

University Institute of Engineering Academic Unit-1-5

Bachelor of Engineering

Computer Graphics using CAD Lab. (24MEP-102)

Experiment No. 4

Prepared By: Paras Khullar

PROJECTION OF POINTS

DISCOVER . LEARN . EMPOWER

PROJECTION OF POINTS

Course Outcome

СО	Title	Level	l
Number	After completion of the course the students may be able to:		
CO1	Understand the various concepts and elements of	Remember	
	engineering graphics using CAD software.	& Understand	
CO2	Learn fundamentals of CAD (computer aided drafting).	Understand	
CO3	Evaluate the true lengths and true shapes of the simple	Understand	_
	engineering objects.		
CO4	Apply the concept of CAD and convert 2D drawings into 3D	Understand	
	and vice versa and draw orthographic views of engineering		
	objects.	/	ŕ
CO5	Construct the front and top views of the objects and draw	Understand	
	relevant figures related to engineering on CAD software.	<i></i>	

Image Source: http://cadmasters.guru/2d-to-3d-conversions/

Will be covered in this lecture

COURSE OBJECTIVES

Students may be able to

- Understand the concept of orthographic projections
- Differentiate between different views
- Locate a point in orthographic projections
- Understand the placement of a point in different quadrants
- Label the projections in different planes
- Understand the concept of reference planes

Image Source: https://img-a.udemycdn.com/course/750x422/1925256_3592_5.jpg

Projection

- View of an object that is visible to the observer from a particular direction
- Projection observed from
 - the top is called as Top View
 - the front is called as Front View
 - the Side is called a Side View
- These types of projections are known as Orthographic Projections as the all the views are observed at and angle of 90° to each other

Concept of Projections

- To draw projections of any point, following information is must
 - 1. Object
 - 2. Observer
 - 3. Plane of Projection

Fig. 3.1: Position of Object, Observer & Plane of Projection

Orthographic Projections

- Type of technical drawing in which different views of an object are projected on different reference planes
- Views are observed perpendicular to the different reference planes
- All the views are observed at right angles to each other.
- For example front view, top view and side views are drawn by observing perpendicular to each other.

Planes

There are two types of planes

- 1. Principal Planes:
- Horizontal Plane
- Vertical Plane

2. Auxiliary Planes:

- Auxiliary InclinedPlane
- Auxiliary Vertical Plane
- Profile Plane

Fig. 3.2: Principal Planes

Fig. 3.3: Auxiliary Planes

Quadrant System and Reference Planes

Observer is assumed to view the object from right side

Animation Source: www.slideshare.net

Quadrant System and Reference Planes

- VP stands for Vertical Plane and HP stands for Horizontal Plane
- For every quadrant, HP rotates by 90° clockwise direction and VP remains stationary
- Front View is always drawn on VP, also known as Vertical Projection
- Top View is always drawn on HP, also known as Horizontal Projection

Fig. 3.4: Quadrant System

Notations

- Every projection has a particular notation
- Every object (point, line, plane, etc.) is always represented by upper case letters. For example:
 - A for a point
 - AB for a line
 - ABCD for a plane
- The projections for the different objects are represented as the same alphabet of its name in the lowercase

S.No	Type of Projection	Drawn on	Notation for object Point A	Line AB	Plane ABCD
1	Top View	HP	a	ab	abcd
2	Front View	VP	a'	a'b'	a'b'c'd'
3	Side View	PP	a"	a"b"	a"b"c"d"

Table 3.1: Notations for the Objects

Locations of the Point w.r.t. Reference Planes

- As the position of the observer is fixed, the location of the point is determined as follows:
- If point A
 - lies above HP and in front of VP the point lies in 1st quadrant
 - lies above HP and behind VP, the point lies in 2nd quadrant
 - lies below HP and behind VP, the point lies in 3rd quadrant
 - lies below HP and in front of VP, the point lies in the 4th quadrant

Locations of the Point w.r.t. Reference Planes

- First quadrant: V.P is above X-Y line and H.P is below X-Y line
- Second quadrant: V.P and H.P both are above X-Y line
- Third quadrant: H.P is above X-Y line and V.P is below X-Y line
- Fourth quadrant: V.P and H.P both are below X-Y line

Locations of the Point w.r.t. Reference Planes

Projections of Point in 1st quadrant

HP

Applications

- Projection of points are applicable for fitting of bulbs in the buildings.
- These are also used for the installation of towers and poles.

Summary

- In this PPT we have studied the concept of projections
- The concept of object observer and plane of projection
- Quadrant system and its rules
- Various principal planes
- Views of orthographic projections
- Nomenclature of various views of orthographic projections

Frequently Asked Questions

- What is orthographic projection?
- What are the basic requirements in order to draw projections?
- On which plane is front view drawn?
- How will be the front view of point A represented?
- What is the position of object in 3rd angle projection?

Recommended Books

- Rhodes R.S, Cook L.B; Basic Engineering Drawing, Pitman Publishers,
- Rana and Shah; Engineering Drawing, Pearson Education India Publishers.
- Jolhe D.A; Engineering Drawing: With an Introduction to AutoCAD, Tata McGraw Hill
- Gill P.S; Engineering Drawing, S.K. Kataria and Sons Publications.
- Dhawan R. K; Engineering Drawing, S. Chand and Sons Publishers.

References & Image Links

- Engineering Drawing by P. S. Gill
- Engineering Drawing by Dr. R. K. Dhawan
- Engineering Drawing and Computer Graphics by Harwinder Singh
- www.educationportals.net
- http://ednotebook.hostgator.co.in/theory-of-projection
- https://www.slideshare.net/kashyapshah11/projection-of-lines-12770216

For queries

Email: paras.me@cumail.in

