Compact Flash and 8260 Interface Design Guide

System Solutions from

Toshiba America Electronic Components, Inc.

Systems Application Engineering (SAE)

Jean Chao, Sr MTS
Doug Wong, Staff MTS, Memory Business Unit

Revision 1.1

August 2001

Prepared by Systems Application Engineering Team Toshiba America Electronic Components, Inc.

Copyright © 2001 by Toshiba America Electronic Components, Inc. All Rights Reserved.

This "Compact Flash and 8260 Interface Design Guide" and the information and know-how it contains constitute the exclusive property and trade secrets of Toshiba America Electronic Components, Inc. ("TAEC"), and may not be reproduced or disclosed to others without the express prior written permission of TAEC. Any permitted reproductions, in whole or in part, shall bear this notice.

The information in this "Compact Flash and 8260 Design Guide' has been checked, and is believed to be reliable; however, the reader understands and agrees that TAEC MAKES NO WARRANTY WITH RESPECT TO THIS DESIGN GUIDE, ITS CONTENTS OR THEIR ACCURACY, AND EXCLUDES ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR NON-INFRINGEMENT. The reader further understands that he or she is solely responsible for all use of the information contained within, including, but not limited to, securing any necessary intellectual property rights, however denominated.

All information in this "Compact Flash and 8260 Design Guide" is subject to change without prior notice, at TAEC's sole discretion.

All trademarks, trade names, product, and/or brand names are the property of their respective holders.

Table of Contents

1	Introduction	5
2	Discussion of Operating Modes	5
3	Hardware Notes	7
	3.1 General Information	7
	3.2 I.O. Signals	8
	3.3 Timing	9
4	Schematic	15
5	Software Notes	16
6	Conclusion	16
7	References	16
	7.1 Datasheets	16
	7.2 Toshiba Website	16
	7.3 Contact Information	16

This page left intentionally blank.

1.0 Introduction

The CompactFlashTM card is a small, removable, storage and I/O card. Invented by Sandisk, the specifications are now determined by the CompactFlash Association (CFA) (http://www.compactflash.org), a non-profit corporation that promotes the adoption of CompactFlash. The CompactFlash can be used in such applications as portable and desktop computers, digital cameras, handheld data collection scanners, PDAs, Pocket PCs, handy terminals, personal communicators, advanced two-way pagers, audio recorders, monitoring devices, set-top boxes, and networking equipment.

Every embedded system is different. This application note describes a possible interface between a CompactFlash Card and Motorola's MPC8260TM microprocessor. With minor variations, the interface can be adapted to other microprocessors as long as the Compact Flash will not be removed or added while the system is on.

2.0 Discussion of Operating Modes

A CompactFlash card is essentially a small form factor card version of PCMCIA PC Card ATA (AT Attachment) specification and includes a True IDE (Integrated Drive Electronics) mode which is compatible with the ATA/ATAPI-4 specification. As such, there are 3 distinct interface modes that a CompactFlash card can use:

- PC Card Memory Mode (uses WE#, OE# to access memory locations)
- PC Card I/O Mode (uses IOWR#, IORD# to access I/O locations)
- True IDE Mode (uses IOWR#, IORD# to access I/O locations)

The CompactFlash card is essentially a solid state ATA disk drive. To control an ATA disk drive, one writes to the task file registers. The values put into these task file registers control the drive (the ANSI T13 committee defines these registers and the commands used to control all ATA/IDE drives – see http://www.t13.org). These task file registers can be mapped into either memory or I/O address space.

PC Card Memory Mode

In the PC Card memory mode, the task file registers are mapped into common memory space (REG# pin = H). When mapped to common memory space, the task files appear at address:

• 0h-Fh

When the REG# = L, the card's attribute memory is accessed. This is where the card's configuration registers and CIS (card information structure, also known as metaformat) is stored. The CIS contains information about the type of card inserted and is used to configure a system to recognize different types of cards and load the correct drivers.

PC Card I/O Mode

In the PC Card I/O mode, the task file registers are mapped into I/O address space. There are 3 address range options:

- xx0h-xxFh (contiguous I/O)
- 1F0h-1F7h (primary IDE)
- 170h-177h (secondary IDE)

The value in the card configuration option register (address 200h in attribute memory space) determines whether the task files are mapped to common memory space, or one of the 3 I/O ranges. The default is to map the task files to common memory space.

True IDE Mode

In the True IDE mode, the task file registers are also mapped into I/O address space. The True IDE mode is selected if the OE# pin (also called ATA SEL#) is grounded by the host at power up. In this mode, neither the attribute memory nor the card configuration registers are accessible. Only accesses to the task file registers is possible:

- 0h-7h (main task file registers, CE1# = L)
- 6h (alternate task file register, CE2# = L)

Which Mode to Choose?

Of the three interface methods, which should you choose? If your system requires hot insertion and removal (i.e. insertion or removal of the card while the system is powered), then you should have a PCMCIA controller in your system which will access the card in both PC card modes. The PCMCIA controller will provide all the glue logic necessary to connect the host system bus to the CompactFlash card.

However, if you want to connect your system bus directly to a CompactFlash card without using a PCMCIA controller or glue logic, then the True IDE mode will probably prove to be easier. The main disadvantage is that hot insertion and removal will not be possible because of the probable disruption of signals on the system bus. The main reason it will be easier to use the True IDE mode is because only CE1# needs to be asserted low to perform a 16 bit read or write to the data register. In order to do a 16 bit read or write in a PC Card mode, both CE1# and CE2# must be asserted low simultaneously which generally requires some custom glue logic.

AT Task Files (True IDE mode)

CE2#	CE1#	Addr.	Read (IORD# = L)	Write (IOWR# = L)
1	0	0h	Data Register (16 bit)	Data Register (16 bit)
1	0	1h	Error Register	Feature Register
1	0	2h	Sector Count Register	Sector Count Register
1	0	3h	Sector Number Register	Sector Number Register
1	0	4h	Cylinder Low Register	Cylinder Low Register
1	0	5h	Cylinder High Register	Cylinder High Register
1	0	6h	Drive Head Register	Drive Head Register
1	0	7h	Status Register	Command Register
0	1	6h	Alt. Status Register	Device Control Register
0	1	7h	Drive Address Register	Reserved

Since most RTOSes (real time operating systems) such as VxWorksTM have device drivers for ATA/IDE drives, the software integration effort is significantly reduced. Ideally, only the AT task file base address needs to be modified in a typical embedded system.

3.0 Hardware Notes

3.1 General Information

Please refer to Section 4.0 for the Schematic

While the MPC8260's core runs at 2.5V, its I/Os are at 3.3V which is compatible with the CompactFlash signals which can be at either 3.3V or 5V.

Although 8260's GPCM(General Purpose Chip-Select Machine) would have been easier to use, its timing violates Compact Flash timing. A more flexible approach uses 8260's UPM (Universal Programmable Machine) to generate the required timing. 8260's GPL1 and GPL2 were chosen to control CompactFlash's IORD# and IOWR#. Connecting Compact Flash's INTRQ to an Interrupt Input on the 8260 is recommended, although not required. If it is found that polling the status register is inefficient, an interrupt service routine could be implemented. Any interrupt pin can be used: 8260's IRQ0 was chosen as an example.

CompactFlash's **RESET** line was directly connected to power-on reset in order to guarantee a reset to the card for every power up. If the CF **RESET** was tied to a port pin, software to the 8260 must remember to reset the card. Otherwise the default state of the port pin may be continuously resetting the card.

3.2 I.O Signals

CompactFlash connection (True IDE mode)

Pin .	Description	Comments
RESET#	resets CF	Connect to system power on reset
CS0#	card select 0	Connect to chip select 0
CS1#	card select 1	Connect to chip select 1
IORD#	I/O read strobe	Connect to GPL1
IOWR#	I/O write strobe	Connect to GPL2
A0-A10	Address bit 0-10	Connect A0-A2, ground A3-A10
D0-D15	data bits 0-15	Connect to data bus bits 0-15
INTRQ	Interrupt request to host	Optional interrupt request to host
OE#/ATA SEL#	Enables True IDE Mode	Connect to ground
IOIS16#	16 bit transfer	Not connected (host assumes 16 bit transfer)
CSEL#	cable select (master/slave)	Connect to ground (enable card as master)
IORDY	I/O ready	Not connected
PDIAG#	Passed diagnostic	Not connected (no slave drive)
DASP#	drive active/slave present	Not connected (no slave drive)
CD1#,CD2#	card detect	Not connected (hot insertion not supported)
VS1#,VS2#	Voltage sense	Not connected
INPACK#	input acknowledge	Not connected
REG#	Attribute memory enable	Not used in True IDE mode (connect to Vcc)
WE#	write enable	Not used in True IDE mode (connect to Vcc)

8260 Pins

Symbol	Description
CS0#	Chip Select
CS1#	Chip Select
PGPL1	60x bus General Purpose line 1
PGPL2	60x bus General Purpose line 2
A0-A2	Address bit 0-2
D0-D15	Data bit 0-15
IRQ0#	Interrupt Request

3.3 Timing

In order to interface to the CompactFlash, it is necessary to meet the I/O read and write timing requirements shown below.

True IDE Read Access AC Timing

Parameter	symbol	min	typ	max	unit	clock	Rounded
						cycles	up/down
Data delay after IORD	td(IORD)			45	ns	2.9	3
Data hold following IORD	th(IORD)	0			ns		0
IORD w/ time	tw(IORD)	80			ns	5.2	6
Address setup before IORD	tsuA(IORD)	30			ns	1.9	2
Address hold following	thA(IORD)	20			ns	1.3	2
IORD							
CE setup before IORD	tsuCE(IORD)	0			ns		1.5
CE hold following IORD	thCE(IORD)	0			ns		1
IOIS16 delay falling from	tdfIOIS16(ADR)			35	ns	2.3	2
address							

True IDE Write Access AC Timing

Parameter	symbol	min	typ	max	unit	clock	Rounded
	-					cycles	up/down
Data setup before IOWR	tsu(IOWR)	40			ns	2.6	3
Data hold following IOWR	th(IOWR)	30			ns	1.9	2
IORD width time	tw(IOWR)	80			ns	5.2	6
Address setup before IOWR	tsuA(IOWR)	30			ns	1.9	2
Address hold following	thA(IOWR)	20			ns	1.3	2
IOWR							
CE setup before IOWR	tsuCE(IOWR)	0			ns		1.5
CE hold following IOWR	thCE(IOWR)	0			ns		1.5
IOIS16 delay falling from	tdfIOIS16(ADR)			35	ns	2.3	2
address							
IOIS16 delay rising from	tsfIOIS16(ADR)			35	ns	2.3	1
address							

In order to meet these timing requirements, the UPM has to be programmed.

The details specific to the 8260 UPM are:

- Set up BRx (Base Register) and OR x
- Write patterns into the RAM array
- Program MxMR(Machine Mode register)

Note: MTPTR and L/PSRT are needed because we do not need to refresh the Compact Flash.

<u>Setup BRx and ORx</u>
The following contains the recommended values for BRx as described in Table 10-3 from the 8260 User's Manual. (page 10-14)

BRx: Table 10-3 Base Register, pg 10-14

Bits	Name	Value	Description			
0-16	BA	X	Base address. Used with Orx[BSIZE]			
17-18	-	0b00	Reserved, should be cleared			
19-20	PS	0b10	Specifies port size of memory region. 10=16bit			
21-22	DECC	0b00	Data error correction checking. 0b00=no parity			
23	WP	0b0	Write Protect. 0=read and write accesses are allowed			
24-25	MS	0b100	Machine Select. 100=UPMA			
27	EMEMC	0b0	External MEMC enable. 0b0= access are handled by the memory controller according to MSEL, 10.2.10			
28-29	ATOM	0b00	Atomic Operation. 0b00=no atomic operations			
30	DR	0b0	Data pipelining. 0b0= no data pipelining is done			
31	V	0b1	Valid bit. 0b1=this bank is valid. Indicates that the contents of the BRx and Orx pair are valid. The \CS signal does not assert until V is set.			

The following contains the recommended values for OR x as described in Table 10-6 from the 8260 User's Manual (page 10-20)

Orx: Table 10-6 Option Register- UPM Mode, pg 10-20

Bits	Name	Value	Description
0-16	AM	all 1's	Address mask.= 0b11111111111111111
17-19	-	0b00	Reserved, should be cleared
19	BCTLD	0b1	Data buffer control disable. 0b1= /BCTLx is not asserted upon access to the current memory bank 10.2.7
20-22	-	0b00	Reserved, should be cleared
23	BI	0b0	Burst inhibit. 0b0=bank supports burst accesses
24-28	-	0b00000	Reserved, should be cleared
29-30	EHTR	0b00	Extended hold time on read accesses. No additional cycles are inserted between a read access from the current bank and the next access.
31	-	0b0	Reserved, should be cleared

Write Patterns into the RAM Array

The following two tables shows how read and write timing was calculated for RAM Array

True IDE Access Read AC Characteristics

Parameter	symbol	min	typ	max	unit	# of clock cycles	rounded up/down
Data delay after IORD	td(IORD)			45	ns	2.97029703	3
Data hold following IORD	th(IORD)	0			ns		0
IORD w/ time	tw(IORD)	80			ns	5.280528053	6
Address setup before IORD	tsuA(IORD)	30			ns	1.98019802	2
Address hold following IORD	thA(IORD)	20			ns	1.320132013	2
CE setup before IORD	tsuCE(IORD)	0			ns		1.5
CE hold following IORD	thCE(IORD)	0			ns		1
IOIS16 delay falling from address	tdfIOIS16(ADR)			35	ns	2.310231023	2
IOIS16 delay rising from address	tdrIOIS16(ADR)			35	ns	2.310231023	1

True IDE Access Write AC Characteristics

Parameter	symbol	min	typ	max	unit	# of clock cycles	rounded up/down
Data setup before IOWR	tsu(IOWR)	40			ns	2.640264026	3
Data hold following IOWR	th(IOWR)	30			ns	1.98019802	2
IORD width time	tw(IOWR)	80			ns	5.280528053	6
Address setup before IOWR	tsuA(IOWR)	30			ns	1.98019802	2
Address hold following IOWR	thA(IOWR)	20			ns	1.320132013	2
CE setup before IOWR	tsuCE(IOWR)	0			ns		1.5
CE hold following IOWR	thCE(IOWR)	0			ns		1.5
IOIS16 delay falling from address	tdfIOIS16(ADR)			35	ns	2.310231023	2
IOIS16 delay rising from address	tsfIOIS16(ADR)			35	ns	2.310231023	1

The following two figures show the timing diagrams and the values which must be programmed into the RAM array. These values allow the UPM to generate the required timing for the Compact Flash.

Program MxMR

The following contains the recommended values for MxMR as described in Table 10-9 from the 8260 User's Manual (page 10-27)

MxMR: Table 10-9 Machine x Mode Registers , pg 10-27

Bits	Name	Value	Description
0	BSEL	0b0	Bus Select Assigns banks that select UPMx to the 60x or local bus. 0b0=60x
1	RFEN	0b0	Refresh enable. 0b0= Refresh services are not required
2-3	OP	0b00	Command opcode. Determines command executed by UPMx when a memory access hits a UPM assigned bank. 0b00= Normal operation
4	-	0b0	Reserved, should be cleared
5-7	AMX	0b000	Address multiplex size. See 10.6.4.2
8-9	DSx	0b00	Disable timer period
10-12	G0CLx	0b000	General line 0 control. GPL0 is not used
13	GPL_x4DIS	0b0	GPL_A4 output line disable. These lines are not use
14-17	RLFx	0b0001	Read loop field. Determines number of times a loop defined in the UPMx will be executed for a burst or single-beat read pattern or when MxMR[OP]=11; 0001= loop is executed 1 time. Not used.
18-21	WLFx	0b0001	Write loop field. See RLFx. Not used
22-25	TLFx	0b0001	Refresh loop field. Doesn't matter.
26-31	MAD	0b000000	Machine address. RAM address pointer for the command executed. This field is incremented by 1, each time the UPM is accessed and the OP field is set to WRITE or READ. Set when programming RAM array.

4.0 Schematic

VCC=3.3V

5.0 Software Notes

Although you could write your own IDE driver, most real time operating systems like VxWorksTM already provide either an ATA or IDE driver. The IDE driver sends the appropriate ATA commands to the CompactFlash. Ideally, no additional driver software needs to be written; however it will be necessary to the base address from the primary IDE port (1F0h) to the value associated with the chip select.

Software may want to take advantage of CompactFlash's INTRQ (interrupt request) to notify the 8260 processor when the CompactFlash is ready. Alternatively, one can poll the busy bit of the status register to determine when the CompactFlash is ready.

Please note: When programming the RAM array for the UPM, a single byte access is needed after loading each RAM value into the UPM.

6.0 Conclusion

CompactFlash cards are a widely available solution for systems requiring a compact, solid state mass storage system. Because they interpret standard ATA disk drive commands, little or no software development is necessary because software drivers for ATA devices already exist for most operating systems. The hardware interface for each system may need to be customized, but as indicated in the example presented, the chipset may already possess the capability to interface gluelessly to CompactFlash. If a PCMCIA controller is not present in the system, it will be easier to interface using the True IDE mode (assuming hot insertion and removal is not a requirement).

7.0 References

7.1 Datasheets

THNCFxxxMAA Series Compact Flash Card datasheet 3/2001 MPC8260 PowerQUICC II User's Manual 4/1999 Rev. 0 MPC8260 PowerQUICC II Users Manual Errata 8/2000 Rev. 1

7.2 Toshiba Website

www.toshiba.com/taec

7.3 Contact Information

Toshiba welcomes your feedback on this document. Please send any comments and ideas to TAEC eSupport at:

Tech. Questions@taec.toshiba.com.