

# ER-DCOPS: A FRAMEWORK FOR DCOP WITH UNCERTAINTY IN CONSTRAINT UTILITIES

Tiep Le, Ferdinando Fioretto, William Yeoh,
Tran Cao Son, Enrico Pontelli
Computer Science Department
New Mexico State University



### OUTLINE

- BACKGROUND & MOTIVATION
- ER-DCOP
- ER-DPOP ALGORITHM
- EXPERIMENTAL RESULTS
- CONCLUSION





### OUTLINE

- BACKGROUND & MOTIVATION
- ER-DCOP
- ER-DPOP ALGORITHM
- EXPERIMENTAL RESULTS
- CONCLUSION





• DCOP P =  $\langle X, D, F, A, \alpha \rangle$ 









• DCOP P = <X, D, F, A, α>







$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 



• DCOP P =  $\langle X, D, F, A, \alpha \rangle$ 



$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

• DCOP P =  $\langle X, D, F, A, \alpha \rangle$ 



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |  |  |
|-----------------------|-----------------------|-----------------|--|--|
| 0                     | 0                     | 50              |  |  |
| 0                     | 1                     | 30              |  |  |

 $f_{13}$ 

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |  |  |
|----------------|-----------------------|-----------------|--|--|
| 0              | 0                     | 40              |  |  |
| 0              | 1                     | 50              |  |  |

 $f_{23}$ 

$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

• DCOP P =  $\langle X, D, F, A, \alpha \rangle$ 



 $f_{13}$ 

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

 $f_{23}$ 

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |

$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

Worker  $x_1$  owns variable  $x_1$ Worker  $x_2$  owns variable  $x_2$ Assistant robot  $x_3$  owns variable  $x_3$ 

- DCOP P =  $\langle X, D, F, A, \alpha \rangle$
- Goal: The assignment for all variables maximizes the aggregate utility

f



| '13                   |                       |                 |  |  |
|-----------------------|-----------------------|-----------------|--|--|
| <b>x</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |  |  |
| 0                     | 0                     | 50              |  |  |
| 0                     | 1                     | 30              |  |  |

| 20             |                       |                 |  |  |
|----------------|-----------------------|-----------------|--|--|
| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |  |  |
| 0              | 0                     | 40              |  |  |
| 0              | 1                     | 50              |  |  |

$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

Worker  $x_1$  owns variable  $x_1$ Worker  $x_2$  owns variable  $x_2$ Assistant robot  $x_3$  owns variable  $x_3$ 

### MOTIVATION

• In real-world applications, the utilities are stochastic.

| T <sub>23</sub> |                       |           |                 |  |
|-----------------|-----------------------|-----------|-----------------|--|
| $X_2$           | <b>X</b> <sub>3</sub> |           | U <sub>23</sub> |  |
| 0               | 0                     | (Fail)    | 0               |  |
|                 |                       | (Success) | 40              |  |
| 0               | 1                     | (Fail)    | 0               |  |
|                 |                       | (Success) | 50              |  |

### **UR-DCOP**

In real-world applications, the utilities are stochastic.

| 4 |   |   |
|---|---|---|
|   | 2 | 3 |
|   | _ | U |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> |           | U <sub>23</sub> | Good | Bad |
|----------------|-----------------------|-----------|-----------------|------|-----|
| 0              | 0                     | (Fail)    | 0               | 50%  | 90% |
|                |                       | (Success) | 40              | 50%  | 10% |
| 0              | 1                     | (Fail)    | 0               | 50%  | 90% |
|                |                       | (Success) | 50              | 50%  | 10% |

 Stochastic utilities can be sampled from a known probability distribution space.

### MOTIVATION

In real-world applications, the utilities are stochastic.

| 4 |   |   |
|---|---|---|
|   | 2 | 2 |
| - | Z | J |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> |           | U <sub>23</sub> | Good | Bad |
|----------------|-----------------------|-----------|-----------------|------|-----|
| 0              | 0                     | (Fail)    | 0               | 50%  | 90% |
|                |                       | (Success) | 40              | 50%  | 10% |
| 0              | 1                     | (Fail)    | 0               | 20%  | 50% |
|                |                       | (Success) | 50              | 80%  | 50% |

- Stochastic utilities can be sampled from a known probability distribution space.
- Expected-regret

### MOTIVATION

In real-world applications, the utilities are stochastic.

 $f_{23}$ 

| X <sub>2</sub> | <b>X</b> <sub>3</sub> |           | U <sub>23</sub> | Good | Bad |
|----------------|-----------------------|-----------|-----------------|------|-----|
| 0              | 0                     | (Fail)    | 0               | 50%  | 90% |
|                |                       | (Success) | 40              | 50%  | 10% |
| 0              | 1                     | (Fail)    | 0               | 20%  | 50% |
|                |                       | (Success) | 50              | 80%  | 50% |

 Stochastic utilities can be sampled from a known probability distribution space.

**ER-DCOP** framework!

### OUTLINE

- BACKGROUND
- ER-DCOP
- ER-DPOP ALGORITHM
- EXPERIMENTAL RESULTS
- CONCLUSION



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>x</b> <sub>3</sub> <b>U</b> <sub>23</sub> |    |
|----------------|----------------------------------------------|----|
| 0              | 0                                            | 40 |
| 0              | 1                                            | 50 |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> |           | U <sub>23</sub> |  |
|----------------|-----------------------|-----------|-----------------|--|
| 0              | 0                     | (Fail)    | 0               |  |
|                |                       | (Success) | 40              |  |
| 0              | 1                     | (Fail)    | 0               |  |
|                |                       | (Success) | 50              |  |



| <b>x</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>x</b> <sub>3</sub> <b>U</b> <sub>23</sub> |    |
|----------------|----------------------------------------------|----|
| 0              | 0 40                                         |    |
| 0              | 1                                            | 50 |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> |
|----------------|-----------------------|----------------|-----------------|
| 0              | 0                     | 0 (Fail) 0     |                 |
|                |                       | 1 (Success)    | 40              |
| 0              | 1                     | 0 (Fail)       | 0               |
|                |                       | 1 (Success)    | 50              |



| <b>x</b> <sub>1</sub> | <b>x</b> <sub>3</sub> <b>U</b> <sub>13</sub> |    |
|-----------------------|----------------------------------------------|----|
| 0                     | 0                                            | 50 |
| 0                     | 1                                            | 30 |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 40              |
| 0                     | 1                     | 50              |

**Good: 12%** 

Bad: 88%

| X <sub>2</sub> | $X_3$ | r <sub>2</sub> | U <sub>23</sub> | Good | Bad |
|----------------|-------|----------------|-----------------|------|-----|
| 0              | 0     | 0 (Fail)       | 0               | 50%  | 90% |
|                |       | 1 (Success)    | 40              | 50%  | 10% |
| 0              | 1     | 0 (Fail)       | 0               | 20%  | 50% |
|                |       | 1 (Success)    | 50              | 80%  | 50% |

• ER-DCOP P =  $\langle X, D, A, \alpha, R, S, F \rangle$ 

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | U <sub>13</sub> | Good | Bad |
|-----------------------|-----------------------|----------------|-----------------|------|-----|
| 0                     | 0                     | 0 (Fail)       | 0               | 10%  | 30% |
|                       |                       | 1 (Success)    | 50              | 90%  | 70% |
| 0                     | 1                     | 0 (Fail)       | 0               | 30%  | 50% |
|                       |                       | 1 (Success)    | 30              | 70%  | 50% |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | $r_2$       | <b>U</b> <sub>23</sub> | Good | Bad |
|-----------------------|-----------------------|-------------|------------------------|------|-----|
| 0                     | 0                     | 0 (Fail)    | 0                      | 50%  | 90% |
|                       |                       | 1 (Success) | 40                     | 50%  | 10% |
| 0                     | 1                     | 0 (Fail)    | 0                      | 20%  | 50% |
|                       |                       | 1 (Success) | 50                     | 80%  | 50% |

- ER-DCOP P =  $\langle X, D, A, \alpha, R, S, F \rangle$
- belief of r<sub>1</sub>,
- belief of r<sub>2</sub>
- x = joint belief for all random variables

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | <b>U</b> <sub>13</sub> | Good |
|-----------------------|-----------------------|----------------|------------------------|------|
| 0                     | 0                     | 0 (Fail)       | 0                      | 10%  |
|                       |                       | 1 (Success)    | 50                     | 90%  |
| 0                     | 1                     | 0 (Fail)       | 0                      | 30%  |
|                       |                       | 1 (Success)    | 30                     | 70%  |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good |
|-----------------------|-----------------------|----------------|-----------------|------|
| 0                     | 0                     | 0 (Fail)       | 0               | 50%  |
|                       |                       | 1 (Success)    | 40              | 50%  |
| 0                     | 1                     | 0 (Fail) 0     |                 | 20%  |
|                       |                       | 1 (Success)    | 50              | 80%  |

- ER-DCOP P =  $\langle X, D, A, \alpha, R, S, F \rangle$
- Using Expected Utility (EU)

#### consider only 1 joint belief of good weather

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | U <sub>13</sub> | Good | EU |
|-----------------------|-----------------------|----------------|-----------------|------|----|
| 0                     | 0                     | 0 (Fail)       | 0               | 10%  | 45 |
|                       |                       | 1 (Success)    | 50              | 90%  |    |
| 0                     | 1                     | 0 (Fail)       | 0               | 30%  | 21 |
|                       |                       | 1 (Success)    | 30              | 70%  |    |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good | EU |
|-----------------------|-----------------------|----------------|-----------------|------|----|
| 0                     | 0                     | 0 (Fail)       | 0               | 50%  | 20 |
|                       |                       | 1 (Success)    | 40              | 50%  |    |
| 0                     | 1                     | 0 (Fail)       | 0               | 20%  | 40 |
|                       |                       | 1 (Success)    | 50              | 80%  |    |

#### bad weather

| <b>x</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU |
|-----------------------|----------------|-----------------------|----|
| 0                     | 0              | 0                     | 39 |
| 0                     | 0              | 1                     | 40 |

— Optimal assignment if bad weather (EU = 40)

#### good weather

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU |
|-----------------------|----------------|-----------------------|----|
| 0                     | 0              | 0                     | 65 |
| 0                     | 0              | 1                     | 41 |

Optimal assignment if good weather (EU = 65)

**Belief Space** 

Good: 12% Bad: 88%

#### bad weather

| <b>x</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|----------------|-----------------------|----|---------|
| 0                     | 0              | 0                     | 39 | 40-39=1 |
| 0                     | 0              | 1                     | 40 | 40-40=0 |

#### good weather

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|----------------|-----------------------|----|---------|
| 0                     | 0              | 0                     | 65 | 65-65=0 |
| 0                     | 0              | 1                     | 41 | 65-61=4 |

Assignment  $x_1 = x_2 = x_3 = 0$  has regret of 1 if bad weather regret of 0 if good weather

**Belief Space** 

Good: 12% Bad: 88%

88%

#### bad weather

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|----------------|-----------------------|----|---------|
| 0                     | 0              | 0                     | 39 | 40-39=1 |
| 0                     | 0              | 1                     | 40 | 40-40=0 |

good weather

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|----------------|-----------------------|----|---------|
| 0                     | 0              | 0                     | 65 | 65-65=0 |
| 0                     | 0              | 1                     | 41 | 65-61=4 |

Expected-Regret (ER)

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | ER                   |
|-----------------------|----------------|-----------------------|----------------------|
| 0                     | 0              | 0                     | 12%*0 + 88%*1 = 0.88 |
| 0                     | 0              | 1                     | 12%*4 + 88%*0 = 0.48 |

**Belief Space** 

Good: 12% Bad: 88%

88%

12%

#### bad weather

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | EU | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|-----------------------|----|----------------|-----------------------|----|---------|
| 0                     | 0                     | 35 | 0              | 0                     | 4  | 40-39=1 |
| 0                     | 1                     | 15 | 0              | 1                     | 25 | 40-40=0 |

good weather

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | EU | X <sub>2</sub> | <b>X</b> <sub>3</sub> | EU | Regret  |
|-----------------------|-----------------------|----|----------------|-----------------------|----|---------|
| 0                     | 0                     | 45 | 0              | 0                     | 20 | 65-65=0 |
| 0                     | 1                     | 21 | 0              | 1                     | 40 | 65-61=4 |

Expected-Regret (ER)

| <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | ER                   |
|-----------------------|----------------|-----------------------|----------------------|
| 0                     | 0              | 0                     | 12%*0 + 88%*1 = 0.88 |
| 0                     | 0              | 1                     | 12%*4 + 88%*0 = 0.48 |

The solution minimizes the expected-regret

### OUTLINE

- BACKGROUND
- ER-DCOP
- ER-DPOP ALGORITHM
- EXPERIMENTAL RESULTS
- CONCLUSION

Phase 1: Generation of the pseudo-tree



#### Phase 2: Resolution of subproblems



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | U <sub>13</sub> | Good | Bad |
|-----------------------|-----------------------|----------------|-----------------|------|-----|
| 0                     | 0                     | 0 (Fail)       | 0               | 10%  | 30% |
|                       |                       | 1 (Success)    | 50              | 90%  | 70% |
| 0                     | 1                     | 0 (Fail)       | 0               | 30%  | 50% |
|                       |                       | 1 (Success)    | 30              | 70%  | 50% |

| <b>X</b> <sub>3</sub> | EU(Good) | EU(Bad) |
|-----------------------|----------|---------|
| 0                     | 45       | 35      |
| 1                     | 21       | 15      |

EU = Expected Utility

#### Phase 2: Resolution of subproblems



| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good | Bad |
|-----------------------|-----------------------|----------------|-----------------|------|-----|
| 0                     | 0                     | 0 (Fail)       | 0               | 50%  | 90% |
|                       |                       | 1 (Success)    | 40              | 50%  | 10% |
| 0                     | 1                     | 0 (Fail)       | 0               | 20%  | 50% |
|                       |                       | 1 (Success)    | 50              | 80%  | 50% |

| <b>X</b> <sub>3</sub> | EU(Good) | EU(Bad) |
|-----------------------|----------|---------|
| 0                     | 20       | 4       |
| 1                     | 40       | 25      |

EU = Expected Utility

#### Phase 2: Resolution of subproblems



| <b>X</b> <sub>3</sub> | EU(Good) | EU(Bad)  |
|-----------------------|----------|----------|
| 0                     | 45+20=65 | 35+4=39  |
| 1                     | 21+40=61 | 15+25=40 |

EU = Expected Utility

- Phase 3: Resolution of the main problems
  - Generate DCOP with expected-regret as utilities
  - Use DPOP [Petcu et al. AAAI2007] to solve that DCOP

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | EU(Good) | EU(Bad) |  |
|-----------------------|-----------------------|----------|---------|--|
| 0                     | 0                     | 45       | 35      |  |
| 0                     | 1                     | 21       | 15      |  |
|                       |                       |          |         |  |

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | Expected-Regret                      |
|-----------------------|-----------------------|--------------------------------------|
| 0                     | 0                     | 12%*(45-45) +<br>88%*(15-35) = -17.6 |
| 0                     | 1                     | 12%*(45-21) +<br>88%*(15-15) = 2.88  |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | EU(Good) | EU(Bad) |  |
|-----------------------|-----------------------|----------|---------|--|
| 0                     | 0                     | 20       | 4       |  |
| 0                     | 1                     | 40       | 25      |  |
|                       |                       |          |         |  |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | Expected-Regret    |
|----------------|-----------------------|--------------------|
| 0              | 0                     | 12%*(20-20) +      |
|                |                       | 88%*(25-4) = 18.48 |
| 0              | 1                     | 12%*(20-40) +      |
|                |                       | 88%*(25-25) = 2.4  |

#### NM STATE R-DPOP IMPLEMENTATIONS

- GPU-ER-DPOP (GPU-based ER-DPOP)
  - Utilizes the parallelism offered by Graphical Processing Unit (GPU) to speed up computations in ER-DPOP

- ASP-ER-DPOP (ASP-based ER-DPOP)
  - Prunes the search space offered by logic-programming based inference rules in Answer Set Programming (ASP)

### RELATED WORK

- UR-DCOP (F. Wu et al. AAAI 2014)
  - Beliefs of random variables are independent with values of decision variables;
  - Belief space does not exhibit probabilistic model;
  - Minimizing the worst-case loss (regret) over belief space.

### OUTLINE

- BACKGROUND
- ER-DCOP
- ER-DPOP ALGORITHM
- EXPERIMENTAL RESULTS
- CONCLUSION

### EXPERIMENTAL RESULTS

#### Algorithms:

- GPU-ER-DPOP
- ASP-ER-DPOP
- FRODO-ER (solve subproblems in Phase 2 sequentially)

#### Domains:

- Random Graph (varying |X|, |D|, constraint density p<sub>1</sub>, constraint tightness p<sub>2</sub>, or belief space's size)
- Power Network Problems (varying Topology or |D|)

### EXPERIMENTAL RESULTS

| X  | ASP-ER-DPOP | GPU-ER-DPOP | FRODO-ER |
|----|-------------|-------------|----------|
| 8  | 3.1         | 0.1         | 0.3      |
| 13 | 9.4         | 0.2         | 61.1     |
| 18 | 44.1        | N/A         | N/A      |
| 23 | 120.8       | N/A         | N/A      |

runtime in second

| D  | ASP-ER-DPOP | GPU-ER-DPOP | FRODO-ER |
|----|-------------|-------------|----------|
| 4  | 4.5         | 0.1         | 1.8      |
| 6  | 8.9         | 0.1         | 33.6     |
| 8  | 22.2        | 1.2         | 143.2    |
| 10 | 80.4        | 4.8         | N/A      |
| 12 | 121.2       | 15.4        | N/A      |

N/A: not available

Random Graphs

# EXPERIMENTAL RESULTS



### EXPERIMENTAL RESULTS

- Compare the actual regret between
  - ER-DCOP
  - UR-DCOP (F. Wu et al. AAAI 2014)
    - Beliefs of random variables are independent with values of decision variables;
    - Belief space does not exhibit probabilistic model;
    - Minimizing the worst-case loss (regret) over belief space.
- Domain:
  - Random Graph
  - UR-DCOPs instances augmented a probability for each joint belief according to a normal distribution.

### EXPERIMENTAL RESULTS

| Belief Space's Size | Better | Worse | Equal |
|---------------------|--------|-------|-------|
| 5                   | 45%    | 20%   | 35%   |
| 10                  | 36%    | 28%   | 36%   |
| 15                  | 47%    | 20%   | 33%   |

Compare Actual Regret ER-DCOP solution vs UR-DCOP solution

# CONCLUSION

- ER-DCOPs to model DCOPs with uncertainty in constraint utilities.
- ER-DPOP, a distributed complete algorithm to solve ER-DCOPs.
- GPU-ER-DPOP harnesses the parallelism offered by GPU.
- ASP-ER-DPOP exploits logic programming-based inference rules to prune the search space.
- ER-DCOP solution outperforms UR-DCOP solution in terms of actual regret (belief space exhibits normal distribution).

# THANK YOU FOR YOUR ATTENTION!



| <b>x</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |



| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 40              |
| 0                     | 1                     | 50              |

30



| Х | 2 | Х | 3  | U   | 23 |
|---|---|---|----|-----|----|
| ( | ) | ( | )  | 4   | 0  |
| ( | ) | , | 1  | 5   | 0  |
| ı |   |   | ,  |     | ı  |
|   | X | 3 | Un | nax |    |
|   | ( | ) | 4  | 0   |    |
|   | , | 1 | 5  | 0   |    |

# ANSWER SET PROGRAMMING (ASP)

- $\Pi$  = { rule | rule's form :  $C \leftarrow a_1, ..., a_m, \text{ not } b_1, ..., \text{ not } b_n$  }
- The answer sets of an ASP program which encodes a problem P represent solutions for P.

# BENEFITS: RULE vs TABLE

$$D_{x1} = D_{x2} = [0,1].$$
  
 $U(X_1, X_2) = X_1 + X_2$ 

| <b>x</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 0               |
| 0                     | 1                     | 1               |
| 1                     | 0                     | 1               |
| 1                     | 1                     | 2               |

```
\begin{aligned} \text{domain}_{-}x_{1}(0..1). \\ \text{domain}_{-}x_{2}(0..1). \\ \text{utility}_{1\_2}(U,X_{1},X_{2}) &\leftarrow \text{domain}_{-}x_{1}(X_{1}), \\ &\quad \text{domain}_{-}x_{2}(X_{2}), \ U = X_{1} + X_{2}. \end{aligned}
```

Implicit Representation

# BENEFITS: OPTIMIZED ASP SOLVER (GROUNDING)

$$D_{x1} = D_{x2} = [0,1].$$
  
The message  $U(X_1,X) = 0$  if  $X_1 = X_2 = 0$ ; otherwise, - $\infty$ 

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | U <sub>12</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 0               |
| 0                     | 1                     | -∞              |
| 1                     | 0                     | -∞              |
| 1                     | 1                     | _00             |

```
domain_x_1(0..1).

domain_x_2(0..1).

utility<sub>1_2</sub>(0,X<sub>1</sub>,X<sub>2</sub>) \leftarrow domain_x_1(X_1),

domain_x_2(X_2), x_1 = 0, x_2 = 0.
```

- ER-DCOP P =  $\langle X, D, A, \alpha, R, S, F \rangle$
- The conditional probability distribution of a random variable is a belief of the random variable.

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | <b>U</b> <sub>13</sub> | Good |
|-----------------------|-----------------------|----------------|------------------------|------|
| 0                     | 0                     | 0 (Fail)       | 0                      | 10%  |
|                       |                       | 1 (Success)    | 50                     | 90%  |
| 0                     | 1                     | 0 (Fail)       | 0                      | 30%  |
|                       |                       | 1 (Success)    | 30                     | 70%  |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good |
|-----------------------|-----------------------|----------------|-----------------|------|
| 0                     | 0                     | 0 (Fail)       | 0               | 50%  |
|                       |                       | 1 (Success)    | 40              | 50%  |
| 0                     | 1                     | 0 (Fail)       | 0               | 20%  |
|                       |                       | 1 (Success)    | 50              | 80%  |

Good: 12% Bad: 88%

### **GPU-ER-DPOP**

- Specifying a DCOP using ASP
  - $var(x_3)$ .  $dom(x_3, 0..1)$ .
  - constraint( $u_{1_3}$ ). scope( $u_{1_3}$ , $x_1$ , $x_3$ ). util<sub>1 3</sub>(5,0,0). (facts or rules)
  - agent(a<sub>3</sub>). owner(a<sub>3</sub>,x<sub>3</sub>).
- 3 phases as DPOP.
- Information about children, ancestor.
  - In x<sub>2</sub>:
    - ancestor(x<sub>1</sub>).
    - children(x<sub>3</sub>).



# **ASP-DPOP**



Agent Controller in Agent 2



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good |
|----------------|-----------------------|----------------|-----------------|------|
| 0              | 0                     | 0 (Fail)       | 0               | 50%  |
|                |                       | 1 (Success)    | 40              | 50%  |
| 0              | 1                     | 0 (Fail)       | 0               | 20%  |
|                |                       | 1 (Success)    | 50              | 80%  |



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |

**Good: 12%** 

Bad: 88%

| X <sub>2</sub> | $X_3$ | r <sub>2</sub> | <b>U</b> <sub>23</sub> | Good | Bad |
|----------------|-------|----------------|------------------------|------|-----|
| 0              | 0     | 0 (Fail)       | 0                      | 50%  | 90% |
|                |       | 1 (Success)    | 40                     | 50%  | 10% |
| 0              | 1     | 0 (Fail)       | 0                      | 20%  | 50% |
|                |       | 1 (Success)    | 50                     | 80%  | 50% |

- ER-DCOP P =  $\langle X, D, A, \alpha, R, S, F \rangle$
- EU = Expected Utility

| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | r <sub>1</sub> | U <sub>13</sub> | Good | EU |
|-----------------------|-----------------------|----------------|-----------------|------|----|
| 0                     | 0                     | 0 (Fail)       | 0               | 10%  | 45 |
|                       |                       | 1 (Success)    | 50              | 90%  |    |
| 0                     | 1                     | 0 (Fail)       | 0               | 30%  | 21 |
|                       |                       | 1 (Success)    | 30              | 70%  |    |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | r <sub>2</sub> | U <sub>23</sub> | Good | EU |
|-----------------------|-----------------------|----------------|-----------------|------|----|
| 0                     | 0                     | 0 (Fail)       | 0               | 50%  | 20 |
|                       |                       | 1 (Success)    | 40              | 50%  |    |
| 0                     | 1                     | 0 (Fail)       | 0               | 20%  | 40 |
|                       |                       | 1 (Success)    | 50              | 80%  |    |

# DISTRIBUTED CONSTRAINT OPTIMZATION PROBLEMS

- DCOP P =  $\langle X, D, F, A, \alpha \rangle$
- Goal: The assignment for all variables maximizes the aggregate utility.



| <b>x</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|----------------|-----------------------|-----------------|
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |

$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

### MOTIVATION

In real-world applications, the utilities are stochastic.



 Stochastic utilities can be sampled from a known probability distribution space.

**ER-DCOP** framework

# DISTRIBUTED CONSTRAINT OPTIMZATION PROBLEMS

• DCOP P =  $\langle X, D, F, A, \alpha \rangle$ 



| 1.0                   |                       |                 |
|-----------------------|-----------------------|-----------------|
| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

 $f_{13}$ 

| 23             |                       |                 |
|----------------|-----------------------|-----------------|
| X <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
| 0              | 0                     | 40              |
| 0              | 1                     | 50              |

 $f_{22}$ 

$$D_1 = D_2 = \{0\}$$
  
 $D_3 = \{0, 1\}$ 

• 3 phases: **Pseudo-tree Generation**, UTIL Propagation, and VALUE Propagation.



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 50              |
| 0                     | 1                     | 30              |

| X <sub>2</sub> | $X_3$ | U <sub>23</sub> |
|----------------|-------|-----------------|
| 0              | 0     | 40              |
| 0              | 1     | 50              |

1: (A. Petcu et al. IJCAI 2005)



| <b>X</b> <sub>1</sub> | <b>X</b> <sub>3</sub> | U <sub>13</sub>  |
|-----------------------|-----------------------|------------------|
| 0                     | 0                     | 50               |
| 0                     | 1                     | 30               |
|                       | 1                     | •                |
| X <sub>3</sub>        | ,   1                 | U <sub>max</sub> |
| 0                     |                       | 50               |
| 1                     |                       | 30               |

| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | U <sub>23</sub> |
|-----------------------|-----------------------|-----------------|
| 0                     | 0                     | 40              |
| 0                     | 1                     | 50              |

• 3 phases: Pseudo-tree Generation, **UTIL Propagation**, and VALUE Propagation.

30



| <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> |   | U <sub>23</sub> |
|-----------------------|-----------------------|---|-----------------|
| 0                     | 0                     |   | 40              |
| 0                     | 1                     |   | 50              |
|                       |                       | , |                 |
| <b>X</b> <sub>3</sub> |                       | U | max             |
| 0                     |                       |   | 40              |
| 1                     |                       | ; | 50              |

• 3 phases: Pseudo-tree Generation, **UTIL Propagation**, and VALUE Propagation.



| 0                     | 0 |   | 50  |
|-----------------------|---|---|-----|
| 0                     | 1 |   | 30  |
| 1                     |   |   |     |
| <b>X</b> <sub>3</sub> |   | J | max |
| 0                     |   |   | 50  |
| 1                     |   |   | 30  |

 $X_3$ 

| _ |                       |                       |   |                 |
|---|-----------------------|-----------------------|---|-----------------|
|   | $\mathbf{X}_{2}$      | <b>X</b> <sub>3</sub> |   | U <sub>23</sub> |
|   | 0                     | 0                     |   | 40              |
|   | 0                     | 1                     |   | 50              |
|   |                       |                       | , |                 |
|   | <b>X</b> <sub>3</sub> |                       | U | max             |
|   | 0                     |                       |   | 40              |
|   | 1                     |                       |   | 50              |

| $X_3$ | $U_{max}$ |
|-------|-----------|
| 0     | 50+40=90  |
| 1     | 30+50=80  |

• 3 phases: Pseudo-tree Generation, UTIL Propagation, and VALUE Propagation.



| U                     | C | ) | 50  |
|-----------------------|---|---|-----|
| 0                     | 1 |   | 30  |
| 1                     |   |   |     |
| <b>X</b> <sub>3</sub> |   | U | max |
| 0                     |   |   | 50  |
| 1                     |   |   | 30  |

 $X_3$ 

| <b>X</b> <sub>2</sub> | $X_3$ |   | U <sub>23</sub> |
|-----------------------|-------|---|-----------------|
| 0                     | 0     |   | 40              |
| 0                     | 1     | 1 | 50              |
|                       |       | , |                 |
| $X_3$                 |       | U | max             |
| 0                     |       |   | 40              |
| 1                     |       |   | 50              |

| $X_3$ | U <sub>max</sub> |
|-------|------------------|
| 0     | 90               |
| 1     | 80               |