

X3-Class HiPERFET™ **Power MOSFET**

IXFY36N20X3 IXFA36N20X3 IXFP36N20X3

200V 36A $45m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

N-Channel Enhancement Mode

TO-220 (IXFP)

G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	200	V	
V _{DGR}	$T_{_{\rm J}}$ = 25°C to 150°C, $R_{_{\rm GS}}$ = 1M Ω	200	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	36	A	
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	50	Α	
I _A	T _C = 25°C	18	A	
E _{as}	$T_{c} = 25^{\circ}C$	300	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	20	V/ns	
P_{D}	T _C = 25°C	170	W	
T		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	g 300	°C	
$T_{\mathtt{SOLD}}$	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c M _d	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-252 TO-263 TO-220	0.35 2.50 3.00	9 9	

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_{G} Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

			cteristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	200			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 500\mu A$	2.5		4.5	V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 100	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		38	45	mΩ

Symbol	Test Conditions	Characteristic Value		
$(T_J = 25^{\circ}C, U)$	Jnless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	V _{DS} = 10V, I _D = 0.5 • I _{D25} , Note 1	16	26	S
R _{Gi}	Gate Input Resistance		1.6	Ω
C _{iss}			1425	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		280	pF
C _{rss}			1.2	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related		130	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		400	pF
t _{d(on)}	Posistivo Switching Times		19	ns
t,	Resistive Switching Times		30	ns
t _{d(off)}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		54	ns
t _f	$R_{\rm G} = 30\Omega$ (External)		20	ns
Q _{g(on)}			21	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		8	nC
Q _{gd}			7	nC
R _{thJC}				0.73 °C/W
R _{thCS}	TO-220		0.50	°C/W

Source-Drain Diode

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)		Chara Min.	racteristic Values Typ. Max		
Is	$V_{GS} = 0V$			36	Α
SM	Repetitive, pulse Width Limited by T_{JM}			144	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr} Q _{RM} I _{RM}	$I_F = 18A, -di/dt = 100A/\mu s$ $V_R = 100V$		75 230 6		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C $V_{GS} = 10V$ 6V V_{DS} - Volts

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXFY36N20X3

IXFA36N20X3 IXFP36N20X3

