Axiomes

Exercice 1.

Préciser pour chacun des triplets suivants les lois + et \cdot qui les munissent d'une structure d'espace vectoriel ainsi que le vecteur nul.

- 1. $(\mathbb{R}^n, +, \cdot)$
- 2. $(\mathbb{R}^{\mathbb{R}},+,\cdot)$
- 3. $(\mathbb{R}^{\mathbb{N}},+,\cdot)$
- 4. $(\mathbb{C}, +, \cdot)$

EXERCICE 2.

Vérifier que l'ensemble \mathbb{R}_+^* muni des lois interne et externe suivantes

$$u \boxplus v = uv \text{ et } \lambda \boxdot u = u^{\lambda},$$

où u et ν sont dans \mathbb{R}_+^* et $\lambda \in \mathbb{R}$, est un \mathbb{R} -espace vectoriel.

Sous-espaces vectoriels

EXERCICE 3.

L'axe réel dans $\mathbb C$ est-il un sous-espace vectoriel du $\mathbb C$ -espace vectoriel $\mathbb C$? du $\mathbb R$ -espace vectoriel $\mathbb C$?

EXERCICE 4.

Dans l'espace vectoriel $E = \mathbb{R}^3$, on considère les ensembles suivants,

$$F = \left\{ (\lambda - 3\mu, 2\lambda + 3\mu, \lambda) \mid (\lambda, \mu) \in \mathbb{R}^2 \right\}$$

et

$$G = \{(x, y, z) \in E \mid x + 2y = 0\}.$$

- 1. Prouver que les ensembles F et G sont des sous-espaces vectoriels de E.
- 2. Déterminer le sous-espace vectoriel $F \cap G$.

EXERCICE 5.

On note $E = \mathbb{R}^{\mathbb{N}}$. Les sous-ensembles suivants sont-ils des sous-espaces vectoriels de E?

1.
$$E_1 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \mid \lim_{n \to +\infty} u_n = 0 \right\};$$

$$\textbf{2.} \ E_2 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \ \big| \ u_n = \mathcal{O} \left(n^2\right) \right\};$$

3.
$$E_3 = \left\{ (u_n)_{n \in \mathbb{N}} \in E \mid u_n \sim \frac{1}{n} \right\};$$

$$\textbf{4.} \ E_4 = \bigg\{ (\mathfrak{u}_n)_{n \in \mathbb{N}} \in E \ \big| \ \exists k \in \mathbb{R} \ , \ \mathfrak{u}_n \, \sim \, \frac{k}{n} \bigg\}.$$

EXERCICE 6.

Parmi les parties suivantes de l'espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$, déterminer celles qui sont des sous-espaces vectoriels,

- **1.** L'ensemble des fonctions telles que f(1) = 0;
- **2.** L'ensemble des fonctions telles que f(0) = 1;
- 3. L'ensemble des fonctions de classe C^1 ;
- **4.** L'ensemble des fonctions monotones;
- **5.** L'ensemble des fonctions impaires ;
- **6.** L'ensemble des fonctions 2π -périodiques.

Exercice 7.

Soient E un \mathbb{K} -espace vectoriel et X, Y deux parties de E. Prouver que

$$\operatorname{vect}(X \cap Y) \subset \operatorname{vect}(X) \cap \operatorname{vect}(Y)$$
.

Donner un exemple où cette inclusion est stricte.

EXERCICE 8.

Parmi les ensembles suivants reconnaître ceux qui sont des sous-espaces vectoriels.

1.
$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + a = 0, \text{ et } x + 3az = 0\};$$

- **2.** $E_2 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) = 0 \};$
- 3. $E_3 = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = 1 \};$
- **4.** $E_4 = \{(x,y) \in \mathbb{R}^2 \mid x + \alpha y + 1 \geqslant 0\}.$

Exercice 9.

Parmi les ensembles suivants, reconnaître ceux qui sont des sous-espaces vectoriels :

1.
$$E_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\};$$

2.
$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid xy = 0\};$$

3.
$$E_3 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 0, y = z\};$$

4.
$$E_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 1\};$$

5.
$$E_5 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + xy \ge 0\};$$

6.
$$E_6 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + xy + y^2 \ge 0\}$$
;

7.
$$E_7 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(1) = 0 \};$$

8.
$$E_8 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 1 \};$$

9.
$$E_9 = \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ est croissante} \}.$$

Exercice 10.

Montrer qu'un \mathbb{K} -espace vectoriel E n'est jamais l'union de deux sous espaces-vectoriels stricts (i.e. distincts de E).

Sommes de sous-espaces vectoriels

Exercice 11.

Soit F le sous-espace vectoriel de \mathbb{R}^3 d'équation x+y+z=0 et G le sous-espace vectoriel de \mathbb{R}^3 d'équations $\begin{cases} x-y+2z=0\\ x+y-z=0 \end{cases}.$

- **1.** Montrer que F et G sont supplémentaires dans \mathbb{R}^3 .
- **2.** Soit $(x, y, z) \in \mathbb{R}^3$. Déterminer la projection de (x, y, z) sur F (resp. G) parallélement à G (resp. F).

Exercice 12.

Soient F_1, \ldots, F_p des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que F_1, \ldots, F_p sont en somme directe si et seulement si

$$\forall k \in [2, p], \left(\sum_{j=1}^{k-1} F_j\right) \cap F_k = \{0_E\}$$

Exercice 13.

Soient F_1, \ldots, F_p des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie tels que $F_1 + \cdots + F_p = E$. Montrer qu'il existe des sous-espace vectoriels G_1, \ldots, G_p de E tels que $G_k \subset F_k$ pour tout $E \in [1, p]$ et $E \in G_1 \oplus \cdots \oplus G_p = E$.

Exercice 14.

On note E l'ensemble des suites réelles convergentes, F l'ensemble des suites réelles de limite nulle et G l'ensemble des suites réelles constantes.

- **1.** Montrer que E, F, G sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- **2.** Montrer que $E = F \oplus G$.

EXERCICE 15.

Soient E l'ensemble des suites réelles constantes, F l'ensemble des suites réelles (u_n) vérifiant $u_{n+1}+u_n=0$ pour tout $n\in\mathbb{N}$, G l'ensemble des suites réelles (u_n) vérifiant $u_{n+2}+u_n=0$ pour tout $n\in\mathbb{N}$ et enfin H l'ensemble des suites réelles périodiques de période 4.

- **1.** Montrer que E, F, G, H sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$.
- 2. Montrer que E, F, G sont inclus dans H.
- **3.** Montrer que $E \oplus F \oplus G = H$.

Exercice 16.

On note $E = \mathbb{R}^{\mathbb{R}}$, $F = \{f \in \mathbb{R}^{\mathbb{R}}, \ f(0) + f(1) = 0\}$ et G l'ensemble des fonctions constantes sur \mathbb{R} .

- 1. Montrer que F et G sont des sous-espaces vectoriels de E.
- $\textbf{2.} \ \ Montrer \ que \ F \ et \ G \ sont \ supplémentaires \ dans \ E.$

Exercice 17.

Soient F, G deux sous-espaces vectoriels de E. Quelles assertions parmi les suivantes sont vraies en général?

1.
$$F \cap G \subset F + G$$
;

4.
$$F + F = F$$
;

2.
$$F \cup G \subset F + G$$
;

5.
$$F \cup (F \cap G) \subset F + G$$
;

3.
$$F \subset F + G$$
;

6.
$$F + G = G + F$$
.

EXERCICE 18.

Soient F, G et H trois sous-espaces vectoriels d'un K-espace vectoriel E.

1. Que pensez-vous de la proposition suivante,

$$F + G = F$$
 si et seulement si $F \supset G$?

2. Que pensez-vous de la proposition suivante,

$$F + G = F + H \implies G = H$$
?

Exercice 19.★

Soient F, G et H trois sous-espaces vectoriels d'un K-espace vectoriel E tels que

$$F + H = G + H$$
, $F \cap H = G \cap H$,

et $F \subset G$. Prouver que F = G.

Exercice 20.★

On note $E=\mathbb{R}^\mathbb{R}$, P le sous-ensemble de E formé par les fonctions paires et I le sous-ensemble de E formé par les fonctions impaires.

- 1. Montrer que P et I sont deux sous-espaces supplémentaires dans E.
- **2.** Pour tout $f \in E$, la projection du vecteur f sur P parallèlement à I est appelée *partie paire de* f. On définit de même la *partie impaire de* f. Calculer les parties paire et impaire des fonctions suivantes :le cosinus, le sinus, l'exponentielle, $f: x \mapsto x^4 + x$.

EXERCICE 21.★★

Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$, \mathcal{C} l'ensemble des fonctions constantes sur [0,1], et \mathcal{A} l'ensemble des éléments de E s'annulant en 1.

- 1. Montrer que $\mathcal C$ et $\mathcal A$ sont des sous-espaces vectoriels supplémentaires dans $\mathsf E$.
- 2. Montrer que ${\mathcal C}$ est également un supplémentaire dans ${\mathsf E}$ du sous-espace suivant

$$\mathcal{N} = \left\{ f \in E \mid \int_0^1 f(t)dt = 0 \right\}.$$

- **3.** Calculer les projections sur \mathcal{C} parallèlement à \mathcal{A} puis à \mathcal{N} d'une fonction $f \in \mathcal{E}$.
- 4. Donner d'autres exemples de supplémentaires de ${\mathcal C}$ dans ${\mathsf E}$.

EXERCICE 22.

On note $E = \mathbb{R}^3$ et

$$F = \{(x, y, z) \in E \mid x + y - z = 0\}$$

et

$$G = \{(a-b, a+b, a-3b) \mid a, b \in \mathbb{R}\}.$$

- **1.** Etablir que F et G sont des sev de E.
- **2.** Déterminer $F \cap G$.
- **3.** Prouver que F + G = E. La somme est-elle directe ?

Exercice 23.★★

Soient A, B et C trois sev d'un K-ev E. On note

$$F = (A \cap B) + (A \cap C), G = A \cap (B + (A \cap C))$$

et $H = A \cap (B + C)$.

- 1. Montrer que F et G sont des sev de H.
- **2.** Etablir que F = G.
- **3.** A-t-on toujours F = G = H?

Exercice 24.★★

Soient F, G, F' et G' quatre sev d'un \mathbb{K} -ev E tels que F \cap G = F' \cap G'. Etablir que

$$(F + (G \cap F')) \cap (F + (G \cap G')) = F.$$

Exercice 25.

On note E l'espace vectoriel réel des fonctions dérivables de $\mathbb R$ dans $\mathbb R$. Soient $\mathcal N$ et $\mathcal A$ les sous-ensembles de E définis par,

$$\mathcal{A} = \{ f \in E \mid f \text{ affine} \}$$

et

$$\mathcal{N} = \{ f \in E \mid f(0) = f'(0) = 0 \}.$$

- 1. Prouver que $\mathcal A$ et $\mathcal N$ sont deux sous-espaces vectoriels de $\mathcal E$.
- 2. Montrer que $\mathcal A$ et $\mathcal N$ sont supplémentaires dans $\mathsf E$.
- 3. Déterminer la projection sur \mathcal{A} parallèlement à \mathbb{N} d'une fonction $f \in E$.

Remarque. On rappelle qu'une fonction f de \mathbb{R} dans \mathbb{R} est affine *si et seulement si* il existe deux réels \mathfrak{a} et \mathfrak{b} tels que $\forall \mathfrak{t} \in \mathbb{R}$, $\mathfrak{f}(\mathfrak{t}) = \mathfrak{a}\mathfrak{t} + \mathfrak{b}$.

Familles de vecteurs

Exercice 26.

Soit
$$\mathcal{F} = ((1, -2, 1), (2, -3, 1), (-1, 3, -2)).$$

- **1.** Le vecteur (2, 1, 3) est-il combinaison linéaire de la famille \mathcal{F} ?
- **2.** Même question pour le vecteur (2, 5, -7).

Exercice 27.★★

Soit $E=\mathbb{R}^\mathbb{R}$ l'espace vectoriel sur \mathbb{R} des applications de \mathbb{R} dans \mathbb{R} . Pour tout $n\in\mathbb{N}$, on pose

$$f_n : x \mapsto \cos^n(x)$$
 et $g_n : x \mapsto \cos(nx)$.

Montrer que pour tout n positif,

$$\operatorname{vect}(f_k, 0 \leqslant k \leqslant n) = \operatorname{vect}(g_k, 0 \leqslant k \leqslant n).$$

Exercice 28.

Soient $\mathfrak{a} \in \mathbb{R}$, $\mathsf{E} = \mathbb{R}^3$ et

$$u = (1, -1, 1), v = (0, 1, a).$$

Déterminer une condition *nécessaire et suffisante* portant sur a pour que $(1,1,2) \in \text{vect}(\mathfrak{u},\mathfrak{v})$.