STAT 3100 Lecture Note

Week Twelve (Nov 29 & Dec 1, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Nov/27 19:13:32

Asymptotic properties of MLE (con'd)

Asymptotic efficiency of MLE (CB Thm 10.1.12 & Ex. 10.7)

- $\sqrt{n}(\hat{\theta}_{ML} \theta_0) \xrightarrow{d} \mathcal{N}(0, 1/I_1(\theta_0))$, provided that $\hat{\theta}_{ML}$ is the MLE for θ_0 , we have the previous four regularity conditions (for the consistency of MLE) plus the following two more (CB Sec 10.6.2):
 - For each $x \in \text{supp}(X)$, $f(x \mid \theta)$ is three time continuously differentiable with respect to θ ; and $\int f(x \mid \theta) dx$ can be differentiated three times under the integral sign;
 - for each $\theta \in \Theta$, there exists $c(\theta) > 0$ and $M(x, \theta)$ such that $\left| \frac{\partial^3}{\partial \theta^3} \ln f_X(x \mid \theta) \right| \leq M(x, \theta)$ for all $x \in \operatorname{supp}(X)$ and $\theta \in (\theta c(\theta), \theta + c(\theta))$.
- In practice,
 - $-nI_1(\theta_0) = I_n(\theta_0) \approx I_n(\hat{\theta}_{\mathrm{ML}}) \approx \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$

 - * (Expected) Fisher information (number) $I_n(\theta_0) = -\mathbb{E}\{H(\theta_0; \mathbf{X})\}$ * Observed Fisher information (number) $\hat{I}_n(\hat{\theta}_{\mathrm{ML}}) = -\frac{\partial^2}{\partial \theta^2} \ln L(\theta; \mathbf{x})\big|_{\theta = \hat{\theta}_{\mathrm{ML}}} = -H(\hat{\theta}_{\mathrm{ML}}; \mathbf{x})$
 - Hence $\operatorname{var}(\hat{\theta}_{\mathrm{ML}}) \approx 1/I_n(\theta_0) \approx 1/I_n(\hat{\theta}_{\mathrm{ML}}) \approx 1/\hat{I}_n(\hat{\theta}_{\mathrm{ML}})$

Delta method

• (CB Thm 5.5.24, delta method) If $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$, τ is NOT a function of n, and $\tau'(\theta) \neq 0$,

$$\sqrt{n}\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2 \sigma^2).$$

- Hence $\operatorname{var}\{\tau(\hat{\theta}_n)\} \approx \{\tau'(\hat{\theta}_n)\}^2 \sigma^2/n \text{ if } \tau'(\theta) \neq 0$
- (CB Thm 5.5.26, second-order delta method) If $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$, τ is NOT a function of n, $\tau'(\theta) = 0$, and $\tau''(\theta) \neq 0$, then

$$n\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \frac{\tau''(\theta)\sigma^2}{2}\chi^2(1).$$

- Hence $\operatorname{var}\{\tau(\hat{\theta}_n)\} \approx \{\tau''(\hat{\theta}_n)\}^2 \sigma^4/(2n^2)$ if $\tau'(\theta) = 0$ but $\tau''(\theta) \neq 0$

CB Example 10.1.17 & Ex. 10.9

- iid $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$. To estimate $\Pr(X_i = 0) = \exp(-\lambda)$.
 - a. Consider $T_n = n^{-1} \sum_i \mathbf{1}_{\{0\}}(X_i)$ and MLE $W_n = \exp(-\bar{X}_n)$. Compute ARE (T_n, W_n) , the ARE of T_n with respect to W_n .
 - b. Find the UMVUE for $Pr(X_i = 0)$, say U_n , and then calculate $ARE(U_n, W_n)$.
 - Hint: $\sqrt{n}(U_n W_n) \xrightarrow{p} 0$ (derived from S. Portnoy, The Annals of Statistics, 1977, 5, pp. 522-529, Theorem 1) and $\sum_{i=1}^{n} X_i \sim \text{Poisson}(n\lambda)$

Approximation to the variance of $\hat{\theta}_n$

- Why?
 - Reflect the variation or dispersion of $\hat{\theta}_n$
 - Help approximate the distribution of $\hat{\theta}_n$ (and further construct the confidence region for θ) if assuming normality
- How?
 - Utilizing the asymptotic variance of $\hat{\theta}_n$
 - Resampling methods, e.g., bootstraping

CB Example 10.1.17 & Ex. 10.9 (con'd)

• iid $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$. Define $\theta = \Pr(X_i = 2 \mid \theta) = \lambda^2 \exp(-\lambda)/2$. Approximate the variance of $\hat{\theta}_{\mathrm{ML}} = \bar{X}_n^2 \exp(-\bar{X}_n)/2$ by delta methods.

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ whose MLE is $\tau(\hat{p}_{\text{mle}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{mle}})\}$ by delta methods.

Bootstraping the variance of $\hat{\theta}_n$ (CB Sec. 10.1.4)

- Nonparametric bootstrap:
 - 1. For j in 1 : B, do steps 2–3.
 - 2. Draw the jth resample x_i^* of size n from the original sample $x = \{x_1, \ldots, x_n\}$, with replacement.
 - 3. Let $\hat{\theta}_{j}^{*} = \hat{\theta}(x_{j}^{*})$.
 - 4. $var(\hat{\theta}) \approx the sample variance of {\{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}}.$
- Parametric bootstrap:
 - 1. For j in 1 : B, do steps 2–3.
 - 2. Draw the jth resample x_i^* of size n from a fitted model $f(x \mid \hat{\theta})$.
 - 3. Let $\hat{\theta}_j^* = \hat{\theta}(\boldsymbol{x}_j^*)$.
 - 4. $\operatorname{var}(\hat{\theta}) \approx \text{the sample variance of } \{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}.$

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ for which the MLE is $\tau(\hat{p}_{\text{mle}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{mle}})\}$ by the bootstrap.

Large-sample hypothesis testing

Recall the LRT

- $H_0: \boldsymbol{\theta} \in \boldsymbol{\Theta}_0$ v.s. $H_1: \boldsymbol{\theta} \in \boldsymbol{\Theta}_1$, where $\boldsymbol{\Theta} = \boldsymbol{\Theta}_0 \cup \boldsymbol{\Theta}_1$
- LRT statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta}; \boldsymbol{x})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x})} = \frac{L(\hat{\boldsymbol{\theta}}_{0, \text{ML}}; \boldsymbol{x})}{L(\hat{\boldsymbol{\theta}}_{\text{ML}}; \boldsymbol{x})}$$

- $-\hat{\boldsymbol{\theta}}_{0,\mathrm{ML}}$: constrained MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}_0$
- $-\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$: unconstrained MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$
- $\{x : \lambda(x) \leq c_{\alpha}\}$: rejection region of level α LRT

 $-c_{\alpha}$ is such defined that $\sup_{\theta \in \Theta_0} \Pr(\lambda(\mathbf{X}) \leq c_{\alpha} \mid \theta) = \alpha$

Asymptotic distribution of LRT statistic (CB Thm 10.3.1 & 10.3.3)

• As $n \to \infty$,

$$-2 \ln \lambda(\mathbf{X}) \xrightarrow{d} \chi^2(\nu),$$

where $\nu =$ difference of numbers of free parameters in Θ_0 and Θ .

• (CB Thm 10.3.3) $\{x: -2 \ln \lambda(x) \ge \chi^2_{\nu,1-\alpha}\}$: asymptotic rejection region of level α LRT $-\chi_{\nu,1-\alpha}^2$ is the $1-\alpha$ quantile of $\chi^2(\nu)$.

CB Example 10.3.4

• iid $X_1, \ldots, X_n \sim \Pr(X_i = j) = p_j, j = 1, \ldots, 5$. Specify the $1 - \alpha$ LRT rejection region for $H_0: p_1 = 1$ $p_2 = p_3$ and $p_4 = p_5$ versus H_1 : Otherwise.

Wald test (CB pp. 493)

- $H_0: \theta = \theta_0 \text{ versus } H_1: \theta \neq \theta_0$
 - Wald statistic: $(\hat{\theta}_{\mathrm{ML}} \theta_0) \sqrt{I_n(\theta_0)} \ (\stackrel{d}{\to} \mathcal{N}(0,1) \text{ under } H_0 \text{ as } n \to \infty)$
 - Level α rejection region: $\{x: |\hat{\theta}_{\mathrm{ML}} \theta_0| \sqrt{I_n(\theta_0)} \geq \Phi_{1-\alpha/2}^{-1}\}$
- Asymptotically equivalent to LRT Under H_0 , but merely involve the (unconstrained) MLE.

Score test (CB pp. 494)

- Merely involve the constrained MLE
- $H_0: \theta = \theta_0 \text{ vs. } H_1: \theta \neq \theta_0$
 - Score statistic: $S(\theta_0; \mathbf{X}) / \sqrt{I_n(\theta_0)} \stackrel{d}{(\to)} \mathcal{N}(0, 1)$ under H_0 as $n \to \infty$) Level α rejection region: $\{\mathbf{x} : |S(\theta_0; \mathbf{x})| / \sqrt{I_n(\theta_0)} \ge \Phi_{1-\alpha/2}^{-1}\}$.
- If Θ_0 contains more than one points, then substitute $\hat{\theta}_{0,\text{ML}}$ for θ_0 .

CB Examples 10.3.5 & 10.3.6

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p), p \in (0,1)$. Derive LRT, Wald and score tests for $H_0: p = p_0$ versus $H_1: p \neq p_0.$

Asymptotic confidence regions

- Constructed by reverting rejection regions
- Examples
 - -1α LRT confidence region for θ : $\{\theta : -2\ln\{L(\theta; \boldsymbol{x})/L(\hat{\theta}_{\mathrm{ML}}; \boldsymbol{x})\} < \chi^2_{1,1-\alpha}\}$
 - -1α Wald confidence region for θ : $\{\theta : |\hat{\theta}_{ML} \theta| \sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$
 - -1α score confidence region for θ : $\{\theta : |S(\theta; \boldsymbol{x})|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$

CB Examples 10.4.2, 10.4.3 & 10.4.5

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, construct $1 - \alpha$ confidence intervals for p.

Take-home exercises (NOT to be submitted; to be potentially covered in labs)

- CB Ex. 10.17(a-c), 10.36, 10.38
 HMC Ex. 6.3.16-6.3.18