Chapitre 19

Convexité

19	Convexité
	19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes
	19.8 Inégalités des pentes
	19.9 Continuité et dérivabilité des fonctions convexes
	19.11 Caractérisation des fonctions convexes par les variations de la dérivée
	19.13 Caractérisation des fonctions convexes par les tangentes
	19.17Somme de fonctions convexes

19.7 Position du graphe d'une fonction convexe par rapport à ses sécantes

Propostion 19.7

Soit $f: I \to \mathbb{R}$ une fonction convexe et $(x,y) \in I^2$ avec x < y. Le graphe de f est situé en-dessous de sa sécante sur l'intervalle [x,y] et au-dessus à l'extérieur, soit sur $I \cap]-\infty,x] \cup [y,+\infty[$.

On pose $g: \mathbb{R} \to \mathbb{R}; t \mapsto \frac{f(y) - f(x)}{y - x}(t - x) + f(x)$. g paramètre la sécante passant par les points (x, f(x)) et (y, f(y)).

- Sur [x, y], RAF car f est convexe.
- Soit t > y. On pose $\lambda = \frac{y-x}{t-x} \neq 0 \in [0,1]$. On a :

$$\lambda t + (1 - \lambda)x = \frac{y - x}{t - x}t + \left(1 - \frac{y - x}{t - x}\right)x$$
$$= \frac{t(y - x) + x(t - y)}{t - x}$$
$$= y$$

Par convexité de f:

$$f(y) = f(\lambda t + (1 - \lambda)x)$$

$$\leq \lambda f(t) + (1 - \lambda)f(x)$$

$$\operatorname{donc} f(t) \geq \frac{1}{y}f(y) - \left(\frac{1}{y} - 1\right)f(x)$$

$$= \frac{t - x}{y - x}f(y) - \left(\frac{t - x}{y - x} - 1\right)f(x)$$

$$= \frac{t - x}{y - x} \times (f(y) - f(x)) + f(x)$$

$$= g(t)$$

— On raisonne de la même manière si $t \le x < y$.

19.8 Inégalités des pentes

Propostion 19.8

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I.

- 1. f est convexe si et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur $I \setminus \{a\}$.
- 2. Si f est convexe, alors pour tout $(a, b, c) \in I^3$ avec a < b < c,

$$\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}$$

 $1. \Rightarrow$

On suppose f convexe. Soit $a \in I$ et x < y dans $I \setminus \{a\}$.

— On suppose x < a < y. D'après (19.7) :

$$f(y) \le \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Si x < a < y, d'après (19.7) :

$$f(y) \ge \frac{f(a) - f(x)}{a - x} \times (y - a) + f(a)$$

Donc:

$$\frac{f(y) - f(a)}{y - a} \ge \frac{f(a) - f(x)}{a - x}$$

— Les autres cas s'y ramènent.

 \Leftarrow

On suppose que pour tout $a \in I$, $g_a : I \setminus \{a\} \to \mathbb{R}$; $x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante. Soit x < y et $\lambda \in]0, 1[$. On pose $a = \lambda y + (1 - \lambda)x$. g_a est croissante sur $I \setminus \{a\}$, donc :

$$g_a(x) \le g_a(y)$$

Donc:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(y) - f(a)}{y - a}$$

Donc:

$$x - a < 0 \text{ et } y - a > 0$$

$$(f(x) - f(a))(y - a) \le (f(y) - f(a))(x - a)$$

$$\text{donc } f(a)(y - x) \le f(x)(y - a) - f(y)(x - a)$$

$$\text{soit } f(a) \le f(x)\frac{y - a}{y - x} + f(y)\frac{a - x}{y - x}$$

$$= (1 - \lambda)f(x) + \lambda f(y)$$

2. Soit a < b < c.

$$g_a(b) \le g_a(c) = g_c(a) \le g_c(b)$$

19.9 Continuité et dérivabilité des fonctions convexes

Théorème 19.9

Soit f une fonction convexe sur un intervalle I ouvert. La fonction f est alors continue et possède des dérivées à gauche et à droite en tout point (où les limites osnt envisageables). Pour tout $a \in I$, on a

$$f'_g(a) \le f'_d(a)$$

Pour $a \in I$, on note encore $g_a : I \setminus \{a\} \to \mathbb{R}; x \mapsto \frac{f(x) - f(a)}{x - a}$.

Comme g est définie à gauche et à droite de a (I est ouvert) et que g est croissante sur $I \setminus \{a\}$, d'après le TLM g admet des limites finies à gauche et à droite de a et :

$$\lim_{a^{+}} g = f'_{d}(a) \ge f'_{g}(a) = \lim_{a^{-}} g$$

$$\forall x \ne a, f(x) = \frac{f(x) - f(a)}{x - a} (x - a) + f(a)$$

$$\xrightarrow[x \to a^{+}]{} f(a)$$

$$\xrightarrow[x \to a^{-}]{} f(a)$$

19.11 Caractérisation des fonctions convexes par les variations de la dérivée

Théorème 19.11

Soit $f: I \to \mathbb{R}$ une fonction dérivable sur I. Alors f est convexe si et seulement si f' est croissante.

 \Rightarrow

On suppose f convexe. Soit x < y. Soit a tel que x < a < y.

D'après l'inégalité des pentes (f est convexe), on a :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(a)}{y - a}$$

En considérant les limiets $a \to x^+$ et $a \to y^-$ et par TCILPPL :

$$f'(x) \le \frac{f(y) - f(x)}{y - x} \le f'(y)$$

Donc f' est croissante.

 \Leftarrow

On suppose f' croissante sur I. Soit x < y. Soit $a \in]x, y[$.

On applique deux fois le TAF : on choisit $\alpha \in]x, a[$ et $\beta \in]a, y[$ tels que :

$$\frac{f(a) - f(x)}{-x + a} = f'(\alpha) \text{ et } \frac{f(y) - f(a)}{y - a} = f'(\beta)$$

Comme f' est croissante, on a $f'(\alpha) \leq f'(\beta)$, soit :

$$\frac{f(a) - f(x)}{a - x} \le \frac{f(y) - f(a)}{y - a}$$
$$\operatorname{donc} f(a) \le \frac{a - x}{y - x} f(y) + \frac{y - a}{y - x} f(x)$$

Comme $a \in]x, y[$, $a = \lambda y + (1 - \lambda)x$ et aussi :

$$f(a) = f(\lambda y + (1 - \lambda)x) \le \lambda f(y) + (1 - \lambda)f(x)$$

Donc f est convexe (sur I).

19.13 Caractérisation des fonctions convexes par les tangentes

Propostion 19.13

Soit $f:I\to\mathbb{R}$ une fonction dérivable. Alors f est convexe sur I si et seulement si le graphe de f est situé au-dessus de toutes ses tangentes.

 \Rightarrow

On suppose f convexe. Soit $a \in I$ et soit $\varphi : \mathbb{R} \to \mathbb{R}; t \mapsto f'(a)(t-a) + f(a)$.

On pose $h = f - \varphi \in \mathcal{D}^1(I, \mathbb{R})$ et h' = f' - f'(a).

Or f est convexe donc f' est croissante sur I. Donc :

a			
h'	_	0	+
h	×	0	7
h		+	

 \Leftarrow

Soit x < y et $a = \lambda y + (1 - \lambda)x \in]x, y[$.

Par hypothèse, le graphe de f est situé au-dessus de sa tangente en a.

$$\forall t \in I, f(t) \ge f'(a)(t-a) + f(a)$$

En particulier:

$$f(x) \ge f'(a)(x-a) + f(a)$$

$$f(y) \ge f'(a)(y-a) + f(a)$$

 ${\bf Donc}:$

$$(y-a)f(x) + (a-x)f(y) \ge (y-a)f(a)$$
$$\operatorname{donc} f(a) \le \frac{y-a}{y-x}f(x) + \frac{a-x}{y-x}f(y)$$
$$= (1-\lambda)f(x) + \lambda f(y)$$

19.17 Somme de fonctions convexes

Propostion 19.17

La somme de deux fonctions convexes et convexe.

Soit f et g convexes. Soit x < y et $a = \lambda x + (1 - \lambda)y \in]x, y[$. On a :

$$f(a) \le \lambda f(x) + (1 - \lambda)f(y)$$

$$g(a) \le \lambda g(x) + (1 - \lambda)g(y)$$

Donc:

$$(f+g)(a) \le \lambda(f+g)(x) + (1-\lambda)(f+g)(y)$$

Donc f + g est convexe.