Práctica: LSTM con atención de Bahdanau

Procesamiento del Lenguaje Natural

October 17, 2025

Enunciado

El artículo Neural Machine Translation by Jointly Learning to Align and Translate (2014) [BCB14] introdujo por primera vez el concepto de **atención** que sería fundamental para posteriores desarrollos, como el Transformer, arquitectura que dio luego lugar al ChatGPT.

En esta práctica implementaremos un sistema de atención al modelo seq2seq visto en las clases anteriores.

¿Qué es la atención?

En un modelo seq2seq, la **atención** permite que el decodificador "mire" dinámicamente a distintas partes de la oración de origen cuando genera cada palabra de la traducción, en lugar de comprimir toda la información en un único vector fijo. Concretamente, el encoder produce una **secuencia de anotaciones** (h_1, \ldots, h_{T_x}) y el decodificador combina esas anotaciones con **pesos** que dependen del paso de decodificación (i). El resultado es un **vector de contexto** específico (c_i) para cada palabra objetivo (y_i) .

$$c_i = \sum_j \alpha_{ij} h_j$$

Así, el modelo aprende una alineación suave (soft alignment) (α_{ij}) que indica cuánta atención prestar a la posición fuente (j) al generar (y_i) .

Formulación matemática (atención de Bahdanau)

Vector de contexto por paso

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} \cdot h_j$$

Los pesos de atención α_{ij} se normalizan con softmax sobre todas las posiciones j:

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

Aquí, h_j es la anotación del encoder en la posición j.

Modelo de alineación (score aditivo)

$$e_{ij} = a(s_{i-1}, h_j) = v_a^{\top} \tanh (W_1(s_{i-1}, h_j)),$$

donde s_{i-1} es el estado oculto previo del decodificador, W_1 es la matriz de pesos que proyecta la concatenación de los vectores (s_{i-1}, h_j) a un espacio intermedio, tanh introduce no linealidad y v_a es un vector de pesos que colapsa a un escalar, el **score** e_{ij} .

References

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. *ArXiv*, 1409, 09 2014.

Figure 1: Esquema de atención de Bahdanau