ICS 271P Fall2020 - Project Final Report

Team

- 1. Maaz Syed Adeeb (adeebm)
- 2. Shuvam Ghosh (shuvamg)
- 3. Kumar Vaibhav (kvaibhav)

Traveling Salesman Problem

Problem Definition

The **travelling salesman problem** (also called the **traveling salesperson problem(TSP)**) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an **NP-hard** problem in combinatorial optimization that is important in theoretical computer science and operations research.

Observations on TSP

Relation with Minimum Spanning Tree

We've learned an interesting relation between an optimal TSP tour and a minimum spanning tree (MST) of a given graph.

The cost of an optimal TSP tour lies between the cost of a MST and 2 times the cost of the same MST

The lower bound of 1-MST (this is the cost of the MST) holds because a MST connects all the vertices of a graph and one **has** to visit all the vertices for a valid TSP tour.

The upper bound of 2-MST (this is twice the cost of an MST) holds because one can visit all the vertices of the graph and reach back the starting vertex by traversing each edge twice.

We have used this relation as a guiding light to determine how close to the optimal our solutions are. While we've gone over the upper bound of 2-MST in multiple instances, due to various reasons outlined later on, we've always been above the lower bound of 1-MST.

A TSP solution below 1-MST is not admissible and solutions above 2-MST are admissible but they are generally sub-optimal.

Branch and Bound DFS - BnB DFS

Approach

Branch and Bound DFS with MST based heuristic

Branch and Bound DFS uses a depth first approach to incrementally construct a MST with various set of nodes and get a cost which decides whether to expand a particular node in the BnB state space.

Each state space in the BnB has the following parameters:-

- **1. Upperbound (U):** An upperlimit that stores the best TSP path found so far.
- **2. Lowerbound (L):** A value obtained after including path cost for nodes already explored in the BnB state space and the MST cost calculated after adding the remaining unexplored nodes.

Lower bound = cost of path to reach the current state in BnB + MST obtained from the remaining nodes.

The BnB state space looks as shown:

Pruning Condition

When at any instance we get the lowerbound value to be more than or equals to the upperbound (best TSP found so far), we do not expand the node.

if (L >= U) -> (prune)

Properties

In the worst cast the branch and bound recursive call is called n! times. Typically we can view a branchand-bound algorithm as a tree search.

At any node of the tree, the algorithm must make a finite decision and set one of the unbound variables. In a brute-force search all choices would be examined. In the BnB case the algorithm tries to avoid searches that are "useless" based on the pruning condition stated above.

Observations

Results with increasing variance

1. We observed that for a fixed number of vertices, when variance increases, the optimal solution tends

to drift towards 2MST.

- 2. The above plot demonstrates a complete run of BnB Algorithm for a 15 Node graph with increasing variance. The mean was kept constant at 100.
- 3. It was observed that, for lower variance the TSP solution lies close to 1-MST and for larger value of variance the TSP solution is closer to 2-MST.
- 4. The variance essentially indicates the standard deviation around the mean value. Thus, a lower variance indicates cost of edges are closer to one another. In other words, the difference between the cost of two edges will be low. This idea can be extrapolated over all edges of a graph. This essentially means that there is a higher probability of finding a TSP solution which will be closer to 1-MST. As the

fluctuations between cost of edges are low, the TSP solution which is found will always be closer to 1-MST. However, when variance increases the difference between two edges in general also tends to be higher. The immediate conclusion that can be derived from increasing variance will be that the value of 1-MST (and 2-MST) will be lower compared to higher variance. This is because, the lower edge value will give us MST value. However, in this case since fluctuations between edge size is higher an optimal TSP path tend to lie near 2-MST.

Results with varying distinct values (k)

- 1. A similar experiment was conducted for varying value of k while keeping the node and variance constant.
- 2. We did not notice any conclusive observation in this case.

Scenario for Bad Performance

The BnB state space expands all the node to full depth in the first run. The TSP obtained after this first expansion is set as an upperlimit that serves as a check for subsequent pruning. This first upperlimit however can be a poor TSP cost that may not ensure effective pruning causing the algorithm to run endlessly trying to expand each and every node and calculating MSTs.

Scenario for Good Performance

If the first upper-limit is found to be a relatively good solution, this can lead to better pruning causing the algorithm to terminate quicker

Scope for improvement

- 1. One possible idea for improvement would be to choose a heuristic calculation for the next node to be examined. We could use nearest neighbor heuristic to do so
- 2. Choosing more accurate heuristics for calculating the lower bound would also help. We have looked at Christophide's Heuristic, 1-tree heuristic, 2-opt etc.

Stochastic Local Search - Ant Colony Optimization

Approach

We implement Stochastic Local Search (SLS) using Ant Colony Optimization (ant-cycle algorithm).

The idea is to use multiple agents that emulate ants to find various valid tours, and store the best possible tour. The ants choose the next vertex to visit based on a probabilistic function which depends on the distance to a node and the "pheromone" that is dropped by previous visits. The pheromone concept is directly derived from how real ants communicate previously found paths to food.

We also have a way to diminish the amount of pheromone in every cycle, as we don't want the algorithm to get stuck in following previous paths blindly, that is, a local optima.

Properties

The running complexity of the algorithm is $0 (NC * n^3)$, where NC is the number of cycles that the ants are made to go around the graph and n is the number of vertices.

The most expensive operation in the algorithm happens to be where we move each ant in each cycle. The pseudocode is roughly

```
for c in range(1, NC):
    for i in range(1, n):
        for ant in ants:
        find probability distribution P of the next nodes of i
        ant.moveTo(j with probability P(i,j))
```

It's worth mentioning here that the number of ants are linearly related to the number of vertices.

Observations

Results with increasing variance

- 1. The observation and conclusion were similar to BnB Algorithm.
- 2. We observed that for a fixed number of nodes/vertices, when variance increases, the optimal solution tend to drift towards 2MST.

- 3. The above plot demonstrates 2000 simulations for ACO for a 100 Node graph with increasing variance. The mean was kept constant at 100.
- 4. It was also noticed that for higher values of variance, 2000 cycles were not enough to give solution between 1-MST and 2-MST. However, with higher number of cycles and increased time duration, it is highly likely that ACO will find an optimal path under 2-MST.

Results with varying distinct values (k)

- 1. A similar experiment was conducted for varying value of k while keeping the node and variance constant.
- 2. In this case, we simulated two scenarios, one with mid sized value of variance (Number of Node = 50 and Variance = 50) and other with high variance value (Number of Node = 75 and Variance = 80).

3. It appears that higher value of k may drift the solution towards 2-MST. However, no conclusive trend was noticed.

Visulazing the pheromones

We visualized the pheremone levels after solving a 10 node problem. The path that was chosen 1->8->9->5->6->7->2->0->4->3->1 is highlighted in green

The size of edges are proportional to the pheromone on them. We can notice that even though the pheromone is high on some edges, the final path did not include them, for example 0-8. This helps us understand the stochastic nature of the algorithm and also clearly visualizes its effects

The values for the pheremone levels are provided as reference in the appendix.

Appendix

SLS Ant Colony Optimization

problem	cost	num_of_cycles
tsp-problem-25-6-100-5-1.txt	2491.939304	2000
tsp-problem-25-6-100-25-1.txt	1404.137033	2000
tsp-problem-25-31-100-5-1.txt	2339.468691	2000
tsp-problem-25-31-100-25-1.txt	1367.284097	2000
tsp-problem-25-62-100-5-1.txt	2362.710221	2000
tsp-problem-25-62-100-25-1.txt	1552.887191	2000
tsp-problem-25-125-100-5-1.txt	2333.831475	2000
tsp-problem-25-125-100-25-1.txt	1505.273657	2000
tsp-problem-25-250-100-5-1.txt	2338.97813	2000
tsp-problem-25-250-100-25-1.txt	1420.152134	2000
·		<u> </u>

problem	cost	num_of_cycles
tsp-problem-50-25-100-5-1.txt	4745.835979	2000
tsp-problem-50-25-100-25-1.txt	2202.783715	2000
tsp-problem-50-125-100-5-1.txt	4595.685873	2000
tsp-problem-50-125-100-25-1.txt	3111.091148	2000
tsp-problem-50-250-100-5-1.txt	4651.221797	2000
tsp-problem-50-250-100-25-1.txt	2545.744892	2000
tsp-problem-50-500-100-5-1.txt	4672.33882	2000
tsp-problem-50-500-100-25-1.txt	2810.933178	2000
tsp-problem-50-1000-100-5-1.txt	4654.035126	2000
tsp-problem-50-1000-100-25-1.txt	2531.856005	2000
tsp-problem-75-56-100-5-1.txt	7072.882614	2000
tsp-problem-75-56-100-25-1.txt	3988.140794	2000
tsp-problem-75-281-100-5-1.txt	6953.882049	2000
tsp-problem-75-281-100-25-1.txt	3672.898225	2000
tsp-problem-75-562-100-5-1.txt	6950.770711	2000
tsp-problem-75-562-100-25-1.txt	3450.656755	2000
tsp-problem-75-1125-100-5-1.txt	6965.629447	2000
tsp-problem-75-1125-100-25-1.txt	3809.241507	2000
tsp-problem-75-2250-100-5-1.txt	6971.348191	2000
tsp-problem-75-2250-100-25-1.txt	3747.759087	2000
tsp-problem-100-100-5-1.txt	9258.847079	2000
tsp-problem-100-100-25-1.txt	4253.50708	2000
tsp-problem-100-500-100-5-1.txt	9270.700905	2000
tsp-problem-100-500-100-25-1.txt	4674.511818	2000
tsp-problem-100-1000-100-5-1.txt	9192.683953	2000
tsp-problem-100-1000-100-25-1.txt	4413.740764	2000
tsp-problem-100-2000-100-5-1.txt	9217.221895	2000
tsp-problem-100-2000-100-25-1.txt	4722.02898	2000
tsp-problem-100-4000-100-5-1.txt	9188.570051	2000
tsp-problem-100-4000-100-25-1.txt	4617.953919	2000

problem	cost	num_of_cycles
tsp-problem-200-400-100-5-1.txt	18418.40689	175
tsp-problem-200-400-100-25-1.txt	7403.44757	46
tsp-problem-200-2000-100-5-1.txt	18379.63439	111
tsp-problem-200-2000-100-25-1.txt	9150.583847	46
tsp-problem-200-4000-100-5-1.txt	18391.42144	87
tsp-problem-200-4000-100-25-1.txt	8169.16698	77
tsp-problem-200-8000-100-5-1.txt	18389.85279	96
tsp-problem-200-8000-100-25-1.txt	8081.780396	62
tsp-problem-200-16000-100-5-1.txt	18388.66769	107
tsp-problem-200-16000-100-25-1.txt	8118.06007	62
tsp-problem-300-900-100-5-1.txt	27188.86901	142
tsp-problem-300-900-100-25-1.txt	11731.25879	62
tsp-problem-300-4500-100-5-1.txt	27331.80468	134
tsp-problem-300-4500-100-25-1.txt	11368.94872	87
tsp-problem-300-9000-100-5-1.txt	27358.72937	150
tsp-problem-300-9000-100-25-1.txt	11577.00537	74
tsp-problem-300-18000-100-5-1.txt	27324.61926	177
tsp-problem-300-18000-100-25-1.txt	11672.00547	89
tsp-problem-300-36000-100-5-1.txt	27322.87565	105
tsp-problem-300-36000-100-25-1.txt	11199.67358	42
tsp-problem-400-1600-100-5-1.txt	36295.4009	131
tsp-problem-400-1600-100-25-1.txt	13889.23477	67
tsp-problem-400-8000-100-5-1.txt	36110.119	105
tsp-problem-400-8000-100-25-1.txt	14351.53734	120
tsp-problem-400-16000-100-5-1.txt	36319.5187	126
tsp-problem-400-16000-100-25-1.txt	13780.73854	66
tsp-problem-400-32000-100-5-1.txt	36235.44956	139
tsp-problem-400-32000-100-25-1.txt	14338.8169	48
tsp-problem-400-64000-100-5-1.txt	36136.90623	184
tsp-problem-400-64000-100-25-1.txt	13834.26264	50

problem	cost	num_of_cycles
tsp-problem-600-3600-100-5-1.txt	54172.81651	81
tsp-problem-600-3600-100-25-1.txt	23182.16222	42
tsp-problem-600-18000-100-5-1.txt	54308.37565	83
tsp-problem-600-18000-100-25-1.txt	18754.64938	75
tsp-problem-600-36000-100-5-1.txt	54440.4311	85
tsp-problem-600-36000-100-25-1.txt	19157.80257	58
tsp-problem-600-72000-100-5-1.txt	54307.40554	81
tsp-problem-600-72000-100-25-1.txt	19476.63641	68
tsp-problem-600-144000-100-5-1.txt	54441.0801	83
tsp-problem-600-144000-100-25-1.txt	19315.74521	47
tsp-problem-800-6400-100-5-1.txt	74948.2477	31
tsp-problem-800-6400-100-25-1.txt	20664.08734	32
tsp-problem-800-32000-100-5-1.txt	74805.58028	33
tsp-problem-800-32000-100-25-1.txt	23795.02859	32
tsp-problem-800-64000-100-5-1.txt	74858.77532	33
tsp-problem-800-64000-100-25-1.txt	23912.4448	32
tsp-problem-800-128000-100-5-1.txt	74841.06047	33
tsp-problem-800-128000-100-25-1.txt	23868.20155	31
tsp-problem-800-256000-100-5-1.txt	75077.85861	31
tsp-problem-800-256000-100-25-1.txt	24243.84929	31
tsp-problem-1000-10000-100-5-1.txt	97201.91528	16
tsp-problem-1000-10000-100-25-1.txt	29405.53047	16
tsp-problem-1000-50000-100-5-1.txt	97424.85043	16
tsp-problem-1000-50000-100-25-1.txt	30307.89593	16
tsp-problem-1000-100000-100-5-1.txt	97647.44971	15
tsp-problem-1000-100000-100-25-1.txt	28681.85537	15
tsp-problem-1000-200000-100-5-1.txt	97451.3135	16
tsp-problem-1000-200000-100-25-1.txt	28619.64424	16
tsp-problem-1000-400000-100-5-1.txt	97403.66069	16
tsp-problem-1000-400000-100-25-1.txt	29387.56907	15

Pheromone matrix

```
[[0.0, 0.3733482486144805, 0.4548245153192971, 0.08997471294392687,
1.9644030641503931, 0.08933940202208684, 0.3738693380809528,
0.2991637796975064, 1.175799037768375, 0.3492637742563175],
[0.3733482486144805, 0.0, 0.21645487663647744, 1.1245541751709427,
0.372529632928842, 1.194448515135806, 0.006076922649856098,
0.11755752881985351, 1.2941038952869024, 0.4709120776101753],
[0.4548245153192971, 0.21645487663647744, 0.0, 0.4426700244163062,
0.4305165558124842, 0.8992780682758418, 0.12020981823438609,
2.2417064549952372, 0.2822307038231714, 0.08209485534013478],
[0.08997471294392687, 1.1245541751709427, 0.4426700244163062, 0.0,
1.5819345158930214, 0.048389837617845266, 1.3653666023124371,
0.084966899274669, 3.2472840690841374E-5, 0.43209663238349677],
[1.9644030641503931, 0.372529632928842, 0.4305165558124842,
1.5819345158930214, 0.0, 0.4153153717109051, 0.04161789316003515,
0.2923454755569072, 1.6361134770695426E-5, 0.07130700250597716],
[0.08933940202208684, 1.194448515135806, 0.8992780682758418,
0.048389837617845266, 0.4153153717109051, 0.0, 1.1944110009554838,
0.30378712952313125, 1.492412658068319E-4, 1.024867306346429],
[0.3738693380809528, 0.006076922649856098, 0.12020981823438609,
1.3653666023124371, 0.04161789316003515, 1.1944110009554838, 0.0,
0.6564838806090971, 0.11677746570287965, 1.295172951148208],
[0.2991637796975064, 0.11755752881985351, 2.2417064549952372,
0.084966899274669, 0.2923454755569072, 0.30378712952313125,
0.6564838806090971, 0.0, 1.015290073072538, 0.1586846513043963],
[1.175799037768375, 1.2941038952869024, 0.2822307038231714,
3.2472840690841374E-5, 1.6361134770695426E-5, 1.492412658068319E-4,
0.11677746570287965, 1.015290073072538, 0.0, 1.2855866219582013],
[0.3492637742563175, 0.4709120776101753, 0.08209485534013478,
0.43209663238349677, 0.07130700250597716, 1.024867306346429,
1.295172951148208, 0.1586846513043963, 1.2855866219582013, 0.0]]
```

References

- 1. https://rjlipton.wordpress.com/2012/12/19/branch-and-bound-why-does-it-work/
- 2. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9895&rep=rep1&type=pdf
- 3. https://www.youtube.com/watch?v=qK1BFAk04h0&t=1230s
- 4. Dorigo, Marco & Maniezzo, Vittorio & Colorni, Alberto. (1999). Positive Feedback as a Search Strategy. Tech rep., 91-016, Dip Elettronica, Politecnico di Milano, Italy.
- 5. Chatterjee, A., Kim, E. & Reza, H. Adaptive Dynamic Probabilistic Elitist Ant Colony Optimization in Traveling Salesman Problem. SN COMPUT. SCI. 1, 95 (2020). https://doi.org/10.1007/s42979-020-0083-z