Logistic regression interpretation

Class activity, Part I

https://sta214-f22.github.io/class_activities/ca_lecture4.html

$$\logigg(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}igg) = -2.901 + 0.0036~Score_i$$

Calculate the odds ratio comparing odds of acceptance for a student with a GRE score of 701 to a student with a GRE score of 700.

$$\logigg(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}igg) = -2.901 + 0.0036 \ Score_i$$

Calculate the odds ratio comparing odds of acceptance for a student with a GRE score of 701 to a student with a GRE score of 700.

$$rac{e^{-2.901+0.0036\cdot701}}{e^{-2.901+0.0036\cdot700}} = 1.0036$$

This is the same odds ratio as comparing a 601 GRE to a 600 GRE!

$$\logigg(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}igg) = -2.901 + 0.0036~Score_i$$

Odds ratio for increasing GRE by one point:

Interpreting coefficients

$$\log\left(\frac{\widehat{\pi}_i}{1-\widehat{\pi}_i}\right) = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

Interpretation of $\widehat{\beta}_1$:

- \blacksquare A one unit increase in x is associated with an increase of $\widehat{\beta}_1$ in the log odds
- \blacksquare A one unit increase in x is associated with an increase in the odds by a factor of $\exp\{\widehat{\beta}_1\}$

How do you think we interpret $\widehat{\beta}_0$?

Interpreting coefficients

$$\log\left(\frac{\widehat{\pi}_i}{1-\widehat{\pi}_i}\right) = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$

Interpretation of $\widehat{\beta}_1$:

- \blacksquare A one unit increase in x is associated with an increase of $\widehat{\beta}_1$ in the log odds
- \blacksquare A one unit increase in x is associated with an increase in the odds by a factor of $\exp\{\widehat{\beta}_1\}$

Interpretation of $\widehat{\beta}_0$:

- lacktriangle The estimated log odds when x=0 are \widehat{eta}_0
- lacktriangle The estimated odds when x=0 are $\exp\{\widehat{eta}_0\}$

Fitting logistic regression in R

gre_glm <- glm(admit ~ gre, data = grad_app,</pre>

Number of Fisher Scoring iterations: 4

```
family = binomial)
summary(gre_glm)
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.901344  0.606038  -4.787  1.69e-06 ***
## gre 0.003582 0.000986 3.633 0.00028 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 499.98 on 399 degrees of freedom
##
## Residual deviance: 486.06 on 398 degrees of freedom
## AIC: 490.06
##
```

8/15

Class activity, Part II

https://sta214-f22.github.io/class_activities/ca_lecture4.html

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -4.358 + 1.051~GPA_i$$

What is the change in the odds of acceptance associated with an increase of 1 point in GPA?

$$\log\left(\frac{\widehat{\pi}_i}{1-\widehat{\pi}_i}\right) = -4.358 + 1.051 \ GPA_i$$

What is the change in the odds of acceptance associated with an increase of 1 point in GPA?

An increase of 1 point in GPA is associated with an increase in the odds of acceptance by a factor of $\exp\{1.051\}=2.861$

$$\log \left(rac{\widehat{\pi}_i}{1 - \widehat{\pi}_i}
ight) = -4.358 + 1.051 \ GPA_i$$

What is the estimated probability that a student with a GPA of 3.5 is accepted?

$$\log\!\left(rac{\widehat{\pi}_i}{1-\widehat{\pi}_i}
ight) = -4.358 + 1.051~GPA_i$$

What is the estimated probability that a student with a GPA of 3.5 is accepted?

$$\frac{e^{-4.358+1.051(3.5)}}{1+e^{-4.358+1.051(3.5)}}\approx 0.336$$

The logistic regression model assumes that the change in odds associated with an increase of 1 point in GPA is constant. Is the change in *probability* also constant?

The logistic regression model assumes that the change in odds associated with an increase of 1 point in GPA is constant. Is the change in *probability* also constant?

No:

- ♣ GPA = 2.0, estimated probability = 0.095
- GPA = 3.0, estimated probability = 0.231
- ♣ GPA = 4.0, estimated probability = 0.462