

Contents

- ➤ Motivation & Problem
- > Related Works
- Key Idea & System Overview
- Expected Challenges
- Evaluation Strategy
- > Overall Plan
- ➤ Deliverable

We Expect User-Definable Machine Learning Services!

What if a user wants to add a new category...?

The system needs to read the whole data to re-train in order to add a new category

Could It be Deployed w/o Any Problems?

- > Training on user device?
 - On-device training takes too long!
- > Offloading training to server?

By solving the bottleneck of on-device, We don't need to get help from server computing.

Related Works: How to Solve Data Path Bottleneck?

- **➤** Mobile Environments
 - ► On-Device Machine Learning
- > Server Environments
 - ► Processing-in-Storage

On-Device Machine Learning

Processing-in-Storage (PiS)

Computation overhead reduction

Offload computation to storage

Only move pre-processed data (Downsized data)

SSD vith Accelerator

Can We Use On-Device Processing-in-Storage?

Server-Class NAND Flash

VS

Mobile-Class NAND Flash

Enough Space for Large Accelerator
Large Memory on SSD

No Space for Large Accelerator

Small Memory on Embedded Flash Chip

Key Idea & System Overview

- Processing-in-Flash (PiF)
 - ► Same Idea w/ Processing-in-Storage!
 - ► Can be used for mobile embedded flash chip!
 - Accelerator is hide on Flash Chip!

Cell-over-X (CoX)

Place accelerator for on-chip processing

Expected Challenges

- > Physical Formulation Difficulty
 - ► It is difficult to implement real NAND Flash chip
 - ► It is difficult to integrate the whole system on real device

Evaluation Strategy

- > Metric
 - ► Scalability
 - ► Performance
 - ► Power Consumption
- **Benchmarks**
 - ► TBD

Design Space Exploration

System Evaluation

Overall Project Plan

#Iter.	Objective	Duration	Misc.
1	Ideation & Proposal validation Literature Review, Proposal Feedback	03/16 - 03/30	03/23 proposal (week 4)
2	Build project environment & Design system Build Env. for project, Design Arch. and techniques.	03/31 - 04/14	
3	Implement Techniques & System Implement techniques and Integrate all into system	04/15 - 05/25	05/04 demo (week 10)
4	Evaluation Evaluate system with training Algorithms	05/26 – 06/08	06/08 final (week 15)

Deliverable

Midterm Deliverable	Final Deliverable
Reasoning over project topic	Technical Report regarding evaluations
Design of CoX Flash chip (including tool code for design space exploration)	Simulator (or Emulator) code for Proof-of-Concept

Success Criteria

 $Performance(Processing-in-Flash) \ge Performance(Traditional On-Device Processing)$

