Projet SFPN : Manipulation de suites P-récursives avec SageMath

Mathis Caristan & Aurélien Lamoureux Sous la responsabilité de Marc Mezzarobba

Université Pierre & Marie Curie

29/05/2017

Introduction

2 Contenu du module

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Contexte & problématique

Les suites P-récursives sont des objets couramment utilisés en mathématiques et en sciences.

Problématique

- La question se pose de comment représenter et manipuler informatiquement ces objets.
- Les suites sont infinies.

Solution

Il est nécessaire d'utiliser les propriétés mathématiques des suites P-récursives.

Suites P-récursives

Définition formelle

Une suite P-récursive sur un corps $\mathbb K$ vérifie la propriété suivante :

$$\sum_{i=0}^k P_i(n)u_{n+i}=0$$

où les P_i sont des polynômes en n, et k est l'ordre de la récurrence.

Une suite P-récursive peut être représentée exactement avec sa relation de récurrence, et ses conditions initiales*

Exemples

Fibonacci :
$$F_{n+2} - F_{n+1} - F_n = 0$$
, $F_0 = 0, F_1 = 1$
Factorielle : $(n+1)! - (n+1)(n!) = 0$, $0! = 1$

Algèbre d'Ore

TODO

SageMath & Python

SageMath, qu'est-ce que c'est?

- Un logiciel de calcul formel
- Opensource
- Construit sur un ensmble d'outil pré-éxistant et Python
- Basé sur Python
- Doté d'une syntaxe spécifique pour la ligne de commande

Python?

- C'est le langage sur lequel est basé Sage
- Python 2.7.9
- Les idiomes Sage sont transformés en Python pur
- Possibilité d'écrire des modules pour Sage en Python

La bibliothèque OreAlgebra

- Implémente l'algèbre d'Ore
- Non intégrée au projet Sage, et développée par la communauté
- Contient une partie des outils nécessaires à la réalisation du projet
 - Définir une algèbre dans laquelle travailler
 R.<n> = PolynomialRing(ZZ)
 A.<Sn> = OreAlgebra(R)
 - Les fonctions lclm et symmetric_product pour +/×
 annihilSum = annihil1.lclm(annihil2)
 annihilProd = annihil1.symmetric_product(annihil2)
 - La fonction forward_matrix_bsplit pour le calcul d'un terme

Présentation du module

Problématique

Créer un module permettant la manipulation des suites p-récursives

Caractéristiques

- En Python
- Basé sur le modèle de programmation objet : une classe
- Surcharge d'opérateurs
- Des tests

Notre classe n'étend aucune classe pré-éxistante.

Objectifs du module

Objectifs principaux

- Un constructeur
- Les opérations + et ×
- Une fonction pour calculer un élément

Objectifs du module

Objectifs principaux

- Un constructeur
- Les opérations + et ×
- Une fonction pour calculer un élément

Objectifs importants

- Travailler dans différents anneaux
- Des suites constantes
- Une méthode qui teste si une suite est constante
- Les tests d'égalité/inégalité
- Un constructeur qui devine la récurrence

Objectifs du module

Objectifs principaux

- Un constructeur
- ullet Les opérations + et imes
- Une fonction pour calculer un élément

Objectifs importants

- Travailler dans différents anneaux
- Des suites constantes
- Une méthode qui teste si une suite est constante
- Les tests d'égalité/inégalité
- Un constructeur qui devine la récurrence

Objectifs secondaires

- Les opérateurs << et >>
- Un itérateur (infini)
- La division par une constante
- Un constructeur à partir d'une expression symbolique

Constructeur

C'est la méthode appelée par Python lors d'une instanciation de la classe. C'est la première interaction de l'utilisateur avec le module.

Comportement par défaut

u = PRecSequence (conditions, annihilateur)
conditions est un dictionnaire
annihilateur est un objet du module OreAlgebra

Comportements secondaires

 $\mathsf{D}'\mathsf{autres}$ comportements sont possibles, grâce aux arguments optionnels de Python

- Création d'une suite constante
- "Guessing" a partir d'une liste d'éléments

Faut-il remplacer l'utilisation des arguments mots-clefs par le décorateur @classmethod?

Les valeurs dégénérées

Lorsque le polynôme dominant a des racines dans $\mathbb Z$:

$$(n-1)u_{n+1}-u_n=0, u_0=1$$
 $u_0=1, u_1=(-1)u_0=-1, u_2=???$

Les valeurs dégénérées

Lorsque le polynôme dominant a des racines dans $\ensuremath{\mathbb{Z}}$:

$$(n-1)u_{n+1}-u_n=0, u_0=1$$
 $u_0=1, u_1=(-1)u_0=-1, u_2=???$

Les conditions initiales supplémentaires

Il est nécessaire de permettre de fixer des conditions supplémentaires.

Les valeurs dégénérées

Lorsque le polynôme dominant a des racines dans $\ensuremath{\mathbb{Z}}$:

$$(n-1)u_{n+1}-u_n=0, u_0=1$$
 $u_0=1, u_1=(-1)u_0=-1, u_2=???$

Les conditions initiales supplémentaires

Il est nécessaire de permettre de fixer des conditions supplémentaires.

1^{re} idée : Obliger l'utilisateur à renseigner les valeurs dégénérées. Obliger l'utilisateur à saisir *toutes* les valeurs jusqu'à la dernière racine.

Les valeurs dégénérées

Lorsque le polynôme dominant a des racines dans ${\mathbb Z}$:

$$(n-1)u_{n+1}-u_n=0, u_0=1$$
 $u_0=1, u_1=(-1)u_0=-1, u_2=???$

Les conditions initiales supplémentaires

Il est nécessaire de permettre de fixer des conditions supplémentaires.

 1^{re} idée : Obliger l'utilisateur à renseigner les valeurs dégénérées. Obliger l'utilisateur à saisir *toutes* les valeurs jusqu'à la dernière racine.

2e idée : Lever des exceptions

Constructeur - Conditions initiales

Comment traiter les conditions initiales supplémentaires?

Les valeurs n'influent pas le calcul

$$u_{n+2} - u_{n+1} - u_n = 0$$
, $u_0 = 0$, $u_1 = 1$, $u_5 = 6$
Les valeurs de la suite sont $(0, 1, 1, 2, 3, 6, 8, 13, 21...)$

Les valeurs influent sur les termes suivants

$$u_{n+2} - u_{n+1} - u_n = 0, u_0 = 0, u_1 = 1, u_5 = 6$$

Les valeurs de la suite sont $(0, 1, 1, 2, 3, 6, 9, 15, 24...)$

Accéder à un élément de la suite

Il faut surcharger l'opérateur __getitem__, qui permet en Python d'accéder à l'élément n : fibo[n] ou fibo $[n_1 : n_2]$.

Première méthode : to_list

La classe de notre annihilateur propose to_list, qui calcule récursivement tous les termes jusqu'à n.

- Facile à implémenter
- Mais lent

Deuxième méthode : forward_matrix_bsplit

Utiliser l'algèbre linéaire pour calculer directement le terme n

- Théoriquement plus rapide
- Souffre d'un temps d'amorce

Optimiser <u>getitem</u>

Nous avons comparé les temps d'exécution pour les deux méthodes.

Rapport du temps avec to_list sur le temps avec forward_matrix_bsplit.

La seconde méthode est déjà plus efficace pour des valeurs de l'ordre de 100.

Addition et multiplication

l'addition

- Trouver un operateur qui annule les deux termes
- Trouver de nouvelle conditions initials

Surcharger la multiplication

- ullet La multiplication imes correspond à l'opérateur $\underline{ t mul}$ en Python
- Utilisation de symmetric_product

Addition et multiplication

Utiliser les facteurs

const:
$$C_{n+1} - C_n = 0$$
, $E_0 = 2$,

Fibonacci :
$$F_{n+2} - F_{n+1} - F_n = 0$$
, $F_0 = 0$, $F_1 = 1$

Leur Sommme :
$$S_{n+3} - 2 * S_{n+2} + S_n = 0$$

$$S_0 = 2, S_1 = 3, S_2 = 3$$

l'annihilateur annule les deux suites

Addition et multiplication - Procurer des conditions supplémentaires

Termes dégénérés dans les sommes/produits

Le coefficient dominant de certains produits ou sommes ont des racines dans \mathbb{Z} .

Utiliser les facteurs

Ent. Consec. :
$$nE_{n+1} - (n+1)E_n = 0$$
, $E_0 = 0$, $N_1 = 1$
Fibonacci : $F_{n+2} - F_{n+1} - F_n = 0$, $F_0 = 0$, $F_1 = 1$
Leur Sommme : $(n-1)D_{n+3} + (-2n+1)D_{n+2} + D_{n+1} + nD_n = 0$, $D_0 = 0$, $D_1 = 2$, $D_2 = 3$

 D_4 est dégénéré, mais E_4 et F_4 existent.

Autres fonctions

TODO