Computing the Stratified Semantics of Logic Programs over Big Data through Mass Parallelization

<u>Ilias Tachmazidis</u>, Grigoris Antoniou *University of Huddersfield, UK*

Motivation: The Challenge of Big Data

- Big Data: Huge data set coming from
 - the Web, sensor networks and social media
- Applications: e.g. smart cities, intelligent environments, information extraction
- The challenge:
 - Scaling up to big data is not trivial
 - New approaches, new algorithms
- Opportunities for Knowledge Representation
 - Decision making
 - Decision support
 - Data cleaning
 - Inferring high-level knowledge from low-level input

Outline

- Motivation
- MapReduce paradigm
- Logic programming example
 - Joins
 - Anti-joins
- The power of stratification
- Experimental Results
- Future Directions

The Big Data Challenge for Reasoning

- Big Data poses significant computational challenges
 - Focus has to be not just complex knowledge structures, but their efficient processing in combination with huge amounts of data
- In particular for Knowledge Representation (KR), centralized in-memory solutions (the traditional KR approach) do not scale to the Big Data challenge:
 - Billions of facts result in over 20GB of data

Related Work

- Parallelization approaches:
 - Rule decomposition
 - Data decomposition
- Allows for efficient reasoning on large data sets
 - 100 billion triples
 - Datalog (e.g. Afrati & Ullmann)
 - RDF/S (e.g. Weaver & Hendler)
 - OWL dialects (e.g. Urbani et al.)

Novel Contribution

- All previous works addressed consistent sets of rules
- In practice, big data is messy and often inconsistent
- A type of non-classical reasoning, called nonmonotonic reasoning, supports reasoning
 - To deal with inconsistencies that arise naturally in the Web context
 - To deal with deficient (sensor) data
 - To reason with missing (incomplete) information
- Apply MapReduce paradigm to nonmonotonic reasoning

MapReduce Paradigm

- Inspired by similar primitives in LISP and other functional languages
- Operates exclusively on <key, value> pairs
- Input and Output types of a MapReduce job:
 - Input: <k1, v1>
 - Map(k1,v1) \rightarrow list(k2,v2)
 - Reduce(k2, list (v2)) → list(k3,v3)
 - Output: list(k3,v3)

MapReduce Framework

- Provides an infrastructure that takes care of
 - distribution of data
 - management of fault tolerance
 - results collection
- For a specific problem
 - developer writes a few routines which are following the general interface

Negative Rule Calculation (1/5)

- Models both "join" and "anti-join" operations from database
- Example:

Facts:

parent(John, Alice), parent(John, Jill), sibling(Alice, Edward), sibling(Jill, Mary), female(Mary)

Rule:

 $son(X,Y) \leftarrow parent(Y(Z)), sibling(Z)X), not female(X)$

Join

parentOfSiblings(Y,X,Z)

Part 3: Logic programming example

Negative Rule Calculation (2/5) "Join"

INPUT Facts in multiple files

File01

parent(John, Alice)
 parent(John, Jill)
sibling(Alice, Edward)

File02

sibling(Jill, Mary) female(Mary)

MAP phase Input

Key: position in file (ignored)

Value: fact

<key, parent(John, Alice) >

<key, parent(John, Jill)>

< key, sibling(Alice, Edward)>

<key, sibling(Jill, Mary)>

<key, female(Mary)>

Negative Rule Calculation (3/5): "Join"

Negative Rule Calculation (4/5) "Join"

Reduce phase Input

<Alice, <(parent, John), (sibling, Edward)>>

<Jill, <(parent, John),
 (sibling, Mary)>>

Reduce phase Output Output: new conclusion

parentOfSiblings(John, Edward, Alice)

parentOfSiblings(John, Mary, Jill)

Negative Rule Calculation (5/5)

Parent(YZ) sibling(Z)X), not female(X)
Join
parentOfSiblings(Y,X,Z)
female(Mary)
parentOfSiblings(John, Edward, Alice)
parentOfSiblings(John, Mary) Jill)
Anti-join

son(Edward, John)

Stratified Semantics (1/2)

- > son(X,Y) ← parent(Y,Z), sibling(Z,X), not female(X)
- female(x) \leftarrow human(x), **not** male(x)

Stratified Semantics (2/2)

Part 4: The power of stratification

Experimental Setup

- Measure scalability in terms of
 - Number of nodes (computers in the cluster) maximum parallelization possible
 - Number of facts
 - Number of rules
- Used a synthetic dataset
 - up to 1 billion facts
 - up to 128 rules

Experimental Results (1/2) parallelization factor of 8: linear performance

Part 5: Experimental Results

Experimental Results (2/2)

parallelization factor of 8: linear performance up to 64 rules

Part 5: Experimental Results

Summary

- Computed the stratified semantics over Big Data
- Ran experiments for various
 - data sizes
 - rule sizes
- Demonstrated that reasoning can scale well up to 1 billion facts

Future Work

Beyond stratification

- What happens is we do not have this nice structure
- Solve the problem by allowing dependency cycles

Beyond MapReduce

- We will study more complex NMR approaches, including ontology evolution/repair and Answer-Set Programming
- We believe that MapReduce is not well placed to support this kind of approaches: they are probably not "embarrassingly parallel"

Thank You!

Experimental Results

