Ciência Reprodutível para Experimentos em Computação de Alto Desempenho

Pedro Bruel, Lucas Schnorr, Alfredo Goldman

phrb@ime.usp.br

3 de maio de 2021

Introdução

Agradecimentos e Crédito

A Arnaud Legrand e seu curso:

https://github.com/alegrand/SMPE

Dependências e outros Recursos

Site com instruções e mais recursos:

https://phrb.github.io/reprodutibilidade-eradsp-2021

• Temos uma imagem Docker com Jupyter Notebook, R, pacotes, e dados:

git clone https://github.com/phrb/reprodutibilidade-eradsp-2021.git cd reprodutibilidade-eradsp-2021/exercicio_pratico && ./build.sh -b

Roteiro

O que é Ciência Reprodutível?

Desafios e Abordagens para se fazer Ciência Reprodutível

Mão na Massa: Ferramentas para Reprodutibilidade

O que é Ciência Reprodutível?

Provocação: O que Sobrevive do Trabalho Científico?

O que é Ciência Reprodutível?

Trabalhar de forma transparente para diminuir a distância entre quem produz e quem lê

Trabalhar de forma transparente?

- Caderno de laboratório e metodologia
- Ambientes de software, controle de versão
- Plataformas de compartilhamento, colaboração, e arquivamento

Definições

Vocabulário Internacional de Metrologia (VIM)

Distingue entre resultados e conclusões que podem ser reproduzidos:

- Pela mesma equipe, nas mesmas condições experimentais: Repetibilidade
- Por uma equipe diferente, nas mesmas condições experimentais: Replicabilidade
- Por uma equipe diferente, em condições experimentais diferentes: Reprodutibilidade

Há uma Crise de Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

O que Dificulta a Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

Dificultam a Reprodutibilidade

- Reportagem seletiva
- Pressão por publicações
- Dificuldades com estatística
- Falta de acesso aos dados

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

O que pode Promover a Reprodutibilidade?

Resultados de um questionário com 1.500 cientistas:

Promovem a Reprodutibilidade

- Estudar estatística
- Colaboração e comunidade
- Melhores incentivos

(1,500 Scientists Lift the Lid on Reproducibility, Nature, Maio de 2016)

Desafios e Abordagens para se

fazer Ciência Reprodutível

Ferramentas Existentes e Padrões Emergentes

Cadernos de Laboratório

Ambientes de Software

Plataformas de Compartilhamento

Cadernos de Laboratório

1 Documento Computacional

Meu computador me diz que π vale aproximadamente 3.141592653589793

Mas se usarmos o método da Agulha de Buffon, obteremos a aproximação:

```
[8]: import numpy as np

N = 10000000

x = np.random.uniform(size = N, low = 0, high = 1)
theta = np.random.uniform(size = N, low = 0, high = pi / 2)
approx_pi = 2 / (sum(x + np.sin(theta) > 1) / N)
print(approx_pi)
```

3.142712129140327

Podemos também incluir fórmulas matemáticas como $\frac{1}{\sigma\sqrt{2/p^2}}\exp\left(-\frac{(x-\mu)^2}{2/\sigma^2}\right)$ e desenhos que não têm nada a ver com π (ele ao menos aparece como constante de normalização \mathfrak{D})

Cadernos de Laboratório

Cadernos de Laboratório

Ambientes de Software: O que se Esconde nas Dependências?

\$ pacman -Qi python-matplotlib

: 3.4.1-2

: python-matplotlib

Name

Version

Depends On : freetype2 python-cycler python-dateutil python-kiwisolver python-numpy python-pillow python-pyparsing qhull

Optional Deps : tk: Tk{Agg,Cairo} backends [installed] pyside2: alternative for Ot5{Agg,Cairo} backends python-pyqt5: Ot5{Agg,Cairo} backends [installed] python-gobject: for GTK3{Agg,Cairo} backend [installed] python-wxpython: WX{,Agg,Cairo} backend python-cairo: {GTK3,Qt5,Tk,WX}Cairo backends [installed] python-cairo:ffi: alternative for Cairo backends

python-tornado: WebAgg backend [installed]
ffmpeg: for saving movies [installed]

imagemagick: for saving animated gifs [installed]
ghostscript: usetex dependencies [installed]
texlive-bin: usetex dependencies [installed]

texlive-latexextra: usetex usage with pdflatex [installed]

python-certifi: https support [installed]

Ambientes de Software: O que se Esconde nas Dependências?

Ambientes de Software: O que se Esconde nas Dependências?

Plataformas de Compartilhamento e Arquivamento

- D. Spinellis. The Decay and Failures of URL References. CACM, 46(1), 2003 "A meia-vida de uma referência em URL é de aproximadamente 4 anos após sua publicacão"
- P. Habibzadeh. Decay of References to Web sites in Articles Published in General Medical Journals: Mainstream vs Small Journals. Applied Clinical Informatics. 4 (4), 2013 "a meia-vida durou entre 2,2 anos no EMHJ e 5,3 anos no BMJ"

ARCHIVE

Arquivamento de Software

Software Heritage

or **→** = excelentes para colaborações (≠ arquivamento)

Estatística

Desafios

- Como planejar experimentos?
- Como analisar resultados?
- Datasaurus Dozen
 - https://cran.r-project.org/web/packages/ datasauRus/

Abordagens

- Gráficos, antes de qualquer análise
- Análises mais simples primeiro: mas fáceis de interpretar
- Documentos computacionais
- Desenho de Experimentos
- Controle de versão

Estatística: O que é Machine Learning?

Conceito	Estatística	Aprendizado de Máquina
Usar dados para estimar quantidades desconhecidas	Estimação	Aprendizado
Predizer y discreto a partir de x	Classificação	Aprendizado Supervisionado
Dividir dados em grupos	Clusterização	Aprendizado Não-Supervisionado
$(\mathbf{x}_1,\mathbf{y}_1),\ldots,(\mathbf{x}_N,\mathbf{y}_N)$	Desenho Experimental	Conjunto de Treinamento
$(\mathbf{x}_1,\ldots,\mathbf{x}_N)$	Variáveis Preditoras	Características
Intervalo contendo uma estimativa	Intervalo de Confiança	-

15/24

É Possível Garantir a Reprodutibilidade?

Abordagens da ACM

Ciência Aberta

Mão na Massa: Ferramentas

para Reprodutibilidade

Controle de Versão

Hospedagem

Documentos Computacionais

Estatística

Arquivamento

Conclusão

É possível fazer Ciência (mais) Reprodutível!

Ciência Reprodutível para Experimentos em Computação de Alto Desempenho

Pedro Bruel, Lucas Schnorr, Alfredo Goldman

phrb@ime.usp.br

3 de maio de 2021