Smart Energy Systems Winter 2020-2021

Optimization Project Group Milestone 4

supervised by Ogün Yurdakul

Eric Rockstädt Theodor Schönfisch

Isabell von Falkenhausen

Agenda

- Recap: Stochastic Unit Commitment
- Variance Reduction Techniques
 - Antithetic Variates
 - Latin Hypercube Samples
- Influence of Multiprocessing
- Electric Vehicle

Recap: Stochastic Unit Commitment

Optimization of dispatch
 schedule of all power
 generation units to match the
 electricity demand and to
 minimize total cost

Two-staged optimization

New:

- Reduce variance without increasing sample size
- Assess the influence of multiprocessing on runtime
- Electric vehicle with vehicle-to-grid technology (V2G)

Milestone 3: Standard deviation

Variance reduction techniques

- Goal: decrease variance to get more accurate estimator of the mean
- Increasing sample size?
 computation time
- Better: improving Monte Carlo samples through variance reduction techniques
- Common ideas:
 - Making use of correlations
 - Sampling input space more uniformly than random sampling
 - Focus on important regions for sampling

09.02.2021

Antithetic Variates

- Idea: exploit correlations by pairing negatively correlated random variables
- 1. Sample N/2 observations from a uniform distribution
- Calculate antithetic pairs as [1 sample from step 1]
- 3. Take inverse cumulative distribution function to obtain N observations

Latin Hypercube Sampling

- Idea: sample more uniformly than random sampling
- 1. Sample from a stratified input space
- 2. Randomly permute these observations
- 3. Take the inverse cumulative distribution function to obtain N observations

Permute

Source: based on Homem-de-Mello & Bayraksan (2016)

Latin Hypercube Sampling

- 1. Sample from a stratified input space
- 2. Randomly permute these observations
- 3. Take the inverse cumulative distribution function to obtain N observations

e.g. sample size = 4

Source: based on Homem-de-Mello & Bayraksan (2016)

Variance reduction | Implementation

Antithetic Variates

- 1. Create random samples with $N = \frac{1}{2}$ sample size from a normal distribution
- 2. Calculate antithetics: mean values (random samples mean values)
- 3. Join the random samples and its antithetics to create the full sample

Latin Hypercube Sampling

- 1. For each hour, divide distribution into N parts of equal probability (N = sample size)
- 2. Draw a random sample from each part
- 3. Shuffle hourly sets
- 4. Create random vector from hourly sets

Results | Variance reduction

Influence of Multiprocessing

Electric vehicle

Characteristics:

$$E_{\sigma_s}^M = 38kWh$$
 (Maximum storage level)

$$E_{\sigma_s}^m \le E_{\sigma_s}[h] \le E_{\sigma_s}^M$$

$$E_{\sigma_s}^m = 0kWh$$
 (Minimum storage level)

$$E_{\sigma_s}[h] = E_{\sigma_s}[h-1] - P_{\sigma_s}^{net}[h] \cdot 1h$$

$$p_{\sigma_s}^w = 11kW$$
 (Maximum withdrawal power)

$$-p_{\sigma_s}^i \le P_{\sigma_s}^{net} \le p_{\sigma_s}^w$$

$$p_{\sigma_s}^i = 11kW$$
 (Maximum charging power)

$$E_{\sigma_s}[0] = 0.2 \cdot E_{\sigma_s}^M = 7.6 kWh$$

$$E_{\sigma_s}[24] = 0.8 \cdot E_{\sigma_s}^M = 30.4kWh$$

 $E_{\sigma_s}[h]$: Energy storage level in hour h $P_{\sigma_s}^{net}[h]$: Net power injection in hour h

Electric vehicle | Results

Electric vehicle | Sensitivity

References

Homem-de-Mello & Bayraksan (2016). *Scenario Generation and Sampling Methods*. [PDF Presentation Slides]. Accessible via https://www.youtube.com/watch?v=RkUdWL_3KLA

Yurdakul et al. (2020). Quantification of the Impact of GHG Emissions on Unit Commitment in Microgrids. Presented in IEEE PES T&D-LA 2020.

16

Thanks for your attention

Eric Rockstädt
Theodor Schönfisch
Isabell von Falkenhausen