## Отчет по лабораторной работе №5

Дисциплина: архитектура компьютера

Шабалина Елизавета Андреевна

## Содержание

| 1 | Цель работы                                       | 4  |  |  |  |  |  |  |
|---|---------------------------------------------------|----|--|--|--|--|--|--|
| 2 | Задание                                           | 5  |  |  |  |  |  |  |
| 3 | Теоретическое введение                            | 6  |  |  |  |  |  |  |
| 4 |                                                   |    |  |  |  |  |  |  |
|   | 4.1 Основы работы с тс                            | 8  |  |  |  |  |  |  |
|   | 4.2 Структура программы на языке ассемблера NASM  | 10 |  |  |  |  |  |  |
|   | 4.3 Подключение внешнего файла                    | 13 |  |  |  |  |  |  |
|   | 4.4 Выполнение заданий для самостоятельной работы | 15 |  |  |  |  |  |  |
| 5 | Выволы                                            | 19 |  |  |  |  |  |  |

## Список иллюстраций

| 4.1  | Открытый тс                       | • | • | • | <br>• | • | • | • | • | • | • | • | • | 8  |
|------|-----------------------------------|---|---|---|-------|---|---|---|---|---|---|---|---|----|
| 4.2  | Перемещение между директориями    |   |   |   |       |   |   |   |   |   |   |   |   | 9  |
| 4.3  | Создание каталога                 |   |   |   |       |   |   |   |   |   |   |   |   | 9  |
| 4.4  | Создание файла                    |   |   |   |       |   |   |   |   |   |   |   |   | 10 |
| 4.5  | Открытие файла для редактирования |   |   |   |       |   |   |   |   |   |   |   |   | 11 |
| 4.6  | Редактирование файла              |   |   |   |       |   |   |   |   |   |   |   |   | 11 |
| 4.7  | Открытие файла для просмотра      |   |   |   |       |   |   |   |   |   |   |   |   | 12 |
| 4.8  | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 13 |
| 4.9  | Копирование файла                 |   |   |   |       |   |   |   |   |   |   |   |   | 13 |
| 4.10 | Копирование файла                 |   |   |   |       |   |   |   |   |   |   |   |   | 14 |
| 4.11 | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 15 |
| 4.12 | Редактирование файла              |   |   |   |       |   |   |   |   |   |   |   |   | 16 |
| 4.13 | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 16 |
| 4.14 | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 16 |
|      | Редактирование файла              |   |   |   |       |   |   |   |   |   |   |   |   | 17 |
|      | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 17 |
|      | Исполнение файла                  |   |   |   |       |   |   |   |   |   |   |   |   | 18 |

## 1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

## 2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

### 3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) — определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DO (define quad word) — определяет переменную размером в 8 байт (учетве-рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике.

mov dst, src

Здесь операнд dst — приёмник, а src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти (memory) и непосредственные значения (const). Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером.

#### int n

Здесь n— номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys\_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

## 4 Выполнение лабораторной работы

#### 4.1 Основы работы с тс

Открываю Midnight Commander, введя в терминал mc (рис. 4.1).



Рис. 4.1: Открытый тс

Перехожу в каталог ~/work/study/2023-2024/Архитектура Компьютера/arch-pc, используя файловый менеджер mc (рис. 4.2)



Рис. 4.2: Перемещение между директориями

С помощью функциональной клавиши F7 создаю каталог lab05 (рис. 4.3).



Рис. 4.3: Создание каталога

В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в

котором буду работать (рис. 4.4).



Рис. 4.4: Создание файла

#### 4.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 открываю созданный файл для редактирования в редакторе (рис. 4.5).



Рис. 4.5: Открытие файла для редактирования

Ввожу в файл код программы для запроса строки у пользователя (рис. 4.6). Далее выхожу из файла, сохраняя изменения.

Рис. 4.6: Редактирование файла

С помощью функциональной клавиши F3 открываю файл для просмотра, чтобы проверить, содержит ли файл текст программы (рис. 4.7).

```
\oplus
                     mc [eashabalina@dk3n55]:~/work/arch-pc/lab05 Q =
 afs/.dk.sci.pfu.edu.ru~ch-pc/lab05/lab5-1.asm
                                                           281/281
SECTOIN .bss
buf1: RESB 80
SECTOIN .text
_start:
mov ecx, msg
int 80h
 nov ecx, buf1
mov edx, 80
int 80h
mov eax,1
int 80h
 1Помощь <mark>2</mark>Раз~рн <mark>3</mark>Выход 4Нех 5Пер~ти 6 7Поиск 8Исх~ый 9Форма
```

Рис. 4.7: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf\_i386 -o lab5-1 lab5-1.o. Создался исполняемый файл lab5-1.

Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу (рис. 4.8).

```
eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ./lab5-1
Введите строку:
Шабалина Елизавета Андреевна
```

Рис. 4.8: Исполнение файла

#### 4.3 Подключение внешнего файла

Скачиваю файл in\_out.asm со страницы курса в ТУИС. Он сохранился в каталог "Загрузки".

С помощью функциональной клавиши F5 копирую файл in\_out.asm из каталога Загрузки в созданный каталог lab05 (рис. 4.9).



Рис. 4.9: Копирование файла

С помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем (lab5-2), для этого в появившемся окне mc прописываю имя для копии файла (рис. 4.10).



Рис. 4.10: Копирование файла

Изменяю содержимое файла lab5-2.asm в редакторе, чтобы в программе использовались подпрограммы из внешнего файла in out.asm.

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf\_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл (рис. 4.11).

Открываю файл lab5-2.asm для редактирования функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий.

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл.

```
eashabalina@dk3n55 ~/work/arch-pc/lab05 $ nasm -f elf lab5-2.asm

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ mc

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2 lab5-2.o

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ./lab5-2

Введите строку:

Шабалина Елизавета Андреевна

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ nasm -f elf lab5-2.asm

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-2 lab5-2.o

eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ./lab5-2

Введите строку: Шабалина Елизавета Андреевна
```

Рис. 4.11: Исполнение файла

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

#### 4.4 Выполнение заданий для самостоятельной работы

1. Создаю копию файла lab5-1.asm с именем lab5-3.asm с помощью функциональной клавиши F5.

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.12).

Рис. 4.12: Редактирование файла

2. Создаю объектный файл lab5-3.o, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-3, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свою фамилию, далее программа выводит введенные мною данные (рис. 4.13) (рис. 4.14).

```
eashabalina@dk3n55 ~/work/arch-pc/lab05 $ nasm -f elf lab5-3.asm
eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ld -m elf_i386 -o lab5-3 lab5-3.o
eashabalina@dk3n55 ~/work/arch-pc/lab05 $ ./lab5-3.asm
```

Рис. 4.13: Исполнение файла

# Введите строку: Шабалина Шабалина

Рис. 4.14: Исполнение файла

3. Создаю копию файла lab5-2.asm с именем lab5-4.asm с помощью функциональной клавиши F5.

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.15).

Рис. 4.15: Редактирование файла

4. Создаю объектный файл lab5-4.o, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-4, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свою фамилию, далее программа выводит введенные мною данные (рис. 4.16) (рис. 4.17).

#### Введите строку: Шабалина

Рис. 4.16: Исполнение файла



Рис. 4.17: Исполнение файла

## 5 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.