

# Project Week! (This Week)

#### **Day 1:**



Form groups



Outline project ideas



Initial data exploration





Hardcore development

### **Day 3:**



Hardcore development



Begin research of datasets

Submit project proposal for approval



# Project Week! (Next Week)

#### **Day 4:**



Hardcore development

### **Day 5:**



Hardcore development



Presentation prep

### Day 6:



**Presentations** 

# Time to divide into teams!



### **Teams**

| Group 1        | Group 2      | Group 3      | Group 4       | Group 5        | Group6         | Group7         |
|----------------|--------------|--------------|---------------|----------------|----------------|----------------|
|                |              |              |               |                | Rajesh         |                |
|                | Helen        |              |               |                | Ravindranathan |                |
| Matt Vella     | Aminalolama  | Fern Bradder | Alvin Lucero  | Jack Pan       | Nair           | Dale Currigan  |
|                |              |              |               |                | Amin           |                |
|                | Stephanie    | Srichakra    | Alysha        |                | Muhammad       |                |
| Josh Cullen    | Salvona      | Vegunta      | Snowden       | Simona Suko    | Anwer Ali      | Jimmy Faccioli |
|                | Heriawan     |              |               | Ahmad          | Narisara       |                |
| Hideaki Kaneko | Muhamad      | Petra Moyle  | Rebecca Gould | Makintha Brany | Kantanong      | Adam Lever     |
|                | Samantha Van | Pravakar     |               |                |                |                |
|                | Wyngaarden   | Neupane      | Ernest Bondi  | Ray Camo       | Fang Xuan Foo  | Vijay Kasina   |

# **Project Requirements**

## **Development Requirements**

### Use Pandas to clean and format your dataset(s).

- Use Pandas to clean and format your dataset(s).
- Create a Jupyter Notebook describing the data exploration and cleanup process.
- Create a Jupyter Notebook illustrating the final data analysis.
- Use Matplotlib to create a total of 6–8 visualisations of your data (ideally, at least 2 per 'question' you ask of your data).
- Save PNG images of your visualisations to distribute to the class and instructional team, and for inclusion in your presentation.
- (Optional) Use at least one API, if you can find an API with data pertinent to your primary research questions.
- Create a write-up summarising your major findings. This should include a heading for each
  'question' you asked of your data and a short description of your findings, and any relevant plots.

## **Presentation Requirements**

You will also be responsible for preparing a formal 10-minute presentation that covers:



Questions you found interesting and what motivated you to answer them



Where and how you found the data you used to answer these questions



The data exploration and cleanup process (accompanied by your Jupyter Notebook)



The analysis process (accompanied by your Jupyter Notebook)



Your conclusions including a numerical summary and visualisations of the summary



The implications of your findings: what do your findings mean?

# Marking rubric

| SECTION      | WEIGHT   | REQUIREMENT                                                                                                                                                                                                     |
|--------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 2.5%     | Describe the core message or hypothesis for your project.                                                                                                                                                       |
|              | 2.5%     | Describe the questions you and your group found interesting, and what motivated you to answer them                                                                                                              |
|              | 2.5%     | Summarize where and how you found the data you used to answer these questions                                                                                                                                   |
|              | 5.0%     | Describe the data exploration and cleanup process (accompanied by your Jupyter Notebook)                                                                                                                        |
| Presentation | 5.0%     | Describe the analysis process (accompanied by your Jupyter Notebook)                                                                                                                                            |
| Presentation | 10.0%    | Summarize your conclusions. This should include a<br>numerical summary (i.e., what data did your<br>analysis yield), as well as visualizations of that<br>summary (plots of the final analysis data)            |
|              | 10.0%    | Discuss the implications of your findings. This is where you get to have an open-ended discussion about what your findings "mean".                                                                              |
|              | 12.5%    | Tell a good storyl Storytelling through data analysis is no different than in literature. Find your narrative and use your analysis and visualization skills to highlight conflict and resolution in your data. |
|              | 5.0%     | Use Pandas to clean and format your data set(s)                                                                                                                                                                 |
|              | 15.0%    | Perform data preparation                                                                                                                                                                                        |
|              | 10.0%    | Create a Jupyter Notebook describing the data exploration and cleanup process                                                                                                                                   |
| Technical    | 17.50%   | Use Matplotlib to create a total of 6-8 visualizations of your data (ideally, at least 2 per "question" you ask of your data)                                                                                   |
|              | 2.5%     | Save PNG images of your visualizations to distribute to the class and instructional team, and for inclusion in your presentation                                                                                |
|              | Bonus 5% | Optionally, use at least one API, if you can find an API with data pertinent to your primary research questions                                                                                                 |

# Suggested Data Sources

## Suggestions for Data Sources

Feel free to ask us (the instructional staff) for input, but our general advice is to stick to data sources that:



Are sufficiently large



Have a consistent format



Ideally, contain more data than needed



Are well-documented

# Suggested data sources

| Description                                | URL                                        |  |  |
|--------------------------------------------|--------------------------------------------|--|--|
| Australian Government Open Source Datasets | https://data.gov.au/                       |  |  |
| Kaggle Open Source Datasets                | https://www.kaggle.com/datasets            |  |  |
| Public APIs                                | https://github.com/public-apis/public-apis |  |  |
| Australian Bureau of Statistics            | https://www.abs.gov.au/                    |  |  |
| World Bank Open Data                       | https://data.worldbank.org/                |  |  |
| World Health Organization Data             | https://www.who.int/data/gho/              |  |  |
| FiveThirtyEight (news agency open data)    | https://data.fivethirtyeight.com/          |  |  |
| Google dataset search                      | https://toolbox.google.com/datasetsearch   |  |  |



# Suggested approach



# Example Project Ideas

### **Private Investigator**

01

Use aggregate crime data from different police precincts in a city to uncover patterns in criminal activity.

02

Most crime in NYC takes place in the summer.

Can you uncover similar patterns in your city?



03

What do your results suggest about how police should plan their patrols?

What do your results suggest about how best to distribute law enforcement resources over the calendar year?

www.nydailynews.com

### **Uber Rides and Weather**

01

No one likes to walk in subzero temperatures or scorching heat. Do people use Uber more when the weather is uncomfortable?

02

Using <u>Uber ride data</u>
<u>from Kaggle</u> and data
from a weather API, find
out if people take Uber
more during summer and
winter, and if there are
relationships between
daily temperature and
ride frequency.

03

What do the results tell you about surge pricing strategies and commuter habits?

www.kaggle.com 17

## **Bullying and Crime Rates**

01

Bullying and violent crime seem like they should be related. Can we find a correlation between frequency of bullying and rates of violent crime?



02

Using aihw.gov.au's data on bullying and data from police districts of your choice, investigate relationships between bullying and violent crime frequency, and location (postal code, city, etc.).



Are these two activities correlated?

What do the results suggest about society and public policy?

www.data.gov

# Today's Focus

## By the End of Today's Class:



### Create a short, one-page project proposal that covers the following:





