1 Warm-up

In the reading, we introduced a way to encode information about linear transformations from \mathbb{R}^2 to \mathbb{R}^2 using 2×2 matrices.

Exercise 1. Show that

$$Span\left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right) = \mathbb{R}^2$$

using the definition of span.

Exercise 2. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, with

$$T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\3\end{pmatrix}$$

$$T\left(\begin{pmatrix} 2\\2 \end{pmatrix}\right) = \begin{pmatrix} 2\\6 \end{pmatrix}$$

then what is [T]?

Exercise 3. For the standard basis, $\alpha = (\vec{e}_1, \vec{e}_2)$, what is $[Coord_{\alpha}]$?

STOP

Before moving on, check in with the other team of the same color, and compare answers. If your group is ahead, help them catch up.

2 Practice and Applications

Exercise 4. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ are linear transformation with

$$T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}-1\\1\end{pmatrix}$$

$$T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1\\2\end{pmatrix}$$

and

$$[S] = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$$

then

(a)
$$T \circ S\left(\begin{pmatrix} 1\\0 \end{pmatrix}\right) =$$

(b)
$$T \circ S\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) =$$

Exercise 5. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ are linear transformation with

$$T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}a\\c\end{pmatrix}$$

$$T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}b\\d\end{pmatrix}$$

and

$$[S] = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

then

(a)
$$[T \circ S] =$$

(b)
$$[S \circ T] =$$

STOP

Before moving on, check in with the other team of the same color, and compare answers. If your group is ahead, help them catch up.

3 Check Your Understanding

Exercise 6. Is there a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which all of the following hold?:

$$T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\-1\end{pmatrix}$$

$$T\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1\\0\end{pmatrix}$$

$$T\left(\begin{pmatrix} -1\\3 \end{pmatrix} \right) = \begin{pmatrix} 6\\2 \end{pmatrix}$$

Explain your reasoning.

Exercise 7. Suppose a linear transformation, $T: \mathbb{R}^2 \to \mathbb{R}^2$, geometrically, rotates points $\pi/2$ radians about the origin.

- (a) $T\left(\begin{pmatrix}1\\0\end{pmatrix}\right) =$
- (b) $T\left(\begin{pmatrix} 0\\1 \end{pmatrix}\right) =$
- (c) What is the geometric effect of $T \circ T$? Explain.
- (d) What is the geometric effect of $(T \circ T) \circ T$? Explain.
- (e) What is $[((T \circ T) \circ T) \circ T]$?

STOP

Before moving on, check in with the other team of the same color, and compare answers. If your group is ahead, help them catch up.

3

For next time

- Complete this worksheet
- \bullet Finish reading Section 3.1
- $\bullet\,$ Read Section 3.2, through the proof of Proposition 3.2.2.