4. Dynamic programming

Wednesday, February 24, 2021 12:05 PM

Dynamic programming is always iterative

- 1. All pair shortest path
- 2. Single source shortest path Bellman Ford Algorithm

APSP

Objective

Shortest node from every node to every other node

Prerequisite

Cycles are allowed, directed graph Negative cycles are not allowed

Cost of the shortest path from i to j via k $Ak(I,j) = min\{Ak-1(I,j), Ak-1(I,k) + Ak-1(k,j)\}$

$$A^{2} = \begin{bmatrix} 0 & 4 & 6 \\ 6 & 0 & 2 \\ 3 & 7 & 0 \end{bmatrix} \quad A^{3} = \begin{bmatrix} 0 & 6 \\ 5 & 0 & 2 \\ 0 & 0 \end{bmatrix}$$

SSSP (BF)

Objective: given a node x, find the shortest path from x to all other

Prerequisite: no cycles, negative values are allowed (DAG)

Cost of reaching node u via k edges

Number of edges	Node 1	Node 2	Node 3
1			
2			
3			

$$dist^{k}[u] \ = \ \min \ \{ dist^{k-1}[u], \ \min_{i} \ \{ dist^{k-1}[i] \ + \ cost[i,u] \} \}$$

Ι

Single source: node 1

Via	1	2	3	4	5	6	7
1	0	6	5	5	Inf	Inf	Inf
2	0	3	3				
3	0						
4	0						
5	0						
6	0						
7	0						

$$d2(2) = min \{d1[2], min\{d1[3]+c(3,2)\}$$

= $min(6,5-2) = 3$