ABSTRACT OF THE DISCLOSURE

Compounds of the formulae

$$C + CH_{2}O - CH_{2}O -$$

and

wherein Z is $-OR_1$, $-SR_1$, or $-NR_1R_2$, Y is $-OR_3$, $-SR_3$, or $-NR_3R_4$, at least one of R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 is hydrogen, at least one of R_1 , R_2 , R_3 , R_4 , R_5 , and R_6 is other than hydrogen, at least one Z or Y within the compound is $-NR_1R_2$ or $-NR_3R_4$, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , and R_7 each, independently of the others, is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, and wherein R_7 can also be alkoxy, aryloxy, arylalkyloxy, alkylaryloxy, polyalkyleneoxy, polyaryleneoxy, polyarylalkyleneoxy, polyaryleneoxy, polyarylalkyleneoxy, polyaryleneoxy, silyl, siloxane, polysilylene, polysiloxane, or

$$O$$
||
---(CH₂)_r ---X-C--(CH₂)_sCH₃

wherein X is a direct bond, oxygen, sulfur, -NR₄₀- wherein R₄₀ is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, or -CR₅₀R₆₀- wherein R₅₀ and R₆₀ each, independently of the other, is hydrogen, alkyl, aryl, arylalkyl, or alkylaryl, and wherein R₆ can also be