

今日内容

- 神经网络预测器1
 - 神经元细胞
 - 神经网络
 - 神经网络的工作原理
- 神经网络预测器2
 - 数据预处理
 - 利用pytorch构建神经网络
 - 预测结果及其分析
- 对神经网络的解剖
- 神经网络分类器
- 附带视频
 - 神经网络与反向传播算法的数学原理

共享单车热遍全国

摩拜的苦恼

• 问题引出:

- 究竟什么时间派送工人去搬运
- 应该从哪里搬运到哪里?
- 应该搬运多少辆单车?

摩拜的苦恼

问题引出:

- 究竟什么时间派送工人去
 - 搬运
- 应该从哪里搬运到哪里?
- 应该搬运多少辆单车?

单车预测问题

• 预测未来的曲线?

http://capitalbikeshare.com/system-data http://www.freemeteo.com

找到一条直线,使得它到所有点的距离都很小

找到一条直线,使得它到所有点的距离都很小

$$L = \frac{1}{N} \sum_{i=1}^{N} (aX_i + b - Y_i)^2$$

找到一条直线,使得它到所有点的距离都很小

$$L = \frac{1}{N} \sum_{i=1}^{N} (aX_i + b - Y_i)^2$$

$$\min_{a,b} L(a,b)$$

找到一条直线,使得它到所有点的 距离都很小

$$L = \frac{1}{N} \sum_{i=1}^{N} (aX_i + b - Y_i)^2$$

计算梯度: $\frac{\partial L}{\partial a}$, $\frac{\partial L}{\partial b}$

梯度下降算法:

$$a_{t+1} = a_t - \alpha \cdot \frac{\partial L}{\partial a}$$
$$b_{t+1} = b_t - \alpha \cdot \frac{\partial L}{\partial b}$$

简单神经网络预测器

简单神经网络预测器

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\sigma(x) = \frac{1}{1 + \exp(-\mathbf{w}x)}$$

w控制着曲线的弯曲程度

b控制着曲线的竖直位置

w'控制着曲线的高矮

b控制着曲线的竖直位置

$$y = \frac{1}{1 + \exp(-(x+1))} + \frac{1}{1 + \exp(-x)}$$

b控制着曲线的竖直位置

b控制着曲线的竖直位置

 $y = \frac{1}{1 + \exp(-x)} + \frac{-1}{1 + \exp(-x + 1)}$

b控制着曲线的竖直位置

 $y = \frac{1}{1 + \exp(-x)} + \frac{-1}{1 + \exp(-x + 1)}$

我们至少需要多少隐含层神经元?

第一个单隐含层神经网络

Y = 12,30,...,10

导入需要的库

In [1]:

#导入需要使用的库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch

from torch.autograd import Variable

#让输出的图形直接在Notebook中显示

%matplotlib inline

导入、处理csv文件的库

有关Tensor操作的torch库 用于autograd自动求导变量的库

导入数据

rides.head()

In [2]:

#读取数据到内存中,rides为一个dataframe对象 data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) #看看数据长什么样子

导入、处理csv文件的库

显示前几条记录

Out[2]:

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
0	1	2011-01-01	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
1	2	2011-01-01	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
2	3	2011-01-01	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
3	4	2011-01-01	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
4	5	2011-01-01	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

初始化神经网络权重等变量

```
In [3]:

counts = rides['cnt'][:50]
x = Variable(torch.FloatTensor(np.arange(len(counts), dtype = float)/len(counts)))
y = Variable(torch.FloatTensor(np.array(counts, dtype = float)))
sz = 10
#初始化所有神经网络的权重(weights)和阈值(biases)
weights = Variable(torch.randn(1, sz), requires_grad = True)
biases = Variable(torch.randn(sz), requires_grad = True)
weights2 = Variable(torch.randn(sz, 1), requires_grad = True)
```

提取数据库的cnt字段前50 条记录 50行1列 50行1列

1行10列 10个元素的列向量 10行1列


```
learning_rate = 0.0001 #设置学习率
        losses = []
In [4]:
        for i in range(1000000):
          #从输入层到隐含层的计算
          hidden = x.expand(sz, len(x)).t() * weights.expand(len(x), sz) + biases.expand(len(x), sz)
          #将sigmoid函数作用在隐含层的每一个神经元上
          hidden = torch.sigmoid(hidden)
          # 隐含层输出到输出层, 计算得到最终预测
          predictions = hidden.mm(weights2)
          #通过与标签数据y比较,计算误差
          loss = torch.mean((predictions - y) ** 2)
          if i % 10000 == 0:
            print('loss:', loss)
          loss.backward() #对损失函数进行梯度反传
          #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
          weights.data.add (- learning rate * weights.grad.data)
          biases.data.add (-learning rate * biases.grad.data)
          weights2.data.add (-learning rate * weights2.grad.data)
          #梯度清空
          weights.grad.data.zero ()
          biases.grad.data.zero ()
          weights2.grad.data.zero ()
```

```
In [4]:
         learning rate = 0.0001 #设置学习率
        for i in range(1000000):
          #从输入层到隐含层的计算
          hidden = x.expand(sz, len(x)).t() * weights.expand(len(x), sz) + biases.expand(len(x), sz)
          hidden = torch.sigmoid(hidden)
         losses.append(loss.data.numpy())
          if i % 10000 == 0:
                                                               10*50
            print('loss:', loss)
          loss.backward() #对损失函数进行梯度反传
          weights.data.add (- learning rate * weights.grad.data)
           biases.data.add_(- learning_rate * biases.grad.data)
          weights2.data.add (- learning rate * weights2.grad.data)
           biases2.data.add (- learning rate * biases2.grad.data)
```

```
In [4]:
         learning rate = 0.0001 #设置学习率
         for i in range(1000000):
           #从输入层到隐含层的计算
           hidden = x.expand(sz, len(x)).t() * weights.expand(len(x), sz) + biases.expand(len(x), sz)
           hidden = torch.sigmoid(hidden)
          0.1
           losses.append(loss.data.numpy())
           if i % 10000 == 0:
                                                                  10*50
             print('loss:', loss)
           loss.backward() #对损失函数进行梯度反传
                                                       50*10
           #利用上一步计算中得到的weights expands
                                                               「woights或biases中的data数值」
                                                       0.2
0.2
                                                                   0.1
           weights (0.2 3 ··· 0.1) e * weights.gra biases.data.add_(- learning_rate * biases.grad.d
                                                                   0.1
           weights2.data.add_(- learning_rate * weights2.g
           biases2.data.add (- learning rate * biases2.grad.data)
```

```
In [4]:
          learning rate = 0.0001 #设置学习率
          for i in range(1000000):
            hidden = torch.t(x.expand(sz, len(x))) * weights.expand(len(x), sz) + biases.expand(len(x), sz)
            hidden = torch.sigmoid(hidden)
            # 隐含层输出到输出层, 计算得到最终预测
            predictions = hidden.mm(weights2)
            loss = torch.mean((predictions - y) ** 2)
            losses.append(loss.data.numpy())
                       if i % 100 /
            hidden:
                                                            mm
            loss.back
                        1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0
                                                                                  0.11
            weights.data.add_(- learning_rate * weights.grad.data)
            biases.data.add_(- learning_rate * biases.grad.data)
            weights2.data.add (- learning rate * weights2.grad.data)
            biases2.data.add_(-learning_rate * biases2.grad.data)
```

拟合结果

预测代码

```
counts_predict = rides['cnt'][50:100]#读取待预测的接下来的50个数据点
In [5]:
      #首先对接下来的50个数据点进行选取,注意x应该取51,52,.....,100,然后再归一化
      x = Variable(torch.FloatTensor((np.arange(len(counts_predict), dtype = float) + len(counts)) / len(counts_predict)))
      #读取下50个点的y数值
      y = Variable(torch.FloatTensor(np.array(counts_predict, dtype = float)))
      #从输入层到隐含层的计算
      hidden = x.expand(sz, len(x)).t() * weights.expand(len(x), sz)
      #将sigmoid函数作用在隐含层的每一个神经元上
      hidden = torch.sigmoid(hidden)
      # 隐含层输出到输出层, 计算得到最终预测
      predictions = hidden.mm(weights2)
      # 计算预测数据上的损失函数
      loss = torch.mean((predictions - y) ** 2)
      print(loss)
```

预测结果

Loss: 6250.5

存在问题

- 存在着严重的过拟合现象
- 采用单一属性 (编号) 预测未来单车数量效果太差
 - 事实上, 单车使用数量和下标之间根本就没有关系!!!
- 运行速度缓慢
- 需要考虑其它可获得信息: 是否工作日、天气情况: 风速湿度等

接下来, 你将会学到

- 如何设计一个多输入的神经网络
- 如何对数据进行预处理
- · 如何以及为什么对数据分撮 (Batch)
- 如何用pytorch简化神经网络构建流程

再来看看数据

http://capitalbikeshare.com/system-data http://www.freemeteo.com

编号

季节

月 是否假期

是否工作日

温度

湿度

出行数量

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	cnt
0	1	2011/1/1	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	16
1	2	2011/1/1	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	40
2	3	2011/1/1	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	32
3	4	2011/1/1	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	13
4	5	2011/1/1	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	1

日期

年

小时

星期几

天气, 1

晴, 2

雾.....

体表 温度 风速

	instant	dteday	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	cnt
0	1	2011/1/1	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	16
1	2	2011/1/1	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	40
2	3	2011/1/1	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	32
3	4	2011/1/1	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	13
4	5	2011/1/1	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	1

两个预测问题的对比

两个神经网络的对比

数据准备

数据预处理: 类型变量

• 类型数据的处理

• Weekday: 1, 2, 3, 4, 5, 6, 0

星期	类型变量	类型编码
星期日	0	100000
星期一	1	0100000
星期二	2	0010000
星期三	3	0001000
星期四	4	0000100
星期五	5	000010
星期六	6	000001

数据预处理: 类型变量

1 0 6 0 2 0.344167 0.363625 1 0 0 2 0.363478 0.353739 1 0 1 1 1 0.196364 0.189405 1 0 2 1 1 0.2 0.212122 1 0 3 1 1 0.226957 0.22927 1 0 4 1 1 0.204348 0.233209		holiday	weekd	lay	workingday	weathersit	temp	atemp
1 0 1 1 1 0.196364 0.189405 1 0 2 1 1 0.2 0.212122 1 0 3 1 1 0.226957 0.22927	1	0		6	0	2	0. 344167	0. 363625
1 0 2 1 1 0.2 0.212122 1 0 3 1 1 0.226957 0.22927	1	0		0	0	2	0. 363478	0. 353739
1 0 3 1 1 0.226957 0.22927	1	0		1	1	1	0. 196364	0. 189405
	1	0		2	1	1	0. 2	0. 212122
1 0 4 1 1 0.204348 0.233209	1	0		3	1	1	0. 226957	0. 22927
	1	0		4	1	1	0. 204348	0. 233209
		,						
		/						

One-hot编码

hr_23	weekday_0	weekday_1	weekday_2	weekday_3	weekday_4	weekday_5	weekday_6
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1

将一个变量扩展为n个变量,n为类型数目

数据预处理: 数值类型变量归一化

temp	atemp	hum						
0.24	0.2879	0.81						
0.22	0.2727	0.80						
0.22	0.2727	0.80						
0.24	0.2879	0.75						
0.24	0.2879	0.75						

数据准备

2011-1-1

数据集

数据准备

将数据分撮处理

- 如何训练?
 - 将训练切割成小的撮(batch)
 - 对每一个小撮进行误差计算、反向传播,调整权重

建立神经网络

input_size = features.shape[1]

output_size = 1

weights1 = Variable(torch.randn([input_size, hidden_size]), requires_grad = True)

biases = Variable(torch.randn([hidden_size]), requires_grad = True)

weights2 = Variable(torch.randn([hidden_size, output_size]), requires_grad = True)

- 定义一个input_size*sz的第一层权 重矩阵
- 定义一个sz尺度的向量biases
- 定义一个sz*1的第二层权重矩阵

建立神经网络

```
neu= torch.nn.Sequential(
   torch.nn.Linear(input_size, hidden_size),
   torch.nn.Sigmoid(),
   torch.nn.Linear(hidden_size, output_size),
)
```


- 建立一个多步操作的神经网络模型
- 第一步从输入层到隐含层节点为一个线性运算,输入维度input_size,隐含维度hidden_size
- 第二步为Sigmoid,作用到每一个隐含层神 经元上
- 第三步又是一个线性元算,从隐含到输出,神经元个数分别为hidden_size和 output_size
- 所有神经网络的参数都存储在 neu.parameters()里面了

建立损失函数和优化器

```
cost = torch.nn.MSELoss()
optimizer = torch.optim.SGD(neu.parameters(), lr = 0.01)
```

- torch.nn.MSELoss() 等价于函数torch.mean((x-y)^2)
- torch.optim.SGD(neu.parameters(), lr = 0.01)
 - neu.parameters()返回神经网络neu的所有权重、偏置参数
 - 建立一个随机梯度下降优化器,它可以代替 parameters.data.add_(Ir * parameters.grad.data)


```
#神经网络训练循环
for i in range(2000):
 batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
 # start和end分别是提取一个batch数据的起始和终止下标
 for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)
   xx = Variable(torch.FloatTensor(X[start:end]))
   yy = Variable(torch.FloatTensor(Y[start:end]))
   predict = neu(xx) # 模型预测
   loss = cost(predict, yy)# 计算损失函数(均方误差)
   optimizer.zero_grad() # 将优化器存储的那些参数的梯度设置为0
   loss.backward() # 开始反向传播, 计算所有梯度值
   optimizer.step() # 优化器开始运行一步,更新所有的参数
   batch loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
 if i % 100==0:
   losses.append(np.mean(batch loss))
   print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
  # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
    end = start + batch_size if start + batch_size < len(X) else len(X)
    xx = Variable(torch.FloatTensor(X[start:end]))
    yy = Variable(torch.FloatTensor(Y[start:end]))
    predict = neu(xx) # 模型 hidden = x.expand(sz, len(x)).t() * weights.expand(len(x), sz) + biases.expand(len(x), sz)
    loss = cost(predict, yy) # hidden = torch.sigmoid(hidden)
    optimizer.zero_grad() # > predictions = hidden.mm(weights2)
    loss.backward() # 开始反问传播, 计算所有梯度值
    optimizer.step() # 优化器开始运行一步,更新所有的参数
    batch loss.append(loss.data.numpy())
 #每隔100步输出一下损失值(loss)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch_loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
  # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)
   xx = Variable(torch.FloatTensor(X[start:end]))
   yy = Variable(torch.FloatTensor(Y[start:end]))
   predict = neu(xx) # 模型预测
   loss = cost(predict, yy) # 计算 weights.grad.data.zero_()
   optimizer.zero_grad() # 将优 biases.grad.data.zero_()
   loss.backward() # 开始反向f weights2.grad.data.zero_()
   optimizer.step()#优化器开始运行 少,史朝内内的多数
    batch_loss.append(loss.data.numpy())
  #每隔100步输出一下损失值(loss)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch loss))
```

```
#神经网络训练循环
for i in range(2000):
  batch loss = [] #记录每一个撮的损失
 #每128个样本点被划分为一个撮
  # start和end分别是提取一个batch数据的起始和终止下标
  for start in range(0, len(X), batch size):
   end = start + batch_size if start + batch_size < len(X) else len(X)
   xx = Variable(torch.FloatTensor(X[start:end]))
   yy = Variable(torch.FloatTensor(Y[start:end]))
   predict = neu(xx) # 模型预测
    loss = cost(predict, yy)# 计算损失函数(均方误差)
   optimizer.zero grad() # 将优化器存储的那些参数的梯度设置为0
    loss.backward() # 开始[
                         weights.data.add_(- learning_rate * weights.grad.data)
   optimizer.step() # 优化制
                         biases.data.add_(- learning_rate * biases.grad.data)
    batch_loss.append(loss.
 #每隔100步输出一下损 weights2.data.add_(- learning_rate * weights2.grad.data)
  if i % 100==0:
    losses.append(np.mean(batch loss))
    print(i, np.mean(batch_loss))
```

运行结果

解剖神经网

对Neu进行诊断


```
def feature(X, net):
    X = Variable(torch.from_numpy(X).type(torch.FloatTensor),
    requires_grad = False)
    dic = dict(net.named_parameters())
    weights = dic['0.weight']
    biases = dic['0.bias']
    h = torch.sigmoid(X.mm(weights.t()) + biases.expand([len(X),
len(biases)]))
    return h
```

对Neu进行诊断

结论

- 预测不准是因为圣诞节假期的反常模式
- 在24号预测值偏高是因为对节假日抑制单元的抑制不够
- 由于圣诞节的缘故, 22、23这两天的午 高峰出行较少, 甚至比一般节假日还少
- 解决: 特殊日期的训练需要提供更多数据,或者手工调整权重

分类问题

- 并不预测单车数量, 而是对数量做分类
- 分为两类: 单车数量>均值的为多, <均值的为少

新的神经网络Neuc

```
input size = features.shape[1]
hidden size = 10
output size = 2
batch size = 128
neuc = torch.nn.Sequential(
  torch.nn.Linear(input size, hidden size),
  torch.nn.Sigmoid(),
  torch.nn.Linear(hidden_size, output size),
  torch.nn.Sigmoid(),)
cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(neuc.parameters(), Ir = 0.1)
```

- 建立一个多步操作的神经网络模型
- 第一步从输入层到隐含层节点为一个线性运算,输入维度input_size,隐含维度10
- 第二步为Sigmoid,作用到每一个隐含层神经元上
- 第三步又是一个线性运算,从隐含到输出,神经元个数分别为10和2,2为分类的类别数
- 第四步是一个Sigmoid,把输出 结果变换为概率
- 所有神经网络的参数都存储在 neuc.parameters()里面了
- 新建对于分类的损失函数cost
- 新建优化器

交叉熵

- 交叉熵是一个用来衡量分类准确度的指标
- 它的计算公式为:


```
losses = []
errors = []
for i in range(2000):
  #每128个样本点被划分为一个撮
  batch loss = []
  batch errors = []
  for start, end in zip(range(0, len(X), batch_size), range(batch_size, len(X)+1, batch_size)):
   xx = Variable(torch.FloatTensor(X[start:end]))
    yy = Variable(torch.LongTensor(Y_labels[start:end]))
    predict = neuc(xx)
    loss = cost(predict, yy)
    err = error rate(predict.data.numpy(), yy.data.numpy()) #计算当前batch中的错误率%,自定义函数
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    batch_loss.append(loss.data.numpy())
    batch errors.append(err)
    #每隔100步输出一下损失值(loss)
  if i % 100==0:
    losses.append(np.mean(batch_loss))
    errors.append(np.mean(batch_errors))
    print(i, np.mean(batch loss), np.mean(batch errors))
```

训练结果

测试集上的平均错误率: 13.7%

今日回顾

- 人工神经网络的工作原理
- 如何用人工神经网络来做预测
- 初始化权重范围的重要性
- 如何分析一个训练好的人工神经网络
- 运用神经网络进行分类的基本原理
- PyTorch中构建序列化神经网络的方法
- 理解MSELoss和CrossEntropyLoss

练习与作业

- 练习 (不需要上交):
 - 实现一个三分类网络,对自行车预测数据进行高、中、低这三个类别的划分
- 作业:
 - 在minstClassifier.ipynb的基础上实现一个对手写数字进行分类的多层人工神经网络

关于作业

Labels: 0, 1,, 9

- 可考虑多层神经网络
- · 可考虑其它激活函数,如Tanh, ReLu 效果更好

下次内容

