

Machine Learning: Chenhao Tan University of Colorado Boulder LECTURE 9

Slides adapted from Jordan Boyd-Graber, Chris Ketelsen

Logistics

- HW2 available on Github, due in 9 days
- Office hour logistics
- View your class as a community, Piazza

Learning objectives

- Understand gradient descent
- Understand structural risk minimization

Outline

Objective function

Gradient Descent

Empirical Risk Minimization

Outline

Objective function

Gradient Descent

Empirical Risk Minimization

Machine Learning: Chenhao Tan

Reminder: Logistic Regression

$$P(Y=0 \mid \mathbf{x}) = \frac{1}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$
(1)

$$P(Y = 1 \mid \mathbf{x}) = \frac{\exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}{1 + \exp\left[\beta_0 + \sum_j \beta_j \mathbf{x}_j\right]}$$
(2)

- Discriminative prediction: $P(y \mid x)$
- Classification uses: sentiment analysis, spam detection
- What we didn't talk about is how to learn β from data

One idea: find the parameter that maximize the likelihood of observing the training data.

One idea: find the parameter that maximize the likelihood of observing the training data.

Maximize likelihood

$$\begin{aligned} \mathsf{Obj} &\equiv \log P(Y \mid X, \beta) = \sum_{i} \log P(y^{(i)} \mid \boldsymbol{x}^{(i)}, \beta)) \\ &= \sum_{i} y^{(i)} \left(\beta_0 + \sum_{j} \beta_{j} \boldsymbol{x}_{j}^{(i)} \right) - \log \left[1 + \exp \left(\beta_0 + \sum_{j} \beta_{j} \boldsymbol{x}_{j}^{(i)} \right) \right] \end{aligned}$$

Minimize negative log likelihood (loss)

$$\mathcal{L} \equiv -\log P(Y \mid X, \beta) = -\sum_{i} \log P(y^{(i)} \mid \boldsymbol{x}^{(i)}, \beta))$$

$$= \sum_{i} -y^{(i)} \left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right) + \log \left[1 + \exp\left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right)\right]$$

Minimize negative log likelihood (loss)

$$\mathcal{L} \equiv -\log P(Y \mid X, \beta) = -\sum_{i} \log P(y^{(i)} \mid \boldsymbol{x}^{(i)}, \beta))$$

$$= \sum_{i} -y^{(i)} \left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right) + \log \left[1 + \exp\left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right)\right]$$

Training data $\{(x,y)\}$ are fixed. Objective function is a function of β ... what values of β give a good value?

Minimize negative log likelihood (loss)

$$\mathcal{L} \equiv -\log P(Y \mid X, \beta) = -\sum_{i} \log P(y^{(i)} \mid \boldsymbol{x}^{(i)}, \beta))$$

$$= \sum_{i} -y^{(i)} \left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right) + \log \left[1 + \exp\left(\beta_0 + \sum_{j} \beta_i \boldsymbol{x}_j^{(i)}\right)\right]$$

Training data $\{(x,y)\}$ are fixed. Objective function is a function of β ... what values of β give a good value?

$$\beta^* = \operatorname*{arg\,min}_{\beta} \mathscr{L}(\beta)$$

 $\mathscr{L}(\beta)$ is convex for logistic regression.

Proof.

- Logistic loss $-yv + \log(1 + \exp(v))$ is convex.
- Composition with linear function maintains convexity.
- Sum of convex functions is convex.

Outline

Objective function

Gradient Descent

Empirical Risk Minimization

- Convex function
- Doesn't matter where you start, if you go down along the gradient

- Convex function
- Doesn't matter where you start, if you go down along the gradient
- Gradient!

 It would have been much harder if this is not convex.

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables β

Goal

Optimize loss function with respect to variables $\boldsymbol{\beta}$

$$\beta_j^{l+1} = \beta_j^l - \eta \frac{\partial \mathcal{L}}{\partial \beta_j}$$

Goal

Optimize loss function with respect to variables β

$$\beta_j^{l+1} = \beta_j^l - \eta \frac{\partial \mathcal{L}}{\partial \beta_j}$$

Luckily, (vanilla) logistic regression is convex

Boulder 13 of 22

To ease notation, let's define

$$\pi_i = \frac{\exp \beta^T x_i}{1 + \exp \beta^T x_i} \tag{3}$$

Our objective function is

$$\mathcal{L} = -\sum_{i} \log p(y_i \mid x_i) = \sum_{i} \mathcal{L}_i = \sum_{i} \begin{cases} -\log \pi_i & \text{if } y_i = 1\\ -\log(1 - \pi_i) & \text{if } y_i = 0 \end{cases}$$
 (4)

Taking the Derivative

Apply chain rule:

$$\frac{\partial \mathcal{L}}{\partial \beta_j} = \sum_{i} \frac{\partial \mathcal{L}_i(\vec{\beta})}{\partial \beta_j} = \sum_{i} \begin{cases} -\frac{1}{\pi_i} \frac{\partial \pi_i}{\partial \beta_j} & \text{if } y_i = 1\\ -\frac{1}{1-\pi_i} \left(-\frac{\partial \pi_i}{\partial \beta_j} \right) & \text{if } y_i = 0 \end{cases}$$
 (5)

If we plug in the derivative,

$$\frac{\partial \pi_i}{\partial \beta_i} = \pi_i (1 - \pi_i) x_j,\tag{6}$$

we can merge these two cases

$$\frac{\partial \mathcal{L}_i}{\partial \beta_i} = -(y_i - \pi_i)x_j. \tag{7}$$

Gradient

$$\nabla_{\beta} \mathcal{L}(\vec{\beta}) = \left[\frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_0}, \dots, \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_n} \right]$$
 (8)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$
$$\beta_i' \leftarrow \beta_i - \eta \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_i} \tag{10}$$

Gradient

$$\nabla_{\beta} \mathcal{L}(\vec{\beta}) = \left[\frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_0}, \dots, \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_n} \right]$$
 (8)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$
$$\beta_i' \leftarrow \beta_i - \eta \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_i} \tag{10}$$

 η : step size, must be greater than zero

Gradient

$$\nabla_{\beta} \mathcal{L}(\vec{\beta}) = \left[\frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_0}, \dots, \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_n} \right]$$
 (8)

Update

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$

$$\Delta \beta \equiv \eta \nabla_{\beta} \mathcal{L}(\vec{\beta}) \tag{9}$$
$$\beta_i' \leftarrow \beta_i - \eta \frac{\partial \mathcal{L}(\vec{\beta})}{\partial \beta_i} \tag{10}$$

Overfitting

• It is not ideal to maximize the likelihood of training data

Overfitting

- It is not ideal to maximize the likelihood of training data
 - When to stop?
 - \circ Simple models (avoid β to get too big)

Overfitting

- It is not ideal to maximize the likelihood of training data
 - When to stop?
 - Simple models (avoid β to get too big) **Regularization**

Outline

Objective function

Gradient Descent

Empirical Risk Minimization

Regularized Conditional Log Likelihood

Unregularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \ln \left[p(y^{(j)} \mid x^{(j)}, \beta) \right] \tag{11}$$

Regularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \ln\left[p(y^{(j)} \mid x^{(j)}, \beta)\right] + \frac{1}{2}\lambda \sum_{i} \beta_i^2 \tag{12}$$

Regularized Conditional Log Likelihood

Unregularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \ln \left[p(y^{(j)} \mid x^{(j)}, \beta) \right] \tag{11}$$

Regularized

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} - \ln\left[p(y^{(j)} \mid x^{(j)}, \beta)\right] + \frac{1}{2}\lambda \sum_{i} \beta_i^2 \tag{12}$$

 λ is the "regularization" parameter (a hyperparameter) that trades off between likelihood and having small parameters

Alternative view of regularization

Can also get to regularization by putting prior beliefs on parameters

$$p(\beta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \beta)p(\beta)$$

Then MAP estimate for β is $\hat{\beta}$ which maximizes posterior

Alternative view of regularization

Can also get to regularization by putting prior beliefs on parameters

$$p(\beta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \beta)p(\beta)$$

Then MAP estimate for β is $\hat{\beta}$ which maximizes posterior

Ridge: Assume Gaussian prior $p(\beta_i) = \mathcal{N}(\beta_i \mid 0, \tau^2)$, we will obtain the same regularized objective function

You can learn more about this view in "Bayesian statistics"

Risk minimization

$$\min_{eta} \sum_{i} \ell(y^{(i)}, h_{eta}(x^{(i)})) + \lambda R(eta)$$

Risk minimization

$$\min_{\beta} \sum_{i} \ell(y^{(i)}, h_{\beta}(\boldsymbol{x}^{(i)})) + \lambda R(\beta)$$

Loss functions (ℓ)

Describe how well the model fits the training data

• $-y\hat{y} + log(1 + exp(\hat{y}))$

Regularization (R)

Control the complexity of the model

•
$$||\beta||^2 = \sum_j \beta_j^2$$

Risk minimization

$$\min_{\beta} \sum_{i} \ell(y^{(i)}, h_{\beta}(\boldsymbol{x}^{(i)})) + \lambda R(\beta)$$

Loss functions (ℓ)

Describe how well the model fits the training data

- $-y\hat{y} + log(1 + exp(\hat{y}))$
- $(y \hat{y})^2$
- $\max\{0, 1 y\hat{y}\}$

Regularization (R)

Control the complexity of the model

- $||\beta||^2 = \sum_j \beta_j^2$
- $||\beta||_p = \left(\sum_j |\beta_j|^p\right)^{\frac{1}{p}}$
 - ℓ_1 -regularization: $\sum_j |\beta_j|$

Summary

- Follow the gradient to fit the logistic regression model
- Most machine learning methods fall into the framework of (loss + regularization)