組み込みシステム基礎

第3回

I2C, カラーセンサ, ロータリエンコーダ

I²C(Inter-integrated Circuit)【復習】

- I squared C(アイ・スクエアド・シー)と呼ぶ
 - 他にもアイ・アイ・シー, アイツーシーという呼び方
 - I2Cと書くこともある
- 組み込み機器でよく利用されるシリアル通信プロトコル
 - 少ない信号線で多くの機器を利用可能
 - 通信速度は100kbps~400kbps
 - 機器内での短い距離の通信を想定
- ■本日の課題
 - I2Cを利用したLCDへの出力

ILCDとカラーセンサの同時利用

- カラーセンサ
 - フォトダイオードという素子で光を検知
 - RGBCの4種類の値を取得

- LCDとカラーセンサを同一のI2Cバス(I2C3)で利用
 - カラーセンサから読み取った値をLCDに表示
 - 背景(例えば黒い下敷き)のセンシング時はLCDの表示は変化なし
 - 物体(カラートークン)が接近したときのみRGBを読みLCDに値を表示
- 注意
 - 壊れやすいので扱いは丁寧に!
 - ピンヘッダから外れてしまった場合,取り付け位置に注意

ゴカラーセンサの割り込み Embedded System

ガラーセンサの割り込み

Embedded System

Power Debug Power **RGB** Select USB Port LED **LED** Header Cの値が 上限閾値以上 PB₀ 下限閾値以下 **LaunchPad** になるとLOWに変化 SW1 SW₂

明るさ/暗さの閾値設定

- 16bitの値
 - AILTL:しきい値下限の下位8bit
 - AILTH:しきい値下限の上位8bit
 - AIHTL:しきい値上限の下位8bit
 - AIHTH:しきい値上限の上位8bit 簡単のため (x << 8 | y) を x.yと表記
- 割り込み発生範囲
 - この範囲に入っていると割り込み処理 が発生し続ける

:割り込みの発生範囲

CDATAH.CDATAL

ガラーセンサの割り込み

ガラーセンサの割り込み

カラーセンサの割り込み

ロータリエンコーダ Embedded System

- 直交エンコーダインタフェースモジュール
 - QEI (Quadrature Encoder Interface)
- 回転の量をコード化するモジュール
 - 2相式: 2本のピン(PD6とPD7に接続) から位相のずれたパルスが発生
 - 1相式は方向が取れない
 - 回転方向(-1,1)と回転角度(0~96)を読み取れる
 - 回転角度の情報はあまりあてにしないほうが良い
 - 0から1回転させても0に戻らない場合がある

ロータリエンコーダの読み取り

- GPIO割り込み型(こちらを使用)
 - これまでやってきたPF4やPB0の割り込みと同様
 - PD6かPD7に対して割り込みを仕掛ける
 - 割り込みハンドラでQEIから値を読み取る
- Systick割り込み型(使用しない):
 - Systick割り込みハンドラ内でQEIから値を読み取る
 - 入力が最速でも1/32秒毎になるため遅れる

- 空の関数を埋める
 - 例:割り込み初期化(initInterruptPins())
- 意味を考えながらプログラムを作成
- Icd_SB1602.h, Icd_SB1602.c
 - 前回作成した関数を流用してLCDにカラーセンサの 値等を表示
- ロータリエンコーダ
 - 回転方向を利用するとプログラムが簡単になるかも

実験開始