Lineaire Algebra - Oefeningen uit Reeks 14 & 15

Assistent: Geoffrey Janssens - geofjans@vub.ac.be Met dank aan: Inneke Van Gelder en Lieven Desmet

Opgaven uit de cursus

- 1. Oefening 14.1. f_3 en f_6 .
- 2. Oefening 14.2.a.
- 3. Oefening 14.3.
- 4. Oefening 14.7. 4, 5, 6
- 5. Oefening 14.8. f_2 en f_3 .
- 6. Oefening 15.2.
- 7. Oefening 15.4. 2b, 4b.
- 8. Oefening 15.7.b.
- 9. Oefening 15.8.

Afbeeldingen van een eindigdimensionale \mathbb{R} -VR E naar zichzelf		
lineaire afbeelding	beeld van deelruimte is deelruimte.	
$f: E \to E$		
affiene afbeelding	beeld van lineaire variëteit is lineaire variëteit.	
$g: E \to E: \vec{v} \mapsto f(\vec{v}) + \vec{a}$	- evenwijdige variëteiten afgebeeld op evenwijdige variëteiten.	
waar f lineair en $\vec{a} \in E$	- bewaren deelverhouding van drie collineaire punten.	
	- een affiene bijectie bewaart de dimensie van de variëteit.	
	- affiene bijecties vormen groep voor samenstelling.	
Bijzonder geval: E is eindigdimensionale Euclidische ruimte		
orthogonale lin. afbeelding	- bewaren norm en inproduct, steeds bijectief.	
$f: E \to E$	- bewaren afstanden: zijn lineaire isometrieën .	
	- deelgroep van groep van alle isometrieën.	
isometrie	- bewaren afstanden.	
$g: E \to E: \vec{v} \mapsto f(\vec{v}) + \vec{a}$	- unieke ontbinding in f en \vec{a}	
waar f orthogonaal en $\vec{a} \in E$	- vormen groep voor de samenstelling.	
Indeling volgens:		
$\det f = 1$: verplaatsingen	- deelgroep voor de samenstelling (bewaren oriëntatie).	
$\det f = -1$: anti-verplaatsingen	- geen deelgroep.	

Met deelverhouding van drie collineaire punten $\vec{x}, \vec{a}, \vec{b}$ (op dezelfde rechte bepaald door \vec{a} en $\vec{b} \neq \vec{a}$) wordt bedoeld de coëfficiënt λ zodat $\vec{x} = \vec{a} + \lambda(\vec{b} - \vec{a})$. Men zegt dat affiene bijecties de affiene structuur bewaren, isometrieën bewaren bovendien ook de metrische structuur.

Opmerking: een isometrie bewaart geen hoeken (Def. 6.1.9) tussen vectoren (hoek tussen \vec{x}, \vec{y} niet i.h.a. zelfde als hoek tussen $g(\vec{x}), g(\vec{y})$), maar wel hoeken in figuren (voor drie punten \vec{x}, \vec{y} en \vec{z} geldt dat $\vec{x} - \vec{z}, \vec{y} - \vec{z}$ en $g(\vec{x}) - g(\vec{z}), g(\vec{y}) - g(\vec{z})$ dezelfde hoek bepalen).

De classificatie van de isometrieën volgt dus uit deze van de orthogonale transformaties en is gebaseerd op de dimensie van V (dekpunten van f (!)).

		, (desipanies van j (v)).
Isometrieën van \mathbb{E}		
$\dim V$	$\det f$	
1	1	verschuiving
0	-1	puntsymmetrie
Isometrieën van \mathbb{E}^2		
$\dim V$	$\det f$	
2	1	verschuiving
1	-1	schuifspiegeling (spiegeling gevolgd door verschuiving evenwijdig met de spiegelas)
0	1	rotatie rond (m_1, m_2) over hoek $\theta \neq 2k\pi$
Isometrieën van \mathbb{E}^3		
$\dim V$	$\det f$	
3	1	verschuiving
2	-1	schuifspiegeling (spiegeling gevolgd door verschuiving evenwijdig met spiegelvlak)
1	1	schroefbeweging (rotatie over hoek $\theta \neq 2k\pi$ gevolgd door verschuiving volgens rotatie-as)
0	-1	spiegel rotatie (rotatie ($\theta \neq 2k\pi$) gevolgd door spiegeling om vlak loodrecht op rotatie- as)