RA-CLIP: Retrieval Augmented Contrastive Language-Image Pre-training

CVPR 2023

Chen-Wei Xie, Siyang Sun, Xiong Xiong, Yun Zheng, Deli Zhao, Jingren Zhou Alibaba Group 2024, 03, 15

> 발제자: 윤예준

연구 배경

- 전통적인 visual representation learning systems
 - 고정된 이미지 카테고리 데이터셋을 활용하여 학습 → 한계점: 학습 외의 visual concepts가 들어오면 새로운 학습 데이터셋이 필요함
- 대안 방법: CLIP*
 - 대규모 이미지-텍스트 쌍을 학습하여 다양한 visual semantic concepts을 암기
 → 한계점: 대규모 이미지-텍스트 쌍과 다양한 visual semantic concepts를 암기할 수 있는 모델 필요함

• 한계점을 완화하기 위한 연구로 DeCLIP*, SLIP*가 있지만 여전히 동일한 문제 존재

연구 목표

- Retrieval Augmented을 활용하여 기존보다 효율적인 대조학습 이미지-텍스트 사전학습 프레임워크 제안
 - Reference Set(Cheat sheet)을 활용하여 image representation의 질을 높임

Overview of the proposed RA-CLIP

방법

- Reference Image-Text Retrieval
 - unsupervised pre-trained image encoder 사용
 - query, reference set 모두 같은 encoder를 이용하여 이미지 임베딩 추출 및 유사도 비교하여 Top-K image-text pair 추출 (FAISS 사용)

방법

Retrieval Augmented Module (RAM)

$$\mathbf{e}_{k}^{I} = \phi(\mathbf{r}_{k}^{I}),$$

$$\mathbf{e}_{k}^{T} = \psi(\mathbf{r}_{k}^{T}).$$
(1)

$$\mathbf{a}_{i}^{T} = MultiheadAttn(\mathbf{v}_{i}, \left\{\mathbf{e}_{k}^{I}\right\}_{k=1}^{K}, \left\{\mathbf{e}_{k}^{T}\right\}_{k=1}^{K}). \tag{2}$$

$$\mathbf{a}_{i}^{I} = MultiheadAttn(\mathbf{v}_{i}, \left\{\mathbf{e}_{k}^{T}\right\}_{k=1}^{K}, \left\{\mathbf{e}_{k}^{I}\right\}_{k=1}^{K}). \tag{3}$$

$$\mathbf{v}_i' = \mathbf{v}_i + \mathbf{a}_i^T + \mathbf{a}_i^I, \tag{4}$$

Loss Function

$$\mathcal{L}_{v2t} = -log(\frac{exp(\sigma(\mathbf{t}_i, \mathbf{v}_i')/\tau)}{\sum_{j=1}^{N} exp(\sigma(\mathbf{t}_i, \mathbf{v}_j')/\tau)}),$$
 (5)

$$\mathcal{L}_{t2v} = -log(\frac{exp(\sigma(\mathbf{v}_i', \mathbf{t}_i)/\tau)}{\sum_{j=1}^{N} exp(\sigma(\mathbf{v}_i', \mathbf{t}_j)/\tau)}), \quad (6)$$

$$\mathcal{L} = \mathcal{L}_{t2v} + \mathcal{L}_{v2t}. \quad (7)$$

$$\mathcal{L} = \mathcal{L}_{t2v} + \mathcal{L}_{v2t}.\tag{7}$$

구성 요소

- Data
 - Pre-training set
 - 13 million English subset of YFCC* dataset
 - Reference set
 - 1.6 million (about 1/10 amount of pre-train dataset)
- Architecture
 - Image encoder: ViT-B/32
 - Text encoder: BERT-base
 - φ: DINO-S/8*
 - ψ : Sentence Transformer
- Optimization
 - Batch size: 4,096
 - Epoch: 32
 - Optimizer: LAMB
 - Learning Rate: 2.5e-3

- Visual recognition datasets 평가
 - 대부분 datasets에서 CLIP 등 다양한 기존 모델들보다 좋은 성능을 보임

• **1-3**: 인코더

• 1 vs 4: Pretrain Dataset

• 4 vs 6: Method

• 5-7: Reference Dataset

• 6 vs 8: pre-trained text encoder

ID	Method	Init. of Image Enc.	Init. of Text Enc.	Pretrain Dataset	Reference Dataset	ϕ	ψ	ImageNet Top-1
1	CLIP	ViT rand.	BERT	YFCC	×	×	X	37.7
2	CLIP	DINO-S	SentenceT	YFCC	×	×	×	21.0
3	CLIP	ViT IN1K	BERT	YFCC	×	×	×	46.1
4	CLIP	ViT rand.	BERT	YFCC+CC	×	×	×	42.1
5	RA-CLIP	ViT rand.	BERT	YFCC	YFCC	SentenceT	DINO-S	53.5
6	RA-CLIP	ViT rand.	BERT	YFCC	CC	SentenceT	DINO-S	54.5
7	RA-CLIP	ViT rand.	BERT	YFCC	LAION	SentenceT	DINO-S	54.2
8	RA-CLIP	ViT rand.	BERT	YFCC	CC	Text Encoder	DINO-S	54.4

- Different amounts of reference data
 - reference set의 scale이 커질 수록 더 좋은 표현을 얻을 수 있음을 보여줌

- Different hyper-parameters and design choices
 - Augment Text 적용시 성능 하락
 → text sentence는 덜 유익하고 검색된
 이미지-

텍스트 쌍이 더 다양하며 올바른 정보를

가져오지 못할 수 있다고 추측

Method	Augment Image		Fusion Type	K	ImageNet Top-1
RAM	_	X	\mathbf{a}_i^T	64	52.1
RAM	V	X	$\mathbf{a}_i^T + \mathbf{a}_i^I$	64	51.8
RAM	V	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	64	54.5
RAM	V	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	16	54.3
RAM	V	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	128	53.9
RAM	√		$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	64	53.1

- Different amounts of reference data
 - reference set의 scale이 커질 수록 더 좋은 표현을 얻을 수 있음을 보여줌

- Different hyper-parameters and design choices
 - Augment Text 적용시 성능 하락
 → text sentence는 덜 유익하고 검색된
 이미지-

텍스트 쌍이 더 다양하며 올바른 정보를

가져오지 못할 수 있다고 추측

Method	Augment Image	Augment Text	Fusion Type	K	ImageNet Top-1
RAM	✓	X	\mathbf{a}_i^T	64	52.1
RAM	✓	X	$\mathbf{a}_i^T + \mathbf{a}_i^I$	64	51.8
RAM	✓	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	64	54.5
RAM	✓	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	16	54.3
RAM	✓	X	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	128	53.9
RAM	✓	√	$\mathbf{a}_i^T + \mathbf{a}_i^I + \mathbf{v}_i$	64	53.1

- Zero-shot ROI classification
 - LVIS, COCO 데이터셋에 대하여 ROI classification 진행
 - Regin CLIP*보다 Small objects and medium objects에 대하여 더 잘하는 것을 확인

Method	LVIS				COCO			
Method	AP	APs	APm	AP1	AP	APs	APm	AP1
Regin CLIP	21.6	8.7	31.0	45.7	44.4	21.9	51.0	61.8
Regin CLIP Region RA-CLIP	23.2	10.9	34.2	44.9	48.4	29.3	57.9	61.9

결론

- Contrastive language-image pre-training을 위해 학습 데이터의 효율적인 활용 방법 제시
- Retrieval Augmented Contrastive Image-Language Pre-training 프레임워크 제안
- Visual recognition down-stream task에서 zero-shot, linear prob 분류 방법 모두 기존 모델들보다 뛰어난 성능을 보임

감사합니다.