

Anomaly Detection

Done by Rishabh Rakesh

Business Understanding

Designing intrusion detection systems using machine learning and data mining algorithms.

Globally, Security of computers and the networks that connect them is increasingly becoming of great significance. Machine learning and data mining algorithms play important roles in designing intrusion detection systems.

In the anomaly detection approach, on the other hand, anomalous states in a system are identified based on a significant difference in the state transitions of the system from its normal states.

Ideas

Link:- https://arxiv.org/ftp/arxiv/papers/1610/1610.04306.pdf

Table2. Network packets database

ID	service	src_bytes	dst_bytes	duration	
r1	telnet	100	2000	13	•••
r2	ftp	200	300	2	
r3	smtp	250	300	1	
r4	telnet	200	12100	60	***
r5	smtp	200	300	1	•••

Perform
Discretization to
convert given
table into-->

Table 3. Discretization result of network packets database

ID	service	src_bytes	dst_bytes	duration	
rl	A	D	E	G	
r2	В	D	F	Н	
r3	С	D	F	Н	•••
r4	A	D	Е	G	•••
r5	С	D	F	Н	

A set of all items in Table 3 is I={A, B, C, D, E, F, G, H}, where A: $[f_1$ =telnet], B: $[f_1$ =ftp], C: $[f_1$ =smtp], D: $[f_2$ = src_bytes ≤ 300], E: $[f_3$ = dst_bytes ≤ 1000], G: $[f_4$ = duration ≥ 10], H: $[f_4$ = duration ≤ 10].

Data Acquisition

- Data was Provided By the Institute, is similar to well known datasets in the field (for reference : https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-)
- Usually The data is created by collecting Packets Flowing through a computer Network,
 Allowing one to get varied Amount of data based on different kinds of user present in Data.
 Usually Some=sort of Wireshark or similar tool is used to collect this data.

Understanding

By Utilizing the Common use case of MArket BAsket Analysis and IDS, we came up with following Differences in functionality:

- (1) While the database for market basket analysis is a transaction database in which each transaction has different length (i.e. the number of data items in a transaction), the database of for intrusion detection is a relational database of which record length is same.
- (2) In a realistic case, there can be many hundreds or even many thousands of products (data items) in database for market basket analysis. In contrast to this, network audit databases face tens of attributes.
- (3) For market basket analysis, an association rule is the implication $X \rightarrow Y$, where X and Y are itemsets like $\{11, 12, ..., 1n\}$. But, for intrusion detection, X and Y are itemsets like $\{f1=q1, f2=q2, ..., fn=qn\}$, where fk(k=1, 2, ..., n) is item name (field name) and qk(k=1, 2, ..., n) is a value of item.

Wrangling 1

Utilizing the pd.cut/ pd.qcut for Wrangling and Discretizing the features

Wrangling 2

In [9]: for col in discrete_col: thresholder(col)

duration threshold = 28857.5 src bytes threshold = 31412824.0 dst bytes threshold = 672963.5 land threshold = 0.5 wrong_fragment threshold = 1.5 hot threshold = 50.5 num failed logins threshold = 2.0 logged in threshold = 0.5 num compromised threshold = 398.0 root shell threshold = 0.5 su attempted threshold = 1.0 num root threshold = 439.0 num file creations threshold = 50.0 num shells threshold = 2.5 num access files threshold = 2.0 num outbound cmds threshold = 0.0 is guest login threshold = 0.5 count threshold = 255.5 srv count threshold = 255.5 serror rate threshold = 0.5 srv serror rate threshold = 0.5 rerror rate threshold = 0.5 sry rerror rate threshold = 0.5 same_srv_rate threshold = 1.0 diff srv rate threshold = 0.5 srv diff host rate threshold = 0.5 dst host count threshold = 255.0 dst_host_srv_count threshold = 255.0 dst host same srv rate threshold = 1.0 dst host diff srv rate threshold = 0.5 dst host same src port rate threshold = 0.5 dst host srv diff host rate threshold = 0.5 dst host serror rate threshold = 0.5 dst host srv serror rate threshold = 0.5 dst host rerror rate threshold = 0.5 dst host srv rerror rate threshold = 0.5

Various Thresholds for 36 Numerical Columns And Converting it to→ Which was suitable For Rules Association Mining

	duration	protocol_type	service	flag	src_bytes	dst_bytes	land	wrong_fragment	hot	num_failed_logins		dst_host_srv_count	dst_host_same_srv_ra
0	duration < 28857.5	tcp	private	REJ	src_bytes < 31412824.0	dst_bytes < 672963.5	land < 0.5	wrong_fragment < 1.5	hot < 50.5	num_failed_logins < 2.0	***	dst_host_srv_count < 255.0	dst_host_same_srv_r
1	duration < 28857.5	tcp	private	REJ	src_bytes < 31412824.0	dst_bytes < 672963.5	land < 0.5	wrong_fragment < 1.5	hot < 50.5	num_failed_logins < 2.0	1.1	dst_host_srv_count < 255.0	dst_host_same_srv_r;
2	duration < 28857.5	tcp	ftp_data	SF	src_bytes < 31412824.0	dst_bytes < 672963.5	land < 0.5	wrong_fragment < 1.5	hot < 50.5	num_failed_logins < 2.0		dst_host_srv_count < 255.0	dst_host_same_srv_r
3	duration < 28857.5	icmp	eco_i	SF	src_bytes < 31412824.0	dst_bytes < 672963.5	land < 0.5	wrong_fragment < 1.5	hot < 50.5	num_failed_logins < 2.0		dst_host_srv_count < 255.0	dst_host_same_srv_r; >=
4	duration < 28857.5	tcp	telnet	RSTO	src_bytes < 31412824.0	dst_bytes < 672963.5	land < 0.5	wrong_fragment < 1.5	hot < 50.5	num_failed_logins < 2.0		dst_host_srv_count < 255.0	dst_host_same_srv_n

5 rows × 40 columns

Feature Selection

System Architecture

Results of FE technique 1

- Utilizing Correlation Matrix to filter Features
- Creating Filtered Correlation Plot.
- Creating Box Plot to understand the Distribution of the Dataset.
- Creating Density Plots

Results of FE technique 2

			duration	src_bytes	dst_bytes	land	wrong_fragment	hot	num_failed_logins	logged_in	num_compromised	root_shel	II
service	flag	protocol_type											
	REJ	tcp	0	0	0	0	0	0	0	0	0		0
	RSTO	tcp	4560	938	4725	0	0	0	0	0	0		D
	RSTR	tcp	50537	9625	56479	0	0	0	0	0	0		0
	SF	tcp	134	342	1011	0	0	0	0	0	0		0
X11	S1	tcp	0	314868	415220	0	0	0	0	0	0		0
													300
uucp_path	S0	tcp	0	0	0	0	0	0	0	0	0		0
vmnet	REJ	tcp	0	0	0	0	0	0	0	0	0		0
	SO	tcp	0	0	0	0	0	0	0	0	0	(0
whois	REJ	tcp	0	0	0	0	0	0	0	0	0		0
	SO	tcp	0	0	0	0	0	0	0	0	0		0

Modeling

"The goal is to turn data into information, and information into insight." - Carly Fiorina

Results of ML technique 1

Association Rules Mining

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0		(e)	0.001464	0.001286	0.001242	0.848485	659.594566	0.001240	6.591510
1	(e)		0.001286	0.001464	0.001242	0.965517	659.594566	0.001240	28.957550
2	(0)		0.001286	0.001464	0.001153	0.896552	612.480669	0.001151	9.652517
3	\bigcirc	(0)	0.001464	0.001286	0.001153	0.787879	612.480669	0.001151	4.708221
4	(r)	\cup	0.001153	0.001464	0.001065	0.923077	630.601399	0.001063	12.980971
5		(r)	0.001464	0.001153	0.001065	0.727273	630.601399	0.001063	3.662438
6	(S)	\cup	0.001331	0.001464	0.001242	0.933333	637.608081	0.001240	14.978043
7		(s)	0.001464	0.001331	0.001242	0.848485	637.608081	0.001240	6.591217
8	(t)	\cup	0.001375	0.001464	0.001242	0.903226	617.040078	0.001240	10.318207
9		(t)	0.001464	0.001375	0.001242	0.848485	617.040078	0.001240	6.590924
10	(S)	(e)	0.001331	0.001286	0.001109	0.833333	647.816092	0.001107	5.992282
11	(e)	(s)	0.001286	0.001331	0.001109	0.862069	647.816092	0.001107	7.240352
12	(t)	(e)	0.001375	0.001286	0.001020	0.741935	576.765295	0.001018	3.870015
13	(e)	(t)	0.001286	0.001375	0.001020	0.793103	576.765295	0.001018	4.826687
14	(t)	(0)	0.001375	0.001286	0.001153	0.838710	651.995551	0.001152	6.192024
15	(0)	(t)	0.001286	0.001375	0.001153	0.896552	651.995551	0.001152	9.653374
16	(t)	(r)	0.001375	0.001153	0.001065	0.774194	671.285360	0.001063	4.423464
17	(r)	(t)	0.001153	0.001375	0.001065	0.923077	671.285360	0.001063	12.982124
18	(s)	(t)	0.001331	0.001375	0.001065	0.800000	581.780645	0.001063	4.993125
19	(t)	(S)	0.001375	0.001331	0.001065	0.774194	581.780645	0.001063	4.422678
20	(s, _)	(e)	0.001242	0.001286	0.001065	0.857143	666.325123	0.001063	6.990995
21	(s, e)	\cup	0.001109	0.001464	0.001065	0.960000	655.825455	0.001063	24.963405
22	(0)	/e)	0.001242	0.001221	0.001005	0 057149	C44 44400C	0.001000	c ooncor

Results of ML technique 2

Random Forest Classifier

[[3082 112] [137 2305]]

Conclusion

Association Rule Mining Could be used to provide explainability to Random Forest Ensembles.

LIME is one popular Technique which utilizes Association Rule Mining to Create the Trees in Random Forest Which can than be explained Factor By Factor.

SHAP is another popular Technique Though it uses different Mining Technique.

