Problem 6

Lin Yang

5/9/2022

```
dat6 <- read.csv("data/hurricanoutcome2.csv") %>%
  janitor::clean_names() %>%
  mutate(damage = as.numeric(str_replace(damage, "\\$", "")),
         deaths = as.integer(gsub(",", "", deaths)),
         month = as.factor(month),
         nature = as.factor(nature)) %>%
  dplyr::select(-1)
#damage
damage_x <- model.matrix(damage ~ ., dat6)[ ,-1]</pre>
damage_y <- dat6$damage</pre>
set.seed(1)
ctrl <- trainControl(method = "repeatedcv")</pre>
damage.fit <- train(damage_x, damage_y,</pre>
                   method = "glmnet",
                   preProcess = "scale",
                   tuneGrid = expand.grid(alpha = 1,
                                           lambda = exp(seq(5, -3, length = 100))),
                   trControl = ctrl)
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: monthNovember, natureNR
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: monthJuly
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
damage.fit$bestTune
##
      alpha lambda
## 54
        1 3.606826
coef(damage.fit$finalModel, damage.fit$bestTune$lambda) %>%
 as.matrix() %>%
 knitr::kable(col.names = gsub("[.]", " ", "Coefficients"))
```

	Coefficients
(Intercept)	-533.5099174
season	3.3837824
deaths	0.0000000
monthJuly	0.0000000
monthJune	0.0000000
monthNovember	0.0000000
monthOctober	0.0000000
month September	0.0000000
natureNR	0.0000000
natureTS	0.0000000
maxspeed	1.2117851
meanspeed	0.0000000
maxpressure	0.0000000
meanpressure	0.0000000
hours	0.0000000
total_pop	0.3187361
percent_poor	0.0000000
percent_usa	0.7073409

```
#refit a linear regression model
damage.lm <- lm(damage ~ season + maxspeed + total_pop + percent_usa, data = dat6)
summary(damage.lm)</pre>
```

```
##
## Call:
## lm(formula = damage ~ season + maxspeed + total_pop + percent_usa,
##
      data = dat6)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -19.607 -9.966 -3.352
                           2.112 92.129
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.317e+03 5.176e+02 -2.544
                                            0.0152 *
## season
          6.485e-01 2.580e-01 2.514
                                            0.0163 *
## maxspeed
              1.969e-01 1.227e-01 1.604
                                            0.1169
             3.284e-06 4.314e-06
                                    0.761
                                             0.4511
## total_pop
## percent_usa 1.356e-01 7.586e-02
                                     1.788
                                             0.0817 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.21 on 38 degrees of freedom
## Multiple R-squared: 0.2317, Adjusted R-squared: 0.1508
## F-statistic: 2.865 on 4 and 38 DF, p-value: 0.03612
fit <- lm(damage ~., data = dat6)</pre>
summary(fit)
```

```
## Call:
## lm(formula = damage ~ ., data = dat6)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -22.110 -9.505 -3.315 4.942 85.925
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                -3.120e+03 1.918e+03 -1.626 0.1164
## season
                9.922e-01 5.142e-01 1.930
                                               0.0651 .
                7.425e-04 2.010e-03 0.369
## deaths
                                             0.7149
## monthJuly
                -1.315e+01 2.332e+01 -0.564 0.5777
## monthJune
                2.446e+00 2.114e+01 0.116 0.9088
## monthNovember 6.206e+00 2.768e+01 0.224 0.8245
## monthOctober
                 1.432e+01 1.481e+01 0.967
                                               0.3429
## monthSeptember -1.209e+00 1.155e+01 -0.105 0.9174
## natureNR
           -1.555e+01 3.520e+01 -0.442 0.6625
## natureTS
                -8.018e+00 1.578e+01 -0.508 0.6158
                 2.804e-01 2.926e-01 0.958 0.3470
## maxspeed
## meanspeed
                2.275e-02 4.851e-01 0.047 0.9630
## maxpressure
                1.147e+00 1.385e+00 0.828 0.4156
## meanpressure -5.319e-02 3.862e-02 -1.377 0.1807
## hours
                 2.185e-03 4.815e-02 0.045
                                              0.9642
## total_pop
                6.179e-06 6.728e-06 0.918 0.3672
## percent_poor -1.414e-01 2.959e-01 -0.478
                                               0.6368
## percent_usa
                1.545e-01 1.067e-01 1.448
                                               0.1600
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.98 on 25 degrees of freedom
## Multiple R-squared: 0.3464, Adjusted R-squared: -0.09797
## F-statistic: 0.7796 on 17 and 25 DF, p-value: 0.6985
#deaths
#quantile(dat6$deaths, 0.95)
#dat_death <- dat6 %>% filter(deaths <= 1000)
#boxplot(dat6$deaths)
#summary(dat_death)
death_x <- model.matrix(deaths ~ ., dat6)[ ,-1]</pre>
death_y <- dat6$deaths</pre>
set.seed(100)
death.fit <- train(deaths ~ season+damage+deaths+month+nature+maxspeed+meanspeed+maxpressure+meanpressu
                  data = dat6,
                  method = "glmnet",
                  family = "poisson",
                  preProcess = "scale",
                  tuneGrid = expand.grid(alpha = 1,
                                        lambda = exp(seq(-4, 5, length = 500))),
                  trControl = ctrl)
```

Warning in model.matrix.default(Terms, m, contrasts): the response appeared on

the right-hand side and was dropped

```
## Warning in model.matrix.default(Terms, m, contrasts): problem with term 3 in
## model.matrix: no columns are assigned

## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: natureNR

## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: monthNovember
```

plot(death.fit)

death.fit\$bestTune

```
## alpha lambda
## 499 1 145.7604
```

```
coef(death.fit$finalModel, death.fit$bestTune$lambda) %>%
  as.matrix() %>%
  knitr::kable(col.names = gsub("[.]", " ", "Coefficients"))
```

	Coefficients
(Intercept)	5.6728507

	Coefficients
season	0.0000000
damage	0.0279429
monthJuly	-0.3610097
monthJune	0.0000000
monthNovember	0.0000000
monthOctober	0.2184573
monthSeptember	0.0000000
natureNR	0.0000000
natureTS	0.0000000
maxspeed	0.0000000
meanspeed	0.0000000
maxpressure	0.0000000
meanpressure	0.0000000
total_pop	0.0000000
percent_poor	0.8603086
percent_usa	0.0000000

poi_fit = glm(deaths ~ season+damage+deaths+month+nature+maxspeed+meanspeed+maxpressure+meanpressure+to ## Warning in model.matrix.default(mt, mf, contrasts): the response appeared on the ## right-hand side and was dropped ## Warning in model.matrix.default(mt, mf, contrasts): problem with term 3 in ## model.matrix: no columns are assigned summary(poi_fit) ## ## Call: ## glm(formula = deaths ~ season + damage + deaths + month + nature + maxspeed + meanspeed + maxpressure + meanpressure + total_pop + ## ## percent_poor + percent_usa + offset(log(hours)), family = poisson(link = log), ## data = dat6)## Deviance Residuals: Min 1Q Median 3Q Max ## -38.151 -17.900 -3.638 4.481 64.167 ## ## Coefficients: ## Estimate Std. Error z value Pr(>|z|) 2.043e+02 5.521e+00 37.000 < 2e-16 *** ## (Intercept) ## season 8.086e-03 1.370e-03 5.900 3.63e-09 *** ## damage 2.458e-02 3.918e-04 62.735 < 2e-16 *** -5.373e+00 1.139e-01 -47.162 < 2e-16 *** ## monthJuly ## monthJune -9.333e-02 8.791e-02 -1.062 0.288 ## monthNovember 1.493e-01 1.538e-01 0.971 0.332 ## monthOctober 8.907e-01 4.600e-02 19.361 < 2e-16 *** ## monthSeptember 1.813e+00 3.984e-02 45.509 < 2e-16 *** ## natureNR 6.051e+00 1.170e-01 51.719 < 2e-16 *** 2.576e+00 5.633e-02 45.729 < 2e-16 *** ## natureTS

```
## meanspeed
                                                   -1.715e-02 7.040e-04 -24.356 < 2e-16 ***
                                                    -4.139e-02 1.411e-03 -29.331 < 2e-16 ***
                                                   -2.209e-01 4.612e-03 -47.903 < 2e-16 ***
## maxpressure
## meanpressure 2.421e-03 8.103e-05 29.883 < 2e-16 ***
                                                     9.244e-07 1.832e-08 50.458 < 2e-16 ***
## total_pop
## percent_poor 4.572e-02 4.451e-04 102.703 < 2e-16 ***
## percent_usa 1.337e-03 3.175e-04 4.210 2.55e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
                    Null deviance: 148969 on 42 degrees of freedom
##
## Residual deviance: 21012 on 26 degrees of freedom
## AIC: 21321
##
## Number of Fisher Scoring iterations: 8
\#wave.nb = glm.nb (deaths \sim season + damage + deaths + month + nature + maxspeed + meanspeed + maxpressure + mea*npressure +
#summary(wave.nb)
#sqrt(sum((predict(wave.nb, newdata = dat6) - dat6$deaths)^2))
\#sqrt(sum((predict(poi_fit, newdata = dat6) - dat6\$deaths)^2))
#summary(dat6$deaths)
```