BI-population CMA-ES Algorithms with Surrogate Models and Line Searches

Ilya Loshchilov¹, Marc Schoenauer² and Michèle Sebag ²

¹LIS, École Polytechnique Fédérale de Lausanne

²TAO. INRIA - CNRS - Université Paris-Sud

July 6th, 2013

Historical overview: BBOB'2012

Expensive Optimization

- Self-adaptive surrogate-assisted CMA-ES (IPOP-saACM-ES and BIPOP-saACM-ES) on noiseless¹ and noisy testbeds².
- BIPOP-saACM-ES demonstrates one of the best performance among the algorithms of the BBOB-2009, 2010 and 2012.

Multimodal Optimization

- Alternative restart strategies (NBIPOP-aCMA-ES and NIPOP-aCMA-ES) on noiseless testbed³.
- NBIPOP-aCMA-ES is TOP-3 algorithm of the CEC'2013 (preliminary results).

¹[Loshchilov, Schoenauer and Sebag; GECCO-BBOB 2012] "Black-box optimization benchmarking of IPOP-saACM-ES and BIPOP-saACM-ES on the BBOB-2012 noiseless testbed"

²[Loshchilov, Schoenauer and Sebag; GECCO-BBOB 2012] "Black-box optimization benchmarking of IPOP-saACM-ES on the BBOB-2012 noisy testbed"

This talk: BBOB'2013

Expensive Optimization

- saACM with intensive surrogate model exploitation (BIPOP-saACM-ES-k) on noiseless testbed⁴.
- BIPOP-saACM-ES-k further improves BIPOP-saACM-ES.

Optimization of separable and non-separable functions

- BIPOP-aCMA-STEP: a hybrid of BIPOP-aCMA and STEP algorithm.
- BIPOP-aCMA-STEP demonstrates a cheap way to identify and exploit the separability.

Efficient Optimization

 HCMA: a hybrid of BIPOP-saACM-ES-k, STEP and NEWUOA algorithms.

⁴[Loshchilov, Schoenauer and Sebag; GECCO 2013] "Intensive Surrogate Model Exploitation in Self-adaptive Surrogate-assisted CMA-ES (saACM-ES)" ← □ ▶ ← □

Content

- State-of-the-art
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - **ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES
- Contribution
 - Intensive surrogate model exploitation
 - Optimization of separable and non-separable functions

(μ, λ) -Covariance Matrix Adaptation Evolution Strategy

Rank-µ Update ^{5 6}

$$\mathbf{y}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C}), \ \mathbf{C} = \mathbf{I}$$

 $\mathbf{x}_i = \mathbf{m} + \sigma \, \mathbf{y}_i, \ \sigma = 1$

$$\mathbf{C}_{\mu} = \frac{1}{\mu} \sum \mathbf{y}_{i:\lambda} \mathbf{y}_{i:\lambda}^{\mathrm{T}}$$

$$\mathbf{C} \leftarrow (1-1) \times \mathbf{C} + 1 \times \mathbf{C}_{\mu}$$

 $m_{\mathsf{new}} \leftarrow m + rac{1}{\mu} \sum oldsymbol{y}_{i:\lambda}$

sampling of λ solutions

calculating C from best μ out of λ

new distribution

The adaptation increases the probability of successful steps to appear again.

Other components of CMA-ES: step-size adaptation, evolution path.

⁵[Hansen et al., ECJ 2003] "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)"

⁶ the slide adopted by courtesy of Nikolaus Hansen

Invariance: Guarantee for Generalization

Invariance properties of CMA-ES

- Invariance to order-preserving transformations in function space true for all comparison-based algorithms
- Translation and rotation invariance thanks to C

CMA-ES is almost parameterless (as a consequence of invariances)

Tuning on a small set of functions

- Hansen & Ostermeier 2001
- Default values generalize to whole classes
- Exception: population size for multi-modal functions a b

 ^a[Auger & Hansen, CEC 2005] "A restart CMA evolution strategy with increasing population size"
 ^b[Loshchilov et al.. PPSN 2012] "Alternative Restart Strategies for CMA-ES"

BIPOP-CMA-ES

BIPOP-CMA-ES: 7 (BIPOP-aCMA-ES 8)

Regime-1 (large populations, IPOP part):

Each restart:
$$\lambda_{large}=2*\lambda_{large}$$
 , $\sigma_{large}^{0}=\sigma_{default}^{0}$

Regime-2 (small populations):

Each restart:

$$\lambda_{small} = \left\lfloor \lambda_{default} \left(\frac{1}{2} \frac{\lambda_{large}}{\lambda_{default}} \right)^{U[0,1]^2} \right\rfloor, \quad \sigma_{small}^0 = \sigma_{default}^0 \times 10^{-2U[0,1]}$$
 where $U[0,1]$ stands for the uniform distribution in $[0,1]$.

BIPOP-CMA-ES launches the first run with default population size and initial step-size. In each restart, it selects the restart regime with less function evaluations used so far.

⁷Hansen (GECCO BBOB 2009). "Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed"

⁸Loshchilov, Schoenauer and Sebag (GECCO BBOB 2012). "Black-box Optimization Benchmarking of NIPOP-aCMA-ES and NBIPOP-aCMA-ES on the BBOB-2012 Noiseless Testbed"

Contents

- State-of-the-art
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - **ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES
- Contribution
 - Intensive surrogate model exploitation
 - Optimization of separable and non-separable functions

**ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES

Using Ranking SVM as the surrogate model

Build a global model using Ranking SVM 9

$$\mathbf{x_i} \succ \mathbf{x_j} \text{ iff } \hat{\mathcal{F}}(\mathbf{x_i}) < \hat{\mathcal{F}}(\mathbf{x_j})$$

Comparison-based surrogate models \rightarrow invariance to rank-preserving transformations of $\mathcal{F}(x)$

How to choose an appropriate Kernel?

• Use covariance matrix ${\cal C}$ adapted by CMA-ES in Gaussian kernel 10

$$K(x_i, x_j) = e^{-\frac{(x_i - x_j)^T (x_i - x_j)}{2\sigma^2}}; \quad K_C(x_i, x_j) = e^{-\frac{(x_i - x_j)^T C^{-1} (x_i - x_j)}{2\sigma^2}}$$

⁹[Runarsson et al., PPSN 2006] "Ordinal Regression in Evolutionary Computation"

^{10 [}Loshchilov et al., PPSN 2010] "Comparison-based optimizers need comparison-based surrogates"

**ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES

Results on Black-Box Optimization Competition

BIPOP-s*aACM and IPOP-s*aACM (with restarts) on 24 noiseless 20 dimensional functions

Contents

- State-of-the-art
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - s*ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES
- Contribution
 - Intensive surrogate model exploitation
 - Optimization of separable and non-separable functions

The only difference between **BIPOP-saACM-k** and **BIPOP-saACM**:

- Intensive exploitation: when optimizing \hat{F} , $\lambda = k_{\lambda}\lambda_{def}$, $\mu = \mu_{def}$. $k_{\lambda} = 1$ for D<10 and $k_{\lambda} = 10,100,1000$ for 10, 20, 40-D.
- Divergence Prevention: $k_{\lambda} > 1$ is used only of $\hat{n} \geq \hat{n}_{k_{\lambda}}$, $\hat{n}_{k_{\lambda}} = 4$.

^{*} smaller budget for surrogate-assisted search: 10^4D for BIPOP-saACM-k versus 10^6D for BIPOP-saACM-k versus 10^6D

^{*} smaller budget for surrogate-assisted search: 10^4D for BIPOP-saACM-k versus 10^6D for BIPOP-saACM-k versus 10^6D

Contents

- State-of-the-art
 - Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - s*ACM-ES: Self-Adaptive Surrogate-Assisted CMA-ES
- 2 Contribution
 - Intensive surrogate model exploitation
 - Optimization of separable and non-separable functions

Select the easiest point (STEP) 11 12

- Simple line search method based on iterative interval division.
- Great optimizer of one-dimensional multimodal functions.

An extension to multi-dimensional (sequential) search

- simple idea: sequentially optimize one dimension after another.
- some stopping criteria should be set a priori, e.g., number of evaluations or target precision.
- no hint whether the problem is separable or not is available.

^{11 [}Swarzberg et al., CEC 1994] "The easiest way to optimize a function"

^{12[}Posík et al., ECJ 2012] "Restarted local search algorithms for continuous black box optimization"

Parallel multi-dimensional STEP

- 1. Check one new STEP point **per** each dimension.
- 2. Current estimate of the optimum $x^* = a$ solution composed of **best** x_i^* -values from all variables.
- 3. If the current estimate is worse than the previous one, then the problem is **not separable**.

BIPOP-aCMA-STEP

- 1. BIPOP-aCMA-STEP and STEP are running in parallel, a fraction $\rho_{STEP}=0.5$ of function evaluations is allocated to STEP.
- 2. At each iteration after $n_{MinIterSTEP}=10$ iterations the STEP can be stopped if its best solution is worse than the one of BIPOP-aCMA-ES.

Efficient Optimization

HCMA = BIPOP-saACM-ES-k + STEP + NEWUOA¹³

- **1.** NEWUOA with m = 2n + 1 for 10n functions evaluations.
- 2. BIPOP-saACM-ES-k and STEP with $n_{MinIterSTEP}=10$ (e.g., 10n evaluations).

Efficient Optimization

Efficient Optimization

Conclusion

- Intensive surrogate model exploitatiom improves the performance on unimodal functions.
- STEP algorithm is a cheap tool to deal with separable problems.
- HCMA demonstrates the best overall performance.

Perspective

- Implement NEWUOA-like search within saACM-ES.
- Use alternative restart strategies (NBIPOP and NIPOP) in HCMA.

25/26

Thank you for your attention!

Questions?