Would you like to see this cheatsheet in your native language? You can help us translating it (https://github.com/shervinea/cheatsheet-translation) on GitHub!

# (https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning#cs-229---machine-learning)CS 229 - Machine Learning (teaching/cs-229)

العربية (l/ar/teaching/cs-229/cheatsheet-unsupervised-learning) **English** Español (l/es/teaching/cs-229/hoja-referencia-aprendizaje-no-supervisado) فارسى (l/fa/teaching/cs-229/cheatsheet-unsupervised-learning) Français (l/fr/teaching/cs-229/pense-bete-apprentissage-non-supervise) 한국어 (l/ko/teaching/cs-229/cheatsheet-unsupervised-learning) Português (l/pt/teaching/cs-229/dicas-aprendizado-nao-supervisionado) Türkçe (l/tr/teaching/cs-229/cheatsheet-unsupervised-learning) 

简中 (l/zh/teaching/cs-229/cheatsheet-unsupervised-learning)

# (https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervisedlearning#cheatsheet)Unsupervised Learning cheatsheet

By Afshine Amidi (https://twitter.com/afshinea) and Shervine Amidi (https://twitter.com/shervinea)

# (https://stanford.edu/~shervine/teaching/cs-229/cheatsheetunsupervised-learning#intro) Introduction to Unsupervised Learning

**Motivation** — The goal of unsupervised learning is to find hidden patterns in unlabeled data  $x^{(1)},...,x^{(m)}$ .

**Jensen's inequality** — Let \$f\$ be a convex function and \$X\$ a random variable. We have the following inequality:

 $[\boxed{E[f(X)]\geq f(E[X])}]$ 

## (https://stanford.edu/~shervine/teaching/cs-229/cheatsheetunsupervised-learning#clustering) Clustering

### **Expectation-Maximization**

**Latent variables** — Latent variables are hidden/unobserved variables that make estimation problems difficult, and are often denoted \$z\$. Here are the most common settings where there are latent variables:

| Setting                       | Latent variable \$z\$              | \$x z\$                                    | Comments                                         |
|-------------------------------|------------------------------------|--------------------------------------------|--------------------------------------------------|
| Mixture of \$k\$<br>Gaussians | \$\textrm{Multinomial}<br>(\phi)\$ | \$\mathcal{N}<br>(\mu_j,\Sigma_j)\$        | \$\mu_j\in\mathbb{R}^n,<br>\phi\in\mathbb{R}^k\$ |
| Factor analysis               | \$\mathcal{N}(0,I)\$               | \$\mathcal{N}<br>(\mu+\Lambda<br>z,\psi)\$ | \$\mu_j\in\mathbb{R}^n\$                         |

**Algorithm** — The Expectation-Maximization (EM) algorithm gives an efficient method at estimating the parameter \$\theta\$ through maximum likelihood estimation by repeatedly constructing a lower-bound on the likelihood (E-step) and optimizing that lower bound (M-step) as follows:

- <u>E-step</u>: Evaluate the posterior probability \$Q\_{i}(z^{(i)})\$ that each data point \$x^{(i)}\$ came from a particular cluster \$z^{(i)}\$ as follows:
   \[\boxed{Q\_i(z^{(i)})=P(z^{(i)}|x^{(i)};\theta)}\]
- M-step: Use the posterior probabilities \$Q\_i(z^{(i)})\$ as cluster specific weights on data points \$x^{(i)}\$ to separately re-estimate each cluster model as follows:

  \[\boxed{\theta\_i=\underset{\theta}{\textrm{argmax}}\sum\_i\int\_{z^{(i)}}Q\_i(z^{(i)})\log\left(\frac{P(x^{(i)},z^{(i)};\theta)}{Q\_i(z^{(i)})}\right)dz^{(i)}}\]



Illustration

### **\$k\$-means clustering**

We note \$c^{(i)}\$ the cluster of data point \$i\$ and \$\mu i\$ the center of cluster \$i\$.

**Algorithm** — After randomly initializing the cluster centroids \$\mu\_1,\mu\_2,...,\mu\_k\in\mathbb{R}^n\$, the \$k\$-means algorithm repeats the following step until convergence:

**Distortion function** — In order to see if the algorithm converges, we look at the distortion function defined as follows:

\[\boxed{J(c,\mu)=\sum\_{i=1}^m||x^{(i)}-\mu\_{c^{(i)}}||^2}\]

#### **Hierarchical clustering**

**Algorithm** — It is a clustering algorithm with an agglomerative hierarchical approach that build nested clusters in a successive manner.

**Types** — There are different sorts of hierarchical clustering algorithms that aims at optimizing different objective functions, which is summed up in the table below:

| Ward linkage                     | Average linkage                                 | Complete linkage                                   |
|----------------------------------|-------------------------------------------------|----------------------------------------------------|
| Minimize within cluster distance | Minimize average distance between cluster pairs | Minimize maximum distance of between cluster pairs |

#### **Clustering assessment metrics**

In an unsupervised learning setting, it is often hard to assess the performance of a model since we don't have the ground truth labels as was the case in the supervised learning setting.

**Silhouette coefficient** — By noting \$a\$ and \$b\$ the mean distance between a sample and all other points in the same class, and between a sample and all other points in the next nearest cluster, the silhouette coefficient \$s\$ for a single sample is defined as follows:

 $[\boxed{s=\frac{b-a}{\max(a,b)}}]$ 

**Calinski-Harabaz index** — By noting \$k\$ the number of clusters, \$B\_k\$ and \$W\_k\$ the between and within-clustering dispersion matrices respectively defined as

the Calinski-Harabaz index \$s(k)\$ indicates how well a clustering model defines its clusters, such that the higher the score, the more dense and well separated the clusters are. It is defined as follows:

## (https://stanford.edu/~shervine/teaching/cs-229/cheatsheetunsupervised-learning#dimension-reduction) Dimension reduction

#### **Principal component analysis**

It is a dimension reduction technique that finds the variance maximizing directions onto which to project the data.

**Eigenvalue, eigenvector** — Given a matrix  $A\in \mathbb{R}^{n\times n}$ ,  $\lim n$ ,  $\lim$ 

 $\[\boxed{Az=\lambda z}\]$ 

**Spectral theorem** — Let  $A\in R^{n\times n}$ . If \$A\$ is symmetric, then \$A\$ is diagonalizable by a real orthogonal matrix  $U\in R^{n\times n}$ . By noting  $\lambda_n$  we have:

\[\boxed{\exists\Lambda\textrm{ diagonal},\quad A=U\Lambda U^T}\]

Remark: the eigenvector associated with the largest eigenvalue is called principal eigenvector of matrix \$A\$.

**Algorithm** — The Principal Component Analysis (PCA) procedure is a dimension reduction technique that projects the data on \$k\$ dimensions by maximizing the variance of the data as follows:

- <u>Step 2</u>: Compute  $\sigma=\frac{1}{m}\sum_{i=1}^mx^{(i)} {x^{(i)}}^T\in n}$ , which is symmetric with real eigenvalues.
- <u>Step 3</u>: Compute \$u\_1, ..., u\_k\in\mathbb{R}^n\$ the \$k\$ orthogonal principal eigenvectors of \$\Sigma\$, i.e. the orthogonal eigenvectors of the \$k\$ largest eigenvalues.
- <u>Step 4</u>: Project the data on  $\scriptstyle \$  mathbb{R}(u\_1,...,u\_k)\$.

This procedure maximizes the variance among all \$k\$-dimensional spaces.



#### Independent component analysis

It is a technique meant to find the underlying generating sources.

**Assumptions** — We assume that our data \$x\$ has been generated by the \$n\$-dimensional source vector \$s=(s 1,...,s n)\$, where \$s i\$ are independent random variables, via a mixing and non-singular matrix \$A\$ as follows:

 $\[ \ \]$ 

The goal is to find the unmixing matrix  $W=A^{-1}$ .

Bell and Sejnowski ICA algorithm — This algorithm finds the unmixing matrix \$W\$ by following the steps below:

- Write the probability of \$x=As=W^{-1}s\$ as:  $\label{eq:continuous_prod_{i=1}^np_s(w_i^Tx)\cdot cdot|W|} $$ \|p(x) - p(x) - p(x)$
- Write the log likelihood given our training data \$\{x^{(i)}, i\in[\![1,m]\!]\}\$ and by noting \$g\$ the sigmoid function as:

 $[I(W)=\sum_{i=1}^m\left(\sum_{j=1}^n\log\left(g'(w_j^Tx^{(i)})\right)\right)$ 

Therefore, the stochastic gradient ascent learning rule is such that for each training example \$x^{(i)}\$, we update \$W\$ as follows:

\[\boxed{W\longleftarrow W+\alpha\left(\begin{pmatrix}1-2g(w\_1^Tx^{(i)})\\1- $2g(w_2^Tx^{(i)})\$  2g(w\_n^Tx^{(i)})\end{pmatrix}{x^{(i)}}^T+(W^T)^{-1}\







(https://github.com/shervinea)



(https://scholar.google.com/citations?user=nMnMTm8AAAAJ)

