

Figure 1

Sticky DNA

Figure 2

Negatively Charged Plasma

Positively Charged Lipid

Pland Encapsulated Within a Lipid Bilayer

Figure 3

Figure 1
Recovery of DNA After Extrusion
(20 mg total lipid)

INEX

25604 264 9959

Figure 2
Anion Exchange Chromatography
(20 mg total lipid)

Recovery of Lipid After Extrusion POPC:DODAC:PEG-Cer(C20), 20 mg

Figure 6

☎604 264 9959

Anion Exchange Chromatography POPC:DODAC:PEG-Cer(C20), 20 mg

Figure 7

Figure 8

Figure 9A

Figure 9B

Recovery of ³H DNA and ¹⁴C Lipid After Incubation in Mouse Serum POPC:DODAC:PEG-Cer(C20)

Figure 10

05/31/96 02:36 25604 264 9959

INEX

@033/043

Figure 12A

Figure 12B

INEX

Figure 13

Figure 14

☎604 264 9959 05/31/96 02:37

INEX

2036/043

DOPE: DODAC: PEG-Cer(C20) (84:6:10) for animal experiment

Stored Data File a:\PEGC20.06

VOLUME-Weighted GAUSSIAN Analysis (Vesicles)

GAUSSIAN SUMMARY: = 0.347Chi Squared Mean Diameter = 61.6 nm

= 0.000 % Baseline Adj. Stnd. Deviation = 27.0 nm (43.9 %) Mean Diff. Coeff. = 7.54E-08 cm2/s

Coeff. of Var'n = 0.439

Cumulative Results:

25 % of distribution < 38.73 nm 52.05 nm 50 % of distribution < Figure 15 75 % of distribution < 69.91 nm 90 % of distribution < 91.36 nm 99 % of distribution < 142.99 nm

= 632.8 nm Wavelength = 1 Hr 43 Min 26 Sec deg C = 23 Temperature Run Time KHz = 0.933 = 303 Count Rate Viscosity Index of Ref. = 1.333 ĸ = 2827.4Channel #1 uSec Channel Width = 8.0

أيا ₌i. J L :== :== === -nk === 1

DOPE:DODAC:PEG-Cer(C20) (84:6:10) for animal experiment Stored Data File a:\PEGC20.06

NUMBER-Weighted GAUSSIAN Analysis (Vesicles)

GAUSSIAN SUMMARY: = 0.347Chi Squared Mean Diameter = 32.8 nm

= 0.000 % Baseline Adj Stnd. Deviation = 14.4 nm (43.9 %) Mean Diff. Coeff. = 1.42E-07 cm2/s Coeff. of Var'n = 0.439

Cumulative Results:

25 % of distribution < 20.56 nm Figure 16 27.72 nm 50 % of distribution < 37.35 nm 75 % of distribution < 48.88 nm -90 % of distribution < 77.28 nm 99 % of distribution <

nm = 632.8Wavelength = 1 Hr 43 Min 26 Sec deg C = 23 Temperature Run Time = 303 KHz = 0.933 ср Count Rate Viscosity Index of Ref. = 1.333 = 2827.4 K Channel #1 uSec = 8.0 Channel Width

100 nm

Figure 17A

PLASMID TO

Figure 17B

NEX

; j)

Clearance of DNA Encapsulated in POPC:DODAC:PEG-Cer(C20)

Figure 18

05/31/96 02:42 7

☎604 264 9959

INEX

Ø040/043

Figure 19A

Time (hours)

Figure 19B

In Vivo Transfection in the Lung

Figure 20

☎604 264 9959

In Vivo Transfection in the Liver

In Vivo Transfection in the Spleen

INEX

Figure 22

Figure 23

Recovery of plasmid DNA in the

aqueous (A) and solvent (B) phase following Bligh and Dyer extraction of the DNA/lipid complexes. DNA amount used was 10 μ g. Monocationic lipids used were DDAB (O), DOTMA (\Box) and DODAC (Δ). Lipopolyamines used were Lipofectamine (\bullet), and Transfectam (\blacksquare). All data points are averaged from three replications and expressed \pm SEM.

The recovery of plasmid DNA from aqueous (A and C) and solvent (B and D) fractions following Bligh and Dyer extractions and expressed as a function of charge ratio (+/-). (A and B), DDAB (\bullet), Lipofectamine (\blacksquare) and Transfectam (\triangle). (C and D), the effects of other cations, calcium (\bullet), L-lysine (\blacksquare), and poly-L-lysine (\triangle). DNA amount used was 10 μ g and all data points were averaged from three experiments and presented \pm SEM.

Effects of increasing amounts of OGP on the recovery of plasmid DNA from the aqueous () and solvent () phases following Bligh and Dyer extraction of

Effects of increasing amounts of NaCl on the recovery of plasmid DNA from the aqueous phase following Bligh and Dyer extraction of DNA/lipid complexes. Amount of DNA used was 10 µg. DODAC (), Lipofectamine ().

Figure 29A

Figure 29B

20μg β-gai DNA/160nmoie DODAC/320nmoie ESM

DNA DNA/OGP DNA/TOPRO DNA/OGP -TOPRO DNA/DODAC.ESM+TOPRO +/- 4:1 DNA/DODAC/ESM+TOPRO-OGP 4:1 DNA/DODAC.DOPE-TOPRO 4:1 DNA/DODAC.DOPE+TOPRO+OGP 4:1 DNA/DODAC/DOPE-TOPRO 8:1

DNA/DODAC.DOPE-TOPRO+OGP 8:1

Figure 33

MAY-31-96 FRI 11:10

90° Light Scattering (600nm)

Figure 36

Figure 37A

Figure 37C

Figure 37B

β -galactosidase activity (mU/well)

Figure 39A

DNA-Lipid Particle Formation

Figure 40

Carlo D

06/05/96 13:38 **2**604 264 9959

INEX

MO04/009 EXAMPLE 1

% Recovery of pINEXCAT with different composition of cationic lipid/DOPE/10 moi % PEG-CER C14 (5.0 umoi total lipid) from DEAE Sepharose CL6B column in 150 mM NaCl, 20 mM HEPES (pH 7.4)

☎604 264 9959

06/05/96

13:39

INEX

WO05/009 EXAMPLE B

Elution profile of 7.0 mol % DODAC/ 83 mol % DOPE/ 10 mol % PEC CER C14 from Sepharose CL4B column in 150 mM NaCl, 20 mM HEPES (pH 7.4)

Elution profile of 7.5 mol % DSDAC/ 82.5 mol % DOPE/ 10 mol % PEG-CER C14 from Sepharose CL4B column in 150 mM NaCl, 20 mM HEPES (pH 7.4)

- 1 "

06/05/96 13:40 2604 264 9959 INEX
06/05/96 WED 07:51 FAX 604 822 4843 LIPOSM RES UNIT

The Heat Heat He

@006/009 @002

EXAMPLE C

Cationic Lipid Titration of 50μg pCMVβ in POPC:DOPE:PEG-CerC8:AL-1 (65-x:25:10:x) Liposomes As Analyzed by the PicoGreen Assay

Encapsulation Performed at pH4.8 or pH7.5

Figure 43

06/05/96 13:40 \$\mathref{D}604 264 9959 \\ 06/04/96 TUE 16:08 FAX 604 822 4843

INEX LIPOSM RES UNIT 例 007/009 例 003

EXAMPLE T

(a)

Serum Stability (1.5 hr at 37°C) of 50μg pCMVβ Encapsulated in POPC:DOPE:PEG-CerC8:AL-1 (57:25:10:8) Liposomes {pH4.8 Encapsulation}

06/05/96 13:41 25604 264 9959 06/04/96 TUE 16:08 FAX 604 822 4843 INEX LIPOSM RES UNIT Ø 008/009 ₩ 004

EXAMPLE D
(6)

Serum Stability (1.5 hr at 37°C) of 50μg pCMVβ Encapsulated in POPC:DOPE:PEG-CerC8:AL-1 (57:25:10:8) Liposomes {pH7.5 Encapsulation}

==b

06/05/96 13:41 \$\mathref{B}604 264 9959

INEX

Ø 009/009

EXAMPLE E

Effect of PEG-CER C14 in 7.5 mol % DODAC/DOPE/PEG-CER C14 system (5.0 umol lipid) on the recovery of 3H pINEXCAT and 14C cholesteryl hexadecyl ether from DEAE Sepharose CL6B column in 150 mM NaCl, 20 mM HEPES (pH

