Parallel Matrix Multiplication

Matteo Conti, Luca Falasca

Universita' degli Studi di Roma Tor Vergata

Roadmap

- 1 Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MPI
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Introduzione - Descrizione del problema

Il progetto verte sull'implementazione di un nucleo di calcolo per effettuare il prodotto tra due matrici dense, definito come:

Definition

$$C = C + A \cdot B \tag{1}$$

MPI+CUDA

dove A, B e C sono matrici di dimensioni $M \times K$, $K \times N$ ed $M \times N$ rispettivamente, in particolare verranno considerate:

- Matrici quadrate
- Matrici rettangolari con M, N >> K con $K = \{32, 64, 128, 156\}$

Introduzione

Verranno analizzate le prestazioni di tre differenti implementazioni del prodotto, in particolare:

- MPI, utilizzando il paradigma SIMD per la parallelizzazione su CPU
- CUDA, sfruttando le potenzialità delle GPU per l'accelerazione computazionale
- MPI+CUDA, cercando di combinare i vantaggi delle due precedenti versioni

MPI+CUDA

Introduzione

00000

Introduzione - Raccolta dei dati

Introduzione

00000

Roadmap

- Introduzione
 - Descrizione del problema
 - Obiettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MPI
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- - MPI
 - CUDA
 - MPI+CUDA

MPI

MPI

MPI - Implementazione del prodotto

MPI - Implementazione del prodotto - Implementazione Naive

MPI - Implementazione del prodotto - Implementazione Column blocked

Roadmap

Introduzione

- 1 Introduzione
 - Descrizione del problema
 - Objettivi
 - Metriche di valutazione
 - Raccolta dei dati
- 2 MP
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Analisi delle prestazioni

CUDA - 1 versione

CUDA - Configurazione dei parametri - Thread

CUDA - Configurazione dei parametri - Bank conflit

Analisi delle prestazioni

Roadmap

- Introduzione
 - Descrizione del problema
 - Objettivi
 - Metriche di valutazione
 - Raccolta dei dati
- - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

- 4 MPI+CUDA
- - MPI
 - CUDA
 - MPI+CUDA

MPI+CUDA 00

Roadmap

Introduzione

- Descrizione del problema
- Obiettivi
- Metriche di valutazione
- Raccolta dei dati
- 2 MP
 - Distribuzione del carico
 - Riduzione del risultato
 - Implementazione del prodotto
- 3 CUDA
 - 1 versione
 - 2 versione
 - 3 versione
 - Configurazione dei parametri

4 MPI+CUDA

- 5 Analisi delle prestazioni
 - MPI
 - CUDA
 - MPI+CUDA

Analisi delle prestazioni - MPI

Analisi delle prestazioni - MPI - Matrici quadrate

Analisi delle prestazioni - MPI - Matrici rettangolari

Analisi delle prestazioni - CUDA

Analisi delle prestazioni - CUDA - Matrici quadrate

Analisi delle prestazioni - CUDA - Matrici rettangolari

Analisi delle prestazioni - MPI+CUDA - Matrici quadrate

Grazie per l'attenzione!

Introduzione

- Tutto il codice che implementa il progetto è disponibile al seguente repository: https://github.com/LucaFalasca/ParallelMatrixMultiplication
- contattaci a:
 - matteo.conti@students.uniroma2.eu
 - luca falasca@students.uniroma2.eu