REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION ����

EXAMEN DU BACCALAUREAT SESSION 2015

Section: Mathématiques

Epreuve: MATHEMATIQUES

Durée: 4 H

Coefficient: 4

Session principale

Exercice 1 (5 points)

- 1) a) Résoudre dans \mathbb{C} l'équation (E): $z^2 2z + 4 = 0$.
 - b) Déterminer une écriture exponentielle de chacune des solutions de (E).
- 2) Dans le plan rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère le cercle (Γ) de centre O et de rayon 2 et le point A d'affixe 2.

Placer les points B et C d'affixes respectives $2e^{i\frac{\pi}{3}}$ et $2e^{-i\frac{\pi}{3}}$.

3) Soit $\theta \in]-\pi,\pi]$ et M le point du cercle (Γ) d'affixe $2e^{i\theta}$.

On désigne par N le point de (Γ) tel que $(\overline{\widetilde{OM}}, \overline{\widetilde{ON}}) = \frac{\pi}{3} [2\pi]$. Justifier que N a pour affixe $2e^{i\left(\theta + \frac{\pi}{3}\right)}$.

- 4) Soit r la rotation de centre A et d'angle $\frac{\pi}{3}$.
 - a) Vérifier que la rotation r a pour expression complexe : $z' = e^{i\frac{\pi}{3}}z + 2 2e^{i\frac{\pi}{3}}$.
 - b) Soit F et K les milieux respectifs des segments [BM] et [CN]. Montrer que r(F) = K.
 - c) En déduire la nature du triangle AFK.
- 5) a) Montrer que AF² = $4 2\sqrt{3}\cos\left(\theta + \frac{\pi}{6}\right)$.
 - b) En déduire l'affixe du point M pour laquelle AF est maximale et construire le triangle AFK correspondant.

Exercice 2 (4 points)

Dans le plan orienté, on considère un triangle ABC tel que $\left(\widehat{\overline{AB}}, \widehat{\overline{AC}}\right) = \frac{\pi}{2} [2\pi]$ et $\left(\widehat{\overline{BC}}, \widehat{\overline{BA}}\right) = \frac{\pi}{3} [2\pi]$.

1) Soit f la similitude directe de centre A qui envoie B sur C. Déterminer l'angle et le rapport de f.

- 2) Soit g la similitude indirecte de centre A qui envoie C sur B.
 - a) Déterminer le rapport de g.
 - b) Déterminer l'axe Δ de g.
 - c) Soit D le point défini par $\overrightarrow{AD} = \frac{1}{3} \overrightarrow{AC}$.

Montrer que g(B) = D et en déduire que [BD) est la bissectrice intérieure de l'angle ABC

- 3) a) Montrer que fog est une symétrie axiale et préciser son axe.
 - b) On pose D'=f(D). Montrer que D' est le symétrique de B par rapport à A.
- 4) La bissectrice intérieure de l'angle \widehat{CAD}' coupe la droite (CD') en un point J. Soit I le centre du cercle inscrit dans le triangle ABC. Déterminer f(I).

Exercice 3 (4points)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 47x+53y=1.
 - a) Vérifier que (-9,8) est une solution de (E).
 - b) Résoudre l'équation (E).
 - c) Déterminer l'ensemble des inverses de 47 modulo 53.
 - d) En déduire que 44 est le plus petit inverse positif de 47 modulo 53.
- 2) a) Justifier que $45^{52} \equiv 1 \pmod{53}$.
 - b)Déterminer alors le reste de 45¹⁰⁶ modulo 53.
- 3) Soit $N = 1 + 45 + 45^2 + ... + 45^{105} = \sum_{k=0}^{k=105} 45^k$.
 - a) Montrer que $44 N \equiv 10 \pmod{53}$.
 - b) En déduire le reste de N modulo 53.

Exercice 4 (7 points)

I- Soit f la fonction définie sur $[0,\pi]$ par $f(x) = e^{\sin x}$.

On désigne par (C_f) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a) Déterminer la dérivée f'et dresser le tableau de variation de f sur $[0, \pi]$.
 - b) Montrer que la droite $\Delta : x = \frac{\pi}{2}$ est un axe de symétrie de la courbe (C_f) .
 - c) Soit (T) la tangente à (C_f) au point d'abscisse 0. Justifier que (T) a pour équation y = x + 1.

Soit la fonction g définie sur [0,1] par $g(x) = e^x \sqrt{1-x^2-1}$.

On donne ci-contre le tableau de variation de g

a) Justifier que l'équation g(x) = 0 admet dans l'intervalle [0,1] une solution unique α .

Soit la fonction h définie sur $\left[0, \frac{\pi}{2}\right]$ par $h(x) = e^{\sin x} - (x+1)$.

- a) Vérifier que pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $h'(x) = g(\sin x)$.
- b) Montrer qu'il existe un unique réel β dans $\left[0, \frac{\pi}{2}\right]$ tel que sin $\beta = \alpha$.
- c) Déterminer alors l'image par la fonction sinus de chacun des intervalles $[0,\beta]$ et $\left[\beta,\frac{\pi}{2}\right]$.
- d) Dresser le tableau de variation de h.
- e) En déduire que pour tout x de $\left[0, \frac{\pi}{2}\right]$, $f(x) \ge x + 1$. Conclure.

II

- 1) a) Montrer que pour tout réel $x \ge 0$, $\sin x \le x$.
 - b) Déduire alors que pour tout réel $x \in \left[0, \frac{\pi}{2}\right]$, $f(x) \le e^x$.
 - c) Dans l'annexe ci-jointe, on a tracé la courbe de la fonction $x\mapsto e^x$. Tracer la droite (T) et la courbe (C_f).

2) a) Montrer que
$$\int_0^1 f(x) dx \le e^{-1}$$
 et que $\int_1^{\frac{\pi}{2}} f(x) dx \le e^{\left(\frac{\pi}{2} - 1\right)}$.

b) Soit A l'aire de la partie du plan limitée par la courbe (C_f) , l'axe (O, \vec{i}) et les droites d'équations x = 0 et $x = \pi$. Montrer que $\frac{\pi^2}{4} + \pi \le A \le e\pi - 2$.

Annexe (à rendre avec la copie)

