Introduction to Optimization

Lecture 04: Strict and strong convexity. Iterative algorithms. Descent methods.

Characterizations of differentiable convex functions

Proposition

Let $f:D\subset\mathbb{R}^N\to\mathbb{R}$ be differentiable. The following are equivalent:

- f is convex;
- 2 for all $x, y \in D$, $f(y) \ge f(x) + \nabla f(x) \cdot (y x)$;

If f is twice differentiable, the three statements above are equivalent to

• for all $x \in D$, $\nabla^2 f(x)$ is positive semidefinite.

Juan PEYPOUQUET

Strict and strong convexity

A function $f: D \subset \mathbb{R}^N \to \mathbb{R}$ is strictly convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in D$ and all $\lambda \in (0, 1)$

Juan PEYPOUQUET Optimization 3/10

Strict and strong convexity

A function $f:D\subset\mathbb{R}^N\to\mathbb{R}$ is strictly convex if D is convex and

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

for all $x,y\in D$ and all $\lambda\in(0,1)$, and it is strongly convex if D is convex and

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) - \frac{\alpha}{2}\lambda(1-\lambda)||x-y||^2$$

for all $x, y \in D$ and all $\lambda \in (0, 1)$.

Juan PEYPOUQUET

Exercises

- Find examples of: a function that is convex, but not strictly convex; and a function that is strictly convex, but not strongly convex.
- **②** When is the function $f(x) = \frac{1}{2} ||Ax y||^2$ strictly/strongly convex?
- **②** Prove that every strictly convex function $f: \mathbb{R}^N \to \mathbb{R}$ has at most one minimizer, and every strongly convex function $f: \mathbb{R}^N \to \mathbb{R}$ has exactly one minimizer.
- **3** Can you obtain characterizations of strict and strong convexity of f in terms of properties of ∇f and $\nabla^2 f$?

◆ロ > ◆昼 > ◆ き > ◆き > き の Q @

Juan PEYPOUQUET Optimization 2022-2023 4

Example: Bisection method to solve g(x) = 0

After *k* iterations, the distance to a solution is $|x_k - \hat{x}| \le 2^{-k}$.

◆ロト ◆個ト ◆ 差ト ◆ 差ト を めらぐ

Juan PEYPOUQUET Optimization 2022-2023 5 / 10

An iterative algorithm is a procedure that computes a sequence (x_n) of points in \mathbb{R}^N that approximate a solution to a problem. It requires:

- An initial guess x_0 .
- A sequence (p_k) of parameters (typically $p_k \in \mathbb{R}^M$ for all $k \ge 0$).
- An operator $T : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ used to compute x_{k+1} , given x_k :

$$x_{k+1} = T(p_k, x_k).$$

 A stopping rule that is activated when the approximation is sufficiently good.

Juan PEYPOUQUET Optimization 2022-2023 6 / 10

An iterative algorithm is a procedure that computes a sequence (x_n) of points in \mathbb{R}^N that approximate a solution to a problem. It requires:

- An initial guess x_0 .
- A sequence (p_k) of parameters (typically $p_k \in \mathbb{R}^M$ for all $k \ge 0$).
- An operator $T : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ used to compute x_{k+1} , given x_k :

$$x_{k+1} = T(p_k, x_k).$$

 A stopping rule that is activated when the approximation is sufficiently good.

Important questions: convergence and complexity.

4日 > 4 回 > 4 亘 > 4 亘 > 1 亘 * り < ○</p>

Stopping rules in minimization problems

Ideally, the algorithm should stop when this is when

- x_k is close to a minimizer,
- $f(x_k)$ is close to the optimal value $\inf(f)$,
- $\|\nabla f(x_k)\|$ is small.

Stopping rules in minimization problems

Ideally, the algorithm should stop when this is when

- x_k is close to a minimizer,
- $f(x_k)$ is close to the optimal value $\inf(f)$,
- $\|\nabla f(x_k)\|$ is small.

X

Common implementable rules:

•
$$\|\nabla f(x_k)\| < \varepsilon$$

•
$$\|\nabla f(x_k)\| < \varepsilon$$
 • $\|f(x_{k+1}) - f(x_k)\| < \varepsilon$ • $\|x_{k+1} - x_k\| < \varepsilon$

$$\|x_{k+1} - x_k\| < \varepsilon$$

Stopping rules in minimization problems

Ideally, the algorithm should stop when this is when

- x_k is close to a minimizer,
- $f(x_k)$ is close to the optimal value $\inf(f)$,
- $\|\nabla f(x_k)\|$ is small.

Common implementable rules:

•
$$\|\nabla f(x_k)\| < \varepsilon$$

•
$$f(x_{k+1}) - f(x_k) < \varepsilon$$

$$\bullet \ \frac{\|\nabla f(x_k)\|}{\|\nabla f(x_0)\|} < \varepsilon$$

$$\bullet \ \frac{f(x_{k+1})-f(x_k)}{f(x_1)-f(x_0)} < \varepsilon$$

$$\bullet \|x_{k+1} - x_k\| < \varepsilon$$

$$\bullet \ \frac{\|x_{k+1} - x_k\|}{\|x_1 - x_0\|} < \varepsilon$$

4□ > 4□ > 4 = > 4 = > = 90

X

Break

Descent methods

Many algorithms are based on the idea of (sufficient) descent: given x_k , find x_{k+1} such that

$$(1) f(x_{k+1}) \leq f(x_k) - \delta_k^2.$$

9/10

Juan PEYPOUQUET Optimization 2022-2023

Descent methods

Many algorithms are based on the idea of (sufficient) descent: given x_k , find x_{k+1} such that

$$(1) f(x_{k+1}) \leq f(x_k) - \delta_k^2.$$

One way is to find $d_k \in \mathbb{R}^N$ and $\alpha_k > 0$, such that (1) holds with

$$x_{k+1} = x_k - \alpha_k d_k.$$

Juan PEYPOUQUET

Descent methods

Many algorithms are based on the idea of (sufficient) descent: given x_k , find x_{k+1} such that

$$(1) f(x_{k+1}) \leq f(x_k) - \delta_k^2.$$

One way is to find $d_k \in \mathbb{R}^N$ and $\alpha_k > 0$, such that (1) holds with

$$x_{k+1} = x_k - \alpha_k d_k.$$

We say $-d_k$ is a descent direction, and α_k is the step size, step length or learning rate (in ML).

4 D > 4 B > 4 E > 4 E > 9 Q C

Juan PEYPOUQUET Optimization 2022-2023 9 / 10

Motivation: 3 case studies

Let us analyze the behavior in the following cases:

1
$$f(x) = x^2$$

Motivation: 3 case studies

Let us analyze the behavior in the following cases:

1
$$f(x) = x^2$$

2
$$f(x) = 1/x$$
, $dom(f) = (0, \infty)$.

Juan PEYPOUQUET

Motivation: 3 case studies

Let us analyze the behavior in the following cases:

1
$$f(x) = x^2$$

2
$$f(x) = 1/x$$
, $dom(f) = (0, \infty)$.

3
$$f(x) = 1/x$$
, $dom(f) = (-\infty, 0)$.

Juan PEYPOUQUET

L-smoothness

If there is time

A differentiable function $f:A\subset\mathbb{R}^N\to\mathbb{R}$ is L-smooth, with L>0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

11/10

Juan PEYPOUQUET Optimization 2022-2023

L-smoothness

If there is time

A differentiable function $f: A \subset \mathbb{R}^N \to \mathbb{R}$ is L-smooth, with L > 0, if

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$$

for all $x, y \in A$.

Proposition (Descent Lemma)

If f is L-smooth and A is convex, then

$$|f(y) - f(x) - \nabla f(x) \cdot (y - x)| \le \frac{L}{2} ||x - y||^2$$

for all $x, y \in A$.