21-127 Bonus

Christian Broms

Exercise 1. Prove that if A is a cut, and $r \notin A$, then p < r for every $p \in A$.

Proof. By the first property of a cut, we have that for $x, y \in \mathbb{Q}$, if $y \leq x$, then $y \in A$, where $A \subseteq \mathbb{Q}$. If $r \notin A$, $p \in A$, then $r \nleq p$ because this would contradict the defintion of a cut. Thus, it must be that r > p, and therefore we have that p < r for every $p \in A$.

Exercise 2. Prove that for any $q \in \mathbb{Q}$, there exists a cut A_q for which q is a least upper bound.

Proof. Assume for some $q \in \mathbb{Q}$, $A_q \subseteq \mathbb{Q}$. By the second property of a cut, A_q has an upper bound at q. Thus, we have that $q \geq a \ \forall a \in A_q$. Additionally, if $q' \geq a \ \forall a \in A_q$, then $q' \geq q$. Therefore the properties of a least upper bound are fufilled and we can conclude that for any $q \in \mathbb{Q}$, there exists a cut A_q for which q is a least upper bound.

Exercise 3. Prove that if $p, q \in \mathbb{Q}$, with p < q, then $A_p \subset A_q$.

Proof. Let $x \in A_p$. By Exercise 2 we know that x < p. Since p < q, then x < q due to the transitive property of \mathbb{Q} , an ordered field. If x < q, and q is the least upper bound of A_q , then $x \in A_q$ by definition of least upper bound. Thus, we have that $A_p \subset A_q$.

Exercise 4. Prove that $\{x \in \mathbb{Q} \mid x^2 \leq 2 \text{ or } x < 0\}$ is a cut.

Proof. Set $A = \{x \in \mathbb{Q} \mid x^2 \le 2 \text{ or } x < 0\}$. We wish to show that A fufills the properties of a cut. There are two cases, either x < 0 or $x^2 \le 2$.

Case 1: x < 0.

- 1. Suppose $x, y \in \mathbb{Q}$, $x \in A$, and $y \le x$. Since $x \in A$, x < 0, and since $y \le x$, it must be that y < 0 as well, by transitivity. So, $y \in A$.
- 2. The upper bound of x < 0 is 0, since $\forall x \in A$, where x < 0, $x \ngeq 0$. Thus, 0 is an upper bound.
- 3. We know that $A \subseteq \mathbb{Q}$ and \mathbb{Q} is infinite. So, given that x > 0, it follows that $\forall x \in A, \exists y \in A \text{ such that } x < y$.

Case 2: $x^2 \le 2$

1. Suppose $x,y\in\mathbb{Q}$ and $y\geq 0,y< x$. We know that x-y>0, as proven previously. Additionally, we have that x+y>y since x>0, and since $y\geq 0$ and x+y>y, then x+y>0. So, we have x+y>0 and x-y>0, thus $(x-y)(x+y)\geq 0$, from the ordered field axioms. Simplifying, we get $x^2-y^2\geq 0$ and $x^2\geq y^2$. Since $x^2\leq 2$ and $y^2\leq x^2$, we have that $y^2\leq 2$, so we conclude that $y\in A$.

- 2. The upper bound of $x^2 \le 2$ is $\sqrt{2}$, which we can derive from the fact that 0 < 1, so $0 < \sqrt{2}$. To prove the existence of a rational upper bound, we get that $2 \ge \sqrt{2}$, so $\forall a \in A$, $a \le \sqrt{2}$, so 2 is also an upper bound. Given that $2 \in \mathbb{Q}$, we can conclude that A has a rational upper bound.
- 3. Let $x \in A$. Since $A \subseteq \mathbb{Q}$, we know that x is rational. So, we know that $\forall x \in A, \exists y \in A$ such that x < y since $\sqrt{2}$ is an upper bound that is not rational, so all elements must be less than $\sqrt{2}$ and are infinitely decreasing.

Exercise 5. Prove that the ordering defined above is a total order; that is, it is a partial order, and any two elements of \mathcal{C} are comparable.

Exercise 6. Prove the following are true about this definition of addition:

- 1. Closure: For all $A, B \in \mathcal{C}$, A + B is a cut (so that when we add cuts, we stay within the universe of cuts).
- 2. Associativity: A + (B + C) = (A + B) + C for all $A, B, C \in \mathcal{C}$
- 3. Identity: $A + A_0 = A$ for all $A \in \mathcal{C}$
- 4. Existence of inverses: For all $A \in \mathcal{C}$ there exists $B \in \mathcal{C}$ such that $A + B = A_0$. (Hint: set $B = \{p \in \mathbb{Q} \mid \exists r \notin A \text{ such that } p < -r\}$. Then prove that B is a cut, and $A + B = A_0$.)
- 5. Commutativity: For all $A, B \in \mathcal{C}, A + B = B + A$.
- 6. Order arithmetic: For all $A, B, C \in \mathcal{C}$, if $A \leq B$, then $A + C \leq B + C$.

Proof. 1. Closure: We will prove that A + B fufills the properties of a cut.

(a) We will prove if $x, y \in \mathbb{Q}$, $x \in A + B$, and $y \leq x$, then $y \in A + B$. There are two cases, either y < x or y = x.

Case 1: y < x. Let y = a + b, such that $a \in A$ with a < p, and $b \in B$, with b < q. We have the property that a + b since <math>a < p and b < q, as proven in a previous homework. Since A and B are cuts, and A contains all elements less than p and B has all elements less than q, then a + b represents all elements less than p + q. So, we have that $y \in A + B$.

Case 2: y = x. Let y = p + q. Clearly, it follows that $y \in A + B$. Thus, in both cases, we get $y \in A + B$.

- (b) Since A and B are cuts, they both have upper bounds. Let the upper bounds be denoted a and b, respectively. Let $p+q \in A+B$ such that $p \in A$ and $q \in B$. So, $p \le a$ and $q \le b$, so we have the property that $p+q \le a+b$, as proven previously. Thus, by defintion, a+b is an upper bound.
- (c) Let x = a + b, with $a \in A$ and $b \in B$. Then $\forall a \in A, \exists p \in A$ such that a < p. Similarly, $\forall b \in B, \exists q \in A$ such that b < q. So, a + b , as previously proven. Thus, there exists some <math>y = p + q such that $\forall x \in A + B, \exists y \in A + B$ with x < y.

Thus, since A + B fufills all three properties, it must be a cut.

- 2. Associativity: Let $A+(B+C)=\{a+(b+c)\mid a\in A,b\in B,c\in C\}$ and $(A+B)+C=\{(a+b)+c\mid a\in A,b\in B,c\in C\}$. We have that a+(b+c)=(a+b)+c by the axiom of associativity of addition. Suppose $p\in A+(B+C)$ and $q\in (A+B)+C$, so p=a+(b+c) and q=(a+b)+c. Thus, p=q. So, $p\in (A+B)+C$ and $q\in A+(B+C)$. Since p and q are elements of both sets, it follows that $A+(B+C)\subseteq (A+B)+C$ and $(A+B)+C\subseteq A+(B+C)$, so (A+B)+C=A+(B+C).
- 3. Identity: Let $A + A_0 = \{p + q \mid p \in A, q \in A_0\}$. Suppose q = 0. Then p + q = p + 0 = p by the first field axiom. Since $p + q = p \ \forall p$ when q = 0, then $\forall p \in A, p \in A + A_0$. So, $A \subseteq A + A_0$. To prove that $A + A_0 \subseteq A$, there are two cases, q = 0 and q < 0.

Case 1: Let q < 0. Then , p + q < p. So, $p + q \in A$.

Case 2: Let q = 0. Then $p + q \in A + A_0$ and p + q = p + 0 = p, so $p + q \in A$. Thus, $A + A_0 \subseteq A$. Since we have shown both sides of containment, we conclude that $A = A + A_0$.

- 4. Existence of Inverses: (prove this case)
- 5. Communitivity: Let $A+B=\{a+b\mid a\in A,b\in B\}$ and $B+A=\{b+a\mid a\in A,b\in B\}$. So, we know that $\forall a+b\in A+B, \exists a+b\in B+A,$ since a+b=b+a by communitivity of addition. So, $A+B\subseteq B+A$. Using the same logic, we get $B+A\subseteq A+B$, so we conclude that A+B=B+A.

6. Order Arithmatic: (prove this case).

Exercise 7. Let $p \in \mathbb{Q}$. Prove that $-A_p = A_{-p}$.

Exercise 8. Prove that for $A, B > A_0$, the definition of $A \cdot B$ above yields a cut; that is, $A \cdot B \in \mathcal{C}$.

Exercise 9. Prove that if $p, q \in \mathbb{Q}$, and p, q > 0, then $A_p \cdot A_q = A_{pq}$.

Exercise 10. For all $A, B \in \mathcal{C}$, prove that $-(A \cdot B) = (-A) \cdot B = A \cdot (-B)$.

(Note: You will need to consider cases, depending on the sign of A and B.)

Exercise 11. Prove the following are true about this definition of multiplication:

- 1. Identity: $A \cdot A_1 = A$ for all $A \in \mathcal{C}$.
- 2. Inverse: For all $A \in \mathcal{C}$ with $A \neq A_0$, there exists $B \in \mathcal{C}$ such that $A \cdot B = A_1$. (Hint: set $B = \{p \in \mathbb{Q} \mid \exists r \notin A, p < \frac{1}{r}\}$ when A > 0.)
- 3. Commutativity: $A \cdot B = B \cdot A$ for all $A, B \in \mathcal{C}$.
- 4. Distributivity: $A \cdot (B + C) = A \cdot B + A \cdot C$ for all $A, B, C \in \mathcal{C}$.
- 5. Order arithmetic: For all $A, B \in \mathcal{C}$, if $A, B \geq A_0$ then $A \cdot B \geq A_0$.

Exercise 12. Let $A \subseteq C$ be a set of cuts. Prove that there exists $S \in C$ that satisfies the definition of a supremum.