Cálculo Infinitesimal 3 - Prova 1 - 2020

Prof. Flavio Dickstein.

Questão 1. Seja $F(x,y) = e^{xy}(y,x)$ e seja γ a curva parametrizada por $(t^3, t^4 + t)$, indo de A = (0,0) e B = (1,2).

- (i) Mostre que $\nabla F = 0$.
- (ii) Calcule $\int_{\gamma} F \cdot dl$.

Questão 2. Seja γ a curva formada pelo bordo do triângulo ABC, onde A=(-1,0), B=(1,0) e C=(0,1). Suponha que a densidade de massa ρ de γ seja igual a $\rho(x,y)=1+y$. Determine a massa total de γ .

Questão 3. Seja f(x, y, z) = xyz e $\Omega = \{(x, y, z), x > 0, y > 0, x + y < 1, 0 < z < 2x + y\}$. Calcule $\int_{\Omega} f(x, y, z) \, dx \, dy \, dz$.

Questão 4. Seja $z(x,y) = Ce^{-(x^2+y^2)}$. Determine o valor de C para que

$$\int_{\mathbb{R}^2} z(x,y) \, dx dy = 1.$$

Questão 5. Considere a função f(x,y) definida no retângulo $R=(0,2)\times(0,1)$ dada por

$$f(x,y) = \begin{cases} x + y, & \text{se } x \in (0,1) \\ 0, & \text{se } x \in [1,2). \end{cases}$$

Considere a partição \mathcal{P}_n formada por quadrados de lados iguais a 1/n. Mostre que as somas de Riemann associadas a \mathcal{P}_n convergem quando $n \to \infty$.