ANALIZA ROZWIĄZAŃ ODSZUMIANIA B-SKANÓW OCT SIATKÓWKI OKA LUDZKIEGO

inż. Szymon Murawski

promotor: dr inż. Tomasz Marciniak

POLITECHNIKA POZNAŃSKA

WYDZIAŁ AUTOMATYKI, ROBOTYKI I ELEKTROTECHNIKI INSTYTUT AUTOMATYKI I ROBOTYKI ZAKŁAD UKŁADÓW ELEKTRONICZNYCH I PRZETWARZANIA SYGNAŁÓW

09.07.2024

Zakres pracy magisterskiej

- Analiza technik odszumiania obrazów w optycznej tomografii koherencyjnej
- Przygotowanie oprogramowania do odszumiania B-skanów OCT różnych baz danych
- Ocena skuteczności i czasochłonności obliczeniowej odszumiania dla segmentacji warstw siatkówki

Analiza technik odszumiania

	Nazwa metody	Źródło	Zastosowane metryki
•	Filtr uśredniający Filtr medianowy RKT	Jadwiga Rogowska, Mark E Brezinski. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images	 subiektywna ocena jakości segmentacji
•	Anizotropowy filtr dyfuzyjny	Rui Bernardes, Cristina Maduro, Pedro Serranho, Aderito Araújo, Silvia Barbeiro, Jose Cunha-Vaz. <i>Improved adaptive complex diffusion despeckling</i> <i>filter</i>	MSEPSNRENLCNR
•	Transformata zafalowaniowa	Wajiha Habib, Adil Masood Siddiqui, Imran Touqir. Wavelet Based Despeckling of Multiframe Optical Coherence Tomography Data Using Similarity Measure and Anisotropic Diffusion Filterin	
•	Minimalizacja prawdopodobieństwa warunkowego	Alexander Wong, Akshaya Mishra , Kostadinka Bizheva , David A. Clausi. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery	 PSNR CNR ENL wsp. zachowania krawędzi czasochłonność
•	DnCNN, FFDNet	Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, Lei Zhang. <i>Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising</i> Kai Zhang, Wangmeng Zuo, Lei Zhang. <i>FFDNet: Toward a Fast and Flexible</i> Solution for CNN based Image Denoising	PSNRSSIMczasochłonność
•	ADNet	Chunwei Tian, Yong Xu, Zuoyong, Wangmeng Zuo, Lunke Fei, Hong Liu. Attention-guided CNN for image denoising	PSNRczasochłonność
•	DeSpecNet	Fei Shi, Ning Cai, Yunbo Gu, Dianlin Hu, Yuhui Ma, Yang Chen, Xinjian Chen. DeSpecNet: a CNN-based Method for Speckle Reduction in Retinal Optical Coherence Tomography Images	 PSNR CNR ENL wsp. zachowania krawędzi

Przygotowane oprogramowanie do odszumiania

Wybrane metody odszumiania:

- filtr uśredniający i medianowy (Matlab)
- DnCNN (Matlab)
- FFDNet (Matlab)
- ADNet (Python)

Bazy obrazów

Baza CAVRI-A

- 7050 B-skanów z danymi dotyczącymi segmentacji
- Autorzy: Agnieszka Stankiewicz, Tomasz Marciniak

Baza OCTID

- 495 B-skanów, 19 z danymi dotyczącymi segmentacji
- Źródło: Peyman Gholami, Priyanka Roy, Mohana Kuppuswamy Parthasarathy, Vasudevan Lakshminarayanan. OCTID: Optical Coherence Tomography Image Database

CAVRI-A

Ocena parametryczna odszumiania – PSNR, SSIM

Nazwa metody	Czas dla bazy	Czas dla bazy OCTID
	CAVRI-A [s]	[s]
Filtr uśr. n =3	0.00065394	0.00075269
Filtr uśr. n =5	0.00067575	0.00087709
Filtr uśr. n =7	0.00082889	0.0011128
Filtr uśr. n =9	0.0008324	0.0010038
Filtr uśr. n=11	0.0010275	0.011922
Filtr med. n=3	0.00064481	0.00063959
Filtr med. n=5	0.0006741	0.00071115
Filtr med. n=7	0.0028972	0.0019589
Filtr med. n=9	0.0028171	0.0018955
Filtr med. n=11	0.0032264	0.0057853
Sieć DnCNN	0.98832	1.41089
Sieć FFDNet	5.1386	6.96093
Sieć ADNet	1.746	2.2650

Przykładowe rezultaty odszumionych B-skanów z bazy CAVRI-A

Bez odszumiania Filtr uśredniający, n=3 Sieć DnCNN

Przykładowe rezultaty odszumionych B-skanów z bazy OCTID

Segmentacja siatkówki

Segmentacja w oparciu o oprogramowanie **Caserel** [1]. Kod programu przygotowane w środowisku Matlab

Wczytanie obrazu i

wypłaszczenie

[1] Stephanie J. Chiu, Xiao T. Li, Peter Nicholas, Cynthia A. Toth, Joseph A. Izatt, Sina Farsiu. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express vol.18 no.18, 30.08.2010

Przykładowe rezultaty segmentacji dla bazy CAVRI-A

Przykładowe rezultaty segmentacji dla bazy OCTID

Ocena jakości segmentacji – czasochłonność segmentacji

L.p.	Nazwa metody	Procent przesegmentowanych obrazów z bazy CAVR-A[%]	Procent przesegmentowanych obrazów z bazy OCTID [%}
1	Bez odszumiania	97.62	100
2	Filtr uśr. n =3	97.84	100
3	Filtr uśr. n =5	98.17	100
4	Filtr uśr. n =7	94.47	100
5	Filtr uśr. n =9	98.37	100
6	Filtr uśr. n =11	77.74	100
7	Filtr med. n=3	89.76	100
8	Filtr med. n=5	84.79	100
9	Filtr med. n=7	87.48	100
10	Filtr med. n=9	90.74	94.74
11	Filtr med. n=11	92.85	100
12	Sieć DnCNN	98.09	100
13	Sieć FFDNet	85.02	100
14	Sieć ADNet	88.09	100

Ocena jakości segmentacji – poprawność segmentacji

Podsumowanie

- Rozwiązania wykorzystujące sieci neuronowe do odszumiania obrazów, pozwoliły na uzyskanie większych wartości wskaźników PSNR oraz SSIM, niż filtry medianowe i uśredniające.
- Odszumianie z wykorzystaniem sieci neuronowych zajęło średnio wielokrotnie więcej czasu niż odszumianie metodami tradycyjnymi.
- Zastosowanie filtracji pozwoliło, dla większości przeprowadzonych eksperymentów, skrócić średni czas segmentacji w porównaniu do B-skanów niepoddanych procesowi odszumiania.
- Dla warstw ILM, IPL-INL, INL-OPL oraz IS-OS najniższe średnie wartości błędów segmentacji uzyskano dla filtrów medianowych, najwyższe dla filtrów uśredniających. Dla warstwy RPE odwrotnie. Dla sieci neuronowych wyniki uzyskano dla sieci FFDNet, najgorsze dla DnCNN. Dla warstwy RPE najlepsze wyniki dla sieci ADNet, najgorsze FFDNet.
- Zastosowanie odpowiedniej metody filtracji pozwala na uzyskanie mniejszych błędów segmentacji, w porównaniu do obrazów niepoddawanych filtracji.
- Najwyższe wartości PSNR i SSIM, uzyskiwane dla odszumiania z sieciami neuronowymi, nie przełożyły się na najlepsze wyniki jakości segmentacji.