16HMMTA7

HIMADRI MANDAL

November 12, 2021

§1 Solution

Solution. $A(n+1) = A(n) 10^{\lfloor 10(n+1) \cdot \log_{10} 2 \rfloor + 1} + 2^{10(n+1)}$ Notice that

$$\lfloor 10(n+1)\log_{10}(2) \rfloor + 1 \approx \lfloor (n+1) \cdot 3.01 \rfloor + 1 \approx 3(n+1) + 1$$

and the equality holds for small $n(\approx 40)$. Therefore,

$$A(n+1) = A(n) \cdot 10^{3(n+1)+1} + 2^{10(n+1)}$$

for small n. Now, notice that $\nu_2(A(n+1)) \ge \min(10(n+1), 3(n+1) + 1 + \nu_2(A(n)))$ Working some values out we see that,

n	1	2	3	4	5	6	7	 n
$\nu_2(A(n))$	10	17	27	≥40	50	60	70	 10n

As we want n such that $A(n) \equiv 2^{10n} \pmod{2^{170}}$, we want the smallest n such that $\nu_2(A(n-1)) + 3n + 1 = 10(n-1) + 3n + 1 = 13n - 9 > 170 \implies n \ge 14$ for $n \ge 5$. But after checking we see that n = 5 doesn't work. So the answer is 14.