

Artificial and Computational Intelligence

AIMLCZG557

Contributors & Designers of document content: Cluster Course Faculty Team

M2: Problem Solving Agent using Search

Presented by Faculty Name BITS Email ID

BITS Pilani

Pilani Campus

Artificial and Computational Intelligence

Disclaimer and Acknowledgement

- Few content for these slides may have been obtained from prescribed books and various other source on the Internet
- I hereby acknowledge all the contributors for their material and inputs and gratefully acknowledge people others who made their course materials freely available online.
- I have provided source information wherever necessary
- This is not a full fledged reading materials. Students are requested to refer to the textbook w.r.t detailed content of the presentation deck that is expected to be shared over e-learning portal - taxilla.
- I have added and modified the content to suit the requirements of the class dynamics & live session's lecture delivery flow for presentation
- Slide Source / Preparation / Review:
- From BITS Pilani WILP: Prof.Raja vadhana, Prof. Indumathi, Prof.Sangeetha
- From BITS Oncampus & External: Mr.Santosh GSK

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Learning Objective

At the end of this class, students Should be able to:

- 1. Create Search tree for given problem
- 2. Differentiate between uninformed and informed search requirements
- 3. Apply GBFS & A* algorithms to the given problem
- 4. Prove if the given heuristics are admissible and consistent
- 5. Apply A* variations algorithms to the given problem

Module 2: Problem Solving Agent using Search

- A. Uninformed Search
- B. Informed Search
- C. Heuristic Functions
- D. Local Search Algorithms & Optimization Problems

Informed Search
Greedy Best First
A*

Informed / Heuristic Search

Strategies that know if one non-goal state is more promising than another non-goal state

Greedy Best First Search

Expands the node that is closest to the goal Thus, f(n) = h(n)

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Craiova

Giurgiu

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Greedy Best First Search

Not Optimal

- Because the algorithm is greedy
- It only optimizes for the current action

Not Complete

- Often ends up in state with a dead end as the heuristic doesn't guarantee a path but is only an approximation

Time and Space Complexity - $O(b^m)$ where m – max depth of search tree

Greedy Best First Search

2 3	4
40	5

n	h(n)
1	60
2	120
3	30
4	40
5	0

$$C(1-3-5) = 100 + 125 = 225$$

Expanded: 2 Generated: 6

Max Queue Length: 3

Idea: Optimize DFS. Choose next nearest to goal in the same

hill.

innovate achieve lead

Case Study – 1 Search in Treebanks

Source Credit:

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

https://ufal.mff.cuni.cz/pdt3.5

BITS Pilani, Pilani Campus

Case Study – 1 Search in Treebanks

Source Credit:

https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

https://ufal.mff.cuni.cz/pdt3.5

BITS Pilani, Pilani Campus

A* Search

Expands the node which lies in the closest path (estimated cheapest path) to the goal

Evaluation function f(n) = g(n) + h(n)

- g(n) the cost to reach the node
- h(n) the expected cost to go from node to goal
- f(n) estimated cost of cheapest path through node n

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

A* Search

	100
n	h(n)
1	60
2	120
3	70
4	40

0

5

$$C(1-4-5) = 100 + 150 = 150$$

Expanded: 2 Generated: 5

Max Queue Length: 3

Optimality of A*

Test for Admissibility

Expands the node which lies in the closest path (estimated cheapest path) to the goal Evaluation function f(n) = g(n) + h(n)

- g(n) the cost to reach the node
- h(n) the expected cost to go from node to goal
- f(n) estimated cost of cheapest path through node n

A heuristic is admissible or optimistic if , $0 \le h(n) \le h^*(n)$, where $h^*(n)$ is the actual cost to reach the goal

A* Search

Optimal on condition

h(n) must satisfies two conditions:

- Admissible Heuristic one that never overestimates the cost to reach the goal
- Consistency A heuristic is consistent if for every node n and every successor node
 n` of n generated by action a, h(n) <= c(n, a, n`) + h(n`)

Complete

- If the number of nodes with cost <= C* is finite
- If the branching factor is finite
- A* expands no nodes with f(n) > C*, known as pruning

Time Complexity - $\mathcal{O}(b^{\Delta})$ where the absolute error $\Delta = h^* - h$

Search

innovate achieve lead

Is theheuristicdesigned leads to

Assuming **node 3** as goal, taking only sample edges per node below is checked for consistency

	n	h(n)	Is Admissible? h(n) <= h*(n)	Is Consistent? For every arc (i,j): h(i) <= g(i,j) + h(j)
	1	80		
	2	60		
	3	0		
	4	200		
	5	190		

A* Search

Is the heuristic designed leads to optimal solution?

Assuming node 3 as goal, taking only sample edges per node below is checked for consistency

n	h(n)	Is Admissible? h(n) <= h*(n)	Is Consistent? For every arc (i,j): h(i) <= g(i,j) + h(j)
1	80	Υ	N (5□ 1):190<=155
2	60	N	Y (1□ 2):80<=130
3	0	Υ	
4	200	Υ	Y (1□ 4):80<=300 Y (2□ 4):60<=275
5	190	Υ	Y (2□ 5):60<=315 Y (4□ 5):200<=240

Variations of A*

Memory Bounded Heuristics

Iterative Deepening A*

Set limit for f(n)

n	h(n)
1	60
2	94
3	40
4	45
5	0

Cut off value is the smallest of f-cost of any node that exceeds the cutoff on previous iterations

Iterative Limit: Eg

$$f(n) = 180$$

$$f(n) = 195$$

$$\hat{f(n)} = 200$$

Iterative Deepening A*

Iterative Deepening A*

Set limit for f(n)

Remember the next best alternative f-Cost to regenerate

Remember the next best alternative f-Cost to regenerate

Remember the next best alternative f-Cost to regenerate

n	h(n)
1	60
2	94
3	40
4	45
5	0

If the current best leaf value > best alternative path

Best leaf value of the forgotten subtree is backed up to the

ancestors

Recursion unwinds

Else

Continue expansion

Space Usage = O(bd) very less

Remember the next best alternative f-Cost to regenerate

(1, 60) (1 2 | 164) (1 3 | 165) (1 4 | 175)

(1 2 3 | 160) (1 3 | 165) (1 4 | 175) (1 2 5 | 195) (1 2 4 | 200)

(1 2 3 5 | 175) (1 3 | 165) (1 4 | 175) (1 2 5 | 195) (1 2 4 | 200) (1 2 3 4 | 265)

(13 | 165) (12 | 175) (14 | 175)

(1 3 5 | 180) (1 2 | 175) (1 4 | 175) (1 3 4 | 270)

(12 | 175) (14 | 175) (13 | 180)

(1 2 3 | 160) (1 4 | 175) (1 3 | 180) (1 2 5 | 195) (1 2 4 | 200)

(1 2 3 5 | 175) (1 4 | 175) (1 3 | 180) (1 2 5 | 195) (1 2 4 | 200) (1 2 3 4 | 267)

[160 <= 165 □ True]

[$175 \le 165 \square$ False]

[165 <= 175 □ True]

[185 <= 175 □ False]

Case Study – Search in Network Routing

Source Credit:

AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks https://doi.org/10.1155/2016/8743927

Case Study – Search in Network Routing

Source Credit:

AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks https://doi.org/10.1155/2016/8743927

Case Study – Search in Network Routing

Source Credit:

AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks https://doi.org/10.1155/2016/8743927

Required Reading: AIMA - Chapter #3: 3.1, 3.2, 3.3, 3.4,3.5

Next Class Plan : Heuristic Design Local Search Algorithm

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials