Summary - AdaBoost

- Assign equal sample weights for each sample sample weight = 1 / number of samples
- We bootstrap the samples as per the weights assigned and build a weak learner on that sample
- 3. Once the weak learner is built, AdaBoost chooses the alpha, which measures the importance of it based on the error made by that weak learner $lpha_t = rac{1}{2}log(rac{1-\epsilon_t}{\epsilon_t})$
- Calculate the new sample weights for the next weak learner
 - New sample weight for incorrect samples = sample weight * exp(alpha) / z,
 - New sample weight for correct samples = sample weight * exp(-alpha) / z.
- 5. Create a bootstrapped dataset with the odds of each sample being chosen based on their new sample weights
- 6. Repeat the process n number of times
- The final prediction is a weighted majority vote/average of all the weak learners

Importance VS Error of each learner

Summary AdaBoost

$$\alpha = (\frac{1}{2}) \log((1 - E_t) / E_t)$$

Incorrect => New weight = (old weight) * $(e^{\alpha})/z$

Correct => New weight = (old weight) * $(e^{-\alpha})/z$

Let's understand this with an example

Let's consider an example dataset, where X is assumed to be the age of people and Y is whether they like a particular movie or not.

K	Υ	Prod.	Let's find log odds for Y =1
	0	0.67	log(4/2) = 0.69
20	1	0.67	
30	1	0.67	Let's find out the probability using the below formula
40	1	0.67	$P=rac{e^{log(odds)}}{1+e^{log(odds)}}$
50	0	0.67	
60	1	0.67 •	$P(Y = 1) = (e^{(0.69)})/(1 + e^{(0.69)}) = 0.67$

Let's calculate residuals for our predictions

Transformation formula

We can calculate the output value of each leaf using the following formula:

$$\frac{\sum Residual}{\sum [PreviousProb * (1-PreviousProb)]}$$

Х	Y	Residual
10	0	-0.67
20	1	0.33
30	1	0.33
40	1	0.33
50	0	-0.67
60	1	0.33

Update Predictions

$$y = a + b x$$

Gradient Boosting - Classification Loss Function

$$\log (odds) = \log (P_i / (1-P_i))$$

log (likelihood) =
$$y_i \log (p_i) + (1 - y_i) \log (1 - p_i)$$

d / d(log(odds)) [$y_i \log (odds) - \log (1 + e^{\log (odds)})$
 $y_i - e^{\log (odds)} / (1 + e^{\log (odds)}) = y_i - p_i$

Gradient Boosting - Regression Loss Function

