

Corrigé du devoir maison n°1

Exercice 1

• -1 est solution évidente :

$$(-1)^3 - 2 \times (-1)^2 - (-1) + 2 = -1 - 2 + 1 + 2 = 0.$$

On peut donc écrire

$$\forall x \in \mathbb{R}, \ x^3 - 2x^2 - x + 2 = (x+1) f(x),$$

où f est une fonction du $2^{\rm nd}$ degré.

• Pour déterminer f, on pose la division euclidienne :

On a donc:

$$\forall x \in \mathbb{R}, \ x^3 - 2x^2 - x + 2 = (x+1)(x^2 - 3x + 2).$$

• D'après le point précédent :

$$x^3 - 2x^2 - x + 2 = 0 \iff (x+1)(x^2 - 3x + 2) = 0 \iff (x+1)(x^2 - 3x + 2) = 0$$

On résout séparément chaque équation :

$$\circ x + 1 = 0 \iff x = -1$$

$$x^2 - 3x + 2 = 0$$

$$-a = 1$$
, $b = -3$, $c = 2$.

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 1 \times 2 = 1.$$

— $\Delta > 0$, donc il y a deux solutions :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{1}}{2 \times 1} = \frac{3 - 1}{2} = 1,$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{1}}{2} = \frac{3 + 1}{2} = 2.$$

Conclusion : les solutions de l'équation $x^3 - 2x^2 - x + 2 = 0$ sont -1, 1 et 2.

Exercice 2

On cherche tous les couples de nombres réels (x, y) vérifiant

$$\begin{cases} x + y = 2 \\ xy = -15 \end{cases}$$

• Analyse. Soient x, y deux réels. Si (x, y) est solution, alors

$$\begin{cases} x + y = 2 & L_1 \\ xy = -15 & L_2 \end{cases}$$

On multiplie L_1 par x:

$$(x + y) \times x = 2 \times x$$
, soit $x^2 + xy = 2x$.

Or d'après L_2 , xy = -15, donc

$$x^2 + (-15) = 2x$$
, et ainsi $x^2 - 2x - 15 = 0$.

On aboutit à une équation du 2^{nd} degré. En utilisant la méthode habituelle, on trouve deux solutions (je ne détaille pas) : $x_1 = -3$, $x_2 = 5$.

Il y a donc deux possibilités:

1. Ou bien x = -3, et dans ce cas, comme xy = -15, on obtient $y = \frac{-15}{x} = \frac{-15}{-3} = 5$. Finalement

$$(x, y) = (-3, 5).$$

2. Ou bien x = 5, et alors, comme xy = -15, on trouve $y = \frac{-15}{5} = \frac{-15}{5} = -3$. Finalement

$$(x, y) = (5, -3).$$

• **Synthèse.** On vérifie que les couples (x, y) = (-3, 5) et (x, y) = (5, -3) sont bien solutions :

• Si
$$(x, y) = (-3, 5)$$
, alors

$$\begin{cases} x + y &= -3 + 5 = 2 \\ xy &= -3 \times 5 = -15 \end{cases}.$$

Le couple (-3,5) est donc bien solution.

• Si (x, y) = (5, -3), alors

$$\begin{cases} x + y &= 5 + (-3) = 2 \\ xy &= 5 \times (-3) = -15 \end{cases}.$$

Le couple (5, -3) est donc bien solution.

• Conclusion. Les solutions du système $\begin{cases} x+y=2 \\ xy=-15 \end{cases}$ sont (x,y)=(5,-3) et (x,y)=(-3,5).

Exercice 3

Pour tout $m \in \mathbb{R}$, on définit la fonction

$$f_m: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2 + mx + 9.$$

Le discriminant est

$$\Delta = m^2 - 4 \times 1 \times 9 = m^2 - 36.$$

1. **Si** l'équation $f_m(x) = 0$ a une seule solution dans \mathbb{R} , **alors** m = -6.

Cette proposition est FAUSSE.

Il se peut que l'équation $f_m(x) = 0$ ait une seule solution dans \mathbb{R} sans que m soit égal à -6. En effet, si m = 6, alors le discriminant $m^2 - 36$ est nul, et donc il y a une seule solution.

2. **Si** m > 6, **alors** f_m est strictement positive sur \mathbb{R} .

Cette proposition est **VRAIE**.

Si m > 6, alors $m^2 > 36$ (car deux nombres positifs sont rangés dans le même ordre que leurs carrés), donc $m^2 - 36 > 0$. Le discriminant étant strictement positif, et a étant strictement positif, f_m est strictement positive sur \mathbb{R} .

Exercice 4

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
, $x \mapsto |2x-3| - |2x-1|$.

1.

x	$-\infty$		$\frac{1}{2}$		<u>3</u> 2		+∞
2x-3		_		_	0	+	
2x - 1		_	0	+		+	

- 2. Si $x < \frac{1}{2}$, alors:
 - $\circ 2x-3 < 0$, donc |2x-3| = -(2x-3) = -2x+3.
 - $\circ 2x-1 < 0$, donc |2x-1| = -(2x-1) = -2x+1.

On a donc:

$$f(x) = (-2x+3) - (-2x+1) = -2x+3+2x-1 = 2.$$

- 3. Si $\frac{1}{2} \le x \le \frac{3}{2}$, alors:
 - \circ 2x 3 \le 0, donc |2x 3| = -(2x 3) = -2x + 3.
 - $\circ 2x 1 \ge 0$, donc |2x 1| = 2x 1.

Dans ce cas:

$$f(x) = (-2x+3) - (2x-1) = -2x+3-2x+1 = -4x+4.$$

• Si $x > \frac{1}{2}$, alors:

$$\circ 2x-3 > 0$$
, donc $|2x-3| = 2x-3$.

$$\circ 2x-1>0$$
, donc $|2x-1|=2x-1$.

On obtient:

$$f(x) = (2x-3) - (2x-1) = 2x-3-2x+1 = -2.$$

Finalement:

$$f(x) = \begin{cases} 2 & \text{si } x < \frac{1}{2}, \\ -4x + 4 & \text{si } \frac{1}{2} \le x \le \frac{3}{2}, \\ -2 & \text{si } x > \frac{1}{2}. \end{cases}$$

4. La fonction f est affine par morceaux. Les deux extrémités sont faciles à tracer; pour la partie centrale, on fait un tableau de valeurs avec deux valeurs – ou, plus simplement, on rejoint les deux lignes horizontales!

