T3 Webinars are sponsored by ITS Professional Capacity Building Program, ITS Joint Program Office,
U.S. Department of Transportation

Autonomous Vehicle Assignment and Routing in Congested Networks

Jiangtao Liu (jliu215@asu.edu)

Xuesong Zhou (xzhou74@asu.edu)

School of Sustainable Engineering and the Built Environment

Pitu Mirchandani (pitu@asu.edu)

School of Computing, Informatics, and Decision Systems Engineering (CIDSE)

Arizona State University

Outline

- 1. Introduction
- 2. Problem Statement
- 3. Space-Time-State Network Flow Models
- 4. Dantzig-Wolfe Decomposition Algorithm
- 5. Preliminary Experiments
- 6. Summary

Ride Sharing Companies

Information-sharing technology

The "three revolutions" in the future transportation systems

Future urban transportation systems: **integrated multi-modal scheduled transportation system**

Picture source: McKinsey&Company, 2016. An integrated perspective on the future of mobility.

How to optimize demand, supply and infrastructure?

Key questions:

- How many autonomous vehicles do we need?
- ☐ How many passengers can we serve?
- How to capture the new traffic congestion?
- What is the best vehicle routing and vehicle-to-passenger assignment solution?

Traffic Assignment Problem:

- ☐ **Network**: Physical traffic network
- □ Objective function: System Optimal or User
 - Equilibrium
- Road capacity: considered to capture road congestions
- Vehicle-to-passenger assignment: given in advance
- Passenger trip request: has the same origin and destination as that of the assigned vehicles
- ☐ Vehicle carrying capacity: not explicitly considered
- ☐ Variable: usually continuous vehicle flow

Vehicle Routing Problem:

- **Network**: Virtual point-to-point network
- ☐ Objective function: System Optimal
- ☐ Traffic congestion: not explicitly considered
- Vehicle-to-passenger assignment: will be found
- Passenger trip request: has specific pick-up and drop-off location with time windows
- ☐ Vehicle carrying capacity: considered
- Variable: discrete vehicle routing and scheduling

Keywords:

- □ Physical traffic network to consider traffic congestion
- Trip requests with Pickup and delivery with time windows
- Autonomous vehicles with carrying capacity for ride sharing
- □ Central control (System optimal)

Link Capacity

Without link capacity: Total cost is 6

With link capacity: Total cost is 15

Time windows

- ☐ The red vehicle can wait until time 3 to pick up passenger 2, so the blue vehicle can pick up passenger 1 at exact time 3.
- ☐ The optimal result doesn't only optimize the vehicle routing, but also the departure time of picked up passengers.

Ridesharing (vehicle carrying capacity)

- When the red vehicle's carrying capacity is increased to 2, the total cost is reduced to 4 from 9;
- ☐ Only the red vehicle is required to serve the trip requests.

The Challenge of solving system optimal vehicle routing with pickup and drop-off location and time windows in congested physical traffic networks:

System-impact of adjusting one vehicle routing:

- System marginal vehicle travel cost
- System marginal passenger service benefit/cost

In this queuing system:

☐ Waiting time for individual: 4 min

After adding one more person in the queue:

- □ Societal travel time: additional 4 min for each person behind: +16 min, and the waiting time of added person is 4 min, so the system marginal waiting time is 20 min.
- Societal service benefit: some persons may not be served in their preferred time window and it decreases the service benefit.

[Time window] [Time window]

Marginal cost calculation in system optimal dynamic traffic assignment (SODTA)

Ghali, M.O. and Smith, M.J., 1995. A model for the dynamic system optimum traffic assignment problem. Transportation Research Part B: Methodological, 29(3), pp.155-170.

Our Approach 1: Marginal Cost Calculation

Step 1: Build virtual pickup and drop-off links in physical traffic networks, and its service pricing is converted to generalized link travel cost

Step 2: find one initial solution as the input

Step 3: Perform network loading within a space-time-state network

- 3.1 use cumulative arrival and departure counts to derive the link marginal travel cost.
- 3.2 update the marginal service link benefit of passengers (not served or served by multiple vehicles)

Step 4: find the new least-marginal-cost route for each vehicles, and go to step 3; otherwise, stop.

Our Approach 2: Dantzig-Wolfe Decomposition

Restricted master problem

Road capacity constraint
Passenger service
constraint

Solved by standard solvers

Marginal costs from the solver

Vehicle routing solution

Subproblems
(Time-dependent State dependent shortest path problem for each vehicle)

Solved by the beamsearch algorithm in space-time-state networks

(a) Physical transportation network with vehicles and trip requests

(b) Modified transportation network with virtual pickup and delivery nodes and links

Add virtual pick-up and drop-off nodes and links for each passenger

Time-extended Space-time network construction for physical path $1 \rightarrow 2 \rightarrow 4 \rightarrow 6$

Space-time network

Arc (i,j,t,s) with capacity Vertex (i,t), (j,s)

Passenger pickup and drop-off time windows and locations are embedded in this network

Challenge: how to model the logit of passenger pickup and delivery with vehicle carrying capacity

One more dimension-> Vehicle Carrying States:

which passengers are being carried by this vehicle:

To record the passenger service status:

0: the passenger is not served;

1: under served (picked up but not delivered);

2: finished (delivered)

Example: In the case: if vehicle capacity is 1 and 2 passengers trip requests,

All possible states: [], [1[1]], [1[2]], [2[1]] or [2[2]]

Vehicle carrying state transition logit: focusing on specific passenger 1

- □ 0->0: vehicle departs at the origin depot
- □ 0->1[1]: passenger 1 is picked up at his location within time window.
- □ 1[1]->1[2]: passenger 1 is dropped off at his location within time window
- \square 1[2]->0: vehicle arrives at the destination depot.
- □ Once one passenger is picked up, he/she will always be dropped off, because 1[1]->0 is not a feasible state transition.
- No passenger will be served if the vehicle carrying capacity is fully used.

Vehicle State Transition with specific locations and time intervals

Vehicle carrying state transition graph

One possible vehicle trajectory in a space-time-state network

Mathematical formulation:

$$Min \ Z = \sum_{v} \sum_{(i,j,t,s,w,w')} (c_{i,j,t,s} \times x_{i,j,t,s,w,w'}^{v}) (1)$$

(1) Flow balance constraint for each vehicle:

(2) Passenger p pick-up request at (o, d, τ) :

$$\sum_{v} \sum_{(i,j,t,s,w,w') \in A(p,o,d,\tau)} x_{i,j,t,s,w,w'}^{v} = 1, \forall p(3)$$

(3) Tight road capacity constraint (point queue model)

$$\sum_{v} \sum_{w} x_{i,i,t,s,w,w'}^{v} \le cap_{i,i,t,s}, \forall (i,j,t,s) \quad (4)$$

(4) Binary variables

$$x_{i,j,t,s,w,w'}^{v} = \{0,1\} \tag{5}$$

Capture queue spillback:

Inflow arc capacity constraint:

$$\sum_{w} x_{i,j',t-FFTT_{i,j}+1,t,w,w'} \le Cap_{i,j',t-FFTT_{i,j}+1,t}, \forall (i,j') \in L_{inflow}, \forall t$$
 (6)

Outflow arc capacity constraint:

$$\sum_{w} x_{j',j,t,t+1,w,w'} \le Cap_{j',j,t,t+1}, \forall (j',j) \in L_{outflow}, \forall t (7)$$

Link storage capacity constraint:

$$\sum_{w} x_{j',j',t-1,t,w,w'} + \sum_{w} \sum_{s=t-FFTT_{i,j'}}^{t-1} x_{i,j',s,t,w,w'} \le Len_{i,j'} \times n_{i,j'} \times Jam_{i,j'}, \forall (i,j') \in L_{inflow}, \forall t$$
 (8)

Newell's simplified kinematic wave model (Newell, 1993)

$$\sum_{w} \sum_{s=t-BWTT(i,j')}^{t} x_{j',j',s-1,s,w,w'} + \sum_{w} \sum_{s=t-FFTT_{i,j'}-BWTT_{i,j'}}^{t-1} x_{i,j',s,s+FFTT_{i,j'},w,w'} \leq Len_{i,j'} \times n_{i,j'} \times Jam_{i,j'}, \forall (i,j') \in L_{inflow}, \forall t (9)$$

Objective function

$$Min Z = \sum_{v} \sum_{(i,j,t,s,w,w')} (c_{i,j,t,s,w,w'}^{v} \times x_{i,j,t,s,w,w'}^{v})$$

Subject to,

(1) Flow balance constraint for each vehicle:

$$\sum_{i,t,w:(i,j,t,s,w,w')} x_{i,j,t,s,w,w'}^{v} - \sum_{i,t,w:(j,i,s,t,w',w)} x_{j,i,s,t,w',w}^{v} = \begin{cases} -1 & j = O(v), s = DT(v), w = [0,0,\dots,0] \\ 1 & j = D(v), s = T, w = [F] \\ 0 & otherwise \end{cases}, \forall i, j \in [0,0,\dots,0]$$

(2) Passenger p's pick-up request constraint

$$\sum_{v} \sum_{i,t,s:(i,j,t,s,w,w')\in A(p)} x_{i,j,t,s,w,w'}^v = 1, \forall p$$

(3) Tight road capacity constraint (point queue model)

$$\sum_{v} \sum_{w} x_{i,j,t,s,w,w}^{v} \leq cap_{i,j,t,s}, \forall (i,j,t,s)$$

(4) Binary definitional constraint

$$x_{i,i,t,s,w,w}^{v} \in \{0,1\}$$

Special block: timedependent statedependent shortest path problem

- A special block can be solved by our VRP solution engine
- can be the subproblem in Dantzig-Wolfe decomposition

Restricted master problem

$$Min \sum_{v} \sum_{(i,j,t,s,w,w')} [c_{i,j,t,s,w,w'}^{v} \times \sum_{k} (\lambda_{k}^{v} \times x_{k}^{v} \times \delta_{i,j,t,s,w,w'})]$$

Pick-up constraint:
$$\sum_{v} \sum_{(i,j,t,s,w,w') \in A(p)} \sum_{k} (\lambda_k^v \times x_k^v \times \delta_{i,j,t,s,w,w'}^{v,k}) = 1, \forall p$$

Capacity constraint:
$$\sum_{v} \sum_{w} \sum_{k} (\lambda_{k}^{v} \times x_{k}^{v} \times \beta_{i,j,t,s,w,w'}^{v,k}) \leq cap_{i,j,t,s}, \forall (i,j,t,s)$$

Column selection:
$$\sum_k \lambda_k^v = 1, \forall v$$

$$\lambda_k^{\nu} = \{0,1\}$$

Subproblems (TDSDSP)

$$Min Z' = \sum_{(i,j,t,s,w,w')} (c_{i,j,t,s,w,w'}^{v} \times x_{i,j,t,s,w,w'}^{v}) - \sum_{p} \sum_{(i,j,t,s,w,w') \in A(p)} (\pi_{p} \times x_{i,j,t,s,w,w'}^{v}) - \sum_{(i,j,t,s)} (\mu_{i,j,t,s} \times \sum_{w} x_{i,j,t,s,w,w'}^{v}) + \omega_{v}$$
(17)

Subject to

$$\sum_{(i,j,t,s,w,w')} x_{i,j,t,s,w,w'}^{v} - \sum_{(j,i,s,t,w',w)} x_{j,i,s,t,w',w}^{v} = \begin{cases} -1 & j = O(v), s = DT(v), w = [0,0,...,0] \\ 1 & j = D(v), s = T, w = [F] \\ 0 & otherwise \end{cases}$$
(18)

Dual variable/ marginal cost of passenger pickup constraints

Dual variable/ marginal cost of congestion constraints

Dual variable/ marginal cost of path weight constraints

A tree-based path representation

- One-to-all shortest path tree is generated for one vehicle
- Directly obtain the shortest path for vehicles with a same depot and departure time but different destination depot
- Does not need to run the shortest path algorithm again to improve the computation efficiency.

A tree-based path representation

5. Preliminary Experiments

# of nodes	24
# of links	84
# of trip requests (pickup and drop-off with time windows)	30
# of available autonomous vehicles	30
# of depots	5
optimization time horizon (time unit)	110
Vehicle capacity (person)	1

Sioux Falls Network

5. Preliminary Experiments

Initial feasible solution

Vehicle_No	Passenger_No	Vehicle_No	Passenger_No	Vehicle_No	Passenger_No
1	[15]	11	[20]	21	[23]
2	[8]	12	[26]	22	[25]
3	[1]	13	[16]	23	[22]
4	[7]	14	[18]	24	[19]
5	[9]	15	[2]	25	[4]
6	[11]	16	[10]	26	[5]
7	[29]	17	[3]	27	[24]
8	[28]	18	[12]	28	[14]
9	[17]	19	[27]	29	[13]
10	[21]	20	[30]	30	[6]

5. Preliminary Experiments

Dantzig-Wolfe decomposition algorithm solution:

- ☐ Each passenger has specific pickup and drop-off location and time windows
- ☐ The vehicle benefit of serving one passenger is 20
- ☐ The vehicle waiting cost is the half of the waiting time

	Number of required vehicles	Total travel cost
Initial solution	30	1096
vehicle carrying capacity is 1	27	967.5
vehicle carrying capacity is 2	25	869.5

Take vehicle 9 as an example:

- ☐ In initial solution: picks up passenger 17 -> drops off passenger 17;
- □ Vehicle carrying capacity is 1: picks up passenger 17 -> drops off passenger 17-> picks up passenger 29 -> drops off passenger 29
- □ Vehicle carrying capacity is 2: picks up passenger 17 -> drops off passenger 17-> picks up passenger 30-> picks up passenger 29-> drops off passenger 29-> drops off passenger 30-> drops off pas

6. Summary

Our goals:

- ☐ Minimize the system-level travel cost, including vehicle travel time and service benefits
- ☐ Satisfy passengers' trip requests with pickup and drop-off location and time windows
- ☐ Consider the road congestion incurred by assigned vehicles

Future Extension: multi-modal scheduled transportation system: human-driven vehicles, autonomous vehicles, and public transit systems.

6. Summary

Required knowledge:

References

Space-time-state network flow models and vehicle routing problem:

- 1. Mahmoudi, M. and Zhou, X., 2016. Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state—space—time network representations. Transportation Research Part B: Methodological, 89, 19-42.
- 2. Liu, J., Kang, J., Zhou, X., Pendyala, R., 2018. Network-oriented household activity pattern problem for system optimization. Transportation Research Part C 94, <u>250-269</u>
- 3. Zhou, X., Tong, L., Mahmoudi, M., Zhuge, L., Yao, Y., Zhang, Y., Shang, P., Liu, J. and Shi, T., 2018. Open-source VRPLite Package for Vehicle Routing with Pickup and Delivery: A Path Finding Engine for Scheduled Transportation Systems. Urban Rail Transit, 4(2), 68-85.

Dynamic Traffic Assignment and Traffic flow model:

- 4. Lu, C.C., Liu, J., Qu, Y., Peeta, S., Rouphail, N.M. and Zhou, X., 2016. Eco-system optimal time-dependent flow assignment in a congested network. *Transportation Research Part B: Methodological*, *94*, pp.217-239.
- 5. Zhou, X. and Taylor, J., 2014. DTALite: A queue-based mesoscopic traffic simulator for fast model evaluation and calibration. *Cogent Engineering*, 1(1), p.961345.

Dantzig-Wolfe Decomposition algorithm

6. https://en.wikipedia.org/wiki/Dantzig%E2%80%93Wolfe decomposition

