3. zadanie

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **101110.** Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

- *X vstupná premenná, môže ich byť viacero.*
- Y výstupná premenná, tiež ich môže byť viacero.
- Z1, Z2,.. stavové premenné, pomocou ktorých sú kódované jednotlivé stavy.
- D1, D2, ... budiace funkcie.
- KL kombinačná logika (zjednodušene povedané, toto ste robili na 2. zadaní).
- D preklápacie obvody. Pamäťová časť obvodu, vďaka nej obvod vie v akom stave sa nachádza.
- CLK hodinový signál, ktorý synchronizuje preklápacie obvody (a "posúva" obvod do nasledujúceho stavu).

Riešenie 3. zadania

Zadaná postupnosť: 101110

Prechodová tabuľka pre automat typu Moore

	Nový stav		Y	Čo je
stav	x=0	x=1		splnené?
S0	S0	S 1	0	Nič
S1	S2	S 1	0	"1"
S2	S0	S3	0	"10"
S3	S2	S4	0	"101"
S4	S2	S5	0	"1011"
S5	S6	S 1	0	"10111"
S6	S0	S 3	1	"101110"

Zostrojíme prechodový graf stavového automat typu Moore.

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej):

Kódovanie stavov

			<u>z3</u>		
		z 2			
	S 1	S0	S2	X	
z 1	S5	S6	S3	S4	

Stav	$z_1z_2z_3$
S0	010
S 1	000
S2	011
S3	111
S4	101
S5	100
S6	110

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

	Nový stav		Y
stav	x=0	x=1	1
010	010	000	0
000	011	000	0
011	010	111	0
111	011	101	0
101	011	100	0
100	110	000	0
110	010	111	1

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia Y

			z 3	
		z2		_
_	011	010	010	XXX
z 1	110	010	011	011
	000	111	101	100
X	000	000	111	XXX
		D1, D2, D3	3	

			z3	
		z2		
	0	0	0	X
z 1	1	0	0	0
	0	1	1	1
X	0	0	1	X
		D1		

			z3	
		z2		
	1	1	1	X
z 1	1	1	1	1
	0	1	0	0
X	0	0	1	X
		D2		

z3

		z2		
_	1	0	0	X
z 1	0	0	1	1
	0	1	1	0
X	0	0	1	X
-		D3		_

			z3			
		z2				
	0	0	0	X		
z 1	0	1	0	0		
$Y = z1. z2. \overline{z3}$						

Budiace funkcie pre JK preklápacie obvody (JK-PO)

z->Z	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> <u>1</u>	X	0

		1-> <u>1</u>	<u>, </u>	
			Z 3	
		Z 2		
_	0	0	0	X
Z1	X X	X	X	X
		X	X	X
X	0	0	1	X
		J1 = Z3.X		
			Z3	
		Z 2		
_	X	X	X	X
Z1	0	1	1	1
	1	0	0	0
X	X	X	X	X
	K1 = 1	$\overline{Z2}$. $\overline{Z3}$. $X + Z2$.	$\bar{X} + Z3.\bar{X}$	
			70	
			Z3	
		Z2		
	1	X	X	X
Z1	1	X	X	1
	0	X	X	0
X	0	X	X	X
		$J2 = \bar{X}$		

 $\mathbb{Z}2$

_	X	0	0	X	
Z 1	X	0	0	X	
	X	0	1	X	
X	X	1	0	X	
$K2 = \overline{Z1}.\overline{Z3}.X + \overline{Z1}.Z3.X$					

			Z 3			
		Z 2				
	1	0	X	X		
Z1	0	0	X	X		
	0	1	X	X		
X	0	0	X	X		
$J3 = Z1. Z2. X + \overline{Z1}. \overline{Z2}. \overline{X}$						

			Z 3			
		Z 2		_		
	X	X	1	X		
Z 1	X	X	0	0		
	X	X	0	1		
X	X	X	0	X		
$K3 = \overline{Z1}.\overline{X} + \overline{Z2}.X$						

Espresso

Príklady vstupu a výstupu v programe espresso sa zhodovali s mnou navrhnutými skupinami.

```
# zadanie 3
                        # zadanie 3
                        j1 = (z3&x);
.i 4
.0 6
                        k1 = (!z2\&!z3\&x) | (z2\&!x) | (z3\&!x);
.ilb z1 z2 z3 x
.ob j1 k1 j2 k2 j3 k3
                        j2 = (!x);
.type fr
.p 7
                        k2 = (!z1\&!z3\&x) | (z1\&z3\&x);
0100 0--00-
0000 0-1-1-
                        j3 = (z1&z2&x) | (!z1&!z2&!x);
0110 0--0-1
1110 -1-0-0
                        k3 = (!z1&!x) | (!z2&x);
1010 -11--0
1000 -01-0-
1100 -1-00-
----
0101 0--10-
0001 0-0-0-
0111 1--0-0
1111 -0-1-0
1011 -00--1
1001 -10-0-
1101 -0-01-
----
.е
```

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = Z3.X = (Z3 \uparrow X) \uparrow (Z3 \uparrow X)$$

$$K1 = \overline{Z2}.\overline{Z3}.X + Z2.\overline{X} + Z3.\overline{X} = \overline{(\overline{Z2}.\overline{Z3}.X)}.\overline{(Z2.\overline{X})}.\overline{(Z3.\overline{X})}$$
$$= ((Z2 \uparrow) \uparrow (Z3 \uparrow) \uparrow X) \uparrow (Z2 \uparrow (X \uparrow)) \uparrow (Z3 \uparrow (X \uparrow))$$

$$J2 = \bar{X} = X \uparrow X$$

$$K2 = \overline{Z1}.\overline{Z3}.X + Z1.Z3.X = \overline{(\overline{Z1}.\overline{Z3}.X)}.\overline{(Z1.Z3.X)}$$
$$= ((Z1 \uparrow) \uparrow (Z3 \uparrow) \uparrow X) \uparrow (Z1 \uparrow Z3 \uparrow X)$$

$$J3 = Z1.Z2.X + \overline{Z1}.\overline{Z2}.\overline{X} = \overline{(Z1.Z2.X)}.\overline{(\overline{Z1}.\overline{Z2}.\overline{X})}$$
$$= (Z1 \uparrow Z2 \uparrow X) \uparrow ((Z1 \uparrow) \uparrow (Z2 \uparrow) \uparrow (X \uparrow))$$

$$K3 = \overline{Z1}.\overline{X} + \overline{Z2}.X = \overline{(\overline{Z1}.\overline{X}).(\overline{Z2}.X)}$$
$$= ((Z1 \uparrow) \uparrow (X \uparrow)) \uparrow ((Z2 \uparrow) \uparrow X)$$

$$Y = Z1.Z2.\overline{Z3} = (Z1 \uparrow Z2 \uparrow (Z3 \uparrow)) \uparrow (Z1 \uparrow Z2 \uparrow (Z3 \uparrow))$$

Vyjadrenie k počtu logických členov obvodu: 18 členov NAND a 3 preklápacie obvody JK. Vyjadrenie k počtu vstupov do logických členov obvodu: 53 (41 v kombinačnej časti a 12 v pamäťovej časti).

Schéma:

Zhodnotenie

Postupoval som chronologicky, Graf som tvoril cez stránku: https://www.cs.unc.edu/~otternes/comp455/fsm_designer/

Kódovanie stavov som sa snažil optimalizovať. Po prepise do karnaughových máp som vytvoril skupiny, ktoré som skontoloval programom Espresso.

Úlohu som overoval v programe LogiSim, kde po postupnom nastavení hodnôt 101110 v kombinácii s hodinovým signálom po celej sekvencii vyšlo Y rovné 1.

V obvode je použitých 19 členov NAND, 3 JK preklápacie obvody.