SRM UNIVERSITY

MA1001- CALCULUS AND SOLID GEOMETRY

Unit-III Ordinary Differential Equations Multiple Choice Questions

1.	Which of the following is the general solution to	$0 \frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 0$
	(a) $y = Ae^{2x} + Be^{-5x}$ (b) $y = Ae^{-2x} + Be^{5x}$ (c	e) $y = Ae^{-2x} + Be^{-5x}$ (d) $y = Ae^{2x} + Be^{5x}$

2. Solution of $(D^2 + 4)y = 0$ is (a) $y = A\cos 2x + B\sin 2x$ (b) $y = Ae^{2x} + Be^{-2x}$ (c) $y = A\cos \sqrt{2}x + B\sin \sqrt{2}x$ (d) $y = (Ax + B)e^{2x}$

3. The P.I of $(D^2 + 4)y = \sin 2x$ is

(a) $\frac{-x}{4}\cos 2x$ (b) $\frac{x}{4}\cos 2x$ (c) $\frac{x}{2}\cos 2x$ (d) $\frac{-x}{2}\cos 2x$

4. The equation $(a_0x^2D^2 + a_1xD + a_2)y = Q(x)$ is called, where $a_0, a_1, a_2 \in C$ (a) Cauchy's equation (b) Legendre's equation (c) Taylor's equation (d) Clairaut's equation

5. Use the transformation $z=\log x$, convert the D.E $x^2y^{''}-xy^{'}+y=x^2$ to an equation with constant coefficients

(a) $(\theta^2 - 2\theta + 1)y = e^{2z}$ (b) $(\theta^2 - 2\theta + 1)y = e^z$ (c) $(\theta^2 + 2\theta + 1)y = e^{2z}$ (d) $(\theta^2 + 2\theta + 1)y = e^z$

6. The solution of $(D^2 + 2D + 1)y = 7$ is

(a) $y = (Ax + B)e^{-x} + 7$ (b) $y = (Ax + B)e^{-x} - 7$ (c) $y = (Ax + B)e^{x} + 7$ (d) $y = (Ax + B)e^{x} - 7$

7. The P.I of $(D-1)^2 y = e^x \sin x$ is

(a) $-e^x \cos x$ (b) $e^x \cos x$ (c) $e^x \sin x$ (d) $-e^x \sin x$

8. The P.I of $(D-1)^2 y = x$ is

(a) 2-x (b) x+2 (c) x^2 (d) $-x^2$

9. If $1 \pm 2i$ are the roots of A.E of a differential equation f(D)y = 0 then the general solution is

(a) $e^{-2x} (A\cos x - B\sin x)$ (b) $Ae^x + Be^{-2x}$ (c) $e^x (A\cos 2x + B\sin 2x)$ (d) $Ae^t + Be^{2x}$

10. Convert the equation $(5+2x)^2y'' - 6(5+2x)y' + 8y = 0$ to an equation with constant coefficient by using the transformation $z = \log(5+2x)$

(a) $(\theta^2 + 4\theta + 2)y = 0$ (b) $(\theta^2 - 4\theta + 2)y = 0$ (c) $(\theta^2 + 4\theta + 4)y = 0$ (d) $(\theta^2 + 4\theta - 2)y = 0$

11. The P. I of $(D^2 + 4)y = \sinh 2x$ is

(a) $y_p = \frac{\sinh 2x}{8}$ (b) $y_p = \frac{\sinh 2x}{4}$ (c) $y_p = \frac{-\sinh 2x}{8}$ (d) $y_p = \frac{-\sinh 2x}{4}$

12. The P.I of $(D^2 + 6D + 5)y = e^{-x}$ is (a) $y_p = \frac{xe^{-x}}{4}$ (b) $y_p = \frac{xe^{-x}}{2}$ (c) $y_p = \frac{e^{-x}}{2}$ 13. The solution of $(D^2 - 2aD + a^2)y = 0$ is (c) $(Ax + B)e^{ax}$ (d) $(Ax + B)e^{-ax}$ (a) $Ae^{ax} + Be^{bx}$ (b) $Ae^{ax} + Be^{-ax}$ 14. The P.I of $(D^2 + 16)y = \cos 4x$ is (a) $\frac{x}{2}\sin 2x$ (b) $\frac{x\sin 4x}{8}$ (c) $\frac{x}{2}\cos 2x$ (d) $\frac{x\cos 4x}{8}$ 15. The C.F of $D^2y + y = cosecx$ is (b) $A\cos x + B\sin x$ (c) $(Ax+B)e^{ax}$ (a) $Ae^{ax} + Be^{bx}$ (d) $(Ax+B)e^{-ax}$ 16. If $y_1 = \cos ax$, $y_2 = \sin ax$ then the value of $y_1y_2' - y_2y_1'$ is (a) -a (b) 0 (c) 1 (d) a 17. Solve $(D^2 + 1)y = 0$ given y(0) = 0, y'(0) = 1(a) $y = \sin x$ (b) $y = \cos x$ (c) $y = A\cos x + B\sin x$ (d) y = 018. The P.I of $(D-2)^2y = e^{2x}$ is (a) $\frac{x^2}{2}e^{2x}$ (b) $\frac{x}{4}e^{2x}$ (c) $\frac{x^2}{2}e^{-2x}$ (d) $\frac{x^2}{2}e^{-2x}$

19. The P.I of $(D^2 + 4)y = \sin(2x + 5)$ is

(a)
$$-\frac{x}{2}\sin(2x+5)$$
 (b) $\frac{x}{4}\sin(2x+5)$ (c) $-\frac{x}{4}\cos(2x+5)$ (d) $\frac{x}{2}\cos(2x+5)$

(a) $Ae^{az} + Be^{bz}$ (b) $A\cos z + B\sin z$ (c) $(Az + B)e^{az}$ (d) $(Az + B)e^{-az}$

(a)
$$Ae + Be$$
 (b) $A\cos z + B\sin z$ (c) $(Az + B)e$ (d) $(Az + B)e$

21. The roots of the auxiliary equation $(m^2 - 4) = 0$ are (c) $\pm \sqrt{2}$ (d) $1 \pm 2i$ (b) $\pm 2i$ (a) ± 2

20. Solve $(x^2D^2 + xD + 1)y = 0$ is

22. The solution of
$$(x^2D^2 - 7xD + 12)y = 0$$
 is
(a) $Ae^{-2z} + Be^{6z}$ (b) $Ae^{2z} + Be^{-6z}$ (c) $Ae^{2z} + Be^{6z}$ (d) $Ae^{-2z} + Be^{-6z}$

23. If $y_1 = \cos x, y_2 = \sin x$ then the value of $y_1 y_2^{'} - y_2 y_1^{'}$ is

(a) -1 (b) 0 (c) 1 (d)
$$\frac{1}{2}$$

24. If three roots of the auxiliary equation become equal to the real number a, then the corresponding C.F is

(a)
$$(Ax^2 + Bx + C)e^{ax}$$
 (b) $Ae^{ax} + Be^{ax} + Ce^{ax}$ (c) $Ae^{ax} + (B\cos ax + C\sin ax)$ (d) a

25. The values of $\frac{e^{ax}}{D-a}$

(a)
$$xe^{ax}$$
 (b) e^{ax} (c) x^2e^{ax} (d) $\frac{x^2}{2}e^{ax}$

Answers:

3. a **4.** a **5.** a **6.** a **7.** d **8.** b **1.** a **9.** c **10.** *b* **11.** *a* **16.** *d* **17.** *a* **18.** *a* **12.** *a* **13.** *c* **14.** b **15.** b **19.** *c* **20.** *b* **21.** *b* **24.** *a* **22.** *c* **23.** *c* **25.** *a*