

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

- (1) 若系统的输入信号 $x_1(t)$ =Sa(πt),试求系统输出响应 $y_1(t)$;
- (2) 若系统的输入信号 $x_2(t)$ =Sa($3\pi t$),试求系统输出响应 $y_2(t)$;
- (3) 若系统的输入信号 $x_3(t)$ 是周期矩形波信号,试求系统输出响应 $y_3(t)$ 。

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (1) 信号 $x_1(t)$ =Sa(πt)通过系统的响应 $y_1(t)$;

由基本信号的Fourier变换可知

$$\operatorname{Sa}(\pi t) \xrightarrow{\mathscr{F}} p_{2\pi}(\omega)$$

输出频谱为
$$Y_1(j\omega) = H(j\omega)X_1(j\omega) = p_{2\pi}(\omega)e^{-j2\omega}$$

由Fourier反变换可得

$$y_1(t) = \mathcal{F}^{-1}\{Y_1(j\omega)\} = \operatorname{Sa}[\pi(t-2)]$$

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (1) 信号 $x_1(t)$ =Sa(πt)通过系统的响应 $y_1(t)$;

系统输入 $x_1(t)$ =Sa(πt)

系统输出 $y_1(t)$ =Sa[$\pi(t-2)$]

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (2) 信号 $x_2(t)$ =Sa($3\pi t$)通过系统的响应 $y_2(t)$;

由基本信号的Fourier变换可知

Sa(3
$$\pi t$$
) \longrightarrow (1/3) $p_{6\pi}(\omega)$

输出频谱为
$$Y_2(j\omega) = H(j\omega)X_2(j\omega) = (1/3)p_{4\pi}(\omega)e^{-j2\omega}$$

由Fourier反变换可得

$$y_2(t) = \mathcal{F}^{-1}\{Y_2(j\omega)\} = (2/3)\text{Sa}[2\pi(t-2)]$$

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (2) 信号 $x_2(t)$ =Sa($3\pi t$)通过系统的响应 $y_2(t)$;

系统输出 $y_2(t)$ =(2/3)Sa[2 π (t-2)]

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (3) 信号 $x_3(t)$ 通过系统的响应 $y_3(t)$

信号的基频
$$\omega_0 = 2\pi/T_0 = 2\pi/2 = \pi$$

由于理想低通滤波器的截止频率 $\omega_c=2\pi$,所以只有直流和基波能通过该理想低通滤波器。由于 $x_3(t)$ 实奇对称, $x_3(t)$ 中无直流分量。

$$C_1 = \frac{1}{2} \int_0^2 x_3(t) \cdot e^{-j\pi t} d = \frac{2}{j\pi}$$

$$C_{-1} = C_1^* = -\frac{2}{j\pi}$$

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (3) 信号 $x_3(t)$ 通过系统的响应 $y_3(t)$

$$x_3(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\pi t}$$

$$C_{-1} = -\frac{2}{j\pi}$$
 $C_0 = 0$ $C_1 = \frac{2}{j\pi}$

$$y_3(t) = C_{-1}H(-j\pi)e^{-j\pi(t-2)} + C_1H(j\pi)e^{j\pi(t-2)} = \frac{4}{\pi}\sin(\pi t)$$

[例] 已知理想模拟低通滤波器的频率响应 $H(j\omega)$ 为

$$H(j\omega) = \begin{cases} e^{-j2\omega} & |\omega| < 2\pi \\ 0 & |\omega| > 2\pi \end{cases}$$

解: (3) 信号 $x_3(t)$ 通过系统的响应 $y_3(t)$

系统输入 $x_3(t)$

系统输出 $y_3(t)$ =4sin(πt)/ π

[例] 正交幅度调制系统如图所示

- (1) 试求y(t)、a(t)和 $y_1(t)$ 的频谱并画出频谱图;
- (2) 试求b(t)和 $y_2(t)$ 的频谱并画出频谱图。

[例] 正交幅度调制系统

解: (1) y(t)、a(t)和 $y_1(t)$ 的频谱

$$Y(j\omega) = [X_1(j(\omega-100)) + X_1(j(\omega+100))]/2 + [X_2(j(\omega-100)) - X_2(j(\omega+100))]/2j$$

Re
$$\{Y(j\omega)\}=[X_1(j(\omega-100))+X_1(j(\omega+100))]/2$$

$$Im{Y(j\omega)}=[-X_2(j(\omega-100))+X_2(j(\omega+100))]/2$$

解: (1) y(t)、 a(t)和 $y_1(t)$ 的频谱

Re $\{Y(j\omega)\}=[X_1(j(\omega-100))+X_1(j(\omega+100))]/2$

$$Im{Y(j\omega)}=[-X_2(j(\omega-100))+X_2(j(\omega+100))]/2$$

[例] 正交幅度调制系统

解: (1) y(t)、a(t)和 $y_1(t)$ 的频谱

$$A(j\omega) = [Y(j(\omega-100)) + Y(j(\omega+100))]/2$$

$$Re\{A(j\omega)\} = [Re\{Y(j(\omega-100))\} + Re\{Y(j(\omega+100))\}]/2$$

$$Im{A(j\omega)} = [Im{Y(j(\omega-100))} + Im{Y(j(\omega+100))}]/2$$

解: (1) y(t)、a(t)和 $y_1(t)$ 的频谱

 $Re\{A(j\omega)\} = [Re\{Y(j(\omega-100))\} + Re\{Y(j(\omega+100))\}]/2$

 $Im\{A(j\omega)\} = [Im\{Y(j(\omega-100))\} + Im\{Y(j(\omega+100))\}]/2$

解: (1) y(t)、a(t)和 $y_1(t)$ 的频谱

$$Y_{1}(j\omega) = H(j\omega)A(j\omega)$$

$$A^{Y_{1}(j\omega)}$$

-10

[例] 正交幅度调制系统

解: (2) b(t)和 $y_2(t)$ 的频谱

$$B(j\omega) = [Y(j(\omega-100)) - Y(j(\omega+100))]/2j$$

$$Re\{B(j\omega)\} = [Im\{Y(j(\omega-100))\} - Im\{Y(j(\omega+100))\}]/2$$

$$Im\{B(j\omega)\} = [-Re\{Y(j(\omega-100))\} + Re\{Y(j(\omega+100))\}]/2$$

-110

-90

系统频域分析举例

解: (2) b(t)和 $y_2(t)$ 的频谱

-210

-190

 $Im\{B(j\omega)\} = [-Re\{Y(j(\omega-100))\} + Re\{Y(j(\omega+100))\}]/2$

190

-1/4

210

解: (2) b(t)和 $y_2(t)$ 的频谱

$$Y_{2}(j\omega) = H(j\omega)B(j\omega)$$

$$Y_{2}(j\omega)$$

$$Y_{2}(j\omega)$$

$$Y_{2}(j\omega)$$

由图可见
$$Y_2(j\omega) = X_2(j\omega)$$

谢谢

本课程所引用的一些素材为主讲老师多年的教学积累,来源于多种媒体及同事、同行、朋友的交流,难以一一注明出处,特此说明并表示感谢!