When do Koopman embeddings exist?¹

Matthew Kvalheim

(joint work with Philip Arathoon and Eduardo Sontag)

Department of Mathematics and Statistics University of Maryland, Baltimore County

 $^{^{1}}$ Funding from AFOSR award FA9550-24-1-0299 is gratefully acknowledged.

Motivation

Given: a (possibly unknown) nonlinear system

$$\dot{x} = f(x)$$
.

Extended Dynamic Mode Decomposition:² seeks y = h(x), matrix A with *linear* dynamics

$$\dot{y} = Ay$$
.

▶ To not lose information: want h one-to-one (1-1). Then

$$x(t) = h^{-1}(y(t))$$

= $h^{-1}(e^{At}h(x_0)).$

Such 1-1 linearizing maps h have also been called Koopman embeddings, faithful linear representations (Mezić 2021), 1-1 linear immersions (Liu-Ozay-Sontag 2023, 2025).

²Williams, Kevrekidis, and Rowley. J Nonlinear Science (2015)

Main issue and question

To avoid practical issues: want h at least continuous.

Main issue: continuous 1-1 linearizing h **do not exist** in general.

Main question: when do they exist and when do they not?

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Some positive results

Continuous 1-1 linearizing y = h(x) always exists:³

- near a hyperbolic equilibrium or limit cycle (Hartman-Grobman, Floquet);
- on the basin of any exponentially stable equilibrium or limit cycle (Lan-Mezić 2013, K-Revzen 2021);
- On the basin of ANY asymptotically stable equilibrium, not necessarily exponentially stable / hyperbolic (K-Sontag 2025)!

 $^{^{3}}$ There are also C^{k} versions of all of these results.

Global linearization for equilibria without hyperbolicity

Let x_* be asymptotically stable with basin B for

$$\dot{x} = f(x).$$

Assume f is continuous w/ unique trajectories defined for all time.

Theorem (K-Sontag 2025). There is a homeomorphism $h \colon B \to \mathbb{R}^n$ such that y = h(x) satisfies

$$\dot{y} = Ay$$

and hence $x(t) = h^{-1}(e^{At}h(x_0))$ for all $t \in \mathbb{R}$. And if $f \in C^{k \ge 1}$, $n \ne 5$: h is a C^k diffeomorphism on $B \setminus \{x_*\}$.

Remarks

- \triangleright Exponential stability / hyperbolicity of x_* is not needed.
- ▶ Proof relies on solutions to Poincaré conjecture (Smale, Perelman, Freedman). In fact:

Proposition (K-Sontag 2025). The C^k statement for n = 5 in last theorem is true \iff the smooth 4-D Poincaré conjecture is true.

Proposition (K 2025). In the last theorem, if the vector field f_p depends continuously on parameter $p \in P$, there is a continuous family $h_p : B \to \mathbb{R}^n$ of linearizing homeomorphisms if either (i) n > 5 and dim P = 1 or (ii) n < 4.

Proof of latter relies on corollary of:

Theorem (K 2025). The space of proper C^{∞} Lyapunov-like functions on \mathbb{R}^n is path-connected and simply connected if $n \neq 4,5$ and weakly contractible if n < 4. (Same for $C^{k \geq 1}$ & GAS vf)

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Some negative results

Assume a connected state space to avoid trivialities. Then

$$\dot{x} = f(x)$$

does **not** have a continuous 1-1 linearizing y = h(x) if **either**:

- there is a non-global compact attractor (K-Arathoon 2024), or
- ➤ all forward trajectories are precompact, and there are ≥ 2 but at most countably many omega-limit sets, e.g., multiple isolated equilibria (Liu-Ozay-Sontag 2023, 2025).

On the other hand, on the subject of multiple isolated equilibria...

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Smooth 1-1 linearization despite multiple isolated equilibria

If we drop the assumption that forward trajectories are precompact, then (another positive result):

Theorem (Arathoon-K 2023). For any n > 1 there is a smooth vector field on \mathbb{R}^n with any given finite number of isolated equilibria such that there exists a smooth 1-1 linearizing y = h(x).

In fact, h is a smooth embedding, and can moreover be taken of the form $h(x) = (x, g(x))!^4$

This theorem gives a family of strong counterexamples to an oft-repeated claim.

⁴Linearizing embeddings of this form were further studied by Claude, Fliess, and Isidori (1983) and recently Belabbas, Chen, Harshana, and Ko (2022–).

Example

Figure: Smoothly embedding a nonlinear system on \mathbb{R}^2 with two isolated equilibria as an invariant subset of a linear system on \mathbb{R}^3 .

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Where is the boundary between the positive and negative results?

We have now seen a variety of necessary conditions and sufficient conditions on

$$\dot{x} = f(x)$$

for a continuous 1-1 linearizing y = h(x) to exist.

Fundamental question: what are necessary **and** sufficient conditions on *f* for such an *h* to exist?

Note: without continuity, necessary and sufficient conditions for 1-1 linearizing h to exist were obtained by Mezić (2021).

Preamble to answering the fundamental question

Assume a connected state space to avoid trivialities.

- ▶ We can answer the fundamental question for any continuous f with unique trajectories defined for all time if there is at least one compact attractor.
- ▶ Recall there does not exist such an h if there are ≥ 2 such attractors, or even a single non-global compact attractor (K-Arathoon 2024).

► Remains to consider case of a global compact attractor (can also restrict to basin of local attractor to apply next result).

Torus preliminaries

The *m*-torus $T = T^m$ is Lie group isomorphic to $(\mathbb{R}/\mathbb{Z})^m$, vectors w/m real entries but w/m addition defined elementwise modulo 1.

A **torus action** on a space S is a map $\Theta \colon T \times S \to S$ satisfying $\Theta^{\tau_1 + \tau_2}(s) = \Theta^{\tau_1} \circ \Theta^{\tau_2}(s)$ for all $s \in S$ and $\tau_1, \tau_2 \in T$.

A 1-parameter subgroup of Θ is a map $\Phi \colon \mathbb{R} \times S \to S$ of the form $\Phi^t(x) = \Theta^{\omega t}(x)$ for some $\omega \in \mathbb{R}^m$.

 Θ has **finite orbit types** if there are only finitely many subgroups $H \subset T$ such that, for some $x \in S$,

$$H = Fix(x) := \{ \tau \in T : \Theta^{\tau}(x) = x \}.$$

Finishing the answer to the fundamental question

Assume f is continuous with unique trajectories defined for all time, so f generates a continuous flow $\Phi \colon \mathbb{R} \times X \to X$.⁵

Theorem (K-Arathoon 2024). Assume there is a global compact attractor A (or restrict to the basin of a local attractor). Then a continuous 1-1 linearizing y = h(x) exists \iff

- $lackbox{\Phi}|_{\mathbb{R}\times A}$ is a 1-parameter subgroup of a continuous torus action with finite orbit types, and
- ▶ A has continuous **asymptotic phase** $P: X \rightarrow A$.

Moreover, such h is automatically a proper topological embedding.

 $^{^{5}}t\mapsto\Phi^{t}(x_{0})$ is the unique solution of $\dot{x}=f(x)$ satisfying $x(0)=x_{0}$.

Asymptotic phase

Asymptotic phase means: for all $x \in X$, $t \in \mathbb{R}$,

$$P(\Phi^t(x)) = \Phi^t(P(x)).$$

 \implies if P continuous, then $\operatorname{dist}(\Phi^t(x), \Phi^t(P(x))) \to 0$ as $t \to \infty$; x is "asymptotically in phase with" P(x).

Example: limit cycles

Previous theorem implies that dynamics on basin of limit cycle attractor admit a continuous 1-1 linearizing y = h(x) if and only if there is continuous asymptotic phase (w/ level sets "isochrons").

Example. Using polar coordinates (r, θ) on \mathbb{R}^2 , the system

$$\dot{r} = -(r-1)^3, \qquad \dot{\theta} = r$$

generates a smooth flow Φ on $\mathbb{R}^2 \setminus \{0\}$ with globally asymptotically stable limit cycle $A = \{r = 1\}$. Closed-form expression for Φ

$$\operatorname{dist}(\Phi^t(x), \Phi^t(y)) \not\to 0 \quad \text{as} \quad t \to \infty$$

for any $x \notin A$, $y \in A$, so A does not have continuous asymptotic phase, so a continuous 1-1 linearizing y = -h(x) does not exist.

What about smooth linearizations?

- ▶ Natural question: when does there exist a smooth 1-1 linearizing y = h(x) with smooth inverse $x = h^{-1}(y)$ $(y \in image(h))$?
- Such an h is called a smooth embedding.
- ➤ So far, less satisfying answer in this case. But in particular, have the following necessary conditions:

Theorem (K-Arathoon 2024). Assume $\dot{x} = f(x)$ has a global compact attractor $A \subset X$ and is linearizable by a smooth embedding. Then:

- A is a smoothly embedded submanifold and normally hyperbolic,
- A has smooth asymptotic phase, and
- $lackbox{ }\Phi|_{\mathbb{R} imes\mathcal{A}}$ is a 1-parameter subgroup of a smooth torus action.

Answer to fundamental question for compact invariant sets

If state space X is compact, can view A=X as a (trivial) compact attractor (with basin B=A=X). For this special case, we have:

Theorem (K-Arathoon 2024). Assume f generates a smooth (resp. continuous) flow Φ and X is compact. Then there is a smooth (resp. continuous) linearizing embedding $y = h(x) \iff \Phi$ is a 1-parameter subgroup of a smooth (resp. continuous w/ finite orbit types) torus action.

For X noncompact, can still apply this theorem by restricting to a compact invariant set.

Surprising (?) examples with continuous 1-1 linearizations

Figure: For all of these flows, a continuous 1-1 linearizing y = h(x) exists (easy to see using preceding theorem).

Some corollaries of preceding theorem

Corollary (K-Arathoon 2024). If X is a compact smooth manifold and f has at most finitely many equilibria, and if there exists a smooth linearizing embedding y = h(x), then

$$\underbrace{\chi(X)}_{\text{Euler characteristic}} = \#\{\text{equilibria}\} \ge 0.$$

Corollary (K-Arathoon 2024). If X is an odd-dimensional compact smooth manifold and f has at least one isolated equilibrium, then there does not exist a smooth linearizing embedding y = h(x).

Proof sketch. Using previous theorem, Bochner's linearization theorem for fixed points of torus actions \implies the Hopf index of any equilibrium is +1. Apply the Poincaré-Hopf theorem to deduce the first corollary. Deduce the second corollary from the first using $\chi(X)=0$ if X is an odd-dimensional compact manifold.

A primer on the Euler characteristic⁶

Goes back to Francesco Maurolico (1537), Leonhard Euler (1758).

Notation: $\chi(Y) := \text{Euler characteristic of } Y$.

Examples:
$$\chi(\bullet) = 1$$
, $\chi(\mathbb{S}^1) = 0$, $\chi(\mathbb{S}^2) = 2$, $\chi(\Sigma_{\sigma}) = 2 - 2g$

 Σ_g for g=1,2,3 (not linearizable by smooth embedding for g>1 if there is an isolated equilibrium).

⁶Figures from Quanta Magazine and Wikipedia.

References for (non)existence of 1-1 linearizing y = h(x)Linearization in the large of nonlinear systems and

- Koopman operator spectrum. Lan & Mezić. Phys D (2013)
- Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits.
 Kvalheim & Revzen. Phys D (2021)
- ► Linearizability of flows by embeddings. Kvalheim and Ararthoon. arXiv:2305.18288 (2024)
- ► Koopman embedding and super-linearization counterexamples with isolated equilibria. Arathoon and Kvalheim. arXiv:2306.15126 (2023)
- ▶ Properties of immersions for systems with multiple limit sets with implications to learning Koopman embeddings. Liu, Ozay, & Sontag. Automatica (2025)
- ► Global linearization without hyperbolicity. Kvalheim and Sontag. arXiv:2502.07708 (2025)
- ▶ Differential topology of the spaces of asymptotically stable vector fields and Lyapunov functions. Kvalheim. arXiv:2503.10828 (2025)

Linearizability of dynamical systems by embeddings

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria