LMECA2840 Technical Presentation II

Group A5

Brevi Matteo Creelle Robbe Diriken Axel Ibrahim Muhammad Marchal Youri Peres Hugo

Philipin Aurélien

Summary

- 1. Introduction
- 2. Functional graph
- 3. Morphological Matrix
- 4. Concept Variants
- 5. Evaluation Chart
- 6. Preliminary Layout
- 7. Discussion

1. Introduction

2. Functional graph

TF3: Horizontal movement					
Actuation	Electrical Notor	Hydrolics	Pneumatics		
Guidance			35% MAII.		
	On min				
Transmission	No reduction IM Im Im	reduction III			

	TF4	: Presentation	
Actuation Transla- tion (x-y)	Flectrical Notor	Hydrolics	Pneumatics
Guidance Transla- tion			75. 1/1//
(x-y)	Dan min	No guidance	
Transmis- sion Translatio n (x-y)	No reduction M Jan Tan	reduction III	
Actuation Rotation (y)	Flectrical Notor	Hydrolics	Pneumatics

Principe rotation (y)			M Section Sections		
Actuation Rotation (z)	Electrical Parlor	Hydrolics	Pneumatics		
Guidance Rotation (z)					
	No guidance	B			
Transmis- sion Rotation (z)	X	(Carrier Const			

TF5: Blocking system					
Active		M-11-II-II-II-II-II-II-II-II-II-II-II-II-			
Passive	W.		THERE IN		

• <u>Concept variant 1</u>: Lift up + Attach + Presentation

• <u>Concept variant 2</u>: X-Translation + Y-Translation

• <u>Concept variant 3</u>: Pilot

Solution 1:

- Z-axis rotation : Slewing ring with external teeth (couronne d'orientation) Rollers with electrical motor
- Lifting up:
 Winch/drum (treuil)
 4 cables
 Additional 2 cables trolley for more versatility
- X/Y- rotation : 4 cables moving independently

Solution 2:

• Z-axis rotation: Slewing ring with external teeth (couronne d'orientation) Worm screw (vis-sans-fin)

Lifting up:
 Winch/drum (treuil)
 Electromechanical braking device
 4 cables
 Lifting frame (palonnier) with several locations
 for the rotationg device

X/Y- rotation :
 « Palonniers retourneurs à sangles »
 Electromechanical braking device

Solution 3:

- Z-axis rotation : Slewing ring with external teeth Pinion
- Lift-up system: Scissor lifting system (with jack)
- Y-axis rotation:
 winches Cables with different lengths make the rotation (α)

Solution 4:

- Z-axis rotation : Slewing ring with external teeth Pinion
- Lift-up system: 4 winches
- Y-axis rotation : Cable with different length

Solution 1:

• X-direction:

Actuated wheels (2) Guided by profiled wheels

• Y-direction:

2 transversal beams Actuated wheels (2) Guided by profiled wheels

Solution 2:

• X-direction:

Actuated wheels (2) Guided by profiled wheels

• Y-direction:

1 transversal beam Actuated wheels (2) Guided by profiled wheels

Solution 3:

- X direction:
 - Actuated by a pulley and transmission with cables
 Wheels + rail
- Y direction

 Actuated with cables
 2 pinions
 Sliders

Solution 4:

• X-direction:

Actuated wheels Guided by profiled wheels

• Y-direction:

Actuated pinion on a rack Guided by profiled wheels

Solution 1:

- Wireless or wired remote control
- Screen with security cameras

Solution 2:

• Wired remote control

Solution 3:

• Wireless Laptop piloting

Solution 4:

- Piloting in a cabin
- Control Panel
- Cabin is fixed on the trolley

Global idea

- > Define criterias
- > Put different weights
- > Choose a reference solution
- \triangleright Compare each criteria with the reference (-1/0/+1)

CV 1 : Attach + Lift up + 2 rotations		Solutions							
Criteria	Weight	Solution 1 Solution 2		n 2 Solution 3			Solution 4 (REF)		
Cost (installation, complexity,etc)	4	-1	-4	0	0	-1	-4	0	0
Safety/reliability	5	0	0	0	0	0	0	0	0
Weight	2	0	0	0	0	-1	-2	0	0
Maintenance	4	1	4	1	4	-1	-4	0	0
Versatility	4	0	0	1	4	1	4	0	0
Precision	5	0	0	-1	-5	1	5		
_									
TOTAL			0		3		-1		0

1) Attaching, lifting up and rotations

CRITERIAS

- Cost
- Safety and reliability
- Weight
- Maintenance
- Versatility
- Precision

DISCRETIZATION

- +/- 10% cost
- Number of DOF blocked
- +/- 20% weight
- Number of maintenances over lifespan (+/- 10%)
- Can rotate and translate all pieces
- +/- 10% price/accuracy

1) Attaching, lifting and rotations

2) X and Y translation

CRITERIAS

- Cost
- Weight
- Safety
- Maintenance
- Precision
- Power required

DISCRETIZATION

- +/- 10% cost
- +/- 20% weight
- Number of degree of freedoms blocked
- Number of maintenances over lifespan (+/- 10%)
- +/- 10% price/accuracy
- +/- 10% more power

2) X and Y translation

3) Pilot

CRITERIAS

- Cost
- Safety and reliability
- Weight
- Size
- Maintenance
- User friendly

DISCRETIZATION

- +/- 10% cost
- Independant of the bridge? Yes or no
- +/- 20% weight
- +/- 10% size
- Number of maintenances over lifespan (+/- 10%)
- Yes or no

3) Pilot

6. Preliminary layout

Top view

Section view

Section view <u>B-B</u>

Front view

6. Preliminary layout - dimensionning

A: <u>Trolley</u>

- Cables: 20 meters long + diameter 4 cm + weight of 100 kg
- Drum: diameter 0.4 m and mass of 200 kg
- Trolley dimension 3m x 2m
- Mass: 20t (mass of charge + mass of trolley (drum + slewing ring + motors)
- Slewing ring diameter: 1 m

B: Bridge

- Span: 50.75 [m]
- Mass: 40 t
- Total Mass: 60 t

6. Preliminary layout - dimensionning

RACK AND PINION

RACK:

High precision rack: module = 5

Max force: 76 kN

PINON:

Module = 5

Max force: 47 kN

20 teeth

Pitch diameter: 100 [mm]

 $http://atlantagmbh.com/wp-content/uploads/2016/03/Servo_Deutsch.pdf$

6. Preliminary layout - dimensionning

POWER ESTIMATION:

Lift-up:

• Efficiency = 0.85

• Speed: 0.2 m/s

• Load: 158 kN

• Power: 158 [kN] * 0.2 [m/s] / 0.85 = 38 kW

Y-direction:

friction (rack and pinon)

• Power: 488 W

X-direction:

Negligible friction (like a rail wheel)

• Power: 1318 W

Thank you for your attention! Any questions?

