Computational Fluid Dynamics Comsol Lab 1 Lecture 5

Krister Wiklund
Department of Physics
Umeå University

Comsol Lab 1: Two-fluid Interface Dynamics Experiment (Low Re)

Comsol Lab 1: Two-fluid Interface Dynamics Experiment

Wave motion machine

Task: Find a way to compare the experiment and the simulation

Two-fluid Interface Dynamics Simulation

Learning outcome the mandatory lab

- Experimental and simulation data comparison
 Experience with Level-set method
 Sensitivity study
 Mesh quality study
 Mesh convergence study
 Hands-on experience with stabilization techniques such as
 - □ Other

□ Streamline diffusion

☐ Cross-wind diffusion

The Modeling and Simulation process

1. Problem formulation

Describe your interpretation of the problem formulation

2. Choice of measurement method

Formulate Strengths & Weakness of measurement methods.

3. Choice of simplified physical model (an abstraction of reality)

Formulate Strengths & Weakness of simplified model.

4. Choice of simulation approach

Formulate Strengths & Weakness of chosen simulation approach.

5. Expected simulation data

What are the expected data from your simulation?

6. Evaluation of simulated and measured data

How do you compare simulated data with measured data?

7. Back to 2

The Level-set method (a simple version)

Assume that we have a function, a field, that is constant on the interface (it moves with the interface):

$$\left[\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \phi = 0 \right]$$

$$\mathbf{n} = \frac{\nabla \phi}{\left| \nabla \phi \right|}$$

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla\right) \phi = 0 \qquad \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|} \qquad \kappa = -\nabla \cdot \mathbf{n} \quad \text{Curvature} \quad \text{of interface}$$

$$\Rightarrow$$

$$\mathbf{u} \cdot \mathbf{n} = \frac{\mathbf{u} \cdot \nabla \phi}{\left| \nabla \phi \right|} = -\frac{1}{\left| \nabla \phi \right|} \frac{\partial \phi}{\partial t}$$

Physical interpretation

$$\rho(\mathbf{r}) = \rho_A + (\rho_B - \rho_A)\phi(\mathbf{r})$$

$$\mu(\mathbf{r}) = \mu_A + (\mu_B - \mu_A)\phi(\mathbf{r})$$

Navier-Stokes

The motion of a fluid with two densities and two viscosities can be represented by the standard N-S equations

Numerical implementation

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0 \longrightarrow$$

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = 0 \qquad \longrightarrow \qquad \frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \varepsilon \nabla^2 \phi - \nabla \cdot (\phi (1 - \phi) \mathbf{n})$$
Numerical Numerical

diffusion

Numerical sharpening of interface

The Single-phase

interface in Comsol

Analysis of a simulation implementation

□ Sensitivity study

 Investigate how small changes in simulation parameters affects the simulation results

■ Mesh quality study

- Use the software built-in functions
- In comsol one is qual

■ Mesh convergence study

- Consider how refining the mesh affects the result
- An optimal setup has a mesh that is good enough, i.e. the the mesh gives the wanted accuracy without being too fine

Mesh quality function in Comsol

In Comsol you can display the quality of the mesh by creating a mesh-plot:

Results / 2D Plot / Mesh

and choosing Quality as Element color.

Mesh convergence study, Example

Mesh convergence study, Example (cont.)

Making the mesh finer does not improve the result much...

Mach	NoE on	NoE in	NoE in	Tatal	Dal	Гакаа	DalErrin F *
Mesh	NoE on	NoE in	NoE in	Total	DoF	Force	RelErr in F *
case	sphere	mesh box	channel	NoE	[]	[pN]	[%]
1	4030	64045	63793	127838	999	36.579	-0.068
2	4028	64319	37206	101525	731	36.604	-0.14
3	1828	34954	37313	72267	565	36.656	-0.33
4	560	16568	37235	53803	465	36.778	-0.93
5	560	16569	17758	34327	264	37.125	-1.21
6	560	16569	11394	27963	197	37.581	

What if you do not have any analytical model to compare with?

Just plot the Force vs DoF, it should also get better and better the finer mesh we use.

(You can of course plot any variable vs DoF)

Data analysis in the two-fluid simulation lab

MultiPhase-interface in Comsol

How do we compare the experimental data with the simulation results? Example:

- Movie on experiment => Height data
- Cut line in simulation => Height data

Comsol vs Matlab

- Ok to do the analysis within Comsol
- Efficient to do the analysis in Matlab by exporting simulation data as a text file

Sensitivity study

Example: How sensitive is the result on small changes in viscosity?

Single-phase-interface in Comsol

Coarse mesh

Note:

In the pre-made Comsol files (and their instructions) in Lecture folders you find hints and tricks useful in the mandatory labs and the project.

End of lecture