

Factores de bloque

- Son las variables adicionales al factor de interés que se incorporan de manera explícita en un experimento comparativo para no sesgar la comparación.
- Por ejemplo, en el caso de comparar cuatro máquinas que son manejadas por cuatro operadores, es pertinente incluir explícitamente al factor operadores (bloques) para lograr el propósito del estudio.

- En un diseño en bloques completos al azar (DBCA) se consideran tres fuentes de variabilidad: el factor de tratamientos, el factor de bloque y el error aleatorio.
- Los factores de bloqueo que aparecen en la práctica son: turno, lote, día, tipo de material, línea de producción, operador, máquina, método, etc.

Es un diseño de dos factores, uno denominado factor tratamiento y el otro factor bloque. Consideramos el diseño sin repetición, es decir para cada bloque y tratamiento sólo hay una observación. Ambos factores son de efectos fijos.

Términos técnicos

Respuesta

- Variable cuantitativa métrica dependiente, que es afectada por los factores en el proceso.
- Ejemplos: Rendimiento, peso, precio de un producto, etc.

Factor Tratamiento

Variable categórica independiente del que interesa conocer su influencia en la respuesta.

Factor Bloque

 Variable categórica independiente en la que no se está interesado en conocer su influencia en la respuesta pero se supone que ésta existe y se quiere controlar para disminuir la variabilidad residual (es decir, eliminar su efecto en el análisis).

Tratamientos

 Son los diferentes niveles o categorías del factor tratamiento. Son, por tanto, las condiciones experimentales que se desean comparar en el experimento.

Modelo estadístico de un DBCA

Modelo teórico:

$$Y_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij} = \mu_{ij} + \varepsilon_{ij}$$
 $i = 1, 2, ..., b$ $j = 1, 2, ..., a$

 $Y_{ij} = respuestas \ del \ j$ - ésimo tratamiento para el i - ésimo bloque b = número de bloques a = número de tratamientos

$$\mathcal{E}_{ij} = error$$
 aleatorio por observación

Variación causada por los factores no controlados

2. Formulación de hipótesis

Se prueba la igualdad de los efectos de los tratamientos.

$$H_0: \tau_j = 0$$
 $j = 1,2,...,a$ $(\mu_{\circ_1} = \mu_{\circ_2} = ... = \mu_{\circ_a})$ (El factor tratamiento NO influye sobre la respuesta)

$$H_a: \tau_j \neq 0$$
 algún $j \in (\mu_{\circ_j} \neq \mu_{\circ_k} \text{ algún } j \neq k)$ (El factor tratamiento SI influye sobre la respuesta)

Prueba de importancia del bloqueo.

$$H_0$$
: $\beta_i=0$ $i=1,2,...,b$ $(\mu_{1^\circ}=\mu_{2^\circ}=...=\mu_{b^\circ})$ (El factor bloque NO influye sobre la respuesta)

$$H_a: \beta_i \neq 0$$
 algún $i \quad (\mu_{i^\circ} \neq \mu_{k^\circ} \text{ algún i } \neq k)$ (El factor bloque SI influye sobre la respuesta)

OJO. Si se rechaza Ho, entonces hay evidencia de que el factor bloque fue importante en el diseño.

Supuestos del modelo DBCA

- Los efectos de tratamientos y bloques son aditivos. Es decir no hay interacción entre tratamientos y bloques.
- Los datos deben ser descritos adecuadamente por el modelo:

$$Y_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij}$$

donde:

$$\varepsilon_{ij} \to N(0,\sigma^2)$$

- Los errores deben satisfacer lo siguiente:
 - Son v.a con distribución normal con media cero (**normalidad** de residuos)
 - Tienen varianza constante (homocedásticidad)
 - Son variables aleatorias independientes (no autocorrelación de errores)

3. Obtener Suma de Cuadrados de Bloques

$$SC\ Bloques = \sum_{j=1}^{r} Y_{.j}^{2} / t - F.C.$$
 $Y_{.j} = \sum_{i=1}^{t} y_{ij}$

4. Obtener Suma de Cuadrados de Tratamientos

$$SC\ Trat = \frac{\sum_{i=1}^{t} Y_{i.}^{2}}{r} - F.C.$$
 $Y_{i.} = \sum_{j=1}^{r} y_{ij}$

- 5. Obtener Suma de Cuadrados del Error SC Error=SC Total- SC Bloques- SC Tratamientos
- Obtener Grados de Libertad

g.l. Tratamientos = t-1 g.l. Bloques = r-1 g.l. Error =
$$(t-1) \times (r-1)$$
 g.l. Total = $(t \times r)$ -1

7. Obtener Cuadrados Medios

$$CMBloques = \frac{SCBloques}{g.l.bloques}$$

$$CMTrat = \frac{SCTrat}{g.l.Trat}$$

$$CMError = \frac{SC\ Error}{g.\ l.\ Error}$$

8. Obtener Valores de F

$$FBloques = \frac{CM\ Bloques}{CM\ Error}$$

$$Ftrat = \frac{CM \ trat}{CM \ Error}$$

9. Obtener el Coeficiente de Variación

$$CV(\%) = \left(\frac{\sqrt{CM \ Error}}{\overline{Y}_{..}}\right) \times 100 \ \overline{Y}_{..} = Media \ general$$

10. Obtener el coeficiente de determinación R2

$$R^2 = \frac{SC\ Bloques\ + SC\ Tratamientos}{SC\ Total}$$

- R² indica la proporción de la suma de cuadrados total que es explicada por la variación entre bloques y entre tratamientos.
- Conforme el valor de R² se aproxima a 1.0 esto indicará que los datos analizados tuvieron un mejor ajuste del modelo lineal.

Tabla 4.2 ANOVA para un diseño en bloques completos al azar.

Fuente de variabilidad	Suma de cuadrados	Grado de libertad	Cuadrado medio	F ₀	Valor-p
Tratamientos	SC_{TRAT}	<i>k</i> − 1	CM_{TRAT}	$F_0 = \frac{CM_{TRAT}}{CM_E}$	$P(F > F_0)$
Bloques	SC_B	<i>b</i> – 1	CM_B	$F_0 = \frac{CM_B}{CM_E}$	$P(F > F_0)$
Error	SC_E	(k-1)(b-1)	CM_E		
Total	SC_T	N-1			

Ejemplo 4.1

En el ejemplo 3.1, donde se planteó la comparación de cuatro métodos de ensamble, ahora se va a controlar activamente en el experimento a los operadores que realizarán el ensamble, lo que da lugar al siguiente diseño en bloques completos al azar.

	Operador			
Método	1	2	3	4
Α	6	9	7	8
В	7	10	11	8
С	10	16	11	14
D	10	13	11	9

Recordemos que la variable de respuesta son los minutos en que se realiza el ensamble. Para comparar los cuatro métodos se plantea la hipótesis:

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D = \mu$$

$$H_A: \mu_i \neq \mu_j$$
 para algún $i \neq j = A, B, C, D$

Modelo teórico:

$$Y_{ij} = \mu + \beta_i + \tau_j + \varepsilon_{ij} = \mu_{ij} + \varepsilon_{ij}$$
 $i = 1, 2, ..., b$ $j = 1, 2, ..., a$

Y_{ij}: variable respuesta, el tiempo (min) de ensamblaje.

μ: es la media de minutos de ensamble.

β: factor bloque (operador)

τ: factor del tratamiento (método de ensamble)

ε: error experimental

	Operador				
Método	1	2	3	4	Total por tratamiento
A	6	9	7	8	$Y_{1•} = 30$
В	7	10	11	8	$Y_{2*} = 36$
С	10	16	11	14	$Y_{3*} = 51$
D	10	13	11	9	$Y_{4*} = 43$
Total	$Y_{-1} = 33$	<i>Y</i> _{•2} = 48	$Y_{-3} = 40$	$Y_{*4} = 39$	Total global Y = 160

Con estos totales las sumas de cuadrados se obtienen fácilmente como:

$$SC_{T} = \sum_{j=1}^{b} \sum_{i=1}^{k} Y_{ij}^{2} - \frac{Y_{..}^{2}}{N} = (6^{2} + 7^{2} + ... + 9^{2}) - \frac{160^{2}}{16} = 108$$

$$SC_{TRAT} = \sum_{i=1}^{k} \frac{Y_{i.}^{2}}{b} - \frac{Y_{..}^{2}}{N} = \frac{30^{2} + 36^{2} + 51^{2} + 43^{2}}{4} - \frac{160^{2}}{16} = 61.5$$
(4.5)

Tabla 4.3 ANOVA para el ejemplo 4.1.

Fuente de variabilidad	Suma de cuadrados	Grado de libertad	Cuadrado medio	F ₀	Valor-p
Métodos	61.5	3	20.5	10.25	0.003
Operadores	28.5	3	9.5	4.75	0.030
Error	18.0	9	2.0		
Total	108.0	15			

donde b es el número de bloques, que hace las veces de número de réplicas, y (k-1) (b-1) son los grados de libertad del CM_E . De aquí que en el ejemplo que nos ocupa, como $t_{0.025, 9} = 2.26$, entonces,

$$LSD = 2.26\sqrt{2 \times 2/4} = 2.26$$

Al comparar esta diferencia mínima significativa con los datos del ejemplo 4.1 se obtiene la siguiente tabla:

Diferencia poblacional	Diferencia muestral	Decisión
$\mu_A - \mu_B$	I-1.5I < 2.26	No significativa
$\mu_A - \mu_C$	I-5.25I > 2.26	Significativa
$\mu_A - \mu_D$	I-3.25I > 2.26	Significativa
$\mu_B - \mu_C$	I-3.75I > 2.26	Significativa
$\mu_B - \mu_D$	I–1.75I < 2.26	No significativa
$\mu_C - \mu_D$	2.00 < 2.26	No significativa

Se concluye que el tratamiento A es diferente de C y D, y que el tratamiento B es diferente de C. Las otras tres comparaciones (A con B, B con D y C con D) aceptan la hipótesis de igualdad. De acuerdo con esto, y dadas las respuestas medias muestrales $\overline{Y}_{A\bullet} = 7.5$, $\overline{Y}_{B\bullet} = 9.0$, $\overline{Y}_{C\bullet} = 10.75$, $\overline{Y}_{D\bullet} = 12.75$, se concluye que el método A es mejor (requiere menos tiempo para el ensamble) que los métodos C y D, pero el método A no es mejor que el B.

TRABAJO EN "R"

