Dynamic States of Biological Networks

Chapter 1: Introduction

Outline

- > What is a network?
- How can we mathematically model networks?
- Key concepts in dynamic analysis
- > How do we build models?
- > Why do we build models?

Our daily lives are managed through networks

What is a network?

Uber

- Data analytics have helped Uber develop algorithms to determine frequent destinations ("hotspots")
- This knowledge allows the driver network to be structured around particular locations to offer the quickest service

Social networks

- Networks like Facebook and LinkedIn can be easily mapped
- By viewing a particular topological feature in a network, we can draw meaningful conclusions
 - If many nodes are interconnected, perhaps those people work together?
 - If nodes are unique, perhaps these represent individual clients

Networks

- As networks get larger and more complicated, we lose the ability to visually inspect a network and draw meaningful conclusions
- How do we extract information from complex networks?

"...and that's why we need a computer."

Networks are prevalent in biology

Example biological networks

Protein-protein networks

- We can look at the interaction between different proteins in the network
- These interaction networks allow us to identify so-called "hubs": highlyconnected nodes in the network

Regulatory networks

- We can use a Boolean network to model the state of various genes, denoting them as "on" or "off"
- Models are built from network topology

Metabolic networks

- Modeling the "mass flow" through each reaction in the network allows for the prediction of the state of the network
- Models can be built from network topology alone
- ➤ Taught in BENG 212

Signaling networks

- Modeling these networks with ODEs and PDEs plays important roles in understanding cellular functions and in synthetic biology
- Relies on kinetic rates and parameters

Modeling networks

Mathematics describe the world around us

The beginnings of graph theory

- The city of Könisberg was built on the banks of the Pregel River, which divided the city into four quadrants connected by seven bridges
- Citizens used to play a game in which the objective was to walk around the city crossing each bridge exactly once
- In order to prove that this problem had no solution, the mathematician Euler visualized the bridges as a network
 - Each node represents a quadrant of the city
 - Each edge represents a bridge

Applying graph theory to traffic patterns

- Intersections become nodes and the connecting roads are edges
- We can start to form "pathways" by connecting roads and intersections together
- ➤ There can be multiple routes to a given destination
- We can now begin to predict how changes in traffic patterns may affect traffic in the surrounding area

Modeling traffic patterns

- We start by defining the fundamental unit in our system: a road
- Each road is parameterized with forward and reverse rates (speed limits)
- This allows us to model the traffic flow of a given road with an ODE

From traffic to biology

From traffic to biology

Traffic

Network

Biology

Network

Life is an optimization problem - simulating and solving

Objective: get food (on campus)

Lots of different choices...

Constraint #1: time (Cups)

Constraint #2: healthiness (Croutons)

Constraint #3: cost (Price Center)

Constraint #4: caffeine (Audrey's)

Constraints change under different conditions (e.g., environmental stresses)!

Building models for dynamic simulation

Understanding system responses

Weather forecasting

- ➤ The atmosphere is a network, with energy flowing in and out through radiation, evaporation, and condensation
- Combining world-wide measurement systems and fundamental physical equations, we can predict the temperature across the country or estimate the path of a hurricane

Process control

The conversion of chemicals from products to reactions can be modeled by a set of ODEs that follow the conservation of mass

Equations can be built for all species in the reactor to create a system of ODEs

Physiological processes:

Example; Circadian rhythms

- We can model Circadian rhythms with a set of ODEs and then dynamically simulate 24 hour cycles
- These models depend on kinetic rates and other experimentally measured parameters

Spread of disease

- Certain diseases like leprosy and smallpox can be tracked throughout history
- Mapping analytics have helped track, understand, and control the spread of the Ebola virus

Fundamental concepts

Analyzing dynamics

The multi-scale nature of biology

Networks have states

steady, transient, homeostatic, physiological states

Basic concepts in dynamic analysis:

- 1. Time constant; $t_{1/2}$, τ , ...
- 2. Aggregate variables, multi-scale analysis
- 3. Transition from one steady-state to another
- Graphical representation of solution

Multi-scale (hierarchical) analysis

A question of (time) scale

How do we build dynamic models?

Starting point

Two types of approaches

- Simulation: (1) formulate equations using well-defined assumptions;
 (2) specify numerical values for parameters; (3) specify the conditions (a case study); (4) numerically solve the system of equations that define your model; (5) graph and analyze the results
- 2. Analysis: a model is a formal (mathematical) representation of the data/knowledge that you have about the process/phenomena that you are studying; can analyze model properties to examine how its different components interrelate or contribute to its properties

Assumptions used in model formulation

- Continuum assumption (do not model individual molecules, instead treat medium as continuous)
- Constant volume assumption
- Ignore some physico-chemical factors (e.g., electroneutrality, osmotic pressure)
- ➤ Finer spatial structure of cells and organelles is ignored (medium is homogenous at ~100nm)
- Constant temperature; isothermal (also isobaric)

Mass balance equations

$$\begin{aligned} \mathbf{B} & \quad \frac{dx_i}{dt} = \overbrace{v_1 + v_2 - v_3 - v_4 - v_5}^{\text{formation}} \\ &= \langle (1, 1, -1, -1, -1), (v_1, v_2, v_3, v_4, v_5)^{\mathrm{T}} \rangle \end{aligned}$$

Why do we build dynamic models?

Motivating our learning objectives

Bailey's five reasons

- 1. To organize disparate information into a coherent whole
- 2. To think (and calculate) logically about what components and interactions are important in a complex system
- 3. To discover new strategies
- 4. To make important corrections to conventional wisdom
- 5. To understand the essential qualitative features

"What I cannot create, I do not understand"

Structure of the course

Summary

"The purpose of a system is the system itself"

- Networks are all around us
 - We are all parts of many networks
- Biological networks can be reconstructed
 - Reconstruction is a laborious effort that integrates disparate sources of information
- Dynamic states of networks are characterized by:
 - Time constants
 - Formation of aggregate variables
 - Characteristic transitions
- Dynamic analysis is a mathematical subject
 - Multi-scale analysis, the spectrum of time scales is a key issue
 - Dynamic models can be simulated and/or analyzed
- There are notable assumptions made while building dynamic models

Extra Material