STA461: Introduction to ANOVA

Lynn Lin

August 31, 2018

Completely randomized designs

- A design is the rule that determines the assignment of the experimental units to treatments
- A Completely Randomized Design (CRD) is a design in which a fixed number (ν) of treatments are assigned to the experiemtnal units completely at random, subject only to the number of observations to be taken on each treatment
- CRD is the simplest possible design

Model for a CRD

Example: Fertilizer

- Setup: Goal is to compare the effect of 3 kinds of fertilizer: F_1 , F_2 , and F_3 on the height of plants in a greenhouse
- We have 24 plots for the experiment, and randomly assign 6 plots to F_1 , F_2 , F_3 and no fertilizer, respectively. I.e., $r_1 = r_2 = r_3 = r_0 = 6$
- The plots with no fertilizer are called the control group
- The effects model is

$$Y_{it} = \mu + au_i + \epsilon_{it}, i = 0, 1, 2, 3; t = 1, ..., 6$$

$$\epsilon_{it} \sim \textit{N}(0, \sigma^2), \textit{iid}$$

• $\mu=$ 24 cm; $\sigma^2=$ 0.5 cm; $\tau_0=-$ 3 cm; $\tau_1=$ 4 cm; $\tau_2=$ 1.5 cm; $\tau_3=$ 3 cm;

Example: Fertilizer

- Q1: What is the distribution of Y_{11} : the height of the first plant given F_1 ?
- Q2: What is the distribution of Y_{01}
- Q3: What is the expected difference in height between a plant getting F_3 and a plant in the control group?

Estimation of Parameters

Common approach in data analysis

- Collect data $\{y_{it}\}$
- ② Specify a statistical model for the data: $y_{it} \sim f_y(y|\theta)$
- **3** Estimate model parameters θ using data $\{y_{it}\}$: Parameter estimates are functions of the data, e.g., $\hat{\sigma}^2 = g(\{y_{it}\})$
- Conduct hypothesis tests on the estimates, e.g.,

$$H_0: \tau_1 = \tau_2 \text{ vs. } H_A: \tau_1 \neq \tau_2$$

Interpret the results of 3 and 4

Estimation of parameters

- Sometimes we are interested in the estimates of parameters by themselves, e.g., $\hat{\sigma}^2$ tells us something about the magnitude of the random variability around the treatment
- Often we are interested not in a parameter itself, but rather in a function of parameters, e.g., $\hat{\mu}+\hat{\tau}_i$ is the mean response of the ith treatment
- It is possible to obtain many different estimators of a parameter or a function of parameters
- The field of statistics has spent considerable time thinking about "good" approaches to estimating parameters. We often compare estimators by considering their properties as random variables

Example

- Let $Y_t = \mu + \epsilon_t$, t = 1, ..., 10, $\epsilon_t \sim N(0, 1)$, iid
- Estimate μ , i.e., we need to find $\hat{\mu}$ which is a function of Y_1, \ldots, Y_{10}

Estimation of parameters

- Estimability
- Least squares estimation