Advanced Network Technologies

Review

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dr. Wei Bao | Lecturer School of Computer Science

- application: supporting network applications
 - FTP, SMTP, HTTP
- Assignment Project Exam Help
 - TCP, UDP

- https://eduassistpro.github.io/
- network: routing of data destination
 - Add WeChat edu assist pro
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi)
- physical: bits "on the wire"

application

transport

network

link

physical

Internet Protocol Stack: Practice

Internet Protocol Stack: Theory

Internet Protocol Stack: Programming/Experiment

Internet Protocol Stack

application

HTTP, FTP, SMTP, DNS, P2P

Assignment Project Exam Help

transport

https://eduassistpro.github.io/

network

Add WeChat edu_assist_pro

link

physical

HTTP: hypertext transfer protocol

Web's application layer protocol Assignment Project Exam

client/server mod

- client: browser t https://eduassistpro.github.io/ requests, receives, (using HTTP protocol) and WeChat edu_assist "displays" Web objects

- server: Web server sends (using HTTP protocol) objects in response to requests

server running Apache Web server

iPhone running

Safari browser

non-persistent HTTP

persistent HTTP

- over TCP connection sent over single TCP
 - connection th https://eduassistpro.githlagtween
- downloading multipleWeChat edu_assist_pro objects required multiple connections

FTP: the file transfer protocol

- > SMTP: delivery/stora https://eduassistpro.github.io/
- mail access protocol: retrieval from ser
 - POP: Post Office Protocol [RFC 1939]: edu_assist_prodownload
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: Using a browser to access a webmail https://webmail.sydney.edu.au

host at cis.poly.edu wants
IP address for
gaia.cs.umass.edssignment Project Exam Help

iterated query: https://eduassistation.jo/

- contacted server replies with named WeChat edu_assist proserver to contact
- "I don't know this name, but ask this server"

1 8
requesting host cis.poly.edu

TLD DNS server .edu DNS server

root DNS server

authoritative DNS server dns.cs.umass.edu

gaia.cs.umass.edu

TLD DNS server

edu DNS server

recursive query:

puts burden of name resolution Assignment Project Exam Help contacted name https://eduassistaro.github.io/ server

* heavy load at uppend WeChat edu_assist_pro5 levels of hierarchy?

> requesting host cis.poly.edu

authoritative DNS server dns.cs.umass.edu

root DNS server

gaia.cs.umass.edu

BitTorrent: tit-for-tat

- (I) Alice sends chunks to those four peers currently sending her chunks at highest rate
- (2) Alice randomly unchokes Bob
- (3) Alice becomes one of Bob's top-four providers;
- (4) Bob becomes one of Alice's top-four providers
 Assignment Project Exam Help

Circular DHT with shortcuts

each peer keeps track of predecessor, successor, short cuts.

Internet Protocol Stack

application

COAP, MQTT, QUIC

Assignment Project Exam Help

transport

https://eduassistpro.github.io/

network

Add WeChat edu_assist_pro

link

physical

- CoAP provides a request/response interaction like HTTP.
- Over UDP.
- GET, PUT, observement Project Exam Help

- MQTT: Lightweight, publish-subscribe network protocol that transports messages between devices.
- Runs over TCP
- Two types of entires: Project Exam Help
 - Broker: se https://eduassistpro.github.io/
 Client: de

Add WeChat edu_assist_pro

Over UDP Avoid head-of-line blocking.

Assignment Project Exam Help

https://eduassistpro.github.io/packet and if

Add WeChat edu_assist_pro

QUIC is solving this issue and it will take care of packet lost in particular stream.

QUIC https duassistpro.github.it QUIC header Frame Fr Connection eChat edu Other Strea Stream 1 ID ACK frame Offset Offset type Length Length Packet number

Multiplexing/demultiplexing

Stop and wait

Selective repeat

TCP flow control

receiver "advertises" free buffer space by including rwnd value in TCP header of receiver-to-sender segmentssignment Project Exam

- RcvBuffer size s
options (typical defauhttps://eduassistpro.github.io/bytes)

- many operating system and the chat edu_assist_prediction of the control of the

 sender limits amount of unacked ("in-flight") data to receiver's
 rwnd value

y guarantees receive buffer will not overflow

Help buffered data
thub.io/ free buffer space

TCP segment payloads

receiver-side buffering

TCP Congestion Control

LastByteSent-LastByteAcked < cwnd

 cwnd is dynamic, function of perceived network congestion

rate
$$\approx \frac{\text{cwnd}}{\text{RTT}}$$
 bytes/sec

TCP Congestion Control

TCP round trip time, timeout

timeout interval: EstimatedRTT plus "safety margin" EstimatedRTTASSignmentsPiniocedExtam WesampleRTT https://eduassistpro.github.io/ DevRTT = (1Add state Chart edu_assistrorp (typical TimeoutInterval = EstimatedRTT + 4*DevRTT "safety margin" estimated RTT

application Socketsignment Project Exam Hel transport https://eduassistpro.github.io/ network Add WeChat edu_assist_pro link physical

Application Assignment Project Exam Help

MPTCP

https://eduassistpro.github.io/

Add WeChat edu_assist_pro Subflow ! Subflow

https://pocketnow.com/multipath-tcp

- Initialization: MP_CAPABLE, JOIN, Token
- Sequence number: Subflow sequence number + data sequenc
- Flow control: https://eduassistpro.githybrio/ll subflows.
- Congestion coathol. Webchat edu_assistemproirness.

Internet Protocol Stack

Multimedia networking

Streaming multimedia: DASH

Adaptive playout delay

- goal: low playout delay, low delay loss rate
- approach: adaptive playout delay adjustment:
 - estimate network delay, adjust playout delay at beginning of each talk spurt Assignment Project Exam Help - silent periods compressed and elongated
- > adaptively estimate https://eduassistpro.gothentially/weighted moving average):

$$d_{i} = (1-\alpha)d_{i-1} + \alpha (r_{i} - t_{i})$$

$$delay \ estimate \ small \ constant, \ time \ received \ - \ time \ sent \ (timestamp)$$

$$measured \ delay \ of \ ith \ packet$$

also useful to estimate average deviation of delay, v_i

 $V_i = (1-\beta)V_{i-1} + \beta | r_i - t_i - d_i |$ Assignment Project Exam Help
• estimates d_i , v_i calculated for every received packet, but used only

at start of talk spurthttps://eduassistpro.github.io/

Add WeChat edu_assist_pro for first packet in talk spurt, playout

$$playout-time_i = t_i + d_i + Kv_i$$

payload	sequence	time stamp	Synchronization	Miscellaneous
type	number		Source ID (SSRC)	fields

- payload type (7 bits): indicates type of encoding currently being used.

 Assignment Project Exam Help
- being used. Assignment Project Exam Help sequence # (16 bits): increment by one for each RTP packet sent https://eduassistpro.github.io/
- timestamp field instant o in this RTP data Adck VeChat edu_assist_pro
- Sequence + timestamp: packet loss or new talk spurt.

Scheduling policies: priority

high priority queue

(waiting area)

priority scheduling: send highest priority queued packet

non-preemptive

Assignment Project Exam

multiple classes, w https://eduassistpro.githqub.jio/ priorities

 class may depend on marking or other header info, A.G. IP source/dest, port numbers, etc.

real world example?

Scheduling policies (con't)

Round Robin (RR) scheduling:

- multiple classes, with equal priority
- ocyclically scan class queues, sending one complete packet from each class (if axailable) ment Project Exam Help

https://eduassistpro.github.io/
arrivals

packet in service
1 3 2 4 5
departures
1 3 3 4 5

Scheduling policies (con't)

Weighted Fair Queuing (WFQ):

- Each class i is assigned a weight w_i
- Guarantee: if there are class i packets to send (during some interval) then class i receives a fraction of service which is $w_i/(\sum w_j)$ Assignment Project Exam Help
- On a link with transmi roughput $Rw_i/(\Sigma w_j)$ https://eduassistpro.github.io/

Policing mechanisms: implementation

token bucket: limit input to specified burst size and average rate (useful to police the flow)

Assignment Project Exam Help

https://eduassistpro.github.io/

- bucket can hold b tokens
- a packet must remove a token from bucket to be transmitted into the network
- > tokens generated at rate *r token/sec* unless bucket full (token ignored)
- over interval of length t: number of packets admitted less than or equal to (rt + b)
- Token-generation rate r limits the rate at which packets enter the network

Wireless Physical layer

- Different physical layer modulation:

10-1

In final exam.

QAM256 (8 Mbps)

SNR(dB)

QAM16 (4 Mbps)

BPSK (1 Mbps)

CDMA

Hidden terminal and exposed terminal

Hidden terminal problem

Exposed terminal problem

Mobility via indirect routing

Mobility via direct routing

4G LTE

Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
 - best effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- Assignment Project Exam Help

 ... but performance-wise:
- - packet loss/delay due t https://eduassistpro.glith@line/ayer retransmissions), and h
 - TCP interprets loss as condestion, with the edu_assisting on un-necessarily

Internet Protocol Stack: Theory

Assignment Project Exam Help

https://eduassistpro.github.io/

Number Time

- W: average waiting time in queue
 X: average service time dd WeChat edu_assist_pro
- T: average time spent in system (T = W + X)
- N_O = average number of customers in queue
- ρ = utilization = average number of customers in service
- N = average number of customer in system $(N = N_O + \rho)$
- Want to show later: $N = \lambda T$ (Little's theorem)
- λ Average arrival rate

Stationary Distribution Derivation

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Transition diagram and bala ons
Stationary distribution
Average # of users
Average waiting time

In final exam.

Internet Protocol Stack

application Assignment Project Exam Help transport https://eduassistpro.github.io/ network dd WeChat edu assist pro link physical

How to judge if max-min fairness is satisfied. How to find max-min fairness: Bottleneck approach

Each Ansignment Project FrancHelp

Assignment 1 common mistake

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Common mistake

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Why is it wrong?

Common mistake

These are not independent events!

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

P(A and B) = P(A) P(B) is true for independent events.

 $d_1'>r_{ab}$ is happens, -> more likely r_{ab} is small -> more likely $d_2'>r_{ab}$ is also true.

Q: Could you give an example when the above approach is correct? A: r_{ab} is a constant. d_1' , d_2' , d_3' , d_4' are independent and thus $d_1' > r_{ab}$, $d_1' > r_{ab}$, $d_3' > r_{ab}$, $d_4' > r_{ab}$ are independent!

Another correct way

Because r_{ab} , d_1 ', d_2 ', d_3 ', d_4 ' are continuous random variable, and independent and they follow the same distribution, (i.i.d. independent and identically distributed), so that they have the same probability, i.e., 1/5, to be the smallest one. Assignment Project Exam Help

Therefore P(rab >minhttps://eduassistpro.github.io/

Simple way to verify 4/5

Assignment Project Exam Help

https://eduassistpro.github.io/

- The marks of final exam sum up to 100 and it is worth 60% of your overall mark.
- Online, open book, (type C)
- 130 minutes Assignment Project Fram Help
- › Double-pass pohttps://eduassistpro.github.io/
- 7 questions in total Add WeChat edu_assist_pro
 Calculation, short answer and response
- Type your answers in the blank below, or write down, scan/photograph, and upload in the end.
- Spend time wisely. Question 1 doesn't mean easiest.

No programming questions

No Wireshark Project Exam Help

https://eduassistpro.github.io/

- By appointment
 - wei.bao@sydney.edu.au
 - zhengjie.yang@sydney.edu.au
 - zwan5430@uni.svansignment Project Exam Help
- Assignment 2 commo https://eduassistpro.github.io/
 - 4-Dec-2020 (Fri), 3pm
 - Non-compulsory, no recorded WeChat edu_assist_pro
- Last-chance office hour
 - 7-Dec-2020 (Mon), 3pm (tentative), Zoom
 - Non-compulsory, no recording

- Unit of Study Surveys (USS) for Semester 2 are now open!
- Login to the University's Student Survey System now to complete a survey:
- https://student-Austignment-Project/FrammeHelp
- Survey completed will https://eduassistpro.githuppide Watch and JB HiFi Gift Cards

 Add WeChat edu_assist_pro