Dynamic Autotuning of Algorithmic Skeletons

Chris Cummins

What are algorithmic skeletons?

Parallel implementations of common patterns of computation.

Why do we need them?

Heterogeneous parallelism offers massive **performance**.

Runtime

Lines of code

Why do we need them?

Heterogeneous parallelism offers massive **performance**.

Algorithmic Skeletons offer ease of use.

For both performance **and** ease of use, we need autotuning.

My Project

Demonstrate dynamic autotuning of algorithmic skeletons.

Using the **SkelCL** data-parallel skeleton library.

Targeting **Stencils** applications on GPUs and CPUs.

` divided into workgroups

Exploring optimisation space

Performance of workgroup size depends on:

Program	Shape of border region, static instruction counts,
Hardware	Local memory capacity, num processors,
Dataset	Number of elements, data types,

How can we test this?

Try a bunch of **synthetic** workloads.

Measure runtime of different workgroup sizes, compare **performance**.

Distribution of best values

No silver bullet!

How many values do we need?

What's the best we can do statically?

Autotuner design

Extract **features** from hardware, program, and dataset.

Use best workgroup sizes as **training data**.

Use **machine learning** to predict:

f(features) -> (workgroup size)

Autotuner design

Autotuner performance

informatics

Moving Forward

Moving Forward

Conclusions

High level skeletons needed for complexity of GPU programming.

Values used to parameterise these skeletons offer 10x performance margin.

Synthetic benchmarks + runtime features + machine learning = **2.8x** performance improvement of real programs.

