

Accessing data and developing analysis software, to study game strategies, with examples from tennis and soccer

Di Cook
Professor of Business Analytics
Econometrics and Business Statistics

Outline

■ Is Kygrios a future No 1? Inference with graphics (2014 analysis)
■ I lowa high school soccer: public databases, web apps, quantitative rankings

tennis

- Nick Kyrgios burst onto the international tennis on July 1, 2014 by beating world number 1, Rafael Nadal.
- Went to the Wimbledon web site, scraped the data from the matches
- IPlots of aggregated statistics from first two rounds against round reached
- -I How good is Kyrgios relative to other players

Rather than show the plot of the data alone, I'm going to show you the data plot embedded in a page of plots of null data (almost the same data) where there is NO ASSOCIATION.

YOUR TASK: Pick the plot that is most different from the others.

Data: 18, 5, 5, 1

What do we learn? Advancing in tournament is related to % first serves in, %second serves won, receiving points won, but not so much the double faults.

Results of crowd-sourcing

How does it work?

-I NULL PLOT: Association between variables is broken by permutation

%serves in	round	
58	2	
65	6	
47	3	
61	5	

%serves in	round
58	6
65	5
47	2
61	3

Why?

- It allows broader application of statistics
- IPlots are more (can be) complex statistical summary
- I Lineup procedure enables us to learn whether "what we think we see is really there"

Soccer

I Teams in lowa need to enter their stats each week with a web app, and these is made public

http://quikstatsiowa.com

In The motivation: to rank lowa high school soccer teams in a way that is free of bias and to create a "fair" seeding algorithm to be used in Substate tournaments.

Season: 2016-17 2015-16 2014-15 2013-14 2012-13 2011-12 2010-11

Process

- I During season, teams play a sample of other teams in the state, negotiated by their athletic director.
- -I Play can be across bracket (1,2,3)
- Partial rankings, convert to full rankings incorporating level and results on opponents, used Colley method
 Lots of DATA CLEANING and preprocessing, of web-scraped data!

A 2A substate draw with particularly large discrepancy from score ranking results

Team	Score Rank	Suggested Seed	Suggested Match
Hudson	26	1	ByeA
Webster City	40	2	ByeB
Clear Lake	110	3	B1
Iowa Falls-Alden	115	4	A1
Cedar Falls, Northern Univ	127	5	A2
Independence	139	6	B2

Why?

■ More objective ranking process
■ Tool for coaches and players to see how their team is performing relative to other teams
■ Data can be used in statistics classes

Key questions

- Beyond traditional statistical inference, supporting data exploration
- -I (Public) databases, gender equity
- ■■ Better visualisation of sports data, incorporating uncertainty, describing usual patterns
- -I Engaging students in statistics
- I All analysis is done with open data and open source software

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Tennis

- Research with Tennis Australia, Dr Stephanie Kovalchik
- Monash students: Steph Kobakian, Alwin Wang, Braden Churcher, Madeline Jom
- Visualisation of tennis serve
- -I Classifying different serve styles
- I Face and emotion detection

Basketball

Raonic's hit position

Fifty deuce side serves from Raonic at Australian Open 2016. A different toss height tends to produce a different serve. The down the T serves (red) are hit from a lower height.

Receiver's view

Bird's eye view of the court

Djokovic's hit position

Net

Australian Open 2016. Almost identical hit position leads to different type of serve.

Fifty-three deuce side serves from Djokovic at

Receiver's view

Bird's eye view of the court

Computing spin

Prediction:
$$\vec{a}_{\rm p} = \frac{\vec{F}_{\rm net}}{m} = \frac{\vec{L}}{m} + \frac{\vec{D}}{m} + \vec{g}$$

Lift Force:
$$\vec{L} = |L| \cdot \frac{\vec{W} \times \vec{V}}{\left| \vec{W} \times \vec{V} \right|}$$
 $|L| = A \frac{\rho}{2} V^2 \left(\frac{1}{2 + \frac{V}{V_s}} \right)$

Drag Force:
$$\vec{D} = -|D| \cdot \frac{\vec{V}}{|V|}$$
 $|D| = A \frac{\rho}{2} V^2 \left(0.55 + \frac{1}{\left(22.5 + 4.5 \left(\frac{V}{V_S} \right)^{2.5} \right)^{0.4}} \right)$

4

Cricket plots

Analysis

- What is the purpose?
 - Is there a temporal trend in his scores?
 - JDo he suffer from slumps and highs?
- -I Colour selection unfortunate
- Bar charts take space away from variance perception 0's lost as focus is on the highs
- I Time is not real time

Temporal trend

His first scores were back in 2008, then none until 2013

Temporal trend

Focus on the >2013 scores. Make a new variable season, to reflect cricket time. Guide lines for

Performance against different foes

Side-by-side boxplots by opponent, plus dotplots. Top scores were mostly against England

First vs second innings

Lines not level. Tendency may be to be "good"-"bad" or "bad"-"good"

Run rate and scores

Strike rate by runs. Strike rate higher when he scored more runs.

First vs second innings

Test used as time variable. Guideline showing his median score. Benchmark totals (50, 100) mapped to sequential colour scale. Pretty variable scoring,

Workflow tools

■ R Notebook: Code and document together, hooks to data
■ I github: Collaborative research, analysis and writing
■ I slack: Group organisation