<u>Dashboard</u> / My course	s / <u>CNYT1 2022-1</u> / Algoritmos / <u>Quiz 9. El algoritmo de Deutsch-Jozsa</u>
Started on	Friday, 5 May 2023, 12:02 PM
State	Finished
Completed on	Friday, 5 May 2023, 12:03 PM
Time taken	44 secs
Marks	5.00/5.00
Grade	50.00 out of 50.00 (100 %)
INFORMATION	

Considere la función $f:\{0,1\}^5\longrightarrow\{0,1\}$ que se construye de la siguiente manera:

Para conocer el valor de $f(\mathbf{x})$ se toma \mathbf{x} que es una cadena de 0's y 1's y se convierte de binario al decimal n. Luego se tienen en cuenta las siguientes instrucciones:

Si n=0, entonces $f(\mathbf{00000})=0$,

Y, para $n \geq 1$:

 $f(\mathbf{x}) = \begin{cases} 1, & \text{si alguno de los n} \dot{\mathbf{U}} \text{meros } 3, 5, \text{u } 11 \text{ es un factor de } n \\ 0, & \text{de lo contrario} \end{cases}$

QUESTION 1

Correct

Mark 1.00 out of 1.00

¿De qué tipo es esta función f?

Select one:

- a. Constante
- b. Balanceada
- oc. Ni constante ni balanceada

QUESTION 2 Correct		
Mark 1.00 out of 1.00		
¿Cuál será el estado de los n qubits de arriba después de correr el algoritmo de Deutsch-Jozsa para f ?		
Select one:		
\bigcirc a. Los n qubits de arriba se encontrarán todos en estado $\ket{1}$		
$ullet$ b. Algunos de los n qubits de arriba se encontrarán estado $ 0\rangle$ y otros en estado $ 1\rangle$		
\bigcirc c. Los n qubits de arriba se encontrarán todos en estado $ 0\rangle$		
QUESTION 3		
Correct		
Mark 1.00 out of 1.00		
¿Cuál es el (mínimo) número de qubits que se necesitarían para correr el algoritmo de Deutsch-Jozsa para f ?		
Answer: 6 ✓		

QUESTION 4

Correct

Mark 2.00 out of 2.00

Considere la siguiente función $f:\{0,1\}^3 \longrightarrow \{0,1\}$:

Si \boldsymbol{x} representa una cadena de 0's y 1's de longitud 3, entonces:

$$f(x) = \begin{cases} 0, \text{ si } x \text{ tiene ms } 0' \text{s que } 1' \text{s} \\ 1, \text{ si } x \text{ tiene ms } 1' \text{s que } 0' \text{s} \end{cases}$$

Si llamamos $U\,f$ a la correspondiente matriz unitaria, entonces:

El valor de la componente Uf[0,0] es igual a

El valor de la componente $U_f [3,5]$ es igual a

0

~

El valor de la componente Uf[6,7] es igual a

1

~

El valor de la componente $U_f[7,6]$ es igual a

1

~

El valor de la componente $U_f [9,8]$ es igual a

0

El valor de la componente $U_f [9,9]$ es igual a

1

■ Actividad Laboratorio # 6. Algoritmo de Deutsch-Jozsa

Jump to...

ENLACES INSTITUCIONALES

Biblioteca

Investigación e innovación

Enlace - Académico

ENLACES DE INTERÉS

Ministerio de Educación Nacional

Colombia Aprende

Red Latinoamericana de Portales Educativos

Red Universitarias Metropolitana de Bogotá

CONTACT US

Phone: +57(1) 668 3600

E-mail: contactocc@escuelaing.edu.co

Copyright © 2017 - Developed by LMSACE.com. Powered by Moodle

<u>Data retention summary</u> <u>Get the mobile app</u>