To Fly or Not to Fly

MEET THE TEAM

ERIC
Data Collector
Guru

NEESHA Data Cruncher

RYAN

Data Viz

Whiz

The Story

Delayed or canceled flights can ruin business trips, vacations, family events, and so much more.

\$28 Billion

FAA/Nextor estimated the annual costs of delays in 2018

Questions:

1 How does weather impact flight cancellations?

Are certain weather events impact the decision to cancel more than other?

Are certain airlines more prone to cancel flights based on weather?

Tools Used

ERIC Data Collector Guru

- Data Acquisition
- Preprocessing
- Database Storage
- Data Retrieval

Data Sources

- 1. KAGGLE, Historical Flight Delay and Weather Data USA
 - United States Bureau of Transportation Statistics
 - National Oceanic and Atmospheric Administration
- 2. The Global Airport Database

Data Sources

1. KAGGLE, Historical Flight Delay and Weather Data USA

2. The Global Airport Database

Extract-Transform-Load

Download Datasets

Download Primary Dataset

```
import kaggle
from kaggle.api.kaggle api extended import KaggleApi
kag = KaggleApi()
kag.authenticate()
# Download primary dataset from Kaggle
kag.dataset download files(
    dataset=datasource primary,
     unzip=True,
   path=data dir,
print('Download complete.')
Download complete.
```

Download Secondary Dataset

Download complete.

```
import requests

# Download the secondary dataset
response = requests.get(datasource_secondary)

try:
    with open(dataset_secondary, 'xb') as dl_file:
        for chunk in response.iter_content(chunk_size=128):
            dl_file.write(chunk)
        print('Download complete.')
except FileExistsError:
    print('Download complete. (File already exists.)')
```

Preliminary Entity Relationship Diagram

airports

id	Ov serial
icao_code	varchar(4)
iata_code	char(3)
name	text
city	text
country	text
lat_deg	integer
lat_min	integer
lat_sec	integer
lat_dir	char(1)
lon_deg	integer
lon_min	integer
lon_sec	integer
lon_dir	char(1)
altitude	integer
lat_decimal	numeric
lon decimal	numeric

flights_and_weather

carrier_code	char(2
flight_number	intege
origin_airport	char(3
destination_airport	char(3
filght_date	date
scheduled_elapsed_time	intege
tail_number	varchar(6)
departure_delay	intege
arrival_delay	intege
delay_carrier	intege
delay_weather	intege
delay_national_aviation_system	intege
delay_security	intege
delay_late_aircarft_arrival	intege
cancelled_code	boolear
scheduled_departure_dt	timestamp
scheduled_arrival_dt	timestamp
actual_departure_dt	timestamp'
actual_arrival_dt	timestamp'
STATION_X	numeric'
HourlyDryBulbTemperature_x	numeric'
HourlyPrecipitation_x	numeric'
HourlyStationPressure_x	numeric'
HourlyVisibility_x	numeric'
HourlyWindSpeed_x	numeric'
STATION_y	numeric'
HourlyDryBulbTemperature_y	numeric'
HourlyPrecipitation_y	numeric'
HourlyStationPressure_y	numeric'
HourlyVisibility_y	numeric'
HourlyWindSpeed_y	numeric'

PostgreSQL Database Integration

5,468,069

Rows....Whoa! That's a lot of data!

NEESHA

Data Cruncher

Description of the analysis phase of the project.

Machine Learning Model.

Analysis results.

Machine Learning Model

Prep for Machine Learning Model

Merging the tables: After merging the flight_weather data with the airport data, we had 5468069 rows × 36 columns to analyze the data.

5468067	5512901	DL	2436	ATL
5468068	5512902	DL	3826	ATL

Â

5468069 rows × 36 columns

Datasets and Airline Codes

Airports for which weather data was available.

AA	American Airlines	G4	Allegiant Air
AS	Alaska Airlines Inc	НА	Hawaiia.
В6	JetBlue Airways	NK	Spirit Air Lines
DL	Delta Air Lines Inc	UA	United Air I
F9	Frontier Airlines Inc	WN	Southwest A.

Cancellation Codes

Carrier Caused

Weather

National Aviation System

Security

Note: N is not on the list and represents "None" or "Not cancelled".

Features Selections

Features Selection:

Flight and Delayed reasons other than weather conditions

Kept	Dropped
Origin_airport, origin_lat, origin_lon,	Id, carrier code
'Destination_airport, destination_lat, destination_lon	delay_national_aviation_system', 'delay_security
'departure_delay	delay_security
'arrival_delay'	delay_late_aircarft_arrival'

Weather parameters:

Kept	
Hourlydrybulbtemperature_x hourlyprecipitation_x hourlystationpressure_x hourlyvisibility_x hourlywindspeed_x	hourlydrybulbtemperature_y hourlyprecipitation_y hourlystationpressure_y hourlyvisibility_y hourlywindspeed_y

Data clean up

Dataset after removing the

5468069 rows × 21 c

ranted columns

mns

Removal of Missing Values

hourlydrybulbtemperature_x	2073
hourlyprecipitation_x	9881
hourlystationpressure_x	2073
hourlyvisibility_x	2073
hourlywindspeed_x	2073
station_y	2078
hourlydrybulbtemperature_y	2078
hourlyprecipitation_y	9896
hourlystationpressure_y	2078
hourlyvisibility_y	2078
hourlywindspeed_y	2078
origin_lat	382438
origin_lon	382438
destination_lat	382775
destination_lon	382775
dtype: int64	

hourlydrybulbtemperature_x	0
hourlyprecipitation_x	0
hourlystationpressure_x	0
hourlyvisibility_x	0
hourlywindspeed_x	0
station_y	0
hourlydrybulbtemperature_y	0
hourlyprecipitation_y	0
hourlystationpressure_y	0
hourlyvisibility_y	0
hourlywindspeed_y	0
origin_lat	0
origin_lon	0
destination_lat	0
destination_lon	0
dtype: int64	

Prep for Machine Learning Model

```
df_new['cancelled'].value_counts()
```

```
f 4674943
t 33957
Name: cancelled, dtype: int64
```

After Undersampling

df_new_f.shape

(33957, 21)

33957 * 2

67914

df_new_t.shape

(33957, 21)

df_final = pd.concat

df_final.shape

(67914, 21)

Splitting into training and test datasets

```
# Use the train_test_split function to create training and testing subsets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,
    y, random_state=1, stratify=y, test_size=0.1)
X_train.shape
(61122, 20)
```

Label Encoding:

```
from sklearn.preprocessing imp

Le = LabelEncoder()

y_train[:5]

22488   f
47918   t
14565   t
11452   f
3805   f
Name: cancelled, dtype: object
```

```
y_train_cln
array([0, 1, 1, ..., 1, 1, 0])
```

Standard Scaler

	origin_airport	destination_airport	departure_delay	arrival_delay	station_x	hourlydrybulbtemperature_x
22488	SAN	SAT	2	-6	7.229002e+10	75.0
47918	DFW	other	0	0	7.225900e+10	73.0

Using Binary Classification and Running Logistic Regression

```
# Make predictions using the test data
y_pred = classifier.predict(X_test_cln)
results = pd.DataFrame({
    "Prediction": y_pred,
    "Cancelled": y_test_cln
}).reset_index(drop=True)
results.head()
```

LogisticRegression(random state=1)

	Prediction	Cancelled
0	0	1
1	1	0
2	0	0
3	1	1
4	1	1

```
# Validate using test data
from sklearn.metrics import accuracy_score
accuracy_score(y_test_cln, y_pred)
```

0.71849234393404

LOGISTIC CONFUSION MATRIX

CLASSIFICATION REPORT

	precision	recall	f1-score	support
0	0.71	12	0.71	3396
1	0.72		0.71	3396
accuracy			0.71	6792
macro avg	0.71	0.71	0.71	6792
weighted avg	0.71	0.71	0.71	6792

Logistic Confusion Matrix

		predicted	
		cancelled	not cancelled
actual	cancelled	2437	959
	not cancelled	985	2411

Classification Report

	precision	recall	f1-score	support
0	0.71	0.72	0.71	3396
1	0.72	0.71	0.71	3396
accuracy			0.71	6792
macro avg	0.71	0.71	0.71	6792
weighted avg	0.71	0.71	0.71	6792

RYAN, Data Viz Whiz

Visualization of analysis

Recommendation for future analysis

Anything the team would have done differently

Airline Observations

We noticed that although Delta Airlines (DL) is the second highest carrier by volume of total flights, they are fourth in number of cancellations. We wanted to look into this further, so we looked at percentages of total flights vs. percentages of cancellations (next slide).

Airline Observations

American Airlines (AA) accounts for about 26% of total flight volume, but about 42% of cancellations due to weather, whereas Delta (DL) accounts for about 22% of total flights but only about 7% of cancelled flights due to weather.

Further Visualizations

In the next segment we will create:

- 1. Line chart by month
- 2. Possibly an interactive map of airports around the country
- 3. Possibly a chart of cancellations by flight route
- 4. Possibly any visualizations from interesting findings when we run the ML model

FINAL THOUGHTS

QUESTIONS?

