南京大学数学课程试卷 (商学院 12 级)

2013/2014 学年 第一 学期 考试形式 闭卷 课程名称 概率统计 (A卷)

考试时间_2014.1.2 系别 _____ 学号 _____ 姓名____

题号	— 36	二10	三 10	四 12	五 10	六12	七10	合计
得分								

 Φ (1. 0)=0. 8413, Φ (1.28) = 0.90, Φ (1.64) = 0.95, Φ (1.96) = 0.975, Φ (2)=0.977 Φ (2.33) = 0.99, $t_{0.025}$ (48)=2.0, $t_{0.025}$ (49)=1.98, $t_{0.05}$ (48)=1.66, $t_{0.05}$ (49)=1.64

- 一. (6分×6=36分)
 - 1. 将7本中文书和3本外文书随机地排列在书架上,求3本外文书相邻排列在一起的概率.

2. 有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有2个黑球3个白球,第三个箱子中有3个黑球2个白球,现随机地取一个箱子,再从这个箱子中取出一个球,试求这球为白球的概率.

3. 设 X_1, X_2, \dots, X_{10} 和 $Y_1, Y_2, \dots Y_{15}$ 相互独立且都是总体 $\xi \sim N$ (20, 3)的样本,求 $P(|\overline{X} - \overline{Y}| > \sqrt{2})$.

4. 设 \mathbf{X}_1 , \mathbf{X}_2 , ··· \mathbf{X}_n 是取自正态总体 $\mathbf{X} \sim \mathbf{N} (\mu, \sigma^2)$ 的样本($\mathbf{n} > 2$), \overline{X} 是样本均值, $\mathbf{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ 是样本方差,求统计量 $\mathbf{Y} = \frac{n(\overline{X} - \mu)^2}{S^2}$ 的分布(如有自由度,须给出).

5. 设总体 X 的方差 DX=1,根据来自 X 的容量为 100 的样本,测得样本均值x=5, 求 X 的数学期望 $\mu=EX$ 的置信度为 95%的置信区间.

6 设总体 X 的概率密度为 $p(x) = \begin{cases} 2e^{-2(x-\theta)}, & x>\theta \\ 0, & x\leq \theta \end{cases}$, 其中 $\theta>0$ 为未知参数,又设 \mathbf{X}_1 , \mathbf{X}_2 , … \mathbf{X}_n 是 X 的一组样本,求参数 θ 的极大似然估计量.

二. (10 分)设两个随机变量 X,Y 相互独立,且都服从正态分布 N (0, $\frac{1}{2}$),求方差 $\mathbf{D}|X-Y|$.

三. (10 分)设随机变量 ξ 与 η 相互独立,且 ξ \sim E(3), η \sim E(4),求 $Z=3\xi+4\eta$ 的概率密度.

四. $(12 \ f)$ 一生产线生产的产品成箱包装,每箱的重量 X 是随机的,假设 $EX=50 \ kg$,标准差 $\sqrt{DX}=5 \ kg$,若用最大载重量为 5 吨的汽车承运,试求: (1) 若每辆车装 99 箱,汽车不超载的概率: (2) 每辆车最多可装多少箱,才能保证不超载的概率大于 0.977?

五. (10 分)设总体 $\mathbf{X} \sim \mathbf{N}(\mu, \sigma^2)$, 从中抽取容量为 $2\mathbf{n}$ 的样本 $\mathbf{X}_1, \mathbf{X}_2, \cdots \mathbf{X}_{2n}$,其样本均值为 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$,求统计量 $\mathbf{Y} = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2$ 的数学期望.

六. (12 分)设总体 $\mathbf{X} \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \theta^2, & 2\theta(1-\theta), & \theta^2, & 1-2\theta \end{pmatrix}$, 其中 $\mathbf{0} < \theta < \frac{1}{2}$ 是未知参数,现有总体 \mathbf{X} 的容量为 $\mathbf{8}$ 的样本值如下: 3,1,3,0,3,1,2,3, 试求:(1) θ 的矩估计量和矩估计值;(2) θ 的极大似然估计值;(3) θ 的矩估计量是否为 θ 的无偏估计和一致估计?(须说明理由).

七. (10 分)某市居民的月伙食费 $\mathbf{X}\sim \mathbf{N}(\mu,\sigma^2)$,已知 $\mathbf{E}\mathbf{X}=235.5$,现随机抽取 49 个居民,他们本月的伙食费平均值为 $\overline{x}=236.5$ 元,样本标准差 $\mathbf{s}=\sqrt{\frac{1}{48}\sum_{i=1}^{49}(x_i-\overline{x})^2}=3.5$ 元,(1)试问是否可以认为本月居民平均伙食费有显著上升?($\alpha=0.05$)(2)求 $\mu=\mathbf{E}\mathbf{X}$ 的置信度为 95%的置信区间.