5. Programmieraufgabe Computerorientierte Mathematik I

Abgabe: 18.12.2020 über den Comajudge bis 17 Uhr

Bitte beachten Sie: Die Herausgabe oder der Austausch von Code (auch von Teilen) zu den Programmieraufgaben führt für *alle* Beteiligten zum *sofortigen Scheinverlust*. Die Programmieraufgaben müssen von allen Teilnehmenden alleine bearbeitet werden. Auch Programme aus dem Internet dürfen nicht einfach kopiert werden.

1 Problembeschreibung

Sei
$$G = (V,E)$$
 ein einfacher Digraph mit $V = \{0,...,n-1\}$. Wir setzen $\Delta := \{(v_1,v_2) \in V \times V : v_1 = v_2\}$.

Es soll eine Funktion get_eqclasses geschrieben werden, die entscheidet, ob $E \cup \Delta$ eine Äquivalenzrelation auf V beschreibt, d.h. ob die durch $E \cup \Delta$ auf V gegebene Relation reflexiv, symmetrisch und transitiv ist. Gegebenenfalls soll die induzierte Partition von V berechnet werden. Die einzelnen Klassen der Rückgabe dürfen in einer beliebigen Reihenfolge vorliegen. In der folgenden Skizze steht ein Pfeil $x \longleftrightarrow y$ mit zwei Spitzen für gerichtete Kanten $x \longrightarrow y$ und $y \longrightarrow x$.

2 Aufgabenstellung und Anforderungen

Schreiben Sie eine Funktion

```
get_eqclasses(n,E) ,
```

die entscheidet, ob die Menge $E \cup \Delta$ eine Äquivalenzrelation auf $V := \{0,...,n-1\}$ beschreibt und die ggf. die zugrundeliegende Partition von V als Liste von Knotenlisten zurückgibt. Implementieren und verwenden Sie dafür folgende Funktionen:

- Die Funktion get_classes (n, E) gibt eine Liste mit n Einträgen zurück, wobei an k-ter Stelle (k=0,...,n-1) die k-te Nachbarschaft $[k]=\{w\in V: (k,w)\in E\cup\Delta\}$ als ungeordnete Knotenliste steht.
- Die Funktion are_equal (list1, list2) soll für zwei Listen ganzer Zahlen True zurückgeben, falls die zugrundeliegenden *Mengen* ganzer Zahlen übereinstimmen. Andernfalls soll False zurückgegeben werden.
- Die Funktion are_disjoint(list1, list2) soll für zwei Listen ganzer Zahlen True zurückgeben, falls die zugrundeliegenden *Mengen* ganzer Zahlen disjunkt sind. Andernfalls soll False zurückgegeben werden.

2.1 Eingabe

Der Funktion get_eqclasses (n, E) wird eine ganze Zahl $n \in \mathbb{Z}_{\geq 0}$ für die Knotenmenge $V := \{0, ..., n-1\}$ und gerichtete Kanten $E \subset V \times V$ als Liste übergeben.

2.2 Rückgabewert

Falls $E \cup \Delta$ eine Äquivalenzrelation \sim auf V beschreibt, dann soll eine Liste L von Knotenlisten $L_1,...,L_k$ zurückgegeben werden $(k = |V/\sim|)$, wobei L_i die Klassen von \sim durchläuft. Alle Listen dürfen in ungeordneter Form vorliegen.

Falls $E \cup \Delta$ keine Äquivalenzrelation beschreibt, dann soll die leere Liste [] zurückgegeben werden.

2.3 Beispielaufrufe

```
>>> get_eqclasses(4,[(1,2),(2,1),(3,1),(1,3),(2,3),(3,2)])
[[0], [1, 2, 3]]
>>> get_eqclasses(4,[(1,2),(3,1),(1,3),(2,3),(3,2)])
[]
>>> get_eqclasses(4,[(1,2),(2,1),(2,3),(3,2)])
[]
>>> get_eqclasses(4,[(1,2),(2,1)])
[[0], [1, 2], [3]]
```

Dies sind genau die Aufrufe, die zu den Beispielen in Abschnitt 1 gehören.

3 Tipps und Anmerkungen

• Für eine Liste L ganzer Zahlen liefert set (L) die Menge ihrer Einträge. Beispielsweise erhält man set ([1,2,3])={1,2,3} und set ([1,2,2])={1,2}. Sofern Sie diese Funktion benutzen - welche Voraussetzung erlaubt Ihnen das?

3.1 Lemma für die Programmieraufgabe

Es sei R eine reflexive Relation auf einer Menge M, d.h. für alle $x \in M$ gilt xRx. Für jedes $m \in M$ setzen wir $[m] := \{x \in M : mRx\}$. Beweist folgende Aussagen:

- a) Die Relation R beschreibt genau dann eine Äquivalenzrelation, wenn für alle $x, y \in M$ entweder [x] = [y] oder $[x] \cap [y] = \emptyset$ gilt.
- b) Sei G = (V, E) ein einfacher Digraph mit $V = \{0, ..., n-1\} \subset \mathbb{N}$. Wir setzen $\Delta := \{(v_1, v_2) \in V \times V : v_1 = v_2\}$. Entwerft einen Algorithmus, der entscheidet, ob $E \cup \Delta$ eine Äquivalenzrelation auf V beschreibt und der ggf. die Äquivalenzklassen berechnet.

Lösung:

- a) " \Rightarrow ": Sei R eine Äquivalenzrelation. Wegen der Reflexivität sind [x] und [y] nichtleer, also können sie nicht sowohl gleich als auch disjunkt sein. Es bleibt zu zeigen, dass aus $[x] \cap [y] \neq \emptyset$ die Gleichheit folgt. Seien $x,y \in M$ mit $[x] \cap [y] \neq \emptyset$. Dann gibt es $s \in [x] \cap [y]$ und wir erhalten aus xRs und yRs mit der Symmetrie, dass sRy und mit der Transitivität, dass xRy. Sei weiter $z \in [y]$ beliebig. Dann gilt yRz und mit xRy und der Transitivität folgt xRz, also $z \in [x]$. Damit ist $[y] \subseteq [x]$ gezeigt, die andere Inklusion geht analog.
 - $, \Leftarrow$ ": Für alle $x,y \in M$ gelte entweder [x] = [y] oder $[x] \cap [y] = \emptyset$.
 - Transitivität: Es gelte xRy und yRz. Aufgrund der (vorausgesetzten) Reflexivität gilt $y \in [y]$ und die Voraussetzung liefert [x] = [y]. Analog folgt [y] = [z] und erneut aufgrund der Reflexivität xRz.
 - Symmetrie: Es gelte xRy. Wie bei der Transitivität erhalten wir [x] = [y] und wegen der Reflexivität $y \in [y] = [x]$, also yRx.
- b) **Eingabe:** Liste \vee von Knoten, Liste \vee von 2-Tupeln (Kanten). Wir erstellen eine Liste \vee deren Elemente die Mengen |v| für $v \in \{1,...,n\}$ sind.

```
1     L=[[v] for v in V]
2     for e in E:
3     L[e[0]].append(e[1])
```

Jetzt können wir prüfen, ob sich die Listen [v] nichttrivial schneiden, d.h. ob für $v,w \in V$ weder [v] = [w] noch $[v] \cap [w] = \emptyset$ gilt. Nach Aufgabenteil a) ist dies äquivalent dazu, nachzuprüfen, ob $E \cup \Delta$ eine Äquivalenzrelation ist.

```
for i in range(n):
    L[i].sort()
    for i in range(n):
    for j in range(i+1,n):
        if not set(L[i]).isdisjoint(L[j]) and L[i]!=L[j]:
        return None
```

Wenn die Funktion bis hierhin noch nicht terminiert hat, handelt es sich bei $E \cup \Delta$ um eine Äquivalenzrelation. Wir müssen noch die Dubletten unter den Äquivalenzklassen entfernen. Hierbei nutzen wir, dass wir die entsprechenden Listen bereits sortiert haben.

```
1    L.sort()
2    last_first_index=-1
3    equivalence_classes=[]
4    for i in range(n):
5    if L[i][0]!=last_first_index:
6    equivalence_classes.append(L[i])
7    last_first_index=L[i][0]
8    return equivalence_classes
```