Big G Truck project Torque Titans

The Problem

- Heavy duty vehicles occasionally run into a full derate
- Full derates happen when the internal computer forces a slow down or service of the vehicle.
- Derates are expensive.
- Is it possible to predict a full derate for a period of time before it happens to avoid extra expenses.

Project Overview

Clean Data for predictor variables

Impute/Encode missing values

Feature choice/Class balancing

Apply XGBoost model to make predictions

Exploratory Data Analysis

Cleaning Data

Remove Confounding Data

- Removed error logs produced around repair shop areas within a 1 mile radius.
- Disregarded rows where SPN 5246 has active status is FALSE

Section Time Series Data

Sliced the time series data into time interval groups. These groups are:

- O hrs (moment of full derate)
- Less than 2 hours before full derate
- Between 2 and 24 hours before
- Larger than 24 hours

Impute/Encode Missing Values

Use of models to replace missing values with potential real values

Missing Values + Balancing Classes

Initial Encoding

- Dropped columns with mostly missing data
- → Create SPN + FMI column
- → Target Encode 'spn_fmi',
 'ecuSource', 'LampStatus',
 'activeTransitionCount'

Scale & Impute

- → Broadly apply Standard Scaler
- → Impute values via
 HistGradientBoostingRegressor

Class Imbalance

- → Favored over 24hr period heavily
- → Used SMOTE to help balance the minority classes
- → Added an extra number classifier to identify trucks that did not have a full derate in the data

XGBoost

Labeled the time intervals between 0 and 4

- 4 is an artificial number (9999999) to initiate a time delta column
 - (1) Created for entries from trucks that did not experience a recorded full derate
 - (2) entries that occured after a truck's last recorded full derate
- 3 references the time of a full derate
- 2 represents two hours before a derate
- 1 represents time between 2 and 24 hours prior to full derate
- O represents time delta greater than 24 hours

Time Delta Category	Precision	Recall	f1	Support
0	0.01	0.05	0.02	2044
1	0.05	0.49	0.09	292
2	0.00	0.05	0.00	44
3	0.90	0.99	0.94	101
4	0.98	0.90	0.94	109538
Accuracy Macro avg Weighted avg	0.39 0.96	0.50 0.88	0.88 0.40 0.92	112019 112019 112019

ML Pipeline Construct

```
ct0 = ColumnTransformer(
          [('target_encoder', TargetEncoder(handle_unknown='ignore'), ['spn_fmi',
          remainder='passthrough')
  xabc pipe = Pipeline(
          ('imputer', IterativeImputer(estimator = HistGradientBoostingRegressor(verbose=2, random state=434), max iter=1, random state=343)),
          ('smote', SMOTE(random_state=344)),
          ('xgbc', XGBClassifier( enable_categorical=True,
                                  eval_metric='mlogloss',
                                  objective = 'multi:softmax',
                                  num_class = 5,
                                  device = "cuda",
                                  random state = 535
  ).fit(X train, y train)
  y_pred = xgbc_pipe.predict(X_test)

√ 2m 32.0s
```


External Testing/Validation, with Data from 2019+

			precision	recall	f1-score	support
>2·	>24 Hrs: Cat ~24 Hrs: Cat 0~2 Hrs: Cat ncounter: Cat	2	0.01 0.05 0.00	0.05 0.49 0.05	0.02 0.09 0.00	2044 292 44
	ncounter: Cat ed Derate: Cat	_	0.90 0.98	0.99 0.90	0.94 0.94	101 109538
No recorde	accurac		0.90	0.90	0.88	112019
	macro av	/g	0.39 0.96	0.50 0.88	0.40 0.92	112019 112019 112019

Feature Importance & Impact Using SHAP

A. The average importance of each feature in the model

B. the beeswarm plot illustrates how high or low values of each feature impact predictions

Feature Importance Quantification using XGBoost's Calculation of gain in gradient

Most Impactful Feature: SPN_FMI

2nd Most Impactful Feature: LampStatus

3rd Most Impactful Feature: Fuel Level

4th Most Impactful Feature: ecuSource Codes

ecuSource code's impact on SHAP Value (log odds)

Source Address	Address Description		
0	Primary Engine Controller (CPC, ECM)		
3	Primary Transmission Controller (TCM)		
11	Brakes - System Controller (ABS)		
<u> </u>			
49	Cab Controller - Primary (MSF, SHM, ECC)		
61	Exhaust Emission Controller (ACM)		

Though highly pertinent, Code 61 (Exhaust Emission Controller) did not show up in **Testing** (intra-/post-2019) Dataset

Results

Tabulated on a day-to-day basis, per derate per truck:

- 35 true positive predictions
- < 42 false positives predictions
 - Max penalty count of 1 per day, per EquipmentID_Index
 - Summed over the course for n days
 - Hence we have tabulated *more* counts of False Positives than Actual # of False Positives
- Net savings : >\$119,000
- Prediction alert benchmarked against the period of 2~24 Hours ahead of a full derate: not too early / late

```
Summary of Results:
Total Count of EquipmentID_Index by Full Derates or Lack Thereof: 787
Total Savings: $140,000.00
Total Losses: <$21.000.00
Net Savings or Losses: >$119,000.00
Sample equipment results:
   EquipID_Index Has_GroundTruth_TimeIntervalClass_1 \
    105338729 0
                                                False
    105344451 0
                                                False
    105349576_0
                                                False
    105370255 0
                                                False
    105411909_0
                                                False
                                                False
    105427203 1
    105437340 0
                                                False
          1688_0
                                                False
8
          1698 0
                                                 True
9
          1698 1
                                                False
10
          1698 2
                                                False
   Has Predicted TimeIntervalClass 1 Where GroundTruth TimeIntervalClass 1 ∖
8
      4000
                  0 4000
          0
10
```

Future Work

Future Dev 1

Try LSTM (Long-/Short-Term Memory) and TCN (Temporal Convolutional Neural Network): to learn then predict on sequence of FaultID triggering events

Future Dev 2

Distance Calc based on Latitude & Longitude: Between the locale where each Fault Code popped up and the subsequent Full Derate. Alternatively, would be nice to have odometer data.

Future Dev 3

Optimize model to run quickly and efficiently (i.e. less demanding of computational resources), train on/predict using fewer features. E.g. LightGBM, maybe fewer *for* loops

Future Dev 4

Try other tree-based models, e.g. YDF, MICE Forest (Light GBM combined with Random Forest) for Imputation + Hyperparameter Tuning.

Hopefully it won't overfit, as XGBoost Imputer did.

Acknowledgements

Traversing on shoulders of giants:

Instructors

Michael & Alexa:

for their excellent teaching & elucidation of ML

concepts through this project

Billy's Team

For sharing Haversine code that removed rows

at/near Service Center locales

Each Team Member

For synergistic contributions & collaboration

Questions?