		76.16	N/A	PASS
Highest	16.88	17.68	36.00			

Band 4:

		26dB Emission B	andwidth (MHz)			
Test Channel	802.11a	802.11n (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	19.20	19.52	38.40			
Middle	19.36	19.52		79.36	N/A	PASS
Highest	19.20	19.52	38.24			
		99% Occupy Ba	ndwidth (MHz)			
Test Channel	802.11a	802.11n (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	16.32	17.52	35.84			
Middle	16.32	17.52		75.84	N/A	PASS
Highest	16.32	17.52	35.84			
		6dB Emission Ba	andwidth (MHz)			
Test Channel	802.11a	802.11n (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	15.28	15.28	35.36			
Middle	15.28	15.28		76.16	>500kHz	PASS
Highest	15.28	15.28	35.52			

Test plot as follows:

Band 1:

Band 4:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)		
Test Method:	ANSI C63.10:2013, KDB 789033		
Limit:	Band 1: 11 dBm/MHz		
	Band 4: 30 dBm/500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band 1					
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
802.11a	Lowest	-11.39	11.00	Pass	
	Middle	-11.35			
	Highest	-11.79			
802.11n(HT20)	Lowest	-11.60	11.00	Pass	
	Middle	-11.72			
	Highest	-12.22			
802.11n(HT40)	Lowest	-15.11	11.00	Pass	
	Highest	-15.65			
802.11ac(HT80)	Middle	-17.48	11.00	Pass	

Band 4					
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
802.11a	Lowest	-9.68	30.00	Pass	
	Middle	-10.19			
	Highest	-9.73			
802.11n20	Lowest	-10.52	30.00	Pass	
	Middle	-10.59			
	Highest	-10.96			
802.11n40	Lowest	-14.85	30.00	Pass	
	Highest	-13.80			
802.11ac80	Middle	-17.44	30.00	Pass	

Test plot as follows:

6.6 Band Edge

Toot Dogwirement	FOC Don't 45 F C	tion 15 107 (L)		
Test Requirement:	FCC Part 15 E Sec	` ,		
Test Method:	ANSI C63.10:2013	-	T	
Receiver setup:	Detector	RBW	VBW	Remark
	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	RMS	1MHz	3MHz	Average Value
Limit:	Band		ıV/m @3m)	Remark
	Band 1		3.20	Peak Value
			1.00	Average Value
	Band 4		3.20	Peak Value
	Band 4 limit:	54	1.00	Average Value
	more above or belo 25 MHz above or belo the band edge increasing line Remark: 1. Band 1 limit: E[dBµV/m] = EIF 2. Band 4 limit: E[dBµV/m] = EIF E[dBµV/m] = EIF E[dBµV/m] = EIF	ow the band edge relow the band ed reasing linearly to band edge, and early to a level of RP[dBm] + 95.2=68 RP[dBm] + 95.2=68	e increasinglinea lge, and from 25 o a level of 15.6 from 5 MHz abo 27 dBm/MHz at .2 dBuV/m, for EIP 5.2 dBuV/m, for EIP 0.8 dBuV/m, for EI	PR[dBm]=-27dBm. PR[dBm]=-27dBm. PR[dBm]=10dBm. PR[dBm]=15.6dBm.
Test Procedure:	1. The EUT was the ground at a to determine the ground at a to determine the ground tower. 2. The EUT was antenna, which tower. 3. The antenna has the ground to Both horizonta make the mea. 4. For each suspicase and then meters and the tofind the max. 5. The test-received Specified Band. 6. If the emission the limit specified the EUT wo have 10dB max.	placed on the top a 3 meter camber he position of the set 3 meters awant was mounted of the determine the mail and vertical polar surement. The antenna was the antenna was the rotatable was the cimum reading. The system was so dwidth with Maximal level of the EUT ied, then testing ould be reported. Our gin would be re-	of a rotating tab r. The table was highest radiation y from the interfe n the top of a var om one meter to eximum value of the arizations of the a tuned to heights urned from 0 deg et to Peak Detect num Hold Mode. in peak mode w could be stopped Otherwise the em tested one by on	ole 0.8 meters above rotated 360 degrees in the control of the con

Measurement Data (worst case):

Band 1:

			Ва	nd 1 – 802.11a	a			
			Test cha	nnel: Lowest c	hannel			
			Dete	ctor: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	48.53	36.23	7.05	41.93	49.88	68.20	-18.32	Horizontal
5150.00	47.22	36.23	7.05	41.93	48.57	68.20	-19.63	Vertical
			Detec	tor: Average V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	37.83	36.23	7.05	41.93	39.18	54.00	-14.82	Horizontal
5150.00	36.37	36.23	7.05	41.93	37.72	54.00	-16.28	Vertical
			Test char	nnel: Highest o	hannel			
			Dete	ctor: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5250.00	47.32	35.37	7.11	41.89	47.91	68.20	-20.29	Horizontal
5250.00	48.42	35.37	7.11	41.89	49.01	68.20	-19.19	Vertical
			Detec	tor: Average V	alue			

Preamp

Factor (dB)

41.89

41.89

Limit Line

(dBuV/m)

54.00

54.00

Level

(dBuV/m)

37.28

37.92

Over Limit

(dB)

-16.72

-16.08

Polarization

Horizontal

Vertical

5250.00 Remark:

Frequency

(MHz)

5250.00

Read Level

(dBuV/m)

36.69

37.33

Cable

Loss (dB)

7.11

7.11

Antenna

Factor (dB)

35.37

35.37

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(F	IT20)				
			Test cha	annel: Lowest	channel				
			[Detector: Peak					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	48.92	36.23	7.05	41.93	50.27	68.20	-17.93	Horizontal	
5150.00	48.15	36.23	7.05	41.93	49.50	68.20	-18.70	Vertical	
	Detector: Average								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	37.31	36.23	7.05	41.93	38.66	54.00	-15.34	Horizontal	
5150.00	37.25	36.23	7.05	41.93	38.60	54.00	-15.40	Vertical	
				nnel: Highest					
	1		Det	ector: Peak Va	lue			T	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5250.00	47.42	35.37	7.11	41.89	48.01	68.20	-20.19	Horizontal	
5250.00	47.61	35.37	7.11	41.89	48.20	68.20	-20.00	Vertical	
			Detec	ctor: Average \	/alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5250.00	37.16	35.37	7.11	41.89	37.75	54.00	-16.25	Horizontal	
5250.00	37.34	35.37	7.11	41.89	37.93	54.00	-16.07	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)									
			Test cha	nnel: Lowest o	hannel					
			Dete	ector: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	47.15	7.05	41.93	41.93	54.20	68.20	-14.00	Horizontal		
5150.00	47.24	7.05	41.93	41.93	54.29	68.20	-13.91	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	36.68	7.05	41.93	41.93	43.73	54.00	-10.27	Horizontal		
5150.00	36.84	7.05	41.93	41.93	43.89	54.00	-10.11	Vertical		
			Test cha	nnel: Highest o	hannel					
			Dete	ector: Peak Val	ue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5250.00	47.05	35.37	35.37	7.11	41.89	68.20	-26.31	Horizontal		
5250.00	47.66	35.37	35.37	7.11	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5250.00	36.93	35.37	7.11	41.89	37.52	54.00	-16.48	Horizontal		
5250.00	36.48	35.37	7.11	41.89	37.07	54.00	-16.93	Vertical		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 - 802.11ac(HT80)				
			Test cha	annel: Lowest	channel				
			Det	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	47.82	36.23	7.05	41.93	49.17	68.20	-19.03	Horizontal	
5150.00	47.23	36.23	7.05	41.93	48.58	68.20	-19.62	Vertical	
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.57	36.23	7.05	41.93	37.92	54.00	-16.08	Horizontal	
5150.00	36.15	36.23	7.05	41.93	37.50	54.00	-16.50	Vertical	
			Test cha	annel: Highest	channel				
			Det	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5250.00	48.09	35.37	7.11	41.89	48.68	68.20	-19.52	Horizontal	
5250.00	47.75	35.37	7.11	41.89	48.34	68.20	-19.86	Vertical	
			Detec	ctor: Average \	/alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5250.00	37.41	35.37	7.11	41.89	38.00	54.00	-16.00	Horizontal	
5250.00	36.93	35.37	7.11	41.89	37.52	54.00	-16.48	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	Band 4 - 802.11a										
	Test channel: Lowest channel										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5650.00	52.41	32.68	7.45	41.85	50.69	68.20	-17.51	Horizontal			
5700.00	53.66	32.77	7.60	41.90	52.13	105.20	-53.07	Horizontal			
5720.00	71.41	32.81	7.64	41.92	69.94	110.80	-40.86	Horizontal			
5725.00	74.31	32.81	7.69	41.94	72.87	122.20	-49.33	Horizontal			
5650.00	53.41	32.68	7.45	41.85	51.69	68.20	-16.51	Vertical			
5700.00	54.50	32.77	7.60	41.90	52.97	105.20	-52.23	Vertical			
5720.00	75.15	32.81	7.64	41.92	73.68	110.80	-37.12	Vertical			
5725.00	79.84	32.81	7.69	41.94	78.40	122.20	-43.80	Vertical			

	Test channel: Highest channel										
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization			
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Folanzation			
5850.00	61.39	33.04	7.45	41.85	60.03	122.20	-62.17	Horizontal			
5855.00	59.18	33.05	7.60	41.90	57.93	110.80	-52.87	Horizontal			
5875.00	56.48	33.08	7.64	41.92	55.28	105.20	-49.92	Horizontal			
5925.00	53.14	33.17	7.69	41.94	52.06	68.20	-16.14	Horizontal			
5850.00	63.14	33.04	7.45	41.85	61.78	122.20	-60.42	Vertical			
5855.00	60.86	33.05	7.60	41.90	59.61	110.80	-51.19	Vertical			
5875.00	57.15	33.08	7.64	41.92	55.95	105.20	-49.25	Vertical			
5925.00	52.82	33.17	7.69	41.94	51.74	68.20	-16.46	Vertical			

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT20)										
	Test channel: Lowest channel										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n			
5650.00	52.30	32.68	7.45	41.85	50.58	68.20	-17.62	Horizontal			
5700.00	53.94	32.77	7.60	41.90	52.41	105.20	-52.79	Horizontal			
5720.00	71.48	32.81	7.64	41.92	70.01	110.80	-40.79	Horizontal			
5725.00	74.75	32.81	7.69	41.94	73.31	122.20	-48.89	Horizontal			
5650.00	53.72	32.68	7.45	41.85	52.00	68.20	-16.20	Vertical			
5700.00	54.92	32.77	7.60	41.90	53.39	105.20	-51.81	Vertical			
5720.00	75.28	32.81	7.64	41.92	73.81	110.80	-36.99	Vertical			
5725.00	79.25	32.81	7.69	41.94	77.81	122.20	-44.39	Vertical			

	Test channel: Highest channel										
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarizatio			
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	n			
5850.00	61.26	33.04	7.45	41.85	59.90	122.20	-62.30	Horizontal			
5855.00	59.24	33.05	7.60	41.90	57.99	110.80	-52.81	Horizontal			
5875.00	56.42	33.08	7.64	41.92	55.22	105.20	-49.98	Horizontal			
5925.00	53.78	33.17	7.69	41.94	52.70	68.20	-15.50	Horizontal			
5850.00	63.28	33.04	7.45	41.85	61.92	122.20	-60.28	Vertical			
5855.00	60.37	33.05	7.60	41.90	59.12	110.80	-51.68	Vertical			
5875.00	57.72	33.08	7.64	41.92	56.52	105.20	-48.68	Vertical			
5925.00	52.46	33.17	7.69	41.94	51.38	68.20	-16.82	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(H	T40)			
			Test cha	nnel: Lowest c	hannel			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5650.00	52.83	32.68	7.45	41.85	51.11	68.20	-17.09	Horizontal
5700.00	53.28	32.77	7.60	41.90	51.75	105.20	-53.45	Horizontal
5720.00	71.72	32.81	7.64	41.92	70.25	110.80	-40.55	Horizontal
5725.00	74.01	32.81	7.69	41.94	72.57	122.20	-49.63	Horizontal
5650.00	53.75	32.68	7.45	41.85	52.03	68.20	-16.17	Vertical
5700.00	54.11	32.77	7.60	41.90	52.58	105.20	-52.62	Vertical
5720.00	75.45	32.81	7.64	41.92	73.98	110.80	-36.82	Vertical
5725.00	79.98	32.81	7.69	41.94	78.54	122.20	-43.66	Vertical

	Test channel: Highest channel										
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization			
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polatization			
5850.00	61.08	33.04	7.45	41.85	59.72	122.20	-62.48	Horizontal			
5855.00	59.26	33.05	7.60	41.90	58.01	110.80	-52.79	Horizontal			
5875.00	56.37	33.08	7.64	41.92	55.17	105.20	-50.03	Horizontal			
5925.00	53.92	33.17	7.69	41.94	52.84	68.20	-15.36	Horizontal			
5850.00	63.86	33.04	7.45	41.85	62.50	122.20	-59.70	Vertical			
5855.00	60.17	33.05	7.60	41.90	58.92	110.80	-51.88	Vertical			
5875.00	57.16	33.08	7.64	41.92	55.96	105.20	-49.24	Vertical			
5925.00	52.91	33.17	7.69	41.94	51.83	68.20	-16.37	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band -	4 – 802.11ac(ŀ	HT80)						
	Test channel: Middle channel										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5650.00	52.97	32.68	7.45	41.85	51.25	68.20	-16.95	Horizontal			
5700.00	53.28	32.77	7.60	41.90	51.75	105.20	-53.45	Horizontal			
5720.00	71.16	32.81	7.64	41.92	69.69	110.80	-41.11	Horizontal			
5725.00	74.48	32.81	7.69	41.94	73.04	122.20	-49.16	Horizontal			
5650.00	53.37	32.68	7.45	41.85	51.65	68.20	-16.55	Vertical			
5700.00	54.28	32.77	7.60	41.90	52.75	105.20	-52.45	Vertical			
5720.00	75.34	32.81	7.64	41.92	73.87	110.80	-36.93	Vertical			
5725.00	79.03	32.81	7.69	41.94	77.59	122.20	-44.61	Vertical			

	Test channel: Middle channel								
Frequency	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization	
(MHz)	(dBuV/m)	Factor (dB)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polatization	
5850.00	61.43	33.04	7.45	41.85	60.07	122.20	-62.13	Horizontal	
5855.00	59.97	33.05	7.60	41.90	58.72	110.80	-52.08	Horizontal	
5875.00	56.88	33.08	7.64	41.92	55.68	105.20	-49.52	Horizontal	
5925.00	53.34	33.17	7.69	41.94	52.26	68.20	-15.94	Horizontal	
5850.00	63.92	33.04	7.45	41.85	62.56	122.20	-59.64	Vertical	
5855.00	60.28	33.05	7.60	41.90	59.03	110.80	-51.77	Vertical	
5875.00	57.62	33.08	7.64	41.92	56.42	105.20	-48.78	Vertical	
5925.00	52.48	33.17	7.69	41.94	51.40	68.20	-16.80	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	7.1 Restricted Band								
	Test Requirement:	FCC Part15 E Section 15.407(b)							
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	4.5 GHz to 5.15	GHz and	d 5.35	GHz to 5.46G	Hz			
	Test site:	Measurement Di	stance:	3m					
	Receiver setup:	Frequency	Dete		RBW	VB		Remark	
		Above 1GHz	Pea		1MHz	3M		Peak Value	
	Limit:	Frequency	RM ,		1MHz t (dBuV/m @:	3M	HZ	Average Value Remark	
	LIIIIIL.			L11111	74.00	5111)		Peak Value	
		Above 1GHz 54.00 Average Value							
	Test Procedure:	the ground at to determine 2. The EUT was antenna, what tower. 3. The antennathe ground and Both horizon make the m. 4. For each such case and the meters and to find the m. 5. The test-reconspecified Base and the limit specified Base and the lim	at a 3 m e the pos as set 3 nich was a height to deterr ntal and easuren espected en the a the rota naximum seiver sy andwidth ion level ecified, the would be margin v	eter casition of the erepoyould	amber. The tape of the highest is away from the top of the don the top of the done of the	able was radiation to factor of a value of a	as rotation. erferent/ariable to four of the fee ante ect Fulle. was feed ante emiss one u	r meters above field strength. enna are set to ed to its worst en 1 meter to 4 es to 360 degrees	
		Horn Antenna Tower Ground Reference Plane Test Receiver Controller							
	Test Instruments:	Refer to section	5.9 for c	letails					
	Test mode:	Refer to section 5.3 for details							
	Test results:	Passed	-						
	· · · · · · · · · · · · · · · · · · ·					· ·			

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a								
			Test cha	nnel: Lowest o	hannel				
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	46.72	34.50	6.80	42.05	45.97	74.00	-28.03	Horizontal	
4500.00	48.17	34.50	6.80	42.05	47.42	74.00	-26.58	Vertical	
			Detec	tor: Average V	'alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	35.32	34.50	6.80	42.05	34.57	54.00	-19.43	Horizontal	
4500.00	37.95	34.50	6.80	42.05	37.20	54.00	-16.80	Vertical	
			Test cha	nnel: Highest	channel				
			Dete	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.83	34.90	7.18	41.85	48.06	74.00	-25.94	Horizontal	
5460.00	48.47	34.90	7.18	41.85	48.70	74.00	-25.30	Vertical	
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	

41.85

41.85

36.76

38.15

54.00

54.00

-17.24

-15.85

Horizontal

Vertical

5460.00 Remark:

5460.00

36.53

37.92

34.90

34.90

7.18

7.18

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(H	T20)				
	Test channel: Lowest channel								
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	47.92	34.50	6.80	42.05	47.17	74.00	-26.83	Horizontal	
4500.00	48.11	34.50	6.80	42.05	47.36	74.00	-26.64	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.41	34.50	6.80	42.05	35.66	54.00	-18.34	Horizontal	
4500.00	37.82	34.50	6.80	42.05	37.07	54.00	-16.93	Vertical	
			Test cha	nnel: Highest o	channel				
	1		Dete	ctor: Peak Val	ue	I			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.97	34.90	7.18	41.85	48.20	74.00	-25.80	Horizontal	
5460.00	47.55	34.90	7.18	41.85	47.78	74.00	-26.22	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	36.82	34.90	7.18	41.85	37.05	54.00	-16.95	Horizontal	
5460.00	36.59	34.90	7.18	41.85	36.82	54.00	-17.18	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT40)								
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	47.36	34.50	6.80	42.05	46.61	74.00	-27.39	Horizontal	
4500.00	47.54	34.50	6.80	42.05	46.79	74.00	-27.21	Vertical	
			Detec	tor: Average V	'alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.45	34.50	6.80	42.05	35.70	54.00	-18.30	Horizontal	
4500.00	36.33	34.50	6.80	42.05	35.58	54.00	-18.42	Vertical	
			To at also	an al. I limbant	ale a se se al				
				nnel: Highest					
	1	1		ector: Peak Va		I			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.54	34.90	7.18	41.85	47.77	74.00	-26.23	Horizontal	
5460.00	47.85	34.90	7.18	41.85	48.08	74.00	-25.92	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	36.98	34.90	7.18	41.85	37.21	54.00	-16.79	Horizontal	
5460.00	36.42	34.90	7.18	41.85	36.65	54.00	-17.35	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11ac(H	IT80)				
	Test channel: Lowest channel								
			Dete	ctor: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	47.79	34.50	6.80	42.05	47.04	74.00	-26.96	Horizontal	
4500.00	47.91	34.50	6.80	42.05	47.16	74.00	-26.84	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.72	34.50	6.80	42.05	35.97	54.00	-18.03	Horizontal	
4500.00	36.62	34.50	6.80	42.05	35.87	54.00	-18.13	Vertical	
			Test cha	nnel: Highest o	hannel				
			Dete	ctor: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.73	34.90	7.18	41.85	47.96	74.00	-26.04	Horizontal	
5460.00	47.54	34.90	7.18	41.85	47.77	74.00	-26.23	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	36.41	34.90	7.18	41.85	36.64	54.00	-17.36	Horizontal	
5460.00	36.47	34.90	7.18	41.85	36.70	54.00	-17.30	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	Band 4 – 802.11a								
	Test channel: Lowest channel								
			Dete	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.25	35.37	7.11	41.89	47.84	74.00	-26.16	Horizontal	
5350.00	47.97	35.37	7.11	41.89	48.56	74.00	-25.44	Vertical	
			Detec	tor: Average V	'alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.61	35.37	7.11	41.89	38.20	54.00	-15.80	Horizontal	
5350.00	37.97	35.37	7.11	41.89	38.56	54.00	-15.44	Vertical	
				nnel: Lowest o					
	I			ector: Peak Va					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.92	34.90	7.18	41.85	48.15	74.00	-25.85	Horizontal	
5460.00	47.52	34.90	7.18	41.85	47.75	74.00	-26.25	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.16	34.90	7.18	41.85	37.39	54.00	-16.61	Horizontal	
5460.00	37.88	34.90	7.18	41.85	38.11	54.00	-15.89	Vertical	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(H	T20)				
	Test channel: Lowest channel								
			Dete	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.08	35.37	7.11	41.89	47.67	74.00	-26.33	Horizontal	
5350.00	47.37	35.37	7.11	41.89	47.96	74.00	-26.04	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.14	35.37	7.11	41.89	37.73	54.00	-16.27	Horizontal	
5350.00	37.88	35.37	7.11	41.89	38.47	54.00	-15.53	Vertical	
			Test cha	nnel: Lowest o	hannel				
			Dete	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.83	34.90	7.18	41.85	48.06	74.00	-25.94	Horizontal	
5460.00	47.16	34.90	7.18	41.85	47.39	74.00	-26.61	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.43	34.90	7.18	41.85	37.66	54.00	-16.34	Horizontal	
5460.00	37.28	34.90	7.18	41.85	37.51	54.00	-16.49	Vertical	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT40)								
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	47.28	35.37	7.11	41.89	47.87	74.00	-26.13	Horizontal	
5350.00	47.33	35.37	7.11	41.89	47.92	74.00	-26.08	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	37.15	35.37	7.11	41.89	37.74	54.00	-16.26	Horizontal	
5350.00	37.45	35.37	7.11	41.89	38.04	54.00	-15.96	Vertical	
			Test cha	annel: Lowest o	hannel				
				ector: Peak Val					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	47.43	34.90	7.18	41.85	47.66	74.00	-26.34	Horizontal	
5460.00	47.12	34.90	7.18	41.85	47.35	74.00	-26.65	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	37.92	34.90	7.18	41.85	38.15	54.00	-15.85	Horizontal	
5460.00	37.16	34.90	7.18	41.85	37.39	54.00	-16.61	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)								
	Test channel: Middle channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
5350.00	47.01	35.37	7.11	41.89	47.60	74.00	-26.40	Horizontal	
5350.00	47.62	35.37	7.11	41.89	48.21	74.00	-25.79	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
5350.00	37.88	35.37	7.11	41.89	38.47	54.00	-15.53	Horizontal	
5350.00	37.97	35.37	7.11	41.89	38.56	54.00	-15.44	Vertical	
			Test cha	nnel: Middle cl	hannel				
			Dete	ector: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
5460.00	47.51	34.90	7.18	41.85	47.74	74.00	-26.26	Horizontal	
5460.00	47.25	34.90	7.18	41.85	47.48	74.00	-26.52	Vertical	
			Detec	tor: Average V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n	
5460.00	37.43	34.90	7.18	41.85	37.66	54.00	-16.34	Horizontal	
5460.00	37.48	34.90	7.18	41.85	37.71	54.00	-16.29	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	S out of the Re						
Test Method:	ANSI C63.10: 20						
Test Frequency Range:	30MHz to 40GHz						
Test site:	Measurement Di						
	1		DDW	١/٢	21/1/	Domark	
Receiver setup:	Frequency 30MHz-1GHz	Detector Quasi-peak	RBW 100kHz		3W)kHz	Remark Quasi-peak Value	
		Peak	1MHz		/KI 12 1Hz	Peak Value	
	Above 1GHz	RMS	1MHz		<u>''' </u>	Average Value	
Limit:	Frequency		imit (dBuV/m @:			Remark	
	30MHz-88MI	Hz	40.0		Q	uasi-peak Value	
	88MHz-216M		43.5			uasi-peak Value	
	216MHz-960N		46.0			luasi-peak Value	
	960MHz-1GI	Hz	54.0		Q	luasi-peak Value	
	Above 1GH	z —	68.20 54.00			Peak Value	
	Remark:		54.00			Average Value	
	Above 1GHz limit:						
	$E[dB\mu V/m] = EIRP[dBm] + 95.2=68.2 dBu V/m$, for $EIPR[dBm]=-27dBm$.						
Test Procedure:	1GHz)/1.5m table was re radiation. 2. The EUT wa antenna, wh tower. 3. The antenna ground to de horizontal a measureme 4. For each su and then the and the rota maximum re 5. The test-rec Specified Ba 6. If the emissi limit specifie EUT would 10dB margii	a (above 1GHz) tated 360 de as set 3 mete as set 3 mete as height is va etermine the and vertical point. spected emise antenna wa a table was tu eading. eeiver system andwidth with and level of the det, then testir be reported. On would be re	e) above the group reserved to determine the top reserved from one maximum value larizations of the sion, the EUT is tuned to height red from 0 decompositions are to Pea Maximum Holder EUT in peaking could be stop otherwise the elected one by	ound an ine the interior of a variate of the eante was arrights from the decimal of the ine and the ine ine ine ine ine ine ine ine ine in	t a 3 me position of position of four not field so four not field so four not field so four field so	eter camber. The ion of the highest e-receiving height antenna eters above the strength. Both e set to make the to its worst case eter to 4 meters degrees to find the ction and edB lower than the peak values of the t did not have ak, quasi-peak or	
Test setup:	average method as specified and then reported in a data sheet. Below 1GHz Antenna Tower Search Antenna RF T est Receiver Ground Plane						

Measurement Data (worst case):

Below 1GHz

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	5G Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

REMARK	•		Antenna		Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	45.058	46.43	13.70	1.29	29.86	31.56	40.00	-8.44	QP
2 3 4 5 6	76.244	49.34	8.46	1.63	29.67	29.76	40.00	-10.24	QP
3	82.071	51.06	8.51	1.72	29.62	31.67	40.00	-8.33	QP
4	153.739	52.40	8.79	2.54	29.19	34.54	43.50	-8.96	QP
5	207.123	45.23	11.78	2.86	28.78	31.09	43.50	-12.41	QP
6	480.528	39.63	16.97	3.46	28.92	31.14	46.00	-14.86	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	N6201L
Test By:	Carey	Test mode:	5G Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARK	:	D	۸	C-11-	D		T 2 - 2 4	A	
	Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	
-	MHz	dBu∜	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1	30.000	45.03	10.60	0.72	29.98	26.37	40.00	-13.63	QP
2	80.362	44.01	8.17	1.69	29.64	24.23	40.00	-15.77	QP
3	194.453	47.10	11.34	2.83	28.87	32.40	43.50	-11.10	QP
4	206.398	46.91	11.75	2.86	28.79	32.73	43.50	-10.77	QP
5	400.432	43.36	15.51	3.08	28.78	33.17	46.00	-12.83	QP
1 2 3 4 5 6	480.528	43.88	16.97	3.46	28.92	35.39	46.00	-10.61	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

			Ran	nd 1 – 802.11a				
				nel: Lowest ch				
				tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	48.19	40.10	9.82	41.97	56.14	68.20	-12.06	Vertical
10360.00	48.25	40.10	9.82	41.97	56.20	68.20	-12.00	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	37.73	40.10	9.82	41.97	45.68	54.00	-8.32	Vertical
10360.00	38.02	40.10	9.82	41.97	45.97	54.00	-8.03	Horizontal
			Test char	nel: Middle ch	annel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	47.48	40.00	9.85	41.95	55.38	68.20	-12.82	Vertical
10400.00	47.71	40.00	9.85	41.95	55.61	68.20	-12.59	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	37.85	40.00	9.85	41.95	45.75	54.00	-8.25	Vertical
10400.00	37.54	40.00	9.85	41.95	45.44	54.00	-8.56	Horizontal
			Test chan	nel: Highest cl	nannel			
			Detec	ctor: Peak Valu	ie		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	47.82	39.70	9.96	41.88	55.60	68.20	-12.60	Vertical
10480.00	48.68	39.70	9.96	41.88	56.46	68.20	-11.74	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	37.15	39.70	9.96	41.88	44.93	54.00	-9.07	Vertical
10480.00	37.75	39.70	9.96	41.88	45.53	54.00	-8.47	Horizontal
Remark:								

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				– 802.11n(HT				
				inel: Lowest ch				
			Detec	ctor: Peak Valu	e		T	
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	1 Glanzanori
10360.00	47.68	40.10	9.82	41.97	55.63	68.20	-12.57	Vertical
10360.00	47.83	40.10	9.82	41.97	55.78	68.20	-12.42	Horizontal
			Detecto	or: Average Va	lue			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Polarization
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	1 Glanzation
10360.00	37.93	40.10	9.82	41.97	45.88	54.00	-8.12	Vertical
10360.00	37.75	40.10	9.82	41.97	45.70	54.00	-8.30	Horizontal
			Test char	nnel: Middle ch	annel			
			Detec	ctor: Peak Valu	e			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	Delerization
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
10400.00	47.39	40.00	9.85	41.95	55.29	68.20	-12.91	Vertical
10400.00	48.10	40.00	9.85	41.95	56.00	68.20	-12.20	Horizontal
			Detecto	or: Average Va	lue			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	D 1 · · · ·
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
10400.00	37.41	40.00	9.85	41.95	45.31	54.00	-8.69	Vertical
10400.00	37.92	40.00	9.85	41.95	45.82	54.00	-8.18	Horizontal
	1	1	l.	•			l	1
			Test chan	nel: Highest ch	nannel			
			Detec	ctor: Peak Valu	e			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
10480.00	47.73	39.70	9.96	41.88	55.51	68.20	-12.69	Vertical
10480.00	47.92	39.70	9.96	41.88	55.70	68.20	-12.50	Horizontal
				or: Average Va	I.			
Frequenc	Read Level	Antenna	Cable	Preamp	Level	Limit Line	Over Limit	
y (MHz)	(dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	Polarization
10480.00	37.24	39.70	9.96	41.88	45.02	54.00	-8.98	Vertical
10480.00	37.36	39.70	9.96	41.88	45.14	54.00	-8.86	Horizontal
Remark:	07.00	00.70	0.00	11.00	10.17	0 1.00	0.00	1 TOTIZOTICAL
4		D 11 1 4 4	_ ,	0 1 1 1	5 ""			

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11n(HT	40)			
			Test chan	nel: Lowest ch	annel			
			Detec	tor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	47.74	40.00	9.85	41.95	55.64	68.20	-12.56	Vertical
10380.00	47.26	40.00	9.85	41.95	55.16	68.20	-13.04	Horizontal
			Detecto	r: Average Va	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	37.45	40.00	9.85	41.95	45.35	54.00	-8.65	Vertical
10380.00	37.41	40.00	9.85	41.95	45.31	54.00	-8.69	Horizontal
			Tastabassa	- al. I limb - at ala	annal			
				nel: Highest ch tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	47.91	39.80	9.92	41.90	55.73	68.20	-12.47	Vertical
10460.00	47.48	39.80	9.92	41.90	55.30	68.20	-12.90	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	37.66	39.80	9.92	41.90	45.48	54.00	-8.52	Vertical
10460.00	37.74	39.80	9.92	41.90	45.56	54.00	-8.44	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT80)							
			Test chan	inel: Lowest ch	annel			
			Detec	ctor: Peak Valu	ie			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	48.92	40.10	9.82	41.97	56.87	68.20	-11.33	Vertical
10420.00	48.73	40.10	9.82	41.97	56.68	68.20	-11.52	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	37.93	40.10	9.82	41.97	45.88	54.00	-8.12	Vertical
10420.00	37.51	40.10	9.82	41.97	45.46	54.00	-8.54	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4.

Band 4:								
			Ban	nd 4 – 802.11a	ı			
			Test chan	nel: Lowest ch	nannel			
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	47.45	41.50	10.81	42.29	57.47	74.00	-16.53	Vertical
11490.00	47.97	41.50	10.81	42.29	57.99	74.00	-16.01	Horizontal
			Detecto	or: Average Va	ılue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	36.41	41.50	10.81	42.29	46.43	54.00	-7.57	Vertical
11490.00	36.74	41.50	10.81	42.29	46.76	54.00	-7.24	Horizontal
			Test char	nnel: Middle ch	annel			
			Detec	ctor: Peak Valu	ie		T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	47.18	41.38	10.78	42.27	57.07	74.00	-16.93	Vertical
11570.00	47.82	41.38	10.78	42.27	57.71	74.00	-16.29	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	36.37	41.38	10.78	42.27	46.26	54.00	-7.74	Vertical
11570.00	36.47	41.38	10.78	42.27	46.36	54.00	-7.64	Horizontal
			Test chan	nel: Highest ch	nannel			
			Detec	ctor: Peak Valu	ie		I	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	48.39	41.26	10.76	42.26	58.15	74.00	-15.85	Vertical
11650.00	47.74	41.26	10.76	42.26	57.50	74.00	-16.50	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	37.54	41.26	10.76	42.26	47.30	54.00	-6.70	Vertical
11650.00 Remark:	36.82	41.26	10.76	42.26	46.58	54.00	-7.42	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	- 802.11n(HT	T20)			
			Test chan	nel: Lowest ch	nannel			
			Detec	tor: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	47.74	41.50	10.81	42.29	57.76	74.00	-16.24	Vertical
11490.00	47.25	41.50	10.81	42.29	57.27	74.00	-16.73	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11490.00	36.79	41.50	10.81	42.29	46.81	54.00	-7.19	Vertical
11490.00	36.16	41.50	10.81	42.29	46.18	54.00	-7.82	Horizontal
			Test chan	nnel: Middle ch	annel			
				tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	47.54	41.38	10.78	42.27	57.43	74.00	-16.57	Vertical
11570.00	47.92	41.38	10.78	42.27	57.81	74.00	-16.19	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11570.00	36.25	41.38	10.78	42.27	46.14	54.00	-7.86	Vertical
11570.00	36.48	41.38	10.78	42.27	46.37	54.00	-7.63	Horizontal
				nel: Highest ch				
_				tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	46.85	41.26	10.76	42.26	56.61	74.00	-17.39	Vertical
11650.00	47.10	41.26	10.76	42.26	56.86	74.00	-17.14	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11650.00	35.15	41.26	10.76	42.26	44.91	54.00	-9.09	Vertical
11650.00	36.42	41.26	10.76	42.26	46.18	54.00	-7.82	Horizontal
Remark:								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	– 802.11n(HT	Γ 40)			
			Test chan	nel: Lowest ch	nannel			
			Detec	tor: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11510.00	47.09	41.50	10.81	42.29	57.11	74.00	-16.89	Vertical
11510.00	47.91	41.50	10.81	42.29	57.93	74.00	-16.07	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11510.00	36.37	41.50	10.81	42.29	46.39	54.00	-7.61	Vertical
11510.00	36.53	41.50	10.81	42.29	46.55	54.00	-7.45	Horizontal
			Test chan	nel: Highest cl	nannel			
			Detec	tor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11590.00	47.09	41.32	10.77	42.27	56.91	74.00	-17.09	Vertical
11590.00	47.62	41.32	10.77	42.27	57.44	74.00	-16.56	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11590.00	36.24	41.32	10.77	42.27	46.06	54.00	-7.94	Vertical
11590.00	36.27	41.32	10.77	42.27	46.09	54.00	-7.91	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)							
			Test char	nel: Middle ch	annel			
			Detec	tor: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
11550.00	47.82	41.50	10.81	42.29	57.84	74.00	-16.16	Vertical
11550.00	47.52	41.50	10.81	42.29	57.54	74.00	-16.46	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	36.42	41.50	10.81	42.29	46.44	54.00	-7.56	Vertical
11550.00	36.97	41.50	10.81	42.29	46.99	54.00	-7.01	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

o.o Trequency stability						
Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply					
	Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. 					
	 4. When temperature is stabled, measure the frequency stability. 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		F(A411)	Mary Davidian (many)
Temp(℃)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)
20	3.50V	5179.997643	0.45
	3.85V	5179.974779	4.87
	4.40V	5179.963951	6.96

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Fraguerov/MU=)	May Deviation (npm)
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
3.85V	-20	5179.987033	2.50
	-10	5179.995377	0.89
	0	5179.968421	6.10
	10	5179.987556	2.40
	20	5179.996681	0.64
	30	5179.974290	4.96
	40	5179.963775	6.99
	50	5179.974929	4.84

Band 4: Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		F(8411-)	Many Deviation (comm)
Temp(°C)	Voltage(dc)	Frequency(MHz)	Max. Deviation (ppm)
20	3.50V	5744.974766	4.39
	3.85V	5744.993381	1.15
	4.40V	5744.998588	0.25

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Fue success of MILE.	May Povieties (nom)
Voltage(dc)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5744.994798	0.91
	-10	5744.993693	1.10
	0	5744.994771	0.91
2.05\/	10	5744.985355	2.55
3.85V	20	5744.993864	1.07
	30	5744.994481	0.96
	40	5744.999347	0.11
	50	5744.992458	1.31