Systematic Literature Review

Trustable oracles for Blockchain data retrieval and aggregation

Pedro Duarte da Costa^a, Filipe Figueiredo Correia^a, Hugo Sereno Ferreira^a, Mário Ribeiro Alves^b

^a Faculty of Engineering, University of Porto, Oporto, Portugal
 ^b BRPX - Bright Development Studio, S.A. - BRPX S.A

Abstract

Keywords: Blockchain, Oracles, Distributed Systems, Trust

1. Introduction

The topic of blockchain oracles is still unexplored territory mostly investigated by start-up companies and individuals thriving to solve a new problem. Therefore, research related to oracles is scarcely found on peer-reviewed publications but, nonetheless, is invaluable in such an early phase of the technology. Consequently, the a review on existing work cannot be complete without reviewing the work developed by the academia and also by start-ups, enterprises, governments and individuals.

2. Background

3. Methodology

A literature review allows scholars not to step on each other's shoes but to climb on

Email addresses:

pedro.duartecosta@fe.up.pt (Pedro Duarte da Costa), ffcorreia@fe.up.pt (Filipe Figueiredo Correia), hugosf@fe.up.pt (Hugo Sereno Ferreira), mario@brpx.com (Mário Ribeiro Alves)

Preprint submitted to Elsevier

each other's shoulders, meaning, not duplicating existing research and find the gaps and strive to discover something new. To conduct a non-biased, methodical and reproducible review, to the extent that a human can, it is necessary to clarify and identify at the beginning of the research its methodology, what are the data sources and what is the selection criteria. In the Section 3.2 we describe this methodology based on the guidelines proposed by Kitchenham et al. [1].

The goal of this literature review is to get a sense of the corpus of existing works on the topic of blockchain oracles, and the directions and extent to which previous research has rendered significant results.

3.1. Research Questions

First of all and to guide the focus of the research, the following research questions were defined:

• RQ1: What kind of blockchain oracles have been proposed?

June 26, 2019

• RQ2: What are the research trends on blockchain oracles?

RQ1, analyses the scope of existing blockchain oracles. The methodologies and technologies used, so as to understand how the oracle problem is tackled.

RQ2, tries to identify the direction that is proving to be the most effective. Analysing past solutions that never made it into production and solutions currently adopted.

3.2. Search Process

Figure 1, depicts the predefined review strategy used in order to achieve such a goal and maintain unbiased, transparent and reproducible research. These steps are inspired on the guidelines for performing a systematic review by Kitchenham et al., 2007 Kitchenham et al. [1].

The first step, **Search Strategy and Data-sources**, compromises a preliminary search on several databases trying to optimize the query that best fits the research questions. After identifying the set of keywords that best describe the problem a full query is built and tested.

Once a satisfactory query is achieved, we proceed to the next step, **Study selection**, here we aggregate the studies from all databases and in the *Screening and cleaning* phase we remove papers written in other languages or duplicated.

Next, in the **Quality assessment** step we iteratively exclude papers that do not answers to any of the research questions. Initially analysing only the title, and alter the abstract and so on until a full read of the article seems worth it to take conclusions and respond to que research queries.

This leads to the **Data extraction** step, in which we take and summarize the findings after reading each paper.

So that later, in the **Data synthesis** step, we can summarize all the findings, infer some conclusions and answer the research questions.

3.3. Search Strategy and Data-sources

Having defined the strategy for the systematic review and after testing some keywords on several databases, the author selected the following four electronic databases to query for relevant information:

- ACM Digital Library
- IEEE Xplore
- Scopus
- Google Scholar

The defined search query was the following:

(("blockchain" OR "block chain" OR "block-chain") AND ("oracles" OR "oracle" OR "middle-ware" OR "middleware" OR "middleware" OR "datafeed" OR "data feed" OR "data-feed"))

This search query was used to comprise all the possible ways of referring to blockchain and oracles. Some scholars have investigated the oracle issue by simply calling them a middleware or data-feed since oracles can either be used as an intermediary that relays data or as the source of the data.

This search query was used to comprise all the possible ways of referring to blockchain and oracles. Some scholars have investigated the oracle issue by simply calling them a middleware or data-feed since oracles can either be used as an intermediary that relays data or as the source of the data.

Figure 1: Review strategy.

The search was performed on the 5th of February 2019 and revealed the results presented in Table 1.

Since the concept of smart contracts on the blockchain was only introduced in 2015, with the introduction of the Ethereum blockchain, only results after 2015 were considered, also, all duplicated papers were removed. Analysing the initial search results per year, in Figure 2, we can infer the growing popularity of oracle-related academic research. The year 2019 only comprises work

done in the month of January since the search was performed at the beginning of February.

Database	Filters	Results
ACM Digital Library	Title, abstract and keywords	34
IEEE Xplore	Title, abstract and index terms	24
Scopus	Title, abstract and keywords	57
Google Scholar	Title	8
Total		123

Table 1: Number of results and applied filters per database

Figure 2: Resulting papers from search distributed per year

3.4. Study Selection and Quality Assessment

The process of exclusion is depicted in Figure 3 and all the information regarding the papers and in which phase they were excluded is transparently presented in Appendix ASLR Screening Stagesappendix.A.

The study selection process initially started with a pool of 123 papers from the previously stated online databases. As described on Figure 1, the selection and quality assessment compromised four stages:

- Stage 1: Screening and cleaning duplicated articles or articles that were not in English.
- Stage 2: Exclusion by carefully reading the title but most importantly the abstract. After this stage, only 13 of the 91 non-duplicated papers were either describing specific trustable oracle

implementations or mentioning the use of oracles.

- Stage 3: Analysing the introduction and conclusions in order to remove papers which do not describe an implementation of a trustable oracle or a protocol to overcome the trust in oracles.
- Stage 4: Full article reading to assess if the final bucket of articles answers the research questions.

Figure 3: Screening stages.

3.5. Data extraction and Data Synthesis

The following process resulted in three articles and two theses that approach varying problems in implementing and guaranteeing trust in oracles.

Town Crier (TC) Zhang et al. [2], leverages trusted hardware, specifically Intel SGX¹, to scrape HTTPS-enabled websites and serve source-authenticated data to smart contracts. TC architecture, depicted on Figure 4², involves a TC contract on the blockchain that receives requests from a client contract and communicates those request to a TC server which runs a SGXprotected process to retrieves an answer from a data source through an HTTPS connection. TEE prevent even the operating system of the server from peeking into the enclave or modifying its behavior, while use of TLS prevents tampering or eavesdropping on communications on the network.

Figure 4: Town crier high level view.

Astraea Adler et al. [3], depicted on Figure 5³, proposes a decentralized oracle network with submitters, voters and certifiers,

in which voters play a low-risk game and certifies a high-risk game with associated resources. Using an monetary incentive structure as a means to keep the players honest.

Figure 5: High-level overview of Astraea's architecture.

Gilroy Gordon Gordon [4] proposes a protocol for oracle sensor data authenticity and integrity to IoT devices network with low computational resources. Using sets of public and private keys to authenticate that the oracle sensor data actually was originated by that oracle even if the information needs to pass by several oracles before being consumed by the application.

Francisco Monroy Montoto Monroy [5] defines a gambling protocol based on incentives and assuming that every entity involved has the objective to maximize their profit. The protocol overcomes the trust in a single Oracle by polling a network of 7 oracles from a large network of available oracles, they will then stake their money on a specific bet and only receive their investment back if the majority of the oracles vote in the same winner. Creating, therefore, incentives for Oracle good behaviour.

J. Eberhardt Eberhardt and Heiss [6] does not propose a specific method but analyses existing solutions and defines a systematic classification for existing trustable off-chain computation oracles. The authors

¹Intel Corporation. Intel® Software Guard Extensions SDK. https://software.intel.com/en-us/sgx-sdk, 2019

²Image taken from: https://town-crier.readthedocs.io/en/latest/how_tc_works.html

 $^{^3}$ Image taken from https://blockchain.ieee.org/technicalbriefs/march-2019/astraea-a-decentralized-blockchain-oracle

identify the following off-chain computation oracles approaches:

- Verifiable off-chain Computation, technique where a prover executes a computation and then publishes the result including a cryptographic proof attesting the computation's correctness to the blockchain. An on-chain verifier then verifies the proof and persists the result in case of success. Identified existing solutions are zkSNARKs? Bulletproofs?] and zkSTARKs? zkSNARKs require a setup phase which is more expensive than naive execution. After the setup, however, proof size and verification complexity are extremely small and independent of circuit complexity. This amortization makes zk-SNARKs especially efficient for computations executed repeatedly, which is usually the case for off-chain state transitions. While zkSTARKs and Bulletproofs require no setup, proof size and verification complexity grow with circuit complexity, which limits applicability.
- Secure Multiparty Computation, SM-PCs, enable a set of nodes to compute functions on secret data in a way that none of the nodes ever has access to the data in its entirety. Identifies Enigma Tam [7], which proposes a privacy-preserving decentralized computation platform based on multiple parties where a blockchain stores a publicly verifiable audit trail. However, current SMPC protocols add too much overhead for them to be practical. Hence, Enigma now relies on Trusted Execution Environments.
- Enclave-based Computation, EbC, re-

- lying on Trusted Execution Environments (TEE) to execute computations off-chain. Identified existing solutions are Enigma and Ekiden Cheng et al. [8] which present two different implementations of EbCs. In Enigma, programs can either be executed onchain or in enclaves that are distributed across a separate off-chain network. An Enigma-specific scripting language allows developers to mark objects as private and hence, enforce off-chain computation. In contrast to Enigma, Ekiden does not allow on-chain computation but instead, the blockchain is solely used as persistent state storage.
- Incentive-driven Off-chain Computation, IOC, relies on incentive mechanisms applied to motivate off-chain computation and guarantee computational correctness. IOCs inherit two critical design issues: (1) keep verifiers motivated to validate solutions and (2) reduce computational effort for the on-chain judge. The paper identifies TrueBit Teutsch and Reitwießner [9], as the first IOC implementation, proposing solutions for both challenges. As verifiers would stop validating if solvers only published correct solutions, TrueBit enforces solvers to provide erroneous solutions from time to time and offers a reward to the verifiers for finding them.

4. Commercial Products and Projects

This search, on the contrary of the systematic one explained before, cannot be described in a systematic way, since the source of the information is spread on whitepapers and startup companies' documentation

pages which cannot be guaranteed to be available and consulted on a systematic way.

To search for existing commercial products and projects, Google, a search engine and Medium, a platform for blog posting used widely by developers and the start-up community, were used as a means to find new projects or solutions for the oracle trust problem. Using these two tools a lot of projects were found trying to solve the oracle trust problem and are solely documented on white-papers or on the companies' website documentation page. This kind of literature cannot be found in peer-reviewed databases, but can nonetheless provide invaluable information and is therefore worth being analysed.

The results of this search revealed a wide range of projects and protocols with varying degrees of decentralization or authenticity. A short explanation of each will be detailed here:

- Oraclize.it Ora [10], provides Authenticity Proofs for the data it fetches guaranteeing that the original datasource is genuine and untampered and can even make use of several datasources in order the gather trustable data, but its centralized model does not guarantee an always available service.
- ChainLinkEllis et al. [11], describes a decentralized network of oracles that can query multiple sources in order to avoid dependency of a sole oracle which can be prone to fail and also to gather knowledge from multiple sources to obtain a more reliable result. ChainLink is also considering implementing, in the future, authenticity proofs and make use of trusted hardware, as of now it requires users to trust in the ChainLink nodes to behave correctly.

- SchellingCoin Vitalik Buterin [12] protocol incentivizes a decentralized network of oracles to perform computation by rewarding participants who submit results that are closest to the median of all submitted results in a commitreveal process.
- TrueBit Teutsch and Reitwießner [9], introduces a system of solvers and verifiers. Solvers are compensated for performing computation and verifiers are compensated for detecting errors in solutions submitted by solvers.

5. Summary

Summing up, this research highlighted two main types of oracles. The first is **Data-Carrier oracles**, whose main purpose is relaying query results from a trusted data source to a smart contract. The second is **Computation Oracles**, which not only relay query results but also perform the relevant computation themselves. Computation oracles can be used as building blocks to construct off-chain computation markets. A summary of the results is described in Table 2.

Summing up, this research highlighted three main types of oracles. The first is **Software-based oracles**, which try to prove their honest behaviour through the use of software-based authenticity proofs. These, mostly take advantage of some features of TLS to prove that the data they are relaying is the actually provided data. The second type is **Hardware-based oracles**. These leverage specific hardware, TEE, to securely separate the environment running the oracle code from the operating system and other applications to achieve higher guarantees on untampered code ex-

ecution. They may even provide authenticity proofs regarding that the query actually came from a legit TEE. Lastly, **Consensus-based oracles**, which require a network of peers working together to achieve higher redundancy, having several peers querying the data and even in some cases peers performing the role of the verifier. This last approach largely depends on the existence of such a network and requires the use of monetary incentives to keep the networking running.

Table 2, summarises the found existing projects and answers the first research question 3.1.

6. Conclusions

Two main conclusions arise from both academic and non-academic research, and answer the second research question 3.1.

First of all, there is a clear lack of academic research on the topic of creating trustable oracles. This is mostly likely due to the specificity of the problem and that blockchain related technology is usually paved by start ups and enthusiasts and not yet addressed in universities curricular plans.

Secondly, even though the main research on trustable oracles is being pursued by startups or sole developers all the existing projects seem to be blockchain specific or in very early phases and not yet ready to be generally adopted.

References

- [1] B. Kitchenham, B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature Reviews in Software Engineering (2007).
- [2] F. Zhang, E. Cecchetti, K. Croman, A. Juels, E. Shi, Town Crier: An Authenticated Data Feed for Smart Contracts, Technical Report, 2016.

- [3] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, A. Kastania, Astraea: A Decentralized Blockchain Oracle (2018).
- [4] G. Gordon, Provenance and authentication of oracle sensor data with block chain lightweight wireless network authentication scheme for constrained oracle sensors (2017).
- [5] F. J. A. Montoto Monroy, Bitcoin gambling using distributed oracles in the blockchain (2018).
- [6] J. Eberhardt, J. Heiss, Off-chaining Models and Approaches to Off-chain Computations, in: Proceedings of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers SERIAL'18, ACM Press, New York, New York, USA, 2018, pp. 7–12.
- [7] A. Tam, Secret Voting Smart Contract with Enigma: A Walkthrough, 2018.
- [8] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. Johnson, A. Juels, A. K. Miller, D. X. Song, Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract Execution, undefined (2018).
- [9] J. Teutsch, C. Reitwießner, A scalable verification solution for blockchains, Technical Report, 2017.
- [10] A Scalable Architecture for On-Demand Untrusted Delivery of Entropy, Technical Report, Oraclize, ????
- [11] S. Ellis, A. Juels, S. Nazarov, ChainLink A Decentralized Oracle Network, Technical Report, 2017.
- [12] Vitalik Buterin, SchellingCoin: A Minimal-Trust Universal Data Feed, 2014.

Name	Type	Distributed Network	Achieves trust through
Town Crier	Hardware-based	No	Trusted hardware signed attestations
Astraea	Consensus-based	Yes	Network with submitters, voters and certifier
Gordon [4]	Software-based	Yes	Sets of public and private keys
Montoto Monroy [5]	Consensus-based	Yes	Gambling protocol based on incentives
TrueBit	Consensus-based	Yes	System of solvers and verifiers
Oraclize.it	Software-based	No	TLSNotary, Android Proof
ChainLink	Consensus-based / Software-based	Yes	Query multiple sources
SchellingCoin	Consensus-based	Yes	Incentive based

Table 2: Summary of oracle projects/research.

Appendix A. SLR Screening Stages

3rd screen	2nd screen	1st Screen	1st Remove Screen Dupli- cates	Source	Year	Title	Authors
			Duplicate	ACM	2016	Weaver: A High-performance, Transactional Graph Database Based on Refinable Timestamns	Ayush Dubey and Greg D. Hill and Robert Escriva and Emin Gü:n Sirer
			Duplicate ACM	ACM	2016	Town Crier: An Authenticated Data Feed for Smart Contracts	Fan Zhang and Ethan Cecchetti and Kyle Croman and Ari Juels and Elaine Shi
			Duplicate	ACM	2016	Proof of Luck: An Efficient Blockchain Consensus Protocol	Mitar Milutinovic and Warren He and Howard Wu and Maxinder Kanwal
			Duplicate ACM	ACM	2017	PlaTIBART: A Platform for Transactive IoT Blockchain Applications with Repeatable Testing	Michael A. Walker and Abhishek Dubey and Aron Laszka and Douglas C. Schmidt
			Duplicate ACM	ACM	2018	Ouroboros Genesis: Composable Proofof- of-Stake Blockchains with Dynamic Avail- ability	Christian Badertscher and Peter Gaži and Aggelos Kiayias and Alexander Russell and Vassilis Zikas
			Duplicate ACM	$_{ m ACM}$	2017	On the Design of Communication and Transaction Anonymity in Blockchain- based Transactive Microgrids	Jonatan Bergquist and Aron Laszka and Monika Sturm and Abhishek Dubev
			Duplicate ACM Duplicate ACM	ACM ACM	2017 2018	FruitChains: A Fair Blockchain ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection	Rafael Pass and Elaine Shi Bo Jiang and Ye Liu and W. K. Chan
			Duplicate	ACM	2016	Bringing Secure Bitcoin Transactions to Your Smartphone	Davide Frey and Marc X. Makkes and Pierre-Louis Roman and François Taïani and Spyros Voulgaris

page
previous
from
continued
A.3
Table

				H	able A.	Table A.3 continued from previous page	
3rd screen	2nd screen	1st Screen	Remove Dupli- cates	Source	Year	Title	Authors
			Duplicate	ACM	2017	Blackchain: Scalability for Resource-constrained Accountable Vehicle-to-x Communication	Rens W. van der Heijden and Felix Engelmann and David Mödinger and Franziska Schönig and Frank Kargl
			Duplicate	$_{ m ACM}$	2017	A General Framework for Blockchain Analytics	Massimo Bartoletti and Stefano Lande and Livio Pompianu and Andrea Bracciali
			Duplicate	$_{ m ACM}$	2017	EPBC: Efficient Public Blockchain Client for Lightweight Users	Lei Xu and Lin Chen and Zhimin Gao and Shouhuai Xu and Wei- dong Shi
			Duplicate ACM	ACM	2016	Blockchains and the Logic of Accountability: Kevnote Address	Maurice Herlihy and Mark Moir
			Duplicate	ACM	2017	A Byzantine Fault-tolerant Ordering Service for the Hyperledger Fabric Blockchain Platform	Alysson Bessani and Joã o Sousa and Marko Vukolić
			Duplicate	IEEE	2018	Zero-Trust Hierarchical Management in IoT	M. Samaniego; R. Deters
			Duplicate	IEEE	2018	re Pub-Sub: Blockchain-Based Fair ment With Reputation for Reliable er Physical Systems	Y. Zhao; Y. Li; Q. Mu; B. Yang; Y. Yu
			Duplicate	IEEE	2018	Signature Scheme es for Blockchain cords Systems	R. Guo; H. Shi; Q. Zhao; D. Zheng
			Duplicate	IEEE	2018	Privacy Improvement Architecture for IoT	E. Kak; R. Orji; J. Pry; K. Sofranko; R. Lomotey; R. Deters

	page
•	previous
٠	Irom
• • •	continued
•	?
	∢
-	Lable A

3rd	2nd	15	Remove	Source	Vear	Title	Authors
screen			Screen Dupli-		3		
				į			
			Duplicate	IEEE	2018	Distributed Solar Self-Consumption and	C. Plaza; J. Gil; F. de Chezelles;
						Blockchain Solar Energy Exchanges on	K. A. Strang
						the Public Grid Within an Energy Com-	
						munity	
			Duplicate	I I I I I I I	2018	Confidential Business Process Execution	B. Carminati; C. Rondanini; E.
				ļ	(OII DIUCKUIGIII	rendan o a
			Duplicate	1 E E E	2018	Chain F'S: Blockchain-Secured Cloud Stor-	Y. Tang; Q. Zou; J. Chen; K.
						age	Li; C. A. Kamhoua; K. Kwiat; L. Njilla
			Duplicate IEEE	IEEE	2018	Blockchain-Based IoT-Cloud Authoriza-	N. Tapas; G. Merlino; F. Longo
						tion and Delegation	
			Duplicate	IEEE	2017	Blockchain world - Do you need a	M. E. Peck
						blockchain? This chart will tell you if the	
						technology can solve your problem	
			Duplicate	IEEE	2018	Blockchain as a Platform for Secure Inter-	B. Carminati; E. Ferrari; C. Ron-
						Organizational Business Processes	danini
			Duplicate	IEEE	2018	Analysis of Security in Blockchain: Case	C. Ye; G. Li; H. Cai; Y. Gu; A.
						Study in 51%-Attack Detecting	Fukuda
			Duplicate	IEEE	2018	An ID-Based Linearly Homomorphic Sig-	Q. Lin; H. Yan; Z. Huang; W.
						nature Scheme and Its Application in	Chen; J. Shen; Y. Tang
						Blockchain	
			Duplicate IEEE	IEEE	2019	A New Lattice-Based Signature Scheme in	C. Li; X. Chen; Y. Chen; Y. Hou;
						Post-Quantum Blockchain Network	J. Li
			Duplicate	Scopus	2017	Towards an economic analysis of routing	Engelmann, F., Kopp, H., Kargl,
						in payment channel networks	F., Glaser, F., Weinhardt, C.

	Dage
•	previous
٠	trom
-	_
•	continue
C	3
4	⋖
-	aple
F	.: -

				1		e commune in our broad base	
3rd	2nd	1st	Remove	Source	Year	Title	Authors
screen	screen	Screen					
			Duplicate	Scopus	2018	13th EAI International Conference on Security and Privacy in Communication Networks, SecureComm 2017	[No author name available]
			Duplicate Scopus	Scopus	2017	ulations for orks	Stoykov, L., Zhang, K., Jacobsen, HA.
			Duplicate Scopus	Scopus	2017	permis- ce using	Zupan, N., Zhang, K., Jacobsen, HA.
			Duplicate Scopus	Scopus	2018	Blockchain as a platform for secure inter- organizational business processes	Carminati, B., Ferrari, E., Rondanini, C.
		I		$_{ m ACM}$	2017	Routing	Felix Engelmann and Henning Kopp and Frank Kargl and Flo-
							rian Glaser and Christon Welli- hardt
		ı		ACM	2017	VIBES: Fast Blockchain Simulations for Large-scale Peer-to-peer Networks: Demo	Lyubomir Stoykov and Kaiwen Zhang and Hans-Arno Jacobsen
		I		$_{ m ACM}$	2018		Zsolt Istv $\&\#225$;n and Alessandro Sorniotti and Marko Vukoli $\&\#263$:
		ı		$_{ m ACM}$	2018	Sol2Js: Translating Solidity Contracts into Javascript for Hyperledger Fabric	Muhammad Ahmad Zafar and Falak Sher and Muhammad Umar Janiua and Salman Baset
		1		ACM	2018	Scaling Byzantine Consensus: A Broad Analysis	Christian Berger and Hans P. Reiser

	page
•	previous
•	trom
-	٦
•	continue
(ر. در
•	4
_	9
_	ō
	aple
ŀ	-

						9-1	
3rd	2nd	1st	Remove	Source	Year	Title	Authors
screen		screen Screen Dupli- cates	Dupli- cates				
		1		ACM	2018	Resource Fairness and Prioritization of Transactions in Permissioned Blockchain Systems (Industry Track)	Seep Goel and Abhishek Singh and Rachit Garg and Mudit Verma and Praveen Jayachan- dran
		1		$_{ m ACM}$	2018	Powering Software Sustainability with Blockchain	Omar Badreddin
		ı		ACM	2017	Hyperpubsub: A Decentralized, Permissioned, Publish/Subscribe Service Using Blockchains: Demo	Nejc Zupan and Kaiwen Zhang and Hans-Arno Jacobsen
		1		ACM	2017	How Blockchains Can Help Legal Metrology	Wilson S. Melo, Jr and Alysson Bessani and Luiz F. R. C. Carmo
		ı		$_{ m ACM}$	2018	eVIBES: Configurable and Interactive Ethereum Blockchain Simulation Framework	Aditya Deshpande and Pezhman Nasirifard and Hans-Arno Jacob- sen
		1		$_{ m ACM}$	2018	EVA: Fair and Auditable Electric Vehicle Charging Service Using Blockchain	Jelena Pajic and José Rivera and Kaiwen Zhang and Hans-Arno Jacobsen
		1		ACM	2018	Deconstructing Blockchains: Concepts, Systems, and Insights	Kaiwen Zhang and Roman Vitenberg and Hans-Arno Jacobsen
		1		$_{ m ACM}$	2018	CIDDS: A Configurable and Distributed DAG-based Distributed Ledger Simulation Framework	Mohamed Riswan Abdul Lathif and Pezhman Nasirifard and Hans-Arno Jacobsen
		1		ACM	2018	Blockchains for Business Process Management - Challenges and Opportunities	

	Dage
•	previous
٠	trom
-	_
•	continue
C	3
4	⋖
-	aple
F	.: -

Authors	Hans-Arno Jacobsen and Moham- hammad Sadoghi and Moham- mad Hossein Tabatabaei and Roman Vitenberg and Kaiwen Zhang	Mehdi Bezahaf and Gaëtan Cathelain and Tony Ducroca	Victor Cacciari Miraldo and Harold Carr and Alex Kogan and Mark Moir and Maurice Herlihy	Fabian Sch $\&\#252$;ssler and Pezhman Nasirifard and Hans-Arno Jacobsen	A Hoppe	D Satpathy	JA Garay, A Kiayias, G Panagiotakos	R van Mölken	
Title	Blockchain Landscape and AI Renaissance: The Bright Path Forward	A Federated Low-Power WAN for the Internet of Things	Authenticated Modular Maps in Haskell	Attack and Vulnerability Simulation Framework for Bitcoin-like Blockchain Technologies	Blockchain Oracles–Einsatz der Blockchain-Technologie für Offline- Anwendungen	Blockchain Coupled Oracle Fusion	Blockchain and Consensus from Proofs of Work without Random Oracles	Blockchain across Oracle: Understand the details and implications of the Blockchain for Oracle developers and customers	Understanding Blockchain Technology: The Costs and Benefits of Decentralization
Year	2018	2018	2018	2018	2017	2018	2018	2018	2018
Source	ACM	ACM	ACM	ACM	Google Shoolar	Google Shoolar	Google Shoolar	Google Shoolar	IEEE
1st Remove Screen Dupli- cates									
	1	1	ı	ı	ı	ı	ı	ı	
2nd screen									
3rd screen									

	Dage
•	previous
٠	trom
-	_
•	continue
C	3
4	⋖
-	aple
F	.: -

	Authors	K. Shudo; R. Kanda; K. Saito	K. Nandakumar; N. Ratha; S. Pankanti; S. Darnell	M. Yousif	N. Mohamed; J. Al-Jaroodi; S. Lazarova-Molnar	I. Kounelis; G. Steri; R. Giuliani; D. Geneiatakis; R. Neisse; I. Nai-Fovino	B. Nasrulin; M. Muzammal; Q. Ou	M. Herlihy; M. Moir	K. N. Krishnan; R. Jenu; T. Joseph; M. L. Silpa	R. Sharma; S. Chakraborty	Dubey, A., Hill, G.D., Sirer, E.G., Escriva, R.	Patsonakis, C., Samari, K., Roussopoulos, M., Kiayias, A.
Table A.3 continued from previous page	Title	Towards Application Portability on Blockchains	Secure one-time biometrie tokens for non-repudiable multi-party transactions	Multiclouds in an Enterprise – a Love- Hate Relationship	Leveraging the Capabilities of Industry 4.0 for Improving Energy Efficiency in Smart Factories	Fostering consumers' energy market through smart contracts	ChainMOB: Mobility Analytics on Blockchain	Blockchains and the logic of accountability	Blockchain Based Security Framework for IoT Implementations	Blockchain Based Vehicular Data Man-	Weaver: A high-performance, transactional graph database based on refinable timestamps	Towards a smart contract-based, decentralized, public-key infrastructure
able A.:	Year	2018	2017	2017	2019	2017	2018	2016	2018	2018	2016	2018
T	Source	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IEEE	IBBE	IEEE	Scopus	Scopus
	1st Remove Screen Dupli- cates											
		1	1	1	1	1	1	1	1	1	1	1
	2nd screen											
	3rd screen											

page
previous
from
continued
A.3
Table

A + 1	Authors	[No author name available]	Kocsis, I., Klenik, A., Pataricza, A., Telek, M., Deé, F., Cseh, D. Hohenberger, S. Waters, B.	Cohen, B., Pietrzak, K.	[No author name available]	Wei, P., Yuan, Q., Zheng, Y.	Zhao, Y., Li, Y., Mu, Q., Yang, B., Yu, Y.	Guo, R., Shi, H., Zhao, Q., Zheng, D.	Sun, SF., Au, M.H., Liu, J.K., Yuen, T.H.	Milutinovic, M., He, W., Wu, H., Kanwal, M.
Table A.9 Continued Holli previous page	11Ue	SysTEX 2016 - 1st Workshop on System Software for Trusted Execution, colocated with ACM/IFIP/USENIX Middleware 2016	Systematic performance evaluation using component-in-the-loop approach Synchronized aggregate signatures from	the RSA assumption Simple proofs of sequential work	SERIAL 2017 - 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, Colocated with ACM/IFIP/USENIX Middleware 2017 Conference	Security of the blockchain against long delay attack	Secure Pub-Sub: Blockchain-Based Fair Payment with Reputation for Reliable Cy- ber Physical Systems	Secure Attribute-Based Signature Scheme with Multiple Authorities for Blockchain in Electronic Health Records Systems	RingCT 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero	Proof of Luck: An efficient blockchain consensus protocol
able A.	rear	2016	2018	2018	2017	2018	2018	2018	2017	2016
- 1	Source	Scopus	Scopus	Scopus	Scopus	Scopus	Scopus	Scopus	Scopus	Scopus
17	znd 1st remove screen Screen Dupli- cates	1	1 1	ı	1	ı	ı		1	1
	ord znd screen scre									

	page
•	previous
٠	Irom
• • •	continued
•	?
	∢
-	Lable A

-		۲		7		
sra zna screen screen	ıst Screen	znd 1st remove screen Screen Dupli- cates	Source	rear	Title	Authors
	ı		Scopus	2018	Privacy improvement architecture for IoT I S	Kak, E., Orji, R., Pry, J., Sofranko, K., Lomotey, R.K., Deters, R.
	I		Scopus	2017	PlaTIBART: A Platform for Transactive IoT blockchain applications with repeatable testing	Walker, M.A., Dubey, A., Laszka, A., Schmidt, D.C.
	ı		Scopus	2017	Cryptographic Impossibility of Blockchains	Goyal, R., Goyal, V.
	I		Scopus	2018	adaptively- proof-of-stake	David, B., Gaži, P., Kiayias, A., Russell, A.
	ı		Scopus	2017	On the design of communication and I transaction anonymity in blockchain- I based transactive microgrids	Bergquist, J., Laszka, A., Sturm, M., Dubey, A.
	1		Scopus	2017	lings of the Demos 2017: and Demos onal Middle-	[No author name available]
	1		Scopus	2017	Proceedings of the 2017 liddleware and Applicaernet of Things 4th Ediederated Event with the p, Part of Middleware	[No author name available]

	Dage
•	
f.	ILOIII
7	_
	continue
C	0
<	4
117	apre
É	-

Scopus 2018 IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security Scopus 2018 Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges Scopus 2017 FruitChains: A fair blockchain For Lightweight Users Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Designing blockchain-based SIEM 3.0 system ChainFS: Blockchain-based SIEM 3.0 system Scopus 2018 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions 2015 Blockchain-based IoT-cloud authorization and Blockchain world - Do you need a blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem	 3rd	2nd	1st	Remove	Source	Year	Title	Authors
Scopus 2018 IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security Scopus 2018 Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges Scopus 2017 FruitChains: A fair blockchain Scopus 2017 EPBC: Efficient Public Blockchain Client for Lightweight Users Scopus 2018 Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Distributed Solar Self-Consumption and Energy Compunity Scopus 2018 ChainFS: Blockchain-based SIEM 3.0 system Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions 2018 Blockchain-based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem	creen			Dupli- cates				
Scopus 2018 Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges Scopus 2017 FruitChains: A fair blockchain Scopus 2017 EPBC: Efficient Public Blockchain Client for Lightweight Users Scopus 2018 Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Designing blockchain-based SIEM 3.0 system Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based IoT-cloud authorization and delegation Scopus 2018 Blockchain-Based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			1		Scopus	2018	IoTBDS 2018 - Proceedings of the 3rd International Conference on Internet of Things, Big Data and Security	[No author name available]
Scopus 2017 FruitChains: A fair blockchain Scopus 2017 EPBC: Efficient Public Blockchain Client for Lightweight Users Scopus 2018 Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Designing blockchain-based SIEM 3.0 system Scopus 2018 ChainFS: Blockchain-Secured Cloud Storage Scopus 2015 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions 2018 Blockchain-Based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			ı		Scopus	2018	Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges	García-Valls, M., Dubey, A., Botti, V.
Scopus 2017 EPBC: Efficient Public Blockchain Client for Lightweight Users Scopus 2018 Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Designing blockchain-based SIEM 3.0 system Scopus 2018 ChainFS: Blockchain-Secured Cloud Storage Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions 2018 Blockchain-Based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			ı		Scopus	2017	FruitChains: A fair blockchain	Pass, R., Shi, E.
Scopus 2018 Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Community Scopus 2018 Designing blockchain-based SIEM 3.0 system Scopus 2018 ChainFS: Blockchain-Secured Cloud Storage Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions processing Scopus 2018 Blockchain-Based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			ı		Scopus	2017	EPBC: Efficient Public Blockchain Client for Lightweight Users	Xu, L., Chen, L., Gao, Z., Xu, S., Shi, W.
munity Scopus 2018 Designing blockchain-based SIEM 3.0 system Scopus 2018 ChainFS: Blockchain-Secured Cloud Storage Scopus 2016 Bringing secure Bitcoin transactions to your smartphone Scopus 2015 Blockchain-based model for social transactions 2018 Blockchain-Based IoT-cloud authorization and delegation Scopus 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			1		Scopus	2018	Distributed Solar Self-Consumption and Blockchain Solar Energy Exchanges on the Public Grid Within an Energy Com-	Plaza, C., Gil, J., De Chezelles, F., Strang, K.A.
2018 ChainFS: Blockchain-Secured Cloud Storage 2016 Bringing secure Bitcoin transactions to your smartphone 2015 Blockchain-based model for social transactions processing 2018 Blockchain-Based IoT-cloud authorization and delegation 2017 Blockchain? This chart will tell you if the technology can solve your problem			1		Scopus	2018	munity Designing blockchain-based SIEM 3.0 system	Miloslavskaya, N.
 2016 Bringing secure Bitcoin transactions to your smartphone 2015 Blockchain-based model for social transactions processing 2018 Blockchain-Based IoT-cloud authorization and delegation 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem 			ı		Scopus	2018	ChainFS: Blockchain-Secured Cloud Storage	Tang, Y., Zou, Q., Chen, J., Li, K., Kamhoua, C.A., Kwiat, K., Niilla. L.
2015 Blockchain-based model for social transactions processing 2018 Blockchain-Based IoT-cloud authorization and delegation 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			1		Scopus	2016	Bringing secure Bitcoin transactions to vour smartphone	Frey, D., Makkes, M.X., Roman, PL., Taïani, F., Voulgaris, S.
2018 Blockchain-Based IoT-cloud authorization and delegation 2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			ı		Scopus	2015	Blockchain-based model for social transactions processing	Sarr, I., Naacke, H., Gueye, I.
2017 Blockchain world - Do you need a blockchain? This chart will tell you if the technology can solve your problem			ı		Scopus	2018	Blockchain-Based IoT-cloud authoriza- tion and delegation	Tapas, N., Merlino, G., Longo, F.
			1		Scopus	2017	- Do you need nart will tell you if the your problem	Peck, M.E.

	page
•	previous
٠	Irom
• • •	continued
•	?
	∢
-	Lable A

	Authors	Van Der Heijden, R.W., Engel-	mann, F., Mödinger, D., Schönig,	F., Kargl, F.	Abusalah, H., Alwen, J., Co-	hen, B., Khilko, D., Pietrzak, K.,	Reyzin, L.	Pass, R., Seeman, L., Shelat, A.		Ye, C., Li, G., Cai, H., Gu, Y.,	Fukuda, A.	Li, Y.Q.		Lin, Q., Yan, H., Huang, Z.,	Chen, W., Shen, J., Tang, Y.		Li, CY., Chen, XB., Chen, Y	L., Hou, YY., Li, J.	Bartoletti, M., Lande, S., Pom-	pianu, L., Bracciali, A.	Adams, B., Tomko, M.				Bessani, A., Sousa, J., Vukolić,	Μ.	
table A.o commueu mom previous page	Title	Blackchain: Scalability for resource-	acc	munication	Beyond hellman's time-memory trade-offs	with applications to proofs of space		Analysis of the blockchain protocol in	asynchronous networks	Analysis of security in blockchain: Case	study in 51%-attack detecting	An integrated platform for the Internet of	Things based on an open source ecosystem	An ID-Based Linearly Homomorphic Sig-	nature Scheme and Its Application in	Blockchain	A New Lattice-Based Signature Scheme in	Post-Quantum Blockchain Network	A general framework for blockchain ana-	lytics	A critical look at cryptogovernance of	the real world: Challenges for spatial	representation and uncertainty on the	blockchain	A byzantine fault-tolerant ordering service	for the hyperledger fabric blockchain plat- form (Short Paper)	
able A.	Year	2017			2017			2017		2018		2018		2018			2019		2017		2018				2017		
-	Source	Scopus	•		Scopus			Scopus		Scopus		Scopus		Scopus			Scopus		Scopus		Scopns				Scopus		
	1st Remove Screen Dupli-	Carco																									
		1			ı			1				1		1			1		ı		ı				ı		
	2nd screen																										
	3rd screen																										

	S)
	page
	from previous
	pre
	trom
•	continued
(Υ,
•	◂
•	e A
•	Table A

						R.,			ıg and		la; K.	
			me available]	me available]	me available]	Dowsley,	me available]	me available]	Kaiwen Zhan obsen		R. de Nicol	., Deters, R.
	Authors		[No author name available]	[No author name available]	[No author name available]	David, B., Larangeira, M.	[No author name available]	[No author name available]	Daniel Sel and Kaiwen Zhang and Hans-Arno Jacobsen	MD Jackson	R. B. Uriarte; R. de Nicola; K. Kritikos	Samaniego, M., Deters, R
o communa mom providas pago	Title		4th International Conference on Future Data and Security Engineering, FDSE 2017	3rd International Conference on Internet of Things, ICIOT 2018 Held as Part of the Services Conference Federation, SCF 2018	36th Annual International Conference on the Theory and Applications of Crypto- graphic Techniques, EUROCRYPT 2017	21 - Bringing down the complexity: Fast composable protocols for card games without secret state	13th EAI International Conference on Security and Privacy in Communication Networks, SecureComm 2017	11th International Conference on Provable Security, ProvSec 2017	Towards Solving the Data Availability Problem for Sharded Ethereum	Trusted agent blockchain oracle	Towards Distributed SLA Management with Smart Contracts and Blockchain	Zero-trust hierarchical management in IoT
able tre	Year		2017	2018	2017	2018	2018	2017	2018	2018	2018	2018
-	Source		Scopus	Scopus	Scopus	Scopus	Scopus	Scopus	ACM	Google Shoolar	IEEE	Scopus
	Remove	screen Screen Dupli- cates										
	1st	n Screei	ı	1	ı	1	1	1	pass	pass	pass	pass
	2nd								1	ı	1	1
	3rd	screen										

Table A.3 continued from previous page

				5		table trie communed in our Process Page	
3rd	2nd	1st	Remove	Source	Year	Title	Authors
screen	screen		Screen Dupli-				
	ı	pass		Scopus	2018	The interface between blockchain and the	Damjan, M.
						real world	
	ı	pass		Scopus	2018	Ouroboros genesis: Composable proof-of- stake blockchains with dynamic availabil-	Badertscher, C., Gaži, P., Kiavias, A., Russell, A., Zikas, V.
						ity	
	1	pass		Scopus	2018	ContractFuzzer: Fuzzing smart contracts	Jiang, B., Liu, Y., Chan, W.K.
						for vulnerability detection	
ı	pass	pass		Scopus	2018	Confidential Business Process Execution	Carminati, B., Rondanini, C.,
						on Blockchain	Ferrari, E.
pass	pass	pass		ACM	2018	Off-chaining Models and Approaches to	Jacob Eberhardt and Jonathan
						Off-chain Computations	Heiss
bass	pass	pass		Google	2018	Astraea: A decentralized blockchain ora-	J Adler, R Berryhill, A Veneris, Z
				Shoolar		cle	Poulos, N Veira
pass	pass	pass		Google	2017	Provenance and authentication of oracle	G Gordon
				Shoolar		sensor data with block chain lightweight	
						wireless network authentication scheme	
						for constrained oracle sensors	
pass	pass	pass		Google	2018	Bitcoin gambling using distributed oracles	FJA Montoto Monroy
				Shoolar		in the blockchain	
pass	pass	pass		Scopus	2016	Town crier: An authenticated data feed	Zhang, F., Cecchetti, E., Cro-
						for smart contracts	man, K., Juels, A., Shi, E.