Šifra predmeta: R265 11.04.2023.

Uvod u interaktivno dokazivanje teorema

Vežbe 8

Zadatak 1 Alternirajuća suma neparnih prirodnih brojeva

Pokazati da važi:

$$-1+3-5+\ldots+(-1)^n(2n-1)=(-1)^nn.$$

Primitivnom rekurzijom definisati funkciju alternirajuca-suma :: $nat \Rightarrow int$ koja računa alternirajucu sumu neparnih brojeva od 1 do 2n-1, tj. definisati funkciju koja računa levu stranu jednakosti.

primrec alternirajuca-suma :: $nat \Rightarrow int$ where alternirajuca-suma 0 = undefined | alternirajuca-suma (Suc n) = undefined

Proveriti vrednost funkcije alternirajuca-suma za proizvoljan prirodni broj.

Dokazati sledeću lemu induckijom koristeći metode za automatsko dokazivanje.

lemma alternirajuca-suma n = (-1) $\hat{n} * int n$

Dokazati sledeću lemu indukcijom raspisivanjem detaljnog Isar dokaza.

lemma alternirajuca-suma n = (-1) $\hat{n} * int n$

Zadatak 2 Množenje matrica

Pokazati da važi sledeća jednakost:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, n \in \mathbb{N}.$$

Definisati tip mat2 koji predstavlja jednu 2×2 matricu prirodnih brojeva. Tip mat2 definisati kao skraćenicu uređene četvorke prirodnih brojeva. Uređena četvorka odgovara 2×2 matrici kao

$$(a, b, c, d) \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Definisati konstantu *eye* :: *mat2*, koja predstavlja jediničnu matricu.

Definisati funkciju mat- $mul :: mat2 \Rightarrow mat2,$ koja množi dve matrice.

fun mat-mul where

$$mat$$
- $mul(a1, b1, c1, d1)(a2, b2, c2, d2) = undefined$

Definisati funkciju $mat\text{-}pow :: mat2 \Rightarrow nat \Rightarrow mat2$, koja stepenuje matricu.

fun mat-pow where

$$mat\text{-}pow - - = undefined$$

Dokazati sledeću lemu koristeći metode za automatsko dokazivanje.

lemma mat-pow (1, 1, 0, 1) n = (1, n, 0, 1)

Dokazati sledeću lemu indukcijom raspisivanjem detaljnog Isar dokaza.

lemma $mat\text{-}pow\ (1,\ 1,\ 0,\ 1)\ n=(1,\ n,\ 0,\ 1)$

Zadatak 3 Deljivost

Pokazati sledeću lemu.

Savet: Obrisati One-nat-def i algebra-simps iz simp-a u finalnom koraku dokaza.

lemma

```
fixes n::nat
shows (6::nat) \ dvd \ n * (n + 1) * (2 * n + 1)
```

Zadatak 4 Nejednakost

Pokazati da za svaki prirodan broj n>2 važi $n^2>2*n+1$. Savet: Iskoristiti nat-induct-at-least kao pravilo indukcije i lemu power2-eq-square.

 $\begin{array}{ll} \textbf{thm} \ \ nat\mbox{-}induct\mbox{-}at\mbox{-}least \\ \textbf{thm} \ \ power2\mbox{-}eq\mbox{-}square \end{array}$

lemma n2-2n:

fixes n::natassumes $n \ge 3$ shows $n^2 > 2 * n + 1$ using assms