432 Class 4 Slides

github.com/THOMASELOVE/2019-432

2019-01-31

SMART BRFSS 2017 data: A New Pull

Missingness?

colSums(is.na(smart2_raw))

bmi	female	alcdays	genhealth	personcode
323	0	46	11	0
mmsaname	seatbelt	exerany	weight_kg	${\tt height_m}$
0	26	13	296	84

Simple Imputation and Re-calculating of BMI

```
set.seed(20190131)
smart2 <- smart2 raw %>%
    impute cart(seatbelt ~ mmsaname) %>%
    impute_pmm(exerany ~ mmsaname) %>%
    impute pmm(height m ~ exerany + female) %>%
    impute pmm(weight kg ~ exerany + female) %>%
    impute cart(genhealth ~ mmsaname + weight kg) %>%
    impute_pmm(alcdays ~ mmsaname + female) %>%
    mutate(bmi = weight_kg / (height_m^2))
colSums(is.na(smart2))
```

```
        personcode
        genhealth
        alcdays
        female
        bmi

        0
        0
        0
        0
        0

        height_m
        weight_kg
        exerany
        seatbelt
        mmsaname

        0
        0
        0
        0
        0
```

Saving as an R data set

```
saveRDS(smart2, "data/smart2.rds")
```

Now, we could have started with . . .

```
smart2 <- readRDS("data/smart2.rds")</pre>
```

and ignored everything except for the package loading.

Using mosaic::inspect

mosaic::inspect(smart2)

```
categorical variables:
       name class levels n missing
1 personcode character 6277 6277
  genhealth factor 5 6277
 seatbelt factor 2 6277
3
4
   mmsaname character 6 6277
                                distribution
1 1 (0%), 10 (0%), 100 (0%) ...
2 2 VeryGood (32.8%), 3 Good (31.7%) ...
3 Yes (88.2%), No (11.8%)
4 (%) ...
```

quantitative variables:

name class

min

Q1

median

QЗ

mosaic::inspect(smart2)

name <chr></chr>	class <chr></chr>	levels <int></int>	n <int></int>	missing <int></int>	distribution <chr></chr>
personcode	character	6277	6277	0	1 (0%), 10 (0%), 100 (0%)
genhealth	factor	5	6277	0	2_VeryGood (32.8%), 3_Good (31.7%)
seatbelt	factor	2	6277	0	Yes (88.2%), No (11.8%)
mmsaname	character	6	6277	0	(%)
bmigroup	factor	4	6277	0	[25.0,30.0) (36.9%)

name <chr></chr>	class <chr></chr>	min <dbl></dbl>	Q1 <dbl></dbl>	median «dbl»	Q3 <dbl></dbl>	max «dbl»	mean «dbl»	sd <dbl></dbl>	n <int></int>
alcdays	numeric	0.00000	0.0000	0.00000	4.00000	30.00000	4.3506452	7.6882082	6277
female	numeric	0.00000	0.0000	1.00000	1.00000	1.00000	0.5830811	0.4930885	6277
bmi	numeric	12.17018	24.3372	27.60355	31.82532	75.52133	28.7198241	6.5132396	6277
height_m	numeric	1.35000	1.6300	1.68000	1.78000	2.06000	1.6942345	0.1040645	6277
weight_kg	numeric	31.75000	68.0400	79.38000	92.99000	208.65000	82.7418225	21.2671513	6277
exerany	numeric	0.00000	0.0000	1.00000	1.00000	1.00000	0.6899793	0.4625386	6277

Using female to model bmi

```
ggplot(smart2, aes(x = factor(female), y = bmi)) +
  geom_boxplot() + theme_bw()
```


Using alcdays to model bmi

```
ggplot(smart2, aes(x = alcdays, y = bmi)) +
  geom_point() + geom_smooth(method = "lm") + theme_bw()
```


Using alcdays to model bmi, stratified by female

alcdays, female and interaction to model bmi

Building Two Models

We'll predict bmi using female and alcdays...

and their interaction

```
model_2i <- lm(bmi ~ female * alcdays, data = smart2)</pre>
```

without their interaction

```
model_2no <- lm(bmi ~ female + alcdays, data = smart2)</pre>
```

ANOVA comparison for Nested Models

```
anova(model_2i, model_2no)
Analysis of Variance Table
Model 1: bmi ~ female * alcdays
Model 2: bmi ~ female + alcdays
  Res.Df RSS Df Sum of Sq F Pr(>F)
   6273 262619
2 6274 263070 -1 -451.24 10.778 0.001032 **
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comparing Nested Models via glance

```
glance(model_2i) %>% round(., 2) %>% print.data.frame
    r.squared adj.r.squared sigma statistic p.value df
1    0.01    0.01 6.47 28.85 0 4
    logLik AIC BIC deviance df.residual
1 -20625.25 41260.49 41294.21 262618.9 6273
glance(model_2no) %>% round(., 2) %>% print.data.frame
```

```
r.squared adj.r.squared sigma statistic p.value df
1 0.01 0.01 6.48 37.83 0 3
logLik AIC BIC deviance df.residual
1 -20630.63 41269.27 41296.25 263070.1 6274
```

Predictions with model_2i

```
tidy(model_2i) %>% print.data.frame
```

```
term estimate std.error statistic

(Intercept) 29.27018647 0.15145149 193.264430

female -0.27412942 0.19301062 -1.420282

alcdays -0.05764733 0.01461732 -3.943768

female:alcdays -0.07076169 0.02155357 -3.283062

p.value

0.000000e+00

1.555754e-01

3.108538e-05

4.032485e-03
```

Interpreting the Interaction Model

With interaction, the model is

bmi = 29.26 - 0.27 female - 0.06 alcdays - 0.07 female x alcdays

- What is the predicted bmi for a male who used alcohol on 10 of the last 30 days?
- What is the predicted bmi for a female who used alcohol on 10 of the last 30 days?

Interpreting the Interaction Model

With interaction, the model is

bmi = 29.26 - 0.27 female - 0.06 alcdays - 0.07 female x alcdays

So, for males, the model is:

bmi = 29.26 - 0.06 alcdays

And, for females, the model is:

 $\mathtt{bmi} = (29.26 - 0.27) + (-0.06 - 0.07) \; \mathtt{alcdays}, \; \mathtt{or} \; 28.99 - 0.13 \; \mathtt{alcdays}$

Both the slope and the intercept of the bmi - alcdays model depend on female.

Predictions with the Main Effects Model

```
tidy(model_2no)
```

```
# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl> 1 (Intercept) 29.5 0.141 209. 0.
2 female -0.589 0.168 -3.51 4.44e- 4
3 alcdays -0.0902 0.0108 -8.39 5.96e-17
```

```
bmi = 29.46 - 0.59 \text{ female} - 0.09 \text{ alcdays}
```

- What is the predicted bmi for a male who used alcohol on 10 of the last 30 days?
- What is the predicted bmi for a female who used alcohol on 10 of the last 30 days?

Interpreting the Main Effects Model

Without the interaction, the model is

bmi = 29.46 - 0.59 female - 0.09 alcdays

So, for males, the model is:

bmi = 9.46 - 0.59 female - 0.09 alcdays

And, for females, the model is:

bmi = (29.46 - 0.59) - 0.09 alcdays, or 28.87 - 0.09 alcdays

Only the intercept of the bmi - alcdays model depends on female.

 The change in bmi per additional day of alcohol use does not depend on sex.

What if we had a multi-categorical factor?

Suppose we want to study the impact of both exerany and genhealth on BMI.

```
smart2 %>% count(genhealth)
```

```
# A tibble: 5 x 2
genhealth n
<fct> <int>
1 1_Excellent 872
2 2_VeryGood 2057
3 3_Good 1987
4 4_Fair 991
5 5 Poor 370
```

Does it seem like we need to collapse any levels here?

Collapsing?

smart2 %>% count(genhealth, exerany)

```
# A tibble: 10 \times 3
  genhealth exerany
  <fct> <dbl> <int>
 1 1 Excellent
                        124
              1 748
2 1 Excellent
3 2_VeryGood
                    0 474
4 2_VeryGood
                       1583
 5 3_Good
                    0
                        651
6 3 Good
                       1336
7 4 Fair
                        464
8 4 Fair
                        527
                        233
 9 5 Poor
                        137
10 5 Poor
```

Now does it seem like we need to collapse any levels here?

Cross-Tabulation?

```
smart2 %>% tabyl(genhealth, exerany)
```

```
genhealth 0 1
1_Excellent 124 748
2_VeryGood 474 1583
3_Good 651 1336
4_Fair 464 527
5 Poor 233 137
```

Distribution of bmi by genhealth?

Boxplots with variable widths?

```
ggplot(smart2, aes(x = genhealth, y = bmi)) +
    geom_boxplot(varwidth = TRUE) + theme_bw()
```


Summary Statistics?

```
mosaic::favstats(bmi ~ genhealth, data = smart2)
```

```
genhealth min Q1 median Q3
                                                   max
1 1_Excellent 16.25310 23.03495 25.60879 28.25260 50.40000
  2_VeryGood 15.19440 24.32872 27.25224 30.48356 75.52133
3
      3 Good 15.30622 25.05365 28.49379 32.58449 74.97521
4
      4 Fair 12.17018 25.17792 29.32571 34.86687 58.97888
5
      5 Poor 13.29938 24.32673 29.38125 35.84917 64.34948
               sd n missing
     mean
1 26.04942 4.496603 872
2 27.83312 5.442950 2057
3 29.50860 6.659790 1987
4 30.57877 7.581389 991
5 30.72796 8.826062 370
```

bmi by genhealth and exerany?

Code for Previous Slide

```
ggplot(smart2, aes(x = bmi)) +
   geom_histogram(bins = 20) +
   theme_bw() +
   facet_grid(exerany ~ genhealth, labeller = "label_both")
```

Boxplots instead?

Code for previous plot

Can we use favstats for two factors at once?

```
genhealth.exerany
                     mean
                                   sd
                                         n missing
1
      1 Excellent.0 27.64487 5.320510
                                      124
       2 VeryGood.0 28.94985 6.479965 474
3
           3 Good.0 30.33703 7.438949
                                       651
           4 Fair.0 31.26841 7.859391
                                      464
4
5
           5 Poor.0 31.18231 9.226123
                                      233
6
      1 Excellent.1 25.78493 4.292097
                                      748
       2_VeryGood.1 27.49874 5.046002 1583
8
           3 Good.1 29.10493 6.208035 1336
9
           4 Fair.1 29.97157 7.281440 527
10
           5 Poor.1 29.95524 8.074475 137
```

Table of Means and Standard Deviations

```
smart2 %>% group_by(genhealth, exerany) %>%
   summarize(mean.bmi = mean(bmi), sd.bmi = sd(bmi))
# A tibble: 10 \times 4
 Groups: genhealth [?]
  genhealth exerany mean.bmi sd.bmi
  <fct>
                <dbl>
                        <dbl> <dbl>
 1 1_Excellent
                         27.6 5.32
2 1_Excellent
                         25.8 4.29
3 2 VeryGood
                         28.9 6.48
4 2 VeryGood
                     27.5 5.05
                         30.3 7.44
 5 3 Good
                         29.1 6.21
6 3 Good
                         31.3 7.86
7 4 Fair
8 4 Fair
                         30.0 7.28
 9 5_Poor
                         31.2 9.23
```

10 5 Poor

8.07

Check interaction first with means plot?

Means Plot code

```
pd <- position_dodge(0.2)
smart sum <- smart2 %>%
    group by (genhealth, exerany) %>%
    summarize(mean.bmi = mean(bmi), sd.bmi = sd(bmi))
ggplot(smart_sum, aes(x = genhealth, y = mean.bmi,
                       col = factor(exerany))) +
    geom errorbar(aes(ymin = mean.bmi - sd.bmi,
                      ymax = mean.bmi + sd.bmi),
                  width = 0.2, position = pd) +
    geom_point(size = 2, position = pd) +
    geom_line(aes(group = factor(exerany)), position = pd) +
    scale_color_discrete(name = "Any Exercise?") +
    theme bw() +
    labs(y = "Body Mass Index",
         x = "Self-Reported General Health",
         title = "BMI by General Health, Exercise",
         subtitle = "Means +/- Standard Deviations")
```

ANOVA with and without interaction term

```
model_3no <- lm(bmi ~ genhealth + exerany, data = smart2)
model_3i <- lm(bmi ~ genhealth * exerany, data = smart2)
anova(model_3i)</pre>
```

Analysis of Variance Table

```
Response: bmi

Df Sum Sq Mean Sq F value Pr(>F)

genhealth 4 13988 3497.1 87.6981 < 2.2e-16 ***

exerany 1 2306 2306.2 57.8321 3.274e-14 ***

genhealth:exerany 4 39 9.8 0.2462 0.9121

Residuals 6267 249908 39.9

---

Signif. codes:
0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Does the interaction have a meaningful impact?

- Means plot is essentially parellel: no clear interaction.
- SS(interaction) = 39, SS(Total) = 249908, so $\eta^2 = .00016$ or 0.016%
- p value for interaction term is 0.91

What does this imply about which model might be more helpful?

Making Predictions with model_3no

- Anna exercises and is in very good health.
- Brad doesn't exercise and is in poor health.

```
round(coef(model_3no),2)
```

```
(Intercept) genhealth2_VeryGood genhealth3_Good 27.22 1.66 3.21 genhealth4_Fair genhealth5_Poor exerany 4.09 4.01 -1.36
```

Making Predictions with model_3i

- Anna exercises and is in very good health.
- Brad doesn't exercise and is in poor health.

round(coef(model_3i),2)

```
(Intercept)
                                      genhealth2 VeryGood
                       27.64
                                                      1.30
            genhealth3 Good
                                          genhealth4 Fair
                                                      3.62
                        2.69
            genhealth5_Poor
                                                  exerany
                        3.54
                                                     -1.86
genhealth2_VeryGood:exerany
                                 genhealth3 Good:exerany
                        0.41
                                                      0.63
    genhealth4_Fair:exerany
                                 genhealth5_Poor:exerany
                        0.56
                                                      0.63
```

Predictions

```
newpeople <- tibble(</pre>
    name = c("Anna", "Brad"),
    genhealth = c("2 VeryGood", "5 Poor"),
    exerany = c(1, 0)
predict(model_3no, newdata = newpeople)
27.51911 31.23254
predict(model_3i, newdata = newpeople)
```

27,49874 31,18231

What if we add in alcdays?

Analysis of Variance Table

```
Response: bmi

Df Sum Sq Mean Sq F value Pr(>F)

alcdays 1 2654 2654.4 66.8526 3.511e-16 ***
genhealth 4 12655 3163.7 79.6799 < 2.2e-16 ***
exerany 1 2109 2109.4 53.1260 3.514e-13 ***
genhealth:exerany 4 33 8.2 0.2067 0.9348
Residuals 6266 248791 39.7

---
Signif. codes:
```

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Coming Up

Building Linear Regression Models

- Using Stepwise Regression to Select Variables (review)
- Using Best Subsets approaches to Select Variables (new)
 - Mallows' C_p , Adjusted R^2 , Corrected AIC, BIC
- Box-Cox plots to motivate outcome transformation (review)
- Spearman ρ^2 Plot to help motivate non-linearity via transformations and interaction terms in Linear Regression (new)
- Cross-Validation of Linear Regression Models (old and new)

to be followed by ...

Logistic Regression Models for Binary Outcomes