ИТ-АРХИТЕКТУРА

ЛЕКЦИЯ 5 (ПРОДОЛЖЕНИЕ)

ИТ-АРХИТЕКТУРА

ТЕХНОЛОГИЧЕСКАЯ АРХИТЕКТУРА

ТЕХНОЛОГИЧЕСКАЯ АРХИТЕКТУРА — ЭТО ...

- Инфраструктура это комплекс взаимосвязанных обслуживающих структур или объектов, составляющих и/или обеспечивающих основу функционирования системы
- ИТ инфраструктура это система организационных структур, подсистем, обеспечивающих функционирование и развитие информационного пространства и средств информационного взаимодействия
- Технологическая архитектура вычислительная инфраструктура, сетевая инфраструктура, инженерная инфраструктура предприятия

ПРИЛОЖЕНИЯ & ИНФРАСТРУКТУРА

ИТ-ИНФРАСТРУКТУРА. ОСНОВНЫЕ ЭЛЕМЕНТЫ

- центр обработки данных (ЦОД)
- серверы и системы хранения
- клиентские устройства: персональные компьютеры, ноутбуки, смартфоны, PDA (personal digital assistant), мобильные телефоны и т.д.
- принтеры, копировальная техника, сканеры и т.д.
- глобальные и локальные сети, оборудование и ПО (программное обеспечение) для передачи голоса и данных, а также услуги телекоммуникационных операторов
- операционные системы
- инфраструктурное ПО: СУБД (система управления базой данных), интеграционное ПО и интеграционные платформы, приложения для коллективной работы (почта, календари и т.д.)
- ПО для разработки приложений

ИТ-ИНФРАСТРУКТУРА. ДОПОЛНЕНИЕ

- инженерные системы, электричество, ИБП (источники бесперебойного питания) и системы кондиционирования
- помещения и занимаемые площади
- системы мониторинга и управления ИТ-инфраструктурой и приложениями

Gartner: к 2025 году 85% инфраструктурных стратегий будут включать в себя локальную инфраструктуру, размещение в облаке, облачные сервисы и периферийные устройства по сравнению с 20% в 2020 году

ЦОД

• **Центр обработки данных (ЦОД)** или **дата центр (data center)** — это специализированное помещение либо здание для размещения северного и коммуникационного оборудования

Задачи ЦОД

- 1. Снижение стоимости владения вычислительной системой
- 2. Создание конкурентных преимуществ компании
- 3. Обеспечение должного уровня стабильности и управляемости инфраструктуры

Важные тенденции

- 1. Скорость старения ИТ-инфраструктуры. ЖЦ физической инфраструктуры 15 лет
- 2. Рост затрат на энергопотребление. Электричество это самая быстрорастущая в мире составляющая операционных затрат на ЦОД
- 3. Модульный ЦОД это центр обработки данных, состоящий из унифицированных аппаратных модулей. По оценкам компании IBM, порядка 50% затрат можно сократить
- 4. Наличие широких возможностей по аутсорсингу, облачные сервисы

РАЗНИЦА МЕЖДУ ОБЛАЧНОЙ ИНФРАСТРУКТУРОЙ И ДАТА-ЦЕНТРАМИ

- Как предоставляется заданная рабочая нагрузка бизнесу?
- Где находится физическая инфраструктура, используемая бизнесом?
- Что оплачивается?

СЕРВЕРЫ

- Серверное оборудование это вычислительная мощность, на которой решаются бизнес-задачи
- Три класса серверов (производительность, возможность масштабирования и объёмы/количество ресурсов)
- серверы нижнего класса (low end) самые дешёвые, простые, в них немного процессоров, отсутствуют многие механизмы обеспечения надёжности (дублирование элементов и т. д.);
- серверы среднего класса (middle range) уже обладают хорошими параметрами надёжности, в них существенно больше ресурсов, их можно гораздо лучше «расширять», то есть добавлять ресурсы по мере необходимости
- серверы верхнего класса (high end) это машины, нацеленные на решение очень сложных задач в масштабах крупных предприятий и обладающие серьёзными механизмами обеспечения надёжности, доступности, ремонтопригодности

СИСТЕМНОЕ ПО

• Программное обеспечение (ПО) — это совокупность программ системы обработки информации и программных документов, необходимых для эксплуатации этих программ

ОПЕРАЦИОННЫЕ СИСТЕМЫ. ЗАДАЧИ

- загрузка программ в оперативную память и их выполнение, остановка программ и т.д.
- управление оперативной памятью (распределение между процессами, организация виртуальной памяти)
- параллельное или псевдопараллельное выполнение задач (многозадачность), взаимодействие между процессами (обмен данными, взаимная синхронизация);
- разграничение доступа различных процессов к ресурсам
- управление доступом к данным на различных носителях, организованным в той или иной файловой системе
- ввод/вывод данных, доступ к периферийным устройствам (устройствам ввода-вывода)
- сетевые операции, поддержка стека сетевых протоколов
- защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений

СЕРВЕРНОЕ ПО

- Сервер это программный компонент вычислительной системы, выполняющий сервисные (обслуживающие) функции по запросу программы клиента, предоставляя ему доступ к определённым ресурсам или услугам. Серверы инфраструктурного (системного) уровня можно разделить на следующие несколько функциональных подкатегорий
- Серверы каталогов
- Серверы работы с электронной почтой
- Инструменты для совместной работы это инфраструктурное приложение
- Системы управления веб-контентом
- Корпоративный портал (Enterprise portal)
- Системы управления базами данных
- Серверы приложений
- Серверы интеграции данных
- Сервисная шина предприятия (Enterprise Service Bus, ESB)

СЕРВИСНАЯ ШИНА ПРЕДПРИЯТИЯ (ESB)

■ Сервисная шина предприятия (Enterprise Service Bus, ESB) — это ПО, обеспечивающее интеграцию различных приложений. Один из наиболее популярных современных стандартов ESB связан с сервисной архитектурой приложений (SOA)

Принципы функционирования:

- поддержка синхронного и асинхронного способа вызова сервисов
- использование гарантированной доставки сообщений
- поддержка модели транзакций
- доступ к данным из интегрируемых информационных систем с помощью готовых или специально разработанных адаптеров
- обработка и преобразование сообщений
- оркестровка и хореография сервисов

КОМПОНЕНТЫ ТЕХНОЛОГИЧЕСКОЙ АРХИТЕКТУРЫ (GARTNER)

Сервисы данных:

системы управления БД, хранилища данных, системы поддержки принятия решений.

Прикладные

системы: языки программирования, средства разработки приложений, гео-ИС, средства кол. разраб.

Программное обеспечение промежуточного слоя (middleware)

Вычислительная инфраструктура: ОС

инфраструктура: ОС и аппаратное обеспеч., системы хранения, топология, средства системного управления

Сетевые сервисы:

локальные сети, глобальные сети, технологии доступа, сетевое аппаратное обеспеч., голосовой доступ

Сервисы безопасности:

авторизация, аутентификация, сетевая и физическая безопасность.

ДОМЕНЫ ТЕХНОЛОГИЧЕСКОЙ APXИTEKTYPЫ (GARTNER)

Базовые

- Технологии, используемые в каждой ИС
- Сети
- Аппаратное обеспечение
- OC
- СХД
- СУБД

Прикладные

- Специфические с т.зр. Бизнеса
- Мобильные терминалы ввода
- Устройства ввода в магазинах
- Банкоматы и пр.

АРХИТЕКТУРА ПО

Терминальная

Трехуровневая

Клиент-серверная

Архитектура вебприложений

УРОВНИ РАЗМЕЩЕНИЯ АРХИТЕКТУРЫ

- Обработка заказов
- Управление знаниями
- Управление финансами ...

Технологическая инфраструктура масштаба предприятия

- Корпоративный портал
- Сервисы ПК и ЛВС
- E-mail
- Клиентская БД

Публичная инфраструктура

- Интернет
- Телеком
- Электронный обмен данными

ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОЙ АРХИТЕКТУРЫ

- технологические компоненты и их связь с информационными системами
- технологические платформы и их декомпозиция, показывающая комбинацию технологий, необходимую для реализации определенной технологии «стека»
- среды и местоположения группирование требуемой технологии в вычислительные среды (например, разработка, производство)
- ожидаемая нагрузка при обработке и распределение нагрузки по компонентам технологии
- физическая (сетевая) связь
- характеристики оборудования и сети

ПОДХОДЫ К ОПИСАНИЮ ТЕХНОЛОГИЧЕСКОЙ АРХИТЕКТУРЫ

Перечисление стандартов

• Теоретически снижает зависимость от поставщиков

Перечисление технологий

• Конкретных продукты и технологии

- Легче интегрировать
- Поддержка знаний по конкретным продуктам (обучение персонала)
- Экономия на масштабе
- Экономия на процессах закупки

АРТЕФАКТЫ ТЕХНОЛОГИЧЕСКОЙ АРХИТЕКТУРЫ

Каталоги:

- Каталог технологических стандартов
- Каталог технологического портфеля

Матрицы:

• Матрица приложений / технологий

Диаграммы:

- Диаграмма окружения и расположения
- Диаграмма разложения платформы
- Схема обработки
- Схема сетевых вычислений / оборудования
- Схема сети и связи

ФУНКЦИОНАЛЬНЫЕ & НЕФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ

10 АКТУАЛЬНЫХ ЗАДАЧ ИТ-ИНФРАСТРУКТУРЫ

- 1. Оптимизация ИТ-инфраструктуры с целью снижения затрат
- 2. Снижение затрат на приобретаемое оборудование и ПО
- 3. Преодоление ограничение инженерной инфраструктуры ИВЦ
- 4. Повышение надёжности ИТ
- 5. Улучшение качества предоставляемых ИТ-сервисов
- 6. Формирование стратегии эффективного энергопотребления
- 7. Увеличение гибкости ИТ, ускорение реакции на изменения ситуации на рынке
- 8. Измерение ценности ИТ для бизнеса
- 9. Обеспечение соответствия требованиям и нормативам
- 10. Внедрение новых сервисов и услуг

АДАПТИВНАЯ АРХИТЕКТУРА

- ИТ-ресурсы общие
- ИТ-ресурсы разделяемые
- Выделение инфраструктурных ресурсов осуществляется автоматически в соответствии с потребностями бизнеса

- Качество обслуживания:
 - Предсказуемое
 - Стабильное
 - Не зависит от неопределенности спроса на ресурс

АДАПТИВНАЯ АРХИТЕКТУРА. ХАРАКТЕРИСТИКИ

Самоконфигурирование — организация системы в соответствии с требованиями

Самозащита – предотвращение сбоев в системе из-за нарушений работы компонент и потери ценности данных

Самовосстановление –

диагностика и локализация неисправностей, устранений ошибок и их последствий

Самооптимизация –

рациональное использование технологических ресурсов без участия оператора

Предоставлено ICD / ITKE, Штутгартский университет

ТЕХНИЧЕСКИЕ ДОЛГ ИНФРАСТРУКТУРЫ

■ Технический долг – отклонение системы от каких-либо нефункциональных требований

Последовательная категоризация

Создание масштабированного подхода

Разработка метрик, простых для понимания

Business Value

Financial Resources

Operational Risk

Technical Risk

Source: Gartner (August 2020)

КРИТЕРИИ ДЛЯ ОЦЕНКИ ТЕХНИЧЕСКОГО ДОЛГА

Критерий	Фокус	Пояснение
Ценность для бизнеса	Преимущества, важность, критичность	 Совместимость с бизнес-приложениями Доступность и своевременность обработки данных Удобство использования и замены
Финансовые ресурсы	Общая стоимость владения	ОборудованиеЛицензированиеСопровождение и поддержкаПортативность
Операционный риск	Ежедневное бремя, возложенное На технологии	 Компетенция навыков Соответствие Ремонтопригодность Репутационный риск Возможность поддержки
Технический риск	Соответствие технологии стандартам и практикам	 Архитектурное решение Преемственность и устойчивость Защита данных и конфиденциальность Масштабируемость производительности Безопасность

ПРИМЕР ОЦЕНКИ ТЕХНИЧЕСКОГО ДОЛГА (СЕРВЕР ДЛЯ **E-COMMERCE**)

Критерий	Текущее состояние	
Ценность для бизнеса	поддерживаемая система электронной торговли принесет доход в размере 10 млн \$ / год в ближайшие 2 года	
Финансовые ресурсы	 Незначительное время простоя и небольшая потребность в обслуживании. Лицензирование серверного ПО – 100 тыс. \$ - уже оплачено на 2 года вперед 	
Операционный риск	 штат сотрудников, поддерживающих сервер, сократились – риск более длительного простоя или продолжительность проблемы потенциальный риск для дохода – 0,1% Проблемы соблюдения требований – незначительны 	
Технический риск	 срок службы поддержки сервера истечет через 12 месяцев и больше не будет обновляться новые критические уязвимости будут появляться каждые 6 месяцев Риск – 1% дохода в этом году и 10% дохода в следующем году 	

ПРИМЕР ОЦЕНКИ ТЕХНИЧЕСКОГО ДОЛГА (СЕРВЕР ДЛЯ **E-COMMERCE**)

- Затраты, связанные с технологией, превышают преимущества для бизнеса
- Недостатки в операционной и технической пригодности создают риски, превышающие риск-аппетит организации

32

ПРИМЕР ОЦЕНКИ ТЕХНИЧЕСКОГО ДОЛГА (СЕРВЕР ДЛЯ **E-COMMERCE**)

- Затраты, связанные с технологией, превышают преимущества для бизнеса
- Недостатки в операционной и технической пригодности создают риски, превышающие риск-аппетит организации

33

WEB-СЕРВИСНАЯ МОДЕЛЬ УМНОГО РОЗНИЧНОГО МАГАЗИНА

МОДЕЛЬ УМНОГО РОЗНИЧНОГО МАГАЗИНА

ПРИМЕР

ОСНОВНЫЕ ИСТОЧНИКИ

- NIST // http://csrc.Nist.Gov/groups/sns/cloud-computing/cloud-def-v15.Doc
- Cloud computing explained // The Open Group, 2011
- Maximizing the value of cloud for small-medium enterprises // The Open Group, 2012
- A Practical Approach to Application Portfolio Consolidation using the TOGAF® Standard // The Open Group, 2018
- TOGAF 9.2
- FEA
- Учебник 4СІО
- Gartner.com (публикации 2020 г)
- Tadviser
- IBS
- Данилин А., Слюсаренко А. «Архитектура и стратегия» // ИНТУИТ.РУ, 2018

СПАСИБО ЗА ВНИМАНИЕ! ВОПРОСЫ?

