Operating systems

Memory: address translation

Memory management

- OS problem: how to implement virtual addressing?
- the process/mechanism: address translation
- heart of the problem: how to manage free memory?
- · speeding things up: caching

Address translation Thysical memory the conversion of a virtual address to a physical address

Goals of address translation

- transparency
- protection and isolation
- efficiency

Multi-tasking problem

how to hold multiple processes in memory?

Relocation

once OS picks region in memory where program is to be stored, shift all absolute addresses by that base.

Hardware solution to protection base-and-bound Processor's View Implementation Physical Memory Virtual Remove Processor Address Physical Address Rate Record on Bound Processor Rate Exception

How does the OS make sure that sensitive data from a previous process isn't accessible to new process assigned that memory?

Efficiently?

Segmentation can be used to do zero-on-reference

What else is virtual addressing good for?

- efficient I/O
- · memory mapped files
- virtual memory
- · checkpointing and restart
- · persistent data structures
- process migration
- · information flow control
- · distributed shared memory

Recap

- memory protection: hardware branch-and-bound
- flexible use of memory: segmenting and paging
- sparse addressing: tree-based or hash table lookups