Characteristic classes and YM Instantons

October 28, 2024

Outline

- 1 Geometry of Yang-Mills fields
- 2 Stiefel-Whitney Classes
- 3 Other characteristic classes

References

- Labastida, Marino TQFT and Four Manifolds (see also Marino -Phd Thesis)
- Daniel, Viallet The geometrical setting of gauge theories of the YM type (1980)
- Nakahara Geometry, Topology and Physics
- José Figueroa-O'Farrill (University of Edinbourgh) Course on Spin Geometry

Associated Bundles

 Given a principal G-bundle P, we can form an associated vector bundle:

Principal
$$G$$
-bundle $\xleftarrow{\text{representation } \rho}$ Vector bundle

• Let V be a vector space and ρ a representation of G. Define the right action of G on $P \times V$ by:

$$(p,v) \cdot g = (p \cdot g, \ \rho(g^{-1}) \ v) \ , \qquad p \in P \ , \ v \in V \ , \ g \in G \ .$$

• The quotient: $E = (P \times V)/G$ consists of the equivalence classes:

$$[p\cdot g,v]=[p,\rho(g)v], \forall g\in G$$
 .

• The projection $\pi_{\rho}: E \to M$ is defined by $\pi_{\rho}\left([p,v]\right) = \pi(p)$. The fiber of E is thus V and the structure group is G.

Associated Bundles

- Given a vector bundle, we can also construct an associated principal bundle. Consider a real rank k vector bundle E with fibre at $x \in M$ given by the (vector space) E_x .
- Denote by F_x the set of all frames at x. This has a natural right action by $GL(k,\mathbb{R})$ i.e. a 'change of basis'.
- This action leads to a principal $GL(k,\mathbb{R})$ -bundle given by the disjoint union of all F_x .
- Correspondence can be extended to other groups by adding more structure on the vector bundle E.

Adjoint Bundle

- We will consider a principal G-bundle P, with g the Lie algebra of the group G.
- The Adjoint bundle is the bundle of Lie algebras associated to the Adjoint representation of G:

$$\mathfrak{g}_P = P \times_{Ad} \mathfrak{g} ,$$

consisting of the equivalence classes:

$$[p \cdot g, x] = [p, Ad_g(x)] ,$$

for $p \in P$, $g \in G$ and $x \in \mathfrak{g}$.

• Sections of associated bundles $\sigma_{\alpha}: U_{\alpha} \to V$ satisfy:

$$\sigma_{\alpha}(x) = \rho(t_{\alpha\beta}(x)) \ \sigma_{\beta}(x) \ , \qquad \forall \ x \in U_{\alpha} \cap U_{\beta} \ .$$

Conventions

- Denote by A the connection on the principal bundle P, which is a section of $T^*P\otimes \mathfrak{g}$.
- Denote by $\Omega^p_M(E)$ the space of sections of $\Lambda^pT^*M\otimes E$, and similarly for the principle bundle and adjoint bundle.
- In terms of a local trivialization $\{U_{\alpha}\}$, the connection A_{α} is a \mathfrak{g} -valued 1-form satisfying the compatibility condition:

$$A_{\beta} = t_{\alpha\beta}^{-1} A_{\alpha} t_{\alpha\beta} + i t_{\alpha\beta}^{-1} d t_{\alpha\beta} ,$$

on $U_{\alpha} \cap U_{\beta}$, with $t_{\alpha\beta}$ transition functions. The connection on the different U_{α} is obtained using the pullback of the local sections:

$$A_{\alpha} = \sigma_{\alpha}^*(A)$$
.

Gauge Transformations

• Focus on U_{α} and consider transformation: $\sigma'_{\alpha}(x) = \sigma_{\alpha}(x) \cdot g(x)$. This leads to a 'transformation formula':

$$A_{\alpha}' = Ad_g \ A_{\alpha} + g^{-1}dg$$

- A gauge transformations is an automorphism $f: P \rightarrow P$ such that:
 - **1** $\forall p \in P, \exists \gamma : P \to G, \text{ such that } f(p) = p \cdot \gamma(p)$
 - $2 \gamma(pg) = g^{-1} \cdot \gamma(p) \cdot g, \ \forall \ p \in P, \ \forall \ g \in G$
- The map γ also satisfies a local compatibility condition:

$$\gamma_{\beta}(x) = t_{\alpha\beta}^{-1}(x) \ \gamma_{\alpha}(x) \ t_{\alpha\beta}(x) \ , \qquad x \in U_{\alpha} \cap U_{\beta} \ .$$

• The group G = Aut(P) of gauge transformations is an infinite-dimensional group.

Space of Connections

• Denote by $\mathcal A$ the space of all connections. This is an affine space with tangent space at A given by:

$$T_A \mathcal{A} = \Omega^1(\mathfrak{g}_E) = \Gamma(T^*M \otimes \mathfrak{g}_E)$$
.

• To see this, note that $\tau_{\alpha}=A_{\alpha}-A'_{\alpha}$ is a section of the adjoint bundle since:

$$\tau_{\alpha} = t_{\alpha\beta} \ \tau_{\beta} \ t_{\alpha\beta}^{-1} \ .$$

• Curvature associated to connection A is an element of $\Omega^2(\mathfrak{g}_E)$:

$$F_{\beta} = t_{\alpha\beta}^{-1} \ F_{\alpha} \ t_{\alpha\beta}$$

• Finally, the Lie algebra of the group of gauge transformations \mathcal{G} is $Lie(\mathcal{G}) = \Omega^0(\mathfrak{g}_E)$.

ASD Connections

• A connection is ASD if $F_A^+ = 0$. For \mathbb{S}^4 , this is the system of PDEs:

$$F_{12} + F_{34} = 0 ,$$

$$F_{14} + F_{23} = 0 ,$$

$$F_{13} + F_{42} = 0 .$$

for $F = \frac{1}{2}F_{\mu\nu}dx^{\mu} \wedge dx^{\nu}$.

Chern-Weil theory (last week):

$$k \longrightarrow \frac{1}{8\pi^2} Tr(F \wedge F) = \begin{cases} c_2(E) - \frac{1}{2}c_1(E)^2 \\ -\frac{1}{4}p_1(V) \end{cases}$$

• ASD connections minimize the YM action: $S_{YM} \ge 4\pi^2 |k|$

Moduli Space of ASD Connections

• The ASD condition defines a subspace of \mathcal{A} , which can be viewed as the zero locus of the (equivariant) section: $s: \mathcal{A} \to \Omega^{2,+}(\mathfrak{g}_E)$:

$$s(A) = F_A^+ .$$

• Define the moduli space of ASD connections as:

$$\mathcal{M}_{ASD} = \{ [A] \in \mathcal{A}/\mathcal{G} \mid s(A) = 0 \} .$$

Instanton Deformation Complex

- We want a local model for the ASD moduli space i.e. consider tangent space at an ASD connection A in $\mathcal A$ and find the directions that preserve the ASD condition but are not gauge orbits. We do this in two steps.
- Mod out gauge orbits
 - [A] contains $A' \in \mathcal{A}$ for which $\exists \ u \in \mathcal{G} \text{ s.t. } A' = u(A).$

$$u(A_{\alpha}) = A_{\alpha} + i(d_A u_{\alpha}) u_{\alpha}^{-1}$$

- Gauge orbits: $Im(d_A)$

Enforce ASD Condition

- for
$$a \in \Omega^1(\mathfrak{g}_E)$$
:

$$\begin{cases} s(A) = 0 \\ s(A+a) = 0 \end{cases} \Rightarrow ds(a) = 0.$$

Instanton Deformation Complex

The short exact sequence:

$$0 \to \Omega^0(\mathfrak{g}_E) \xrightarrow{d_A} \Omega^1(\mathfrak{g}_E) \xrightarrow{ds} \Omega^2(\mathfrak{g}_E) \to 0$$

is in fact an *elliptic complex*, which proves that \mathcal{M}_{ASD} is finite dimensional. One has:

$$T_{[A]}\mathcal{M}_{ASD} = H_A^1 = \frac{Ker\ ds}{Im\ d_A}$$

The AS index theorem leads to:

$$dim \mathcal{M}_{ASD} = 4Nc_2(E) - \frac{N^2 - 1}{2}(\chi + \sigma) .$$

ADHM Construction

• For ASD connections on \mathbb{R}^4 , for G=SU(2), k=1, one has the solution:

$$A_m = rac{2(oldsymbol{x} - oldsymbol{x}_0)_n}{(oldsymbol{x} - oldsymbol{x}_0)^2 +
ho^2} \sigma_{nm} \; , \qquad \sigma_{mn} = rac{1}{4} (\sigma_m \overline{\sigma}_n - \sigma_n \overline{\sigma}_m)$$

• The 4 positions x_0 and the size ρ parametrize the one-instanton moduli space: $\mathbb{R}^4 \times \mathbb{R}^+$.

First Stiefel Whitney Class

- Consider a real smooth n-dimensional Riemannian manifold M and tangent bundle TM. The structure group is O(n).
- Given the transition functions $t_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to O(n)$, define:

$$f_{\alpha\beta}(x) = \det t_{\alpha\beta}(x) \in \{\pm 1\}, \quad x \in M$$

- These $f_{\alpha\beta}$ define a bundle over M with structure group \mathbb{Z}_2 . If this bundle is trivial, then the manifold is orientable.
- It turns out that iff $f_{\alpha\beta}(x) = f_{\alpha}(x)f_{\beta}(x)$, for some $f_{\alpha}: U_{\alpha} \to \mathbb{Z}_2$ we can in fact find new transition functions $\widetilde{t}_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to SO(n)$:

$$\widetilde{t}_{\alpha\beta}(x) = h_{\alpha}(x)t_{\alpha\beta}(x)h_{\beta}^{-1}(x)$$
,

for $h_{\alpha}: U_{\alpha} \to O(n)$, with $f_{\alpha}(x) = \det h_{\alpha}(x)$.

First Stiefel Whitney Class

- $\{f_{\alpha\beta}\}$ can be viewed as a Čech cochain, defining a cohomology class $w_1(M) \in H^1(M, \mathbb{Z}_2)$, which is the first Stiefel-Whitney class of M.
- The short exact sequence of groups:

$$1 \longrightarrow SO(n) \longrightarrow O(n) \xrightarrow{det} \mathbb{Z}_2 \longrightarrow 1$$

induces an exact sequence of sheaves, which has an associated long exact sequence of cohomology:

$$H^1(M, SO(n)) \longrightarrow H^1(M, O(n)) \longrightarrow H^1(M, \mathbb{Z}_2)$$

• The obstruction of orientability can be viewed as the image of the class in $H^1(M, O(n))$ that corresponds to the orthonormal frame bundle under the last map of the sequence.

Second Stiefel Whitney Class

- Given that M is orientable, with transition functions $t_{\alpha\beta}$ valued in SO(n), can we find lifts to $\widetilde{t}_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to Spin(n)$?
- We can do this on each overlap $U_{\alpha} \cap U_{\beta}$ using the homomorphism $\varphi: Spin(n) \to SO(n)$, with $\varphi(\ \widetilde{t}_{\alpha\beta}\) = t_{\alpha\beta}$, but the cocycle condition might fail on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$:

$$\widetilde{t}_{\alpha\beta}(x) \ \widetilde{t}_{\beta\gamma}(x) \ \widetilde{t}_{\gamma\alpha}(x) = f_{\alpha\beta\gamma} \in \{\pm 1\} \ .$$

• $f_{\alpha\beta\gamma}$ define a Čech cocycle and thus a cohomology class $w_2(X)$ in $H^2(X,\mathbb{Z}_2)$, which is the obstruction to the existence of a spin structure.

Second Stiefel Whitney Class

The short exact sequence of groups:

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow Spin(n) \longrightarrow SO(n) \longrightarrow 1$$

'leads' to a long exact cohomology sequence:

$$H^1(M,\mathbb{Z}_2) \to H^1(M,Spin(n)) \to H^1(M,SO(n)) \to H^2(M,\mathbb{Z}_2)$$

• The obstruction of the existence of a spin structure can be viewed as the image of the class in $H^1(M,SO(n))$ corresponding to the SO(n) frame under the last map.

Thank you for your attention!

Chern Classes

• Total Chern class for a G-bundle over n-dim complex manifold M is defined as:

$$c(E) = det\left(1 + \frac{i\mathcal{F}}{2\pi}\right) = 1 + c_1(E) + c_2(E) + \dots$$

- Note that $c_j(E) \in \Omega^{2j}(M)$, so $c_j = 0$ for 2j > n.
- Total Chern class of a Whitney sum bundle: $E \oplus F$ is:

$$c(E \oplus F) = c(E) \wedge c(F).$$

• Computationally, diagonalize curvature form to $diag(x_1, \dots x_k)$, with x_i two-forms, and find:

$$c(E) = \prod_{i=1}^{k} (1 + x_i)$$

This is reffered to as the **Splitting principle**, since it allows to 'view' E as a Whitney sum of k complex line bundles.

Chern Characters

The total Chern Character is defined by:

$$ch(E) = Tr \, exp\left(\frac{i\mathcal{F}}{2\pi}\right) = \sum_{j=1}^{k} exp(x_j) \ .$$

• The Todd class is defined by:

$$Td(E) = \prod_{j} \frac{x_j}{1 - e^{-x_j}}.$$

Properties:

$$ch(E \oplus F) = ch(E) \oplus ch(F).$$

 $Td(E \oplus F) = Td(E) \wedge Td(F).$

Real Vector Bundles

Total Pontrjagin class:

$$p(F) = det\left(1 + \frac{\mathcal{F}}{2\pi}\right) = \prod_{i=1}^{[k/2]} (1 + x_i^2),$$

• For 2n dimensional orientable Riemannian manifold, define the Fuler class:

$$e(M)e(M) = p_n(M)$$

• Formally:

$$e(M) = \prod_{i=1}^{l} x_i$$

AS Index Theorem

[AHS '78]

• Let (E,D) be an elliptic complex over an n-dimensional compact manifold M:

$$\dots \xrightarrow{D_{i-2}} \Gamma(M, E_{i-1}) \xrightarrow{D_{i-1}} \Gamma(M, E_i) \xrightarrow{D_i} \Gamma(M, E_{i+1}) \xrightarrow{D_{i+1}} \dots$$

• For this to be true, D has to be nilpotent: $D_{i-i} \circ D_i = 0$. Define:

$$H^i(E,D) = \ker D_i / Im D_{i-1}.$$

The analytic index is defined as:

$$Index(E,D) = \sum_{i=0}^{m} (-1)^{i} dim \ H^{i}(E,D)$$

AS Index Theorem

• Atiyah-Singer theorem. The index is given by:

$$Index(E,D) = (-1)^{\frac{n(n+1)}{2}} \int_{M} ch\left(\bigoplus_{r} (-1)^{r} E_{r}\right) \frac{Td\left(TM^{\mathbb{C}}\right)}{e(TM)}.$$

de Rham complex

 For an m-dimensional compact orientable manifold, consider the complex:

$$\dots \xrightarrow{d} \Omega^{r-1}(M)^{\mathbb{C}} \xrightarrow{d} \Omega^{r}(M)^{\mathbb{C}} \xrightarrow{d} \Omega^{r}(M)^{\mathbb{C}} \xrightarrow{d} \dots$$

• The Chern character splits as:

$$ch\left(\bigoplus_{r}^{4} (-1)^{r} \bigwedge^{r} T^{*} M^{\mathbb{C}}\right) = \sum_{r=0}^{4} ch\left(\bigwedge^{r} T^{*} M^{\mathbb{C}}\right)$$
$$= 1 - \sum_{i=1}^{4} e^{-x_{i}} + \sum_{i < j} e^{-x_{i}} e^{-x_{j}} + \dots = \prod_{i=1}^{n=4} \left(1 - e^{-x_{i}}\right) \left(T M^{\mathbb{C}}\right),$$

de Rham complex

• where $x_i(T^*M^{\mathbb{C}}) = -x_i(TM^{\mathbb{C}})$ are two-forms.

$$Td\left(TM^{\mathbb{C}}\right) = \prod_{i=1}^{n=4} \frac{x_i}{1 - e^{-x_i}} \left(TM^{\mathbb{C}}\right),$$
$$e(TM) = \prod_{i=1}^{n/2=2} x_i \left(TM^{\mathbb{C}}\right).$$

• In the last line we used the fact that $TM^{\mathbb{C}} = TM \otimes \mathbb{C} = TM \oplus TM$ as a real vector bundle. The AS index theorem then reduces to:

$$Index(d) = (-1)^{10} \int_{M} \prod_{i=1}^{2} x_{i} \left(TM^{\mathbb{C}} \right)$$
$$= \int_{M} e(TM) = \chi(M),$$

where in the last part we used the Gauss-Bonnet theorem.

Showing $T_A \mathcal{A} = \Omega^1_M(\mathfrak{g}_E)$

• Lemma. Let E, F be vector bundles over M and $\mathcal{C}: \Gamma(E) \to \Gamma(F)$ a linear map. \mathcal{C} is $C^{\infty}(M)$ -linear if and only if there exists a bundle map $\alpha: E \to F$, such that:

$$\mathcal{C}(f)(x) = \alpha \left(f(x) \right) \ ,$$
 where $f \in \Gamma(E)$ and $x \in M$.
$$M \xrightarrow{f} E$$

$$\downarrow^{\alpha}$$

$$\downarrow^{\alpha}$$

• For our problem, let $\mathcal{C}=\nabla_1-\nabla_2:\Omega^0_M(E)\to\Omega^1_M(E)$. This is a $C^\infty(M)$ -linear map as can be checked from:

$$(\nabla_1 - \nabla_2)(fs) = f(\nabla_1 - \nabla_2)s$$

for $f\in C^\infty(M)$, $s\in \Gamma(E)$. Hence, $\mathcal C$ is associated to a bundle map $\alpha:E\to T^*M\otimes E$ and is thus a tensor in $\Gamma\left(T^*M\otimes End(E)\right)$. Restriction to $\Omega^1_M(\mathfrak g_E)$ ensures compatibility with structure group.