Lecture 7: origin of complexity II, galaxies

How big is the visible universe?

13 Billion l.yr? or 40 billion l.yr?

http://www.youtube.com/watch?v=vJayxpt482g

Initial conditions for the universe (post CMB)

$$\Omega_{tot}$$
 = 1 +/- 0.01
T ~ 3000K
matter (dark matter + sprinkle baryons)
10⁻⁵ level density fluctuations
75% H + 25% Helium

anthropic concerns:

enough time to form galaxies/stars before torn apart? enough time to accumulate metal for planets? enough time to make life and evolve life? enough time to prepare for the final exam?

Gravity took over ever since the early universe

magnifying tiny primordial fluctuations

gravity causes primordial density fluctuations to self-amplify, allowing complex structure to rise

The Millennium Simulations (the largest modelling of our universe)

Answer: Gravitational Instability

Simulation results

- •A galaxy is a tiny node.
- •Galaxies cluster to form bigger structures (galaxy clusters)
- •filaments of matter connecting nodes

to be highly clustered.

- •large regions of 'Voids'
- •we are a little "gas station" town along the high way

people gravitate to cities, highways feed the cities (w/ people, fuel...)

'Cosmic Concordance' (or 'standard cosmological model')

- •by comparing statistics of galaxy clusters (how tightly clustered, how rich...) against simulations, we can also measure the total matter density
- •the value obtained concurs with that from looking at the CMB ($\Omega_m + \Omega_{\Lambda} = 1$) and at supernova
- there appears to be a consensus about the universe from diverse measurements

Origin of the Milky Way Galaxy

- •The Milky Way is a Spiral Galaxy.
- •Most stars in the Milky Way are ~ a few Gyrs old.
- •A trickle of new stars being made ($\sim 2 \text{ M}_{\text{sun}}/\text{yr}$).
- •Stars can be sorted into a disk, a bulge and a halo.
- •The dark matter looms far out (90% of the mass)

How does the sky look inside a galaxy?

Artist's conception

Stars in the Milky Way Galaxy

3 stellar components with different ages and kinematics

	shape	age	star mass	metal	rotating?	
disk	flat	<9 Gyrs	90%	rich	yes	incl. Sun, star forming ~ 2 M _{sun} /yr
halo	spherical	>12 Gyrs	1%	very	isotropic orbits	globular clusters & dark matter
bulge	spherical	> 10 Gyrs	9%	very rich	~yes	close to center

Stars @ the centre, dark matter further out.

When falling into the potential well of a galaxy,

gas: collides and loses angular momentum, forms disk/bulge in the inner part of the galaxy

dark matter: no collision, can not lose angular momentum, orbit further out with nearly isotropic velocity dispersion (halo)

We have two large satellite galaxies:

Leading tida Milky Way disk Direction of motion railing tidal Sagittarius dwarf tidal stream

Fate of LMC/SMC

The Milky Way continuously disrupts smaller galaxies and absorbs them

The Sagittarius dwarf galaxy is being ripped apart now -- we see its debris stream.

In the past, many small galaxies have been cannibalized -- the stellar halo.

Continuous Consumption of Smaller Galaxies

- newly absorbed galaxies
 bring along their dark matter,
- dark matter can't dissipate
- •the Milky Way acquires a dark matter halo that's full of structure, and memory of the past
- •it can be triaxial, it can be lumpy, it can have many streams...

if we can 'see' dark matter...

The Milky Way
Galaxy will be
absorbed as well...

Milk-dromeda? What about us?

The after-math?

Sombrero Galaxy • M104

an elliptical galaxy

Galaxy collision is common-place

Cartwheel Galaxy

HST · WFPC

PR95-02 · ST Scl OPO · January 1995 · K. Borne (ST Scl), NASA

12/23/94

Galaxies collide all the time. Yet stars rarely do. Wh

size of star ~ I light-sec distance of stars ~ I light-yr

size of galaxies ~ 10⁴ light-yrs distance of galaxies~10⁶ light-yrs