Poststratification calculations

Some data errors in meta-analyses are likely to result in outliers, which inflate variance estimates (**Schmidt2015**). Because of this, we oversampled outlier primary studies to investigate whether outliers were more likely to be erroneous compared to non-outlier primary studies.

Table 1. Population distribution of (non-)outlier primary studies.

	no. of primary studies	
non-outlier	1370	70%
outlier	581	30%
Total	1951	100%

Table 2. Sample distribution of (non-)outlier primary studies.

	no. of primary studies	
non-outlier	303	61%
outlier	197	39%
Total	500	100%

Because we oversampled outliers, our sample is not representative for the population. Presented in Table 1 and Table 2 are the percentages of primary studies that have effect sizes classified as (non-)outliers in the population (our sample of 33 meta-analyses) and sample (our sample of 500 primary studies). In the population, 30% of effect sizes classifies as an outlier, compared to 39% of our sample, meaning our sample contains too many outlier primary study effect sizes, and too few non-outliers. In order to obtain the chance of any given effect size in a certain meta-analysis being incorrect, we need to deal with this over-representation of outliers by design. First, we adjusted the sample proportions for each meta-analysis separetely, so they are in line with their corresponding population proportions. Meta-analysis 1 will be used as an example throughout this document.

As presented in Table 3, 35% of primary study effect sizes in meta-analysis 1 is an outlier, but Table 4 shows outlier primary study effect sizes take up 50% in the sample. Note that errors in Table 4 are classified as either a differently calculated effect, an effect that did not contain enough statistical information to reproduce, or an ambigious effect. To correct for the oversampling of outliers, we first calculated correction weights using type of effect size (outlier or non-outlier) as the auxiliary variable. By multiplying our sample frequencies with

Table 3. Population distribution of (non-)outlier primary studies in meta-analysis 1.

no. of primary studies in MA1				
non-outlier	37	65%		
outlier	20	35%		
Total	57	100%		

Table 4.Sample distribution of (non-)outlier primary studies and frequency distribution of (non-)errors found in meta-analysis 1.

	no error	error	
non-outlier	5	5	50%
outlier	7	3	50%
Total	12	8	20 (100%)

this weight, the proportion of (non-)outlier primary study effect sizes in the sample will be the same as the proportion of (non-)outlier primary study effect sizes in the population. We first calculate g_1 :

$$g_h = \frac{\frac{N_h}{N}}{\frac{n_h}{n}}$$
, Bethlehem, Cobben & Schouten (2011), f.8.6

where we have two strata (h_1 and h_2 , corresponding to respectively nonoutlier and outlier primary study effect sizes), uppercase Ns refer to population sizes (either per stratum or in total), and lowercase ns to sample sizes. The correction weights for meta-analysis 1 are:

$$g_1 = \frac{\frac{N_1}{N}}{\frac{n_1}{n}} = \frac{\frac{37}{57}}{\frac{10}{20}} = 1.2982456$$

$$g_2 = \frac{\frac{N_2}{N}}{\frac{n_2}{n}} = \frac{\frac{20}{57}}{\frac{10}{20}} = 0.7017544$$

Since we do not have any information on the number of errors in the population, we assume the same weights for non-errors and errors within each of the strata. As such, we multiply the first row of Table 4 with g_1 , and the second row of Table 4 with g_2 :

Table 5.Sample distribution of (non-)outlier primary studies and frequency distribution of (non-)errors found in meta-analysis 1, corrected.

	no error	error	
non-outlier	6.49	6.49	65%
outlier	4.91	2.10	35%
Total	11.40	8.60	20 (100%)

As Table 5 shows, the sample distribution of meta-analysis 1 is now proportional to the population distribution of meta-analysis 1. We used the estimates

from Table 5 to calculate the (conditional) probabilities of finding an error (i.e., either a different, incomplete, or ambiguous effect (size)) in a primary study in meta-analysis 1, given that you either have a primary study effect size that is classified as a non-outlier or outlier.

$$P_{(err)} = \frac{8.60}{20} = 0.43$$

$$P_{(err|non-outlier)} = \frac{P_{(non-outlier\ and\ err)}}{P_{(non-outlier)}} = \frac{\frac{6.49}{20}}{\frac{12.98}{20}} = 0.50$$

$$P_{(err|outlier)} = \frac{P_{(outlier\ and\ err)}}{P_{(outlier)}} = \frac{\frac{2.11}{20}}{\frac{7.02}{20}} = 0.30$$

For all 33 meta-analyses we calculated the abovementioned three (conditional) probabilities. In order to obtain the chance of any given effect size in a meta-analysis being irreproducible, we weighed the probability estimate (i.e., P(err)) with the number of total primary study effect sizes in that specific meta-analysis. For meta-analysis 1, this meant multiplying the probability estimate above with 57 (i.e., 0.43×57). After summing the weighted probability estimates of all 33 meta-analyses together and dividing by the total number of primary study effect sizes (1951), we estimated that across all meta-analyses, the chance of any randomly chosen primary study effect size being erroneous is 0.37.