Section 5

- 数値計算用言語Scilab
- 機械学習ツールWeka

Scilab 入門

- Scilab とは
 - 数値計算を伴う問題の解決手順を記述するのに適し たプログラミング言語
 - ベクトルや行列を変数の値とすることができ、それらの間の演算が可能
 - データをグラフにして表示する可視化が簡単に行える

 \times

ファイル 編集 春式 オプション ウィンドウ 実行する その他

rei3-2.sce (C:\Users\araki\Documents\book\pattern2\scilab\rei3-2.sce) - SciNotes

rei3-2.sce 💥

```
1 clear;
2 X=[3, -2; -3, -4; -5, -4; -5, -6]; -//-元データ
3 //-元データの表示
4 subplot(1,2,1); -title('original-data');
5 plot2d(X(:,1), -X(:,2), -style=-9, rect=[-8, -8, 8, 8], axesf[ag=4):
ァ |//-標準化計質 - (SX -= -wcenter(X, -'r')-としてもよい)
8 [n, d] = size(X);
g |SX == (X -- repmat(mean(X, 'r'), n, 1)) * diag(1 - . / stdev(X, 'r'));
10
11 / / - 標準化後のデータの表示
12 subplot(1,2,2); -title('after-standardization');
13 plot2d(SX(:,1), -SX(:,2), -style=-4, rect=[-2,-2,2,2], axesf [ag=4);
14
```

Weka 入門

• Weka とは

- Waikato Environment for Knowledge Analysis
- 機械学習のアルゴリズムを実装した Java ライブラリ
- データファイルを直接操作できる GUI を持つ
- ライセンスは GNU GPL
 - プログラムの実行・改変・再配布が自由
 - ただし二次的著作物に対しても GNU GPL が適用される
- この解説では開発版である ver. 3.9.1 を使用

Weka に関する資料

- 開発者による機械学習一般の解説書
 - Ian H. Witten et.al.: Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, Morgan Kaufmann, 2016.
- web 教材
 - Waikato 大学 Mooc: Data Mining with Weka
 - http://www.cs.waikato.ac.nz/ml/weka/mooc/dataminingwithweka/
 - ビデオやスライドを公開

Weka 付属の学習用データ

表 2.2 Weka 付属のデータ

データ名	内容	特徴	正解情報
breast-canser	乳癌の再発	ラベル	クラス (2 値)
contact-lenses	コンタクトレンズの推薦	ラベル	クラス (3 値)
cpu	CPU の性能評価	数值	数值
credit-g	融資の審査	混合	クラス (2 値)
diabetes	糖尿病の検査	数值	クラス (2 値)
iris	アヤメの分類	数值	クラス (3 値)
Reuters-Corn	記事分類	テキスト	クラス (2 値)
$\operatorname{supermarket}$	スーパーの購買記録	ラベル	なし
weather.nominal	ゴルフをする条件	ラベル	クラス (2 値)
weather.numeric	ゴルフをする条件	混合	クラス (2 値)

起動

• アプリケーションの選択

・Explorer アプリケーション データの読み込みから、特徴 選択・学習・評価を試行錯誤的 に行うのに適した操作を提供

• Experimenter: ハイパーパラメータ等を変えて性能を比較実験

• KnowledgeFlow: 実験プロセスを GUI で組み立て

• Workbench: すべてのアプリケーションをまとめた GUI

• SimpleCLI: コマンドラインインタフェース

Explorer での操作

- 前処理
 - データの読み込み
 - 標準化
 - 特徵選択
 - 特徴の分析

- 識別
 - 100 以上の識別ア ルゴリズムの実装
 - 学習の設定
 - ハイパーパラメータの設定
 - ・ 学習結果の評価

- 可視化
 - データの2次元プ ロット

Explorer での操作

- 特徴抽出後のデータを読み込む
 - いくつかの特徴の操作(フィルタの適用)が可能

- 読み込み可能なデータ形式
 - ARFF (Attribute Relationship File Format) 形式
 - ヘッダ部とデータ部で構成
 - ヘッダ部
 - @relation:データ集合の名前(ファイル名と同じでよい)
 - @attribute:特徴の各次元の名前とデータの型を宣言
 - データ部
 - @data 以降に 1 行 1 件のデータを記述
 - 各特徴・クラスラベルはカンマ区切り

• ARFF ファイルの例

```
Orelation ex7-1
@attribute f1 real
@attribute f2 real
@attribute class {a, i, u, e, o}
@data
700,1100,a
240,1900,i
240,1100,u
440,1700,e
400,750,0
```

連続値データは real

Nominal データは取り得る値のリストを中括弧で囲む

• アヤメの分類データ (iris)

萼・花びらの

長さ・幅

アヤメの

種類

```
% 1. Title: Iris Plants Database
@RELATION iris
                    データセット名
@ATTRIBUTE sepallength
                        REAL
                                特徴名と型
@ATTRIBUTE sepalwidth
                        REAL
@ATTRIBUTE petallength
                        REAL
@ATTRIBUTE petalwidth
                       REAL
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}
Q DATA
                                        これ以降、1行に1事例
5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9, 3.0, 1.4, 0.2, Iris-setosa
                                      (Excel の CSV 形式と同じ)
7.0, 3.2, 4.7, 1.4, Iris-versicolor
6.4, 3.2, 4.5, 1.5, Iris-versicolor
6.3, 3.3, 6.0, 2.5, Iris-virginica
5.8, 2.7, 5.1, 1.9, Iris-virginica
```

- CSV ファイルの場合
 - 1行目は特徴名とする
 - クラスラベルが数字で表現されている場合は Numeric2Nominal フィルタを適用して、 Nominal デー

夕に変換

	А	В	С
1	f1	f2	class
2	700	1100	а
3	240	1900	i
4	240	1100	u
5	440	1700	е
6	400	750	0

- フィルタの適用
 - 有用なフィルタのほとんどは
 weka → filters → unsupervised → attribute
 の下にある
 - Standardize:標準化(平均0,分散1)
 - 各次元に対して平均値を引き、標準偏差で割る
 - Normalize: 値を [0,1] に変換
 - PrincipalComponents: 主成分分析

• 標準化

- 主成分分析
 - iris データ (4 次元特徴)を2次元に

補足 - Select Attributes での主成分分析

データのプロット (Visualize)

グラフサイズ、 点のサイズが 調整可能

データのプロット (Visualize)

• 1 つのグラフのみ表示

x軸、y軸、色の 基準が選べる

• 勉強した識別器

• IBk (k-NN 法) のパラメータ

• SMO のパラメータ

多項式カーネルのパラメータ

次数

定数項 の有無

• MultilayerPerceptron のパラメータ

• 評価法の設定

• 学習結果の見方

```
=== Summary ===
```

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances

14 1 0.9167 0.1051 0.1645 31.4161 % 39.3051 %

```
識別率
93.3333 %
6.6667 %
```

=== Confusion Matrix ===

```
a b c d e <-- classified as
3 0 0 0 0 | a = a
0 3 0 0 0 | b = i
0 0 3 0 0 | c = u
0 0 0 3 0 | d = e
1 0 0 0 2 | e = o
```

縦軸が正解、横軸が出力 対角成分が正解数

- 学習結果の保存
 - Result list の該当行を右クリック → Save model
 - Weka を使う Java プログラムでロード可能

Section5 のまとめ

- Scilab
 - ベクトルや行列を変数の値とすることができる
 - 数式をそのままコードにすることができる
- Weka
 - 勉強に有用なサンプルデータが付属する
 - さまざまな機械学習手法が実装されている
 - 簡単にパラメータを変化させて影響を見ることができる。