Modèles Linéaires Appliqués / Régression Agenda

Arthur Charpentier

UQAM

Hiver 2020 - COVID-19 quarantaine # 0

Trois séries de capsules vidéos

- régression Bernoulli $y_i \in \{0,1\}$ ou $Y_i \sim \mathcal{B}(p_i)$ et extensions: $y_i \in \{0, 1, \dots, n\}$ ou $Y_i \sim \mathcal{B}(n, p_i)$ (binomiale) $v_i \in \{A, B, C\}$ ou $\mathbf{Y} = (\mathbf{1}_A, \mathbf{1}_B, \mathbf{1}_C) \sim \mathcal{M}(\mathbf{p})$ (multinomiale) #1 - #7
- régression de Poisson $y_i \in \mathbb{N}$ ou $Y_i \sim \mathcal{P}(\lambda_i), \ \lambda_i = \exp(\mathbf{x}_i^{\top} \boldsymbol{\beta})$ #8 - #11
- modèles GLM $Y_i \sim \mathcal{L}(\theta_i)$ avec $\mathbb{E}(y_i) = g^{-1}(\mathbf{x}_i^{\top} \boldsymbol{\beta})$
- famille exponentielle, inférence, déviance, surdispersion, tests #12 - #19

GLM (pratique)

Mise en oeuvre sous R (https://rstudio.cloud/ version en ligne)


```
1 > ?glm
2 > reg = glm(y ~ x1+x2, family=binomial(link="logit"))
```

Complément : github/STT5100 ou github/MAT7381, et blog Le rendu des devoirs se fera via moodle

GLM (pratique)

Pour le cours STT5100, les devoirs sont en ligne sur github,

(le code permanent est à changer...)

Pour toutes suggestions arthur.charpentier@gmail.com