Exam Corrections

Measure Theory Mark Ibrahim

- 3. If μ is a function from S to $[0,\infty]$ such that $\mu(\emptyset)=0$ and μ is countably additive, meaning if $\bigcup_{i=1}^{\infty}A_i$ is in S with all A_i pairwise disjoint, then $\sum_{i=1}^{\infty}\mu(A_i)=\mu(\bigcup_{i=1}^{\infty}A_i)$.
- 11. b) Since \emptyset is finite, $\mu(\emptyset) = 0$ as needed. Next consider any pairwise disjoint sets A_1, A_2, \ldots in S such that $\bigcup_{i=1}^{\infty} A_i$ is in S. Then $\bigcup_{i=1}^{\infty} A_i$ must be finite or $\bigcap_{i=1}^{\infty} A_i^c$ must be finite. If $\bigcup_{i=1}^{\infty} A_i$ is finite, then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = 0 = \sum_{i=1}^{\infty} \mu(A_i),$$

because each A_i must be finite if the union of all A_i is finite. If $\bigcap_{i=1}^{\infty} A_i^c$ is finite, then at least one A_i must be infinite, because $\bigcap_{i=1}^{\infty} A_i^c$ is finite (otherwise $\bigcup_{n=1}^{\infty} A_i$ would be at most countably infinite, implying $\bigcap_{i=1}^{\infty} A_i^c$ is infinite, a contradiction). If some A_i is infinite, then A_i^c is finite, because A_i is in S, implying all other $A_j \neq A_i$ are finite. Thus,

$$\sum_{i=1}^{\infty} \mu(A_i) = 1 = \mu(\bigcup_{i=1}^{\infty} A_i).$$

11. c) If B is countable or finite, then $B = \bigcup_{i=1}^{\infty} \{a_i\}$, where a_i are single points or empty sets. Thus, $0 \le \mu^*(B) \le \sum_{i=1}^{\infty} \mu(a_i) = 0$, because $B \subseteq \bigcup_{i=1}^{\infty} \{a_i\}$, implying $\mu^*(B) = 0$.

Otherwise, B is uncountable, meaning B can't be covered by a union of countable sets in \mathbb{R} . Thus, $\mu^*(B)>0$. Furthermore, $B\subseteq\mathbb{R}$, meaning $\mu^*(B)\leq\mu(\mathbb{R})+\mu(\emptyset)+\cdots=1$. Since μ -values are in $\mathbb{N}\cup 0$,

$$\mu^*(B) = \begin{cases} 0 & \text{if B is countable or finite} \\ 1 & \text{if B is uncountable} \end{cases}$$

are the possible measures of an arbitrary subset B.

14. The set of points in infinitely sets E_n , $E=\lim_{n\to\infty}E_n$. Each $\lambda(E_n)>0$ implying $\sum_{n=k}^\infty E_n=1$

 $0 \text{ as } k \to \infty$, because $\sum_{n=1}^{\infty} \lambda(E_n) < \infty$. For any $k \in \mathbb{N}$, $E \subseteq \bigcup_{n=k}^{\infty} E_n$. Thus as $k \to \infty$,

$$\lambda(E) \le \sum_{n=k}^{\infty} \lambda(E_n) = 0.$$

Since $\lambda(E) \geq 0$, $\lambda(E) = 0$ as desired.

15. Let $B = \{x | f(x) \ge \epsilon\}$. Note $A \subseteq B$. Furthermore, f(x) = |f(x)| except on a set of measure 0, call it C, because $f(x) \ge 0$ a.e.. Therefore, $B \subseteq \{x | |f(x)| \ge \epsilon\} \cup C$. Since f

1

is an integrable function, by Theorem 22.5, $\{x||f(x)| \ge \epsilon\}$ has finite measure. Thus,

$$\begin{split} \mu(A) &\leq \mu(B) \\ &\leq \mu(\{x|\;|f(x)| \geq \epsilon\} \cup C) \\ &\leq \mu(\{x|\;|f(x)| \geq \epsilon\} + \mu(C) \\ &= \mu(\{x||f(x) \geq \epsilon\}) \\ &< \infty. \end{split}$$

16. Let
$$f_n(x) = n(e^{x/n} - 1)$$
. Since $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$,
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n(\frac{x}{n} + \frac{x^2}{n^2 2!} + \frac{x^3}{n^3 3!} + \dots)$$

$$= \lim_{n \to \infty} x + \frac{x^2}{n 2!} + \frac{x^3}{n^2 3!} + \dots$$

Define $g_m(x)=\frac{x^m}{n^{m-1}m!}$. Then on [0,1] each $|g_m(x)|$ is bounded by $\frac{1}{m!}$. Since $\sum_{m=1}^{\infty}\frac{1}{m!}$ converges (to e), by the Weierstrass M-test, $\sum_{m=1}^{\infty}g_m(x)$ converges uniformly. Thus,

$$\lim_{n \to \infty} x + \frac{x^2}{n2!} + \frac{x^3}{n^2 3!} + \dots = \lim_{n \to \infty} x + \lim_{n \to \infty} \frac{x^2}{n2!} + \lim_{n \to \infty} \frac{x^3}{n^2 3!} + \dots$$
$$= x.$$

Furthermore, on [0,1], for all $n \in \mathbb{N}$,

$$|f_n(x)| = \left| x + \frac{x^2}{n2!} + \frac{x^3}{n^2 3!} + \dots \right|$$

$$= x + \frac{x^2}{n2!} + \frac{x^3}{n^2 3!} + \dots$$

$$\leq x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\leq 1 + x + \frac{x^2}{2!} + \dots = e^x.$$
 (since $n \in \mathbb{N}$)

Note each $f_n(x)$ is measurable on [0,1] because $f_n(x)$ is continuous. Since e^x is Riemann integrable, by Lebesgue Dominated Convergence,

$$\lim_{n \to \infty} \int_0^1 f_n(x) \ dx = \int_0^1 x \ dx = \frac{1}{2}.$$