Master Project

Performance and Comparison Analysis of Linear Model Predictive Control on Reference Tracking Quadrotors

Final Presentation

Student: Hugo Grall Lucas

Supervisor: Izzet Kagan Erünsal

Professor: Martinoli Alcherio

Expert: Mansolino David

Introduction

Motivations

- Inspection, formation, search and rescue
- Performing high precision trajectory tracking
- Multi-variables system under constraints
- Evolution of embedded electronics capability
- Linear MPC

Introduction

Real Model: Quadrotor

Name: Helipal Storm Drone-4 v3

Mass : 1.29 Kg

Autopilot: PixHawk Cube 2

Onboard Computer: Rasberry Pi 3B+

<u>Sensors</u>: IMU, OpticFlow, External Tracking and External

Compass

Simulation model: MATLAB and Webots

<u>Plant</u>: Non-linear equations for the dynamics

Attitude controller: PD controller

<u>Parameters</u>: Identified during experiments on the real drone

by Kagan

Introduction

Objectives

- 1. Chose a dynamical model
- 2. Linearization, decoupling and discretization
- 3. Design the Optimization Problem (objective, constraints and model)
- 4. Select a solver for embedded optimization
- 5. Design a state estimator
- 6. MATLAB (microscopic) simulator
- 7. Webots (sub-microscopic) simulator
- 8. Update the parameters
- 9. Use a Raspberry PI 4 to evaluate the computational time
- 10. Comparative study between Linear and Nonlinear MPC [Erunsal et al. (2019)]

Concept

- Time variant control law
- Aim to minimize an objective
- Satisfy constraints
- Solve an optimization problem in-the-loop
- Make prediction of the state (Horizon)
- ❖ Use the <u>first</u> optimal input as command to the Plant

Concept

- Time variant control law
- Aim to minimize an objective
- Satisfy constraints
- Solve an optimization problem in-the-loop
- Make prediction of the state (Horizon)
- ❖ Use the <u>first</u> optimal input as command to the Plant

Optimization Problem

$$u^{\star}(x_0) = \operatorname{argmin} \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$$

s.t.

$$x_{i+1} = f(x_i, u_i)$$

$$g(x_i, u_i) \le 0$$

$$h(x_N) \le 0$$

$$\forall i = 0, \dots, N - 1$$
$$\forall i = 0, \dots, N - 1$$

Concept

- Time variant control law
- Aim to minimize an objective
- Satisfy constraints
- Solve an optimization problem in-the-loop
- Make prediction of the state (Horizon)
- Use the <u>first</u> optimal input as command to the Plant

Optimization Problem

$$u^{\star}(x_0) = \operatorname{argmin} \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$$

s.t. $x_{i+1} = f(x_i, u_i)$ $g(x_i, u_i) \le 0$ $h(x_N) \le 0$

$$\forall i = 0, \dots, N - 1$$

$$\forall i = 0, \dots, N - 1$$

Receding horizon control

Concept

- Time variant control law
- Aim to minimize an objective
- Satisfy constraints
- Solve an optimization problem in-the-loop
- Make prediction of the state (Horizon)
- Use the <u>first</u> optimal input as command to the Plant

Optimization Problem

$$u^{\star}(x_0) = \operatorname{argmin} \sum_{i=0}^{N-1} l(x_i, u_i) + V_f(x_N)$$

s.t. $x_{i+1} = f(x_i, u_i)$ $g(x_i, u_i) \le 0$ $h(x_N) \le 0$

$$\forall i = 0, \dots, N - 1$$

$$\forall i = 0, \dots, N - 1$$

Receding horizon control

Modeling

Plant [Mahony Kumar and Corke, 2012]

Allocation matrix binds the squared propellers speed to force and torques

$$\begin{bmatrix} \boldsymbol{F}_{b/n,3}^b \\ \boldsymbol{\tau}_{b/n,1}^b \\ \boldsymbol{\tau}_{b/n,2}^b \\ \boldsymbol{\tau}_{b/n,3}^b \end{bmatrix} = \begin{bmatrix} c_T & c_T & c_T & c_T \\ 0 & dc_T & 0 & -dc_T \\ -dc_T & 0 & dc_T & 0 \\ c_Q & -c_Q & c_Q & -c_Q \end{bmatrix} \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \\ \omega_3^2 \\ \omega_4^2 \end{bmatrix}$$

Well-known model for Quadrotor dynamics use the force and torques to compute the states

$$egin{aligned} \dot{oldsymbol{x}}_{b/n}^n &= oldsymbol{v}_{b/n}^n \ m\dot{oldsymbol{v}}_{b/n}^n &= m_b oldsymbol{g} + oldsymbol{R}_b^n oldsymbol{F}_{b/n}^b \ \dot{oldsymbol{t}}_{b/n}^n &= oldsymbol{T}_b^n oldsymbol{w}_{b/n}^b \ oldsymbol{I}_b \dot{oldsymbol{w}}_{b/n}^b &= oldsymbol{ au}_{b/n}^b - oldsymbol{w}_{b/n}^b imes oldsymbol{I}_b oldsymbol{w}_{b/n}^b \end{aligned}$$

Modeling

Model for MPC [Kamel Burri and Siegwart, 2017]

- Assume cascaded architecture
- ❖ Attitude is controlled by the Autopilot
- ❖ Add drag forces

$$\begin{split} \dot{x}_{b/hf}^{hf} &= v_{b/hf}^{hf} \\ \dot{v}_{b/hf}^{hf} &= R_b^{hf} \begin{bmatrix} 0 \\ 0 \\ \frac{T_{cmd}}{m} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix} - \begin{bmatrix} \kappa_{drag} & 0 & 0 \\ 0 & \kappa_{drag} & 0 \\ 0 & 0 & 0 \end{bmatrix} v_{b/hf}^{hf} \\ \dot{t}_{b/n}^{n} &= \begin{bmatrix} \frac{1}{\tau_{\phi}} & 0 & 0 \\ 0 & \frac{1}{\tau_{\theta}} & 0 \\ 0 & 0 & \frac{1}{\tau_{\theta}} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} K_{\phi} & 0 & 0 \\ 0 & K_{\theta} & 0 \\ 0 & 0 & K_{\psi} \end{bmatrix} t_{cmd_{b/n}}^{n} - t_{b/n}^{n} \end{pmatrix} \end{split}$$

Observations

- Dynamics doesn't depend on position
- ❖ **hf** frame is the **n** frame rotated by Yaw around Z axis

Linearization, Decoupling and Discretization

- Linearization around Hovering positions
- 1 dynamical model + infinity of Hovering position
- 4 Subsystems: [Siegwart et al., 2012]

Pitch:
$$x = [x, v_x, \theta]^T$$
 $u = \theta_{cmd}$
Roll: $x = [y, v_y, \phi]^T$ $u = \phi_{cmd}$
Z: $x = [z, v_z]^T$ $u = T_{cmd}$
Yaw: $x = [\psi]$ $u = \psi_{cmd}$

Linearization, Decoupling and Discretization

- Linearization around Hovering positions
- ❖ 1 dynamical model + infinity of Hovering position
- ❖ 4 Subsystems: [Siegwart et al., 2012]

Pitch:
$$x = [x, v_x, \theta]^T$$
 $u = \theta_{cmd}$
Roll: $x = [y, v_y, \phi]^T$ $u = \phi_{cmd}$
Z: $x = [z, v_z]^T$ $u = T_{cmd}$

Yaw: $x = [\psi]$ $u = \psi_{cmd}$

Use ZOH methode (c2d MATLAB command)

Taylor expansion at steady state

$$f(x,u) \approx f(x^*, u^*) + \frac{\partial f(x,u)}{\partial x} \Big|_{x^*, u^*} (x - x^*) + \frac{\partial f(x,u)}{\partial u} \Big|_{x^*, u^*} (u - u^*)$$

$$f(x^*, u^*) = 0$$

$$x^* = \begin{bmatrix} x_{ref} & y_{ref} & z_{ref} & 0 & 0 & 0 & 0 & \psi_{ref} \end{bmatrix}^T$$

$$u^* = \begin{bmatrix} mg & 0 & 0 & \frac{\psi_{ref}}{K_{\psi}} \end{bmatrix}^T$$

$$\forall x_{ref}, y_{ref}, z_{ref}, \psi_{ref} \in \Re$$

Objective: Cost Functions Component

Standard Quadratic Cost

$$l_i^{LQR}(x, u) = x_i^T Q x_i + u_i^T R u_i$$

Terminal Cost

$$V_f(x_N) = x_N^T P x_N$$
$$P = Q + A^T P A - A^T P B (R + B^T P B)^{-1} B^T P A$$

Command Rate Cost

[Kamel Burri and Siegwart, 2017]

$$l_i^{rate}(x, u) = (u_i - u_{i-1})^T R_{\Delta} (u_i - u_{i-1})$$

Objective

$$V(x,u) := \sum_{i=0}^{N-1} l_i^{LQR}(x,u) + l_i^{rate}(x,u) + V_f(x,u)$$

Constraints Components

Dynamic contraints

$$x_{i+1} = A(x_i - x^*) + B(u_i - u^*) \quad \forall i = 0, ..., N-1$$

Inputs contraints

<u>Thrust:</u> limited by the motors

Attitude angles: limited by the linearization

$$u_{min} \le u \le u_{max}$$

States contraints

<u>Attitude angles:</u> also limited by the linearization <u>Velocity:</u> Limited by the motion capture system

$$x_{min} \le x \le x_{max}$$

Terminal constraints (set)

- Needed for theorical proof of feasibility and stability of the closed-loop controller
- Defined as the maximum invariant set under the control law that respect the constraints

Solver: Embedded computing

Comparative study [Adriano Silva Martins Brandão et al., 2018]

	Obj. Func	tion	Constraints	Code Size	Performance	
CVXGEN	Flexibility	in the	Flexible and allows	several MB	fast and reli-	
	formulation		slack variables		able	
FalcOpt	Imposed b	by the	Only on control in-	several KB	really fast but	
	solver		puts		not reliable	
muAO	Imposed b	y the	Combinations of	several MB	fast and reli-	
	solver		states and inputs		able	

CVXGEN [Mattingley and Boyd, 2012]

- Flexible formulation of the objective function
- Quick to solve and reliable
- Successfully used in [Kamel Burri and Siegwart, 2017]
- C Code generation + MATLAB interface
- (Sometimes) Slow to generate C code from the web interface

Sensors and estimator

Sensors

The states are fully observable

Positions: Motion capture system

Velocity: Optical Flow

Attitude: Autopilot estimator

Simulation : Noise modelled as gaussian

Extended Kalman Filter (EKF)

- Measurement model: Identity matrix
- Process model: non-linear model used for control but expressed in world frame
- Discretization: Use Euler forward method

Trajectory tracking: MATLAB

Trajectory tracking: Webots and ROS

Observations

- Drag forces
- Noise on the forces
- Closed-loop effect
- High acceleration

Comparison

	Linear	Nonlinear		
Linear Dynamics	Yes	No		
Decoupling	Yes	No		
Small angles	Yes	No		
Solver	CVXGEN	ACADO		
Computational Load	Medium	High		

How to be fair?

- Tuning procedure
- Allocation of the computational time
- Different N
- Different the controller frequency
- Increase the validity of the linearization
- Use same solver

Budget allocation

- Step responses on Raspberry PI 4
- ❖ Use maximum N for LMPC
- ❖ Test two N values for NMPC
- Controller loop time 0.05 s

Step Response

	$\mid \mathrm{LMPC} \mid$	NMPC		
N	30	15	5 25	
mean time [s]	0.0142	0.0171	0.0338	
max time [s]	0.0298	0.1042	0.5421	

Experiment

- Track circle in x-y plan
- ❖ Measure the accuracy with RMSE in meter
- ❖ Measure the agility of the controller
- ❖ Decrease the period of the circle T

	$_{ m LMPC}$				NMPC			
\mathbf{T}	20	15	10	5	20	15	10	5
$\mathrm{RMSE}_{\mathbf{x}}$	0.0878	0.1226	0.1901	1.3793	0.0381	0.0504	0.0903	0.2466
$\mathrm{RMSE}_{\mathrm{y}}$	0.0831	0.1163	0.1837	1.4064	0.0357	0.0473	0.0856	0.2336
$\mathrm{RMSE}_{\mathbf{z}}$	0.0172	0.0195	0.016	0.0151	0.023	0.0337	0.0369	0.0603

Conclusion

Work summary

- **❖** Implement LMPC for tracking trajectories
- ❖ Set up and update two simulation models
- Run the proposed controller in a Raspberry PI 4 while the physics is computed on Webots
- Propose a comparative study between Linear and Nonlinear MPC

Future possible work

- **Explore** more the fairly comparison
- ❖ Valid the work on real hardware
- Disturbance observer (offset free tracking)
- Extended to Robust Linear MPC
- Explore other linearization (feedback linearization)

References

[Adriano Silva Martins Brandão, 2018] Adriano Silva Martins Brandão, Daniel Martins Lima, Marcus Vinicius Americano da Costa Filho, and Julio Elias Normey-Rico (2018). A Comparative Study On Embedded MPC For Industrial Processes. João Pessoa, Paraba, Brasil.

[Colin Jones, 2018] Colin Jones (2018), lecture notes from Model Predictive Control course ME-425, EPFL (Switzerland). [Mahony Kumar and Corke, 2012] Robert Mahony, Vijay Kumar and Peter Corke (2012), Multirotor Aerial Vehicles – Modeling, Estimation, and Control of Quadrotor, IEEE ROBOTICS & AUTOMATION MAGAZINE.

[Kamel Burri and Siegwart, 2017] Mina Kamel, Michael Burry and Roland Siegwart (2017), Linear Vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wind Micro Aerial Vehicles, IFAC-PapersOnLine.

[Siegwart et al., 2012] Michael Burri, Janosh Nikilic, Christoph Hürzeler, Gilles Caprari and Roland Siegwart (2012), Aerial Service Robots for Visual Inspection of Thermal Power Plant Boiler system, CARPI.

[Mattingley and Boyd, 2012] Jacob Mattingley and Stephan Boyd (2012), CVXGEN: a code generator for embedded convex optimization, Springer.

Questions

Illustration: https://www.lecoindesentrepreneurs.fr/wp-content/uploads/2015/06/liste-de-questions-%C3%A0-poser-au-franchiseur.png [visited: 29.04.2019]

Sensors and estimator

