Techniques d'apprentissage IFT 603 / IFT 712

Combinaison de modèles

Par
Pierre-Marc Jodoin
/
Hugo Larochelle

1

Pourquoi utiliser un seul modèle?

- Pourquoi utiliser un seul modèle?
 - > un système combinant une multitude de modèles différents ne serait-il pas meilleur?
- En pratique, la réponse est presque toujours oui!
 - le résultat de la combinaison de plusieurs modèles est appelée ensemble ou comité

Pourquoi utiliser un seul modèle?

- La façon la plus simple d'obtenir *M* modèles est d'utiliser *M* algorithmes d'apprentissage différents :
 - > POUR i = 1 à m • Entraîner un modèle $y_{W,i}(\vec{x})$ à l'aide du i-ième algo d'entraînement
- Retourner le modèle ensemble (ou comité)
 - > Pour la régression

$$\circ \quad y_{COM}\left(\vec{x}\right) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}\left(\vec{x}\right)$$

- > Pour la classification
 - o vote majoritaire

Pourquoi utiliser un seul modèle?

- Les *M* algorithmes pourraient être le même algorithme avec avec *M* sélections d'hyperparamètres différents.
 - \triangleright POUR i = 1 à m
 - o Entraîner un modèle $y_{W,i}(\vec{x})$ à l'aide du i-ième algo d'entraînement
- Retourner le modèle ensemble (ou comité)
 - > Pour la régression

$$\circ \quad y_{COM}\left(\vec{x}\right) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}\left(\vec{x}\right)$$

- > Pour la classification
 - o vote majoritaire

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

5

Pourquoi utiliser un seul modèle?

- Même avec un seul algorithme et les mêmes hyperparamètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

Boostrap

À part pour des données synthétiques, on ne peut pas générer des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{~~\}$$

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$
- $D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$

retourner $D_{bootstrap}$

Boostrap

À part pour des données synthétiques, on ne peut pas générer des données sur demande.

Solution: **Boostraping**.

$$D_{bootstrap} = \{ \}$$

Pour N itérations

- Choisir aléatoirement un entier parmi $\{1,...,N\}$ - $D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$

-
$$D_{bootstrap} = D_{bootstrap} \cup \{(\vec{x}_n, t_n)\}$$

 ${\rm retourner}\, D_{{\it bootstrap}}$

échantillonne N exemples avec remplacement

Bagging (Boostrap AGGregatING)

- 1. Générer m ensembles d'entraînement avec **Boostrap** $\{D_1, D_2, ..., D_m\}$
- **2.** Entraı̂ner m modèles $y_{W,i}(\vec{x})$ (un pour chaque ensemble)
- **3.** Combiner les *m* modèles

Régression:
$$y_{com}(\vec{x}) = \frac{1}{m} \sum_{i=1}^{m} y_{W,i}(\vec{x})$$

Classification:
$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} y_{W,i}(\vec{x})\right)$$
 (2 classes)

$$y_{com}(\vec{x}) = \arg\max_{c} \left(\sum_{i=1}^{m} y_{W,i}(\vec{x}) \right)$$
 (K classes)

11

Illustration: classification 2Classes

1- échantillonnage avec replacement (Boostrap)

Note: un échantillon \vec{x}_j peut apparaître plusieurs fois dans un même ensemble d'entraînement D_i

Illustration: classification 2Classes

2- Entraînement

Entraîner un modèle $y_{w,i}(\vec{x})$ (peut être perceptron, SVM, noyaux, etc.) sur chaque ensemble d'entraînement

Illustration: classification 2Classes

3- Vote majoritaire

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} y_{W,i}(\vec{x})\right)$$

Illustration: classification 2Classes

3- Vote majoritaire

$$y_{com}(\vec{x}) = sign(1+1-1+1-1-1+...+1) = +1$$

Bagging

Analyse théorique de l'erreur : au tableau

Pourquoi utiliser une seul modèle?

- Même avec un seul algorithme sans hyper-paramètres, on peut améliorer sa performance à l'aide d'un ensemble.
 - > Bagging : approprié pour combiner des modèles avec une forte capacité
 - > Boosting : approprié pour combiner des modèles avec une faible capacité

AdaBoost

La méthode du boosting a pour objectif de combiner plusieurs modèles faibles (week learners) afin d'obtenir un classifieur avec une plus grande capacité.

Trois (3) différences majeures avec le Bagging.

1. Implémente une combinaison pondérée de modèles. Ex. 2 classes

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

- 2. Pas de bootstrap: chaque donnée \vec{x}_n est utilisée pour entraîner les modèles
- 3. Les données mal classées par un modèle $y_{W,i}(\vec{x})$ auront plus de poids lors de l'entraînement du prochain modèle $y_{W,i+1}(\vec{x})$

R. Schapire and Y. Freund **A decision theoretic generalization of on-line learning and an application to** 19 **Boosting** Journal of Computer and System Sciences, 1997, 55: 119-139.

AdaBoost

(illustration 2 classes)

Le modèle combiné implémente une combination pondérée des 3 classifieurs faibles

$$y_{com}(\vec{x}) = sign(\alpha_1 y_{w,1}(\vec{x}) + \alpha_2 y_{w,2}(\vec{x}) + \alpha_3 y_{w,3}(\vec{x}))$$

NOTE: plus un classifieur a une exactitude élevée, plus son α_i sera élevé. 21

AdaBoost

Idée fondamentale: chaque donnée \vec{x}_i a un **poids** β_i

Lorsque les données ont toutes un **poids égale**, alors le **modèle faible** devient un classifieur linéaire comme un **perceptron** ou une regression logistique.

Poids égaux Vs poids non égaux

AdaBoost

Les modèles de type *stumps* sont des classifieurs perpendiculaires à un axe La combinaison de modèles stumps mène à des frontières de décision "crénelées"

2 advantages: très rapide et permet d'identifier les caractéristiques utiles:

$$y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$$

Les caractéristiques utiles sont celles pour lesquelles α_i est élevé

Adaboost

1- initialiser le poids des N données d'apprentissage: $\beta_i = \frac{1}{N}$

POUR i=1 à m

2- Entraı̂ner le modèle $y_{W,i}(\vec{x})$ avec les données D et les poids $\{\beta_1,...,\beta_N\}$

3- Calculer l'erreur d'entraînement: ε_i

$$\varepsilon_i = \frac{\sum\limits_{\vec{x}_k \in \Psi} \beta_k}{\sum\limits_{N} \beta_i} \qquad \text{où Ψ l'ensemble des données mal classées}$$

4- calculer
$$\alpha_i = \ln\left(\frac{1-\varepsilon_i}{\varepsilon_i}\right)$$

5- mise à jour du poids des données mal classées par $y_{W,i}(\vec{x})$

$$\beta_n = \beta_n \exp\{\alpha_i\}$$

6- Normaliser les poids afin qu'ils somment à 1

$$\beta_k = \frac{\beta_k}{\sum_i \beta_j}$$

Le classifieur combiné: $y_{com}(\vec{x}) = sign\left(\sum_{i=1}^{m} \alpha_i y_{W,i}(\vec{x})\right)$

Adaboost 1- initialiser le poids des N données d'apprentissage: $\beta_i = \frac{1}{N} \quad \forall i$ POUR i=l à m2- Entraîner le modèle $y_{W,i}(\vec{x})$ avec les données D et les poids $\{\beta_1,...,\beta_N\}$ 3- Calculer l'erreur d'entraînement: ε_i $\varepsilon_i = \frac{\sum_{\vec{x}_i \in \Psi} \beta_k}{\sum_{i=1}^N \beta_i} \quad \text{où } \Psi \text{ l'ensemble d}$ Plus un classifieur a une erreur faible, plus son poids α_i sera élevé 5- mise à jour du poids des données mal classées par $y_{W,i}(\vec{x})$ 6- Normaliser les poids afin qu'ils somment à 1 $\beta_k = \frac{\beta_k}{\sum_{j=1}^N \beta_j}$ Le classifieur combiné: $y_{com}(\vec{x}) = sign\left(\sum_{i=1}^m \alpha_i y_{W,i}(\vec{x})\right)$ 25

Arbres de décision

Arbres de décision

Le plus gros problème des arbres de decision est qu'ils ont tendance à sur-apprendre

Example avec 2 données aberrantes:

Grosse question : soit le noeud d'un arbre dont l'erreur d'entraînement n'est pas nulle devons-nous le subdiviser ou non?

33

Arbres de décision

La décision de subdiviser ou non un noeud depend d'une notion d'"impureté" d'un noeud

Si l'impureté d'un nœud est **élevée** → alors **on subdivise** Si l'impureté d'un nœud est **faiblee** → alors **on ne subdivise pas**

Deux mesures d'impureté fréquemment utilisées

1. L'entropie

$$i(node) = -\sum_{j=1,2} P(c_j) \log_2(P(c_j))$$

où $P(c_i)$ est la proportion de données dans la classe c_i

2. L'indice de Gini

$$i(node) = 1 - \sum_{j=1,2} P^{2}(c_{j})$$

Arbres de décision

Les abres de décision peuvent également inclure des classifieurs linéaires plus généraux

Credit, Duda Hart.

J Shotton, A Fitzgibbon, M Cook, T Sharp, M Finocchio, R Moore, A Kipman, and A Blake **Real-Time Human Pose Recognition in Parts from a Single Depth Image**

Forêt d'arbres décisionnels (FAD)

(Random forests)

En gros, les FAD ont pour but de combiner m arbres de decision à l'aide d'un vote majoritaire

$$y_{FAD}(\vec{x}) = sign\left(\sum_{i=1}^{m} y_{AD,i}(\vec{x})\right)$$
 (segmentation 2 classes)

Très bonne reference!

 $https://www.stat.berkeley.edu/\!\!\sim\!\!breiman/RandomForests/cc_home.htm$

30

Entraînement d'une FAD

FOR i=1 to m

Sélectionner au hazard N données $D_i = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}, \quad \vec{x}_i \in \mathbb{R}^d$

*Sélectionner au hazard P dimensions=> $\widehat{D}_i = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}, \quad \vec{x}_i \in \mathbb{R}^p, p < d\}$

Entraı̂ner un arbre de décisions $y_{AD,i}(\vec{x})$ avec \hat{D}_i

Bootstrapping

Généralisation

Soit une nouvelle donnée $\vec{x} \in R^d$

FOR i=1 to m $C_i = y_{AD,i}(\vec{x})$

 $class = VoteMajoritaire\left(C_{1}, C_{2}, ..., C_{m}\right)$

* Afin que les erreurs produites par les AD soient les moins corrélées possible.

Métriques d'évaluation

Faux négatifs

Évaluation

Validation empirique

On obtient une matrice de confusion en contant les données bien et mal classés

 Vérité terrain

 Positifs
 Négatifs

 VP = 11
 FP=5

 FN=3
 VN=10

 $VN + FP = 15 = nombre \ TOTAL \ de \ négatifs$ $VP + FN = 14 = nombre \ TOTAL \ de \ positifs$

VP + FP = 16 = nombre d'éléments classés +1 FN + VN = 13 = nombre d'éléments classés -1

Évaluation

Validation empirique

Taux de faux positifs (TFP) = FP/(FP+VN) = 5/15

49

Évaluation

Validation empirique

Taux de faux négatifs (FNR) = FN/(FN+VP) = 3/14

Évaluation

Validation empirique

Rappel (Recall - Re) = VP/(FN+VP)=1-TFN=11/14

5

Évaluation

Validation empirique

Justesse (« accuracy », **prop. de biens classés**) = (TP+TN)/(FP+FN+TP+TN) = 21/29

Évaluation

Validation empirique

Précision (Pr) =
$$VP/(VP+FP) = 11/16$$

53

Évaluation

Vérité terrain

	Positifs	Négatifs
ı modèle Positifs	TP = 11	FP=5
Sortie du Négatifs	FN=3	TN=10

VN + FP = 15 = nombre de VRAIS négatifsVP + FN = 14 = nombre de VRAIS positifs

 $VP + FP = 16 = nombre \ d'éléments \ classés + 1$ $VP + FP = 13 = nombre \ d'éléments \ classés - 1$

Taux de faux positifs (**TFP**) = FP/(FP+VN) = 5/15Taux de faux négatifs (**TFN**) = FN/(FN+VP) = 3/14

Spécificité (\mathbf{Sp}) = VN/(FP+VN)=1-FPR=10/15 Rappel (recall - \mathbf{Re}) = VP/(VP+VN)=11/14 Précision (\mathbf{Pr}) = VP/(VP+FP) = 11/16

Justesse (Accuracy, prop. de biens classés) = (VP+VN)/(FP+FN+VP+VN) = 21/29 F-measure = 2*(Re*Pr)/(Pr+Re)=0.73

