Tutorial 4

Incompleteness Theorem, Type-0 Grammars

- 1. Write down formulas in the language of first order number theory for the following.
 - (a) The relations \neq , \geq , \leq , <, >.

Solution:

$$\begin{aligned} x &\neq y := \neg (x = y) \\ x &\geq y := \exists z \ (x = y + z) \\ x &\leq y := \exists z \ (y = x + z) \\ x &> y := \exists z \ (z \neq 0 \land x = y + z) \\ x &< y := \exists z \ (z \neq 0 \land y = x + z) \end{aligned}$$

(b) "There are infinitely many primes".

Solution:

$$\forall n \exists p \ (p \geq n \land \mathsf{PRIME}(p))$$

(c) "There are infinitely many twin primes." Twin primes are pairs of primes that differ by 2.

Solution:

$$\forall n \exists p \ (p \geq n \land \mathsf{PRIME}(p) \land \mathsf{PRIME}(p+2))$$

(d) "For $n \ge 3$, the equation $x^n + y^n = z^n$ has no postive integer solutions." This is the famous Fermat's last theorem.

Solution:

$$\forall n \ (n \ge 3) \longrightarrow \neg (\exists x \exists y \exists z \ x^n + y^n = z^n)$$

2. Prove that there exists a total computable function $f: \mathbb{N} \to \mathbb{N}$ that is not provably total in Peano arithmetic.

Solution: f is total if and only if $\forall x \exists y f(x) = y$. Also, the soundness of PA proof system ensures that if f is provably total, then f is total.

Assume that all total functions are provably total. Let \mathcal{M} be a TM enumerating all functions f with proofs for $\forall x \exists y f(x) = y$. Let $f^{(1)}, f^{(2)}, \ldots$ be the enumeration. Define a function $g : \mathbb{N} \to \mathbb{N}$ as follows:

$$g(z) = f^{(z)}(z) + 1$$
 for all z.

Since $f^{(z)}$ is total, so is g. Our assumption now implies that there is some $u \in \mathbb{N}$ such that $g = f^{(u)}$. But

$$q(u) = f^{(u)}(u) + 1 \neq f^{(u)}(u),$$

thus contradicting our assumption. Therefore, there must exist some total function that is not provably total.

- 3. (a) Recall the definition of context-sensitive grammars (CSGs): a grammar $G = (N, \Sigma, P, S)$ is context-sensitive if all its productions are the form $\alpha \to \beta$ where $\alpha, \beta \in (N \cup \Sigma)^*$, $\alpha \neq \epsilon$ and $|\alpha| \leq |\beta|$. Show that every context-sensitive grammar is recursive. (In other words, show that every CSG is accepted by a total TM.)

 Solution: Here's an algorithm that on input a CSG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, decides whether $x \in L(G)$. Construct a graph H whose vertices are strings from $(N \cup \Sigma)^*$ of length $\leq |x|$. Include edge from α to β if $\alpha \xrightarrow{1}_{G} \beta$. Now check whether there is a path from S to x in H. Such a path would correspond to a derivation of x in G. This algorithm halts on any input. Therefore, L(G) is recognised by some total TM and hence recursive.
 - (b) Show that there does not exist an r.e. list of total Turing machines such that every recursive set is accepted by some machine on the list.

Solution: Let $\mathcal{M}_1, \mathcal{M}_2, \ldots$ be an enumeration of total TMs such that for every recursive sets A, there is some \mathcal{M}_j such that $L(\mathcal{M}_j) = A$. Let \mathcal{K} be a TM that does the following on input n:

- construct \mathcal{M}_n
- if \mathcal{M}_n accepts n, reject
- accept otherwise

Since \mathcal{M}_n is total, so is \mathcal{K} . Then $B = L(\mathcal{K}) = \{n | n \notin L(\mathcal{M}_n)\}$ is recursive. But, $B \neq L(\mathcal{M}_n)$ for any n contradicting our assumption that every recursive set is accepted by some machine on the list.

(c) Conclude that there is a recursive set that is not context sensitive.

Solution: Fix an encoding for context-sensitve grammars using $\{0,1\}$. For example, if $G=(N,\Sigma,P,S)$ is a CSG, we could let $|,\to,\{,\},(,)|$ be denoted by $10,100,...,10^6$, respectively; 10^{6+i} denoting i-th symbol of Σ ; $10^{6+|\Sigma|+j}$ denoting the j-th symbol of N; using which we can express the entire description (N,Σ,P,S) using $\{0,1\}$. Let \mathcal{M}_j be the TM deciding the language defined by CSG with encoding j. From part (a), \mathcal{M}_j is total. Let $\mathcal{M}_1,\mathcal{M}_2,\ldots$ be an enumeration of total TMs accepting context-sensitive languages. From part (b), it follows that there is some recursive set B such that $B \neq L(\mathcal{M}_j)$ for any j.

4. Describe unrestricted grammars for

 $S o RZ \mid \epsilon$

 $0C_1 \rightarrow 01$

 $0Z \rightarrow 0$

 $R \rightarrow 0RA \mid 1RB \mid 0A \mid 1B$

(a) $\{ww \mid w \in \{0,1\}^*\}$

Solution:

$$AZ
ightarrow C_0 Z$$
 $BZ
ightarrow C_1 Z$ $BC_0
ightarrow C_0 B$ $BC_0
ightarrow C_0 B$ $BC_1
ightarrow C_1 B$ $BC_1
ightarrow C_1 B$ $BC_0
ightarrow 0$ $BC_0
ightarrow 0$ 0 $BC_0
ightarrow 0$ 0

 $1C_1 \rightarrow 11$

 $1Z \rightarrow 1$