CONTROL DE TRANSMISIÓN DE DATOS.

GRUPO 40

DURACIÓN: 100 MINUTOS

2 de diciembre 2005

Jordi Forne

Notas Importantes:

Un error conceptual grave, puede anular todo el problema.

Problema 1 (50%)

Scan $F_1=\{1, 2, 3, 4\}$ y $F_2=\{2, 4, 6, 8\}$ dos fuentes equiprobables independientes. Sea una fuente (F) cuya salida es el mínimo común múltiplo de la salida de las fuentes anteriores $F=mcm(F_1,F_2)$.

- a) Calcule la entropía de la fuente H(F). (1 punto)
- b) Calcule la información mutua I(F, F1) (1 punto)
- c) Calcule la longitud media de una codificación de Huffman de la fuente F. (1 punto)
- d) Suponga que le proponen adivinar F, y como ayuda le dejan escoger entre conocer F₁ o conocer F₂. ¿Qué opción preferiría? Justifique la respuesta y calcule la probabilidad de adivinar F con la opción que ha escogido anteriormente. (2 puntos)

Problema 2 (50%)

Tenemos dos usuarios, A: $p_A = 563$, $q_A = 991$, $e_A = 31$ y B: $p_B = 401$, $q_B = 677$, $(d_B = 105.497)$.

Usarán RSA para intercambiarse una clave de sesión del DES. Para ello el usuario A genera una clave 0x 10BD FA8C 9022 DE83 que envía a B. El cifrado se hace en cuatro bloques de 16 bits.

NOTA: Deberá usar <u>obligatoriamente</u> el algoritmo extendido de Euclides para el cálculo de inversos y el algoritmo de exponenciación rápida para el cálculo de la cifra.

- a) ¿Qué tamaño máximo de bloque de clave K_i en bits podrían intercambiarse Λ y B? (1,5 puntos).
- Exprese en valores (sin calcularla) la ccuación del primer bloque de clave K₁ que A envía a B. (1,5 puntos)
- c) Calcule el valor del primer bloque (K1) de clave cifrada que A envía a B. (2 puntos)

Datos de interés:

Operaciones en mod 271.477:

$4.285^2 - 172.266$	$172.266^2 = 152.409$	$152.409^2 = 116.730$
$116.730^2 = 190.793$	$190.793^2 = 160.873$	$160.873^2 = 219.719$
$219.719^2 = 227.005$	$227.005^2 = 48.839$	$48.839^2 = 50.999$
$50.999^2 = 148.341$	$148.341^2 = 212.569$	$212.569^2 = 133.450$
$133.450^2 = 11.300$	$11.300^2 = 95.810$	$95.810^2 = 104.299$
(104.299)*(148.341)*(160	0.873)*(116.730) = 160.873	

Otros datos de interés: 33.833 = 1000010000101001; 10BD = 10000101111101 = 4.285 $2^{15} = 32.768$; $2^{16} = 65.536$; $2^{17} = 131.072$; $2^{18} = 262.144$; $2^{19} = 524.288$; $2^{20} = 1.048.576$

$$P(z) = \frac{1}{4}$$

$$P(4) = \frac{1}{4}$$

$$P(6) = \frac{1}{4}$$

$$P(6) = \frac{1}{4}$$

$$P(8) = \frac{3}{16}$$

$$P(12) = \frac{1}{8}$$

$$P(12) = \frac{1}{8}$$

$$P(24) = \frac{1}{16}$$

$$P(36) = \frac{1}{16}$$

$$P(12) = \frac{1}{16}$$

$$P(13) = \frac{1}{16}$$

$$P(14) = \frac{1}{16}$$

$$P(15) = \frac{1}{16}$$

$$P(16) = \frac{1}{16}$$

$$P(17) = \frac{1}{16}$$

$$P(18) = \frac{1}{16}$$

$$P(1$$

E. 1.5 of Lagragian the legicommunicary

7 75 d'Engrezora de Samins, Grants i Puda de Necesora

Fact cat d'information de Barnetona

ògma de ...

Assert the second secon

d) HIF (Fi) = 1'75 HIF (Fi) = 0'98325

 $F_{2} = \begin{cases} 2 & H(F|2) = 1'S \\ 4 & H(F|4) = \frac{3}{3} \log_{2}(\frac{4}{3}) + \frac{1}{4} \cdot 2 = 0'811 \\ H(F|5) = 0'811 \end{cases}$

F = 1

F2=4 --- F=4

Fz=8

P (ADIUINAR)

3/4

3/4

3/4

P(AO(VINAR) = 4 - 4 + 3 - 3 - 11 = 0'6875

F = 8

PRUBLEMA 2 CUNTROL

Tenemos dos usuarios, **A**: $p_A = 563$, $q_A = 991$, $e_A = 31$ y **B**: $p_B = 401$, $q_B = 677$, $(d_B = 105.497)$.

Usarán RSA para intercambiarse una clave de sesión del DES. Para ello el usuario A genera una clave 0x 10BD FA8C 9022 DE83 que envía a B. La cifra se hace en cuatro bloques de 16 bits.

NOTA: Deberá usar <u>obligatoriamente</u> el algoritmo extendido de Euclides para el cálculo de inversos y el algoritmo de exponenciación rápida para el cálculo de la cifra.

Exprese en valores (sin calcularla) la ecuación del primer bloque de clave K₁ que A envia a B.

Calcule el valor del primer bloque (K₁) de clave cifrada que A envía a B.

¿Qué tamaño máximo de bloque de clave K, en bits podrían intercambiarse A y B? Datos del examen:

Operaciones en mod 271.477:

 $4.285^2 = 172.266$ $172.266^2 = 152.409$ $152.409^2 = 116.730$ $116.730^2 = 190.793$ $190.793^2 = 160.873$ $160.873^2 = 219.719$ $219.719^2 = 227.005$ $227.005^2 = 48.839$ $48.839^2 = 50.999$ $50.999^2 = 148.341$ $148.341^2 = 212.569$ $212.509^2 = 133.450$ $133.450^2 = 11.300$ $11.300^2 = 95.810$ $95.810^2 = 104.299$ (104.299)*(148.341)*(160.873)*(116.730) = 160.873

Otros datos de interés: 33.833 = 1000010000101001; 10BD = 1000010111101 = 4.285 $2^{15} = 32.768$; $2^{16} = 65.536$; $2^{17} = 131.072$; $2^{18} = 262.144$; $2^{18} = 524.288$; $2^{20} = 1.048.576$

SOLUCIÓN:

La ecuación de envio del bloque 1 de la clave K desde A hacia B será: K₁^{eB} mod n_B Conocemos el valor de K₁ en hexadecimal = 10BD = 1000010111101 = 4.285

 $n_B = p_B*q_B = 401*677 = 271.447$. Nos falta conocer la clave pública de B, $e_B = inv [d_B, \phi(n_B)]$.

Como $\phi(n_B)$ = $(p_B - 1)*(q_B - 1)$ = 400*676 = $270.400 \Rightarrow e_B$ = inv $[d_B, \phi(n_B)]$ = inv (105.497, 270.400)

Usando el algoritmo extendido de Euclides:

		0		11.50 m. A.				
j.	Уi	gi	Ui	Vi	Algoritmo:	(apuntes	de	
clase	∌)				14 A			
0	-	270.400	1	0	x = inv(A, B)			
1	-	105.497	0	1	$(g_0,g_1,u_0,u_1,v_0,v_1,i)$			
(B,A	1,0,0,1,	1)						
2	2	59.406	1	-2	Mientras g _i ≠ 0 hacer			
3	1	46.091	-1	3	$y_{i+1} = parte entera (g_{i-1}/g_i)$			
4	1	13.315	2	-5	$g_{i+1} = g_{i-1} - y_{i+1} * g_i$			
5	3	6.146	-7	18	$u_{i+1} = u_{i-1} - y_{i+1} * u_i$			
6	2	1.023	14	-41	$v_{i+1} = v_{i-1} - y_{i+1} * v_i$			
7	6	8	-91	264	i = i+1			
8	127	7	11.571	-33.569	Hacer x = v	-1		
9	1	1	-11.662	33.833				
all residences	100			7				

10 7 0

Clave pública e_B = inv (105.497, 270.400) = 33.833 (aparece en los datos) La ecuación del primer bloque de clave con valores será: K_1^{eB} mod n_B = 4.285^{33.833} mod 271.477.

Como dato tenemos 33.833 = 1000010000101001 $b_{15}b_{14}b_{13}b_{12}b_{11}b_{10}b_{9}b_{8}b_{7}b_{6}b_{5}b_{4}b_{3}b_{2}b_{1}b_{0}$

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

722(1)

4.285² (los valores desde j = 1 hasta j = 15 están en los datos)

Multiplicamos sólo los bits con valor 1 (en negrita) es decir: $b_{15}b_{10}b_5b_3b_6$ mod 271.477. Según los datos que se entregan en el examen, esta multiplicación será: $K_1 = (104.299)*(148.341)*(160.873)*(116.730)*4.285 = 160.873*4.285$ mod 271.477

 $K_1 = 160.873*4.285 \mod 271.477 = 60.702.$

1,000000

c) Como $n_A = p_A*q_A = 653*991 = 557.933$ y $n_B = p_B*q_B = 401*677 = 271.477$, viendo los datos entregados en el examen, A puede enviar a B un bloque máximo de 18 bits ($2^{18} < 271.477 < 2^{18}$), en cambío B puede enviar a A un bloque máximo de 19 bits ($2^{19} < 557.933 < 2^{20}$). Por lo tanto la clave de B fuerza a que el intercambio de bloques de clave sea como máximo de 18 bits.

APARTADO OL CONTRUL