Всероссийский квантовый хакатон

Ноябрь 2023

1 Задача составления расписания лекций

Составление расписания занятий в универсистете является сложной задачей комбинаторной оптимизции. При составлении расписания необходимо учитывать различное число параметров, включая количество преподаваемых предметов, количество учебных групп и преподавателей, возможные временные окна для проведения лекций и многие другие параметры. В общем случае задача составления расписания с учетом всех ограничений относится к классу NP-сложных. В данном кейсе предлагается решить задачу составления расписания лекций по образовательной программе квантовых вычислений с помощью метода квантового отжига.

Условия задачи

- 1. Есть N=5 преподавателей, которые ведут M=10 предметов в двух группах K=2.
- 2. В день может быть поставлено не более 6 лекций в расписании группы.
- 3. В день не может быть более двух занятий по одному предмету у группы.
- 4. Так получилось, что преподаватель n_1 не может вести лекции в среду, а n_2 в понедельник, а n_3 никак не может работать по субботам, n_4 , n_5 не могут вести занятия по вторникам. Воскресенье день без занятий.
- 5. По требованию учебной программы для каждого предмета должно быть выделено 4 часа за период T=2 недели для каждой группы.
- 6. Каждый преподаватель имеет ограниченное число часов в неделю на работу $E \leq 20$ (учитывая, что он может вести не более двух разных предметов в день, каждый преподаватель может вести 2 предмета из списка Таблица 1).
- 7. В дне 8 часов, в которые можно распределять занятия:
 - (a) 9:00-10:00

- (b) 10:00-11:00
- (c) 11:00-12:00
- (d) 12:00-13:00
- (e) 13:00-14:00
- (f) 14:00-15:00
- (g) 15:00-16:00
- (h) 16:00-17:00

Таблица 1: Распределение преподавателей по предметам

Преподаватель	Предметы			
1. Иванов	Квантовая механика			
1. Иванов	Квантовая теория информации			
2. Петров	Квантовыве вычисления			
	Сложность квантовых алгоритмов			
3. Сидоров	Квантовые алгоритмы в логистике			
5. Сидоров	Квантовое машинное обучение			
4 Kanwan	Моделирование квантовых систем			
4. Карпов	Квантовые алгоритмы в химии			
5. Соколов	Физическая реализация квантовых компьютеров			
э. Соколов	Моделирование квантовых алгоритмов			

Задача

Требуется разработать квантовый алгоритм составления расписаний занятий на основе метода квантового отжига (модель Изинга/QUBO). С помощью разработанного алгоритма необходимо составить расписание лекций на две недели, учитывающее все ограничения или наиболее близкое к нему.

Форма представления решения

Таблица с расписанием занятий. Таблица Должна включать информацию: преподаватель – предмет – группа – день - час. Таблица 2 показывает форму представления результатов расписания.

Критерии оценки решения

Максимальное число баллов за задачу: 40.

Общее решение задачи оценивается по следующим критериям:

1. Предложен алгоритм квантового отжига для составления расписания занятий

Таблица 2: Пример представления решения задачи составления расписания

	Group	Week	Day	Hours	Subject	Name
0	QC_1	Неделя 1	ПН	9:00-10:00	Физическая	Соколов
				реализация квантовых		
					компьютеров	
1	QC_2	Неделя 2	cp	11:00-12:00	Квантовые	Сидоров
				алгоритмы в		
					логистике	
2	QC_2	Неделя 2	ЧТ	15:00-16:00	нет занятий	нет занятий

- 2. Представлен анализ предложенного квантового алгоритма. Анализ должен включать оценку масштабирования алгоритма по количеству переменных, оценку сходимости алгоритма, сравнение алгоритма с классическими аналогами (на выбор участников).
- 3. Предоставлен работающий код решения задачи с помощью QUBO солвера.
- 4. Представлено расписание занятий, максимально соответствующее всем ограничениям.
- 5. Общее качество презентации решения

2 Классификация ионов

В квантовом компьютере используется 4 иона, с которыми проводятся квантовые операции. После выполнения квантового алгоритма необходимо провести считывание состояния регистра ионов и определить бинарную строку, соответствующую состоянию ионов.

Для определения состояния ионов используются снимки с камеры во время перехода ионов из одного энергетического состояния в другое при подаче лазерного излучения. Для анализа состояния кубитов предлагается разработать квантовый алгоритм постобработки снимков камеры для определения состояния ионов (кубитов). На рисунке 2 показан пример снимка ионов и соответствующая классификация их состояния.

Рис. 1: Пример классификации состояния ионов. Снимку а) соответствует бинарная строка '1110', снимку b) соответствует бинарная строка '1111'

Входные данные

На входе даны 1000 снимков ионов в ловушке Пауля. Изображения даны вертикально. Считать ионы сверху вниз. Входные данные можно скачать по ссылке.

Форма представления результатов

Таблица в следующем формате:

Также будет оцениваться время работы алгоритма для обучения и предикта Φ орма результата: код, ответ в виде csv Φ айла 'labeled_ions_team_number.csv', презентация результатов с QUBO постановкой задачи.

Таблица 3: Форма предоставления ответов по задаче классификации ионов

file number	file name	qubit 1 state	qubit 2 state	qubit 3 state	qubit 4 state

Критерии оценки решения

Максимальное число баллов за задачу: 30.

Общее решение задачи оценивается по следующим критериям:

- 1. Предложен метод сведения задачи классификации ионов на изображении в модель QUBO/Изинга.
- Представлен анализ предложенного алгоритма. Анализ должен включать оценку масштабирования алгоритма по количеству переменных, оценку сходимости алгоритма, сравнение алгоритма с классическими аналогами.
- Предоставлен работающий код, реализиующий алгоритм квантового отжига.
- 4. Представлено верное решение задачи классификации ионов. Проведена оценка точности решения на предоставленном наборе данных. Используются метрики оценки многоклассовой классификации: Precision, Recall, F1. Решение представвить в виде файла 'labeled ions team number.csv'
- 5. Общее качество презентации решения.

Справочная информация: Условия свечения ионов (на изображении - белый): Кубит находится в состоянии $|0\rangle$ при подаче излучения лазера длиной волны 397 нм. Свечение происходит во время перехода с уровня 4S на уровень 4P. В разметке состояние $|0\rangle$ нужно обозначать как 1, состояние $|1\rangle$ нужно обозначать как 0.

3 Определение объектов на изображении

Сегментация изображений - это задача компьютерного зрения, в которой целью является разделение изображения на несколько сегментов, каждый из которых представляет собой группу пикселей с определенными общими характеристиками. Эти сегменты обычно соответствуют различным объектам, текстурам или регионам на изображении. Задача сегментации позволяет компьютеру понимать структуру и содержание изображения, выделять объекты и их границы.

В настоящее время существует несколько подходов к сегментации изображений с использованием гейтовых квантовых алгоритмов. В данном кейсе предлагается разработать алгоритм сегментации объектов на изображении с использованием методов квантового отжига.

Рис. 2: Пример сегментации изобржения

Задача

Разработать и реализовать алгоритм сегментации объектов изображения на основе алгоритма квантового отжига. Разработанный алгоритм необходимо оценить с точки зрения требуемых вычислительных ресурсов (количества кубит и времени работы алгоритма). Тестирование алгоритма провести на контрольных изображениях (доступны для скачивания по ссылке).

Форма представления решения

Алгоритм решения представить в виде презентации с описанием алгоритма и анализом его применимости для сегментации изображений.

Критерии оценки решения

Максимальное число баллов за задачу: 30.

Общее решение задачи оценивается по следующим критериям:

1. Предложен алгоритм квантового отжига для сегментации объектов на изображении.

- 2. Представлен анализ предложенного квантового алгоритма. Анализ должен включать оценку масштабирования алгоритма по количеству переменных, оценку сходимости алгоритма, сравнение алгоритма с классическими аналогами (на выбор участников).
- 3. Предоставлен работающий код, реализующий сведение к ${
 m QUBO/mode}$ ли Изинга.
- 4. Представлено верное решение задачи сегментации объектов на изображении (необходимо использовать изображения из тестовой выборки).
- 5. Общее качество презентации решения.