Thesis baseline experiment

Chen Wang

June 2020

1 Experiment settings

Hardware:

• Server: Liacs DS Lab, duranium.liacs.nl

• GPU: GeForce GTX 980 Ti

Environment:

• BranchLSTM: Python 2.7, theano, lasage

• DistillBert: Python 3.6. ktrain

2 Results

2.1 BranchLSTM

	Accuracy	Marco F	S	D	Q	С
Development	0.782	0.561	0.621	0.000	0.762	0.860
Testing	0.784	0.434	0.403	0.000	0.462	0.873

Table 1: Results on the development and testing sets. Accuracy and F1 scores: macro-averaged and per class (S: supporting, D: denying, Q: querying, C: commenting).(Kochkina et al., 2017)

Depth	Tweets	S	D	Q	\mathbf{C}	Accuracy	MacroF	S	D	Q	C
0	28	26	2	0	0	0.929	0.481	0.963	0.000	0.000	0.000
1	704	61	60	81	502	0.739	0.348	0.000	0.000	0.550	0.842
2	128	3	6	7	112	0.875	0.233	0.000	0.000	0.000	0.933
3	60	2	1	5	52	0.867	0.232	0.000	0.000	0.000	0.929
4	41	0	0	3	38	0.927	0.481	0.000	0.000	0.000	0.962
5	27	1	0	1	25	0.926	0.321	0.000	0.000	0.000	0.961
6+	61	1	2	9	49	0.803	0.223	0.000	0.000	0.000	0.891

Table 2: Number of tweets per depth and performance at each of the depths.(Kochkina et al., 2017)

Prediction Label	C	D	Q	S
Commenting	760	0	12	6
Denying	68	0	1	2
Querying	69	0	36	1
Supporting	67	0	1	26

Table 3: Confusion matrix for testing set predictions. (Kochkina et al., 2017)

2.2 DistillBERT

Epochs	Learning rate	batch size	maximum text length
4	3e-5	6	350

Table 4: DistillBERT hyperparameters

	Accuracy	Marco F	S	D	Q	С
Development						
Testing	0.751	0.526	0.848	0.250	0.632	0.373

Table 5: DistillBERT Results on the development and testing sets. Accuracy and F1 scores: macro-averaged and per class (S: supporting, D: denying, Q: querying, C: commenting).

Depth	Tweets	S	D	Q	\mathbf{C}	Accuracy	MacroF	S	D	Q	\mathbf{C}
0	28	26	2	0	0	0.929	0.549	0.667	0.000	0.000	0.000
1	704	61	60	81	502	0.720	0.454	0.086	0.265	0.636	0.830
2	128	3	6	7	112	0.805	0.393	0.000	0.235	0.444	0.894
3	60	2	1	5	52	0.850	0.609	0.400	0.400	0.727	0.909
4	41	0	0	3	38	0.805	0.435	0.000	0.000	0.000	0.882
5	27	1	0	1	25	0.778	0.219	0.000	0.000	0.000	0.875
6+	61	1	2	9	49	0.770	0.392	0.000	0.000	0.706	0.863

Table 6: Number of tweets per depth and performance at each of the depths.

Prediction Label	C	D	Q	S
Commenting	675	39	31	33
Denying	49	17	4	1
Querying	33	4	66	3
Supporting	57	5	2	30

Table 7: Confusion matrix for testing set predictions.

3 Comparison

3.1 Comparison between Table 5 and Table 1

	Accuracy	Marco F	S	D	Q	С
Development						
Testing	-0.033	0.092	0.445	0.250	0.170	-0.500

Table 8: Comparison Results on the development and testing sets. Accuracy and F1 scores: macro-averaged and per class (S: supporting, D: denying, Q: querying, C: commenting).

3.2 Comparison between Table 6 and Table 2

Depth	Tweets	\mathbf{S}	D	Q	C	Accuracy	MacroF
0	28	26	2	0	0	0.000	0.068
1	704	61	60	81	502	-0.019	0.106
2	128	3	6	7	112	-0.070	0.160
3	60	2	1	5	52	-0.017	0.377
4	41	0	0	3	38	-0.122	-0.046
5	27	1	0	1	25	-0.148	-0.102
6+	61	1	2	9	49	-0.033	0.169

Table 9: Number of tweets per depth and performance comparison at each of the depths.

3.3 Comparison between Table 7 and Table 3

Prediction Label	C	D	Q	\mathbf{S}
Commenting	-85	39	19	27
Denying	-19	17	3	-1
Querying	-36	4	30	2
Supporting	-10	5	1	4

Table 10: Comparison Confusion matrix for testing set predictions.

4 Two-step classification results

4.1 first-step classification: Binary classification

Prediction Label	Comment	Other
Comment	642	136
Other	134	137

Table 11: First-step classification result

	precision	recall	f1-score	support				
comment other	0.83 0.50	0.83 0.51	0.83 0.50	778 271				
accuracy macro avg weighted avg	0.66 0.74	0.67 0.74	0.74 0.66 0.74	1049 1049 1049				

Figure 1: First classification report

${\bf 4.2}\quad {\bf second\text{-}step\ classification:\ Multi-class\ classification}$

Prediction Label	support	deny	query
$\operatorname{support}$	31	6	3
deny	4	18	4
query	5	2	64

Table 12: Second-step classification result

Second classification report: ************************************								
	precision	recall	f1-score	support				
support	0.78	0.78	0.78	40				
deny	0.69	0.69	0.69	26				
query	0.90	0.90	0.90	71				
accuracy			0.82	137				
macro avg	0.79	0.79	0.79	137				
weighted avg	0.82	0.82	0.82	137				

Figure 2: Second classification report

4.3 Combination result of two-step classification

Prediction Label	C	D	Q	S
Commenting	642	136		
supporting		31	6	3
denying	134	4	18	4
Querying		5	2	64

Table 13: Comparison Confusion matrix for testing set predictions.

Accuracy: 71.973%

References

Elena Kochkina, Maria Liakata, and Isabelle Augenstein. Turing at semeval-2017 task 8: Sequential approach to rumour stance classification with branch-lstm. arXiv preprint arXiv:1704.07221, 2017.