Crecimiento y caracterización de láminas delgadas con memoria de forma de alta temperatura Ni-Ti-Zr mediante sputtering.

Fernando Del Fedele

March 15, 2021

Contenido

- Introducción
 - Objetivo
 - Materiales con memoria de forma
 - Materiales con memoria de forma de alta temperatura
 - Transformación martensítica
- 2 Técnicas experimentales
 - Deposición por magnetrón sputtering
 - Microscopía electrónica de barrido
 - Difracción por rayos X
 - Microscopía electrónica de transmisión
 - Calorimetría diferencial de barrido
 - Resistividad por el método de cuatro puntas
- Resultados obtenidos
 - Deposición de las láminas

Materiales con memoria de forma

Las aleaciones con memoria de forma, de aquí en adelante nombradas como **SMA** (del inglés, **S**hape **M**emory **A**lloys) son aleaciones que pueden recuperar su forma original al ser calentadas luego de haber sufrido una deformación aparentemente plástica Entre sus propiedades, se encuentran:

- Superelasticidad
- Alta capacidad de amortiguamiento
- Alta relación entre la potencia entregada y su peso

Las aplicaciones actuales de los SMA están limitadas por debajo de los $100^{\circ}C$. Los materiales con memoria de forma de alta temperatura, abreviados como **HTSMA** (del inglés, **H**igh **T**emperature **S**hape **M**emory **A**lloys) son aquellos en los cuales la transformación martensítica sucede a $T>100^{\circ}C$. Lo más común a es a NiTi agregarle Pd o Pt en detrimento del Ti, pero recientemente se encontró que Hf o Zr tienen efectos aún mayores en la temperatura a menor costo relativo.

Transformación martensítica

La causa del efecto de memoria de forma es la transformación martensítica. Sus propiedades son

- Transformación de estado sólido
- Primer orden
- Sin difusión atómica
- Desplazamiento de los átomos del orden de 1 Å
- Los átomos mantienen relación con sus vecinos cercanos

La fase de menor temperatura, B19' pasa a la fase B2, que tiene mayor simetría al aumentar la temperatura. La fase recordada es aquella que está en la fase B2.

Termodinámica de la transformación

Termo de la transformación

Deposición por magnetrón sputtering Microscopía electrónica de barrido Difracción por rayos X Microscopía electrónica de transmisión

Deposición por magnetrón sputtering

Esquema magentrón.

(d) Magnetrones empleados durante las deposiciones.

Deposición por magnetrón sputtering Microscopía electrónica de barrido Difracción por rayos X Microscopía electrónica de transmisión Calorimetría diferencial de barrido Resistividad por el método de cuatro puntas

Figure: Esquema microscopio electrónico de barrido.

Figure: Esquema del dispositivo tipo Bragg-Brentano.

Figure: Esquema del tubo de un microscopio electrónico de transmisión

Introducción Técnicas experimentales Resultados obtenidos Deposición por magnetrón sputtering Microscopía electrónica de barrido Difracción por rayos X Microscopía electrónica de transmisión Calorimetría diferencial de barrido Resistividad por el método de cuatro puntas

Figure: Esquema del DSC empleado.

Figure: Esquema del sistema empleado para el método de resistividad por cuatro puntas.

	Primera Deposición 2	Tercera Deposición
Ti[%at]	30,8 ± 0,6	$33,2 \pm 0,5$
Ni[%at]	50,4 ± 0,2	46 ± 1
Zr[%at]	$18,9 \pm 0,5$	20.8 ± 0.4

Table: Composición determinada para ambas deposiciones.

Figure: Patrones de difracción para las muestras pobres en Ni.

Figure: Patrones de difracción para las muestras pobres en Ni.