J1 - Statistics

Entrée [1]:

```
import numpy as np
import scipy.stats as st

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
```

EDA

Paiments Olist

Ouvrez olist_order_payments.csv et réalisez les différentes requêtes d'opération statistiques cidessous.

Entrée [3]:

```
olist = pd.read_csv('olist_order_payments_dataset.csv')
olist
```

						•
	order_id	payment_sequential	payment_type	payment_installments	pay	
0	b81ef226f3fe1789b1e8b2acac839d17	1	credit_card	8		
1	a9810da82917af2d9aefd1278f1dcfa0	1	credit_card	1		
2	25e8ea4e93396b6fa0d3dd708e76c1bd	1	credit_card	1		
3	ba78997921bbcdc1373bb41e913ab953	1	credit_card	8		
4	42fdf880ba16b47b59251dd489d4441a	1	credit_card	2		
103881	0406037ad97740d563a178ecc7a2075c	1	boleto	1		
103882	7b905861d7c825891d6347454ea7863f	1	credit_card	2		
103883	32609bbb3dd69b3c066a6860554a77bf	1	credit_card	1		
103884	b8b61059626efa996a60be9bb9320e10	1	credit_card	5		
100005	0011 05001 00 100 4001 7471 000014		L-1-4-		•	•

Entrée [4]:

```
olist.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 103886 entries, 0 to 103885
Data columns (total 5 columns):
 #
    Column
                          Non-Null Count
                                           Dtype
     -----
                           -----
    order_id
0
                          103886 non-null object
 1
    payment_sequential
                          103886 non-null int64
 2
                          103886 non-null object
    payment type
 3
    payment_installments 103886 non-null int64
                          103886 non-null float64
    payment value
dtypes: float64(1), int64(2), object(2)
memory usage: 4.0+ MB
Entrée [7]:
olist.payment_value.describe().to_frame()
```

Out[7]:

std

payment_value count 103886.000000 mean 154.100380

min 0.000000 25% 56.790000 50% 100.000000

217.494064

75% 171.837500

max 13664.080000

Entrée [8]:

```
olist['payment_value'].value_counts()
```

Out[8]:

363.31

50.00 324 20.00 274 100.00 255 77.57 250 35.00 165 264.64 1 1071.83 1 563.95 1 38.07 1

1

Name: payment_value, Length: 29077, dtype: int64

```
Entrée [9]:
olist['payment_value'].isna().value_counts()
Out[9]:
False
         103886
Name: payment_value, dtype: int64
Statistiques descriptives
Entrée [10]:
np.mean(olist.payment_value)
Out[10]:
154.10038041698365
Entrée [11]:
np.median(olist.payment_value)
Out[11]:
100.0
Entrée [12]:
np.var(olist.payment_value)
Out[12]:
47303.21247430867
Entrée [13]:
st.mode(olist.payment_value)
Out[13]:
```

ModeResult(mode=array([50.]), count=array([324]))

Entrée [14]:

```
sns.histplot(olist['payment_value'])
```

Out[14]:

<AxesSubplot:xlabel='payment_value', ylabel='Count'>

Entrée [15]:

```
sns.histplot(olist['payment_value'])
plt.xlim([0,1000])
```

Out[15]:

(0.0, 1000.0)

Entrée [16]:

```
sns.boxplot(olist['payment_value'])
```

C:\Users\azade\anaconda3\lib\site-packages\seaborn_decorators.py:36: F utureWarning: Pass the following variable as a keyword arg: x. From ver sion 0.12, the only valid positional argument will be `data`, and passi ng other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[16]:

<AxesSubplot:xlabel='payment_value'>

Entrée [17]:

```
sns.boxplot(olist['payment_value'])
plt.xlim([0,500])
```

C:\Users\azade\anaconda3\lib\site-packages\seaborn_decorators.py:36: Futu reWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterp retation.

warnings.warn(

Out[17]:

(0.0, 500.0)

Entrée [18]:

```
np.corrcoef(olist.payment_value, olist.payment_installments)
```

Out[18]:

```
array([[1. , 0.33081084], [0.33081084, 1. ]])
```

Entrée [19]:

```
olist['payment_value'].corr(olist['payment_installments'])
```

Out[19]:

0.3308108445189853

Entrée [20]:

```
sns.heatmap(np.corrcoef(olist.payment_value, olist.payment_installments),annot=True)
```

Out[20]:

<AxesSubplot:>

Probabilités avec Numpy - Simuler des lois statistiques

· Nombres aléatoires

Entrée [21]:

```
# nombre aléatoire dans le sous-package random
np.random.random()
```

Out[21]:

0.07126593960121741

```
Entrée [22]:
# l'attribut size permet de choisir la taille de l'array
np.random.random(size=(2, 5))
Out[22]:
array([[0.66232657, 0.40335644, 0.07296428, 0.02458101, 0.69979427],
       [0.20419468, 0.75891551, 0.36083995, 0.57150036, 0.09909991]])
Entrée [23]:
#choisi un entier aléatoire
np.random.randint(1000)
Out[23]:
484
Entrée [24]:
#choisi cing entiers aléatoires entre entre 100 et 1000
np.random.randint(100, 1000, size=5)
Out[24]:
array([849, 943, 225, 198, 560])
```

Variables aléatoires (tirer des échantillons depuis une distribution spécifique)

```
Entrée [25]:
```

```
# choisi 4 valeurs entre 0 et 10 selon une loi uniforme
np.random.uniform(0, 10, size=4)

Out[25]:
array([1.75966464, 7.54115299, 8.44563621, 8.27153944])

Entrée [26]:
# choisi 2 valeurs deux fois de suite avec loc = moyenne et sclae = ecart type selon une
np.random.normal(loc=10, scale=1e-5, size=(2,2))

Out[26]:
array([[ 9.99998679, 10.00002328],
```

Il existe pleins d'autres lois statistiques: https://numpy.org/doc/1.16/reference/routines.random.html). https://numpy.org/doc/1.16/reference/routines.random.html).

Bootstrapping, inference, intervalles de confiance

[9.99998528, 9.9999814]])

Oeufs de pâques

On a reçu une très grande cargaisons d'oeufs de Pâques et on veut déterminer le poids moyen de ces oeufs pour vérifier la qualité de la marchandise. Pour cela on ne va pas peser l'ensemble de la cargaison mais simplement 10 oeufs.

Entrée [39]:

```
eggs = [20, 20, 20, 20, 70, 70, 70, 50, 90, 80]
```

Entrée [40]:

```
# Sample distribution
sns.histplot(x=eggs, bins=20)
plt.title('Sample distribution of Easter eggs weights')
plt.show()
```


· Intervalle de confiance

Entrée [41]:

```
mu = np.mean(eggs)
sigma = np.std(eggs)
z = sigma / np.sqrt(len(eggs))
print('Mean:', mu, '\nStdev:', sigma, '\nStandard error:', z)
```

Mean: 51.0 Stdev: 27.0

Standard error: 8.538149682454623

Entrée [42]:

```
#calculons l'intervalle de confiance à 95%
confidence_interval = (mu - 1.96*z, mu + 1.96*z)
confidence_interval
```

Out[42]:

(34.26522662238894, 67.73477337761106)

Intervalle de confiance bootstrappée

Entrée [43]:

```
sample_mean = np.mean(eggs)
sample_mean
```

Out[43]:

51.0

Entrée [44]:

```
bootstrap_means = []
#faisons l'opération 5000 fois
for i in range(5000):
    #créer un nouvel échantillon entre les 10 valeurs de départ dans eggs
    temp_sample = np.random.choice(eggs, replace=True, size=len(eggs))
    #prenons la moyenne de cet échantillon
    temp_mean = np.mean(temp_sample)
    #mettons cette moyenne dans une liste
    bootstrap_means.append(temp_mean)
```

Entrée [45]:

```
print(temp_sample)
print(bootstrap_means)
```

```
[20 90 70 80 20 80 80 70 70 70]
[51.0, 41.0, 64.0, 57.0, 45.0, 57.0, 43.0, 53.0, 42.0, 51.0, 70.0, 37.
0, 58.0, 68.0, 51.0, 44.0, 39.0, 51.0, 53.0, 39.0, 45.0, 55.0, 53.0, 5
1.0, 45.0, 47.0, 47.0, 57.0, 45.0, 50.0, 56.0, 52.0, 43.0, 58.0, 47.0,
46.0, 46.0, 47.0, 57.0, 44.0, 25.0, 59.0, 48.0, 38.0, 67.0, 54.0, 46.0,
58.0, 47.0, 35.0, 51.0, 43.0, 50.0, 53.0, 56.0, 58.0, 35.0, 59.0, 57.0,
51.0, 47.0, 42.0, 53.0, 54.0, 67.0, 41.0, 58.0, 59.0, 45.0, 37.0, 51.0,
49.0, 46.0, 50.0, 52.0, 46.0, 51.0, 40.0, 45.0, 59.0, 64.0, 35.0, 58.0,
48.0, 40.0, 46.0, 51.0, 61.0, 61.0, 41.0, 47.0, 56.0, 42.0, 67.0, 41.0,
55.0, 49.0, 40.0, 52.0, 49.0, 51.0, 54.0, 39.0, 46.0, 48.0, 62.0, 49.0,
65.0, 44.0, 57.0, 53.0, 35.0, 49.0, 63.0, 51.0, 40.0, 48.0, 41.0, 62.0,
45.0, 53.0, 45.0, 47.0, 56.0, 46.0, 39.0, 46.0, 60.0, 46.0, 58.0, 54.0,
60.0, 52.0, 61.0, 55.0, 59.0, 53.0, 52.0, 53.0, 68.0, 56.0, 48.0, 51.0,
75.0, 50.0, 41.0, 51.0, 35.0, 57.0, 51.0, 43.0, 54.0, 51.0, 58.0, 43.0,
54.0, 48.0, 53.0, 44.0, 43.0, 39.0, 36.0, 66.0, 44.0, 62.0, 61.0, 53.0,
47.0, 49.0, 63.0, 58.0, 63.0, 32.0, 45.0, 37.0, 51.0, 56.0, 60.0, 64.0,
31.0, 47.0, 40.0, 50.0, 46.0, 49.0, 46.0, 47.0, 72.0, 55.0, 46.0, 37.0,
46.0, 37.0, 60.0, 55.0, 49.0, 45.0, 58.0, 45.0, 60.0, 61.0, 50.0, 53.0,
47.0, 47.0, 45.0, 43.0, 45.0, 55.0, 53.0, 69.0, 49.0, 56.0, 44.0, 58.0,
```

Entrée [46]:

```
# Bootstrapped distribution
sns.histplot(x=bootstrap_means, bins=25)
plt.title('Bootstrapped distribution of Easter eggs weights')
plt.show()
```


Entrée [47]:

```
# Confidence interval based on bootstrapped distribution of means
centiles = np.percentile(bootstrap_means, [2.5, 97.5])
print(centiles)
bootstrapped_ci = (round(centiles[0], 2), round(centiles[1], 2))
bootstrapped_ci
```

[35. 67.]
Out[47]:

(35.0, 67.0)

Usine de chaussures

Imaginons que l'on possède une usine qui produit des chaussures. On veut être capable de caractériser la taille moyenne des chaussures et être sûr qu'elles répondre à certaines spécificités. Notre usine produit des centaines de chaussures tous les jours, et il est impossible de mesurer la taille de toutes les chaussures. On a accès à un échantillon de 100 chaussures. On va bootstrapper ces 100 tailles de chaussures pour obtenir un intervalle de confiance de 95% de la taille moyenne de nos chaussures.

Commencons par examiner la liste shoe_lengths qui référence les 100 tailles de chaussures observées.

Entrée [48]:

```
#ici on créé une liste qui initialise 100 tailles de chaussures
#un peu au hasard pour notre exemple
shoe_lengths = np.random.normal(25, 0.15, 100)
shoe_lengths
```

Out[48]:

```
array([24.84710574, 24.81337349, 25.16510234, 24.78816146, 24.89269172,
       25.14646148, 24.69817331, 25.0688573 , 24.87036012, 24.8206271 ,
       25.12225557, 24.88041133, 24.83233129, 25.02862316, 25.03991346,
      24.74640764, 24.91035103, 24.99696955, 25.13087622, 24.85832823,
      24.84184332, 24.95568332, 24.91720475, 25.2490908, 25.12309325,
      24.98535221, 25.25205295, 24.83714877, 24.96163615, 25.15073402,
      25.01967335, 25.03276916, 24.90478953, 25.02919862, 24.69211873,
      25.01603889, 24.86908972, 24.9029353 , 25.08801187, 25.0356099 ,
      25.03698985, 24.98906587, 24.86250818, 24.946283 , 24.99187859,
      25.03180945, 24.80529368, 24.72992907, 25.24235237, 25.20554661,
      24.93336373, 25.18490071, 24.94560833, 25.01928667, 25.07069833,
      25.33308162, 24.90424012, 24.86710779, 25.02733187, 25.1980969,
      24.8640097 , 24.78944577, 25.13954789, 25.0244407 , 25.07721381,
      25.11920115, 25.05847149, 25.22708983, 25.10425119, 25.35889569,
      24.80903479, 24.72165025, 24.88283821, 25.441276 , 25.03094181,
      25.04998516, 24.8642059 , 24.94355911, 24.76474193, 24.9227773 ,
      24.89369866, 25.19809848, 24.9547957 , 24.93736336, 24.86833965,
      24.78994401, 25.11946894, 24.76183844, 25.1413125 , 25.0754761 ,
      24.95130925, 24.90470812, 25.06146286, 25.09346987, 24.92597898,
      24.78020902, 24.84849783, 25.04738226, 25.00031402, 25.13533665])
```

Entrée [49]:

sns.histplot(shoe_lengths, bins=20);

• Intervalle de confiance théorique

Entrée [50]:

```
mu = np.mean(shoe_lengths)
sigma = np.std(shoe_lengths)
z = sigma / np.sqrt(len(shoe_lengths))
print('Mean:', mu, '\nStdev:', sigma, '\nStandard error:', z)

confidence_interval = (mu - 1.96*z, mu + 1.96*z)
confidence_interval
```

Mean: 24.985294112603125 Stdev: 0.1525333281121378

Standard error: 0.01525333281121378

Out[50]:

(24.955397580293145, 25.015190644913105)

Intervalle de confiance bootstrappée

Encore une fois, le bootstrapping consiste à tirer pleins d'échantillons de taille len(shoe_lengths) (100 içi) de manière aléatoire avec remplacement (par exemple >1000), et en suite calculer la taille moyenne de chaque échantillon.

Entrée [51]:

```
bootstrap_means = []
for i in range(1000):
    temp_sample = np.random.choice(shoe_lengths, replace=True, size=len(shoe_lengths))
    temp_mean = np.mean(temp_sample)
    bootstrap_means.append(temp_mean)
bootstrap_means
```

```
Out[51]:
```

```
[24.979398080530753,
24.992349416689052,
24.979779269393166,
25.006784966674385,
 24.975675422504988,
24.984938288410152,
 24.996428188147185,
 24.99585847104416,
24.974893365001744,
24.993066042769144,
25.014183504274506,
 24.998337692400376,
24.95362142128748,
 24.988951991038967,
 24.990926394672236,
 24.9933403460701,
25.012041640999687,
 25.00308220185215.
```

Entrée [52]:

sns.histplot(bootstrap_means, bins=20);

Enfin, on calcul un intervalle de confiance de 95% bootstrappé (boot_95_ci) en utilisant np.percentile().

Entrée [53]:

```
# Ici on en déduit que si on prend n'importe quel échantillon il y a 95%
# de chance que notre taille moyenne se trouve dans l'intervalle de confiance
# par extension, la population totale est un échantillon, donc la vraie taille
#moyenne a 95% de chance de se trouver dans cette intervalle
boot_95_ci = np.percentile(bootstrap_means, [2.5, 97.5])
print("95% Bootstrapped CI = {}".format(boot_95_ci))
```

95% Bootstrapped CI = [24.95966672 25.01457473]