ICI 4242 - Autómatas y compiladores

Máquina de Turing

Rodrigo Olivares
Mg. en Ingeniería Informática
rodrigo.olivares@uv.cl

1er Semestre

Introducción

¿Qué es una Máquina de Turing?

Una Máquina de Turing es un **modelo matemático**, propuesto por Alan Turing, que consiste en un autómata capaz de implementar cualquier problema (función f(x)) matemático expresado por medio de un **algoritmo**.

Introducción

Funcionamiento de una Máquina de Turing

- → La Máquina de Turing tiene, un control finito, un cabezal de lectura/escritura y una cinta donde puede haber caracteres, y donde eventualmente viene la palabra de entrada.
- \rightarrow La cinta es de longitud **infinita** hacia la izquierda y derecha, llenándose los espacios con el caracter blanco (que representaremos con #).

Introducción

Figura: Máquina de Turing

Introducción

Funcionamiento de una Máquina de Turing

- → El cabezal de lectura/escritura de la Máquina de Turing, permite leer y modificada el símbolo apuntado, durante la ejecución.
- → El cabezal de lectura/escritura de la Máquina de Turing se mueve bidireccionalmente (izquierda y derecha), por lo que puede pasar repetidas veces sobre un mismo segmento de la cinta. En ocaciones, el cabezal procesa el símbolo apuntado, per no se mueve.

Introducción

Definición formal de una Máquina de Turing

Formalmente, una Máquina de Turing es una séptupla $TM = \langle Q, \Sigma, \Gamma, \delta, q_0, \#, F \rangle$, donde:

Q: Conjunto de estados.

 Σ : Conjunto de símbolos terminales.

Γ: Conjunto de símbolos de la cinta ($\Sigma \cup \gamma \cup \{\#\}$).

$$\delta: Q \times \Gamma \to Q \times \Gamma\{\mathcal{L}, \mathcal{R}, \mathcal{S}\}$$

q₀: Estado inicial

#: Caracter de separación, vacío o blanco. Inicialmente, en las primera n posiciones de la cinta están a_1, a_1, \ldots, a_n . El resto de la cinta tiene símbolos #.

 $F: F \subset Q$ conjunto de estados finales.

Introducción

Al leer un símbolo a_i , la MT puede:

- → Cambiar de estado.
- \rightarrow Escribir un símbolo a_j en la cinta (en lugar de a_i).
- \rightarrow Mover el cabezal hacia la izquierda (\mathcal{L}), a la derecha (\mathcal{R}) o en el mismo lugar (\mathcal{S}).

Introducción

Descripción instantánea:

- \rightarrow Secuencia de la forma $\alpha_1 q \alpha_2$ donde $\alpha_1, \alpha_2 \in \Gamma$ y $q \in Q$. Describe la situación de una Máquina de Turing.
- \rightarrow La cinta contiene la cadena $\alpha_1\alpha_2$ seguida de infinitos blancos. El cabezal señala el primer símbolo de α_2 .

Introducción

Descripción instantánea:

- \rightarrow Se dice que una Máquina de Turing (TM) acepta una cadena de entrada $w \in \Gamma$, si partiendo del estado inicial q_0 y en la cinta se encuentra la cadena w seguida de blancos (#), la máquina TM procesa la cadena y termina en el estado de aceptación ($q_f \in F$).
- \rightarrow Se define el lenguaje aceptado por una Máquina de Turing, L(TM), como el conjunto de todas las cadenas w aceptadas por la máquina.
- → Los lenguajes aceptados por las Máquinas de Turing se denominan recursivamente enumerables.

Ejemplos

Ejemplos: (no incluye la cadena vacía)

$$\rightarrow L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$$

$$\rightarrow L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

Ejemplo - Solución

Preguntas

Preguntas?