Genetic variation – background and basic concepts

PPU-genetic epidemiology 2022

Maiken Elvestad Gabrielsen, PhD K.G. Jensen Center for Genetic Epidemiology Norwegian University of Science and Technology (NTNU)

Short introduction

Mutations and polymorphisms

Sources and causes of mutations

Different types of mutations and polymorphisms

Consequences of different variants

The Basic Concept

AATTCTCCGT ATTACTTGGC CTATTCCCCT TTAGAAGAA GAAGCAGTA AGGATTACCA GACAAGAGA CGCGTTTAGT CGAATCCGGA TTACGTACCG ATCGACCTGA

TATTCTCCGT ATTACTTGGC CTATTCCCCT TTAGAAGAA GTAGCAGTAA GGATTACCAC ACAAGAGAC **GCGTTTAGTC** CATTGCGCTT **TCAGGAATCG** TCGTAACCGT

GENETIC VARIATION

Genetic differences between individuals

The sequence of nuclear DNA is nearly 99.9% identical between any two humans

This small fraction of 0.1% difference is responsible for the genetically determined variability among humans

Created by Cara Foster from Noun Project

Different appearance of people

Different susceptibility to disease

Created by Adrien Coquet from Noun Project

Different responses to drugs or other exposures

Phenotype

The set of observable characteristics or traits of an organism

What is the difference between mutation and polymorphism?

Mutation

A change in the DNA occurring in a single cell (somatic or germline)

Polymorphism

A change in the DNA present in all cells where minor allele frequency is > 1%

Variant

All variation (including mutation and polymorphism)

Mutations in somatic cells versus germ cells

Mutation in somatic cells:

- Mutations may cause disease (e.g. cancer) in the individual carrying the mutation, but the mutation is *not* inherited by offspring.
- More than 80% of cancers may be caused by somatic mutations

Mutations in germ cells (sperm cells and oocytes):

- Mutations cause nonsymptomatic genetic polymorphisms or inheritable disease of many types.
- The mutation is transmitted to offspring

Causes of mutations

Spontaneous replication errors

- The DNA replication machinery make mistakes at a frequency of ~ 10⁻⁹ or less.
- Different polymerases have different fidelity.
- In some sequence contexts, e.g. dinucleotide or trinucleotide repeats the error frequency is higher due to "slippage" in the new strand (causing "insertions") or template (causing "deletions").

Replication over damaged bases or abasic sites in DNA

 DNA is subject to spontaneous or induced damage, e.g. from radiation, chemicals or spontaneous base lesions. This may alter base pairing properties.

If the damage is not repaired prior to replication it may cause mis-insertion of nucleotides.

In principle all genetic diseases are caused by replication errors or damage that are not repaired.

Repair of damaged DNA before replication restores normal DNA

Replication of damaged DNA before repair causes mutation and cancer, but is required for evolution and for generation of specific antibodies

Types of Mutations

Point Mutation

Only affecting one nucleotide

Small deletions or insertions

These are detected by DNA sequencing and are *not* visible by microscopy (e.g. 2-100 nucleotides)

Chromosomal aberrations

- -large can be diagnosed via microscopy
- -change in chromosome number (aneuploid cancer cells)
- -change in the gross structure of a chromosome (translocations)

Effect of a mutation on phenotype ranges from none to lethal; depending on type of mutation, and where in the genome

The genetic code - codons

Second letter

		U	С	Α	G	,			
	U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG			
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG	CGU CGC CGA CGG	UCAG			
	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU } Asn AAC } Lys AAG } Lys	AGU Ser AGC AGA AGA Arg	UCAG			
8	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GIu	GGU GGC GGA GGG	UCAG			

More on consequences of point mutations

Very much dependent on where in the triplet it occurs:

First position: 4 of 64 of bp changes are silent:

Examples: AGA→CGA (both Arg); CUA→UUA (both Leu)

Second position: only one silent mutation in stop codons:

UAA→UGA or UGA→UAA (all stop)

Third position in triplet: 70% of bp changes are silent

Mutations in non-translated DNA (introns or non-coding regions). Could affect splicing, snRNAs, regulation etc

The genetic code - codons

Second letter

		U	С	Α	G	,			
	U	UUU }Phe UUC }Leu UUG }Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG			
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIN CAG	CGU CGC CGA CGG	UCAG			
	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU } Asn AAC } Lys AAG } Lys	AGU Ser AGC AGA AGA Arg	UCAG			
8	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GIu	GGU GGC GGA GGG	UCAG			

A polymorphism has resulted from a mutation in a germ cell, and has been passed on to future generations

A polymorphism gives rise to different versions, alleles, of a particular DNA segment

Types of Genetic Variation

Single Nucleotide Polymorphism

Single Nucleotide Polymorphism

Individual A

Individual B

Different types of DNA polymorphisms

Single nucleotide variant

Insertion-deletion variant

Block substitution

Inversion variant

Copy number variant

- Allele
- Genotype

Allele

ATCGGACT

ATCGTACT

Created by Musmellow from Noun Project

Created by Musmellow from Noun Project

SNP

Genotype: GG

Homozygous

Genotype: GT

Heterozygous

Consequences of different variants

Synonymous SNP

No change in the amino acid sequence

Specialized

Non-Synonymous SNP (missense)

Changes the amino acid

Four

Sour

The effect of variants on protein function

- Loss-of-function
- Gain-of-function
- Novel property
- Abnormal expression of gene at abnormal time or place

Loss-of-function mutations

Consequences:

- Complete loss-of-function
- Reduced gene dosage
- Abolished or impaired protein fun
- Instability -> reduced abundance (

Gain-of-function

Variants in the coding region enhancing one normal function of a protein

- Variants increase production of a normal protein
 - Commonly due to increased gene dosage; duplication of part or all of a chromosome, duplication of a gene, somatic mutations in cancer cells

Phenotypic effects of variants

- Many DNA variants do not have a measurable phenotypic effect ie. not all variation lead to changes in the phenotype
- The effect of genetic variant on the phenotype can vary from slight to large or lethal.
- Many variants can affect several phenotypes: pleiotropy

Summary – key points

- Be familiar with the terms mutation, polymorphism and variant
- Know of causes of mutations
- Know what a SNP is
- Be familiar with the terms allele and genotype
- Understand the consequences some different types of variants including terms like synonymous, non-synonymous, loss and gain or gain of function.

Thank you for listening!

For enquiries, please contact me at maiken.e.gabrielsen@ntnu.no

www.ntnu.edu/huntgenes

