

FCC PART 15C TEST REPORT No. I15Z43162-SRD05

for

Reliance Communications, LLC

GSM quad band and wcdma and LTE mobile Phone

Model Name: RC501L

With

Hardware Version: WMDGa

Software Version: Orbic-RC501L_v1.0.9

FCC ID: 2ABGH-RC501L

Issued Date: Jan 25th, 2016

Test Laboratory:

FCC 2.948 Listed: No.342690

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

 $Tel: +86(0) \\ 10-62304633, Fax: +86(0) \\ 10-62304633 \\ Email: cttl@chinattl.com, website: \\ \underline{www.chinattl.com}$

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	ort Number Revision		Issue Date	
I15Z43162-SRD05	Rev.0	1st edition	2016-01-25	

CONTENTS

EST LABORATORY	5
TESTING LOCATION	5
TESTING ENVIRONMENT	5
Project data	5
Signature	5
LIENT INFORMATION	6
APPLICANT INFORMATION	6
QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
ABOUT EUT	7
INTERNAL IDENTIFICATION OF EUT	7
INTERNAL IDENTIFICATION OF AE	7
EFERENCE DOCUMENTS	8
DOCUMENTS SUPPLIED BY APPLICANT	8
EST RESULTS	9
EST FACILITIES UTILIZED	11
IEASUREMENT UNCERTAINTY	12
X A: MEASUREMENT RESULTS FOR RECEIVER	13
Antenna requirement	13
MAXIMUM AVERAGE OUTPUT POWER	14
PEAK POWER SPECTRAL DENSITY	14
OCCUPIED 6DB BANDWIDTH	15
BAND EDGES COMPLIANCE	15
Transmitter Spurious Emission	16
1 Transmitter Spurious Emission - Conducted	16
2 Transmitter Spurious Emission - Radiated	17
AC Powerline Conducted Emission	21
X B: TEST FIGURE LIST	23
1 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 0)	23
2 MAXIMUM PEAK OUTPUT POWER(GFSK, CH 19)	23
MAXIMUM PEAK OUTPUT POWER(GFSK, CH 39)	24
	TESTING LOCATION TESTING ENVIRONMENT PROJECT DATA SIGNATURE LIENT INFORMATION APPLICANT INFORMATION MANUFACTURER INFORMATION QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) ABOUT EUT INTERNAL IDENTIFICATION OF AE EFFERENCE DOCUMENTS DOCUMENTS SUPPLIED BY APPLICANT REFERENCE DOCUMENTS FOR TESTING EST RESULTS SUMMARY OF TEST RESULTS STATEMENTS TERMS USED IN THE RESULT TABLE LABORATORY ENVIRONMENT EST FACILITIES UTILIZED EASUREMENT UNCERTAINTY X A: MEASUREMENT RESULTS FOR RECEIVER ANTENNA REQUIREMENT MAXIMUM AVERAGE OUTPUT POWER PEAK POWER SPECTRAL DENSITY DOCUMENTS SPURIOUS EMISSION I TRANSMITTER SPURIOUS EMISSION - CONDUCTED 2 TRANSMITTER SPURIOUS EMISSION - RADIATED AC POWERLINE CONDUCTED EMISSION X B: TEST FIGURE LIST. MAXIMUM PEAK OUTPUT POWER (GFSK, CH 0). MAXIMUM PEAK OUTPUT POWER (GFSK, CH 0). MAXIMUM PEAK OUTPUT POWER (GFSK, CH 19).

No. I15Z43162-SRD05 Page 4 of 40

FIG.4	POWER SPECTRAL DENSITY (CH 0)	24
FIG.5	POWER SPECTRAL DENSITY (CH 19)	25
FIG.6	POWER SPECTRAL DENSITY (CH 39)	25
Fig.7	OCCUPIED 6DB BANDWIDTH (CH 0)	26
FIG.8	OCCUPIED 6DB BANDWIDTH (CH 19)	26
FIG.9	OCCUPIED 6DB BANDWIDTH (CH 39)	27
FIG.10	BAND EDGES (CH 0)	27
FIG.11	BAND EDGES (CH 39)	28
FIG.12	CONDUCTED SPURIOUS EMISSION (CH0, CENTER FREQUENCY)	28
FIG.13	CONDUCTED SPURIOUS EMISSION (CH0, 30 MHz-3 GHz)	29
FIG.14	CONDUCTED SPURIOUS EMISSION (CH0, 3 GHz-18 GHz)	29
FIG.15	CONDUCTED SPURIOUS EMISSION (CH19, CENTER FREQUENCY)	30
Fig.16	CONDUCTED SPURIOUS EMISSION (CH19, 30 MHz-3 GHz)	30
Fig.17	CONDUCTED SPURIOUS EMISSION (CH19, 3 GHz-18 GHz)	31
FIG.18	CONDUCTED SPURIOUS EMISSION (CH39, CENTER FREQUENCY)	31
FIG.19	CONDUCTED SPURIOUS EMISSION (CH39, 30 MHz-3 GHz)	32
FIG.20	CONDUCTED SPURIOUS EMISSION (CH39, 3 GHz-18 GHz)	32
FIG.21	CONDUCTED SPURIOUS EMISSION (ALL CHANNELS, 18 GHz-26 GHz)	
FIG.22	RADIATED SPURIOUS EMISSION (CH0, 1 GHz-18 GHz)	
FIG.23	RADIATED SPURIOUS EMISSION (GFSK, CH19, 9 KHz ~30MHz)	34
Fig.24	RADIATED SPURIOUS EMISSION (GFSK, CH0, 30 MHz ~1 GHz,AE1)	34
FIG.25	RADIATED SPURIOUS EMISSION (CH19, 1 GHz-18 GHz)	
FIG.26	RADIATED SPURIOUS EMISSION (CH19, 18 GHz-26.5 GHz)	
FIG.27	RADIATED SPURIOUS EMISSION (CH39, 1 GHz-18 GHz)	36
FIG.28	RADIATED EMISSION POWER (GFSK, CH0, 2380GHz~2450GHz)	36
FIG.29	RADIATED EMISSION POWER (GFSK, CH39, 2450GHz~2500GHz)	37
FIG. 30	AC POWER LINE CONDUCTED EMISSION (TRAFFIC, AE1)	38
FIG. 31	AC POWER LINE CONDUCTED EMISSION (IDLE, AE1)	39
NINIEW C	A DEDCONG INVOLVED IN THIS TESTING	40

1. Test Laboratory

1.1. Testing Location

Location 1:CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Location 2:CTTL(Shouxiang)

Address: No. 51 Shouxiang Science Building, Xueyuan Road,

Haidian District, Beijing, P. R. China100191

1.2. <u>Testing Environment</u>

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-20/+55^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2015-12-11
Testing End Date: 2016-01-07

1.4. Signature

Xu Zhongfei

(Prepared this test report)

Li Zhibin

(Reviewed this test report)

Lv Songdong

(Approvedthis test report)

2. Client Information

2.1. Applicant Information

Company Name: Reliance Communications, LLC

Address: 555 Wireless Blvd, Hauppauge, NY 11788, United States

City: Shenzhen

Postal Code:

Country: United States
Telephone: 631-240-8396

Fax:

2.2. Manufacturer Information

Company Name: Reliance Communications, LLC

Address: 555 Wireless Blvd, Hauppauge, NY 11788, United States

City: Shenzhen

Postal Code: /

Country: United States
Telephone: 631-240-8396

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description GSM quad band and wcdma and LTE mobile Phone

Model Name RC501L

Market Name /

Frequency Band 2402MHz~2480MHz

Type of Modulation GFSK Number of Channels 40

FCC ID 2ABGH-RC501L

3.2. Internal Identification of EUT

EUT ID* IMEI HW Version SW Version

EUT1 / WMDGa Orbic-RC501L_v1.0.9

3.3. Internal Identification of AE

AE ID* Description		Туре	SN
AE1	Charger	TL6D-0501000	/

^{*}AE ID: is used to identify the test sample in the lab internally.

^{*}Note: Photographs of EUT are shown in ANNEX A of this test report.

^{*}EUT ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Wireless Devices

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	Oct, 2014
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard for Testing Unlicensed	Jun,2013

5. Test Results

5.1. Summary of Test Results

No	Test cases	Standard Sub-clause	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	Occupied 6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	liance 15.247 (d)	
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Powerline Conducted Emission	15.107, 15.207	Р
8	Occupied Bandwidth	/	Р

See ANNEX B and ANNEX C for details.

5.2. Statements

CTTL has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2

5.3. Terms used in the result table

Terms used in Verdict column

Р	Pass
NA	Not Available
F	Fail

Abbreviations

AC	Alternating Current
AFH	Adaptive Frequency Hopping
BW	Band Width
E.I.R.P.	equivalent isotropical radiated power
ISM	Industrial, Scientific and Medical
R&TTE	Radio and Telecommunications Terminal Equipment
RF	Radio Frequency
Tx	Transmitter

5.4. <u>Laboratory Environment</u>

Semi-anechoic chamber (23 meters×17 meters×10 meters) did not exceed following limits:

, , , , , , , , , , , , , , , , , , , ,	- · · · · · · · · · · · · · · · · · · ·		
Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 15 %, Max. = 75 %		
Shielding effectiveness	0.014MHz - 1MHz, >60dB;		
	1MHz - 1000MHz, >90dB.		
Electrical insulation	> 2 M		
Ground system resistance	< 4		
Normalised site attenuation (NSA)	$<$ \pm 4 dB, 3m/10m distance,		
	from 30 to 1000 MHz		
Site voltage standing-wave ratio (S _{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz		
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz		

Shielded room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz - 1MHz, >60dB;
	1MHz - 1000MHz, >90dB.
Electrical insulation	> 2 M
Ground system resistance	< 4

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2016-01-06
2	Shielding Room	S81	/	ETS-Lindgren	/	/
3	LISN	ENV216	101200	Rohde & Schwarz	1 year	2016-07-07
4	Test Receiver	ESCI	100344	Rohde & Schwarz	1 year	2016-03-03

Radiated emission test system

	Radiated emission test system					
No. Equipment Model Serial		Serial	Manufacturer	Calibration	Calibration	
140.	Equipment	Woder	Number	Manufacturer	Period	Due date
1	Test Receiver	ESCI 7	100948	Rohde & Schwarz	1 year	2016-07-16
2	Loop antenna	HFH2-Z2	829324/00	Rohde & Schwarz	2 voor	2017 12 16
	Loop antenna	ПГП2-22	7	Ronde & Schwarz	3 year	2017-12-16
3	BiLog Antenna	VULB9163	234	Schwarzbeck	3 year	2016-09-15
	Dual-Ridge					
4	Waveguide Horn	3115	6914	EMCO	3 year	2017-12-15
	Antenna					
	Dual-Ridge					
5	Waveguide Horn	3116	2661	ETS-Lindgren	3 year	2017-06-30
	Antenna					
6	Vector Signal	FSV	101047	Rohde & Schwarz	1 year	2016-07-03
	Analyzer	F3V	101047	Runue & Scriwarz	1 year	2010-07-03
7	Semi-anechoic	,	CT000332	Frankonia	,	,
'	chamber	/	-1074	German	/	/

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren.

7. Measurement Uncertainty

Test Name	Uncertainty	
1.Maximum Peak Output Power	±1.32	2dB
2.Peak Power Spectral Density	±0.66dBr	m/MHz
3.Occupied 6dB Bandwidth	±66ŀ	Нz
4.Band Edges Compliance	±66Hz	
	30MHz≤f≤1GHz	±1.41dB
5.Transmitter Spurious Emission - Conducted	1GHz≶f≶18GHz	±1.92dB
	18GHz≤f≤26GHz	±2.31dB
	9k≤f≤30MHz	±4.00dB
6 Transmitter Spurious Emission Badiated	30M≤f≤1GHz	±5.08dB
6.Transmitter Spurious Emission - Radiated	1GHz≤f≤18GHz	±4.56dB
	18GHz≤f≤26GHz	±4.56dB
7.AC Powerline Conducted Emission	±2.7dB	
8. Occupied Bandwidth	±66Hz	

ANNEX A: MEASUREMENT RESULTS FOR RECEIVER

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 1.7 dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Average Output Power

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)(1)	< 30

Measurement Results:

Mode	Channel	Maximum Peak Output Power (dBm)		Conclusion
	0	1.53	Fig.1	Р
GFSK	19	1.55	Fig.2	Р
	39	1.47	Fig.3	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.2 Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247(d)	< 8 dBm/3 kHz

Measurement Results:

Mode	Channel	Peak Power Spectral Density (dBm)		Conclusion
	0	Fig.4	-14.58	Р
GFSK	19	Fig.5	-14.54	Р
	39	Fig.6	-14.58	Р

See ANNEX C for test graphs.

Conclusion: PASS

A.3 Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Channel	Test Results (kHz)		conclusion
GFSK	0	Fig.7	694.6	Р
	19	Fig.8	694.6	Р
	39	Fig.9	701.9	Р

See ANNEX C for test graphs.

Conclusion: PASS

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Test Results	Conclusion
GFSK	0	Fig.10	Р
	39	Fig.11	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.5 Transmitter Spurious Emission

A.5.1 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz	
	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.12	Р
	0	30 MHz-3 GHz	Fig.13	Р
		3GHz-18GHz	Fig.14	Р
		2.440 GHz	Fig.15	Р
GFSK	19	30 MHz-3 GHz	Fig.16	Р
		3GHz-18GHz	Fig.17	Р
		2.480 GHz	Fig.18	Р
	39	30 MHz-3 GHz	Fig.19	Р
		3GHz-18GHz	Fig.20	Р
	All channels	18GHz-26GHz	Fig.21	Р

See ANNEX C for test graphs.

Conclusion: Pass

A.5.2 Transmitter Spurious Emission - Radiated Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.22	Р
		9kHz~30MHz	Fig.23	Р
	40	30MHz~1GHz	Fig.24	Р
GFSK	19	1 GHz ~18 GHz	Fig.25	Р
GFSK		18 GHz~ 26.5 GHz	Fig.26	Р
	39	1 GHz ~18 GHz	Fig.27	Р
	Power(CH0)	2.38 GHz ~ 2.45 GHz	Fig.28	Р
	Power(CH78)	2.45 GHz ~ 2.5 GHz	Fig.29	Р

GFSK CH0 (1-18GHz)

Frequency (MHz)	MaxPeak-ClearWrite (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14512.000000	56.2	V	11.7	17.8	74.0
15121.000000	56.5	V	12.1	17.5	74.0
15790.000000	59.0	V	13.0	15.0	74.0
16203.000000	58.6	V	13.3	15.4	74.0
16738.000000	59.4	V	13.9	14.6	74.0
17421.000000	59.4	V	14.3	14.6	74.0

Frequency (MHz)	Average-ClearWrite (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14544.000000	44.2	V	11.8	9.8	54.0
15168.000000	45.0	Н	12.1	9.0	54.0
15737.000000	46.5	V	12.9	7.5	54.0
16215.000000	47.0	V	13.3	7.0	54.0
16769.000000	47.5	V	14.0	6.5	54.0
17295.000000	47.2	V	14.1	6.8	54.0

GFSK CH19 (1-18GHz)

Frequency (MHz)	MaxPeak-ClearWrite (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14487.000000	(аБ µ v /III) 55.9	Н	11.7	18.1	74.0
				_	
15139.000000	56.4	Н	12.1	17.6	74.0
15676.000000	58.3	V	12.8	15.7	74.0
16242.000000	58.6	V	13.3	15.4	74.0
16693.000000	59.5	V	13.9	14.5	74.0
17286.000000	59.5	V	14.1	14.5	74.0

Frequency (MHz)	Average-ClearWrite (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14548.000000	44.3	V	11.8	9.7	54.0
15150.000000	44.8	V	12.1	9.2	54.0
15779.000000	46.3	V	13.0	7.7	54.0
16205.000000	46.9	V	13.3	7.1	54.0
16756.000000	47.4	V	14.0	6.6	54.0
17288.000000	47.0	V	14.1	7.0	54.0

GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak-ClearWrite (dBμV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14150.000000	55.5	Н	11.2	18.5	74.0
15147.000000	56.1	V	12.1	17.9	74.0
15777.000000	57.8	Н	12.9	16.2	74.0
16221.000000	57.8	V	13.3	16.2	74.0
16733.000000	58.0	V	13.9	16.0	74.0
17360.000000	57.9	V	14.2	16.1	74.0

Frequency (MHz)	Average-ClearWrite (dBµV/m)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
14458.000000	43.2	Н	11.6	10.8	54.0
15136.000000	44.3	V	12.1	9.7	54.0
15767.000000	45.8	Н	12.9	8.2	54.0
16234.000000	45.5	V	13.3	8.5	54.0
16824.000000	46.0	Н	14.0	8.0	54.0
17408.000000	45.9	V	14.3	8.1	54.0

See ANNEX C for test graphs.

Conclusion: Pass

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 $\ensuremath{P_{\text{Mea}}}$ is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

A.6 AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BT (Quasi-peak Limit)-AE1- Traffic

Frequency range	Quasi-peak	Result (dBμV)	Conclusion
(MHz)	Limit (dBμV)	Traffic	
0.15 to 0.5	66 to 56		
0.5 to 5	56	Fig.30	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Average Limit)-AE1-Traffic

	· • · · · · · · · · · · · · · · · · · ·					
Frequency range		Average-peak	Result (dBμV)	Conclusion		
	(MHz)	Limit (dBμV)	Traffic	Conclusion		
	0.15 to 0.5	56 to 46				
	0.5 to 5	46	Fig.30	Р		
	5 to 30	50				

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

BT (Quasi-peak Limit)-AE1-idle

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result (dBμV) Traffic	Conclusion
0.15 to 0.5	Fig.66 to 56		
0.5 to 5	56	Fig.31	Р
5 to 30	60		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15 \, \text{MHz}$ to $0.5 \, \text{MHz}$.

BT (Average Limit)-AE1-idle

Frequency range	Average-peak	Result (dBμV)	Conclusion	
(MHz)	Limit (dBμV)	Traffic	Conclusion	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.31	Р	
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Note: The measurement results include the L1 and N measurements.

See ANNEX C for test graphs.

Conclusion: Pass

ANNEX B: TEST FIGURE LIST

Fig.1 Maximum Peak Output Power(GFSK, Ch 0)

Fig.2 Maximum Peak Output Power(GFSK, Ch 19)

Fig.3 Maximum Peak Output Power(GFSK, Ch 39)

Fig.4 Power Spectral Density (Ch 0)

Fig.5 Power Spectral Density (Ch 19)

Fig.6 Power Spectral Density (Ch 39)

Fig.7 Occupied 6dB Bandwidth (Ch 0)

Fig.8 Occupied 6dB Bandwidth (Ch 19)

Fig.9 Occupied 6dB Bandwidth (Ch 39)

Fig.10 Band Edges (Ch 0)

Fig.11 Band Edges (Ch 39)

Fig.12 Conducted Spurious Emission (Ch0, Center Frequency)

Fig.13 Conducted Spurious Emission (Ch0, 30 MHz-3 GHz)

Fig.14 Conducted Spurious Emission (Ch0, 3 GHz-18 GHz)

Fig.15 Conducted Spurious Emission (Ch19, Center Frequency)

Fig.16 Conducted Spurious Emission (Ch19, 30 MHz-3 GHz)

Fig.17 Conducted Spurious Emission (Ch19, 3 GHz-18 GHz)

Fig.18 Conducted Spurious Emission (Ch39, Center Frequency)

Fig.19 Conducted Spurious Emission (Ch39, 30 MHz-3 GHz)

Fig.20 Conducted Spurious Emission (Ch39, 3 GHz-18 GHz)

Fig.21 Conducted Spurious Emission (All channels, 18 GHz-26 GHz)

Fig.22 Radiated Spurious Emission (Ch0, 1 GHz-18 GHz)

Fig.23 Radiated Spurious Emission (GFSK, Ch19, 9 kHz ~30MHz)

Fig.24 Radiated Spurious Emission (GFSK, Ch0, 30 MHz ~1 GHz,AE1)

Fig.25 Radiated Spurious Emission (Ch19, 1 GHz-18 GHz)

Fig.26 Radiated Spurious Emission (Ch19, 18 GHz-26.5 GHz)

Fig.27 Radiated Spurious Emission (Ch39, 1 GHz-18 GHz)

Fig.28 Radiated Emission Power (GFSK, Ch0, 2380GHz~2450GHz)

Fig.29 Radiated Emission Power (GFSK, Ch39, 2450GHz~2500GHz)

Fig. 30 AC Power line Conducted Emission (Traffic, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.982000	38.8	GND	N	10.1	17.2	56.0
1.042000	39.9	GND	N	10.1	16.1	56.0
1.066000	38.0	GND	N	10.1	18.0	56.0
1.922000	37.6	GND	N	10.1	18.4	56.0
2.274000	37.4	GND	N	10.2	18.6	56.0
2.714000	36.7	GND	N	10.2	19.3	56.0

MEASUREMENT RESULT: " Average "

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.406000	36.1	GND	L1	10.0	11.6	47.7
0.638000	33.9	GND	L1	10.0	12.1	46.0
0.990000	34.0	GND	L1	10.1	12.0	46.0
1.398000	32.8	GND	L1	10.1	13.2	46.0
1.862000	32.0	GND	L1	10.1	14.0	46.0
2.210000	31.1	GND	L1	10.1	14.9	46.0

Fig. 31 AC Power line Conducted Emission (Idle, AE1)

MEASUREMENT RESULT: " QuasiPeak "

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.602000	37.7	GND	L1	10.0	18.3	56.0
1.054000	38.7	GND	N	10.1	17.3	56.0
1.106000	38.6	GND	N	10.1	17.4	56.0
1.410000	35.9	GND	N	10.1	20.1	56.0
1.862000	37.2	GND	N	10.1	18.8	56.0
2.738000	36.3	GND	N	10.2	19.7	56.0

MEASUREMENT RESULT: " Average "

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.410000	33.8	GND	L1	10.0	13.9	47.6
0.638000	32.4	GND	L1	10.0	13.6	46.0
1.046000	32.0	GND	L1	10.1	14.0	46.0
1.398000	31.4	GND	L1	10.1	14.6	46.0
1.862000	30.8	GND	L1	10.1	15.2	46.0
2.222000	29.5	GND	L1	10.1	16.5	46.0

ANNEX C: Persons involved in this testing

Test Name	Tester
Maximum Peak Output Power	Xu Ye, Tang Weisheng
Peak Power Spectral Density	Xu Ye, Tang Weisheng
Occupied 6dB Bandwidth	Xu Ye, Tang Weisheng
Band Edges Compliance	Xu Ye, Tang Weisheng
Transmitter Spurious Emission - Conducted	Xu Ye, Tang Weisheng
Transmitter Spurious Emission - Radiated	Xu Ye, Tang Weisheng
AC Powerline Conducted Emission	Xu Ye, Tang Weisheng

END OF REPORT