Gabriel R. Munhoz 106802

1. O que são biorreatores?

Biorreatores são equipamentos que conseguem transformar matérias-primas em produtos utilizando agentes biológicos como células, enzimas ou microorganismos.

2. Qual a necessidade de utilização de biorreatores em processos biotecnológicos?

O uso de biorreatores em processos biotecnológicos apresenta inúmeras vantagens, algumas delas são segurança, qualidade e confiabilidade e melhor controle dos processos que estão realizando, além de um menor custo e maior produtividade.

3. Como podem ser classificados os diferentes tipos de biorreatores, segundo Schmidell e Facciotti (Cap.8 Vol.2 – Biotecnologia Industrial).

Podem ser classificados em:

- Reatores em fase aquosa (fermentação submersa) (Células/enzimas livres) Reatores agitados mecanicamente Reatores agitados pneumaticamente Reatores de fluxo pistonado (Células/enzimas imobilizadas em suportes) Reatores com leito fixo Reatores com leito fluidizado (Células/enzimas confinadas entre membranas) Reatores com membranas planas Reatores de fibra oca.
- Reatores em fase não-aquosa (fermentação semi-sólida) Reatores estáticos Reatores com agitação Reatores com leito fixo Reatores com leito fluidizado gás-sólido.

4. Encontre na literatura exemplos de:

a. Fermentações utilizando biorreatores mecanicamente agitados (Stirred Tank Reactor);

Um exemplo de utilização de stirred tank reactor é a produção de hidrogênio a partir de cultura de fermentação de sucrose (Chen and Lin, 2003).

b. Reatores de colunas de bolhas (bubble column);

Um exemplo de fermentação em um reator do tipo coluna de bolhas é a produção de biomassa a partir de soro de leite e levedura Trichosporon.

c. Reatores de leito fixo (fixed bed);

Os reatores de leito fixo são muito utilizados em hidroprocessamento e fazem com que sejam amplamente úteis na indústria do petróleo.

d. Reatores de fibra oca (rollow fiber);

Um exemplo de utilização do rollow fiber reactor é na criação de anticorpos a partir de células de mamíferos.

e. Reatores de bandeja.

Os reatores de bandeja são utilizados em aplicações como por exemplo, estudo da poligalacturonase em um substrato de cascas de manga ou resíduos de maracujá.

5. Quais são as principais formas de condução de processos fermentativos? Explique-as.

Condução Contínua – Substrato com concentração constante, é adicionado continuamente para manter sua concentração.

Condução Descontínua Simples – Substrato adicionado apenas 1 vez com inóculo.

Condução Descontínua Alimentada – Substrato adicionado poucas vez e de forma descontínua, não há concentração de substrato constante no meio.

Condução Semicontínua – São realizadas reposições periódicas do substrato para que possa controlar problemas com fermentação contínua.

6. Diferencie reatores ideais de não-ideais.

Reator ideal é um reator que gera misturas perfeitas e que foi modelado e perfeitamente ajustado para um certo tipo de uso com materiais específicos, já o reator não-ideal é um reator mais genérico que necessita de um tratamento matemático por causa das peculiaridades de cada reação.

7. Quais as considerações feitas no desenvolvimento do balanço molar do reator tubular?

As considerações feitas no desenvolvimento do balanço molar do reator tubular são: Condição de fluxo ideal, ausência de efeitos inibitórios, reação irreversível e reação S -> P que obedece o modelo de Michaelis-Menten.

8. Por que a medição da concentração de enzima livre no meio de cultivo é de difícil precisão? Como prefere-se conduzir o controle da concentração da enzima?