*** Applied Machine Learning Fundamentals *** Probabilistic Graphical Models

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2020/2021

Find all slides on GitHub

Agenda for this Unit

- Basic Statistics
 Random Variables and Probability Distributions
 - Important Probability Rules
- 2 Bayesian Networks (BNs)

Representation of large Probability Distributions Answering Queries: Inference Learning of Parameters and Structure

- 3 Hidden Markov Models (HMMs)
- Wrap-Up

Summary

Recommended Literature and further Reading

Section: Basic Statistics

Random Variables and Probability Distributions

- What is a random variable X?
 A random number whose value is subject to variations due to chance
- What is a distribution p(X = x_i)?
 Describes the probability (density) that the random variable X will be equal to a certain value x_i
- What is a joint, a conditional and a marginal distribution?

$$p(X, Y) = p(Y|X) \cdot p(X)$$
joint cond. marg.

Wrap-Up

Important Probability Rules

• Bayes' rule

$$p(X|Y) = \frac{p(Y|X) \cdot p(X)}{p(Y)} \tag{1}$$

Chain rule of probabilities

$$p(W, X, Y, Z) = p(W|X, Y, Z) \cdot p(X|Y, Z) \cdot p(Y|Z) \cdot p(Z)$$
 (2)

Definition of conditional probability

$$p(X|Y) = \frac{p(X,Y)}{p(Y)} \tag{3}$$

Section: Bayesian Networks (BNs)

Representing Distributions by Enumeration

- Consider a probability distribution p(X)
 - Assign a probability to each $x_i \in Dom(X)$
 - Q: How many parameters do we have? (assuming |Dom(X)| = k)
 - A: k-1 (Remember: $\sum_{x_i \in Dom(X)} p(x_i) = 1$)
- Now consider $p(X_1, X_2, ..., X_n)$
 - Q: How many parameters do we have now?
 - A: $k^n 1$ (Exponentially many!)

Bayesian networks often need much fewer parameters. Why?

Simple Bayesian Network (2 Nodes)

- Let's first consider a simple BN
- Grade G is influenced by intelligence I

	I = hi	I = Io
p(I)	0.85	0.15

	G	I = hi	I = Io
p(G I)	а	0.90	0.50
	b	0.10	0.50

$$p(G = b, I = h) \stackrel{CR}{=} p(G = b|I = hi) \cdot p(I = hi)$$

= 0.85 \cdot 0.1 = 0.085

What if Variables are independent?

• Random variables: Intelligence I, Grade G, SAT score S

- G and S are influenced by I
- But: G is independent of S given I: $G \perp \!\!\! \perp S \mid I$
- Independencies can lead to a smaller number of parameters

Can we get linear Complexity?

- Yes we can!
- But we must assume $(X \perp \!\!\!\perp \!\!\!\perp \!\!\!\perp \!\!\!\perp \!\!\!\perp) \ \forall \ X, Y$ subsets of $\{X_1, X_2, \ldots, X_m\}$
- The joint probability distribution can be written as:

$$p(X_1, X_2, \dots, X_n) = \prod_{j=1}^{m} p(X_j)$$
 (4)

• Q: How many parameters do we have? A: $m \cdot (k-1) = \mathcal{O}(m)$

$$X_1$$

$$X_2$$

$$X_2$$
 X_3 \cdots

Naïve Bayes

- This leads to the Naïve Bayes model
- Class variable C, evidence variables $\{X_1, X_2, \dots, X_m\}$
- Assume: $(X \perp\!\!\!\perp Y | C) \forall X, Y$ subsets of $\{X_1, X_2, \dots, X_m\}$

⇒ cf. slides 'Decision Theory'

Local Markov Assumption

- How to read off the independencies from a BN?
- Local Markov assumption: A variable is independent of its non-descendants given its parents and only its parents:

$$(X_j \perp | \underbrace{NonDescendants(X_j)}_{ND(X_j)} | \underbrace{Parents(X_j)}_{Pa(X_j)}) \ \forall \ j = 1, 2, \dots, m$$
 (6)

 \Rightarrow cf. examples on the next slide

Example: Local Markov Assumption

$$Pa(F) = \emptyset$$
 $ND(F) = \{A\}$ Independencies $\Rightarrow (F \perp \!\!\! \perp A)$

$$Pa(N) = \{S\}$$
 $ND(N) = \{F, A, H\}$
 $Independencies \Rightarrow (N \perp \!\!\! \perp \!\!\! \{F, A, H\} | S)$

$$Pa(S) = \{F, A\}$$
 $ND(S) = \emptyset$
Independencies \Rightarrow none

Explaining away / Berkson's Paradox

- Two causes (A, F) 'compete' to explain the observed data (S)
- Having a flu makes it less likely to have an allergy
- It follows: ¬(F⊥⊥A|S), although
 F⊥⊥A (!!!)
- This is not implied by the local Markov assumption (S is descendant not parent!)

Joint Distribution

• According to the **chain rule** the joint probability distribution P(A, F, S, H, N) is given by:

$$p(A, F, S, H, N) = p(F) \cdot p(A|F) \cdot p(S|F, A) \cdot p(H|S, F, A) \cdot p(N|S, F, A, H)$$

Apply independency assumptions (local Markov assumption):

$$p(A, F, S, H, N) = p(F) \cdot p(A) \cdot p(S|F, A) \cdot p(H|S) \cdot p(N|S)$$

Much less parameters due to the local Markov assumption!

Definition of a Bayesian Network

- A BN is a directed acyclic graph (DAG)
 - Nodes represent random variables $\{X_1, X_2, \dots, X_m\}$
 - Edges represent the dependencies between the random variables
- Due to the local Markov assumption the joint probability distribution factorizes according to:

$$p(X_1, X_2, \dots, X_m) = \prod_{j=1}^m p(X_j | Pa(X_j))$$
 (7)

Independencies in real Problems

Real world

The true distribution p contains independency assertions I(p)

Model

The graph \mathcal{G} encodes local independency assumptions $I_{LM}(\mathcal{G})$

Representation Theorem

- Key representational assumption: $I_{LM}(\mathfrak{G}) \subseteq I(p)$
- We say: Graph g is an I-Map (independency map) for distribution p
- Representation theorem:

Conditional independencies encoded in BN are subset of conditional independencies in p

Joint probability distribution factorizes according to BN definition

$$I_{LM}(\mathfrak{G}) \subseteq I(p) \Leftrightarrow p(X_1, X_2, \dots, X_m) = \prod_{j=1}^m p(X_j | Pa(X_j))$$
 (8)

Independencies encoded in a BN

- To get the independencies, all you need is the local Markov assumption
- But there are more... Consider the following BN:

- By local Markov assumption: D⊥⊥{A, B}|C
- But we also have $D \perp \!\!\! \perp A \mid C$ and $D \perp \!\!\! \perp B \mid C$ (not covered by local Markov assumption)
- This leads us to the concept of d-separation (dependency separation)

d-Separation

1 Indirect causal effect

(3) Common cause

(2) Indirect evidential effect

4 Common effect (v-structure)

d-Separation (Ctd.)

• For patterns (1), (2) and (3) it holds:

$$X \perp \!\!\! \perp Y \mid Z$$

 $\neg (X \perp \!\!\! \perp Y)$

- 1) indirect causal effect
- (2) indirect evidential effect
- (3) common cause
- (4) common effect

• Pattern (4) is different (inverted):

$$X \perp \!\!\! \perp Y$$

 $\neg (X \perp \!\!\! \perp Y | Z)$

There is an active trail between X and Y, if X and Y are dependent.

d-Separation Example

- F ∥ G ???
- Have a look at all consecutive triplets.
 - F − I − K: Active
 - I K J: Inactive (v-structure)
 - K J G: Active
 - ⇒ This trail is not active
- Do the same with the other path (it's also inactive)
- We have $F \parallel G$

d-Separation Example II

- $F \perp \!\!\! \perp G \mid D$???
 - F C A: Active
 - C A D: Active
 - A D B: Active (v-structure, but D is observed)
 - D B F: Active
 - B E G: Active
 - ⇒ This trail is active! Information can flow!
- We have ¬(F⊥⊥G|D)

Soundness of d-Separation

Soundness

If P factorizes according to \mathfrak{G} , then $I(\mathfrak{G}) \subseteq I(P)$ and not only $I_{LM}(\mathfrak{G}) \subseteq I(P)$

Completeness

- For 'almost all' distributions for which P factorizes according to \mathfrak{G} , we have that $I(\mathfrak{G}) = I(P)$
- This means P is faithful
- A faithful distribution does not declare extra independence assumptions that cannot be read off from 9

Inference in Bayesian Networks

- We want to use the Bayesian network to compute the probability of a query
- Bad news: In general, inference in Bayesian networks is hopeless

Theorem:

Inference in Bayesian networks (even approximate) is NP-hard

- However, in practice we can exploit the structure of the network
- There are some effective approximation algorithms
- Let us first talk about exact inference

Complexity of Inference

- Consider a reduction to 3-SAT (known to be NP-hard)
- We have m boolean variables. Does a satisfying assignment exist?

$$\underbrace{(\neg X_1 \lor X_2 \lor X_3)}_{C_1} \land \underbrace{(\neg X_2 \lor X_3 \lor \neg X_4)}_{C_2} \land \underbrace{(\dots)}_{C_l}$$
(9)

• This problem is in #P (!!!)

Exact Inference

- Back to our flu example
- Suppose we have a conditional probability query:

$$p(A = t|N = t)$$

 Rewrite using the definition of conditional probability:

$$p(A = t|N = t) = \frac{p(A = t, N = t)}{p(N = t)}$$

Exact Inference (Ctd.)

• We know what p(A, F, S, N, H) is:

$$p(A, F, S, N, H) = p(A) \cdot p(F) \cdot p(S|A, F) \cdot p(N|S) \cdot p(H|S)$$

• In order to compute p(A = t, N = t) we have to marginalize (sum out) all the other variables:

$$p(A = t, N = t) = \sum_{f \in F} \sum_{s \in S} \sum_{h \in H} p(A = t) \cdot p(F) \cdot p(S|A = t, F) \cdot p(N = t|S) \cdot p(H|S)$$

- Do the same for p(N = t) and compute p(A = t|N = t)
- This algorithm is called variable elimination

Variable Elimination

Have: $p(A) \cdot p(F) \cdot p(S|A, F) \cdot p(N|S) \cdot p(H|S)$; **Want:** p(H)

Assume: Elimination order: A, F, N, S

Eliminate A:
$$\varphi_A(F,S) = \sum_{a \in A} p(a) \cdot p(S|a,F) \Rightarrow \varphi_A(F,S) \cdot p(F) \cdot p(N|S) \cdot p(H|S)$$

Eliminate
$$F$$
: $\varphi_F(S) = \sum_{f \in F} \varphi_A(f, S) \cdot p(f)$ $\Rightarrow \varphi_F(S) \cdot p(N|S) \cdot p(H|S)$

Eliminate N:
$$\varphi_N(S) = \sum_{n \in N} p(n|S)$$
 $\Rightarrow \varphi_F(S) \cdot \varphi_N(S) \cdot p(H|S)$

Eliminate S:
$$\varphi_S(H) = \sum_{s \in S} \varphi_F(s) \cdot \varphi_N(s) p(H|s) \Rightarrow \varphi_S(H)$$

Insight: Exact inference seems to be exponential in the number of variables!

Algorithm 1: Variable Elimination Algorithm

Input: Bayesian network BN, query p(X|O)

- 1 instantiate evidence \mathbf{O} 2 prune non-active variables for {**X**. **O**} 3 choose an ordering on the variables $\{X_1, X_2, \dots, X_m\}$ 4 initialize factors $\{\varphi_1, \varphi_2, \dots, \varphi_m\}$: $\varphi_i = p(X_i | Pa(X_i))$ 5 **foreach** $j \in \{1, 2, ..., m\}$ **do** if $X_i \notin \{X, E\}$ then // marginalize variable remove factors $\varphi_1, \varphi_2, \dots, \varphi_k$ that include X_i generate a new factor by eliminating X_i from these factors: $\psi = \sum_{x_i} \prod_{i=1}^k \varphi_i$ add ψ to the set of factors
- 10 normalize probabilities
- 11 return answer to query p(X|O)

Approximate Inference

- Since exact inference is NP-hard, let's try approximate inference
- Some common methods:
 - Forward sampling (without evidence)
 - Rejection sampling (with evidence)
 - Likelihood weighting
 - Gibbs sampling (MCMC Markov Chain Monte Carlo)
- We are going to cover forward/rejection sampling and Gibbs sampling

Forward Sampling (without Evidence)

Algorithm 2: Forward Sampling without Evidence

```
Input: Bayesian network, \# nodes m, \# samples T
  // generate number of samples specified
1 initialize set of samples: \mathbf{S} \longleftarrow \emptyset
2 for t \in \{1, 2, ..., T\} do
     for i \in \{1, 2, ..., m\} do
          // sample value for random variable
s_i^{(t)} \longleftarrow \text{ sampled from } p(X_i|Pa(X_i))
   m{S} \longleftarrow m{S} \cup m{s}^{(t)}
6 return set of samples S = \{s^{(1)}, s^{(2)}, \dots, s^{(T)}\}\
```

4 D > 4 D > 4 D > 4 D > 3 P 9 Q G

Forward Sampling: Answering Queries

- Suppose we have collected several samples $S = \{s^{(1)}, s^{(2)}, \dots, s^{(T)}\}$
- How can we do inference with them?
- Very easy:

$$\widehat{p}(X_j = x_i) = \frac{\sum_{t=1}^{T} \mathbb{1}\{s_j^{(t)} = x_i\}}{T}$$

- $\mathbb{1}\{boolean\}$ is the indicator function. It returns 1 if the boolean expression is true, 0 otherwise. E. g. $\mathbb{1}\{1+1=2\}=1$, $\mathbb{1}\{3=2\}=0$
- Basically, we count the number of samples for which $X_i = x_i$
- What about evidence?

Rejection Sampling (Forward Sampling with Evidence)

- Major issue: The samples have to be consistent with the evidence
- If it is not consistent: Reject the sample (rejection sampling)
- Problem:
 - What if the evidence has low probability?
 - Most samples will be rejected!
 - This method is easy, but can be very slow

Gibbs Sampling

- So called Markov Chain Monte Carlo (MCMC) method
- Samples are dependent and form a Markov chain
- Probability estimates will finally converge to the true probabilities¹
- Sampling process:
 - Fix values of evidence / observed variables O
 - Initialize first sample $s^{(0)}$ randomly
 - Generate next sample $s^{(t+1)}$ based on the current one $s^{(t)}$

Ordered Gibbs Sampler

- Main idea: Generate next sample $s^{(t+1)}$ based on the current one $s^{(t)}$
- Sample variables in order:

$$\begin{array}{lll} X_1: & s_1^{(t+1)} \longleftarrow p(s_1|s_2^{(t)},s_3^{(t)},\ldots,s_m^{(t)},\mathbf{0}) \\ X_2: & s_2^{(t+1)} \longleftarrow p(s_2|s_1^{(t+1)},s_3^{(t)},\ldots,s_m^{(t)},\mathbf{0}) \\ X_3: & s_3^{(t+1)} \longleftarrow p(s_3|s_1^{(t+1)},s_2^{(t+1)},\ldots,s_m^{(t)},\mathbf{0}) \\ & \dots \\ X_m: & s_m^{(t+1)} \longleftarrow p(s_m|s_1^{(t+1)},s_2^{(t+1)},\ldots,s_{m-1}^{(t+1)},\mathbf{0}) \end{array}$$

In short:

$$X_j: \qquad s_j^{(t+1)} \longleftarrow p(s_j|s^{(t)} \setminus s_j, \mathbf{O})$$

Markov Blanket

- We have to sample the value for X_j given all of the other variables in the network
- This is can be simplified using the Markov blanket

$$MB(X_j) = Pa(X_j) \cup Ch(X_j) \cup \left[\bigcup_{X_i \in Ch(X_j)} Pa(X_i)\right]$$
 (10)

A node is independent of all other nodes in the network given its Markov blanket

Improvements of Gibbs Sampling

- **1** Burn-In: Discard first k samples, since starting point is random
- 2 Reduction of dependence / auto-correlation:
 - Skip samples
 - Randomize variable sampling order
- 8 Reduction of variance:
 - Sample several chains and average
 - Blocking: Sample variables block-wise
 - Rao-Blackwellisation: Only sample a subset of the variables

Learning in Bayesian Networks

- By now we know how to represent BNs and how to do inference
- But: Where do the numbers come from?
- Two kinds of learning:
 - Parameter estimation: obtain (conditional) probabilities
 - Structure learning: learn the structure of the network
- Why learning Bayesian networks?
 - Conditional independencies and graphical language capture structure of many real-world distributions
 - Graph structure provides much insight

Parameter Estimation

- Let's start with parameter estimation
- Let $\mathcal{D} = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$ be a set over m random variables
- We assume the data is I. I. D. (independent and identically distributed)
- ullet Find parameters $oldsymbol{ heta}$ of CPDs (conditional probability distributions) which match the data best

What does 'best matching' mean? Find parameters θ which have most likely produced the data. \Rightarrow Maximum likelihood (ML)

Maximum Likelihood Estimation

Recall: In MLE we want to compute: (⇒ cf. slides 'density estimation')

$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}} P(\boldsymbol{\theta}|\mathcal{D})$$

By applying Bayes' rule we get:

$$m{ heta}^* = rg \max_{m{ heta}} P(\mathcal{D}|m{ heta}) \cdot \frac{P(m{ heta})}{P(\mathcal{D})} = rg \max_{m{ heta}} P(\mathcal{D}|m{ heta})$$

- All parameters are apriori equally likely
- Data is equally likely for all parameters

Maximum Likelihood Estimation (Ctd.)

• This is the likelihood $\mathcal{L}(\boldsymbol{\theta}|\mathcal{D})$:

$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) = \operatorname*{arg\,max}_{\boldsymbol{\theta}} P(\mathcal{D}|\boldsymbol{\theta})$$

• Usually, the log-likelihood $\mathcal{LL}(\theta|\mathcal{D})$ is used:

$$\mathcal{LL}(\boldsymbol{\theta}|\mathcal{D}) = \log P(\mathcal{D}|\boldsymbol{\theta})$$

- ML is one of the most commonly used estimators in statistics
- Its estimates converge to the best possible value as the number of examples grows

Decomposability of the Likelihood

$$\mathcal{LL}(\boldsymbol{\theta}|\mathcal{D}) = \log p(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}|\boldsymbol{\theta})$$

$$\stackrel{(1)}{=} \log \prod_{i=1}^{n} p(\mathbf{x}^{(i)}|\boldsymbol{\theta})$$

$$\stackrel{(2)}{=} \sum_{i=1}^{n} \log p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\mathbf{x}^{(1)}_{i}, \mathbf{x}^{(2)}_{i}, \dots, \mathbf{x}^{(m)}_{i}|\boldsymbol{\theta})$$

$$\stackrel{(3)}{=} \sum_{i=1}^{n} \log \left(\prod_{j=1}^{m} p(\mathbf{x}^{(j)}_{i}|Pa(\mathbf{x}^{(j)}_{i}), \boldsymbol{\theta}) \right) \stackrel{(2)}{=} \sum_{i=1}^{n} \sum_{j=1}^{m} \log p(\mathbf{x}^{(j)}_{i}|Pa(\mathbf{x}^{(j)}_{i}), \boldsymbol{\theta})$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \log p(\mathbf{x}^{(j)}_{i}|Pa(\mathbf{x}^{(j)}_{i}), \boldsymbol{\theta}_{j}) = \sum_{j=1}^{m} \mathcal{LL}(\boldsymbol{\theta}_{j}|\mathcal{D})$$

Decomposability of the Likelihood (Ctd.)

- If the data set is **fully observed**²...
 - ...we can maximize each local likelihood function independently...
 - ...and then combine the solutions to get the global solution
- Decomposability allows us to come up with efficient solutions to the MLE problem

But: What does the likelihood function look like?

²missing data case: see later slides

Likelihood for Multinomials

• Assume a random variable V which can take $1, 2, \ldots, K$ values

$$p(V = k) = \theta_k$$

$$\sum_{k=1}^{K} \theta_k = 1$$

• The (log-)likelihood is given by: $(n_k \text{ is } \# \text{ of times event } k \text{ occurs})$

$$\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) = \prod_{k=1}^{K} \theta_k^{n_k} \qquad \qquad \mathcal{L}\mathcal{L}(\boldsymbol{\theta}_v|\mathcal{D}) = \sum_{k=1}^{K} \log \theta_k^{n_k} = \sum_{k=1}^{K} n_k \cdot \log \theta_k$$

- E. g. tossing an unfair coin: Events = {Head, Tail}; P(H) = 1/4, P(T) = 3/4
- $P(H, T, H, H, T) = \frac{1}{4^3} \cdot \frac{3}{4^2}$

Maximum Likelihood for Multinomials

• In order to get the maximum likelihood, we first have to compute the partial derivatives:³

$$egin{aligned} rac{\partial}{\partial heta_i} \mathcal{L} \mathcal{L}(oldsymbol{ heta}_v | \mathcal{D}) &= rac{\partial}{\partial heta_i} (n_1 \log heta_1 + n_2 \log (1 - heta_1)) \ &= rac{n_1}{ heta_1} + rac{n_2}{1 - heta_1} \end{aligned}$$

• And set them to zero:

$$\frac{\partial}{\partial \theta_i} \mathcal{L} \mathcal{L}(\boldsymbol{\theta}_v | \mathcal{D}) \stackrel{!}{=} 0 \Leftrightarrow \frac{n_1}{\theta_1} + \frac{n_2}{1 - \theta_1} \stackrel{!}{=} 0 \Rightarrow \boxed{\theta_1^* = \frac{n_1}{n_1 + n_2}}$$

³consider a binomial (special case with two events only)

Maximum Likelihood for Multinomials

• This easily generalizes to more than two events:

$$\theta_i^* = \frac{n_i}{\sum_j n_j}$$

And to conditional multinomials as well:

$$heta_{i|pa}^* = rac{n_{i,pa}}{n_{pa}}$$

• It's really simple. Let's make an example...

Maximum Likelihood: Flu Example

Α	F	S	Ν	Н
0	1	0	1	1
1	0	0	0	0
1	0	1	0	1
1	1	1	1	0
0	0	1	1	0
0	0	0	1	1
1	0	0	0	0
0	1	0	1	1
1	1	0	0	0
1	0	1	0	1
1	1	1	1	1
1	1	0	1	0
1	0	1	0	0
0	1	0	0	1
1	0	0	1	1
1	1	1	0	0

Let's compute some (marginal | cond.) probabilities:

$$p(A = 0) = \frac{5}{5 + 11} = \frac{5}{16}$$

$$p(A = 1) = 1 - p(A = 0) = \frac{11}{16}$$

$$p(F = 0|A = 1) = \frac{6}{11}$$

$$p(F = 1|A = 1) = 1 - p(F = 0|A = 1) = \frac{5}{11}$$

$$p(H = 0|A = 1, F = 1) = \frac{4}{5}$$

What about missing Values?

- But how can we handle missing values?
- In this case we can use the Expectation-Maximization (EM) algorithm

- The algorithm consists of two steps:
 - Expectation: Compute pseudo-counts
 - Maximization: Update parameters based on pseudo-counts

Expectation-Maximization Example

case	Α	В	U
1	0	0	1
2	0	1	?
3	1	0	0
4	1	?	1
5	0	1	0
6	1	?	0
7	1	0	1
8	?	0	1
9	0	1	?
10	?	0	1

To do...

Α	В	С	PC
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EM-Algorithm for the incomplete Data Case

Algorithm 3: Expectation-Maximization Algorithm

- 1 initialize parameters heta
- 2 while not converged do
- 3 compute pseudo counts
- set parameters to the maximum likelihood estimates
- $_{5}$ return final parameters heta

Caution: Depending on the initialization, the algorithm can get stuck in local optima! (Multiple runs?)

Structure Learning

To do...

Section: Hidden Markov Models (HMMs)

What is a hidden Markov Model?

- Motivation: Consider e.g. the task of part-of-speech tagging
- Problem: Labels cannot be assigned by looking only at single words
- Polysemy: The same word can have different meanings, e.g. can, bank
- A hidden Markov model (HMM) is a sequence classifier and as such able to take the context of a word into account

Part-of-speech (POS) tagging is the task of assigning **part-of-speech tags** (NN – nouns, VB – verbs, etc.) to a **set of given words**.

What does an HMM look like?

(hidden) states $q_1 \longrightarrow q_2 \longrightarrow q_3 \longrightarrow q_4 \longrightarrow \cdots \longrightarrow q_T$ observations $o_1 \longrightarrow o_2 \longrightarrow o_3 \longrightarrow o_4 \longrightarrow \cdots \longrightarrow o_T$

Decoding in Hidden Markov Models

Decoding: Given as input an HMM with parameters $\theta = (A, B)$ and a sequence of observations $o = o_1, o_2, \dots, o_T$, find the most probable sequence of (hidden) states $q = q_1, q_2, \dots, q_T$.

- Most probable state sequence: $\hat{q} = \arg \max_{q} p(q|q)$
- This equation is hard to compute. Let's apply Bayes' rule:

$$\widehat{\boldsymbol{q}} = \arg\max_{\boldsymbol{q}} \frac{p(\boldsymbol{o}|\boldsymbol{q}) \cdot p(\boldsymbol{q})}{p(\boldsymbol{o})} \propto \arg\max_{\boldsymbol{q}} \underbrace{p(\boldsymbol{o}|\boldsymbol{q}) \cdot p(\boldsymbol{q})}_{\text{likelihood}} \underbrace{prior}_{\text{prior}}$$
(11)

Two important Assumptions

- It's still hard to compute :-(
- Hidden Markov models make two simplifying assumptions:

Assumption 1: The probability of an observation depends only on its own hidden state: $p(\mathbf{o}|\mathbf{q}) \approx \prod_{i=1}^{T} p(o_i|q_i)$

Assumption 2: The probability of a state appearing is dependent only on the previous state: $p(q) \approx \prod_{i=1}^{T} p(q_i|q_{i-1})$

⇒ Markov Assumption ('the future is independent of the past given the present.')

The underlying Model

• Putting everything together, we get the hidden Markov model:

$$\widehat{\boldsymbol{q}} = \arg\max_{\boldsymbol{q}} p(\boldsymbol{q}|\boldsymbol{o}) \propto \arg\max_{\boldsymbol{q}} \prod_{i=1}^{T} p(o_i|q_i) \cdot p(q_i|q_{i-1})$$
(12)

- This equation contains two types of probabilities:
 - Transition probabilities: $p(q_i|q_{i-1})$
 - Emission probabilities: $p(o_i|q_i)$

Example POS Tagging

$P(t_i t_{i-1})$	VB	TO	NN	PPSS
<g>></g>	0.01900	0.00430	0.04100	0.06700
VB	0.00038	0.03500	0.04700	0.00700
TO	0.83000	0.00000	0.00047	0.00000
NN	0.00400	0.01600	0.08700	0.00450
PPSS	0.23000	0.00079	0.00120	0.00014

$P(w_i t_i)$	I	want	to	race
VB	0.00000	0.00930	0.00000	0.00012
TO	0.00000	0.00000	0.99000	0.00000
NN	0.00000	0.00005	0.00000	0.00057
PPSS	0.37000	0.00000	0.00000	0.00000

- Probabilities estimated from Brown corpus (million-word corpus of American English)
- Transition probabilities (first table)

$$p(q_i|q_{i-1}) = \frac{C(q_{i-1}, q_i)}{C(q_{i-1})}$$
(13)

• Emission probabilities (second table)

$$p(o_i|q_i) = \frac{C(q_i, o_i)}{C(q_i)}$$
(14)

Algorithm 4: Viterbi Algorithm (Dynamic Programming)

```
Input: o = o_1, o_2, \dots, o_T, state graph of length N
 1 create a path probability matrix V[N+2, T]
    // initialization step
 2 foreach state q \in \{1, 2, \dots, N\} do
 \mathbf{V}[q,1] \longleftarrow a_{0,q} \cdot b_q(o_1)
 4 trace[q, 1] \leftarrow 0
    // compute best path through trellis
 5 foreach time step t \in \{2, 3, \ldots, T\} do
          foreach state a \in \{1, 2, ..., N\} do
7 | \boldsymbol{V}[q,t] \longleftarrow \max_{q'=1}^{N} \boldsymbol{V}[q',t-1] \cdot a_{q',q} \cdot b_{q}(o_{t})
8 | trace[q,t] \longleftarrow \arg\max_{q'=1}^{N} \boldsymbol{V}[q',t-1] \cdot a_{q',q}
    // termination step
9 \boldsymbol{V}[q_F, T] \longleftarrow \max_{g=1}^N \boldsymbol{V}[q, T] \cdot a_{q,q_F}
10 trace[q_F, T] \leftarrow arg \max_{q=1}^{N} \mathbf{V}[q, T] \cdot a_{q,q_F}
11 return backtrace path by following the pointers back in time
```


Section: Wrap-Up

Summary: Bayesian Networks (BNs)

- Representation:
 - BNs represent exponentially large probability distributions
 - Local Markov assumption: Variable is independent of its non-descendants given its parents
 - Representation theorem:

$$I_{LM}(\mathfrak{G}) \subseteq I(p) \Leftrightarrow p(X_1, X_2, \dots, X_m) = \prod_{j=1}^m p(X_j | Pa(X_j))$$

- d-separation
- 2 Inference: Variable elimination algorithm, exact inference is NP-hard
- 3 Learning: Parameter estimation, structure learning

Summary: Hidden Markov Models (HMMs)

- An HMM is a sequence classifier (as such it takes the context into account)
- This is useful e.g. for part-of-speech (POS) tagging
- Two assumptions:
 - 1 Probability of an observation depends only on its own hidden state
 - 2 Markov assumption: Probability of a state appearing is dependent only on the previous state
- Find the most probable hidden sequence (decoding) by applying the Viterbi algorithm (dynamic programming)

Recommended Literature and further Reading I

[1] Probabilistic Graphical Models: Principles and Techniques

- D. Koller, N. Friedman. The MIT Press, Cambridge, Massachusetts. 2009.
- \rightarrow Click here, cf. chapters 3, 9, 16 and 17

[2] Pattern Recognition and Machine Learning

Christopher Bishop, Springer, 2006.

 \rightarrow Link, cf. chapters 8 and 13

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Probabilistic Graphical Models

Term: Winter term 2020/2021

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?