import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
dataset=pd.read_csv("/content/2022_forbes_billionaires.csv")

dataset.head()

→		Unnamed: 0	rank	name	networth	age	country	source	industry
	0	0	1	Elon Musk	\$219 B	50	United States	Tesla, SpaceX	Automotive
	1	1	2	Jeff Bezos	\$171 B	58	United States	Amazon	Technology
	2	2	3	Bernard Arnault & family	\$158 B	73	France	LVMH	Fashion & Retail
	3	3	4	Bill Gates	\$129 B	66	United States	Microsoft	Technology
	4	4	5	Warren Buffett	\$118 B	91	United States	Berkshire Hathaway	Finance & Investments

dataset.tail()

→		Unnamed: 0	rank	name	networth	age	country	source	industry
	2595	2595	2578	Jorge Gallardo Ballart	\$1 B	80	Spain	pharmaceuticals	Healthcare
	2596	2596	2578	Nari Genomal	\$1 B	82	Philippines	apparel	Fashion & Retail
	2597	2597	2578	Ramesh Genomal	\$1 B	71	Philippines	apparel	Fashion & Retail
	2598	2598	2578	Sunder Genomal	\$1 B	68	Philippines	garments	Fashion & Retail
	2599	2599	2578	Horst-Otto Gerberding	\$1 B	69	Germany	flavors and fragrances	Food & Beverage

dataset.isnull().sum()

→ ▼		0	
	Unnamed: 0	0	
	rank	0	
	name	0	
	networth	0	
	age	0	
	country	0	
	source	0	
	industry	0	

dataset.isnull()

dtype: int64

→	Unnamed: 0	rank	name	networth	age	country	source	industry
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
•••								
259	5 False	False	False	False	False	False	False	False
259	6 False	False	False	False	False	False	False	False
259	7 False	False	False	False	False	False	False	False
259	8 False	False	False	False	False	False	False	False
259	9 False	False	False	False	False	False	False	False

2600 rows × 8 columns

dataset.duplicated().sum()

→ 0

₹

	Unnamed: 0	rank	age
count	2600.000000	2600.000000	2600.000000
mean	1299.500000	1269.570769	64.271923
std	750.699674	728.146364	13.220607
min	0.000000	1.000000	19.000000
25%	649.750000	637.000000	55.000000
50%	1299.500000	1292.000000	64.000000
75%	1949.250000	1929.000000	74.000000
max	2599.000000	2578.000000	100.000000

shape=dataset.shape print(shape)

→ (2600, 8)

dataset.info()

RangeIndex: 2600 entries, 0 to 2599 Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	2600 non-null	int64
1	rank	2600 non-null	int64
2	name	2600 non-null	object
3	networth	2600 non-null	object
4	age	2600 non-null	int64
5	country	2600 non-null	object
6	source	2600 non-null	object
7	industry	2600 non-null	object
_			

dtypes: int64(3), object(5) memory usage: 162.6+ KB

```
# calculate age distribution
age_distribution = dataset['age'].value_counts()
plt.figure(figsize=(10,6))
age_distribution.plot(kind='bar')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
show the net worth vs frequency using bar plot

net_worth_frequency = dataset['networth'].value_counts()
plt.figure(figsize=(10,6))

net_worth_frequency.plot(kind='bar')
plt.title("Net Worth vs Frequency")
plt.xlabel('Net Worth')
plt.ylabel('Frequency')
plt.ylabel('Frequency')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Net Worth

```
show Industry vs frequency using bar plot

industry_frequency = dataset['industry'].value_counts()
plt.figure(figsize=(10,6))

industry_frequency.plot(kind='bar')
plt.title("Industry vs Frequency")
plt.xlabel('Industry')
plt.ylabel('Frequency')
plt.ylabel('Frequency')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
print(dataset.columns)
```



```
show how does net worth change with age and industry using cat plot

plt.figure(figsize=(12,8))
sns.catplot(x='age',y='networth',hue='industry',data=dataset,kind='bar')
plt.title("Net Worth vs Age and Industry")
plt.xlabel('Age')
plt.ylabel('Net Worth')
plt.ylabel('Net Worth')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
print(dataset.columns)
```



```
import matplotlib.pyplot as plt

# Data: Names of the richest people and their net worth (in billion USD)

wealth = [83.4, 47.2, 26.8, 23.7, 17.6, 16.4, 15.3, 14.2, 13.5, 13.4]

plt.figure(figsize=(10,6))
plt.barh(names, wealth, color='pink')
plt.xlabel('Net Worth (Billion USD)')
plt.title('Richest People from India (2023)')
plt.gca().invert_yaxis()
```

```
plt.tight_layout()
plt.show()
```



```
import matplotlib.pyplot as plt
from collections import Counter

industry_count = Counter(industries)

industry_names = list(industry_count.keys())
industry_values = list(industry_count.values())

plt.figure(figsize=(10,6))
plt.barh(industry_names, industry_values, color='lightcoral')
plt.xlabel('Number of Billionaires')
plt.title('Number of Indian Billionaires by Industry (2023)')
plt.tight_layout()

plt.show()
```



```
import pandas as pd

df = pd.read_csv('/content/2022_forbes_billionaires.csv')

young_billionaires=df[df['age']<=50]
min_age= young_billionaires['age'].min()
min_age_billionaire = young_billionaires.loc[young_billionaires['age'] == min_age]

print("name:", min_age_billionaire['name'].values[0])
print("industry:", min_age_billionaire['industry'].values[0])
print("age:", min_age)</pre>
```

name: Kevin David Lehmann
industry: Fashion & Retail
age: 19

```
import matplotlib.pyplot as plt
wealth = [83.4, 47.2, 26.8, 23.7, 17.6, 16.4, 15.3, 14.2, 13.5, 13.4]
```

```
plt.figure(figsize=(10,6))
plt.bar(names, wealth, color='skyblue')
plt.xticks(rotation=45, ha='right')
plt.ylabel('Net Worth (Billion USD)')
plt.title('Top 10 Richest People in India (2023) vs Net Worth')

plt.tight_layout()
plt.show()
```

