Disseny del camí de dades multicicle per l'arquitectura MIPS

MIPS multicicle

- Introducció
- Descripció del camí de dades
 - Anàlisis del repertori d'instruccions a implementar
 - Requisits del camí de dades
 - Selecció de components
 - Construcció del camí de dades
 - Anàlisi de la implementació de cada instrucció
 - Punts de control

MIPS multicicle

- Implementació Multicicle
 - Divisió de l'execució de les instruccions en varies etapes.
 - S'executa una etapa de la instrucció a cada cicle de rellotge

Avantatges

- Reutilització de les unitats funcionals
 - Una unitat pot utilitzar-se més d'un cop per instrucció sempre que es faci en diferents cicles de rellotge
- CPI (cicles per instrucció) variable
 - Instruccions senzilles → pocs cicles per executar-se
 - Instruccions complexes → més cicles de rellotge

MIPS multicicle: Components bàsics

- Una sola memòria per dades i instruccions
- Una sola ALU enlloc d'una ALU i dos sumadors
- Ús de registres temporals a les sortides de les unitats funcionals principals.
 Dos tipus de registres:
 - Actualitzen el seu contingut a cada instrucció (IR)
 - Actualitzen el seu contingut a cada cicle de rellotge (MDR, A, B, ALUOut)

MIPS multicicle: Components bàsics

- Compartir les unitats funcionals → Multiplexors
- Execució en múltiples cicles → Cada cicle requereix un conjunt de senyals de control
- Senyals de control

Etapes d'execució de les instruccions

- Quines operacions s'han de realitzar en cada cicle de rellotge?
 - Objectiu: Equilibrar la càrrega computacional de cada etapa → Minimitzar el temps de cicle
 - En cadascuna de les etapes s'ha de realitzar alguna de les següents operacions:
 - Un accés a un registre
 - Actualització a cada cicle (registres temporals: MDR, A, B, ALUOut)
 - Actualització segons un senyal d'escriptura (PC, IR)
 - Un accés a memòria
 - Una operació d'ALU
 - Com es pot determinar el temps de cicle mínim?
 - Totes les operacions d'un sol cicle s'executen en paral·lel
 - Les etapes de la instrucció s'executen es sèrie

MIPS multicicle: Etapa 1

MIPS multicicle: Etapa 2 (A = Reg[rs], B = Reg[rt])

$MIPS\ multicicle:\ Etapa\ 2\ (ALUout\ =\ PC\ +\ extensió\ -\ signe(IR[15\mathchar])\ <<\ 2)$

MIPS multicicle: Etapa 3 (Tipus R)

MIPS multicicle: Etapa 3 (Referència a memòria)

MIPS multicicle: Etapa 3 (Salt condicional)

MIPS multicicle: Etapes d'execució de les instruccions

- Etapa 1: Cerca del codi d'operació (fetch)
 - IR = Memory[PC] i PC = PC + 4
- Etapa 2: Descodificació i accés als operants
 - A = Reg[rs], B = Reg[rt] i ALUout = PC + extensió-signe(IR[15-0]) << 2
- Etapa 3: Execució, càlcul d'adreces o finalització del salt
 - Instrucció tipus R (and, or, add, sub, slt)
 - ALUOut = A op B
 - Referencia a memòria (lw/sw)
 - ALUOut = A + extensió signe(IR[15-0])
 - Salt (beq) (Salt condicional)
 - if (A == B) PC = ALUOut
 - Bifurcació (j) (Salt)
 - PC = PC[31-28] || IR[25-0] << 2
- Etapa 4: Accés a memòria / fi d'execució d'instrucció del tipus R
 - Referència a memòria
 - MDR = Memory[ALUOut] o Memory[ALUOut] = B
 - Fi d'execució instrucció tipus R
 - Reg[rd] = ALUOut
- Etapa 5: Fi de lectura a memòria
 - Reg[rt] = MDR

MIPS multicicle: Controlador

• Implementació amb una màquina d'estats finits

MIPS multicicle: Controlador

Cerca de la instrucción i la fase de descodificació/cerca de registres

MIPS multicicle: Fetch

MIPS multicicle: Descodificació i càlcul adreça

ALUout = PC + extensió_signe(IR[15-0]) << 2

MIPS multicicle: Controlador

• Instruccions d'accés a memòria (4 estats)

MIPS multicicle: Accés a memòria (Estat 2)

ALUout = PC + extensió_signe(IR[15-0]) << 2

MIPS multicicle: Accés a memòria (Estat 3) lw

MIPS multicicle: Accés a memòria (Estat 4) lw

MIPS multicicle: Accés a memòria (Estat 5) sw

MIPS multicicle: Controlador

• Instruccions del tipus R (2 estats)

MIPS multicicle: Tipus R (Estat 6)

MIPS multicicle: Tipus R (Estat 7)

MIPS multicicle: Controlador

Instruccions del tipus salt condicional (1 estat)

 Instruccions del tipus salt (1 estat)

MIPS multicicle: Salt condicional (Estat 8)

MIPS multicicle: Salt incondicional (Estat 9)

