1. Let X_1, \dots, X_n be iid from the Beta distribution $Beta(\alpha = 2, \beta = 2)$, which has pdf $f(x) = 6 \cdot x \cdot (1 - x)$ for $x \in [0, 1]$ and f(x) = 0 outside [0, 1].

Let F(x) be the cdf of $Beta(\alpha=2,\beta=2)$, and let. $\widehat{F}_n(x)$ be the empirical cdf (EDF) based on the sample X_1, \dots, X_n .

- (a) Find (by integrating the density) the cdf F(x).
- (b) Plot the curve F(x) using R over the range [0,1].
- (c) For a given x = 0.3, and n = 100, what is the mean (expectation) of the EDF $\hat{F}_n(x)$?
- (d) For a given x = 0.3, and n = 100, what is the variance of the EDF $\widehat{F}_n(x)$?

(a)
$$f(\infty) = 6\infty(1-\infty) = 6\infty - 6\infty^2$$

$$F(n) = \int_{-\infty}^{\infty} f(n) dn = 3n^2 - 2n^3 \qquad \text{for occes}$$

$$E(\omega) = \begin{cases} 1 & \omega > 1 \\ 2\omega_y - 7\omega_y & 0 < \omega \in 1 \\ 0 & \omega \in 0 \end{cases}$$

(P)

(c)
$$E(\hat{F}_n(x)) = E(I(x \leq x)) = F(x)$$

$$E(F_{0}(0.3)) = F(0.3) = 3 \times 0.3^{2} - 2 \times 0.3^{3} = 0.216$$

(d) vay
$$(F_n(\infty)) = \frac{F(\infty)(1-F(\infty))}{n} = \frac{F(0.3) \times (1-F(0.3))}{100} = 0.00169$$

- 2. Let U be a uniform random variable over [0,1]. Define $W=-4\log U$.
 - (a) Show (by finding the cdf $P(W \le x)$) that W has the same distribution as the exponential distribution Exp(0.25).
 - (b) Use $\mathbf{rexp}()$ to simulate at least 2000 realizations from the exponential distribution Exp(0.25). Plot the EDF of your realizations.
 - (c) Use runif() to simulate at least 2000 realizations of $W=-4\log U$. Plot the EDF of your realizations, on the same plot (in a contrasting color)

(a)
$$P(W \le n) = P(-46g u \le n)$$

= $P(u \ge e^{-4n})$
= $1 - P(u < e^{-4n})$
= $1 - e^{-4n}$
= $1 - e^{-4n}$

- 3. Use **rnorm()** to generate 2000 data points from $N(3, 2^2)$, the Normal distribution with mean 3 and variance $2^2 = 4$. Careful: I write it like this because texts use variance, but R uses stdev.
 - (a) Plot the EDF curve within [-1, 7].
 - (b) Repeat the above procedure 10 times to generate another 10 EDF curves from the same distribution and with the same sample size.
 - (c) Plot the new 10 EDF curves over the range [-1,7]
 - (d) Use **pnorm()** to find the actual cdf of $N(3, 2^2)$ and superimpose this curve on your plot (in a contrasting color).

- 4. The centered Laplace (double exponential) distribution has density $f(x) = (2\beta)^{-1} e^{-|x|/\beta}$ on $-\infty < x < \infty$ where $\beta > 0$.
 - (a) Derive the cdf of Laplace(β). Hint: It is symmetric so F(x) = 1 - F(-x), and the tail probability for negative x is easiest.
 - (b) Derive the inverse cdf of Laplace(β). Hint: solve F(x) = u, for the uniform $U, 0 \le U \le 1$.
 - (c) Implement the inverse cdf method, using **runif()** to sample from Laplace(1). Save 2000 samples drawn using your function.
 - (d) Note that realizations from Laplace distribution are simply exponential realizations y then becoming $\pm y$ each with probability (1/2). Use $\mathbf{rexp}()$ and $either\ \mathbf{rbinom}(\mathbf{2000},\mathbf{1,0.5})$ or $\mathbf{rbinom}(\mathbf{1,\ 2000,\ 0.5})$ to generate 2000 realizations from the Laplace distribution with $\beta=1$.
 - (e) Use the function qqplot() to compare empirical quantiles of the two samples.

$$(a) \quad f(n) = (2\beta)^{-1} e^{-(n)/\beta}$$

$$F(n) = \frac{1}{2\beta} \int e^{-\frac{|n|}{b}} dx$$

$$= \frac{1}{2\beta} \frac{n}{|m|} e^{-\frac{|n|}{b}} \cdot \frac{n}{n} dx$$

$$= \frac{n}{2\beta |n|} \int \frac{n e^{-\frac{|n|}{b}}}{(n)} dx \qquad dn = -\frac{n}{\beta |n|}$$

$$= \frac{n}{2\beta |n|} (-\beta) e^{n} dx$$

For ∞co , $F(\infty) = \frac{1}{2}e^{-\frac{1}{6}}$. And since $F(\infty) = 1 - F(-\infty)$, $F(\infty) = 1 - \frac{1}{2}e^{-\frac{1}{6}}$ for $\infty \ge 0$.

(b) When
$$x \in 0$$
, $u = F(x) = \frac{1}{2}e^{-\frac{x^2}{6}}$

$$\log(2u) = -\frac{x^2}{6}$$

$$x = -\beta \log(2u)$$
When $x > 0$, $u = F(x) = 1 - \frac{1}{2}e^{-\frac{x^2}{6}}$

$$1 - u = \frac{1}{2}e^{-\frac{x^2}{6}}$$

$$\log(2-2u) = -\frac{x^2}{6}$$

$$x = -\beta \log(2-2u)$$

