Blatt03

Toma-Stefan Cezar (Matr. 7678219), Hai-Yen Van (Matr. 7611734), Thuy An Le (Matr. 7510768)

November 2022

Neue Abgabegruppen!

Inhaltsverzeichnis

1	Aufgabe :	Aufgabe 1								
	1.1 Teil A	1								
	1.2 Teil E	8								
	1.3 Teil C	y								
2	Aufgabe 2									
	_	1								
	2.1.1	Teil 1								
	2.1.2	Teil 2								
	2.2 Teil E	3								
3	Aufgabe 3									
	3.1 Teil A	L								
	3.1.1	Das neutrale Element								
	3.1.2	Die additiven Inversen								
	3.2 Teil E	8								
	3.2.1	Das neutrale Element								
	3.2.2	Die multiplikativen Inversen								
	3.3 Teil (

1 Aufgabe 1

1.1 Teil A

$$\frac{5}{(2-i)^2} = \frac{5}{4-4i-1} = \frac{5(3+4i)}{(3-4i)(3+4i)} = \frac{15+20i}{25} = \frac{3}{5} + \frac{4}{5}i$$

$$(1+i)^6 - (i-1)^6 = ((1+i)^2)^3 - ((1-i)^2)^3 = (1+2i-1)^3 - (1-2i-1)^3 = (2i)^3 - (-2i)^3 = 16i^3 = 0-16i$$

$$\frac{1+2i}{4-(2+1)^2} = \frac{1+2i}{4-(4+4i-1)} = \frac{1+2i}{1-4i} = \frac{(1+2i)(1+4i)}{(1-4i)(1+4i)} = \frac{1-8+4i+2i}{1+16} = -\frac{7}{17} + \frac{6}{17}i$$

1.2 Teil B

$$z^{2} = 4i$$
$$(a+bi)^{2} = 4i$$
$$4i = a^{2} + 2abi - b^{2}$$

Aus Re(4i) = 0 folgt,

$$a^{2} - b^{2} = 0$$

$$a^{2} = b^{2}$$

$$\pm a = \pm b$$
(1)

Aus Im(4i) = 4 folgt,

$$2abi = 4i$$

$$ab = 2$$

$$a \cdot a = 2$$

$$a_{1,2} = b_{1,2} = \pm \sqrt{2}$$

Daraus folgt nun,

$$z_1 = \sqrt{2} + \sqrt{2}i$$
$$z_2 = -\sqrt{2} - \sqrt{2}i$$

1.3 Teil C

$$z^{3} + 2z^{2} + 2z = 0$$
$$z(z^{2} + 2z + 2) = 0$$

Durch Anwenden der Nullproduktregel, erhält man:

$$z_1 = 0$$
$$z^2 + 2z + 2 = 0$$

Nun kann man in die allgemeine quadratische Gleichung (a-b-c-Formel) einsetzen:

$$z_{2/3} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-2 \pm \sqrt{-4}}{2} = \frac{-2}{2} \pm \frac{\sqrt{-4}}{2} = -1 \pm i$$

Die komplexen Lösungen sind $z_1=0,\,z_2=-1-i,\,z_3=-1+i.$

2 Aufgabe 2

2.1 Teil A

2.1.1 Teil 1

$$z^{4} = (a+bi)^{4} = ((a+bi)^{2})^{2}$$
$$= (a^{2} + 2abi - b^{2})^{2}$$
$$= a^{4} + 4a^{3}bi - 6a^{2}b^{2} - 4b^{3}i + b^{4}$$
$$= (a^{4} - 6a^{2}b^{2} + b^{4}) + (4a^{3}b - 4ab^{3})i$$

$$Re(z^4) = (a^4 - 6a^2b^2 + b^4)$$
$$Im(z^4) = (4a^3b - 4ab^3)$$

2.1.2 Teil 2

$$\frac{1}{z^2} = \frac{1}{(a+bi)^2} = \frac{1}{(a+bi)(a+bi)}$$

$$= \frac{1}{a+bi} \cdot \frac{1}{a+bi} = \frac{(a-bi)}{(a+bi)(a-bi)} \cdot \frac{(a-bi)}{(a+bi)(a-bi)} = \frac{(a-bi)(a-bi)}{(a^2+b^2)(a^2+b^2)}$$

$$= \frac{(a-bi)^2}{(a^2+b^2)^2} = \frac{a^2 - 2abi - b^2}{(a^2+b^2)^2}$$

$$= \frac{a^2 - b^2}{(a^2+b^2)^2} + \frac{-2ab}{(a^2+b^2)^2}i$$

$$\operatorname{Re}(\frac{1}{z^2}) = \frac{a^2 - b^2}{(a^2+b^2)^2}$$

$$\operatorname{Im}(\frac{1}{z^2}) = \frac{-2ab}{(a^2+b^2)^2}$$

2.2 Teil B

Unter der Annahme $\forall z \in \mathbb{C} : z = x + yi, x \in \mathbb{R}, y \in \mathbb{R},$

$$|z| \le |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \iff \sqrt{x^2 + y^2} \le |x| + |y|$$
$$\iff x^2 + y^2 \le (|x| + |y|)^2$$

Es gilt
$$|x^2| = \sqrt{x^2}^2 = x^2$$
,

$$\iff x^2 + y^2 \le x^2 + |2xy| + y^2$$
$$\iff 0 \le |2xy|$$

Diese Aussage stimmt, da der Betrag einer Zahl immer positiv oder Null ist. QED

3 Aufgabe 3

3.1 Teil A

3.1.1 Das neutrale Element

Laut der Tabelle, welche die Verknüpfung + definiert:

$$a + a = a$$

$$b + a = b$$

$$c + a = c$$

Somit ist a das neutrale Element der Verknüpfung + in \mathbb{F}_3 .

3.1.2 Die additiven Inversen

$$\forall x \in \mathbb{F}_3 \exists -x \in \mathbb{F}_3 : x + (-x) = a$$

Laut der Tabelle, welche die Verknüpfung + definiert:

$$a = a + a$$

$$a = b + c$$

$$a = c + b$$

Somit sind die additiven Inversen -x,

$$\begin{array}{c|cc}
x & -x \\
\hline
a & a \\
b & c \\
c & b \\
\end{array}$$

3.2 Teil B

3.2.1 Das neutrale Element

Laut der Tabelle, welche die Verknüpfung \cdot definiert:

$$a \cdot b = a$$

$$b \cdot b = b$$

$$c \cdot b = c$$

Somit ist b das neutrale Element der Verknüpfung \cdot in \mathbb{F}_3 .

3.2.2 Die multiplikativen Inversen

$$\forall x \in \mathbb{F}_3 \exists x^{-1} \in \mathbb{F}_3 : x \cdot x^{-1} = b$$

Laut der Tabelle, welche die Verknüpfung · definiert¹:

$$b = b \cdot b$$

$$b = c \cdot c$$

Somit sind die multiplikativen Inversen x^{-1} ,

$$\begin{array}{c|cc} x & x^{-1} \\ \hline b & b \\ c & c \end{array}$$

¹Das neutrale Element von + hat kein multiplikatives Inverses

3.3 Teil C

$$\forall y, z \in \mathbb{F}_3 : c \cdot (y+z) = cy + cz = (y+z) \cdot c$$

Die Gleichung $c(y+z)=(y+z)\cdot c$, stimmt da die Verknüpfungen +, \cdot in \mathbb{F}_3 kommutativ sind. Die Gleichung c(y+z)=cy+cz, lässt sich durch diese Tabelle beweisen:

y	z	y+z	c(y+z)	cy	cz	cy + cz	$c(y+z) \Longleftrightarrow cy + cz$
a	a	a	a	a	a	a	w
a	b	b	c	a	c	c	w
a	c	c	b	a	b	b	w
b	a	b	c	c	a	c	w
b	b	c	b	c	c	b	w
b	c	a	a	c	b	a	w
c	a	c	b	b	a	b	w
c	b	a	a	b	c	a	w
c	c	b	c	b	b	c	w

QED.