Grundzüge der Theoretischen Informatik Kapitel 21 und 22

Markus Bläser Universität des Saarlandes Plah = # berutter Felder Zit = # Ghrite

Kapitel 21: Zeit versus Platz, Determinismus versus Nichtdeterminismus

Konstruierbare Funktionen

Definition (21.1)

Seien $s, t : \mathbb{N} \to \mathbb{N}$

- 1. t ist zeitkonstruierbar, falls es eine O(t)-zeitbeschränkte DTM M gibt, die die Funktion $1^n \mapsto \operatorname{bin}(t(n))$ berechnet.
- 2. s ist platzkonstruierbar, falls es eine O(s)-platzbeschränkte DTM M gibt (mit Extra-Eingabeband), die die Funktion $1^n \mapsto bin(s(n))$ berechnet.

Statt der Ausgabe in binär wird in vielen Büchern auch die Ausgabe in unär (also $1^{\operatorname{t}(|x|)}$ bzw. $1^{\operatorname{s}(|x|)}$) verlangt.

Hot or not?

Welche Funktionen sind zeitkonstruierbar, welche platzkonstruierbar?

- ▶ log n
- ▶ n = redre boiler aus.
- ▶ n² a redre los (n²) -> trultiplitation von
- ▶ $n^2 + n^3$ 2 No. der Geige O(logn)
- ▶ $n^2 + \chi_{H_0}(n) \cdot n^3$ with levelester.
- $ightharpoonup \log \log n$

Schwache versus starke Beschränktheit

Not de leministeurs

polities de l'appen vi l'

gilt es ever Pled vi Berechungsbaurs der Surige & t(|x|)

Lemma (21.2)

Sei t zeitkonstruierbar und s platzkonstruierbar.

- 1. Falls $L \in NTime(t)$, dann gibt es eine stark O(t)-zeitbeschränkte $NTM\ N\ mit\ L = L(N)$.
- 2. Falls $L \in \mathsf{NSpace}(s)$, dann gibt es eine stark O(s)-platzbeschränkte NTM N mit L = L(N).

Beweis (nur erste Aussage)

M sei eine schwach t-zeitbeschränkte NTM M mit L(M) = L.

Konstruiere N wie folgt:

- \blacktriangleright Konstruiere bin(t(|x|)) auf einem zusätzlichen Band. $oldsymbol{0}(t(|x|))$
- Simuliere M Schritt für Schritt

 Zähle die Schritte auf dem Zusatzband.

 Zühle die Schritte auf dem Zusatzband.
- Falls > t(|x|) Schritte simuliert wurden, dann halte und verwerfe.
- ► Falls M vorher hält, dann halte und akzepiere, wenn M akzeptiert. Sonst verwerfe.

Verus Purilionient das?
1) Se X6 L(M) is gilt ever also. Berechungspflad
im Berechurgsbauer von Maulx, der
de guize Et(IXI).
Dieser Plad vird von N zu Erde zvinheit.
Durit absented N and X
2) gu x & L(M). Dave gilt es lever ohr.
Pere drungsplad. Down had aber and N
surer als Beredrugspfied.

Der Konfigurationsgraph

- ► Sei M eine TM.
- ▶ Der Konfigurationsgraph ist $CG_M = (Conf_M, \vdash_M)$. $(\vdash_M \subseteq Conf_M \times Conf_M)$
- ► CG_M ist gerichtet und unendlich.
- Makzeptiert x, falls es einen Pfad von $SC_M(x)$ zu einer akzeptierenden Konfiguration gibt. $SC(x) \vdash C_1 \vdash C_2 \vdash ... \vdash C_k$
- ► Im Allgemeinen ist das unentscheidbar.

arr.

Lemma (21.3)

Sei M eine s-platzbeschränkte TM mit $s(n) \ge \log n$ für alle n. Dann gibt es eine Konstante c (abhängig von m), so dass m auf Eingabe m höchsten m Konfigurationen von $\mathrm{SC}(m)$ erreichen kann.

$$(q_{1}(x_{1}, p_{1}), \dots (x_{k}, p_{k})), \qquad 1 \leq p_{2} \leq |x_{k}|$$

$$M \text{ with } s - plate beschmist \Rightarrow |x_{2}| \leq S(n)$$

$$M = 2 \text{ logar}$$

$$|Q| \qquad |P|^{2}S(n) - s(n)^{k} (n+2)$$

$$(|P|^{2})^{S(n)} \qquad \varepsilon^{S(n)} \geq S(n) \text{ for } \varepsilon \text{ graph}$$

$$(\varepsilon^{2})^{S(n)} \qquad \varepsilon^{S(n)} \qquad \varepsilon^{S(n)}$$

$$\varepsilon^{S(n)} \qquad \varepsilon^{S(n)} \qquad \varepsilon^{S(n)} \qquad \varepsilon^{S(n)}$$

Der Konfigurationsgraph (2)

Korollar (21.4)

Sei $s(n) \ge \log n$ für alle n. Wenn eine s-platzbeschränkte DTM auf x hält, dann kann sie höchstens $c^{s(|x|)}$ Schritte auf x machen.

Korollar (21.5)

Sei $s(n) \ge \log n$ platzkonstruierbar. DSpace(s) ist abgeschlossen unter Komplement, d.h. falls $L \in \mathsf{DSpace}(s)$, dann auch \bar{L} .

Bemerkung (21.6)

- ► Korollar 21.5 gilt trivialer Weise für deterministische Zeitklassen.
- Offen für nichtdeterministische Zeitklassen.
- Gilt nicht-trivialer Weise für nichtdeterministische Platzklassen. (Immerman-Szelepcsényi-Theorem)

Berreis 21.5 Sei M ere s-plat beschrifte DTM mit L(M)=L. Vir konstruver evie 5-platiboscheriste DTM M vit L(M)=L(M), die voir Rill. . The simulat M 3 Shitt für 3 Shrit · Verr M halt, down halt and M Vere M dr., down versift M " reminft, " also. " · Probleration . M row night and x Juller dorr rus M and x Juller und absention.

Daru Mash 20 °	raille mi de gehribe van M. M. nehr als C S(IXI) gehribe, st. M. in ever Endles schleife, halt M. und absentiert	
$\bar{\mathcal{M}}$	soll 5 - plats beschraitt ser	
一 つ	soll 5-platsbeschweilt ser C-nurer Zahler	D