Introdução ao Python

Python para Sala de Aula de Matemática

Luis Alberto D'Afonseca

CEFET-MG

Conteúdo

Apresentação

Introdução a Programação

Introdução ao Python

Gerando Gráficos

Conteúdo

Apresentação

Introdução a Programação

Introdução ao Python

Gerando Gráficos

Algoritmo

- ▶ 2500 BC Algoritmo da divisão usado pelos Babilônios
- ► Século IX Muhammad ibn Mūsā al-Khwārizmī
- ► 1936 Alan Mathison Turing

Algoritmo

Procedimento para resolver um determinado problema

- Sequência finita de passos
- ► Sem ambiguidades
- Garantia de solução

Quais são os passos possíveis?

Programação

Escrever um algoritmo em uma linguagem de programação

- Os passos do algorítimo são instruções definidas na linguagem
- Cada linguagem tem as suas próprias instruções
- Existem muitas linguagens
 Assembler, Fortran, C, Algol, Java, R, Matlab, Lisp, Python, ...

Python

- Lançada por Guido van Rossum em 1991
- Alto nível Próxima da linguagem humana
- ▶ Uso geral Não é dedicada a uma única finalidade
- ► Interpretada Não precisa ser compilada
- Imperativa Cada comando é uma ordem
- ▶ Tipagem dinâmica O Python decide o tipo das variáveis

Google Colaboratory – Colab

- ▶ IDE online para Python
- Diretamente no navegador
- Precisa de uma conta Google (gmail)
- Salva os Notebooks no Google Drive

https://colab.research.google.com

Conteúdo

Apresentação

Introdução a Programação

Introdução ao Python

Gerando Gráficos

Operações Numéricas

Principais operações numéricas em Python

Função	Sintaxe
Soma	+
Diferença	-
Produto	*
Quociente	/
Potência	**
Quociente Inteiro	//
Resto da Divisão	%

Python como Calculadora

Principais Relações em Python

Função	Sintaxe
Maior que	>
Maior ou igual a	>=
Menor que	<
Menor ou igual a	<=
Igual	==
Diferente	!=

Variáveis

- Armazenam valores na memória do computador
- Alguns tipos de variáveis

Números inteiros int

Números reais float

Números complexos complex

Letras ou texto string

Verdadeiro ou falso boolean

Matrizes ou vetores array

Atribuindo Valores para Uma Variável

Usamos o operador = para atribuições

```
a = 3
x = 16.89
nome = 'Luis'
```

Python-6-Objetos.lst

▶ Não confundir com a comparação ==

► É perfeitamente válido fazer

$$\begin{aligned}
 x &= 1 \\
 x &= x + 1
 \end{aligned}$$

Funções

Função na Programação não é a mesma coisa que na Matemática

- ► Implementa um algoritmo
- Conjunto de instruções
- Principal forma de organização do código
- Pode receber parâmetros ou não
- Pode retornar valores ou não
- Agrupadas em bibliotecas

Criando Funções

```
def nome_da_funcad( parametro1, parametro2 ):
    comando_1
    comando_2
    comando_3
    comando_4
    return valor_de_retorno
```

Minha Primeira Função

```
def ola_mundo():
   print( 'Olá Mundo!' )
```

Tomando Decisões

```
if teste:
   Comandos executados se verdadeiro
else:
   Comandos executados se falso
```

Tomando Decisões

```
def verificar_se_eh_par( N ):
    if N % 2 == 0:
        print( N, 'é par')
    else:
        print( N, 'não é par')
```

Repetições

- Muitos algoritmos envolvem repetições
- Calcular o fatorial de um número
- Desenhar cada lado de um polígono
- ► Imprimir cada letra de um texto

Exemplo: Calcular n!

Probema: Calcular

$$f = n! = 1 \times 2 \times 3 \times 4 \times \cdots \times n$$

Algoritmo

```
Dado n
Faça F = 1
Para todo k entre 1 e n
Faça F = F * k
```

Repetições no Python

Para todo *k* entre 1 e *n*

```
range( 1, n+1 )
```

Começa em 1 e para antes de n + 1

Repetições no Python

```
def fatorial( n ):
    f = 1
    for k in range( 1, n+1 ):
        f = f * k
    return f
```

Conteúdo

Apresentação

Introdução a Programação

Introdução ao Python

Gerando Gráficos

Bibliotecas

Escolhemos as bibliotecas

```
import numpy as np
from matplotlib import pyplot as plt
```

Vetores e Matrizes

A biblioteca numpy implementa

- ► Tipo (objeto) array que armazena vetores e matrizes
- ► Métodos de Álgebra Linear

Criando um vetor

Listando elemento a elemento

```
x = [1, 2, 5, 6, 7]
```

Utilizando uma função

```
x = np.linspace(-5, 5, 100)
```

Desenhar Linha Poligonal

A biblioteca matplotlib implementa a função plot

- vetor com coordenadas *x*
- ▶ vetor com coordenadas *y*

```
plt.plot( [0 1], [0 1] )
```

Desenhar o Gráfico de Uma Função

- \triangleright Avaliar os valores x desejados e criar o vetor \times
- Avaliar a função nesses pontos e criar o vetor y
- Desenhar a linha poligonal ligando os pontos

Desenhar Um Triângulo Retângulo

- Dadas as medidas dos catetos a e b
- Desenhar um triângulo retângulo no plano cartesiano

Desenhar Um Triângulo Retângulo

```
Dados a, b
Desenhar linha poligonal
(0, 0)
(a, 0)
(0, b)
(0, 0)
```

Desenhar Polígono Regular

Desenhar o polígono regular de n lados circunscrito na circunferência de raio r

- ▶ Dividir o intervalo $[0, 2\pi]$
- ightharpoonup Calcular as coordenadas (x, y) de cada vértice
- Desenhar a linha poligonal ligando os vértices

