Limites et continuité des fonctions

Table des matières

I	Limit	e infinie en ∞
II	Limit	e finie en ∞
III	Limit	${f e}$ en un réel a
	III.1	Limite infinie en a
	III.2	Limite finie en a
IV	Opéra	t <mark>tions sur les limites</mark>
	IV.1	Somme
	IV.2	Produit
	IV.3	Quotient
	IV.4	Exemples
V	Notio	<mark>n de continuité</mark>
	V.1	Notion intuitive de continuité
	V.2	Continuité des fonctions de référencence
VI	Théoi	ème des valeurs intermédiaires
	VI. 1	Cas d'un intervalle fermé
	VI.2	Cas d'une fonction strictement monotone
	VI.3	Extension à d'autres intervalles
	VI.4	Exemples

I Limite infinie en ∞

On dit que la fonction f admet pour limite $+\infty$ en $+\infty$, si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Remarque: On a une définition analogue en $-\infty$.

Exemple: La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

Remarque: Une fonction peut tendre vers $+\infty$ sans être croissante! **Exemple:**

II Limite finie en ∞

Exemples graphiques:

Définition

Soit *a* un réel.

Dire que f(x) tend vers a quand x tend vers $-\infty$ ou $+\infty$ signifie que f(x) est aussi proche que l'on veut de *a*, pour *x* suffisamment grand (ou petit).

On écrit $\lim_{x \to +\infty} f(x) = a$ ou $\lim_{x \to -\infty} f(x) = a$. On dit que la droite d'équation y = a est asymptote à la courbe en $+\infty$ ou en $-\infty$.

III Limite en un réel a

III.1 Limite infinie en a

Définition

Dire que f(x) tend vers $+\infty$ quand x tend vers a signifie que f(x) prend des valeurs aussi grandes que l'on veut pour x très proche de a.

On écrit $\lim_{x \to a} f(x) = +\infty$.

On dit que la droite d'équation x = a est asymptote à la courbe.

 $\lim_{x\to a} f(x) = -\infty$ si f(x) prend des valeurs négatives de plus en plus grandes en valeur absolue quand x est très proche de a.

Remarque: il peut y a voir une limite à droite et à gauche.

Exemple: Fonction inverse:

III.2 Limite finie en a

Définition

Soit une fonction définie sur un intervalle I. Soient a et ℓ deux réels.

On dit que f admet ue limite ℓ lorsque x tend vers a si les valeurs de f(x) dont aussi proches de ℓ que l'on veut quand x est très proche de a.

Òn écrit : $\lim_{x \to a} f(x) = \ell$

Exemple: $f(x) = x^2 - 3$.

Quand x prend des valeurs de plus en plus proches de 2, x^2 est très proche de 4, donc f(x) prend des valeurs de plus en plus proches de f(2) = 1

On a donc $\lim_{x\to 2} f(x) = 1$.

IV Opérations sur les limites

f et g désignent deux fonctions, ℓ et ℓ' sont deux réels. Le symbole ∞ désigne $-\infty$ ou $+\infty$. Les propriétés ci-dessous portent sur les limites en $-\infty$, $+\infty$ ou $a \in \mathbb{R}$.

IV.1 Somme

Si $\lim f =$	ℓ	ℓ	ℓ	+∞	$-\infty$	+∞
Et $\lim g =$	ℓ'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$
Alors $\lim(f+g) =$	$\ell + \ell'$	+∞	-∞	+∞	-∞	Forme in-
						déterminée

IV.2 Produit

Si $\lim f =$	ℓ	$\ell eq 0$	∞	0
Si $\lim g ==$	ℓ'	∞	∞	∞
alors lim(fg) =	$\ell\ell'$	∞	∞	Forme
				indéterminée

Pour trouver le signe de la limite d'un produit, on utilise la règle du signe d'un produit.

IV.3 Quotient

Si $\lim f =$	ℓ	$\ell \neq 0$	ℓ	∞	∞	0
Si $\lim g =$	$\ell' \neq 0$	0	∞	ℓ	∞	0
	$\frac{\ell}{\ell'}$	∞	0	80	Forme indé- terminée	Forme indé- terminée

IV.4 Exemples

1. Étudier $\lim_{x \to -\infty} h(x)$ avec $h(x) = \frac{3}{x^2 + 3}$. $\lim_{x \to -\infty} x^2 = +\infty \text{ donc } \lim_{x \to -\infty} \left(x^2 + 3\right) = +\infty \text{ d'où } \lim_{x \to -\infty} h(x) = 0.$ La droite d'équation y = 0 (axe des abscisses) est asymptote à la courbe \mathscr{C}_h lorsque x tend vers $-\infty$. Remarque : on a aussi $\lim_{x \to +\infty} h(x) = 0$ donc l'axe des abscisses est aussi asymptote à la courbe lorsque xtend vers $+\infty$.

2. Soit la fonction $f: x \mapsto 5 + \frac{1}{x+2}$ définie sur $]-\infty$; $-2[\cup]-2$; $+\infty[$.

Déterminons la limite de f(x) Torsque x tend vers -2, par valeurs inférieures à -2.

Determinons in limite de
$$f(x)$$

$$\lim_{\substack{x \to -2 \\ x < -2}} (x+2) = 0 \text{ avec } x+2 < 0.$$

Alors: $\lim_{\substack{x \to -2 \\ x \to 2}} \left(\frac{1}{x+2} \right) = -\infty.$

Par somme, on en déduit que $\lim_{\substack{x \to -2 \\ x < -2}} \left(5 + \frac{1}{x+2} \right) = -\infty$ donc $\lim_{\substack{x \to -2 \\ x < -2}} f(x) = -\infty$. La droite d'équation x = -2 est asymptote à la courbe \mathscr{C}_f .

Remarque: $\lim_{\substack{x \to -2 \\ x > -2}} (x+2) = 0$ mais avec x+2 > 0 donc $\lim_{\substack{x \to -2 \\ x > -2}} \left(\frac{1}{x+2} \right) = +\infty$ d'où: $\lim_{x \to -2} f(x) = +\infty$.

$$\lim_{\substack{x \to -2\\x > -2}} f(x) = +\infty$$

La droite d'équation x = -2 est encore asymptote à la courbe.

Courbe:

V Notion de continuité

V.1 Notion intuitive de continuité

On considère une fonction définie sur un intervalle I de $\mathbb R$.

On dit que f est continue sur I si on peut tracer sa courbe représentative sans lever le crayon.

Exemples:

La fonction f définie sur [-4 ; 5] représentées cidessous est continue

La fonction g définie sur $[-3\ ;\ 9]$ représentées cidessous n'st pas continue

V.2 Continuité des fonctions de référencence

Propriété admise

Soit f une fonction définie sur un intervalle I. Soit $a \in I$. f est continue en asi, et seulement si, $\lim_{x \to a} f(x) = f(a)$.

🕄 Propriété admise

- Les fonctions $x \mapsto x^2$, $x \mapsto x^3$, les fonctions affines, les fonction polynômes sont continues sur \mathbb{R} .
- La fonction $x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$
- La fonction inverse $x \mapsto \frac{1}{x}$ est continue sur $]-\infty$; 0[et sur]0; $+\infty$ [.
- Le fonction exponentielle $x \mapsto e^a$ est continue sur \mathbb{R} .

Théorème des valeurs intermédiaires

Cas d'un intervalle fermé

Théorème des valeurs intermédiaires (admis)

Soit *f* une fonction *f* définie **et continue** sur un intervalle [*a* ; *b*].

Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

Remarque: ce théorème signifie que f(x) prend (au moins une fois) toutes les valeurs comprises entre f(a) et f(b).

Exemple.

Soit la fonction carré $f: x \mapsto x^2$ sur [0; 3]. f(0) = 0 et f(3) = 9.

f est continue sur [0; 3] donc toutes les valeurs etre 0 et 9 sont atteintes.

Par exemple, il existe une valeur c pour la quelle f(c) = 2.

Ici, on sait que $c = \sqrt{2}$.

Remarque: Ce théorème est un théorème d'existence; il ne permet en général pas de savoir la valeur de ctel que f(c) = k.

Exemple: voici la courbe représentative de la fonction continue sur [-4; 5] définie par

fonction continue sur [-4;
$$f(x) = \frac{(x+3)(x-1)(x-4)}{6}$$
.

2 est compris entre f(-4) et f(5).

Il y a au moins une valeur c pour laquelle f(c) = 2.

On voit graphiquement qu'il y a même trois valeurs c_1 , c_2 et c_3 qui ont pour image 2.

Page 8/10

Si f est continue et monotone sur [a; b], alors, pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une **unique** solution, comprise entre a et b.

Si *f* est croissante :

х	a	c	b
f(x)		k	f(b)
	f(a)		

Si f est décroissante :

VI.3 Extension à d'autres intervalles

Propriété

a désigne un réel ou $-\infty$; b désigne un réel ou $+\infty$.

Soit f une fonction continue sur a; b[.

Pour tout relever compris entre $\lim_{x\to a} f(x)$ et $\lim_{x\to b} f(x)$, l'équation f(x)=k admet au moins une solution dans l'intervalle] a; b[.

De plus, si f est monotone, cette solution est unique.

VI.4 Exemples

1. Soit f la fin ton définie sur [-1; 3] par $f(x) = x^3 - 3x^2 + 2$. Montrer que l'équation f(x) = 0 admet au moins une solution dans l'intervalle [-1; 3].

Solution:

f est une fonction polynôme donc continue sur cet intervalle.

$$f(-1) = -2 < 0$$
; $f(3) = 2$.

0 est donc compris entre f(-1) et f(3).

D'après le théorème des valeurs intermédiaires, l'équation f(x) = 0 admet au moins une solution dans [-1; 3].

2. Soit $f(x) = \sqrt{x} + 2x - 12 \sin [4; 9]$. Montrer que l'équation f(x) = 0 admet une solution unique sur [4 ; 9].

Solution

- On admet que f est continue (car la somme de $| \cdot f(4) = -6 < 0$; f(9) = 9 > 0 donc 0 est compris fonctions continues est continue)
- $f'(x) = \frac{1}{2\sqrt{x}} + 2 > 0$ sur [4; 9] donc f est croissante.
- entre f(4) et f(9).
- D'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans [4; 9].

- 3. Soit f la fonction définie par $f(x) = 2x^3 3x^2 12x + 1$. On cherche le nombre de solutions de l'équation f(x) = 2.
 - f est continue sur \mathbb{R} .
 - f est dérivable et $f'(x) = 6x^2 6x 12 = 6(x^2 x 2)$ qui est du signe de $x^2 x 2$.
 - Signe de $x^2 x 2$:

$$\Delta = 1 - 4 \times 1 \times (-2) = 9 > 0.$$

L'expression a deux racines :
$$\frac{1-\sqrt{9}}{2} = -1$$
 et $\frac{1+\sqrt{9}}{2} = 2$

Ce trinôme du second degré est du signe du coefficient de x^2 à l'extérieur de l'intervalle formé par les racines.

• On en déduit le tableau de variation :

x	$-\infty$		-1		2		$+\infty$
Signe de $f'(x)$		+	0	_	0	+	
f(x)	$-\infty^{'}$		8 ✓ \		-19		+∞

• Sur l'intervalle] – ; –1, f est continue et 2 est compris entre $-\infty$ et 8.

D'après le théorème des valeurs intermédiaires, f(x) = 0 admet donc une solution sur cet intervalle. Comme f est monotone, cette solution est unique.

De même, 2 est compris entre -19 et -1 donc l'équation f(x) = 0 admet une solution sur [-1; 2], unique car f est monotone.

2 est compris entre -19 et $+\infty$, donc l'équation f(x) = 0 admet une solution sur l'intervalle [2 ; $+\infty$ [. Cette solution est unique car f est monotone sur cet intervalle.

• On en conclut que l'équation f(x) = 0 admet trois solutions dans \mathbb{R} , une dans $]-\infty$; -1, une dans [-1; 2] et une dans $[2; +\infty[$.