

Sequence Listing

<110> Ashkenazi, Avi J.
Baker, Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Fong, Sherman
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, Audrey
Godowski, Paul J.
Grimaldi, J. Christopher
Gurney, Austin L.
Kljavin, Ivar J.
Napier, Mary A.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Watanabe, Colin K.
Williams, P. Mickey
Wood, William I.
Zhang, Zemin

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2730P1C1

<150> 60/049787
<151> 1997-06-16

<150> 60/062250
<151> 1997-10-17

<150> 60/065186
<151> 1997-11-12

<150> 60/065311
<151> 1997-11-13

<150> 60/066770
<151> 1997-11-24

<150> 60/075945
<151> 1998-02-25

<150> 60/078910
<151> 1998-03-20

<150> 60/083322
<151> 1998-04-28

<150> 60/084600
<151> 1998-05-07

<150> 60/087106
<151> 1998-05-28

<150> 60/087607
<151> 1998-06-02

<150> 60/087609
<151> 1998-06-02

<150> 60/087759
<151> 1998-06-02

<150> 60/087827
<151> 1998-06-03

<150> 60/088021
<151> 1998-06-04

<150> 60/088025
<151> 1998-06-04

<150> 60/088026
<151> 1998-06-04

<150> 60/088028
<151> 1998-06-04

<150> 60/088029
<151> 1998-06-04

<150> 60/088030
<151> 1998-06-04

<150> 60/088033
<151> 1998-06-04

<150> 60/088326
<151> 1998-06-04

<150> 60/088167
<151> 1998-06-05

<150> 60/088202
<151> 1998-06-05

<150> 60/088212
<151> 1998-06-05

<150> 60/088217
<151> 1998-06-05

<150> 60/088655
<151> 1998-06-09

<150> 60/088734
<151> 1998-06-10

<150> 60/088738

<151> 1998-06-10

<150> 60/088742
<151> 1998-06-10

<150> 60/088810
<151> 1998-06-10

<150> 60/088824
<151> 1998-06-10

<150> 60/088826
<151> 1998-06-10

<150> 60/088858
<151> 1998-06-11

<150> 60/088861
<151> 1998-06-11

<150> 60/088876
<151> 1998-06-11

<150> 60/089105
<151> 1998-06-12

<150> 60/089440
<151> 1998-06-16

<150> 60/089512
<151> 1998-06-16

<150> 60/089514
<151> 1998-06-16

<150> 60/089532
<151> 1998-06-17

<150> 60/089538
<151> 1998-06-17

<150> 60/089598
<151> 1998-06-17

<150> 60/089599
<151> 1998-06-17

<150> 60/089600
<151> 1998-06-17

<150> 60/089653
<151> 1998-06-17

<150> 60/089801
<151> 1998-06-18

<150> 60/089907
<151> 1998-06-18

REF ID: A65745

<150> 60/089908
<151> 1998-06-18

<150> 60/089947
<151> 1998-06-19

<150> 60/089948
<151> 1998-06-19

<150> 60/089952
<151> 1998-06-19

<150> 60/090246
<151> 1998-06-22

<150> 60/090252
<151> 1998-06-22

<150> 60/090254
<151> 1998-06-22

<150> 60/090349
<151> 1998-06-23

<150> 60/090355
<151> 1998-06-23

<150> 60/090429
<151> 1998-06-24

<150> 60/090431
<151> 1998-06-24

<150> 60/090435
<151> 1998-06-24

<150> 60/090444
<151> 1998-06-24

<150> 60/090445
<151> 1998-06-24

<150> 60/090472
<151> 1998-06-24

<150> 60/090535
<151> 1998-06-24

<150> 60/090540
<151> 1998-06-24

<150> 60/090542
<151> 1998-06-24

<150> 60/090557
<151> 1998-06-24

<150> 60/090676

ପ୍ରକାଶକ ପତ୍ର ମହିନେ

<151> 1998-06-25

<150> 60/090678
<151> 1998-06-25

<150> 60/090690
<151> 1998-06-25

<150> 60/090694
<151> 1998-06-25

<150> 60/090695
<151> 1998-06-25

<150> 60/090696
<151> 1998-06-25

<150> 60/090862
<151> 1998-06-26

<150> 60/090863
<151> 1998-06-26

<150> 60/091360
<151> 1998-07-01

<150> 60/091478
<151> 1998-07-02

<150> 60/091544
<151> 1998-07-01

<150> 60/091519
<151> 1998-07-02

<150> 60/091626
<151> 1998-07-02

<150> 60/091633
<151> 1998-07-02

<150> 60/091978
<151> 1998-07-07

<150> 60/091982
<151> 1998-07-07

<150> 60/092182
<151> 1998-07-09

<150> 60/092472
<151> 1998-07-10

<150> 60/091628
<151> 1998-07-20

<150> 60/091646
<151> 1998-07-20

<150> 60/091673
<151> 1998-07-20

<150> 60/093339
<151> 1998-07-20

<150> 60/094651
<151> 1998-07-30

<150> 60/095282
<151> 1998-08-04

<150> 60/095285
<151> 1998-08-04

<150> 60/095302
<151> 1998-08-04

<150> 60/095318
<151> 1998-08-04

<150> 60/095321
<151> 1998-08-04

<150> 60/095301
<151> 1998-08-04

<150> 60/095325
<151> 1998-08-04

<150> 60/095916
<151> 1998-08-10

<150> 60/095929
<151> 1998-08-10

<150> 60/096012
<151> 1998-08-10

<150> 60/096143
<151> 1998-08-11

<150> 60/096146
<151> 1998-08-11

<150> 60/096329
<151> 1998-08-12

<150> 60/096757
<151> 1998-08-17

<150> 60/096766
<151> 1998-08-17

<150> 60/096768
<151> 1998-08-17

<150> 60/096773

<151> 1998-08-17
<150> 60/096791
<151> 1998-08-17

<150> 60/096867
<151> 1998-08-17

<150> 60/096891
<151> 1998-08-17

<150> 60/096894
<151> 1998-08-17

<150> 60/096895
<151> 1998-08-17

<150> 60/096897
<151> 1998-08-17

<150> 60/096949
<151> 1998-08-18

<150> 60/096950
<151> 1998-08-18

<150> 60/096959
<151> 1998-08-18

<150> 60/096960
<151> 1998-08-18

<150> 60/097022
<151> 1998-08-18

<150> 60/097141
<151> 1998-08-19

<150> 60/097218
<151> 1998-08-20

<150> 60/097661
<151> 1998-08-24

<150> 60/097952
<151> 1998-08-26

<150> 60/097954
<151> 1998-08-26

<150> 60/097955
<151> 1998-08-26

<150> 60/098014
<151> 1998-08-26

<150> 60/097971
<151> 1998-08-26

<150> 60/097974
<151> 1998-08-26

<150> 60/097978
<151> 1998-08-26

<150> 60/097986
<151> 1998-08-26

<150> 60/097979
<151> 1998-08-26

<150> 60/098525
<151> 1998-08-31

<150> 60/100634
<151> 1998-09-16

<150> 60/100858
<151> 1998-09-17

<150> 60/113296
<151> 1998-12-22

<150> 60/123957
<151> 1999-03-12

<150> 60/141037
<151> 1999-06-23

<150> 60/143048
<151> 1999-07-07

<150> 60/144758
<151> 1999-07-20

<150> 60/145698
<151> 1999-07-26

<150> 60/146222
<151> 1999-07-28

<150> 60/149396
<151> 1999-08-17

<150> 60/158663
<151> 1999-10-08

<150> 60/213637
<151> 2000-06-23

<150> 60/230978
<151> 2000-09-07

<150> 08/743698
<151> 1996-11-06

<150> 08/876698

<151> 1997-06-16

<150> 08/965056
<151> 1997-11-05

<150> 09/105413
<151> 1998-06-26

<150> 09/168978
<151> 1998-10-07

<150> 09/187368
<151> 1998-11-06

<150> 09/202054
<151> 1998-12-07

<150> 09/218517
<151> 1998-12-22

<150> 09/254311
<151> 1999-03-03

<150> 09/254460
<151> 1999-03-09

<150> 09/267213
<151> 1999-03-12

<150> 09/284291
<151> 1999-04-12

<150> 09/380137
<151> 1999-08-25

<150> 09/380138
<151> 1998-08-25

<150> 09/380139
<151> 1999-08-25

<150> 09/403296
<151> 1999-10-18

<150> 09/423844
<151> 1999-11-12

<150> 09/664610
<151> 2000-09-18

<150> 09/665350
<151> 2000-09-18

<150> 09/709238
<151> 2000-11-08

<150> 09/808689
<151> 2001-03-14

<150> 09/854816
<151> 2001-05-15

<150> 09/866028
<151> 2001-05-25

<150> 09/866034
<151> 2001-05-25

<150> 09/872035
<151> 2001-06-01

<150> 09/882636
<151> 2001-06-14

<150> PCT/US97/20069
<151> 1997-11-05

<150> PCT/US98/19330
<151> 1998-09-16

<150> PCT/US98/19437
<151> 1998-09-17

<150> PCT/US98/21141
<151> 1998-10-07

<150> PCT/US98/25108
<151> 1998-12-01

<150> PCT/US99/00106
<151> 1999-01-05

<150> PCT/US99/05028
<151> 1999-03-08

<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28301
<151> 1999-12-01

<150> PCT/US99/28634
<151> 1999-12-01

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911

<151> 1999-12-20

<150> PCT/US00/00219
<151> 2000-01-05

<150> PCT/US00/00376
<151> 2000-01-06

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04341
<151> 2000-02-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/04914
<151> 2000-02-24

<150> PCT/US00/05004
<151> 2000-02-24

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/06319
<151> 2000-03-10

<150> PCT/US00/06884
<151> 2000-03-15

<150> PCT/US00/07377
<151> 2000-03-20

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/13358
<151> 2000-05-15

<150> PCT/US00/13705
<151> 2000-05-17

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/20710
<151> 2000-07-28

<150> PCT/US00/22031
<151> 2000-08-11

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/30952
<151> 2000-11-08

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-07-09

<160> 532

<210> 1
<211> 1943
<212> DNA
<213> Homo sapiens

<400> 1
cggacgcgtg ggtgcgaggc gaaggtgacc gggaccgag catttcagat 50
ctgctcggtt gacctggtgc accaccacca ttttgtgc aaggctggtg 100
tgtctccgga cactaccttc tagggtttc caccagctt tcaccaaggc 150
ctccccctttt gtgaagaatt ccatcaccaa gaatcaatgg ctgttaacac 200
ctagcaggaa atatgccacc aaaacaagaa ttgggatccg gcgtgggaga 250
actggccaag aactcaaaga ggcagcattt gaaccatcga tggaaaaat 300
attnaaaattt gatcagatgg gaagatggtt ttgtgctgga ggggctgctg 350
ttggctttgg agcattgtgc tactatggct tggactgtc taatgagatt 400
ggagctattt aaaaaggctgt aatttggcct cagtatgtca aggatagaat 450
tcattccacc tatatgtact tagcagggag tattggttt acagctttgt 500
ctgccatagc aatcagcaga acgcctgttc tcatgaactt catgatgaga 550
ggctcttggg tgacaattgg tgtgacccccc gcagccatgg ttggagctgg 600

aatgctggta cgatcaatac catatgacca gagcccaggc ccaaagcatc 650
ttgcttgggt gctacattct ggtgtatgg gtgcagtggg ggctcctctg 700
acaatattag ggggtcctct tctcatcaga gctgcatggt acacagctgg 750
cattgtggga ggcctctcca ctgtggccat gtgtgcgcc 800
ttctgaacat gggtgcaccc ctgggagtg 850
tcctcattgg gatctatgtt tcttccaccc accaccgtgg ctggtgccac 900
tctttactca gtggcaatgt acggtg 950
ttctgtatga taccagaaa gtaatcaagc gtgcaga 1000
tatggagttc aaaaatatga tcccattaac tcgatgctga gtatctacat 1050
ggatacatta aatatattta tgcgagttgc aactatgctg gcaactggag 1100
gcaacagaaa gaaatgaagt gactcagctt ctggcttctc tgctacatca 1150
aatatcttgt ttaatgggc agatatgcat taaatagttt gtacaaggc 1200
cttcgttga agtttagaag ataagaaaca tgtcatcata tttaaatgtt 1250
ccggtaatgt gatgcctcag gtctgcctt tttctggag aataaatgca 1300
gtaatcctct cccaaataag cacacacatt ttcaattctc atgtttgagt 1350
gattttaaaa tgtttggg 1400
atgtaagtct ttttctact ttaaaattta gtaggttcac tgagtaacta 1450
aaatttagca aacctgtgtt tgcatatttt tttggagtg 1500
aattaatgtc ataagtgatt tggagcttg gtaaaggac cagagagaag 1550
gagtcacctg cagttttg ttttttaaa tacttagaac ttagcactg 1600
tgttattgat tagtgaggag ccagtaagaa acatctgggt atttgaaac 1650
aagtggtcat tgttacattc atttgctgaa cttaacaaaa ctgttcatcc 1700
tgaaacaggc acaggtgatg cattctcctg ctgttgctc tcagtgtct 1750
cttccaata tagatgtgg 1800
acagagaatc cttgatggaa ttatataatgt gtgtttact tttgaatgtt 1850
acaaaaggaa ataactttaa aactattctc aagagaaaat attcaaagca 1900
tgaaatatgt tgcttttcc agaataaaaa cagttactc atg 1943

<210> 2
<211> 345
<212> PRT
<213> Homo sapiens

<400> 2
 Met Leu Ala Ala Arg Leu Val Cys Leu Arg Thr Leu Pro Ser Arg
 1 5 10 15

 Val Phe His Pro Ala Phe Thr Lys Ala Ser Pro Val Val Lys Asn
 20 25 30

 Ser Ile Thr Lys Asn Gln Trp Leu Leu Thr Pro Ser Arg Glu Tyr
 35 40 45

 Ala Thr Lys Thr Arg Ile Gly Ile Arg Arg Gly Arg Thr Gly Gln
 50 55 60

 Glu Leu Lys Glu Ala Ala Leu Glu Pro Ser Met Glu Lys Ile Phe
 65 70 75

 Lys Ile Asp Gln Met Gly Arg Trp Phe Val Ala Gly Gly Ala Ala
 80 85 90

 Val Gly Leu Gly Ala Leu Cys Tyr Tyr Gly Leu Gly Leu Ser Asn
 95 100 105

 Glu Ile Gly Ala Ile Glu Lys Ala Val Ile Trp Pro Gln Tyr Val
 110 115 120

 Lys Asp Arg Ile His Ser Thr Tyr Met Tyr Leu Ala Gly Ser Ile
 125 130 135

 Gly Leu Thr Ala Leu Ser Ala Ile Ala Ile Ser Arg Thr Pro Val
 140 145 150

 Leu Met Asn Phe Met Met Arg Gly Ser Trp Val Thr Ile Gly Val
 155 160 165

 Thr Phe Ala Ala Met Val Gly Ala Gly Met Leu Val Arg Ser Ile
 170 175 180

 Pro Tyr Asp Gln Ser Pro Gly Pro Lys His Leu Ala Trp Leu Leu
 185 190 195

 His Ser Gly Val Met Gly Ala Val Val Ala Pro Leu Thr Ile Leu
 200 205 210

 Gly Gly Pro Leu Leu Ile Arg Ala Ala Trp Tyr Thr Ala Gly Ile
 215 220 225

 Val Gly Gly Leu Ser Thr Val Ala Met Cys Ala Pro Ser Glu Lys
 230 235 240

 Phe Leu Asn Met Gly Ala Pro Leu Gly Val Gly Leu Gly Leu Val
 245 250 255

 Phe Val Ser Ser Leu Gly Ser Met Phe Leu Pro Pro Thr Thr Val
 260 265 270

 Ala Gly Ala Thr Leu Tyr Ser Val Ala Met Tyr Gly Gly Leu Val
 275 280 285

Leu Phe Ser Met Phe Leu Leu Tyr Asp Thr Gln Lys Val Ile Lys
290 295 300
Arg Ala Glu Val Ser Pro Met Tyr Gly Val Gln Lys Tyr Asp Pro
305 310 315
Ile Asn Ser Met Leu Ser Ile Tyr Met Asp Thr Leu Asn Ile Phe
320 325 330
Met Arg Val Ala Thr Met Leu Ala Thr Gly Gly Asn Arg Lys Lys
335 340 345

<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
caggaaacag ctatgaccac ctgcacacct gcaaattcat t 41

<210> 5
<211> 3033
<212> DNA
<213> Homo sapiens

<400> 5
gaaggctgcc tcgctggtcc gaattcggtg gcgccacgtc cgcccgatctc 50
cgccttctgc atcgccgctt cggccggcttc cacctagaca cctaacagtc 100
gcggagccgg ccgcgtcgtg aggggggtcgg cacggggagt cggccggatct 150
tgtgcatctt ggctacactgt gggtcgaaga tgtcggacat cggagactgg 200
ttcaggagca tccccggcgtat cacgcgttat tggttcgccg ccaccgtcgc 250
cgtgcccttg gtccggaaac tcggccat cagcccgcc tacctttcc 300
tctggcccgat agccttcctt tatcgcttcc agatttggag gccaatcact 350
gccacctttt atttccctgt gggtccagga actggatttc tttatttggt 400
caatttatata ttcttatatac agtattctac gcgacttgaa acaggagctt 450

ttgatggag gccagcagac tatttattca tgctccttt taactggatt 500
tgcatcgta ttactggctt agcaatggat atgcagttgc tcatgattcc 550
tctgatcatg tcagttactt atgtctgggc ccagctgaac agagacatga 600
ttgtatcatt ttgggttgga acacgattta aggcctgcta tttaccctgg 650
gttataccttg gattcaacta tatcatcgga ggctcgtaa tcaatgagct 700
tattggaaat ctgggtggac atctttattt tttcctaattt ttcagataacc 750
caatggactt gggaggaaga aattttctat ccacacctca gttttgtac 800
cgctggctgc ccagtaggag aggaggagta tcaggatttgc gtgtgcccc 850
tgctagcatg aggcgagctg ctgatcagaa tggcggaggc gggagacaca 900
actggggcca gggcttcga cttggagacc agtgaagggg cgccctcggg 950
cagccgctcc tctcaagcca catttcctcc cagtgcgtgg tgcacttaac 1000
aactgcgttc tggctaacac tggctggacct gacccacact gaatgttagtc 1050
tttcagtacg agacaaagtt tcttaaatcc cgaagaaaaa tataagtgtt 1100
ccacaagttt cacgattctc attcaagtcc ttactgctgt gaagaacaaa 1150
taccaactgt gcaaattgca aaactgacta catttttgg tgtcttctct 1200
tctcccttt ccgtctgaat aatgggtttt agcgggtctt aatctgctgg 1250
cattgagctg gggctgggtc accaaaccct tccaaaagg accttatctc 1300
tttcttgcac acatgcctct ctcccacttt tcccaacccc cacatttgca 1350
actagaaaaaa gttgcccata aaattgctct gcccttgaca gtttctgtta 1400
tttattgact ttgccaagg ctggtcacaa caatcatatt cacgttattt 1450
tcccctttt gttggcagaac tggtaaccaat agggggagaa gacagccacg 1500
gatgaagcgt ttctcagctt ttggaaattgc ttgcactgac atccgttgtt 1550
aaccgtttgc cactttcag atattttta taaaaaaagt accactgagt 1600
tcatgagggc cacagattgg ttattaatga gatacgaggg ttgggtgtgg 1650
gtgtttgtt cctgagctaa gtgatcaaga ctgttagtgaa gttgcagcta 1700
acatgggtta ggtttaaacc atggggatg caccctttg cgtttcatat 1750
gtagccctac tggctttgtg tagctggagt agttgggttg ctttgtgtta 1800
ggaggatcca gatcatgttg gctacaggga gatgctctct ttgagaggtc 1850
ctgggcattt attccattt caatctcattt ctggatatgt gttcatttgag 1900

taaaggagga gagaccctca tacgctattt aaatgtcaact ttttgcccta 1950
ccccccgttt tttggtcatg tttcaattaa ttgtgaggaa ggcgcagctc 2000
ctctctgcac gtagatcatt ttttaaagct aatgtaagca catctaaggg 2050
aataacatga tttaaggttg aaatggctt agaatcattt gggtttgagg 2100
gtgtgttatt ttgagtcatg aatgtacaag ctctgtaat cagaccagct 2150
taaataccca caccttttt tcgttaggtgg gctttcccta tcagagcttg 2200
gctcataacc aaataaagtt ttttgaaggc catggcttt cacacagtt 2250
tttatattta tgacgttatc tgaaagcaga ctgttaggag cagtatttag 2300
tggctgtcac actttgaggc aactaaaaag gcttcaaacg ttttgcata 2350
tttctttca ggaaacattt tgctctaaca gtatgactat tctttcccc 2400
actcttaaac agtgtgatgt gtgttatcct agggaaatgag agttggcaaa 2450
caacttctca ttttgaatag agtttgcgtg tacttctcca tatttaattt 2500
atatgataaa ataggtgggg agagtctgaa ccttaactgt catgtttgt 2550
tgttcatctg tggccacaat aaagttact tgtaaaattt tagaggccat 2600
tactccaatt atgttgcacg tacactcatt gtacaggcgt ggagactcat 2650
tgtatgtata agaatattt tgacagttag tgacccggag tctctgggt 2700
accctttcac cagtcagctg cctgcgagca gtcattttt cctaaaggaa 2750
tacaagtatt tagaactttt cagttcaggg caaaatgttc atgaagttat 2800
tcctcttaaa catggtagg aagctgatga cgattttgat tttgtctgga 2850
ttatgtttct ggaataattt tacaaaaca agctatttga gttttgactt 2900
gacaaggcaa aacatgacag tggattctct ttacaatgg aaaaaaaaaa 2950
tccttatttt gtataaagga cttcccttt tgtaaactaa tccttttat 3000
tggtaaaaat tgtaaattaa aatgtcaac ttg 3033

<210> 6
<211> 251
<212> PRT
<213> Homo sapiens

<400> 6
Met Ser Asp Ile Gly Asp Trp Phe Arg Ser Ile Pro Ala Ile Thr
1 5 10 15
Arg Tyr Trp Phe Ala Ala Thr Val Ala Val Pro Leu Val Gly Lys
20 25 30

Leu Gly Leu Ile Ser Pro Ala Tyr Leu Phe Leu Trp Pro Glu Ala
 35 40 45
 Phe Leu Tyr Arg Phe Gln Ile Trp Arg Pro Ile Thr Ala Thr Phe
 50 55 60
 Tyr Phe Pro Val Gly Pro Gly Thr Gly Phe Leu Tyr Leu Val Asn
 65 70 75
 Leu Tyr Phe Leu Tyr Gln Tyr Ser Thr Arg Leu Glu Thr Gly Ala
 80 85 90
 Phe Asp Gly Arg Pro Ala Asp Tyr Leu Phe Met Leu Leu Phe Asn
 95 100 105
 Trp Ile Cys Ile Val Ile Thr Gly Leu Ala Met Asp Met Gln Leu
 110 115 120
 Leu Met Ile Pro Leu Ile Met Ser Val Leu Tyr Val Trp Ala Gln
 125 130 135
 Leu Asn Arg Asp Met Ile Val Ser Phe Trp Phe Gly Thr Arg Phe
 140 145 150
 Lys Ala Cys Tyr Leu Pro Trp Val Ile Leu Gly Phe Asn Tyr Ile
 155 160 165
 Ile Gly Gly Ser Val Ile Asn Glu Leu Ile Gly Asn Leu Val Gly
 170 175 180
 His Leu Tyr Phe Phe Leu Met Phe Arg Tyr Pro Met Asp Leu Gly
 185 190 195
 Gly Arg Asn Phe Leu Ser Thr Pro Gln Phe Leu Tyr Arg Trp Leu
 200 205 210
 Pro Ser Arg Arg Gly Gly Val Ser Gly Phe Gly Val Pro Pro Ala
 215 220 225
 Ser Met Arg Arg Ala Ala Asp Gln Asn Gly Gly Gly Arg His
 230 235 240
 Asn Trp Gly Gln Gly Phe Arg Leu Gly Asp Gln
 245 250

<210> 7
 <211> 1373
 <212> DNA
 <213> Homo sapiens

<400> 7
 ggggccccgg tcttagggcgg ctacgtgtgt tgccatagcg accattttgc 50
 attaacttgtt tggtagcttc tatcctgggg gctgagcgac tgcggggccag 100
 ctcttccctt actccctctc ggctccttgt ggcccaaagg cctaaccggg 150
 gtccggcgggt ctggcctagg gatcttcccc gttgcccctt tggggcggga 200

tggctgcgga agaagaagac gaggtggagt gggtagtgga gagcatcg 250
gggttcctgc gaggcccaga ctggtccatc cccatcttgg actttgtgga 300
acagaaatgt gaagttact gcaaaggagg gcatgtgata actccaggaa 350
gcccagagcc ggtgatttg gtggcctgtg ttccccttgt ttttcatgat 400
gaagaagaaa gcaaattgac ctatacagag attcatcagg aatacaaaga 450
actagttgaa aagctgttag aaggttacct caaagaaatt ggaattaatg 500
aagatcaatt tcaagaagca tgcacttctc ctcttgcaaa gaccataca 550
tcacaggcca ttttgcacc tgggtggca gcagaagatt ttactatctt 600
taaagcaatg atggtccaga aaaacattga aatgcagctg caagccattc 650
gaataattca agagagaaat ggtgtattac ctgactgctt aaccgatggc 700
tctgatgtgg tcagtgacct tgaacacgaa gagatgaaaa tcctgaggga 750
agttcttaga aaatcaaaag aggaatatga ccaggaagaa gaaaggaaga 800
ggaaaaaaaca gttatcagag gctaaaacag aagagccac agtgcattcc 850
agtgaagctg caataatgaa taattccaa gggatggtg aacatttgc 900
acacccaccc tcagaagtta aaatgcatt tgctaattcag tcaatagaac 950
cttgggaag aaaagtggaa aggtctgaaa cttccctccct cccacaaaaa 1000
ggcctgaaga ttccctggctt agagcatgctg agcattgaag gaccaatagc 1050
aaacttatca gtacttgaa cagaagaact tcggcaacga gaacactatc 1100
tcaaggcagaa gagagataag ttgatgtcca tgagaaagga tatgaggact 1150
aaacagatac aaaatatgga gcagaaagga aaacccactg gggaggtaga 1200
ggaaatgaca gagaaaccag aaatgacagc agaggagaag caaacattac 1250
taaagaggag attgcttgca gagaaactca aagaagaagt tattaataag 1300
taataattaa gaacaattta acaaaatgga agttcaaatt gtctaaaaa 1350
taaatttattt agtccttaca ctg 1373

<210> 8
<211> 367
<212> PRT
<213> Homo sapiens

<400> 8
Met Ala Ala Glu Glu Glu Asp Glu Val Glu Trp Val Val Glu Ser
1 5 10 15
Ile Ala Gly Phe Leu Arg Gly Pro Asp Trp Ser Ile Pro Ile Leu

20	25	30
Asp Phe Val Glu Gln Lys Cys Glu Val Asn Cys Lys Gly Gly His		
35	40	45
Val Ile Thr Pro Gly Ser Pro Glu Pro Val Ile Leu Val Ala Cys		
50	55	60
Val Pro Leu Val Phe Asp Asp Glu Glu Ser Lys Leu Thr Tyr		
65	70	75
Thr Glu Ile His Gln Glu Tyr Lys Glu Leu Val Glu Lys Leu Leu		
80	85	90
Glu Gly Tyr Leu Lys Glu Ile Gly Ile Asn Glu Asp Gln Phe Gln		
95	100	105
Glu Ala Cys Thr Ser Pro Leu Ala Lys Thr His Thr Ser Gln Ala		
110	115	120
Ile Leu Gln Pro Val Leu Ala Ala Glu Asp Phe Thr Ile Phe Lys		
125	130	135
Ala Met Met Val Gln Lys Asn Ile Glu Met Gln Leu Gln Ala Ile		
140	145	150
Arg Ile Ile Gln Glu Arg Asn Gly Val Leu Pro Asp Cys Leu Thr		
155	160	165
Asp Gly Ser Asp Val Val Ser Asp Leu Glu His Glu Glu Met Lys		
170	175	180
Ile Leu Arg Glu Val Leu Arg Lys Ser Lys Glu Glu Tyr Asp Gln		
185	190	195
Glu Glu Glu Arg Lys Arg Lys Lys Gln Leu Ser Glu Ala Lys Thr		
200	205	210
Glu Glu Pro Thr Val His Ser Ser Glu Ala Ala Ile Met Asn Asn		
215	220	225
Ser Gln Gly Asp Gly Glu His Phe Ala His Pro Pro Ser Glu Val		
230	235	240
Lys Met His Phe Ala Asn Gln Ser Ile Glu Pro Leu Gly Arg Lys		
245	250	255
Val Glu Arg Ser Glu Thr Ser Ser Leu Pro Gln Lys Gly Leu Lys		
260	265	270
Ile Pro Gly Leu Glu His Ala Ser Ile Glu Gly Pro Ile Ala Asn		
275	280	285
Leu Ser Val Leu Gly Thr Glu Glu Leu Arg Gln Arg Glu His Tyr		
290	295	300
Leu Lys Gln Lys Arg Asp Lys Leu Met Ser Met Arg Lys Asp Met		
305	310	315

Arg Thr Lys Gln Ile Gln Asn Met Glu Gln Lys Gly Lys Pro Thr
320 325 330
Gly Glu Val Glu Glu Met Thr Glu Lys Pro Glu Met Thr Ala Glu
335 340 345
Glu Lys Gln Thr Leu Leu Lys Arg Arg Leu Leu Ala Glu Lys Leu
350 355 360
Lys Glu Glu Val Ile Asn Lys
365

<210> 9
<211> 418
<212> DNA
<213> Homo sapiens

<400> 9
gggcacagca catgtgaagt ttttcatatgtt gaagaagaaa gcaaatttgcac 50
ctatacagag attcatcagg aatacacaaga actatgtt gaaatgtttag 100
aaggttacctt caaaaggaaattt ggaattttatg aagatcaattt tcaagaagca 150
tgcacttctc ctcttgcaaa gaccatataca tcacaggcca tttttgcac 200
ctgtgttggc agcagaagat ttactatctt ttaaagcaat gatggtccag 250
aaaaacattt gaaatgcagctt gcaagccattt cgaataattt aagagagaaa 300
tggtgttattt cctgactgctt taaccgttggc ctctgttgcgtt gtcagtgttacc 350
ttgaacacga agagatgaaa atcctgaggg aagttcttagt aaaaatcaaaa 400
gaggaatattt accaggaa 418

<210> 10
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 10
ttgacctata cagagattca tc 22

<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 11
ctaagaacctt ccctcaggat ttt 23

<210> 12
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 12
atgaagatca atttcaagaa gcatgcactt ctcactttgc 40

<210> 13
<211> 2886
<212> DNA
<213> Homo sapiens

<400> 13
gcgtggttt tgttctgcaa taggcggc tt agagggaggg gcttttcgc 50
ctatacc tac ttagcttct ccacgtatgg accctaaagg ctactgctgc 100
tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 150
caactagaagc tcttctgagg gaggttaatta aaaaacagtg gaatggaaaa 200
acagtgcgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 250
tcctgctagg tgccatattc attgctttaa gctcaagtgc catcttacta 300
gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaaactac 350
tgtgaatgtg tgctcagaac tggtaagct agtttctgt gtgcttgtgt 400
cattctgtgt tataaagaaa gatcatcaaa gtagaaattt gaaatatgct 450
tcctggaagg aattctctga tttcatgaag tggtccattc ctgccttct 500
ttatccctg gataacttga ttgtcttcta tgtcctgtcc tatcttcaac 550
cagccatggc tgttatcttc tcaaattta gcattataac aacagctctt 600
ctattcagga tagtgcgtaa gaggcgtcta aactggatcc agtgggcttc 650
cctcctgact ttatccatgtt ctattgtggc cttgactgcc gggactaaaa 700
ctttacagca caacttggca ggacgtggat ttcattcacga tgccttttc 750
agcccttcca attcctgcct tctttcaga agttagtgc ccagaaaaaga 800
caattgtaca gcaaaggaat ggactttcc tgaagctaaa tggAACACCA 850
cagccagagt tttcagtcac atccgtcttgc gcatgggcca tgttcttatt 900
atagtccagt gttttatccc ttcaatggct aatatctata atgaaaagat 950
actgaaggag gggAACCCAGC tcactgaaag catcttcata cagaacacgca 1000
aactcttattt ctttggcatt ctgttaatg ggctgactct gggccttcag 1050

生物信息学实验

aggagtaacc gtgatcagat taagaactgt ggatTTTT atggccacag 1100
tgcattttca gtagccctta ttttgtaac tgcattccag ggcTTTcag 1150
tggCTTcat tctgaagttc ctggataaca tgTTCCatgt cttgatggcc 1200
caggttacca ctgtcattat cacaacagtg tctgtcctgg tctttgactt 1250
caggccctcc ctggaatttt tcttggaaagc cccatcagtc cttctctcta 1300
tatttattta taatgccagc aagcctcaag ttccggaata cgcacctagg 1350
caagaaaagga tccgagatct aagtggcaat ctttgggagc gttccagtgg 1400
ggatggagaa gaactagaaaa gacttaccaa acccaagagt gatgagtcag 1450
atgaagatac tttctaactg gtacccacat agttgcagc tctcttgaac 1500
cttattttca cattttcagt gtttgaata tttatTTTT cactttgata 1550
aaccagaaat gtttctaaat cctaataattc tttgcatata tctagctact 1600
ccctaaatgg ttccatccaa ggcttagagt acccaaaggc taagaaattc 1650
taaagaactg atacaggagt aacaatatga agaattcatt aatatctcag 1700
tacttgataa atcagaaaatg tatatgtgca gattatTTTc ctggcCTTC 1750
aagcttccaa aaaacttgta ataatcatgt tagctatagc ttgtatatac 1800
acatagagat caatttgcca aatattcaca atcatgttagt tctagttac 1850
atgccaaagt ctccCTTT taacattata aaagcttagt tgtctttga 1900
atTTTgaggc cctagagata gtcattttgc aagtaaagag caacgggacc 1950
ctttctaaaa acgttggttg aaggacctaa atacctggcc ataccataga 2000
tttgggatga tttttttttt gctaaatatt ttgctgaaga agcagttct 2050
cagacacaac atctcagaat tttttttt agaaaattcat gggaaattgg 2100
atTTTgtaa taatTTTTg atgtttaaa cattggTTCC ctgtcacca 2150
tagttaccac ttgtatTTTA agtcattaa acaagccacg gtggggCTTT 2200
tttctcCTCA gtttggaggag aaaaatcttg atgtcattac tcctgaatta 2250
ttacatTTTG gagaataaga gggcattttt ttttatttagt tactaattca 2300
agctgtgact attgtatATC tttccaagag ttgaaatgct ggcttcagaa 2350
tcataccaga ttgtcagtga agctgatGCC taggaacttt taaaggatc 2400
ctttcaaaAG gatcacttag caaacacatg ttgactttt actgatgtat 2450
gaatattaat actctaaaaa tagaaagacc agtaatataat aagtcaCTT 2500

acagtgcac ttcacactta aaagtgcacgt gtattttca tggtattttg 2550
catgcagcca gttaactctc gtagatagag aagtcaaggat atagatgata 2600
ttaaaaatta gcaaacaaaa gtgacttgct cagggtcatg cagctgggtg 2650
atgatagaag agtgggcttt aactggcagg cctgtatgtt tacagactac 2700
catactgtaa atatgagctt tatggtgtca ttctcagaaa cttatacatt 2750
tctgctctcc tttctcctaa gtttcatgca gatgaatata aggtaatata 2800
ctattatata attcatttgt gatatccaca ataatatgac tggcaagaat 2850
tggtggaaat ttgtaattaa aataattatt aaacct 2886

<210> 14
<211> 424
<212> PRT
<213> Homo sapiens

<400> 14
Met Glu Lys Gln Cys Cys Ser His Pro Val Ile Cys Ser Leu Ser
1 5 10 15
Thr Met Tyr Thr Phe Leu Leu Gly Ala Ile Phe Ile Ala Leu Ser
20 25 30
Ser Ser Arg Ile Leu Leu Val Lys Tyr Ser Ala Asn Glu Glu Asn
35 40 45
Lys Tyr Asp Tyr Leu Pro Thr Thr Val Asn Val Cys Ser Glu Leu
50 55 60
Val Lys Leu Val Phe Cys Val Leu Val Ser Phe Cys Val Ile Lys
65 70 75
Lys Asp His Gln Ser Arg Asn Leu Lys Tyr Ala Ser Trp Lys Glu
80 85 90
Phe Ser Asp Phe Met Lys Trp Ser Ile Pro Ala Phe Leu Tyr Phe
95 100 105
Leu Asp Asn Leu Ile Val Phe Tyr Val Leu Ser Tyr Leu Gln Pro
110 115 120
Ala Met Ala Val Ile Phe Ser Asn Phe Ser Ile Ile Thr Thr Ala
125 130 135
Leu Leu Phe Arg Ile Val Leu Lys Arg Arg Leu Asn Trp Ile Gln
140 145 150
Trp Ala Ser Leu Leu Thr Leu Phe Leu Ser Ile Val Ala Leu Thr
155 160 165
Ala Gly Thr Lys Thr Leu Gln His Asn Leu Ala Gly Arg Gly Phe
170 175 180

His His Asp Ala Phe Phe Ser Pro Ser Asn Ser Cys Leu Leu Phe
 185 190 195
 Arg Ser Glu Cys Pro Arg Lys Asp Asn Cys Thr Ala Lys Glu Trp
 200 205 210
 Thr Phe Pro Glu Ala Lys Trp Asn Thr Thr Ala Arg Val Phe Ser
 215 220 225
 His Ile Arg Leu Gly Met Gly His Val Leu Ile Ile Val Gln Cys
 230 235 240
 Phe Ile Ser Ser Met Ala Asn Ile Tyr Asn Glu Lys Ile Leu Lys
 245 250 255
 Glu Gly Asn Gln Leu Thr Glu Ser Ile Phe Ile Gln Asn Ser Lys
 260 265 270
 Leu Tyr Phe Phe Gly Ile Leu Phe Asn Gly Leu Thr Leu Gly Leu
 275 280 285
 Gln Arg Ser Asn Arg Asp Gln Ile Lys Asn Cys Gly Phe Phe Tyr
 290 295 300
 Gly His Ser Ala Phe Ser Val Ala Leu Ile Phe Val Thr Ala Phe
 305 310 315
 Gln Gly Leu Ser Val Ala Phe Ile Leu Lys Phe Leu Asp Asn Met
 320 325 330
 Phe His Val Leu Met Ala Gln Val Thr Thr Val Ile Ile Thr Thr
 335 340 345
 Val Ser Val Leu Val Phe Asp Phe Arg Pro Ser Leu Glu Phe Phe
 350 355 360
 Leu Glu Ala Pro Ser Val Leu Leu Ser Ile Phe Ile Tyr Asn Ala
 365 370 375
 Ser Lys Pro Gln Val Pro Glu Tyr Ala Pro Arg Gln Glu Arg Ile
 380 385 390
 Arg Asp Leu Ser Gly Asn Leu Trp Glu Arg Ser Ser Gly Asp Gly
 395 400 405
 Glu Glu Leu Glu Arg Leu Thr Lys Pro Lys Ser Asp Glu Ser Asp
 410 415 420
 Glu Asp Thr Phe

<210> 15
 <211> 755
 <212> DNA
 <213> Homo sapiens

<400> 15
 cgtgcctgcg caatgggtgt cgggtccgct ttttcccaat ccggacgtaa 50

tcgtggttt tgttctgcaa taggcggctt agagggaggg gcttttcgc 100
ctatacctac tgttagcttct ccacgtatgg accctaaagg ctactgctgc 150
tactacgggg ctagacagtt actgtctcag ctctaggatg tgcgttcttc 200
caactagaagc tcttctgagg gaggttaatta aaaaacagtg gaatggaaaa 250
acagtgtgt agtcatcctg taatatgctc cttgtcaaca atgtatacat 300
tcctgctagg tgccatattc attgctttaa gctcaagtgc catcttacta 350
gtgaagtatt ctgccaatga agaaaacaag tatgattatc ttccaaactac 400
tgtgaatgtg tgctcagaac tggtaagct agtttctgt gtgcttgtgt 450
cattctgtgt tataaagaaa gatcatcaa gttagaaattt gaaatatgct 500
tcctggaagg aattctctga tttcatgaag tggccattc ctgccttct 550
ttatttcctg gataacttga ttgtcttcta tgtcctgtcc tatcttcaac 600
cagccatggc tggtatcttc tcaaattta gcattataac aacagctctt 650
ctattcagga tagtgctgaa gaggcgctca aactggatcc agtgggcttc 700
cctcctgact ttattttgt ctattgtggc cttgactgcc gggactaaaa 750
cttta 755

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 16
ctatacctac tgttagcttct 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 17
tcagagaatt cttccagga 20

<210> 18
<211> 40
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 18

acagtgcgt agtcatcctg taatatgctc cttgtcaaca 40

<210> 19

<211> 2142

<212> DNA

<213> Homo sapiens

<400> 19

cggacgcgtg ggccggacgcg tggcgccgacg cgtggggccg gcttggctag 50

cgccgcggccg ccgtggctaa ggctgctacg aagcgagctt gggaggagca 100

gcggcctgcg gggcagagga gcatcccgctc taccaggtcc caagcggcgt 150

ggcccgcggg tcatggccaa aggagaaggc gccgagagcg gctccgcggc 200

ggggctgcta cccaccagca tcctccaaag cactgaacgc ccggcccagg 250

tgaagaaaaga accgaaaaag aagaaacaac agttgtctgt ttgcaacaag 300

ctttgctatg cacttgggg agccccctac caggtgacgg gctgtgcct 350

gggtttcttc cttagatct acctatttga tgtggctcag gtgggcctt 400

tctctgcctc catcatcctg tttgtgggcc gagcctggga tgccatcaca 450

gacccccctgg tgggcctctg catcagcaaa tccccctggaa cctgcctggg 500

tcgccttatg ccctggatca tcttctccac gcccctggcc gtcattgcct 550

acttcctcat ctgggtcg cccgacttcc cacacggcca gacctattgg 600

tacctgctt tctattgcct ctgttcaaaca atggcacgt gtttccatgt 650

tccctactcg gtcctcacca tgttcatcag caaccgagca gactgagcgg 700

gattctgcca ccgcctatcg gatgactgtg gaagtgcgtt gcacagtgt 750

gggcacggcg atccagggac aaatcggtgg ccaagcagac acgccttgtt 800

tccaggactt caatacgctt acagtagctt cacaaggcgc caaccataca 850

catggcacca cttcacacag ggaaacgcaa aaggcatacc tgctggcagc 900

gggggtcatt gtctgtatct atataatctg tgctgtcatc ctgatcctgg 950

gcgtgcggga gcagagagaa ccctatgaag cccagcagtc tgagccaatc 1000

gcctacttcc ggggcctacg gctggtcatg agccacggcc catacatcaa 1050

acttattact ggcttcctt tcacctcctt ggcttcatg ctggtgagg 1100

ggaactttgt ctgtttgc acctacacct tggcctccg caatgaattc 1150

cagaatctac tcctggccat catgctctcg gccacttaa ccattccat 1200

DRAFT PROTEIN

ctggcagtgg ttcttgaccc gggttggcaa gaagacagct gtatatgtt 1250
ggatctcatc agcagtgcac tttctcatct tggtggccct catggagagt 1300
aacctcatca ttacatatgc ggttagctgtg gcagctggca tcagtgtggc 1350
agctgccttc ttactaccct ggtccatgct gcctgatgtc attgacgact 1400
tccatctgaa gcagccccac ttccatggaa ccgagccat cttcttctcc 1450
ttctatgtct tcttcaccaa gtttgcctct ggagtgtcac tggcatttc 1500
taccctcagt ctggactttg cagggtacca gaccgtggc tgctcgacgc 1550
cggaacgtgt caagttaca ctgaacatgc tcgtgaccat ggctccata 1600
gttctcatcc tgctggccct gctgctttc aaaatgtacc ccattgatga 1650
ggagaggcgg cggcagaata agaaggccct gcaggcactg agggacgagg 1700
ccagcagctc tggctgctca gaaacagact ccacagagct ggctagcatc 1750
ctctagggcc cgccacgttg cccgaagcca ccatgcagaa ggccacagaa 1800
gggatcagga cctgtctgcc ggcttgctga gcagctggac tgcaggtgct 1850
aggaagggaa ctgaagactc aaggaggtgg cccaggacac ttgctgtgct 1900
caactgtgggg ccggctgctc tgtggcctcc tgcctcccct ctgcctgcct 1950
gtggggccaa gccctgggc tgccactgtg aatatgccaa ggactgatcg 2000
ggcctagccc ggaacactaa tgtagaaacc tttttttac agagccta 2050
taataactta atgactgtgt acatagcaat gtgtgttat gtatatgtct 2100
gtgagctatt aatgttatta atttcataa aagctggaaa gc 2142

<210> 20
<211> 458
<212> PRT
<213> Homo sapiens

<400> 20
Met Trp Leu Arg Trp Ala Leu Ser Leu Pro Pro Ser Ser Cys Leu
1 5 10 15
Trp Ala Glu Pro Gly Met Pro Ser Gln Thr Pro Trp Trp Ala Ser
20 25 30
Ala Ser Ala Asn Pro Pro Gly Pro Ala Trp Val Ala Leu Cys Pro
35 40 45
Gly Ser Ser Ser Pro Arg Pro Trp Pro Ser Leu Pro Thr Ser Ser
50 55 60
Ser Gly Ser Cys Pro Thr Ser His Thr Ala Arg Pro Ile Gly Thr
65 70 75

Cys Phe Ser Ile Ala Ser Leu Lys Gln Trp Ser Arg Val Ser Met
 80 85 90

 Phe Pro Thr Arg Leu Ser Pro Cys Ser Ser Ala Thr Glu Gln Thr
 95 100 105

 Glu Arg Asp Ser Ala Thr Ala Tyr Arg Met Thr Val Glu Val Leu
 110 115 120

 Gly Thr Val Leu Gly Thr Ala Ile Gln Gly Gln Ile Val Gly Gln
 125 130 135

 Ala Asp Thr Pro Cys Phe Gln Asp Phe Asn Ser Ser Thr Val Ala
 140 145 150

 Ser Gln Ser Ala Asn His Thr His Gly Thr Thr Ser His Arg Glu
 155 160 165

 Thr Gln Lys Ala Tyr Leu Leu Ala Ala Gly Val Ile Val Cys Ile
 170 175 180

 Tyr Ile Ile Cys Ala Val Ile Leu Ile Leu Gly Val Arg Glu Gln
 185 190 195

 Arg Glu Pro Tyr Glu Ala Gln Ser Glu Pro Ile Ala Tyr Phe
 200 205 210

 Arg Gly Leu Arg Leu Val Met Ser His Gly Pro Tyr Ile Lys Leu
 215 220 225

 Ile Thr Gly Phe Leu Phe Thr Ser Leu Ala Phe Met Leu Val Glu
 230 235 240

 Gly Asn Phe Val Leu Phe Cys Thr Tyr Thr Leu Gly Phe Arg Asn
 245 250 255

 Glu Phe Gln Asn Leu Leu Ala Ile Met Leu Ser Ala Thr Leu
 260 265 270

 Thr Ile Pro Ile Trp Gln Trp Phe Leu Thr Arg Phe Gly Lys Lys
 275 280 285

 Thr Ala Val Tyr Val Gly Ile Ser Ser Ala Val Pro Phe Leu Ile
 290 295 300

 Leu Val Ala Leu Met Glu Ser Asn Leu Ile Ile Thr Tyr Ala Val
 305 310 315

 Ala Val Ala Ala Gly Ile Ser Val Ala Ala Ala Phe Leu Leu Pro
 320 325 330

 Trp Ser Met Leu Pro Asp Val Ile Asp Asp Phe His Leu Lys Gln
 335 340 345

 Pro His Phe His Gly Thr Glu Pro Ile Phe Phe Ser Phe Tyr Val
 350 355 360

 Phe Phe Thr Lys Phe Ala Ser Gly Val Ser Leu Gly Ile Ser Thr

365	370	375
Leu Ser Leu Asp Phe Ala Gly Tyr Gln	Thr Arg Gly Cys Ser Gln	
380	385	390
Pro Glu Arg Val Lys Phe Thr Leu Asn Met Leu Val Thr Met Ala		
395	400	405
Pro Ile Val Leu Ile Leu Leu Gly Leu	Leu Phe Lys Met Tyr	
410	415	420
Pro Ile Asp Glu Glu Arg Arg Arg Gln	Asn Lys Lys Ala Leu Gln	
425	430	435
Ala Leu Arg Asp Glu Ala Ser Ser Ser	Gly Cys Ser Glu Thr Asp	
440	445	450
Ser Thr Glu Leu Ala Ser Ile Leu		
455		

<210> 21
<211> 571
<212> DNA
<213> Homo sapiens

<400> 21
ggaaacgca aaaggcatac ctgctggcag cgggggtcat tgtctgtatc 50
tatataatct gtgctgtcat cctgatcctg ggcgtgcggg agcagagaga 100
accctatgaa gcccagcagt ctgagccaat cgccacttgc cggggcctac 150
ggctggtcat gagccacggc ccatacatca aacttattac tggcttcctc 200
ttcacctcct tggcttcat gctggtgag gggactttg tcttgtttg 250
cacctacacc ttgggcttcc gcaatgaatt ccagaatcta ctccctggcca 300
tcatgctctc ggccacttta accattccca tctggcagtg gttcttgacc 350
cggtttggca agaagacagc tgtatatgtt gggatctcat cagcagtgcc 400
atttctcatc ttggtggccc tcatggagag taacctcatc attacatatg 450
cggttagctgt ggcagctggc atcagtgtgg cagctgcctt cttactaccc 500
tggtccatgc tgcctgatgt cattgacgac ttccatctga agcagcccc 550
cttccatgga accgagccca t 571

<210> 22
<211> 1173
<212> DNA
<213> Homo sapiens

<400> 22
ggggcttcgg cgccagcggc cagcgctagt cggtctggta aggattaca 50

aaaggtgcag gtagcag gtctgaagac taacatgg tgaagttgta 100
aaacagaaaa cctgttagaa atgtggtggt ttcagcaagg cctcagttc 150
cttccttcag ccctttaat ttggacatct gctgcttca tattttcata 200
cattactgca gtaacactcc accatataga cccggcttta ccttatatca 250
gtgacactgg tacagtagct ccagaaaaat gcttatttgg ggcaatgcta 300
aatattgcgg cagtttatg cattgctacc atttatgttc gttataagca 350
agttcatgct ctgagtcctg aagagaacgt tatcatcaaa ttaaacaagg 400
ctggccttgt acttggata ctgagttgtt taggacttgc tattgtggca 450
aacttccaga aaacaaccct ttttgcgtca catgtaagtg gagctgtgct 500
taccttttgtt atgggctcat tatatatgtt tgttcagacc atccttcct 550
accaaatttgc gccccaaaatc catggcaaac aagtcttctg gatcagactg 600
ttgttggta tctgggtgtgg agtaagtgc cttagcatgc tgacttgctc 650
atcagtttg cacagtggca attttggac tgatattgaa cagaaactcc 700
attggAACCC cgaggacaaa ggttatgtgc ttcacatgt cactactgca 750
gcagaatggt ctatgtcatt ttcccttctt ggtttttcc tgacttacat 800
tcgtgatttt cagaaaattt cttaacgggt ggaagccaat ttacatggat 850
taaccctcta tgacactgca cttggcccta ttaacaatga acgaacacgg 900
ctactttcca gagatatttgc atgaaaggat aaaatatttc tgtaatgatt 950
atgattctca gggattgggg aaaggttcac agaagttgct tattcttctc 1000
tgaaattttc aaccacttaa tcaaggctga cagtaacact gatgaatgct 1050
gataatcagg aaacatgaaa gaagccattt gatagattat tctaaaggat 1100
atcatcaaga agactattaa aaacacccat gcctatactt ttttatctca 1150
gaaaataaag tcaaaaagact atg 1173

<210> 23
<211> 266
<212> PRT
<213> Homo sapiens

<400> 23
Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu
1 5 10 15
Val Ile Trp Thr Ser Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala
20 25 30

Val Thr Leu His His Ile Asp Pro Ala Leu Pro Tyr Ile Ser Asp
 35 40 45
 Thr Gly Thr Val Ala Pro Glu Lys Cys Leu Phe Gly Ala Met Leu
 50 55 60
 Asn Ile Ala Ala Val Leu Cys Ile Ala Thr Ile Tyr Val Arg Tyr
 65 70 75
 Lys Gln Val His Ala Leu Ser Pro Glu Glu Asn Val Ile Ile Lys
 80 85 90
 Leu Asn Lys Ala Gly Leu Val Leu Gly Ile Leu Ser Cys Leu Gly
 95 100 105
 Leu Ser Ile Val Ala Asn Phe Gln Lys Thr Thr Leu Phe Ala Ala
 110 115 120
 His Val Ser Gly Ala Val Leu Thr Phe Gly Met Gly Ser Leu Tyr
 125 130 135
 Met Phe Val Gln Thr Ile Leu Ser Tyr Gln Met Gln Pro Lys Ile
 140 145 150
 His Gly Lys Gln Val Phe Trp Ile Arg Leu Leu Leu Val Ile Trp
 155 160 165
 Cys Gly Val Ser Ala Leu Ser Met Leu Thr Cys Ser Ser Val Leu
 170 175 180
 His Ser Gly Asn Phe Gly Thr Asp Leu Glu Gln Lys Leu His Trp
 185 190 195
 Asn Pro Glu Asp Lys Gly Tyr Val Leu His Met Ile Thr Thr Ala
 200 205 210
 Ala Glu Trp Ser Met Ser Phe Ser Phe Phe Gly Phe Phe Leu Thr
 215 220 225
 Tyr Ile Arg Asp Phe Gln Lys Ile Ser Leu Arg Val Glu Ala Asn
 230 235 240
 Leu His Gly Leu Thr Leu Tyr Asp Thr Ala Pro Cys Pro Ile Asn
 245 250 255
 Asn Glu Arg Thr Arg Leu Leu Ser Arg Asp Ile
 260 265

<210> 24
 <211> 485
 <212> DNA
 <213> Homo sapiens

<220>
 <221> unsure
 <222> 14, 484
 <223> unknown base

DNA BANK

<400> 24
cggacgctt ggcngcgcca gcggccagcg ctagtcggc tggtaagtgc 50
ctgatgccga gttccgtctc tcgggtcttt tcctggtccc aggcaaagcg 100
gagcggagat cctcaaacgg octagtgtt cgcgttccg gagaaaatca 150
gcggtcta at taattcctct ggtttggta agcagttacc aagaatottc 200
aaccctttcc cacaaaagct aattgagttt acgttctgt tgagtacacg 250
ttcctgttga tttacaaaag gtgcaggat gagcaggatc gaagactaac 300
attttgtgaa gttgtaaaac agaaaacctg ttagaaatgt ggtggttca 350
gcaaggcctc agtttccttc cttagccct tgtaatttg acatctgctg 400
cttcataatt ttcatacatt actgcagtaa cactccacca tatagacccg 450
gctttacatt atatcagtga cactggtaca gtanc 485

<210> 25
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
acctgttaga aatgtggtgg tttcagcaag gcctcagttt 40

<210> 26
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
ggagatagct gctatgggtt cttaggcac aacttaacat ggaaag 46

<210> 27
<211> 1399
<212> DNA
<213> Homo sapiens

<400> 27
ccccacgcgc cggccgcgc tgcgtccgg agtgcagtg agcttctcg 50
ctgccccgcg ggccgggggtg cggagccgac atgcgcgcgc ttctcgcc 100
ccttctggc ttcgcggct gcaccttcgc cttgtacttg ctgtcgcacgc 150
gactgccccg cggccggaga ctgggctcca ccgaggaggc tggaggcagg 200
tcgctgtgg tccctccga cctggcagag ctgcgggagc tctctgaggt 250

DRAFT

ccttcgagag taccggaagg agcaccaggc ctacgtgttc ctgctttct 300
gcggcgccata cctctacaaa cagggcttg ccatccccgg ctccagcttc 350
ctgaatgttt tagctggtgc cttgtttggg ccatggctgg ggcttctgct 400
gtgctgtgtg ttgacctcggtggccac atgctgctac ctgctctcca 450
gtatTTTgg caaacagttg gtgggtgtct actttcctga taaagtggcc 500
ctgctgcaga gaaagggtgga ggagaacaga aacagcttgtt ttttttctt 550
attgttttg agactttcc ccatgacacc aaactggttc ttgaacctct 600
cgcccccaat tctgaacatt cccatcggtgc agttttctt ctcagttctt 650
atcggtttga tcccatataa tttcatctgt gtgcagacag ggtccatcct 700
gtcaacccta acctctctgg atgctctttt ctcctggac actgtctta 750
agctgttggc cattgccatg gtggcattaa ttcctggAAC cctcattaaa 800
aaatttagtc agaaacatct gcaattgaat gaaacaagta ctgctaata 850
tatacacagt agaaaagaca catgatctgg atttctgtt tgccacatcc 900
ctggactcag ttgcttattt gtgtaatgga tgtggtcctc taaagcccct 950
cattgtttt gattgccttc tataaggat gtggacactg tgcatcaatg 1000
tgcagtgtct tttcagaaag gacactctgc tcttgaaggt gtattacatc 1050
aggTTTcaa accagccctg gtgttagcaga cactgcaaca gatgcctcct 1100
agaaaatgct gtttgtggcc gggcgcggtg gtcacgcct gtaatcccag 1150
cactttggga ggccgaggcc ggtgattcac aaggtcagga gttcaagacc 1200
agcctggcca agatggtaaa atcctgtctc taataaaaat acaaaaatta 1250
gccaggcggtg gtggcaggca cctgtaatcc cagctactcg ggaggctgag 1300
gcaggagaat tgcttgaacc aaggtggcag aggttgcagt aagccaagat 1350
cacaccactg cactccagcc tgggtgatag agttagacac tgccttgac 1399

<210> 28

<211> 264

<212> PRT

<213> Homo sapiens

<400> 28

Met	Arg	Pro	Leu	Leu	Gly	Leu	Leu	Leu	Val	Phe	Ala	Gly	Cys	Thr
1									10					15

Phe	Ala	Leu	Tyr	Leu	Leu	Ser	Thr	Arg	Leu	Pro	Arg	Gly	Arg	Arg
									20					30

Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro
 35 40 45
 Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu
 50 55 60
 Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly
 65 70 75
 Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe
 80 85 90
 Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu
 95 100 105
 Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr
 110 115 120
 Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe
 125 130 135
 Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg
 140 145 150
 Asn Ser Leu Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met
 155 160 165
 Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile
 170 175 180
 Pro Ile Val Gln Phe Phe Ser Val Leu Ile Gly Leu Ile Pro
 185 190 195
 Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu
 200 205 210
 Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu
 215 220 225
 Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys
 230 235 240
 Lys Phe Ser Gln Lys His Leu Gln Leu Asn Glu Thr Ser Thr Ala
 245 250 255
 Asn His Ile His Ser Arg Lys Asp Thr
 260

<210> 29
 <211> 1292
 <212> DNA
 <213> Homo sapiens

<400> 29
 ccgaggcggg aggagccga gggggcgca gccccgcatg aatcatgtt 50
 gtcaatcatt ttccagttct cagccgctca gttgtatca agggacacgt 100

ggtttccgaa ctgccagctc agaataggaa aataacttgg gatttatat 150
tggaagacat ggatcttgct gccaacgaga tcagcattta tgacaaactt 200
tcagagactg ttgatttggg gagacagacc ggccatcagt gtggcatgtc 250
agagaaggca attaaaaat ttatcagaca gctgctggaa aagaatgaac 300
ctcagagacc ccccccgca gatcctctcc ttatagttgt gtataagggtt 350
ctcgcaacct tgggattaat cttgctcaact gcctactttg tgattcaacc 400
tttcagccca ttagcacctg agccagtgt ttctggagct cacacctggc 450
gctcactcat ccatcacatt aggctgatgt ccttgcctat tgccaagaag 500
tacatgtcag aaaataaggg agttcctctg catgggggtg atgaagacag 550
accctttcca gactttgacc cctggtggac aaacgactgt gagcagaatg 600
agtcagagcc cattcctgcc aactgcactg gctgtgccta gaaacacctg 650
aaggtgatgc tccttggaaa cgcccaagg aaatttggaa ggctccatcc 700
actggtgatc aagacggaa agccctgtt ggaggaagag attcagcatt 750
ttttgtgcca gtaccctgag gcgacagaag gcctctctga agggttttc 800
gccaagtggt ggcgctgctt tcctgagcgg tgggtccat ttcccttatcc 850
atggaggaga cctctgaaca gatcacaaat gttacgtgag cttttcctg 900
tttcactca cctgccattt ccaaaagatg ccttttaaa caagtgcctcc 950
tttcttcacc cagaacctgt tgtggggagt aagatgcata agatgcctga 1000
cctatattatc attggcagcg gtgaggccat gttgcagctc atccctccct 1050
tccagtgcgg aagacattgt cagtctgtgg ccatgccaat agagccaggg 1100
gatatcggt atgtcgacac cacccactgg aaggctacg ttatagccag 1150
aggggtccag ctttggta tctgcgttgg aaccgcttc tcagaactgt 1200
aggaaataga actgtgcaca ggaacagtt ccagagccga aaaccaggtt 1250
gaaaggggaa aaataaaaac aaaaacgatg aaactgc当地 1292

<210> 30
<211> 347
<212> PRT
<213> Homo sapiens

<400> 30
Met Asp Leu Ala Ala Asn Glu Ile Ser Ile Tyr Asp Lys Leu Ser
1 5 10 15
Glu Thr Val Asp Leu Val Arg Gln Thr Gly His Gln Cys Gly Met

20	25	30
Ser Glu Lys Ala Ile Glu Lys Phe Ile Arg Gln Leu Leu Glu Lys		
35	40	45
Asn Glu Pro Gln Arg Pro Pro Pro Gln Tyr Pro Leu Leu Ile Val		
50	55	60
Val Tyr Lys Val Leu Ala Thr Leu Gly Leu Ile Leu Leu Thr Ala		
65	70	75
Tyr Phe Val Ile Gln Pro Phe Ser Pro Leu Ala Pro Glu Pro Val		
80	85	90
Leu Ser Gly Ala His Thr Trp Arg Ser Leu Ile His His Ile Arg		
95	100	105
Leu Met Ser Leu Pro Ile Ala Lys Lys Tyr Met Ser Glu Asn Lys		
110	115	120
Gly Val Pro Leu His Gly Gly Asp Glu Asp Arg Pro Phe Pro Asp		
125	130	135
Phe Asp Pro Trp Trp Thr Asn Asp Cys Glu Gln Asn Glu Ser Glu		
140	145	150
Pro Ile Pro Ala Asn Cys Thr Gly Cys Ala Gln Lys His Leu Lys		
155	160	165
Val Met Leu Leu Glu Asp Ala Pro Arg Lys Phe Glu Arg Leu His		
170	175	180
Pro Leu Val Ile Lys Thr Gly Lys Pro Leu Leu Glu Glu Glu Ile		
185	190	195
Gln His Phe Leu Cys Gln Tyr Pro Glu Ala Thr Glu Gly Phe Ser		
200	205	210
Glu Gly Phe Phe Ala Lys Trp Trp Arg Cys Phe Pro Glu Arg Trp		
215	220	225
Phe Pro Phe Pro Tyr Pro Trp Arg Arg Pro Leu Asn Arg Ser Gln		
230	235	240
Met Leu Arg Glu Leu Phe Pro Val Phe Thr His Leu Pro Phe Pro		
245	250	255
Lys Asp Ala Ser Leu Asn Lys Cys Ser Phe Leu His Pro Glu Pro		
260	265	270
Val Val Gly Ser Lys Met His Lys Met Pro Asp Leu Phe Ile Ile		
275	280	285
Gly Ser Gly Glu Ala Met Leu Gln Leu Ile Pro Pro Phe Gln Cys		
290	295	300
Arg Arg His Cys Gln Ser Val Ala Met Pro Ile Glu Pro Gly Asp		
305	310	315

Ile Gly Tyr Val Asp Thr Thr His Trp Lys Val Tyr Val Ile Ala
320 325 330

Arg Gly Val Gln Pro Leu Val Ile Cys Asp Gly Thr Ala Phe Ser
335 340 345

Glu Leu

<210> 31
<211> 478
<212> DNA
<213> Homo sapiens

<400> 31
ccacgggtgc cgttcttcgc cggcgccag ctgtccccga ggcgggagga 50
gcccggagggg cgcgagcccc gcatgaatca ttgttagtcaa tcattttcca 100
gttctcagcc gttcagttgt gatcaaggga cacgtggttt ccgaactgcc 150
agctcagaat aggaaaataa cttgggattt tatattggaa gacatggatc 200
ttgctgccaa cgagatcagc atttatgaca aactttcaga gactgttgat 250
ttggtgagac agaccggcca tcagtgtggc atgtcagaga aggcaattga 300
aaaatttatac agacagctgc tggaaaagaa tgaacctcag agacccccc 350
cgcagtatcc tctccttata gttgtgtata aggttctcgc aaccttggga 400
ttaatcttgc tcactgccta ctttgtgatt caaccttca gcccattagc 450
acctgagcca gtgcttggc gagctcac 478

<210> 32
<211> 3531
<212> DNA
<213> Homo sapiens

<400> 32
cccacgcgtc cgcccacgcg tccggctgaa caccctttct ttggagtcag 50
ccactgatga ggcagggtcc ccacttgcag ctgcagcagc tgcagcagct 100
gcagagcgt gtcctggct ggtgccactg gtgcgcacgc tgctagaccg 150
tgcctatgag ccgctggggc tgcagtgggg actgccctcc ctgccaccca 200
ccaatggcag ccccaccttc tttgaagact tccaggctt ttgtccaca 250
cccgaatggc gccacttcat cgacaaacag gtacagccaa ccatgtccca 300
gttcgaaatg gacacgtatg ctaagagcca cgacctttag tcaggtttct 350
ggaatgcctg ctatgacatg cttatgagca gtgggcagcg gcccagtg 400
gagcgcgcggc agagtcgtcg ggccttccag gagctggtgc tggAACCTGC 450

gcagaggcgg gcgcgcctgg aggggctacg ctacacggca gtgctgaagc 500
agcaggcaac gcagcactcc atggccctgc tgcaactgggg ggcgctgtgg 550
cgccagctcg ccagccccatg tggggcctgg ggcgctgaggg acactcccat 600
cccccgctgg aaactgtcca ggcggagac atattcacgc atgcgtctga 650
agctggtgcc caaccatcac ttgcaccctc acctggaagc cagcgctctc 700
cgagacaatc tgggtgaggt tcccctgaca cccaccgagg aggccctact 750
gcctctggca gtgaccaaag aggccaaagt gagcacccca cccgagttgc 800
tgcaggagga ccagctcgcc gaggacgagc tggctgagct ggagaccccg 850
atggaggcag cagaactgga tgagcagcgt gagaagctgg tgctgtcgcc 900
cgagtgccag ctggtgacgg tagtggccgt ggtcccaggg ctgctggagg 950
tcaccacaca gaatgtatac ttctacgatg gcagcactga gcgcgtggaa 1000
accgaggagg gcatcggtta tgattccgg cgcccaactgg cccagctgcg 1050
tgaggtccac ctgcggcggt tcaacctgcg ccgttcagca cttgagctct 1100
tcttatcga tcaggccaac tacttcctca acttcccatg caaggtgggc 1150
acgaccccaag tctcatctcc tagccagact ccgagacccc agcctggccc 1200
catcccaccc catacccaagg tacggaacca ggtgtactcg tggctcctgc 1250
gcctacggcc cccctctcaa ggctacctaa gcagccgctc ccccccaggag 1300
atgctgcgtg cctcaggcct tacccagaaa tgggtacagc gtgagatatac 1350
caacttcgag tacttgatgc aactcaacac cattgcgggg cggacctaca 1400
atgacctgtc tcagtagccct gtgttccct gggccctgca ggactacgtg 1450
tcccccaaccc tggacctcag caacccagcc gtcttccggg acctgtctaa 1500
gccccatcggt gtggtaacc ccaagcatgc ccagctcggt agggagaagt 1550
atgaaagctt tgaggaccca gcagggacca ttgacaagtt ccactatggc 1600
acccactact ccaatgcagc aggcgtgtatg cactaccta tccgcgtgga 1650
gcccttcacc tccctgcacg tccagctgca aagtggccgc tttgactgct 1700
ccgacccggca gttccactcg gtggcggcag cctggcaggc acgcctggag 1750
agccctgcgg atgtgaagga gctcatcccg gaattcttct actttcctga 1800
cttcctggag aaccagaacg gttttgacct gggctgtctc cagctgacca 1850
acgagaaggt aggcgatgtg gtgctacccc cgtggccag ctctcctgag 1900

gacttcatcc agcagcacccg ccaggctctg gagtcggagt atgtgtctgc 1950
acacctacac gagtggatcg acctcatctt tggctacaag cagcgggggc 2000
cagccgccga ggaggccctc aatgtcttct attactgcac ctatgagggg 2050
gctgttagacc tggaccatgt gacagatgag cgaaaacgga aggctctgga 2100
gggcattatac agcaactttg ggcagactcc ctgtcagctg ctgaaggagc 2150
cacatccaac tcggctctca gctgaggaag cagcccatcg cttgcacgc 2200
ctggacacta actcacctag catcttccag cacctggacg aactcaaggc 2250
attcttcgca gaggtgactg tgagtgccag tggctgctg ggcacccaca 2300
gctggttgcc ctatgaccgc aacataagca actacttcag cttagcataaa 2350
gaccccacca tggcagcca caagacgcag cgactgctga gtggcccttg 2400
ggtgcagggc agtgggtgtga gtggacaagc actggcagtg gccccggatg 2450
gaaagctgct attcagcggt ggccactggg atggcagcct gcgggtgact 2500
gcactacccc gtggcaagct gttgagccag ctcagctgcc accttgcgt 2550
agtaacctgc cttgcactgg acacctgtgg catctacctc atctcaggct 2600
cccgacac cacgtgcatg gtgtggccgc tcctgcatca gggtgtctg 2650
tcagtaggcc tggcacaaaa gcctgtgcag gtcctgtatg ggcattgggc 2700
tgcagtgagc tgtgtggcca tcagcactga acttgacatg gctgtgtctg 2750
gatctgagga tggactgtg atcatacaca ctgtacgccc cggacagttt 2800
gtagcggcac tacggctct ggggccaca ttccctggac ctatttcca 2850
cctggcattg gggccgaag gccagattgt ggtacagagc tcagcgtggg 2900
aacgtcctgg ggcccaggc acctactcct tgcacctgta ttcagtcaat 2950
ggaaagttgc gggcttcaact gcccctggca gagcagccta cagccctgac 3000
ggtgacagag gactttgtgt tgctggcac cggccaggc gcctgcaca 3050
tcctccaact aaacacactg ctcccgccg cgcctccctt gcccattaaag 3100
gtggccatcc gcagcgtggc cgtgaccaag gagcgcagcc acgtgctgg 3150
gggcctggag gatggcaagc tcacgtggc ggtcgccggg cagccctctg 3200
aggtgcgcag cagccaggcc gcgcggaaagc tggcggcgc ctcgcggcgc 3250
atctcccagg tgtcctcgaa agagacggaa tacaacccta ctgaggcgcg 3300
ctgaacctgg ccagtccggc tgctcggcc ccgcggggg caggcctggc 3350

ccgggaggcc ccgcccagaa gtcggcggga acaccccgaa gtgggcagcc 3400
caggggtga gcggggccca ccctgccca ctcaggatt ggccggcgat 3450
gttaccctt cagggattgg cgggcgaaag tcccgccct cgccggctga 3500
ggggccgccc tgagggccag cactggcgta t 3531

<210> 33
<211> 1003
<212> PRT
<213> Homo sapiens

<400> 33
Met Ser Gln Phe Glu Met Asp Thr Tyr Ala Lys Ser His Asp Leu
1 5 10 15
Met Ser Gly Phe Trp Asn Ala Cys Tyr Asp Met Leu Met Ser Ser
20 25 30
Gly Gln Arg Arg Gln Trp Glu Arg Ala Gln Ser Arg Arg Ala Phe
35 40 45
Gln Glu Leu Val Leu Glu Pro Ala Gln Arg Arg Ala Arg Leu Glu
50 55 60
Gly Leu Arg Tyr Thr Ala Val Leu Lys Gln Gln Ala Thr Gln His
65 70 75
Ser Met Ala Leu Leu His Trp Gly Ala Leu Trp Arg Gln Leu Ala
80 85 90
Ser Pro Cys Gly Ala Trp Ala Leu Arg Asp Thr Pro Ile Pro Arg
95 100 105
Trp Lys Leu Ser Ser Ala Glu Thr Tyr Ser Arg Met Arg Leu Lys.
110 115 120
Leu Val Pro Asn His His Phe Asp Pro His Leu Glu Ala Ser Ala
125 130 135
Leu Arg Asp Asn Leu Gly Glu Val Pro Leu Thr Pro Thr Glu Glu
140 145 150
Ala Ser Leu Pro Leu Ala Val Thr Lys Glu Ala Lys Val Ser Thr
155 160 165
Pro Pro Glu Leu Leu Gln Glu Asp Gln Leu Gly Glu Asp Glu Leu
170 175 180
Ala Glu Leu Glu Thr Pro Met Glu Ala Ala Glu Leu Asp Glu Gln
185 190 195
Arg Glu Lys Leu Val Leu Ser Ala Glu Cys Gln Leu Val Thr Val
200 205 210
Val Ala Val Val Pro Gly Leu Leu Glu Val Thr Thr Gln Asn Val
215 220 225

Tyr Phe Tyr Asp Gly Ser Thr Glu Arg Val Glu Thr Glu Glu Gly
 230 235 240
 Ile Gly Tyr Asp Phe Arg Arg Pro Leu Ala Gln Leu Arg Glu Val
 245 250 255
 His Leu Arg Arg Phe Asn Leu Arg Arg Ser Ala Leu Glu Leu Phe
 260 265 270
 Phe Ile Asp Gln Ala Asn Tyr Phe Leu Asn Phe Pro Cys Lys Val
 275 280 285
 Gly Thr Thr Pro Val Ser Ser Pro Ser Gln Thr Pro Arg Pro Gln
 290 295 300
 Pro Gly Pro Ile Pro Pro His Thr Gln Val Arg Asn Gln Val Tyr
 305 310 315
 Ser Trp Leu Leu Arg Leu Arg Pro Pro Ser Gln Gly Tyr Leu Ser
 320 325 330
 Ser Arg Ser Pro Gln Glu Met Leu Arg Ala Ser Gly Leu Thr Gln
 335 340 345
 Lys Trp Val Gln Arg Glu Ile Ser Asn Phe Glu Tyr Leu Met Gln
 350 355 360
 Leu Asn Thr Ile Ala Gly Arg Thr Tyr Asn Asp Leu Ser Gln Tyr
 365 370 375
 Pro Val Phe Pro Trp Val Leu Gln Asp Tyr Val Ser Pro Thr Leu
 380 385 390
 Asp Leu Ser Asn Pro Ala Val Phe Arg Asp Leu Ser Lys Pro Ile
 395 400 405
 Gly Val Val Asn Pro Lys His Ala Gln Leu Val Arg Glu Lys Tyr
 410 415 420
 Glu Ser Phe Glu Asp Pro Ala Gly Thr Ile Asp Lys Phe His Tyr
 425 430 435
 Gly Thr His Tyr Ser Asn Ala Ala Gly Val Met His Tyr Leu Ile
 440 445 450
 Arg Val Glu Pro Phe Thr Ser Leu His Val Gln Leu Gln Ser Gly
 455 460 465
 Arg Phe Asp Cys Ser Asp Arg Gln Phe His Ser Val Ala Ala Ala
 470 475 480
 Trp Gln Ala Arg Leu Glu Ser Pro Ala Asp Val Lys Glu Leu Ile
 485 490 495
 Pro Glu Phe Phe Tyr Phe Pro Asp Phe Leu Glu Asn Gln Asn Gly
 500 505 510
 Phe Asp Leu Gly Cys Leu Gln Leu Thr Asn Glu Lys Val Gly Asp

515	520	525
Val Val Leu Pro Pro Trp Ala Ser Ser	Pro Glu Asp Phe Ile Gln	
530	535	540
Gln His Arg Gln Ala Leu Glu Ser Glu	Tyr Val Ser Ala His Leu	
545	550	555
His Glu Trp Ile Asp Leu Ile Phe Gly	Tyr Lys Gln Arg Gly Pro	
560	565	570
Ala Ala Glu Glu Ala Leu Asn Val Phe	Tyr Tyr Cys Thr Tyr Glu	
575	580	585
Gly Ala Val Asp Leu Asp His Val Thr	Asp Glu Arg Glu Arg Lys	
590	595	600
Ala Leu Glu Gly Ile Ile Ser Asn Phe	Gly Gln Thr Pro Cys Gln	
605	610	615
Leu Leu Lys Glu Pro His Pro Thr Arg	Leu Ser Ala Glu Glu Ala	
620	625	630
Ala His Arg Leu Ala Arg Leu Asp Thr	Asn Ser Pro Ser Ile Phe	
635	640	645
Gln His Leu Asp Glu Leu Lys Ala Phe	Phe Ala Glu Val Thr Val	
650	655	660
Ser Ala Ser Gly Leu Leu Gly Thr His	Ser Trp Leu Pro Tyr Asp	
665	670	675
Arg Asn Ile Ser Asn Tyr Phe Ser Phe	Ser Lys Asp Pro Thr Met	
680	685	690
Gly Ser His Lys Thr Gln Arg Leu Leu	Ser Gly Pro Trp Val Pro	
695	700	705
Gly Ser Gly Val Ser Gly Gln Ala Leu	Ala Val Ala Pro Asp Gly	
710	715	720
Lys Leu Leu Phe Ser Gly Gly His Trp	Asp Gly Ser Leu Arg Val	
725	730	735
Thr Ala Leu Pro Arg Gly Lys Leu Leu	Ser Gln Leu Ser Cys His	
740	745	750
Leu Asp Val Val Thr Cys Leu Ala Leu	Asp Thr Cys Gly Ile Tyr	
755	760	765
Leu Ile Ser Gly Ser Arg Asp Thr Thr	Cys Met Val Trp Arg Leu	
770	775	780
Leu His Gln Gly Gly Leu Ser Val Gly	Leu Ala Pro Lys Pro Val	
785	790	795
Gln Val Leu Tyr Gly His Gly Ala Ala	Val Ser Cys Val Ala Ile	
800	805	810

Ser Thr Glu Leu Asp Met Ala Val Ser Gly Ser Glu Asp Gly Thr
 815 820 825
 Val Ile Ile His Thr Val Arg Arg Gly Gln Phe Val Ala Ala Leu
 830 835 840
 Arg Pro Leu Gly Ala Thr Phe Pro Gly Pro Ile Phe His Leu Ala
 845 850 855
 Leu Gly Ser Glu Gly Gln Ile Val Val Gln Ser Ser Ala Trp Glu
 860 865 870
 Arg Pro Gly Ala Gln Val Thr Tyr Ser Leu His Leu Tyr Ser Val
 875 880 885
 Asn Gly Lys Leu Arg Ala Ser Leu Pro Leu Ala Glu Gln Pro Thr
 890 895 900
 Ala Leu Thr Val Thr Glu Asp Phe Val Leu Leu Gly Thr Ala Gln
 905 910 915
 Cys Ala Leu His Ile Leu Gln Leu Asn Thr Leu Leu Pro Ala Ala
 920 925 930
 Pro Pro Leu Pro Met Lys Val Ala Ile Arg Ser Val Ala Val Thr
 935 940 945
 Lys Glu Arg Ser His Val Leu Val Gly Leu Glu Asp Gly Lys Leu
 950 955 960
 Ile Val Val Val Ala Gly Gln Pro Ser Glu Val Arg Ser Ser Gln
 965 970 975
 Phe Ala Arg Lys Leu Trp Arg Ser Ser Arg Arg Ile Ser Gln Val
 980 985 990
 Ser Ser Gly Glu Thr Glu Tyr Asn Pro Thr Glu Ala Arg
 995 1000

<210> 34

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 34

tgactgcact accccgtggc aagctgttga gccagctcag ctg 43

<210> 35

<211> 1395

<212> DNA

<213> Homo sapiens

<400> 35

cggacgcgtg ggcggacgcg tgggggctgt gagaaagtgc caataaatac 50

生物信息学实验

atcatgcaac cccacggccc accttgtgaa ctccctcgta ccagggctga 100
tgtgcgtctt ccagggctac tcatccaaag gcctaattcca acgttctgtc 150
ttcaatctgc aaatctatgg gtcctgggg ctcttctgga cccttaactg 200
ggtaactggcc ctgggccaat gcgtcctcg tggagccttt gcctccttct 250
actgggcctt ccacaagccc caggacatcc ctaccttccc cttaatctct 300
gccttcatcc gcacactccg ttaccacact gggtcattgg catttggagc 350
cctcatcctg acccttgtgc agatagcccc ggtcatcttg gagtatattg 400
accacaagct cagaggagtg cagaaccctg tagcccgctg catcatgtgc 450
tgtttcaagt gtcgcctctg gtgtctggaa aaatttatca agttcctaaa 500
ccgcaatgca tacatcatga tcgccatcta cgggaagaat ttctgtgtct 550
cagccaaaaa tgcgttcatg ctactcatgc gaaacattgt cagggtggtc 600
gtcctggaca aagtacaga cctgctgctg ttctttggga agctgctggt 650
ggtcggaggc gtgggggtcc tgtccttctt tttttctcc ggtcgcatcc 700
cggggctggg taaagacttt aagagcccc acctaacta ttactggctg 750
cccatcatga cctccatcct gggggcctat gtcatcgcca gcggcttctt 800
cagcgtttc ggcatgtgtg tggacacgct cttcctctgc ttcttggaaag 850
acctggagcg gaacaacggc tccctggacc ggcctacta catgtccaag 900
agcattctaa agattctggg caagaagaac gagggcccc cggacaacaa 950
gaagaggaag aagtgacagc tccggccctg atccaggact gcacccacc 1000
cccaccgtcc agccatccaa cctcaactcg cttacaggt ctccattttg 1050
tggtaaaaaaa aggttttagg ccaggcgccg tggctcacgc ctgtaatcca 1100
acactttgag aggctgagggc gggcggatca cctgagtcag gagttcgaga 1150
ccagcctggc caacatggtg aaacctccgt ctctattaaa aataaaaaaa 1200
ttagccgaga gtggtggcat gcacctgtca tcccagctac tcgggaggct 1250
gagggcaggag aatcgcttga acccgggagg cagaggttgc agtgagccga 1300
gatcgcgcca ctgcactcca acctgggtga cagactctgt ctccaaaaca 1350
aaacaaacaa acaaaaagat tttattaaag atattttgtt aactc 1395

<210> 36
<211> 321
<212> PRT
<213> Homo sapiens

<400> 36
 Arg Thr Arg Gly Arg Thr Arg Gly Gly Cys Glu Lys Val Pro Ile
 1 5 10 15
 Asn Thr Ser Cys Asn Pro Thr Ala His Leu Val Asn Ser Ser Cys
 20 25 30
 Pro Gly Leu Met Cys Val Phe Gln Gly Tyr Ser Ser Lys Gly Leu
 35 40 45
 Ile Gln Arg Ser Val Phe Asn Leu Gln Ile Tyr Gly Val Leu Gly
 50 55 60
 Leu Phe Trp Thr Leu Asn Trp Val Leu Ala Leu Gly Gln Cys Val
 65 70 75
 Leu Ala Gly Ala Phe Ala Ser Phe Tyr Trp Ala Phe His Lys Pro
 80 85 90
 Gln Asp Ile Pro Thr Phe Pro Leu Ile Ser Ala Phe Ile Arg Thr
 95 100 105
 Leu Arg Tyr His Thr Gly Ser Leu Ala Phe Gly Ala Leu Ile Leu
 110 115 120
 Thr Leu Val Gln Ile Ala Arg Val Ile Leu Glu Tyr Ile Asp His
 125 130 135
 Lys Leu Arg Gly Val Gln Asn Pro Val Ala Arg Cys Ile Met Cys
 140 145 150
 Cys Phe Lys Cys Cys Leu Trp Cys Leu Glu Lys Phe Ile Lys Phe
 155 160 165
 Leu Asn Arg Asn Ala Tyr Ile Met Ile Ala Ile Tyr Gly Lys Asn
 170 175 180
 Phe Cys Val Ser Ala Lys Asn Ala Phe Met Leu Leu Met Arg Asn
 185 190 195
 Ile Val Arg Val Val Val Leu Asp Lys Val Thr Asp Leu Leu Leu
 200 205 210
 Phe Phe Gly Lys Leu Leu Val Val Gly Gly Val Gly Val Leu Ser
 215 220 225
 Phe Phe Phe Ser Gly Arg Ile Pro Gly Leu Gly Lys Asp Phe
 230 235 240
 Lys Ser Pro His Leu Asn Tyr Tyr Trp Leu Pro Ile Met Thr Ser
 245 250 255
 Ile Leu Gly Ala Tyr Val Ile Ala Ser Gly Phe Phe Ser Val Phe
 260 265 270
 Gly Met Cys Val Asp Thr Leu Phe Leu Cys Phe Leu Glu Asp Leu
 275 280 285

Glu Arg Asn Asn Gly Ser Leu Asp Arg Pro Tyr Tyr Met Ser Lys
290 295 300
Ser Leu Leu Lys Ile Leu Gly Lys Lys Asn Glu Ala Pro Pro Asp
305 310 315
Asn Lys Lys Arg Lys Lys
320

<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 37
tcgtgcccag gggctgtatgt gc 22

<210> 38
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 38
gtctttaccc agccccggga tgcg 24

<210> 39
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 39
ggcctaatacc aacgttctgt cttcaatctg caaatctatg gggtcctggg 50

<210> 40
<211> 1365
<212> DNA
<213> Homo sapiens

<400> 40
gagtcttgac cgccgccggg ctcttggtag ctcagcgca ggcgcaggcg 50
tccggccgcc gggttatgt tcgtgtccga tttccgcaaa gagttctacg 100
aggtgtcca gagccagagg gtccttctct tcgtggcctc ggacgtggat 150
gctctgtgtg cgtgcaagat cttcaggcc ttgttccagt gtgaccacgt 200
gcaatataacg ctgggtccag tttctgggtg gcaagaactt gaaactgcat 250

© 2007 Pearson Education, Inc.

ttcttgagca taaagaacag tttcattatt ttattctcat aaactgtgga 300
gctaatgtag acctatttggaa tattcttcaa cctgatgaag acactatatt 350
ctttgtgtgt gactccata ggccagtcaa tgtcgtcaat gtataacaacg 400
atacccgat caaattactc attaaacaag atgatgacct tgaagttccc 450
gccttatgaag acatcttcag ggtatgaagag gaggatgaag agcattcagg 500
aaatgacagt gatgggtcag agccttctga gaagcgcaca cggttagaag 550
aggagatagt ggagcaaacc atgcggagga ggcagcggcg agagtggag 600
gccccggagaa gagacatcct ctgttactac gagcagtatg aatatcatgg 650
gacatcgtaa gccatggta tgttttagt ggcttggatg ctgtccaaagg 700
acctgaatga catgctgtgg tggccatcg ttggactaac agaccagtgg 750
gtgcaagaca agatcactca aatgaaatac gtgactgtatg ttgggtgcct 800
gcagcgccac gttcccgcc acaaccacccg gaacgaggat gaggagaaca 850
caactctccgt ggactgcaca cggatctcct ttgagtatga cctccgcctg 900
gtgctctacc agcactggtc cctccatgac agcctgtgca acaccagcta 950
taccgcagcc aggttcaagc tgtggtctgt gcatggacag aagcggctcc 1000
aggagttcct tgcagacatg ggtttcccc tgaagcaggt gaagcagaag 1050
ttccaggcca tggacatctc cttgaaggag aatttgcggg aaatgattga 1100
agagtctgca aataaatttggatgaagga catgcgcgtg cagacttca 1150
gcattcattt tgggttcaag cacaagtttc tggccagcga cgtggcttt 1200
gccaccatgt ctgttgcgttggag aaggatggct cagggacac 1250
tcacttcattc caggtctgg acagcctctc caggagtaac ctggacaac 1300
tgtaccatgg ccttggactc gccaagaacg agctgcgagc cacccagcag 1350
accattgcca gctgc 1365

<210> 41
<211> 566
<212> PRT
<213> Homo sapiens

<400> 41
Met Phe Val Ser Asp Phe Arg Lys Glu Phe Tyr Glu Val Val Gln
1 5 10 15
Ser Gln Arg Val Leu Leu Phe Val Ala Ser Asp Val Asp Ala Leu
20 25 30

Cys Ala Cys Lys Ile Leu Gln Ala Leu Phe Gln Cys Asp His Val
 35 40 45
 Gln Tyr Thr Leu Val Pro Val Ser Gly Trp Gln Glu Leu Glu Thr
 50 55 60
 Ala Phe Leu Glu His Lys Glu Gln Phe His Tyr Phe Ile Leu Ile
 65 70 75
 Asn Cys Gly Ala Asn Val Asp Leu Leu Asp Ile Leu Gln Pro Asp
 80 85 90
 Glu Asp Thr Ile Phe Phe Val Cys Asp Ser His Arg Pro Val Asn
 95 100 105
 Val Val Asn Val Tyr Asn Asp Thr Gln Ile Lys Leu Leu Ile Lys
 110 115 120
 Gln Asp Asp Asp Leu Glu Val Pro Ala Tyr Glu Asp Ile Phe Arg
 125 130 135
 Asp Glu Glu Glu Asp Glu Glu His Ser Gly Asn Asp Ser Asp Gly
 140 145 150
 Ser Glu Pro Ser Glu Lys Arg Thr Arg Leu Glu Glu Glu Ile Val
 155 160 165
 Glu Gln Thr Met Arg Arg Arg Gln Arg Arg Glu Trp Glu Ala Arg
 170 175 180
 Arg Arg Asp Ile Leu Phe Asp Tyr Glu Gln Tyr Glu Tyr His Gly
 185 190 195
 Thr Ser Ser Ala Met Val Met Phe Glu Leu Ala Trp Met Leu Ser
 200 205 210
 Lys Asp Leu Asn Asp Met Leu Trp Trp Ala Ile Val Gly Leu Thr
 215 220 225
 Asp Gln Trp Val Gln Asp Lys Ile Thr Gln Met Lys Tyr Val Thr
 230 235 240
 Asp Val Gly Val Leu Gln Arg His Val Ser Arg His Asn His Arg
 245 250 255
 Asn Glu Asp Glu Glu Asn Thr Leu Ser Val Asp Cys Thr Arg Ile
 260 265 270
 Ser Phe Glu Tyr Asp Leu Arg Leu Val Leu Tyr Gln His Trp Ser
 275 280 285
 Leu His Asp Ser Leu Cys Asn Thr Ser Tyr Thr Ala Ala Arg Phe
 290 295 300
 Lys Leu Trp Ser Val His Gly Gln Lys Arg Leu Gln Glu Phe Leu
 305 310 315
 Ala Asp Met Gly Leu Pro Leu Lys Gln Val Lys Gln Lys Phe Gln

TROPICALS INSTITUTE

320	325	330
Ala Met Asp Ile Ser Leu Lys Glu Asn Leu Arg Glu Met Ile Glu		
335	340	345
Glu Ser Ala Asn Lys Phe Gly Met Lys Asp Met Arg Val Gln Thr		
350	355	360
Phe Ser Ile His Phe Gly Phe Lys His Lys Phe Leu Ala Ser Asp		
365	370	375
Val Val Phe Ala Thr Met Ser Leu Met Glu Ser Pro Glu Lys Asp		
380	385	390
Gly Ser Gly Thr Asp His Phe Ile Gln Ala Leu Asp Ser Leu Ser		
395	400	405
Arg Ser Asn Leu Asp Lys Leu Tyr His Gly Leu Glu Leu Ala Lys		
410	415	420
Lys Gln Leu Arg Ala Thr Gln Gln Thr Ile Ala Ser Cys Leu Cys		
425	430	435
Thr Asn Leu Val Ile Ser Gln Gly Pro Phe Leu Tyr Cys Ser Leu		
440	445	450
Met Glu Gly Thr Pro Asp Val Met Leu Phe Ser Arg Pro Ala Ser		
455	460	465
Leu Ser Leu Leu Ser Lys His Leu Leu Lys Ser Phe Val Cys Ser		
470	475	480
Thr Lys Asn Arg Arg Cys Lys Leu Leu Pro Leu Val Met Ala Ala		
485	490	495
Pro Leu Ser Met Glu His Gly Thr Val Thr Val Val Gly Ile Pro		
500	505	510
Pro Glu Thr Asp Ser Ser Asp Arg Lys Asn Phe Phe Gly Arg Ala		
515	520	525
Phe Glu Lys Ala Ala Glu Ser Thr Ser Ser Arg Met Leu His Asn		
530	535	540
His Phe Asp Leu Ser Val Ile Glu Leu Lys Ala Glu Asp Arg Ser		
545	550	555
Lys Phe Leu Asp Ala Leu Ile Ser Leu Leu Ser		
560	565	

<210> 42
<211> 380
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 44, 118, 172, 183

EDB - DNA Sequence Database

<223> unknown base

<400> 42
gtacctcagc gcgagcgcca ggcgtccggc cgccgtggct atgntcgtgt 50
ccgatttccg caaagagttc tacgagggtgg tccagagcca gagggtcctt 100
ctcttcgtgg cctcgangt ggatgctctg tgtgcgtgca agatccttca 150
ggccttgttc cagtgtgacc angtgcaata tangctggtt ccagtttctg 200
ggtggcaaga acttgaaact gcatttcttgc agcataaaga acagtttcat 250
tatTTTATTc tcataaaactg tggagctaattt gtagacctat tggatattct 300
tcaacctgat gaagacacta tattcttgt gtgtgacacc cataggccag 350
tcaatgttgtt caatgtatac aacgataccc 380

<210> 43
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
ttccgcaaag agttctacga ggtgg 25

<210> 44
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 44
attgacaaca ttgactggcc tatggg 26

<210> 45
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 45
gtggatgctc tgtgtgcgtg caagatcctt caggcttgt tccagtgtga 50

<210> 46
<211> 3089
<212> DNA
<213> Homo sapiens

<400> 46

© 2023 BioTeam

caggaaccct ctcttgggt ctggattggg acccctttcc agtaccattt 50
tttctagtga accacgaagg gacgatacca gaaaacaccc tcaacccaaa 100
ggaaatagac tacagccccca attggctgac tttggctata gaaaaaaagaa 150
aggaacgaaa agagacagtt tttttggaa agctaagtct tccctttatc 200
gagtcaagaa acccccccctt cttgagctat ttacagcttt taacaattga 250
gtaaagtacg ctccggtcac catggtgaca gccgcctgg gtcccgctcg 300
ggcagcgctc ctgctttc tcctgatgtg tgagatccgt atggtgagc 350
tcaccttga cagagctgtg gccagcggct gccaacggtg ctgtgactct 400
gaggaccccc tggatcctgc ccatgtatcc tcagcctt cctccggccg 450
cccccacgcc ctgcctgaga tcagacccta cattaatatc accatcctga 500
agggtgacaa aggggaccca ggc当地atgg gcctgccagg gtacatggc 550
agggagggc cccaaaggga gcctggccct cagggcagca agggtgacaa 600
gggggagatg ggc当地cccg ggc当地cccg ccagaagcgc ttcttcgcct 650
tctcagtggg cgc当地agacg gc当地tgcaca gc当地cgagga ct当地cagacg 700
ctgctttcg aaagggtctt tgtgaacctt gatgggtgct ttgacatggc 750
gaccggccag tttgctgctc ccctgcgtgg catctacttc tt当地gcctca 800
atgtgcacag ctggaattac aaggagacgt acgtgcacat tatgcataac 850
cagaaagagg ctgtcatcct gtacgc当地cag cccagc当地g 'gc当地catcat 900
gc当地agccag agtgtgatgc tggacctggc ct当地gggac cgctctggg 950
tgccgcttt caagcgccag cgcgagaacg ccatctacag caacgacttc 1000
gacacctaca tc当地ccttc当地 cggccaccctc atcaaggccg aggacgactg 1050
agggcctctg ggccaccctc cc当地gtggag agctcaggtg ct当地cccgt 1100
ccctgcagg gctcagttt cactgctgtg aagcaggaag gccaggagg 1150
tccccgggga cctggcattc tggggagacc ct当地ttctat ct当地gctgcc 1200
atcatccctc ccagcctatt tctgctcctc tcttctctt tggacctatt 1250
ttaagaagct tgctaaccta aatattctag aacttccca gc当地cgttagc 1300
ccagcacttc tcaaacttgg aatgc当地gc gaatcaccgg ggg当地ctgtgt 1350
taaatgcaga ttctgactca gc当地gtctga gt当地ggtccag gattctgtgt 1400
ttctcatatg tt当地ctgggtg atgctgatgg ggtcagtc当地a tgaaccacac 1450

tggagcaacc aggttctagg actttctcaa tattcttagta ctttctgaac 1500
attctggaat cctccccaca ttctagaatt ctcccaacat tttttttct 1550
tgagacagag tcttgctctg ttgcccaggc tagagtgcag tggtgcaatc 1600
tcagttcact gcaacacctg cctcccggt tcaagcgatt cttctgcctc 1650
agcctcccta gtggctggga ttacaggcgc ctgctaccat gcctggctaa 1700
tttttgtatt ttttagtagag atggggtttc accatattgg ccaggctggt 1750
cttgaactcc tgacttcagg tgacccaccc gcctcggcct ctcaaaatgc 1800
tgggattaca ggtgtgagcc accgtgcctg gccaaattcca acattctaa 1850
attctctcat ccctccaggg ctcccggtgc tatgttctct ttaccccttc 1900
ccccctttct cttgctcagg cctgcaccac tgccagccacc gttcatttat 1950
tcattcatta aacactgagc actcaactctg tgctgggtcc cgaaaagggt 2000
gagggggtca gacacaggcc ctgcccctgc cctcagtgcac tggccagtc 2050
agcccaggcg gggagagatg tgtacatagg ttttaaagca gaccagagc 2100
tcatgggggc ctgtgttctg ggtgttcagg tgctgctggt cctccattac 2150
ccactgctcc ccaaggctgg tggacgggg tcccggtggc agggcaggt 2200
atctccttcc cgttcctcat ccacctgccc agtgcatac gttacagcaa 2250
accccagggg gccttggcca ggtcaagggt tctgtgagga gaggacccag 2300
gagtgtgggg gcatttgggg ggtgaagtgg cccccgaaga atggaaccca 2350
cacccatagc tctccccaca gctgatacgg catcctgcga gaagacctgc 2400
cctcctcaact gggatcccct tcctgcctcc tcccagggt ctgccagggc 2450
cttgctcagt ccctccacc aaagtcatct gaacttccgt ttccccaggg 2500
cctccagctg ccctcagaca ctgatgtctg tccccagggt ctctctgccc 2550
ctcatgcccc tctcaccggc ccagtgc(cc) gactctccag gctttatcaa 2600
ggtgctaagg cccgggtggg cagctcctcg tctcagagcc ctccctccggc 2650
ctggtgctgc cttaaaaaac acctgcagga gaagggccac ggaagcccc 2700
ggcttttagag ccctcagcag gtctggggag ctagagcaaa ggagggaccc 2750
caggccttcc gtttcttctt ccagggtggg gtggcctggt gttcccttag 2800
ccttccaaac ccagggtggcc tgcccttctc cccagaggga ggcggcctcc 2850
gcccattggt gctcatgcag actctggggc tgaggtgccc cgggggggtga 2900

tctctggtgc tcacagccga gggagccgtg gctccatggc cagatgacgg 2950
aacagggtc tgaccaagtg ccaggaagac ctgtgctata aaccaccctg 3000
cctgatcctg cccctgcctg acccccac gccctgccgt ccagcatgat 3050
taaagaatgc tgtctcctct tggaaaaaaaaaaaaaaa 3089

<210> 47
<211> 259
<212> PRT
<213> Homo sapiens

<220>
<221> Signal Peptide
<222> 1-20
<223> Signal Peptide

<220>
<221> N-glycosylation Site
<222> 72-75
<223> N-glycosylation Site

<220>
<221> C1q Domain Proteins
<222> 144-178, 78-111, 84-117
<223> C1q Domain Proteins

<400> 47
Met Val Thr Ala Ala Leu Gly Pro Val Trp Ala Ala Leu Leu Leu
1 5 10 15
Phe Leu Leu Met Cys Glu Ile Arg Met Val Glu Leu Thr Phe Asp
20 25 30
Arg Ala Val Ala Ser Gly Cys Gln Arg Cys Cys Asp Ser Glu Asp
35 40 45
Pro Leu Asp Pro Ala His Val Ser Ser Ala Ser Ser Ser Gly Arg
50 55 60
Pro His Ala Leu Pro Glu Ile Arg Pro Tyr Ile Asn Ile Thr Ile
65 70 75
Leu Lys Gly Asp Lys Gly Asp Pro Gly Pro Met Gly Leu Pro Gly
80 85 90
Tyr Met Gly Arg Glu Gly Pro Gln Gly Glu Pro Gly Pro Gln Gly
95 100 105
Ser Lys Gly Asp Lys Gly Glu Met Gly Ser Pro Gly Ala Pro Cys
110 115 120
Gln Lys Arg Phe Phe Ala Phe Ser Val Gly Arg Lys Thr Ala Leu
125 130 135
His Ser Gly Glu Asp Phe Gln Thr Leu Leu Phe Glu Arg Val Phe
140 145 150

Val Asn Leu Asp Gly Cys Phe Asp Met Ala Thr Gly Gln Phe Ala
155 160 165
Ala Pro Leu Arg Gly Ile Tyr Phe Phe Ser Leu Asn Val His Ser
170 175 180
Trp Asn Tyr Lys Glu Thr Tyr Val His Ile Met His Asn Gln Lys
185 190 195
Glu Ala Val Ile Leu Tyr Ala Gln Pro Ser Glu Arg Ser Ile Met
200 205 210
Gln Ser Gln Ser Val Met Leu Asp Leu Ala Tyr Gly Asp Arg Val
215 220 225
Trp Val Arg Leu Phe Lys Arg Gln Arg Glu Asn Ala Ile Tyr Ser
230 235 240
Asn Asp Phe Asp Thr Tyr Ile Thr Phe Ser Gly His Leu Ile Lys
245 250 255

Ala Glu Asp Asp

<210> 48
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 48
ccagacgctg ctcttcgaaa gggtc 25

<210> 49
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 49
ggtccccgtt ggccagggtcc agc 23

<210> 50
<211> 50
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 50
ctacttcttc agcctcaatg tgcacagctg gaattacaag gagacgtacg 50

<210> 51

<211> 2768
<212> DNA
<213> Homo sapiens

<400> 51
actcgaacgc agttgcttcg ggacccagga cccccctcgaa cccgacccgc 50,
caggaaagac tgaggccgcg gcctgccccg cccggctccc tgcgccgcg 100
ccgcctcccg ggacagaaga tgtgctccag ggtccctctg ctgctgccgc 150
tgctcctgct actggccctg gggcctgggg tgcagggctg cccatccggc 200
tgccagtgca gccagccaca gacagtcttgc tgcactgccc gccaggggac 250
cacggtgccc cgagacgtgc cacccgacac ggtggggctg tacgtcttg 300
agaacggcat caccatgctc gacgcaggca gctttgccgg cctgccgggc 350
ctgcagctcc tggacctgta acagaaccag atgcgcagcc tgcccagcgg 400
ggtcttccag ccactcgcca acctcagcaa cctggacctg acggccaaca 450
ggctgcataa aatcaccaat gagaccttcc gtggcctgcg ggcctcgag 500
cgcccttacc tggcaagaa ccgcattccgc cacatccagc ctggtgccctt 550
cgacacgctc gaccgcctcc tggagctcaa gctgcaggac aacgagctgc 600
gggcactgcc cccgctgcgc ctggccggcc tgctgctgt ggacctcagc 650
cacaacagcc tcctggccct ggagccggc atcctggaca ctgccaacgt 700
ggaggcgctg cggctggctg gtctgggct gcagcagctg gacgaggggc 750
tcttcagccg cttgcgcac ctccacgcacc tggatgtgtc cgacaaccag 800
ctggagcgag tgccacctgt gatccgaggc ctccggggcc tgacgcgcct 850
gcggctggcc ggcaacaccc gcattgccc gctgcggccc gaggacctgg 900
ccggcctggc tgccctgcag gagctggatg ttagcaacct aagcctgcag 950
gccctgcctg gcacacttc gggccttcc cccgcctgc ggctgctggc 1000
agctgcccgc aacccttca actgcgtgtc cccctgagc tggttggcc 1050
cctgggtgcg cgagagccac gtcacactgg ccagccctga ggagacgcgc 1100
tgccacttcc cgcccaagaa cgctggccgg ctgctcctgg agcttgacta 1150
cgccgacttt ggctgcccag ccaccaccac cacagccaca gtgcccacca 1200
cgaggcccggt ggtgcgggag cccacagcct tgcacactgg cttggctcc 1250
acctggctta gccccacagc gccggccact gaggccccca gcccgcctc 1300
cactgccccca ccgactgttag ggctgtccc ccagccccag gactgcccac 1350

DRAFT

cgtccacctg cctcaatggg ggcacatgcc acctggggac acggcaccac 1400
ctggcggtgct tgtccccga aggcttacg ggcctgtact gtgagagcca 1450
gatggggcag gggacacggc ccagccctac accagtcacg ccgaggccac 1500
cacggtccc gaccctgggc atcgagccgg tgagccccac ctccctgcgc 1550
gtggggctgc agcgctacct ccaggggagc tccgtcagc tcaggagct 1600
ccgtctcacc tatcgcaacc tatcgccccc tgataagcgg ctggtgacgc 1650
tgcgactgcc tgcctcgctc gctgagtaca cggtcaccct gctgcggccc 1700
aacgccactt actccgtctg tgtcatgcct ttggggcccg ggcgggtgcc 1750
ggagggcag gaggcctgcg gggaggccca tacacccca gccgtccact 1800
ccaaccacgc cccagtcacc caggcccgcg agggcaacct gccgctcctc 1850
attgcgcccc ccctggccgc ggtgctcctg gccgcgtgg ctgcgggtgg 1900
ggcagcctac tgtgtgcggc gggggcgggc catggcagca gcggctcagg 1950
acaaagggca ggtggggcca ggggctggc ccctggaaact ggagggagtg 2000
aaggtccccct tggagccagg cccgaaggca acagagggcg gtggagaggc 2050
cctgcccagc gggtctgagt gtgaggtgcc actcatggc ttcccagggc 2100
ctggcctcca gtcacccctc cacgcaaagc cctacatcta agccagagag 2150
agacagggca gctggggccg ggctctcagc cagttagatg gccagccccc 2200
tcctgctgcc acaccacgta agttctcagt cccaacctcg gggatgtgt 2250
cagacagggc tgtgtgacca cagctggcc ctgttccctc tggacctcg 2300
tctcctcatc tgtgagatgc tgtggccag ctgacgagcc ctaacgtccc 2350
cagaaccgag tgcctatgag gacagtgtcc gccctgcctt ccgcaacgtg 2400
cagtccctgg gcacggcggg ccctgccatg tgctggtaac gcatgcctgg 2450
gtcctgctgg gctctccac tccaggcgga ccctgggggc cagtgaagga 2500
agctcccggaa aagagcagag ggagagcgaa taggcggctg tgtgactcta 2550
gtcttggccc caggaagcga aggaacaaaa gaaactggaa aggaagatgc 2600
tttaggaaca tgtttgctt ttttaaaaata tatatatatta taagagatcc 2650
tttcccattt attctggaa gatgttttc aaactcagag acaaggactt 2700
tggtttttgt aagacaaacg atgatatgaa ggcctttgt aagaaaaaat 2750
aaaagatgaa gtgtgaaa 2768

<210> 52
<211> 673
<212> PRT
<213> Homo sapiens

<400> 52
Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu
1 5 10 15
Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys
20 25 30
Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr
35 40 45
Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe
50 55 60
Glu Asn Gly Ile Thr Met Leu Asp Ala Gly Ser Phe Ala Gly Leu
65 70 75
Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser
80 85 90
Leu Pro Ser Gly Val Phe Gln Pro Leu Ala Asn Leu Ser Asn Leu
95 100 105
Asp Leu Thr Ala Asn Arg Leu His Glu Ile Thr Asn Glu Thr Phe
110 115 120
Arg Gly Leu Arg Arg Leu Glu Arg Leu Tyr Leu Gly Lys Asn Arg
125 130 135
Ile Arg His Ile Gln Pro Gly Ala Phe Asp Thr Leu Asp Arg Leu
140 145 150
Leu Glu Leu Lys Leu Gln Asp Asn Glu Leu Arg Ala Leu Pro Pro
155 160 165
Leu Arg Leu Pro Arg Leu Leu Leu Asp Leu Ser His Asn Ser
170 175 180
Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu
185 190 195
Ala Leu Arg Leu Ala Gly Leu Gly Leu Gln Gln Leu Asp Glu Gly
200 205 210
Leu Phe Ser Arg Leu Arg Asn Leu His Asp Leu Asp Val Ser Asp
215 220 225
Asn Gln Leu Glu Arg Val Pro Pro Val Ile Arg Gly Leu Arg Gly
230 235 240
Leu Thr Arg Leu Arg Leu Ala Gly Asn Thr Arg Ile Ala Gln Leu
245 250 255
Arg Pro Glu Asp Leu Ala Gly Leu Ala Ala Leu Gln Glu Leu Asp

DRAFT

260	265	270
Val Ser Asn Leu Ser Leu Gln Ala Leu Pro Gly Asp Leu Ser Gly		
275	280	285
Leu Phe Pro Arg Leu Arg Leu Leu Ala Ala Ala Arg Asn Pro Phe		
290	295	300
Asn Cys Val Cys Pro Leu Ser Trp Phe Gly Pro Trp Val Arg Glu		
305	310	315
Ser His Val Thr Leu Ala Ser Pro Glu Glu Thr Arg Cys His Phe		
320	325	330
Pro Pro Lys Asn Ala Gly Arg Leu Leu Leu Glu Leu Asp Tyr Ala		
335	340	345
Asp Phe Gly Cys Pro Ala Thr Thr Thr Ala Thr Val Pro Thr		
350	355	360
Thr Arg Pro Val Val Arg Glu Pro Thr Ala Leu Ser Ser Ser Leu		
365	370	375
Ala Pro Thr Trp Leu Ser Pro Thr Ala Pro Ala Thr Glu Ala Pro		
380	385	390
Ser Pro Pro Ser Thr Ala Pro Pro Thr Val Gly Pro Val Pro Gln		
395	400	405
Pro Gln Asp Cys Pro Pro Ser Thr Cys Leu Asn Gly Gly Thr Cys		
410	415	420
His Leu Gly Thr Arg His His Leu Ala Cys Leu Cys Pro Glu Gly		
425	430	435
Phe Thr Gly Leu Tyr Cys Glu Ser Gln Met Gly Gln Gly Thr Arg		
440	445	450
Pro Ser Pro Thr Pro Val Thr Pro Arg Pro Pro Arg Ser Leu Thr		
455	460	465
Leu Gly Ile Glu Pro Val Ser Pro Thr Ser Leu Arg Val Gly Leu		
470	475	480
Gln Arg Tyr Leu Gln Gly Ser Ser Val Gln Leu Arg Ser Leu Arg		
485	490	495
Leu Thr Tyr Arg Asn Leu Ser Gly Pro Asp Lys Arg Leu Val Thr		
500	505	510
Leu Arg Leu Pro Ala Ser Leu Ala Glu Tyr Thr Val Thr Gln Leu		
515	520	525
Arg Pro Asn Ala Thr Tyr Ser Val Cys Val Met Pro Leu Gly Pro		
530	535	540
Gly Arg Val Pro Glu Gly Glu Ala Cys Gly Glu Ala His Thr		
545	550	555

Pro Pro Ala Val His Ser Asn His Ala Pro Val Thr Gln Ala Arg
560 565 570

Glu Gly Asn Leu Pro Leu Leu Ile Ala Pro Ala Leu Ala Ala Val
575 580 585

Leu Leu Ala Ala Leu Ala Ala Val Gly Ala Ala Tyr Cys Val Arg
590 595 600

Arg Gly Arg Ala Met Ala Ala Ala Gln Asp Lys Gly Gln Val
605 610 615

Gly Pro Gly Ala Gly Pro Leu Glu Leu Glu Gly Val Lys Val Pro
620 625 630

Leu Glu Pro Gly Pro Lys Ala Thr Glu Gly Gly Glu Ala Leu
635 640 645

Pro Ser Gly Ser Glu Cys Glu Val Pro Leu Met Gly Phe Pro Gly
650 655 660

Pro Gly Leu Gln Ser Pro Leu His Ala Lys Pro Tyr Ile
665 670

<210> 53
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
tcttcagccg cttgcgcaac ctc 23

<210> 54
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 54
ttgctcacat ccagctcctg cagg 24

<210> 55
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
tggatgttgt ccagacaacc agctggagct gtatccgagg c 41

<210> 56

<211> 3462
<212> DNA
<213> Homo sapiens

<400> 56
gaatcatcca cgcacctgca gctctgctga gagagtgc aa gccgtggggg 50
tttgagctc atcttcatca ttcatatgag gaaataagt gtaaaaatcct 100
tggaaataca atgagactca tcagaaacat ttacatattt tgtagtattt 150
ttatgacagc agagggtgat gctccagagc tgccagaaga aagggaactg 200
atgaccaact gctccaacat gtctctaaga aaggttcccg cagacttgac 250
cccagccaca acgacactgg atttatccta taacctcctt tttcaactcc 300
agagttcaga ttttcattct gtctccaaac tgagagttt gattctatgc 350
cataacagaa ttcaacagct ggatctcaa acctttgaat tcaacaagga 400
gttaagatat ttagattgt ctaataacag actgaagagt gtaacttggt 450
atttactggc aggtctcagg tattnagatc tttctttaa tgactttgac 500
accatgccta tctgtgagga agctggcaac atgtcacacc tggaaatcct 550
aggtttgagt gggcaaaaa tacaaaaatc agattccag aaaattgctc 600
atctgcatct aaatactgtc ttcttaggat tcagaactct tcctcattat 650
gaagaaggta gcctgccccat cttaaacaca acaaaaactgc acatttttt 700
accaatggac acaaatttct gggttcttt gcgtgatgga atcaagactt 750
caaaaaatatt agaaatgaca aatatacgatg gcaaaagcca atttgtaagt 800
tatgaaatgc aacgaaatct tagtttagaa aatgctaaga catcggttct 850
attgcttaat aaagttgatt tactctggaa cgacctttc cttatcttac 900
aatttggggc gcatacatca gtggaaacact ttcagatccg aaatgtgact 950
tttgggtggta aggcttatct tgaccacaat tcatttgact actcaaatac 1000
tgtaatgaga actataaaat tggagcatgt acatttcaga gtgtttaca 1050
ttcaacagga taaaatctat ttgctttga ccaaaaatgga catagaaaac 1100
ctgacaatat caaatgcaca aatgccacac atgctttcc cgaattatcc 1150
tacgaaattc caatatttaa attttgccaa taatatctta acagacgagt 1200
tgtttaaaag aactatccaa ctgcctcact tgaaaactct cattttgaat 1250
ggcaataaac tggagacact ttcttttagta agtgctttg ctaacaacac 1300
acccttggaa cacttggatc tgagtcaaaa tctattacaa cataaaaaatg 1350

DRAFT

atgaaaattg ctcatggcca gaaaactgtgg tcaatatgaa tctgtcatac 1400
aataaattgt ctgattctgt cttaggtgc ttgccccaaa gtattcaaat 1450
acttgaccta aataataacc aaatccaaac tgtacctaaa gagactattc 1500
atctgatggc cttacgagaa ctaaatattt catttaattt tctaactgat 1550
ctccctggat gcagtcattt cagtagactt tcagttctga acattgaaat 1600
gaacttcatt ctcagccat ctctggattt tgttcagagc tgccaggaag 1650
ttaaaactct aatgcggga agaaatccat tccggtgtac ctgtgaatta 1700
aaaaatttca ttcagcttga aacatattca gaggtcatga tggttggatg 1750
gtcagattca tacacctgtg aataccctt aaacctaagg ggaacttaggt 1800
taaaagacgt tcatctccac gaattatctt gcaacacagc tctgttgatt 1850
gtcaccattt tggttattat gctagttctg gggttggctg tggccttctg 1900
ctgtctccac tttgatctgc cctggtatct caggatgcta ggtcaatgca 1950
cacaaacatg gcacagggtt aggaaaacaa cccaagaaca actcaagaga 2000
aatgtccgat tccacgcatt tatttcatac agtgaacatg attctctgt 2050
ggtgaagaat gaattgatcc ccaatctaga gaaggaagat gttctatct 2100
tgatttgccc ttatgaaagc tactttgacc ctggcaaaag cattagtcaa 2150
aatattgtaa gcttcatttga gaaaagctat aagtccatct ttgtttgtc 2200
tcccaacttt gtccagaatg agtgggtcca ttatgaattt tactttgccc 2250
accacaatct cttccatgaa aattctgatc atataattct tatcttactg 2300
gaacccattt cattctattt cattcccacc aggtatcata aactgaaagc 2350
tctcctggaa aaaaaagcat acttggaaatg gcccaaggat aggcgtaaat 2400
gtgggctttt ctggcaaac cttagtgc ctattatgt taatgttatta 2450
gccaccagag aaatgtatga actgcagaca ttcacagagt taaatgaaga 2500
gtctcgaggt tctacaatct ctctgatgag aacagattgt ctataaaatc 2550
ccacagtctt tggaaagttt gggaccacat acactgttgg gatgtacatt 2600
gatacaaccc ttatgtggc aatttgacaa tatttattaa aataaaaaat 2650
ggttattccc ttcatatcag tttctagaag gatttctaag aatgtatcct 2700
atagaaacac cttcacaatgt ttataagggc ttatggaaaa aggtgttcat 2750
cccaggattt tttataatca tgaaaaatgt ggccaggtgc agtggctcac 2800

tcttgtaatc ccagcaactat gggaggccaa ggtgggtgac ccacgaggc 2850
aagagatgga gaccatcctg gccaacatgg tcaaaccctg tctctactaa 2900
aaatacaaaa attagctggg cgtgatggt cacgcctgta gtcccagcta 2950
cttgggaggc tgagggcagga gaatcgctt aaccgggag gtggcagttg 3000
cagttagctg agatcgagcc actgcactcc agcctggtga cagagcgaga 3050
ctccatctca aaaaaaagaa aaaaaaaaaa gaaaaaaatg gaaaacatcc 3100
tcatggccac aaaataaggt ctaattcaat aaattatagt acattaatgt 3150
aatataatat tacatgccac taaaaagaat aagtagctg tatatttcct 3200
ggtatggaaa aaacatatta atatgttata aactattagg ttggtgcaaa 3250
actaattgtg gttttgcca ttgaaatggc attgaaataa aagtgtaaag 3300
aaatctatac cagatgttgt aacagtggtt tgggtctggg aggttggatt 3350
acagggagca tttgatttct atgttgtgta tttctataat gtttgaattg 3400
tttagaatga atctgtatTT ctTTTataaag tagaaaaaaaaa ataaagatag 3450
tttttacagc ct 3462

<210> 57
<211> 811
<212> PRT
<213> Homo sapiens

<400> 57
Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met
1 5 10 15
Thr Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu
20 25 30
Met Thr Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp
35 40 45
Leu Thr Pro Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu
50 55 60
Phe Gln Leu Gln Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg
65 70 75
Val Leu Ile Leu Cys His Asn Arg Ile Gln Gln Leu Asp Leu Lys
80 85 90
Thr Phe Glu Phe Asn Lys Glu Leu Arg Tyr Leu Asp Leu Ser Asn
95 100 105
Asn Arg Leu Lys Ser Val Thr Trp Tyr Leu Leu Ala Gly Leu Arg
110 115 120

Tyr Leu Asp Leu Ser Phe Asn Asp Phe Asp Thr Met Pro Ile Cys
 125 130 135
 Glu Glu Ala Gly Asn Met Ser His Leu Glu Ile Leu Gly Leu Ser
 140 145 150
 Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln Lys Ile Ala His Leu
 155 160 165
 His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr Leu Pro His Tyr
 170 175 180
 Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys Leu His Ile
 185 190 195
 Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg Asp Gly
 200 205 210
 Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly Lys
 215 220 225
 Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu
 230 235 240
 Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu
 245 250 255
 Trp Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser
 260 265 270
 Val Glu His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala
 275 280 285
 Tyr Leu Asp His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg
 290 295 300
 Thr Ile Lys Leu Glu His Val His Phe Arg Val Phe Tyr Ile Gln
 305 310 315
 Gln Asp Lys Ile Tyr Leu Leu Leu Thr Lys Met Asp Ile Glu Asn
 320 325 330
 Leu Thr Ile Ser Asn Ala Gln Met Pro His Met Leu Phe Pro Asn
 335 340 345
 Tyr Pro Thr Lys Phe Gln Tyr Leu Asn Phe Ala Asn Asn Ile Leu
 350 355 360
 Thr Asp Glu Leu Phe Lys Arg Thr Ile Gln Leu Pro His Leu Lys
 365 370 375
 Thr Leu Ile Leu Asn Gly Asn Lys Leu Glu Thr Leu Ser Leu Val
 380 385 390
 Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu His Leu Asp Leu Ser
 395 400 405
 Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn Cys Ser Trp Pro

410	415	420
Glu Thr Val Val Asn Met Asn Leu Ser	Tyr Asn Lys Leu Ser Asp	
425	430	435
Ser Val Phe Arg Cys Leu Pro Lys Ser	Ile Gln Ile Leu Asp Leu	
440	445	450
Asn Asn Asn Gln Ile Gln Thr Val Pro	Lys Glu Thr Ile His Leu	
455	460	465
Met Ala Leu Arg Glu Leu Asn Ile Ala	Phe Asn Phe Leu Thr Asp	
470	475	480
Leu Pro Gly Cys Ser His Phe Ser Arg	Leu Ser Val Leu Asn Ile	
485	490	495
Glu Met Asn Phe Ile Leu Ser Pro Ser	Leu Asp Phe Val Gln Ser	
500	505	510
Cys Gln Glu Val Lys Thr Leu Asn Ala	Gly Arg Asn Pro Phe Arg	
515	520	525
Cys Thr Cys Glu Leu Lys Asn Phe Ile	Gln Leu Glu Thr Tyr Ser	
530	535	540
Glu Val Met Met Val Gly Trp Ser Asp	Ser Tyr Thr Cys Glu Tyr	
545	550	555
Pro Leu Asn Leu Arg Gly Thr Arg Leu	Lys Asp Val His Leu His	
560	565	570
Glu Leu Ser Cys Asn Thr Ala Leu Leu	Ile Val Thr Ile Val Val	
575	580	585
Ile Met Leu Val Leu Gly Leu Ala Val	Ala Phe Cys Cys Leu His	
590	595	600
Phe Asp Leu Pro Trp Tyr Leu Arg Met	Leu Gly Gln Cys Thr Gln	
605	610	615
Thr Trp His Arg Val Arg Lys Thr Thr	Gln Glu Gln Leu Lys Arg	
620	625	630
Asn Val Arg Phe His Ala Phe Ile Ser	Tyr Ser Glu His Asp Ser	
635	640	645
Leu Trp Val Lys Asn Glu Leu Ile Pro	Asn Leu Glu Lys Glu Asp	
650	655	660
Gly Ser Ile Leu Ile Cys Leu Tyr Glu	Ser Tyr Phe Asp Pro Gly	
665	670	675
Lys Ser Ile Ser Glu Asn Ile Val Ser	Phe Ile Glu Lys Ser Tyr	
680	685	690
Lys Ser Ile Phe Val Leu Ser Pro Asn	Phe Val Gln Asn Glu Trp	
695	700	705

Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu
 710 715 720
 Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe
 725 730 735
 Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu
 740 745 750
 Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly
 755 760 765
 Leu Phe Trp Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu
 770 775 780
 Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn
 785 790 795
 Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys
 800 805 810

Leu

<210> 58
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 58
 tccccaccagg tatcataaac tgaa 24

 <210> 59
 <211> 27
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 59
 ttatagacaa tctgttctca tcagaga 27

 <210> 60
 <211> 40
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 60
 aaaaagcata cttggaatgg cccaggata ggtgtaaatg 40

 <210> 61

DRAFT

<211> 3772
<212> DNA
<213> Homo sapiens

<400> 61
gggggcttc ttgggcttgg ctgcttgaa caccgcctc caaggaccgg 50
cctcgaggg gtcgcggga aaggagggaa agaaggaagg gcggggccgg 100
ccccctgcg cccgcggcgc gcctctgcgc gccctgtcc gccccggccc 150
agcccagccc agcccccggg gccggtcaca cgcgagcca gccggccgccc 200
tcccggccc aagcgcgccg ctctgctgtg ccctgcgccc ttgcccccg 250
ccagcttctg cgcccgccgc ccgccccggcg ccccccgtga ccgtgaccct 300
gccctggcg cggggcgag caggcatgtc ccgccccgggg accgctaccc 350
cagcgctggc cctggtgctc ctggcagtga ccctggccgg ggtcgagacc 400
cagggcgca g ccctcgagga ccctgattat tacggcagg agatctggag 450
ccgggagccc tactacgcgc gcccggagcc cgagctcgag accttctctc 500
cccgctgcc tgccccggcc gggaggagt gggagcgccg cccgcaggag 550
cccaggccgc ccaagagggc caccaagccc aagaagactc ccaagaggg 600
gaagtcggct ccggagccgc ctccaccagg taaacacagc aacaaaaaag 650
ttatgagaac caagagctt gagaaggctg ccaacgtga tcacagtgtc 700
cgtgtggccc gtgaagatgt cagagaggt tgcccacctc ttggtctgga 750
aacctaaaa atcacagact tccagctcca tgcctccacg gtgaaggcgct 800
atggcctggg ggcacatcga gggagactca acatccaggc gggcatata 850
gaaaatgatt tttatgacgg agcgtggtgc gcggaaagaa atgacctcca 900
gcagtggatt gaagtggatg ctggcgccct gaccagattc actggtgtca 950
tcactcaagg gaggaactcc ctctggctga gtgactgggt gacatcctat 1000
aaggtcatgg tgagcaatga cagccacacg tgggtcaactg ttaagaatgg 1050
atctggagac atgatatttg agggaaacag tgagaaggag atccctgttc 1100
tcaatgagct acccgcccc atggggcccc gctacatccg cataaaccct 1150
cagtcctggt ttgataatgg gagcatctgc atgagaatgg agatcctggg 1200
ctgcccactg ccagatccta ataattatta tcaccggccgg aacgagatga 1250
ccaccactga tgacctggat tttaagcacc acaattataa ggaaatgcgc 1300
cagttgatga aagttgtgaa tgaaatgtgt cccaatatca ccagaattta 1350

caacattgga aaaagccacc agggcctgaa gctgtatgct gtggagatct 1400
cagatcaccc tggggagcat gaagtcggtg agcccgagtt ccactacatc 1450
gcgggggccc acggcaatga ggtgctggc cggagctgc tgctgctgct 1500
ggtgcagttc gtgtgtcagg agtacttggc ccggaatgcg cgcatcgccc 1550
acctggtggaa ggagacgcgg attcacgtcc tccccctccct caaccccgat 1600
ggctacgaga aggctacga agggggctcg gagctggag gctggccct 1650
gggacgctgg acccacgatg gaattgacat caacaacaac tttcctgatt 1700
taaacacgct gctctggag gcagaggatc gacagaatgt ccccaggaaa 1750
gttcccaatc actatattgc aatccctgag tggttctgt cgaaaaatgc 1800
cacggtggct gccgagacca gagcagtcat agcctggatg gaaaaaatcc 1850
cttttgtgct gggcggcaac ctgcagggcg gcgagctggt ggtggcgtat 1900
ccctacgacc tggtgccgtc cccctggaaag acgcaggaac acaccccccac 1950
ccccgatgac cacgtgttcc gctggctggc ctactcctat gcctccacac 2000
accgcctcat gacagacgcc cggaggaggg tgtgccacac ggaggacttc 2050
cagaaggagg agggactgt caatggggcc tcctggcaca ccgtcgctgg 2100
aagtctgaac gatttcagct acttcatac aaactgcttc gaactgtcca 2150
tctacgtggg ctgtataaa tacccacatg agagccagct gcccggaggag 2200
tgggagaata accggaaatc tctgatcggt ttcatggagc agttcatcg 2250
tggcattaaa ggcttggta gagattcaca tggaaaagga atcccaaacg 2300
ccattatctc cgtagaaggc attaaccatg acatccgaac agccaacgat 2350
ggggattact ggcgcctcct gaaccctgga gagtatgtgg tcacagcaaa 2400
ggccgaaggt ttcaactgcat ccaccaagaa ctgtatggtt ggctatgaca 2450
tggggccac aaggtgtgac ttcacactta gcaaaaccaa catggccagg 2500
atccgagaga tcatggagaa gtttggaaag cagcccgta gcctgccagc 2550
caggcggctg aagctgcggg ggcggaagag acgacagcgt gggtgaccct 2600
cctggccct tgagactcgt ctgggaccca tgcaaattaa accaacctgg 2650
tagtagctcc atagtgact cactcactgt tgtttcctct gtaattcaag 2700
aagtgcctgg aagagagggt gcattgtgag gcaggtccca aaagggaagg 2750
ctggaggctg aggctgtttt ctttctttg ttcccattta tccaaataac 2800

ttggacagag cagcagagaa aagctgatgg gagtgagaga actcagcaag 2850
 ccaacctggg aatcagagag agaaggagaa ggaggggagc ctgtccgttc 2900
 agagcctctg gctgcataga aaaggattct ggtgcttccc ctgtttgcgt 2950
 ggcagcaagg gttccacgtg catttgcaat ttgcacagct aaaattgcag 3000
 catttccccca gctgggctgt cccaaatgtt accatttgag atgctccag 3050
 gcgtcctaag agaatccacc ctctctggcc ctggacatt gcaagctgct 3100
 acaaataaat tctgtgttct tttgacaata gcgtcattgc caagtgcaca 3150
 tcagtgagcc tcttgaatct gtttagtctc cttttcaac aaaggagtgt 3200
 gttcagaaaa ggagagagag gctgagatca ttcaggagtt tgttggcag 3250
 caagcatgga gcttcttgca caaattctgg gtccataaac aaccccaaa 3300
 gtccctgctg atccagtagc cctggaggtt cccaggtag ggagagccag 3350
 aggtgccagc cttcctgaag ggccagaaaa tttagcctgg atctcctt 3400
 ttacctgcta ggactggaaa gagccagaag tggggtgcc tgaaggcctc 3450
 tctctgcttgc aggtattgcc cctgtgtgga attgagtgtct catgggttgg 3500
 cctcatatca gcctgggagt tattttgtat atgtagaatg ccagatctc 3550
 cagattaggc taaatgtaat gaaaacctct taggattatc tgtggagcat 3600
 cagtttggga agaattattg aattatcttgc caagaaaaaa gtatgtctca 3650
 ctttttgttgc atgttgctgc ctcattgacc tggaaaaat gaaaaaaaaa 3700
 aataaagcaa atggtaagac cctaaaaaaaaaaaaaaaaaaaaaaa 3750
 aaaaaaaaaaaaaaa aa 3772

<210> 62
 <211> 756
 <212> PRT
 <213> Homo sapiens

<400> 62
 Met Ser Arg Pro Gly Thr Ala Thr Pro Ala Leu Ala Leu Val Leu
 1 5 10 15

Leu	Ala	Val	Thr	Leu	Ala	Gly	Val	Gly	Ala	Gln	Gly	Ala	Ala	Leu
20				25										30

Glu Asp Pro Asp Tyr Tyr Gly Gln Glu Ile Trp Ser Arg Glu Pro
 35 40 45

Tyr	Tyr	Ala	Arg	Pro	Glu	Pro	Glu	Leu	Glu	Thr	Phe	Ser	Pro	Pro
50				55										60

Leu Pro Ala Gly Pro Gly Glu Glu Trp Glu Arg Arg Pro Gln Glu
 65 70 75
 Pro Arg Pro Pro Lys Arg Ala Thr Lys Pro Lys Lys Ala Pro Lys
 80 85 90
 Arg Glu Lys Ser Ala Pro Glu Pro Pro Pro Gly Lys His Ser
 95 100 105
 Asn Lys Lys Val Met Arg Thr Lys Ser Ser Glu Lys Ala Ala Asn
 110 115 120
 Asp Asp His Ser Val Arg Val Ala Arg Glu Asp Val Arg Glu Ser
 125 130 135
 Cys Pro Pro Leu Gly Leu Glu Thr Leu Lys Ile Thr Asp Phe Gln
 140 145 150
 Leu His Ala Ser Thr Val Lys Arg Tyr Gly Leu Gly Ala His Arg
 155 160 165
 Gly Arg Leu Asn Ile Gln Ala Gly Ile Asn Glu Asn Asp Phe Tyr
 170 175 180
 Asp Gly Ala Trp Cys Ala Gly Arg Asn Asp Leu Gln Gln Trp Ile
 185 190 195
 Glu Val Asp Ala Arg Arg Leu Thr Arg Phe Thr Gly Val Ile Thr
 200 205 210
 Gln Gly Arg Asn Ser Leu Trp Leu Ser Asp Trp Val Thr Ser Tyr
 215 220 225
 Lys Val Met Val Ser Asn Asp Ser His Thr Trp Val Thr Val Lys
 230 235 240
 Asn Gly Ser Gly Asp Met Ile Phe Glu Gly Asn Ser Glu Lys Glu
 245 250 255
 Ile Pro Val Leu Asn Glu Leu Pro Val Pro Met Val Ala Arg Tyr
 260 265 270
 Ile Arg Ile Asn Pro Gln Ser Trp Phe Asp Asn Gly Ser Ile Cys
 275 280 285
 Met Arg Met Glu Ile Leu Gly Cys Pro Leu Pro Asp Pro Asn Asn
 290 295 300
 Tyr Tyr His Arg Arg Asn Glu Met Thr Thr Thr Asp Asp Leu Asp
 305 310 315
 Phe Lys His His Asn Tyr Lys Glu Met Arg Gln Leu Met Lys Val
 320 325 330
 Val Asn Glu Met Cys Pro Asn Ile Thr Arg Ile Tyr Asn Ile Gly
 335 340 345
 Lys Ser His Gln Gly Leu Lys Leu Tyr Ala Val Glu Ile Ser Asp

350	355	360
His Pro Gly Glu His Glu Val Gly Glu Pro Glu Phe His Tyr Ile		
365	370	375
Ala Gly Ala His Gly Asn Glu Val Leu Gly Arg Glu Leu Leu Leu		
380	385	390
Leu Leu Val Gln Phe Val Cys Gln Glu Tyr Leu Ala Arg Asn Ala		
395	400	405
Arg Ile Val His Leu Val Glu Glu Thr Arg Ile His Val Leu Pro		
410	415	420
Ser Leu Asn Pro Asp Gly Tyr Glu Lys Ala Tyr Glu Gly Gly Ser		
425	430	435
Glu Leu Gly Gly Trp Ser Leu Gly Arg Trp Thr His Asp Gly Ile		
440	445	450
Asp Ile Asn Asn Asn Phe Pro Asp Leu Asn Thr Leu Leu Trp Glu		
455	460	465
Ala Glu Asp Arg Gln Asn Val Pro Arg Lys Val Pro Asn His Tyr		
470	475	480
Ile Ala Ile Pro Glu Trp Phe Leu Ser Glu Asn Ala Thr Val Ala		
485	490	495
Ala Glu Thr Arg Ala Val Ile Ala Trp Met Glu Lys Ile Pro Phe		
500	505	510
Val Leu Gly Gly Asn Leu Gln Gly Gly Glu Leu Val Val Ala Tyr		
515	520	525
Pro Tyr Asp Leu Val Arg Ser Pro Trp Lys Thr Gln Glu His Thr		
530	535	540
Pro Thr Pro Asp Asp His Val Phe Arg Trp Leu Ala Tyr Ser Tyr		
545	550	555
Ala Ser Thr His Arg Leu Met Thr Asp Ala Arg Arg Arg Val Cys		
560	565	570
His Thr Glu Asp Phe Gln Lys Glu Glu Gly Thr Val Asn Gly Ala		
575	580	585
Ser Trp His Thr Val Ala Gly Ser Leu Asn Asp Phe Ser Tyr Leu		
590	595	600
His Thr Asn Cys Phe Glu Leu Ser Ile Tyr Val Gly Cys Asp Lys		
605	610	615
Tyr Pro His Glu Ser Gln Leu Pro Glu Glu Trp Glu Asn Asn Arg		
620	625	630
Glu Ser Leu Ile Val Phe Met Glu Gln Val His Arg Gly Ile Lys		
635	640	645

Gly Leu Val Arg Asp Ser His Gly Lys Gly Ile Pro Asn Ala Ile
650 655 660
Ile Ser Val Glu Gly Ile Asn His Asp Ile Arg Thr Ala Asn Asp
665 670 675
Gly Asp Tyr Trp Arg Leu Leu Asn Pro Gly Glu Tyr Val Val Thr
680 685 690
Ala Lys Ala Glu Gly Phe Thr Ala Ser Thr Lys Asn Cys Met Val
695 700 705
Gly Tyr Asp Met Gly Ala Thr Arg Cys Asp Phe Thr Leu Ser Lys
710 715 720
Thr Asn Met Ala Arg Ile Arg Glu Ile Met Glu Lys Phe Gly Lys
725 730 735
Gln Pro Val Ser Leu Pro Ala Arg Arg Leu Lys Leu Arg Gly Arg
740 745 750
Lys Arg Arg Gln Arg Gly
755

<210> 63
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 63
gttctcaatg agctacccgt cccc 24

<210> 64
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 64
cgcgatgtag tggaaactcgg gctc 24

<210> 65
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 65
atccgcataa accctcagtc ctggtttgat aatgggagca tctgcattgag 50

<210> 66

<211> 2854
<212> DNA
<213> Homo sapiens

<400> 66
ctaagaggac aagatgaggc ccggcctctc atttctccta gcccttgt 50
tcttccttgg ccaagctgca ggggatttgg gggatgtggg acctccaatt 100
cccagccccg gctttagctc tttcccaggt gttgactcca gctccagctt 150
cagctccagc tccaggtcg gctccagctc cagccgcagc ttaggcagcg 200
gaggttctgt gtcccagttg ttttccaatt tcaccggctc cgtggatgac 250
cgtgggacct gccagtgctc tgtttccctg ccagacacca cctttccctg 300
ggacagagtg gaacgcttgg aattcacagc tcatgttctt tctcagaagt 350
ttgagaaaga actttctaaa gtgagggaat atgtccaatt aattagtgtg 400
tatgaaaaga aactgttaaa ccttaactgtc cgaattgaca tcatggagaa 450
ggataccatt tcttacactg aactggactt cgagctgatc aaggtagaag 500
tgaaggagat ggaaaaactg gtcatacagc tgaaggagag ttttggtgg 550
agctcagaaa ttgttgacca gctggaggtg gagataagaa atatgactct 600
cttggtagag aagcttgaga cactagacaa aaacaatgtc cttgccattc 650
gccgagaaat cgtggctctg aagaccaagc tgaaagagtg tgaggcctct 700
aaagatcaaa acacccctgt cgtccaccct cctccactc cagggagctg 750
tggtcatggt ggtgtggta acatcagcaa accgtctgtg gttcagctca 800
actggagagg gttttcttat ctatatggtg cttggggtag ggattactct 850
ccccagcattc caaacaaagg actgtattgg gtggcgccat tgaatacaga 900
tgggagactg ttggagtatt atagactgta caacacactg gatgatttgc 950
tattgtatat aaatgctga gagttgcgga tcacctatgg ccaaggtagt 1000
ggtacagcag tttacaacaa caacatgtac gtcaacatgt acaacaccgg 1050
aatattgcc agagttAACCGTGACCTGAGGGTATTAA 1100
ctctccctaa tgctgcctat aataaccgct tttcatatgc taatgttgct 1150
tggcaagata ttgactttgc tgtggatgag aatggattgt gggttattta 1200
ttcaactgaa gccagcactg gtaacatggt gattagtaaa ctaaatgaca 1250
ccacacttca ggtgctaaac acttggtata ccaaggatgtaaaccatct 1300
gcttctaaacg cttcatggt atgtgggtt ctgtatgcca cccgtactat 1350

gaacaccaga acagaagaga tttttacta ttatgacaca aacacaggga 1400
aagagggcaa actagacatt gtaatgcata agatgcagga aaaagtgcag 1450
agcattaact ataacccttt tgaccagaaa cttagtgcata ataacgtgg 1500
ttaccccttg aattatgatc tttctgtctt gcagaagccc cagtaagctg 1550
tttaggagtt agggtgaaag agaaaatgtt tggtgaaaaa atagtcttct 1600
ccacttactt agatatctgc aggggtgtct aaaagtgtgt tcattttgca 1650
gcaatgttta ggtgcatagt tctaccacac tagagatcta ggacatttgt 1700
cttgatttgg tgagttctct tggaaatcat ctgcctcttc aggccgcattt 1750
tgcaataaaag tctgtctagg gtgggattgt cagaggtcta gggcactgt 1800
gggccttagtg aagcctactg tgaggaggct tcactagaag ccttaaattta 1850
ggaattaagg aacttaaaac tcagtatggc gtctagggat tctttgtaca 1900
gaaatatttgc cccaatgact agtcctcatc catgtgcac cactaattct 1950
tccatgcctg gaagaaacct gggacttag tttagtagat taatatctgg 2000
agtcctcgaa gggacccaaat ctccaacttt ttttccccct cactagcacc 2050
tggaaatgatg ctttgcgtgt ggcagataag taaatttggc atgcttatat 2100
attctacatc tgtaaagtgc tgagttttat ggagagaggc cttttatgc 2150
attaaattgt acatggcaaa taaatcccag aaggatctgt agatgaggca 2200
cctgctttt cttttctctc attgtccacc ttactaaaag tcagtagaat 2250
cttctacctc ataacttcct tccaaaggca gctcagaaga ttagaaccag 2300
acttactaac caattccacc cccccaccaac ccccttctac tgcctacttt 2350
aaaaaaaaatata atagtttct atgaaactga tctaagatta gaaaaattaa 2400
ttttctttaa ttccattatg gacttttatt tacatgactc taagactata 2450
aaaaaatctg atggcagtga caaagtgcata gcatttatttgc ttatctaata 2500
aagacccctgg agcatatgtg caacttatga gtgtatcgt tggtgcattgt 2550
aatttttgcctt tttgtttaag cctggaaactt gtaagaaaat gaaaattaa 2600
tttttttttc taggacgagc tatagaaaag ctattgagag tatctagtt 2650
atcagtgcag tagttggaaa ccttgctggc gtatgtatgc tgcttctgtg 2700
ctttgtatgc accttacatc ctgtcttgc tctatccctt ctttgatgtt 2750
caagtccttag tctataggat tggcagttt aatgctttac tccccctttt 2800

aaaataaaatg attaaaatgt gctttgaaaa aaaaaaaaaa aaaaaaaaaa 2850

aaaa 2854

<210> 67

<211> 510

<212> PRT

<213> Homo sapiens

<400> 67

Met Arg Pro Gly Leu Ser Phe Leu Leu Ala Leu Leu Phe Phe Leu
1 5 10 15

Gly Gln Ala Ala Gly Asp Leu Gly Asp Val Gly Pro Pro Ile Pro
20 25 30

Ser Pro Gly Phe Ser Ser Phe Pro Gly Val Asp Ser Ser Ser Ser
35 40 45

Phe Ser Ser Ser Arg Ser Gly Ser Ser Ser Arg Ser Leu
50 55 60

Gly Ser Gly Gly Ser Val Ser Gln Leu Phe Ser Asn Phe Thr Gly
65 70 75

Ser Val Asp Asp Arg Gly Thr Cys Gln Cys Ser Val Ser Leu Pro
80 85 90

Asp Thr Thr Phe Pro Val Asp Arg Val Glu Arg Leu Glu Phe Thr
95 100 105

Ala His Val Leu Ser Gln Lys Phe Glu Lys Glu Leu Ser Lys Val
110 115 120

Arg Glu Tyr Val Gln Leu Ile Ser Val Tyr Glu Lys Lys Leu Leu
125 130 135

Asn Leu Thr Val Arg Ile Asp Ile Met Glu Lys Asp Thr Ile Ser
140 145 150

Tyr Thr Glu Leu Asp Phe Glu Leu Ile Lys Val Glu Val Lys Glu
155 160 165

Met Glu Lys Leu Val Ile Gln Leu Lys Glu Ser Phe Gly Gly Ser
170 175 180

Ser Glu Ile Val Asp Gln Leu Glu Val Glu Ile Arg Asn Met Thr
185 190 195

Leu Leu Val Glu Lys Leu Glu Thr Leu Asp Lys Asn Asn Val Leu
200 205 210

Ala Ile Arg Arg Glu Ile Val Ala Leu Lys Thr Lys Leu Lys Glu
215 220 225

Cys Glu Ala Ser Lys Asp Gln Asn Thr Pro Val Val His Pro Pro
230 235 240

Pro Thr Pro Gly Ser Cys Gly His Gly Gly Val Val Asn Ile Ser
 245 250 255
 Lys Pro Ser Val Val Gln Leu Asn Trp Arg Gly Phe Ser Tyr Leu
 260 265 270
 Tyr Gly Ala Trp Gly Arg Asp Tyr Ser Pro Gln His Pro Asn Lys
 275 280 285
 Gly Leu Tyr Trp Val Ala Pro Leu Asn Thr Asp Gly Arg Leu Leu
 290 295 300
 Glu Tyr Tyr Arg Leu Tyr Asn Thr Leu Asp Asp Leu Leu Leu Tyr
 305 310 315
 Ile Asn Ala Arg Glu Leu Arg Ile Thr Tyr Gly Gln Gly Ser Gly
 320 325 330
 Thr Ala Val Tyr Asn Asn Asn Met Tyr Val Asn Met Tyr Asn Thr
 335 340 345
 Gly Asn Ile Ala Arg Val Asn Leu Thr Thr Asn Thr Ile Ala Val
 350 355 360
 Thr Gln Thr Leu Pro Asn Ala Ala Tyr Asn Asn Arg Phe Ser Tyr
 365 370 375
 Ala Asn Val Ala Trp Gln Asp Ile Asp Phe Ala Val Asp Glu Asn
 380 385 390
 Gly Leu Trp Val Ile Tyr Ser Thr Glu Ala Ser Thr Gly Asn Met
 395 400 405
 Val Ile Ser Lys Leu Asn Asp Thr Thr Leu Gln Val Leu Asn Thr
 410 415 420
 Trp Tyr Thr Lys Gln Tyr Lys Pro Ser Ala Ser Asn Ala Phe Met
 425 430 435
 Val Cys Gly Val Leu Tyr Ala Thr Arg Thr Met Asn Thr Arg Thr
 440 445 450
 Glu Glu Ile Phe Tyr Tyr Asp Thr Asn Thr Gly Lys Glu Gly
 455 460 465
 Lys Leu Asp Ile Val Met His Lys Met Gln Glu Lys Val Gln Ser
 470 475 480
 Ile Asn Tyr Asn Pro Phe Asp Gln Lys Leu Tyr Val Tyr Asn Asp
 485 490 495
 Gly Tyr Leu Leu Asn Tyr Asp Leu Ser Val Leu Gln Lys Pro Gln
 500 505 510

<210> 68
 <211> 410
 <212> DNA
 <213> Homo sapiens

<220>
<221> unsure
<222> 206, 217, 387
<223> unknown base

<400> 68
gctctgaaga ccaagctgaa agagtgttag gcctctaaag atcaaacacc 50
cctgtcgatcc acccttcctcc cactccaggg agctgtggtc atgggttgtt 100
ggtaaacatc agcaaaccgt ctgtggttca gctcaactgg agagggtttt 150
cttatctata tggtgcttgg ggttagggatt actctccccca gcatccaaac 200
aaaggatgtt attgggnggc gccattgaat acagatggga gactgttgg 250
gtattataga ctgtacaacc cactggatga tttgctattt tatataaatg 300
ctcgagagtt gcggatcacc tatggccaag gtatgtgtac agcagtttac 350
aacaacaaca tgtacgtcaa catgtacaac accgggnata ttgccagagt 400
taacctgacc 410

<210> 69
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 69
agctgtggtc atgggttgtt ggtg 24

<210> 70
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
ctaccttggc cataggtgat ccgc 24

<210> 71
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 71
catcagcaaa ccgtctgtgg ttcagctcaa ctggagaggg tt 42

<210> 72

<211> 3127
<212> DNA
<213> Homo sapiens

<400> 72
tctcgagat agtaaataat ctcggaaagg cgagaaagaa gctgtctcca 50
tcttgtctgt atccgctgct cttgtacgt tgtggagatg gggagcgtcc 100
tggggctgtg ctccatggcg agctggatac catgttgc tggaagtgcc 150
ccgtgtttgc tatgccatgc ctgtcctagt ggaaacaact ccactgtaac 200
tagattgatc tatgcacttt tcttgcttgc tggagtatgt gtagcttgc 250
taatgttgat accaggaatg gaagaacaac tgaataagat tcctggattt 300
tgtgagaatg agaaagggtgt tgccttgc aacattttgg ttggctataa 350
agctgtatat cgtttgcctt ttggtttggc tatgttctat cttttctct 400
cttactaat gatcaaagtg aagagtagca gtgatcctag agctgcagt 450
cacaatggat tttggttctt taaatttgc gcagcaatttgc caatttttat 500
tggggcattt ttcattccag aaggaacttt tacaactgtg tggttttagt 550
taggcattgc aggtgcctt tggatcatcc tcatacaact agtcttactt 600
attgattttg cacattcatg gaatgaatcg tgggttggaa aaatggaaaga 650
agggaaactcg agatgttggt atgcagccctt gttatcagct acagctctga 700
attatctgt gtcttttagt gctatcgcc tggatgttgc ctactacact 750
catccagcca gttgttcaga aaacaaggcg ttcatcagtg tcaacatgct 800
cctctgcgtt ggtgttctg taatgtctat actgccaaa atccaagaat 850
cacaaccaag atctggtttgc ttacagtctt cagtaattac agtctacaca 900
atgtatttgc catggtcagc tatgaccaat gaaccagaaa caaattgca 950
cccaagtcta ctaagcataa ttggctacaa tacaacaagc actgtccaa 1000
aggaaggcgtt gtcagtcag tggatcgatg ctcaaggaat tataggacta 1050
attctttttt tggatgtgtt atttttattcc agcatccgtt cttcaaaacaa 1100
tagtcaggtt aataaaactga ctctaaacaag tggatgttgc acattaatag 1150
aagatggtgg agctagaagt gatggatcac tggaggatgg ggacgtgtt 1200
caccgagctg tagataatga aagggtgggt gtcacttaca gttattcctt 1250
ctttcacttc atgctttcc tggatcatc ttatcatg atgaccctta 1300
ccaaactggtc caggtatgaa ccctctcggtt agatgaaaag tcagtgac 1350

YODA-2009

gctgtctggg tgaaaatctc ttccagttgg attggcatcg tgctgtatgt 1400
ttggacactc gtggcaccac ttgttcttac aaatcgat tttgactgag 1450
tgagacttct agcatgaaag tcccactttg attattgctt atttgaaaac 1500
agtattccca actttgtaa agttgtgtat gttttgctt cccatgtaac 1550
ttctccagtg ttctggcatg aattagatt tactgcttgt cattttgtta 1600
ttttcttacc aagtgcattg atatgtgaag tagaatgaat tgcagaggaa 1650
agtttatga atatggatg gagtttagaa aagtggccat tattgggctt 1700
attctctgct ctatagttgt gaaatgaaga gtaaaaaacaa atttgttga 1750
ctattttaaa attatattag acctaagct gtttagcaa gcattaaagc 1800
aaatgtatgg ctgcctttg aaatatttga tgtgtgcct ggcaggatac 1850
tgcaaagaac atggtttatt taaaattta taaacaagtc acttaaatgc 1900
cagttgtctg aaaaatcttta taaggttta cccttgatac ggaatttaca 1950
caggtaggaa gtgttagtg gacaatagtg tagttatgg atggaggtgt 2000
cggtactaaa ttgaataacg agtaaataat cttacttggg tagagatggc 2050
cttgccaac aaagtgaact gtttgggtt gtttaactc atgaagtatg 2100
ggttcagtgg aaatgttgg aactctgaag gatttagaca aggtttgaa 2150
aaggataatc atgggttaga aggaagtgtt ttgaaagtca cttgaaaagt 2200
tagtttggg cccagcacgg tagtcaccc ttgtaatcc cagcaccc 2250
ggagcttaag tggtagatt acttgagccc aggaattcag accagctgg 2300
cacatggtga acctgttcta taaaataat ctggcttga gcatatgcct 2350
gtggccagc actgagaggc tagtgaagat tgctgagccc agagccaaag 2400
gttgcagtga gcaagtcacg tcactgcact ctagctggca cagagtaac 2450
caaaaaaaaata tatatatatt gaaatcaagg aggaaaaatt ttgacaggaa 2500
aggaagtaac tgcaaaacca ctaggcttta gtaggtactt atataaaaatc 2550
tagtccagtt ctctcattta aaaaaatgaa gacactgaaa tacagactta 2600
aatagctcag atagctaatt agggaaattc aagttggcca ataatagcat 2650
tctctctgac attaaaaat aatttctatt caaaatacat gcatattgtat 2700
ttacacctca tactgtgata attaatgtga tgtggattgc tgggtccag 2750
catgaccat aaacaggtca gaagaatgtat ggaatgtttt agaataaaact 2800

cctgcttata gtatactaca cagttcaaaa gatgttaaa atgctttgt 2850
atttactgcc atgtaattga aatatataga ttattgtaac ctttcaacct 2900
gaaaatcaag cagtatgaga gtttagttat ttgtatgtgt cactagtgtc 2950
taatgaagct tttaaaatct acaatttctt cttaaaaat atttattaat 3000
gtgaatggaa tataacaatt cagcttaatt ccccaacctt attctgtgtg 3050
tagacattgt attccacaat tttgaatggc tgtgtttac ctctaaataa 3100
atgaattcag agaaaaaaaaaaaaa 3127

<210> 73
<211> 453
<212> PRT
<213> Homo sapiens

<400> 73
Met Gly Ser Val Leu Gly Leu Cys Ser Met Ala Ser Trp Ile Pro
1 5 10 15
Cys Leu Cys Gly Ser Ala Pro Cys Leu Leu Cys Arg Cys Cys Pro
20 25 30
Ser Gly Asn Asn Ser Thr Val Thr Arg Leu Ile Tyr Ala Leu Phe
35 40 45
Leu Leu Val Gly Val Cys Val Ala Cys Val Met Leu Ile Pro Gly
50 55 60
Met Glu Glu Gln Leu Asn Lys Ile Pro Gly Phe Cys Glu Asn Glu
65 70 75
Lys Gly Val Val Pro Cys Asn Ile Leu Val Gly Tyr Lys Ala Val
80 85 90
Tyr Arg Leu Cys Phe Gly Leu Ala Met Phe Tyr Leu Leu Leu Ser
95 100 105
Leu Leu Met Ile Lys Val Lys Ser Ser Ser Asp Pro Arg Ala Ala
110 115 120
Val His Asn Gly Phe Trp Phe Phe Lys Phe Ala Ala Ala Ile Ala
125 130 135
Ile Ile Ile Gly Ala Phe Phe Ile Pro Glu Gly Thr Phe Thr Thr
140 145 150
Val Trp Phe Tyr Val Gly Met Ala Gly Ala Phe Cys Phe Ile Leu
155 160 165
Ile Gln Leu Val Leu Leu Ile Asp Phe Ala His Ser Trp Asn Glu
170 175 180
Ser Trp Val Glu Lys Met Glu Glu Gly Asn Ser Arg Cys Trp Tyr
185 190 195

Ala Ala Leu Leu Ser Ala Thr Ala Leu Asn Tyr Leu Leu Ser Leu
 200 205 210
 Val Ala Ile Val Leu Phe Phe Val Tyr Tyr Thr His Pro Ala Ser
 215 220 225
 Cys Ser Glu Asn Lys Ala Phe Ile Ser Val Asn Met Leu Leu Cys
 230 235 240
 Val Gly Ala Ser Val Met Ser Ile Leu Pro Lys Ile Gln Glu Ser
 245 250 255
 Gln Pro Arg Ser Gly Leu Leu Gln Ser Ser Val Ile Thr Val Tyr
 260 265 270
 Thr Met Tyr Leu Thr Trp Ser Ala Met Thr Asn Glu Pro Glu Thr
 275 280 285
 Asn Cys Asn Pro Ser Leu Leu Ser Ile Ile Gly Tyr Asn Thr Thr
 290 295 300
 Ser Thr Val Pro Lys Glu Gly Gln Ser Val Gln Trp Trp His Ala
 305 310 315
 Gln Gly Ile Ile Gly Leu Ile Leu Phe Leu Leu Cys Val Phe Tyr
 320 325 330
 Ser Ser Ile Arg Thr Ser Asn Asn Ser Gln Val Asn Lys Leu Thr
 335 340 345
 Leu Thr Ser Asp Glu Ser Thr Leu Ile Glu Asp Gly Gly Ala Arg
 350 355 360
 Ser Asp Gly Ser Leu Glu Asp Gly Asp Asp Val His Arg Ala Val
 365 370 375
 Asp Asn Glu Arg Asp Gly Val Thr Tyr Ser Tyr Ser Phe Phe His
 380 385 390
 Phe Met Leu Phe Leu Ala Ser Leu Tyr Ile Met Met Thr Leu Thr
 395 400 405
 Asn Trp Ser Arg Tyr Glu Pro Ser Arg Glu Met Lys Ser Gln Trp
 410 415 420
 Thr Ala Val Trp Val Lys Ile Ser Ser Ser Trp Ile Gly Ile Val
 425 430 435
 Leu Tyr Val Trp Thr Leu Val Ala Pro Leu Val Leu Thr Asn Arg
 440 445 450
 Asp Phe Asp

<210> 74
 <211> 480
 <212> DNA
 <213> Homo sapiens

<220>
<221> unsure
<222> 48, 163
<223> unknown base

<400> 74
gcgagaaaga agctgtctcc atcttgtctg tatcccgctg cttcttgnga 50
cgttgtggag atggggagcg tccctggggc tgtgctccat ggcgagctgg 100
ataccatgtt tgtgtggaag tgccccgtgt ttgctatgcc gatgctgtcc 150
tagtggaaac aantccactg taactagatt gatctatgca cttttcttgc 200
ttgttggagt atgtgttagct tgtgtaatgt tgataccagg aatggaagaa 250
caactgaata agattcctgg attttgtgag aatgagaaag gtgttgc 300
ttgtaacatt ttgggtggct ataaagctgt atatcgtttgc tgctttggtt 350
tggctatgtt ctatcttctt ctctcttac taatgatcaa agtgaagagt 400
agcagtgatc ctagagctgc agtgcacaat ggattttggc tctttaaatt 450
tgctgcagca attgcaatta ttattggggc 480

<210> 75
<211> 438
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 32, 65, 92, 121, 142, 154, 170, 293, 315, 323
<223> unknown base

<400> 75
gttattgtga actttgtga gatgggaggt cttttttttt gttccatgg 50
cgagctggat accangtttgc tgtggaaatgtt cccgtgttt gntatgccga 100
tgctgtccta gtggaaacaa ntccactgtt attagattgtt tntatgcact 150
tttnttgctt gttggagttt gtgttagcttgc tgtaatgttgc ataccaggaa 200
tggaagaaca actgaataag attcctggat tttgtgagaa tgagaaaggt 250
gttggccctt gtaacattttt ggttggctat aaagctgtat atngttgtg 300
ctttggtttgc gctangttctt atnttcttctt ctctttacta atgatcaaag 350
tgaagagtag cagtgtatcctt agagctgcag tgcacaatgg attttggttt 400
tttttttttttgcagcaat tgcaattattt attggggc 438

<210> 76
<211> 473
<212> DNA

© 2000 Cambridge University Press

<213> Homo sapiens

<220>

<221> unsure

<222> 48

<223> unknown base

<400> 76
aagaagctgt ctccatcttgc tctgtatccg ctgctcttgt gaacgttnng 50
gagatgggaa gcgtccttgg gggttgtgctc catggcgagc tggataccat 100
gtttgtgtgg aagtccccgg tggttgctat gccgatgctg tccttagtgg 150
aacaactcca ctgtaactag attgatctat gcactttct tgcttgg 200
agtatgtgtta gcttggtaa tggtgataacc aggaatggaa gaacaactga 250
ataagattcc tggattttgt gagaatgaga aagggttgttgc cccttgttaac 300
attttggttg gctataaagc tgtatatcgt ttgtgcttgc gtttggctat 350
gttctatctt cttctctt tactaatgtat caaagtgaag agtagcagtgc 400
atccttagagc tgcagtgcac aatggatttt gggtctttaa atttgctgca 450
gcaattgcaa ttattattgg ggc 473

<210> 77

<211> 666

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 21, 111

<223> unknown base

<400> 77
gctgtcctta gtggaaacaa ntccaaacttg taacttggat tgatctatgc 50
acttttcct tgcttgg 77 agtatgtgtta gcttggat atgttgg 100
caggatttggaa ngttccaaactg aataagattc ctggattttt gtgagaatga 150
gaaagggtttt gtccccttgtt aacattttt gttggctata aagctgtata 200
tcgtttgtgc tttggttgg ctatgttcta tcttcttctc tctttactaa 250
tgatcaaagt gaagagtagc agtgatccta gagctgcagt gcacaatgg 300
ttttgggttct ttaaatttgc tgcagcaattt gcaatttatta ttggggcatt 350
cttcattcca gaaggaactt ttacaactgt gtggttttat gtggcatgg 400
caggtgcctt ttgtttcatc ctcataacaac tagtcttact tattgatttt 450
gcacattcat ggaatgaatc gtgggttgaa aaaatggaaag aagggaactc 500

gagatgttgg tatgcagcct tgttatcagc tacagctctg aattatctgc 550
tgtcttagt tgctatcgac ctgttcttg tctactacac tcataccagcc 600
agttgttcag aaaacaaggc gttcatcagt gtcaacatgc tcctctgcgt 650
tggtgcttct gtaatg 666

<210> 78
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 78
atgtttgtgt ggaagtgcgg cg 22

<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 79
gtcaacatgc tcctctgc 18

<210> 80
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 80
aatccattgt gcactgcagc tctagg 26

<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 81
gagcatgcgc ccactggact gac 23

<210> 82
<211> 54
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 82
gccgatgctg tcctagtgga aacaactcca ctgttaactag attgatotat 50
gcac 54

<210> 83
<211> 3906
<212> DNA
<213> Homo sapiens

<400> 83
ctcgggcgcg cacaggcagc tcggttgcc ctgcgattga gctgcgggtc 50
gcggccggcg ccggcctctc caatggcaaa tgtgtgtggc tggaggcgag 100
cgcgaggctt tcggcaaagg cagtcgagtg tttgcagacc ggggcgagtc 150
ctgtgaaagc agataaaaaga aaacatttat taacgtgtca ttacgagggg 200
agcgcccggc cggggctgtc gcactccccg cgaaacattt ggctccctcc 250
agctccgaga gaggagaaga agaaagcgga aaagaggcag attcacgtcg 300
tttccagcca agtggacctg atcgatggcc ctccctgaatt tatcacgata 350
tttgatttat tagcgatgcc ccctgggttg tgtgttacgc acacacacgt 400
gcacacaagg ctctggctcg ctccctccc tcgtttccag ctccctggcg 450
aatcccacat ctgttcaac tctccgccga gggcgagcag gagcgagagt 500
gtgtcgaatc tgcgagtgaa gagggacgag ggaaaagaaa caaagccaca 550
gacgcaacct gagactccccg catcccaaaa gaagcaccag atcagcaaaa 600
aaagaagatg ggccccccga gcctcgtgct gtgttgctg tccgcaactg 650
tgttctccct gctgggtgga agctcgccct tcctgtcgca ccaccgcctg 700
aaaggcaggt ttcagaggga ccgcaggaac atccgccccca acatcatcct 750
ggtgctgacg gacgaccagg atgtggagct gggttccatg caggtgatga 800
acaagacccg gcgcacatcatg gagcagggcg gggcgactt catcaacgcc 850
ttcgtgacca caccatgtg ctgccccca cgctcctcca tcctcactgg 900
caagtacgtc cacaaccaca acacctacac caacaatgag aactgctcct 950
cgccctcctg gcagggcacag cacgagagcc gcaccttgc cgtgtacctc 1000
aatagcactg gctaccggac agctttcttc gggaaagtatc ttaatgaata 1050
caacggctcc tacgtgccac ccggctggaa ggagtgggtc ggactcctta 1100
aaaactccccg ctttataac tacacgctgt gtcggAACGG ggtgaaagag 1150

aagcacggct ccgactactc caaggattac ctcacagacc tcacatcaccaa 1200
tgacagcggt agcttcttcc gcacgtccaa gaagatgtac ccgcacagggc 1250
cagtccatcat ggtcatcagc catgcagccc cccacggccc tgaggattca 1300
gccccacaat attcacgcct cttcccaaac gcatctcagc acatcacgcc 1350
gagctacaac tacgcgccc acccggacaa acactggatc atgcgttaca 1400
cggggccat gaagccatc cacatggat tcaccaacat gctccagcgg 1450
aagcgcttgc agaccctcat gtcgggtggac gactccatgg agacgattta 1500
caacatgctg gttgagacgg gcgagctgga caacacgtac atcgtataca 1550
ccgcccacca cggttaccac atcggccagt ttggcctggt gaaagggaaa 1600
tccatgccat atgagttga catcagggtc ccgttctacg tgaggggccc 1650
caacgtggaa gccggctgtc tgaatcccc catcgctc aacattgacc 1700
tggcccccac catcctggac attgcaggcc tggacatacc tgccggatatg 1750
gacgggaaat ccattctcaa gctgctggac acggagcggc cggtaatcg 1800
gtttcacttg aaaaagaaga tgagggtctg gcgggactcc ttcttggtgg 1850
agagaggcaa gctgctacac aagagagaca atgacaaggt ggacgcccag 1900
gaggagaact ttctgccaa gtaccagcgt gtgaaggacc tgtgtcagcg 1950
tgctgagtac cagacggcgt gtgagcagct gggacagaag tggcagtgtg 2000
tggaggacgc cacgggaaag ctgaagctgc ataagtgcaa gggcccccattg 2050
cggctggcgc gcagcagagc cctctccaaac ctcgtggccca agtactacgg 2100
gcagggcagc gaggcctgca cctgtgacag cggggactac aagctcagcc 2150
tggccggacg ccggaaaaaa ctcttcaaga agaagtacaa ggcgcagctat 2200
gtccgcagtc gtcctatccg ctcagtggcc atcgaggtgg acggcagggt 2250
gtaccacgta ggcctgggtg atgcccggca gccccgaaac ctcaccaagc 2300
ggcactggcc aggggcccct gaggaccaag atgacaagga tggtgggac 2350
ttcagtggca ctggaggcct tcccgactac tcagccgcca accccattaa 2400
agtgacacat cggtgctaca tccttagagaa cgacacagtc cagtgtgacc 2450
tggacctgta caagtccctg caggcctgga aagaccacaa gctgcacatc 2500
gaccacgaga ttgaaaccct gcagaacaaa attaagaacc tgaggaaagt 2550
ccgaggtcac ctgaagaaaa agcggccaga agaatgtgac tgcacaaaa 2600

tcagctacca cacccagcac aaaggccgcc tcaagcacag aggctcoagt 2650
ctgcattcctt tcaggaaggg octgcaagag aaggacaagg tgtggctgtt 2700
gcgggagcag aagcgcaaga agaaactccg caagctgctc aagcgctgc 2750
agaacaacga cacgtgcagc atgccaggcc tcacgtgctt caccacgac 2800
aaccagcaact ggcagacggc gcctttctgg acactggggc ctttctgtgc 2850
ctgcaccagc gccaacaata acacgtactg gtgcattgagg accatcaatg 2900
agactcacaa ttccctcttc tgtgaatttg caactggctt cctagagttac 2950
tttgcattca acacagaccc ctaccagctg atgaatgcag tgaacacact 3000
ggacagggat gtcctcaacc agctacacgt acagctcatg gagctgagga 3050
gctgcaaggg ttacaaggcag tgtaaccccc ggactcgaaa catggacctg 3100
gatggaggaa gctatgagca atacaggcag tttcagcgctc gaaagtggcc 3150
agaaatgaag agaccttctt ccaaattcaact gggacaactg tgggaaggct 3200
ggaaaggta agaaacaaca gaggtggacc tccaaaaaca tagaggcatc 3250
acctgactgc acaggcaatg aaaaaccatg tgggtgattt ccagcagacc 3300
tgtgctattt gccaggaggc ctgagaaagc aagcacgcac tctcagtcaa 3350
catgacagat tctggaggat aaccagcagg agcagagata acttcagggaa 3400
gtccatTTT gcccctgctt ttgctttgga ttatacctca ccagctgcac 3450
aaaatgcatt tttcgtatc aaaaagtccac cactaaccct cccccagaag 3500
ctcacaaagg aaaacggaga gagcgagcga gagagattc cttggaaatt 3550
tctcccaagg gcgaaagtca ttgaaatTTT taaatcatag gggaaaagca 3600
gtcctgttct aaatcctctt attctttgg tttgtcacaa agaaggaact 3650
aagaagcagg acagaggcaa cgtggagagg ctgaaaacag tgcagagacg 3700
tttgacaatg agtcagtagc acaaaagaga tgacatttac ctgcactat 3750
aaaccctggt tgcctctgaa gaaactgcct tcattgtata tatgtgacta 3800
tttacatgtt atcaacatgg gaacttttag gggAACCTAA taagaaatcc 3850
caatTTTcaag gagttgggt gtcaataaac gctctgtggc cagtgtaaaa 3900
aaaaaa 3906

<210> 84
<211> 867
<212> PRT
<213> Homo sapiens

<400> 84
 Met Gly Pro Pro Ser Leu Val Leu Cys Leu Leu Ser Ala Thr Val
 1 5 10 15
 Phe Ser Leu Leu Gly Gly Ser Ser Ala Phe Leu Ser His His Arg
 20 25 30
 Leu Lys Gly Arg Phe Gln Arg Asp Arg Arg Asn Ile Arg Pro Asn
 35 40 45
 Ile Ile Leu Val Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser
 50 55 60
 Met Gln Val Met Asn Lys Thr Arg Arg Ile Met Glu Gln Gly Gly
 65 70 75
 Ala His Phe Ile Asn Ala Phe Val Thr Thr Pro Met Cys Cys Pro
 80 85 90
 Ser Arg Ser Ser Ile Leu Thr Gly Lys Tyr Val His Asn His Asn
 95 100 105
 Thr Tyr Thr Asn Asn Glu Asn Cys Ser Ser Pro Ser Trp Gln Ala
 110 115 120
 Gln His Glu Ser Arg Thr Phe Ala Val Tyr Leu Asn Ser Thr Gly
 125 130 135
 Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu Asn Glu Tyr Asn Gly
 140 145 150
 Ser Tyr Val Pro Pro Gly Trp Lys Glu Trp Val Gly Leu Leu Lys
 155 160 165
 Asn Ser Arg Phe Tyr Asn Tyr Thr Leu Cys Arg Asn Gly Val Lys
 170 175 180
 Glu Lys His Gly Ser Asp Tyr Ser Lys Asp Tyr Leu Thr Asp Leu
 185 190 195
 Ile Thr Asn Asp Ser Val Ser Phe Phe Arg Thr Ser Lys Lys Met
 200 205 210
 Tyr Pro His Arg Pro Val Leu Met Val Ile Ser His Ala Ala Pro
 215 220 225
 His Gly Pro Glu Asp Ser Ala Pro Gln Tyr Ser Arg Leu Phe Pro
 230 235 240
 Asn Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn
 245 250 255
 Pro Asp Lys His Trp Ile Met Arg Tyr Thr Gly Pro Met Lys Pro
 260 265 270
 Ile His Met Glu Phe Thr Asn Met Leu Gln Arg Lys Arg Leu Gln
 275 280 285

Thr Leu Met Ser Val Asp Asp Ser Met Glu Thr Ile Tyr Asn Met
 290 295 300
 Leu Val Glu Thr Gly Glu Leu Asp Asn Thr Tyr Ile Val Tyr Thr
 305 310 315
 Ala Asp His Gly Tyr His Ile Gly Gln Phe Gly Leu Val Lys Gly
 320 325 330
 Lys Ser Met Pro Tyr Glu Phe Asp Ile Arg Val Pro Phe Tyr Val
 335 340 345
 Arg Gly Pro Asn Val Glu Ala Gly Cys Leu Asn Pro His Ile Val
 350 355 360
 Leu Asn Ile Asp Leu Ala Pro Thr Ile Leu Asp Ile Ala Gly Leu
 365 370 375
 Asp Ile Pro Ala Asp Met Asp Gly Lys Ser Ile Leu Lys Leu Leu
 380 385 390
 Asp Thr Glu Arg Pro Val Asn Arg Phe His Leu Lys Lys Lys Met
 395 400 405
 Arg Val Trp Arg Asp Ser Phe Leu Val Glu Arg Gly Lys Leu Leu
 410 415 420
 His Lys Arg Asp Asn Asp Lys Val Asp Ala Gln Glu Glu Asn Phe
 425 430 435
 Leu Pro Lys Tyr Gln Arg Val Lys Asp Leu Cys Gln Arg Ala Glu
 440 445 450
 Tyr Gln Thr Ala Cys Glu Gln Leu Gly Gln Lys Trp Gln Cys Val
 455 460 465
 Glu Asp Ala Thr Gly Lys Leu Lys Leu His Lys Cys Lys Gly Pro
 470 475 480
 Met Arg Leu Gly Gly Ser Arg Ala Leu Ser Asn Leu Val Pro Lys
 485 490 495
 Tyr Tyr Gly Gln Gly Ser Glu Ala Cys Thr Cys Asp Ser Gly Asp
 500 505 510
 Tyr Lys Leu Ser Leu Ala Gly Arg Arg Lys Lys Leu Phe Lys Lys
 515 520 525
 Lys Tyr Lys Ala Ser Tyr Val Arg Ser Arg Ser Ile Arg Ser Val
 530 535 540
 Ala Ile Glu Val Asp Gly Arg Val Tyr His Val Gly Leu Gly Asp
 545 550 555
 Ala Ala Gln Pro Arg Asn Leu Thr Lys Arg His Trp Pro Gly Ala
 560 565 570
 Pro Glu Asp Gln Asp Asp Lys Asp Gly Gly Asp Phe Ser Gly Thr

Digitized by srujanika@gmail.com

	575	580	585
Gly Gly Leu Pro Asp Tyr Ser Ala Ala Asn Pro Ile Lys Val Thr			
590	595		600
His Arg Cys Tyr Ile Leu Glu Asn Asp Thr Val Gln Cys Asp Leu			
605	610		615
Asp Leu Tyr Lys Ser Leu Gln Ala Trp Lys Asp His Lys Leu His			
620	625		630
Ile Asp His Glu Ile Glu Thr Leu Gln Asn Lys Ile Lys Asn Leu			
635	640		645
Arg Glu Val Arg Gly His Leu Lys Lys Lys Arg Pro Glu Glu Cys			
650	655		660
Asp Cys His Lys Ile Ser Tyr His Thr Gln His Lys Gly Arg Leu			
665	670		675
Lys His Arg Gly Ser Ser Leu His Pro Phe Arg Lys Gly Leu Gln			
680	685		690
Glu Lys Asp Lys Val Trp Leu Leu Arg Glu Gln Lys Arg Lys Lys			
695	700		705
Lys Leu Arg Lys Leu Leu Lys Arg Leu Gln Asn Asn Asp Thr Cys			
710	715		720
Ser Met Pro Gly Leu Thr Cys Phe Thr His Asp Asn Gln His Trp			
725	730		735
Gln Thr Ala Pro Phe Trp Thr Leu Gly Pro Phe Cys Ala Cys Thr			
740	745		750
Ser Ala Asn Asn Asn Thr Tyr Trp Cys Met Arg Thr Ile Asn Glu			
755	760		765
Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu			
770	775		780
Tyr Phe Asp Leu Asn Thr Asp Pro Tyr Gln Leu Met Asn Ala Val			
785	790		795
Asn Thr Leu Asp Arg Asp Val Leu Asn Gln Leu His Val Gln Leu			
800	805		810
Met Glu Leu Arg Ser Cys Lys Gly Tyr Lys Gln Cys Asn Pro Arg			
815	820		825
Thr Arg Asn Met Asp Leu Asp Gly Gly Ser Tyr Glu Gln Tyr Arg			
830	835		840
Gln Phe Gln Arg Arg Lys Trp Pro Glu Met Lys Arg Pro Ser Ser			
845	850		855
Lys Ser Leu Gly Gln Leu Trp Glu Gly Trp Glu Gly			
860	865		

<210> 85
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 85
gaagccggct gtctgaatc 19

<210> 86
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 86
ggccagctat ctccgcag 18

<210> 87
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
aagggcctgc aagagaag 18

<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
cactgggaca actgtggg 18

<210> 89
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 89
cagaggcaac gtggagag 18

<210> 90
<211> 21
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 90
aagtattgtc atacagtgtt c 21

<210> 91
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 91
tagtacttgg gcacgagggtt ggag 24

<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 92
tcataccaac tgctggcat tggc 24

<210> 93
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 93
ctcaagctgc tggacacgga gcggccggtg aatcggttcc acttg 45

<210> 94
<211> 971
<212> DNA
<213> Homo sapiens

<400> 94
aacaaaagttc agtgactgag agggctgagc ggaggctgct gaaggggaga 50
aaggagttag gagctgctgg gcagagaggg actgtccggc tcccagatgc 100
tgggcctcct ggggagcaca gccctcgtagtgg gatggatcac aggtgctgct 150
gtggcggtagcc tgctgctgct gctgctgctg gccacctgcc ttttccacgg 200
acggcaggac tgtgacgtgg agaggaaccg tacagctgca gggggaaacc 250
gagtccgcccc ggcccaagcct tggcccttcc ggccggccgggg ccacctggga 300

atcttcacc atcaccgtca tcctggccac gtatctcatg tgccgaatgt 350
gggcctccac caccaccacc acccccgcca cacccctcac cacctccacc 400
accaccacca cccccaccgc caccatcccc gccacgctcg ctgaggctgc 450
tgtcgcgggt gcctgtggac agcagctgcc cctgcctcc catctgttcc 500
caggacaagt ggaccccatg tttccatgtg gaaggatgca tctctggggt 550
gaacgagggg aacaatagac tggggcttgc tccagctgca tttgcattgc 600
atgccccagt gtactatggc agcagagaat ggaggaacac tgggtctgca 650
gtgctgaagg gtttggggag tggagagcaa gggtgcttgc tcggggctgg 700
acagcccgta ttgtgacagt gactcccagt gagccccaga aatgacaagc 750
gtgtcttggc agagccagca cacaagtggc tgtgaagtgc ccgtcttgc 800
ctcctcatca ggctgctgca ggcctctggc gggcagggca ctgggagagg 850
ccctgagaat gtcctttgg tttggagaag gcagtgtgag gctgcacagt 900
caattcatcg gtgccttagt ccaagaaaat aaaaaccact aagaagctt 950
aaaaaaaaaa aaaaaaaaaa a 971

<210> 95
<211> 115
<212> PRT
<213> Homo sapiens

<400> 95
Met Leu Gly Leu Leu Gly Ser Thr Ala Leu Val Gly Trp Ile Thr
1 5 10 15
Gly Ala Ala Val Ala Val Leu Leu Leu Leu Leu Leu Ala Thr
20 25 30
Cys Leu Phe His Gly Arg Gln Asp Cys Asp Val Glu Arg Asn Arg
35 40 45
Thr Ala Ala Gly Gly Asn Arg Val Arg Arg Ala Gln Pro Trp Pro
50 55 60
Phe Arg Arg Arg Gly His Leu Gly Ile Phe His His Arg His
65 70 75
Pro Gly His Val Ser His Val Pro Asn Val Gly Leu His His His
80 85 90
His His Pro Arg His Thr Pro His His Leu His His His His His
95 100 105
Pro His Arg His His Pro Arg His Ala Arg
110 115

<210> 96
<211> 1312
<212> DNA
<213> Homo sapiens

<400> 96
ggcggctgct gagctgcctt gaggtgcagt gttggggatc cagagccatg 50
tcggacactgc tactactggg cctgattggg ggcctgactc tcttactgct 100
gctgacgctg ctggccttg ccgggtactc agggctactg gctggggtgg 150
aagtgagtgc tgggtcaccc cccatccgca acgtcactgt ggcctacaag 200
ttccacatgg ggctctatgg tgagactggg cggctttca ctgagagctg 250
cagcatctct cccaagctcc gctccatcgc tgtctactat gacaaccccc 300
acatggtgcc ccctgataag tgccgatgtg ccgtggcag catcctgagt 350
gaaggtgagg aatcgccctc ccctgagctc atcgacctct accagaaatt 400
tggcttcaag gtgttctcct tcccggcacc cagccatgtg gtgacagcca 450
cttcccccata caccaccatt ctgtccatct ggctggctac ccgcgtgtc 500
catcctgcct tggacaccta catcaaggag cgaaagctgt gtgcctatcc 550
tcggctggag atctaccagg aagaccagat ccatttcatg tgcccactgg 600
cacggcaggg agacttctat gtgcctgaga tgaaggagac agagtggaaa 650
tggcgggggc ttgtggaggc cattgacacc caggtggatg gcacaggagc 700
tgacacaatg agtgacacga gttctgtaag cttggaagtg agccctggca 750
gccgggagac tttagctgcc acactgtcac ctggggcag cagccgtggc 800
tgggatgacg gtgacaccccg cagcgagcac agctacagcg agtcaggtgc 850
cagcggctcc tctttgagg agctggactt ggagggcag gggcccttag 900
gggagtcacg gctggaccct gggactgagc ccctggggac taccaagtgg 950
ctctggagc ccactgcccc tgagaaggc aaggagtaac ccatggcctg 1000
caccctcctg cagtgcagtt gctgaggaac tgagcagact ctccagcaga 1050
ctctccagcc ctctccctcc ttccctctggg ggaggagggg ttccctgaggg 1100
acctgacttc ccctgctcca ggcctctgc taagccttct cctcactgcc 1150
ctttaggctc ccagggccag aggagccagg gactatttc tgcaccagcc 1200
cccagggctg ccgcccctgt tgtgtctttt ttccagactc acagtggagc 1250
ttccaggacc cagaataaag ccaatgattt acttgtttca cctggaaaaa 1300

aaaaaaaaaa aa 1312

<210> 97

<211> 313

<212> PRT

<213> Homo sapiens

<400> 97

Met Ser Asp Leu Leu Leu Gly Leu Ile Gly Gly Leu Thr Leu
1 5 10 15

Leu Leu Leu Leu Thr Leu Leu Ala Phe Ala Gly Tyr Ser Gly Leu
20 25 30

Leu Ala Gly Val Glu Val Ser Ala Gly Ser Pro Pro Ile Arg Asn
35 40 45

Val Thr Val Ala Tyr Lys Phe His Met Gly Leu Tyr Gly Glu Thr
50 55 60

Gly Arg Leu Phe Thr Glu Ser Cys Ser Ile Ser Pro Lys Leu Arg
65 70 75

Ser Ile Ala Val Tyr Tyr Asp Asn Pro His Met Val Pro Pro Asp
80 85 90

Lys Cys Arg Cys Ala Val Gly Ser Ile Leu Ser Glu Gly Glu Glu
95 100 105

Ser Pro Ser Pro Glu Leu Ile Asp Leu Tyr Gln Lys Phe Gly Phe
110 115 120

Lys Val Phe Ser Phe Pro Ala Pro Ser His Val Val Thr Ala Thr
125 130 135

Phe Pro Tyr Thr Thr Ile Leu Ser Ile Trp Leu Ala Thr Arg Arg
140 145 150

Val His Pro Ala Leu Asp Thr Tyr Ile Lys Glu Arg Lys Leu Cys
155 160 165

Ala Tyr Pro Arg Leu Glu Ile Tyr Gln Glu Asp Gln Ile His Phe
170 175 180

Met Cys Pro Leu Ala Arg Gln Gly Asp Phe Tyr Val Pro Glu Met
185 190 195

Lys Glu Thr Glu Trp Lys Trp Arg Gly Leu Val Glu Ala Ile Asp
200 205 210

Thr Gln Val Asp Gly Thr Gly Ala Asp Thr Met Ser Asp Thr Ser
215 220 225

Ser Val Ser Leu Glu Val Ser Pro Gly Ser Arg Glu Thr Ser Ala
230 235 240

Ala Thr Leu Ser Pro Gly Ala Ser Ser Arg Gly Trp Asp Asp Gly
245 250 255

Asp Thr Arg Ser Glu His Ser Tyr Ser Glu Ser Gly Ala Ser Gly
260 265 270

Ser Ser Phe Glu Glu Leu Asp Leu Glu Gly Glu Gly Pro Leu Gly
275 280 285

Glu Ser Arg Leu Asp Pro Gly Thr Glu Pro Leu Gly Thr Thr Lys
290 295 300

Trp Leu Trp Glu Pro Thr Ala Pro Glu Lys Gly Lys Glu
305 310

<210> 98

<211> 725

<212> DNA

<213> Homo sapiens

<400> 98

ccgcggaaac gctgtcctgg ctgcccac ccgaacagcc tgcctggtg 50

ccccggctcc ctgcccccg cccagtcatg accctgcgcc cctcaactcct 100

cccgctccat ctgctgctgc tgctgctgct cagtgcggcg gtgtgccggg 150

ctgaggctgg gtcgaaacc gaaagtccc tccggaccct ccaagtggag 200

accctggtgg agccccaga accatgtgcc gagcccgctg cttttggaga 250

cacgcttcac atacactaca cggaaagacct gtagatgga cgtattattg 300

acacccctt gaccagagac cctctggta tagaacttgg ccaaaagcag 350

gtgattccag gtctggagca gagtccttc gacatgtgtg tgggagagaa 400

gcgaaggcca atcattcctt ctcacttggc ctatggaaaa cggggatttc 450

caccatctgt cccagcgat gcagtggtgc agtatgacgt ggagctgatt 500

gcactaatcc gagccaaacta ctggctaaag ctggtaagg gcattttgcc 550

tctggtaggg atggccatgg tgccagccct cctgggcctc attgggtatc 600

acctatacag aaaggccaat agacccaaag tctccaaaaaa gaagctcaag 650

gaagagaaac gaaacaagag caaaaagaaa taataaataa taaatttaa 700

aaaacttaaa aaaaaaaaaaaa aaaaa 725

<210> 99

<211> 201

<212> PRT

<213> Homo sapiens

<400> 99

Met Thr Leu Arg Pro Ser Leu Leu Pro Leu His Leu Leu Leu
1 5 10 15

Leu Leu Leu Ser Ala Ala Val Cys Arg Ala Glu Ala Gly Leu Glu

20	25	30
Thr Glu Ser Pro Val Arg Thr Leu Gln Val	Glu Thr Leu Val Glu	
35	40	45
Pro Pro Glu Pro Cys Ala Glu Pro Ala Ala	Phe Gly Asp Thr Leu	
50	55	60
His Ile His Tyr Thr Gly Ser Leu Val Asp	Gly Arg Ile Ile Asp	
65	70	75
Thr Ser Leu Thr Arg Asp Pro Leu Val Ile	Glu Leu Gly Gln Lys	
80	85	90
Gln Val Ile Pro Gly Leu Glu Gln Ser	Leu Leu Asp Met Cys	Val
95	100	105
Gly Glu Lys Arg Arg Ala Ile Ile Pro	Ser His Leu Ala Tyr	Gly
110	115	120
Lys Arg Gly Phe Pro Pro Ser Val Pro	Ala Asp Ala Val Val	Gln
125	130	135
Tyr Asp Val Glu Leu Ile Ala Leu Ile	Arg Ala Asn Tyr Trp	Leu
140	145	150
Lys Leu Val Lys Gly Ile Leu Pro Leu	Val Gly Met Ala Met	Val
155	160	165
Pro Ala Leu Leu Gly Leu Ile Gly Tyr	His Leu Tyr Arg Lys	Ala
170	175	180
Asn Arg Pro Lys Val Ser Lys Lys	Leu Lys Glu Glu Lys	Arg
185	190	195
Asn Lys Ser Lys Lys Lys		
200		

<210> 100
 <211> 705
 <212> DNA
 <213> Homo sapiens

<400> 100
 cccggaaacg tgttcctggc tgccgcaccc gaacagcctg tcctgggcc 50
 ccggctccct gccccgcgcc cagtcatgac cctgcgcgcc tcactcctcc 100
 cgctccatct gctgctgctg ctgctgctca gtgcggcggt gtgccggct 150
 gaggctgggc tcgaaaccga aagtcccgtc cggaccctcc aagtggagac 200
 cctggtgag cccccagaac catgtgccga gcccgctgct tttggagaca 250
 cgcttcacat acactacacg ggaagcttgg tagatggacg tattattgac 300
 acctccctga ccagagaccc tctggttata gaacttggcc aaaagcaggt 350

gattccaggt ctggagcaga gtcttctcgatcatgtgtgtggagagaagc 400
gaaggccaat cattccttctcaacttggcctatggaaaacggggatttcca 450
ccatctgtcc cagcggatgc agtggtgcatatgacgtggagctgattgc 500
actaatccga gccaactact ggctaaagct ggtgaaggcattttgcctc 550
tggtagggat ggccatggtg ccaccctcctggcctcattggtatcacc 600
tatacagaaa ggccaataga cccaaagtctccaaaaagaa gctcaaggaa 650
gagaaacgaa acaagagcaa aaagaaataaa taaataataaa attttaaaaa 700
actta 705

<210> 101
<211> 543
<212> DNA
<213> Homo sapiens

<400> 101
ccgaaagtcc cgtccggacc ctccaagtgg agaccctggggagccccca 50
gaaccatgtg ccgagccgc tgctttggaa gacacgcttc acatacacta 100
cacgggaagc ttggtagatg gacgtattat tgacacctccctgaccagag 150
accctctggt tatagaactt ggccaaaagc aggtgattcc aggtctggag 200
cagagtcttc tcgacatgtg tgtggagag aagcgaaggcaatcattcc 250
ttctcaacttg gcctatggaa aacggggatt tccaccatctgtcccagcgg 300
atgcagtgggt gcagtatgac gtggagctga ttgcactaatccgagccaac 350
tactggctaa agctggtaa gggcattttgcctctggtag ggatggccat 400
ggtgccagcc ctctggcc tcattggta tcacctatac agaaaggcca 450
atagacccaa agtctccaaa aagaagctca aggaagagaa acgaaacaag 500
agcaaaaaga aataataat aataaatttt aaaaaactta aaa 543

<210> 102
<211> 1316
<212> DNA
<213> Homo sapiens

<400> 102
ctgctgcattc cgggtgtctg gaggctgtgg ccgtttgtt ttcttgctta 50
aaatcgggggg agtgaggcgg gcccggcggcgg cgacacccggctccggaa 100
ccactgcacg acggggctgg actgacactga aaaaaatgtc tggatttcta 150
gagggcttga gatgctcaga atgcattgac tggggggaaa agcgcaatac 200

tattgcttcc attgctgctg gtgtactatt ttttacaggc tggggattta 250
tcatagatgc agctgttatt tatcccacca tgaaagattt caaccactca 300
taccatgcct gtgggttat agcaaccata gccttcctaa tgattaatgc 350
agtatcgaa ggacaagtcc gaggtgata gtagtgcggaa gggtgtotgg 400
gtcaaacagg tgctcgatt tggctttcg ttggttcat gttggccctt 450
ggatctctga ttgcattat gtggattttt tttggagggtt atgttgctaa 500
agaaaaagac atagtatacc ctggaattgc tgtatTTTC cagaatgcct 550
tcatctttt tggagggctg gtttttaagt ttggccgcac tgaagactta 600
tggcagtgaa cacatctgat ttcccacagc acaacagccc tgcatgggtt 650
tgtttgtttt tttactgctc actcccaacc ttttgcattt ccattttcta 700
aacttatttc tgagtgttgtt ctcagctaa agttgtgtaa tactaaaatc 750
acgagaacac ctaaacaaca accaaaaatc tattgtggta tgcacttgat 800
taacttataa aatgttagag gaaactttca catgaataat ttttgcataa 850
ttttatcatg gtataattttaaaaaataa aagaaattac aaaagaaatt 900
atggatttgtt caatgttgtt atttgtcata tctgaggtcc aaaaccacaa 950
tgaaagtgtt ctgaagattt aatgtgttta ttccaaatgtt gtctcttctg 1000
tgtccaaatgt taaatgaaat ataaacattt tttgtttt aaaatattcc 1050
gtggtaaaaa ttcttcctca ctataattgg tattttactt taccaaaaat 1100
tctgtgaaca tgtaatgtaa ctggcttttgg aggtctccc aaggggtgag 1150
tggacgtgtt ggaagagaga agcaccatgg tccagccacc aggctccctg 1200
tgtcccttcc atggaaaggt ctccgctgt gcctctcatt ccaagggcag 1250
gaagatgtga ctcagccatg acacgtgggtt ctgggtggat gcacagtcac 1300
tccacatcca ccactg 1316

<210> 103
<211> 157
<212> PRT
<213> Homo sapiens

<400> 103
Met Ser Gly Phe Leu Glu Gly Leu Arg Cys Ser Glu Cys Ile Asp
1 5 10 15
Trp Gly Glu Lys Arg Asn Thr Ile Ala Ser Ile Ala Ala Gly Val
20 25 30

Leu Phe Phe Thr Gly Trp Trp Ile Ile Ile Asp Ala Ala Val Ile
 35 40 45
 Tyr Pro Thr Met Lys Asp Phe Asn His Ser Tyr His Ala Cys Gly
 50 55 60
 Val Ile Ala Thr Ile Ala Phe Leu Met Ile Asn Ala Val Ser Asn
 65 70 75
 Gly Gln Val Arg Gly Asp Ser Tyr Ser Glu Gly Cys Leu Gly Gln
 80 85 90
 Thr Gly Ala Arg Ile Trp Leu Phe Val Gly Phe Met Leu Ala Phe
 95 100 105
 Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Gly Tyr Val
 110 115 120
 Ala Lys Glu Lys Asp Ile Val Tyr Pro Gly Ile Ala Val Phe Phe
 125 130 135
 Gln Asn Ala Phe Ile Phe Phe Gly Gly Leu Val Phe Lys Phe Gly
 140 145 150
 Arg Thr Glu Asp Leu Trp Gln
 155

<210> 104
 <211> 545
 <212> DNA
 <213> Homo sapiens

<400> 104
 ttcttggcta aaatcgaaaa agtgaggcgg gcccgcgcgg cgcgacaccg 50
 ggctccggaa ccactgcacg acggggctgg actgacacctga aaaaaatgtc 100
 tggatttcta gagggcttga gatgctcaga atgcatttgcac tggggggaaa 150
 agcgcaatac tattgcttcc attgctgttgc gtgtactatt ttttacaggc 200
 tgggtggatta tcatacatgc acgttgttatt tatccccacca tgaaagattt 250
 caaccactca taccatgcct gtgggtttat agcaaccata gcottcctaa 300
 tgattaatgc agtatcgaat ggacaagtcc gaggtgtatag ttacagtcaa 350
 ggttgtctgg gtcaaacagg tgctcgatt tggctttcg ttggtttcat 400
 gttggccttt ggatctctga ttgcatttgcatt gtggattctt tttggaggtt 450
 atgttgctaa agaaaaagac atagttatacc ctgaaattgc tgtatTTTC 500
 cagaatgcct tcatactttt tggaggcgtt gtttttaagt ttggc 545

<210> 105
 <211> 490
 <212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 31, 39, 108, 145, 179, 219, 412, 479

<223> unknown base

<400> 105

tggacggacc tgaaaaaaat gtttggattt ntagagggn ttagatgttc 50

agaatgcattt actggggaa aagcgcaaat actattgctt ccattgctgc 100

tgggtanta ttttttacag gctggtggat tatcatagat gcagntgtta 150

tttatccac catgaaagat ttcaaccant cataccatgc ctgtggtgtt 200

atagcaacca tagccttcnt aatgattaat gcagtatcga atggacaagt 250

ccgaggtgat agttacagtg aaggttgttt gggtaaaca ggtgctcgca 300

tttggctttt cgttggtttc atgttggcct ttggatctct gattgcattt 350

atgtggattc ttttggagg ttatgttgct aaagaaaaag acatagtata 400

ccctggaatt gntgtatccc tccagaatgc cttcatctt tttggagggc 450

tggttttaa gtttggccgc actgaagant tatggcagtg 490

<210> 106

<211> 466

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 26, 38, 81, 115, 207, 329, 380, 446, 449

<223> unknown base

<400> 106

ggacacccggg ttccggacca atgcangacg gggggantg acctgaaaaa 50

aatgtttgga ttttagagg gcttgagatg ntcagaatgc attgactgg 100

gaaaaagcgc aatantattt cttccattt ctgctgggtt actatttttt 150

acaggggttgtt ggattatcat agatgcagct gtatatttc ccaccatgaa 200

agattttaac cactcataacc atgcctgtgg tgttatagca accatagcct 250

tcctaattatgta taatgcagta tcgaatggac aagtccgagg tgatagttac 300

agtgaagggtt gtttgggtca aacaggtgnt cgcatggc ttttcgttgg 350

tttcatgttg gcctttggat ttctgattgn attctatgcg gattcttctt 400

ggaggttatg ttgctaaaga aaaagacata gtataccctg gaatnctnt 450

atttttccag aatgcc 466

<210> 107
<211> 377
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 52, 67, 70, 78, 105, 144, 150, 209, 266, 268, 282, 310, 331, 356
<223> unknown base

<400> 107
tagagggctt gagatgctca gaatgcattg actgggggaa aaagcgcaat 50
antattgctt ccattgnntgn tggtgtanta ttttttaca ggctgggtgga 100
ttatnataga tgcagctgtt atttatccca ccatgaaaga tttnaaccan 150
tcataccatg cctgtggtgt tatagcaacc atagccttcc taatgattaa 200
tgcagtatng aatggacaag tccgaggtga tagttacagt gaagggttgc 250
tgggtcaaac aggtgnntngc atttggcttt tngttggttt catgttggcc 300
tttggatctn tgattgcatt tatgtggatt nttttggag gttatgttgc 350
taaagnaaaaa gacatagttt accctgt 377

<210> 108
<211> 552
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 12, 25, 65, 130, 437, 537
<223> unknown base

<400> 108
gggaggctgt gnccgttttgc ttttnttggc taaaatcgaa ggagtggggc 50
ggcccgccgc ggcnngacac cgggttccgg gaaccattgc acgacgggt 100
ggactgacct gaaaaaaaaatg tttggatttt tagagggctt gagatgctca 150
aatgcatttgc actgggggaa aaagcgcaat actattgctt ccattgtgc 200
tggtgtacta ttttttacag gctgggtggat tatcatagat gcagctgtta 250
tttatcccac catgaaagat ttcaaccact cataccatgc ctgtgggttt 300
atagcaacca tagccttcctt aatgattaat gcagttatcga atggacaagt 350
ccgaggtgat agttacagt aaggttgctt gggtaaaaca ggtgctcgca 400
tttggctttt cggtggtttc atgttggcct ttggatntct gattgcattt 450
atgtggatttcc tttttggagg ttatgttgc aaagaaaaaag acatagttata 500

ccctggaatt gctgtatTTT tccagaatgc ctTCATNTTt tttggagggc 550
tg 552

<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 109
gggtggatgg tactgctgca tcc 23

<210> 110
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 110
tgTTgtgCTg tggaaatca gatgtg 26

<210> 111
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 111
gtgtctggag gctgtggccg ttttgtttc ttgggctaaa atcggg 46

<210> 112
<211> 3004
<212> DNA
<213> Homo sapiens

<400> 112
cgacGCCGGC gtgatgtggc ttccgctgg gctgctcctg gctgtgtgc 50
tgctggccgt cctctgcaaa gtttacttgg gactattctc tggcagctcc 100
ccgaatcctt tctccgaaga tgtcaaacgg cccccagcgc ccctggtaac 150
tgacaaggag gccaggaaga aggttctcaa acaagcttt tcagccaacc 200
aagtgccgga gaagctggat gtgggtggaa ttggcagtgg ctTTggggc 250
ctggctgcag ctgcaattct agctaaagct ggcaagcgcag tcctggtgct 300
ggaacaacat accaaggcag ggggctgctg tcatacctt ggaaagaatg 350
gccttgaatt tgacacagga atccattaca ttggcgtat ggaagaggc 400

agcattggcc gtttatctt ggaccagatc actgaagggc agctggactg 450
ggctccctg tccttcctt ttgacatcat ggtactggaa gggcccaatg 500
gccgaaagga gtacccatg tacagtggag agaaagccta cattcagggc 550
ctcaaggaga agtttccaca ggaggaagct atcattgaca agtatataaa 600
gctggtaag gtggtatcca gtggagccc tcatgccatc ctgttcaa 650
tcctccatt gcccggtgtt cagtcctcg acaggtgtgg gctgctgact 700
cgtttctctc cattccttca agcatccacc cagagcctgg ctgaggtcct 750
gcagcagctg ggggcctcct ctgagctcca ggcagtactc agctacatct 800
tccccactta cggtgtcacc cccaaccaca gtgcctttc catgcacgcc 850
ctgctggtca accactacat gaaaggaggc ttttatcccc gagggggttc 900
cagtgaardt gccttccaca ccattccctgt gattcagcgg gctggggcgc 950
ctgtcctcac aaaggccact gtgcagagtg tggtgctgga ctcagctggg 1000
aaagcctgtg gtgtcagtgt gaagaagggg catgagctgg tgaacatcta 1050
ttgccccatc gtggcttcca acgcaggact gttcaacacc tatgaacacc 1100
tactgccggg gaacgcccgc tgcctgccag gtgtgaagca gcaactgggg 1150
acggtgccgc ccggcttagg catgacctct gtttcatct gcctgcgagg 1200
caccaaggaa gacctgcac tgcgtccac caactactat gtttactatg 1250
acacggacat ggaccaggcg atggagcgct acgtctccat gcccaggaa 1300
gaggctgcgg aacacatccc tcttcttttc ttgccttcc catcagccaa 1350
agatccgacc tgggaggacc gattcccagg ccggtccacc atgatcatgc 1400
tcataccac tgcctacgag tggtttgagg agtggcaggc ggagctgaag 1450
ggaaagcggg gcagtacta tgagaccttc aaaaactcct ttgtggaagc 1500
ctctatgtca gtggcctga aactgttccc acagctggag gggagggtgg 1550
agagtgtgac tgcaggatcc ccactcacca accagttcta tctggctgct 1600
ccccgaggtg cctgctacgg ggctgaccat gacctggcc gcctgcaccc 1650
ttgtgtgatg gcctccttga gggcccagag cccatcccc aacctctatc 1700
tgacaggcca ggatatcttc acctgtggac tggcggggc cctgcaaggt 1750
gccctgtgt gcagcagcgc catcctgaag cgaaacttgt actcagaccc 1800
taagaatctt gattcttagga tccgggcaca gaagaaaaag aatttagttcc 1850

atcagggagg agtcagagga atttgcccaa tggctgggc atctccctg 1900
acttacccat aatgtcttc tgcattagtt ccttgcacgt ataaagcact 1950
ctaatttgt tctgatgcct gaagagaggc ctatgtaaa tcacaattcc 2000
gaatctgggg caatggaatc actgcttcca gctggggcag gtgagatctt 2050
tacgccttt ataacatgcc atccctacta ataggatatt gacttggata 2100
gcttcatgtc tcatgacgag cgccgcctcg catccctcac ccatgcctcc 2150
taactcagtg atcaaagcga atattccatc tgtggataga acccctggca 2200
gtgttgcag ctcaacctgg tgggttcagt tctgtcctga ggcttctgct 2250
ctcattcatt tagtgcacg ctgcacagtt ctacactgtc aaggaaaaag 2300
ggagactaat gaggcttaac tcaaaacctg ggctgggtt tggttgcatt 2350
tccataggtt tggagagctc tagatctt ttgtgctggg ttcaagtggct 2400
cttcagggga cagggaaatgc ctgtgtctgg ccagtgtgg tctggagctt 2450
tgggttaaca gcaggatcca tcagtttagta gggtgcatgt cagatgatca 2500
tatccaattc atatgaaatc cccgggtctg tcttcattat catcggttg 2550
gcagctgggtt ctcaatgtgc cagcaggac tcagttacctg agcctcaatc 2600
aagccttattc caccaaaatac acaggaaagg gtgatgcagg gaagggtgac 2650
atcaggagtc agggcatgga ctggtaagat gaatactttg ctgggctgaa 2700
gcaggctgca gggcattcca gccaaggca cagcaggaa cagtgcagg 2750
aggtgtgggg taagggaggg aagtcacatc agaaaaggaa aagccacgga 2800
atgtgtgtga agcccagaaa tggcattgc agttaattag cacatgtgag 2850
ggttagacag gtaggtgaat gcaagctaa ggtttggaaa aatgactttt 2900
cagttatgtc tttggtatca gacatacga aggtctttt gtagttcgtg 2950
ttaatgttaac attaataat ttattgattc cattgcttta aaaaaaaaaa 3000
aaaa 3004

<210> 113
<211> 610
<212> PRT
<213> Homo sapiens

<400> 113
Met Trp Leu Pro Leu Val Leu Leu Ala Val Leu Leu Ala
1 5 10 15
Val Leu Cys Lys Val Tyr Leu Gly Leu Phe Ser Gly Ser Ser Pro

© 2002 Blackwell Science Ltd

	20	25	30
Asn Pro Phe Ser Glu Asp Val Lys Arg Pro Pro Ala Pro Leu Val			
35	40	45	
Thr Asp Lys Glu Ala Arg Lys Lys Val Leu Lys Gln Ala Phe Ser			
50	55	60	
Ala Asn Gln Val Pro Glu Lys Leu Asp Val Val Val Ile Gly Ser			
65	70	75	
Gly Phe Gly Gly Leu Ala Ala Ala Ile Leu Ala Lys Ala Gly			
80	85	90	
Lys Arg Val Leu Val Leu Glu Gln His Thr Lys Ala Gly Gly Cys			
95	100	105	
Cys His Thr Phe Gly Lys Asn Gly Leu Glu Phe Asp Thr Gly Ile			
110	115	120	
His Tyr Ile Gly Arg Met Glu Glu Gly Ser Ile Gly Arg Phe Ile			
125	130	135	
Leu Asp Gln Ile Thr Glu Gly Gln Leu Asp Trp Ala Pro Leu Ser			
140	145	150	
Ser Pro Phe Asp Ile Met Val Leu Glu Gly Pro Asn Gly Arg Lys			
155	160	165	
Glu Tyr Pro Met Tyr Ser Gly Glu Lys Ala Tyr Ile Gln Gly Leu			
170	175	180	
Lys Glu Lys Phe Pro Gln Glu Glu Ala Ile Ile Asp Lys Tyr Ile			
185	190	195	
Lys Leu Val Lys Val Val Ser Ser Gly Ala Pro His Ala Ile Leu			
200	205	210	
Leu Lys Phe Leu Pro Leu Pro Val Val Gln Leu Leu Asp Arg Cys			
215	220	225	
Gly Leu Leu Thr Arg Phe Ser Pro Phe Leu Gln Ala Ser Thr Gln			
230	235	240	
Ser Leu Ala Glu Val Leu Gln Gln Leu Gly Ala Ser Ser Glu Leu			
245	250	255	
Gln Ala Val Leu Ser Tyr Ile Phe Pro Thr Tyr Gly Val Thr Pro			
260	265	270	
Asn His Ser Ala Phe Ser Met His Ala Leu Leu Val Asn His Tyr			
275	280	285	
Met Lys Gly Gly Phe Tyr Pro Arg Gly Gly Ser Ser Glu Ile Ala			
290	295	300	
Phe His Thr Ile Pro Val Ile Gln Arg Ala Gly Gly Ala Val Leu			
305	310	315	

Thr Lys Ala Thr Val Gln Ser Val Leu Leu Asp Ser Ala Gly Lys
 320 325 330
 Ala Cys Gly Val Ser Val Lys Lys Gly His Glu Leu Val Asn Ile
 335 340 345
 Tyr Cys Pro Ile Val Val Ser Asn Ala Gly Leu Phe Asn Thr Tyr
 350 355 360
 Glu His Leu Leu Pro Gly Asn Ala Arg Cys Leu Pro Gly Val Lys
 365 370 375
 Gln Gln Leu Gly Thr Val Arg Pro Gly Leu Gly Met Thr Ser Val
 380 385 390
 Phe Ile Cys Leu Arg Gly Thr Lys Glu Asp Leu His Leu Pro Ser
 395 400 405
 Thr Asn Tyr Tyr Val Tyr Tyr Asp Thr Asp Met Asp Gln Ala Met
 410 415 420
 Glu Arg Tyr Val Ser Met Pro Arg Glu Glu Ala Ala Glu His Ile
 425 430 435
 Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala Lys Asp Pro Thr Trp
 440 445 450
 Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile Met Leu Ile Pro
 455 460 465
 Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu Leu Lys Gly
 470 475 480
 Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe Val Glu
 485 490 495
 Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu Gly
 500 505 510
 Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe
 515 520 525
 Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp
 530 535 540
 Leu Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln
 545 550 555
 Ser Pro Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr
 560 565 570
 Cys Gly Leu Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser
 575 580 585
 Ala Ile Leu Lys Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp
 590 595 600
 Ser Arg Ile Arg Ala Gln Lys Lys Lys Asn

605

610

<210> 114
<211> 1701
<212> DNA
<213> Homo sapiens

<400> 114
gcagcggcga ggccggcggtg gtggctgagt ccgtgggtggc agaggcgaag 50
gcgacagctc taggggttgg caccggcccc gagaggagga tgcgggtccg 100
gatagggctg acgctgctgc tgtgtgcgggt gctgctgagc ttggcctcgg 150
cgtcctcgga tgaagaaggc agccaggatg aatccttaga ttccaagact 200
actttgacat cagatgagtc agtaaaggac catactactg caggcagagt 250
agttgctggt caaatatttc ttgattcaga agaatctgaa tttagaatcct 300
ctattcaaga agaggaagac agcctaaga gccaaagaggg ggaaagtgtc 350
acagaagata tcagctttct agagtctcca aatccagaaa acaaggacta 400
tgaagagcca aagaaagtac ggaaaccagc tttgaccgcc attgaaggca 450
cagcacatgg ggagccctgc cacttccctt ttctttctt agataaggag 500
tatgatgaat gtacatcaga tgggagggaa gatggcagac tgtggtgtgc 550
tacaacctat gactacaaag cagatgaaaaa gtggggctt tgtgaaactg 600
aagaagaggc tgctaagaga cggcagatgc aggaagcaga aatgatgtat 650
caaactggaa tgaaaatcct taatggaagc aataagaaaa gccaaaaaaaaag 700
agaagcatat cggtatctcc aaaaggcagc aagcatgaac cataccaaag 750
ccctggagag agtgtcatat gctctttat ttggtgatta ctgccacag 800
aatatccagg cagcgagaga gatgtttgag aagctgactg aggaaggctc 850
tcccaaggga cagactgctc ttggcttct gtatgcctct ggacttggtg 900
ttaattcaag tcaggcaaag gctcttgat attatacatt tggagctctt 950
ggggcaatc taatagccca catggtttg gtaagttagac ttttagtgaa 1000
ggctaataat attaacatca gaagaatttg tggttatag cggccacaac 1050
ttttcagct ttcatgatcc agatttgctt gtattaagac caaatattca 1100
gttgaacttc cttcaaattc ttgttaatgg atataacaca tggaaatctac 1150
atgtaaatga aagttggtgg agtccacaat ttttctttaa aatgattagt 1200
ttggctgatt gcccctaaaa agagagatct gataaatggc tcttttaaa 1250

ttttctctga gttggaattt tcagaatcat ttttacatt agattatcat 1300
aattttaaaa attttcttt agttttcaa aattttgtaa atggggcata 1350
tagaaaaaca acatgaaata ttatacaata ttttgcaca atgccctaag 1400
aattgttaaa attcatggag ttatgtgc agaatgactc cagagagctc 1450
tactttctgt ttttacttt tcatgattgg ctgtttccc atttattctg 1500
gtcatttatt gctagtgaca ctgtgcctgc ttccagtagt ctcatttcc 1550
ctatggct aattgttac ttttcttg ctaatttggaa agattaactc 1600
attttaata aaattatgtc taagattaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700

a 1701

<210> 115
<211> 301
<212> PRT
<213> Homo sapiens

<400> 115
Met Arg Val Arg Ile Gly Leu Thr Leu Leu Cys Ala Val Leu
1 5 10 15
Leu Ser Leu Ala Ser Ala Ser Ser Asp Glu Glu Gly Ser Gln Asp
20 25 30
Glu Ser Leu Asp Ser Lys Thr Thr Leu Thr Ser Asp Glu Ser Val
35 40 45
Lys Asp His Thr Thr Ala Gly Arg Val Val Ala Gly Gln Ile Phe
50 55 60
Leu Asp Ser Glu Glu Ser Glu Leu Glu Ser Ser Ile Gln Glu Glu
65 70 75
Glu Asp Ser Leu Lys Ser Gln Glu Gly Glu Ser Val Thr Glu Asp
80 85 90
Ile Ser Phe Leu Glu Ser Pro Asn Pro Glu Asn Lys Asp Tyr Glu
95 100 105
Glu Pro Lys Lys Val Arg Lys Pro Ala Leu Thr Ala Ile Glu Gly
110 115 120
Thr Ala His Gly Glu Pro Cys His Phe Pro Phe Leu Phe Leu Asp
125 130 135
Lys Glu Tyr Asp Glu Cys Thr Ser Asp Gly Arg Glu Asp Gly Arg
140 145 150
Leu Trp Cys Ala Thr Thr Tyr Asp Tyr Lys Ala Asp Glu Lys Trp
155 160 165

Gly Phe Cys Glu Thr Glu Glu Ala Ala Lys Arg Arg Gln Met
170 175 180
Gln Glu Ala Glu Met Met Tyr Gln Thr Gly Met Lys Ile Leu Asn
185 190 195
Gly Ser Asn Lys Lys Ser Gln Lys Arg Glu Ala Tyr Arg Tyr Leu
200 205 210
Gln Lys Ala Ala Ser Met Asn His Thr Lys Ala Leu Glu Arg Val
215 220 225
Ser Tyr Ala Leu Leu Phe Gly Asp Tyr Leu Pro Gln Asn Ile Gln
230 235 240
Ala Ala Arg Glu Met Phe Glu Lys Leu Thr Glu Glu Gly Ser Pro
245 250 255
Lys Gly Gln Thr Ala Leu Gly Phe Leu Tyr Ala Ser Gly Leu Gly
260 265 270
Val Asn Ser Ser Gln Ala Lys Ala Leu Val Tyr Tyr Thr Phe Gly
275 280 285
Ala Leu Gly Gly Asn Leu Ile Ala His Met Val Leu Val Ser Arg
290 295 300
Leu

<210> 116
<211> 584
<212> DNA
<213> Homo sapiens

<400> 116
cttcccaagcc ctgtgccccca aagcacctgg agcatatagc cttgcagaac 50
ttctacttgc ctgcctccct gcctctggcc atggcctgcc ggtgcctcag 100
cttccttctg atggggacct tcctgtcagt ttcccagaca gtcctggccc 150
agctggatgc actgctggtc ttcccaggcc aagtggctca actctcctgc 200
acgctcagcc cccagcacgt caccatcagg gactacggtg tgtcctggta 250
ccagcagcgg gcaggcagtg cccctcgata tctcctctac taccgctcgg 300
aggaggatca ccaccggcct gctgacatcc ccgatcgatt ctcggcagcc 350
aaggatgagg cccacaatgc ctgtgtcctc accattagtc ccgtgcagcc 400
tgaagacgac gcggattact actgctctgt tggctacggc ttttagccct 450
aggggtgggg tgtgagatgg gtgcctcccc tctgcctccc atttctgccc 500
ctgaccccttgg gtccctttta aactttctct gaggccttgct tcccccctgt 550

aaaatgggtt aataatattc aacatgtcaa caac 584

<210> 117

<211> 123

<212> PRT

<213> Homo sapiens

<400> 117

Met Ala Cys Arg Cys Leu Ser Phe Leu Leu Met Gly Thr Phe Leu
1 5 10 15

Ser Val Ser Gln Thr Val Leu Ala Gln Leu Asp Ala Leu Leu Val
20 25 30

Phe Pro Gly Gln Val Ala Gln Leu Ser Cys Thr Leu Ser Pro Gln
35 40 45

His Val Thr Ile Arg Asp Tyr Gly Val Ser Trp Tyr Gln Gln Arg
50 55 60

Ala Gly Ser Ala Pro Arg Tyr Leu Leu Tyr Tyr Arg Ser Glu Glu
65 70 75

Asp His His Arg Pro Ala Asp Ile Pro Asp Arg Phe Ser Ala Ala
80 85 90

Lys Asp Glu Ala His Asn Ala Cys Val Leu Thr Ile Ser Pro Val
95 100 105

Gln Pro Glu Asp Asp Ala Asp Tyr Tyr Cys Ser Val Gly Tyr Gly
110 115 120

Phe Ser Pro

<210> 118

<211> 3402

<212> DNA

<213> Homo sapiens

<400> 118

gccggccgc cccgagaccg ggccccgggg cgccggggcg ggatgcgg 50

cgcggccggc ggcgatgacc gcggagcgca cgccgcgggc cggccctga 100

ccccggccgc cggccgctga gccccccgccc gaggtccgga caggccgaga 150

tgacgcccag cccccctgttg ctgctcctgc tgccgcccgt gctgctgggg 200

gccttcccac cggccgcccgc cggccgagggc cccccaaaga tggcggacaa 250

ggtgtccca cggcaggtgg cccggctggg ccgcactgtg cggctgcagt 300

gcccagtggaa gggggaccccg cggccgctga ccatgtggac caaggatggc 350

cgcaccatcc acagcggctg gagccgcttc cgcgtgctgc cgcaggggct 400

gaagggtgaag caggtggagc gggaggatgc cggcgtgtac gtgtgcaagg 450

ccacccaacgg cttcggcagc ctgagcgtca actacaccct cgtcgtgctg 500
gatgacatta gcccaggaa ggagagcctg gggccccaca gctcctctgg 550
gggtcaagag gaccccgcca gccagcagtg ggcacgaccg cgcttacac 600
agccctccaa gatgaggcgc cgggtgatecg cacggccgt gggtagctcc 650
gtgcggctca agtgcgtggc cagcgggcac cctcggcccg acatcacgtg 700
gatgaaggac gaccaggcct tgacgcgccc agaggccgct gagcccagga 750
agaagaagtg gacactgagc ctgaagaacc tgccggccgga ggacagcggc 800
aaatacacct gccgcgtgtc gaaccgcgcg ggcgccatca acgccaccta 850
caaggtggat gtgatccagc ggaccgcgttc caagccgtg ctcacaggca 900
cgcaccccgta gaacacgcacg gtggacttcg gggggaccac gtccttccag 950
tgcaaggtgc gcagcgcacgt gaagccggtg atccagtggc tgaagcgcgt 1000
ggagtacggc gccgaggggcc gccacaactc caccatcgat gtggggccgc 1050
agaagtttgt ggtgctgccc acgggtgacg tgtggtcgcg gcccgcacggc 1100
tcctacctca ataagctgct catcaccgt gcccgcagg acgatgcggg 1150
catgtacatc tgccttggcg ccaacaccat gggctacagc ttccgcagcg 1200
ctttcctcac cgtgctgcca gacccaaaac cgccaggggcc acctgtggcc 1250
tcctcgtctt cggccactag cctgcccgtgg cccgtggtca tcggcatccc 1300
agccggcgct gtcttcatcc tgggcacccct gtcctgtgg ctttgccagg 1350
cccagaagaa gccgtgcacc cccgcgcctg cccctccct gcctggcac 1400
cgccccccgg ggacggcccg cgaccgcacg ggagacaagg accttcctc 1450
gttggccgcc ctcagcgcgtg gcccgtgtgt gggctgtgt gaggagcatg 1500
ggtctccggc agccccccag cacttactgg gcccaggccc agttgctggc 1550
cctaagttgt accccaaact ctacacagac atccacacac acacacacac 1600
acactctcac acacactcac acgtggaggg caaggtccac cagcacatcc 1650
actatcagtg ctagacggca ccgtatctgc agtgggcacg gggggccgg 1700
ccagacaggc agactggag gatggaggac ggagctgcag acgaaggcag 1750
gggacccatg gcgaggagga atggccagca ccccaggcag tctgtgtgt 1800
aggcatagcc cctggacaca cacacacaga cacacacact acctggatgc 1850
atgtatgcac acacatgcgc gcacacgtgc tccctgaagg cacacgtacg 1900

cacacgcaca tgcacagata tgccgcctgg gcacacagat aagctgccca 1950
aatgcacgca cacgcacaga gacatgccag aacatacaag gacatgtgc 2000
ctgaacatac acacgcacac ccatgcgcag atgtgctgcc tggacacaca 2050
cacacacacg gatatgctgt ctggacgcac acacgtgcag atatggtac 2100
cgAACACACA cgtgcacaga tatgctgcct ggacacacag ataatgctgc 2150
cttgacacac acatgcacgg atattgcctg gacacacaca cacacacacg 2200
cgtgcacaga tatgctgtct ggacacgcac acacatgcag atatgctgcc 2250
tggacacaca cttccagaca cacgtgcaca ggccgcagata tgctgcctgg 2300
acacacgcag atatgctgtc tagtcacaca cacacgcaga catgctgtcc 2350
ggacacacac acgcatgcac agatatgctg tccggacaca cacacgcacg 2400
cagatatgct gcctggacac acacacagat aatgctgcct caacactcac 2450
acacgtgcag atattgcctg gacacacaca tgtgcacaga tatgctgtct 2500
ggacatgcac acacgtgcag atatgctgtc cggatacaca cgacacgcaca 2550
catgcagata tgctgcctgg gcacacactt ccggacacac atgcacacac 2600
aggtgcagat atgctgcctg gacacacaca cagataatgc tgcctcaaca 2650
ctcacacacg tgcagatatt gcctggacac acacatgtgc acagatatgc 2700
tgtctggaca tgcacacacg tgcagatatg ctgtccggat acacacgcac 2750
gcacacatgc agatatgctg cctggcaca cacttccgga cacacatgca 2800
cacacaggtg cagatatgct gcctggacac acgcagactg acgtgcttt 2850
gggagggtgt gccgtgaagc ctgcagtacg tgtgccgtga ggctcatagt 2900
tgcatggaga cttccctgc tccaccgtca ctcccccaac tctgcccggcc 2950
tctgtccccg cctcagtc cgcctccatc cccgcctctg tccccctggcc 3000
ttggcggcta ttttgccac ctgccttggg tgcccaggag tcccctactg 3050
ctgtggctg gggttgggg cacagcagcc ccaagcctga gaggctggag 3100
cccatggcta gtggctcatc cccagtgcac tctccccctg acacagagaa 3150
ggggccttgg tatttatatt taagaaatga agataatatt aataatgatg 3200
gaaggaagac tgggttgcag ggactgttgt ctctccttggg gcccgggacc 3250
cgccctggctt ttccagccatg ctgatgacca caccgggtcc aggccagaca 3300
ccaccccccac cccactgtc gtggtggccc cagatctctg taattttatg 3350

tagagtttga gctgaagccc cgtatattta atttattttg ttaaacacaa 3400
 aa 3402
 <210> 119
 <211> 504
 <212> PRT
 <213> Homo sapiens
 <400> 119
 Met Thr Pro Ser Pro Leu Leu Leu Leu Leu Pro Pro Pro Leu Leu
 1 5 10 15
 Leu Gly Ala Phe Pro Pro Ala Ala Ala Arg Gly Pro Pro Lys
 20 25 30
 Met Ala Asp Lys Val Val Pro Arg Gln Val Ala Arg Leu Gly Arg
 35 40 45
 Thr Val Arg Leu Gln Cys Pro Val Glu Gly Asp Pro Pro Pro Leu
 50 55 60
 Thr Met Trp Thr Lys Asp Gly Arg Thr Ile His Ser Gly Trp Ser
 65 70 75
 Arg Phe Arg Val Leu Pro Gln Gly Leu Lys Val Lys Gln Val Glu
 80 85 90
 Arg Glu Asp Ala Gly Val Tyr Val Cys Lys Ala Thr Asn Gly Phe
 95 100 105
 Gly Ser Leu Ser Val Asn Tyr Thr Leu Val Val Leu Asp Asp Ile
 110 115 120
 Ser Pro Gly Lys Glu Ser Leu Gly Pro Asp Ser Ser Ser Gly Gly
 125 130 135
 Gln Glu Asp Pro Ala Ser Gln Gln Trp Ala Arg Pro Arg Phe Thr
 140 145 150
 Gln Pro Ser Lys Met Arg Arg Arg Val Ile Ala Arg Pro Val Gly
 155 160 165
 Ser Ser Val Arg Leu Lys Cys Val Ala Ser Gly His Pro Arg Pro
 170 175 180
 Asp Ile Thr Trp Met Lys Asp Asp Gln Ala Leu Thr Arg Pro Glu
 185 190 195
 Ala Ala Glu Pro Arg Lys Lys Lys Trp Thr Leu Ser Leu Lys Asn
 200 205 210
 Leu Arg Pro Glu Asp Ser Gly Lys Tyr Thr Cys Arg Val Ser Asn
 215 220 225
 Arg Ala Gly Ala Ile Asn Ala Thr Tyr Lys Val Asp Val Ile Gln
 230 235 240

Arg Thr Arg Ser Lys Pro Val Leu Thr Gly Thr His Pro Val Asn
 245 250 255
 Thr Thr Val Asp Phe Gly Gly Thr Thr Ser Phe Gln Cys Lys Val
 260 265 270
 Arg Ser Asp Val Lys Pro Val Ile Gln Trp Leu Lys Arg Val Glu
 275 280 285
 Tyr Gly Ala Glu Gly Arg His Asn Ser Thr Ile Asp Val Gly Gly
 290 295 300
 Gln Lys Phe Val Val Leu Pro Thr Gly Asp Val Trp Ser Arg Pro
 305 310 315
 Asp Gly Ser Tyr Leu Asn Lys Leu Leu Ile Thr Arg Ala Arg Gln
 320 325 330
 Asp Asp Ala Gly Met Tyr Ile Cys Leu Gly Ala Asn Thr Met Gly
 335 340 345
 Tyr Ser Phe Arg Ser Ala Phe Leu Thr Val Leu Pro Asp Pro Lys
 350 355 360
 Pro Pro Gly Pro Pro Val Ala Ser Ser Ser Ala Thr Ser Leu
 365 370 375
 Pro Trp Pro Val Val Ile Gly Ile Pro Ala Gly Ala Val Phe Ile
 380 385 390
 Leu Gly Thr Leu Leu Trp Leu Cys Gln Ala Gln Lys Lys Pro
 395 400 405
 Cys Thr Pro Ala Pro Ala Pro Pro Leu Pro Gly His Arg Pro Pro
 410 415 420
 Gly Thr Ala Arg Asp Arg Ser Gly Asp Lys Asp Leu Pro Ser Leu
 425 430 435
 Ala Ala Leu Ser Ala Gly Pro Gly Val Gly Leu Cys Glu Glu His
 440 445 450
 Gly Ser Pro Ala Ala Pro Gln His Leu Leu Gly Pro Gly Pro Val
 455 460 465
 Ala Gly Pro Lys Leu Tyr Pro Lys Leu Tyr Thr Asp Ile His Thr
 470 475 480
 His Thr His Thr His Ser His Thr His Ser His Val Glu Gly Lys
 485 490 495
 Val His Gln His Ile His Tyr Gln Cys
 500

<210> 120
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 120
cgagatgacg ccgagccccc 20

<210> 121
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 121
cggttcgaca cgccgcagg 21

<210> 122
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 122
tgctgctcct gtcgtcccg ctgtgtctgg gggccttccc gccgg 45

<210> 123
<211> 4420
<212> DNA
<213> Homo sapiens

<400> 123
cccagctgag gagccctgct caagacacgg tcactggatc tgagaaactt 50
cccagggac cgcattccag agtcagtgc tctgtgaagc acccacatct 100
acctcttgcc acgttcccac gggcttgggg gaaagatggt ggggaccaag 150
gcctgggtgt tctccttcct ggtcctggaa gtcacatctg tggggag 200
acagacgatg ctcacccagt cagtaagaag agtccagcct ggaaagaaga 250
accccagcat cttgccaag cctggcgaca ccctggagag ccctggtag 300
tggacaacat gttcaacat cgactacccca ggcgggaagg ggcactatga 350
gcggctggac gccattcgct tctactatgg ggaccgtgta tgtccccgtc 400
ccctgcggct agaggctcg accactgact ggacacctgc gggcagcact 450
ggccaggtgg tccatggtag tccccgtgag gtttctggt gcctcaacag 500
ggagcagcgg cctggccaga actgctctaa ttacaccgta cgcttcctct 550
gccccaccagg atccctgcgc cgagacacag agcgcatctg gagcccatgg 600

tctccctgga gcaagtgctc agctgcctgt ggtcagactg gggtccagac 650
tcgcacacgc atttgcttgg cagagatggt gtcgctgtgc agtgaggcca 700
gcgaagaggg tcagcaactgc atgggccagg actgtacagc ctgtgacctg 750
acctgccc aa tggccaggt gaatgctgac tgtgatgcct gcatgtgcc 800
ggacttcatg cttcatgggg ctgtctccct tcccgaggt gccccagcct 850
caggggctgc tatctacctc ctgaccaaga cgccgaagct gctgaccagg 900
acagacagtg atgggagatt ccgaatccct ggcttgtgcc ctgatggcaa 950
aagcatcctg aagatcacaa aggtcaagtt tgccccatt gtactcacaa 1000
tgcccaagac tagcctgaag gcagccacca tcaaggcaga gtttgtgagg 1050
gcagagactc catacatggt gatgaaccct gagacaaaag cacggagagc 1100
tggcagagc gtgtctctgt gctgtaaggc cacagggaa cccaggccag 1150
acaagtattt ttggtatcat aatgacacat tgctggatcc ttccctctac 1200
aagcatgaga gcaagctggt gctgaggaaa ctgcagcagc accaggctgg 1250
ggagtacttt tgcaaggccc agagtgatgc tggggctgtg aagtccaagg 1300
ttgcccagct gattgtcaca gcatctgatg agactccttg caacccagtt 1350
cctgagagct atcttatccg gctgccccat gattgcttc agaatgccac 1400
caactccttc tactatgacg tgggacgctg ccctgttaag acttgtgcag 1450
ggcagcagga taatgggatc aggtgccgtg atgctgtgca gaactgctgt 1500
ggcatctcca agacagagga aaggagatc cagtcagtg gctacacgct 1550
acccaccaag gtggccaagg agtgcagctg ccagcggtgt acggaaactc 1600
ggagcatcgt gcggggccgt gtcagtgtg ctgacaatgg ggagccatg 1650
cgctttggcc atgtgtacat gggAACAGC cgtgtaaGCA tgactggcta 1700
caagggact ttcacccctcc atgtccccca ggacactgag aggctggtc 1750
tcacatttgt ggacaggctg cagaagtttgc tcaacaccac caaagtgcta 1800
ccttcaaca agaagggag tgccgtttc catgaaatca agatgcttcg 1850
tcggaaagag cccatcaactt tggaagccat ggagaccaac atcatcccc 1900
tgggggaagt ggttgtgaa gacccatgg ctgaactgga gattccatcc 1950
aggagttct acaggcagaa tggggagccc tacataggaa aagtgaaggc 2000
cagtgtgacc ttccctggatc cccgaaatat ttccacagcc acagctgccc 2050

agactgacct gaacttcatc aatgacgaag gagacacttt cccccttcgg 2100
acgttatggca tgttctctgt ggacttcaga gatgaggtca cctcagagcc 2150
acttaatgct ggcaaagtga aggtccacct tgactcgacc caggtcaaga 2200
tgccagagca catatccaca gtgaaaactct ggtcactcaa tccagacaca 2250
gggctgtggg aggaggaagg tgatttcaaa tttgaaaatc aaaggaggaa 2300
caaaaagagaa gacagaacct tcctggtggg caacctggag attcgtgaga 2350
ggaggcttt taacctggat gttcctgaaa gcaggcggtg ctttgttaag 2400
gtgagggcct accggagtga gaggttcttg cctagtgagc agatccaggg 2450
gttgcgtgatc tccgtgatta acctggagcc tagaactggc ttcttgtcca 2500
acccttagggc ctggggccgc tttgacagtg tcacacagg ccccaacggg 2550
gcctgtgtgc ctgccttctg tcatgaccag tcccctgatg cctactctgc 2600
ctatgtcttg gcaaggcctgg ctggggagga actgcaagca gtggagtctt 2650
ctcctaaatt caacccaaat gcaattggcg tccctcagcc ctatctcaac 2700
aagctcaact accgtcgac ggaccatgag gatccacggg taaaaaagac 2750
agctttccag attagcatgg ccaagccaag gccaactca gctgaggaga 2800
gcaatgggcc catctatgcc tttgagaacc tccgggcatg tgaagaggca 2850
ccacccagtg cagcccactt ccgggttctac cagattgagg gggatcgata 2900
tgactacaac acagtcccct tcaacgaaga tgaccctatg agctggactg 2950
aagactatct ggcattgggg ccaaagccga tggaaattcag ggcctgctat 3000
atcaaggtga agattgtggg gccactggaa gtgaatgtgc gatcccgaa 3050
catggggggc actcatcgcc ggacagtggg gaagctgtat ggaatccgag 3100
atgtgaggag cactcgac agggaccagc ccaatgtctc agctgcctgt 3150
ctggagttca agtgcagtgg gatgctctat gatcaggacc gtgtggaccg 3200
cacccctggtg aaggcatcc cccagggcag ctgccgtcga gccagtgtga 3250
accccatgtc gcatgagtac ctggtcaacc acttgccact tgcagtcaac 3300
aacgacacca gtgagttacac catgctggca cccttggacc cactgggcc 3350
caactatggc atctacactg tcactgacca ggaccctcgc acggccaagg 3400
agatcgcgct cggccgggtgc tttgatggca catccgatgg ctccctccaga 3450
atcatgaaga gcaatgtggg agtagccctc accttcaact gtgttagagag 3500

gcaagtaggc cgccagagtgc cttccagta cctccaaagc accccagccc 3550
agtccccctgc tgcaggcact gtccaaggaa gagtgccctc gaggaggcag 3600
cagcgagcga gcaggggtgg ccagcgccag ggtggagtgg tggcctctct 3650
gagatttcct agagttgctc aacagccccct gatcaactaa gttttgtggt 3700
acttcaccct cttctgccct catttcatgt gacagccatt gtgagactga 3750
tgcacaaaact gtcacttggt taatttaagc acttctgttt tcgtgaattt 3800
gcttgggttgc ttcttcatgc cttaacttac tttgtcccat gctactgatt 3850
ggcacgtggc ccccacaatg gcacaataaa gcccccttgc gaaactgttc 3900
tttaaatgaa acacaagaaa ttggccactg gtaaaactct gcagctcaa 3950
ctgtacttca tttaatgcca ttaatgcaaa tataacttcct cttcttttg 4000
catggttttg cccacctctg caatagtgtat aatctgtatgc tgaagatcaa 4050
ataaccaata taaagcatat ttcttggcct tgctccacag gacataggca 4100
agccttgatc atagttcata catataaatg gtgggtaaat aaagaaataa 4150
aacacaatac tttaacttga aatgtaaata acttattttat ttcttgcta 4200
aatttggaaat tcttagtgcac attcaaagtt aagctattaa atatagggtg 4250
atcatagttc ctctaccaag tctggaaaga acatctcctg gtatccacaa 4300
ttacaccagg ttgctaactg tatttgtaca ttccctttg cattcgctt 4350
tgttcttgct agaaacccag tgtagccag ggcagatgtc aataaatgca 4400
tactctgtat ttcgaaaaaa 4420

<210> 124
<211> 1184
<212> PRT
<213> Homo sapiens

<400> 124
Met Val Gly Thr Lys Ala Trp Val Phe Ser Phe Leu Val Leu Glu
1 5 10 15
Val Thr Ser Val Leu Gly Arg Gln Thr Met Leu Thr Gln Ser Val
20 25 30
Arg Arg Val Gln Pro Gly Lys Lys Asn Pro Ser Ile Phe Ala Lys
35 40 45
Pro Ala Asp Thr Leu Glu Ser Pro Gly Glu Trp Thr Thr Trp Phe
50 55 60
Asn Ile Asp Tyr Pro Gly Gly Lys Gly Asp Tyr Glu Arg Leu Asp
65 70 75

Ala Ile Arg Phe Tyr Tyr Gly Asp Arg Val Cys Ala Arg Pro Leu
 80 85 90
 Arg Leu Glu Ala Arg Thr Thr Asp Trp Thr Pro Ala Gly Ser Thr
 95 100 105
 Gly Gln Val Val His Gly Ser Pro Arg Glu Gly Phe Trp Cys Leu
 110 115 120
 Asn Arg Glu Gln Arg Pro Gly Gln Asn Cys Ser Asn Tyr Thr Val
 125 130 135
 Arg Phe Leu Cys Pro Pro Gly Ser Leu Arg Arg Asp Thr Glu Arg
 140 145 150
 Ile Trp Ser Pro Trp Ser Pro Trp Ser Lys Cys Ser Ala Ala Cys
 155 160 165
 Gly Gln Thr Gly Val Gln Thr Arg Thr Arg Ile Cys Leu Ala Glu
 170 175 180
 Met Val Ser Leu Cys Ser Glu Ala Ser Glu Glu Gly Gln His Cys
 185 190 195
 Met Gly Gln Asp Cys Thr Ala Cys Asp Leu Thr Cys Pro Met Gly
 200 205 210
 Gln Val Asn Ala Asp Cys Asp Ala Cys Met Cys Gln Asp Phe Met
 215 220 225
 Leu His Gly Ala Val Ser Leu Pro Gly Gly Ala Pro Ala Ser Gly
 230 235 240
 Ala Ala Ile Tyr Leu Leu Thr Lys Thr Pro Lys Leu Leu Thr Gln
 245 250 255
 Thr Asp Ser Asp Gly Arg Phe Arg Ile Pro Gly Leu Cys Pro Asp
 260 265 270
 Gly Lys Ser Ile Leu Lys Ile Thr Lys Val Lys Phe Ala Pro Ile
 275 280 285
 Val Leu Thr Met Pro Lys Thr Ser Leu Lys Ala Ala Thr Ile Lys
 290 295 300
 Ala Glu Phe Val Arg Ala Glu Thr Pro Tyr Met Val Met Asn Pro
 305 310 315
 Glu Thr Lys Ala Arg Arg Ala Gly Gln Ser Val Ser Leu Cys Cys
 320 325 330
 Lys Ala Thr Gly Lys Pro Arg Pro Asp Lys Tyr Phe Trp Tyr His
 335 340 345
 Asn Asp Thr Leu Leu Asp Pro Ser Leu Tyr Lys His Glu Ser Lys
 350 355 360
 Leu Val Leu Arg Lys Leu Gln Gln His Gln Ala Gly Glu Tyr Phe

365	370	375
Cys Lys Ala Gln Ser Asp Ala Gly Ala Val Lys Ser Lys Val Ala		
380	385	390
Gln Leu Ile Val Thr Ala Ser Asp Glu Thr Pro Cys Asn Pro Val		
395	400	405
Pro Glu Ser Tyr Leu Ile Arg Leu Pro His Asp Cys Phe Gln Asn		
410	415	420
Ala Thr Asn Ser Phe Tyr Tyr Asp Val Gly Arg Cys Pro Val Lys		
425	430	435
Thr Cys Ala Gly Gln Gln Asp Asn Gly Ile Arg Cys Arg Asp Ala		
440	445	450
Val Gln Asn Cys Cys Gly Ile Ser Lys Thr Glu Glu Arg Glu Ile		
455	460	465
Gln Cys Ser Gly Tyr Thr Leu Pro Thr Lys Val Ala Lys Glu Cys		
470	475	480
Ser Cys Gln Arg Cys Thr Glu Thr Arg Ser Ile Val Arg Gly Arg		
485	490	495
Val Ser Ala Ala Asp Asn Gly Glu Pro Met Arg Phe Gly His Val		
500	505	510
Tyr Met Gly Asn Ser Arg Val Ser Met Thr Gly Tyr Lys Gly Thr		
515	520	525
Phe Thr Leu His Val Pro Gln Asp Thr Glu Arg Leu Val Leu Thr		
530	535	540
Phe Val Asp Arg Leu Gln Lys Phe Val Asn Thr Thr Lys Val Leu		
545	550	555
Pro Phe Asn Lys Lys Gly Ser Ala Val Phe His Glu Ile Lys Met		
560	565	570
Leu Arg Arg Lys Glu Pro Ile Thr Leu Glu Ala Met Glu Thr Asn		
575	580	585
Ile Ile Pro Leu Gly Glu Val Val Gly Glu Asp Pro Met Ala Glu		
590	595	600
Leu Glu Ile Pro Ser Arg Ser Phe Tyr Arg Gln Asn Gly Glu Pro		
605	610	615
Tyr Ile Gly Lys Val Lys Ala Ser Val Thr Phe Leu Asp Pro Arg		
620	625	630
Asn Ile Ser Thr Ala Thr Ala Ala Gln Thr Asp Leu Asn Phe Ile		
635	640	645
Asn Asp Glu Gly Asp Thr Phe Pro Leu Arg Thr Tyr Gly Met Phe		
650	655	660

Ser Val Asp Phe Arg Asp Glu Val Thr Ser Glu Pro Leu Asn Ala
 665 670 675
 Gly Lys Val Lys Val His Leu Asp Ser Thr Gln Val Lys Met Pro
 680 685 690
 Glu His Ile Ser Thr Val Lys Leu Trp Ser Leu Asn Pro Asp Thr
 695 700 705
 Gly Leu Trp Glu Glu Gly Asp Phe Lys Phe Glu Asn Gln Arg
 710 715 720
 Arg Asn Lys Arg Glu Asp Arg Thr Phe Leu Val Gly Asn Leu Glu
 725 730 735
 Ile Arg Glu Arg Arg Leu Phe Asn Leu Asp Val Pro Glu Ser Arg
 740 745 750
 Arg Cys Phe Val Lys Val Arg Ala Tyr Arg Ser Glu Arg Phe Leu
 755 760 765
 Pro Ser Glu Gln Ile Gln Gly Val Val Ile Ser Val Ile Asn Leu
 770 775 780
 Glu Pro Arg Thr Gly Phe Leu Ser Asn Pro Arg Ala Trp Gly Arg
 785 790 795
 Phe Asp Ser Val Ile Thr Gly Pro Asn Gly Ala Cys Val Pro Ala
 800 805 810
 Phe Cys Asp Asp Gln Ser Pro Asp Ala Tyr Ser Ala Tyr Val Leu
 815 820 825
 Ala Ser Leu Ala Gly Glu Glu Leu Gln Ala Val Glu Ser Ser Pro
 830 835 840
 Lys Phe Asn Pro Asn Ala Ile Gly Val Pro Gln Pro Tyr Leu Asn
 845 850 855
 Lys Leu Asn Tyr Arg Arg Thr Asp His Glu Asp Pro Arg Val Lys
 860 865 870
 Lys Thr Ala Phe Gln Ile Ser Met Ala Lys Pro Arg Pro Asn Ser
 875 880 885
 Ala Glu Glu Ser Asn Gly Pro Ile Tyr Ala Phe Glu Asn Leu Arg
 890 895 900
 Ala Cys Glu Glu Ala Pro Pro Ser Ala Ala His Phe Arg Phe Tyr
 905 910 915
 Gln Ile Glu Gly Asp Arg Tyr Asp Tyr Asn Thr Val Pro Phe Asn
 920 925 930
 Glu Asp Asp Pro Met Ser Trp Thr Glu Asp Tyr Leu Ala Trp Trp
 935 940 945
 Pro Lys Pro Met Glu Phe Arg Ala Cys Tyr Ile Lys Val Lys Ile

950	955	960
Val Gly Pro Leu Glu Val Asn Val Arg Ser Arg Asn Met Gly Gly		
965	970	975
Thr His Arg Arg Thr Val Gly Lys Leu Tyr Gly Ile Arg Asp Val		
980	985	990
Arg Ser Thr Arg Asp Arg Asp Gln Pro Asn Val Ser Ala Ala Cys		
995	1000	1005
Leu Glu Phe Lys Cys Ser Gly Met Leu Tyr Asp Gln Asp Arg Val		
1010	1015	1020
Asp Arg Thr Leu Val Lys Val Ile Pro Gln Gly Ser Cys Arg Arg		
1025	1030	1035
Ala Ser Val Asn Pro Met Leu His Glu Tyr Leu Val Asn His Leu		
1040	1045	1050
Pro Leu Ala Val Asn Asn Asp Thr Ser Glu Tyr Thr Met Leu Ala		
1055	1060	1065
Pro Leu Asp Pro Leu Gly His Asn Tyr Gly Ile Tyr Thr Val Thr		
1070	1075	1080
Asp Gln Asp Pro Arg Thr Ala Lys Glu Ile Ala Leu Gly Arg Cys		
1085	1090	1095
Phe Asp Gly Thr Ser Asp Gly Ser Ser Arg Ile Met Lys Ser Asn		
1100	1105	1110
Val Gly Val Ala Leu Thr Phe Asn Cys Val Glu Arg Gln Val Gly		
1115	1120	1125
Arg Gln Ser Ala Phe Gln Tyr Leu Gln Ser Thr Pro Ala Gln Ser		
1130	1135	1140
Pro Ala Ala Gly Thr Val Gln Gly Arg Val Pro Ser Arg Arg Gln		
1145	1150	1155
Gln Arg Ala Ser Arg Gly Gly Gln Arg Gln Gly Gly Val Val Ala		
1160	1165	1170
Ser Leu Arg Phe Pro Arg Val Ala Gln Gln Pro Leu Ile Asn		
1175	1180	

<210> 125

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 125

ctgggtgcctc aacagggagc ag 22

<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 126
ccatttgca ggtcaggta cag 23

<210> 127
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 127
ctggagcaag tgctcagctg cctgtggta gactgggtc 40

<210> 128
<211> 2819
<212> DNA
<213> Homo sapiens

<400> 128
ctgcaagttt ttaacgccta acacacaagt atgttaggct tccaccaaag 50
tcctcaatat acctgaatac gcacaatatac ttaactcttc atatttggtt 100
ttgggatctg cttttaggtc ccatcttcat ttaaaaaaaaaa atacagagac 150
ctacctaccc gtacgcatac atacatatgt gtatataat gtaaactaga 200
caaagatcgc agatcataaa gcaagctctg cttagtttc caagaagatt 250
acaaagaatt tagagatgta tttgtcaaga tccctgtcga ttcatgccct 300
ttgggttacg gtgtcctcag tgatgcagcc ctacccttg gtttgggac 350
attatgattt gtgttaagact cagatttaca cgaaagaagg gaaagttgg 400
gattacatgg cctgccagcc ggaatccacg gacatgacaa aatatctgaa 450
agtgaaactc gatcctccgg atattacctg tggagaccct cctgagacgt 500
tctgtcaat gggcaatccc tacatgtca ataatgagtg tgatgcgagt 550
acccctgagc tggcacaccc ccctgagctg atgtttgatt ttgaaggaag 600
acatccctcc acatttggc agtctgccac ttgaaaggag tatcccaagc 650
ctctccaggt taacatcaact ctgtcttggta gcaaaaccat tgagctaaca 700
gacaacatag ttattacctt tgaatctggg cgtccagacc aaatgatcct 750

Sequence Data

ggagaagtct ctcgattatg gacgaacatg gcagccctat cagtattatg 800
ccacagactg cttagatgct tttcacatgg atcctaaatc cgtgaaggat 850
ttatcacagc atacggtctt agaaatcatt tgacacagaag agtactcaac 900
agggtataca acaaatacgca aaataatcca ctttgaatc aaagacaggt 950
tcgcgcttt tgctggacct cgcc tacgca atatggcttc cctctacgga 1000
cagctggata caaccaagaa actcagagat ttctttacag tcacagaccc 1050
gaggataagg ctgttaagac cagccgttgg ggaaatattt gtagatgagc 1100
tacacttggc acgctacttt tacgcgatct cagacataaa ggtgcgagga 1150
aggtgcaagt gtaatctcca tgccactgta tgtgtgtatg acaacagcaa 1200
attgacatgc gaatgtgagc acaacactac aggtccagac tgtggaaat 1250
gcaagaagaa ttatcagggc cgaccttgga gtccaggctc ctatctcccc 1300
atccccaaag gcactgcaaa tacctgtatc cccagtattt ccagtattgg 1350
tacgaatgtc tgcgacaacg agtcctgca ctgccagaac ggagggacgt 1400
gccacaacaa cgtgcgctgc ctgtgcccgg ccgcatacac gggcatcctc 1450
tgcgagaagc tgcggtgcga ggaggctggc agctgcggct ccgactctgg 1500
ccagggcgcg ccccccgcacg gcaccccagc gctgctgctg ctgaccacgc 1550
tgctggaaac cgccagcccc ctggtgttct aggtgtcacc tccagccaca 1600
ccggacgggc ctgtgccgtg gggaaagcaga cacaacccaa acatttgcta 1650
ctaacatagg aaacacacac atacagacac cccactcag acagtgtaca 1700
aactaagaag gcctaactga actaagccat atttatcacc cgtggacagc 1750
acatccgagt caagactgtt aatttctgac tccagaggag ttggcagctg 1800
ttgatattat cactgcaa at cacattgcca gctgcagagc atattgtga 1850
ttggaaaggc tgcgacagcc ccccaaacag gaaagacaaa aaacaaacaa 1900
atcaaccgac ctaaaaacat tggctactct agcgtggtgc gccctagttac 1950
gactccgccc agtgtgtgga ccaaccaa at agcattctt gctgtcaggt 2000
gcattgtgg cataaggaaa tctgttacaa gctgccatat tggcctgctt 2050
ccgtccctga atcccttcca acctgtgctt tagtgaacgt tgctctgtaa 2100
ccctcggtgg ttgaaagatt tctttgtctg atgttagtga tgcacatgtg 2150
taacagcccc ctctaaaagc gcaagccagt cataccctg tatatcttag 2200

cagcaactgag tccagtgcga gcacacaccc actataacaag agtggctata 2250
ggaaaaaaaga aagtgtatct atcctttgtt attcaaatga agttattttt 2300
cttgaactac tgtaatatgt agatTTTGT tattattgcc aatttgtgtt 2350
accagacaat ctgttaatgt atctaattcg aatcagcaaa gactgacatt 2400
ttatTTGTC ctcttcgtt ctgtttgtt tcactgtgca gagatttctc 2450
tgtaaggcca acgaacgtgc tggcatcaaa gaatatcagt ttacatata 2500
aacaagtgtt ataagattcc accaaaggac attctaaatg ttttcttgtt 2550
gcttaaacac tggaagattt aaagaataaa aactcctgca taaacgattt 2600
caggaatttg tattgcaatt tcttaagatg aaaggaacag ccaccaagca 2650
gtttcacact cacttactg atttctgtgt ggactgagta cattcagctg 2700
acgaatttag ttcccaggaa gatggattga tgttcaactg cttggacaac 2750
ttctgcaaaa tatgagacta tttccacttg ggaaaaatta caacagcaaa 2800
aaaaaaaaaaa aaaaaaaaaa 2819

<210> 129
<211> 438
<212> PRT
<213> Homo sapiens

<400> 129
Met Tyr Leu Ser Arg Ser Leu Ser Ile His Ala Leu Trp Val Thr 15
1 5 10 15
Val Ser Ser Val Met Gln Pro Tyr Pro Leu Val Trp Gly His Tyr .
20 25 30
Asp Leu Cys Lys Thr Gln Ile Tyr Thr Glu Glu Gly Lys Val Trp 45
35 40 45
Asp Tyr Met Ala Cys Gln Pro Glu Ser Thr Asp Met Thr Lys Tyr 60
50 55 60
Leu Lys Val Lys Leu Asp Pro Pro Asp Ile Thr Cys Gly Asp Pro 75
65 70 75
Pro Glu Thr Phe Cys Ala Met Gly Asn Pro Tyr Met Cys Asn Asn 90
80 85 90
Glu Cys Asp Ala Ser Thr Pro Glu Leu Ala His Pro Pro Glu Leu 105
95 100 105
Met Phe Asp Phe Glu Gly Arg His Pro Ser Thr Phe Trp Gln Ser 120
110 115 120
Ala Thr Trp Lys Glu Tyr Pro Lys Pro Leu Gln Val Asn Ile Thr 135
125 130 135

Leu Ser Trp Ser Lys Thr Ile Glu Leu Thr Asp Asn Ile Val Ile
 140 145 150
 Thr Phe Glu Ser Gly Arg Pro Asp Gln Met Ile Leu Glu Lys Ser
 155 160 165
 Leu Asp Tyr Gly Arg Thr Trp Gln Pro Tyr Gln Tyr Tyr Ala Thr
 170 175 180
 Asp Cys Leu Asp Ala Phe His Met Asp Pro Lys Ser Val Lys Asp
 185 190 195
 Leu Ser Gln His Thr Val Leu Glu Ile Ile Cys Thr Glu Glu Tyr
 200 205 210
 Ser Thr Gly Tyr Thr Thr Asn Ser Lys Ile Ile His Phe Glu Ile
 215 220 225
 Lys Asp Arg Phe Ala Leu Phe Ala Gly Pro Arg Leu Arg Asn Met
 230 235 240
 Ala Ser Leu Tyr Gly Gln Leu Asp Thr Thr Lys Lys Leu Arg Asp
 245 250 255
 Phe Phe Thr Val Thr Asp Leu Arg Ile Arg Leu Leu Arg Pro Ala
 260 265 270
 Val Gly Glu Ile Phe Val Asp Glu Leu His Leu Ala Arg Tyr Phe
 275 280 285
 Tyr Ala Ile Ser Asp Ile Lys Val Arg Gly Arg Cys Lys Cys Asn
 290 295 300
 Leu His Ala Thr Val Cys Val Tyr Asp Asn Ser Lys Leu Thr Cys
 305 310 315
 Glu Cys Glu His Asn Thr Thr Gly Pro Asp Cys Gly Lys Cys Lys
 320 325 330
 Lys Asn Tyr Gln Gly Arg Pro Trp Ser Pro Gly Ser Tyr Leu Pro
 335 340 345
 Ile Pro Lys Gly Thr Ala Asn Thr Cys Ile Pro Ser Ile Ser Ser
 350 355 360
 Ile Gly Thr Asn Val Cys Asp Asn Glu Leu Leu His Cys Gln Asn
 365 370 375
 Gly Gly Thr Cys His Asn Asn Val Arg Cys Leu Cys Pro Ala Ala
 380 385 390
 Tyr Thr Gly Ile Leu Cys Glu Lys Leu Arg Cys Glu Glu Ala Gly
 395 400 405
 Ser Cys Gly Ser Asp Ser Gly Gln Gly Ala Pro Pro His Gly Thr
 410 415 420
 Pro Ala Leu Leu Leu Leu Thr Thr Leu Leu Gly Thr Ala Ser Pro

425

430

435

Leu Val Phe

<210> 130
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 130
tcgattatgg acgaacatgg caggc 24

<210> 131
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 131
ttctgagatc cctcatcctc 20

<210> 132
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 132
agggtcaggc acagcaagtt tggg 24

<210> 133
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 133
tttgctggac ctccggctacg gaattggctt ccctctacgg acagctggat 50

<210> 134
<211> 1493
<212> DNA
<213> Homo sapiens

<400> 134
cccacgcgtc cgggtgacct gggccgagcc ctccccgtcg gctaagattg 50
ctgaggaggc ggcgggttagc tggcaggcgc cgacttccga aggccgccgt 100

ccgggcgagg tgtcctcatg acttctcttg tggaccatgt ccgtgatctt 150
tttgcctgc gtggcacggg taagggatgg actgcccctc tcagcctcta 200
ctgattttta ccacacccaa gatTTTTGG aatggaggag acggctcaag 250
agtttagcct tgcgactggc ccagtatcca ggtcgagggtt ctgcagaagg 300
ttgtgacttt agtatacatt tttcttctt cggggacgtg gcctgcatgg 350
ctatctgctc ctgccagtgt ccagcagcca tggccttctg cttcctggag 400
accctgtggt gggaaattcac agttccat gacactacct gcattggcct 450
agcctccagg ccatacgctt ttcttgagtt tgacagcatc attcagaaaag 500
tgaagtggca ttttaactat gtaagttcct ctcagatgga gtgcagctt 550
aaaaaaattc aggaggagct caagttgcag cctccagcgg ttctcactct 600
ggaggacaca gatgtggcaa atggggtgat gaatggtcac acaccgatgc 650
acttggagcc tgctcctaatttccgaatgg aaccagtgac agccctgggt 700
atcctctccc tcattctcaa catcatgtgt gctgccctga atctcattcg 750
aggagttcac cttgcagaac attcttaca ggatccaagg agctggttct 800
gctggttgga ccaaaccctcg tgagccagcc acccctgacc caaatgagga 850
gagctctgat tctccatcc gggagcagtg atgtcaaact tctgctgctg 900
gggaaatctc atcagcaggg agcctgtgga aaagggcatg tcagtgaaat 950
ctgggaatgg ctggattcgg aaacatctgc ccatgtgtat tgatggcaga 1000
gctgttgcac acaagcgcct tttatTTAGG gtAAAATTAA caaatccatt 1050
ctattcctct gacccatgct tagtacatat gaccttaac cttacattt 1100
atatgattct ggggttgctt cagaagtgtt atttcatgaa tcattcatat 1150
gatttgcattt cccaggattt tattttgttt aatgggcttt tctactaaaa 1200
gcataaaata ctgaggctga tttagtcagg gcaaaaccat ttactttaca 1250
tattcgTTTT caataacttgc tgTTTcatgtt acacaagctt cttacggTTT 1300
tcttgtaaca ataaatattt tgagtaaata atgggtacat ttAAACAAAC 1350
tcagtagtac aacctaaact tgtataAAAG tgtgtAAAAA tgtatAGCCA 1400
tttatATCCT atgtataAAAT taaatgaggt ggcttcagaa atggcagaat 1450
aaatctaaag tgTTTattaa aaaaaaaaaa aaaaaaaaaa aag 1493

<210> 135
<211> 228

<212> PRT
<213> Homo sapiens

<400> 135
Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly
1 5 10 15

Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe
20 25 30

Leu Glu Trp Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala
35 40 45

Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile
50 55 60

His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser
65 70 75

Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu
80 85 90

Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu
95 100 105

Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln
110 115 120

Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu
125 130 135

Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro
140 145 150

Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met
155 160 165

Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg
170 175 180

Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn
185 190 195

Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala
200 205 210

Glu His Ser Leu Gln Asp Pro Arg Ser Trp Phe Cys Trp Leu Asp
215 220 225

Gln Thr Ser

<210> 136
<211> 239
<212> DNA
<213> Homo sapiens

<220>

<221> unsure
<222> 39, 61, 143, 209
<223> unknown base

<400> 136
tgcttcctgg agaccctgtg gtgggaattc acagettcnt atgacactac 50
ctgcattggc ntagcctcca ggccatacgc ttttctttag tttgacagca 100
tcattcagaa agtgaagtgg catttaact atgtaagttc ctntcagatg 150
gagtgcgact tggaaaaaat tcaggaggag ctcaagttgc agcctccagc 200
ggttctcant atggaggaca cagatgtggc aaatgggt 239

<210> 137
<211> 2300
<212> DNA
<213> Homo sapiens

<400> 137
ctcagcggcg cttcctcgta gcgagcctag tggcgggtgt ttgcattgaa 50
acgtgagcgc gacccgacct taaagagtgg ggagcaaagg gaggacagag 100
ccctttaaaaa cgaggcgggt ggtgcctgcc ccttaaggg cggggcgtcc 150
ggacgactgt atctgagccc cagactgccc cgagttctg tcgcaggctg 200
cgagggaaagg cccctaggct gggtctgggt gcttggcggc ggcggcttcc 250
tccccgctcg tcctccccgg gcccagaggc acctcggctt cagtcatgct 300
gagcagagta tggaagcacc tgactaccaa gtgttatccg tgcgagaaca 350
gctattccac gagaggatcc gcgagtgat tatatcaaca cttctgttg 400
caacactgta catcctctgc cacatctcc tgacccgctt caagaaggct 450
gctgagttca ccacagtggta tcatgaagat gccaccgtca acaagattgc 500
gctcgagctg tgcacctta ccctggcaat tgccctgggt gctgtctgc 550
tcctgccctt ctccatcatc agcaatgagg tgctgctctc cctgcctcgg 600
aactactaca tccagtggtt caacggctcc ctcatccatg gcctctggaa 650
ccttgggtttt ctctccccca acctgtccct catttcctc atgccccttg 700
catatttctt cactgagtct gagggcttg ctggctccag aaagggtgtc 750
ctggggccggg tctatgagac agtgggtatg ttgatgctcc tcactctgct 800
ggtgcttaggt atgggtgtggg tggcatcagc cattgtggac aagaacaagg 850
ccaacagaga gtcactctat gactttggg agtactatct cccctacctc 900
tactcatgca tctccttctt tggggttctg ctgctcctgg tgtgtactcc 950

actgggtctc gcccgcacgt tctccgtcac tgggaagctg ctagtcaagc 1000
ccggcgtctt ggaagacactg gaggagcagc tgtactgctc agcctttgag 1050
gaggcagccc tgaccgcag gatctgtaat cctacttcct gctggctgcc 1100
tttagacatg gagctgctac acagacaggt cctggctctg cagacacaga 1150
gggtcctgct ggagaagagg cgaaaggctt cagcctggca acggaacctg 1200
ggctacccccc tggctatgct gtgcttgctg gtgctgacgg gcctgtctgt 1250
gctcattgtg gccatccaca tcctggagct gctcatcgat gaggctgcca 1300
tgccccgagg catgcagggt acctccttag gccaggtctc cttctccaag 1350
ctgggctcct ttgggtccgt cattcaggtt gtactcatct tttacctaatt 1400
ggtgtcctca gttgtggct tctatagctc tccactcttc cggagcctgc 1450
ggcccagatg gcacgacact gccatgacgc agataattgg gaactgtgtc 1500
tgtctcctgg tcctaagctc agcacttcct gtcttctctc gaaccctggg 1550
gctcaactcgc tttgacctgc tgggtgactt tggacgcttc aactggctgg 1600
gcaatttcta cattgtgttc ctctacaacg cagccttgc aggccctcacc 1650
acactctgtc tggtaagac ctcaactgca gctgtgcggg cagagctgat 1700
ccgggcctt gggctggaca gactgccgct gcccgctcc ggtttcccc 1750
aggcatctag gaagacccag caccagtgac ctccagctgg gggtaaaaa 1800
aaaaaaaactg gacactgcca tctgctgcct aggccctggag ggaagccaa 1850
ggctacttgg acctcaggac ctggaaatctg agagggtggg tggcagaggg 1900
gagcagagcc atctgcacta ttgcataatc tgagccagag tttgggacca 1950
ggacctcctg ctttccata cttaactgtg gcctcagcat gggtagggc 2000
tgggtgactg ggtctagccc ctgatccaa atctgtttac acatcaatct 2050
gcctcaactgc tggtaatggc catccccata gccatgttta catgatttga 2100
tgtgcaatag ggtgggttag gggcaggaa aggactggc cagggcaggg 2150
tcgggagata gattgtctcc cttgcctctg gcccagcaga gcctaagcac 2200
tgtgctatcc tggagggct ttggaccacc tgaaagacca aggggatagg 2250
gaggaggagg cttagccat cagcaataaa gttgatccca gggaaaaaaaa 2300

<210> 138
<211> 489
<212> PRT
<213> Homo sapiens

<400> 138

Met Glu Ala Pro Asp Tyr Glu Val Leu Ser Val Arg Glu Gln Leu
1 5 10 15

Phe His Glu Arg Ile Arg Glu Cys Ile Ile Ser Thr Leu Leu Phe
20 25 30

Ala Thr Leu Tyr Ile Leu Cys His Ile Phe Leu Thr Arg Phe Lys
35 40 45

Lys Pro Ala Glu Phe Thr Thr Val Asp Asp Glu Asp Ala Thr Val
50 55 60

Asn Lys Ile Ala Leu Glu Leu Cys Thr Phe Thr Leu Ala Ile Ala
65 70 75

Leu Gly Ala Val Leu Leu Leu Pro Phe Ser Ile Ile Ser Asn Glu
80 85 90

Val Leu Leu Ser Leu Pro Arg Asn Tyr Tyr Ile Gln Trp Leu Asn
95 100 105

Gly Ser Leu Ile His Gly Leu Trp Asn Leu Val Phe Leu Phe Pro
110 115 120

Asn Leu Ser Leu Ile Phe Leu Met Pro Phe Ala Tyr Phe Phe Thr
125 130 135

Glu Ser Glu Gly Phe Ala Gly Ser Arg Lys Gly Val Leu Gly Arg
140 145 150

Val Tyr Glu Thr Val Val Met Leu Met Leu Leu Thr Leu Leu Val
155 160 165

Leu Gly Met Val Trp Val Ala Ser Ala Ile Val Asp Lys Asn Lys
170 175 180

Ala Asn Arg Glu Ser Leu Tyr Asp Phe Trp Glu Tyr Tyr Leu Pro
185 190 195

Tyr Leu Tyr Ser Cys Ile Ser Phe Leu Gly Val Leu Leu Leu Leu
200 205 210

Val Cys Thr Pro Leu Gly Leu Ala Arg Met Phe Ser Val Thr Gly
215 220 225

Lys Leu Leu Val Lys Pro Arg Leu Leu Glu Asp Leu Glu Glu Gln
230 235 240

Leu Tyr Cys Ser Ala Phe Glu Glu Ala Ala Leu Thr Arg Arg Ile
245 250 255

Cys Asn Pro Thr Ser Cys Trp Leu Pro Leu Asp Met Glu Leu Leu
260 265 270

His Arg Gln Val Leu Ala Leu Gln Thr Gln Arg Val Leu Leu Glu
275 280 285

Lys Arg Arg Lys Ala Ser Ala Trp Gln Arg Asn Leu Gly Tyr Pro
 290 295 300
 Leu Ala Met Leu Cys Leu Leu Val Leu Thr Gly Leu Ser Val Leu
 305 310 315
 Ile Val Ala Ile His Ile Leu Glu Leu Leu Ile Asp Glu Ala Ala
 320 325 330
 Met Pro Arg Gly Met Gln Gly Thr Ser Leu Gly Gln Val Ser Phe
 335 340 345
 Ser Lys Leu Gly Ser Phe Gly Ala Val Ile Gln Val Val Leu Ile
 350 355 360
 Phe Tyr Leu Met Val Ser Ser Val Val Gly Phe Tyr Ser Ser Pro
 365 370 375
 Leu Phe Arg Ser Leu Arg Pro Arg Trp His Asp Thr Ala Met Thr
 380 385 390
 Gln Ile Ile Gly Asn Cys Val Cys Leu Leu Val Leu Ser Ser Ala
 395 400 405
 Leu Pro Val Phe Ser Arg Thr Leu Gly Leu Thr Arg Phe Asp Leu
 410 415 420
 Leu Gly Asp Phe Gly Arg Phe Asn Trp Leu Gly Asn Phe Tyr Ile
 425 430 435
 Val Phe Leu Tyr Asn Ala Ala Phe Ala Gly Leu Thr Thr Leu Cys
 440 445 450
 Leu Val Lys Thr Phe Thr Ala Ala Val Arg Ala Glu Leu Ile Arg
 455 460 465
 Ala Phe Gly Leu Asp Arg Leu Pro Leu Pro Val Ser Gly Phe Pro
 470 475 480
 Gln Ala Ser Arg Lys Thr Gln His Gln
 485

<210> 139
 <211> 294
 <212> DNA
 <213> Homo sapiens

<220>
 <221> unsure
 <222> 53, 57
 <223> unknown base

<400> 139
 ggctgccgag ggaaggcccc ttgggttggt cttgggttgc tggcggcg 50
 ggnttcntcc ccgctcgatcc tccccgggcc cagaggcacc tcggcttcag 100
 tcatgctgag cagagtatgg aagcacctga ctacgaagtg ctatccgtgc 150

gagaacagct attccacgag aggatccgcg agtgtattat atcaacactt 200
ctgtttgcaa cactgtacat cctctgccac atcttcctga cccgcttcaa 250
gaaggcctgct gagttcacca cagtggatga tgaagatgcc accg 294

<210> 140
<211> 526
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 197, 349
<223> unknown base

<400> 140
gaccgacctt aaagagtggg agcaaaggga ggacagagcc ttttaaaacg 50
aggcggtggt gcctgccctt taagggcggg gcgtccggac gactgtatct 100
gagccccaga ctgccccgag tttctgtcgc aggctgcgag gaaaggcccc 150
taggctgggt ctggtgcttg gcggcggcgg cttcctcccc gttgtcntcc 200
ccgggccccag aggcacctcg gcttcagtc tgctgagcag agtatggaag 250
cacctgacta cgaagtgcta tccgtgcgag aacagctatt ccacgagagg 300
atccgcgagt gtattatac aacacttctg tttgcaacac tgtacatcnt 350
ctgccacatc ttccctgaccc gcttcaagaa gcctgctgag ttcaccacag 400
tggatgatga agatgccacc gtcaacaaga ttgcgctcga gctgtgcacc 450
tttaccctgg caattgccct gggtgctgtc ctgctcctgc ctttctccat 500
catcagcaat gaggtgctgc actccc 526

<210> 141
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 141
gactgtatct gagccccaga ctgc 24

<210> 142
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 142
tcagcaatga ggtgctgctc 20

<210> 143
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 143
tgaggaagat gagggacagg ttgg 24

<210> 144
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 144
tatggaagca cctgactacg aagtgcatac cgtgcgagaa cagctattcc 50

<210> 145
<211> 685
<212> DNA
<213> Homo sapiens

<400> 145
gatgtgctcc ttggagctgg tgtgcagtgt cctgactgta agatcaagtc 50
caaaccctgtt ttggaattga ggaaacttct ctttgatct cagcccttgg 100
tggtccaggt cttcatgctg ctgtgggtga tattactggt cctggctcct 150
gtcagtggac agtttgcaag gacacccagg cccattattt tcctccagcc 200
tccatggacc acagtcttcc aaggagagag agtgaccctc acttgcaagg 250
gatttcgctt ctactcacca cagaaaacaa aatggtacca tcggtacatt 300
ggaaaagaaa tactaagaga aaccccagac aatatccttg aggttcagga 350
atctggagag tacagatgcc aggcccaggg ctccccatc agtagccctg 400
tgcacttggaa ttttcttca gagatggat ttccatgc tgcccaggct 450
aatgttgaac tcctgggctc aagtgtatcg ctcacctagg cctctcaaag 500
cgctgggatt acagttcgc tgatcctgca agctccactt tctgtgttg 550
aaggagactc tgtggttctg aggtgccgg caaaggcgg a gtaaacactg 600
aataatacta tttacaagaa tgataatgtc ctggcattcc ttaataaaag 650
aactgacttc caaaaaaaaaaaaaaaa aaaaaaaa 685

<210> 146
<211> 124
<212> PRT
<213> Homo sapiens

<400> 146
Met Leu Leu Trp Val Ile Leu Leu Val Leu Ala Pro Val Ser Gly
1 5 10 15

Gln Phe Ala Arg Thr Pro Arg Pro Ile Ile Phe Leu Gln Pro Pro
20 25 30

Trp Thr Thr Val Phe Gln Gly Glu Arg Val Thr Leu Thr Cys Lys
35 40 45

Gly Phe Arg Phe Tyr Ser Pro Gln Lys Thr Lys Trp Tyr His Arg
50 55 60

Tyr Leu Gly Lys Glu Ile Leu Arg Glu Thr Pro Asp Asn Ile Leu
65 70 75

Glu Val Gln Glu Ser Gly Glu Tyr Arg Cys Gln Ala Gln Gly Ser
80 85 90

Pro Leu Ser Ser Pro Val His Leu Asp Phe Ser Ser Glu Met Gly
95 100 105

Phe Pro His Ala Ala Gln Ala Asn Val Glu Leu Leu Gly Ser Ser
110 115 120

Asp Leu Leu Thr

<210> 147
<211> 1621
<212> DNA
<213> Homo sapiens

<400> 147
cagaagagg ggcttagctag ctgtctctgc ggaccaggga gaccccccgcg 50
cccccccggt gtgaggcggc ctcacaggc cgggtggct ggcgagccga 100
cgcggcggcg gaggaggctg tgaggagtgt gtggaacagg acccgggaca 150
gaggaaccat ggctccgcag aacctgagca cctttgcct gttgctgcta 200
tacctcatcg gggcggtgat tgccggacga gatttctata agatcttggg 250
ggtgccctcga agtgcctcta taaaggatat taaaaaggcc tatagaaaac 300
tagccctgca gtttcatccc gaccggaacc ctgatgatcc acaagcccag 350
gagaaattcc aggatctggg tgctgcttat gaggttctgt cagatagtga 400
gaaacggaaa cagtacgata cttatggta agaaggatta aaagatggtc 450
atcagagctc ccatggagac atttttcac acttcttgg ggatttttgt 500

ttcatgttg gaggaacccc tcgtcagcaa gacagaaata ttccaagagg 550
aagtgatatt attgttagatc tagaagtcac tttggaagaa gtatatgcag 600
gaaattttgt ggaagtagtt agaaacaaac ctgtggcaag gcaggctcct 650
ggcaaacgga agtgcattg tcggcaagag atgcggacca cccagctggg 700
ccctggcgcc ttccaaatga cccaggaggt ggtctgcac gaatgcccta 750
atgtcaaact agtgaatgaa gaacgaacgc tggaagtaga aatagagcct 800
ggggtgagag acggcatgga gtacccctt attggagaag gtgagcctca 850
cgtggatggg gaggctggag atttacggtt ccgaatcaaa gttgtcaagc 900
acccaatatt tgaaaggaga ggagatgatt tgtacacaaa tgtgacaatc 950
tcattagttt agtcactggt tggcttgag atggatatta ctcacttgg 1000
tggtcacaag gtacatattt cccggataa gatcaccagg ccaggagcga 1050
agctatggaa gaaagggaa gggctccccca actttgacaa caacaatatc 1100
aagggctctt tgataatcac ttttcatgtg gattttccaa aagaacagtt 1150
aacagaggaa gcgagagaag gatatcaaca gctactgaaa caagggtcag 1200
tgcagaaggt atacaatgga ctgcaaggat attgagagtg aataaaattt 1250
gactttgtt aaaataagtg aataagcgat atttattatc tgcaaggattt 1300
ttttgtgtt gttttgttt ttatttcaa tatgcaagtt aggcttaatt 1350
tttttatcta atgatcatca tgaaatgaat aagaggctt aagaatttgt 1400
ccatttgcatt tcggaaaaga atgaccagca aaaggtttac taataccct 1450
ccctttgggg atttaatgtc tggtgctgcc gcctgagttt caagaattaa 1500
agctgcaaga ggactccagg agaaaaagaa acacaatata gagggttgga 1550
gttggtagca atttcattca aaatgccaac tggagaagtc tgttttaaa 1600
tacattttgt tgttatTTT a 1621

<210> 148
<211> 358
<212> PRT
<213> Homo sapiens

<400> 148
Met Ala Pro Gln Asn Leu Ser Thr Phe Cys Leu Leu Leu Tyr
1 5 10 15
Leu Ile Gly Ala Val Ile Ala Gly Arg Asp Phe Tyr Lys Ile Leu
20 25 30

Gly Val Pro Arg Ser Ala Ser Ile Lys Asp Ile Lys Lys Ala Tyr
 35 40 45
 Arg Lys Leu Ala Leu Gln Leu His Pro Asp Arg Asn Pro Asp Asp
 50 55 60
 Pro Gln Ala Gln Glu Lys Phe Gln Asp Leu Gly Ala Ala Tyr Glu
 65 70 75
 Val Leu Ser Asp Ser Glu Lys Arg Lys Gln Tyr Asp Thr Tyr Gly
 80 85 90
 Glu Glu Gly Leu Lys Asp Gly His Gln Ser Ser His Gly Asp Ile
 95 100 105
 Phe Ser His Phe Phe Gly Asp Phe Gly Phe Met Phe Gly Gly Thr
 110 115 120
 Pro Arg Gln Gln Asp Arg Asn Ile Pro Arg Gly Ser Asp Ile Ile
 125 130 135
 Val Asp Leu Glu Val Thr Leu Glu Glu Val Tyr Ala Gly Asn Phe
 140 145 150
 Val Glu Val Val Arg Asn Lys Pro Val Ala Arg Gln Ala Pro Gly
 155 160 165
 Lys Arg Lys Cys Asn Cys Arg Gln Glu Met Arg Thr Thr Gln Leu
 170 175 180
 Gly Pro Gly Arg Phe Gln Met Thr Gln Glu Val Val Cys Asp Glu
 185 190 195
 Cys Pro Asn Val Lys Leu Val Asn Glu Glu Arg Thr Leu Glu Val
 200 205 210
 Glu Ile Glu Pro Gly Val Arg Asp Gly Met Glu Tyr Pro Phe Ile
 215 220 225
 Gly Glu Gly Glu Pro His Val Asp Gly Glu Pro Gly Asp Leu Arg
 230 235 240
 Phe Arg Ile Lys Val Val Lys His Pro Ile Phe Glu Arg Arg Gly
 245 250 255
 Asp Asp Leu Tyr Thr Asn Val Thr Ile Ser Leu Val Glu Ser Leu
 260 265 270
 Val Gly Phe Glu Met Asp Ile Thr His Leu Asp Gly His Lys Val
 275 280 285
 His Ile Ser Arg Asp Lys Ile Thr Arg Pro Gly Ala Lys Leu Trp
 290 295 300
 Lys Lys Gly Glu Gly Leu Pro Asn Phe Asp Asn Asn Asn Ile Lys
 305 310 315
 Gly Ser Leu Ile Ile Thr Phe Asp Val Asp Phe Pro Lys Glu Gln

320 325 330

Leu Thr Glu Glu Ala Arg Glu Gly Ile Lys Gln Leu Leu Lys Gln
335 340 345

Gly Ser Val Gln Lys Val Tyr Asn Gly Leu Gln Gly Tyr
350 355

<210> 149
<211> 509
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 34, 52, 134, 142, 155, 158, 196, 217, 228, 272, 347, 410, 445,
482
<223> unknown base

<400> 149
tgggaccagg gaaccccgaa ccccccgggtg gagngcctaa caggccggtg 50
gntgcgaccg aagcggcgaa cggaggaggt tttgaggatt tttggAACAG 100
gaccggaca gaggaaccat ggTTCCGCAg aacntgagca cNTTTCGCT 150
gttGNTGNTA tacttcatcg gggcgggtat tgccggacga gattttata 200
agattttggg gtgcctngaa gtgcctnta taaaggatata taaaaaggcc 250
tatAGGAAAC tagccctgca gntttatccc gaccggAAAC ctgatgatcc 300
acaAGCCCAG gagaaattcc aggattttggg tgctgcttat gaggttntgt 350
cagatagtga gaaacggaaa cagtacgata attatggta agaaggatta 400
aaAGATGGTN atcagagctc ccatggagac atttttcac acttnTTGG 450
ggatttttgtt ttcatgtttg gaggaacccc tngtcagcaa gacagaaata 500
ttccaagag 509

<210> 150
<211> 1532
<212> DNA
<213> Homo sapiens

<400> 150
ggcacgaggc ggcggggcag tcgcgggatg cgccccggag ccacagcctg 50
aggcccttag gtctctgcag gtgtcgtgga ggaacctagc acctgccatc 100
ctcttccccca atttGCCACT tccagcagct ttagccatg aggaggatgt 150
gaccgggact gagtcaggag ccctctggaa gcatggagac tgtgggtatt 200
gttgcctatag gtgtcgtggc caccatctt ctggcttcgt ttgcagcctt 250

ggtgctggtt tgcaggcagc gctactgccg gccgcgagac ctgctgcagc 300
gctatgattc taagccatt gtggaccta ttgggtccat ggagaccagg 350
tctgagccct ctgagttaga actggacgat gtcgttatca ccaaccccc 400
cattgaggcc attctggaga atgaagactg gatcgaagat gcctcggtc 450
tcatgtccca ctgcattgcc atcttgaaga tttgtcacac tctgacagag 500
aagcttggtg ccatgacaat gggctctggg gccaagatga agacttcagc 550
cagtgtcagc gacatcattg tggtgccaa gcggatcagc cccaggggtgg 600
atgatgttgt gaagtcgatg taccctccgt tggaccccaa actcctggac 650
gcacggacga ctgcctgct cctgtctgtc agtcacctgg tgctgggtac 700
aaggaatgcc tgccatctga cgggaggcct ggactggatt gaccagtctc 750
tgtcggtgc tgaggagcat ttggaaagtcc ttcgagaagc agccctagct 800
tctgagccag ataaaggcct cccaggccct gaaggcttcc tgcaggagca 850
gtctgcaatt tagtgcctac aggccagcag ctagccatga aggcccctgc 900
cgccatccct ggatggctca gcttagcctt ctacttttc ctatagagtt 950
agttgttctc cacggctgga gagttcagct gtgtgtgcat agtaaagcag 1000
gagatccccg tcagttatg cctctttgc agtgcaaac tgtggctggt 1050
gagtggcagt ctaatactac agtttagggga gatgccattc actctctgca 1100
agaggagtagt tgaaaactgg tggactgtca gctttattta gctcacctag 1150
tgttttcaag aaaattgagc caccgtctaa gaaatcaaga ggtttcacat 1200
taaaattaga atttctggcc tctctcgatc ggtcagaatg tgtggcaatt 1250
ctgatctgca ttttcagaag aggacaatca attgaaacta agtaggggtt 1300
tcttcttttg gcaagacttg tactctctca cctggcctgt ttcatttatt 1350
tgtattatct gcctggtccc tgaggcgctc gggctctcc tctcccttgc 1400
aggtttgggt ttgaagctga ggaactacaa agttgatgat ttcttttta 1450
tctttatgcc tgcaattta cctagctacc actaggtgga tagtaaattt 1500
atacttatgt ttccctcaaa aaaaaaaaaa aa 1532

<210> 151
<211> 226
<212> PRT
<213> Homo sapiens

<400> 151

Met Glu Thr Val Val Ile Val Ala Ile Gly Val Leu Ala Thr Ile
 1 5 10 15
 Phe Leu Ala Ser Phe Ala Ala Leu Val Leu Val Cys Arg Gln Arg
 20 25 30
 Tyr Cys Arg Pro Arg Asp Leu Leu Gln Arg Tyr Asp Ser Lys Pro
 35 40 45
 Ile Val Asp Leu Ile Gly Ala Met Glu Thr Gln Ser Glu Pro Ser
 50 55 60
 Glu Leu Glu Leu Asp Asp Val Val Ile Thr Asn Pro His Ile Glu
 65 70 75
 Ala Ile Leu Glu Asn Glu Asp Trp Ile Glu Asp Ala Ser Gly Leu
 80 85 90
 Met Ser His Cys Ile Ala Ile Leu Lys Ile Cys His Thr Leu Thr
 95 100 105
 Glu Lys Leu Val Ala Met Thr Met Gly Ser Gly Ala Lys Met Lys
 110 115 120
 Thr Ser Ala Ser Val Ser Asp Ile Ile Val Val Ala Lys Arg Ile
 125 130 135
 Ser Pro Arg Val Asp Asp Val Val Lys Ser Met Tyr Pro Pro Leu
 140 145 150
 Asp Pro Lys Leu Leu Asp Ala Arg Thr Thr Ala Leu Leu Leu Ser
 155 160 165
 Val Ser His Leu Val Leu Val Thr Arg Asn Ala Cys His Leu Thr
 170 175 180
 Gly Gly Leu Asp Trp Ile Asp Gln Ser Leu Ser Ala Ala Glu Glu
 185 190 195
 His Leu Glu Val Leu Arg Glu Ala Ala Leu Ala Ser Glu Pro Asp
 200 205 210
 Lys Gly Leu Pro Gly Pro Glu Gly Phe Leu Gln Glu Gln Ser Ala
 215 220 225

Ile

```

<210> 152
<211> 1027
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1017, 1020
<223> unknown base
  
```

<400> 152
gcttcatttc tcccactca gttccacc ctgggttgc cgaggtgctt 50
tcggcgctgt ccccaccact gcagccatga tctccttaac ggacacgcag 100
aaaattggaa tgggattaac aggatttggaa gtgttttcc ttgttttgg 150
aatgattctc tttttgaca aagcactact ggctatttggaa aatgttttat 200
tttagccgg ctggctttt gtaatttgggtt tagaaagaac attcagattc 250
ttcttccaaa aacataaaat gaaagctaca ggttttttc tgggtgggt 300
atttgtatc cttatttgggtt ggcctttgtat aggcattgtat ttcttgggtt 350
atggattttt tctcttggttt aggggcttctt ttccctgtat ttgtttttt 400
attagaagag tgccagtccct tggatccctc ctaaatttac ctggaaattt 450
atcatttgta gataaagttt gagaaagcaa caatatggta taacaacaag 500
tgaatttggaa gactcattta aaatatttggaa ttatttataa agtcatttga 550
agaatattca gcacaaaattt aaattacatg aaatagcttggaa atgtttttt 600
tacaggagtt taaaacgtat agcctacaaa gtaccaggcgg caaatttgc 650
aagaagcagt gaaaacaggc ttctactcaa gtgaactaag aagaagtcag 700
caagcaaact gagagaggtt gaaatccatgt taatgtatgtt taagaaactc 750
ttgaaggcta tttgtgttgtt tttccacaa tgtgcgaaac tcagccatcc 800
tttagagaact gtgggtgcctg tttctttctt ttttatttttggaa aaggctcagg 850
agcatccata ggcatttgct ttttagaagt gtccactgca atggcaaaaa 900
tatttccagt tgcactgtat ctcttggaaat gatgtatgtt ttcgatttggaa 950
ttgtgtcatt ttaaagtattt aaaacccaagg aaaccccaat tttgatgtat 1000
ggattactt ttttgngcn cagggcc 1027

<210> 153
<211> 138
<212> PRT
<213> Homo sapiens

<220>
<221> N-myristoylation Sites
<222> 11-16, 51-56 and 116-121
<223> N-myristoylation Sites.

<220>
<221> Transmembrane domains
<222> 12-30, 33-52, 69-89 and 93-109
<223> Transmembrane domains

<220>
<221> Aminoacyl-transfer RNA Synthetases.
<222> 49-59
<223> Aminoacyl-transfer RNA synthetases class-II protein.

<400> 153
Met Ile Ser Leu Thr Asp Thr Gln Lys Ile Gly Met Gly Leu Thr
1 5 10 15

Gly Phe Gly Val Phe Phe Leu Phe Gly Met Ile Leu Phe Phe
20 25 30

Asp Lys Ala Leu Leu Ala Ile Gly Asn Val Leu Phe Val Ala Gly
35 40 45

Leu Ala Phe Val Ile Gly Leu Glu Arg Thr Phe Arg Phe Phe Phe
50 55 60

Gln Lys His Lys Met Lys Ala Thr Gly Phe Phe Leu Gly Gly Val
65 70 75

Phe Val Val Leu Ile Gly Trp Pro Leu Ile Gly Met Ile Phe Glu
80 85 90

Ile Tyr Gly Phe Phe Leu Leu Phe Arg Gly Phe Phe Pro Val Val
95 100 105

Val Gly Phe Ile Arg Arg Val Pro Val Leu Gly Ser Leu Leu Asn
110 115 120

Leu Pro Gly Ile Arg Ser Phe Val Asp Lys Val Gly Glu Ser Asn
125 130 135

Asn Met Val

<210> 154
<211> 405
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 66
<223> unknown base

<400> 154
gaagacgtgg cggctctcgcc tggggctgtt tccggcttc atttctccg 50
actcagcttc ccaccntggg ctttccgagg tgcttcgccc gctgtcccc 100
ccactgcagc catgatctcc ttaacggaca cgcaaaaaat tggaatggga 150
ttaaccggat ttggagtgtt tttcctgttc tttgaaatga ttctctttt 200
tgacaaagca ctactggcta ttggaaatgt tttatttata gccggcttgg 250
cttttgtaat tggtttagaa agaacattca gattcttctt ccaaaaacat 300

aaaatgaaag ctacagggtt tttctgggt ggtgtattt tagtccttat 350
tggttggcct ttgataggca tgatcttcga aatttatgga tttttctct 400
tgttc 405
<210> 155
<211> 1781
<212> DNA
<213> Homo sapiens
<400> 155
ggcacgaggc tgaacccagc cggctccatc tcagcttctg gtttctaagt 50
ccatgtgccca aaggctgcca ggaaggagac gccttcctga gtcctggatc 100
tttcttcctt ctggaaatct ttgactgtgg gtagttattt atttctgaat 150
aagagcgtcc acgcatcatg gacctcgccg gactgctgaa gtctcagttc 200
ctgtgccacc tggtcttctg ctacgtctt attgcctcag ggctaattcat 250
caacaccatt cagctttca ctctcctcct ctggcccatt aacaaggcagc 300
tcttccggaa gatcaactgc agactgtcct attgcatttc aagccagctg 350
gtgatgctgc tggagtggtg gtcgggcacg gaatgcacca tcttcacgga 400
cccgcgccgccc tacctaagt atgggaagga aaatgcacatc gtggttctca 450
accacaagtt taaaaatttac tttctgtgtg gctggagct gtccgaacgc 500
tttgggctgt tagggggctc caaggtccctg gccaaagaaag agctggccta 550
tgtcccaatt atcggtcttca tgggtactt caccgagatg gtcttctgtt 600
cgcgcaagtg ggagcaggat cgcaagacgg ttgccaccag tttgcagcac 650
ctccggact accccgagaa gtatTTTTC ctgattcaact gtgagggcac 700
acggttcacg gagaagaagc atgagatcag catgcaggtg gcccggcca 750
aggggctgcc tcgcctcaag catcacctgt tgccacgaac caagggcttc 800
gccatcaccg tgaggagctt gagaaatgta gttcagctg tatatgactg 850
tacactcaat ttcaaaaaata atgaaaatcc aacactgctg ggagtccaa 900
acggaaagaa ataccatgca gatttgtatg ttaggaggat cccactggaa 950
gacatccctg aagacgatga cgagtgcctg gcctggctgc acaagctcta 1000
ccaggagaag gatgccttcc aggaggagta ctacaggacg ggcacccctcc 1050
cagagacgcc catggtgccc cccccggccgc cctggaccct cgtgaactgg 1100
ctgttttggg cctcgctggt gctctaccct ttcttccagt tcctggtcag 1150

catgatcagg agcgggtctt ccctgacgct ggccagcttc atcctcgct 1200
tctttgtggc ctccgtggga gttcgatgga tgattggtgt gacggaaatt 1250
gacaaggggct ctgcctacgg caactctgac agcaagcaga aactgaatga 1300
ctgactcagg gaggtgtcac catccgaagg gaaccttggg gaactggtgg 1350
cctctgcata tcctccttag tgggacacgg tgacaaaggc tgggtgagcc 1400
cctgctgggc acggcggaaag tcacgacctc tccagccagg gagtctggtc 1450
tcaaggccgg atggggagga agatgtttt taatctttt ttccccatgt 1500
gcttagtgg gcttggttt tcttttgtg cgagtgtgtg tgagaatggc 1550
tgtgtggta gtgtgaactt tttctgtga tcatagaaag ggtattttag 1600
gctgcagggg agggcagggc tggggaccga aggggacaag ttccccttc 1650
atccttggt gctgagttt ctgttaaccct tgggtgccag agataaagt 1700
aaaagtgc ttctgggtca aaaaaaaaaa a 1781

<210> 156

<211> 378

<212> PRT

<213> Homo sapiens

<400> 156

Met	Asp	Leu	Ala	Gly	Leu	Leu	Lys	Ser	Gln	Phe	Leu	Cys	His	Leu
1					5					10				15

Val	Phe	Cys	Tyr	Val	Phe	Ile	Ala	Ser	Gly	Leu	Ile	Ile	Asn	Thr
				20					25					30

Ile	Gln	Leu	Phe	Thr	Leu	Leu	Leu	Trp	Pro	Ile	Asn	Lys	Gln	Leu
					35				40					45

Phe	Arg	Lys	Ile	Asn	Cys	Arg	Leu	Ser	Tyr	Cys	Ile	Ser	Ser	Gln
					50				55					60

Leu	Val	Met	Leu	Leu	Glu	Trp	Trp	Ser	Gly	Thr	Glu	Cys	Thr	Ile
					65				70					75

Phe	Thr	Asp	Pro	Arg	Ala	Tyr	Leu	Lys	Tyr	Gly	Lys	Glu	Asn	Ala
					80				85					90

Ile	Val	Val	Leu	Asn	His	Lys	Phe	Glu	Ile	Asp	Phe	Leu	Cys	Gly
						95			100					105

Trp	Ser	Leu	Ser	Glu	Arg	Phe	Gly	Leu	Leu	Gly	Gly	Ser	Lys	Val
					110				115					120

Leu	Ala	Lys	Lys	Glu	Leu	Ala	Tyr	Val	Pro	Ile	Ile	Gly	Trp	Met
					125				130					135

Trp Tyr Phe Thr Glu Met Val Phe Cys Ser Arg Lys Trp Glu Gln
 140 145 150
 Asp Arg Lys Thr Val Ala Thr Ser Leu Gln His Leu Arg Asp Tyr
 155 160 165
 Pro Glu Lys Tyr Phe Phe Leu Ile His Cys Glu Gly Thr Arg Phe
 170 175 180
 Thr Glu Lys Lys His Glu Ile Ser Met Gln Val Ala Arg Ala Lys
 185 190 195
 Gly Leu Pro Arg Leu Lys His His Leu Leu Pro Arg Thr Lys Gly
 200 205 210
 Phe Ala Ile Thr Val Arg Ser Leu Arg Asn Val Val Ser Ala Val
 215 220 225
 Tyr Asp Cys Thr Leu Asn Phe Arg Asn Asn Glu Asn Pro Thr Leu
 230 235 240
 Leu Gly Val Leu Asn Gly Lys Tyr His Ala Asp Leu Tyr Val
 245 250 255
 Arg Arg Ile Pro Leu Glu Asp Ile Pro Glu Asp Asp Asp Glu Cys
 260 265 270
 Ser Ala Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Phe Gln
 275 280 285
 Glu Glu Tyr Tyr Arg Thr Gly Thr Phe Pro Glu Thr Pro Met Val
 290 295 300
 Pro Pro Arg Arg Pro Trp Thr Leu Val Asn Trp Leu Phe Trp Ala
 305 310 315
 Ser Leu Val Leu Tyr Pro Phe Phe Gln Phe Leu Val Ser Met Ile
 320 325 330
 Arg Ser Gly Ser Ser Leu Thr Leu Ala Ser Phe Ile Leu Val Phe
 335 340 345
 Phe Val Ala Ser Val Gly Val Arg Trp Met Ile Gly Val Thr Glu
 350 355 360
 Ile Asp Lys Gly Ser Ala Tyr Gly Asn Ser Asp Ser Lys Gln Lys
 365 370 375
 Leu Asn Asp

<210> 157
 <211> 1849
 <212> DNA
 <213> Homo sapiens

<400> 157
 ctgaggcggc ggttagcatgg agggggagag tacgtcgccg gtgctctcg 50

gctttgtgct cggcgcaactc gctttccagc acctaacad ggactcggac 100
acggaagggtt ttcttcttgg ggaagtaaaa ggtgaagcca agaacagcat 150
tactgattcc caaatggatg atgttgaagt tgtttataca attgacattc 200
agaaaatatac tccatgctat cagctttta gctttataa ttcttcaggc 250
gaagtaaatg agcaagcact gaagaaaata ttatcaaattg tcaaaaagaa 300
tgtggtaggt tggtacaaat tccgtcgtca ttcagatcag atcatgacgt 350
tttagagagag gctgottcac aaaaacttgc aggagcattt ttcaaaccua 400
gaccttggtt ttctgctatt aacaccaagt ataataacag aaagctgctc 450
tactcatcga ctggaacatt ccttatataa acctaaaaa ggacttttc 500
acagggtacc ttttagtggtt gccaatctgg gcatgtctga acaactgggt 550
tataaaaactg tatcaggttc ctgtatgtcc actggttta gccgagcagt 600
acaaaacacac agctctaaat ttttgaaga agatggatcc ttaaaggagg 650
tacataagat aaatgaaaatg tatgcttcat tacaagagga attaaagagt 700
atatgcaaaa aagtggaaga cagtgaacaa gcagtagata aactagtaaa 750
ggatgtaaac agattaaaac gagaaattga gaaaaggaga ggagcacaga 800
ttcaggcagc aagagagaag aacatccaaa aagaccctca ggagaacatt 850
tttcttgc aggcattacg gacctttt ccaaattctg aatttcttca 900
ttcatgtgtt atgtctttaa aaaatagaca tgtttctaaa agtagctgta 950
actacaacca ccatctcgat gtagtagaca atctgacctt aatggtagaa 1000
cacactgaca ttcctgaagc tagtccagct agtacaccac aaatcattaa 1050
gcataaaagcc ttagacttag atgacagatg gcaattcaag agatctcggt 1100
tgtagatac acaagacaaa cgatctaaag caaatactgg tagtagtaac 1150
caagataaaag catccaaaat gagcagccca gaaacagatg aagaaattga 1200
aaagatgaag gttttgggt aatattcag gtctcctaca ttttgatcct 1250
tttaacctta caaggagatt ttttatttg gctgatgggt aaagccaaac 1300
atttctattt ttttactat gttgagctac ttgcagtaag ttcatgtgtt 1350
tttactatgt tcacctgttt gcagtaatac acagataact cttagtgcatt 1400
ttacttcaca aagtactttt tcaaacatca gatgctttta tttccaaacc 1450
ttttttcac ctccactaa gttgttgagg ggaaggctta cacagacaca 1500

ttcttttagaa ttggaaaagt gagaccaggc acagtggttc acacctgtaa 1550
tcccagcaact taggaaagac aagtcaggag gattgattga agctaggagt 1600
tagagaccag cctggcaac gtattgagac catgtctatt aaaaaataaa 1650
atggaaaagc aagaatagcc ttatTTCAA aatatggaaa gaaatttata 1700
tgaaaattta tctgagtcat taaaattctc cttaagtgtat acttttttag 1750
aagtacatta tggctagagt tgccagataa aatgctggat atcatgcaat 1800
aaatttgc当地 aacatcatct aaaatttaaa aaaaaaaaaa aaaaaaaaaa 1849

<210> 158

<211> 409

<212> PRT

<213> Homo sapiens

<400> 158

Met	Glu	Gly	Glu	Ser	Thr	Ser	Ala	Val	Leu	Ser	Gly	Phe	Val	Leu	15
1															
Gly	Ala	Leu	Ala	Phe	Gln	His	Leu	Asn	Thr	Asp	Ser	Asp	Thr	Glu	30
Gly	Phe	Leu	Leu	Gly	Glu	Val	Lys	Gly	Glu	Ala	Lys	Asn	Ser	Ile	45
Thr	Asp	Ser	Gln	Met	Asp	Asp	Val	Glu	Val	Val	Tyr	Thr	Ile	Asp	60
Ile	Gln	Lys	Tyr	Ile	Pro	Cys	Tyr	Gln	Leu	Phe	Ser	Phe	Tyr	Asn	75
Ser	Ser	Gly	Glu	Val	Asn	Glu	Gln	Ala	Leu	Lys	Lys	Ile	Leu	Ser	90
Asn	Val	Lys	Asn	Val	Val	Gly	Trp	Tyr	Lys	Phe	Arg	Arg	His		
Ser	Asp	Gln	Ile	Met	Thr	Phe	Arg	Glu	Arg	Leu	Leu	His	Lys	Asn	120
Leu	Gln	Glu	His	Phe	Ser	Asn	Gln	Asp	Leu	Val	Phe	Leu	Leu	Leu	135
Thr	Pro	Ser	Ile	Ile	Thr	Glu	Ser	Cys	Ser	Thr	His	Arg	Leu	Glu	150
His	Ser	Leu	Tyr	Lys	Pro	Gln	Lys	Gly	Leu	Phe	His	Arg	Val	Pro	165
Leu	Val	Val	Ala	Asn	Leu	Gly	Met	Ser	Glu	Gln	Leu	Gly	Tyr	Lys	180
Thr	Val	Ser	Gly	Ser	Cys	Met	Ser	Thr	Gly	Phe	Ser	Arg	Ala	Val	195
185									190						

Gln Thr His Ser Ser Lys Phe Phe Glu Glu Asp Gly Ser Leu Lys
 200 205 210
 Glu Val His Lys Ile Asn Glu Met Tyr Ala Ser Leu Gln Glu Glu
 215 220 225
 Leu Lys Ser Ile Cys Lys Lys Val Glu Asp Ser Glu Gln Ala Val
 230 235 240
 Asp Lys Leu Val Lys Asp Val Asn Arg Leu Lys Arg Glu Ile Glu
 245 250 255
 Lys Arg Arg Gly Ala Gln Ile Gln Ala Ala Arg Glu Lys Asn Ile
 260 265 270
 Gln Lys Asp Pro Gln Glu Asn Ile Phe Leu Cys Gln Ala Leu Arg
 275 280 285
 Thr Phe Phe Pro Asn Ser Glu Phe Leu His Ser Cys Val Met Ser
 290 295 300
 Leu Lys Asn Arg His Val Ser Lys Ser Ser Cys Asn Tyr Asn His
 305 310 315
 His Leu Asp Val Val Asp Asn Leu Thr Leu Met Val Glu His Thr
 320 325 330
 Asp Ile Pro Glu Ala Ser Pro Ala Ser Thr Pro Gln Ile Ile Lys
 335 340 345
 His Lys Ala Leu Asp Leu Asp Asp Arg Trp Gln Phe Lys Arg Ser
 350 355 360
 Arg Leu Leu Asp Thr Gln Asp Lys Arg Ser Lys Ala Asn Thr Gly
 365 370 375
 Ser Ser Asn Gln Asp Lys Ala Ser Lys Met Ser Ser Pro Glu Thr
 380 385 390
 Asp Glu Glu Ile Glu Lys Met Lys Gly Phe Gly Glu Tyr Ser Arg
 395 400 405
 Ser Pro Thr Phe

<210> 159
 <211> 2651
 <212> DNA
 <213> Homo sapiens

<400> 159
 ggcacagccg cgccggcggag ggcagagtca gccgagccga gtccagccgg 50
 acgagcggac cagcgcaggc cagcccaagc agcgccgac gaacgcccgc 100
 cggccggccac accctctgcg gtccccgcgg cgccctgccac cttccctcc 150
 ttccccgcgt ccccgccctcg ccggccagtc agcttgcggg gttcgctgcc 200

ccgcgaaacc ccgaggtcac cagcccgcbc ctctgcttcc ctggggccgc 250
cgcgcctcc acgccttcct tctccctgg cccggcgcct ggcaccgggg 300
accgttgctt gacgcgaggc ccagctctac ttttcgcccc gcgtctctc 350
cgccctgctcg cctcttccac caactccaac tccttctccc tccagctcca 400
ctcgctagtc cccgactccg ccagccctcg gccgcgtgcc gtagcgccgc 450
ttcccggtccg gtcccaaagg tgggaacgcg tccgccccgg cccgcaccat 500
ggcacggttc ggcttgcgg cgcttctctg caccctggca gtgctcagcg 550
ccgcgctgct ggctgccgag ctcaagtgcga aaagttgtc ggaagtgcga 600
cgtcttacg tgtccaaagg cttcaacaag aacgatgccc ccctccacga 650
gatcaacggt gatcattga agatctgtcc ccagggttct acctgctgct 700
ctcaagagat ggaggagaag tacagcctgc aaagtaaaga tgatttcaaa 750
agtgtggtca gcgaacagtg caatcatgg caagctgtct ttgcttcacg 800
ttacaagaag tttgatgaat tcttcaaaga actacttcaa aatgcagaga 850
aatccctgaa tgatatgttt gtgaagacat atggccattt atacatgcaa 900
aattctgagc tatttaaaga tctcttcgta gagttgaaac gttactacgt 950
ggtggaaat gtgaacctgg aagaaatgct aaatgacttc tgggctcgcc 1000
tcctggagcg gatgttccgc ctggtaact cccagttacca ctttacagat 1050
gagtatctgg aatgtgtgag caagtatacg gagcagctga agcccttcgg 1100
agatgtccct cgcaaattga agctccaggt tactcgtgct tttgttagcag 1150
cccgtaactt cgctcaaggc ttagcggttgc cggagatgt cgtgagcaag 1200
gtctccgtgg taaaacccac agcccagtgt acccatgccc tggtaagat 1250
gatctactgc tcccactgcc ggggtctcgta gactgtgaag ccatgttaca 1300
actactgctc aaacatcatg agaggctgtt tggccaacca aggggatctc 1350
gattttgaat ggaacaattt catagatgct atgctgatgg tggcagagag 1400
gctagaggtt ccttcaaca ttgaatcggt catggatccc atcgatgtga 1450
agatttctga tgctattatg aacatgcagg ataatagtgt tcaagtgtct 1500
cagaaggttt tccagggatg tggacccccc aagccctcc cagctggacg 1550
aatttctcgta tccatctctg aaagtgcctt cagtgctcgc ttcagaccac 1600
atcaccccca ggaacgccca accacagcag ctggcactag tttggaccga 1650

ctggttactg atgtcaagga gaaaactgaaa caggccaaga aattctggtc 1700
ctcccttccg agcaacgttt gcaacgatga gaggatggct gcagggaaacg 1750
gcaatgagga tgactgttgg aatgggaaag gcaaaagcag gtacctgttt 1800
gcagtgacag gaaatggatt agccaaccag ggcaacaacc cagaggtcca 1850
ggttgacacc agcaaaccag acatactgat cttcgtaa atcatggctc 1900
ttcgagtgat gaccagcaag atgaagaatg catacaatgg gaacgacgtg 1950
gacttcttg atatcagtga tgaaagttagt ggagaaggaa gtggaagtgg 2000
ctgtgagttat cagcagtgcc ctccagagtt tgactacaat gccactgacc 2050
atgctggaa gagtgccaat gagaaagccg acagtgtgg tgtccgtcct 2100
ggggcacagg cctacccct cactgtcttc tgcattttgt tcctggttat 2150
gcagagagag tggagataat tctcaaactc tgaaaaaaag tgttcatcaa 2200
aaagttaaaa ggcaccagtt atcaacttcc taccatccta gtgactttgc 2250
tttttaatg aatggacaac aatgtacagt ttttactatg tggccactgg 2300
tttaagaagt gctgactttg ttttctcatt cagtttggg aggaaaagg 2350
actgtgcatt gagttggcct ctgctcccc aaaccatgtt aaacgtggct 2400
aacagtgttag gtacagaact atagtttagt gtgcatttg gattttatca 2450
ctctattatt tgtttgtatg tttttctc atttcgtttg tgggttttt 2500
tttccaaactg tgatctcgcc ttgtttctta caagcaaacc agggccctt 2550
cttggcacgt aacatgtacg tatttctgaa atattaaata gctgtacaga 2600
agcaggtttt atttatcatg ttatcttatt aaaagaaaaa gcccaaaaag 2650

c 2651

<210> 160
<211> 556
<212> PRT
<213> Homo sapiens

<400> 160
Met Ala Arg Phe Gly Leu Pro Ala Leu Leu Cys Thr Leu Ala Val
1 5 10 15
Leu Ser Ala Ala Leu Leu Ala Ala Glu Leu Lys Ser Lys Ser Cys
20 25 30
Ser Glu Val Arg Arg Leu Tyr Val Ser Lys Gly Phe Asn Lys Asn
35 40 45
Asp Ala Pro Leu His Glu Ile Asn Gly Asp His Leu Lys Ile Cys

50	55	60
Pro Gln Gly Ser Thr Cys Cys Ser Gln Glu Met Glu Glu Lys Tyr		
65	70	75
Ser Leu Gln Ser Lys Asp Asp Phe Lys Ser Val Val Ser Glu Gln		
80	85	90
Cys Asn His Leu Gln Ala Val Phe Ala Ser Arg Tyr Lys Lys Phe		
95	100	105
Asp Glu Phe Phe Lys Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu		
110	115	120
Asn Asp Met Phe Val Lys Thr Tyr Gly His Leu Tyr Met Gln Asn		
125	130	135
Ser Glu Leu Phe Lys Asp Leu Phe Val Glu Leu Lys Arg Tyr Tyr		
140	145	150
Val Val Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp		
155	160	165
Ala Arg Leu Leu Glu Arg Met Phe Arg Leu Val Asn Ser Gln Tyr		
170	175	180
His Phe Thr Asp Glu Tyr Leu Glu Cys Val Ser Lys Tyr Thr Glu		
185	190	195
Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Leu Gln		
200	205	210
Val Thr Arg Ala Phe Val Ala Ala Arg Thr Phe Ala Gln Gly Leu		
215	220	225
Ala Val Ala Gly Asp Val Val Ser Lys Val Ser Val Val Asn Pro		
230	235	240
Thr Ala Gln Cys Thr His Ala Leu Leu Lys Met Ile Tyr Cys Ser		
245	250	255
His Cys Arg Gly Leu Val Thr Val Lys Pro Cys Tyr Asn Tyr Cys		
260	265	270
Ser Asn Ile Met Arg Gly Cys Leu Ala Asn Gln Gly Asp Leu Asp		
275	280	285
Phe Glu Trp Asn Asn Phe Ile Asp Ala Met Leu Met Val Ala Glu		
290	295	300
Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile		
305	310	315
Asp Val Lys Ile Ser Asp Ala Ile Met Asn Met Gln Asp Asn Ser		
320	325	330
Val Gln Val Ser Gln Lys Val Phe Gln Gly Cys Gly Pro Pro Lys		
335	340	345

Pro Leu Pro Ala Gly Arg Ile Ser Arg Ser Ile Ser Glu Ser Ala
350 355 360
Phe Ser Ala Arg Phe Arg Pro His His Pro Glu Glu Arg Pro Thr
365 370 375
Thr Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Val Lys
380 385 390
Glu Lys Leu Lys Gln Ala Lys Lys Phe Trp Ser Ser Leu Pro Ser
395 400 405
Asn Val Cys Asn Asp Glu Arg Met Ala Ala Gly Asn Gly Asn Glu
410 415 420
Asp Asp Cys Trp Asn Gly Lys Gly Lys Ser Arg Tyr Leu Phe Ala
425 430 435
Val Thr Gly Asn Gly Leu Ala Asn Gln Gly Asn Asn Pro Glu Val
440 445 450
Gln Val Asp Thr Ser Lys Pro Asp Ile Leu Ile Leu Arg Gln Ile
455 460 465
Met Ala Leu Arg Val Met Thr Ser Lys Met Lys Asn Ala Tyr Asn
470 475 480
Gly Asn Asp Val Asp Phe Phe Asp Ile Ser Asp Glu Ser Ser Gly
485 490 495
Glu Gly Ser Gly Ser Gly Cys Glu Tyr Gln Gln Cys Pro Ser Glu
500 505 510
Phe Asp Tyr Asn Ala Thr Asp His Ala Gly Lys Ser Ala Asn Glu
515 520 525
Lys Ala Asp Ser Ala Gly Val Arg Pro Gly Ala Gln Ala Tyr Leu
530 535 540
Leu Thr Val Phe Cys Ile Leu Phe Leu Val Met Gln Arg Glu Trp
545 550 555

Arg

<210> 161
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 161
ctccgtggta aaccccacag ccc 23

<210> 162
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 162
tcacatcgat gggatccatg accg 24

<210> 163
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 163
ggtctcgtga ctgtgaagcc atgttacaac tactgctcaa acatcatgag 50

<210> 164
<211> 870
<212> DNA
<213> Homo sapiens

<400> 164
ctcgccctca aatggaaacg ctggcctggg actaaaggcat agaccaccag 50
gctgagtatc ctgacacctgag tcatacccccggatcaggag cctccagcag 100
ggaaccttcc attatattct tcaagcaact tacagctgca ccgacagttg 150
cgatgaaagt tctaatactct tccctcctcc tgttgctgcc actaatgctg 200
atgtccatgg tctcttagcag cctgaatcca ggggtcgcca gaggccacag 250
ggaccgaggc caggcttcta ggagatggct ccaggaaggc ggccaagaat 300
gtgagtgcaa agattggttc ctgagagccc cgagaagaaa attcatgaca 350
gtgtctggc tgccaaagaa gcagtgcctt tgtgatcatt tcaagggcaa 400
tgtgaagaaa acaagacacc aaaggcacca cagaaagcca aacaagcatt 450
ccagagcctg ccagcaattt ctcaaacaat gtcagctaag aagcttgct 500
ctgcctttgt aggagctctg agcgccccact cttccaatta aacattctca 550
gccaaagaaga cagtgagcac acctaccaga cactttctt ctcccacctc 600
actctccac tgtacccacc cctaaatcat tccagtgctc tcaaaaagca 650
tgttttcaa gatcatttg tttgttgctc tctctagtgt cttcttctct 700
cgtcagtctt agcctgtgcc ctccccttac ccaggcttag gcttaattac 750
ctgaaagatt ccagggaaact gtagcttcct agctagtgtc atttaacctt 800

aaatgcaatc aggaaagtag caaacagaag tcaataaata tttttaaatg 850
tcaaaaaaaaaaaa aaaaaaaaaaa 870

<210> 165
<211> 119
<212> PRT
<213> Homo sapiens

<400> 165
Met Lys Val Leu Ile Ser Ser Leu Leu Leu Leu Pro Leu Met
1 5 10 15
Leu Met Ser Met Val Ser Ser Leu Asn Pro Gly Val Ala Arg
20 25 30
Gly His Arg Asp Arg Gly Gln Ala Ser Arg Arg Trp Leu Gln Glu
35 40 45
Gly Gly Gln Glu Cys Glu Cys Lys Asp Trp Phe Leu Arg Ala Pro
50 55 60
Arg Arg Lys Phe Met Thr Val Ser Gly Leu Pro Lys Lys Gln Cys
65 70 75
Pro Cys Asp His Phe Lys Gly Asn Val Lys Lys Thr Arg His Gln
80 85 90
Arg His His Arg Lys Pro Asn Lys His Ser Arg Ala Cys Gln Gln
95 100 105
Phe Leu Lys Gln Cys Gln Leu Arg Ser Phe Ala Leu Pro Leu
110 115

<210> 166
<211> 551
<212> DNA
<213> Homo sapiens

<400> 166
aatggctgtc ttagtacttc gcctgacagt tgtcctggga ctgcttgtct 50
tattcctgac ctgctatgca gacgacaac cagacaagcc agacgacaag 100
ccagacgact cgggcaaaga cccaaagcca gacttccccca aattcctaag 150
cctcctggc acagagatca ttgagaatgc agtcgagttc atcctccgct 200
ccatgtccag gagcacagga tttatgaaat ttgatgataa tgaaggaaaa 250
cattcatcaa agtgacatcc tcaggacaca cccatgtggc tcctggacaa 300
tccaagagca gccaaatcct gctttccag tttggctcca caagtccctcc 350
aggacagagc cctcaaagca actcccaacg agttctcagg attcaggctc 400
tggcttcaac caaacagaac tcattttgaa caccctgact gcattttgc 450

ttttagaaag ttagaataaa tatggcgctt tgggatcaca tagttatgg 500
agaggaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 550
a 551

<210> 167
<211> 87
<212> PRT
<213> Homo sapiens

<400> 167
Met Ala Val Leu Val Leu Arg Leu Thr Val Val Leu Gly Leu Leu
1 5 10 15
Val Leu Phe Leu Thr Cys Tyr Ala Asp Asp Lys Pro Asp Lys Pro
20 25 30
Asp Asp Lys Pro Asp Asp Ser Gly Lys Asp Pro Lys Pro Asp Phe
35 40 45
Pro Lys Phe Leu Ser Leu Leu Gly Thr Glu Ile Ile Glu Asn Ala
50 55 60
Val Glu Phe Ile Leu Arg Ser Met Ser Arg Ser Thr Gly Phe Met
65 70 75
Glu Phe Asp Asp Asn Glu Gly Lys His Ser Ser Lys
80 85

<210> 168
<211> 1371
<212> DNA
<213> Homo sapiens

<400> 168
ggacgccagc gcctgcagag gctgagcagg gaaaaagcca gtgccccagc 50
ggaagcacag ctcagagctg gtctgccatg gacatcctgg tcccactcct 100
gcagctgctg gtgctgcttc ttaccctgcc cctgcacctc atggctctgc 150
tgggctgctg gcagccccctg tgcaaaagct acttccctta cctgatggcc 200
gtgctgactc ccaagagcaa ccgcaagatg gagagcaaga aacgggagct 250
cttcagccag ataaaggggc ttacaggagc ctccggaaa gtggccctac 300
tggagctggg ctgcggaacc ggagccaact ttcatgttcta cccaccgggc 350
tgcagggtca cctgcctaga cccaaatccc cacttgaga agttcctgac 400
aaagagcatg gctgagaaca ggcacctcca atatgagcgg tttgtggtg 450
ctcctggaga ggacatgaga cagctggctg atggctccat ggatgtggtg 500
gtctgcactc tgggtgtgtc ctctgtgcag agcccaagga aggtcctgca 550

ggagggtccgg agagtactga gaccgggagg tgtgctctt ttctggagc 600
atgtggcaga accatatgga agctgggcct tcatgtggca gcaagtttc 650
gagcccacccat gaaacacat tggggatggc tgctgcctca ccagagagac 700
ctggaaggat cttgagaacg cccagttctc ccaaattccaa atggaacgcac 750
agccccctcc cttgaagtgg ctacctgttg ggccccacat catggaaag 800
gctgtcaaac aatcttccc aagctccaag gcactcattt gtccttccc 850
cagcctccaa ttagaacaag ccacccacca gcctatctat cttccactga 900
gagggaccta gcagaatgag agaagacatt catgtaccac ctactagtcc 950
ctctctcccc aacctctgcc agggcaatct ctaacttcaa tccgccttc 1000
gacagtgaaa aagctctact tctacgctga cccagggagg aaacactagg 1050
accctgttgt atcctcaact gcaagttct ggactagtct cccaacgttt 1100
gcctcccaat gttgtccctt tccttcgttc ccatggtaaa gtcctctcg 1150
cttcctcctt gaggctacac ccatgcgtct ctaggaactg gtcacaaaag 1200
tcatggtgcc tgcattccctg ccaagccccctt ctgaccctctt ctccccacta 1250
ccaccttctt cctgagctgg gggcaccagg gagaatcaga gatgctgggg 1300
atgccagagc aagactcaaa gaggcagagg ttttgttctc aaatattttt 1350
taataaatag acgaaaccac g 1371

```

<210> 169
<211> 277
<212> PRT
<213> Homo sapiens

<400> 169
Met Asp Ile Leu Val Pro Leu Leu Gln Leu Leu Val Leu Leu Leu
   1           5           10          15

Thr Leu Pro Leu His Leu Met Ala Leu Leu Gly Cys Trp Gln Pro
   20          25          30          35          40          45

Leu Cys Lys Ser Tyr Phe Pro Tyr Leu Met Ala Val Leu Thr Pro
   35          40          45          50          55          60

Lys Ser Asn Arg Lys Met Glu Ser Lys Lys Arg Glu Leu Phe Ser
   50          55          60          65          70          75

Gln Ile Lys Gly Leu Thr Gly Ala Ser Gly Lys Val Ala Leu Leu
   65          70          75          80          85          90

```

Gly Cys Arg Val Thr Cys Leu Asp Pro Asn Pro His Phe Glu Lys
95 100 105

Phe Leu Thr Lys Ser Met Ala Glu Asn Arg His Leu Gln Tyr Glu
110 115 120

Arg Phe Val Val Ala Pro Gly Glu Asp Met Arg Gln Leu Ala Asp
125 130 135

Gly Ser Met Asp Val Val Val Cys Thr Leu Val Leu Cys Ser Val
140 145 150

Gln Ser Pro Arg Lys Val Leu Gln Glu Val Arg Arg Val Leu Arg
155 160 165

Pro Gly Gly Val Leu Phe Phe Trp Glu His Val Ala Glu Pro Tyr
170 175 180

Gly Ser Trp Ala Phe Met Trp Gln Gln Val Phe Glu Pro Thr Trp
185 190 195

Lys His Ile Gly Asp Gly Cys Cys Leu Thr Arg Glu Thr Trp Lys
200 205 210

Asp Leu Glu Asn Ala Gln Phe Ser Glu Ile Gln Met Glu Arg Gln
215 220 225

Pro Pro Pro Leu Lys Trp Leu Pro Val Gly Pro His Ile Met Gly
230 235 240

Lys Ala Val Lys Gln Ser Phe Pro Ser Ser Lys Ala Leu Ile Cys
245 250 255

Ser Phe Pro Ser Leu Gln Leu Glu Gln Ala Thr His Gln Pro Ile
260 265 270

Tyr Leu Pro Leu Arg Gly Thr
275

<210> 170

<211> 1621

<212> DNA

<213> Homo sapiens

<400> 170

gtgggattta tttgagtgc a gatcg tttt ctc agtggtg gtggaa gttg 50

cctcatcgca ggcagatgtt ggggctttgt ccgaacagct cccctctgcc 100

agcttctgta gataagggtt aaaaactaat atttatatga cagaagaaaa 150

agatgtcatt ccgtaaagta aacatcatca tcttggcct ggctgttgct 200

ctcttcttac tggtttgca ccataactc ctc agcttga gcagttgtt 250

aaggaatgag gttacagatt caggaattgt agggcctcaa cctatagact 300

ttgtccccaaa tgctctccga catgcagtag atggagaca agaggagatt 350

cctgtggtca tcgctgcata tgaagacagg cttggggggg ccattgcagc 400
tataaacagc attcagcaca acactcgctc caatgtgatt ttctacattg 450
ttactctcaa caatacagca gaccatctcc ggtcctggct caacagtgtat 500
tccctgaaaa gcatcagata caaaaattgtc aattttgacc ctaaaactttt 550
ggaaggaaaa gttaaggagg atcctgacca gggggaaatcc atgaaacacctt 600
taacctttgc aaggttctac ttgccaattc tggttcccag cgcaaagaag 650
gccatataca tggatgatga tgtaattgtg caaggtgata ttcttgccct 700
ttacaataca gcactgaagc caggacatgc agctgcattt tcagaagatt 750
gtgattcagc ctctactaaa gttgtcatcc gtggagcagg aaaccagtagc 800
aattacattt gctatcttga ctataaaaag gaaagaattc gtaagcttc 850
catgaaagcc agcacttgct catttatcc tggagttttt gttgcaaacc 900
tgacggaatg gaaacgacag aatataacta accaacttggaa aaaatggatg 950
aaactcaatg tagaagaggg actgtatagc agaaccctgg ctggtagcat 1000
cacaacacct cctctgctta tcgtatTTTA tcaacagcac tctaccatcg 1050
atcctatgtg gaatgtccgc caccttgggtt ccagtgtggg aaaacgatat 1100
tcacctcagt ttgtaaaggc tgccaagtttta ctccatttggaa atggacattt 1150
gaagccatgg ggaaggactg cttcatatac tgatgtttgg gaaaaatgg 1200
atattccaga cccaacaggc aaattcaacc taatccgaag atataccgag 1250
atctcaaaca taaagtggaa cagaatttga actgttggca agcatttctc 1300
aggaagtctt ggaagatagc atgttggca agtaacagtt gctaggcttc 1350
aatgcctatc ggttagcaagc catggaaaaa gatgtgtcag cttagttaaag 1400
atgacaaact gcccgtctg gcagtcagct tcccagacag actatagact 1450
ataaaatatgt ctccatctgc cttaccaagt gttttcttac tacaatgtg 1500
aatgacttggaa aagaagaact gatatggcta gttcagctag ctggtaacaga 1550
taattcaaaaa ctgctgttgg ttttaattttt gtaacctgtg gcctgatctg 1600
taaataaaaac ttacattttt c 1621

<210> 171
<211> 371
<212> PRT
<213> Homo sapiens

<400> 171

Met Ser Phe Arg Lys Val Asn Ile Ile Leu Val Leu Ala Val
 1 5 10 15

Ala Leu Phe Leu Leu Val Leu His His Asn Phe Leu Ser Leu Ser
 20 25 30

Ser Leu Leu Arg Asn Glu Val Thr Asp Ser Gly Ile Val Gly Pro
 35 40 45

Gln Pro Ile Asp Phe Val Pro Asn Ala Leu Arg His Ala Val Asp
 50 55 60

Gly Arg Gln Glu Glu Ile Pro Val Val Ile Ala Ala Ser Glu Asp
 65 70 75

Arg Leu Gly Gly Ala Ile Ala Ala Ile Asn Ser Ile Gln His Asn
 80 85 90

Thr Arg Ser Asn Val Ile Phe Tyr Ile Val Thr Leu Asn Asn Thr
 95 100 105

Ala Asp His Leu Arg Ser Trp Leu Asn Ser Asp Ser Leu Lys Ser
 110 115 120

Ile Arg Tyr Lys Ile Val Asn Phe Asp Pro Lys Leu Leu Glu Gly
 125 130 135

Lys Val Lys Glu Asp Pro Asp Gln Gly Glu Ser Met Lys Pro Leu
 140 145 150

Thr Phe Ala Arg Phe Tyr Leu Pro Ile Leu Val Pro Ser Ala Lys
 155 160 165

Lys Ala Ile Tyr Met Asp Asp Asp Val Ile Val Gln Gly Asp Ile
 170 175 180

Leu Ala Leu Tyr Asn Thr Ala Leu Lys Pro Gly His Ala Ala Ala
 185 190 195

Phe Ser Glu Asp Cys Asp Ser Ala Ser Thr Lys Val Val Ile Arg
 200 205 210

Gly Ala Gly Asn Gln Tyr Asn Tyr Ile Gly Tyr Leu Asp Tyr Lys
 215 220 225

Lys Glu Arg Ile Arg Lys Leu Ser Met Lys Ala Ser Thr Cys Ser
 230 235 240

Phe Asn Pro Gly Val Phe Val Ala Asn Leu Thr Glu Trp Lys Arg
 245 250 255

Gln Asn Ile Thr Asn Gln Leu Glu Lys Trp Met Lys Leu Asn Val
 260 265 270

Glu Glu Gly Leu Tyr Ser Arg Thr Leu Ala Gly Ser Ile Thr Thr
 275 280 285

Pro Pro Leu Leu Ile Val Phe Tyr Gln Gln His Ser Thr Ile Asp

290 295 300
Pro Met Trp Asn Val Arg His Leu Gly Ser Ser Ala Gly Lys Arg
305 310 315
Tyr Ser Pro Gln Phe Val Lys Ala Ala Lys Leu Leu His Trp Asn
320 325 330
Gly His Leu Lys Pro Trp Gly Arg Thr Ala Ser Tyr Thr Asp Val
335 340 345
Trp Glu Lys Trp Tyr Ile Pro Asp Pro Thr Gly Lys Phe Asn Leu
350 355 360
Ile Arg Arg Tyr Thr Glu Ile Ser Asn Ile Lys
365 370

<210> 172

<211> 585

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 71, 76, 86, 91, 162, 220, 269, 281

<223> unknown base

<400> 172

tggttttgc cccataaatt ccctcagctt gagcagtttg ttaaggaatg 50

aggttacaga ttccaggaatt nttaggncctc aaccntaga ntttgtccca 100

aatgttctcc gacatgcagt agatgggaga caagaggaga ttccctgtggt 150

catcgctgca tntgaagaca ggcttggggg ggccattgca gctataaaca 200

gcattcagca caacactcgn tccaatgtga tttctacat tgttactctc 250

aacaatacag cagaccatnt ccggtcctgg ntcaacagtg attccctgaa 300

aagcatcaga tacaaaattt tcaattttga ccctaaacctt ttggaaaggaa 350

aagtaaagga ggatcctgac cagggggaaat ccatgaaacc tttaaccctt 400

gcaaggttct acttgccaat tctggttccc agcgcaaaga aggccatata 450

catggatgat gatgtaattt tgcaagggtga tattcttgcc cttaacaata 500

cagcactgaa gccaggacat gcagctgcat tttcagaaga ttgtgattca 550

gcctctacta aagttgtcat ccgtggagca ggaaa 585

<210> 173

<211> 1866

<212> DNA

<213> Homo sapiens

<400> 173

© 2009 Kluwer
All rights reserved.

cgacgctcta gcgggttaccg ctgcgggctg gctgggcgta gtggggatgc 50
gcggctgcca cggagctaga gggcaagtgt gctcggccca gcgtgcaggg 100
aacgcgggcg gccagacaac gggctggct ccggggcctg cggcgcgggc 150
gctgagctgg cagggcgggt cggggcgcgg gctgcattccg catctccctcc 200
atcgccctgca gtaaggcggg cgcggcgag ccttgaggg gaacgacttg 250
tcggagccct aaccagggt gtctctgagc ctgggtggat ccccggagcg 300
tcacatcaact ttccgatcac ttcaaagtgg ttaaaaacta atatttatat 350
gacagaagaa aaagatgtca ttccgtaaag taaacatcat catcttggtc 400
ctgggctgtt gctctttct tactggttt gcaccataac ttccctcagct 450
tgaggcagtt tgttaaggaa tgaggttaca gattcaggaa ttgttagggcc 500
tcaacctata ggactttgtc ccaaattgtc tccgacatgc agtagatggg 550
agacaagagg agattcctgt ggtcatcgct gcatctgaag acaggcttgg 600
ggggccatt gcagctataa acagcattca gcacaacact cgctccaatg 650
tgattttcta cattgttact ctcaacaata cagcagacca tctccggtcc 700
tgggctcaac agtgattccc tgaaaagcat cagataaaaa attgtcaatt 750
ttgaccctaa acttttgaa ggaaaagtaa aggaggatcc tgaccagggg 800
gaatccatga aacctttaac ctttgcaagg ttctacttgc caattctggg 850
ttcccagcgc aaagaaggcc atatacatgg atgatgtatgt aattgtgcaa 900
ggtgatattc ttgccttta caatacagca ctgaagccag gacatgcagc 950
tgcattttca gaagattgtg attcagcctc tactaaagtt gtcattccgt 1000
gagcaggaaa ccagtacaat tacattggct atcttgacta taaaaaggaa 1050
agaattcgta agcttccat gaaagccagc acttgctcat ttaatcctgg 1100
agttttgtt gcaaacctga cggaatggaa acgacagaat ataactaacc 1150
aactggaaaa atggatggaaa ctcaatgttag aagaggact gtatagcaga 1200
accctggctg gtagcatcac aacacctcct ctgcttatcg tattttatca 1250
acagcactct accatcgatc ctatgtggaa tgtccgccac cttgggttcca 1300
gtgctggaaa acgatattca cctcagtttgc taaaggctgc caagttactc 1350
cattggaaatg gacatttgaa gccatgggaa aggactgctt catataactga 1400
tgtttgggaa aaaatggat attccagacc caacaggcaa attcaaccta 1450

atccgaagat ataccgagat ctc当地acata aagtgaaaca gaatttgaac 1500
tgtaagcaag catttctcag gaagtcctgg aagatagcat gcgtggaaag 1550
taacagttgc taggcttcaa tgc当地atcg tagcaagcca tggaaaaaga 1600
tgtgtcagct aggtaaagat gacaaactgc cctgtctggc agtcagcttc 1650
ccagacagac tatagactat aaatatgtct cc当地tgc当地 taccaagtgt 1700
tttcttacta caatgctgaa tgactggaaa gaagaactga tatggctagt 1750
tc当地tagct ggtacagata attcaaaaact gctgttggtt ttaattttgt 1800
aacctgtggc ctgatctgta aataaaaactt acatffffca ataggtaaaa 1850
aaaaaaaaaaa aaaaaaa 1866

<210> 174
<211> 823
<212> DNA
<213> Homo sapiens

<400> 174
ctgcaggtag acatctccac tgcccaggaa tcactgagcg tgc当地acagc 50
acagcctcct ctgaaggccg gccataccag agtccctgc当地 cggcatgggc 100
ctcaccattg aggcagctcc actgtctgtg ctggctgag ggtgctgc当地 150
gtcatggggg cagccatctc ccagggggcc ct当地cgcca tc当地tgc当地aa 200
cggtctc当地 ggcttcttgc tgctgctgct ctgggtc当地 ctctgctggg 250
cctgccattc tc当地tgc当地 acgttgactc tctctctgaa tccagtc当地a 300
actccagccc tggccccctgt cctgagaagg cccaccacc ccagaagccc 350
agccatgaag gcagctacct gctgcagccc tgaaggcccc tggcctagcc 400
tggagccccag gacctaagtc cacctcacct agagcctgga attaggatcc 450
cagagttcag ccagcctggg gtccagaact caagagtccg cctgcttgc当地 500
gctggaccacca gcggcccaga gtctagccag cttggctcc当地 ataggagctc 550
agtggcccta aggagatggg cctggggtgg gggcttatga gttggtgcta 600
gagccagggc catctggact atgctccatc ccaagggccca agggtcaggg 650
gccgggtccca ctcttccct aggctgagca cctctaggcc ctctaggttgc当地 700
ggaaagcaaa ctggaaccacca tggcaataat aggagggtgt ccaggctggg 750
ccc当地ccctt ggtccctccca gtgtttgctg gataataat ggaactatgg 800
ctctaaaaaaaaaaa aaa 823

<210> 175
<211> 87
<212> PRT
<213> Homo sapiens

<400> 175
Met Gly Ala Ala Ile Ser Gln Gly Ala Leu Ile Ala Ile Val Cys
1 5 10 15

Asn Gly Leu Val Gly Phe Leu Leu Leu Leu Trp Val Ile Leu
20 25 30

Cys Trp Ala Cys His Ser Arg Leu Pro Thr Leu Thr Leu Ser Leu
35 40 45

Asn Pro Val Pro Thr Pro Ala Leu Ala Pro Val Leu Arg Arg Pro
50 55 60

His His Pro Arg Ser Pro Ala Met Lys Ala Ala Thr Cys Cys Ser
65 70 75

Pro Glu Gly Pro Trp Pro Ser Leu Glu Pro Arg Thr
80 85

<210> 176
<211> 1660
<212> DNA
<213> Homo sapiens

<400> 176
gtttgaattc cttcaactat acccacagtc caaaaaggaga ctcactgtgt 50
cccaggctac cagttccctcc aagcaagtca tttcccttat ttaaccgatg 100
tgtccctcaa acacctgagt gctactccct atttgcatact gtttgataaa 150
atgatgttga caccctccac cgaattctaa gtggaatcat gtcgggaaga 200
gataacaatcc ttggcctgtg tattcctcgca ttagccttgt ctggccat 250
gatgtttacc ttcaagattca tcaccacccct tctggttcac attttcattt 300
cattggttat ttgggattt tggttgtct gggtgtttt atggtgctg 350
tattatgact ataccaacga cctcagcata gaattggaca cagaaaggga 400
aaatatgaag tgcgtgctgg gggttgctat cgtatccaca ggcacacagg 450
cagtgcgtct cgttttgcatttttctca gaaagagaat aaaattgaca 500
gttgagcttt tccaaatcac aaataaagcc atcagcagtg ctccatttc 550
gctgttccag ccactgtgga catttgcatt cctcatttc ttctgggtcc 600
tctgggtggc tgtgctgctg agcctggaa ctgcaggagc tgcccaggtt 650
atggaaggcg gccaagtggaa atataagccc ctttcgggca ttccgtacat 700

gtggtcgtac catttaatttgcctcatctg gactagtgaa ttcatccttg 750
cgtgccagca aatgactata gctggggcag tggttacttg ttatttcaac 800
agaagtaaaa atgatcctcc tgatcatccc atcccttcgt ctctctccat 850
tctcttcttc taccatcaag gaaccgttgtt gaaagggtca ttttaatct 900
ctgtggtgag gattccgaga atcattgtca tgtacatgca aaacgcactg 950
aaagaacagc agcatggtgc attgtccagg tacctgttcc gatgctgcta 1000
ctgctgttcc tgggtgtcttg acaaataacct gctccatctc aaccagaatg 1050
cataactac aactgctatt aatgggacag atttctgtac atcagcaaaa 1100
gatgcattca aaatcttgta caagaactca agtcaactta catctattaa 1150
ctgctttgga gacttcataa ttttcttagg aaagggttta gtgggtgttt 1200
tcactgtttt tggaggactc atggctttta actacaatcg ggcattccag 1250
gtgtggcag tccctctgtt attggtagct tttttgcct acttagtagc 1300
ccatagttt ttatctgtgt ttgaaactgt gctggatgca ctttcctgt 1350
gttttgctgt tgatctggaa acaaatgatg gatcgtcaga aaagccctac 1400
tttatggatc aagaatttct gagtttcgta aaaaggagca acaaattaaa 1450
caatgcaagg gcacagcagg acaagcactc attaaggaat gaggagggaa 1500
cagaactcca ggccattgtg agatagatac ccatttaggt atctgtacct 1550
ggaaaacatt tccttctaag agccatttac agaatagaag atgagaccac 1600
tagagaaaag ttagtgaatt ttttttaaa agacctaata aaccctattc 1650
ttcctcaaaa 1660

<210> 177
<211> 445
<212> PRT
<213> Homo sapiens

<400> 177
Met Ser Gly Arg Asp Thr Ile Leu Gly Leu Cys Ile Leu Ala Leu
1 5 10 15
Ala Leu Ser Leu Ala Met Met Phe Thr Phe Arg Phe Ile Thr Thr
20 25 30
Leu Leu Val His Ile Phe Ile Ser Leu Val Ile Leu Gly Leu Leu
35 40 45
Phe Val Cys Gly Val Leu Trp Trp Leu Tyr Tyr Asp Tyr Thr Asn
50 55 60

Asp Leu Ser Ile Glu Leu Asp Thr Glu Arg Glu Asn Met Lys Cys
 65 70 75
 Val Leu Gly Phe Ala Ile Val Ser Thr Gly Ile Thr Ala Val Leu
 80 85 90
 Leu Val Leu Ile Phe Val Leu Arg Lys Arg Ile Lys Leu Thr Val
 95 100 105
 Glu Leu Phe Gln Ile Thr Asn Lys Ala Ile Ser Ser Ala Pro Phe
 110 115 120
 Leu Leu Phe Gln Pro Leu Trp Thr Phe Ala Ile Leu Ile Phe Phe
 125 130 135
 Trp Val Leu Trp Val Ala Val Leu Leu Ser Leu Gly Thr Ala Gly
 140 145 150
 Ala Ala Gln Val Met Glu Gly Gly Gln Val Glu Tyr Lys Pro Leu
 155 160 165
 Ser Gly Ile Arg Tyr Met Trp Ser Tyr His Leu Ile Gly Leu Ile
 170 175 180
 Trp Thr Ser Glu Phe Ile Leu Ala Cys Gln Gln Met Thr Ile Ala
 185 190 195
 Gly Ala Val Val Thr Cys Tyr Phe Asn Arg Ser Lys Asn Asp Pro
 200 205 210
 Pro Asp His Pro Ile Leu Ser Ser Leu Ser Ile Leu Phe Phe Tyr
 215 220 225
 His Gln Gly Thr Val Val Lys Gly Ser Phe Leu Ile Ser Val Val
 230 235 240
 Arg Ile Pro Arg Ile Ile Val Met Tyr Met Gln Asn Ala Leu Lys
 245 250 255
 Glu Gln Gln His Gly Ala Leu Ser Arg Tyr Leu Phe Arg Cys Cys
 260 265 270
 Tyr Cys Cys Phe Trp Cys Leu Asp Lys Tyr Leu Leu His Leu Asn
 275 280 285
 Gln Asn Ala Tyr Thr Thr Ala Ile Asn Gly Thr Asp Phe Cys
 290 295 300
 Thr Ser Ala Lys Asp Ala Phe Lys Ile Leu Ser Lys Asn Ser Ser
 305 310 315
 His Phe Thr Ser Ile Asn Cys Phe Gly Asp Phe Ile Ile Phe Leu
 320 325 330
 Gly Lys Val Leu Val Val Cys Phe Thr Val Phe Gly Gly Leu Met
 335 340 345
 Ala Phe Asn Tyr Asn Arg Ala Phe Gln Val Trp Ala Val Pro Leu

350	355	360
Leu Leu Val Ala Phe Phe Ala Tyr Leu Val Ala His Ser Phe Leu		
365	370	375
Ser Val Phe Glu Thr Val Leu Asp Ala Leu Phe Leu Cys Phe Ala		
380	385	390
Val Asp Leu Glu Thr Asn Asp Gly Ser Ser Glu Lys Pro Tyr Phe		
395	400	405
Met Asp Gln Glu Phe Leu Ser Phe Val Lys Arg Ser Asn Lys Leu		
410	415	420
Asn Asn Ala Arg Ala Gln Gln Asp Lys His Ser Leu Arg Asn Glu		
425	430	435
Glu Gly Thr Glu Leu Gln Ala Ile Val Arg		
440	445	

<210> 178
 <211> 2773
 <212> DNA
 <213> Homo sapiens

<400> 178
 gttcgattag ctcctctgag aagaagagaa aaggttcttg gacctctccc 50
 tgggtttcc tttagaataat ttgttatggta tttgttatgc agggaaaggct 100
 aaggggaaaaaa gaatattcat tctgtgttgtt gaaaattttt tgaaaaaaaaa 150
 attgccttct tcaaacaagg gtgtcattct gatatttatg aggactgtt 200
 ttctcaatat gaaggcatct gttattgaaa tgttcattgt tttgttgtt 250
 actggagtac attcaaacaa agaaacggca aagaagatta aaaggcccaa 300
 gttcaactgtg cctcagatca actgcgtatgt caaagccgga aagatcatcg 350
 atcctgagtt cattgtgaaa tgtccagcag gatccaaga ccccaaatac 400
 catgtttatg gcactgacgt gtatgcattcc tactccagtg tgtgtggcgc 450
 tgccgtacac agtgggtgtc ttgataattc aggaggaaa atacttgtt 500
 ggaagggtgc tggacagtct ggttacaaag ggagttattc caacgggtgc 550
 caatcgttat ccctaccacg atggagagaa tcctttatcg tcttagaaag 600
 taaacccaaa aagggtgtaa cctacccatc agcttttaca tactcatcat 650
 cgaaaaagtcc agctgcccaa gcaggtgaga ccacaaaagc ctatcagagg 700
 ccacctattc cagggacaac tgcacagccg gtcactctga tgcagttct 750
 ggctgtcaact gtagctgtgg ccacccac caccttgcca aggccatccc 800

tttctgctgc ttctaccacc agcatcccc gaccacaatc agtggccac 850
aggagccagg agatggatct ctggtccact gccacctaca caagcagcca 900
aacacaggccc agagctgatc caggtatcca aaggcaagat ctttcaggag 950
ctgccttcca gaaacctgtt ggagcggatg tcagcctggg acttgttcca 1000
aaagaagaat tgagcacaca gtctttggag ccagtatccc tgggagatcc 1050
aaactgcaaa attgacttgt cgtttttaat ttagggagc accagcattg 1100
gcaaacggcg attccgaatc cagaagcagc tcctggctga tttgccccaa 1150
gctcttgaca ttggccctgc cggtccactg atgggtgttg tccagtatgg 1200
agacaaccct gctactcaact ttaacctcaa gacacacacg aattctcgag 1250
atctgaagac agccatagag aaaattactc agagaggagg actttcta 1300
gttagtctggg ccatctcctt tgtgaccaag aacttctttt ccaaagccaa 1350
tggaaacaga agcggggctc ccaatgtggt ggtggatgtg gtggatggct 1400
ggcccacgga caaagtggag gaggcttcaa gacttgcagc agagtcagga 1450
atcaacattt tcttcatcac cattgaaggt gctgctgaaa atgagaagca 1500
gtatgtggtg gagcccaact ttgcaaacaa ggccgtgtgc agaacaacg 1550
gtttctactc gctccacgtg cagagctggt ttggcctcca caagaccctg 1600
cagcctctgg tgaagcgggt ctgcgacact gaccgcctgg cctgcagcaa 1650
gacctgcttg aactcggctg acattggctt cgtcatcgac ggctccagca 1700
gtgtggggac gggcaacttc cgcaccgtcc tccagttgt gaccaacctc 1750
accaaagagt ttgagatttc cgacacggac acgcgcatcg gggccgtgca 1800
gtacacctac gaacagcggc tggagtttg gttcgacaag tacagcagca 1850
agcctgacat cctcaacgcc atcaagaggg tggctactg gagtggtggc 1900
accagcacgg gggctgccc caacttcgcc ctggagcagc tcttcaagaa 1950
gtccaagccc aacaagagga agttaatgtat cctcatcacc gacgggaggt 2000
cctacgacga cgtccggatc ccagccatgg ctgcccattt gaagggagtg 2050
atcacctatg cgataggcgt tgcctggct gccaagagg agctagaagt 2100
cattgccact cacccggcca gagaccactc cttctttgtg gacgagttt 2150
acaacctcca tcagtatgtc cccaggatca tccagaacat ttgtacagag 2200
ttcaactcac agcctcgaa ctgaattcag agcaggcaga gcaccagcaa 2250

gtgctgcttt actaactgac gtgttggacc accccaccgc ttaatggggc 2300
acgcacggtg catcaagtct tggcagggc atggagaaac aaatgtctg 2350
ttattattct ttgccatcat gcttttcat attccaaaac ttggagttac 2400
aaagatgatc acaaacgtat agaatgagcc aaaaggctac atcatgttga 2450
gggtgctgga gatttacat tttgacaatt gtttcaaaa taaatgttcg 2500
gaatacagtg cagcccttac gacaggctt cgtagagctt ttgtgagatt 2550
tttaagttgt tatttctgat ttgaactctg taaccctcag caagtttcat 2600
tttgcatg acaatgttagg aattgctgaa ttaaatgttt agaaggatga 2650
aaaataaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2700
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2750
aaaaaaaaaa aaaaaaaaaa aag 2773

<210> 179
<211> 678
<212> PRT
<213> Homo sapiens

<400> 179
Met Arg Thr Val Val Leu Thr Met Lys Ala Ser Val Ile Glu Met
1 5 10 15
Phe Leu Val Leu Leu Val Thr Gly Val His Ser Asn Lys Glu Thr
20 25 30
Ala Lys Lys Ile Lys Arg Pro Lys Phe Thr Val Pro Gln Ile Asn
35 40 45
Cys Asp Val Lys Ala Gly Lys Ile Ile Asp Pro Glu Phe Ile Val
50 55 60
Lys Cys Pro Ala Gly Cys Gln Asp Pro Lys Tyr His Val Tyr Gly
65 70 75
Thr Asp Val Tyr Ala Ser Tyr Ser Ser Val Cys Gly Ala Ala Val
80 85 90
His Ser Gly Val Leu Asp Asn Ser Gly Gly Lys Ile Leu Val Arg
95 100 105
Lys Val Ala Gly Gln Ser Gly Tyr Lys Gly Ser Tyr Ser Asn Gly
110 115 120
Val Gln Ser Leu Ser Leu Pro Arg Trp Arg Glu Ser Phe Ile Val
125 130 135
Leu Glu Ser Lys Pro Lys Lys Gly Val Thr Tyr Pro Ser Ala Leu
140 145 150

Thr Tyr Ser Ser Lys Ser Pro Ala Ala Gln Ala Gly Glu Thr
 155 160 165
 Thr Lys Ala Tyr Gln Arg Pro Pro Ile Pro Gly Thr Thr Ala Gln
 170 175 180
 Pro Val Thr Leu Met Gln Leu Leu Ala Val Thr Val Ala Val Ala
 185 190 195
 Thr Pro Thr Thr Leu Pro Arg Pro Ser Pro Ser Ala Ala Ser Thr
 200 205 210
 Thr Ser Ile Pro Arg Pro Gln Ser Val Gly His Arg Ser Gln Glu
 215 220 225
 Met Asp Leu Trp Ser Thr Ala Thr Tyr Thr Ser Ser Gln Asn Arg
 230 235 240
 Pro Arg Ala Asp Pro Gly Ile Gln Arg Gln Asp Pro Ser Gly Ala
 245 250 255
 Ala Phe Gln Lys Pro Val Gly Ala Asp Val Ser Leu Gly Leu Val
 260 265 270
 Pro Lys Glu Glu Leu Ser Thr Gln Ser Leu Glu Pro Val Ser Leu
 275 280 285
 Gly Asp Pro Asn Cys Lys Ile Asp Leu Ser Phe Leu Ile Asp Gly
 290 295 300
 Ser Thr Ser Ile Gly Lys Arg Arg Phe Arg Ile Gln Lys Gln Leu
 305 310 315
 Leu Ala Asp Val Ala Gln Ala Leu Asp Ile Gly Pro Ala Gly Pro
 320 325 330
 Leu Met Gly Val Val Gln Tyr Gly Asp Asn Pro Ala Thr His Phe
 335 340 345
 Asn Leu Lys Thr His Thr Asn Ser Arg Asp Leu Lys Thr Ala Ile
 350 355 360
 Glu Lys Ile Thr Gln Arg Gly Leu Ser Asn Val Gly Arg Ala
 365 370 375
 Ile Ser Phe Val Thr Lys Asn Phe Phe Ser Lys Ala Asn Gly Asn
 380 385 390
 Arg Ser Gly Ala Pro Asn Val Val Val Met Val Asp Gly Trp
 395 400 405
 Pro Thr Asp Lys Val Glu Glu Ala Ser Arg Leu Ala Arg Glu Ser
 410 415 420
 Gly Ile Asn Ile Phe Phe Ile Thr Ile Glu Gly Ala Ala Glu Asn
 425 430 435
 Glu Lys Gln Tyr Val Val Glu Pro Asn Phe Ala Asn Lys Ala Val

440	445	450
Cys Arg Thr Asn Gly Phe Tyr Ser Leu His Val Gln Ser Trp Phe		
455	460	465
Gly Leu His Lys Thr Leu Gln Pro Leu Val Lys Arg Val Cys Asp		
470	475	480
Thr Asp Arg Leu Ala Cys Ser Lys Thr Cys Leu Asn Ser Ala Asp		
485	490	495
Ile Gly Phe Val Ile Asp Gly Ser Ser Ser Val Gly Thr Gly Asn		
500	505	510
Phe Arg Thr Val Leu Gln Phe Val Thr Asn Leu Thr Lys Glu Phe		
515	520	525
Glu Ile Ser Asp Thr Asp Thr Arg Ile Gly Ala Val Gln Tyr Thr		
530	535	540
Tyr Glu Gln Arg Leu Glu Phe Gly Phe Asp Lys Tyr Ser Ser Lys		
545	550	555
Pro Asp Ile Leu Asn Ala Ile Lys Arg Val Gly Tyr Trp Ser Gly		
560	565	570
Gly Thr Ser Thr Gly Ala Ala Ile Asn Phe Ala Leu Glu Gln Leu		
575	580	585
Phe Lys Lys Ser Lys Pro Asn Lys Arg Lys Leu Met Ile Leu Ile		
590	595	600
Thr Asp Gly Arg Ser Tyr Asp Asp Val Arg Ile Pro Ala Met Ala		
605	610	615
Ala His Leu Lys Gly Val Ile Thr Tyr Ala Ile Gly Val Ala Trp		
620	625	630
Ala Ala Gln Glu Glu Leu Glu Val Ile Ala Thr His Pro Ala Arg		
635	640	645
Asp His Ser Phe Phe Val Asp Glu Phe Asp Asn Leu His Gln Tyr		
650	655	660
Val Pro Arg Ile Ile Gln Asn Ile Cys Thr Glu Phe Asn Ser Gln		
665	670	675
Pro Arg Asn		

<210> 180
<211> 1759
<212> DNA
<213> Homo sapiens

<400> 180
caggatgaac tggttgcagt ggctgctgct gctgcggggg cgctgagagg 50

acacgagctc tatgccttc cggctgctca tcccgtcg 100
gcgctgctgc ctcagcacca tggtgccca ggtcccgacg gctccgcgcc 150
agatcccccc cactacagtt tttctctgac tctaattgat gcactggaca 200
ccttgctgat tttgggaat gtctcagaat tccaaagagt ggtaaagt 250
ctccaggaca gcgtggactt tgatattgat gtgaacgcct ctgtgttga 300
aacaaacatt cgagtggtag gaggactcct gtctgctcat ctgctctcca 350
agaaggctgg ggtggaaagta gaggctggat ggccctgttc cgggcctctc 400
ctgagaatgg ctgaggaggc ggcccgaaaa ctcctcccag ccttcagac 450
ccccactggc atgccccatg gaacagtgaa cttacttcat ggcgtgaacc 500
caggagagac ccctgtcacc tgtacggcag ggattggac cttcattgtt 550
gaatttgcca ccctgagcag cctcactggc gacccgggt tcgaagatgt 600
ggccagagtg gctttgatgc gcctctggaa gagccggta gatatgggc 650
tggtcggcaa ccacattgat gtgctcactg gcaagtgggt ggcccaggac 700
gcaggcatcg gggctggcgt ggactcctac tttgagtact tggtaaagg 750
agccatcctg cttcaggata agaagctcat ggccatgttc ctagagtata 800
acaaagccat ccggaactac acccgcttcg atgactggta cctgtgggtt 850
cagatgtaca aggggactgt gtccatgcca gtctccagt cttggaggc 900
ctactggcct ggtttcaga gcctcattgg agacattgac aatgccatga 950
ggaccttcct caactactac actgtatgga agcagttgg gggctcccg 1000
gaattctaca acattcctca gggatacaca gtggagaagc gagaggccta 1050
cccacttcgg ccagaactta ttgaaagcgc aatgtacctc taccgtgcca 1100
cgggggatcc caccctccta gaactcgaa gagatgctgt ggaatccatt 1150
aaaaaaatca gcaaggtgga gtgcggattt gcaacaatca aagatctgcg 1200
agaccacaag ctggacaacc gcatggagtc gttttcctg gccgagactg 1250
tgaaaatccctt ctacccctg tttgacccaa ccaacttcat ccacaacaat 1300
gggtccacct tcgacgcggc gatcaccccc tatggggagt gcatcctgg 1350
ggctgggggg tacatcttca acacagaagc tcacccatc gacccgtccg 1400
ccctgcactg ctgccagagg ctgaaggaag agcagttgg ggtggaggac 1450
ttgatgaggg aattctactc tctcaaacgg agcaggtcga aatttcagaa 1500

aaacactgtt agttcggggc catggaaacc tccagcaagg ccaggaacac 1550
tcttcacc agaaaaccat gaccaggcaa gggagaggaa gcctgccaaa 1600
cagaagggtcc cacttctcag ctgccccagt cagcccttca cctccaagtt 1650
ggcattactg ggacaggttt tcctagactc ctcataacca ctggataatt 1700
tttttatttt tattttttg aggctaaact ataataaatt gctttggct 1750
atcataaaa 1759

<210> 181
<211> 541
<212> PRT
<213> Homo sapiens

<400> 181
Met Pro Phe Arg Leu Leu Ile Pro Leu Gly Leu Leu Cys Ala Leu
1 5 10 15
Leu Pro Gln His His Gly Ala Pro Gly Pro Asp Gly Ser Ala Pro
20 25 30
Asp Pro Ala His Tyr Ser Phe Ser Leu Thr Leu Ile Asp Ala Leu
35 40 45
Asp Thr Leu Leu Ile Leu Gly Asn Val Ser Glu Phe Gln Arg Val
50 55 60
Val Glu Val Leu Gln Asp Ser Val Asp Phe Asp Ile Asp Val Asn
65 70 75
Ala Ser Val Phe Glu Thr Asn Ile Arg Val Val Gly Gly Leu Leu
80 85 90
Ser Ala His Leu Leu Ser Lys Lys Ala Gly Val Glu Val Glu Ala
95 100 105
Gly Trp Pro Cys Ser Gly Pro Leu Leu Arg Met Ala Glu Glu Ala
110 115 120
Ala Arg Lys Leu Leu Pro Ala Phe Gln Thr Pro Thr Gly Met Pro
125 130 135
Tyr Gly Thr Val Asn Leu Leu His Gly Val Asn Pro Gly Glu Thr
140 145 150
Pro Val Thr Cys Thr Ala Gly Ile Gly Thr Phe Ile Val Glu Phe
155 160 165
Ala Thr Leu Ser Ser Leu Thr Gly Asp Pro Val Phe Glu Asp Val
170 175 180
Ala Arg Val Ala Leu Met Arg Leu Trp Glu Ser Arg Ser Asp Ile
185 190 195
Gly Leu Val Gly Asn His Ile Asp Val Leu Thr Gly Lys Trp Val

DRAFT

200	205	210
Ala Gln Asp Ala Gly Ile Gly Ala Gly Val Asp Ser Tyr Phe Glu		
215	220	225
Tyr Leu Val Lys Gly Ala Ile Leu Leu Gln Asp Lys Lys Leu Met		
230	235	240
Ala Met Phe Leu Glu Tyr Asn Lys Ala Ile Arg Asn Tyr Thr Arg		
245	250	255
Phe Asp Asp Trp Tyr Leu Trp Val Gln Met Tyr Lys Gly Thr Val		
260	265	270
Ser Met Pro Val Phe Gln Ser Leu Glu Ala Tyr Trp Pro Gly Leu		
275	280	285
Gln Ser Leu Ile Gly Asp Ile Asp Asn Ala Met Arg Thr Phe Leu		
290	295	300
Asn Tyr Tyr Thr Val Trp Lys Gln Phe Gly Gly Leu Pro Glu Phe		
305	310	315
Tyr Asn Ile Pro Gln Gly Tyr Thr Val Glu Lys Arg Glu Gly Tyr		
320	325	330
Pro Leu Arg Pro Glu Leu Ile Glu Ser Ala Met Tyr Leu Tyr Arg		
335	340	345
Ala Thr Gly Asp Pro Thr Leu Leu Glu Leu Gly Arg Asp Ala Val		
350	355	360
Glu Ser Ile Glu Lys Ile Ser Lys Val Glu Cys Gly Phe Ala Thr		
365	370	375
Ile Lys Asp Leu Arg Asp His Lys Leu Asp Asn Arg Met Glu Ser		
380	385	390
Phe Phe Leu Ala Glu Thr Val Lys Tyr Leu Tyr Leu Leu Phe Asp		
395	400	405
Pro Thr Asn Phe Ile His Asn Asn Gly Ser Thr Phe Asp Ala Val		
410	415	420
Ile Thr Pro Tyr Gly Glu Cys Ile Leu Gly Ala Gly Gly Tyr Ile		
425	430	435
Phe Asn Thr Glu Ala His Pro Ile Asp Leu Ala Ala Leu His Cys		
440	445	450
Cys Gln Arg Leu Lys Glu Glu Gln Trp Glu Val Glu Asp Leu Met		
455	460	465
Arg Glu Phe Tyr Ser Leu Lys Arg Ser Arg Ser Lys Phe Gln Lys		
470	475	480
Asn Thr Val Ser Ser Gly Pro Trp Glu Pro Pro Ala Arg Pro Gly		
485	490	495

Thr Leu Phe Ser Pro Glu Asn His Asp Gln Ala Arg Glu Arg Lys
500 505 510

Pro Ala Lys Gln Lys Val Pro Leu Leu Ser Cys Pro Ser Gln Pro
515 520 525

Phe Thr Ser Lys Leu Ala Leu Leu Gly Gln Val Phe Leu Asp Ser
530 535 540

Ser

<210> 182

<211> 2056

<212> DNA

<213> Homo sapiens

<400> 182

aaagttacat tttctctgga actctcctag gccactccct gctgatgcaa 50

catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100

gtttcctggg ccggctctag aacaattcag gcttcgctgc gactcagacc 150

tcaagctccaa catatgcatt ctgaagaaag atggctgaga tggacagaat 200

gctttatTTT ggaaagaaac aatgttctag gtcaaactga gtctacccaa 250

tgcagacttt cacaatggtt ctagaagaaa tctggacaag tcttttcatg 300

tggTTTTCT acgcatttat tccatgtttg ctcacagatg aagtggccat 350

tctgcctgcc cctcagaacc tctctgtact ctcaaccaac atgaagcatc 400

tcttgatgtg gagcccagtg atcgccctg gagaaacagt gtactattct 450

gtcgaatacc agggggagta cgagagccctg tacacgagcc acatctggat 500

ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550

atgacatcac ggccactgtg ccatacaacc ttctgttcag ggccacattg 600

ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650

ctcaaccatc cttacccgac ctgggatgga gatcacccaa gatggcttcc 700

acctggttat tgagctggag gacctggggc cccagttga gttcctgtg 750

gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtag 800

gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850

actgtgtgaa ggcccagaca ttctgtgaagg ccattgggag gtacagcgcc 900

ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccccttgt 950

actggccctg tttgcctttg ttggcttcat gctgatcctt gtggtcgtgc 1000

cactgttcgt ctggaaaatg ggccggctgc tccagtactc ctgttgcccc 1050
gtgggtgtcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaaggaggagg aggtggatgc ctgtgccacg gctgtatgt 1150
ctcctgagga actcctcagg gcctggatct cataggttg cgaaagggcc 1200
caggtgaagc cgagaacctg gtctgcatga catggaaacc atgaggggac 1250
aagttgtgtt tctgtttcc gccacggaca agggatgaga gaagtaggaa 1300
gagcctgttg tctacaagtc tagaagcaac catcagaggc agggtggttt 1350
gtctaacaga acactgactg aggcttaggg gatgtgacct ctagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgac ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacacac acacagagtc tctctctata tatacacacg tacacataaa 1550
tacacccagc acttgcaagg ctagaggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta ttagtggaaat 1650
gatcaaggac tctacacact gggggcttg gagagccac tttccagaa 1700
taatccttga gagaaaagga atcatggag caatgggtt gagttcactt 1750
caagcccaat gccgggtcag agggaaatgg cttagcgagc tctacagtag 1800
gtgacctgga ggaaggtcac agccacactg aaaatggat gtgcataaac 1850
acggaggatc catgaactac tgtaaagtgt tgacagtgtg tgcacactgc 1900
agacagcagg tgaaatgtat gtgtgcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttgtt gtgctccctt tttctgttgg taaagtacag 2000
aattcagcaa ataaaaaggg ccaccctggc caaaagcggt aaaaaaaaaa 2050
aaaaaaaa 2056

<210> 183
<211> 311
<212> PRT
<213> Homo sapiens

<220>
<221> Signal peptide
<222> 1-29
<223> Signal peptide

<220>
<221> N-glycosylation sites
<222> 40-43, 134-137
<223> N-glycosylation sites.

<220>
 <221> Tissue factor proteins homology
 <222> 92-119
 <223> Tissue factor proteins homology

 <220>
 <221> Transmembrane domain
 <222> 230-255
 <223> Transmembrane domain

 <220>
 <221> Integrins alpha chain protein homology
 <222> 232-262
 <223> Integrins alpha chain protein homology

 <400> 183
 Met Gln Thr Phe Thr Met Val Leu Glu Ile Trp Thr Ser Leu
 1 5 10 15

 Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp
 20 25 30

 Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
 35 40 45

 Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro
 50 55 60

 Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
 65 70 75

 Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser
 80 85 90

 Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala
 95 100 105

 Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
 110 115 120

 Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
 125 130 135

 Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
 140 145 150

 His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
 155 160 165

 Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
 170 175 180

 Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
 185 190 195

 Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
 200 205 210

Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
215 220 225
Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
230 235 240
Val Gly Phe Met Leu Ile Leu Val Val Pro Leu Phe Val Trp
245 250 255
Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
260 265 270
Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
275 280 285
Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
290 295 300
Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
305 310

<210> 184
<211> 808
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 654, 711, 748
<223> unknown base

<400> 184
tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50
cctttcttagc ttccctggccg gctctagaac aattcaggct tcgctgcgac 100
tagacctcag ctccaaacata tgcattctga agaaaagatgg ctgagatgac 150
agaatgcttt attttgaaaa gaaacaatgt tctaggtcaa actgagtcta 200
ccaaatgcag actttcacaa tggttctaga agaaaatctgg acaagtcttt 250
tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300
gccattctgc ctgcccctca gaacctctct gtactctcaa ccaacatgaa 350
gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400
attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450
tggatccccca gcagctggtg ctcactcact gaaggtcctg agtgtgatgt 500
cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550
cattgggctc acagaccta gcctggagca tcctgaagca tcccttaat 600
agaaaactcaa ccataccttac ccgacacctgg atggagatca ccaaagatgg 650

cttncacctg gttattgagc tggaggacct ggggccccag tttgagttcc 700
ttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750
gaacccttg cggccgctgg ggtatcttc gaaaaagag aggccaata 800
tgaccac 808

<210> 185
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 185
aggcttcgct gcgactagac ctc 23

<210> 186
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 186
ccaggtcggg taaggatgg tgag 24

<210> 187
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 187
tttctacgca ttgattccat gtttgcac agatgaagt gccattctgc 50

<210> 188
<211> 1227
<212> DNA
<213> Homo sapiens

<400> 188
cgacgcgtg ggccgccacc tccgaaacaa gccatggtgg cggcgcacggt 50
ggcagcggcg tggctgctcc tgtggctgc ggctgcgcg cagcaggagc 100
aggacttcta cgacttcaag gcggtaaca tccggggcaa actggtgtcg 150
ctggagaagt accgcggatc ggtgtccctg gtggtaatg tggccagcga 200
gtgcggcttc acagaccagc actaccgagc cctgcagcag ctgcagcag 250
acctgggccc ccaccacttt aacgtgctcg cttcccttg caaccagtt 300

ggccaacagg agcctgacag caacaaggag attgagagct ttgcccggcg 350
cacctacagt gtctcattcc ccatgttttag caagattgca gtcaccggta 400
ctggtgccca tcctgccttc aagtacctgg cccagacttc tgggaaggag 450
cccacctgga acttctggaa gtacctagta gccccagatg gaaagggtggt 500
aggggcttgg gaccaactg tgtcagtggaa ggaggtcaga cccagatca 550
cagcgctcgt gaggaagctc atcctactga agcgagaaga cttataacca 600
ccgcgtctcc tcctccacca cctcatcccg cccacctgtg tggggctgac 650
caatgcaaac tcaaattggtg cttcaaaggag agagacccac tgactctcct 700
tcctttactc ttatgccatt ggtcccatca ttcttgggg ggaaaaattc 750
tagtattttg attatttcaa tcttacagca acaaataatggg actcctggcc 800
aatgagagct cttgaccagt gaatcaccag ccgatacgaa cgtcttgcca 850
acaaaaatgt gtggcaaata gaagtatatac aagcaataat ctcccaccca 900
aggcttctgt aaactggac caatgattac ctcatagggc tggtgtgagg 950
attaggatga aatacctgtg aaagtgccta ggcagtgcac gccaaatagg 1000
aggcattcaa tgaacatttt ttgcataataa accaaaaat aacttgttat 1050
caataaaaac ttgcataccaa catgaatttc cagccgatga taatccagggc 1100
caaaggttta gttgtgtta tttcctctgt attattttct tcattacaaa 1150
agaaatgcaa gttcattgtaa acaatccaaa caatacctca cgatataaaaa 1200
taaaaaatgaa agtatcctcc tcaaaaaa 1227

<210> 189

<211> 187

<212> PRT

<213> Homo sapiens

<400> 189

Met	Val	Ala	Ala	Thr	Val	Ala	Ala	Ala	Trp	Leu	Leu	Leu	Trp	Ala
1					5					10				15

Ala	Ala	Cys	Ala	Gln	Gln	Glu	Gln	Asp	Phe	Tyr	Asp	Phe	Lys	Ala
				20				25					30	

Val	Asn	Ile	Arg	Gly	Lys	Leu	Val	Ser	Leu	Glu	Lys	Tyr	Arg	Gly
				35				40					45	

Ser	Val	Ser	Leu	Val	Val	Asn	Val	Ala	Ser	Glu	Cys	Gly	Phe	Thr
				50					55				60	

Asp	Gln	His	Tyr	Arg	Ala	Leu	Gln	Gln	Leu	Gln	Arg	Asp	Leu	Gly
				65				70					75	

Pro His His Phe Asn Val Leu Ala Phe Pro Cys Asn Gln Phe Gly
80 85 90
Gln Gln Glu Pro Asp Ser Asn Lys Glu Ile Glu Ser Phe Ala Arg
95 100 105
Arg Thr Tyr Ser Val Ser Phe Pro Met Phe Ser Lys Ile Ala Val
110 115 120
Thr Gly Thr Gly Ala His Pro Ala Phe Lys Tyr Leu Ala Gln Thr
125 130 135
Ser Gly Lys Glu Pro Thr Trp Asn Phe Trp Lys Tyr Leu Val Ala
140 145 150
Pro Asp Gly Lys Val Val Gly Ala Trp Asp Pro Thr Val Ser Val
155 160 165
Glu Glu Val Arg Pro Gln Ile Thr Ala Leu Val Arg Lys Leu Ile
170 175 180
Leu Leu Lys Arg Glu Asp Leu
185

<210> 190

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 190

gcaggacttc tacgacttca aggc 24

<210> 191

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 191

agtctgggcc aggtacttga aggc 24

<210> 192

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 192

caacatccgg ggcaaactgg tgtcgctgga gaagtaccgc ggatcggtgt 50

<210> 193

DNA sequence

<211> 2187
<212> DNA
<213> Homo sapiens

<400> 193
cgacgcgtg ggccggccgg gacgcagggc aaagcgagcc atggctgtct 50
acgtcggat gctgcgcctg gggaggctgt gcgcggggag ctcgggggtg 100
ctggggccccc gggccgcctt ctctcgagt tggcaggaag ccaggttgca 150
gggtgtccgc ttccctcagtt ccagagaggt ggatcgcatg gtctccacgc 200
ccatcgagg cctcagctac gttcagggt gcaccaaaaa gcatcttaac 250
agcaagactg tggccagtg cctggagacc acagcacaga gggtcccaga 300
acgagaggcc ttggcgtcc tccatgaaga cgtcagggtg acctttgcc 350
aactcaagga ggaggtggac aaagctgctt ctggcctctt gagcattggc 400
ctctgcaaag gtgaccggct gggcatgtgg ggacctaact cctatgcatt 450
ggtgctcatg cagttggcca ccgcccaggc gggcatcattt ctggtgtctg 500
tgaacctcagc ctaccaggct atgaaactgg agtatgtcctt caagaagggt 550
ggctgcaagg cccttgcgtt ccccaagcaa ttcaagaccc agcaataacta 600
caacgtcctg aagcagatct gtccagaagt ggagaatgcc cagccagggg 650
ccttgaagag tcagaggctc ccagatctga ccacagtcat ctcgggtggat 700
cccccttgc cggggaccct gtcctggat gaagtgggtt cggctggcag 750
cacacggcag catctggacc agctccaata caaccagcag ttccctgtcct 800
gccatgaccc catcaacatc cagttcacct cggggacaac aggccagcccc 850
aaggggggcca ccctctccca ctacaacattt gtcaacaactt ccaacatccc 900
aggagagcgc ctgaaactgc atgagaagac accagagcag ttgcggatga 950
tcctgccccaa cccccctgtac cattgcctgg gttccgtggc aggcacaatg 1000
atgtgtctga tgtacgggtc caccctcatc ctggcctctc ccattttcaa 1050
tggcaagaag gcactggagg ccatcagcag agagagagggc accttcctgt 1100
atggtacccc cacgatgttc gtggacattc tgaaccagcc agacttctcc 1150
agttatgaca tctcgaccat gtgtggaggt gtcattgctg ggtccccctgc 1200
acctccagag ttgatccgag ccatcatcaa caagataaat atgaaggacc 1250
tggtgggtgc ttatggaacc acagagaaca gtcccgtgac attcgcgac 1300
ttccctgagg acactgtgga gcagaaggca gaaagcgtgg gcagaattat 1350

gcctcacacg gaggcccgga tcatgaacat ggagggcaggg acgctggcaa 1400
agctgaacac gcccggggag ctgtgcattcc gagggtactg cgtcatgctg 1450
ggctactggg gtgagcctca gaagacagag gaagcagtgg atcaggacaa 1500
gtggtattgg acaggagatg tcgccacaat gaatgagcag ggcttctgca 1550
agatcgtggg ccgctctaag gatatgtatca tccggggtgg tgagaacatc 1600
taccccgcaag agctcgagga cttcttcac acacacccga aggtgcagga 1650
agtgcaggtg gtgggagtga aggacgatcg gatggggaa gagatttg 1700
cctgcattcg gctgaaggac ggggaggaga ccacgggtgga ggagataaaa 1750
gctttctgca aagggaaagat ctctcacttc aagattccga agtacatcgt 1800
gtttgtcaca aactaccccc tcaccatttc aggaaagatc cagaaattca 1850
aacttcgaga gcagatggaa cgacatctaa atctgtaat aaagcagcag 1900
gcctgtcctg gccgggttggc ttgactctct cctgtcagaa tgcaacctgg 1950
ctttatgcac ctagatgtcc ccagcaccca gttctgagcc aggcacatca 2000
aatgtcaagg aattgactga acgaactaag agtcctgga tgggtccggg 2050
aactcgcctg ggcacaaggt gccaaaaggc aggcagcctg cccaggccct 2100
ccctcctgtc catccccac attccctgt ctgtccttgt gatttggcat 2150
aaagagcttc tgaaaaaaa aaaaaaaaa 2187

<210> 194

<211> 615

<212> PRT

<213> Homo sapiens

<400> 194

Met	Ala	Val	Tyr	Val	Gly	Met	Leu	Arg	Leu	Gly	Arg	Leu	Cys	Ala
1				5				10					15	

Gly	Ser	Ser	Gly	Val	Leu	Gly	Ala	Arg	Ala	Ala	Leu	Ser	Arg	Ser
				20				25					30	

Trp	Gln	Glu	Ala	Arg	Leu	Gln	Gly	Val	Arg	Phe	Leu	Ser	Ser	Arg
					35			40					45	

Glu	Val	Asp	Arg	Met	Val	Ser	Thr	Pro	Ile	Gly	Gly	Leu	Ser	Tyr
				50				55					60	

Val	Gln	Gly	Cys	Thr	Lys	Lys	His	Leu	Asn	Ser	Lys	Thr	Val	Gly
					65			70					75	

Gln	Cys	Leu	Glu	Thr	Thr	Ala	Gln	Arg	Val	Pro	Glu	Arg	Glu	Ala
					80			85					90	

Leu Val Val Leu His Glu Asp Val Arg Leu Thr Phe Ala Gln Leu
 95 100 105
 Lys Glu Glu Val Asp Lys Ala Ala Ser Gly Leu Leu Ser Ile Gly
 110 115 120
 Leu Cys Lys Gly Asp Arg Leu Gly Met Trp Gly Pro Asn Ser Tyr
 125 130 135
 Ala Trp Val Leu Met Gln Leu Ala Thr Ala Gln Ala Gly Ile Ile
 140 145 150
 Leu Val Ser Val Asn Pro Ala Tyr Gln Ala Met Glu Leu Glu Tyr
 155 160 165
 Val Leu Lys Lys Val Gly Cys Lys Ala Leu Val Phe Pro Lys Gln
 170 175 180
 Phe Lys Thr Gln Gln Tyr Tyr Asn Val Leu Lys Gln Ile Cys Pro
 185 190 195
 Glu Val Glu Asn Ala Gln Pro Gly Ala Leu Lys Ser Gln Arg Leu
 200 205 210
 Pro Asp Leu Thr Thr Val Ile Ser Val Asp Ala Pro Leu Pro Gly
 215 220 225
 Thr Leu Leu Leu Asp Glu Val Val Ala Ala Gly Ser Thr Arg Gln
 230 235 240
 His Leu Asp Gln Leu Gln Tyr Asn Gln Gln Phe Leu Ser Cys His
 245 250 255
 Asp Pro Ile Asn Ile Gln Phe Thr Ser Gly Thr Thr Gly Ser Pro
 260 265 270
 Lys Gly Ala Thr Leu Ser His Tyr Asn Ile Val Asn Asn Ser Asn
 275 280 285
 Ile Leu Gly Glu Arg Leu Lys Leu His Glu Lys Thr Pro Glu Gln
 290 295 300
 Leu Arg Met Ile Leu Pro Asn Pro Leu Tyr His Cys Leu Gly Ser
 305 310 315
 Val Ala Gly Thr Met Met Cys Leu Met Tyr Gly Ala Thr Leu Ile
 320 325 330
 Leu Ala Ser Pro Ile Phe Asn Gly Lys Lys Ala Leu Glu Ala Ile
 335 340 345
 Ser Arg Glu Arg Gly Thr Phe Leu Tyr Gly Thr Pro Thr Met Phe
 350 355 360
 Val Asp Ile Leu Asn Gln Pro Asp Phe Ser Ser Tyr Asp Ile Ser
 365 370 375
 Thr Met Cys Gly Gly Val Ile Ala Gly Ser Pro Ala Pro Pro Glu

380	385	390
Leu Ile Arg Ala Ile Ile Asn Lys Ile Asn Met Lys Asp Leu Val		
395	400	405
Val Ala Tyr Gly Thr Thr Glu Asn Ser Pro Val Thr Phe Ala His		
410	415	420
Phe Pro Glu Asp Thr Val Glu Gln Lys Ala Glu Ser Val Gly Arg		
425	430	435
Ile Met Pro His Thr Glu Ala Arg Ile Met Asn Met Glu Ala Gly		
440	445	450
Thr Leu Ala Lys Leu Asn Thr Pro Gly Glu Leu Cys Ile Arg Gly		
455	460	465
Tyr Cys Val Met Leu Gly Tyr Trp Gly Glu Pro Gln Lys Thr Glu		
470	475	480
Glu Ala Val Asp Gln Asp Lys Trp Tyr Trp Thr Gly Asp Val Ala		
485	490	495
Thr Met Asn Glu Gln Gly Phe Cys Lys Ile Val Gly Arg Ser Lys		
500	505	510
Asp Met Ile Ile Arg Gly Gly Glu Asn Ile Tyr Pro Ala Glu Leu		
515	520	525
Glu Asp Phe Phe His Thr His Pro Lys Val Gln Glu Val Gln Val		
530	535	540
Val Gly Val Lys Asp Asp Arg Met Gly Glu Glu Ile Cys Ala Cys		
545	550	555
Ile Arg Leu Lys Asp Gly Glu Glu Thr Thr Val Glu Glu Ile Lys		
560	565	570
Ala Phe Cys Lys Gly Lys Ile Ser His Phe Lys Ile Pro Lys Tyr		
575	580	585
Ile Val Phe Val Thr Asn Tyr Pro Leu Thr Ile Ser Gly Lys Ile		
590	595	600
Gln Lys Phe Lys Leu Arg Glu Gln Met Glu Arg His Leu Asn Leu		
605	610	615

<210> 195
<211> 642
<212> DNA
<213> Homo sapiens

<400> 195
caactccaac attttaggag agcgctgaa actgcattgag aagacaccag 50
agcagttgcg gatgatcctg cccaaacccc tgtaccattg cctgggttcc 100
gtggcaggca caatgatgtg tctgatgtac ggtgccaccc tcatcctggc 150

ctctcccatc ttcaatggca agaaggcact ggaggccatc agcagagaga 200
gaggcacctt cctgtatggt acccccacga tgttcggtga cattctgaac 250
cagccagact tctccagtta tgacatctcg accatgtgtg gaggtgtcat 300
tgctgggtcc cctgcaccc cagagttgat ccgagccatc atcaacaaga 350
taaatatgaa ggacctggtg gttgcttatg gaaccacaga gaacagtcac 400
gtgacattcg cgcaattccc tgaggacact gtggagcaga aggcagaaag 450
cgtggcaga attatgcctc acacggaggc gcggatcatg aacatggagg 500
cagggacgct ggcaaagctg aacacgcccc gggagctgtg catccgaggg 550
tactgcgtca tgctggctca ctgggtgag cctcagaaga cagaggaagc 600
agtggatcag gacaagtggt attggacagg agatgtcgcc ac 642

<210> 196
<211> 1575
<212> DNA
<213> Homo sapiens

<400> 196
gagcaggacg gagccatgga ccccgccagg aaagcaggtg cccaggccat 50
gatctggact gcaggctggc tgctgctgct gctgcttcgc ggaggagcgc 100
aggccctgga gtgctacagc tgcgtgcaga aagcagatga cggatgctcc 150
ccgaacaaga tgaagacagt gaagtgcgcg ccggcgtgg acgtctgcac 200
cgaggccgtg gggcggtgg agaccatcca cggacaattc tcgctggcag 250
tgcggggttt cgggtcggga ctccccggca agaatgaccg cggcctggat 300
cttcacgggc ttctggcggtt catccagctg cagcaatgcg ctcaggatcg 350
ctgcaacgcc aagctcaacc tcacctcgcg ggcgctcgac ccggcaggt 400
atgagagtgc atacccgccc aacggcgtgg agtgcgtacag ctgtgtggc 450
ctgagccggg aggctgcca gggtacatcg ccggcggcgtg tgagctgcta 500
caacgccagc gatcatgtct acaagggtcg ctgcgacggc aacgtcacct 550
tgacggcagc taatgtgact gtgtccttgc ctgtccgggg ctgtgtccag 600
gatgaattct gcactcggga tggagtaaca ggcggcgggt tcacgctcag 650
tggctcctgt tgccagggtt cccgctgtaa ctctgaccc tcgaacaaga 700
cctacttctc ccctcgaatc ccaccccttg tccggctgcc ccctccagag 750
cccacgactg tggcctcaac cacatctgtc accacttcta cctcgcccc 800

agtgagaccc acatccacca ccaaaccat gccagcgcca accagtcaga 850
ctccgagaca gggagtagaa cacgaggcct cccgggatga ggagcccagg 900
ttgactggag gcgcgcgtgg ccaccaggac cgcatcaatt cagggcagta 950
tcctgaaaaa ggggggcccc agcagcccc taataaaggc tgtgtggctc 1000
ccacagctgg attggcagcc cttctgttgg ccgtggctgc tgggtgtctta 1050
ctgtgagctt ctccacctgg aaattccct ctcacctact tctctggccc 1100
tgggtacccc ttttctcatc acttcctgtt cccaccactg gactgggctg 1150
gcccagcccc tggtttcca acattcccc gtatccccag cttctgctgc 1200
gctggtttgc ggctttggaa aataaaatac cgttgtatat attctgccag 1250
gggtgttcta gcttttgag gacagctcct gtatccttct catccttgc 1300
tctccgcttg tcctcttgc atgttaggac agagtgagag aagtcaagctg 1350
tcacgggaa ggtgagagag aggatgctaa gcttcctact cactttctcc 1400
tagccagcct ggactttgga gcgtggggtg ggtggacaa tggctcccc 1450
ctctaagcac tgcctccct actccccgca tctttggga atcggttccc 1500
catatgtctt ctttactaga ctgtgagctc ctgggggggg gcccggtagc 1550
ccaattcgcc ctatagttag tcgta 1575

<210> 197

<211> 346

<212> PRT

<213> Homo sapiens

<400> 197

Met	Asp	Pro	Ala	Arg	Lys	Ala	Gly	Ala	Gln	Ala	Met	Ile	Trp	Thr
1				5				10				15		

Ala	Gly	Trp	Leu	Leu	Leu	Leu	Leu	Arg	Gly	Gly	Ala	Gln	Ala	
			20				25				30			

Leu	Glu	Cys	Tyr	Ser	Cys	Val	Gln	Lys	Ala	Asp	Asp	Gly	Cys	Ser
	35						40					45		

Pro	Asn	Lys	Met	Lys	Thr	Val	Lys	Cys	Ala	Pro	Gly	Val	Asp	Val
			50				55					60		

Cys	Thr	Glu	Ala	Val	Gly	Ala	Val	Glu	Thr	Ile	His	Gly	Gln	Phe
	65						70					75		

Ser	Leu	Ala	Val	Arg	Gly	Cys	Gly	Ser	Gly	Leu	Pro	Gly	Lys	Asn
			80				85					90		

Asp	Arg	Gly	Leu	Asp	Leu	His	Gly	Leu	Leu	Ala	Phe	Ile	Gln	Leu
			95					100				105		

Gln Gln Cys Ala Gln Asp Arg Cys Asn Ala Lys Leu Asn Leu Thr
 110 115 120
 Ser Arg Ala Leu Asp Pro Ala Gly Asn Glu Ser Ala Tyr Pro Pro
 125 130 135
 Asn Gly Val Glu Cys Tyr Ser Cys Val Gly Leu Ser Arg Glu Ala
 140 145 150
 Cys Gln Gly Thr Ser Pro Pro Val Val Ser Cys Tyr Asn Ala Ser
 155 160 165
 Asp His Val Tyr Lys Gly Cys Phe Asp Gly Asn Val Thr Leu Thr
 170 175 180
 Ala Ala Asn Val Thr Val Ser Leu Pro Val Arg Gly Cys Val Gln
 185 190 195
 Asp Glu Phe Cys Thr Arg Asp Gly Val Thr Gly Pro Gly Phe Thr
 200 205 210
 Leu Ser Gly Ser Cys Cys Gln Gly Ser Arg Cys Asn Ser Asp Leu
 215 220 225
 Arg Asn Lys Thr Tyr Phe Ser Pro Arg Ile Pro Pro Leu Val Arg
 230 235 240
 Leu Pro Pro Pro Glu Pro Thr Thr Val Ala Ser Thr Thr Ser Val
 245 250 255
 Thr Thr Ser Thr Ser Ala Pro Val Arg Pro Thr Ser Thr Thr Lys
 260 265 270
 Pro Met Pro Ala Pro Thr Ser Gln Thr Pro Arg Gln Gly Val Glu
 275 280 285
 His Glu Ala Ser Arg Asp Glu Glu Pro Arg Leu Thr Gly Gly Ala
 290 295 300
 Ala Gly His Gln Asp Arg Ser Asn Ser Gly Gln Tyr Pro Ala Lys
 305 310 315
 Gly Gly Pro Gln Gln Pro His Asn Lys Gly Cys Val Ala Pro Thr
 320 325 330
 Ala Gly Leu Ala Ala Leu Leu Ala Val Ala Ala Gly Val Leu
 335 340 345

Leu

<210> 198
 <211> 1657
 <212> DNA
 <213> Homo sapiens

<400> 198
 cgggactcg cggttcctcc tggagtcgg ggaggggacc ggctgtcag 50

acgccatgga gttggtgctg gtcttcctct gcagcctgct ggccccatg 100
gtcctggcca gtgcagctga aaaggagaag gaaatggacc ctttccatta 150
tgattaccag accctgagga ttggggact ggtgtcgct gtggccctct 200
tctcggttgg gatcctcctt atcctaagtc gcaggtgcaa gtgcagttc 250
aatcagaagc cccggggccc aggagatgag gaagcccagg tggagaacct 300
catcaccgccc aatgcaacag agccccagaa gcagagaact gaagtgcagc 350
catcaggtgg aagcctctgg aacctgaggc ggctgcttga acctttggat 400
gcaaatgtcg atgcttaaga aaaccggcca cttagcaac agcccttcc 450
ccaggagaag ccaagaactt gtgtgtcccc caccctatcc cctctaacac 500
cattcctcca cctgatgatg caactaacac ttgcctcccc actgcagcct 550
gcggtcctgc ccacccccc tgatgtgtgt gtgtgtgtgt gtgtgtgact 600
gtgtgtgttt gctaactgtg gtcttgg 650
ttgtgttgt tagtgaactg tggactcgct ttcccaggca ggggctgagc 700
cacatggcca tctgctcctc cctgcccccg tggccctcca tcaccccttg 750
ctccttaggag gctgcttggt gcccggagacc agccccctcc cctgatttag 800
ggatgcgtag ggtaagagca cgggcagtg 850
tgggaagggtt tgcagcactt tgtcatcatt cttagggac tcctttcact 900
ccttaacaa aaacccctgct tccttatccc acctgatccc agtctgaagg 950
tctcttagca actggagata caaagcaagg agctggtag 1000
acgtcaggca ggctatgccc ttccgtgg 1050
cacgaggagt ccccatctgc cccgccccctt cacagagcgc ccggggattc 1100
caggccccagg gcttctactc tgccctggg 1150
ttctcagcaa taactccatg ggctctgg 1200
cctgcttctg agacttcaat ctacagccca gtcacccat 1250
cagtcctgc aattgggtct ctggcaggca atagttgaag gactcctgtt 1300
ccgttggggc cagcacacccg ggatggatgg 1350
cttctctgcc tacgtccct tagatggca gcagaggca 1400
cttgctctg cctgtcggtg gtcagagcgg tgagcgaggt gggttggaga 1450
ctcagcaggc tccgtgcagc cttggaaac agtggagaggt tgaaggcat 1500

aacgagatgt ggaactcaac ccagatcccc cccctcctgt cctctgtgtt 1550
cccgccggaaa ccaaccaaac cgtgcgctgt gaccattgc tgttcttgt 1600
atcgtgatct atcctcaaca acaacagaaaa aaaggaataa aatatccttt 1650
gtttcct 1657

<210> 199
<211> 120
<212> PRT
<213> Homo sapiens

<400> 199
Met Glu Leu Val Leu Val Phe Leu Cys Ser Leu Leu Ala Pro Met
1 5 10 15
Val Leu Ala Ser Ala Ala Glu Lys Glu Lys Glu Met Asp Pro Phe
20 25 30
His Tyr Asp Tyr Gln Thr Leu Arg Ile Gly Gly Leu Val Phe Ala
35 40 45
Val Val Leu Phe Ser Val Gly Ile Leu Leu Ile Leu Ser Arg Arg
50 55 60
Cys Lys Cys Ser Phe Asn Gln Lys Pro Arg Ala Pro Gly Asp Glu
65 70 75
Glu Ala Gln Val Glu Asn Leu Ile Thr Ala Asn Ala Thr Glu Pro
80 85 90
Gln Lys Gln Arg Thr Glu Val Gln Pro Ser Gly Gly Ser Leu Trp
95 100 105
Asn Leu Arg Arg Leu Leu Glu Pro Leu Asp Ala Asn Val Asp Ala
110 115 120

<210> 200
<211> 415
<212> DNA
<213> Homo sapiens

<400> 200
aaacctgacg ccatgaagat cccggtcctt cctgccgtgg tgctcctctc 50
cctcctggtg ctccactctg cccagggagc caccctgggt ggtcctgagg 100
aagaaagcac cattgagaat tatgcgtcac gaccggagc ctttaacacc 150
ccgttcctga acatcgacaa attgcgatct gcgtttaagg ctgatgagtt 200
cctgaactgg cacggcctct ttgagtctat caaaaaggaaa cttccttcc 250
tcaactggga tgccttcct aagctgaaag gactgaggag cgcaactcct 300
gatgcccagt gaccatgacc tccactggaa gagggggcta gcgtgagcgc 350

tgattctcaa cctaccataa ctcttcctg cctcaggaac tccaataaaa 400

cattttccat ccaaa 415

<210> 201

<211> 99

<212> PRT

<213> Homo sapiens

<400> 201

Met Lys Ile Pro Val Leu Pro Ala Val Val Leu Leu Ser Leu Leu
1 5 10 15

Val Leu His Ser Ala Gln Gly Ala Thr Leu Gly Gly Pro Glu Glu
20 25 30

Glu Ser Thr Ile Glu Asn Tyr Ala Ser Arg Pro Glu Ala Phe Asn
35 40 45

Thr Pro Phe Leu Asn Ile Asp Lys Leu Arg Ser Ala Phe Lys Ala
50 55 60

Asp Glu Phe Leu Asn Trp His Ala Leu Phe Glu Ser Ile Lys Arg
65 70 75

Lys Leu Pro Phe Leu Asn Trp Asp Ala Phe Pro Lys Leu Lys Gly
80 85 90

Leu Arg Ser Ala Thr Pro Asp Ala Gln
95

<210> 202

<211> 678

<212> DNA

<213> Homo sapiens

<400> 202

cagttctgaa atcaatggag ttaatttagg gaatacaaac cagccatggg 50

ggggagatt gccttgcct cagtgattct cacctgcctc tcccttctgg 100

caggcagggt ctcccagggtt gttcttctcc agccagttcc aactcaggag 150

acaggtccca aggccatggg agatctctcc tgtggcttg ccggccactc 200

atgagagtgt ttttgttaa agtattttt agaatactgt tgacttcttc 250

atgatttaat aaccatcctt tgcgaagttt tatgaggctt tagggaaatg 300

tcaaccctca aattttgtt atactagatg gttccattt acccaccact 350

attttaaggt ccctttatTT ttaggttcaa gttcatttg acttgagaaaa 400

gtgcccttct gcagcttcat tgattttgtt tatcttcaact attaattgtt 450

acgattaaaa aagaataaga gcacgcagac ctctaggaga atattttatc 500

cctgggtgcc cctgacacat ttatgttagtg atcccacaaa tgtgattgtt 550

aatttaaatg ttattctaat attagtacat tcagttgtga tgtaatatga 600
ataaccagaa tctatttctt aaaagtttg agtataatgg tcaactagat 650
atttgtatag aaagactgaa tagtgatg 678

<210> 203
<211> 52
<212> PRT
<213> Homo sapiens

<400> 203
Met Gly Val Glu Ile Ala Phe Ala Ser Val Ile Leu Thr Cys Leu
1 5 10 15
Ser Leu Leu Ala Ala Gly Val Ser Gln Val Val Leu Leu Gln Pro
20 25 30
Val Pro Thr Gln Glu Thr Gly Pro Lys Ala Met Gly Asp Leu Ser
35 40 45
Cys Gly Phe Ala Gly His Ser
50

<210> 204
<211> 1917
<212> DNA
<213> Homo sapiens

<400> 204
ggggaatctg cagtaggtct gccggcgatg gagtggtggg ctagctcgcc 50
gttcggctc tggctgctgt tggctcctcct gcccctcagcg cagggccgcc 100
agaaggagtc aggttcaaaa tggaaagtat ttattgacca aattaacagg 150
tctttggaga attacgaacc atgttcaagt caaaaactgca gctgctacca 200
tggtgtcata gaagaggatc taactcctt ccgaggaggc atctccagga 250
agatgatggc agaggtagtc agacggaagc tagggaccca ctatcagatc 300
actaagaaca gactgtaccg ggaaaatgac tgcatgttcc cctcaaggtg 350
tagtgtgtt gagcacttta ttttggaaagt gatcgccgt ctccctgaca 400
tggagatggt gatcaatgta cgagattatc ctcaggttcc taaatggatg 450
gagcctgcca tcccagtctt ctccttcagt aagacatcag agtaccatga 500
tatcatgtat cctgcttggc cattttggc agggggacct gctgtttggc 550
caatttatcc tacaggtctt ggacgggtggg acctcttcag agaagatctg 600
gtaaggtcag cagcacagtg gccatggaaa aagaaaaact ctacagcata 650
tttccgagga tcaaggacaa gtccagaacg agatcctctc attcttctgt 700

ctcgaaaaaa cccaaaactt gttgatgcag aatacaccaa aaaccaggcc 750
tggaaatcta tgaaagatac cttagggaaag ccagctgcta aggatgtcca 800
tcttggttat cactgcaa at acaagtatct gtttaatttt cgaggcgtag 850
ctgcaagttt ccggtttaaa cacctttcc tgtgtggctc acttgttttc 900
catgttggtg atgagtggct agaatttttc tatccacagc tgaagccatg 950
ggttcactat atcccagtca aaacagatct ctccaatgtc caagagctgt 1000
tacaatttgt aaaagcaa at gatgtatgt ctcaagagat tgctgaaagg 1050
ggaagccagt ttatttagaa ccatttgcag atggatgaca tcacctgtta 1100
ctgggagaac ctctttagtg aatactctaa attcctgtct tataatgtaa 1150
cgagaaggaa aggttatgtat caaatttattc ccaaaatgtt gaaaactgaa 1200
ctatagtagt catcatagga ccatagtcct ctttggca acagatctca 1250
gatatcctac ggtgagaagc ttaccataag cttggctcct ataccttgaa 1300
tatctgctat caagccaa at acctggttt ctttatcatg ctgcacccag 1350
agcaactctt gagaaagatt taaaatgtgt ctaatacact gatatgaagc 1400
agttcaactt tttggatgaa taaggaccag aaatcgtgag atgtggattt 1450
tgaacccaaac tctacccccc attttcttaa gaccaatcac agcttgc 1500
tcagatcatc cacctgtgtg agtccatcac tgtgaaattt actgtgtcc 1550
tgtgatgatg ccctttgtcc cattatttgg agcagaaaat tcgtcattt 1600
gaagtagtagt aactcattgc tggaaattgtg aaattattca aggcgtgatc 1650
tctgtcactt tattttatg taggaaaccc tatggggttt atgaaaaata 1700
cttggggatc attctctgaa tggtctaagg aagcggtagc catgccatgc 1750
aatgatgttag gagttctttt ttgtaaaacc ataaaactctg ttactcagga 1800
ggtttctata atgccacata gaaagaggcc aattgcata gtaattattt 1850
caattggatt tcaggcccccc ttttgc ttcatgccct acttcttaat 1900
gcctctctaa agccaaa 1917

<210> 205

<211> 392

<212> PRT

<213> Homo sapiens

<400> 205

Met Glu Trp Trp Ala Ser Ser Pro Leu Arg Leu Trp Leu Leu Leu
1 5 10 15

Phe Leu Leu Pro Ser Ala Gln Gly Arg Gln Lys Glu Ser Gly Ser
 20 25 30

 Lys Trp Lys Val Phe Ile Asp Gln Ile Asn Arg Ser Leu Glu Asn
 35 40 45

 Tyr Glu Pro Cys Ser Ser Gln Asn Cys Ser Cys Tyr His Gly Val
 50 55 60

 Ile Glu Glu Asp Leu Thr Pro Phe Arg Gly Gly Ile Ser Arg Lys
 65 70 75

 Met Met Ala Glu Val Val Arg Arg Lys Leu Gly Thr His Tyr Gln
 80 85 90

 Ile Thr Lys Asn Arg Leu Tyr Arg Glu Asn Asp Cys Met Phe Pro
 95 100 105

 Ser Arg Cys Ser Gly Val Glu His Phe Ile Leu Glu Val Ile Gly
 110 115 120

 Arg Leu Pro Asp Met Glu Met Val Ile Asn Val Arg Asp Tyr Pro
 125 130 135

 Gln Val Pro Lys Trp Met Glu Pro Ala Ile Pro Val Phe Ser Phe
 140 145 150

 Ser Lys Thr Ser Glu Tyr His Asp Ile Met Tyr Pro Ala Trp Thr
 155 160 165

 Phe Trp Glu Gly Gly Pro Ala Val Trp Pro Ile Tyr Pro Thr Gly
 170 175 180

 Leu Gly Arg Trp Asp Leu Phe Arg Glu Asp Leu Val Arg Ser Ala
 185 190 195

 Ala Gln Trp Pro Trp Lys Lys Asn Ser Thr Ala Tyr Phe Arg
 200 205 210

 Gly Ser Arg Thr Ser Pro Glu Arg Asp Pro Leu Ile Leu Leu Ser
 215 220 225

 Arg Lys Asn Pro Lys Leu Val Asp Ala Glu Tyr Thr Lys Asn Gln
 230 235 240

 Ala Trp Lys Ser Met Lys Asp Thr Leu Gly Lys Pro Ala Ala Lys
 245 250 255

 Asp Val His Leu Val Asp His Cys Lys Tyr Lys Tyr Leu Phe Asn
 260 265 270

 Phe Arg Gly Val Ala Ala Ser Phe Arg Phe Lys His Leu Phe Leu
 275 280 285

 Cys Gly Ser Leu Val Phe His Val Gly Asp Glu Trp Leu Glu Phe
 290 295 300

 Phe Tyr Pro Gln Leu Lys Pro Trp Val His Tyr Ile Pro Val Lys

305	310	315
Thr Asp Leu Ser Asn Val Gln Glu Leu	Leu Gln Phe Val Lys Ala	
320	325	330
Asn Asp Asp Val Ala Gln Glu Ile Ala	Glu Arg Gly Ser Gln Phe	
335	340	345
Ile Arg Asn His Leu Gln Met Asp Asp	Ile Thr Cys Tyr Trp Glu	
350	355	360
Asn Leu Leu Ser Glu Tyr Ser Lys Phe	Leu Ser Tyr Asn Val Thr	
365	370	375
Arg Arg Lys Gly Tyr Asp Gln Ile Ile	Pro Lys Met Leu Lys Thr	
380	385	390
Glu Leu		

<210> 206
<211> 1425
<212> DNA
<213> Homo sapiens

<400> 206
caccctcca ttttcgcca tggccctgc actgctcctg atccctgctg 50
ccctcgccctc tttcatcctg gccttggca ccggagtggaa gttcgtgcgc 100
tttacctccc ttccggccact tcttggaggg atcccgagt ctggtggtcc 150
ggatgcccgc caggatggc tggctgcct gcaggaccgc agcatccttgc 200
ccccctggc atggatctg gggctcctgc ttctatttgc tggcagcac 250
agcctcatgg cagctgaaag agtgaaggca tggacatccc ggtactttgg 300
ggtccttcag aggtcactgt atgtggcctg cactgcctg gccttgcagc 350
tggtgatgcg gtactggag cccataccca aaggccctgt gttgtggag 400
gctcgggctg agccatgggc cacctgggtg ccgctcctct gctttgtgct 450
ccatgtcatc tcctggctcc tcatcttag catccttctc gtctttgact 500
atgctgagct catggccctc aaacaggtat actaccatgt gctgggctg 550
ggcgagccctc tggccctgaa gtctcccg gctctcagac tcttctccca 600
cctgcgccac ccagtgtgtg tggagctgct gacagtgtg tgggtggc 650
ctaccctggg cacggaccgt ctcccttgc ctttcctct tacccctctac 700
ctgggcctgg ctcacggct tgatcagcaa gacctccgct acctccggc 750
ccagctacaa agaaaactcc acctgctctc tcggccccag gatggggagg 800

cagagtgagg agctcaactct ggttacaagc cctgttcttc ctctccact 850
gaattctaaa tccttaacat ccaggccctg gctgcttcat gccagaggcc 900
caaatccatg gactgaagga gatgcccott ctactacttg agactttatt 950
ctctgggtcc agctccatac cctaaattct gagttcagc cactgaactc 1000
caaggtccac ttctcaccag caaggaagag tgggttatgg aagtcatctg 1050
tcccttcaact gtttagagca tgacactctc cccctcaaca gcctcctgag 1100
aaggaaagga tctgccctga ccactcccct ggcactgtta cttgcctctg 1150
cgccctcaggg gtccccttct gcaccgctgg cttccactcc aagaagggtgg 1200
accagggtct gcaagttcaa cggtcatagc tgtccctcca ggcccccaacc 1250
ttgcctcacc actccggcc ctatctctg cacccctta ggccctgcct 1300
ctgggctcag accccaacct agtcaagggg attctcctgc tcttaactcg 1350
atgacttggg gctccctgct ctcccgagga agatgctctg cagaaaaata 1400
aaagtcagcc ttttctaaa aaaaa 1425

<210> 207
<211> 262
<212> PRT
<213> Homo sapiens

<400> 207
Met Ala Pro Ala Leu Leu Ile Pro Ala Ala Leu Ala Ser Phe
1 5 10 15
Ile Leu Ala Phe Gly Thr Gly Val Glu Phe Val Arg Phe Thr Ser
20 25 30
Leu Arg Pro Leu Leu Gly Gly Ile Pro Glu Ser Gly Gly Pro Asp
35 40 45
Ala Arg Gln Gly Trp Leu Ala Ala Leu Gln Asp Arg Ser Ile Leu
50 55 60
Ala Pro Leu Ala Trp Asp Leu Gly Leu Leu Leu Phe Val Gly
65 70 75
Gln His Ser Leu Met Ala Ala Glu Arg Val Lys Ala Trp Thr Ser
80 85 90
Arg Tyr Phe Gly Val Leu Gln Arg Ser Leu Tyr Val Ala Cys Thr
95 100 105
Ala Leu Ala Leu Gln Leu Val Met Arg Tyr Trp Glu Pro Ile Pro
110 115 120
Lys Gly Pro Val Leu Trp Glu Ala Arg Ala Glu Pro Trp Ala Thr
125 130 135

Trp Val Pro Leu Leu Cys Phe Val Leu His Val Ile Ser Trp Leu
 140 145 150
 Leu Ile Phe Ser Ile Leu Leu Val Phe Asp Tyr Ala Glu Leu Met
 155 160 165
 Gly Leu Lys Gln Val Tyr Tyr His Val Leu Gly Leu Gly Glu Pro
 170 175 180
 Leu Ala Leu Lys Ser Pro Arg Ala Leu Arg Leu Phe Ser His Leu
 185 190 195
 Arg His Pro Val Cys Val Glu Leu Leu Thr Val Leu Trp Val Val
 200 205 210
 Pro Thr Leu Gly Thr Asp Arg Leu Leu Leu Ala Phe Leu Leu Thr
 215 220 225
 Leu Tyr Leu Gly Leu Ala His Gly Leu Asp Gln Gln Asp Leu Arg
 230 235 240
 Tyr Leu Arg Ala Gln Leu Gln Arg Lys Leu His Leu Leu Ser Arg
 245 250 255
 Pro Gln Asp Gly Glu Ala Glu
 260

<210> 208
 <211> 2095
 <212> DNA
 <213> Homo sapiens

<400> 208
 ccgagcacag gagattgcct gcgttagga ggtggctgcg ttgtggaaaa 50
 agctatcaag gaagaaattg ccaaaccatg tcttttttc tgtttcaga 100
 gtagttcaca acagatctga gtgtttaat taagcatgga atacagaaaa 150
 caacaaaaaaaaa cttaagcttt aatttcatct ggaattccac agtttctta 200
 gctccctgga cccgggtgac ctgttggtc ttcccgtgg ctgctctatc 250
 acgtggtgct ctccgactac tcaccccgag tgtaaagaac cttcggtcg 300
 cgtgcttctg agctgctgtg gatggcctcg gctctctgga ctgtccttcc 350
 gagtaggatg tcactgagat ccctcaaattg gagcctcctg ctgctgtcac 400
 tcctgagttt ctttgtatg tggtaccta gcctccccca ctacaatgtg 450
 atagaacgctg tgaactggat gtacttctat gagtatgagc cgatttacag 500
 acaagacttt cacttcacac ttcgagagca ttcaaactgc tctcatcaaa 550
 atccatttct ggtcattctg gtgacccccc acccttcaga tgtgaaagcc 600
 aggccaggcca ttagagttac ttggggtgaa aaaaagtctt ggtggggata 650

tgaggttctt acattttctt tattaggcca agaggctgaa aaggaagaca 700
aatgttggc attgtcctta gaggatgaac accttcctta tggtgacata 750
atccgacaag atttttaga cacatataat aacctgaccc tgaaaaccat 800
tatggcattc aggtggtaa ctgagtttg ccccaatgcc aagtacgtaa 850
tgaagacaga cactgatgtt ttcatcaata ctggcaattt agtgaagtat 900
cttttaaacc taaaccactc agagaagttt ttcacagggtt atcctcta 950
tgataattat tcctatagag gatttacca aaaaacccat atttcttacc 1000
aggagtatcc tttcaagggtg ttccctccat actgcagtgg gttgggttat 1050
ataatgtcca gagatttgtt gccaaggatc tatgaaatga tgggtcacgt 1100
aaaacccatc aagttgaag atgttatgt cgggatctgt ttgaatttat 1150
taaaagtcaa cattcatatt ccagaagaca caaatcttt cttctata 1200
agaatccatt tggatgtctg tcaactgaga cgtgtgattt cagcccatgg 1250
cttttcttcc aaggagatca tcacttttg gcaggtcatg ctaaggaaca 1300
ccacatgccca ttattaactt cacattctac aaaaagccta gaaggacagg 1350
ataccttggtg gaaagtgtta aataaagtag gtactgtgga aaattcatgg 1400
ggaggtcagt gtgctggctt acactgaact gaaactcatg aaaaacccag 1450
actggagact ggagggttac acttggattt tattagtcag gcccttcaaa 1500
gatgatatgt ggaggaatta aatataaagg aattggaggt ttttgctaaa 1550
gaaattaata ggaccaaaca atttggacat gtcattctgt agactagaat 1600
ttcttaaaag ggtgttactg agttataagc tcactaggct gtaaaaacaa 1650
aacaatgtag agttttatattt attgaacaat gtgtcactt gaaggtttg 1700
tgtatatctt atgtggatta ccaatttaaa aatatatgtt gttctgtgtc 1750
aaaaaacttc ttcaactgaa ttatactgaa caaaattttt cctgttttg 1800
gtcatttata aagtacttca agatgttgcgtt gtatttcaca gttatttata 1850
tttaaaatata cttcaactttt gtgttttaa atgttttgcgtt gatttcaata 1900
caagataaaaa aggatagtga atcattctt acatgcaaac attttccagt 1950
tacttaactg atcagtttat tattgataca tcactccatt aatgtaaagt 2000
cataggtcat tattgcataat cagtaatctc ttggactttt gtaaatatattt 2050
tactgtggta atatagagaa gaattaaagc aagaaaatct gaaaa 2095

<210> 209
 <211> 331
 <212> PRT
 <213> Homo sapiens

<400> 209
 Met Ala Ser Ala Leu Trp Thr Val Leu Pro Ser Arg Met Ser Leu
 1 5 10 15

Arg Ser Leu Lys Trp Ser Leu Leu Leu Ser Leu Leu Ser Phe
 20 25 30

Phe Val Met Trp Tyr Leu Ser Leu Pro His Tyr Asn Val Ile Glu
 35 40 45

Arg Val Asn Trp Met Tyr Phe Tyr Glu Tyr Glu Pro Ile Tyr Arg
 50 55 60

Gln Asp Phe His Phe Thr Leu Arg Glu His Ser Asn Cys Ser His
 65 70 75

Gln Asn Pro Phe Leu Val Ile Leu Val Thr Ser His Pro Ser Asp
 80 85 90

Val Lys Ala Arg Gln Ala Ile Arg Val Thr Trp Gly Glu Lys Lys
 95 100 105

Ser Trp Trp Gly Tyr Glu Val Leu Thr Phe Phe Leu Leu Gly Gln
 110 115 120

Glu Ala Glu Lys Glu Asp Lys Met Leu Ala Leu Ser Leu Glu Asp
 125 130 135

Glu His Leu Leu Tyr Gly Asp Ile Ile Arg Gln Asp Phe Leu Asp
 140 145 150

Thr Tyr Asn Asn Leu Thr Leu Lys Thr Ile Met Ala Phe Arg Trp
 155 160 165

Val Thr Glu Phe Cys Pro Asn Ala Lys Tyr Val Met Lys Thr Asp
 170 175 180

Thr Asp Val Phe Ile Asn Thr Gly Asn Leu Val Lys Tyr Leu Leu
 185 190 195

Asn Leu Asn His Ser Glu Lys Phe Phe Thr Gly Tyr Pro Leu Ile
 200 205 210

Asp Asn Tyr Ser Tyr Arg Gly Phe Tyr Gln Lys Thr His Ile Ser
 215 220 225

Tyr Gln Glu Tyr Pro Phe Lys Val Phe Pro Pro Tyr Cys Ser Gly
 230 235 240

Leu Gly Tyr Ile Met Ser Arg Asp Leu Val Pro Arg Ile Tyr Glu
 245 250 255

Met Met Gly His Val Lys Pro Ile Lys Phe Glu Asp Val Tyr Val

260	265	270
Gly Ile Cys Leu Asn Leu Leu Lys Val Asn Ile His Ile Pro Glu		
275	280	285
Asp Thr Asn Leu Phe Phe Leu Tyr Arg Ile His Leu Asp Val Cys		
290	295	300
Gln Leu Arg Arg Val Ile Ala Ala His Gly Phe Ser Ser Lys Glu		
305	310	315
Ile Ile Thr Phe Trp Gln Val Met Leu Arg Asn Thr Thr Cys His		
320	325	330

Tyr

<210> 210
<211> 745
<212> DNA
<213> Homo sapiens

<400> 210
cctctgtcca ctgcttcgt gaagacaaga tgaagttcac aattgtcttt 50
gctggacttc ttggagtctt tctagctcct gccctagcta actataatat 100
caacgtcaat gatgacaaca acaatgctgg aagtggcag cagtcagtga 150
gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa caacggatgg 200
gactcctggaa attccatctg ggattatggaa aatggcttg ctgcaaccag 250
actcttcaa aagaagacat gcattgtca caaatgaac aaggaagtca 300
tgccctccat tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag 350
ggtaaggggac caggaggacc acctcccaag ggcctgatgt actcagtc 400
ccccaaacaaa gtcgatgacc tgagcaagtt cgaaaaaaac attgcaaaca 450
tgtgtcggtt gattccaaca tacatggctg aggagatgca agaggcaagc 500
ctgtttttt actcaggaac gtgctacacg accagtgtac tatggattgt 550
ggacatttcc ttctgtggag acacggtgga gaactaaaca atttttaaa 600
gccactatgg attagtcat ctgaatatgc tgtgcagaaa aaatatggc 650
tccagtggtt tttaccatgt cattctgaaa ttttctcta ctagttatgt 700
ttgatttctt taagttcaa taaaatcatt tagcattgaa aaaaa 745

<210> 211
<211> 185
<212> PRT
<213> Homo sapiens

<400> 211
 Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu
 1 5 10 15
 Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn
 20 25 30
 Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu
 35 40 45
 His Asn Val Ala Asn Val Asp Asn Asn Gly Trp Asp Ser Trp
 50 55 60
 Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu
 65 70 75
 Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val
 80 85 90
 Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys
 95 100 105
 Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met
 110 115 120
 Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly
 125 130 135
 Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala
 140 145 150
 Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys
 155 160 165
 Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly
 170 175 180
 Asp Thr Val Glu Asn
 185

<210> 212
 <211> 1706
 <212> DNA
 <213> Homo sapiens

<400> 212
 catttctgaa actaatcgtg tcagaattga ctttgaaaag cattgcttt 50
 tacagaagta tattaacttt ttaggagtaa tttctagttt ggattgtaat 100
 atgaaataat ttaaaaggc ttgcgtcata tatagaaaa tcgcataatgg 150
 tcctagtatt aaattcttat tgcttactga ttttttgag ttaagagttg 200
 ttatatgcta gaatatgagg atgtgaatat aaataagaga agaaaaaaaga 250
 ataaagtaga ttgagtctcc aattttatgt aagcttcaga agaactgggt 300

tgtttacatg caagcttata gttgaaatat ttttcaggaa ttacatgaat 350
gacagtcttc gaaccaatgt gtttgttcga tttcaaccag agactatacg 400
atgtgcttgc atctacccgg cagcttagagc acttcagatt ccgttgccaa 450
ctcgccccca ttgggttctt ctttttggta ctacagaaga ggaaatccag 500
gaaatctgca tagaaacact taggctttat accagaaaaa agccaaacta 550
tgaattactg gaaaaagaag tagaaaaaaag aaaagtagcc ttacaagaag 600
ccaaattaaa agcaaaggga ttgaatccgg atggaactcc agcccttca 650
accctgggtg gattttctcc agcctccaag ccatcatcac caagagaagt 700
aaaagctgaa gagaaatcac caatctccat taatgtgaag acagtcaaaa 750
aagaacctga ggatagacaa caggcttcca aaagccctta caatggtgta 800
agaaaaagaca gcaagagaag tagaaatagc agaagtgcaa gtcgatcgag 850
gtcaagaaca cgatcacgtt ctagatcaca tactccaaga agacactata 900
ataataggcg gagtcgatct ggaacataca gctcgagatc aagaagcagg 950
tcccgcagtc acagtgaaag ccctcgaaga catcataatc atggttctcc 1000
tcacctaag gccaaagcata ccagagatga tttaaaaagt tcaaacagac 1050
atggtcataa aaggaaaaaa tctcggttctc gatctcagag caagtctcg 1100
gatcactcag atgcagccaa gaaacacagg catgaaaggg gacatcatag 1150
ggacaggcgt gaacgatctc gtcctttga gaggtcccat aaaagcaagc 1200
accatggtgg cagtcgctca ggacatggca ggcacaggcg ctgactttct 1250
cttccttga gcctgcatca gttctgggtt ttgccttatct acagtgtgat 1300
gtatggactc aatcaaaaac attaaacgca aactgattag gatttgattt 1350
cttggaaaccc tctaggtctc tagaacactg aggacagttt cttttgaaaa 1400
gaactatgtt aatttttttgc cacattaaaa tgccctagca gtatctaatt 1450
aaaaaccatg gtcaggttca attgtacttt attatagttt tgtattgttt 1500
attgctataa gaactggagc gtgaattctg taaaaatgta tcttattttt 1550
atacagataa aattgcagac actgttctat ttaagtgggtt atttgtttaa 1600
atgatggtga atactttctt aacactgggtt tgtctgcatg tgtaaagatt 1650
tttacaagga aataaaaatac aaatcttggtt ttttctaaaa aaaaaaaaaa 1700
aaaagt 1706

<210> 213
<211> 299
<212> PRT
<213> Homo sapiens

<400> 213
Met Asn Asp Ser Leu Arg Thr Asn Val Phe Val Arg Phe Gln Pro
1 5 10 15
Glu Thr Ile Ala Cys Ala Cys Ile Tyr Leu Ala Ala Arg Ala Leu
20 25 30
Gln Ile Pro Leu Pro Thr Arg Pro His Trp Phe Leu Leu Phe Gly
35 40 45
Thr Thr Glu Glu Ile Gln Glu Ile Cys Ile Glu Thr Leu Arg
50 55 60
Leu Tyr Thr Arg Lys Lys Pro Asn Tyr Glu Leu Leu Glu Lys Glu
65 70 75
Val Glu Lys Arg Lys Val Ala Leu Gln Glu Ala Lys Leu Lys Ala
80 85 90
Lys Gly Leu Asn Pro Asp Gly Thr Pro Ala Leu Ser Thr Leu Gly
95 100 105
Gly Phe Ser Pro Ala Ser Lys Pro Ser Ser Pro Arg Glu Val Lys
110 115 120
Ala Glu Glu Lys Ser Pro Ile Ser Ile Asn Val Lys Thr Val Lys
125 130 135
Lys Glu Pro Glu Asp Arg Gln Gln Ala Ser Lys Ser Pro Tyr Asn
140 145 150
Gly Val Arg Lys Asp Ser Lys Arg Ser Arg Asn Ser Arg Ser Ala
155 160 165
Ser Arg Ser Arg Ser Arg Thr Arg Ser Arg Ser Arg Ser His Thr
170 175 180
Pro Arg Arg His Tyr Asn Asn Arg Arg Ser Arg Ser Gly Thr Tyr
185 190 195
Ser Ser Arg Ser Arg Ser Arg Ser His Ser Glu Ser Pro
200 205 210
Arg Arg His His Asn His Gly Ser Pro His Leu Lys Ala Lys His
215 220 225
Thr Arg Asp Asp Leu Lys Ser Ser Asn Arg His Gly His Lys Arg
230 235 240
Lys Lys Ser Arg Ser Arg Ser Gln Ser Lys Ser Arg Asp His Ser
245 250 255
Asp Ala Ala Lys Lys His Arg His Glu Arg Gly His His Arg Asp

260

265

270

Arg Arg Glu Arg Ser Arg Ser Phe Glu Arg Ser His Lys Ser Lys
275 280 285

His His Gly Gly Ser Arg Ser Gly His Gly Arg His Arg Arg
290 295

<210> 214

<211> 730

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 72-73, 85, 91, 127, 226, 268, 454, 484, 513, 566, 663

<223> unknown base

<400> 214

tgggataaa ggaaaaatgg tcaggtatta atggctaaa gattattgga 50

aggggtttat catttttga anntattcgg gtcanaattg ncttgaaaa 100

gcattgcttt ttacagaaat atattanctt ttttagatcaa tttctagttt 150

ggattgtaat atgaaattat taaaaggc ttgcgtcata tataggaaaa 200

tcgcataatgg tcctagtatt aaattnttta tgcttactga ttttttgag 250

ttaagagttt ttatatgnta gaatatgagg atgtaaat aaataagaga 300

agaaaaaaaga ataaagtaga ttgagtctcc aattttatgt aagcttcaga 350

agaactggtt tgtttacatg caagctata gttgaaatat ttttcaggaa 400

ttacatgaat gacagtcttc gaaccaatgt gtttggcga tttcaaccag 450

agantatagc atgtgcttc atctacctt cagntagagc acttcagatt 500

ccgttgccaa ctngtccccaa ttggtttctt cttttggta ctacagaaga 550

ggaaatccag gaaatntgca tagaaacact taggctttat accagaaaaaa 600

agccaaacta tgaattactg gaaaaagaag tagaaaaaaag aaaagttagcc 650

ttacaagaag ccnaattaaa agcaaaggaa ttgaatccgg atgaaactcc 700

agccctttca accctgggtg gattttctcc 730

<210> 215

<211> 1807

<212> DNA

<213> Homo sapiens

<400> 215

ggcacgaggc ctcgtgccaa gcttggcacg agggtgcacc gcgttctgc 50

acgcgtcatg gcggtcctcg gagtacagct ggtggtgacc ctgctcactg 100

ccaccctcat gcacaggctg ggcacacact gtccttcgc ggcgtggctg 150
ctctgttaacg gcagtttggc ccgataacaag caccgtctg aggaggagct 200
tcggggccctg gcggggaaagc cgaggcccag aggcaggaaa gagcggtgg 250
ccaatggcct tagtgaggag aagccactgt ctgtccccg agatgccccg 300
ttccagctgg agacctgccc ctcacgacc gtggatgccc tggctctcg 350
cttcttcctg gagtaccagt gggttggc cttgtctgtg tactcggcg 400
gcgtgtacct ctacacagag gcctactact acatgctggg accagccaag 450
gagactaaca ttgtgtgtt ctgggtcctg ctcacggta cttctccat 500
caagatgttc ctgacagtga cacggctgta cttagcgcc gaggaggggg 550
gtgagcgctc tgtctgcctc acctttgcct tcctcttcct gctgctggcc 600
atgctggtgc aagtggtgcg ggaggagacc ctggagctgg gcctggagcc 650
tggctggcc agcatgaccc agaacttaga gccacttctg aagaagcagg 700
gctgggactg ggcgttcct gtggccaagc tggctatccg cgtgggactg 750
gcagtggtgg gctctgtgct gggtgcctc ctcaccttc caggcctcg 800
gctggcccaag acccaccggg acgcactgac catgtcgag gacagaccca 850
tgctgcagtt ctcctgcac accagcttc tgtctccct gttcatcctg 900
tggctctgga caaagccat tgcacggac ttctgcacc agccgccgtt 950
tggggagacg cgtttctccc tgctgtccga ttctgcctc gactctggc 1000
gcctctgggtt gctgggttg ctgtgcctgc tgccgtggc ggtgacccgg 1050
ccccacctgc aggccctacct gtgcctggcc aaggccggg tggagcagct 1100
gcgaagggag gctggccgca tcgaagcccg tgaaatccag cagagggtgg 1150
tccgagtcta ctgctatgtg accgtggtga gctgcagta cctgacgccc 1200
ctcatcctca ccctcaactg cacacttctg ctcaagacgc tggaggcta 1250
ttcctggggc ctggggccag ctccctact atccccgac ccattctcag 1300
ccagcgctgc ccccatcgcc tctggggagg acgaagtcca gcagactgca 1350
gchgccgatgg ccggggccct gggtggcctg cttaactcccc tcttcctcag 1400
tggcgtcctg gcctaccta tctggtgac ggctgcctgc cagctgctcg 1450
ccagcctttt cggcctctac ttccaccagg acttggcagg ctcctagctg 1500
cctgcagacc ctccctggggc cctgaggtct gttccctgggg cagcgggaca 1550

ctagcctgcc ccctctgttt gcgcccccgt gtccccagct gcaagggtggg 1600
gccggactcc ccggcggttcc ctaccacaca gtgcctgacc cgccggccccc 1650
cttggacgcc gagttctgc ctcagaactg tctctctgg gcccagcagc 1700
atgagggtcc cgaggccatt gtctccgaag cgtatgtgcc aggttgagt 1750
ggcgagggtg atgctggctg ctcttctgaa caaataaagg agcatgccga 1800
tttttaa 1807

<210> 216
<211> 479
<212> PRT
<213> Homo sapiens

<400> 216
Met Ala Val Leu Gly Val Gln Leu Val Val Thr Leu Leu Thr Ala
1 5 10 15
Thr Leu Met His Arg Leu Ala Pro His Cys Ser Phe Ala Arg Trp
20 25 30
Leu Leu Cys Asn Gly Ser Leu Phe Arg Tyr Lys His Pro Ser Glu
35 40 45
Glu Glu Leu Arg Ala Leu Ala Gly Lys Pro Arg Pro Arg Gly Arg
50 55 60
Lys Glu Arg Trp Ala Asn Gly Leu Ser Glu Glu Lys Pro Leu Ser
65 70 75
Val Pro Arg Asp Ala Pro Phe Gln Leu Glu Thr Cys Pro Leu Thr
80 85 90
Thr Val Asp Ala Leu Val Leu Arg Phe Phe Leu Glu Tyr Gln Trp
95 100 105
Phe Val Asp Phe Ala Val Tyr Ser Gly Gly Val Tyr Leu Phe Thr
110 115 120
Glu Ala Tyr Tyr Tyr Met Leu Gly Pro Ala Lys Glu Thr Asn Ile
125 130 135
Ala Val Phe Trp Cys Leu Leu Thr Val Thr Phe Ser Ile Lys Met
140 145 150
Phe Leu Thr Val Thr Arg Leu Tyr Phe Ser Ala Glu Glu Gly Gly
155 160 165
Glu Arg Ser Val Cys Leu Thr Phe Ala Phe Leu Phe Leu Leu Leu
170 175 180
Ala Met Leu Val Gln Val Val Arg Glu Glu Thr Leu Glu Leu Gly
185 190 195
Leu Glu Pro Gly Leu Ala Ser Met Thr Gln Asn Leu Glu Pro Leu

200	205	210
Leu Lys Lys Gln Gly Trp Asp Trp Ala	Leu Pro Val Ala Lys Leu	
215	220	225
Ala Ile Arg Val Gly Leu Ala Val Val	Gly Ser Val Leu Gly Ala	
230	235	240
Phe Leu Thr Phe Pro Gly Leu Arg Leu	Ala Gln Thr His Arg Asp	
245	250	255
Ala Leu Thr Met Ser Glu Asp Arg Pro	Met Leu Gln Phe Leu Leu	
260	265	270
His Thr Ser Phe Leu Ser Pro Leu Phe	Ile Leu Trp Leu Trp Thr	
275	280	285
Lys Pro Ile Ala Arg Asp Phe Leu His	Gln Pro Pro Phe Gly Glu	
290	295	300
Thr Arg Phe Ser Leu Leu Ser Asp Ser	Ala Phe Asp Ser Gly Arg	
305	310	315
Leu Trp Leu Leu Val Val Leu Cys Leu	Leu Arg Leu Ala Val Thr	
320	325	330
Arg Pro His Leu Gln Ala Tyr Leu Cys	Leu Ala Lys Ala Arg Val	
335	340	345
Glu Gln Leu Arg Arg Glu Ala Gly Arg	Ile Glu Ala Arg Glu Ile	
350	355	360
Gln Gln Arg Val Val Arg Val Tyr Cys	Tyr Val Thr Val Val Ser	
365	370	375
Leu Gln Tyr Leu Thr Pro Leu Ile Leu	Thr Leu Asn Cys Thr Leu	
380	385	390
Leu Leu Lys Thr Leu Gly Gly Tyr Ser	Trp Gly Leu Gly Pro Ala	
395	400	405
Pro Leu Leu Ser Pro Asp Pro Ser Ser	Ala Ser Ala Ala Pro Ile	
410	415	420
Gly Ser Gly Glu Asp Glu Val Gln Gln	Thr Ala Ala Arg Ile Ala	
425	430	435
Gly Ala Leu Gly Gly Leu Leu Thr Pro	Leu Phe Leu Arg Gly Val	
440	445	450
Leu Ala Tyr Leu Ile Trp Trp Thr Ala	Ala Cys Gln Leu Leu Ala	
455	460	465
Ser Leu Phe Gly Leu Tyr Phe His Gln His	Leu Ala Gly Ser	
470	475	

<210> 217

<211> 574

<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 5, 146
<223> unknown base

<400> 217
cgttngcacg cgtcaatggc ggtcctcgga gtacagctgg tggtgaccct 50
gctcaactgcc accctcatgc acaggctggc gccacactgc tccttcgcgc 100
gctggctgct ctgtaacggc agtttgttcc gatacaagca cccgtnttga 150
ggaggagctt cgggcccctgg cggggaagcc gaggcccaga ggcagggaaag 200
agcggtgtggc caatggcctt agtgaggaga agccactgtc tgtgccccga 250
gatgccccgt tccagctgga gacctgcccc ctcacgaccg tggatgcct 300
ggtcctgcgc ttcttcctgg agtaccagtg gtttgtggac tttgctgtgt 350
actcgggcgg cgtgtacctc ttcacagagg cctactacta catgctggga 400
ccagccaagg agactaacat tgctgtttc tggtgccctgc tcacagtgac 450
cttctccatc aagatgttcc tgacagtgac acggctgtac ttcagcgccg 500
aggaggggggg tgagcgctct gtctgcctca cctttgcctt cctcttcctg 550
ctgctggcca tgctggtgca agcg 574

<210> 218
<211> 2571
<212> DNA
<213> Homo sapiens

<400> 218
ggttcctaca tcctctcatc tgagaatcag agagcataat cttcttacgg 50
ggccgtgatt tattaacgtg gcttaatctg aaggttctca gtcaaattct 100
tttgtatcta ctgattgtgg gggcatggca aggttgctt aaaggagctt 150
ggctggtttg ggcccttgta gctgacagaa ggtggccagg gagaatgcag 200
cacactgctc ggagaatgaa ggcgcttctg ttgctggct tgcctggct 250
cagtcctgct aactacattg acaatgtggg caacctgcac ttccctgtatt 300
cagaactctg taaaggtgcc tcccactacg gcctgaccaa agataggaag 350
aggcgctcac aagatggctg tccagacggc tggcgagcc tcacagccac 400
ggctccctcc ccagagggtt ctgcagctgc caccatctcc ttaatgacag 450
acgagcctgg cctagacaac cctgcctacg tgcctcgac agaggacggg 500

cagccagcaa tcagcccagt ggactctggc cgagcaacc gaactagggc 550
acggccctt gagagatcca ctattagaag cagatcattt aaaaaataa 600
atcgagctt gagtttctt cgaaggacaa agagcggag tgcagttgcc 650
aaccatgccg accagggcag gaaaaattct gaaaacacca ctgcccctga 700
agtcttcca aggttgtacc acctgattcc agatggtaa attaccagca 750
tcaagatcaa tcgagtagat cccagtgaaa gcctcttat taggctggtg 800
ggaggttagcg aaaccccact ggtccatatac attatccaaac acatttatcg 850
tgcgtgggtg atcgccagag acggccggct actgccagga gacatcattc 900
taaaggtcaa cggatggac atcagcaatg tccctcacaa ctacgctgtg 950
cgtctcctgc ggcagccctg ccaggtgctg tggctgactg tgatgcgtga 1000
acagaagttc cgcagcagga acaatggaca ggccccggat gcctacagac 1050
cccgagatga cagtttcat gtgattctca acaaaagtag ccccgaggag 1100
cagttggaa taaaactggt ggcaggtg gatgagcctg ggttttcat 1150
cttcaatgtg ctggatggcg gtgtggcata tcgacatggt cagttgagg 1200
agaatgaccg tgtgttagcc atcaatggac atgatctcg atatggcagc 1250
ccagaaagtg cggctcatct gattcaggcc agtcaaagac gtgttcacct 1300
cgtcgtgtcc cgccaggttc ggcagcggag ccctgacatc ttccaggaag 1350
ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1400
aacactccca agccctcca tcctacaatt acttgtcatg agaaggtggt 1450
aaatatccaa aaagaccccg gtgaatctct cggcatgacc gtcgcagggg 1500
gagcatcaca tagagaatgg gatttgccta tctatgtcat cagtgttgag 1550
cccgaggag tcataagcag agatggaaga ataaaaacag gtgacatttt 1600
gttgaatgtg gatgggtcg aactgacaga ggtcagccgg agtgaggcag 1650
tggcattatt gaaaagaaca tcatcctcga tagtactcaa agctttggaa 1700
gtcaaagagt atgagccca ggaagactgc agcagcccag cagccctgga 1750
ctccaaccac aacatggccc cacccagtga ctggccccca tcctgggtca 1800
tgtggctgga attaccacgg tgcttgtata actgtaaaga tattgtatta 1850
cgaagaaaca cagctggaag tctggcttc tgcattgtag gaggttatga 1900
agaatacaat ggaacaaac ctttttcat caaatccatt gttgaaggaa 1950

caccagcata caatgatgga agaatttagat gtgggtatat tcttcttgct 2000
gtcaatggta gaagtacatc aggaatgata catgtttgct tggcaagact 2050
gctgaaagaa cttaaaggaa gaattactct aactattgtt tcttggcctg 2100
gcacttttt atagaatcaa tgatgggtca gagaaaaaca gaaaaatcac 2150
aaataggcta agaaggtaa acactatatt tatcttgtca gtttttatat 2200
ttaaagaaaag aatacattgt aaaaatgtca ggaaaagtat gatcatctaa 2250
tcaaagccag ttacacctca gaaaatatga ttccaaaaaaaa attaaaacta 2300
ctagttttt ttcagtgtgg aggatttctc attactctac aacattgttt 2350
atatttttc tattcaataa aaagccctaa aacaactaaa atgattgatt 2400
tgtatacccc actgaattca agctgattta aatttaaat ttggtatatg 2450
ctgaagtctg ccaagggtac attatggcca ttttaattt acagctaaaa 2500
tatttttaa aatgcattgc tgagaaacgt tgcttcatc aaacaagaat 2550
aaatattttt cagaagttaa a 2571

<210> 219

<211> 632

<212> PRT

<213> Homo sapiens

<400> 219

Met	Lys	Ala	Leu	Leu	Leu	Leu	Val	Leu	Pro	Trp	Leu	Ser	Pro	Ala
1							5			10				15

Asn	Tyr	Ile	Asp	Asn	Val	Gly	Asn	Leu	His	Phe	Leu	Tyr	Ser	Glu
					20				25					30

Leu	Cys	Lys	Gly	Ala	Ser	His	Tyr	Gly	Leu	Thr	Lys	Asp	Arg	Lys
									35	40				45

Arg	Arg	Ser	Gln	Asp	Gly	Cys	Pro	Asp	Gly	Cys	Ala	Ser	Leu	Thr
							50		55					60

Ala	Thr	Ala	Pro	Ser	Pro	Glu	Val	Ser	Ala	Ala	Ala	Thr	Ile	Ser
								65				70		75

Leu	Met	Thr	Asp	Glu	Pro	Gly	Leu	Asp	Asn	Pro	Ala	Tyr	Val	Ser
								80		85				90

Ser	Ala	Glu	Asp	Gly	Gln	Pro	Ala	Ile	Ser	Pro	Val	Asp	Ser	Gly
								95		100				105

Arg	Ser	Asn	Arg	Thr	Arg	Ala	Arg	Pro	Phe	Glu	Arg	Ser	Thr	Ile
								110		115				120

Arg	Ser	Arg	Ser	Phe	Lys	Lys	Ile	Asn	Arg	Ala	Leu	Ser	Val	Leu
								125		130				135

Arg Arg Thr Lys Ser Gly Ser Ala Val Ala Asn His Ala Asp Gln
 140 145 150
 Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala Pro Glu Val Phe Pro
 155 160 165
 Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile Thr Ser Ile Lys
 170 175 180
 Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile Arg Leu Val
 185 190 195
 Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln His Ile
 200 205 210
 Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro Gly
 215 220 225
 Asp Ile Ile Leu Lys Val Asn Gly Met Asp Ile Ser Asn Val Pro
 230 235 240
 His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu
 245 250 255
 Trp Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn
 260 265 270
 Gly Gln Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His
 275 280 285
 Val Ile Leu Asn Lys Ser Ser Pro Glu Glu Gln Leu Gly Ile Lys
 290 295 300
 Leu Val Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val
 305 310 315
 Leu Asp Gly Gly Val Ala Tyr Arg His Gly Gln Leu Glu Glu Asn
 320 325 330
 Asp Arg Val Leu Ala Ile Asn Gly His Asp Leu Arg Tyr Gly Ser
 335 340 345
 Pro Glu Ser Ala Ala His Leu Ile Gln Ala Ser Glu Arg Arg Val
 350 355 360
 His Leu Val Val Ser Arg Gln Val Arg Gln Arg Ser Pro Asp Ile
 365 370 375
 Phe Gln Glu Ala Gly Trp Asn Ser Asn Gly Ser Trp Ser Pro Gly
 380 385 390
 Pro Gly Glu Arg Ser Asn Thr Pro Lys Pro Leu His Pro Thr Ile
 395 400 405
 Thr Cys His Glu Lys Val Val Asn Ile Gln Lys Asp Pro Gly Glu
 410 415 420
 Ser Leu Gly Met Thr Val Ala Gly Gly Ala Ser His Arg Glu Trp

425	430	435
Asp Leu Pro Ile Tyr Val Ile Ser Val Glu Pro Gly Gly Val Ile		
440	445	450
Ser Arg Asp Gly Arg Ile Lys Thr Gly Asp Ile Leu Leu Asn Val		
455	460	465
Asp Gly Val Glu Leu Thr Glu Val Ser Arg Ser Glu Ala Val Ala		
470	475	480
Leu Leu Lys Arg Thr Ser Ser Ile Val Leu Lys Ala Leu Glu		
485	490	495
Val Lys Glu Tyr Glu Pro Gln Glu Asp Cys Ser Ser Pro Ala Ala		
500	505	510
Leu Asp Ser Asn His Asn Met Ala Pro Pro Ser Asp Trp Ser Pro		
515	520	525
Ser Trp Val Met Trp Leu Glu Leu Pro Arg Cys Leu Tyr Asn Cys		
530	535	540
Lys Asp Ile Val Leu Arg Arg Asn Thr Ala Gly Ser Leu Gly Phe		
545	550	555
Cys Ile Val Gly Gly Tyr Glu Glu Tyr Asn Gly Asn Lys Pro Phe		
560	565	570
Phe Ile Lys Ser Ile Val Glu Gly Thr Pro Ala Tyr Asn Asp Gly		
575	580	585
Arg Ile Arg Cys Gly Asp Ile Leu Leu Ala Val Asn Gly Arg Ser		
590	595	600
Thr Ser Gly Met Ile His Ala Cys Leu Ala Arg Leu Leu Lys Glu		
605	610	615
Leu Lys Gly Arg Ile Thr Leu Thr Ile Val Ser Trp Pro Gly Thr		
620	625	630
Phe Leu		

<210> 220
 <211> 773
 <212> DNA
 <213> Homo sapiens

<400> 220
 ccaaagtat catttggaaaa agagatatacc acatcttcaa gcccatataaa 50
 aggatagaag ctgcacaggg cagctttact tactccagca ctttcctctc 100
 ccaggcaaat ggtgctgacc atctttggga tacaatctca tggatacgag 150
 gtttttaaca tcatcagccc aagcaacaat ggtggcaatg ttcaggagac 200

agtgacaatt gataatgaaa aaaataccgc catcgtaac atccatgcag 250
gatcatgctc ttctaccaca attttgact ataaacatgg ctacattgca 300
tccagggtgc tctccgaag agcctgctt atcctgaaga tggaccatca 350
gaacatccct cctctgaaca atctccaatg gtacatctat gagaaacagg 400
ctctggacaa catgttctcc aacaaataca cctgggtcaa gtacaaccct 450
ctggagtctc tgatcaaaga cgtggattgg ttcctgcttg ggtcacccat 500
tgagaaactc tgcaaacata tcccttgta taaggggaa gtggttgaaa 550
acacacataa tgtcggtgct ggaggctgtg caaaggctgg gtcctggc 600
atcttggaa tttcaatctg tgcagacatt catgtttagg atgattagcc 650
ctcttggaa atctttcaa agaaatacat cttggttta cactcaaaag 700
tcaaattaaa ttcttccca atgccccaac taattttag attcagtcag 750
aaaatataaa tgctgtattt ata 773

<210> 221
<211> 184
<212> PRT
<213> Homo sapiens

<400> 221
Met Lys Ile Leu Val Ala Phe Leu Val Val Leu Thr Ile Phe Gly
1 5 10 15
Ile Gln Ser His Gly Tyr Glu Val Phe Asn Ile Ile Ser Pro Ser
20 25 30
Asn Asn Gly Gly Asn Val Gln Glu Thr Val Thr Ile Asp Asn Glu
35 40 45
Lys Asn Thr Ala Ile Val Asn Ile His Ala Gly Ser Cys Ser Ser
50 55 60
Thr Thr Ile Phe Asp Tyr Lys His Gly Tyr Ile Ala Ser Arg Val
65 70 75
Leu Ser Arg Arg Ala Cys Phe Ile Leu Lys Met Asp His Gln Asn
80 85 90
Ile Pro Pro Leu Asn Asn Leu Gln Trp Tyr Ile Tyr Glu Lys Gln
95 100 105
Ala Leu Asp Asn Met Phe Ser Asn Lys Tyr Thr Trp Val Lys Tyr
110 115 120
Asn Pro Leu Glu Ser Leu Ile Lys Asp Val Asp Trp Phe Leu Leu
125 130 135
Gly Ser Pro Ile Glu Lys Leu Cys Lys His Ile Pro Leu Tyr Lys

140 145 150
Gly Glu Val Val Glu Asn Thr His Asn Val Gly Ala Gly Gly Cys
155 160 165
Ala Lys Ala Gly Leu Leu Gly Ile Leu Gly Ile Ser Ile Cys Ala
170 175 180
Asp Ile His Val

<210> 222
<211> 992
<212> DNA
<213> Homo sapiens

<400> 222
ggcacgagcc aggaactagg agtttctcac tgcccgagca gaggccctac 50
acccaccgag gcatggggct ccctgggctg ttctgcttgg ccgtgctggc 100
tgccagcagc ttctccaagg cacgggagga agaaattacc cctgtggtct 150
ccattgccta caaagtccctg gaagtttcc ccaaaggccg ctgggtgctc 200
ataacctgct gtgcacccca gccaccacccg cccatcacct attccctctg 250
tggAACCAAG aacatcaagg tggccaagaa ggtggtaag acccacgagc 300
cggcctcctt caacctcaac gtcacactca agtccagtcc agacctgctc 350
acctacttct gccgggcgtc ctccacactca ggtgccatg tggacagtgc 400
caggctacag atgcactggg agctgtggc caagccagtg tctgagctgc 450
gggccaactt cactctgcag gacagagggg caggccccag ggtggagatg 500
atctgccagg cgtcctcggg cagcccaccc atcaccaaca gcctgatcgg 550
gaaggatggg caggtccacc tgcagcagag accatgccac aggcagcctg 600
ccaacttctc cttcctgccc agccagacat cgactggtt ctgggtgccag 650
gctgcaaaca acgccaatgt ccagcacagc gccctcacag tgggcccccc 700
agggtggtgcac cagaagatgg aggactggca gggccctg gagagcccc 750
tccttgcctt gccgctctac aggagcaccc gccgtctgag tgaagaggag 800
tttggggggt tcaggatagg gaatggggag gtcagaggac gcaaagcagc 850
agccatgttag aatgaaccgt ccagagagcc aagcacggca gaggactgca 900
ggccatcagc gtgcactgtt cgtatggaa gttcatgcaa aatgagtg 950
tttagctgc tcttgccaca aaaaaaaaaa aaaaaaaaaa aa 992

<210> 223

<211> 265
<212> PRT
<213> Homo sapiens

<400> 223
Met Gly Leu Pro Gly Leu Phe Cys Leu Ala Val Leu Ala Ala Ser
1 5 10 15
Ser Phe Ser Lys Ala Arg Glu Glu Ile Thr Pro Val Val Ser
20 25 30
Ile Ala Tyr Lys Val Leu Glu Val Phe Pro Lys Gly Arg Trp Val
35 40 45
Leu Ile Thr Cys Cys Ala Pro Gln Pro Pro Pro Ile Thr Tyr
50 55 60
Ser Leu Cys Gly Thr Lys Asn Ile Lys Val Ala Lys Lys Val Val
65 70 75
Lys Thr His Glu Pro Ala Ser Phe Asn Leu Asn Val Thr Leu Lys
80 85 90
Ser Ser Pro Asp Leu Leu Thr Tyr Phe Cys Arg Ala Ser Ser Thr
95 100 105
Ser Gly Ala His Val Asp Ser Ala Arg Leu Gln Met His Trp Glu
110 115 120
Leu Trp Ser Lys Pro Val Ser Glu Leu Arg Ala Asn Phe Thr Leu
125 130 135
Gln Asp Arg Gly Ala Gly Pro Arg Val Glu Met Ile Cys Gln Ala
140 145 150
Ser Ser Gly Ser Pro Pro Ile Thr Asn Ser Leu Ile Gly Lys Asp
155 160 165
Gly Gln Val His Leu Gln Gln Arg Pro Cys His Arg Gln Pro Ala
170 175 180
Asn Phe Ser Phe Leu Pro Ser Gln Thr Ser Asp Trp Phe Trp Cys
185 190 195
Gln Ala Ala Asn Asn Ala Asn Val Gln His Ser Ala Leu Thr Val
200 205 210
Val Pro Pro Gly Gly Asp Gln Lys Met Glu Asp Trp Gln Gly Pro
215 220 225
Leu Glu Ser Pro Ile Leu Ala Leu Pro Leu Tyr Arg Ser Thr Arg
230 235 240
Arg Leu Ser Glu Glu Phe Gly Gly Phe Arg Ile Gly Asn Gly
245 250 255
Glu Val Arg Gly Arg Lys Ala Ala Met
260 265

<210> 224
<211> 1297
<212> DNA
<213> Homo sapiens

<400> 224
ggtccttaat ggcagcagcc gccgctacca agatccttct gtgcctcccc 50
cttctgtcc tgctgtccgg ctggtcccg gctgggcgag ccgaccctca 100
ctctcttgc tatgacatca ccgtcatccc taagttcaga cctggaccac 150
ggtgtgtgc gttcaaggc caggtggatg aaaagacttt tcttcactat 200
gactgtggca acaagacagt cacacctgtc agtcccctgg ggaagaaact 250
aaatgtcaca acggcctgga aagcacagaa cccagtactg agagaggtgg 300
tggacatact tacagagcaa ctgcgtgaca ttcagctgga gaattacaca 350
cccaaggaac ccctcaccct gcaggcaagg atgtcttgc agcagaaagc 400
tgaaggacac agcagtggat cttggcagtt cagtttcgtat gggcagatct 450
tcctccttgc tgactcagag aagagaatgt ggacaacggc tcattcctgga 500
gccagaaaga tgaaagaaaa gtgggagaat gacaagggtt tggccatgtc 550
cttccattac ttctcaatgg gagactgtat aggatggctt gaggacttct 600
tgatggcat ggacagcacc ctggagccaa gtgcaggagc accactcgcc 650
atgtcctcag gcacaaccca actcagggcc acagccacca ccctcatcct 700
ttgctgcctc ctcatcatcc tcccctgctt catcctccct ggcatctgag 750
gagagtccct tagagtgaca ggttaaagct gataaaaaa ggctcctgtg 800
agcacggct tgatcaaact cgcccttctg tctggccagc tgcccacgac 850
ctacggtgta tgtccagtgg cctccagcag atcatgatga catcatggac 900
ccaatagctc attcaactgccc ttgattccctt ttgccaacaa ttttaccagc 950
agttataacct aacatattat gcaattttctt cttggtgcta cctgatggaa 1000
ttcctgcact taaagttctg gctgactaaa caagatataat cattttctt 1050
cttctctttt tgtttggaaa atcaagtact tctttgaatg atgatctctt 1100
tcttgcaaat gatattgtca gtaaaataat cacgttagac ttcagaccc 1150
tggggattct ttccgtgtcc tgaaagagaa tttttaattt atttaataag 1200
aaaaaattta tattaatgat tgtttcctt agtaatttat tgttctgtac 1250
tgatatttaa ataaagagtt ctatccca aaaaaaaaaa aaaaaaaaa 1297

<210> 225
<211> 246
<212> PRT
<213> Homo sapiens

<400> 225
Met Ala Ala Ala Ala Ala Thr Lys Ile Leu Leu Cys Leu Pro Leu
1 5 10 15

Leu Leu Leu Ser Gly Trp Ser Arg Ala Gly Arg Ala Asp Pro
20 25 30

His Ser Leu Cys Tyr Asp Ile Thr Val Ile Pro Lys Phe Arg Pro
35 40 45

Gly Pro Arg Trp Cys Ala Val Gln Gly Gln Val Asp Glu Lys Thr
50 55 60

Phe Leu His Tyr Asp Cys Gly Asn Lys Thr Val Thr Pro Val Ser
65 70 75

Pro Leu Gly Lys Lys Leu Asn Val Thr Thr Ala Trp Lys Ala Gln
80 85 90

Asn Pro Val Leu Arg Glu Val Val Asp Ile Leu Thr Glu Gln Leu
95 100 105

Arg Asp Ile Gln Leu Glu Asn Tyr Thr Pro Lys Glu Pro Leu Thr
110 115 120

Leu Gln Ala Arg Met Ser Cys Glu Gln Lys Ala Glu Gly His Ser
125 130 135

Ser Gly Ser Trp Gln Phe Ser Phe Asp Gly Gln Ile Phe Leu Leu
140 145 150

Phe Asp Ser Glu Lys Arg Met Trp Thr Thr Val His Pro Gly Ala
155 160 165

Arg Lys Met Lys Glu Lys Trp Glu Asn Asp Lys Val Val Ala Met
170 175 180

Ser Phe His Tyr Phe Ser Met Gly Asp Cys Ile Gly Trp Leu Glu
185 190 195

Asp Phe Leu Met Gly Met Asp Ser Thr Leu Glu Pro Ser Ala Gly
200 205 210

Ala Pro Leu Ala Met Ser Ser Gly Thr Thr Gln Leu Arg Ala Thr
215 220 225

Ala Thr Thr Leu Ile Leu Cys Cys Leu Leu Ile Ile Leu Pro Cys
230 235 240

Phe Ile Leu Pro Gly Ile
245

<210> 226

<211> 735
<212> DNA
<213> Homo sapiens

<400> 226
gggaaagcca tttcgaaaac ccatctatac aaactatata ttttcatttc 50
tgctgcttagc tgccctgggc ctcacaattt tcattctgtt ttctgacttt 100
caagttatat accgttggaat ggagttgatc ccaaccataa catcgtggag 150
ggtttaatt ttgggtggtag ccctcaccca attctggtgt ggcttcttt 200
gcagaggatt ccaccccaa aatcatgaac tctggctgtt gatcaaaaaga 250
gaatttggat tctactctaa aagtcaatat aggacttggc aaaagaagct 300
agcagaagac tcaacctggc ctcccataaa caggacagat tattcaggtg 350
atggcaaaaa tggattctac atcaacggag gctatgaaag ccatgaacag 400
attccaaaaaa gaaaactcaa attgggaggc caacccacag aacagcattt 450
ctgggccagg ctgtaatcag aattgtcgac gtacatgctc aacagcattt 500
ctttttccc caaaattaac acattgtgga gaagtgtatga tactctcccc 550
ttacctttcc tctctccatt caagcattca aagtatattt tcaatgaatt 600
aacaccttgc gcaagggacc ttagataggc ttattctgac tgtatgcttt 650
accaatgaga gaaaaaaaaatg catttcctgt atcatccttt tcaataaact 700
gtattcattt tgaaaaaaaaaaaaaaaaaaaa 735

<210> 227
<211> 115
<212> PRT
<213> Homo sapiens

<400> 227
Met Glu Leu Ile Pro Thr Ile Thr Ser Trp Arg Val Leu Ile Leu
1 5 10 15
Val Val Ala Leu Thr Gln Phe Trp Cys Gly Phe Leu Cys Arg Gly
20 25 30
Phe His Leu Gln Asn His Glu Leu Trp Leu Leu Ile Lys Arg Glu
35 40 45
Phe Gly Phe Tyr Ser Lys Ser Gln Tyr Arg Thr Trp Gln Lys Lys
50 55 60
Leu Ala Glu Asp Ser Thr Trp Pro Pro Ile Asn Arg Thr Asp Tyr
65 70 75
Ser Gly Asp Gly Lys Asn Gly Phe Tyr Ile Asn Gly Gly Tyr Glu
80 85 90

Ser His Glu Gln Ile Pro Lys Arg Lys Leu Lys Leu Gly Gly Gln
95 100 105

Pro Thr Glu Gln His Phe Trp Ala Arg Leu
110 115

<210> 228

<211> 2185

<212> DNA

<213> Homo sapiens

<400> 228

gttctccttt ccgagccaaa atcccaggcg atggtaatt atgaacgtgc 50

cacaccatga agctcttgtg gcaggtaact gtgcaccacc acacctggaa 100

tgcacatcctg ctccccgtcg tctacctcac ggcaaggta tggattctgt 150

gtgcagccat cgctgctgcc gcctcagccg ggccccagaa ctgcacccctcc 200

gtttgctcgt gcagtaacca gttcagcaag gtgggtgcg cgcgcgggg 250

cctctccgag gtcccgagg gtattccctc gaacacccgg tacctaacc 300

tcatggagaa caacatccag atgatccagg ccgacacccctc 350

caccacctgg aggtcctgca gttggcagg aactccatcc ggcagattga 400

ggtgggggcc ttcaacggcc tggccagcct caacaccctg gagctgtcg 450

acaactggct gacagtcatc cctagcgggg cctttgaata cctgtccaag 500

ctgcgggagc tctggctcg caacaacccc atcgaaagca tcccccttta 550

cgccttcaac cgggtgcct ccctcatgcg cctggacttg ggggagctca 600

agaagctgga gtatatctct gagggagctt ttgaggggct gttcaaccc 650

aagtatctga acttggcat gtcaacatt aaagacatgc ccaatctcac 700

ccccctggtg gggctggagg agctggagat gtcaggaaac cacttcctg 750

agatcaggcc tggctccttc catggcctga gctccctcaa gaagctctgg 800

gtcatgaact cacaggtcag cctgatttag cgaaatgctt ttgacggct 850

ggcttcactt gtggactca acttggccca caataacccctc tcttctttgc 900

cccatgacct cttaaccccg ctgaggtacc tggggagtt gcatctacac 950

cacaaccctt ggaactgtga ttgtgacatt ctgtggctag cctggggct 1000

tcgagagtat atacccacca attccacccg ctgtggccgc tgtcatgctc 1050

ccatgcacat gcgaggccgc tacctcgatgg aggtggacca ggcctccttc 1100

cagtgctctg ccccttcat catggacca cctcgagacc tcaacatttc 1150

tgagggtcgg atggcagaac ttaagtgtcg gactccccct atgtcctccg 1200
tgaagtggtt gctgccaaat gggacagtgc tcagccacgc ctcccgcac 1250
ccaaggatct ctgtcctcaa cgacggcacc ttgaacttt cccacgtgct 1300
gcttcagac actgggtgt acacatgcat ggtgaccaat gttgcaggca 1350
actccaacgc ctccgcctac ctcaatgtga gcacggctga gcttaacacc 1400
tccaactaca gcttcttac cacagtaaca gtggagacca cggagatctc 1450
gcctgaggac acaacgcgaa agtacaagcc tgttcctacc acgtccactg 1500
gttaccagcc ggcataatacc acctctacca cggtgctcat tcagactacc 1550
cgtgtgccca agcaggtggc agtaccccg acagacacca ctgacaagat 1600
gcagaccagc ctggatgaag tcatgaagac caccaagatc atcattggct 1650
gcttgtggc agtactctg ctagctgccg ccatgttgat tgtcttctat 1700
aaacttcgta agcggcacca gcagcggagt acagtcacag cggccggac 1750
tgttgagata atccaggtgg acgaagacat cccagcagca acatccgcag 1800
cagcaacagc agctccgtcc ggttatcag gtgagggggc agtagtgctg 1850
cccacaattc atgaccatat taactacaac acctacaaac cagcacatgg 1900
ggcccactgg acagaaaaca gcctgggaa ctctctgcac cccacagtca 1950
ccactatctc tgaaccttat ataattcaga cccataccaa ggacaaggta 2000
cagggaaactc aaatatgact cccctcccc aaaaaactta taaaatgcaa 2050
tagaatgcac acaaagacag caactttgt acagagtggg gagagacttt 2100
ttcttgata tgcttatata ttaagtctat gggctggta aaaaaaacag 2150
attatattaa aatttaaaga caaaaagtca aaaca 2185

<210> 229
<211> 653
<212> PRT
<213> Homo sapiens

<400> 229
Met Lys Leu Leu Trp Gln Val Thr Val His His His Thr Trp Asn
1 5 10 15
Ala Ile Leu Leu Pro Phe Val Tyr Leu Thr Ala Gln Val Trp Ile
20 25 30
Leu Cys Ala Ala Ile Ala Ala Ala Ser Ala Gly Pro Gln Asn
35 40 45
Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Val

50	55	60
Cys Thr Arg Arg Gly Leu Ser Glu Val Pro Gln Gly Ile Pro Ser		
65	70	75
Asn Thr Arg Tyr Leu Asn Leu Met Glu Asn Asn Ile Gln Met Ile		
80	85	90
Gln Ala Asp Thr Phe Arg His Leu His His Leu Glu Val Leu Gln		
95	100	105
Leu Gly Arg Asn Ser Ile Arg Gln Ile Glu Val Gly Ala Phe Asn		
110	115	120
Gly Leu Ala Ser Leu Asn Thr Leu Glu Leu Phe Asp Asn Trp Leu		
125	130	135
Thr Val Ile Pro Ser Gly Ala Phe Glu Tyr Leu Ser Lys Leu Arg		
140	145	150
Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser Tyr		
155	160	165
Ala Phe Asn Arg Val Pro Ser Leu Met Arg Leu Asp Leu Gly Glu		
170	175	180
Leu Lys Lys Leu Glu Tyr Ile Ser Glu Gly Ala Phe Glu Gly Leu		
185	190	195
Phe Asn Leu Lys Tyr Leu Asn Leu Gly Met Cys Asn Ile Lys Asp		
200	205	210
Met Pro Asn Leu Thr Pro Leu Val Gly Leu Glu Glu Leu Glu Met		
215	220	225
Ser Gly Asn His Phe Pro Glu Ile Arg Pro Gly Ser Phe His Gly		
230	235	240
Leu Ser Ser Leu Lys Lys Leu Trp Val Met Asn Ser Gln Val Ser		
245	250	255
Leu Ile Glu Arg Asn Ala Phe Asp Gly Leu Ala Ser Leu Val Glu		
260	265	270
Leu Asn Leu Ala His Asn Asn Leu Ser Ser Leu Pro His Asp Leu		
275	280	285
Phe Thr Pro Leu Arg Tyr Leu Val Glu Leu His Leu His His Asn		
290	295	300
Pro Trp Asn Cys Asp Cys Asp Ile Leu Trp Leu Ala Trp Trp Leu		
305	310	315
Arg Glu Tyr Ile Pro Thr Asn Ser Thr Cys Cys Gly Arg Cys His		
320	325	330
Ala Pro Met His Met Arg Gly Arg Tyr Leu Val Glu Val Asp Gln		
335	340	345

Ala Ser Phe Gln Cys Ser Ala Pro Phe Ile Met Asp Ala Pro Arg
 350 355 360

 Asp Leu Asn Ile Ser Glu Gly Arg Met Ala Glu Leu Lys Cys Arg
 365 370 375

 Thr Pro Pro Met Ser Ser Val Lys Trp Leu Leu Pro Asn Gly Thr
 380 385 390

 Val Leu Ser His Ala Ser Arg His Pro Arg Ile Ser Val Leu Asn
 395 400 405

 Asp Gly Thr Leu Asn Phe Ser His Val Leu Leu Ser Asp Thr Gly
 410 415 420

 Val Tyr Thr Cys Met Val Thr Asn Val Ala Gly Asn Ser Asn Ala
 425 430 435

 Ser Ala Tyr Leu Asn Val Ser Thr Ala Glu Leu Asn Thr Ser Asn
 440 445 450

 Tyr Ser Phe Phe Thr Thr Val Thr Val Glu Thr Thr Glu Ile Ser
 455 460 465

 Pro Glu Asp Thr Thr Arg Lys Tyr Lys Pro Val Pro Thr Thr Ser
 470 475 480

 Thr Gly Tyr Gln Pro Ala Tyr Thr Thr Ser Thr Thr Val Leu Ile
 485 490 495

 Gln Thr Thr Arg Val Pro Lys Gln Val Ala Val Pro Ala Thr Asp
 500 505 510

 Thr Thr Asp Lys Met Gln Thr Ser Leu Asp Glu Val Met Lys Thr
 515 520 525

 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Val Thr Leu Leu Ala
 530 535 540

 Ala Ala Met Leu Ile Val Phe Tyr Lys Leu Arg Lys Arg His Gln
 545 550 555

 Gln Arg Ser Thr Val Thr Ala Ala Arg Thr Val Glu Ile Ile Gln
 560 565 570

 Val Asp Glu Asp Ile Pro Ala Ala Thr Ser Ala Ala Ala Thr Ala
 575 580 585

 Ala Pro Ser Gly Val Ser Gly Glu Gly Ala Val Val Leu Pro Thr
 590 595 600

 Ile His Asp His Ile Asn Tyr Asn Thr Tyr Lys Pro Ala His Gly
 605 610 615

 Ala His Trp Thr Glu Asn Ser Leu Gly Asn Ser Leu His Pro Thr
 620 625 630

 Val Thr Thr Ile Ser Glu Pro Tyr Ile Ile Gln Thr His Thr Lys

635

640

645

Asp Lys Val Gln Glu Thr Gln Ile
650

<210> 230

<211> 2846

<212> DNA

<213> Homo sapiens

<400> 230

cgctcgggca ccagccgcgg caaggatgga gctgggttgc tggacgcagt 50

tggggctcac ttttcttcag ctccttctca tctcgtcctt gccaaagagag 100

tacacagtca ttaatgaagc ctgccctgga gcagagtgga atatcatgtg 150

tcgggagtgc tgtgaatatg atcagattga gtgcgtctgc cccggaaaga 200

gggaagtcgt gggttataacc atcccttgct gcaggaatga ggagaatgag 250

tgtgactcct gcctgatcca cccaggttgt accatcttg aaaactgcaa 300

gagctgccga aatggctcat gggggggtagt cttggatgac ttctatgtga 350

aggggttcta ctgtgcagag tgccgagcag gctggtaggg aggagactgc 400

atgcgatgtg gccaggttct gcgagcccc aagggtcaga ttttgttgg 450

aagctatccc ctaaatgctc actgtgaatg gaccattcat gctaaacctg 500

ggtttgcata ccaactaaga tttgtcatgt tgagtctgga gtttgactac 550

atgtgccagt atgactatgt tgagggttgt gatggagaca accgcgatgg 600

ccagatcatc aagcgtgtct gtggcaacga gcggccagct cctatccaga 650

gcataggatc ctcactccac gtcctttcc actccgatgg ctccaagaat 700

tttgacgggtt tccatgccat ttatgaggag atcacagcat gctcctcatac 750

cccttgggtt catgacggca cgtgcgtcct tgacaaggct ggatcttaca 800

agtgtgcctg cttggcaggc tatactgggc agcgtgtga aaatctcctt 850

gaagaaaagaa actgctcaga ccctggggc ccagtcaatg ggtaccagaa 900

aataacaggg ggccctgggc ttatcaacgg acgccatgct aaaattggca 950

ccgtgggtgc ttttttttgt aacaactcct atgttcttag tggcaatgag 1000

aaaagaactt gccagcagaa tggagagtgg tcagggaaac agcccatctg 1050

cataaaagcc tgccgagaac caaagattc agacctggtg agaaggagag 1100

ttcttccgat gcaggttcag tcaagggaga caccattaca ccagctatac 1150

tcagcggcct tcagcaagca gaaactgcag agtgccccta ccaagaagcc 1200

agcccttccc tttggagatc tgcccatggg ataccaacat ctgcataccc 1250
agctccagta tgagtgcata tcacccttct accgccgcct gggcagcagc 1300
aggaggacat gtctgaggac tggaaagtgg agtgggcggg caccatcctg 1350
catccctatc tgccccaaaa ttgagaacat cactgctcca aagacccaag 1400
ggttgcgtcg gccgtggcag gcagccatct acaggaggac cagcgggtg 1450
catgacggca gcctacacaa gggagcgtgg ttcctagtct gcagcgggtgc 1500
cctggtaat gagcgcactg tgggtgtggc tgccactgt gttactgacc 1550
tggggaaaggc caccatgatc aagacagcag acctgaaagt tgaaaaaaa 1600
aaattctacc gggatgatga ccggatgag aagaccatcc agagcctaca 1650
gatttctgct atcattctgc atcccaacta tgacccatc ctgcttgatg 1700
ctgacatcgc catcctgaag ctcctagaca aggccgtat cagcacccga 1750
gtccagccca tctgcctcgc tgccagtcgg gatctcagca cttcccttcca 1800
ggagtcccac atcactgtgg ctggctggaa tgtcctggca gacgtgagga 1850
gccctggctt caagaacgac acactgcgt ctgggtggc cagtgtggc 1900
gactcgctgc tgtgtgagga gcagcatgag gaccatggca tcccagttag 1950
tgtcactgat aacatgttct gtgccagctg ggaacccact gccccttctg 2000
atatctgcac tgcagagaca ggaggcatcg cggctgtgtc cttcccgaaa 2050
cgagcatctc ctgagccacg ctggcatctg atggactgg tcagctggag 2100
ctatgataaa acatgcagcc acaggctctc cactgccttc accaagggtgc 2150
tgcctttaa agactggatt gaaagaaaata tgaaatgaac catgctcatg 2200
caactccttga gaagtgttcc tgttatatccg tctgtacgtg tgtcattgc 2250
tgaagcagtg tggcctgaa gtgtgatttg gcctgtgaac ttggctgtgc 2300
cagggcttct gacttcaggg acaaaaactca gtgaagggtg agtagacctc 2350
cattgctggc aggctgatgc cgccgtccact actaggacag ccaattggaa 2400
gatgccaggg cttgcaagaa gtaagttct tcaaagaaga ccatatacaa 2450
aacctctcca ctccactgac ctgggtggct tcccaactt tcagttataac 2500
gaatgccatc agcttgacca gggaaagatct gggcttcattt aggccccctt 2550
tgaggctctc aagttctaga gagctgcctg tggacagcc cagggcagca 2600
gagctggat gtggtgcatg ctttgcata catggccaca gtacagtctg 2650

gtcctttcc ttccccatct cttgtacaca ttttaataaa ataagggttg 2700
gcttctgaac tacaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2750
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2800
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaa 2846

<210> 231
<211> 720
<212> PRT
<213> Homo sapiens

<400> 231
Met Glu Leu Gly Cys Trp Thr Gln Leu Gly Leu Thr Phe Leu Gln
1 5 10 15
Leu Leu Leu Ile Ser Ser Leu Pro Arg Glu Tyr Thr Val Ile Asn
20 25 30
Glu Ala Cys Pro Gly Ala Glu Trp Asn Ile Met Cys Arg Glu Cys
35 40 45
Cys Glu Tyr Asp Gln Ile Glu Cys Val Cys Pro Gly Lys Arg Glu
50 55 60
Val Val Gly Tyr Thr Ile Pro Cys Cys Arg Asn Glu Glu Asn Glu
65 70 75
Cys Asp Ser Cys Leu Ile His Pro Gly Cys Thr Ile Phe Glu Asn
80 85 90
Cys Lys Ser Cys Arg Asn Gly Ser Trp Gly Gly Thr Leu Asp Asp
95 100 105
Phe Tyr Val Lys Gly Phe Tyr Cys Ala Glu Cys Arg Ala Gly Trp
110 115 120
Tyr Gly Gly Asp Cys Met Arg Cys Gly Gln Val Leu Arg Ala Pro
125 130 135
Lys Gly Gln Ile Leu Leu Glu Ser Tyr Pro Leu Asn Ala His Cys
140 145 150
Glu Trp Thr Ile His Ala Lys Pro Gly Phe Val Ile Gln Leu Arg
155 160 165
Phe Val Met Leu Ser Leu Glu Phe Asp Tyr Met Cys Gln Tyr Asp
170 175 180
Tyr Val Glu Val Arg Asp Gly Asp Asn Arg Asp Gly Gln Ile Ile
185 190 195
Lys Arg Val Cys Gly Asn Glu Arg Pro Ala Pro Ile Gln Ser Ile
200 205 210
Gly Ser Ser Leu His Val Leu Phe His Ser Asp Gly Ser Lys Asn
215 220 225

Phe Asp Gly Phe His Ala Ile Tyr Glu Glu Ile Thr Ala Cys Ser
 230 235 240
 Ser Ser Pro Cys Phe His Asp Gly Thr Cys Val Leu Asp Lys Ala
 245 250 255
 Gly Ser Tyr Lys Cys Ala Cys Leu Ala Gly Tyr Thr Gly Gln Arg
 260 265 270
 Cys Glu Asn Leu Leu Glu Glu Arg Asn Cys Ser Asp Pro Gly Gly
 275 280 285
 Pro Val Asn Gly Tyr Gln Lys Ile Thr Gly Gly Pro Gly Leu Ile
 290 295 300
 Asn Gly Arg His Ala Lys Ile Gly Thr Val Val Ser Phe Phe Cys
 305 310 315
 Asn Asn Ser Tyr Val Leu Ser Gly Asn Glu Lys Arg Thr Cys Gln
 320 325 330
 Gln Asn Gly Glu Trp Ser Gly Lys Gln Pro Ile Cys Ile Lys Ala
 335 340 345
 Cys Arg Glu Pro Lys Ile Ser Asp Leu Val Arg Arg Arg Val Leu
 350 355 360
 Pro Met Gln Val Gln Ser Arg Glu Thr Pro Leu His Gln Leu Tyr
 365 370 375
 Ser Ala Ala Phe Ser Lys Gln Lys Leu Gln Ser Ala Pro Thr Lys
 380 385 390
 Lys Pro Ala Leu Pro Phe Gly Asp Leu Pro Met Gly Tyr Gln His
 395 400 405
 Leu His Thr Gln Leu Gln Tyr Glu Cys Ile Ser Pro Phe Tyr Arg
 410 415 420
 Arg Leu Gly Ser Ser Arg Arg Thr Cys Leu Arg Thr Gly Lys Trp
 425 430 435
 Ser Gly Arg Ala Pro Ser Cys Ile Pro Ile Cys Gly Lys Ile Glu
 440 445 450
 Asn Ile Thr Ala Pro Lys Thr Gln Gly Leu Arg Trp Pro Trp Gln
 455 460 465
 Ala Ala Ile Tyr Arg Arg Thr Ser Gly Val His Asp Gly Ser Leu
 470 475 480
 His Lys Gly Ala Trp Phe Leu Val Cys Ser Gly Ala Leu Val Asn
 485 490 495
 Glu Arg Thr Val Val Val Ala Ala His Cys Val Thr Asp Leu Gly
 500 505 510
 Lys Val Thr Met Ile Lys Thr Ala Asp Leu Lys Val Val Leu Gly

515	520	525
Lys Phe Tyr Arg Asp Asp Asp Arg Asp Glu Lys Thr Ile Gln Ser		
530	535	540
Leu Gln Ile Ser Ala Ile Ile Leu His Pro Asn Tyr Asp Pro Ile		
545	550	555
Leu Leu Asp Ala Asp Ile Ala Ile Leu Lys Leu Leu Asp Lys Ala		
560	565	570
Arg Ile Ser Thr Arg Val Gln Pro Ile Cys Leu Ala Ala Ser Arg		
575	580	585
Asp Leu Ser Thr Ser Phe Gln Glu Ser His Ile Thr Val Ala Gly		
590	595	600
Trp Asn Val Leu Ala Asp Val Arg Ser Pro Gly Phe Lys Asn Asp		
605	610	615
Thr Leu Arg Ser Gly Val Val Ser Val Val Asp Ser Leu Leu Cys		
620	625	630
Glu Glu Gln His Glu Asp His Gly Ile Pro Val Ser Val Thr Asp		
635	640	645
Asn Met Phe Cys Ala Ser Trp Glu Pro Thr Ala Pro Ser Asp Ile		
650	655	660
Cys Thr Ala Glu Thr Gly Gly Ile Ala Ala Val Ser Phe Pro Gly		
665	670	675
Arg Ala Ser Pro Glu Pro Arg Trp His Leu Met Gly Leu Val Ser		
680	685	690
Trp Ser Tyr Asp Lys Thr Cys Ser His Arg Leu Ser Thr Ala Phe		
695	700	705
Thr Lys Val Leu Pro Phe Lys Asp Trp Ile Glu Arg Asn Met Lys		
710	715	720

<210> 232

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 232

aggttcgtga tggagacaac cgcg 24

<210> 233

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 233
tgtcaaggac gcactgccgt catg 24

<210> 234
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 234
tggccagatc atcaagcgtg tctgtggcaa cgagcggcca gtcctatcc 50

<210> 235
<211> 1964
<212> DNA
<213> Homo sapiens

<400> 235
accaggcatt gtatcttag ttgtcatcaa gttcgcaatc agattggaaa 50
agctcaacctt gaagcttct tgcctgcagt gaagcagaga gatagatatt 100
attcacgtaa taaaaaacat gggcttcaac ctgactttcc acctttccta 150
caaattccga ttactgttg ttttgacttt gtgcctgaca gtggttgggt 200
gggccaccag taactacttc gtgggtgcca ttcaagagat tcctaaagca 250
aaggagttca tggctaattt ccataagacc ctcattttgg ggaagggaaa 300
aactctgact aatgaagcat ccacgaagaa ggtagaactt gacaactgtc 350
cttctgtgtc tccttacctc agaggccaga gcaagctcat tttcaaacc 400
gatctcaattt tggaaagaggt acaggcagaa aatcccaaag tgtccagagg 450
ccggtatcgc cctcaggaat gtaaagctt acagagggtc gccatcctcg 500
ttccccaccc gaacagagag aaacacctga tgtacctgct ggaacatctg 550
catcccttcc tgcagaggca gcagctggat tatggcatct acgtcatcca 600
ccaggctgaa ggtaaaaagt ttaatcgagc caaactcttg aatgtggct 650
atctagaagc cctcaaggaa gaaaattggg actgctttat attccacgat 700
gtggacctgg tacccgagaa tgacttaac cttacaagt gtgaggagca 750
tcccaagcat ctgggggttgcaggaacag cactgggtac agttacgat 800
acagtggata ttttgggggt gttactgccc taagcagaga gcagttttc 850
aaggtgaatg gattctctaa caactactgg ggatggggag gcgaagacga 900

tgacctcaga ctcagggttg agctccaaag aatgaaaatt tccccggcccc 950
tgcctgaagt gggtaaatat acaatggtct tccacactag agacaaaggc 1000
aatgaggtga acgcagaacg gatgaagctc ttacaccaag tgtcacgagt 1050
ctggagaaca gatgggttga gtagttgttc ttataaatta gtatctgtgg 1100
aacacaatcc tttatatatc aacatcacag tggatttctg gtttggtgca 1150
tgaccctgga tcttttgtg atgttggaa gaactgattc tttgtttgca 1200
ataattttgg cctagagact tcaaataatgt aCACACATTA agaacctgtt 1250
acagctcatt gttgagctga attttcctt tttgtatTTT cttagcagag 1300
ctcctggtga tgttaggtat aaaacagttg taacaagaca gctttcttag 1350
tcattttgat catgagggtt aaatattgt aatggatac ttgaaggact 1400
ttatataaaaa ggatgactca aaggataaaaa tgaacgctat ttgaggactc 1450
tggttgaagg agatttattt aaatttgaag taatataatta tggataaaaa 1500
ggccacagga aataagactg ctgaatgtct gagagaacca gagttgttct 1550
cgtccaagg agaaaggtaC gaagatacaa tactgttatt catttatcct 1600
gtacaatcat ctgtgaagtg gtgggtgtcag gtgagaaggc gtccacaaaa 1650
gagggggagaa aaggcgacga atcaggacac agtgaacttg ggaatgaaga 1700
ggtagcagga gggtgagtg tcggctgcaa aggtagcagt agctgagctg 1750
gttgcaggtg ctgatagcct tcaggggagg acctgcccag gtatgccttc 1800
cagtgatgcc caccagagaa tacattctct attagtttt aaagagttt 1850
tgtaaaatga ttttgtacaa gtaggatatg aattagcagt ttacaagttt 1900
acatattaac taataataaa tatgtctatc aaatacctct gtagtaaaat 1950
gtaaaaaaagc aaaa 1964

<210> 236
<211> 344
<212> PRT
<213> Homo sapiens

<220>
<221> Signal peptide
<222> 1-27
<223> Signal peptide

<220>
<221> N-glycosylation sites
<222> 4-7, 220-223, 335-338
<223> N-glycosylation sites

<220>
 <221> Xylose isomerase proteins
 <222> 191-201
 <223> Xylose isomerase proteins

<400> 236
 Met Gly Phe Asn Leu Thr Phe His Leu Ser Tyr Lys Phe Arg Leu
 1 5 10 15

Leu Leu Leu Thr Leu Cys Leu Thr Val Val Gly Trp Ala Thr
 20 25 30

Ser Asn Tyr Phe Val Gly Ala Ile Gln Glu Ile Pro Lys Ala Lys
 35 40 45

Glu Phe Met Ala Asn Phe His Lys Thr Leu Ile Leu Gly Lys Gly
 50 55 60

Lys Thr Leu Thr Asn Glu Ala Ser Thr Lys Lys Val Glu Leu Asp
 65 70 75

Asn Cys Pro Ser Val Ser Pro Tyr Leu Arg Gly Gln Ser Lys Leu
 80 85 90

Ile Phe Lys Pro Asp Leu Thr Leu Glu Glu Val Gln Ala Glu Asn
 95 100 105

Pro Lys Val Ser Arg Gly Arg Tyr Arg Pro Gln Glu Cys Lys Ala
 110 115 120

Leu Gln Arg Val Ala Ile Leu Val Pro His Arg Asn Arg Glu Lys
 125 130 135

His Leu Met Tyr Leu Leu Glu His Leu His Pro Phe Leu Gln Arg
 140 145 150

Gln Gln Leu Asp Tyr Gly Ile Tyr Val Ile His Gln Ala Glu Gly
 155 160 165

Lys Lys Phe Asn Arg Ala Lys Leu Leu Asn Val Gly Tyr Leu Glu
 170 175 180

Ala Leu Lys Glu Glu Asn Trp Asp Cys Phe Ile Phe His Asp Val
 185 190 195

Asp Leu Val Pro Glu Asn Asp Phe Asn Leu Tyr Lys Cys Glu Glu
 200 205 210

His Pro Lys His Leu Val Val Gly Arg Asn Ser Thr Gly Tyr Arg
 215 220 225

Leu Arg Tyr Ser Gly Tyr Phe Gly Gly Val Thr Ala Leu Ser Arg
 230 235 240

Glu Gln Phe Phe Lys Val Asn Gly Phe Ser Asn Asn Tyr Trp Gly
 245 250 255

Trp Gly Gly Glu Asp Asp Leu Arg Leu Arg Val Glu Leu Gln

260 265 270

Arg Met Lys Ile Ser Arg Pro Leu Pro Glu Val Gly Lys Tyr Thr
275 280 285

Met Val Phe His Thr Arg Asp Lys Gly Asn Glu Val Asn Ala Glu
290 295 300

Arg Met Lys Leu Leu His Gln Val Ser Arg Val Trp Arg Thr Asp
305 310 315

Gly Leu Ser Ser Cys Ser Tyr Lys Leu Val Ser Val Glu His Asn
320 325 330

Pro Leu Tyr Ile Asn Ile Thr Val Asp Phe Trp Phe Gly Ala
335 340

<210> 237
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 237
ccttacacctca gaggccagag caagc 25

<210> 238
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 238
gagcttcatc cgttctgcgt tcacc 25

<210> 239
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 239
caggaatgtta aagcttaca gagggctgcc atcctcggtt cccacc 46

<210> 240
<211> 2567
<212> DNA
<213> Homo sapiens

<400> 240
cgtggggccgg ggtcgcgcaag cgggctgtgg gcgcgccccgg aggagcgacc 50

ccgcagttc tcgagctcca gctgcattcc ctccgcgtcc gccccacgct 100
tctcccgctc cggggccccgc aatggcccag gcagtgtggc cgccgcctcg 150
ccgcacatcctc tggcttgccct gcctcctgcc ctggggccccc gcagggggtgg 200
ccgcaggccct gtatgaactc aatctcacca ccgatagccc tgccaccacg 250
ggagcgggtgg tgaccatctc ggccagccctg gtggccaagg acaacggcag 300
cctggccctg cccgctgacg cccacctcta ccgcttccac tggatccaca 350
ccccgctggc gcttaactggc aagatggaga agggtctcag ctccaccatc 400
cgtgtggtcg gccacgtgcc cggggaaattc ccggctctcg tctgggtcac 450
tgccgctgac tgctggatgt gccagcctgt ggccaggggc tttgtggtcc 500
tccccatcac agagttcctc gtgggggacc ttgttgtcac ccagaacact 550
tccctaccct gccccagctc cttatctact aagaccgtcc tgaaagtctc 600
cttcctcctc cacgacccga gcaacttcct caagaccgcc ttgtttctct 650
acagctggga cttcggggac gggacccaga tgggtactga agactccgtg 700
gtctattata actattccat catcgggacc ttcaccgtga agctcaaagt 750
ggtggcggag tggaaagagg tggagccgga tgccacgagg gctgtgaagc 800
agaagacccgg ggacttcctcc gcctcgctga agctgcagga aacccttcga 850
ggcatccaag tggggggcc caccctaatt cagacccctcc aaaagatgac 900
cgtgacccctg aacttcctgg ggagccctcc tctgactgtg tgctggcgtc 950
tcaagcctga gtgcctcccg ctggaggaag gggagtgccca ccctgtgtcc 1000
gtggccagca cagcgtacaa cctgacccac accttcaggg accctgggga 1050
ctactgcttc agcatccggg ccgagaatat catcagcaag acacatcagt 1100
accacaagat ccaggtgtgg ccctccagaa tccagccggc tgtctttgct 1150
ttccccatgtg ctacacttat cactgtgtatg ttggccttca tcatgtacat 1200
gaccctgcgg aatgccactc agaaaaagga catggtgag aaccgggagc 1250
caccctctgg ggtcaggtgc tgctgccaga tgtgctgtgg gcctttcttg 1300
ctggagactc catctgagta cctggaaatt gttcgtgaga accacgggct 1350
gctcccgcccc ctctataagt ctgtaaaaac ttacaccgtg tgagcactcc 1400
ccctccccac cccatctcag tgttaactga ctgctgactt ggagtttcca 1450
gcagggtggc gtgcaccact gaccaggagg ggttcatttgc cgtggggctg 1500

ttggcctgga tcatccatcc atctgtacag ttcagccact gccacaagcc 1550
cctccctctc tgtcacccct gaccccagcc attcacccat ctgtacagtc 1600
cagccactga cataagcccc actcggttac cacccttgc accccctacc 1650
tttgaagagg cttcgtgcag gactttgatg cttggggtgt tccgtgtga 1700
ctccttaggtg ggctggctg cccactgccc attcctctca tattggcaca 1750
tctgctgtcc attgggggtt ctcagttcc tccccagac agccctacct 1800
gtgccagaga gctagaaaaga aggtcataaa gggtaaaaaa tccataacta 1850
aagggtgtac acatagatgg gcacactcac agagagaagt gtgcgtac 1900
acacaccaca cacacacaca cacacacaca cacagaaata taaacacatg 1950
cgtcacatgg gcatttcaga tgatcagctc tgtatctggtaaagtcggtt 2000
gctggatgc accctgcact agagctgaaa ggaaatttga cctccaagca 2050
gccctgacag gttctggcc cggccctcc ctttgcgtt tgtctctgca 2100
gttcttgcgc ccttataag gccatcctag tccctgctgg ctggcagggg 2150
cctggatggg gggcaggact aatactgagt gattgcagag tgcttataa 2200
atatcacctt attttatcga aacccatctg tgaaacttcc actgaggaaa 2250
aggccttgca gcggtagaag aggttgagtc aaggccgggc gcggtggtc 2300
acgcctgtaa tcccagcact ttgggaggcc gaggggggtg gatcacgaga 2350
tcaggagatc gagaccaccc tggctaacac ggtgaaaccc cgtctctact 2400
aaaaaaatac aaaaagttag ccgggcgtgg tgggggtgc ctgtagtccc 2450
agctactcgg gaggctgagg caggagaatg gtgcgaaccc gggaggcgga 2500
gcttgcagtg agccagatg gcgcactgc actccagcct gagtgacaga 2550
gcgagactct gtctcca 2567

<210> 241
<211> 423
<212> PRT
<213> Homo sapiens

<400> 241
Met Ala Gln Ala Val Trp Ser Arg Leu Gly Arg Ile Leu Trp Leu
1 5 10 15
Ala Cys Leu Leu Pro Trp Ala Pro Ala Gly Val Ala Ala Gly Leu
20 25 30
Tyr Glu Leu Asn Leu Thr Thr Asp Ser Pro Ala Thr Thr Gly Ala
35 40 45

Val Val Thr Ile Ser Ala Ser Leu Val Ala Lys Asp Asn Gly Ser
 50 55 60
 Leu Ala Leu Pro Ala Asp Ala His Leu Tyr Arg Phe His Trp Ile
 65 70 75
 His Thr Pro Leu Val Leu Thr Gly Lys Met Glu Lys Gly Leu Ser
 80 85 90
 Ser Thr Ile Arg Val Val Gly His Val Pro Gly Glu Phe Pro Val
 95 100 105
 Ser Val Trp Val Thr Ala Ala Asp Cys Trp Met Cys Gln Pro Val
 110 115 120
 Ala Arg Gly Phe Val Val Leu Pro Ile Thr Glu Phe Leu Val Gly
 125 130 135
 Asp Leu Val Val Thr Gln Asn Thr Ser Leu Pro Trp Pro Ser Ser
 140 145 150
 Tyr Leu Thr Lys Thr Val Leu Lys Val Ser Phe Leu Leu His Asp
 155 160 165
 Pro Ser Asn Phe Leu Lys Thr Ala Leu Phe Leu Tyr Ser Trp Asp
 170 175 180
 Phe Gly Asp Gly Thr Gln Met Val Thr Glu Asp Ser Val Val Tyr
 185 190 195
 Tyr Asn Tyr Ser Ile Ile Gly Thr Phe Thr Val Lys Leu Lys Val
 200 205 210
 Val Ala Glu Trp Glu Glu Val Glu Pro Asp Ala Thr Arg Ala Val
 215 220 225
 Lys Gln Lys Thr Gly Asp Phe Ser Ala Ser Leu Lys Leu Gln Glu
 230 235 240
 Thr Leu Arg Gly Ile Gln Val Leu Gly Pro Thr Leu Ile Gln Thr
 245 250 255
 Phe Gln Lys Met Thr Val Thr Leu Asn Phe Leu Gly Ser Pro Pro
 260 265 270
 Leu Thr Val Cys Trp Arg Leu Lys Pro Glu Cys Leu Pro Leu Glu
 275 280 285
 Glu Gly Glu Cys His Pro Val Ser Val Ala Ser Thr Ala Tyr Asn
 290 295 300
 Leu Thr His Thr Phe Arg Asp Pro Gly Asp Tyr Cys Phe Ser Ile
 305 310 315
 Arg Ala Glu Asn Ile Ile Ser Lys Thr His Gln Tyr His Lys Ile
 320 325 330
 Gln Val Trp Pro Ser Arg Ile Gln Pro Ala Val Phe Ala Phe Pro

335 340 345
Cys Ala Thr Leu Ile Thr Val Met Leu Ala Phe Ile Met Tyr Met
350 355 360
Thr Leu Arg Asn Ala Thr Gln Gln Lys Asp Met Val Glu Asn Pro
365 370 375
Glu Pro Pro Ser Gly Val Arg Cys Cys Cys Gln Met Cys Cys Gly
380 385 390
Pro Phe Leu Leu Glu Thr Pro Ser Glu Tyr Leu Glu Ile Val Arg
395 400 405
Glu Asn His Gly Leu Leu Pro Pro Leu Tyr Lys Ser Val Lys Thr
410 415 420
Tyr Thr Val

<210> 242
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 242
catttcctta ccctggaccc agctcc 26

<210> 243
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 243
gaaaggccca cagcacatct ggcag 25

<210> 244
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 244
ccacgaccgg agcaacttcc tcaagaccga cttgtttctc tacagc 46

<210> 245
<211> 485
<212> DNA
<213> Homo sapiens

<400> 245
gctcaagacc cagcagtggg acagccagac agacggcacf atggcactga 50
gctcccagat ctggcccgct tgcctcctgc tcctcctcct cctcgccagc 100
ctgaccagt gctctgtttt cccacaacag acgggacaac ttgcagagct 150
gcaaccccaag gacagagctg gagccagggc cagctggatg cccatgttcc 200
agaggcgaag gaggcgagac acccaacttc ccatctgcat tttctgtgc 250
ggctgctgtc atcgatcaa gtgtggatg tgctgcaaga cgtagaacct 300
acctgccctg cccccgtccc ctcccttcct tatttattcc tgctgcccc 350
gaacataggt cttgaaataa aatggctggt tctttgttt tccaaaaaaaa 400
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 450
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaa 485

<210> 246
<211> 84
<212> PRT
<213> Homo sapiens

<400> 246
Met Ala Leu Ser Ser Gln Ile Trp Ala Ala Cys Leu Leu Leu
1 5 10 15
Leu Leu Leu Ala Ser Leu Thr Ser Gly Ser Val Phe Pro Gln Gln
20 25 30
Thr Gly Gln Leu Ala Glu Leu Gln Pro Gln Asp Arg Ala Gly Ala
35 40 45
Arg Ala Ser Trp Met Pro Met Phe Gln Arg Arg Arg Arg Asp
50 55 60
Thr His Phe Pro Ile Cys Ile Phe Cys Cys Gly Cys Cys His Arg
65 70 75
Ser Lys Cys Gly Met Cys Cys Lys Thr
80

<210> 247
<211> 2359
<212> DNA
<213> Homo sapiens

<400> 247
ctgtcaggaa ggaccatctg aaggctgcaa tttgttctta gggaggcagg 50
tgctggcctg gcctggatct tccaccatgt tcctgtgtc gcctttgtat 100
agcctgattg tcaaccttct gggcatctcc ctgactgtcc tcttcaccct 150
ccttctcggtt ttcatcatag tgccagccat ttttggatc tcctttggta 200

tccgcaaact ctacatgaaa agtctgttaa aaatcttgc gtgggctacc 250
ttgagaatgg agcgaggagc caaggagaag aaccaccagc tttacaagcc 300
ctacaccaac ggaatcattg caaaggatcc cacttcacta gaagaagaga 350
tcaaagagat tcgtcgaagt ggttagtagta aggctctgga caacactcca 400
gagttcgagc tctctgacat tttctacttt tgccggaaag gaatggagac 450
cattatggat gatgaggtga caaagagatt ctcagcagaa gaactggagt 500
cctggAACCT gctgagcaga accaattata acttccagta catcagcctt 550
cggtcacgg tcctgtgggg gtaggagtg ctgattcggt actgctttct 600
gctgccgctc aggatagcac tggcttcac agggattagc cttctggtgg 650
tggcacaac tgtggtgaa tacttgccaa atgggaggtt taaggaattc 700
atgagtaaac atgttcactt aatgtgttac cgatctgcg tgcgagcgct 750
gacagccatc atcacctacc atgacaggaa aaacagacca agaaatggtg 800
gcatctgtgt ggccaatcat acctcaccga tcgatgtgat catcttggcc 850
agcgatggct attatgccat ggtgggtcaa gtgcacgggg gactcatggg 900
tgtgattcag agagccatgg tgaaggcctg cccacacgtc tggttgagc 950
gctcggaaagt gaaggatcgc cacctggtgg ctaagagact gactgaacat 1000
gtgcaagata aaagcaagct gcctatcctc atcttcccag aaggaacctg 1050
catcaataat acatcggtga tgatgttcaa aaaggaaagt ttgaaattg 1100
gagccacagt ttaccctgtt gctatcaagt atgaccctca atttggcgat 1150
gccttctgga acagcagcaa atacgggatg gtgacgtacc tgctgcgaat 1200
gatgaccagc tggccattg tctgcagcgt gtggcacctg cctccatga 1250
ctagagaggc agatgaagat gctgtccagt ttgcgaatag ggtgaaatct 1300
gccattgcca ggcaggagg acttgtggac ctgctgtggg atgggggcct 1350
gaagagggag aaggtgaagg acacgttcaa ggaggagcag cagaagctgt 1400
acagcaagat gatcggtggg aaccacaagg acaggagccg ctcctgagcc 1450
tgccctccagc tggctgggc caccgtgcgg ggtgccaacg ggctcagagc 1500
tggagttgcc ggcggcccc ccactgctgt gtccttcca gactccaggg 1550
ctccccgggc tgctctggat cccaggactc cggcttcgc cgagccgcag 1600
cgggatccct gtgcacccgg cgcaagctac cttgggtgt ctaaacggat 1650

gctgctgggt gttgcgaccc aggacgagat gccttgcgtt 1700
agtcgttggaa ggaatgccat taaagtgaac tccccacctt tgacgcgtgt 1750
gcgggctgag tggttggggaa gatgtggcca tggtcttgcgt ctagagatgg 1800
cggtacaaga gtctgttatg caagcccgtg tgccaggat gtgctgggg 1850
cggccaccgg ctctccagga aaggcacagc tgaggcactg tggctggctt 1900
cggcctaacc atcgccccca gccttggagc tctgcagaca tgataggaag 1950
gaaaactgtca tctgcagggg ctttcagcaa aatgaagggt tagattttta 2000
tgctgctgct gatggggta ctaaaggag gggaaagaggc caggtggcc 2050
gctgactggg ccatggggag aacgtgtgtt cgtactccag gctaaccctg 2100
aactccccat gtgatgcgcg ctttgtgaa tgtgtgtctc ggttccccca 2150
tctgtaatat gagtcggggg gaatgggtt gattcctacc tcacaggct 2200
gttgtggggaa tttaaagtgtc gcgggtgagt gaaggacaca tcacgttcag 2250
tgtttcaagt acaggcccac aaaacggggc acggcaggcc tgagctcaga 2300
gctgctgcac tgggcttgg atttgttctt gtgagtaat aaaactggct 2350
ggtgaatga 2359

<210> 248

<211> 456

<212> PRT

<213> Homo sapiens

<400> 248

Met	Phe	Leu	Leu	Leu	Pro	Phe	Asp	Ser	Leu	Ile	Val	Asn	Leu	Leu
1									10					15

Gly	Ile	Ser	Leu	Thr	Val	Leu	Phe	Thr	Leu	Leu	Leu	Val	Phe	Ile
									20			25		30

Ile	Val	Pro	Ala	Ile	Phe	Gly	Val	Ser	Phe	Gly	Ile	Arg	Lys	Leu
									35		40			45

Tyr	Met	Lys	Ser	Leu	Leu	Lys	Ile	Phe	Ala	Trp	Ala	Thr	Leu	Arg
									50		55			60

Met	Glu	Arg	Gly	Ala	Lys	Glu	Lys	Asn	His	Gln	Leu	Tyr	Lys	Pro
									65		70			75

Tyr	Thr	Asn	Gly	Ile	Ile	Ala	Lys	Asp	Pro	Thr	Ser	Leu	Glu	Glu
									80		85			90

Glu	Ile	Lys	Glu	Ile	Arg	Arg	Ser	Gly	Ser	Ser	Lys	Ala	Leu	Asp
									95		100			105

Asn Thr Pro Glu Phe Glu Leu Ser Asp Ile Phe Tyr Phe Cys Arg

110	115	120
Lys Gly Met Glu Thr Ile Met Asp Asp	Glu Val Thr Lys Arg Phe	
125	130	135
Ser Ala Glu Glu Leu Glu Ser Trp Asn	Leu Leu Ser Arg Thr Asn	
140	145	150
Tyr Asn Phe Gln Tyr Ile Ser Leu Arg	Leu Thr Val Leu Trp Gly	
155	160	165
Leu Gly Val Leu Ile Arg Tyr Cys Phe	Leu Leu Pro Leu Arg Ile	
170	175	180
Ala Leu Ala Phe Thr Gly Ile Ser Leu	Leu Val Val Gly Thr Thr	
185	190	195
Val Val Gly Tyr Leu Pro Asn Gly Arg	Phe Lys Glu Phe Met Ser	
200	205	210
Lys His Val His Leu Met Cys Tyr Arg	Ile Cys Val Arg Ala Leu	
215	220	225
Thr Ala Ile Ile Thr Tyr His Asp Arg	Glu Asn Arg Pro Arg Asn	
230	235	240
Gly Gly Ile Cys Val Ala Asn His Thr	Ser Pro Ile Asp Val Ile	
245	250	255
Ile Leu Ala Ser Asp Gly Tyr Ala Met Val	Gly Gln Val His	
260	265	270
Gly Gly Leu Met Gly Val Ile Gln Arg Ala Met Val	Lys Ala Cys	
275	280	285
Pro His Val Trp Phe Glu Arg Ser Glu	Val Lys Asp Arg His Leu	
290	295	300
Val Ala Lys Arg Leu Thr Glu His Val	Gln Asp Lys Ser Lys Leu	
305	310	315
Pro Ile Leu Ile Phe Pro Glu Gly Thr	Cys Ile Asn Asn Thr Ser	
320	325	330
Val Met Met Phe Lys Lys Gly Ser Phe	Glu Ile Gly Ala Thr Val	
335	340	345
Tyr Pro Val Ala Ile Lys Tyr Asp Pro	Gln Phe Gly Asp Ala Phe	
350	355	360
Trp Asn Ser Ser Lys Tyr Gly Met Val	Thr Tyr Leu Leu Arg Met	
365	370	375
Met Thr Ser Trp Ala Ile Val Cys Ser	Val Trp Tyr Leu Pro Pro	
380	385	390
Met Thr Arg Glu Ala Asp Glu Asp Ala	Val Gln Phe Ala Asn Arg	
395	400	405

Val Lys Ser Ala Ile Ala Arg Gln Gly Gly Leu Val Asp Leu Leu
410 415 420
Trp Asp Gly Gly Leu Lys Arg Glu Lys Val Lys Asp Thr Phe Lys
425 430 435
Glu Glu Gln Gln Lys Leu Tyr Ser Lys Met Ile Val Gly Asn His
440 445 450
Lys Asp Arg Ser Arg Ser
455

<210> 249
<211> 1103
<212> DNA
<213> Homo sapiens

<400> 249
gcccctcgaa accaggactc cagcacctct ggtcccgccc tcacccggac 50
ccctggccct cacgtctcct ccagggatgg cgctggcggc tttgatgatc 100
gcctcggca gcctcggcct ccacacctgg cagggccagg ctgttcccac 150
catcctgccc ctgggcctgg ctccagacac ctttgacat acctatgtgg 200
gttgcaga ggagatggag gagaaggcag cccccctgct aaaggaggaa 250
atggcccacc atgcctgct gcggaaatcc tgggaggcag cccaggagac 300
ctgggaggac aagcgtcgag ggcttacctt gccccctggc ttcaaagccc 350
agaatggaat agccattatg gtctacacca actcatcgaa caccttgtac 400
tgggagttga atcaggccgt gcggacgggc ggaggctccc gggagctcta 450
catgaggcac ttcccttca aggccctgca tttctacctg atccgggccc 500
tgcagctgct gcgaggcagt gggggctgca gcaggggacc tggggaggtg 550
gtgttccgag gtgtggcag ctttcgttt gaacccaaga ggctggggga 600
ctctgtccgc ttgggccagt ttgcctccag ctccctggat aaggcagtgg 650
cccacagatt tggggagaag aggcggggct gtgtgtctgc gccagggtg 700
cagctagggt cacaatctga gggggctcc tctctgcccc cctggaagac 750
tctgctctg gcccctggag agttccagct ctcaggggtt gggccctgaa 800
agtccaacat ctgccactta ggagccctgg gaacgggtga cttcatatg 850
acgaagaggc acctccagca gccttgagaa gcaagaacat gttccggac 900
ccagccctag cagccttctc cccaaccagg atgttggcct ggggaggcca 950
cagcagggct gaggaactc tgctatgtga tggggacttc ctgggacaag 1000

caaggaaagt actgaggcag ccacttgatt gaacgggttt gcaatgtgga 1050
gacatggagt tttattgagg tagctacgtg attaaatggt attgcagtgt 1100
gga 1103

<210> 250
<211> 240
<212> PRT
<213> Homo sapiens

<400> 250
Met Ala Leu Ala Ala Leu Met Ile Ala Leu Gly Ser Leu Gly Leu
1 5 10 15
His Thr Trp Gln Ala Gln Ala Val Pro Thr Ile Leu Pro Leu Gly
20 25 30
Leu Ala Pro Asp Thr Phe Asp Asp Thr Tyr Val Gly Cys Ala Glu
35 40 45
Glu Met Glu Glu Lys Ala Ala Pro Leu Leu Lys Glu Glu Met Ala
50 55 60
His His Ala Leu Leu Arg Glu Ser Trp Glu Ala Ala Gln Glu Thr
65 70 75
Trp Glu Asp Lys Arg Arg Gly Leu Thr Leu Pro Pro Gly Phe Lys
80 85 90
Ala Gln Asn Gly Ile Ala Ile Met Val Tyr Thr Asn Ser Ser Asn
95 100 105
Thr Leu Tyr Trp Glu Leu Asn Gln Ala Val Arg Thr Gly Gly
110 115 120
Ser Arg Glu Leu Tyr Met Arg His Phe Pro Phe Lys Ala Leu His
125 130 135
Phe Tyr Leu Ile Arg Ala Leu Gln Leu Leu Arg Gly Ser Gly
140 145 150
Cys Ser Arg Gly Pro Gly Glu Val Val Phe Arg Gly Val Gly Ser
155 160 165
Leu Arg Phe Glu Pro Lys Arg Leu Gly Asp Ser Val Arg Leu Gly
170 175 180
Gln Phe Ala Ser Ser Ser Leu Asp Lys Ala Val Ala His Arg Phe
185 190 195
Gly Glu Lys Arg Arg Gly Cys Val Ser Ala Pro Gly Val Gln Leu
200 205 210
Gly Ser Gln Ser Glu Gly Ala Ser Ser Leu Pro Pro Trp Lys Thr
215 220 225
Leu Leu Leu Ala Pro Gly Glu Phe Gln Leu Ser Gly Val Gly Pro

230

235

240

<210> 251

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 251

ccaccacctg gaggtcctgc agttggcag gaactccatc cggcagattg 50

<210> 252

<211> 1076

<212> DNA

<213> Homo sapiens

<400> 252

gtggcttcat ttcagtggct gacttccaga gagcaatatg gctggttccc 50

caacatgcct caccctcatc tatatcctt ggcagctcac agggtcagca 100

gcctctggac ccgtgaaaga gctggtcggt tccgttggtg gggccgtgac 150

tttccccctg aagtccaaag taaagcaagt tgactctatt gtctggacct 200

tcaacacaac ccctcttgtc accatacagc cagaaggggg cactatcata 250

gtgacccaa atcgtaatacg ggagagagta gacttcccag atggaggcta 300

ctccctgaag ctcagcaaac tgaagaagaa tgactcaggg atctactatg 350

tggggatata cagctcatca ctccagcagc cctccaccca ggagtacgtg 400

ctgcatgtct acgagcacct gtcaaagcct aaagtccacca tgggtctgca 450

gagcaataag aatggcacct gtgtgaccaa tctgacatgc tgcatggaac 500

atggggaaga ggatgtgatt tatacctgga aggcctggg gcaagcagcc 550

aatgagtccc ataatgggtc catcctcccc atctcctgga gatggggaga 600

aagtgatatg accttcatct gcgttgccag gaaccctgtc agcagaaaact 650

tctcaagccc catccttgcc aggaagctct gtgaaggtgc tgctgatgac 700

ccagattcct ccatggtcct cctgtgtctc ctgttggtgcc ccctcctgct 750

cagtctctt gtactgggc tatttcatttgc gtttctgaag agagagagac 800

aagaagagta cattgaagag aagaagagag tggacatttgc tcggaaact 850

cctaacatat gcccccatc tggagagaac acagagtacg acacaatccc 900

tcacactaat agaacaatcc taaaggaaga tccagcaaat acggtttact 950

ccactgtgga aataccgaaa aagatggaaa atccccactc actgctcacg 1000

atgccagaca caccaaggct atttgcctat gagaatgtta tctagacagc 1050

agtgcactcc cctaagtctc tgctca 1076

<210> 253

<211> 335

<212> PRT

<213> Homo sapiens

<400> 253

Met Ala Gly Ser Pro Thr Cys Leu Thr Leu Ile Tyr Ile Leu Trp
1 5 10 15

Gln Leu Thr Gly Ser Ala Ala Ser Gly Pro Val Lys Glu Leu Val
20 25 30

Gly Ser Val Gly Gly Ala Val Thr Phe Pro Leu Lys Ser Lys Val
35 40 45

Lys Gln Val Asp Ser Ile Val Trp Thr Phe Asn Thr Thr Pro Leu
50 55 60

Val Thr Ile Gln Pro Glu Gly Gly Thr Ile Ile Val Thr Gln Asn
65 70 75

Arg Asn Arg Glu Arg Val Asp Phe Pro Asp Gly Gly Tyr Ser Leu
80 85 90

Lys Leu Ser Lys Leu Lys Lys Asn Asp Ser Gly Ile Tyr Tyr Val
95 100 105

Gly Ile Tyr Ser Ser Ser Leu Gln Gln Pro Ser Thr Gln Glu Tyr
110 115 120

Val Leu His Val Tyr Glu His Leu Ser Lys Pro Lys Val Thr Met
125 130 135

Gly Leu Gln Ser Asn Lys Asn Gly Thr Cys Val Thr Asn Leu Thr
140 145 150

Cys Cys Met Glu His Gly Glu Glu Asp Val Ile Tyr Thr Trp Lys
155 160 165

Ala Leu Gly Gln Ala Ala Asn Glu Ser His Asn Gly Ser Ile Leu
170 175 180

Pro Ile Ser Trp Arg Trp Gly Glu Ser Asp Met Thr Phe Ile Cys
185 190 195

Val Ala Arg Asn Pro Val Ser Arg Asn Phe Ser Ser Pro Ile Leu
200 205 210

Ala Arg Lys Leu Cys Glu Gly Ala Ala Asp Asp Pro Asp Ser Ser
215 220 225

Met Val Leu Leu Cys Leu Leu Leu Val Pro Leu Leu Leu Ser Leu
230 235 240

Phe Val Leu Gly Leu Phe Leu Trp Phe Leu Lys Arg Glu Arg Gln
245 250 255
Glu Glu Tyr Ile Glu Glu Lys Lys Arg Val Asp Ile Cys Arg Glu
260 265 270
Thr Pro Asn Ile Cys Pro His Ser Gly Glu Asn Thr Glu Tyr Asp
275 280 285
Thr Ile Pro His Thr Asn Arg Thr Ile Leu Lys Glu Asp Pro Ala
290 295 300
Asn Thr Val Tyr Ser Thr Val Glu Ile Pro Lys Lys Met Glu Asn
305 310 315
Pro His Ser Leu Leu Thr Met Pro Asp Thr Pro Arg Leu Phe Ala
320 325 330
Tyr Glu Asn Val Ile
335

<210> 254

<211> 1053

<212> DNA

<213> Homo sapiens

<400> 254

ctgggtccccc aacatgcctc accctcatct atatccttg gcagctcaca 50

gggtcagcag cctctggacc cgtgaaagag ctggtcggtt ccgttggtgg 100

ggccgtgact ttccccctga agtccaaagt aaagcaagtt gactctattg 150

tctggacctt caacacaacc cctcttgtca ccatacagcc agaagggggc 200

actatcatag tgacccaaaa tcgtaatagg gagagagtag acttcccaga 250

tggaggctac tccctgaagc tcagcaaact gaagaagaat gactcaggg 300

tctactatgt gggatatac agctcatcac tccagcagcc ctccacccag 350

gagtacgtgc tgcgtgtcta cgagcacctg tcaaagccta aagtcaccat 400

gggtctgcag agcaataaga atggcacctg tgtgaccaat ctgacatgct 450

gcatggaaaca tggggaaagag gatgtgattt atacctggaa ggccctgggg 500

caagcagcca atgagtccca taatgggtcc atcctccca tctcctggag 550

atggggagaa agtgatatga cttcatctg cgttgccagg aaccctgtca 600

gcagaaaactt ctcaagcccc atccttgcca ggaagctctg tgaaggtgct 650

gctgatgacc cagattcctc catggccctc ctgtgtctcc tgggtggcc 700

cctcctgctc agtctctttg tactggggct atttctttgg tttctgaaga 750

gagagagaca agaagagtac attgaagaga agaagagagt ggacattgt 800

cgggaaactc ctaacatatg cccccattct ggagagaaca cagagtacga 850
cacaatccct cacactaata gaacaatcct aaaggaagat ccagcaaata 900
cggtttactc cactgtggaa ataccgaaaa agatggaaaa tccccactca 950
ctgctcacga tgccagacac accaaggcta tttgcctatg agaatgttat 1000
ctagacagca gtgcactccc ctaagtctct gctaaaaaaaaaaaaaaaaa 1050
aaa 1053

<210> 255
<211> 860
<212> DNA
<213> Homo sapiens

<400> 255.
gaaagacgtg gtcctgacag acagacaatc ctattcccta cccaaatgaa 50
gatgctgctg ctgctgtgtt tggactgac cctagtctgt gtccatgcag 100
aagaagctag ttctacggga aggaacttta atgtagaaaa gattaatggg 150
gaatggcata ctattatcct ggcctctgac aaaagagaaa agatagaaga 200
acatggcaac tttagacttt ttctggagca aatccatgtc ttggagaatt 250
ccttagttct taaagtccat actgtaagag atgaagagtg ctccgaatta 300
tctatggttg ctgacaaaac agaaaaggct ggtgaatatt ctgtgacgta 350
tgatggattc aatacattta ctatacctaa gacagactat gataacttcc 400
ttatggctca cctcattaac gaaaaggatg gggaaacctt ccagctgatg 450
gggctctatg gccgagaacc agatttgagt tcagacatca aggaaaggaa 500
tgcacaacta tgtgaggagc atggaatcct tagagaaaaat atcattgacc 550
tatccaatgc caatcgctgc ctccaggccc gagaatgaag aatggcctga 600
gcctccagtg ttgagtgac acttctcacc aggactccac catcatccct 650
tcctatccat acagcatccc cagtataaat tctgtatct gcattccatc 700
ctgtctcaact gagaagtcca attccagtct atcaacatgt tacctaggat 750
acctcatcaa gaatcaaaga cttctttaaa ttctctttg atacaccctt 800
gacaattttt catgaaatta ttccctttcc tggtaataa atgattaccc 850
ttgcacttaa 860

<210> 256
<211> 180
<212> PRT
<213> Homo sapiens

<400> 256
Met Lys Met Leu Leu Leu Cys Leu Gly Leu Thr Leu Val Cys
1 5 10 15
Val His Ala Glu Glu Ala Ser Ser Thr Gly Arg Asn Phe Asn Val
20 25 30
Glu Lys Ile Asn Gly Glu Trp His Thr Ile Ile Leu Ala Ser Asp
35 40 45
Lys Arg Glu Lys Ile Glu Glu His Gly Asn Phe Arg Leu Phe Leu
50 55 60
Glu Gln Ile His Val Leu Glu Asn Ser Leu Val Leu Lys Val His
65 70 75
Thr Val Arg Asp Glu Glu Cys Ser Glu Leu Ser Met Val Ala Asp
80 85 90
Lys Thr Glu Lys Ala Gly Glu Tyr Ser Val Thr Tyr Asp Gly Phe
95 100 105
Asn Thr Phe Thr Ile Pro Lys Thr Asp Tyr Asp Asn Phe Leu Met
110 115 120
Ala His Leu Ile Asn Glu Lys Asp Gly Glu Thr Phe Gln Leu Met
125 130 135
Gly Leu Tyr Gly Arg Glu Pro Asp Leu Ser Ser Asp Ile Lys Glu
140 145 150
Arg Phe Ala Gln Leu Cys Glu Glu His Gly Ile Leu Arg Glu Asn
155 160 165
Ile Ile Asp Leu Ser Asn Ala Asn Arg Cys Leu Gln Ala Arg Glu
170 175 180

<210> 257

<211> 766

<212> DNA

<213> Homo sapiens

<400> 257

ggctcgagcg tttctgagcc aggggtgacc atgacctgct gcgaaggatg 50
gacatcctgc aatggattca gcctgcttgt tctactgctg ttaggatgt 100
ttctcaatgc gataacctcta attgtcagct tagttgagga agaccaattt 150
tctaaaacc ccatctttg ctttgagtgg tggttcccag gaattatagg 200
agcaggtctg atggccattc cagcaacaac aatgtccttg acagcaagaa 250
aaagagcgtg ctgcaacaac agaactggaa tgtttcttc atcattttc 300
agtgtgatca cagtcattgg tgctctgtat tgcatgctga tatccatcca 350
ggctcttta aaaggcctc tcatgtgtaa ttctccaagc aacagtaatg 400

ccaattgtga attttcattg aaaaacatca gtgacattca tccagaatcc 450
ttcaacttgc agtggtttt caatgactct tgtgcacctc ctactggttt 500
caataaaccc accagtaacg acaccatggc gagtggctgg agagcatcta 550
gtttccactt cgattctgaa gaaaacaaac ataggcttat ccacttctca 600
gtatTTTtag gtctattgct tgTTGGAATT ctggaggtcc tgTTGGGCT 650
cagtcaGATA gtcatcggtt tccttggctg tctgtgtgga gtctctaAGC 700
gaagaagtca aattgtgtAG ttAAATGGGA atAAAATGTA agtatcAGTA 750
gtttgaaaaa aaaaaa 766

<210> 258
<211> 229
<212> PRT
<213> Homo sapiens

<400> 258
Met Thr Cys Cys Glu Gly Trp Thr Ser Cys Asn Gly Phe Ser Leu
1 5 10 15
Leu Val Leu Leu Leu Leu Gly Val Val Leu Asn Ala Ile Pro Leu
20 25 30
Ile Val Ser Leu Val Glu Glu Asp Gln Phe Ser Gln Asn Pro Ile
35 40 45
Ser Cys Phe Glu Trp Trp Phe Pro Gly Ile Ile Gly Ala Gly Leu
50 55 60
Met Ala Ile Pro Ala Thr Thr Met Ser Leu Thr Ala Arg Lys Arg
65 70 75
Ala Cys Cys Asn Asn Arg Thr Gly Met Phe Leu Ser Ser Phe Phe
80 85 90
Ser Val Ile Thr Val Ile Gly Ala Leu Tyr Cys Met Leu Ile Ser
95 100 105
Ile Gln Ala Leu Leu Lys Gly Pro Leu Met Cys Asn Ser Pro Ser
110 115 120
Asn Ser Asn Ala Asn Cys Glu Phe Ser Leu Lys Asn Ile Ser Asp
125 130 135
Ile His Pro Glu Ser Phe Asn Leu Gln Trp Phe Phe Asn Asp Ser
140 145 150
Cys Ala Pro Pro Thr Gly Phe Asn Lys Pro Thr Ser Asn Asp Thr
155 160 165
Met Ala Ser Gly Trp Arg Ala Ser Ser Phe His Phe Asp Ser Glu
170 175 180

Glu Asn Lys His Arg Leu Ile His Phe Ser Val Phe Leu Gly Leu
185 190 195
Leu Leu Val Gly Ile Leu Glu Val Leu Phe Gly Leu Ser Gln Ile
200 205 210
Val Ile Gly Phe Leu Gly Cys Leu Cys Gly Val Ser Lys Arg Arg
215 220 225
Ser Gln Ile Val

<210> 259
<211> 434
<212> DNA
<213> Homo sapiens

<400> 259
gtcgaatcca aatcaactcat tgtgaaagct gagctcacag ccgaataagc 50
caccatgagg ctgtcagtgt gtctcctgat ggtctcgctg gccctttgct 100
gctaccaggc ccatgctctt gtctgcccag ctgttgcttc tgagatcaca 150
gtcttcttat tcttaagtga cgctgcggta aacctccaag ttgccaaact 200
taatccacct ccagaagctc ttgcagccaa gttgaaagtg aagcactgca 250
ccgatcagat atcttttaag aaacgactct cattgaaaaa gtcctggtgg 300
aaatagtcaa aaaatgtggt gtgtgacatg taaaaatgct caacctggtt 350
tccaaagtct ttcaacgaca ccctgatctt cactaaaaat tgtaaaggaa 400
tcaacacgtt gctttaataa atcaacttgcc ctgc 434

<210> 260
<211> 83
<212> PRT
<213> Homo sapiens

<400> 260
Met Arg Leu Ser Val Cys Leu Leu Met Val Ser Leu Ala Leu Cys
1 5 10 15
Cys Tyr Gln Ala His Ala Leu Val Cys Pro Ala Val Ala Ser Glu
20 25 30
Ile Thr Val Phe Leu Phe Leu Ser Asp Ala Ala Val Asn Leu Gln
35 40 45
Val Ala Lys Leu Asn Pro Pro Pro Glu Ala Leu Ala Ala Lys Leu
50 55 60
Glu Val Lys His Cys Thr Asp Gln Ile Ser Phe Lys Lys Arg Leu
65 70 75
Ser Leu Lys Lys Ser Trp Trp Lys

<210> 261
<211> 636
<212> DNA
<213> Homo sapiens

<400> 261
atccgttctc tgcgctgcca gtcaggtga gccctcgcca aggtgacctc 50
gcaggacact ggtgaaggag cagtgaggaa cctgcagagt cacacagttg 100
ctgaccaatt gagctgtgag cctggagcag atccgtgggc tgcagacccc 150
cgccccagtg cctctccccc tgcagccctg cccctcgaac tgtgacatgg 200
agagagtgac cctggccctt ctcctactgg caggcctgac tgccttggaa 250
gccaatgacc catttgccaa taaagacgt cccttctact atgactggaa 300
aacacctgcag ctgagcggac tgatctgcgg agggctcctg gccattgctg 350
ggatcgcggc agttctgagt ggcaaattgca aatacaagag cagccagaag 400
cagcacagtc ctgtacctga gaaggccatc ccactcatca ctccaggctc 450
tgccactact tgctgagcac aggactggcc tccagggatg gcctgaagcc 500
taacactggc ccccagcacc tcctccctg ggaggccta tcctcaagga 550
aggacttctc tccaaggca ggctgttagg ccccttctg atcaggaggc 600
ttctttatga attaaactcg ccccaccacc ccctca 636

<210> 262
<211> 89
<212> PRT
<213> Homo sapiens

<400> 262															
Met	Glu	Arg	Val	Thr	Leu	Ala	Leu	Leu	Leu	Leu	Ala	Gly	Leu	Thr	
1					5				10					15	
Ala	Leu	Glu	Ala	Asn	Asp	Pro	Phe	Ala	Asn	Lys	Asp	Asp	Pro	Phe	
									20		25			30	
Tyr	Tyr	Asp	Trp	Lys	Asn	Leu	Gln	Leu	Ser	Gly	Leu	Ile	Cys	Gly	
									35		40			45	
Gly	Leu	Leu	Ala	Ile	Ala	Gly	Ile	Ala	Ala	Val	Leu	Ser	Gly	Lys	
									50		55			60	
Cys	Lys	Tyr	Lys	Ser	Ser	Gln	Lys	Gln	His	Ser	Pro	Val	Pro	Glu	
									65		70			75	
Lys	Ala	Ile	Pro	Leu	Ile	Thr	Pro	Gly	Ser	Ala	Thr	Thr	Cys		
									80		85				

<210> 263
<211> 1676
<212> DNA
<213> Homo sapiens

<400> 263
ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg 50
ctgagcctgc cctggctggg cctcagaccg gtggcaatgt ccccatggct 100
actcctgctg ctgggtgtgg gtcctggct actcgccgc atcctggctt 150
ggacctatgc cttctataac aactgccgcc ggctccagtg tttcccacag 200
cccccaaaac ggaactggtt ttggggtcac ctggcctga tcactcctac 250
agaggagggc ttgaaggact cgaccagat gtcggccacc tattcccagg 300
gctttacggt atggctgggt cccatcatcc cttcatcgat tttatgccac 350
cctgacacca tccggtctat caccaatgcc tcagctgcca ttgcacccaa 400
ggataatctc ttcatcaggt tcctgaagcc ctggctggga gaaggatac 450
tgctgagtgg cggtgacaag tggagccgcc accgtcgat gctgacgccc 500
gccttccatt tcaacatcct gaagtcttat ataacgatct tcaacaagag 550
tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600
gtcgtctgga catgttgag cacatcagcc tcatgacctt ggacagtcta 650
cagaaatgca tcttcagctt tgacagccat tgtcaggaga ggcccagtga 700
atatatggcc accatcttgg agtcagtgcc cttgttagag aaaagaagcc 750
agcatatcct ccagcacatg gactttctgt attacctctc ccatgacggg 800
cggcgcttcc acagggcctg ccgcctggtg catgacttca cagacgctgt 850
catccgggag cggcgctcgca ccctccac tcagggattt gatgatttt 900
tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg 950
ctgagcaagg atgaagatgg gaaggcattt tcagatgagg atataagagc 1000
agaggctgac accttcatgt ttggaggcca tgacaccacg gccagtggcc 1050
tctcctgggt cctgtacaac cttgcgaggc acccagaata ccaggagcgc 1100
tgccgacagg aggtgcaaga gcttctgaag gaccgcgatc ctaaagagat 1150
tgaatggac gacctggccc agctgccctt cctgaccatg tgcgtgaagg 1200
agagcctgag gttacatccc ccagctccct tcattccccg atgctgcacc 1250
caggacattt ttctccaga tggccgagtc atccccaaag gcattacctg 1300

cctcatcgat attatagggg tccatcacaa cccaaactgtg tggccggatc 1350
ctgaggtcta cgaccgccttc cgcttgacc cagagaacag caaggggagg 1400
tcacctctgg cttttattcc tttctccgca gggcccagga actgcacatcg 1450
gcaggcggttc gccatggcgg agatgaaagt ggtcctggcg ttgatgctgc 1500
tgcacttccg gttcctgcca gaccacactg agccccgcag gaagctggaa 1550
ttgatcatgc gcgccgaggg cgggctttgg ctgcgggtgg agcccctgaa 1600
tgtaggcttgc agtgacttt ctgaccatc cacctgtttt tttgcagatt 1650
gtcatgaata aaacggtgct gtcaaa 1676

<210> 264

<211> 524

<212> PRT

<213> Homo sapiens

<400> 264

Met	Ser	Leu	Leu	Ser	Leu	Pro	Trp	Leu	Gly	Leu	Arg	Pro	Val	Ala
1				5				10					15	
Met	Ser	Pro	Trp	Leu	Leu	Leu	Leu	Leu	Val	Val	Gly	Ser	Trp	Leu
		20						25					30	
Leu	Ala	Arg	Ile	Leu	Ala	Trp	Thr	Tyr	Ala	Phe	Tyr	Asn	Asn	Cys
		35						40					45	
Arg	Arg	Leu	Gln	Cys	Phe	Pro	Gln	Pro	Pro	Lys	Arg	Asn	Trp	Phe
		50						55					60	
Trp	Gly	His	Leu	Gly	Leu	Ile	Thr	Pro	Thr	Glu	Glu	Gly	Leu	Lys
		65						70					75	
Asp	Ser	Thr	Gln	Met	Ser	Ala	Thr	Tyr	Ser	Gln	Gly	Phe	Thr	Val
		80						85					90	
Trp	Leu	Gly	Pro	Ile	Ile	Pro	Phe	Ile	Val	Leu	Cys	His	Pro	Asp
		95						100					105	
Thr	Ile	Arg	Ser	Ile	Thr	Asn	Ala	Ser	Ala	Ala	Ile	Ala	Pro	Lys
		110						115					120	
Asp	Asn	Leu	Phe	Ile	Arg	Phe	Leu	Lys	Pro	Trp	Leu	Gly	Glu	Gly
		125						130					135	
Ile	Leu	Leu	Ser	Gly	Gly	Asp	Lys	Trp	Ser	Arg	His	Arg	Arg	Met
		140						145					150	
Leu	Thr	Pro	Ala	Phe	His	Phe	Asn	Ile	Leu	Lys	Ser	Tyr	Ile	Thr
		155						160					165	
Ile	Phe	Asn	Lys	Ser	Ala	Asn	Ile	Met	Leu	Asp	Lys	Trp	Gln	His
		170						175					180	

Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile
 185 190 195
 Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe
 200 205 210
 Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile
 215 220 225
 Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu
 230 235 240
 Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg
 245 250 255
 Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val
 260 265 270
 Ile Arg Glu Arg Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp
 275 280 285
 Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp
 290 295 300
 Val Leu Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp
 305 310 315
 Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His
 320 325 330
 Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala
 335 340 345
 Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu
 350 355 360
 Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu
 365 370 375
 Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg
 380 385 390
 Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp
 395 400 405
 Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys
 410 415 420
 Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro
 425 430 435
 Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ser
 440 445 450
 Lys Gly Arg Ser Pro Leu Ala Phe Ile Pro Phe Ser Ala Gly Pro
 455 460 465
 Arg Asn Cys Ile Gly Gln Ala Phe Ala Met Ala Glu Met Lys Val

470

475

480

Val Leu Ala Leu Met Leu Leu His Phe Arg Phe Leu Pro Asp His
485 490 495

Thr Glu Pro Arg Arg Lys Leu Glu Leu Ile Met Arg Ala Glu Gly
500 505 510

Gly Leu Trp Leu Arg Val Glu Pro Leu Asn Val Gly Leu Gln
515 520

<210> 265

<211> 584

<212> DNA

<213> Homo sapiens

<400> 265

caacagaagc caagaaggaa gccgtctatc ttgtggcgat catgtataag 50

ctggcctcct gctgttgct tttcacagga ttcttaaatc ctctcttatac 100

tttccctctc cttgactcca gggaaatatac ctttcaactc tcagcacctc 150

atgaagacgc gcgcctaact ccggaggagc tagaaagagc ttcccttcta 200

cagatattgc cagagatgct ggggcagaa agaggggata ttctcaggaa 250

agcagactca agtaccaaca ttttaaccc aagaggaaat ttgagaaagt 300

ttcaggattt ctctggacaa gatcctaaca ttttactgag tcatctttg 350

gccagaatct ggaaaccata caagaaacgt gagactcctg attgcttctg 400

gaaatactgt gtctgaagtg aaataagcat ctgttagtca gctcagaaac 450

acccatctta gaatatgaaa aataacacaa tgcttgattt gaaaacagtg 500

tggagaaaaa ctaggcaaac tacaccctgt tcattgttac ctggaaaata 550

aatcctctat gtttgcaca aaaaaaaaaa aaaa 584

<210> 266

<211> 124

<212> PRT

<213> Homo sapiens

<400> 266

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Thr Gly Phe Leu
1 5 10 15

Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser
20 25 30

Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu
35 40 45

Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu
50 55 60

Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr
65 70 75
Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe
80 85 90
Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser His Leu Leu Ala Arg
95 100 105
Ile Trp Lys Pro Tyr Lys Arg Glu Thr Pro Asp Cys Phe Trp
110 115 120
Lys Tyr Cys Val

<210> 267
<211> 654
<212> DNA
<213> Homo sapiens

<400> 267
gaacatttt agttccaaag gaatgtacat cagccccacg gaagcttaggc 50
cacctctggg atggggttgc tggtttaaaa caaacgccag tcatcctata 100
taaggacctg acagccacca ggcaccacct ccggcaggaa ctgcaggccc 150
acctgtctgc aaccctagctg aggccatgcc ctccccaggg accgtctgca 200
gcctcctgtc ctcggcatg ctctggctgg acttggccat ggcaggctcc 250
agcttcctga gccctgaaca ccagagatgc cagcagagaa aggagtcgaa 300
gaagccacca gccaagctgc agccccgagc tctagcaggc tggctccgccc 350
cggaagatgg aggtcaagca gaaggggcag aggatgaact ggaagtccgg 400
ttcaacgccc ccttgatgt tggaatcaag ctgtcagggg ttcaagtacca 450
gcagcacagc caggccctgg ggaagttct tcaggacatc ctctgggaag 500
aggccaaaga ggccccagcc gacaagtgtat cgcccacaag ccttactcac 550
ctctctctaa gtttagaagc gtcatctgg ctttcgctt gcttctgcag 600
caactcccac gactgttgta caagctcagg aggcgaataa atgttcaaac 650
tgta 654

<210> 268
<211> 117
<212> PRT
<213> Homo sapiens

<400> 268
Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Leu Gly Met
1 5 10 15

Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro
 20 25 30

 Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro
 35 40 45

 Ala Lys Leu Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu
 50 55 60

 Asp Gly Gly Gln Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg
 65 70 75

 Phe Asn Ala Pro Phe Asp Val Gly Ile Lys Leu Ser Gly Val Gln
 80 85 90

 Tyr Gln Gln His Ser Gln Ala Leu Gly Lys Phe Leu Gln Asp Ile
 95 100 105

 Leu Trp Glu Glu Ala Lys Glu Ala Pro Ala Asp Lys
 110 115

<210> 269
 <211> 1332
 <212> DNA
 <213> Homo sapiens

<400> 269
 cggccacagc tggcatgctc tgcctgatcg ccatcctgct gtatgtcctc 50
 gtccagtacc tcgtgaaccc cggggtgctc cgcacggacc ccagatgtca 100
 agaatatgaa cacgtggctg ctgttccccc ccctgttccc ggtgcaggtg 150
 cagaccctga tagtcgtat catcggatg ctctgctcc tgctggactt 200
 tcttggcttg gtgcacctgg gccagctgct catcttccac atctacctga 250
 gtatgtcccc caccctaagc ccccgatccc cccaaggctg ggtggtcaga 300
 gctgctcatc ttacacctct acttgagttat gtccttaacc ctgagcccc 350
 cacgcctggg gccagagtct ttgtcccccg tgcgcatg tgttcagggt 400
 cagcctctcc cagaagttagt atcatggaca aaaaggcaa atcacaggaa 450
 gaaattaaat ccatgaggac ccagcaggcc cagcaagaag ctgaactcac 500
 gccgagacct gcaggagtgg tgccaggtgc ttgaagtaac aagttaaaa 550
 tgttcagaga caatggatg gaatcttta ggcaagaaca ggacattatg 600
 aaataaggac aggtggactt ccaaaaacac aagtagaaat tctaacaatg 650
 aatatatatta caggcaggtc acccactaac caaacaactg aagcgagagc 700
 tgtggtcttg cttggtctca cagtggcac agcggtaggc ggtcagtc 750
 gttgctgaac gacggagggt aaactccccca gccccaaagaa aacctgtgtt 800

gaaagttaaca acaacacctcc tgctcctggc accagccgtt ttggtcatgg 850
tgggccagct gcaaagcgtc ttccattctc tggcagtgg tggccccgag 900
gctgtggcct ctcagggggt ttctgtggac acgggcagca gagtgtgtcc 950
aggccagccc ccaagaatgc cctgctcctg acagcttggc caaccctgg 1000
tcagggcaga gggagttggg tgggtcaggc tctgggctca cctccatctc 1050
cagagcatcc cctgcctgca gttgtggcaa gaacgcccag ctcagaatga 1100
acacacccca ccaagagcct cttgttcat aaccacaggt tacccctacaa 1150
accactgtcc ccacacaacc ctggggatgt ttaaaacac acacctctaa 1200
cgccatatctt acagtcactg ttgtcttgcc tgagggttga atttttttta 1250
atgaaagtgc aatgaaaatc actggattaa atcctacgga cacagagctg 1300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 1332

<210> 270
<211> 142
<212> PRT
<213> *Homo sapiens*

<210> 271
<211> 1484
<212> DNA
<213> Homo sapiens

<400> 271
ggagtgcaga tggcatcctt cggttcttcc agacaagctg caagacgctg 50
accatggcca agatggagct ctcgaaggcc ttctctggcc agcggacact 100
cctatctgcc atcctcagca tgctatcaact cagttctcc acaacatccc 150
tgctcagcaa ctactggttt gtgggcacac agaaggtgcc caagccccctg 200
tgcgagaaag gtctggcagc caagtgcattt gacatgccag tgtccctgga 250
tggagatacc aacacatcca cccaggaggt ggtacaatac aactgggaga 300
ctggggatga ccgggtctcc ttccggagct tccggagtgg catgtggcta 350
tcctgtgagg aaactgtgga agaaccaggg gagaggtgcc gaagtttcat 400
tgaacttaca ccaccagcca agagaggtga gaaaggacta ctggaatttg 450
ccacgttgca aggcccatgt caccccaactc tccgatttgg aggaaagcgg 500
ttgatggaga aggctccct cccctccctt cccttgggc tttgtggcaa 550
aaatcctatg gttatccctg ggaacgcaga tcacctacat cgacttcaa 600
ttcatcagct tcctcctgct actaacagac ttgctactca ctggaaaccc 650
tgcctgtggg ctcaaactga gcgccttgc tgctgttcc tctgtcctgt 700
caggtctcct gggatggtg gcccacatga tgtattcaca agtctccaa 750
gcgactgtca acttgggtcc agaagactgg agaccacatg tttgaaatta 800
tggctgggcc ttctacatgg cctggctctc cttcacctgc tgcacggcgt 850
cggtgtcac caccccaac acgtacacca ggatggtgct ggagttcaag 900
tgcacatca gtaagagctt caaggaaaac ccgaactgcc taccacatca 950
ccatcagtgt ttccctcgcc ggctgtcaag tgcagcccc accgtgggtc 1000
ctttgaccag ctaccaccag tatcataatc agcccatcca ctctgtctct 1050
gagggagtcg acttctactc cgagctgcgg aacaaggat ttcaaagagg 1100
ggccagccag gagctgaaag aagcagttag gtcacatgttga gaggaagagc 1150
agtgttagga gttaagcggg tttggggagt aggcttgagc cctaccttac 1200
acgtctgctg attatcaaca tgtgcttaag ccaacatccg tctcttgagc 1250
atggttttta gaggctacga ataaggctat gaataagggt tatctttaag 1300

tcctaaggga ttcctgggtg ccactgctct ctttcctct acagctccat 1350
cttgcac ccacccaca tctcacacat ccagaattcc cttcttact 1400
gatagttct gtgccaggaa ctgggctaaa ccatggagat aaaaagaaga 1450
gtaaaataca cttcccgacc ttaaggatct gaaa 1484

<210> 272

<211> 285

<212> PRT

<213> Homo sapiens

<400> 272

Met	Ala	Lys	Met	Glu	Leu	Ser	Lys	Ala	Phe	Ser	Gly	Gln	Arg	Thr
1				5					10				15	
Leu	Leu	Ser	Ala	Ile	Leu	Ser	Met	Leu	Ser	Leu	Ser	Phe	Ser	Thr
				20				25					30	
Thr	Ser	Leu	Leu	Ser	Asn	Tyr	Trp	Phe	Val	Gly	Thr	Gln	Lys	Val
					35				40				45	
Pro	Lys	Pro	Leu	Cys	Glu	Lys	Gly	Leu	Ala	Ala	Lys	Cys	Phe	Asp
				50				55					60	
Met	Pro	Val	Ser	Leu	Asp	Gly	Asp	Thr	Asn	Thr	Ser	Thr	Gln	Glu
				65				70					75	
Val	Val	Gln	Tyr	Asn	Trp	Glu	Thr	Gly	Asp	Asp	Arg	Phe	Ser	Phe
				80				85					90	
Arg	Ser	Phe	Arg	Ser	Gly	Met	Trp	Leu	Ser	Cys	Glu	Glu	Thr	Val
					95				100				105	
Glu	Glu	Pro	Gly	Glu	Arg	Cys	Arg	Ser	Phe	Ile	Glu	Leu	Thr	Pro
				110				115					120	
Pro	Ala	Lys	Arg	Gly	Glu	Lys	Gly	Leu	Leu	Glu	Phe	Ala	Thr	Leu
				125				130					135	
Gln	Gly	Pro	Cys	His	Pro	Thr	Leu	Arg	Phe	Gly	Gly	Lys	Arg	Leu
				140				145					150	
Met	Glu	Lys	Ala	Ser	Leu	Pro	Ser	Pro	Pro	Leu	Gly	Leu	Cys	Gly
				155				160					165	
Lys	Asn	Pro	Met	Val	Ile	Pro	Gly	Asn	Ala	Asp	His	Leu	His	Arg
				170				175					180	
Thr	Ser	Ile	His	Gln	Leu	Pro	Pro	Ala	Thr	Asn	Arg	Leu	Ala	Thr
				185				190					195	
His	Trp	Glu	Pro	Cys	Leu	Trp	Ala	Gln	Thr	Glu	Arg	Leu	Cys	Cys
				200				205					210	
Cys	Phe	Leu	Cys	Pro	Val	Arg	Ser	Pro	Gly	Asp	Gly	Gly	Pro	His
				215				220					225	

Asp Val Phe Thr Ser Leu Pro Ser Asp Cys Gln Leu Gly Ser Arg
230 235 240
Arg Leu Glu Thr Thr Cys Leu Glu Leu Trp Leu Gly Leu Leu His
245 250 255
Gly Leu Ala Leu Leu His Leu Leu His Gly Val Gly Cys His His
260 265 270
Leu Gln His Val His Gln Asp Gly Ala Gly Val Gln Val Gln Ala
275 280 285

<210> 273
<211> 1158
<212> DNA
<213> Homo sapiens

<400> 273
aacttggagg aaagaaaagaa aggtcagctt tggcccgat gtggttaccc 50
cttggtctcc tgtctttatg tctttctcct cttcctattc tgtcatctcc 100
ctcacttaag tctcaggcct gtcagcagct cctgtggaca ttgccatccc 150
ctctggtagc ctgcagagca aacaggacaa cctatgttat ggatgttcc 200
accaccagg gtagtggcat ggagcaccgt aaccatctgt gcttctgtga 250
tctctatgac agagccactt ctccacctct gaaatgttcc ctgctctgaa 300
atctggcatg agatggcaca ggtgaccacg cagaagccac cagaatcttg 350
cctgccttat tcctcctccc aagtctgttc tcttattgtc aacctcagca 400
caacaggctg ggcataatgg cattacagag aaagcaatct gtgtggctag 450
tggcagatt accatgcaag ccccaggaga aatggaggag cttttagcc 500
accccccgt cagccagtat taacatgtcc cttccccct gccccggcg 550
agattcagga cattcgcccc tgtgtgccac caaaccagga cttccctt 600
ggcttggcat ccctggctct ctcctggcac ccagcaagac gtctgttcca 650
ggcagtgtt gcatcttca agctccgtt ctagggcgat ggcattgtatg 700
ttacaatccc acttgcctga ataatcaagt gggaaaggaa agcagaggaa 750
aatggggcca tgtgaatgca gctgctctgt tctccctacc ctgaggaaaa 800
accaaaggaa agcaacagga acttctgcaa ctggtttta tcggaaagat 850
catcctgcct gcagatgctg ttgaaggggc acaagaaatg tagctggaga 900
agattgatga aagtgcaggt gtgtaaaggaa atagaacagt ctgctggag 950
tcagacctgg aattctgatt ccaaactttt tattactttg ggaagtcaact 1000

cagcctcccc gtagccatct ccagggtgac ggaacccagt gtattacctg 1050
ctggaaccaa ggaaactaac aatgttagtt actagtgaat accccaatgg 1100
tttctccaat tatgcccatg ccaccaaaac aataaaacaa aattctctaa 1150
cactgaaa 1158

<210> 274
<211> 86
<212> PRT
<213> Homo sapiens

<400> 274
Met Trp Leu Pro Leu Gly Leu Leu Ser Leu Cys Leu Ser Pro Leu
1 5 10 15
Pro Ile Leu Ser Ser Pro Ser Leu Lys Ser Gln Ala Cys Gln Gln
20 25 30
Leu Leu Trp Thr Leu Pro Ser Pro Leu Val Ala Phe Arg Ala Asn
35 40 45
Arg Thr Thr Tyr Val Met Asp Val Ser Thr Asn Gln Gly Ser Gly
50 55 60
Met Glu His Arg Asn His Leu Cys Phe Cys Asp Leu Tyr Asp Arg
65 70 75
Ala Thr Ser Pro Pro Leu Lys Cys Ser Leu Leu
80 85

<210> 275
<211> 2694
<212> DNA
<213> Homo sapiens

<400> 275
gtagcgcgtc ttgggtctcc cggctgccgc tgctgccgcc gccgcctcg 50
gtcgtggagc caggagcgac gtcaccgcca tggcaggcat caaagcttg 100
attagttgt ccttggagg agcaatcgga ctgatgttt tgatgcttg 150
atgtgccctt ccaatataca acaaatactg gcccctcttt gttctat 200
tttacatcct ttcacctatt ccatactgca tagcaagaag attagttggat 250
gatacagatg ctatgagtaa cgcttgtaag gaacttgcca tctttcttac 300
aacgggcatt gtcgtgtcag cttttggact ccctattgta tttgccagag 350
cacatctgat tgagtggga gcttgtgcac ttgttctcac aggaaaacaca 400
gtcatcttg caactatact aggcttttc ttggctttg gaagcaatga 450
cgacttcagc tggcagcagt ggtgaaaaga aattactgaa ctattgtcaa 500

atggacttcc tgtcatttgt tggccattca cgcacacagg agatggggca 550
gttaatgctg aatggtatacg caagccttgc ggggttattt taggtgctcc 600
cttctcaattt ttattgtaaag catactattt tcacagagac ttgctgaagg 650
ataaaaagga ttttctttt tggaaaagct tgactgattt cacacttac 700
tatagtatgc tttttgtggt gtccctgctga atttaaatat ttatgtgttt 750
ttcctgttag gttgattttt ttttggaaatca atatgcaatg ttaaacactt 800
tttaaatgtatcatttgca ttgggttagga attcagaatt ccggccggctc 850
tattactggt caagtacatc ttttcttta aaattattta gcctccattta 900
ttacaaaaaa ttataaaaaat aagttttcag tcagtcagga tgacatcact 950
cccaatgtta tgcagacata cagacggttg gcatacgta tagactgtat 1000
actcagtgcataatatacgctg catttataacc tcagaggggc caagtgttaa 1050
tgcccatgcc ctccgttaag ggttgggtt tttactggta gacagatgtt 1100
ttgtggatttggaaaatttattt tatggaaatttgc acagagggtaa 1150
tctcaatttgt tagaagaattt tatgttaaac tttaaggtaa gggtgtaaaa 1200
acatttttga gataaggttt ttatattgtt ttattattgt tagagtgggt 1250
tgcaatgtgg gaagaaatga cattgaaattt ccagtttttgc aatcctgttt 1300
ctatttataa gtgaaatttgc tcatcttcata tcaacccccc atgttttacc 1350
ctgttaaaat ggacatacat ggaaccacta ctgatgaggg acagttgtat 1400
gtttgcataca tatatgccag aaaacccccc tctgcttcctt ccttttgcact 1450
tatttggat gttgtatata ttacataaaaa taactttca aatatacggtt 1500
aataacactt agaagtgttt acttacctgg aaaataatttgc ctatgccgt 1550
cattcagagt gccccctccc ctgcaaggcc ttgccatgtat taacaagtaa 1600
cttggtagtc ttacagataa ttcatgcattt aacagttaa gattttagacc 1650
atggtaatag tagttcttat tctctaaggat tatatcatat gtaatttaaa 1700
agtattttta agacaagttt cctgtataacc tctgaactgtt tttgattttg 1750
agttcatcat gatagatctg ctgtttccctt ataaaaggca tttgttgggt 1800
gagttaatgc aaagtagcca agtccagctatatacgatctt tcagaaacat 1850
acccgtacccaa aaaattccca gtaaccaggc atgatcaattt tatagtggtc 1900
gtttacatct aataattatc aggactttt tcaggagttt gttataaaaa 1950

cattcaagtt ggtctgacag tattttgtta aggatattt 2000
tattcagtat acttacataa aaattatttc gccatcagcc aaaactcagt 2050
aatcatgaca gctgtctgtt gtttatgaa gtttatttct caagaaaatg 2100
ggaataaatt tgggatttgt tcagctttt tactaaagat gcctaaagcc 2150
acaggttta ttgcctaact taagccatga cttagata tgagatgacg 2200
ggaagcagga cgaaatatcg gcgtgtggct ggagccttcc cactggaggc 2250
tgaaaagtggc ttgtggtatt ataatgttca gattcaaga ggaaggtgca 2300
ggtacacatg agtttagagag ctggtgagac agttggAAC tctttgtgct 2350
tgtgatctac tggactttt tttgcagga agtgcattct ctggcccttc 2400
cctattttct gttctggatg tcagtgcagt gcactgctac tgtttatcc 2450
acttggccac agacttttc taacagctgc gtattatttc tatataactaa 2500
ttgcattggc agcattgtgt ctttgacctt gtatactagc ttgacatagt 2550
gctgtctctg atttctaggc tagttacttg agatatgaat ttccataga 2600
atatgcactg atacaacatt accattcttc tatggaaaga aaactttga 2650
tgatgaaaca ataaagattt taaatatcta tttaaaaaaa aaaa 2694

<210> 276

<211> 131

<212> PRT

<213> Homo sapiens

<400> 276

Met	Ala	Gly	Ile	Lys	Ala	Leu	Ile	Ser	Leu	Ser	Phe	Gly	Gly	Ala
1					5				10					15

Ile	Gly	Leu	Met	Phe	Leu	Met	Leu	Gly	Cys	Ala	Leu	Pro	Ile	Tyr
			20					25					30	

Asn	Lys	Tyr	Trp	Pro	Leu	Phe	Val	Leu	Phe	Phe	Tyr	Ile	Leu	Ser
				35					40				45	

Pro	Ile	Pro	Tyr	Cys	Ile	Ala	Arg	Arg	Leu	Val	Asp	Asp	Thr	Asp
				50					55				60	

Ala	Met	Ser	Asn	Ala	Cys	Lys	Glu	Leu	Ala	Ile	Phe	Leu	Thr	Thr
					65				70				75	

Gly	Ile	Val	Val	Ser	Ala	Phe	Gly	Leu	Pro	Ile	Val	Phe	Ala	Arg
				80				85					90	

Ala	His	Leu	Ile	Glu	Trp	Gly	Ala	Cys	Ala	Leu	Val	Leu	Thr	Gly
					95				100				105	

Asn Thr Val Ile Phe Ala Thr Ile Leu Gly Phe Phe Leu Val Phe

110

115

120

Gly Ser Asn Asp Asp Phe Ser Trp Gln Gln Trp
125 130

<210> 277

<211> 4104

<212> DNA

<213> Homo sapiens

<400> 277

cccacgcgtc cgccccacgct tccggcccacg cgtccggcca cgcgtccgcc 50

cacgcgtccg cccacgcgtc cgccccacgct tccgggtgcaa gctcgcccg 100

cacactgcct ggtggaggga aggagcccg ggcgcctctcg ccgctccccg 150

cgccgcgcgtc cgcacctccc cacccgcgcg cggccgcgc cccgcgcgg 200

caaagcatga gtgagccgc tctctgcagc tgcccggggc gcgaatggca 250

ggctgtttcc gcggagtaaa aggtggcgcc ggtcagtggc cgtttccaat 300

gacggacatt aaccagactg tcagatcctg gggagtcgcg agcccccagt 350

ttggagtttt ttcccccac aacgtcacag tccgaactgc agagggaaag 400

gaaggcggca ggaaggcgaa gtcgggcgtc cggcacgtag ttgggaaact 450

tgcgggtcct agaagtcgc tccccgcctt gccggccgc ctgcagccc 500

cgagccgagc agcaaagtga gacattgtgc gcctgccaga tccgcggcc 550

gcggaccggg gctgcctcgg aaacacagag gggtcttc tgcgcctgca 600

tataattagc ctgcacacaa agggagcagc tgaatggagg ttgtcactct 650

ctggaaaagg atttctgacc gagcgcttcc aatggacatt ctccagtctc 700

tctggaaaga ttctcgctaa tggatttcct gctgctcggt ctctgtctat 750

actggctgct gaggaggccc tcgggggtgg tcttgtgtct gctggggcc 800

tgctttcaga tgctgcgcgc cgccccacgc gggtgccgc agctgtgccg 850

gtgcgagggg cggctgctgt actgcgaggc gctcaacctc accgaggcgc 900

cccacaacct gtccggcctg ctgggcttgc ccctgcgcta caacagcctc 950

tcggagctgc gcgcggcca gttcacgggg ttaatgcagc tcacgtggct 1000

ctatctggat cacaatcaca tctgctccgt gcagggggac gccttcaga 1050

aactgcgccg agttaaggaa ctcacgctga gttccaacca gatcacccaa 1100

ctgcccaca ccacccctcg gcccacgcgc aacctgcgca gcgtggaccc 1150

ctcgtaaac aagctgcagg cgctgcgcgc cgaccccttc cacgggctgc 1200

ggaagctcac cacgctgcat atgcgggcca acgccatcca gtttgcggcc 1250
gtgcgcacatct tccaggactg ccgcagcctc aagttctcg acatcgata 1300
caatcagctc aagagtctgg cgcgcaactc ttgcggccgc ttgtttaagc 1350
tcaccgagct gcacccctcgag cacaacgact tggtaaggt gaacttcgccc 1400
cacttccccgc gcctcatctc cctgcactcg ctctgcctgc ggaggaacaa 1450
ggtgtggcatt gtggtcagct cgctggactg ggttggaac ctggagaaaa 1500
tggacttgta gggcaacgag atcgagtaca tggagccccca tgtgttcgag 1550
accgtggcgc acctgcagtc cctgcagctg gactccaacc gcctcaccta 1600
catcgagccc cggatcctca actcttggaa gtccctgaca agcatcaccc 1650
tggccggaa cctgtggat tgccggcgca acgtgtgtgc cctagcctcg 1700
tggctcagca acttccaggg gcgcgtacgat ggcaacttgc agtgcgccag 1750
cccgaggtac gcacagggcg aggacgtcct ggacgcccgtg tacgccttcc 1800
acctgtgcga ggatggggcc gagcccacca gcccacccct gctctcgcc 1850
gtcaccaacc gcagtgtatct gggccccctt gccagctcgg ccaccacgt 1900
cgccggacggc ggggaggggc agcacgacgg cacattcgag cctgccaccc 1950
tggctcttcc aggcggcgag cacgcccaga acgcccgtca gatccacaag 2000
gtggtcacgg gcaccatggc cctcatcttc tccttcctca tcgtggctct 2050
ggtgctctac gtgtcttggaa agtgttccc agccagcctc aggtagctca 2100
gacagtgttttgtt tgcacgcag cgcaggaagc aaaagcagaa acagaccatg 2150
catcagatgg ctgcccattgtc tgcccaaggaa tactacgttg attacaaacc 2200
gaaccacatt gagggagccc tggtgatcat caacgagttt ggctcgtgt 2250
cctgccacca gcagcccccg aggaaatgctg aggtgtgatt gtcccagtgg 2300
ctctcaaccc atgcgttacc aaatacgccctt gggcagccgg gacggggccgg 2350
cgggcaccag gctggggctt cttgtctgt gctctgatat gctcccttgc 2400
tggaaacttta aggggatctc tcccagagac ttgacatttt agctttattt 2450
tgtcttaaaa acaaaaagcga attaaaaacac aacaaaaaaaaac cccacccac 2500
aaccttcagg acagtctatc ttaaatttca tatgagaact cttccctccc 2550
tttgaagatc tgcacatatt caggaatctg agagtgtaaa aaaggtggcc 2600
ataaqacaga gagagaataaa tcgtgttttgc ttttatgtca ctcctccac 2650

cctgcccattt attaaacatc atgtatgttag aagatcttaa gtccataacgc 2700
atttcatgaa gaaccattgg aaagaggaat ctgcaatctg ggagcttaag 2750
agcaaatgtat gaccatagaa agctatgttc ttactttgtg tgtgtgtctg 2800
tatgtttctg cgttgtgtgt cttttaggc aagcaaacgt tgtctacaca 2850
aacgggaatt tagtcacat catttcatgc ccctgtgcct ctagctctgg 2900
agattggtgg ggggagggtgg ggggaaacgg caggaataag ggaaagtgg 2950
agtttaact aagttttgt aacacttgaa atctttctt tctcaaatta 3000
attatcttta agcttcaaga aacttgctct gaccctcta agcaaactac 3050
taagcattta aaagagaatc taattttaa aggtgttagca cttttttttt 3100
tattcttccc acagagggtg ctaatctcat tatgtgtgc tatctgaaaa 3150
gaacttaagg ccacaattca cgtctcggtcc tggcattgt gatggattga 3200
ccctccattt gcagtacctt cccagctgat taaagttcag cagtggattt 3250
gaggttttc gaatattat atagaaaaaa agtctttca catgacaaat 3300
gacactctca caccagtctt agccctagta gtttttagg ttggaccaga 3350
ggaagcaggt taaatgagac ctgtcctctg ctgcactcag aaaaaatagg 3400
cagtccttga tgctcagatc ttgccttga tattaatagt tgagaccacc 3450
tacccacaat gcagcctata ctcccaagac tacaaagtta ccatcgaaa 3500
ggaaaggta ttccagtaaa aggaaatagt tttctcaacc attaaaaat 3550
attcttctga actcatcaaa gtagaagagc ccccaacctt ttctctctgc 3600
cttcaagaag gcagacattt ggtatgattt agcatcaaca acacatttat 3650
gagtatatgt aagtaatcag aggggcaaat gccacttggt attcctccca 3700
agttttccaa gcaagtacac acagatctt ggttaggatta ggggccactt 3750
gtgtttccgg cttatTTTTCAG tcgacttgatc agcaagtttgc atgccttagtc 3800
tatctgacat ggcccgatgg aacagggcat tggatggatca catgagatgg 3850
tagaaggaac atcatcacat acccctctca cagagaaaat tatcaaagaa 3900
ccagaaattt tatctgtttt ggagcaagag tggatggatca catgagatgg 3950
gtcaaaataa acataaatta tctcctctca atgagttggcg atgttggctg 4000
atTTGGGTCTT ggcattgaca gaatgtcaaa taaaaaggaa ttggatggatca 4050
tatgaccatt aaatgtgctt ctgaaatata ttttgagata ggTTTGAAT 4100

gtca 4104

<210> 278

<211> 522

<212> PRT

<213> Homo sapiens

<400> 278

Met Asp Phe Leu Leu Leu Gly Leu Cys Leu Tyr Trp Leu Leu Arg
1 5 10 15

Arg Pro Ser Gly Val Val Leu Cys Leu Leu Gly Ala Cys Phe Gln
20 25 30

Met Leu Pro Ala Ala Pro Ser Gly Cys Pro Gln Leu Cys Arg Cys
35 40 45

Glu Gly Arg Leu Leu Tyr Cys Glu Ala Leu Asn Leu Thr Glu Ala
50 55 60

Pro His Asn Leu Ser Gly Leu Leu Gly Leu Ser Leu Arg Tyr Asn
65 70 75

Ser Leu Ser Glu Leu Arg Ala Gly Gln Phe Thr Gly Leu Met Gln
80 85 90

Leu Thr Trp Leu Tyr Leu Asp His Asn His Ile Cys Ser Val Gln
95 100 105

Gly Asp Ala Phe Gln Lys Leu Arg Arg Val Lys Glu Leu Thr Leu
110 115 120

Ser Ser Asn Gln Ile Thr Gln Leu Pro Asn Thr Thr Phe Arg Pro
125 130 135

Met Pro Asn Leu Arg Ser Val Asp Leu Ser Tyr Asn Lys Leu Gln
140 145 150

Ala Leu Ala Pro Asp Leu Phe His Gly Leu Arg Lys Leu Thr Thr
155 160 165

Leu His Met Arg Ala Asn Ala Ile Gln Phe Val Pro Val Arg Ile
170 175 180

Phe Gln Asp Cys Arg Ser Leu Lys Phe Leu Asp Ile Gly Tyr Asn
185 190 195

Gln Leu Lys Ser Leu Ala Arg Asn Ser Phe Ala Gly Leu Phe Lys
200 205 210

Leu Thr Glu Leu His Leu Glu His Asn Asp Leu Val Lys Val Asn
215 220 225

Phe Ala His Phe Pro Arg Leu Ile Ser Leu His Ser Leu Cys Leu
230 235 240

Arg Arg Asn Lys Val Ala Ile Val Val Ser Ser Leu Asp Trp Val
245 250 255

Trp Asn Leu Glu Lys Met Asp Leu Ser Gly Asn Glu Ile Glu Tyr
 260 265 270
 Met Glu Pro His Val Phe Glu Thr Val Pro His Leu Gln Ser Leu
 275 280 285
 Gln Leu Asp Ser Asn Arg Leu Thr Tyr Ile Glu Pro Arg Ile Leu
 290 295 300
 Asn Ser Trp Lys Ser Leu Thr Ser Ile Thr Leu Ala Gly Asn Leu
 305 310 315
 Trp Asp Cys Gly Arg Asn Val Cys Ala Leu Ala Ser Trp Leu Ser
 320 325 330
 Asn Phe Gln Gly Arg Tyr Asp Gly Asn Leu Gln Cys Ala Ser Pro
 335 340 345
 Glu Tyr Ala Gln Gly Glu Asp Val Leu Asp Ala Val Tyr Ala Phe
 350 355 360
 His Leu Cys Glu Asp Gly Ala Glu Pro Thr Ser Gly His Leu Leu
 365 370 375
 Ser Ala Val Thr Asn Arg Ser Asp Leu Gly Pro Pro Ala Ser Ser
 380 385 390
 Ala Thr Thr Leu Ala Asp Gly Gly Glu Gln His Asp Gly Thr
 395 400 405
 Phe Glu Pro Ala Thr Val Ala Leu Pro Gly Gly Glu His Ala Glu
 410 415 420
 Asn Ala Val Gln Ile His Lys Val Val Thr Gly Thr Met Ala Leu
 425 430 435
 Ile Phe Ser Phe Leu Ile Val Val Leu Val Leu Tyr Val Ser Trp
 440 445 450
 Lys Cys Phe Pro Ala Ser Leu Arg Gln Leu Arg Gln Cys Phe Val
 455 460 465
 Thr Gln Arg Arg Lys Gln Lys Gln Lys Gln Thr Met His Gln Met
 470 475 480
 Ala Ala Met Ser Ala Gln Glu Tyr Tyr Val Asp Tyr Lys Pro Asn
 485 490 495
 His Ile Glu Gly Ala Leu Val Ile Ile Asn Glu Tyr Gly Ser Cys
 500 505 510
 Thr Cys His Gln Gln Pro Ala Arg Glu Cys Glu Val
 515 520

<210> 279

<211> 46

<212> DNA

<213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

 <400> 279
 tccgtgcagg gggacgcctt tcagaaactg cgccgagtta aggaac 46

 <210> 280
 <211> 709
 <212> DNA
 <213> Homo sapiens

 <400> 280
 gtgcaaggag ccgaggcgag atgggcgtcc tgggccgggt cctgctgtgg 50
 ctgcagctct gcgcactgac ccaggcggtc tccaaactct gggccccaa 100
 cacggacttc gacgtcgag ccaactggag ccagaaccgg accccgtgcg 150
 ccggcggcgc cgttgagttc ccggcggaca agatgggtgc agtcctggtg 200
 caagaaggtc acgccgtctc agacatgctc ctgcccgtgg atgggaaact 250
 cgccctggct tcaggagccg gattcggcgt ctcagacgtg ggctcgcacc 300
 tggactgtgg cgccggcgaa cctgcccgtct tccgcgactc tgaccgcttc 350
 tcctggcatg acccgacacct gtggcgctct gggacgagg cacctggcct 400
 cttcttcgtg gacgcccggc gcgtgcctg ccggccacgac gacgtcttct 450
 ttccgcctag tgcctccttc cgcgtggggc tcggccctgg cgctagcccc 500
 gtgcgtgtcc gcagcatctc ggctctgggc cggacgttca cgccgcacga 550
 ggacctggct gtttcctgg cgtcccggc gggccgccta cgcttccacg 600
 ggccggcgcg cgtgagcgtg ggccccgagg actgcgcgga cccgtcgggc 650
 tgcgtctgcg gcaacgcgga ggcgcagccg tggatctgcg cggccctgt 700
 ccagccccct 709

 <210> 281
 <211> 229
 <212> PRT
 <213> Homo sapiens

 <400> 281
 Met Gly Val Leu Gly Arg Val Leu Leu Trp Leu Gln Leu Cys Ala
 1 5 10 15

 Leu Thr Gln Ala Val Ser Lys Leu Trp Val Pro Asn Thr Asp Phe
 20 25 30

 Asp Val Ala Ala Asn Trp Ser Gln Asn Arg Thr Pro Cys Ala Gly
 35 40 45

 Gly Ala Val Glu Phe Pro Ala Asp Lys Met Val Ser Val Leu Val

50	55	60
Gln Glu Gly His Ala Val Ser Asp Met Leu Leu Pro Leu Asp Gly		
65	70	75
Glu Leu Val Leu Ala Ser Gly Ala Gly Phe Gly Val Ser Asp Val		
80	85	90
Gly Ser His Leu Asp Cys Gly Ala Gly Glu Pro Ala Val Phe Arg		
95	100	105
Asp Ser Asp Arg Phe Ser Trp His Asp Pro His Leu Trp Arg Ser		
110	115	120
Gly Asp Glu Ala Pro Gly Leu Phe Phe Val Asp Ala Glu Arg Val		
125	130	135
Pro Cys Arg His Asp Asp Val Phe Phe Pro Pro Ser Ala Ser Phe		
140	145	150
Arg Val Gly Leu Gly Pro Gly Ala Ser Pro Val Arg Val Arg Ser		
155	160	165
Ile Ser Ala Leu Gly Arg Thr Phe Thr Arg Asp Glu Asp Leu Ala		
170	175	180
Val Phe Leu Ala Ser Arg Ala Gly Arg Leu Arg Phe His Gly Pro		
185	190	195
Gly Ala Leu Ser Val Gly Pro Glu Asp Cys Ala Asp Pro Ser Gly		
200	205	210
Cys Val Cys Gly Asn Ala Glu Ala Gln Pro Trp Ile Cys Ala Ala		
215	220	225
Leu Leu Gln Pro		

<210> 282
 <211> 644
 <212> DNA
 <213> Homo sapiens

<400> 282
 atcgcatcaa ttgggagttac catcttcctc atgggaccag tgaaacagct 50
 gaagcgaatg tttgagccata ctcgtttgat tgcaactatc atggtgctgt 100
 tgtgtttgc acttaccctg ttttctgcct ttttgtggca taacaaggga 150
 cttgcactta tcttctgcat tttgcagtct ttggcattga cgtggtagac 200
 ctttccttc ataccatttg caagggatgc tgtgaagaag tgtttgccg 250
 tgtgtcttgc ataattcatg gccagttta tgaagctttg gaaggcacta 300
 tggacagaag ctggtgacaa gttttgtaac tatcttcgaa acctctgtct 350

tacagacatg tgcctttat cttgcagcaa tgtgttgctt gtgattcgaa 400
catttgaggg ttactttgg aagcaacaat acattctcgaa acctgaatgt 450
cagtagcaca ggatgagaag tgggttctgt atcttgtgga gtggaatctt 500
cctcatgtac ctgttcctc tctggatgtt gtcccactga attcccatga 550
atacaaacct attcagcaac agcaaaaaaa aaaaaaaaaa aaaaaaaaaa 600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 644

<210> 283

<211> 77

<212> PRT

<213> Homo sapiens

<400> 283

Met	Gly	Pro	Val	Lys	Gln	Leu	Lys	Arg	Met	Phe	Glu	Pro	Thr	Arg
1				5					10				15	

Leu	Ile	Ala	Thr	Ile	Met	Val	Leu	Leu	Cys	Phe	Ala	Leu	Thr	Leu
				20					25				30	

Cys	Ser	Ala	Phe	Trp	Trp	His	Asn	Lys	Gly	Leu	Ala	Leu	Ile	Phe
				35					40				45	

Cys	Ile	Leu	Gln	Ser	Leu	Ala	Leu	Thr	Trp	Tyr	Ser	Leu	Ser	Phe
				50					55				60	

Ile	Pro	Phe	Ala	Arg	Asp	Ala	Val	Lys	Lys	Cys	Phe	Ala	Val	Cys
				65					70				75	

Leu Ala

<210> 284

<211> 2623

<212> DNA

<213> Homo sapiens

<400> 284

ttgagcgcag gtgagctcct gcgcgttccg gggcggttcc tccagtcacc 50

ctccccgcgt tacccgcggc gcgcggagg gagtctcctc cagaccctcc 100

ctccccgttgc tccaaactaa tacggactga acggatcgct gcgagggtgg 150

gagagaaaat tagggggaga aaggacagag agagcaacta ccatccatag 200

ccagatagat tatcttacac tgaactgatc aagtactttg aaaatgactt 250

cggaaatttat cttgggtgtcc ttcatacttg ctgcactgag tctttcaacc 300

acctttctc tccaaactaga ccagcaaaag gttctactag tttctttga 350

tggattccgt tgggattact tatataaagt tccaaacgccc cattttcatt 400

atattatgaa atatgggtt cacgtgaagc aagttactaa tgttttatt 450
acaaaaaacct accctaacca ttatactttg gtaactggcc tcttcgcaga 500
gaatcatggg attgttgcaa atgatatgtt tgatcctatt cggaacaaat 550
ctttctcctt ggatcacatg aatatttatg attccaagtt ttgggaagaa 600
gcgacaccaa tatggatcac aaaccagagg gcaggacata ctagggtgc 650
agccatgtgg cccggaacag atgtaaaaat acataagcgc tttcctactc 700
attacatgcc ttacaatgag tcagttcat ttgaagatag agttgccaaa 750
attgttgaat ggttacgtc aaaagagccc ataaatcttgc tcttctcta 800
ttgggaagac cctgatgaca tggccacca tttggacact gacagtccgc 850
tcatggggcc tgtcatttca gatattgaca agaagttagg atatctcata 900
caaatgctga aaaaggcaaa gttgtggAAC actctgaacc taatcatcac 950
aagtgatcat ggaatgacgc agtgctctga ggaaaggTTA atagaacttg 1000
accagtagct ggataaaagac cactataccc tgattgatca atctccagta 1050
gcagccatct tgccaaaaga aggtaaattt gatgaagtct atgaagcact 1100
aactcacgct catcctaattc ttactgttta caaaaaagaa gacgttccag 1150
aaaggtggca ttacaaatac aacagtcgaa ttcaaccaat catagcagt 1200
gctgatgaag ggtggcacat tttacagaat aagtcagatg actttctgtt 1250
aggcaaccac ggttacgata atgcgttagc agatatgcat ccaatatttt 1300
tagcccatgg tcctgccttc agaaagaatt tctccaaaaga agccatgaac 1350
tccacagatt tgtacccact actatgccac ctccctcaata tcactgcccatt 1400
gccacacaat ggatcattct ggaatgtcca ggatctgctc aattcagcaa 1450
tgccaaagggt ggtcccttat acacagagta ctatactcct ccctggtagt 1500
gttaaaccag cagaatatga ccaagagggg tcataccctt atttcatagg 1550
ggtctctctt ggcagcatta tagtgattgt attttttgtt attttcatta 1600
agcatttaat tcacagtcaa atacctgcct tacaagatat gcatgctgaa 1650
atagctcaac cattattaca agcctaattgt tactttgaag tggatttgca 1700
tattgaagtg gagattccat aattatgtca gtgtttaaag gtttcaaatt 1750
ctgggaaacc agttccaaac atctgcagaa accattaagc agttacatat 1800
ttaggtatac acacacacac acacacacac atacacacac acggaccaaa 1850

atacttacac ctgcaaagga ataaagatgt gagagtatgt ctccattgtt 1900
cactgttagca tagggataga taagatcctg ctttatttgg acttggcgca 1950
gataatgtat atatttagca actttgcact atgtaaagta ccttatatat 2000
tgcactttaa atttotctcc tgatgggtac tttaatttga aatgcactt 2050
atggacagtt atgtcttata acttgattga aaatgacaac ttttgacacc 2100
catgtcacag aataactgtt acgcattgtt caaactgaag gaaatttcta 2150
ataatcccga ataatgaaca tagaaatcta tctccataaa ttgagagaag 2200
aagaaggta taagtgttga aaattaaatg tgataacctt tgaaccttga 2250
attttggaga tgtattccca acagcagaat gcaactgtgg gcatttctt 2300
tcttatttct ttccagagaa cgtggtttc atttatttt ccctcaaaag 2350
agagtcaaat actgacagat tcgttctaaa tatattgttt ctgtcataaa 2400
attattgtga ttccctgatg agtcatatta ctgtgattt cataataatg 2450
aagacaccat gaatatactt ttcttctata tagttcagca atggcctgaa 2500
tagaagcaac caggcaccat ctcagcaatg ttttctcttg tttgtaatta 2550
tttgctcctt tgaaaattaa atcactatta attacattaa aaatcaaatt 2600
ggataaaaaa aaaaaaaaaa aaa 2623

<210> 285

<211> 477

<212> PRT

<213> Homo sapiens

<400> 285

Met	Thr	Ser	Lys	Phe	Ile	Leu	Val	Ser	Phe	Ile	Leu	Ala	Ala	Leu
1														15

Ser	Leu	Ser	Thr	Thr	Phe	Ser	Leu	Gln	Leu	Asp	Gln	Gln	Lys	Val
														30

Leu	Leu	Val	Ser	Phe	Asp	Gly	Phe	Arg	Trp	Asp	Tyr	Leu	Tyr	Lys
														45

Val	Pro	Thr	Pro	His	Phe	His	Tyr	Ile	Met	Lys	Tyr	Gly	Val	His
														60

Val	Lys	Gln	Val	Thr	Asn	Val	Phe	Ile	Thr	Lys	Thr	Tyr	Pro	Asn
														75

His	Tyr	Thr	Leu	Val	Thr	Gly	Leu	Phe	Ala	Glu	Asn	His	Gly	Ile
														90

Val	Ala	Asn	Asp	Met	Phe	Asp	Pro	Ile	Arg	Asn	Lys	Ser	Phe	Ser
														105

Leu Asp His Met Asn Ile Tyr Asp Ser Lys Phe Trp Glu Glu Ala
 110 115 120
 Thr Pro Ile Trp Ile Thr Asn Gln Arg Ala Gly His Thr Ser Gly
 125 130 135
 Ala Ala Met Trp Pro Gly Thr Asp Val Lys Ile His Lys Arg Phe
 140 145 150
 Pro Thr His Tyr Met Pro Tyr Asn Glu Ser Val Ser Phe Glu Asp
 155 160 165
 Arg Val Ala Lys Ile Val Glu Trp Phe Thr Ser Lys Glu Pro Ile
 170 175 180
 Asn Leu Gly Leu Leu Tyr Trp Glu Asp Pro Asp Asp Met Gly His
 185 190 195
 His Leu Gly Pro Asp Ser Pro Leu Met Gly Pro Val Ile Ser Asp
 200 205 210
 Ile Asp Lys Lys Leu Gly Tyr Leu Ile Gln Met Leu Lys Lys Ala
 215 220 225
 Lys Leu Trp Asn Thr Leu Asn Leu Ile Ile Thr Ser Asp His Gly
 230 235 240
 Met Thr Gln Cys Ser Glu Glu Arg Leu Ile Glu Leu Asp Gln Tyr
 245 250 255
 Leu Asp Lys Asp His Tyr Thr Leu Ile Asp Gln Ser Pro Val Ala
 260 265 270
 Ala Ile Leu Pro Lys Glu Gly Lys Phe Asp Glu Val Tyr Glu Ala
 275 280 285
 Leu Thr His Ala His Pro Asn Leu Thr Val Tyr Lys Lys Glu Asp
 290 295 300
 Val Pro Glu Arg Trp His Tyr Lys Tyr Asn Ser Arg Ile Gln Pro
 305 310 315
 Ile Ile Ala Val Ala Asp Glu Gly Trp His Ile Leu Gln Asn Lys
 320 325 330
 Ser Asp Asp Phe Leu Leu Gly Asn His Gly Tyr Asp Asn Ala Leu
 335 340 345
 Ala Asp Met His Pro Ile Phe Leu Ala His Gly Pro Ala Phe Arg
 350 355 360
 Lys Asn Phe Ser Lys Glu Ala Met Asn Ser Thr Asp Leu Tyr Pro
 365 370 375
 Leu Leu Cys His Leu Leu Asn Ile Thr Ala Met Pro His Asn Gly
 380 385 390
 Ser Phe Trp Asn Val Gln Asp Leu Leu Asn Ser Ala Met Pro Arg

395	400	405
Val Val Pro Tyr Thr Gln Ser Thr Ile Leu Leu Pro Gly Ser Val		
410	415	420
Lys Pro Ala Glu Tyr Asp Gln Glu Gly Ser Tyr Pro Tyr Phe Ile		
425	430	435
Gly Val Ser Leu Gly Ser Ile Ile Val Ile Val Phe Phe Val Ile		
440	445	450
Phe Ile Lys His Leu Ile His Ser Gln Ile Pro Ala Leu Gln Asp		
455	460	465
Met His Ala Glu Ile Ala Gln Pro Leu Leu Gln Ala		
470	475	

<210> 286

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 286

```

ggattttgt gatccgcgt tcgctccac gggcgccacc tttgttaactg 50
cgggaggccc aggacaggcc caccctgcgg ggcggggaggc agccggggtg 100
agggaggtga agaaaccaag acgcagagag gccaagcccc ttgccttggg 150
tcacacagcc aaaggaggca gagccagaac tcacaaccag atccagagggc 200
aacagggaca tggcccacctg ggacgaaaag gcagtcaccc gcagggccaa 250
ggtggtctcc gctgagagga tgagcaagtt cttaaggcac ttcacggctcg 300
tgggagacga ctaccatgcc tggAACATCA actacaagaa atgggagaat 350
gaagaggagg aggaggagga ggagcagcca ccacccacac cagtctcagg .400
cgaggaaggc agagctgcag cccctgacgt tgccctgccc cctggccccc 450
cacccagggc ccccttgac ttcaggggca tggtaggaa actgttcagc 500
tcccacaggt ttcatgtcat catcatctgc ttgggtgttc tggatgcct 550
cctgggtctt gctgagctca tcctggacct gaagatcatc cagccccaca 600
agaataacta tgctgccatg gtattccact acatgagcat caccatctt 650
gtcttttta tggatggagat catctttaaa ttattttgtct tccgccttag 700
ttctttcacc acaagttga gatcctggat gcccgtcggt gtgggtgtct 750
cattcatcct ggacattgtc ctccctgttcc aggaggacca gtttgaggct 800
ctgggcctgc tgattctgtct ccggctgtgg cgggtggccc ggatcatcaa 850
tgggattatc atctcagtta agacacgttc agaacggcaa ctcttaaggt 900

```

taaaacagat gaatgtacaa ttggccgcca agattcaaca ccttgagttc 950
agctgctctg agaagcccct ggactgatga gtttgctgta tcaaccctgta 1000
aggagaagct ctctccggat ggctatggga atgaaaagaat ccgacttcta 1050
ctctcacaca gccaccgtga aagtccctgga gtaaaaatgtg ctgtgtacag 1100
aagagagaga aggaagcagg ctggcatgtt cactgggctg gtgttacgac 1150
agagaacctg acagtcactg gccagttatc acttcagatt acaaattcaca 1200
cagagcatct gcctgtttc aatcacaaga gaacaaaacc aaaatctata 1250
aagatattct gaaaatatga cagaatttga caaataaaaag cataaacgtg 1300
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 1337

<210> 287

<211> 255

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Thr Trp Asp Glu Lys Ala Val Thr Arg Arg Ala Lys Val
1 5 10 15

Ala Pro Ala Glu Arg Met Ser Lys Phe Leu Arg His Phe Thr Val
20 25 30

Val Gly Asp Asp Tyr His Ala Trp Asn Ile Asn Tyr Lys Lys Trp
35 40 45

Glu Asn Glu Glu Glu Glu Glu Glu Gln Pro Pro Pro Thr
50 55 60

Pro Val Ser Gly Glu Gly Arg Ala Ala Ala Pro Asp Val Ala
65 70 75

Pro Ala Pro Gly Pro Ala Pro Arg Ala Pro Leu Asp Phe Arg Gly
80 85 90

Met Leu Arg Lys Leu Phe Ser Ser His Arg Phe Gln Val Ile Ile
95 100 105

Ile Cys Leu Val Val Leu Asp Ala Leu Leu Val Leu Ala Glu Leu
110 115 120

Ile Leu Asp Leu Lys Ile Ile Gln Pro Asp Lys Asn Asn Tyr Ala
125 130 135

Ala Met Val Phe His Tyr Met Ser Ile Thr Ile Leu Val Phe Phe
140 145 150

Met Met Glu Ile Ile Phe Lys Leu Phe Val Phe Arg Leu Ser Ser
155 160 165

Phe Thr Thr Ser Leu Arg Ser Trp Met Pro Val Val Val Val

170 175 180

Ser Phe Ile Leu Asp Ile Val Leu Leu Phe Gln Glu His Gln Phe
185 190 195

Glu Ala Leu Gly Leu Leu Ile Leu Leu Arg Leu Trp Arg Val Ala
200 205 210

Arg Ile Ile Asn Gly Ile Ile Ile Ser Val Lys Thr Arg Ser Glu
215 220 225

Arg Gln Leu Leu Arg Leu Lys Gln Met Asn Val Gln Leu Ala Ala
230 235 240

Lys Ile Gln His Leu Glu Phe Ser Cys Ser Glu Lys Pro Leu Asp
245 250 255

<210> 288

<211> 3334

<212> DNA

<213> Homo sapiens

<400> 288

cggtctcgagc tcgagccgaa tcggctcgag gggcagtggaa gcacccagca 50
ggccgc当地 atgctctgtc tgtgcctgtta cgtgccggtc atcggggaaag 100
cccagaccga gttccagttac tttgagtcga aggggctccc tgccgagctg 150
aagtccattt tcaagctcag tgtcttcatc ccctcccagg aattctccac 200
ctaccgccag tggaagcaga aaattgtaca agctggagat aaggaccttg 250
atgggcagct agactttgaa gaatttgcattt attatctcca agatcatgag 300
aagaagctga ggctgggttt taagatttg gacaaaaaga atgatggacg 350
cattgacgca caggagatca tgcagtcct gcgggacttg ggagtcaaga 400
tatctgaaca gcagggcagaa aaaattctca agagcatggaa taaaaacggc 450
acgatgacca tcgactggaa cgagtggaga gactaccacc tcctccaccc 500
cgtggaaaac atccccgaga tcatcctcta ctggaaagcat tccacgatct 550
ttgatgtggg tgagaatcta acggtcccgg atgagttcac agtggaggag 600
aggcagacgg ggatgtggtg gagacacctg gtggcaggag gtggggcagg 650
ggccgtatcc agaacctgca cggcccccct ggacaggctc aaggtgctca 700
tgcaggtcca tgcctccgc agcaacaaca tggcatttgt tggggcttc 750
actcagatga ttcgagaagg agggggccagg tcactctggc ggggcaatgg 800
catcaacgta ctcaaaatttgc cccccgaatc agccatcaaa ttcatggcct 850
atgagcagat caagcgcctt gttggtagtg accaggagac tctgaggatt 900

cacgagaggc ttgtggcagg gtccttggca ggggccatcg cccagagcag 950
catctaccca atggaggtcc tgaagacccg gatggcgctg cggaagacag 1000
gccagtactc aggaatgctg gactgcgcaca ggaggatcct ggccagagag 1050
ggggtggccg ctttctacaa aggctatgtc cccaacatgc tgggcattcat 1100
cccctatgcc ggcacatcgacc ttgcagtcta cgagacgctc aagaatgcct 1150
ggctgcagca ctatgcagtg aacagcgcgg accccggcgt gtttgtgctc 1200
ctggcctgtg gcaccatgtc cagtacctgt ggccagctgg ccagctaccc 1250
cctggcccta gtcaggaccc ggatgcaggc gcaagcctct attgagggcg 1300
ctccggaggt gaccatgagc agcctttca aacatatcct ggggaccgag 1350
ggggccttcg ggctgtacag ggggctggcc cccaaacttca tgaaggtcat 1400
cccagctgtg agcatcagct acgtggtcta cgagaacctg aagatcaccc 1450
tgggcgtgca gtcgcggta cggggggagg gccgccccggc agtggactcg 1500
ctgatcctgg gccgcagcct ggggtgtgca gccatctcat tctgtgaatg 1550
tgccaaacact aagctgtctc gagccaagct gtaaaaaccc tagacgcacc 1600
cgcagggagg gtggggagag ctggcaggcc cagggcttgt cctgctgacc 1650
ccagcagacc ctccctgttgg ttccagcgaa gaccacaggc attccttagg 1700
gtccagggtc agcaggctcc gggctcacat gtgttaaggac aggacatttt 1750
ctgcagtgcc tgccaatagt gagcttggag cctggaggcc ggcttagttc 1800
ttccatttca cccttgcagc cagctgttgg ccacggcccc tgccctctgg 1850
tctgccgtgc atctccctgt gccctttgc tgcctgcctg tctgctgagg 1900
taaggtggga ggagggctac agcccacatc ccacccctc gtccaatccc 1950
ataatccatg atgaaagggtg aggtcacgtg gcctcccagg cctgacttcc 2000
caacctacag cattgacgccc aacttggctg tgaaggaaga ggaaaggatc 2050
tggccttgtg gtcactggca tctgagccct gctgatggct ggggctctcg 2100
ggcatgcttg ggagtgcagg gggctcgggc tgcctggcct ggctgcacag 2150
aaggcaagtg ctggggctca tggtgctctg agctggcctg gaccctgtca 2200
ggatgggccc cacctcagaa ccaaactcac tgtccccact gtggcatgag 2250
ggcagtggag caccatgttt gagggcgaag ggcagagcgt ttgtgtttc 2300
tggggaggga agaaaaaggt gttggaggcc ttaattatgg actgttggga 2350

aaagggtttt gtccagaagg acaagccgga caaatgagcg acttctgtgc 2400
ttccagagga agacgaggga gcaggagctt ggctgactgc tcagagtctg 2450
ttctgacgcc ctgggggttc ctgtccaacc ccagcagggg cgccagcggga 2500
ccagccccac attccacttg tgtcaactgct tggaacctat ttatttgtta 2550
tttatttcaa cagagttatg tcctaactat ttttatagat ttgtttaatt 2600
aatagcttgt catttcaag ttcattttt attcatattt atgttcatgg 2650
ttgattgtac cttcccaagc ccgcccagtg gnatgggagg aggaggagaa 2700
ggggggcctt gggccgctgc agtcacatct gtccagagaa attcctttt 2750
ggactggagg cagaaaagcg gccagaaggc agcagccctg gtcctttcc 2800
tttggcaggt tgggaaggg cttgccccca gccttaggat ttcagggttt 2850
gactgggggc gtggagagag agggaggaac ctcaataacc ttgaaggtgg 2900
aatccagtta tttcctgcgc tgcgagggtt tctttatttc actctttct 2950
gaatgtcaag gcagtgaggt gcctctcaact gtgaatttgc ggtggccggg 3000
ggctggagga gagggtgggg ggctggctcc gtccctccca gccttctgct 3050
gcccttgctt aacaatgccg gccaactggc gacccacgg ttgcacttcc 3100
attccaccag aatgacctga tgagggaaatc ttcaatagga tgcaaagatc 3150
aatgcaaaaaa ttgttatata tgaacatata actggagtcg tcaaaaagca 3200
aattaagaaa gaattggacg ttagaagttg tcatttaaag cagccttcta 3250
ataaaagttgt ttcaaagctg aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 334

<210> 289

<211> 469

<212> PRT

<213> Homo sapiens

<400> 289

Met	Leu	Cys	Leu	Cys	Leu	Tyr	Val	Pro	Val	Ile	Gly	Glu	Ala	Gln
1					5				10					15
Thr	Glu	Phe	Gln	Tyr	Phe	Glu	Ser	Lys	Gly	Leu	Pro	Ala	Glu	Leu
					20			25						30
Lys	Ser	Ile	Phe	Lys	Leu	Ser	Val	Phe	Ile	Pro	Ser	Gln	Glu	Phe
					35			40						45
Ser	Thr	Tyr	Arg	Gln	Trp	Lys	Gln	Lys	Ile	Val	Gln	Ala	Gly	Asp
					50			55						60

Lys Asp Leu Asp Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr
 65 70 75

 Leu Gln Asp His Glu Lys Lys Leu Arg Leu Val Phe Lys Ile Leu
 80 85 90

 Asp Lys Lys Asn Asp Gly Arg Ile Asp Ala Gln Glu Ile Met Gln
 95 100 105

 Ser Leu Arg Asp Leu Gly Val Lys Ile Ser Glu Gln Gln Ala Glu
 110 115 120

 Lys Ile Leu Lys Ser Met Asp Lys Asn Gly Thr Met Thr Ile Asp
 125 130 135

 Trp Asn Glu Trp Arg Asp Tyr His Leu Leu His Pro Val Glu Asn
 140 145 150

 Ile Pro Glu Ile Ile Leu Tyr Trp Lys His Ser Thr Ile Phe Asp
 155 160 165

 Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe Thr Val Glu Glu
 170 175 180

 Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala Gly Gly Gly
 185 190 195

 Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp Arg Leu
 200 205 210

 Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met Gly
 215 220 225

 Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Arg
 230 235 240

 Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro
 245 250 255

 Glu Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Ile Lys Arg Leu
 260 265 270

 Val Gly Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val
 275 280 285

 Ala Gly Ser Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro
 290 295 300

 Met Glu Val Leu Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln
 305 310 315

 Tyr Ser Gly Met Leu Asp Cys Ala Arg Arg Ile Leu Ala Arg Glu
 320 325 330

 Gly Val Ala Ala Phe Tyr Lys Gly Tyr Val Pro Asn Met Leu Gly
 335 340 345

 Ile Ile Pro Tyr Ala Gly Ile Asp Leu Ala Val Tyr Glu Thr Leu

350	355	360
Lys Asn Ala Trp Leu Gln His Tyr Ala Val Asn Ser Ala Asp Pro		
365	370	375
Gly Val Phe Val Leu Leu Ala Cys Gly Thr Met Ser Ser Thr Cys		
380	385	390
Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu Val Arg Thr Arg Met		
395	400	405
Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu Val Thr Met Ser		
410	415	420
Ser Leu Phe Lys His Ile Leu Arg Thr Glu Gly Ala Phe Gly Leu		
425	430	435
Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro Ala Val		
440	445	450
Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu Gly		
455	460	465
Val Gln Ser Arg		

<210> 290
 <211> 1658
 <212> DNA
 <213> Homo sapiens

<400> 290
 ggaaggcagc ggcagctcca ctcagccagt acccagatac gctggaaacc 50
 ttccccagcc atggcttccc tggggcagat cctcttctgg agcataatta 100
 gcatcatcat tattctggct ggagcaattg cactcatcat tggcttttgt 150
 atttcagggaa gacactccat cacagtcaact actgtcgct cagctggaa 200
 cattggggag gatggaatcc tgagctgcac ttttgaacct gacatcaaac 250
 tttctgatat cgtgatacaa tggctgaagg aagggtttt aggcttggtc 300
 catgagttca aagaaggcaa agatgagctg tcggagcagg atgaaatgtt 350
 cagaggccgg acagcagtgt ttgctgatca agtataatgtt ggcaatgcct 400
 ctttgcggct gaaaaacgtg caactcacag atgctggcac ctacaaatgt 450
 tatatcatca cttctaaagg caagggaaat gctaaccctg agtataaaac 500
 tggagccttc agcatgccgg aagtgaatgt ggactataat gccagctcag 550
 agaccttgcg gtgtgaggct ccccgatggc tccccagcc cacagtggtc 600
 tgggcattccc aagttgacca gggagccaac ttctcgaaag tctccaatac 650

cagtttgag ctgaactctg agaatgtgac catgaagggtt gtgtctgtgc 700
tctacaatgt tacgatcaac aacacatact cctgtatgat tgaaaatgac 750
attgccaaag caacagggga tatcaaagtg acagaatcg agatcaaaag 800
gcggagtcac ctacagctgc taaactcaa ggcttctctg tgtgtctctt 850
cttctttgc catcagctgg gcacttctgc ctctcagccc ttacctgatg 900
ctaaaataat gtgccttggc cacaaaaaaag catgcaaagt cattgttaca 950
acagggatct acagaactat ttcaccacca gatatgacct agttttatat 1000
ttctgggagg aaatgaattc atatctagaa gtctggagtg agcaaacaag 1050
agcaagaaac aaaaagaagc caaaagcaga aggctccaat atgaacaaga 1100
taaatctatc ttcaaagaca tattagaagt tggaaaata attcatgtga 1150
actagacaag tgtgttaaga gtgataagta aaatgcacgt ggagacaagt 1200
gcattccccag atctcaggga cctccccctg cctgtcacct ggggagttag 1250
aggacaggat agtgcatgtt ctttgcgtt gaatttttag ttatatgtgc 1300
tgtaatgttg ctctgaggaa gcccctggaa agtctatccc aacatatcca 1350
catcttatat tccacaaatt aagctgttgt atgtacccta agacgctgct 1400
aattgactgc cacttcgcaa ctcagggcg gctgcattt agtaatgggt 1450
caaatgattc acttttatg atgcttccaa aggtgccttg gcttctctc 1500
ccaaactgaca aatgccaaag ttgagaaaaa tgatcataat tttagcataa 1550
acagagcagt cggggacacc gatTTTataa ataaactgag cacTTCTTT 1600
ttaaacaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaa 1658

<210> 291
<211> 282
<212> PRT
<213> Homo sapiens

<400> 291
Met Ala Ser Leu Gly Gln Ile Leu Phe Trp Ser Ile Ile Ser Ile
1 5 10 15
Ile Ile Ile Leu Ala Gly Ala Ile Ala Leu Ile Ile Gly Phe Gly
20 25 30
Ile Ser Gly Arg His Ser Ile Thr Val Thr Thr Val Ala Ser Ala
35 40 45
Gly Asn Ile Gly Glu Asp Gly Ile Leu Ser Cys Thr Phe Glu Pro

50	55	60
Asp Ile Lys Leu Ser Asp Ile Val Ile Gln Trp Leu Lys Glu Gly		
65	70	75
Val Leu Gly Leu Val His Glu Phe Lys Glu Gly Lys Asp Glu Leu		
80	85	90
Ser Glu Gln Asp Glu Met Phe Arg Gly Arg Thr Ala Val Phe Ala		
95	100	105
Asp Gln Val Ile Val Gly Asn Ala Ser Leu Arg Leu Lys Asn Val		
110	115	120
Gln Leu Thr Asp Ala Gly Thr Tyr Lys Cys Tyr Ile Ile Thr Ser		
125	130	135
Lys Gly Lys Gly Asn Ala Asn Leu Glu Tyr Lys Thr Gly Ala Phe		
140	145	150
Ser Met Pro Glu Val Asn Val Asp Tyr Asn Ala Ser Ser Glu Thr		
155	160	165
Leu Arg Cys Glu Ala Pro Arg Trp Phe Pro Gln Pro Thr Val Val		
170	175	180
Trp Ala Ser Gln Val Asp Gln Gly Ala Asn Phe Ser Glu Val Ser		
185	190	195
Asn Thr Ser Phe Glu Leu Asn Ser Glu Asn Val Thr Met Lys Val		
200	205	210
Val Ser Val Leu Tyr Asn Val Thr Ile Asn Asn Thr Tyr Ser Cys		
215	220	225
Met Ile Glu Asn Asp Ile Ala Lys Ala Thr Gly Asp Ile Lys Val		
230	235	240
Thr Glu Ser Glu Ile Lys Arg Arg Ser His Leu Gln Leu Leu Asn		
245	250	255
Ser Lys Ala Ser Leu Cys Val Ser Ser Phe Phe Ala Ile Ser Trp		
260	265	270
Ala Leu Leu Pro Leu Ser Pro Tyr Leu Met Leu Lys		
275	280	

<210> 292

<211> 1484

<212> DNA

<213> Homo sapiens

<400> 292

gaattttag aagacagcgg cgttgccatg gcggcgctc tggggcaggt 50

gttggctctg gtgctggtgg ccgcctgtg gggtggcacg cagccgctgc 100

tgaagcgggc ctccgccccgc ctgcagcggg ttcatgagcc gacctgggcc 150

cagcagttgc tacaggagat gaagaccctc ttcttgaata ctgagtacct 200
gatgccctt ctcctcaacc agtgtggatc ccttctctat tacctcacct 250
tggcatcgac agatctgacc ctggctgtgc ccatactgtaa ctctctggct 300
atcatcttca cactgattgt tgggaaggcc cttggagaag atattggtgg 350
aaaacgttaag ttagactact gcgagtgccg gacgcagctc tgtggatctc 400
gacatacctg tgtagttcc ttcccagaac ccatactcccc agagtgggtg 450
aggacacggc ctttccat cctgccctt cctctgcagc tgtttgctt 500
ccttggcc atcagagttc cttccctg gacagtctgg agaaagacag 550
aggctgggt ttgggattga agaccagacc ccatactgagc cttcctcca 600
gccctgtacc agtcctact ggcattggctg agctcagacc ctccctgattt 650
ctgcctatta tcccaggagc agttgctggc atgggtctca ccgtgatagg 700
aatttcactc tgcatcacaa gtcagttag taagacccag gggcaacagt 750
ctacccttg agtggccga acccacttcc agctctgctg cttccaggaa 800
gccctggc catgaagtgc tggcagttag cgatggacc tagcacttcc 850
cctctctggc cttagttcc tccctcttta tgggataac agtacacotca 900
tggatcacaa taagagaaca agagtggaaag agtttgtaa cttcaagtg 950
ctgttcagct gcggggattt agcacaggag actctacgct caccctcagc 1000
aaccttctg ccccagcagc tctcttcctg ctaacatctc aggctccag 1050
cccagccacc attactgtgg cctgatctgg actatcatgg tggcaggttc 1100
catggactgc agaactccag ctgcattggaa agggccagct gcagactttg 1150
agccagaaat gcaaacggga ggcctctggg actcagtcag agcgctttgg 1200
ctgaatgagg ggtggAACCG agggagaag gtgcgtcgga gtggcagatg 1250
cagggaaatga gctgtctatt agccttgct gccccaccca tgaggtaggc 1300
agaaatcctc actgccagcc cctcttaaac aggttagagag ctgtgagccc 1350
cagccccacc tgactccagc acacctggcg agtagtagct gtcaataaat 1400
ctatgtaaac agacaaaaaaaaaaaaaaaaaaaaaaa 1450
aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1484

<210> 293

<211> 180

<212> PRT

<213> Homo sapiens

<400> 293
Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala
1 5 10 15
Ala Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala
20 25 30
Gly Leu Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu
35 40 45
Gln Glu Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro
50 55 60
Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu
65 70 75
Ala Ser Thr Asp Leu Thr Leu Ala Val Pro Ile Cys Asn Ser Leu
80 85 90
Ala Ile Ile Phe Thr Leu Ile Val Gly Lys Ala Leu Gly Glu Asp
95 100 105
Ile Gly Gly Lys Arg Lys Leu Asp Tyr Cys Glu Cys Gly Thr Gln
110 115 120
Leu Cys Gly Ser Arg His Thr Cys Val Ser Ser Phe Pro Glu Pro
125 130 135
Ile Ser Pro Glu Trp Val Arg Thr Arg Pro Phe Pro Ile Leu Pro
140 145 150
Phe Pro Leu Gln Leu Phe Cys Phe Leu Val Ala Ile Arg Val Pro
155 160 165
Phe Pro Trp Thr Val Trp Arg Lys Thr Glu Ala Gly Val Trp Asp
170 175 180

<210> 294
<211> 1164
<212> DNA
<213> Homo sapiens

<400> 294
cttctgtagg acagtcacca ggccagatcc agaaggctct ctaggctcca 50
gctttctctg tggaagatga cagcaattat agcaggaccc tgccaggctg 100
tcgaaaagat tccgcaataa aactttgccca gtggaaagta cctagtgaaa 150
ccgcctaaga tgccacttct tctcatgtcc caggcttgag gcccgttgtt 200
ccccatcctt gggagaagtc agctccagca ccatgaaggg catcctcggt 250
gctggtatca ctgcagtgtc tgttgcagct gtagaatctc tgagctgcgt 300
gcagtgtaat tcatggaaa aatcctgtgt caacagcatt gcctctgaat 350
gtccctcaca tgccaacacc agctgtatca gctccctcagc cagctccctct 400

ctagagacac cagtcagatt ataccagaat atgttctgct cagcggagaa 450
ctgcagttag gagacacaca ttacagccct cactgtccac gtgtctgctg 500
aagaacactt tcattttgtta agccagtgt gccaaggaaa ggaatgcagc 550
aacaccagcg atgccctgga ccctcccctg aagaacgtgt ccagcaacgc 600
agagtgcctt gcttgttatg aatctaattgg aacttcctgt cgtggaaagc 650
cctggaaatg ctatgaagaa gaacagtgtg tctttctagt tgcagaactt 700
aagaatgaca ttgagtcata gagtctcgta ctgaaaggct gttccaaacgt 750
cagtaacgcc acctgtcagt tcctgtctgg tgaaaacaag actcttggag 800
gagtcatctt tcgaaagttt gagtgtaa atgtaaacag cttaaaaaaa 850
acgtctgcac caaccacttc ccacaacgtg ggctccaaag cttccctcta 900
cctcttggcc cttgccagcc tccttcttcg gggactgctg ccctgaggc 950
ctggggctgc actttgcccc gcacccatt tctgcttctc tgaggtccag 1000
agcacccctt gcggtgctga caccctttt ccctgctctg ccccgttaa 1050
ctgcccagta agtgggagtc acaggtctcc aggcaatgcc gacagctgcc 1100
ttgttcttca ttattaaagc actggttcat tcactgccaa aaaaaaaaaa 1150
aaaaaaaaaa aaaa 1164

<210> 295

<211> 237

<212> PRT

<213> Homo sapiens

<400> 295

Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala
1 5 10 15

Ala Val Glu Ser Leu Ser Cys Val Gln Cys Asn Ser Trp Glu Lys
20 25 30

Ser Cys Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn
35 40 45

Thr Ser Cys Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro
50 55 60

Val Arg Leu Tyr Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser
65 70 75

Glu Glu Thr His Ile Thr Ala Phe Thr Val His Val Ser Ala Glu
80 85 90

Glu His Phe His Phe Val Ser Gln Cys Cys Gln Gly Lys Glu Cys
95 100 105

Ser Asn Thr Ser Asp Ala Leu Asp Pro Pro Leu Lys Asn Val Ser
110 115 120

Ser Asn Ala Glu Cys Pro Ala Cys Tyr Glu Ser Asn Gly Thr Ser
125 130 135

Cys Arg Gly Lys Pro Trp Lys Cys Tyr Glu Glu Glu Gln Cys Val
140 145 150

Phe Leu Val Ala Glu Leu Lys Asn Asp Ile Glu Ser Lys Ser Leu
155 160 165

Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln Phe
170 175 180

Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys
185 190 195

Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro
200 205 210

Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu
215 220 225

Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro
230 235

<210> 296

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 296

ggcctcggtt caaacgaccc ggtgggtcta cagcggaaagg gagggagcga 50

aggtaggagg cagggcttgc ctcactggcc accctcccaa ccccaagagc 100

ccagccccat ggtccccgccc gccggcgcgc tgctgtgggt cctgctgctg 150

aatctgggtc cccggggcggc gggggcccaa ggcctgaccc agactccgac 200

cgaaatgcag cgggtcagtt tacgctttgg gggcccatg acccgacgct 250

accggagcac cgcccgact ggtcttcccc ggaagacaag gataatccta 300

gaggacgaga atgatgccat ggccgacgcc gaccgcctgg ctggaccagc 350

ggctgccgag ctcttgcccg ccacgggtgc caccggcttt agccggtcgt 400

ccgccattaa cgaggaggat gggtcttcag aagagggggt tttgtatataat 450

gccggaaagg atagcaccag cagagagctt cccagtgcga ctcccaatac 500

agcggggagt tccagcacga ggtttatagc caatagtcag gagcctgaaa 550

tcaggctgac ttcaagcctg ccgcgcctcc ccggggaggcgt tactgaggac 600

ctgccaggct cgcaggccac cctgagccag tggccacac ctgggtctac 650

cccgagccgg tggccgtcac cctcaccac agccatgcc a ttcctgagg 700
atctgcggct ggtgctgatg ccctggggcc cgtggactg ccactgcaag 750
tcggcacca tgagccggag ccggctctggg aagctgcacg gccttccgg 800
gcccctcga gttggggcgc tgagccagct ccgcacggag cacaagcct 850
gcacctatca acaatgtccc tgcaaccgac ttccggaaaga gtgccccctg 900
gacacaagtc tctgtactga caccaactgt gcctctcaga gcaccaccag 950
taccaggacc accactaccc cttcccccac catccaccc tc agaagcagtc 1000
ccagcctgcc acccgccagc ccctgcccag ccctggctt ttggaaacgg 1050
gtcaggattg gcctggagga tatttggaat agcctctt cagtgttcac 1100
agagatgcaa ccaatagaca gaaaccagag gtaatggcca cttcatccac 1150
atgaggagat gtcagtatct caacctctct tgcccttca atcctagcac 1200
ccactagata ttttagtac agaaaaacaa aactggaaaa cacaa 1245

<210> 297

<211> 341

<212> PRT

<213> Homo sapiens

<400> 297

Met	Val	Pro	Ala	Ala	Gly	Ala	Leu	Leu	Trp	Val	Leu	Leu	Leu	Asn
1									10					15
Leu	Gly	Pro	Arg	Ala	Ala	Gly	Ala	Gln	Gly	Leu	Thr	Gln	Thr	Pro
				20				25						30
Thr	Glu	Met	Gln	Arg	Val	Ser	Leu	Arg	Phe	Gly	Gly	Pro	Met	Thr
					35			40						45
Arg	Ser	Tyr	Arg	Ser	Thr	Ala	Arg	Thr	Gly	Leu	Pro	Arg	Lys	Thr
					50			55						60
Arg	Ile	Ile	Leu	Glu	Asp	Glu	Asn	Asp	Ala	Met	Ala	Asp	Ala	Asp
					65			70						75
Arg	Leu	Ala	Gly	Pro	Ala	Ala	Glu	Leu	Leu	Ala	Ala	Thr	Val	
				80				85						90
Ser	Thr	Gly	Phe	Ser	Arg	Ser	Ser	Ala	Ile	Asn	Glu	Glu	Asp	Gly
					95				100					105
Ser	Ser	Glu	Glu	Gly	Val	Val	Ile	Asn	Ala	Gly	Lys	Asp	Ser	Thr
					110			115						120
Ser	Arg	Glu	Leu	Pro	Ser	Ala	Thr	Pro	Asn	Thr	Ala	Gly	Ser	Ser
					125			130						135
Ser	Thr	Arg	Phe	Ile	Ala	Asn	Ser	Gln	Glu	Pro	Glu	Ile	Arg	Leu

140	145	150
Thr Ser Ser Leu Pro Arg Ser Pro Gly Arg Ser Thr Glu Asp Leu		
155	160	165
Pro Gly Ser Gln Ala Thr Leu Ser Gln Trp Ser Thr Pro Gly Ser		
170	175	180
Thr Pro Ser Arg Trp Pro Ser Pro Ser Pro Thr Ala Met Pro Ser		
185	190	195
Pro Glu Asp Leu Arg Leu Val Leu Met Pro Trp Gly Pro Trp His		
200	205	210
Cys His Cys Lys Ser Gly Thr Met Ser Arg Ser Arg Ser Gly Lys		
215	220	225
Leu His Gly Leu Ser Gly Arg Leu Arg Val Gly Ala Leu Ser Gln		
230	235	240
Leu Arg Thr Glu His Lys Pro Cys Thr Tyr Gln Gln Cys Pro Cys		
245	250	255
Asn Arg Leu Arg Glu Glu Cys Pro Leu Asp Thr Ser Leu Cys Thr		
260	265	270
Asp Thr Asn Cys Ala Ser Gln Ser Thr Thr Ser Thr Arg Thr Thr		
275	280	285
Thr Thr Pro Phe Pro Thr Ile His Leu Arg Ser Ser Pro Ser Leu		
290	295	300
Pro Pro Ala Ser Pro Cys Pro Ala Leu Ala Phe Trp Lys Arg Val		
305	310	315
Arg Ile Gly Leu Glu Asp Ile Trp Asn Ser Leu Ser Ser Val Phe		
320	325	330
Thr Glu Met Gln Pro Ile Asp Arg Asn Gln Arg		
335	340	

<210> 298

<211> 2692

<212> DNA

<213> Homo sapiens

<400> 298

cccggtcga cccacgcgtc cggggagaaa ggatggccgg cctggcggcg 50

cggtttgtcc tgcttagctgg ggcagcggcg ctggcgagcg gctcccagg 100

cgaccgtgag ccggtgttacc gcgactgcgt actgcagtgc gaagagcaga 150

actgctctgg gggcgctctg aatcaattcc gctcccgcca gccaatctac 200

atgagtctag caggctggac ctgtcgggac gactgtaagt atgagtgtat 250

gtgggtcacc gttgggctct acctccagga aggtcacaaa gtgcctcagt 300

tccatggcaa gtggcccttc tcccggttcc tggtcttca agagccggca 350
tcggccgtgg cctcggttct caatggcctg gccagcctgg tgatgctctg 400
ccgctaccgc accttcgtgc cagcctcctc ccccatgtac cacacctgtg 450
tggccttcgc ctgggtgtcc ctcaatgcat gggtctggtc cacagtcttc 500
cacaccaggg acactgacct cacagagaaa atggactact tctgtgcctc 550
caactgtcatc ctacactcaa tctacactgtg ctgcgtcagg accgtggggc 600
tgcagcaccc agctgtggtc agtgccttcc gggctctct gctgctcatg 650
ctgaccgtgc acgtctccta cctgagcctc atccgcttcg actatggcta 700
caacctggtg gccaacgtgg ctattggcct ggtcaacgtg gtgtggtggc 750
tggcctggtg cctgtggaac cagcggcggc tgcctcacgt ggcgaagtgc 800
gtgggtggtg tcttgctgct gcaggggctg tccctgctcg agctgcttga 850
cttcccaccc ctcttctggg tcctggatgc ccatgccatc tggcacatca 900
gcaccatccc tgtccacgtc ctcttttca gctttctgga agatgacagc 950
ctgtacctgc tgaaggaatc agaggacaag ttcaagctgg actgaagacc 1000
ttggagcgag tctgccccag tggggatcct gccccggcc tgctggcctc 1050
ccttctcccc tcaacccttg agatgattt ctctttcaa cttcttgaac 1100
ttggacatga aggatgtggg cccagaatca tgtggccagc ccacccctg 1150
ttggccctca ccagccttgg agtctgttct agggaaaggcc tcccagcata 1200
tgggactcga gagtgggcag cccctctacc tcctggagct gaactggggt 1250
ggaactgagt gtgttcttag ctctaccggg aggacagctg cctgtttcct 1300
ccccaccagc ctcttcccc catccccagc tgcctggctg ggtcctgaag 1350
ccctctgtct acctgggaga ccagggacca cagggcttag ggatacaggg 1400
ggtcccccttc tgttaccacc ccccaccctc ctccaggaca ccacttagtg 1450
gtgctggatg cttgttcttt ggccagccaa gggtcacggc gattctcccc 1500
atgggatctt gagggaccaa gctgctggta ttggaaagga gtttcaccct 1550
gaccgttgc ctagccaggt tcccaggagg cctcaccata ctcccttca 1600
gggccagggc tccagcaagc ccagggcaag gatcctgtgc tgctgtctgg 1650
ttgagagcct gccaccgtgt gtcgggagtg tggccaggc tgagtgcata 1700
ggtacaggg ccgtgagcat gggcctgggt gtgtgtgagc tcaggcctag 1750

gtgcgcagtg tggagacggg tgttgtcggg gaagagggtgt ggcttcaaag 1800
tgtgtgtgtg caggggggtgg gtgtgttagc gtgggttagg ggaacgtgtg 1850
tgcgcggtgtc ggtgggcatg tgagatgagt gactgccgtt gaatgtgtcc 1900
acagttgaga ggttggagca ggatgaggga atcctgtcac catcaataat 1950
cacttgtgga gcgcagtc tgcccaagac gccacctggg cggacagcca 2000
ggagctctcc atggccaggc tgccctgtgtg catgttccct gtctgggcc 2050
cctttgccc cctcctgcaa acctcacagg gtccccacac aacagtgccc 2100
tccagaagca gcccctcgga ggcagaggaa ggaaaatggg gatggctggg 2150
gctctctcca tcctccctt ctccctgcct tcgcatggct ggcctccccc 2200
tccaaaacct ccattccct gctgccagcc ccttgccat agcctgattt 2250
tggggaggag gaaggggcga tttgagggag aaggggagaa agcttatggc 2300
tgggtctggt ttctccctt cccagagggc cttactgttc cagggtgccc 2350
ccagggcagg caggggcccac actatgcctg tgccctggta aaggtgaccc 2400
ctgccattta ccagcagccc tggcatgttc ctgccccaca ggaatagaat 2450
ggagggagct ccagaaactt tccatcccaa aggcagtctc cgtggttgaa 2500
gcagactgga ttttgctct gcccctgacc ccttgcctt ctttggggaa 2550
ggggagctat gctaggactc caacctcagg gactcgggtg gcctgcgcta 2600
gcttctttt atactgaaaa cttaaggt gggagggtgg caagggatgt 2650
gcttaataaa tcaattccaa gcctcaaaaa aaaaaaaaaa aa 2692

<210> 299
<211> 320
<212> PRT
<213> Homo sapiens

<400> 299
Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala
1 5 10 15
Ala Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg
20 25 30
Asp Cys Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala
35 40 45
Leu Asn His Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala
50 55 60
Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val
65 70 75

Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys Val Pro Gln Phe
 80 85 90

 His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe Gln Glu Pro
 95 100 105

 Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser Leu Val
 110 115 120

 Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro Met
 125 130 135

 Tyr His Thr Cys Val Ala Phe Ala Trp Val Ser Leu Asn Ala Trp
 140 145 150

 Phe Trp Ser Thr Val Phe His Thr Arg Asp Thr Asp Leu Thr Glu
 155 160 165

 Lys Met Asp Tyr Phe Cys Ala Ser Thr Val Ile Leu His Ser Ile
 170 175 180

 Tyr Leu Cys Cys Val Arg Thr Val Gly Leu Gln His Pro Ala Val
 185 190 195

 Val Ser Ala Phe Arg Ala Leu Leu Leu Met Leu Thr Val His
 200 205 210

 Val Ser Tyr Leu Ser Leu Ile Arg Phe Asp Tyr Gly Tyr Asn Leu
 215 220 225

 Val Ala Asn Val Ala Ile Gly Leu Val Asn Val Val Trp Trp Leu
 230 235 240

 Ala Trp Cys Leu Trp Asn Gln Arg Arg Leu Pro His Val Arg Lys
 245 250 255

 Cys Val Val Val Val Leu Leu Leu Gln Gly Leu Ser Leu Leu Glu
 260 265 270

 Leu Leu Asp Phe Pro Pro Leu Phe Trp Val Leu Asp Ala His Ala
 275 280 285

 Ile Trp His Ile Ser Thr Ile Pro Val His Val Leu Phe Phe Ser
 290 295 300

 Phe Leu Glu Asp Asp Ser Leu Tyr Leu Leu Lys Glu Ser Glu Asp
 305 310 315

 Lys Phe Lys Leu Asp
 320

<210> 300

<211> 1674

<212> DNA

<213> Homo sapiens

<400> 300

ggccgcctgg aattgtggga gttgtgtctg ccactcggtc gccggaggcc 50

gaaggtccgt gactatggct ccccagagcc tgccttcata taggatggct 100
cctctggca tgctgcttgg gctgctgatg gccgcctgct tcaccttctg 150
cctcagtcat cagaacctga aggagttgc cctgaccaac ccagagaaga 200
gcagcaccaa agaaacggag agaaaagaaa ccaaagccga ggaggagctg 250
gatgccgaag tcctggaggt gttccacccg acgcatgagt ggcaggccct 300
tcagccaggg caggctgtcc ctgcaggatc ccacgtacgg ctgaatcttc 350
agactgggaa aagagaggca aaactccaat atgaggacaa gttccgaaat 400
aatttgaag gcaaaaggct ggatatcaac accaacacact acacatctca 450
ggatctcaag agtgcactgg caaaattcaa ggagggggca gagatggaga 500
gttcaaagga agacaaggca aggcaggctg aggtaaagcg gctttccgc 550
cccattgagg aactgaagaa agactttgat gagctgaatg ttgtcattga 600
gactgacatg cagatcatgg tacggctgat caacaagttc aatagttcca 650
gctccagttt ggaagagaag attgctgcgc tctttgatct tgaatattat 700
gtccatcaga tggacaatgc gcaggacctg ctttccttg gtggtcttca 750
agtggtgatc aatgggctga acagcacaga gccctcgat aaggagtatg 800
ctgcgtttgt gctggcgct gcctttcca gcaacccaa ggtccaggtg 850
gaggccatcg aagggggagc cctgcagaag ctgctggta tcctggccac 900
ggagcagccg ctcactgcaa agaagaaggt cctgtttgca ctgtgctccc 950
tgctgcgcca cttcccttat gcccagcggc agttcctgaa gtcgggggg 1000
ctgcaggtcc tgaggaccct ggtgcaggag aagggcacgg aggtgctcgc 1050
cgtgcgcgtg gtcacactgc tctacgaccc ggtcacggag aagatgttcg 1100
ccgaggagga ggctgagctg acccaggaga tgtccccaga gaagctgcag 1150
cagtatcgcc aggtacaccc cctgccaggg ctgtggaaac agggctggtg 1200
cgagatcacg gcccacctcc tggcgctgcc cgagcatgat gcccgtgaga 1250
aggtgctgca gacactgggc gtcctcctga ccacctgccc ggaccgctac 1300
cgtcaggacc cccagctcgg caggacactg gccagcctgc aggctgagta 1350
ccaggtgctg gccagcctgg agctgcagga tggtgaggac gagggtact 1400
tccaggagct gctggctct gtcaacagct tgctgaagga gctgagatga 1450
ggccccacac caggactgga ctggatgcc gctagtgagg ctgaggggtg 1500

ccagcgtggg tgggcttctc aggaggagg acatcttgc agtgctggct 1550
tggccattaa atggaaacct gaaggccaaa aaaaaaaaaa aaaaaaaaaa 1600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaaa aaaaaaaaaa aaaa 1674

<210> 301
<211> 461
<212> PRT
<213> Homo sapiens

<400> 301
Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly
1 5 10 15
Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu
20 25 30
Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys
35 40 45
Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu
50 55 60
Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu
65 70 75
Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His
80 85 90
Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln
95 100 105
Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp
110 115 120
Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu
125 130 135
Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp
140 145 150
Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu
155 160 165
Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr
170 175 180
Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser
185 190 195
Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu
200 205 210
Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe
215 220 225

Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro
 230 235 240
 Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser
 245 250 255
 Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu
 260 265 270
 Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala
 275 280 285
 Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe
 290 295 300
 Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val
 305 310 315
 Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val
 320 325 330
 Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe
 335 340 345
 Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys
 350 355 360
 Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu
 365 370 375
 Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu
 380 385 390
 His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu
 395 400 405
 Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg
 410 415 420
 Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu
 425 430 435
 Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu
 440 445 450
 Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg
 455 460

<210> 302
 <211> 2136
 <212> DNA
 <213> Homo sapiens

<400> 302
 ttcggcttcc gtagaggaag tggcgccggac cttcatttgg ggtttcggtt 50
 ccccccccttc cccttccccg gggtctgggg gtgacattgc accgcgcggcc 100

tcgtggggtc gcgttgcac cccacgcgga ctccccagct ggcgccccc 150
tcccatttgc ctgtcctggt caggccccca ccccccttcc cacctgacca 200
gccatggggg ctgcgggttt tttcggtgc actttcgtag cgttcgccc 250
ggccttcgcg cttttcttga tcactgtggc tggggaccgg cttcggtta 300
tcatcctggt cgcaaaaaa tttttctggc tggtctccct gtcctggcc 350
tctgtggtct gttcatctt ggtccatgtg accgaccggc cagatgccc 400
gctccagtac ggccttcgtt tttttgggtc tgctgtctt gtccttcac 450
aggaggtgtt ccgtttgcc tactacaagc tgcttaagaa ggcagatgaa 500
gggttagcat cgctgagtga ggacgaaaga tcacccatct ccatccgcca 550
gatggcctat gtttctggc ttccttcgg tatcatcgt ggtgtttct 600
ctgttatcaa tattttggct gatgcacttg ggccaggtgt ggttggatc 650
catggagact caccctatta cttcctgact tcagccttc tgacagcagc 700
cattatcctg ctccataacct tttggggagt tgtgttctt gatgcctgtg 750
agaggagacg gtactggct ttgggcctgg tgggtggag tcacctactg 800
acatcgggac tgacattcct gaacccctgg tatgaggcca gcctgctgcc 850
catctatgca gtcactgttt ccatgggct ctggccttc atcacagctg 900
gagggtccct ccgaagtatt cagcgcagcc tcttgttaa ggactgacta 950
cctggactga tcgcctgaca gatcccacct gcctgtccac tgcccatgac 1000
tgagcccagc cccagcccggtt gtcattgtcc cacattcttct gtctccttct 1050
cgtcggtcta ccccaactacc tccagggttt tgctttgtcc ttttgtgacc 1100
gttagtctct aagctttacc aggagcagcc tgggttcagc cagtcagtga 1150
ctgggtgggtt tgaatctgca cttatccccca ccacctgggg acccccattgt 1200
tgtgtccagg actccccctg tgtcagtgtct ctgccttcac cctgcccag 1250
actcacctcc cttcccccttgc acggccgac ggcaggagga cagtcgggtg 1300
atgggttatt ctgcctgac catcccaccc gaggactgag ggaacctagg 1350
ggggaccctt gggcctgggg tgccctcctg atgtcctcgc cctgtatttc 1400
tccatctcca gttctggaca gtgcagggtt ccaagaaaag ggacctagtt 1450
tagccattgc cctggagatg aaattaatgg aggctcaagg atagatgagc 1500
tctgagtttc tcagtagtcc ctcaagactg gacatcttgg tcttttctc 1550

aggcctgagg gggaccatt tttgggtgtga taaataccct aaactgcctt 1600
tttttctttt ttgaggtggg gggagggagg aggtatattg gaactcttct 1650
aacctccttg ggctatatattt tctctcctcg agttgctcct catggctggg 1700
ctcatttcgg tccctttctc cttggtccca gaccttgggg gaaaggaagg 1750
aagtgcatgt ttgggaactg gcattactgg aactaatggt tttaacctcc 1800
ttaaccacca gcatccctcc tctccccaaag gtgaagtggaa gggtgctgtg 1850
gtgagctggc cactccagag ctgcagtgcc actggaggag tcagactacc 1900
atgacatcgt aggaaaggag gggagatttt ttttagttt ttaattgggg 1950
tgtggaggg gcggggaggt tttctataaa ctgtatcatt ttctgctgag 2000
ggtggagtgt cccatccctt taatcaaggt gattgtgatt ttgactaata 2050
aaaaagaatt tgaaaaaaaaaaaaaaaaaaaaaaaaaaa 2100
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaa 2136

<210> 303
<211> 247
<212> PRT
<213> Homo sapiens

<400> 303
Met Gly Ala Ala Val Phe Phe Gly Cys Thr Phe Val Ala Phe Gly
1 5 10 15
Pro Ala Phe Ala Leu Phe Leu Ile Thr Val Ala Gly Asp Pro Leu
20 25 30
Arg Val Ile Ile Leu Val Ala Gly Ala Phe Phe Trp Leu Val Ser
35 40 45
Leu Leu Leu Ala Ser Val Val Trp Phe Ile Leu Val His Val Thr
50 55 60
Asp Arg Ser Asp Ala Arg Leu Gln Tyr Gly Leu Leu Ile Phe Gly
65 70 75
Ala Ala Val Ser Val Leu Leu Gln Glu Val Phe Arg Phe Ala Tyr
80 85 90
Tyr Lys Leu Leu Lys Lys Ala Asp Glu Gly Leu Ala Ser Leu Ser
95 100 105
Glu Asp Gly Arg Ser Pro Ile Ser Ile Arg Gln Met Ala Tyr Val
110 115 120
Ser Gly Leu Ser Phe Gly Ile Ile Ser Gly Val Phe Ser Val Ile
125 130 135
Asn Ile Leu Ala Asp Ala Leu Gly Pro Gly Val Val Gly Ile His

140	145	150
Gly Asp Ser Pro Tyr Tyr Phe Leu Thr Ser Ala Phe Leu Thr Ala		
155	160	165
Ala Ile Ile Leu Leu His Thr Phe Trp Gly Val Val Phe Phe Asp		
170	175	180
Ala Cys Glu Arg Arg Arg Tyr Trp Ala Leu Gly Leu Val Val Gly		
185	190	195
Ser His Leu Leu Thr Ser Gly Leu Thr Phe Leu Asn Pro Trp Tyr		
200	205	210
Glu Ala Ser Leu Leu Pro Ile Tyr Ala Val Thr Val Ser Met Gly		
215	220	225
Leu Trp Ala Phe Ile Thr Ala Gly Gly Ser Leu Arg Ser Ile Gln		
230	235	240
Arg Ser Leu Leu Cys Lys Asp		
245		

<210> 304
<211> 240
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 108, 123, 126, 154, 198, 206, 217
<223> unknown base

<400> 304
aagctggttt aaggaagcag aggagggtta gattcggtga gtgaggacgg 50
aagatcaacc cattccatt ccgcagatg gcctatgttt ctggtctctc 100
ccttcggnat catcagtggt gtnttntctg ttatcaatat tttggctgat 150
gcanttgggc caggtgtggt tggatccat ggagactcac cctattantt 200
cctganttca gccttntga cagcagccat tatcctgctc 240

<210> 305
<211> 378
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 58, 94, 132, 186, 191, 220, 240, 248, 280, 311, 332
<223> unknown base

<400> 305
gaccgaccgt tcagatgccc gggtccagta cggcttcctg atttttggtg 50
ctgctgtntc tgtccttcta caggaggtgt tccgcttgc ctantacaag 100

ctgcttaaga aggcatatga ggggttagca tngctgagtg aggacggaag 150
atcacccatt tccatccgcc agatggccta tgtttntggt ntttccttcg 200
gtatcatcag tggtgtttt tctgttatca atatttggn tcatgcantt 250
ggccaggtg tgggtggat ccatggagan tcaccctatt aattcctgaa 300
ttcagcctt ntgacagcag ccattatcct gntccatacc ttttgggag 350
ttgtgtttt tcatgcctgt gagaggag 378

<210> 306
<211> 655
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1, 22, 129, 133, 184
<223> unknown base

<400> 306
ngttggagaa gtggcgccga ctttcatttgg gggtttcgtt ttccccctt 50
tcccttccc cgggtctgg ggtgacatttgc cacggggcccc tcgtgggtc 100
gcgttgcac cccacgcggaa ctccccagnt ggngcgcctt tcccatattgc 150
ctgtcctggt caggccccca ccccccttcc cacntgacca gccatgggg 200
ctgcgggtttt tttcggtgc actttcggtc cgttcggccc ggccttcgcg 250
cttttcttga tcactgtggc tggggaccccg cttecggtta tcattcctggt 300
cgcaggggca ttttcttgc tggtctccct gctcctggcc tctgtggtct 350
ggttcatctt ggtccatgtg accgaccgtt cagatgccc gctccagttac 400
ggcctcctga tttttgggtgc tgctgtcttctt gtccttctac aggaggtgtt 450
ccgccttgc tactacaagc tgcttaagaa ggcagatgag gggtagcat 500
cgctgagtga ggacggaaga tcaccatctt ccatccgcac gatggcctat 550
gtttctggtc tctccttcgg tatcatcagt ggtgtcttctt ctgttatcaa 600
tattttggct gatgcacttg ggccaggtgtt ggttggatc catggagact 650
caccc 655

<210> 307
<211> 650
<212> DNA
<213> Homo sapiens

<220>
<221> unsure

<222> 52, 89, 128
<223> unknown base

<400> 307
gtaaaagaaa gtggccggac cttcattggg gtttcgggttc ccccccttcc 50
cnttccccgg ggtctgggg tgacattgca ccgcgcacct cgtggggtcg 100
cgttgccacc ccacgcggac tccccagntg gcgcgcacct cccatttgcc 150
tgtcctggtc aggccccac cccccttccc acctgaccag ccatggggc 200
tgcggtggtt ttctggctgc actttcgatcg cgttcgggcc cggccttcgc 250
gctttcttg atcaactgtgg ctggggaccc gcttcgcgtt atcatcctgg 300
tcgcaggggc attttctgg ctggtctccc tgctcctggc ctctgtggtc 350
tggttcatct tggccatgt gaccgaccgg tcagatgcac ggctccagta 400
cggcctcctg atttttggtg ctgctgtctc tgtccttcta caggaggtgt 450
tccgctttgc ctactacaag ctgcttaaga aggcagatga ggggttagca 500
tcgctgagtg aggacggaag atcacccatc tccatccgcc agatggccta 550
tgtttctggc ctctccttcg gtatcatcag tggtgtcttc tctgttatca 600
atattttggc tgatgcactt gggccaggtg tggttggat ccatggagac 650

<210> 308
<211> 1570
<212> DNA
<213> Homo sapiens

<400> 308
gccccaggaa gcagtgggtg gttataactc agggccggtg cccagagccc 50
aggaggaggc agtggccagg aaggcacagg cctgagaagt ctgcggctga 100
gctggggagca aatccccac cccctacctg ggggacaggg caagtgagac 150
ctggtgaggg tggctcagca ggcagggaaag gagaggtgtc tgtgcgtcct 200
gcacccacat ctttctctgt cccctccttg ccctgtctgg aggctgctag 250
actcctatct tctgaattct atagtgcctg ggtctcagcg cagtgcctat 300
ggtggcccggt ccttgggtt cctctctacc tggggaaata aggtgcagcg 350
gccatggcta cagcaagacc cccctggatg tgggtgcctt gtgcgtctat 400
cacagccttg cttctggggg tcacagagca tggctcggcc aacaatgatg 450
tttcctgtga ccacccctct aacaccgtgc cctctggag caaccaggac 500
ctgggagctg gggccggggaa agacgccccgg tggatgaca gcagcagccg 550

catcatcaat ggatccgact gcgatatgca cacccagccg tggcaggccg 600
cgctgttgct aaggcccaac cagctctact gcggggcggt gttggtgcac 650
ccacagtggc tgctcacggc cgcccactgc aggaagaaag ttttcagagt 700
ccgtctcggc cactactccc tgtcaccagt ttatgaatct gggcagcaga 750
tgttccaggg ggtcaaatcc atccccacc ctggctactc ccaccctggc 800
caactctaacg acctcatgct catcaaactg aacagaagaa ttcgtcccac 850
taaagatgtc agacccatca acgtctccctc tcattgtccc tctgctggga 900
caaagtgctt ggtgtctggc tgggggacaa ccaagagccc ccaagtgcac 950
ttccctaagg tcctccagtg cttgaatatc agcgtgctaa gtcagaaaag 1000
gtgcgaggat gcttaccgaa gacagataga tgacaccatg ttctgcgcgg 1050
gtgacaaagc aggttagagac tcctgccagg gtgattctgg ggggcctgtg 1100
gtctgcaatg gctccctgca gggactcgtg tcctggggag attacccttg 1150
tgcccggccc aacagaccgg gtgtctacac gaacctctgc aagttcacca 1200
agtggatcca ggaaaccatc caggccaact cctgagtcat cccaggactc 1250
agcacaccgg catccccacc tgctgcaggg acagccctga cactccttgc 1300
agaccctcat tccttcccag agatgtttag aatgttcatc tctccagccc 1350
ctgaccccat gtctcctgga ctcagggctc gcttcccca cattgggctg 1400
accgtgtctc tctagttgaa ccctgggaac aatttccaaa actgtccagg 1450
gccccatccc ttctctgcag ctctgaccca aatttagtcc cagaaataaa 1500
ctgagaagtg .aaaaaaaaa 1550

ctgagaagtg .aaaaaaaaa 1570

<210> 309
<211> 293
<212> PRT
<213> Homo sapiens

<400> 309
Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu
1 5 10 15
Ile Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn
20 25 30
Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
35 40 45
Ser Asn Gln Asp Leu Gly Ala Gly Glu Asp Ala Arg Ser

50	55	60
Asp Asp Ser Ser Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met		
65	70	75
His Thr Gln Pro Trp Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln		
80	85	90
Leu Tyr Cys Gly Ala Val Leu Val His Pro Gln Trp Leu Leu Thr		
95	100	105
Ala Ala His Cys Arg Lys Lys Val Phe Arg Val Arg Leu Gly His		
110	115	120
Tyr Ser Leu Ser Pro Val Tyr Glu Ser Gly Gln Gln Met Phe Gln		
125	130	135
Gly Val Lys Ser Ile Pro His Pro Gly Tyr Ser His Pro Gly His		
140	145	150
Ser Asn Asp Leu Met Leu Ile Lys Leu Asn Arg Arg Ile Arg Pro		
155	160	165
Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser His Cys Pro Ser		
170	175	180
Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr Thr Lys Ser		
185	190	195
Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn Ile Ser		
200	205	210
Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln Ile		
215	220	225
Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser		
230	235	240
Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu		
245	250	255
Gln Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn		
260	265	270
Arg Pro Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile		
275	280	285
Gln Glu Thr Ile Gln Ala Asn Ser		
290		

<210> 310
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 310
tcctgtgacc acccctctaa cacc 24

<210> 311
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 311
ctggaacatc tgctgccag attc 24

<210> 312
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 312
gtcggatgac agcagcagcc gcatcatcaa tggatccgac tgcgatatgc 50

<210> 313
<211> 3010
<212> DNA
<213> Homo sapiens

<400> 313
atggtaacg accggtgaa gaccatggc ggcgctgccc aacttgagga 50
ccggccgcgc gacaagccgc agcggccgag ctgcggctac gtgctgtgca 100
ccgtgctgct ggccctggct gtgctgctgg ctgtagctgt caccggtgcc 150
gtgctttcc tgaaccacgc ccacgcgcg ggcacggcgc ccccacctgt 200
cgtcagcact ggggctgcca gcgccaacag cgccctggtc actgtggaaa 250
gggcggacag ctgcacaccc agcatcctca ttgacccgcg ctgccccgac 300
ctcaccgaca gcttgcacg cctggagagc gcccaggcct cggtgctgca 350
ggcgctgaca gagcaccagg cccagccacg gctgggtggc gaccaggagc 400
aggagctgct ggacacgctg gccgaccagg tgccccggct gctggcccg 450
gcctcagagc tgcagacgga gtgcattggg ctgcggagg ggcattggcac 500
gctggggccag ggcttcagcg ccctgcagag tgagcaggcgc cgccatccatcc 550
agcttctctc tgagagccag ggccacatgg ctcacctggt gaactccgac 600
agcgacatcc tggatgccct gcagaggac cgggggctgg gcccggcccg 650
caacaaggcc gacattcaga gagcgctgc ccggggaaacc cggcccccggg 700

gctgtccac tggctccgg cccc gagact gtctggacgt cctcctaagc 750
ggacagcagg acgatggcgt ctactctgtc tttcccaccc actaccggc 800
cggttccag gtgtactgtg acatgcgcac ggacggcggc ggctggacgg 850
tgtttcagcg ccgggaggac ggctccgtga acttcttccg gggctggac 900
gcgtaccgag acggotttgg caggctcacc ggggagcact ggctaggc 950
caagaggatc cacgcctga ccacacaggc tgcc tacgag ctgcacgtgg 1000
acctggagga cttt gagaat ggcacggcct atgccc gcta cgggagc tt 1050
ggcgtggcgt tgttctccgt ggaccctgag gaagacgggt acccgctcac 1100
cgtggctgac tattccggca ctgcaggcga ctccctcctg aagcacagcg 1150
gcatgaggtt caccaccaag gaccgtgaca gcgaccattc agagaacaac 1200
tgtgccgcct tctaccgcgg tgcctggtgg taccgcaact gccacacgac 1250
caacactcaat gggcagtacc tgcgcggtgc gcacgcctcc tatgccgacg 1300
gcgtggagtg gtcctcctgg accggctggc agtactcact caagttct 1350
gagatgaaga tccggccggt ccgggaggac cgctagactg gtgcaccc 1400
tccttggcccc tgctggtccc tgctcgcccc tccccgaccc cacctcaactc 1450
tttcgtgaat gttctccacc cacctgtgcc tggcggaccc actctccagt 1500
agggaggggc cgggccatcc ctgacacgaa gctccctgg ccggtaagt 1550
cacacatcgc cttctcgccg tccccacccc ctccatttgg cagctcaactg 1600
atctcttgc tctgtgtatg ggggctggca aacttgacga ccccaactcc 1650
tgccctgcccc cactgtgact ccggtgctgt ttgccgtccc ctggccagga 1700
tggtgaggc tgccccaggc accctctgcc ctgccccggcc aaatacccg 1750
cattatgggg acagagagca gggggcagac agcacccctg gagtcctcct 1800
agcagatcgt gggaatgtc aggtctctct gaggtcaggt ctgaggccag 1850
tatcctccag ccctcccaat gccaacccccc accccgtttc cctggtgccc 1900
agagaacccca cctctccccc aaggccctca gcctggctgt gggctgggtg 1950
gccccatcct accaggccct gaggtcagga tggggagctg ctgcctttgg 2000
ggacccacgc tccaaggctg agaccagttc cctggaggcc acccacccctg 2050
tgccccggca ggcctgggt ctgcagtcc tttacctgct gtgcccaccc 2100
gtctctgtc tcaa atgagg occaacccat ccccccacccca gctcccgcc 2150

gtcctcctac ctggggcagc cggggctgcc atccatttc tcctgcctct 2200
ggaagggtggg tggggccctg caccgtgggg ctggactgcg ctaatggaa 2250
gctcttgggt ttctgggctg gggcctaggc agggctggga tgaggcttgt 2300
acaacccccca ccaccaattt cccagggact ccagggtcct gaggcctccc 2350
aggagggcct tgggggtgat gacccttcc ctgaggtggc tgtctccatg 2400
aggaggccaa cccttgccat tgaccgtggc cacctggacc cagggcaggc 2450
ccggcccggc gagtggtcaa gggacaggga ccacctcacc gggcaaatgg 2500
ggtcgggggg actggggcac cagaccaggc accacctgga cactttcttg 2550
ttgaatcctc ccaacaccca gcacgctgtc atccccactc cttgtgtgca 2600
cacatgcaga ggtgagaccc gcaggctccc aggaccagca gccacaaggg 2650
cagggctgga gccgggtcct cagctgtctg ctcagcagcc ctggacccgc 2700
gtgcgttacg tcaggcccag atgcagggcg gctttccaa ggcctcctga 2750
tgggggcctc cgaaaggcgt ggagtcagcc ttggggagct gcctagcagc 2800
ctctcctcgg gcaggagggg aggtggcttc ctccaaagga caccgatgg 2850
caggtgccta ggggggtgtgg ggttccgttc tccctcccc tcccactgaa 2900
gtttgtgctt aaaaaacaat aaatttgact tggcaccact gggggtttgt 2950
gggagaggcc gtgtgacctg gtcctctgtc ccagtgccac caggtcatcc 3000
acatgcgcag 3010

<210> 314

<211> 461

<212> PRT

<213> Homo sapiens

<400> 314

Met	Val	Asn	Asp	Arg	Trp	Lys	Thr	Met	Gly	Gly	Ala	Ala	Gln	Leu
1								10					15	

Glu	Asp	Arg	Pro	Arg	Asp	Lys	Pro	Gln	Arg	Pro	Ser	Cys	Gly	Tyr
								20					30	

Val	Leu	Cys	Thr	Val	Leu	Leu	Ala	Leu	Ala	Val	Leu	Leu	Ala	Val
										35			45	

Ala	Val	Thr	Gly	Ala	Val	Leu	Phe	Leu	Asn	His	Ala	His	Ala	Pro
									50				60	

Gly	Thr	Ala	Pro	Pro	Pro	Val	Val	Ser	Thr	Gly	Ala	Ala	Ser	Ala
									65				75	

Asn Ser Ala Leu Val Thr Val Glu Arg Ala Asp Ser Ser His Leu

80	85	90
Ser Ile Leu Ile Asp Pro Arg Cys Pro Asp	Leu Thr Asp Ser Phe	
95	100	105
Ala Arg Leu Glu Ser Ala Gln Ala Ser Val	Leu Gln Ala Leu Thr	
110	115	120
Glu His Gln Ala Gln Pro Arg Leu Val Gly	Asp Gln Glu Gln Glu	
125	130	135
Leu Leu Asp Thr Leu Ala Asp Gln Leu Pro	Arg Leu Leu Ala Arg	
140	145	150
Ala Ser Glu Leu Gln Thr Glu Cys Met Gly	Leu Arg Lys Gly His	
155	160	165
Gly Thr Leu Gly Gln Gly Leu Ser Ala Leu	Gln Ser Glu Gln Gly	
170	175	180
Arg Leu Ile Gln Leu Leu Ser Glu Ser Gln	Gly His Met Ala His	
185	190	195
Leu Val Asn Ser Val Ser Asp Ile Leu Asp Ala	Leu Gln Arg Asp	
200	205	210
Arg Gly Leu Gly Arg Pro Arg Asn Lys Ala	Asp Leu Gln Arg Ala	
215	220	225
Pro Ala Arg Gly Thr Arg Pro Arg Gly Cys	Ala Thr Gly Ser Arg	
230	235	240
Pro Arg Asp Cys Leu Asp Val Leu Leu Ser	Gly Gln Gln Asp Asp	
245	250	255
Gly Val Tyr Ser Val Phe Pro Thr His Tyr	Pro Ala Gly Phe Gln	
260	265	270
Val Tyr Cys Asp Met Arg Thr Asp Gly Gly	Trp Thr Val Phe	
275	280	285
Gln Arg Arg Glu Asp Gly Ser Val Asn Phe	Phe Arg Gly Trp Asp	
290	295	300
Ala Tyr Arg Asp Gly Phe Gly Arg Leu Thr	Gly Glu His Trp Leu	
305	310	315
Gly Leu Lys Arg Ile His Ala Leu Thr Thr	Gln Ala Ala Tyr Glu	
320	325	330
Leu His Val Asp Leu Glu Asp Phe Glu Asn	Gly Thr Ala Tyr Ala	
335	340	345
Arg Tyr Gly Ser Phe Gly Val Gly Leu Phe	Ser Val Asp Pro Glu	
350	355	360
Glu Asp Gly Tyr Pro Leu Thr Val Ala Asp	Tyr Ser Gly Thr Ala	
365	370	375

Gly Asp Ser Leu Leu Lys His Ser Gly Met Arg Phe Thr Thr Lys
380 385 390

Asp Arg Asp Ser Asp His Ser Glu Asn Asn Cys Ala Ala Phe Tyr
395 400 405

Arg Gly Ala Trp Trp Tyr Arg Asn Cys His Thr Ser Asn Leu Asn
410 415 420

Gly Gln Tyr Leu Arg Gly Ala His Ala Ser Tyr Ala Asp Gly Val
425 430 435

Glu Trp Ser Ser Trp Thr Gly Trp Gln Tyr Ser Leu Lys Phe Ser
440 445 450

Glu Met Lys Ile Arg Pro Val Arg Glu Asp Arg
455 460

<210> 315
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 315
cacacgtcca acctcaatgg gcag 24

<210> 316
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 316
gaccagcagg gccaggaca agg 23

<210> 317
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 317
gttctctgag atgaagatcc ggccgggtccg ggagtaccgc ttag 44

<210> 318
<211> 1841
<212> DNA
<213> Homo sapiens

<400> 318
gcagtcagag acttccccctg cccctcgctg ggaaagaaca ttaggaatgc 50

cttttagtgc cttgcttcct gaactagctc acagtagccc ggcggccca 100
ggcaatccga ccacattca ctctcacccgc tgttaggaatc cagatgcagg 150
ccaagtacag cagcacgagg gacatgctgg atgatgatgg ggacaccacc 200
atgagcctgc attctcaagc ctctgccaca actcgccatc cagagccccg 250
gcgcacagag cacagggctc cctcttcaac gtggcgacca gtggccctga 300
ccctgctgac tttgtgcttg gtgctgctga tagggctggc agccctgggg 350
cttttgtttt ttcaagtacta ccagctctcc aatactggtc aagacaccat 400
ttctcaaatg gaagaaaagat taggaaatac gtcccaagag ttgcaatctc 450
ttcaagtcca gaatataaag cttgcaggaa gtctgcagca tgtggctgaa 500
aaactctgtc gtgagctgta taacaaagct ggagcacaca ggtgcagccc 550
ttgtacagaa caatggaaat ggcattggaga caattgctac cagttctata 600
aagacagcaa aagttggag gactgtaaat atttctgcct tagtggaaaac 650
tctaccatgc tgaagataaa caaacaagaa gacctggaat ttgccgcgtc 700
tcagagctac tctgagttt tctactctta ttggacaggg cttttgcgcc 750
ctgacagtgg caaggcctgg ctgtggatgg atgaaacccc tttcacttct 800
gaactgttcc atattataat agatgtcacc agcccaagaa gcagagactg 850
tgtggccatc ctcaatggga tgatcttc aaaggactgc aaagaattga 900
agcgttgtgt ctgtgagaga agggcaggaa tggtaagcc agagagcctc 950
catgtcccccc ctgaaacatt aggcgaaggt gactgattcg ccctctgcaa 1000
ctacaaatag cagagtgagc caggcggtgc caaagcaagg gctagtttag 1050
acattggaa atggaacata atcaggaaag actatcttc tgacttagtac 1100
aaaatgggtt ctcgtgtttc ctgttcagga tcaccagcat ttctgagctt 1150
gggtttatgc acgtattaa cagtcacaag aagtcttatt tacatgccac 1200
caaccaacct cagaaaccca taatgtcatc tgccttcgg gcttagagat 1250
aacttttagc tctcttcctt ctcaatgtct aatatcacct ccctgttttc 1300
atgtcttcct tacacttggt ggaataagaa acttttgaa gtagaggaaa 1350
tacattgagg taacatcctt ttctctgaca gtcaagtagt ccatcagaaa 1400
ttggcagtca cttccagat tgtaccagca aatacacaag gaattctttt 1450
tgtttggttc agttcataact agtcccttcc caatccatca gtaaagaccc 1500

catctgcctt gtccatgccg tttcccaaca gggatgtcac ttgatatgag 1550
aatctcaaat ctcaatgcct tataaggcatt ctttcctgtg tccattaaga 1600
ctctgataat tgtctcccct ccataggaat ttctcccagg aaagaaaatat 1650
atccccatct ccgtttcata tcagaactac cgtccccat attcccttca 1700
gagagattaa agaccagaaa aaagttagcc tcttcatctg cacctgtaat 1750
agtttcagtt cctattttct tccattgacc catattata cctttcaggt 1800
actgaagatt taataataat aaatgtaaaat actgtaaaaa a 1841

<210> 319

<211> 280

<212> PRT

<213> Homo sapiens

<400> 319

Met	Gln	Ala	Lys	Tyr	Ser	Ser	Thr	Arg	Asp	Met	Leu	Asp	Asp	Asp
1					5					10				15
Gly	Asp	Thr	Thr	Met	Ser	Leu	His	Ser	Gln	Ala	Ser	Ala	Thr	Thr
				20					25				30	
Arg	His	Pro	Glu	Pro	Arg	Arg	Thr	Glu	His	Arg	Ala	Pro	Ser	Ser
					35				40				45	
Thr	Trp	Arg	Pro	Val	Ala	Leu	Thr	Leu	Leu	Thr	Leu	Cys	Leu	Val
				50					55				60	
Leu	Leu	Ile	Gly	Leu	Ala	Ala	Leu	Gly	Leu	Leu	Phe	Phe	Gln	Tyr
				65					70				75	
Tyr	Gln	Leu	Ser	Asn	Thr	Gly	Gln	Asp	Thr	Ile	Ser	Gln	Met	Glu
				80					85				90	
Glu	Arg	Leu	Gly	Asn	Thr	Ser	Gln	Glu	Leu	Gln	Ser	Leu	Gln	Val
				95					100				105	
Gln	Asn	Ile	Lys	Leu	Ala	Gly	Ser	Leu	Gln	His	Val	Ala	Glu	Lys
				110					115				120	
Leu	Cys	Arg	Glu	Leu	Tyr	Asn	Lys	Ala	Gly	Ala	His	Arg	Cys	Ser
				125					130				135	
Pro	Cys	Thr	Glu	Gln	Trp	Lys	Trp	His	Gly	Asp	Asn	Cys	Tyr	Gln
				140					145				150	
Phe	Tyr	Lys	Asp	Ser	Lys	Ser	Trp	Glu	Asp	Cys	Lys	Tyr	Phe	Cys
				155					160				165	
Leu	Ser	Glu	Asn	Ser	Thr	Met	Leu	Lys	Ile	Asn	Lys	Gln	Glu	Asp
				170					175				180	
Leu	Glu	Phe	Ala	Ala	Ser	Gln	Ser	Tyr	Ser	Glu	Phe	Phe	Tyr	Ser
				185					190				195	

Tyr Trp Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu
200 205 210
Trp Met Asp Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile
215 220 225
Ile Asp Val Thr Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu
230 235 240
Asn Gly Met Ile Phe Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys
245 250 255
Val Cys Glu Arg Arg Ala Gly Met Val Lys Pro Glu Ser Leu His
260 265 270
Val Pro Pro Glu Thr Leu Gly Glu Gly Asp
275 280

<210> 320

<211> 468

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 59, 95, 149, 331, 364, 438, 446

<223> unknown base

<400> 320

aattttcacc gctgttagaa tccagatgca ggccaagtac agcagcacga 50

gggacatgnt ggatgatgat gggacaccac catgagcctg cattntcaag 100

cttttgcac aattcggcat ccagagcccc ggccgcacaga gcacaggngt 150

ccttttcaa cgtggcgacc agtggccctg accctgctga ctttgtgctt 200

ggtgctgctg atagggctgg cagccctgg gctttgttt tttcagtact 250

accagctctc caatactggt caagacacca tttctcaaat ggaagaaaaga 300

ttaggaaata cgtcccaaga gttgcaattt nttcaagtcc agaatataaa 350

gcttgagga agtntgcagc atgtggctga aaaactctgt cgtgagctgt 400

ataacaaagc tggaggaact ttgaaggagg gcaaagtntc ctcatntact 450

atacacacac cacttccc 468

<210> 321

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 321

atgcaggcca agtacagcag cac 23
<210> 322
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 322
catgctgacg acttcctgca agc 23

<210> 323
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 323
ccacacagtc tctgttctt ggg 23

<210> 324
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 324
atgctggatg atgatgggga caccaccatg agcctgcatt 40

<210> 325
<211> 2988
<212> DNA
<213> Homo sapiens

<400> 325
ggcgagcgca agaacccctgc gcagccccaga gcagctgctg gaggggaatc 50
gaggcgccggc tccggggatt cggctcgggc cgctggctct gctctgcggg 100
gagggagcgg gcccccccgcc ggggccccgag ccctccggat ccgccccctc 150
cccggtccccg ccccccctcgga gactccctctg gctgctctgg gggttcgccg 200
gggccggggga cccgcgggtcc gggcgccatg cgggcattcgc tgctgctgtc 250
ggtgctgcgg cccgcagggc ccgtggccgt gggcatctcc ctgggcttca 300
ccctgagcct gctcagcgtc acctgggtgg aggagccgtg cggccccaggc 350
ccgccccaaac ctggagactc tgagctgccg ccgcgcggca acaccaacgc 400
ggcgccggccgg cccaaactcgg tgcagccccgg agcggagcgc gagaagccccg 450

ggccggcga aggccgggg gagaattggg agccgcgt cttgccctac 500
cacccctgcac agcccccca ggccgccaaa aaggccgtca ggaccggcta 550
catcagcacg gagctggca tcaggcagag gctgctggtg ggggtgtga 600
cctctcagac cacgctgccc acgctggcg tggccgtcaa ccgcacgctg 650
ggcaccggc tggagcgtgt ggtgttcctg acgggcgcac gggccggccg 700
ggccccacct ggcattggcag tggtgacgct gggcgaggag cgaccattg 750
gacacctgca cctggcgctg cgcacactgc tggagcagca cggcgacgac 800
tttgactggt tcttcctggt gcctgacacc acctacaccg aggccgcacgg 850
cctggcacgc ctaactggcc acctcagcct ggcctccgccc gcccacctgt 900
acctggccg gcccaggac ttcatcgccg gagagccac cccggccgc 950
tactgccacg gaggctttgg ggtgctgtcg tcgcgcattgc tgctgcaaca 1000
actgcgcggc cacctggaag gctgcccggaa cgacatcgctc agtgcgcgc 1050
ctgacgagtg gctgggtcg tgcattctcg atgccaccgg ggtgggtcg 1100
actggtgacc acgagggggt gcaactatagc catctggagc tgagccctgg 1150
ggagccagtg caggaggggg accctcattt ccgaagtgcc ctgacagccc 1200
accctgtgcg tgaccctgtg cacatgtacc agctgcacaa agcttcgc 1250
cgagctgaac tggAACgcac gtaccaggag atccaggagt tacagtggga 1300
gatccagaat accagccatc tggccgttga tggggaccgg gcagctgctt 1350
ggcccggtgg tattccagca ccatcccgcc cggccctcccg cttttaggtg 1400
ctgcgctggg actacttcac ggagcagcac gctttctcct ggcgcgatgg 1450
ctcaccccgcc tgcccaactgc gtggggctga cggggctgat gtggccgatg 1500
ttctggggac agctctagag gagctgaacc gcccgtacca cccggcccttg 1550
cggtccaga agcagcagct ggtgaatggc taccgacgct ttgatccggc 1600
ccggggatcg gaatacacgc tggacttgca gctggaggca ctgacccccc 1650
agggaggccg ccggcccccactcgccgag tgcagctgct cggcccgctg 1700
agccgcgtgg agatcttgcc tgtgccttat gtcactgagg cctcacgtct 1750
caactgtgtc ctgcctctag ctgcggctga gctgtgacactg gcccctggct 1800
tcttggaggc ctttgccact gcagcactgg agcctggta tgctgcggca 1850
gccctgaccc tgctgctact gatatggcc cgccaggccc agcgcggtggc 1900

ccatgcagat gtcttcgcac ctgtcaaggc ccacgtggca gagctggagc 1950
ggcgttccc cggtgccccgg gtgccatggc tcagtgtgca gacagccgca 2000
ccctcaccac tgcgcctcat ggatctactc tccaagaagc acccgctgga 2050
cacactgttc ctgctggccg ggccagacac ggtgctcacf cctgacttcc 2100
tgaaccgctg ccgcattgcat gccatctccg gctggcaggc cttcttccc 2150
atgcatttcc aagcattcca cccaggtgtg gccccaccac aagggctgg 2200
gccccccagag ctggggccgtg acactggccg ctttgcgcgc caggcagcca 2250
gcgaggcctg cttctacaac tccgactacg tggcagcccg tggcgcctg 2300
gcggcagcct cagaacaaga agaggagctg ctggagagcc tggatgtgta 2350
cgagctgttc ctccacttct ccagtctgca tgtgctgcgg gcgggtggagc 2400
cggcgctgct gcagcgctac cgggccccaga cgtgcagcgc gaggctcagt 2450
gaggacctgt accacccgctg cttccagagc gtgcggagg gcctcgcc 2500
ccgaacccag ctggccatgc tactcttga acaggagcag ggcaacagca 2550
cctgacccca ccctgtcccc gtggggccgtg gcatggccac accccacccc 2600
acttctcccc caaaaccaga gccacctgcc agectcgctg ggcagggctg 2650
gccgtagcca gaccccaagc tggcccactg gtccctctc tggctctgtg 2700
ggtcctgggg ctctggacaa gcactggggg acgtgcccc agagccaccc 2750
acttctcatc ccaaacccag ttccctgcc ccctgacgct gctgattcgg 2800
gctgtggcct ccacgtattt atgcagtaca gtctgcctga cgccagccct 2850
gcctctgggc cctgggggct gggctgtaga agagttgtg gggaggagg 2900
gagctgagga gggggcatct cccaaacttct cccttttggaa ccctgccc 2950
gctccctgcc ttataataaac tggccaagtg tggaaaaaa 2988

<210> 326

<211> 775

<212> PRT

<213> Homo sapiens

<400> 326

Met	Arg	Ala	Ser	Leu	Leu	Leu	Ser	Val	Leu	Arg	Pro	Ala	Gly	Pro
1				5				10			15			

Val	Ala	Val	Gly	Ile	Ser	Leu	Gly	Phe	Thr	Leu	Ser	Leu	Leu	Ser
				20				25			30			

Val	Thr	Trp	Val	Glu	Glu	Pro	Cys	Gly	Pro	Gly	Pro	Pro	Gln	Pro
				35				40			45			

Gly Asp Ser Glu Leu Pro Pro Arg Gly Asn Thr Asn Ala Ala Arg
 50 55 60
 Arg Pro Asn Ser Val Gln Pro Gly Ala Glu Arg Glu Lys Pro Gly
 65 70 75
 Ala Gly Glu Gly Ala Gly Glu Asn Trp Glu Pro Arg Val Leu Pro
 80 85 90
 Tyr His Pro Ala Gln Pro Gly Gln Ala Ala Lys Lys Ala Val Arg
 95 100 105
 Thr Arg Tyr Ile Ser Thr Glu Leu Gly Ile Arg Gln Arg Leu Leu
 110 115 120
 Val Ala Val Leu Thr Ser Gln Thr Thr Leu Pro Thr Leu Gly Val
 125 130 135
 Ala Val Asn Arg Thr Leu Gly His Arg Leu Glu Arg Val Val Phe
 140 145 150
 Leu Thr Gly Ala Arg Gly Arg Arg Ala Pro Pro Gly Met Ala Val
 155 160 165
 Val Thr Leu Gly Glu Glu Arg Pro Ile Gly His Leu His Leu Ala
 170 175 180
 Leu Arg His Leu Leu Glu Gln His Gly Asp Asp Phe Asp Trp Phe
 185 190 195
 Phe Leu Val Pro Asp Thr Thr Tyr Thr Glu Ala His Gly Leu Ala
 200 205 210
 Arg Leu Thr Gly His Leu Ser Leu Ala Ser Ala Ala His Leu Tyr
 215 220 225
 Leu Gly Arg Pro Gln Asp Phe Ile Gly Gly Glu Pro Thr Pro Gly
 230 235 240
 Arg Tyr Cys His Gly Gly Phe Gly Val Leu Leu Ser Arg Met Leu
 245 250 255
 Leu Gln Gln Leu Arg Pro His Leu Glu Gly Cys Arg Asn Asp Ile
 260 265 270
 Val Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Ile Leu Asp
 275 280 285
 Ala Thr Gly Val Gly Cys Thr Gly Asp His Glu Gly Val His Tyr
 290 295 300
 Ser His Leu Glu Leu Ser Pro Gly Glu Pro Val Gln Glu Gly Asp
 305 310 315
 Pro His Phe Arg Ser Ala Leu Thr Ala His Pro Val Arg Asp Pro
 320 325 330
 Val His Met Tyr Gln Leu His Lys Ala Phe Ala Arg Ala Glu Leu

335	340	345
Glu Arg Thr Tyr Gln Glu Ile Gln Glu Leu Gln Trp Glu Ile Gln		
350	355	360
Asn Thr Ser His Leu Ala Val Asp Gly Asp Arg Ala Ala Ala Trp		
365	370	375
Pro Val Gly Ile Pro Ala Pro Ser Arg Pro Ala Ser Arg Phe Glu		
380	385	390
Val Leu Arg Trp Asp Tyr Phe Thr Glu Gln His Ala Phe Ser Cys		
395	400	405
Ala Asp Gly Ser Pro Arg Cys Pro Leu Arg Gly Ala Asp Arg Ala		
410	415	420
Asp Val Ala Asp Val Leu Gly Thr Ala Leu Glu Glu Leu Asn Arg		
425	430	435
Arg Tyr His Pro Ala Leu Arg Leu Gln Lys Gln Gln Leu Val Asn		
440	445	450
Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu		
455	460	465
Asp Leu Gln Leu Glu Ala Leu Thr Pro Gln Gly Gly Arg Arg Pro		
470	475	480
Leu Thr Arg Arg Val Gln Leu Leu Arg Pro Leu Ser Arg Val Glu		
485	490	495
Ile Leu Pro Val Pro Tyr Val Thr Glu Ala Ser Arg Leu Thr Val		
500	505	510
Leu Leu Pro Leu Ala Ala Ala Glu Arg Asp Leu Ala Pro Gly Phe		
515	520	525
Leu Glu Ala Phe Ala Thr Ala Ala Leu Glu Pro Gly Asp Ala Ala		
530	535	540
Ala Ala Leu Thr Leu Leu Leu Tyr Glu Pro Arg Gln Ala Gln		
545	550	555
Arg Val Ala His Ala Asp Val Phe Ala Pro Val Lys Ala His Val		
560	565	570
Ala Glu Leu Glu Arg Arg Phe Pro Gly Ala Arg Val Pro Trp Leu		
575	580	585
Ser Val Gln Thr Ala Ala Pro Ser Pro Leu Arg Leu Met Asp Leu		
590	595	600
Leu Ser Lys Lys His Pro Leu Asp Thr Leu Phe Leu Leu Ala Gly		
605	610	615
Pro Asp Thr Val Leu Thr Pro Asp Phe Leu Asn Arg Cys Arg Met		
620	625	630

His Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Met His Phe Gln
635 640 645

Ala Phe His Pro Gly Val Ala Pro Pro Gln Gly Pro Gly Pro Pro
650 655 660

Glu Leu Gly Arg Asp Thr Gly Arg Phe Asp Arg Gln Ala Ala Ser
665 670 675

Glu Ala Cys Phe Tyr Asn Ser Asp Tyr Val Ala Ala Arg Gly Arg
680 685 690

Leu Ala Ala Ala Ser Glu Gln Glu Glu Glu Leu Leu Glu Ser Leu
695 700 705

Asp Val Tyr Glu Leu Phe Leu His Phe Ser Ser Leu His Val Leu
710 715 720

Arg Ala Val Glu Pro Ala Leu Leu Gln Arg Tyr Arg Ala Gln Thr
725 730 735

Cys Ser Ala Arg Leu Ser Glu Asp Leu Tyr His Arg Cys Leu Gln
740 745 750

Ser Val Leu Glu Gly Leu Gly Ser Arg Thr Gln Leu Ala Met Leu
755 760 765

Leu Phe Glu Gln Glu Gln Gly Asn Ser Thr
770 775

<210> 327

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 327

tggaaggctg ccgcaacgac aatc 24

<210> 328

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 328

ctgatgtggc cgatgttctg 20

<210> 329

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 329
atggctcagt gtgcagacag 20

<210> 330
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 330
gcatgctgct ccgtgaagta gtcc 24

<210> 331
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 331
atgcatggga aagaaggcct gccc 24

<210> 332
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 332
tgcactggtg accacgaggg ggtgcactat agccatctgg agctgag 47

<210> 333
<211> 1095
<212> DNA
<213> Homo sapiens

<400> 333
gctctggccg gccccggcga ttggtcacccg cccgcttaggg gacagccctg 50
gcctcctctg attggcaagc gctggccacc tccccacacc cttgcgaac 100
gctccccc tag tggagaaaag gagtagctat tagccaattc ggcagggccc 150
gctttttaga agcttgattt ccttgaaga tgaaagacta gcggaagctc 200
tgcctcttc cccagtggc gagggaactc ggggcattg gctgggaact 250
gtatccaccc aaatgtcacc gatttcttcc tatgcaggaa atgagcagac 300
ccatcaataa gaaatttctc agcctggccg aaaatggttg gccccacgaa 350

gccacgacaa ctggaggcaa agagggttgc tcaacgcccc gcctcattgg 400
aaaacccaaat cagatctggg acctatatag cgtggcggag gcggggcgat 450
gattgtcgcg ctcgcaccca ctgcagctgc gcacagtcgc atttcttcc 500
ccgcccctga gaccctgcag caccatctgt catggcggct gggctgttg 550
gtttgagcgc tcgccgtctt ttggcggcag cgccgacgcg agggctcccg 600
gccgcccgcg tccgctggga atctagcttc tccaggactg tggtcgcccc 650
gtccgctgtg gcgggaaagc ggcccccaga accgaccaca ccgtggcaag 700
aggaccaga acccgaggac gaaaacttgt atgagaagaa cccagactcc 750
catggttatg acaaggaccc cgaaaaatggac gtctggaaaca tgcaacttgt 800
cttcttcttt ggcgtctcca tcatacctggc cttggcagc acctttgtgg 850
cctatctgcc tgactacagg atgaaagagt ggtcccgccg cgaagctgag 900
aggcttgtga aataccgaga ggccaatggc cttccatca tggaatccaa 950
ctgcttcgac cccagcaaga tccagctgcc agaggatgag tgaccagttg 1000
ctaagtgggg ctcaagaagc accgccttcc ccacccctg cctgccattc 1050
tgacctcttc tcagagcacc taattaaagg ggctgaaagt ctgaa 1095

<210> 334

<211> 153

<212> PRT

<213> Homo sapiens

<400> 334

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala
1 5 10 15

Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu
20 25 30

Ser Ser Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly
35 40 45

Lys Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu
50 55 60

Pro Glu Asp Glu Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly
65 70 75

Tyr Asp Lys Asp Pro Val Leu Asp Val Trp Asn Met Arg Leu Val
80 85 90

Phe Phe Phe Gly Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe
95 100 105

Val Ala Tyr Leu Pro Asp Tyr Arg Met Lys Glu Trp Ser Arg Arg

110 115 120
Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu Pro
125 130 135
Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro
140 145 150
Glu Asp Glu

<210> 335
<211> 442
<212> DNA
<213> Homo sapiens

<400> 335
ggcggctggg ctgtttggtt tgagcgctcg ccgtcttttgcggc 50
cgacgcgagg gctccggcc gcccgcgtcc gctgggaatc tagttctcc 100
aggactgtgg tcgccccgtc cgctgtggcg ggaaagcggc ccccagaacc 150
gaccacaccc tggcaagagg acccagaacc cgaggacgaa aacttgtatg 200
agaagaaccc agactcccat ggttatgaca aggacccgt tttggacgtc 250
tggAACATGC gacttgtctt cttctttggc gtctccatca tcctggtcct 300
tggcagcacc tttgtggcct atctgcctga ctacaggatg aaagagtgg 350
cccgccgcga agctgagagg cttgtgaaat accgagaggc caatggcctt 400
cccatcatgg aatccaactg cttcgacccc agcaagatcc ag 442

<210> 336
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 336
ctgagaccct gcagcacat ctg 23

<210> 337
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 337
ggtgcttctt gagccccact tagc 24

<210> 338

<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 338
aatcttagctt ctccaggact gtggtcgccc cgtccgctgt 40

<210> 339
<211> 2162
<212> DNA
<213> Homo sapiens

<400> 339
gcggcggcta tgccgcttgc tctgctcgta ctgttgctcc tggggccccgg 50
cggctggtgc cttgcagaac ccccacgcga cagcctgcgg gaggaacttg 100
tcatcacccc gctgccttcc ggggacgttag ccgccacatt ccagttccgc 150
acgcgcgtggg attcggagct tcagcggaa ggagtgtccc attacaggct 200
cttccccaaa gccctggggc agctgatctc caagtattct ctacgggagc 250
tgcacctgtc attcacacaa ggcttttggaa ggacccgata ctgggggcca 300
cccttcctgc aggccccatc aggtgcagag ctgtgggtct gttccaaga 350
cactgtcaact gatgtggata aatcttggaa ggagctcaatg aatgtcctct 400
cagggatctt ctgcgcctct ctcaacttca tcgactccac caacacagtc 450
actccccactg cctccttcaa acccctgggt ctggccaatg acactgacca 500
ctactttctg cgctatgctg tgctgccgcg ggaggtggtc tgcaccgaaa 550
acctcacccc ctggaagaag ctcttgcctt gtagttccaa ggcaggcctc 600
tctgtgtgc tgaaggcaga tcgcttggtc cacaccagct accactccca 650
ggcagtgcatt atccgcctg tttgcagaaa tgcacgctgt actagcatct 700
cctggagact gaggcagacc ctgtcagttg tatttgcattt cttcatcactg 750
ggcaggggaa agaaagactg gtcccttcc cggatgttct cccgaaccct 800
cacggagccc tgccccctgg cttcagagag ccgagtttat gtggacatca 850
ccacctacaa ccaggacaac gagacattag aggtgcaccc acccccgacc 900
actacatatac aggacgtcat cctaggact cgaaagaccc atgccatcta 950
tgacttgctt gacaccgcca tggatcaacaa ctctcgaaac ctcaacatcc 1000
agctcaagtg gaagagaccc ccagagaatg agggccccc agtgcgcctc 1050

ctgcatgccc agcggtacgt gagtggctat gggctgcaga agggggagct 1100
gagcacactg ctgtacaaca cccacccata ccgggccttc ccggtgctgc 1150
tgctggacac cgtaccctgg tatctgcggc tgtatgtgca caccctcacc 1200
atcacctcca agggcaagga gaacaaacca agttacatcc actaccagcc 1250
tgcccaggac cggctgcaac cccacccct ggagatgctg attcagctgc 1300
cggccaaactc agtcaccaag gtttccatcc agttttagcg ggcgctgctg 1350
aagtggaccc agtacacgac agatccta ac catggctt atgtcagccc 1400
atctgtcctc agcgccttg tgcccagcat ggttagcagcc aagccagttg 1450
actggaaaga gagtcccctc ttcaacagcc tggccactt ctctgatggc 1500
tctaactact ttgtgcggct ctacacggag ccgctgctgg tgaacctgcc 1550
gacaccggac ttcagcatgc cctacaacgt gatctgcctc acgtgcactg 1600
tggtggccgt gtgctacggc tccttctaca atctcctcac ccgaaccttc 1650
cacatcgagg agccccgcac aggtggccctg gccaagcggc tggccaaacct 1700
tatccggcgc gcccgggtg tccccccact ctgattcttg ccctttccag 1750
cagctgcagc tgccgttct ctctgggag gggagccaa gggctgtttc 1800
tgccacttgc tctcctcaga gttggctttt gaaccaaagt gccctggacc 1850
aggtcagggc ctacagctgt gttgtccagt acaggagccaa cgagccaaat 1900
gtggcatttg aatttgaatt aacttagaaa ttcatttcct cacctgttagt 1950
ggccacccctt atattgaggt gctcaataag caaaagtggt cggtggctgc 2000
tgtattggac agcacagaaa aagatttcca tcaccacaga aaggtcggt 2050
ggcagcactg gccaaggtaa tgggggtgtgc tacacagtgt atgtcactgt 2100
gtagtggatg gagtttactg tttgtggaaat aaaaacggct gtttccgtgg 2150
aaaaaaaaaa aa 2162

<210> 340
<211> 574
<212> PRT
<213> Homo sapiens

<400> 340
Met Pro Leu Ala Leu Leu Val Leu Leu Leu Gly Pro Gly Gly
1 5 10 15
Trp Cys Leu Ala Glu Pro Pro Arg Asp Ser Leu Arg Glu Glu Leu
20 25 30

Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala Thr Phe Gln
 35 40 45

 Phe Arg Thr Arg Trp Asp Ser Glu Leu Gln Arg Glu Gly Val Ser
 50 55 60

 His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser Lys
 65 70 75

 Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp
 80 85 90

 Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly
 95 100 105

 Ala Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp
 110 115 120

 Lys Ser Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys
 125 130 135

 Ala Ser Leu Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr
 140 145 150

 Ala Ser Phe Lys Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr
 155 160 165

 Phe Leu Arg Tyr Ala Val Leu Pro Arg Glu Val Val Cys Thr Glu
 170 175 180

 Asn Leu Thr Pro Trp Lys Lys Leu Leu Pro Cys Ser Ser Lys Ala
 185 190 195

 Gly Leu Ser Val Leu Leu Lys Ala Asp Arg Leu Phe His Thr Ser
 200 205 210

 Tyr His Ser Gln Ala Val His Ile Arg Pro Val Cys Arg Asn Ala
 215 220 225

 Arg Cys Thr Ser Ile Ser Trp Glu Leu Arg Gln Thr Leu Ser Val
 230 235 240

 Val Phe Asp Ala Phe Ile Thr Gly Gln Gly Lys Lys Asp Trp Ser
 245 250 255

 Leu Phe Arg Met Phe Ser Arg Thr Leu Thr Glu Pro Cys Pro Leu
 260 265 270

 Ala Ser Glu Ser Arg Val Tyr Val Asp Ile Thr Thr Tyr Asn Gln
 275 280 285

 Asp Asn Glu Thr Leu Glu Val His Pro Pro Pro Thr Thr Thr Tyr
 290 295 300

 Gln Asp Val Ile Leu Gly Thr Arg Lys Thr Tyr Ala Ile Tyr Asp
 305 310 315

 Leu Leu Asp Thr Ala Met Ile Asn Asn Ser Arg Asn Leu Asn Ile

320	325	330
Gln Leu Lys Trp Lys Arg Pro Pro Glu Asn Glu Ala Pro Pro Val		
335	340	345
Pro Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr Gly Leu Gln		
350	355	360
Lys Gly Glu Leu Ser Thr Leu Leu Tyr Asn Thr His Pro Tyr Arg		
365	370	375
Ala Phe Pro Val Leu Leu Leu Asp Thr Val Pro Trp Tyr Leu Arg		
380	385	390
Leu Tyr Val His Thr Leu Thr Ile Thr Ser Lys Gly Lys Glu Asn		
395	400	405
Lys Pro Ser Tyr Ile His Tyr Gln Pro Ala Gln Asp Arg Leu Gln		
410	415	420
Pro His Leu Leu Glu Met Leu Ile Gln Leu Pro Ala Asn Ser Val		
425	430	435
Thr Lys Val Ser Ile Gln Phe Glu Arg Ala Leu Leu Lys Trp Thr		
440	445	450
Glu Tyr Thr Pro Asp Pro Asn His Gly Phe Tyr Val Ser Pro Ser		
455	460	465
Val Leu Ser Ala Leu Val Pro Ser Met Val Ala Ala Lys Pro Val		
470	475	480
Asp Trp Glu Glu Ser Pro Leu Phe Asn Ser Leu Phe Pro Val Ser		
485	490	495
Asp Gly Ser Asn Tyr Phe Val Arg Leu Tyr Thr Glu Pro Leu Leu		
500	505	510
Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr Asn Val Ile		
515	520	525
Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser Phe Tyr		
530	535	540
Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Arg Thr Gly		
545	550	555
Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly		
560	565	570
Val Pro Pro Leu		

<210> 341
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 341
tggacaccgt accctggat ctgc 24

<210> 342
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<221> Artificial Sequence
<222> 1-24
<223> Synthetic oligonucleotide probe

<400> 342
ccaactctga ggagagcaag tggc 24

<210> 343
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 343
tgtatgtgca caccctcacc atcacctcca agggcaagga gaac 44

<210> 344
<211> 762
<212> DNA
<213> Homo sapiens

<400> 344
caacatgggg tccagcagct tcttggtcct catggtgtct ctcgttcttg 50
tgacctgggt ggctgtggaa ggagttaaag agggtataga gaaagcagg 100
gtttgcccaag ctgacaacgt acgctgctc aagtccgatc ctccccagtg 150
tcacacagac caggactgtc tgggggaaag gaagtgttgt tacctgcact 200
gtggcttcaa gtgtgtgatt cctgtgaagg aactggaaga aggaggaaac 250
aaggatgaag atgtgtcaag gccataccct gagccaggat gggaggccaa 300
gtgtccaggc tcctcctcta ccaggtgtcc tcagaaatga tgctgggtcc 350
tttctacctc tgggggtcac tctcaattgg cacctgcccc tgagggtcct 400
gagacttgga atatggaaga agcaatacc aaccccacca aagaaaacct 450
gagcttgaag tcctttccc caaaaagagg gaagagtcac aaaaagtcca 500
gaccccaagg acggtaacttt ccctctctac ctggtgctcc tccctaattgc 550

tcatgaatgg acccctcatg aatgaaacca gtgcccttat aagagacccc 600
aaagagctgc cttgcccttc tgcaatgtgt gatcacagct agaaggcact 650
gtcagagaag agaaaactggt cctcaccaga tgctgaatct gctggtgct 700
tgcatttggc cttcccgcc tctagaactg taagaaataa atatttgctg 750
tttataatcc aa 762

<210> 345
<211> 111
<212> PRT
<213> Homo sapiens

<400> 345
Met Gly Ser Ser Ser Phe Leu Val Leu Met Val Ser Leu Val Leu
1 5 10 15
Val Thr Leu Val Ala Val Glu Gly Val Lys Glu Gly Ile Glu Lys
20 25 30
Ala Gly Val Cys Pro Ala Asp Asn Val Arg Cys Phe Lys Ser Asp
35 40 45
Pro Pro Gln Cys His Thr Asp Gln Asp Cys Leu Gly Glu Arg Lys
50 55 60
Cys Cys Tyr Leu His Cys Gly Phe Lys Cys Val Ile Pro Val Lys
65 70 75
Glu Leu Glu Glu Gly Gly Asn Lys Asp Glu Asp Val Ser Arg Pro
80 85 90
Tyr Pro Glu Pro Gly Trp Glu Ala Lys Cys Pro Gly Ser Ser Ser
95 100 105
Thr Arg Cys Pro Gln Lys
110

<210> 346
<211> 2528
<212> DNA
<213> Homo sapiens

<400> 346
aaactcagca cttgccggag tggctcattt ttaagacaaa gggtgtgcac 50
ttcctggcca ggaaacctga gcggtgagac tccccagctgc ctacatcaag 100
gccccaggac atgcagaacc ttcctctaga acccgaccca ccaccatgag 150
gtcctgcctg tggagatgca ggcacctgag ccaaggcgtc cagtggtcct 200
tgcttctggc tgtcctggc ttctttctct tcgccttgcc ctctttatt 250
aaggagcctc aaacaaaagcc ttccaggcat caacgcacag agaacattaa 300

agaaaggct ctacagtccc tggcaaagcc taagtcccag gcacccacaa 350
ggcgaggag gacaaccatc tatgcagagc cagcgccaga gaacaatgcc 400
ctcaacacac aaacctagcc caaggcccac accaccggag acagaggaaa 450
ggaggccaac caggcaccgc cgaggagca ggacaaggta cccccacacag 500
cacagagggc agcatggaag agcccagaaa aagagaaaac catggtaaac 550
acactgtcac ccagagggca agatgcaggg atggcctctg gcaggacaga 600
ggcacaatca tggaagagcc aggacacaaa gacgacccaa ggaaatgggg 650
gccagaccag gaagctgacg gcctccagga cggtgtcaga gaagcaccag 700
ggcaaagcg caaccacagc caagacgctc attccaaaaa gtcagcacag 750
aatgctggct cccacaggag cagtgtcaac aaggacgaga cagaaaggag 800
tgaccacagc agtcatccca cctaaggaga agaaacctca ggccacccca 850
ccccctgccc ctttccagag ccccacgacg cagagaaacc aaagactgaa 900
ggccgccaac ttcaaattcg agcctcggtg ggattttgag gaaaaataca 950
gcttcgaaat aggaggcctt cagacgactt gccctgactc tgtgaagatc 1000
aaagcctcca agtcgctgtg gctccagaaa ctctttctgc ccaacctcac 1050
tctcttcctg gactccagac acttcaacca gagtgagtgg gaccgcctgg 1100
aacactttgc accaccctt ggcttcatgg agctcaacta ctccctggtg 1150
cagaaggctcg tgacacgctt ccctccagtg ccccacgacg agctgctcct 1200
ggccagcctc cccgctggga gcctccggtg catcacctgt gccgtggtgg 1250
gcaacggggg catcctgaac aactcccaca tgggccagga gatagacagt 1300
cacgactacg tggccgatt gagcggagct ctcattaaag gctacgaaca 1350
ggatgtgggg actcggacat ctttctacgg ctttaccgccc ttctccctga 1400
cccagtcaact ctttatattg ggcaatcggg gtttcaagaa cgtgcctctt 1450
ggaaaggacg tccgctactt gcacttcctg gaaggcaccc gggactatga 1500
gtggctggaa gcactgctta tgaatcagac ggtgatgtca aaaaaccttt 1550
tctggttcag gcacagaccc caggaagctt ttccggaaagc cctgcacatg 1600
gacaggtacc tggctgtca cccagacttt ctccgataca tgaagaacag 1650
gtttctgagg tctaagaccc tggatggtgcc caactggagg atataccgcc 1700
ccaccactgg ggccctcctg ctgctcaactg cccttcagct ctgtgaccag 1750

gtgagtgc tt atggcttcat cactgaggc catgagcgct tttctgatca 1800
ctactatgt acatcatgga agcggctgat ctttacata aaccatgact 1850
tcaagctgga gagagaagtc tggaagcggc tacacgatga aggataatc 1900
cggtgttacc agcgtcctgg tcccgaaact gccaaagcca agaactgacc 1950
ggggccaggg ctgccatggt ctccttgct gctccaaggc acaggataca 2000
gtggaatct tgagactctt tggccatttc ccatggctca gactaagctc 2050
caagccatttc aggagttcca agggAACACT tgaaccatgg acaagactct 2100
ctcaagatgg caaatggcta attgaggttc tgaagttctt cagtagattg 2150
ctgttagtcc tgaggccagg gatTTTAAT taaatgggt gatgggtggc 2200
caataccaca attcctgctg aaaaacactc ttccagtcca aaagcttctt 2250
gatacagaaa aaagagcctg gatttacaga aacatataga tctggttga 2300
attccagatc gagttacag ttgtgaaatc ttgaaggtat tacttaactt 2350
caactacat tgtctagaag acctttctag gagttatctg attctagaag 2400
ggtctataact tgtccttgc tttaagctat ttgacaactc tacgtgttgt 2450
agaaaaactga taataataca aatgattgtt gtccatggaa aggcaaataa 2500
atTTTCTACA gtgaaaaaaaaaaaaaaaaa 2528

<210> 347

<211> 600

<212> PRT

<213> Homo sapiens

<400> 347

Met	Arg	Ser	Cys	Leu	Trp	Arg	Cys	Arg	His	Leu	Ser	Gln	Gly	Val
1				5				10						15
Gln	Trp	Ser	Leu	Leu	Leu	Ala	Val	Leu	Val	Phe	Phe	Leu	Phe	Ala
				20				25						30
Leu	Pro	Ser	Phe	Ile	Lys	Glu	Pro	Gln	Thr	Lys	Pro	Ser	Arg	His
				35				40						45
Gln	Arg	Thr	Glu	Asn	Ile	Lys	Glu	Arg	Ser	Leu	Gln	Ser	Leu	Ala
				50				55						60
Lys	Pro	Lys	Ser	Gln	Ala	Pro	Thr	Arg	Ala	Arg	Arg	Thr	Thr	Ile
				65				70						75
Tyr	Ala	Glu	Pro	Ala	Pro	Glu	Asn	Asn	Ala	Leu	Asn	Thr	Gln	Thr
				80				85						90
Gln	Pro	Lys	Ala	His	Thr	Thr	Gly	Asp	Arg	Gly	Lys	Glu	Ala	Asn
				95				100						105

Gln Ala Pro Pro Glu Glu Gln Asp Lys Val Pro His Thr Ala Gln
 110 115 120
 Arg Ala Ala Trp Lys Ser Pro Glu Lys Glu Lys Thr Met Val Asn
 125 130 135
 Thr Leu Ser Pro Arg Gly Gln Asp Ala Gly Met Ala Ser Gly Arg
 140 145 150
 Thr Glu Ala Gln Ser Trp Lys Ser Gln Asp Thr Lys Thr Thr Gln
 155 160 165
 Gly Asn Gly Gly Gln Thr Arg Lys Leu Thr Ala Ser Arg Thr Val
 170 175 180
 Ser Glu Lys His Gln Gly Lys Ala Ala Thr Thr Ala Lys Thr Leu
 185 190 195
 Ile Pro Lys Ser Gln His Arg Met Leu Ala Pro Thr Gly Ala Val
 200 205 210
 Ser Thr Arg Thr Arg Gln Lys Gly Val Thr Thr Ala Val Ile Pro
 215 220 225
 Pro Lys Glu Lys Lys Pro Gln Ala Thr Pro Pro Pro Ala Pro Phe
 230 235 240
 Gln Ser Pro Thr Thr Gln Arg Asn Gln Arg Leu Lys Ala Ala Asn
 245 250 255
 Phe Lys Ser Glu Pro Arg Trp Asp Phe Glu Glu Lys Tyr Ser Phe
 260 265 270
 Glu Ile Gly Gly Leu Gln Thr Thr Cys Pro Asp Ser Val Lys Ile
 275 280 285
 Lys Ala Ser Lys Ser Leu Trp Leu Gln Lys Leu Phe Leu Pro Asn
 290 295 300
 Leu Thr Leu Phe Leu Asp Ser Arg His Phe Asn Gln Ser Glu Trp
 305 310 315
 Asp Arg Leu Glu His Phe Ala Pro Pro Phe Gly Phe Met Glu Leu
 320 325 330
 Asn Tyr Ser Leu Val Gln Lys Val Val Thr Arg Phe Pro Pro Val
 335 340 345
 Pro Gln Gln Gln Leu Leu Ala Ser Leu Pro Ala Gly Ser Leu
 350 355 360
 Arg Cys Ile Thr Cys Ala Val Val Gly Asn Gly Gly Ile Leu Asn
 365 370 375
 Asn Ser His Met Gly Gln Glu Ile Asp Ser His Asp Tyr Val Phe
 380 385 390
 Arg Leu Ser Gly Ala Leu Ile Lys Gly Tyr Glu Gln Asp Val Gly

395	400	405
Thr Arg Thr Ser Phe Tyr Gly Phe Thr Ala Phe Ser Leu Thr Gln		
410	415	420
Ser Leu Leu Ile Leu Gly Asn Arg Gly Phe Lys Asn Val Pro Leu		
425	430	435
Gly Lys Asp Val Arg Tyr Leu His Phe Leu Glu Gly Thr Arg Asp		
440	445	450
Tyr Glu Trp Leu Glu Ala Leu Leu Met Asn Gln Thr Val Met Ser		
455	460	465
Lys Asn Leu Phe Trp Phe Arg His Arg Pro Gln Glu Ala Phe Arg		
470	475	480
Glu Ala Leu His Met Asp Arg Tyr Leu Leu Leu His Pro Asp Phe		
485	490	495
Leu Arg Tyr Met Lys Asn Arg Phe Leu Arg Ser Lys Thr Leu Asp		
500	505	510
Gly Ala His Trp Arg Ile Tyr Arg Pro Thr Thr Gly Ala Leu Leu		
515	520	525
Leu Leu Thr Ala Leu Gln Leu Cys Asp Gln Val Ser Ala Tyr Gly		
530	535	540
Phe Ile Thr Glu Gly His Glu Arg Phe Ser Asp His Tyr Tyr Asp		
545	550	555
Thr Ser Trp Lys Arg Leu Ile Phe Tyr Ile Asn His Asp Phe Lys		
560	565	570
Leu Glu Arg Glu Val Trp Lys Arg Leu His Asp Glu Gly Ile Ile		
575	580	585
Arg Leu Tyr Gln Arg Pro Gly Pro Gly Thr Ala Lys Ala Lys Asn		
590	595	600

<210> 348

<211> 496

<212> DNA

<213> Homo sapiens

<400> 348

cgatgcgcgg acccggggcac cccctcctcc tggggctgct gctggtgctg 50

gggccttcgc cggagcagcg agtggaaatt gttcctcgag atctgaggat 100

gaaggacaag tttctaaaac accttacagg ccctctttat tttagtccaa 150

agtgcagcaa acacttccat agactttatc acaacaccag agactgcacc 200

attcctgcat actataaaag atgcgccagg cttcttaccc ggctggctgt 250

cagtcctcgtg tgcatggagg ataagtgagc agaccgtaca ggagcagcac 300

accaggagcc atgagaagtgccttgaaac caacaggaa acagaactat 350
ctttatacac atcccctcat ggacaagaga tttatTTTcagacagact 400
cttccataag tccttgagt tttgtatgtt gttgacagtt tgcaGATA 450
tattcgataa atcagtgtac ttgacagtgt tatctgtcac ttattt 496

<210> 349

<211> 91

<212> PRT

<213> Homo sapiens

<400> 349

Met Arg Gly Pro Gly His Pro Leu Leu Leu Gly Leu Leu Leu Val
1 5 10 15

Leu Gly Pro Ser Pro Glu Gln Arg Val Glu Ile Val Pro Arg Asp
20 25 30

Leu Arg Met Lys Asp Lys Phe Leu Lys His Leu Thr Gly Pro Leu
35 40 45

Tyr Phe Ser Pro Lys Cys Ser Lys His Phe His Arg Leu Tyr His
50 55 60

Asn Thr Arg Asp Cys Thr Ile Pro Ala Tyr Tyr Lys Arg Cys Ala
65 70 75

Arg Leu Leu Thr Arg Leu Ala Val Ser Pro Val Cys Met Glu Asp
80 85 90

Lys

<210> 350

<211> 1141

<212> DNA

<213> Homo sapiens

<400> 350

gggctgggcc ccggccgcagc tccagctggc cggcttggc ctgcgggtccc 50

ttctctggga ggccccaccc cggccgcgcc cagcccccac catgccaccc 100

gcggggctcc gccggggccgc gccgctcacc gcaatcgctc tgttgggtct 150

gggggctccc ctggtgctgg ccggcgagga ctgcctgtgg tacctggacc 200

ggaatggctc ctggcatccg gggTTTAact gcgagttctt caccttctgc 250

tgcgggacct gctaccatcg gtactgctgc agggacctga ccttgcttat 300

caccgagagg cagcagaAGC actgcctggc cttcagcccc aagaccatAG 350

caggcatcgc ctcagctgtg atcctctttg ttgctgtggc tgccaccacc 400

atctgctgct tcctctgttc ctgttgctac ctgtaccggcc ggccggcagca 450

gctccagagc ccatttgaag gccaggagat tccaatgaca ggcaccccag 500
 tgcagccagt ataccatac ccccaggacc ccaaagctgg ccctgcaccc 550
 ccacagcctg gttcatgtt cccacctagt ggtcctgctc cccaaatatcc 600
 actctaccca gctggggccc cagtctacaa ccctgcagct ctcctccct 650
 atatgccacc acagccctct taccgggag cctgaggaac cagccatgtc 700
 tctgctgccc cttagtgat gccaaccttggagatgccc tcattctgtt 750
 cctgcacatcg gtcctgggg tggcaggagt cttccagcca ccaggccccca 800
 gaccaagcca agccctggc cctactgggg acagagcccc aggaaagtgg 850
 aacaggagct gaactagaac tatgaggggt tggggggagg gcttggaaatt 900
 atgggctatt tttagtgggg gcaagggagg gagatgacag cctgggtcac 950
 agtgcctgtt ttcaaatagt ccctctgctc ccaagatccc agccaggaag 1000
 gctggggccc tactgttgtt cccctctggg ctgggggtggg gggagggagg 1050
 aggttccgtc agcagctggc agtagccctc ctctctggct gccccactgg 1100
 ccacatctct ggctgcttag attaaagctg taaagacaaa a 1141

<210> 351

<211> 197

<212> PRT

<213> Homo sapiens

<400> 351

Met	Pro	Pro	Ala	Gly	Leu	Arg	Arg	Ala	Ala	Pro	Leu	Thr	Ala	Ile
1					5					10				15

Ala	Leu	Leu	Val	Leu	Gly	Ala	Pro	Leu	Val	Leu	Ala	Gly	Glu	Asp
									20				30	

Cys	Leu	Trp	Tyr	Leu	Asp	Arg	Asn	Gly	Ser	Trp	His	Pro	Gly	Phe
									35				45	

Asn	Cys	Glu	Phe	Phe	Thr	Phe	Cys	Cys	Gly	Thr	Cys	Tyr	His	Arg
									50				60	

Tyr	Cys	Cys	Arg	Asp	Leu	Thr	Leu	Leu	Ile	Thr	Glu	Arg	Gln	Gln
									65				75	

Lys	His	Cys	Leu	Ala	Phe	Ser	Pro	Lys	Thr	Ile	Ala	Gly	Ile	Ala
									80				90	

Ser	Ala	Val	Ile	Leu	Phe	Val	Ala	Val	Val	Ala	Thr	Thr	Ile	Cys
									95				105	

Cys	Phe	Leu	Cys	Ser	Cys	Cys	Tyr	Leu	Tyr	Arg	Arg	Arg	Gln	Gln
									110				120	

Leu Gln Ser Pro Phe Glu Gly Gln Glu Ile Pro Met Thr Gly Ile
125 130 135
Pro Val Gln Pro Val Tyr Pro Tyr Pro Gln Asp Pro Lys Ala Gly
140 145 150
Pro Ala Pro Pro Gln Pro Gly Phe Met Tyr Pro Pro Ser Gly Pro
155 160 165
Ala Pro Gln Tyr Pro Leu Tyr Pro Ala Gly Pro Pro Val Tyr Asn
170 175 180
Pro Ala Ala Pro Pro Pro Tyr Met Pro Pro Gln Pro Ser Tyr Pro
185 190 195
Gly Ala

<210> 352
<211> 3226
<212> DNA
<213> Homo sapiens

<400> 352
gggggagcta ggccggcgcc agtgtggtg gcggcgccgc aagggtgagg 50
gcggccccag aaccccaggt agtagagca agaagatggc gtttctgccc 100
ctcaaatggt cccttgcAAC catgtcattt ctactttcct cactgttggc 150
tctcttaact gtgtccactc cttcatggtg tcagagcact gaagcatctc 200
caaaaacgttag tgatggaca ccatttcctt ggaataaaat acgacttcct 250
gagtacgtca tcccagttca ttatgatctc ttgatccatg caaaccttac 300
cacgctgacc ttctggggaa ccacgaaagt agaaatcaca gccagtcagc 350
ccaccagcac catcatcctg catagtcacc acctgcagat atctagggcc 400
accctcagga agggagctgg agagaggcta tcggaagaac ccctgcaggt 450
cctggaacac cccctcagg agcaaattgc actgctggct cccgagccccc 500
tccttgcgg gctccgtac acagttgtca ttcactatgc tggcaatctt 550
tcggagactt tccacggatt ttacaaaagc acctacagaa ccaaggaagg 600
ggaaactgagg atactagcat caacacaatt tgaacccact gcagctagaa 650
tggccttcc ctgcttgat gaacctgcct tcaaagcaag tttctcaatc 700
aaaattagaa gagagccaag gcacccatgc atctccaata tgccattgg 750
gaaatctgtg actgttgctg aaggactcat agaagaccat tttgatgtca 800
ctgtgaagat gagcacctat ctggtggcct tcatcatttc agattttgag 850

tctgtcagca agataaccaa gagtggagtc aaggttctg tttatgctgt 900
gccagacaag ataaatcaag cagattatgc actggatgct gcggtgactc 950
ttctagaatt ttatgaggat tatttcagca taccgtatcc cctacccaaa 1000
caagatcttgc 950 ctgctattcc cgactttcag tctggtgcta tggaaaactg 1050
gggactgaca acatatacg aatctgctct gttgtttgat gcagaaaaagt 1100
cttctgcattc aagtaagctt ggcacacag tgactgtggc ccatgaactg 1150
gcccaccagt gggttggaa cctggtcact atggaatggt ggaatgatct 1200
ttggctaaat gaaggatttg ccaaatttat ggagtttgtg tctgtcagtg 1250
tgacccatcc tgaactgaaa gttggagatt atttctttgg caaatgttt 1300
gacgcaatgg aggttagatgc tttaaattcc tcacaccctg tgtctacacc 1350
tgtggaaaat cctgctcaga tccggagat gtttcatgtat gtttctttag 1400
ataagggagc ttgtattctg aatatgctaa gggagttatct tagcgctgac 1450
gcatttaaaa gtggatttgt acagtatctc cagaagcata gctataaaaa 1500
tacaaaaaac gaggacctgt gggatagtat ggcaagtatt tgccctacag 1550
atgggttaaaa agggatggat ggctttgct ctagaagtca acattcatct 1600
tcatcctcac attggcatca ggaaggggtg gatgtaaaaa ccatgatgaa 1650
cacttggaca ctgcagaggg gttttccct aataaccatc acagtggaggg 1700
ggaggaatgt acacatgaag caagagcact acatgaaggg ctctgacggc 1750
gccccggaca ctgggtacct gtggcatgtt ccattgacat tcattcaccag 1800
caaatccaac atggccatc gattttgct aaaaacaaaa acagatgtgc 1850
tcatcctccc agaagaggtg gaatggatca aatttaatgt gggcatgaat 1900
ggcttattaca ttgtgcatta cgaggatgat ggtggact ctttgactgg 1950
ccttttaaaa ggaacacaca cagcagtcag cagtaatgat cgggcaagtc 2000
tcattaacaa tgcatttcag ctcgtcagca ttggaaagct gtccattgaa 2050
aaggccttgg atttatccct gtacttgaaa catgaaaactg aaattatgcc 2100
cgtgtttcaa ggtttgaatg agctgattcc tatgtataag ttaatggaga 2150
aaagagatgt gaatgaagtg gaaactcaat tcaaggcctt cctcatcagg 2200
ctgctaaggg acctcattga taagcagaca tggacagacg agggctcaagt 2250
ctcagagcaa atgctgcgga gtgaactact actcctcgcc tgtgtgcaca 2300

actatcagcc gtgcgtacag agggcagaag gctatttcag aaagtggaag 2350
gaatccaatg gaaacttgag cctgcctgtc gacgtgacct tggcagtgtt 2400
tgctgtgggg gcccagagca cagaaggctg ggattttctt tatagtaaat 2450
atcagtttc tttgtccagt actgagaaaa gccaaattga atttgccctc 2500
tgcagaaccc aaaataagga aaagcttcaa tggctactag atgaaagctt 2550
taagggagat aaaataaaaaa ctcaggagtt tccacaaatt cttacactca 2600
ttggcaggaa cccagtagga tacccactgg cctggcaatt tctgagggaaa 2650
aactggaaca aacttgtaca aaagttgaa cttggctcat cttccatagc 2700
ccacatggta atgggtacaa caaatcaatt ctccacaaga acacggcttg 2750
aagaggtaaa aggattctc agctcttga aagaaaatgg ttctcagctc 2800
cgttgtgtcc aacagacaat tcaaaccatt gaagaaaaca tcggttggat 2850
ggataagaat tttgataaaa tcagagtgtg gctgcaaagt gaaaagcttg 2900
aacgtatgta aaaattcctc cttggcccg ttcctgttat ctctaattcac 2950
caacattttgc ttgagtgtat tttcaacta gagatggctg ttttggctcc 3000
aactggagat actttttcc cttcaactca tttttgact atccctgtga 3050
aaagaatagc tgtagtttt tcatgaatgg gcttttcat gaatggctaa 3100
tcgctaccat gtgtttgtt catcacaggt gttggccctgc aacgtaaacc 3150
caagtgttgg gttccctgcc acagaagaat aaagtacatt attcttctca 3200
aaaaaaaaaaaa aaaaaaaaaa aaaaaaa 3226

<210> 353

<211> 941

<212> PRT

<213> Homo sapiens

<400> 353

Met	Val	Phe	Leu	Pro	Leu	Lys	Trp	Ser	Leu	Ala	Thr	Met	Ser	Phe
1				5					10				15	

Leu	Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Thr	Val	Ser	Thr	Pro	Ser
				20				25				30		

Trp	Cys	Gln	Ser	Thr	Glu	Ala	Ser	Pro	Lys	Arg	Ser	Asp	Gly	Thr
				35				40				45		

Pro	Phe	Pro	Trp	Asn	Lys	Ile	Arg	Leu	Pro	Glu	Tyr	Val	Ile	Pro
				50				55				60		

Val	His	Tyr	Asp	Leu	Leu	Ile	His	Ala	Asn	Leu	Thr	Thr	Leu	Thr
				65				70				75		

Phe Trp Gly Thr Thr Lys Val Glu Ile Thr Ala Ser Gln Pro Thr
 80 85 90

 Ser Thr Ile Ile Leu His Ser His His Leu Gln Ile Ser Arg Ala
 95 100 105

 Thr Leu Arg Lys Gly Ala Gly Glu Arg Leu Ser Glu Glu Pro Leu
 110 115 120

 Gln Val Leu Glu His Pro Pro Gln Glu Gln Ile Ala Leu Leu Ala
 125 130 135

 Pro Glu Pro Leu Leu Val Gly Leu Pro Tyr Thr Val Val Ile His
 140 145 150

 Tyr Ala Gly Asn Leu Ser Glu Thr Phe His Gly Phe Tyr Lys Ser
 155 160 165

 Thr Tyr Arg Thr Lys Glu Gly Glu Leu Arg Ile Leu Ala Ser Thr
 170 175 180

 Gln Phe Glu Pro Thr Ala Ala Arg Met Ala Phe Pro Cys Phe Asp
 185 190 195

 Glu Pro Ala Phe Lys Ala Ser Phe Ser Ile Lys Ile Arg Arg Glu
 200 205 210

 Pro Arg His Leu Ala Ile Ser Asn Met Pro Leu Val Lys Ser Val
 215 220 225

 Thr Val Ala Glu Gly Leu Ile Glu Asp His Phe Asp Val Thr Val
 230 235 240

 Lys Met Ser Thr Tyr Leu Val Ala Phe Ile Ile Ser Asp Phe Glu
 245 250 255

 Ser Val Ser Lys Ile Thr Lys Ser Gly Val Lys Val Ser Val Tyr
 260 265 270

 Ala Val Pro Asp Lys Ile Asn Gln Ala Asp Tyr Ala Leu Asp Ala
 275 280 285

 Ala Val Thr Leu Leu Glu Phe Tyr Glu Asp Tyr Phe Ser Ile Pro
 290 295 300

 Tyr Pro Leu Pro Lys Gln Asp Leu Ala Ala Ile Pro Asp Phe Gln
 305 310 315

 Ser Gly Ala Met Glu Asn Trp Gly Leu Thr Thr Tyr Arg Glu Ser
 320 325 330

 Ala Leu Leu Phe Asp Ala Glu Lys Ser Ser Ala Ser Ser Lys Leu
 335 340 345

 Gly Ile Thr Val Thr Val Ala His Glu Leu Ala His Gln Trp Phe
 350 355 360

 Gly Asn Leu Val Thr Met Glu Trp Trp Asn Asp Leu Trp Leu Asn

365	370	375
Glu Gly Phe Ala Lys Phe Met Glu Phe Val Ser Val Ser Val Thr		
380	385	390
His Pro Glu Leu Lys Val Gly Asp Tyr Phe Phe Gly Lys Cys Phe		
395	400	405
Asp Ala Met Glu Val Asp Ala Leu Asn Ser Ser His Pro Val Ser		
410	415	420
Thr Pro Val Glu Asn Pro Ala Gln Ile Arg Glu Met Phe Asp Asp		
425	430	435
Val Ser Tyr Asp Lys Gly Ala Cys Ile Leu Asn Met Leu Arg Glu		
440	445	450
Tyr Leu Ser Ala Asp Ala Phe Lys Ser Gly Ile Val Gln Tyr Leu		
455	460	465
Gln Lys His Ser Tyr Lys Asn Thr Lys Asn Glu Asp Leu Trp Asp		
470	475	480
Ser Met Ala Ser Ile Cys Pro Thr Asp Gly Val Lys Gly Met Asp		
485	490	495
Gly Phe Cys Ser Arg Ser Gln His Ser Ser Ser Ser His Trp		
500	505	510
His Gln Glu Gly Val Asp Val Lys Thr Met Met Asn Thr Trp Thr		
515	520	525
Leu Gln Arg Gly Phe Pro Leu Ile Thr Ile Thr Val Arg Gly Arg		
530	535	540
Asn Val His Met Lys Gln Glu His Tyr Met Lys Gly Ser Asp Gly		
545	550	555
Ala Pro Asp Thr Gly Tyr Leu Trp His Val Pro Leu Thr Phe Ile		
560	565	570
Thr Ser Lys Ser Asn Met Val His Arg Phe Leu Leu Lys Thr Lys		
575	580	585
Thr Asp Val Leu Ile Leu Pro Glu Glu Val Glu Trp Ile Lys Phe		
590	595	600
Asn Val Gly Met Asn Gly Tyr Tyr Ile Val His Tyr Glu Asp Asp		
605	610	615
Gly Trp Asp Ser Leu Thr Gly Leu Leu Lys Gly Thr His Thr Ala		
620	625	630
Val Ser Ser Asn Asp Arg Ala Ser Leu Ile Asn Asn Ala Phe Gln		
635	640	645
Leu Val Ser Ile Gly Lys Leu Ser Ile Glu Lys Ala Leu Asp Leu		
650	655	660

Ser Leu Tyr Leu Lys His Glu Thr Glu Ile Met Pro Val Phe Gln
 665 670 675
 Gly Leu Asn Glu Leu Ile Pro Met Tyr Lys Leu Met Glu Lys Arg
 680 685 690
 Asp Met Asn Glu Val Glu Thr Gln Phe Lys Ala Phe Leu Ile Arg
 695 700 705
 Leu Leu Arg Asp Leu Ile Asp Lys Gln Thr Trp Thr Asp Glu Gly
 710 715 720
 Ser Val Ser Glu Gln Met Leu Arg Ser Glu Leu Leu Leu Ala
 725 730 735
 Cys Val His Asn Tyr Gln Pro Cys Val Gln Arg Ala Glu Gly Tyr
 740 745 750
 Phe Arg Lys Trp Lys Glu Ser Asn Gly Asn Leu Ser Leu Pro Val
 755 760 765
 Asp Val Thr Leu Ala Val Phe Ala Val Gly Ala Gln Ser Thr Glu
 770 775 780
 Gly Trp Asp Phe Leu Tyr Ser Lys Tyr Gln Phe Ser Leu Ser Ser
 785 790 795
 Thr Glu Lys Ser Gln Ile Glu Phe Ala Leu Cys Arg Thr Gln Asn
 800 805 810
 Lys Glu Lys Leu Gln Trp Leu Leu Asp Glu Ser Phe Lys Gly Asp
 815 820 825
 Lys Ile Lys Thr Gln Glu Phe Pro Gln Ile Leu Thr Leu Ile Gly
 830 835 840
 Arg Asn Pro Val Gly Tyr Pro Leu Ala Trp Gln Phe Leu Arg Lys
 845 850 855
 Asn Trp Asn Lys Leu Val Gln Lys Phe Glu Leu Gly Ser Ser Ser
 860 865 870
 Ile Ala His Met Val Met Gly Thr Thr Asn Gln Phe Ser Thr Arg
 875 880 885
 Thr Arg Leu Glu Glu Val Lys Gly Phe Phe Ser Ser Leu Lys Glu
 890 895 900
 Asn Gly Ser Gln Leu Arg Cys Val Gln Gln Thr Ile Glu Thr Ile
 905 910 915
 Glu Glu Asn Ile Gly Trp Met Asp Lys Asn Phe Asp Lys Ile Arg
 920 925 930
 Val Trp Leu Gln Ser Glu Lys Leu Glu Arg Met
 935 940

<211> 1587
<212> DNA
<213> Homo sapiens

<400> 354
cagccacaga cgggtcatga ggcgcgttatt actgctggcc tcctgggt 50
tcatcctccc actgccagga gtgcaggcgc tgctctgcca gtttggaca 100
gttcagcatg tgtgaaaggt gtccgaccta ccccggaat ggaccctaa 150
gaacaccagc tgcgacagcg gttggggtg ccaggacacg ttgatgctca 200
ttgagagcgg accccaagtg agcctggtgc tctccaaggg ctgcacggag 250
gccaaggacc aggagccccg cgtcactgag cacggatgg gccccggcct 300
ctccctgatc tcctacacct tcgtgtggc ccaggaggac ttctgcaaca 350
acctcgtaa ctccctcccg ctttgggccc cacagcccc agcagaccca 400
ggatccttga ggtgcccagt ctgcttgtct atggaaggct gtctggaggg 450
gacaacagaa gagatctgcc ccaaggggac cacacactgt tatgatggcc 500
tcctcaggct caggggagga ggcattttt ccaatctgag agtccaggg 550
tgcatgcccc agccaggttg caacctgctc aatgggacac agggaaattgg 600
gcccgtgggt atgactgaga actgcaatag gaaagattt ctgacctgtc 650
atcgaaaaac caccattatg acacacggaa acttggctca agaaccact 700
gattggacca catgaatac cgagatgtgc gaggtggggc aggtgtgtca 750
ggagacgctg ctgctcatag atgttaggact cacatcaacc ctgggggg 800
caaaaaggctg cagcactgtt gggctaaaa attcccaagaa gaccaccatc 850
cactcagccc ctccctgggt gttgtggcc tcctatacc acttctgctc 900
ctcgacactg tgcaatagtg ccagcagcag cagcgttctg ctgaactccc 950
tccctcctca agctgccccct gtcggaggag accggcagtg tcctacctgt 1000
gtgcagcccc ttggAACCTG ttcaagtggc tccccccgaa tgacctgccc 1050
cagggcgcc actcattgtt atgatggta cattcatctc tcaggaggtg 1100
ggctgtccac caaaatgagc attcagggt gctggccca accttccagc 1150
ttcttgttga accacaccag acaaatcggt atcttctctg cgcgtgagaa 1200
gcgtgatgtg cagcctcctg cctctcagca tgagggaggt ggggctgagg 1250
gcctggagtc tctcaattgg ggggtggggc tggcaattggc cccagcgctg 1300
tggggggag tggtttgcctt tcctgctaa ctctattacc cccacgattc 1350

ttcaccgctg ctgaccaccc acactcaacc tccctctgac ctcataacct 1400
aatggccttg gacaccagat tcttcccat tctgtccatg aatcatcttc 1450
ccccacacaca atcattcata tctactcacc taacagcaac actggggaga 1500
gcctggagca tccggacttg ccctatggga gaggggacgc tggaggagt 1550
gctgcatgta tctgataata cagaccctgt cctttca 1587

<210> 355
<211> 437
<212> PRT
<213> Homo sapiens

<400> 355
Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
1 5 10 15
Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
20 25 30
His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
35 40 45
Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
50 55 60
Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
65 70 75
Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
80 85 90
Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
95 100 105
Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
110 115 120
Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
125 130 135
Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
140 145 150
Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
155 160 165
Arg Gly Gly Gly Ile Phe Ser Asn Leu Arg Val Gln Gly Cys Met
170 175 180
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
185 190 195
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
200 205 210

Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
 215 220 225
 Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val
 230 235 240
 Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu
 245 250 255
 Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala
 260 265 270
 Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val
 275 280 285
 Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn
 290 295 300
 Ser Ala Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln
 305 310 315
 Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln
 320 325 330
 Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro
 335 340 345
 Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly
 350 355 360
 Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln
 365 370 375
 Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe
 380 385 390
 Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His
 395 400 405
 Glu Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val
 410 415 420
 Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro
 425 430 435
 Ser Cys

<210> 356
 <211> 1238
 <212> DNA
 <213> Homo sapiens

<400> 356
 gcgacgggca ggacgccccg ttcgccttagc gcgtgctcag gagttggtgt 50
 cctgcctgct ctcaggatga gggggaatct ggccctggtg ggcgttctaa 100

tcagcctggc cttcctgtca ctgctgccat ctggacatcc tcagccggct 150
ggcgatgacg cctgctctgt gcagatcctc gtccctggcc tcaaagggga 200
tgcgggagag aaggagaca aaggcgcccc cgacggcct ggaagagtgc 250
gccccacggg agaaaaagga gacatggggg acaaaggaca gaaaggcagt 300
gtgggtcgtc atggaaaaat tggtcccatt ggctctaaag gtgagaaagg 350
agattccggt gacataggac cccctggtcc taatggagaa ccaggcctcc 400
catgtgagtg cagccagctg cgcaaggcca tcggggagat ggacaaccag 450
gtctctcagc tgaccagcga gctcaagttc atcaagaatg ctgtcgccgg 500
tgtgcgcgag acggagagca agatctacct gctggtaag gaggagaagc 550
gctacgcgga cgcccgagctg tcctgccagg gccgcggggg cacgctgagc 600
atgccaagg acgaggctgc caatggctg atggccgcat acctggcgca 650
agccggcctg gcccgtgtct tcattggcat caacgacctg gagaaggagg 700
gcgccttcgt gtactctgac cactccccca tgccgacctt caacaagtgg 750
cgccaggctg agcccaacaa tgcctacgac gaggaggact gcgtggagat 800
gttggcctcg ggccgctgga acgacgtggc ctgccacacc accatgtact 850
tcattgtgtga gtttgcacaa gagaacatgt gagcctcagg ctggggctgc 900
ccattggggg ccccacatgt ccctgcaggg ttggcaggga cagagccag 950
accatggtgc cagccaggga gctgtccctc tgtgaagggt ggaggctcac 1000
tgtagtagagg gctgttgtct aaactgagaa aatggcctat gcttaagagg 1050
aaaatgaaag tgttcctggg gtgctgtctc tgaagaagca gagtttcatt 1100
acctgttattg tagccccaaat gtcattatgt aattattacc cagaattgct 1150
cttccataaaa gcttgcgcct ttgtccaagc tatacaataa aatcttaag 1200
tagtgcagta gttaagtcca aaaaaaaaaa aaaaaaaaa 1238

<210> 357
<211> 271
<212> PRT
<213> Homo sapiens

<400> 357
Met Arg Gly Asn Leu Ala Leu Val Gly Val Leu Ile Ser Leu Ala
1 5 10 15
Phe Leu Ser Leu Leu Pro Ser Gly His Pro Gln Pro Ala Gly Asp
20 25 30

Asp Ala Cys Ser Val Gln Ile Leu Val Pro Gly Leu Lys Gly Asp
 35 40 45
 Ala Gly Glu Lys Gly Asp Lys Gly Ala Pro Gly Arg Pro Gly Arg
 50 55 60
 Val Gly Pro Thr Gly Glu Lys Gly Asp Met Gly Asp Lys Gly Gln
 65 70 75
 Lys Gly Ser Val Gly Arg His Gly Lys Ile Gly Pro Ile Gly Ser
 80 85 90
 Lys Gly Glu Lys Gly Asp Ser Gly Asp Ile Gly Pro Pro Gly Pro
 95 100 105
 Asn Gly Glu Pro Gly Leu Pro Cys Glu Cys Ser Gln Leu Arg Lys
 110 115 120
 Ala Ile Gly Glu Met Asp Asn Gln Val Ser Gln Leu Thr Ser Glu
 125 . 130 135
 Leu Lys Phe Ile Lys Asn Ala Val Ala Gly Val Arg Glu Thr Glu
 140 145 150
 Ser Lys Ile Tyr Leu Leu Val Lys Glu Glu Lys Arg Tyr Ala Asp
 155 160 165
 Ala Gln Leu Ser Cys Gln Gly Arg Gly Thr Leu Ser Met Pro
 170 175 180
 Lys Asp Glu Ala Ala Asn Gly Leu Met Ala Ala Tyr Leu Ala Gln
 185 190 195
 Ala Gly Leu Ala Arg Val Phe Ile Gly Ile Asn Asp Leu Glu Lys
 200 205 210
 Glu Gly Ala Phe Val Tyr Ser Asp His Ser Pro Met Arg Thr Phe
 215 220 225
 Asn Lys Trp Arg Ser Gly Glu Pro Asn Asn Ala Tyr Asp Glu Glu
 230 235 240
 Asp Cys Val Glu Met Val Ala Ser Gly Gly Trp Asn Asp Val Ala
 245 250 255
 Cys His Thr Thr Met Tyr Phe Met Cys Glu Phe Asp Lys Glu Asn
 260 265 270

Met

<210> 358
 <211> 972
 <212> DNA
 <213> Homo sapiens

<400> 358
 agtgactgca gccttcctag atcccccca ctcggtttct ctctttgcag 50

gagcaccggc agcaccagtg tgtgagggga gcaggcagcg gtcctagcca 100
gttccttgc cctgccagac cacccagccc ccggcacaga gctgctccac 150
aggcaccatg aggatcatgc tgctattcac agccatcctg gccttcagcc 200
tagctcagag ctggggct gtctgttaagg agccacagga ggaggtggtt 250
cctggcgaaa gcccagcaa gagggatcca gatctctacc agctgctcca 300
gagactcttc aaaagccact catctctgga gggattgctc aaagccctga 350
gccaggctag cacagatcct aaggaatcaa catctcccga gaaacgtgac 400
atgcatgact tctttgtggg acttatgggc aagaggagcg tccagccaga 450
gggaaagaca ggaccttct tacttcagt gagggttcct cggcccttc 500
atcccaatca gcttggatcc acaggaaagt cttccctggg aacagaggag 550
cagagacctt tataagactc tcctacggat gtgaatcaag agaacgtccc 600
cagcttggc atcctcaagt atcccccgag agcagaatag gtactccact 650
tccggactcc tggactgcat taggaagacc tctttccctg tcccaatccc 700
caggtgcgca cgctcctgtt accctttctc ttccctgttc ttgtaacatt 750
cttgtgttt gactccttct ccatctttc tacctgaccc tggtgtggaa 800
actgcatagt gaatatcccc aaccccaatg ggcattgact gtagaataacc 850
ctagagttcc tgttagtgtcc tacattaaaa atataatgtc tctctctatt 900
cctcaacaat aaaggatttt tgcatatgaa aaaaaaaaaa aaaaaaaaaa 950
aaaaaaaaaa aaaaaaaaaa aa 972

<210> 359
<211> 135
<212> PRT
<213> Homo sapiens

<400> 359
Met Arg Ile Met Leu Leu Phe Thr Ala Ile Leu Ala Phe Ser Leu
1 5 10 15
Ala Gln Ser Phe Gly Ala Val Cys Lys Glu Pro Gln Glu Glu Val
20 25 30
Val Pro Gly Gly Arg Ser Lys Arg Asp Pro Asp Leu Tyr Gln
35 40 45
Leu Leu Gln Arg Leu Phe Lys Ser His Ser Ser Leu Glu Gly Leu
50 55 60
Leu Lys Ala Leu Ser Gln Ala Ser Thr Asp Pro Lys Glu Ser Thr
65 70 75

Ser Pro Glu Lys Arg Asp Met His Asp Phe Phe Val Gly Leu Met
80 85 90

Gly Lys Arg Ser Val Gln Pro Glu Gly Lys Thr Gly Pro Phe Leu
95 100 105

Pro Ser Val Arg Val Pro Arg Pro Leu His Pro Asn Gln Leu Gly
110 115 120

Ser Thr Gly Lys Ser Ser Leu Gly Thr Glu Glu Gln Arg Pro Leu
125 130 135

<210> 360

<211> 1738

<212> DNA

<213> Homo sapiens

<400> 360

gggcgtctcc ggctgctcct attgagctgt ctgctcgctg tgcccgctgt 50

gcctgctgtg cccgcgtgt cgccgctgct accgcgtctg ctggacgcgg 100

gagacgccag cgagctggtg attggagccc tgcggagagc tcaagcgccc 150

agctctgccc caggagccca ggctgccccg tgagtcccat agttgctgca 200

ggagtggagc catgagctgc gtccctgggtg gtgtcatccc cttggggctg 250

ctgttcctgg tctgcggatc ccaaggctac ctcctgccc acgtcactct 300

cttagaggag ctgctcagca aataccagca caacgagtct cactcccgaa 350

tccgcagagc catccccagg gaggacaagg aggagatcct catgctgcac 400

aacaagcttc gggccaggt gcagcctcag gcctccaaca tggagtacat 450

ggtgagcggc ggctccggcc gcagaggctg gcaccggggg tggggcctgg 500

gccaccagcc tgctctgttc cccagccagc tctgttcccc agccagtgcg 550

tgtatggct ggctcagggt ctccctgtgc aggggaggat cccggctctg 600

ttctgttttg ttgtttgtt ttgagacagg gtctcactct gccactgacg 650

ctggagtgca atggcacaat cgtcatgccc tgaaacctta gactcccgaa 700

gttaagcgat cctgcttcag cctcccaagt agctggaact acaggcatgc 750

accatggtgtc ccagctagat tttaaatatt ttgtggagat gggggcttg 800

ctacgttgcc caggctggtc ttgaactcct aggctcaagc aatcctcctg 850

cctcagcctc tcaaagtgct aggattatacg gcatgagtc ccctgtctgg 900

ctctggctct gttcttaaca ttctgccaaa acaacacacg tgggttccct 950

gtgcagagcc tgccctcggtt cttcatgtc actcttggta gctccactgg 1000

gaacacagct ctcagcctt cccacactgga ggcagagtgg ggaggggccc 1050
agggctgggc tttgctgatg ctgatctcag ctgtgccaca cgctagctgc 1100
accaccctga cttctcctta gcccgtgtga gcctcacttt ccacttggag 1150
agtcccttcct cgcgtggttg ccatgactgt gagataagtc gaggctgtga 1200
agggccccggc acagactgac ctgcctcccc aacccttagg ctttgctaac 1250
cgggaaagga gctaacggtg acagaagaca gccaaaggta accctcccg 1300
gtgattgtga tgggtgttcc aggtgtggtt gggcgatgct gctacttgac 1350
cccaagctcc agtgtggaaa cttccttcct ggctggttt ccagaactac 1400
agaggaatgg accacagtct tccagggtcc ctccctcgta accaaccggg 1450
agcctccacc ttggccatcc gtcagctatg aatggcttt taaacaaacc 1500
cacgtcccaag cctggtaac atggtaaagc cccgtctcta caaaaaaaatc 1550
caagttagcc gggcatggtg gtgcgcacct gtagtcccaag ctgcagtg 1600
actgaggtgg aggtggaggt ggggggtggg agctgaggaa ggaggatcgc 1650
ttgagcctgg gaagtcgagg ctgcagtgag ctgagattgc accactgcac 1700
tccagcctgg gtgacagagc aagaccctgt ctcaaaaa 1738

<210> 361

<211> 159

<212> PRT

<213> Homo sapiens

<400> 361

Met	Ser	Cys	Val	Leu	Gly	Gly	Val	Ile	Pro	Leu	Gly	Leu	Leu	Phe
1				5					10					15

Leu	Val	Cys	Gly	Ser	Gln	Gly	Tyr	Leu	Leu	Pro	Asn	Val	Thr	Leu
				20					25					30

Leu	Glu	Glu	Leu	Leu	Ser	Lys	Tyr	Gln	His	Asn	Glu	Ser	His	Ser
					35				40					45

Arg	Val	Arg	Arg	Ala	Ile	Pro	Arg	Glu	Asp	Lys	Glu	Glu	Ile	Leu
					50				55					60

Met	Leu	His	Asn	Lys	Leu	Arg	Gly	Gln	Val	Gln	Pro	Gln	Ala	Ser
						65			70					75

Asn	Met	Glu	Tyr	Met	Val	Ser	Ala	Gly	Ser	Gly	Arg	Arg	Gly	Trp
					80				85					90

His	Arg	Gly	Trp	Gly	Leu	Gly	His	Gln	Pro	Ala	Leu	Phe	Pro	Ser
					95				100					105

Gln Leu Cys Ser Pro Ala Ser Ala Cys Asp Gly Trp Leu Arg Val

110	115	120
Ser Ser Gly Arg Gly Gly Ser Arg Leu Cys Ser Val Leu Phe Val		
125	130	135
Cys Phe Glu Thr Gly Ser His Ser Ala Thr Asp Ala Gly Val Gln		
140	145	150
Trp His Asn Arg His Ala Leu Lys Pro		
155		

<210> 362
<211> 422
<212> DNA
<213> *Homo sapiens*

<400> 362
aaggagaggc caccgggact tcagtgtctc ctccatccca ggagcgcagt 50
ggccactatg gggctgggc tgccccttgt ctccttgc acccttccttg 100
gcagctcaca tggAACAGGG ccgggtatga ctttgcact gaagctgaag 150
gagtctttc tgacaaattc ctccatgag tccagcttcc tggaaattgct 200
tggaaaagctc tgcctcctcc tccatctccc ttcaGGGacc agcgtcaccc 250
tccaccatgc aagatctcaa caccatgttg tctgcAACAC atgacagGCCA 300
ttgaaggctg tgtccttctt ggcccggtct ttggggccgg ggatgcagga 350
ggcaggcccc gaccctgtct ttcaGCAGGC cccCACCCtC ctgagtggca 400
ataaataaaaa ttCGGTATGC tg 422

<210> 363
<211> 78
<212> PRT
<213> *Homo sapiens*

```

<400> 363
Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly
      1           5           10          15

Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu
      20          25          30

Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu
      35          40          45

Glu Leu Leu Glu Lys Leu Cys Leu Leu Leu His Leu Pro Ser Gly
      50          55          60

Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val

```

<210> 364
<211> 826
<212> DNA
<213> Homo sapiens

<400> 364
aattgtatct gtgtaatgtt aaaacaaacg aaataaaata gaaggaaaaa 50
ctttctgagt ttcaaaaaca acagactagt actctaaaga actctttaaa 100
acaattaact gtaggattt cagttatgtat tggatattat ttaattctgt 150
ttctgatgtg gggttcctcc actgtgttct gtgtgttatt aatatttacc 200
attgcagaag ctccattcag tggatgttattt aatatttacc 250
cctcttacgc atatgttaca aattatctgg agttcctaattt caatgcagag 300
ttccccctccc ctccgattgt tctaaataat tgaaagatgt ctgctgtgga 350
aaaaggcatg tattttaaatc tttttttttt tttttttttt 400
aagggttccttg aaagccaatg gaaataacttt tttttttttt tggcactaat 450
caagtgagtg ttacccccc acttagttagg atgtgttgc acgcttagaa 500
aatagaaacc tttttttttt tttttttttt tttttttttt 550
tttattttat gtgtgtgttc ttggctgtat tcataaaatta tatattttgg 600
gctatcaaattt attacttcat tcaatataaa taacaatagt agaagttgtt 650
tacttagata tgctttctag ttgcattttc tcagcctatg taagactact 700
ttgttgtaaat agcctttgaa atttacagta ctgtctctct actatcttca 750
gattacttga ttcaaaataaa ccaattatgt ttgttaattga tattaataaa 800
accagaataa aagttcatat ctaccc 826

<210> 365
<211> 67
<212> PRT
<213> Homo sapiens

<400> 365
Met Ile Gly Tyr Tyr Leu Ile Leu Phe Leu Met Trp Gly Ser Ser
1 5 10 15
Thr Val Phe Cys Val Leu Leu Ile Phe Thr Ile Ala Glu Ala Ser
20 25 30
Phe Ser Val Glu Asn Glu Cys Leu Val Asp Leu Cys Leu Leu Arg
35 40 45
Ile Cys Tyr Lys Leu Ser Gly Val Pro Asn Gln Cys Arg Val Pro
50 55 60

Leu Pro Ser Asp Cys Ser Lys
65

<210> 366
<211> 2475
<212> DNA
<213> Homo sapiens

<400> 366
gaggatttgc cacagcagcg gatagagcag gagagcacca ccggagccct 50
tgagacatcc ttgagaagag ccacagcata agagactgcc ctgcttggtg 100
ttttgcagga tgatggtggc ctttcgagga gcttctgcat tgctggttct 150
gttccttgca gctttctgc ccccgcgc a gtgtacccag gaccgcacca 200
tggtgcatta catctaccag cgcttcgag tcttggagca agggctggaa 250
aaatgtaccc aagcaacgag ggcatacatt caagaattcc aagagttctc 300
aaaaaatata tctgtcatgc tggaaagatg tcagacctac acaagtgagt 350
acaagagtgc agtggtaac ttggcactga gagttgaacg tgcccaacgg 400
gagattgact acatacaata ctttcgagag gctgacgagt gcacgtatc 450
agaggacaag acactggcag aaatgttgc ccaagaagct gaagaagaga 500
aaaagatccg gactctgctg aatgcaagct gtgacaacat gctgatgggc 550
ataaaagtctt tgaaaatagt gaagaagatg atggacacac atggctttg 600
gatgaaaatg gctgtctata actctccaaa ggtgtactta ttaattggat 650
ccagaaacaa cactgtttgg gaatttgcac acatacgggc attcatggag 700
gataacacca agccagctcc ccggaaagcaa atcctaacac ttccctggca 750
ggaaacaggc caagtgtatc acaaaggttt tctatTTT cataaccaag 800
caacttctaa tgagataatc aaatataacc tgcagaagag gactgtggaa 850
gatcgaatgc tgctcccagg aggggttaggc cgagcattgg tttaccagca 900
ctccccctca acttacattt acctggctgt ggtgtacat gggctctggg 950
ccatccactc tggccaggc acccatagcc atttggttct cacaagatt 1000
gagccggc cactgggagt ggagcattca tggataaccc catgcagaag 1050
ccaggatgtc gaagcctcat tcctcttgc tggggttctc tatgtggtct 1100
acagtactgg gggccaggc cctcatcgca tcacccgtcat ctatgtatcca 1150
ctgggcacta tcagtgagga ggacttgccc aacttgttct tccccaagag 1200
accaagaagt cactccatga tccattacaa ccccaagagat aagcagctct 1250

atgcctggaa tgaaggaaac cagatcattt acaaactcca gacaaagaga 1300
aagctgcctc tgaagtaatg cattacagct gtgagaaaga gcactgtggc 1350
tttggcagct gttctacagg acagtgaggc tatagccct tcacaatata 1400
gtatccctct aatcacacac aggaagagtg tgtagaagtg gaaatacgta 1450
tgccctcctt cccaaatgtc actgccttag gtatcttcca agagcttaga 1500
tgagagcata tcatcaggaa agttcaaca atgtccatta ctccccaaa 1550
cctcctggct ctcaaggatg accacattct gatacagcct acttcaagcc 1600
ttttgttta ctgctccccca gcatttactg taactctgcc atcttcctc 1650
ccacaattag agttgtatgc cagcccctaa tattcaccac tggctttct 1700
ctccccctggc ctttgctgaa gctctccct cttttcaaa tgtctattga 1750
tattctccca ttttcaactgc ccaactaaaa tactattaat atttcttct 1800
tttctttct ttttttgag acaaggtctc actatgttgc ccaggctggt 1850
ctcaaactcc agagctcaag agatcctcct gcctcagcct cctaagtacc 1900
tgggattaca ggcatgtgcc accacacctg gctaaaata ctatttctta 1950
ttgagggtta acctctattt cccctagccc tgtccttcca ctaagcttgg 2000
tagatgtaat aataaaagtga aaatattaac atttgaatat cgcttccag 2050
gtgtggagtg tttgcacatc attgaattct cgttcacct ttgtgaaaca 2100
tgcacaagtc tttacagctg tcattctaga gtttaggtga gtaacacaat 2150
tacaaaagtga aagatacagc tagaaaatac tacaaaatccc atagtttcc 2200
cattgcccaa ggaagcatca aatacgtatg tttgttccacc tactcttata 2250
gtcaatgcgt tcatcggttc agcctaaaaaa taatagtctg tcccttttagc 2300
cagtttcat gtctgcacaa gaccttcaa taggccttcc aaatgataat 2350
tcctccagaa aaccagtcta agggtgagga ccccaactct agcctccct 2400
tgtcttgctg tcctctgttt ctctcttct gctttaaatt caataaaaagt 2450
gacactgagc aaaaaaaaaa aaaaa 2475

<210> 367

<211> 402

<212> PRT

<213> Homo sapiens

<400> 367

Met Met Val Ala Leu Arg Gly Ala Ser Ala Leu Leu Val Leu Phe
1 5 10 15

Leu	Ala	Ala	Phe	Leu	Pro	Pro	Pro	Gln	Cys	Thr	Gln	Asp	Pro	Ala
				20					25					30
Met	Val	His	Tyr	Ile	Tyr	Gln	Arg	Phe	Arg	Val	Leu	Glu	Gln	Gly
				35					40					45
Leu	Glu	Lys	Cys	Thr	Gln	Ala	Thr	Arg	Ala	Tyr	Ile	Gln	Glu	Phe
				50					55					60
Gln	Glu	Phe	Ser	Lys	Asn	Ile	Ser	Val	Met	Leu	Gly	Arg	Cys	Gln
				65					70					75
Thr	Tyr	Thr	Ser	Glu	Tyr	Lys	Ser	Ala	Val	Gly	Asn	Leu	Ala	Leu
				80					85					90
Arg	Val	Glu	Arg	Ala	Gln	Arg	Glu	Ile	Asp	Tyr	Ile	Gln	Tyr	Leu
				95					100					105
Arg	Glu	Ala	Asp	Glu	Cys	Ile	Val	Ser	Glu	Asp	Lys	Thr	Leu	Ala
				110					115					120
Glu	Met	Leu	Leu	Gln	Glu	Ala	Glu	Glu	Glu	Lys	Lys	Ile	Arg	Thr
				125					130					135
Leu	Leu	Asn	Ala	Ser	Cys	Asp	Asn	Met	Leu	Met	Gly	Ile	Lys	Ser
				140					145					150
Leu	Lys	Ile	Val	Lys	Lys	Met	Met	Asp	Thr	His	Gly	Ser	Trp	Met
				155					160					165
Lys	Asp	Ala	Val	Tyr	Asn	Ser	Pro	Lys	Val	Tyr	Leu	Leu	Ile	Gly
				170					175					180
Ser	Arg	Asn	Asn	Thr	Val	Trp	Glu	Phe	Ala	Asn	Ile	Arg	Ala	Phe
				185					190					195
Met	Glu	Asp	Asn	Thr	Lys	Pro	Ala	Pro	Arg	Lys	Gln	Ile	Leu	Thr
				200					205					210
Leu	Ser	Trp	Gln	Gly	Thr	Gly	Gln	Val	Ile	Tyr	Lys	Gly	Phe	Leu
				215					220					225
Phe	Phe	His	Asn	Gln	Ala	Thr	Ser	Asn	Glu	Ile	Ile	Lys	Tyr	Asn
				230					235					240
Leu	Gln	Lys	Arg	Thr	Val	Glu	Asp	Arg	Met	Leu	Leu	Pro	Gly	Gly
				245					250					255
Val	Gly	Arg	Ala	Leu	Val	Tyr	Gln	His	Ser	Pro	Ser	Thr	Tyr	Ile
				260					265					270
Asp	Leu	Ala	Val	Asp	Glu	His	Gly	Leu	Trp	Ala	Ile	His	Ser	Gly
				275					280					285
Pro	Gly	Thr	His	Ser	His	Leu	Val	Leu	Thr	Lys	Ile	Glu	Pro	Gly
				290					295					300
Thr	Leu	Gly	Val	Glu	His	Ser	Trp	Asp	Thr	Pro	Cys	Arg	Ser	Gln

305	310	315
Asp Ala Glu Ala Ser Phe Leu Leu Cys Gly Val Leu Tyr Val Val		
320	325	330
Tyr Ser Thr Gly Gly Gln Gly Pro His Arg Ile Thr Cys Ile Tyr		
335	340	345
Asp Pro Leu Gly Thr Ile Ser Glu Glu Asp Leu Pro Asn Leu Phe		
350	355	360
Phe Pro Lys Arg Pro Arg Ser His Ser Met Ile His Tyr Asn Pro		
365	370	375
Arg Asp Lys Gln Leu Tyr Ala Trp Asn Glu Gly Asn Gln Ile Ile		
380	385	390
Tyr Lys Leu Gln Thr Lys Arg Lys Leu Pro Leu Lys		
395	400	

<210> 368
<211> 2281
<212> DNA
<213> Homo sapiens

<400> 368
ggcgccccgc gtactcacta gctgaggtgg cagtggttcc accaacatgg 50
agctctcgca gatgtcggag ctcatggggc tgtcggtgtt gcttgggctg 100
ctggccctga tggcgacggc ggcggtagcg cgggggtggc tgcgcgcggg 150
ggaggagagg agcggccggc ccgcctgcca aaaagcaaat ggatttccac 200
ctgacaaatc ttccggatcc aagaagcaga aacaatatca gcggattcgg 250
aaggagaagc ctcaacaaca caacttcacc caccgcctcc tggctgcagc 300
tctgaagagc cacagcggga acatatctt catggacttt agcagcaatg 350
gcaaataacct ggctacctgt gcagatgatc gcaccatccg catctggagc 400
accaaggact tcctgcagcg agagcacccgc agcatgagag ccaacgtgga 450
gctggaccac gccaccctgg tgcgcttcag ccctgactgc agagcattca 500
tcgtctggct gccaacggg gacaccctcc gtgtcttcaa gatgaccaag 550
cgggaggatg ggggctacac cttcacagcc accccagagg acttccctaa 600
aaagcacaag gcgcctgtca tcgacattgg cattgctaac acaggaaatg 650
ttatcatgac tgcctccagt gacaccactg tcctcatctg gagcctgaaag 700
ggtaatgtgc tgtctaccat caacaccaac cagatgaaca acacacacgc 750
tgctgtatct ccctgtggca gatttgttagc ctcgtgtggc ttcacccag 800

atgtgaaggt ttgggaagtc tgctttggaa agaaggggga gttccaggag 850
gtggtgcgag cttcgaact aaagggccac tccgcggctg tgcactcggt 900
tgctttctcc aacgactcac ggaggatggc ttctgtctcc aaggatggta 950
catggaaact gtggacaca gatgtggaat acaagaagaa gcaggacccc 1000
tacttgctga agacaggccg ctttgaagag gcggcgggtg ccgcgcgtg 1050
ccgcctggcc ctctccccca acgcccaggt cttggccttg gccagtggca 1100
gtagtattca tctctacaat acccggcggg gcgagaagga ggagtgcgtt 1150
gagcgggtcc atggcgagtg tatcgccaac ttgtccttg acatcactgg 1200
ccgctttctg gcctcctgtg gggaccgggc ggtgcggctg tttcacacaaca 1250
ctcctggcca ccgagccatg gtggaggaga tgcagggcca cctgaagcgg 1300
gcctccaacg agagcaccgg ccagaggctg cagcagcagc tgacccaggg 1350
ccaagagacc ctgaagagcc tgggtgcctt gaagaagtga ctctggagg 1400
gccccggcgca gaggatttag gaggaggat ctggcctct catggcaactg 1450
ctgccatctt tcctcccaagg tggaagcctt tcagaaggag tctcctggtt 1500
ttcttactgg tggccctgtt tcttccctt gaaactactc ttgtctactt 1550
aggctctctt cttcttgctg gctgtgactc ctccctgact agtggccaag 1600
gtgctttctt tcctcccaagg cccagtgggt ggaatctgtc cccacctggc 1650
actgaggaga atggttagaga ggagaggaga gagagagaga atgtgattt 1700
tggccttgcgt gcagcacatc ctcacaccca aagaagttt taaatgttcc 1750
agaacaacct agagaacacc tgagtactaa gcagcagttt tgcaaggatg 1800
ggagactggg atagcttccc atcacagaac tgtgttccat caaaaagaca 1850
ctaaggatt tccttctggg cctcagttct atttgtaaga tggagaataa 1900
tcctctctgt gaactccttg caaagatgtat atgaggctaa gagaatatca 1950
agtccccagg tctggaagaa aagtagaaaa gagtagtact attgtccat 2000
gtcatgaaag tggtaaaagt gggaccagt gtgccttcaa accaaattag 2050
aaacacattc cttgggaagg caaagtttc tgggacttga tcatacattt 2100
tatatggtttggacttctctt cttcgaaagg tggacttgc ttatggggata 2150
cctctttca gttcatcaag ttcatcagat atttgagtgc ccactctgtg 2200
cccaaataaa tatgagctgg ggattaaaaaa aaaaaaaaaa aaaaaaaaaa 2250

aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa a 2281

<210> 369

<211> 447

<212> PRT

<213> Homo sapiens

<400> 369

Met Glu Leu Ser Gln Met Ser Glu Leu Met Gly Leu Ser Val Leu
1 5 10 15

Leu Gly Leu Leu Ala Leu Met Ala Thr Ala Ala Val Ala Arg Gly
20 25 30

Trp Leu Arg Ala Gly Glu Glu Arg Ser Gly Arg Pro Ala Cys Gln
35 40 45

Lys Ala Asn Gly Phe Pro Pro Asp Lys Ser Ser Gly Ser Lys Lys
50 55 60

Gln Lys Gln Tyr Gln Arg Ile Arg Lys Glu Lys Pro Gln Gln His
65 70 75

Asn Phe Thr His Arg Leu Leu Ala Ala Ala Leu Lys Ser His Ser
80 85 90

Gly Asn Ile Ser Cys Met Asp Phe Ser Ser Asn Gly Lys Tyr Leu
95 100 105

Ala Thr Cys Ala Asp Asp Arg Thr Ile Arg Ile Trp Ser Thr Lys
110 115 120

Asp Phe Leu Gln Arg Glu His Arg Ser Met Arg Ala Asn Val Glu
125 130 135

Leu Asp His Ala Thr Leu Val Arg Phe Ser Pro Asp Cys Arg Ala
140 145 150

Phe Ile Val Trp Leu Ala Asn Gly Asp Thr Leu Arg Val Phe Lys
155 160 165

Met Thr Lys Arg Glu Asp Gly Gly Tyr Thr Phe Thr Ala Thr Pro
170 175 180

Glu Asp Phe Pro Lys Lys His Lys Ala Pro Val Ile Asp Ile Gly
185 190 195

Ile Ala Asn Thr Gly Lys Phe Ile Met Thr Ala Ser Ser Asp Thr
200 205 210

Thr Val Leu Ile Trp Ser Leu Lys Gly Gln Val Leu Ser Thr Ile
215 220 225

Asn Thr Asn Gln Met Asn Asn Thr His Ala Ala Val Ser Pro Cys
230 235 240

Gly Arg Phe Val Ala Ser Cys Gly Phe Thr Pro Asp Val Lys Val
245 250 255

Trp Glu Val Cys Phe Gly Lys Lys Gly Glu Phe Gln Glu Val Val
 260 265 270
 Arg Ala Phe Glu Leu Lys Gly His Ser Ala Ala Val His Ser Phe
 275 280 285
 Ala Phe Ser Asn Asp Ser Arg Arg Met Ala Ser Val Ser Lys Asp
 290 295 300
 Gly Thr Trp Lys Leu Trp Asp Thr Asp Val Glu Tyr Lys Lys Lys
 305 310 315
 Gln Asp Pro Tyr Leu Leu Lys Thr Gly Arg Phe Glu Glu Ala Ala
 320 325 330
 Gly Ala Ala Pro Cys Arg Leu Ala Leu Ser Pro Asn Ala Gln Val
 335 340 345
 Leu Ala Leu Ala Ser Gly Ser Ser Ile His Leu Tyr Asn Thr Arg
 350 355 360
 Arg Gly Glu Lys Glu Glu Cys Phe Glu Arg Val His Gly Glu Cys
 365 370 375
 Ile Ala Asn Leu Ser Phe Asp Ile Thr Gly Arg Phe Leu Ala Ser
 380 385 390
 Cys Gly Asp Arg Ala Val Arg Leu Phe His Asn Thr Pro Gly His
 395 400 405
 Arg Ala Met Val Glu Glu Met Gln Gly His Leu Lys Arg Ala Ser
 410 415 420
 Asn Glu Ser Thr Arg Gln Arg Leu Gln Gln Gln Leu Thr Gln Ala
 425 430 435
 Gln Glu Thr Leu Lys Ser Leu Gly Ala Leu Lys Lys
 440 445

<210> 370
 <211> 1415
 <212> DNA
 <213> Homo sapiens

<400> 370
 tggcctcccc agcttgccag gcacaaggct gagcgggagg aagcgagagg 50
 catctaagca ggcagtgttt tgcccttcacc ccaagtgacc atgagaggtg 100
 ccacgcgagt ctcaatcatg ctccctcttag taactgtgtc tgactgtgct 150
 gtgatcacag gggcctgtga gcgggatgtc cagtgtgggg caggcacctg 200
 ctgtgccatc agcctgtggc ttgcagggtc gcggatgtgc accccgctgg 250
 ggccggaaagg cgaggagtgc caccccgcca gccacaaggt ccccttcttc 300
 aggaaaacgca agcaccacac ctgtccttgc ttgccccacc tgctgtgctc 350

caggtcccc gacggcagg accgctgctc catggacttg aagaacatca 400
attttaggc gcttgcctgg ttcaggata cccaccatcc tttcctgag 450
cacagcctgg attttattt ctgccatgaa acccagctcc catgactctc 500
ccagtccta cactgactac cctgatctct cttgtctagt acgcacatat 550
gcacacaggc agacataacct cccatcatga catggtcccc aggctggcct 600
gaggatgtca cagttgagg ctgtggtgtg aaaggtggcc agcctggttc 650
tcttcctgc tcaggctgcc agagaggtgg taaatggcag aaaggacatt 700
ccccctcccc tccccaggtg acctgctctc tttcctggc cctgcccctc 750
tccccacatg tatccctcggt tctgaattag acattcctgg gcacaggctc 800
ttgggtgcat tgctcagagt cccaggtcct ggcctgaccc tcaggccctt 850
cacgtgagggt ctgtgaggac caatttgggtt gtagttcattc ttccctcgat 900
tggtaactc cttagttca gaccacagac tcaagattgg ctctccca 950
agggcagcaag acagtccaccc caaggcagggt gtagggagcc cagggaggcc 1000
aatcagcccc ctgaagactc tggcccagt cagcctgtgg cttgtggcct 1050
gtgacctgtg accttctgcc agaattgtca tgcctctgag gcccccttt 1100
accacactt accagttaac cactgaagcc cccaattccc acagctttc 1150
cattaaaatg caaatgggtgg tggttcaatc taatctgata ttgacatatt 1200
agaaggcaat tagggtgttt ccttaaacaa ctccttcca aggatcagcc 1250
ctgagagcag gttggtgact ttgaggaggg cagtcctctg tccagattgg 1300
ggtgggagca agggacaggg agcagggcag gggctgaaag gggcactgat 1350
tcagaccagg gaggcaacta cacaccaaca tgctggctt agaataaaag 1400
caccaactga aaaaa 1415

<210> 371

<211> 105

<212> PRT

<213> Homo sapiens

<400> 371

Met	Arg	Gly	Ala	Thr	Arg	Val	Ser	Ile	Met	Leu	Leu	Leu	Val	Thr
1														15

Val	Ser	Asp	Cys	Ala	Val	Ile	Thr	Gly	Ala	Cys	Glu	Arg	Asp	Val
20														30

Gln	Cys	Gly	Ala	Gly	Thr	Cys	Cys	Ala	Ile	Ser	Leu	Trp	Leu	Arg
35														45

Gly Leu Arg Met Cys Thr Pro Leu Gly Arg Glu Gly Glu Glu Cys
50 55 60

His Pro Gly Ser His Lys Val Pro Phe Phe Arg Lys Arg Lys His
65 70 75

His Thr Cys Pro Cys Leu Pro Asn Leu Leu Cys Ser Arg Phe Pro
80 85 90

Asp Gly Arg Tyr Arg Cys Ser Met Asp Leu Lys Asn Ile Asn Phe
95 100 105

<210> 372

<211> 1281

<212> DNA

<213> Homo sapiens

<400> 372

agcgccccggg cgtcgccggcg gtaaaaggcc ggcagaaggg aggcacttga 50

gaaatgtctt tcctccagga cccaagtttc ttcaccatgg ggatgtggtc 100

cattggtgca ggagccctgg gggctgctgc cttggcattg ctgcttgcca 150

acacagacgt gtttctgtcc aagccccaga aagcggccct ggagtacctg 200

gaggatatacg acctgaaaaac actggagaag gaaccaagga ctttcaaagc 250

aaaggagcta tggaaaaaaa atggagctgt gattatggcc gtgcggaggc 300

caggctgttt cctctgtcga gaggaagctg cgatctgtc ctccctgaaa 350

agcatgttgg accagctggg cgtccccctc tatgcagtgg taaaggagca 400

catcaggact gaagtgaagg atttccagcc ttatttcaaa ggagaaatct 450

tcctggatga aaagaaaaag ttctatggtc cacaaaggcg gaagatgtatg 500

tttatggat ttatccgtct gggagtgtgg tacaacttct tccgagcctg 550

gaacggaggc ttctctggaa acctggaagg agaaggcttc atccttgggg 600

gagtttcgt ggtggatca gaaaggcagg gcattcttct tgagcacccga 650

aaaaaagaat ttggagacaa agtaaaccta ctttctgttc tgaaagctgc 700

taagatgatc aaaccacaga ctttggcctc agaaaaaaa tgattgtgtg 750

aaactgcccac gtcagggat aaccaggac attcacctgt gttcatggga 800

tgtattgttt ccactcggtc ccctaaggag tgagaaaccc atttataactc 850

tactctcagt atggatttatt aatgtatattt aatattctgt ttaggcccac 900

taaggcaaaa tagccccaaa acaagactga caaaaatctg aaaaactaat 950

gaggatttatt aagctaaaac ctggaaataa ggaggcttaa aattgactgc 1000

caggctgggt gcagtggctc acacctgtaa tcccagcact ttgggaggcc 1050
aaggtgagca agtcacttga ggtcgggagt tcgagaccag cctgagcaac 1100
atggcgaaac cccgtctcta ctaaaaatac aaaaatcacc cgggtgttgt 1150
ggcaggcacc tgttagtccca gctacccggg aggctgaggc aggagaatca 1200
cttgaacctg ggaggtggag gttgcggta gctgagatca caccactgta 1250
ttccagcctg ggtgactgag actctaacta a 1281

<210> 373

<211> 229

<212> PRT

<213> Homo sapiens

<400> 373

Met	Ser	Phe	Leu	Gln	Asp	Pro	Ser	Phe	Phe	Thr	Met	Gly	Met	Trp
1								10					15	
Ser	Ile	Gly	Ala	Gly	Ala	Leu	Gly	Ala	Ala	Ala	Leu	Ala	Leu	Leu
				20				25					30	
Leu	Ala	Asn	Thr	Asp	Val	Phe	Leu	Ser	Lys	Pro	Gln	Lys	Ala	Ala
				35				40					45	
Leu	Glu	Tyr	Leu	Glu	Asp	Ile	Asp	Leu	Lys	Thr	Leu	Glu	Lys	Glu
				50				55					60	
Pro	Arg	Thr	Phe	Lys	Ala	Lys	Glu	Leu	Trp	Glu	Lys	Asn	Gly	Ala
				65				70					75	
Val	Ile	Met	Ala	Val	Arg	Arg	Pro	Gly	Cys	Phe	Leu	Cys	Arg	Glu
				80				85					90	
Glu	Ala	Ala	Asp	Leu	Ser	Ser	Leu	Lys	Ser	Met	Leu	Asp	Gln	Leu
				95				100					105	
Gly	Val	Pro	Leu	Tyr	Ala	Val	Val	Lys	Glu	His	Ile	Arg	Thr	Glu
				110				115					120	
Val	Lys	Asp	Phe	Gln	Pro	Tyr	Phe	Lys	Gly	Glu	Ile	Phe	Leu	Asp
				125				130					135	
Glu	Lys	Lys	Lys	Phe	Tyr	Gly	Pro	Gln	Arg	Arg	Lys	Met	Met	Phe
				140				145					150	
Met	Gly	Phe	Ile	Arg	Leu	Gly	Val	Trp	Tyr	Asn	Phe	Phe	Arg	Ala
				155				160					165	
Trp	Asn	Gly	Gly	Phe	Ser	Gly	Asn	Leu	Glu	Gly	Glu	Gly	Phe	Ile
				170				175					180	
Leu	Gly	Gly	Val	Phe	Val	Val	Gly	Ser	Gly	Lys	Gln	Gly	Ile	Leu
				185				190					195	
Leu	Glu	His	Arg	Glu	Lys	Glu	Phe	Gly	Asp	Lys	Val	Asn	Leu	Leu

200

205

210

Ser Val Leu Glu Ala Ala Lys Met Ile Lys Pro Gln Thr Leu Ala
215 220 225

Ser Glu Lys Lys

<210> 374

<211> 744

<212> DNA

<213> Homo sapiens

<400> 374

acggaccgag gttcgaggg agggacacgg accaggaacc tgagcttaggt 50
caaagacgcc cggcccgagg tccccgtcgc aggtgcccct ggccggagat 100
gcggtaggag gggcgagcgc gagaagcccc ttccctcgccg ctgccaaccc 150
gccacccagc ccatggcgaa ccccgggctg gggctgcttc tggcgctggg 200
cctgcccgttc ctgctggccc gctggggccg agcctggggg caaatacaga 250
ccacttctgc aaatgagaat agcactgtt tgccttcattc caccagctcc 300
agctccgatg gcaacctgctg tccggaagcc atcactgcta tcattcgttgt 350
cttctccctc ttggctgcct tgctcctggc tgtggggctg gcactgttgg 400
tgccgaaagct tcgggagaag cggcagacgg agggcaccta ccggcccaagt 450
agcgaggagc agttctccca tgcagccgag gccccggccc ctcaggactc 500
caaggagacg gtgcagggtct gcctgcccc catggtcccc tctcctgcatt 550
ctgtctccct tcattgtgt gtgaccttgg ggaaaggcag tgccctctct 600
ggcagtcag atccacccag tgcttaatag cagggaaagaa ggtacttcaa 650
agactctgcc cctgagggtca agagaggatg gggcttattca ctttatata 700
tttatataaaa attagtagtg agatgtaaaa aaaaaaaaaa aaaa 744

<210> 375

<211> 123

<212> PRT

<213> Homo sapiens

<400> 375

Met Ala Asn Pro Gly Leu Gly Leu Leu Leu Ala Leu Gly Leu Pro
1 5 10 15

Phe Leu Leu Ala Arg Trp Gly Arg Ala Trp Gly Gln Ile Gln Thr
20 25 30

Thr Ser Ala Asn Glu Asn Ser Thr Val Leu Pro Ser Ser Thr Ser
35 40 45

Ser Ser Ser Asp Gly Asn Leu Arg Pro Glu Ala Ile Thr Ala Ile
50 55 60

Ile Val Val Phe Ser Leu Leu Ala Ala Leu Leu Leu Ala Val Gly
65 70 75

Leu Ala Leu Leu Val Arg Lys Leu Arg Glu Lys Arg Gln Thr Glu
80 85 90

Gly Thr Tyr Arg Pro Ser Ser Glu Glu Gln Phe Ser His Ala Ala
95 100 105

Glu Ala Arg Ala Pro Gln Asp Ser Lys Glu Thr Val Gln Gly Cys
110 115 120

Leu Pro Ile

<210> 376

<211> 713

<212> DNA

<213> Homo sapiens

<400> 376

aatatatcat ctatttatca ttaatcaata atgtattctt ttattccaat 50

aacatttggg ttttgggatt ttaattttca aacacagcag aatgacattt 100

tttctgtcac tattattatt gttggatgt gaagctattt ggagatccaa 150

ttcaggaagc aacacattgg agaatggcta ctttctatca agaaataaag 200

agaaccacag tcaacccaca caatcatctt tagaagacag tgtgactcct 250

acccaaagctg tcaaaaaccac aggcaagggc atagttaaag gacggaatct 300

tgactcaaga gggtaattc ttggtgctga agcctggggc aggggtgtaa 350

agaaaaaacac ttagattcaa tgattgtaaa tttaaggcaa atacacatat 400

tagtattacc ttagtgtaat gtatccctgt catatataca ataaggtgaa 450

attataagta ccctatgcag ttggctggac agttctaaat tggactttat 500

taatttttaa aatcagtaac tgatttatca ctggctatgt gcttagatct 550

acaggagatc atataatttg atacaataa aagaaaaagtg ttctctcccc 600

ttacagaatt gacatttaa atgcgataca gttagaatag gaaatatgac 650

attagaaagg aagaatgaca gggagaaagg aaagaaggga aaatgttgcc 700

aaggaaaaaaaaaaa aaa 713

<210> 377

<211> 90

<212> PRT

<213> Homo sapiens

<400> 377
Met Thr Phe Phe Leu Ser Leu Leu Leu Leu Val Cys Glu Ala
1 5 10 15
Ile Trp Arg Ser Asn Ser Gly Ser Asn Thr Leu Glu Asn Gly Tyr
20 25 30
Phe Leu Ser Arg Asn Lys Glu Asn His Ser Gln Pro Thr Gln Ser
35 40 45
Ser Leu Glu Asp Ser Val Thr Pro Thr Lys Ala Val Lys Thr Thr
50 55 60
Gly Lys Gly Ile Val Lys Gly Arg Asn Leu Asp Ser Arg Gly Leu
65 70 75
Ile Leu Gly Ala Glu Ala Trp Gly Arg Gly Val Lys Lys Asn Thr
80 85 90

<210> 378
<211> 3265
<212> DNA
<213> Homo sapiens

<400> 378
gccaggaata actagagagg aacaatgggg ttattcagag gttttgttt 50
cctcttagtt ctgtgcctgc tgcaccagtc aaatacttcc ttcatthaagc 100
tgaataataa tggcttgaa gatattgtca ttgttataga tcctagtgtg 150
ccagaagatg aaaaaataat tgaacaaata gaggatatgg tgactacagc 200
ttctacgtac ctgttgaag ccacagaaaa aagattttt ttcaaaaatg 250
tatctatatt aattcctgag aatttgaagg aaaatcctca gtacaaaagg 300
ccaaaacatg aaaaccataa acatgctgat gttatagttg caccacctac 350
actcccaggt agagatgaac catacaccaa gcagttcaca gaatgtggag 400
agaaaaggcga atacattcac ttcacccctg accttctact tggaaaaaaa 450
caaaaatgaat atggaccacc aggcaaactg tttgtccatg agtgggctca 500
cctccggtgg ggagtgtttg atgagtacaa tgaagatcag cctttctacc 550
gtgctaagtc aaaaaaaaaatc gaagcaacaa ggtgtccgc aggtatctct 600
ggtagaaata gagttataa gtgtcaagga ggcagctgac ttagtagagc 650
atgcagaatt gattctacaa caaaaactgta tggaaaagat tgtcaattct 700
ttcctgataa agtacaaaca gaaaaagcat ccataatgtt tatgcaaagt 750
attgattctg ttgttgaatt ttgttaacgaa aaaacccata atcaagaagc 800
tccaaggccta caaaaacataa agtgcaattt tagaagtaca tgggaggtga 850

ttagcaattc tgaggatttt aaaaacacca tacccatggc gacaccacct 900
cctccacctg tcttctcatt gctgaagatc agtcaaagaa ttgtgtgctt 950
agttcttgat aagtctggaa gcatgggggg taaggaccgc ctaaatcgaa 1000
tgaatcaagc agcaaaacat tccctgctgc agactgttga aaatggatcc 1050
tgggtgggaa tggttcactt tgatagtact gccactattg taaataagct 1100
aatccaaata aaaagcagtg atgaaagaaa cacactcatg gcaggattac 1150
ctacatatcc tctgggagga acttccatct gctctggaat taaatatgca 1200
tttcaggtga ttggagagct acattccaa ctcgatggat ccgaagtact 1250
gctgctgact gatggggagg ataacactgc aagttcttgt attgatgaag 1300
tgaaacaaag tggggccatt gttcatttttta ttgcattttgg aagagctgct 1350
gatgaagcag taatagagat gagcaagata acaggaggaa gtcattttta 1400
tgtttcagat gaagctcaga acaatggcct cattgatgct tttggggctc 1450
ttacatcagg aaatactgat ctctcccaga agtcccttca gctcgaaagt 1500
aagggattaa cactgaatag taatgcctgg atgaacgaca ctgtcataat 1550
tgatagtaca gtggaaagg acacgttctt tctcatcaca tggAACAGTC 1600
tgcctcccag tatttctctc tggatccca gtggacaat aatggaaaat 1650
ttcacagtgg atgcaacttc caaaatggcc tatctcagta ttccaggaac 1700
tgcaaagggtg ggcacttggg catacaatct tcaagccaaa gcgaacccag 1750
aaacattaac tattacagta acttctcgag cagcaaattc ttctgtgcct 1800
ccaatcacag tgaatgctaa aatgaataag gacgtaaaca gtttccccag 1850
cccaatgatt gtttacgcag aaattctaca aggatatgta cctgttcttgc 1900
gagccaatgt gactgcttgc attgaatcac agaatggaca tacagaagtt 1950
ttggaacttt tggataatgg tgcaggcgct gattcttca agaatgatgg 2000
agtctactcc aggtatttttta cagcatatac agaaaatggc agatatact 2050
taaaaagggtcg ggctcatggaa ggagcaaaaca ctgccaggct aaaattacgg 2100
cctccactga atagagccgc gtacatacca ggctgggtag tgaacgggaa 2150
aattgaagca aacccgccaa gacctgaaat tgatgaggat actcagacca 2200
ccttggagga tttcagccga acagcatccg gaggtgcatt tgtggtatca 2250
caagtcggaa gcctccctt gcctgaccaaa tacccaccaaa gtcaaattcac 2300

agaccttgat gccacagttc atgaggataa gattattctt acatggacag 2350
caccaggaga taattttgat gttggaaaag ttcaacgtta tatcataaga 2400
ataagtgcaa gtattcttga tctaagagac agtttgatg atgctcttca 2450
agtaaatact actgatctgt caccaaagga ggccaactcc aaggaaagct 2500
ttgcatttaa accagaaaaat atctcagaag aaaatgcaac ccacatattt 2550
attgccatta aaagtataga taaaagcaat ttgacatcaa aagtatccaa 2600
cattgcacaa gtaaotttgtt ttatccctca agcaaatcct gatgacattg 2650
atcctacacc tactcctact cctactccta ctcctgataa aagtataat 2700
tctggagtta atatttctac gctggattg tctgtgattg ggtctgttgt 2750
aattgttaac tttatTTaa gtaccaccat ttgaacctta acgaagaaaa 2800
aaatcttcaa gtagacctag aagagagttt taaaaaaca aacaatgtaa 2850
gtaaaggata tttctgaatc taaaaattca tcccatgtgt gatcataaac 2900
tcataaaaat aattttaga tgtcgaaaaa ggatactttg attaaataaa 2950
aacactcatg gatatgtaaa aactgtcaag attaaaattt aatagttca 3000
tttatttggat ttttatttg taagaaatag tgatgaacaa agatccttt 3050
tcatactgat acctgggtgt atatttttg atgcaacagt tttctgaaat 3100
gatatttcaa attgcatcaa gaaattaaaa tcatctatct gagtagtcaa 3150
aatacaagta aaggagagca aataaacaac atttggaaaa aaaaaaaaaaa 3200
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 3250
aaaaaaaaaaaa aaaaa 3265

<210> 379

<211> 919

<212> PRT

<213> Homo sapiens

<400> 379

Met	Gly	Leu	Phe	Arg	Gly	Phe	Val	Phe	Leu	Leu	Val	Leu	Cys	Leu
1					5				10				15	

Leu	His	Gln	Ser	Asn	Thr	Ser	Phe	Ile	Lys	Leu	Asn	Asn	Asn	Gly
					20				25				30	

Phe	Glu	Asp	Ile	Val	Ile	Val	Ile	Asp	Pro	Ser	Val	Pro	Glu	Asp
								35		40			45	

Glu	Lys	Ile	Ile	Glu	Gln	Ile	Glu	Asp	Met	Val	Thr	Thr	Ala	Ser
								50		55			60	

Thr Tyr Leu Phe Glu Ala Thr Glu Lys Arg Phe Phe Phe Lys Asn
 65 70 75
 Val Ser Ile Leu Ile Pro Glu Asn Trp Lys Glu Asn Pro Gln Tyr
 80 85 90
 Lys Arg Pro Lys His Glu Asn His Lys His Ala Asp Val Ile Val
 95 100 105
 Ala Pro Pro Thr Leu Pro Gly Arg Asp Glu Pro Tyr Thr Lys Gln
 110 115 120
 Phe Thr Glu Cys Gly Glu Lys Gly Glu Tyr Ile His Phe Thr Pro
 125 130 135
 Asp Leu Leu Leu Gly Lys Lys Gln Asn Glu Tyr Gly Pro Pro Gly
 140 145 150
 Lys Leu Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe
 155 160 165
 Asp Glu Tyr Asn Glu Asp Gln Pro Phe Tyr Arg Ala Lys Ser Lys
 170 175 180
 Lys Ile Glu Ala Thr Arg Cys Ser Ala Gly Ile Ser Gly Arg Asn
 185 190 195
 Arg Val Tyr Lys Cys Gln Gly Gly Ser Cys Leu Ser Arg Ala Cys
 200 205 210
 Arg Ile Asp Ser Thr Thr Lys Leu Tyr Gly Lys Asp Cys Gln Phe
 215 220 225
 Phe Pro Asp Lys Val Gln Thr Glu Lys Ala Ser Ile Met Phe Met
 230 235 240
 Gln Ser Ile Asp Ser Val Val Glu Phe Cys Asn Glu Lys Thr His
 245 250 255
 Asn Gln Glu Ala Pro Ser Leu Gln Asn Ile Lys Cys Asn Phe Arg
 260 265 270
 Ser Thr Trp Glu Val Ile Ser Asn Ser Glu Asp Phe Lys Asn Thr
 275 280 285
 Ile Pro Met Val Thr Pro Pro Pro Pro Val Phe Ser Leu Leu
 290 295 300
 Lys Ile Ser Gln Arg Ile Val Cys Leu Val Leu Asp Lys Ser Gly
 305 310 315
 Ser Met Gly Gly Lys Asp Arg Leu Asn Arg Met Asn Gln Ala Ala
 320 325 330
 Lys His Phe Leu Leu Gln Thr Val Glu Asn Gly Ser Trp Val Gly
 335 340 345
 Met Val His Phe Asp Ser Thr Ala Thr Ile Val Asn Lys Leu Ile

DRAFT - DO NOT CITE

350	355	360
Gln Ile Lys Ser Ser Asp Glu Arg Asn Thr Leu Met Ala Gly Leu		
365	370	375
Pro Thr Tyr Pro Leu Gly Gly Thr Ser Ile Cys Ser Gly Ile Lys		
380	385	390
Tyr Ala Phe Gln Val Ile Gly Glu Leu His Ser Gln Leu Asp Gly		
395	400	405
Ser Glu Val Leu Leu Leu Thr Asp Gly Glu Asp Asn Thr Ala Ser		
410	415	420
Ser Cys Ile Asp Glu Val Lys Gln Ser Gly Ala Ile Val His Phe		
425	430	435
Ile Ala Leu Gly Arg Ala Ala Asp Glu Ala Val Ile Glu Met Ser		
440	445	450
Lys Ile Thr Gly Gly Ser His Phe Tyr Val Ser Asp Glu Ala Gln		
455	460	465
Asn Asn Gly Leu Ile Asp Ala Phe Gly Ala Leu Thr Ser Gly Asn		
470	475	480
Thr Asp Leu Ser Gln Lys Ser Leu Gln Leu Glu Ser Lys Gly Leu		
485	490	495
Thr Leu Asn Ser Asn Ala Trp Met Asn Asp Thr Val Ile Ile Asp		
500	505	510
Ser Thr Val Gly Lys Asp Thr Phe Phe Leu Ile Thr Trp Asn Ser		
515	520	525
Leu Pro Pro Ser Ile Ser Leu Trp Asp Pro Ser Gly Thr Ile Met		
530	535	540
Glu Asn Phe Thr Val Asp Ala Thr Ser Lys Met Ala Tyr Leu Ser		
545	550	555
Ile Pro Gly Thr Ala Lys Val Gly Thr Trp Ala Tyr Asn Leu Gln		
560	565	570
Ala Lys Ala Asn Pro Glu Thr Leu Thr Ile Thr Val Thr Ser Arg		
575	580	585
Ala Ala Asn Ser Ser Val Pro Pro Ile Thr Val Asn Ala Lys Met		
590	595	600
Asn Lys Asp Val Asn Ser Phe Pro Ser Pro Met Ile Val Tyr Ala		
605	610	615
Glu Ile Leu Gln Gly Tyr Val Pro Val Leu Gly Ala Asn Val Thr		
620	625	630
Ala Phe Ile Glu Ser Gln Asn Gly His Thr Glu Val Leu Glu Leu		
635	640	645

Leu Asp Asn Gly Ala Gly Ala Asp Ser Phe Lys Asn Asp Gly Val
650 655 660

Tyr Ser Arg Tyr Phe Thr Ala Tyr Thr Glu Asn Gly Arg Tyr Ser
665 670 675

Leu Lys Val Arg Ala His Gly Gly Ala Asn Thr Ala Arg Leu Lys
680 685 690

Leu Arg Pro Pro Leu Asn Arg Ala Ala Tyr Ile Pro Gly Trp Val
695 700 705

Val Asn Gly Glu Ile Glu Ala Asn Pro Pro Arg Pro Glu Ile Asp
710 715 720

Glu Asp Thr Gln Thr Thr Leu Glu Asp Phe Ser Arg Thr Ala Ser
725 730 735

Gly Gly Ala Phe Val Val Ser Gln Val Pro Ser Leu Pro Leu Pro
740 745 750

Asp Gln Tyr Pro Pro Ser Gln Ile Thr Asp Leu Asp Ala Thr Val
755 760 765

His Glu Asp Lys Ile Ile Leu Thr Trp Thr Ala Pro Gly Asp Asn
770 775 780

Phe Asp Val Gly Lys Val Gln Arg Tyr Ile Ile Arg Ile Ser Ala
785 790 795

Ser Ile Leu Asp Leu Arg Asp Ser Phe Asp Asp Ala Leu Gln Val
800 805 810

Asn Thr Thr Asp Leu Ser Pro Lys Glu Ala Asn Ser Lys Glu Ser
815 820 825

Phe Ala Phe Lys Pro Glu Asn Ile Ser Glu Glu Asn Ala Thr His
830 835 840

Ile Phe Ile Ala Ile Lys Ser Ile Asp Lys Ser Asn Leu Thr Ser
845 850 855

Lys Val Ser Asn Ile Ala Gln Val Thr Leu Phe Ile Pro Gln Ala
860 865 870

Asn Pro Asp Asp Ile Asp Pro Thr Pro Thr Pro Thr Pro Thr Pro
875 880 885

Thr Pro Asp Lys Ser His Asn Ser Gly Val Asn Ile Ser Thr Leu
890 895 900

Val Leu Ser Val Ile Gly Ser Val Val Ile Val Asn Phe Ile Leu
905 910 915

Ser Thr Thr Ile

<211> 3877
<212> DNA
<213> Homo sapiens

<400> 380
ctccttaggt ggaaaccctg ggagtagagt actgacagca aagaccggga 50
aagaccatac gtccccgggc aggggtgaca acaggtgtca tcttttgat 100
ctcggtgtg gctgccttcc tatttcaagg aaagacgcca aggttaattt 150
gaccaggagg agcaatgatg tagccaccc ctaaccttcc cttcttgaac 200
ccccagttat gccaggattt actagagagt gtcaactcaa ccagcaagcg 250
gctccttcgg cttaacttgt gggtggagga gagaacctt gtggggctgc 300
gttctcttag cagtgtcag aagtgtacttgc cctgagggtg gaccagaaga 350
aaggaaaggt cccctttgc tggtggctgc acatcaggaa ggctgtgatg 400
ggaatgaagg tgaaaacttg gagattcac ttcagtcatg gcttctgcct 450
gcaagatcat cctttaaaag tagagaagct gctctgtgtg gtggtaact 500
ccaagaggca gaactcggttcc tagaaggaaa tggatgcaag cagctccggg 550
ggccccaaac gcatgttcc tgtggtctag cccaggaaag cccttccgtg 600
ggggccccgg ctttgaggga tgccaccggc tctggacgca tggctgattc 650
ctgaatgatg atggttcgcc gggggctgct tgctgtggatt tcccgggtgg 700
tggtttgct ggtgctcctc tgctgtgcta tctctgtcct gtacatgttgc 750
gcctgcaccc caaaaggta cgaggagcag ctggcactgc ccagggccaa 800
cagccccacg gggaaaggagg ggtaccaggc cgtccttcag gagtgggagg 850
agcagcaccc caactacgtg agcagcctga agcggcagat cgcacagctc 900
aaggaggagc tgcaggagag gagtgagcag ctcaggaatg ggcagtacca 950
agccagcgt gctgctggcc tgggtctgga caggagcccc ccagagaaaa 1000
cccaggccga cctcctggcc ttccctgcact cgcaggtgga caaggcagag 1050
gtgaatgctg gcgtcaagct ggcacagag tatgcagcag tgccttcga 1100
tagctttact ctacagaagg tgtaccagct ggagactggc cttacccgcc 1150
accccgagga gaagcctgtg aggaaggaca agcgggatga gttggtgaa 1200
gccattgaat cagccttgaa gaccctgaac aatcctgcag agaacagccc 1250
caatcaccgt ctttacacgg cctctgattt catagaaggat 1300
cagaaaggga caaaggaca ttgttatgac tcaccccaa aggggaccac 1350

DRAFT

aaacacgaat tcaaacggct catcttattt cgaccattca gccccatcat 1400
gaaagtgaaa aatgaaaagc tcaacatggc caacacgctt atcaatgtta 1450
tcgtgcctct agcaaaaagg gtggacaagt tccggcagtt catgcagaat 1500
ttcagggaga tgtgcattga gcaggatggg agagtccatc tcactgttgt 1550
ttactttggg aaagaagaaa taaatgaagt caaaggaata cttgaaaaca 1600
cttccaaagc tgccaaacttc aggaacttta ctttcatcca gctgaatgga 1650
gaattttctc gggaaaaggg acttgatgtt ggagcccgct tctggaaggg 1700
aagcaacgtc cttctcttt tctgtgatgt ggacatctac ttcacatctg 1750
aattcctcaa tacgtgttagg ctgaatacac agccagggaa gaaggtattt 1800
tatccagttc tttcagtca gtacaatcct ggcataatat acggccacca 1850
tgatgcagtc cttcccttgg aacagcagct ggtcataaag aaggaaactg 1900
gattttggag agactttgga tttggatga cgtgtcagta tcggtcagac 1950
ttcatcaata taggtggggtt tgatctggac atcaaaggct ggggcccggaga 2000
ggatgtgcac ctttatcgca agtatctcca cagcaacctc atagtggtac 2050
ggacgcctgt gcgaggactc ttccacctct ggcatacgaa ggcgtgcac 2100
gacgagctga ccccgagca gtacaagatg tgcatacgat ccaaggccat 2150
gaacgaggca tcccacggcc agctggcat gctgggttgc aggacacgaga 2200
tagaggctca ctttgcacaa cagaaacaga agacaagtag caaaaaaaaca 2250
tgaactccca gagaaggatt gtggagaca cttttcttt cttttgcaa 2300
ttactgaaag tggctgcaac agagaaaaga cttccataaa ggacgacaaa 2350
agaattggac tgatgggtca gagatgagaa agcctccgat ttctctgt 2400
tgggctttt acaacagaaa tcaaaatctc cgcttgcct gcaaaagtaa 2450
cccagttgca ccctgtgaag tgtctgacaa aggacaaatg cttgtgagat 2500
tataagccta atgggtggaa gttttgatg gtgttacaa tacactgaga 2550
cctgttgttt tgtgtgctca ttgaaatatt catgatttaa gagcagttt 2600
gtaaaaaaaaatt cattagcatg aaaggcaagc atatttctcc tcataatgaat 2650
gagcctatca gcagggtct agtttctagg aatgctaaaa tatcagaagg 2700
caggagagga gataggctta ttatgatact agtgagtaca ttaagtaaaa 2750
taaaatggac cagaaaagaa aagaaaccat aaatatcgtc tcataatttc 2800

cccaagatta accaaaaata atctgcttat cttttgggtt gtcctttaa 2850
ctgtctccgt tttttcttt tattnaaaaa tgcactttt ttcccttgt 2900
agttatagtc tgcttattta attaccactt tgcaagcctt acaagagagc 2950
acaagttggc ctacatTTT atatTTTta agaagatact ttgagatgca 3000
ttatgagaac ttcaagtca aagcatcaa ttgatgccat atccaaggac 3050
atgccaaatg ctgattctgt cagggactga atgtcaggca ttgagacata 3100
ggaaaggaat ggTTTgtact aatacagacg tacagatact ttctctgaag 3150
agtatTTcg aagaggagca actgaacact ggaggaaaag aaaatgacac 3200
tttctgctt acagaaaagg aaactcattc agactggtga taticgtatg 3250
tacctaaaag tcagaaacca catTTTCTCC tcagaagtag ggaccgcTTT 3300
cttacctgtt taaataaacc aaagtatacc gtgtgaacca aacaatctct 3350
tttcaaaaca ggggtgcctt cctggcttct ggcttccata agaagaaaatg 3400
gagaaaaata tatatatata tatatatatt gtgaaagatc aatccatctg 3450
ccagaatcta gtgggatgga agTTTTgct acatgttac caccccaggc 3500
cagggtggaaag taactgaatt atTTTTaaa ttaagcagtt ctactcaatc 3550
accaagatgc ttctgaaaat tgcattttt taccatttca aactatTTT 3600
taaaaataaa tacagttaac atagagtggt ttcttcattc atgtgaaaat 3650
tattagccag caccagatgc atgagcta atctctttg agtccttgct 3700
tctgtttgtt cacagtaaac tcattgtta aaagcttcaa gaacattcaa 3750
gctgttggtg tgtaaaaaaaaa tgcattgtat tgatttgac tggtagttta 3800
tgaaaatttaa taaaaacaca ggccatgaat ggaagggtggt attgcacagc 3850
taataaaata tgatttggtt atatgaa 3877

<210> 381
<211> 532
<212> PRT
<213> Homo sapiens

<400> 381
Met Met Met Val Arg Arg Gly Leu Leu Ala Trp Ile Ser Arg Val
1 5 10 15
Val Val Leu Leu Val Leu Leu Cys Cys Ala Ile Ser Val Leu Tyr
20 25 30
Met Leu Ala Cys Thr Pro Lys Gly Asp Glu Glu Gln Leu Ala Leu
35 40 45

Pro Arg Ala Asn Ser Pro Thr Gly Lys Glu Gly Tyr Gln Ala Val
 50 55 60
 Leu Gln Glu Trp Glu Glu Gln His Arg Asn Tyr Val Ser Ser Leu
 65 70 75
 Lys Arg Gln Ile Ala Gln Leu Lys Glu Glu Leu Gln Glu Arg Ser
 80 85 90
 Glu Gln Leu Arg Asn Gly Gln Tyr Gln Ala Ser Asp Ala Ala Gly
 95 100 105
 Leu Gly Leu Asp Arg Ser Pro Pro Glu Lys Thr Gln Ala Asp Leu
 110 115 120
 Leu Ala Phe Leu His Ser Gln Val Asp Lys Ala Glu Val Asn Ala
 125 130 135
 Gly Val Lys Leu Ala Thr Glu Tyr Ala Ala Val Pro Phe Asp Ser
 140 145 150
 Phe Thr Leu Gln Lys Val Tyr Gln Leu Glu Thr Gly Leu Thr Arg
 155 160 165
 His Pro Glu Glu Lys Pro Val Arg Lys Asp Lys Arg Asp Glu Leu
 170 175 180
 Val Glu Ala Ile Glu Ser Ala Leu Glu Thr Leu Asn Asn Pro Ala
 185 190 195
 Glu Asn Ser Pro Asn His Arg Pro Tyr Thr Ala Ser Asp Phe Ile
 200 205 210
 Glu Gly Ile Tyr Arg Thr Glu Arg Asp Lys Gly Thr Leu Tyr Glu
 215 220 225
 Leu Thr Phe Lys Gly Asp His Lys His Glu Phe Lys Arg Leu Ile
 230 235 240
 Leu Phe Arg Pro Phe Ser Pro Ile Met Lys Val Lys Asn Glu Lys
 245 250 255
 Leu Asn Met Ala Asn Thr Leu Ile Asn Val Ile Val Pro Leu Ala
 260 265 270
 Lys Arg Val Asp Lys Phe Arg Gln Phe Met Gln Asn Phe Arg Glu
 275 280 285
 Met Cys Ile Glu Gln Asp Gly Arg Val His Leu Thr Val Val Tyr
 290 295 300
 Phe Gly Lys Glu Glu Ile Asn Glu Val Lys Gly Ile Leu Glu Asn
 305 310 315
 Thr Ser Lys Ala Ala Asn Phe Arg Asn Phe Thr Phe Ile Gln Leu
 320 325 330
 Asn Gly Glu Phe Ser Arg Gly Lys Gly Leu Asp Val Gly Ala Arg

335 340 345

Phe Trp Lys Gly Ser Asn Val Leu Leu Phe Phe Cys Asp Val Asp
350 355 360

Ile Tyr Phe Thr Ser Glu Phe Leu Asn Thr Cys Arg Leu Asn Thr
365 370 375

Gln Pro Gly Lys Lys Val Phe Tyr Pro Val Leu Phe Ser Gln Tyr
380 385 390

Asn Pro Gly Ile Ile Tyr Gly His His Asp Ala Val Pro Pro Leu
395 400 405

Glu Gln Gln Leu Val Ile Lys Lys Glu Thr Gly Phe Trp Arg Asp
410 415 420

Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Ile Asn
425 430 435

Ile Gly Gly Phe Asp Leu Asp Ile Lys Gly Trp Gly Gly Glu Asp
440 445 450

Val His Leu Tyr Arg Lys Tyr Leu His Ser Asn Leu Ile Val Val
455 460 465

Arg Thr Pro Val Arg Gly Leu Phe His Leu Trp His Glu Lys Arg
470 475 480

Cys Met Asp Glu Leu Thr Pro Glu Gln Tyr Lys Met Cys Met Gln
485 490 495

Ser Lys Ala Met Asn Glu Ala Ser His Gly Gln Leu Gly Met Leu
500 505 510

Val Phe Arg His Glu Ile Glu Ala His Leu Arg Lys Gln Lys Gln
515 520 525

Lys Thr Ser Ser Lys Lys Thr
530

<210> 382

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 382

ctcggggaaa gggacttgat gttgg 25

<210> 383

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 383
gcgaaggta gccttatct cgtgcc 26

<210> 384
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 384
cagcctacac gtattgagg 19

<210> 385
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 385
cagtcagtac aatcctggca taatatacgg ccaccatgat gcagtccc 48

<210> 386
<211> 1346
<212> DNA
<213> Homo sapiens

<400> 386
aaaagaatgt tgtggctgct ctttttctg gtgactgcca ttcatgctga 50
actctgtcaa ccaggtgcag aaaatgctt taaagtgaga ctttagtatca 100
gaacagctct gggagataaa gcatatgcct gggataccaa tgaagaatac 150
ctcttcaaag cgatggtagc tttctccatg agaaaagttc ccaacagaga 200
agcaacagaa atttcccatg tcctactttg caatgtaacc cagagggtat 250
cattctggtt tgtggttaca gacccttcaa aaaatcacac ctttcctgct 300
gtttaggtgc aatcagccat aagaatgaac aagaaccgga tcaacaatgc 350
cttctttcta aatgacccaa ctctggatt tttaaaaatc cttccacac 400
ttgcaccacc catggaccca tctgtgccc tctggattat tatatttggt 450
gtgatatttt gcatcatcat agttgcaatt gcactactga ttttatcagg 500
gatctggcaa cgtagaagaa agaacaaga accatctgaa gtggatgacg 550
ctgaagataa gtgtgaaaac atgatcacaa ttgaaaatgg catccccctct 600
gatccccctgg acatgaaggg gggcatatta atgatgcctt catgacagag 650

gatgagaggc tcaccctct ctgaaggct gttgtctgc ttccctaaga 700
aattaaacat ttgttctgt gtgactgctg agcatcctga aataccaaga 750
gcagatcata tatttgaaa caccattctt cttttgtaat aaatttgaa 800
tgtgcttcaa agtggaaagc aatcaattat acccaccaac accactgaaa 850
tcataagcta ttcacgactc aaaatattct aaaatatttt tctgacagta 900
tagtgtataa atgtggtcat gtggatttg tagttattga tttaaggcatt 950
tttagaaata agatcaggca tatgtatata ttttcacact tcaaagacct 1000
aaggaaaaat aaatttcca gtggagaata catataatat ggtgtagaaa 1050
tcattgaaaa tggatcctt ttgacgatca cttatatcac tctgtatatg 1100
actaagtaaa caaaagttag aagtaattat tgtaaatgga tggataaaaa 1150
tggaattact catatacagg gtggatttt atcctgttat cacaccaaca 1200
gttgattata tatttctga atatcagccc ctaataggac aattctattt 1250
gttgaccatt tctacaattt gtaaaagtcc aatctgtgct aacttaataa 1300
agtaataatc atctttttt aaaaaaaaaa aaaaaaaaaa aaaaaaa 1346

<210> 387

<211> 212

<212> PRT

<213> Homo sapiens

<400> 387

Met	Leu	Trp	Leu	Leu	Phe	Phe	Leu	Val	Thr	Ala	Ile	His	Ala	Glu
1					5				10					15
Leu	Cys	Gln	Pro	Gly	Ala	Glu	Asn	Ala	Phe	Lys	Val	Arg	Leu	Ser
					20				25					30
Ile	Arg	Thr	Ala	Leu	Gly	Asp	Lys	Ala	Tyr	Ala	Trp	Asp	Thr	Asn
					35				40					45
Glu	Glu	Tyr	Leu	Phe	Lys	Ala	Met	Val	Ala	Phe	Ser	Met	Arg	Lys
					50				55					60
Val	Pro	Asn	Arg	Glu	Ala	Thr	Glu	Ile	Ser	His	Val	Leu	Leu	Cys
					65				70					75
Asn	Val	Thr	Gln	Arg	Val	Ser	Phe	Trp	Phe	Val	Val	Thr	Asp	Pro
					80				85					90
Ser	Lys	Asn	His	Thr	Leu	Pro	Ala	Val	Glu	Val	Gln	Ser	Ala	Ile
					95				100					105
Arg	Met	Asn	Lys	Asn	Arg	Ile	Asn	Asn	Ala	Phe	Phe	Leu	Asn	Asp
					110				115					120

Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro
125 130 135
Met Asp Pro Ser Val Pro Ile Trp Ile Ile Ile Phe Gly Val Ile
140 145 150
Phe Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly
155 160 165
Ile Trp Gln Arg Arg Lys Asn Lys Glu Pro Ser Glu Val Asp
170 175 180
Asp Ala Glu Asp Lys Cys Glu Asn Met Ile Thr Ile Glu Asn Gly
185 190 195
Ile Pro Ser Asp Pro Leu Asp Met Lys Gly Gly Ile Leu Met Met
200 205 210
Pro Ser

<210> 388
<211> 1371
<212> DNA
<213> Homo sapiens

<400> 388
aactcaaact cctctctctg ggaaaacgcg gtgcttgctc ctccggagt 50
ggccttggca gggtgttggaa gcccctcggtc tgccccgtcc ggtctctggg 100
gccaggctg gtttccctc atgtatggca agagctctac tcgtgcggtg 150
cttccttctcc ttggcataaca gtcacagct ctttggccta tagcagctgt 200
ggaaatttat acctcccgaa tgctggaggc tgttaatggg acagatgctc 250
ggttaaaatg cacttctcc agctttgccc ctgtgggtga tgctctaaca 300
gtgacctgga attttcgatcc tctagacggg ggacctgagc agtttgtatt 350
ctactaccac atagatccct tccaacccat gagtgggcgg tttaaggacc 400
gggtgtcttg ggatggaaat cctgagcggt acgatgcctc catccttctc 450
tggaaactgc agttcgacga caatggaca tacacctgcc aggtgaagaa 500
cccacctgat gttgatgggg tgatagggga gatccggctc agcgtcgtgc 550
acactgtacg cttctctgag atccacttcc tggctctggc cattggctct 600
gcctgtgcac tgatgatcat aatagtaatt gtagtggtcc tcttccagca 650
ttaccggaaa aagcgatggg ccgaaagagc tcataaagtg gtggagataa 700
aatcaaaaaga agagggaaagg ctcaaccaag agaaaaaggt ctctgttat 750
ttagaagaca cagactaaca atttttagatg gaagctgaga tgatttccaa 800

gaacaagaac cctagtattt cttgaagtta atggaaactt ttctttggct 850
tttccagttg tgaccgttt tccaaccagt tctgcagcat attagattct 900
agacaagcaa cacccctctg gagccagcac agtgcctc catatcacca 950
gtcatacaca gcctcattat taaggtctta tttaattca gagtgtaaat 1000
ttttcaagt gctcattagg tttataaac aagaagctac attttgccc 1050
ttaagacact acttacagtg ttatgacttg tatacacata tattggtac 1100
aaaggggata aaagccaatt tgtctgttac atttccttc acgtatttct 1150
tttagcagca cttctgctac taaagttaat gtgttactc tcttccttc 1200
ccacattctc aattaaaagg tgagctaagc ctcctcggtg tttctgatta 1250
acagtaaattc ctaaattcaa actgttaaat gacatttttta ttttatgtc 1300
tctccttaac tatgagacac atcttgttt actgaatttc tttcaatatt 1350
ccaggtgata gattttgtc g 1371

<210> 389

<211> 215

<212> PRT

<213> Homo sapiens

<400> 389

Met	Tyr	Gly	Lys	Ser	Ser	Thr	Arg	Ala	Val	Leu	Leu	Leu	Gly	
1				5					10				15	
Ile	Gln	Leu	Thr	Ala	Leu	Trp	Pro	Ile	Ala	Ala	Val	Glu	Ile	Tyr
		20						25				30		
Thr	Ser	Arg	Val	Leu	Glu	Ala	Val	Asn	Gly	Thr	Asp	Ala	Arg	Leu
		35						40				45		
Lys	Cys	Thr	Phe	Ser	Ser	Phe	Ala	Pro	Val	Gly	Asp	Ala	Leu	Thr
			50					55				60		
Val	Thr	Trp	Asn	Phe	Arg	Pro	Leu	Asp	Gly	Gly	Pro	Glu	Gln	Phe
		65					70					75		
Val	Phe	Tyr	Tyr	His	Ile	Asp	Pro	Phe	Gln	Pro	Met	Ser	Gly	Arg
			80					85				90		
Phe	Lys	Asp	Arg	Val	Ser	Trp	Asp	Gly	Asn	Pro	Glu	Arg	Tyr	Asp
		95						100				105		
Ala	Ser	Ile	Leu	Leu	Trp	Lys	Leu	Gln	Phe	Asp	Asp	Asn	Gly	Thr
		110						115				120		
Tyr	Thr	Cys	Gln	Val	Lys	Asn	Pro	Pro	Asp	Val	Asp	Gly	Val	Ile
			125					130				135		
Gly	Glu	Ile	Arg	Leu	Ser	Val	Val	His	Thr	Val	Arg	Phe	Ser	Glu

(

140	145	150
Ile His Phe Leu Ala Leu Ala Ile Gly Ser Ala Cys Ala Leu Met 155	160	165
Ile Ile Ile Val Ile Val Val Val Leu Phe Gln His Tyr Arg Lys 170	175	180
Lys Arg Trp Ala Glu Arg Ala His Lys Val Val Glu Ile Lys Ser 185	190	195
Lys Glu Glu Glu Arg Leu Asn Gln Glu Lys Lys Val Ser Val Tyr 200	205	210
Leu Glu Asp Thr Asp 215		

<210> 390
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
ccgaggccat ctagaggcca gagc 24

<210> 391
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 391
acaggcagag ccaatggcca gagc 24

<210> 392
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
gagaggactg cgggagtttg ggaccttgt gcagacgtgc tcattg 45

<210> 393
<211> 471
<212> DNA
<213> Homo sapiens

<400> 393
gcatttttgt ctgtgctccc tgatctttag gtcaccacca tgaagttctt 50

agcagtcctg gtactttgg gagttccat ctttctggc tctgcccaga 100
atccgacaac agctgctcca gctgacacgt atccagctac tggtcctgct 150
gatgatgaag cccctgatgc taaaaccact gctgctgcaa ccactgcgac 200
caactgctgct cctaccactg caaccaccgc tgcttctacc actgctcgta 250
aagacattcc agttttaccc aaatgggttg gggatctccc gaatggtaga 300
gtgtgtccct gagatggaat cagcttgagt cttctgcaat tggtcacaac 350
tattcatgct tcctgtgatt tcatccaact acttaccttg cctacgatat 400
cccccttatac tctaatacgt ttatTTCTT tcaaataaaa aataactatg 450
agcaacataa aaaaaaaaaa a 471

<210> 394

<211> 90

<212> PRT

<213> Homo sapiens

<400> 394

Met Lys Phe Leu Ala Val Leu Val Leu Gly Val Ser Ile Phe
1 5 10 15

Leu Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr
20 25 30

Tyr Pro Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu
35 40 45

Thr Thr Ala Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr
50 55 60

Ala Thr Thr Ala Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val
65 70 75

Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
80 85 90

<210> 395

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 395

gctccctgat cttcatgtca ccacc 25

<210> 396

<211> 26

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 396
cagggacaca ctctaccatt cgggag 26

<210> 397
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
ccatcttct ggtctctgcc cagaatccga caacagctgc tc 42

<210> 398
<211> 907
<212> DNA
<213> Homo sapiens

<400> 398
ggactctgaa ggtcccaaggc agctgctgag gcccccaagg aagtggttcc 50
aaccttggac cccttaggggt ctggatttc tggttaacaa gataacctga 100
ggcaggacc ccatagggga atgctaccc tcgtccctcc acctgcctg 150
gtgttcacgg tggcctggc ctccttgcc gagagagtgt cctgggtcag 200
ggacgcagag gacgctcaca gactccagcc ctttgttacc gagaggacac 250
ttggcaaggt ccagcgatgg tccggagtcc acacacagac tggcggcagg 300
gcaggaggg gacagttctg ttgtgcttgg ttggacagta agagggtctt 350
ggccagtcca gggtgggggg cgccaaactc cataaagaac cagagggtct 400
ggccccggc cacagagtca tctgcccagc tcctctgctg ctggccagtg 450
ggagtggcac gaggtggggc tttgtgccag taaaaccaca ggctggattt 500
gcctgcgggc catggccct gtctaggca gcaattctca accttcttgc 550
tctcaggacc ccaaagagct ttcattgtat ctattgattt ttaccacatt 600
agcaattaaa actgagaaat gggccggca cggcggctca cgcctgtaat 650
cccagcact tgggaggccg aggcgggtgg atcacctgag atcaggagtt 700
caagaccagc ctggccaaca tggtgaaacc ttgtctacta aaaataaaaa 750
aaattagcca ggcacagtgg tgtgcactgg tagtcccagt tactcgggag 800
gctgaggcag gaaaatcgct tgaacccagg aggcggacgt tgcggtgagc 850
cgagatcgcg ccgctgattc cagcctggc gacaagagtg agactccatc 900

tcacaca 907

<210> 399

<211> 120

<212> PRT

<213> Homo sapiens

<400> 399

Met Leu Pro Pro Ala Leu Pro Pro Ala Leu Val Phe Thr Val Ala
1 5 10 15

Trp Ser Leu Leu Ala Glu Arg Val Ser Trp Val Arg Asp Ala Glu
20 25 30

Asp Ala His Arg Leu Gln Pro Phe Val Thr Glu Arg Thr Leu Gly
35 40 45

Lys Val Gln Arg Trp Ser Gly Val His Thr Gln Thr Gly Gly Arg
50 55 60

Ala Gly Gly Gly Gln Phe Cys Cys Ala Trp Leu Asp Ser Lys Arg
65 70 75

Val Leu Ala Ser Pro Gly Trp Gly Ala Ala Asn Ser Ile Lys Asn
80 85 90

Gln Arg Val Trp Ala Pro Ala Thr Glu Ser Ser Ala Gln Leu Leu
95 100 105

Cys Cys Trp Pro Val Gly Val Ala Arg Gly Gly Ala Leu Cys Gln
110 115 120

<210> 400

<211> 893

<212> DNA

<213> Homo sapiens

<400> 400

gtcatgccag tgcctgctct gtgcctgctc tggccctgg caatggtgac 50

ccggcctgcc tcagcgcccc ccatggcgcc cccagaactg gcacagcatg 100

aggagctgac cctgctttc catggacccc tgcagctgg ccaggccctc 150

aacggtgtgt acaggaccac ggagggacgg ctgacaaaagg ccaggaacag 200

cctgggtctc tatggccgca caatagaact cctggggcag gaggtcagcc 250

ggggccggga tgcagccag gaacttcggg caagcctgtt ggagactcag 300

atggaggagg atattctgca gctgcaggca gaggccacag ctgaggtgct 350

gggggaggtg gcccaggcac agaaggtgct acgggacagc gtgcagccgc 400

tagaagtcca gctgaggagc gcctggctgg gccctgccta ccgagaattt 450

gaggtcttaa aggctcacgc tgacaagcag agccacatcc tatggccct 500

cacaggccac gtgcagcggc agaggcggga gatggtggca cagcagcatc 550
ggctgcgaca gatccaggag agactccaca cagcggcgct cccagcctga 600
atctgcctgg atggaactga ggaccaatca tgctgcaagg aacacttcca 650
cgccccgtga ggccccctgtg cagggaggag ctgcctgttc actgggatca 700
gccagggcgc cgggccccac ttctgagcac agagcagaga cagacgcagg 750
cgffffacaaa ggcagaggat gtagccccat tggggagggg tggaggaagg 800
acatgtaccc tttcatgcct acacaccct cattaaagca gagtcgtggc 850
atttcaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaa 893

<210> 401
<211> 198
<212> PRT
<213> Homo sapiens

<400> 401
Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val
1 5 10 15
Thr Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala
20 25 30
Gln His Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu
35 40 45
Gly Gln Ala Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu
50 55 60
Thr Lys Ala Arg Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu
65 70 75
Leu Leu Gly Gln Glu Val Ser Arg Gly Arg Asp Ala Ala Gln Glu
80 85 90
Leu Arg Ala Ser Leu Leu Glu Thr Gln Met Glu Glu Asp Ile Leu
95 100 105
Gln Leu Gln Ala Glu Ala Thr Ala Glu Val Leu Gly Glu Val Ala
110 115 120
Gln Ala Gln Lys Val Leu Arg Asp Ser Val Gln Arg Leu Glu Val
125 130 135
Gln Leu Arg Ser Ala Trp Leu Gly Pro Ala Tyr Arg Glu Phe Glu
140 145 150
Val Leu Lys Ala His Ala Asp Lys Gln Ser His Ile Leu Trp Ala
155 160 165
Leu Thr Gly His Val Gln Arg Gln Arg Arg Glu Met Val Ala Gln
170 175 180

Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His Thr Ala Ala
185 190 195

Leu Pro Ala

<210> 402

<211> 1915

<212> DNA

<213> Homo sapiens

<400> 402

ggcaacatgg ctcagcaggc ttgccccaga gccatggcaa agaatggact 50

tgttaattgc atcctggta tcaccttact cctggaccag accaccagcc 100

acacatccag attaaaagcc aggaagcaca gcaaacgtcg agtgagagac 150

aaggatggag atctgaagac tcaaattgaa aagctctgga cagaagtcaa 200

tgccttgaag gaaattcaag ccctgcagac agtctgtctc cgaggcacta 250

aagttcacaa gaaatgctac cttgcttcag aaggttgaa gcatttccat 300

gaggccaatg aagactgcat ttccaaagga ggaatcctgg ttatccccag 350

gaactccgac gaaatcaacg ccctccaaga ctatggtaaa aggagcctgc 400

caggtgtcaa tgactttgg ctgggcatca atgacatggt cacggaaggc 450

aagtttgtt acgtcaacgg aatcgctatc tccttcctca actgggaccg 500

tgcacagcct aacggtggca agcgagaaaa ctgtgtcctg ttctccaat 550

cagctcaggg caagtggagt gatgaggcct gtgcagcag caagagatac 600

atatgcgagt tcaccatccc taaataggtc tttctccaat gtgtcctcca 650

agcaagattc atcataactt atagttcat gatctctaag atcaagtaaa 700

aatcataatt tttacttatt aaaaaattgc aacacaagat caatgtccat 750

agcaatatga tagcatcagc caatttgct aacacattc tttggattt 800

tgccttcct gggtatagg ggatcagaaa tattgatcca tgtgcacgca 850

gataaaatgg cttctgctaa acagactaaa atctttctct cttagtcttc 900

tcacttgtac aaacccagtt tgtttcaaa aaatcacagt agcaatgcaa 950

ctcatcaactc tagaaaagca agcttaggct acctgaaaga tttcccttg 1000

gaagtttagc gtatgttga ctaacaaaaa ttccctacat cagagactct 1050

aggtgctata taatccaaaa actttcagc ctgttgctca ttctgtccca 1100

tgctggcaat aataccttgt cagcccatta cccttattt gaattgctcc 1150

atctcctggt gggacttgta tcttgtctgc catatcagaa cacaaccccc 1200
tgaagaggtt ctgatttgat tttttttt tcttcatgcc tacccctttt 1250
ttggaagttt ccagccgcaa tttgaaatga aatgacaagg tgtatatttg 1300
atcaattttc attcccacca ttgcattaca acctctaact taaatggta 1350
accctaaggc atatcaaaga agcagattgc atgataaacg gaaatagaaa 1400
aaaagaacct acatttattt tgcttagca tccttactct caccttttat 1450
gagattgaga gtggacttac atttcctttt ttacattttc gtatatttat 1500
tttttttagc catcattata tggtaagtc tattatggc aaccaatctt 1550
tggaagctga aaactgaatt taaagaatgc tatctggaa aattgcatac 1600
gtctgtgcaa ttttttattc tgcctagtgc tattctgctt gtttaactag 1650
attgtacaaa ataacttcat tgcttaatat caaattacaa agtttagact 1700
tggagggaaa tgggctttt agaagcaaac aattttaaat atattttgtt 1750
cttcaaataa atagtgtta aacattgaat gtgtttgtg aacaatatcc 1800
cactttgcaa actttaacta cacatgcttgaat aattttttttt 1850
tcattgctca ataataaagc ctgaattctg atcaataaaaa aaaaaaaaaa 1900
aaaaaaaaaaa aaaaaa 1915

<210> 403

<211> 206

<212> PRT

<213> Homo sapiens

<400> 403

Met	Ala	Gln	Gln	Ala	Cys	Pro	Arg	Ala	Met	Ala	Lys	Asn	Gly	Leu
1		5						10						15

Val	Ile	Cys	Ile	Leu	Val	Ile	Thr	Leu	Leu	Leu	Asp	Gln	Thr	Thr
				20				25						30

Ser	His	Thr	Ser	Arg	Leu	Lys	Ala	Arg	Lys	His	Ser	Lys	Arg	Arg
					35			40						45

Val	Arg	Asp	Lys	Asp	Gly	Asp	Leu	Lys	Thr	Gln	Ile	Glu	Lys	Leu
			50					55						60

Trp	Thr	Glu	Val	Asn	Ala	Leu	Lys	Glu	Ile	Gln	Ala	Leu	Gln	Thr
				65				70						75

Val	Cys	Leu	Arg	Gly	Thr	Lys	Val	His	Lys	Lys	Cys	Tyr	Leu	Ala
					80			85						90

Ser	Glu	Gly	Leu	Lys	His	Phe	His	Glu	Ala	Asn	Glu	Asp	Cys	Ile
				95				100						105

Ser Lys Gly Gly Ile Leu Val Ile Pro Arg Asn Ser Asp Glu Ile
110 115 120
Asn Ala Leu Gln Asp Tyr Gly Lys Arg Ser Leu Pro Gly Val Asn
125 130 135
Asp Phe Trp Leu Gly Ile Asn Asp Met Val Thr Glu Gly Lys Phe
140 145 150
Val Asp Val Asn Gly Ile Ala Ile Ser Phe Leu Asn Trp Asp Arg
155 160 165
Ala Gln Pro Asn Gly Gly Lys Arg Glu Asn Cys Val Leu Phe Ser
170 175 180
Gln Ser Ala Gln Gly Lys Trp Ser Asp Glu Ala Cys Arg Ser Ser
185 190 195
Lys Arg Tyr Ile Cys Glu Phe Thr Ile Pro Lys
200 205

<210> 404

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 404

cctggttatc cccaggaact ccgac 25

<210> 405

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 405

ctcttgctgc tgcgacaggc ctc 23

<210> 406

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 406

cgccctccaa gactatggta aaaggaggct gccaggtgtc aatgac 46

<210> 407

<211> 570

<212> DNA

<213> Homo sapiens

<400> 407
gcgaggaccg ggtataagaa gcctcggtgc cttggccggg cagccgcagg 50
ttccccgcgc gccccgagcc cccgcgccat gaagctcgcc gccctcctgg 100
ggctctgcgt ggccctgtcc tgcagctccg ctgctgcttt cttagtggc 150
tcggccaagc ctgtggccca gcctgtcgct gcgctggagt cggcggcgg 200
ggccggggcc gggaccctgg ccaacccctt cggcacccctc aacccgctga 250
agctcctgct gagcagcctg ggcattccccg tgaaccacct catagagggc 300
tcccagaagt gtgtggctga gctgggtccc cagggcgtgg gggccgtgaa 350
ggccctgaag gccctgctgg gggccctgac agtgtttggc tgagccgaga 400
ctggagcatc tacacctgag gacaagacgc tgcccacccg cgagggctga 450
aaaccccgcc gcggggagga ccgtccatcc cttccccgg gccctctca 500
ataaacgtgg ttaagagcaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 550
aaaaaaaaaa aaaaaaaaaa 570

<210> 408
<211> 104
<212> PRT
<213> Homo sapiens

<400> 408
Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys
1 5 10 15
Ser Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala
20 25 30
Gln Pro Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly
35 40 45
Thr Leu Ala Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu Leu
50 55 60
Leu Ser Ser Leu Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser
65 70 75
Gln Lys Cys Val Ala Glu Leu Gly Pro Gln Ala Val Gly Ala Val
80 85 90
Lys Ala Leu Lys Ala Leu Leu Gly Ala Leu Thr Val Phe Gly
95 100

<210> 409
<211> 2089
<212> DNA
<213> Homo sapiens

<400> 409

tgaaggactt ttccaggacc caaggccaca cactggaagt cttgcagctg 50
aaggaggca ctccttgcc tccgcagccg atcacatgaa ggtggtgcca 100
agtctcctgc tctccgtcct cctggcacag gtgtggctgg tacccggctt 150
ggcccccagt cctcagtcgc cagagacccc agcccctcag aaccagacca 200
gcagggtagt gcaggctccc agggaggaag aggaagatga gcaggaggcc 250
agcgaggaga aggccggta ggaagagaaa gcctggctga tggccagcag 300
gcagcagctt gccaaggaga cttcaaactt cggattcagc ctgctgcgaa 350
agatctccat gaggcacgat ggcaacatgg tcttctctcc atttggcatg 400
tccttggcca tgacaggctt gatgctgggg gccacagggc cgactgaaac 450
ccagatcaag agagggctcc acttgcaggc cctgaagccc accaagcccg 500
ggctcctgcc ttccctctt aaggactca gagagaccct ctcccgcaac 550
ctggaactgg gcctctcaca ggggagttt gccttcattcc acaaggattt 600
tgatgtcaaa gagactttct tcaatttatac caagaggtat tttgatacag 650
agtgcgtgcc tatgaatttt cgcaatgcct cacaggccaa aaggctcatg 700
aatcattaca ttaacaaaga gactcggggg aaaattccca aactgtttga 750
tgagattaat cctgaaacca aattaattct tgtggattac atcttgttca 800
aaggaaatg gttgacccca tttgaccctg tcttcaccga agtcgacact 850
ttccacctgg acaagtacaa gaccattaag gtgcccattga tgtacggtgc 900
aggcaagttt gcctccaccc ttgacaagaa tttcgttgt catgtcctca 950
aactgcccta ccaaggaaat gccaccatgc tgggtgtct catggagaaa 1000
atgggtgacc acctcgccct tgaagactac ctgaccacag acttggtgga 1050
gacatggctc agaaacatga aaaccagaaa catggaagtt ttcttccga 1100
agttcaagct agatcagaag tatgagatgc atgagctgct taggcagatg 1150
ggaatcagaa gaatcttctc acccttgct gacccttagtg aactctcagc 1200
tactggaaga aatctccaag tatccagggt tttacgaaga acagtgattg 1250
aagttgatga aaggggcact gaggcagtgg caggaatctt gtcagaaatt 1300
actgcttatt ccatgcctcc tgtcatcaaa gtggaccggc catttcattt 1350
catgatctat gaagaaacct ctggaatgct tctgttctg ggcagggtgg 1400
tgaatccgac tctcctataa ttcaggacat gcataagcac ttcgtgctgt 1450

agtagatgct gaatctgagg tatcaaacac acacaggata ccagcaatgg 1500
atggcagggg agagtgttcc ttttgttctt aactagttta gggtgttctc 1550
aaataaaatac agtagtcccc acttatctga gggggataca ttcaaagacc 1600
cccagcagat gcctgaaacg gtggacagtg ctgaacctta tatatatattt 1650
ttcctacaca tacataccta tgataaaagtt taatttataa attaggcaca 1700
gtaagagatt aacaataata acaacattaa gtaaaatgag ttacttgaac 1750
gcaaggactg caataccata acagtcaaac tgattataga gaaggctact 1800
aagtgactca tgggcgagga gcatagacag tgtggagaca ttgggcaagg 1850
ggagaattca catcctgggt gggacagagc aggacgatgc aagattccat 1900
cccactactc agaatggcat gctgcttaag acttttagat tgtttatttc 1950
tggaaatttt catttaatgt ttttggacca tggttgacca tggtaactg 2000
agactgcaga aagcaaaacc atggataagg gaggactact acaaaagcat 2050
taaattgata catattttt aaaaaaaaaa aaaaaaaaaa 2089

<210> 410

<211> 444

<212> PRT

<213> Homo sapiens

<400> 410

Met	Lys	Val	Val	Pro	Ser	Leu	Leu	Leu	Ser	Val	Leu	Leu	Ala	Gln
1										10				15

Val	Trp	Leu	Val	Pro	Gly	Leu	Ala	Pro	Ser	Pro	Gln	Ser	Pro	Glu
									25					30

Thr	Pro	Ala	Pro	Gln	Asn	Gln	Thr	Ser	Arg	Val	Val	Gln	Ala	Pro
										35	40			45

Arg	Glu	Glu	Glu	Glu	Asp	Glu	Gln	Glu	Ala	Ser	Glu	Glu	Lys	Ala
									50	55				60

Gly	Glu	Glu	Glu	Lys	Ala	Trp	Leu	Met	Ala	Ser	Arg	Gln	Gln	Leu
									65	70				75

Ala	Lys	Glu	Thr	Ser	Asn	Phe	Gly	Phe	Ser	Leu	Leu	Arg	Lys	Ile
									80	85				90

Ser	Met	Arg	His	Asp	Gly	Asn	Met	Val	Phe	Ser	Pro	Phe	Gly	Met
									95	100				105

Ser	Leu	Ala	Met	Thr	Gly	Leu	Met	Leu	Gly	Ala	Thr	Gly	Pro	Thr
									110	115				120

Glu	Thr	Gln	Ile	Lys	Arg	Gly	Leu	His	Leu	Gln	Ala	Leu	Lys	Pro
									125	130				135

Thr Lys Pro Gly Leu Leu Pro Ser Leu Phe Lys Gly Leu Arg Glu
 140 145 150
 Thr Leu Ser Arg Asn Leu Glu Leu Gly Leu Ser Gln Gly Ser Phe
 155 160 165
 Ala Phe Ile His Lys Asp Phe Asp Val Lys Glu Thr Phe Phe Asn
 170 175 180
 Leu Ser Lys Arg Tyr Phe Asp Thr Glu Cys Val Pro Met Asn Phe
 185 190 195
 Arg Asn Ala Ser Gln Ala Lys Arg Leu Met Asn His Tyr Ile Asn
 200 205 210
 Lys Glu Thr Arg Gly Lys Ile Pro Lys Leu Phe Asp Glu Ile Asn
 215 220 225
 Pro Glu Thr Lys Leu Ile Leu Val Asp Tyr Ile Leu Phe Lys Gly
 230 235 240
 Lys Trp Leu Thr Pro Phe Asp Pro Val Phe Thr Glu Val Asp Thr
 245 250 255
 Phe His Leu Asp Lys Tyr Lys Thr Ile Lys Val Pro Met Met Tyr
 260 265 270
 Gly Ala Gly Lys Phe Ala Ser Thr Phe Asp Lys Asn Phe Arg Cys
 275 280 285
 His Val Leu Lys Leu Pro Tyr Gln Gly Asn Ala Thr Met Leu Val
 290 295 300
 Val Leu Met Glu Lys Met Gly Asp His Leu Ala Leu Glu Asp Tyr
 305 310 315
 Leu Thr Thr Asp Leu Val Glu Thr Trp Leu Arg Asn Met Lys Thr
 320 325 330
 Arg Asn Met Glu Val Phe Phe Pro Lys Phe Lys Leu Asp Gln Lys
 335 340 345
 Tyr Glu Met His Glu Leu Leu Arg Gln Met Gly Ile Arg Arg Ile
 350 355 360
 Phe Ser Pro Phe Ala Asp Leu Ser Glu Leu Ser Ala Thr Gly Arg
 365 370 375
 Asn Leu Gln Val Ser Arg Val Leu Arg Arg Thr Val Ile Glu Val
 380 385 390
 Asp Glu Arg Gly Thr Glu Ala Val Ala Gly Ile Leu Ser Glu Ile
 395 400 405
 Thr Ala Tyr Ser Met Pro Pro Val Ile Lys Val Asp Arg Pro Phe
 410 415 420
 His Phe Met Ile Tyr Glu Glu Thr Ser Gly Met Leu Leu Phe Leu

425

430

435

Gly Arg Val Val Asn Pro Thr Leu Leu
 440

<210> 411

<211> 636

<212> DNA

<213> Homo sapiens

<400> 411

ctgggatcatcag ccactgcagc tccctgagca ctctctacag agacgcggac 50
 cccagacatg aggaggctcc tcctggtcac cagcctggtg gttgtgtgc 100
 tgtgggaggc aggtgcagtc ccagcaccca aggtccctat caagatgcaa 150
 gtcaaacact ggccctcaga gcaggaccca gagaaggcct ggggcgcggc 200
 tgtggtggag cctccggaga aggacgacca gctggtggtg ctgttccctg 250
 tccagaagcc gaaactcttgc accaccgagg agaagccacg aggtcagggc 300
 aggggccccca tccttccagg caccaaggcc tggatggaga ccgaggacac 350
 cctgggcccgt gtcctgagtc ccgagcccgaa ccatgacacg ctgtaccacc 400
 ctccgcctga ggaggaccag ggcgaggaga ggccccgggt gtgggtgatg 450
 ccaaattcacc aggtgctctt gggaccggag gaagaccaag accacatcta 500
 ccaccccccag tagggctcca gggccatca ctgccccgc cctgtcccaa 550
 ggcccaggt gttggactg ggaccctccc tacccctgccc cagctagaca 600
 aataaaccaccc agcaggcaaa aaaaaaaaaaaa aaaaaaa 636

<210> 412

<211> 151

<212> PRT

<213> Homo sapiens

<400> 412

Met	Arg	Arg	Leu	Leu	Leu	Val	Thr	Ser	Leu	Val	Val	Val	Leu	Leu
1														15

Trp	Glu	Ala	Gly	Ala	Val	Pro	Ala	Pro	Lys	Val	Pro	Ile	Lys	Met
20														30

Gln	Val	Lys	His	Trp	Pro	Ser	Glu	Gln	Asp	Pro	Glu	Lys	Ala	Trp
35														45

Gly	Ala	Arg	Val	Val	Glu	Pro	Pro	Glu	Lys	Asp	Asp	Gln	Leu	Val
50														60

Val	Leu	Phe	Pro	Val	Gln	Lys	Pro	Lys	Leu	Leu	Thr	Thr	Glu	Glu
65														75

Lys Pro Arg Gly Gln Gly Arg Gly Pro Ile Leu Pro Gly Thr Lys
80 85 90

Ala Trp Met Glu Thr Glu Asp Thr Leu Gly Arg Val Leu Ser Pro
95 100 105

Glu Pro Asp His Asp Ser Leu Tyr His Pro Pro Pro Glu Glu Asp
110 115 120

Gln Gly Glu Glu Arg Pro Arg Leu Trp Val Met Pro Asn His Gln
125 130 135

Val Leu Leu Gly Pro Glu Glu Asp Gln Asp His Ile Tyr His Pro
140 145 150

Gln

<210> 413
<211> 1176
<212> DNA
<213> Homo sapiens

<400> 413
agaaagctgc actctgttga gctccagggc gcagtggagg gagggagtga 50
aggagctctc tgtacccaag gaaaagtgcag ctgagactca gacaagattta 100
caatgaacca actcagcttc ctgctgttcc tcatacgac caccagagga 150
tggagtacag atgaggctaa tacttacttc aaggaatgga cctgttcttc 200
gtctccatct ctgcccagaa gctgcaagga aatcaaagac gaatgtccta 250
gtgcatttga tggcctgtat ttctccgca ctgagaatgg tgttatctac 300
cagacttct gtgacatgac ctctgggggt ggcggctgga ccctggtgcc 350
cagcgtgcat gagaatgaca tgcgtggaa gtgcacggtg ggcatcgct 400
ggtccagtca gcagggcagc aaagcagact acccagaggg ggacggcaac 450
tggccaact acaacacattt tggatctgca gaggcggcca cgagcgatga 500
ctacaagaac cctggctact acgacatcca ggccaaggac ctggccatct 550
ggcacgtgcc caataagtcc cccatgcagc actggagaaa cagctccctg 600
ctgaggtacc gcacggacac tggcttcctc cagacactgg gacataatct 650
gtttggcatc taccagaaat atccagtgaa atatggagaa ggaaagtgtt 700
ggactgacaa cggccccgtg atccctgtgg tctatgattt tggcgacgcc 750
cagaaaacag catcttatta ctcaccatat ggccagcggg aattcactgc 800
gggatttggc tggatccaggc tatttaataa cgagagagca gccaacgcct 850

tgtgtgctgg aatgagggtc accggatgta acactgagca tcactgcatt 900
ggtggaggag gatactttcc agaggccagt ccccagcagt gtggagattt 950
ttctggttt gattggagtg gatatggaac tcatgttggt tacagcagca 1000
gccgtgagat aactgaggca gctgtgcttc tattctatcg ttgagagttt 1050
tgtgggaggg aaccaggacc ttcctccca accatgagat cccaaggatg 1100
gagaacaact tacccagtag ctagaatgtt aatggcagaa gagaaaacaa 1150
taaatcatat tgactcaaga aaaaaa 1176

<210> 414
<211> 313
<212> PRT
<213> Homo sapiens

<400> 414
Met Asn Gln Leu Ser Phe Leu Leu Phe Leu Ile Ala Thr Thr Arg
1 5 10 15
Gly Trp Ser Thr Asp Glu Ala Asn Thr Tyr Phe Lys Glu Trp Thr
20 25 30
Cys Ser Ser Ser Pro Ser Leu Pro Arg Ser Cys Lys Glu Ile Lys
35 40 45
Asp Glu Cys Pro Ser Ala Phe Asp Gly Leu Tyr Phe Leu Arg Thr
50 55 60
Glu Asn Gly Val Ile Tyr Gln Thr Phe Cys Asp Met Thr Ser Gly
65 70 75
Gly Gly Gly Trp Thr Leu Val Ala Ser Val His Glu Asn Asp Met
80 85 90
Arg Gly Lys Cys Thr Val Gly Asp Arg Trp Ser Ser Gln Gln Gly
95 100 105
Ser Lys Ala Asp Tyr Pro Glu Gly Asp Gly Asn Trp Ala Asn Tyr
110 115 120
Asn Thr Phe Gly Ser Ala Glu Ala Ala Thr Ser Asp Asp Tyr Lys
125 130 135
Asn Pro Gly Tyr Tyr Asp Ile Gln Ala Lys Asp Leu Gly Ile Trp
140 145 150
His Val Pro Asn Lys Ser Pro Met Gln His Trp Arg Asn Ser Ser
155 160 165
Leu Leu Arg Tyr Arg Thr Asp Thr Gly Phe Leu Gln Thr Leu Gly
170 175 180
His Asn Leu Phe Gly Ile Tyr Gln Lys Tyr Pro Val Lys Tyr Gly
185 190 195

Glu Gly Lys Cys Trp Thr Asp Asn Gly Pro Val Ile Pro Val Val
 200 205 210
 Tyr Asp Phe Gly Asp Ala Gln Lys Thr Ala Ser Tyr Tyr Ser Pro
 215 220 225
 Tyr Gly Gln Arg Glu Phe Thr Ala Gly Phe Val Gln Phe Arg Val
 230 235 240
 Phe Asn Asn Glu Arg Ala Ala Asn Ala Leu Cys Ala Gly Met Arg
 245 250 255
 Val Thr Gly Cys Asn Thr Glu His His Cys Ile Gly Gly Gly
 260 265 270
 Tyr Phe Pro Glu Ala Ser Pro Gln Gln Cys Gly Asp Phe Ser Gly
 275 280 285
 Phe Asp Trp Ser Gly Tyr Gly Thr His Val Gly Tyr Ser Ser Ser
 290 295 300
 Arg Glu Ile Thr Glu Ala Ala Val Leu Leu Phe Tyr Arg
 305 310

<210> 415
 <211> 1281
 <212> DNA
 <213> Homo sapiens

<400> 415
 gcggagccgg cgccggctgc gcagaggagc cgctctcgcc gcccacacct 50
 cggctggag cccacgaggc tgccgcattcc tgccctcgga acaatggac 100
 tcggcgcgcg aggtgcttgg gccgcgctgc tcctggggac gctgcaggtg 150
 ctagcgctgc tggggccgc ccatgaaagc gcagccatgg cggcatctgc 200
 aaacatagag aattctggc ttccacacaa ctccagtgtc aactcaacag 250
 agactctcca acatgtgcct tctgaccata caaatgaaac ttccaacagt 300
 actgtgaaac caccaacttc agttgcctca gactccagta atacaacggt 350
 caccaccatg aaacctacag cggcatctaa tacaacaaca ccagggatgg 400
 tctcaacaaa tatgacttct accaccta agtctacacc caaaaacaaca 450
 agtgtttcac agaacacatc tcagatatca acatccacaa tgaccgtAAC 500
 ccacaatagt tcagtgacat ctgctgcttc atcagtaaca atcacaacaa 550
 ctatgcattc tgaagcaaag aaaggatcaa aatttgatac tgggagcttt 600
 gttggtggtttaac gctgggagtt ttatctattc tttacattgg 650
 atgcaaaatg tattactcaa gaagaggcat tcggtatcga accatagatg 700

aacatgatgc catcattaa ggaaatccat ggaccaagga tggaatacag 750
attgatgctg ccctatcaat taatttttgtt ttattaatag tttaaaacaa 800
tattctttt ttgaaaatag tataaacagg ccatgcataat aatgtacagt 850
gtattacgta aatatgtaaa gattcttcaa ggtaacaagg gtttgggttt 900
tgaaataaac atctggatct tatagaccgt tcatacaatg gtttagcaa 950
gttcatagta agacaaacaa gtcctatctt tttttttgg ctgggggtggg 1000
ggcattggtc acatatgacc agtaattgaa agacgtcatc actgaaagac 1050
agaatgccat ctgggcatac aaataagaag tttgtcacag cactcaggat 1100
tttgggtatc tttttagct cacataaaga acttcagtgc tttcagagc 1150
tggatatac ttaattacta atgccacaca gaaattatac aatcaaacta 1200
gatctgaagc ataatttaag aaaaacatca acatttttg tgctttaaac 1250
ttagtagtt ggtctagaaa caaaatactc c 1281

<210> 416

<211> 208

<212> PRT

<213> Homo sapiens

<400> 416

Met	Gly	Leu	Gly	Ala	Arg	Gly	Ala	Trp	Ala	Ala	Leu	Leu	Leu	Gly
1					5				10					15

Thr	Leu	Gln	Val	Leu	Ala	Leu	Leu	Gly	Ala	Ala	His	Glu	Ser	Ala
								20		25				30

Ala	Met	Ala	Ala	Ser	Ala	Asn	Ile	Glu	Asn	Ser	Gly	Leu	Pro	His
							35		40					45

Asn	Ser	Ser	Ala	Asn	Ser	Thr	Glu	Thr	Leu	Gln	His	Val	Pro	Ser
							50		55					60

Asp	His	Thr	Asn	Glu	Thr	Ser	Asn	Ser	Thr	Val	Lys	Pro	Pro	Thr
							65		70					75

Ser	Val	Ala	Ser	Asp	Ser	Ser	Asn	Thr	Thr	Val	Thr	Thr	Met	Lys
							80		85					90

Pro	Thr	Ala	Ala	Ser	Asn	Thr	Thr	Pro	Gly	Met	Val	Ser	Thr	
							95		100					105

Asn	Met	Thr	Ser	Thr	Thr	Leu	Lys	Ser	Thr	Pro	Lys	Thr	Thr	Ser
							110		115					120

Val	Ser	Gln	Asn	Thr	Ser	Gln	Ile	Ser	Thr	Ser	Thr	Met	Thr	Val
							125		130					135

Thr His Asn Ser Ser Val Thr Ser Ala Ala Ser Ser Val Thr Ile

140 145 150

Thr Thr Thr Met His Ser Glu Ala Lys Lys Gly Ser Lys Phe Asp
155 160 165

Thr Gly Ser Phe Val Gly Gly Ile Val Leu Thr Leu Gly Val Leu
170 175 180

Ser Ile Leu Tyr Ile Gly Cys Lys Met Tyr Tyr Ser Arg Arg Gly
185 190 195

Ile Arg Tyr Arg Thr Ile Asp Glu His Asp Ala Ile Ile
200 205

<210> 417
<211> 1728
<212> DNA
<213> Homo sapiens

<400> 417
cagccgggtc ccaaggctgt gcctgaggct gagcctgagc ctgagcccga 50
gccgggagcc ggtcgcgaaa gctccgggt gtgggaccgc tggggccccca 100
gcgatggcga ccctgtgggg aggccttctt cggcttggct cttgtctcag 150
cctgtcgtgc ctggcgctt ccgtgctgt gctggcgcag ctgtcagacg 200
ccgccaagaa ttccgaggat gtcagatgt aatgtatctg ccctccctat 250
aaagaaaaatt ctggcataat ttataataag aacatatctc agaaagattg 300
tgattgcattt catgttgtgg agcccatgcc tgtgcggggg cctgatgttag 350
aagcatactg tctacgctgt gaatgcaa atgaagaaag aagctctgtc 400
acaatcaagg ttaccattat aatttatctc tccattttgg gccttctact 450
tctgtacatg gtatatctta ctctgggtga gcccatactg aagaggcgcc 500
tctttggaca tgcacagttt atacagagtg atgatgatat tggggatcac 550
cagccttttg caaatgcaca cgatgtgcta gcccgtccc gcagtcgagc 600
caacgtgctg aacaaggtag aatatgcaca gcagcgctgg aagcttcaag 650
tccaagagca gcgaaagtct gtctttgacc ggcattgtgt cctcagctaa 700
ttggaaattt aattcaaggt gactagaaag aaacaggcag acaactggaa 750
agaactgact gggtttgtt gggtttcatt ttaatacctt gttgatttca 800
ccaactgttg ctggaaagatt caaaaactgga agcaaaaaact tgcttattt 850
ttttttcttg ttaacgtaat aatagagaca tttttaaaag cacacagctc 900
aaagtcagcc aataagtctt ttccttattt tgacttttac taataaaaat 950

aaatctgcct gtaaatttac ttgaagtcc ttacctggaa caagcactct 1000
cttttcacc acatagttt aacttgactt tcaagataat tttcagggtt 1050
tttgttggtt tggttttg tttgtttgtt ttgggtggag aggggaggg 1100
tgcctggaa gtggtaaca actttttca agtcactta ctaaacaaac 1150
tttgtaaat agaccttacc ttctatccc gagtttcatt tatatttgc 1200
agttagcca gcctcatcaa agagctgact tactcatttgc 1250
tgactgtatt atctgggtat ctgctgtgtc tgcaattcat ggttaaacggg 1300
atctaaaatg cctggggct tttcacaaaa agcagattt cttcatgtac 1350
tgtgatgtct gatgcaatgc atcctagaac aaactggcca tttgctagtt 1400
tactctaaag actaaacata gtcttgggt gtgtggctt actcatcttc 1450
tagtacctt aaggacaaat cctaaggact tggacacttg caataaagaa 1500
attttattt aaacccaagc ctccctggat tgataatata tacacatttgc 1550
tcagcatttc cggcgtggc gagaggcagc tggttggctt ccaatatgtc 1600
cagcttgaa ctagggctgg gggttgggtt gcctttctg aaaggtctaa 1650
ccattattgg ataactggct ttttcttcc tatgtcctct ttggaatgt 1700
acaataaaaa taattttga aacatcaa 1728

<210> 418
<211> 198
<212> PRT
<213> Homo sapiens

<400> 418
Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu
1 5 10 15

Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu
20 25 30

Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile
35 40 45

Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn
50 55 60

Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met
65 70 75

Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu
80 85 90

Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile
95 100 105

Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val
110 115 120
Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly
125 130 135
His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln
140 145 150
Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg
155 160 165
Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys
170 175 180
Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val
185 190 195
Val Leu Ser

<210> 419
<211> 681
<212> DNA
<213> Homo sapiens

<400> 419
gcacacctgca ccaccgttag cagtcatggc gtactccaca gtgcagagag 50
tcgctctggc ttctgggctt gtcctggctc tgtcgtgt gctgccaaag 100
gccttcctgt cccgcggaa gcggcaggag ccggccggca cacctgaagg 150
aaaattggc cgatttccac ctatgatgca tcatcaccag gcaccctcag 200
atggccagac tcctgggct cgttccaga ggtctcacct tgccgaggca 250
tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggtagtgg 300
aagaggtctg atggggcaga ttattccaat ctacggttt gggattttt 350
tatataatact gtacattcta tttaaggtaa gtagaatcat cctaattata 400
ttacatcaat gaaaatctaa tatggcgata aaaatcattg tctacattaa 450
aacttcttat agttcataaa attatttcaa atccatcatc tctttaaatc 500
ctgcctcctc ttcatgaggt acttaggata gccattattt cagtttcaca 550
taagaatgt tactcaatgt ttaagtgtt tgccccaaaa ttcacaacta 600
acaaggcaga actaggactt gaacatggat ctttgggtc ttaatccagt 650
gagtgataca attcaatgca ctccccgtgcc a 681

<210> 420
<211> 128
<212> PRT

<213> Homo sapiens

<400> 420

Met	Ala	Tyr	Ser	Thr	Val	Gln	Arg	Val	Ala	Leu	Ala	Ser	Gly	Leu
1					5				10					15
Val	Leu	Ala	Leu	Ser	Leu	Leu	Leu	Pro	Lys	Ala	Phe	Leu	Ser	Arg
					20				25					30
Gly	Lys	Arg	Gln	Glu	Pro	Pro	Pro	Thr	Pro	Glu	Gly	Lys	Leu	Gly
					35				40					45
Arg	Phe	Pro	Pro	Met	Met	His	His	His	Gln	Ala	Pro	Ser	Asp	Gly
					50				55					60
Gln	Thr	Pro	Gly	Ala	Arg	Phe	Gln	Arg	Ser	His	Leu	Ala	Glu	Ala
					65				70					75
Phe	Ala	Lys	Ala	Lys	Gly	Ser	Gly	Gly	Ala	Gly	Gly	Gly	Gly	
					80				85					90
Ser	Gly	Arg	Gly	Leu	Met	Gly	Gln	Ile	Ile	Pro	Ile	Tyr	Gly	Phe
					95				100					105
Gly	Ile	Phe	Leu	Tyr	Ile	Leu	Tyr	Ile	Leu	Phe	Lys	Val	Ser	Arg
					110				115					120
Ile	Ile	Leu	Ile	Ile	Leu	His	Gln							
					125									

<210> 421

<211> 1630

<212> DNA

<213> Homo sapiens

<400> 421

cggctcgagt	gcagctgtgg	ggagatttca	gtgcattgcc	tccctgggt	50
gctcttcatc	ttggatttga	aagttgagag	cagcatgttt	tgcccactga	100
aactcatcct	gctgccagtg	ttactggatt	attccttggg	cctgaatgac	150
ttgaatgttt	ccccgcctga	gctaacagtc	catgtgggtg	attcagctct	200
gatggatgt	gtttccaga	gcacagaaga	caaatgtata	ttcaagatag	250
actggactct	gtcaccagga	gagcacgcca	aggacgaata	tgtgctatac	300
tattactcca	atctcagtgt	gcctattggg	cgcttccaga	accgcgtaca	350
cttgatgggg	gacatcttat	gcaatgatgg	ctctctcctg	ctccaagatg	400
tgcaagaggc	tgaccaggga	acctatatct	gtaaaatccg	cctcaaaggg	450
gagagccagg	tgttcaagaa	ggcggtggta	ctgcatgtgc	ttccagagga	500
gccccaaagag	ctcatggtcc	atgtgggtgg	attgattcag	atggatgtg	550

tttccagag cacagaagtg aaacacgtga ccaaggtaga atggatattt 600
tcaggacggc gcgcaaagga ggagattgta tttcgtaact accacaaact 650
caggatgtct gtggagtact cccagagctg gggccacttc cagaatcg 700
tgaacctgg 750
ggagtgaggg agtcagatgg aggaaactac acctgcagta tccacctagg 800
gaacctgg 850
ctcgaacact ggtgaccccg gcagccctga ggcctctgg 900
aatcagttgg tgatcattgt gggattgtc tgtgccacaa tcctgctgct 950
ccctgttctg atattgatcg tgaagaagac ctgtggaaat aagagttcag 1000
tgaattctac agtcttgg 1050
aaagaaaaac cctgccattt tgaaagatgt gaaggggaga aacacattt 1100
ctccccata attgtacggg aggtgatcg 1150
aatcagaggc cacctacatg accatgcacc cagtttgcc ttctctgagg 1200
tcagatcg 1250
aacacagcaa gcctttgag aagaatggag agtccctca tctcagcagc 1300
ggtggagact ctctcctgtg tgtgtcctgg gccactctac cagtgatttc 1350
agactcccgc tctccagct gtcctcctgt 1400
ctgaagatgg agaatttgg 1450
gaacaggcct gctgaggg 1500
acactggccc tggaaaccag gctgagctga gtggcctcaa acccccccgtt 1550
ggatcagacc ctccctgtgg 1600
aatcagaga taaaaaaccaa cccaaatcaa 1630

<210> 422
<211> 394
<212> PRT
<213> Homo sapiens

<400> 422
Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp
1 5 10 15
Tyr Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu
20 25 30
Thr Val His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln
35 40 45

Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile Asp Trp Thr Leu Ser
 50 55 60
 Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu Tyr Tyr Tyr Ser
 65 70 75
 Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg Val His Leu
 80 85 90
 Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu Gln Asp
 95 100 105
 Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg Leu
 110 115 120
 Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val
 125 130 135
 Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu
 140 145 150
 Ile Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val
 155 160 165
 Thr Lys Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Glu Glu
 170 175 180
 Ile Val Phe Arg Tyr Tyr His Lys Leu Arg Met Ser Val Glu Tyr
 185 190 195
 Ser Gln Ser Trp Gly His Phe Gln Asn Arg Val Asn Leu Val Gly
 200 205 210
 Asp Ile Phe Arg Asn Asp Gly Ser Ile Met Leu Gln Gly Val Arg
 215 220 225
 Glu Ser Asp Gly Gly Asn Tyr Thr Cys Ser Ile His Leu Gly Asn
 230 235 240
 Leu Val Phe Lys Lys Thr Ile Val Leu His Val Ser Pro Glu Glu
 245 250 255
 Pro Arg Thr Leu Val Thr Pro Ala Ala Leu Arg Pro Leu Val Leu
 260 265 270
 Gly Gly Asn Gln Leu Val Ile Ile Val Gly Ile Val Cys Ala Thr
 275 280 285
 Ile Leu Leu Leu Pro Val Leu Ile Leu Ile Val Lys Lys Thr Cys
 290 295 300
 Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu Val Lys Asn Thr
 305 310 315
 Lys Lys Thr Asn Pro Glu Ile Lys Glu Lys Pro Cys His Phe Glu
 320 325 330
 Arg Cys Glu Gly Glu Lys His Ile Tyr Ser Pro Ile Ile Val Arg

335	340	345
Glu Val Ile Glu Glu Glu Pro Ser Glu Lys Ser Glu Ala Thr		
350	355	360
Tyr Met Thr Met His Pro Val Trp Pro Ser Leu Arg Ser Asp Arg		
365	370	375
Asn Asn Ser Leu Glu Lys Lys Ser Gly Gly Gly Met Pro Lys Thr		
380	385	390
Gln Gln Ala Phe		

<210> 423
<211> 963
<212> DNA
<213> Homo sapiens

<400> 423
ctatgaagaa gcttcctgga aaacaataag caaaggaaaa caaatgtgtc 50
ccatctcaca tggttctacc ctactaaaga caggaagatc ataaaactgac 100
agatactgaa attgttaagag ttggaaacta catttgcaa agtcattgaa 150
ctctgagctc agttgcagta ctccggaaagc catgcaggat gaagatggat 200
acatcacctt aaatattaaa actcgaaac cagctctcgat ctccgttggc 250
cctgcatcct cctcctggtg gcgtgtgatg gctttgattc tgctgatcct 300
gtgcgtgggg atgggtgtcg ggctggtgcc tctggggatt tggtctgtca 350
tgcagcgcaa ttacctacaa gatgagaatg aaaatcgac aggaactctg 400
caacaattag caaagcgctt ctgtcaatat gtggtaaaac aatcagaact 450
aaagggcact ttcaaaggcata ataaatgcag cccctgtgac acaaactgga 500
gatattatgg agatagctgc tatgggttct tcagggcacaa cttAACATGG 550
gaagagagta agcagtactg cactgacatg aatgctactc tcctgaagat 600
tgacaaccgg aacattgtgg agtacatcaa agccaggact catttaattc 650
gttgggtcgg attatctcgc cagaagtcga atgaggtctg gaagtgggag 700
gatggctcgg ttatctcaga aaatatgttt gagttttgg aagatggaaa 750
aggaaatatg aattgtgctt atttcataa tggaaaaatg caccctaccc 800
tctgtgagaa caaacattat ttaatgtgtg agaggaaggc tggcatgacc 850
aagggtggacc aactaccta atgcaaagag gtggacagga taacacagat 900
aagggtttta ttgtacaata aaagatatgt atgaatgcatt cagtagctga 950

aaaaaaaaaaa aaa 963

<210> 424

<211> 229

<212> PRT

<213> Homo sapiens

<400> 424

Met Gln Asp Glu Asp Gly Tyr Ile Thr Leu Asn Ile Lys Thr Arg
1 5 10 15

Lys Pro Ala Leu Val Ser Val Gly Pro Ala Ser Ser Ser Trp Trp
20 25 30

Arg Val Met Ala Leu Ile Leu Ile Leu Cys Val Gly Met Val
35 40 45

Val Gly Leu Val Ala Leu Gly Ile Trp Ser Val Met Gln Arg Asn
50 55 60

Tyr Leu Gln Asp Glu Asn Glu Asn Arg Thr Gly Thr Leu Gln Gln
65 70 75

Leu Ala Lys Arg Phe Cys Gln Tyr Val Val Lys Gln Ser Glu Leu
80 85 90

Lys Gly Thr Phe Lys Gly His Lys Cys Ser Pro Cys Asp Thr Asn
95 100 105

Trp Arg Tyr Tyr Gly Asp Ser Cys Tyr Gly Phe Phe Arg His Asn
110 115 120

Leu Thr Trp Glu Glu Ser Lys Gln Tyr Cys Thr Asp Met Asn Ala
125 130 135

Thr Leu Leu Lys Ile Asp Asn Arg Asn Ile Val Glu Tyr Ile Lys
140 145 150

Ala Arg Thr His Leu Ile Arg Trp Val Gly Leu Ser Arg Gln Lys
155 160 165

Ser Asn Glu Val Trp Lys Trp Glu Asp Gly Ser Val Ile Ser Glu
170 175 180

Asn Met Phe Glu Phe Leu Glu Asp Gly Lys Gly Asn Met Asn Cys
185 190 195

Ala Tyr Phe His Asn Gly Lys Met His Pro Thr Phe Cys Glu Asn
200 205 210

Lys His Tyr Leu Met Cys Glu Arg Lys Ala Gly Met Thr Lys Val
215 220 225

Asp Gln Leu Pro

<210> 425

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 425
tgcagccct gtgacacaaa ctgg 24

<210> 426
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 426
ctgagataac cgagccatcc tccccac 26

<210> 427
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 427
gcttcctgac actaaggctg tctgcttagtc agaattgcct caaaaagag 49

<210> 428
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 428
ccaccaatgg cagccccacc t 21

<210> 429
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 429
gactgccctc cctgcac 17

<210> 430
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 430
caaaaagcct ggaagtcttc aaag 24

<210> 431
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 431
cagctggact gcaggtgcta 20

<210> 432
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 432
cagttagcac agcaagtgtc ct 22

<210> 433
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 433
ggccacaccttcc ttgagtcattc agttccct 28

<210> 434
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 434
caactactgg ctaaaagctgg tgaa 24

<210> 435
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 435
cctttctgta taggtgatac ccaatga 27

<210> 436
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 436
tggccatccc taccagaggc aaaa 24

<210> 437
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 437
ctgaagacga cgcggttac ta 22

<210> 438
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 438
ggcagaaatg ggaggcaga 19

<210> 439
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 439
tgctctgttg gctacggctt tagtccctag 30

<210> 440
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 440
agcagcagcc atgtagaatg aa 22

<210> 441
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 441
aatacgaaca gtgcacgctg at 22

<210> 442
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 442
tccagagagc caagcacggc aga 23

<210> 443
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 443
tcttagccagc ttggctccaa ta 22

<210> 444
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 444
cctggctcta gcaccaactc ata 23

<210> 445
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 445
tcagtggccc taaggagatg ggcct 25

<210> 446
<211> 24
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 446
caggatacag tggaaatctt gaga 24

<210> 447
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 447
cctgaagggc ttggagctta gt 22

<210> 448
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 448
tctttggcca tttcccatgg ctca 24

<210> 449
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 449
cccatggcga ggaggaat 18

<210> 450
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 450
tgcgtacgtg tgccttcag 19

<210> 451
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 451
cagcacccca ggcagtctgt gtgt 24

<210> 452
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 452
aacgtgctac acgaccagg tact 24

<210> 453
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 453
cacagcatat tcagatgact aaatcca 27

<210> 454
<211> 31
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 454
ttgttttagtt ctccaccgtg tctccacaga a 31

<210> 455
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 455
tgtcagaatg caacctggct t 21

<210> 456
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 456

tgatgtgcct ggctcagaac 20
<210> 457
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 457
tgcacctaga tgtccccagg accc 24

<210> 458
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 458
aagatgcgcc aggttctta 20

<210> 459
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 459
tcctgtacg gtctgctac ttat 24

<210> 460
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 460
tggctgtcag tccagtgtgc atgg 24

<210> 461
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 461
gcataggat agataagatc ctgctttat 29

<210> 462

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 462
caaattaaag tacccatcag gagagaa 27

<210> 463
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 463
aagttgctaa atatatacat tatctgcgcc aagtcca 37

<210> 464
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 464
gtgctgcccc caattcatga 20

<210> 465
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 465
gtccttggta tgggtctgaa ttatat 26

<210> 466
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 466
actctctgca ccccacagtc accactatct c 31

<210> 467
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 467
ctgaggaacc agccatgtct ct 22

<210> 468
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 468
gaccagatgc aggtacagga tga 23

<210> 469
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 469
ctgccccttc agtgatgccca acctt 25

<210> 470
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 470
gggtggaggc tcactgagta ga 22

<210> 471
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 471
caatacaggt aatgaaaactc tgcttctt 28

<210> 472
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 472
tcctcttaag cataggccat tttctcagtt tagaca 36

<210> 473
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 473
ggtgtcttg cttggtctca c 21

<210> 474
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 474
ccgtcggttca gcaacatgac 20

<210> 475
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 475
accgcctacc gctgtgccca 20

<210> 476
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 476
cagtaaaacc acaggctgga ttt 23

<210> 477
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 477
cctgagagca agaagggttga gaat 24

<210> 478
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 478
tagacaggga ccatggcccg ca 22

<210> 479
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 479
tgggctgtag aagagttgtt g 21

<210> 480
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 480
tccacacttg gccagtttat 20

<210> 481
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 481
cccaacttct ccctttgga ccct 24

<210> 482
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 482
gtcccttcac tgtttagagc atga 24

<210> 483
<211> 26
<212> DNA

卷之三

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 483
actctcccccc tcaacagcct cctgag 26

<210> 484

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 484
gtggtcaggg cagatccttt 20

<210> 485

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 485
acagatccag gagagactcc aca 23

<210> 486

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 486
agcggcgctc ccagcctgaa t 21

<210> 487

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 487
catgattggt cctcagttcc atc 23

<210> 488

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe
<400> 488
atagagggct cccagaagtg 20
<210> 489
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 489
cagggccttc agggcattca c 21

<210> 490
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 490
gctcagccaa acactgtca 19

<210> 491
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 491
ggggccctga cagtgtt 17

<210> 492
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 492
ctgagccgag actggagcat ctacac 26

<210> 493
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe
<400> 493

gtgggcagcg tcttgtc 17

<210> 494
<211> 1231
<212> DNA
<213> Homo Sapien

<400> 494
cccacgcgtc cgccgcagtcg cgcagttctg cctccgcctg ccagtctcgc 50
ccgcgatccc ggccccgggc tgtggcgctcg actccgaccc aggcagccag 100
cagcccgccgc gggagccgga ccgcccgcgg aggagctcgg acggcatgct 150
gagccccctc ctttgctgaa gcccgagtgc ggagaagccc gggcaaacgc 200
aggctaagga gaccaaagcg gcgaagtgcg gagacagcgg acaagcagcg 250
gaggagaagg aggaggaggc gaaccagag agggcagca aaagaagcgg 300
tggtgtggg cgtcgtggcc atggcggcgg ctatcgccag ctcgctcattc 350
cgtcagaaga ggcaagcccg cgagcgcgag aaatccaacg cctgcaagtg 400
tgtcagcagc cccagcaaag gcaagaccag ctgcgacaaa aacaagttaa 450
atgtcttttc cgggtcaaa ctcttcggct ccaagaagag ggcagaaga 500
agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca 550
aggctaccac ttgcagctgc aggccgatgg aaccattgtt ggcaccaaag 600
atgaggacag cacttacact ctgtttaacc tcattccgtt gggctgcga 650
gtggtggtca tccaaggagt tcaaaccaag ctgtacttgg caatgaacag 700
tgagggatac ttgtacacct cggaactttt cacacctgag tgcaaattca 750
aagaatcagt gtttggaaat tattatgtga catattcatc aatgatatac 800
cgtcagcagc agtcaggccg aggggtggat ctgggtctga acaaagaagg 850
agagatcatg aaaggcaacc atgtgaagaa gaacaagcct gcagctcatt 900
ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcaactgcac 950
gatctcacgg agttctcccg atctggaagc gggacccaa ccaagagcag 1000
aagtgtctct ggcgtgctga acggaggcaatccatgagc cacaatgaat 1050
caacgttagcc agtgaggcaaa aaagaaggc tctgtacacag aaccttacct 1100
ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150
tgtcagtgac atttaccaaa caaacaggca gagttcacta ttcttatctgc 1200
cattagaccc tcttatcatc cataactaaag c 1231

<210> 495
<211> 245
<212> PRT
<213> Homo Sapien

<400> 495
Met Ala Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln
1 5 10 15
Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser
20 25 30
Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val
35 40 45
Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg Arg
50 55 60
Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser
65 70 75
Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp
80 85 90
Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile
95 100 105
Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys
110 115 120
Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu
125 130 135
Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn
140 145 150
Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Gln Ser
155 160 165
Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met
170 175 180
Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu
185 190 195
Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His
200 205 210
Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys
215 220 225
Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser
230 235 240
His Asn Glu Ser Thr
245

<210> 496

<211> 1471
<212> DNA
<213> Homo Sapien

<400> 496
ccaggatgga gctggggcct gtatagccat attattgttc tatgctacta 50
gacatggggg ggacttggtg aaaaaggat tatccagcca gagggtctgg 100
gagccctgtc ttactgaacc tggcaacct ggatattctg agacatattt 150
tggggggatt tcagtaaaa aagtggggga tcccctccat ttagagtgt 200
gcaaaggaaa aaacaccaag gttgggttcc ttcctgacat tggcagtgcc 250
ccagtagggg tggatgagc gaatattccc aaagctaaag tcccacaccc 300
tgttagattac aagagtggat ttggcaggag tgtccccaa aatacagtgg 350
aaaggtgcct gaagatattt aaaccacgtc ttggaaattt agtgggtctt 400
ggctttggga taggtgaagt gaggacagac actggagagg agggaaagg 450
gacgtttca ataggaggca aaactcgagg gtggatcca ctgaggagta 500
cataggctgc tggatctggt ggagccagca ctggcccac gggtgtaac 550
tggctgctgt ggaggggggt acgtgagggg ggggtctgg gcttacctc 600
aggtcctgtg ggtggggcag cgagtcgggg cctgagcgac aagagcatgc 650
cctagtgagc gggctcctct gggggagccc agcgcgtcc gggcgctgc 700
cggtttgggg gtgtctcctc ccggggcgct atggcggcgc tggccagtag 750
cctgatccgg cagaagcggg aggtccgcga gcccggggc agccggccgg 800
tgtcggcgcga gcggcgcgtg tgtccccgcg gcaccaagtc ccttgcag 850
aagcagctcc tcatcctgct gtccaaagggt cgactgtgcg gggggcggcc 900
cgcgccggccg gaccgcggcc cggagcctca gctcaaaggc atcgtcacca 950
aactgttctg ccgcagggt ttctacctcc aggcgaatcc cgacggaagc 1000
atccagggca ccccagagga taccagctcc ttcacccact tcaacctgat 1050
ccctgtggc ctccgtgtgg tcaccatcca gagcgccaag ctgggtcact 1100
acatggccat gaatgctgag ggactgctct acagttcgcc gcatttcaca 1150
gctgagtgtc gcttaagga gtgtgtctt gagaattact acgtcctgt 1200
cgccctctgtc ctctaccgcg acgcgtcggtc tggccggcc tggcaccc 1250
gcctggacaa ggagggccag gtcatgaagg gaaaccgagt taagaagacc 1300
aaggcagctg cccacttct gcccaagctc ctggaggtgg ccatgtacca 1350

ggagccttct ctccacagtg tccccgaggc ctccccttcc agtccccctg 1400
ccccctgaaa tgttagtcct ggactggagg ttccctgcac tcccagttag 1450
ccagccacca ccacaacctg t 1471

<210> 497
<211> 225
<212> PRT
<213> Homo Sapien

<400> 497
Met Ala Ala Leu Ala Ser Ser Leu Ile Arg Gln Lys Arg Glu Val
1 5 10 15
Arg Glu Pro Gly Gly Ser Arg Pro Val Ser Ala Gln Arg Arg Val
20 25 30
Cys Pro Arg Gly Thr Lys Ser Leu Cys Gln Lys Gln Leu Leu Ile
35 40 45
Leu Leu Ser Lys Val Arg Leu Cys Gly Gly Arg Pro Ala Arg Pro
50 55 60
Asp Arg Gly Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu
65 70 75
Phe Cys Arg Gln Gly Phe Tyr Leu Gln Ala Asn Pro Asp Gly Ser
80 85 90
Ile Gln Gly Thr Pro Glu Asp Thr Ser Ser Phe Thr His Phe Asn
95 100 105
Leu Ile Pro Val Gly Leu Arg Val Val Thr Ile Gln Ser Ala Lys
110 115 120
Leu Gly His Tyr Met Ala Met Asn Ala Glu Gly Leu Leu Tyr Ser
125 130 135
Ser Pro His Phe Thr Ala Glu Cys Arg Phe Lys Glu Cys Val Phe
140 145 150
Glu Asn Tyr Tyr Val Leu Tyr Ala Ser Ala Leu Tyr Arg Gln Arg
155 160 165
Arg Ser Gly Arg Ala Trp Tyr Leu Gly Leu Asp Lys Glu Gly Gln
170 175 180
Val Met Lys Gly Asn Arg Val Lys Lys Thr Lys Ala Ala Ala His
185 190 195
Phe Leu Pro Lys Leu Leu Glu Val Ala Met Tyr Gln Glu Pro Ser
200 205 210
Leu His Ser Val Pro Glu Ala Ser Pro Ser Ser Pro Pro Ala Pro
215 220 225

<210> 498

<211> 744
<212> DNA
<213> Homo Sapien

<400> 498
atggccgcgg ccatcgctag cggcttgcac cgccagaagc ggcaggcg 50
ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccc 100
gcaagaaccc cggtctgc aacggcaacc tggtgatat ctctccaaa 150
gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccc 200
gctcaagggt atagtgacca ggttatattt caggcaaggc tactacttgc 250
aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300
tctacactt tcaacctcat accagtggga ctacgtgttgg ttgcacatcca 350
gggagtgaaa acagggttgt atatagccat gaatggagaa ggtaacctct 400
acccatcaga acttttacc cctgaatgca agttaaaga atctgttttt 450
gaaaattatt atgtaatcta ctcatccatg ttgtacagac aacaggaatc 500
tggtagagcc tggttttgg gattaaataa ggaaggc 550
ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600
ttggaagttt ccattgtaccg agaaccatct ttgcattgttggggaaac 650
ggtcccgaag cctgggtga cgccaaatgaa aagcacaagt gcgtctgcaa 700
taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744

<210> 499
<211> 247
<212> PRT
<213> Homo Sapien

<400> 499
Met Ala Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln
1 5 10 15
Ala Arg Glu Gln His Trp Asp Arg Pro Ser Ala Ser Arg Arg Arg
20 25 30
Ser Ser Pro Ser Lys Asn Arg Gly Leu Cys Asn Gly Asn Leu Val
35 40 45
Asp Ile Phe Ser Lys Val Arg Ile Phe Gly Leu Lys Lys Arg Arg
50 55 60
Leu Arg Arg Gln Asp Pro Gln Leu Lys Gly Ile Val Thr Arg Leu
65 70 75
Tyr Cys Arg Gln Gly Tyr Tyr Leu Gln Met His Pro Asp Gly Ala
80 85 90

Leu Asp Gly Thr Lys Asp Asp Ser Thr Asn Ser Thr Leu Phe Asn
95 100 105

Leu Ile Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Lys
110 115 120

Thr Gly Leu Tyr Ile Ala Met Asn Gly Glu Gly Tyr Leu Tyr Pro
125 130 135

Ser Glu Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe
140 145 150

Glu Asn Tyr Tyr Val Ile Tyr Ser Ser Met Leu Tyr Arg Gln Gln
155 160 165

Glu Ser Gly Arg Ala Trp Phe Leu Gly Leu Asn Lys Glu Gly Gln
170 175 180

Ala Met Lys Gly Asn Arg Val Lys Lys Thr Lys Pro Ala Ala His
185 190 195

Phe Leu Pro Lys Pro Leu Glu Val Ala Met Tyr Arg Glu Pro Ser
200 205 210

Leu His Asp Val Gly Glu Thr Val Pro Lys Pro Gly Val Thr Pro
215 220 225

Ser Lys Ser Thr Ser Ala Ser Ala Ile Met Asn Gly Gly Lys Pro
230 235 240

Val Asn Lys Ser Lys Thr Thr
245

<210> 500

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 500

ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50

ggctgttggg tgccttcaa aaatgaagga tgcaggacgc agctttctcc 100

tggAACCGAA CGCAATGGAT AAACTGATTG TGCAAGAGAG AAGGAAGAAC 150

GAAGCTTTT CTGTGAGCC CTGGATCTTA ACACAAATGT GTATATGTGC 200

ACACAGGGAG CATTCAAGAA TGAATAAAC CAGAGTTAGA CCCGCGGGGG 250

TTGGTGTGTT CTGACATAAA TAAATAATCT TAAAGCAGCT GTTCCCCTCC 300

CCACCCCCAA AAAAAGGAT GATTGGAAAT GAAGAACCGA GGATTCAACAA 350

AGAAAAAAAGT ATGTTCATTT TTCTCTATAA AGGAGAAAGT GAGCCAAGGA 400

GATATTTTG GAATGAAAAG TTTGGGGCTT TTTTAGTAAA GTAAAGAAACT 450

GGTGTGGTGG TGTTTCCTT TCTTTTGAA TTTCCCACAA GAGGAGAGGA 500

aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550
gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600
tttgtgccta tggactaa aattgacgga taattgcagt tggattttc 650
ttcatcaacc tcctttttt taaatttta ttcctttgg tatcaagatc 700
atgcgtttc tcttgttctt aaccacctgg atttccatct ggatgttgc 750
gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800
ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggtccta gtttaacag gcccatttt gacccctgc ttgtggtgct 900
gctggctctt caacttcttg tggtggctgg tctggcgg gctcagacct 950
gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000
cgaaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagtg aacagttca 1100
agcacttgag gcacttgaa atcctacagt tgagtaggaa ccatatcaga 1150
accattgaaa ttggggctt caatggtctg gcgaacctca acactctgga 1200
actcttgac aatgtctta ctaccatccc gaatggagct tttgtatact 1250
tgtctaaact gaaggagctc tggttgcaa acaacccat tgaaagcatc 1300
ccttcttatg ctttaacag aattcctct ttgcggcac tagacttagg 1350
ggaattgaaa agactttcat acatctcaga aggtgcctt gaaggtctgt 1400
ccaacttgag gtatttgaac cttgccatgt gcaacctcg ggaaatccct 1450
aacctcacac cgctcataaa actagatgag ctggatctt ctggaatca 1500
tttatctgcc atcaggcctg gctttcca gggtttgatg cacttcaaa 1550
aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
gacaaccttc agtcaactgt ggagatcaac ctggcacaca ataatcta 1650
attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700
atttacatca caaccctgg aactgtact gtgacatact gtggctcagc 1750
tggggataa aagacatggc cccctcgAAC acagcttggt gtggccgg 1800
taacactcct cccaatctaa aggggaggtt cattggagag ctcgaccaga 1850
attacttcac atgctatgct ccggtgattt tggagcccc tgcagaccc 1900
aatgtcactg aaggcatggc agctgagctg aaatgtcg 1950

cctgacatct gtatcttgg a ttactccaaa tggaacagtc atgacacatg 2000
gggcgtacaa agtgccgata gctgtgctca gtgatggta c gttaaatttc 2050
acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100
ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
ccactactcc tttctcttac tttcaaccg tcacagttaga gactatggaa 2200
ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250
agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300
gcacaaggc gacagagaaa accttcacca tcccagtgac tggatataaac 2350
agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
tgggtttt gtggccatca cactcatggc tgcagtgtatg ctggtcattt 2450
tctacaagat gaggaagcag caccatcgcc aaaaccatca cgccccaaaca 2500
aggactgttggaaattattaa tgtggatgtatg gagattacgg gagacacacc 2550
catggaaagc cacctgccc tgcctgctat cgagcatgag cacctaaatc 2600
actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
ataaattcaa tacacagttc agtgcattgaa ccgttattga tccgaatgaa 2700
ctctaaagac aatgtacaag agactcaa at ctaaaacatt tacagagtta 2750
caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800
tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850
aaaagaaaag aaatttattt attaaaaattt ctattgtat ctaaagcaga 2900
caaaaa 2906

<210> 501
<211> 640
<212> PRT
<213> Homo Sapien

<400> 501
Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15
Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu
20 25 30
Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45
Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
 65 70 75
 Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile
 80 85 90
 Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
 95 100 105
 Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
 110 115 120
 Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg
 125 130 135
 Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu
 140 145 150
 Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser
 155 160 165
 Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly
 170 175 180
 Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly
 185 190 195
 Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg
 200 205 210
 Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp
 215 220 225
 Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln
 230 235 240
 Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile
 245 250 255
 Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val
 260 265 270
 Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp
 275 280 285
 Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His
 290 295 300
 Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp
 305 310 315
 Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys
 320 325 330
 Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp
 335 340 345
 Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro

	350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys			
365	370	375	
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn			
380	385	390	
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val			
395	400	405	
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp			
410	415	420	
Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr			
425	430	435	
Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro			
440	445	450	
Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser			
455	460	465	
Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro			
470	475	480	
Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro			
485	490	495	
Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr			
500	505	510	
Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr			
515	520	525	
Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala			
530	535	540	
Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His			
545	550	555	
Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn			
560	565	570	
Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu			
575	580	585	
Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser			
590	595	600	
Tyr Lys Ser Pro Phe Asn His Thr Thr Val Asn Thr Ile Asn			
605	610	615	
Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn			
620	625	630	
Ser Lys Asp Asn Val Gln Glu Thr Gln Ile			
635	640		

<210> 502
<211> 2458
<212> DNA
<213> Homo Sapien

<400> 502
gcgcggggag cccatctgcc cccaggggca cggggcgccg ggccggctcc 50
cgcccgac atggctgcag ccacctcgcg cgacccccga ggcccgcgc 100
ccagctcgcc cgaggtccgt cggaggcgcc cggccgcccc ggagccaagc 150
agcaactgag cgggaaagcg cccgcgtccg gggatcggga tgtccctcct 200
ctttccttc ttgcttagttt cctactatgt tgAACCTTG gggactcaca 250
ctgagatcaa gagagtggca gaggaaaagg tcactttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
cgataatgaa gggAACAAA aagtggtgat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtggc ctttgcttcc 450
aatttcctgg caggagatgc ctccttgcag attgaacctc tgaagcccag 500
tgatgagggc cggtaacacct gtaaggtaa gaattcaggg cgctacgtgt 550
ggagccatgt catctaaaaa gtcttagtga gaccatccaa gcccaagtgt 600
gagttggaag gagagctgac agaaggaatg gacctgactt tgcagtgtga 650
gtcattcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700
agaaagaggg agaggatgaa cgtctgcctc ccaaattctag gattgactac 750
aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800
actgtaccag tgcacagcag gcaacgaagc tgggaaggaa agctgtgtgg 850
tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaggagca 900
gtgacaggca tagtggctgg agccctgctg attttcctct tggtgtggct 950
gctaattccga aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000
atgaaattcg agaagatgct gaagctccaa aagccctgtct tgtgaaaccc 1050
agctcctctt ctcaggctc tcggagctca cgctctggtt cttcctccac 1100
tcgctccaca gcaaatactg ctcacgcag ccagcggaca ctgtcaactg 1150
acgcagcacc ccagccaggg ctggccaccc aggcatacag cctagtgggg 1200
ccagaggtga gagttctga accaaagaaa gtccaccatg ctaatctgac 1250
caaagcagaa accacaccca gcatgatccc cagccagagc agagccttcc 1300

aaacggtctg aattacaatg gacttgactc ccacgcttc ctaggagtca 1350
gggtcttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400
ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450
agatgagcat tttccttata caataccaaa caagcaaaag gatgtaagct 1500
gattcatctg taaaaaggca tcttattgtg ccttagacc agagtaaggg 1550
aaagcaggag tccaaatcta tttgttacc accggactgtg gtgagaaggt 1600
tggggaaagg tgaggtgaat atacctaaaa ctttaatgt gggatattt 1650
gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgttg 1700
taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750
cagtcaagca gaacccacag ctttattaca cctgtctaca ccatgtactg 1800
agctaaccac ttctaaagaaa ctccaaaaaa ggaaacatgt gtcttctatt 1850
ctgacttaac ttcatttgc ataaggttt gatattaatt tcaagggag 1900
ttgaaatagt gggagatgga gaagagtgaa tgagttctc ccactctata 1950
ctaatttcac tatttgtatt gagccaaaaa taactatgaa aggagacaaa 2000
aatttgtgac aaaggattgt gaagagctt ccatttcatt gatgttatga 2050
ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100
cctcaaatca gatgcctcta aggacttcc tgcttagatat ttctggaagg 2150
agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200
agaaaaaggg atcttaggaat gctgaaagat tacccaaacat accattatag 2250
tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300
tagaaaggga gattagatca gtttctt aatatgtcaa ggaaggttagc 2350
cgggcatggt gccaggcacc tgttagaaaaa tccagcaggt ggaggttgca 2400
gtgagccgag attatgccat tgcactccag cctgggtgac agagcgggac 2450
tccgtctc 2458

<210> 503
<211> 373
<212> PRT
<213> Homo Sapien

<400> 503
Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15
Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys

DRAFT

20	25	30
Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp		
35	40	45
Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln		
50	55	60
Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu		
65	70	75
Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu		
80	85	90
Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp		
95	100	105
Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val		
110	115	120
Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro		
125	130	135
Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr		
140	145	150
Leu Gln Cys Glu Ser Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr		
155	160	165
Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro		
170	175	180
Pro Lys Ser Arg Ile Asp Tyr Asn His Pro Gly Arg Val Leu Leu		
185	190	195
Gln Asn Leu Thr Met Ser Tyr Ser Gly Leu Tyr Gln Cys Thr Ala		
200	205	210
Gly Asn Glu Ala Gly Lys Glu Ser Cys Val Val Arg Val Thr Val		
215	220	225
Gln Tyr Val Gln Ser Ile Gly Met Val Ala Gly Ala Val Thr Gly		
230	235	240
Ile Val Ala Gly Ala Leu Leu Ile Phe Leu Leu Val Trp Leu Leu		
245	250	255
Ile Arg Arg Lys Asp Lys Glu Arg Tyr Glu Glu Glu Glu Arg Pro		
260	265	270
Asn Glu Ile Arg Glu Asp Ala Glu Ala Pro Lys Ala Arg Leu Val		
275	280	285
Lys Pro Ser Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly		
290	295	300
Ser Ser Ser Thr Arg Ser Thr Ala Asn Ser Ala Ser Arg Ser Gln		
305	310	315

Arg Thr Leu Ser Thr Asp Ala Ala Pro Gln Pro Gly Leu Ala Thr
320 325 330
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro
335 340 345
Lys Lys Val His His Ala Asn Leu Thr Lys Ala Glu Thr Thr Pro
350 355 360
Ser Met Ile Pro Ser Gln Ser Arg Ala Phe Gln Thr Val
365 370

<210> 504
<211> 3060
<212> DNA
<213> Homo Sapien

<400> 504
cgcgaggcgc ggggagcctg ggaccaggag cgagagccgc ctacctgcag 50
ccgcccggca cggcacggca gccaccatgg cgctcctgct gtgcttcgtg 100
ctcctgtgcg gagtagtgga tttcgccaga agttttagta tcactactcc 150
tgaagagatg attaaaaaaag ccaaagggga aactgcctat ctgccatgca 200
aatttacgct tagtccgaa gaccagggac cgctggacat cgagtggctg 250
atatcaccag ctgataatca gaaggtggat caagtgatta ttttatattc 300
tggagacaaa atttatgtg actactatcc agatctgaaa ggccgagttac 350
attttacgag taatgatctc aaatctggtg atgcatcaat aaatgttaacg 400
aatttacaac tgtcagatat tggcacatat cagtgc当地 450
tcctggtgtt gcaaataaga agattcatct ggtagttctt gttaaggcctt 500
caggtgc当地 atgttacgat gatggatctg aagaaattgg aagtgacttt 550
aagataaaaat gtgaacaaa agaaggttca cttccattac agtatgagtg 600
gcaaaaattt tctgactcac agaaaatgcc cacttcatgg ttagcagaaa 650
tgacttcatc tgttatatct gtaaaaaatg cctcttctga gtactctggg 700
acatacagct gtacagtc当地 aaacagagtg ggctctgatc agtgc当地 750
gc当地tcaaac gttgtccctc cttcaaataa agctggacta attgc当地ggag 800
ccattatagg aactttgctt gctctagcgc tcattggct tatcatctt 850
tgctgtcgta aaaagc当地cag agaagaaaa tatgaaaagg aagttcatca 900
cgatatcagg gaagatgtgc cacctccaaa gagccgtacg tccactgcca 950
gaagctacat cggcagtaat cattcatccc tgggtccat gtctccttcc 1000

aacatggaag gatattccaa gactcagtat aaccaggatc caagtgaaga 1050
cttgcacgc actcctcaga gtccgactct cccacctgct aagttcaagt 1100
acccttacaa gactgatgga attacagttg tataaatatg gactactgaa 1150
gaatctgaag tattgtatta tttgacttta ttttaggcct ctagtaaaga 1200
cttaaatgtt tttaaaaaaa agcacaaggc acagagatta gagcagctgt 1250
aagaacacat ctactttatg caatggcatt agacatgtaa gtcagatgtc 1300
atgtcaaaat tagtacgagc caaattctt gttaaaaaac cctatgtata 1350
gtgacactga tagttaaaag atgttttatt atatttcaa taactaccac 1400
taacaaattt ttaactttc atatgcatac tctgatatgt ggtcttttag 1450
gaaaagtatg gttaatagtt gatTTTCAA aggaaatttt aaaattctta 1500
cgTTCTGTTT aatgttttg ctatTTAGTT aaatacattg aaggGAAATA 1550
cccGTTCTTT TCCCTTTA TGcacacaAC agaaacacGC gttgtcatGC 1600
ctcaaactat ttttatttG caactacatG atttcacaca attctcttaa 1650
acaacgacat aaaatAGATT tcTTTGTATA taaataactt acatacGTC 1700
cataaagtAA attctcaaAG gtGCTAGAAC aaatCGTCCA cttctacAGT 1750
gttctcgtat ccaacAGAGT tgatgcacAA tatataaATA ctcaAGTCCA 1800
atattaaaaa cttaggcact tgactaactt taataaaatt tctcaaacta 1850
tatcaatATC taaagtGcat atatTTTA agaaAGATT ttctcaataa 1900
cttctataaa aataagTTG atggTTTGGC ccAtctaAct tcactactat 1950
tagtaagaac tttaacttt taatgtgtAG taaggTTTat tctacTTTT 2000
tctcaacatG acaccaacac aatcaaaaAC gaagttAGTG aggtGCTAAC 2050
atgtgaggat taatccAGTG attccGGTCA caatGCTTC caggaggagg 2100
tacccatGTC actGGAATTG ggCGATATGG tttatTTTt cttccCTGAT 2150
ttggataACC aaatGGAACA ggaggaggat agtGATTCTG atggCCATTc 2200
cctcgatACA ttccTGGCTT tttctGGGC aaaggGTGCC acattGGAAG 2250
aggTggAAAT ataagttctG aaatctgtAG ggaagAGAAC acattaAGTT 2300
aattcaaagg aaaaaatCAT catctatGTT ccAGATTCT cattaaAGAC 2350
aaagttacCC acaacactGA gatCACATCT aagtGACACT CCTATTGTCA 2400
ggtctaaATA cattaaaaAC ctcatgtGTA ataggcgtat aatgtataAC 2450

aggtgaccaa tgtttctga atgcataaaag aaatgaataa actcaaacac 2500
agtacttcct aaacaacttc aaccaaaaaa gaccaaaaca tggAACGAAT 2550
ggaAGCTTGT aaggacatgc ttgttttagt ccAGTGGTTT CCACAGCTGG 2600
ctaAGCCAGG agtcacttgg aggctttaa atacaaaaca ttggAGCTGG 2650
aggccattat ccttagcaaa ctaatgcaga aacagaaaat caactaccgc 2700
atgttctcac ttataagtgg gaggtaatga taagaactta tgaacacaaa 2750
gaaggaaaca atagacattg gagtctattt gagaggggag ggtgggagaa 2800
ggaaaaggag cagaaaagat aactattgag tactgccttc acacctgggt 2850
gatgaaataa tatgtacaac aaatccctgt gacacatgtt tacctatgga 2900
acaaaccttc atgttatcc ctaaacctaa aataaaagtt aaaaaaaaaa 2950
aaaraaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3000
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3050
aaaaaaaaaa 3060

<210> 505
<211> 352
<212> PRT
<213> Homo Sapien

<400> 505
Met Ala Leu Leu Leu Cys Phe Val Leu Leu Cys Gly Val Val Asp
1 5 10 15
Phe Ala Arg Ser Leu Ser Ile Thr Thr Pro Glu Glu Met Ile Glu
20 25 30
Lys Ala Lys Gly Glu Thr Ala Tyr Leu Pro Cys Lys Phe Thr Leu
35 40 45
Ser Pro Glu Asp Gln Gly Pro Leu Asp Ile Glu Trp Leu Ile Ser
50 55 60
Pro Ala Asp Asn Gln Lys Val Asp Gln Val Ile Ile Leu Tyr Ser
65 70 75
Gly Asp Lys Ile Tyr Asp Asp Tyr Tyr Pro Asp Leu Lys Gly Arg
80 85 90
Val His Phe Thr Ser Asn Asp Leu Lys Ser Gly Asp Ala Ser Ile
95 100 105
Asn Val Thr Asn Leu Gln Leu Ser Asp Ile Gly Thr Tyr Gln Cys
110 115 120
Lys Val Lys Lys Ala Pro Gly Val Ala Asn Lys Lys Ile His Leu
125 130 135

Val Val Leu Val Lys Pro Ser Gly Ala Arg Cys Tyr Val Asp Gly
 140 145 150
 Ser Glu Glu Ile Gly Ser Asp Phe Lys Ile Lys Cys Glu Pro Lys
 155 160 165
 Glu Gly Ser Leu Pro Leu Gln Tyr Glu Trp Gln Lys Leu Ser Asp
 170 175 180
 Ser Gln Lys Met Pro Thr Ser Trp Leu Ala Glu Met Thr Ser Ser
 185 190 195
 Val Ile Ser Val Lys Asn Ala Ser Ser Glu Tyr Ser Gly Thr Tyr
 200 205 210
 Ser Cys Thr Val Arg Asn Arg Val Gly Ser Asp Gln Cys Leu Leu
 215 220 225
 Arg Leu Asn Val Val Pro Pro Ser Asn Lys Ala Gly Leu Ile Ala
 230 235 240
 Gly Ala Ile Ile Gly Thr Leu Leu Ala Leu Ala Leu Ile Gly Leu
 245 250 255
 Ile Ile Phe Cys Cys Arg Lys Lys Arg Arg Glu Glu Lys Tyr Glu
 260 265 270
 Lys Glu Val His His Asp Ile Arg Glu Asp Val Pro Pro Pro Lys
 275 280 285
 Ser Arg Thr Ser Thr Ala Arg Ser Tyr Ile Gly Ser Asn His Ser
 290 295 300
 Ser Leu Gly Ser Met Ser Pro Ser Asn Met Glu Gly Tyr Ser Lys
 305 310 315
 Thr Gln Tyr Asn Gln Val Pro Ser Glu Asp Phe Glu Arg Thr Pro
 320 325 330
 Gln Ser Pro Thr Leu Pro Pro Ala Lys Phe Lys Tyr Pro Tyr Lys
 335 340 345
 Thr Asp Gly Ile Thr Val Val
 350

<210> 506

<211> 1705

<212> DNA

<213> Homo Sapien

<400> 506

tgaaatgact tccacggctg ggacgggaac cttccaccca cagctatgcc 50

tctgatttgtt gaatggtaa ggtgcctgtc taactttct gtaaaaagaa 100

ccagctgcct ccaggcagcc agccctcaag catcacttac aggaccagag 150

ggacaagaca tgactgtat gaggagctgc tttcgccat ttaacaccaa 200

gaagaattga ggctgcttgg gaggaaggcc aggaggaaca cgagactgag 250
agatgaattt tcaacagagg ctgcaaagcc tgtggacttt agccagaccc 300
ttctgccctc ctttgctggc gacagcctct caaatgcaga tggttgtgct 350
cccttgcctg ggtttaccc tgcttctctg gagccaggta tcaggggccc 400
agggccaaga attccacttt gggccctgcc aagtgaaggg ggttgttccc 450
cagaaactgt ggaaagcctt ctgggctgtg aaagacacta tgcaagctca 500
ggataacatc acgagtgccc ggctgctgca gcaggaggtt ctgcagaacg 550
tctcgatgc tgagagctgt taccttgcac acaccctgct ggagttctac 600
ttgaaaactg tttcaaaaaa ccaccacaat agaacagttg aagtcaggac 650
tctgaagtca ttctctactc tggccaacaa ctttgcac atcgatgcac 700
aactgcaacc cagtcaagaa aatgagatgt tttccatcg agacagtgca 750
cacaggcggt ttctgctatt ccggagagca ttcaaacagt tggacgtaga 800
agcagctctg accaaagccc ttggggaaagt ggacattctt ctgacctgga 850
tgcagaaatt ctacaagctc tgaatgtcta gaccaggacc tccctcccc 900
tggcactggt ttgttccctg tgtcatttca aacagtctcc cttcctatgc 950
tggtcactgg acacttcacg cccttggcca tgggtccat tcttggccca 1000
ggattattgt caaagaagtc attcttaag cagcgccagt gacagtcagg 1050
gaaggtgcct ctggatgctg tgaagagtct acagagaaga ttcttgcatt 1100
tattacaact ctatttaatt aatgtcagta tttcaactga agttctattt 1150
atttgtgaga ctgtaagtta catgaaggca gcagaatatt gtccccatg 1200
cttcttacc cctcacaatc cttgccacag tgtggggcag tggatgggtg 1250
cttagtaagt acttaataaa ctgtggtgct tttttggcc tgtctttgga 1300
ttgttaaaaa acagagaggg atgcttggat gtaaaactga acttcagagc 1350
atgaaaatca cactgtctc tgatatctgc agggacagag cattgggtg 1400
ggggtaaggt gcatctgtt gaaaagtaaa cgataaaatg tggattaaag 1450
tgcccagcac aaagcagatc ctcaataaac atttcatttc ccacccacac 1500
tcgccagctc accccatcat cccttcctc tgggccctc ctttttttt 1550
tatccttagtc attcttcct aatcttccac ttgagtgtca agctgacatt 1600
gctgatggtg acattgcacc tggatgtact atccaatctg tcatgacatt 1650

ccctgctaat aaaagacaac ataactccaa aaaaaaaaaa aaaaaaaaaa 1700

aaaaaa 1705

<210> 507

<211> 206

<212> PRT

<213> Homo Sapien

<400> 507

Met Asn Phe Gln Gln Arg Leu Gln Ser Leu Trp Thr Leu Ala Arg
1 5 10 15

Pro Phe Cys Pro Pro Leu Leu Ala Thr Ala Ser Gln Met Gln Met
20 25 30

Val Val Leu Pro Cys Leu Gly Phe Thr Leu Leu Leu Trp Ser Gln
35 40 45

Val Ser Gly Ala Gln Gly Gln Glu Phe His Phe Gly Pro Cys Gln
50 55 60

Val Lys Gly Val Val Pro Gln Lys Leu Trp Glu Ala Phe Trp Ala
65 70 75

Val Lys Asp Thr Met Gln Ala Gln Asp Asn Ile Thr Ser Ala Arg
80 85 90

Leu Leu Gln Gln Glu Val Leu Gln Asn Val Ser Asp Ala Glu Ser
95 100 105

Cys Tyr Leu Val His Thr Leu Leu Glu Phe Tyr Leu Lys Thr Val
110 115 120

Phe Lys Asn His His Asn Arg Thr Val Glu Val Arg Thr Leu Lys
125 130 135

Ser Phe Ser Thr Leu Ala Asn Asn Phe Val Leu Ile Val Ser Gln
140 145 150

Leu Gln Pro Ser Gln Glu Asn Glu Met Phe Ser Ile Arg Asp Ser
155 160 165

Ala His Arg Arg Phe Leu Leu Phe Arg Arg Ala Phe Lys Gln Leu
170 175 180

Asp Val Glu Ala Ala Leu Thr Lys Ala Leu Gly Glu Val Asp Ile
185 190 195

Leu Leu Thr Trp Met Gln Lys Phe Tyr Lys Leu
200 205

<210> 508

<211> 924

<212> DNA

<213> Homo Sapien

<400> 508

aaggagcagc ccgcaagcac caagtgagag gcatgaagtt acagtgtgtt 50
tcccttggc tcctgggtac aatactgata ttgtgctcag tagacaacca 100
cggtctcagg agatgtctga tttccacaga catgcaccat atagaagaga 150
gttccaaga aatcaaaaaga gccatccaag ctaaggacac cttcccaa 200
gtcactatcc tgtccacatt ggagactctg cagatcatta agcccttaga 250
tgtgtgctgc gtgaccaaga acctcctggc gttctacgtg gacagggtgt 300
tcaaggatca tcaggagcca aaccccaaaa tcttgagaaa aatcagcagc 350
attgccaact ct当地tcta catgcagaaa actctgcggc aatgtcagga 400
acagaggcag tgtcactgca ggcaggaagc caccaatgcc accagagtca 450
tccatgacaa ct当地atcag ctggaggtcc acgctgctgc cattaaatcc 500
ctggagagc tcgacgtctt tctagcctgg attaataaga atcatgaagt 550
aatgttctca gcttgatgac aaggaacctg tatagtgatc cagggatgaa 600
cacccccgt gcggttact gtgggagaca gcccaccttg aaggggaagg 650
agatggggaa ggccccttc agctgaaagt cccactggct ggcctcagggc 700
tgtcttattc cgcttggaaaa taggcaaaaa gtctactgtg gtatggtaa 750
taaactctat ctgctgaaag ggcctgcagg ccatcctggg agtaaaggc 800
tgccttccca tctaatttat tgtaaagtca tatagtccat gtctgtgatg 850
tgagccaagt gatatcctgt agtacacatt gtactgagtg gttttctga 900
ataaattcca tattttacct atga 924

<210> 509
<211> 177
<212> PRT
<213> Homo Sapien

<400> 509
Met Lys Leu Gln Cys Val Ser Leu Trp Leu Leu Gly Thr Ile Leu
1 5 10 15
Ile Leu Cys Ser Val Asp Asn His Gly Leu Arg Arg Cys Leu Ile
20 25 30
Ser Thr Asp Met His His Ile Glu Glu Ser Phe Gln Glu Ile Lys
35 40 45
Arg Ala Ile Gln Ala Lys Asp Thr Phe Pro Asn Val Thr Ile Leu
50 55 60
Ser Thr Leu Glu Thr Leu Gln Ile Ile Lys Pro Leu Asp Val Cys
65 70 75

Cys Val Thr Lys Asn Leu Leu Ala Phe Tyr Val Asp Arg Val Phe
 80 85 90
 Lys Asp His Gln Glu Pro Asn Pro Lys Ile Leu Arg Lys Ile Ser
 95 100 105
 Ser Ile Ala Asn Ser Phe Leu Tyr Met Gln Lys Thr Leu Arg Gln
 110 115 120
 Cys Gln Glu Gln Arg Gln Cys His Cys Arg Gln Glu Ala Thr Asn
 125 130 135
 Ala Thr Arg Val Ile His Asp Asn Tyr Asp Gln Leu Glu Val His
 140 145 150
 Ala Ala Ala Ile Lys Ser Leu Gly Glu Leu Asp Val Phe Leu Ala
 155 160 165
 Trp Ile Asn Lys Asn His Glu Val Met Phe Ser Ala
 170 175

<210> 510
 <211> 996
 <212> DNA
 <213> Homo Sapien

<400> 510
 cccgtgccaa gagtgacgta agtaccgcct atagagtcta taggcccact 50
 tggcttcgtt agaacgcggc tacaattaat acataacctt atgtatcata 100
 cacatacgat ttaggtgaca ctatagaata acatccactt tgcctttctc 150
 tccacaggtg tccactccca ggtccaactg cacctcggtt ctatcgataa 200
 tctcagcacc agccactcag agcagggcac gatgttgggg gccccctca 250
 ggctctgggt ctgtgccttg tgcagcgct gcagcatgag cgtcctcaga 300
 gcctatccca atgcctcccc actgctcggc tccagctggg gtggcctgat 350
 ccacctgtac acagccacag ccaggaacag ctaccacctg cagatccaca 400
 agaatggcca tgtggatggc gcaccccatc agaccatcta cagtgcctg 450
 atgatcagat cagaggatgc tggcttgtg gtgattacag gtgtgatgag 500
 cagaagatac ctctgcatgg atttcagagg caacatttt ggatcacact 550
 atttcgaccc ggagaactgc aggttccaa accagacgct ggaaaacggg 600
 tacgacgtct accactctcc tcagtatcac ttccctggtca gtctggcccg 650
 ggcgaagaga gccttcctgc caggcatgaa cccacccccc tactccca 700
 tcctgtcccg gaggaacgag atccccctaa ttcaactcaa cacccccata 750
 ccacggcggc acacccggag cgccgaggac gactcggagc gggacccct 800

gaacgtgctg aagccccggg cccggatgac cccggcccg gcctcctgtt 850
cacaggagct cccgagcgcc gaggacaaca gcccgcgtggc cagtgaccca 900
tttaggggtgg tcaggggcgg tcgagtgaac acgcacgctg ggggaacggg 950
cccgaaaggc tgccgccccct tcgccaagtt catctagggt cgctgg 996

<210> 511
<211> 251
<212> PRT
<213> Homo Sapien

<400> 511
Met Leu Gly Ala Arg Leu Arg Leu Trp Val Cys Ala Leu Cys Ser
1 5 10 15
Val Cys Ser Met Ser Val Leu Arg Ala Tyr Pro Asn Ala Ser Pro
20 25 30
Leu Leu Gly Ser Ser Trp Gly Gly Leu Ile His Leu Tyr Thr Ala
35 40 45
Thr Ala Arg Asn Ser Tyr His Leu Gln Ile His Lys Asn Gly His
50 55 60
Val Asp Gly Ala Pro His Gln Thr Ile Tyr Ser Ala Leu Met Ile
65 70 75
Arg Ser Glu Asp Ala Gly Phe Val Val Ile Thr Gly Val Met Ser
80 85 90
Arg Arg Tyr Leu Cys Met Asp Phe Arg Gly Asn Ile Phe Gly Ser
95 100 105
His Tyr Phe Asp Pro Glu Asn Cys Arg Phe Gln His Gln Thr Leu
110 115 120
Glu Asn Gly Tyr Asp Val Tyr His Ser Pro Gln Tyr His Phe Leu
125 130 135
Val Ser Leu Gly Arg Ala Lys Arg Ala Phe Leu Pro Gly Met Asn
140 145 150
Pro Pro Pro Tyr Ser Gln Phe Leu Ser Arg Arg Asn Glu Ile Pro
155 160 165
Leu Ile His Phe Asn Thr Pro Ile Pro Arg Arg His Thr Arg Ser
170 175 180
Ala Glu Asp Asp Ser Glu Arg Asp Pro Leu Asn Val Leu Lys Pro
185 190 195
Arg Ala Arg Met Thr Pro Ala Pro Ala Ser Cys Ser Gln Glu Leu
200 205 210
Pro Ser Ala Glu Asp Asn Ser Pro Met Ala Ser Asp Pro Leu Gly
215 220 225

Val Val Arg Gly Gly Arg Val Asn Thr His Ala Gly Gly Thr Gly
230 235 240

Pro Glu Gly Cys Arg Pro Phe Ala Lys Phe Ile
245 250

<210> 512

<211> 2015

<212> DNA

<213> Homo Sapien

<400> 512

ggaaaaggtt cccgcgagag acagccagca gttctgtgga gcagcgggtgg 50

ccggcttagga tgggctgtct ctggggctcg gctctgcccc ttttcttctt 100

ctgctgggag gttggggctt ctgggagctc tgcaggcccc agcacccgca 150

gagcagacac tgcgtatgaca acggacgaca cagaagtgcc cgctatgact 200

ctagcaccgg gccacgccc tctggaaact caaacgctga ggcgtgagac 250

ctcttcttagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300

ggggagccaa gagaatttcc cctgcaagag agaccaggag tttcacaaaa 350

acatctccca acttcatggt gctgatgcc acctccgtgg agacatcagc 400

cggcagtggc agccccgagg gagctggaat gaccacagtt cagaccatca 450

caggcagtga tcccgggaa gccatcttg acacccttg caccgatgac 500

agctctgaag aggcaaagac actcacaatg gacatattga cattggctca 550

cacccctcaca gaagctaagg gcctgtcctc agagagcagt gcctcttccg 600

acggccccc tccagtcac accccgtcac gggctcaga gagcagcgcc 650

tttccgacg gccccatcc agtcatcacc ccgtcacggg cctcagagag 700

cagcgcctct tccgacggcc cccatccagt catcaccccg tcatggtccc 750

cgggatctga tgcactctc ctcgctgaag ccctgggtac tgtcacaaac 800

atcgaggta ttaattgcag catcacagaa atagaaacaa caacttccag 850

catccctggg gcctcagaca tagatctcat ccccacggaa ggggtgaagg 900

cctcgatcca ctcgatcca ccagctctgc ctgactccac tgaagcaaaa 950

ccacacatca ctgaggtcac agcctctgcc gagaccctgt ccacagccgg 1000

caccacagag tcagctgcac ctcatgccac gggtgggacc ccactcccc 1050

ctaacagcgc cacagaaaga gaagtgcacag caccggggc cacgaccctc 1100

agtggagctc tggtcacagt tagcaggaat cccctggaaag aaacctcagc 1150

cctctctgtt gagacaccaa gttacgtcaa agtctcagga gcagctccgg 1200
tctccataga ggctgggtca gcagtgggca aaacaacttc ctttgctggg 1250
agctctgctt ctcctacag cccctcgaa gccgcctca agaacttcac 1300
cccttcagag acaccgacca tggacatcgc aaccaagggg cccttcccc 1350
ccagcagggga ccctttcct tctgtccctc cgactacaac caacagoagc 1400
cgagggacga acagcacctt agccaagatc acaacctcag cgaagaccac 1450
gatgaagccc caacagccac gcccacgact gcccggacga ggccgaccac 1500
agacgtgagt gcaggtgaaa atggaggtt ctccttcctg cggctgagtg 1550
tggcttcccc ggaagacctc actgacccca gagtggcaga aaggctgatg 1600
cagcagctcc accgggaact ccacgcccac ggcctcaact tccaggtctc 1650
cttactgcgt gtcaggagag gctaacggac atcagctgca gccaggcatg 1700
tcccgtatgc caaaagaggg tgctgcccct agcctgggcc cccaccgaca 1750
gactgcagct gcgttactgt gctgagaggt acccagaagg ttcccatgaa 1800
gggcagcatg tccaagcccc taacccaga tgtggcaaca ggaccctcgc 1850
tcacatccac cggagtgtat gtaggggag gggcttcacc tggccatcaga 1900
ggtgtcctt gactcacctt ggcacatgtt ctgtgttca gttaagagag 1950
acctgatcac ccattgtgt gcttccatcc tgcattaaaa ttcactcagt 2000
gtggcccaaa aaaaa 2015

<210> 513

<211> 482

<212> PRT

<213> Homo Sapien

<400> 513

Met	Gly	Cys	Leu	Trp	Gly	Leu	Ala	Leu	Pro	Leu	Phe	Phe	Phe	Cys
1					5				10				15	

Trp	Glu	Val	Gly	Val	Ser	Gly	Ser	Ser	Ala	Gly	Pro	Ser	Thr	Arg
					20				25				30	

Arg	Ala	Asp	Thr	Ala	Met	Thr	Thr	Asp	Asp	Thr	Glu	Val	Pro	Ala
					35			40					45	

Met	Thr	Leu	Ala	Pro	Gly	His	Ala	Ala	Leu	Glu	Thr	Gln	Thr	Leu
					50				55				60	

Ser	Ala	Glu	Thr	Ser	Ser	Arg	Ala	Ser	Thr	Pro	Ala	Gly	Pro	Ile
					65				70				75	

Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg

80

85

90

Glu	Thr	Arg	Ser	Phe	Thr	Lys	Thr	Ser	Pro	Asn	Phe	Met	Val	Leu
95														105
Ile	Ala	Thr	Ser	Val	Glu	Thr	Ser	Ala	Ala	Ser	Gly	Ser	Pro	Glu
110														120
Gly	Ala	Gly	Met	Thr	Thr	Val	Gln	Thr	Ile	Thr	Gly	Ser	Asp	Pro
125														135
Glu	Glu	Ala	Ile	Phe	Asp	Thr	Leu	Cys	Thr	Asp	Asp	Ser	Ser	Glu
140														150
Glu	Ala	Lys	Thr	Leu	Thr	Met	Asp	Ile	Leu	Thr	Leu	Ala	His	Thr
155														165
Ser	Thr	Glu	Ala	Lys	Gly	Leu	Ser	Ser	Glu	Ser	Ser	Ala	Ser	Ser
170														180
Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg	Ala	Ser	Glu	Ser
185														195
Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile	Thr	Pro	Ser	Arg
200														210
Ala	Ser	Glu	Ser	Ser	Ala	Ser	Ser	Asp	Gly	Pro	His	Pro	Val	Ile
215														225
Thr	Pro	Ser	Trp	Ser	Pro	Gly	Ser	Asp	Val	Thr	Leu	Leu	Ala	Glu
230														240
Ala	Leu	Val	Thr	Val	Thr	Asn	Ile	Glu	Val	Ile	Asn	Cys	Ser	Ile
245														255
Thr	Glu	Ile	Glu	Thr	Thr	Thr	Ser	Ser	Ile	Pro	Gly	Ala	Ser	Asp
260														270
Ile	Asp	Leu	Ile	Pro	Thr	Glu	Gly	Val	Lys	Ala	Ser	Ser	Thr	Ser
275														285
Asp	Pro	Pro	Ala	Leu	Pro	Asp	Ser	Thr	Glu	Ala	Lys	Pro	His	Ile
290														300
Thr	Glu	Val	Thr	Ala	Ser	Ala	Glu	Thr	Leu	Ser	Thr	Ala	Gly	Thr
305														315
Thr	Glu	Ser	Ala	Ala	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	Leu	Pro
320														330
Thr	Asn	Ser	Ala	Thr	Glu	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	Thr
335														345
Thr	Leu	Ser	Gly	Ala	Leu	Val	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu
350														360
Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu	Thr	Pro	Ser	Tyr	Val	Lys	Val
365														375

Ser Gly Ala Ala Pro Val Ser Ile Glu Ala Gly Ser Ala Val Gly
380 385 390
Lys Thr Thr Ser Phe Ala Gly Ser Ser Ala Ser Ser Tyr Ser Pro
395 400 405
Ser Glu Ala Ala Leu Lys Asn Phe Thr Pro Ser Glu Thr Pro Thr
410 415 420
Met Asp Ile Ala Thr Lys Gly Pro Phe Pro Thr Ser Arg Asp Pro
425 430 435
Leu Pro Ser Val Pro Pro Thr Thr Asn Ser Ser Arg Gly Thr
440 445 450
Asn Ser Thr Leu Ala Lys Ile Thr Thr Ser Ala Lys Thr Thr Met
455 460 465
Lys Pro Gln Gln Pro Arg Pro Arg Leu Pro Gly Arg Gly Arg Pro
470 475 480

Gln Thr

<210> 514
<211> 2284
<212> DNA
<213> Homo Sapien

<400> 514
gcggagcatc cgctcggtc ctcgcccaga ccccccgcgcg gattcgccgg 50
tccttccccgc gggcgcgaca gagctgtcct cgcacacctgga tggcagcagg 100
ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150
cttcttaaag caaactaaga ccagagggag gattatcctt gacccctt 200
gaccaaaaact aaactgaaat taaaatgtt ctgcggggaa gaaggagct 250
tgacttacac ttggtaata atttgcttcc tgacactaag gctgtctgct 300
agtcagaatt gcctcaaaaa gagtcgtgaa gatgttgtca ttgacatcca 350
gtcatctttt tctaaggaa tcagaggcaa tgagccgttataacttcaa 400
ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450
gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500
acccaactgc tacctatttt tctgtccaa cgaggaagcc tgtccattga 550
aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600
ttgaccagaa atttgccaag ccaagaggtt cccaggaag attctctt 650
acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700

attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750
tttggatcct cagatcacct ggagaaaacta tttaagatgg atgaagcaag 800
tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850
tttcctctga tcaagaaata gctcatctgc tgccctgaaaa tgtgagtgcg 900
ctcccagcta cggtggcagt tgcttctcca cataccacct cggtactcc 950
aaagcccccc acccttctac ccaccaatgc ttcagtgaca ccttctggga 1000
cttcccagcc acagctggcc accacagctc cacctgtAAC cactgtcact 1050
tctcagcctc ccacgaccct catttctaca gttttacac gggctgcggc 1100
tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150
cacctacgga ctgcggaaaggc agcttagaaa ccataccgtt tacagaaatc 1200
tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcacttcc 1250
tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctggaaag 1300
gtagggaggc cagtccagggc agttcctccc agggcagtgt tccagaaaat 1350
cagtaacggcc ttccatTTGA aaaatggctt cttatcggtt ccctgcttt 1400
tggtgtcctg ttccctggta taggcctcgt cctcctgggt agaatcctt 1450
cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500
gggatctatg tggacatcta aggatggAAC tcgggtgtc ttaattcatt 1550
tagtaaccag aagccaaat gcaatgagtt tctgctgact tgcttagtctt 1600
agcaggaggt tgtatTTGA agacaggaaa atgccccctt ctgctttcct 1650
ttttttttt ggagacagag tcttgctctg ttgcccagggc tggagtgcag 1700
tagcacgatc tcggctctca ccgcaaccc cgtctcctgg gttcaagcga 1750
ttctcctgcc tcagcctcct aagtatctgg gattacagggc atgtgccacc 1800
acacctgggt gattttgtA ttttagtag agacggggtt tcaccatgtt 1850
ggtcaggctg gtctcaaact cctgacccctg tgatccaccc tcctcgccct 1900
cccaaagtgc tgggattaca ggcattgagcc accacagctg gcccccttct 1950
gttttatgtt tggTTTGTa gaaggaatga agtgggaacc aaatttaggtA 2000
attttgggtA atctgtctct aaaatattAG ctaaaaacAA agctctatgt 2050
aaagtaataa agtataattG ccatataaaAT ttcaaaattc aactggcttt 2100
tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150

tggttccaga taaaatcaac tgtttatatac aatttctaat ggatttgctt 2200
ttcttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250
aattaaatat ttgaataaaat cttttgttac tcaa 2284

<210> 515
<211> 431
<212> PRT
<213> Homo Sapien

<400> 515
Met Phe Phe Gly Gly Glu Gly Ser Leu Thr Tyr Thr Leu Val Ile
1 5 10 15
Ile Cys Phe Leu Thr Leu Arg Leu Ser Ala Ser Gln Asn Cys Leu
20 25 30
Lys Lys Ser Leu Glu Asp Val Val Ile Asp Ile Gln Ser Ser Leu
35 40 45
Ser Lys Gly Ile Arg Gly Asn Glu Pro Val Tyr Thr Ser Thr Gln
50 55 60
Glu Asp Cys Ile Asn Ser Cys Cys Ser Thr Lys Asn Ile Ser Gly
65 70 75
Asp Lys Ala Cys Asn Leu Met Ile Phe Asp Thr Arg Lys Thr Ala
80 85 90
Arg Gln Pro Asn Cys Tyr Leu Phe Phe Cys Pro Asn Glu Glu Ala
95 100 105
Cys Pro Leu Lys Pro Ala Lys Gly Leu Met Ser Tyr Arg Ile Ile
110 115 120
Thr Asp Phe Pro Ser Leu Thr Arg Asn Leu Pro Ser Gln Glu Leu
125 130 135
Pro Gln Glu Asp Ser Leu Leu His Gly Gln Phe Ser Gln Ala Val
140 145 150
Thr Pro Leu Ala His His His Thr Asp Tyr Ser Lys Pro Thr Asp
155 160 165
Ile Ser Trp Arg Asp Thr Leu Ser Gln Lys Phe Gly Ser Ser Asp
170 175 180
His Leu Glu Lys Leu Phe Lys Met Asp Glu Ala Ser Ala Gln Leu
185 190 195
Leu Ala Tyr Lys Glu Lys Gly His Ser Gln Ser Ser Gln Phe Ser
200 205 210
Ser Asp Gln Glu Ile Ala His Leu Leu Pro Glu Asn Val Ser Ala
215 220 225
Leu Pro Ala Thr Val Ala Val Ala Ser Pro His Thr Thr Ser Ala

230	235	240
Thr Pro Lys Pro Ala Thr Leu Leu Pro	Thr Asn Ala Ser Val	Thr
245	250	255
Pro Ser Gly Thr Ser Gln Pro Gln Leu	Ala Thr Thr Ala Pro Pro	
260	265	270
Val Thr Thr Val Thr Ser Gln Pro Pro	Thr Thr Leu Ile Ser Thr	
275	280	285
Val Phe Thr Arg Ala Ala Ala Thr Leu	Gln Ala Met Ala Thr	Thr
290	295	300
Ala Val Leu Thr Thr Phe Gln Ala	Pro Thr Asp Ser Lys Gly	
305	310	315
Ser Leu Glu Thr Ile Pro Phe Thr Glu	Ile Ser Asn Leu Thr Leu	
320	325	330
Asn Thr Gly Asn Val Tyr Asn Pro Thr	Ala Leu Ser Met Ser Asn	
335	340	345
Val Glu Ser Ser Thr Met Asn Lys Thr	Ala Ser Trp Glu Gly Arg	
350	355	360
Glu Ala Ser Pro Gly Ser Ser Ser Gln	Gly Ser Val Pro Glu Asn	
365	370	375
Gln Tyr Gly Leu Pro Phe Glu Lys Trp	Leu Leu Ile Gly Ser Leu	
380	385	390
Leu Phe Gly Val Leu Phe Leu Val Ile	Gly Leu Val Leu Leu Gly	
395	400	405
Arg Ile Leu Ser Glu Ser Leu Arg Arg	Lys Arg Tyr Ser Arg Leu	
410	415	420
Asp Tyr Leu Ile Asn Gly Ile Tyr Val Asp Ile		
425	430	

<210> 516
<211> 2749
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 1869, 1887
<223> unknown base

<400> 516
ctccccacggt gtccagcgcc cagaatgcgg cttctgggcc tgctatgggg 50
ttgcctgctg ctcccagggt atgaagccct ggagggccca gagaaaaatca 100
gcgggttcga aggggacact gtgtccctgc agtgcaccta caggaaagag 150

ctgagggacc accggaagta ctggcagg aagggtggga tcctttctc 200
tcgctgcctt ggcaccatct atgcagaaga agaaggccag gagacaatga 250
aggcagggt gtccatccgt gacagccgcc aggagctctc gtcattgtg 300
accctgtgga acctcacccct gcaagacgct gggagactt ggtgtgggt 350
cgaaaaacgg ggccccgatg agtcttact gatctctctg ttcgtcttcc 400
caggaccctg ctgtcctccc tccccttctc ccaccttcca gcctctggct 450
acaacacgcc tgcagccaa ggcaaaagct cagcaaaccc agcccccagg 500
attgacttct cctggctct acccggcagc caccacagcc aagcagggga 550
agacaggggc tgaggcccct ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtacac aggaacctct ctcacccag cgacctctcc 650
tcctgcaggg agctcccgcc ccccatgca gctggactcc acctcagcag 700
aggacaccag tccagctctc agcagtggca gctctaagcc cagggtgtcc 750
atcccgtatgg tccgcatact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg cttctgcag ccacctgctc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc cttccagg cccctgaggg 950
ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctggct 1000
tctcgaagtt tgtctcagcg tagggcagga ggccttctg gccaggccag 1050
cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagcttcc 1100
cacctcagcc tcagagtcca gctgcccggc ctccaggct ctccccaccc 1150
tccccaggct ctcccttgc atgttccagc ctgacctaga agcgttgtc 1200
agccctggag cccagagcgg tggccttgc ctccggctg gagactggga 1250
catccctgat aggttcacat ccctggcagc agtaccaggc tgctgaccct 1300
cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350
aggaactcct gggcctcatg cccagtgtcg gaccctgcct tcctccact 1400
ccagacccca ctttgtcttc cttccctggc gtcctcagac tttagtcccac 1450
ggtctctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500
ggattctggc ttctcttga accacctgca tccagccctt caggaaggct 1550
gtgaaaaacg tgattcctgg ccccaccaag acccaccaaa accatctctg 1600

ggcttggcaggactctga attctaacaa tgcccagtga ctgtcgact 1650
ttagttttagggccagtgaaa cctgatgaac gctcacaccc cttcagctta 1700
gagtctgcatttggctgtg acgtctccac ctgccccaaat agatctgctc 1750
tgtctgcgacc accagatcca cgtggggact cccctgaggc ctgctaagtc 1800
caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850
acagaagtgg ttgccttnc catttgcctt ccctggncca tgccttcttg 1900
cctttggaaa aaatgatgaa gaaaaccttgcgtcctt tgtctggaaa 1950
gggttacttg cctatgggtt ctgggtggcta gagagaaaaag tagaaaaacca 2000
gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050
ctgaaggtga ctccgagtcc agccccctgg agaagggtc ggggggtggtg 2100
gtaaagtagc acaactacta tttttttct ttttccatta ttattgtttt 2150
ttaagacaga atctcggtct gctgcccagg ctggagtgcgtca gtggcacat 2200
ctgcaaactc cgccctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250
gagtagctgg gattacaggc acgcaccacc acacctggct aattttgtta 2300
cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350
cctgacctca aatgagcctc ctgcttcagt ctcccaaatt gccgggattta 2400
caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaattta 2450
agagttgttc agtatgcaaa acttgaaaag atggaggaga aaaagaaaaag 2500
gaagaaaaaaa atgtcacccatgtctacc agagactatc attatttcgt 2550
tttgggttac ttccctccac tctttcttc ttcacataat ttggccgggt 2600
tcttttaca gagcaattat ctgtatata caactttgtatc ttgtccctt 2650
tccacccatca cgttccatca ctatttcca gcacttctct gtgtttaca 2700
gacctttta taaataaaaat gttcatcagc tgcataaaaaa aaaaaaaaaa 2749

<210> 517
<211> 332
<212> PRT
<213> Homo Sapien

<400> 517
Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly
1 5 10 15
Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp
35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg
50 55 60

Cys Ser Gly Thr Ile Tyr Ala Glu Glu Gly Gln Glu Thr Met
65 70 75

Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu
80 85 90

Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr
95 100 105

Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile
110 115 120

Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser
125 130 135

Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala
140 145 150

Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu
155 160 165

Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu
170 175 180

Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr
185 190 195

Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro
200 205 210

Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala
215 220 225

Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg
230 235 240

Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu
245 250 255

Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His
260 265 270

Leu Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln
275 280 285

Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys
290 295 300

Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro
305 310 315

Pro Leu His Thr Ser Glu Glu Leu Gly Phe Ser Lys Phe Val

320

325

330

Ser Ala

<210> 518
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 518
ccctgcagtg cacctacagg gaag 24

<210> 519
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 519
ctgtcttccc ctgcttgct gtgg 24

<210> 520
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 520
ggtgtcaggaa ggggtggatc ctcttctctc gctgctctgg ccacatc 47

<210> 521
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 521
ccagtgacaca gcaggcaacg aagc 24

<210> 522
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 522

actaggctgt atgcctgggt gggc 24

<210> 523
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 523
gtatgtacaa agcatcgga tggttgcagg agcagtgaca ggc 43

<210> 524
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 524
aatctcagca ccagccactc agagca 26

<210> 525
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 525
gttaaagagg gtgcccttcc agcga 25

<210> 526
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 526
tatcccaatg cctccccact gctc 24

<210> 527
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 527
gatgaacttg gcgaaggggc ggca 24

<210> 528

<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 528
agggaggatt atccttgacc tttgaagacc 30

<210> 529
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 529
gaagcaagtg cccagctc 18

<210> 530
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 530
cgggtccctg ctctttgg 18

<210> 531
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 531
caccgttagt gggagcgac tcac 24

<210> 532
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 532
agtgttaagtgc aagctccc 18