BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2004

ĐỀ CHÍNH THỰC

Môn: TOÁN, Khối A (Đáp án - thang điểm có 4 trang)

Câu	Ý	Nội dung	Điểm
Ι			2,0
	I.1	(1,0 điểm)	
		$y = \frac{-x^2 + 3x - 3}{2(x - 1)} = -\frac{1}{2}x + 1 - \frac{1}{2(x - 1)}$	
		a) Tập xác định: R\{1\}.	
		b) Sự biến thiên:	
		$y' = \frac{x(2-x)}{2(x-1)^2}; \ y' = 0 \Leftrightarrow x = 0, \ x = 2.$	0,25
		$y_{CD} = y(2) = -\frac{1}{2}$, $y_{CT} = y(0) = \frac{3}{2}$.	
		Đường thẳng $x = 1$ là tiệm cận đứng.	
		Đường thẳng $y = -\frac{1}{2}x + 1$ là tiệm cận xiên.	0,25
		Bảng biến thiên: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		x -∞ 0 1 2 +∞	
		y' - 0 + + 0 -	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25
		c) Đồ thị:	
		3/2	
		.6 1 2 X	
		-4-	0,25

	I.2	(1,0 điểm)	
		Phương trình hoành độ giao điểm của đồ thị hàm số với đường thẳng $y = m$ là :	
		$\frac{-x^2 + 3x - 3}{2(x - 1)} = m \iff x^2 + (2m - 3)x + 3 - 2m = 0 (*).$	0,25
		Phương trình (*) có hai nghiệm phân biệt khi và chỉ khi:	
		$\Delta > 0 \iff 4m^2 - 4m - 3 > 0 \iff m > \frac{3}{2} \text{ hoặc } m < -\frac{1}{2} (**).$	0,25
		Với điều kiện (**), đường thẳng $y = m$ cắt đồ thị hàm số tại hai điểm A, B có hoành độ x_1 , x_2 là nghiệm của phương trình (*).	
		$AB = 1 \iff x_1 - x_2 = 1 \iff x_1 - x_2 ^2 = 1 \iff (x_1 + x_2)^2 - 4x_1x_2 = 1$	0,25
		$\Leftrightarrow (2m-3)^2 - 4(3-2m) = 1 \Leftrightarrow m = \frac{1 \pm \sqrt{5}}{2} \text{ (thoả mãn (**))}$	0,25
II			2,0
	II.1	(1,0 điểm)	
		Điều kiện : x ≥ 4.	0,25
		Bất phương trình đã cho tương đương với bất phương trình:	
		$\sqrt{2(x^2-16)} + x - 3 > 7 - x \Leftrightarrow \sqrt{2(x^2-16)} > 10 - 2x$	0,25
		+ Nếu x > 5 thì bất phương trình được thoả mãn, vì vế trái dương, vế phải âm.	0,25
		$+$ Nếu $4 \le x \le 5$ thì hai vế của bất phương trình không âm. Bình phương hai vế ta	
		duoc: $2(x^2-16) > (10-2x)^2 \Leftrightarrow x^2-20x+66 < 0 \Leftrightarrow 10-\sqrt{34} < x < 10+\sqrt{34}$.	
		Kết hợp với điều kiện $4 \le x \le 5$ ta có: $10 - \sqrt{34} < x \le 5$. Đáp số: $x > 10 - \sqrt{34}$	0,25
	II.2	(1,0 điểm)	
		Điều kiện: $y > x$ và $y > 0$.	
		$\log_{\frac{1}{4}}(y-x) - \log_{4}\frac{1}{y} = 1 \iff -\log_{4}(y-x) - \log_{4}\frac{1}{y} = 1$	0,25
		$\Leftrightarrow -\log_4 \frac{y-x}{y} = 1 \iff x = \frac{3y}{4}.$	0,25
		Thế vào phương trình $x^2 + y^2 = 25$ ta có: $\left(\frac{3y}{4}\right)^2 + y^2 = 25 \iff y = \pm 4$.	0,25
		So sánh với điều kiện, ta được $y = 4$, suy ra $x = 3$ (thỏa mãn $y > x$).	
TTT		Vậy nghiệm của hệ phương trình là (3; 4).	0,25 3,0
III	III.1	(1,0 điểm)	3,0
	111.1	+ Đường thẳng qua O, vuông góc với $\overrightarrow{BA}(\sqrt{3}; 3)$ có phương trình $\sqrt{3}x + 3y = 0$.	
		Dường thẳng qua B, vuông góc với $\overrightarrow{OA}(0; 2)$ có phương trình $y = -1$	
			0,25
		(Đường thẳng qua A, vuông góc với $\overrightarrow{BO}(\sqrt{3}; 1)$ có phương trình $\sqrt{3}x + y - 2 = 0$)	0,25
		Giải hệ hai (trong ba) phương trình trên ta được trực tâm $H(\sqrt{3}; -1)$	0,23
		+ Đường trung trực cạnh OA có phương trình $y = 1$. Đường trung trực cạnh OB có phương trình $\sqrt{3}x + y + 2 = 0$.	
			0,25
1		(Đường trung trực cạnh AB có phương trình $\sqrt{3}x + 3y = 0$).	

		Giải hệ hai (trong ba) phương trình trên ta được tâm đường tròn ngoại tiếp tam giác OAB là $I(-\sqrt{3}; 1)$.	0,25
	III.2.a	(1,0 điểm)	
		$+ \text{ Ta c\'o: } C(-2; 0; 0), D(0; -1; 0), M(-1; 0; \sqrt{2}),$	
		$\overrightarrow{SA} = (2; 0; -2\sqrt{2}), \overrightarrow{BM} = (-1; -1; \sqrt{2}).$	0,25
		Gọi α là góc giữa SA và BM.	•
		Ta được: $\cos\alpha = \left \cos\left(\overrightarrow{SA}, \overrightarrow{BM}\right)\right = \frac{\left \overrightarrow{SA}.\overrightarrow{BM}\right }{\left \overrightarrow{SA}\right .\left \overrightarrow{BM}\right } = \frac{\sqrt{3}}{2} \Rightarrow \alpha = 30^{\circ}.$	0,25
		+ Ta có: $\left[\overrightarrow{SA}, \overrightarrow{BM}\right] = \left(-2\sqrt{2}; 0; -2\right), \overrightarrow{AB} = \left(-2; 1; 0\right).$	0,25
		$d(SA,BM) = \frac{\left[\overrightarrow{SA}, \overrightarrow{BM}\right] \cdot \overrightarrow{AB}}{\left[\overrightarrow{SA}, \overrightarrow{BM}\right]} = \frac{2\sqrt{6}}{3}$	0,25
		A(2; 0; 0) B(0; 1; 0)	
	III.2.b	(1,0 điểm)	
		Ta có MN // AB // CD \Rightarrow N là trung điểm SD \Rightarrow N $\left(0; -\frac{1}{2}; \sqrt{2}\right)$.	0,25
		$\overrightarrow{SA} = \left(2; \ 0; \ -2\sqrt{2}\right), \overrightarrow{SM} = \left(-1; 0; -\sqrt{2}\right), \ \overrightarrow{SB} = \left(0; 1; -2\sqrt{2}\right), \ \overrightarrow{SN} = \left(0; -\frac{1}{2}; -\sqrt{2}\right)$	
		$\Rightarrow \left[\overrightarrow{SA}, \ \overrightarrow{SM} \right] = \left(0; \ 4\sqrt{2}; \ 0 \right).$	0,25
		$V_{S.ABM} = \frac{1}{6} \left[\overrightarrow{SA}, \overrightarrow{SM} \right] \cdot \overrightarrow{SB} = \frac{2\sqrt{2}}{3}$	0,25
		$V_{\text{S.AMN}} = \frac{1}{6} \left \left[\overrightarrow{SA}, \overrightarrow{SM} \right] \cdot \overrightarrow{SN} \right = \frac{\sqrt{2}}{3} \implies V_{\text{S.ABMN}} = V_{\text{S.ABM}} + V_{\text{S.AMN}} = \sqrt{2}$	0,25
IV	TT7 4		2,0
	IV.1	(1,0 điểm)	
		$I = \int_{1}^{2} \frac{x}{1 + \sqrt{x - 1}} dx \cdot D\tilde{a}t : t = \sqrt{x - 1} \implies x = t^{2} + 1 \implies dx = 2tdt.$	
		$x = 1 \Rightarrow t = 0, x = 2 \Rightarrow t = 1.$	0,25

		Ta có: $I = \int_{0}^{1} \frac{t^2 + 1}{1 + t} 2t dt = 2 \int_{0}^{1} \frac{t^3 + t}{1 + t} dt = 2 \int_{0}^{1} \left(t^2 - t + 2 - \frac{2}{t + 1} \right) dt$	0,25
		$I = 2\left[\frac{1}{3}t^3 - \frac{1}{2}t^2 + 2t - 2\ln t+1 \right]_0^1$	0,25
		$I = 2\left[\frac{1}{3} - \frac{1}{2} + 2 - 2\ln 2\right] = \frac{11}{3} - 4\ln 2.$	0,25
	IV.2	(1, 0 điểm)	
		$\left[1+x^{2}\left(1-x\right)\right]^{8} = C_{8}^{0} + C_{8}^{1}x^{2}\left(1-x\right) + C_{8}^{2}x^{4}\left(1-x\right)^{2} + C_{8}^{3}x^{6}\left(1-x\right)^{3} + C_{8}^{4}x^{8}\left(1-x\right)^{4}$	
		$+ C_8^5 x^{10} (1-x)^5 + C_8^6 x^{12} (1-x)^6 + C_8^7 x^{14} (1-x)^7 + C_8^8 x^{16} (1-x)^8$	0,25
		Bậc của x trong 3 số hạng đầu nhỏ hơn 8, bậc của x trong 4 số hạng cuối lớn hơn 8.	0,25
		Vậy x^8 chỉ có trong các số hạng thứ tư, thứ năm, với hệ số tương ứng là:	0.05
		$C_8^3.C_3^2, C_8^4.C_4^0$	0,25
		Suy ra $a_8 = 168 + 70 = 238$.	0,25
V			1,0
		Gọi M = $\cos 2A + 2\sqrt{2} \cos B + 2\sqrt{2} \cos C - 3$ = $2\cos^2 A - 1 + 2\sqrt{2} \cdot 2\cos \frac{B+C}{2} \cdot \cos \frac{B-C}{2} - 3$.	0,25
		Do $\sin \frac{A}{2} > 0$, $\cos \frac{B-C}{2} \le 1$ nên $M \le 2\cos^2 A + 4\sqrt{2}\sin \frac{A}{2} - 4$.	0,25
		Mặt khác tam giác ABC không tù nên $\cos A \ge 0$, $\cos^2 A \le \cos A$. Suy ra:	
		$M \le 2\cos A + 4\sqrt{2}\sin\frac{A}{2} - 4 = 2\left(1 - 2\sin^2\frac{A}{2}\right) + 4\sqrt{2}\sin\frac{A}{2} - 4$	
		$= -4\sin^2\frac{A}{2} + 4\sqrt{2}\sin\frac{A}{2} - 2 = -2\left(\sqrt{2}\sin\frac{A}{2} - 1\right)^2 \le 0. \text{ Vậy M} \le 0.$	0,25
		Theo giả thiết: $M = 0 \Leftrightarrow \begin{cases} \cos^2 A = \cos A \\ \cos \frac{B - C}{2} = 1 \end{cases} \Leftrightarrow \begin{cases} A = 90^{\circ} \\ B = C = 45^{\circ} \end{cases}$	0,25