HW2 solution

1 a)

b) From part a), we see that if an element is inserted immediately after the $k^{\rm th}$ element of a list, all the first k elements of the list have to be copied. It follows that, for both time and space complexities, the worst-case insertion occurs when the element is going to be inserted at the end of the list.

Therefore, the worst-case input of the insertion sort is a list whose elements are in decreasing order.

For example,

$$(n n - 1 \cdots 3 2 1)$$

is a worst-case input.

For the worst-case space complexity, let

 $\mathbf{s}(n)$ = # of cons cells allocated by function isort in the worst case on sorting a list of n elements

then

$$s(0) = 0$$

$$s(n) = s(n-1) + n - 1$$

Clearly,
$$s(n) = O(n^2)$$

So is the worst-case time complexity.

2~5 See file hw2sol.ss

6 a) Let
$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$
 and $G = \lambda y.\lambda f.f(yf)$

Then,

<u>Y G</u> f

$$= (\lambda x.G(xx)) (\lambda x.G(xx)) f$$
 (1)

$$= \underline{G((\lambda x.G(xx))(\lambda x.G(xx))) f}$$
 (2)

= $f((\lambda x.G(xx))(\lambda x.G(xx))) f)$

$$= f(Y G f)$$
 by (1)

Thus, YG is a fixed-point combinator.

Moreover, this fixed-point combinator can only work with lazy evaluation, because in step (2) the argument

 $(\lambda x.G(xx))(\lambda x.G(xx))$

passed to G has to be delayed.

b) Let $Y = \lambda f.(\lambda x.f(\lambda y.xxy))(\lambda x.f(\lambda y.xxy))$ and $G = \lambda y.\lambda f.f(\lambda z.yfz)$

Then,

<u>Y G</u> f

- $= (\lambda x.G(\lambda y.xxy)) (\lambda x.G(\lambda y.xxy)) f$ (1)
- $= \underline{G(\lambda y.(\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy))y)f}$ (2)
- $= f\left(\frac{\lambda z}{\lambda y} \cdot (\lambda x} \cdot G(\lambda y} \cdot xxy)\right) \cdot (\lambda x} \cdot G(\lambda y} \cdot xxy)) \cdot y) \cdot f \cdot z)$ (3)
- $= f ((\lambda y.(\lambda x.G(\lambda y.xxy)) (\lambda x.G(\lambda y.xxy)) y) f)$ (4)
- = $f((\lambda x.G(\lambda y.xxy))(\lambda x.G(\lambda y.xxy)) f)$

$$= f(YGf)$$
 by (1)

Thus, YG is a fixed point combinator.

Moreover, this combinator works with eager evaluation, because in step (2) the λ -exp (λ y.(λ x.G(λ y.xxy)) (λ x.G(λ y.xxy)) y) passed to G in effect delays the argument (λ x.G(xx)) (λ x.G(xx)) mentioned in part b).

Note

 $(\lambda y.(\lambda x.G(\lambda y.xxy)) (\lambda x.G(\lambda y.xxy)) y)$

$$= (\lambda x.G(\lambda y.xxy)) (\lambda x.G(\lambda y.xxy)$$
 (5)

$$= (\lambda x.G(xx)) (\lambda x.G(xx))$$
 (6)

Comment

Steps (3) to (6) make use of the so-called eta-conversion that says that, for any function f, $f = \lambda x.f x$

- c) See file hw2sol.ss
- 7 a) compile λx.λy.yx
 - = abstract x (compile λy.yx)
 - = abstract x (abstract y (compile yx))
 - = abstract x (abstract y yx)
 - = abstract x (S (abstract y y) (abstract y x))
 - = abstract x (S I (K x))
 - = S (abstract x (S I)) (abstract x (K x))
 - = S (S (abstract x S)) (abstract x I)) (abstract x (K x))
 - = S(S(KS)(KI)) (abstract x(Kx))
 - = S(S(KS)(KI))(S(abstract x K)(abstract x x)))
 - = S(S(KS)(KI))(S(KK)I)

- b) S(S(KS)(KI))(S(KK)I)2 + 3
 - = S(KS)(KI) 2(S(KK)I 2) + 3
 - = KS2 (KI2) (S(KK)I2) + 3
 - = S (K | 2) (S (K K) | 2) + 3
 - = K 12 + (S(KK)12 +) 3
 - = 1 + (S(KK)12 +) 3
 - = + (S(KK)12 +) 3 reduce the argument of +
 - = + (<u>K K 2</u> (I 2) +) 3
 - = + (<u>K (I 2) +</u>) 3
 - = + <u>(I 2)</u> 3
 - = <u>+ 2 3</u>
 - = 5
- c) See file hw2sol.ss