Algorithms for Data Science CSOR W4246

Eleni Drinea Computer Science Department

Columbia University

Thursday, September 4, 2014

Outline

1 Recap

- 2 Asymptotic notation
- 3 Divide & Conquer
- 4 Recurrence relations

Review of the last lecture

- Introduced the problem of sorting and analyzed insertion sort.
 - Worst-case running time: $T(n) = n^2 + n 4$
 - ► Space: in-place algorithm
- ▶ Argued that worst-case running time analysis is a reasonable measure of algorithmic efficiency.
- ▶ Defined polynomial-time algorithms as "efficient".
- ▶ Argued that detailed characterizations of running times are not convenient to understand scalability of algorithms.

Today

- ▶ Asymptotic notation: a framework that will allow us to compare the **rate of growth** of different running times.
- ▶ "Divide-and-conquer" design principle
 - ► Application: Merge-sort
- ► Analysis of "divide-and-conquer" algorithms: solving recurrence relations

Asymptotic upper bounds: Big-O notation

Definition (O)

We say that T(n)=O(f(n)) if there exist constants c>0 and $n_0\geq 0$ s.t. for all $n\geq n_0$, we have $T(n)\leq c\cdot f(n)$.

Asymptotic upper bounds: Big-O notation

Definition (O)

We say that T(n) = O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

Examples:

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- $T(n) = an^2 + b, f(n) = n^3.$

Asymptotic lower bounds: Big- Ω notation

Definition (Ω)

We say that $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.

Asymptotic lower bounds: Big- Ω notation

Definition (Ω)

We say that $T(n) = \Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) \ge c \cdot f(n)$.

Examples:

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n.$

Asymptotic tight bounds: Θ notation

Definition (Θ)

We say that $T(n) = \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$.

Equivalent definition: $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$.

Asymptotic tight bounds: Θ notation

Definition (Θ)

We say that $T(n) = \Theta(f(n))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$.

► Equivalent definition: $T(n) = \Theta(f(n))$ if T(n) = O(f(n)) and $T(n) = \Omega(f(n))$.

Examples:

- $ightharpoonup T(n) = an^2 + b, \ a, b > 0 \text{ constants and } f(n) = n^2.$
- $T(n) = n \log n + n$, and $f(n) = n \log n$.

Asymptotic upper bounds that are **not** tight: little-o notation

Definition (o)

We say that T(n) = o(f(n)) if **for any constant** c > 0 there exists a constant $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) < c \cdot f(n)$.

- ▶ Intuitively, this notation says that T(n) becomes insignificant relative to f(n) as $n \to \infty$.
- We can usually prove that T(n) = o(f(n)) by showing that

$$\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$$

(if the limit exists).

Asymptotic upper bounds that are **not** tight: little-o notation

Definition (o)

We say that T(n) = o(f(n)) if **for any constant** c > 0 there exists a constant $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) < c \cdot f(n)$.

- ▶ Intuitively, this notation says that T(n) becomes insignificant relative to f(n) as $n \to \infty$.
- We can usually prove that T(n) = o(f(n)) by showing that

$$\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$$

(if the limit exists).

Examples:

- $T(n) = an^2 + b$, a, b > 0 constants and $f(n) = n^3$.
- $ightharpoonup T(n) = n \log n, \ a, b, d > 0 \text{ constants and } f(n) = n^2.$

Asymptotic lower bounds that are **not** tight: little- ω notation

Definition (ω)

We say that $T(n) = \omega(f(n))$ if **for any constant** c > 0 there exists $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) > c \cdot f(n)$.

- ▶ Intuitively, this notation says that T(n) becomes arbitrarily large relative to f(n) as $n \to \infty$.
- $ightharpoonup T(n) = \omega(f(n))$ implies that the limit (if it exists)

$$\lim_{n \to \infty} \frac{T(n)}{f(n)} = \infty,$$

thus
$$f(n) = o(T(n))$$
.

Asymptotic lower bounds that are **not** tight: little- ω notation

Definition (ω)

We say that $T(n) = \omega(f(n))$ if **for any constant** c > 0 there exists $n_0 \ge 0$ s.t. for all $n \ge n_0$, we have $T(n) > c \cdot f(n)$.

- ▶ Intuitively, this notation says that T(n) becomes arbitrarily large relative to f(n) as $n \to \infty$.
- $ightharpoonup T(n) = \omega(f(n))$ implies that the limit (if it exists)

$$\lim_{n \to \infty} \frac{T(n)}{f(n)} = \infty,$$

thus
$$f(n) = o(T(n))$$
.

Examples:

- $T(n) = n^2$, and $f(n) = n \log n$.
- $T(n) = 2^n$, and $f(n) = n^5$.

Properties of asymptotic growth rates

Transitivity

- 1. If f = O(g) and g = O(h) then f = O(h).
- 2. If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- 3. If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Sums of (up to a constant number of) functions

- 1. If f = O(h) and g = O(h) then f + g = O(h).
- 2. Let k be a fixed constant, and let f_1, f_2, \ldots, f_k, h be functions s.t. for all $i, f_i = O(h)$. Then $f_1 + f_2 + \ldots + f_k = O(h)$.

Transpose symmetry

- f = O(g) if and only if $g = \Omega(f)$.
- f = o(g) if and only if $g = \omega(f)$.

Divide & Conquer

The principle:

- ▶ **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- ▶ Conquer the subproblems by solving them recursively.
- ▶ Combine the solutions to the subproblems into the solution for the original problem.

Divide & Conquer applied to sorting

- ▶ **Divide** the problem into a number of subproblems that are smaller instances of the same problem

 Divide the input array into two lists of equal size.
- ► Conquer the subproblems by solving them recursively. Sort each list recursively.
- ► Combine the solutions to the subproblems into the solution for the original problem.

 Merge the two sorted lists and output the sorted array.

Merge-Sort: pseudocode

```
Merge-Sort (A, left, right)

if size(A) = 1 then return A

end if

middle = left + \lfloor (right - left)/2 \rfloor

Merge-Sort (A, left, middle)

Merge-Sort (A, middle + 1, right)

Merge (A, left, middle, right)
```

▶ Subroutine Merge merges two **sorted** lists of sizes $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil$ into one sorted array of size n.

How can we accomplish that?

Merge: intuition

Intuition: To merge two sorted lists of size n/2, repeatedly

- compare the two items in the front of the two lists
- extract the smaller item and append it to the output; "update" the front of the lists

Example: $n = 8, L = \{1, 3, 5, 7\}, R = \{2, 6, 8, 10\}$

Merge: pseudocode I

Merge (A, left, right, mid)

 $L = A[left, \dots, mid]$

 $R = A[mid+1, \dots, right]$

Maintain a *Current* pointer for each list initialized to point to the first element of every list

 \mathbf{while} both lists are nonempty \mathbf{do}

Let x, y be the elements pointed to by the *Current* pointers

Compare x, y and append the smaller to the output

Advance the *Current* pointer in the list from which the smaller element was selected

end while

Once one list is empty, append the remainder of the other list to the output.

Merge: pseudocode II

```
Merge(A, left, mid, right)
  L[1,\ldots,mid-left+1]=A[left,\ldots,mid]
  R[1,\ldots,right-mid]=A[mid+1,\ldots,right]
  pointer1 = pointer2 = 1
  index = left
  while pointer1 \le |L| and pointer2 \le |R| do
     if L[pointer1] \le R[pointer2] then
        A[index] = L[pointer1]
        pointer1 = pointer1 + 1
     else
        A[index] = R[pointer2]
        pointer2 = pointer2 + 1
     end if
     index = index + 1
  end while
  if (pointer1 > |L|) then
     A[index, ..., right] = R[pointer2, ..., right - left]
  else if (pointer 2 > |R|)
     A[index,...,right] = L[pointer1,...,mid-left+1]
  end if
```

Analysis of Merge

- ► Correctness
- ► Running time
- ► Space

Analysis of Merge: correctness

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by Merge(L, R) after deleting the smallest element.

2. Running time:

3. Space:

Analysis of Merge: running time

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by Merge(L, R) after deleting the smallest element.

2. Running time:

- ▶ L, R have $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil$ elements respectively
- ► How many iterations before all elements from both lists have been appended to the output?
- ► How much work within each iteration?

3. Space:

Analysis of Merge: space

1. Correctness: the smaller number in the input is L[1] or R[1] and it will be the first number in the output. The rest of the output is just the list obtained by Merge(L, R) after deleting the smallest element.

2. Running time:

- ▶ L, R have $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil$ elements respectively
- ▶ How many iterations before all elements from both lists have been appended to the output? At most n-1.
- ▶ How much work within each iteration? Constant.
- \Rightarrow Merge takes O(n) time to merge L, R (why?).
- 3. **Space:** extra $\Theta(n)$ space to store L, R (the sorted output is stored directly in A).

Analysis of Merge Sort

- Correctness
- ► Running time
- ► Space

Merge-sort: correctness

For simplicity assume $n = 2^k$, integer $k \ge 0$. We will use induction on k.

- ▶ Base case: For k = 0, the input consists of n = 1 item; Merge-Sort returns the item.
- ▶ Induction Hypothesis: For k > 0, assume that Merge-Sort correctly sorts any list of size 2^k .
- ▶ Induction Step: We will show that Merge-Sort correctly sorts any list of size 2^{k+1} .
 - ▶ The input list is split into two lists, each of size 2^k .
 - ▶ Merge-sort recursively calls itself on each list. By the hypothesis, when the subroutines return, each list is sorted.
 - ▶ Since Merge is correct, it will merge these two sorted lists into one sorted output list of size $2 \cdot 2^k$.
 - ▶ Thus Merge-Sort correctly sorts any input of size 2^{k+1} .

Running time of mergesort

The running time of mergesort satisfies:

$$T(n) \le 2T(n/2) + cn$$
, for constant $c > 0, n \ge 2$
 $T(1) \le c$

This structure is typical of **recurrence relations**:

- ▶ an inequality or equation bounds T(n) in terms of an expression involving T(m) for m < n
- ▶ a base case generally says that T(n) is constant for small constant n

Remarks

- ▶ We ignore floor and ceiling notations: they do not affect asymptotic bounds.
- A recurrence does **not** provide an asymptotic bound for T(n): to this end, we need to solve the recurrence so that T(n) appears only on the left-hand side.

How to solve recurrences

- ► Recursion trees
 - 1. Analyze the first few levels of the tree of recursive calls
 - 2. Identify a pattern
 - 3. Sum over all levels of recursion

Example: running time of Merge-Sort

$$T(n) = 2T(n/2) + cn, n \ge 2, T(1) \le c$$

- Substitution method
 - 1. Guess a bound
 - 2. Use induction to prove that the guess is correct

How to solve recurrences: Master theorem

Theorem (Master Theorem)

Let $a \ge 1$, $b \ge 2$ be integers and c, k > 0 be constants. Let T(n) be defined over the non-negative integers by the recurrence

$$T(n) = aT(n/b) + cn^k,$$

where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) is asymptotically bounded as follows:

- 1. $T(n) = \Theta(n^{\log_b a})$ if $\log_b a > k$.
- 2. $T(n) = \Theta(n^k \log n)$ if $\log_b a = k$.
- 3. $T(n) = \Theta(n^k)$ if $\log_b a < k$.

Example: running time of Merge-Sort

► T(n) = 2T(n/2) + cn: $a = 2, b = 2, k = 1, \log_b a = 1 = k \Rightarrow T(n) = \Theta(n \log n)$