LINEAR ALGEBRA: ANSWER TO HOMEWORK 9

VISHVAS VASUKI

1. 33.2

During some step n of Arnoldi iteration, $h_{n+1,n}$ is encountered.

1.1. **a.**

Theorem 1.1.1. $AQ_n = Q_{n+1}\hat{H}_n$ can be simplified to $AQ_n = Q_nH_n$.

Proof. As the last row of \hat{H}_n is 0, no vector Aq_i has a component along q_{n+1} . Therefore the simplification holds.

Remark 1.1.2. Implications on the structure of the $A=QHQ^*$: The submatrix $H_{n+1:m,1:n}$ is 0.

1.2. **b.**

Theorem 1.2.1. K_n is an invariant subspace of $A: AK_n \subseteq K_n$.

Proof. $K_n = \langle b, ... A_{n-1} b \rangle = \langle q_1, ... q_n \rangle$. So, any $v \in K_n$ can be written as $v = Q_n x$. So, $Av = AQ_n x = Q_n H_n x$. So, Av is in the column space of Q_n . So, Av is still in K_n .

Thus,
$$AK_n \subseteq K_n$$
.

1.3. **c.**

Theorem 1.3.1. $K_n = \langle b, ..A^{n-1}b \rangle$. Then, $K_n = K_{n+1} = K_{n+2}...$

Proof. $K_{n+1} = \langle K_n, A^n b \rangle$. But, by the previous theorem, as $A^{n-1}b \in K_n$, $A^n b = AA^{n-1}b \in K_n$. Thus, $K_{n+1} \subseteq K_n$. But trivially, $K_n \subseteq K_{n+1}$. Thus, $K_n = K_{n+1}$. Using the same argument inductively, we see that $K_n = K_{n+1} = K_{n+2}$...

1.4. **d.**

Theorem 1.4.1. Each ew of H_n is an ew of A.

Proof. As we had previously remarked, $H_{n+1:m,1:n}$ is 0. So, the characteristic polynomial of A, det(A-lI) can be written as $det(H_{1:n,1:n}-lI_n)det(H_{n+1:m,n+1:m}-lI_{m-n})$.

So, any value of l which causes $det(H_{1:n,1:n}-lI_n)=0$ also causes det(A-lI)=0. Thence the result.

1.5. **e.**

Theorem 1.5.1. If A is non singular, then solution x to Ax=b lies in K_n .

Proof. K_n is spanned by columns of Q_n . Let $Q_{n\perp}$ be a matrix whose columns form an orthonormal basis for the subspace of Range(A) orthogonal to K_n .

$$\begin{aligned} \text{Let:} Q_n y + Q_{n\perp} y' &=& x \\ Q_n y + Q_{n\perp} y' &=& x \\ Q_n y - x &=& -Q_{n\perp} y' \\ AQ_n y - Ax &=& -AQ_{n\perp} y' \end{aligned}$$

 $Q_n y$ is in K_n ; and K_n being invariant, $AQ_n y$ is also in K_n . Also, $Ax = b = ||b|| q_1$ is also in K_n . So, $AQ_n y - Ax$ is also in K_n .

[Incomplete].

2. 36.1

Theorem 2.0.2. A is real and symmetric. $r(x) = \frac{x^T A x}{x^T x}$. Stationary values of r(x) are the ew of A. Then, Ritz values at step n of the Lancoz iteration are the stationary values of r(x) if x is restricted to K_n .

Proof. If x is restricted to K_n , it can be written as $Q_n y$. Then:

 $r(x) = r(Q_n y) = \frac{y^T Q_n^T A Q_n y}{y^T y} = \frac{y^T T_n y}{y^T y}$. Let us denote this by r'(y). We note that this is the Rayleigh quotient for the matrix T_n , and that, whenever y is an ev this quantity is the corresponding ew.

Following the analysis in the Rayleigh quotients chapter, we see that $\nabla r'(y) = \frac{2}{y^T y}(T_n y - r'(y)y)$. This is 0 exactly when y is an ev of T_n and r'(y) is the corresponding ew of T_n .

So, stationery values of r'(y) and r(x) restricted to x of the form $x = Q_n y$ are exactly the same: $r'(y) = 0 \equiv r(Q_n y) = 0 \equiv r(x) = 0$.

3. 38.5

Minimizing $f(x) = 2^{-1}x^T A x - x^T b$ using steepest descent: $p_n = r_n$.

3.1. **a.**

Theorem 3.1.1. $\nabla f(x) = -r$.

Proof.

$$f(x) = 2^{-1}x^{T}Ax - x^{T}b$$

$$\nabla f(x) = \nabla 2^{-1}x^{T}Ax - \nabla x^{T}b$$

$$= Ax - b$$

$$= -r$$

3.2. **b.**

Theorem 3.2.1. Optimal step $a_n = \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}}$.

Proof. We want to find an optimal a_n which minimize $f(x_n)$. Our search direction is r_{n-1} ; so we want to find $x_n = x_{n-1} + a_n r_{n-1}$.

$$\begin{array}{rcl} \nabla f(x_n) & = & 0 \\ Ax_n - b & = & 0 \\ A(x_{n-1} + a_n r_{n-1}) - b & = & 0 \\ b - Ax_{n-1} & = & a_n A r_{n-1} \\ r_{n-1} & = & a_n A r_{n-1} \\ a_n & = & \frac{r_{n-1}^T r_{n-1}}{r_{n-1}^T A r_{n-1}} \end{array}$$

3.3. c. The full steepest descent iteration:

$$\begin{array}{l} x_0=0, r_0=b.\\ \textbf{for each}\ n=1,\!2\dots \textbf{do}\\ a_n=\frac{r_{n-1}^Tr_{n-1}}{r_{n-1}^TAr_{n-1}}\\ x_n=x_{n-1}+a_nr_{n-1}\\ r_n=b-Ax_n\\ \textbf{end} \end{array}$$

4. 38.6

[Incomplete].

5

Following link provides a data structure to store sparse matrices:

www.cs.utexas.edu/~inderjit/courses/cs383c/sparse_matrices.txt

Write a matlab code using the above specified data structure to compute the matrix-vector product y = Ax in O(nz), where nz is the number of non-zeros in the sparse matrix A. Also write a matlab code to compute $y = A^Tx$ in O(nz). Note that you are not allowed to store A^T into a new matrix.

[Incomplete].