Note Title 19-09-2011 Homework Dead line: Thu 11:59 pm 28-4th (Minor Week) Chapter - 4 Arch i tecture 2 Instructions Organization Design
Pipeline
Muttiprocessor Issues

What to Study? MIPS Instruction Format
(Book Chapter 2) Data Processing Instruction (22-bil 21sc Formet). add, sub, and, or, nor. Opcode 751 rs, od const 0/2x MIPS -> 32 registers
of DP Instructions -> 64

> 6 bit immediate 5 bit for shifting 2 other operations

Data Transfer Instruction

Very few addressing modes supported in mips

Register Offset & Register

2 Immediate

Example:

Frample:

Load

Mord

Mord

Address = 20 + [fS2]

Format: Opcode Rd. lw \$5,,20 (\$52) 2d Offset Source Branch [What did we] do in ARm! beg \$ S1, \$52, 20 ARM (CPSR)

(MP Y1, Y2

beg (20)

some lake In MIPS, there is no cPSR

if
$$(\$s, = = \$s_2)$$

$$p_c + = 4 + (20 \times 4)$$

$$+ = 84$$

Tump/Function Call (Not there in Arm)
$$\frac{6}{0 \text{ poode}} \frac{26}{0 \text{ poode}} (0 \text{ to } 2^{28} \text{ by tes})$$

$$(Very Large)$$
Take a look at Page -160 in the book.

Orgo	mization of the processor
(E E L 206) U	
List come upich	nu)
TTL/RTL logic	II Winimal Amount of
Samilies	Background
Mux, Decoder	Reading
Encoder	(Wikipedia)
AND/OR/XOR	1) Latch (D-Flip Flop) 2) S-R flip flop.
Full Adders	2) S-R flip flop.
η	
	3) SRAM memory cell
	4) Clocking & synchronous Logic

The Transiston G(+) $G \rightarrow gate$ $S \rightarrow Source$ $D \rightarrow Drain$ Si Gate (+) SOURCE 75102 DEAIN n -> P (Election) p -> B (Hole) (NMOS)

September 21st

22 Transistors to save (1) bit

LATCH

Is this vo agood idea!

Something Better

SRAM (Static Ram)

RAM -> Random Access Memory

1 bit -> 6 Transistors.

3) Monitor the voltage difference (d) in the SENSE AMP 4) If d? 100 mV (result to be 1) d < - 100 mV (result is 0) Summary: - SRAMS (6 Transistar). Dynamic RAM (DRAM) (1 T) + (I CAP)

Periodically Refresh

Read Value
Write Again.

		Latch	SRAM	DRAM
#	Transistas	22	6	1
	Area		OK	++
	Power		OK	++
	Speed	++	+	
	lsage	Pipeline	Caches	Main

(HYUNDAI (Bmw) Kilo Bytes Size Tutorid: Housh Kumar. Logi Sim

