import pandas as pd
import numpy as np
import seaborn as sns

from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt

data=pd.read_csv("/content/winequality-red - winequality-red.csv.csv")

data.head()

	fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	7.4	0.70	0.00	1.9	0.076	11.0	34	0.9978	3.51
1	7.8	0.88	0.00	2.6	0.098	25.0	67	0.9968	3.20
2	7.8	0.76	0.04	2.3	0.092	15.0	54	0.9970	3.26
3	11.2	0.28	0.56	1.9	0.075	17.0	60	0.9980	3.16

data.shape

(399, 12)

data.iloc[0:300

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	р
0	7.4	0.70	0.00	1.9	0.076	11.0	34	0.99780	3.5
1	7.8	0.88	0.00	2.6	0.098	25.0	67	0.99680	3.2
2	7.8	0.76	0.04	2.3	0.092	15.0	54	0.99700	3.2
3	11.2	0.28	0.56	1.9	0.075	17.0	60	0.99800	3.1
4	7.4	0.70	0.00	1.9	0.076	11.0	34	0.99780	3.5
295	10.8	0.50	0.46	2.5	0.073	5.0	27	1.00010	3.0
296	10.6	0.83	0.37	2.6	0.086	26.0	70	0.99810	3.1
297	7.1	0.63	0.06	2.0	0.083	8.0	29	0.99855	3.6
298	7.2	0.65	0.02	2.3	0.094	5.0	31	0.99930	3.6
299	6.9	0.67	0.06	2.1	0.080	8.0	33	0.99845	3.6

Assuming 'data' is your DataFrame object
data.dropna(axis=1, how='all', inplace=True)

data.describe()

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	tree sulfur dioxide	su dio
<pre>data.isnull().sum()</pre>						
fixed acidity	0					
volatile acidity	0					
citric acid	0					
residual sugar	0					
chlorides	0					
free sulfur dioxide	0					
total sulfur dioxide	0					
density	0					
рН	0					
sulphates	0					
alcohol	0					
quality	0					
dtype: int64						

data.head()

	fixed acidity	volatile acidity		residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	7.4	0.70	0.00	1.9	0.076	11.0	34	0.9978	3.51
1	7.8	0.88	0.00	2.6	0.098	25.0	67	0.9968	3.20
2	7.8	0.76	0.04	2.3	0.092	15.0	54	0.9970	3.26
3	11.2	0.28	0.56	1.9	0.075	17.0	60	0.9980	3.16

data.shape

(399, 12)

data.iloc[0:50]

x=data["residual sugar"]
y=data["alcohol"]

plt.plot(x,y,'o')

[<matplotlib.lines.Line2D at 0x7e78dad14280>]

sns.regplot(x=x,y=y,data=data,marker='<')
plt.show()</pre>

type(x)

pandas.core.series.Series

x.shape

(399,)

type(y)

pandas.core.series.Series

y.shape

(399,)

data.iloc[0:100]

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
0	7.4	0.700	0.00	1.9	0.076	11.0	34	0.9978	3.51
1	7.8	0.880	0.00	2.6	0.098	25.0	67	0.9968	3.20
2	7.8	0.760	0.04	2.3	0.092	15.0	54	0.9970	3.26
3	11.2	0.280	0.56	1.9	0.075	17.0	60	0.9980	3.16
4	7.4	0.700	0.00	1.9	0.076	11.0	34	0.9978	3.51
95	4.7	0.600	0.17	2.3	0.058	17.0	106	0.9932	3.85
96	6.8	0.775	0.00	3.0	0.102	8.0	23	0.9965	3.45
97	7.0	0.500	0.25	2.0	0.070	3.0	22	0.9963	3.25
98	7.6	0.900	0.06	2.5	0.079	5.0	10	0.9967	3.39
99	8 1	0 545	0 18	1.9	0 080	13 0	35	0 9972	3 30

x_array = x.to_numpy()
x=x_array.reshape(399,1)

x_train, x_test, y_train, y_test = train_test_split(x, y,test_size=0.25)

```
8/24/23, 10:32 AM
   print(f"x Training dataset: {x_train.shape}")
   print(f"y Training dataset: {y_train.shape}")
   print(f"x test dataset: {x_test.shape}")
   print(f"y test dataset: \{y\_test.shape\}")
        x Training dataset: (299, 1)
        y Training dataset: (299,)
        x test dataset: (100, 1)
        y test dataset: (100,)
   from sklearn.linear_model import LinearRegression
   from sklearn.impute import SimpleImputer
   # Assuming you have 'x_train' and 'y_train' defined
   imputer = SimpleImputer(strategy='mean')
   x_train_imputed = imputer.fit_transform(x_train)
   model = LinearRegression()
   model.fit(x_train_imputed, y_train)
         ▼ LinearRegression
         LinearRegression()
   model.coef_
        array([0.10372951])
   model.intercept_
        9.707489856685877
   y_pred = model.predict(x_test)
   y_pred.shape
         (100,)
   plt.scatter(x_train, y_train, color='blue')
```

plt.plot(x_test, y_pred, color='red', linewidth=3)

plt.title("density vs alcohol")

plt.xlabel("density ") plt.ylabel("alcohol")


```
sns.regplot(data=data,x=x_train,y=y_train,)
```

```
<Axes: ylabel='alcohol'>

14 -

13 -

10 -

9 -

2     4     6     8     10
```

```
import numpy as np
nan_indices = np.isnan(y_pred)
has_nan = nan_indices.any()
if has_nan:
   print("y_pred contains NaN values.")
import numpy as np
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
# Check for NaN values in y pred
nan_indices = np.isnan(y_pred)
has_nan = nan_indices.any()
if has_nan:
   print("y_pred contains NaN values. Removing corresponding rows...")
   y_test = y_test[~nan_indices]
   y_pred = y_pred[~nan_indices]
# Check for NaN values in y_test after removing corresponding rows
nan indices = np.isnan(y test)
has_nan = nan_indices.any()
if has_nan:
   print("y_test contains NaN values. Removing corresponding rows...")
   y_test = y_test[~nan_indices]
   y_pred = y_pred[~nan_indices]
# Calculate evaluation metrics
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"MSE: {mse}")
print(f"MAE: {mae}")
print(f"R-Square: {r2}")
    MSE: 0.9458092867624106
    MAE: 0.7106866516634475
    R-Square: 0.0009735745819978714
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import r2_score
```

```
import numpy as np
import matplotlib.pyplot as plt
X = 6 * np.random.rand(399, 1) - 3
y = 0.8 * X**2 + 0.9*X + 2 + np.random.randn(399, 1)
#equation used -> y = 0.8x^2 + 0.9x + 2
#visualize the data
plt.plot(X, y, 'b.')
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```



```
lr = LinearRegression()
lr.fit(x_train, y_train)
y_pred = lr.predict(x_test)
print(r2_score(y_test, y_pred))
```

0.0009735745819978714

```
plt.plot(x_train, lr.predict(x_train), color="r")
plt.plot(X, y, "b.")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```



```
poly = PolynomialFeatures(degree=2, include_bias=True)
x_train_trans = poly.fit_transform(x_train)
x_test_trans = poly.transform(x_test)
```

```
#include bias parameter
lr = LinearRegression()
lr.fit(x_train_trans, y_train)
y_pred = lr.predict(x_test_trans)
print(r2_score(y_test, y_pred))
     0.00406409082852377
print(lr.coef_)
print(lr.intercept )
                   0.66533594 -0.05737749]
    8.746798489342982
X_new = np.linspace(-3, 3, 200).reshape(200, 1)
X_new_poly = poly.transform(X_new)
y_new = lr.predict(X_new_poly)
plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
plt.plot(x_train, y_train, "b.",label='Training points')
plt.plot(x_test, y_test, "g.",label='Testing points')
plt.xlabel("X")
plt.ylabel("y")
plt.legend()
plt.show()
```



```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make pipeline
import matplotlib.pyplot as plt
# Generate some sample data
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])
# Create a pipeline for polynomial regression
degree = 3 # You can set the degree of the polynomial
model = make_pipeline(PolynomialFeatures(degree), LinearRegression())
# Fit the model to the data
model.fit(X, y)
# Generate new data points for prediction
X_{new} = np.linspace(0, 5, 100)[:, np.newaxis]
# Predict using the fitted model
y_new = model.predict(X_new)
# Plot the results
plt.scatter(X, y, label='Training data')
```

```
plt.plot(X_new, y_new, label='Predicted curve', color='r')
plt.legend()
plt.xlabel('X')
plt.ylabel('y')
plt.title('Polynomial Regression')
plt.show()
```



```
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
import numpy as np
import matplotlib.pyplot as plt
def polynomial_regression(degree, X, y):
   X_new = np.linspace(-3, 3, 100).reshape(100, 1)
    polybig_features = PolynomialFeatures(degree=degree, include_bias=False)
    std_scaler = StandardScaler()
    lin_reg = LinearRegression()
    polynomial_regression = Pipeline([
        ("poly_features", polybig_features),
        ("std_scaler", std_scaler),
        ("lin_reg", lin_reg),
    ])
   polynomial_regression.fit(X, y)
    y_newbig = polynomial_regression.predict(X_new)
    return X_new, y_newbig
# Generate some sample data
np.random.seed(0)
X = np.sort(6 * np.random.rand(80, 1) - 3, axis=0)
y = 0.5 * X**2 + X + 2 + np.random.randn(80, 1)
x_{train} = X[:60]
y_train = y[:60]
x_test = X[60:]
y_test = y[60:]
# Degree of the polynomial
degree = 2
X_new, y_newbig = polynomial_regression(degree, x_train, y_train)
# Plotting prediction line
plt.plot(X_new, y_newbig, 'r', label="Degree " + str(degree), linewidth=2)
plt.plot(x_train, y_train, "b.", linewidth=3)
plt.plot(x_test, y_test, "g.", linewidth=3)
plt.legend(loc="upper left")
plt.xlabel("X")
plt.ylabel("y")
plt.axis([-3, 3, 0, 10])
```

plt.show()

✓ 0s completed at 10:25 AM