Bubble Growth Problem

SEE PROFILE

Technical Report · April 2011 DOI: 10.13140/2.1.4116.7369		
CITATIONS 0		READS 47
1 author:		
	Souvik Roy University of Texas at Arlington 60 PUBLICATIONS 470 CITATIONS	

BUBBLE DRAG COEFFICIENT FORMULATION AND STABILITY ANALYSIS FOR MULTIPHASE-TURBOMACHINERY PROBLEMS (SHEAR FLOW / BREAK UP-GE2)

BY

GAURAV SHARMA SOUVIK ROY

* Stream function

Surface Tension

comesive forces are responsible for surface tension.

This creates internal _______ pressure & forces liquid to contract minimal area

another viewpoint is minimizing no of molecules at surface (i.e. mole cules with higher energy)

*
$$\frac{\partial \Psi}{\partial x} \cdot \partial x + \frac{\partial \Psi}{\partial y} \cdot \partial y = 0$$

$$\frac{\partial \Psi}{\partial x} + \frac{\partial \Psi}{\partial y} = 0 \quad \text{(continuity eqn)} \quad \text{(dx)}$$

In spherical coordinate, $u_r = \frac{1}{r^2 \sin \theta} \frac{\partial \Psi}{\partial \theta} \qquad u_{\theta} = -\frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial r}$

Nature Of Flow

1 UNIFORM FLOW

as r > 00 (in Spherical coordinate)

1) fluid is incompressible.

2) Re << 1 for bubble.

50, we can ignore inertial forces

from N-S equation

N-S equation reduces to

Continuity Condition is given by

V. U = 0 (Divergence free Velocity) In spherical coordinate, N-5 eqn for a stream function Ψ is given by

where
$$D^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} - \frac{\cot \theta}{r^2} \frac{\partial}{\partial \theta}$$

Boundary Conditions

- - 2) Velocity Component of fluid particle normal to the bubble surface is zero.

In terms 4, above equation gives

$$\underline{n} = (1, -a \varepsilon f'(0))$$
 $u = (ur, uo)$

$$ur = \frac{1}{r^2 sino} \frac{\partial \psi}{\partial \theta}$$
; $uo = -\frac{1}{r sino} \frac{\partial \psi}{\partial r}$

3.
$$\underline{n} \cdot \tau \cdot \underline{t} = 0$$

where,
$$\underline{t} = (\underbrace{\epsilon_{\alpha}}_{r} f'(0), I)$$

$$T = (\underbrace{\tau_{rr}}_{ro} \underbrace{\tau_{ro}}_{ro})$$

$$\Rightarrow \text{ Tro } + f'(0). \ \underline{\alpha \varepsilon} \ (\text{Trr} - \text{Too}) = 0$$

4.
$$E T_{rr} = -(2K - K_0)$$
 — 4. where $K = \frac{K_1 + K_2}{2}$ (Mean Curvature) K_1, K_2 are principle curvatures.

We have considered a uniform flow without pertuberation as an initial step.

- i.e. 044=0 with boundary conditions
- 1. $\psi(0,0) = \frac{1}{2} U_{\infty} r^2 sin^2 \theta$
- 2. $\Psi(a,0) = 0$ where a is radius of sphere
- 3. 2 (12 24 (a,0)) = 0

With $\varepsilon=0$ & s=0, the problem is axisymmetric i.e. flow patterns are identical in all planes parallel to U_{∞} & passing through center of sphere.

Solution to above system,

 $\Psi = \left(\frac{Ur^2}{2} - \frac{Uar}{2}\right) \sin^2\theta \left(U\sin\theta \text{ variable separable method, } \Psi = f(r) \sin^2\theta\right)$

Using N-S eqn
$$\nabla p = u \nabla^2 u$$

$$P = Po - \left(\frac{auU \cos \theta}{r^2} \right)$$

$$Trr = -P + 2u \frac{\partial ur}{\partial r} = \frac{3uU\cos\theta}{r^2} = Trr$$

$$Tro = 0 = Tro$$

Ignoring the weight of bubble, force of buoyancy equals to drag force.

COMPUTATION OF THE

MEAN CURVATURE

To compute eq. (a), we need to compute the mean curvature of the surface of the bubble. To do that we use spherical polar coordinates and the first & second fundamental forms. [For more, see the book on 'Elementary Diff! Geometry' - Andrew Pressley 7.

Not going too much into the literature of the first & second fundamental forms, we purely do the analytical part.

Let n=a(1+&f(0)) where 0 is indicated in the figure & a is the radius of the original 8phere.

We parametrize our surface by considering any point on the surface as

 $R(\theta,\phi)=(r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta)$ where $r=a(1+\epsilon f(\theta))$

The FIRST FUNDAMENTAL FORM is given by:- Edo2+2Fdod+Grd+2

where E= Ro. Ro

F= Ro. Ro.

G= Rp. Rp.

By performing necessary calculations,

$$E = a^2 (1+\epsilon f)^2 + a^2 \epsilon^2 f^2 \quad \text{where } f' = \frac{df}{d\theta}.$$

F = 0

The SECOND FUNDAMENTAL FORM is given

by :-

Ldo2 +2Mdod4 +Ndo2

where $L = R_{\theta\theta} \cdot \widetilde{N}$ $M = R_{\theta\phi} \cdot \widetilde{N}$ $N = R_{\phi\phi} \cdot \widetilde{N}$

N= Re XRe
IIRe X Rell

Again performing some tedious but necessary calculations we get:-

$$L = \alpha(l+\epsilon f)^2 - \alpha \epsilon f''(l+\epsilon f) + 2\alpha \epsilon^2 f'^2$$

M= 0

 $N = a(1+\epsilon f)^2 sin^2 \theta + a \in (1+\epsilon f) f' sin \theta \cos \theta$

where D= \((HGf)^2 + f'^2 \in 2\) 2f"= \(\frac{d^2f}{do^2}\)

Now we form the matrices

$$F_{i} = \begin{bmatrix} E & F \\ F & G \end{bmatrix} & F_{i} = \begin{bmatrix} L & M \\ M & N \end{bmatrix}$$

2 we calculate 5, 5,1.

$$\left[\frac{1}{aD}\left\{\frac{1-\epsilon f''}{(1+\epsilon f)} + \frac{2\epsilon^2 f'^2}{(1+\epsilon f)^2}\right\}$$

$$\frac{1}{aD}\left\{1-\frac{\epsilon f'}{(1+\epsilon f)}\omega + 0\right\}$$

The eigen values of this matrix gives us the principle curvatures.

.. Mean Curvature
$$K = \frac{1}{2aD} \left\{ 2+6 \left(\frac{f'coto}{1+6f} - \frac{f''}{1+6f} \right) + 6^2 \frac{2f'^2}{1+6f} \right\}$$

8 Total Curvature
$$K = \frac{1}{aD} \left\{ 2+\epsilon \left(\frac{-f' \cdot coto}{1+\epsilon f} - \frac{f''}{1+\epsilon f} \right) + \epsilon^2 \frac{2f'^2}{1+\epsilon f^2} \right\}$$
Special Case: - When $\epsilon > 0$, $K = \frac{2}{a}$ & $K = \frac{1}{a}$.

3 fra (2), nullply by sit sriof" + cosof' + 2 frio = Grio. $\frac{d}{d\theta} \left(\sin \hat{f}' \right) + 2 \hat{f} \sin \theta = G \sin \theta$ X cost and rulepate from 0=0 toTT. $\int_{0}^{\pi} \cos \theta \left(\sin \theta \hat{f}' \right)' + 2 \hat{f} \sin \theta \cos \theta d\theta = \int_{0}^{\pi} G \sin \theta d\theta$ But the = [coosiof' + sirof]" = 0 if is loded at OTT. necessary condition for a solution is JE súdcod do = 0 NB 4 G= cost JGSiOcost dO=[-{1/3}cos30] = 2/3 +0. : Need to pur f = 21/3 f1 + 29/3 f2 + Ef3 + - -. Then equate coeffs of powers of & m & 0 = fi'+ficor0+2fi : fi = Acos0, A not yet determ 0(24) 0 = fi+ ficoro + 2fz + A2 (1-3co20) 0(243) Murcaube sorved for fr

0(E) 3 MUNO COSO = - (f3 + f3 COPO+ 2f3) + A3 (4 COSO - 45 m2 COSO) thems in fifi which may be important.) = H, say (but have not yet been calculated, thus equation for f3 will be solvible if $\int_{0}^{\infty} \left(-3\mu V_{\infty} \cos \theta + A^{3}(4)(2\cos^{3}\theta - \cos\theta) + H\right) d\sin\theta \cos\theta d\theta = 0$ If we neglect. H. \Rightarrow +3,000 $\left[\frac{\cos^3\theta}{3}\right]^{\text{T}}$ $+ A^3.4 \left[\frac{2\cos^5\theta}{3} - \frac{\cos^3\theta}{3}\right]^{\text{T}} = 0$ which determies A. Then we need to some for f3 to find shape or bubble. I ignoring for, then $f_3'' + f_3' \cos \theta + f_3' = 60 \cos \theta - 100 \cos^3 \theta$ $= \int f_3 = C \cos \theta \sin^2 \theta$ pearshaped)

View publication stats