PhET Simulation: Gravity Force Lab

Part 1: Distance and Force

Mass 1 is 100 kg and Mass 2 is 400 kg.

Table 1: Separation Distance and Resulting Forces

Distance Between Masses/m	Force acting on Masses/N
4	$1.66852 imes 10^{-7}$
6	$7.4156 imes 10^{-8}$
3	$2.96626 imes 10^{-7}$
2	$6.05359 imes 10^{-7}$
1.5	$1.186503 imes 10^{-6}$
5	$1.02639 imes 10^{-7}$
7	$5.4482 imes 10^{-8}$
10	$2.6696 imes 10^{-8}$
9	$3.2958 imes 10^{-8}$
8	$4.1713 imes 10^{-8}$
6.5	$6.3187 imes 10^{-8}$
5.8	$7.9359 imes 10^{-8}$
4.8	1.15869×10^{-7}
3.6	$2.0599 imes 10^{-7}$
2.5	4.27141×10^{-7}

 Create a graph to show the relationship between the separation distance and the resulting force. Title this graph "Graph 1: Distance and its effect on Force."

This is not a linear relationship. What kind of curve fit/relationship does the data fit?

This data has an exponential relationship.

Linearize your graph. Explain, below, what you did to linearize your data, and show 1 sample calculation for that process

I took the logarithm of the forces acting on the mass.

$$\log(1.67 \times 10^{-7}) = \boxed{-6.777}$$

What is the equation for your linearized graph?

$$N = -0.182m - 5.95$$

Slope?

Part 2: Mass and Force

The constant mass of object 1 is **100 kg** and the constant separation distance is **6 meters**.

Table 2: Mass of Object 2 and Resulting Forces

Mass of Object 2 / kg	Force acting on Masses / N
10	$4.171 imes10^{-9}$
20	$8.343 imes10^{-9}$
30	$1.251 imes10^{-8}$
40	$1.669 imes10^{-8}$
50	$2.086 imes10^{-8}$
60	$2.503 imes10^{-8}$
70	$2.9199 imes 10^{-8}$
80	$3.337 imes10^{-8}$
90	$3.754 imes10^{-8}$
100	$4.171 imes10^{-8}$
110	$4.588 imes10^{-8}$
120	$5.006 imes10^{-8}$
130	$5.423 imes10^{-8}$
140	$5.840 imes10^{-8}$
150	$6.257 imes10^{-8}$

Create a graph to show the relationship between the changing mass and the resulting force. Title this graph "Graph 3: Mass and its effect on Force".

What is the equation for your graph? Replace the "x" and "y" with the proper symbols representing what you put on each axis.

$$4.17 imes 10^{-10} kg - 2 imes 10^{-9} = N$$

What is your slope, including units?

$$4.17\times 10^{-10}~N/kg$$

3. Data-based prediction: How might the relationships be connected? Are there any similarities among your results?

The relationships might be connected due to Newton's law of gravitation, which establishes a linear relationship between force and mass. Additionally, it establishes an exponential relationship between distance and force.