СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ЗАДАНИЯМ 15

ЛОГАРИФМЫ

ОПРЕДЕЛЕНИЕ ЛОГАРИФМА	ОСНОВНОЕ ЛОГАРИФМИЧЕСКОЕ	
Если $\log_a b = c$, то $a^c = b$	$a^{\log_a b} = b$	

0Д:	В ЛОГАРИФМА
Для $\log_a b$	$ \begin{cases} a > 0 \\ a \neq 1 \\ b > 0 \end{cases} $

	СВОЙСТВА ЛОГАРИФМОВ		
1	$\log_a b + \log_a c = \log_a (b \cdot c)$		
	$\log_a b - \log_a c = \log_a \frac{b}{c}$		
3	$\log_a b^m = m \cdot \log_a b$		
1	$\log_{a^n} b = \frac{1}{n} \cdot \log_a b$		
5	$\log_a b = \frac{1}{\log_b a}$		
5	$\log_a b = \frac{\log_c b}{\log_c a}$		

МЕТОД РАЦИОНАЛИЗАЦИИ	
БЫЛО	СТАЛО
$\log_a f - \log_a g$	(a-1)(f-g)
$a^f - a^g$	(a-1)(f-g)
f - g	(f-g)(f+g)
$\sqrt{f} - \sqrt{g}$	(f-g)

	СТЕПЕНИ		
1	1	$1 \mid a^n \cdot a^m = a^{n+m}$	
1	2	$a^n:a^m=a^{n-m}$	
1	$3 (a^n)^m = a^{n \cdot m}$		
1	4	$a^n \cdot b^n = (a \cdot b)^n$	
	5	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	
	6	$a^{0} = 1$	
	7	$a^{-n} = \frac{1}{a^n}$	
	8	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	
1	ТЕОРЕМА ВИЕТА		

 $\overline{ax^2 + bx + c} = 0$

КОРНИ	
$1 \sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$	
2	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$
3	$\left(\sqrt{a}\right)^2 = a$
4	$\sqrt{a^2} = a $
5	$\sqrt[n]{a^m} = a^{\frac{m}{n}}$

Φζ		
1	$a^2 - b^2 = (a - b)(a + b)$	
2	$(a-b)^2 = a^2 - 2ab + b^2$	
3	$(a+b)^2 = a^2 + 2ab + b^2$	
4	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	
5	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$	
	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$	
7	$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	

РАЗЛОЖЕНИЕ	НА МНОЖИТЕЛИ
$ax^2 + bx + c =$	$a(x-x_1)(x-x_2)$

КАК РАСКРЫВАТЬ МОДУЛИ

Если внутримодульное выражение положительное, то просто опускаем модуль ПРИМЕР:

$$y = |2 - 1| = 2 - 1$$

Если внутримодульное выражение отрицательное, то раскрываем модуль, меняя все знаки внутри модуля на противоположные ПРИМЕР:

$$y = |1 - 2| = -1 + 2$$

ДИСКРИМИНАНТ $ax^2 + bx + c = 0$

$$D = b^2 - 4ac$$

$$c = \frac{-b \pm \sqrt{D}}{2a}$$