

openMPI library usage (materials to be revised)

- Stefano Cozzini
- CNR-IOM and eXact lab srl

Parallel programming

- MPI is a standard with many implementations
- You need a library to link to your MPI-enable parallel code
- Many implementation available:
 - OpenMPI
 - MVAPICH
 - IntelMPI
 - MPICH
 - Etc..

openMPI

- Evolution of several prior MPI's
- Open source project and community
- Production quality
- Vendor-friendly
- Research- and academic-friendly
- MPI-3.0 compliant

https://www.open-mpi.org/

OpeMPI and compilers

OpenMPI works with several compiler suites

```
Module load openmpi/3.1.3..

openmpi/3.1.3/gcc/4.8.5-z2zfbgq
openmpi/3.1.3/gcc/8.2.0-qh4llbm
openmpi/3.1.3/pgi/18.10-ahjhvki
```

Mpirun/mpiexec

- Mpirun and mpiexec
 - Completely identical (in OpenMPI)
- General form:
 - mpirun -np X your exe
 - mpirun [-np X] --hostfile hostfile your app
- If using a scheduler, no need for hostfile or-np

How to map mpirun processess...

- Map proceess by speficied object foo
 - mpirun —mapby <foo>
 - Supported options include slot, hwthread, core, L1cache, L2cache, L3cache, socket, numa, board, node, sequential, distance, and ppr.

Mpirun useful options

- Assign only a certain number of MPI process on one node
 - -npernode X
- Indicates how many cores to bind per process
 - --cpus-per-proc <#perproc>
- Show how processes are bind to cores/sockets etc..
 - --report-bindings

OpenMPI is Based on Plugins

- Lots and lots of plugin types
 - Back-end network
 - Resource manager support
 - Operating system support
- All can be loaded (or not) at runtime
 - Choice of network is a runtime decision

Plugin high level view

MCA parameters

- Run-time tunable values
 - Per layer
 - Per framework
 - Per component("plugin")
- Change behaviors of code at run-time
 - Does not require recompiling/relinking

Example: specify BTL

- BTL:Byte Transfer Layer
 - Framework for MPI point-to-pointcommunications
 - Select which network to use for MPI communications

```
mpirun --mca btl tcp,self -np 4 my app
```

- Components
 - tcp:TCP sockets
 - self:Loopback (send-to-self)

Example:specify openIB BTL

```
mpirun --mca btl openib, self -np 4 my app
```

- Components
 - openib:OpenFabricsverbs(InfiniBand)
 - self:Loopback(send-to-self)

What does this do?

mpirun -np 4 my app

- Use all available components
 - tcp,sm,openib,...
- TCP too?
 - Yes and no...
 - TCP is automatically disable itself in the presence of better network/protocol

What does this do?

mpirun -np 4 my app

- More specifically:
 - Open each BTL component
 - Query if it wants to be used
 - Keep all that say"yes" Rank by bandwidth and latency rank

you can check with **--verbose** option

What does this do?

- Use all available components except tcp
- More specifically:
 - Open eachBTL component except tcp
 - Query if it wants to be used
 - Keep all that say"yes"
 Rank by bandwidth and latency rank

MPI freely available benchmarks (2)

- IMB-4.0 (now IMB2017) (INTEL MPI benchmark)
 - MPI protocol ()
 - https://software.intel.com/en-us/articles/intel-mpi-benchmark
- OSU benchmarks: http://mvapich.cse.ohio-state.edu/benchmarks/

Suggested activities

- Play with Intel MPI benchmark
- Compile it using openMPI with different compiler
- Submit your job using two or more nodes
- Play with different BTL
- Report/understand difference