توضيح الگوريتم Q-State:

Q-learning یک الگوریتم یادگیری تقویتی (Reinforcement Learning) است که به عامل (Agent) کمک Q-learning میکند تا در یک محیط (Environment) بهینهترین سیاست (Policy) را یاد بگیرد. هدف Q-learning میکند تا در یک محیط (State-Action) بهینهترین سیاست (Q بهر حالت-عمل (State-Action) را تخمین میزند. این مقادیر Q نشاندهنده انتظارات پاداش بلندمدت از انجام یک عمل خاص در یک حالت خاص هستند.

فرمول:

$$lpha\left[r + \gamma \max_{'a} Q(s', a') - Q(s, a)
ight] + Q(s, a) \leftarrow Q(s, a)$$

فرمول محاسبه امتياز:

q[state, action] مقدار Q فعلی برای حالت state و عمل q[state است.

reward پاداش دریافتشده از محیط است.

discount_factor_g همان γ\gammaγ است که مقدارش 0.9 تعیین شده است.

 $\mathsf{new_state}$ است. $\mathsf{q}[\mathsf{new_state}]$ است. است. $\mathsf{new_state}$

learning_rate_a همان α\alphaα است که مقدارش 0.9 تعیین شده است.

1. نرخ یادگیری (α\alphaα)

نرخ یادگیری مشخص میکند که عامل تا چه حد باید دانش جدید را نسبت به دانش قبلی خود اولویت دهد. مقدار α\alphaα بین 0 و 1 قرار دارد:

- اگر α\alphaα نزدیک به 1 باشد، عامل تغییرات جدید را سریعتر یاد میگیرد.
- اگر α\alphaα نزدیک به 0 باشد، عامل بیشتر به دانش قبلی خود اعتماد میکند.

3. نرخ تنزیل (γ\gammaγ)

نیز بین 0 و 1 قرار γ\gammaγ نیز بین 0 و 1 قرار و 1 قرار دخ تنزیل تعیین میکند که چقدر عامل به پاداشهای آینده اهمیت دهد. مقدار γ\gammaγ نیز بین 0 و 1 قرار دارد:

- اگر γ\gammaγ نزدیک به 1 باشد، عامل بیشتر به یاداشهای بلندمدت اهمیت میدهد.
- اگر γ\gammaγ نزدیک به 0 باشد، عامل بیشتر به پاداشهای کوتاهمدت اهمیت میدهد.

4. بيشينه مقدار

این مقدار نشاندهنده بالاترین ارزش Q برای حالت جدید s's's' و تمام اعمال ممکن a'a'a است. این بخش از فرمول به عامل کمک میکند تا ارزش بلندمدت حالت جدید را در نظر بگیرد.

ماتریس ما ترکیبی از فضای حالت observation و action هست. که هرکدام طبق زیر میباشند.

Action Space	Discrete(6)
Observation Space	Discrete(500)
import	<pre>gymnasium.make("Taxi-v3")</pre>

فرمول محاسبه هر state به عنوان شماره ردیف در ارایه:

((taxi_row * 5 + taxi_col) * 5 + passenger_location) * 4 + destination

Action Space

The action shape is (1,) in the range {0, 5} indicating which direction to move the taxi or to pickup/drop off passengers.

- 0: Move south (down)
- 1: Move north (up)
- 2: Move east (right)
- 3: Move west (left)
- 4: Pickup passenger
- 5: Drop off passenger

Observation Space

There are 500 discrete states since there are 25 taxi positions, 5 possible locations of the passenger (including the case when the passenger is in the taxi), and 4 destination locations.

Destination on the map are represented with the first letter of the color.

Passenger locations:

- 0: Red
- 1: Green
- 2: Yellow
- 3: Blue
- 4: In taxi

Destinations:

- 0: Red
- 1: Green
- 2: Yellow
- 3: Blue

جایزه ها:

Rewards

- -1 per step unless other reward is triggered.
- +20 delivering passenger.

• -10 executing "pickup" and "drop-off" actions illegally.

An action that results a noop, like moving into a wall, will incur the time step penalty. Noops can be avoided by sampling the action_mask returned in info.

کد:

در تابع run، محیط بازی را اجرا و عامل را آموزش داده یا تست میشود.

مقداردهی اولیه Q-جدول:

```
if(is_training):
    q = np.zeros((env.observation_space.n, env.action_space.n)) # init a 500 x 6 array
else:
    f = open('taxi.pkl', 'rb')
    q = pickle.load(f)
    f.close()
```

اگر در حالت آموزش باشد، Q-جدول با صفر مقداردهی اولیه میشود.

اگر در حالت تست باشد، Q-جدول از فایل taxi.pkl بارگذاری میشود.

learning_rate_a: نرخ یادگیری.

discount_factor_g: نرخ تنزیل برای پاداشهای آینده.

epsilon: مقدار اولیه برای سیاست اکتشافی.

epsilon_decay_rate: نرخ کاهش epsilon_decay.

rng: توليد كننده اعداد تصادفي.

```
for i in range(episodes):
   state = env.reset()[0]
   terminated = False
                         # True when reached goal
   truncated = False
   rewards = 0
   while (not terminated and not truncated):
       if is_training and rng.random() < epsilon:</pre>
           action = env.action_space.sample()
           action = np.argmax(q[state, :])
       new_state, reward, terminated, truncated, _ = env.step(action)
       rewards += reward
       if is training:
           q[state, action] = q[state, action] + learning_rate_a * (
               reward + discount_factor_g *
               np.max(q[new_state, :]) - q[state, action]
       state = new state
```

rewards_per_episode: آرایهای برای ذخیره پاداشهای هر قسمت.

برای هر قسمت:

- محیط بازی بازنشانی میشود.
- وضعیت اولیه و متغیرهای خاتمه و قطع شدگی تنظیم میشوند.
 - در حالی که قسمت تمام نشده است:
- اگر در حالت آموزش و با احتمال epsilon، عمل تصادفی انتخاب میشود.
 - در غیر این صورت، بهترین عمل بر اساس Q-جدول انتخاب میشود.
- عمل در محیط انجام میشود و وضعیت جدید و یاداش دریافت میشود.
- اگر در حالت آموزش باشد، Q-جدول با استفاده از قانون بهروزرسانی Q یادگیری بهروز میشود.
 - وضعیت به وضعیت جدید بهروز میشود.

- epsilon کاهش مییابد.
- اگر epsilon به صفر برسد، نرخ یادگیری کاهش مییابد.
- پاداشهای قسمت در rewards_per_episode ذخیره میشود.

```
env.close()

sum_rewards = np.zeros(episodes)
for t in range(episodes):
    sum_rewards[t] = np.sum(rewards_per_episode[max(0, t-100):(t+1)])
plt.plot(sum_rewards)
plt.savefig('taxi.png')

if is_training:
    f = open("taxi.pkl","wb")
    pickle.dump(q, f)
    f.close()
```

محیط بسته میشود و پاداشهای قسمتها جمعآوری و نمودار آن رسم و ذخیره میشود.

اگر در حالت آموزش باشد، Q-جدول ذخیره میشود.

نتايج:

در ویدیو

نمودار:

محور XXX

• **تعداد اپیزودها**: محور افقی xxx نشاندهنده تعداد اپیزودهای یادگیری است. هر اپیزود یک بار شروع و پایان بازی را نشان میدهد. همانطور که در کد مشخص شده، تعداد اپیزودها ۱۵۰۰۰ (15000) تعیین شده است.

محور ууу

• **مجموع پاداشها**: محور عمودی yyy نشاندهنده مجموع پاداشهایی است که عامل در طول هر اپیزود به دست آورده است. پاداشها میتوانند مثبت یا منفی باشند و نشاندهنده موفقیت یا ناکامی عامل در انجام وظایف مختلف هستند.

تحليل نمودار

• شروع از مقدار پایین (منفی): در ابتدای آموزش، پاداشهای عامل بسیار پایین هستند (حتی تا -80000). این نشاندهنده این است که عامل هنوز به خوبی یاد نگرفته است چگونه به طور بهینه عمل کند و به همین دلیل پاداشهای زیادی را از دست میدهد.

• **افزایش پاداشها در طول زمان**: با گذشت زمان و افزایش تعداد اپیزودها، مجموع پاداشها به طور پیوسته افزایش مییابد و به سمت مقادیر مثبت میرود. این نشاندهنده این است که عامل به تدریج سیاستهای بهینه تری را یاد میگیرد و عملکردش بهبود مییابد.

• پایداری در مقادیر بالاتر: در انتهای نمودار، مجموع پاداشها به یک مقدار ثابت و بالاتر میرسد و نوسانات کمتری مشاهده میشود. این نشاندهنده این است که عامل به یک سیاست پایدار و بهینه دست یافته است و میتواند به طور مداوم عملکرد خوبی داشته باشد.