L24 - 01/11/2024

Euclidean Algorithm (Book VII)

nay be known earlier creaits to Euclid for its presentation & applications to Number Theory

Recall, GCD of nat. nos m,n
is the largest nat. no. s.t it divides
both on & n.

- Input: A pair of non-(-ve) int. (a0, b0)

Set i=0

If $a_i = 0$, output bi and if $b_i = 0$, output a_i

Else, set $a_{i+1} = \max(a_i, b_i) - \min(a_i, b_i)$ $b_{i+1} = \min(a_i, b_i)$

 \exists int. n_0, y_0 s.t $QCD(a,b) = an_0 + by_0$

- Key: ai & bi are int. comb. of a, b

By ind, all a & & bi & are

int. combs.

: After finite steps, one of ai, bi becomes GCD.

... GCD is also an int. comb. of a & b.

V

Furthernore, if $GCO(a, b) \mid d$,

Furthernore, if $GCO(a, b) \mid d$,

Furthernore, if $GCO(a, b) \mid d$,

where $n = \frac{dn_0}{qco(a,b)}$, $y = \frac{dy_0}{qco(a,b)}$

2. If a prime p divides ab, then p|a or p|b.

Pf - WLOG suppose p|AaThen, qCD(a,p)=1

So, $\exists n_0, y_0 \in \mathbb{Z}$ s.t $l = \alpha n_0 + p y_0$

⇒ b = abno + pbyo

: plab => plabno+pbyo : plb

3. fundamental Theorem of Anithmetic

Any (+ve) int. n (32) can be expressed

as a product of prime $n = p_1 \dots p_k$

le the seq. (p_1, \dots, p_k) is unique upto rearrangement.

- Key: If n is prime, then the hypothesis is true

Else, $\exists a,b \neq 1$ s.t $n = a \cdot b$ \therefore a & b can be written as a prod.

of primes ... n can also be written as a prod.

Hence, existence of prime factorization

Hence, existence of prime factorization
follows by ind.

Suppose there are nos. $(n \ge 2)$ having prime factorizations which are not rearrangements of each other.

Consider the smallest such no. $n = p_1 \cdots p_K = q_1 \cdots q_K$

 $n = p_1 \cdots p_k = q_1 \cdots q_k$

This implies $\{p_1, \dots, p_k\}$ & $\{q_1, \dots, q_k\}$ are disjoint.

But, gi | gi · · · gr => gi | Pi · · · Pk ... $q_i = p_j$ for some $1 \le j \le k$ which is a contain

Pell's Eqn
$$n^2 - Ny^2 = 1$$
, $N - non-purfect$ square

Most well studied after $x^2 + y^2 = 1$

- Pythagoras
$$(N=2)$$

Suppose (nn, yn) is a solⁿ.

ie $nn^2 - 2yn^2 = 1$.

Then
$$n_{n+1} = (n_n + 2y_n)$$

 $y_{n+1} = (n_n + y_n)$

will be a sol". (znoz) ynoz) Hence,

$$(n_0, y_0) = (1,0)$$

The smallest non-trivial soln has 206545 digits

Comparison blu Gr	eek &	Indian	Marh
Greek		gno —	lian
	Motivation	91/	
- Intainic			las, rituals,
		asti	tonony, poetry
	Proofs		V
- Heavy		- No	t much emphasis
- Heavy emphasis			
	Aim		
- Explain		– Speci	fic applications
all of natur	e		V
with Math			