Eigenvectors and Eigenvalues

• **Definition**: An **eigenvector** of a **square** matrix $A \in \mathbb{R}^{n \times n}$ is a **nonzero** vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ In this case, λ is called an **eigenvalue** of A, and such an \mathbf{x} is called an **eigenvector corresponding to** λ .

Transformation Perspective

- Consider a linear transformation T(x) = Ax.
- If x is an eigenvector, then $T(x) = Ax = \lambda x$, which means the output vector has **the same direction** as x, but the length is scaled by a factor of λ .
- Example: For $A = \begin{bmatrix} 2 & 6 \\ 5 & 3 \end{bmatrix}$, an eigenvector is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ since

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 2 & 6 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \end{bmatrix} = 8 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$A \quad \mathbf{x} = \mathbf{0}$$

Computational Advantage

• Which computation is faster between $\begin{bmatrix} 2 & 6 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $8 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$?

Eigenvectors and Eigenvalues

• The equation $A\mathbf{x} = \lambda \mathbf{x}$ can be re-written as

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

• λ is an eigenvalue of an $n \times n$ matrix A if and only if this equation has a **nontrivial** solution (since \mathbf{x} should be a nonzero vector).

Eigenvectors and Eigenvalues

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

- The set of *all* solutions of the above equation is the **null space** of the matrix $(A \lambda I)$, which we call the **eigenspace** of A corresponding to λ .
- The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ , satisfying the above equation.

Example: Eigenvalues and Eigenvectors

- Example: Show that 8 is an eigenvalue of a matrix
 - $A = \begin{bmatrix} 2 & 6 \\ 5 & 3 \end{bmatrix}$ and find the corresponding eigenvectors.
- **Solution**: The scalar 8 is an eigenvalue of A if and only if the equation $(A 8I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution:

$$(A - 8I)\mathbf{x} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

• The solution is $\mathbf{x} = c \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ for any nonzero scalar c, which is Span $\{\begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$.

Example: Eigenvalues and Eigenvectors

• In the previous example, -3 is also an eigenvalue:

$$(A+3I)\mathbf{x} = \begin{bmatrix} 5 & 6 \\ 5 & 6 \end{bmatrix} \mathbf{x} = \mathbf{0}$$

• The solution is $\mathbf{x} = c \begin{bmatrix} 1 \\ -5/6 \end{bmatrix}$ for any nonzero scalar c, which is Span $\left\{ \begin{bmatrix} 1 \\ -5/6 \end{bmatrix} \right\}$.