BUNDESREPUBLIK
DEUTSCHLAND

[®] Off nl gungsschrift[®] DE 40 16 922 A 1

(5) Int. Cl.⁵: **G 01 D 5/14** G 01 R 19/25

G 01 R 19/25 // G01K 7/00,G01L 13/00,G01R 19/08

ARREST OF THE SOURCE OF A SILVER PRODUCT OF THE PROPERTY OF A SILVER PROPERTY OF A SILVER PROPERTY OF THE PROP

PATENTAMT

2) Aktenzeichen:2) Anmeldetag:

P 40 16 922.7 25. 5. 90

43 Offenlegungstag:

28. 11. 91

(7) Anmelder:

Schoppe & Faeser GmbH, 4950 Minden, DE

@ Erfinder:

Popp, Werner, 4950 Minden, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Elektrischer Meßumformer nach dem Zwei-Draht-Verfahren
- Die Höhe der für einen elektrischen Meßumformer nach dem Zwei-Draht-Verfahren, der das Ausgangssignal eines Sensors in einen eingeprägten Ausgangsstrom umformt, dessen Höhe ein Maß für die zu messende Größe ist, und der eine Prozessor-Schaltung aufweist, die das digitalisierte Ausgangssignal des Sensors mit Korrekturwerten verknüpft und die mit einer externen Kommunikations-Einheit digitale Daten austauscht, zur Verfügung stehende Versorgungsenergie ist begrenzt. Daraus ergibt sich eine Begrenzung der Verarbeitungsgeschwindigkeit der Prozessor-Schaltung, die dazu führt, daß das Ausgangssignal des Meßumformers nicht in der Lage ist, schnellen Anderungen der zu messenden Größe unmittelbar zu folgen. Dieser Nachteil wird dadurch beseitigt, daß der Meßumformer einen analogen Hauptübertragungsweg für das Ausgangssignal des Sensors und einen digitalen Übertragungsweg für den Austausch der digitalen Daten mit der Kommunikations-Einheit und für die Berechnung von Korrekturwerten für das Ausgangssignal des Sensors aufweist. Die digitalen Korrekturwerte werden in analoge Korrekturwerte umgewandelt und mit dem analogen Ausgangssignal des Sensors verknüpft.

Beschreibung

Die Erfindung bezieht sich auf einen elektrischen Meßumformer nach dem Zwei-Draht-Verfahren gemäß dem Oberbegriff des Patentanspruchs.

Ein derartiger Meßumf rmer ist aus der Druckschrift "User's Manual: Model 3051C - Smart Pressure Transmitter" der Fa. Rosemount, August 1988, Veröffentlichungs-Nummer 4622/4623 bekannt. In der Fig. 9-2 auf Seite 9-1 dieser Druckschrift ist das Blockschalt- 10 bild eines Differenzdruck-Meßumformers nach dem Zwei-Draht-Verfahren dargestellt. Der Differenzdruck-MeBumformer enthält einen Sensor, der den zu messenden Differenzdruck und die Temperatur des Sensors in entsprechende elektrische Signale umformt. Diese elek- 15 Schaltung 7 verbunden. Die Prozessor-Schaltung 7 betrischen Signale werden von einem Analog/Digital-Wandler in digitale Signale umgesetzt und einer Elektronik-Schaltung mit einem Mikroprozessor zugeführt. Der Mikroprozessor steuert die Signalverknüpfungen des Meßumformers. Zusätzlich führt er Berechnungen 20 für die Linearisierung des Sensors und für die Bereichseinstellung durch sowie die Kommunikation mit einer externen Kommunikations-Einheit. Ein Digital/Analog-Wandler setzt die digitalen Signale des Mikroprozes-Draht-Leitung in üblicher Weise einer Warte zugeführt ist. Der Mikroprozessor tauscht mit einer externen Kommunikation-Einheit digitale Daten aus. Der Datenaustausch erfolgt über Hochfrequenzsignale, die dem 4 ... 20 mA-Signal so überlagert sind, daß sie seinen Mittelwert nicht verfälschen. Bei der Konzeptionierung derartiger Meßumformer besteht ein Widerspruch zwischen den Anforderungen an die Verarbeitungsgeschwindigkeit einerseits und dem Energiebedarf der Schaltungselemente andererseits. Aus der Begrenzung der maximale Versorgungsenergie für den Meßumformer ergibt sich eine Begrenzung der Verarbeitungsgeschwindigkeit des Mikroprozessors, die dazu führt, daß das Ausgangssignal des Meßumformers nicht in der Lage ist, schnellen Anderungen der zu messenden Größe unmit- 40 telbar zu folgen.

Der Erfindung liegt die Aufgabe zugrunde, einen Meßumformer der eingangs genannten Art zu schaffen, der ein kontinuierliches Ausgangssignal abgibt, das in den Größe ohne Unterbrechung zu folgen.

Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Patentanspruchs angegebenen Merkmale gelöst. Die Meßwertverarbeitung geschieht für dygungsweg. Der Prozessor greift nur korrigierend in den analogen Übertragungsweg ein. Die Konfigurierung des Meßumformers und die Kommunikation mit externen Hilfsgeräten oder Rechnern erfolgt über den digitalen Übertragungsweg, ohne die Meßwertübertragung 55 zu unterbrechen. Die Erfindung erlaubt die Verwendung niedriger Taktfrequenzen für den Prozessor und den Analog/Digital-Wandler und damit einen stromsparenden Betrieb.

Die Erfindung wird im folgenden mit ihren weiteren 60 Einzelheiten anhand von in den nachfolgenden Zeichnungen, dargestellten Ausführungsbeispielen näher erläutert. Es zeigen

Fig. 1 das Blockschaltbild eines ersten Differenzdruck-Meßumformers gemäß der Erfindung und

Fig. 2 das Blockschaltbild eines weiteren Differenzdruck-Meßumformers g mäß der Erfindung.

Gleiche Teile sind mit den gleichen Bezugszeichen

Die Fig. 1 zeigt das Blockschaltbild eines ersten Differenzdruck-Meßumformers gemäß der Erfindung. Ein Sensor 1 erfaßt den zu messenden Differenzdruck dp, 5 den auf den Sensor 1 einwirkenden statischen Druck p sowie die Temperatur T des Sensors 1 und setzt diese Größen in entsprechende elektrische Analogsignale um. Diese Ausgangssignale des Sensors 1 sind über Leitungen 2, 3 und 4 den Eingängen von drei Analog/Digital-Wandlern 5.1, 5.2 und 5.3 zugeführt. Das dem Differenzdruck dp entsprechende Ausgangssignal des Sensors 1 ist zusätzlich dem ersten Eingang einer Verknüpfungs-Schaltung 6 zugeführt. Die Ausgänge der Analog/Digital-Wandlers 5.1, 5.2 und 5.3 sind mit einer Prozessorrechnet aus den digitalisierten Ausgangsignalen des Sensors 1 zwei digitale Korrektursignale für das dem Differenzdruck dp entsprechende Analogsignal. Ein erster Digital/Analog-Wandler B wandelt das erste digitale Korrektursignal in ein erstes analoges Korrektursignal um. Das erste analoge Korrektursignal ist über eine Leitung 9 dem zweiten Eingang der Verknüpfungs-Schaltung 6 zugeführt. Ein zweiter Digital/Analog-Wandler 10 wandelt das zweite digitale Korrektursignal sors in ein 4 ... 20 mA-Signal um, das über eine Zwei- 25 in ein zweites analoges Korrektursignal um. Das zweite analoge Korrektursignal ist über eine Leitung 11 dem dritten Eingang der Verknüpfungs-Schaltung 6 zugeführt. Die Verknüpfungs-Schaltung 6 verknüpft das dem Differenzdruck dp entsprechende Analogsignal mit dem ersten analogen Korrektursignal, das der Verknüpfungs-Schaltung 6 über die Leitung 9 zugeführt ist, durch eine vorzeichenbewertende Summenbildung. Zusätzlich erfolgt in der Verknüpfungs-Schaltung 6 eine multiplikative Verknüpfung des dem Differenzdruck dp entsprechenden Analogsignals mit dem zweiten analogen Korrektursignal, das der Verknüpfungs-Schaltung 6 über die Leitung 11 zugeführt ist. Bei geringeren Anforderungen an die Qualität der Korrektur ist es auch möglich, auf das erste oder auf das zweite analoge Korrektursignal zu verzichten, so daß die Korrektur des dem Differenzdruck dp entsprechenden Analogsignals entweder nur durch vorzeichenbewertende Summenbildung oder nur durch multiplikative Verknüpfung erfolgt. Der Ausgang der Verknüpfungs-Schaltung 6 ist der Lage ist, auch schnellen Änderungen der zu messen- 45 mit dem Eingang einer Verstärker-Schaltung 12 verbunden, die das Ausgangssignal der Verknüpfungs-Schaltung 6 in einen eingeprägten Strom umwandelt. Der Verstärker-Schaltung 12 ist eine Meßumformer-Schnittstelle 13 nachgeschaltet. Die Meßumformernamische Vorgänge nur auf dem analogen Übertra- 50 Schnittstelle 13 verknüpft den analogen Übertragungsweg des Meßumformers, der aus der Verknüpfungs-Schaltung 6 und der Verstärker-Schaltung 12 besteht, mit dem digitalen Übertragungsweg des Meßumformers, der aus der Prozessor-Schaltung 7 besteht. Die Meßumformer-Schnittstelle 13 ist in üblicher Weise über eine Zwei-Draht-Leitung 14 mit einer in der Zeichnung nicht dargestellten Warte verbunden, in der die zu messende Größe angezeigt wird. Die Kommunikation mit der Prozessor-Schaltung 7 erfolgt über eine hier ebenfalls nicht dargestellte Kommunikations-Schnittstelle, die mit der Zwei-Draht-Leitung 14 verbunden ist. Der analoge Übertragungsweg für das dem Differenzdruck dp entsprechende Ausgangssignal des Sensors 1 besteht aus der Verknüpfungsschaltung 6, der Verstär-65 ker-Schaltung 12 und der Meßumformer-Schnittstelle 13. Der über die Zwei-Draht-Leitung 14 fließende Ausgangsstrom folgt den Änderungen d s Differ nzdrucks dp sofort.

r range with the second rate of the second

4

Die Fig. 2 zeigt das Blockschaltbild ines zweiten Differenzdruck-Meßumformers gemäß der Erfindung. Soweit dieser Differenzdruck-Meßumformer mit dem in der Fig. 1 dargestellten Differenzdruck-Meßumformer übereinstimmt, sind für die entsprechenden Teile dieselben Bezugszeichen wie in der Fig. 1 verwendet w rden. Ergänzend zu dem in der Fig. 1 dargestellten Meßumformer ist zwischen die Verknüpfungs-Schaltung 6 und die Verstärker-Schaltung 12 ein Rechenglied 15 mit radizierendem Übertragungsverhalten geschaltet. Das 10 Rechenglied 15 formt das ihm zugeführte analoge Eingangssignal in ein impulsbreitenmoduliertes Zwischensignal um, dessen Pulsbreitenverhältnis ein Maß für die Quadratwurzel des Eingangssignals ist. Eine in dem Rechenglied 15 enthaltene Integrierschaltung, im einfach- 15 sten Fall ein RC-Glied, bildet den arithmetischen Mittelwert des impulsbreitenmodulierten Zwischensignals. Das Ausgangssignal der in dem Rechenglied 15 enthaltenen Integrierschaltung ist der Verstärker-Schaltung 12 als analoges Eingangssignal zugeführt. Durch Aus- 20 zählung des Pulsbreitenverhältnisses des impulsbreitenmodulierten Zwischensignals mit Impulsen, deren Frequenz höher als die des Zwischensignals ist, erfolgt eine Digitalisierung des radizierten Analogsignals. Das digitalisierte Ausgangssignal des Rechengliedes 15 ist ein 25 Maß für den auf den Sensor 1 wirkenden Differenzdruck dp. Es ist über die Datenleitung 16 der Prozessor-Schaltung 7 zugeführt. Der Analog/Digital-Wandler 5.3. der in dem in der Fig. 1 dargestellten Differenzdruck-Meßumformer das dem Differenzdruck dp entsprechen- 30 de Analogsignal digitalisiert, entfällt daher in dem in der Fig. 2 dargestellten Differenzdruck-Meßumformer. Auch für dieses Ausführungsbeispiel gilt, daß der über die Zwei-Draht-Leitung 14 fließende Ausgangsstrom den Änderungen des Differenzdrucks dp sofort folgt.

Abweichend von dem in der Fig. 2 dargestellten Ausführungsbeispiel kann das Rechenglied 15 bei Bedarf anstelle des radizierenden Übertragungsverhaltens ein lineares Übertragungsverhalten aufweisen. In diesem Fall formt das Rechenglied 15 das ihm zugeführte analoge Eingangssignal in ein impulsbreitenmoduliertes Zwischensignal um, dessen Pulsbreitenverhältnis proportional zu dem Eingangssignal ist. Die Weiterverarbeitung des impulsbreitenmodulierten Zwischensignals durch Bildung des arithmetischen Mittelwertes einerseits und 45 durch Auszählung des Pulsbreitenverhältnisses andererseits erfolgt in der gleichen Weise wie oben beschrieben.

Patentanspruch

Elektrischer Meßumformer nach dem Zwei-Draht-Verfahren, mit einem Sensor für die zu messende Größe und mit einer diesem nachgeschalteten Elektronik-Schaltung, die das Ausganssignal des Sensors in einen eingeprägten Ausgangsstrom umformt, dessen Höhe ein Maß für die zu messende Größe ist, und mit einer Prozessor-Schaltung, die das Ausgangssignal des Sensors nach vorgegebenen Kriterien korrigiert und die zusätzlich mit einer externen Kommunikations-Einheit digitale Daten austauscht, wobei die Datenübertragung zwischen der Prozessor-Schaltung und der Kommunikation-Einheit über ein Hochfrequenzsignal erfolgt, das dem eingeprägten Ausgangsstrom überlagert ist, 65 dadurch gekennzeichnet,

 daß der Meßumformer einen analogen und einen digitalen Übertragungsweg aufw ist, daß der analoge Übertragungsweg als Hauptübertragungsweg dient, wobei die Durchschaltung und Umwandlung des Ausgangssignals des Sensors in den eingeprägten Ausgangsstrom in dem analogen Übertragungsweg erfolgt, und

 daß die von der Prozess r-Schaltung berechneten Korrekturwerte nach einer Umformung in Analogsignale mit dem analogen Ausgangssignal des Sensors verknüpft werden.

CONTRACTOR OF THE CONTRACTOR OF CONTRACTOR OF THE CONTRACTOR OF TH

Hierzu 2 Seite(n) Zeichnungen

– Leerseite –

Nummer: Int. Cl.5:

DE 40 16 922 A1 G 01 D 5/14

Offenlegungstag:

28. Nov mber 1991

Fig. 1

Numm r: Int. Cl.⁵: DE 40 16 922 A1 G 01 D 5/14 28. November 1991

Offenlegungstag:

1 2 3 6 15 12 13 4...20mA ф P Ť /11 8 5.1 5.2 ,10 14 16 7

Fig. 2

DE4016922

The invention refers to an electrical transducer in the two-wire procedure in accordance with? the generic term of the patent claim.

A such transducer is from the block letters "User's manual: Model 3051 C - Smart Pressure transmitter "of the company Rosemount, August 1988, Ver?entlichungs number 462214623 admits. In the Fig. the block diagram of a differential pressure transducer is represented 9-2 on page 9-1 of this block letters in the two-wire procedure. The differential pressure transducer enth? a sensor, which transforms the differential pressure and the temperature of the sensor which can be measured into appropriate electrical signals. These electrical signals are converted by an analog/digital transducer into digital signals and zugef?t a electronics circuit with a microprocessor. The microprocessor steers the Signalverkn?ungen of the transducer. Zus?lich f?t it computations f?die linearization of the sensor and f?die range adjustment through as well as communication with an external communication unit. A digital/similar to transducer converts the digital signals of the microprocessor into 4... 20 a mA signal, which is zugef?t?r a two wire line in?icher way control room. The microprocessor exchanges digital data with an external communication unit. Data exchange takes place?r high frequency signals, which are so?rlagert that 4... 20 mA signal that they do not verf?chen its average value. With the Konzeptionierung of such transducers a contradiction between the requirements exists to speed of operation on the one hand and the power requirement of the circuit elements on the other hand. From the delimitation of the maximum supplying energy f?den transducers arises a delimitation of the speed of operation of the microprocessor, which f?t to the fact that the output signal of the transducer is not able snaps?derungen the Gr?e which can be measured to follow directly.

The invention is the basis the task to create a transducer of the kind initially specified which a continuous output signal delivers, which is able, also changes of the size without interruption, which can be measured, snap to follow.

This task is solved according to invention by the characteristics indicated in the characteristic of the patent claim. The measured variable processing happens for dynamic procedures only on the similar transmission path. The processor intervenes only correcting in the similar transmission path. Configuring the transducer and communication with external auxiliary devices or computers are made by the digital transmission path, without interrupting the measured value transmitting. The invention permits the use of low clock frequencies for the processor and the analog/digital transducer and thus a currentsaving enterprise.

The invention is more near described to represented remark examples in the following with its further details on the basis in the following designs. Show

Fig. 1 the block diagram of a first differential pressure transducer in accordance with the invention and

Fig. 2 the block diagram of a further differential pressure transducer in accordance with the invention.

Same parts are provided with the same reference symbols.

The Fig. 1 shows the block diagram of a first differential pressure transducer in accordance with the invention. A sensor 1 seizes the differential pressure which can be measured dp, that on the sensor 1 influencing static pressure p as well as the temperature T of the sensor 1 and converts these sizes into appropriate electrical analog signals. These output signals of the sensor 1 are supplied the entrances of three analog/digital transducers 5,1, 5,2 and 5,3 by way of Leitun towards 2, 3 and 4. Dp appropriate output signal of the sensor 1 additionally the first entrance of a linkage circuit 6 is supplied the differential pressure. The exits of the analog/digital transducers 5,1, 5,2 and 5,3 are connected with a processor circuit 7. The processor circuit 7 computes two digital correction signals for the differential pressure dp appropriate analog signal from the digitized output signals of the sensor 1. A first digital/analog transducer 8 converts the first digital correction signal into a first similar correction signal. The first similar correction signal is supplied the second entrance of the linkage circuit 6 by way of a line 9. A second digital/similar to transducer 10 the second digital correction signal converts into a second similar correction signal. The second similar correction signal is supplied the third entrance of the logic circuit 6 by way of a line 11. The logic circuit 6 links the differential pressure dp appropriate analog signal with the first similar correction signal, which the Verknuep fungs circuit 6 by way of the line 9 is supplied, by an sign-evaluating accumulation. Additionally takes place in the logic circuit 6 a multiplicative linkage the differential pressure dp appropriate analog signal with the second similar correction signal. which is supplied the logic circuit 6 by way of the line 11. During smaller requirements of the quality of the correction it is also possible to do first or without the second similar correction signal so that the correction the differential pressure dp appropriate analog signal either only via sign-evaluating accumulation or only via multiplicative linkage takes place. The exit of the logic circuit 6 is connected with the entrance of a verstaerker-Schaltung 12, which the output signal the linkage scarf converts tung 6 into a stamped river. The verstaerker-Schaltung 12 a transducer interface 13 is downstream. The transducer interface 13 links the similar transmission path of the transducer, which consists of the linkage circuit 6 and the verstaerker-Schaltung 12, with the digital transmission path of the transducer, which consists of the processor circuit 7. The transducer interface 13 is connected in usual way by a two-wire line 14 with

control room not represented in the design, in which the size which can be measured is indicated. Communication with the processor circuit 7 is made by a here likewise not represented communication interface, which is connected with the two-wire line 14. The similar transmission path for the differential pressure dp appropriate output signal of the sensor 1 consists of the logic circuit 6, the Verstaer ker circuit 12 and the transducer interface 13. Output current flowing over the two-wire line 14 follows the changes of the differential pressure immediately dp immediately.

The Fig. the block diagram of a second differential pressure transducer shows 2 in accordance with the invention. So far this differential pressure transducer with in the Fig. 1 represented differential pressure transducer agrees, is for the appropriate parts the same reference symbols as in the Fig. 1 used. In addition one to in the Fig. 1 represented transducer is switched between the logic circuit 6 and the verstaerker-Schaltung 12 a computing member 15 with extracting the root transient characteristic. The computing member 15 transforms it supplied similar input signal into a pulse width-modulated intermediate signal, whose pulse width relationship is a measure for the square root of the input signal. One in the RH chenglied 15 contained integrating circuit, in the simplest case an RC element, forms the arithmetic average value of the pulse width-modulated intermediate signal. The output signal of the integrating circuit contained in the computing member 15 is supplied the verstaerker-Schaltung 12 as similar input signal. Via counting of the pulse width relationship of the pulse width-modulated intermediate signal with impulses, whose frequency is higher than those of the intermediate signal, a digitization of the extracted the root analog signal takes place. The digitized output signal of the computing member 15 is a measure for differential pressure the affecting the sensor 1 dp. It is supplied by way of the data line 16 of the processor circuit 7. The analog/digital transducer 5,3, that in in the Fig. 1 represented differential pressure transducer the differential pressure do appropriate analog signal digitized, is void therefore in in the Fig. 2 represented differential pressure transducer. Also for this remark example it applies that output current flowing over the two-wire line 14 follows the changes of the differential pressure immediately dp.

Deviating from in the Fig. the computing member 15 can exhibit 2 represented remark example if necessary in place of the extracting the root transient characteristic a linear transient characteristic. In this case the computing member 15 transforms it supplied similar input signal into a pulse width-modulated intermediate signal, whose pulse width relationship is proportional to the input signal. The subsequent treatment of the pulse width-modulated intermediate signal via education of the arithmetic average value on the one hand and via counting of the pulse width relationship on the other hand effected in the same way as above described.

Claims:

Electrical transducer after the two-wire procedure, with a sensor for the size and with this a electronics circuit, downstream which can be measured, which transforms the expenditure to signal of the sensor into a stamped output current, whose height is a measure for the size which can be measured, and with a processor circuit, which corrects the output signal of the sensor according to given criteria and which additionally with an external communication unit exchanges digital data, whereby the data communication between the processor circuit and communication unit been made by a high frequency signal, which is overlaid stamped output current, by it characterized,

- that the transducer exhibits a similar transmission path and to this parallel arranged digital transmission path fed with the sensor output signal, into which the processor circuit (7) is inserted,
- that the similar transmission path serves as main transmission path for the sensor output signal, whereby connecting and transformation of the output signal of the sensor (1) through take place into stamped output current in the similar transmission path, and
- that the correction values computed by the processor circuit (7) are linked after a shaping into analog signals with the similar output signal of the sensor (1).