2021-06-17

Wall-crossing for Newton-Okounkov bodies

Wall Crossing for Newton-Okounkov bodies

joint work with Megumi Itarada

Outline: (1) Newton-Okounkon bodies

2 Wall-Cnossing for NO-bodies

The Newton polytope of f= I coxx e C[x1177 xn]

is New+(f) := conv {d \ Cx ≠0}.

Newt $(3x_1^2 + x_2 - 1) = (6,1)$

Bernslein-Khonanskii-Kuchnirenko Thm: ASZ frite

fi..., field the number of solutions to fi= ... = fin=0 LA= { \(\subseteq \subseteq \cdot \subseteq \ in (C*) is n! vol (conv (A)).

△≤112° polytope ~~ Xa⊆17° projective toric Variety $n!vol(\Delta) = deg(X_{\Delta})$

X, irreducible projective variety over $\mathbb C$ $\mathbb A$, homogeneous coordinate ring of X

NO-bodies [Okounkov, Lazarsfeld-Mustafa,

Kaveh-Khovanskii]

valuation on A mome convox body Δ deg(x) = n(vol(b)

Thm [Anderson, 2013]: When Δ is a polytope of $\dim(\Delta) = \dim(X)$, there

is a degeneration of X to Xa.

there exists a full dimensional Hamiltonian torus action with moment map image Δ . Thm [Harada- Kaveh, 2015]: When X is smooth

Cluster varieties

Equip I" w total order s.

A valuation is $\nu \colon A \setminus \{o\} \longrightarrow \mathbb{Z}^n$ $\cap \nu(f+g) \ge \max \left(\nu(f), \nu(g)\right)$

$$(\mathfrak{g}) \, \nu \, (\mathfrak{f}) = \nu \, (\mathfrak{f}) + \nu \, (\mathfrak{g})$$

Another example:
$$X = hypersurface$$
 $y^2z - x^3 + 7xz^2 - 2z^3$

$$M = \begin{bmatrix} 1 & 1 \\ -1z & -3 \end{bmatrix}$$

$$\begin{array}{ll} \mathbb{A} & \text{ in } \mathbb{A} = \begin{bmatrix} -2 & -3 & 0 \end{bmatrix} \\ \mathbb{A} & \text{ in } \mathbb{A} & \mathbb{A}^2 \end{array}$$

$$\mathbb{E} c_{4,6,7} \times^{4,4} \mathbb{E}^{2^{-6}} \longrightarrow \min \left\{ \mathbb{A} : \begin{bmatrix} \alpha \\ \gamma \end{bmatrix} \text{ at } C_{4,6,7} \neq 0 \right\}$$

image semigroup generated of
$$\nu$$
 = by the columns of M

$$\Delta(X, U) = \frac{Cone(image(U))}{Cone(image(U))} \cap \{X_i = 1\}$$

$$\triangle(X, U) = \text{convex hull}$$

$$\Diamond(X, U) = \text{of columns of } M$$

$$\bigcup_{i=1}^{N} \Delta(X_{i} \nu)$$
 is a polytope if image (ν) is finitely generated.

valuations w/ polytopal NO-bodies I ideal,
$$frop(I) := \{w \in \mathbb{Q}^n \mid i \land w \text{ monomials}\}$$

Example:
$$frop(\langle y^2 z - x^3 + 7 \times z^2 - 2z^3 \rangle)$$

 $cone((o_1 I, 0), \pm 4)$ $in_w I = \langle -x^3 + 7 \times z^2 - 2z^3 \rangle$
 $\rightarrow cone((I, 0, 0), \pm 4)$ $in_w I = \langle y^2 z - 2z^3 \rangle$

Thm [Kaveh-Manon]: Let C be a prime cone of trop(I).

① $\{u_1...,u_r\} \subseteq C$ linearly ind, $r = \dim C$. ② $M = mt \times \omega / rows \cup_{1,...,0} r$

Construct a valuation ve st

 $\Delta(X, U_c) = \frac{\text{convex holl of the}}{\text{columns of } M}$

Example: Grassmannian Gr(2,4) Iz,4 = <pr 92,4 - Pi3P2, + P1, P23>

 $+rop(I_{2,4}) = \longrightarrow \times \mathcal{L} \subseteq \mathbb{R}^{b}$

All cones are prime

 C_1 , C_2 prime cones of maximal dim-ma $\Delta(\text{Gr}(2,4), \nu_{c_1})$, $\Delta\left(\text{Gr}(2,4), \nu_{c_2}\right)$. Semigroups image(ν_{c_1}), image (ν_{c_2})

Maximal cones \longleftrightarrow triangulations \longleftrightarrow of labelled

 $\Phi(2n_{1} + 2s_{1} + 2s_{2} + 2s_{3}) = (2n_{2} + 2s_{1} + 2s_{3})$ 224 = trop (21224+214 223) 213 [Nohara-Veda]

Geometric Wall-crossing for NO-bodies X projective variety $A = U[x_1,...,x_n]/I$

 C_{1} , C_{2} prime cones of trop(I) st C_{1} , C_{2} maximal dimension, and C_{1} , C_{2} share a facef, C. Then $\Delta(X \, \omega_{c})$ $\Delta(X, \psi_{c})$ where $\Pi: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d+}$ projection

Thm [E.- Harada]: The \ \(\times_{X, \mu_0} \) \(\times_{X, \mu_0} \) \(\times_{X, \mu_0} \) \(\times_{X, \mu_0} \)

Tipers II (P)(1)(X, μ_{c_1}) $\Delta(X, \nu_c)$ \downarrow^{π} and $\pi^{-1}(P) \cap \Delta(X, \mu_{c_1})$ $\Delta(X, \mu_{c_1})$ \uparrow^{π} are intervals of the $\Delta(X, \mu_{c_1})$ Same length. Thm[E.-Harada]: Obtain 2 piecewise linear maps &, \$\overline{\Pi}_{\pi}\$

$$\Delta(X, \nu_{c_{i}}) \xrightarrow{\Phi_{Sor} F} \Delta(X, \ell_{\epsilon_{i}})$$

$$\Delta(X, \nu_{c_{i}})$$

Remarks

[Iltern-Manon]: geometric wall-crossing can be derived from the theory of complexity-1 T-Varieties

[Ilten]: interpretation of geometric wall-crossing as a generalization of the combinatorial mutation of AKhtar-Coates-Galkin-Kasprzyk

LE.- Havada]: algebraic wall-crossing, i.e. bijection image(\(\nu_{\alpha}\)) \rightarrow image(\(\nu_{\alpha}\)). image(\(\nu_{\alpha}\))

For Gr(Z,m), Fr arises from cluster algebra structure. Bossinger-Mohammadi-Najera Chávez]: [E.-Harada,

Idea of proof:
(1) Since Ci is prime & maximal dim'l

 \Rightarrow inc; I is toric and cuts out the thric variety of $\Delta(x, \nu_c;)$

ed Xi=V(inci I) and y=V(ingine, I)

2) There exist flat families It., It, over 1911 with generic floors of special fibers X,, X2 (resp.)

3) There is a codimension-1 torus TO y

T is a subhrus of TinX;

is the GIT quotient of x_i by T at g.

(4) T-action extends to X_i , X_2 .

By taking the GIT quotient of Z_i : by T of p, we obtain Z flat families

with generic fiber Y_i/p^{-1} Special fibers X_i/p^{-1} (resp.)

(5) Flat families preserve alognee $Z_i = Z_i = Z_$ The toric variety of a fiber IT- (p) & D(X), Uci)

length of π -(p) $\Lambda\Delta(\chi,\nu_{c_i})$, length of π -(p) $\Lambda\Delta(\chi,\nu_{c_i})$