the data challenge in music information retrieval FSRM 2023

alexander lerch

introduction about me

education

- Electrical Engineering (Technical University Berlin)
- Tonmeister (music production, University of Arts Berlin)

professional

- Associate Professor at the School of Music, Georgia Institute of Technology
- 2000-2013: CEO at zplane.development

background

- audio algorithm design (20+ years)
- commercial music software development (10+ years)
- entrepreneurship (10+ years)

vww.linkedin.com/in/lerch

ESRM 2023

introduction audio classification

- audio classification: one of the earliest and seminal tasks in Music Information. Retrieval (MIR)
- includes, e.g.,
 - music/speech classification
 - genre classification
 - musical instrument recognition
 - mood recognition
 - music auto-tagging
 - artist classification
- non-music related
 - speaker detection

ESRM 2023

introduction audio classification

- audio classification: one of the earliest and seminal tasks in Music Information Retrieval (MIR)
- includes, e.g.,
 - music/speech classification
 - genre classification
 - musical instrument recognition
 - mood recognition
 - music auto-tagging
 - artist classification
 - ...
- non-music related
 - speaker detection
 - audio event detection
 - ..

introduction old work: genre classification

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

- e.g., Support Vector Machines etc.

content nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf. **ESRM 2023**

¹J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," Journal of the Audio Engineering Society (JAES), vol. 52, no. 7/8, pp. 724-739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction old work: genre classification

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

 $content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf. Automatic-Audio-Signal-Classification.pdf. Automatic-Audio-Signal-Classification.p$

FSRM 2023 3 / 27

¹ J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction old work: genre classification

3 / 27

feature representation

- compact and non-redundant
- task-relevant
- easy to analyze
- e.g., MFCCs etc.

classification

- map or convert feature to comprehensible domain
- e.g., Support Vector Machines etc.

content_nondefault/uploads/2016/10/Burred-and-Lerch-2004-Hierarchical-Automatic-Audio-Signal-Classification.pdf.

FSRM 2023

¹ J. J. Burred and A. Lerch, "Hierarchical Automatic Audio Signal Classification," *Journal of the Audio Engineering Society (JAES)*, vol. 52, no. 7/8, pp. 724–739, 2004. [Online]. Available: http://www.musicinformatics.gatech.edu/wp-

introduction neural network based approaches

Georgia Center for Music Tech Technology

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

FSRM 2023 4 / 2

introduction neural network based approaches

- no custom-designed features anymore
- learn features from basic inputs (like spectrograms)

- less required expert-knowledge, more complex systems
- less expert-tweaking, more rigorous experimental requirement
- much higher data requirements

Georgia Center for Music Tech Technology

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- model success largely depends on training data
- general challenges concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount

FSRM 2023

5 / 27

Georgia Center for Music Tech Technology

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- general challenges concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity
 - amount

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- **general challenges** concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity

ESRM 2023

data importance of data

machine learning: generic algorithm mapping an input to an output

- mapping function is learned from patterns and characteristics from data
- ⇒ model success largely depends on training data
- general challenges concerning data
 - noisiness
 - subjectivity
 - imbalance, bias, and diversity

FSRM 2023

5 / 27

data insufficient data Georgia Center for Music Tech Technology

insufficient data in music

FSRM 2023 6 / 27

insufficient data in music

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections

FSRM 2023 6 / 27

insufficient data in music

- music data itself is not scarce (although there might be copyright issues...)
- consumer annotations are more difficult to collect, but there are some large collections
- detailed musical annotations are hard to come by, because
 - time consuming and tedious annotation process
 - experts needed for annotations

FSRM 2023 6 / 27

overview overview

Georgia Center for Music Tech Tech Technology

1 semi-supervised learning

• utilize unlabeled data to improve classification

2 self-supervised representation learning

• utilize pre-trained features to improve classification

3 reprogramming

utilize pre-trained model to improve classification

FSRM 2023 7 / 27

semi-supervised audio classification introduction

Georgia Center for Music Tech Technology

observation:

- unlabeled data is readily available
 - example: OpenMIC dataset (musical instrument classification)

Data Point	# #		+	***	 	***
	Guitar	Drum	Bass	Violin	Piano	Flute
Fully Labeled	1	1	1	×	1	×
Partially Labeled	1	1	?	×	?	?

goal:

• utilize unlabeled data for training to improve inference

FSRM 2023 8 / 27

semi-supervised audio classification introduction

observation:

- unlabeled data is readily available
 - example: OpenMIC dataset (musical instrument classification)

Data Point	# #		+	***	 	***
	Guitar	Drum	Bass	Violin	Piano	Flute
Fully Labeled	1	1	1	×	1	×
Partially Labeled	1	1	?	×	?	?

■ goal:

• utilize unlabeled data for training to improve inference

FSRM 2023 8 / 2

semi-supervised audio classification experimental setup: data

OpenMic:

- 20 classes of musical instruments
- 10 s audio snippets (20000)
- 90% of labels are missing

■ SONYC Urban Sound Tagging:

- 23 classes of urban noise
- 10 s audio snippets (13538 + 4308 + 669)
- 6% of labels are missing

FSRM 2023 9 / 2

semi-supervised audio classification experimental setup: baselines

- Baseline 0 (B0):
 - missing labels are treated as negative labels
 - "standard approach"
- Baseline 1 (B1):
 - missing labels are masked out of the loss function

FSRM 2023 10 / 27

semi-supervised audio classification method 1: label enhancing

■ stage 1:

- assume all missing labels are negative
- train a teacher system

■ stage 2:

- predict labels with teacher
- train student with combined training set/likely predicted labels
- mask the loss for unlikely negatives

²E. Fonseca, S. Hershey, M. Plakal, *et al.*, "Addressing Missing Labels in Large-Scale Sound Event Recognition Using a Teacher-Student Framework With Loss Masking," *IEEE Signal Processing Letters*, vol. 27, pp. 1235–1239, 2020, arXiv: 2005.00878, ISSN: 1070-9908, 1558-2361. DOI:

FSRM 2023 11 / 27

semi-supervised audio classification method 2: mean teacher

- teacher and student are trained simultaneously
- teacher is exponential average (EMA) of student
- consistency loss is computed from the teacher predictions
- student is updated with both consistency loss and binary cross-entropy loss

FSRM 2023 12 / 27

³P. Bachman, O. Alsharif, and D. Precup, "Learning with Pseudo-Ensembles," in *Advances in Neural Information Processing Systems*, vol. 27, Curran Associates, Inc., 2014. [Online]. Available:

semi-supervised audio classification results: classification

Georgia Center for Music Tech Technology

- general observations
 - B0 always worse performance
 - B1 much better but can be outperformed
- (i) OpenMic:
 - Mean Teacher outperforms Label Enhancing

- (iii) SONYC Urban Sound Tagging:
 - comparable performance of Mean Teacher and Label Enhancing

FSRM 2023 13 / 27

⁴S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International Symposium on Multimedia (ISM)*, online: Institute of Electrical and Electronics Engineers (IEEE), 2021. [Online]. Available:

semi-supervised audio classification results: data dependency

Georgia Center for Music Tech Technology

- removing labels from SONYC Urban Sound Tagging
 - baselines deteriorate much faster

⁵S. Gururani and A. Lerch, "Semi-Supervised Audio Classification with Partially Labeled Data," in *Proceedings of the IEEE International Symposium on Multimedia (ISM)*, online: Institute of Electrical and Electronics Engineers (IEEE), 2021. [Online]. Available:

FSRM 2023 14 / 27

self-supervised representation learning introduction

question:

• how can we provide extra training information without additional data labels (related approaches: transfer learning, multi-task learning)

■ idea:

use proven pre-trained features (e.g., VGGish, OpenL3)

goals:

- impart knowledge of pre-trained deep models (VGGish, L3)
- improve model generalization by utilizing pre-trained features
- use pre-trained features only during training

FSRM 2023 15 / 27

self-supervised representation learning introduction

question:

• how can we provide extra training information without additional data labels (related approaches: transfer learning, multi-task learning)

idea:

use proven pre-trained features (e.g., VGGish, OpenL3)

■ goals:

- impart knowledge of pre-trained deep models (VGGish, L3)
- improve model generalization by utilizing pre-trained features
- use pre-trained features only during training

FSRM 2023 15 / 27

self-supervised representation learning method overview

- method 1: "Con-Reg"
 - make embedding space more similar to embedding space of features
- method 2: "Dis-Reg"
 - force distances between pairs of embedding vectors to be similar to feature distances

FSRM 2023 16 / 27

self-supervised representation learning experimental setup: baselines

- standard transfer learning
 - 1 extract features with pre-trained network
 - 2 train classifier for new task with feature input
- **concat**enation:
 - concatenate the pre-trained features and the learned embeddings
 - classifier has the combined information (trained and pre-trained)

FSRM 2023 17 / 27

self-supervised representation learning experimental setup: data

Georgia Center for Music Tech Tech Technology

- DCASE 17:
 - 17 audio event classes.
 - 10 s audio snippets (≈ 53000)
- MagnaTagATune (MTAT):
 - 50 music tags
 - $30 \, \text{s}$ audio snippets (≈ 21000)

FSRM 2023 18 / 27

self-supervised representation learning results: classification metrics

Georgia de Center for Music Tech de Technology College of Design

	Methods	DCASE 17 (F1)			MTAT (PR-AUC)				
		None	VGGish	OpenL3	Combined	None	VGGish	OpenL3	Combined
	Won et al.	0.547	-	-	-	0.465	-	-	-
BL	transfer	-	0.496	0.477	0.501	-	0.454	0.454	0.456
DL	concat	-	0.529	0.492	0.495	-	0.457	0.464	0.458
Prop.	Con-Reg	-	0.568	0.557	0.576	-	0.471	0.466	0.469
	Dis-Reg	-	0.548	0.543	0.563	-	0.464	<u>0.468</u>	0.463

- two baselines *cannot outperform* the trained system without additional features
- combining VGGish and L3 generally improves on the individual feature results
- approach improves embedding space by using pre-trained features during training

FSRM 2023 19 / 27

⁶Y.-N. Hung and A. Lerch, "Feature-informed Embedding Space Regularization for Audio Classification," in *Proceedings of the European Signal Processing Conference (EUSIPCO)*, Belgrade, Serbia, 2022. DOI: 10.48550/arXiv.2206.04850. [Online]. Available: http://arxiv.org/abs/2206.04850.

self-supervised representation learning results: data dependency

Georgia de Center for Music Tech de Technology

- Con-Reg outperforms non-regularized system in all cases
- larger improvement for lower amounts of data

FSRM 2023 20 / 27

⁷Y.-N. Hung and A. Lerch, "Feature-informed Embedding Space Regularization for Audio Classification," in *Proceedings of the European Signal Processing Conference (EUSIPCO)*, Belgrade, Serbia, 2022. DOI: 10.48550/arXiv.2206.04850. [Online]. Available: http://arxiv.org/abs/2206.04850.

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

re-using pre-trained models for a new task without re-training

goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

FSRM 2023 21 / 27

reprogramming introduction

observation

 pre-trained deep models can be very powerful if trained with sufficient data, even for different tasks

■ idea

• re-using pre-trained models for a new task without re-training

■ goals

- keep number of training parameters minimal
- utilize unmodified network trained on different task

FSRM 2023 21 / 27

reprogramming overview

Georgia Center for Music Tech Technology

- inspired by
 - transfer learning
 - adversarial learning

allows for small trainable model (input and output processing)

FSRM 2023 22 / 27

reprogramming experimental setup: data

Georgia Center for Music Tech Technology

OpenMic:

- 20 classes of musical instruments
- 10 s audio snippets (20000)

FSRM 2023 23 / 27

reprogramming experimental setup: baselines

Georgia Center for Music Tech Tech College of Design

- Baseline AST:
 - state of the art performance on audio event classification⁸
- ablation study:
 - CNN only
 - U-Net only
 - CNN + AST + FC
 - U-Net + AST + FC

FSRM 2023 24 / 27

⁸Y. Gong, Y.-A. Chung, and J. Glass, "AST: Audio Spectrogram Transformer," in *Proceedings of Interspeech*, arXiv: 2104.01778, Brno, Czechia, Jul. 2021. [Online]. Available: http://axxiv.org/abs/2104.01778 (visited on 04/17/2022).

reprogramming results: classification metrics

Georgia Center for Music Tech Technology

method	F1 (macro)	train. param. (M)
AST + simple output mapping	62.03	0.001
CNN	60.77	0.017
U-Net	62.73	0.017
CNN + AST + FC	78.08	0.017
$U extsf{-}Net + AST + FC$	81.60	0.018

- a powerful model trained on a different task cannot easily be used directly
- proper input and output processing can significantly improve performance
- re-programming can beat the state-of-the-art with a fraction of trainable parameters (at least factor 10)

FSRM 2023 25 / 27

⁹H.-H. Chen and A. Lerch, "Music Instrument Classification Reprogrammed," in *Proceedings of the International Conference on Multimedia Modeling (MMM)*, Bergen, Norway, 2023. [Online]. Available: https://arxiv.org/abs/2211.08379.

CONCLUSION learning with insufficient data

- literature presents many ways of dealing with insufficient data
 - data augmentation
 - data synthesis
 - transfer learning
 - semi- and self-supervised approaches
 - . .
- we presented 3 recent approaches
 - state-of-the-art semi-supervised learning
 - a novel self-supervised regularization loss
 - reprogramming for audio classification
- all approaches perform at or above the state-of-the-art with different trade-offs between
 - training complexity
 - inference complexity
 - classification accuracy

FSRM 2023 26 / 27

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

zplane.development: www.zplane.de

music informatics group: musicinformatics.gatech.ed

github.com/alexanderlerch

Georgia Center for Music Tech

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

zplane.development: www.zplane.de

music informatics group: musicinformatics.gatech.edu

github.com/alexanderlerch

Georgia Center for Music Tech Technology

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

zplane.development: www.zplane.de

music informatics group: musicinformatics.gatech.edu

Georgia Center for Music Tech

links

alexander lerch: www.linkedin.com/in/lerch

mail: alexander.lerch@gatech.edu

book: www.AudioContentAnalysis.org

zplane.development: www.zplane.de

music informatics group: musicinformatics.gatech.edu

github.com/alexanderlerch