Tags: DLS

DLS C5 week 2

- · Word representations
- · Using word embeddings
- · Properties of word embeddings
- Embedding matrix
- · Learning word embeddings
- Word2Vec
- Negative sampling
- · GloVe word vectors
- · Sentiment classification
- · Debiasing word embeddings

Word representations

Papers mentioned:

Visualizing Data using t-SNE by Laurens van der Maaten and Geoff Hinton.

Words are represented as one-hot vectors.

• If "man" is word no. 5391 (O_{5391}): it is a vector with 1 as position 5391 and 0 everywhere.

One-hot vectors treat each word as an independent object.

It does not capture relationships or similarities across words.

Mathematical reason on why one-hot vectors are independent:

- The inner product between any two different one-hot vector is zero.
- Distance between any two one-hot vector is the same.

Instead of a one-hot representation, learn a featurized representation where each word can be represented by a set of features.

For example: 300 features means a 300-dimensional vector.

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Age	0.03	0.02	0.7	0.69	0.03	-0.02
:	:	:	:	:	:	:
Food	0.04	0.01	0.02	0.01	0.95	0.97
Notation	e_{5391}	e_{9853}	e_{4914}	e_{7157}	e_{456}	e_{6257}

Using featurized vectors allows:

- · generalization across similar words.
- · captures semantic relationships.

It is common practice to reduce a high dimensional (300-d) vector to 2D for visualization. A common algorithm for doing this is the t-SNE algorithm.

Insights during visualization:

· related words cluster together.

Emebeddings are mapping of words into a high-dimensional vector space—where each word is a point in that space.

Using word embeddings

Using word embeddings procedure:

- 1. Learn word embeddings from a large text corpus (which are 1-100B words).
 - An alternative is to download pre-trained embeddings online.
- 2. Transfer the embedding to a new task with a smaller train set (i.e., 100k words).
- 3. (Optional) finetune the word embedding with new data.
 - If the label data for step 2 is small, don't finetune.

Useful	Less useful
Named entity recognition	Language modeling
Text summarization	Machine translation
Co-reference	
Parsing	

Word embedding vs. face recognition encoding:

- · Both are fairly similar.
- In face recognition:
 - Encoding refers to vectors f(x(i)) and f(x(j)).
 - Train a neural network to take face picture as input.
 - Have the neural network compute an encoding for the new picture.
 - · Used with unlimited pictures.
- In word embeddings:

- Have a fixed vocabulary (e.g., 10000 words).
- · Learn a fixed encoding (embedding) for each word in the vocabulary.
- · Used with a fixed vocabulary.

Properties of word embeddings

Papers mentioned:

 Linguistic Regularities in Continuous Space Word Representations by Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.

Word embeddings can be used for naalogy reasoning.

• For example: man is to woman as king is to queen s.t. $e_{
m man} - e_{
m woman} pprox e_{
m king} - e_{
m queen}.$

Carryying out an analogy reasoning:

- Find a word that $e_{\rm man} e_{\rm woman} pprox e_{\rm king} e_{
 m ?}$
- ullet Find word w using $\operatorname{argmax}_{\mathrm{w}} \sin(e_w, e_{\mathrm{king}} e_{\mathrm{man}} + e_{\mathrm{woman}})$
- · Use cosine similarity to calculate the similiarity.

Know that:

$$\text{cosine similarity}(u,v) = \frac{u^\intercal \cdot v}{||u||_2||v||_2}$$

•
$$u=e_{\mathrm{w}}$$

$$v = e_{
m king} - e_{
m man} + e_{
m woman}$$

What does t-SNE do? It takes, let's say, a 300-D data and maps it in a very non-linear way into a 2D space.

Embedding matrix

When implementing an algorithm to learn a word embedding, what ends up is an embedding matrix.

- Suppose we're using 10000 words as our vocabulary plus token.
- The algo should create a matrix E of shape (300, 10000) if we're extracting 300 features.

- If O_{6237} is the one-hot encoding for the word *orange* of shape (10000, 1), then np.dot(E, 0_6327) = e_6257 of shape (300, 1).
- Generally np.dot(E, 0_j) = e_j.

We initialize E randomly and try to learn all params of this matrix.

It's not efficient to use dot multiplication when extracting embeddings of a specific word.

- Instead, use slicing to slice a specific column.
- In Keras, there is an embedding layer that extracts this column with no multiplication.

Learning word embeddings

Papers mentioned:

 A Neural Probabilistic Language Model by Yoshua Bengio, Rejean Ducharme, Pascals Vincent, and Christian Jauvin.

Say, we want to build a language model that can predict the next word.

Using a neural network to learn the language model:

- Get e_i using np.dot(E, o_j).
 - ullet times the one-hot vector o_j gives the embedding vector.
 - E the embedding matrix.
 - o_j one-hot vector for word j.
- The neural network consists of:
 - Hidden layers with params W_1 and b_1 .
 - Softmax output layer with params W_2 and b_2 .
- The input dimension is $(300 \times 6, 1)$ if the window size is 6.
 - If window size = n, then that means n previous words.
- Optimize E and the network parameters during training.
 - The objective is to maximize the likelihood of predicting the next word given the context (previous words).

Example

Take into account the sentence: I want a glass of orange juice to go along with my cereal.

- To learn the word juice, there are several choices for context:
 - Last 4 words.
 - 4 words on the left and on the right.
 - Last 1 word.
 - Nearby 1 word.
- Scientific findings tell that it's natural to use the last few words as a context when building a language model.
- Use all of the context when learning a word embedding.

Word2Vec

Papers mentioned:

 Efficient Estimation of Word Representations in Vector Space by Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean.

Skip-gram model

The skip-gram model:

- 1. Instead of having context always be the *last four words*, pick a word to be the *context word*.
- 2. Pick another word within some window and choose that to be the *target word*.
- 3. Set up a supervised learning problem given the context word.
 - The model predicts a randomly chosen word within a window of the input context word.
 - This is not easy as for ± 10 words, there's a lot of different words.
 - The goal of setting up the supervised learning problem is to learn a good word embedding.

Say we use the previous example: I want a glass of orange juice to go along with my cereal.

Context	Target	How far	
orange	juice	+1	
orange	glass	-2	
orange	my	+6	

Model details:

$$o_c
ightarrow E
ightarrow e_c
ightarrow O(ext{softmax})
ightarrow \hat{y}$$

- 1. Given a vocabulary size of 10000.
- 2. We want to learn a mapping from some context c to target t.
- 3. Represent the context word with a one-hot vector o_c .
- 4. Multiply embedding matrix E by o_c to get $e_c = Eo_c$.
- 5. Feed e_c to a softmax unit to get \hat{y} .

$$\text{Softmax unit: } P(t|c) = \frac{\exp(\theta_t^\intercal e_c)}{\sum_{j=1}^{10000} \exp(\theta_j^\intercal e_c)}$$

- θ_t parameter associated with output t.
- · Bias term is omitted.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings.

• θ_t and e_c are both 500 dimensional vectors.

Loss function:
$$\mathcal{L}(\hat{y},y) = -\sum_{i=1}^{10000} y_i \log \hat{y}_i$$

- y is a 10,000-D one-hot vector representing the target word.
 - e.g., target word juice of ID 4834 will have a one-hot vector where $y_{4834} = 1$ and 0 for others.
- \hat{y} is a 10,000-D vector with probabilities for all 10,000 possible targets words.

Problem with softmax:

 Every softmax step requires summing over the 10,000 (or even more) words in the vocabulary. This is computationally slow and expensive.

One solution to the softmax problem: use a Hierarchical softmax classifier.

- Instead of a flat softmax, use a binary tree of classifiers.
- For a vocabulary of 10,000 words:
 - First classifier is the target word in the first or last 5,000?
 - Subsequent classifiers narrows down until a leaf node corresponding to the target word is reached.
- Reduces complexity from O(W) to $O(\log W)$.
- In practice, the classifier a heuristic is implemented where:
 - · Common words are placed on top.
 - While less common words are buried much deeper in the tree.

CBOW

The other version of Word2Vec involves the CBOW (continuous bag of words) model.

- Takes the surrounding contexts from middle word.
- Use the surrounding words to try to predict the middle word.

Negative sampling

Papers mentioned:

 Distributed Representations of Words and Phrases and their Compositionality by Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean.

Negative sampling allows similar objectives to the skip-gram model but with a lower computational cost.

Positive and negative examples:

- 1. Generate a positive example.
 - 1. Sample a context word and a target word.
 - 2. Associated the pair with a label of 1.
- Generate negative examples.
 - Take the context word and pick another random word k times.
 - Choose large values of k for smaller data sets (e.g., 5 to 20).
 - Choose smaller k for large data sets (e.g., 2 to 5).

context	word	target?
orange	juice	1
orange	book	0
orange	the	0
orange	of	0

Compared to the original skip-gram model:

• Instead of training all 10,000 words on every iteration, only train k + 1.

How to choose the negative examples? There are three methods:

- Sample according to the empirical frequency of words in the corpus.
 - Problem end up with a high representation of common words like the, of, and, etc.
- Use p(w) = 1/|V| to sample negatives at random.
 - Problem unrealistic distribution.

• Use
$$p(w) = rac{f(w_i)^{3/4}}{\sum_{j=1}^{10000} f(w_j)^{3/4}}.$$

- $f(w_i)$ is the observed frequency of word w_i .
- · Used by the mentioned paper.

GloVe word vectors

Papers mentioned:

• GloVe: Global Vectors for Word Representation by Jeffrey Pennington, Richard Socher, Chris Manning.

GloVe means Global Vectors for Word Representation. Not as widely-used but popular for its simplicity.

Instead of sampling context-target pairs based on proximity. Glove makes co-occurence counts explicit.

 X_{ij} — times j appears in the context ofi.

- Think of X_{ij} as X_{ct} .
- If the context is always the word immediately before the target word, then X_{ij} is not symmetric.
- Symmetry is dependent on the context:
 - If context is ± 10 words, $X_{ij} = X_{ji}$ (syemmtric).
 - If context is the word immediately before target, it is not symmetric.

GloVe uses a co-occurence matrix as starting point.

GloVe model: minimize
$$\sum_{i=1}^V \sum_{j=1}^V f(X_{ij}) \left(heta_i^\intercal e_j + b_j + b_j' - \log(X_{ij}) \right)^2$$

- $\theta_i^{\mathsf{T}} e_j$ plays the role of $\theta_t^{\mathsf{T}} e_c$.
- We want to learn vectors so that their end product is a good predictor of how often the two words occur.

Handling zero co-occurences: if $X_{ij} = 0 \to \log(0) \to = -\infty \to \text{undefined}$

- Add a weighting function $f(X_{ij})$ where $f(X_{ij}) = 0$ when $X_{ij} = 0$.
 - · Down-weights very frequent words.
 - · Avoids giving miniscule weight to rare words.
 - There are various heuristics in the GloVe paper for the function.

Unlike skip-gram: θ_i and e_j play symmetric roles.

• After training: the final embedding for word w is $(\theta_w + e_w)/2$.

GloVe works because

- · It's based on co-occurence statistics.
- Encodes global distributional information.

The original motivation is that each dimension is a feature. But in reality, it's not guaranteed that axes align with human-interpretable features.

- Any invertible linear transformation (e.g., matrix A) can rotate embedding space without changing performance: $\theta_i^{\mathsf{T}} e_j = (A\theta_i)^{\mathsf{T}} (A^{-1}e_j)$
- · Thus, dimensions are not interpretable individually.
- Each dimension is usually a mixture of semantic properties.

However, even after arbitrary transformations:

- Word analogies still work because vector differences remain meaningful.
- Therefore, GloVe learns useful embeddings despite the lack of interpretability of single dimensions.

GloVe pipeline procedure:

- 1. Build a co-occurence matrix X_{ij} .
- 2. minimize $\sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij}) (\theta_i^{\mathsf{T}} e_j + b_j + b_j' \log(X_{ij}))^2$
- 3. Average θ and e using $(\theta_w + e_w)/2$ to obtain the final embeddings.

Concluding insights on word embeddings:

- On first try, download a pre-trained model.
- Once enough data is available, try implementing the discussed algorithms.
- Most practitioners load a pre-trained set of embeddings because word embeddings are computationally expensive to train.

Sentiment classification

Sentiment classification is the process of finding if a text has a positive or negative review.

One challenge that sentiment classification faces is the absence of a huge labeled train dataset.

Commmon dataset size varies from 10,000 to 100,000 words.

Example 01

The following example is a simple sentiment classification model.

comments	stars
The dessert is excellent.	4
Service was quite slow.	2
Good for a quick meal, but nothing special.	3
Completely lacking in good taste, good service, and good ambience.	1

- E trained on a 100 billion words.
- The number of features in the word embedding is 300.
- Average (or sum) all the feature vectors for every word.

Problems for this model: it ignores word order.

Example 02

Instead of summing (or averaging) all of the word embedding, use a RNN for sentiment classification.

This generalizes better even if a word is absent from the dataset.

Debiasing word embeddings

Paper:

 Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings by Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, Adam Kalai.

Word embeddings may have a social bias problem.

- This includes gender bias, ethnicity bias, etc.
 - e.g., Man is to Computer Programmer as Women is to Homemaker.
- It is not referring to the bias-variance tradeoff in ML.

The paper shows a way to reduce gender bias in word embeddings:

- 1. Identify bias direction (e.g., gender)
 - Take a few differences k and average them.
 - $ullet g_1 = e_{
 m he} e_{
 m she}$
 - $ullet g_2 = e_{
 m male} e_{
 m female}$
 - If the original embedding is 300-D
 - Bias direction is a 1-D subspace representing gender.
 - Non-bias vector is a 299-D vector.
- 2. Neutralize
 - · Remove bias from neutral words.
 - For every word that is not definitional, project to get rid of bias.
- 3. Equalize pairs:
 - Ensure paired words differ only in gender, not in similarity to other neutral words.
 - E.g., Move words like grandmother and grandfather equidistant from gender neutral words like doctor or babysitter.

Which words to neutralize? Train a classifier to do this.

- The classifier will identify definitional words where gender is inherent in meaning.
- Most words are not definitional. Hence, they can be neutralized.

Because equlization pairs are small in number, they are feasible to be hand-picked.