

Generalized Linear Models (GLMs) with R

An Online Course Presented by Geoffrey S. Hubona

What Are GLMs?

- Linear models (e.g. anova, manova, mancova, regression) have response variables (or more specifically, error terms) that are 'well behaved':
 - \circ Constant variance at different mean levels of y.
 - Normally distributed error terms.
- Certain kinds of response variables invariably fail to achieve these lofty goals:
 - Count data expressed as proportions (e.g. logistic regressions).
 - Count data that are not proportions (e.g. log-linear count models).
 - Binary response variables (e.g. dead or alive).
 - Data on time to some event (e.g. time data with gamma errors)

Three Properties of GLMs: (1) Error Structure

- Non-normal may mean errors that are: skewed;
 kurtotic; strictly bounded (as in proportions); cannot lead to negative fitted values (as in counts).
- GLMs allow the specification of different error distributions:
 - Poisson errors, useful with count data;
 - o Binomial errors, useful with data on proportions;
 - Gamma errors, useful when there is a constant coefficient of variation; and
 - Exponential errors, typical in time-to-death (survival analysis).
- In the **error structure** is defined by means of the **family** directive in the model formula, e.g. **family** = **poisson** Or **family** = **binomial**.

Error Structures

Three Properties of GLMs: (2) Linear Predictor

- The structure of the model relates each observed y value to a predicted value.
 - Predicted value is obtained by transforming the value emerging from the linear predictor.
- The linear predictor, η (eta), is the linear sum of the effects of one or more explanatory variables, x_j :

$$\eta_i = \sum_{j=1}^p x_{ij} \beta_j$$

- Where the x_s are the values of the ρ explanatory variables, and the β_s are the (usually) unknown parameters to be estimated.
- Right-hand side of equation is called the linear structure.

Three Properties of GLMs: (3) Link Function

- The **link function** relates the mean value of y to its linear predictor: $\eta = g(\mu)$
- The linear predictor, η , emerges from the linear model as the sum of the terms for each of the ρ parameters.
- This is not the value of y (except with the *identity link*), it is the *transformed value* of y by the link function such that the predicted value of y is obtained by applying the *inverse link function* to η . Canonical link functions:

Error	Canonical Link
normal	identity
poisson	log
Binomial	logit
Gamma	reciprocal

More on Link Functions

- The most appropriate link function to use is the one that produces the *minimum residual deviance*.
- Another important criterion for a link function is that the fitted values have reasonable bounds:
 - Counts > 0 (use a log link)
 - 0 < proportions < 1 (use a logit link).
- Both proportion data (with binomial errors) and count data (with poisson errors) have at least three important properties:
 - Possible data values are bounded (see above);
 - Variance is non-constant (humped or increasing with mean);
 - Errors are non-normal.

Count Data

- There are at least two ways to estimate count data as the response variable using linear models:
- Count data as *proportions*, where we know the number doing some particular thing, but we also know the number *not* doing that thing.
 - We assume that proportions have binomial errors and we use a logistic function (the logit link) to model the 'connection' between the response variable and the independent variables.
- Count data as frequencies, where we count how many times something happened, but we have no way of knowing how often it did not happen.
 - We assume that frequencies have poisson errors and use a logarithmic function (the log link) to model the 'connection'.

Proportion Data

- Proportion data (both p and q) is strictly bounded between zero and one.
 - So if we used regression or ANCOVA, the fitted model could predict negative values or values > 1.
- The **logistic** curve is often used to describe proportion data with p representing the proportion of individuals who respond in a certain way ("successes") and 1-p (or proportion q) representing the proportion who respond in other ways ("failures").
- A third variable that is relevant is the size of the sample, n, from which p was estimated which represents the number of attempts.

Binomial Errors

- In probability theory and statistics, the binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields a probability of success p.
- The *variance* for the binomial distribution is not constant with mean np is: $s^2 = np(1-p)$ or $s^2 = npq$ where q is the probability of failure.

Proportions: Binomial Distribution

Proportions and Odds

- What is the distinction between the *probability* of some event occurring and the *odds* of the event?
- A reasonably good horse who wins 2/3 of the races s/he enters: p(winning) = 0.6667. The probability is the ratio:
 - # successful trials / # total trials.
- However, a bookmaker would tell you that the odds of the horse winning are 2 to 1. The odds are:
 - # successful trials / # unsuccessful trials.

How does this Relate To Binomial Distributions?

• We said the **odds** is the probability of success p divided by the probability of failure q:

$$\frac{p}{q} = \frac{e^{a+bx}}{1+e^{a+bx}} \left[1 - \frac{e^{a+bx}}{1+e^{a+bx}} \right]^{-1} = e^{a+bx}$$

- Taking natural logs and recalling that $\ln(e^x) = x$ leaves us with: $\ln(p/q) = a + bx$
- This yields a **linear predictor**, a+bx not for p but for the **logit** transformation of p, namely $\ln(p/q)$.
 - o In ${\bf R}$, the logit is the link function relating the linear predictor to the value of p .

Why Not Perform a Linear Regression?

- Instead of doing implicit transformations from y ot the x variables through a link function, why not simply do a linear regression of $\ln(p/q)$ against the explanatory x variable?
 - 1) R allows for the non-constant binomial variance
 - 2) R knows and deals with the fact that logits for p's near 0 or 1 are infinite.
 - 3) R uses weighted regression to allow for differences between the sample sizes.

Binomial Models and Heart Disease

- Early diagnosis of heart disease is critical.
- One diagnostic aid is the level of enzyme creatinine kinase (CK) in the blood.
- Study (Smith, 1967) looked at level of CK for 360 patients thought to have had a heart attack.
- Data is on the next slide.
- Can we estimate the probability that a patient has had a heart attack using CK level?

Binomial Models and Heart Disease

CK Value	Patients with Heart Attack	Patients without Heart Attack
20	2	88
60	13	26
100	30	8
140	30	5
180	21	0
220	19	1
260	18	1
300	13	1
340	19	1
380	15	0
420	7	0
460	8	0

15

Modeling the GLM in R Script


```
> heart <- read.csv("c:/temp/heart.csv",header=T)</pre>
> heart # to view the entire data set
   ck ha ok
  20 2 88
2 60 13 26
3 100 30 8
4
  140 30 5
5 180 21 0
6 220 19 1
7 260 18 1
8 300 13 1
9
  340 19 1
10
  380 15 0
11 420 7 0
12 460 8
```

Calculate Proportions By CK Level


```
> p <- heart$ha / (heart$ha+heart$ok)
> p
[1] 0.02222 0.33333 0.78947 0.85714 1.00000 0.95000
[7] 0.94737 0.92857 0.95000 1.00000 1.00000
```

Proportions of patients who suffered a heart attack at each CK level

Plot Proportions By CK Level

> plot(heart\$ck,p,xlab="Creatinine kinase level",
 ylab="Proportion Heart Attack")

Proportions By CK Level

Expected value of proportions can be specified as:

$$E(p_i) = \frac{e^{\beta_0 + \beta_1 Xi}}{1 + e^{\beta_0 + \beta_1 Xi}} \tag{1}$$

So expected number of heart attack sufferers is:

$$\mu_{i} \equiv E(p_{i}N_{i}) = \frac{e^{\beta_{0} + \beta_{1}\chi_{i}}}{1 + e^{\beta_{0} + \beta_{1}\chi_{i}}}N_{i}$$
(2)

• Where N_i is total number of patients at each CK level.

Proportions By CK Level

So the model is non-linear in its parameters:

$$g(\mu_i) = \log\left(\frac{\mu_i}{Ni - \mu_i}\right) \tag{3}$$

But when we apply the 'logit' link:

$$g(\mu_i) = \beta_0 + \beta_1 x_i \tag{4}$$

The right hand side is linear in its model parameters.

Binomial Model Specification in R

Two ways to specify a binomial model in R:

- The response variable can be observed proportion of successful binomial trials:
 - Must supply number of trials in weights argument to glm.
 For binary data, no weights vector is needed as 1 is the default weights.
- Response variable can be supplied as a two column array, such that the first column indicates the number of binomial 'successes' and second column provides the number of binomial 'failures'.

Let's illustrate the second one now!

Binomial Model Specification in R

- We supply two arrays on the r.h.s. of the model formula using the R function cbind()
- Here is a glm call which will fit the heart attack model:

Residual Plots

Some departure from straight line is expected

Leverage

Predicted values

Plot of Predicted Heart Attack by CK Level

- > plot(heart\$ck,p,xlab="Creatinine Kinase level"
 ylab="Proportion Heart Attack")
- > lines(heart\$ck,fitted(mod.0))

Ccreatinise kinase level

Cubic Linear Predictor

Residual Plots for Second Cubic Model

26

Second Plot of Predicted Heart Attack by CK Level

- > par(mfrow=c(1,1))
- > plot(heart\$ck,p,xlab="Creatinine Kinase level"
 ylab="Proportion Heart Attack")
- > lines(heart\$ck,fitted(mod.2))

Creatinine kinase level

Second Plot of Predicted Heart Attack by CK Level


```
> par(mfrow=c(1,1))
> plot(heart$ck,p,xlab="Creatinine Kinase level"
  ylab="Proportion Heart Attack")
> lines(heart$ck,fitted(mod.2))
> anova(mod.o,mod.2,test="Chisq")
Analysis of Deviance Table
Model 1: cbind(ha, ok) ~ ck
Model 2: cbind(ha, ok) \sim ck + I(ck<sup>2</sup>) + I(ck<sup>3</sup>)
  Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1
         10 36.929
          8 4.252 2 32.676 8.025e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
'.' 0.1 ' ' 1
```

Count Data as Frequencies: Poisson

• In probability theory and statistics, the *Poisson* distribution is a discrete probability distribution that expresses the probability of a given number of independent events occurring in a fixed interval of time and/or space and with a known average rate of occurrence.

Count Data as Frequencies: Poisson

• If λ is the expected number of occurrences in a given interval k, then the probability that there are exactly k occurrences is equal to:

$$f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

where:

e is the base of the natural logarithm (e = 2.7182...)

k is the number of occurrences of an event

k! is the factorial of

 λ is a positive real number

Poisson Errors

- Linear regression methods (assume constant variance and normal errors) are not appropriate for count data:
 - Possible to predict negative counts with linear regression
 - Variance of response variable increases with the mean
 - Errors will not be normally distributed
 - Zeros are a headache in transformations

Counts as Frequencies:
Poisson Distribution

A Poisson Regression Epidemic Model


```
> y < -c(12,14,33,50,67,74,123,141,165,204,253,246,240)
```

- > t <- 1:13
- > plot(t+1980,y,xlab="Year",ylab="New AIDS
 Cases",ylim=c(0,280))

Year

Data provided by Venables and Ripley, 2002

AIDS Epidemic Poisson Regression Model

• Model assumes that number of new cases per year:

$$\mu_i = \gamma \exp(\delta t_i) \tag{5}$$

- Where δ and γ are unknown, and t_i is time in years since the start of the data.
- A log link turns this into a GLM:

$$\log(\mu_i) = \log(\gamma) + \delta t_i = \beta_0 + t_i \beta_1 \quad (6)$$

• And we assume that $y_i \sim Poi(\mu_i)$ where y_i is the observed number of new cases.

Fit a Poisson Model


```
> m0 <- glm(y~t,poisson)</pre>
> m0
Call: glm(formula = y \sim t, family = poisson)
                                   Deviance too high for random
Coefficients:
                                      variable with 11 d.o.f.
(Intercept)
                          t
     3.1406
                    0.2021
Degrees of Freedom: 12 Total/ (i.e. Null);
Residual
                         872/2
Null Deviance:
                                  AIC: 166.4
Residual Deviance: 80.69
                                                   AIC too high
```

Residual Plots for Poisson AIDS Model

- > par(mfrow=c(2,2))
- > plot (m0)

Add a Quadratic (Time) Term to Poisson AIDS Model

We add a quadratic term to the model:

$$\mu_i = \exp(\beta_0 + \beta_1 t_i + \beta_2 t_i^2) \tag{7}$$

- This model allows situations other than the unrestricted spread of the disease to be represented.
- We fit the model and check it on the following slide.

Fit the Quadratic Poisson Model

Number of Fisher Scoring iterations: 4

```
> m1 <- glm(y~t+I(t^2)) poisson)
> plot(m1)
                                         Time squared
> summary (m1)
Call:
glm(formula = y \sim t + I(t^2), family = poisson)
Deviance Residuals:
                                                   Reasonable
                                3Q
    Min
               10 Median
                                            Max
                                                   deviance for
-1.45903 -0.64491 0.08927 0.67117 1.54596
                                                 random variable
Coefficients:
                                                   with 10 d.o.f.
            Estimate Std. Error z value Pr(>|\(\bilde{z}\)|)
(Intercept) 1.901459 0.186877 10.175 </e>
    0.556003 0.045780 12.145 /< 2e-16 ***
I(t^2) -0.021346 0.002659 -8.029 9.82e-16 ***
Signif. codes: 0 '***' 0.001 '**/ 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 872.2058 on 12 degrees of freedom
Residual deviance: 9.2402 on 10 degrees of freedom
AIC: 96.924 ←
                                            AIC much reduced
```

Residual Plots for Quadratic AIDS Model

Predicted values

QQ line is straighter

Leverage

What Does Coefficient β₁ Represent ?

I(t^2)


```
First Model
Call: glm(formula = y \sim t, family = poisson)
Coefficients:
                                      (Exponentiated) Uncon-
                                      trolled Spread of AIDS
(Intercept)
                   0.2021
     3.1406
<u>Second Model</u> (Quadratic termed added)
Call: glm(formula = y \sim t + /I(t^2), family = poisson)
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
              1 901459 0.186877 10.175 < 2e-16 ***
(Intercept)
              0.556003) 0.045780 12.145 < 2e-16
                                                      ***
t
```

 β_1 is greater in the more complex, but better, model

-0.021346 0.002659 -8.029 9.82e-16 ***

Point Estimate of Confidence Interval for β₁


```
> beta.1 <- summary(m1)$coefficients[2,]
> ci <- c(beta.1[1]-
    1.96*beta.1[2],beta.1[1]+1.96*beta.1[2])
> ci # print 95% CI for beta_1
> ci
    Estimate    Estimate
0.4662750 0.6457316
```

95% Confidence Interval for β_1 in Model #2

Estimate of Confidence Interval for β₁ Over Time


```
> new.t <- seq(1,13,length=100)
> fv <- predict(m1,data.frame(t=new.t),se=TRUE)
> plot(t+1980,y,xlab="Year",ylab="New AIDS
    Cases",ylim=c(0,280))
> lines(new.t+1980,exp(fv$fit))
> lines(new.t+1980,exp(fv$fit+2*fv$se.fit),lty=2)
> lines(new.t+1980,exp(fv$fit-2*fv$se.fit),lty=2)
```

Confidence Interval At Each Point in Time

Year