# 計量分析 2: 宿題 2

#### 村澤 康友

提出期限: 2022年10月27日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワープロに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl は代表的な確率分布の pdf や cdf をプロットできる. 正規分布の pdf をプロットする手順は以下の通り.
  - (1)「ツール」→「分布グラフ」を選択.
  - (2)「正規分布」のタブを選択.
  - (3)「平均」と「標準偏差」を入力.
  - (4)  $\lceil OK \rfloor$   $\geq D \cup \cup D$ .

グラフ上で右クリックして「曲線を追加する」を選択すれば、複数のグラフを重ねて表示できる. 他の分布についても同様. 教科書の以下のグラフを gretl で再現しなさい. ただし数値軸の範囲は調整しなくてよい (調整できない).

- (a) p. 67,  $\boxtimes 3.3 \mathcal{O} N(0,1) \mathcal{O} pdf$
- (b) p. 69, 図 3.4 の各種  $\chi^2(n)$  の pdf
- (c) p. 69, 図 3.5 の各種 t(n) の pdf
- (d) p. 70, 図 3.6 の各種 F(m,n) の pdf
- 2. (教科書 p. 73) 統計検定 2 級の試験問題には付表として各種分布表が掲載されている。下記の URL の 過去問の付表  $1\sim4$  を Excel で複製しなさい。なお Excel の各種統計関数の意味・使用法はヘルプで確認すること。

https://www.toukei-kentei.jp/wp-content/uploads/201911grade2.pdf

- (a) N(0,1) (NORM.S.DIST 関数)
- (b) t 分布 (T.INV 関数)
- (c)  $\chi^2$  分布(CHISQ.INV.RT 関数)
- (d) F 分布 (F.INV.RT 関数)
- 3. (教科書 p. 73) gretl のメニューから「標本」 $\rightarrow$ 「基準に基づいて制限する」を選択し、条件式を入力すれば、条件を満たす部分標本を抽出できる。データセット「2\_income.dta」を gretl に読み込み、以下の記述統計量を計算しなさい。
  - (a) 大卒 (veduc > 16) の平均年収
  - (b) 大卒以外 (yeduc < 16) の平均年収

## 解答例

# 1. (a) p. 67, 図 3.3



# (b) p. 69, 図 3.4







# (d) p. 70, 図 3.6



## 2. (a) 標準正規分布表

| 標準止 | 規分布表   |        |        |        |         |        |        |        |        |        |
|-----|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|
| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04    | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
| 0.0 | 0.5000 | 0.4960 | 0.4920 | 0.4880 | _0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |
| 0.1 | 0.4602 | 0.4562 | 0.4522 | 0.4483 | 0.4443  | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| 0.2 | 0.4207 | 0.4168 | 0.4129 | 0.4090 | 0.4052  | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| 0.3 | 0.3821 | 0.3783 | 0.3745 | 0.3707 | 0.3669  | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| 0.4 | 0.3446 | 0.3409 | 0.3372 | 0.3336 | 0.3300  | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| 0.5 | 0.3085 | 0.3050 | 0.3015 | 0.2981 | 0.2946  | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| 0.6 | 0.2743 | 0.2709 | 0.2676 | 0.2643 | 0.2611  | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| 0.7 | 0.2420 | 0.2389 | 0.2358 | 0.2327 | 0.2296  | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| 0.8 | 0.2119 | 0.2090 | 0.2061 | 0.2033 | 0.2005  | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| 0.9 | 0.1841 | 0.1814 | 0.1788 | 0.1762 | 0.1736  | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| 1.0 | 0.1587 | 0.1562 | 0.1539 | 0.1515 | 0.1492  | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| 1.1 | 0.1357 | 0.1335 | 0.1314 | 0.1292 | 0.1271  | 0.1251 | 0.1230 | 0.1210 | 0.1190 | 0.1170 |
| 1.2 | 0.1151 | 0.1131 | 0.1112 | 0.1093 | 0.1075  | 0.1056 | 0.1038 | 0.1020 | 0.1003 | 0.0985 |
| 1.3 | 0.0968 | 0.0951 | 0.0934 | 0.0918 | 0.0901  | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| 1.4 | 0.0808 | 0.0793 | 0.0778 | 0.0764 | 0.0749  | 0.0735 | 0.0721 | 0.0708 | 0.0694 | 0.0681 |
| 1.5 | 0.0668 | 0.0655 | 0.0643 | 0.0630 | 0.0618  | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| 1.6 | 0.0548 | 0.0537 | 0.0526 | 0.0516 | 0.0505  | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| 1.7 | 0.0446 | 0.0436 | 0.0427 | 0.0418 | 0.0409  | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| 1.8 | 0.0359 | 0.0351 | 0.0344 | 0.0336 | 0.0329  | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.0294 |
| 1.9 | 0.0287 | 0.0281 | 0.0274 | 0.0268 | 0.0262  | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| 2.0 | 0.0228 | 0.0222 | 0.0217 | 0.0212 | 0.0207  | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| 2.1 | 0.0179 | 0.0174 | 0.0170 | 0.0166 | 0.0162  | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| 2.2 | 0.0139 | 0.0136 | 0.0132 | 0.0129 | 0.0125  | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| 2.3 | 0.0107 | 0.0104 | 0.0102 | 0.0099 | 0.0096  | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.0084 |
| 2.4 | 0.0082 | 0.0080 | 0.0078 | 0.0075 | 0.0073  | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.0064 |
| 2.5 | 0.0062 | 0.0060 | 0.0059 | 0.0057 | 0.0055  | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| 2.6 | 0.0047 | 0.0045 | 0.0044 | 0.0043 | 0.0041  | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| 2.7 | 0.0035 | 0.0034 | 0.0033 | 0.0032 | 0.0031  | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.0026 |
| 2.8 | 0.0026 | 0.0025 | 0.0024 | 0.0023 | 0.0023  | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| 2.9 | 0.0019 | 0.0018 | 0.0018 | 0.0017 | 0.0016  | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| 3.0 | 0.0013 | 0.0013 | 0.0013 | 0.0012 | 0.0012  | 0.0011 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| 3.1 | 0.0010 | 0.0009 | 0.0009 | 0.0009 | 0.0008  | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0007 |
| 3.2 | 0.0007 | 0.0007 | 0.0006 | 0.0006 | 0.0006  | 0.0006 | 0.0006 | 0.0005 | 0.0005 | 0.0005 |
| 3.3 | 0.0005 | 0.0005 | 0.0005 | 0.0004 | 0.0004  | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| 3.4 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003  | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0002 |
| 3.5 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002  | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.0002 |
| 3.6 | 0.0002 | 0.0002 | 0.0001 | 0.0001 | 0.0001  | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
| 3.7 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001  | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
| 3.8 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001  | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
| 3.9 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
|     |        |        |        |        |         |        |        |        |        |        |

# (b) t 分布表

|          |       | 0.05  | 0.005  | 0.04   | 0.005  |
|----------|-------|-------|--------|--------|--------|
| n        | 0.1   | 0.05  | 0.025  | 0.01   | 0.005  |
| 1        | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 |
| 2/       | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  |
| 3        | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  |
| 4        | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  |
| 5        | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  |
| 6        | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  |
| 7        | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  |
| 8        | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  |
| 9        | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  |
| 10       | 1.372 | 1.812 | 2.228  | 2.764  | 3.169  |
| 11       | 1.363 | 1.796 | 2.201  | 2.718  | 3.106  |
| 12       | 1.356 | 1.782 | 2.179  | 2.681  | 3.055  |
| 13       | 1.350 | 1.771 | 2.160  | 2.650  | 3.012  |
| 14       | 1.345 | 1.761 | 2.145  | 2.624  | 2.977  |
| 15       | 1.341 | 1.753 | 2.131  | 2.602  | 2.947  |
| 16       | 1.337 | 1.746 | 2.120  | 2.583  | 2.921  |
| 17       | 1.333 | 1.740 | 2.110  | 2.567  | 2.898  |
| 18       | 1.330 | 1.734 | 2.101  | 2.552  | 2.878  |
| 19       | 1.328 | 1.729 | 2.093  | 2.539  | 2.861  |
| 20       | 1.325 | 1.725 | 2.086  | 2.528  | 2.845  |
| 21       | 1.323 | 1.721 | 2.080  | 2.518  | 2.831  |
| 22       | 1.321 | 1.717 | 2.074  | 2.508  | 2.819  |
| 23       | 1.319 | 1.714 | 2.069  | 2.500  | 2.807  |
| 24       | 1.318 | 1.711 | 2.064  | 2.492  | 2.797  |
| 25       | 1.316 | 1.708 | 2.060  | 2.485  | 2.787  |
| 26       | 1.315 | 1.706 | 2.056  | 2.479  | 2.779  |
| 27       | 1.314 | 1.703 | 2.052  | 2.473  | 2.771  |
| 28       | 1.313 | 1.701 | 2.048  | 2.467  | 2.763  |
| 29       | 1.311 | 1.699 | 2.045  | 2.462  | 2.756  |
| 30       | 1.310 | 1.697 | 2.042  | 2.457  | 2.750  |
| 40       | 1.303 | 1.684 | 2.021  | 2.423  | 2.704  |
| 60       | 1.296 | 1.671 | 2.000  | 2.390  | 2.660  |
| 120      | 1.289 | 1.658 | 1.980  | 2.358  | 2.617  |
| 240      | 1.285 | 1.651 | 1.970  | 2.342  | 2.596  |
| 1.00E+10 | 1.282 | 1.645 | 1.960  | 2.326  | 2.576  |
|          |       |       |        |        |        |

# (c) χ<sup>2</sup> 分布表

| n   | 0.99   | 0.975  | 0.95   | 0.9    | 0.1    | 0.05   | 0.025  | 0.01   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 1   | 0.00   | 0.00   | 0.00   | 0.02   | 2.71   | 3.84   | 5.02   | 6.63   |
| 2   | 0.02   | 0.05   | 0.10   | 0.21   | 4.61   | 5.99   | 7.38   | 9.21   |
| 3   | 0.11   | 0.22   | 0.35   | 0.58   | 6.25   | 7.81   | 9.35   | 11.34  |
| 4   | 0.30   | 0.48   | 0.71   | 1.06   | 7.78   | 9.49   | 11.14  | 13.28  |
| 5   | 0.55   | 0.83   | 1.15   | 1.61   | 9.24   | 11.07  | 12.83  | 15.09  |
| 6   | 0.87   | 1.24   | 1.64   | 2.20   | 10.64  | 12.59  | 14.45  | 16.81  |
| 7   | 1.24   | 1.69   | 2.17   | 2.83   | 12.02  | 14.07  | 16.01  | 18.48  |
| 8   | 1.65   | 2.18   | 2.73   | 3.49   | 13.36  | 15.51  | 17.53  | 20.09  |
| 9   | 2.09   | 2.70   | 3.33   | 4.17   | 14.68  | 16.92  | 19.02  | 21.67  |
| 10  | 2.56   | 3.25   | 3.94   | 4.87   | 15.99  | 18.31  | 20.48  | 23.21  |
| 11  | 3.05   | 3.82   | 4.57   | 5.58   | 17.28  | 19.68  | 21.92  | 24.72  |
| 12  | 3.57   | 4.40   | 5.23   | 6.30   | 18.55  | 21.03  | 23.34  | 26.22  |
| 13  | 4.11   | 5.01   | 5.89   | 7.04   | 19.81  | 22.36  | 24.74  | 27.69  |
| 14  | 4.66   | 5.63   | 6.57   | 7.79   | 21.06  | 23.68  | 26.12  | 29.14  |
| 15  | 5.23   | 6.26   | 7.26   | 8.55   | 22.31  | 25.00  | 27.49  | 30.58  |
| 16  | 5.81   | 6.91   | 7.96   | 9.31   | 23.54  | 26.30  | 28.85  | 32.00  |
| 17  | 6.41   | 7.56   | 8.67   | 10.09  | 24.77  | 27.59  | 30.19  | 33.41  |
| 18  | 7.01   | 8.23   | 9.39   | 10.86  | 25.99  | 28.87  | 31.53  | 34.81  |
| 19  | 7.63   | 8.91   | 10.12  | 11.65  | 27.20  | 30.14  | 32.85  | 36.19  |
| 20  | 8.26   | 9.59   | 10.85  | 12.44  | 28.41  | 31.41  | 34.17  | 37.57  |
| 25  | 11.52  | 13.12  | 14.61  | 16.47  | 34.38  | 37.65  | 40.65  | 44.31  |
| 30  | 14.95  | 16.79  | 18.49  | 20.60  | 40.26  | 43.77  | 46.98  | 50.89  |
| 35  | 18.51  | 20.57  | 22.47  | 24.80  | 46.06  | 49.80  | 53.20  | 57.34  |
| 40  | 22.16  | 24.43  | 26.51  | 29.05  | 51.81  | 55.76  | 59.34  | 63.69  |
| 50  | 29.71  | 32.36  | 34.76  | 37.69  | 63.17  | 67.50  | 71.42  | 76.15  |
| 60  | 37.48  | 40.48  | 43.19  | 46.46  | 74.40  | 79.08  | 83.30  | 88.38  |
| 70  | 45.44  | 48.76  | 51.74  | 55.33  | 85.53  | 90.53  | 95.02  | 100.43 |
| 80  | 53.54  | 57.15  | 60.39  | 64.28  | 96.58  | 101.88 | 106.63 | 112.33 |
| 90  | 61.75  | 65.65  | 69.13  | 73.29  | 107.57 | 113.15 | 118.14 | 124.12 |
| 100 | 70.06  | 74.22  | 77.93  | 82.36  | 118.50 | 124.34 | 129.56 | 135.81 |
| 120 | 86.92  | 91.57  | 95.70  | 100.62 | 140.23 | 146.57 | 152.21 | 158.95 |
| 140 | 104.03 | 109.14 | 113.66 | 119.03 | 161.83 | 168.61 | 174.65 | 181.84 |
| 160 | 121.35 | 126.87 | 131.76 | 137.55 | 183.31 | 190.52 | 196.92 | 204.53 |
| 180 | 138.82 | 144.74 | 149.97 | 156.15 | 204.70 | 212.30 | 219.04 | 227.06 |
| 200 | 156.43 | 162.73 | 168.28 | 174.84 | 226.02 | 233.99 | 241.06 | 249.45 |
| 240 | 191.99 | 198.98 | 205.14 | 212.39 | 268.47 | 277.14 | 284.80 | 293.89 |

# (d) F 分布表

| J1X   |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |          |
|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 0.05  |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |          |
| n\m   | 1      | 2     | 3     | _ 4   | _ 5   | 6     | 7     | 8     | 9     | 10    | 15    | 20    | 40    | 60    | 120   | 1.00E+10 |
| 5     | 6.608  | 5.786 | 5.409 | 5.192 | 5.050 | 4.950 | 4.876 | 4.818 | 4.772 | 4.735 | 4.619 | 4.558 | 4.464 | 4.431 | 4.398 | 4.365    |
| 10    | 4.965  | 4.103 | 3.708 | 3.478 | 3.326 | 3.217 | 3.135 | 3.072 | 3.020 | 2.978 | 2.845 | 2.774 | 2.661 | 2.621 | 2.580 | 2.538    |
| 15    | 4.543  | 3.682 | 3.287 | 3.056 | 2.901 | 2.790 | 2.707 | 2.641 | 2.588 | 2.544 | 2.403 | 2.328 | 2.204 | 2.160 | 2.114 | 2.066    |
| 20    | 4.351  | 3.493 | 3.098 | 2.866 | 2.711 | 2.599 | 2.514 | 2.447 | 2.393 | 2.348 | 2.203 | 2.124 | 1.994 | 1.946 | 1.896 | 1.843    |
| 25    | 4.242  | 3.385 | 2.991 | 2.759 | 2.603 | 2.490 | 2.405 | 2.337 | 2.282 | 2.236 | 2.089 | 2.007 | 1.872 | 1.822 | 1.768 | 1.711    |
| 30    | 4.171  | 3.316 | 2.922 | 2.690 | 2.534 | 2.421 | 2.334 | 2.266 | 2.211 | 2.165 | 2.015 | 1.932 | 1.792 | 1.740 | 1.683 | 1.622    |
| 40    | 4.085  | 3.232 | 2.839 | 2.606 | 2.449 | 2.336 | 2.249 | 2.180 | 2.124 | 2.077 | 1.924 | 1.839 | 1.693 | 1.637 | 1.577 | 1.509    |
| 60    | 4.001  | 3.150 | 2.758 | 2.525 | 2.368 | 2.254 | 2.167 | 2.097 | 2.040 | 1.993 | 1.836 | 1.748 | 1.594 | 1.534 | 1.467 | 1.389    |
| 120   | 3.920  | 3.072 | 2.680 | 2.447 | 2.290 | 2.175 | 2.087 | 2.016 | 1.959 | 1.910 | 1.750 | 1.659 | 1.495 | 1.429 | 1.352 | 1.254    |
|       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |          |
| 0.025 |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |          |
| n∖m   | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 15    | 20    | 40    | 60    | 120   | 1.00E+10 |
| 5     | 10.007 | 8.434 | 7.764 | 7.388 | 7.146 | 6.978 | 6.853 | 6.757 | 6.681 | 6.619 | 6.428 | 6.329 | 6.175 | 6.123 | 6.069 | 6.015    |
| 10    | 6.937  | 5.456 | 4.826 | 4.468 | 4.236 | 4.072 | 3.950 | 3.855 | 3.779 | 3.717 | 3.522 | 3.419 | 3.255 | 3.198 | 3.140 | 3.080    |
| 15    | 6.200  | 4.765 | 4.153 | 3.804 | 3.576 | 3.415 | 3.293 | 3.199 | 3.123 | 3.060 | 2.862 | 2.756 | 2.585 | 2.524 | 2.461 | 2.395    |
| 20    | 5.871  | 4.461 | 3.859 | 3.515 | 3.289 | 3.128 | 3.007 | 2.913 | 2.837 | 2.774 | 2.573 | 2.464 | 2.287 | 2.223 | 2.156 | 2.085    |
| 25    | 5.686  | 4.291 | 3.694 | 3.353 | 3.129 | 2.969 | 2.848 | 2.753 | 2.677 | 2.613 | 2.411 | 2.300 | 2.118 | 2.052 | 1.981 | 1.906    |
| 30    | 5.568  | 4.182 | 3.589 | 3.250 | 3.026 | 2.867 | 2.746 | 2.651 | 2.575 | 2.511 | 2.307 | 2.195 | 2.009 | 1.940 | 1.866 | 1.787    |
| 40    | 5.424  | 4.051 | 3.463 | 3.126 | 2.904 | 2.744 | 2.624 | 2.529 | 2.452 | 2.388 | 2.182 | 2.068 | 1.875 | 1.803 | 1.724 | 1.637    |
| 60    | 5.286  | 3.925 | 3.343 | 3.008 | 2.786 | 2.627 | 2.507 | 2.412 | 2.334 | 2.270 | 2.061 | 1.944 | 1.744 | 1.667 | 1.581 | 1.482    |
| 120   | 5.152  | 3.805 | 3.227 | 2.894 | 2.674 | 2.515 | 2.395 | 2.299 | 2.222 | 2.157 | 1.945 | 1.825 | 1.614 | 1.530 | 1.433 | 1.310    |

#### 3. (a) 大卒 (yeduc $\geq$ 16)

基本統計量, 観測 3076 - 4392 を使用

対象となる変数: 'income'(有効観測数: 1317)

平均 362.20 中央値 350.00 最小値 0.00000 最大値 1325.0 標準偏差 190.49 変動係数 0.52591 歪度 1.0144 過剰尖度 2.5582

5% パーセンタイル 100.00 95% パーセンタイル 700.00

四分位数範囲 200.00 欠損値数 0

### (b) 大卒以外 (yeduc < 16)

基本統計量, 観測 1 - 3075 を使用

対象となる変数: 'income'(有効観測数: 3075)

平均 213.56 中央値 200.00 最小値 0.00000 最大値 1475.0 標準偏差 144.58 0.67698 変動係数 歪度 1.2705 過剰尖度 5.2033

5% パーセンタイル 25.000 95% パーセンタイル 450.00

四分位数範囲 200.00 欠損値数 0