Assignment 04 Iterative Methods

Mayank Pathania 204103314

March 15, 2021

1 Algorithms

1.1 Gauss-Seidel

```
Algorithm 1: Gauss-Seidel
 1: procedure GAUSS SEIDEL(A[[]], B[], \epsilon, Kmax)
                                                                                            ▷ A[][] is system matrix
                                                                                                  ⊳ B∏ is RHS vector
                                                                                                  \triangleright \epsilon is tolerace/error
                                                                   ▶ Kmax is maximum number of iterations
 2:
         error \leftarrow 1000
                                                                                        \triangleright large value(more than \epsilon)
         k \leftarrow 0
                                                                                                   ▷ iteration counter
 3:
         initialize x with random values
 4:
         while k < Kmax and error > \epsilon do
 5:
              for i\leftarrow 1:1:n do
 6:
 7:
                   val \leftarrow 0
                  for j\leftarrow 1:1:n do
 8:
 9:
                       if j≠i then
                            val \leftarrow val + A[i][j]*x[j]
10:
                       end if
11:
                  end for
12:
                  \mathbf{x}[\mathbf{i}] \leftarrow \frac{B[i]-val}{A[i][i]}
13:
              end for
14:
15:
              error \leftarrow 0
              for i\leftarrow 1:1:n do
16:
                   residue \leftarrow 0
17:
18:
                  for j\leftarrow 1:1:n do
                       residue \leftarrow residue + A[i][j]*x[j]
19:
20:
                  end for
                  residue \leftarrow B[i] - residue
21:
                  error \leftarrow error + residue^2
22:
```

```
23: end for

24: error \leftarrow \sqrt{error}

25: k \leftarrow k + 1

26: end while

27: return x

28: end procedure
```

28: end procedure

1.2 Conjugate Gradient

```
Algorithm 2: Conjugate Gradient
 1: procedure conjugate gradient(A[][], B[], \epsilon, Kmax)
                                                                                                                    ▷ A[][] is system matrix
                                                                                                                           ⊳ B∏ is RHS vector
                                                                                                                          \triangleright \epsilon is tolerace/error
                                                                                    ▶ Kmax is maximum number of iterations
           error \leftarrow 1000
                                                                                                               \triangleright large value(more than \epsilon)
 2:
 3:
           k \leftarrow 0
                                                                                                                            ▷ iteration counter
 4:
           initialize x with random values
           d \leftarrow compute B - Ax
           r \leftarrow d
 6:
            while k < Kmax and error > \epsilon do
 7:
                 \begin{array}{l} v \leftarrow computeA*d \\ \alpha \leftarrow \frac{r^Tr}{d^Tv} \end{array}
 8:
 9:
                 \mathbf{for}\ \mathrm{i} {\leftarrow} 1{:}1{:}n\ \mathbf{do}
10:
                       x[i] \leftarrow x[i] + \alpha * d[i]
11:
                 end for
12:
                 error \leftarrow 0
13:
                 initialize vector r_{next} of size r
14:
                 for i\leftarrow 1:1:n do
15:
                       \begin{aligned} r_{next}[i] \leftarrow r[i] - \alpha * v[i] \\ \text{error} \leftarrow error + r_{next}^2 \end{aligned}
16:
17:
18:
                 end for
                 \beta \leftarrow \frac{r_{next}^T r_{next}}{d^T r}
for i\leftarrow 1:1:n do
19:
20:
                       d[i] \leftarrow r_{next} + \beta * d[i]
21:
                 end for
22:
23:
                 \mathbf{r} \leftarrow r_{next}
                 \text{error} \leftarrow \sqrt{error}
24:
25:
                 k \leftarrow k + 1
            end while
26:
27:
            return x
```

2 Problem

$$\begin{bmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 47 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \\ x5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

3 Iterations

3.1 Parameters

- $\epsilon = 10^{-10}$
- Kmax = 1000

3.2 Initial Guess

$$\mathbf{x} = \begin{cases} -24 \\ -64 \\ 47 \\ 53 \\ -42 \end{cases}$$

3.3 Conjugate Gradient

iteration	error	x1	x2	x3	x4	x5
1	2649.46	-24.1265	-63.6939	42.7614	52.7636	0.116514
2	352.151	-25.5418	-59.4667	-1.45776	47.1715	-0.355099
3	135.927	-31.3974	-26.4973	0.115133	-1.61659	-0.0207585
4	2.19193	-30.2297	0.329565	0.559426	4.28057	-0.0152505
5	0.00290896	7.85971	0.422926	-0.0735922	-0.540643	0.010622
6	4.31393e-08	7.85971	0.422926	-0.0735922	-0.540643	0.0106262
7	1.90982e-12	7.85971	0.422926	-0.0735922	-0.540643	0.0106262

3.4 Gauss Seidel

iteration	error	x1	x2	х3	x4	x5
1	187.81	-463	0.075	6.36792	79.3656	-0.428074
10	2.07507	-20.4058	0.0210206	0.389874	3.05671	-0.00918013
11	1.47584	-12.2435	0.137081	0.256036	2.01789	-0.00346056
20	0.0687228	6.92361	0.409616	-0.058243	-0.421505	0.00997021
30	0.00227598	7.82871	0.422486	-0.0730839	-0.536697	0.0106044
31	0.00161873	7.83766	0.422613	-0.0732307	-0.537837	0.0106107
40	7.53767e-05	7.85869	0.422912	-0.0735754	-0.540512	0.0106254
41	5.36098e-05	7.85898	0.422916	-0.0735803	-0.54055	0.0106257
50	2.49635e-06	7.85968	0.422926	-0.0735917	-0.540639	0.0106261
51	1.77546e-06	7.85969	0.422926	-0.0735918	-0.54064	0.0106261
60	8.26748e-08	7.85971	0.422926	-0.0735922	-0.540643	0.0106262
61	5.88004e-08	7.85971	0.422926	-0.0735922	-0.540643	0.0106262
70	2.73805e-09	7.85971	0.422926	-0.0735922	-0.540643	0.0106262
71	1.94737e-09	7.85971	0.422926	-0.0735922	-0.540643	0.0106262
80	9.06798e-11	7.85971	0.422926	-0.0735922	-0.540643	0.0106262

4 Solution

Solution by both gauss seidel and conjugate gradient method is same

$$\mathbf{x} = \begin{cases} 7.85971 \\ 0.422926 \\ -0.0735922 \\ -0.540643 \\ 0.0106262 \end{cases}$$

5 Conclusion

- For same parameters ϵ and initial guess Gauss Seidel Method tool more iterations than Conjugate Gradient.
- Various initial guess were taken in range (-100, 100) and it was noticed that conjugate gradient took 7 iterations to converge to solution while gauss-seidel method took around 75 to 80 iterations. ϵ was kept constant at $\epsilon = 10^{-10}$.