

Περιεχόμενα του μαθήματος

- Εισαγωγή Ορισμός
- **7** Γραμμή Φορτίου Τρανζίστορ
- DC Ανάλυση Κυκλωμάτων
- **7** Κυκλώματα πόλωσης

Ευθεία Φορτίου Τρανζίστορ

Σημείο Λειτουργίας $Q(V_{CE}, I_C)$

- Σημειώνεται επάνω στην χαρακτηριστική καμπύλη
- Το σημείο στο οποίο τέμνει η ευθεία φορτίου την χαρακτηριστική καμπύλη (εξόδου) αποκαλύπτει γραφικά και την περιοχή λειτουργίας του τρανζίστορ στο κύκλωμα
- π.χ. Για ενισχυτές μικρών σημάτων το σημείο Q πρέπει να βρίσκεται σταθερά στο μέσο περίπου του «πλατό» ρεύματος στην χαρακτηριστική καμπύλη

Ευθεία Φορτίου Τρανζίστορ

Μεθοδολογία για εύρεση $Q(V_{CE},I_{C})$

- 1. Υπολογίζεται η ένταση του ρεύματος συλλέκτη Ι_C συνήθως εκμεταλλευόμενοι το κύκλωμα εισόδου και τα ρεύματα Ι_B ή Ι_E μαζί με τις παραμέτρους β ή α αντίστοιχα (2° κΚ στο κύκλωμα εισόδου)
- 2. Αφού υπολογίσουμε το Ι_C πλέον στο κύκλωμα εισόδου δεν θα έχουμε δύο αγνώστους, αλλά μόνο έναν. Την τάση V_{CE}. Την υπολογίζουμε με 2° κΚ στο κύκλωμα εξόδου

Ευθεία Φορτίου Τρανζίστορ

Μεθοδολογία σχεδίασης της ευθείας φόρτιου

- 1. Εφαρμόζουμε 2° κΚ στον βρόχο (κύκλωμα) εξόδου και υπολογίζουμε το ρεύμα κόρου (saturation) του συλλέκτη I_{csat} μηδενίζοντας το V_{CE} στην εξίσωση
- 2. Από την ίδια εξίσωση στην συνέχεια μηδενίζουμε το I_c και υπολογίζουμε την μέγιστη τιμή τάσης η οποία ονομάζεται $V_{CE(\text{cut off})}$.
- 3. Τοποθετούμε το I_{csat} πάνω στον άξονα του ρεύματος και την $V_{CE(cut\ off)}$ τον άξονα της τάσης και συνδέουμε τα σημεία.

DC Ανάλυση

DC Ανάλυση κυκλωμάτων (Ορισμός)

- **Σ** Είναι η ανάλυση του κυκλώματος για τις **συνεχής συνιστώσες** τάσεων και εντάσεων στο κύκλωμα (...μέχρι τώρα μόνο συνεχής συνιστώσες έχουμε δει)
- 7 Υπολογισμός συνεχών ρευμάτων και δυναμικών (I_B , I_C , I_E , V_C , V_B , V_E , V_{BC} , V_{CE} , V_C , V_C , V_C
- **7** Εντοπισμός **σημείου λειτουργίας Q** και σχεδίαση **γραμμής φορτίου**
- Η DC ανάλυση των κυκλωμάτων είναι απαραίτητη και σε κυκλώματα στα οποία υπάρχουν εναλλασσόμενες συνιστώσες εντάσεων και τάσεων, και γίνεται αφαιρώντας όλα τα στοιχεία που συνεισφέρουν εναλλασσόμενα μεγέθη (βλ. ενισχυτές μικρών σημάτων)

Διπολικό Τρανζίστορ Επαφής - ΒΙΤ

Δύο τύπου Τρανζίστορ

Έχει 3 ακροδέκτες

- 1. εκπομπός (e)
- 2. βάση (b)
- 3. συλλέκτης (c)

Κυκλώματα πόλωσης τρανζίστορ

- 🐬 Κύκλωμα Πόλωσης Βάσης
- Κύκλωμα Πόλωσης εκπομπού
- Κύκλωμα Πόλωσης με Διαιρέτη τάσης
- Κύκλωμα Πόλωσης εκπομπού διπλής τροφοδοσίας
- Κύκλωμα με ανάδραση από εκπομπό
- Κύκλωμα με ανάδραση από συλλέκτη και εκπομπό

1. Πόλωση Βάσης

(Σταθερή τιμή του ρεύματος βάσης)

 R_C

Πολώνεται η βάση με τη βοήθεια πηγής V_{BB}

1. Πόλωση Βάσης

(Σταθερή τιμή του ρεύματος βάσης)

Συμβατική φορά ρευμάτων

1. Πόλωση Βάσης

(Σταθερή τιμή του ρεύματος βάσης)

Μεθοδολογία εύρεση Q

- Υπολογίζω με 2° κΚ στο βρόχο εισόδου το ρεύμα Ι_Β
- Από το I_B και το κέρδος ρεύματος V_{BB} β υπολογίζω το I_C
- Με 2° κΚ στο βρόχο εξόδου υπολογίζω το V_{CE}

 $Q(I_{CQ}, V_{CEQ})$

1. Πόλωση Βάσης

(Σταθερή τιμή του ρεύματος βάσης)

Μεθοδολογία Γραμμής Φορτίου

• 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_C R_C - V_{CE} = 0$$

- 1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$
- 2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

2. Πόλωση Εκπομπού

Είναι μια συνδεσμολογία η οποία σταθεροποιεί το σημείο Q

Δεν υπάρχει αντίσταση στην βάση αλλά στον εκπομπό

2. Πόλωση Εκπομπού

Είναι μια συνδεσμολογία η οποία σταθεροποιεί το σημείο Q

Συμβατική φορά ρευμάτων

2. Πόλωση Εκπομπού

Είναι μια συνδεσμολογία η οποία σταθεροποιεί το σημείο Q

Μεθοδολογία εύρεση Q

- Υπολογίζω με 2° κΚ στο βρόχο εισόδου το ρεύμα Ι_ε
- Προσεγγιστικά θεωρώ το ρεύμα συλλέκτη ίσο με το ρεύμα εκπομπού (εκτός αν δίνεται η παράμετρος α)
- Με 2° κΚ στο βρόχο εξόδου υπολογίζω το V_{CE}

2. Πόλωση Εκπομπού

Είναι μια συνδεσμολογία η οποία σταθεροποιεί το σημείο Q

Μεθοδολογία Γραμμής Φορτίου

· 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_{C}R_{C} - I_{E}R_{E} - V_{CE} = 0$$

$$V_{CC} - I_{C}(R_{C} + R_{E}) - V_{CE} = 0$$

1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$

2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

3. Πόλωση διαιρέτη τάσης

(Ευρέως χρησιμοποιούμενο. Εξάγεται από το κύκλωμα πόλωσης εκπομπού και διατηρεί το **Q** σταθερό)

Διαιρέτης Τάσης

3. Πόλωση διαιρέτη τάσης

(Ευρέως χρησιμοποιούμενο. Εξάγεται από το κύκλωμα πόλωσης εκπομπού και διατηρεί το **Q** σταθερό)

Δυναμικό βάσης $oldsymbol{V_B}$

Είναι σαν να έχουμε μια πηγή στην θέση της βάσης. Ενώ έχω αντίσταση στον εκπομπό.

3. Πόλωση διαιρέτη τάσης

(Ευρέως χρησιμοποιούμενο. Εξάγεται από το κύκλωμα πόλωσης εκπομπού και διατηρεί το **Q** σταθερό)

Δυναμικό βάσης $oldsymbol{V}_{oldsymbol{B}}$

Από τον τύπο διαιρέτη τάσης

$$V_{B} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC}$$

3. Πόλωση διαιρέτη τάσης

(Ευρέως χρησιμοποιούμενο. Εξάγεται από το κύκλωμα πόλωσης εκπομπού και διατηρεί το **Q** σταθερό)

Μεθοδολογία εύρεση Q

- Υπολογίζω το V_B από τον τύπου του διαίρετη τάσης
- Κάνω 2° κΚ από το V_{B} έως την γείωση του εκπομπού και βρίσκω το I_{E}
- $I_C \simeq I_E$
- Με 2° κΚ στο βρόχο εξόδου υπολογίζω το V_{CF}

3. Πόλωση διαιρέτη τάσης

(Ευρέως χρησιμοποιούμενο. Εξάγεται από το κύκλωμα πόλωσης εκπομπού και διατηρεί το **Q** σταθερό)

Μεθοδολογία Γραμμής Φορτίου

• 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_{C}R_{C} - I_{E}R_{E} - V_{CE} = 0$$

$$V_{CC} - I_{C}(R_{C} + R_{E}) - V_{CE} = 0$$

- 1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$
- 2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

(Σταθερό Q ανεξαρτήτως κέρδους ρεύματος β)

Καμία τροφοδοσία στην πηγή

Και αντίσταση και πηγή στον εκπομπό

4. Πόλωση Εκπομπού διπλής τροφοδοσίας

(Σταθερό Q ανεξαρτήτως κέρδους ρεύματος β)

Είναι μια συνδεσμολογία η οποία δεν πολώνει την δίοδο βάσης εκπομπού D_{VE} με πηγή στον κλάδο της βάσης

Μπορώ να θεωρήσω το ρεύμα της βάσης Ι_Β αμελητέο χωρίς να θεωρώ ότι το τρανζίστορ είναι σε αποκοπή

4. Πόλωση Εκπομπού διπλής τροφοδοσίας

(Σταθερό Q ανεξαρτήτως κέρδους ρεύματος β)

Μεθοδολογία εύρεση Q

- Θεωρώ το I_B αμελητέο
- Κάνω 2° κΚ στον βρόχο εισόδου χωρίς πτώση τάσης στην R_B . Βρίσκω το I_F
- Προσέγγιση $I_C = I_F$
- Με 2° κΚ στο βρόχο εξόδου υπολογίζω το V_{CF}

4. Πόλωση Εκπομπού διπλής τροφοδοσίας

(Σταθερό Q ανεξαρτήτως κέρδους ρεύματος β)

Μεθοδολογία Γραμμής Φορτίου

• 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_{C}R_{C} - I_{E}R_{E} - V_{CE} + V_{EE} = 0$$

$$V_{CC} - I_{C}(R_{C} + R_{E}) - V_{CE} + V_{EE} = 0$$

- 1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$
- 2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

5. Πόλωση με ανάδραση από τον εκπομπό

(Η πρώτη προσπάθεια σταθεροποίησης του Q. Ιστορικής σημασίας)

5. Πόλωση με ανάδραση από τον εκπομπό

(Η πρώτη προσπάθεια σταθεροποίησης του Q. Ιστορικής σημασίας)

Μεθοδολογία εύρεση Q

- Εφαρμόζω 2° κΚ στον βρόχο εισόδου και αντικαθιστώ το I_E με β επί I_B. Έτσι έχω μόνο ένα άγνωστο. Βρίσκω το I_B
- $I_C = \beta \times I_B$
- Με 2° κΚ στο βρόχο εξόδου \longrightarrow $\mathbf{Q}(\mathbf{I}_{\mathrm{CQ}}, \mathbf{V}_{\mathrm{CEQ}})$ υπολογίζω το \mathbf{V}_{CE}

5. Πόλωση με ανάδραση από τον εκπομπό

(Η πρώτη προσπάθεια σταθεροποίησης του Q. Ιστορικής σημασίας)

Μεθοδολογία Γραμμής Φορτίου

• 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_{C}R_{C} - I_{E}R_{E} - V_{CE} = 0$$

$$V_{CC} - I_{C}(R_{C} + R_{E}) - V_{CE} = 0$$

- 1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$
- 2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

6.Πόλωση με ανάδραση από συλλέκτη και εκπομπό

(και αυτό από τις πρώτες προσπάθειες σταθεροποίησης του Q.

Ιστορικής σημασίας)

6.Πόλωση με ανάδραση από συλλέκτη και εκπομπό

(και αυτό από τις πρώτες προσπάθειες σταθεροποίησης του Q. Ιστορικής σημασίας)

Μεθοδολογία εύρεση Q

Εφαρμόζω 2° κΚ στον βρόχο εισόδου και αντικαθιστώ και το I_E και το I_Cμε β επί I_B. Έτσι έχω μόνο ένα άγνωστο.
 Βρίσκω το I_B

- $I_C = \beta \times I_B$
- Με 2° κΚ στο βρόχο εξόδου υπολογίζω το V_{CF}

6.Πόλωση με ανάδραση από συλλέκτη και εκπομπό

(και αυτό από τις πρώτες προσπάθειες σταθεροποίησης του Q. Ιστορικής σημασίας)

Μεθοδολογία Γραμμής Φορτίου

• 2^{ος} κΚ στον βρόχο εξόδου

$$V_{CC} - I_{C}R_{C} - I_{E}R_{E} - V_{CE} = 0$$

$$V_{CC} - I_{C}(R_{C} + R_{E}) - V_{CE} = 0$$

- 1. Για $I_{CQ} = 0$ βρίσκω το $V_{CE(cut off)}$
- 2. Για $V_{CE} = 0$ βρίσκω το $I_{C(Sat)}$

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

