An introduction to Bayesian statistics

Sensor fusion & nonlinear filtering

Lars Hammarstrand

WHAT IS BAYESIAN STATISTICS?

A statistical inference framework.

 Can be used for estimation, classification, detection, model selection, etc.

 Key characteristic: unknown quantities are described as random.

APPLICATIONS OF BAYESIAN STATISTICS

- A medical application: analyze the disease of a patient.
 - Quantity of interest: the disease, θ .
 - Observations: blood samples, temperature, comments by patient, etc.

- In Bayesian statistics θ is described as random
 - → we can make statements like: "based on our observations, patient has disease X with 97% probability".
- Possible concern: is the disease random?

APPLICATIONS OF BAYESIAN STATISTICS

- Self-driving vehicles rely on the ability to position surrounding vehicles.
- This enables the system safely navigate its surroundings without causing accidents with other road users.
 - Quantity of interest: relative position and velocity of other vehicles at the current time.
 - Observations: wheel speeds, INS measurements, radar detections (distance and angle), Lidar point clouds, camera images, etc.
- Bayesian statistics: vehicle motions are modelled statistically
 → helps us to rule out unrealistic trajectories.
- Possible concern: are the vehicle motions random?

COMPARISON: BAYES VS FREQUENTIST

- There are two main strategies to decision making: Bayesian and frequentist statistics.
- In frequenstist statistics, the quantities of interest are described as unknown and deterministic.

Bayes vs Frequentist

We wish to estimate the height of the Eiffel tower. Is the height random or not?

- Frequentist perspective: the tower has a certain height and is therefore not random.
- Bayesian perspective: we describe our uncertainties in the height stochastically
 height is described as random!

OVERVIEW OF THE BAYESIAN STRATEGY

Suppose we wish to estimate θ given measurements y.

Key steps in a Bayesian method:

- 1. **Modeling.** Model what we know about θ (using a prior $p(\theta)$) and the how the measurements y relate to θ (using a density $p(y|\theta)$).
- 2. **Measurement update.** Combine what we knew before (the prior) with our measurement (with $p(y|\theta)$, also called the likelihood) to summarize what we know about θ ($p(\theta|y)$).
- 3. **Decision making.** Given what we know about θ (described by $p(\theta|y)$) and a loss function, we compute an optimal decision.

SELF-ASSESSMENT QUESTIONS

Which of the following statements are correct:

- Bayesian methods can be used to solve many types of decision making problems including estimation, detection and classification.
- We can model the height of the Eiffel tower as random only if we think that there are many similar towers with different heights.
- In Bayesian statistics we describe what we know about θ (the quantity of interest) before observing any measurements.

Check all that apply.