测量电脑 storage 和 network 的性能

实验报告

一、 测量 storage 性能

1. 磁盘信息

类型: SATA 固态硬盘 大小: 244,198MB

型号: LITEON CV3-8D256

固件: T886201

磁盘数据高速缓存:已启用

原生命令排队:是 SATA 传输速率: 6 GB/s 物理扇区大小: 512 Byte 逻辑扇区大小: 512 Byte

2. 实验环境

测试工具: IOMeter

测试指标:单位时间内系统能处理的 I/O 请求数量(每秒磁盘读写次数) IOPS

3. 实验设计

由于 IOPS 与负载特征息息相关,所以实验中设计了顺序读/写,随机读/写和随机读写混合共五种负载

➤ Sequential R/W 512B/1K/4K/16K
➤ Random R/W 512B/1K/4K/16K
➤ Random 67%R+33%W 512B/1K/4K/16K

以上所有测试在两个不同时间各进行一次测试,每个 workload 的均是对

一个大小为 1000KB 的文件的部分数据进行读写。

4. 测试结果

1) 测试数据

Seq/Rand	R/W	Size	IOps		
			1st	2nd	avg
sequential	read	512B	16368.65	9818.744	13093.7
		1K	14034.95	11236.01	12635.48
		4K	12802.74	9545.743	11174.24
		16K	9528.779	5193.996	7361.388
	write	512B	12043.61	9510.67	10777.14
		1K	12180.59	10761.44	11471.02
		4K	10431.35	9166.258	9798.802
		16K	5847.057	5194.021	5520.539
random	read	512B	6496.882	4446.424	5471.653
		1K	6624.282	3818.208	5221.245
		4K	5144.381	3068.153	4106.267
		16K	2212.509	1116.878	1664.693
	write	512B	10735.11	8120.637	9427.874
		1K	9786.764	7848.56	8817.662
		4K	8999.333	6992.872	7996.103
		16K	5736.492	4187.713	4962.103
random	read	512B	5116.747	4346.207	4731.477
	67%	1K	4557.035	5140.674	4848.854
	write	4K	5098.37	3966.515	4532.442
	33%	16K	3593.131	2615.759	3104.445

2) 图表

5. 结果分析

- ◆ 序列的 IO 快于随机的 IO。
- ◆ 随 workload 的增大, IOPS 呈下降趋势。
- ◇ 对于该磁盘来说,序列读快于序列写,随机读慢于随机写。

二、 测量 network 性能

1. 实验环境

测试工具: IOMeter+DYNAMO

测试指标:

- ◆ 帯宽
- ◆ 每秒事务数
- ◆ 平均响应时间
- ◇ 最大响应时间
- ◆ 每秒包数

2. 实验设计

实验中构建了大小为 512B、4K、16K、32K 和 64K 的五种 workload,每一种均由 67%的随机读和 33%的随机写组成(模拟真实的网络请求)。实验中依次向同一 IP 发送这五种请求,每种持续 30 秒,统计各 workload 下的数据。

3. 测试结果

1) 数据

Size	MB ps	Transactions per Second	Average Response Time	Maximum Response Time	Packets/Second
512B	21.71285	42407.90404	0.046792	13.057712	4.248046
4K	113.8134	27786.47992	0.071579	15.489713	4.653065
16K	205.2629	12528.25015	0.15921	14.830086	4.002321
32K	241.3442	7365.239226	0.27107	11.682565	3.699659
64K	252.2539	3849.088916	0.519031	15.68726	4.498624

2) 图表

4. 结果分析

- ◆ 随 workload 的增大,每秒数据传输量不断上升,然后趋于平缓,可见当 workload 大小约为 64K 时,网络的数据传输能力被充分利用,因此可测 得带宽约为 250MB/s
- ◆ 随 workload 增大,每秒被处理事务数下降,平均响应时间上升,对于单个请求来说 latency 变大
- ◆ 最大响应时间和每秒传输的包的数值相对稳定,分别为 14s 和 4.2 个左右,这应该属于网络自身的属性,受负载性质影响不大