- 1) W_t винеровский процесс. Доказать, что $\mathbb{E}(W_t|(W_u,W_s))=\frac{(t-s)W_u+(u-t)W_s}{u-s},$ s < t < u.
- 2) Рассмотрим случайное блуждание на кубе. С вероятностью 1/4 частица остается на месте, с вероятностью 1/4 переходит в любое из соседних положений. Пусть A, B две противоположных вершины. Частица стартует из A. Найти 1) среднее время возвращения в A, 2) среднее число шагов, за которое частица достигает B.
- 3) Пусть $\xi_t = \xi_0 + \int_0^t \xi_s \ ds + W_t$, ξ_0 не зависит от W_t , $\mathbb{E} \xi_0 = 0$, $D\xi_0 = 1/2$. Доказать, что корреляционная функция K(t,s) процесса ξ_t зависит только от t-s.
- 4) Число комаров, садящихся на жертву, является пуассоновским процессом с интенсивностью λ . Каждый комар кусает жертву с вероятностью p независимо от других. Доказать, что число укусов является пуассоновским процессом с интенсивностью $p\lambda$.