Nucleic acid extraction and quality control – A primer

Justin Nyasinga

Introduction

- Isolation and purification of nucleic acids is the first step before downstream processing (PCR, Cloning, Genome sequencing etc.)
- Nucleic acid extraction generally entails:
 - **Cellular disruption** by either physical or chemical means or combinations of both (Boiling, sonication, bead beating, detergents, lysozyme etc).
 - Inhibition of degradative enzymes such as DNAses or RNAses depending on the target of isolation.
 - Purification to remove contaminating agents such as salts, cellular debris, proteins etc.
 - Recovery of the final nucleic acid extract in water or buffer
- Depending on the desired purity, yield, simplicity, cost and convenience two main approaches are involved in nucleic acid extraction.
 - Liquid phase extraction methods
 - Solid phase extraction methods

Liquid phase methods

Phenol-Chloroform isoamyl alcohol extraction

- **Cell lysis:** physical or chemical means or combinations of both (Boiling, sonication, bead beating, detergents, lysozyme etc).
- Phenol: denature proteins rapidly. Chloroform supports phase separation.
- The upper phase which contains DNA is collected and DNA precipitated by ethanol or isopropanol. Salt is the common impurity in nucleic acid samples.
- DNA precipitate is collected by centrifugation, and excess salt is rinsed with **70% ethanol** and centrifuged to discard the ethanol supernatant.
- The DNA pellet is then dissolved with TE buffer or sterile distilled water.

Liquid phase methods

Challenges of solid phase extraction

Long extraction times

Poor yields

Incomplete phase separation

Tedious extraction process

Poor reproducibility

Solid phase extraction

- Cell lysis: Physical, chemical or enzymatic approaches are used.
- Column conditioning: Buffers at a particular pH are used to convert the surface or functional groups on the solid into the desired chemical form.
- Nucleic acid adsorption: Adsorption of the target nucleic acid molecules to the purification columns.
- **Washing:** Specific wash buffers help remove contaminants that bind to columns with nucleic acids. Other systems use both pre-wash followed by a final wash buffer.
- **Elution:** Finally, nucleic acids are dislodged from the columns with an elution buffer or even sterile distilled water.

WRAIR

Solid phase extraction work flow

Advantages of solid phase extraction

Higher reproducibility

Higher yields

Faster extraction

Greater purity

Simpler extraction process

Disadvantages??

Quality/ quantity assessment

- Spectrophotometric methods such as NanoDrop are used for quantification and quality assessment.
- Spectrophotometers measure absorbance of light by DNA at 260 nm.
- Other components such as proteins absorb light at 280nm.
- The A260/280 ratio is used to measure purity (A260/280 ratios >1.8 are desired.
- Spectrophotometric methods are not as sensitive so fluorometric methods are desired.

Quality/ quantity assessment

• Fluorometric methods use fluorescent dyes that are specific for a given nucleic acid (RNA, DNA etc.)

• Fluorometric assays are more sensitive but expensive.

The do not give an idea of the sample purity

Store samples at -20 degrees or -80 degrees

A few tips

- Ensure sterility during extraction procedure.
- If using pure cultures, ensure purity and adequacy of the starting biomass.
- Use extraction controls if possible.
- Use the right kit for the right sample for the right application.
- Take note of the elution volumes and desired concentrations for downstream processing.
- Pay particular attention to labeling and sample tracking for downstream processing.
- Reduce the number freeze-thaw cycles to preserve sample integrity.

Questions??

THANK YOU