[30 points] Train a classifier on the train dataset that is able to predict spam.

Choose stratified sampling training ratio

Average accuracy	MLP	svc	KNeighbors	GaussianNB	RandomForest
Tf-idf Setting	Default	Default	Default	Default	Default
Training Ratio					
0.5	0.774592074592	0.810955710	0.78444055944	0.735780885780	0.82004662004662
0.8	0.79353146853	0.802622377	0.78444055944	0.681759906759	0.82004662004662
0.9	0.770512820512	0.793589743	0.76282051282	0.701282051282	0.816666666666667

^{*}Average Accuracy: The average of accuracy_score and mean of 5-fold cross_val_score

At training ratio = 0.8, almost all classifiers have the best accuracy score. So I will use training ratio = 0.8 for later experiment.

Classifier	Tf-idf Setting	Accuracy	CV_score
MLP	Default	0.769230769230769	0.73939393939394
	sublinear_tf=True	0.769230769230769	0.774242424242424
	ngram_range=(2, 2), sublinear_tf=True	0.923076923076923	0.724242424242424
svc	Default	0.769230769230769	0.775757575757576
	sublinear_tf=True	0.846153846153846	0.757575757575758
	ngram_range=(2, 2), sublinear_tf=True	0.846153846153846	0.775757575757576
KNeighbors	Default	0.615384615384615	0.689393939393939
	sublinear_tf=True	0.692307692307692	0.7257575757576
	ngram_range=(2, 2), sublinear_tf=True	0.846153846153846	0.672727272727273
GaussianNB	Default	0.538461538461538	0.56969696969697
	sublinear_tf=True	0.538461538461538	0.692424242424243
	ngram_range=(2, 2), sublinear_tf=True	0.846153846153846	0.504545454545455
RandomForest	Default	0.846153846153846	0.793939393939394
	sublinear tf=True	0.846153846153846	0.793939393939394

Classifier	Tf-idf Setting	Accuracy	CV_score	
	ngram_range=(2, 2), sublinear_tf=True	0.846153846153846	0.793939393939394	

^{*}CV_score: The mean of 5-fold cross validation score

According to the spreadsheet above

- 1. When apply tf-idf setting: ngram_range=(2, 2), sublinear_tf=True, the overall accuracy of all classifiers is the highest.
- 2. RandomForest Classifier has the highest CV_score, SVC classifier is second high

[10 points] Using the best and second-best classifiers you got from above, apply them once each on the entire test dataset.

If you run into the out-of-vocabulary problem i.e. there are words in your test data that are not in your training data,

you can delete the word, although in practice we would be taking a more sophisticated approach.

What are the accuracy measures that you are getting for both? Is the difference greater, smaller or equal compared to performance

difference on validation set/cross-validation? What would be the accuracy for a classifier that labeled the data 'randomly'?

(Hint: for the last question, use a bernoulli distribution i.e. toss a coin, with spam coming up with probability p and non-spam

with probability 1-p. Use the number of spam/legit samples in the training data to estimate the ideal value for p.)