Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 4. Basic Message Coding

文前又传述了 message (m=0/1)

Lecturer: Jin HUANG

\$4 message.

4.1 Mapping Messages into Message Vectors

Overview

S cyle had s should all color

One bit only to more complicated message.

- Source coding: maps messages into sequences of symbols.
 - Direct message coding
 - Code separation
- Modulation: maps sequences of symbols into physical signals.
 - Time-division multiplexing
 - Space-division multiplexing
 - Frequency-division multiplexing
 - Code-division multiplexing

Direct Message Coding

A unique, predefined message mark $w \in \mathcal{W}$ to represent each message $m \in \mathcal{M}$.

• One-one mapping: $|\mathcal{W}| = |\mathcal{M}|$.

Detector: maximum likelihood detection

• w(m) with the highest detection value.

ightharpoonupDesign of ${\cal W}$

- False positive rate
- Fidelity
- Robustness
- ...

32 mesage.

Code separation: far away from each other.

To avoid confusion

Correlation in \mathcal{W}

- Low correlations with one another: good.
- Negative correlation with one another: better.
 - Embedding one decreases the other.

• E.g.
$$m = \{0, 1\} \Rightarrow (2m - 1) = \{1, -1\}$$
. THE

More Messages

Placing $|\mathcal{M}|$ points on the surface of an N-dimensional sphere.

Three message mark vectors in a two-dimensional plane of marking space.

Low Dimension

 $N \leq |\mathcal{M}|$: randomly generated codes are good.

Three-message vectors in three-dimensional space.

High Dimension

 $N\gg |\mathcal{M}|$: close to be orthogonal. Like

Three-message vectors in 256-dimensional space.

The Use of "Orthogonal"

Multiple messages in a work for

Linear correlation.

Multisymbol Message Coding

Direct message coding is not efficient

- Detect for all marks.
- For a 16 bit information: 65536.
- Detector: compare with 65536 marks.

Multisymbol Message Coding!

Sequence of Symbols

Giving an alphabet A, a length L sequence:

- $|\mathcal{A}|^L$ different messages.
- Sequence: the order is important!
- Direct message coding: L=1.
- 16 bit information $|\mathcal{A}|^{\frac{1}{2}} = 65536 \text{ for direct message coding.}$ $|\mathcal{A}|^{8} = 65536 \text{ for 4-symbol 8-length coding.}$
 - - For each index/order: compare with 4 marks.

总实现最次数二每一位需要比较次数 * 总位数

The Index/Order

- Time-division multiplexing
- Space-division multiplexing
- Frequency-division multiplexing
- Code-division multiplexing

Time- and Space-Division Multiplexing

体孤顺序性.

Divide the work into disjoint regions

- In space or time
- One symbol in each part.

Samples: A length 4 sequence.

- Audio: 4 clips in 1/4 length.
- Image: 4 blocks in 2×2 layout.

Frequency-Division Multiplexing

Disjoint bands in the frequency domain

- One symbol in each band. This detector is this band
- Frequency domain $\mathbf{x} = \mathbf{x}[i] \Phi[i] = \mathbf{x}.$
 - Decomposition: $\mathbf{x} = \Phi^{-1}\mathbf{f}$.
 - Marking space
 - \bullet via a linear transformation \mathcal{T} from media space.

Samples:

- Audio: Fourier Transform
- Image: Discrete Cosine Transform

Code-Division Multiplexing

A table W_{AL} in index and alphabet.

• $L \times |\mathcal{A}|$ reference marks.

Requirements on $\mathcal{W}_{\mathcal{AL}}$

Marks in \mathbf{w}_m :

- m[i] and m[j] have little correlation.
 - Close to orthogonal: concurrent presence.

$$\mathcal{W}_{\mathcal{AL}}[i, a] \cdot \mathcal{W}_{\mathcal{AL}}[j, b] \to 0, \text{ if } i \neq j.$$

- Only one symbol in a index.
 - Negative correlation: distinguishable.

$$\mathcal{W}_{\mathcal{AL}}[i,a] \cdot \mathcal{W}_{\mathcal{AL}}[i,b] \to -1, \text{if } a \neq b.$$
 (1)

Equivalence to Time-Division

Pad the marks with zeros

Equivalence to Space-Division

Pad the marks with zeros

Equivalence to Frequency-Division

分成不同频域

Convert symbols in each band back to the temporal or spatial domains.

If the transform is linear:

- Overlap in time or space.
- But zero correlation.

E SIMPLE 8/D SIMPLE_8 1

8-bit integer: length 8 binary string,

$$L=8, |\mathcal{A}|=2.$$

- At each position
 - Distinguishable: negative correlation.
 - $\mathcal{W}_{A\mathcal{L}}[i,1] = \mathbf{w}_{ri} = -\mathcal{W}_{A\mathcal{L}}[i,0]$.
- Among positions
 - Gaussian distributions with zero mean.
- Normalize \mathbf{w}_m to unit length. $(\sqrt{16})$

Project: System 4

E_SIMPLE_8/D_SIMPLE_8

Embedder:

 $\mathbf{c}_w = \mathbf{c}_o + \alpha \mathbf{w}_m$.

Detector:

- For each i: check \mathbf{w}_{ri} .
- If is not watermarked
 - The output message is random. read 4.3

Performance

- 6 8-bit integers in each of 2000 images.
 - Larger embedding strength $\alpha = 2$.
 - The message pattern is scaled to have unit standard deviation, thus $\alpha/\sqrt{8}$.
 - 26 out of 12000 are wrong: confused by $m_a, m_b, a \neq b$.
 - Reason:
 - Maximum correlation between two different message vectors is high.

Presentation: Hamming

- Hamming distance.
- Hamming code.
- Strategy of using Hamming code in watermark

4.2 Error Correction Coding

Motivation

In the set of all multisymbol sequences S.

• $\mathbf{w}_{m_a}, \mathbf{w}_{m_b}, m_a, m_b \in \mathcal{S}, a \neq b$ may be similar.

Sample

•
$$L = 3, |\mathcal{A}| = 4, \mathcal{W}_{\mathcal{AL}}[i, j] \cdot \mathcal{W}_{\mathcal{AL}}[i, j] = N$$

- $\mathbf{w}_{312} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,2]$.
- $\mathbf{w}_{314} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,4]$.
- Inner product:

$$\mathcal{W}_{\mathcal{A}\mathcal{L}}[i,a]\cdot\mathcal{W}_{\mathcal{A}\mathcal{L}}[j,b] = 0, \quad i \neq j$$

$$\implies \quad \mathbf{w}_{312}\cdot\mathbf{w}_{314} = \mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3]\cdot\mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3]$$

$$\quad + \mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1]\cdot\mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1]$$

$$\quad + \mathcal{W}_{\mathcal{A}\mathcal{L}}[3,2]\cdot\mathcal{W}_{\mathcal{A}\mathcal{L}}[3,4]$$

$$\quad \geq N+N-N=N$$

ullet h different symbols in a length L sequence

$$(L-2h)N.$$

The Idea of Error Correction Codes

Decompose all possible sequences S into $S_c \cup \bar{S}_c$.

- S_c: Code words 标稿 (补析)
 - Messages to encode.
 - Well separate to each other.
- $\bar{\mathcal{S}}_c$: Corrupted code words
 - Polluted messages.
 - Associated with the closest code word.

 $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$

Error Correction Code (ECC)

To preserve the capacity

- Increase the length of sequence.
- Expand the alphabet.

Increase the Length of Sequence

Sample

- ullet 4-bits message set ${\mathcal M}$
 - Length 4 binary sequence, 16 messages.
- 7-bits word space $S \vdash h=3$
 - Length 7 binary sequence, 128 words.
 - $|\mathcal{S}_c| = |\mathcal{M}| = 16.$ $|\mathcal{S}_c| = |\mathcal{M}| = 16.$
 - $a, b \in \mathcal{S}_c, a \neq b$ have at less 3 different bits.

ン位形性.
a L 多知-化即相同 Why 3? Flip one bit for each of the two.

দ্দেশ্লেটার Decode $s \in \mathcal{S}$: find $c \in \mathcal{S}_c$ has at most one different bit.

$$\sum^{L} \left(C_{x}^{0} + C_{x}^{1} + \dots + C_{x}^{h} \right) \leq 2^{x}$$