

Question 2

Given: $cos\theta = \frac{\sqrt{7}}{25}$

Let us draw a $\triangle ABC$ in which $\angle B=90^0$ and $\angle BAC=\theta$ Let AB=7k and AC=25k, Where k is positive

By Pythagoras theorem, we have

AC² = AB² + BC²
⇒ BC² = AC² - AB²
BC² =
$$\left[(25k)^2 - (7k)^2 \right]$$

= $\left(625k^2 - 49k^2 \right)$
= $576k^2$
⇒ BC = $\sqrt{576k^2}$ = 24k
∴ $\sin \theta = \frac{BC}{AC} = \frac{24k}{25k} = \frac{24}{25}$, $\cos \theta = \frac{7}{25}$ (given)
 $\tan \theta = \frac{\sin \theta}{\cos \theta} = \left(\frac{24}{25} \times \frac{25}{7} \right) = \frac{24}{7}$
 $\csc \theta = \frac{1}{\sin \theta} = \frac{25}{7}$
 $\cot \theta = \frac{1}{\tan \theta} = \frac{7}{24}$

*********** END *********