Funktionalanalysis - Übungsblatt 13

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 2. Februar 2024, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 13.1 4 Punkte

[2+2 Punkte] Es seien X, Y, V, W Banachräume.

- (a) Sei H ein Hilbertraum. Zeigen Sie: Wenn ein Operator $K: X \to H$ kompakt ist, dann gibt es eine Folge von Operatoren $k \mapsto K_k \in \mathcal{L}(X, H)$ mit endlich dimensionalem Bild, so dass $||K K_k||_{\mathcal{L}(X,H)} \to 0$.

 Hinweis: Für $k \in \mathbb{N}$ betrachten Sie für speziell gewählte Radien r_k eine Überdeckung $\overline{K(B_1(0))} \subset \bigcup_{j=1}^{N_k} B_{r_k}(h_j^{(k)})$ und definieren Sie $K_k := P_k K$ mit der Orthogonalprojektion $P_k : H \to \langle \{h_1, ..., h_N\} \rangle$.
- (b) Es seien $T \in \mathcal{K}(X,Y)$, $S \in \mathcal{L}(Y,Z)$ und $R \in \mathcal{L}(Z,X)$. Dann ist $ST \in \mathcal{K}(X,Z)$ und $TR \in \mathcal{K}(Z,Y)$.

Aufgabe 13.2 4 Punkte

[2+2 Punkte]

- (a) Seien X, Y Banachräume und $k \mapsto K_k$ eine Folge kompakter Operatoren $X \to Y$. Zeigen Sie, dass wenn $K_k \to K$ in $\mathcal{L}(X, Y)$, dann ist K kompakt.
- (b) Sei $L: \ell_2 \to \ell_2$ gegeben durch $(Lx)_k := \frac{x_k}{k}$. Man zeige, dass L kompakt ist. Hinweis: Verwenden Sie Teil a).

Aufgabe 13.3 4 Punkte

[1+0.5+1.5+1 Punkte]

Es sei $V = \ell_1^{\mathbb{K}}$ ausgestattet mit der üblichen Norm $\|\cdot\|_{\ell_1}$.

- (a) Sei $(x_n)_{n\in\mathbb{N}}\subset V$ eine schwach konvergente Folge mit schwachem Grenzwert $x=(x^{(k)})_{k\in\mathbb{N}}$. Zeigen Sie, dass für alle $j\in\mathbb{N}$ gilt $x_n^{(k)}\to x^{(k)}$ $(n\to\infty)$. Folgern Sie, dass $x\in V$.
- (b) Sei nun $(x_n)_{n\in\mathbb{N}}\subset V$ schwach gegen 0 konvergent. Wir wollen zeigen, dass bereits $||x_n||_{\ell_1}\to 0$. Gehen Sie dafür wie folgt vor: Argumentieren Sie per Widerspruch und nehmen daher an, dass $||x_n||_{\ell_1}\not\to 0$ für $n\to\infty$.
 - (i) Konstruieren aus $(x_n)_{n\in\mathbb{N}}$ Sie eine Folge $(y_j)_{j\in\mathbb{N}}$ mit $||y_j||_{\ell_1}\geq 1$ und $y_j\rightharpoonup 0$.
 - (ii) Konstruieren Sie nun eine Folge natürlicher Zahlen $0 = k_1 < k_2 < ...$, sodass (nach Übergang zu einer Teilfolge von $(y_j)_{j \in \mathbb{N}}$) für alle $j \in \mathbb{N}$

$$\sum_{i=k_j+1}^{k_{j+1}} |y_j^{(i)}| \ge \frac{3}{4} ||y_j||_{\ell_1}. \tag{1}$$

(iii) Führen Sie nun $||x_n||_{\ell_1} \not\to 0$ zu einem Widerspruch. Hinweis: Verwenden Sie für $j \in \mathbb{N}$ das Funktional $z_j^{(i)} := \operatorname{sgn}(y_j^{(i)}) \in \ell_{\infty}$ mit sgn der Signumsfunktion.

Bitte wenden!

Aufgabe 13.4 4 Punkte

[0.5+1+2.5 Punkte +2 Bonuspunkte]

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Seien $a_{ij}, c \in L_{\infty}(\Omega), c \geq 0$ und $f \in L_2(\Omega)$, sodass für alle $\xi \in \mathbb{R}^n$

$$\xi^T A(x)\xi = \sum_{i,j=1}^n a_{i,j}\xi_i\xi_j \ge \lambda_0 \|\xi\|^2 \qquad \text{für fast alle } x \in \Omega,$$
 (2)

wobei $\lambda_0 > 0$. Betrachten Sie den schwachen Differentialoperator aus Aufgabe 12.4

$$A: \mathring{W}_{p}^{1}(\Omega) \to \mathring{W}_{p}^{1}(\Omega)', \quad A(u)(\xi) = \int_{\Omega} \sum_{i=1}^{n} \partial_{i} \xi \sum_{j=1}^{n} a_{ij} \partial_{j} u + cu \xi \, d\lambda^{n} \qquad \forall \, \xi \in \mathring{W}_{p}^{1}(\Omega)$$

sowie die Einbettung

$$J: L_2(\Omega) \to \mathring{W}_2^1(\Omega)', \quad J(f)(\xi) = \int_{\Omega} f \xi \, \mathrm{d}\lambda^n \qquad \forall \, \xi \in \mathring{W}_2^1(\Omega).$$

- (a) Machen Sie sich klar, dass A ein Isomorphismus ist.

 Beachten Sie, dass alle betrachteten Funktionen reellwertig sind.
- (b) Zeigen Sie, dass der Lösungsoperator $T := A^{-1}J : L_2(\Omega) \to L_2(\Omega)$ kompakt ist. Hinweis: Sie können ohne Beweis verwenden, dass die Einbettung J kompakt ist.
- (c) Nehmen Sie nun an, dass die Matrix $A = (a_{i,j})_{i,j}$ symmetrisch ist, d.h. $a_{ij} = a_{ji}$ für alle $i, j \in \{1, ..., n\}$. Beweisen Sie, dass T selbstadjungiert ist und alle Eigenwerte positiv sind.
- (d^*) Nach dem Spektralsatz für selbstadjungierte Operatoren 5.26+5.27 gibt es dann eine Orthonormalbasis $(e_n)_{n\in\mathbb{N}}$ von $L_2(\Omega)$ aus Eigenfunktionen von T sowie eine Nullfolge $(\mu_n)_{n\in\mathbb{N}}$ positiver Eigenwerte von T. Bestimmen Sie die Spektralbasis des schwachen Differentialoperators A, d.h. $(\lambda_n)_{n\in\mathbb{N}}$ und zugehörige Eigenfunktionen $(\phi_n)_{n\in\mathbb{N}}$ mit

$$A(\phi_n)(\xi) = \lambda_n J(\phi_n)(\xi) \quad \forall \, \xi \in \mathring{W}_p^1(\Omega).$$

Hinweis: Dieser Aufgabenteil ist eine Bonusaufgabe.