EXPRESIONES ALGEBRAICAS Y POLINOMIOS

Expresio	nes al	gebra	icas
----------	--------	-------	------

Una expresión algebraica es una combinación de números (coeficientes), de letras (variables) o de números y letras, relacionados entre sí con una o varias operaciones.

$$A = 3a + \frac{3}{4}b^5$$

$$B = 0.2m^3 - \sqrt{7}n$$

$$C = \frac{x^2 + y}{z}$$

$$D = 2c^{-4} - 3d$$
 $E = 5\sqrt{e} + \sqrt[4]{v}$

$$E = 5\sqrt{e} + \sqrt[4]{v}$$

$$F = s^{\frac{1}{2}} + 6h$$

Clasificación

Irracionales: alguna variable es base de una raíz (E y F).

Fraccionarias: alguna variable actúa como divisor (C y D).

Enteras: todas sus variables tienen exponentes naturales (A y B).

1. Colocá E (entera), R (racional) o I (irracional) según corresponda.

a.
$$5a - \sqrt{3b}$$

d.
$$\frac{2h + m}{3}$$

g.
$$q - \left(\frac{3}{x}\right)^{-2}$$

b.
$$4c^{-1} + 7d$$

e.
$$(x+y)^{\frac{2}{3}}$$

h.
$$\frac{b+5}{2} - \frac{a}{7}$$

c.
$$\sqrt{5}(e+g)^3$$

f.
$$\sqrt{2}z + \frac{4}{5}w$$

i.
$$\sqrt{m^2 + n^4}$$

Polinomios de variable x

Un **polinomio** es una expresión algebraica entera cuyos **términos** tienen un coeficiente y la variable x elevada a algún exponente que determina su **grado**.

$$P(x) = \underbrace{5x^2 + 3x - 2x^3 + 8 - 4x^5}_{\text{grado 2 grado 1 grado 3 grado 0 grado 5}}$$

Dos términos con el mismo grado son **semejantes** y un polinomio **reducido** es el que no tiene más de un término con el mismo grado. Cuando se hace referencia a un polinomio, es siempre al reducido.

$$Q(x) = -3x^{2} - 4x + 7 + 7x^{2} - x + 4 = 4x^{2} - 5x + 11$$

polinimio reducido

En un polinomio reducido:

- el **grado** lo determina el término de mayor grado.
- el **coeficiente principal** es el coeficiente del término de mayor grado.
- el término independiente es el término de grado 0.
- según la cantidad de términos, se denomina monomio si tiene uno solo; binomio, si tiene dos; trinomio, si tiene tres; y cuatrinomio, si tiene cuatro. Los demás se nombran como polinomio de 5, 6 o 7 términos, respectivamente.

Q(x) es un trinomio de grado 2, cuyo coeficiente principal es 4 y su término independiente, 11.

Un polinomio está:

- normalizado, si su coeficiente principal es 1.
- ordenado, si sus términos están ordenados de manera creciente o decreciente respecto al valor de los exponentes de la variable.
- completo, si tiene todas las potencias decrecientes del grado y, si está incompleto, se agrega los términos con las potencias que faltan con coeficiente 0.

$$R(x) = -3x^{3} - 8 + x + 2x^{5} = \underbrace{2x^{5} - 3x^{3} + x - 8}_{\text{ordenado}} = \underbrace{2x^{5} + 0x^{4} - 3x^{3} + 0x^{2} + x - 8}_{\text{completo}}$$

- 2. Escribí un polinomio que cumpla con cada una de las condiciones.
 - a. Binomio de grado 5 con coeficiente principal 2 y término independiente 0.
 - b. Trinomio completo y normalizado con término independiente 7.
 - c. Completo de grado 4 y con coeficiente principal 3 y término independiente 1.
- 3. Completá y ordená cada polinomio.

a.
$$-5x + 3 - 2x^3 =$$

b.
$$1 - x^2 + 4x - x^5 =$$

4. Escribí el polinomio reducido y ordenado.

a.
$$A(x) = 2x^2 + 4x^4 - 8 - 4x^4 - 3x^2 + 10$$
 $\longrightarrow A(x) =$

b.
$$B(x) = -x^5 + x^3 - 4 - x^5 + x^3 + 5x$$
 $\longrightarrow B(x) =$

c.
$$C(x) = -7x - x^3 - 2x^4 + 4x + 2x^4 + 3x$$
 \longrightarrow $C(x) =$

d.
$$D(x) = 6x^2 - 4x^3 + 3x + x^3 - 9 + 5x^6 - 6x^2 \longrightarrow D(x) =$$

e. Completá la tabla referida a los polinomios anteriores.

Polinomio	Nombre	Grado	Coeficiente principal	Término independiente
A(x)				
B(x)	es of ethicas	en almanik	er to Etherica boltikala	rolevenel le lautesi
C(x)	医复数性性神经病	MSALÍA BU	er , widah isbutaisan	la arana amina a l
D(x)				

Valor numérico

El **valor numérico** de un polinomio es el resultado de reemplazar **x** por un **número real**.

$$x = 2 \text{ en } R(x) = 3x^2 - 6x - 3 \implies R(2) = 3 \cdot 2^2 - 6 \cdot 2 - 3 = -3$$

$$x = -1$$
 en $S(x) = 2x^3 + 5x^2 - 4x \implies S(-1) = 2(-1)^3 + 5(-1)^2 - 4(-1) = 7$

5. Calculá el valor numérico de cada polinomio.

a.
$$P(x) = x^2 - 5x + 1 \Rightarrow P(3) =$$

b.
$$R(x) = -x^3 + 4x - 2x^2 \implies R(-2) =$$

6. Hallá el o los valores de a que verifiquen que S(a) = 0.

a.
$$S(x) = x^2 - 25$$

c.
$$S(x) = x(x-3)$$

e.
$$S(x) = (x+1)(x-7)$$

b.
$$S(x) = x^3 + 8$$

d.
$$S(x) = -x^4 + 1$$

f.
$$S(x) = (x+2)^2 - 1$$

7. La temperatura que alcanza el agua de una pava a partir de los \mathbf{x} minutos en que se prende la hornalla hasta el punto de ebullición es $T(x) = 3x^2 + 2x + 15$.

Calculá y respondé.

a. ¿A qué temperatura estaba el agua antes de prender la hornalla?

b. ¿Qué temperatura alcanza después de 3 minutos?

c. ¿Y cuánto tarda en hervir?