DTM 2025 - Machine Learning

Delayed Flights Prediction

Machine Learning project

OPEN IN COLAB

Presented by: Alessandro De Faveri

Project Objective

The goal of this study is to predict a flight's Delay Risk, a classification target that flags whether arrival delay will be ≥ 15 minutes. The model is designed for post-departure decision-making, leveraging the actual departure delay (DEP_DELAY) together with schedule and route information.

To achieve this, the analysis integrates:

- Schedule & temporal signals such as departure hour, day of week, and seasonality.
- Route & operator context, including airline, origin/destination, and historical delay rates.
- Flight profile features such as distance, estimated duration, and short/long-haul flags
- Post-departure status via DEP_DELAY, which captures realized pushback lateness.

Data Set

Dataset: 687,860 flights from 2022 in USA

Share delayed: 20.4% (≈1 in 5 flights)

Missing ARR data: 2.9%
Missing DEP data: 2.6%

Basic delay statistics:

- Average arrival delay: 6.9 min
- Average departure delay: 12.5 min
- Average distance: 817 miles

Data Exploration

In this part, I identified patterns and correlations in flight delay data.

There is a strong correlation between departure and arrival delays, as well as seasonal patterns and airline-specific performance differences.

The most important are:

- Figure 1: The delay-rate by month shows a clear seasonal pattern: a gradual rise through spring, elevated levels in summer, a sharp trough in early autumn, and a renewed increase in December
- Figure 2: Reveals a strong monotone relationship: small departure delays frequently propagate, while substantial departure delays almost always lead to late arrival.

Figure 2

....

Feature Engineering

- This allows the model to "understand" that a flight at 6:30 p.m. is more likely to be delayed than one at 6:00 a.m.
- The feature shows flight patterns that vary by season, with peaking delays in summer and winter, while spring and autumn tend to have more stable on-time performance
- The feature calculates
 on only the training
 set. Example: if
 American Airlines
 historically has 25%
 delays, the model
 "remembers" this
 when it sees a new
 American flight.
- This feature analyzes
 the data based on the
 duration and the
 distance of the flight

Feature Engineering

One crucial thing of my project is the split of the dataset.

Problem: The model would see future data to predict the past! It's like knowing the results of the game while you're watching it.

Instead of random splits that create impossible future-past scenarios, we use temporal splitting where the model trains on historical data (Jan-Aug) to predict future flights (Sep-Dec), exactly like it would work in production.

Data Preparation

DATA TYPE SEPARATION

I separated the numerical from categorical feature because of different preprocessing

Numerical Pipeline

- Imputer: Replaces missing values with the median (more robust than the mean)
- StandardScaler: Normalizes (mean=0, std=1)

CARDINALITY SEPARATION

I separated the categorical feature in:

- low cardinality (Airline)
- high cardinality (Origin and destination)

low cardinality Pipeline

high cardinality Pipeline

One-hot encoding

Target encoding to prevent dimensional explosion while preserving predictive information.

Modeling Approach

PHASE 1: SETUP PIPELINE

- Automatic and consistent preprocessing
- No data leakage between training/validation/testing
- Complete reproducibility

PHASE 2: HYPERPARAMETER OPTIMIZATION

- 1. Grid
 - a. Conservative: Avoids overfitting with limited max_depth
 - b. Balanced: Manages class imbalance
 - c.Scalable: Range of manageable n_estimators
- 2. Why F-beta con β =1.5?
 - a. β > 1: Favors recall (capturing more delays)
 - b. Business logic: Better to predict false alarms than miss real delays
- 3. Temporal cross validation
- 4. Take a small sample before tuning
- 5. Randomized Search

PHASE 3:FINAL TRAINING

• Training + validation

Evaluation on Test

The feature importance analysis validates our domain knowledge, with departure delay emerging as the dominant predictor, alongside temporal and historical features.

Model Comparison

I compared Random Forest with basic ML models and found that it performs the best in terms of ROC-AUC and F1 score.

Random Forest was not chosen at random, but as the optimal solution for the specific characteristics of the problem: natural handling of high-cardinality categorical features, robustness to outliers, business-friendly interpretability.

The overall benchmark confirms Random Forest as the optimal choice for general performance, while revealing strategic alternatives for specific scenarios.

Conclusion

Post-departure risk can be ranked reliably.

• Combining DEP_DELAY with schedule and route context gives a strong signal.

Proven performance on 2022 data.

 Random Forest: AUC 0.93, recall ~0.75 on the delay class → we catch most risky flights with controlled false alarms.

Explainable drivers.

 Largest lifts come from actual pushback lateness, time-of-day/season, and historical route/airline performance.

Operational impact.

 Probability outputs enable policy thresholds by hour/airport, earlier passenger comms, and smarter gate/crew replanning Machine Learning Project - DTM 25

Thank you for listening

Flight delayed Prediction

Alessandro De Faveri