# **Computer Architecture**

# **Lecture 8 Computer Arithmetic**

# **Arithmetic & Logic Unit (ALU)**

- ALU is a part of the computer that actually performs arithmetic and logical operation on the data.
- All of other elements of the computer system-control unit, registers, memory, I/O- are there mainly to bring data into ALU for it to process and then to take the results back out.
- Handles integers
- May handle floating point (real) numbers
- May be separate maths co-processor

#### **ALU Inputs and Outputs**



- ALU is interconnected with the processor
- Data are presented to the ALU in registers, and the results of an operation are stored in registers
- These registers are temporary storage locations within the processor
- The ALU may also set flags as the result of operation (e.g., an overflow flag is set to 1 if the result of computation exceeds the length of the register into which it is to be stored).
- The control unit provides signals that controls the operation of the ALU and the movement of the data into and out of the ALU

#### **Integer Representation**

- In the binary number system, arbitrary numbers can be represented with only 0 & 1, the minus sign, and the period (radix point)
- For purpose of computer storage and processing, we do not have benefit of minus sign and periods
- If we are limited to nonnegative integers, the representation is straightforward.
- Positive numbers stored in binary
   -e.g. 41=00101001

## Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- 1 means negative
- $\bullet$  +18 = 00010010
- -18 = 10010010 (sign magnitude)
- Problems to sign magnitude representation
  - Need to consider both sign and magnitude in arithmetic
  - Two representations of zero (+0 and -0)
  - +0 = 00000000, -0 =
    10000000 (sign
    magnitude)

| Decimal<br>Representation | Sign-Magnitude<br>Representation | Twos Complement<br>Representation |
|---------------------------|----------------------------------|-----------------------------------|
| +8                        | _                                | _                                 |
| +7                        | 0111                             | 0111                              |
| +6                        | 0110                             | 0110                              |
| +5                        | 0101                             | 0101                              |
| +4                        | 0100                             | 0100                              |
| +3                        | 0011                             | 0011                              |
| +2                        | 0010                             | 0010                              |
| +1                        | 0001                             | 0001                              |
| +0                        | 0000                             | 0000                              |
| -0                        | 1000                             | _                                 |
| -l                        | 1001                             | 1111                              |
| -2                        | 1010                             | 1110                              |
| -3                        | 1011                             | 1101                              |
| -4                        | 1100                             | 1100                              |
| -5                        | 1101                             | 1011                              |
| -6                        | 1110                             | 1010                              |
| <b>-</b> 7                | 1111                             | 1001                              |
| -8                        | _                                | 1000                              |

## **Two's Compliment**

- Like sign magnitude, twos complement representation uses the most significant bit as a sign bit (whether the integer is positive or negative)
- But representation is different (Table 9.2, Page 280)
- +3 = 00000011
- +2 = 00000010
- +1 = 00000001
- +0 = 00000000
- -1 = 111111111
- -2 = 111111110
- -3 = 111111101

| Decimal<br>Representation | Sign-Magnitude<br>Representation | Twos Complement<br>Representation |
|---------------------------|----------------------------------|-----------------------------------|
| +8                        | _                                | _                                 |
| +7                        | 0111                             | 0111                              |
| +6                        | 0110                             | 0110                              |
| +5                        | 0101                             | 0101                              |
| +4                        | 0100                             | 0100                              |
| +3                        | 0011                             | 0011                              |
| +2                        | 0010                             | 0010                              |
| +1                        | 0001                             | 0001                              |
| +0                        | 0000                             | 0000                              |
| -0                        | 1000                             | _                                 |
| -l                        | 1001                             | 1111                              |
| -2                        | 1010                             | 1110                              |
| -3                        | 1011                             | 1101                              |
| -4                        | 1100                             | 1100                              |
| -5                        | 1101                             | 1011                              |
| -6                        | 1110                             | 1010                              |
| -7                        | 1111                             | 1001                              |
| -8                        | _                                | 1000                              |

#### **Benefits**

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy

```
-3 = 00000011
```

—Boolean complement gives 11111100

—Add 1 to LSB 11111101

# **Geometric Depiction of Twos Complement Integers**





## **Negation Special Case 1**

- $\bullet$  0 = 00000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 00000000
- Overflow is ignored, so:
- - 0 = 0  $\sqrt{ }$

#### **Negation Special Case 2**

- $\bullet$  -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- $\bullet$  -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

#### **Range of Numbers**

8 bit 2s compliment

```
-+127 = 011111111 = 2^7 - 1
--128 = 10000000 = -2^7
```

16 bit 2s compliment

#### **Conversion Between Lengths**



(a) An eight-position two's complement value box



(b) Convert binary 10000011 to decimal

(c) Convert decimal -120 to binary

Figure 9.2 Use of a Value Box for Conversion Between Twos Complement Binary and Decimal

#### **Conversion Between Lengths**

- Positive number pack with leading zeros
- $\bullet$  +18 = 00010010
- $\bullet$  +18 = 00000000 00010010
- Negative numbers pack with leading ones
- $\bullet$  -18 = 10010010
- $\bullet$  -18 = 11111111 10010010
- i.e. pack with MSB (sign bit)

#### **Addition and Subtraction**

- Normal binary addition
- Carry bit beyond the end of word (shading), which is ignored
- Monitor sign bit for overflow

| $   \begin{array}{rcl}     & 1001 & = & -7 \\     & +0101 & = & 5 \\     & 1110 & = & -2 \\     & (a) (-7) + (+5)   \end{array} $ | $   \begin{array}{rcl}     & 1100 & = & -4 \\     & +0100 & = & 4 \\     & 10000 & = & 0 \\     & (b) (-4) + (+4)   \end{array} $ |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0011 = 3  + 0100 = 4  0111 = 7  (c) (+3) + (+4)                                                                                   | 1100 = -4  +1111 = -1  11011 = -5  (d) (-4) + (-1)                                                                                |
| 0101 = 5<br>+ $0100 = 4$<br>1001 = Overflow<br>(e) (+5) + (+4)                                                                    | 1001 = -7  +1010 = -6  10011 = Overflow  (f) (-7) + (-6)                                                                          |

Figure 9.3 Addition of Numbers in Twos Complement Representation

#### **Addition and Subtraction**

 Subtraction rule: Take twos compliment of subtrahend and add to minuend

$$-i.e. a - b = a + (-b)$$

 So, we only need addition and complement circuits

#### **Addition and Subtraction**

$$\begin{array}{c} 0010 = 2 \\ + \frac{1001}{1011} = -7 \\ \hline 1011 = -5 \\ \end{array} \qquad \begin{array}{c} 0101 = 5 \\ + \frac{1110}{10011} = -2 \\ \hline 10011 = 3 \\ \end{array}$$

$$(a) \ M = 2 = 0010 \\ S = 7 = 0111 \\ -S = 1001 \\ \end{array} \qquad \begin{array}{c} (b) \ M = 5 = 0101 \\ S = 2 = 0010 \\ -S = 1110 \\ \end{array}$$

$$\begin{array}{c} 1011 = -5 \\ + \frac{1110}{1001} = -7 \\ \end{array} \qquad \begin{array}{c} 0101 = 5 \\ + 0010 \\ -S = 1110 \\ \end{array}$$

$$(c) \ M = -5 = 1011 \\ S = 2 = 0010 \\ -S = 1110 \\ \end{array} \qquad \begin{array}{c} (d) \ M = 5 = 0101 \\ S = -2 = 1110 \\ -S = 0010 \\ \end{array}$$

$$\begin{array}{c} 0111 = 7 \\ + \frac{0111}{110} = 7 \\ + \frac{0111}{110} = 0 \\ \end{array} \qquad \begin{array}{c} 1010 = -6 \\ + \frac{1100}{1010} = -4 \\ \hline 10110 = 0 \\ \end{array}$$

$$(e) \ M = 7 = 0111 \\ S = -7 = 1001 \\ -S = 0111 \\ \end{array} \qquad \begin{array}{c} (f) \ M = -6 = 1010 \\ S = 4 = 0100 \\ -S = 1100 \\ \end{array}$$

Figure 9.4 Subtraction of Numbers in Twos Complement Representation (M – S)

#### **Hardware for Addition and Subtraction**



OF = overflow bit

SW = Switch (select addition or subtraction)

#### **Multiplication**

- Complex
- Work out partial product for each digit
- Take care with place value (column)
- Add partial products

#### **Multiplication Example**

- 1011 Multiplicand (11 dec) [M]
- x 1101 Multiplier (13 dec) [Q]
- 1011 Partial products
- 0000 Note: if multiplier bit is 1 copy
- 1011 multiplicand (place value)
- 1011 otherwise zero
- 10001111 Product (143 dec)
- Note: need double length result

# **Unsigned Binary Multiplication**



# **Execution of Example**

| C | A    | Q    | M    |              |   |                 |
|---|------|------|------|--------------|---|-----------------|
| 0 | 0000 | 1101 | 1011 | Initia       | 1 | Values          |
| 0 | 1011 | 1101 | 1011 | Add<br>Shift | ſ | First           |
| 0 | 0101 | 1110 | 1011 | Shift        | 5 | Cycle           |
| 0 | 0010 | 1111 | 1011 | Shift        | } | Second<br>Cycle |
| 0 | 1101 | 1111 | 1011 | Add          | ſ | Third<br>Cycle  |
| 0 | 0110 | 1111 | 1011 | Add<br>Shift | 5 | Cycle           |
| 1 | 0001 | 1111 | 1011 | Add<br>Shift | 7 | Fourth<br>Cycle |
| 0 | 1000 | 1111 | 1011 | Shift        | 5 | Cycle           |

# Flowchart for Unsigned Binary Multiplication



### **Multiplying Negative Numbers**

- This does not work!
- Solution 1
  - —Convert to positive if required
  - —Multiply as above
  - —If signs were different, negate answer
- Solution 2
  - —Booth's algorithm

# **Booth's Algorithm**



# **Example of Booth's Algorithm**



| ial Values             | Initial      | M<br>0111    | Q <sub>-1</sub><br>0 | Q<br>0011    | A<br>0000    |
|------------------------|--------------|--------------|----------------------|--------------|--------------|
| A - M } First<br>Cycle | A A<br>Shift | 0111<br>0111 | 0<br>1               | 0011<br>1001 | 1001<br>1100 |
| Second<br>Cycle        | Shift        | 0111         | 1                    | 0100         | 1110         |
| A + M } Third<br>Cycle | A A<br>Shift | 0111<br>0111 | 1                    | 0100<br>1010 | 0101<br>0010 |
| Fourth<br>Cycle        | Shift        | 0111         | 0                    | 0101         | 0001         |

#### **Division**

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

#### **Division of Unsigned Binary Integers**



# Flowchart for Unsigned Binary Division



#### **Real Numbers**

- Numbers with fractions
- Could be done in pure binary

$$-1001.1010 = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

- Where is the binary point?
- Fixed?
  - -Very limited
- Moving?
  - —How do you show where it is?

# **Floating Point**



- +/- .significand x 2<sup>exponent</sup>
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

#### **Floating Point Examples**



(a) Format

(b) Examples

## **Signs for Floating Point**

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
  - -e.g. Excess (bias) 128 means
  - -8 bit exponent field
  - —Pure value range 0-255
  - -Subtract 128 to get correct value
  - -Range -128 to +127

#### **Normalization**

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123 x 10<sup>3</sup>)

#### **FP Ranges**

- For a 32 bit number
  - -8 bit exponent
  - $-+/-2^{256}\approx 1.5 \times 10^{77}$
- Accuracy
  - —The effect of changing lsb of mantissa
  - -23 bit mantissa  $2^{-23} \approx 1.2 \times 10^{-7}$
  - —About 6 decimal places

#### **Expressible Numbers**



(a) Twos Complement Integers



(b) Floating-Point Numbers

## **Density of Floating Point Numbers**



#### FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

#### **FP Addition & Subtraction Flowchart**



#### **FP Arithmetic** x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

# **Floating Point Multiplication**



# **Floating Point Division**

