MATH 220 DISCRETE MATHEMATICS AND CRYPTOGRAPHY

Tutorial 3 Solutions

1. (a) Working in \mathbb{Z}_7 , trial and error gives $3 \times 2 = 6$, $3 \times 3 = 2$, $3 \times 4 = 5$, $3 \times 5 = 1$. So $3^{-1} \equiv 5 \mod 7$.

- (b) Working in \mathbb{Z}_{11} , we get $5 \times 2 = 10, 5 \times 3 = 4, \dots, 5 \times 9 = 1$. So $5^{-1} \equiv 9 \mod 11$.
- **2.** (a)

$$25 = 21 + 4$$
$$21 = 5 \times 4 + 1$$

and therefore

$$1 = 21 - 5 \times 4$$

= 21 - 5 \times (25 - 21)
= 6 \times 21 - 5 \times 25

So, in \mathbb{Z}_{25} , $6 \times 21 = 1$, that is, $21^{-1} \equiv 6 \mod 25$.

(b) Again,

$$29 = 2 \times 12 + 5$$

 $12 = 2 \times 5 + 2$
 $5 = 2 \times 2 + 1$

and therefore

$$1 = 5 - 2 \times 2$$

$$= 5 - 2 \times (12 - 2 \times 5) = 5 \times 5 - 2 \times 12$$

$$= 5 \times (29 - 2 \times 12) - 2 \times 12$$

$$= 5 \times 29 - 12 \times 12$$

So, in \mathbb{Z}_{29} , $-12 \times 12 = 1$, that is, $12^{-1} \equiv -12 \equiv 17 \mod 29$.

3. The elements of Z_{12}^* are 1, 5, 7, 11. The multiplication table is

×	1	5	7	11
1	1 5	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

and we can read off the inverses $1^{-1} = 1$, $5^{-1} = 5$, $7^{-1} = 7$, $11^{-1} = 11$.

- **4.** (a) Since $2 \times 9 \equiv 1 \mod 17$, we have $x \equiv 9 \mod 17$. (Or, x = 9 + 17k for some integer k.)
 - (b) The numbers are too large for trial and error (or a good guess), so we use Euclid's Algorithm to find $40^{-1} \mod 1777$.

$$1777 = 44 \times 40 + 17$$
$$40 = 2 \times 17 + 6$$
$$17 = 2 \times 6 + 5$$
$$6 = 1 \times 5 + 1$$

so gcd(1777, 40) = 1. Work backwards to obtain

$$1 = 6 - 1 \times 5$$

$$= 6 - (17 - 2 \times 6) = 3 \times 6 - 1 \times 17$$

$$= 3(40 - 2 \times 17) - 17 = 3 \times 40 - 7 \times 17$$

$$= 3 \times 40 - 7(1777 - 44 \times 40)$$

$$= 311 \times 40 - 7 \times 1777$$

Thus mod 1777, we have $311 \times 40 = 1$ or $40^{-1} \equiv 311 \mod 1777$. So, from $40x \equiv 777 \mod 1777$, we get

$$311 \times 40x \equiv 311 \times 777 \mod 1777$$
.

That is, $x \equiv 241647 \mod 1777$ or $x \equiv 1752 \mod 1777$. (Again this could be written as x = 1752 + 1777k for some integer k.)

5. To solve the system

$$x + 2y \equiv 3 \bmod 7 \tag{1}$$

$$3x + y \equiv 2 \bmod 7 \tag{2}$$

of simultaneous equations for x and y, multiply (1) by 3 and subtract (2)

$$5y \equiv 0 \mod 7$$

or $y \equiv 0 \mod 7$. Substitute in (1), $x \equiv 3 \mod 7$.

We can also write the solution in the form x = 3 + 7k, y = 7l, where k and l are integers.

6. To say that the method detects all single-digit errors means that if

$$7a_1 + 3a_2 + 9a_3 + 7a_4 + 3a_5 + 9a_6 + 7a_7 + 3a_8 + 9a_9 \equiv 0 \mod 10 \tag{3}$$

and one of the digits a_1, a_2, \ldots, a_8 is changed, the result will no longer be congruent to $0 \mod 10$.

Suppose to the contrary that, for example, a_1 is changed to b_1 and that as well as (3), we have

$$7b_1 + 3a_2 + 9a_3 + 7a_4 + 3a_5 + 9a_6 + 7a_7 + 3a_8 + 9a_9 \equiv 0 \mod 10$$

Subtracting, gives

$$7(a_1 - b_1) \equiv 0 \bmod 10$$

Multiplying by 3 (which is 7^{-1} in \mathbb{Z}_{10}) gives

$$a_1 - b_1 \equiv 0 \mod 10$$

and this is impossible since we are assuming that a_1 and b_1 are different integers in $\{0, 1, \ldots, 9\}$.

So any change in the first digit would be picked up as the check digit a_9 would no longer give (3).

Similar arguments hold for the other digits a_2, a_3, \ldots, a_8 because their coefficients are all relatively prime to 10.

Note. The coefficients 3, 7, 9 need only be odd numbers (except 5) for this single-digit check to work and we could even choose them all the same. In fact, this method detects quite a few more errors. For example, it detects most errors when two integers are transposed—a common enough error in practice. It will also detect many errors of the form $\cdots abc \cdots \rightarrow \cdots cba \cdots$.

7. The multiplication table for \mathbb{Z}_{15}^* is

	1							
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	2 4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8 11	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	4	2
14	13 14	13	11	8	7	4	2	1

(a) From the table, we can read off inverses

$$1^{-1} = 1, 2^{-1} = 8, 4^{-1} = 4, 7^{-1} = 13, 8^{-1} = 2, 11^{-1} = 11, 13^{-1} = 7, 14^{-1} = 14.$$

(b)
$$1^{1} = 1$$

$$2^{1} = 2, \quad 2^{2} = 4, \quad 2^{3} = 8, \quad 2^{4} = 1$$

$$4^{1} = 4, \quad 4^{2} = 1$$

$$7^{1} = 7, \quad 7^{2} = 4, \quad 7^{3} = 13, \quad 7^{4} = 1$$

$$8^{1} = 8, \quad 8^{2} = 4, \quad 8^{3} = 2, \quad 8^{4} = 1$$

$$11^{1} = 11, \quad 11^{2} = 1$$

$$13^{1} = 13, \quad 13^{2} = 4, \quad 13^{3} = 7, \quad 13^{4} = 1$$

$$14^{1} = 14, \quad 14^{2} = 1$$

So, the order of 1 is 1, the orders of 4, 11, 14 are 2 and the orders of 2, 7, 8, 13 are all 4.

- (c) If $g^k = 1$, then $1 = g \times g^{k-1}$, and so g^{k-1} must be the inverse of g.
- **8.** Suppose a is invertible. For each $\ell \in \{1, 2, ...\}$, consider a^{ℓ} in \mathbb{Z}_m . Let ℓ_1 and ℓ_2 be two distinct positive integers such that

$$a^{\ell_1} = a^{\ell_2}.$$

Since the number of elements in \mathbb{Z}_m is finite, there has to be two such integers.

Without loss of generality, assume that $\ell_2 > \ell_1$. Now $a^{\ell_2} = a^{\ell_1}$, so, as a^{-1} exists,

$$(a^{-1})^{\ell_1} a^{\ell_2} = (a^{-1})^{\ell_1} a^{\ell_1} = 1.$$

Therefore,

$$(a^{-1})^{\ell_1} a^{\ell_2} = a^{\ell_2 - \ell_1} = 1.$$

Choosing $k = \ell_2 - \ell_1$ completes the proof of this direction.

For the converse, suppose there is a positive integer k such that $a^k = 1$ in \mathbb{Z}_m . Then

$$a \cdot a^{k-1} = 1,$$

and so a^{-1} exists with $a^{-1} = a^{k-1}$.

- **9.** Since m-1 is non-zero and $(m-1)^2=m^2-2m+1=1$ in \mathbb{Z}_m , it follows that m-1 is invertible and the order of m-1 is 2. Therefore, by Theorem 3.13, we have that 2 divides $|\mathbb{Z}_m^*|$, so $|\mathbb{Z}_m^*|$ is even.
- **10.** By Fermat's Little Theorem, $3^{72} \equiv 1 \mod 73$, so

$$3^{75} \equiv 3^{72} \times 3^3 \equiv 1 \times 3^3 \equiv 27 \mod 73.$$

11. If $p \mid a$, then $a \equiv 0 \mod p$ and the result holds.

If p does not divide a, then, by Fermat's Little Theorem, $a^{p-1} \equiv 1 \bmod p$, and so

$$a^{(p-1)!+1} \equiv (a^{p-1})^{(p-2)!} \cdot a^1 \equiv 1^{(p-2)!} \cdot a \equiv a \bmod p.$$

12.

$$51 = 38 \times 1 + 13$$

 $38 = 13 \times 2 + 12$
 $13 = 12 \times 1 + 1$

Working backwards,

$$1 = 13 - 12 \times 1$$

$$= 13 - (38 - 13 \times 2)$$

$$= 13 \times 3 - 38$$

$$= (51 - 38) \times 3 - 38$$

$$= 51 \times 3 - 38 \times 4$$

Therefore $1 \equiv 38 \times -4 \mod 51$. Since $-4 \equiv 47 \mod 51$, it follows that

$$38^{-1} = 47$$

in \mathbb{Z}_{51} .