

Parul University

Faculty of Engineering & Technology Department of Applied Sciences and Humanities 1st Year B. Tech Programme 2023-24 (All Branches)

> Mathematics-1 (303191101) Unit – 4 Sequence and Series

Tutorial-6

Check whether the following sequences whose n^{th} terms are given below, converges or 1 not.

$$a_n = \frac{\left(-1\right)^{n+1} n}{n + \sqrt{n}}$$
 b.
$$a_n = \left(\frac{n+1}{n-2}\right)^n$$

- Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is a decreasing sequence. 2
- Determine whether the following series converges or diverges. Find the sum of the 3 series if it converges: $\sum_{n=1}^{\infty} \left[\tan^{-1} \left(\frac{1}{n^2 + n + 1} \right) \right]$
- For which values of p, does the series $\sum_{n=1}^{\infty} \frac{n+1}{n^p}$ is convergent? 4
- 5 Test the converges and diverges of following series

a.
$$\sum \sqrt{n} - 1/(n^2 + 1)$$
 b. $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$ c. $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$ d. $\sum_{n=0}^{\infty} n! x^n$

b.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right)$$

d.
$$\sum_{n=0}^{\infty} n! x^n$$

e.
$$\sqrt{\frac{1}{2^3}} + \sqrt{\frac{2}{3^3}} + \sqrt{\frac{3}{4^3}} + \cdots$$
 f. $\sum \frac{1}{n!}$ g, $\sum \frac{n^3 + 2}{2^n + 2}$ h. $\frac{n2^n(n+1)!}{3^n \cdot n!}$

f.
$$\sum \frac{1}{n!}$$

g,
$$\sum_{n=1}^{\infty} \frac{n^3+2}{2^n+2}$$

h.
$$\frac{n2^n(n+1)!}{3^n \cdot n!}$$

i.
$$\frac{1.2}{3^2 4^2} + \frac{3.4}{5^2 6^2} + \frac{5.6}{7^2 8^2} + \cdots$$

i.
$$\frac{1.2}{3^2.4^2} + \frac{3.4}{5^2.6^2} + \frac{5.6}{7^2.8^2} + \cdots$$
 j. $\frac{3}{1^2-3} + \frac{3}{2^2-3} + \frac{3}{3^2-3} + \frac{3}{4^2-3} + \cdots$

$$k. \sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$$

k.
$$\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$$
 l. $\left(\frac{1}{2}\right)^{\frac{1}{2}} x + \left(\frac{2}{5}\right)^{\frac{1}{2}} x^2 + \left(\frac{3}{10}\right)^{\frac{1}{2}} x^3 + \dots \infty, x > 0.$

m.
$$\sum_{n=1}^{\infty} \frac{n2^n (n+1)!}{3^n n!}$$
 n. $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ o. $\sum_{n=1}^{\infty} \frac{(n!)^2}{2^n^2}$ p. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$ q $1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \cdots$ r. $\sum_{n=1}^{\infty} \frac{n^n x^n}{(n+1)^n}$ s. $\sum_{n=1}^{\infty} \frac{1}{n^2+1} x^n$

o.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{2^{n^2}}$$

p.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^2+1}} x^n$$

q
$$1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \cdots$$

r.
$$\sum_{n=1}^{\infty} \frac{\overline{n^n} x^n}{(n+1)^n}$$

$$S. \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + 1} x^n$$

- If $a_n = \begin{cases} \frac{n}{2^n} & \text{when n is odd} \\ \frac{1}{2^n} & \text{when n is even} \end{cases}$, does $\sum_{n=1}^{\infty} a_n$ converge? 6
- 7 Find interval of Convergence for which the series $x - \frac{x^2}{2^2} + \frac{x^3}{3^2} - \frac{x^4}{4^2} + \dots$ is convergent.
- 8 For $\sum_{n=0}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$ Find the radius of convergence. For what values of x does the series converge a. absolutely b. conditionally?

- Determine absolute or conditional convergence of the series $a \ 1 \frac{2}{3} + \frac{3}{3^2} \frac{4}{3^3} + \cdots \dots \quad b \ \sum_{n=1}^{\infty} (-1)^n \cdot \frac{2^{3n}}{3^{2n}} \quad c \ \sum_{n=1}^{\infty} (-1)^n \cdot \frac{5^n}{n!}$
- 10. Expand $\log(\cos(x+\frac{\pi}{4}))$ in powers of x. Hence find the value of $\log(\cos 48^\circ)$.
- 11. State Taylor's Series for one variable and hence find $\sqrt{25.15}$.
- 12. Express $2x^3 + 7x^2 + x 6$ in ascending powers of (x-2).
- 13. Expand log x in powers of (x 1).
- 14. Obtain $tan^{-1} x$ in power of (x-1).
- 15. Find Maclaurin's series of a. e^{-x} b. $y = \tan x$.
- 16. Find the series expansion of $f(x) = e^{e^x}$.