Kezdés ideje	2024. május 17., péntek, 13:58
Állapot	Befejezte
Befejezés dátuma	2024. május 17., péntek, 14:48
Felhasznált idő	50 perc
Pont	15,00 a(z) 30,00 maximumból (50 %)

kérdés Részben helyes

3,00/5,00 pont

Egy taxivállalat 8 véletlenszerűen kiválasztott fuvar alapján vizsgálja, hogyan függ a menetidő a megtett kilométertől

Fuvar Távolság (km) Menetidő (perc)

1	5	9
2	4	13
3	6	19
4	7	20
5	8	23
6	9	25
7	12	27
8	15	34

Ismertek még a következő adatok, ahol x a távolságot, y pedig a hozzá tartozó menetidőt jelöli:

$$\sum x =$$
 64, $\sum x^2 =$ 624, $\sum xy =$ 1576, $\sum y =$ 170, $\sum y^2 =$ 4050.

Az alábbi kérdéseknél, ahol a kiszámolt érték nem egész szám, az értéket két tizedesre kerekítve adja meg (pl. 18.25).

a) Töltse ki az alábbi varianciaanalízis-táblázat hiányzó részeit.

A varianci forrása	a Négyzetösszeg	Szabadsági fok	i Átlagos négyzetösszeg	F-érték
	416.5		416.5 🗸	6.93 ×
Regresszió	A helyes válasz: 416.57142857143	<mark>3</mark> 1	A helyes válasz: 416.57142857143	A helyes válasz: 119.42662116041
			3.49	
Maradék	20.928571428571	6	A helyes válasz: 3.4880952380952	
Teljes	437.5	7		
b) Számítsa	a ki a két változó lineáris korreláció	s együttható	ját.	
0.98				

A helyes válasz: 0.97578853513767

c) Adja meg a hibatag szórásnégyzetének a becslését (korrigált reziduális variancia).

18.67 ×

A helyes válasz: 3.4880952380952

2024. 05. 17. 16:10

2. kérdés	
Hibás	
0,00/5,00 pont	

Válassza az igaz állításokat!		
Válasszon ki egyet vagy többet:		
✓ a.	Az analitikus trendszámítás lineáris regressziós modell illesztését jelenti az idősorra. 🗙	
□ b.	A trend illeszkedésének jellemzésére kizárólag csak a reziduális variancia használható.	
_ c.	Az additív dekompozíciós idősormodellek esetében a véletlen összetevő várható értéke nulla.	
_ d.	A lineáris trend modell: $y_t = eta_0 \cdot eta_1 t + \epsilon_t.$	
✓ e.	A dekompozíciós idősormodellek elemei a trend, a szezonalitás, a konjunktúra komponens és egy véletlen hatás. 🗸	
☑ f.	Ha az idősorra n megfigyelésünk van, akkor célszerű $(n-1)$ -ed fokú polinomot illeszteni. $igstar$	
☑ g.	A lineáris trend modell: $y_t = eta_0 + eta_1 t + \epsilon_t$. $m{\checkmark}$	
□ h.	Az exponenciális és a hatvány trend modellt logaritmizálásal vezethetjük vissza a lineáris modellre.	
☐ i.	A reziduális variancia nem alkalmas a trend illeszkedésének jellemzésére.	
<u> </u>	A multiplikatív dekompozíciós idősormodelleknél a véletlen összetevő várható értéke 1.	

A helyes válaszok: Az additív dekompozíciós idősormodellek esetében a véletlen összetevő várható értéke nulla., Az exponenciális és a hatvány trend modellt logaritmizálásal vezethetjük vissza a lineáris modellre., A multiplikatív dekompozíciós idősormodelleknél a véletlen összetevő várható értéke 1., A lineáris trend modell: $y_t = \beta_0 + \beta_1 t + \epsilon_t$.

, A dekompozíciós idősormodellek elemei a trend, a szezonalitás, a konjunktúra komponens és egy véletlen hatás.

2024. 05. 17. 16:10

3. kérdés	
Részben helyes	
4,00/5,00 pont	

Az Észak-Amerikai Keresztapák Szövetsége megvizsgálta, milyen tényezők befolyásolják az egyes családok éves összbevételét (10000 USD). A következő lehetséges magyarázó változókat vették figyelembe:

- az ellenőrzött vállalkozások száma;
- a család tagjainak a száma;
- a lefizetett rendőrtisztek száma;
- a megvesztegetett bírók és politikusok száma;
- a havonta kifizetett kenőpénz átlagos összege.

 $A\ kapcsol\'od\'o\ SPSS\ output:\ \underline{https://elearning.unideb.hu/pluginfile.php/162420/question/questiontext/387600/6/926111/Gang3.pdf}$

Az alábbi kérdéseknél a numerikus értékeket az SPSS outputnak megfelelően három tizedesre kerekítve adja meg (pl. 18.256).

a) Melyik magyarázó változóval korrelál legerősebben az átlagos havi kenőpénz összege?
Az ellenőrzött vállalkozások száma
A lefizetett rendőrtisztek száma
A család tagjainak a száma
☑ A megvesztegetett bírók és politikusok száma ✓
b) A illesztett modell alapján mennyivel növekszik a család éves összbevétele (10000 USD-ben megadva), ha egy újabb rendőrtisztet vesztegetnek meg? 293.065
c) Adja meg a végső modell reziduális és regressziós négyzetösszegét. SSE: 467908514.3 🗸 ; SSR: 2321370010
d) A végső modell esetén adja meg a konstans szignifikanciájára vonatkozó teszt próbastatisztikájának értékét8.586
e) A végső modellben szereplő magyarázó változók közül melyiknek a legkisebb a parciális korrelációs együtthatója?
A család tagjainak a száma 💠

4. kérdés

Helves

5,00/5,00 pont

Demisz Roszszósz, a tehetséges de lecsúszott görög szakács nagy hódolója az ouzónak és a női nemnek. Mikor életében először eljutott Londonba, Chelsey szegényebb részén szállt meg, ahol rövid, ámde annál viharosabb szerelmi kalandba bonyolódott a környéken jól ismert Kancsal (Cross-eyed) Mary nevű hölggyel. Rövid viszonyuk 6 napja alatt Demisz napi ouzófogyasztása (dl) a következőképpen alakult (Mary maradt a skót whisky élvezeténél):

3.44, 3.4, 3.69, 3.46, 4.01, 3.61

Szakításuk után Demisz még 5 napot töltött Londonban, az erre az időszakra eső napi fogyasztása:

1.84, 5.91, 4.22, 9.64, 9.54

A mellékelt SPSS eredmények segítségével válaszoljon a következő kérdésekre feltéve, hogy Demisz ouzófogyasztása mindkét időszakban folytonos eloszlást követ.

A kapcsolódó SPSS output: https://elearning.unideb.hu/pluginfile.php/162420/question/questiontext/387600/5/416096/DMnp5.pdf

Ahol a kapott érték nem egész szám, az értéket három tizedesre kerekítve adja meg (pl. 0.256).

A megadott nemparaméteres próbák segítségével döntsön arról, a szakítás megváltoztatta-e Demisz ouzófogyasztásának az eloszlását.

a) Adja meg a nagymintás Mann-Whitney próba aszimptotikus p-értékét:

0.1

Az egyik lehetséges helyes válasz: 0.100

b) A fentiek alapján 25%-os szinten döntsön az eloszlások egyenlőségéről (H_0 : egyenlőek; H_1 : nem egyenlőek). Válasz megadása: 0, ha a H_0 nullhipotézist; 1, ha a H_1 ellenhipotézist fogadja el.

1 \checkmark $p(0.100) < \alpha(0.250) --> ha p kisebb, H0-t elutasítjuk$

Az egyik lehetséges helyes válasz: 1

c) Adja meg a Kolmogorov-Szmirnov próba próbastatisztikájának értékét:

1.321 🗸

Az egyik lehetséges helyes válasz: 1.321

d) Döntsön ugyancsak 25%-os szinten a Kolmogorov-Szmirnov próba segítségével is az eloszlások egyenlőségéről (H_0 : egyenlőek; H_1 : nem egyenlőek). Válasz megadása: 0, ha a H_0 nullhipotézist; 1, ha a H_1 ellenhipotézist fogadja el.

1 🗸

 \checkmark p(0.061) < α (0.25) --> ha p kisebb, H0-t elutasítjuk

Az egyik lehetséges helyes válasz: 1

e) Mennyi a Wald-Wolfowitz próba próbastatisztikájának értéke?

-1.89 🗸

Az egyik lehetséges helyes válasz: -1.895

fenn.

5. kérdés	
Részben helyes	
3,00/5,00 pont	

A helyes válaszok: Az y és x_j közötti $r_{yj\cdot 1,2,\dots,j-1,j+1,\dots,k}$ parciális korrelációs együttható azt mutatja, hogy milyen szoros és milyen irányú a sztochasztikus kapcsolat az y eredményváltozó és az x_j magyarázó változó között akkor, ha csak a közvetlen kapcsolatot tekintjük, és kiiktatjuk az $x_1,\dots,x_{j-1},x_{j+1},\dots,x_k$ változókon keresztül érvényesülő közvetett hatásokat. , Ha a többszörös determinációs együttható értéke nulla, akkor a magyarázott változó előrejelzése a megfigyeléseinek átlaga., Az $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ többváltozós regressziós modell paraméterbecslésére a következő formulát használjuk: $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$. , A Forward eljárás első lépéseként a függő változóval legjobban korreláló magyarázó változót felhasználva felírjuk a lineáris regressziós modellt., A reziduumok abszolútértékének csökkenésével javul a modell illeszkedése.

🗆 i. A Forward változószelekciós eljárás első lépéseként az összes magyarázó változót felhasználva felírjuk a lineáris regressziós modellt.

Standard lineáris modell esetén a maradékváltozó különböző magyarázóváltozókhoz tartozó értékei között 1-rendű autokorreláció áll

6. kérdés	
Hibás	
0,00/5,00 pont	

Válassza az igaz állításokat!		
Válassz	on ki egyet vagy többet:	
☐ a.	Amennyiben parciális t-próba esetén elfogadjuk azt a nullhipotézis miszerint $H_0:eta_0=0$, akkor a eta_0 konstans szignifikáns.	
b.	A Durbin-Watson próbát a lineáris regresszió maradékai normalitásának tesztelésére használjuk. 🗙	
✓ c.	A lineáris regressziós modellekben a β_1 együttható értelmezése: az X_1 magyarázó változó egységnyi növekedése átlagosan hány egységnyi növekedéssel/csökkenéssel jár együtt az eredményváltozóban (a többi változó változatlansága mellett).	
☐ d.	$Ha\ a\ globális\ F\text{-próba}\ nullhipotézisét\ elutasítjuk,\ a\ modell\ teljes\ egészében\ rossz,\ egyik\ magyarázó\ változót\ sem\ érdemes\ megtartani.$	
_ e.	Az autokorreláció egy változó saját késleltetett értékeivel vett összefüggését méri, ezért csak meghatározott sorrend esetén érvényes tulajdonság.	
✓ f.	Többváltozós esetben a korrelációs együttható értéke megadja az illesztett regressziós modell magyarázó erejét. 🗙	
☐ g.	A regressziós modellekben nem feltétlenül kell szerepelnie a eta_0 konstansnak.	
□ h.	A Durbin-Watson teszt esetén nem mindig tudunk arról dönteni, hogy a maradékok között van-e elsőrendű autokorreláció.	
☐ i.	A Durbin-Watson próba a [0,4] intervallumban vehet fel értéket.	
☑ j.	A Durbin-Watson teszt próbastatisztikája adhat olyan értéket, hogy nem tudunk dönteni, elfogadjuk-e maradékok normalitását, vagy nem.	

A helyes válaszok: A Durbin-Watson próba a [0,4] intervallumban vehet fel értéket., A Durbin-Watson teszt esetén nem mindig tudunk arról dönteni, hogy a maradékok között van-e elsőrendű autokorreláció., A lineáris regressziós modellekben a β_1 együttható értelmezése: az X_1 magyarázó változó egységnyi növekedése átlagosan hány egységnyi növekedéssel/csökkenéssel jár együtt az eredményváltozóban (a többi változó változatlansága mellett).

, Az autokorreláció egy változó saját késleltetett értékeivel vett összefüggését méri, ezért csak meghatározott sorrend esetén érvényes tulajdonság., A regressziós modellekben nem feltétlenül kell szerepelnie a β_0 konstansnak.

■ Gyakorló teszt a második anyagrészhez

I. dolgozat, 4, 5 gyakorlati csoport, 2024.04.05, 15:00 ►

Kapcsolat: elearning@metk.unideb.hu