

data rows i = 1...n

multiply down columns then add across rows

data columns j = 1...p

Matrix multiplication

$$X\omega_k$$

R: x % * % w

Single layer NN

 $b_k^{(1)}$

 A_4

g(z)

 $b_1^{(2)}$

f(X)

 $\omega_{ki}^{(1)}$

 X_1

 X_2

Model algorithm

define g(z)load and prepare x_j set Kset $\omega_{kj}^{(1)}$, $b_k^{(1)}$, $\omega_{1k}^{(2)}$, $b_1^{(2)}$

for each activation unit k in 1:K calculate linear predictor: $z_k = b_k^{(1)} + X \omega_k^{(1)}$ calculate nonlinear activation: $A_k = g(z_k)$ calculate linear model: $f(x) = b_1^{(2)} + A \omega_1^{(2)}$ return f(x)