กระบวนการวิเคราะห์ข้อมูล (CRISP-DM)

1. Business Understanding

การพยากรณ์อากาศในประเทศไทย ส่วนมากจะเป็นการพยากรณ์อากาศโดยภาพรวม โดย ในประเทศไทยนั้น สภาพอากาศที่ส่งผลกระทบต่อการดำเนินชีวิตมากที่สุด คือ การเกิดฝนตก ซึ่ง หากเราสามารถรู้ล่วงหน้า ว่าฝนจะตกเมื่อไหร่ จะช่วยให้เราสามารถวางแผนการใช้ชีวิตประจำวันได้ มีประสิทธิภาพมากยิ่งขึ้น ไม่ว่าจะเป็นการวางแผนกิจกรรมที่จะทำ โดยเฉพาะกิจกรรมกลางแจ้ง, อุปกรณ์ที่ต้องเตรียมไป เช่น ร่ม หรือลักษณะเสื้อผ้าที่เหมาะสมกับสภาพอากาศ เป็นต้น

การสร้าง ดูฝน: ระบบพยากรณ์อากาศเฉพาะที่ ทำการพยากรณ์อากาศปัจจุบัน (Now cast) ซึ่งเป็นการพยากรณ์อากาศเชิงตัวเลข (numerical weather prediction-NWP) เป็นการคาดหมาย สภาวะอากาศเวลาไม่เกิน 2 ชั่วโมง จะช่วยรายงานข้อมูลสภาวะอากาศเฉพาะที่ของเวลาปัจจุบันได้ แล้ว ยังสามารถพยากรณ์การเกิดฝนตกล่วงหน้าได้ด้วย ซึ่งจะช่วยอำนวยความสะดวกและป้องกัน ความเสียหายอันเนื่องมาจากการเกิดฝนตก

2. Data Understanding

- O ผู้พัฒนาได้เก็บรวมรวบข้อมูลสภาวะอากาศ ผ่านอุปกรณ์ IoT ตั้งแต่วันที่ 26-09-2016 ถึง วันที่ 26-11-2016 มาจำนวน 4516 รายการ
- ข้อมูลสภาวะอากาศนี้แบ่งออกเป็น 2 กลุ่ม
 - กลุ่มที่ฝนตก จำนวน 277 รายการ
 - กลุ่มที่ฝนไม่ตก จำนวน 4239 รายการ
- มีแอตทริบิวต์ทั้งหมด 6 แอตทริบิวต์
- O แอททริบิวต์เป้าหมายในการพยากรณ์ คือ rain

แอตทริบิวต์	คำอธิบาย	ประเภท
temp	อุณหภูมิ(องศาเซลเซียส)	NUMERIC
humidity	ความชื้น(%)	NUMERIC
dewpoint	อุณหภูมิจุดน้ำค้าง (องศาเซลเซียส)	NUMERIC
pressure	ความกดอากาศ (เฮกโตปาสคาล)	NUMERIC
light	ความสว่าง	NUMERIC
rain	ฝน (ฝนตก,ฝนไม่ตก)	{0,1}

3. Data Preparation

ขึ้นตอนนี้จะทำการแปลงข้อมูลที่ได้เก็บรวบรวมมา ให้กลายเป็นข้อมูลที่สามารถนำไป วิเคราะห์ได้ โดยทำการเลื่อนค่าฝนไป 2 ชั่วโมง และทำการแปลงข้อมูลให้อยู่ในรูปแบบนามสกุล .arff เพื่อให้สามารถนำไปใช้ในโปรแกรม Weka ได้

- 🔾 ข้อมูลสภาวะอากาศที่สามารถนำไปวิเคราะห์ได้จำนวน 4487 รายการ แบ่งออกเป็น 2 กลุ่ม
 - กลุ่มที่ฝนตก จำนวน 258 รายการ
 - กลุ่มที่ฝนไม่ตก จำนวน 4229 รายการ

4. Modeling

ขั้นตอนนี้จะทำการสร้างโมเดลด้วยวิธีการ J48(C4.5), NaiveBayes, Random Forestเพื่อ ช่วยในการพยากรณ์หาว่าข้อมูลสภาวะอากาศแบบใดมีโอกาสที่ฝนจะตก โดยแบ่งข้อมูลออกเป็น 2 ชุด เป็นชุดข้อมูลสำหรับสร้างโมเดลจำนวน 60% และชุดข้อมูลสำหรับทดสอบโมเดลที่สร้างขึ้น จำนวน 40% เป็นการแบ่งข้อมูลเพื่อใช้ในการวัดประสิทธิ์ภาพของโมเดลการจำแนกประเภทข้อมูล

โดยคราสของข้อมูลจะแบ่งเป็น 2 คลาส คือ คราส ฝนตก และ คราส ฝนไม่ตก จะแสดง ผลลัพธ์ความน่าจะเป็นที่ฝนตกและฝนไม่ตกตั้งแต่ 0 ถึง 100 เปอร์เซ็นต์

5. Evaluation

ขั้นตอนนี้จะทำการประเมินผลประสิทธิภาพของโมเดล J48(C4.5), NaiveBayes, Random Forest หลังจากที่แย่งข้อมูลออกเป็น 2 ส่วนและใช้โมเดลที่สร้างจากข้อมูลสภาวะอากาศจำนวน 60% มาทำการทดสอบพยากรณ์โอกาสที่ฝนจะตกให้กับ ข้อมูลสภาวะอากาศจำนวน 40% ที่เหลือ และใช้ค่า F-measure ของคราสฝนตก ในการพิจารณาหาโมเดลที่ดีที่สุด เนื่องจากเป็นการ พยากรณ์โอกาสที่ฝนจะตกจึงให้ความสำคัญของคราสฝนตกมากกว่า ดังนั้น ค่า F-measure ของ คราสฝนตก ที่มากที่สุดใน 3 โมเดล เท่ากับ 0.804 คือโมเดล Random Forest

โมเดล Random Forest แบ่งประเภทโอกาสฝนตกกับฝนไม่ตก Min Threshold ดังต่อไปนี้

- ความน่าจะเป็นที่ฝนตก อยู่ที่ มากกว่าหรือเท่ากับ 0.44
- ความน่าจะเป็นที่ฝนไม่ตก อยู่ที่ มากกว่าหรือเท่ากับ 0.57

Model Name	J48(C4.5)	NaiveBayes -D	Random
			Forest (Tree 100)
Accuracy	97.0474	95.376	97.9387
Kappa statistic	0.7207	0.55	0.7934
TPR (Class1)	0.718	0.544	0.738
FPR (Class1)	0.014	0.021	0.006
Precision (Class1)	0.755	0.609	0.884
Recall (Class1)	0.718	0.544	0.738
F-Measure (Class1)	0.736	0.574	0.804
ROC Area (Class1)	0.864	0.85	0.968
Min Threshold (Class1)	0.871	0.7951	0.44
TPR (Class0)	0.986	0.979	0.994
FPR (Class0)	0.282	0.456	0.262
Precision (Class0)	0.983	0.972	0.984
Recall (Class0)	0.986	0.979	0.994
F-Measure (Class0)	0.984	0.976	0.989
ROC Area (Class0)	0.864	0.85	0.968
Min Threshold (Class0)	0.1667	0.3022	0.57

Model Evaluation

6. Deployment

จากโมเดล Random Forest ที่สร้างขึ้นมานั้นสามารถนำไปใช้ในการพยากรณ์โอกาสที่ฝน จะตกได้ โดยนำโมเดล Random Forest ไปใช้งานกับข้อมูลสภาวะอากาศ ณ ปัจจุบัน ในการใช้งาน จะให้ผลผลลัพธ์คำตอบเป็น ฝนตก หรือ ฝนไม่ตก โดยแสดงความน่าจะเป็นที่ฝนตกและฝนไม่ตก ตั้งแต่ 0 ถึง 100 เปอร์เซ็นต์ ค่าแนะนำเปอร์เซ็นต์ที่ฝนตก Min Threshold คือ >= 0.44 หรือ 44%