# LogicticRegression

January 9, 2020

## 1 Logistic Regression on Titanic data set

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.linear_model import LogisticRegression
        from sklearn import metrics
        from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
   First we clean all the data.
In [2]: def normalisation(feature):
            return (feature - feature.mean()) / feature.std()
In [3]: titanic = pd.read_csv('./titanic.csv', index_col=0)
        titanic['Age'].fillna(titanic['Age'].mean(), inplace=True) # replace Null value with t
        titanic['Age'] = normalisation(titanic['Age'])
        # replace the sex with a binary value
        titanic['Sex'].replace(to_replace=['female','femme'],value=0, inplace=True)
        titanic['Sex'].replace(['male', 'homme'], 1 , inplace=True)
        # replace 0 with 0 to have a binary value
        titanic['Survived'].replace(['0'], 0, inplace=True)
        titanic['Survived'].fillna(0, inplace=True)
        titanic['Survived'] = titanic['Survived'].astype('int')
        titanic['isKid']=0
        titanic.loc[titanic.Age<16,'isKid']=1</pre>
        titanic['isAlone']=0
        titanic.loc[(titanic.SibSp==0)&(titanic.Parch==0), 'isAlone']=1
        titanic = pd.concat([titanic, pd.get_dummies(titanic['Pclass'], prefix='Pclass'), pd.get_dummies(titanic['Pclass'], prefix='Pclass')
        titanic.drop(columns=['Pclass', 'Sex', 'Cabin', 'Embarked'], inplace=True)
```

### titanic.head(20)

| Out[3]: |              | Survived    |                 |        |       |                      |            | Name  | \ |
|---------|--------------|-------------|-----------------|--------|-------|----------------------|------------|-------|---|
|         | PassengerId  |             |                 |        |       |                      |            |       |   |
|         | 1            | 0           |                 |        |       | Braund, M            | r. Owen H  | arris |   |
|         | 2            | 1           | ${\tt Cumings}$ | , Mrs. | John  | n Bradley (Florenc   | e Briggs ' | Th    |   |
|         | 3            | 1           |                 |        |       | Heikkine             | n, Miss.   | Laina |   |
|         | 4            | 1           | Fu              | trelle | e, Mr | s. Jacques Heath (   | Lily May   | Peel) |   |
|         | 5            | 0           |                 |        |       | Allen, Mr.           | William 1  | Henry |   |
|         | 6            | 0           |                 |        |       |                      | ran, Mr.   |       |   |
|         | 7            | 0           |                 |        |       | $	exttt{McCarthy}$ , | Mr. Timo   | thy J |   |
|         | 8            | 0           |                 |        |       | Palsson, Master.     | Gosta Le   | onard |   |
|         | 9            | 1           | Johnson         | , Mrs. | Osc   | ar W (Elisabeth Vi   | lhelmina 1 | Berg) |   |
|         | 10           | 1           |                 |        | Nas   | ser, Mrs. Nicholas   | (Adele A   | chem) |   |
|         | 11           | 1           |                 |        |       | Sandstrom, Miss.     | Marguerit  | e Rut |   |
|         | 12           | 1           |                 |        |       | Bonnell, M           | liss. Eliz | abeth |   |
|         | 13           | 0           |                 |        |       | Saundercock, Mr.     | William 1  | Henry |   |
|         | 14           | 0           |                 |        |       | Andersson, Mr        | . Anders   | Johan |   |
|         | 15           | 0           |                 |        | Vest  | rom, Miss. Hulda A   | manda Ado  | lfina |   |
|         | 16           | 1           |                 |        | ]     | Hewlett, Mrs. (Mar   | y D Kingc  | ome)  |   |
|         | 17           | 0           |                 |        |       | Rice,                | Master. E  | ugene |   |
|         | 18           | 1           |                 |        |       | Williams, Mr.        | Charles E  | ugene |   |
|         | 19           | 0           | Vander 1        | Planke | e, Mr | s. Julius (Emelia    | Maria Van  | de    |   |
|         | 20           | 1           |                 |        |       | Masselman            | i, Mrs. F  | atima |   |
|         |              |             |                 | ~ ~    |       | <b></b>              | _          |       | , |
|         | PassengerId  | I           | Age Sib         | Sp Pa  | arch  | Ticket               | Fare       | isKid | \ |
|         | 1 assengeriu | -5.921480e- | -01             | 1      | 0     | A/5 21171            | 7.2500     | 1     |   |
|         | 2            | 6.384304e   |                 | 1      | 0     | PC 17599             | 71.2833    | 1     |   |
|         | 3            | -2.845034e  |                 | 0      | 0     | STON/02. 3101282     | 7.9250     | 1     |   |
|         | 4            | 4.076970e-  |                 | 1      | 0     | 113803               | 53.1000    | 1     |   |
|         | 5            | 4.076970e   |                 | 0      | 0     | 373450               | 8.0500     | 1     |   |
|         | 6            | 4.371893e-  |                 | 0      | 0     | 330877               | 8.4583     | 1     |   |
|         | 7            | 1.869009e   |                 | 0      | 0     | 17463                | 51.8625    | 1     |   |
|         | 8            | -2.130371e  |                 | 3      | 1     | 349909               | 21.0750    | 1     |   |
|         | 9            | -2.075923e- |                 | 0      | 2     | 347742               | 11.1333    | 1     |   |
|         | 10           | -1.207437e  |                 | 1      | 0     | 237736               | 30.0708    | 1     |   |
|         | 11           | -1.976549e  |                 | 1      | 1     | PP 9549              | 16.7000    | 1     |   |
|         | 12           | 2.176654e   |                 | 0      | 0     | 113783               | 26.5500    | 1     |   |
|         | 13           | -7.459703e- |                 | 0      | 0     | A/5. 2151            | 8.0500     | 1     |   |
|         | 14           | 7.153416e-  |                 | 1      | 5     | 347082               | 31.2750    | 1     |   |
|         | 15           | -1.207437e  |                 | 0      | 0     | 350406               | 7.8542     | 1     |   |
|         | 16           | 1.945920e   |                 | 0      | 0     | 248706               | 16.0000    | 1     |   |
|         | 17           | -2.130371e  |                 | 4      | 1     | 382652               | 29.1250    | 1     |   |
|         | 18           | 4.371893e   |                 | 0      | 0     | 244373               | 13.0000    | 1     |   |
|         | 19           | 1.000524e-  |                 | 1      | 0     | 345763               | 18.0000    | 1     |   |
|         | 20           | 4.371893e   |                 | 0      | 0     | 2649                 | 7.2250     | 1     |   |
|         | 20           | 1.0110006   | 10              | V      | U     | 2049                 | 1.2200     | 1     |   |

|             | isAlone | Pclass_1 | Pclass_2 | Pclass_3 | Sex_0 | Sex_1 | ${\tt Embarked\_C}$ | \ |
|-------------|---------|----------|----------|----------|-------|-------|---------------------|---|
| PassengerId |         |          |          |          |       |       |                     |   |
| 1           | 0       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 2           | 0       | 1        | 0        | 0        | 1     | 0     | 1                   |   |
| 3           | 1       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 4           | 0       | 1        | 0        | 0        | 1     | 0     | 0                   |   |
| 5           | 1       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 6           | 1       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 7           | 1       | 1        | 0        | 0        | 0     | 1     | 0                   |   |
| 8           | 0       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 9           | 0       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 10          | 0       | 0        | 1        | 0        | 1     | 0     | 1                   |   |
| 11          | 0       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 12          | 1       | 1        | 0        | 0        | 1     | 0     | 0                   |   |
| 13          | 1       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 14          | 0       | 0        | 0        | 1        | 0     | 1     | 0                   |   |
| 15          | 1       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 16          | 1       | 0        | 1        | 0        | 1     | 0     | 0                   |   |
| 17          | 0       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 18          | 1       | 0        | 1        | 0        | 0     | 1     | 0                   |   |
| 19          | 0       | 0        | 0        | 1        | 1     | 0     | 0                   |   |
| 20          | 1       | 0        | 0        | 1        | 1     | 0     | 1                   |   |
|             |         |          |          |          |       |       |                     |   |

|             | ${\tt Embarked\_Q}$ | Embarked_S |
|-------------|---------------------|------------|
| PassengerId |                     |            |
| 1           | 0                   | 1          |
| 2           | 0                   | 0          |
| 3           | 0                   | 1          |
| 4           | 0                   | 1          |
| 5           | 0                   | 1          |
| 6           | 1                   | 0          |
| 7           | 0                   | 1          |
| 8           | 0                   | 1          |
| 9           | 0                   | 1          |
| 10          | 0                   | 0          |
| 11          | 0                   | 1          |
| 12          | 0                   | 1          |
| 13          | 0                   | 1          |
| 14          | 0                   | 1          |
| 15          | 0                   | 1          |
| 16          | 0                   | 1          |
| 17          | 1                   | 0          |
| 18          | 0                   | 1          |
| 19          | 0                   | 1          |
| 20          | 0                   | 0          |

In [4]: titanic.columns

```
Out[4]: Index(['Survived', 'Name', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'isKid',
               'isAlone', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Sex_0', 'Sex_1',
               'Embarked_C', 'Embarked_Q', 'Embarked_S'],
              dtype='object')
1.1 From Scratch
In [5]: def sigmoid(x, theta):
            z = np.dot(x, theta)
            return 1 / (1 + np.exp(-z))
In [6]: def cost_function(X, y, theta):
           h = sigmoid(X, theta)
            loss = (-y * np.log(h) - (1-y)* np.log(1-h)).mean()
In [7]: def gradient_descent(X, y, params, learning_rate=0.01, iterations=1000):
           m = len(y)
            cost_history = np.zeros((iterations, 1))
            for i in range(iterations):
                pred = sigmoid(X,params)
                loss = pred - y
                grad = np.dot(X.T, loss)
                params = params - learning_rate * grad * 1/m
                params = params - (learning_rate/m) * grad
                cost_history[i] = cost_function(X,y,params)
           return (cost_history, params)
In [8]: def predict(X, y, params):
            costs, w = gradient_descent(X,y, params)
            y_pred=sigmoid(X,w)
            classify=[1 if i > 0.5 else 0 for i in y_pred]
            return classify
In [31]: X = titanic[['Age', 'Sex_0', 'Sex_1', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Embarked_C'
         y = np.array(titanic[['Survived']])
         X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.3)
         m = len(y_train)
         n = len(y_test)
         X_train = np.hstack((np.ones((m,1)),X_train))
         X_test = np.hstack((np.ones((n,1)),X_test))
```

params = np.zeros((X\_train.shape[1],1))

```
initial_cost = cost_function(X_train, y_train, params)
         (cost_history, params_optimal) = gradient_descent(X_train, y_train, params)
         print(round(metrics.accuracy_score(y_train, predict(X_train,y_train, params_optimal))
         print(round(metrics.accuracy_score(y_test, predict(X_test,y_test, params_optimal))* 1
         final_cost = cost_history[-1][0]
         print("Initial Cost is:", initial_cost)
         print("Final Cost is:", final_cost)
         plt.figure()
         plt.plot(range(len(cost_history)), cost_history, 'r')
         plt.title("Convergence Graph of Cost Function")
         plt.xlabel("Number of Iterations")
         plt.ylabel("Cost")
        plt.show()
78.33 % regression train.
81.34 % regression test.
Initial Cost is: 0.6931471805599454
Final Cost is: 0.47246519783840224
```



### 1.2 Classification librairies

#### 1.2.1 Scikit Learn

```
In [73]: logisticRegScikit = LogisticRegression()
         X = titanic[['Age', 'Sex_0', 'Sex_1', 'Pclass_1', 'Pclass_2', 'Pclass_3', 'Embarked_C'
         Y = titanic[['Survived']]
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.3)
         X_{train}
         logisticRegScikit.fit(X_train,Y_train)
         logisticRegScikit.predict(X_train)
         print(round(logisticRegScikit.score(X_train, Y_train) * 100, 2), '% regression train.\
         print(round(logisticRegScikit.score(X_test,Y_test) * 100, 2), '% regression test.\n')
79.78 % regression train.
76.87 % regression test.
/Users/romane/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: Futus
  FutureWarning)
/Users/romane/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:761: DataConve
 y = column_or_1d(y, warn=True)
1.2.2 Decision tree
In [74]: tree = DecisionTreeClassifier()
         tree.fit(X_train, Y_train)
         prediction_survived_tree = tree.predict(X_train)
         print(round(tree.score(X_train, Y_train) * 100, 2), '% tree train.\n')
         print(round(tree.score(X_test,Y_test) * 100, 2),'% tree test.\n')
93.42 % tree train.
72.76 % tree test.
In []:
```