

Instituto Politécnico Nacional Escuela Superior de Cómputo

Análisis de Algoritmos

Práctica 7. Multiplicación de una Secuencia de Matrices

Profesor: Dr. Benjamín Luna Benoso.

Sem: 2018/1

- 1. Implementar el algoritmo de la multiplicación de una secuencia de matrices.
 - i) como entrada el algoritmo tendrá n matrices A_i de tamaño $p_{i-1} \times p_i$.
 - ii) como salida, se mostrará la configuración de paréntesis que genera el algoritmo.
- iii) Además se mostrarán todas las configuraciones de paréntesis y se corraborará que la generada en el punto ii) en efecto, es la óptima.

Ejemplo.

Entrada: 3, 5, 2, 2 (Hace referencia implícitamente a tres matrices $A_1 = A_{3\times 5}$, $A_2 = A_{5\times 2}$, $A_3 = A_{2\times 2}$).

Salida:

La configuración que genera el algoritmo de multiplicación de una secuencia de matrices es: $((A_1A_2)A_3)$.

Muestra todas las configuraciones y las operaciones escalares realizadas.

 $(A_1(A_2A_3))$ realiza 20 operaciones escalares

 $((A_1A_2)A_3)$ realiza 42 operaciones escalares

Por lo tanto una configuración óptima es $((A_1A_2)A_3)$.

Problema: Utilizando método por sustitución, muestre que la ecuación de recurrencia $P(n) = \sum_{k=1}^{n-1} P(k) P(n-k)$ si $n \ge 2$ y P(n=1) = 1 es $\Omega(2^n)$.