

Treewidth via Spined Categories Zoltan A. Kocsis (CSIRO)

ACT 2021, Cambridge, UK

15 July 2021

joint work with Benjamin Merlin Bumpus (University of Glasgow)

Papers please

Z. A. K., Benjamin Merlin Bumpus:

Treewidth via Spined Categories

(this talk)

arXiv:2105.05372

Benjamin Merlin Bumpus, Z. A. K.:

Spined categories: generalizing tree-width beyond graphs

(journal article, submitted)

arXiv:2104.01841

slides: www.existence.property/act21.pdf

What we did (summary)

Treewidth A numerical invariant defined on graphs.

Uses: Robertson-Seymour graph minor theorem.

Applications:

• Courcelle's theorem: every property of graphs definable in MSOL is linear time decidable on graphs of bounded treewidth.

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

• ... for hypergraphs and digraphs;

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

- ... for hypergraphs and digraphs;
- ... for temporal graphs (edge sets change over time);

Treewidth Analogues

Fruitful research activity: define analogues of treewidth...

- ... for hypergraphs and digraphs;
- ... for temporal graphs (edge sets change over time);
- ... and even fractional graphs.

The Problem

Obtaining treewidth analogues for other structures: useful and possible.

¹its use: dixit Wittgenstein

The Problem

Obtaining treewidth analogues for other structures: useful and possible.

But ad-hoc. We wanted:

- A categorial description capturing its meaning¹
- A uniform, categorial construction.

¹its use: dixit Wittgenstein

Treewidth as Functor

We define

- **Spined categories**: categories with some extra structure.
- Spined functors preserve this extra structure.
- Examples: \mathbf{Grph}_m , \mathbf{HGrph}_m , posets (Nat), etc.

Treewidth as Functor

We prove the following

Theorem

Given a spined category C, either

- There are no spined functors $F: \mathcal{C} \to \mathbf{Nat}$; or
- there is a distinguished functor (to be characterized later) $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathbf{Nat}$.

Moreover,

- $\Delta_{\mathbf{Grph}_m}$ is treewidth,
- $\Delta_{\mathbf{HGrph}_m}$ is hypergraph treewidth,

and so on.

Treewidth, briefly

Warning

Beware! By graph, we mean a combinatorist's graph:

- Finite
- Irreflexive
- Undirected
- Without parallel edges

This clashes with the category theory convention. In particular, our category of graphs is not a quasitopos.

Treewidth: intuition

- Treewidth: a number tw(G) describing each graph G.
- Captures how "tree-like" the *global* structure is.
- Trees are the graphs of treewidth 2. ²
- Lower treewidth \rightarrow more tree-like

²Cf. sets having h-level 2 in HoTT

Example: Tree-like graphs

Example: Tree-like graphs

Example: Tree-like graphs

Compare: Complete graph on 37 vertices (treewidth 37)

The starting point

Figure 1: $tw(B+_P R) = max\{tw(B), tw(R)\}$

Idea: Treewidth as Functor

Suggestive identity:

$$tw(B +_{P} R) = \max\{tw(B), tw(R)\}\$$

Idea: Treewidth as Functor

Suggestive identity:

$$tw(B +_{P} R) = \max\{tw(B), tw(R)\}\$$

Idea: two as pushout-preserving functor $\mathbf{Grph} \to \mathbb{N}_{\leq}$

Issue 1: Homomorphisms

Issue: Graph homomorphisms do not preserve treewidth.

There is a graph homomorphism $C_4 \to C_2$, but we **don't** have

$$\operatorname{tw}(C_4) \le \operatorname{tw}(C_2)$$

Solution 1

Observation: Graph monomorphisms do preserve treewidth. If $G \hookrightarrow H$, then $\operatorname{tw}(G) \leq \operatorname{tw}(H)$.

Naive solution: Consider the category \mathbf{Grph}_m that has

- Objects: simple graphs.
- Morphisms: monomorphisms of simple graphs.

and characterize tw as some kind of pushout-preserving functor

$$\operatorname{tw}:\operatorname{\mathbf{Grph}}_m\to\mathbb{N}_{\leq}$$

Easy, right?!

Issue 2

Issue 2: No Pushouts

The category \mathbf{Grph}_m lacks pushouts. Consider

where K_n is the complete graph on n vertices, i.e. K_1 is \bullet and K_2 is \bullet — \bullet .

Solution 2: Proxy Pushouts

 \mathbf{Grph}_m remembers something about the existence of pushouts in \mathbf{Grph}

Proxy pushouts: the categorial ingredient, axiomatizes what \mathbf{Grph}_m remembers.

Solution 2: Proxy Pushouts

 \mathbf{Grph}_m remembers something about the existence of pushouts in \mathbf{Grph}

Proxy pushouts: the categorial ingredient, axiomatizes what \mathbf{Grph}_m remembers.

Spine: the combinatorial ingredient, axiomatizes "complete" objects Ω_n : think "complete graphs".

Definition

A spined category consists of a category \mathcal{C} equipped with the following additional structure:

• a sequence $\Omega : \mathbb{N} \to \text{ob } \mathcal{C}$ called the *spine* of \mathcal{C} ,

Definition

A *spined category* consists of a category C equipped with the following additional structure:

- a sequence $\Omega : \mathbb{N} \to \text{ob } \mathcal{C}$ called the *spine* of \mathcal{C} ,
- an operation \mathfrak{P} (called the *proxy pushout*) that extends every diagram of the form

$$G \stackrel{g}{\longleftarrow} \Omega_n \stackrel{h}{\longrightarrow} H \text{ in } \mathcal{C}$$

Definition

A *spined category* consists of a category C equipped with the following additional structure:

- a sequence $\Omega: \mathbb{N} \to \text{ob } \mathcal{C}$ called the *spine* of \mathcal{C} ,
- an operation \mathfrak{P} (called the *proxy pushout*) that extends every diagram of the form $G \stackrel{g}{\longleftarrow} \Omega_n \stackrel{h}{\longrightarrow} H \text{ in } C$

to a distinguished commutative square

$$\Omega_n \xrightarrow{g} G
\downarrow \mathfrak{P}(g,h)_g
H \xrightarrow{\mathfrak{P}(g,h)_h} \mathfrak{P}(g,h)$$

so that the following two conditions hold:

Definition (cont.)

... so that the following two conditions hold:

SC1: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$.

Definition (cont.)

... so that the following two conditions hold:

SC1: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$.

SC2: Given any diagram of the form

Definition (cont.)

... so that the following two conditions hold:

SC1: If $X \in \text{ob } \mathcal{C}$ we have $n \in \mathbb{N}$ such that $\mathcal{C}(X, \Omega_n) \neq \emptyset$.

SC2: Given any diagram of the form

 $\exists ! (g', h') : \mathfrak{P}(g, h) \to \mathfrak{P}(g' \circ g, h' \circ h)$ making it commute.

Spined Functor

The obvious notion of morphism between spined categories.

Definition

Consider spined categories $(\mathcal{C}, \Omega^{\mathcal{C}}, \mathfrak{P}^{\mathcal{C}})$ and $(\mathcal{D}, \Omega^{\mathcal{D}}, \mathfrak{P}^{\mathcal{D}})$.

We call a functor $F: \mathcal{C} \to \mathcal{D}$ a *spined functor* if it

- 1. preserves the spine, i.e. $F \circ \Omega^{\mathcal{C}} = \Omega^{\mathcal{D}}$, and
- 2. preserves proxy pushouts, i.e. the F-image of every proxy pushout square in C is a proxy pushout square in D.

One can state the latter equationally, by demanding that the equalities $F[\mathfrak{P}^{\mathcal{C}}(g,h)] = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)$, $F\mathfrak{P}^{\mathcal{C}}(g,h)_g = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)_{Fg}$ and $F\mathfrak{P}^{\mathcal{C}}(g,h)_h = \mathfrak{P}^{\mathcal{D}}(Fg,Fh)_{Fh}$ all hold.

Examples

The poset \mathbb{N}_{\leq} regarded as a category, with

Spine: $\Omega_n = n$

Proxy pushouts: pushouts (i.e. suprema)

We denote this spined category **Nat**. It will play an important role as the codomain of our "abstract treewidth"!

Examples

The category \mathbf{Grph}_m (simple graphs and monomorphisms), with

Spine: $\Omega_n = K_n$, the complete graph on *n* vertices

Proxy pushouts: the proxy pushout

$$\Omega_n \xrightarrow{g} G \\
\downarrow \mathfrak{P}(g,h)_g \\
H \xrightarrow{\mathfrak{P}(g,h)_h} \mathfrak{P}(g,h)$$

is just the pushout square in **Grph**.

Similarly for \mathbf{HGrph}_m (hypergraphs and monomorphisms).

Other Examples

- The category \mathbf{FinSet}_m (sets and monomorphisms) with Ω_n denoting the *n*-element set, and proxy pushouts as in \mathbf{Set} .
- The poset \mathbb{N}_{div} , with least common multiples as proxy pushouts,

$$\Omega_n = \prod_{p \le n} p^n$$

where p ranges over the primes.

• Many other combinatorial examples...

Treewidth as Functor

Easy Observations

The map that sends each graph to the size of its largest complete subgraph is a spined functor $\omega : \mathbf{Grph}_m \to \mathbf{Nat}$.

From here on we focus on spined categories C such that there exists at least one $s: C \to \mathbf{Nat}$.

Triangulation Functor

We define a distinguished S-functor $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathbf{Nat}$ on each category \mathcal{C} with some $s: \mathcal{C} \to \mathbf{Nat}$. This will...

- ... be canonical, and constructed uniformly.
- ... satisfy a maximality property.
- ... coincide with treewidth when $\mathcal{C} = \mathbf{Grph}_m$.

Pseudo-chordal Objects

Definition

Take an object $X \in \text{ob } \mathcal{C}$. We call X pseudo-chordal if for any two spined functors $F, G: \mathcal{C} \to \mathbf{Nat}$, we have

$$F[X] = G[X].$$

I.e. if all treewidth-like functors agree on X.

Pseudo-chordal Objects

Definition

Take an object $X \in \text{ob } \mathcal{C}$. We call X pseudo-chordal if for any two spined functors $F, G : \mathcal{C} \to \mathbf{Nat}$, we have

$$F[X] = G[X].$$

I.e. if all treewidth-like functors agree on X.

We "know the treewidth" of pseudo-chordal objects X:

$$\Delta_{\mathcal{C}}[X] = s[X].$$

Triangulation Functor

We can use pseudo-chordal objects as "test objects" to define $\Delta_{\mathcal{C}}$ on all other objects.

Definition

We define the triangulation functor $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathbf{Nat}$ via

$$\Delta_{\mathcal{C}}[X] = \inf \{ \Delta_{\mathcal{C}}[H] \mid \exists f \colon X \to H \text{ s.t. } H \text{ is pseudo-chordal} \}$$

for each $X \in \text{ob } \mathcal{C}$.

Main Theorem

Theorem

The triangulation functor $\Delta_{\mathcal{C}}: \mathcal{C} \to \mathbf{Nat}$ is

- a functor $\mathcal{C} \to \mathbf{Nat}$.
- a spined functor on C.
- the object-wise maximal spined functor $C \to \mathbf{Nat}$.

Main Theorem: Proof

Just stare at the following diagram;)

Treewidth as Functor, Finally

Theorem

- 1. $\Delta_{\mathbf{Grph}_m}$ coincides with treewidth.
- 2. $\Delta_{\mathbf{HGrph}_m}$ coincides with hypergraph treewidth.
- 3. A similar category of modular graphs yields modular treewidth.

Computing $\Delta_{\mathcal{C}}$

Consider a spined category $(\mathcal{C}, \Omega, \mathfrak{P})$ such that

- 1. All Hom-sets C(X, Y) are finite and enumerable;
- 2. Equality of morphisms is decidable and \circ is computable;
- 3. Proxy pushouts $\mathfrak{P}(g,h)$ are computable;
- 4. C has finitely many objects over Ω_n (up to iso).

There is a uniform (but slooow) algorithm that computes $\Delta_{\mathcal{C}}$ that works in any such category \mathcal{C} .

https://github.com/zaklogician/act2021-code

Conclusion

Payoff

We get "abstract tree decompositions": we can write algorithms for objects of bounded $\Delta_{\mathcal{C}}$ just like we do for graphs of bounded treewidth.

Future work

- Work out more specific examples.
- Dualize! "subgraphs :: treewidth" as "colorings :: ???".
- Relation with Baez and Courser's Structured Cospans?
- Aspiration: a categorial Courcelle's Theorem

Thanks! Questions?

Reprise: Why not...

- Adhesive categories? What goes wrong? Posets are never adhesive, so we would not have a codomain for Δ.
- Algebraic and order-theoretic examples? Seemingly difficult. By dualizing, we might have something for finitely presented groups, but details have to be worked out.
- Algebraic issues? Pushouts arise from free products in algebraic theories. These tend to be infinite. But when not (e.g. bounded join-semilattices), you need to choose a spine carefully to avoid measurability issues.
- Spatial, topological examples? I'm very hopeful (but note that finite topology is order theory).

Reprise: Glossary

- Robertson-Seymour theorem: the "set" of undirected graphs, when partially ordered by the graph minor relation, is well-quasi-ordered. (E.g. Wagner's forbidden minors, K_5 and $K_{3,3}$ as obstructions to planarity!)
- Kruskal's tree theorem: Robertson-Seymour for trees. Much easier to prove.
- Courcelle's theorem: Every graph property definable in MSO is decidable in linear time on graphs of bounded treewidth.

Reprise: Treewidth Definition 1

Treewidth has many equivalent definitions.

- Most useful: via tree decompositions.
- Most relevant: via chordal completion.
- The latter is easier to understand.

Reprise: Treewidth Definition 2

Definition

A graph G is *chordal* if every cycle $C \subseteq G$ (of length > 3) has a *chord*: an edge of G connecting two non-consecutive vertices of C

Figure 2: The graph on the left is not chordal. The graph on the right is chordal.

Reprise: Treewidth Definition 3

Definition

Given $G \hookrightarrow H$ such that H is chordal, we say that H is a chordal completion of G. The **treewidth** of G is the size of the largest complete graph that occurs (as a subgraph) in every chordal completion of G.

Reprise: Treewidth Example

Reprise: Treewidth as Functor: Proof*

Theorem

 $\Delta_{\mathbf{Grph}_m}$ coincides with treewidth.

Proof.

- 1. "Size of largest complete subgraph" is an S-functor $\omega : \mathbf{Grph}_m \to \mathbf{Nat}$.
- 2. If X has a pseudo-chordal completion Y, then it also has a chordal completion Y' with $\omega(Y) = \omega(Y')$ (just take the chordal completion of Y).
- 3. tw(X) is the size of the largest complete subgraph that occurs in every chordal completion of X, so we're done.

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!
- Using computational assumptions, we can construct the *smallest set* with these two properties inductively!

- Pseudo-chordal objects are hard to find: you need to know all S-functors to begin with.
- But main theorem relies on two properties: Ω_n is pseudo-chordal, and pseudo-chordal objects are closed under proxy pushouts.
- Pseudo-chordals form the largest set with these two properties!
- Using computational assumptions, we can construct the *smallest set* with these two properties inductively!
- This yields a (slooow) algorithm to compute $\Delta_{\mathcal{C}}$.

Reprise: Measurability Proofs*

- Spined categories interact nicely via spined functors.
- E.g. spined functors reflect measurability.
- HGrph_m is measurable via the Gaifman functor
 G: HGrph_m → Grph_m + existence of Δ_{Grph_m}
- FinSet_m is not: via the functor that forgets edges
 V: Grph_m → FinSet_m + maximality of Δ_{Grph_m}

Reprise: Measurability Proofs*

- Spined categories interact nicely via spined functors.
- If \mathcal{C} is measurable, and there is $F: \mathcal{D} \to \mathcal{C}$, then \mathcal{D} is measurable.
- \mathbf{HGrph}_m is measurable: the Gaifman functor $\mathbf{HGrph}_m \to \mathbf{Grph}_m$ that sends each hypergraph to its graph skeleton is spined.
- **FinSet**_m is not measurable: the functor that forgets edges, $\mathbf{Grph}_m \to \mathbf{FinSet}_m$ is spined. But generally $\mathrm{tw}(X) \not \geq |V(X)|$.

An open question

Consider the category which has

Objects: finite posets

Morphisms: order embeddings

equipped with the usual pushout construction.

Is there a spine which turns this into a measurable spined category?