Simulation study: Adjusting for covariate misclassification

```
library(ggplot2)
library(patchwork)
library(INLA)
library(inlamisclass)
```

In this file, we look at two simulated examples and a simultation study where the second example is simulated a number of times to examine the variability.

First example: Symmetric misclassification with independent exposure

In the simplest case, x is independent of any covariates and has a symmetrical misclassification matrix. In this example, we have $x_i \sim \text{Bernoulli}(0.5)$ for $1 \le i \le n$ with n = 100, and misclassification matrix

$$\mathsf{M} = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

That means that the exposure model is

$$logit(E[x]) = 0$$
,

and we simulate the main model of interest according to the model

$$y = 1 + x + \epsilon$$
, $\epsilon \sim N(0, \mathbf{I})$.

In this example we will estimate β_0, β_x, τ_y .

The model for \boldsymbol{x} ($\pi(\boldsymbol{x})$) is simple, and thanks to the symmetry of M and the fact that $P(x_i = 1) = P(x_i = 0)$, we have that $\pi(\boldsymbol{w} \mid \boldsymbol{x}) = \pi(\boldsymbol{x} \mid \boldsymbol{w})$. Therefore, it would be sufficient to sample $\boldsymbol{x}^{(k)}$ by adding misclassification error to \boldsymbol{w} using the given misclassification matrix. This may seem counter-intuitive, but is a direct consequence of the simulation setup. The posterior distribution of $\boldsymbol{\theta}_y = (\beta_0, \beta_x)$ is obtained by

$$\pi(oldsymbol{ heta}_y \mid oldsymbol{y}, oldsymbol{w}) pprox \sum_{k=1}^K \pi(oldsymbol{ heta}_y \mid oldsymbol{x}^{(k)}, oldsymbol{y}) \cdot w_k$$

with $w_k = \pi(\boldsymbol{y} \mid \boldsymbol{x}^{(k)})$.

```
model1 <- inla_is(formula_moi = y ~ w,</pre>
                   formula_imp = w ~ 1,
                   alpha = 0,
                   MC_matrix = MC_matrix,
                   data = data1,
                   niter = niter)
end_time <- Sys.time()</pre>
saveRDS(list(model = model1,
             data = data1,
             runtime = end_time - start_time,
             niter = niter, nburnin = 0, rundate = Sys.time()),
        file = "code/results/simulated1.rds")
simulated1 <- readRDS("code/results/simulated1.rds")</pre>
naive1 <- inla(y ~ w, data = simulated1$data)</pre>
correct2 <- inla(y ~ x, data = simulated1$data)</pre>
plot_compare_inlamisclass(mcmc_results = simulated1$model,
                           naive_mod = naive1,
                            correct_mod = correct2,
                           niter = simulated1$niter,
                            plot_intercept = TRUE)
```


In this example, we ran the importance sampling for 10^5 iterations, which took 5 hours.

Second example: Asymmetric misclassification and exposure depending on covariate

In a second example we used

$$\mathsf{M} = \begin{pmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{pmatrix} ,$$

and generated the true \boldsymbol{x} with a dependency on an additional continuous (and error-free) covariate \boldsymbol{z} . First, each component of \boldsymbol{z} was generated uniformly $z_i \sim \text{Unif}(-1,1)$ for $1 \leq i \leq 200$, and then the \boldsymbol{x} variables was sampled according to an exposure model given as

$$logit[E(\boldsymbol{x} \mid \boldsymbol{z})] = \alpha_0 \mathbf{1} + \alpha_z \boldsymbol{z} ,$$

with $\alpha^{\top} = (\alpha_0, \alpha_z) = (-0.5, 0.25)$. This dependency was then also appropriately reflected in the analysis, assuming that α was known. The response y was simulated according to the linear model

$$y = 1 + x + z + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, \mathbf{I})$.

To sample from $\pi(x \mid w, z)$, we used that the components in x are independent, thus

$$\pi(\boldsymbol{x} \mid \boldsymbol{w}, \boldsymbol{z}) = \prod_{i=1}^{n} \pi(x_i \mid w_i, z_i) .$$

Each component can then be sampled from a Bernoulli distribution with success probability

$$\pi(x_i \mid w_i, z_i) = \frac{\pi(w_i \mid x_i) \cdot \pi(x_i \mid z_i)}{\sum_{j=0}^{1} \pi(w_i \mid x_i = j) \cdot \pi(x_i = j \mid z_i)} ,$$

using the error model $\pi(w \mid x)$ as encoded in the MC matrix, and $\pi(x \mid z)$ from the exposure model.

The rest of the procedure is again the same as in the first example: For each iteration k, a sample $\boldsymbol{x}^{(k)}$ is employed to obtain the posterior distribution of the regression parameters $\pi(\boldsymbol{\theta}_y \mid \boldsymbol{x}^{(k)}, \boldsymbol{z}, \boldsymbol{y})$, which is weighted with the conditional marginal likelihood $\pi(\boldsymbol{y} \mid \boldsymbol{x}^{(k)}, \boldsymbol{z})$.

In this example we estimate $\beta_0, \beta_x, \beta_z, \tau_y$.

```
MC_{matrix} \leftarrow matrix(c(0.9, 0.1, 0.2, 0.8), nrow = 2, byrow = T)
set.seed(1)
data2 <- generate_misclassified(n = 100, p = 2, MC_matrix = MC_matrix,</pre>
                                  betas = c(1, 1, 1),
                                  alphas = c(-0.5, 0.25))
start time <- Sys.time()
model2 <- inla_is(formula_moi = y ~ w + z,</pre>
                   formula_imp = w ~ z,
                   alpha = c(-0.5, 0.25),
                   MC_matrix = MC_matrix,
                   data = data2,
                   niter = niter)
end_time <- Sys.time()</pre>
saveRDS(list(model = model2,
             data = data2,
             runtime = end time - start time,
             niter = niter, nburnin = 0, rundate = Sys.time()),
        file = "code/results/simulated2.rds")
```


In this example, we ran the importance sampling for 10^5 iterations, which took 4.82 hours.

Repeating the simulation many times

When running the first two examples, we have noticed that the model sometimes does not seem to adjust completely for the misclassification, when different simulated datasets are used. To examine this further, we simulate 10 different datasets using the same simulation setup, and fit the model separately to each of these. We use the simulation setup from the second example, that is:

MC matrix:

$$\mathsf{M} = \begin{pmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{pmatrix} \;,$$

exposure model:

$$logit(E[x \mid z]) = -0.5 \cdot 1 + 0.25z$$
,

and model of interest:

$$y = 1 + x + z + \epsilon$$
, $\epsilon \sim N(0, \mathbf{I})$.

```
n <- 100
n_runs <- 5
# Suffix giving number of iterations and sample size when saving data and models
name_append <- paste0("n", n, "_", "niter", niter)</pre>
MC_{matrix} \leftarrow matrix(c(0.9, 0.1, 0.2, 0.8), nrow = 2, byrow = T)
all_runs <- list()
for(i in 1:n_runs){
  # Generate data
  data_mc <- generate_misclassified(n = n, p = 2, MC_matrix = MC_matrix,</pre>
                                      betas = c(1, 1, 1),
                                      alphas = c(-0.5, 0.25))
  # Check correct model
  correct_coef <- inla(y ~ x + z, data = data_mc)$summary.fixed</pre>
  correct coef
  # attenuated version
  naive_coef <- inla(y ~ w + z, data = data_mc)$summary.fixed</pre>
  naive_coef
  inla_mod <- inla_is(formula_moi = y ~ w + z,</pre>
                       formula_imp = w ~ z,
                       alpha = c(-0.5, 0.25),
                       MC_matrix = MC_matrix,
                       data = data_mc,
                       niter = niter)
  # Extracting relevant stuff
  naive_summ <- data.frame(naive_coef[, c(1,2,3,5)])</pre>
  naive_summ$variable <- c("beta.0", "beta.x", "beta.z")</pre>
  correct_summ <- data.frame(correct_coef[, c(1,2,3,5)])</pre>
  correct_summ$variable <- c("beta.0", "beta.x", "beta.z")</pre>
  inla_summ <- make_results_df(inla_mod)$moi</pre>
  inla_summ$variable <- c("beta.0", "beta.x", "beta.z")</pre>
  colnames(inla_summ) <- c("variable", "mean", "X0.025quant", "X0.975quant")</pre>
  all_mods <- dplyr::bind_rows(naive = naive_summ,
                                 inla_is = inla_summ,
                                 correct = correct_summ,
                                 .id = "model")
  all_mods$iteration <- as.factor(i)</pre>
  all_runs <- rbind(all_runs, all_mods)
saveRDS(all_runs, file = paste0("code/results/run_simulation_many_times_", name_append, ".rds"))
all_runs <- readRDS(paste0("code/results/run_simulation_many_times_", name_append, ".rds"))
all_runs$model <- factor(all_runs$model, levels = c("naive", "inla_is", "correct"))
```

```
colors <- c("brown3", "darkgoldenrod2", "royalblue4")</pre>
```


ggsave(paste0("figures/all_realizations_simulated_", name_append, ".pdf"))

```
## Saving 6.5 \times 4.5 in image
```

```
ggplot(dplyr::filter(all_runs, !(variable %in% c("alpha.0", "alpha.z"))),
        aes(y = mean, x = model)) +
geom_boxplot() +
facet_grid(cols = vars(variable), scales = "free") +
theme_bw() +
theme(axis.title.x = element_blank())
```


Saving 6.5×4.5 in image