SF BikeShare

Akanksha, Marine, Esther, Lexie

Dataset

SF Bikeshare Data: 2GB

Trips

Status

Weather

SF Population Data

Population by Neighborhood in San Francisco

Analytic goals

Analytic goals

Predict number of bikes available at a given station with

- station information
- weather condition
- type of day
- o hour
- o population

Related Works

- Predicting number of daily trips
 - Predictors:
 - weather condition
 - number of bikes available
 - type of day (business day vs holiday vs weekend)
- Most important features:
 - business_day, temperature, month

Preprocessing Algorithms

Total runtime: 31 mins

Weather:

- $precipitation \rightarrow is_rain$
- mean_temperature

Status:

• Convert date to DateTime() \rightarrow is_weekend

Preprocessing Algorithms cont...

Adding **population** field:

- Station table has lat, long columns
- Used Socrata SF Data API & GeoNames API to map the lat, long columns to SF neighbourhoods
- Joined neighbourhood population data to the station table

Machine Learning Outcomes

ML

H20

Gradient-Boosting: 2.93

Random Forest: 2.86

Deep Learning: 3.37

AutoML - XGBoost: 2.71

Random Forest Predictions

Feature Importance

Relative Importance

H20

Deep Learning: <u>Train RMSE</u> <u>Test RMSE</u>

3.48 3.37

Auto ML - XGBoost:Train RMSETest RMSE

2.22 2.37

Runtime Comparison

	r5a.8xlarge (memory optimized)	r5a.12xlarge (memory optimized)	c4.8xlarge (compute optimized)	c4.8xlarge (compute optimized)
Nodes	5 nodes	3 nodes	4 nodes	5 nodes
Time	14m 12s	13m 2s	12m 15s	11m 43s

Conclusion & Lessons Learned

- For spark ML: Random Forest performed the best on our data
- For H2O: XGboosting performed the best
- H2O was slower on EMR clusters when operating on data
- Population of the station area is correlated to the number of bikes available