Introduction to Tensors

Transformation laws of tensors

- Through a tensor is invarient with respect to coordinate system, its components change if the coordinate system changes.
- Consider two coordinate system denoted by x_i and \bar{x}_i with base vectors e_i and \bar{e}_i , respectively.
- As shown in the figure the components of a vector \mathbf{v} are $v_i = \mathbf{e}_i \cdot \mathbf{v}$ in the first system, and $\bar{v}_i = \bar{e}_i \cdot \mathbf{v}$ in the second system.
- Similarly, the components of a tensor A is $A_{ij} = e_i \cdot Ae_j$ in the first system and \bar{A} is $\bar{A}_{ij} = \bar{e}_i \cdot A\bar{e}_j$ in the second system. We will derive the transformation laws for a tensor, i.e. the relationship between the components A_{ij} and \bar{A}_{ij} .

Transformation laws of tensors

Let $m{Q}$ be an orthogonal tensor and the components Q_{ij} of tensor are defined as, $m{Q} = \cos(m{e}_i, m{\bar{e}}_j)$

as, $oldsymbol{Q} = \cos(oldsymbol{e}_i, oldsymbol{e}_j)$

Tensor Q transforms the basis vectors e_i to \bar{e}_i i.e., $\bar{e}_i = Qe_i$, and $e_i = Q^T\bar{e}_i$.

 $\mathbf{c}_i - \mathbf{c}_i$, and $\mathbf{c}_i - \mathbf{c}_i$

Consider a vector \boldsymbol{u} , which can be written as, $\boldsymbol{u} = u_i \boldsymbol{e}_i = \bar{u}_i \bar{\boldsymbol{e}}_i$.

Using the relation between e_i and \bar{e}_i , we can write,

 $\Rightarrow u_k \mathbf{e}_k \cdot (Q_{mn} \mathbf{e}_m \mathbf{e}_n) \mathbf{e}_i$ $\Rightarrow u_k \mathbf{e}_k \cdot Q_{mn} \mathbf{e}_m \delta_{ni} = u_k \mathbf{e}_k \cdot Q_{mi} \mathbf{e}_m$

 $\Rightarrow Q_{mi}u_k\delta_{km} = Q_{ki}u_k = \bar{u}_i$

 $ar{u}_i = oldsymbol{u} \cdot ar{oldsymbol{e}}_i = oldsymbol{u} \cdot oldsymbol{Q} oldsymbol{e}_i$

This is the transformation laws for vectors, which in vector notation can be written as,

 $\{ar{oldsymbol{u}}\}^T = [oldsymbol{Q}]^T \{oldsymbol{u}\}$

Transformation laws of tensors

The transformation laws for vector can be used to derive the transformation laws for tensors. For a second order tensor, we can write,

$$A = A_{ij}e_i \otimes e_j = A_{ij}\bar{e}_i \otimes \bar{e}_j.$$

$$\bar{A}_{ij} = \bar{e}_i \cdot A\bar{e}_j = Qe_i \cdot A(Qe_j)$$

$$\Rightarrow Q_{mi}e_m \cdot AQ_{nj}e_n = Q_{mi}Q_{nj}e_m \cdot Ae_n$$

$$\Rightarrow Q_{mi}Q_{nj}A_{mn}$$

Thus, $\bar{A}_{ij} = Q_{mi}Q_{nj}A_{mn}$ which is the transformation law for second order tensor. In the matrix form it can be written as

$$[ar{A}] = [oldsymbol{Q}]^T [oldsymbol{A}] [oldsymbol{Q}]$$

The transformation law can be generalized to a n^{th} order tensor \mathcal{A} as,

which follows that,

$$\bar{\mathcal{A}}_{i_1 i_2 i_3 \dots i_n} = Q_{m_1 i_1} Q_{m_2 i_2} Q_{m_3 i_3} \dots Q_{m_n i_n} \mathcal{A}_{m_1 m_2 m_3 \dots m_n}$$

Invariants of a tensor

For a second order tensor \boldsymbol{A} following can be defined,

$$I_1(\mathbf{A}) = \operatorname{tr} \mathbf{A} = A_{ii}$$

$$I_2(\mathbf{A}) = \frac{1}{2} \left[(\operatorname{tr} \mathbf{A})^2 - \operatorname{tr} \mathbf{A}^2 \right] = \frac{1}{2} (A_{ii} A_{jj} - A_{ij} A_{ji})$$

$$I_3(\mathbf{A}) = \det \mathbf{A} = e_{ijk} A_{1i} A_{2j} A_{3k}$$

 I_1 , I_2 , I_3 are three invarients of tensor \boldsymbol{A} , as they remain constant with transformation of tensor.

Here, we can introduce Cayley-Hamilton equation, which states every second order tensor \boldsymbol{A} will statisfy the following equation (called characteristic equation of \boldsymbol{A})

$$A^3 - I_1 A^2 + I_2 A - I_3 I = O.$$