Text Classification – Naïve Bayes

CSCI 544 – Fall 2016 9/7/2016

Kallirroi Georgila

Classification

- Assign a category (class) to some data
- Binary (2 classes) classification vs. multi-class (more than 2 classes) classification
- Examples:
 - Face recognition
 - Optical character recognition
 - Handwriting recognition
 - Medical imaging
 - Speech recognition
 - Speaker recognition
 - Biometric classification

Text classification

- Assign a category (class) to a piece of text (sentence, document, etc.)
- Binary (2 classes) classification vs. multi-class (more than 2 classes) classification
- Examples:
 - Spam detection: spam, not spam
 - Sentiment analysis: positive, neutral, negative
 - Topic identification: politics, sports, entertainment, history, etc.
 - Authorship identification: Homer, Shakespeare, Austen, Dickens,
 James, Hemingway, McEwan, etc.
 - Language identification: English, Italian, Spanish, etc.
 - Dialogue act detection: question, answer, acknowledgement, information request, clarification request, repetition, etc.

Text classification (cont.)

- Use training data to learn a function that maps text input (a vector of features) into classes
 - The training data consists of a set of training examples
 - For each training example we have a feature vector and a target class

$$X_1, X_2, X_3, ..., X_n \rightarrow C$$

- Example: e-mail spam detection
 - Classes: spam vs. not-spam
 - Features: bag-of-words (all words in the e-mail message with counts but without accounting for order)
 - Training data: collection of e-mail messages marked as spam or not-spam
- Where does the training data come from?
 - Expert annotation, crowdsourcing, users' reports, etc.

Text classification (cont.)

- Training phase
 - Given a dataset (M training examples, K classes)

$$x_{11}, x_{12}, x_{13}, ..., x_{1n} \rightarrow c_1$$
 $x_{21}, x_{22}, x_{23}, ..., x_{2n} \rightarrow c_2$
 $x_{31}, x_{32}, x_{33}, ..., x_{3n} \rightarrow c_3$
...
 $x_{M1}, x_{M2}, x_{M3}, ..., x_{Mn} \rightarrow c_K$
The goal is to estimate $f(x_1) = c_1$

- The goal is to estimate $f(\mathbf{x}_m) = c_k$
- Testing phase
 - Given a set of features (not necessarily the same features we had for training) and the function $f(\mathbf{x}_m)$, find the most likely class (class with the highest probability for these features)

Naïve Bayes for text classification

- It is based on applying *Bayes'* theorem with *naïve* independence assumptions between features
- This is a very common baseline that performs surprisingly well in many tasks
- Features: bag-of-words (all words with counts but without accounting for order)
- For each class c_k compute $P(c_k | bag-of-words)$ and pick the class with the highest probability

Naïve Bayes for text classification (cont.)

- Given a document d, what class does it belong to?
- Find the most likely class c_{pred}

$$c_{pred} = \underset{c_k}{\operatorname{arg\,max}} P(c_k | d)$$

$$= \underset{c_k}{\operatorname{arg\,max}} \frac{P(c_k)P(d | c_k)}{P(d)}$$

$$= \underset{c_k}{\operatorname{arg\,max}} \frac{P(c_k)P(d | c_k)}{P(d)}$$

Naïve Bayes for text classification (cont.)

$$c_{pred} = \underset{c_k}{\operatorname{arg\,max}} \frac{P(c_k)P(d \mid c_k)}{\sum_{k=1}^{K} P(c_k)P(d \mid c_k)}$$

- How do we estimate $P(c_k)$?
- How do we estimate $P(d|c_k)$?
 - Naïve Bayes assumption: words are independent
 - If document d is L words long $P(d|c_k) = P(w_1|c_k) P(w_2|c_k) P(w_3|c_k)...P(w_L|c_k)$

Note: the denominator (in the equation on the top) is the same for all classes and omitting it will not affect the comparison of classes

- Users create labeled data for free by tagging their own e-mails, thus training data is abundant
- Each sentence in the training data below is regarded as a document

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary (12 distinct words in total in our training data)

click

for

pharmacy

free

time

today

online

link

no

good

is

money

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

$$P(c_k) = \frac{count(c_k)}{M}$$

count(c_k): number of documents of

class c_k

M: total number of documents

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 3/9 = 1/3

$$P(w_l \mid c_k) = \frac{count(w_l, c_k)}{count(w, c_k)}$$

count(w_l , c_k): number of times the word w_l appears in documents of class c_k

count(w, c_k): total number of words in documents of class c_k

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

$$P(w_l \mid c_k) = \frac{count(w_l, c_k)}{count(w, c_k)}$$

 $count(w_l, c_k)$: number of times the word w_l appears in documents of class c_k

count(w, c_k): total number of words in documents of class c_k

Msg = "pharmacy for pharmacy" Classify Msg as spam or ¬spam

$$c_{pred} = \underset{c_k}{\operatorname{arg\,max}} P(c_k \mid d) = \underset{c_k}{\operatorname{arg\,max}} \frac{P(c_k)P(d \mid c_k)}{\sum_{k=1}^{K} P(c_k)P(d \mid c_k)}$$

$$P(spam | Msg) = \frac{P(spam)P(Msg | spam)}{P(spam)P(Msg | spam) + P(\neg spam)P(Msg | \neg spam)}$$

$$P(\neg spam | Msg) = \frac{P(\neg spam)P(Msg \mid \neg spam)}{P(spam)P(Msg \mid spam) + P(\neg spam)P(Msg \mid \neg spam)}$$

if P(spam|Msg) > P(¬spam|Msg) then Msg is classified as spam else if P(spam|Msg) < P(¬spam|Msg) then Msg is classified as ¬ spam else cannot decide

Note: the denominator is the same for all classes and omitting it will not affect the comparison of classes

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

$$P(spam | Msg) = \frac{P(spam)P(Msg | spam)}{P(spam)P(Msg | spam) + P(\neg spam)P(Msg | \neg spam)}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"
$$\frac{3}{8}P(Msg \mid spam)$$

$$P(spam \mid Msg) = \frac{3}{8}P(Msg \mid spam) + \frac{5}{8}P(Msg \mid \neg spam)$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"
$$\frac{3}{8}P(Msg \mid spam)$$

$$P(spam \mid Msg) = \frac{3}{8}P(Msg \mid spam) + \frac{5}{8}P(Msg \mid \neg spam)$$

 $P(Msg \mid spam) = P(pharmacy \mid spam)P(for \mid spam)P(pharmacy \mid spam)$

$$=\frac{1}{3}\times\frac{1}{9}\times\frac{1}{3}=\frac{1}{81}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

$$P(spam | Msg) = \frac{\frac{3}{8} \times \frac{1}{81}}{\frac{3}{8} \times \frac{1}{81} + \frac{5}{8} P(Msg \mid \neg spam)}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

$$P(spam | Msg) = \frac{\frac{1}{216}}{\frac{1}{216} + \frac{5}{8}P(Msg \mid \neg spam)}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"
$$\frac{1}{216}$$

$$P(spam | Msg) = \frac{216}{1 + \frac{5}{8}P(Msg | \neg spam)}$$

 $P(Msg \mid \neg spam) = P(pharmacy \mid \neg spam)P(for \mid \neg spam)P(pharmacy \mid \neg spam)$ $= \frac{1}{15} \times \frac{1}{15} \times \frac{1}{15} = \frac{1}{2275}$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

$$P(spam | Msg) = \frac{\frac{1}{216}}{\frac{1}{216} + \frac{5}{8} \times \frac{1}{3375}}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

$$P(spam | Msg) = \frac{\frac{1}{216}}{\frac{1}{216} + \frac{1}{5400}}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

P(spam | Msg) = 25/26

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

Msg = "pharmacy for pharmacy"

P(spam | Msg) = 25/26

What happens if Msg = "time for pharmacy"?

Documents with labels

click for pharmacy SPAM

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

P(time|spam) = 0

 $P(time \mid \neg spam) = 4/15$

"time for pharmacy"
$$\frac{3}{8}P(Msg \mid spam)$$

$$P(spam \mid Msg) = \frac{3}{8}P(Msg \mid spam) + \frac{5}{8}P(Msg \mid \neg spam)$$

 $P(Msg \mid spam) = P(time \mid spam)P(for \mid spam)P(pharmacy \mid spam)$

$$=0\times\frac{1}{9}\times\frac{1}{3}=0$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

P(time|spam) = 0

 $P(time | \neg spam) = 4/15$

$$P(spam | Msg) = \frac{\frac{3}{8} \times 0}{\frac{3}{8} \times 0 + \frac{5}{8} P(Msg \mid \neg spam)}$$

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

P(time|spam) = 0

 $P(time | \neg spam) = 4/15$

Msg = "time for pharmacy"

P(spam|Msg) = 0

Is this classification good?

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

P(pharmacy|spam) = 1/3

 $P(pharmacy | \neg spam) = 1/15$

P(for|spam) = 1/9

 $P(for | \neg spam) = 1/15$

P(time|spam) = 0

 $P(time | \neg spam) = 4/15$

Msg = "time for pharmacy"

P(spam|Msg) = 0

We need "smoothing", e.g., add-one smoothing

Add-one smoothing

Computing $P(c_k)$, e.g., P(spam) or $P(\neg spam)$

Same formula with or without smoothing (we assume that we have enough documents in our training data for each class so no smoothing is required)

$$P(c_k) = \frac{count(c_k)}{M}$$
 count(c_k): number of documents of class c_k
M: total number of documents

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

Add-one smoothing (cont.)

Computing $P(w_1|c_k)$, e.g., P(pharmacy|spam) or $P(pharmacy|\neg spam)$

Without smoothing

$$P(w_l \mid c_k) = \frac{count(w_l, c_k)}{count(w, c_k)}$$

With smoothing

$$P(w_l \mid c_k) = \frac{count(w_l, c_k) + 1}{count(w, c_k) + V}$$

count(w_l , c_k): number of times the word w_l appears in documents of class c_k count(w, c_k): total number of words in documents of class c_k V: vocabulary size (number of distinct words in our training data)

Documents with labels

SPAM click for pharmacy

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

Without smoothing:

P(pharmacy|spam) = 3/9 = 1/3

P(time|spam) = 0

With smoothing:

P(pharmacy|spam)=(3+1)/(9+12)=4/21

P(time|spam)=(0+1)/(9+12)=1/21

Add-one smoothing (cont.)

Documents with labels

click for pharmacy SPAM

¬SPAM free time today

SPAM online pharmacy link

¬SPAM no free time

¬SPAM free good pharmacy

SPAM pharmacy free link

¬SPAM for time today

¬SPAM time is money

Vocabulary size: 12

P(spam) = 3/8

 $P(\neg spam) = 5/8$

With smoothing:

P(pharmacy|spam) = 4/21

 $P(pharmacy | \neg spam) = 2/27$

P(for|spam) = 2/21

 $P(for | \neg spam) = 2/27$

P(time|spam) = 1/21

 $P(time \mid \neg spam) = 5/27$

$$P(spam | Msg) = 0$$

$$\frac{3}{8}P(Msg \mid spam)$$

$$P(spam | Msg) = \frac{8}{\frac{3}{8}P(Msg | spam) + \frac{5}{8}P(Msg | \neg spam)}$$

 $P(Msg \mid spam) = P(time \mid spam)P(for \mid spam)P(pharmacy \mid spam)$

$$=\frac{1}{21}\times\frac{2}{21}\times\frac{4}{21}=\frac{8}{9261}$$

Evaluation

Accuracy

Out of all predictions, what fraction was correct?

- Precision of class c_k
 - Out of the documents *predicted* to be of class c_k , what fraction was *actually* of class c_k ?

$$precision(c_k) = \frac{count(correctly_classified_as_c_k)}{count(classified_as_c_k)}$$

- Recall of class c_k
 - Out of all the documents that *actually* belong in class c_k , what fraction did we find?

$$recall(c_k) = \frac{count(correctly_classified_as_c_k)}{count(belongs_in_c_k)}$$

F-score: combining precision and recall

$$F_1(c_k) = \frac{2 \times precision(c_k) \times recall(c_k)}{precision(c_k) + recall(c_k)}$$

Actual Predicted

Accuracy = 3/6 = 1/2

SPAM SPAM

¬SPAM ¬SPAM

¬SPAM SPAM

¬SPAM ¬SPAM

SPAM ¬SPAM

¬SPAM SPAM

Actual Predicted

Accuracy = 1/2

SPAM SPAM

¬SPAM ¬SPAM

Precision(spam) = 1/3

¬SPAM SPAM

¬SPAM ¬SPAM

SPAM ¬SPAM

¬SPAM SPAM

Actual Predicted

Accuracy = 1/2

SPAM S

SPAM

¬SPAM ¬SPAM

¬SPAM SPAM

¬SPAM ¬SPAM

SPAM →SPAM

¬SPAM SPAM

Precision(spam) = 1/3

Recall(spam) = 1/2

 $F_1(spam) = 2x0.33x0.5/(0.33+0.5)$

Actual Predicted Accuracy = 1/2

SPAM SPAM

 $\neg SPAM \quad \neg SPAM$ Precision(spam) = 1/3

¬SPAM SPAM

 $\neg SPAM \quad \neg SPAM$ Recall(spam) = 1/2

SPAM →SPAM

 $\neg SPAM SPAM = 0.33/0.83 = 0.4$

What happens if the vocabulary is very large?

- Some probabilities become very low resulting in underflow
 - Especially P(unknown_word | c_k)
- To avoid this problem we can use logarithms
- Below we omit the denominators from the equations because the denominator is the same for all classes

$$c_{pred} = \underset{c_k}{\operatorname{arg\,max}} P(c_k) P(d \mid c_k) = \underset{c_k}{\operatorname{arg\,max}} P(c_k) \prod_{l=1}^{L} P(w_l \mid c_k)$$

$$c_{pred} = \underset{c_{k}}{\operatorname{argmax}}[\log P(c_{k}) + \log P(d \mid c_{k})] = \underset{c_{k}}{\operatorname{argmax}}[\log P(c_{k}) + \sum_{l=1}^{L} \log P(w_{l} \mid c_{k})]$$

Beyond bag-of-words

- Features are not limited to words
- In naïve Bayes we have the independence assumption between features
- Other classification methods, e.g., support vector machines, maximum entropy models, etc., do not force us to assume that features are independent and often result in better accuracies

Reference

 C. D. Manning, P. Raghavan, and H. Schütze.
 Introduction to Information Retrieval, Cambridge University Press, 2008

Chapter on Text Classification and Naïve Bayes

http://nlp.stanford.edu/IR-book/pdf/13bayes.pdf