07. Zero-Knowledge Proofs

이형태

2019학년도 2학기

Proof Systems

A Proof System

An argument between a prover (denoted \mathcal{P}) and a verifier (denoted \mathcal{V}) in order that \mathcal{P} convinces \mathcal{V} of a language L

Classical Proofs ≈ Written Exam

- ullet ${\cal P}$ writes down all that it has to say.
- ullet $\mathcal V$ checks this statement.
- \Rightarrow There are no interactions between \mathcal{P} and \mathcal{V} .
 - However, there are lots of real world applications where $\mathcal P$ cannot prove to $\mathcal V$ via a classical proof.

Examples:

- How to prove that two graphs are isomorphic?
- How to prove that I am what I am?

:

Interactive Proof Systems in Cryptography

An Interactive Poof System in Cryptography

- ullet can have **infinite** running time like a powerful wizard.
- V has **polynomial** running time and has the ability to generate **random numbers**–probabilistic polynomial time (PPT), like a person.
- \bullet After interacting for a polynomial time, ${\cal V}$ accepts or rejects the proof by ${\cal P}.$
- \bullet Note: In a different setting, the powers of ${\cal P}$ and ${\cal V}$ may be set differently.

Σ -Protocol for Relation R

• A binary relation for some problem $R : \{0,1\}^* \times \{0,1\}^*$ (e.g., $R = \{(v,w)|w = \text{SHA-256}(v)\}$)

• In this case, we call w a witness.

Zero-Knowledge Proofs

A zero-knowledge proof is a protocol between ${\cal P}$ and ${\cal V}$ that satisfies the following three properties:

(Informally speaking,)

- ullet Completeness: If ${\mathcal P}$ and ${\mathcal V}$ follow the protocol, then ${\mathcal V}$ always accepts.
- **Soundness**: If the statement is false, no cheating prover \mathcal{P} can convince the honest verifier \mathcal{V} that it is true, except with negligible probability.
- ullet Zero-Knowledgeness: If the statement is true, no verifier ${\cal V}$ learns anything other than the fact that the statement is true.

Schnorr's Protocol for Proving Knowledge of DL

- Let $\mathbb{G} = \langle g \rangle \subset \mathbb{Z}_p^*$ be a cyclic group of order q.
- Goal: Given a public value $y = g^x$, the prover should convince the verifier that the prover knows x.

Description of Schnorr's Protocol

 \mathcal{P}

 \mathcal{V}

- 1. Choose $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- 2. Compute $\beta = g^{\alpha} \mod p$

С

1. Choose $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

3. Compute $s = xc + \alpha \mod q$

5

2. Check if $g^s \stackrel{?}{=} y^c \beta$

Schnorr's Protocol for Proving Knowledge of DL (Cont.)

- Completeness: $g^s = g^{xc+\alpha} = (g^x)^c g^\alpha = y^c \beta$
- **Soundness**: If the cheating prover can generate two valid pairs (β, c, s) and (β, c', s') , then

$$g^s = y^c \beta$$
 and $g^{s'} = y^{c'} \beta$ \Rightarrow $g^{s-s'} = y^{c'-c}$
 \Leftrightarrow $y = g^{(s-s')/(c'-c)}$

Thus, he actually knows the witness $x = \frac{s - s'}{c - c'}$.

 Zero-Knowledgeness: The distributions of the following two sets are indistinguishable.

$$\begin{aligned} &\{(\beta,c,s)|\alpha\in_{R}\mathbb{Z}_{q},\beta=g^{\alpha},s=\alpha+cx \bmod q\} \text{ and } \\ &\{(\beta,c,s)|r\in_{R}\mathbb{Z}_{q},\beta=g^{r}y^{-c}\} \end{aligned}$$

Making a Σ -Protocol Non-Interactive

- ullet Replace a challenge c by an output of cryptographic hash function H
- Secure under the random oracle model (Assume that *H* is a random oracle.)

Transformation into Non-Interactive Protocol

$$\mathcal{P} \qquad \qquad \mathcal{V} \\
(v, w) \in R \qquad \qquad v \in V$$

- 1. $a = \alpha(v, w, u_P)$
- 2. c = H(a, v)
- 3. $r = \rho(v, w, c, u_P)$ (a, c, r) 1. Compute c = H(a, v)
 - 2. $\varphi(v, a, c, r)$?

Non-Interactive Version of Schnorr's Protocol

- Let $\mathbb{G} = \langle g \rangle \subset \mathbb{Z}_p^*$ be a cyclic group of order q.
- H: a cryptographic hash function
- Goal: Given a public value $y = g^x$, the prover should convince the verifier that the prover knows x.

Non-Interactive Version of Schnorr's Protocol

- 1. Choose $\alpha \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
- 2. Compute $\beta = g^{\alpha} \mod p$
- 3. Compute $c = H(\beta, y)$
- 4. Compute $s = xc + \alpha \mod q$ (β, c, s)
- 1. Compute $\beta' = g^s y^{-c}$
- 2. Check if $c = H(\beta', y)$

$$(:: \beta' = g^s y^{-c} = g^{\alpha + xc} (g^x)^{-c} = g^{\alpha + xc - xc} = g^{\alpha} = \beta)$$

Signature from a Non-Interactive Zero-Knowledge Protocol

- Add a message M into an input of H once the prover computes a challenge
- v: public key, w: secret key

Transformation into Non-Interactive Protocol

$$\mathcal{P} \qquad \qquad \mathcal{V} \\ (v, w) \in R \qquad \qquad v \in V$$

Sign

1.
$$a = \alpha(v, w, u_P)$$

2.
$$c = H(M, a, v)$$

3.
$$r = \rho(v, w, c, u_P)$$
 signature $\sigma = (a, c, r)$

Verify

- 1. Compute c = H(M, a, v)
- 2. $\varphi(v, a, c, r)$?

Schnorr Signature

Key Generation

- **①** Generate a cyclic subgroup \mathbb{G} with order q of \mathbb{Z}_p^* .
- **2** Select a random generator g of \mathbb{G} .
- **1** Choose a random integer x from \mathbb{Z}_q^* and compute $y = g^x$ in \mathbb{G} .
- Output a public key pk = (p, q, g, y) and a secret key x.

Sign

Given the secret key sk = x and a message M,

- **1** Choose a random integer α from \mathbb{Z}_q^* .
- **②** Compute $\beta = g^{\alpha} \mod p$.
- **3** Compute $c = H(M, \beta, y)$.
- **o** Compute $s = \alpha + xc \mod q$
- **o** Output $\sigma = (M, (c, s))$.

Schnorr Signature (Cont.)

Verify

Given the public key pk = (p, q, g, y) and a signature $\sigma = (M, (c, s))$,

- ② Check if $c \stackrel{?}{=} H(M, \beta', y)$. If it holds, return 1. Otherwise, return 0.

Correctness

$$\therefore \beta' = g^{s} y^{-c} = g^{\alpha + xc} (g^{x})^{-c} = g^{\alpha + xc - xc} = g^{\alpha} = \beta$$

References

Sch18 B. Schoenmakers, Lecture Notes - Cryptographic Protocols, Chapter 4 & 5, Version 1.32, Feb 2018.