Notes on Generalised Reparameterisation Gradient

Wilker Aziz

October 31, 2017

Consider the following function

$$\mathbb{E}_{q(z;\lambda)} \left[\log \frac{g(z)}{q(z;\lambda)} \right] \tag{1}$$

which we mean to maximise by performing stochastic gradient-based optimisation wrt parameters λ . We further assume that Z is a vector valued continuous random variable and that g(z) is differentiable with respect to z.

1 Location-scale q

I first describe the reparameterised gradient when $q(z; \lambda)$ is a location-scale family, that is, $\lambda = \{\mu, C\}$. In such cases, the random variable Z can be represented by transforming samples from a standard distribution $\phi(\epsilon)$ using an affine transformation:

$$\epsilon = h(z; \lambda) = C^{-1}(z - \mu) \tag{2a}$$

$$z = h^{-1}(\epsilon; \lambda) = \mu + C\epsilon . \tag{2b}$$

Note that $\phi(\epsilon)$ does not depend on λ which was absorbed in the affine transformation.¹

For the sake of generality we take z and ϵ to be vector valued. Then we write $J_{h(z;\lambda)}$ to denote the Jacobian matrix of the transformation $h(z;\lambda)$, and $J_{h^{-1}(\epsilon;\lambda)}$ to denote the Jacobian matrix of the inverse transformation.² An important property, which we will use to derive reparameterised gradients, is that the inverse of a Jacobian matrix is related to the Jacobian matrix of the inverse function by $J_{f^{-1}} \circ f(x) = J_{f(x)}^{-1}$.³

For an invertible transformation of random variables, it holds that

$$q(z;\lambda) = \phi(h(z;\lambda)) |\det J_{h(z;\lambda)}|$$
(3)

The vector μ is called the *location* and C is a positive definite matrix called the *scale*.

²Recall that a Jacobian matrix $\mathbf{J} \triangleq J_{f(x)}$ of some vector value function f(x) is such that $J_{i,j} = \frac{\partial}{\partial x_i} f_i(x)$.

³The notation $J_{f^{-1}} \circ f(x)$ denotes function composition, that is, $J_{f^{-1}(y=f(x))}$ or equivalently $J_{f^{-1}(y)}|_{y=f(x)}$.

and therefore for the transformation in (3) we can write

$$q(z;\lambda) = \phi(C^{-1}(z-\mu))|\det C^{-1}|$$
(4)

and

$$\phi(\epsilon) = q(\mu + C\epsilon; \lambda)|\det C|. \tag{5}$$

In the following block of equations (7) we will re-express the expectation in Equation (1) in terms of the parameter-free standard density $\phi(\epsilon)$. The derivation relies on several identities, thus we will break it down into small steps. We start by a change of density

$$\int q(z;\lambda) \log \frac{g(z)}{q(z;\lambda)} dz \tag{6a}$$

$$= \int \phi(\underbrace{h(z;\lambda)}) \left| \det J_{h(z;\lambda)} \right| \log \frac{g(z)}{\phi(h(z;\lambda)) \left| \det J_{h(z;\lambda)} \right|} dz$$
 (6b)

where we use the identity in (4) to introduce $\phi(\epsilon)$. Note, however, that the variable of integration is still z and therefore we have expressed every integrand—including $\phi(\epsilon)$ —as a function of z. We now proceed to perform a change of variable

$$= \int \phi(\epsilon) \left| \det J_h \circ h^{-1}(\epsilon; \lambda) \right| \log \frac{g(h^{-1}(\epsilon; \lambda))}{\phi(\epsilon) \left| \det J_h \circ h^{-1}(\epsilon; \lambda) \right|} \underbrace{\left| \det J_{h^{-1}(\epsilon; \lambda)} \right| \det}_{dz}$$
(6c)

which calls for a change of infinitesimal volumes, i.e. $dz = |\det J_{h^{-1}}(\epsilon; \lambda)| d\epsilon$, and requires expressing every integrand as a function of ϵ rather than z. Note that, to express the Jacobian $J_{h(z;\lambda)}$ as a function of ϵ , we used function composition. At this point we can use the inverse function theorem

$$= \int \phi(\epsilon) \left| \det J_{h^{-1}(\epsilon;\lambda)}^{-1} \right| \log \frac{g(h^{-1}(\epsilon;\lambda))}{\phi(\epsilon) \left| \det J_{h^{-1}(\epsilon;\lambda)}^{-1} \right|} \left| \det J_{h^{-1}(\epsilon;\lambda)} \right| d\epsilon$$
 (6d)

to rewrite both Jacobian terms of the kind $J_h \circ h^{-1}(\epsilon; \lambda)$ as inverse Jacobians. This is convenient because the determinant of invertible matrices is such that $\det A^{-1} = \frac{1}{\det A}$ which we can use to re-arrange the inverse Jacobian terms

$$= \int \phi(\epsilon) \frac{1}{|\det J_{h^{-1}}(\epsilon; \lambda)|} \log \frac{g(h^{-1}(\epsilon; \lambda))|\det J_{h^{-1}}(\epsilon; \lambda)|}{\phi(\epsilon)} |\det J_{h^{-1}}(\epsilon; \lambda)| d\epsilon$$
 (6e)

revealing that some of them can be cancelled. We are now left with a simpler expectation wrt $\phi(\epsilon)$

$$= \int \phi(\epsilon) \log \frac{g(h^{-1}(\epsilon;\lambda))|\det J_{h^{-1}}(\epsilon;\lambda)|}{\phi(\epsilon)} d\epsilon$$
 (6f)

and we can proceed to solve the Jacobian of the affine transformation

$$= \int \phi(\epsilon) \log \left(g(h^{-1}(\epsilon; \lambda)) \middle| \det \underbrace{J_{h^{-1}}(\epsilon; \lambda)}_{C} \middle| \right) d\epsilon \underbrace{-\int \phi(\epsilon) \log \phi(\epsilon) d\epsilon}_{\mathbb{H}[\phi(\epsilon)]}$$
(6g)

and to separate out the expected log-denominator (an entropy term). Finally, recall that $\phi(\epsilon)$ does not depend on C and therefore the log-determinant is constant with respect to the standard distribution and can be pushed outside the expectation.

$$= \mathbb{E}_{\phi(\epsilon)}[\log g(h^{-1}(\epsilon;\lambda))] + \log |C| + \mathbb{H}[\phi(\epsilon)]$$
(6h)

Note that every expectation in (7h) is taken with respect to $q(\epsilon)$ which does not depend on λ , thus the gradient of (1) wrt λ can be re-expressed as shown in Equation (8).

$$\nabla_{\lambda} \mathbb{E}_{q(z;\lambda)} \left[\log \frac{g(z)}{q(z;\lambda)} \right] = \nabla_{\lambda} \left(\mathbb{E}_{\phi(\epsilon)} [\log g(h^{-1}(\epsilon;\lambda))] + \log |C| + \mathbb{H}[\phi(\epsilon)] \right)$$
 (7a)

$$= \mathbb{E}_{\phi(\epsilon)} [\nabla_{\lambda} \log g(h^{-1}(\epsilon; \lambda))] + \nabla_{\lambda} \log |C| + \nabla_{\lambda} \mathbb{H}[\phi(\epsilon)]$$
 (7b)

$$= \mathbb{E}_{\phi(\epsilon)} \left[\underbrace{\boldsymbol{\nabla}_{h^{-1}} \log g(h^{-1}(\epsilon; \lambda)) \boldsymbol{\nabla}_{\lambda} h^{-1}(\epsilon; \lambda)}_{\text{chain rule}} \right] + \boldsymbol{\nabla}_{\lambda} \log |C| \tag{7c}$$

Importantly, note that the first term can be estimated via MC, and that is exactly what automatic differentiation/backprop computes for a given sample, while the second term can be found analytically.