# 3.1 Puertas Lógicas Electrónica Digital y Microcontroladores

Josué Meneses Díaz

<u>josue.meneses@usach.cl</u>

Universidad de Santiago de Chile 10-04-2024

#### Objetivos

- · Introducir los conceptos básicos relacionados con la electrónica digital.
- · Definir las puertas lógicas básicas, su tabla de verdad, su símbolo y operador Lógico.
- · Equivalentes Lógicos y Ampliación de puertas.

# TABLA DE VERDAD – FUNCIÓN BOOLEANA

#### Niveles y Señal Lógica

#### **Niveles Lógicos**

- Estado Alto o HIGH (H)
  - Nivel lógico 1 (TRUE).
- Estado Bajo o LOW (L)
  - Nivel lógico 0 (FALSE).

Importante

 $1 Logico \neq 1V$ 

Por ahora

 $1 Logico \rightarrow 5V$ 

#### Señal Lógica



## Tabla de verdad y Función Booleana

- Función booleana:
- $Si \ x, y \in \{0, 1\} \rightarrow f = f(x, y) \in \{0, 1\}$
- Puede ser representa mediante una tabla de verdad.
- Las tablas de verdad son una forma de descripción funcional explícita del sistema digital.

Cantidad de combinación posibles:  $2^n$ 

Ejemplo 1. Anotar la tabla de verdad para la función F(A, B, C) = Y

| Entrada |   | da | Salida     |
|---------|---|----|------------|
| Α       | B | С  | F(A,B,C)=Y |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |
|         |   |    |            |

# **PUERTAS LÓGICAS**

#### Puertas Lógicas

- Las compuertas básicas son:
  - INVERSORA O NOT
  - AND.
  - NAND.
  - OR.
  - NOR.

# Puertas Lógicas - Inversor/NOT



Circuito Equivalente Puerta NOT/Inversor

Tabla de Verdad Puerta NOT

| Entrada | Salida  |
|---------|---------|
| Y       | $ar{Y}$ |
|         |         |
|         |         |





#### Puertas Lógicas - Inversor/NOT

# 

Diagrama del 7404. Hex inverting Gates





| Entrada | Salida         | Salida      |
|---------|----------------|-------------|
| Y       | $\overline{Y}$ | $ar{ar{Y}}$ |
| 0       | 1              | 0           |
| 1       | 0              | 1           |

#### Puertas Lógicas - Puerta OR



Tabla de Verdad Puerta OR

| Entr  | Salida |   |
|-------|--------|---|
| $x_1$ | $x_2$  | Y |
| 0     | 0      |   |
| 0     | 1      |   |
| 1     | 0      |   |
| 1     | 1      |   |

Circuito Equivalente Puerta OR





A + B Simbolo Lógico

#### Puertas Lógicas - Puerta AND



Tabla de Verdad Puerta AND

| Ent | Entrada |   |  |
|-----|---------|---|--|
| Α   | В       | Y |  |
| 0   | 0       |   |  |
| 0   | 1       |   |  |
| 1   | 0       |   |  |
| 1   | 1       |   |  |

Circuito Equivalente Puerta AND





7408 Quad AND Gate

#### Puertas Lógicas - Puerta NOR



Tabla de Verdad Puerta NOR

| Entr  | ada   | Salida |                |  |
|-------|-------|--------|----------------|--|
| $x_1$ | $x_2$ | Y      | $\overline{Y}$ |  |
| 0     | 0     | 0      | 1              |  |
| 0     | 1     | 1      | 0              |  |
| 1     | 0     | 1      | 0              |  |
| 1     | 1     | 1      | 0              |  |







7402 Quad NOR Gate

## Puertas Lógicas - Puerta NAND





#### Tabla de Verdad Puerta NAND

| Entr | ada | Sal | ida     |
|------|-----|-----|---------|
| Α    | В   | Y   | $ar{Y}$ |
| 0    | 0   | 0   |         |
| 0    | 1   | 0   |         |
| 1    | 0   | 0   |         |
| 1    | 1   | 1   |         |



7400 Quad NAND Gate

#### Equivalentes Lógicos - NAND y NOR como Inversores



| Entr | ada | Salida  |
|------|-----|---------|
| A    | A   | $ar{A}$ |
| 0    | 0   | 1       |
| 1    | 1   | 0       |



| Entr | ada | Salida  |
|------|-----|---------|
| A    | A   | $ar{A}$ |
| 0    | 0   | 1       |
| 1    | 1   | 0       |

#### Equivalentes Lógicos - NAND a OR y NOR a AND





|       | Enti  | Sal              | ida              |   |           |
|-------|-------|------------------|------------------|---|-----------|
| $x_1$ | $x_2$ | $\overline{x_1}$ | $\overline{x_2}$ | Y | $\bar{Y}$ |
| 0     | 0     | 1                | 1                | 1 | 0         |
| 0     | 1     | 1                | 0                | 0 | 1         |
| 1     | 0     | 0                | 1                | 0 | 1         |
| 1     | 1     | 0                | 0                | 0 | 1         |

|       | Ent   | Sal              | ida              |   |           |
|-------|-------|------------------|------------------|---|-----------|
| $x_1$ | $x_2$ | $\overline{x_1}$ | $\overline{x_2}$ | Y | $\bar{Y}$ |
| 0     | 0     | 1                | 1                | 1 | 0         |
| 0     | 1     | 1                | 0                | 1 | 0         |
| 1     | 0     | 0                | 1                | 1 | 0         |
| 1     | 1     | 0                | 0                | 0 | 1         |

#### Equivalentes Lógicos - NAND y NOR

$$A \longrightarrow \overline{A}$$

$$A \rightarrow B \rightarrow Y = \overline{A} + \overline{B} = A \rightarrow Y = \overline{A} + \overline{B} = A \rightarrow B \rightarrow Y = A \rightarrow Y =$$

$$A \longrightarrow \overline{A}$$

$$A \longrightarrow A \longrightarrow A$$

$$B \longrightarrow A$$

#### Importante

Las puertas lógicas NAND y NOR son módulos universales

# Equivalentes Lógicos

Ejemplo 2. ¿Cómo implementaría el siguiente circuito utilizando sólo compuertas NAND?



# Ampliación de una Puerta - AND



$$\equiv \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} - Y$$

| Е     | ntrac | Salida |   |
|-------|-------|--------|---|
| $x_1$ | $x_2$ | $x_3$  | Y |
| 0     | 0     | $x_3$  |   |
| 0     | 0     | 1      |   |
| 0     | 1     | 0      |   |
| 0     | 1     | 1      |   |
| 1     | 0     | 0      |   |
| 1     | 0     | 1      |   |
| 1     | 1     | 0      |   |
| 1     | 1     | 1      |   |

## Ampliación de una Puerta - OR



$$\equiv \begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \longrightarrow Y$$

| Entrada |       |       | Salida |
|---------|-------|-------|--------|
| $x_1$   | $x_2$ | $x_3$ | Y      |
| 0       | 0     | 0     |        |
| 0       | 0     | 1     |        |
| 0       | 1     | 0     |        |
| 0       | 1     | 1     |        |
| 1       | 0     | 0     |        |
| 1       | 0     | 1     |        |
| 1       | 1     | 0     |        |
| 1       | 1     | 1     |        |

#### Ampliación de una Puerta - NOR





| Entrada                                  |       |       | Salida |
|------------------------------------------|-------|-------|--------|
| $x_1$                                    | $x_2$ | $x_3$ | Y      |
| $\begin{bmatrix} x_1 \\ 0 \end{bmatrix}$ | 0     | $x_3$ |        |
| 0                                        | 0     | 1     |        |
| 0                                        | 1     | 0     |        |
| 0                                        | 1     | 1     |        |
| 1                                        | 0     | 0     |        |
| 1                                        | 0     | 1     |        |
| 1                                        | 1     | 0     |        |
| 1                                        | 1     | 1     |        |

# Ampliación de una Puerta - NAND





| Entrada |                                                    |       | Salida |
|---------|----------------------------------------------------|-------|--------|
| $x_1$   | $x_2$                                              | $x_3$ | Y      |
| 0       | $\begin{array}{ c c } x_2 \\ \hline 0 \end{array}$ | $x_3$ |        |
| 0       | 0                                                  | 1     |        |
| 0       | 1                                                  | 0     |        |
| 0       | 1                                                  | 1     |        |
| 1       | 0                                                  | 0     |        |
| 1       | 0                                                  | 1     |        |
| 1       | 1                                                  | 0     |        |
| 1       | 1                                                  | 1     |        |

#### Resumen

#### **Puertas Lógicas**

- Función Lógica
- Tabla de Verdad
- Niveles lógicos y Señal lógica
- Puertas lógicas
  - Inversor
  - AND
  - OR
  - NAND
  - <u>NOR</u>

#### Simulación 1

- Logisim-Evolution: Construir una puerta AND de 4-entradas utilizando solo puertas NOR de 2-entradas.
- Logisim-Evolution: Construir una puerta OR de 4-entradas utilizando solo puertas NAND de 2-entradas.

#### Próxima Sesión

Algebra Booleana

#### Referencias y Material Complementario

- Capítulo 2 Compuertas lógicas. Bignell, James W., et.al. Electrónica digital.
- Capítulo 2.7 Compuertas Lógicas Digitales. Mano, M. Morris. 2003. Diseño Digital. Pearson Educación.
- Chapter 3 Boolean Algebra and Digital Logic Gates. Section 3.1 to 3-2. Rafiquzzaman, Mohamed. Fundamentals of digital logic and microcomputer design. John Wiley & Sons.

#### **Profundizar**

- Ch. 2 Operations in Binary, Octal, and Hexadecimal Systems . Section 2.1 y 2.3. Karris,
   Steven T. Digital
- Capítulo 3 Puertas Lógicas. Floyd, Thomas L. 2006. Fundamentos de Sistemas Digitales.
   Prentice Hall.