Exercise Sheet 3

Exercise 1

Check that following are normed spaces:

- (a) \mathbb{R}^N with Euclidean norm $||x||_2 = \left(\sum_{i=1}^N x_i^2\right)^{1/2}$ for $x = (x_1, \dots, x_N) \in \mathbb{R}^N$,
- (b) $C(\Omega)$, where Ω is a compact subset of \mathbb{R}^N , with $||f|| = \max_{x \in \Omega} |f(x)|$
- (c) $L^p(\Omega)$ for $1 \leq p \leq \infty$, where Ω is an open subset of \mathbb{R}^N , with

$$||f||_{L^p(\Omega)} = \begin{cases} \left(\int_{\Omega} |f(x)|^p dx \right)^{1/p} & \text{if } 1 \leqslant p < \infty, \\ \operatorname{ess \, sup}_{x \in \Omega} |f(x)| & \text{if } p = \infty. \end{cases}$$

Exercise 2

Check that alternative norms in \mathbb{R}^N are

(a)
$$||x||_{\infty} = \max_{1 \le i \le N} |x_i| \text{ for } x = (x_1, \dots, x_N) \in \mathbb{R}^N,$$

(b)
$$||x||_p = \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}$$
 for $x = (x_1, \dots, x_N) \in \mathbb{R}^N$ and $1 \le p < \infty$.

For N=2 draw unit balls for $\|\cdot\|_1, \|\cdot\|_2$, and $\|\cdot\|_{\infty}$.

Exercise 3

We say that norms $\|\cdot\|_1$ and $\|\cdot\|_2$ in X are equivalent if there exist positive constants C_1 and C_2 such that

$$C_1 ||x||_2 \le ||x||_1 \le C_2 ||x||_2$$
 for all $x \in X$

Prove that if the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ in X are equivalent then convergence of a sequence $\{x_n\}_{n\in\mathbb{N}}$ in $\|\cdot\|_2$ implies convergence of $\{x_n\}_{n\in\mathbb{N}}$ in $\|\cdot\|_1$ and, conversely, convergence of a sequence $\{x_n\}_{n\in\mathbb{N}}$ in $\|\cdot\|_1$ implies convergence of $\{x_n\}_{n\in\mathbb{N}}$ in $\|\cdot\|_2$. What can we say about $\{x_n\}_{n\in\mathbb{N}}$ if for some $C_2 > 0$ the inequality

$$||x||_1 \leqslant C_2 ||x||_2$$
 for all $x \in X$

holds?

Exercise 4

Let $\|\cdot\|_p$ denote the p-norm in \mathbb{R}^2 . Show that $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_\infty$ are equivalent norms.

Exercise 5

Consider the norms $||f||_{L^1} = \int_0^1 |f(x)| dx$ and $||f||_{C^0} = \max_{x \in [0,1]} |f(x)|$ on X = C[0,1]. Show that these two norms are not equivalent. Hint: Consider the sequence of functions $\{f_n\}_{n \in \mathbb{N}}$ defined by $f_n(x) = x^n$.

Exercise 6

Consider the family of functions $\{f_n\}_{n\in\mathbb{N}}$ that are piecewise defined as

$$f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} - \frac{1}{n}, \\ \frac{1}{2} + \frac{n}{2} \left(x - \frac{1}{2} \right) & \frac{1}{2} - \frac{1}{n} < x \le \frac{1}{2} + \frac{1}{n}, \\ 1 & \frac{1}{2} + \frac{1}{n} < x \le 1. \end{cases}$$

Plot $f_n(x)$ for general n, and show that this family $\{f_n\}_{n\in\mathbb{N}}$ converges in $L^2[0,1]$ but not in $L^\infty[0,1]$.

Exercise 7

Show that X = C[0,1] equipped with the L^1 -norm $||f||_{L^1} = \int_0^1 |f(x)| dx$ is not complete. Hint: Consider the sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ defined by

$$f_n(x) = \begin{cases} 0 & 0 \le x \le \frac{1}{2} - \frac{1}{n} \\ nx + 1 - \frac{n}{2} & \frac{1}{2} - \frac{1}{n} \le x \le \frac{1}{2}, & \text{for } n \ge 2. \\ 1 & \frac{1}{2} \le x \le 1 \end{cases}$$

Exercise 8

Define $C^1[a,b] := \{f : [a,b] \to \mathbb{R} : f, f' \in C[a,b]\}$. Show that the set $C^1[a,b]$ equipped with the norm $\|\cdot\|_{C^0}$ is not complete. Prove that the set $C^1[a,b]$ with the norm

$$||f||_{C^1} := \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|$$

is a Banach space.