# Planification de tâches de manipulation en robotique par des méthodes probabilistes

**Anis Sahbani** 

## Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

#### **Problématique**

 Planification de mouvement pour un robot manipulant des objets déplaçables dans un environnement encombré d'obstacles



Configuration initiale



Configuration finale

## Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

#### Introduction

Planification de mouvement

#### Définition :

Calcul automatique de chemins sans collision pour un système mécanique

Notion d'espace des configurations [Lozano-Pérez 83]

Plusieurs approches (exactes, heuristiques) [Latombe 91]

Méthodes probabilistes [Kavraki 96 et Švestka 96]

# **Espaces des configurations**



#### Méthodes Probabilistes: PRM

- PRM (Probabilistic Roadmap Method) [Kavraki 96]
- PPP (Probabilistic Path Planner) [Švestka 96]

#### Principe:

ont composées de trois étapes

une phase d'apprentissage

une phase de recherche

umephasedioptimisationetobelissage



#### Méthodes Probabilistes: Visibilité-PRM

• Capturer la connectivité de  $CS_{libre}$  par des gardiens let des connecteurs



#### Introduction

Planification de tâches de manipulation

#### Définition :

Calcul de la séquence de mouvements permettant à un système mécanique de déplacer un ou plusieurs objets

Projets: HANDEY [Mazer 87], SHARP [Laugier 88] et SPARA [Mazon 90]

→ décomposition en actions élémentaires de "Pick & Place"

Approche originale [Alami 89] : formulation géométrique

⇒ décomposition en sous-tâches (changements de prises, poses intermédiaires) en même temps que la génération du mouvement

## Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

# Formulation géométrique

• **Contexte** → Environnement tridimensionnel contenant:

des obstacles statiques  $(\mathcal{O}_1,...,\mathcal{O}_k)$  des objets déplaçables  $(\mathcal{M}_1,...,\mathcal{M}_r)$  un robot  $\mathcal{R}$ 

Espace composite :

$$CS = CS_{\mathcal{R}} \times CS_{\mathcal{M}_1} \times ... \times CS_{\mathcal{M}_r}$$

Problème de manipulation :

Partant d'une configuration initiale du système composite  $q_c^i$  trouver un chemin dans  $CS_{libre}$  pour atteindre la configuration but  $q_c^b$ 

## Formulation géométrique

Solution de ce problème :

Chemin de manipulation  $\rightarrow$  chemin particulier et contraint dans  $CS_{libre}$ 

- Contraintes:
- Positions stables des objets non-saisis
  - **⇒** contraintes de placement
- Mouvement d'objets induit par celui du robot

Contraintes de placement

Notion de stabilité



placement non-stable



placement stable

 $P = \{ \text{ placements stables définis comme entrée du problème } \}$ 

- \* placement discret :  $\mathcal{P} = \{p_1, ..., p_n\}$
- \* placement continu :  $\mathcal{P} = \bigcup (q_{place})$

#### Contraintes de placement

Le sous-espace **PLACEMENT** (CP):

L'ensemble des configurations de  $CS_{libre}$  dans lesquelles tous les objets déplaçables occupent une configuration stable



Chemin dans CP (non faisable)



Chemin de transit

#### Contraintes de mouvement

Notion de prise

$$\begin{array}{cccc} \mathcal{G}_{\mathcal{M}_i}^T \colon & CS_{\mathcal{R}} & \longrightarrow & CS_{\mathcal{M}_i} \\ & q_{\mathcal{R}} & \longmapsto & q_{\mathcal{M}_i} \end{array}$$



 $\mathcal{G} = \{ \text{ classes de prises définies comme entrée du problème } \}$ 

- \* prise discrète :  $\mathcal{G} = \{g_1, ..., g_n\}$
- \* prise continue :  $\mathcal{G} = \bigcup (q_{grasp})$

#### Contraintes de mouvement

Le sous-espace **GRASP** (CG):

L'ensemble des configurations de  $CS_{libre}$  dans lesquelles le robot déplace un objet. Les autres objets occupent des configurations stables



Chemin dans CG (non faisable)



Chemin de transfert

## Formulation géométrique

Chemin de manipulation

Chemin contraint, respecte les contraintes de manipulation  $\Longrightarrow$  inclus dans  $\mathcal{CG} \cup \mathcal{CP}$ 

Il est composé de deux types de sous-chemins:

- \* chemins de transit
- \* chemins de transfert

Séquence alternée finie  $(\tau_1, \tau_2, ..., \tau_{2p+1})$  avec :

- \*  $\tau_1, \tau_3, ..., \tau_{2p+1}$ : chemins de transit
- \*  $\tau_2, \tau_4, ..., \tau_{2p}$ : chemins de transfert
- \*  $\forall l \in 1, ..., 2p, \tau_l(1) = \tau_{l+1}(0)$

#### Formulation géométrique : Chemin de manipulation

Problème de manipulation :

Étant donnés deux ensembles  $\mathcal{P}$  et  $\mathcal{G}$ , trouver un chemin de manipulation connectant deux configurations  $q_c^i$  et  $q_c^b$  de  $\mathcal{CP} \cup \mathcal{CG}$ 



## Formulation géométrique

• Le sous-espace  $\mathcal{CG} \cap \mathcal{CP}$ :

Contraintes de placement et contraintes de mouvement simultanément respectées
Lieu des connexions des chemins de transit et des chemins de transfert
La solution du problème de manipulation repose sur l'exploration de cette sous-variété



Configuration dans  $\mathcal{CG} \cap \mathcal{CP}$ 

## Approche adoptée

• Approche [Alami 89] : Graphe de manipulation

Calculer les différentes composantes connexes de  $\mathcal{CG} \cap \mathcal{CP}$ 

Déterminer leur connexion par des chemins de transfert et des chemins de transit



# Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

- $\mathcal{CG} \cap \mathcal{CP}$  est réduit à un ensemble fini de configurations
- Construction du graphe de manipulation

Calculer les différentes configurations formant  $\mathcal{CG} \cap \mathcal{CP}$ Les connecter par des chemins de transit et des chemins de transfert



Algorithmes existants

[Alami 94]: environnement 2D, robots polygonaux en translation

→ Limité à des problèmes simples de manipulation

[Koga 94]: extension à la manipulation multi-robots

[Barraquand 94]: contraintes progressives

→ Méthodes pragmatiques, basées sur des heuristiques, souffrent de problèmes liés à la non-complétude

[Ahuactzin 98]: extension de l'algorithme "Fil d'Ariane"

→ Cas de robots redondants

[Nielsen 00]: Fuzzy PRM

Structuration de l'espace de recherche



Utilisation directe des méthodes probabilistes



#### Utilisation directe des méthodes probabilistes

#### Problèmes :

Forte combinatoire

Grand nombre de graphes calculés

Approche coûteuse en temps de calcul

#### Constatation :

Requêtes de transit/transfert calculées dans un environnement partiellement changeant

- \* le placement des objets déplaçables
- \* la prise courante

## Les méthodes probabilistes

Échantillonnage aléatoire

PRM [Kavraki 96, Švestka 96]



Visibilité-PRM [Nissoux 99]



Diffusion

RRT [Lavalle 98]



## Extension des méthodes probabilistes

#### Idée :

Combiner une méthode d'échantillonnage aléatoire avec une technique probabiliste par diffusion

Un graphe précalculé réutilisable d'une requête de planification à une autre (échantillonage aléatoire)

Exploitation du changement partiel de l'environnement (diffusion)

#### Approche par graphe dynamique :

Une phase d'apprentissage → un ensemble de chemins

Une phase de recherche  $\rightarrow$  mise à jour de cet ensemble

# Approche par graphe dynamique

Phase d'apprentissage



Graphe pour le robot seul

• Phase de recherche



Marquage des arêtes

#### Trois cas possibles:



Pas de solution



Solution



Mise à jour dynamique

#### Entrées du problème



Configuration initiale



Configuration finale

#### Entrées du problème







Prise possible

#### Phase d'apprentissage



Graphe initial calculé par PRM



Graphe initial calculé par visibilité-PRM

#### Phase de recherche





|                            | PRM       | Visibilité-PRM |
|----------------------------|-----------|----------------|
| Taille du graphe           | 1457      | 115            |
| Couverture de $CS_{libre}$ | 99.43%    | 98.83%         |
| Temps de résolution        | 326.5 sec | 35.4 sec       |

# **Pont roulant (exemple MOLOG)**



# **Pont roulant (exemple MOLOG)**





|                            | PRM      | Visibilité-PRM |
|----------------------------|----------|----------------|
| Taille du graphe           | 1246     | 145            |
| Couverture de $CS_{libre}$ | 99.15%   | 98.78%         |
| Temps de résolution        | 23.5 sec | 42.4 sec       |

# Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

•  $\mathcal{CG} \cap \mathcal{CP}$  est composé d'un ensemble fini de domaines continus



#### Question :

La connectivité de  $\mathcal{CG} \cap \mathcal{CP}$  reflète -t- elle l'existence d'un chemin de manipulation ?

#### • Réponse :

Propriété de réduction : [Alami 89]

Deux configurations du système appartenant à la même composante connexe de  $\mathcal{CG} \cap \mathcal{CP}$  sont connectables par un chemin de manipulation

 $\Longrightarrow$  Tout chemin calculé dans  $\mathcal{CG} \cap \mathcal{CP}$  peut être transformé en une séquence finie de chemins de transit/transfert

• Un algorithme en deux étapes:

Capturer la connectivité de  $\mathcal{CG} \cap \mathcal{CP}$  dans une structure de graphe Connecter ses différentes composantes connexes par des chemins de transit/transfert



#### Problème :

Comment calculer un graphe capturant la connectivité de  $CG \cap CP$  ?

Le sous-espace  $\mathcal{CG} \cap \mathcal{CP}$ 



PLACEMENT (CP)



GRASP (CG)

Le sous-espace  $\mathcal{CG} \cap \mathcal{CP}$ 



GRASP  $\cap$  PLACEMENT ( $\mathcal{CG} \cap \mathcal{CP}$ )

### Composantes connexes de $\mathcal{CG} \cap \mathcal{CP}$



- \* RLG: planificateur pour des chaînes fermées [Cortés 02]
- \* Visibilité-PRM (graphe de taille réduite) [Nissoux 99]

# Connexions par des chemins de transit et de transfert

- Graphe dans  $\mathcal{CG} \cap \mathcal{CP}$
- Connexions par chemins de transfert



Connexions par chemins de transit





Plusieurs requêtes de planification dans un environnement partiellement changeant

⇒ Approche par graphe dynamique

## Recherche de chemin de manipulation

Chemin de Transit





Chemin de Transit



Graphe de Manipulation

### Recherche de chemin de manipulation



Chechinsing at assignment of the contraction of the

#### Phase d'optimisation et de lissage

• Après transformation des chemins dans  $CG \cap CP$ 

Chemin de manipulation admissible (séquence alternée de chemins de transit/transfert)

Contient des séquences de prises et de poses inutiles

Minimisation des séquences de prise/pose

Éliminer les placements intermédiaires inutiles

Remplacer les longues séquences de transit/transfert par une séquence simple

Lissage du chemin solution

Lisser le chemin long et irrégulier issu de la phase de minimisation

Optimisation locale et non globale (une seule classe d'homotopie)

# Plan de la présentation

- Problématique
- Introduction
- Formulation géométrique et approche adoptée
- Planification de tâches de manipulation sous contraintes discrètes
- Planification de tâches de manipulation sous contraintes continues
- Résultats et Analyse
- Conclusions et perspectives

# Résultats et Analyse

**Exemple Cage** 



Configuration initiale



Configuration finale

# **Exemple Cage**

#### Comparaison entre PRM et Visibilité-PRM pour l'exploration de $\mathcal{CG} \cap \mathcal{CP}$





# **Exemple Cage**

#### Comparaison entre PRM et Visibilité-PRM pour l'exploration de $\mathcal{CG} \cap \mathcal{CP}$





|                           | PRM        | Visibilité-PRM |
|---------------------------|------------|----------------|
| Temps moyen de résolution | 61.59 sec  | 45.82 sec      |
| Temps max. de résolution  | 385.04 sec | 183.58 sec     |
| Temps min. de résolution  | 4.18 sec   | 13.13 sec      |

#### **Performance**



**Discret**  $\longleftarrow$  **Exploration de**  $\mathcal{CG} \cap \mathcal{CP} \Longrightarrow$  **Continu** 

# **Exemple avec multi - poses/prises**



# Exemple d'un manipulateur mobile



# **Pont roulant**



#### Travaux en cours

- Quatre bras manipulateurs déplaçant un objet
- Trois robot manipulateurs déplaçant un piano
- Manipulation dextre en absence d'obstacles
- Manipulation dextre en présence d'obstacles