# COMPLEMENTARY SILICON POWER TRANSISTORS

- SGS-THOMSON PREFERRED SALESTYPES
- COMPLEMENTARY PNP NPN DEVICES

#### **DESCRIPTION**

The 2N6487 and 2N6488 are silicon epitaxial-base NPN transistors mounted in Jedec TO-220 plastic package.

They are inteded for use in power linear and low frequency switching applications.

The complementary PNP types are 2N6489 and 2N6490 respectively.





### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                                                |     |            | Unit   |        |    |
|------------------|--------------------------------------------------------------------------|-----|------------|--------|--------|----|
|                  |                                                                          | NPN |            | 2N6487 | 2N6488 |    |
|                  |                                                                          | PNP | 2N6489     | 2N6490 |        |    |
| V <sub>CBO</sub> | Collector-Base Voltage (I <sub>E</sub> = 0)                              |     | 50         | 70     | 90     | V  |
| V <sub>CEX</sub> | Collector-Emitter Voltage (V <sub>BE</sub> =-1.5V,R <sub>BE</sub> =100Ω) |     | 50         | 70     | 90     | V  |
| V <sub>CEO</sub> | Collector-Emitter Voltage (I <sub>B</sub> = 0)                           |     | 40         | 60     | 80     | V  |
| V <sub>EBO</sub> | Emitter-Base Voltage (I <sub>C</sub> = 0)                                |     |            | 5      |        | V  |
| Ic               | Collector Current                                                        |     |            | 15     |        | Α  |
| Ι <sub>Β</sub>   | Base Current                                                             |     |            | 5      |        | Α  |
| P <sub>tot</sub> | Total Dissipation at T <sub>c</sub> ≤ 25 °C                              |     | 75         |        |        | W  |
| T <sub>stg</sub> | Storage Temperature                                                      |     | -65 to 150 |        |        | °C |
| Tj               | Max. Operating Junction Temperature                                      |     | 150        |        |        | °C |

For PNP types voltage and current values are negative.

June 1997 1/4

#### THERMAL DATA

| R <sub>thj-case</sub> | Thermal Resistance Junction-case    | Max | 1.67 | °C/W |
|-----------------------|-------------------------------------|-----|------|------|
| $R_{thj-amb}$         | Thermal Resistance Junction-ambient | Max | 70   | °C/W |

## **ELECTRICAL CHARACTERISTICS** (T<sub>case</sub> = 25 °C unless otherwise specified)

| Symbol                  | Parameter                                                                                  | Test Conditions                                                                               | Min.           | Тур. | Max.              | Unit           |
|-------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|------|-------------------|----------------|
| I <sub>CEX</sub>        | Collector Cut-off<br>Current (V <sub>BE</sub> = -1.5V)                                     | for 2N6489                                                                                    |                |      | 0.5<br>0.5<br>0.5 | mA<br>mA<br>mA |
|                         |                                                                                            | for 2N6487/2N6490 VCE = 60 V<br>for 2N6488 VCE = 80 V                                         |                |      | 5<br>5            | mA<br>mA       |
| I <sub>CER</sub>        | Collector Cut-off<br>Current (R <sub>BE</sub> = 100Ω)                                      | for <b>2N6489</b>                                                                             |                |      | 0.5<br>0.5<br>0.5 | mA<br>mA<br>mA |
| I <sub>CEO</sub>        | Collector Cut-off<br>Current (I <sub>B</sub> = 0)                                          | for <b>2N6489</b>                                                                             |                |      | 1<br>1<br>1       | mA<br>mA<br>mA |
| I <sub>EBO</sub>        | Emitter Cut-off Current (I <sub>C</sub> = 0)                                               | V <sub>EB</sub> = 5 V                                                                         |                |      | 1                 | mA             |
| $V_{\text{CEO(sus)}}^*$ | Collector-Emitter<br>Sustaining Voltage                                                    | I <sub>C</sub> = 200 mA<br>for <b>2N6489</b><br>for <b>2N6487/2N6490</b><br>for <b>2N6488</b> | 40<br>60<br>80 |      |                   | V<br>V<br>V    |
| V <sub>CER(sus)</sub> * | Collector-Emitter Sustaining Voltage $(R_{BE} = 100\Omega)$                                | I <sub>C</sub> = 200 mA<br>for <b>2N6489</b><br>for <b>2N6487/2N6490</b><br>for <b>2N6488</b> | 45<br>65<br>85 |      |                   | V<br>V         |
| VCEX(sus)*              | Collector-Emitter<br>Sustaining Voltage<br>(V <sub>BE</sub> =-1.5V, R <sub>BE</sub> =100Ω) | I <sub>C</sub> = 200 mA<br>for <b>2N6489</b><br>for <b>2N6487/2N6490</b><br>for <b>2N6488</b> | 50<br>70<br>90 |      |                   | V<br>V<br>V    |
| $V_{CE(sat)^*}$         | Collector-Emitter<br>Saturation Voltage                                                    | I <sub>C</sub> = 5 A I <sub>B</sub> = 0.5 A<br>I <sub>C</sub> = 15 A I <sub>B</sub> = 5 A     |                |      | 1.3<br>3.5        | V<br>V         |
| V <sub>BE</sub> *       | Base-Emitter Voltage                                                                       | Ic = 5 A                                                                                      |                |      | 1.3<br>3.5        | V<br>V         |
| h <sub>FE</sub> *       | DC Current Gain                                                                            | I <sub>C</sub> = 5 A V <sub>CE</sub> = 4 V<br>I <sub>C</sub> = 15 A V <sub>CE</sub> = 4 V     | 20<br>5        |      | 150               |                |
| h <sub>fe</sub>         | Small Signal Current<br>Gain                                                               | $\label{eq:controller} \begin{array}{llllllllllllllllllllllllllllllllllll$                    | 5<br>25        |      |                   |                |

<sup>\*</sup> Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % For PNP types voltage and current values are negative.



## **TO-220 MECHANICAL DATA**

| DIM.   | mm    |      |       | inch  |       |       |  |
|--------|-------|------|-------|-------|-------|-------|--|
| DIIVI. | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |  |
| А      | 4.40  |      | 4.60  | 0.173 |       | 0.181 |  |
| С      | 1.23  |      | 1.32  | 0.048 |       | 0.051 |  |
| D      | 2.40  |      | 2.72  | 0.094 |       | 0.107 |  |
| D1     |       | 1.27 |       |       | 0.050 |       |  |
| Е      | 0.49  |      | 0.70  | 0.019 |       | 0.027 |  |
| F      | 0.61  |      | 0.88  | 0.024 |       | 0.034 |  |
| F1     | 1.14  |      | 1.70  | 0.044 |       | 0.067 |  |
| F2     | 1.14  |      | 1.70  | 0.044 |       | 0.067 |  |
| G      | 4.95  |      | 5.15  | 0.194 |       | 0.203 |  |
| G1     | 2.4   |      | 2.7   | 0.094 |       | 0.106 |  |
| H2     | 10.0  |      | 10.40 | 0.393 |       | 0.409 |  |
| L2     |       | 16.4 |       |       | 0.645 |       |  |
| L4     | 13.0  |      | 14.0  | 0.511 |       | 0.551 |  |
| L5     | 2.65  |      | 2.95  | 0.104 |       | 0.116 |  |
| L6     | 15.25 |      | 15.75 | 0.600 |       | 0.620 |  |
| L7     | 6.2   |      | 6.6   | 0.244 |       | 0.260 |  |
| L9     | 3.5   |      | 3.93  | 0.137 | · ·   | 0.154 |  |
| DIA.   | 3.75  |      | 3.85  | 0.147 |       | 0.151 |  |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

