

Principal Component Analysis and Exploratory Factor Analysis

Module 3: Exploratory Factor Analysis

Karen Grace-Martin

Workshop Outline

Exploratory Factor Analysis

- 1. The Similarities and Differences between EFA and PCA
- Methods of Initial Extraction for EFA
- 3. More on Factor Scores and Factor-Based Scores
- 4. Reporting Results
- 5. Example

The Similarities and Differences between EFA and PCA

PCA vs. (Common) Factor Analysis

PCA	FA
Components are a linear function of Variables	Variables are a linear function of Factors
$C = W_1(Y_1) + W_2(Y_2) + W_3(Y_3) + W_4(Y_4)$	$Y_1 = b_1 F_1 + b_2 F_2 + u_1$
Explains <i>all</i> variance in variables, assumes no error variance	Explains common variance in variables, assumes error and specific variance
A Component is an <i>artificial</i> variable, a linear combination of observed variables	A Factor is a <i>latent</i> variable responsible for the correlation among observed variables
Calculated Component Scores are actual measures of the components	Calculated Factor Scores are <i>estimates</i> of the latent variable
Can only reduce number of variables	Can examine the <i>underlying structure</i> of factors that create correlations in the data

Principal Component Analysis

Factor Analysis

$$C = W_1(Y_1) + W_2(Y_2) + W_3(Y_3) + W_4(Y_4)$$

$$Y_1 = b_1*F + e_1$$

 $Y_2 = b_2*F + e_2$
 $Y_3 = b_3*F + e_3$
 $Y_4 = b_4*F + e_4$

Principal Component Analysis or Factor Analysis?

Animal Data Set:

- Weight
- Total Sleep
- Predation
- Exposure During Sleep

Breastfeeding Data Set:

- Breastfeeding intention
- Self-Efficacy to Resist Formula

Caregivers:

- Mutual Communal Behavior Scale
- CES-D

Psych Data:

- Life Orientation (Optimism)
- Social Anxiety
- Attitude toward counseling

PCA General Variable Reduction Process

Exploratory Factor Analysis General Measurement Model Process

Write a set of items for a scale designed to measure a latent construct or multiple related constructs

Run an EFA to see loadings on the intended scale or subscales

Iteratively rerun the EFA to get the optimal number of factors and cleanly loading items

If necessary, rewrite items and rerun on a new sample

Once you find a clean loading of items on subscales, collect a new data set and run a Confirmatory FA

Factor Analysis Steps

- 1. Initial Extraction of the Factors
- 2. Determine the Number of Factors to Retain
- 3. Rotation
- 4. Interpret the Rotated Solution
- 5. Create Factor Scores
- 6. Summarize the results in a Table
- 7. Write a formal description of results for a paper

Compared to PCA

- 1. Same step, different extraction method
- 2. Same

- 3. Same
- 4. Same, apply interpretation to latent variables
- 5. Maybe not in EFA
- 6. New
- 7. New

Methods of Initial Extraction for EFA

Correlation Matrix

	HospBf	HospF	ONEmosBf	ONEmosF	FIVEmosBf	FIVEmosF
HospBf	1.000	.305	.713	.085	.370	.080
HospF	.305	1.000	.331	.752	.259	.553
ONEmosBf	.713	.331	1.000	.159	.490	.172
ONEmosF	.085	.752	.159	1.000	.164	.665
FIVEmosBf	.370	.259	.490	.164	1.000	.470
FIVEmosF	.080	.553	.172	.665	.470	1.000

Two Component

Extraction:

Communalities Initial Extraction HospBf .778 1.000 HospF 1.000 .747 **ONEmosBf** 1.000 .827 **ONEmosF** 1.000 .847 **FIVEmosBf** 1.000 .506 **FIVEmosF** 1.000 .739

Six Component

Extraction:

Communalities						
	Initial	Extraction				
HospBf	1.000	1.000				
HospF	1.000	1.000				
ONEmosBf	1.000	1.000				
ONEmosF	1.000	1.000				
FIVEmosBf	1.000	1.000				
FIVEmosF	1.000	1.000				

Correlation Matrix

	HospBf	HospF	ONEmosBf	ONEmosF	FIVEmosBf	FIVEmosF
HospBf	1.000	.305	.713	.085	.370	.080
HospF	.305	1.000	.331	.752	.259	.553
ONEmosBf	.713	.331	1.000	.159	.490	.172
ONEmosF	.085	.752	.159	1.000	.164	.665
FIVEmosBf	.370	.259	.490	.164	1.000	.470
FIVEmosF	.080	.553	.172	.665	.470	1.000

Two Component

Extraction:

Communalities						
Initial Extraction						
HospBf	1.000	.778				
HospF	1.000	.747				
ONEmosBf	1.000	.827				
ONEmosF	1.000	.847				
FIVEmosBf	1.000	.506				
FIVEmosF	1.000	.739				

Six Component

			,		
Ext	·ra	Ct1		n	•
ΓV	.ı u	CLI	U		•

Communalities						
Initial Extraction						
HospBf	1.000	1.000				
HospF	1.000	1.000				
ONEmosBf	1.000	1.000				
ONEmosF	1.000	1.000				
FIVEmosBf	1.000	1.000				
FIVEmosF	1.000	1.000				

Squared Multiple Correlation is One Estimate of Common Variance

SMC for HospBF is the R² from this model:

 $HospBf_i = \beta_0 + \beta_1 HospF_i + \beta_2 ONEmosBf_i + \beta_3 ONEmosF_i + \beta_4 FIVEmosBf_i + \beta_5 FIVEmosF_i + \epsilon_i$

Correlation Matrix

	HospBf	HospF	ONEmosBf	ONEmosF	FIVEmosBf	FIVEmosF
HospBf		.305	.713	.085	.370	.080
HospF	.305		.331	.752	.259	.553
ONEmosBf	.713	.331		.159	.490	.172
ONEmosF	.085	.752	.159		.164	.665
FIVEmosBf	.370	.259	.490	.164		.470
FIVEmosF	.080	.553	.172	.665	.470	

Five Factor
Extraction:

Communalities							
	Initial Extraction						
HospBf	.534	.722					
HospF	.630	.775					
ONEmosBf	.578	.799					
ONEmosF	.687	.898					
FIVEmosBf	.446	.642					
FIVEmosF	.596	.816					

Two Factor

Extraction:

Communalities						
	Initial	Extraction				
HospBf	.534	.586				
HospF	.630	.638				
ONEmosBf	.578	.865				
ONEmosF	.687	.855				
FIVEmosBf	.446	.311				
FIVEmosF	.596	.562				

Initial Extraction of the Factors in PAF

Correlation Matrix

	HospBf	HospF	ONEmosBf	ONEmosF	FIVEmosBf	FIVEmosF
HospBf	.534	.305	.713	.085	.370	.080
HospF	.305	.630	.331	.752	.259	.553
ONEmosBf	.713	.331	.578	.159	.490	.172
ONEmosF	.085	.752	.159	.687	.164	.665
FIVEmosBf	.370	.259	.490	.164	.446	.470
FIVEmosF	.080	.553	.172	.665	.470	.596

Five Factor

Extraction:

Communalities					
Initial Extraction					
HospBf	.534	.722			
HospF	.630	.775			
ONEmosBf	.578	.799			
ONEmosF	.687	.898			
FIVEmosBf	.446	.642			
FIVEmosF	.596	.816			

Two Factor

Extraction:

Communalities						
	Initial Extraction					
HospBf	.534	.586				
HospF	.630	.638				
ONEmosBf	.578	.865				
ONEmosF	.687	.855				
FIVEmosBf	.446	.311				
FIVEmosF	.596	.562				
•		•				

PCA

	Total Variance Explained					
	Initial Eigenvalues			Extraction	on Sums of Squa	red Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.876	47.926	47.926	2.876	47.926	47.926
2	1.568	26.128	74.054	1.568	26.128	74.054
3	.803	13.375	87.430			
4	.293	4.889	92.319			
5	.277	4.622	96.941			
6	.184	3.059	100.000			

PAF

Total Variance Explained						
	Initial Eigenvalues				ion Sums of Squa	red Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.876	47.926	47.926	2.533	42.221	42.221
2	1.568	26.128	74.054	1.283	21.386	63.607
3	.803	13.375	87.430			
4	.293	4.889	92.319			
5	.277	4.622	96.941			
6	.184	3.059	100.000			

Extraction Techniques in Common Factor Analysis

- 1. Principal Axis Factoring (PAF): Squared Multiple correlations
- **2. Maximum Likelihood** (ML): Iterative process that produces parameter estimates most likely to have resulted in the actual correlation matrix
- **3. Unweighted Least Squares**: Minimizes the sum of the squared differences between observed and reproduced correlation matrices
- **4. Generalized Least Squares**: Same as ULS, but correlations are weighted by the inverse of their uniqueness.
- **5. Alpha Factoring**: uses and maximizes Cronbach's alpha (internal consistency). Generalizes to a population of measures, not a populatin of individuals (but only for unrotated solution)
- **6. Image Factoring**: Common variance in a variable is defined as its linear regression on remaining variables in the correlation matrix, not the factors

	Extraction Sums of Squared Loading				
PCA	Component	Total	% of Variance	Cumulative %	
	1	2.876	47.926	47.926	
	2	1.568	26.128	74.054	

PAF	
-----	--

	Extraction Sums of Squared Loadings				
Factor	Total	% of Variance	Cumulative %		
1	2.533	42.221	42.221		
2	1.283	21.386	63.607		

ML

Extraction Sums of Squared Loadings					
Total	% of Variance	Cumulative %	L		
2.362	39.374	39.374	•		
1.546	25.764	65.138			

Factor % of Variance Total Cumulative % 2.333 38.883 38.883 1.479 24.651 63.534

Extraction Sums of Squared Loadings

Extraction Sums of Squared Loadings

GLS

Factor	Cumulative %		
1	2.362	39.374	39.374
2	1.546	25.764	65.138

AF

Factor	Total	% of Variance	Cumulative %
1	2.520	42.007	42.00
2	1.293	21.548	63.55

ULS

		Extraction Sums of Squared Loadings				
F	actor	Total	% of Variance	Cumulative %		
1		2.534	42.228	42.228		
2		1.284	21.404	63.633		
	•					

IF

	Extraction Sums of Squared Loadings			
Factor	Total	% of Variance	Cumulative %	
1	2.106	35.093	35.093	
2	.869	14.481	49.574	

Which Extraction to use?

Similar results from all options if:

- basic assumptions are met
- the factor structure is clear.

Recommendations

Maximum Likelihood

- Confirmatory models
- Normally distributed items
- Larger sample sizes

Principal Axis Factoring

 Less sensitive to non-normality

Factor Scores and Factor-Based Scores

Factor Scores and Factor Based Scores

Estimated Factor Scores

Theoretical model: $Y_1 = b_1F_1 + b_2F_2 + u_1$

Estimated Factor Scores:

$$F'_{1} = b_{11}(Y_{1}) + b_{12}(Y_{2}) + b_{13}(Y_{3}) + b_{14}(Y_{4})$$

$$F'_{2} = b_{21}(Y_{1}) + b_{22}(Y_{2}) + b_{23}(Y_{3}) + b_{24}(Y_{4})$$

Estimated Factor-Based Scores

Estimated Factor Score: $FB'_1 = (Y_1 + Y_2 + Y_3)/3$

Assumption:

factor loadings are stable and generalizable

Assumption: all variables have equal contribution to the construct

Create Estimated Factor Scores

Regression: Standardized scores have a mean of 0 and a variance = squared multiple correlation between the estimated factor scores and the true factor values

Bartlett: lowers weight on variables with lower loadings

Anderson-Rubin: Modification of Bartlett. Standardized scores have a mean of 0 and a variance = 1

Factor Scores Method: Regression.

Factor Score Coefficient Matrix			
	Factor		
	1	2	
HospBf	020	.199	
HospF	.145	.073	
ONEmosBf	117	.774	
ONEmosF	.719	238	
FIVEmosBf	.109	.005	
FIVEmosF	.148	.107	

Factor Scores Method: Bartlett.

Fastau Casus (tt: -: + 1	
Factor Score Coefficient Matrix		
	Facto	r
	1	2
HospBf	038	.231
HospF	.225	.035
ONEmosBf	101	.846
ONEmosF	.754	160
FIVEmosBf	.026	.079
FIVEmosF	.191	008

Factor Scores Method: Anderson-Rubin.

Factor Score Coefficient Matrix			
	Factor		
	1	2	
HospBf	034	.218	
HospF	.213	.035	
ONEmosBf	089	.798	
ONEmosF	.711	145	
FIVEmosBf	.025	.075	
FIVEmosF	.180	006	

Factor Based Scores

Create variables that are a mean of the variables that load on each factor:

FBS 1 = Mean(HospF, ONEmosF, FIVEmosF).

FBS_2 = Mean(HospBF, ONEmosBF, FIVEmosBF).

	FAC1_1	FAC1_2	FAC1_3	FBS_1
	REGR factor	BART factor	A-R factor	Factor based
	score 1	score 1	score 1 for	score
FAC1_1	1	.997	.997	.965
FAC1_2	.997	1	1.000	.966
FAC1_3	.997	1.000	1	.967
FBS_1	.965	.966	.967	1

Should you use Factor Scores on an Exploratory Data Set?

"EFA should be used as an exploratory technique only, and as prelude to follow-up with confirmatory methods..."

"EFA was not designed to produce highly refined estimates of latent variables for use in subsequent analyses" "The solutions that we often receive from EFA are highly unstable across samples, and thus factor scores would be highly unstable. This is not a good situation for scientific inquiry"

> - J. Osbourne, Best Practices in Exploratory Factor Analysis 2014

Replication and Confirmation

EFA is an exploratory technique

Best Practices include:

- 1. Avoid overfitting by replicating
- If sample size is sufficient, split the sample
- Run two EFAs on different samples and comparing number of factors, loading structures

2. Follow up with a new sample and use confirmatory factor analysis

Extraction method. The EFA was conducted with Principal Axis Factoring.

Determination of the number of factors. A series of criteria were taken into consideration in order to determine the number of factors (i.e. parallel analysis and simple structure).

Rotation method. The Factor Structure Loadings were interpreted using a Promax rotation.

Factor summary. Factor 1 accounted for 42.2 % of variance with an eigenvalue of 2.53. Factor 2 accounted for 21.4% of variance with an eigenvalue of 1.28. The two-factor model accounted for 63.6% of variance. The factor analysis summary is shown in Table 1.

Table 1. Eigenvalues, Percentages of Variance, and Cumulative Percentages for Factors for the 6 Item Variable Set

Factor	Eigenvalue	% of variance	Cumulative %
1	2.53	42.2%	42.2%
2	1.28	21.4%	63.6%

Factor interpretation. The following variables had excellent loadings for Factor 1: HospF, ONEmosF, and FIVEmosF. Any other loadings were insignificant for Factor 1. The following variables had excellent loadings for Factor 2: HospBf and ONEmosBf. The following variables had fair loadings for Factor 2: FIVEmosBf. Any other loadings were insignificant for Factor 2. The factor analysis loadings are shown in Table 2. The factors were correlated at r = .30.

Table 2. Promax Rotated Factor Structure Loadings From Exploratory Factor Analysis

Factor loading			
Variable	1	2	Communality
HospBf		0.76	0.59
HospF	0.78		0.64
ONEmosBf		0.93	0.87
ONEmosF	0.92		0.86
FIVEmosBf		0.52	0.31
FIVEmosF	0.75		0.56

Evaluating the factor structure. According to Costello and Osborne (2005), examining the communality of each variable, checking for crossloadings across multiple factors, and inspecting the number of strong loadings for each factor are good ways to analyze the validity of the factor structure. Crossloadings occur when there are loadings (> .40) for a single variable across multiple factors.

There were no variables with crossloadings, which suggests a factor structure that is simple and easy to interpret. Each factor had at least three significant loadings (> .40), which is indicative of a strong and solid factor (Osborne & Costello, 2005). Costello and Osborne (2005) also suggest dropping variables with low communality, crossloadings, and any variable that is the only significant loading on a factor which may prevent a weak factor structure and alleviate these problems.

Example: Social Anxiety Scale

Example: Social Anxiety Scale

PrAnxAuth I get nervous if I have to speak with someone in authority

PrAnxEye I have difficulty making eye-contact with others

PrAnxStreet I tense-up if I meet an acquaintance on the street

PrAnxMix When mixing socially I feel uncomfortable

PrAnxOne I feel tense if I am alone with just one other person

PrAnxTalk I have difficulty talking with other people

PrAnxExp I worry about expressing myself in case I appear awkward

PrAnxSay I find myself worrying that I won't know what to say in social situations

PrAnxWell I am nervous mixing with people that I don't know well

PrAnxEmbarr I feel I'll say something embarrassing when talking

PrAnxign When mixing in a group, I find myself worrying that I will be ignored

PrAnxTense I am tense mixing in a group

PrAnxGreet I am unsure whether to greet someone I know only slightly

PrAnxSelf I have high self-esteem

1 Not at all

2 Slightly

3 Moderately

1 Very

5 Extremely

Exploratory Factor Analysis Steps

- 1. Initial Extraction of the Factors
- 2. Determine the Number of Factors to Retain
- 3. Rotation
- 4. Interpret the Rotated Solution
- 5. Create Factor Scores
- 6. Summarize the results in a Table
- 7. Write a formal description of results for a paper

Correlation Matrix

	PrAnxAuth	PrAnxEye	PrAnxStreet	PrAnxMix	PrAnxOne	PrAnxTalk	PrAnxExp	PrAnxSay	PrAnxWell	PrAnxEmbarr	PrAnxIgn	PrAnxTense	PrAnxGreet	PrAnxSelf
PrAnxAuth	1	0.346	0.329	0.43	0.257	0.384	0.465	0.428	0.464	0.493	0.354	0.359	0.284	-0.321
PrAnxEye	0.346	1	0.48	0.51	0.403	0.387	0.346	0.345	0.491	0.321	0.311	0.487	0.364	-0.284
PrAnxStreet	0.329	0.48	1	0.555	0.511	0.499	0.395	0.415	0.456	0.399	0.415	0.485	0.475	-0.221
PrAnxMix	0.43	0.51	0.555	1	0.501	0.63	0.614	0.608	0.713	0.587	0.573	0.727	0.474	-0.387
PrAnxOne	0.257	0.403	0.511	0.501	1	0.455	0.399	0.366	0.32	0.397	0.4	0.447	0.328	-0.239
PrAnxTalk	0.384	0.387	0.499	0.63	0.455	1	0.564	0.535	0.619	0.517	0.42	0.609	0.352	-0.285
PrAnxExp	0.465	0.346	0.395	0.614	0.399	0.564	1	0.733	0.641	0.7	0.567	0.615	0.437	-0.436
PrAnxSay	0.428	0.345	0.415	0.608	0.366	0.535	0.733	1	0.695	0.69	0.621	0.694	0.465	-0.373
PrAnxWell	0.464	0.491	0.456	0.713	0.32	0.619	0.641	0.695	1	0.63	0.565	0.71	0.521	-0.405
PrAnxEmbarr	0.493	0.321	0.399	0.587	0.397	0.517	0.7	0.69	0.63	1	0.568	0.621	0.398	-0.446
PrAnxIgn	0.354	0.311	0.415	0.573	0.4	0.42	0.567	0.621	0.565	0.568	1	0.634	0.4	-0.443
PrAnxTense	0.359	0.487	0.485	0.727	0.447	0.609	0.615	0.694	0.71	0.621	0.634	. 1	0.488	-0.457
PrAnxGreet	0.284	0.364	0.475	0.474	0.328	0.352	0.437	0.465	0.521	0.398	0.4	0.488	1	-0.237
PrAnxSelf	-0.321	-0.284	-0.221	-0.387	-0.239	-0.285	-0.436	-0.373	-0.405	-0.446	-0.443	-0.457	-0.237	1

Run an Initial Model

Options:

- 1. Four Factors
- 2. Principal Axis Factoring
- 3. Promax Rotation
- 4. Scree test, Parallel Analysis, MAP test, interpretability

Total Variance Explained							
		Initial Eigenva	lues	Extrac	tion Sums of Sq	uared Loadings	
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	7.252	51.797	51.797	6.886	49.188	49.188	
2	1.143	8.168	59.964	.704	5.027	54.215	
3	.789	5.639	65.603	.343	2.453	56.669	
4	.755	5.392	70.995	.275	1.965	58.633	
5	.723	5.168	76.162				
6	.640	4.570	80.732				
7	.495	3.536	84.268				
8	.466	3.328	87.596				
9	.401	2.867	90.463				
10	.324	2.314	92.777				
11	.295	2.107	94.885				
12	.278	1.985	96.869				
13	.245	1.752	98.621				
14	.193	1.379	100.000				

Comr	Communalities						
	Initial	Extraction					
PrAnxAuth	.332	.435					
PrAnxEye	.396	.435					
PrAnxStreet	.472	.585					
PrAnxMix	.678	.710					
PrAnxOne	.405	.544					
PrAnxTalk	.537	.506					
PrAnxExp	.654	.709					
PrAnxSay	.688	.712					
PrAnxWell	.702	.876					
PrAnxEmbarr	.619	.713					
PrAnxIgn	.522	.561					
PrAnxTense	.701	.794					
PrAnxGreet	.371	.353					
PrAnxSelf	.306	.276					

Extraction Method: Principal Axis Factoring.

Initial Extraction of the Factors

Warning: Parallel analyses of adjusted correlation matrices eg, with SMCs on the diagonal, tend to indicate more factors than warranted (Buja, A., & Eyuboglu, N., 1992, Remarks on parallel analysis. Multivariate Behavioral Research, 27, 509-540.).

Velicer's Minimum Average Partial (MAP) Test:

Average Partial Correlations

sq	uared	power4	
.0000	.2363	.0712	
1.0000	.0211	.0012	The smallest average squared partial correlation is: .0211
2.0000	.0219	.0014	
3.0000	.0322	.0047	The smallest average 4rth power partial correlation is: .0012
4.0000	.0477	.0089	
5.0000	.0649	.0139	The Number of Components According to the Original (1976) MAP
6.0000	.0795	.0223	Test is: 1
7.0000	.1019	.0399	
8.0000	.1469	.0588	The Number of Components According to the Revised (2000) MAP
9.0000	.1987	.1050	Test is: 1
10.0000	.2715	.1509	
11.0000	.3812	.2485	
12.0000	.4763	.3602	
13.0000	1.0000	1.0000	

Structure Matrix						
		Fac	tor			
	1	2	3	4		
PrAnxAuth	.499	.402	.457	.566		
PrAnxEye	.410	.602	.572			
PrAnxStreet	.478	.757	.564			
PrAnxMix	.736	.735	.778			
PrAnxOne	.481	.717	.390			
PrAnxTalk	.623	.625	.639	.310		
PrAnxExp	.825	.533	.621	.459		
PrAnxSay	.837	.523	.682	.334		
PrAnxWell	.759	.556	.916	.393		
PrAnxEmbarr	.817	.517	.587	.489		
PrAnxIgn	.739	.533	.570			
PrAnxTense	.815	.671	.794			
PrAnxGreet	.500	.519	.557			
PrAnxSelf	522	334	403			

The Interpretability criteria

- 1. Minimum of three items with high loadings on each
- 2. Items loading on same factor make sense
- 3. Items loading on different factors make sense

4. Simple structure

Factor Correlation Matrix						
Factor	1	2	3	4		
1	1.000	.645	.746	.363		
2	.645	1.000	.676	.239		
3	.746	.676	1.000	.305		
4	.363	.239	.305	1.000		

Structure Matrix						
	Fac	tor				
	1	2				
PrAnxAuth	.538	.450				
PrAnxEye	.464	.640				
PrAnxStreet	.505	.766				
PrAnxMix	.771	.801				
PrAnxOne	.465	.626				
PrAnxTalk	.656	.675				
PrAnxExp	.830	.589				
PrAnxSay	.845	.598				
PrAnxWell	.816	.700				
PrAnxEmbarr	.814	.569				
PrAnxIgn	.714	.570				
PrAnxTense	.811	.738				
PrAnxGreet	.529	.571				
PrAnxSelf	524	372				

The Interpretability criteria

- 1. Minimum of three items with high loadings on each
- 2. Items loading on same factor make sense
- 3. Items loading on different factors make sense

4. Simple structure

Factor Correlation Matrix					
Factor	1	2			
1	1.000	.747			
2	.747	1.000			

Factor	Matrix
	Factor
	1
PrAnxAuth	.540
PrAnxEye	.553
PrAnxStreet	.616
PrAnxMix	.831
PrAnxOne	.548
PrAnxTalk	.706
PrAnxExp	.787
PrAnxSay	.800
PrAnxWell	.828
PrAnxEmbarr	.768
PrAnxIgn	.706
PrAnxTense	.839
PrAnxGreet	.578
PrAnxSelf	501

The Interpretability criteria

1. Minimum of three items with high loadings on each

2. Items loading on same factor make sense

Items loading on different factors make sense

4. Simple structure

Criterion	Number of Factors Suggested
Kaiser	1
Total Variance Accounted for	4
Scree Plot	1
Parallel Analysis	1-2
MAP Test	1
Interpretability	1

Total Variance Explained							
		Initial Eigenv	alues	Extract	ion Sums of Squa	red Loadings	
		% of					
Factor	Total	Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	7.252	51.797	51.797	6.788	48.487	48.487	
2	1.143	8.168	59.964				
3	.789	5.639	65.603				
4	.755	5.392	70.995				
5	.723	5.168	76.162				
6	.640	4.570	80.732				
7	.495	3.536	84.268				
8	.466	3.328	87.596				
9	.401	2.867	90.463				
10	.324	2.314	92.777				
11	.295	2.107	94.885				
12	.278	1.985	96.869				
13	.245	1.752	98.621				
14	.193	1.379	100.000				

Factor Matrix					
	Factor				
	1				
PrAnxAuth	.540				
PrAnxEye	.553				
PrAnxStreet	.616				
PrAnxMix	.831				
PrAnxOne	.548				
PrAnxTalk	.706				
PrAnxExp	.787				
PrAnxSay	.800				
PrAnxWell	.828				
PrAnxEmbarr	.768				
PrAnxIgn	.706				
PrAnxTense	.839				
PrAnxGreet	.578				
PrAnxSelf	501				

Communalities	

	Initial	Extraction	
PrAnxAuth	.332	.292	•
PrAnxEye	.396	.305	
PrAnxStreet	.472	.380	
PrAnxMix	.678	.691	•
PrAnxOne	.405	.301	
PrAnxTalk	.537	.498	•
PrAnxExp	.654	.620	
PrAnxSay	.688	.640	
PrAnxWell	.702	.685	
PrAnxEmbarr	.619	.590	
PrAnxIgn	.522	.499	
PrAnxTense	.701	.703	
PrAnxGreet	.371	.334	
PrAnxSelf	.306	.251	•

Total Variance Evaluined							
	Total Variance Explained						
		Initial Eigenv	alues	Extraction Sui	ms of Squared L	.oadings	
						Cumul	
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	ative %	
1	6.691	55.757	55.757	6.251	52.088	52.088	
2	1.085	9.045	64.802				
3	.729	6.075	70.877				
4	.662	5.514	76.391				
5	.558	4.653	81.044				
6	.484	4.030	85.074				
7	.426	3.549	88.623				
8	.325	2.708	91.331				
9	.298	2.485	93.816				
10	.292	2.433	96.249				
11	.252	2.100	98.349				
12	.198	1.651	100.000				

Factor Matrix		
	Factor	
	1	
PrAnxEye	.548	
PrAnxStreet	.625	
PrAnxMix	.836	
PrAnxOne	.555	
PrAnxTalk	.712	
PrAnxExp	.778	
PrAnxSay	.802	
PrAnxWell	.826	
PrAnxEmbarr	.753	
PrAnxIgn	.700	
PrAnxTense	.845	
PrAnxGreet	.586	

Communalities Initial Extraction PrAnxEye .380 .300 PrAnxStreet .391 .469 .677 .699 **PrAnxMix** PrAnxOne .404 .308 PrAnxTalk .534 .507 PrAnxExp .645 .605 PrAnxSay .684 .643 **PrAnxWell** .700 .682 PrAnxEmbarr .597 .567 PrAnxIgn .508 .490 PrAnxTense .688 .714 PrAnxGreet .370 .343

	Total Variance Explained					
		Initial Eigenval	ues	Extract	ion Sums of Squ	ared Loadings
Factor	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.349	66.863	66.863	4.982	62.273	62.273
2	.647	8.091	74.955			
3	.519	6.484	81.439			
4	.375	4.690	86.129			
5	.323	4.032	90.161			
6	.299	3.741	93.901			
7	.275	3.432	97.334			
8	.213	2.666	100.000			

Factor Ma	atrix
	Factor
	1
PrAnxMix	.805
PrAnxTalk	.696
PrAnxExp	.806
PrAnxSay	.833
PrAnxWell	.835
PrAnxEmbarr	.780
PrAnxIgn	.699
PrAnxTense	.842

Communalities			
	Initial	Extraction	
PrAnxMix	.644	.649	
PrAnxTalk	.491	.485	
PrAnxExp	.640	.649	
PrAnxSay	.678	.695	
PrAnxWell	.659	.697	
PrAnxEmbarr	.592	.608	
PrAnxIgn	.486	.489	
PrAnxTense	.678	.710	

Total Variance Explained						
		Initial Eigenv	alues	Extract	ion Sums of Squa	red Loadings
		% of				
Factor	Total	Variance	Cumulative %	Total	% of Variance	Cumulative %
1	5.349	66.863	66.863	5.027	62.831	62.831
2	.647	8.091	74.955	.302	3.778	66.609
3	.519	6.484	81.439			
4	.375	4.690	86.129			
5	.323	4.032	90.161			
6	.299	3.741	93.901			
7	.275	3.432	97.334			
8	.213	2.666	100.000			

Fact	or Matrix	
	Factor	Factor
	1	2
PrAnxMix	.820	
PrAnxTalk	.699	
PrAnxExp	.809	
PrAnxSay	.842	
PrAnxWell	.833	
PrAnxEmbarr	.784	
PrAnxIgn	.697	
PrAnxTense	.842	

Communalities			
	Initial	Extraction	
PrAnxMix	.644	.760	
PrAnxTalk	.491	.522	
PrAnxExp	.640	.694	
PrAnxSay	.678	.767	
PrAnxWell	.659	.709	
PrAnxEmbarr	.592	.657	
PrAnxIgn	.486	.493	
PrAnxTense	.678	.727	

Reporting Results

Extraction method. The EFA was conducted with Principal Axis Factoring.

Determination of the number of factors. A series of criteria were taken into consideration in order to determine the number of factors (i.e. parallel analysis and simple structure).

Rotation method. The Factor Structure Loadings were interpreted using a Promax rotation.

Reporting Results

Factor summary. In the final model, eight of the original 14 variables were retained. A single factor accounted for 62.3% of the variance with an eigenvalue of 5.03. The factor analysis summary is shown in Table 1.

Table 1. Eigenvalues, Percentages of Variance, and Cumulative Percentages for Factors for the 8 Item Variable Set

Factor	Eigenvalue	% of variance	Cumulative %
1	5.027	62.831	62.831

Factor interpretation. All eight variables had excellent loadings on the single factor. The factor analysis loadings are shown in Table 2.

Table 2. Factor Loadings From Exploratory Factor Analysis

Variable	Factor Loading	Communality
PrAnxMix	.820	.760
PrAnxTalk	.699	.522
PrAnxExp	.809	.694
PrAnxSay	.842	.767
PrAnxWell	.833	.709
PrAnxEmbarr	.784	.657
PrAnxIgn	.697	.493
PrAnxTense	.842	.727

Reporting Results

Evaluating the factor structure. According to Costello and Osborne (2005), examining the communality of each variable, checking for crossloadings across multiple factors, and inspecting the number of strong loadings for each factor are good ways to analyze the validity of the factor structure. Crossloadings occur when there are loadings (> .40) for a single variable across multiple factors.

There were many variables with crossloadings on a four and two-factor solution. Parallel analysis and interpretability criteria both suggested a single factor. Costello and Osborne (2005) also suggest dropping variables with low communality, crossloadings and any variable that is the only significant loading on a factor which may prevent a weak factor structure and alleviate these problems. To strengthen the scale, four variables with low communalities were dropped and a final 8-item scale of a single factor representing social anxiety is presented.