

Lecture 10: MOSFET

VE311 Electronic Circuits

Xuyang Lu 2023 Summer

Recap of Last Lecture

BJT Circuits

Topics to Be Covered

MOSFET

NMOS FET

- MOS = Metal-Oxide-Semiconductor
- FET = Field effect Transistor
- CMOS Technology keeps on reducing t_{ox} and L_{eff} (Moore's Law).
- Substrate (Body) of NMOS is generally connected to ground.
- See Chapter 17 for the introduction of CMOS fabrication technology.

CMOS

- CMOS = Complementary MOS
- Substrate (Body) of NMOS is generally connected to ground.
- N-well (Body) of PMOS is generally connected to ${\cal V}_{DD}.$

Layout

NMOS

PMOS

- $V_G = 0V$
- No current flow
- As VG increases from zero, holes in p-substrate are repelled, leaving negative ions (ionized boron dopants) behind to form a depletion region.
- Positive charges are mirrored at the gate.

- No charge carriers (electrons or holes) in the channel, so no current flow.
- Higher V_G further increases the width of the depletion region.

- When V_G reaches a sufficiently positive value, a channel of electrons (inversion layer) is formed beneath the gate oxide.
- Electrons flow from "source" to "drain" . Equivalently, current flows from "drain" to "source" .
- The value of V_G at which the inversion layer forms is the **threshold voltage** (V_{TH}) .

• If V_G rises further, the charges in the depletion region remain relatively constant, whereas the charges in the inversion layer increase rapidly.

(3)

For $V_{GS} \ge V_{TH}$

$$Q = -WL_{eff}C_{ox}(V_{GS} - V_{TH}) \text{(unit: coulomb)} \tag{1}$$

$$Q_d = -WC_{ox}(V_{GS} - V_{TH}) \text{(unit: coulomb} \cdot m^{-1}) \tag{2}$$

 $C_{ox}({\sf gate\ oxide\ capacitance\ per\ unit\ area})$

$$\begin{split} &= \epsilon_{\rm silicon~oxide} \ / t_{ox} \\ &= \left[8.85 \times 10^{-12} (F/m) \times 3.9 \right] / t_{ox} \end{split}$$

$$\begin{split} I_D &= Q_d \times V = Q_d \times (\mu_n \varepsilon) = -WC_{ox} \left[V_{GS} - V_{TH} - V(x) \right] \times (\mu_n \varepsilon) \quad \varepsilon = -dV(x)/dx \\ &= W_{ox} \left[V_{GS} - V_{TH} - V(x) \right] \times \mu_n \times \frac{dV(x)}{dx} \end{split} \tag{4}$$

$$\int_{x=0}^{x=L_{\rm eff}} I_D \cdot dx = \int_{V(0)=0}^{V(L)=V_{DS}} \mu_n C_{ox} W \left[V_{GS} - V_{TH} - V(x) \right] \cdot dV(x) \tag{5}$$

$$I_D = \mu_n C_{ox} \frac{W}{L_{eff}} \left[\left(V_{GS} - V_{TH} \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right] \quad I_D : \text{constant along channel} \quad \text{(6)}$$

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L_{eff}} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right]$$
 (7)

$$I_{D, \text{ max}} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L_{eff}} \left(V_{GS} - V_{TH} \right)^2 \quad V_{DS} = V_{GS} - V_{TH} \tag{8}$$

Deep triode region

$$R_{on} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)_{\text{eff}} \left(V_{GS} - V_{TH}\right)}$$

- For digital circuit, MOSFET, as a switch, usually operates in deep triode region.
- ullet This is why reducing t_{ox} and L_{eff} can improve speed. Let ullet ullet

(9)

Saturation Region

- For $V_{DS} > V_{GS} V_{TH}$, I_D becomes relatively constant.
- $V_{DS} = V_{GS} V_{TH}$ is the minimum value for the NMOS to operate in saturation region.

Saturation Region

Saturation Region

$$\int_{x=0}^{x=L'} I_D \cdot dx = \int_{V(0)=0}^{V(L')=V_{GS}-V_{TH}} \mu_n C_{ox} W \left[V_{GS} - V_{TH} - V(x) \right] \cdot dV(x) \tag{10}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^{2}$$
 (11)

 I_D : constant along channel $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^2 \ \ \text{(11)} \qquad \qquad \frac{L':}{V_{GS} - V_{TH}}: \ \ \text{the point at which } Q_d \ \text{drops to zero} \ \ V_{GS} - V_{TH}: \ \ \text{the overdrive voltage}$

• Electron velocity ($v = I_D/Q_d$) becomes tremendously high at the pinch off point $(Q_d \to 0)$, such that electrons shoot through the depletion region and arrive at the drain terminal

Channel-Length Modulation

$$\begin{cases}
I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L'} \left(V_{GS} - V_{TH}\right)^{2} \\
L' = L_{eff} - \Delta L \\
\frac{1}{L'} = \frac{1}{L_{eff} - \Delta L} = \frac{1}{L_{eff}} \cdot \frac{1}{1 - \frac{\Delta L}{L_{eff}}} \approx \frac{1}{L_{eff}} \cdot \left(1 + \frac{\Delta L}{L_{eff}}\right)
\end{cases}$$

$$I_{D} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L_{eff}} \left(V_{GS} - V_{TH}\right)^{2} \left(1 + \frac{\Delta L}{L_{eff}}\right)$$

$$= \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L_{eff}} \left(V_{GS} - V_{TH}\right)^{2} \left(1 + \lambda V_{DS}\right)$$
(13)

Channel-Length Modulation

$$r_o = \frac{\partial V_{DS}}{\partial I_D} = 1 / \frac{\partial I_D}{\partial V_{DS}} \tag{14}$$

$$= \frac{1}{\frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \cdot \lambda}$$
 (15)

$$pprox rac{1}{I_D \cdot \lambda}$$
 (16)

Body Effect

$$V_{TH} = V_{TH0} + \gamma(\sqrt{|2\Phi_F + V_{SB}|} - \sqrt{|2\Phi_F|})$$
 (17)

$$\Phi_F = \frac{kT}{q} \ln \frac{N_{sub}}{n_i} \tag{18}$$

$$\gamma = \frac{\sqrt{2q\epsilon_{Si}N_{sub}}}{C_{ox}} \tag{19}$$

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right)^2 \tag{20}$$

Body Effect

$$\begin{split} gm_b &= \frac{\partial I_D}{\partial V_{SB}} = \frac{\partial I_D}{\partial V_{TH}} \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right) \cdot \frac{\partial V_{TH}}{\partial V_{SB}} \\ &= -\mu_n C_{ox} \frac{W}{L'} \left(V_{GS} - V_{TH} \right) \cdot \frac{\gamma}{2} \frac{1}{\sqrt{|2\Phi_F + V_{SB}|}} \\ &= -gm \cdot \eta \end{split} \tag{21}$$

Body Effect

- ullet V_{GS} increases, I_{D} increases.
- \bullet V_{SB} increases, V_{TH} increases and thus I_{D} decreases.

NMOS Model			
LEVEL=1	VTO=0.7	GAMMA=0.45	PHI=0.9
NSUB=9e+14	LD=0.08e-6	UO=350	LAMBDA=0.1
TOX=9e-9	PB=0.9	CJ = 0.56e-3	CJSW=0.35e-11
MJ=0.45	MJSW=0.2	CGDO=0.4e-9	JS=1.0e-8
PMOS Model			
LEVEL=1	VTO=-0.8	GAMMA=0.4	PHI=0.8
NSUB=5e+14	LD=0.09e-6	UO=100	LAMBDA=0.2
TOX=9e-9	PB=0.9	CJ = 0.94e - 3	CJSW=0.32e-11
MJ=0.5	MJSW=0.3	CGDO=0.3e-9	JS=0.5e-8
-			

- Simulators such as SPICE and Cadence need accurate models for each device.
- Above is the simplest MOS SPICE model, known as "Level 1," and provide typical values for each parameter corresponding to 0.5-µm technology.


```
VTO : threshold voltage with zero V_{SB} ( unit : V ) GAMMA : body effect coefficient ( unit : V^{1/2} ) PHI : 2\Phi_F ( unit : V ) TOX : gate oxide thickness ( unit : m ) NSUB : substrate doping ( unit : cm^{-3} ) LD : source/drain side diffusion ( unit : m ) UO : channel mobility ( unit : cm^2/V/s ) LAMBDA : channel-length modulation coefficient ( unit : V^{-1} )
```



```
CJ: source/drain bottom-plate junction capacitance per unit area ( unit : F/m^2 ) CJSW: source/drain sidewall junction capacitance per unit length ( unit : F/m ) PB: source / drain junction built-in potential ( unit : V ) MJ: exponent in CJ equation ( unitless ) MJSW: exponent in CJSW equation ( unitless ) CGDO: gate-drain overlap capacitance per unit width ( unit : F/m ) CGSO: gate-source overlap capacitance per unit width ( unit : F/m ) JS: source/drain leakage current per unit area ( unit : F/m )
```

Body Effect Example

$$\left(\frac{W_{drawn}}{L_{drawn}}\right) = \frac{10\mu m}{2\mu m} \tag{22}$$

$$V_{th} = 0.7 + 0.45(\sqrt{0.9} + 1 - \sqrt{0.9}) \tag{23}$$

$$V_{th} = 0.7 + 0.45(\sqrt{0.9 + 1} - \sqrt{0.9})$$

$$I_D = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L_{eff}}\right) (V_{Gs} - V_{th})^2 (1 + \lambda V_{DS})$$
(24)