Assignment 4

Ankur Kumar (14109) Tushar Vatsal(14766)

Buying and selling shares multiple times

1 Notations

- \rightarrow Days are numbered i = 1, 2,, n
- \rightarrow There is a price p(i) per share of the stock on i^{th} day.
- \rightarrow Given a variable k, a k-shot strategy is a collection of m pair of days $(b_1,s_1),....,(b_m,s_m)$ where $0 \le m \le k$ and $1 \le b_1 < s_1 < b_2 < s_2 < < b_m < s_m \le n$

Return of $k - shot \ strategy$

$$Profit(k) = 1000 \sum_{i=1}^{m} (p(s_i) - p(b_i))$$

 Aim : To maximize this profit for a given k

 $\rightarrow Rec_profit(i, l) = Maximum profit using <math>l - shot \ strategy$ from i^{th} day to $n^{th}(last)$ day.

 $Aim: To find Rec_profit(1, k)$

2 Recursive Formulation of $Rec_profit(i, l)$

 $Rec_profit(i,l) = max\{Rec_profit(i+1,l), max_{i < j \leq n}(Rec_profit(j+1,l-1) + p(j) - p(i))\}$

Base Case:

 $Rec_profit(n,l) = 0 \ \forall \ l \in \{0,1,2,....,k\}$

 $Rec_profit(n+1,l) = 0 \ \forall \ l \in \{0,1,2,...,k\}$ $Rec_profit(i,0) = 0 \ \forall \ i \in \{1,2,3,...,n\}$

3 Proof of Recursive Formulation

 $Rec_profit(i,l) = max\{Rec_profit(i+1,l), max_{i < j \leq n}(Rec_profit(j+1,l-1) + p(j) - p(i))\}$

 $Rec_profit(i, l) = Maximum profit from i^{th} day to n^{th} day using l - shot$

strategy.

There are two possible cases :

Case1: Suppose no transaction occurs at i^{th} day then maximum profit from i^{th} day to n^{th} day using l-shot strategy is same as maximum profit from $i+1^{th}$ day to n^{th} day using l-shot strategy. This means $Rec_profit(i,l) = Rec_profit(i+1,l)$

Case2: Suppose we buy share on i^{th} day then I have to sell this share on j^{th} day for some j such that $i < j \le n$. For selling this share bought on i^{th} day, we have n-i possible days. Suppose I sell this on some day j > i, then maximum possible profit is sum of (p(j) - p(i)) (profit due to this transaction) and maximum possible profit from $j + 1^{th}$ day to n^{th} day using l - 1 shot strategy. This means maximum possible profit if we sell this on j^{th} day for some $j > i = Rec_profit(j + 1, l - 1) + p(j) - p(i)$. Thus maximum possible profit if we sell this share brought on i^{th} day on any day $j > i = max_{i < j < n}(Rec_profit(j + 1, l - 1) + p(j) - p(i))$

Since we have to maximize the term $Rec_profit(i, l)$ either by doing any transaction at i^{th} day or not doing it, I will take

 $Rec_profit(i,l) = max\{Rec_profit(i+1,l), max_{i < j < n}(Rec_profit(j+1,l-1) + p(j) - p(i))\}$

4 Implementation using Dynamic Programming

Build a table of k + 1 rows and n + 1 columns where k and n have their usual meanings

k-shot(k)

Let us start calling $Rec_profit(i, l) = T(i, l)$ from now just to simplify our life.

$$T(i,l) = max\{T(i+1,l), max_{i < j < n}(T(j+1,l-1) + p(j) - p(i))\}$$

To calculate any entry T(i,l), we should know T(i+1,l) and all the entries to the right of the block T(i+1,l-1) in the grid shown above.

First we will assign all the entries of n^{th} and $n+1^{th}$ column 0 and all the entries of 0^{th} row 0 according to the base case stated above. And then we will calculate the entries column-wise starting from second-last column from bottom to top. This will ensure while calculating any entry T(i,l) we will know beforehand all other entries used for calculating it.

Space Complexity : O(n(k+1)) = O(nk+n) = O(nk)Time Complexity :

Assigning last column : O(k+1) = O(k)

Assigning last row : O(n)

As we know that

$$T(i,l) = max\{T(i+1,l), max_{i < j < n}(T(j+1,l-1) + p(j) - p(i))\}$$

Thus time required to calculate any block T(i, l) = c(1) + c(n - i) = c(n - i + 1), where c is a constant.

Thus total time to calculate all the remaining entries of the table:

$$\sum_{i=1}^{n-1} \sum_{l=1}^{k} c(n-i+1) = ck \sum_{i=1}^{n-1} (n-i+1) = O(n^2k)$$

Thus the entire table can be computed in $O(n^2k) + O(n) + O(k) = O(n^2k)$ time. This is a polynomial time algorithm in n and k.

5 Towards O(nk) time complexity

However we can improve this to O(nk) time complexity. Take a look over the term T(i, l)=

$$max\{T(i+1,l), max_{i < j < n}(T(j+1,l-1) + p(j) - p(i))\}$$

If this term can be calculated in O(1) time then we are done.

Let's say $\max_{i < j < n} (T(j+1, l-1) + p(j) - p(i)) = P(i, l)$

$$\Rightarrow P(i, l) = (\max_{i < j < n} (T(j + 1, l - 1) + p(j)) - p(i)$$

Say $\max_{i < j \le n} (T(j+1, l-1) + p(j)) = P'(i, l)$

Now P(i, l) = P'(i, l) - p(i)

To find P(i, l), we need P'(i, l) and p(i)

While calculating i^{th} column of the table we will keep an array M of size k such that $M[l] = P^{'}(i, l)$

Initalize all the elements of M=0

After initializing n^{th} column and 0^{th} row of the grid start calculating the grid T from $n-1^{th}$ to the last column according to these rule :

 $T(i,l)=\max\{T(i+1,l),M[l]-p(i)\}.$ After calculating T(i,l) update $M[l]=\max\{M[l],T(i+1,l-1)+p(i)\}$

Thus we are able to calculate every entry in O(1) time and thus total time complexity goes to O(nk)