Lecture 17 QR Algorithm and Unnormalized Simultaneous Iteration

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

• QR Algorithm and Unnormalized Simultaneous Iteration

Outline

• QR Algorithm and Unnormalized Simultaneous Iteration

QR Algorithm

Most basic version of QR algorithm is remarkably simple:

Algorithm: "Pure" QR Algorithm

$$\begin{aligned} \mathbf{A}^{(0)} &= \mathbf{A} \\ \text{for } k = 1, 2, \dots \\ \mathbf{Q}^{(k)} \mathbf{R}^{(k)} &= \mathbf{A}^{(k-1)} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \end{aligned}$$

- With some suitable assumptions, $\mathbf{A}^{(k)}$ converge to Schur form of \mathbf{A} (diagonal if \mathbf{A} is symmetric)
- Similarity transformation of **A**:

$$\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)} = \left(\mathbf{Q}^{(k)}\right)^T \mathbf{A}^{(k-1)} \mathbf{Q}^{(k)}$$

But why it works?

Unnormalized Simultaneous Iteration

- To understand QR algorithm, first consider simple algorithm
- Simultaneous iteration is power iteration applied to several vectors
- Start with linearly independent $\mathbf{v}_1^{(0)},\cdots,\mathbf{v}_n^{(0)}$
- We know from power iteration that $\mathbf{A}^k\mathbf{v}_1^{(0)}$ converges to \mathbf{q}_1
- With some assumptions, the space $\langle \mathbf{A}^k \mathbf{v}_1^{(0)}, \cdots, \mathbf{A}^k \mathbf{v}_n^{(0)} \rangle$ converge to $\langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$
- Notation: Define initial matrix $\mathbf{V}^{(0)}$ and matrix $\mathbf{V}^{(k)}$ at step k:

$$\mathbf{V}^{(0)} = [\mathbf{v}_1^{(0)}|\cdots|\mathbf{v}_n^{(0)}], \quad \mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)} = [\mathbf{v}_1^{(k)}|\cdots|\mathbf{v}_n^{(k)}],$$

Unnormalized Simultaneous Iteration

- Define orthogonal basis for column space of $\mathbf{V}^{(k)}$ by reduced QR factorization $\hat{\mathbf{Q}}^{(k)}\hat{\mathbf{R}}^{(k)} = \mathbf{V}^{(k)}$
- We assume that
 - ullet leading n+1 eigenvalues are distinct, and
 - all leading principal submatrices of $\hat{\mathbf{Q}}^T \mathbf{V}^{(0)}$ are nonsingular where $\hat{\mathbf{Q}} = [\mathbf{q}_1|\cdots|\mathbf{q}_n].$
- We then have columns of $\hat{\mathbf{Q}}^{(k)}$ converge to eigenvectors of \mathbf{A} :

$$\|\mathbf{q}_j^{(k)} - (\pm \mathbf{q}_j)\| = O(c^k),$$

where $c = \max_{1 \le k \le n} |\lambda_{k+1}|/|\lambda_k|$

• Proof idea: Show that subspace of any leading j columns of $\mathbf{V}^{(k)} = \mathbf{A}^k \mathbf{V}^{(0)}$ converges to subspace of first j eigenvectors of \mathbf{A} , so does the subspace of any leading j columns of $\hat{\mathbf{Q}}^{(k)}$.