Course Code	CET2003	BB		
Course Category	Professional Core			
Course Title	Operating Systems			
Teaching Scheme and Credits	Lecture	Tutorial	Laboratory	Credits
Weekly load hrs	3 hr/wk	_	2 hr/wk	3+1=4

Pre-requisites:

• Fundamentals of Computers

Course Objectives:

1. Knowledge

- i. To study functions of Operating Systems
- ii. To learn the basics of Unix Operating System

2. Skills

- i. To design and implement algorithms of Operating Systems
- ii. To implement shell scripting

3. Attitude

i. To apply the knowledge of Operating Systems in solving real life problems ii. To design algorithms towards optimization of Operating System functions

Course Outcomes:

- 1. Comprehend the functionalities of Operating Systems.
- 2. Comprehend and simulate the concepts of process and thread management. 3. Design and Implement the Process Synchronization concepts
- 4. Comprehend and Implement algorithms of Memory and I/O Management. 5. Ability to write basic shell scripts

Course Contents:

- 1. Overview of Operating Systems
- 2. Process Management
- 3. Process Synchronization
- 4. Memory Management, File Management & I/O Management.
- 5. Unix Operating System

Laboratory Exercises:

- 1. A presentation based on applications of an Operating System.
- 2. Process Management (Process control)
- 3. Process Management (Scheduling)
- 4. Process Synchronization (Deadlocks)
- 5. Process Synchronization (classical problems)
- 6. Process Management (Inter-process Communication)
- 7. Memory Management (Page Replacement Algorithms)
- 8. Shell Scripting (Basic)
- 9. Shell Scripting (utility)
- 10. Presentation of the Design of an Operating System by selecting appropriate system parameters.

Learning Resources:

Text Books:

- 1. Operating System Concepts, Tenth Edition, Avi Silberschatz Peter Baer Galvin Greg 2. Gagne John Wiley & Sons, Inc. ISBN 978-1-118-06333-0
- 3. The Design of the Unix Operating System by Maurice Bach, Pearson Publications 4. William Stallings, Operating System: Internals and Design Principles, Prentice Hall, ISBN 10: 0-13-380591-3, ISBN-13: 978-0-13-380591-8, 8th Edition.
- 5. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, WILEY, ISBN 978-1-118-06333-0, 9th Edition.
- 6. Unix & Shell Programming by Sumitabha Das,McGraw Hill Publications 7. Unix Unleashed by Robin Burk,SAMS publications

Supplementary Reading:

1. Andrew Tanenbaum, Modern Operating Systems, Peasrson,4th Edition.

Web Resources:

Ebooks

- 1. http://engineeringppt.blogspot.in/2009/07/operating-system-concepts-8th-edition.html **Weblinks:**
 - 1. https://www.google.co.in/search? q=advanced+programming+in+unix+environment&ie=ut f-8&oe=utf-8&client=firefox-b&gfe_rd=cr&dcr=0&ei=5khOWtHyCK_T8geE65jQAQ http://williamstallings.com/OperatingSystems/

MOOCs:

1. https://in.udacity.com/course/introduction-to-operating-systems-ud923 http://nptel.ac.in/courses/106108101/

Pedagogy:

Syllabus: Theory

Module	Contents	Workload
No.		In Hrs
		Theory
1	Overview of Operating Systems Operating System objectives and its evolution. Operating System structure: Layered, Monolithic, Microkernel. Types of Operating Systems. Applications of Operating systems. Operating Systems protection and security.	09
2	Process Management Process: Concept of a Process, Process States, Process Control - creation, new program execution, termination. Interposes communication(IPC). Examples of IPC. Threads: Differences between Threads and Processes. Concept of Threads, Concurrency. Multithreading, Types of Threads.POSIX Threads functions. Scheduling: Concept of Scheduler, Scheduling Algorithms: FCFS, SJF, SRTN, Priority, Round Robin	09

3	Process Synchronization Process Synchronization Tools: Concept of Mutual Exclusion, The Critical Section Problem. Hardware Support for Synchronization. Semaphores, Mutex Locks, Monitors. Classical synchronization problems: Readers -Writers Problem and Producer Consumer problem. Synchronization within the kernel. Deadlock: Deadlock Characterization, Methods for handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Recovery.	09
4	Memory Management, File Management & I/O Management. Memory Management: Memory Partitioning: Fixed Partitioning, Dynamic Partitioning, Paging, segmentation, Concept of virtual memory. Page Replacement Algorithms: FIFO, LRU, Optimal. Concept of Locality of Reference, Belady's Anomaly. File Management: File Organization and Access, File Directories, File Sharing, Record Blocking. I/O Management: I/O Devices, Organization of the I/O Functions, I/O Buffering, Disk Scheduling- FCFS, SSTF	09
5	Unix Operating System	09

Introduction to Unix Operating System. The Unix File System and Process Management. Comparison between Windows OS, Unix and Linux. Basics of shell scripting.

Laboratory:

Assignme nt No.	Contents	Workload in Hrs
		Lab
1	A presentation based on applications of an Operating System.	02
2	Process Management (Process control) a) Write a program using fork to create a child process. The parent process should sort elements in ascending order and child process should sort elements in descending order. b) Orphan Process c) Zombie process	02
3	Process Management (Scheduling) Write a menu driven program to simulate the following CPU Scheduling algorithms: - a. First Come First Serve (FCFS). (Non Pre-emptive) b. Shortest Remaining Time Next (SRTN) (Pre-emptive)	04

Dr.Prasad Khandekar Dean

4	Process Synchronization (Deadlocks) Write a program to simulate Bankers algorithm for deadlock avoidance.	04
5	Process Synchronization (classical problems) Implement Readers- Writers or Producer-Consumer Problem	04
6	Process Management (Inter-process Communication) Implement Pipe and / Shared Memory Concept	02
7	Memory Management (Page Replacement Algorithms) Write a menu driven program to simulate the following page replacement algorithms: First in First Out (FIFO) Least Recently Used (LRU).	02

8	Shell Scripting Write a program to implement Shell Scripting - Arithmetic operations	04
9	Shell Scripting Write the copy utility.	04
10	Presentation of the Design of an Operating System by selecting appropriate system parameters	02

Dr.Prasad Khandekar Dean