RMXplorer

LAB 1: Sensor

Name

นายก้องภพ ไก่แก้ว 67340500048
นายปรีดี พาหิระ 67340500057
นายศิวัฒม์ พึ่งสีใส 67340500065

Objectives

- เพื่อให้เข้าใจการทำงานของตัวต้านทานของตัวต้านทานปรับค่าได้
- เพื่อให้เข้าใจชนิดและพฤติกรรมของ ตัวต้านทานปรับค่าได้
- เพื่อให้ศึกษาการทำงานของ Encoder ในรูปแบบต่างๆ
- เพื่อศึกษาหลักการทำงานและคุณลักษณะการตอบสนองของเซ็นเซอร์แม่เหล็ก
- เพื่อศึกษาผลกระทบของแผ่นกั้นสนามแม่เหล็ก (Shielding) ที่มีต่อสัญญาณเอาต์พุตของเซ็นเซอร์
- เพื่อศึกษาหลักการทำงานและคุณลักษณะสมบัติของโหลดเซลล์ และวิธีการแปลผลเพื่อให้สามารถ นำไปใช้แบบแม่นยำ

1. Potentiometer

การทดลองที่ 1 ทดสอบพฤติกรรมของตัวต้านทานของตัวต้านทานปรับค่าในแต่หละชนิด

จุดประสงค์

- 1.เข้าใจการทำงานของตัวต้านทานของตัวต้านทานปรับค่าได้
- 2.เข้าใจชนิดและพฤติกรรมของ ตัวต้านทานปรับค่าได้

สมมติฐาน

ถ้าหากเลื่อนก้าน หรือหมุนก้านตัวต้านทานปรับค่าได้ จะทำให้ค่าความต้านทานเปลี่ยนไปตาม ระยะทาง หรือองศา ที่หมุนไป โดยในแต่ละชนิดของตัวต้านทานปรับค่าได้จะให้พฤติกรรมที่ต่างกันออกไป

ตัวแปร

ตัวแปรต้น

1.ชนิดของตัวต้านทานแบบปรับค่าได้

ตัวแปรตาม

1.ค่าความต้านทานที่เปลี่ยนไป

ตัวแปรควบคุม

- 1.แรงดันไฟฟ้า 3.3V
- 2. ค่าความต้านทานสูงสุดของตัวต้านทานปรับค่าได้ โดยมีค่า 10k Ω
- 3.ระยะการหมุนของตัวต้านทานปรับค่าได้
- 4.STM32

เอกสารและงานวิจัยที่เกี่ยวข้อง

Wiper หมายถึง ส่วนหน้าสัมผัสที่เคลื่อนที่ได้ ทำหน้าที่เชื่อมต่อทางไฟฟ้าระหว่าง แถบตัวต้านทาน (Resistive Strip) กับขั้วต่อเอาต์พุต เพื่อกำหนดอัตราส่วนความต้านทาน

Resistive Element หมายถึง ส่วนประกอบที่ใช้เพื่อต้านทานการไหลของกระแสไฟฟ้าในวงจร การ ทำงานของมันอาศัยปรากฏการณ์ที่เรียกว่า ความร้อนจากจูล (Joule heating) ซึ่งจะเปลี่ยนพลังงานไฟฟ้าให้เป็น พลังงานความร้อน นำไปทำแถบตัวต้านทาน (Resistive Strip) ในตัวต้านทานปรับค่าได้ หลักการความต้านทานจากวัสดุ หมายถึง สิ่งที่เป็นปัจจัยที่ทำให้ค่าความต้านทานเปลี่ยนแปลง

- ชนิดของวัสดุ วัสดุแต่ละชนิดมีสภาพต้านทานที่แตกต่างกัน ซึ่งเป็นค่าคุณสมบัติเฉพาะของ วัสดุนั้นๆ เช่น ทองแดงมีสภาพต้านทานต่ำทำให้เป็นตัวนำที่ดีส่วนเซรามิกมีสภาพต้านทานสูง มากจนสามารถใช้เป็นฉนวนได้
- ความยาว และ พื้นที่หน้าตัดของวัสดุ ความต้านทานจะแปรผันตรงกับความยาวของวัสดุ นั่น คือ วัตถุที่ยาวกว่าจะมีความต้านทานมากกว่า และ ยิ่งพื้นที่หน้าตัดยิ่งมากความต้านทานยิ่ง น้อย ตามสูตร $R=rac{
 ho L}{A}$

ขั้นตอนการดำเนินงาน

ตั้งค่าใน Simulink โดยเปลี่ยนแปลงค่าที่ได้จาก ไมโครคอนโทรลเลอร์ 12บิต มาเป็น ค่าแรงดันไฟฟ้าที่ เปลี่ยนไปโดยใช้สมการ $V=\left(\frac{e^{i\gamma n^2 \| \hat{G}^2 \Sigma}}{4095}\right)*3.3$ ทำให้สามารถรู้ค่าแรงดันไฟฟ้าได้จากนั้นนำมาเปรียบเทียบกับ ค่าองศาที่เปลี่ยนแปลงโดยตัวต้านทานปรับค่าได้แบบหมุนสามารถหมุนได้ 300 องศา และแบบตัวเลื่อนเลื่อนได้ 60 มิลิเมตร โดยนำมาแปลงเป็น 100% โดยขยับเพิ่มที่หละ 5% ตั้งนั้นการหมุนแต่หละครั้งจะเปลี่ยนองศาของตัว ต้านทานปรับค่าได้แบบหมุนที่หละ 15 องศา และ 3 มิลิเมตรในตัวต้านทานปรับค่าได้แบบเลื่อน

ผลการทดลอง

ภาพที่ 1 แสดงพฤติกรรมตัวต้านทานปรับค่าได้แบบหมุน

ภาพที่ 2 แสดงพฤติกรรมตัวต้านทานปรับค่าได้แบบเลื่อน

สรุปผลการทดลอง

ตัวต้านทานปรับค่าได้มีลักษณะการทำงานโดยใช้ Wiper สัมผัสกับแถบตัวต้านทานเมื่อแรงดันไฟฟ้าวิ่ง ผ่านแถบตัวต้านทานจนไปถึง Wiper มากเท่าไหร่จะทำให้มีค่าความต้านทานมากขึ้นเท่านั้นโดยจะ มีอยู่สาม ชนิดที่แตกต่างกัน

จากภาพที่ 1 สามารถสรุปได้ว่า ตัวต้านทานปรับค่าได้แบบหมุนทั้งสามประเภท Type A, Type B และ Type C มีคุณลักษณะการตอบสนองต่อแรงดันไฟฟ้าที่แตกต่างกันอย่างชัดเจน โดยที่

- Type A มีลักษณะกราฟเป็นแบบ ลอการิทึม (Logarithmic)
- Type B มีลักษณะกราฟเป็นแบบ เชิงเส้น (Linear)
- Type C มีลักษณะกราฟเป็นแบบ ลอการิทึมผกผัน (Inverse Logarithmic)

จากภาพที่ 2 สามารถสรุปได้ว่า ตัวต้านทานปรับค่าได้แบบเลื่อนทั้งสองประเภท Type A และ Type B เห็น ได้ว่ามีลักษณะเดียวกัน ตัวต้านทานปรับค่าได้แบบหมุน มีคุณลักษณะการตอบสนองต่อแรงดันไฟฟ้าที่แตกต่าง กันอย่างชัดเจน โดยที่

- Type A มีลักษณะกราฟเป็นแบบ ลอการิทึม (Logarithmic)
- Type B มีลักษณะกราฟเป็นแบบ เชิงเส้น (Linear)

อภิปรายผล

จากผลการทดลอง พบว่า ตัวต้านทานปรับค่าได้ Type B แสดงลักษณะการตอบสนองแบบเชิงเส้น อย่างชัดเจน คือ ค่าแรงดันไฟฟ้ามีการเปลี่ยนแปลงเพิ่มขึ้นในอัตราส่วนที่คงที่สม่ำเสมอในขณะที่ Type A และ Type C แสดงลักษณะการตอบสนองแบบลอการิทึม (Logarithmic) ซึ่งอัตราการเปลี่ยนแปลงของแรงดันไฟฟ้า จะไม่คงที่กราฟที่ได้จากผลการทดลองจึงมีลักษณะปรากฏเป็นเส้นโค้งแบบขั้นบันได้ เมื่อทั้งสามชนิดวัดทุก 15 องศา หรือ 3 มิลลิเมตร ซึ่งค่าที่ได้จากการวัดตรงกับค่าคุณสมบัติที่ควรจะเป็น

ข้อเสนอแนะ

เพิ่มความละเอียดในการเก็บข้อมูลควรทำการทดลองซ้ำโดยเพิ่มความละเอียดของขั้นตอนการวัดให้มาก ขึ้น เช่น ปรับค่าทุก 7.5 องศา หรือ 1.5 มิลลิเมตร แทนการวัดทุก 15 องศา หรือ 3 มิลลิเมตร วิธีนี้จะช่วยให้ สามารถพล็อตกราฟคุณลักษณะของ Type A และ Type C ได้อย่างต่อเนื่องและแม่นยำยิ่งขึ้น

นำค่าไปเปรียบเทียบกับการวัดค่าโดยตรงเช่น ออสซิลโลสโคป (Oscilloscope) เพื่อให้สามารถนำมา เปรียบเทียบได้มากยิ่งขึ้น

อ้างอิง

https://www.digikey.co.th/en/products/detail/bourns-inc/PTA6043-

2015DPA103/3781231?srsltid=AfmBOooQ655hZqoVp2DIWPbW_2Zj6bgVyyjU3d3LBCYHiukitqD1EZO5

https://www.digikey.co.th/th/products/detail/bourns-inc/PTA6043-

2015DPB103/3534247?srsltid=AfmBOooE2joAFS_JklaWCGEIJ7TiejTbU2Z2ZPPlw6QiYCiYdM5bbTUC

https://www.digikey.co.th/en/products/detail/bourns-inc/PDB181-K420K-

103A2/2564743?srsltid=AfmBOoq_g4ssrpRruy56kiUlElbjfP__qllKUfnYFOM35_qpEpEnVxcN

https://www.digikey.co.th/en/products/detail/bourns-inc/PDB181-K420K-

103B/2564744?srsltid=AfmBOoqDJAzNqFL6Lpx3BElfALgL63rtjupw2AlhnNBwq0TJVaaZOv3Z

https://www.digikey.be/en/products/detail/bourns-inc/PDB181-K420K-

103C/2564745?srsltid=AfmBOorvXaH324wb2HcuTpcCP5Ke_Y7nWhHveTtRhf-pN3lKdBOngM9P

https://eepower.com/resistor-guide/resistor-types/potentiometer/

https://eepower.com/resistor-guide/resistor-types/potentiometer-taper/

https://randomnerdtutorials.com/electronics-basics-how-a-potentiometer-works/

https://www.sciencedirect.com/topics/engineering/resistive-element

การทดลองที่ 2 การแปลงสัญญาณแอนาล็อกให้เป็นสัญญาณดิจิทัลโดยใช้วงจรทริกเกอร์แบบชมิตต์ จุดประสงค์

- 1.เพื่อให้เข้าใจการทำงานของ วงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger)
- 2.เพื่อให้ลองออกแบบวงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger) จากตัวต้านทานปรับค่าได้ สมมติฐาน (ข้อสันนิษฐานเบื้องต้น)

ถ้าตำแหน่งการหมุนของตัวต้านทานปรับค่าได้ มีค่าน้อยกว่า 25% ของการหมุนทั้งหมด จะส่งผลให้ สัญญาณเอาต์พุตมีสถานะเป็นต่ำ (LOW) และถ้ามีค่ามากกว่า 75% จะส่งผลให้สถานะเอาต์พุตเป็นสูง (HIGH) โดยในช่วงระหว่าง 25% ถึง 75% นั้น สัญญาณเอาต์พุตจะคงสภาพเดิมและไม่มีการเปลี่ยนแปลงสถานะ

ตัวแปร

ตัวแปรต้น

1.ค่าตัวเลขที่ไมโครคอนโทรลเลอร์อ่านได้จากตัวตำนทานปรับค่าได้ ผ่านกระบวนการ ADC ด้วยความละเอียด 12 บิต ครอบคลุมช่วงค่าตั้งแต่ 0 ถึง 4095 ตัวแปรตาม

ตัวแปรตาม

1.ค่าสัญญาณที่ออกมาเป็นสูง (HIGH) กับต่ำ (LOW)

ตัวแปรควบคุม

1.แรงดันไฟฟ้า 3.3V

2.ระยะการหมุนของตัวต้านทานปรับค่าได้

3.STM32

เอกสารและงานวิจัยที่เกี่ยวข้อง

วงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger) เป็นวงจรเปรียบเทียบแรงดันไฟฟ้า หรือ กระแสไฟฟ้า เพื่อรับสัญญาณอินพุตแบบอะนาล็อก และแปลงให้ออกมาเป็นสัญญาณดิจิทัลแบบคลื่น สี่เหลี่ยมโดยใช้หลักการ ฮิสเตอรีซิส

ฮิสเตอรีซิส (Hysteresis) เป็นปรากฏการณ์ที่ความสัมพันธ์ระหว่างอินพุตและเอาต์พุตของระบบ ขึ้นอยู่กับประวัติของระบบ เอาต์พุตของระบบไม่ขึ้นอยู่กับอินพุตปัจจุบันเท่านั้น แต่ยังขึ้นอยู่กับอินพุต ก่อนหน้า กระบวนการแปลงสัญญาณอะนาล็อกเป็นดิจิทัล (ADC) คือ เป็นการแปลงค่าของตัวเซ็นเซอร์ที่ ส่งค่ามาเป็นคลื่นสัญญาณโดยการแปลงเป็นเลขดิจิทัล 0 และ 1 เพื่อให้ตัว ไมโครคอนโทรลเลอร์ สามารถนำค่าไปใช้งานในการณ์คำนวณต่อไปได้

ขั้นตอนการดำเนินงาน

ตั้งค่าใน Simulink โดยเปลี่ยนแปลงค่าที่ได้จาก ไมโครคอนโทรลเลอร์ 12 บิตค่าที่ได้จะเป็นค่า 0-4095 จะประมาณค่าเป็น 0-4000 เพื่อให้ง่ายต่อการคำนวณ โดยการแปลงเป็น วงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger) เมื่อค่าบิตที่ได้ต่ำกว่า 1000 หรือ 25% ให้มีค่าเป็นต่ำ LOW และเมื่อค่าบิตสูงกว่า 3000 หรือ 75% สูง HIGH

ผลการทดลอง

สรุปผลการทดลอง

จากผลการทดลองทั้ง 5 ตัวที่ทดสอบสามารถแปลงเป็นสัญญาณ ดิจิตอล 0 1 ได้ทั้งหมด โดยเมื่อค่าที่ รับมามีค่าสูงกว่า 101110111000 (3000) จะทำให้ได้ค่าออกมาเป็นสูง (HIGH) และเมื่อค่าต่ำกว่า 001111101000 (1000) จะทำให้ค่าออกมาเป็น ต่ำ (LOW) แต่เมื่อค่าอยู่ในช่วง 1000-3000 จะไม่เกิดการ เปลี่ยนแปลงขึ้น

อภิปรายผล

ผลการทดลองแสดงให้เห็นว่า วงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger) มีความสามารถในการแปลงสัญญาณ แอนาล็อก (Analog) ให้เป็นสัญญาณ ดิจิทัล (Digital) ได้อย่างมีประสิทธิภาพ โดยอาศัยคุณสมบัติที่สำคัญคือ ฮิสเตอรีซิส (Hysteresis) ซึ่งการมีจุดทริกเกอร์ที่แตกต่างกันสองค่า โดยช่วยให้ กำจัดสัญญาณรบกวน ป้องกัน ไม่ให้สัญญาณเอาต์พุตเกิดการเปลี่ยนสถานะกลับไปมาอย่างไม่พึงประสงค์ (chattering) เมื่อสัญญาณเข้าแบบ แอนาล็อกมีความผันผวนเล็กน้อยลง

ข้อเสนอแนะ

ควรศึกษาฮิสเตอรีซิส (Hysteresis) เพื่อให้เข้าใจในคุณสมบิตของหลักการนี้มากยิ่งขค้นจะทำให้สามารถ เข้าใจการทำงานวงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger)ได้มากยิ่งขึ้น

ควรทดสอบการส่งสัญญาณแบบ แอนาล็อก (Analog) และสัญญาณแบบ แอนาล็อก (Analog) แปลงเป็น ดิจิทัล (Digital) โดยที่มีสัญญาณรบกวนเพื่อนดูว่าสัญญาณแบบไหนจะแปลงออกมาแล้วมีได้ค่าที่ตรงกับต้นฉบับ มากที่สุด

อ้างอิง

https://th.hwlibre.com/schmitt-trigger/

https://www.lorric.com/th/Articles/flowmeter-technology/flowmeter-technology/hysteresis-function

https://www.youtube.com/watch?v=hD98Z9UEBco

https://www.lorric.com/th/Articles/flowmeter-technology/flowmeter-technology/hysteresis-function

2. Incremental Encoder

การทดลองที่ 1 การเปรียบเทียบการ decode ในแต่ละรูปแบบ

จุดประสงค์

- เพื่อสามารถระบุชนิดการ ถอดรหัส (Decode) ของ เข้ารหัส (Encoder) ได้
- เพื่อศึกษาการทำงานและพฤติกรรมของ เข้ารหัส (Encoder)

สมมติฐาน

ถ้าหาก shaft ของ encoder เกิดการหมุนโปรแกรมจะ decode ค่าในแบบที่ต่างกัน

ตัวแปร

ตัวแปรต้น:

1.องศาของ shaft encoder ที่เปลี่ยนไป

2.ความเร็วการหมุนของ shaft encoder

ตัวแปรตาม:

1.ชนิดของ encoder

ตัวแปรควบคุม:

2.แรงดันไฟฟ้า

3.STM32

เอกสารและงานวิจัยที่เกี่ยวข้อง

ตัวเข้ารหัส(Encoder) คืออุปกรณ์เซนเซอร์ที่ใช้แปลงการเคลื่อนที่เชิงกล (การหมุน) ให้เป็น สัญญาณไฟฟ้า เพื่อวัดตำแหน่ง, องศา, ความเร็ว และทิศทาง สามารถวัดสัญญาณไฟฟ้าจากขา A และ B เพื่อให้รู้ว่า ตัวเข้ารหัส(Encoder) กำลังหมุนไปในทิศทางใด

ขั้นตอนการดำเนินงาน

เริ่มจากการนำตั้งค่าพอร์ตในระบบสำหรับรับค่าต่างๆใน STM32MX เพื่อให้ไมโครคอนโทรลเลอร์เป็น ตัวถอดรหัสค่าที่ได้ค่าที่ได้จาก ตัวเข้ารหัส (Encoder) โดยหลังจากการตั้งค่าเสร็จ จะใช้ Simulink ใน MATLAB ในการประมวลผลค่าต่างๆที่ได้จากการทดลอง โดยใน Simulink จะมี บล็อกฟังก์ชันดังนี้

ในการอ่านและจำลองค่าออกมาเป็นกราฟแล้วจึงนำค่าที่ได้ไปสร้างละจัดระเบียบกราฟใหม่ใน Excel โดยค่าที่ได้จากการอ่านจากตัวเข้ารหัส (Encoder) เมื่อหมุนไปถึงจุดๆนึงจะทำให้ไม่สามารถอ่านค่าต่อได้ จึงได้ มี บล็อก MathlabFunction ที่มี่ชื่อว่า WrapAround ในการจัดระเบียบค่าและทำให้สามารถอ่านต่อไปได้โดยจะมี block ที่ชื่อว่า Homing_position เพื่อปรับค่ากลับไปที่ยังจุดเริ่ม

จากการที่ทำในรูปแบบข้างต้นทำให้เราสามารถอ่านค่าและตรวจสอบได้ว่าเป็นเป็นการ ถอดรหัส (Decode) ในรูปแบบไหน

โดยเก็บค่าจากการหมุนของเพลา จะหมุนที่ละ 1 ครั้ง ครั้งละ 15 องศาทุก ๆวินาทีเพื่อดูการเปลี่ยนแปลง ของค่าที่อ่านได้ในแต่ละรูปแบบ

ผลการทดลอง

X1	X2	X4
0	0	0
1	2	4
2	3	5
2	4	8
3	5	9
3	6	12
4	8	16
5	9	17
5	10	20
6	11	22
6	12	24
7	13	25
7	14	28
8	16	32
9	18	36
10	20	40
11	21	42
11	22	44
12	24	48

ภาพที่ 1 ค่าที่ได้จากการเก็บค่าในแต่ละแบบ

ภาพที่ 2 กราฟแสดงความต่างของการ decode แต่ละแบบ

สรุปผลการทดลอง

จากผลการทงลองทำให้เห็นว่า การถอดรหัส (decode) ในรูปแบบต่างๆทำให้ได้ผลลัพธ์ที่แต่งต่างกัน โดยการถอดรหัสแบบ 3 แบบหลักๆ

โดยการถอดรหัสแบบ 4x จะได้ค่าสัญญาณมากที่สุด โดยจะจับขอบขาขึ้นและขอบขาลงของทั้งช่องสัญญาณ A และ B เมื่อนำไปคำนวณจะได้ค่าการหมุนที่ละเอียดมากที่สุด

ส่วนการถอดรหัสแบบ 2x นั้น จะให้ความละเอียดลดลงครึ่งหนึ่ง โดยจะนับเพียง 2 เหตุการณ์ต่อวัฏจักร ซึ่งมักจะ เป็นการนับขอบขาขึ้นและขอบขาลงของช่องสัญญาณเดียว หรือในบางวิธี คือการนับเฉพาะขอบขาขึ้นของทั้ง สองช่องสัญญาณ

การถอดรหัสแบบ 1x จะให้ความละเอียดต่ำที่สุด โดยจะนับเพียง 1 เหตุการณ์ต่อวัฏจักร เช่น การนับเฉพาะขอบ ขาขึ้นของช่องสัญญาณ A เพียงอย่างเดียว ทำให้ได้ค่าการหมุนที่หยาบที่สุด แต่ก็ใช้ทรัพยากรในการประมวลผล น้อยที่สุดเช่นกัน

อภิปรายผล

จากการทดลองทำให้ได้รู้ผลว่าตรงตามคุณสมบัติของ ตัวเข้ารหัส (Encoder) โดยยิ่งมีการจับสัญญาณที่ ของขาขึ้นลงของ A และ B มากเท่าไหร่จะทำให้รู้มุมการหมุนมากยิ่งขึ้น

ข้อเสนอแนะ

หาวิธีการอ่านค่าให้ได้ความระเอียดที่มากกว่านี้ ทดสอบความสามารถกระประมวลผลของไมโครคอน

อ้างอิง

https://www.alldatasheet.com/datasheet-pdf/view/432663/CUI/AMT103.html https://www.alldatasheet.com/datasheet-pdf/view/556214/BOURNS/PEC11R.html

การทดลองที่ 2 การเปรียบเทียบระหว่างการหมุนตามเข็มนาฬิกาและทวนเข็มนาฬิกา

จุดประสงค์

- 1.เพื่อสามารถแยกการหมุนในทิศทางที่ต่างกันได้
- 2.เพื่อศึกษาการทำงานและพฤติกรรมของ encoder

สมมติฐาน (ข้อสันนิษฐานเบื้องต้น)

ถ้าหาก shaft ของ encoder เกิดการหมุนเกิดขึ้นจะทำให้ค่าที่ได้เปลี่ยนไป

ตัวแปร

ตัวแปรตัน:

- 1.ทิศทางของ shaft encoder ที่เปลี่ยนไป
- 2.ความเร็วการหมุนของ shaft encoder

ตัวแปรตาม:

1.ชนิดของ encoder

ตัวแปรควบคุม:

1.แรงดันไฟฟ้า

เอกสารและงานวิจัยที่เกี่ยวข้อง

ตัวเข้ารหัส(Encoder) คืออุปกรณ์เซนเซอร์ที่ใช้แปลงการเคลื่อนที่เชิงกล (การหมุน) ให้เป็น สัญญาณไฟฟ้า เพื่อวัดตำแหน่ง, องศา, ความเร็ว และทิศทาง โดยสามารถจับสัญญาณได้ 3 รูปแบบหลักๆ X1 X2 X4 ซึ่งจะมีผลต่อการวัดความระเอียดของมุมที่ ตัวเข้ารหัส(Encoder) เคลื่อนที่ไป

ขั้นตอนการดำเนินงาน

เริ่มจากการนำ setup port การ input ต่าง ๆใน STM32MX เพื่อให้ STM32 เป็นตัวกลางในการ ถอดรหัสค่าที่ได้จาก encoder โดยหลังจากการตั้งค่าเสร็จ จะใช้ Simulink ใน MATLAB ในการอ่านค่าต่าง ๆที่ได้ จากการทดลอง โดยใน Simulink จะมี Block Code ดังนี้

ในการอ่านและจำลองค่าออกมาเป็นกราฟแล้วจึงนำค่าที่ได้ไปสร้างละจัดระเบียบกราฟใหม่ใน Excel โดยค่าที่ได้ จากการอ่านจาก Encoder เมื่อหมุนไปถึงจุดๆนึงจะทำให้ไม่สามารถอ่านค่าต่อได้ จึงได้มี Block Mathlab Function ที่มี่ชื่อว่า WrapAround ในการจัดระเบียบค่าและทำให้สามารถอ่านต่อไปได้ และ จะมี Block ที่ชื่อว่า Homing_position เพื่อปรับค่ากลับไปที่ 0

โดยจาการที่ทำในรูปแบบข้างต้นทำให้เราสามารถอ่านค่าและตรวจสอบได้ว่าเป็นการหมุนแบบทวนเข็มนาพิกา หรือตามเข็มนาพิกากันแน่ โดยจะหมุนเพลาของ encoder ไปเรื่อย ๆจนมาถึงจุดเริ่มต้นอีกครั้งแล้วจึงหมุนกลับ ในทิศทางตรงกันข้ามและเมื่อถึงจุดเริ่มต้นก็ทำอีกครั้งในรูปแบบเดิมในทิศทางตรงกันข้าม

ผลการทดลอง

สรุปผลการทดลอง

จากการทดลองทำให้ทราบว่าหากหมุด Encoder ไปในทิศทางตามเข็มนาพิกา จะเห็นได้ว่า Microcontroller จะอ่านค่าได้จากขา A ของ Encoder ก่อน ทำให้ค่าที่ได้มาทิศทางที่เพิ่มมากขึ้น แต่หากหมุนทวนเข็มนาพิกา จะเห็นได้ว่า Microcontroller จะได้อ่านค่าจากขา B ก่อนซึ่งจะทำให้ค่าที่ได้มี ทิศทางที่ติดลบหรือลดลงนั้นเอง

อภิปรายผล

จากการทดลองทำให้ได้รู้ผลว่าตรงตามคุณสมบัติของ ตัวเข้ารหัส (Encoder) โดยมีการจับสัญญาณที่ ของขาขึ้นลงของ A และ B โดยจากการทดลองทำให้รู้ว่า Encoder จะส่งค่าเป็น Pulse ซึ่งจะเปลี่ยนไปตามทิศ ทางการหมุน

ข้อเสนอแนะ

หาวิธีหมุนในแบบอื่นที่ไม่ใช่มือหมุนเพื่อให้ค่าที่ได้ออกมานึงยิ่งขึ้น

อ้างอิง

https://www.alldatasheet.com/datasheet-pdf/view/432663/CUI/AMT103.html https://www.alldatasheet.com/datasheet-pdf/view/556214/BOURNS/PEC11R.html

https://makerasia.com/dc-motor-control-speed-kit-2-read-speed-motor-with-sensor-encoder/

การทดลองที่ 3 การเปรียบเทียบระหว่างองศาที่เปลี่ยนแปลงกับความเร็วที่เพิ่มขึ้น จุดประสงค์

- 1. เพื่อศึกษาความสัมพันธ์ระหว่างองศาที่เปลี่ยนไปกับความเร็ว
- 2. เพื่อศึกษาการทำงานและพฤติกรรมของ encoder

สมมติฐาน (ข้อสันนิษฐานเบื้องต้น)

ถ้าหาก shaft ของ encoder เกิดการหมุนเกิดขึ้นจะทำให้ค่าที่ได้เปลี่ยนไปซึ่งจะส่งผลกับความเร็ว

ตัวแปร

ตัวแปรตัน:

ความเร็วในการหมุนของ shaft encoder

ตัวแปรตาม:

ชนิดของ encoder

ตัวแปรควบคุม:

แรงดันไฟฟ้า

เอกสารและงานวิจัยที่เกี่ยวข้อง

ตัวเข้ารหัส(Encoder) คืออุปกรณ์เซนเซอร์ที่ใช้แปลงการเคลื่อนที่เชิงกล (การหมุน) ให้เป็น สัญญาณไฟฟ้า เพื่อวัดตำแหน่ง, องศา, ความเร็ว และทิศทาง โดยนำค่าที่วัดได้จากขอบขาขึ้นลงมาแปลงให้ กลายเป็นมุม และเมื่อนำมุมเข้าสมการ อนุพันธ์ (differential equation) จะทำให้ได้ค่าความเร็วเชิงมุม

ขั้นตอนการดำเนินงาน

เริ่มจากการนำ setup port การ input ต่างๆใน STM 32 MX เพื่อให้ STM 32 เป็นตัวกลางในการ ถอดรหัสค่าที่ได้จาก Encoder โดยหลังจากการตั้งค่าเสร็จ จะใช้ Simulink ใน Mathlab ในการอ่านค่าต่างๆที่ได้ จากการทดลอง โดยใน Simulink จะมี Block code ดังนี้

ในการอ่านและจำลองค่าออกมาเป็นกราฟแล้วจึงนำค่าที่ได้ไปสร้างละจัดระเบียบกราฟใหม่ใน Excel โดยค่าที่ได้ จากการอ่านจาก Encoder เมื่อหมุนไปถึงจุดๆนึงจะทำให้ไม่สามารถอ่านค่าต่อได้ จึงได้มี Block Mathlab Function ที่มี่ชื่อว่า WrapAround ในการจัดระเบียบค่าและทำให้สามารถอ่านต่อไปได้ และ จะมี block ที่ชื่อว่า Homing_position เพื่อปรับค่ากลับไปที่ 0

โดยจากค่าที่ได้มาจะสามารถนำไปเข้าสูตรเพื่อเปลี่ยนเป็นองศาได้ด้วยสูตร $rac{360^\circ}{_{
m st}}$ imes

data หรือเปลี่ยนเป็นเรเดียนได้ด้วยสูตร $\frac{2\pi}{\sqrt{3}} \times data$ และเมื่อแปลงเป็นองศาหรือ เรเดียนแล้วจะสามารถหาค่าการเปลี่ยนแปลงความเร็วได้จากการหาอนุพันธ์ของสมการตำแหน่งเทียบกับเวลา

 $\frac{\Delta x}{\Delta t}$

ผลการทดลอง

สรุปผลการทดลอง

จากการทดลองทำให้ทราบว่าค่าที่ได้จากทุกการหมุนหนึ่งครั้งจะสามารถนำไปหาค่าองศาของการหมุน ได้จากสูตร $\frac{^{360^{\circ}}}{^{5}$ รูปแบบการ $Decode \times PPR \times data$ และเมื่อได้องศาแล้ว จะสามารถหาค่าการเปลี่ยนแปลงความเร็วได้จาก การหาอนุพันธ์ของสมการตำแหน่งเทียบกับเวลา $\frac{\Delta x}{\Delta t}$

อภิปรายผล

จากการทดลองทำให้ได้รู้ผลว่าตรงตามคุณสมบัติของ ตัวเข้ารหัส (Encoder) โดยสามารถหาค่าตำแหน่ง และความเร็วได้จากการที่ค่าที่อ่านได้เปลี่ยนแปลงไป

ข้อเสนอแนะ

หาวิธีหมุนในแบบอื่นที่ไม่ใช่มือหมุนเพื่อให้ค่าที่ได้ออกมานึงยิ่งขึ้น

อ้างอิง

https://www.alldatasheet.com/datasheet-pdf/view/432663/CUI/AMT103.html

https://www.alldatasheet.com/datasheet-pdf/view/556214/BOURNS/PEC11R.html

3. Magnetic Sensor

การทดลองที่ 1 การเปรียบเทียบค่า V_{out} ที่อ่านค่าส่งผลอย่างไรต่อค่า $Magnetic\ Flux\ Density$ จุดประสงค์

เพื่อศึกษาพฤติกรรมของ sensor ที่มีที่มีความสูงที่ต่างกันในสภาพแวดล้อมที่ไม่มีแผ่นป้องกัน

สมมติฐาน (ข้อสันนิษฐานเบื้องต้น)

 $Vout=VQ+B imes (Sensitivity25^{\circ}C imes (1+STC(TA-25^{\circ}C)))$ เมื่อ V_{out} คือ แรงดันไฟฟ้าขาออก (mV)

 V_Q คือ แรงดันไฟฟ้าครั้งหนึ่งของแรงดันไฟฟ้าขาเข้า (mV)

B คือ ค่าความเข้มของสนามแม่เหล็ก (Magnetic Flux Density) (mT)

 $Sensitivity_{25^{\circ}C}$ คือ ค่าความไวของเซนเซอร์ที่อุณหภูมิทั่วไป (25 $^{\circ}C$)

STC คือ ค่าสัมประสิทธิ์ของอุณหภูมิ $(\frac{\%}{C})$

 T_A คือ อุณหภูมิแวดล้อม $({}^{\circ}C)$

จากสมาการเมื่อค่า Vout มากขึ้นจะส่งผลให้ค่า $Magnetic\ Flux\ Density$ มีค่ามากขึ้นตาม

ตัวแปรต้น:

ตัวแปร

- 1. ค่า Magnetic Flux Density ที่ได้จาการคำนวณผ่านโปรแกรม Simulink ตัวแปรตาม:
 - 1. ค่า Magnetic Flux Density ที่ได้จาการวัดโปรแกรม Simulink
 - 2. ค่า V_{out} ที่ได้จาการวัดโปรแกรม Simulink

ตัวแปรควบคุม:

- 1. อุณหภูมิที่ทำการทดลอง $26^\circ \mathcal{C}$
- 2. ชุดการทดลองเดิม

3.
$$V_0 = 3.3/2 V$$

4. $Sensitivity_{25^{\circ}C} = 1.3 \text{ mV/G}$

$$5.STC = 0.001 \, \text{/°C}$$

6.
$$T_A = 26 \, ^{\circ}\text{C}$$

เอกสารและงานวิจัยที่เกี่ยวข้อง

Magnetic Flux Direction คือ เส้นแม่แรงแม่เหล็กที่เคลื่อนที่ตามแนวสนามแม่เหล็กจากขั้วเหนือและไป สิ้นสุดตรงขั้วใต้

Hall effect คือ ปรากฏการณ์ทางฟิสิกส์เมื่อมีกระแสไฟฟ้าไหลผ่านทางเดียวและมีสนามแม่เหล็กไฟฟ้า ตั้งฉากจะทำให้ กระแสไฟฟ้ามีการขยับไปตามทิศทางของสนามแม่เหล็กไฟฟ้า โดยสามารถค่าที่กระแสที่ เปลี่ยนไปเพื่อนำไปใช้งานอื่นๆได้

Magnetic Flux Density คือความเข้มของสนามแม่เหล็ก จำนวนเส้นแรงแม่เหล็กต่อหน่วยพื้นที่ที่เส้น แรงแม่เหล็กพุ่งผ่านในแนวตั้งฉาก

ขั้นตอนการดำเนินงาน

เริ่มจาการนำค่า ADC ที่ได้มาหาค่าเฉลี่ยเพราะว่าค่าที่อ่านมาได้มีการเพิ่มหรือลดอย่างรวดเร็วจากนั้นก็ นำค่าที่ได้การเฉลี่ยโดยใช้เวลาในการเก็บข้อมูลเป็นเวลา 10 วินาที โดยทำการทดลองควาสูงครั้งละ 5 ครั้งและ ปรับความสูงจากสูงที่สุดลงมาครั้งละ 2 มิลลิเมตร จนถึง 12 มิลลิเมตร ต่อมาได้นำค่า ADC ที่ได้ไปแปลงเป็น แรงดันไฟฟ้าจากสมการ

$$Vout = \left(\frac{ADC \ input}{ADC \ max}\right) \times Vref \times 1000$$

แทนค่าในสมการข้างต้นจะได้ค่า Vout จากนั้นนำไปแทนค่าในสมการ

$$Vout = VQ + B \times (Sensitivity25^{\circ}C \times (1 + STC(TA - 25^{\circ}C)))$$

จะได้ค่า B (Magnetic Flux Density) ออกมาออกมาเราจะนำข้อมูลที่ได้ไปเปรียบเทียบกัน โดยการใช้แผนภูมิในการเปรียบเทียบ โดยใช้โปรแกรม Simulink ในการทำการทดลอง โดยมีโปรแกรมที่ใช้คือ โปรแกรมเดียวกับการทดลองที่ 1 บันทึกผลการทดลองแต่ละครั้งไว้ใน Google Sheet แปรผลการทดลอง โดยใช้ โปรแกรม Simulink ในการเก็บค่าโดยมีโปรแกรมดังนี้

โปรแกรม ADC ของ Magnetic sensor

จากนั้นทำการบันทึกผลของการทดลองใน Google Sheet เพื่อที่จะสรุปผลการทดลอง

ผลการทดลอง

ตาารางแสดงค่า V_{out} และ B ของแม่เหล็กขั้วใต้

ตาารางแสดงค่า V_{out} และ B ของแม่เหล็กขั้วเหนือ

Relation between Vout and Magnetic Flux Density

กราฟแสดงผลควาสัมพันธ์ระหว่าง V_{out} และ B ของแม่เหล็กขั้วใต้

กราฟแสดงผลควาสัมพันธ์ระหว่าง V_{out} และ B ของแม่เหล็กขั้วเหนือ จากกราฟทั้งสองมีการแปรผันตรงกันตามสมการของทั้งสองขั้วแม่เหล็ก

สรุปผลการทดลอง

สัญญาณ Output (V_{out}) ผันแปรตาม Input $(Magnetic\ Flux\ Density)$ เมื่อเส้นสีแดง $(Magnetic\ Flux\ Density)$ เพิ่มขึ้น เส้นสีน้ำเงิน $(V_{out}\ avg)$ ก็จะเพิ่มขึ้นตามในทิศทางเดียวกัน ตลอดทั้งกราฟ โดยแกน x เป็นความสูงจากต่ำไปยังสูง

กราฟแสดงผลควาสัมพันธ์ระหว่าง V_{out} และ B ของแม่เหล็กขั้วใต้

กราฟแสดงผลควาสัมพันธ์ระหว่าง V_{out} และ B ของแม่เหล็กขั้วเหนือ

จากการทดลองวัดความสัมพันธ์ระหว่างสัญญาณ $(V)_{out}$ และสัญญาณ (Magnetic Flux Density) โดยไม่มีแผ่นกัน ของทั้งขั้วเหนือ (N) และขั้วใต้ (S) ผลลัพธ์ที่ได้จากกราฟ แสดงความสัมพันธ์เป็นเส้นตรง (Linear Relationship) ทั้งสองกรณีเพื่อเปรียบเทียบอัตราการตอบสนอง หรือ ค่าความไว (Sensitivity) ของเซ็นเซอร์ต่อสนามแม่เหล็กแต่ละขั้ว สามารถคำนวณได้จากค่าความชั้น ของกราฟ ทั้งสอง

$$m=rac{\Delta Y}{\Delta X}=rac{\Delta Vout}{\Delta Magnetic\ Flux\ Density}$$
 $m_{South}=1.20$ $m_{North}=1.20$

แสดงว่าทั้งสองมีความสัมพันธ์เป็นเส้นตรงสามารถสรุปได้ว่าทั้งสอง Magnetic Sensor คือ อุปกรณ์ อิเล็กทรอนิกส์ที่ทำหน้าที่แปลงปริมาณทางกายภาพ ซึ่งในที่นี้คือ *Magnetic Flux Density* [*mT*] ให้กลายเป็นสัญญาณทางไฟฟ้า (Output) ซึ่งในที่นี้คือ *Vout* โดยมีคุณสมบัติการแปลงสัญญาณที่มี ความสัมพันธ์เป็นสัดส่วนโดยตรง (Linear) และมี การตอบสนองแบบ Real Time

อภิปรายผล

จากการทดลองวัดความสัมพันธ์ระหว่างปริมาณสนามแม่เหล็ก (Input) และสัญญาณทางไฟฟ้า (Output) ของ Magnetic Sensor โดยไม่มีแผ่นกั้น สามารถอภิปรายผลการทดลองได้ดังนี้ คุณสมบัติความสัมพันธ์เชิง เส้น (Linear Relationship): ผลการทดลองแสดงให้เห็นว่า กราฟความสัมพันธ์ระหว่างสัญญาณอินพุต (สนามแม่เหล็ก) และสัญญาณเอาต์พุต ผลลัพธ์ของการทดลอง Magnetic Sensor ที่ใช้ในการทดลองมีคุณสมบัติ เป็น ตัวแปลงสัญญาณเชิงเส้น (Linear Transducer) สัญญาณ Output ที่ได้มีค่าแปรผันโดยตรงกับความเข้ม ของสนามแม่เหล็ก Input ดังแผนภาพตาม datasheet

ข้อเสนอแนะ

1. ควรทำให้ชุดการทดลองมีความแข็งแรงมากกว่านี้เพื่อทำให้ตัวแปรตามที่ออกมามีค่าน่าเชื่อถือ

อ้างอิง

https://th.x-fullstartech.com/info/hall-effect-current-and-position-sensing-41147190.html https://www.helmut-fischer.com/applications/solutions/magnetic-measuring-method https://www.sciencedirect.com/topics/engineering/magnetic-flux-density https://www.ti.com/lit/ds/symlink/drv5055.pdf?ts=1761685105498

การทดลองที่ 2 เมื่อ Magnetic sensor ที่มีแผ่นกั้นส่งผลอย่างไรต่อ Magnetic Flux Density จุดประสงค์

เพื่อศึกษาพฤติกรรมของ Magnetic sensor ที่มีแผ่นป้องกันเมื่อไม่มีแผ่นป้องกัน

สมมติฐาน

จากสมาการเมื่อค่าแม่เหล็กที่แผ่นมากั้นมจะส่งผลให้ค่า Magnetic Flux Density มีค่าน้อยลง เหมือนว่าแผ่นแม่เหล็กเปลี่ยนทิศทางของสนามแม่เหล็กเดิม

ตัวแปร

ตัวแปรต้น:

การมีหรือไม่มีแผ่นเหล็กที่ติดอยู่กับแม่เหล็กเพื่อที่จะศึกษาพฤติกรรมของ Magnetic Flux Density ตัวแปรตาม:

1. ค่า Magnetic Flux Density ที่ได้จาการวัดโปรแกรม Simulink

ตัวแปรควบคุม:

- 1. อุณหภูมิที่ทำการทดลอง 26° ${\cal C}$
- 2. ชุดการทดลองเดิม
- 3. $V_Q = 3.3/2 V$
- 4. $Sensitivity_{25^{\circ}C} = 1.3 \, mV/G$
- 5. $STC = 0.001 \, \text{/°C}$
- 6. $T_A = 26$ °C

เอกสารและงานวิจัยที่เกี่ยวข้อง

Magnetic Field Shielding คือ วัสดุที่นำมาใช้เพื่อนแปลี่ยนทิศทางในการเคลื่อนที่ของเส้นฟลักซ์และ ป้องกันไม่ให้สนามแม่เหล็กทะลุผ่านไปอีกด้านหนึ่ง

ขั้นตอนการดำเนินงาน

เริ่มจาการนำค่า ADC ที่ได้มาหาค่าเฉลี่ยเพราะว่าค่าที่อ่านมาได้มีการเพิ่มหรือลดอย่างรวดเร็วจากนั้นก็ นำค่าที่ได้การเฉลี่ยโดยใช้เวลาในการเก็บข้อมูลเป็นเวลา 10 วินาที โดยทำการทดลองควาสูงครั้งละ 5 ครั้งและ ปรับความสูงจากสูงที่สุดลงมาครั้งละ 2 มิลลิเมตร จนถึง 12 มิลลิเมตร ต่อมาได้นำค่า ADC ที่ได้ไปแปลงเป็น แรงดันไฟฟ้าจากสมการ

$$Vout = \left(\frac{ADC \ input}{ADC \ max}\right) \times Vref \times 1000$$

แทนค่าในสมการข้างต้นจะได้ค่า Vout จากนั้นนำไปแทนค่าในสมการ

$$Vout = VQ + B \times (Sensitivity25^{\circ}C \times (1 + STC(TA - 25^{\circ}C)))$$

จะได้ค่า B (Magnetic Flux Density) ออกมาออกมาเราจะนำข้อมูลที่ได้ไปเปรียบเทียบกัน โดยการใช้แผนภูมิในการเปรียบเทียบ โดยใช้โปรแกรม Simulink ในการทำการทดลอง โดยมีโปรแกรมที่ใช้คือ โปรแกรมเดียวกับการทดลองที่ 1 บันทึกผลการทดลองแต่ละครั้งไว้ใน Google Sheet แปรผลการทดลอง

ผลการทดลอง

S pole Sheilded V 🖫													
# h		ค่า vout 1 🗸	ค่าB1 ∨	ค่า vout 2 🗸	ค่า B 2 🗸	ค่า vout 3 🗸	ค่า B 3 🔍	ค่า vout 4 🗸	ค่า В 4 🗸 🗸	ค่า vout 5 🗸	ค่า B 5 🗸	Vout avg 🗸	Magnetic F 🗸
	4.4	1711	1313	1710	1313	1712	1314	1711	1314	1711	1314	1631.6	570.3389831
	4.2	1730	1328	1731	1329	1730	1328	1730	1328	1731	1329	1650	576.8578879
	4	1735	1333	1735	1332	1734	1332	1735	1332	1735	1332	1654.2	578.1616688
	3.8	1746	1340	1747	1341	1746	1341	1746	1341	1746	1340	1665	581.6384181
	3.6	1759	1350	1760	1351	1760	1351	1759	1350	1760	1351	1677.8	586.4189483
	3.4	1782	1368	1782	1368	1783	1369	1784	1369	1783	1369	1700	594.2416341
	3.2	1804	138	1805	1385	1804	1385	1805	1386	1805	1386	1720.8	601.6297262
	3	1832	1407	1832	1407	1833	1407	1833	1407	1833	1407	1747.4	610.756193
	2.8	1865	1432	1865	1432	1865	1432	1865	1432	1865	1432	1778.4	621.6210343
	2.6	1932	1483	1931	1483	1932	1483	1931	1483	1931	1483	1841.8	643.7853107
	2.4	2040	1566	2040	1566	2040	1567	2041	1567	2040	1566	1945.4	679.8565841
	2.2	2152	1652	2153	1653	2151	1652	2152	1653	2152	1653	2052.2	717.6662321
	2	2590	1989	2593	1992	2609	2004	2595	1993	2600	1996	2476.6	866.7318557
	1.8	2600	1997	2617	2010	2608	2003	2624	2015	2603	1999	2489.6	868.0356367
	1.6	3179	2442	3179	2442	3179	2441	3148	2441	3179	2442	3025.4	1060.560626
	1.4	3266	2509	3266	2509	3266	2509	3266	2509	3266	2509	3114.6	1089.678401
	1.2	3266	2509	3266	2509	3266	2509	3266	2509	3266	2509	3114.6	1089.678401

ตารางผลการทดลองของแม่เหล็กขั้วใต้เมื่อมีแผ่นกั้น

ตารางผลการทดลองของแม่เหล็กขั้วใต้เมื่อไม่มีแผ่นกั้น

อภิปรายผล

North pole Magnetic Flux Density shield or no shield Chart

แผนภูมิแสดงค่าคพฤติกรรมของ Magnetic Flux Density ชั่วเหนือเมื่อมีแผ่นกั้นและไม่มีแผ่นกั้น

South pole Magnetic Flux Density shield or no shield Chart

แผนภูมิแสดงค่าคพฤติกรรมของ Magnetic Flux Density ขั้วใต้เมื่อมีแผ่นกั้นและไม่มีแผ่นกั้น

1. กราฟขั้วใต้ (South Pole)

- เส้น มีแผ่นกั้น (สีน้ำเงิน) มีค่า Magnetic Flux Density ต่ำกว่า เส้น ไม่มีแผ่นกั้น (สีแดง) ตลอดทุก ช่วงความสูง
- ทำให้การทดลองสอดคล้องกับหลักการทางวิทยาศาสตร์ อย่างสมบูรณ์ แผ่นกำบัง (Shield) ทำ หน้าที่เบี่ยงเบนเส้นแรงแม่เหล็กออกจากบริเวณที่วัด ทำให้ค่าสนามแม่เหล็กลดลง

2. กราฟขั้วเหนือ (North Pole)

- ผลลัพธ์: กราฟมีความซับซ้อน โดยที่ความสูง h ประมาณ 2.4 cm กราฟเกิดการตัดกัน (Crossover)
 - \circ ช่วง $h < 2.4 \ cm$ มีแผ่นกั้นทำงานได้ผล
 - \circ ช่วง $h > 2.4 \, cm$ ค่า มีแผ่นกั้น (สีแดง) กลับ สูงกว่า ไม่มีแผ่นกั้น (สีน้ำเงิน)
- คำอธิบาย: ปรากฏการณ์นี้ไม่ได้หมายความว่าชีลด์ล้มเหลว แต่แสดงถึง "ผลกระทบที่ขอบ" (Edge Effect) หรือ "การกระจุกตัวของฟลักซ์" (Flux Concentration)

หลักการคือ: แผ่นชีลด์จะ "ดึง" เส้นแรงแม่เหล็กให้มารวมที่ตัวมันเพื่อเบี่ยงเบนเส้นทาง ที่ความสูง
 h > 2.4 cm เซ็นเซอร์อาจกำลังวัดค่า ณ ตำแหน่ง ขอบ ของแผ่นชีลด์ ซึ่งเป็นจุดที่เส้นแรงแม่เหล็ก ถูกรวมศูนย์และกระจุกตัวอยู่ ทำให้ค่าที่วัดได้สูงกว่าค่าสนามแม่เหล็กปกติ (No shield) ณ ความสูง เดียวกัน

การทดลองขั้วใต้แสดงการทำงานในอุดมคติของแผ่นกั้น คือ การลดสนามทำให้การทดลองขั้วเหนือแสดง ปรากฏการณ์จริงที่ชีลด์สามารถทำให้สนามแม่เหล็ก *ณ บางจุด* เช่น บริเวณขอบ มีความเข้มข้นสูงขึ้นได้

ข้อเสนอแนะ

- 1. เลื่อนเซ็นเซอร์ในแนวนอนผ่านขอบแผ่นชีลด์ เพื่อพิสูจน์ทฤษฎี การกระจุกตัวของฟลักซ์ที่ขอบ
- 2. ทดลองใช้แผ่นกำบังรูปทรงปิด (เช่น ครอบเป็นกล่อง) เพื่อเปรียบเทียบประสิทธิภาพการลด สนามแม่เหล็ก และดูว่าสามารถลด Edge Effect ได้หรือไม่

อ้างอิง

https://www.helmut-fischer.com/applications/solutions/magnetic-measuring-method https://www.kjmagnetics.com/blog/magnetic-shielding-materials?srsltid=AfmBOop0Nu3cLNIW2zZldtqaXKjYrz9CdPF3xQ3JmU8jm_1qD7dhgH2q

4. Load cell

การทดลองที่ 1 การเปรียบเทียบค่า V_{out} ที่อ่านค่าส่งผลอย่างไรต่อค่า $Magnetic\ Flux\ Density$ จุดประสงค์

- 1. เพื่อศึกษาความสัมพันธ์เชิงเส้น (Linear Relationship) ระหว่างมวล (น้ำหนัก) ที่กระทำต่อโหลด เซลล์ (ในช่วง 500g ถึง 10kg) กับค่าดิจิทัล (ADC) ที่อ่านได้จากวงจรขยายสัญญาณ
- 2. เพื่อทำความเข้าใจและอธิบายหลักการทำงานของ Strain Gauge, การต่อวงจร Wheatstone Bridge ภายในโหลดเซลล์, และการทำงานของ Differential Amplifier
- 3. เพื่อนำข้อมูลที่ได้ไปสร้างสมการสอบเทียบ (Calibration Equation) สำหรับการแปลงค่า ADC กลับไปเป็นค่ามวล (g หรือ kg)

สมมติฐาน

หากนำน้ำหนักที่คำนวณมาจาก ADC และค่าน้ำหนักจริง มาพล็อตเป็นกราฟ ความสัมพันธ์ที่ได้ควรมี ลักษณะเป็น กราฟเส้นตรง ซึ่งสามารถอธิบายได้ด้วยสมการ y=mx+c

ตัวแปร

ตัวแปรต้น

1. น้ำหนักของถุงทรายที่ใช้ในการทดลอง

ตัวแปรตาม

1. สัญญาณ ADC ที่ได้มาจาก Strain gauge ผ่าน MCU

ตัวแปรควบคุม

- 1. แรงดันไฟฟ้าเลี้ยงวงจร (Vcc)
- 2. วงจรขยายสัญญาณ โดยค่าตัวต้านทานจะต้องเท่าเดิม
- 3. ชุดการทดลองเดิม

- 4. อุณหภูมิของสภาพแวดล้อมการทดลอง
- 5. การวางต้องมีวิธีการวางถุงทรายแบบเดิม

เอกสารและงานวิจัยที่เกี่ยวข้อง

เสตรนเกจ (Strain Gauge) คือตัววัดค่าการเสียรูปของวัตถุซึ่งเป็นเชิงกลจะเปลี่ยนให้กลายเป็นไฟฟ้า โดยจะวัดจากความเครียสที่เกิดขึ้นแล้วจะแปลงออกมาเป็นค่าความต้านทานในกระแสไฟฟ้า

สะพานวีตสโตน (Wheatstone bridge) ใช้ในการวัดค่าความต้านทานที่ไม่รู้ภายในโดยจะวันจากความ สมดุลภายในวงจร ถ้าหากความต้านทานภายในสมดุลกันจะทำให้ไม่มีกระแสไหลผ่านตัวต้านทานที่อยู่ตรงกลาง แต่ถ้าหากมีความไม่สมดุลจะทำให้มีกระแสไหลผ่านเข้าไป

ขั้นตอนการดำเนินงาน

1. ปรับค่าตัวต้านทานตามสมการ

$$V_o = (V_{IN}^+ - V_{IN}^-)G$$
$$G = 4 + \frac{60k\Omega}{R}$$

โดยใช้น้ำน้ำที่ใช้ในการปรับค่า R คือ 10 kg จากการคำนวณได้ค่า R ที่ 95.76 $\, \Omega \,$

2. ทำโปรแกรมในการอ่านสัญญาณ ADC โดยใช้

โดยนำสัญญาณ ADC มาเข้า Convert Block โดย Block จะทำการปรับชนิดของตัวแปรที่ ต้องการอ่านให้เข้ากับตัวแปรที่ต้องการใช้เองจากนั้นก็จะทำการหาค่าเฉลี่ยของสัญญาณโดยที่ไม่ใช้ Signal Condition เพราะว่าระหว่าการทดลองไม่มีค่าที่ Spike เลยจึงคิดว่านำมาใช้ได้

- 3. นำค่าที่ได้มาเปรียบเทียบกับน้ำหนักจริงโดยจะมรการเก็บค่าน้ำหนักจริงไว้แล้ว
- 4. เมื่อค่าที่ออกมาผ่านโปรแกรม Simulink จะทำการ Callibrate ให้ตรงกับค่าจริงๆ โดยใช้สมการ

$$y = mx + c$$

โดยใช้ MATLAB ในการคำนวณ polyfit(ADC_signal,Real_weight,1) จากคำสั่งนี้เราจะได้ m และ c ออกมา ต่อมานำค่าที่ได้ไปใส่ใน MATLAB function ใน Simulink เพื่อต้องการปรับค่าให้ตรงกับน้ำหนักจริง

- 5. ถ้าหากยังมีค่า Error จะทำการปรับค่าตรงโดยใช้วิธีการเทียบอัตราส่วนในการแก้ไข
- 6. ทำการลองซ้ำโดยเขียนไฟล์ script ในการหาค่าเฉลี่ยที่ Export ออกมาจาก Simmulink
- 7. ทำการบันทึกค่าที่ ADC ผ่านโปรแกรม Simmulink โดยเริ่มต้นที่ o g เพิ่มครั้งละน้ำหนัก 500 g จนถึง 10 kg

ผลการทดลอง

การทดลองก่อนการใช้สมาการช่วย

หลังจากการใช้สมการช่วยครั้งที่ 1

โดยมีการ Callibration อีกครั้งวิธีการ คือ ค่าที่อ่านได้ =(1200 imes น้ำหนักจริง[kg]) - 200 เพราะว่าเมื่อทำการทดลองมีค่า Error อยู่ที่ 500 - 600 กรัมจะได้ส่วนที่ใช้ในการ Calibration 2 ส่วน

หลังจากการใช้สมการช่วยครั้งที่ 2

อภิปรายผล

สเตรนเกจ (Strain Gauges) จะมีค่าตัวต้านทานเปลี่ยนไปเมื่อเกิดการหดหรือยืด ถูกนำไปต่อเข้ากับ วงจรวีทสโตนบริดจ์ (Wheatstone bridge) เมื่อใช้งานในโหลดเซลล์ วงจรวีทสโตนบริดจ์คือ การเปรียบเทียบค่า ความต้านทานในวงจรเพื่อหาค่าความต้านทานที่ไม่ทราบค่าในกรณีของโหลดเซลล์ เพื่อวัดการเปลี่ยนแปลงค่า ความต้านทานที่เกิดขึ้น

เมื่อไม่มีน้ำหนักวางบนโหลดเซลล์ สเตรนเกจทั้ง 4 ตัวมีค่า R เท่ากันหมด วงจรจะสมดุล Vout จึงเป็น 0 V หากมีน้ำหนักมาวางจะทำให้ Strain gauges เกิดการยืดหดทำให้ R ไม่เท่ากันส่งผลให้เกิดค่า V เกิดขึ้น สัญญาณที่ออกมาจากวีทสโตนบริดจ์ (Vout) เมื่อมีน้ำหนักมากด มีค่าน้อยมากๆ อยู่ในช่วง มิลลิโวลต์ ใช้ค่าตัว ต้านทานจากการคำนวณขณะที่ขั้นตอนการดำเนินงาน กล่าวคือการทดลองใช้ Strain gauge ในการสร้าง Wheatstone bridge เพื่อนำสัญญาณที่เกิดขึ้นมาใช้ต่อมาใช้ Op-Amp ในการขยายสัญญาณแล้วเข้าสู้วิธีการแปร ผลของค่าสัญญาณ

ข้อเสนอแนะ

- 1. เนื่องจากอุณหภูมิทำให้ค่า Strain ของ Load cell มีค่าเปลี่ยนแปลงควรจะคุมให้คงที่
- 2. จากกราฟก่อนที่จะ calibration จะเห็นได้ว่าเราควรจะแบ่งช่วงการทำก่อน 6 kg และหลัง 6 kg เพื่อ ความแม่นยำเพื่อให้ตรงกับเส้นที่สร้างขึ้นมาจาก function poly(x,y,1)
 - 3. ค่า R ที่คลาดเคลื่อนไปเพราะสภาพแวดล้อมของการทำการทดลอง

อ้างอิง

https://www.anyload.com/how-does-a-load-cell-work/#how-does-a-strain-gauge-load-cell-work

https://www.electronics-tutorials.ws/blog/wheatstone-bridge.html

ภาคผนวก ก

Potentiometer

โปรแกรมที่ใช้รับค่ามาเป็นบิตแล้วแปลงไปเป็นอื่นๆ

```
function y = f(u)
    % 1. ประกาศตัวแปร 'persistent' เพื่อให้มัน "จำ" สถานะก่อนหน้าได้
    persistent previousState;
    % 2. ตรวจสอบและตั้งค่าเริ่มต้น (ถ้าเป็นการรันครั้งแรก)
    if isempty(previousState)
         previousState = 0; % สมมติว่าเริ่มที่ 0
    end
    % 3. ตรรกะ Schmitt Trigger
    if u > 3000
        y = 100;
    elseif u < 1000
        y = 0;
    else
        % ถ้าค่าอยู่ระหว่าง 1000 ถึง 3000 (Hysteresis)
        % -> y จะคงค่าเดิมไว้
        y = previousState;
    end % <--- 🔽 นี่คือจุดที่แก้ไขแล้ว (MUST BE 'end')
    % 4. อัปเดตสถานะ "จำ" ค่า y ล่าสุดไว้สำหรับรอบถัดไป
    previousState = y;
end
```

โปรแกรมที่ใช้แปลงบิตไปเป็นวงจรทริกเกอร์แบบชมิตต์ (Schmitt trigger)

โปรแกรมที่ใช้แปลงบิตไปเป็นแรงดันไฟฟ้า

ลิ้ง GitHub: https://github.com/FifaKongphopKaikaew/FRA271-LAB1-B08-48-57-65.git /56

ภาคผนวก ข Incremental Encoder

โปรแกรมที่ใช้อ่านค่า X1 X2 X4 CW CCW

```
MATLAB Function
Talencoder_reader_simulink 🕨 <page-header> MATLAB Function
            function Homing position = Homing Offset(pos, trig)
  2
           %#codegen
  3
            persistent offset
  4
            if isempty(offset), offset = 0; end
  5
  6
            % trigger = 1 → ตั้ง home ใหม่
  7
            if trig
  8
                offset = pos;
  9
            end
10
           % คืนค่าตำแหน่งสัมพัทธ์จาก home
11
12
           Homing_position = pos - offset;
13
```

โปรแกรม Homing_position

```
WrapAround
Encoder_reader_simulink 🕨 📣 WrapAround
           function position = WrapAround(curr)
  2
           %#codegen
  3
           persistent last offset
  4
           if isempty(last)
  5
               last = curr;
  6
               offset = 0;
  7
  8
  9
           MAX COUNT = 61439;
 10
           diff = double(curr) - double(last);
 11
           % ตรวจจับ overflow/underflow อย่างปลอดภัย
 12
13
           if diff > MAX_COUNT/2
               offset = offset - (MAX_COUNT + 1);
 14
15
           elseif diff < -MAX_COUNT/2</pre>
16
               offset = offset + (MAX_COUNT + 1);
17
18
           % ป้องกันกรณี spike ใหญ่ที่ไม่ใช่ overflow
 19
 20
           if abs(diff) > MAX_COUNT*0.9
 21
                diff = 0;
 22
 23
 24
           position = double(curr) + offset;
 25
           last = curr;
 26
           end
```

โปรแกรมที่ใช้ Wrap Around

โปรแกรมที่ใช้หาค่าตำแหน่งและความเร็วที่เปลี่ยนไป

กิ้ง GitHub: https://github.com/FifaKongphopKaikaew/FRA271-LAB1-B08-48-57-65.git /65

ภาคผนวก ค

Magnetic sensor

Ratiometric Linear Hall Effect Magnetic Sensor (connect analog pin to PAO) STM32 ADC1 ADC1

โปรแกรมที่ใช้ในการทำการทดลอง

```
ADC_reader_simulink ▶ 		 MATLAB Function
 1
           function avg_value = adc_average(u)
  2
  3
           persistent sumVal count
  4
  5
           if isempty(sumVal)
               sumVal = 0;
  6
  7
               count = 0;
           end
  8
 9
10
           sumVal = sumVal + double(u);
 11
           count = count + 1;
12
           avg_value = sumVal / count;
13
14
           end
```

โปรแกรมที่ใช้การหาค่าเฉลี่ย

```
ADC_reader_simulink ▶ 

MATLAB Function1
           function avg_value = adc_average_single(u)
  2
           % u - ADC reading (e.g., 0-4095)
  3
           % avg_value - final average value
  4
           Vref = 3.3;
           ADC_max = 4095;
  5
           Nmax = 1000;
  6
  8
           persistent sumVal count avgVal done
  9
 10
           if isempty(sumVal)
 11
               sumVal = 0;
 12
               count = 0;
               avgVal = 0;
 13
               done = false;
 14
 15
 16
           if ~done
 17
 18
               % mV
 19
               Vout_mV = (double(u) / ADC_max) * Vref * 1000;
 20
               sumVal = sumVal + Vout_mV;
 21
 22
               count = count + 1;
 23
 24
               % compute average
 25
               if count >= Nmax
 26
                   avgVal = sumVal / count;
 27
                   done = true;
 28
               end
 29
           end
 30
 31
           % Output
           avg_value = avgVal;
 32
 33
 34
```

โปรแกรมรวมค่าที่ที่เก็บและแปลงเป็น Vout

```
ADC_reader_simulink > ADC_reader_simulink
  1
           function B = find_B(Vout)
  2
               % Constants
  3
               VQ = 3.3/2;
  4
               Sensitivity_25C = 1.3;
  5
               STC = 0.001;
  6
               TA = 25;
  7
               % Calculation
  8
  9
               B = (Vout - VQ) ./ (Sensitivity_25C * (1 + STC * (TA - 25)));
 10
           end
```

โปรแกรมสมการหาค่า Magnetic Flux Density

ลิ้ง GitHub : https://github.com/FifaKongphopKaikaew/FRA271-LAB1-B08-48-57-65.git /48

ภาคผนวก ง

Load cell

โปรแกรมการทำการทดลอง

```
ADC_reader_simulink 🕨 <page-header> MATLAB Function3
           function calculated_weight_g = convertADCtoWeight(avg_adc_signal)
  1
  2
           % โดยใช้สมการ Calibration (y = mx + c)
  3
  4
           m_slope = 1906562422; 3.08549
  5
           c_offset = -3.236277211858530e+02;
  6
  7
                 ผลลัพธ์ตรงนี้คือ "ค่าฝั่งขวา" ในตารางของคุณ
  8
  9
           incorrect_weight_g = (m_slope * avg_adc_signal) + c_offset;
 10
           % อัตราส่วนของน้ำหนักที่ error เมื่อเทียบกับน้ำหนักที่ถูกต้อง
11
           calculated_weight_g = (incorrect_weight_g + 200) / 1.2;
12
 13
           if calculated_weight_g < 0</pre>
 14
 15
                calculated_weight_g = 0;
 16
 17
           end
```

โปรแกรมการ Calibration ADC_weight

ลิ้ง GitHub: https://github.com/FifaKongphopKaikaew/FRA271-LAB1-B08-48-57-65.git /48