

VERSION 3

DEC 18, 2023

OPEN BACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.kqdg3xbzqg25/v3

Protocol Citation: miglesias 2023. RSVAB WGS and GF protocols. **protocols.io** https://dx.doi.org/10.17504/protocols.io.kqdg3xbzqg25/v3 Version created by miglesias

MANUSCRIPT CITATION:

Generic novel system for genomic characterization of Respiratory Syncytial Virus obtaining whole genome sequencing and a full-length G and F sequences.

(3) RSVAB WGS and GF protocols V.3

miglesias1

¹Laboratory of Reference and Research in Respiratory Viruses, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Spain

miglesias

ABSTRACT

This SOP describes the procedure for generating cDNA from RSV viral nucleic acid extracts and subsequently producing amplicons tiling the viral genome using. We propose two systems for genomic characterization of RSV. First, a novel RSV amplicon-based system for WGS, and second, a method focused on obtaining the specific sequences of the main antigens, G and F.

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Dec 14, 2023

Last Modified: Dec 18,

2023

PROTOCOL integer ID:

92341

dsCDNA generation:

1

During this step three master mixes will be prepared: MMI, MMII and MMIII.

Materials: Kit Superscript III First Strand (Invitrogen)

100% DMSO

RNAseH (Invitrogen)

Klenow fragment 3' -> 5' exo (New England Biolabs)

Primer FR26RV-N: 5'GCC GGA GCT CTG CAG ATA TCNNNNNN 3'

Note

This step must be performed in a RNase free, pre-PCR environment in which post PCR RSV amplicons are not present, to minimise risk of sample contamination.

CITATION

Díez-Fuertes F, Iglesias-Caballero M, García-Pérez J, Monzón S, Jiménez P, Varona S, Cuesta I, Zaballos Á, Jiménez M, Checa L, Pozo F, Pérez-Olmeda M, Thomson MM, Alcamí J, Casas I (2021). A Founder Effect Led Early SARS-CoV-2 Transmission in Spain..

LINK

https://doi.org/10.1128/JVI.01583-20

2 MMI Preparation:

A	В
FR26RV-N (10uM)	2
DMSO	0,5
Total	2,5 ul

Mix thoroughly by vortexing.

3 MMII Preparation:

A	В
10x First Strand Buffer	2
DTT 100 mM	2
MgCl2 25mM	4
dNTPs	1
RNaseOUT	0,5
SSIII RT	0,5
Total	10 ul

Kit Superscript III First Strand (Invitrogen)

4 MMIII Preparation:

A	В
Klenow 5'-3'	1
RNAseH	0,5
Total	1,5 ul

5 Defrost extracted RNA.

Maintain on ice the MMI,MMII and MMIII mixes.

6 MMI Amplification:

Add 🗸 5 µL 🔊 Sample in MMI mix

Place the tube on a thermocycler and run the following program:

A	В
65°C	5 min
4°C	2 min

Briefly tube centrifugation

7 MMII Amplification:

Addition of $\boxed{\text{\em L}}$ 10 $\mu\text{\em L}$ from MMII in the tube with the MMI and the viral extraction.

Place the tube on a thermocycler and run the following program:

А	В
25°C	10 min
50°C	50 min
85°C	10 min
4°C	∞

Briefly tube centrifugation

8 MMIII Amplification:

Addition of A 1.5 µL of MMIII into the tube with the previous mixes and the viral extraction

Place the tube on a thermocycler and run the following program:

A	В
37°C	60 min
75°C	15 min

Briefly tube centrifugation

9 STOP POINT: cDNA can be stored at 4°C (same day) or -20°C (up to a week).

RSVAB WGS protocol

10

Materials:

2x MyTaqRed mix (Bioline)

Primers:

A	В
Primer ID	Sequence (5'-3')
Mix 1	
RSVCombinitial	ACGCGAAAAATGCGTACWACA
RSVWGS4R	CATGWTGWYTTATTTGCCCC
RSVWGS2F	CACTWACAATATGGGTGCC
RSVWGS1R	TCCATKGTTATTTGCCCC
RSVWGS3.2F	ACATGGAAAGAYATYAGCC
RSVWGS2R.2	CRTTYCTTAARGTRGGCC
RSVWGS3.2R	TTGCATCTGTAGCAGGAATGG
OG1-21	GGGGCAAATGCAACCATGTCC
RSVGF-R	TTCGYGACATATTTGCCCC
RSVCombending	ACGAGAAAAAAGTGTCAAAAACTAA
Mix 2	
RSVCombinitial	ACGCGAAAAATGCGTACWACA
RSVWGS1R	TCCATKGTTATTTGCCCC
RSVWGS8R.2	TCMAWYTCWGCAGCTCC
RSVWGS5R	CAAACATTTAATCTRCTAAGGC
RSVWGS6F	TTATAYAGATATCAYATGGGTGG

A	В
RSVWGS6R	CCCTCTCCCCAATCTTTTTC
RSVWGS9F	GARCAACTCAAAGAAAATGG
RSVWGS9R	AYTGRAACATRGGCACCC
RSVCombending	ACGAGAAAAAAGTGTCAAAAACTAA

A	В	С	D	E	F
NC_001781.1	1	22	RSVCombinitial	1	+
NC_001781.1	2202	2221	RSVWGS9F	1	+
NC_001781.1	2331	2350	RSVWGS4R	2	-
NC_001781.1	3324	3342	RSVWGS_2F	1	+
NC_001781.1	3366	3383	RSVWGS9R	2	-
NC_001781.1	4675	4695	OG121	1	+
NC_001781.1	5619	5636	RSVWGS_1R	2	-
NC_001781.1	7609	7627	RSVGF-R	2	-
NC_001781.1	7759	7775	RSVWGS_8R	2	-
NC_001781.1	9294	9315	RSVWGS_5R	2	-
NC_001781.1	9278	9296	RSVWGS_3.2F	1	+
NC_001781.1	9906	9923	RSVWGS_2R	2	-
NC_001781.1	10772	10794	RSVWGS_6F	1	+
NC_001781.1	13010	13029	RSVWGS_6R	2	-
NC_001781.1	14187	14207	RSVWGS_3.2R	2	-
NC_001781.1	15200	15225	RSVCombEnding	2	-
NC_038235.1	1	22	RSVCombinitial	1	+
NC_038235.1	2202	2221	RSVWGS9F	1	+
NC_038235.1	2329	2348	RSVWGS4R	2	-
NC_038235.1	3322	3340	RSVWGS_2F	1	+
NC_038235.1	3364	3381	RSVWGS9R	2	-

A	В	С	D	E	F
NC_038235.1	4673	4693	OG121	1	+
NC_038235.1	5648	5665	RSVWGS_1R	2	-
NC_038235.1	7597	7615	RSVGF-R	2	-
NC_038235.1	7789	7805	RSVWGS_8R	2	-
NC_038235.1	9324	9345	RSVWGS_5R	2	-
NC_038235.1	9308	9326	RSVWGS_3.2F	1	+
NC_038235.1	9936	9953	RSVWGS_2R	2	-
NC_038235.1	10802	10824	RSVWGS_6F	1	+
NC_038235.1	13040	13059	RSVWGS_6R	2	-
NC_038235.1	14217	14237	RSVWGS_3.2R	2	-
NC_038235.1	15201	15226	RSVCombEnding	2	-

Primer scheme with RSVA and RSVB RefSeq

Note

The protocol is based in the RSV genome amplification in two separate mixes with an unique amplification program. The mixes that will be mixed at the end of cycling.

11 Preparation of RSV Amplification Mix 1:

A		В
MyTaq Re	d 2x	15
H20		8,4
RSV Coml	oinitial (5 uM)	0,2
RSVWGS1	R (5uM)	0,2
RSVWGS2	2F (5 uM)	0,2
RSVWGSV	V2R.2 (5 uM)	0,2
RSVWGS4	IR (5 uM)	0,2

A	В
RSVWGS3.F (5 uM)	0,2
RSVWGS3.2R (5 uM)	0,2
OG1-21 (5uM)	0,2
RSVGF-R (5 uM)	0,2
RSV Combending (5uM)	0,2
Total	25

12 **Preparation of RSV Amplification Mix 2:**

A	В
2x My Taq Red	15
H2O	8,6
RSV Combinitial (10uM)	0,2
RSVWGS1R (10 uM)	0,2
RSVWGS5R (10 uM)	0,2
RSVWGS8R.2 (10 uM)	0,2
RSVWGS6F (10 uM)	0,2
RSVWGS6R (10 uM)	0,2
RSVWGS9F (10 uM)	0,2
RSVWGS9R (10 uM)	0,2
RSV Combending (10 uM)	0,2
Total	25 ul

13

14 **Amplification protocol:**

A B C

A	В	С
95°C	1 min	
95°C	30 seg	
55°C	8 min	x45
72°C	2 min	
72°C	5 min	
12°C	∞	

To assess PCR performance, the amplicons can be loaded onto a 1% agarose gel for electrophoresis.

Finally, mix in one single tube both mixes and proceed to purification and library preparation.

RSVAB GF protocol starting from ds cDNA

Due to the significance of achieving accurate RSV genomic characterization, it was developed the RSVAB-GF PCR to complement the genomic coverage of both antigenic

major proteins in cases where WGS encounters difficulties, and to provide a simpler and more cost-effective method of obtaining the sequences of both antigens.

18 Materials:

2x MyTaqRed mix (Bioline)

Primers:

A	В
OG1-21	GGGGCAAATGCAACCATGTCC
RSVGF-R	TTCGYGACATATTTGCCCC

19 Preparation of cDNA GF amplification mix:

A	В
H20	5,5
2X MyTaqRed	12,5
OG1-21 (10 uM)	1
RSVGF-R (10 uM)	1
Total	20 ul

Addition of Δ 5 μ L of the previous prepared double stranded cDNA on the mix.

21 Amplification protocol cDNA GF:

A	В	С
95°C	1 min	
95°C	30 seg	
60°C	3 min	x35
72°C	2 min	
72°C	5 min	

A	В	С
12 °C	8	

RSVAB GF protocol starting from viral extraction

22 Materials:

Qiagen OneStep RT-PCR kit. Glycerolised 1% H20

Preparation of GF amplification mix:

A	В
H20gly	10
5xQ PCR MM	6
dNTPs	1
OG1-21 (10uM)	1
RSVGF-R (10 uM)	1
RT-PCR mix	1
Total	20 ul

24 Addition of 4 L 10 μ L of the viral extraction

25 Amplification protocol GF:

A	В	С
48°C	60 min	
95°C	15 min	
95°C	30 seg	
60°C	3 min	
72°C	2 min	x 35

Oct 18 2023

A	В	С
72°C	5 min	
12°C	∞	