제 4 교시

과학탐구 영역(생명과학 I)

수험 번호 성명 제[]선택

- 1. 다음은 생물의 특성에 대한 자료이다.
 - ① 발생 과정에서 포식자를 감지한 물벼룩 A는 머리와 꼬리에 뾰족한 구조를 형성하여 방어에 적합한 몸의 형태를 갖는다.
 - Û 메뚜기 B는 주변 환경과 유사하게 몸의 색을 변화시켜 포식자의 눈에 띄지 않는다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- ㄱ. ⑦ 과정에서 세포 분열이 일어난다.
- L. L)은 생물적 요인이 비생물적 요인에 영향을 미치는 예에 해당한다.
- ㄷ. '펭귄은 물속에서 빠른 속도로 움직이는 데 적합한 몸의 형태를 갖는다.'는 적응과 진화의 예에 해당한다.
- \bigcirc
- ② L
- ③ ⊏
- 4 7, 5 5 4, 5
- 2. 표는 사람에서 영양소 (가)와 (나)가 세포 호흡에 사용된 결과 생성되는 노폐물을 나타낸 것이다. (가)와 (나)는 단백질과 탄수화물을 순서 없이

l	영양소	노폐물
	(가)	물, 🗇
]	(나)	물, ⑦, ⓒ
1		

나타낸 것이고, ③과 ⑥은 암모니아와 이산화 탄소를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. (가)는 단백질이다.
- ㄴ. 호흡계를 통해 ᄀ이 몸 밖으로 배출된다.
- ㄷ. 사람에서 지방이 세포 호흡에 사용된 결과 생성되는 노폐물 에는 ⓒ이 있다.
- ① ¬
- (2) L
- (3) □
- 4) 7. L (5) 7. L
- 3. 그림은 어떤 지역에서 호수(습지)로부터 시작된 식물 군집의 1차 천이 과정을 나타낸 것이다. A와 B는 관목림과 혼합림을 순서 없이 나타낸 것이다.

호수(습지) → 초원 → A → 양수림 → B → 음수림

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-----<보 기>--

- ㄱ. A는 관목림이다.
- ㄴ. 이 지역에서 일어난 천이는 습성 천이이다.
- 다. 이 식물 군집은 B에서 극상을 이룬다.
- ① 7 ② ∟
- 3 [4], [5], [

4. 그림은 같은 수의 정상 적혈구 R와 낫 모양 적혈구 S를 빌↑ 각각 말라리아 병원체와 혼합하여 배양한 후, 말라리아 없 병원체에 감염된 R와 S의 빈도를 나타낸 것이다.

생 명 과

학

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.)

----<보 기>-

- ㄱ. 말라리아 병원체는 원생생물이다.
- ㄴ. 낫 모양 적혈구 빈혈증은 비감염성 질병에 해당한다.
- ㄷ. 말라리아 병원체에 노출되었을 때, S를 갖는 사람은 R만 갖는 사람보다 말라리아가 발병할 확률이 높다.
- \bigcirc
- ② ⊏

- 37, 4 4 4, 5 7, 4, 5
- 5. 다음은 어떤 연못에 서식하는 동물 종 □~ⓒ 사이의 상호 작용에 대한 실험이다.
 - ③과 않은 같은 먹이를 두고 경쟁하며, ⓒ은 ⑤과 않의 천적이다. [실험 과정 및 결과]
 - (가) 인공 연못 A와 B 각각에 같은 개체 수의 □과 □을 넣고, A에만 🗅을 추가한다.
 - (나) 일정 시간이 지난 후, A와 B 각각에서 수 ①과 Û의 개체 수를 조사한 결과는 ⁰ 그림과 같다.

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.)

- ㄱ. 조작 변인은 ▷의 추가 여부이다.
- ∟. A에서 つ은 ○과 한 개체군을 이룬다.
- □. B에서 ¬과 □ 사이에 경쟁 배타가 일어났다.
- \bigcirc
- ② ∟ ③ ⊏
- - 47, 67, 6
- 6. 그림은 어떤 동물에게 호르몬 X를 투여한 @ L 후 시간에 따른 ⓐ와 ⓑ를 나타낸 것이다. 양 X는 글루카곤과 인슐린 중 하나이고, ^값 ⓐ와 ⓑ는 '간에서 단위 시간당 글리코젠 으로부터 생성되는 포도당의 양'과 '혈중 포도당 농도'를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.)

- ¬. ⓑ는 '혈중 포도당 농도'이다.
- L. 혈중 인슐린 농도는 구간 I에서가 구간 Ⅱ에서보다 높다.
- 다. 혈중 포도당 농도가 증가하면 X의 분비가 촉진된다.

2 (생명과학 I)

과학탐구 영역

7. 표 (가)는 특정 형질의 유전자형이 RR인 어떤 사람의 세포 I~Ⅲ 에서 핵막 소실 여부를, (나)는 I~Ⅲ 중 2개의 세포에서 R의 DNA 상대량을 더한 값을 나타낸 것이다. I~Ⅲ은 체세포의 세포 주기 중 M기(분열기)의 중기, G₁기, G₂기에 각각 관찰되는 세포를 순서 없이 나타낸 것이다. □은 '소실됨'과 '소실 안 됨' 중 하나이다.

세포	핵막 소실 여부					
I	?					
П	소실됨					
Ш Э						
(7})						

구분	R의 DNA 상대량을 더한 값
Ι, Π	8
Ι, Ш	?
П, Ш	?
	(나)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않으며, R의 1개당 DNA 상대량은 1이다.)

- ㄱ. ⑦은 '소실 안 됨'이다.
- L. I은 G₁기의 세포이다.
- □. R의 DNA 상대량은 Ⅱ에서와 Ⅲ에서가 서로 같다.
- \bigcirc
- (2) L
- (3) □
- ④ つ. L⑤ L. C
- 8. 그림 (가)는 중추 신경계로부터 자율 신경이 심장에 연결된 경로를, (나)는 정상인에서 운동에 의한 심장 박동 수 변화를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

-<보 기>-

- ㄱ. ⑦의 신경 세포체는 연수에 있다.
- L. L과 C의 말단에서 아세틸콜린이 분비된다.
- \Box . \Box 의 말단에서 분비되는 신경 전달 물질의 양은 t_2 일 때가 t_1 일 때보다 많다.
- ① ¬
- ② ⊏
- 37, 4 4 4, 5 7, 4, 5
- 9. 그림 (가)는 사람에서 시간에 ① 따른 혈중 호르몬 ①과 ①의 ^동 농도를, (나)는 혈중 🕒의 농도에 따른 물질대사량을 나타낸 것이다. ⊙과 ○은 티록신과 TSH를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

-----<보 기>---

ㄴ. 心의 분비는 음성 피드백에 의해 조절된다.

 $= \frac{\mathbb{E}}{2} \frac{\mathbb{E}}2 \frac{\mathbb{E}}{2} \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac{\mathbb{E}}2 \frac$

- ① ¬

ㄱ. ⑦은 티록신이다.

- 2 3 7, 5 4 -, 5 7, -, 5

- 10. 다음은 민말이집 신경 A~C의 흥분 전도와 전달에 대한 자료이다.
 - \circ 그림은 A~C의 지점 $d_1 \sim d_5$ 의 위치를, 표는 \bigcirc A와 B의 P에, C의 Q에 역치 이상의 자극을 동시에 1회 주고 경과된 시간이 t_1 일 때 $d_1 \sim d_5$ 에서의 막전위를 나타낸 것이다. P와 Q는 각각 $d_1 \sim d_5$ 중 하나이고, \bigcirc 와 \bigcirc 중 한 곳에만 시냅스가 있다.
 - I~Ⅲ은 A~C를 순서 없이 나타낸 것이고, @~ⓒ는 -80, -70, +30을 순서 없이 나타낸 것이다.

신경	t_1	일 때	막전:	위(mV	7)
건경	d_1	d_2	d_3	d_4	d_5
I	?	(b)	c	(b)	?
П	(a)	?	(b)	?	c
Ш	?	C	a	(b)	C

- A를 구성하는 두 뉴런의 흥분 전도 속도는 및 1 cm/ms로 같고, B와 C의 흥분 전도 속도는 각각 1 cm/ms와 2 cm/ms 중 하나이다.
- A~C 각각에서 활동 전위가 발생하였을 때, 각 지점에서의 막전위 변화는 그림과 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, A~C에서 흥분의 전도는 각각 1회 일어났고, 휴지 전위는 -70 mV이다.) [3점]

一<보 기>・

- ㄱ. ⓐ는 ─70이다.
- ㄴ. જ에 시냅스가 있다.
- \Box . \Box 이 3 ms일 때, B의 d_2 에서 재분극이 일어나고 있다.
- ① ¬
- ② L
- (3) 7, \Box (4) \Box , \Box (5) 7, \Box , \Box
- 11. 다음은 골격근의 수축 과정에 대한 자료이다.
 - \circ 그림은 근육 원섬유 마디 X의 구조를 Z_1 나타낸 것이다. X는 좌우 대칭이고, Z₁과 Z₂는 X의 Z선이다.

- 구간 은 액틴 필라멘트만 있는 부분이고, ⓒ은 액틴 필라멘트와 마이오신 필라멘트가 겹치는 부분이며, ⓒ은 마이오신 필라멘트만 있는 부분이다.
- 표는 골격근 수축 과정의 두 시점 t_1 과 t_2 일 때 ⓐ의 길이를 ⓑ의 길이로 나눈 값 $\left(\frac{a}{b}\right)$, H대의 길이

1	시저	a	H대의	X의
]	시점	<u>(b)</u>	길이	길이
	t_1	2	2d	8d
,	t_2	1	d	?

X의 길이를 나타낸 것이다. @와 ⓑ는 ᄀ라 ▷을 순서 없이 나타낸 것이고, *d*는 0보다 크다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. @는 ᄀ이다.
- L. t₁일 때, ¬의 길이와 □의 길이는 서로 같다.
- $C. t_2$ 일 때, Z_1 로부터 Z_2 방향으로 거리가 2d인 지점은 C에 해당하다.
- 1 7

- 2 = 3 7, L 4 L, E 5 7, L, E

12. 그림 (가)는 같은 종의 동물 쳇 A와 B 중 A에게는 충분히 먹이를 $^{\circ}$ 상 섭취하게 하고, B에게는 구간 I 값 에서만 적은 양의 먹이를 섭취하게 0 t_1 t_2 시간 하면서 측정한 체중의 변화를,

(나)는 시점 t_1 과 t_2 일 때 A와 B에서 측정한 체지방량을 나타낸 것이다. □과 ℂ은 A와 B를 순서 없이 나타낸 것이다.

이 자료에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

----<보 기>--

- ㄱ. ⑦은 A이다.
- L. 구간 I에서 ○은 에너지 소비량이 에너지 섭취량보다 많다. C. B의 체지방량은 t_1 일 때가 t_2 일 때보다 적다.
- \bigcirc
- (2) L
- ③ ⊏
- 47, 67, 6
- 13. 그림은 세포 (가)~(다) 각각에 들어 있는 모든 염색체를 나타낸 것이다. (가)~(다)는 개체 A~C의 세포를 순서 없이 나타낸 것이고, A~C의 핵상은 모두 2n이다. A와 B는 서로 같은 종이고, B와 C는 서로 다른 종이다. A~C 중 B만 암컷이고, A~C의 성염색체는 암컷이 XX, 수컷이 XY이다. 염색체 ①과 ① 중 하나는 성염색체이고, 나머지 하나는 상염색체이다. ③과 ⑥의 모양과 크기는 나타내지 않았다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.)

----<보 기>-

- ¬. ⑦은 X 염색체이다.
- ㄴ. (나)와 (다)의 핵상은 같다.
- 다. (가)의 염색 분체 수 X 염색체 수
- \bigcirc
- (2) L

- 37, 5 4 4, 5 57, 4, 5
- 14. 다음은 종 사이의 상호 작용에 대한 자료이다. (가)와 (나)는 분서와 상리 공생의 예를 순서 없이 나타낸 것이다.
 - (가) 꿀잡이새는 꿀잡이오소리를 벌집으로 유도해 꿀을 얻도록 돕고, 자신은 벌의 공격에서 벗어나 먹이인 벌집을 얻는다.
 - (나) 붉은뺨솔새와 밤색가슴솔새는 서로 ⑦경쟁을 피하기 위해 한 나무에서 서식 공간을 달리하여 산다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ㄱ. (가)는 상리 공생의 예이다.
- ㄴ. (나)의 결과 붉은뺨솔새에 환경 저항이 작용하지 않는다.
- ㄷ. '서로 다른 종의 새가 번식 장소를 차지하기 위해 서로 다툰다.'는 ①의 예에 해당한다.
- ① ¬

- 15. 다음은 어떤 가족의 유전 형질 (가)~(다)에 대한 자료이다.
 - (가)~(다)의 유전자 중 2개는 X 염색체에 있고, 나머지 1개는 상염색체에 있다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
 - 표는 이 가족 구성원에서 체세포 1개당 A, b, d의 DNA 상대량을 나타낸 것이다.

구성원	I	DNA 상대량			
干谷ゼ	A	b	d		
아버지	1	1	1		
어머니	0	1	1		
자녀 1	?	1	0		
자녀 2	0	1	1		
자녀 3	1	0	2		
자녀 4	2	3	2		

- 부모 중 한 명의 생식세포 형성 과정에서 염색체 비분리가 1회 일어나 염색체 수가 비정상적인 생식세포 P가 형성 되었고, 나머지 한 명의 생식세포 형성 과정에서 대립유전자 □이 대립유전자 □으로 바뀌는 돌연변이가 1회 일어나 □을 갖는 생식세포 Q가 형성되었다. Э라 ○은 (가)~(다) 중 한 가지 형질을 결정하는 서로 다른 대립유전자이다.
- P와 Q가 수정되어 자녀 4가 태어났다. 자녀 4를 제외한 이 가족 구성원의 핵형은 모두 정상이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.)

-----<보 기>-

- ㄱ. 자녀 1~3 중 여자는 2명이다.
- L. Q는 어머니에게서 형성되었다.
- C. 자녀 3에게서 A, B, d를 모두 갖는 생식세포가 형성될 수 있다.
- \bigcirc
- (2) L
- ③ ⊏
- 4 7, L 5 L, L
- 16. 사람의 유전 형질 ⑦는 서로 다른 3개의 상염색체에 있는 3쌍의 대립유전자 A와 a, B와 b, D와 d에 의해 결정된다. 표는 사람 P의 세포 (가)~(다)에서 대립유전자 ①~②의 유무와 A와 B의 DNA 상대량을 나타낸 것이다. (가)~(다)는 생식세포 형성 과정에서 나타나는 중기의 세포이고, (가)~(다) 중 2개는 G₁기 세포 I로부터 형성되었으며, 나머지 1개는 G₁기 세포 Ⅱ로부터 형성되었다. ⑦~②은 A, a, b, D를 순서 없이 나타낸 것이다.

세포		대립위	우전자	DNA 상대량		
시포	9	Ĺ)	E	2	A	В
(가)	×	?	0	0	?	2
(나)	0	×	?	×	?	2
(다)	×	×	0	×	2	?

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, A, a, B, b, D, d 각각의 1개당 DNA 상대량은 1이다.) [3점]

----<보 기>--

- ㄱ. ①은 b이다.
- L. I 로부터 (다)가 형성되었다.
- ㄷ. P의 ⑦의 유전자형은 AaBbDd이다.
- \bigcirc

4 (생명과학 I)

과학탐구 영역

- 17. 다음은 어떤 집안의 유전 형질 (가)~(다)에 대한 자료이다.
 - (가)의 유전자는 9번 염색체에 있고, (나)와 (다)의 유전자 중 하나는 X 염색체에, 나머지 하나는 9번 염색체에 있다.
 - (가)는 대립유전자 H와 h에 의해, (나)는 대립유전자 R와 r에 의해. (다)는 대립유전자 T와 t에 의해 결정된다. H는 h에 대해. R는 r에 대해, T는 t에 대해 각각 완전 우성이다.
 - 가계도는 구성원 1~8에게서 (가)와 (나)의 발현 여부를 나타낸 것이다.

○ 표는 구성원 2, 3, 5, 7, 8에서 체세포 1개당 H와 r의 DNA 상대량을 더한 값(H+r)과 체세포 1개당 R와 t의 DNA 상대량을 더한 값(R+t)을 나타낸 것이다.

구성원		2	3	5	7	8
DNA 상대량을 더한 값	H+r	1	0	1	1	1
	R+t	3	2	2	2	2

○ 2와 5에서 (다)가 발현되었고, 4와 6의 (다)의 유전자형은 서로 같다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이와 교차는 고려하지 않으며, H, h, R, r, T, t 각각의 1개당 DNA 상대량은 1이다.) [3점]

----<보 기>--

- ¬. (다)의 유전자는 X 염색체에 있다.
- ㄴ. 4의 (가)~(다)의 유전자형은 모두 이형 접합성이다.
- ㄷ. 6과 7 사이에서 아이가 태어날 때, 이 아이의 (가)~(다)의 표현형이 모두 6과 같을 확률은 $\frac{3}{16}$ 이다.
- \bigcirc ② ⊏ 37, 4 4 4, 5 7, 4, 5
- 18. 다음은 사람의 방어 작용에 대한 실험이다.
 - 침과 눈물에는 ①세균의 증식을 억제하는 물질이 있다.

[실험 과정 및 결과]

- (가) 사람의 침과 눈물을 각각 표와 같은 농도로 준비한다.
- (나) (가)에서 준비한 침과 눈물에 같은 양의 세균 G를 각각 넣고 일정 시간 동안 배양한 후, G의 증식 여부를 (O: 증식됨, X: 증식 안됨) 확인한 결과는 표와 같다.

농도 (상댓값)	침	눈물			
1	(a)	×			
0.1	×	?			
0.01	0	×			
(O· 즈시되 ×· 즈시 아 되)					

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.) [3점]

-----<보 기>---

- ㄱ. 라이소자임은 ᄀ에 해당한다.
- L. @는 '×'이다.
- ㄷ. 사람의 침과 눈물은 비특이적 방어 작용에 관여한다.
- 37, 4 4 4, 5 7, 4, 5 \bigcirc ②

- 19. 다음은 사람의 유전 형질 (가)~(다)에 대한 자료이다.
 - (가)~(다)의 유전자는 서로 다른 2개의 상염색체에 있으며. (가)의 유전자는 (다)의 유전자와 서로 다른 상염색체에 있다.
 - (가)는 대립유전자 A와 a에 의해 결정되며, 유전자형이 다르면 표현형이 다르다.
 - (나)는 대립유전자 B와 b에 의해, (다)는 대립유전자 D와 d에 의해 결정된다.
 - (나)와 (다) 중 하나는 대문자로 표시되는 대립유전자가 소문자로 표시되는 대립유전자에 대해 완전 우성이고, 나머지 하나는 유전자형이 다르면 표현형이 다르다.
 - 유전자형이 AaBbDD인 남자 P와 AaBbDd인 여자 Q 사이에서 ⓐ가 태어날 때, ⑥에게서 나타날 수 있는 (가)~(다)의 표현형은 최대 8가지이다.

유전자형이 AabbDd인 아버지와 AaBBDd인 어머니 사이에서 아이가 태어날 때, 이 아이의 (가)~(다)의 표현형이 모두 Q와 같을 확률은? (단, 돌연변이와 교차는 고려하지 않는다.) [3점]

- ① $\frac{1}{16}$ ② $\frac{1}{8}$ ③ $\frac{3}{16}$ ④ $\frac{1}{4}$ ⑤ $\frac{3}{8}$

- 20. 그림은 평형 상태인 생태계 S에서 1차 소비자의 개체 수가 일시적으로 증가한 후 평형 상태로 회복되는 과정의 시점 $t_1 \sim t_5$ 에서의 개체 수 피라미드를, 표는 구간 I~Ⅳ에서의 생산자, 1차 소비자, 2차 소비자의 개체 수 변화를 나타낸 것이다. □은 '증가'와 '감소' 중 하나이다.

[평형 상태] [회복된 상태] 2차 소비자 1차 소비자 t_5 t_6 t_6 t_7 t_8 t_8 t_8 t_8 t_8 t_8 t_8 t_8 t_8 t_8

구간 영양 단계	I	П	Ш	IV
2차 소비자	변화 없음	증가	?	Ō
1차 소비자	증가	?	감소	?
생산자	변화 없음	감소	?	증가

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.)

----<보 기>-

- ㄱ. 은 '감소'이다.
- ㄴ. $\frac{2^{\frac{1}{2}}}{2^{\frac{1}{2}}}$ 소비자의 개체 수 는 t_2 일 때가 t_3 일 때보다 크다.
- C. ts일 때, 상위 영양 단계로 갈수록 각 영양 단계의 에너지양은 증가한다.
- ① ¬
- (2) L
- ③ ⊏
- 47, 67, 6

- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인