Natural Deduction on Predicate Logic

All this work is based on the book Logic and Structure by Dirk Van Dalen.

Strategy to build correct derivations in Predicate Logic

From an university test:

Let
$$\Gamma = \{ (\exists x) P_1(x), (\exists x) (\exists y) (\neg P_2(x,y)), (\forall x) (P_1(x) \to (\exists y) P_2(x,y)) \}$$

Build a derivation that proves the following:

$$\Gamma \cup \{(\forall x)(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))\} \vdash (\exists x)(\exists y)(\neg P_3(x,y))$$

First of all build the derivation without canceling any hypotheses:

During the construction the following hypotheses were generated:

- 1. $(\exists y)(\neg P_2(x,y))$
- $2. \neg P_2(x,y)$
- 3. $P_3(x,y)$

Next, start checking every atomic step top-down. In each atomic step, if the rule needs proofs we write them down. If the rule generated hypotheses we cancel them. If you can give a correct proof for all rules that need it, the derivation is correct.

$E_{\forall*6}$:

- This rule doesn't generate hypotheses.
- *6 justification: x is free for x in any formula (in particular, in: $(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))$).

$E_{\forall*5}$:

- This rule doesn't generate hypotheses.
- *5 justification: y is free for y in any formula (in particular, in $(P_3(x,y) \leftrightarrow P_2(x,y))$).

$E_{\leftrightarrow 1}$:

• This rule doesn't generate hypotheses and doesn't need justification.

$E_{\neg 1}$:

• This rule doesn't generate hypotheses doesn't need justification.

 $I_{\neg 1}$:

- This rule generates the hypotheses $(P_3(x,y))$, se let's cancel it.
- This rule doesn't need justification.

The derivation at this step is:

$$\underbrace{ \begin{array}{c} \frac{(\forall x)(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))}{(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))} E_{\forall *6} \\ \\ \frac{(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))}{P_3(x,y) \leftrightarrow P_2(x,y)} E_{\forall *5} \end{array}}_{P_3(x,y) \leftrightarrow P_2(x,y)} E_{\forall *5} \\ \underbrace{ \begin{array}{c} P_2(x,y) \\ \hline P_2(x,y) \end{array}}_{P_2(x,y)} E_{\neg} \\ \\ \frac{(3) \frac{\bot}{\neg P_3(x,y)} I_{\neg}}{\neg P_3(x,y)} I_{\neg} \\ \\ \frac{(\exists y)(\neg P_3(x,y))}{(\exists x)(\exists y)(\neg P_3(x,y))} I_{\exists *3} \\ \\ (1) \frac{(\exists x)(\exists y)(\neg P_2(x,y))}{(\exists x)(\exists y)(\neg P_3(x,y))} E_{\exists *1} \end{array}}_{(\exists x)(\exists y)(\neg P_3(x,y))} E_{\exists *1}$$

 $I_{\exists*4}$:

- This rule doesn't generate hypotheses.
- *4 justification: y is free for y in any formula (in particular, in $\neg P_3(x,y)$).

 $I_{\exists *3}$:

- This rule doesn't generate hypotheses.
- *3 justification: x is free for x in any formula (in particular, in $(\exists y)(\neg P_3(x,y))$).

 $E_{\exists *2}$:

- This rule generates the hypotheses $\neg P_2(x,y)$, let's cancel it.
- *2 justification: $y \notin FV((\exists x)(\exists y)(\neg P_3(x,y))), y \notin FV((\forall x)(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))).$ Note that there's no need to check if other hypotheses contain y free: $(P_3(x,y)$ ni en $\neg P_2(x,y))$ as in this step they are canceled.

The derivation at this step is:

$$\underbrace{\frac{[\forall x)(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))}{(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))}}_{(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))} E_{\forall*6}}_{[P_3(x,y)]^3} \underbrace{E_{\forall*6}}_{P_3(x,y)\leftrightarrow P_2(x,y)} E_{\neg*6}}_{[P_3(x,y)]^3} \underbrace{E_{\rightarrow*1}}_{E_{\rightarrow*1}} E_{\rightarrow*1}$$

$E_{\exists*1}$:

- This rule generates the hypotheses: $(\exists y)(\neg P_2(x,y))$, let's cancel it.
- *1 justification: $x \notin FV((\exists x)(\exists y)(\neg P_3(x,y))), x \notin FV((\forall x)(\forall y)(P_3(x,y) \leftrightarrow P_2(x,y))).$ Let's note that for this case also there's no need to check if any other hypotheses contain x free: $(P_3(x,y)$ ni en $\neg P_2(x,y))$ because they are all canceled.

The derivation at this step is:

$$\underbrace{\frac{(\forall x)(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))}{(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))}}_{\{P_3(x,y)\leftrightarrow P_2(x,y)\}} E_{\forall*6}}_{\{P_3(x,y)\leftrightarrow P_2(x,y)\}} E_{(\forall*5)}} \underbrace{\frac{(\forall y)(P_3(x,y)\leftrightarrow P_2(x,y))}{P_3(x,y)\leftrightarrow P_2(x,y)}}_{\{P_3(x,y)\to P_2(x,y)\}} E_{(\forall*5)}}_{\{P_3(x,y)\}} E_{(\forall*5)} \underbrace{\frac{(\exists y)(\neg P_2(x,y))]^1}{(\neg P_3(x,y))}}_{\{(\exists x)(\exists y)(\neg P_3(x,y))\}} \underbrace{I_{\exists*3}}_{\{E_{\exists*2}\}} \underbrace{(\exists x)(\exists y)(\neg P_3(x,y))}_{\{E_{\exists*1}\}} E_{(\exists*5)} \underbrace{(\exists x)(\exists y)(\neg P_3(x,y))}_{\{E_{\sharp*1}\}} E_{(\sharp*5)} \underbrace{(\exists x)(\exists y)(\neg P_3(x,y))}_{\{E_{\sharp*1$$

And this, together with the justifications is the complete finished derivation.

1 How to use identity rules.

Special thanks to Prof. Luis Sierra (FIng UdelaR) for the corrections.

From an university test:

Build a derivation that proves:

$$(\forall x)P(x, f(x)), (\exists y)f(y) =' y \vdash (\exists z)P(f(z), z)$$

First of all, looking at the premises we can figure out that to reach the conclusion, using substition in the application of the rule E_{\forall} won't lead us anywhere. For example, if we wanted to reach $(\exists z)P(f(z),z)$ with the premise $(\forall x)P(x,f(x))$, we should apply the rule E_{\forall} . If we wanted to obtain f(z) instead of x, when substituting, we would get P(f(z),f(f(z))). The only way to swawp the arguments of P is by using the rule RI4'.

Let's build the derivation:

All we can do with the premises we have is an existential elimination:

$$(1) \frac{(\exists y) f(y) =' y \qquad (\exists z) P(f(z), z)}{(\exists z) P(f(z), z)} E_{\exists *1}$$

Here, we obtained the hypotheses f(y) =' y. Checking the premises again we can see that with $(\forall x)P(x, f(x))$, by applying the rule E_{\forall} and substituting adequately we obtain P(y, f(y)). If we manage to substitute in this formula in a way that we get P(f(y), y), applying the rule I_{\exists} and substituting adequately we can obtain $(\exists z)P(f(z), z)$. We can do this by using the identity rule RI4'. Doing this, the resulting derivation is:

$$(1) \frac{(\forall x)P(f(x),x)}{P(f(y),y)} \qquad f(y) ='y \qquad \frac{f(y) ='y}{y ='f(y)}$$

$$(1) \frac{(\exists y)f(y) ='y}{(\exists z)P(f(z),z)} E_{\exists *1}$$

By adding the rules in each step and using the strategy of the previous example, we have built the derivation:

- *4: y free for x in P(f(x), x).
- ***3**: y free for z_1 ; f(y) free for z_2 en $P(z_1, z_2)$.
- f(y) free for z_1 ; y free for z_2 en $P(z_1, z_2)$.
- *2: y free for z en P(f(z), z).
- *1: $y \notin FV(\{(\exists z)P(f(z), z), (\forall x)P(f(x), x)\}).$

$$(1) \frac{[f(y)='y]^{1}}{y='f(y)}RI2 \qquad [f(y)='y]^{1} \frac{(\forall x)P(x,f(x))}{P(z_{1},z_{2})[y/z_{1},f(y)/z_{2}])} \underbrace{E_{\forall *4}}_{RI4'_{*3}} \underbrace{\frac{P(z_{1},z_{2})[f(y)/z_{1},y/z_{2})]}{(\exists z)P(f(z),z)}}_{E_{\exists *1}} I_{\exists *2}$$