รายงานการปฏิบัติสหกิจศึกษา

เรื่องการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ SOFTWARE DEFINED NETWORK

ปฏิบัติงาน ณ บริษัท แอ็ดวานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน)

โดย นายจิรสิน ปัญญาวิสุทธิชัย รหัสประจำตัว 57070020

รายงานนี้เป็นส่วนหนึ่งของการศึกษารายวิชา สหกิจศึกษา สาขาวิชา เทคโนโลยีสารสนเทศ คณะ เทคโนโลยีสารสนเทศ ภาคการศึกษาที่ 1 ปีการศึกษา 2560 สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

รายงานการปฏิบัติสหกิจศึกษา

เรื่อง การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ SOFTWARE DEFINED NETWORK

โดย

นายจิรสิน ปัญญาวิสุทธิชัย รหัสประจำตัว 57070020

อาจารย์ที่ปรึกษา ดร.ลภัส ประดิษฐ์ทัศนีย์

ปฏิบัติงาน ณ บริษัท แอ็ดวานซ์อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน)
เลขที่ 37/2 ถนนสุทธิสาร แขวงสามเสนนอก
เขตห้วยขวาง จังหวัดกรุงเทพมหานคร รหัสไปรษณีย์ 10320
โทรศัพท์ 022759400 โทรสาร 022759100

Website: www.ait.co.th

SOFTWARE DEFINED NETWORK

JIRASIN PUNYAWISUTTICHAI

A REPORT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENT FOR COOPERATING EDUCATION PROGRAM
THE DEGREE OF BACHELOR OF SCIENCE PROGRAM IN
INFORMATION TECHNOLOGY
FACULTY OF INFORMATION TECNOLOGY
KING MONGKUT'S INSTITUTE OF TECHNOLOGY LADKRABANG
1/2017

COPYRIGHT 2017

FACULTY OF INFORMATION TECHNOLOGY

KING MONGKUT'S INSTITUTE OF TECHNOLOGY LADKRABANG

วันที่ 29 กันยายน พ.ศ 2560

เรื่อง ขอส่งรายงานการปฏิบัติงานสหกิจศึกษา เรียน คร.ลภัส ประดิษฐ์ทัศนีย์

ที่ปรึกษาสหกิจศึกษาในสาขา เทคโนโลยีสารสนเทศ

ที่ข้าพเจ้านาย จิรสิน ปัญญาวิสุทธิชัย นักศึกษาสาขาวิชาเทค โนโลยีสารสนเทศคณะ เทคโนโลยีสารสนเทศ สถาบันเทค โนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ได้ปฏิบัติงานสหกิจ ศึกษาระหว่างวันที่ 1 เคือนมิถุนายน พ.ศ. 2560 ถึงวันที่ 30 เคือน พฤศจิกายน พ.ศ. 2560 ในตำแหน่ง Project Engineer – Installation ณ สถานประกอบการชื่อ บริษัท แอ็ควานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน) และ ได้รับมอบหมายจากพนักงานที่ปรึกษาให้ศึกษาและจัดทำรายงาน เรื่อง การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์

บัดนี้ การปฏิบัติงานสหกิจศึกษาได้สิ้นสุดลงแล้ว จึงใคร่ขอส่งรายงานการ ปฏิบัติงาน สหกิจศึกษาดังกล่าวมาพร้อมนี้ จำนวน 1 เล่ม เพื่อขอรับคำปรึกษาต่อไป

จึงเรียนมาเพื่อโปรคพิจารณา

ขอแสดงความนับถือ

(นายจิรสิน ปัญญาวิสุทธิชัย)

กิตติกรรมประกาศ

ตามที่ข้าพเจ้า นาย จิรสิน ปัญญาวิสุทธิชัย ได้มาปฏิบัติงานสหกิจศึกษา ณ บริษัท แอ็ด วานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน)ตั้งแต่วันที่ 1 มิถุนายน พ.ศ. 2560 ถึงวันที่ 30 พฤษจิ กายน พ.ศ. 2560 ทำให้ข้าพเจ้าได้รับความรู้และประสบการณ์ต่าง ๆ ที่มีคุณค่ามากมาย สำหรับ รายงานสหกิจศึกษาฉบับนี้สำเร็จลงได้ด้วยดี จากความช่วยเหลือและความร่วมมือสนับสนุนของ หลายฝ่าย ดังนี้

1. คุณ สิริลักษณ์ ปาลกะวงศ์ ณ อยุธยา ตำแหน่ง Assistant Vice President – Human

Resources

2. คุณ จักรพงษ์ ศิริพลตั้น พนักงานที่ปรึกษา

3. คุณ ภานุวัฒน์ เบญจปฐมรงค์ ตำแหน่ง Project Engineer

4. คุณ วรุตม์ กุศลชู ตำแหน่ง Project Engineer

5. คุณ ศุภฤกษ์ บุรณะชีวิน ตำแหน่ง Project Engineer

นอกจากนี้ยังมีบุคคลท่านอื่น ๆ อีกที่ไม่ได้กล่าวไว้ ณ ที่นี้ ซึ่งให้ความกรุณาแนะนำใน จัดทำรายงานสหกิจศึกษาฉบับนี้ ข้าพเจ้าจึงใคร่ขอขอบพระคุณทุกท่านที่ได้มีส่วนร่วมในการให้ ข้อมูลและให้ความเข้าใจเกี่ยวกับชีวิตของการปฏิบัติงาน รวมถึงเป็นที่ปรึกษาในการจัดทำรายงาน ฉบับนี้จนเสร็จสมบูรณ์

> นายจิรสิน ปัญญาวิสุทธิชัย ผู้จัดทำรายงาน

วันที่ 29 กันยายน พ.ศ. 2560

ชื่อรายงานการปฏิบัติงานสหกิจศึกษา การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์

ผู้รายงาน นายจิรสิน ปัญญาวิสุทธิชันชัย รหัสนักศึกษา 57070020

คณะ เทคโนโลยีสารสนเทศ

สาขาวิชา เทคโนโลยีสารสนเทศ

(คร.ลภัส ประคิษฐ์ทัศนีย์) อาจารย์ที่ปรึกษาสหกิจศึกษา

> (จักรพงษ์ ศิริพลตั้น) พนักงานที่ปรึกษา

กณะเทกโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้ากุณทหารลาดกระบัง อนุมัติให้นับรายงานการปฏิบัติงานสหกิจศึกษาฉบับนี้ เป็นส่วนหนึ่งของการศึกษา ตามหลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเทกโนโลยีสารสนเทศ ชื่อรายงาน การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์

ชื่อนักศึกษา นายจิรสิน ปัญญาวิสุทธิชัย

รหัสนึกศึกษา 57070020

สาขาวิชา เทคโนโลยีสารสนเทศ อาจารย์ที่ปรึกษา คร.ลภัส ประคิษฐ์ทัศนีย์

ปีการศึกษา 2560

บทคัดย่อ

รายงานฉบับนี้นำเสนอถึงแนวคิดการทำงานของการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ และการงานอื่นๆที่ได้รับมอบหมาย จากการไปปฏิบัติสหกิจศึกษาในตำแหน่ง Project Engineer ณ บริษัท แอ็ควานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน) ซึ่งเป็นบริษัทที่คำเนินธุรกิจในรูปแบบ ซิสเต็มส์อินทีเกรเตอร์

โดยที่การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์นั้นเป็นการเปลี่ยนแปลงการจัดการระบบ เครือข่ายแบบคั้งเดิมให้สามารถควบคุมการส่งข้อมูลจากอุปกรณ์หลักเพียงตัวเดียวและยังส่งผลให้ การจัดการในระบบต่างๆสามารถทำได้ง่ายยิ่งขึ้น โดยการใช้แนวคิดอันนี้มาใช้ในองค์กรต่างๆจึง เป็นสิ่งที่เหมาะสมเพราะจะสามารถตรวจสอบและลดขั้นตอนการทำงานไปได้ในหลายส่วน

Project Title Software Defined Network

Student Mr. Jirasin Punyawisuttichai

StundentID 57070020

Program Information Technology

Advisor Dr.Lapas Pradittasnee

Year 2017

ABSTRACT

This report present my work as a Project Engineer with Software Defined Network or SDN and other task at Advance Information Technology PLC. In correspondence with the Cooperative Education subject

Software Defined Network is a concept that will change management in traditional network to let the software control sending information from all device by manage on core device and it will decrease management work for network engineer and with SDN concept many organization should use this things for decrease process of verifying and working

สารบัญ

	หน้า
จคหมานำส่ง	I
กิตติกรรมประกาศ	II
หน้าอนุมัติรายงาน	III
บทคัดย่อภาษาไทย	IV
บทคัดย่อภาษาอังกฤษ	V
สารบัญ	VI
สารบัญตาราง	VII
สารบัญรูป	VIII
บทที่ 1 บทนำ	1
1.1 ความมุ่งหมายและวัตถุประสงค์	2
1.2 ประวัติ และรายละเอียดบริษัท	2
บทที่ 2 รายละเอียดของงานที่ปฏิบัติ	6
2.1 ตำแหน่ง/หน้าที่ของงานที่ได้รับมอบหมาย	6
2.2 รายละเอียดของโครงงานที่ได้รับผิดชอบ	6
2.3 ทฤษฎีและเทคโนโลยีที่เกี่ยวข้องกับโครงงาน	6
บทที่ 3 การดำเนินงานวิจัย	16
3.1 ทำการจำลองระบบเครื่อข่ายลงในโปรแกรมจำลอง	16
3.2 Configuration เบื้องต้นให้แก่อุปกรณ์แต่ละตัว	17
3.3 ทำการจำลองแนวกิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์	27
บทที่ 4 สรุปผลการปฏิบัติงาน	41
4.1 สรุปผลการปฏิบัติงาน	41
4.2 ประโยชน์ที่ได้รับ	42
บทที่ 5 ปัญหาและข้อเสนอแนะ	43
บรรณานุกรม	44
ภาคผนวก	45
ประวัติผู้เขียน	58

สารบัญตาราง

ตารางที่	หน้า
3.1 ตารางใอพีและอินเทอร์เฟส	17
3.2 ตารางข้อมูล Configuration RouterXR1	19
3.3 ตารางข้อมูล Configuration Router2	23
3.4 ตารางข้อมูล Configuration Router3	26
3.5 ตารางข้อมูล Configuration OpenvSwitch1	27
3.6 ตารางข้อมูล Configuration OpenvSwitch2	27
3.7 ตารางคำสั่ง Ingress Policy ของ Eth1 ใน OpenvSwitch1	36
3.8 ตารางคำสั่ง Egress Policy ของ Eth1 ใน OpenvSwitch1	37

สารบัญรูป

รูปที่	หน้า
1.1 โครงสร้างการดำเนินงานของบริษัท	3
1.2 ขั้นตอนกานดำเนินงานของบริษัท	3
1.3 โครงสร้างองค์กรของบริษัท	4
2.1 ภาพตัวอย่างโครงสร้างของแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์	8
2.2 ภาพตัวอย่างการทำงานของ Northbound และ Southbound API	10
2.3 ภาพตัวอย่างการทำงานของ Openflow Manager	12
2.4 ภาพตัวอย่างการทำงานของ Flow Table	13
2.5 ภาพตัวอย่างโครงสร้างของ OpenDaylight	13
2.6 ภาพตัวอย่างการทำงานของ OpenFlow Pipeline	14
2.7 ภาพตัวอย่างการทำงานของ Hybrid OpenFlow Pipeline	15
3.1 ภาพตัวอย่างระบบ โครงข่ายใน GNS3	17
3.2 ภาพตัวอย่างการเข้าใช้งาน OpenDaylight	28
3.3 ภาพตัวอย่าง Topology ใน OpenDaylight	28
3.4 ภาพตัวอย่างสถิติข้อมูลที่เก็บอยู่ใน OpenVirtualSwitch1	29
3.5 ภาพตัวอย่าง Topology ใน Openflow Manager	29
3.6 ภาพตัวอย่าง Host ใน Openflow Manager	30
3.7 ภาพตัวอย่าง RotuerXR Ping ไปยัง IP 8.8.8.8	30
3.8 ภาพตัวอย่างการคักจับข้อมูล โดยใช้ Wireshark	30
3.9 ภาพตัวอย่างการสร้าง Flow ใน Openflow Manager	31
3.10 ภาพตัวอย่าง Flow หลังจากสร้าง Flow เสร็จสิ้น	32
3.11 ภาพตัวอย่าง Flow Drop ข้อมูลใน OpenSwitch	32
3.12 ภาพตัวอย่าง RouterXR Ping ไปยัง IP 8.8.8.8 หลังจาก เพิ่ม Flow ลงไป	33
3.13 ภาพตัวอย่างการคักจับข้อมูล โดยใช้ Wireshark หลังจากเพิ่ม Flow ลงไป	33
3.14 ภาพตัวอย่างการสร้าง Flow ในการเปลี่ยนเส้นทางของข้อมูล	34
3.15 ภาพตัวอย่าง Flow ในการเปลี่ยนเส้นทางของข้อมูล OpenvSwitch1	34
3.16 ภาพตัวอย่างการ Ping จาก Ubuntu2 ไปยัง 203.151.13.166	35
3.17 ภาพตัวอย่างการ Ping จาก Ubuntuu-2 ไปยัง 8.8.8.8	35
3.18 ภาพตัวอย่างการ Wireshark ของ Interface RouterXR1 Gig0/0/0/0	35
3.19 ภาพตัวอย่างการ Ingress Policy ใน OpenVSwitch 1	36

สารบัญรูป (ต่อ)

รูปที่	หน้า
3.20 ภาพตัวอย่างรายละเอียดการส่งข้อมูลของ Ubuntu2	37
3.21 ภาพตัวอย่างรายละเอียด Eth2 ของ OpenvSwitch1	37
3.22 ภาพตัวอย่าง QoS Policy ใน OpenVswitch1	38
3.23 ภาพตัวอย่าง QoS Policy ใน OpenVswitch1	38
3.24 ภาพตัวอย่าง Flow QoS	39
3.25 ภาพตัวอย่าง Flow QoS ใน OpenvSwitch1	39
3.26 ภาพตัวอย่างรายละเอียดการส่งข้อมูลของ Ubuntu2 หลังจากกาทำ QoS	40

บทที่ 1

บทน้ำ

บริษัทแอ็ควานซ์ อินฟอเมชั่น เทคโนโลยี จำกัด (มหาชน) นั่นก่อตั้งขึ้นในปี 2535 โดย วัตถุประสงค์ประกอบธุรกิจเกี่ยวกับเทคโนโลยีสารสนเทศและการสื่อ โดยลักษณะธุรกิจจะ เป็นเกี่ยวกับซิสเต็มส์อินทิเกรเตอร์ (System Intergretor) หรือ "SI" หรือก็คือเป็นผู้รวบรวม ระบบคอมพิวเตอร์ ระบบสื่อสารคอมพิวเตอร์ และอุปกรณ์คอมพิวเตอร์ให้สามารถทำงาน ร่วมกันได้อย่างมีประสิทธิภาพและประสิทธิผลซึ่งต้องตรงต่อความต้องการของลูกค้า

เนื่องจากตัวผมได้ทำเกี่ยวข้องกับทีมของทางฝั่งผู้ให้บริการทางอินเทอร์เน็ต (Internet Service Provider : ISP) ซึ่งจะคอยให้บริการแก่ลูกค้ามากมายทั้งเรื่องของความเร็ว ความสำคัญ ของข้อมล โคยทางผู้ให้บริการก็จะ ใช้โปร โตคอลที่เรียกว่าเอ็มพีแอลเอส (Multiprotocol Label Switching: MPLS) เพื่อเพิ่มความรวดเร็วในการส่งข้อมลโดยใช้ป้ายบอกเส้นทางจากจดหนึ่ง ไปยังอีกจุดหนึ่งเพื่อลดภาระที่อุปกรณ์จะต้องไปหาเส้นทางในตารางข้อมูล รวมทั้งใช้งานกับ โปรโตคอลการค้นหาเส้นทาง (Routing Protocol) เช่น OSPF (Open Shortest Path First) หรือ IS-IS (Intermediate System To Intermediate System) เพื่อให้ผู้ใช้งานแต่ละที่สามารถ ติดต่อสื่อสารกัน ใค้และมีการนำโปรโตคอล EGP (Exterior Gateway Protocol) ซึ่งก็คือ BGP (Boarder Gateway Protocol) เพื่อทำการแลกเปลี่ยนข้อมูลกับเครือข่ายของผู้ให้บริการเจ้าอื่นๆ ซึ่งปัญหาบางครั้งที่ในการที่เราต้องการจะปรับเปลี่ยนการให้บริการต่างๆของอุปกรณ์หรือ เปลี่ยนเส้นทางของเครือข่ายอาจจะจำเป็นต้องแก้ไขการทำงานของอุปกรณ์หลายตัวซึ่งอาจจะ ทำให้เกิดส่งผลกระทบกับตัวระบบได้และยังมีปัญหาของผู้ผลิตแต่ละเจ้าซึ่งจะทำให้การแก้ไข หรือปรับเปลี่ยนของอุปกรณ์แตกต่างกันทำให้อาจจะเกิดความสับสนของวิศวกรได้ และด้วย การที่อุปกรณ์นั้นอาจจะมีจำนวนที่มากทำให้ต้องใช้เวลาในการหาอุปกรณ์ดังกล่าว รวมทั้ง ปัญหาเอกสารต่างๆ ไม่ได้เป็นปัจจุบันก็อาจจะทำให้รูปของระบบเครือข่ายไม่ตรงกับที่เห็นอีก ด้วย

ทางตัวผมจึงได้เห็นความสำคัญของปัญหาจึงได้ทำการศึกษาเกี่ยวกับแนวคิดการควบคุม ระบบเครือข่ายด้วยซอฟต์แวร์ที่เมื่อนำไปติดตั้งในระบบแล้วเราสามารถรู้โครงสร้างเครือข่าย ของระบบได้รวมทั้งเราสามารถควบคุมการส่งข้อมูลของอุปกรณ์เครือข่ายได้อย่างอิสระ โดย ทั้งหมดนี้นั้นสามารถทำผ่านอุปกรณ์หลักที่เรียกว่า ส่วนควบคุมกลาง (Controller) เพียงตัวเดียว เท่านั้นและการควบคุมการส่งข้อมูลนั้นจะส่งผลแค่อุปกรณ์ที่เรากำหนดเท่านั้น ทำให้การแก้ไข หรือปรับเปลี่ยนอุปกรณ์ในระบบก็จะทำได้โดยง่ายและสามารถดูข้อมูลสถิติเบื้องต้นของ

อุปกรณ์เครือข่ายได้อีกด้วย ซึ่งอีกอย่างที่สำคัญคือแนวคิดนี้นั้นเป็นมาตราฐานกลางทำให้ใช้ได้ กับผู้ผลิตทุกเจ้า ช่วยลดปัญหาความแตกต่างในการแก้ไขข้อมูลในอุปกรณ์

1.1 ความมุ่งหมายและวัตถุประสงค์

- 1. เพื่อศึกษากระบวนการทำงานและแนวคิดของการควบคุมระบบเครือข่ายด้วย ซอฟต์แวร์และสามารถนำไปใช้งานจริงได้
- 2. เพื่อศึกษากระบวนการทางธุรกิจและกระบวนการทำงานต่างๆในบริษัท
- 3. เพื่อเข้าใจถึงปัญหาที่เกิดขึ้นในการทำงานของบริษัท
- 4. เพื่อศึกษาถึงลักษณะการทำงานของบุคลากรในบริษัท
- 5. เพื่อนำทฤษฎีที่ศึกษามาใช้ประกอบการใช้งานจริง

1.2 ประวัติ และรายละเอียดบริษัท

ชื่อบริษัท(ภาษาไทย): บริษัทแอ็ควานซ์ อินฟอเมชั่น เทคโนโลยี จำกัด (มหาชน) สถานที่ตั้ง: 37/2 ถนนสุทธิสาร แขวงสามเสนนอก เขตห้วยขวาง 10320 กรุงเทพมหานคร ระยะเวลาที่ปฏิบัติงาน: 1 มิถุนายน 2560 – 18 พฤศจิกายน 2560

ลักษณะธุรกิจ

บริษัท แอ็ควานซ์อินฟอร์เมชั่นเทค โนโลยี จำกัด (มหาชน) เป็นผู้นำในการให้บริการ เทคโนโลยีสารสนเทศและการสื่อสาร โทรคมนาคม อย่างครบวงจร ตั้งแต่ การให้คำปรึกษา ออกแบบ ขายและติดตั้ง พัฒนาระบบงาน และการซ่อมบำรุงรักษาเครื่องอุปกรณ์ (Maintenance Services) การให้เช่าใช้ การเหมารวมระบบ (Turnkey projects) การบริหาร จัคการซ่อมบำรุงรักษา (ICT Outsourcing) ICT (Information and Communication Technology) คือการรวมกันของเทคโนโลยีสารสนเทศ (Information Technology - IT) ซึ่ง หมายถึงการใช้ประโยชน์ของคอมพิวเตอร์ การจัดเก็บข้อมูล และเทคโนโลยีเครือข่าย เพื่อ นำมาประมวลผล ข้อมูล รวมกับเทคโนโลยีการสื่อสาร เช่น เครือข่ายโทรศัพท์ เครือข่าย สายโทรศัพท์พื้นฐาน การสื่อสารทั้งภาพและเสียงเป็นต้น

ภาพรวมธุรกิจ

บริษัทเรียกตัวเองว่าเป็น Systems Integrator ซึ่งหมายถึง ผู้รวบรวมระบบและ อุปกรณ์ต่างๆ ที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศและการสื่อสารเข้ามาประยุกต์ใช้ให้ เหมาะสมกับความต้องการของแต่ละองค์กร ซึ่งการรวบรวมดังกล่าว เรียกว่า Solution หรือ ระบบเบ็ดเสร็จ ที่จะเพื่อช่วยให้การบริหารจัดการองค์กรมีประสิทธิภาพมากยิ่งขึ้น

รูป 1.1 โครงสร้างการคำเนินงานของบริษัท

ในฐานะที่เป็น System Integrator และ ผู้ให้บริการเทคโนโลยีสารสนเทศและการ สื่อสาร (ICT Provider) บริษัทให้บริการอย่างครบวงจร ตั้งแต่ให้คำปรึกษา ออกแบบ ติดตั้ง บริหารโครงการ ซ่อมและบำรุงรักษา รวมไปถึงฝึกอบรมการใช้งานโดยกระบวนการนี้สามารถ แสดงได้ตามแผนภูมิด้านล่าง

รูปที่ 1.2 ขั้นตอนกานคำเนินงานของบริษัท

บริษัทประสบความสำเร็จในการสร้างผลงานและรักษาชื่อเสียงในวงการ เทคโนโลยีสารสนเทศในประเทศมายาวนานจนเป็นที่ยอมรับทั่วไปในภาคราชการและ ภาคการสื่อสาร บริษัทได้เข้ามีส่วนร่วมในโครงการต่างๆ ในหลายๆ บทบาทเช่นคู่สัญญา หลัก (Prime Contractor), คู่สัญญาช่วง (Subcontractor), กิจการค้าร่วม (Consortium) ขึ้นอยู่ กับลักษณะของโครงการบริษัทนำเสนอ

- 1. ผู้ชำนาญการ และการผสมผสานขีดความสามารถในแต่ละด้าน
- 2. ผลงานที่เป็นที่ยอมรับในระดับนานาชาติ
- 3. การทำงานแบบกลยุทธ์ในรูปแบบพันธมิตรหรือหุ้นส่วนทางธุรกิจ
- 4. ความแข็งแกร่งด้านการเงิน

- 5. ประสบการณ์ในการจัดการงานตั้งแต่ขนาดย่อมจนไปถึงขนาดใหญ่
- 6. ลดความเสี่ยงด้านเทคนิค ด้านการดำเนินโครงการ และด้านการเงิน ใน โครงการที่มีความซับซ้อน

หุ้นส่วนทางธุรกิจของ บริษัท ประกอบไปด้วย ผู้นำทางด้านเทคโนโลยีที่เป็นที่ รู้จักในสาขาต่างๆ เช่น Cisco System,Oracle/SUN, IBM, HP, DELL Acer, Alcatel-Lucent, Autodesk, Convergys, SAP, Microsoft, Novell, Synnex และ Symantec เป็นต้น นอกจากสำนักงานใหญ่ในกรุงเทพมหานครแล้ว บริษัทยังมีศูนย์บริการอยู่ในหัว เมือง 7 จังหวัดเพื่อรองรับการให้บริการที่ทั่วถึงทั้งประเทศ อันได้แก่ ชลบุรี ขอนแก่น เชียงใหม่ สุราษฎร์ธานี พิษณุโลก สงขลา นครราชสีมา และประเทศกัมพูชา

รูปที่1.3 โครงสร้างองค์กรของบริษัท

1.2.2 ชื่อและตำแหน่งของพนักงานที่ปรึกษา

งื่อ: นายจักรพงษ์ ศิริพลตั้น

ตำแหน่ง: Assistant Vice President – Installation

1.2.3 ระยะเวลาที่ปฏิบัติงาน

เริ่มการปฏิบัติงานตั้งแต่วันที่ 1 มิถุนายน พ.ศ.2560 ถึงวันที่ 30 พฤศจิกายน พ.ศ. 2560 รวม เป็นระยะเวลา 6 ทั้งสิ้นเดือน

1.2.4 วิธีการดำเนินงาน

- 1) ศึกษากระบวนการและขั้นตอนการทำงานของบริษัทแอ็ดวานซ์ อินฟอเมชั่น เทคโนโลยี จำกัด (มหาชน)
- 2) ศึกษาปัญหาที่เกิดขึ้นในการแก้ไข ดูและ และจัดการระบบของลูกค้าในสถานที่ต่างๆ
- 3) ศึกษาแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์เพื่อที่จะสามารถนำมาใช้ใน อนาคตและสามารถแก้ไขปัญหาในด้านเครือข่ายของแต่ละสถานที่ได้
- 4) ศึกษาเครื่องมือและอุปกรณ์ต่างๆที่จะนำมาใช้ในแนวคิด การควบคุมระบบเครือข่าย ด้วยซอฟต์แวร์
- 5) จำลองการทำงานของแนวคิด การควบคุมระบบเครือข่ายด้วยซอฟต์แวร์
- 6) ควบคุมการส่งข้อมูลในระบบเครือข่ายเน็ตเวิร์ค

1.2.5 ขอบเขตของโครงงาน

- 1) ศึกษาแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ที่สามารถนำมาใช้กับระบบ เน็ตเวิร์คในปัจจุบันได้
- 2) ศึกษาและนำมาจำลองในโปรแกรม GNS3
- 3) ควบคุมการทำงานของระบบเครือข่ายโดยใช้แนวคิดการควบคุมระบบเครือข่ายด้วย ซอฟต์แวร์

1.2.6 ประโยชน์ที่คาดว่าจะได้รับ

- 1) ได้เรียนรู้เกี่ยวกับโครงสร้างและการทำงานในบริษัท บริษัทแอ็ดวานซ์ อินฟอเมชั่น เทคโนโลยี จำกัด (มหาชน)
- 2) ได้เรียนรู้และการปรับตัวในการทำงานจริง
- 3) ได้ความรู้และแนวคิดใหม่จากแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์
- 4) ได้เรียนรู้การทำงานและฟังก์ชันของอุปกรณ์ต่างๆหลากหลายผลิตภัณฑ์

บทที่ 2

รายละเอียดของานที่ปฏิบัติ

2.1 ตำแหน่ง/หน้าที่ของงานที่ได้รับมอบหมาย

ตำแหน่ง : Project Engineer

หน้าที่หลัก : เป็นทีมติดตั้งโครงการปฏิบัติงานร่วมกับฝ่าย Project Management

และลูกค้ำ

งานที่ทำประจำ

- 1. ปฏิบัติงานร่วมกับฝ่าย Project Management และลูกค้า ในการติดตั้งโครงการ
- 2. ออกแบบระบบตามข้อมูล หรือ ตามความต้องการของลูกค้ำ (Detailed Design)
- 3. เป็นที่ปรึกษาทางด้านเทคนิคให้แก่ลูกค้า
- 4. ศึกษา และเข้าอบรมเพื่อหาความรู้เกี่ยวกับผลิตภัณฑ์ หรือเทคโนโลยีต่าง ๆ
- 5. บันทึกการทำงานในแต่ละวัน
- 6. จัดทำเอกสารสำหรับการตรวจรับ
- 7. จัดทำข้อมูลโครงการ
- 8. ปฏิบัติงานอื่นๆ ตามที่ได้รับมอบหมาย

งานที่มีการมอบหมายเป็นครั้งคราว

- 1. ปฏิบัติงาน Customer Maintenance ในการแก้ไขปัญหา
- 2. เป็นวิทยากรฝึกอบรมให้กับลูกค้า
- 3. ตรวจรับ และส่งมอบงานให้กับลูกค้า

2.2 รายละเอียดของโครงงานที่ได้รับผิดชอบ

การศึกษาเกี่ยวกับแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ เพื่อที่จะสามารถตอบ โจทย์ถูกค้าบางกลุ่มที่ต้องการระบบเครือข่ายที่เป็นรูปแบบการควบคุมระบบเครือข่ายด้วย ซอฟต์แวร์ และให้จำลองการทำงานและใช้งานเพื่อที่จะสามารถนำไปใช้งานจริงได้และลดปัญหา ความยุ่งยากต่างๆในการจัดการดูแลระบบเครือข่าย

2.3 ทฤษฎีและเทคโนโลยีที่เกี่ยวข้องกับโครงงาน

2.3.1 การควบคุมระบบเครื่อข่ายด้วยซอฟต์แวร์ (Software Defined Network : SDN)

Software Defined Network หรือ SDN นั้นเป็นแนวคิดที่กล่าวไว้ว่าเป็นสถาปัตยกรรมของ เครือข่ายเน็ตเวิร์คที่ดึงการจัดการเครือข่ายทั้งหมดมารวมอยู่ที่ซอฟต์แวร์ โดยไม่สนใจอุปกรณ์และ ความแตกต่างของผู้ผลิต ถูกคิดค้น โดย Open Network Foundation (ONF) โดยปกติอุปกรณ์เครือข่าย ทั่วไปนั้นจะมี ส่วนควบคุมเส้นทางของข้อมูล (Control Plane) ในการกำหนดว่าข้อมูลในเครือข่าย จะถูกส่งออกไปทางใด และมีส่วนส่งข้อมูล (Data Plane) แต่ทว่าในแนวคิดการควบคุมระบบด้วย ซอฟต์แวร์นั้นจะเป็นแนวคิดที่ทำให้ ส่วนควบคุมเส้นทางข้อมูลและส่วนส่งข้อมูลเป็นอิสระจากกัน โดยที่ตัวอุปกรณ์เครือข่ายจะเหลือแค่ส่วนส่งข้อมูลเท่านั้นเท่านั้นและส่วนควบคุมข้อมูลจะ กลายเป็นสิ่งที่เรียกว่า ส่วนควบคุมกลาง(Controller) ที่จะคอยเป็นตัวสื่อสารกับอุปกรณ์เครือข่ายตัว อื่นๆ ซึ่งจะมีการใช้ซอฟต์แวร์มาควบคุมและสร้างข้อกำหนดต่างๆ

สิ่งสำคัญที่ของแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์สามารถทำได้คือ

- 1. แยกส่วนควบคุมเส้นทางของข้อมูลออกจากส่วนส่งข้อมูล
- 2. การควบคุมจากส่วนกลาง
- 3. สามารถแยกระบบเครื่อข่ายออกจากกันได้
- 4. การเพิ่มเติมความสามารถต่างๆจะไม่ส่งผลกระทบต่อระบบเครื่อข่าย
- 5. ลดการแก้ไขข้อมูลในอุปกรณ์เครือข่าย
- ต้องตอบรับการทำงานแบบอัตโนมัติ

โดยผลลัพธ์จะทำให้เราสามารถควบคุมการจราจรบนเครือข่ายได้ตามที่เราต้องการ จุดที่ สำคัญที่สุดของการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์คือจะทำให้การควบคุมระบบเครือข่ายให้ มาอยู่ในจุดเดียวกันทั้งหมดเพื่อลดความยุ่งยากเรื่องจำนวนอุปกรณ์และการแก้ไขที่แตกต่างกัน ออกไปของแต่ละผู้ผลิต

โครงสร้างพื้นฐานของแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์จะมีอยู่ 3 ส่วน หลักด้วยกัน

- SDN Application: ในส่วนของแอปพลิเคชันนั้นจะเป็นโปรแกรมหรือซอฟต์แวร์
 ที่ทำการติดต่อสื่อสารกับตัว Controller ผ่านทางส่วนต่อประสานโปรแกรม
 ประยุกต์ (Application Programming Interface: API)โดยที่ในแอปพลิเคชันนั้น
 สามารถรวบรวมข้อมูลจาก ส่วนควบคุมกลางเพื่อมาใช้ในการตัดสินใจหรือการ
 แก้ไขระบบเครือข่าย วิเคราะห์การส่งของข้อมูล
- 2. SDN Controller: ในส่วนของตัว SDN Controller นั้นจะเป็นส่วนที่รับความ ต้องการหรือคำสั่งจากแอปพลิเคชันและส่งผ่านไปยังอุปกรณ์เครือข่ายตัวอื่นๆ และทั้งยังรวบรวมข้อมูลจากอุปกรณ์เครือข่ายและส่งไปยัง SDN Application เพื่อ สร้างโครงข่ายจำลองรวมทั้งสถิติและเหตุการณ์ต่างๆที่เกิดขึ้น

3. SDN Networking Device : เป็นอุปกรณ์เครือข่ายที่ควบคุมการส่งข้อมูล เส้นทาง ต่างๆ ซึ่งรวมทั้งการส่งข้อมูลและเส้นทางด้วย

รูปที่ 2.1 ภาพตัวอย่างโครงสร้างของแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์

โดยที่การติดตั้งแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์นั้นจะมีการออกรูปแบบเป็น 3 รูปแบบด้วยกัน

- 1. Overlayed-Based SDN: รูปแบบนี้เป็นรูปแบบที่มักเห็นกันมากที่สุดในศูนย์ข้อมูล (Data Center) เนื่องจากจะเป็นรูปแบบที่ส่วนควบคุมกลางนั้นจะควบแค่อุปกรณ์ เครือข่ายต้นทางและอุปกรณ์เครือข่ายปลายทางของระบบเท่านั้น โดยที่จะไม่สามารถ ควบคุมอุปกรณ์ระหว่างทางได้เลยมักใช้กับ Virtual Machine เพื่อให้ต้นทางและ ปลายทางนั้นอยู่ใน Logical Network เดียวกันทำให้ Software ก็สามารถจัดการรูปแบบ ต่างๆเสมือนว่าอยู่ใน Virtual Switch ตัวเดียวกัน
- 2. Hybrid-Based SDN: ตัว Hybrid SDN นั้นมีความคล้ายคลึงกับ Overlayed-Based SDN แต่ทว่า Hybrid-Based SDN นั้นสามารถใช้งานร่วมกับระบบเคิมที่ไม่รองรับการ ทำงานแบบแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ ได้เพียงแต่ว่าอุปกรณ์ เกทเวย์นั้นต้องรองรับการทำงานในรูปแบบแนวคิดการควบคุมระบบเครือข่ายด้วย ซอฟต์แวร์เพื่อที่จะสามารถรองรับการทำงานของส่วนควบคุมกลางได้

3. Device-Based SDN: เป็นรูปแบบที่ส่วนควบคุมกลาง สามารถเข้าไปควบคุมระบบทั้ง ได้ซึ่งจะทำให้ตอบสนองการทำงานได้หลากหลายรูปแบบแต่ก็มีการแลกเปลี่ยนด้วย ค่าใช้จ่ายที่สูงยิ่งขึ้นในการปรับเปลี่ยนอุปกรณ์ทั้งหมดให้เป็นอุปกรณ์ที่รองรับการ ทำงานของในรูปแบบการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์

2.3.2 ส่วนต่อประสานโปรแกรมประยุกต์ (Application Programming Interface: API)

API นั้นเป็นเป็นระบบบริการข้อมูลกลางระหว่างผู้ใช้งาน (Client) กับการทำงานของฝั่ง ของผู้ให้บริการ (Server) หน้าที่หลักคือคอยรับคำสั่ง เมื่อเกิดคำสั่งใดๆหรือการร้องขอใดๆ ส่วนต่อ ประสานโปรแกรมประยุกต์ก็จะไปรับคำสั่งนั้นๆและนำไปประมวลผลและสรุปเป็นก้อนข้อมูลที่ ตรงกับการร้องขอและส่งข้อมูลนั้นกลับไปที่ผู้ใช้งานหรือผู้ให้บริการว่าจะให้ทำอะไร

2.3.3 Northbound and Southbound API

ในการแบ่งการทำงานของแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์นั้นเราจะแบ่ง ออเป็น 2 ส่วนหลักๆ

- 1. Northbound: เป็นส่วนการทำงานประสานระหว่างส่วนควบคุมกลางกับแอพพลิเคชั่น ซึ่ง เป็นส่วนที่กำหนดข้อกำหนดต่างๆ รวมทั้งปรับเปลี่ยนแก้การการเดินทางของข้อมูลใน ระบบเครือข่ายและทำการแสดงข้อมูลออกมาให้ผู้ใช้งาน แสดงสถิติและจำนวนของข้อมูล โดยจะมีส่วนต่อประสานโปรแกรมประยกต์ที่มีชื่อว่า RESTCONF เป็นตัวประสาน
- 2. Southbound: เป็นส่วนการทำงานระหว่างส่วนควบคุมกลางกับอุปกรณ์เครื่อข่ายต่างๆ โดย ฟังก์ชันหลักคือทำการติดต่อสื่อสารและส่งข้อมูลต่างๆ ไปยังส่วนควบคุมกลางและคอยรับ ข้อกำหนด (Flow) ที่ถูกสร้างขึ้นจากผู้ใช้งานเพื่อส่ง ไปยังอุปกรณ์เครือข่ายตัวต่างๆ โดยใน ที่นี่จะใช้ส่วนต่อประสานโปรแกรมประยุกต์ที่มีชื่อว่า Openflow เป็นตัวประสาน

รูปที่ 2.2 ภาพตัวอย่างการทำงานของ Northbound และ Southbound API

2.3.4 RESTCONF API

RESTCONF นั้นเป็นโปรโตคอล REST แบบหนึ่งที่ทำงานอยู่บน Hyper Text Transport Protocol (HTTP) โดยที่จะเป็นการอนุญาตให้ผู้ใช้งานนั้นสามารถเข้าไปยังที่เก็บข้อมูลของตัว ควบคุมกลางได้ซึ่งในที่นี่จะเป็นโปรโตคอลในส่วนของ Northbound API โดยที่จะมีที่เก็บข้อมูล 2 ประเภทคือ

- 1. Config จะเป็นข้อมูลที่อยู่ในตัวควบคุมกลาง
- 2. Operational จะเป็นข้อมูลที่อยู่ในตัวอุปกรณ์เครือข่าย

โดยที่ RESTCONF นั้นรองรับการทำฟังก์ชันต่างๆ เช่น GET, POST, PUT, DELETE, OPTION โดยที่รูปแบบการส่งข้อมูลนั้นจะสามารถอยู่ได้ทั้งในรูปแปป eXtensible Markup Language (XML) และ JavaScript Object Notation (JSON)

2.3.5 OpenFlow Protocol

OpenFlow นั้นเป็นโปรโตกอลที่ใช้ทำงานใน Southbound API เพื่อจะสามารถทำให้ ส่วน กวบกุมกลางสามารถติดต่อกับอุปกรณ์เครือข่ายตัวอื่นๆได้ ซึ่ง OpenFlow นั้นจะสามารทำให้ ผู้ใช้งานนั้นสามารถกำหนดข้อกำหนดต่างๆไปยังตัวอุปกรณ์และยังสามารถทำให้รู้ถึงสถิติของ ระบบเครือข่าย ข้อมูลอุปกรณ์ พอร์ท และการเชื่อมต่อของอุปกรณ์ต่างๆรวมถึงสามารถสร้างเป็น โครงข่ายจำลองของอุปกรณ์เครือข่ายได้ โดยที่การทำงานของ โดยการทำงานในการเลือก Ternary Content Addressable Memory (TCAM) ของ Openflow ที่ใช้สวิทช์นั้นจะมีด้วยกัน 2 รูปแปปก็คือ

- 1. Reactive Flow การทำงานของรูปแบบนี้คือ เมื่อมีข้อมูลใดๆก็ตามเข้ามาในตัวอุปกรณ์ และ ไม่ตรงกับข้อกำหนดใดๆเลย อุปกรณ์จะส่งข้อมูลไปถามหาที่ส่วนควบคุมกลางว่า ควรทำเช่นไรหลังจากนั้นส่วนควบคุมกลางก็จะส่งข้อกำหนดไปยังอุปกรณ์นั้นๆ
- 2. Proactive Flow จะเป็นการสร้างข้อกำนหดพื้นฐานที่เป็นข้อกำหนเท้ายสุดหากไม่มี ข้อกำหนดใดๆตรงกับข้อมูลที่ได้รับมาหากเปรียบเทียบกับอุปกรณ์สมัยก่อนก็เหมือน สวิทช์เมื่อได้รับข้อมูลใดๆมาแล้วไม่มีในอยู่ตารางของตัวเองกับก็จะทำการ Flood and Spray หรือก็คือส่งออกทุกพอร์ตโดยในที่นี้เราสามารถกำหนดการกระทำต่างๆได้เช่น สั่งให้ทิ้งข้อมูลนั้น หรือ ส่งออกทางพอร์ตใดพอร์ตหนึ่ง

2.3.6 Openflow Manager

เป็นแอปพลิเคชันที่ทำงานบนตัวของส่วนควบคุมกลางที่มีชื่อว่า Opendaylight เพื่อจำลอง โครงสร้างเครือข่าย เส้นทางการทำงานและสถานะต่างๆของ โดยการติดต่อกับ Opendaylight กับ แอปพลิเคชันนั้นจะทำงานผ่านทาง RESTCONF API ซึ่งจะเป็นตัวคึงข้อมูลมากจากอุปกรณ์ เครือข่ายทั้งข้อกำหนดและสถิติต่างๆรวมทั้งสร้างข้อกำหนดต่างๆ ไปยังอุปกรณ์เครือข่าย โดยที่ ฟังก์ชันหลักๆที่มีนั้นได้แก่

- 1. Basic View: เป็นหน้าหลักที่จะแสดงโครงสร้างของระบบเครือข่ายที่เปิดการใช้งาน Openflow อยู่และอุปกรณ์อื่นๆที่เชื่อมต่ออยู่
- 2. Flow Management: เป็นส่วนที่ไว้คูข้อกำหนดต่างๆของอุปกรณ์แต่ละตัวและสามารถ กำหนด แก้ไข ลบข้อกำหนด ออกจากอุปกรณ์เครือข่าย
- 3. Statistics: เป็นส่วนที่แสดงค่าสถิติของข้อมูลต่างๆที่เข้ามายังพอร์ตและข้อมูลของ ข้อกำหนดต่างๆว่ามีข้อมูลไหลเข้าออกมากเพียงใด
- 4. Hosts: เป็นข้อมูลย่อยๆสำหรับตัวอุปกรณ์ที่เปิดใช้งาน Openflow ว่าผู้ใช้งานที่มาเชื่อมต่อ นั้นมีรายละเอียดอะไรบ้าง

รูปที่ 2.3 ภาพตัวอย่างการทำงานของ Openflow Manager

2.3.7 ตารางข้อกำหนด (Flow Table)

เป็นตารางที่เก็บข้อกำหนดต่างๆเมื่อมีข้อมูลเข้ามาในอุปกรณ์เครือข่ายก็จะนำข้อมูลนั้นไป เปรียบเทียบกับแต่ละส่วนว่ามีในตารางข้อกำหนดหรือไม่ หากมีก็จะทำตามกำสั่งของส่วนที่กำหนด ไว้หากไม่มีก็จะไม่ทำการส่งข้อมูลหรือรับข้อมูล โดยการทำงานของตารางข้อกำหนดนั้นจะมีส่วน หลักๆ คือ

- 1. Match ทำการตรวจสอบว่ามีค่าใดบ้างของข้อมูลที่ตรงตามค่าที่กำหนดไว้ในตาราง ข้อกำหนดหากมีก็จะทำปฏิบัติตามข้อกำหนด หากไม่ก็จะทำการดูที่ตารางข้อกำหนด อื่นๆหากไม่มีก็จะไม่ส่งข้อมูลหรือทำการครอปข้อมูลนั้นทิ้ง
- 2. Action หลังจากข้อมูลนั้นมีการตรงกับข้อกำหนดก็ Action ก็จะเป็นสิ่งที่กำหนดว่าจะ ให้ทำเช่นไร เช่น ส่งต่อออกพอร์ตใด ส่งไปให้ส่วนควบคุมกลางหรือ ทำการส่งไปหา บริการต่างๆ หรือจะเป็นการแก้ไขข้อมูลก็สามารถทำได้
- 3. Counter จะเป็นการนับว่าข้อมูลที่เข้ามานั้นมีขนาดเท่าใดหลังจากผ่านการทำงานของ ข้อกำหนดนั้นๆ
- 4. Priority หากมีข้อมูลที่ตรงกับข้อกำหนดมากกว่า 1 ตัวขึ้นไปข้อกำหนดไหนมีค่า ลำดับความสำคัญมากกว่าก็จะปฏิบัติตามข้อกำหนดอันนั้นก่อนเสมอ
- 5. Time-out ข้อกำหนดต่างๆนั้นสามารถถูกกำหนดให้มีระยะเวลาได้ หากถึงระยะเวลา ที่กำหนดก็จะถูกลบออกจากตารางข้อกำหนดไป

OpenFlow: Anatomy of a Flow Table Entry

รูปที่ 2.4 ภาพตัวอย่างการทำงานของ Flow Table

2.3.8 OpenDaylight (ODL)

OpenDaylight นั้นเป็นส่วนควบคุมกลางตัวนึงที่สามารถเปลี่ยนแปลงระบบเครือข่ายได้ แบบอัตโนมัติ (Networks Automation) ผ่านการใช้ภาษาโปรแกรมมิ่ง (Programming Language) โดยที่ OpenDaylight ถูกสร้างขึ้นมาเพื่อให้รองรับแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ โดยที่จะเพ่งเล็งไปส่วนการควบคุมระบบเครือข่ายด้วยภาษาโปรแกรมมิ่งเพื่อจะลดและแเก้ไข ปัญหาต่างๆในระบบเครือข่ายปัจจุบัน

OpenDaylight

รูปที่ 2.5 ภาพตัวอย่างโครงสร้างของ OpenDaylight

2.3.9 OpenFlow Switch

OpenFlow Switch นั้นเป็นเป็นอุปกรณ์ที่จะทำหน้าที่ส่งข้อมูลต่างๆในสภาพแวคล้อมของ แนวกิดการควบกุมระบบเครือข่ายด้วยซอฟต์แวร์โดยจะมีโปรโตคอล Openflow หรือโปรโตคอล อื่นๆในการสื่อสารกับตัวควบกุมกลาง โดยที่จะทำตามตารางข้อกำหนดที่ส่งมาจากส่วนควบกุม กลาง

Figure 1: Main components of an OpenFlow switch.
รูปที่ 2.6 ภาพตัวอย่างการทำงานของ OpenFlow Pipeline

ในการขั้นตอนการทำงาน Openflow Switch นั้นข้อมูลทุกข้อมูลจะเข้าตาราง (Table) ที่ 0 ก่อนเสมอซึ่งการที่เราจะสามารถส่งข้อมูลไปยังตารางอื่นๆต้องทำการกำหนดข้อปฏิบัติ (Action) ให้แก่มัน โคยส่วนใหญ่นั้น ตารางที่ 0 จะเป็นตารางที่คอยกรองและตรวจสอบข้อมูลต่างๆเพื่อแยก ประเภทของข้อมูลและส่งไปยังตารางอื่นๆเพื่อความง่ายในการดูแลและจัดการ

แต่ทว่าจะมีการทำงานอีกหนึ่งประเภทซึ่งเป็นการทำงานแบบผสาน (Hybrid Openflow Pipeline) ระหว่างการทำงานแบบแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์กับการค้นหา เส้นทางแบบดั้งเดิม (Routing) โดยที่การทำงานนั้นจะทำการใส่สิ่งที่เรียกว่า NORMAL Action ลง ไปในตารางข้อกำหนดซึ่งเป็นข้อกำหนดที่บอกว่าให้ทำงานตามแบบปกติ ซึ่งการทำแบบนี้จะ สามารถให้ระบบเครือข่ายแบบคั้งเดิมยังสามารถทำงานไปต่อและค่อยๆปรับเปลี่ยนระบบเครือข่าย ทีละส่วนให้เป็นแบบแนวคิดการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ และยังสามารถช่วยเรื่อง จำนวนข้อกำหนดต่างๆที่เราต้องใส่ลงไปในอุปกรณ์

รูปที่ 2.7 ภาพตัวอย่างการทำงานของ Hybrid OpenFlow Pipeline

2.3.10 Graphic Network Simulator 3 (GNS3)

GNS3 เป็นโปรแกรมที่จำลองการทำงานของซอฟต์แวร์ระบบปฏิบัติการในอุปกรณ์ เครือข่ายซึ่งมีความสามารถใกล้เคียงกับอุปกรณ์จริงและสามานำมาจำลองในระบบเครือข่ายได้ (Network Simulator) โดยที่เป็นโปรแกรมที่มีจุดประสงค์เพื่อให้ผู้ใช้ได้เรียนรู้และศึกษาเกี่ยวกับ อุปกรณ์ต่างๆที่ตนสนใจและนำมาจำลองในระบบเพื่อคูว่าสามารถทำงานได้ตามที่เราต้องการ หรือไม่

บทที่ 3

การดำเนินงานวิจัย

3.1 ทำการจำลองระบบเครื่อข่ายลงในโปรแกรมจำลอง

ทำการจำลองระบบเครือข่ายลงในโปรแกรม GNS3 เพื่อที่จะศึกการทำงานของแนวคิดการ ควบคุมระบบเครือข่ายด้วยซอฟต์แวร์ว่าสามารถควบคุมการส่งข้อมูลของอุปกรณ์เครือข่ายโดยส่วน ควบคุมกลางจะเป็นตัวกำหนดข้อกำหนดต่างๆผ่านทางการใช้งานซอฟต์แวร์ของผู้ใช้งานจากนั้นก็ จะทำการใช้โปรแกรม Wireshark เพื่อตรวจสอบและมุ่งไปการทำ Traffic Engineering และ Non-Best Path Forwarding และการทำ Quality of Service เพื่อจำลองการทำงานที่เป็นปัจจัยหลักที่ หลายๆ User ต้องการในปัจจุบัน

- 1. OpenDaylight เป็นส่วนควบคุมกลาง
- 2. OpenVirtualSwitch เป็น OpenFlow Switch
- 3. Ubuntu เป็นผู้ใช้งานในระบบ
- 4. Firefox เพื่อทดสอบการเข้าใช้บริการอินเทอร์เน็ต
- 5. NAT เป็นทางออกสู้อินเทอร์เน็ต
- 6. RouterXR เป็นอุปกรณ์เครือข่ายในรูปแบบอุปกรณ์จัดหาเส้นทาง (Router)รุ่นใหม่ที่ สามารถทำงานได้หลากหลายอย่างมักใช้ในโครงข่ายของผู้ให้บริการทางอินเทอร์เน็ตเนื่อง มีความสามารถที่ค่อนข้างสูงมากกว่าอุปกรณ์ตัวอื่นๆ โดยจะเป็นตระกูล ASR 9000
- 7. Router เป็นอุปกรณ์เครือข่ายในรูปแบบอุปกรณ์จัดหาเส้นทางที่สมัยก่อนมักใช้งาน ค่อนข้าง

รูปที่ 3.1 ภาพตัวอย่างระบบโครงข่ายใน GNS3

ตารางไอพีแอดเดรสและอินเตอร์เฟสที่เชื่อมต่อ

Device	Interface	Connect To	IP Address	Subnet Mask
	GigabitEthernet0/0/0/0	OpenvSwtitch1 –	10.0.0.1	255.255.255.0
RouterXR1		Ethernet 2		
	GigabitEthernet0/0/0/7	SW1 -	192.168.254.254	255.255.255.0
		GigabitEthernet0/0		
	GigabitEthernet1/0	OpenvSwtitch2 –	10.0.0.2	255.255.255.0
Router2		Ethernet 2		
	GigabitEthernet2/0	NAT	DHCP	DHCP
	GigabitEthernet1/0	OpenvSwtitch1 –	10.0.0.3	255.255.255.0
Router3		Ethernet 3		
	GigabitEthernet2/0	SW3 -	192.168.3.254	255.255.255.0
		GigabitEthernet0/0		
OpenDay	Ethernet 0/0	L3Switch –	192.168.1.1	255.255.255.0
light		GigabitEthernet0/0		
Open	Ethernet 0/0	L3Switch –	192.168.1.2	255.255.255.0
vSwitch 1		GigabitEthernet0/1		
Open	Ethernet 0/0	L3Switch –	192.168.1.3	255.255.255.0
vSwitch 2		GigabitEthernet0/2		
Ubuntu-1	Ethernet 0/0	SW1 -	192.168.254.1	255.255.255.0
		GigabitEthernet0/1		
Ubuntu-2	Ethernet 0/0	SW3 -	DHCP	DHCP
		GigabitEthernet0/1		
Firefox1	Ethernet 0/0	SW1 -	192.168.254.2	255.255.255.0
		GigabitEthernet0/2		
Firefox2	Ethernet 0/0	SW3 -	DHCP	DHCP
		GigabitEthernet0/2		

ตารางที่ 3.1 ตารางไอพีแอดเครสและอินเทอร์เฟส

3.2 การตั้งค่าเบื้องต้นให้แก่อุปกรณ์แต่ละตัว

ในการที่จะทำให้อุปกรณ์เครือข่ายนั้นสามารถทำงานได้ตามที่เราต้องการนั้นการใส่ข้อมูล ต่างๆก็ยังเป็นเรื่องสำคัญหากขาดตรงจุดนี้ไประบบเครือข่ายก็ไม่สามารถทำงานได้ตามที่เรา ต้องการ

RouterXR1

```
!! IOS XR Configuration 6.0.1
!! Last configuration change at Thu Nov 9 16:07:16 2017 by admin
domain name-server 8.8.8.8
interface MgmtEth0/0/CPU0/0
shutdown
interface GigabitEthernet0/0/0/0
ipv4 address 10.0.0.1 255.255.255.0
interface GigabitEthernet0/0/0/1
shutdown
interface GigabitEthernet0/0/0/2
shutdown
interface GigabitEthernet0/0/0/3
shutdown
interface GigabitEthernet0/0/0/4
shutdown
interface GigabitEthernet0/0/0/5
shutdown
```

```
interface GigabitEthernet0/0/0/6
shutdown
interface GigabitEthernet0/0/0/7
ipv4 address 192.168.254.254 255.255.255.0
router static
address-family ipv4 unicast
0.0.0.0/0 GigabitEthernet0/0/0/0
router ospf 10
area 0
interface GigabitEthernet0/0/0/0
 interface GigabitEthernet0/0/0/7
 !
end
```

ตารางที่ 3.2 ตารางข้อมูล Configuration RouterXR1

Router2

```
Current configuration: 1314 bytes
!
version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
!
hostname Router2
!
```

```
boot-start-marker
boot-end-marker
no aaa new-model
no ip icmp rate-limit unreachable
ip name-server 8.8.8.8
ip cef
no ipv6 cef
multilink bundle-name authenticated
!
!
```

```
ip tcp synwait-time 5
!
interface FastEthernet0/0
no ip address
shutdown \\
duplex full
interface GigabitEthernet1/0
ip address 10.0.0.2 255.255.255.0
ip nat inside
negotiation auto
interface GigabitEthernet2/0
ip address dhep
ip nat outside
negotiation auto
interface GigabitEthernet3/0
no ip address
shutdown \\
negotiation auto
interface\ Gigabit Ethernet 4/0
```

```
no ip address
shutdown
negotiation auto
router ospf 10
network 10.0.0.0 0.0.0.255 area 0
network 192.168.122.0 0.0.0.255 area 0
default-information originate
ip nat inside source list 1 interface GigabitEthernet2/0 overload
ip forward-protocol nd
no ip http server
no ip http secure-server
ip route 0.0.0.0 0.0.0.0 192.168.122.1
access-list 1 permit any
control-plane
line con 0
exec-timeout 0 0
privilege level 15
logging synchronous
stopbits 1
line aux 0
exec-timeout 0 0
```

```
privilege level 15
logging synchronous
stopbits 1
line vty 0 4
login
!
end
```

ตารางที่ 3.3 ตารางข้อมูล Configuration Router2

Router3

```
Current configuration: 1291 bytes
version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
hostname Router3
boot-start-marker
boot-end-marker
no aaa new-model
no ip icmp rate-limit unreachable
!
ip dhep excluded-address 192.168.3.254
ip dhep pool pool3
```

```
network 192,168.3.0 255,255.255.0
dns-server 8.8.8.8
default-router 192.168.3.254
domain-name mydomain.com
ip name-server 8.8.8.8
ip cef
no ipv6 cef
multilink bundle-name authenticated
!
ip tcp synwait-time 5
!
```

```
interface FastEthernet0/0
no ip address
shutdown
duplex full
interface GigabitEthernet1/0
ip address 10.0.0.3 255.255.255.0
negotiation auto
interface GigabitEthernet2/0
ip address 192.168.3.254 255.255.255.0
negotiation auto
interface GigabitEthernet3/0
no ip address
shutdown
negotiation auto
interface GigabitEthernet4/0
no ip address
negotiation auto
router ospf 10
network 10.0.0.0 0.0.0.255 area 0
network 192.168.3.0 0.0.0.255 area 0
ip forward-protocol nd
```

```
no ip http server
no ip http secure-server
!
control-plane
line con 0
exec-timeout 0 0
privilege level 15
logging synchronous
stopbits 1
line aux 0
exec-timeout 0 0
privilege level 15
logging synchronous
stopbits 1
line vty 0 4
login
end
```

ตารางที่ 3.4 ตารางข้อมูล Configuration Router3

OpenvSwitch1

```
ovs-vsctl set-controller br0 tcp:192.168.1.1:6633
ovs-vsctl set bridge br0 protocols=OpenFlow13
```

```
ovs-vsctl set Bridge br0 stp_enable=true
ovs-vsctl set-fail-mode br0 secure
ifconfig eth0 192.168.1.2 netmask 255.255.255.0
```

ตารางที่ 3.5 ตารางข้อมูล Configuration OpenvSwitch1

OpenvSwitch2

```
ovs-vsctl set-controller br0 tcp:192.168.1.1:6633
ovs-vsctl set bridge br0 protocols=OpenFlow13
ovs-vsctl set Bridge br0 stp_enable=true
ovs-vsctl set-fail-mode br0 secure
ifconfig eth0 192.168.1.3 netmask 255.255.255.0
```

ตารางที่ 3.6 ตารางข้อมูล Configuration OpenvSwitch2

3.3 ทำการสร้าง Flow เพื่อควบคุมการส่งข้อมูลในตัวอุปกรณ์

3.3.1 ทำการเปิดตัวควบคุมกลาง Opendaylight

ในการที่เราจะจำลองการทำงานแบบ Software Defined Network นั้นสิ่งที่สำคัญคือการที่ ต้องมีตัวอุปกรณ์ส่วนควบคุมกลาง (Controller) โดยหลังจากการเปิดการทำงานแล้ว Opendaylight ก็จะมี User Interface ส่วนหนึ่งที่บอกถึงข้อมูลของอุปกรณ์ต่างๆในระบบที่ Controller สามารถ ติดต่อด้วยกันได้

รูปที่ 3.2 ภาพตัวอย่างการเข้าใช้งาน OpenDaylight

โดยจะสามารถบอกรายละเอียดของ Topology ในระบบเครือข่ายตอนนี้อยู่ได้และพร้อม MAC Address และ IP ที่มาจากอุปกรณ์นั้นๆ และในส่วนของด้านสถิติจะสามารถแสดงถึงจำนวนข้อมูล ที่เข้ามาในพอร์ตต่างๆ ของใน Open Switch ทำให้เราสามารถดูรายละเอียดคร่าวๆได้มีช่องทางใด ใช้ข้อมูลเยอะซึ่งเราอาจจะสลับปรับเปลี่ยนให้ไปใช้อีกเส้นทางเพื่อลดความหนาแน่นของข้อมูล

รูปที่ 3.3 ภาพตัวอย่าง Topology ใน OpenDaylight

Restore Session × Op	enDaylight Dlux × +													
(192.168.1.1:8181/index.html	#/node/openflow:222376949278285/p	ort-stat						c Q	Search		☆			ॐ ≡
*OPEN DAYLIGHT	Nodes													
% Topology														
♣ Nodes	Node Connector Statistics for N	lode ld -	openflo	w:2223769	94927828	5								
Yang UI Yang Visualizer	Node Connector Id	Rx Pkts	Tx Pkts	Rx Bytes	Tx Bytes	Rx Drops	Tx Drops	Rx Errs	Tx Errs	Rx Frame Errs	Rx OverRun Errs	Rx CRC Errs	Col	llisions
	openflow:222376949278285:15		3109		189350	0		0	0	0	0	0	0	iisioiis
	<u> </u>	1152		116740			11316							_
	openflow:222376949278285:14	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:13	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:12	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:1	4718	11509	450792	3671549	0	0	0	0	0	0	0	0	
	openflow:222376949278285:11	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:10	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:5	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:4	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:3	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:2	5078	8270	3282644	611892	0	2339	0	0	0	0	0	0	
	openflow:222376949278285:9	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:LOCAL	89544	5949	4656520	326651	0	121	0	0	0	0	0	0	
	openflow:222376949278285:8	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:7	0	0	0	0	0	14651	0	0	0	0	0	0	
	openflow:222376949278285:6	0	0	0	0	0	14651	0	0	0	0	0	0	

รูปที่ 3.4 ภาพตัวอย่างสถิติข้อมูลที่เก็บอยู่ใน OpenVirtualSwitch1

3.3.2 เปิดการใช้งาน Application Openflow Manager

ในส่วนของ Application นั้นจะมีไว้เพื่อกำหนด Flow ต่างๆและส่งไปยัง OpenSwitch เพื่อที่เราจะสามารถจำลองการทำงานแบบ SDN ได้ โดยการทำงานหลักๆของ Openflow Manager นั้นสามารถทำงานหลักๆ ได้ตั้งแต่ Layer 4 Layer 3 และ Layer 2 ซึ่งก็คือ Transport Layer Network Layer และ Data Link Layer โดยที่เราสามารถปรับเปลี่ยน IP Destination หรือ Source MAC address เส้นทางของการส่งข้อมูลและยังสามารถปรับเปลี่ยนการใช้ Port ของทั้ง TCP และ UDP แต่ต้องพึง ระวังการแก้ไข Header ต่างๆของข้อมูล หากตั้งค่าไม่ถูกต้องอาจจะทำให้เกิดความเสียหายของข้อมูลและรบบต่างๆ ได้เช่นข้อมูลอาจจะสูญหายหรือไม่กี่ถูกส่งไปหา Client ตัวอื่นๆ หรือกระทั่ง ทำให้เกิด Flood ของข้อมูลในรูปแบบต่างๆ จนอาจจะทำให้ระบบมีปัญหาได้

รูปที่ 3.5 ภาพตัวอย่าง Topology ใน Openflow Manager

Host ID [‡]	Attachment point	Attachment point status	\$ HTS address P	HTS address MAC	h.	HTS a seen	ddress	last
host:ca:01: 16:c7:00:1c	openflow:235637140259 651:3	true	10.0.0.3	ca:01:16:c7:00:1c		9 Nov 2	017 7:5	4:32
host:ca:03: 16:e6:00:1c	· ·	true	10.0.0.2	ca:03:16:e6:00:1c	!	9 Nov 2	017 7:5	i4:33
host:00:ce: c1:d7:e6:0 1		true	10.0.0.1	00:ce:c1:d7:e6:01	!	9 Nov 2	017 7:5	4:32
					10	15	20	25

รูปที่ 3.6 ภาพตัวอย่าง Host ใน Openflow Manager

3.3.3 ทำการ Drop ข้อมูลที่มี Source มาจาก 10.0.0.1

เริ่มต้นการทดลองแนวคิดแบบการควบคุมระบบเครือข่ายด้วยซอฟต์แวร์เพื่อตรวจสอบว่า Flow ที่เราสร้างขึ้นมานั้นสามารถทำงานได้จริงหรือไม่ โดยทำการสร้าง Flow ให้ข้อมูลใดก็ตาม ที่มาจาก IP 10.0.0.1 ให้ทำการ Drop ข้อมูลนั้นทิ้งโดยในตอนแรกนั้น RouterXR นั้นที่มี IP 10.0.0.1 ที่ Interface GigabitEthernet0/0/0/0 จะยังสามารถ Ping ไปยัง Internet ได้

```
RP/0/0/CPU0:ios#ping 8.8.8.8
Thu Nov 9 16:11:24.594 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 29/39/49 ms
RP/0/0/CPU0:ios#
```

รูปที่ 3.7 ภาพตัวอย่าง RotuerXR Ping ไปยัง IP 8.8.8.8

File Edit	View Go Cap	ture Analyze Statistics	Telephony Wireless Tools	Help				
4 ■ 								
icmp							Ex	φression
lo.	Time	Source	Destination	Protocol	Length Info			
+	9 5.155046	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0x10ce, seq=0/0, ttl=255 (reply in 10)		
- 1	0 5.198439	8.8.8.8	10.0.0.1	ICMP	114 Echo (ping) reply	id=0x10ce, seq=0/0, ttl=126 (request in 9)		
1	1 5.202834	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0x10ce, seq=1/256, ttl=255 (reply in 12)		
1	2 5.353052	8.8.8.8	10.0.0.1	ICMP	114 Echo (ping) reply	id=0x10ce, seq=1/256, ttl=126 (request in 11)		
1	3 5.356313	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0x10ce, seq=2/512, ttl=255 (reply in 14)		
1	4 5.394879	8.8.8.8	10.0.0.1	ICMP	114 Echo (ping) reply	id=0x10ce, seq=2/512, ttl=126 (request in 13)		
1	5 5.402163	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0x10ce, seq=3/768, ttl=255 (reply in 16)		
1	6 5.436263	8.8.8.8	10.0.0.1	ICMP	114 Echo (ping) reply	id=0x10ce, seq=3/768, ttl=126 (request in 15)		
1	7 5.439632	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0x10ce, seq=4/1024, tt1=255 (reply in 18)		
1	8 5.478450	8.8.8.8	10.0.0.1	ICMP	114 Echo (ping) reply	id=0x10ce, seq=4/1024, ttl=126 (request in 17)		

รูปที่ 3.8 ภาพตัวอย่างการคักจับข้อมูล โคยใช้ Wireshark

จากนั้นเราจะทำการสร้าง Flow ขึ้นมาโคยไปสร้างในตัว Application นั่นก็คือ Openflow Manager โดยจะทำการสร้างข้อกำหนดดังต่อไปนี้

General prop	ertles			
ADDED	Flow name	+		
ADDED	Table	Config	0	
ADDED	ID	Operational	0	
0	Hard timeout	Device		
	Idle timeout	openflow:23563714	10259651 [None] [-	
	Cookie			
	Cookie mask	General properties		
ADDED	Priority	Table		
Match		ID		
	In port	Priority		
	Metadata	Flow name) } ••
	Metadata mask	Tiow harrie		×
	Ethernet type	Actions		
	Source MAC	7.00.000		
	Destination MAC	Show preview Se	end request Send all Back	
	Vlan ID			
	Vlan priority			

รูปที่ 3.9 ภาพตัวอย่างการสร้าง Flow ใน Openflow Manager

โดยเราจะกำหนดให้ชื่อของข้อกำหนดนี้ว่า Drop_IP_XR โดยที่เราจะตั้งค่าให้ Idel Timeout และ Hard Timeout มีค่าเท่ากับ 0 เพื่อจะให้ข้อกำหนดดังกล่าวอยู่ในตารางข้อกำหนด ตลอดเวลาและตั้งค่า Ethernet Type ให้เป็น 2048 โดยที่ค่านี้จะเป็นการเจาะจงประเภทของ Ethernet ว่าเป็น Ipv4 และตั้ง Ipv4 Source เป็น 10.0.0.1/32 เพื่อเจาะจงแค่ IP นี้เท่านั้น และในส่วนของ Action ก็กำหนดให้เป็น Drop เพื่อที่เมื่อ OpenSwitch ตัวนี้ได้รับ IP ที่มาจาก Source 10.0.0.1 จะทำการ Drop ข้อมูลนั้นทิ้งทันที

รูปที่ 3.10 ภาพตัวอย่าง Flow หลังจากสร้าง Flow เสร็จสิ้น

จากนั้นให้ไปทำการตรวจสอบที่ตัว OpenvSwitch1 ว่า Flow นั้นได้ถูกติดตั้งมายังในตัว อุปกรณ์แล้วหรือไม่

```
/ # ovs-ofctl -0 Openflow13 dump-flows br0 | grep 0x0
  cookie=0x0, duration=281.461s, table=0, n_packets=31, n_bytes=3018, priority=1001,ip,nw_src=10.0.0.1 actions=
drop
  cookie=0x0, duration=628.278s, table=0, n_packets=730, n_bytes=62469, priority=1000 actions=CONTROLLER:65535,
NORMAL
/ #
```

รูปที่ 3.11 ภาพตัวอย่าง Flow Drop ข้อมูลใน OpenSwitch

หลังจากนั้นให้ RouterXR ทำการ Ping อีกครั้งนึงจะเห็นได้ว่าการ Ping นั้นจะไม่สำเร็จ เนื่องจากหลังมีข้อกำหนดที่บอกตัว OpenSwitch ไว้ว่าหากมีข้อมูลใดๆที่มาจาก Source IP 10.0.0.1 ให้ทำการ Drop ข้อมูลนั้นทิ้งทันที

```
RP/0/0/CPU0:ios#ping 8.8.8.8
Thu Nov 9 16:13:41.325 UTC
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 8.8.8.8, timeout is 2 seconds:
....
Success rate is 0 percent (0/5)
RP/0/CPU0:ios#
```

รูปที่ 3.12 ภาพตัวอย่าง RouterXR Ping ไปยัง IP 8.8.8.8 หลังจาก เพิ่ม Flow ลงไป

ion	np.						Expression
0.	Time	Source	Destination	Protocol	Length Info		
	209 12302.335391	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0xf0ce, seq=0/0, tt1=255 (no response found!)	
	211 12304.006894	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0xf0ce, seq=1/256, ttl=255 (no response found!)	
	213 12306.027645	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0xf0ce, seq=2/512, ttl=255 (no response found!)	
	217 12308.047010	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0xf0ce, seq=3/768, ttl=255 (no response found!)	
	221 12310.067932	10.0.0.1	8.8.8.8	ICMP	114 Echo (ping) request	id=0xf0ce, seg=4/1024, ttl=255 (no response found!)	

รูปที่ 3.13 ภาพตัวอย่างการดักจับข้อมูล โดยใช้ Wireshark หลังจากเพิ่ม Flow ลง

จะเห็นได้ว่า RouterXR นั้นจะไม่สามารถติดต่อกับอุปกรณ์ตัวไหนได้ทั้งสิ้นนอกจากใน Local ของตัวเองเพราะ Flow ที่เรากำหนดลงไปบน OpenSwitch นั้นได้ทำการ Drop ข้อมูลอื่นๆแต่ ทว่าอุปกรณ์ตัวอื่นๆก็สามารถติดต่อกันได้ตามปกติ

3.3.4 ทำการเปลี่ยนเส้นทางของข้อมูล

ู้ ๆ ไ

ในบางครั้ง User ก็มีต้องการให้ข้อมูลนั้นไปในเส้นทางอื่นๆที่เขาต้องการซึ่งเส้นทางนั้น อาจจะไม่ใช่ Best Path เราก็สามารถใช้การสร้าง Flow ในการควบคุมเส้นทางของข้อมูลเพื่อให้ตรง กับความต้องการของลูกค้า

ในการเปลี่ยนเส้นทางของข้อมูลนั้นเราตั้งข้อกำหนดว่าหากมี IP ใดๆก็ตามที่อยู่ใน Subnet 192.168.3.0 /24 และมีมี IP Destination = 8.8.8.8 จะให้การส่งข้อมูลนั้นออกไปยังอีกเส้นทางนึง ก่อนอื่นก็สร้าง Flow ขึ้นมาใน Openflow Manager

	ADDED	Hard timeout	Device openflow:235637	140259651 [None] [Open vSwitch]	
	ADDED	Idle timeout			
	ADDED	Cookie	General properties		
		Cookie mask	Table	0	
	ADDED	Priority	ID	1	
	Match		Priority	1001	
		In port	Flow name	ChangePath	X
		Metadata	Hard timeout	0	×
		Metadata mask	Idle timeout	0	×
	ADDED	Ethernet type	Cookie		~
		Source MAC	3301113	0	×
		Destination MAC	Ethernet type	2048	×
		Vlan ID	IPv4 source	192.168.3.0/24	×
he		Vlan priority	IPv4 destination	8.8.8.8/32	X
	Actions				
		Drop	Actions		
		Loopback	Output port	×	
		Flood	Output port	openflow:235637140259651:: +	
		Flood all	Maximum length		
		Controller	maximum rongui	65535	
		Normal			
	ADDED	Output port	Show preview Send	request Send all Back	

รูปที่ 3.14 ภาพตัวอย่างการสร้าง Flow ในการเปลี่ยนเส้นทางของข้อมูล

จากนั้นทำการตรวจสอบว่า Flow นั้นได้ถูกติดตั้งลงยังใน OpenvSwitch1 แล้วหรือไม่

```
/ # ovs-ofctl -0 Openflow13 dump-flows br0 | grep 192.168
cookie=0x0, duration=420.267s, table=0, n_packets=0, n_bytes=0, priority=1001,ip,nw_src=192.168.3.0/24,nw_dst=8.
8.8.8 actions=output:2
/ #
```

รูปที่ 3.15 ภาพตัวอย่าง Flow ในการเปลี่ยนเส้นทางของข้อมูล OpenvSwitch1

จากนั้นให้ Ubuntu-2 ทำการ Ping ออกสู่ Internet โดยตอนแรกจะให้ทำการ Ping ไปยัง 203.151.13.166 โดย IP ดังกล่าวจะเป็น IP ของ www.pantip.com เพื่อตรวจสอบว่าสามารถ Ping ออกสู่ Internet ได้หรือไม่

รูปที่ 3.16 ภาพตัวอย่างการ Ping จาก Ubuntu2 ใปยัง 203.151.13.166

จากนั้นให้ทำการลอง Ping ไปยัง IP 8.8.8.8 โดยจะสังเกตว่าการ Ping นั้นจะไม่สำเร็จ เนื่องจากถูกเปลี่ยนเส้นทางไปยังอีกเว้นทางนึงโดย หลังจากใช้ Wireshark ในการตรวจจับข้อมูล แล้วจะเห็นได้ว่าข้อมูลนั้นถูกส่งออกไปยังพอร์ต 2 ของ OpenSwitch ซึ่งไม่ใช้เส้นทางที่ใช้ในการ ออกสู่ Internet

รูปที่ 3.17 ภาพตัวอย่างการ Ping จาก Ubuntuu-2 ไปยัง 8.8.8.8

*Sta	standard input [RouterXR1 Gi0/0/0/0 to OpenVSwitch1 eth2]										
<u>F</u> ile <u>E</u>	dit <u>V</u> iew <u>G</u> o <u>C</u> a	pture <u>A</u> nalyze <u>S</u> tatis	tics Telephon <u>y</u> <u>W</u> ireless	Tools <u>H</u> elp							
	Ø 1 7 X	G Q 👄 👄 🧟	🚁 🖢 🕎 📕 ପ୍ ପ୍ ପ୍	1							
icmp	Icmp										
No.	Time	Source	Destination	Protocol	Length Info						
	10 11.140999	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=1/256, ttl=63 (no response found!)						
	12 12.137013	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=2/512, ttl=63 (no response found!)						
	14 13.142718	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=3/768, ttl=63 (no response found!)						
	17 14.142043	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=4/1024, ttl=63 (no response found!)						
	19 15.152086	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=5/1280, ttl=63 (no response found!)						
	21 16.162000	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=6/1536, ttl=63 (no response found!)						
	22 17.212560	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=7/1792, ttl=63 (no response found!)						
	24 18.260071	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=8/2048, ttl=63 (no response found!)						
	25 19.252756	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=9/2304, ttl=63 (no response found!)						
	27 20.271407	192.168.3.1	8.8.8.8	ICMP	98 Echo (ping) request id=0x00b4, seq=10/2560, ttl=63 (no response found!)						

รูปที่ 3.18 ภาพตัวอย่างการ Wireshark ของ Interface RouterXR1 ${
m Gig0/0/0/0}$

กับ OpenvSwitch1 Eth2

3.3.5 ทำการติดตั้ง Quality of Service

ในการทำ QoS นั้นเราสามารถทำได้ 2 รูปแบบ คือ ต่อ 1 Port กับ ต่อ 1 Flow โดยใน ลักษณะ ต่อ 1 Port มักใช้กับแบบ Ingress เพื่อจำกัดปริมาณข้อมูลที่จะเข้ามาในตัวอุปกรณ์ โดยใช้ คำสั่ง

```
ovs-vsctl set interface eth1 ingress_policing_rate=100000
ovs-vsctl set interface eth1 ingress_policing_burst=10000
```

ตารางที่ 3.7 ตารางคำสั่ง Ingress Policy ของ Ethl ใน OpenvSwitchl

โดย Ingress_Policing_Rate จะเป็นตัวกำหนดความเร็วที่ Interface นี้สามารถส่งออกมาได้ และ Ingress_policing_burst จะเป็นตัวกำหนดความเร็วที่สามารถเกินมาจาก Policing_rate ได้

โดยเมื่อทำการแสดงใน OpenSwitch ก็จะเห็นค่าที่เรากำหนดเอาไว้ซึ่งในลักษณะแบบนี้จะ ไม่สามารถใช้ Application ควบคุมได้เนื่องจากเป็นการตั้งค่าแค่พอร์ตนั้นพอร์ตเดียว

รูปที่ 3.19 ภาพตัวอย่างการ Ingress Policy ใน OpenVSwitch 1

ในลักษณะต่อมาจะเป็นการใช้ในลักษณะ Egress โดยจะเป็นการเลือกพอร์ตที่เป็นทางออก จากนั้นจะมีการกำหนดค่าความเร็ว (Bandwidth) ไว้ ก่อนอื่นเราจะทำการทดสอบความเร็วระหว่าง Ubuntul และ Ubuntu2 โดยให้ทาง Ubuntul เป็น Server เพื่อตรวจสอบความเร็วของ Client ที่ส่ง ข้อมูลเข้ามาและให้ Ubuntu2 เป็น Client ที่ส่งข้อมูลเข้าหา Server

```
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35070
[ 5] 0.0-11.6 sec 2.00 MBytes 1.44 Mbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35080
[ 4] 0.0-12.7 sec 2.12 MBytes 1.40 Mbits/sec
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35090
[ 5] 0.0-11.8 sec 2.12 MBytes 1.52 Mbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35106
[ 4] 0.0-11.9 sec 2.00 MBytes 1.41 Mbits/sec
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35112
[ 5] 0.0-12.3 sec 2.12 MBytes 1.45 Mbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35118
[ 4] 0.0-12.2 sec 2.12 MBytes 1.46 Mbits/sec
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35234
[ 5] 0.0-14.0 sec 1.88 MBytes 1.12 Mbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35240
[ 4] 0.0-13.6 sec 1.88 MBytes 1.15 Mbits/sec
```

รูปที่ 3.20 ภาพตัวอย่างรายละเอียดการส่งข้อมูลของ Ubuntu2

โดยจะสังเกตได้ว่าความเร็วในการส่งนั้นอยู่ที่ประมาณ 1.4 Mb/Sจากนั้นเราจะทำการสร้าง QoS ไว้ในตัวอุปกรณ์โดยใช้คำสั่ง

```
ovs-vsctl set port eth2 QoS=@newQoS -- --id=@newQoS create QoS type=linux-htb queues=0=@q0 -- --id=@q0 create queue other-config:min-rate=500000 other-config:max-rate=500000
```

ตารางที่ 3.8 ตารางคำสั่ง Egress Policy ของ Eth1 ใน OpenvSwitch1

ซึ่งใน QoS ที่เราได้สร้างไว้นั้นจะกำหนดให้พอร์ตที่ 2 ของ OpenvSwitch1 ตั้งกดไว้ว่าหาก มีข้อมูลใดๆก็ตั้งก่า Queue ให้เป็น 0 และออกมาทางพอร์ตนี้จะถูกจำกัดความเร็วให้เหลือ 500 Kb/s ซึ่งนั้นเมื่อแสดงข้อมูลใน OpenvSwitch2 ก็จะเห็นค่าต่างๆดังรูปโดยจะมีชื่อที่เป็นตัวบอกว่าพอร์ตนี้ กำลังใช้ QoS ตัวใดอยู่และใน QoS ก็จะมีรายละเอียด Queue ที่อยู่ด้านในอยู่

```
/ # ovs-vsctl list port eth2
uuid : f2d6d629-67b7-43e1-a3aa-384625a3a26c
bond_active_slave : []
bond_downdelay : 0
bond_fake_iface : false
bond_mode : []
bond_updelay : 0
external_ids : {}
fake_bridge : false
interfaces : [a3649c16-111a-49b7-a529-c87114afd3b4]
lacp : []
mac : []
mac : []
mac : []
same : "eth2"
other_config : {}
type contains the state of the state of
```

รูปที่ 3.21 ภาพตัวอย่างรายละเอียด Eth2 ของ OpenvSwitch1

รูปที่ 3.22 ภาพตัวอย่าง QoS Policy ใน OpenVswitch1

โดยในรูปจะมี Queue ที่เป็นตัวเลข Bandwidth ที่อยู่ในอุปกรณ์ซึ่งในรูปจะถูกตั้งค่าให้มีความเร็ว เท่ากับ 500 Kb/s

รูปที่ 3.23 ภาพตัวอย่าง QoS Policy ใน OpenVswitch1

ซึ่งในการสร้าง Queue นั้นเราสามารถสร้างได้สูงสุด 8 Queue ใน 1 QoS Policy ซึ่งสิ่งนี้จะ ทำให้เราสามารถแยกประเภทของลูกค้าและ Traffic ต่างๆ จากนั้นนำ QoS มาใช้เพื่อตอบสนอง ความต้องการของลูกค้า จากนั้นทำการสร้าง Flow ขึ้นมาและทำการ Set_queue Flow นั้นเพื่อให้ สามารถใช้งาน QoS นั้นและ Bandwidth ที่เราได้ตั้งค่าเอาไว้

General properties	
Table	0
ID	50
Priority	5000
Flow name	QosOVS1 X
Hard timeout	0 ×
Idle timeout	0 🗙
Cookie	0 🗙
In port	openflow:235637140259651:: • 🗶
	_
Actions	
Enqueue	×
Queue	Qos
Queue Id	0
Normal	×
Maximum length	65535
Show preview	Send request Send all Back

รูปที่ 3.24 ภาพตัวอย่าง Flow QoS

/ # ovs-ofctl -0 Openflow13 dump-flows br0 | grep set_queue
 cookie=0x0, duration=622.966s, table=0, n_packets=6113, n_bytes=9017841, priority=5000,in_port=3 actions=set_queue:0,NORMAL

รูปที่ 3.25 ภาพตัวอย่าง Flow QoS ใน OpenvSwitch1

จากนั้นในตามข้อกำหนดที่เราได้ตั้งค่าไว้ข้อมูลใดๆก็ตามที่เข้ามาทางพอร์ต Eth2 และ ออกไปยัง Eth1 จะถูกจำกัด Bandwidth คังในภาพ Queue ที่ 0 จะถูกตั้งค่า Bandwidth ใหมีค่า 800Mb เป็นค่าสูงสุดและ 200Mb เป็นค่าต่ำสุดซึ่งจะเห็นได้ว่า Flow ที่กำหนดนั้นมีข้อมูลวิ่งเข้ามา อย่างถูกต้องและทำการให้ Ubuntu2 ส่งข้อมูลดูอีกครั้ง

```
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35304
[ 5] 0.0-31.4 sec 1.50 MBytes 400 Kbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35330
[ 4] 0.0-31.8 sec 1.75 MBytes 461 Kbits/sec
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35344
[ 5] 0.0-26.4 sec 1.50 MBytes 477 Kbits/sec
[ 4] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35352
[ 4] 0.0-26.6 sec 1.50 MBytes 473 Kbits/sec
[ 5] local 192.168.254.1 port 5001 connected with 192.168.3.2 port 35362
[ 5] 0.0-27.4 sec 1.50 MBytes 460 Kbits/sec
```

รูปที่ 3.26 ภาพตัวอย่างรายละเอียดการส่งข้อมูลของ Ubuntu2 หลังจากการทำ QoS

ซึ่งจะเห็นได้ความเร็วของทางผู้ส่งถูกลดลงมาเหลือประมาน 460 Kb/s เนื่องจากการที่เรา ตั้งค่าความเร็วให้ถูกลดลงเหลือแค่เพียง 500 Kb/s และอาจจะเกิดการสูญหายความเร็วบางส่วน เนื่องจาก Delay จากสภาพแวดล้อมต่างๆ

บทที่ 4 สรุปผลการปฏิบัติงาน

จากการที่ได้ปฏิบัติงานสหกิจศึกษา ณ บริษัท แอ็ควานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน) สามารถสรุปผลการไปปฏิบัติงานที่ได้รับมอบหมายและได้ประโยชน์ดังนี้

4.1 สรุปผลการปฏิบัติงาน

จากการที่ข้าพเจ้าได้ปฏิบัติงานสหกิจศึกษาในตำแหน่ง Project Engineer ณ บริษัทแอ็ด วานซ์ อินฟอเมชั่น เทคโนโลยี จำกัด (มหาชน)

หัวข้อ	ผลงาน	จำนวน
1.จัดทำเอกสารและ	คู่มือการอัพเกรคอุปกรณ์	3 เล่ม
แบบฟอร์มต่างๆ	คู่มือการลง License อุปกรณ์	า เล่ม
2. อัพเกรคอุปกรณ์เครื่อข่าย	ASR 9000 Series	13 ตัว
ต่างๆและแก้ไข Configuration	Router 2900 Series	125 ตัว
ต่างๆ	ASR 900 Series	30 ตัว
	ISR 4000 Series	15 ตัว
3.ปฏิบัติที่หน้าไซต์งาน	Data Center Site	9 ครั้ง
	Service Provider Site	35 ครั้ง
4.ช่วยการจัดการทำ Lab และ	KTCB	3 ครั้ง
บรรยายให้แก่ลูกค้า		
5.Troubleshooting อุปกรณ์	Network Device	7 ครั้ง
ต่างๆ		
6.เข้าร่วมการบรรยายและการ	เข้าร่วมการประชุม	2 ครั้ง
ประชุม	บรรยายเพื่อเพิ่มความเข้าใจแก่	6 ครั้ง
	ตัวพนักงาน	
7.Training Course	Pre-CCNA	1 ครั้ง
	Manner & Presentation	1 ครั้ง

ตารางที่ 4.1 ตารางสรุปผลการปฏิบัติงาน

4.2 ประโยชน์ที่ได้รับ

4.2.1 ประโยชน์ต่อตนเอง

- 1. เข้าใจการทำงานของแต่ละแผนกในองค์กร และขั้นตอนการทำงานของแต่ละ ฝ่ายตั้งแต่เริ่มจนจบการทำงาน
- 2. เรียนรู้และฝึกทักษะต่างๆในการทำงานจริง
- 3. ทราบถึงปัญหาต่างๆที่เกิดขึ้นในระบบเครือข่ายและปัญหาของซอฟต์แวร์ต่างๆ
- 4. ได้นำความรู้ที่มีไปใช้ในงานดำเนินงานจริงพร้อมทั้งแก้ไขปัญหาต่างๆ
- 5. ได้ฝึกฝนการเขียน Config ในอุปกรณ์รูปแบบอื่นๆ
- 6. ได้รู้จักการปรับตัวเพื่อแก้ไขสถานการณ์ที่เกิดขึ้น

4.2.2 ประโยชน์ต่อสถานประกอบการ

- 1. ช่วยลดการจ้างพนักงานประจำลงได้ เนื่องจากมีนักศึกษาช่วยปฏิบัติงาน
- 2. สามารถทำงาน ตอบสนองกับลูกค้าได้รวดเร็วมากยิ่งขึ้น
- 3. ช่วยแบ่งเบาภาระของพนักงานประจำ
- 4. สามารถช่วยคัดกรองนักศึกษาที่จะเข้ามาเป็นพนักงานประจำในอนาคต

4.2.3 ประโยชน์ต่อมหาวิทยาลัย

- 1. เกิดความร่วมมือทางวิชาการระหว่างสถานประกอบการและมหาวิทยาลัย
- 2. มหาวิทยาลัยได้รับข้อมูลย้อนกลับเพื่อนำไปปรับปรุงและพัฒนาหลักสูตร ใน การเรียนการสอน
- 3. เป็นการแสดงถึงศักยภาพของมหาวิทยาลัยช่วยให้มหาวิทยาลัยได้รับการ ยอมรับจากสถานประกอบการและตลาดแรงงานมากยิ่งขึ้น
- 4. มหาวิทยาลัยสามารถผลิตนักศึกษาที่มีความคิดสร้างสรรค์ สามารถบูรณาการวิ ทยาการต่าง ๆ ที่เกี่ยวข้องกับเทคโนโลยีสารสนเทศได้อย่างมีประสิทธิภาพ

บทที่ 5

ปัญหาและข้อเสนอแนะ

จากการที่ข้าพเจ้าปฏิบัติงานสหกิจในตำแหน่ง Project Engineer ณ บริษัทแอ็ควานซ์ อิน ฟอร์เมชั่น เทคโนโลยี จำกัด (มหาชน) ตั้งแต่วันที่ 1 มิถุนายน พ.ศ. 2560 ถึงวันที่ 30 พฤศจิกายน พ.ศ 2560 เป็นระยะเวลา 6 เดือน นั้นได้รับความรู้และปรสบการณ์ต่างๆ ที่จะเป็นประโยชน์ต่อใน อนาคตและในระหว่างปฏิบัติงานนั้นได้พบ กับปัญหา อุปสรรคต่างๆ ซึ่งสามารถนำมาสรุปและเสนอแนะได้ดังนี้

- 1. โครงงานไม่เกี่ยวข้องโดยตรงกับงานที่ทำอยู่ประจำแค่เพียงสามารถนำมาใช้ หรือปรับปรุงระบบต่างๆได้ในอนาคต
- 2. ไม่มีแผนการดำเนินงานสำหรับนักศึกษาสหกิจที่แน่นอน

โดยปัญหาดังกล่าว ทางบริษัทที่เข้าร่วมโครงการสหกิจศึกษา กับสถาบันจะต้องร่วมมือ พร้อมทั้งประสานงาน และติดตามผลงานจนเสร็จสิ้นโครงการ

บรรณานุกรม

- [1] บริษัท แอ็ควานซ์ อินฟอร์เมชั่น เทคโนโลยี จำกัค (มหาชน) [Online] Available: http://www.ait.co.th
- [2] SDxCentral "Understanding SDN Architecture" [Online] Available: https://www.sdxcentral.com/sdn/definitions/inside-sdn-architecture/
- [3] Wiki Opendaylight "Opendaylight Controller:MDSAL:RESTCONF" [Online] Available: https://wiki.opendaylight.org/view/OpenDaylight_Controller:MDSAL:Restconf#Restcon f URI
- [4] Devnet Cisco "Openflow Manager" [Online] Available:

 https://developer.cisco.com/site/devnetcreations/openflow-mgr/
- [5] Margaret Rouse "OpenFlow switch" [Online] Available : http://searchsdn.techtarget.com/definition/OpenFlow-switch
- [6] Opendaylight [Online] Available: https://www.opendaylight.org
- [7] Jasmie Russello "Southbound vs Northbound SDN: What are the differences?" [Online]

 Available: http://blog.webwerks.in/data-centers-blog/southbound-vs-northbound-sdn-what-are-the-differences
- [8] สารานุกรม วิกิพีเดีย "Software-defined networking" [Online] Available: https://en.wikipedia.org/wiki/Software-defined networking
- [9] Matt Osawalt "Openflow Deep-Dive" [Online] Available: https://keepingitclassless.net/2014/07/sdn-protocols-2-openflow-deep-dive/
- [10] Brent Salisbury "Hybrid Openflow Using The Normal Action" [Online] Available http://networkstatic.net/hybrid-openflow-using-the-normal-action/#!prettyPhoto
- [11] Wiki Opendaylight "ODL_Hybrid_Mode" [Online] Available : https://wiki.opendaylight.org/images/1/1d/ODL_Hybrid_Mode.pdf
- [12] Daehee Kim. "Understand QoS at OpenSwitch" [Online] Available: http://dannykim.me/danny/57771

บันทึกรายงานการปฏิบัติงาน

วัน/เดือน/ปี	รายการ	หมายเหตุ
1 ີ້ນ.ຍ 2560	ปฐมนิเทศให้นักศึกษาและรายละเอียดเกี่ยวกับทางบริษัท	
	AIT	
2 ີ້ນ.ຍ 2560	ทำความรู้จักกับบุคลลากรภายในบริษัทและทำความเข้าใจ	
	โครงสร้างและววัฒนธรรมขององค์กร	
5 ີ້ນ.ຍ 2560	ทำการติดตั้ง VM Wareworkstation เพื่อนำไปจำลอง	
	อุปกรณ์เครื่อข่ายต่างๆเพื่อใช้ในการศึกษา	
6 ີ້ນ.ຍ 2560	ทำการเช็คอุปกรณ์เครื่อข่ายที่ Warehouse ของทางบริษัท	
	AIT พร้อมอัพเดท IOS ให้เป็นเวอร์ชั่นที่ตรงตาม	
	Requirement ของลูกค้าพร้อมเรียนรู้การตรวจสอบความ	
	ถูกต้องต่างๆ	
7 มิ.ย 2560	เรียนรู้ระบบ Network ในเครื่อของถูกค้าและเรื่อง MPLS	
	BGP และ ISIS พร้อมเข้าใจการทำงานของแต่ละส่วนใน	
	เครื่อของลูกค้ำ	
8 มิ.ย 2560	เข้ารับฟังการบรรยายโครงการของลูกค้าในเครือ CAT โดย	
	มีรุ่นพี่ในทีมเป็นผู้บรรยาย	
9 ີນ.ຍ 2560	ทำการเช็คอุปกรณ์เครื่อข่ายที่ Warehouse ของทางบริษัท	
	AIT พร้อมอัพเดท IOS ให้เป็นเวอร์ชั่นที่ตรงตาม	
12 ນີ້.ຢ 2560	เข้ารับ Training โครงการ Pre-CCNA ที่ทางบริษัทเป็นคน	
	จัดขึ้นให้นักศึกษา	
13 ມີ.ຢ 2560	ศึกษาเกี่ยวกับแนวคิด Software Defined Network	
14 ນີ້.ຍ 2560	ทำการเช็คอุปกรณ์เครื่อข่ายที่ Warehouse ของทางบริษัท	
	AIT พร้อมทั้งตรวจสอบจำนวนของที่ได้รับว่าครบถูกต้อง	
	สามารถใช้งานได้ครบทุกชิ้นงานหรือไม่	
15 ນີ້.ຢ 2560	ทำการประชุมเรื่องหัวข้องานของโครงการ AIT Internship	
	ที่ทางบริษัทเป็นคนจัดตั้งขึ้น	
16 ມີ.ຍ 2560	เข้าฝึกที่ Trainex จากหัวหน้าทีมของทีมติดตั้งแต่ละทีมเพื่อ	
	เพิ่มความเข้าใจในการทำงานให้มากขึ้น	

Г	· · · · · · · · · · · · · · · · · · ·	
19 ນີ້.ຍ 2560	ทำการศึกษาเกี่ยวกับ Site บาง Site เพื่อเพิ่มความเข้าใจ	
	เกี่ยวกับ MPLS และ BGP และเข้าใจถึง Configuration	
	Template ว่าทำงานเช่นไร	
20 ົນ. ຍ 2560	ศึกษาเกี่ยวกับแนวคิด Software Defined Network	
21 ນີ້.ຍ 2560	ตรวจสอบอุปกรณ์ในบริษัทเพื่อเช็คสถานะและการทำงาน	
	ว่ายังสามารถทำได้ครบถ้วน	
22 ນີ້.ຢ 2560	ศึกษาเกี่ยวกับ ACS และการทำงานของ TACACS+	
23 ນີ້.ຢ 2560	ศึกษาข้อมูลเกี่ยวกับ SDN อุปกรณ์ที่รองรับและการทำงาน	
	ของตัวมันเอง	
26 ນີ້.ຍ 2560	ศึกษาการทำงานของ ASR 9000 Series และทำความเข้า	
	การทำงานและการ Configuration	
27 ນີ້.ຢ 2560	ติดตั้ง ASR 9001 เพื่อทคสอบการทำงานและ	
	Configuration ค่าต่างๆ	
28 ີ້ນ.ຍ 2560	ทำการศึกษาเกี่ยวกับ Opendaylight	
29 ີ້ນ.ຍ 2560	ทำการศึกษาเกี่ยวกับ Opendaylight	
30 ນີ້.ຢ 2560	ไปติดตั้งอุปกรณ์ต่างๆที่ ศูนย์อบรม Trainex เพื่อ	
	เตรียมการอบรม CCNP R&S ในวันถัดไป	
3 ก.ค 2560	ทำการศึกษาและติดตั้ง Opendaylight บน VM	
4 ก.ค 2560	ทำการศึกษาและติดตั้ง Opendaylight บน VM	
5 ก.ค 2560	ศึกษาเกี่ยวกับการใช้ UI บน Opendaylight	
6 ก.ค 2560	ทำความเข้าใจเรื่อง API และ ความสำคัญ	
7 ก.ค 2560	ทำการเช็คอุปกรณ์เครื่อข่ายที่ Warehouse ของทางบริษัท	
	AIT พร้อมอัพเดท IOS ให้เป็นเวอร์ชั่นที่ตรงตาม	
	Requirement ของลูกค้าพร้อมเรียนรู้การตรวจสอบความ	
	ถูกต้องต่างๆ	
10 ก.ค 2560	หยุดชดเชยวันอาสาฬหบูชา(วันเสาร์ที่ 8 ก.ค 2560)	
11 ก.ค 2560	หยุดชดเชยวันอาสาฬหบูชา(วันอาทิตย์ที่ 9 ก.ค 2560)	
12 ก.ค 2560	ทำการ Simulate และลองส่งค่า API เพื่อดึงข้อมูล	
13 ก.ค 2560	ทำ Manual Guide การติดตั้ง IOS ของอุปกรณ์ Roueter	
	1921	

		1
14 ก.ค 2560	คุยเรื่องหัวข้อ โครงการ AIT Intership พร้อมแบ่งหน้าที่	
	การทำงาน	
17 ก.ค 2560	เดินทางไป CAT นนทบุรีและทำการตรวจสอบ CSR 16	
	Slot ทำการเปลี่ยน Card ในตัวอุปกรณ์ให้เป็นอุปกรณ์ใหม่	
18 ก.ค 2560	เข้ารับฟังบรรยายที่ Cisco Thailand และรับชมสถานที่และ	
	อุปกรณ์ๆต่างใน Cisco	
19 ก.ค 2560	ทบทวนเนื่อหาเพื่อแข่งขัน Netrider	
20 ก.ค 2560	สอบแบ่งขัน Net Rider Round 1	
21 ก.ค 2560	ทำการเช็คอุปกรณ์เครื่อข่ายที่ Warehouse ของทางบริษัท	
	AIT และทำเอกสารเก็บข้อมูลและจำนวนของที่ได้รับ	
24 ก.ค 2560	เข้าร่วมโครงการ AIT Internship พร้อมเสนอหัวข้อ Start	
	up ให้คณะผู้บริหารของทางบริษัท AIT	
25 ก.ค 2560	ลางาน	ไปช่วยกิจกรรม
		ที่คณะ
26 ก.ค 2560	ทำการศึกษาเกี่ยวกับ OpenVirtualSwitch	
27 ก.ค 2560	ทำการศึกษาเกี่ยวกับ OpenVirtualSwitch	
28 ก.ค 2560	ทำการศึกษาเกี่ยวกับ OpenFlow	
31 ก.ค 2560	ทำการศึกษาเกี่ยวกับ OpenFlow	
1 ส.ค 2560	ทำการตรวจสอบและติดตั้ง Card และ Module ต่างๆของ	
	อุปกรณ์ ASR 9006 ของแต่ละภูมิภาค	
2 ส.ค 2560	ทำการตรวจสอบอุปกรณ์ ASR 9001 ว่าทำงานได้ถูกต้อง	
	โคยการ Show ข้อมูลจากข้างในออกมาคูและทำการ	
	ตรวจสอบ	
3 ส.ค 2560	อธิบาย Topology ของ Site ลูกค้าเบื้องต้นให้กับพี่ที่พึ่งย้าย	
	มาจากอีกทีมนึง	
4 ส.ค 2560	เข้าร่วมการประชุมของทีมเพื่อแบ่งงานและหาผู้ช่วยเหลือ	
	แต่ละงานพร้อมชี้แจงงานให้ชัดเจน	
7 ส.ค 2560	ทำการเช็คสายส่งข้อมูลและหาต้นทาง-ปลายทางพร้อมทำ	
	Label บอกต้นทางและปลายทางเพื่อความสะควกในการ	
	ทำงานในครั้งต่อๆไป	
-		

8 ส.ค 2560	ทำการทดสอบการใช้งานระหว่าง OpenvSwitch กับ	
	Opendaylight	
9 ส.ค 2560	เข้าร่วมโครงการ AIT Openhouse และ ได้รับการทคสอบ	
	เพื่อที่จะเข้าเป็นพนักงานในเครือบริษัท	
10 ส.ค 2560	ศึกษาการทำงานของ Site ToT และ ซ่อมแซ่ม VM มี	
	ปัญหาต้องการถงใหม่	
11 ส.ค 2560	ทำความเข้าใจเกี่ยวกับระบบ Network ที่ Site ToT	
14 ส.ค 2560	หยุดชดเชยวันเฉลิมพระชนมพรรษาสมเด็จพระนางเจ้า	
	สิริกิติ์พระบรมราชินีนาถ(วันเสาร์ที่ 12 ส.ค 2560)	
15 ส.ค 2560	ทำการศึกษาเกี่ยวกับ Docker เพื่อช่วยลดภาระการทำงาน	
	ของ PC	
16 ส.ค 2560	ทำการศึกษาเกี่ยวกับ Docker เพื่อช่วยลดภาระการทำงาน	
	ของ PC	
17 ส.ค 2560	ทำการศึกษาเกี่ยวกับ Flow Table	
18 ส.ค 2560	ช่วยทำเอกสารให้กับฝ่าย HR และทำแบบทคสอบ	
	ออนไลน์สำหรับผู้ที่ต้องการเข้าทำงานที่บริษัท	
21 ส.ค 2560	หาข้อมูลเกี่ยวกับผู้ให้บริการทางอินเทอร์เน็ต	
22 ส.ค 2560	ประชุมการทำงาน	
23 ส.ค 2560	ตรวจสอบบัคในระบบ	
	ทำการตรวจสอบอุปกรณ์ ASR 920 ว่าทำงานได้ถูกต้อง	
24 ส.ค 2560	โดยการ Show ข้อมูลจากข้างในออกมาดูและทำการ	
	ตรวจสอบ	
25 ส.ค 2560	ทำ Manual Guide การติดตั้ง IOS ของอุปกรณ์ ASR 920	
28 ส.ค 2560	ทำการอัพเกรค XFPD และ อัพเคท IOS และติดตั้ง	
	Software Maintenance Update (SMU) – วันที่ 1	
29 ส.ค 2560	ทำการอัพเกรค XFPD และ อัพเคท IOS และติดตั้ง	
	Software Maintenance Update (SMU) – วันที่ 2	
30 ส.ค 2560	ศึกษาเกี่ยวกับปัญหาที่จะเกิดขึ้นเมื่อ Controller เสียหาย	
	หรือมีปัญหา	
31 ส.ค 2560	จำลองระบบลง GNS3 อย่างครบถ้วนและแก้ใจปัญหาที่	
	เจอเบื้องต้น	
	·	

1 ก.ย 2560	ตรวจสอบอุปกรณ์ที่มีปัญหาที่ Site งาน CAT และทำการ	
	้ แก้ไขและเปลี่ยนอุปกรณ์พร้อมเฝ้าสังเกตุการณ์	
	·	อ่านหนังสือ
4 ก.ย 2560	ลางาน	เตรียมความ
		พร้อมแข่งขัน
		Netrider
		อ่านหนังสือ
5 ก.ย 2560	ลางาน	เตรียมความ
		พร้อมแข่งขัน
		Netrider
6 ก.ย 2560	แบ่งขัน Netrider Round 2	
7 ก.ย 2560	เตรียมอุปกรณ์ Fiber และ แคปสาย Lan แบบ Cross เพื่อ	
	เตรียมไป Connect กะ อุปกรณ์ตัวใหม่ที่ CAT นนทุบรี	
8 ก.ย 2560	ทำการติดตั้งและเปลี่ยนอุปกรณ์ที่ Site CAT และทำ Label	
	ให้สามารถเข้าใจได้ง่ายมากขึ้น	
11 ก.ย 2560	เข้าร่วมการอบรมที่ KTBCS โดยเป็นผู้สอนค้าน Lab	
	Network เบื้องต้น – วันที่ 1	
12 ก.ย 2560	ทำการศึกษาการทำงานของ API แต่ละอัน	
13 ก.ย 2560	เข้าร่วมการอบรมที่ KTBCS โดยเป็นผู้สอนค้าน Lab	
	Network เบื้องต้น - วันที่ 2	
14 ก.ย 2560	ทำการ โกสเครื่อง PC และอัพเดท Driver ให้กับทาง	
	บริษัทขน(บขส.)	
15 ก.ย 2560	เข้าร่วมการอบรมที่ KTBCS โดยเป็นผู้สอนค้าน Lab	
	Network เบื้องต้น – วันที่ 3	
18 ก.ย 2560	ศึกษา Solution ที่ลูกค้าต้องการจะให้แก้พร้อมทำความ	
	เข้าใจ Configuration ต่างๆ	
19 ก.ย 2560	เตรียมพร้อมสำหรับการ Migrate CRS 16 slot ในวันที่ 20	
	ก.ย 2560	
20 ก.ย 2560	Migrate CRS 16 slot ที่ CAT เพิ่ม Link ช่วยใน	
	การทำโหลด Balance และ โยก Traffic	

21 ก.ย 2560	ตรวจสอบข้อผิดพลาดจากการโยก Traffic ของวันที่ 20	
	ก.ย 2560 และทำการแก้ไข Configuration เพิ่มลงไป	
22 ก.ย 2560	คุยกับลูกค้าเรื่องการส่งขอ และประสานงานกับคนส่งของ	
	ฝั่ง AIT พร้อมติดตามการขนส่งของ	
25 ก.ย 2560	ตรวจสอบโปรเจคว่าสามารถทำงานตามที่คาคหวังไว้ได้	
26 ก.ย 2560	ทำรายงานความคืบหน้า	
27 ก.ย 2560	ทำรายงานความคืบหน้า	
28 ก.ย 2560	ทำรายงานความคืบหน้า	
29 ก.ย 2560	ทำรายงานความคืบหน้า	
2 ฅ.ค 2560	เข้าไปตรวจสอบสภาพอุปกรณ์ ASR 9001 พร้อมเช็กความ	
	เรียบร้อย จำนวนของและการทำงานต่างๆ ที่ Warehouse	
3 ฅ.ค 2560	ทำรายงานรูปเล่มสหกิจศึกษา	
4 ต.ค 2560	เข้า Warehousr ลง Package ต่างๆบนตัว ASR 9001 พร้อม	
	ทั้งอัพเคทเวอร์ชั่นต่างๆให้ตรงตามความต้องการของลูกค้า	
5 ฅ.ค 2560	ทำรายงานรูปเล่มสหกิจ	
		ทีม Installtion
6 ฅ.ค 2560	ลางาน	ทุกทีมได้ไป
		Outing
9 ฅ.ค 2560	ทำการทคลอง Lab GNS3	
10 ต.ค 2560	ทำรายงานรูปเล่ม	
11 ต.ค 2560	ทำรายงานรูปเล่ม	
12 ต.ค 2560	ทำรายงานรูปเล่ม	
13 ต.ค 2560	หยุดเนื่องด้วยวันคล้ายวันสวรรคต	
16 ต.ค 2560	ทำการช่วยแก้ปัญหาด้านการ Design Solution ให้แก่ลูกค้า	
	ทำการ Active License ให้กับ ASR920 ที่ Warehousr	
17 ต.ค 2560	พร้อม Troubleshooting ปัญหาจากการ Downgrade รุ่นให้	
	ต่ำกว่าที่ได้รับมา	
18 ต.ค 2560	บรรยายลักษณะงานกับสิ่งไปที่ฝึกงานที่บริษัทให้แก่	
	อาจารย์นิเทศ	
19 ต.ค 2560	ทำ Manual Guide Active License และ Downgrade	
	Software ASR920 ให้แก่ถูกค้า	
		· · · · · · · · · · · · · · · · · · ·

	T	T
20 ต.ค 2560	ทำรายงานรูปเล่ม	
23 ต.ค 2560	หยุดเนื่องด้วยเป็นวันปิยมหาราช	
24 ต.ค 2560	ทำรายงานรูปเล่ม	
25 ต.ค 2560	เข้า CAT บางรักเพื่อทำการ โยก License	
26 ต.ค 2560	ลางาน	วาง ดอกไม้จันทน์ที่ สนามหลวง
27 ต.ค 2560	ทำความเข้าใจเรื่อง Overlay Tansport Virtualization	
30 ต.ค 2560	ทำ Manual Guide ISR 4351 การเปลี่ยน License จาก	
	อุปกรณ์หนึ่งไปยังอุปกรณ์หนึ่งและวิธีการติดตั้ง License	
	และ Active	
31 ต.ค 2560	ทำรายงานรูปเล่ม	
1 พ.ย 2560	ทำรายงานรูปเล่ม	
2 พ.ย 2560	ทำรายงานรูปเล่ม	
3 พ.ย 2560	ทำรายงานรูปเล่ม	
6 พ.ย 2560	เข้าร่วมประชุมโครงการ BroadBandGateway	
7 พ.ย 2560	ทำการเช็คอุปกรณ์ Switch และ Router ที่เป็น Spare เพื่อ	
	นำไปไว้ที่ไซต์ลูกค้า	
8 พ.ย 2560	เข้าคอรส์อบรม Personality ของทางบริษัท	
9 พ.ย 2560	เข้าคอรส์อบรม Presentation ของทางบริษัท	
10 พ.ย 2560	แก้ใจ Config Router 2900 ที่มีปัญหา	
13 พ.ย 2560	ช่วยเหลือ Site งานฝั่ง System Data Cenetrในการ Upgrade	
	ทั้ง Office เป็น Window รุ่นล่าสุด	
14 พ.ย 2560	ช่วยเหลือ Site งานฝั่ง System Data Cenetrในการ Upgrade	
	ทั้ง Office เป็น Window รุ่นล่าสุด	
15 พ.ย 2560	ทำการ Config TACCAS และทำการ Standby แก้ไขให้กับ	
	User ที่เข้าใช้งานไม่ได้	
16 พ.ย 2560	ทำการหา Configuration ของ ISR 4331	
17 พ.ย 2560	ทำการตรวจสอบอุปกรณ์ UCS Switch 3506 ACS ICE	
	ก่อนนำไปติดตั้ง	
20 พ.ย 2560	บรรยายโปรเจคสหกิจที่ตนทำให้กับพี่ๆในทีม	

21 พ.ย 2560	ทำการเปลี่ยน Config อุปกรณ์ 7600 ให้เป็นของ ASR9000	
	เพื่อเตรียมนำไป Migrate	
22 พ.ย 2560	Present ผลงานให้กับทางบริษัท	
23 พ.ย 2560	ทำการเปลี่ยน Config อุปกรณ์ 7600 ให้เป็นของ ASR9000	
	เพื่อเตรียมนำไป Migrate	
24 พ.ย 2560	ช่วยเหลือ Site งานฝั่ง System Data Cenetrในการสอนการ	
	ใช้งานระบบและอุปกรณ์ต่างๆ	
27 พ.ย 2560	Standby ที่ Site งานลูกค้าเพื่อตรวจสอบความถูกต้อง	

ภาพกิจกรรมการทำงาน ภาพปฏิบัติงาน CRS3 - 16 Slot

ภาพปฏิบัติงาน ASR 9001 ที่ใชต์งาน

ภาพเข้าอบรม PreCCNA

ภาพ Present งานสหกิจให้กับบริษัทและทางผู้บริหาร

ภาพปฏิบัติงานตรวจสอบ Router 2960

ภาพอบรม MPLS BGP ISIS ของในไซตั้งาน

ภาพคอรส์อบรม Presentation & Personality Class

ภาพโครง AIT Excellent Award

ประวัติผู้เขียน

ชื่อ - นามสกุล จิรสิน ปัญญาวิสุทธิชัย

วัน เดือน ปี เกิด 22 มิถุนายน 2539

ที่อยู่ 515/137 ถนน เจริญราษฎร์ แขวงบางโคล่ เขตบางคอแหลม จังหวัด

กรุงเทพมหานคร 10120

ประวัติการศึกษา กำลังศึกษาในหลักสูตรวิทยาศาสตร์บัณฑิต สาขาวิชาเทคโนโลยี

สารสนเทศ คณะเทค โน โลยีสารสนเทศ สถาบันเทค โน โลยีพระจอมเกล้า

เจ้าคุณทหารลาคกระบัง