Introduction to Probability

Carson James

Contents

Notation		vii
Preface		
1	Probability 1.1 Distributions 1.2 Independence 1.3 L^p Spaces for Probability 1.4 Borel Cantelli Lemma	3 3 6 9 13
2	Probability on locally compact Groups 2.1 Action on Probability Measures	15 15
3		17 17 18 19
4	Weak Convergence of Measures	21
5		23 23 23
6	Conditional Expectation and Probability 6.1 Conditional Expectation	27 27 28
7	Markov Chains	31
8	Probabilities Induced by Isometric Group Actions 8.1 Applications to Bayesian Statistics	33
9	Projective Systems	35
10	Stochastic Integration	37
11	1 TODO	39
A	Summation	41
В	Asymptotic Notation	43
\mathbf{C}	Categories	45

	CONTERNIE
Vl	CONTENTS

D R	Rings	47
E I	ntroduction	49
F C	Quotient Rings	51
G V	Vector Spaces	53
H I	ntroduction	55
I B	Bases	57
JΓ	Duality	59
ΚM	Multilinear Maps	61
LI	Tensor Products	63

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Probability

1.1 Distributions

Definition 1.1.0.1. Let Ω be a set and $\mathcal{P} \subset \mathcal{P}(X)$. Then \mathcal{P} is said to be a π -system on Ω if for each $A, B \in \mathcal{P}$, $A \cap B \in \mathcal{P}$.

Definition 1.1.0.2. Let Ω be a set and $\mathcal{L} \subset \mathcal{P}(\Omega)$. Then \mathcal{L} is said to be a λ -system on Ω if

- 1. $\mathcal{L} \neq \emptyset$
- 2. for each $A \in \mathcal{L}$, $A^c \in \mathcal{L}$
- 3. for each $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}$, if $(A_n)_{n\in\mathbb{N}}$ is disjoint, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{L}$

Exercise 1.1.0.3. Let Ω be a set and \mathcal{L} a λ -system on Ω . Then

1. $\Omega, \emptyset \in \mathcal{L}$

Proof. Straightforward.

Definition 1.1.0.4. Let Ω be a set and $\mathcal{C} \subset \mathcal{P}(\Omega)$. Put

$$\mathcal{S} = \{\mathcal{L} \subset \mathcal{P}(\Omega) : \mathcal{L} \text{ is a λ-system on Ω and $\mathcal{C} \subset \mathcal{L}$}\}$$

We define the λ -system on Ω generated by \mathcal{C} , $\lambda(\mathcal{C})$, to be

$$\lambda(\mathcal{C}) = \bigcap_{\mathcal{L} \in \mathcal{S}} \mathcal{L}$$

Exercise 1.1.0.5. Let Ω be a set and $\mathcal{C} \subset \mathcal{P}(\Omega)$. If \mathcal{C} is a λ -system and \mathcal{C} is a π -system, then \mathcal{C} is a σ -algebra.

Proof. Suppose that \mathcal{C} is a λ -system and \mathcal{C} is a π -system. Then we need only verify the third axiom in the definition of a σ -algebra. Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{C}$. Define $B_1=A_1$ and for $n\geq 2$, define $B_n=A_n\cap\left(\bigcup_{k=1}^{n-1}A_k\right)^c=A_n\cap\left(\bigcap_{k=1}^{n-1}A_k^c\right)\in\mathcal{C}$. Then $(B_n)_{n\in\mathbb{N}}$ is disjoint and therefore $\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{C}$.

Theorem 1.1.0.6. (Dynkin's Theorem)

Let Ω be a set.

- 1. Let \mathcal{P} be a π -system on Ω and \mathcal{L} a λ -system on Ω . If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- 2. Let \mathcal{P} be a π -system on Ω . Then $\sigma(\mathcal{P}) = \lambda(\mathcal{P})$

Exercise 1.1.0.7. Let (Ω, \mathcal{F}) be a measurable space and μ, ν probability measures on (Ω, \mathcal{F}) . Put $\mathcal{L}_{\mu,\nu} = \{A \in \mathcal{F} : \mu(A) = \nu(A)\}$. Then $\mathcal{L}_{\mu,\nu}$ is a λ -system on Ω .

Proof.

1. $\varnothing \in \mathcal{L}_{\mu,\nu}$.

2. Let $A \in \mathcal{L}_{\mu,\nu}$. Then $\mu(A) = \nu(A)$. Thus

$$\mu(A^c) = 1 - \mu(A)$$
$$= 1 - \nu(A)$$
$$= \nu(A^c)$$

So $A^c \in \mathcal{L}_{\mu,\nu}$.

3. Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}_{\mu,\nu}$. So for each $n\in\mathbb{N}$, $\mu(A_n)=\nu(A_n)$. Suppose that $(A_n)_{n\in\mathbb{N}}$ is disjoint. Then

$$\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$$
$$= \sum_{n\in\mathbb{N}} \nu(A_n)$$
$$= \nu\left(\bigcup_{n\in\mathbb{N}} A_n\right)$$

Hence $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{L}_{\mu,\nu}$.

Exercise 1.1.0.8. Let (Ω, \mathcal{F}) be a measurable space, μ, ν probability measures on (Ω, \mathcal{F}) and $\mathcal{P} \subset \mathcal{F}$ a π -system on Ω . Suppose that for each $A \in \mathcal{P}$, $\mu(A) = \nu(A)$. Then for each $A \in \sigma(\mathcal{P})$, $\mu(A) = \nu(A)$.

Proof. Using the previous exercise, we see that $\mathcal{P} \subset \mathcal{L}_{\mu,\nu}$. Dynkin's theorem implies that $\sigma(\mathcal{P}) \subset \mathcal{L}_{\mu,\nu}$. So for each $A \in \sigma(\mathcal{P})$, $\mu(A) = \nu(A)$.

Definition 1.1.0.9. Let $F: \mathbb{R} \to \mathbb{R}$. Then F is said to be a **probability distribution function** if

- 1. F is right continuous
- 2. F is increasing
- 3. $F(-\infty) = 0$ and $F(\infty) = 1$

Definition 1.1.0.10. Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We define $F_P : \mathbb{R} \to \mathbb{R}$, by

$$F_P(x) = P((-\infty, x])$$

We call F_P the probability distribution function of P.

Exercise 1.1.0.11. Let (Ω, \mathcal{F}, P) be a probability measure. Then F_P is a probability distribution function.

Proof. 1. Let $x \in \mathbb{R}$ and $(x_n)_{n \in \mathbb{N}} \subset [x, \infty)$. Suppose that $x_n \to x$. Then $(x, x_n] \to \emptyset$ because $\limsup_{n \to \infty} (x, x_n] = \emptyset$. Thus

$$F(x_n) - F(x) = P((x, x_n]) \to P(\varnothing) = 0$$

This implies that

$$F(x_n) \to F(x)$$

So F is right continuous.

2. Clearly F_P is increasing.

1.1. DISTRIBUTIONS 5

3. Continuity from below tells us that

$$F(-\infty) = \lim_{n \to -\infty} F(n) = \lim_{n \to -\infty} P((-\infty, n]) = 0$$

and continuity from above tell us that

$$F(\infty) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P((-\infty, n]) = 1$$

Exercise 1.1.0.12. Let μ, ν be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then $F_{\mu} = F_{\nu}$ iff $\mu = \nu$.

Proof. Clearly if $\mu = \nu$, then $F_{\mu} = F_{\nu}$. Conversely, suppose that $F_{\mu} = F_{\nu}$. Then for each $x \in \mathbb{R}$,

$$\mu((-\infty, x]) = F_{\mu}(x)$$

$$= F_{\nu}(x)$$

$$= \nu((-\infty, x])$$

Put $C = \{(-\infty, x] : x \in \mathbb{R}\}$. Then C is a π -system and for each $A \in C$, $\mu(A) = \nu(A)$. Hence for each $A \in \sigma(C) = \mathcal{B}(\mathbb{R})$, $\mu(A) = \nu(A)$. So $\mu = \nu$.

Definition 1.1.0.13. Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathbb{R}^n$. Then X is said to be a **random vector** on (Ω, \mathcal{F}) if X is \mathcal{F} - $\mathcal{B}(\mathbb{R}^n)$ measurable. If n = 1, then X is said to be a **random variable**. We define

$$L_n^0(\Omega, \mathcal{F}, P) = \{X : \Omega \to \mathbb{R}^n : X \text{ is a random vector}\}\$$

and

$$L_n^p(\Omega, \mathcal{F}, P) = \left\{ X \in L_n^0 : \int ||X||^p dP < \infty \right\}$$

Definition 1.1.0.14. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable on (Ω, \mathcal{F}) . We define the **probability** distribution of $X, P_X : \mathcal{B}(R) \to [0, 1]$, to be the measure

$$P_X = X_*P$$

That is, for each $A \in \mathcal{B}(\mathbb{R})$,

$$P_X(A) = P(X^{-1}(F))$$

We define the **probability distribution function** of $X, F_X : \mathbb{R} \to [0, 1]$, to be

$$F_X = F_{P_X}$$

Definition 1.1.0.15. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable on (Ω, \mathcal{F}) . If $P_X \ll m$, we define the **probability density** of X, $f_X : \mathbb{R} \to \mathbb{R}$, by

$$f_X = \frac{dP_X}{dm}$$

Exercise 1.1.0.16. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables on (Ω, \mathcal{F}) . Then for each $x \in \mathbb{R}$,

$$\P\bigg(\liminf_{n\to\infty} X_n > x\bigg) \le \liminf_{n\to\infty} P(X_n > x)$$

Proof. Let $\omega \in \left\{ \liminf_{n \to \infty} X_n > x \right\}$. Then $x < \liminf_{n \to \infty} X_n(\omega) = \sup_{n \in \mathbb{N}} \left(\inf_{k \ge n} X_k(\omega) \right)$. So there exists $n^* \in \mathbb{N}$ such that $x < \inf_{k \ge n^*} X_k(\omega)$. Then for each $k \in \mathbb{N}$, $k \ge n^*$ implies that $x < X_k(\omega)$. So there exists $n^* \in \mathbb{N}$ such that for each $k \in \mathbb{N}$,

 $k \ge n^*$ implies that $\mathbf{1}_{\{X_k > x\}}(\omega) = 1$. Hence $\inf_{k \ge n^*} \mathbf{1}_{\{X_k > x\}}(\omega) = 1$. Thus $\liminf_{n \to \infty} \mathbf{1}_{\{X_k > x\}}(\omega) = \sup_{n \in \mathbb{N}} \left(\inf_{k \ge n} \mathbf{1}_{\{X_k > x\}}(\omega)\right) = 1$. Therefore $\omega \in \liminf_{n \to \infty} \{X_k > x\}$ and we have shown that

$$\left\{ \liminf_{n \to \infty} X_n > x \right\} \subset \liminf_{n \to \infty} \{X_k > x\}$$

Then

$$P\left(\liminf_{n\to\infty} X_n > x\right) \le P\left(\liminf_{n\to\infty} \{X_k > x\}\right)$$

$$\le \liminf_{n\to\infty} P(\{X_k > x\})$$

Definition 1.1.0.17. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^+(\Omega) \cup L^1$. Define the **expectation of X**, E(X), to be

 $E(X) = \int X \, dP$

1.2 Independence

Definition 1.2.0.1. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C} \subset \mathcal{F}$. Then \mathcal{C} is said to be **independent** if for each $(A_i)_{i=1}^n \subset \mathcal{C}$,

$$P\bigg(\bigcap_{k=1}^{n} A_k\bigg) = \prod_{k=1}^{n} P(A_k)$$

Definition 1.2.0.2. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$. Then $\mathcal{C}_1, \dots, \mathcal{C}_n$ are said to be **independent** if for each $A_1 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n$, A_1, \dots, A_n are independent.

Note 1.2.0.3. We will explicitely say that for each $i = 1, \dots, n$, C_i is independent when talking about the independence of the elements of C_i to avoid ambiguity.

Definition 1.2.0.4. Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_2 random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are said to be **independent** if for each $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R}), X_1^{-1}B_1, \dots, X_n^{-1}B_n$ are independent.

Exercise 1.2.0.5. Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are independent iff $\sigma(X_1), \dots, \sigma(X_n)$ are independent.

Proof. Suppose that X_1, \dots, X_n are independent. Let $A_1, \in \sigma(X_1), \dots, A_n \in \sigma(A_n)$. Then for each $i = 1, \dots, n$, there exists $B_i \in \mathcal{B}(\mathbb{R})$ such that $A_i = X_i^{-1}(B_i)$. Then A_1, \dots, A_n are independent. Hence $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Conversely, suppose that $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Let $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$. Then for each $i = 1, \dots, n, X_i^{-1}B_i \in \sigma(X_i)$. Then $X_1^{-1}B_1, \dots, X_n^{-1}B_n$ are independent. Hence X_1, \dots, X_n are independent.

Exercise 1.2.0.6. Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) and $\mathcal{F}_1, \dots, \mathcal{F}_n \subset \mathcal{F}$ a collection of σ -algebras on Ω . Suppose that for each $i = 1, \dots, n, X_i$ is \mathcal{F}_i -measurable. If $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent, then X_1, \dots, X_n are independent.

Proof. For each $i=1,\dots,n,$ $\sigma(X_i)\subset\mathcal{F}_i$. So $\sigma(X_1),\dots,\sigma(X_n)$ are independent. Hence X_1,\dots,X_n are independent.

Exercise 1.2.0.7. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$. Suppose that for each $i = 1, \dots, n$, \mathcal{C}_i is a π -system and $\mathcal{C}_1, \dots, \mathcal{C}_n$ are independent, then $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$ are independent.

Proof. Let $A_2 \in \mathcal{C}_2$. Define $\mathcal{L} = \{A \in \mathcal{F} : P(A \cap A_2) = P(A)P(A_2)\}$. Then

1. $\Omega \in \mathcal{L}$

1.2. INDEPENDENCE 7

2. If $A \in \mathcal{L}$, then

$$P(A^{c} \cap A_{2}) = P(A_{2}) - P(A_{2} \cap A)$$

$$= P(A_{2}) - P(A_{2})P(A)$$

$$= (1 - P(A))P(A_{2})$$

$$= P(A^{c})P(A_{2})$$

So $A^c \in \mathcal{L}$

3. If $(B_n)_{n\in\mathbb{N}}\subset\mathcal{L}$ is disjoint, then

$$P\left(\left[\bigcup_{n\in\mathbb{N}}B_n\right]\cap A_2\right) = P\left(\bigcup_{n\in\mathbb{N}}B_n\cap A_2\right)$$

$$= \sum_{n\in\mathbb{N}}P(B_n\cap A_2)$$

$$= \sum_{n\in\mathbb{N}}P(B_n)P(A_2)$$

$$= \left[\sum_{n\in\mathbb{N}}P(B_n)\right]P(A_2)$$

$$= P\left(\bigcup_{n\in\mathbb{N}}A_n\right)P(A_2)$$

So
$$\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{L}$$
.

Thus \mathcal{L} is a λ -system. Since $\mathcal{C}_1 \subset \mathcal{L}$ is a π -system, Dynkin's theorem tells us that $\sigma(\mathcal{C}_1) \subset \mathcal{L}$. Since $A_2 \in \mathcal{C}_2$ is arbitrary $\sigma(\mathcal{C}_1)$ and \mathcal{C}_2 are independent. The same reasoning implies that $\sigma(\mathcal{C}_1)$ and $\sigma(\mathcal{C}_2)$ are independent. Let $A_2 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n$. We may do the same process with

$$\mathcal{L} = \left\{ A \in \mathcal{F} : P\left(A \cap \left(\bigcap_{i=2}^{n} A_i\right)\right) = P(A) \prod_{i=2}^{n} P(A_i) \right\}$$

and conclude that $\sigma(C_1), C_2, \dots, C_n$ are independent. Which, using the same reasoning would imply that $\sigma(C_1), \dots, \sigma(C_n)$ are independent.

Exercise 1.2.0.8. Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are independent iff for each $x_1, \dots, x_n \in \mathbb{R}$,

$$P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^{n} P(X_i \le x_i)$$

Proof. Suppose that X_1, \dots, X_n are independent. Then $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Let $x_1, \dots, x_n \in \mathbb{R}$. Then for each $i = 1, \dots, n$, $\{X_i \leq x_i\} \in \sigma(X_i)$. Hence

 $P(X_1 \leq x_1, \dots, X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i)$. Conversely, suppose that for each

 $x_1, \dots, x_n \in \mathbb{R}$, $P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$. Define $\mathcal{C} = \{(-\infty, x] : x \in \mathbb{R}\}$. Then $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$. For each $i = 1, \dots, n$, define $\mathcal{C}_i = X_i^{-1}\mathcal{C}$. Then for each $i = 1, \dots, n$, \mathcal{C}_i is a π -system and

$$\sigma(C_i) = \sigma(X^{-1}(C))$$

$$= X_i^{-1}(\sigma(C))$$

$$= X_i^{-1}(\mathcal{B}(\mathbb{R}))$$

$$= \sigma(X_i)$$

By assumption, C_1, \dots, C_n are independent. The previous exercise tells us that $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Then X_1, \dots, X_n are independent.

Exercise 1.2.0.9. Let Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Define $X = (X_1, \dots, X_n)$. If X_1, \dots, X_n are independent, then

$$P_X = \prod_{i=1}^n P_{X_i}$$

•

Proof. Let $A_1, \dots, A_n \in \mathcal{B}(\mathbb{R})$. Then

$$P_X(A_1 \times \dots \times A_n) = P(X \in A_1 \times \dots \times \in A_n)$$

$$= P(X_1 \in A_1, \dots, X_n \in A_n)$$

$$= P(X_1 \in A_1) \dots P(X_n \in A_n)$$

$$= P_{X_1}(A_1) \dots P_{X_n}(A_n)$$

$$= \prod_{i=1}^n P_{X_i}(A_1 \times \dots \times A_n)$$

Put

$$\mathcal{P} = \{A_1 \times \cdots \times A_n : A_1 \in \mathcal{B}(R), \cdots, A_n \in \mathcal{B}(R)\}$$

Then \mathcal{P} is a π -system and

$$\sigma(\mathcal{P}) = \mathcal{B}(R) \otimes \cdots \otimes \mathcal{B}(R) = \mathcal{B}(\mathbb{R}^n)$$

A previous exercise then tells us that $P_X = \prod_{i=1}^n P_{X_i}$

Exercise 1.2.0.10. Let Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) and $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R} \in L^0$. Suppose that $f_1 \circ X_1, \dots, f_n \circ X_n \in L^+(\Omega)$ or $f_1 \circ X_1, \dots, f_n \circ X_n \in L^1(\Omega)$. If X_1, \dots, X_n are independent, then

$$E(f_1(X_1)\cdots f_n(X_n)) = \prod_{i=1}^n E(f_i(X_i))$$

Proof. Define the random vector $X: \Omega \to \mathbb{R}^n$ by $X = (X_1, \dots, X_n)$ and $g: \mathbb{R}^n \to \mathbb{R}$ by $g(x_1, \dots, x_n) = f_1(x_1) \cdots f_n(x_n)$. Suppose that for each $i = 1, \dots, n, f_i \in L^+(\mathbb{R})$. Then $g \in L^+(\mathbb{R}^n)$ and by change of variables,

$$E(f_1(X_1)\cdots f_n(X_n)) = E(g(X))$$

$$= \int_{\Omega} g \circ X dP$$

$$= \int_{\mathbb{R}^n} g(x) dP_X(x)$$

$$= \int_{R^n} g(x) d\prod_{i=1}^n P_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\mathbb{R}} f_i(x) dP_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\Omega} f_i \circ X dP$$

$$= \prod_{i=1}^n E(f_i(X_i))$$

If for each $i=1,\cdots,n,$ $f_i\in L^1(\mathbb{R},P_{X_i})$, then following the above reasoning with |g| tells us that $g\in L^1(\mathbb{R}^n,P_X)$ and we use change of variables and Fubini's theorem to get the same result.

1.3 L^p Spaces for Probability

Note 1.3.0.1. Recall that for a probability space (Ω, \mathcal{F}, P) and $1 \leq p \leq q \leq \infty$ we have $L^q \subset L^p$ and for each $X \in L^q, \|X\|_p \leq \|X\|_q$. Also recall that for $X, Y \in L^2$, we have that $\|XY\|_1 \leq \|X\|_2 \|X\|_2$.

Definition 1.3.0.2. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Define the variance of X, Var(X), to be

$$Var(X) = E([(X - E(X))^{2})$$

.

Definition 1.3.0.3. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Define the

Definition 1.3.0.4. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Define the **covariance of** X **and** Y, Cov(X, Y), to be

$$Cov(X,Y) = E([X - E(X)][Y - E(Y)])$$

Exercise 1.3.0.5. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Then the covariance is well defined and $Cov(X, Y)^2 \leq Var(X)Var(Y)$

Proof. By Holder's inequality,

$$|Cov(X,Y)| = \left| \int (X - E(X))(Y - E(Y)) dP \right|$$

$$\leq \int |(X - E(X))(Y - E(Y))| dP$$

$$= \|(X - E(X))(Y - E(Y))\|_{1}$$

$$\leq \|X - E(X)\|_{2} \|(Y - E(Y))\|_{2}$$

$$= \left(\int |X - E(X)|^{2} dP \right)^{\frac{1}{2}} \left(|Y - E(Y)|^{2} \right)^{\frac{1}{2}}$$

$$= Var(X)^{\frac{1}{2}} Var(Y)^{\frac{1}{2}}$$

So $Cov(X,Y)^2 \leq Var(X)Var(Y)$.

Exercise 1.3.0.6. Let (Ω, \mathcal{F}, P) be a measure space and $X, Y \in L^2$. Then

- 1. Cov(X,Y) = E(XY) E(X)E(Y)
- 2. If X, Y are independent, then Cov(X,Y)=0
- 3. $Var(X) = E(X^2) E(X)^2$
- 4. for each $a, b \in \mathbb{R}$, $Var(aX + b) = a^2 Var(X)$.
- 5. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Proof.

1. We have that

$$Cov(X,Y) = E \Big[(X - E(X))(Y - E(Y)) \Big]$$

$$= E(XY - E(Y)X - E(X)Y + E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

2. Suppose that X, Y are independent. Then E(XY) = E(X)E(Y). Hence

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
$$= E(X)E(Y) - E(X)E(Y)$$
$$= 0$$

3. Part (1) implies that

$$Var(X) = Cov(X, X)$$
$$= E(X^{2}) - E(X)^{2}$$

4. Let $a, b \in \mathbb{R}$. Then

$$\begin{split} Var(aX+b) &= E[(aX+b)^2] - E(aX+b)^2 \\ &= E[a^2X^2 + 2abX + b^2] - (aE(X)+b)^2 \\ &= a^2E(X^2) + 2abE(X) + b^2 - (a^2E(X)^2 + 2abE(X) + b^2) \\ &= a^2(E(X^2) - E(X)^2) \\ &= a^2Var(X) \end{split}$$

5. We have that

$$\begin{split} Var(X+Y) &= E[(X+Y)^2] - E[X+Y]^2 \\ &= E[X^2 + 2XY + Y^2] - (E(X) + E[Y])^2 \\ &= E(X^2) + 2E[XY] + E[Y^2] - (E(X)^2 + 2E(X)E[Y] + E[Y]^2) \\ &= (E(X^2) - E(X)^2) + (E[Y^2] - E[Y]^2) + 2(E[XY] - E(X)E[Y]) \\ &= Var(X) + Var(Y) + 2Cov(X, Y) \end{split}$$

Definition 1.3.0.7. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. The **correlation of X and Y**, Cor(X, Y), is defined to be

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Exercise 1.3.0.8.

Exercise 1.3.0.9. Jensen's Inequality:

Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^1$ and $\phi : \mathbb{R} \to \mathbb{R}$. If ϕ is convex, then

$$\phi(E(X)) \le E[\phi(X)]$$

Proof. Put $x_0 = E(X)$. Since ϕ is convex, there exist $a, b \in \mathbb{R}$ such that $\phi(x_0) = ax_0 + b$ and for each $x \in \mathbb{R}$, $\phi(x) \ge ax + b$. Then

$$E[\phi(X)] = \int \phi(X) dP$$

$$\geq \int [aX + b] dP$$

$$= a \int X dP + b$$

$$= aE(X) + b$$

$$= ax_0 + b$$

$$= \phi(x_0)$$

$$= \phi(E(X))$$

Exercise 1.3.0.10. Markov's Inequality: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^+$. Then for each $a \in (0, \infty)$,

$$P(X \ge a) \le \frac{E(X)}{a}$$

Proof. Let $a \in (0, \infty)$. Then $a\mathbf{1}_{\{X \geq a\}} \leq X\mathbf{1}_{\{X \geq a\}}$. Thus

$$\begin{split} aP(X \geq a) &= \int a\mathbf{1}_{\{X \geq a\}} \, dP \\ &= \int X\mathbf{1}_{\{X \geq a\}} \, dP \\ &\leq \int X \, dP \\ &= E(X) \end{split}$$

Therefore

$$P(X \ge a) \le \frac{E(X)}{a}$$

.

Exercise 1.3.0.11. Chebychev's Inequality: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Then for each $a \in (0, \infty)$,

$$P(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

Proof. Let $a \in (0, \infty)$. Then

$$P(|X - E(X)| \ge a) = P((X - E(X))^2 \ge a^2)$$

$$\le \frac{E[(X - E(X))^2]}{a^2}$$

$$= \frac{Var(X)}{a^2}$$

Exercise 1.3.0.12. Chernoff's Bound: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Then for each $a, t \in (0, \infty)$,

$$P(X \ge a) \le e^{-ta} E[e^{tX}]$$

Proof. Let $a, t \in (0, \infty)$. Then

$$P(X \ge a) = P(tX \ge ta)$$
$$= P(e^{tX} \ge e^{ta})$$
$$\le e^{-ta}E[e^{tX}]$$

Exercise 1.3.0.13. Weak Law of Large Numbers: Let (Ω, \mathcal{F}, P) be a probability space $(X_i)_{i \in \mathbb{N}} \subset L^2$. Suppose that $(X_i)_{i \in \mathbb{N}}$ are iid. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

Proof. Put $\mu = E[X_1]$ and $\sigma^2 = Var(X_1)$. Then

$$E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mu$$
$$= \mu$$

and

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}Var(\sum_{i=1}^{n}X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}\sigma^2$$
$$= \frac{\sigma^2}{n}$$

Let $\epsilon > 0$. Then

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E[X_{1}]\right| \geq \epsilon\right) = P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| \geq \epsilon\right)$$

$$= P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E\left(\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\right| \geq \epsilon\right)\right)$$

$$\leq \frac{Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}/n}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}}{n\epsilon^{2}} \to 0$$

So

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

1.4 Borel Cantelli Lemma

Exercise 1.4.0.1. Borel Cantelli Lemma:

Let (Ω, \mathcal{F}, P) be a probability space and $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$.

1. If
$$\sum_{n\in\mathbb{N}} P(A_n) < \infty$$
, then $P(\limsup_{n\to\infty} A_n) = 0$.

2. If
$$(A_n)_{n\in\mathbb{N}}$$
 are independent and $\sum_{n\in\mathbb{N}} P(A_n) = \infty$, then $P(\limsup_{n\to\infty} A_n) = 1$

Proof.

1. Suppose that $\sum_{n\in\mathbb{N}} P(A_n) < \infty$. Recall that

$$\limsup_{n \to \infty} A_n = \left\{ \omega \in \Omega : \sum_{n \in \mathbb{N}} 1_{A_n}(\omega) = \infty \right\}$$

Then

$$\infty > \sum_{n \in \mathbb{N}} P(A_n)$$

$$= \sum_{n \in \mathbb{N}} \int 1_{A_n} dP$$

$$= \int \sum_{n \in \mathbb{N}} 1_{A_n} dP$$

Thus
$$\sum_{n\in\mathbb{N}} 1_{A_n} < \infty$$
 a.e. and $P(\limsup_{n\to\infty} A_n) = 0$.

2. Suppose that $(A_n)_{n\in\mathbb{N}}$ are independent and $\sum_{n\in\mathbb{N}} P(A_n) = \infty$.

Exercise 1.4.0.2. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}} \subset L^0$ and $X \in L^0$.

- 1. If for each $\epsilon > 0$, $\sum_{n \in \mathbb{N}} P(|X_n X| \ge \epsilon) < \infty$, then $X_n \to X$ a.e.
- 2. If $(X_n)_{n\in\mathbb{N}}$ are independent and there exists $\epsilon>0$ such that $\sum_{n\in\mathbb{N}}P(|X_n-X|\geq\epsilon)=\infty$, then $X_n\not\to X$ a.e.

Proof.

1. For $\epsilon > 0$ and $n \in \mathbb{N}$, set $A_n(\epsilon) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}$. Suppose that for each $\epsilon > 0$, $\sum_{n \in \mathbb{N}} P(|X_n - X| \ge \epsilon) < \infty$. The Borel-Cantelli lemma implies that for each $m \in \mathbb{N}$,

$$P(\limsup_{n\to\infty} A_n(1/m)) = 0$$

Let $\omega \in \Omega$. Then $X_n(\omega) \not\to X(\omega)$ iff

$$\omega \in \bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)$$

So

$$P(X_n \not\to X) = P\bigg(\bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)\bigg)$$

$$\leq \sum_{m \in \mathbb{N}} P(\limsup_{n \to \infty} A_n(1/m))$$

$$= 0$$

Hence $X_n \to X$ a.e.

2.

Probability on locally compact Groups

Note 2.0.0.1. In this section, familiarity with Haar measure will be assumed. This section is intended as a continuation of section 7 of [4].

2.1 Action on Probability Measures

Note 2.1.0.1. We recall some notation from section 7.1 of [4].

- $l_g \in \text{Homeo}(G), l_g(x) = gc$
- $L_g \in \text{Sym}(L_0(G)), L_g f = f \circ l_g^{-1}$ We continue from section 7

Note 2.1.0.2. The next exercise generalizes the notion of a scale-family.

Exercise 2.1.0.3. Let (Ω, \mathcal{F}, P) be a probability space, G a locally compact group, μ a left Haar measure on G, $X \in L_G^0$ and $g \in G$. If $P_X \ll \mu$, then $f_{gX} = L_g f_X$.

Proof. Suppose that $P_X \ll \mu$. Let $A \in \mathcal{B}(G)$. Then

$$P_{gX}(A) = P(gX \in A)$$

$$= P(X \in g^{-1}A)$$

$$= P_X(g^{-1}A)$$

$$= P_X(l_g^{-1}(A))$$

$$= l_{g_*}P_X(A)$$

$$= g \cdot P_X(A)$$

The previous exercise tells us that $f_{gX} = L_g f_X$.

Gaussian Measures

3.1 Gaussian Measures on \mathbb{R}

Definition 3.1.0.1. Let $\mu \in \mathcal{M}_1(\mathbb{R})$. Then μ is said to be **Gaussian** if

3.2 Gaussian Measures on Topological Vector Spaces

Definition 3.2.0.1. Let W be a topological vector space and $\mu \in \mathcal{M}_1(W)$. Then μ is said to be **Gaussian** if for each $\phi \in W^*$, $\phi_*\mu$ is Gaussian.

need exercise in analysis notes showing $\mathbb{R}^{\mathbb{N}}$ is a topological vector space.

Definition 3.2.0.2. For $n \in \mathbb{N}$, define $\mu_n \in \mathcal{M}_1(\mathbb{R})$ by

$$\mu_n(A) := \int_A \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dm(x).$$

An exercise in measure theory notes section on projective limits of measure spaces implies that there exists a unique $\mu \in \mathcal{M}_1(\mathbb{R}^{\mathbb{N}})$ such that

- for each $n \in \mathbb{N}$, $\pi_n^* \mu = \mu_n$ and for each,
- for each $(A_n)_{n\in\mathbb{N}}\in\mathcal{B}(\mathbb{R})^{\mathbb{N}}$,

$$\mu\bigg(\prod_{n\in\mathbb{N}}A_n\bigg)=\prod_{n\in\mathbb{N}}\mu_n(A_n).$$

We refer to μ as the standard Gaussian measure on $\mathbb{R}^{\mathbb{N}}$.

Exercise 3.2.0.3. μ is Gaussian.

Proof. Let $n \in \mathbb{N}$ and $\lambda \in \mathbb{R}$. Define $\eta_{\lambda} : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$ by $\eta_{\lambda}(x) := \lambda x$. Then

$$(\lambda \pi_n)_* \mu = (\eta_\lambda \circ \pi_n)_* \mu$$

= $(\eta_\lambda)_* ((\pi_n)_* \mu)$
= $(\eta_\lambda)_* \mu_n$

Define $\nu \in \mathcal{M}_1(\mathbb{R})$ by $\nu := (\eta_{\lambda})_* \mu_n$. If $\lambda = 0$, then $\nu = \delta_0$. Suppose that $\lambda \neq 0$. Since $\mu_n \ll m$, (check/give details) we have that $\nu \ll m$. The Radon-Nikodym-Lebesgue theorem implies that there exists $f \in L^1(\mathbb{R}, \mathcal{B}(R), m)$ such that $d\nu = f dm$. An exercise in analysis notes (need to rework in the newer general framerwork) implies that for m-a.e. $x \in \mathbb{R}$,

$$\widehat{\nu}(x) = \int_{\mathbb{R}} e^{itx} \, d\nu(t)$$

$$\begin{split} f(x) &= \lim_{r \to 0} \frac{\nu((x-r,x+r))}{m((x-r,x+r))} \\ &= \lim_{r \to 0} \frac{\mu_n(\eta_\lambda^{-1}(x-r,x+r))}{m((x-r,x+r))} \\ &= \lim_{r \to 0} \frac{\mu_n(\lambda^{-1}(x-r,x+r))}{m((x-r,x+r))} \\ &= \lim_{r \to 0} \frac{\mu_n((\lambda^{-1}x-\lambda^{-1}r,\lambda^{-1}x+\lambda^{-1}r))}{m((x-r,x+r))} \\ &= \lim_{r \to 0} \frac{1}{2r} \int_{\lambda^{-1}x-\lambda^{-1}r}^{\lambda^{-1}x+\lambda^{-1}r} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dm(x) \\ &= \lim_{r \to 0} \frac{1}{2r} \int_{x}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dm(x) \end{split}$$

f(x) Let $\phi \in (\mathbb{R}^{\mathbb{N}})^*$. An exercise in the analysis notes section on topological vector spaces subsection on products implies that $(\mathbb{R}^{\mathbb{N}})^* = \operatorname{span}\{\pi_j : j \in \mathbb{N}\}.$

Then show that the pushforward of a linear combos of projection maps is Gaussian

3.3 Gaussian Measures on Hilbert Spaces

Note 3.3.0.1. recall definitions of $(Y,(\tau_n)_{n\in\mathbb{N}})$ and $((Y_n)_{n\in\mathbb{N}},(\tau_{n,k})_{(n\leq k)})$ from measure and integration notes section on projective systems of complex measure spaces exercise on existence and uniqueness of product measures. We need an exercise to show that $(Y,(\tau_n)_{n\in\mathbb{N}})$ is a **Top**-projective limit of $((Y_n)_{n\in\mathbb{N}},(\tau_{n,k})_{(n\leq k)})$ in the analysis notes.

Exercise 3.3.0.2. Let $a \in \mathbb{C}^{\mathbb{N}}$. Then $l^{2,a} \in \mathcal{B}(\mathbb{C}^{\mathbb{N}})$.

Weak Convergence of Measures

Concentration Inequalities

5.1 Introduction

Exercise 5.1.0.1. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$. Then for each $s, t \in \mathbb{R}$,

$$P(X+Y \ge s+t) \le P(X \ge s) + P(Y \ge t)$$

Proof. For $Z \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ and $t \in \mathbb{R}$, define $A_Z^t \in \mathcal{F}$ by

$$A_Z^t = \{ \omega \in \Omega : Z(\omega) \ge t \}$$

Let $s,t\in\mathbb{R}$. Since $(A_X^s)^c\cap (A_Y^t)^c\subset (A_{X+Y}^{s+t})^c$, we have that $A_{X+Y}^{s+t}\subset A_X^s\cup A_Y^t$. Then

$$\begin{split} P(X+Y \geq s+t) &= P(A_{X+Y}^{s+t}) \\ &\leq P(A_X^s) + P(A_Y^t) \\ &= P(X \geq s) + P(Y \geq t) \end{split}$$

Exercise 5.1.0.2. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^+(\Omega, \mathcal{F}, P)$. Then for each $s, t \geq 0$,

$$P(XY \ge st) \le P(X \ge s) + P(Y \ge t)$$

Proof. For $Z \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ and $t \in \mathbb{R}$, define define $A_Z^t \in \mathcal{F}$ by

$$A_Z^t = \{ \omega \in \Omega : Z(\omega) \ge t \}$$

Let $s,t \in \mathbb{R}$. Since $(A_X^s)^c \cap (A_Y^t)^c \subset (A_{XY}^{st})^c$, we have that $A_{XY}^{st} \subset A_X^s \cup A_Y^t$. Then

$$\begin{split} P(XY \geq st) &= P(A_{XY}^{st}) \\ &\leq P(A_X^s) + P(A_Y^t) \\ &= P(X \geq s) + P(Y \geq t) \end{split}$$

5.2 Sub α -Exponential Random Variables

Definition 5.2.0.1. Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^0(\Omega, \mathcal{F}, P)$ and $\alpha > 0$. Then X is said to be **sub** α -exponential if there exist M, K > 0 such that for each $t \ge 0$,

$$P(|X| \ge t) \le Me^{-Kt^{\alpha}}$$

Exercise 5.2.0.2. Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^0(\Omega, \mathcal{F}, P)$ and $\alpha > 0$. Then the following are equivalent:

- 1. X is sub α -exponential
- 2. there exists K > 0 such that for each $p \ge 1$, $||X||_p \le Kp^{1/\alpha}$
- 3.
- 4.

Proof.

 $\bullet (1) \implies (2):$

Choose $C_{\alpha} > 0$ such that for each $x \ge \alpha^{-1}$, $\Gamma(x) \le C_{\alpha} x^x$. Since X is sub α -exponential, there exist $M, K_0 > 0$ such that for each $t \ge 0$, $P(|X| \ge t) \le Me^{-Kt^{\alpha}}$. Set $K = \max(M\alpha^{-1}C_{\alpha}, 1)2K_0^{-1/\alpha}\alpha^{-1/\alpha}$. Let $p \ge 1$. Then $p\alpha^{-1} \ge \alpha^{-1}$

$$\begin{split} \|X\|_p^p &= E(|X|^p) \\ &= \int_0^\infty P(|X|^p \ge t) dt \\ &= \int_0^\infty P(|X| \ge t^{1/p}) dt \\ &\le \int_0^\infty M e^{-K_0 t^{\alpha/p}} dt \\ &= M p \alpha^{-1} \int_0^\infty u^{p/\alpha - 1} e^{-K_0 u} du \\ &= M p \alpha^{-1} \Gamma(p/\alpha) K_0^{-p/\alpha} \\ &\le M p \alpha^{-1} C_\alpha (p \alpha^{-1})^{p/\alpha} K_0^{-p/\alpha} \end{split}$$

Therefore

$$||X||_{p} \le (M\alpha^{-1}C_{\alpha})^{1/p}p^{1/p}K_{0}^{-1/\alpha}\alpha^{-1/\alpha}p^{1/\alpha}$$

$$\le \max(M\alpha^{-1}C_{\alpha}, 1)2K_{0}^{-1/\alpha}\alpha^{-1/\alpha}p^{1/\alpha}$$

$$= Kp^{1/\alpha}$$

 \bullet (2) \Longrightarrow (3):

Definition 5.2.0.3. Let $\psi:[0,\infty)\to[0,\infty)$. Then ψ is said to be an **Orlicz function** if

- 1. ψ is convex
- 2. ψ is increasing
- 3. $\psi(x) \to \infty$ as $x \to \infty$
- 4. $\psi(0) = 0$

Definition 5.2.0.4. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ and Orlicz function. We define the **Orlicz** ψ -norm, denoted $\|\cdot\|_{\psi} : L^0(\Omega, \mathcal{F}, P) \to [0, \infty]$, by

$$\|X\|_{\psi} = \inf\{t > 0 : E[\psi(|X|/t)] \le 1\}$$

We define the **Orlicz** ψ -space, denoted $L^{\psi}(\Omega, \mathcal{F}, P)$, by

$$L^{\psi}(\Omega, \mathcal{F}, P) = \{ X \in L^{1}(\Omega, \mathcal{F}, P) : ||X||_{\psi} < \infty \}$$

Exercise 5.2.0.5. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ an Orlicz function. Then L^{ψ} is a vector space and $\|\cdot\|_{\psi} : L^{\psi} \to [0, \infty)$ is a norm.

Hint: note that

• for s, t > 0,

$$\frac{|X|}{s+t} + \frac{|Y|}{s+t} = \frac{s}{s+t} \frac{|X|}{s} + \frac{t}{s+t} \frac{|Y|}{t}$$

• ψ is star-shaped, i.e. for each $x, t \ge 0$ and $f(tx) \le tf(x)$.

Proof. For $X \in L^0(\Omega, \mathcal{F}, P)$, define $A_X \in \mathcal{F}$ by

$$A_X = \{t > 0 : E[\psi(|X|/t)] \le 1\}$$

Let $X, Y \in L^{\psi}(\Omega, \mathcal{F}, P)$ and $\lambda \in \mathbb{C}$. Since $||X||_{\psi} < \infty$ and $||Y||_{\psi} < \infty$, we have that $A_X \neq \emptyset$ and $A_Y \neq \emptyset$,

1. **subadditivity:** Let $\epsilon > 0$. Then there exists $s \in A_X$ and $t \in A_Y$ such that $s < \inf A_X + \epsilon/2$ and $t < \inf A_Y + \epsilon/2$. Since is convex and increasing, we have that

$$\begin{split} \psi \left(\frac{|X+Y|}{s+t} \right) & \leq \psi \left(\frac{|X|}{s+t} + \frac{|Y|}{s+t} \right) \\ & = \psi \left(\frac{s}{s+t} \frac{|X|}{s} + \frac{t}{s+t} \frac{|Y|}{t} \right) \\ & \leq \frac{s}{s+t} \psi \left(\frac{|X|}{s} \right) + \frac{t}{s+t} \psi \left(\frac{|Y|}{t} \right) \end{split}$$

Therefore,

$$\begin{split} E\bigg[\psi\bigg(\frac{|X+Y|}{s+t}\bigg)\bigg] &\leq \frac{s}{s+t} E\bigg[\psi\bigg(\frac{|X|}{s}\bigg)\bigg] + \frac{t}{s+t} E\bigg[\psi\bigg(\frac{|Y|}{t}\bigg)\bigg] \\ &\leq \frac{s}{s+t} + \frac{t}{s+t} \\ &< 1 \end{split}$$

Hence $s + t \in A_{X+Y}$. Thus $A_{X+Y} \neq \emptyset$. Since $s < \inf A_X + \epsilon/2$ and $t < \inf A_Y + \epsilon/2$, we have that

$$||X + Y||_{\psi} = \inf A_{X+Y}$$

$$\leq s + t$$

$$< \inf A_X + \inf A_Y + \epsilon$$

$$= ||X||_{\psi} + ||Y||_{\psi} + \epsilon$$

Since $\epsilon > 0$ is arbitrary, $||X + Y||_{\psi} \le ||X||_{\psi} + ||Y||_{\psi}$. So $X + Y \in L^{\psi}(\Omega, \mathcal{F}, P)$

2. absolute homogeneity: Suppose that $\lambda = 0$. Then for each t > 0,

$$E[\psi(|\lambda X|/t)] = E[\psi(0)]$$

$$= E[0]$$

$$= 0$$

$$\leq 1$$

Thus

$$\begin{split} \|\lambda X\|_{\psi} &= 0 \\ &= |\lambda| \|X\|_{\psi} \end{split}$$

Suppose that $\lambda \neq 0$. Since for each t > 0,

$$\psi\left(\frac{|X|}{t}\right) = \psi\left(\frac{|\lambda X|}{|\lambda|t}\right)$$

we have that for each t > 0, $t \in A_X$ iff $|\lambda|t \in A_{\lambda X}$. Therefore $A_{\lambda X} = |\lambda|A_X$ and

$$\|\lambda X\|_{\psi} = \inf A_{\lambda X}$$
$$= |\lambda| \inf A_X$$
$$= |\lambda| \|X\|_{\psi}$$

So $|\lambda X| \in L^{\psi}(\Omega, \mathcal{F}, P)$.

3. **positive definiteness:** Note that since ψ is increasing, for each $t_0 > 0$, $t_0 \in A_X$ implies that $[t_0, \infty) \subset A_X$. Suppose that $||X||_{\psi} = 0$. Then $(0, \infty) \subset A_X$. Jensen's inequality implies that for each t > 0,

$$\psi\left(\frac{E|X|}{t}\right) \le E\left[\psi\left(\frac{|X|}{t}\right)\right] < 1$$

For the sake of contradiction, suppose that E|X|>0. Since $\psi(x)\to\infty$ as $x\to\infty$, Choose x>0 such that $\psi(x)>1$. Set t=E|X|/x. Then t>0 and

$$1 < \psi(x)$$

$$= \psi\left(\frac{E|X|}{t}\right)$$

$$\leq 1$$

which is a contradiction. Hence E|X| = 0. Thus X = 0 a.s.

Exercise 5.2.0.6. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ an Orlicz function. Then $L^{\psi}(\Omega, \mathcal{F}, P)$ is a Banach space.

Proof.

Conditional Expectation and Probability

6.1 Conditional Expectation

Exercise 6.1.0.1. Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X \in L^1(\Omega, \mathcal{F}, P)$. Define $P_{\mathcal{G}} = P|_{\mathcal{G}}$ and $Q : \mathcal{G} \to [0, \infty)$ by $Q(G) = \int_G X dP$. Then $Q \ll P_{\mathcal{G}}$.

Proof. Let $G \in \mathcal{G}$. Suppose that $P_{\mathcal{G}}(G) = 0$. By definition, P(G) = 0. So Q(G) = 0 and $Q \ll P_{\mathcal{G}}$.

Definition 6.1.0.2. Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X, Y \in L^1(\Omega, \mathcal{F}, P)$. Then Y is said to be a **conditional expectation of** X **given** \mathcal{G} if

- 1. Y is \mathcal{G} -measurable
- 2. for each $G \in \mathcal{G}$,

$$\int_G Y \, dP = \int_G X \, dP$$

Since (2) implies that conditional expectations of X given \mathcal{G} are equal $P_{\mathcal{G}}$ -a.e., we write $Y = E(X|\mathcal{G})$.

Note 6.1.0.3. Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. We typically write E(X|Y) instead of $E(X|Y^*\mathcal{S})$.

Exercise 6.1.0.4. Existence of Conditional Expectation:

Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X \in L^1(\Omega, \mathcal{F}, P)$. Define Q and $P_{\mathcal{G}}$ as in the previous exercise. Define $Y = dQ/dP_{\mathcal{G}}$. Then Y is a conditional expectation of X given \mathcal{G} .

Proof. The Radon-Nikodym theorem implies that Y is \mathcal{G} -measurable. Since Q is finite, so is |Q|. Since $d|Q| = |Y| dP_{\mathcal{G}}$, we have that $Y \in L^1(\Omega, \mathcal{G}, P_{\mathcal{G}})$. An exercise in section 3.3 of [4], implies that for each $G \in \mathcal{G}$

$$\int_{G} Y dP = \int_{G} Y dP_{\mathcal{G}}$$
$$= Q(G)$$
$$= \int_{G} X dP$$

Definition 6.1.0.5. Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. Let $\phi \in L^0(Y(\Omega), \mathcal{S} \cap Y(\Omega))$. Then ϕ is said to be a **conditional expectation function of** X **given** Y if for each $B \in \mathcal{S} \cap Y(\Omega)$,

$$\int_{Y^{-1}(B)} X \, dP = \int_B \phi \, dP_Y$$

To denote this, we write $\phi(y) = E[X|Y = y]$.

Exercise 6.1.0.6. Existence of Conditional Expectation Function:

Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. Suppose that for each $y \in S$, $\{y\} \in \mathcal{S}$. Then there exists $\phi \in L^0(Y(S), \mathcal{S} \cap Y(\Omega))$ such that ϕ is a conditional expectation function of X given Y. **Hint:** Doob-Dynkin lemma

Proof. Since $E[X|Y] \in L^0(\Omega, Y^*S)$, the Doob-Dynkin lemma implies that there exists $\phi \in L^0(Y(\Omega), S \cap Y(\Omega))$ such that $\phi \circ Y = E(X|Y)$. Let $B \in S \cap Y(\Omega)$. Then

$$\int_{B} \phi \, dP_Y = \int_{Y^{-1}(B)} \phi \circ Y \, dP$$

$$= \int_{Y^{-1}(B)} E(X|Y) \, dP$$

$$= \int_{Y^{-1}(B)} X \, dP$$

6.2 Conditional Probability

Definition 6.2.0.1. Let (A, \mathcal{A}) be a measurable space, (B, \mathcal{B}, P_Y) a probability space and $Q: B \times \mathcal{A} \to [0, 1]$. Then Q is said to be a **stochastic transition kernel from** (B, \mathcal{B}, P) **to** (A, \mathcal{A}) if

- 1. for each $E \in \mathcal{A}$, $Q(\cdot, E)$ is \mathcal{B} -measurable
- 2. for P-a.e. $b \in B$, $Q(b, \cdot)$ is a probability measure on (A, A)

Definition 6.2.0.2. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0(\Omega, \mathcal{F}, P)$ and $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$. Then Q is said to be a **conditional probability distribution of** X **given** Y if

- 1. Q is a stochastic transition kernel from $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), P_Y)$ to $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$
- 2. for each $A, B \in \mathcal{F}$,

$$\int_{B} Q(y, A)dP_{Y}(y) = P(X \in A, Y \in B)$$

Note 6.2.0.3. It is helpful to connect this notion of conditional probability with the elementary one by writing $Q(y, A) = P(X \in A|Y = y)$. If $P_Y \ll \mu$, then property (2) in the definition becomes

$$P(X \in A, Y \in B) = \int_{B} Q(y, A) dP_{Y}(y)$$
$$= \int_{B} P(X \in A|Y = y) f_{Y}(y) d\mu(y)$$

as in a first course on probability.

Exercise 6.2.0.4. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$. Suppose that for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable, for P_Y -a.e. $y \in \mathbb{R}^n$, $P_{X|Y}(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) and $Q(Y, A) = P(X \in A|Y)$ a.e. Then Q is a conditional probability of X given Y.

Proof. By assumption, for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable and for P_Y -a.e. $y \in \mathbb{R}^n$, $Q(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) . Let $A, B \in \mathcal{F}$. Then

$$\begin{split} \int_{B} Q(y,A) dP_{Y}(y) &= \int_{Y^{-1}(B)} Q(Y(\omega),A) dP(\omega) \\ &= \int_{Y^{-1}(B)} P(X \in A|Y) dP \\ &= \int_{Y^{-1}(B)} E[1_{X^{-1}(A)}|Y] dP \\ &= \int_{Y^{-1}(B)} 1_{X^{-1}(A)} dP \\ &= \int 1_{X^{-1}(A)} 1_{Y^{-1}(B)} dP \\ &= \int 1_{X^{-1}(A) \cap Y^{-1}(B)} dP \\ &= P(X \in A, Y \in B) \end{split}$$

So Q is a conditional probability distribution of X given Y.

Definition 6.2.0.5. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and μ a σ -finite measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that $P_X, P_Y \ll \mu$. Then $P_{X,Y} \ll \mu^2$. Let $f_X = dP_X/d\mu$, $f_Y = dP_Y/d\mu$ and $f_{X,Y} = dP_{X,Y}/d\mu^2$. Define $f_{X|Y} : \mathbb{R}^n \times \mathbb{R}^n$ by

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & y \in \text{supp } Y \\ 0, & y \notin \text{supp } Y \end{cases}$$

Then $f_{X|Y}$ is called the **conditional probability density of** X **given** Y.

Exercise 6.2.0.6. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and μ a σ -finite measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that $P_X, P_Y \ll \mu$. Define $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$ by

$$Q(y,A) = \int_A f_{X|Y}(x,y)d\mu(x)$$

Then Q is a conditional probability distribution of X given Y.

Proof. By the Fubini-Tonelli Theorem, for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable and for P_Y -a.e. $y \in \mathbb{R}^n$, $Q(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) . Let $A, B \in \mathcal{F}$. Then

$$\begin{split} \int_B Q(y,A)dP_Y(y) &= \int_B \bigg[\int_A f_{X|Y}(x,y) d\mu(x) \bigg] dP_Y(y) \\ &= \int_{B\cap \operatorname{supp} Y} \bigg[\int_{A\cap \operatorname{supp} Y} \frac{f_{X,Y}(x,y)}{f_Y(y)} d\mu(x) f_Y(y) \bigg] d\mu(y) \\ &= \int_{B\cap \operatorname{supp} Y} \bigg[\int_A f_{X,Y}(x,y) d\mu(x) \bigg] d\mu(y) \\ &= P(X \in A, Y \in B \cap \operatorname{supp} Y) \\ &= P(X \in A, Y \in B) \end{split}$$

Theorem 6.2.0.7. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^1(\Omega, \mathcal{F}, P)$. Suppose that $\operatorname{Img} X \in \mathcal{B}(\mathbb{R}^n)$. Then there exists a conditional probability distribution of Y given X.

Chapter 7

Markov Chains

Definition 7.0.0.1. Define Markov kernels, their composition and

Definition 7.0.0.2. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}_0} \in L_n^0$. Then $(X_n)_{n \in \mathbb{N}_0}$ is said to be a **homogeneous** Markov chain if for each $A \in \mathcal{F}$ and $n \in \mathbb{N}$, $P(X_n \in A|X_1, \cdots, X_{n-1}) = P(X_1 \in A|X_0)$ a.e.

Chapter 8

Probabilities Induced by Isometric Group Actions

8.1 Applications to Bayesian Statistics

Exercise 8.1.0.1. Let $(\mathcal{X}, \mathcal{A})$ be a measurable space (Θ, d) a metric space, G a group, $\phi : G \times \Theta \to \Theta$ an isometric group action. Suppose that \bar{d} is a metric on Θ/G . Let

- H_p^{Θ} be the Hausdorff measure on Θ , $\mu_{\mathcal{X}}$ a measure on \mathcal{X} ,
- p a denisty on Θ and for each $\theta \in \Theta$, $p(\cdot|\theta)$ a density on \mathcal{X} .
- $\theta_0 \in \Theta$ and for $j \in \mathbb{N}$, $X_j \sim p(x|\theta_0)$

Suppose that μ_{Θ} is G-invariant, p is G-invariant and continuous on Θ and for each $x \in \mathcal{X}$, $p(x|\cdot)$ is G-invariant and continuous on Θ . For $n \in \mathbb{N}$, set $p(\cdot|X^{(n)}) \propto f(X_1, \ldots, X_n|\cdot)p(\cdot)$. Define the posterior measure $P_{\Theta|X^{(n)}} : \mathcal{B}(\Theta) \to [0,1]$ by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) dH_p^{\Theta}(\theta)$$

Then there exists a density $\bar{p}(\cdot|X^{(n)})$ on Θ/G such that

$$d\bar{P}_{\Theta|X^{(n)}}(\theta) = \bar{p}(\theta|X^{(n)}) d\bar{H}^{\Theta}(\theta)$$

Proof. Clear from previous work.

Exercise 8.1.0.2. Let $(\mathcal{X}, \mathcal{A})$ be a measurable space (Θ, d) a metric space, G a group, $\phi : G \times \Theta \to \Theta$ an isometric group action. Suppose that \bar{d} is a metric on Θ/G . Let

- H_p^{Θ} be the Hausdorff measure on Θ , $\mu_{\mathcal{X}}$ a measure on \mathcal{X} ,
- p a denisty on Θ and for each $\theta \in \Theta$, $p(\cdot|\theta)$ a density on \mathcal{X} .
- $\theta_0 \in \Theta$ and for $j \in \mathbb{N}$, $X_j \sim p(x|\theta_0)$

Suppose p is G-invariant and continuous on Θ and for each $x \in \mathcal{X}$, $p(x|\cdot)$ is G-invariant and continuous on Θ . For $n \in \mathbb{N}$, set $p(\cdot|X^{(n)}) \propto f(X_1, \ldots, X_n|\cdot)p(\cdot)$. Define the posterior measure $P_{\Theta|X^{(n)}} : \mathcal{B}(\Theta) \to [0,1]$ by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) \, dH_p^{\Theta}(\theta)$$

Suppose that $(P_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$ concentrates on $\bar{\theta}_0\subset\Theta$ a.s. or in probability. Then $(\bar{P}_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$ concentrates a.s. or in probability on $\{\bar{\theta}_0\}\subset\Theta/G$ (i.e. is consistent a.s. or in probability)

Proof. Let $V \in \mathcal{N}_{\bar{\theta}_0}$. Then $\pi^{-1}(V) \in \mathcal{N}_{\bar{\theta}_0}$. By definition,

$$\begin{split} \bar{P}_{\Theta|X^{(n)}}(V^c) &= P_{\Theta|X^{(n)}}(\pi^{-1}(V^c)) \\ &= P_{\Theta|X^{(n)}}(\pi^{-1}(V)^c) \\ &\xrightarrow{\text{a.s.}/P} 0 \end{split}$$

Note 8.1.0.3. Some examples of G-invariant priors would be the uniform distribution, or $N_n(0, \sigma^2 I)$ on \mathbb{R}^n when acted on by O(n). An example of a G-invariant likelihood would be $f(A|Z) \sim \text{Ber}(ZZ^T)$ as in a latent position random graph model where $Z \in \mathbb{R}^{n \times d}$ is the parameter is invariant under right multiplication by $U \in O_d$.

Chapter 9

Projective Systems

Chapter 10

Stochastic Integration

Exercise 10.0.0.1. Let (Ω, \mathcal{F}, P) be a probability space, X a set \mathcal{A}_0 an algebra, $\mu_0 : \mathcal{A}_0 \to \mathbb{C}$ and $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$. Suppose that

- 1. $B(\emptyset) = 0$
- 2. for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $B(E \cup F) = B(E) + B(F)$
- 3. $E(B(E)B(F)^*) = \mu_0(E \cap F)$

Then

- 1. for each $E \in A_0$, $\mu_0(E) = E(|B(E)|^2)$.
- 2. for each $E \in \mathcal{A}_0$, $0 \le \mu_0(E) < \infty$
- 3. for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $\mu_0(E \cup F) = \mu_0(E) + \mu_0(F)$

Proof.

- 1. Clear
- 2. Clear
- 3. Let $E, F \in \mathcal{A}_0$. Suppose that $E \cap F = \emptyset$. Then

$$E(B(E)B(F)^*) = \mu_0(E \cap F)$$

$$= \mu_0(\varnothing)$$

$$= E(|B(\varnothing)|^2)$$

$$= E(0)$$

$$= 0$$

This implies that

$$\mu_0(E \cup F) = E(|B(E \cup F)|^2)$$

$$= E(|B(E) + B(F)|^2)$$

$$= E(|B(E)|^2) + E(|B(F)|^2) + 2\operatorname{Re} E(B(E)B(F)^*)$$

$$= \mu_0(E) + \mu_0(F) + 0$$

$$= \mu_0(E) + \mu_0(F)$$

Definition 10.0.0.2. Let (Ω, \mathcal{F}, P) be a probability space, X a set \mathcal{A}_0 an algebra, $\mu_0 : \mathcal{A}_0 \to [0, \infty)$ a premeasure and $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$. Suppose that

- 1. $B(\varnothing) = 0$
- 2. for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $B(E \cup F) = B(E) + B(F)$
- 3. $E(B(E)B(F)^*) = \mu_0(E \cap F)$

Then B is said to be a stochastic premeasure with sturcture μ_0

Chapter 11

TODO

Incorporate vector measures to have conditional expectations of Banach space valued functions given a σ -algebra

40 CHAPTER 11. TODO

Appendix A

Summation

Definition A.0.0.1. Let $f: X \to [0, \infty)$, Then we define

$$\sum_{x \in X} f(x) := \sup_{\substack{F \subset X \\ F \text{ finite}}} \sum_{x \in F} f(x)$$

This definition coincides with the usual notion of summation when X is countable. For $f: X \to \mathbb{C}$, we can write f = g + ih where $g, h: X \to \mathbb{R}$. If

$$\sum_{x \in X} |f(x)| < \infty,$$

then the same is true for $g^+,g^-,h^+,h^-.$ In this case, we may define

$$\sum_{x \in X} f(x)$$

in the obvious way.

The following note justifies the notation $\sum_{x \in X} f(x)$ where $f: X \to \mathbb{C}$.

Note A.0.0.2. Let $f: X \to \mathbb{C}$ and $\alpha: X \to X$ a bijection. If $\sum_{x \in X} |f(x)| < \infty$, then $\sum_{x \in X} f(\alpha(x)) = \sum_{x \in X} f(x)$.

Appendix B

Asymptotic Notation

Definition B.0.0.1. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. Then we write

$$f = o(g)$$
 as $x \to x_0$

if for each $\epsilon > 0$, there exists $U \in \mathcal{N}(x_0)$ such that for each $x \in U$,

$$||f(x)|| \le \epsilon ||g(x)||$$

Exercise B.0.0.2. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. If there exists $U \in \mathcal{N}(x_0)$ such that for each $x \in U \setminus \{x_0\}$, g(x) > 0, then

$$f = o(g) \text{ as } x \to x_0 \quad \text{iff} \quad \lim_{x \to x_0} \frac{\|f(x)\|}{\|g(x)\|} = 0$$

Exercise B.0.0.3. Let X and Y a be normed vector spaces, $A \subset X$ open and $f: A \to Y$. Suppose that $0 \in A$. If $f(h) = o(\|h\|)$ as $h \to 0$, then for each $h \in X$, f(th) = o(|t|) as $t \to 0$.

Proof. Suppose that f(h) = o(||h||) as $h \to 0$. Let $h \in X$ and $\epsilon > 0$. Choose $\delta' > 0$ such that for each $h' \in B(0, \delta')$, $h' \in A$ and

$$||f(h')|| \le \frac{\epsilon}{||h|| + 1} ||h'||$$

Choose $\delta > 0$ such that for each $t \in B(0, \delta)$, $th \in B(0, \delta')$. Let $t \in B(0, \delta)$. Then

$$||f(th)|| \le \frac{\epsilon}{||h|| + 1} |t| ||h||$$
$$< \epsilon |t|$$

So f(th) = o(|t|) as $t \to 0$.

Definition B.0.0.4. Let X be a topological space, Y, Z be normed vector spaces, $f: X \to Y$, $g: X \to Z$ and $x_0 \in X \cup \{\infty\}$. Then we write

$$f = O(q)$$
 as $x \to x_0$

if there exists $U \in \mathcal{N}(x_0)$ and $M \geq 0$ such that for each $x \in U$,

$$||f(x)|| \le M||g(x)||$$

Appendix C

Categories

move to notation?

Definition C.0.0.1. We define the category of topological measure spaces, denoted \mathbf{TopMsr}_+ , by

- $\bullet \ \operatorname{Obj}(\mathbf{TopMsr}_+) := \{(X,\mu) : X \in \operatorname{Obj}(\mathbf{Top}) \text{ and } \mu \in M(X)\}$
- $\bullet \ \operatorname{Hom}_{\mathbf{TopMsr}_+}((X,\mu),(Y,\nu)) := \operatorname{Hom}_{\mathbf{Top}}(X,Y) \cap \operatorname{Hom}_{\mathbf{Msr}_+}((X,\mathcal{B}(X),\mu),(Y,\mathcal{B}(Y),\nu))$

Appendix D

Rings

48 APPENDIX D. RINGS

Appendix E

Introduction

Definition E.0.0.1. Let R be a ring and $I, J \subset R$ ideals. We define

- $\bullet \ I+J\subset R \text{ by } I+J:=\{i+j:i\in I \text{ and } j\in J\},$
- $IJ \subset R$ by $IJ := \{i_1j_1 + i_2j_2 : i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}.$

Exercise E.0.0.2. Let R be a ring and $I, J \subset R$ ideals. Then I + J and IJ are ideals.

Proof. FINISH!!!

Appendix F

Quotient Rings

Exercise F.0.0.1. Let R be a commutative unital ring and $I \subset R$ and ideal. Then I is maximal iff R/I is a field.

Proof. A previous exercise implies that R/I is a commutative unital ring.

• (⇒):

Suppose that I is maximal. Let $k+I \in R/I$. Suppose that $k+I \neq 0+I$. Then $k \notin I$. Define $J \subset R$ by J := (k)+I. A previous exercise implies that J is an ideal. By construction $I \subset J$ and $k \in J$. Hence $I \neq J$. Since I is maximal, J = R. Since $1 \in J$, there exists $r \in R$ and $i \in I$ such that 1 = rk + i. Hence

$$1 + I = rk + i + I$$
$$= rk + I$$
$$= (r + I)(k + I).$$

Thus (k+I) is invertible. Since $k+I \in R/I$ such that $k+I \neq 0+I$ is arbitrary, we have that for each $k+I \in R/I$, $k+I \neq 0+I$ implies that k+I is invertible. Thus R/I is a field.

• (<=):

Suppose that R/I is a field. Let $J \subset R$. Suppose that J is an ideal, $I \subset J$ and $I \neq J$. Then there exists $j \in J$ such that $j \notin I$. Thus $j + I \neq 0 + I$. Since R/I is a field, j + I is invertible. Hence there exists $k \in R$ such that jk + I = 1 + I. Hence

$$1 - jk \in I$$
$$\subset J.$$

Since J is an ideal, $jk \in J$ and therefore

$$1 = (1 - jk) + jk$$
$$\in J.$$

Since $1 \in J$, J = R. Since $J \subset R$ with J an ideal and $I \subset J$ is arbitrary, we have that for each $J \subset R$, J an ideal and $I \subset J$ implies that J = I or J = X. Hence I is maximal.

Appendix G

Vector Spaces

it might be better to cover some category theory and write everything in terms of $\operatorname{Hom}_{\mathbf{Vect}_{\mathbb{K}}}$ and $\operatorname{Obj}(\mathbf{Vect}_{\mathbb{K}})$

Appendix H

Introduction

Definition H.0.0.1. Let X be a set, \mathbb{K} a field, $+: X \times X \to X$ and $\cdot: \mathbb{K} \times X \to X$. Then $(X, +, \cdot)$ is said to be a \mathbb{K} -vector space if

1. (X, +) is an abelian group

2.

Definition H.0.0.2. Let $(X, +, \cdot) \in \text{Obj}(\mathbf{Vect}_{\mathbb{C}})$. We define the **conjugate of** $(X, +, \cdot)$, denoted $(\bar{H}, \bar{+}, \bar{\cdot})$, by

- $\bar{X} := X$.
- x + y := x + y,
- $\lambda \bar{x} := \lambda^* \cdot x$.

Exercise H.0.0.3. Let $(X, +, \cdot) \in \text{Obj}(\mathbf{Vect}_{\mathbb{C}})$. Then $(\bar{H}, \bar{+}, \bar{\cdot}) \in \text{Obj}(\mathbf{Vect}_{\mathbb{C}})$.

Proof. FINISH!!!

Definition H.0.0.4. Let $(X, +_X, \cdot_X)$ and $(E, +_E, \cdot_E)$ be vector spaces. Suppose that $E \subset X$. Then $(E, +_E, \cdot_E)$ is said to be a subspace of X if

- 1. $+_E = +_X|_{E \times E}$
- 2. $\cdot_E = \cdot_X|_{\mathbb{K} \times E}$

Exercise H.0.0.5. Let $(X, +_X, \cdot_X)$ and $(E, +_E, \cdot_E)$ be vector spaces. Suppose that $E \subset X$.

Exercise H.0.0.6. Let $(X, +, \cdot)$ be a vector space and $E \subset X$. Then E is a subspace of X

Definition H.0.0.7. Let X be a vector space and $(E_j)_{j\in J}$ a collection of subspaces of X. Then $\bigcap_{j\in J} E_j$ is a subspace of X.

Proof. Set $E := \bigcap_{j \in J} E_j$. Let $x, y \in E$ and $\lambda \in \mathbb{K}$. Then for each $j \in J$, $x, y \in E_j$. Since for each $j \in J$, E_j is a subspace of X, we have that for each $j \in J$, $x + \lambda y \in E_j$. Thus $x + \lambda y \in E$. Since $x, y \in E$ and $\lambda \in \mathbb{K}$ are arbitrary, (cite exercise here) we have that E is a subspace of X.

Definition H.0.0.8. Let X, Y be vector spaces and $T: X \to Y$. Then T is said to be **linear** if for each $x_1, x_2 \in X$ and $\lambda \in \Lambda$,

- 1. $T(x_1 + x_2) = T(x_1) + T(x_2)$,
- 2. $T(\lambda x_1) = \lambda T(x_1)$.

We define $\mathcal{L}(X;Y) := \{T : X \to Y : T \text{ is linear}\}.$

Proof. FINISH!!!

Exercise H.0.0.9. Let X, Y be vector spaces and $T: X \to Y$. Then T is linear iff for each $x_1, x_2 \in X$ and $\lambda \in \Lambda$, $T(x_1 + \lambda x_2) = T(x_1) + \lambda T(x_2)$ Proof. Clear. (add details) $Exercise \text{ H.0.0.10. } \mathcal{L}(X;Y) \text{ is a vector space FINISH!!!}$ Proof. content... Definition H.0.0.11. define addition/scalar multiplication of linear maps $Exercise \text{ H.0.0.12. Let } X, Y \text{ be vector spaces over } \mathbb{K}. \text{ Then } \mathcal{L}(X;Y) \text{ is a } \mathbb{K}\text{-vector space.}$ Proof. Clear

Exercise H.0.0.13. Let X, Y, Z be vector spaces over \mathbb{K} , $T \in \mathcal{L}(X,Y)$ and $S \in \mathcal{L}(Y,Z)$. Then $S \circ T \in \mathcal{L}(X,Z)$.

Appendix I

Bases

Definition I.0.0.1. Let X be a vector space and $(e_{\alpha})_{\alpha \in A} \subset X$. Then $(e_{\alpha})_{\alpha \in A}$ is said to be

- linearly independent if for each $(\alpha_j)_{j=1}^n \subset A$, $(\lambda_j)_{j=1}^n \subset \mathbb{K}$, $\sum_{j=1}^n \lambda_j e_{\alpha_j} = 0$ implies that for each $j \in [n]$, $\lambda_j = 0$.
- a Hamel basis for X if $(e_{\alpha})_{\alpha \in A}$ is linearly independent and $\operatorname{span}(e_{\alpha})_{\alpha \in A} = X$.

Exercise I.0.0.2. every vector space has a Hamel basis

Proof.

Exercise I.0.0.3.

Exercise I.0.0.4. Let X be a K-vector space and $x \in X$. Then x = 0 iff for each $\phi \in X^*$, $\phi(x) = 0$.

Proof.

- (\Longrightarrow): Suppose that x=0. Linearity implies that for each $\phi \in X^*$ $\phi(x)=0$.
- (\Leftarrow): Conversely, suppose that $x \neq 0$. Define $\epsilon_x : \operatorname{span}(x) \to \mathbb{K}$ by $\epsilon_x(\lambda x) := \lambda$. Let $u, v \in \operatorname{span}(x)$. Then there exists $\lambda_u, \lambda_v \in \mathbb{K}$ such that $u = \lambda_u x$ and $v = \lambda_v x$. Suppose that u = v. Then

$$(\lambda_u - \lambda_v)x = \lambda_u x - \lambda_v x$$
$$= u - v$$
$$= 0$$

Since $x \neq 0$, we have that $\lambda_u - \lambda_v = 0$ and therefore $\lambda_u = \lambda_v$. Hence

$$\lambda_u = \epsilon_x(u)$$
$$= \epsilon_x(v)$$
$$= \lambda_v.$$

Thus ϵ_x is well defined.

58 APPENDIX I. BASES

Appendix J

Duality

Definition J.0.0.1. Let X be a vector space over \mathbb{K} . We define the **algebraic dual space of** X, denoted X', by $X' := \mathcal{L}(X; \mathbb{K})$.

Exercise J.0.0.2. Let X be a vector space. Then X' is a vector space.

Proof. Clear. \Box

Definition J.0.0.3. Let X,Y be vector spaces over \mathbb{K} . We define the algebraic adjoint of $T \in \mathcal{L}(X;Y)$, denoted $T' \in \mathcal{L}(Y',X')$, by $T'(\phi) := \phi \circ T$.

60 APPENDIX J. DUALITY

Appendix K

Multilinear Maps

Definition K.0.0.1. Let X_1, \dots, X_n, Y be vector spaces and $T : \prod_{j=1}^n X_j \to \mathbb{K}$. Then T is said to be **multilinear** if for each $j_0 \in [n]$ and $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j, T(x_1, \dots, x_{j_0-1}, \cdot, x_{j_0+1})$ is linear.

$$L^n(X_1,\ldots,X_n;Y) = \left\{ T : \prod_{j=1}^n X_j \to Y : T \text{ is multilinear} \right\}$$

If $X_1 = \cdots = X_n = X$, we write $L^n(X;Y)$ in place of $L^n(X,\ldots,X;Y)$.

Definition K.0.0.2. define addition and scalar mult of multilinear maps

Exercise K.0.0.3. Let X_1, \dots, X_n, Y be vector spaces. Then $L^n(X_1, \dots, X_n; Y)$ is a \mathbb{K} -vector space.

Proof. content...

Exercise K.0.0.4. Let X_1, \dots, X_n, Y, Z be \mathbb{K} -vector spaces, $\alpha \in L^n(X_1, \dots, X_n; Y)$ and $\phi \in L^1(Y; Z)$. Then $\phi \circ \alpha \in L^n(X_1, \dots, X_n; Z)$.

Proof. Let $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j$ and $j_0 \in [n]$. Define $f: X_{j_0} \to Y$ by

$$f(a) := \alpha(x_1, \dots, x_{j_0-1}, a, x_{j_0+1}, \dots, x_n)$$

Since $\alpha \in L^n(X_1, \dots, X_n; Y)$, f is linear. Since ϕ is linear, and $\phi \circ f$ is linear. Since $(x_j)_{j=1}^n \in \prod_{j=1}^n X_j$ and $j_0 \in [n]$ are arbitrary, we have that $\phi \circ \alpha \in L^n(X_1, \dots, X_n; Y)$.

Appendix L

Tensor Products

Definition L.0.0.1. Let X, Y and T be vector spaces over \mathbb{K} and $\alpha \in L^2(X, Y; T)$. Then (T, α) is said to be a **tensor product of** X **and** Y if for each vector space Z and $\beta \in L^2(X, Y; Z)$, there exists a unique $\phi \in L^1(T; Z)$ such that $\phi \circ \alpha = \beta$, i.e. the following diagram commutes:

$$\begin{array}{ccc} X \times Y & \xrightarrow{\alpha} & T \\ & \downarrow^{\phi} \\ Z & \end{array}$$

Exercise L.0.0.2. Let X, Y, S, T be vector spaces, $\alpha \in L^2(X, Y; S)$ and $\beta \in L^2(X, Y; T)$. Suppose that (S, α) and (T, β) are tensor products of X and Y. Then S and T are isomorphic.

Proof. Since (T,β) is a tensor product of X and Y, $\beta \in L^2(X,Y;T)$ there exists a unique $f \in L^1(T;T)$ such that $f \circ \beta = \beta$, i.e. the following diagram commutes:

Since $\operatorname{id}_T \in L^1(T;T)$ and $\operatorname{id}_T \circ \beta = \beta$, we have that $f = \operatorname{id}_T$. Since (S,α) is a tensor product of X and Y, there exists a unique $\phi: S \to T$ such that $\phi \circ \alpha = \beta$, i.e. the following diagram commutes:

Similarly, since (T, β) is a tensor product of X and Y, there exists a unique $\psi : T \to S$ such that $\psi \circ \beta = \alpha$, i.e. the following diagram commutes:

Therefore

$$(\phi \circ \psi) \circ \beta = \phi \circ (\psi \circ \beta)$$
$$= \phi \circ \alpha$$
$$= \beta,$$

i.e. the following diagram commutes:

By uniqueness of $f \in L^1(T;T)$, we have that

$$id_T = f$$

= $\phi \circ \psi$

A similar argument implies that $\psi \circ \phi = \mathrm{id}_S$. Hence ϕ and ψ are isomorphisms with $\phi^{-1} = \psi$. Hence S and T are isomorphic.

Definition L.0.0.3. Let X, Y be vector spaces, $x \in X$ and $y \in Y$. We define $x \otimes y : X^* \times Y^* \to \mathbb{K}$ by $x \otimes y(\phi, \psi) := \phi(x)\psi(y)$. **Exercise L.0.0.4.** Let X, Y be vector spaces, $x \in X$ and $y \in Y$. Then $x \otimes y \in L^2(X^*, Y^*; \mathbb{K})$.

Proof. Let $\phi_1, \phi_2 \in X^*, \psi \in Y^*$ and $\lambda \in \mathbb{K}$. Then

$$x \otimes y(\phi_1 + \lambda \phi_2, \psi) = [\phi_1 + \lambda \phi_2(x)]\psi(y)$$
$$= \phi_1(x)\psi(y) + \lambda \phi_2(x)\psi(y)$$
$$= x \otimes y(\phi_1, \psi) + \lambda x \otimes y(\phi_2, \psi)$$

Since $\phi_1, \phi_2 \in X^*, \psi \in Y^*$ and $\lambda \in \mathbb{K}$ are arbitrary, we have that for each $\psi \in Y^*, x \otimes y(\cdot, \psi)$ is linear. Similarly for each $\phi \in X^*, x \otimes y(\phi, \cdot)$ is linear. Hence $x \otimes y$ is bilinear and $x \otimes y \in L^2(X^*, Y^*; \mathbb{K})$.

Definition L.0.0.5. Let X, Y be vector spaces. We define

• the **tensor product of** X **and** Y, denoted $X \otimes Y \subset L^2(X^*, Y^*; \mathbb{K})$, by

$$X \otimes Y := \operatorname{span}(x \otimes y : x \in X \text{ and } y \in Y),$$

• the **tensor map**, denoted $\otimes : X \times Y \to X \otimes Y$, by $\otimes (x, y) := x \otimes y$.

Exercise L.0.0.6. Let X, Y be vector spaces, $(x_j)_{j=1}^n \subset X$ and $(y_j)_{j=1}^n \subset Y$. The following are equivalent:

$$1. \sum_{j=1}^{n} x_j \otimes y_j = 0$$

2. for each
$$\phi \in X^*$$
 and $\psi \in Y^*$, $\sum_{j=1}^n \phi(x_j)\psi(y_j) = 0$

3. for each
$$\phi \in X^*$$
, $\sum_{j=1}^n \phi(x_j)y_j = 0$

4. for each
$$\psi \in Y^*$$
, $\sum_{j=1}^n \psi(y_j)x_j = 0$

Proof.

1. (1) \Longrightarrow (2): Suppose that $\sum_{j=1}^{n} x_j \otimes y_j = 0$. Let $\phi \in X^*$ and $\psi \in Y^*$. Then

$$\sum_{j=1}^{n} \phi(x_j)\psi(y_j) = \phi\left(\sum_{j=1}^{n} \psi(y_j)x_j\right)$$

2.

3.

Exercise L.0.0.7. Let X, Y be vector spaces. Then $(X \otimes Y, \otimes)$ is a tensor product of X and Y.

Proof. Let Z be a vector space and $\alpha \in L^2(X,Y;Z)$. Define $\phi: X \otimes Y \to Z$ by $\phi \left(\sum_{j=1}^n \lambda_j x_j \otimes y_j\right) := \sum_{j=1}^n \lambda_j \alpha(x_j,y_j)$.

• (well defined):

Let $u \in X \otimes Y$. Then there exist $(\lambda_j)_{j=1}^n \subset \mathbb{K}$, $(x_j)_{j=1}^n \subset X$, $(y_j)_{j=1}^n \subset Y$ such that $u = \sum_{j=1}^n \lambda_j x_j \otimes y_j$. Suppose that u = 0. Let $\phi \in Z^*$. Then $\phi \circ \alpha \in L^2(X,Y;Z)$.

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration