Bank_Personal_Loan_Modelling

1. Import the required libraries and read the dataset.

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

   from sklearn.model_selection import train_test_split

   from sklearn.preprocessing import StandardScaler
   ss = StandardScaler()
   from sklearn.preprocessing import LabelEncoder
   le = LabelEncoder()

   from sklearn.linear_model import LogisticRegression
   lr= LogisticRegression()
   from sklearn.metrics import accuracy_score, confusion_matrix, classification_r
In [2]: df = pd.read_csv('Bank_Personal_Loan_Modelling.csv')
```

2. Check the first few samples, shape, info of the data and try to familiarize yourself with different features.

```
In [3]: df.sample(5)
Out[3]:
                                                 ZIP
                                                                                          Personal S
                                                      Family CCAvg Education Mortgage
                  ID Age Experience Income
                                                Code
                                                                                              Loan
          2290
                2291
                       38
                                   13
                                           78 91942
                                                           4
                                                                 0.7
                                                                             3
                                                                                       0
                                                                                                 0
          1435 1436
                       43
                                   17
                                               90266
                                                                             1
                                                                                       0
                                                           1
                                                                 0.2
                                                                                                 0
           1126 1127
                       32
                                    8
                                          104
                                               95192
                                                                 3.7
                                                                             1
                                                                                                 1
          2726 2727
                       62
                                   37
                                               92028
                                                           1
                                                                 1.5
                                                                             2
                                                                                     127
                                                                                                 0
                                                                             2
           3977 3978
                       54
                                   27
                                           51 94309
                                                           3
                                                                 1.0
                                                                                      113
                                                                                                 0
In [4]: df.shape
Out[4]: (5000, 14)
```

```
In [5]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5000 entries, 0 to 4999
        Data columns (total 14 columns):
             Column
                                  Non-Null Count Dtvpe
         0
             ID
                                  5000 non-null
                                                  int64
         1
             Age
                                  5000 non-null
                                                  int64
         2
             Experience
                                  5000 non-null
                                                  int64
         3
             Income
                                  5000 non-null
                                                  int64
         4
             ZIP Code
                                  5000 non-null
                                                  int64
         5
             Family
                                  5000 non-null
                                                  int64
         6
                                  5000 non-null
                                                  float64
             CCAvg
         7
             Education
                                  5000 non-null
                                                  int64
         8
                                  5000 non-null
             Mortgage
                                                  int64
         9
             Personal Loan
                                  5000 non-null
                                                  int64
             Securities Account 5000 non-null
                                                  int64
         11 CD Account
                                  5000 non-null
                                                  int64
         12 Online
                                  5000 non-null
                                                  int64
         13 CreditCard
                                  5000 non-null
                                                  int64
        dtypes: float64(1), int64(13)
        memory usage: 547.0 KB
```

3. Check if there are any duplicate records present in the dataset? If yes, drop them. and Drop the columns which you feel are redundant.

```
In [6]: df.duplicated().sum()
Out[6]: 0
In [7]: | df.isnull().sum()
Out[7]: ID
                                0
         Age
                                0
         Experience
                                0
         Income
                                0
         ZIP Code
         Family
         CCAvg
                                0
         Education
         Mortgage
                                0
         Personal Loan
                                0
         Securities Account
                                0
         CD Account
                                0
         Online
                                0
                                0
         CreditCard
         dtype: int64
```

4. Display the Five Point Summary and write your key findings.

```
In [8]: df.describe(include="all")
```

Out[8]:

	ID	Age	Experience	Income	ZIP Code	Family	CCA
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5000.0000
mean	2500.500000	45.338400	20.104600	73.774200	93152.503000	2.396400	1.9379
std	1443.520003	11.463166	11.467954	46.033729	2121.852197	1.147663	1.7476
min	1.000000	23.000000	-3.000000	8.000000	9307.000000	1.000000	0.0000
25%	1250.750000	35.000000	10.000000	39.000000	91911.000000	1.000000	0.7000
50%	2500.500000	45.000000	20.000000	64.000000	93437.000000	2.000000	1.5000
75%	3750.250000	55.000000	30.000000	98.000000	94608.000000	3.000000	2.5000
max	5000.000000	67.000000	43.000000	224.000000	96651.000000	4.000000	10.0000
4							>

5. There are negative values in the variable 'Experience'. Convert them to non-negative values. (Hint:.abs function)

6. Get the target column distribution and comment on the class distribution.

```
In [12]: df['Personal Loan'].unique()
Out[12]: array([0, 1], dtype=int64)
```


7. Store the target column (i.e.Personal Loan) in the y variable and the rest of the columns in the X variable.

```
In [14]: df['CCAvg']= le.fit_transform(df['CCAvg'])
In [15]: y = df[['Personal Loan']]
X = df.drop('Personal Loan',axis = 1)
In [16]: y.shape
Out[16]: (5000, 1)
In [17]: X.shape
Out[17]: (5000, 13)
```

8. Split the dataset into two parts (i.e. 70% train and 30% test). and standardize the columns using the z-score scaling approach.

```
In [18]: |X_train,X_test,y_train,y_test = train_test_split(X,y,test_size= 0.3, random_state
In [19]: X_train = ss.fit_transform(X_train)
In [20]: X test = ss.fit transform(X test)
In [21]: X_test
Out[21]: array([[ 0.6807001 , 1.01476306, 0.94613508, ..., -0.26438635,
                  0.81083819, -0.62257857],
                [-0.5466719, 0.57924243, 0.50918846, ..., -0.26438635,
                  0.81083819, -0.62257857],
                [1.0905094, -0.98863183, -0.97643004, ..., 3.78234351,
                  0.81083819, -0.62257857],
                [1.52636009, -0.5531112, -0.53948342, ..., 3.78234351,
                  0.81083819, 1.60622298],
                [1.60448427, -1.33704833, -1.32598734, ..., -0.26438635,
                  0.81083819, -0.62257857],
                [1.36874113, 1.45028369, 1.38308169, ..., -0.26438635,
                 -1.23329169, -0.62257857]])
```

9. Train and test a Logistic Regression model to predict the likelihood of a liability customer buying personal loans. Display the train and test accuracy scores.

```
In [25]: y_test_pre = pd.DataFrame(lr.predict(X_test))
In [26]: accuracy_score(y_test,y_test_pre)
Out[26]: 0.948
```

10. Print the confusion matrix and classification report for the model

```
In [27]: confusion_matrix(y_train,y_pre)
Out[27]: array([[3127,
                          45],
                 [ 123,
                         205]], dtype=int64)
In [28]: confusion_matrix(y_test,y_test_pre)
Out[28]: array([[1326,
                          22],
                          96]], dtype=int64)
                 [ 56,
         classification_report(y_train,y_pre)
In [29]:
Out[29]:
                         precision
                                       recall f1-score
                                                           support\n\n
                                                                                 0
         0.96
                    0.99
                              0.97
                                         3172\n
                                                           1
                                                                   0.82
                                                                             0.62
                                                                                       0.
                                                                   0.95
                                                                             3500\n
         71
                   328\n\n
                              accuracy
                                                                                       mac
         ro avg
                       0.89
                                 0.81
                                            0.84
                                                      3500\nweighted avg
                                                                                0.95
         0.95
                    0.95
                              3500\n'
In [30]:
         classification_report(y_test,y_test_pre)
Out[30]:
                                       recall f1-score
                         precision
                                                           support\n\n
                                                                                 0
         0.96
                    0.98
                              0.97
                                         1348\n
                                                          1
                                                                   0.81
                                                                             0.63
                                                                                       0.
         71
                                                                   0.95
                                                                             1500\n
                   152\n\n
                              accuracy
                                                                                       mac
                                            0.84
                                                                                0.94
         ro avg
                       0.89
                                 0.81
                                                      1500\nweighted avg
         0.95
                    0.95
                              1500\n'
```