

DEPARTMENT OF BIOSTATISTICS DEPARTMENT OF STAT. AND OR

Refresher course, Summer 2015

Linear Algebra

Modified By:

Original Author:
Oleg MAYBA
(UC Berkeley, 2006)

Gen Li (UNC, 2010 & 2011)
Gen Li (UNC, 2012)
Michael Lamm (UNC, 2013)
Wen Jenny Shi (UNC, 2014)
Meilei Jiang (UNC, 2015)

Instructor:
Meilei Jiang
(UNC at Chapel Hill)

Based on the NSF sponsored (DMS Grant No 0130526) VIGRE Boot camp lecture notes in the Department of Statistics, University of California, Berkeley

August 1, 2015

Contents

1	Introduction	3
2	Vector Spaces 2.1 Basic Concepts 2.2 Special Spaces 2.3 Orthogonality 2.4 Gram-Schmidt Process Exercises	4 5 7 10 10 11
3	Matrices and Matrix Algebra 3.1 Matrix Operations	12 12 14 15 16
4	Projections and Least Squares Estimation 4.1 Projections	18 18 21 23
5	Differentiation 5.1 Basics	24 24 24 26
6	Matrix Decompositions 6.1 Determinants 6.2 Eigenvalues and Eigenvectors 6.3 Complex Matrices and Basic Results 6.4 SVD and Pseudo-inverse Exercises	27 27 29 30 33 34
7	Statistics: Random Variables7.1 Expectation, Variance and Covariance	35 35 37 40 43 45
8	Further Applications to Statistics: Normal Theory and F-test 8.1 Bivariate Normal Distribution	46 46 47 49

9 References 50

1 Introduction

These notes are intended for use in the warm-up camp for incoming UNC STOR and Biostatistics graduate students. Welcome to Carolina!

We assume that you have taken a linear algebra course before and that most of the material in these notes will be a review of what you've already known. If some of the material is unfamiliar, do not be intimidated! We hope you find these notes helpful! If not, you can consult the references listed at the end, or any other textbooks of your choice for more information or another style of presentation (most of the proofs on linear algebra part have been adopted from Strang, the proof of F-test from Montgomery et al, and the proof of bivariate normal density from Bickel and Doksum).

Linear algebra is an important and fundamental math tool for probability, statistics, numerical analysis and operations research. Lots of material in this notes will show up in your future study and research. There will be 9 algebraic classes in total (one class per weekday for two weeks, excluding a day for the university orientation). Each class will last two hours with a short break in between.

Go Tar Heels!