Math2001 Answer to Homework 3

Exercise 2.18

- $(1). [0,1] \cup (2,4).$
- $(2). [0,1] \cup (2,5).$
- (3). [0,4).
- (4). [-5,5).
- $(5). [0,1] \cup (2,4).$
- (6). $(-1,1) \cup (1,2) \cup (2,3) \cup (3,4)$.
- (7). $[-5, -4) \cup (-4, -2) \cup (-2, 0) \cup (0, 2) \cup (2, 4) \cup (4, 5)$.

Exercise 2.19

- $(1). 10\mathbb{Z}.$
- (2). \mathbb{R} .
- $(3). \{2,4\}.$

Exercise 2.21

- (1). $X \cap (Y \cup Z)$.
- $(2). (X \cap Y) \cup Z.$
- (3). $(X \cap Z) Y$.

Exercise 2.22

(1). If $x \in Z$, then $x \in X$ and $x \in Y$. Thus we have $x \in X \cap Y$. Therefore $x \in Z$ implies $x \in X \cap Y$. In other words, we have $Z \subset X \cap Y$.

Exercise 2.24

(1). T. (2). T. (3). F. (4). F. (5). T. (6). T. (7). T.

Exercise 2.25

If $x \in X - (X - Y)$, then $x \in X$ and $x \notin X - Y$. $x \notin X - Y$ implies $x \notin X$ or $x \in Y$. Equivalently, there is $x \in X$ and $x \notin X - Y$ imply $x \in Y$. Thus $x \in X - (X - Y)$ implies that $x \in X$ and $x \in Y$, which, in other words, is saying that $x \in X \cap Y$. Therefore, there is $X - (X - Y) \subset X \cap Y$.

If $x \in X \cap Y$, then $x \in X$ and $x \in Y$. $x \in Y$ implies that $x \notin X - Y$. $x \in X$ and $x \notin X - Y$ imply that $x \in X - (X - Y)$. Hence there is $X \cap Y \subset X - (X - Y)$.

Therefore, $X - (X - Y) = X \cap Y$.

Exercise 2.26

If $x \in X$, then $x \in Y$ or $x \in Z$. Since $X = Y \sqcup Z$, the proposition $x \in Y \cap Z$ is always false. In other words, the proposition $x \in Y$ and $x \in Z$ is false. Thus $x \in Z$ implies $x \notin Y$.

If $x \in \mathbb{Z}$, then $x \in X$ and $x \notin Y$. Hence $x \in X - Y$.

If $x \in X - Y$, then $x \in X$ and $x \notin Y$. Since $x \in X$ implies $x \in Y$ or $x \in Z$, $x \in X$ and $x \notin Y$ imply that $x \in Z$. Therefore, X - Y = Z.

By Excercise 2.25, X - Z = X - (X - Y) = Y.

Exercise 2.27

(4).

Exercise 2.29

Exercise 2.30

(1). F. (2). T. (3). T. (4). T. (5). F.

Exercise 2.32

(1).

(2).

Exercise 2.35

- $(1). (1,3) \times [2,4].$
- (2). $(1,3) \times [2,4] \sqcup (2,3) \times (4,5] \sqcup [3,4) \times [3,5]$.
- $(3). (2,3) \times [3,4].$
- (4). $(1,2] \times [2,4] \sqcup (2,3) \times [2,3)$.

Exercise 2.36

(3). The equality doesn't hold.

(4). The equality holds.

