A Strongly-coupled Non-parametric Integral Boundary Layer Method for Aerodynamic Analysis with Free Transition

Shun Zhang*, Mark Drela, Marshall Galbraith, Steven Allmaras, David Darmofal

Aerospace Computational Design Laboratory ${\sf MIT}$

AIAA SciTech Forum, San Diego, CA January 9, 2019

Contact*: shunz@mit.edu

Motivation for Viscous-inviscid Interaction

"Divide & Conquer": viscous-inviscid zonal decomposition

Motivation for Viscous-inviscid Interaction

"Divide & Conquer": viscous-inviscid zonal decomposition

DOF $\sim 500,000$

runtime \sim hours

 $\begin{array}{l} {\sf DOF} \sim {\sf 5,000} \\ {\sf runtime} \sim {\sf seconds} \end{array}$

1

Motivation for Coupled IBL

Integral Boundary Layer (IBL) + Inviscid = Coupled IBL

- + Faster than alternative viscous flow solvers (e.g. coupled BL, RANS)
- + Conducive to various inviscid flow solvers
- + Compatible with structural formulations (via virtual displacement)
- + Convenient for flow transition modeling (vs. RANS)

Motivation for Coupled IBL

Integral Boundary Layer (IBL) + Inviscid = Coupled IBL

- + Faster than alternative viscous flow solvers (e.g. coupled BL, RANS)
- + Conducive to various inviscid flow solvers
- + Compatible with structural formulations (via virtual displacement)
- + Convenient for flow transition modeling (vs. RANS)

Fidelity	Moderate	High(er)
Method	Coupled IBL	RANS, LES,
Example	2D: XFOIL, MSES Quasi-2D: TRANAIR	Industry/Research codes 2D/3D

Motivation for Coupled IBL

Integral Boundary Layer (IBL) + Inviscid = Coupled IBL

- + Faster than alternative viscous flow solvers (e.g. coupled BL, RANS)
- + Conducive to various inviscid flow solvers
- + Compatible with structural formulations (via virtual displacement)
- + Convenient for flow transition modeling (vs. RANS)

Moderate	High(er)	
Coupled IBL	RANS, LES,	
2D: XFOIL, MSES	Industry/Research codes 2D/3D	
Quasi-2D: TRANAIR		
3D: to be established		
	Coupled IBL 2D: XFOIL, MSES Quasi-2D: TRANAIR	Coupled IBL RANS, LES, 2D: XFOIL, MSES Quasi-2D: TRANAIR Industry/Research codes 2D/3D

⇒ **Goal**: extend coupled IBL methods to general 3D application

Challenges for 3D IBL Development

Applicability for General 3D Configurations

Solution: Non-parametric IBL using Discontinuous Galerkin (DG) FEM

Replace explicit curvilinear coordinates with local Cartesian basis

Robustness in Viscous-inviscid Coupling

Solution: Strong coupling via simultaneous solution

Use global Newton solver & flexible coupling interface

Challenges for 3D IBL Development

Applicability for General 3D Configurations

Solution: Non-parametric IBL using Discontinuous Galerkin (DG) FEM

• Replace explicit curvilinear coordinates with local Cartesian basis

Robustness in Viscous-inviscid Coupling

Solution: Strong coupling via simultaneous solution

Use global Newton solver & flexible coupling interface

Reliability of Physical Modeling & Numerical Solution

Ongoing: Turbulence modeling, transition modeling, 3D flow effects etc.

Current focus: numerical treatment of free transition for DG-IBL

- Free transition introduces a solution-dependent ("moving") interface
- ... poses challenges in numerical discretization & nonlinear solution
- This talk uses the example of 2D steady-state incompressible flow

Outline

• Strongly-coupled IBL Formulation

Numerical Discretization

Nonlinear Solution

Numerical Results

2D Coupled IBL Formulation

IBL equations (variable $Q_{\rm IBL} = \{\delta, A\}$): (no transition yet)

$$\widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_{\mathrm{e}} - \boldsymbol{\tau}_{\mathrm{w}} = \mathbf{0}, \qquad \widetilde{\nabla} \cdot \mathbf{K} + \mathbf{D} \cdot \widetilde{\nabla} q_{\mathrm{e}}^2 - 2\mathcal{D} = 0$$

where \mathbf{q}_{e} depends on equivalent inviscid flow

Inviscid equation (variable Q_{inv}): e.g. incompressible potential flow

$$abla^2\Phi=0$$
 (PDE) subject to $(\rho_i\,\mathbf{q}_i)_\mathrm{w}\cdot\hat{\mathbf{n}}_\mathrm{w}=\Lambda$ (BC) where flow velocity $\mathbf{q}_i\equiv\nabla\Phi$, and Λ depends on viscous layer

4

2D Coupled IBL Formulation

IBL equations (variable $Q_{\rm IBL} = \{\delta, A\}$): (no transition yet)

$$\widetilde{\nabla} \cdot \overline{\overline{\overline{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_{e} - \boldsymbol{\tau}_{w} = \mathbf{0}, \qquad \widetilde{\nabla} \cdot \mathbf{K} + \mathbf{D} \cdot \widetilde{\nabla} q_{e}^{2} - 2\mathcal{D} = 0$$

where \mathbf{q}_{e} depends on equivalent inviscid flow

Auxiliary viscous equation (variable: edge velocity \mathbf{q}_{e}):

$$\mathbf{q}_{e} - \mathbf{q}_{i}(Q_{inv}) = 0$$

Auxiliary inviscid equation (variable: transpiration source Λ):

$$\mathbf{\Lambda} - \widetilde{\nabla} \cdot \mathbf{M}(Q_{\mathrm{IBL}}) = 0$$

Inviscid equation (variable Q_{inv}): e.g. incompressible potential flow

$$abla^2 \Phi = 0$$
 (PDE) subject to $(\rho_i \, \mathbf{q}_i)_w \cdot \hat{\mathbf{n}}_w = \Lambda$ (BC)

where flow velocity $\mathbf{q}_i \equiv \nabla \Phi$, and Λ depends on viscous layer

Simultaneous Viscous-inviscid Solution

Global Newton-Raphson method for nonlinear equation $\mathcal{R}(Q) = 0$:

$$oldsymbol{Q}^{n+1} = oldsymbol{Q}^n + \Delta oldsymbol{Q}^n, \qquad oldsymbol{\mathcal{R}}(oldsymbol{Q}^n) + \left[rac{\partial oldsymbol{\mathcal{R}}}{\partial oldsymbol{Q}}
ight]^n \Delta oldsymbol{Q}^n = oldsymbol{0}$$

5

Simultaneous Viscous-inviscid Solution

Global Newton-Raphson method for nonlinear equation $\mathcal{R}(Q) = 0$:

$$egin{aligned} oldsymbol{Q}^{n+1} &= oldsymbol{Q}^n + \Delta oldsymbol{Q}^n, & oldsymbol{\mathcal{R}}(oldsymbol{Q}^n) + \left[rac{\partial oldsymbol{\mathcal{R}}}{\partial oldsymbol{Q}}
ight]^n \Delta oldsymbol{Q}^n &= oldsymbol{0} \ egin{aligned} egin{aligne$$

 $\checkmark \ [\partial \mathcal{R}/\partial extbf{ extit{Q}}]$ conveniently constructed via automatic differentiation

✓ Flexible swap of inviscid solver & extension to multi-disciplines

Flow Transition Model

Linear flow instability theory: Tollmien-Schlichting (TS) wave amplification

- Velocity fluctuation q': based on Reynolds decomposition
- Single variable $\mathcal{G} := \ln(q'/q_{\mathrm{e}})$ unifies $\{\tilde{n}, c_{\tau}\}$

Flow Transition Model

Linear flow instability theory: Tollmien-Schlichting (TS) wave amplification

- Velocity fluctuation q': based on Reynolds decomposition
- Single variable $\mathcal{G} := \ln(q'/q_{\mathrm{e}})$ unifies $\{\tilde{n}, c_{\tau}\}$
- ullet Laminar: e^N envelope method
 - Amplification factor \tilde{n} tracks max TS wave q' growth
- ullet Turbulent: shear stress (coefficient $c_ au$) transport with "lag" equation

2D IBL Formulation with Transition

Generic Equation: $\widetilde{\nabla} \cdot \mathbf{F} + S = 0$ (transport, hyperbolic, manifold PDE)

Sub-domain	Unknown	Equation
Laminar $\Omega_{ m L}^{ m BL}$	$\{\delta, \mathcal{A}, \tilde{n}(\mathcal{G})\}$	{mom., k.e., TS amplification}
Turbulent $\Omega_{\mathrm{T}}^{\mathrm{BL}}, \Omega_{\mathrm{T}}^{\mathrm{wake}}$	$\{\delta, \mathcal{A}, c_{\tau}(\mathcal{G})\}$	$\{mom.,\ k.e.,\ shear\ stress\ lag\}$

Interface Conditions: conservation & compatibility

0 transition front $\Gamma_{tr}\text{,}$ trailing edge Γ_{TE}

2D IBL Formulation with Transition

Generic Equation: $\widetilde{\nabla} \cdot \mathbf{F} + S = 0$ (transport, hyperbolic, manifold PDE)

Sub-domain	Unknown	Equation
Laminar $\Omega_{ m L}^{ m BL}$	$\{\delta, \mathcal{A}, \tilde{n}(\mathcal{G})\}$	{mom., k.e., TS amplification}
Turbulent $\Omega_{\mathrm{T}}^{\mathrm{BL}}, \Omega_{\mathrm{T}}^{\mathrm{wake}}$	$\{\delta, \mathcal{A}, c_{\tau}(\mathcal{G})\}$	$\{mom., k.e., shear stress lag\}$

Interface Conditions: conservation & compatibility

0 transition front Γ_{tr} , trailing edge Γ_{TE}

Key Challenge: "Free" interface $\Gamma_{\rm tr}$

- Transition criterion $\tilde{n}(\mathcal{G}) = \tilde{n}_{crit} \rightarrow$ identifies Γ_{tr}
- Interface location Γ_{tr} interweaves with IBL solution $\{\delta, \mathcal{A}, \mathcal{G}\}$

7

Outline

Strongly-coupled IBL Formulation

Numerical Discretization

Nonlinear Solution

Numerical Results

(Plain) Discontinuous Galerkin FEM

Approximation: solution $v_h(\xi)$, geometry $\mathbf{r}_h(\xi)$, and local basis $\hat{\mathbf{e}}_h(\xi)$

$$\boldsymbol{v}_h = \sum_j \boldsymbol{v}_{h,j} \mathcal{W}_j(\xi), \qquad \mathbf{r}_h = \sum_j \mathbf{r}_{h,j} \mathcal{W}_j(\xi), \qquad \hat{\mathbf{e}}_h = \frac{\partial \mathbf{r}_h / \partial \xi}{\|\partial \mathbf{r}_h / \partial \xi\|}$$

Discretization: discrete weighted residuals (i.e. weak form)

$$\mathcal{R}_{\mathrm{IBL}}\left(\boldsymbol{v}_{h}, \mathcal{W}; \hat{\mathbf{e}}_{h}\right) := \sum_{K \in \mathcal{T}_{h}} \int_{K} \left(\mathcal{W} S(\boldsymbol{v}_{h}) - \widetilde{\nabla} \mathcal{W} \cdot \mathbf{F}(\boldsymbol{v}_{h}) \right) \, \mathrm{d}\ell$$
$$+ \sum_{\partial K \in \partial \mathcal{T}_{h}} \mathcal{W} \, \widehat{\mathbf{t} \cdot \mathbf{F}(\boldsymbol{v}_{h})} = 0, \qquad \forall \mathcal{W} \in \mathcal{V}_{h}$$

with numerical flux $\widehat{\mathbf{t}\cdot\mathbf{F}(v_h)}$ (e.g. upwinding, Lax-Friedrichs)

(Plain) Discontinuous Galerkin FEM

Approximation: solution $v_h(\xi)$, geometry $\mathbf{r}_h(\xi)$, and local basis $\hat{\mathbf{e}}_h(\xi)$

$$\boldsymbol{v}_h = \sum_j \boldsymbol{v}_{h,j} \mathcal{W}_j(\xi), \qquad \mathbf{r}_h = \sum_j \mathbf{r}_{h,j} \mathcal{W}_j(\xi), \qquad \hat{\mathbf{e}}_h = \frac{\partial \mathbf{r}_h / \partial \xi}{\|\partial \mathbf{r}_h / \partial \xi\|}$$

Discretization: discrete weighted residuals (i.e. weak form)

$$\mathcal{R}_{\mathrm{IBL}}\left(\boldsymbol{v}_{h}, \mathcal{W}; \hat{\mathbf{e}}_{h}\right) := \sum_{K \in \mathcal{T}_{h}} \int_{K} \left(\mathcal{W} S(\boldsymbol{v}_{h}) - \widetilde{\nabla} \mathcal{W} \cdot \mathbf{F}(\boldsymbol{v}_{h}) \right) \, \mathrm{d}\ell$$
$$+ \sum_{\partial K \in \partial \mathcal{T}_{h}} \mathcal{W} \, \widehat{\mathbf{t} \cdot \mathbf{F}(\boldsymbol{v}_{h})} = 0, \qquad \forall \mathcal{W} \in \mathcal{V}_{h}$$

with numerical flux $\mathbf{t}\cdot\mathbf{F}(oldsymbol{v}_h)$ (e.g. upwinding, Lax-Friedrichs)

However, plain DG FEM needs modification for *free* transition front $\Gamma_{\rm tr}$

Discretization for Free Interface Problem

Existing Methods

- Examples for flow transition (in 2D finite-difference setting):
 - MTFLOW: implicit interface tracking
 - XFOIL, MSES: explicit interface tracking
- Adaptive conformal mesh
 - e.g. arbitrary Lagrangian-Eulerian (ALE)
- Fixed-mesh approach
 - Sharp interface representation: e.g. enriched FEM
 - Distributed interface representation: e.g. immersed interface method

Discretization for Free Interface Problem

Existing Methods

- Examples for flow transition (in 2D finite-difference setting):
 - MTFLOW: implicit interface tracking
 - XFOIL, MSES: explicit interface tracking
- Adaptive conformal mesh
 - e.g. arbitrary Lagrangian-Eulerian (ALE)
- Fixed-mesh approach
 - Sharp interface representation: e.g. enriched FEM
 - Distributed interface representation: e.g. immersed interface method

Proposed Methods for DG-IBL: fixed-mesh treatment

- Captured transition
 - Implicit Γ_{tr} ; unified discretization for entire domain
- Fitted transition
 - Explicit Γ_{tr} ; separate discretizations for sub-domains

Strategy I: Captured Transition

Generic Equation: $\widetilde{\nabla} \cdot \mathbf{F} + S = 0$ (transport, hyperbolic, manifold PDE)

• Unknowns: $\{\delta, \mathcal{A}, \mathcal{G}\}$. Equations: $\{\text{mom., k.e., and TS amp./lag}\}$... defined on entire domain Ω , with different flux/source on sub-domains:

$$\mathbf{F} = \begin{cases} \mathbf{F}_{\mathrm{L}} & \text{on } \Omega_{\mathrm{L}} \\ \mathbf{F}_{\mathrm{T}} & \text{on } \Omega_{\mathrm{T}} \end{cases}, \qquad S = \begin{cases} S_{\mathrm{L}} & \text{on } \Omega_{\mathrm{L}} \\ S_{\mathrm{T}} & \text{on } \Omega_{\mathrm{T}} \end{cases}$$

Transition Interface Conditions: conservation & compatibility

• automatically & weakly imposed if flux is continuous

Strategy I: Captured Transition

Generic Equation: $\widetilde{\nabla} \cdot \mathbf{F} + S = 0$ (transport, hyperbolic, manifold PDE)

• Unknowns: $\{\delta, \mathcal{A}, \mathcal{G}\}$. Equations: $\{\text{mom., k.e., and TS amp./lag}\}$... defined on entire domain Ω , with different flux/source on sub-domains:

$$\mathbf{F} = \begin{cases} \mathbf{F}_{\mathrm{L}} & \text{on } \Omega_{\mathrm{L}} \\ \mathbf{F}_{\mathrm{T}} & \text{on } \Omega_{\mathrm{T}} \end{cases}, \qquad S = \begin{cases} S_{\mathrm{L}} & \text{on } \Omega_{\mathrm{L}} \\ S_{\mathrm{T}} & \text{on } \Omega_{\mathrm{T}} \end{cases}$$

Transition Interface Conditions: conservation & compatibility

automatically & weakly imposed if flux is continuous

Discretization: reuses plain DG FEM (e.g. p=1, 3-point quadrature)

Strategy II: Fitted Transition

Governing Equation:

Domain	Unknown	Generic Equation
Entire Ω	$\{ ilde{n}(\mathcal{G}_{\mathrm{L}})\}$	$\widetilde{\nabla} \cdot \mathbf{F}(\boldsymbol{v}) + S(\boldsymbol{v}) = 0$
Laminar $\Omega_{ m L}^{ m BL}$	$\{\delta_{ m L}, {\cal A}_{ m L}\}$	$\widetilde{\nabla} \cdot \mathbf{F}_{\mathrm{L}}(\boldsymbol{v}_{\mathrm{L}}) + S_{\mathrm{L}}(\boldsymbol{v}_{\mathrm{L}}) = 0$
Turbulent $\Omega_{\mathrm{T}}^{\mathrm{BL}}, \Omega_{\mathrm{T}}^{\mathrm{wake}}$	$\{\delta_{\mathrm{T}}, \mathcal{A}_{\mathrm{T}}, c_{ au}(\mathcal{G}_{\mathrm{T}})\}$	$\widetilde{\nabla} \cdot \mathbf{F}_{\mathrm{T}}(\boldsymbol{v}_{\mathrm{T}}) + S_{\mathrm{T}}(\boldsymbol{v}_{\mathrm{T}}) = 0$

• Extend $\tilde{n}(\mathcal{G}_L)$ from Ω_L^{BL} to $\Omega \to \mathsf{Tracking}\ \Gamma_{tr}$ is a local operation

Transition Interface Conditions:

• via DG weighted residuals (weak) or Lagrange multipliers (strong)

Strategy II: Fitted Transition

Governing Equation:

Domain	Unknown	Generic Equation
Entire Ω	$\{ ilde{n}(\mathcal{G}_{\mathrm{L}})\}$	$\widetilde{\nabla} \cdot \mathbf{F}(\boldsymbol{v}) + S(\boldsymbol{v}) = 0$
Laminar $\Omega_{ m L}^{ m BL}$	$\{\delta_{ m L}, {\cal A}_{ m L}\}$	$\widetilde{\nabla} \cdot \mathbf{F}_{\mathrm{L}}(\boldsymbol{v}_{\mathrm{L}}) + S_{\mathrm{L}}(\boldsymbol{v}_{\mathrm{L}}) = 0$
Turbulent $\Omega_{\mathrm{T}}^{\mathrm{BL}}, \Omega_{\mathrm{T}}^{\mathrm{wake}}$	$\{\delta_{\mathrm{T}}, \mathcal{A}_{\mathrm{T}}, c_{ au}(\mathcal{G}_{\mathrm{T}})\}$	$\widetilde{\nabla} \cdot \mathbf{F}_{\mathrm{T}}(\boldsymbol{v}_{\mathrm{T}}) + S_{\mathrm{T}}(\boldsymbol{v}_{\mathrm{T}}) = 0$

• Extend $\tilde{n}(\mathcal{G}_L)$ from Ω_L^{BL} to $\Omega \to \mathsf{Tracking}\ \Gamma_{tr}$ is a local operation

Transition Interface Conditions:

• via DG weighted residuals (weak) or Lagrange multipliers (strong)

Discretization:

- Reuses plain DG FEM in:
 - entire domain for $\tilde{n}(\mathcal{G}_L)$
 - sub-domain interiors for $\{\delta_L, \mathcal{A}_L\}$ and $\{\delta_T, \mathcal{A}_T, c_\tau(\mathcal{G}_T)\}$
- ullet Transitional element requires modification o cut-cell DG treatment

Cut-cell DG Treatment

Cut-cell DG: solution approximation & weighted residual

- ullet Example: p=1 Lagrange polynomial basis $\{\mathcal{W}_j\}$, 3-point quadrature
- Explicitly track $\Gamma_{\rm tr}$ location $x_{\rm tr}$ by $\tilde{n}(\mathcal{G}_{\rm L})$ and transition criterion

Cut-cell DG Treatment

Cut-cell DG: solution approximation & weighted residual

- Example: p = 1 Lagrange polynomial basis $\{W_i\}$, 3-point quadrature
- Explicitly track $\Gamma_{\rm tr}$ location $x_{\rm tr}$ by $\tilde{n}(\mathcal{G}_{\rm L})$ and transition criterion

 K_{T}

 $K_{\rm L}$

- K_{tr} uses standard basis \mathcal{W}
- Sub-cells K_L, K_T use cut-cell basis $\mathcal{W}_{\mathrm{L}}, \mathcal{W}_{\mathrm{T}}$ respectively

Cut-cell DG Treatment

Cut-cell DG: solution approximation & weighted residual

- ullet Example: p=1 Lagrange polynomial basis $\{\mathcal{W}_j\}$, 3-point quadrature
- Explicitly track $\Gamma_{\rm tr}$ location $x_{\rm tr}$ by $\tilde{n}(\mathcal{G}_{\rm L})$ and transition criterion

- Transition \mathcal{W} Laminar K_{tr} Turbulent \mathcal{W}_{L} K_{L} K_{T}
- ullet $K_{
 m tr}$ uses standard basis ${\cal W}$
- Sub-cells $K_{\rm L}, K_{\rm T}$ use cut-cell basis $\mathcal{W}_{\rm L}, \mathcal{W}_{\rm T}$ respectively
- $\frac{\mathrm{d}\mathcal{R}}{\mathrm{d}Q} = \frac{\partial \mathcal{R}}{\partial Q} + \frac{\partial \mathcal{R}}{\partial x_{\mathrm{tr}}} \frac{\mathrm{d}x_{\mathrm{tr}}}{\mathrm{d}Q}$

Outline

• Strongly-coupled IBL Formulation

Numerical Discretization

Nonlinear Solution

Numerical Results

$$\mathbf{Q}^{n+1} = \mathbf{Q}^n + \beta \, \Delta \mathbf{Q}^n$$
 (Line-search update)

Adapt solution update step size $\beta \in (0,1]$ so that

- ullet residual ${\cal R}$ decreases for each update
- state Q remains physically valid (e.g. positive BL thickness $\delta > 0$)

$$\label{eq:Qn+1} \boldsymbol{Q}^{n+1} = \boldsymbol{Q}^n + \beta \, \Delta \boldsymbol{Q}^n \qquad \qquad \text{(Line-search update)}$$

Adapt solution update step size $\beta \in (0,1]$ so that

- ullet residual ${\cal R}$ decreases for each update
- ullet state $oldsymbol{Q}$ remains physically valid (e.g. positive BL thickness $\delta>0$)

Residual-based line search relies on residual continuity

- \checkmark fine with captured transition, and fitted transition with fixed $\Gamma_{\rm tr}$
- imes but free $\Gamma_{
 m tr}$ in fitted transition can produce discontinuous residual

$$Q^{n+1} = Q^n + \beta \Delta Q^n$$
 (Line-search update)

Adapt solution update step size $\beta \in (0,1]$ so that

- ullet residual ${\cal R}$ decreases for each update
- state Q remains physically valid (e.g. positive BL thickness $\delta > 0$)

Residual-based line search relies on residual continuity

- \checkmark fine with captured transition, and fitted transition with fixed $\Gamma_{\rm tr}$
- \times but free $\Gamma_{\rm tr}$ in fitted transition can produce discontinuous residual
 - Failure scenario: transition front $\Gamma_{\rm tr}$ moves across finite elements

13

$$Q^{n+1} = Q^n + \beta \Delta Q^n$$
 (Line-search update)

Adapt solution update step size $\beta \in (0,1]$ so that

- ullet residual ${\cal R}$ decreases for each update
- state Q remains physically valid (e.g. positive BL thickness $\delta > 0$)

Residual-based line search relies on residual continuity

- \checkmark fine with captured transition, and fitted transition with fixed $\Gamma_{\rm tr}$
- \times but free $\Gamma_{\rm tr}$ in fitted transition can produce discontinuous residual
 - ullet Failure scenario: transition front $\Gamma_{\rm tr}$ moves across finite elements

Newton Solver Enhancement: Under-relaxation

Initial state

Two-step Solution Update

Newton Solver Enhancement: Under-relaxation

Initial state

Two-step Solution Update

1 Under-relaxed Newton update:

$$\widetilde{\boldsymbol{Q}}^{n+1} = \boldsymbol{Q}^n + \alpha \, \Delta \boldsymbol{Q}^n$$

 \circ Relaxation factor α ensures physicality

Newton Solver Enhancement: Under-relaxation

Two-step Solution Update

• Under-relaxed Newton update:

$$\widetilde{\boldsymbol{Q}}^{n+1} = \boldsymbol{Q}^n + \alpha \, \Delta \boldsymbol{Q}^n$$

- \circ Relaxation factor α ensures physicality
- **2** Re-conditioning by forced-transition solution (fixed $\Gamma_{\rm tr}$ based on \widetilde{Q}^{n+1}). \circ Line search works well for fixed $\Gamma_{\rm tr}$

Re-conditioning

Outline

• Strongly-coupled IBL Formulation

Numerical Discretization

Nonlinear Solution

Viscous-inviscid Analysis Demo

Test Case: NACA 0004, $\alpha = 0^{\circ}, Re = 10^{5}$, incompressible flow

• $\tilde{n}_{\rm crit} = 0.6
ightarrow {
m triggers}$ natural transition on airfoil surface

Implementation: Coupled IBL-panel Method

- Compare (1) XFOIL, (2) captured transition, and (3) fitted transition
- Focus on numerics (despite differences in closure models)

Demonstration

- Grid convergence study
- Output sensitivity w.r.t. parameter (e.g. c_d - \tilde{n}_{crit})

Grid Convergence Study

Setup

- p=1 DG-IBL
- Output: c_d , with $(c_d)_{ref}$ from 2048-element grid

- XFOIL (baseline)
 - Grid-converged
 - 2nd-order accurate

Grid Convergence Study

Captured transition

Setup

- p = 1 DG-IBL
- Output: c_d , with $(c_d)_{\mathrm{ref}}$ from 2048-element grid

- XFOIL (baseline)
 - Grid-converged
 - 2nd-order accurate
- Captured Transition
 - Not grid-converged
 - Oscillatory solution

Grid Convergence Study

Fitted transition

Setup

- p = 1 DG-IBL
- Output: c_d , with $(c_d)_{\rm ref}$ from 2048-element grid

- XFOIL (baseline)
 - Grid-converged
 - 2nd-order accurate
- Captured Transition
 - Not grid-converged
 - Oscillatory solution
- Fitted Transition
 - Grid-converged
 - 2nd-order accurate

Output Sensitivity Analysis

Setup:

- ullet Vary parameter $ilde{n}_{
 m crit}$ with fixed grid o different transition location $\Gamma_{
 m tr}$
- Desired outcome: smooth output-parameter relation (e.g. c_d - $\tilde{n}_{\rm crit}$)

Numerical Results:

• XFOIL (\checkmark) , captured transition (\times) , and fitted transition (\checkmark)

Summary

Numerical Treatment of Free Transition for DG-IBL

Approach I: Captured Transition

- × Numerical regularization required for suppressing discontinuities
- + Convenient implementation using plain DG FEM

Approach II: Fitted Transition

- + Accurate & robust solution for free-transition problem
- × Complex implementation necessitated for 3D extension

Summary

Numerical Treatment of Free Transition for DG-IBL

Approach I: Captured Transition

- × Numerical regularization required for suppressing discontinuities
- + Convenient implementation using plain DG FEM

Approach II: Fitted Transition

- + Accurate & robust solution for free-transition problem
- × Complex implementation necessitated for 3D extension

Ongoing/future work

- Implement both transition treatments for 3D IBL
- Improve closure models: transition, turbulence etc.
- Apply various inviscid solvers: full potential and Euler
- Extend to aero-structural coupling: hybrid shell model (HSM)
 - ightarrow HSM by Drela et al., AIAA 2019-2227, 10:30am, Friday, Jan 11

Acknowledgments

- Funding source: NASA Grant Award NNX15AU41A
- Technical monitors: Michael Aftosmis and David Rodriguez

Q & A

Thank you!

Contact: Shun Zhang, shunz@mit.edu

Outline

Problem Statement

2D IBL Formulation

• Numerical Discretization for Coupled IBL

Issue for Existing 3D IBL Formulations

Requires explicit curvilinear coordinates to parametrize surfaces

Issue for Existing 3D IBL Formulations

- Requires explicit curvilinear coordinates to parametrize surfaces
- \rightarrow Inapplicable to non-smooth features
- \rightarrow Cumbersome for complex geometries

Bottleneck: viscous/inviscid coupling

Bottleneck: viscous/inviscid coupling

Classical one-way coupling

ullet Goldstein Singularity o Fail upon flow separation

Bottleneck: viscous/inviscid coupling

Classical one-way coupling

ullet Goldstein Singularity o Fail upon flow separation

Two-way iteration

- Examples: Le Balleur (1981), Veldman (2009), Lokatt et al. (2017)
- Varied robustness, compromised efficiency

Bottleneck: viscous/inviscid coupling

Classical one-way coupling

ullet Goldstein Singularity o Fail upon flow separation

Two-way iteration

- Examples: Le Balleur (1981), Veldman (2009), Lokatt et al. (2017)
- Varied robustness, compromised efficiency

Bottleneck: viscous/inviscid coupling

Classical one-way coupling

ullet Goldstein Singularity o Fail upon flow separation

Two-way iteration

- Examples: Le Balleur (1981), Veldman (2009), Lokatt et al. (2017)
- Varied robustness, compromised efficiency

Strong viscous/inviscid coupling

- Examples: XFOIL (Drela, 1989), MSES (Drela, 1987)
- Most reliable

Outline

Problem Statement

• 2D IBL Formulation

• Numerical Discretization for Coupled IBL

Viscous-inviscid Zonal Decomposition

- Equivalent inviscid flow (EIF)
 - \Rightarrow Inviscid flow equations on f_i : e.g. full potential, Euler
- Defect control volume (DCV)
 - Defect $f_i f$ vanishes outside DCV
 - BL approximations \rightarrow Thin DCV
 - Dimension reduction: e.g. $\iint (\mathsf{defect}) \, \mathrm{d}A \Rightarrow \int (\mathsf{defect} \; \mathsf{integral}) \, \mathrm{d}\ell$
 - \Rightarrow IBL equations on defect integral $\int (\mathbf{f}_i \mathbf{f}) \, \mathrm{d}n$

Defect Integral Equations

Conservation laws: $2D \rightarrow 1D$

$$\begin{split} \iint \left(\mathsf{mass}_{\mathrm{i}} - \mathsf{mass}\right) \mathrm{d}A & \to & \widetilde{\nabla} \cdot \mathbf{M} - \left(\rho_{\mathrm{i}} \, \mathbf{q}_{\mathrm{i}}\right)_{\mathrm{w}} \cdot \hat{\mathbf{n}}_{\mathrm{w}} = 0 \\ \iint \left(\mathsf{mom}_{\mathrm{i}} - \mathsf{mom}\right) \mathrm{d}A & \to & \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_{\mathrm{i}} - \boldsymbol{\tau}_{\mathrm{w}} = \mathbf{0} \\ \iint \left(\mathsf{k.e.}_{\mathrm{i}} - \mathsf{k.e.}\right) \mathrm{d}A & \to & \widetilde{\nabla} \cdot \mathbf{K} + \mathbf{D} \cdot \widetilde{\nabla} q_{\mathrm{i}}^2 - 2\mathcal{D} = 0 \end{split}$$

with in-plane operator $\widetilde{\nabla}\equiv\partial\left(\cdot\right)/\partial\xi\;\hat{\mathbf{e}}$

Defect Integral Equations

Conservation laws: $2D \rightarrow 1D$

$$\begin{split} \iint \left(\mathsf{mass}_{\mathrm{i}} - \mathsf{mass}\right) \mathrm{d}A & \rightarrow & \widetilde{\nabla} \cdot \mathbf{M} - \left(\rho_{\mathrm{i}} \, \mathbf{q}_{\mathrm{i}}\right)_{\mathrm{w}} \cdot \hat{\mathbf{n}}_{\mathrm{w}} = 0 \\ \iint \left(\mathsf{mom}_{\mathrm{i}} - \mathsf{mom}\right) \mathrm{d}A & \rightarrow & \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_{\mathrm{i}} - \boldsymbol{\tau}_{\mathrm{w}} = \mathbf{0} \\ \iint \left(\mathsf{k.e.}_{\mathrm{i}} - \mathsf{k.e.}\right) \mathrm{d}A & \rightarrow & \widetilde{\nabla} \cdot \mathbf{K} + \mathbf{D} \cdot \widetilde{\nabla} q_{\mathrm{i}}^2 - 2\mathcal{D} = 0 \end{split}$$

with in-plane operator $\widetilde{\nabla}\equiv\partial\left(\cdot\right)/\partial\xi\;\hat{\mathbf{e}}$, and defect integrals etc.

$$\begin{array}{lll} \mathbf{M} & \equiv & \int (\rho_i \, \mathbf{q}_i - \rho \, \mathbf{q}) \; \mathrm{d}n & \text{mass flux defect} \\ \mathbf{p} & \equiv & \int (\mathbf{q}_i - \mathbf{q}) \, \rho \, \mathrm{d}n & \text{momentum defect} \\ \overline{\overline{\mathbf{P}}} & \equiv & \int (\mathbf{q}_i - \mathbf{q}) \, \rho \, \mathbf{q} \; \mathrm{d}n & \text{momentum defect flux} \\ \mathbf{K} & \equiv & \int (q_i^2 - q^2) \, \rho \, \mathbf{q} \; \mathrm{d}n & \text{kinetic energy defect flux} \\ \mathbf{D} & \equiv & \int (\rho_i - \rho) \, \mathbf{q} \; \mathrm{d}n & \text{density defect flux} \\ \vdots & \vdots & & \vdots \end{array}$$

TS Wave Amplification Equation

$$\boxed{\mathbf{q}_{\mathrm{e}} \cdot \widetilde{\nabla} \mathcal{G} - \frac{q_{\mathrm{e}}}{\theta_{11}} f_{N} + (1 - R) \frac{1}{t_{\mathrm{ref}}} \exp\left(-\frac{q_{\mathrm{e}}^{2}}{q_{\mathrm{ref}}^{2}}\right) (\tilde{n} - \tilde{n}_{0}) = 0}$$

where the growth rate function $f_{\scriptscriptstyle N}$ is given as follows,

$$\begin{split} f_N(H;Re_{\theta_{11}}) &= R\,\frac{\mathrm{d}\tilde{n}}{\mathrm{d}Re_{\theta_{11}}}\,\theta_{11}\frac{\mathrm{d}Re_{\theta_{11}}}{\mathrm{d}x}\\ \text{where} \qquad R &= \frac{1}{2}\,+\,\frac{1}{2}\,\tanh\left[10\left(\ln Re_{\theta_{11}} - \ln Re_{\theta_{11,0}}\right)\right]\\ &\ln Re_{\theta_{11,0}} = \frac{5.738}{(H-1)^{0.43}}\,+\,1.612\left[\tanh\left(\frac{14}{H-1} - 9.24\right) + 1\right]\\ &\frac{\mathrm{d}\tilde{n}}{\mathrm{d}Re_{\theta_{11}}} = 0.028(H-1)\,-\,0.0345\exp\left[-\left(\frac{3.87}{H-1} - 2.52\right)^2\right]\\ &\theta_{11}\frac{\mathrm{d}Re_{\theta_{11}}}{\mathrm{d}x} = -0.05 + \frac{2.7}{H-1} - \frac{5.5}{(H-1)^2} + \frac{3.0}{(H-1)^3} + 0.1\exp\left(\frac{-20}{H-1}\right) \end{split}$$

Shear Stress Transport ("Lag") Equation

Lag Equation:

$$\mathbf{q}_{e} \cdot \widetilde{\nabla} \mathcal{G} - \frac{q_{e}}{2 \,\widetilde{\delta}} \left[5.6 \left((c_{\tau})_{eq}^{1/2} - c_{\tau}^{1/2} \right) \right]$$

$$- \frac{q_{e}}{B_{eq} \delta_{1}^{*}} \left[\frac{C_{f_{1}}}{2} - \left(\frac{H - 1}{A_{eq} K_{dl} H} \right)^{2} \right] + \widetilde{\nabla} \cdot \mathbf{q}_{e} = 0$$

with miscellaneous closure relations.

The unifying variable \mathcal{G} relates to $\{\tilde{n}, c_{\tau}\}$:

$$\tilde{n} = \mathcal{G} - \ln Q'_{\text{crit}} + \tilde{n}_{\text{crit}}$$
$$c_{\tau}^{1/2} = \exp \mathcal{G} = Q'_{\text{crit}} \exp (\tilde{n} - \tilde{n}_{\text{crit}})$$

Transition Interface Conditions

At transition front $\Gamma_{\rm tr}$ (i.e. turbulent BL inlet),

$$\begin{split} \delta_{1\mathrm{BC}}^* &= (\delta_1^*)_{\mathrm{L},\Gamma_{\mathrm{tr}}} & \text{(mass conservation)} \\ \theta_{11\mathrm{BC}} &= (\theta_{11})_{\mathrm{L},\Gamma_{\mathrm{tr}}} & \text{(momentum conservation)} \\ c_{\tau\mathrm{BC}} &= c_{\tau\mathrm{T, init}} & \text{(initial turbulent shear stress condition)} \end{split}$$

where $c_{\tau T, \; \mathrm{init}} = c_{\tau \mathrm{crit}}$ is used in the current implementation.

2D IBL Trailing-edge Matching Conditions

Issue: $\underline{\text{Two}}$ IBL equations, but (seemingly) $\underline{\text{three}}$ conservation laws. Which pair of {mass, mom., k.e.} should be conserved?

2D IBL Trailing-edge Matching Conditions

Issue: $\underline{\text{Two}}$ IBL equations, but (seemingly) $\underline{\text{three}}$ conservation laws. Which pair of {mass, mom., k.e.} should be conserved?

Introduce two equations (i.e. matching conditions)

$$\begin{split} \delta_{\text{TE, upper}}^* + \delta_{\text{TE, lower}}^* + h_{\text{TE}} &= \delta_{\text{wake, inlet}}^* & \text{(mass conservation)} \\ \theta_{\text{TE, upper}} + \theta_{\text{TE, lower}} &= \theta_{\text{wake, inlet}} & \text{(momentum conservation)} \end{split}$$

2D IBL Trailing-edge Matching Conditions

Issue: $\underline{\text{Two}}$ IBL equations, but (seemingly) $\underline{\text{three}}$ conservation laws. Which pair of {mass, mom., k.e.} should be conserved?

Introduce two equations (i.e. matching conditions)

$$\begin{split} \delta_{\text{TE, upper}}^* + \delta_{\text{TE, lower}}^* + h_{\text{TE}} &= \delta_{\text{wake, inlet}}^* & \text{(mass conservation)} \\ \theta_{\text{TE, upper}} + \theta_{\text{TE, lower}} &= \theta_{\text{wake, inlet}} & \text{(momentum conservation)} \end{split}$$

and two unknowns $\{F_{\theta}, F_{\theta^*}\}$ (Lagrange multipliers) with

$$\widehat{\mathbf{f} \cdot \mathbf{t}}_{\text{wake, inlet}} = [F_{\theta}, F_{\theta^*}]^T$$

Outline

Problem Statement

2D IBL Formulation

• Numerical Discretization for Coupled IBL

How to discretize vectorial PDEs defined on manifolds?

How to discretize vectorial PDEs defined on manifolds?

• Idea: resolution in local basis (confinement to manifold)

How to discretize vectorial PDEs defined on manifolds?

- Idea: resolution in local basis (confinement to manifold)
- Example: IBL momentum equation: vector

$$0 = \widetilde{\nabla} \cdot \overline{\overline{\overline{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_e - \boldsymbol{\tau}_w$$
 (PDE strong form)

How to discretize vectorial PDEs defined on manifolds?

- Idea: resolution in local basis (confinement to manifold)
- Example: IBL momentum equation: vector

$$0 = \qquad \hat{\mathbf{e}} \cdot \left\{ \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_e - \boldsymbol{\tau}_w \right\} \qquad \text{(resolved in local basis)}$$

How to discretize vectorial PDEs defined on manifolds?

- Idea: resolution in local basis (confinement to manifold)
- Example: IBL momentum equation: vector

$$0 = \int_{\mathcal{K}} \mathcal{W} \, \hat{\mathbf{e}} \cdot \left\{ \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_e - \boldsymbol{\tau}_w \right\} \mathrm{d}\boldsymbol{\ell} \qquad \text{(elemental weighted residual)}$$

How to discretize vectorial PDEs defined on manifolds?

- Idea: resolution in local basis (confinement to manifold)
- Example: IBL momentum equation: vector

$$\begin{split} 0 &= \int_K \mathcal{W} \, \hat{\mathbf{e}} \cdot \left\{ \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_\mathrm{e} - \boldsymbol{\tau}_\mathrm{w} \right\} \mathrm{d}\ell \qquad \text{(elemental weighted residual)} \\ &= \dots \qquad \text{(integration by parts} \to \mathsf{weak form)} \end{split}$$

ç

DG FEM for manifold PDE

How to discretize vectorial PDEs defined on manifolds?

- Idea: resolution in local basis (confinement to manifold)
- Example: IBL momentum equation: vector

$$\begin{split} 0 = & \int_K \mathcal{W} \, \hat{\mathbf{e}} \cdot \left\{ \widetilde{\nabla} \cdot \overline{\overline{\mathbf{P}}} + \mathbf{M} \cdot \widetilde{\nabla} \mathbf{q}_\mathrm{e} - \boldsymbol{\tau}_\mathrm{w} \right\} \mathrm{d}\ell \qquad \text{(elemental weighted residual)} \\ = & \dots \qquad \text{(integration by parts} \to \text{weak form)} \end{split}$$

IBL kinetic energy equation: scalar

$$0 = \int_K \mathcal{W} \left\{ \widetilde{\nabla} \cdot \mathbf{K} + \mathbf{D} \cdot \widetilde{\nabla} q_\mathrm{e}^2 - 2\mathcal{D} \right\} \mathrm{d}\ell \qquad \text{(elemental weighted residual)}$$
$$= \dots \qquad \text{(integration by parts} \to \text{weak form)}$$

ç

IBL DG Residuals

Notation:

$$(oldsymbol{a},oldsymbol{b})_{\mathcal{T}_h} \equiv \sum_{K \in \mathcal{T}_h} \int_K oldsymbol{a} \cdot oldsymbol{b} \; \mathrm{d}\ell, \quad \langle oldsymbol{c}, oldsymbol{d}
angle_{\partial \mathcal{T}_h} \equiv \sum_{\partial K \in \partial \mathcal{T}_h} \int_{\partial K} oldsymbol{c} \cdot oldsymbol{d}$$

IBL DG Residuals

Notation:

$$(oldsymbol{a},oldsymbol{b})_{\mathcal{T}_h} \equiv \sum_{K \in \mathcal{T}_h} \int_K oldsymbol{a} \cdot oldsymbol{b} \; \mathrm{d}\ell, \quad \langle oldsymbol{c}, oldsymbol{d}
angle_{\partial \mathcal{T}_h} \equiv \sum_{\partial K \in \partial \mathcal{T}_h} \int_{\partial K} oldsymbol{c} \cdot oldsymbol{d}$$

Assemble DG global weak form: $\forall \mathcal{W}$

$$\begin{split} \mathcal{R}_{\mathrm{IBL}}^{m}\left(\boldsymbol{v},\mathcal{W}\right) &\equiv \left(\mathcal{W},\, -\left(\overline{\overline{\mathbf{P}}}\cdot\widetilde{\nabla}\right)\cdot\hat{\mathbf{e}}\,+\,\mathbf{M}\cdot\left(\widetilde{\nabla}\mathbf{q}_{\mathrm{e}}\cdot\hat{\mathbf{e}}\right)\,-\,\boldsymbol{\tau}_{\mathrm{w}}\cdot\hat{\mathbf{e}}\right)_{\mathcal{T}_{h}} \\ &-\left(\widetilde{\nabla}\mathcal{W},\,\overline{\overline{\mathbf{P}}}^{T}\cdot\hat{\mathbf{e}}\right)_{\mathcal{T}_{h}} + \left\langle\mathcal{W},\,\widehat{\mathbf{t}}\cdot\overline{\overline{\mathbf{P}}^{T}}\cdot\mathbf{e}\right\rangle_{\partial\mathcal{T}_{h}} \\ \mathcal{R}_{\mathrm{IBL}}^{e}\left(\boldsymbol{v},\mathcal{W}\right) &\equiv \left(\mathcal{W},\,\mathbf{D}\cdot\widetilde{\nabla}q_{\mathrm{e}}^{2}\,-\,2\mathcal{D}\right)_{\mathcal{T}_{h}} - \left(\widetilde{\nabla}\mathcal{W},\,\mathbf{K}\right)_{\mathcal{T}_{h}} + \left\langle\mathcal{W},\,\widehat{\mathbf{K}\cdot\mathbf{t}}\right\rangle_{\partial\mathcal{T}_{h}} \end{split}$$

with numerical flux $\widehat{\mathbf{f}\cdot\mathbf{t}}$ where $\mathbf{f}\equiv\left\{\overline{\overline{\mathbf{P}}}^T\cdot\hat{\mathbf{e}},\mathbf{K}\right\}^T$.

2D IBL DG Numerical Flux

Manifold discretization issues

- Discontinuous ê at interface
- ightarrow modify $\hat{\mathbf{e}}$ in $\widehat{\mathbf{f}\cdot\mathbf{t}}$
- $\hat{\mathbf{t}}^L, \hat{\mathbf{t}}^R$ not co-linear
- ightarrow define unique $\hat{\mathbf{t}}$

Interface flux in Lax-Friedrichs formulation:

$$\begin{split} \widehat{\mathbf{f} \cdot \mathbf{t}}^L &\equiv \frac{1}{2} \Big\{ \mathbf{f}(\boldsymbol{v}^L; \, \hat{\mathbf{e}}^L) + \mathbf{f}(\boldsymbol{v}^R; \, \hat{\mathbf{e}}_L^R) \Big\} \cdot \hat{\mathbf{t}} + \frac{\alpha}{2} \Big\{ \boldsymbol{u}(\boldsymbol{v}^L; \, \hat{\mathbf{e}}^L) - \boldsymbol{u}(\boldsymbol{v}^R; \, \hat{\mathbf{e}}_L^R) \Big\} \\ \widehat{\mathbf{f} \cdot \mathbf{t}}^R &\equiv \frac{1}{2} \Big\{ \mathbf{f}(\boldsymbol{v}^L; \, \hat{\mathbf{e}}_R^L) + \mathbf{f}(\boldsymbol{v}^R; \, \hat{\mathbf{e}}^R) \Big\} \cdot \hat{\mathbf{t}} + \frac{\alpha}{2} \Big\{ \boldsymbol{u}(\boldsymbol{v}^L; \, \hat{\mathbf{e}}_R^L) - \boldsymbol{u}(\boldsymbol{v}^R; \, \hat{\mathbf{e}}^R) \Big\} \end{split}$$

- Conservative variable $u \equiv [\mathbf{p} \cdot \hat{\mathbf{e}}, k]^T$.
- Dissipation coefficient $\alpha \equiv \max\left\{\left|\mathbf{q}_{\mathrm{e}}^{L}\cdot\hat{\mathbf{t}}^{L}\right|,\left|\mathbf{q}_{\mathrm{e}}^{R}\cdot\hat{\mathbf{t}}^{R}\right|\right\}$

Discrete Residuals for Non-IBL Equations

Auxiliary inviscid residual: wall transpiration

$$\begin{split} \mathcal{R}_{\mathrm{auxi}} &\equiv \left(\mathcal{W}, \, \Lambda - \widetilde{\nabla} \cdot \mathbf{M} \right)_{\mathcal{T}_h} + \left\langle \phi, \, \left(\widehat{\mathbf{M}} - \mathbf{M}_{\mathrm{BC}} \right) \cdot \hat{\mathbf{n}} \right\rangle_{\partial \Omega} \\ &= \left(\mathcal{W}, \, \Lambda \right)_{\mathcal{T}_h} + \left(\widetilde{\nabla} \mathcal{W}, \, \mathbf{M} \right)_{\mathcal{T}_h} - \left\langle \mathcal{W}, \, \mathbf{M} \cdot \hat{\mathbf{t}} \right\rangle_{\partial \mathcal{T}_h \setminus \Gamma_{\mathrm{in}}} - \left\langle \mathcal{W}, \, \mathbf{M}_{\mathrm{in}} \cdot \hat{\mathbf{t}} \right\rangle_{\Gamma_{\mathrm{in}}} \end{split}$$

Inviscid equations: e.g. panel method

$$egin{aligned} \mathcal{R}_{ ext{inv}}^{\Psi} &\equiv \Psi(\gamma, \Lambda) - \Psi_0 \quad ext{(flow tangency)} \ \mathcal{R}_{ ext{inv}}^{ ext{K}} &\equiv \sum_{j \in ext{TE}} \gamma_j \quad ext{(Kutta condition)} \end{aligned}$$

Auxiliary viscous residual (incompressible): edge velocity projection

$$\mathcal{R}_{\mathrm{auxv}} \equiv (\mathcal{W}, \, \mathbf{q}_{\mathrm{e}} - \mathbf{q}_{\mathrm{i}})_{\mathcal{T}_{h}}$$

Outline

Problem Statement

2D IBL Formulation

• Numerical Discretization for Coupled IBL

Numerical Results

Verify: Applicability to general manifold PDE and high-order solution

Case: 2D shallow water equations on elliptical curve

Verify: Applicability to general manifold PDE and high-order solution

Case: 2D shallow water equations on elliptical curve

Formulation: unknowns $\{H, v_s\}$

$$\widetilde{\nabla} \cdot (H \boldsymbol{v}) = 0$$
 (continuity)

$$\widetilde{\nabla} \cdot (H oldsymbol{v} oldsymbol{v}) + g H \, \widetilde{\nabla} (H - b) = \mathbf{0}$$
 (momentum conservation)

water depth H, flow velocity $\mathbf{v} \equiv v_s \,\hat{\mathbf{s}}$, streamwise unit vector $\hat{\mathbf{s}}$

Verify: Applicability to general manifold PDE and high-order solution

Case: 2D shallow water equations on elliptical curve

Formulation: unknowns $\{H, v_s\}$

$$\widetilde{\nabla} \cdot (H \boldsymbol{v}) = 0$$
 (continuity)

$$\widetilde{\nabla} \cdot (H \boldsymbol{v} \boldsymbol{v}) + g H \, \widetilde{\nabla} (H - b) = \mathbf{0}$$
 (momentum conservation)

water depth H, flow velocity $\mathbf{v} \equiv v_s \, \hat{\mathbf{s}}$, streamwise unit vector $\hat{\mathbf{s}}$

- Elliptical curve segment
- "Manufacture" analytic solution $\{H, v_s\}$ by prescribing b

$$\frac{\mathrm{d}b}{\mathrm{d}\theta} = \left(1 - \frac{v_s^2}{gH}\right) \frac{\mathrm{d}H}{\mathrm{d}\theta}$$

• Verified optimal convergence: solution L_2 error $\sim \mathcal{O}(h^{p+1})$

- Verified optimal convergence: solution L_2 error $\sim \mathcal{O}(h^{p+1})$
- Note that high-order solution requires high-order mesh

Grid Convergence Study

Numerical Results

- ullet Output: transition location $x_{
 m tr}$, with $x_{
 m tr,ref}$ from 2048-element grid
- 2^{nd} -order: XFOIL (\checkmark), captured (\times) and fitted transition (\checkmark)

Sample IBL Solution

Setup

- All methods use the same grid: 128 elements on airfoil
- Different closure relations \rightarrow *Not* expected to match XFOIL exactly
- · Qualitative agreement between all the methods under consideration

Left: amplification factor $\tilde{n}(\mathcal{G})$

Right: normalized edge speed $|q_{
m e}/q_{\infty}|$

Sample IBL Solution

Setup

- All methods use the same grid: 128 elements on airfoil
- Different closure relations \rightarrow *Not* expected to match XFOIL exactly
- Qualitative agreement between all the methods under consideration

Left: displacement thickness δ_1^*

Right: momentum defect thickness θ_{11}

Sample IBL Solution

Setup

- All methods use the same grid: 128 elements on airfoil
- ullet Different closure relations o Not expected to match XFOIL exactly
- Qualitative agreement between all the methods under consideration

Left: skin friction coefficient C_{f_1}

Right: dissipation coefficient $C_{\mathcal{D}}$