Quantum Implementation of SHA3

https://youtu.be/vXGus6a-h8E

장경배

NIST Post-quantum Security

- NIST는 AES, SHA3에 대한 양자 키 복구 공격 (i.e., Grover' search) 의 복잡도에 따라 양자 후 보안 강도를 정의하고 있음
 - AES: Grassl et al.의 2016년도 연구를 인용 → Jaques et al.의 2020년도 연구를 인용
 - SHA3: 아직 없음

AES-128	2 ¹⁵⁷ /MAXDEPTH quantum gates or 2 ¹⁴³ classical gates
SHA3-256	2 ¹⁴⁶ classical gates
AES-192	2 ²²¹ /MAXDEPTH quantum gates or 2 ²⁰⁷ classical gates
SHA3-384	2 ²¹⁰ classical gates
AES-256	2 ²⁸⁵ /MAXDEPTH quantum gates or 2 ²⁷² classical gates
SHA3-512	2 ²⁷⁴ classical gates

SHA3 Quantum Implementation

- SHA3 (Keccak) 해시 함수 양자 회로 구현, Depth 최적화
 - PQC의 Encapsulation, Decapsulation에서도 사용됨

SHA3 (Keccak)	Qubits	Clifford	Т	Toffoli depth	Full depth
[1]	3,200	33,438,805	591,360	264	10,128
[2]	55,360	975,448	268,800	184	2,860
[Ours]	49,280	614,486	268,800	24	794

AES	Qubits	Clifford	Т	Toffoli depth	Full depth
AES-128	7,520	181,088	85,680	40	799

SHA3

Round function

- Theta (θ)
- Rho (*ρ*)
- Pi (π)
- Chi (χ)
- lota (ι)

state (1600-bit)

Theta (θ)

- y축의 두 column들의 비트 합을 모든 x, y, z에 XOR
 - $S[x][y][z] = S[x][y][z]) \oplus \left(\bigoplus_{i=0}^{4} S[x-1][i][z]\right) \oplus S[x+1][i][z-1]\right)$

Theta (θ)

* [1] θ : 17600 (11 x 1600)

$$S[x][y][z]) \oplus \rightarrow + 1 \text{ CNOT gate}$$

$$\left(\bigoplus_{i=0}^{4} S[x-1][i][z]\right) \oplus S[x+1][i][z-1] \to +10 \text{ CNOT gates}$$

$$[x][y][z]$$
 range $\rightarrow \times 5 \times 5 \times 64 = 1600$.

 $(\theta^{-1}: 136000)$

Table 1: Quantum resources required for implementations of θ .

Source	#CNOT	#Qubit	Depth
[1]*	1377600	3200^{*}	300
[2]	24000	3200	79
Ours	4800	1920	23

*: include both θ and θ^{-1} .

*: 1600 qubits are reused.

Ours θ : 4800 (1600 + 3200)

plane setting: $320 \times 5 = 1600$

XOR: 2 X 1600 = 3200

Rho (ρ)

 $Pi(\pi)$

Chi (χ)

• 유일하게 AND (Toffoli) 연산이 사용되는 부분

Order	Requir	red Qubit	Update Target
x = 0	X[1][y][z]	X[2][y][z]	X[0][y][z]
x = 1	X[2][y][z]	X[3][y][z]	X[1][y][z]
x=2	X[3][y][z]	X[4][y][z]	X[2][y][z]
x=3	X[4][y][z]	$\circledast X[0][y][z]$	X[3][y][z]
x=4	X[0][y][z]	$\circledast X[1][y][z]$	X[4][y][z]

Chi (χ)

- WISA'22 카라추바 곱셈 기법과 유사하게 구현
 - 모든 값들을 사전에 준비하고, 한 번에 병렬 연산 → Toffoli depth: 1

Order	Require	ed Qubit	Update Target
x = 0	X[1][y][z]	X[2][y][z]	X[0][y][z]
x = 1	X[2][y][z]	X[3][y][z]	X[1][y][z]
x=2	X[3][y][z]	X[4][y][z]	X[2][y][z]
x=3	X[4][y][z]	$\circledast X[0][y][z]$	X[3][y][z]
x=4	X[0][y][z]	$\circledast X[1][y][z]$	X[4][y][z]

Copy

Copy

Toffoli (Control 1

Control 2

Result)

Reverse

Garbage

0 (reuse)

Chi (χ)

state = result_state

```
rows = 25
cols = 64
result_state = [[0 for j in range(cols)] for i in range(rows)]
                                                               큐비트 할당
for i in range(rows):
    for j in range(cols):
       result_state[i][j] = eng.allocate_qubit()
state_copy_x(eng, state, copy_state)
                                    Copy
state copy(eng, state, result state)
for i in range(5): # 32
    for j in range(5):
                                                                                                           병렬 연산
       for k in range(64):
           Toffoli_gate(eng, copy_state[i*5+((j+1)%5)][k], state[i*5+((j+2)%5)][k], result_state[j+i*5][k])
state_copy_x(eng, state, copy_state) Reverse
```

Iota (ι) & Performance

- Round 상수 XOR 연산
 - Classical-Quantum 구현으로 분류됨
 - x 게이트만이 사용되며, 간단히 구현 가능

• 결과

SHA3 (Keccak)	Qubits	Clifford	Т	Toffoli depth	Full depth
[1]	3,200	33,438,805	591,360	264	10,128
[2]	55,360	975,448	268,800	184	2,860
[Ours]	49,280	614,486	268,800	24	794

Thank you!