- 1. Methods:
 - a. df.mean()
 - b. df.median()
 - c. df.mode()
 - d. df.min()
 - e. df.max()
 - f. df.sum()
 - g. df.quantile()
 - h. df.var() variance
 - i. df.std() standard deviation
 - j. df.agg() aggregate
 - i. dogs["weight"].agg(method_that_returns_numbers)
 - ii. dogs[["weight", "height"]].agg(methodname)
 - iii. dogs["weight"].agg([method1, method2])
 - k. df.cumsum() cumulative sum, adds values of all the rows of a certain column and prints all the sums as you go down the rows

```
[25] df['calories'].head(10)
     0
           70
         120
         70
          50
         110
         110
         110
         130
          90
     8
     Name: calories, dtype: int64
[24] df['calories'].head(10).cumsum() #adds all the values of all preceding rows
           70
         190
         260
         310
         420
         530
         640
         770
         860
    Name: calories, dtype: int64
```

- i. df.cummax() cumulative maximum
- ii. df.cummin() cumulative minimum
- iii. df.cumprod() cumulative product

All of these return an entire column of the dataframe, instead of just a number

2. In chapter one, you saw that DataFrames are composed of three parts: a NumPy array for the data, and two indexes to store the row and column details.

 $df.columns \rightarrow an Index object of column names \\ df.index \rightarrow an Index object of row numbers$

.columns and .index

```
dogs.columns
```

١.

```
Index(['name', 'breed', 'color', 'height_cm', 'weight_kg'], dtype='object')
```

dogs.index

```
RangeIndex(start=0, stop=7, step=1)
```

You can select a feature or a column to be the new index, using:
 df_new = df.set_index("column_name")

Setting a column as the index

dogs_ind = dogs.set_index("name")
print(dogs_ind)

	breed	color	height_cm	weight_kg
name				
Bella	Labrador	Brown	56	25
Charlie	Poodle	Black	43	23
Lucy	Chow Chow	Brown	46	22
Cooper	Schnauzer	Grey	49	17
Max	Labrador	Black	59	29
Stella	Chihuahua	Tan	18	2
Bernie	St. Bernard	White	77	74

4. To undo the new index, do: df_new.reset_index()

Removing an index

dogs_ind.reset_index()

	name	breed	color	height_cm	weight_kg
0	Bella	Labrador	Brown	56	25
1	Charlie	Poodle	Black	43	23
2	Lucy	Chow Chow	Brown	46	22
3	Cooper	Schnauzer	Grey	49	17
4	Max	Labrador	Black	59	29
5	Stella	Chihuahua	Tan	18	2
6	Bernie	St. Bernard	White	77	74

5. If you want to completely remove the column you previously used as index, use "drop" as an argument: df_new.reset_index(drop=True)

Dropping an index

```
dogs_ind.reset_index(drop=True)
```

	breed	color	height_cm	weight_kg
0	Labrador	Brown	56	25
1	Poodle	Black	43	23
2	Chow Chow	Brown	46	22
3	Schnauzer	Grey	49	17
4	Labrador	Black	59	29
5	Chihuahua	Tan	18	2
6	St. Bernard	White	77	74

Here, setting drop to True entirely removes the dog names.

6. DataFrames have a subsetting method called "loc," which filters on index values.

Indexes make subsetting simpler

```
dogs[dogs["name"].isin(["Bella", "Stella"])]
```

```
name breed color height_cm weight_kg

0 Bella Labrador Brown 56 25

5 Stella Chihuahua Tan 18 2
```

```
dogs_ind.loc[["Bella", "Stella"]]
```

```
breed color height_cm weight_kg
name
Bella Labrador Brown 56 25
Stella Chihuahua Tan 18 2
```

Now, look at the equivalent when the names are in the index.

7. The values in the index don't need to be unique. Here, there are two Labradors in the index.

Index values don't need to be unique

```
dogs_ind2 = dogs.set_index("breed")
print(dogs_ind2)
```

	name	color	height_cm	weight_kg
breed				
Labrador	Bella	Brown	56	25
Poodle	Charlie	Black	43	23
Chow Chow	Lucy	Brown	46	22
Schnauzer	Cooper	Grey	49	17
Labrador	Max	Black	59	29
Chihuahua	Stella	Tan	18	2
St. Bernard	Bernie	White	77	74

8. Use multiple columns as the index:

Multi-level indexes a.k.a. hierarchical indexes

```
dogs_ind3 = dogs.set_index(["breed", "color"])
print(dogs_ind3)
```

			name	height_cm	weight_kg
ı	breed	color			
ı	Labrador	Brown	Bella	56	25
	Poodle	Black	Charlie	43	23
	Chow Chow	Brown	Lucy	46	22
	Schnauzer	Grey	Cooper	49	17
	Labrador	Black	Max	59	29
	Chihuahua	Tan	Stella	18	2
!	St. Bernard	White	Bernie	77	74

You can include multiple columns in the index by passing a list of column names to set_index.

Subset the outer level with a list

```
dogs_ind3.loc[["Labrador", "Chihuahua"]]
```

		name	height_cm	weight_kg
breed	color			
Labrador	Brown	Bella	56	25
	Black	Max	59	29
Chihuahua	Tan	Stella	18	2

To take a subset of rows at the outer level index, you pass a list of index values to loc.

10. To subset using inner level indexes, you will need TWO tuples (one for each level). The two tuples should be in the form of a list:

df.loc[[("outer_index_1", "inner_index_1"), ("outer_index_2","inner_index_2")]]

Subset inner levels with a list of tuples

```
dogs_ind3.loc[[("Labrador", "Brown"), ("Chihuahua", "Tan")]]
```

		name	height_cm	weight_kg
breed	color			
Labrador	Brown	Bella	56	25
Chihuahua	Tan	Stella	18	2

To subset on inner levels, you need to pass a list of tuples.

11. To sort a dataframe by index values: df.sort_index()
By default, it sorts all index values from outer to inner, in ascending order

Sorting by index values

dogs_ind3.sort_index()

		name	height_cm	weight_kg
breed	color			
Chihuahua	Tan	Stella	18	2
Chow Chow	Brown	Lucy	46	22
Labrador	Black	Max	59	29
	Brown	Bella	56	25
Poodle	Black	Charlie	43	23
Schnauzer	Grey	Cooper	49	17
St. Bernard	White	Bernie	77	74

12. To change the default sorting parameters:

Controlling sort_index

dogs_ind3.sort_index(level=["color", "breed"], ascending=[True, False])

		name	height_cm	weight_kg
breed	color			
Poodle	Black	Charlie	43	23
Labrador	Black	Max	59	29
	Brown	Bella	56	25
Chow Chow	Brown	Lucy	46	22
Schanuzer	Grey	Cooper	49	17
Chihuahua	Tan	Stella	18	2
St. Bernar	d White	Bernie	77	74

You can control the sorting by passing lists to the level and ascending arguments.