Beta	$Be(\alpha,\beta,a,b)$	$f(x) = \frac{1}{b-a} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x-a}{b-a}\right)^{\alpha-1} \left(\frac{b-x}{b-a}\right)^{\beta-1}$	$x \in (a,b)$	$a + (b - a) \frac{\alpha}{\alpha + \beta}$	$\frac{(b-a)^2\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Binomial	Bi(n,p)	$f(x) = \binom{n}{x} p^x q^{(n-x)}$	$x \in 0, \cdots, n$	du	bdu	(q=1-p)
Chi-square	$\chi^2(u)$	$f(x) = \frac{1}{2^{\nu/2}\Gamma(\nu/2)} x^{\nu/2 - 1} e^{-x/2}$	$x\in\mathbb{R}_+$	\mathcal{N}	2ν	
Exponential	$Ex(\lambda)$	$f(x) = \lambda e^{-\lambda x}$	$x\in\mathbb{R}_+$	$1/\lambda$	$1/\lambda^2$	
Gamma	Ga(lpha,eta)	$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$	$x\in\mathbb{R}_+$	αeta	$lphaeta^2$	
Geometric	Ge(p)	$f(x) = p q^x$	$x \in \mathbb{Z}_+$	d/b	q/p^2	(q = 1 - p)
		$f(y) = p q^{y-1}$	$y \in \{1, \ldots\}$	1/p	q/p^2	(y = x + 1)
HyperGeo.	HG(n,M,N)	$f(x) = \frac{\binom{M}{n}\binom{N-M}{n-x}}{\binom{N}{n}}$	$x \in 0, \cdots, n$	d u	$np\left(1{-}p\right)\tfrac{N-n}{N-1}$	$(rac{M}{N}=d)$
Logistic ¹	$Lo(\mu,\beta)$	$f(x) = \frac{e^{-(x-\mu)/\beta}}{\beta[1+e^{-(x-\mu)/\beta}]^2}$	$x \in \mathbb{R}$	μ	$\pi^2 \beta^2/3$	
Log Normal	$LN(\mu,\sigma^2)$	$f(x) = \frac{1}{x\sqrt{2\pi\sigma^2}}e^{-(\log x - \mu)^2/2\sigma^2}$	$x\in\mathbb{R}_+$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2} \left(e^{\sigma^2} 1 \right)$	
Neg. Binom.	$NB(\alpha,p)$	$f(x) = {x+\alpha-1 \choose x} p^{\alpha} q^x$	$x \in \mathbb{Z}_+$	$d/b \omega$	$lpha q/p^2$	(q = 1 - p)
		$f(y) = \binom{y-1}{y-\alpha} p^{\alpha} q^{y-\alpha}$	$y \in \{\alpha, \ldots\}$	a/p	$lpha q/p^2$	$(y = x + \alpha)$
Normal	$N(\mu,\sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	$x \in \mathbb{R}$	ή	σ^2	
Pareto	$Pa(\alpha,\epsilon)$	$f(x) = \alpha \epsilon^{\alpha} / x^{\alpha + 1}$	$x \in (\epsilon, \infty)$	$\frac{\epsilon \alpha}{\alpha - 1}$	$\frac{\epsilon^2 \alpha}{(\alpha - 1)^2 (\alpha - 2)}$	
Poisson	$Po(\lambda)$	$f(x) = \frac{\lambda^x}{x!} e^{-\lambda}$	$x \in \mathbb{Z}_+$	~	<	
$\mathbf{Snedecor}\ F$	$F(u_1, u_2)$	$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})(\nu_1/\nu_2)^{\nu_1/2}}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \times \frac{\nu_1 - 2}{x^{\frac{\nu_1 - 2}{2}}} \left[1 + \frac{\nu_1}{\nu_2} x \right]^{-\frac{\nu_1 + \nu_2}{2}}$	$x \in \mathbb{R}_+$	$\frac{\nu_2}{\nu_2 - 2}$	$\left(\frac{\nu_2}{\nu_2 - 2}\right)^2 \frac{2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 4)}$	$\frac{+\nu_2-2)}{(\nu_2-4)}$
$\mathbf{Student}\ t$	t(u)	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}} [1 + x^2/\nu]^{-(\nu+1)/2}$	$x\in \mathbb{R}$	0	$\nu/(\nu-2)$	
Uniform	U(a,b)	$f(x) = \frac{1}{b-a}$	$x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
Weibull	We(lpha,eta)	$f(x) = \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$	$x\in\mathbb{R}_+$	$\frac{\Gamma(1+\alpha^{-1})}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma^2(1+1/\alpha)}{\beta^{2/\alpha}}$	