Chemistry 3A

Introductory General Chemistry

Experiment 7a

Calorimetry

Introduction

- Calorimetry means the measurement of heat. This
 measurement is of heat energy either given off
 (exothermic) or absorbed (endothermic) by the system
 from the surroundings
- Heat is measured by temperature changes with a thermometer and utilizes the specific heat capacity equation:

$$q = m \times c \times \Delta T$$

Symbol	Meaning	Units
q	energy as/in the form of heat	J or cal
m	mass of the substance in the system	g
С	specific heat capacity of substance: this is a physical property determined by scientists doing experiments	J / (g °C)
∆T	change in temperature in °C: this is the final temperature minus the initial temperature	°C

Background: Part 1

When a solid is dissolved in a liquid (solvent), there can be an energy change related to the molecules of the solid interacting with the molecules of the solvent.

- When heat is released in dissolving, reaction is exothermic
- When heat is absorbed in dissolving, reaction is endothermic

Background: Part 2

Objects with different temperatures in contact with each other, heat from the warmer object transfers to the cooler object until both reach same temperature.

 Since energy is conserved, if H₂O as ice is put in contact with H₂O as water, it should be possible to measure temperature changes in the water as ice melts to see if this law is observed

Equipment You Will Use

Consumables

Procedure: Part 1

- 1. Construct the calorimetry setup with the foam cups
- 2. Measure the mass of the cups ONLY
- 3. Add 45.0 to 55.0 mL DI water to grad cylinder & pour into cups
- 4. Record temperature to nearest 0.1°C
- 5. On glassine paper, scoop out 4.8-5.2 g citric acid without causing excessive waste. Tighten the reagent lid after.
- 6. Add citric acid carefully but quickly to the calorimeter with water and place lid on setup; VERY CAREFULLY with lid closed stir the solution until solid dissolves

Procedure: Part 1

- 7. Record temperature to nearest 0.1°C after it stabilizes (it might go up or down)
- 8. Remove the cardboard lid. Record the mass of the calorimeter setup: cups + solution
- 9. Empty the solution into a beaker (for waste) then rinse and dry the inner cup
- 10. Switch the inner cup with outer cup
- 11. Repeat steps 3-8 with sodium carbonate (Na₂CO₃)
- 12. Pour out the waste into the beaker, discard the solution into the sink

Procedure: Part 2

- 1. Construct the calorimetry setup with the foam cups and add 45.0-55.0 mL DI water
- 2. Measure the mass of calorimeter with water without lid
- 3. Record temperature to nearest 0.1°C
- 4. Transfer 2-3 cubes ice to calorimeter
- 5. Place lid and stir carefully with thermometer until ice melts. Record the final temperature
- 6. Record mass of calorimeter with contents (not lid)

Example Data Analysis

PART 1 – Exothermic and Endothermic Changes

DATA

Mass of calorimeter (empty): 16.4831 g

	H ₃ C ₆ H ₅ O ₇	Na ₂ CO ₃
Initial Temperature (°C)	22.8°C	22.1℃
Final Temperature (°C)	19.3℃	27.9℃
Mass of calorimeter and solution (g)	72.0944 g	68.3891 g

PART 2 – Specific Heat Capacity and Enthalpy of Fusion

DATA

	Data
Mass of calorimeter + water (g)	64.3499 g
Initial Temperature of water (°C)	21.4℃
Final Temperature of water (°C)	15.8℃
Mass of calorimeter + water + ice (g)	67.8851 g

Example Data Analysis

PART 1 – Exothermic and Endothermic Changes

DATA

Mass of calorimeter (empty): $_{\underline{}}16.4831~g$

	H ₃ C ₆ H ₅ O ₇	Na ₂ CO ₃
Initial Temperature (°C)	22.8℃	22.1℃
Final Temperature (°C)	19.3℃	27.9℃
Mass of calorimeter and solution (g)	72.0944 g	68.3891 g

CALCULATIONS - PART 1 - EXOTHERMIC AND ENDOTHERMIC CHANGES

- * Show your work, complete with units for H₃C₆H₅O₇. I will assume you did Na₂CO₃ the same way
 - 1. Mass of the solution

How do you calculate?

3.

Heat of Solution (qsolution)

Change in Temperature of Solution

RESULTS – PART 1 – ENDOTHERMIC AND EXOTHERMIC CHANGES

	H ₃ C ₆ H ₅ O ₇	Na ₂ CO ₃
Mass of Solution (m) How do yo	ou calcul	ate?
Specific Heat of Solution (c)	4.184 J/g°C	4.184 J/g°C
Change in Temperature of Solution(ΔT)		
Heat of solution (qsolution)		
Heat of reaction* (qreaction + qsolution = 0)		
Reaction is: Exothermic or Endothermic		

^{*} The water in the calorimeter is considered the reaction's surroundings, therefore if heat is released by the reaction, it is absorbed by the water and vice-versa.

Example Data Analysis

PART 2 - Specific Heat Capacity and Enthalpy of Fusion

DATA

	Data
Mass of calorimeter + water (g)	64.3499 g
Initial Temperature of water (°C)	21.4℃
Final Temperature of water (°C)	15.8℃
Mass of calorimeter + water + ice (g)	67.8851 g

CALCULATIONS – PART 2 – SPECIFIC HEAT CAPACITY AND ENTHALPY OF FUSION

* Show your work, complete with units.

Mass of H₂O

4. Mass of Ice

How do you calculate?

2. Change in Temperature of Water

5. Moles of Ice

q_{water}

6. qice

How do you calculate?

7. $q_{water} + q_{ice}$

RESULTS

	Results
Mass of H ₂ O	
Specific Heat of water (c)	4.184 J/g°C
Change in Temperature of water (ΔT) ($\Delta T = T_f$ - T_i)	
q _{water} (kJ) How	do you
Mass of Ice calcu	late?
Moles of Ice (n)	
Enthalpy of Fusion (ΔH_{fus})	6.01 kJ/mol
q _{ice} (kJ)	
$q_{\mathrm{water}} + q_{\mathrm{ice}}$	

Clean Up

- Return equipment cleaned if necessary to its storage areas
- Return cardboard lid to supply bin
- Discard the Styrofoam cups