Session 12: Gradient descent

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Gradient descent
- 2. Convergence analysis for convex functions
- 3. Improvements

Gradient descent

Gradient descent 2/17

Gradient descent algorithm

Goal: minimize a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$.

Starting from a point $x_0 \in \mathbb{R}^n$, perform the updates:

$$x_{t+1} = x_t - \alpha_t \nabla f(x_t)$$
.

Cauchy (1850)

IDEA: f(a+h) = f(a+)+h·Vfa+)
f(a++) = f(a+)-x+ |Vfa+)

for de small enough.

3/17

Convex vs non-convex

Numerical observations

- If the step size α is small enough, gradient descent converges to x* but this may take a while.
- If the step size α is large, gradient descent moves faster **but** it may oscilate or even diverge.
- The convergence is faster when the eigenvalues of the Hessian H_f are of close to each other.

Gradient descent 5/1

Convergence analysis for convex functions

Smoothness and strong convexity

Definition

Given $L, \mu > 0$, we say that a twice-differentiable convex function $f: \mathbb{R}^n \to \mathbb{R}$ is

- L-smooth if for all $x \in \mathbb{R}^n$, $\underline{\lambda_{\max}(H_f(x))} \leq L$.
- μ -strongly convex if for all $x \in \mathbb{R}^n$, $\lambda_{\min}(H_f(x)) \ge \mu$.

$$f(a) + \nabla f(a) \cdot h + \frac{N}{2} ||h||^2 \le f(a+h) \le f(a) + Qf(a) \cdot h + \frac{L}{2} ||h||^2$$

Speed for L-smooth functions

Proposition

Assume that f is convex, L-smooth and admits a global minimizer $x^* \in \mathbb{R}^n$. Then, gradient descent with constant step size $\alpha_t = 1/L$ verifies:

$$\underbrace{f(x_t) - f(x^\star)}_{\underline{f(x_t)}} \le \underbrace{\frac{2L\|x_0 - x^\star\|^2}{t + 4}}_{\underline{f(x_t)}} \le \underbrace{\underbrace{Constant}_{\underline{f(x_t)}}}_{\underline{f(x_t)}}$$

Why step size
$$\alpha_k = \frac{1}{L}$$
?
$$f(x_k+h) \in f(x_k) + \nabla f(x_k) \cdot h + \frac{L}{2} \|h\|^2$$
this is minimal for $h = -\frac{1}{L}$

 $\chi_{t+1} = \chi_t + \chi = \chi_t - \frac{1}{L} \nabla f(\chi_t)$ Convergence analysis for convex functions

L-smooth + μ -strongly cvx functions

Theorem

Assume that f is convex, L-smooth and μ -strongly convex. Then, gradient descent with constant step size $\alpha_t=1/L$ verifies:

$$f(x_t) - f(x^*) \le \left(1 - \frac{\mu}{L}\right)^t \left(f(x_0) - f(x^*)\right).$$

The quantity $K=\frac{L}{N} \gg 1$ is called the "condition number"

The convergence speed

Proof

Recall:
$$f(x+h) \leq f(x) + \nabla f(x) \cdot h + \frac{L}{2} \|h\|^2$$

Apply it for $a = a_t$, $h = -\frac{1}{L}\nabla f(a_t)$

$$\bullet \rightarrow \left[f(a_{t+1}) \leqslant f(a_t) - \frac{1}{2L} \|\nabla f(a_t)\|^2 \right]$$

• By strong convexity: $f(a_t) - f(a^*) \le \frac{1}{2N} \|\nabla f(a_t)\|^2$ Combining the two inequalities:

$$\begin{aligned}
f(a_{t+1}) - f(a^{t}) &\leq f(a_{t}) - f(a^{t}) - \frac{\nu}{L} \left(f(a_{t}) - f(a^{t}) \right) \\
&= \left(f(a_{t}) - f(a^{t}) \right) \left(1 - \frac{\nu}{L} \right)
\end{aligned}$$

Convergence analysis for convex functions

Choosing the step size

Backtracking line search

Start with $\alpha = 1$ and while

$$f(\underline{x_t - \alpha \nabla f(x_t)}) \ge f(x_t) - \frac{\alpha}{2} \|\nabla f(x_t)\|^2$$

update let's say $\alpha = 0.8\alpha$.

Convergence analysis for convex funct

Improvements

Improvements 12/17

Issues with gradient descent

When the condition number $\kappa = L/\mu$ is large:

- 1. the norm $\|\nabla f(x)\|$ is sometimes too small.
 - ightarrow gradient descent steps are too small.

- 2. The vector $-\nabla f(x)$ does a not really points towards the minimizer x^* .
 - ightarrow gradient descent oscilates.

Gradient descent + momentum

Idea: mimic the trajectory of an « heavy ball » that goes down the slope: 24-24-1

$$x_{t+1} = x_t + v_t \qquad \text{where} \quad v_t = -\alpha_t \nabla f(x_t) + \beta_t v_{t-1}.$$

$$GD \qquad \text{momentum}$$

$$x_t = x_t + v_t \qquad \text{where} \quad v_t = -\alpha_t \nabla f(x_t) + \beta_t v_{t-1}.$$

tum damps the oscillations + accomplate momentum in the horizontal direction.

Newton's method

Assume that f is μ -strongly convex and L-smooth

Newton's method perform the updates:

$$x_{t+1} = x_t - H_f(x_t)^{-1} \nabla f(x_t).$$

IDEA:
$$f(a_{\ell} + h) \sim f(a_{\ell}) + h \cdot \nabla f(a_{\ell}) + \frac{1}{2}h^{T} + f_{\ell}(a_{\ell})h$$
.

 $def Q(h)$, minimal for $h = \frac{1}{2}f_{\ell}(a_{\ell})^{2}\nabla f(a_{\ell})$
 e is convex. $(H_{Q}(h) = H_{\ell}(a_{\ell}) \leftarrow PSD)$
 e Proof

• det solve $\nabla Q(h) = 0$: $\nabla f(n_e) + ff(n_e) h = 0$ $h = -Hf(n_e)^{-1} \nabla f(n_e)$

Improvements

hence invertible,

Graphical interpretation

Advantages and drawbacks

Extremly fast there exists $C, \rho > 0$ **such that**

$$||x_t - x^\star||^2 \le \underline{C}e^{-\rho 2^t}.$$

- Computationally expensive: requires $\sim n^3$ operations to compute the inverse of the $n \times n$ matrix $H_f(x_t)$.
- In non-convex setting, Newton's method gets attracted by any critical points (which could be saddle points/maximas...).

Quasi-Newton methods: try to approximate $H_f(x_t)$ by matrices B_t that are easier to compute. $R_t = R_t - R_t$

Improvements 17/1

Questions?

Questions?

