Image Analysis with Deep Convolutional Neural Networks

Al in Medicine

Ricardo Henao

Diabetic Retinopathy Classification

Healthy Retina

Unhealthy Retina

Diabetic Retinopathy Classification

 $sensitivity = \frac{number\ of\ true\ positives}{total\ number\ of\ positives\ in\ the\ dataset}$

 $specificity = \frac{number\ of\ true\ negatives}{total\ number\ of\ negatives\ in\ the\ dataset}$

Gulshan et al. JAMA (2016)

See also: Ting et al. JAMA (2017)

TSA Screening

Face Recognition

Face Recognition

Automatic 3D Body Tracking in Video

Style Transfer and Harmonization

مبادرة الصحة الذكية Smart-Health Initiative

Research Center

Stylizing Portraits

ww.agilegan.com

Cartoon

Painting

Comic

Consider the multi-layer perceptron for digit recognition:

Consider the multi-layer perceptron for digit recognition:

Consider the multi-layer perceptron for digit recognition:

Low-level structure: lines, curves

Low-level structure: lines, curves

Mid-level structure: shapes

Mid-level structure: shapes

High-level structure: groups of shapes

High-level structure: groups of shapes → objects

Consider a Set of "Toy" Images, for illustration of how this structure can be extracted by an algorithm

High-Level Motifs/Structure

Computational Bioscience Research Center

Hierarchical Representation of Images

Recall the Data/Images

Convolutional Filter

Convolutional Filter

Convolutional Filter

Multiple Filters, One for Each Building Block

Deep Analysis Architecture

Given Images, How Do We Learn Model Parameters?

- > The previous discussion was an illustration for motivating the "deep" algorithm concept
- ➤ Demonstrated using "toy" images
- > How do we build such an algorithm in practice, given a large set of training images?

- Assume we have labeled images $\{I_n, y_n\}_{n=1,N}$
- I_n is image $n, y_n \in \{+1, -1\}$ is associated label
- Risk function of model parameters:

$$E(\Phi, \Psi, \Omega, W) = 1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

• Find model parameters $\widehat{\Phi}$, $\widehat{\Psi}$, $\widehat{\Omega}$, \widehat{W} that minimize $E(\Phi, \Psi, \Omega, W)$

Cost Function vs. Model Parameters

- High-dimensional function, as a consequence of a large number of model parameters
- Typically, many local minima
- May be expensive to compute, for sophisticated models & large quantity of training images

Classifier

Layer 1

Layer 2

Layer 3

Advantage of Hierarchical Features?

- By learning and sharing statistical similarities within high-level motifs, we better leverage all training data
- If we do not use such a hierarchy, top-level motifs would be learned in isolation of each other

"To speed up the training, batch normalization as well as pre-initialization using weights from the same network trained to classify objects in the ImageNet data set were used. Pre-initialization also improved performance"

Input Image

Feature detectors at the top of the network are typically highly specialized for a particular task

Layer 1 Filters,
Convolutional Neural Network

Neuron Receptive Fields, Macaque Visual Cortex

Big Picture

- Assume we have labeled images $\{I_n, y_n\}_{n=1,N}$
- I_n is image $n, y_n \in \{+1, -1\}$ is associated label
- Risk function of model parameters:

$$E(\Phi, \Psi, \Omega, W) = 1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

• Find model parameters $\widehat{\Phi}$, $\widehat{\Psi}$, $\widehat{\Omega}$, \widehat{W} that minimize $E(\Phi, \Psi, \Omega, W)$

Summary

- Convolutional neural networks learn to recognize high-level structure in images by building hierarchical representations of features
- Features are extracted via spatial convolutions with filters
- Filters are learned via iterative minimization of a risk function.
- Convolutional neural networks have shown capabilities beyond human performance for image analysis

