Sprawozdanie z zajęć laboratoryjnych

Tyberiusz Seruga

13.05.2016

1. Wstęp

Celem zajęć było zaimplementowanie tablicy asocjacyjnej przy pomocy tablicy z hashowaniem. Złożoność zapisu powinna być O(1), natomiast pesymistyczna złożoność odczytu to O(n), optymistyczna to O(1). Przepwrowadzono badania dla różnej liczby bucketów.

2. Wyniki

Liczba bucketów = 1:

n:	10		100		1000		1000000		1000000000	
	0,05	0,015	0,026	0,005	0,025	0,005	0,026	0,005	0,028	0,005
	0,048	0,004	0,022	0,004	0,032	0,004	0,028	0,004	0,072	0,005
	0,026	0,004	0,022	0,004	0,029	0,004	0,029	0,004	0,079	0,004
	0,025	0,005	0,026	0,005	0,086	0,005	0,03	0,005	0,045	0,005
	0,023	0,003	0,025	0,003	0,028	0,003	0,042	0,003	0,029	0,003
	0,04	0,005	0,034	0,005	0,028	0,005	0,028	0,005	0,024	0,005
	0,026	0,005	0,031	0,005	0,024	0,005	0,023	0,005	0,028	0,005
	0,026	0,004	0,034	0,004	0,044	0,004	0,028	0,004	0,044	0,004
	0,021	0,003	0,025	0,003	0,044	0,003	0,028	0,006	0,033	0,003
	0,021	0,004	0,031	0,004	0,024	0,004	0,023	0,004	0,023	0,004
Średnia:	0,0306	0,0052	0,0276	0,0042	0,0364	0,0042	0,0285	0,0045	0,0405	0,0043

Liczba bucketów = 10:

n:	10		100		1000		1000000		1000000000	
	0,031	0,083	0,027	0,004	0,027	0,004	0,033	0,004	0,035	0,004
	0,028	0,004	0,026	0,003	0,039	0,005	0,031	0,004	0,032	0,004
	0,028	0,005	0,033	0,003	0,04	0,006	0,059	0,006	0,034	0,004
	0,064	0,005	0,032	0,004	0,026	0,003	0,027	0,004	0,039	0,005
	0,28	0,005	0,043	0,0003	0,027	0,004	0,039	0,005	0,057	0,005
	0,029	0,005	0,052	0,005	0,042	0,006	0,028	0,004	0,032	0,004
	0,028	0,004	0,037	0,007	0,028	0,004	0,034	0,005	0,033	0,004
	0,029	0,004	0,027	0,004	0,032	0,005	0,029	0,004	0,05	0,004
	0,028	0,004	0,032	0,006	0,027	0,004	0,39	0,008	0,031	0,004
	0,027	0,005	0,216	0,008	0,1	0,014	0,134	0,006	0,261	0,01
Średnia:	0,0572	0,0124	0,0525	0,00443	0,0388	0,0055	0,0804	0,005	0,0604	0,0048

Liczba bucketów = 100:

n:	10		10	00	10	1000 1000000			10000	1000000000	
	0,026	0,004	0,027	0,004	0,025	0,004	0,03	0,005	0,033	0,004	
	0,029	0,004	0,028	0,004	0,024	0,004	0,03	0,004	0,028	0,004	
	0,026	0,005	0,027	0,005	0,028	0,005	0,024	0,003	0,024	0,003	
	0,026	0,005	0,023	0,004	0,028	0,005	0,029	0,004	0,037	0,004	
	0,025	0,005	0,027	0,005	0,025	0,004	0,023	0,004	0,028	0,004	
	0,024	0,005	0,028	0,004	0,023	0,004	0,055	0,004	0,029	0,004	
	0,025	0,004	0,044	0,006	0,028	0,005	0,028	0,003	0,023	0,003	
	0,025	0,004	0,027	0,005	0,068	0,007	0,033	0,004	0,025	0,004	
	0,022	0,003	0,047	0,005	0,027	0,005	0,028	0,005	0,029	0,005	
	0,026	0,004	0,028	0,005	0,022	0,003	0,028	0,004	0,038	0,004	
Średnia:	0,0254	0,0043	0,0306	0,0047	0,0298	0,0046	0,0308	0,004	0,0294	0,0039	

3. Wykresy

Dla liczby bucketów = 1:

Rys. 1. Złożoność zapisu do tablicy z 1 bucketem.

Rys. 2. Złożoność odczytu z tablicy z 1 bucketem.

Dla liczby bucketów = 10:

Rys. 3. Złożoność zapisu do tablicy z 10 bucketami.

Rys. 4. Złożoność odczytu z tablicy z 10 bucketami.

Dla liczby bucketów = 100:

Rys. 5. Złożoność zapisu do tablicy z 100 bucketami.

Rys. 6. Złożoność odczytu z tablicy z 100 bucketami.

4. Wnioski

Jak widać z wykresów złożoność obliczeniowa operacji zapisu dla dowolnej liczby bucketów jest podobna i jest mniej więcej równa O(1). Złożoność obliczeniowa operacji odczytu dla bucketów := 1, 10, 100 jest również podobna i jest to złożoność optymistyczna O(1). Może to wynikać z nadprzeciętnych umiejętności programisty, lub z jakiegoś błędu implementacyjnego przy zapisie, lub odczycie elementów. Złożoność, aby wędrowała do 1 można poprawić większą liczbą bucketów, co jednak proporcjonalnie zwiększa złożoność pamięciową. Optymalnie najlepiej jest znać orientacyjną liczbę wprowadzanych w przyszłości elementów, by wypośrodkować liczbę bucketów, przez co czas przeszukiwania będzie mniejszy, przy rozsądnej złożoności pamięciowej.