Calculabilité, logique et complexité

Chapitre 2
Concepts

Chapitre 2 : Concepts

- 1. Démonstration et raisonnement
- 2. Ensembles, langages, relations et fonctions
- 3. Ensembles énumérables
- 4. Diagonalisation de Cantor

Acquis d'apprentissage

A l'issue de ce chapitre, les étudiants seront capables de

- Comprendre et maîtriser les concepts d'ensembles, langages, relations, fonction, ensemble énumérable
- Déterminer et justifier si un ensemble donné est énumérable ou non énumérable
- Démontrer que l'ensemble des réels est non énumérable
- Justifier que l'univers des programmes informatiques est énumérable tandis que l'univers des problèmes (fonctions) est non énumérable et en tirer les conséquences adéquates

1. Démonstration et raisonnement

Un exemple de démonstration ...

Qu'est-ce qu'une « démonstration » ?

HOW CAN THIS BE TRUE?

Ensembles

Un *ensemble* est une collection d'objets, sans répétition, appelés les *éléments* de l'ensemble

- {} ou Ø ensemble vide
- { 0, 1, 2, 3 }
- { 0, 1, 2, 3, 4, 5, 6, ... } ensemble infini
- { 0, 1, -1, 2, -2, 3, -3, ...}
- { a, b, c }
- { a, aa, aaa, aaaa, ... } ensemble infini
- { 00, 01, 10, 11 }
- { a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, ... }
- A x B : produit cartésien
- 2^A , $\mathcal{P}(A)$: ensemble des sous ensembles de A
- Ā : complément de A

Langages

- Une *chaîne de caractères*, ou *mot*, est une séquence finie de symboles juxtaposés
 - 010110, abccbcabcb
- ε : chaîne vide de caractères
- Un *alphabet* Σ est un ensemble de symboles
 - $\Sigma = \{ 0, 1 \}$ $\Sigma = \{ a, b, c \}$
- Un langage est un ensemble de mots constitués de symboles d'un alphabet donné
 - palindromes sur {a, b}
 ε, a, b, aa, aaa, aba, babaabab, aababbbabaa

Langages

- Σ* ensemble de tous les mots sur Σ
 - $\Sigma = \{\}, \Sigma^* = \{ \epsilon \}$
 - $\Sigma = \{a\}$, $\Sigma^* = \{\epsilon, a, aa, aaa, aaaa, ...\}$
 - $\Sigma = \{0,1\}$, $\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ... \}$

Relations

- Soient A, B des ensembles
 - Une relation R (sur A ,B) est un sous-ensemble de A x B
 - Une relation est définie par sa table
 - <a,b> ∈ R , aRb, R(a,b)

Fonctions

- Soient A, B des ensembles
 - Une fonction f (de A dans B) est une relation telle que pour a ∈ A, il existe au plus un b ∈ B tel que <a,b> ∈ f
 - $f: A \rightarrow B$
 - f(a)=b , <a,b> ∈ f
 - Si a ∈ A et il n'existe pas de b ∈ B tel que f(a)=b,
 alors f(a) est indéfini

$$f(a) = \bot$$
 (bottom)

Propriétés des fonctions

- Soit $f: A \rightarrow B$
 - domaine de f : dom(f) = $\{a \in A \mid f(a) \neq \bot\}$
 - image de f : image(f) = $\{b \in B \mid \exists a \in A : b=f(a)\}$
 - f est fonction totale ssi dom(f) = A
 - f est fonction *partielle* ssi dom(f) \subseteq A
 - f est surjective ssi image(f) = B
 - f est *injective* ssi $\forall a, a' \in A : a \neq a' \Rightarrow f(a) \neq f(a')$
 - f est *bijective* ssi f est totale, injective et surjective

Propriétés des fonctions

- Soient f, g : A \rightarrow B
 - f est une extension de g ssi

$$\forall x \in A : g(x) \neq \bot \Rightarrow f(x) = g(x)$$

• f a la même valeur que g partout où g est définie

Définition d'une fonction

Une fonction est définie par sa table (peut-être infinie)

Comment définir (la table d') une fonction ?

- Définir une fonction par un texte fini déterminant sans contradiction ni ambiguïté le contenu de sa table
- Une définition peut prendre la forme d'un algorithme
 - $f(x) = 2x^3 35x + 7$ Détermine la fonction *ainsi qu*'un moyen de la calculer
- Il n'est pas nécessaire de décrire ou de connaître un moyen de calculer la fonction pour pouvoir la définir sans ambiguïté ni contradiction
 - f(x) = 1 s'il y a de la vie autre part que sur la terre
 0 sinon

Définitions

- Deux ensembles A et B ont le même cardinal si il existe une bijection entre A et B
- Soit N l'ensemble des nombres naturels

$$N = \{0,1,2,3,4,5,6,7,8,...\}$$

- Un ensemble est énumérable ou dénombrable
 ssi il est fini ou si il a le même cardinal que N
- Un ensemble infini est énumérable s'il existe une liste infinie (indicée par des entiers) de tous ses éléments

$$e_0, e_1, ..., e_n, ...$$

Exemples

- L'ensemble des entiers *Z* = { 0, -1, 1, 2, -2, ...}
- L'ensemble des nombres pairs

- L'ensemble des paires d'entiers, des triplets, ...
- L'ensemble des rationnels
- L'ensemble des sous-ensembles finis d'entiers
- L'ensemble des chaînes finies de caractères sur un alphabet fini
- L'ensemble des programmes Java

Propriétés

- Tout sous-ensemble d'un ensemble énumérable est énumérable
- L'union et l'intersection de deux ensembles énumérables est énumérable
- L'union d'une infinité énumérable d'ensembles énumérables est énumérable

L'univers des programmes informatiques

- Un programme informatique est une chaine finie de caractères
- Quelque soit le langage de programmation, il y a une infinité énumérable de programmes informatiques
- L'informatique ne considère que des ensembles énumérables

Existe-t-il des ensembles infinis non énumérables?

Théorème: (Cantor 1874)

Soit E = $\{x \text{ r\'eel} \mid 0 < x \leq 1\}$

E est non énumérable

Preuve:

Supposons E énumérable

Il existe donc une énumération des éléments de $E: x_0, x_1, ..., x_k, ...$

1. Construction d'une table

$$x_k = 0. x_{k0} x_{k1} ... x_{kk} ...$$

	1 digit	2 digit	3 digit		k+1 digit	•••
х0	x ₀₀	x ₀₁	x ₀₂	•••	x _{Ok}	•••
x ₁	x ₁₀	x ₁₁	x ₁₂	•••	X _{1k}	•••
X2	x ₂₀	X ₂₁	x ₂₂	:	x _{2k}	•••
•	•	:	.,	••		:
Xk	x _{k0}	x _{k1}	x _{k2}	3	x _{kk}	= /
:	:	:	:	:	·	

2. Sélection de la diagonale

$$d = 0 . x_{00} x_{11} ... x_{kk} ...$$

Modification de cet élément

•
$$x'_{ii} = 5 \text{ si } x_{ii} \neq 5$$

= 6 si $x_{ii} = 5$

- $d' = 0. x'_{00} x'_{11} ... x'_{kk} ...$
- d' est un élément de E (0 < d' ≤ 1)

4. Contradiction

- d'est dans l'énumération car E est énumérable
- d' n'est pas dans l'énumération car si d' = x_p

alors d' = 0.
$$x_{p0}$$
 x_{p1} ... x_{pp} ...
= 0. x'_{00} x'_{11} ... x'_{pp} ...

impossible car x_{pp} ≠ x'_{pp}

5. Conclusion

E n'est pas énumérable

On dit que E et R ont la puissance du continu

Exemples d'ensembles non énumérables

- L'ensemble des réels R
- L'ensemble des sous-ensembles de N
- L'ensemble des chaînes infinies de caractères sur un alphabet fini
- L'ensemble des fonctions de N dans N

Existe-t-il des ensembles avec "plus d'éléments" que R?

L'univers des programmes informatiques

 Quelque soit le langage de programmation, il y a une infinité énumérable de programmes informatiques

L'univers des fonctions

• L'ensemble des fonctions de N dans N n'est pas énumérable

- Il y trop de fonctions par rapport aux programmes
- Impossible de représenter ou de calculer chaque fonction par un programme!

