Do Minimum Wages Increase Rents? Evidence from US ZIP Codes Using High-Frequency Data

Diego Gentile Passaro Santiago Hermo Gabriele Borg

Brown University Brown University AWS

October 27, 2021

Motivation

Research on minimum wage (MW) has mostly focused on employment.

However, as MW policies are *place-based*, so one should expect broader effects in the local economy:

 \Rightarrow Housing market.

Motivation

Research on minimum wage (MW) has mostly focused on employment.

However, as MW policies are *place-based*, so one should expect broader effects in the local economy:

⇒ Housing market.

Prediction from theory

A canonical version of the (Muth-Mills) monocentric city model suggests that income increases will pass-through 1:1 to rents (**Brueckner1987**).

⇒ We are not aware of empirical estimates of that pass-through!

This paper

We investigate the short term effects of MW policies on rents in the US:

- Accounting for spatial spillovers, we estimate elasticity of median rents to workplace and residence MWs.
- Estimate pass-through of MW increases to rents.

This paper

We investigate the short term effects of MW policies on rents in the US:

- Accounting for spatial spillovers, we estimate elasticity of median rents to workplace and residence MWs.
- Estimate pass-through of MW increases to rents.

To do so, we:

- Exploit high-frequency (monthly) high-resolution (ZIP Code) rents data from Zillow.
- Leverage timing and spatial variation in MW changes within metropolitan areas.
- Propose a novel model-based measure of exposure to MW changes based on commuting shares.

Comparative statics intuition

Think of a metropolitan area, and a MW increase in the business district (CBD).

Partial equilibrium: short term

- Firms producing in the CBD will pay a higher wage. Income redistribution from firms to low income workers.
- Income changes are heterogeneous across space because people work and reside in different locations.
- Housing is a normal good. Housing demand in some areas increases and landlords charge a higher rent.

Comparative statics intuition

Think of a metropolitan area, and a MW increase in the business district (CBD).

Partial equilibrium: short term

- Firms producing in the CBD will pay a higher wage. Income redistribution from firms to low income workers.
- Income changes are heterogeneous across space because people work and reside in different locations.
- Housing is a normal good. Housing demand in some areas increases and landlords charge a higher rent.

General equilibrium: long term (Not this paper!)

- People change residence and workplace locations (sorting).
- Developers build more houses (supply response).

A motivating example

 Cook County, IL, raised the statutory MW from \$12 to \$13 in July 2019. In the state of Illinois the statutory MW is \$8.25 since 2010, while the federal one is of \$7.25 since 2009.

A motivating example

- Cook County, IL, raised the statutory MW from \$12 to \$13 in July 2019. In the state of Illinois the statutory MW is \$8.25 since 2010, while the federal one is of \$7.25 since 2009.
- A (naive) regression model of changes in rents on changes in MW's will imply that rents can only be affected in Cook County.

A motivating example

- Cook County, IL, raised the statutory MW from \$12 to \$13 in July 2019. In the state of Illinois the statutory MW is \$8.25 since 2010, while the federal one is of \$7.25 since 2009.
- A (naive) regression model of changes in rents on changes in MW's will imply that rents can only be affected in Cook County.
- However, MW workers in Cook County may also live elsewhere in the Chicago metropolitan area. → We need to take the commuting structure into account!

A novel model-based measure of access to MW's

For ZIP code i, and month t we define it as:

$$\underline{w}_{it}^{\mathsf{exp}} = \sum_{z \in \mathbb{Z}_i} \pi_{iz} \ln \underline{w}_{zt} \; ,$$

where

- \mathbb{Z}_i are workplace locations of i's residents, and
- $\pi_{iz} = \frac{L_{iz}}{L_i}$ is the share of *i*'s residents who work in *z*.

A motivating example (Continuation)

Outline for Today

A Partial Equilibrium Model of the Local Rental Markets

Data

Empirical Strategy

Identification

Results

Robustness and Heterogeneity

The incidence of counterfactual federal MW change

A Partial Equilibrium Model of the Local Rental Markets

Overview

Goals of the model:

- Stylized answer to: what is the short-term effect of MW changes in rent prices?
- Motivate a new access to MW measure: the experienced MW.
- Emphasize why one may expect residence and worker MWs to have different effects on the housing market.
- Motivate our empirical strategy: use commuting patterns to account for spatial spillovers of MW policies.

Overview

Goals of the model:

- Stylized answer to: what is the short-term effect of MW changes in rent prices?
- Motivate a new access to MW measure: the experienced MW.
- Emphasize why one may expect residence and worker MWs to have different effects on the housing market.
- Motivate our empirical strategy: use commuting patterns to account for spatial spillovers of MW policies.

The model is *not* intended to:

- Describe within-city residential sorting.
- Describe the local labor markets.
- Describe the local goods markets.
- Perform general equilibrium welfare analysis of MW policies.

Static rental market of some residence ZIP code i embedded in a larger geography $\mathcal Z$ with finite number of ZIP codes.

• Workers with residence i may work in some other ZIP code $z \in \mathcal{Z}(i)$, where $\mathcal{Z}(i) \subseteq \mathcal{Z}$.

- Workers with residence i may work in some other ZIP code $z \in \mathcal{Z}(i)$, where $\mathcal{Z}(i) \subseteq \mathcal{Z}$.
- Exogenous and fixed L_{iz} that denotes the measure of i's residents who work in z.
 - Measure of residents in i: $L_i = \sum_{z \in \mathcal{Z}(i)} L_{iz}$.
 - Measure of workers in z: $L_z = \sum_{i \in \mathcal{Z}(i)} L_{iz}$.

- Workers with residence i may work in some other ZIP code $z \in \mathcal{Z}(i)$, where $\mathcal{Z}(i) \subseteq \mathcal{Z}$.
- Exogenous and fixed L_{iz} that denotes the measure of i's residents who work in z.
 - Measure of residents in i: $L_i = \sum_{z \in \mathcal{Z}(i)} L_{iz}$.
 - Measure of workers in z: $L_z = \sum_{i \in \mathcal{Z}(i)} L_{iz}$.
- Binding minimum wages: $\{\underline{w}_z\}_{z\in\mathcal{Z}}$.

- Workers with residence i may work in some other ZIP code $z \in \mathcal{Z}(i)$, where $\mathcal{Z}(i) \subseteq \mathcal{Z}$.
- Exogenous and fixed L_{iz} that denotes the measure of i's residents who work in z.
 - Measure of residents in i: $L_i = \sum_{z \in \mathcal{Z}(i)} L_{iz}$.
 - Measure of workers in z: $L_z = \sum_{i \in \mathcal{Z}(i)} L_{iz}$.
- Binding minimum wages: $\{\underline{w}_z\}_{z\in\mathcal{Z}}$.
- $h_{iz}(r_i, \underline{w}_i, \underline{w}_z)$: housing demand of i's residents that work in z, where r_i represents housing rents.

- Workers with residence i may work in some other ZIP code $z \in \mathcal{Z}(i)$, where $\mathcal{Z}(i) \subseteq \mathcal{Z}$.
- Exogenous and fixed L_{iz} that denotes the measure of i's residents who work in z.
 - Measure of residents in i: $L_i = \sum_{z \in \mathcal{Z}(i)} L_{iz}$.
 - Measure of workers in z: $L_z = \sum_{i \in \mathcal{Z}(i)} L_{iz}$.
- Binding minimum wages: $\{\underline{w}_z\}_{z\in\mathcal{Z}}$.
- $h_{iz}(r_i, \underline{w}_i, \underline{w}_z)$: housing demand of *i*'s residents that work in *z*, where r_i represents housing rents.
- $D_i(r_i)$: supply of square feet in i, which is increasing in r_i .

Housing Demands

Assumption (Housing demand)

For all residence-workplace pairs, the housing demand functions $h_{iz}(r_i, \underline{w}_i, \underline{w}_z)$ is:

- 1. continuously differentiable in its three arguments;
- 2. decreasing in rental prices r_i ;
- 3. non-decreasing in workplace minimum wage \underline{w}_z .
- 4. non-increasing in residence minimum wage \underline{w}_i ;

Furthermore, for at least one $z \in \mathcal{Z}(i)$, the inequalities in points (iii) and (iv) are strict.

Discussion on 4.

In words: conditional on workplace MWs, residence MW may negatively affect disposable income and thus demand for housing.

Discussion on 4.

In words: conditional on workplace MWs, residence MW may negatively affect disposable income and thus demand for housing.

We think that the interpretation underlying point 4. is plausible:

- Recent evidence by MiyauchiEtAl2021 shows that individuals tend to consume close to home. Households respond and are aware of price differentials in local consumption across neighborhoods.
- MWs have been shown to increase prices of local consumption (AllegrettoReich2018; LeungForthcoming).

Discussion on 4.

In words: conditional on workplace MWs, residence MW may negatively affect disposable income and thus demand for housing.

We think that the interpretation underlying point 4. is plausible:

- Recent evidence by MiyauchiEtAl2021 shows that individuals tend to consume close to home. Households respond and are aware of price differentials in local consumption across neighborhoods.
- MWs have been shown to increase prices of local consumption (AllegrettoReich2018; LeungForthcoming).

Potential microfoundation:

- If firms in *i* that produce non-tradable local goods, use MW workers as an input, then a MW increase will increase prices. Higher cost of non-tradables will translate into a lower demand for housing if the substitution effect on local demand of housing is smaller than the corresponding income effect.
- A sufficient condition for that is that housing and local consumption are complements.

Equilibrium

Define the housing demand in Zip Code *i* as:

$$H_i(r_i, \{\underline{w}_z\}_{z \in \mathcal{Z}(i)}) = \sum_{z \in \mathcal{Z}(i)} L_{iz} h_{iz}(r_i, \underline{w}_i, \underline{w}_z)$$

The rental market of ZIP code *i* is in equilibrium if

$$H_i(r_i, \{\underline{w}_z\}_{z \in \mathcal{Z}(i)}) = D_i(r_i)$$

As housing demand functions are continuous and decreasing in rents, under suitable regularity conditions there is a unique equilibrium in this market.

We denote equilibrium rents as $r_i^* = f(\{\underline{w}_i\}_{i \in \mathcal{Z}(i)})$.

Equilibrium

Define the housing demand in Zip Code *i* as:

$$H_i(r_i, \{\underline{w}_z\}_{z \in \mathcal{Z}(i)}) = \sum_{z \in \mathcal{Z}(i)} L_{iz} h_{iz}(r_i, \underline{w}_i, \underline{w}_z)$$

The rental market of ZIP code *i* is in equilibrium if

$$H_i(r_i, \{\underline{w}_z\}_{z \in \mathcal{Z}(i)}) = D_i(r_i)$$

As housing demand functions are continuous and decreasing in rents, under suitable regularity conditions there is a unique equilibrium in this market.

We denote equilibrium rents as $r_i^* = f(\{\underline{w}_i\}_{i \in \mathcal{Z}(i)})$.

We are interested in the effects of MW policies on rents.

- What is the effect of a change in the vector of MWs $(\{d\underline{w}_i\}_{i\in\mathcal{Z}(i)})'$ on equilibrium rents?
- Under what conditions can we represent those effects in a simple way?

Comparative Statics

Proposition (Comparative Statics)

Under the assumptions of:

- 1. Fixed of workers across workplace and residence pairs.
- 2. housing demand equation satisfying Assumption 1,
- 3. continuously differentiable and increasing housing supply.

We have that:

- workplace-MW hikes increase rents.
- holding constant workplace-MW hikes, residence-MW hikes decrease rents.

Proof of Proposition (Comparative Statics)

Proof.

Fully differentiate the market clearing condition with respect to $\ln r_i$ and $\ln \underline{w}_i$ for all $i \in \mathcal{Z}(i)$ and re-arrange terms to get:

$$\left(\eta_{i} - \sum_{z} \pi_{iz} \xi_{iz}\right) d \ln r_{i} = \sum_{z} \pi_{iz} \left(\epsilon_{iz}^{i} d \ln \underline{w}_{i} + \epsilon_{iz}^{z} d \ln \underline{w}_{z}\right), \tag{1}$$

where:

- $\eta_i = \frac{1}{L_i} \frac{dD_i}{dr_i} \frac{r_i}{D_i}$ is the elasticity of housing supply in ZIP code i
- Commuter shares: $\pi_{iz} = \frac{L_{iz}}{L_i}$
- $\xi_{iz} = \frac{dh_{iz}}{dr_i} \frac{r_i}{\sum_z \pi_{iz} h_{iz}}$ is the elasticity of housing demand at the average per-capita demand of ZIP code i
- $\epsilon^{i}_{iz} = \frac{dh_{iz}}{d\underline{w}_{i}} \frac{\underline{w}_{i}}{\sum_{z} \pi_{iz} h_{iz}}$ and $\epsilon^{z}_{iz} = \frac{dh_{iz}}{d\underline{w}_{z}} \frac{\underline{w}_{z}}{\sum_{z} \pi_{iz} h_{iz}}$ are the elasticities of housing demand to workplace and residence MWs also at the average per-capita demand of ZIP code i

Proof of Proposition (Comparative Statics) (Continuation)

Using that:

- $\xi_{iz} < 0$ for at least some workplace
- $\epsilon_{iz}^{i} < 0$
- $\epsilon_{iz}^z > 0$

It follows from (1) that:

- 1. an increase in workplace MW unambiguously increases rents
- 2. an increase in residence MW on rents is generally ambiguous (as long as some residents of i also work in i) as it is composed of a direct negative effect and an indirect positive effect through changing the experienced MW. ¹
- 3. Holding constant workplace MWs, the effect of the residence MW is negative.

¹The sign of the overall partial effect depends on the sign of $\pi_{ii}\epsilon_{ii}^z + \sum_z \pi_{iz}\epsilon_{iz}^i$.

Representation

Proposition (Representation)

Under the assumption of constant elasticity of housing demand (across workplace locations) to workplace minimum wages we have that:

 We can write the change in log rents as a function of the change in two MW-based measures: the experienced log MW and the statutory log MW.

Representation

Proposition (Representation)

Under the assumption of constant elasticity of housing demand (across workplace locations) to workplace minimum wages we have that:

 We can write the change in log rents as a function of the change in two MW-based measures: the experienced log MW and the statutory log MW.

Proof.

Set $\epsilon_{iz}^z = \epsilon_i^z$ for all $z \in \mathcal{Z}(i)$ we can manipulate (1) to write:

$$d \ln r_i = \beta_i \sum_i \pi_{iz} d \ln \underline{w}_z + \gamma_i d \ln \underline{w}_i$$
 (2)

where
$$\beta_i = \frac{\epsilon_i^z}{\eta_i - \sum_z \pi_{iz} \xi_{iz}}$$
 and $\gamma_i = \frac{\sum_z \pi_{iz} \epsilon_{iz}^i}{\eta_i - \sum_z \pi_{iz} \xi_{iz}}$.

Motivating our empirical Strategy

Using Proposition (Comparative Statics), our Proposition (Representation) implies that:

- The partial equilibrium effect of workplace MW, $\beta_i = \frac{\epsilon_i^z}{\eta_i \sum_z \pi_{iz} \xi_{iz}} > 0$
- The partial equilibrium effect of residence MW, $\gamma_i = \frac{\sum_z \pi_{iz} \epsilon_{iz}^i}{\eta_i \sum_z \pi_{iz} \xi_{iz}} < 0$.

Therefore our model yields:

$$d \ln r_i = \beta_i \sum_i \pi_{iz} d \ln \underline{w}_z + \gamma_i d \ln \underline{w}_i$$
 (3)

We will estimate an empirical analog assuming (for today) homogenous effects.

Data

Zillow Data

- Leader online real estate and rental platform in the U.S. (more than 110 million homes and 170 million unique monthly users in 2019).
- Provides *median* rents data at ZIP code, county, and state levels at a monthly frequency for several housing categories.

Zillow Data

- Leader online real estate and rental platform in the U.S. (more than 110 million homes and 170 million unique monthly users in 2019).
- Provides median rents data at ZIP code, county, and state levels at a monthly frequency for several housing categories.
- We use category single-family, condominium, and cooperative houses (SFCC):
 - Most common housing type in the U.S.
 - Most populated series in Zillow.

Zillow Data

- Leader online real estate and rental platform in the U.S. (more than 110 million homes and 170 million unique monthly users in 2019).
- Provides median rents data at ZIP code, county, and state levels at a monthly frequency for several housing categories.
- We use category single-family, condominium, and cooperative houses (SFCC):
 - Most common housing type in the U.S.
 - Most populated series in Zillow.
- Limitation: Zillow sample is not random.

Comparison between Zillow Sample and Population Density

The Statutory MW

- Collect MW data at state, county and city levels between Jan 2010 and Dec 2019.
- Assign those data to ZIP codes.
- Define statutory MW in ZIP code as maximum between state and local levels.

The Statutory MW

- Collect MW data at state, county and city levels between Jan 2010 and Dec 2019.
- Assign those data to ZIP codes.
- Define statutory MW in ZIP code as maximum between state and local levels.
- ZIP codes available in Zillow contain 18,689 changes at the ZIP code-month level.
 - 151 state-level changes.
 - 182 county and city-level changes.

Distribution of MW changes

Using LODES to construct the experienced log MW

Construct origin-destination matrix at ZIP code level from LODES 2009 to 2018.

We observe:

- Number of workers residing in a ZIP code and working in every other ZIP code.
- Analogous, matrix for number of workers younger than 29 and earning less than \$1,251.

In our baseline specification we use constant commuter shares using year 2017. We will show robustness with other fixed years and with time varying shares using the closest year.

Other Data Sources

- Economic controls from the Quarterly Census of Employment and Wages (QCEW).
- IRS Statistics of income ZIP Code Aggregates (New)
- ZIP Code Month panel of rents since 2018 from actual transactions data (New)

Empirical Strategy

Empirical (Naive) model

Ignoring the experienced MW, one may estimate the following first differences model:

$$\Delta \ln r_{it} = \tilde{\delta}_t + \tilde{\beta} \Delta \ln \underline{w}_{it} + \Delta \mathbf{X}'_{c(i)t} \tilde{\eta} + \Delta \tilde{\varepsilon}_{it},$$

where

- ZIP code i, county c(i), month t;
- r_{it}: rents per square foot;
- In <u>w</u>_{it}: statutory log MW;
- $\tilde{\delta}_t$: month fixed effects (ZIP code FE $\tilde{\alpha}_i$ is implicit);
- $X_{c(i)t}$: time-varying controls.

Empirical model

Now add experienced MW:

$$\Delta \ln r_{it} = \delta_t + \beta \Delta \underline{w}_{it}^{\text{exp}} + \gamma \Delta \ln \underline{w}_{it} + \Delta \mathbf{X}'_{c(i)t} \eta + \Delta \varepsilon_{it},$$

where $\underline{w}_{it}^{\mathsf{exp}}$ is experienced log MW (Recall $\Delta \underline{w}_{it}^{\mathsf{exp}} = \sum_{z \in \mathbb{Z}_i} \pi_{iz} \Delta \ln \underline{w}_{zt}$).

Empirical model

Now add experienced MW:

$$\Delta \ln r_{it} = \delta_t + \beta \underline{\Delta} \underline{w}_{it}^{\text{exp}} + \gamma \underline{\Delta} \ln \underline{w}_{it} + \underline{\Delta} \mathbf{X}_{c(i)t}' \eta + \underline{\Delta} \varepsilon_{it},$$

where $\underline{w}_{it}^{\text{exp}}$ is experienced log MW (Recall $\Delta \underline{w}_{it}^{\text{exp}} = \sum_{z \in \mathbb{Z}_i} \pi_{iz} \Delta \ln \underline{w}_{zt}$).

For causal effect of β we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\underline{w}_{ic\tau}^{\mathsf{exp}}\middle|\Delta\ln\underline{w}_{ict},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0\qquad\forall\tau\in\left[\underline{T},\overline{T}\right]$$

Empirical model

Now add experienced MW:

$$\Delta \ln r_{it} = \delta_t + \beta \underline{\Delta} \underline{\underline{w}}_{it}^{\mathsf{exp}} + \gamma \underline{\Delta} \ln \underline{\underline{w}}_{it} + \Delta \mathbf{X}_{c(i)t}^{'} \eta + \Delta \varepsilon_{it},$$

where $\underline{w}_{it}^{\text{exp}}$ is experienced log MW (Recall $\Delta \underline{w}_{it}^{\text{exp}} = \sum_{z \in \mathbb{Z}_i} \pi_{iz} \Delta \ln \underline{w}_{zt}$).

For causal effect of β we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\underline{w}_{ic\tau}^{\mathsf{exp}}\middle|\Delta\ln\underline{w}_{ict},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0 \qquad \forall \tau\in\left[\underline{T},\overline{T}\right]$$

In words: conditional on FEs, controls, and MW in same ZIP code, unobserved innovations to rent shocks are uncorrelated with past and future values of log MW changes in nearby ZIP codes.

Discussion Identification Assumption

Thus, for causal effect of β we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\underline{w}_{ict}^{\text{exp}}\middle|\Delta\ln\underline{w}_{ict},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0\qquad\forall\tau\in\left[\underline{T},\overline{T}\right]$$

Analogously, for causal effect of γ we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\ln\underline{w}_{ict}\middle|\Delta\underline{w}_{ict}^{\mathsf{exp}},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0\qquad\forall\tau\in\left[\underline{T},\overline{T}\right]$$

Discussion Identification Assumption

Thus, for causal effect of β we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\underline{w}_{ict}^{\text{exp}}\middle|\Delta\ln\underline{w}_{ict},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0\qquad\forall\tau\in\left[\underline{T},\overline{T}\right]$$

Analogously, for causal effect of γ we need:

$$E\left[\Delta\varepsilon_{ict}\Delta\ln\underline{w}_{ict}\middle|\Delta\underline{w}_{ict}^{\mathsf{exp}},\delta_{t},\Delta\mathbf{X}_{ict}\right]=0 \qquad \forall \tau\in\left[\underline{T},\overline{T}\right]$$

Is this plausible?

- MW policies are rarely set by considering differential dynamics of the rental housing market within metropolitan areas.
- Furthermore, there is substantial heterogeneity in the housing market across ZIP codes.
- Indirectly test assumption through pre-trends, assuming no anticipatory effects in housing market.

Testing Identification with a Dynamic model

Adding leads and lags of the experienced log MW:

$$\Delta \ln r_{ict} = \delta_t + \sum_{r=-s}^{s} \beta_r \Delta \underline{w}_{ic,t+r}^{\rm exp} + \gamma \Delta \ln \underline{w}_{ict} + \Delta \mathbf{X}_{ct}^{'} \eta + \Delta \varepsilon_{ict}$$

where $\{\beta_r\}_{r=-s}^s$ are the dynamic coefficients.

Analogously, one can add instead the leads and lags of the log residence MW to test the identification assumption of γ .

Identification

Results

Static

Robustness and Heterogeneity

The incidence of counterfactual federal MW change

Overview

Entire commuting structure determines the incidence of MW policies.

- In some ZIP codes both residence and workplace MW increase
- Other nearby ZIP codes are affected only through workplace

Overview

Entire commuting structure determines the incidence of MW policies.

- In some ZIP codes both residence and workplace MW increase
- Other nearby ZIP codes are affected only through workplace

Consider an increase of the federal MW to \$9 in January 2020.

• Changes income $\{\Delta Y_i\}_{i\in\mathcal{Z}}$ and housing expenditure $\{\Delta H_i\}_{i\in\mathcal{Z}}$

Overview

Entire commuting structure determines the incidence of MW policies.

- In some ZIP codes both residence and workplace MW increase
- Other nearby ZIP codes are affected only through workplace

Consider an increase of the federal MW to \$9 in January 2020.

• Changes income $\{\Delta Y_i\}_{i\in\mathcal{Z}}$ and housing expenditure $\{\Delta H_i\}_{i\in\mathcal{Z}}$

How much out of each extra dollar is captured by landlords?

Pass-through coefficients

Define pass-through coefficients

$$\rho_i := \frac{\Delta H_i}{\Delta Y_i} = \frac{h_i^{\mathsf{Post}} r_i^{\mathsf{Post}} - h_i^{\mathsf{Pre}} r_i^{\mathsf{Pre}}}{\Delta Y_i}$$

where

- *h* denotes rented space in *i* (square feet)
- Pre and Post indicate moments before and after the increase

Pass-through coefficients

Define pass-through coefficients

$$\rho_i := \frac{\Delta H_i}{\Delta Y_i} = \frac{h_i^{\mathsf{Post}} r_i^{\mathsf{Post}} - h_i^{\mathsf{Pre}} r_i^{\mathsf{Pre}}}{\Delta Y_i}$$

where

- *h* denotes rented space in *i* (square feet)
- Pre and Post indicate moments before and after the increase

Change in rented space are unobserved. We assume $h_i^{\mathsf{Pre}} = h_i^{\mathsf{Post}} = h_i$ so

$$\rho_i = \frac{h_i^{\text{Post}} r_i^{\text{Post}} - h_i^{\text{Pre}} r_i^{\text{Pre}}}{\Delta Y_i} = h_i \frac{\Delta r_i}{\Delta Y_i}$$

If $\Delta h_i > 0$ then our estimate of ρ_i is a lower bound.

Pass-through coefficients

Define pass-through coefficients

$$\rho_i := \frac{\Delta H_i}{\Delta Y_i} = \frac{h_i^{\mathsf{Post}} r_i^{\mathsf{Post}} - h_i^{\mathsf{Pre}} r_i^{\mathsf{Pre}}}{\Delta Y_i}$$

where

- *h* denotes rented space in *i* (square feet)
- Pre and Post indicate moments before and after the increase

Change in rented space are unobserved. We assume $h_i^{\mathsf{Pre}} = h_i^{\mathsf{Post}} = h_i$ so

$$\rho_i = \frac{h_i^{\mathsf{Post}} r_i^{\mathsf{Post}} - h_i^{\mathsf{Pre}} r_i^{\mathsf{Pre}}}{\Delta Y_i} = h_i \frac{\Delta r_i}{\Delta Y_i}$$

If $\Delta h_i > 0$ then our estimate of ρ_i is a lower bound.

We construct empirical analogous of h_i , Δr_i and ΔY_i .

Estimates of total rented space

We haven't found data on $\{h_i\}$. Therefore we do the following

- From Zillow get median rental price R_i and median rental price per square foot r_i
- Estimate average square footage $q_i = \frac{R_i}{r_i}$
- Compute number of rented units N_i from ACS 2019

Estimates of total rented space

We haven't found data on $\{h_i\}$. Therefore we do the following

- From Zillow get median rental price R_i and median rental price per square foot r_i
- Estimate average square footage $q_i = \frac{R_i}{r_i}$
- Compute number of rented units N_i from ACS 2019

Our estimates of total rented space in each ZIP code i are

$$\hat{h}_i = q_i N_i$$

Model-based estimates of rent changes

Increase in federal MW to \$9 generates $\{\Delta ln \underline{\hat{w}}_i\}_{i \in \mathcal{Z}}$

• $\Delta \ln \hat{\underline{w}}_i = 0$ for ZIP codes with binding MWs above \$9

Model-based estimates of rent changes

Increase in federal MW to \$9 generates $\{\Delta \ln \underline{\hat{w}}_i\}_{i \in \mathcal{Z}}$

• $\Delta \ln \hat{\underline{w}}_i = 0$ for ZIP codes with binding MWs above \$9

We proceed as follows

• Estimate $\{\Delta \ln r_i\}$ using our baseline model

$$\Delta \hat{\ln r_i} = \gamma \Delta \hat{\ln \underline{w}_i} + \beta \sum_{z \in \mathcal{Z}_i} \pi_{iz} \Delta \hat{\ln \underline{w}_z}$$

• Using r_i^{Pre} from Zillow as of December 2019, compute

$$\Delta \hat{r_i} = \left(\exp(\Delta \hat{\ln r_i}) - 1 \right) r_i^{\mathsf{Pre}}$$

Model-based estimates of income changes

Increase in federal MW to \$9 generates $\{\Delta \ln \underline{w}_i\}_{i \in \mathcal{Z}}$

Model-based estimates of income changes

Increase in federal MW to \$9 generates $\{\Delta ln \underline{\hat{w}}_i\}_{i \in \mathcal{Z}}$

We need an elasticity of income to the MW ϵ

- Estimate new model using IRS data, obtains 0.14 [BUTTON TO RESULTS]
- Use estimates from the literature (CegnizEtAl2019)

Model-based estimates of income changes

Increase in federal MW to \$9 generates $\{\Delta \ln \underline{w}_i\}_{i \in \mathcal{Z}}$

We need an elasticity of income to the MW ϵ

- Estimate new model using IRS data, obtains 0.14 [BUTTON TO RESULTS]
- Use estimates from the literature (CegnizEtAl2019)

We proceed as follows

• Use elasticity ϵ to get

$$\Delta \mathsf{ln} \hat{\,\,} Y_i = \epsilon \sum_{z \in \mathcal{Z}_i} \pi_{iz} \Delta \mathsf{ln} \hat{\,\,} \underline{w}_i$$

• Compute $\Delta \hat{Y}_i$ using Y_i^{Pre} as of 2018

$$\Delta \hat{Y}_i = \left(\exp(\Delta \mathsf{In} \hat{Y}_i) - 1 \right) Y_i^{\mathsf{Pre}}$$

The incidence of MW changes across space

Figure distribution here

Thank You!

Appendix

Other examples: New York (MW Changes in January 2019)

Other examples: Bay area (MW Changes in January 2019)

Other examples: Seattle (MW Changes in January 2018)

Other examples: San Diego (MW Changes in January 2019)

Other examples: Kansas City (MW Changes in January 2019)

Go back

Other examples: Kansas City (MW Changes in January 2019)

Go back

Distribution of (positive) MW changes

Notes: The histograms show the distribution of positive MW changes in the full sample of ZIP codes available in the Zillow data.

