Perform the following operations using 'python' Language on the Air quality dataset.

- 1. Data cleaning
- 2. Data integration
- 3. Data transformation
- 4. Data model Building

```
In [1]: import io
    import pandas as pd
    import numpy as np
    import seaborn as sns
    from scipy import stats
    from sklearn import metrics
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier

    rawdata_df = pd.read_csv(r"C:\Users\yasha\Downloads\AirQualityUCI.csv")
    rawdata_df
```

Out[1]:

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT	
0	3/10/2004	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.	
1	3/10/2004	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.	
2	3/10/2004	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.	
3	3/10/2004	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.	
4	3/10/2004	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.	
9466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat	
9467	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat	
9468	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat	
9469	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat	
9470	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat	
9471 rows × 17 columns									

```
In [2]: rawdata_df.isnull().sum()
  Out[2]: Date
                             114
          Time
                             114
          CO(GT)
                             114
          PT08.S1(CO)
                             114
          NMHC(GT)
                             114
          C6H6(GT)
                             114
          PT08.S2(NMHC)
                             114
          NOx(GT)
                             114
          PT08.S3(NOx)
                             114
          NO2(GT)
                             114
          PT08.S4(NO2)
                             114
          PT08.S5(03)
                             114
                             114
          Τ
          RH
                             114
          ΑН
                             114
          Unnamed: 15
                            9471
          Unnamed: 16
                            9471
          dtype: int64
  In [3]: rawdata_df.columns
 Out[3]: Index(['Date', 'Time', 'CO(GT)', 'PT08.S1(CO)', 'NMHC(GT)', 'C6H6(GT)',
                  'PT08.S2(NMHC)', 'NOx(GT)', 'PT08.S3(NOx)', 'NO2(GT)', 'PT08.S4(NO
          2)',
                  'PT08.S5(03)', 'T', 'RH', 'AH', 'Unnamed: 15', 'Unnamed: 16'],
                dtype='object')
In [108]: # data cleaning
```

```
In [4]: #we seleted only the columns having values
    selected_columns=['Date', 'Time', 'CO(GT)', 'PT08.S1(CO)', 'NMHC(GT)', 'C6H6(Ganalysis_df = rawdata_df[selected_columns].copy()
    analysis_df
```

Out[4]:

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT
0	3/10/2004	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.
1	3/10/2004	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.
2	3/10/2004	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.
3	3/10/2004	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.
4	3/10/2004	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.
9466	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nal
9467	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat
9468	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat
9469	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat
9470	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nat

9471 rows × 15 columns

Out[5]: (9471, 15)

In [6]: analysis_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9471 entries, 0 to 9470
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	Date	9357 non-null	object
1	Time	9357 non-null	object
2	CO(GT)	9357 non-null	float64
3	PT08.S1(CO)	9357 non-null	float64
4	NMHC(GT)	9357 non-null	float64
5	C6H6(GT)	9357 non-null	float64
6	PT08.S2(NMHC)	9357 non-null	float64
7	NOx(GT)	9357 non-null	float64
8	PT08.S3(NOx)	9357 non-null	float64
9	NO2(GT)	9357 non-null	float64
10	PT08.S4(NO2)	9357 non-null	float64
11	PT08.S5(03)	9357 non-null	float64
12	T	9357 non-null	float64
13	RH	9357 non-null	float64
14	AH	9357 non-null	float64

dtypes: float64(13), object(2)

memory usage: 1.1+ MB

Out[7]:

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT
0	3/10/2004	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.
1	3/10/2004	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.
2	3/10/2004	20:00:00	2.2	1402.0	0.88	9.0	939.0	131.
3	3/10/2004	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.
4	3/10/2004	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.
9352	4/4/2005	10:00:00	3.1	1314.0	-200.0	13.5	1101.0	472.
9353	4/4/2005	11:00:00	2.4	1162.0	-200.0	11.4	1027.0	353.
9354	4/4/2005	12:00:00	2.4	1142.0	-200.0	12.4	1062.0	293.
9355	4/4/2005	13:00:00	2.1	1002.0	-200.0	9.5	960.0	234.
9356	4/4/2005	14:00:00	2.2	1071.0	- 200.0	11.9	1047.0	265.

9357 rows × 15 columns

4

```
In [113]: | analysis_df.isnull().sum()
Out[113]: Date
                             0
           Time
                             0
           CO(GT)
                             0
           PT08.S1(CO)
                             0
           NMHC(GT)
                             0
           C6H6(GT)
                             0
           PT08.S2(NMHC)
                             0
           NOx(GT)
                             0
           PT08.S3(NOx)
                             0
           NO2(GT)
                             0
           PT08.S4(NO2)
                             0
           PT08.S5(03)
                             0
           Т
                             0
           RH
                             0
           ΑН
                             0
           dtype: int64
In [114]:
           #data transformation
           analysis_df['Date']
Out[114]: 0
                   3/10/2004
           1
                   3/10/2004
           2
                   3/10/2004
           3
                   3/10/2004
           4
                   3/10/2004
                     . . .
           9352
                    4/4/2005
           9353
                    4/4/2005
           9354
                    4/4/2005
           9355
                    4/4/2005
           9356
                    4/4/2005
           Name: Date, Length: 9357, dtype: object
```

```
In [115]: analysis_df['Date'] = pd.to_datetime(analysis_df.Date)
analysis_df['Date']
```

C:\Users\yasha\AppData\Local\Temp\ipykernel_3164\2240121029.py:1: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

analysis_df['Date'] = pd.to_datetime(analysis_df.Date)

```
Out[115]: 0
                  2004-03-10
           1
                  2004-03-10
           2
                  2004-03-10
           3
                  2004-03-10
           4
                  2004-03-10
                     . . .
           9352
                  2005-04-04
           9353
                  2005-04-04
           9354
                  2005-04-04
           9355
                  2005-04-04
           9356
                  2005-04-04
           Name: Date, Length: 9357, dtype: datetime64[ns]
```

```
In [116]: analysis_df['Year'] = pd.DatetimeIndex(analysis_df['Date']).year
analysis_df['month'] = pd.DatetimeIndex(analysis_df['Date']).month
analysis_df
```

C:\Users\yasha\AppData\Local\Temp\ipykernel_3164\1901626825.py:1: SettingWit hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

analysis_df['Year'] = pd.DatetimeIndex(analysis_df['Date']).year
C:\Users\yasha\AppData\Local\Temp\ipykernel_3164\1901626825.py:2: SettingWit
hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

analysis_df['month'] = pd.DatetimeIndex(analysis_df['Date']).month

$^{\prime\prime}$	ш	-	1 1	1	16	. 1	
v	ľ	ı c	1 -		LU	4	

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	F
	o 2004- 03-10	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.0	
	1 2004- 03-10	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.0	
	2 2004- 03-10	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.0	
	3 2004-03-10	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.0	
	4 2004-03-10	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.0	
									
93	2005- 04-04	10:00:00	3.1	1314.0	-200.0	13.5	1101.0	472.0	
93	2005- 04-04	11:00:00	2.4	1162.0	-200.0	11.4	1027.0	353.0	
93	2005- 04-04	12:00:00	2.4	1142.0	-200.0	12.4	1062.0	293.0	
93	2005- 04-04	13:00:00	2.1	1002.0	-200.0	9.5	960.0	234.0	
93	2005- 04-04	14:00:00	2.2	1071.0	-200.0	11.9	1047.0	265.0	

9357 rows × 17 columns

In [117]: analysis_df['month_apha'] = pd.to_datetime(analysis_df['month'], format='%m')
analysis_df

C:\Users\yasha\AppData\Local\Temp\ipykernel_3164\675708319.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

analysis_df['month_apha'] = pd.to_datetime(analysis_df['month'], format='%
m').dt.month_name()

$^{\circ}$	١u	т.	1 1	11	-7	-	
v	'u	ľ	1 4	ш	- /		

	Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	F
0	2004- 03-10	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.0	_
1	2004 - 03-10	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.0	
2	2004 - 03-10	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.0	
3	2004 - 03-10	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.0	
4	2004 - 03-10	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.0	
						•••	•••		
9352	2005 - 04 - 04	10:00:00	3.1	1314.0	- 200.0	13.5	1101.0	472.0	
9353	2005 - 04-04	11:00:00	2.4	1162.0	- 200.0	11.4	1027.0	353.0	
9354	2005- 04-04	12:00:00	2.4	1142.0	-200.0	12.4	1062.0	293.0	
9355	2005- 04-04	13:00:00	2.1	1002.0	-200.0	9.5	960.0	234.0	
9356	2005- 04-04	14:00:00	2.2	1071.0	-200.0	11.9	1047.0	265.0	
0057									

9357 rows × 18 columns

```
In [118]: #integrate
data1 = analysis_df[['Date','Time','CO(GT)']].loc[0:15]
data1
```

Out[118]:

	Date	Time	CO(GT)
0	2004-03-10	18:00:00	2.6
1	2004-03-10	19:00:00	2.0
2	2004-03-10	20:00:00	2.2
3	2004-03-10	21:00:00	2.2
4	2004-03-10	22:00:00	1.6
5	2004-03-10	23:00:00	1.2
6	2004-03-11	0:00:00	1.2
7	2004-03-11	1:00:00	1.0
8	2004-03-11	2:00:00	0.9
9	2004-03-11	3:00:00	0.6
10	2004-03-11	4:00:00	-200.0
11	2004-03-11	5:00:00	0.7
12	2004-03-11	6:00:00	0.7
13	2004-03-11	7:00:00	1.1
14	2004-03-11	8:00:00	2.0
15	2004-03-11	9:00:00	2.2

In [119]: data2 = analysis_df[['Date','Time','CO(GT)']].loc[16:30]
data2

$\alpha + 1$	[110]	
out	$[\perp \perp \perp \supset]$	

	Date	Time	CO(GT)
16	2004-03-11	10:00:00	1.7
17	2004-03-11	11:00:00	1.5
18	2004-03-11	12:00:00	1.6
19	2004-03-11	13:00:00	1.9
20	2004-03-11	14:00:00	2.9
21	2004-03-11	15:00:00	2.2
22	2004-03-11	16:00:00	2.2
23	2004-03-11	17:00:00	2.9
24	2004-03-11	18:00:00	4.8
25	2004-03-11	19:00:00	6.9
26	2004-03-11	20:00:00	6.1
27	2004-03-11	21:00:00	3.9
28	2004-03-11	22:00:00	1.5
29	2004-03-11	23:00:00	1.0
30	2004-03-12	0:00:00	1.7

In [120]: integrate=pd.merge(data1,data2,on='Date',how='inner')
integrate

Out[120]:

	Date	Time_x	CO(GT)_x	Time_y	CO(GT)_y
0	2004-03-11	0:00:00	1.2	10:00:00	1.7
1	2004-03-11	0:00:00	1.2	11:00:00	1.5
2	2004-03-11	0:00:00	1.2	12:00:00	1.6
3	2004-03-11	0:00:00	1.2	13:00:00	1.9
4	2004-03-11	0:00:00	1.2	14:00:00	2.9
135	2004-03-11	9:00:00	2.2	19:00:00	6.9
136	2004-03-11	9:00:00	2.2	20:00:00	6.1
137	2004-03-11	9:00:00	2.2	21:00:00	3.9
138	2004-03-11	9:00:00	2.2	22:00:00	1.5
139	2004-03-11	9:00:00	2.2	23:00:00	1.0

140 rows × 5 columns

In [23]: analysis df['AH'] = analysis df['AH'].apply(lambda x:0 if x<=0 else 1) analysis df

> C:\Users\yasha\AppData\Local\Temp\ipykernel_6980\768665957.py:1: SettingWith CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/ stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v ersus-a-copy)

analysis_df['AH'] = analysis_df['AH'].apply(lambda x:0 if x<=0 else 1)</pre>

Out[23]:

Date	Time	CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08
3/10/2004	18:00:00	2.6	1360.0	150.0	11.9	1046.0	166.0	
3/10/2004	19:00:00	2.0	1292.0	112.0	9.4	955.0	103.0	
3/10/2004	20:00:00	2.2	1402.0	88.0	9.0	939.0	131.0	
3/10/2004	21:00:00	2.2	1376.0	80.0	9.2	948.0	172.0	
3/10/2004	22:00:00	1.6	1272.0	51.0	6.5	836.0	131.0	
4/4/2005	10:00:00	3.1	1314.0	-200.0	13.5	1101.0	472.0	
4/4/2005	11:00:00	2.4	1162.0	-200.0	11.4	1027.0	353.0	
4/4/2005	12:00:00	2.4	1142.0	-200.0	12.4	1062.0	293.0	
4/4/2005	13:00:00	2.1	1002.0	-200.0	9.5	960.0	234.0	
4/4/2005	14:00:00	2.2	1071.0	-200.0	11.9	1047.0	265.0	

rows × 15 columns

In [24]: **from** sklearn.linear model **import** LogisticRegression from sklearn.model selection import train test split

```
In [25]: X = analysis_df.drop(['AH','Date','Time'],axis=1)
X
```

Out[25]:

		CO(GT)	PT08.S1(CO)	NMHC(GT)	C6H6(GT)	PT08.S2(NMHC)	NOx(GT)	PT08.S3(NOx)	NC
· <u></u>	0	2.6	1360.0	150.0	11.9	1046.0	166.0	1056.0	
	1	2.0	1292.0	112.0	9.4	955.0	103.0	1174.0	
	2	2.2	1402.0	88.0	9.0	939.0	131.0	1140.0	
	3	2.2	1376.0	80.08	9.2	948.0	172.0	1092.0	
	4	1.6	1272.0	51.0	6.5	836.0	131.0	1205.0	
9	352	3.1	1314.0	-200.0	13.5	1101.0	472.0	538.0	
9	353	2.4	1162.0	-200.0	11.4	1027.0	353.0	604.0	
9	354	2.4	1142.0	-200.0	12.4	1062.0	293.0	603.0	
9	355	2.1	1002.0	-200.0	9.5	960.0	234.0	702.0	
9	356	2.2	1071.0	-200.0	11.9	1047.0	265.0	654.0	

9357 rows × 12 columns

```
In [26]: Y = analysis_df['AH']
Y
```

```
Out[26]: 0 1
1 1
2 1
3 1
4 1
...
9352 1
```

9353 1 9354 1

9355 1 9356 1

Name: AH, Length: 9357, dtype: int64

```
In [27]: X_train , X_test , Y_train , Y_test = train_test_split(X,Y,test_size=0.3)
```

```
In [28]: logreg = LogisticRegression()
    logreg.fit(X_train,Y_train)
```

```
Out[28]: v LogisticRegression LogisticRegression()
```

```
In [29]: from sklearn.metrics import classification_report,confusion_matrix
In [30]: y_pred = logreg.predict(X_test)
In [31]:
         print(confusion_matrix(Y_test, y_pred))
         [[ 114
                    0]
              0 2694]]
In [32]: print(classification_report(Y_test, y_pred))
                        precision
                                     recall f1-score
                                                        support
                    0
                             1.00
                                       1.00
                                                 1.00
                                                            114
                     1
                                       1.00
                             1.00
                                                 1.00
                                                            2694
                                                 1.00
                                                            2808
             accuracy
            macro avg
                             1.00
                                       1.00
                                                 1.00
                                                            2808
         weighted avg
                             1.00
                                       1.00
                                                 1.00
                                                            2808
```