Zusammenfassung PDE I

Sebastian Bechtel

24. Oktober 2016

1 lineare Grundgleichungen

1.1 Transportgleichung

Betrachte $u_t + a \cdot u_x = 0$. Methode der Charakteristiken: Aus der DGL folgt, dass eine Lösung konstant längs $s \mapsto (s, as + c)$ ist. Bestimme u(x, y) aus den Anfangswerten durch eine Kurve obiger Form, die durch (x, y) und den Definitionsbereich der Anfangswerte geht.

1.2 Laplace-Gleichung

Betrachte $\triangle u=0$. Nutze Rotationsinvarianz von \triangle , um ODE in r zu erhalten. Lösungs heißt Fundamentallösung des Laplace. Für n=2: $C\log|x|$. Für $n\geq 3$: $C|x|^{2-n}$.

1.2.1 Poisson-Gleichung

Betrachte $-\Delta u = f$. Lösung $u(x) := (\varphi * f)(x)$. Trick: Schneide Singularität der Fundamentallösung aus dem Faltungsintegral raus.

1.2.2 Mittelwerteigenschaft

Eine Funktion $u \in C^2(\Omega)$ ist harmonisch gdw. Mittelwerteigenschaft

$$u(x) = \int_{B_r(x)} u(y) \, \mathrm{d}y$$

gilt.

1.2.3 Maximumsprinzip

Ist Ω beschränktes Gebiet, $u \in C^2(\Omega) \cap C(\overline{\Omega})$ harmonisch, dann gelten die folgenden Aussagen:

- 1. Schwaches Maximumsprinzip: $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.
- 2. Starkes Maximum sprinzip: Ist $x_0 \in \Omega$ mit $u(x_0) = \max_{\overline{\Omega}} u$, so ist u konstant.

1.2.4 Eindeutigkeit der Lösung des DP

Betrachte $-\Delta u = f$ in Ω , u = g auf $\partial \Omega$. Sind u_1, u_2 Lösungen, so betrachte $w_1 = u_1 - u_2$, $w_2 = u_2 - u_1$. Da w_i die Laplace-Gleichung löst, folgt mit dem Maximumsprinzip: $\max_{\overline{\Omega}} u_1 - u_2 = \max_{\partial \Omega} w_1 = 0$, also $u_2 \leq u_1$ und analog $u_1 \leq u_2$.

1.2.5 Glattheit harmonischer Funktionen

Ist $u \in C(\Omega)$ mit Mittelwerteigenschaft, so ist $u \in C^{\infty}(\Omega)$, somit h harmonisch. Beweis: Geschickte Nutzung von Mollifiern.

1.2.6 Green'sche Funktionen

Betrachte Poisson-Problem auf beschränktem Gebiet Ω . Leute Lösungsformel her, diese enthält $\frac{\partial u}{\partial \nu}$ (unbekannt). Löse $\Delta \Phi^x = 0$ in Ω , $\Phi^x = \Phi(y - x)$ auf $\partial \Omega$ für alle $x \in \Omega$. Durch $G(x, y) := \Phi(y - x) - \Phi^x(y)$ wird Green-Funktion definiert. Diese liefert Lösungsformel, die nur bekannte Größen enthält. Problem: Bestimme zu gegebenem Gebiet Ω die Lösungen Φ^x der obigen DGL. Idee: Entferne Singularität durch "Reflexion" aus dem Gebiet.

1.2.7 Eindeutigkeit des DP mit Energiemethode

Zeige für $w := u_1 - u_2$, dass $|\nabla w| = 0$ gilt (Green'sche Formeln). Da w am Rand 0, im inneren konstant und stetig, folgt $u_1 = u_2$.

1.3 Wärmeleitungsgleichung

Betrachte $u_t - \Delta u = 0$ auf $(0, \infty) \times \mathbb{R}^n$, $u(0, x) = u_0(x)$ auf \mathbb{R}^n . Fourier-Trafo in x liefert ODE für \hat{u} , jene ist explizit lösbar, Rücktrafo. liefert Fundamentallösung $G(t, x) := (4\pi t)^{-n/2} e^{-\frac{|x|^2}{4t}}$ für t > 0, sonst 0, genannt $Gau\beta$ -Kern. Die Faltung $u(t, x) := (G_t * u_0)(x)$ liefert Lösung. Der Gauß-Kern glättet, es gilt $u \in C^{\infty}$.

1.3.1 Mittelwerteigenschaft

Es gilt eine Mittelwerteigenschaft für Heatballs im parabolischen Zylinder. Hängt wegen der Heatball-Definition nur von vergangenen Zeiten ab.

1.3.2 Maximumsprinzip

Wie bei \triangle , jedoch nun mit parabolischem Zylinder und parabolischem Rand.

1.3.3 Eindeutigkeit der Lösung der Wärmeleitungsgleichung

Wie bei der Poisson-Gleichung mittels Maximumsprinzip.

1.4 Wellengleichung

Betrachte $u_{tt} - \Delta u = 0$ in $\mathbb{R} \times \mathbb{R}^n$. Fall n = 1: Reduziere auf Transportgleichung. Lösung ist so glatt wie Anfangswert. Fall n ungerade: Reduziere auf parabolische Gleichung. Rechnen und Laplace-Trafo liefert Lösungsformel, in n = 3 Kirschhoff'sche Formel genannt. Lösung ist C^2 , Regularitätsforderung steigt in der Dimension, die Gleichung glättet also nicht! Lösung hängt vom Anfangswert nur auf Sphären ab. Fall n = 2: Absteigemethode, löse n = 3-Fall aus. Lösung hängt vom Anfangswert auf Bällen ab. Die Lösungen unterscheiden sich also fundamental in geraden und ungeraden Raumdimensionen!

1.4.1 Eindeutigkeit der Lösung der Wellengleichung

Energiemethode.

2 schwache Lösungstheorie

2.1 Sobolevräume

Für $\Omega \subseteq \mathbb{R}^n$ offen ist $H^1(\Omega)$ der Sobolevraum zu p=2. Schwache Ableitungen sind eindeutig bestimmt (Fundamentallemma). Wir definieren als Teilraum $H^1_0(\Omega) := \overline{C_c^{\infty}}^{\|\cdot\|_{H^1(\Omega)}}$. Es sind $H^1(\Omega)$ sowie $H^1_0(\Omega)$ Hilberträume. Für $\Omega=(a,b)$ haben die Funktionen stetige Repräsentanten und es gilt der Hauptsatz.

2.2 schwache Lösung des Dirichlet-Problem

Betrachte wieder $-\Delta u = f$ in Ω , u = 0 auf $\partial \Omega$. Eine Funktion $u \in H_0^1(\Omega)$ mit $\int \nabla u \nabla v = \int fv$ für alle $v \in H_0^1(\Omega)$ heißt schwache Lösung des (DP).

Hat Ω glatten Rand, so gilt $u \in H_0^1(\Omega)$ gdw. u = 0 auf $\partial \Omega$ für $u \in H^1(\Omega)$ (im Spursinne).

Klassische Lösung ist schwache Lösung: Aus der Randwertbedingung folgt $u \in H_0^1(\Omega)$. Bedingung der schwachen Lösung auf $C_c^{\infty}(\Omega)$ nachrechnen, dann Dichtheitsargument.

Existenz und Eindeutigkeit der schwachen Lösung: Es gilt für $u \in H_0^1(\Omega)$ die Poincare-Ungleichung $||u||_{L^2} \leq C||\nabla u||_{L^2}$, wobei C nur von Ω abhängt. Die Formen $a(u,v) := \int \nabla u \nabla v$ sowie f(v) :=

 $\int fv$ sind beschränkt. Außerdem zeigt man durch $|\nabla u|^2 = 1/2|\nabla u|^2 + 1/2|\nabla u|^2$ und Poincare, dass a koerziv ist, also liefert Lax-Milgram die Existenz einer eindeutigen Schwachen Lösung. Regularität: Für $f \in H^m(\Omega)$ gilt, dass die schwache Lösung u des zugehörigen (DP) die Regularität $H^{m+2}(\Omega)$ besitzt.

Rückkehr zur klassischen Lösung: Es gilt ein Lemma von Sobolev: ist m > n/2 + k und $u \in H^m(\Omega)$, so gibt es $g \in C^k(\Omega)$ mit g = u f.ü. Beweisidee: Fouriertrafo und $u \in H^m(\Omega)$ gdw. $(1 + |\xi|^2)^{m/2} |\hat{f}(\xi)| \in L^2(\mathbb{R}^n)$. Das die schwache Lösung gleich der starken Lösung ist, folgt dann aus dem Fundamentallemma.

3 Distributionen

Setze $\mathcal{D}(\Omega) \coloneqq C_c^{\infty}(\Omega)$. Es gelte $\varphi_j \to \varphi$ in $\mathcal{D}(\Omega)$, falls es $K \subseteq \Omega$ kompakt gibt mit supp $\varphi_j \subseteq K$ für alle j und $D^{\alpha}\varphi_j \to D^{\alpha}\varphi$ gleichmäßig für alle Multiindices α .

Definiere $\mathcal{D}'(\Omega) \coloneqq \{T : \mathcal{D}(\Omega) \to \mathbb{C} \text{ stetig, linear} \}$. Die Elemente von $\mathcal{D}'(\Omega)$ heißen Distributionen. Beispiele: Ist $a \in \Omega$, so definiert $\langle \delta_a, \varphi \rangle \coloneqq \varphi(a)$ die Dirac-Delta-Distribution in a, speziell: $\delta \coloneqq \delta_0$. Ist $f \in L^1_{loc}(\Omega)$, dann ist die $regul\"{a}re$ Distribution zu f definiert durch $\langle T_f, \varphi \rangle \coloneqq \int f\varphi \, \mathrm{d}x$. Es gilt $1/x \not\in L^1_{loc}(\mathbb{R})$; Definiere Distribution \ddot{u} ber Cauchy-Hauptwert: $\langle \operatorname{pv} 1/x, \varphi \rangle \coloneqq \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \varphi(x)/x \, \mathrm{d}x$.

Der Raum $\mathcal{D}'(\Omega)$ trägt die schwach-*-Topologie. Beispiele: $f_j \to f$ in L^1_{loc} , dann $T_{f_j} \to T_f$ in $\mathcal{D}'(\Omega)$. Ist φ Mollifier, so gilt $T_{\varphi_{\varepsilon}} \to \delta$.

3.1 Operationen auf $\mathcal{D}'(\Omega)$

- 1. Ableitung: $\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$.
- 2. Multiplikation mit $f \in C^{\infty}$: $\langle f \cdot T, \varphi \rangle := f(0)\langle T, \varphi \rangle$.

Beispiele zur Ableitung: Ist $|\alpha| \leq k$, $f \in H^k$, dann: $D^{\alpha}T_f = T_{D^{\alpha}f}$, für die Heavyside-Funktion H(x) := 1, falls x > 0, sonst 0, gilt $H' = \delta$, für die Delta-Distribution gilt wiederum $\langle D^{\alpha}\delta, \varphi \rangle = (-1)^{|\alpha|}D^{\alpha}\varphi(0)$.

3.2 Faltung

Idee: Für $f \in L^1_{loc}$, $\varphi \in \mathcal{D}$ ist $(f * \varphi)(x) := \int f(y)\varphi(x-y) \, dy$. Es ist x-y eine Spiegelung und Translation um x von y. Definiere Spiegelung und Translation auf Distributionen und verallgemeinere zu $(T * \varphi)(x) := \langle T, \tau_x \tilde{\varphi} \rangle$, wobei $\tilde{f}(y) := f(-y)$ sowie $\tau_x f(y) := f(y-x)$. Es gilt $(T * \varphi) \in C^{\infty}$, $D_j(T * \varphi) = (D_jT) * \varphi = T * (D_j\varphi)$.

3.2.1 Fundamentallösungen

Sei A Differentialoperator, $f \in \mathcal{D}(\mathbb{R}^n)$. Ist T Distribution mit $AT = \delta$, denn heißt T Fundamentallösung von A und $u := T * f \in C^{\infty}(\mathbb{R}^n)$ löst Au = f distributionell. Es gilt der Satz von Milgrange-Ehrenpreis: Jeder Differentialoperator mit konstanten Koeffizienten hat eine Fundamentallösung.

3.2.2 Träger von Distributionen

Sei $T \in \mathcal{D}'(\Omega)$, definiere $0_T \coloneqq \{x \in \Omega : \text{ es ex. offene Umgebung } V \text{ von } x \text{ mit } T_V = 0\}$, wobei $\langle T_V, \varphi \rangle \coloneqq \langle T, \tilde{\varphi} \rangle$ mit $\varphi \in \mathcal{D}'(V)$, $\tilde{\varphi}$ Fortsetzung von φ auf Ω durch 0. Setze supp $T \coloneqq \Omega \setminus 0_T$, diese Menge heißt $Tr\ddot{a}ger$ von T. Beispiele: Für $f \in L^1_{loc}(\Omega)$ gilt supp $T_f = \text{esssupp } f$. Für $T \in \Omega$ gilt supp $T_f = \text{esssupp } f$. Für $T \in \Omega$ gilt: Ist supp $T \cap \text{supp } \varphi = \emptyset$, dann $T \cap \mathbb{C}(\Omega)$ Definiere $T \cap \mathbb{C}(\Omega)$ is gelte $T \cap \mathbb{C}(\Omega)$ falls für ein $T \cap \mathbb{C}(\Omega)$ kompakt gilt: $T \cap \mathbb{C}(\Omega)$ mit den Distributionen mit kompaktem Träger.

3.2.3 Faltung von Distributionen mit kompaktem Träger

Seien $S, T \in \mathcal{D}'(R^n)$ und mindestens eine habe kompakten Träger, dann definiere die Faltung durch $\langle S*T, \varphi \rangle := (S*(T*\tilde{\varphi}))(0)$ wobei $\varphi \in \mathcal{D}$. Hat immer höchstens eine Distribution keinen kompakten Träger, so gelten die bekannten Regeln (Kommutativität, Assoziativität, Summe der Träger, ...). Sind die Träger nicht kompakt, so gilt Assoziativität nicht: $1*(\delta'*H) = 1*\delta = 1 \neq 0 = 0*H = (1*\delta')*H$.

3.3 Schwartz-Raum

Sei $\mathcal{S} := \mathcal{S}(\mathbb{R}^n) := \{ f \in C^{\infty}(\mathbb{R}^n) : |f|_{\alpha,\beta} := \sup |x^{\beta}D^{\alpha}f| < \infty \text{ für alle Multiindices } \alpha, \beta \} \text{ der } Schwartz\text{-}Raum. Definiere } |f|_m := \sup_{|\alpha|,|\beta| \le m} |f|_{\alpha,\beta}. \text{ Es konvergiere } f_j \to f \text{ in } \mathcal{S}, \text{ falls } |f_n - f|_m \to 0 \text{ für alle } m \in \mathbb{N}. \text{ Es gilt offensichtlich } \mathcal{D} \subseteq \mathcal{S}, \text{ aber } \mathcal{D} \neq \mathcal{S}, \text{ denn } x \mapsto e^{-|x|^2} \in \mathcal{S} \setminus \mathcal{D}.$

3.3.1 Fouriertrafo auf S

Definiere zu u die (anti-symmetrische) Fouriertrafo durch $\hat{u}(\xi) := \int e^{-ix\xi} u(x) dx$ für $\xi \in \mathbb{R}^n$. Die Fouriertrafo ist Isomorphismus von \mathcal{S} nach \mathcal{S} , $(\hat{\cdot})^{-1} = \check{\cdot}$.

Es ist \mathcal{S} abgeschlossen unter Faltung und Multiplikation. Es gilt der Faltungssatz $(f * g)^{\hat{}} = \hat{f} \cdot \hat{g}$ sowie $(f \cdot g)^{\hat{}} = (2\pi)^{-n} \hat{f} \cdot \hat{g}$ sowie die Ableitungsregeln $(D^{\alpha}u)^{\hat{}}(\xi) = i^{|\alpha|}\xi^{\alpha}\hat{u}(\xi)$ als auch $(x^{\alpha}u)^{\hat{}}(\xi) = (-i)^{|\alpha|}D^{\alpha}\hat{u}(\xi)$. Es gilt die Parseval/Plancherel Gleichung: $\int f\bar{g} \,dx = (2\pi)^{-n} \int \hat{f}\bar{\hat{g}} \,d\xi$.

3.3.2 Fouriertrafo auf L^2

TODO

3.4 Temperierte Distributionen

Betrachte den Dualraum \mathcal{S}' von \mathcal{S} . Die Elemente heißen temperierte Distributionen. Es gilt $\mathcal{S}' \neq \mathcal{D}'$, denn $e^x \in \mathcal{S}'$, jedoch $e^x e^{ie^x}$, also auch nicht $L^1_{\text{loc}} \hookrightarrow \mathcal{S}'$. Wir statten \mathcal{S}' mit schwach-*-Topologie aus.

Sei p Polynom, $\psi \in \mathcal{S}$, dann sind folgende Operationen auf \mathcal{S}' definiert:

- Multiplikation mit Polynom: $\langle pT, \varphi \rangle := \langle T, p\varphi \rangle$.
- Multiplikation mit Schwartz-Funktion: $\langle \psi T, \varphi \rangle := \langle T, \psi \varphi \rangle$.
- Fouriertrafo: $\langle \hat{T}, \varphi \rangle := \langle T, \hat{\varphi} \rangle$.
- Ableitung: $\langle D^{\alpha}T, \varphi \rangle := (-1)^{|\alpha|} \langle T, D^{\alpha}\varphi \rangle$.

Die Fouriertrafo ist Isomorphismus $\mathcal{S}' \to \mathcal{S}'$. Es gelten folgende Regeln:

- $\mathcal{F}(D^{\alpha}T) = (ix)^{\alpha}\mathcal{F}(T),$
- $\mathcal{F}(x^{\alpha}T) = (-i)^{|\alpha|}D^{\alpha}\mathcal{F}(T),$
- für $T \in \mathcal{S}$ gilt: $T_{\hat{S}} = \widehat{T}_S$ und
- für $R \in \mathcal{S}'$ mit kompaktem Träger gilt: $(T * R) \in \mathcal{S}'$ und $\mathcal{F}(T * R) = \mathcal{F}(T)\mathcal{F}(R)$.

3.4.1 Beispiele für die Fouriertrafo auf \mathcal{S}'

- $\hat{\delta} = 1$,
- $p(x) = \sum_{|\alpha| \le m} a_{\alpha}(x^{\alpha}1)$ Polynom, dann $\hat{p} = \sum_{|\alpha| \le m} a_{\alpha}i^{|\alpha|}D^{\alpha}\delta$.

3.4.2 Fundamentallösungen

Ist $AT = \delta$, dann $p(i\xi)\hat{T} = 1$, löse algebraische Gleichung. Rücktrafo liefert Fundamentallösung.

3.5 Fouriertransformation auf verschiedenen Räumen

Es gilt $\mathcal{F}: L^1(\mathbb{R}^n) \to C_0(\mathbb{R}^n)$ nach Riemann-Lebesgue mit $\mathcal{F}(f)(x) := \int_{\mathbb{R}^n} e^{i\langle x,y\rangle} f(y) \, dy$. Eingeschränkt auf $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ ist der Wertebereich L^2 und die Abbildung ist isometrisch. Es gibt

eine Fortsetzung zu einem unitären Operator $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$. Von $\mathcal{S} \to \mathcal{S}$ ist \mathcal{F} ebenfalls Isomorphismus, somit auch von $\mathcal{S}' \to \mathcal{S}'$.

Für $f, g \in L^1(\mathbb{R}^n)$ respektive $f, g \in \mathcal{S}$ gilt $\int \hat{f}g = \int f\hat{g}$ (zum Beweis wendet man Fubini auf die konkrete Darstellung der Fourier-Trafo an).

Die Ableitungsregel gilt auf S immer und auf H^k für Multiindices α mit $|\alpha| \leq k$.

4 nichtlineare Randwertprobleme

4.1 Fixpunktsätze

Es gilt der Brownsche Fixpunktsatz: Ist B die abgeschlossene Einheitskugel in \mathbb{R}^n und $T: B \to B$ stetig, so besitzt T einen Fixpunkt. Man zeigt damit den Fixpunktsatz von Schauder: Sei X B.R. und $K \subseteq X$ nicht-leer, kompakt, konvex sowie $T: K \to K$ stetig, so besitzt T einen Fixpunkt. Es gilt außerdem folgende Variante: Sei X B.R., $T: X \to X$ stetig und kompakt sowie $\{u \in X: u = \alpha Tu$ für ein $\alpha \in [0,1]\}$ beschränkt, dann besitzt T einen Fixpunkt.

4.1.1 Anwendung auf nicht-lineares Problem

Betrachte $-\Delta u = f(u), u|_{\Omega} = 0$, wobei f (Lipschitz?) stetig, beschränkt und Ω beschränkt ist. Beweisidee: Finde M_0 sodass $C := \{u \in H_0^1(\Omega) : \|\nabla u\| \le M_0\}$ nicht-leere, kompakte, konvexe Menge ist. $T = (-\nabla)^{-1}(f(\cdot)) : H_0^1 \to H_0^1$ ist stetig, Schauder liefert Fixpunkt.

4.2 Methode der Unter- und Oberlösungen

Löse wieder $-\Delta u = f(u)$ in Ω , u = 0 auf $\partial\Omega$. Wir setzen die Existenz von Unter- und Oberlösungen voraus, um eine Lösung zu ermitteln, die - mehr oder weniger - konstruktiv ist, und zwar durch monotone Limiten.

Eine Funktion $\underline{u} \in H^1(\Omega)$ heißt schwache Unterlösung, falls für $v \in H^1_0(\Omega)$ mit $v \geq 0$ fast überall gilt, dass $\int \nabla \underline{u} \nabla v \leq \int f(\underline{u}) v$, analog schwache Oberlösung.

4.3 Nichtexistenz glatter Lösungen von nichtlinearen Gleichungen

Durch Ausnutzung von Haupteigenwert und Haupteigenfunktion von $-\triangle$ lässt sich zeigen, dass $u_t - \triangle u = u^2$ in $(0,T) \times \Omega$, u = 0 auf $(0,T) \times \partial \Omega$, $u(0,x) = u_0(x)$ in Ω keine glatte Lösung besitzt, indem man ein Blowup-Argument macht.

5 Maximumsprinzipien

5.1 elliptische Operatoren

Betrachten elliptische Operatoren 2. Ordnung, d.h. Operatoren der Form

$$Au(x) := -\sum_{i,j=1}^{n} a_{i,j}(x)\partial_j\partial_i u(x) + \sum_{i=1}^{n} b_i(x)\partial_i u(x) + c(x)u(x),$$

wobei wir $a_{i,j} = a_{j,i}$ annehmen.

Der Operator A heißt gleichmäßig elliptisch, falls ein $\mu > 0$ existiert, mit

$$\sum_{i,j=1}^{n} a_{i,j}(x)\xi_{i}\xi_{j} \ge \mu |\xi|^{2}.$$

Es gilt das schwache Maximumsprinzip: Ist Ω beschränktes Gebiet und A gleichmäßig elliptisch mit stetigen Koeffizienten, wobei $c \equiv 0$, dann gilt für $u \in C^2(\Omega) \cap C(\overline{\Omega})$ mit $Au \leq 0$ in Ω , dass das Maximum auf dem Rand von Ω angenommen wird.

Das Lemma von Hopf besagt, dass für ein $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ mit $Au \leq 0$ in Ω und $x_0 \in \partial\Omega$ mit $u(x_0) > u(x)$ für $x \in \Omega$ gilt, dass $\frac{\partial u}{\partial \nu}(x) > 0$, wobei die innere Kugelbedingung in x_0 gelten soll, d.h. es gibt eine offene Kugel $K \subseteq \Omega$ mit $x_0 \in \partial K$.

Aus dem Lemma von Hopf folgt das $starke\ Maximum sprinzip$: Sind u, A, Ω wie im schwachen Maximum sprinzip und wird das Maximum in einem inneren Punkt angenommen, so ist u konstant in Ω .

5.2 parabolische Operatoren

Betrachte Operator

$$Lu(t,x) := \partial_t u(t,x) - \sum_{i,j=1}^n a_{i,j}(t,x) \partial_j \partial_i u(t,x) + \sum_{i=1}^n b_i(t,x) \partial_i u(t,x)$$

auf Gebiet $G\subseteq \mathbb{R}_+\times \mathbb{R}^n$ mit stetigen Koeffizienten und $a_{i,j}=a_{j,i}$.

Der Operator L heißt gleichmäßig parabolisch, falls ein $\mu > 0$ existiert, mit

$$\sum_{i,j=1}^{n} a_{i,j}(t,x)\xi_{i}\xi_{j} \ge \mu |\xi|^{2}.$$

Es gilt das schwache Maximumsprinzip: Ist $u \in C^2(G) \cap C(\overline{G})$ mit $Lu \leq 0$, so nimmt u sein Maximum auf dem parabolischen Rand an.

Außerdem gilt ein starkes Maximumsprinzip von Hopf: Wird in einem inneren Punkt das Maximum angenommen, so auch in jedem Punkt, der durch horizontale und nach oben gerichtete

vertikale Segmente verbunden werden kann.

6 Halbgruppentheorie

6.1 Brownsche Bewegung

Beispiel für Brownsche Bewegung: $P(t, x, y) := G_t(x - y)$. Auf $BUC(\mathbb{R}^n)$ definiert $(T(t)f)(x) := \int P(t, x, y) f(y)$ dy eine stark stetige Halbgruppe. Für ein c > 0 ist $A = c \cdot \triangle$ der Erzeuger dieser Halbgruppe, insbesondere $P(t, x, y) = G_{ct}(x - y)$.

6.2 abstraktes Cauchy-Problem

Betrachte abstraktes Cauchy-Problem: X Banachraum, $A:D(A)\to X$ Operator, dann soll $u:[0,\infty)\to X$ gefunden werden mit u'(t)=Au(t) sowie $u(0)=u_0$ für ein $u_0\in X$. Beispiel: $X=L^2(\Omega), A=\Delta, D(A)=H^2(\Omega)$. Aus einer PDE wird also eine banachraumwertige ODE.

6.3 C_0 -Halbgruppen

Eine Familie $T := (T(t))_{t>0}$ von beschränkten, linearen Operatoren auf X heißt C_0 -Halbgruppe auf X, falls gilt: $T(0) = \mathrm{id}$, T(s+t) = T(s)T(t) sowie für alle $f \in X$ gilt: $t \mapsto T(t)f$ stetig. Man nennt T Kontraktionshalbgruppe, falls $||T(t)|| \le 1$ für alle $t \ge 0$ gilt.

6.4 Generator einer Halbgruppe

Setze $D(A) := \{ f \in X : \lim_{t \to 0} \frac{1}{t} (T(t)f - f) \text{ existient in } X \}$ und definiere $Af := \lim_{t \to 0} \frac{1}{t} (T(t)f - f)$ auf D(A). Dann heißt (D(A), A) der Generator von T.

Es gilt $\frac{d}{dt}T(t)f = AT(t)f$, also ist u(t) := T(t)f Lösung des abstrakten Cauchy-Problems von A zum Anfangswert f.

Der Generator ist dicht definiert und abgeschlossen. Beweisidee: Dicht definiert: Zeige $\int_0^t T(s)f$ ds ist in D(A), dann konvergiert $\frac{1}{t} \int_0^t T(s)f$ ds gegen f. Abgeschlossen: Schreibe $T(t)f_n - f_n$ via Hauptsatz und nutze, dass $\frac{d}{dt}T(t)f_n$ die DGL löst.

6.5 Hille-Yosida-Theorem

Sei A ein dicht definierter Operator auf X. Dann erzeugt A eine C_0 -Halbgruppe mit $||T(t)|| \le 1$ gdw. $(0, \infty) \subseteq \rho(A)$ und $||(\lambda - A)^{-1}|| \le \frac{1}{\lambda}$ für alle $\lambda > 0$.

Beweisidee: Hinrichtung: Zeige $R_{\lambda}f := \int_{0}^{\infty} e^{-\lambda t} T(t) f$ dt ist die Resolvente zu λ von A ausgewertet an f. Für jene Darstellung folgen die Eigenschaften leicht. Rückrichtung: Regularisiere A durch den beschränkten Operator $A_{\lambda} := \lambda A(\lambda - A)^{-1}$. Es konvergiert A_{λ} stark gegen A, $T_{\lambda}(t) := e^{tA_{\lambda}}$

definiert stark stetige Kontraktionshalbgruppe zu A_{λ} . Es konvergiert T_{λ} gegen eine Halbgruppe T, dessen Generator A ist.

6.6 Anwendung Hille-Yosida auf parabolisches Problem

Löse das abstrakte Cauchy-Problem durch Anwendung von Hille-Yosida. Resolventenbedingung wird auf Lösung der Resolventengleichung reduziert, für die es schwache Lösungstheorie gibt. Normabschätzung folgt aus der Ungleichung $a(u,u) \geq \alpha \|u\|_{H_0^1}^2 - \gamma \|u\|_{L^2}^2$. Nach Hille-Yosida gibt es also zu A eine stark-stetige Halbgruppe, die Lösung des abstrakten Cauchy-Problems ist.