Binary Search Trees: Basic Operations

<u>Data Structures</u> <u>Data Structures and</u> <u>Algorithms</u>

Learning Objectives

- Implement basic operations on Binary Search Trees.
- Understand some of the difficulties with making updates.

Outline

- 1 Find
- Next
 Element
- Search
- **Insert**
 - **Delete**

Find

Find

Input: Key k, Root R

Output: The node in the tree of R with key

k

Algorithm

```
Find(k, R)
```

```
if R. Key = k:
  return R
else if R. Key > k:
  return Find(k, R.Left)
else if R. Key < k:
  return Find(k, R.Right)
```

Missing Key

Run Find(5).

Key not in tree. Did find point where it should be.

Missing Key

If you stop before reaching a null pointer, you find the place in the tree where k would fit.

Modification

```
Find (modified)

else if R.Key > k:

if R.Left \neq null:

return Find(k, R.Left)

return R
```

Outline

- Find
- Next Element
- Search
- 4 Insert
- Delete

Adjacent Elements

Given a node *N* in a Binary Search Tree, would like to find adjacent elements.

Next

Next

Input: Node N

Output: The node in the tree with the

next largest key.

Case I

If you have right child.

Case

No right child.

Next

Next(N)

```
if N.Right ≠ null:
   return LeftDescendant(N.Right)
else:
   return RightAncestor(N)
```

Left Descendant

LeftDescendant(N)

```
if N.Left = null return N
```

else:

return LeftDescendant(N.Left)

Right Ancestor

RightAncestor(N)

N Null

if N.Key < N. Parent.Key

return *N.*Parent else:

return RightAncestor(N.Parent)

Range Search

Range Search

Input: Numbers x, y, root R

Output: A list of nodes with key between x

and y

RangeSearch(5, 12).

RangeSearch(5, 12).

RangeSearch(5, 12).

Implementation

RangeSearch(x, y, R)

$$L \leftarrow \emptyset$$
 $N \leftarrow \text{Find}(x, R)$
while $N.\text{Key} \leq y$
if $N.\text{Key} \geq x$:
 $L \leftarrow L.\text{Append}(N)$
 $N \leftarrow \text{Next}(N)$

Insert

Insert

Input: Key k and root R

Output: Adds node with key *k* to the tree

Insert

Insert(3) Idea

Insert

Insert(3) Idea

Implementation

Insert(k, R)

 $P \leftarrow \text{Find}(k, R)$

Add new node with key k as child of

Delete

Delete

Input: Node N

Output: Removes node N from the tree

Difficulty

Cannot simply remove.

Delete(13)

Implementation

Delete(N) if N.Right = null: Remove N, promote **N.**Left else: $X \leftarrow \text{Next}(N)$ X.Left =null Replace N by X, promote X.Right

Problem

Which of the following trees is obtained when the selected node is deleted?

Problem

Which of the following trees is obtained when the selected node is deleted?

Runtime

How long do Binary Search Tree operations take?

Find

Find(5)

Number of operations = O(Depth)

Problem

Which nodes will be faster to search for in the following tree?

Example I

Depth can be as bad as *n*.

Outline

Runtime

2 Balanced Trees

Rotations

Example II

Depth can be much smaller.

Balance

Want left and right subtrees to have approximately the same size.

Balance

- Want left and right subtrees to have approximately the same size.
- Suppose perfectly balanced:

Balance

- Want left and right subtrees to have approximately the same size.
- Suppose perfectly balanced:
 - Each subtree half the size of its parent.
 - After log₂(n) levels, subtree of size
 - **1**.

Operations run in $O(\log(n))$ time.