Package 'bGWAS'

October 9, 2023

```
Type Package
Title Bayesian Genome-Wide Association Study
Description Package regrouping functions to perform Bayesian Genome-Wide Association Stud-
     ies (bGWAS). See McDaid et al (2017) for more information about the method.
Version 1.0.3
License GPL-2 | file LICENSE
Author Ninon Mounier
Maintainer Ninon Mounier <mounier.ninon@gmail.com>
URL https://github.com/n-mounier/bGWAS
Encoding UTF-8
LazyDataCompression xz
RoxygenNote 7.2.3
Depends R (>= 4.3.1),
     dplyr (>= 1.1.3),
     magrittr (>= 2.0.3),
Suggests testthat,
     knitr,
     remotes,
     rmarkdown
Imports calibrate (>= 1.7.7),
     data.table (>= 1.14.8),
     ggplot2 (>= 3.4.3),
     gplots (>= 3.1.3),
     qqman (>= 0.1.9),
     readr (>= 2.1.4),
     Rcpp (>= 1.0.11),
     rlang (>= 1.1.1),
     R.utils (>= 2.12.2),
     stringr (>= 1.5.0),
     tibble (>= 3.2.1),
     tidyr (>= 1.3.0),
     TwoSampleMR (>= 0.5.7)
Remotes MRCIEU/TwoSampleMR,
```

VignetteBuilder knitr

2 all.equal.bGWAS

R topics documented:

select_priorGWASs	
print_log_bGWAS	
list_traits	
list_priorGWASs	
heatmap_bGWAS	
extract_results_bGWAS	
extract_MRcoeffs_bGWAS	ϵ
bGWAS	
all.equal.bGWAS	2

all.equal.bGWAS

Equality test for bGWAS objects

Description

Equality test for bGWAS objects

Usage

```
## S3 method for class 'equal.bGWAS'
all(target, current)
```

Arguments

target an object of class bGWAS current an object of class bGWAS

Value

all.equal

bGWAS 3

bGWAS

bGWAS - main function

Description

Performs a Bayesian GWAS from Summary Statistics, using publicly available results to calculate the prior effects of the SNPs and compare it to observed z-scores

Usage

```
bGWAS(
  name,
  GWAS,
  Z_matrices = "~/ZMatrices/",
  prior_studies = NULL,
  MR_{threshold} = 1e-06,
  MR_ninstruments = 3,
  MR_pruning_dist = 500,
  MR_pruning_LD = 0,
  MR_shrinkage = 1,
  stepwise_threshold = NULL,
  prior_shrinkage = NULL,
  sign_method = "p",
  sign_{thresh} = 5e-08,
  use_permutations = FALSE,
  res_pruning_dist = 500,
  res_pruning_LD = 0,
  save_files = FALSE,
  verbose = TRUE
)
```

Arguments

name	The name of the analysis (character)			
GWAS	The path to the conventional GWAS of interest, the ID of the GWAS from the list of studies available (prior GWASs), or a data. frame (character, numeric or data. frame)			
Z_matrices	The path to the folder containing Z-Matrices, $default="\sim/ZMatrices/"$ (character)			
prior_studies	The IDs of prior GWASs to use for the analysis, default=NULL, will include all the prior GWASs available (numeric vector)			
MR_threshold	The threshold used to select strong instruments for MR, should be lower than 1e-5, default=1e-6 (numeric)			
MR_ninstruments				
	The minimum number of strong instruments needed to use a prior GWAS, should be between 2 and 8, default=3 (numeric)			
MR_pruning_dist				
	The distance used for pruning MR instruments (in Kb), should be between 10			

and 1000, default=500 (numeric)

4 bGWAS

MR_pruning_LD The LD threshold used for pruning MR instruments, should be between 0 and 1 (if 0, distance-based pruning is used), default=0 (numeric)

tween MR_threshold and 1 (no shrinkage), default=1 (numeric)

stepwise_threshold

The p-value threshold used for inclusion/exclusion of Prior GWASs during the stepwise selection approach, should be between 0.05 and 0.0005, default=NULL will use 0.05 divided by the number of Prior GWASs tested (numeric)

prior_shrinkage

The p-value threshold used for shrinkage before calculating the prior, should be between MR_threshold and 1, default=NULL will use MR_shrinkage (nu-

meric)

sign_method The method used to identify significant SNPs, should be "p" for p-value or

"fdr" for false discovery rate, default="p" (character)

sign_thresh The threshold used to identify significant SNPs, default="5e-8" (numeric)

use_permutations

A logical indicating if BF p-values should be estimated using the permutation approach, default=FALSE

res_pruning_dist

The distance used for pruning results (in Kb), should be between 10 and 1000,

(if set to NULL, no pruning is done), default=500 (numeric)

res_pruning_LD The LD threshold used for pruning results, should be between 0 and 1 (if 0,

distance-based pruning is used), default=0 (numeric)

save_files A logical indicating if the results should be saved as files, default=FALSE

verbose A logical indicating if information on progress should be reported, default=TRUE

Details

Name and GWAS are required arguments. If GWAS is a path to a file (regular or .gz) or a data.frame, it should contain the following columns:

SNPID (rs numbers) should be : rs, rsid, snp, snpid, rnpid

A1 should be: a1, alt, alts A2 should be: a2, a0, ref Z should be: z, Z, zscore

If Z is not present, it can be calculated from BETA and SE.

BETA should be: b, beta, beta1

SE should be: se, std

Note: in order to get rescaled (prior/posterior/corrected) effects, BETA and SE should be provided.

Z-Matrix files, containing Z-scores for all prior GWASs should be downloaded separately and stored in "~/ZMatrices" or in the folder specified with the argument Z_matrices. See [here](https://github.com/n-mounier/bGWAS) for more informations.

Use list_priorGWASs() to see all the prior GWASs available. Using one of them as your conventionnal GWAS (argument GWAS = numeric ID) will automatically remove it from the list of prior GWASs used to build the prior.

Use select_priorGWASs() to automatically select the prior GWASs to be included/excluded when building the prior (argument prior_studies).

Value

bGWAS() returns an object of class "bGWAS".

Additionnaly, if save_files=T, several files are created in the folder ./name/:

- "PriorGWASs.tsv" contains information about all prior GWASs (general info + status (used/excluded) + MR coefficients)
- "CoefficientsByChromosome.csv" contains the MR estimates when masking the focal chromosome (22 coefficients / prior GWASs used for prior estimation)
- "PriorBFp.csv" contains BF and p-values, prior, posterior and direct effects estimates for all SNPs
- "SignificantSNPs.csv" contains BF and p-values, prior, posterior and direct effects estimates for a subset of significant SNPs

Examples

```
# Permorm bGWAS, using a small conventional GWAS included in the package (data.frame)
# and selecting a subset of studies for the prior
## Not run: top
data("SmallGWAS_Timmers2019")
MyStudies = select_priorGWASs(include_traits=c("Blood Pressure", "Education"),
                              include_files=c("cardiogram_gwas_results.txt",
                                   "All\_ancestries\_SNP\_gwas\_mc\_merge\_nogc.tbl.uniq.gz"))
# 6 Prior GWASs used
list_priorGWASs(MyStudies)
 A = bGWAS(name="Test_UsingSmallDataFrame",
          GWAS = SmallGWAS_Timmers2019,
          prior_studies=MyStudies,
          MR_{threshold} = 1e-6,
          stepwise_threshold=0.05,
          save_files=T)
## End(Not run)
# Permorm bGWAS, using a conventional GWAS from the list of prior GWASs
## Not run: MyGWAS = 3
list_priorGWASs(MyGWAS)
# Coronary Artery Disease GWAS (CARDIOGRAM)
B = bGWAS(name = "Test_UsingGWASfromPriorGWASs",
         GWAS = MyGWAS)
## End(Not run)
```

 ${\tt coefficients_plot_bGWAS}$

Coefficients Plot from bGWAS results

Description

Creates a Coefficients Plot (causal effect of each Prior GWASs)

Usage

```
coefficients_plot_bGWAS(obj, save_file = F, file_name = NULL)
```

Arguments

obj an object of class bGWAS created using bGWAS()

save_file A logical indicating if the graphic should be saved, default=FALSE, graphic

will be displayed on the on-screen device

file_name The name of the file saved (is save_file is TRUE) default=NULL, will used

NameOfYourAnalysis_CoefficientsPlot.png

Value

a Coefficients Plot

extract_MRcoeffs_bGWAS

Extract MR coefficients from bGWAS results

Description

Extracts MR coefficients (multivariable genome-wide and per-chromosome estimates)

Usage

```
extract_MRcoeffs_bGWAS(obj)
```

Arguments

obj an object of class bGWAS created using bGWAS()

Value

a tibble containing the MR coefficients (1 estimate using all chromosomes + 22 estimates with 1 chromosome masked)

extract_results_bGWAS Extract SNPs results from bGWAS results

Description

Extracts SNPs results from bGWAS results (BFs, p-value, prior, posterior and direct effects, depending on the value of the parameter results)

Usage

```
extract_results_bGWAS(obj, SNPs = "significant", results = "BF")
```

Arguments

obj an object of class bGWAS created using bGWAS()

SNPs, "all" / "significant", default="significant"

results, "BF" / "posterior" / "direct" / "everything", default="BF"

Details

For all value of results, basic informations about the SNPs will be returned: rsid: rs number chrm_UK10K: chromosome (obtained from UK10K data) pos_UK10K: position (obtained from UK10K data) alt: alternative (effect) allele ref: reference allele beta: observed effect size (if possible) se : observed effect size (if possible) z_obs : observed Z-score In addition, if results = "BF" the following information will be returned: mu_prior_estimate : prior effect estimate (z-score scale) mu_prior_std_error : prior effect standard error (z-score scale) beta_prior_estimate : prior effect estimate (beta scale, if possible) beta_prior_std_error: prior effect standard error (beta scale, if possible) BF: Bayes Factor BF_p: Bayes Factor p-value BF_fdr: Bayes Factor FDR (only if FDR used to identify significant SNPs) Alternatively, if results = "posterior" the following information will be returned: mu_posterior_estimate : posterior effect estimate (z-score scale) mu_posterior_std_error : posterior effect standard error (z-score scale) beta_posterior_estimate: posterior effect estimate (beta scale, if possible) beta_posterior_std_error: posterior effect standard error (beta scale, if possible) z_posterior: posterior Z-score p_posterior: posterior effect p-value fdr_posterior: posterior effect FDR (only if FDR used to identify significant SNPs) Alternatively, if results = "direct" the following information will be returned: mu_direct_estimate : direct effect estimate (z-score scale) mu_direct_std_error : direct effect standard error (z-score scale) beta_direct_estimate : direct effect estimate (beta scale, if possible) beta_direct_std_error: direct effect standard error (beta scale, if possible) z_direct: direct Z-score p_direct : direct effect p-value fdr_direct : direct effect FDR (only if FDR used to identify significant SNPs)

Alternatively, if results = "everything" all the results described above will be returned (possible only if SNPs = "all").

CRR: corrected to raw ratio (ratio between direct effect and observed effect)

8 heatmap_bGWAS

Value

a tibble containing the results for all / significant SNPs

get_RSquared_bGWAS Get squared correlation between observed and prior effects from bG-

WAS results

Description

Returns squared correlation between observed and prior effects, for different subsets of SNPs (all, the ones having at least a moderate effects - p-value < 0.001 -, MR instruments)

Usage

```
get_RSquared_bGWAS(obj, SNPs = "all")
```

Arguments

obj an object of class bGWAS created using bGWAS()

SNPs, "all" / "moderate" / "instruments"

Value

a squared correlation

heatmap_bGWAS

Heatmap of SNP effects on prior traits from bGWAS results

Description

Creates a heatmap of SNP effects on prior traits

Usage

```
heatmap_bGWAS(obj, SNPs = NULL, save_file = F, file_name = NULL)
```

Arguments

obj an object of class bGWAS created using bGWAS()

SNPs A data frame containing the SNPs (rsid) to use in the first column, and option-

nally the text that should be plotted in addition to rsid in the second column

default=NULL.

save_file A logical indicating if the graphic should be saved, default=FALSE, graphic

will be displayed on the on-screen device

file_name The name of the file saved (is save_file is TRUE) default=NULL, will used

 $Name Of Your Analysis_Heatmap.png$

Value

a Heatmap

list_files 9

Description

Lists the filenames of the prior GWASs

Usage

```
list_files(IDs = NULL, Z_matrices = "~/ZMatrices/")
```

Arguments

IDs the IDs of the studies to print, default="~/ZMatrices/" will list all of them

(numeric),

Z_matrices The path to the folder containing Z-Matrices, default="~/ZMatrices/" (char-

acter)

Value

List of files

list_priorGWASs	List prior GWASs
-----------------	------------------

Description

Lists the studies that can be used as prior GWASs

Usage

```
list_priorGWASs(IDs = NULL, Z_matrices = "~/ZMatrices/")
```

Arguments

IDs the IDs of the studies to print, default="~/ZMatrices/" will list all of them

(numeric),

Z_matrices The path to the folder containing Z-Matrices, default="~/ZMatrices/" (char-

acter)

Value

a tibble containing prior GWASs information

list_traits

List prior GWASs traits Lists the traits of the prior GWASs

Description

List prior GWASs traits Lists the traits of the prior GWASs

Usage

```
list_traits(Z_matrices = "~/ZMatrices/")
```

Arguments

Z_matrices

The path to the folder containing Z-Matrices, default="~/ZMatrices/" (character)

Value

List of traits

Description

Creates a Manhattan Plot from bGWAS results (for performance, only SNPs with p-value or FDR < 0.05 are plotted)

Usage

```
manhattan_plot_bGWAS(
  obj,
  save_file = F,
  file_name = NULL,
  annotate = T,
  SNPs = NULL,
  results = "BF"
)
```

Arguments

obj an object of class bGWAS created using bGWAS()

save_file A logical indicating if the graphic should be saved, default=FALSE, graphic

will be displayed on the on-screen device

NameOfYourAnalysis_ManhattanPlot.png

print.bGWAS 11

annotate A logical indicating if the significant SNPs identified in the analysis should be

annotated on the plot, default=TRUE If your results are not pruned or if you have a high number of significant SNPs, be aware that annotate=TRUE might decrease readability of the figure. You could define a set of SNPs to annotate

using SNPs.

SNPs A data frame containing the SNPs (rsid) to annotate in the first column, and

optionnally the text that should be plotted in the second column, and the color

in the third column, default=NULL, only evaluated if annotate=TRUE.

results, "BF" / "posterior" / "direct", default="BF"

Details

```
If results = "BF", BF p-values / fdr-values will be used.
```

If results = "direct", direct effect p-values / fdr-values will be used.

If results = "posterior", posterior effect p-values / fdr-values will be used.

Value

a Manhattan Plot

print.bGWAS

Print a bGWAS object

Description

Print a bGWAS object

Usage

```
## S3 method for class 'bGWAS'
print(x, ...)
```

Arguments

x an object of class bGWAS

... further arguments

Value

print

12 select_priorGWASs

print_log_bGWAS

Print log from bGWAS results

Description

Prints the log (everything that is printed during a bGWAS analysis) with verbose=TRUE)

Usage

```
print_log_bGWAS(obj)
```

Arguments

obj

an object of class bGWAS created using bGWAS()

select_priorGWASs

Select prior GWASs

Description

Allow the quick selection of a subset of prior GWASs based on 2 criteria. First, include all the files specified (if all including parameters are NULL, include all studies), and then remove all the files specified (if all excluding parameters are NULL, keep all studies included at the step before)

Usage

```
select_priorGWASs(
  include_files = NULL,
  include_traits = NULL,
  exclude_files = NULL,
  exclude_traits = NULL,
  Z_matrices = "~/ZMatrices/",
  verbose = F
)
```

Arguments

```
include_files list of file names (see list_files()) (character)
include_traits list of trait (see list_traits()) (character)
exclude_files list of file names (see list_files()) (character)
exclude_traits list of trait (see list_traits()) (character)

Z_matrices The path to the folder containing Z-Matrices, default="~/ZMatrices/" (character)
verbose boolean, default = FALSE
```

Value

IDs (numeric) of studies that meet the criteria

Examples

```
## Not run:
AllStudies = list_priorGWASs()
list_traits()
MyStudies = select_priorGWASs(include_traits=c("Heart Rate", "Body Mass Index", "Smoking"))
AllStudies[AllStudies$ID %in% MyStudies, c("ID", "Name", "Trait", "File")]
## End(Not run)
```

SmallGWAS_Timmers2019 Assocation results between genotypes and parental lifespan (LifeGen Consortium).

Description

Subset of the original dataset containing the estimated effect of SNPs on parental survival

Usage

```
SmallGWAS_Timmers2019
```

Format

A data frame with 100000 rows and 5 variables:

```
rsid rsid of the SNP
a1 effect allele for the SNP
a0 reference allele for the SNP
beta estimated effect size for the SNP
```

se standard error of the estimated effect size for the SNP

Source

```
https://datashare.is.ed.ac.uk/handle/10283/3209
```

Index

```
* datasets
    SmallGWAS_Timmers2019, 13
all.equal.bGWAS, 2
bGWAS, 3, 6–8, 10, 12
coefficients_plot_bGWAS, 5
extract_MRcoeffs_bGWAS, 6
extract_results_bGWAS, 6
get_RSquared_bGWAS, 8
heatmap_bGWAS, 8
list_files, 9, 12
list_priorGWASs, 4, 9
list_traits, 10, 12
manhattan_plot_bGWAS, 10
print.bGWAS, 11
print_log_bGWAS, 12
select_priorGWASs, 4, 12
SmallGWAS_Timmers2019, 13
```