Two-Stage Miller Design

Bilal Ramadan

Supervisor: Dr. Hesham Omran

Table of Contents

Part 1:	OTA Design	. 5
1.	Desired specs	. 5
2.	OTA Schematic	. 6
3.	OTA Devices Sizing	. 6
Part 2:	Open –loop OTA simulation	. 7
1.	OP simulation	. 7
2.	Diff small signal ccs	. 9
3.	CM small signal ccs	10
4.	CMRR	11
5.	Diff large signal ccs	12
6.	CM large signal ccs (region vs VICM)	13
7.	CM large signal ccs (GBW vs VICM)	14
Part 3:	Closed-Loop OTA Simulation	15
1.	OP simulation	15
.2	Loop gain	17
.3	Slew rate	19
4.	Settling time	21
Part 4:	DC Closed Loop AC Open-Loop OTA Simulation	23
1.	OP simulation	23
2.	Diff small signal ccs	25
3.	CM small signal ccs	26
4.	CMRR	26
5.	Diff large signal ccs	27
6.	CM large signal ccs (region vs VICM)	27
7.	CM large signal ccs (GBW vs VICM)	28
Part 5:	Design specs	29

Table of Figures

Figure 1:OTA schematic	6
Figure 2: Final design schematic	7
Figure 3: Open-loop testbench	7
Figure 4: bias circuit with DC node voltages annotated	8
Figure 5: OTA schematic with DC node voltages and OP parameters annotated	8
Figure 6: diff gain bode plot (magnitude)	9
Figure 7: diff small signal results	9
Figure 8: CM gain bode plot (magnitude)	10
Figure 9: Vout vs VID	12
Figure 10: derivative(Vout) vs VID	12
Figure 11: regions vs VICM	13
Figure 12: GBW vs VICM	14
Figure 13: Closed-loop testbench schematic (CL=5 pF, IB=10 uA)	15
Figure 14: bias circuit with DC node voltages annotated	15
Figure 15: OTA schematic with DC node voltages and OP parameters annotated	16
Figure 16: loop gain bode plot (magnitude)	17
Figure 17: loop gain bode plot (phase)	17
Figure 18: loop gain Gx	17
Figure 19: STB analysis results	18
Figure 20: closed loop hand analysis	18
Figure 21: pulse settings	19
Figure 22: Slew rate	19

Figure 23: Slew rate at Cc=2.3 pF
Figure 24: dVout/dt
Figure 25: Transient analysis Vin & Vout vs time
Figure 26: pulse settings
Figure 27: rise time
Figure 28: Vin & Vout vs time
Figure 29: Testbench schematic (CL=5 pF, IB=10 uA)
Figure 30: bias circuit with DC node voltages annotated
Figure 31: OTA schematic with DC node voltages and OP parameters annotated
Figure 32: diff gain bode plot (magnitude)
Figure 33: diff small signal results
Figure 34: CM gain bode plot (magnitude)
Figure 35: regions vs VICM
Figure 36: GBW vs VICM

Tables

Table 1: Desired Specs	5
Table 2: OTA Devices Sizing	6
Table 3: simulation vs hand analysis	9
Table 4: simulation vs hand analysis	10
Table 5: simulation vs hand analysis	11
Table 6: CMIR simulation vs hand analysis	13
Table 7: CMIR simulation vs hand analysis	14
Table 8: open loop vs closed loop simulation	18
Table 9: simulation vs hand analysis	20
Table 10: simulation vs hand analysis	25
Table 11: simulation vs hand analysis	26
Table 12: simulation vs hand analysis	27
Table 13: Design specs	. 29

Part 1: OTA Design

1. Desired specs

Technology	180 nm CMOS
Supply Voltage	1.8 V
Static gain error	≤ 0.05 %
CMRR @DC	≥ 74 <i>dB</i>
Phase Margin	≥ 70°
OTA current consumption	≤ 60 μ <i>A</i>
CMIR - high	≥ 1 V
CMIR - low	$\leq 0.2 V$
Output swing	0.2 <i>V</i> – 1.6 <i>V</i>
Load	5 <i>pF</i>
Buffer closed loop rise time	≤ 70 ns
(10% to 90%) Slew rate	5 V / μs

Table 1: Desired Specs

At first, we need to identify the topology.

Since the CMIR is near to GND, therefore the topology we will use in the Two-Stage Miller OTA is the PMOS for the 1st stage input pair and NMOS in the 2nd input stage to match VGS in order to avoid the zero systematic offset.

2. OTA Schematic

Figure 1:OTA schematic

3. OTA Devices Sizing

Device	M_2 (input CM)	M ₃ (tail CM)	$M_{0,1}$ $\binom{1^{st}stage}{input\ pair}$	$M_{4,5}$ (load CM)	$M_6 \begin{pmatrix} 2^{nd} input \\ stage \end{pmatrix}$	$M_7 \begin{pmatrix} 2^{nd} \ stage \\ CM \ load \end{pmatrix}$
W	13.24 μm	18.543 μm	26.77 μm	17.354 μm	126.38 μm	61.34 μm
L	350 nm	350 nm	720 nm	1.3 μm	1.3 μm	350 nm
g_m	140 μS	177.8 μS	95.25 μS	104.78 μS	762 μS	646.52 μS
I_D	10 μΑ	12.7 μΑ	6.35 μΑ	6.35 μΑ	46.18 μΑ	46.18 μΑ
g_m/I_D	14	14	15	16.5	16.5	14
$ V_{DSsat} $	122.4 mV	121.7 mV	105 mV	92.8 mV	92.8 mV	122.4 mV
V_{ov}	75.95 <i>mV</i>	75.95 <i>mV</i>	62.2 mV	31.6 mV	31.6 mV	75.95 <i>mV</i>
V^*	143 mV	143 mV	133 mV	121 mV	121 mV	143 mV

Table 2: OTA Devices Sizing

Part 2:Open -loop OTA simulation

1. OP simulation

Figure 2: Final design schematic

Note: M6 has multiplier of 2.

Figure 3: Open-loop testbench

Figure 4: bias circuit with DC node voltages annotated

Figure 5: OTA schematic with DC node voltages and OP parameters annotated

- All devices are in sat.
- If we check the branches currents we will find out that it's near from what we expected as we took VDS into consideration in the ID/W charts. Also, for that reason, $V_{outdc} = 957.6 \, mV$ close to 0.9 V we targeted.
- The current consumption spec is achieved (58.8 μ *A*).
- The current and gm in the input pair exactly equal, due to the absence of differential signal and dc offset and no mismatch between the devices.
- The dc level of $V_x = V_{GS4}$ as it follows the mirror node at zero differential input to balance the current in the two branches.

• The dc level of V_{out} is 957.6 mV as it's a high impedance node so it's ill-defined but we recovered that problem by taking VDS into consideration in the ID/W charts.

2. Diff small signal ccs

Figure 6: diff gain bode plot (magnitude)

Test	Output	Nominal	Spec
ITI_labs:lab9_TB1:1	Av	16.62k	> 2k
ITI_labs:lab9_TB1:1	Av in dB	84.41	>66
ITI_labs:lab9_TB1:1	BW	385.4	
ITI_labs:lab9_TB1:1	Fu	6.19M	> 5M
ITI_labs:lab9_TB1:1	GBW	6.418M	

Figure 7: diff small signal results

$$\begin{split} DC \; diff \; gain &= g_{m0,1}(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7}), \\ BW &\approx \frac{1}{2\pi(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7})C_c}, GBW = \frac{g_{m0,1}}{2\pi C_c} \end{split}$$

Spec	Simulation	Hand analysis
DC diff gain	84.41 <i>dB</i>	84.42 <i>dB</i>
BW	385.4 Hz	391 Hz
GBW	6.4 <i>MHz</i>	6.6 <i>MHz</i>

Table 3: simulation vs hand analysis

- UGF and GBW are almost the same and that's an indicator to a good PM.
- BW & GBW hand analysis are different from the simulation as the parasitic caps are large due to the large sizes and they are not taken into consideration in the hand analysis.

• The dc diff gain is way larger than the spec as the input pair suffer from body effect so we biased them at large g_m/I_D to make their V_{GS} smaller to get near from $CMIR_{high}$ spec and larger g_m/I_D for the $2^{\rm nd}$ stage NMOS to meet the PM spec (ratios of $g_m \geq 8$) as we can't use small current in the $1^{\rm st}$ stage due to the SR spec and can't use larger current in the $2^{\rm nd}$ stage due to current consumption spec. And the load CM has high gm/gds to meet the gain we need at the $1^{\rm st}$ stage to meet the CMRR which are matched to the $2^{\rm nd}$ stage NMOS to avoid the systematic zero offset. And the three upper PMOS devices are matched as they are CMs and the one in the $1^{\rm st}$ stage has condition on g_{dS} to meet the CMRR spec so the load CM of the $2^{\rm nd}$ stage is small So the $2^{\rm nd}$ stage has higher gain than wanted.

3. CM small signal ccs

Figure 8: CM gain bode plot (magnitude)

Test	Output	Nominal
ITI_labs:lab9_TB1:1	Avcm	1.093
ITI_labs:lab9_TB1:1	Avcm in dB	776m

Figure 26: CM gain

$$DC\ CM\ gain \approx \frac{-g_{m0,1}}{2\big(g_{m0,1}+g_{mb0,1}\big)g_{m4,5}r_{o3}} * g_{m6}(r_{o6} \parallel r_{o7})$$

Spec	Simulation	Hand analysis
DC CM gain	1.093	1.11

Table 4: simulation vs hand analysis

4. CMRR

Figure 27: CMRR bode plot (magnitude)

Spec	Simulation	Hand analysis
CMRR @DC	83.6 <i>dB</i>	$A_{vd} - A_{vcm} = 83.5 \ dB$

Table 5: simulation vs hand analysis

5. Diff large signal ccs

Figure 9: Vout vs VID

 $V_{outdc} = 957.55 \, mV$ almost the same from the OP part (957.6 mV) as there is no mismatch nor diff input.

Figure 10: derivative(Vout) vs VID

The peak= 941.3 $\ll A_{vd}$ due to the very small swing of the differential input (equals output swing/Avd = $\frac{1.6}{16.62k}$) so the diff input swing is less than 0.1 mV and the step is 1 mV only so the results are inaccurate.

6. CM large signal ccs (region vs VICM)

Figure 11: regions vs VICM

$$\begin{split} &CMIR_{high} = V_{DD} - |V_{DSsat3}| - \left|V_{GS0,1}\right| \\ &CMIR_{low} = -\left|V_{GS0,1}\right| + \left|V_{DSsat0,1}\right| + V_{GS4,5} \end{split}$$

Spec	simulation	analytic
$CMIR_{low}$	$-380 \ mV$	$-143 \ mV$
$CMIR_{high}$	780 mV	693 mV

Table 6: CMIR simulation vs hand analysis

7. CM large signal ccs (GBW vs VICM)

Figure 12: GBW vs VICM

$$CMIR_{high} = V_{DD} - |V_{DSsat3}| - |V_{GS0,1}|$$

 $CMIR_{low} = -|V_{GS0,1}| + |V_{DSsat0,1}| + V_{GS4,5}$

Spec	simulation	analytic
$CMIR_{low}$	−365 mV	−143 mV
$CMIR_{high}$	725 mV	693 mV

Table 7: CMIR simulation vs hand analysis

The noticeable variance in the CMIR is due to:

- The 90 % change in GBW is not an accurate value to detect the edge of saturation for the Diff Amp devices because the saturation happens gradually not eventually at a specific point.
- The body effect obstacles the $CMIR_{high}$ but it also advances $CMIR_{low}$ as the VGS increases and it appears in both specs in negative.

Part 3: Closed-Loop OTA Simulation

Figure 13: Closed-loop testbench schematic (CL=5 pF, IB=10 uA)

1. OP simulation

Figure 14: bias circuit with DC node voltages annotated

Figure 15: OTA schematic with DC node voltages and OP parameters annotated

- The voltage difference across the OTA's terminals (differential input/error signal) is nearly zero due to the very high open-loop gain which minimizes the error signal. As the error signal equals the output deviation from its dc level divided by the amplifier's open-loop gain = $\frac{(957.6-600) \, mV}{16.62 \, K} \approx 21.5 \, \mu V$.
- The output of the 1st stage dc level is different from its value in the open-loop simulation as the gain of the 2nd stage alone is finite and the error at this node is the output deviation from its dc level divided by the 2nd stage gain $\frac{(957.6-600) \, mV}{93} \approx 3.8 \, mV$.
- The change in g_m and I_D (about 0.02%) is due to the amplifier's very high open-loop gain which minimizes the error across its input terminals.

2. Loop gain

Figure 16: loop gain bode plot (magnitude)

Figure 17: loop gain bode plot (phase)

Figure 18: loop gain Gx

Test	Output	Nominal	Spec
ITI_labs:lab9_TB2:1	dc loop gain	17.64k	> 2k
ITI_labs:lab9_TB2:1	dc loop gain in dB	84.93	>66
ITI_labs:lab9_TB2:1	BW	363.1	
ITI_labs:lab9_TB2:1	Fu	6.167M	> 5M
ITI_labs:lab9_TB2:1	GBW	6.42M	> 5M
ITI_labs:lab9_TB2:1	PM	70.33	> 70

Figure 19: STB analysis results

The open-loop results changed as Cc value changed as said in the report in the few coming pages.

Spec	open loop simulation	closed loop simulation
DC gain	84.41 <i>dB</i>	84.93 <i>dB</i>
BW	385.4 Hz	363.1 Hz
GBW	6.4 MHz	6.4 <i>MHz</i>

Table 8: open loop vs closed loop simulation

The specs variance between open and closed loop simulations is because V_{outDC} is changed so Vx too and there is error signal at the input therefore OP parameters are changed.

$$DC \ diff \ gain = g_{m0,1}(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7}),$$

$$BW \approx \frac{1}{2\pi(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7})C_c}, GBW = \frac{g_{m0,1}}{2\pi C_c}$$

$$PM = 90 - \tan^{-1}\left(\frac{\omega_u}{\omega_{p2}}\right), \frac{\omega_u}{\omega_{p2}} = \frac{g_{m0,1}}{C_c} * \frac{C_L}{g_{m6}}$$

Spec	closed loop simulation	hand analysis
DC gain	84.93 <i>dB</i>	84.93 <i>dB</i>
BW	363.1 Hz	472.6 Hz
GBW	6.4 MHz	6.58 <i>MHz</i>
PM	70.33°	75.4°

Figure 20: closed loop hand analysis

• BW, GBW & PM hand analysis are different from the simulation as the parasitic caps are large due to the large sizes and they are not taken into consideration in the hand analysis.

3. Slew rate

Figure 21: pulse settings

Figure 22: Slew rate

We got SR less than expected due the large parasitic caps at node x so, after sweeping Cc we found that the SR & PM specs are met at Cc = 2.3 pF.

Note: the results above are all with new Cc value.

Figure 23: Slew rate at Cc=2.3 pF

Figure 24: dVout/dt

Figure 25: Transient analysis Vin & Vout vs time

$$SR \approx \frac{I_{B1}}{C_c}$$

Spec	closed loop simulation	hand analysis
Slew rate	5.08 V /μs	5.46 V /μs

Table 9: simulation vs hand analysis

• The hand analysis is less than simulation result due to the parasitic caps.

4. Settling time

Figure 26: pulse settings

Test	Output	Nominal	Spec
ITI_labs:lab9_TB2:1	rise time	36.18n	< 70n

Figure 27: rise time

Figure 28: Vin & Vout vs time

$$T_{rise} = (\ln 9)\tau = \frac{\ln 9}{2\pi GBW}$$

Spec	closed loop simulation	hand analysis
rise time	36.18 ns	54.64 ns

- The simulation result is better as the hand analysis approximates the system to a 1st order system but in reality it's a 2nd order system which has faster response.
- There is ringing as $PM < 76^{\circ}$ so it's underdamped system.

Part 4: DC Closed Loop AC Open-Loop OTA Simulation

Figure 29: Testbench schematic (CL=5 pF, IB=10 uA)

1. OP simulation

Figure 30: bias circuit with DC node voltages annotated

Figure 31: OTA schematic with DC node voltages and OP parameters annotated

- All devices are in sat.
- The change in g_m and I_D (about 0.02%) is due to the amplifier's very high open-loop gain which minimizes the error across its input terminals.
- The voltage difference across the OTA's terminals (differential input/error signal) is nearly zero due to the very high open-loop gain which minimizes the error signal. As the error signal equals the output deviation from its dc level divided by the amplifier's open-loop gain = $\frac{(957.6-600) \, mV}{16.62 \, K} \approx 21.5 \, \mu V$.
- The output of the 1st stage dc level is different from its value in the open-loop simulation as the gain of the 2nd stage alone is finite and the error at this node is the output deviation from its dc level divided by the 2nd stage gain $\frac{(957.6-600) \, mV}{93} \approx 3.8 \, mV$.

2. Diff small signal ccs

Figure 32: diff gain bode plot (magnitude)

Test	Output	Nominal	Spec
ITI_labs:lab9_TB3:1	Av	17.64k	> 2k
ITI_labs:lab9_TB3:1	Av in dB	84.93	> 66
ITI_labs:lab9_TB3:1	BW	363.1	
ITI_labs:lab9_TB3:1	Fu	6.172M	> 5M
ITI_labs:lab9_TB3:1	GBW	6.421M	

Figure 33: diff small signal results

$$\begin{split} DC \; diff \; gain &= g_{m0,1}(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7}), \\ BW &\approx \frac{1}{2\pi(r_{o1} \parallel r_{o5}) * g_{m6}(r_{o6} \parallel r_{o7})C_c}, GBW = \frac{g_{m0,1}}{2\pi C_c} \end{split}$$

Spec	Simulation	Hand analysis
DC diff gain	84.93 <i>dB</i>	84.94 <i>dB</i>
BW	363.1 Hz	372.7 Hz
GBW	6.4 <i>MHz</i>	6.58 <i>MHz</i>

Table 10: simulation vs hand analysis

• BW & GBW hand analysis are different from the simulation as the parasitic caps are large due to the large sizes and they are not taken into consideration in the hand analysis.

3. CM small signal ccs

Figure 34: CM gain bode plot (magnitude)

Test	Output	Nominal
ITI_labs:lab9_TB3:1	Avcm	1.065
ITI_labs:lab9_TB3:1	Avcm in dB	549.8m

Figure 26: CM gain

$$DC\ CM\ gain \approx \frac{-g_{m0,1}}{2\big(g_{m0,1}+g_{mb0,1}\big)g_{m4,5}r_{o3}} * g_{m6}(r_{o6} \parallel r_{o7})$$

Spec	Simulation	Hand analysis
DC CM gain	1.065	1.1

Table 11: simulation vs hand analysis

4. CMRR

Figure 27: CMRR bode plot (magnitude)

Spec	Simulation	Hand analysis
CMRR	84.37 dB	$A_{vd} - A_{vCM} = 84.1 \ dB$

Table 12: simulation vs hand analysis

5. Diff large signal ccs

This simulation can't be done in this testbench as the diff input is OC in DC

6. CM large signal ccs (region vs VICM)

Figure 35: regions vs VICM

$$\begin{split} &CMIR_{high} = V_{DD} - |V_{DSsat3}| - \left|V_{GS0,1}\right| \\ &CMIR_{low} = -\left|V_{GS0,1}\right| + \left|V_{DSsat0,1}\right| + V_{GS4,5} \end{split}$$

Spec	simulation	analytic
$CMIR_{low}$	-	$-143 \ mV$
$CMIR_{high}$	780 mV	693 mV

7. CM large signal ccs (GBW vs VICM)

Figure 36: GBW vs VICM

$$\begin{split} &CMIR_{high} = V_{DD} - |V_{DSsat3}| - |V_{GS0,1}| \\ &CMIR_{low} = -|V_{GS0,1}| + |V_{DSsat0,1}| + V_{GS4,5} \end{split}$$

Spec	simulation	analytic
$CMIR_{low}$	105.9 mV	−143 mV
$CMIR_{high}$	784 mV	693 mV

Table 5: CMIR

The noticeable variance in the CMIR is due to:

• The body effect obstacles the $CMIR_{high}$ but it also advances $CMIR_{low}$ as the VGS increases and it appears in both specs in negative.

Part 5: Design specs

Spec	Required	Achieved
Supply Voltage	1.8 V	1.8 V
Static gain error	≤ 0.05 %	6 * 10 ⁻³ %
CMRR @DC	≥ 74 <i>dB</i>	83.6 <i>dB</i>
Phase Margin	≥ 70°	70.33°
OTA current consumption	≤ 60 <i>µA</i>	58.8 μΑ
CMIR - high	≥ 1 V	725 mV
CMIR - low	≤ 0.2 <i>V</i>	-365 mV
Output swing	0.2 V - 1.6 V	121 mV - 1.657 V
Load	5 <i>pF</i>	5 <i>pF</i>
Buffer closed loop rise time (10% to 90%)	≤ 70 ns	36.18 ns
Slew rate	5 V/μs	5.08 V/μs

Table 13: Design specs