6. Recursive Estimation: Kalman and Particle Filter

6.1 Recursive LMMSE Estimation I

Consider noisy measurements

$$Y_n = nX + V_n$$
 $n = 0, 1, 2, ...,$

where $X \in \mathbb{R}$ is a random variable with unit variance $\sigma_X^2 = 1$ and zero-mean E[X] = 0. The measurement noise $V_n \in \mathbb{R}$ is a random sequence which is uncorrelated with X and has unit variance $\sigma_{V_n}^2 = 1$ and zero-mean $E[V_n] = 0$. In addition, V_i and V_j are uncorrelated for $i \neq j$. The state-space model, where $X_n = X$ is the constant state variable, is given as

$$X_{n+1} = X_n = X$$
$$Y_n = nX + V_n$$

for $n = 0, 1, 2, \dots$ Let $\hat{x}_{n|n}$ denote the LMMSE estimate for X_n based on $Y_{(n)} = [Y_1, \dots, Y_n]^T = y_{(n)}$.

- a) Determine $\mathbf{h}_n \in \mathbb{R}^n$ such that $\mathbf{Y}_{(n)}$ can be expressed as $\mathbf{Y}_{(n)} = \mathbf{h}_n X + \mathbf{V}_{(n)}$, where $\mathbf{V}_{(n)} = [V_1, \dots, V_n]^T$.
- b) Compute the LMMSE estimate $\hat{x}_{n|n}$ for X_n based on $Y_{(n)} = y_{(n)}$. **Hint:** Use that

$$\boldsymbol{h}_n^{\mathrm{T}} \left(\boldsymbol{h}_n \boldsymbol{h}_n^{\mathrm{T}} + \boldsymbol{I} \right)^{-1} = \frac{\boldsymbol{h}_n^{\mathrm{T}}}{1 + ||\boldsymbol{h}_n||^2}.$$

c) Show that The LMMSE estimate $\hat{x}_{n|n}$ can be alternatively computed recursively using

$$\hat{x}_{n|n} = \alpha_n \hat{x}_{n-1|n-1} + \beta_n y_n$$

with some $\alpha_n \in \mathbb{R}$ and $\beta_n \in \mathbb{R}$.

- d) State the prediction and update step of Kalman filter to estimate X_n based on $Y_{(n)} = y_{(n)}$.
- e) Compute the Kalman gain k_n for an estimation of X_n based on $\mathbf{Y}_{(n)} = \mathbf{y}_{(n)}$.
- f) What happens to k_n if $n \to \infty$? No calculations are required, but justify your answer and give an interpretation of your result.

6.2 The Extended Kalman Filter

Consider the time invariant state-space model given as

$$X_{n+1} = g(X_n) = X_n^2,$$

 $Y_n = h(X_n) + W_n = X_n + W_n,$

where $X_n \in \mathbb{R}$, $Y_n \in \mathbb{R}$, and $W_n \in \mathbb{R}$ are scalar random variables. The initial state X_0 follows a uniform distribution over (-1, 1) and the measurement noise follows a uniform distribution over (-0.5, 0.5). We assume that W_n and the initial state X_0 are uncorrelated. In the following, we consider the prediction of X_1 given $Y_0 = y_0$.

The so-called extended Kalman filter (EKF) equations for the scalar case are given as

$$\begin{split} \hat{x}_{n+1|n}^{\text{EKF}} &= g(\hat{x}_{n|n}^{\text{EKF}}), \\ \hat{x}_{n|n}^{\text{EKF}} &= \hat{x}_{n|n-1}^{\text{EKF}} + k_n \left(y_0 - h(\hat{x}_{n|n-1}^{\text{EKF}}) \right). \end{split}$$

For the computation of the Kalman gain K_n and the error covariance matrices, the EKF uses the linearizations

$$\hat{g}_n = \frac{\partial g(x)}{\partial x}\Big|_{x=\hat{x}_{n|n}}$$
 and $\hat{h}_n = \frac{\partial h(x)}{\partial x}\Big|_{x=\hat{x}_{n|n-1}}$

i.e., the standard formulas of the KF are used with \hat{g}_n and \hat{h}_n . Like the KF, the EKF is initialized with $\hat{x}_{0|-1}^{\text{EKF}} = \text{E}[X_0] = 0$ and $\sigma_{X_{0|-1}}^2 = \text{Var}[X_0] = \frac{4}{12}$. In addition, we have $\sigma_{W_n}^2 = \frac{1}{12}$.

- a) Compute the estimate $\hat{x}_{0|0}^{\text{EKF}}$ of X_0 given $Y_0 = y_0$ using an EKF.
- b) Compute the estimate $\hat{x}_{110}^{\text{EKF}}$ of X_1 given $Y_0 = y_0$ using an EKF.
- c) If $y_0 = -1.5$, we know that $x_0 = -1$ and hence $x_1 = 1$ and if $y_0 = 1.5$, we know that $x_0 = 1$ and thus $x_1 = 1$. Check if $\hat{x}_{0|0}^{\text{EKF}}$ and $\hat{x}_{1|0}^{\text{EKF}}$ obtain these estimates or not.

The conditional PDF of X_0 given the observation $Y_0 = y_0 \in (-1.5, 1.5)$ is given as

$$f_{X_0|Y_0}(x_0|y_0) = \begin{cases} \frac{1}{1.5 + y_0} & \text{for } x_0 \in (-1, y_0 + 0.5) \text{ if } y_0 \in (-1.5, -0.5), \\ 1 & \text{for } x_0 \in (-0.5 + y_0, 0.5 + y_0) \text{ if } y_0 \in (-0.5, 0.5), \\ \frac{1}{1.5 - y_0} & \text{for } x_0 \in (y_0 - 0.5, 1) \text{ if } y_0 \in (0.5, 1.5), \\ 0 & \text{otherwise.} \end{cases}$$

Compute the MMSE estimate $\hat{x}_{0|0}^{\text{MMSE}}$ of X_0 given Y_0 .

Hint: http://www.wolframalpha.com/ helps to simply the expressions.

e) Compute the MMSE estimate $\hat{x}_{1|0}^{\text{MMSE}}$ of X_1 given Y_0 . **Hint:** http://www.wolframalpha.com/ helps to simply the expressions.

Sketch and compare $\hat{x}_{1|0}^{\rm EKF}$ and $\hat{x}_{1|0}^{\rm MMSE}$. Give an interpretation of your result.

6.3 Recursive LMMSE Estimation II

Consider the linear state-space model given as

$$X_n = G_n X_{n-1} + V_n,$$

 $Y_n = H_n X_n + V V_n,$

where $X_n \in \mathbb{R}^q$, $Y_n \in \mathbb{R}^p$, $V_n \in \mathbb{R}^q$, and $W_n \in \mathbb{R}^p$ are random vectors. The state transition and measurement functions are linear and given by the matrices $G_n \in \mathbb{R}^{q \times q}$ and $H_n \in \mathbb{R}^{p \times p}$. The sequence V_n and the sequence W_n are assumed to be uncorrelated sequences of uncorrelated random vectors. In addition, we assume that V_n , W_n , and the initial state X_0 are pairwise uncorrelated. V_n and W_n have zero-mean and the covariance matrices C_{V_n} and C_{W_n} . Note that V_n and V_n are not necessarily sequences of Gaussian random vectors. Finally, we assume that the initial mean $\mu_{X_0} = \mathbb{E}[X_0] = \mathbf{0}$ and the initial covariance matrix $C_{X_0} = \mathbb{E}[X_0 X_0^T]$ of the state vector are known. A compact notation for the correlations between the variables is given by

$$\operatorname{Cov}\left[\begin{bmatrix} \boldsymbol{V}_n \\ \boldsymbol{W}_m \\ \boldsymbol{X}_0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{V}_k \\ \boldsymbol{W}_l \\ \boldsymbol{X}_0 \\ 1 \end{bmatrix}\right] = \begin{bmatrix} \boldsymbol{C}_{\boldsymbol{V}_n} \delta(n-k) & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{\boldsymbol{W}_m} \delta(m-l) & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{C}_{\boldsymbol{X}_0} & \boldsymbol{0} \end{bmatrix}.$$

In the following, we will derive a recursive LMMSE estimator for the states X_n .

- a) Define an innovation sequence ΔY_n using a measurement Y_n and a LMMSE estimate $\hat{Y}_{n|n-1} = E^L[Y_n|Y_{(n-1)}]$, where $Y_{(n-1)} = [Y_0, \dots, Y_{n-1}]$. Express ΔY_n in terms of Y_n and $\hat{x}_{n|n-1}$.
- b) Using your result from a), show that the LMMSE estimate $\hat{x}_{n|n} = E^{L}[X_{n}|Y_{(n)}]$ for the LMMSE estimation of X_{n} based on $Y_{(n)} = [Y_{0}, ..., Y_{n}]$ can be expressed as

$$\hat{\boldsymbol{x}}_{n|n} = \mathbf{E}^{L}[\boldsymbol{X}_{n}|\boldsymbol{Y}_{(n)}] = \hat{\boldsymbol{x}}_{n|n-1} + \boldsymbol{K}_{n}\Delta\boldsymbol{y}_{n},$$

where $\hat{\boldsymbol{x}}_{n|n-1} = \mathrm{E}^{L}[\boldsymbol{X}_{n}|\boldsymbol{Y}_{(n-1)}]$ is the LMMSE estimate of of \boldsymbol{X}_{n} based on $\boldsymbol{Y}_{(n-1)}$

Hint: For uncorrelated random variables Z_1 and Z_2 with zero-mean and a zero-mean random variable X, it follows that the LMMSE estimate of X based on Z_1 and Z_2 can be expressed as

$$E^{L}[X|Z_{1}Z_{2}] = E^{L}[X|Z_{1}] + E^{L}[X|Z_{2}].$$

c) Show that the LMMSE estimate $\hat{x}_{n|n-1} = E^{L}[X_{n}|Y_{(n-1)}]$ of the state X_{n} based on $Y_{(n-1)}$ can be expressed as

$$\hat{x}_{n|n-1} = G_n \hat{x}_{n-1|n-1}.$$

d) Let $\Delta \mathbf{X}_{n|n-1} = \mathbf{X}_n - \hat{\mathbf{x}}_{n|n-1}$ be the error of the prediction of the state \mathbf{X}_n based on $\mathbf{Y}_{(n-1)}$. Show that

$$\boldsymbol{C}_{\boldsymbol{\Delta}\boldsymbol{\mathsf{Y}}_{n|n-1}} = \boldsymbol{H}_{n}\boldsymbol{C}_{\boldsymbol{\Delta}\boldsymbol{\mathsf{X}}_{n|n-1}}\boldsymbol{H}_{n}^{\mathrm{T}} + \boldsymbol{C}_{\boldsymbol{\mathsf{W}}_{n}},$$

$$C_{\mathbf{X}_{n} \perp \mathbf{Y}_{n|n-1}} = C_{\perp \mathbf{X}_{n|n-1}} \mathbf{H}_{n}^{\mathrm{T}}.$$

Note: In the lecture notes, we used the short notation $C_{\Delta X_{n|n-1}} = C_{X_{n|n-1}}$.

e) In order to determine K_n , we need an expression for $C_{\Delta X_{n|n-1}}$. Let $\Delta X_{n|n} = X_n - \hat{x}_{n|n}$ and show that

$$C_{\Delta \mathbf{X}_{n|n-1}} = G_n C_{\Delta \mathbf{X}_{n-1|n-1}} G_n^{\mathrm{T}} + C_{\mathbf{V}_n}.$$

f) As a last step for our recursive LMMSE estimator $\hat{x}_{n|n} = E^{L}[X_{n}|Y_{(n)}]$ we need an expression for $C_{AX_{n-1|n-1}}$. To this end, show that

$$C_{\Delta X_{n|n}} = (I - K_n H_n) C_{\Delta X_{n|n-1}}.$$

- g) Finally, collect all the expressions from sub-problems a) to f) into the prediction step where X_n is estimated based on $Y_{(n-1)}$ using the LMMSE estimate $\hat{x}_{n|n-1}$ and the correction step where X_n is estimated based on $Y_{(n)}$ using the LMMSE estimate $\hat{x}_{n|n}$.
- h) What happens to our LMMSE estimator if the random variables X_0 , V_n , and W_n are Gaussian?

6.4 The Particle Filter

The state equations of a hidden Markov model with real-valued and scalar states X_n and real-valued and scalar observations Y_n are

$$X_{n+1} = X_n + V_{n+1}$$

 $Y_{n+1} = X_{n+1} + W_{n+1}$

with $X_0 \sim f_{X_0}$, $V_n \sim f_V$ for all n, and $W_n \sim f_W$ for all n. In addition, we have stochastical independence of V_n and V_m for $n \neq m$, of W_n and W_m for $n \neq m$, and of V_n and W_m for all n and m. Let $Y_{(n)}$ denote the observations Y_1 to Y_n , i.e., $Y_{(n)} = [Y_1, \ldots, Y_n]$. We are running a particle filter (PF) in order to approximate the conditional probability density function (PDF) $f_{X_n|Y_{(n)}}(x_n|y_{(n)})$ using $f_{X_n|Y_{(n)}}(x_n|y_{(n)}) \approx \sum_{i=1}^4 w_n^i \delta(x_n - x_n^i)$. In the nth step, we have the particles

$$x_n^1 = 2$$
, $x_n^2 = -2$, $x_n^3 = 1$, $x_n^4 = 0$,

with corresponding normalized weights

$$w_n^1 = \frac{2}{10}$$
, $w_n^2 = \frac{3}{10}$, $w_n^3 = \frac{4}{10}$, $w_n^4 = \frac{1}{10}$.

- a) Draw the approximation of the conditional PDF $f_{X_n|Y_{(n)}}(x_n|y_{(n)})$.
- b) Compute the approximation of the conditional mean estimator $\hat{x}_{n|n} = E[X_n|Y_{(n)}]$ based on the PF approximation of $f_{X_n|Y_{(n)}}(x_n|y_{(n)})$.
- c) Compute the approximation of the maximum a posteriori (MAP) estimator defined as

$$\hat{x}_{n|n}^{\text{MAP}} = \underset{x_n}{\operatorname{argmax}} \left\{ f_{X_n|Y_{(n)}}(x_n|y_{(n)}) \right\}$$

based on the PF approximation of $f_{X_n|Y_{(n)}}(x_n|y_{(n)})$.

The PF propagates the particles using the suboptimal importance density

$$q_{X_{n+1}|X_n,Y_{n+1}}(x_{n+1}|x_n^i,y_{n+1}) = f_{X_{n+1}|X_n}(x_{n+1}|x_n^i).$$

- d) State the update rule for the particle weights \tilde{w}_{n+1}^{i} .
- e) State the update rule for the normalized particle weights w_{n+1}^i .
- f) Express the likelihood $f_{Y_{n+1}|X_{n+1}}(y_{n+1}|x_{n+1}^i)$ of the observation y_{n+1} given a particle x_{n+1}^i in terms of the PDF $f_W(\cdot)$ of the measurement noise.

Now, consider a measurement noise $W_{n+1} \sim f_W$ with a PDF given as

$$f_W(w_{n+1}) = \begin{cases} w_{n+1} + 1 & \text{if } -1 \le w_{n+1} \le 0, \\ 1 - w_{n+1} & \text{if } 0 < w_{n+1} \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

You make the observation $y_{n+1} = 0.5$ and the new particles are given as

$$x_{n+1}^1 = 1.5$$
, $x_{n+1}^2 = 0.5$, $x_{n+1}^3 = 1$, $x_{n+1}^4 = -1.5$.

- g) Compute the normalized weights w_{n+1}^i of the particles x_{n+1}^i using the update rules from d) and e).
- h) Check if particle weight degeneracy is detected with a threshold $w_{\text{thr}} = 2$.