7 Video I18

2024年12月18日 21:53

- 1. video: a sequence of images, 4D tensor
 - 1. recognize actions
- 2. problem: big-> train on short clips, low fps (frames per second) and low spatial resolution

3. basic models

Very important, always try this first. 之后的所有模型都在此基础上增加一点准确率

Hard to compare low level motion between frames.

Notemporal shift-invariance! Needs to learn separate filters for the same motion at different times in the clip

Temporal shift-invariant since each filter slides over time!

		Layer	Size	MFLOPs
5.	C3D: The VGG of 3D CNNs	Input	3 x 16 x 112 x 112	
		Conv1 (3x3x3)	64 x 16 x 112 x 112	1.04
	3D CNN that uses all 3x3x3 conv and 2x2x2 pooling (except Pool1 which is 1x2x2)	Pool1 (1x2x2)	64 x 16 x 56 x 56	
		Conv2 (3x3x3)	128 x 16 x 56 x 56	11.10
		Pool2 (2x2x2)	128 x 8 x 28 x 28	
		Conv3a (3x3x3)	256 x 8 x 28 x 28	5.55
		Conv3b (3x3x3)	256 x 8 x 28 x 28	11.10
	Released model pretrained on Sports- 1M: Many people used this as a video feature extractor	Pool3 (2x2x2)	256 x 4 x 14 x 14	
		Conv4a (3x3x3)	512 x 4 x 14 x 14	2.77
		Conv4b (3x3x3)	512 x 4 x 14 x 14	5.55
		Pool4 (2x2x2)	512 x 2 x 7 x 7	
	Problem: 3x3x3 conv is very expensive! AlexNet: 0.7 GFLOP VGG-16: 13.6 GFLOP C3D: 39.5 GFLOP (2.9x VGGI) yelut.	Conv5a (3x3x3)	512 x 2 x 7 x 7	0.69
		Conv5b (3x3x3)	512 x 2 x 7 x 7	0.69
		Pool5	512 x 1 x 3 x 3	
		FC6	4096	0.51
		FC7	4096	0.45
	Anton	FC8	С	0.05

- 4. Recognize motions 受启发:人类不用看图像就能通过motion cues 认出动作
 - Optical flow gives a displacement field F between images It and It+1
 Tells where each pixel will move in the next frame:
 Optical Flow highlights local motion

Separating Motion and Appearance: Two-Stream Networks

- 5. Modeling long-term temporal structure
 - Process local features using recurrent network (e.g. LSTM)
 Manyto many: one output per video frame
 Sometimes don't backprop to CNN to save memory;
 pretrain and use it as a feature extractor

2. Spatio-Temporal Self-Attention

Recall: Different ways of processing sequences

Recall: Self-Attention

Input: Set of vectors x₁, ..., x_N

Keys, Queries, Values: Project each x to a key, query, and value using linear layer

Affinity matrix: Compare each pair of x, (using scaled dot-product between keys and values) and normalize using softmax

Output: Weighted sum of values, with weights given by affinity matrix

Features in 3D CNN: C x T x H x W
Interpret as a set of THW vectors of dim C

t al, "Attention is all you need", NeurIPS 2017

Spatio-Temporal Self-Attention (Nonlocal Block)

iv.

We can add nonlocal blocks into existing 3D CNN architectures.

But what is the best 3D CNN architecture?

3D CNN
Nonlocal Block
Nonlocal Block
Nonlocal Block

Inflating 2D Networks to 3D (I3D)

There has been a lot of work on architectures for images. Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

3. Replace each 2D $K_h x K_w$ conv/pool layer with a 3D $K_t x K_h x K_w$ version

Vision Transformers for Video

Pooling module: Reduce number of tokens

Add & Norm

| 788 × D |
| MatMul |
| MatMul & Scale |
| Q 788 × D |
| Pool Q |
| Pool Q |
| Pool R |
| THW × D |
| A 788 × D |
|

Bertasius et al., "Is Space-Time Attention All You Need for Video Understanding?", ICML 202: <u>Arnab et al.</u>, "ViViT: A Video Vision Transformer", ICCV 2021. Neimark et al, "Video Transformer Network", ICCV 2021. Fan et al. "Multiscale Vision Transformers", ICCV 2021 Li et al, "MViTv2: Improved Multiscale Vision Transformers for Classification and Detection", CVPR 2022

6. Other app

- 1. visually-guided audio source separation
- 2. audio-visual speech separation
- 3. co-separating sounds of visual obj
- 4. sound source localization