Лабораторная работа 3.3.3

Опыт Милликена

Работу выполнили:

Морозов Матвей Бабушкина Татьяна 678 группа

Цель работы: измерение элементарного заряда методом масляных капель.

В работе используются: плоский конденсатор в защитном кожухе, осветитель, измерительный микроскоп, электостатический вольтметр, электронный секндомер, переключатель напряжения, пульверизатор с маслом.

Теоретические выкладки

Если елементарный заряд действительно существует, то заряд q любого тела может принимать только дискретную последовательность значений:

$$q = 0, \pm e, \pm 2e, \pm 3e, \cdots, \pm ne$$

В предлагаемом опыте измеряется заряд небольших капелек масла, несущих всего несколько элементарных зарядов. Сравивая между собой заряды капель, можно убедиться, что все они по модулю кратны одному и тому же числу, которое равно, очевидно, элментарному заряду - е. Рассмотрим свободное падение капли. Уравнение движения при падении примет вид:

$$m\frac{dv}{dt} = mg - F,$$

где F - сила вязкого трения капли в воздухе, которая для сферической капли определяется формулой Стокса:

$$F = 6\pi \eta r v = k v$$

Здесь r - радиус капли, η - коэффициент вязкости воздуха, $k=6\pi\eta r$ Теперь получим:

$$\frac{dv}{dt} = mg - kv$$

Можно убедиться, что при нулевой начально скорости решение этого уравнения имеет вид:

$$v = \frac{mg}{k}(1 - e^{-\frac{kt}{m}})$$

Установившееся значение скорости равно:

$$v_0 = \frac{mg}{k} = \frac{\frac{4}{3}\pi pr^3 g}{6\pi \eta r} = \frac{2pgr^2}{9\eta},$$

где p - плотность масла.

Заметим, что при $\frac{dv}{dt}=0$ следует установление скорости с постоянной времени τ :

$$\tau = \frac{m}{k} = \frac{2pr^2}{9\eta}$$

Время установления скорости быстро падает с уменьшением радиуса капли. Для очень маленьких капель оно столь мало, что движение капли можно счиать равномерным. Обозначая через h путь, пройденный каплей за время t_0 , найдем:

$$r = \sqrt{\frac{9\eta h}{2pgt_0}}.$$

При подъеме капли уравнение движения примет вид:

$$\frac{dv}{dt} = \frac{qV}{l} - mg - kv,$$

где $E=rac{V}{l},\, q$ - заряд капли.

Измерим время t подъема капли на начальную высоту. Использую предыдущие уравнения, найдем:

$$q = 9\pi \sqrt{\frac{2\eta^3 h^3}{gp}} \frac{l(t+t_0)}{Vt_0^{\frac{3}{2}}t}$$

Экспериментальная установка

Рис. 104. Схема устройства экспериментальной установки для измерения

Напряжение на пластины подается с регулируемого выпрямителя и измеряется вольтметром V. Ключ K позволяет менять поля в конденсаторе, чтобы было можно работать как с отрицательно, так и с положительно заряженными каплями. При размыкании конденсатор разряжается через дополнительное сопротивление.

Время отсчитывается по элетронному секундомеру.

Из всех величин в формулу для заряда, на опыте измеряются только t_0, t, V . От точности этих величин зависит в соновном ошибка измерения q.

$$\frac{\sigma_q}{q} = \sqrt{\frac{\sigma_V^2}{V^2} + \frac{\sigma_t^2 t_0^2}{t^2 (t_0 + t)^2} + \frac{\sigma_{t_0^2}}{4t_0^2} (\frac{3t + t_0}{t + t_0})^2}$$

При $t_0 \approx t$ формула приобретет вид:

$$\frac{\sigma_q}{q} = \sqrt{\frac{\sigma_V^2}{V^2}} + \frac{\sigma_t^2}{4t_0^2} + \frac{\sigma_{t_0}^2}{t_0^2}$$

В условиях нашей работы наибольшее влияние на точность эксперимента оказывают два последних стоящих под корнем члена. ошибка измерения времени при визуальном наблюдении капель не может быть меньше 0,1-0,2 секунды. То есть погрешность будет принимать меньшие значения при измерении больших t и t_0 .

Измерения и вычисления

Таблица 1. Зависимость t и t_0 от U для капли 1.

	1	2	3	4	5	СР З	σ	q	σq
U, B	200	200	200	200	200	200	1		
t_0 , c	33,84	31,25	32,75	32,64	31,95	32,486	0,748	1,1696E-19	7,90524E-21
t, c	17,81	17,69	17,84	17,45	17,93	17,744	0,027		

Таблица 2. Зависимость t и t_0 от U для капли 2.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	260	260	260	260	260	260	1		
t_0 , c	32,89	29,51	31,76	34,42	32,27	32,17	2,566	1,46145E-19	2,23906E-21
t, c	13,36	13,14	12,48	13,53	12,20	12,942	0,264		

Таблица 3. Зависимость t и t_0 от U для капли 3

	1	2	3	4	5	CP 3	σ	q	σq
U, B	300	300	300	300	300	300	1		
t_0 , c	27,16	27,09	26,23	26,74	27,05	26,854	0,118	1,6629E-19	2,29207E-20
t, c	13,09	13,82	11,79	$14,\!25$	13,36	13,262	0,698		

Таблица 4. Зависимость t и t_0 от U для капли 4.

	1	2	3	4	5	CP 3	σ	q	σq			
U, B	340	340	340	340	340	340	1					
t_0 , c	35,05	40,29	36,93	40,23	36,74	37,848	4,307	1,8729E-19	3,68434E-21			
t, c	8,07	8,81	7,69	7,74	7,95	8,052	0,162					

Таблица 5. Зависимость t и t_0 от U для капли 5.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	400	400	400	400	400	400	1		
t_0 , c	32,52	30,98	33,04	31,75	32,79	32,216	0,569	2,0237E-19	1,48523E-20
t, c	7,81	8,34	9,07	8,07	8,69	8,396	0,198		

Таблица 6. Зависимость t и t_0 от U для капли 6.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	460	460	460	460	460	460	1		
t_0 , c	31,18	26,62	$26,\!42$	29,23	27,45	28,18	3,233	3,39595E-19	4,69271E-20
t, c	4,47	5,13	$5,\!5$	5,23	4,65	4,996	0,144		

Таблица 7. Зависимость t и t_0 от U для капли 7.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	520	520	520	520	520	520	1		
t_0 , c	35,63	33,69	28,94	32,9	30,09	32,244	5,890	2,82362E-19	4,9673E-21
t, c	5,95	5,83	5,33	5,67	5,22	5,600	0,079		

Таблица 8. Зависимость t и t_0 от U для капли 8.

					o. occupiic	111110011	0 11 00 0 1	O 70111	Tree Tree Tree Tree Tree Tree Tree Tree	
		1	2	3	4	5	CP 3	σ	q	σq
U	Л, В	580	580	580	580	580	580	1		
t	0, c	23,28	24,39	22,10	23,31	22,45	23,106	0,632	2,98732E-19	5,1494E-21
t	$\overline{t, c}$	6,88	7,01	6,64	6,24	7,85	6,924	0,283		

Таблица 9. Зависимость t и t_0 от U для капли 9.

	1	2	3	4	5	CP 3	σ	q	σq			
U, B	640	640	640	640	640	640	1					
t_0 , c	37,95	44,06	40,02	38,38	42,21	40,524	5,360	1,46603E-19	6,59035E-21			
t, c	11,49	10,58	9,43	9,77	10,11	10,276	0,513					

Таблица 10. Зависимость t и t_0 от U для капли 10.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	520	520	520	520	520	520	1		
t_0 , c	27,72	$29,\!96$	26,77	28,45	27,38	28,056	1,200	2,49492E-19	3,64036E-21
t, c	9,69	6,03	6,63	7,45	6,67	7,294	1,280		

Таблица 11. Зависимость t и t_0 от U для капли 11.

	Tastilla II. Sashemisetis tii too et e Atiii mantiii II.												
	1	2	3	4	5	CP 3	σ	q	σq				
U, B	520	520	520	520	520	520	1						
t_0 , c	18,72	17,72	21,68	19,21	18,93	19,252	1,726	2,94297E-19	9,97962E-21				
t, c	8,56	9,3	8,77	7,95	8,21	8,558	0,217						

Таблица 12. Зависимость t и t_0 от U для капли 12.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	520	520	520	520	520	520	1		
t_0 , c	$29,\!57$	31,23	30,59	28,9	$29,\!55$	29,968	0,690	2,78615E-19	3,00662E-21
t, c	5,67	6,21	6,01	6,25	5,98	6,024	0,042		

Таблица 13. Зависимость t и t_0 от U для капли 13.

	1	2	3	4	5	СР З	σ	q	σq
U, B	520	520	520	520	520	520	1		
t_0 , c	37,92	34,02	27,98	24,61	27,57	30,42	4,838	2,95695E-19	2,16417E-21
t, c	5,38	5,51	5,50	5,60	5,74	5,546	0,014		

Таблица 14. Зависимость t и t_0 от U для капли 14.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	520	520	520	520	520	520	1		
t_0 , c	31,37	31,46	29,93	30,93	30,58	30,854	0,313	2,92346E-19	1,70206E-21
t, c	5,83	5,43	5,38	5,51	5,65	5,560	0,026		

Таблица 15. Зависимость t и t_0 от U для капли 15.

	1	2	3	4	5	CP 3	σ	q	σq
U, B	520	520	520	520	520	520	1		_
t_0 , c	23,71	22,54	23,44	22,79	23,02	23,100	0,180	3,10293E-19	2,06489E-21
t, c	6,53	6,62	5,98	$6,\!25$	6,59	$6,\!594$	0,054		

Обработка результатов

1)Для всех исследованных капель расситайте значения q, отложим их на горизонтальной числовой оси и найдите для них общий наибольший делитель. Этот наибольший делитель, вообще говоря, может оказаться равным e, 2e, 3e и тд.

График 1 Полученные значения q на оси

2) Теперь оценим время релаксации $\tau=\frac{v_o}{g}$ и $s=\frac{h^2}{gt_0^2}$ - расстояние, которое капля прошла за это время с установившейся скоростью. Установившееся значение скорости равно:

$$v_0=\frac{mg}{k}=\frac{\frac{4}{3}\pi pr^3g}{6\pi\eta r}=\frac{2pgr^2}{9\eta},$$
 где p - плотность масла, а $r=\sqrt{\frac{9\eta h}{2pgt_0}}$ Следовательно, $v_0=\frac{h}{t_0},\, \tau=\frac{h}{gt_0}$:

	ица 16.
τ , $10^{-6} \cdot c$	$s, 10^{-11} \cdot \text{M}$
3,141	9,669
3,172	14,150
2,696	7,123
3,167	9,832
3,621	12,850
3,165	9,815
4,416	19,113
2,518	6,214
3,637	12,964
5,300	27,531
3,405	11,362
3,354	11,027
3,307	10,719
4 416	19 123

Вывод

В ходе лабораторной работы:

- а) Посчитали заряд электрона. Из графика 1 видно, что заряды молекул масла распределились около значений $1,5\cdot 10^{-19}\,$ Кл и $3\cdot 10^{-19}\,$ Кл. Таким образом, заряд электрона примерно равен $1,5\cdot 10^{-19}\,$ Кл $=4,5\cdot 10^{-9}\,$ Фр.
- б) Оценили время релаксации и расстояние, которое прошла бы капля с установившейся скоростью (см. таблицу 16).