Universität Potsdam Institut für Physik und Astronomie Abgabe Mi 15 Uhr/Do 10 Uhr am 29./30. Januar 2020 WS2019/20: Übung 13 Vorlesung: Feldmeier Übung: Schwarz¹

Übungsaufgaben zur Elektrodynamik²

21 Punkte

<u>1.</u> Transformation des Kroneckersymbols

3 Punkte

Wie transformiert sich eigentlich das Kroneckersymbol unter Koordinatenwechsel?

 $\underline{\mathbf{2.}}$ ϵ -Symbol

3 Punkte

Der Levi-Civita-Tensor 4. Stufe sei gegeben durch $\epsilon_{\alpha\beta\gamma\delta}=-\epsilon^{\alpha\beta\gamma\delta}$ mit

$$\epsilon^{\alpha\beta\gamma\delta} = \begin{cases} 1 & \{\alpha\beta\gamma\delta\} \text{ in gerader Permutation} \\ -1 & \{\alpha\beta\gamma\delta\} \text{ in ungerader Permutation} \\ 0 & \text{zwei Indizes gleich} \end{cases}$$

. Man beweise die Gleichungen

- a) $\epsilon_{\alpha\beta\gamma\eta} \, \epsilon^{\gamma\eta\rho\sigma} = 2(\delta^{\rho}_{\alpha} \, \delta^{\sigma}_{\beta} \delta^{\sigma}_{\alpha} \, \delta^{\rho}_{\beta})$
- b) $\epsilon_{\alpha\beta\gamma\eta} \, \epsilon^{\beta\gamma\eta\sigma} = -6 \, \delta^{\sigma}_{\alpha}$
- c) Man berechne $\epsilon_{\alpha\beta\gamma\eta} \, \epsilon^{\alpha\beta\gamma\eta}$

<u>3.</u> Vierervektoren und Index-Rechnung

9 Punkte

- (a) Man zeige, dass sich die Komponenten $x^{\mu} = (c t, \vec{x}^T)^T$ mit und $\{\mu = 0, 1, 2, 3\}$ bei räumlichen Drehungen wie die Komponenten des dreidimensionalen Vektors \vec{x} transformieren (2 P).
- (b) Man zeige, dass sich die Komponenten eines antisymmetrischen Vierertensors 2. Stufe bei räumlichen Drehungen wie die Komponenten zweier unabhängiger Vektoren \vec{p} (polarer Vektor) und \vec{a} (axialer Vektor) des dreidimensionalen Raumes transformieren (3 P).
- (c) Der Vierer-Impuls eines freien Teilchens mit der Geschwindigkeit \vec{v} und der Ruhmasse m ist gegeben durch $p^{\mu}=(\gamma mc,\gamma m\vec{v})$ mit $\gamma=\frac{1}{\sqrt{1-v^2/c^2}}$.
 - i) Zeigen Sie, dass der p^{μ} eine Lorentz-Invariante ist.
 - ii) Zeigen Sie, dass für ein freies Teilchen mit der Energie $E=\gamma mc^2$ und dem Impuls $\vec{p}_{\rm rel}=\gamma m\vec{v}$ die Beziehung $E^2=c^2p_{\rm rel}^2+m^2c^4$ gilt (4 P).

¹udo.schwarz@uni-potsdam.de

²http://www.agnld.uni-potsdam.de/~shw/Lehre/lehrangebot/2019WSEDynamik/2019WSEDynanik.html

<u>4.</u> Kontinuitätsgleichung in Viererschreibweise

6 Punkte

a) Zeigen Sie, dass die Kontinuitätsgleichung in Viererschreibweise durch

$$\partial_{\mu} j^{\mu} = 0$$

gegeben ist. Zeigen Sie, dass sich die Komponenten von (j^{μ}) kontravariant und die Komponenten von (∂_{μ}) kovariant unter Lorentztransformationen transformieren.

b) Zeigen Sie, dass Lorentztransformationen die Kontinuitätsgleichung forminvariant lassen, dass also

$$\partial'_{\mu}j'^{\mu} = \partial_{\alpha}j^{\alpha}$$

gilt.