EGR 7050 Design and Analysis of Engineering experiments

Homework 4

1. A product developer is investigating the tensile strength of a new synthetic fiber that will be used to make cloth for men's shirts. Strength is usually affected by the percentage of cotton used in the blend of materials for the fiber. The engineer conducts a completely randomized experiment with five levels of cotton content and replicates the experiment five times. The data are shown in the following table.

Cotton weight percent		Observations			
15	7	7	15	11	9
20	12	17	12	18	18
25	14	19	19	18	18
30	19	25	22	19	23
35	7	10	11	15	11

a. Is there evidence to support the claim that cotton content affects the mean tensile strength? Use α =0.05.

Solution:

a. H_0 : Percentage of cotton used in the fiber does not affect mean the tensile strength H_1 : Percentage of cotton used in the fiber affects the mean tensile strength

Given, $\alpha = 0.05$

Thus, it could be concluded that the percentage of cotton used in the fiber affects the mean tensile strength.

b. Analyze the residuals from this experiment and comment on model adequacy.

Fig.2 Normal quantile plot

Points are close to the line and are within the error bounds. There is no significant evidence of deviation from normality for the residuals.

servations centered by Cotton weight percent vs. Observations mean by Cotton—Smooth weight percent

Fig. 3 Residual vs. Fitted

There are no outliers in the residual vs. fitted plots. There is a similar range of variation across different fitted values. There is no significant deviation from equal variance assumption.

2. An experiment was performed to investigate the effectiveness of five insulating materials. Four samples of each material were tested at an elevated voltage level to accelerate the time to failure. The failure times (in minutes) are shown below:

Material	Failure Time (minutes)				
1	110	157	194	178	
2	1	2	4	18	
3	880	1256	5276	4355	
4	495	7040	5307	10050	
5	7	5	29	2	

Solution:

a. Do all five materials have the same effect on mean failure time?

 H_0 : Mean failure time is same for all materials

 H_1 : Mean failure time is different for all materials

Oneway Anova

| Summary of Fit | Rsquare | 0.622772 | Adj Rsquare | 0.522177 | Root Mean Square Error | 2041.334 | Maan of Pernopre | 1769.2 |

Mean of Response 1768.3 Observations (or Sum Wgts) 20

Analysis of Variance						
		Sum of				
Source	DF	Squares	Mean Square	F Ratio	Prob > F	
Material	4	103191489	25797872	6.1909	0.0038*	
Error	15	62505657	4167043.8			
C. Total	19	165697146				
Means fo	r One	wav Anov	a			

Micuis for Oneway Ariova							
Number	Mean	Std Error	Lower 95%	Upper 95%			
4	159.75	1020.7	-2016	2335.3			
4	6.25	1020.7	-2169	2181.8			
4	2941.75	1020.7	766	5117.3			
4	5723.00	1020.7	3547	7898.5			
4	10.75	1020.7	-2165	2186.3			
	4 4 4 4 4	Number Mean 4 159.75 4 6.25 4 2941.75 4 5723.00	Number Mean Std Error 4 159.75 1020.7 4 6.25 1020.7 4 2941.75 1020.7 4 5723.00 1020.7	Number Mean Std Error Lower 95% 4 159.75 1020.7 -2016 4 6.25 1020.7 -2169 4 2941.75 1020.7 766 4 5723.00 1020.7 3547			

Std Error uses a pooled estimate of error variance

Means Comparisons

Comparisons for each pair using Student's t

Confidence Quantile t Alpha 2.13145 0.05

LSD I nresnoid Matrix							
Abs(Dif)-LSD							
4	3	1	5	2			
-3076.6	-295.4	2486.6	2635.6	2640.1			
-295.4	-3076.6	-294.6	-145.6	-141.1			
2486.6	-294.6	-3076.6	-2927.6	-2923.1			
2635.6	-145.6	-2927.6	-3076.6	-3072.1			
2640.1	-141.1	-2923.1	-3072.1	-3076.6			
	Dif)-LSD 4 -3076.6 -295.4 2486.6 2635.6	Dif)-LSD 4 3 -3076.6 -295.4 -295.4 -3076.6 2486.6 -294.6 2635.6 -145.6	Dif)-LSD 4 3 1 -30766 -2954 24866 -2954 -30766 -2946 -24866 -2946 -30766 26356 -1456 -29276	Dif)-LSD 4 3 1 5 -30766 -2954 24866 2635.6 -2954 -30766 -2946 -145.6 24866 -2946 -30766 -2927.6 2635.6 -145.6 -2927.6 -3076.6	Dif)-LSD 4 3 1 5 2 -30766 -2954 24866 2635.6 2640.1 -2954 -30766 -2946 -145.6 -141.1 24866 -2946 -30766 -2927.6 -2923.1 2635.6 -145.6 -2927.6 -3076.6 -3072.1		

Positive values show pairs of means that are significantly different.

Connecting Letters Report

Level		Mean
4	Α	5723.0000
3	АВ	2941.7500
1	В	159.7500
5	В	10.7500
2	В	6.2500

Levels not connected by same letter are significantly different.

Orde	Ordered Differences Report							
Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value		
4	2	5716.750	1443.441	2640.13	8793.372	0.0013*		
4	5	5712.250	1443.441	2635.63	8788.872	0.0013*		
4	1	5563.250	1443.441	2486.63	8639.872	0.0016*		
3	2	2935.500	1443.441	-141.12	6012.122	0.0601		
3	5	2931.000	1443.441	-145.62	6007.622	0.0604		
3	1	2782.000	1443.441	-294.62	5858.622	0.0731		
4	3	2781.250	1443.441	-295.37	5857.872	0.0732		
1	2	153.500	1443.441	-2923.12	3230.122	0.9167		
1	5	149.000	1443.441	-2927.62	3225.622	0.9192		
5	2	4.500	1443.441	-3072.12	3081.122	0.9976	<u>/ : : : : : : : : : : : : : : : : : : :</u>	

Fig. 4 OneWay ANOVA

P value is less than significance level $\alpha=0.05$ and $F_0>F_{0.05,4,15}$. Therefore, reject null hypothesis.

Therefore, we could conclude that mean failure time is not the same for all materials.

b. Plot the residuals versus the predicted response. Construct a normal probability plot of the residuals. What information is conveyed by these plots?

The figure shows that variance is not constant for all the predicted values.

Fig. 6 Normal quantile plot

The figure clearly shows that points are not close to the line and outside the error bounds. This shows that normality assumption is not valid.

c. Based on your answer to part (b) conduct another analysis of the failure time data and draw appropriate conclusions.

Let us plot a bivariate fit of Log(Mean) and Log(Standard deviation).

Fig. 7 Log(Mean) vs. Log(S.D)

From the plot, we could see that slope of the fit line is 0.9210 which is close to 1. So, from the table 3.9, a log transformation would be appropriate.

Fig. 8 OneWay ANOVA

Therefore, we could conclude that mean failure time is not the same for all the materials.

Fig. 9 Residuals vs. Predicted

This plot has been improved with transformed data although range of variation of one of the materials is lower than others.

Fig. 10 Normal quantile plot

This shows that all points lie close to the line and within the error bounds. Hence the assumptions are not violated.