6.1 树的定义和基本术语

树(Tree)是n(n>=0)个结点的有限集。在任意一棵非空树中:1)有且仅有一个特定的称为根(Root)的结点;2)当 n>1时,其余结点可分为m(m>0)个互不相交的有限集 T_1 , T_2 ,…, T_m ,其中每一个集合本身又是一棵树,并且称为根的子树。

其抽象数据类型定义如下:

ADT Tree{

数据对象 D: D是具有相同特性的数据元素的集合。

数据关系 R:

若D为空集,则称为空树。若D仅含一个数据元素,则R为空集, ,否则R={H},H是如下二元关系:

- (1) 在D中存在唯一的称为根的数据元素root;它在H下无前驱
- (2) 若D- {root} $\neq \emptyset$,则存在D- {root}的一个划分D₁, D₂, ..., D_m (m>0),对任意j \neq k,有D_j \cap D_k = \emptyset ,且对任意的i,唯一存在数据元素x_i \in D_i,有 < root, x_i > \in H;
- (3) 对应于D- {root}的划分,H- {<root, x_1 >,… <root, x_m >}有惟一的一个划分 H_1 ,… H_m (m>0),对任意j \neq k,有 H_j \cap H_k = \emptyset ,且对任意的i, H_i 是 D_i 上的关系,(D_{i_1} { H_i })是一棵符合本定义的树,称为根root的子树。

基本操作:

查找类:

Root(T) // 求树的根结点

Value(T, cur_e) // 求当前结点的元素值

Parent(T, cur_e) // 求当前结点的双亲结点

LeftChild(T, cur_e) // 求当前结点的最左孩子

RightSibling(T, cur_e) // 求当前结点的右兄弟

TreeEmpty(T) // 判定树是否为空树

TreeDepth(T) // 求树的深度

TraverseTree(T, Visit()) // 遍历

插入类:

InitTree(&T) // 初始化置空树

CreateTree(&T, definition) // 按定义构造树

Assign(T, cur_e, value) // 给当前结点赋值

InsertChild(&T, &p, i, c)
// 将以c为根的树插入为结点p的第i棵子树

删除类:

ClearTree(&T) // 将树清空

DestroyTree(&T) // 销毁树的结构

DeleteChild(&T, &p, i)
// 删除结点p的第i棵子树

有向树:

- (1)有确定的根;
- (2) 树根和子树根之间为有向关系。

有序树:

子树之间存在确定的次序关系。

无序树:

子树之间不存在确定的次序关系。

基本术语

结点: 数据元素及若干指向其子树的分支

结点的度: 结点拥有的子树的数目

树的度: 树中所有结点的度的最大值

叶子结点: 度为零的结点

分支结点: 度不为零的结点

(从根到结点的)路径:

由从根到该结点所经分支和结点构成

例如:

孩子结点、双亲结点

兄弟结点、堂兄弟

祖先结点、子孙结点

结点的层次: 假设根结点的层次为1,根的孩子为第二层。

第I 层的结点的子树根结点的层次为I+1

树的深度(高度): 树中叶子结点所在的最大层次

森林:

是m(m≥0)棵互 不相交的树的集合。

任何一棵非空树是一个二元组

Tree = (root, F)

其中: root 被称为根结点

F被称为子树森林