Fig. 1

Equation	Chamical Equation	
Number	Chemical Equation	Remarks
EQ 1	$2 \text{ Al} + 3\text{H}_2\text{O} \rightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2 + 946.2 \text{ (KJ/mol)}$	Explosive event, hydrogen gas produced
EQ 2	$2Al + 3CuO \rightarrow Al_2O_3 + 3Cu + 1203.0 \text{ (KJ/mol)}$	Non-explosive event, no gaseous product
EQ 3	$C_3H_6O_6N_6 \rightarrow 0.77CO_2 + 2.23CO + 2.23H_2O + 0.77H_2 + 3N_2 + 1145.76 \text{ (KJ/mol)}$	RDX decomposition by detonation
EQ 4	$2Al + 3CO_2 \rightarrow Al_2O_3 + 3CO + 820.6 \text{ (KJ/mol)}$	CO ₂ as a detonation product
EQ 5	$2Al + 0.77CO_2 + 2.23H_2O \rightarrow Al_2O_3 + 0.77CO + 2.23H_2 + 914.0 \text{ (KJ/mol)}$	Complete reaction between RDX detonation products and Al
EQ 6	$xA1 + 0.385xCO2 + 1.115xH2O \rightarrow 0.5xAl2O3 + 0.385xCO + 1.115xH2 + 457.Ox (KJ/mol)$	Complete reaction between RDX detonation products and x moles of Al, $0 <= x <= 2$
EQ 7	$C_3H_6O_6N_6 + xAl \rightarrow (0.77 - 0.385x)CO_2 + (2.23 + 0.385x)CO + (2.23 - 1.115x)H_2O + (0.77 + 1.115x)H_2 + 3N_2 + 0.5xAl_2O_3 + (1145.76 + 457.0x) (KJ/mol)$	Complete reaction between 1 mole of RDX and x moles of Al, $0 \le x \le 2$
EQ 8	$C_3H_6O_6N_6 + xAl \rightarrow 3CO + 3H_2O + 3N_2 + Al_2O_3 + x Al + 2060.0 \text{ (KJ/mol)}$	RDX/Al mixture to produce Al in molten state, $x => 2$
EQ 9	$2Al + 3NH_4NO_3 \rightarrow Al_2O_3 + 6H_2O + 3N_2 + 2023.43 \text{ (KJ/mol)}$	AN dissolved in water to increase reactivity and to decrease Al temperature for complete chemical reaction
EQ 10	$3\text{CuO} + x \text{ Al} \rightarrow \text{Al}_2\text{O}_3 + 3\text{CuO} + (x - 2)\text{Al} + 1024.0 \text{ (KJ/mol)}$	CuO/Al mixture to produce Al in molten state, $x => 2$
EQ 11	$Fe_2O_3 + 2Al \rightarrow Al_2O_3 + 2Fe + 846.0 \text{ (KJ/mol)}$	Thermite reaction, mixture used to produce Al in molten state when Al is surplus in stoichiometry

Fig.3

Name of Molecular Oxygen Solubility in Decomp. Temp. Remarks					
Oxygen	Formula	Balance	Solubility in Water	Decomp. Temp.	Remarks
Carrier					
Sodium	NaNO ₃	47%	84.5 g/100 ml	380°C	Used as oxidizer in
Nitrate		(Na_2O, N_2)	(20°C)	ļ	propellant, commercial
					explosives and black
	<u> </u>				powder
Potassium	KNO ₃	39.6%	38.5 g/100 ml	400°C	Used in pyrotechnics,
Nitrate		(K_2O, N_2)	(25°C)		commercial explosives,
					black powder,
					propellants and matches
Barium	Ba(NO ₃) ₂	30.6%	8.7 g/100 ml	800°C	Used as oxidizer in
Nitrate		(BaO, N_2)	. (20°C)		propellants and
					pyrotechnics
Ammonium	NH₄NO₃	20%	192 g/100ml	210°C	Well-known fertilizer.
Nitrate		(H_2O, N_2)	(20°C)	<u> </u>	Used in propellants and
					commercial explosives
Lithium	LiClO₄	60.2%	59.7 g/100ml	400°C	Used as oxidizer in
Perchlorate,		(LiCl)	(25°C)		rocket and missile
LP					propellant
Potassium	KClO₄	46.19%	18.2 g/100ml	530°C	Used as oxidizer in
Perchlorate		(KCl)	(100°C)		rocket propellant and in
- C					explosives
Strontium	Sr(ClO ₄) ₂	44.64%	309.7 g/100ml	477°C	Used as oxidizer in
Perchlorate		(SrCl)	(25°C)		propellants
Ammonium	NH₄ClO₄	34.04%	20 g/100ml	200~300°C (low	Predominantly used as
Perchlorate		ł	(25°C)	temperature	oxidizer in solid
				decomposition)	propellants for missiles
Detaration	- VOIO				and rockets
Potassium	KClO ₃	39.17%	56.2 g/100ml	400°C	Used with fuel to make
Chlorate	j		(100°C)		explosives, also used in
					pyrotechnics and match
Sodiana	NI-CIO	45.1007	100 (655		head
Sodium	NaClO ₃	45.10%	100 g/100ml	melting point	Moisture absorbing, not
Chlorate		1	(20°C)	248°C	very often used in
L					explosives

Fig. 11

Fig. 12

Fig. 21

