Лабораторная работа №6

Задача об эпидемии

Кувшинова К.О. группа НФИ-02-19

Содержание

1 Цель работы			4
2	З адание ра 2.0.1	боты Вариант 36	5
3	Теоретичсе	кое введение	6
4	4.0.1	Решение	. 8 . 9 . 10
5	Вывод		11
6	5 Библиография		

List of Figures

4.1	Код программы	9
4.2	График изменения числа инфицированных особей и выздоровевших	
	особей	9
4.3	График изменения числа инфицированных особей, выздоровевших	
	особей и восприимчивых особей	10
4.4	График изменения числа инфицированных особей, выздоровевших	
	особей и восприимчивых особей	10

1 Цель работы

Рассмотреть модель задачи об эпидемии типа SIR.

2 Задание работы

2.0.1 Вариант 36

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12 400) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=150, А число здоровых людей с иммунитетом к болезни R(0)=55. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1) если $I(0) <= I^*$ 2) если $I(0) > I^*$

3 Теоретичсекое введение

Некая популяция, состоящая из N особей, подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(0) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей. Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} =$$

$$\begin{cases} -\alpha S, \ I(0) > I^* \\ 0, \ I(0) <= I^* \end{cases}$$

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} =$$

$$\begin{cases} \alpha S - \beta I, \ I(0) > I^* \\ -\beta I, \ I(0) \le I^* \end{cases}$$

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\tfrac{dR}{dt} = \beta I$$

Постоянные пропорциональности α, β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. [^1]

4 Выполнение лабораторной работы

4.0.1 Решение

Начальные условия:

lpha=0.01 - коэффициент заболеваемости

 $\beta=0.02$ - коэффициент выздоровления

N=12400 - общая численность популяции

 $I_0 = 150$ - количество инфицированных особей в начальный момент времени

 $R_0 = 55$ - количество здоровых особей с иммунитетом в начальный момент времени

 $S_0 = N \! - \! I_0 \! - \! R_0$ - количество восприимчивых к болезни особей в начальный момент времени

Код программы в OpenModelica(fig. 4.1):

```
model pandemic
parameter Real a = 0.01;// коэффициент заболеваемости
parameter Real b = 0.02;//коэффициент выздоровления
рагамеter Real N = 12400; // общая численность популяции рагамеter Real IO = 150; // количество инфицированных особей в нач момент вр
рагамеter Real R0 = 55; // количество здоровых особей с иммунитетом в нач момент вр рагамеter Real S0 = N - I0 - R0; // количество восприимчивых к болезни особей в нач момент вр
Real S(start=S0); //кол-во восприимчивых
Real I(start=I0); //кол-во инфицированных
Real R(start=R0); //кол-во здоровых с иммунитетом
equation
//случай 1 I(0)<=I*
der(S)=0;
der(I) =-b*I;
der(R)=b*I;
//случай 2 I(0)>I*
der(S) =-a*S;
der(I)=a*S-b*I;
der(R)=b*I;
end pandemic;
```

Figure 4.1: Код программы

4.0.2 Случай 1: $I(0) <= I^*$

График изменения числа инфицированных особей и выздоровевших особей (fig. 4.2):

Figure 4.2: График изменения числа инфицированных особей и выздоровевших особей

График изменения числа инфицированных особей, выздоровевших особей и восприимчивых особей (fig. 4.3):

Figure 4.3: График изменения числа инфицированных особей, выздоровевших особей и восприимчивых особей

4.0.3 Случай 2: $I(0) > I^{st}$

График изменения числа инфицированных особей, выздоровевших особей и восприимчивых особей (fig. 4.4):

Figure 4.4: График изменения числа инфицированных особей, выздоровевших особей и восприимчивых особей

5 Вывод

В ходе выполнения работы мы рассмотрели и построили эпидемическую модель типа SIR.

6 Библиография

1. Кулябов, Д.С. Задача об эпидемии [Текст] / Д.С.Кулябов. - Москва: - 4 с. [^1]: Кулябов, Д.С. Задача об эпидемии.