import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import stats

df = pd.read_csv("/content/abalone.csv")

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
	63		1-1

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

df.describe()

			1 to 8 of 8 er	ntries Filter U
index	Length	Diameter	Height	Whole weight
count	4177.0	4177.0	4177.0	4177.0
mean	0.5239920995930094	0.40788125448886764	0.13951639932966242	0.8287421594445774
std	0.12009291256479956	0.09923986613365945	0.041827056607257274	0.4903890182309977
min	0.075	0.055	0.0	0.002
25%	0.45	0.35	0.115	0.4415
50%	0.545	0.425	0.14	0.7995
75%	0.615	0.48	0.165	1.153
max	0.815	0.65	1.13	2.8255

Show 25 ✓ per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

df.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

sns.heatmap(df.isnull(),yticklabels=False,cmap='pink')

df.corr()

			1 to 8 of 8 entries	Filter
index	Length	Diameter	Height	Whole weigh
Length	1.0	0.9868115846025	0.8275536093192142	0.9252611721489
Diameter	0.9868115846025	1.0	0.8336836879586538	0.9254521015071
Height	0.8275536093192142	0.8336836879586538	1.0	0.8192207728553
Whole weight	0.9252611721489467	0.9254521015071313	0.8192207728553582	
Shucked weight	0.8979136582496655	0.8931624751432796	0.7749722929028299	0.969405456703
Viscera weight	0.9030176990077563	0.8997244291071196	0.79831929752753	0.9663750782730
Shell weight	0.8977055691879205	0.905329781213082	0.8173380147032083	0.9553554421763
Rings	0.5567195769296182	0.5746598513059198	0.5574673244580344	0.5403896769238
4				

Show 25 per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

df['Sex'].value_counts()

M 1528

I 1342

F 1307

Name: Sex, dtype: int64

df['Sex'].unique()

array(['M', 'F', 'I'], dtype=object)

df['Sex'] = df['Sex'].map({'M': 0, 'I': 1, 'F':2})

df.head()

							1 10 5 0	t 5 entries Flite	
	index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh
	0	0	0.455	0.365	0.095	0.514	0.2245	0.101	0.1
	1	0	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.0
	2	2	0.53	0.42	0.135	0.677	0.2565	0.1415	0.2
	3	0	0.44	0.365	0.125	0.516	0.2155	0.114	0.15
	4	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.05
_	4								

Show 25 **▼** per page

Like what you are? Weit the data table notebook to learn more about interactive tables

df.tail()

1 to 5 of 5 entries | Filter

index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh
4172	2	0.565	0.45	0.165	0.887	0.37	0.239	0.24
4173	0	0.59	0.44	0.135	0.966	0.439	0.2145	0.260
4174	0	0.6	0.475	0.205	1.176	0.5255	0.2875	0.30

ADDING AGE COLUMN

df['Age'] = df['Rings'] + 2.5

df.head()

index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh		
0	0	0.455	0.365	0.095	0.514	0.2245	0.101	0.1		
1	0	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.0		
2	2	0.53	0.42	0.135	0.677	0.2565	0.1415	0.2		
3	0	0.44	0.365	0.125	0.516	0.2155	0.114	0.15		
4	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.05		
4										

Show 25 per page

Like what you see? Visit the data table notebook to learn more about interactive tables

df.columns

Data visualization

```
df['Sex'].value_counts().plot(kind='pie')
plt.legend()
plt.xlabel('Sex')
plt.ylabel('Count')
```

```
Text(0, 0.5, 'Count')
```

```
sns.distplot(df['Age'])
plt.xlabel('Age')
plt.ylabel('Count')
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

Text(0, 0.5, 'Count')

sns.distplot(df['Rings'])
plt.xlabel('Rings')
plt.ylabel('Count')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: warnings.warn(msg, FutureWarning)

Text(0, 0.5, 'Count')

Bi-variate analysis

df.head()

	1 to 5 of 5 entries Filter								
index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh	
0	0	0.455	0.365	0.095	0.514	0.2245	0.101	0.1	
1	0	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.0	
2	2	0.53	0.42	0.135	0.677	0.2565	0.1415	0.2	
3	0	0.44	0.365	0.125	0.516	0.2155	0.114	0.15	
4	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.05	

Show 25 ▶ per page

Like what you see? Visit the data table notehook to learn more about interactive tables

sns.scatterplot(data=df, x='Length', y='Shucked weight', hue='Rings',)

<matplotlib.axes._subplots.AxesSubplot at 0x7f57befe3ed0>

sns.boxplot(data=df, x='Whole weight', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57bef71090>

sns.boxplot(data=df, x='Sex', y='Whole weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57beb39810>

sns.scatterplot(data=df, x='Sex', y='Shucked weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57a17fffd0>

sns.boxplot(data=df, x='Sex', y='Shell weight')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57beb61b50>

Univariate analysis

sns.pairplot(data=df, hue='Rings')

1 to 8 of 8 entries Filter Height index Length **Diameter** Sex count 4177.0 mean 0.9470912137898013 0.5239920995930094 0.40788125448886764 0.13951639932966242 0.8222404151746827 0.12009291256479956 0.09923986613365945 0.041827056607257274 std 0.0 0.075 0.055 0.0 min 25% 0.0 0.45 0.35 0.115 50% 0.545 0.425 1.0 0.14 75% 2.0 0.615 0.48 0.165 0.815 0.65 max 2.0 1.13

Show 25 per page

Like what you see? Visit the data table notebook to learn more about interactive tables.

df.corr()['Age']

Sex 0.034627 0.556720 Length Diameter 0.574660 Height 0.557467 Whole weight 0.540390 Shucked weight 0.420884 Viscera weight 0.503819 Shell weight 0.627574 Rings 1.000000 Age 1.000000 Name: Age, dtype: float64

df.shape

(4177, 10)

Checking outliers for the data

df.head()

1 to 5 of 5 entries

	index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh
	0	0	0.455	0.365	0.095	0.514	0.2245	0.101	0.1
	1	0	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.0
	2	2	0.53	0.42	0.135	0.677	0.2565	0.1415	0.2
	3	0	0.44	0.365	0.125	0.516	0.2155	0.114	0.15
	4	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.05
ì	4								•

Show 25 per page

Like what you see? Visit the data table notabook to learn more about interactive tables

df.drop('Age',axis=1,inplace=True)

df.head()

1 to 5 of 5 entries Filter I

index	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weigh
0	0	0.455	0.365	0.095	0.514	0.2245	0.101	0.1
1	0	0.35	0.265	0.09	0.2255	0.0995	0.0485	0.0
2	2	0.53	0.42	0.135	0.677	0.2565	0.1415	0.2
3	0	0.44	0.365	0.125	0.516	0.2155	0.114	0.15
4	1	0.33	0.255	0.08	0.205	0.0895	0.0395	0.05
4								

Show 25 ∨ per page

sns.boxplot(x=df['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579f241250>


```
tenth_per = np.percentile(df['Length'], 10)
nine_per = np.percentile(df['Length'], 90)
df['Length'] = np.where(df['Length'] < tenth_per, tenth_per, df['Length'])</pre>
df['Length'] = np.where(df['Length'] > nine_per, nine_per, df['Length'])
```

IQR

sns.boxplot(x=df['Length'])

Like what you see? Visit the data table notabook to learn more about interactive tables

<matplotlib.axes._subplots.AxesSubplot at 0x7f579f24e390>

sns.boxplot(x=df['Diameter'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579f1e90d0>


```
tenth_per = np.percentile(df['Diameter'], 10)
nine_per = np.percentile(df['Diameter'], 90)

df['Diameter'] = np.where(df['Diameter'] < tenth_per, tenth_per, df['Diameter'])

df['Diameter'] = np.where(df['Diameter'] > nine_per, nine_per, df['Diameter'])

sns.barplot(x=df['Diameter'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d9c2250>

sns.boxplot(x=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d9b9410>

tenth_per = np.percentile(df['Height'], 10)
nine_per = np.percentile(df['Height'], 90)

df['Height'] = np.where(df['Height'] < tenth_per, tenth_per, df['Height'])
df['Height'] = np.where(df['Height'] > nine_per, nine_per, df['Height'])

sns.boxplot(x=df['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d918ed0>

sns.boxplot(x=df['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d869410>

```
tenth_per = np.percentile(df['Whole weight'], 10)
nine_per = np.percentile(df['Whole weight'], 90)
```

```
df['Whole weight'] = np.where(df['Whole weight'] < tenth_per, tenth_per, df['Whole weight'
df['Whole weight'] = np.where(df['Whole weight'] > nine_per, nine_per, df['Whole weight'])
```

sns.boxplot(x=df['Whole weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d992ad0>

sns.boxplot(x=df['Shucked weight'])

<matplotlib.axes. subplots.AxesSubplot at 0x7f579d7ccf10>


```
tenth_per = np.percentile(df['Shucked weight'], 10)
nine_per = np.percentile(df['Shucked weight'], 90)
```

```
df['Shucked weight'] = np.where(df['Shucked weight'] < tenth_per, tenth_per, df['Shucked weight'] > nine_per, nine_per, df['Shucked weight'] > nine_per, df['Shucked weight']
```

sns.boxplot(x=df['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d740e90>

sns.boxplot(x=df['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d7b99d0>


```
tenth_per = np.percentile(df['Viscera weight'], 10)
nine_per = np.percentile(df['Viscera weight'], 90)
```

df['Viscera weight'] = np.where(df['Viscera weight'] < tenth_per, tenth_per, df['Viscera w
df['Viscera weight'] = np.where(df['Viscera weight'] > nine_per, nine_per, df['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d685210>

sns.boxplot(df['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d5ff150>

tenth_per = np.percentile(df['Shell weight'], 10)
nine_per = np.percentile(df['Shell weight'], 90)

df['Shell weight'] = np.where(df['Shell weight'] < tenth_per, tenth_per, df['Shell weight'
df['Shell weight'] = np.where(df['Shell weight'] > nine_per, nine_per, df['Shell weight'])
sns.boxplot(df['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d569a10>


```
sns.boxplot(df['Rings'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d556f50>

tenth_per = np.percentile(df['Rings'], 10)
nine_per = np.percentile(df['Rings'], 90)

df['Rings'] = np.where(df['Rings'] < tenth_per, tenth_per, df['Rings'])
df['Rings'] = np.where(df['Rings'] > nine_per, nine_per, df['Rings'])
sns.boxplot(df['Rings'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f579d6b5d10>

df.describe()

1 to 8 of 8 entries Filter index Sex Length Diameter Height count 4177.0 4177.0 4177.0 0.9470912137898013 0.4104658846061767 mean 0.5274910222647833 0.13970074215944456 0.099873490274980590.083712693109713870.031559391524783625 std 0.8222404151746827 0.09 min 0.0 0.355 0.265 25% 0.0 0.45 0.35 0.115 50% 1.0 0.545 0.425 0.14 75% 2.0 0.615 0.48 0.165 2.0 0.66 0.5220000000000005 0.185 max

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	14.0
1	0	0.355	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.0
4	1	0.355	0.265	0.090	0.2050	0.0895	0.0433	0.065	7.0

Outlier treatment

df['Age'] = df['Rings'] + 2.5

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	14.0	16.5
1	0	0.355	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.0	9.5
2	2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.0	11.5
3	0	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.0	12.5
4	1	0.355	0.265	0.090	0.2050	0.0895	0.0433	0.065	7.0	9.5

X = df.drop('Age', axis=1)

y = df['Age']

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.3, random_state=101)

X_train.shape

```
Untitled2.ipynb - Colaboratory
     (2923, 9)
X_test.shape
     (1254, 9)
y_train.shape
     (2923,)
y_test.shape
     (1254,)
from sklearn.linear_model import LinearRegression
model1 = LinearRegression()
model1.fit(X_train,y_train)
     LinearRegression()
y_pred1 = model1.predict(X_test)
y_pred1
     array([12.5, 9.5, 12.5, ..., 8.5, 16.5, 12.5])
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
print(mean_absolute_error( y_test, y_pred1))
print(mean_squared_error(y_test, y_pred1))
     7.592721418808088e-16
     1.4544229767711159e-30
print(r2_score( y_test,y_pred1))
     1.0
from sklearn.ensemble import RandomForestRegressor
model2 = RandomForestRegressor(n_estimators=500)
model2.fit(X_train, y_train)
     RandomForestRegressor(n_estimators=500)
```

y_pred2 = model2.predict(X_test)

```
y_pred2
    array([12.5, 9.5, 12.5, ..., 8.5, 16.5, 12.5])
print(r2_score( y_test,y_pred2))
    1.0
```

Colab paid products - Cancel contracts here

✓ 0s completed at 1:19 PM

×