Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 6

Jendrik Stelzner

Letzte Änderung: 8. Januar 2018

Aufgabe 3

Es sei R ein euklidischer Ring, und es seien $a_1, \ldots, a_n \in R$ paarweise teilerfremd. Wir erklären im Folgenden, wie sich für $b_1, \ldots, b_n \in R$ das System simultaner Kongruenzen

$$\begin{cases} x \equiv b_1 & \pmod{a_1}, \\ x \equiv b_2 & \pmod{a_2}, \\ \vdots & \vdots \\ x \equiv b_{n-1} & \pmod{a_{n-1}}, \\ x \equiv b_n & \pmod{a_n} \end{cases}$$

mithilfe des euklidischen Algorithmus systematisch lösen lässt:

• Die erste Möglichkeit besteht darin, je zwei Kongruenzen durch eine äquivalente einzelne Kongruenz zu ersetzen. Wir betrachten hierfür die ersten beiden Kongruenzen:

$$\begin{cases} x \equiv b_1 \pmod{a_1}, \\ x \equiv b_2 \pmod{a_2}. \end{cases}$$
 (1)

Da a_1 und a_2 teilerfremd sind, lassen sich mithilfe des euklidischen Algorithmus Koeffizienten $c_1,c_2\in R$ mit $1=c_1a_1+c_2a_2$ bestimmen. Dann gilt

$$\left\{ \begin{array}{ll} c_2 a_2 & \equiv & 1 & \pmod{a_1}, \\ c_1 a_1 & \equiv & 1 & \pmod{a_2}, \end{array} \right.$$

und somit

$$\begin{cases} b_1c_2a_2 \equiv b_1 \pmod{a_1}, \\ b_2c_1a_1 \equiv b_2 \pmod{a_2}. \end{cases}$$

Also ist $b := b_1c_2a_2 + b_2c_1a_1$ eine Lösung von (1), und (1) nach dem chinesischen Restsatz somit äquivalent zu der einzelnen Kongruenz

$$x \equiv b \pmod{a_1 a_2}$$
.

Iterativ lässt sich nun das gesamte System von Kongrunzen durch eine einzelne Kongruenz ersetzen, welche dann leicht zu lösen ist.

Für alle $i=1,\ldots,n$ sind a_i und $a_1\cdots a_{i-1}a_{i+1}\cdots a_n$ teilerfremd, weshalb sich mit dem euklidischen Algorthimus Koeffizienten $c_1^{(i)}, c_2^{(i)} \in R$ bestimmen lassen, so dass

$$c_1^{(i)}a_i + c_2^{(i)}a_1 \cdots a_{i-1}a_{i+1} \cdots a_n = 1$$

gilt. Für den Summanden $k_i := c_2^{(i)} a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$ gilt dann

$$\begin{cases} k_i \equiv 0 \pmod{a_1}, \\ \vdots \\ k_i \equiv 0 \pmod{a_{i-1}}, \\ k_i \equiv 1 \pmod{a_i}, \\ k_i \equiv 0 \pmod{a_{i+1}}, \\ \vdots \\ k_i \equiv 0 \pmod{a_n}. \end{cases}$$

Die Linearkombination

$$b := b_1 k_1 + \cdots + b_n k_n$$

ist dann eine Lösung des Systems von Kongruenzen, und nach dem chinesischen Restsatz ist die gesamte Lösungsmenge somit von der Form

$$b+(a_1\cdots a_n)R$$
.

(c)

Es gilt das System

$$\begin{cases} x \equiv 4 \pmod{7}, \\ x \equiv 7 \pmod{12} \end{cases}$$

zu lösen. Da es nur zwei Kongruenzen gibt, entstehen bei beiden möglichen Vorgehensweisen die gleichen Rechnung: Es gilt

$$1 = c_1 \cdot 7 + c_2 \cdot 12$$

für die Koeffizienten $c_1 = -5$ und $c_2 = 3$. Eine Lösung ist also durch

$$b = 4 \cdot (3 \cdot 12) + 7 \cdot ((-5) \cdot 7) = 144 - 245 = -101$$

gegeben. Die Lösungsmenge ist deshalb

$$-101 + (7 \cdot 12)\mathbb{Z} = -101 + 84\mathbb{Z} = 67 + 84\mathbb{Z}.$$

(d)

Es gilt das System

$$\left\{ \begin{array}{lll} x & \equiv & 4 & \pmod{6} \,, \\ x & \equiv & 33 & \pmod{35} \,, \\ x & \equiv & 10 & \pmod{11} \end{array} \right.$$

zu lösen. Wir geben drei mögliche Vorgehensweisen an:

• Wir schreiben das System zunächst zu

$$\begin{cases} x \equiv -2 \pmod{6}, \\ x \equiv -2 \pmod{35}, \\ x \equiv -1 \pmod{11} \end{cases}$$

um. Für die ersten beiden Kongruenzen ist -2eine Lösung, weshalb wir das System durch

$$\begin{cases} x \equiv -2 \pmod{210}, \\ x \equiv -1 \pmod{11} \end{cases}$$

ersetzen können. Es gilt

$$1 = c_1 \cdot 210 + c_2 \cdot 11$$

mit $c_1 = 1$ und $c_2 = -19$. Eine Lösung ist also durch

$$b = -2 \cdot ((-19) \cdot 11) - 1 \cdot (1 \cdot 210) = 208$$

gegeben. Die gesamte Lösungsmenge ist somit

$$208 + (210 \cdot 11)\mathbb{Z} = 208 + 2310\mathbb{Z}$$
.

• Wir lösen zunächst das System der ersten beiden Kongruenzen,

$$\begin{cases} x \equiv 4 \pmod{6}, \\ x \equiv 33 \pmod{35}. \end{cases}$$
 (2)

Es gilt

$$1 = c_1 \cdot 6 + c_2 \cdot 35$$

mit $c_1=6$ und $c_2=-1$, weshalb eine Lösung d
r ersten beiden Kongruenzen durch

$$b' = 4 \cdot ((-1) \cdot 35) + 33 \cdot (6 \cdot 6) = 1048$$

gegeben ist. Das System (2) können wir also durch die einzelne Kongruenz

$$x \equiv 1048 \pmod{210}$$

ersetzen, bzw. durch die äquivalente Kongruenz

$$x \equiv 208 \pmod{210}$$
.

Wir erhalten somit das folgende System von Kongruenzen:

$$\begin{cases} x \equiv 208 \pmod{210}, \\ x \equiv 10 \pmod{11}. \end{cases}$$

Wie bereits oben gesehen, ist

$$1 = c_1 \cdot 210 + c_2 \cdot 11$$

für $c_1 = 1$ und $c_2 = -19$, und es ergibt sich nun die Lösung

$$b = 208 \cdot ((-19) \cdot 11) + 10 \cdot (1 \cdot 210) = -41372$$
.

Die gesamte Lösungsmenge ist somit

$$-41372 + (11 \cdot 210)\mathbb{Z} = -41372 + 2310\mathbb{Z} = 208 + 2310\mathbb{Z}.$$

• Es gelten

$$\begin{array}{rclcrcr}
1 & = & c_1 \cdot 6 & + & c_2 \cdot 35 \cdot 11 \\
1 & = & d_1 \cdot 35 & + & d_2 \cdot 6 \cdot 11 \\
1 & = & e_1 \cdot 11 & + & e_2 \cdot 6 \cdot 35
\end{array}$$

für die Koeffizienten

$$c_1 = -64, c_2 = 1,$$
 $d_1 = 17, d_2 = -9,$ $e_1 = -19, e_2 = 1.$

Eine konkrete Lösung ist deshalb

$$b = 4 \cdot c_2 \cdot 35 \cdot 11 + 33 \cdot d_2 \cdot 6 \cdot 11 + 10 \cdot e_2 \cdot 6 \cdot 35 = -15962$$
.

Die gesamte Lösungsmenge ist somit

$$-15962 + (6 \cdot 35 \cdot 11)\mathbb{Z} = -15962 + 2310\mathbb{Z} = 208 + 2310\mathbb{Z}.$$

Aufgabe 4

Für ein Elemente $x \in R$ bezeichnen wir im Folgenden eine Zerlegung $x = \varepsilon p_1 \cdots p_n$ in eine Einheit $\varepsilon \in R^{\times}$ und irreduzible Elemente $p_1, \ldots, p_n \in R$ als eine *Primfaktorzerlegung* von x. Man beachte, dass a priori nicht gefordert wird, dass die p_i prim sind.

(a)

Wir formulieren zunächst einige (intuitive) Aussagen über Primfaktorzerlegungen in faktoriellen Ringen:

Lemma 1. Es seien $x, y \in R$ mit $x, y \neq 0$, so dass x ein Teiler von y ist. Dann lässt sich jede Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ von x zu einer Primfaktorzerlegung $y = \varepsilon' p_1 \cdots p_n p_{n+1} \cdots p_m$ von y ergänzen.

Beweis. Es gibt $z\in R$ mit xz=y, und es gilt $z\neq 0$, da $y\neq 0$ gilt. Also besitzt z eine Primfaktorzerlegung $z=\delta p_{n+1}\cdots p_m$. Dann gilt

$$y = xz = \varepsilon \delta p_1 \cdots p_n p_{n+1} \cdots p_m \,,$$

und die Aussage ergibt sich mit $\varepsilon' := \varepsilon \delta$.

Für $x \in R$, $x \neq 0$ mit Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ bezeichnen wir mit $\nu(x) \coloneqq n$ die Anzahl der insgesamt vorkommenden Primfaktoren (inklusive Vielfachheit). Die Zahl $\nu(x)$ ist wohldefiniert, da die Primfaktorzerlegung von x bis auf Permutation und Einheiten eindeutig ist.

Lemma 2. Es seien $x, y \in R$ mit $x, y \neq 0$.

- 1. Es gilt genau dann $\nu(x) = 0$, wenn x eine Einheit ist.
- 2. Es gilt $\nu(xy) = \nu(x) + \nu(y)$.
- 3. Ist x ein Teiler von y, so gilt $\nu(x) \leq \nu(y)$.
- 4. Ist x ein echter Teiler von y, also $(y) \subseteq (x)$, so gilt $\nu(x) < \nu(y)$.

Beweis.

- 1. In der Primfaktorzerlegung $x = \varepsilon p_1 \cdots p_n$ gilt n = 0 und somit $x = \varepsilon \in R^{\times}$. Falls x eine Einheit ist, so ist für die Einheit $\varepsilon := x$ die Zerlegung $x = \varepsilon$ bereits eine Primfaktorzerlegung.
- 2. Da R ein Integritätsbereich ist, gilt auch $xy \neq 0$, weshalb $\nu(xy)$ definiert ist. Es seien $x = \varepsilon p_1 \cdots p_n$ und $y = \delta q_1 \cdots q_m$ Primfaktorzerlegungen. Dann ist

$$xy = (\varepsilon \delta) p_1 \cdots p_n q_1 \cdots q_m$$

eine Primfaktorzerlegung von xy und somit

$$\nu(xy) = n + m = \nu(x) + \nu(y).$$

3. Es gibt $z \in R$ mit y = xz. Es gilt $z \neq 0$, da $y \neq 0$ gilt, weshalb $\nu(z)$ definiert ist. Somit gilt

$$\nu(y) = \nu(xz) = \nu(x) + \nu(z) \ge \nu(x)$$
.

4. In der obigen Situation gilt andernfalls $\nu(z)=0$, weshalb z dann eine Einheit ist. Deshalb gilt dann

$$(y) = (xz) = (x). \qquad \Box$$

(i)

Es sei $p \in R$ irreduzibel, und es seien $x, y \in R$ mit $p \mid xy$. Gilt x = 0 oder y = 0, so gilt $p \mid x$ oder $p \mid y$.

Andernfalls gibt es Primfaktorzerlegungen $x = \delta q_1 \cdots q_n$ und $y = \delta' q_1' \cdots q_m'$. Dann ist

$$xy = (\delta \delta')q_1 \cdots q_n q_1' \cdots q_m' \tag{3}$$

eine Primfaktorzerlegung von xy. Da p irreduzibel ist und $p\mid xy$ gilt, lässt sich p nach Lemma 1 zu einer Primfaktorzerlegung

$$xy = \varepsilon p p_2 \cdots p_r \tag{4}$$

ergänzen. Da R faktoriell ist, sind die beiden Primfaktorzerlegungen (3) und (4) eindeutig bis auf Einheiten und Permutation. Es gilt deshalb $p \mid q_i$ oder $p \mid q'_i$ für passendes i, und somit $p \mid x$ oder $p \mid y$.

(ii)

Wir nehmen an, dass nicht jede aufsteigende Kette von Hauptidealen stabilisieren würde. Dann gibt es eine unendliche, echt aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq (a_4) \subsetneq \cdots$$

Dann gilt $a_i \neq 0$ für alle $i \geq 1$ (denn sonst wäre $(a_i) = 0$ für ein solches i, und dann würde $(a_i) = \cdots = (a_0) = 0$ gelten). Nach Lemma 2 erhalten wir eine unendliche absteigende Kette

$$\nu(a_1) > \nu(a_2) > \nu(a_3) > \nu(a_4) > \cdots$$

Dies ist aber nicht möglich.

(b)

Wir müssen zeigen, dass es für jedes Element $x \in R$ mit $x \neq 0$ eine Primfaktorzerlegung

$$x = \varepsilon p_1 \cdots p_n$$

gibt, und dass diese eindeutig bis auf Einheiten und Permutation ist.

Existenz

Lemma 3. Es sei $x \in R$, und es sei x = yz ein Zerlegung mit $z \notin R^{\times}$. Dann gilt $(x) \subseteq (y)$.

Beweis. Es gilt $y \mid x$ und somit $(x) \subseteq (y)$. Wäre (x) = (y), so gebe es ein $z' \in R$ mit y = xz'. Dann wäre x = yz = xzz' und somit 1 = zz', da R ein Integritätsbereich ist. Dann wäre z eine Einheit mit $z^{-1} = z'$, im Widerspruch zu $z \notin R^{\times}$.

Wir nehmen an, dass es ein Element $x \in R$ mit $x \neq 0$ gibt, dass keine Primfaktorzerlegung besitzt. Dann ist x inbesondere keine Einheit und auch nicht irreduzibel. Es gibt deshalb nicht-Einheiten $y, z \in R$ mit x = yz; dabei gelten $y, z \neq 0$ da $x \neq 0$ gilt. Würden x und z beide eine Primfaktorzerlegung besitzten, so würden sich diese zu einer Primfaktorzerlegung von x kombinieren lassen. Also hat x oder y keine Primfaktorzerlegung; wir können o.B.d.A. davon ausgehen, dass y keine hat. Da z keine Einheit ist, gilt $(x) \subseteq (y)$ nach Lemma 3.

Wir setzen $a_0 := x$ und $a_1 := y$. Durch induktives Wiederholen der obigen Argumentation erhalten wir eine unendliche aufsteigende Kette von Hauptidealen

$$(a_0) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

Dies steht im Widerspruch zur Annahme (ii).

Eindeutigkeit

Für zwei Primfaktorzerlegungen

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m$$

zeigen wir die gewünschte Eindeutigkeit per Induktion über n:

Gilt n=0, so ist $x=\varepsilon\in R^{\times}$ eine Einheit. Dann gilt $q_j\mid x\mid 1$ für alle j, weshalb jedes q_j eine Einheit ist. Irreduzible Elemente sind aber per Definition keine Einheiten, weshalb m=0 gelten muss. Dann ist also $x=\varepsilon=\delta$, und die beiden Zerlegungen stimmen überein.

Es sei nun n > 0. Nach Annahme (i) ist p_1 prim. Aus

$$p_1 \mid x = \delta q_1 \cdots q_m$$

folgt damit, dass $p_1 \mid \delta$ gilt, oder dass $p_1 \mid q_j$ für ein j gilt. Würde $p_1 \mid \delta$ gelten, so wäre p_1 eine Einheit, im Widerspruch zur Irreduziblität von p_1 . Also gilt $p_1 \mid q_j$ für ein j; wir können o.B.d.A. davon ausgehen, dass $p_1 \mid q_1$ gilt. Es gibt also $\delta' \in R$ mit $q_1 = p_1 \delta'$. Da q_1 irreduzible ist, folgt dabei, dass bereits p_1 oder δ' eine Einheit ist; p_1 ist wegen Irreduziblität keine Einheit, so dass δ' eine Einheit ist. Also sind p_1 und q_1 bis auf die Einheit δ' gleich.

Es gilt nun

$$x = \varepsilon p_1 \cdots p_n = \delta q_1 \cdots q_m = \delta \delta' p_1 q_2 \cdots q_m. \tag{5}$$

Da R ein Integritätsbereich ist, können wir die obige Gleichung durch $p_1 \neq 0$ teilen, und erhalten, dass bereits

$$\varepsilon p_2 \cdots p_n = (\delta \delta') q_2 \cdots m \tag{6}$$

gilt. Nach Induktionsvoraussetzung sind beide Seiten von (6) bis auf Einheiten und Permutation gleich. Damit sind in (5) bereits beide Zerlegungen bis auf Einheiten und Permutation gleich, da auch p_1 und q_1 bis auf Einheit gleich ist.