ME634A

Mid-Sem Assignment Report Shreya Agrawal (160662)

Problem:

Consider the PDE:

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 50000 \cdot e^{[-50((1-x)^2 + z^2)]} \cdot [100((1-x)^2 + z^2) - 2],\tag{1}$$

subjected to the following boundary conditions in x and z directions.

$$\phi(1, y, z) = 100(1 - z) + 500e^{-50z^2}$$
(2)

$$\phi(0, y, z) = 500e^{-50(1+z^2)} \tag{3}$$

$$\phi(x, y, 0) = 100x + 500e^{-50(1-x)^2} \tag{4}$$

$$\phi(x, y, 1) = 500e^{-50((1-x)^2+1)} \tag{5}$$

The y is treated periodically. The analytical solution of the PDE is given as:

$$\phi(x, y, z) = 500e^{-50((1-x)^2 + z^2)} + 100x(1-z) \tag{6}$$

Domain size, Ω : [0,0,0] to [1,1,1]. Solve the above PDE numerically using Multigrid method in combination with Gauss-Seidal iterations. Use second order finite difference method to discretize equation 1.

2 sets of computations were performed:

Level	No. of internal nodes in each x, y, z direction		No. of GS iterations
	Set-1	Set-2	
1	32	64	10
2	16	32	8
3	8	16	6
4	4	8	4
5	2	4	4

Total no. of GS iterations in each V cycle = 60

Results

Comparison with original Gauss-Seidal (GS) results

Number of internal nodes at the finest	Total no. of GS iterations to reach the desired tolerance		
level	Multi-Grid with GS	GS (without multigrid)	
32 (Set-1)	1020 (17 V-cycles)	1501	
64 (Set-2)	1860 (31 V-cycles)	5083	

Desired tolerance = 10^{-5}

Results

V-cycle = 16

Residual (L2 norm) = 6.25689924E-02

Residual (L2 norm) = 1.31175593E-05

NOTE that the contours are plotted at $\{j = (Ny_{level} + 2)/2\}$ y-node where Ny_{level} = Total no. of internal y-nodes at a given level.

Results

Error contour for Level-5 (coarsest level) at V-cycle = 2 (N = 64)

Residual (L2 norm) = 0.124821179

Residual (L2 norm) = 1.44640144E-05