Matrix Decomposition

Liang Zheng
Australian National University
liang.zheng@anu.edu.au

4.1 Determinant

• We write the determinant as
$$\det(A)$$
 or sometimes as $|A|$ so that
$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

- The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a function that maps A onto a real number.
- Example 4.1 (Testing for Matrix Invertibility)
- If A is a 1×1 matrix, then $A = a \Rightarrow A^{-1} = \frac{1}{a}$. It holds if and only if $a \neq 0$.
- For 2×2 matrices, if $\mathbf{A}=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, recall that the inverse of \mathbf{A} is $\mathbf{A}^{-1}=\frac{1}{a_{11}a_{22}-a_{12}a_{21}}\begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Hence, A is invertible if and only if

$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$

• This quantity is the determinant of $A \in \mathbb{R}^{2\times 2}$, i.e.,

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

- For a square matrix $A \in \mathbb{R}^{n \times n}$ it holds that A is invertible if and only if $det(A) \neq 0$.
- We have explicit (closed-form) expressions for determinants of small matrices in terms of the elements of the matrix. For n = 1,

$$\det(\mathbf{A}) = \det(a_{11}) = a_{11}$$

• For n = 2,

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

which we have observed in the preceding example.

• For
$$n=3$$
 (known as Sarrus' rule),
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33}$$

- We call a square matrix T an upper-triangular matrix if $T_{ij} = 0$ for i > j, i.e., the matrix is zero below its diagonal.
- Analogously, we define a lower-triangular matrix as a matrix with zeros above its diagonal.
- For a triangular matrix $T \in \mathbb{R}^{n \times n}$, the determinant is the product of the diagonal elements, i.e.,

$$\det(\mathbf{T}) = \prod_{i=1}^{n} T_{ii}$$

- How can we compute the determinant of an $n \times n$ (n > 3) matrix?
- We reduce this problem to computing the determinant of $(n-1)\times(n-1)$ matrices. By recursively applying the Laplace expansion, we can compute determinants of an $n\times n$ matrix by ultimately computing determinants of 2×2 matrices.
- Theorem 4.2 (Laplace Expansion).
- Consider a matrix $A \in \mathbb{R}^{n \times n}$. Then, for all $j = 1, \dots, n$:
- 1. Expansion along column j

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} \det(\mathbf{A}_{k,j})$$

2. Expansion along row j

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} \det(\mathbf{A}_{j,k})$$

• Here $A_{k,j} \in \mathbb{R}^{(n-1)\times (n-1)}$ is the submatrix of A that we obtain when deleting row k and column j.

2. Expansion along row j

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} \det(\mathbf{A}_{j,k})$$

- Example 4.3 (Laplace Expansion)
- · Let us compute the determinant of

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

· Using the Laplace expansion along the first row, yielding

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = (-1)^{1+1} \cdot 1 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} + (-1)^{1+2} \cdot 2 \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} + (-1)^{1+3} \cdot 3 \begin{vmatrix} 3 & 1 \\ 0 & 0 \end{vmatrix}$$

We compute the determinants of all the 2×2 matrices and obtain

$$\det(A) = 1(1-0) - 2(3-0) + 3(0-0) = -5$$

 For completeness we can compare this result to computing the determinant using Sarrus' rule:

$$\det(A) = 1 \cdot 1 \cdot 1 + 3 \cdot 0 \cdot 3 + 0 \cdot 2 \cdot 2 - 0 \cdot 1 \cdot 3 - 1 \cdot 0 \cdot 2 - 3 \cdot 2 \cdot 1 = 1 - 6 = -5.$$

Properties of the determinant

- For $A \in \mathbb{R}^{n \times n}$, we have the following properties
- $\det(AB) = \det(A) \det(B)$
- $\det(A) = \det(A^T)$
- If *A* is regular (invertible), then $det(A^{-1}) = \frac{1}{det(A)}$
- Adding a multiple of a column/row to another one does not change det(A)
- Multiplication of a column/row with $\lambda \in \mathbb{R}$ scales $\det(A)$ by λ . In particular, $\det(\lambda A) = \lambda^n \det(A)$
- Swapping two rows/columns changes the sign of det(A)
- Because of the last three properties, we can use Gaussian elimination to compute det(A) by bringing A into row-echelon form. We can stop Gaussian elimination when we have A in a triangular form where the elements below the diagonal are all 0. Recall: the determinant of a triangular matrix is the product of the diagonal elements.

Example

Let us use Gaussian elimination in order to obtain the following determinant

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} row2 - 3 \times row1$$

$$\xrightarrow{\text{w}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -7 \\ 0 & 0 & 1 \end{bmatrix}$$

Now we have the upper triangular form (row-echelon form).

$$\det(A) = 1 \times (-5) \times 1 = -5$$

We can verify this result with the previous example.

Understanding of determinant

Matrices characterize linear transformations.

When determinant is greater than 1, it will enlarge a graph; otherwise it shrinks a graph

Determinant and invertibility

$$\begin{vmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{vmatrix} = 1$$

$$A (0, \sqrt{2})^{\mathsf{T}}$$

45° clockwise rotation
$$\begin{vmatrix} \cos(-45^\circ) & -\sin(-45^\circ) \\ \sin(-45^\circ) & \cos(-45^\circ) \end{vmatrix} = 1$$

$$\begin{bmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{bmatrix} \text{ and } \begin{bmatrix} \cos(-45^\circ) & -\sin(-45^\circ) \\ \sin(-45^\circ) & \cos(-45^\circ) \end{bmatrix} \text{ are inverses of each other}$$

Some linear transformations (matrices) are not invertible

You cannot restore the original rectangle from these collapsed shapes.

4.2 Eigenvalues and Eigenvectors

• For $\lambda \in \mathbb{R}$ and a square matrix $A \in \mathbb{R}^{n \times n}$

$$p_{\mathbf{A}}(\lambda) \coloneqq \det(\mathbf{A} - \lambda \mathbf{I})$$

$$= c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n$$

 $c_0, \dots, c_{n-1} \in \mathbb{R}$, is the characteristic polynomial of A.

- The characteristic polynomial $p_A(\lambda) \coloneqq \det(A \lambda I)$ will allow us to compute eigenvalues and eigenvectors.
- Example
- $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, we have,

$$p_A(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) - 8 = (\lambda - 5)(\lambda + 1)$$

• Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an eigenvalue of A and $x \in \mathbb{R}^n \setminus \{0\}$ is the corresponding eigenvector of A if

$$Ax = \lambda x$$

- We call this equation the eigenvalue equation.
- The following statements are equivalent:
- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$
- There exists an $x \in \mathbb{R}^n \setminus \{0\}$ with $Ax = \lambda x$ or equivalently $(A \lambda I_n)x = 0$ can be solved non-trivially, i.e., $x \neq 0$
- $\operatorname{rk}(A \lambda I_n) < n$
- $\det(A \lambda I) = 0$

- Non-uniqueness of eigenvectors
- If x is an eigenvector of A associated with eigenvalue λ , then for any $c \in \mathbb{R}\setminus\{0\}$ it holds that cx is an eigenvector of A with the same eigenvalue since $A(cx) = cAx = c\lambda x = \lambda(cx)$
- Thus, all vectors that are collinear (point in the same or opposite direction) to
 x are also eigenvectors of A.
- Theorem 4.8. $\lambda \in \mathbb{R}$ is eigenvalue of $A \in \mathbb{R}^{n \times n}$ if and only if λ is a root of the characteristic polynomial $p_A(\lambda)$ of A. $p_A(\lambda) \coloneqq \det(A \lambda I)$
- $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, we have,

$$p_{A}(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) - 8 = (\lambda - 5)(\lambda + 1)$$

• Eigenvalues are $\lambda_1 = 5, \lambda_2 = -1$

- **Definition**. Let a square matrix A have an eigenvalue λ_i . The algebraic multiplicity of λ_i is the number of times the root appears in the characteristic polynomial.
- $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, we have,

$$p_{A}(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 \\ 2 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) - 8 = (\lambda - 5)(\lambda + 1)$$

- Eigenvalues are $\lambda_1 = 5$, $\lambda_2 = -1$
- Hence it has two distinct eigenvalues and each occurs only once, so the algebraic multiplicity of both eigenvalues is one.
- $\mathbf{B} = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$, we have,

$$p_{\mathbf{B}}(\lambda) = \det(B - \lambda \mathbf{I}) = \begin{vmatrix} 5 - \lambda & 0 \\ 0 & 5 - \lambda \end{vmatrix} = (5 - \lambda)^2$$

- Eigenvalues are $\lambda_1 = \lambda_2 = 5$
- The eigenvalue 5 has algebraic multiplicity of 2

- **Definition**. For $A \in \mathbb{R}^{n \times n}$, the union of the **0** vector and the set of all eigenvectors of A associated with an eigenvalue λ is a subspace of \mathbb{R}^n , which is called the eigenspace of A with respect to λ and is denoted by E_{λ} .
- The set of all eigenvalues of A is called the eigenspectrum, or just spectrum, of A.
- If λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, then the corresponding eigenspace E_{λ} is the solution space of the homogeneous system of linear equations $(A \lambda I)x = 0$
- Example (The case of the Identity Matrix)
- The identity matrix $I \in \mathbb{R}^{n \times n}$ has characteristic polynomial $p_I(\lambda) = \det(I \lambda I) = (1 \lambda)^n = 0$. It has only one eigenvalue $\lambda = 1$ that occurs n times.
- Moreover, $Ix = \lambda x$ holds for all vectors $x \in \mathbb{R}^n \setminus \{0\}$
- Therefore, the sole eigenspace E_1 of the identity matrix spans n dimensions, and all n standard basis vectors of \mathbb{R}^n are eigenvectors of I.

- Useful properties regarding eigenvalues and eigenvectors
- A matrix A and its transpose A^T possess the same eigenvalues, but not necessarily the same eigenvectors
- Symmetric, positive definite matrices always have positive, real eigenvalues.

$$\forall x \in V \setminus \{\mathbf{0}\}: x^T A x > 0$$

- Example (Computing Eigenvalues, Eigenvectors, and Eigenspaces)
- Let us find the eigenvalues and eigenvectors of the 2×2 matrix

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

• Step 1: Characteristic Polynomial. We need to compute the roots of the characteristic polynomial $\det(A - \lambda I) = 0$ to find the eigenvalues.

• Step 2: Eigenvalues. The characteristic polynomial is

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \end{pmatrix} = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 \cdot 1$$

- We factorize the characteristic polynomial and obtain
- $p_A(\lambda) = (4 \lambda)(3 \lambda) 2 \cdot 1 = 10 7\lambda + \lambda^2 = (2 \lambda)(5 \lambda)$ giving the roots $\lambda_1 = 2$ and $\lambda_2 = 5$.
- Step 3: Eigenvectors and Eigenspaces. From our definition of the eigenvector $x \neq 0$, there will be a vector such that $Ax = \lambda x$, i.e., $(A \lambda I)x = 0$. We find the eigenvectors that correspond to these eigenvalues by looking at vectors x such that

$$\begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix} x = \mathbf{0}$$

• For $\lambda = 5$ we obtain

$$\begin{bmatrix} 4-5 & 2 \\ 1 & 3-5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

• We solve this homogeneous system and obtain a solution space

$$E_5 = \operatorname{span}\begin{bmatrix}2\\1\end{bmatrix}$$

- This eigenspace is one-dimensional as it possesses a single basis vector.
- Analogously, we find the eigenvector for $\lambda = 2$ by solving

$$\begin{bmatrix} 4-2 & 2 \\ 1 & 3-2 \end{bmatrix} x = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} x = \mathbf{0}$$

The corresponding eigenspace is given as

$$E_2 = \operatorname{span}\left[\begin{vmatrix} 1 \\ -1 \end{vmatrix}\right]$$

- **Definition**. Let λ_i be an eigenvalue of a square matrix A. Then the geometric multiplicity of λ_i is the number of linearly independent eigenvectors associated with λ_i . In other words, it is the dimensionality of the eigenspace spanned by the eigenvectors associated with λ_i .
- In our previous example, the geometric multiplicity of $\lambda = 5$ and $\lambda = 2$ is 1.
- In another example, the matrix $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ has two repeated eigenvalues $\lambda_1 = \lambda_2 = 2$. The algebraic multiplicity of λ_1 and λ_2 is 2.
- The eigenvalue has only one distinct unit eigenvector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and thus geometric multiplicity is 1.
- **Theorem**. The eigenvectors $x_1, ..., x_n$ of a matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues $\lambda_1, ..., \lambda_n$ are linearly independent.
- Eigenvectors of a matrix with n distinct eigenvalues form a basis of \mathbb{R}^n

- **Definition**. A square matrix $A \in \mathbb{R}^{n \times n}$ is defective if it possesses fewer than n linearly independent eigenvectors
- Looking at the eigenspaces of a defective matrix, it follows that the sum of the dimensions of the eigenspaces is less than n.
- A defective matrix cannot have *n* distinct eigenvalues, as distinct eigenvalues have linearly independent eigenvectors.
- **Theorem**. Given a matrix $A \in \mathbb{R}^{m \times n}$, we can always obtain a symmetric, positive semidefinite matrix $S \in \mathbb{R}^{n \times n}$ by defining

$$S \coloneqq A^{\mathrm{T}}A$$

- *Proof.* Symmetry: $\mathbf{S} := \mathbf{A}^{\mathrm{T}} \mathbf{A} = \mathbf{A}^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{T}} = \mathbf{S}^{\mathrm{T}}$
- positive semidefinite: $x^{T}Sx = x^{T}A^{T}Ax = (Ax)^{T}Ax \ge 0$
- If rk(A) = n, then $S := A^T A$ is positive definite.

• **Theorem** (Spectral Theorem). If $A \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of the corresponding vector space V consisting of eigenvectors of A, and each eigenvalue is real

Example

Consider the matrix

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

The characteristic polynomial of A is

$$p_A(\lambda) = (\lambda - 1)^2(\lambda - 7)$$

so that we obtain the eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 7$, where λ_1 is a repeated eigenvalue. Following our standard procedure for computing eigenvectors, we obtain the eigenspaces

$$E_{1} = \operatorname{span}\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, E_{7} = \operatorname{span}\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= x_{1}$$

$$= x_{2}$$

- We see that x_3 is orthogonal to both x_1 and x_2 . However, since $x_1^T x_2 = 1 \neq 0$, they are not orthogonal. The spectral theorem states that there exists an orthogonal basis, but the one we have is not orthogonal.
- However, we can construct one.

• To construct such a basis, we exploit the fact that x_1 , x_2 are eigenvectors associated with the same eigenvalue λ . Therefore, for any $\alpha, \beta \in \mathbb{R}$ it holds that $A(\alpha x_1 + \beta x_2) = Ax_1\alpha + Ax_2\beta = \lambda_1(\alpha x_1 + \beta x_2)$

- i.e., any linear combination of x_1 and x_2 is also an eigenvector of A associated with λ_1 . The Gram-Schmidt algorithm is a method for iteratively constructing an orthogonal/orthonormal basis from a set of basis vectors using such linear combinations.
- Therefore, even if x_1 and x_2 are not orthogonal, we can apply the Gram-Schmidt algorithm and find eigenvectors associated with $\lambda_1 = 1$ that are orthogonal to each other (and to x_3). In our example, we will obtain

$$\mathbf{x_1'} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{x_2'} = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$

• which are orthogonal to each other, orthogonal to x_3 , and eigenvectors of A associated with $\lambda_1 = 1$.

• **Theorem.** The determinant of a matrix $A \in \mathbb{R}^{n \times n}$ is the product of its eigenvalues,

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

where λ_i are (possibly repeated) eigenvalues of A.

Some understandings

4.4 Eigendecomposition and Diagonalization

A diagonal matrix is a matrix that has value zero on all off-diagonal elements,

$$\mathbf{D} = \begin{bmatrix} c_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_n \end{bmatrix}$$

- Diagonal matrices allow fast computation of determinants, powers, and inverses.
- The determinant is the product of its diagonal entries.
- a matrix power \mathbf{D}^k is given by each diagonal element raised to the power k.
- The inverse D^{-1} is the reciprocal of its diagonal elements if all of them are nonzero.
- Two matrices A, D are similar if there exists an invertible matrix P, such that $D = P^{-1}AP$.
- **Definition**. A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $D = P^{-1}AP$.

23

• Let $A \in \mathbb{R}^{n \times n}$, and let $\lambda_1, \dots, \lambda_n$ be a set of scalars, and let p_1, \dots, p_n be a set of vectors in \mathbb{R}^n . We define $P := [p_1, \dots, p_n]$ and let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix with diagonal entries $\lambda_1, \dots, \lambda_n$. Then we can show that

$$AP = PD$$

if and only if $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A and p_1, \dots, p_n are corresponding eigenvectors of A.

We can see that this statement holds because

$$AP = A[p_1, \cdots, p_n] = [Ap_1, \cdots, Ap_n]$$

$$PD = [p_1, \cdots, p_n]$$
$$\begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} = [\lambda_1 p_1, \cdots, \lambda_n p_n]$$

• Thus AP = PD implies that

$$Ap_1 = \lambda_1 p_1$$

$$\vdots$$

$$Ap_n = \lambda_n p_n$$

- Therefore, the columns of P must be eigenvectors of A.
- Our definition of diagonalization requires that $P \in \mathbb{R}^{n \times n}$ is invertible, i.e., P has full rank. This requires us to have n linearly independent eigenvectors p_1, \dots, p_n , i.e., the p_i form a basis of \mathbb{R}^n .

- Theorem (Eigendecomposition).
- A square matrix $A \in \mathbb{R}^{n \times n}$ can be factored into

$$A = PDP^{-1}$$

where $P \in \mathbb{R}^{n \times n}$ and D is a diagonal matrix whose diagonal entries are the eigenvalues of A, if and only if the eigenvectors of A form a basis of \mathbb{R}^n

- **Theorem**. A symmetric matrix $A \in \mathbb{R}^{n \times n}$ can always be diagonalized.
- **Theorem** (Spectral Theorem). If $A \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of the corresponding vector space V consisting of eigenvectors of A, and each eigenvalue is real.
- The spectral theorem states that we can find an ONB of eigenvectors of \mathbb{R}^n . This makes P an orthogonal matrix ($PP^T = P^TP = I$) so that $A = PDP^T$ or equivalently $P^TAP = D$

Example

- Let us compute the eigendecomposition of $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
- Step 1: Compute eigenvalues and eigenvectors. The characteristic polynomial of A is

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\left(\begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix}\right) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = (\lambda - 3)(\lambda - 1)$$

• Therefore, the eigenvalues of A are $\lambda_1=1$ and $\lambda_2=3$, and the associated (normalized) eigenvectors are obtained via

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{p}_1 = 1 \boldsymbol{p}_1, \qquad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{p}_2 = 3 \boldsymbol{p}_2$$

· This yields

$$p_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad p_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Step 2: Check for existence. The eigenvectors p_1 , p_2 form a basis of \mathbb{R}^2 . Therefore, A can be diagonalized.
- Step 3: Construct the matrix *P* to diagonalize *A*. We collect the eigenvectors of *A* in *P* so that

$$P = [p_1, p_2] = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

We then obtain

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} = \mathbf{D}$$

Equivalently, we get

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

• Diagonal matrices D can efficiently be raised to a power. Therefore, we can find a matrix power for a matrix $A \in \mathbb{R}^{n \times n}$ via the eigenvalue decomposition (if it exists) so that

$$A^k = (PDP^{-1})^k = PD^kP^{-1}$$

• Computing D^k is efficient because we apply this operation individually to any diagonal element.

• Assume that the eigendecomposition $A = PDP^{-1}$ exists. Then,

$$\det(\mathbf{A}) = \det(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) = \det(\mathbf{P})\det(\mathbf{D})\det(\mathbf{P}^{-1})$$
$$= \det(\mathbf{D}) = \prod_{i} d_{ii}$$

allows for an efficient computation of the determinant of A.

- Eigendecomposition requires square matrices.
- We introduce a more general matrix decomposition technique, the singular value decomposition.

4.5 Singular Value Decomposition

• **Theorem** (SVD Theorem). Let $A^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of A is a decomposition of the form

$$\mathbf{E} \begin{bmatrix} A \\ \end{bmatrix} = \mathbf{E} \begin{bmatrix} U \\ \mathbf{E} \end{bmatrix} \mathbf{\Sigma} \begin{bmatrix} \mathbf{V}^T \end{bmatrix} \mathbf{E}$$

with an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{m \times m}$ with column vectors $\mathbf{u}_i, i = 1, \dots, m$, and an orthogonal matrix $\mathbf{V} \in \mathbb{R}^{n \times n}$ with column vectors $\mathbf{v}_j, j = 1, \dots, n$. Moreover, $\mathbf{\Sigma}$ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geq 0$ and $\Sigma_{ij} = 0, i \neq j$.

- The diagonal entries σ_i , i = 1, ..., r of Σ are called the singular values
- u_i are called the left-singular vectors
- v_i are called the right-singular vectors
- By convention, the singular values are ordered $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r \ge 0$

$$\xi \begin{bmatrix} A \end{bmatrix}_{=}
\xi \begin{bmatrix} U \end{bmatrix}
\xi \begin{bmatrix} \Sigma \end{bmatrix} \begin{bmatrix} V^T \end{bmatrix}$$

- The singular value matrix Σ is unique.
- $\Sigma \in \mathbb{R}^{m \times n}$ is rectangular and of the same size as A. This means that Σ has a diagonal submatrix that contains the singular values and needs additional zero padding.
- If m > n, Σ has diagonal structure up to row n and consists of $\mathbf{0}^T$ row vectors from n+1 to m,

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

• If m < n, Σ has a diagonal structure up to column m and columns that consist of $\mathbf{0}$ from m+1 to n:

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & 0 & & 0 \\ 0 & 0 & \sigma_m & 0 & \cdots & 0 \end{bmatrix}$$

- The SVD exists for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Example 4.12 (Vectors and the SVD)
- Consider a mapping of a square grid of vectors $X \in \mathbb{R}^2$ that fit in a box of size 2×2 entered at the origin. Using the standard basis, we map these vectors using

$$\mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}} = \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$

4.5.2 Construction of the SVD

- The SVD of a general matrix shares some similarities with the eigendecomposition of a square matrix
- Compare the eigendecomposition of an SPD (Symmetric, positive definite) matrix

$$S = S^{\mathrm{T}} = PDP^{\mathrm{T}}$$

with the corresponding SVD

$$S = U\Sigma V^{\mathrm{T}}$$

If we set

$$U=P=V$$
, $D=\Sigma$

we see that the SVD of SPD matrices is their eigendecomposition.

We can always diagonalize A^TA and obtain

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathrm{T}} = \mathbf{P}\begin{bmatrix} \lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n} \end{bmatrix} \mathbf{P}^{\mathrm{T}} \quad (1)$$

where P is an orthogonal matrix, which is composed of the orthonormal eigenbasis. The $\lambda_i \geq 0$ are the eigenvalues of $A^T A$.

• Let us assume the SVD of A exists and takes the form of $A = U\Sigma V^{T}$

$$A^{\mathrm{T}}A = (U\Sigma V^{\mathrm{T}})^{\mathrm{T}}(U\Sigma V^{\mathrm{T}}) = V\Sigma^{\mathrm{T}}U^{\mathrm{T}}U\Sigma V^{\mathrm{T}}$$

where U, V are orthogonal matrices. Therefore, with $U^{T}U = I$ we obtain

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A} = \boldsymbol{V}\boldsymbol{\Sigma}^{\mathrm{T}}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{V} \begin{bmatrix} \sigma_{1}^{2} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_{n}^{2} \end{bmatrix} \boldsymbol{V}^{\mathrm{T}} \quad (2)$$

Comparing now (1) and (2), we identify

$$V = P \sigma_i^2 = \lambda_i$$

$$\mathbf{E} \begin{bmatrix} A \end{bmatrix}_{=} \mathbf{E} \begin{bmatrix} \mathbf{U} \end{bmatrix} \mathbf{E} \begin{bmatrix} \mathbf{\Sigma} \end{bmatrix} \begin{bmatrix} \mathbf{V}^T \end{bmatrix} \mathbf{E}$$

To obtain the left-singular vectors *U*.

$$A = U\Sigma V^{\mathrm{T}} \Leftrightarrow AV = U\Sigma V^{\mathrm{T}}V = U\Sigma$$

We have,

$$Av_i = \sigma_i u_i, i = 1, ..., r$$

where r is the rank of A. So, we can calculate

$$\boldsymbol{u}_i = \frac{1}{\sigma_i} \boldsymbol{A} \boldsymbol{v}_i, i = 1, ..., r \quad (1)$$

- We look at matrices with full rank, i.e., $r = \min(m, n)$. Remember that U is an $m \times m$ matrix.
- If $m \le n$, $U = [u_1, u_2, ..., u_m]$; All the u_i have been calculated through (1)
- If m > n, $U = [u_1, u_2, ..., u_n, ..., u_m]$;
 - $u_1, ..., u_n$ have been calculate through (1)
 - In order to calculate $u_{n+1}, ..., u_m$, you use the fact that $u_1, u_2, ..., u_n, ..., u_m$ are orthonormal vectors.

Summary of the SVD

- Given $\in \mathbb{R}^{m \times n}$, $A = U \Sigma V^{T}$
- V: eigendecomposition of $A^{T}A$
- Σ : nonzero elements are σ_i obtained from eigendecomposition of A^TA
- U: calculate $u_i = \frac{1}{\sigma_i} A v_i$
 - If $m \le n$, $U = [u_1, u_2, ..., u_m]$;
 - If m > n, $U = [u_1, u_2, ..., u_n, ..., u_m]$;
 - For i > n, the u_i are orthonormal vectors that satisfy

$$[\boldsymbol{u}_1^{\mathrm{T}},\boldsymbol{u}_2^{\mathrm{T}},\dots,\boldsymbol{u}_n^{\mathrm{T}}]\boldsymbol{u}_i=\mathbf{0}$$

4.5.2 Construction of the SVD

- Example (Computing the SVD)
- Let us find the singular value decomposition of

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}$$

- The SVD requires us to compute the right-singular vectors v_j , the singular values σ_k , and the left-singular vectors u_i .
- Step 1: Right-singular vectors as the eigenbasis of $A^{T}A$.
- We start by computing

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

• We compute the singular values σ_k and right-singular vectors v_j through the eigenvalue decomposition of A^TA_j , which is given as

decomposition of
$$A^{T}A$$
, which is given as
$$A^{T}A = \begin{bmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = PDP^{T}$$

and we obtain the right-singular vectors as the columns of **P** so that

$$V = P = \begin{bmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

- Step 2: Singular-value matrix.
- As the singular values σ_i are the square roots of the eigenvalues of A^TA we obtain them straight from $\begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Since rk(A) = 2, there are only two non-zero singular values: $\sigma_1 = \sqrt{6}$ and $\sigma_2 = 1$. The singular value matrix must be the same size as A, and we obtain

$$\mathbf{\Sigma} = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• Step 3: Right-singular vectors are calculated using $u_i = \frac{1}{\sigma_i} A v_i$

$$u_{1} = \frac{1}{\sigma_{1}} A v_{1} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{30}} \\ \frac{-2}{\sqrt{30}} \\ \frac{1}{\sqrt{30}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \end{bmatrix}$$

$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{1}} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{0}{1} \\ \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$$

We obtain the left-singular vectors as the columns of S so that

$$U = S = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$

- Now we have computed U, V and Σ.
- You can verify that

•
$$A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} = U\Sigma V^{T} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{3}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Another example

• Calculate the SVD of
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

• We first calculate V as the eigenbasis of $A^{T}A$.

$$A^{T}A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

The singular value matrix is

$$\mathbf{\Sigma} = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

We finally calculate *U*

$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

- Now we have calculated u_1 and u_2 ; we want to calculate u_3
- We make use of the fact that u_1 , u_2 , and u_3 are an orthonormal basis.

$$\begin{cases} \boldsymbol{u}_1^{\mathrm{T}} \boldsymbol{u}_3 = 0 \\ \boldsymbol{u}_2^{\mathrm{T}} \boldsymbol{u}_3 = 0 , \\ \|\boldsymbol{u}_3\|_2 = 1 \end{cases}$$

· We can obtain

•
$$u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

In all, the SVD of A is written as

$$A = U\Sigma V^{T} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

4.5.3 Eigenvalue Decomposition vs. Singular Value Decomposition

- Let us consider the eigendecomposition $A = PDP^{-1}$ and the SVD $A = U\Sigma V^{T}$.
- The SVD always exists for any matrix $\mathbb{R}^{m \times n}$. The eigendecomposition is only defined for square matrices $\mathbb{R}^{n \times n}$ and only exists if we can find a basis of eigenvectors of \mathbb{R}^n
- The vectors in the eigendecomposition matrix P are not necessarily orthogonal. On the other hand, the vectors in the matrices U and V in the SVD are orthonormal, so they represent rotations.
- Both the eigendecomposition and the SVD are compositions of three linear mappings:
 - 1. Change of basis in the domain
 - 2. Independent scaling of each new basis vector and mapping from domain to codomain
 - 3. Change of basis in the codomain

A key difference between the eigendecomposition and the SVD is that in the SVD, domain and codomain can be vector spaces of different dimensions

4.5.3 Eigenvalue Decomposition vs. Singular Value Decomposition

- In the SVD, the left- and right-singular vector matrices \boldsymbol{U} and \boldsymbol{V} are generally not inverse of each other (they perform basis changes in different vector spaces). In the eigendecomposition, the basis change matrices \boldsymbol{P} and \boldsymbol{P}^{-1} are inverses of each other.
- In the SVD, the entries in the diagonal matrix Σ are all real and nonnegative, which is not generally true for the diagonal matrix in the eigendecomposition.
- The SVD and the eigendecomposition are closely related through their projections
 - The right-singular vectors of \mathbf{A} are eigenvectors of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.
 - The nonzero singular values of A are the square roots of the nonzero eigenvalues of $A^{T}A$.
- For symmetric matrices $A \in \mathbb{R}^{n \times n}$, the eigenvalue decomposition and the SVD are one and the same, which follows from the spectral theorem.

Further understanding

- A symmetric matrix represents a combination of rotation and scaling
- Through matrix decomposition, we can explain the effect of linear transformation defined by this matrix.
- Eigenvalues quantify the scaling effect.
- Eigenvectors quantify the direction of the scaling
- The application of eigendecomposition is limited.
- SVD is a universal one by finding an orthonormal basis.