1. [10] I have two pockets: left and right. I also have two indistinguishable coins. Initially they are both in the left pocket. Each moment of time I randomly select one of my pockets. If it is empty I do nothing. It it is not empty I move a coin from the selected pocket to another one.

Consider the Markov chain where the state is the location of the two coins.

- (a) [5] Draw the diagram and find the transition matrix.
- (b) [2] Classify the states.
- (c) [3] Which proportion of my eternal life the coins are split in both pockets?
- 2. [10] The random variable X, Y and Z are independent and normally distributed. Consider the sigma-algebras

$$\mathcal{F}_1 = \sigma(X,Y), \quad \mathcal{F}_2 = \sigma(Y,Z), \quad \mathcal{F}_3 = \sigma(X+Z,Y), \quad \mathcal{F}_4 = \sigma(X+Y,X-Y), \quad \mathcal{F}_5 = \sigma(X,Y,X+Y).$$

- (a) [4] For each sigma-algebra provide two examples of non-trivial (different from \emptyset and Ω) events that belong to it.
- (b) [3] Which of the sigma-algebras are always equal?
- (c) [3] Which sigma-algebra is always a subset of another one?
- 3. [10] The random variables (X_k) are independent and uniform on [0;2] and $Y=X_1+2X_2+\cdots+5X_5+10$.
 - (a) [4] Find the moment generating function of X_1 .
 - (b) [3] Find the moment generating function of Y.
 - (c) [3] Find $Var(Y \mid X_2)$.
- 4. [10] Gleb Zheglov catches one criminal every day. With probability 0.2 the catched criminal is replaced by 2 new criminals. Initially there is 1 criminal in the town.

Let T be the day of the ultimate crime eradication in the town.

- (a) [4] Find $\mathbb{E}(T)$.
- (b) [6] Find Var(T).
- 5. [10] The random varible (X_k) are independend and uniform on [0;1]. Let $Y_n=X_1\cdot X_2\cdot \cdots \cdot X_k$.
 - (a) [5] Does (X_n) converge in probability? In distribution? Explain.
 - (b) [5] Does (Y_n) converge in probability? In distribution? Explain.
- 6. [10] The random variables (X_n) are independent and they have exponential distribution with rate $\lambda=2$. Consider the cumulative sum $S_n=X_1+X_2+\cdots+X_n$ with $S_0=0$ and the natural filtration $\mathcal{F}_n=\sigma(X_1,X_2,\ldots,X_n)$.
 - (a) [4] Is $\mathcal{F} = \mathcal{F}_9 \backslash \mathcal{F}_7$ a sigma-algebra? Why?
 - (b) [6] Find all constants a and b such that $M_n = S_n + a + b \cdot n$ is a martingale.

Hint: if $R \sim \operatorname{Expo}(\lambda)$ then $\mathbb{E}(R) = 1/\lambda$ and $\mathbb{V}\operatorname{ar}(R) = 1/\lambda^2$.