Section 2.6 - Inverse Trigonometry Functions

Definition

A *function* is a rule or correspondence that pairs each element of the domain with exactly one element from the range. That is, a function is a set of ordered pairs in which no two different ordered pairs have the same first coordinate.

The *inverse* of function is found by interchanging the coordinates in each ordered pair that is an element of the function

Inverse Function Notation

if y = f(x) is one-to-one function, then the inverse of f is also a function and can be denoted by

$$y = f^{-1}(x)$$

The inverse Sine Relation

To find the inverse of $y = \sin x$

1. Interchange x and y $\rightarrow x = \sin y$

To graph $x = \sin y$

- 1. Graph $y = \sin x$
- 2. Draw the line y = x
- 3. Reflect $y = \sin x$ about the line y = x

The Inverse Sine Function

Notation

The notation used to indicate the inverse *sine* function is as follow:

Notation	Meaning
$y = \sin^{-1} x$ or $y = \arcsin x$	$x = \sin y$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

The Inverse *Cosine* Function

Notation

The notation used to indicate the inverse *cosine* function is as follow:

Notation	Meaning
$y = \cos^{-1} x$ or $y = \arccos x$	$x = \cos y$ and $0 \le y \le \pi$

The Inverse *Tangent* Function

Notation

The notation used to indicate the inverse *tangent* function is as follow:

Notation	Meaning
$y = \tan^{-1} x$ or $y = \arctan x$	$x = \tan y and -\frac{\pi}{2} < y < \frac{\pi}{2}$

Example

Evaluate in radians without using a calculator or tables.

a.
$$\sin^{-1}\frac{1}{2}$$

$$-\frac{\pi}{2} \le angle \le \frac{\pi}{2} \Rightarrow \sin\frac{\pi}{6} = \frac{1}{2}$$

$$\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$$

b.
$$\operatorname{arccos}\left(-\frac{\sqrt{3}}{2}\right)$$

$$0 < \operatorname{angle} < \pi \Rightarrow \cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$\operatorname{arccos}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

c.
$$\tan^{-1}(-1)$$

$$-\frac{\pi}{2} < angle < \frac{\pi}{2} \Rightarrow \tan\left(-\frac{\pi}{4}\right) = -1$$

$$\tan^{-1}(-1) = -\frac{\pi}{4}$$

Example

Use a calculator to evaluate each expression to the nearest tenth of a degree

a.
$$\arcsin(0.5075)$$
 $\arcsin(0.5075) = 30.5^{\circ}$

b.
$$\arcsin(-0.5075)$$
 $\arcsin(-0.5075) = -30.5^{\circ}$

c.
$$\cos^{-1}(0.6428)$$

 $\cos^{-1}(0.6428) = 50.0^{\circ}$

d.
$$\cos^{-1}(-0.6428)$$
 $\cos^{-1}(-0.6428) = 130.0^{\circ}$

e.
$$\arctan(4.474)$$
 $\arctan(4.474) = 77.4^{\circ}$

f.
$$\arctan(-4.474)$$
 $\arctan(-4.474) = -77.4^{\circ}$

Example

Simplify $3|\sec\theta|$ if $\theta = \tan^{-1}\frac{x}{3}$ for some real number x.

Solution

$$\theta = \tan^{-1} \frac{x}{3} \rightarrow -\frac{\pi}{2} < \theta < \frac{\pi}{2}$$
Since $-\frac{\pi}{2} < \theta < \frac{\pi}{2} \Rightarrow \cos \theta > 0$

$$\Rightarrow \sec \theta > 0$$

$$3|\sec \theta| = 3\sec \theta$$

Example

Evaluate each expression

a.
$$\sin\left(\sin^{-1}\frac{1}{2}\right)$$

$$\sin\left(\sin^{-1}\frac{1}{2}\right) = \sin\left(\frac{\pi}{6}\right)$$

$$= \frac{1}{2}$$

$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \to \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

b.
$$\sin^{-1} \sin(135^\circ)$$

 $\sin(135^\circ) = \sin(180^\circ - 135^\circ)$
 $= \sin(45^\circ)$
 $= \frac{\sqrt{2}}{2}$
 $\sin^{-1} \sin(135^\circ) = \sin^{-1} \left(\frac{1}{\sqrt{2}}\right)$
 $= 45^\circ$

Example

Simplify
$$\tan^{-1}(\tan x)$$
 if $-\frac{\pi}{2} < x < \frac{\pi}{2}$
$$\tan^{-1}(\tan x) = x$$

Example

Evaluate $\sin\left(\tan^{-1}\frac{3}{4}\right)$ without using a calculator

Solution

$$\theta = \tan^{-1} \frac{3}{4} \Rightarrow \tan \theta = \frac{3}{4} \rightarrow 0^{\circ} < \theta < 90^{\circ}$$
$$\sin \left(\tan^{-1} \frac{3}{4} \right) = \sin \theta$$
$$= \frac{3}{5}$$

Example

Evaluate $\sin(\cos^{-1} x)$ as an equivalent expression in x only

Solution

$$\sin(\theta) = \frac{y}{r}$$

$$= \frac{\sqrt{1 - x^2}}{1}$$

$$= \sqrt{1 - x^2}$$

$$\sin(\cos^{-1} x) = \sin \theta$$
$$= \sqrt{1 - x^2}$$

Exercises Section 2.6 - Inverse Trigonometry Functions

- 1. Evaluate without using a calculator: $\cos\left(\cos^{-1}\frac{3}{5}\right)$
- 2. Evaluate without using a calculator: $\cos^{-1} \left(\cos \frac{7\pi}{6} \right)$
- 3. Evaluate without using a calculator: $\tan\left(\cos^{-1}\frac{3}{5}\right)$
- **4.** Evaluate without using a calculator: $\sin\left(\cos^{-1}\frac{1}{\sqrt{5}}\right)$
- 5. Evaluate without using a calculator: $\cos\left(\sin^{-1}\frac{1}{2}\right)$
- **6.** Evaluate without using a calculator: $\sin\left(\sin^{-1}\frac{3}{5}\right)$
- 7. Evaluate without using a calculator: $\cos\left(\tan^{-1}\frac{3}{4}\right)$
- **8.** Evaluate without using a calculator: $\tan\left(\sin^{-1}\frac{3}{5}\right)$
- **9.** Evaluate without using a calculator: $\sec\left(\cos^{-1}\frac{1}{\sqrt{5}}\right)$
- **10.** Evaluate without using a calculator: $\cot\left(\tan^{-1}\frac{1}{2}\right)$
- 11. Write an equivalent expression that involves x only for $\cos(\cos^{-1}x)$
- 12. Write an equivalent expression that involves x only for $\tan(\cos^{-1}x)$
- 13. Write an equivalent expression that involves x only for $\csc\left(\sin^{-1}\frac{1}{x}\right)$