Finding the direction and distance from one point to another in H^3 :

We will use the upper half space model: $\mathbb{H}^3 \mapsto \{(x_1, x_2, x_3) : x_3 > 0\}.$

Given points $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$, the first step is to find the vertical plane that intersects both of them. This way, the problem can be reduced to a problem in \mathbb{H}^2 . Unless $x_1 = y_1$ and $x_2 = y_2$, we let u = $\sqrt{(y_1-x_1)^2+(y_2-x_2)^2}$, then set $\mathbf{v}=(v_1,v_2)=(y_1-x_1,y_2-x_2)/u$. We can now work with $(x'_1, x'_2) = (0, x_3)$ and $(y'_1, y'_2) = (u, y_3)$.

Once we have two points on a plane \mathbf{x}', \mathbf{y}' , we can use the two-dimensional solution to find the vector $\mathbf{z}' = (z'_1, z'_2)$ representing the direction and distance from \mathbf{x}' to \mathbf{y}' .

Translating the vector back from the plane is simple. You just use z = $(z_1, z_2, z_3) = (z_1'v_1, z_1'v_2, z_2').$

The distance remains the same as it was in the two-dimensional case.

There is a problem if $x_1 = y_1, x_2 = y_2$ because **v** is undefined. In this case, $\mathbf{z} = (0, 0, \ln \frac{y_3}{x_2})$

Finding the point a given distance in a given direction from another:

Given initial point (x_1, x_2, x_3) and vector (z_1, z_2, z_3) , we first reduce to the \mathbb{H}^2 case as before, unless $z_1 = z_2 = 0$. Let $u = \sqrt{z_1^2 + z_2^2}, (v_1, v_2) = \frac{(z_1, z_2)}{u}$ and solve the two-dimensional case for \mathbf{y}' with $\mathbf{x}' = (x_1', x_2') = (0, x_3)$ and $\mathbf{z}' = (z_1', z_2') = (0, x_3)$ $(u, z_3).$

Now we just need to map y' back to \mathbb{H}^3 , which is done via $(y_1, y_2, y_3) =$ $(x'_1, x'_2, y'_2) + y'_1(v_1, v_2, 0) = (x'_1 + y'_1v_1, x'_2 + y'_1v_2, y'_2).$

We will also need to find the change in orientation.

Our solution in the two-dimensional version gave us an angle which we will call θ . This corresponds to the point of reference being rotated with the rotation $\operatorname{matrix} \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right).$

You can then expand this to a 3×3 matrix with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{pmatrix}$

and conjugate it with
$$\begin{pmatrix} v_1 & v_2 & 0 \\ -v_2 & v_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 to get the 3×3 rotation matrix. This gives $\begin{pmatrix} v_1 & -v_2 & 0 \\ v_2 & v_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 0 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} v_1 & v_2 & 0 \\ -v_2 & v_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ If $z_1 = z_2 = 0$, then $\mathbf{y} = (x_1, x_2, x_3 e^{z_3})$ and there is no rotation.