CHAPTER FIVE

Curve Fitting

Objectives

- Curve Fitting
- Line Fit

Curve Fitting

 The best curve approximation that goes near (not always through) data points.

• Find best line that minimize the error between the data points and the line .

•
$$e_k = f(x_k) - y_k$$
 \rightarrow $f(x_k) = y_k + e_k$

• $e_k \rightarrow$ Error (deviations or residuals)

• Root–Mean–Square (RMS) error is used to measure how far the curve y = f(x) lies from data.

$$E_{rms} = \left(\frac{1}{N}\sum_{k=1}^{N}(f(x_k) - y_k)^2\right)^{1/2}$$

•
$$E_{rms} = \left(\frac{1}{N}\sum_{k=1}^{N}(f(x_k) - y_k)^2\right)^{1/2}$$

•
$$N(E_{rms}^2) = \sum_{k=1}^{N} (f(x_k) - y_k)^2$$

Sum of the squares of the vertical distances form the point to the line.

• The line that minimizes E_{rms} called least-square line.

$$y = f(x) = A_x + B$$

• Find A and B in least square line: $E(A,B) = \sum_{k=1}^{N} (Ax_k + B - y_k)^2$

• The minimum value of E(A,B) in determined by setting the partial derivatives $\partial E/\partial A$ and $\partial E/\partial B$ equal to zero and solving there equations for A and B.

$$E(A,B) = \sum_{k=1}^{N} (Ax_k + B - y_k)^2$$

$$\frac{\partial E(A,B)}{\partial A} = \sum_{k=1}^{N} 2 (Ax_k + B - Y_k)^1 (x_k) = 0$$

$$= 2 \sum_{k=1}^{N} (Ax_k^2 + Bx_k - x_k y_k) = 0$$

$$E(A,B) = \sum_{k=1}^{N} (Ax_k + B - y_k)^2$$

$$\frac{\partial E(A,B)}{\partial B} = \sum_{k=1}^{N} 2 (Ax_k + B - Y_k)^1 (1) = 0$$

$$= 2 \sum_{k=1}^{N} (Ax_k + B - y_k) = 0$$

$$(\sum_{k=1}^{N} x_k)A + NB = \sum_{k=1}^{N} y_k$$
2

• From equations 1 and 2, find A and B

Line Fit – Example

• Find least–square line far data points: (-1,10) (0,9) (1,7) (2,5) (3,4) (4,3) (5,0) (6,-1) N=8

$$(\sum_{k=1}^{8} x_k^2) A + (\sum_{k=1}^{8} x_k) B = \sum_{k=1}^{8} x_k y_k \dots 1$$

$$(\sum_{k=1}^{8} x_k) A + 8B = \sum_{k=1}^{8} y_k \dots 2$$

Table 5.2 Obtaining the Coefficients for Normal Equations

x _k	Уķ	x_k^2	x _k y _k
-1	10	1	-10
0	9	0	0
1	7	1	7
2	5	4	10
3	4	9	12
4	3	16	12
5	0	25	0
6	-1	36	-6
$\frac{6}{20}$	37	$\frac{36}{92}$	25

• From Table 5.2

$$\sum x_k = 20 \qquad \sum x_k^2 = 92$$

$$\sum y_k = 37 \qquad \sum x_k y_k = 25$$

$$92A + 20B = 25$$

 $20A + 8B = 37$

$$A = -1.6071429$$

 $B = 8.6428571$

$$y = -1.6071429x + 8.6428571$$

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

