UNIVERSIDADE PRESBITERIANA MACKENZIE

ANNA TERESA SOARES SACCHI BRUNO GALVÃO DE OLIVEIRA LIMA LUCAS SANTOS BORBA DE ARAÚJO VITÓRIA FERREIRA CORRÊA

PROJETO APLICADO II Classificação de Publicações Judiciais Utilizando Machine Learning

ANNA TERESA SOARES SACCHI BRUNO GALVÃO DE OLIVEIRA LIMA LUCAS SANTOS BORBA DE ARAÚJO VITÓRIA FERREIRA CORRÊA

PROJETO APLICADO II Classificação de Publicações Judiciais Utilizando Machine Learning

Projeto Aplicado II : Este estudo visa realizar coletar, analisar e classificar os dados fornecidos pela API do PJe. A análise se concentrará em dados brutos (documentações) relacionados à realização de atos processuais on-line.

Docente: Felipe Albino dos Santos

São Paulo 2025

RESUMO

O presente trabalho tem como objetivo o desenvolvimento de um modelo de classificação automatizada de textos judiciais utilizando técnicas de Processamento de Linguagem Natural (PLN) e Machine Learning. O projeto se baseia na coleta de publicações judiciais por meio da API do Processo Judicial Eletrônico (PJe), permitindo a segmentação desses documentos em categorias como citações, intimações, despachos e decisões.

A organização fictícia LegalData Insights foi criada para representar uma empresa voltada à padronização e otimização do acesso a documentos jurídicos, oferecendo soluções para advogados, magistrados e servidores.

A metodologia inclui tratamento de texto, extração de características linguísticas e uso de modelos supervisionados, como Random Forest e XGBoost, para a categorização das publicações. O armazenamento e gerenciamento dos dados será realizado em um banco de dados relacional PostgreSQL, garantindo a integridade e acessibilidade das informações.

O objetivo principal do projeto é automatizar a organização dos documentos jurídicos, reduzindo o tempo necessário para consultas e otimizando a rotina de profissionais do setor. Espera-se que os resultados demonstrem a viabilidade do modelo proposto, proporcionando maior eficiência na busca e análise de publicações judiciais.

Keywords:

SUMÁRIO

1	INTRODUÇÃO	4			
2	DEFINIÇÃO DA EMPRESA	5			
2.1	IDENTIFICAÇÃO E PROPÓSITO DA ORGANIZAÇÃO	5			
2.2	SEGMENTO DE ATUAÇÃO E MARKET SHARE	5			
2.3	PROPOSTA DO PROJETO E PROBLEMA DE PESQUISA				
2.4	FONTE E AQUISIÇÃO DOS DADOS	7			
3	APRESENTAÇÃO DOS DADOS(METADADOS)				
3.1	FONTE E ESTRUTURA DE DADOS	8			
3.2	ANALISE EXPLORATORIA DE DADOS	8			
3.3	DEFINIÇÃO DA LINGUAGEM DE PROGRAMAÇÃO	10			
3.3.1	Bibliotecas utilizadas em Python	10			
3.4	TRATAMENTO DE BASE DE DADOS	11			
3.5	DEFINIÇÃO E DESCRIÇÃO DAS BASES TEÓRICAS DOS MÉTODOS	11			
3.6	DEFINIÇÃO E DESCRIÇÃO DE COMO SERÁ CALCULADA A				
ACUF	RÁCIA	12			
3.6.1	Divisão dos Dados (Train-Test Split)	12			
3.6.2	Vetorização (TF-IDF)	12			
3.6.3	Modelo	13			
3.6.4	Métricas de Avaliação	13			
3.6.5	Aprimoramento Futuro (Validação Cruzada)	14			
4	OBJETIVOS E META	15			
4.1	OBJETIVO GERAL	15			
4.2	OBJETIVOS ESPECIFICOS	15			
5	CRONOGRAMA DE ATIVIDADES	17			
6	LINK PARA O GITHUB	19			

1 INTRODUÇÃO

Diante desse cenário, este projeto propõe o desenvolvimento de um modelo de classificação automatizada de textos judiciais utilizando Processamento de Linguagem Natural (PLN) e Machine Learning. A proposta visa padronizar a categorização dos documentos com base nos seus conteúdos, permitindo uma segmentação eficiente em classes como citação, intimação, despacho e decisão.

Para isso, será utilizada a API do PJe, que fornece acesso a publicações judiciais, possibilitando a extração de dados reais para análise. Os textos coletados passarão por tratamento e vetorização, sendo posteriormente utilizados para o treinamento de um modelo de aprendizado de máquina supervisionado. O armazenamento dos dados será feito em um banco de dados relacional (PostgreSQL), garantindo integridade e acessibilidade.

Este projeto busca contribuir para a automação do processamento de documentos jurídicos, reduzindo o tempo gasto na triagem e análise das publicações, além de proporcionar maior eficiência na rotina dos profissionais do setor.

2 DEFINIÇÃO DA EMPRESA

O ponto fundamental do desenvolvimento é a fundamentação teórica. Utilize análises, pesquisas e obras de diversos autores para embasar sua pesquisa. No desenvolvimento, você deve apresentar e discutir a literatura consultada sobre o tema, descrever a pesquisa realizada de acordo com a metodologia. IDENTIFICAÇÃO E PROPÓSITO DA ORGANIZAÇÃO

2.1 IDENTIFICAÇÃO E PROPÓSITO DA ORGANIZAÇÃO

Nome da Empresa: Data for You SA

Missão: Através da análise de dados temos como missão contribuir para gestão de documentos judiciais, padronizando sua disponibilização através da classificação em assuntos de interesse.

Visão: Buscamos democratizar os dados através de uma plataforma open source visando facilitar o acesso aos dados para magistrados, servidores e advogados.

2.2 SEGMENTO DE ATUAÇÃO E MARKET SHARE

Segmento de Atuação: Pesquisa e desenvolvimento em sistemas jurídicos, com foco em análise de dados processuais, automação e otimização da gestão de documentos judiciais.

Market Share: Nossa atuação se dá em colaboração com instituições do sistema judiciário, incluindo:

Conselho Nacional de Justiça (CNJ)
Tribunais estaduais e federais
Escritórios de advocacia
Departamentos jurídicos de empresas

Focamos na análise e categorização de dados jurídicos em nível regional e nacional, permitindo um monitoramento mais ágil e organizado das publicações judiciais.

Número de Colaboradores: Atualmente, a equipe é composta por quatro integrantes, responsáveis pelo desenvolvimento do modelo, coleta e análise dos dados, além da implementação da infraestrutura de armazenamento e categorização das publicações.

2.3 PROPOSTA DO PROJETO E PROBLEMA DE PESQUISA

O projeto visa desenvolver um modelo de classificação textual para organizar e segmentar publicações judiciais por assunto. Para isso, utilizaremos: API do Processo Judicial Eletrônico (PJe) para obter os dados.

Processamento de Linguagem Natural (PLN) para análise e extração de padrões nos textos. Modelos de Machine Learning como Random Forest e XGBoost para treinar um classificador eficiente. Banco de dados relacional (PostgreSQL) para armazenamento das publicações e previsões do modelo. O modelo permitirá que advogados, magistrados e demais profissionais do direito consigam consultar documentos processuais de forma organizada, reduzindo o tempo necessário para análise e filtragem das informações.

Problema de Pesquisa: Atualmente, as publicações judiciais não possuem uma categorização padronizada, o que dificulta a organização e análise desses documentos por advogados e servidores do judiciário.

Para solucionar esse problema, a pesquisa será estruturada em quatro fases principais:

Decomposição ightarrow Identificação das categorias relevantes dentro das publicações judiciais.

Identificação de Padrões → Análise de termos e estrutura dos textos para detectar padrões semânticos e sintáticos.

Filtragem (Abstração) → Remoção de ruídos e informações irrelevantes nos textos para melhorar a qualidade dos dados.

Visualização dos Dados → Implementação de métricas para monitorar a segmentação automática das publicações por assunto.

2.4 FONTE E AQUISIÇÃO DOS DADOS

Referências de Aquisição do Dataset: Origem dos Dados: API do Processo Judicial Eletrônico (PJe), que disponibiliza documentos e comunicações processuais.

Limitações de Uso: A API fornece dados públicos, mas podem haver restrições quanto à atualização e cobertura de documentos.

Período da Coleta: Dados coletados desde março de 2013 até 2025 para análise de tendências e padrões históricos.

3 APRESENTAÇÃO DOS DADOS (METADADOS)

Introdução

Este documento apresenta a análise exploratória de dados (EDA) e a construção de um modelo de aprendizado de máquina para a classificação do tipo de comunicação nos dados obtidos do PJe (Processo Judicial Eletrônico).

Os dados foram coletados via API e contêm informações sobre publicações judiciais, incluindo um identificador único (id), o tipo de comunicação (tipoComunicacao) e o texto completo da publicação (texto).

O objetivo principal deste estudo é criar um modelo de classificação capaz de prever corretamente o tipo de comunicação com base no conteúdo textual da publicação.

3.1 FONTE E ESTRUTURA DE DADOS

Os dados foram extraídos do PJe, sistema oficial utilizado pelo judiciário brasileiro. A base de dados contém três atributos principais:

Tabela 1 — Base de dados

nome da coluna	Descrição	Tipo de dado	Aceita Nulos
id	Identificador unico da publicacao Api	String	Não
tipoComunicacao	Tipo de publicação atribuido na api	String	Não
texto	Conteudo da publicação	String	Não

Fonte: Os autores (2025).

3.2 ANALISE EXPLORATORIA DE DADOS

A análise exploratória de dados tem como objetivo entender as principais características da base de dados, identificando padrões, tendências e possíveis problemas a serem corrigidos antes da construção do modelo de aprendizado de máquina.

Estatísticas Gerais

Total de registros: Dez mil

Quantidade de tipos de comunicação distintos: Cinco

Tamanho médio dos textos das publicações: Dois mil caracteres

Distribuição dos Tipos de Comunicação

A distribuição dos tipos de comunicação foi analisada por meio de um gráfico de barras, evidenciando quais são as classes mais frequentes na base de dados.

Processamento de Dados

Foram realizadas as seguintes etapas de limpeza e preparação dos dados:

Conversão de todas as colunas para o tipo string para garantir a padronização.

Remoção de valores nulos, substituindo-os por "Desconhecido" quando necessário.

Remoção de caracteres especiais e normalização do texto para evitar ruídos no modelo de aprendizado de máquina.

Construção do Modelo de Aprendizado de Máquina

Definição do Problema

O problema abordado é um problema de classificação de texto, onde o objetivo é prever corretamente o tipo de comunicação com base no conteúdo textual.

Modelos Utilizados

Para este projeto, testamos diferentes modelos de aprendizado de máquina, sendo:

Regressão Logística Naive Bayes Random Forest Modelo baseado em Redes Neurais

Pré-processamento dos Textos

Antes de alimentar os modelos, aplicamos as seguintes técnicas de processamento de linguagem natural:

Tokenização, que divide o texto em palavras individuais.

Remoção de stopwords, eliminando palavras comuns como "de", "a" e "o".

Conversão para letras minúsculas para padronização.

Vetorização, transformando os textos em representações numéricas usando o método TF-IDF.

Avaliação dos Modelos

Após o treinamento dos modelos, utilizamos métricas de desempenho para avaliar a qualidade das previsões:

Acurácia, que mede o percentual de previsões corretas.

Precisão, que indica a proporção de classificações corretas para cada classe.

Recall, que verifica a capacidade do modelo de identificar corretamente cada classe.

F1-Score, que é a média harmônica entre precisão e recall.

Os resultados serão apresentados em forma de tabela comparativa e matriz de confusão para análise das previsões.

3.3 DEFINIÇÃO DA LINGUAGEM DE PROGRAMAÇÃO

Para este projeto, foi escolhida a linguagem de programação Python, amplamente utilizada na área de Ciência de Dados. A decisão foi baseada em sua versatilidade, ampla comunidade de suporte e variedade de bibliotecas que facilitam desde o pré-processamento de dados até a modelagem preditiva.

Python permite uma integração eficiente com ferramentas de visualização e bancos de dados, além de oferecer recursos otimizados para manipulação de textos — o que é fundamental neste projeto, cuja base é composta por publicações judiciais textuais.

3.3.1 Bibliotecas utilizadas em Python

As bibliotecas utilizadas neste projeto são:

- Pandas: para leitura, estruturação e análise tabular dos dados.
- NumPy: para operações matemáticas e manipulação de arrays.
- Matplotlib e Seaborn: para visualização gráfica de tendências, frequências e distribuições.
- Scikit-learn: para divisão de dados, vetorização textual, treinamento de modelos de classificação e avaliação de desempenho.
- TfidfVectorizer: usada para converter os textos das publicações judiciais em representações numéricas, ponderando a frequência das palavras em cada documento com sua raridade em toda a base.

3.4 TRATAMENTO DE BASE DE DADOS

Antes da modelagem, a base de dados passou por um processo de preparação que envolveu:

Remoção de valores nulos, substituindo campos vazios por "Desconhecido" quando aplicável.

Conversão de todos os campos para o tipo string, garantindo padronização dos dados textuais.

Normalização textual, com remoção de caracteres especiais e aplicação de técnicas como tokenização, remoção de stopwords (palavras comuns em português) e vetorização via TF-IDF.

Divisão da base em dados de treino (80%) e teste (20%) com train_test_split, utilizando random_state=42 para garantir reprodutibilidade.

Essas etapas foram fundamentais para garantir que os dados fossem limpos, padronizados e prontos para alimentar os modelos de aprendizado de máquina de maneira eficaz.

3.5 DEFINIÇÃO E DESCRIÇÃO DAS BASES TEÓRICAS DOS MÉTODOS

O problema abordado neste projeto é de classificação de texto

supervisionada. O objetivo é prever o tipo de comunicação jurídica com base no conteúdo da publicação.

Modelos aplicados:

Random Forest: algoritmo de ensemble baseado em árvores de decisão. Combina múltiplas árvores para reduzir variância e melhorar a capacidade preditiva.

Regressão Logística: técnica estatística usada para prever a probabilidade de categorias.

Naive Bayes: baseado no Teorema de Bayes, adequado para classificação de texto com base em frequência de palavras.

Redes Neurais: redes simples para reconhecimento de padrões não lineares em textos.

A escolha desses métodos se baseia em práticas recomendadas para PLN (Processamento de Linguagem Natural), considerando fatores como interpretabilidade, performance em textos curtos e eficiência computacional.

Definição e Descrição de Como Será Calculada a Acurácia

3.6 DEFINIÇÃO E DESCRIÇÃO DE COMO SERÁ CALCULADA A ACURÁCIA

A acurácia do modelo é avaliada por meio da função classification_report da biblioteca sklearn.metrics, que fornece um conjunto completo de métricas. O processo contempla:

3.6.1 Divisão dos Dados (Train-Test Split)

Os dados são divididos em 80% para treino e 20% para teste. A divisão utiliza random state=42 para garantir reprodutibilidade.

3.6.2 **Vetorização (TF-IDF)**

O conteúdo textual é transformado em representações numéricas com TF-IDF, que avalia a importância de uma palavra em um documento com base na sua frequência e raridade.

3.6.3 **Modelo**

O algoritmo utilizado é o RandomForestClassifier, escolhido por sua robustez e bom desempenho em problemas de classificação com dados não estruturados.

3.6.4 Métricas de Avaliação

O desempenho do modelo é avaliado com as seguintes métricas:

Precisão (Precision): Mede a proporção de previsões positivas corretas. Fórmula:

$$Precisão = \frac{TP}{TP + FP} \tag{1}$$

Revocação (Recall): Mede a capacidade do modelo de identificar todos os casos positivos.

Fórmula:

$$Recall = \frac{TP}{TP + FN} \tag{2}$$

F1-Score: Média harmônica entre precisão e revocação, ideal para bases desbalanceadas.

Fórmula:

$$F_1 = 2 \cdot \frac{\text{Precisão} \cdot \text{Recall}}{\text{Precisão} + \text{Recall}}$$
(3)

Acurácia: Percentual total de classificações corretas.

Fórmula:

$$Acurácia = \frac{TP + TN}{TP + TN + FP + FN}$$
(4)

3.6.5 Aprimoramento Futuro (Validação Cruzada)

Embora o modelo utilize divisão simples entre treino e teste, é recomendável empregar validação cruzada (cross-validation) para maior robustez. Isso permite avaliar o desempenho médio em diferentes partições da base.

Exemplo:

cross_val_score(model, X, y, cv=5, scoring='accuracy')

Esse recurso pode ser incorporado em etapas futuras do projeto para tornar a avaliação mais confiável.

4 OBJETIVOS E META

4.1 OBJETIVO GERAL

O objetivo principal deste projeto é desenvolver um modelo de classificação automatizada de publicações judiciais, utilizando Processamento de Linguagem Natural (PLN) e Machine Learning, permitindo a organização eficiente de documentos jurídicos para advogados, magistrados e servidores.

Com a implementação deste sistema, busca-se reduzir o tempo de análise manual dessas publicações, aprimorando a consulta e categorização automática por meio de um banco de dados estruturado e técnicas avançadas de aprendizado de máquina.

4.2 OBJETIVOS ESPECIFICOS

Para alcançar o objetivo geral, serão realizadas as seguintes etapas:

Coletar e processar os dados da API do PJe para garantir um conjunto de dados de qualidade para análise.

Definir categorias para classificação automática das publicações, como Citação, Intimação, Despacho e Decisão, garantindo uma organização clara e objetiva.

Implementar técnicas de pré-processamento de texto, como tokenização, remoção de stopwords e vetorização TF-IDF, para preparar os dados de forma eficiente para o modelo de Machine Learning.

Desenvolver um modelo de classificação utilizando algoritmos supervisionados, como Random Forest e XGBoost, otimizando a precisão e eficiência na categorização automática dos documentos.

Integrar o modelo com um banco de dados relacional PostgreSQL, garantindo um sistema eficiente de armazenamento e recuperação dos dados processados.

Avaliar a performance do modelo utilizando métricas como precisão, recall e F1-score, ajustando hiperparâmetros conforme necessário para maximizar a

qualidade das previsões.

Implementar um pipeline automatizado para facilitar o processamento contínuo das novas publicações judiciais, garantindo escalabilidade e manutenção eficiente do sistema.

Criar um ambiente de consulta acessível aos usuários finais, permitindo que advogados e operadores do direito consultem as publicações processadas de forma ágil e organizada.

5 CRONOGRAMA DE ATIVIDADES

O projeto será desenvolvido em quatro fases principais, seguindo as datas de entrega das atividades A1, A2, A3 e A4. Cada fase inclui tarefas específicas distribuídas ao longo do tempo para garantir um desenvolvimento estruturado.

Fase 1 - Definição do Projeto e Organização dos Dados (Entrega Final: 03/03/2025)

01/02/2025 - Formação do grupo e definição da organização fictícia

05/02/2025 - Definição da área de atuação e descrição detalhada da empresa

08/02/2025 - Escolha do tipo de dado a ser utilizado (texto)

12/02/2025 - Pesquisa e coleta inicial dos dados disponíveis na API do PJe

16/02/2025 - Análise preliminar dos dados e definição dos metadados

20/02/2025 - Documentação inicial do projeto no GitHub

26/02/2025 - Revisão e ajustes finais do relatório da A1

03/03/2025 - Entrega da A1: Relatório com definição da empresa, área de atuação, apresentação dos dados, objetivos e cronograma estimado

Fase 2 - Definição da Metodologia e Preparação dos Dados (Entrega Final: 31/03/2025)

05/03/2025 - Definição da linguagem de programação e das tecnologias a serem utilizadas

08/03/2025 - Análise exploratória dos dados coletados, incluindo estatísticas descritivas e visualizações

12/03/2025 - Aplicação de técnicas de tratamento e limpeza dos dados, como remoção de ruídos e tokenização de texto

17/03/2025 - Definição das bases teóricas do projeto, incluindo escolha dos algoritmos de Machine Learning

22/03/2025 - Planejamento da métrica de avaliação da acurácia do modelo

27/03/2025 - Revisão e ajustes finais do relatório da A2

31/03/2025 - Entrega da A2: Relatório detalhado sobre metodologia, análise exploratória e preparação dos dados

Fase 3 - Implementação do Modelo e Análise dos Resultados (Entrega Final: 28/04/2025)

02/04/2025 - Aplicação do modelo de Machine Learning na base de dados processada

06/04/2025 - Testes de diferentes algoritmos (Random Forest, XGBoost) para comparação de desempenho

11/04/2025 - Avaliação da acurácia do modelo e ajustes de hiperparâmetros

16/04/2025 - Desenvolvimento de um rascunho do modelo de negócios para a aplicação real da solução

21/04/2025 - Criação do esboço do storytelling para a apresentação final

25/04/2025 - Revisão e ajustes finais do relatório da A3

28/04/2025 - Entrega da A3: Implementação do modelo analítico, apresentação dos resultados preliminares e esboço do storytelling

Fase 4 - Finalização do Projeto e Apresentação Final (Entrega Final: 26/05/2025)

02/05/2025 - Refinamento da documentação técnica do projeto

06/05/2025 - Estruturação e organização do repositório no GitHub

10/05/2025 - Finalização da apresentação do storytelling e do relatório técnico

15/05/2025 - Revisão geral do projeto e testes finais do modelo

19/05/2025 - Gravação e edição do vídeo de apresentação

23/05/2025 - Revisão e ajustes finais do relatório da A4

26/05/2025 - Entrega da A4: Relatório técnico final, apresentação do storytelling, repositório do projeto no GitHub e vídeo de apresentação

6 LINK PARA O GITHUB

https://github.com/galvaodeoliveirab/projeto-aplicado-2