• Supplementary File •

Asymptotic Behavior of Least Squares Estimator for Nonlinear Autoregressive Models

Zhaobo Liu¹ & Chanying Li^{2,3*}

¹College of Computer Science and Software Engineering of Shenzhen University, Shenzhen 518060, P. R. China;

²Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China;

³School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Appendix A Proofs of Theorems 1-2

It is obvious that to show Theorems 1-2, it suffices to prove

Proposition 1. Under Assumptions A1' and A2, let θ be a random variable independent of $\{w_t\}_{t\geqslant 1}$. Then, there is a constant $M_{\phi}>0$ depending only on ϕ such that for any $C_{\phi}>M_{\phi}$ and M,K>0,

$$\liminf_{t\to +\infty} \frac{\lambda_{\min}(t+1)}{N_t(M)} > 0 \quad \text{a.s. on } \Omega(M) \cap \{\|\theta\| \leqslant K\}. \tag{A1}$$

Appendix A.1 Proof of Proposition 1

Following the idea of [2], for every $x \in \mathbb{R}^m$ with ||x|| = 1, we construct a set $\mathcal{S} \triangleq \prod_{i=1}^n \bigcup_{j=1}^{p_i} S_i^j(q)$ with disjoint open intervals $\{S_i^j(q): j=1,\ldots,p_i\}$ such that

$$\ell\left(\left\{y \in \mathcal{S} : |\phi^{\tau}(y)x| > 0\right\}\right) > 0 \quad \text{and} \quad \overline{\mathcal{S}} \subset \prod_{i=1}^{n} E_{i}.$$
 (A2)

Define

$$U_x(\delta) \triangleq \{y : |\phi^{\tau}(y)x| > \delta\} \cap \mathcal{S}, \quad \delta > 0.$$
(A3)

Next, let $\{d_k\}_{k=1}^{2n}$ be a sequence of numbers and for $k \in [n+1,2n]$ define

$$\varsigma_k \stackrel{\triangle}{=} d_k - x^{\tau} \phi(d_{k-1}, \dots, d_{k-n}), \quad x \in \mathbb{R}^m.$$
(A4)

Denote $y = (d_n, \dots, d_1)^{\tau}$ and $\varsigma = (\varsigma_{2n}, \dots, \varsigma_{n+1})^{\tau}$. Evidently, (A4) implies that there is a function $g : \mathbb{R}^{2n+m} \to \mathbb{R}^n$ such that

$$(d_{2n}, \dots, d_{n+1})^{\tau} = g(\varsigma, y, x).$$
 (A5)

We take δ in (A3) according to the following lemma.

Lemma 1. Under Assumption A2, the following two statements hold:

(i) given $y \in \mathbb{R}^n$, $x \in \mathbb{R}^m$ and a box $O = \prod_{i=1}^n I_i$ with $\{I_i\}_{i=1}^n$ being some intervals, then

$$\ell(\{\varsigma: g(\varsigma, y, x) \in O\}) = \ell(O); \tag{A6}$$

(ii) for any constants M, K > 0, there is a $\delta^* > 0$ such that $\inf_{\|z\|=1, \|y\| \leqslant M, \|x\| \leqslant K} \ell(\{\varsigma: |\phi^\tau(g(\varsigma,y,x))z| > \delta^*, g(\varsigma,y,x) \in \mathcal{S}\}) > 0$. Proof. (i) Note that in view of (A4), $d_k = \varsigma_k + o_{k-1}, k = n+1, \ldots, 2n$, where $o_{k-1} \in \mathbb{R}$ is a point determined by ς_{k-1}, y and x (for $k = n+1, \varsigma_n$ does not exist and o_n depends only on y and x). So, $\{\varsigma: \varsigma + o_{k-1} \in I_k\} = I_k - o_{k-1}$ is an interval with length $|I_k|$. By the definition of the Lebesgue measure in \mathbb{R}^n , it is straightforward that $\ell(\{\varsigma: g(\varsigma, y, x) \in O\}) = \prod_{k=1}^n |I_k| = \ell(O)$. (ii) Suppose (ii) is false. Then for each integer $k \geqslant 1$, we can take some (z(k), y(k), x(k)) with $\|z(k)\| = 1$ in $\overline{B}(0, 1) \times \overline{B}(0, M) \times \overline{B}(0, K) \subset \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^m$ such that

$$\ell(\{\varsigma:|\phi^{\tau}(g(\varsigma,y(k),x(k)))z(k)|>\frac{1}{k},g(\varsigma,y(k),x(k))\in\mathcal{S}\})<\frac{1}{k}. \tag{A7}$$

Hence there is a subsequence $\{z(k_r),y(k_r),x(k_r)\}_{r\geqslant 1}$ and an accumulation point (z^*,y^*,x^*) satisfying

$$\lim_{r \to \infty} (x(k_r), y(k_r), z(k_r)) = (x^*, y^*, z^*). \tag{A8}$$

^{*} Corresponding author (email: cyli@amss.ac.cn)

Clearly, $||z^*|| = 1$, $||y^*|| \le M$, $||x^*|| \le K$. If $\ell(\{\varsigma: |\phi^\tau(g(\varsigma, y^*, x^*))z^*| > 0, g(\varsigma, y^*, x^*) \in \mathcal{S}\}) = 0$, then $\phi^\tau(y)z^* \equiv 0$ for all $y \in \mathcal{S}$ due to (A4), (A5) and the continuity of ϕ . It contradicts to (A2). Consequently, for any $\{\mathcal{S}_k\}_{k\geqslant 1}$ satisfying $\mathcal{S}_k \subset \mathcal{S}_{k+1}$ and $\lim_{k\to+\infty} S_k = S$, we have

$$\lim_{k \to +\infty} \ell(\{\varsigma : |\phi^{\tau}(g(\varsigma, y^*, x^*))z^*| > \frac{1}{k}, g(\varsigma, y^*, x^*) \in \mathcal{S}_k\})$$

$$= \ell(\{\varsigma : |\phi^{\tau}(g(\varsigma, y^*, x^*))z^*| > 0, g(\varsigma, y^*, x^*) \in \mathcal{S}\}) > 0.$$

Therefore, for some $h \ge 1$.

$$\ell(\{\varsigma: |\phi^{\tau}(g(\varsigma, y^*, x^*))z^*| > \frac{1}{h}, g(\varsigma, y^*, x^*) \in \mathcal{S}_h\}) > 0.$$
(A9)

Note that all points $\{y(k_r), x(k_r)\}_{r\geqslant 1}$ are restricted to $\overline{B(0,M)}\times \overline{B(0,K)}$, (A4) and (A5) then indicate that there is a compact set O' such that $\{\varsigma: g(\varsigma, y(k_r), x(k_r)) \in \mathcal{S}\} \subset O'$. Further, g and ϕ are continuous due to (A4), (A5) and Assumption A2(i), hence (A8) shows $\lim_{r\to\infty}\sup_{\varsigma\in O'}\|g(\varsigma, y^*, x^*) - g(\varsigma, y(k_r), x(k_r))\| = 0$ and $\lim_{r\to\infty}\sup_{\varsigma\in O'}\|\phi^{\tau}(g(\varsigma, y^*, x))z^* - \phi^{\tau}(g(\varsigma, y(k_r), x(k_r)))z(k_r)\| = 0$.

As a consequence, for all sufficiently large r,

$$\ell(\{\varsigma: |\phi^{\tau}(g(\varsigma, y^*, x^*))z^*| > \frac{1}{h}, g(\varsigma, y^*, x^*) \in \mathcal{S}_h\})$$

$$< \ell(\{\varsigma: |\phi^{\tau}(g(\varsigma, y(k_r), x(k_r)))z(k_r)| > \frac{1}{k_r}, g(\varsigma, y(k_r), x(k_r)) \in \mathcal{S}\}) < \frac{1}{k_r},$$

which contradicts to (A9) by letting $r \to +\infty$. Lemma 1 follows.

Remark 1. In Lemma 1, Assumption A2 can be weaken to Assumption A2' when n = 1. Statement (i) is trivial. For (ii), note that (A2) still holds by Assumption A2'. But, (A4), (A7) and (A9) yield that for all sufficiently large r,

$$\frac{1}{k_r} > \ell(\{\varsigma : |\phi^{\tau}(g(\varsigma, y(k_r), x(k_r)))z(k_r)| > \frac{1}{k_r}, g(\varsigma, y(k_r), x(k_r)) \in \mathcal{S}\})
= \ell(\{y : |\phi^{\tau}(y)z(k_r)| > \frac{1}{k}, y \in \mathcal{S}\}) \geqslant \ell(\{y \in \mathcal{S} : |\phi^{\tau}(y)z^*| > \frac{1}{k} + \frac{1}{h}\}),$$

where $\{z(k_r), y(k_r), x(k_r)\}_{r \ge 1}$ is defined in the proof of Lemma 1. Letting $r \to +\infty$ in the above inequality infers

$$0 \, \geqslant \, \lim_{r \to +\infty} \ell(\{y \in \mathcal{S} : |\phi^{\tau}(y)z^*| > \frac{1}{k_r} + \frac{1}{h}\}) = \ell(\{y \in \mathcal{S} : |\phi^{\tau}(y)z^*| > \frac{1}{h}\}),$$

which contradicts to (A9).

Fix two positive numbers M and K and let δ^* be constructed in Lemma 1(ii). Now, for every unit vector $x \in \mathbb{R}^m$, define $U_x \triangleq U_x(\delta^*).$

For the next lemma, fix a closed box $O = \prod_{i=1}^n I_i \in \mathbb{R}^n$ and a positive integer r. Equally divide each I_i into r closed intervals $\{I_{i,j}\}_{j=1}^r$ so that $\operatorname{int}(I_{i,j}) \cap \operatorname{int}(I_{i,j'}) = \emptyset$ if $j \neq j'$. We thus obtain r^n small closed boxes $\prod_{i=1}^n \{I_{i,j}\}_{j=1}^r$, which are denoted by $\mathcal{T}(O,r)$. It is easy to see that for any distinct boxes $U,U'\in\mathcal{T}(O,r)$, $\mathrm{int}(U)\cap\mathrm{int}(U')=\emptyset$. Define

$$\mathcal{T}_{\delta}(O, r) \triangleq \left\{ U \in \mathcal{T}(O, r) : \mathcal{B}(\delta) \cap \overline{\mathcal{S}} \cap U \neq \emptyset \right\}, \tag{A10}$$

where $\mathcal{B}(\delta) \triangleq \partial(\{y : \phi^{\tau}(y)x > \delta\})$. Let $\mathcal{K}_{\delta}(O, x, r) \triangleq |\mathcal{T}_{\delta}(O, r)|$.

Lemma 2. There is a constant C>0 such that for any closed box $O=\prod_{i=1}^n I_i$, non-zero vector $x\in\mathbb{R}^m$, $\delta\in\mathbb{R}$ and integer $r \geqslant 1$,

$$\mathcal{K}_{\delta}(O, x, r) \leqslant Cr^{n-1}. \tag{A11}$$

Denote $A(g) \triangleq \{x : g(x) = 0\}$ for function g. For $i \in [1, n]$, let $(\phi^{(i)})' = (f'_{i1}, \dots, f'_{im_i})^{\tau}$ and

$$\begin{cases}
K_i = \operatorname{int}(A(x_i^{\tau}(\phi^{(i)})')) \cap \left(\bigcup_{j=1}^{p_i} \overline{S_i^j(q)}\right) \\
L_i = (A(x_i^{\tau}(\phi^{(i)})') \cap \left(\bigcup_{j=1}^{p_i} \overline{S_i^j(q)}\right) \setminus K_i
\end{cases}$$
(A12)

We prove (A11) by induction. For n=1, let $O=I_1$ be a closed box. By [2, Lemma B.10], it is easy to check that

$$\left| \mathcal{B}(\delta) \cap \bigcup_{j=1}^{p_1} S_1^j(q) \right| \leqslant 2p_1(|L_1| + 2) < +\infty. \tag{A13}$$

Moreover, since $\mathcal{B}(\delta) \cap (\bigcup_{j=1}^{p_1} \overline{S_1^j(q)}) \subset \mathcal{B}(\delta) \cap (\bigcup_{j=1}^{p_1} S_1^j(q)) \cup \partial (\bigcup_{j=1}^{p_1} S_1^j(q))$, it follows that $\mathcal{K}_{\delta}(O, x, r) \leqslant 2|\mathcal{B}(\delta) \cap (\bigcup_{j=1}^{p_1} \overline{S_1^j(q)})| \leqslant 4p_1(|L_1|+2)+4p_1$. Hence, (A11) is true for n=1 by taking $C=4p_1(|L_1|+2)+4p_1$. Now, suppose (A11) holds for n=k with some $k\geqslant 1$. Let us consider the case where n=k+1. Take a closed box $O=\prod_{i=1}^{k+1} I_i \in \mathbb{R}^{k+1}$, and let $\mathcal{T}(O,r)$ be the set of the r^{k+1} disjoint refined boxes. These boxes correspond to two sets

$$\mathcal{T}^1 = \prod_{i=1}^k \{I_{i,j}\}_{j=1}^r$$
 and $\mathcal{T}^2 = \{I_{k+1,j}\}_{j=1}^r$.

Write vector $x = \text{col}\{x_1, \dots, x_{k+1}\} \neq \mathbf{0}$. First, assume there is an index $l \in [1, k+1]$ such that $x_l = \mathbf{0}$. Without loss of generality, let l = k+1, then

$$\mathcal{B}(\delta) \cap \prod_{i=1}^{k+1} \bigcup_{j=1}^{p_i} \overline{S_i^j(q)} \cap O$$

$$\subset \left(\partial \left(\left\{ z \in \mathbb{R}^k : \sum_{i=1}^k x_i \phi^{(i)}(z_i) > \delta \right\} \right) \cap \prod_{i=1}^k \bigcup_{i=1}^{p_i} \overline{S_i^j(q)} \cap \prod_{i=1}^k I_i \right) \times I_{k+1}. \tag{A14}$$

where $z = (z_1, \ldots, z_k)^{\tau} \in \mathbb{R}^k$. By applying the induction assumption for n = k and for the refined boxes in \mathcal{T}^1 , there is a constant C > 0 such that $\mathcal{K}_{\delta}\left(\prod_{i=1}^k I_i, \operatorname{col}\{x_1, \ldots, x_k\}, r\right) \leqslant Cr^{k-1}$, which, together with (A14) and $\mathcal{T}(O, a) = \mathcal{T}^1 \times \mathcal{T}^2$, yields $\mathcal{K}_{\delta}(O, x, r) \leqslant Cr^k$. This is exactly (A11) for n = k + 1.

So, let $x_i \neq \mathbf{0}$ for all $i \in [1, k+1]$. For any $B \in \mathcal{T}^1$, define set

$$Z(B) \triangleq \{z_{k+1} \in I_{k+1} : (B \times z_{k+1}) \cap \mathcal{B}(\delta) \cap \prod_{i=1}^{k+1} \bigcup_{j=1}^{p_i} \overline{S_i^j(q)} \neq \emptyset\}.$$

Observe that Z(B) is a closed set, then $\partial Z(B) \subset Z(B)$. Define

$$\left\{ \begin{array}{l} \mathcal{Z}_1(B) \triangleq \{I_{k+1,j} \in \mathcal{T}^2 : Z(B) \cap I_{k+1,j} \neq \emptyset\} \\ \mathcal{Z}_2(B) \triangleq \{I_{k+1,j} \in \mathcal{T}^2 : \partial Z(B) \cap I_{k+1,j} \neq \emptyset\} \end{array} \right.$$

Since any interval in $\mathcal{Z}_1(B) \setminus \mathcal{Z}_2(B)$ must be contained in Z(B).

$$|\mathcal{Z}_1(B)| - |\mathcal{Z}_2(B)| = |\mathcal{Z}_1(B) \setminus \mathcal{Z}_2(B)| \leqslant \frac{r}{|I_{k+1}|} \ell(Z(B)).$$

At the same time, $\sum_{B\in\mathcal{T}^1}\ell(Z(B))=\sum_{B\in\mathcal{T}^1}\int_{\mathbb{R}}I_{Z(B)}dz_{k+1}=\int_{I_{k+1}}\sum_{B\in\mathcal{T}^1}I_{Z(B)}dz_{k+1}$, therefore

$$\mathcal{K}_{\delta}(O, x, r) = \sum_{B \in \mathcal{T}^1} |\mathcal{Z}_1(B)| \leqslant \frac{r}{|I_{k+1}|} \int_{I_{k+1}} \sum_{B \in \mathcal{T}^1} I_{Z(B)} dz_{k+1} + \sum_{B \in \mathcal{T}^1} |\mathcal{Z}_2(B)|. \tag{A15}$$

The last step is to estimate the term in (A15). Since the argument is involved, it is included in Appendix A.2. In light of Lemmas 5 and 6, when n = k + 1, there are two constants $C_1, C_2 > 0$ depending only on ϕ such that $\mathcal{K}_{\delta}(O, x, r) \leq (C_1 + C_2) r^k$. The proof is thus completed.

By applying Lemma 2, we can find a constant $C_0 > 0$ depending only on ϕ such that

$$|\{U \in \mathcal{T}(O, r) : \partial(U_x) \cap U \neq \emptyset\}| \leqslant C_0 r^{n-1}. \tag{A16}$$

Now, we estimate the frequency of $\{Y_t\}_{t\geqslant 1}$, where $Y_i\triangleq (y_{i+n-1},\ldots,y_i)^{\tau}$, falling into U_x . For this, define a random process g_x by

$$g_x(i) \triangleq I_{\{Y_i \in U_x\}} - P(Y_i \in U_x | \mathcal{F}_{i-1}^y), \quad i \geqslant 1,$$

where $\mathcal{F}_{i-1}^y \triangleq \sigma\{\theta, y_0, \dots, y_{i-1}\}$. By modifying the proof of [2, Lemma B.12] slightly, we can obtain

Lemma 3. For any $\epsilon > 0$, there is a class \mathcal{G}_{ϵ} such that

(i) each element of \mathcal{G}_{ϵ} , denoted by g_{ϵ} , is a random series $\{g_{\epsilon}(i)\}_{i\geqslant 1}$ with the form

$$g_{\epsilon}(i) = I_{\{Y_i \in U_{\epsilon}\}} - P(Y_i \in U_{\epsilon} | \mathcal{F}_{i-1}^y) - \epsilon, \quad i \geqslant 1,$$
(A17)

where U_{ϵ} is a set in \mathbb{R}^n ;

(ii) \mathcal{G}_{ϵ} contains a lower process g_{ϵ} to each g_x in the sense that

$$g_{\epsilon}(i) \leqslant g_x(i) \quad \forall i \geqslant 1.$$
 (A18)

Proof of Proposition 1. First, recall the definition of U_x , for any $x \in \mathbb{R}^m$ with ||x|| = 1, Lemma 1(ii) and Assumption A1' yield

$$P(Y_{i} \in U_{x} | \mathcal{F}_{i-1}^{y}) I_{\{\|Y_{i-n}\| \leqslant M, \|\theta\| \leqslant K\}} = P(Y_{i} \in \{y : |\phi^{\tau}(y)x| > \delta^{*}\} \cap \mathcal{S} | \mathcal{F}_{i-1}^{y}) \cdot I_{\{\|Y_{i-n}\| \leqslant M, \|\theta\| \leqslant K\}}$$

$$\geqslant \inf_{\|x\|=1, \|y\| \leqslant M, \|z\| \leqslant K} \ell(\{\varsigma : |\phi^{\tau}(g(\varsigma, y, z))x| > \delta^{*}, g(\varsigma, y, z) \in \mathcal{S}\}) \cdot \left(\inf_{\varsigma \in [-S', S']} \rho(s)\right)^{n} I_{\{\|Y_{i-n}\| \leqslant M, \|\theta\| \leqslant K\}}$$

$$\triangleq C_{P} I_{\{\|Y_{i-n}\| \leqslant M, \|\theta\| \leqslant K\}}, \tag{A19}$$

where $S' = K \sup_{\|y\| \leqslant M + R'} \|\phi(y)\| + R'$ and $R' \triangleq \max_{1 \leqslant i \leqslant n} \operatorname{dist} \left(0, \bigcup_{j=1}^{p_i} S_i^j(q)\right)$.

Next, note that for any $\epsilon > 0$ and $g_{\epsilon} \in \mathcal{G}_{\epsilon}$, $\{g_{\epsilon}(i) + \epsilon, \mathcal{F}_{i}^{y}\}_{i \geqslant 1}$ is a martingale difference sequence. Taking account of [1, Theorem 2.8],

$$\lim_{t \to +\infty} \frac{\sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}}(g_\epsilon(i) + \epsilon)}{N_t(M)} = 0, \quad \text{a.s. on} \quad \Omega(M),$$

where $\Omega(M)$ is defined in Theorem 1. Thanks to the finite number of U_{ϵ} constrained in S, it gives

$$\lim_{t\to +\infty}\inf_{U\epsilon\subset\mathcal{S}}\frac{1}{N_t(M)}\sum_{i=1}^t I_{\{\|Y_{i-n}\|\leqslant M\}}g_\epsilon(i)=-\epsilon,\quad\text{a.s. on}\quad \Omega(M).$$

As a result, Lemma 3(ii) infers that for some $g_{\epsilon}^x \in \mathcal{G}_{\epsilon}$,

$$\begin{split} \lim_{t \to +\infty} \inf_{\|x\|=1} \frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} g_x(i) \ \geqslant \lim_{t \to +\infty} \inf_{\|x\|=1} \frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} g_\epsilon^x(i) \\ \geqslant \lim_{t \to \infty} \inf_{U_\epsilon \subset S} \frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} g_\epsilon(i) \\ = -\epsilon, \quad \text{a.s. on} \quad \Omega(M). \end{split}$$

Further, by the arbitrariness of ϵ , we obtain that on $\Omega(M)$

$$\lim_{t \to +\infty} \inf_{\|x\|=1} \frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} g_x(i) \geqslant 0 \quad \text{a.s.}.$$
 (A20)

Finally, by (A19)–(A20), for sufficiently small ϵ , there is a positive random integer T such that for any unit vector $x \in \mathbb{R}^m$ and all t > T, $\frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} I_{\{Y_i \in U_x\}} > \frac{1}{N_t(M)} \sum_{i=1}^t I_{\{\|Y_{i-n}\| \leqslant M\}} P(Y_i \in U_x | \mathcal{F}_{i-1}^y) - \frac{C_P}{2} \geqslant \frac{C_P}{2}$, a.s. on $\Omega(M) \cap \{\|\theta\| \leqslant K\}$. Hence, we select C_ϕ satisfies $C_\phi > nR'$ and $U_x \subset \overline{B(0,C_\phi)}$, for sufficiently large t,

$$\lambda_{\min}(t+1) = \inf_{\|x\|=1} x^{\tau} \left(I_m + \sum_{i=0}^{t} \phi_i \phi_i^{\tau} \right) x$$

$$\geqslant \sum_{i=1}^{t-n+1} I_{\{Y_i \in U_x\}} (\phi^{\tau}(Y_i)x)^2 \geqslant (\delta^*)^2 \sum_{i=1}^{t-n+1} I_{\{Y_i \in U_x\}}$$

$$\geqslant \frac{(\delta^*)^2 C_P}{2} (N_t(M) - n), \quad \text{a.s. on} \quad \Omega(M) \cap \{\|\theta\| \leqslant K\}.$$

Proposition 1 is thus proved.

Appendix A.2 Proof of (A15)

In this section, we follow the definitions and symbols in the proof of Lemma 2 and complete the estimation details of (A15). To this end, define $\mathbb{S}_i \triangleq \bigcup_{i=1}^{p_i} \overline{S_i^i}(q)$, $i \in [1, n]$,

$$\begin{split} I_{k+1}^* &\triangleq \left\{ z_{k+1} : \left(\prod_{i=1}^k I_i \times z_{k+1} \right) \cap \mathcal{B}(\delta) \cap \left(\prod_{i=1}^k K_i \times z_{k+1} \right) \neq \emptyset \right\} \\ &\cap I_{k+1} \cap \left(\bigcup_{j=1}^{p_{k+1}} \overline{S_{k+1}^j(q)} \right), \quad k \geqslant 1 \\ \mathcal{T}^3 &\triangleq \left\{ A \in \mathcal{T}^2 : A \cap I_{k+1}^* \neq \emptyset \right\}, \\ \mathcal{T}^4 &\triangleq \left\{ B \in \mathcal{T}^1 : \bigcup_{i=1}^k \{ z : z_i \in L_i \} \cap B \neq \emptyset \right\}, \end{split}$$

where $\prod_{i=1}^{k+1} I_i = O$ is the given closed box in the proof of Lemma 2.

Lemma 4. The cardinals of I_{k+1}^* , \mathcal{T}^3 and \mathcal{T}^4 are bounded by

$$|I_{k+1}^*| \leqslant (2p_{k+1}(|L_{k+1}|+2)+2) \prod_{i=1}^k (|L_i|+p_i),$$

$$|\mathcal{T}^3| \leqslant 2(2p_{k+1}(|L_{k+1}|+2)+2) \prod_{i=1}^k (|L_i|+p_i),$$

$$|\mathcal{T}^4| \leqslant 2r^{k-1} \sum_{i=1}^k |L_i|,$$
(A22)

Proof. By the definitions of \mathcal{T}^3 and \mathcal{T}^4 , $\mathcal{T}^3 \leqslant 2|I_{k+1}^*|$ and (A22) is trivial. So, it suffices to show (A21). For this, recall the definitions of K_i and L_i , then for each $i \in [1,n]$, there is a set \mathcal{P}_i consisting of some disjoint intervals such that $|\mathcal{P}_i| \leqslant |L_i| + p_i$ and $\bigcup_{I \in \mathcal{P}_i} I = K_i$. As a result, $|\prod_{i=1}^k \mathcal{P}_i| \leqslant \prod_{i=1}^k (|L_i| + p_i)$. For each box $B \in \prod_{i=1}^k \mathcal{P}_i$, denote $I_{k+1}^*(B) = \{z_{k+1} : (\prod_{i=1}^k I_i \times z_{k+1}) \cap \mathcal{B}(\delta) \cap (B \times z_{k+1}) \neq \emptyset\} \cap I_{k+1} \cap \mathbb{S}_{k+1}$. Since $B \subset \prod_{i=1}^k K_i$, it is evident that

$$\sum_{i=1}^{k} x_i^{\tau} \phi^{(i)} \equiv \text{constant} \quad \text{on } B.$$
 (A23)

So, for any $z_{k+1} \in I_{k+1}^*(B)$, arbitrarily taking a $(z_1,\ldots,z_k)^{\tau} \in \operatorname{int}(B)$ infers $(z_1,\ldots,z_{k+1})^{\tau} \in \mathcal{B}(\delta)$. Let $\{(z_{1,j},\ldots,z_{k+1,j})^{\tau}\}_{j=1}^{+\infty}$ be a sequence of points in $(\operatorname{int}(B) \times E_{k+1}) \cap \{y : \phi^{\tau}(y)x > \delta\}$ and tend to $(z_1,\ldots,z_{k+1})^{\tau}$. Then, $\lim_{j \to +\infty} \|z_{k+1,j} - z_{k+1}\| = 0$ and

$$x_{k+1}^{\tau}\phi^{(k+1)}(z_{k+1,j}) > \delta - \sum_{i=1}^{k} x_{i}^{\tau}\phi^{(i)}(z_{i,j}) = \delta - \sum_{i=1}^{k} x_{i}^{\tau}\phi^{(i)}(z_{i}).$$
(A24)

Denote $\bar{\delta} = \delta - \sum_{i=1}^k x_i^{\tau} \phi^{(i)}(z_i)$, so (A24) implies $z_{k+1} \in \partial(\{z: x_{k+1}^{\tau} \phi^{(k+1)}(z) > \bar{\delta}\}) \cap \mathbb{S}_{k+1}$, Therefore, applying Lemma A.3(iii), $|I_{k+1}^*(B)| \leq |\partial(\{z: x_{k+1}^{\tau} \phi^{(k+1)}(z) > \bar{\delta}\}) \cap \mathbb{S}_{k+1}| \leq 2p_{k+1}(|L_{k+1}| + 2) + 2$, and thus $|I_{k+1}^*| \leq (2p_{k+1}(|L_{k+1}| + 2) + 2) \left|\prod_{i=1}^k \mathcal{P}_i\right| \leq (2p_{k+1}(|L_{k+1}| + 2) + 2) \prod_{i=1}^k (|L_i| + p_i)$, which completes the proof.

Lemma 5. Let Lemma 2 hold with n = k. Then, there is a constant $C_1 > 0$ depending only on ϕ such that

$$\frac{r}{|I_{k+1}|} \int_{I_{k+1}} \sum_{B \in \mathcal{T}^1} I_{\mathcal{Z}(B)} dz_{k+1} \leqslant C_1 r^k. \tag{A25}$$

Proof. Denote $\phi' = \text{col}\{\phi^{(1)}, \dots, \phi^{(k)}\}, \ x' = \text{col}\{x_1, \dots, x_k\} \text{ and } z = (z_1, \dots, z_k)^{\tau}.$ Given $z_{k+1} \in I_{k+1}$, define $\delta' \triangleq \delta - \phi^{(k+1)}(z_{k+1})x_{k+1}$. Then,

$$\begin{aligned} &\{z:(z_1,\ldots,z_{k+1})^{\tau} \in \mathcal{B}(\delta)\} \cap \prod_{i=1}^{k} A^c(x_i^{\tau}(\phi^{(i)})') \cap \prod_{i=1}^{k} \mathbb{S}_i \\ &= \partial(\{z:(\phi')^{\tau}(z)x' > \delta'\}) \cap \prod_{i=1}^{k} A^c(x_i^{\tau}(\phi^{(i)})') \cap \prod_{i=1}^{k} \mathbb{S}_i. \end{aligned}$$

In addition, by the definition of $\{L_i, K_i\}_{i=1}^n$ in (A12), $(\prod_{i=1}^k A^c(x_i^{\tau}(\phi^{(i)})'))^c = (\bigcup_{i=1}^k \{z: z_i \in L_i\}) \cup \prod_{i=1}^k K_i$, so we arrive at

$$\{z: (z_1, \dots, z_{k+1})^{\tau} \in \mathcal{B}(\delta)\} \cap \left(\prod_{i=1}^{k} \bigcup_{j=1}^{p_i} \overline{S_i^j(q)} \right)$$

$$\subset \partial (\{z: (\phi')^{\tau}(z)x' > \delta'\}) \cap \prod_{i=1}^{k} \mathbb{S}_i \cup \bigcup_{i=1}^{k} \{z: z_i \in L_i\} \cup \prod_{i=1}^{k} K_i.$$

Consequently, for any $z_{k+1} \in A \in \mathcal{T}^2 \setminus \mathcal{T}^3$ and $B \in \mathcal{T}^1 \setminus \mathcal{T}^4$,

$$\{z: (z_1,\ldots,z_{k+1})^{\tau} \in \mathcal{B}(\delta)\} \cap \prod_{i=1}^k \mathbb{S}_i \cap B \subset \partial(\{z: (\phi')^{\tau}(z)x' > \delta'\}) \cap \prod_{i=1}^k \mathbb{S}_i \cap B.$$

Now, for $\partial(\{z: (\phi')^{\tau}(z)x' > \delta'\}) \cap \prod_{i=1}^k \mathbb{S}_i$ and \mathcal{T}^1 , applying Lemma 2 with n = k leads to

$$\sum_{B \in \mathcal{T}^1 \setminus \mathcal{T}^4} I_{Z(B)}(z_{k+1}) \leqslant Cr^{k-1}. \tag{A26}$$

Based on (A26), it is readily to compute

$$\begin{split} &\int_{I_{k+1}} \sum_{B \in \mathcal{T}^1} I_{\mathcal{Z}(B)} dz_{k+1} = \sum_{A \in \mathcal{T}^2} \int_{A} \sum_{B \in \mathcal{T}^1} I_{\mathcal{Z}(B)} dz_{k+1} \\ &\leqslant \sum_{A \in \mathcal{T}^2 \backslash \mathcal{T}^3} \int_{A} \sum_{B \in \mathcal{T}^1} I_{\mathcal{Z}(B)} dz_{k+1} + \sum_{A \in \mathcal{T}^3} \int_{A} r^k dz_{k+1} \\ &= \sum_{A \in \mathcal{T}^2 \backslash \mathcal{T}^3} \int_{A} \sum_{B \in \mathcal{T}^1 \backslash \mathcal{T}^4} I_{\mathcal{Z}(B)} dz_{k+1} + \sum_{A \in \mathcal{T}^2 \backslash \mathcal{T}^3} \int_{A} \sum_{B \in \mathcal{T}^4} I_{\mathcal{Z}(B)} dz_{k+1} + r^k \cdot \frac{|I_{k+1}|}{r} \cdot |\mathcal{T}^3| \\ &\leqslant \int_{I_{k+1}} C r^{k-1} dz_{k+1} + \sum_{B \in \mathcal{T}^4} \int_{I_{k+1}} 1 dz_{k+1} + r^{k-1} |I_{k+1}| |\mathcal{T}^3| \\ &\leqslant ((C + |\mathcal{T}^3|) r^{k-1} + |\mathcal{T}^4|) |I_{k+1}|. \end{split}$$

The result follows from Lemmas 4 and A.3(ii).

Lemma 6. There is a constant $C_2 > 0$ depends only on ϕ such that $\sum_{B \in \mathcal{T}^1} |\mathcal{Z}_2(B)| \leqslant C_2 r^k$. *Proof.* Let

$$\mathcal{T}^5 \triangleq \left\{ \prod_{i=1}^k I_i' \in \mathcal{T}^1 : \partial \left(\bigcup_{j=1}^{p_i} S_i^j(q) \right) \cap I_i' \neq \emptyset \text{ for some } i \in [1,k] \right\}.$$

Clearly, $|\mathcal{T}^5| \leqslant 4r^{k-1} \sum_{i=1}^k p_i$. Hence,

$$\sum_{B \in \mathcal{T}^1} |\mathcal{Z}_2(B)| \leqslant \sum_{B \in \mathcal{T}^1 \setminus (\mathcal{T}^5 \cup \mathcal{T}^4)} |\mathcal{Z}_2(B)| + r|\mathcal{T}^4| + 4r^k \sum_{i=1}^k p_i.$$
 (A27)

It suffices to estimate the first term in the right hand side of (A27). To this end, take a set $B = \prod_{i=1}^{k} I_i' \in \mathcal{T}^1 \setminus (\mathcal{T}^5 \cup \mathcal{T}^4)$ and let $z_{k+1} \in \partial Z(B) \cap \operatorname{int}(I_{k+1})$. Select a point $(z_1, \ldots, z_k)^{\tau} \in B$ that

$$\operatorname{dist}((z_1, \dots, z_{k+1})^{\tau}, \prod_{i=1}^k \partial(I_i') \times z_{k+1})$$

$$= \min_{y \in \mathcal{B}(\delta) \cap \prod_{i=1}^{k+1} \mathbb{S}_i \cap (B \times z_{k+1})} \operatorname{dist}(y, \prod_{i=1}^k \partial(I_i') \times z_{k+1}). \tag{A28}$$

Clearly, $B \in \mathcal{T}^1 \setminus (\mathcal{T}^5 \cup \mathcal{T}^4)$ implies that for each $i = 1, \dots, k$, $\operatorname{int}(I_i') \subset \bigcup_{j=1}^{p_i} S_i^j(q)$ and $\operatorname{int}(I_i') \cap L_i = \emptyset$. We consider the following two cases:

Case 1: $(z_1, \dots, z_k)^{\tau} \notin \prod_{i=1}^k \partial(I_i')$. Then, there is an integer $i \in [1, k]$ such that $z_i \in \text{int}(I_i')$. By (A28), $z_i \notin K_i \cap \text{int}(I_i')$. Otherwise, there is a $\rho > 0$ such that $x_i^{\tau}(\phi^{(i)})' \equiv 0$ on $[z_i - \rho, z_i + \rho] \subset \text{int}(I_i')$. Similar to (A23)-(A24), for any $z_i' \in [z_i - \rho, z_i + \rho]$, $(z_1, \dots, z_{i-1}, z_i', z_{i+1}, \dots, z_{k+1})^{\tau} \in \mathcal{B}(\delta) \cap \prod_{i=1}^{k+1} \mathbb{S}_i \cap (B \times z_{k+1})$. Then, $\min\{\text{dist}((z_1, \dots, z_{i-1}, z_i - \rho, z_{i+1}, \dots, z_{k+1})^{\tau}, \prod_{i=1}^k \partial(I_i') \times z_{k+1})\} < \text{dist}((z_1, \dots, z_{k+1})^{\tau}, \prod_{i=1}^k \partial(I_i') \times z_{k+1})^{\tau}, \prod_{i=1}^k \partial(I_i') \times z_{k+1})$ which contradicts to (A28) z_{k+1}), which contradicts to (A28).

Now, since $z_i \notin K_i \cap \operatorname{int}(I_i')$ and $B \notin \mathcal{T}^4$, it yields that $x_i^{\tau}(\phi^{(i)})'(z_i) \neq 0$. We claim

$$z_{k+1} \in \bigcup_{j=1}^{p_{k+1}} \partial(S_{k+1}^j(q)). \tag{A29}$$

Otherwise, $z_{k+1} \in \bigcup_{j=1}^{p_{k+1}} S_{k+1}^j(q)$. By the *Implicit function theorem*, there is a sufficiently small $\eta > 0$ such that for any $z'_{k+1} \in (z_{k+1} - \eta, z_{k+1} + \eta)$, a point $z'_i \in \operatorname{int}(I_i)$ exists and $(z_1, \dots, z_{i-1}, z'_i, z_{i+1}, \dots, z_k, z'_{k+1})^{\tau} \in \mathcal{B}(\delta) \cap \prod_{i=1}^{k+1} \mathbb{S}_i$. This means $z_{k+1} \in \operatorname{int}(Z(B))$, which is impossible due to $z_{k+1} \in \partial Z(B)$. Hence (A29) holds.

Case 2: $(z_1, \dots, z_k)^{\tau} \in \prod_{i=1}^k \partial (I'_i)$. Since $z_{k+1} \in \partial (Z(B))$, $x_{k+1}^{\tau} \phi^{(k+1)}$ cannot be a constant on any neighbourhood of z_k . So,

$$z_{k+1} \in \partial(\{z : x_{k+1}^{\tau} \phi^{(k+1)}(z) \neq \bar{\delta}\}) \cap \left(\bigcup_{j=1}^{p_{k+1}} S_{k+1}^{j}(q)\right) \cup \left(\bigcup_{j=1}^{p_{k+1}} \partial(S_{k+1}^{j}(q))\right), \tag{A30}$$

where $\bar{\delta} = \delta - \sum_{i=1}^k x_i^{\tau} \phi^{(i)}(z_i)$. Combining the above two cases, $z_{k+1} \in \partial(Z(B)) \cap \operatorname{int}(I_{k+1})$ implies (A30). Taking the case $z_{k+1} \in \partial(I_{k+1})$ into consideration,

$$\partial(Z(B)) \subset \partial(\{y \in \mathbb{R}: x_{k+1}^\tau \phi^{(k+1)}(y) \neq \bar{\delta}\}) \cap \left(\bigcup_{j=1}^{p_{k+1}} S_{k+1}^j(q)\right) \cup \left(\bigcup_{j=1}^{p_{k+1}} \partial(S_{k+1}^j(q))\right) \cup \partial(I_{k+1}),$$

which, together with the fact $|\partial(\{z: x_{k+1}^{\tau}\phi^{(k+1)}(z) \neq \bar{\delta}\}) \cap (\bigcup_{j=1}^{p_{k+1}} S_i^j(q))| \leq 4p_{k+1}(|L_{k+1}|+2)$ from (A13), leads to $|\mathcal{Z}_2(B)| \leq 2|\partial(Z(B))| \leq 8p_{k+1}(|L_{k+1}|+2) + 4p_{k+1} + 4$. Now, in view of (A27), we derive

$$\sum_{B \in \mathcal{T}^1} |\mathcal{Z}_2(B)| \leqslant (8p_{k+1}(|L_{k+1}|+2) + 4p_{k+1} + 4)r^k + |\mathcal{T}^4|r + 4r^k \sum_{i=1}^k p_i,$$

which yields the result by Lemma 4.

References

- 1 Chen, H. F., Guo, L.. Identification and Stochastic Adaptive Control. 1991, Birkhauser: Boston, MA.
- 2 Liu, Z., Li, C.. Stabilizability theorems on discrete-time nonlinear uncertain systems. arXiv preprint arXiv:2007.11122, 2020.