DirectMap Cache Report

Abstract:

This report relays the effect of spatial locality on DirectMap Cache by examining the effect of different parameters on a simulated DirectMap Cache written in C++ code. The simulator is fed the memory access requested by a certain program and then it mimics the response of a DirectMap to these requests, and finally prints the responses of interest, mainly misses and hits of data in the cache among other things. To examine the effect of spatial locality, two different programs were considered to be simulated by the simulator, one that respects spatial locality, horizontal access array, and another that violates spatial locality, vertical access array. Each program will then be simulated with two cache write policies namely Write-back and Write-through. For every write policy the DirectMap simulator will run the program in two different cache sizes, 512 and 1024. In each cache size trial, the size of the cache lines is going to be changes to also view the effect of such parameter on the total number of hits and misses. It is assumed that as one increases the cache line size, the cycles taken to load it from memory to cache increases and this happens each time the cacheline size increases twice, for example the time taken to load 4 bytes is the same as 8 bytes but is less than 16 bytes cacheline size. The other cycles are adjusted accordingly so that they all follow the same ratio provided in the Assignment6 pdf file. The outputs of every simulations is presented in the results section below, then the results are analyzed and interpreted with the help of graphs highlighting the most important features.

Results:

Horizontal access array:

Constants in all simulations for this program are:

- a) Memory Read Access Attempts = 16863316
- b) Memory Write Access Attempts = 4751935

WB:

Cache Line size	CRC	CWC	MRC	MWC	Total Misses	Total Hits	Memory Read Access	Memory Write Access	Total Memory Access cycles
1	1	2	4	8	2965754	18649497	2965754	1632494	24922968

2	1	2	4	8	2817579	18797672	2817579	1612117	24167252
4	2	4	8	16	2740598	18874653	2740598	1600233	47528512
8	2	4	8	16	1665367	19949884	1665367	1073172	30493688
16	4	8	16	32	855628	20759623	855628	550133	31294304
32	4	8	16	32	427306	21187945	427306	272980	15572256
64	8	16	32	64	219525	21395726	219525	139775	15970400
128	8	16	32	64	118400	21496851	118400	73759	8509376
256	16	32	64	128	67960	21547291	67960	41040	9602560
512	16	32	64	128	42668	21572583	42668	24622	5882368
1024	32	64	128	256	30083	21585168	30083	16446	8060800

1024-cache-size-map:

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line	Cite		witte	111110	Misses	Hits	Read	Write	Memory
size					1,115505		Access	Access	Access
3120							110000	110000	cycles
1	1	2	4	8	2818197	18797054	2818197	1612102	24169604
2	1	2	4	8	2743166	18872085	2743166	1600223	23774448
4	2	4	8	16	2698420	18916831	2698420	1590273	47031728
8	2	4	8	16	1381397	20233854	1381397	812411	24049752
16	4	8	16	32	812859	20802392	812859	529326	29944176
32	4	8	16	32	409817	21205434	409817	264742	15028816
64	8	16	32	64	208588	21406663	208588	134266	15267840
128	8	16	32	64	108942	21506309	108942	69119	7909760
256	16	32	64	128	58975	21556276	58975	36571	8455488
512	16	32	64	128	34170	21581081	34170	20388	4796544
1024	32	64	128	256	21731	21593520	21731	12260	5920128

WT:

0 0		ic inapi							
Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	2965754	18649497	2965754	4751935	49878496
2	1	2	4	8	2817579	18797672	2817579	4751935	49285796
4	2	4	8	16	2740598	18874653	2740598	4751935	97955744
8	2	4	8	16	1665367	19949884	1665367	4751935	89353896
16	4	8	16	32	855628	20759623	855628	4751935	165751968
32	4	8	16	32	427306	21187945	427306	4751935	158898816
64	8	16	32	64	219525	21395726	219525	4751935	311148640
128	8	16	32	64	118400	21496851	118400	4751935	307912640
256	16	32	64	128	67960	21547291	67960	4751935	612597120
512	16	32	64	128	42668	21572583	42668	4751935	610978432
1024	32	64	128	256	30083	21585168	30083	4751935	1220345984

1024-cache-size-map:

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	2818197	18797054	2818197	4751935	49288268
2	1	2	4	8	2743166	18872085	2743166	4751935	48988144
4	2	4	8	16	2698420	18916831	2698420	4751935	97618320
8	2	4	8	16	1381397	20233854	1381397	4751935	87082136
16	4	8	16	32	812859	20802392	812859	4751935	165067664
32	4	8	16	32	409817	21205434	409817	4751935	158618992
64	8	16	32	64	208588	21406663	208588	4751935	310798656
128	8	16	32	64	108942	21506309	108942	4751935	307609984
256	16	32	64	128	58975	21556276	58975	4751935	612022080
512	16	32	64	128	34170	21581081	34170	4751935	610434560
1024	32	64	128	256	21731	21593520	21731	4751935	1219276928

Vertical access array:

Constants in all simulations for this program are:

- a) Memory Read Access Attempts = 16863281
- b) Memory Write Access Attempts = 4751935

WB:

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	3905916	17709300	3905916	1631295	28674024
2	1	2	4	8	3812758	17802458	3812758	1611977	28146848
4	2	4	8	16	3760542	17854674	3760542	1599616	55678192
8	2	4	8	16	3215622	18399594	3215622	1073247	42896928
16	4	8	16	32	2155945	19459271	2155945	550219	52102128
32	4	8	16	32	1601066	20014150	1601066	272402	34333920
64	8	16	32	64	1331562	20283654	1331562	139888	51562816
128	8	16	32	64	1196664	20418552	1196664	73846	43019392
256	16	32	64	128	1127240	20487976	1127240	41084	77402112
512	16	32	64	128	1093426	20521790	1093426	24645	73133824
									14200870
1024	32	64	128	256	1076505	20538711	1076505	16469	4

1024-cache-size-map:

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	3813375	17801841	3813375	1611959	28149172
2	1	2	4	8	3763126	17852090	3763126	1599610	27849384
4	2	4	8	16	3732935	17882281	3732935	1590292	55308152
8	2	4	8	16	2551488	19063728	2551488	813108	33421632
16	4	8	16	32	1694919	19920297	1694919	528723	44037840
32	4	8	16	32	1137652	20477564	1137652	264907	26679456
64	8	16	32	64	1045759	20569457	1045759	134256	42056672
128	8	16	32	64	1038264	20576952	1038264	69137	37649216
256	16	32	64	128	1042826	20572390	1042826	36590	71424384
512	16	32	64	128	1048155	20567061	1048155	20360	69688000
									13772300
1024	32	64	128	256	1051389	20563827	1051389	12286	8

WT:

512-cache-size-map:

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	3905916	17709300	3905916	4751935	53639144
2	1	2	4	8	3812758	17802458	3812758	4751935	53266512
4	2	4	8	16	3760542	17854674	3760542	4751935	106115296
8	2	4	8	16	3215622	18399594	3215622	4751935	101755936
16	4	8	16	32	2155945	19459271	2155945	4751935	186557040
32	4	8	16	32	1601066	20014150	1601066	4751935	177678976
64	8	16	32	64	1331562	20283654	1331562	4751935	346733824
128	8	16	32	64	1196664	20418552	1196664	4751935	342417088
256	16	32	64	128	1127240	20487976	1127240	4751935	680391040
512	16	32	64	128	1093426	20521790	1093426	4751935	678226944
1024	32	64	128	256	1076505	20538711	1076505	4751935	1354288000

Cache	CRC	CWC	MRC	MWC	Total	Total	Memory	Memory	Total
Line					Misses	Hits	Read	Write	Memory
size							Access	Access	Access
									cycles
1	1	2	4	8	3813375	17801841	3813375	4751935	53268980
2	1	2	4	8	3763126	17852090	3763126	4751935	53067984
									10589444
4	2	4	8	16	3732935	17882281	3732935	4751935	0
8	2	4	8	16	2551488	19063728	2551488	4751935	96442864
									17918062
16	4	8	16	32	1694919	19920297	1694919	4751935	4
									17026435
32	4	8	16	32	1137652	20477564	1137652	4751935	2

									33758812
64	8	16	32	64	1045759	20569457	1045759	4751935	8
									33734828
128	8	16	32	64	1038264	20576952	1038264	4751935	8
									67498854
256	16	32	64	128	1042826	20572390	1042826	4751935	4
									67532960
512	16	32	64	128	1048155	20567061	1048155	4751935	0
									13510731
1024	32	64	128	256	1051389	20563827	1051389	4751935	52

Analysis:

In this section will examine the effect of each parameter on making the DirectMap more tolerant towards spatial locality.

Effect of cacheline size:

These two graphs show that the number of misses decreases and the number hits consequently increase when we increase the cacheline size

Horizontal access array:

Also the same pattern exactly follows in the WT policy of horizontal access.

This show that regardless of the cache size or the policy increasing the cacheline size will reduce the misses hence make the cache more tolerant to spatial locality.

Vertical access array:

Not only is this pattern observed in the horizontal access file but it also holds true for the vertical access program. Thus we conclude that increasing cacheline size in general has a positive effect on spatial locality.

Effect of cache size:

The effect of cache size is observed in each program, horizontal and vertical. Again we only consider the WB policy since the misses and hits are identical for same cache sizes in the same program, thus by only inspecting one writing policy we can generalize over the other.

One can observe that as the cache size since increase the misses decrease more and the hits increase more compared to a smaller cache. This concludes that increasing the cache size increase the Directmap tolerance for spatial locality since it decreases the misses in both programs. It is to be noted that the same pattern happens in the horizontal access program; however the difference in misses is not as significant as here hence a graph won't emphasize the effect. The pattern can be checked in the results though.

Effect of cache-write policy:

As per the results section the cache-write policies have no effect on the misses or the hits in both programs for the same cache size and cacheline size. However they play another important role in changing the number of accesses to memory to write in it when the cache is written.

From these two graphs it is shown that WB policy has less memory write accesses and that these accesses decrease as we increase the cacheline size. On the other hand WT has way more memory write accesses that are constant. Misses have negative effect on spatial locality since they require accessing memory to fetch the new tag which delays the program. WT policy have the same effect since it access the memory more than WB hence delay the program more thus we can assume that WB has a more positive effect on spatial locality than WT.

It is to be noted that the same relation also hold for the vertical access program this can be observed from the results table thus we can generalize this conclusion on both.

Effect of program run:

Here it is noted that the misses in the vertical access array is way more than that in horizontal access array in general for different cacheline sizes and for different cache sizes also since the pattern is apparent in both graphs. Since cache writing policies have no effect on misses of the same cache size and same cacheline size we can conclude that in general the vertical access array program as a negative effect on spatial locality and that the horizontal has a positive effect. This shows that a program can respect or violate the spatial locality regardless of the design of the cache.

Interpretation:

In this section the data fetched in results and the conclusions reached in the analysis are interpreted according to the logic of the DirectMap cache simulator.

Interpreting Data:

Constant Data in the results:

It is noted that the Memory Read Access Attempts and Memory Write Access Attempts are constant in each program.

This is because these attempts are actually the read and the write to the cache, these instructions come from the program itself hence they are unique to it and no matter how many times we run the simulator the program will ask for the same memory addresses to read and write that is why they are constant for each program (in the Pinatrace file there is a constant number of lines that has "R" and lines that has "W" the numbers of these lines doesn't change by changing parameters of the cache)

Memory Reads:

It can be also noted the memory reads always equal the number of misses this is because we assume in this simulator that memory read means load the block from memory and put it in in cache, thus whenever there is a miss there is a read from memory so both numbers are always equal.

Memory Writes:

In all the WT policies for the same program, it is observed that the memory writes are constant. Not only that they also equal the number of cache writes. This is because by definition the write through policy means writing the memory each time the program writes the cache thus these numbers are always equal under the WT policy hence it is constant since writes to caches are constant for the same program as explained earlier.

Interpreting Conclusions:

First conclusion:

Since the cacheline size represent how many bytes there are in a cacheline then it only makes since it has positive effects on locality. Since if we have already accessed a byte by loading its block to cache then it is subsequent byte is there in the cacheline also (if the size of the cacheline permits). And since in spatial locality by definition we need to access subsequent bytes, then having a larger cacheline increases the probability we have that byte already in cache hence decreases misses and has a positive effect on spatial locality as there is less accessing to memory is required.

Second conclusion:

For this we consider we have a DirectMap that is full, all possible places (indices) have loaded cachelines. Then any address from the program with a different tag will result in a miss. Having a larger cache size is will increase the number of addresses from the program needed to fill the cache hence will help decrease the misses more than a smaller cache will do. That is why the cache size showed positive effect on spatial locality since more subsequent bytes can be loaded since there are more cachelines that can support them.

Third conclusion:

Cache write policies have no direct effect on misses however WB still has positive effect on spatial locality since in spatial locality we load subsequent bytes so probabilities of misses are lower and since WB only access memory in misses then it will make the program faster since we need to access memory less. If there is no spatial locality there will be lots of misses in the cache thus the effect of WB on the program won't be as

obvious. Thus one can assume that WB results in better access cycles for spatial locality and that is their positive effect.

Fourth conclusion:

Some programs violate the spatial locality by nature in the sense that they call for memory addresses that are very far apart thus the tags of the addresses is different from the ones already loaded, thus even if the index of the new memory address matches one of loaded the tag is different hence this will result in a miss. We note that the vertical access program implements this since subsequent bytes are in the same row and the program access a new row each time thus the probability that the byte read is in the same block is very low since the byte is very far away from all the previous bytes.