Advanced Data Analysis in R

Survey Analsis in R

Michael DeWitt 2018-02-09 (Updated 2019-03-11)

Survey Analysis in R

What makes survey analysis different?

Survey analysis is design based

Often we talk about probability or random samples

These concepts make inferences really nice

A quick refresher¹

1. Every individual in the population must have a non-zero probability of ending up in the sample (π_i)

¹Lumley (2010)

A quick refresher¹

- 1. Every individual in the population must have a non-zero probability of ending up in the sample (π_i)
- 2. The probability of π_i must be known for every individual in who does end up in the sample

¹Lumley (2010)

A quick refresher¹

- 1. Every individual in the population must have a non-zero probability of ending up in the sample (π_i)
- 2. The probability of π_i must be known for every individual in who does end up in the sample
- 3. Eevery pair of individuals in the sample must have a non-zero probability of both ending up in the sample $(\pi_{i,j})$ for the pair of individuals (i, j)

¹Lumley (2010)

A quick refresher¹

- 1. Every individual in the population must have a non-zero probability of ending up in the sample (π_i)
- 2. The probability of π_i must be known for every individual in who does end up in the sample
- 3. Eevery pair of individuals in the sample must have a non-zero probability of both ending up in the sample $(\pi_{i,j})$ for the pair of individuals (i, j)
- 4. The probability $\pi_{i,j}$ must be known for every pair that does ebd up in the sample

¹Lumley (2010)

Introducing the survey package

A little about survey

Thomas Lumley developed the survey package

Initially a port of STATA's svy functions following a similar syntax

Can perform typical types of design based analysis

- Simple Random
- Stratified
- Clusters
- Multi-stage
- Repeated Measures

A little about survey

Perform post-survey corrections

- post-stratification
- raking (iterative proportional fitting)
- calibration

And more...!

Diving into the software...

Describing your model

The primary argument in survey is the svydesign function library(survey) svydesign(ids = to specify clusters (~1 otherwise), probs = Sampling Probabilities if available, strata = Strata membership if available, fpc = Finite Population Values, data = Your Data Frame, nest = T/F if there is nesting within your s weights = Sampling Weights if available, pps = Probability Proportional to Size)

Quick Note On survey

Many of the functions in survey utilise R "formula notation" Indicates the tilde "~" must be used (e.g. ~cluster)

But Let's Try An Example

Let's try an example with the api dataset that is part of the survey package

This data set represents California Academic Performance Index

```
library(survey)
library(dplyr)
data(api)
```

Let's Inspect the Data

head(apisrs)

```
##
                   cds stype
                                       n_ame
## 1039 15739081534155
                          H McFarland High
## 1124 19642126066716
                          E Stowers (Cecil
## 2868 30664493030640
                          H Brea-Olinda Hiq
## 1273 19644516012744
                          E Alameda Element
## 4926 40688096043293
                          E Sunnyside Eleme
## 2463 19734456014278
                          E Los Molinos Ele
##
                               sname snum
## 1039
                      McFarland High 1039
## 1124 Stowers (Cecil B.) Elementary 1124
## 2868
                    Brea-Olinda High 2868
## 1273
                  Alameda Elementary 1273
                Sunnyside Elementary 4926
## 4926
```

Specifying the Survey Object (SRS)

This is a simple random sample with finite population correct (since we know the population)

Trying With A Different Survey Design (Stratified)

In this case we have a stratified random sample (different school types)

Trying With A Different Survey Design (Cluster)

Two stage cluster sampling 40 school disticts then five schools within each district

- Stage 1 district cluster with population fpc1
- Stage 2 district cluster with population fpc2

Analysis with svy objects

Correct Estimates

survey applies correct calculations given the survey design

svymean(~api00, svy api cluster)

Survey Functions

Functions in the survey package begin with the svy prefix

Utilise the formula notation

Calculating Contrasts

You can add contrasts with svycontrast

Say I wanted to look at the ratio of my high school score to my elementary school score

Adding Contrasts to the data

Use the update function to add new calculated fields to your survey design object

Adding Contrasts to the data

Now we can easily perform our analysis

Performing Regressions

```
svyglm(score imp~ meals + avg.ed, svy api cluster)
## 2 - level Cluster Sampling design
## With (40, 126) clusters.
## update(svy_api_cluster, score_imp = api00/api99)
##
## Call: svyqlm(formula = score imp ~ meals + avq.ed
##
## Coefficients:
## (Intercept) meals
                                avg.ed
## 0.9742040 0.0007394 0.0103667
##
## Degrees of Freedom: 125 Total (i.e. Null); 37 Res
## Null Deviance: 0.2624
                                                18
## Residual Deviance: 0.2118 AIC: -391
```

Post-survey corrections

References

Lumley, Thomas. 2010. *Complex Surveys: A Guide to Analysis Using R.* John Wiley & Sons.