Inhaltsverzeichnis

1	Einleitung	1
2	Definitionen und Notationen	3
	2.1 Error-IO-Transitionssystem	. 3
	2.2 Parallelkomposition	
	2.3 Hiding	
3	Verfeinerung und Error-Freiheit	8
	3.1 Präkongruenz für Error	. 8
	3.2 Hiding und Error-Freiheit	. 17
4	Verfeinerung, Error- und Ruhe-Freiheit	20
	4.1 Präkongruenz für Ruhe	. 20
	4.2 Hiding und Ruhe-Freiheit	. 29
	4.3 Diskussion für Veränderungen und weiterführende Definitionen	

1 Einleitung

Der Anfang dieser Arbeit orientiert sich sehr stark an [BV14]. Jedoch wird hier darauf verzichtet die Input-Mengen der Error-IO-Transitionssysteme (EIOs) als disjunkt anzunehmen und alle Definitionen und Sätze werden erst einmal ohne das Verbergen der synchronisierten Aktionen betrachtet.

Dadurch dass die synchronisierten Aktionen nicht verborgen werden, wird hier ein Modell betrachtet, mit dem nicht nur zwei Systeme miteinander kommunizieren können, sondern beliebig viele. Ein Output eines Systems ist somit eine Art Multicast. Jedes System, das diesen Output als Input verarbeiten kann, empfängt ihn somit auch, da bei jeder Komposition der Output weitergeleitet wird an andere Systeme. Kann jedoch ein System den Output nicht als Input aufnehmen, wird dieses System von der Nachricht nicht beeinträchtigt.

Anschießend werden die Auswirkung von Hiding auf diese Struktur untersucht und somit das Verbergen in der Parallelkomposition nachgebildet. Durch das Hiding können Outputs durch interne Aktionen ersetzt werden.

Diese Art der Betrachtung der EIOs wurde auch bereits in [Sch12] gewählt, jedoch wurde diese Arbeit nicht als direkte Quelle genutzt, bis auf den Abschnitt des Hidings. Die Feststellungen im Definitionskapitel und dem Kapitel über Errors stimmen mit dieser Quelle überein, jedoch wurden alle Beweise davon unabhängig neu geführt.

In dieser Arbeit wird ein optimistischer Ansatz für die Erreichbarkeit der jeweils betrachteten Zuständen verwendet. Ein Zustand gilt nach der Definition in dieser Arbeit als erreichbar, wenn er lokal erreicht werden kann, d.h. durch lokale Aktionen. Die Menge bestehend aus der internen Aktion τ und den Output-Aktionen wird hier als Menge der lokale Aktionen bezeichnet. Alle Elemente aus dieser Menge können ohne weiteres Zutun von außen ausgeführt werden. Somit kann nicht beeinflusst werden, ob diese Transitionen genutzt werden oder nicht. Es besteht also die Möglichkeit, dass das EIO in einen der betrachteten Zustände übergeht, sobald dieser lokal erreichbar ist. Diese Art der Erreichbarkeit von Zuständen wird auch in Kapitel 3 von [BV14] für Error-Zustände behandelt.

Neben dem hier betrachteten optimistischen Ansatz gibt es noch zwei weitere Ansätze in [BV14] für die Erreichbarkeit von Error-Zuständen: einen hyper-optimistischen Ansatz, bei dem ein Error als erreichbar gilt, wenn er durch interne Aktionen erreicht werden kann, und einen pessimistischen Ansatz, bei dem ein Error als erreichbar gilt, sobald es eine Folge an Inputs und Outputs gibt, mit denen der Error-Zustand vom Startzustand aus erreicht werden kann.

Es wird versucht bei allen betrachteten Zustandsmengen die gröbste Präkongruenz zu finden, die in der jeweiligen Basisrelation enthalten ist und die eine Präkongruenz bezüglich der Parallelkomposition ist.

1 Einleitung

Es werden im Verlauf dieser Arbeit Ruhe-Zustände betrachtet, die keine Outputs und keine τ s zulassen. Somit befindet sich das betrachtete Transitionssystem in einer Art Verklemmung, wenn es in einem Ruhe-Zustand ist. Das System ist dann auf einen Input von Außen angewiesen um sich wieder aus diesem Zustand befreien zu können. Es kann ohne diesen Input keinen Fortschritt mehr geben, in Form von Outputs. Da aber auch die τ -Transitionen verboten sind, kann das System auch keine interne Aktion zu einem anderen Zustand ausführen. Hierfür gibt es jedoch auch andere Modelle, die dann am Ende dieser Arbeit auch noch diskutiert werden.

TODO: erweitern/umformulieren (bis jetzt nur Teile aus anderen Kapitel in Einleitung verschoben)

2 Definitionen und Notationen

Die Definitionen dieses Kapitels sind größtenteils aus [BV14] übernommen, mit den in der Einleitung erwähnten Abänderungen. In diesen Definitionen werden die Grundlagen der Transitionssysteme, mit denen hier gearbeitet werden soll behandelt.

${f 2.1 \;\; Error\text{-}IO\text{-}Transitions system}$

Die hier betrachteten EIOs sind Systeme, deren Transitionen mit Inputs und Outputs beschriftet sind. Jede Transition ist dabei mit einem Input oder einem Output versehen. Ebenfalls zulässig ist eine Transitionsbeschriftung mit τ , einer *internen*, unbeobachtbaren *Aktion*. Diese interne Aktion lässt also keine Interaktion mit der Umwelt, d.h. mit anderen Systemen, zu. In [BV14] entsteht das τ in vielen Fällen durch das Verbergen der Inputs und Outputs, die in einer Komposition synchronisiert werden. Hier werden diese Aktionen hingegen nicht verborgen. Jedoch wird im weiteren Verlauf noch das Hiding betrachten, in dem Outputs durch interne Aktionen ersetzt werden.

Definition 2.1 (*Error-IO-Transitionssystem*). Ein Error-IO-Transitionssystem (EIO) ist ein Tupel $S = (Q, I, O, \delta, q_0, E)$, mit den Komponenten:

- Q die Menge der Zustände,
- I,O die disjunkten Mengen der (sichtbaren) Input- und Output-Aktionen,
- $\delta \subseteq Q \times (I \cup O \cup \{\tau\}) \times Q$ die Transitionsrelation,
- $q_0 \in Q der Startzustand$,
- $E \subseteq Q$ die Menge der Error-Zustände.

Die Aktionsmenge eines EIOs S ist $\Sigma = I \cup O$ und die Signatur Sig(S) = (I, O).

Um in graphischen Veranschaulichungen Inputs und Outputs zu unterscheiden, wird folgende Notation verwendet: x? für den Input x und x! für den Output x. Falls ein x ohne ? oder ! verwendet wird, steht dies für eine Aktion, bei der nicht festgelegt ist, ob sie ein Input oder ein Output ist.

Um die Komponenten der entsprechenden Transitionssystem zuzuordnen, werden für die Komponenten die gleichen Indizes wie für ihr zugehöriges System verwendet, z.B. wird I_1 für die Inputmenge des Transitionssystems S_1 geschrieben. Diese Notation wird später analog für die Sprachen eines Systems verwendet.

Die Elemente der Transitionsrelation δ werden wie folgt notieren:

- $p \stackrel{\alpha}{\to} q$ für $(p, \alpha, q) \in \delta$,
- $p \stackrel{\alpha}{\to} \text{für } \exists q : (p, \alpha, q) \in \delta$,
- $p \xrightarrow{w} q$ für $p \xrightarrow{\alpha_1} p_1 \xrightarrow{\alpha_2} p_2 \dots \xrightarrow{\alpha_n} q$ mit $w \in (\Sigma \cup \{\tau\})^*, w = \alpha_1 \alpha_2 \dots \alpha_n,$
- $p \xrightarrow{w} \text{ für } p \xrightarrow{\alpha_1 \alpha_2} \dots \xrightarrow{\alpha_n} \text{ mit } w \in (\Sigma \cup \{\tau\})^*, w = \alpha_1 \alpha_2 \dots \alpha_n,$
- $w|_B$ steht für die Zeichenfolge, die aus w entsteht durch Löschen aller Zeichen, die nicht in $B \subseteq \Sigma$ enthalten sind, d.h. es bezeichnet die Projektion von w auf die Menge B,
- $p \stackrel{w}{\Rightarrow} q$ für $w \in \Sigma^*$ mit $\exists w' \in (\Sigma \cup \{\tau\})^* : w'|_{\Sigma} = w \land p \stackrel{w'}{\Rightarrow} q$,
- $p \stackrel{w}{\Rightarrow} \text{für } \exists q : p \stackrel{w}{\Rightarrow} q.$

Die Sprache von S ist $L(S) = \{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} \}.$

2.2 Parallelkomposition

Zwei EIOs sind komponierbar, wenn ihre Output-Mengen disjunkt sind. Die Error-Zustände der Parallelkomposition setzen sich aus den Errors der beiden zusammengesetzten Komponenten (geerbte Errors) und den Zuständen, die Outputs aus der Menge der synchronisierten Aktionen besitzen, für die im zu komponierenden System jedoch kein passender Input vorhanden ist, (neue Errors) zusammen.

In der folgenden Definition muss eine Veränderung gegenüber [BV14] an der Menge der synchronisierten Aktionen vorgenommen werden. Da nicht mehr $I_1 \cap I_2 = \emptyset$ gelten muss, werden die gemeinsamen Inputs synchronisiert. Somit handelt es sich in der Parallel-komposition bei synchronisierten Aktionen nicht mehr nur um Outputs, wie in [BV14], sondern im Fall von $I_1 \cap I_2$ auch um Inputs. Falls es bei Inputs aus $I_1 \cap I_2$ zu einem fehlenden Input für die Synchronisation kommt, ist die Transition für die Parallelkomposition nicht ausführbar, jedoch handelt es sich auch nicht um einen neuen Error, da es zwischen den beiden Systemen dadurch nicht zu einem Kommunikations-Fehler kommt. Die beiden Transitionssysteme können über die beiden Inputs nicht miteinander kommunizieren, sondern nur mit anderen Systemen.

Definition 2.2 (Parallelkomposition). Zwei EIOs S_1, S_2 sind komponierbar, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

- $\bullet \ Q = Q_1 \times Q_2,$
- $I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1),$
- $\bullet \ O = O_1 \cup O_2,$
- \bullet $q_0 = (q_{01}, q_{02}),$

•
$$\delta = \{((q_1, q_2), \alpha, (p_1, q_2)) \mid (q_1, \alpha, p_1) \in \delta_1, \alpha \in (\Sigma_1 \cup \{\tau\}) \setminus Synch(S_1, S_2)\}$$

 $\cup \{((q_1, q_2), \alpha, (q_1, p_2)) \mid (q_2, \alpha, p_2) \in \delta_2, \alpha \in (\Sigma_2 \cup \{\tau\}) \setminus Synch(S_1, S_2)\}$
 $\cup \{((q_1, q_2), \alpha, (p_1, p_2)) \mid (q_1, \alpha, p_1) \in \delta_1, (q_2, \alpha, p_2) \in \delta_2, \alpha \in Synch(S_1, S_2)\},$

•
$$E = (Q_1 \times E_2) \cup (E_1 \times Q_2)$$
 geerbte Errors
$$\cup \{(q_1, q_2) \mid \exists a \in O_1 \cap I_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a}\}$$

$$\cup \{(q_1, q_2) \mid \exists a \in I_1 \cap O_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a}\}$$
neue Errors.

Dabei werden die synchronisierten Aktionen $Synch(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2)$ nicht versteckt, sondern als Outputs bzw. im Fall von $I_1 \cap I_2$ als Inputs der Komposition beibehalten.

 S_1 wird einen Partner von S_2 , wenn ihre Parallelkomposition geschlossen ist, d.h. wenn sie duale Signaturen $Sig(S_1) = (I, O)$ und $Sig(S_2) = (O, I)$ haben.

Die Parallelkomposition kann nicht nur für Transitionssysteme betrachtet werden, wie bisher in dieser Arbeit, sondern auch über Aktionsfolgen. Traces sind die möglichen Wege des Systems, mit ihrer Transitionsbeschriftung. Diese Transitionsbeschriftung besteht aus Inputs und Outputs, mit denen die Folge ab dem Startzustand q_0 beschriftet ist. Somit kann ein Trace auch als das Wort aufgefasst werden, dass verarbeitet wird während des Ablaufs des Systems.

Definition 2.3 (Parallelkomposition auf Traces). Gegeben zwei EIOs S_1 und S_2 , sowie $w_1 \in \Sigma_1, w_2 \in \Sigma_2, W_1 \subseteq \Sigma_1^*, W_2 \subseteq \Sigma_2^*$:

- $w_1 || w_2 := \{ w \in (\Sigma_1 \cup \Sigma_2)^* \mid w|_{\Sigma_1} = w_1 \land w|_{\Sigma_2} = w_2 \},$
- $W_1 || W_2 := \bigcup \{ w_1 || w_2 \mid w_1 \in W_1 \land w_2 \in W_2 \}.$

Die Semantik der späteren Kapitel basiert darauf die jeweiligen Zustände, die zu Problemen führen, mit den Traces zu betrachten, mit denen man diese Zustände erreicht. Um dies besser umsetzen zu können, wird eine *prune*-Funktion definiert, die alle Outputs am Ende eines Traces entfernt. Zusätzlich werden Funktionen definiert, die die Traces beliebig fortsetzen.

Definition 2.4 (*Pruning- und Fortsetzungs-Funktion*). Für ein EIO S wird definiert:

- $\bullet \ \ prune: \Sigma^* \to \Sigma^*, w \mapsto u, \ mit \ w = uv, u = \varepsilon \vee u \in \Sigma^* \cdot I \ \ und \ v \in O^*,$
- $cont: \Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- $cont: \mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{cont(w) \mid w \in L\}.$

Für zwei komponierbare EIOs S_1 und S_2 ist ein Ablauf ihrer Parallelkomposition $S_{12} = S_1 || S_2$ eine Transitionsfolge der Form $(p_1, p_2) \stackrel{w}{\Rightarrow} (q_1, q_2)$ für ein $w \in \Sigma_{12}^*$. So ein Ablauf kann auf Abläufe von S_1 und S_2 projiziert werden. Diese Projektionen erfüllen $p_i \stackrel{w_i}{\Rightarrow} q_i$ mit $w|_{\Sigma_i} = w_i$ für i = 1, 2. Umgekehrt sind zwei Abläufe von S_1 und S_2 der

Form $p_i \stackrel{w_i}{\Rightarrow} q_i$ mit $w|_{\Sigma_i} = w_i$ für i = 1, 2, Projektionen von einem Ablauf in S_{12} der Form $(p_1, p_2) \stackrel{w}{\Rightarrow} (q_1.q_2)$. Es ist dafür nötig, dass die Abläufe der beiden Systeme und die Systeme selbst komponierbar sind. Das wird dadurch gewährleistet, dass w so gewählt wurde, dass die Projektion auf die einzelnen Alphabete die jeweiligen Wörter ergibt. Falls keine interne Aktionen zugelassen wären, würde sogar nur genau ein Ablauf möglich sein in S_{12} . Da jedoch auch interne Aktionen zulässig sind, sind mehrere Abläufe möglich, da nicht klar ist, wann ein τ in einem Trace ausgeführt wird. Daraus ergibt sich das folgende Lemma.

Lemma 2.5 (Sprache der Parallelkomposition). Für zwei komponierbare EIOs S_1 und S_2 gilt:

$$L_{12} := L(S_1 || S_2) = L(S_1) || L(S_2).$$

2.3 Hiding

Hiding wurde in dem hier verwendeten Kontext bereits in [CJK13] auf Traces betrachtet. Da hier die Betrachtungsweise von Transitionssystemen aus startet, wird auch Hiding aus der Sicht dieser Systeme definieren, wie in [Sch12]. Eine ähnliche Betrachtung für Hiding bei LTS mit Inputs und Outputs wurde auch bereits in [Lyn96] umgesetzt. Dort werden nur Output-Aktionen internalisiert, jedoch gibt es eine Menge an internen Aktionen und nicht nur eine. Das Hiding wird durch einen Internalisierungsoperator umgesetzt. Es sollen dadurch Aktionen versteckt werden können, d.h. durch τ s ersetzt werden. In [CJK13] ist es in der Definition des Hidings möglich Outputs und Inputs zu verstecken. Durch das Verstecken von Outputs sind diese nach außen nicht mehr sichtbar. Werden jedoch Inputs versteckt sind alle Traces, die diesen Input benötigen, nicht mehr ausführbar. Sie sind dann ab dem versteckten Input nicht mehr weiterführbar. Es handelt sich also um echte Einschränkungen des Systems. Die Transitionen werden durch das Hiding von Inputs ähnlich wie bei der Anwendung von Restriktionen in CSS verboten. Diese Art der Einschränkung der Transitionssysteme sollen hier jedoch nicht behandelt werden. Somit wird in der folgenden Definition nur die Internalisierung von Outputs erlaubt, entsprechend Quelle [Sch12].

Definition 2.6 (Internalisierungsoperator). Für ein EIO $S = (Q, I, O, \delta, q_0.E)$ ist S/X, mit dem Internalisierungsoperator \cdot/\cdot , definiert als $S' = (Q, I, O', \delta', q_0, E)$ mit:

- $\tau \notin X$,
- $X \subseteq O$,
- $O' = O \backslash X$,
- $\delta' = (\delta \cup \{(q, \tau, q') \mid (q, x, q') \in \delta, x \in X\}) \setminus \{(q, x, q') \mid x \in X \cap O\}\}.$

Die Menge hinter dem Internalisierungsoperator ist in dieser Definition auf Outputs beschränkt. Diese Einschränkung wurde vorgenommen und die weitere Betrachtung zu erleichtern. Jedoch kann es sinnvoll sein die Möglichkeit zu haben dort weitere Aktionen

2 Definitionen und Notationen

aufnehmen zu können. Dies wird jedoch nicht mehr Teil dieser Arbeit sein.

In [BV14] wird die Parallelkomposition nur mit Verbergen der synchronisierten Aktionen betrachtet, die durch die Synchronisation von einem Input mit einem Output entstehen. Diese Parallelkomposition kann nun mit dem Internalisierungsoperator durch Hiding der synchronisierten Aktionen, die in der Parallelkomposition zu Outputs werden, nachbildet werden. Da in dieser Arbeit die Inputmengen der Systeme, die komponiert werden, nicht disjunkt sein müssen, ergeben sich auch Inputs aus der Synchronisation von Aktionen. Diese können jedoch mit der hier verwendeten Definition des Internalisierungsoperators nicht verborgen werden. Dies wäre auch nicht sinnvoll, da diese Synchronisation von Inputs keine Kommunikation zwischen den Systemen ist, sondern nur eine Zusammenfügung, damit die Parallelkomposition über diesen Input mit weiteren Systemen kommunizieren kann. Somit ergibt sich die folgende Definition, mit der die Parallelkomposition aus [BV14] nachgebildet werden kann.

Definition 2.7 (Parallelkomposition mit Internalisierung). Seinen S_1 und S_2 komponierbare EIOs, dann ist $S_1|S_2 = (S_1||S_2)/(Synch(S_1, S_2) \cap O_{12})$.

3 Verfeinerung und Error-Freiheit

3.1 Präkongruenz für Error

Da es in dieser Arbeit vor allem um die Erreichbarkeit und die Kommunikation zwischen EIOs geht, wurden die nächsten beiden Definitionen explizit getrennt und erweitert im Vergleich zu denen in [BV14]. Ebenfalls wurde die Parallelkomposition geändert, wie in [Sch12].

Definition 3.1 (*error-freie Kommunikation*). Ein Error ist lokal erreichbar in einem EIO S, wenn $\exists w \in O^* : q_0 \stackrel{w}{\Rightarrow} q \in E$.

Zwei EIOs S_1 und S_2 kommunizieren error-frei, wenn in ihrer Parallelkomposition $S_1 || S_2$ keine Errors lokal erreicht werden können.

Mittels der lokalen Erreichbarkeit von Errors kann ein Verfeinerungsrelation definiert werden. Zusätzlich wird bereits die gröbste Präkongruenz definiert, die gesucht werden soll.

Definition 3.2 (Error-Verfeinerungs-Basisrelation). Für EIOs S_1 und S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_E^B S_2$ geschrieben, wenn ein Error in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist. Es handelt sich dabei um eine Basisrelation für die Verfeinerung im Bezug auf Errors.

 \sqsubseteq^C_E bezeichnet die vollständig abstrakte Präkongruenz von \sqsubseteq^B_E bezüglich $\cdot \| \cdot \|$, d.h. die gröbste Präkongruenz bezüglich $\cdot \| \cdot \|$, die in \sqsubseteq^B_E enthalten ist.

Um sich näher mit den Präkongruenzen auseinandersetzen zu können, müssen bestimmte Traces aus der Struktur hervor gehoben werden. Die strikten Errortraces entsprechen Wegen, die direkt vom Startzustand zu einem Zustand in der Menge E führen. Da Outputs Aktionen sind, die von außen nicht verhindert werden können, wird auch noch die Menge der Traces benötigt, die zu einem Zustand führen können, von dem aus mit lokalen Aktionen ein Error erreicht werden kann. Zusätzlich ist auch noch die Menge der Traces interessant, für die es einen Input $a \in I$ gibt, durch den sie möglicherweise nicht fortgesetzt werden können. Diese führen zwar nicht direkt zu einem Error, jedoch in Komposition mit einem anderen Transitionssystem sind dies gefährdete Stellen. Sie führen zu einem neuen Error, sobald dieser Input für die Synchronisation fehlt.

Definition 3.3 (Errortraces). Für ein EIO S wird definiert:

- strikte Errortraces: $StET(S) = \{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in E \},$
- gekürzte Errortraces: $PrET(S) = \{prune(w) \mid w \in StET(S)\},$
- Input-kritische Traces: $MIT(S) = \{ wa \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \land a \in I \land q \not\stackrel{a}{\Rightarrow} \}.$

In der folgenden Definition wird festgehalten, was als Errortraces auffasst wird. Diese Menge ist dadurch, dass sie die fortgesetzten Traces aus PrET enthält, deutlich allgemeiner als die Menge StET. Zusätzlich wird auch noch die geflutete Sprache definiert, in der die Informationen aus der Sprache und den Errortraces vereint werden und somit bei der Inklusion nicht mehr explizit unterscheiden werden.

Definition 3.4 (*Error-Semantik*). Sei S ein EIO.

- Die Menge der Errortraces von S ist $ET(S) := cont(PrET(S)) \cup cont(MIT(S))$.
- Die error-geflutete Sprache von S ist $EL(S) := L(S) \cup ET(S)$.

Für zwei EIOs S_1, S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_E S_2$ geschrieben, wenn $ET(S_1) \subseteq ET(S_2)$ und $EL(S_1) \subseteq EL(S_2)$ gilt.

Der folgende Satz wurde in [BV14] nur für die Parallelkomposition mit verborgenen synchronisierten Aktionen formuliert, jedoch entspricht er dem analogen Satz aus [Sch12]. Da der Beweis jedoch ohne Beachtung von [Sch12] neu geführt wurde, wird hier eher auf die Erwähnung der Unterschiede zu [BV14] Wert gelegt.

Satz 3.5 (*Error-Semanik für Parallelkompositionen*). Für zwei komponierbare EIOs S_1, S_2 und ihre Komposition $S_{12} = S_1 || S_2$, gilt:

- 1. $ET_{12} = cont(prune((ET_1||EL_2) \cup (EL_1||ET_2))),$
- 2. $EL_{12} = (EL_1 || EL_2) \cup ET_{12}$.

Beweis.

"⊂":

Da beide Seiten der Gleichung unter der Fortsetzung cont abgeschlossen sind, genügt es ein präfix-minimales Element w von ET_{12} zu betrachten. Dieses Element ist aufgrund der Definition der Menge der Errortraces entweder in MIT_{12} oder in $PrET_{12}$ enthalten.

- Fall 1 ($w \in MIT_{12}$): Aus der Definition von MIT folgt, dass es eine Aufteilung w = xa gibt mit $(q_{01}, q_{02}) \stackrel{x}{\Rightarrow} (q_1, q_2) \land a \in I_{12} \land (q_1, q_2) \not\rightarrow$. Da $I_{12} \stackrel{2.2}{=} (I_1 \backslash O_2) \cup (I_2 \backslash O_1) = (I_1 \cup I_2) \backslash (O_1 \cup O_2)$ ist $a \in (I_1 \cup I_2)$ und $a \notin (O_1 \cup O_2)$. Es wird unterscheiden, ob $a \in (I_1 \cap I_2)$ oder $a \in (I_1 \cup I_2) \backslash (I_1 \cap I_2)$ ist. Diese Unterscheidung ist in [BV14] nicht nötig, da dort $I_1 \cap I_2 = \emptyset$ gilt, somit gibt es dort nur den Fall 1b).
 - Fall 1a) $(a \in (I_1 \cap I_2))$: Nun kann den Ablauf der Komposition auf die Transitionssysteme projiziert werden und man erhält dann oBdA $q_{01} \stackrel{x_1}{\Rightarrow} q_1 \stackrel{a}{\Rightarrow}$ und $q_{02} \stackrel{x_2}{\Rightarrow} q_2 \stackrel{a}{\Rightarrow}$ oder $q_{02} \stackrel{x_2}{\Rightarrow} q_2 \stackrel{a}{\Rightarrow}$ mit $x \in x_1 || x_2$. Daraus kann $x_1 a \in cont(MIT_1) \subseteq ET_1 \subseteq EL_1$ und $x_2 a \in EL_2$ $(x_2 a \in MIT_2 \text{ oder } x_2 a \in L_2)$ gefolgert werden. Damit folgt $w \in (x_1 || x_2) \cdot \{a\} \subseteq (x_1 a) || (x_2 a) \subseteq ET_1 || EL_2$, und somit ist w in der rechten Seite der Gleichung enthalten.

- Fall 1b) $(a \in (I_1 \cup I_2) \setminus (I_1 \cap I_2))$: OBdA gilt $a \in I_1$. Durch Projektion erhält man: $q_{01} \stackrel{x_1}{\Rightarrow} q_1 \stackrel{a}{\rightarrow} \text{ und } q_{02} \stackrel{x_2}{\Rightarrow} q_2 \text{ mit } x \in x_1 || x_2$. Daraus folgt $x_1 a \in cont(MIT_1) \subseteq ET_1 \text{ und } x_2 \in L_2 \subseteq EL_2$. Somit gilt $w \in (x_1 || x_2) \cdot \{a\} \subseteq (x_1 a) || x_2 \subseteq ET_1 || EL_2$. Dies ist eine Teilmenge der rechten Seite der Gleichung.
- Fall 2 ($w \in PrET_{12}$): Durch die Definitionen von PrET und prune weiß man, dass es ein $v \in O_{12}^*$ gibt, so dass $(q_{01}, q_{02}) \stackrel{w}{\Rightarrow} (q_1, q_2) \stackrel{v}{\Rightarrow} (q'_1, q'_2)$ gilt mit $(q'_1, q'_2) \in E_{12}$ und w = prune(wv). Durch Projektion erhält man $q_{01} \stackrel{w_1}{\Rightarrow} q_1 \stackrel{v_1}{\Rightarrow} q'_1$ und $q_{02} \stackrel{w_2}{\Rightarrow} q_2 \stackrel{v_2}{\Rightarrow} q'_2$ mit $w \in w_1 || w_2$ und $v \in v_1 || v_2$. Aus $(q'_1, q'_2) \in E_{12}$ folgt, dass es sich entweder um einen geerbten oder einen neuen Error handelt. Bei einem geerbten wäre bereits einer der beiden Zustände q_1 bzw. q_2 ein Error-Zustand gewesen. Der neue Error hingegen wäre durch die fehlende Möglichkeit entstanden, eine synchronisierte Aktion auszuführen.
 - Fall 2a) (geerbter Error): OBdA $q_1' \in E_1$. Daraus folgt $w_1v_1 \in StET_1 \subseteq cont(PrET_1) \subseteq ET_1$. Da gilt $q_{02} \stackrel{w_2v_2}{\Rightarrow}$, erhält man $w_2v_2 \in L_2 \subseteq EL_2$. Dadurch ergibt sich $wv \in ET_1 || EL_2 \text{ mit } w = prune(wv)$ und somit ist w in der rechten Seite der Gleichung enthalten.
 - Fall 2b) (neuer Error): OBdA $a \in I_1 \cap O_2$ mit $q'_1 \not\xrightarrow{a} \wedge q'_2 \xrightarrow{a}$. Daraus folgt $w_1v_1a \in MIT_1 \subseteq ET_1$ und $w_2v_2a \in L_2 \subseteq EL_2$. Damit ergibt sich $wva \in ET_1 || EL_2$, da $a \in O_2 \subseteq O_{12}$ gilt w = prune(wva) und somit ist w in der rechten Seite der Gleichung enthalten.

1. "⊇":

Wegen der Abgeschlossenheit beider Seiten der Gleichung gegenüber cont wird auch in diesem Fall nur ein präfix-minimales Element $x \in prune((ET_1||EL_2) \cup (EL_1||ET_2))$ betrachtet. Da x durch die Anwendung der prune-Funktion entstanden ist, existiert ein $y \in O_{12}^*$ mit $xy \in (ET_1||EL_2) \cup (EL_1||ET_2)$. OBdA wird davon ausgegangen, dass $xy \in ET_1 \parallel EL_2$ gilt, d.h. es gibt $w_1 \in ET_1$ und $w_2 \in EL_2$ mit $xy \in w_1 \parallel w_2$. In dem Punkt, dass das präfix-minimale Element noch mit Outputs fortsetzt werden kann, unterscheidet sich dieser Beweis von dem in [Sch12]. In dieser Quelle wird nicht weiter darauf eingegangen, dass die prune-Funktion an dieser Stelle noch zur Anwendung kommt. Da jedoch später nur Präfixe von x betrachtet werden, ist dieser Unterschied irrelevant. Im Folgenden wird für alle Fälle von xy gezeigt, dass es ein $v \in PrET(S_1||S_2) \cup$ $MIT(S_1||S_2)$ gibt, das ein Präfix von xy ist und v entweder auf einen Input aus I_{12} endet oder $v = \varepsilon$. Da v entweder leer ist oder auf einen Input endet, muss v ein Präfix von x sein. ε ist Präfix von jedem Wort und sobald v mindestens einen Buchstaben enthält, muss das Ende von v vor dem Anfang von $y \in O_{12}^*$ liegen. Dadurch hat x ein Präfix in $PrET(S_1||S_2) \cup MIT(S_1||S_2)$, damit ist x in der Fortsetzung dieser Menge enthalten und somit gilt $x \in ET_{12}$.

Sei v_1 das kürzeste Präfix von w_1 in $PrET_1 \cup MIT_1$. Falls $w_2 \in L_2$, so sei $v_2 = w_2$, sonst soll v_2 das kürzeste Präfix von w_2 in $PrET_2 \cup MIT_2$ sein. Jede Aktion in v_1 und v_2 hängt mit einer aus xy zusammen. Es wird nun davon ausgegangen, dass entweder

 $v_2 = w_2 \in L_2$ gilt oder die letzte Aktion von v_1 vor oder gleichzeitig mit der letzten Aktion von v_2 statt findet. Ansonsten endet $v_2 \in PrET_2 \cup MIT_2$ vor v_1 und somit ist dieser Fall analog zu v_1 endet vor v_2 .

- Fall 1 $(v_1 = \varepsilon)$: Da $\varepsilon \in PrET_1 \cup MIT_1$, ist bereits in S_1 ein Error lokal erreichbar. $\varepsilon \in MIT_1$ ist nicht möglich, da jedes Element aus MIT nach Definition mindestens die Länge 1 haben muss. Mit der Wahl $v_2' = v' = \varepsilon$ ist v_2' ein Präfix von v_2 .
- Fall 2 $(v_1 \neq \varepsilon)$: Aufgrund der Definitionen von PrET und MIT endet v_1 auf ein $a \in I_1$, d.h. $v_1 = v_1'a$. v' sei das Präfix von xy, das mit der letzten Aktion von v_1 endet, d.h. mit a und $v_2' = v'|_{\Sigma_2}$. Falls $v_2 = w_2 \in L_2$, dann ist v_2' ein Präfix von v_2 . Falls $v_2 \in PrET_2 \cup MIT_2$ gilt, dann ist durch die Annahme, dass v_2 nicht vor v_1 endet, v_2' ein Präfix von v_2 . Im Fall $v_2 \in MIT_2$ kann durch die gleiche Argumentation ebenfalls geschlossen, dass v_2' ein Präfix von v_2 ist. Zusätzlich weiß man, dass v_2 auf $b \in I_2$ endet, jedoch muss nicht mehr wie in [BV14] $b \neq a$ gelten. Es kann also keine Aussage mehr darüber getroffen, ob es sich um ein echtes Präfix handelt.

In allen Fällen erhält man: $v_2' = v'|_{\Sigma_2}$ ist ein Präfix von v_2 und $v' \in v_1 || v_2'$ ist ein Präfix von xy. Da nicht mehr $b \neq a$ gelten muss, kann nicht mehr für alle Fälle $q_{02} \stackrel{v_2'}{\Rightarrow}$ gefolgert werden, wie das in [BV14] möglich war, sondern nur wenn $a \notin I_2$ gilt.

- Fall I $(v_1 \in MIT_1 \text{ und } v_1 \neq \varepsilon)$: Es gibt $q_{01} \stackrel{v'_1}{\Rightarrow} q_1 \stackrel{a}{\not\rightarrow}$ und sei v' = v''a. Bei der folgenden Fallunterscheidung müssen bezüglich [BV14] zwei weitere Fälle (Ib) und Ic)) einfügt werden, da es zulässig ist, dass a sowohl in I_1 wie auch in I_2 enthalten ist.
 - Fall Ia) $(a \notin \Sigma_2)$: Es gilt $q_{02} \stackrel{v_2'}{\Rightarrow} q_2$ mit $v'' \in v_1' || v_2'$. Dadurch erhält man $(q_{01}, q_{02}) \stackrel{v''}{\Rightarrow} (q_1, q_2) \stackrel{a}{\Rightarrow}$ mit $a \in I_{12}$. Somit wird $v := v''a = v' \in MIT_{12}$ gewählt.
 - Fall Ib) $(a \in I_2 \text{ und } v'_2 \in MIT_2)$: Es gilt $v'_2 = v''_2 a \text{ mit } q_{02} \stackrel{v''_2}{\Rightarrow} q_2 \stackrel{a}{\not\to} \text{ und } v'' \in v'_1 || v''_2. a \text{ ist für } S_2, \text{ ebenso wie für } S_1, \text{ ein fehlender Input. Daraus folgt, } dass <math>(q_1, q_2) \stackrel{a}{\not\to} \text{ gilt.}$ Es wird $v := v'' a = v' \in MIT_{12}$ gewählt.
 - Fall Ic) $(a \in I_2 \text{ und } v_2' \in L_2)$: Es gilt $q_{02} \stackrel{v_2''}{\Rightarrow} q_2 \stackrel{a}{\Rightarrow} \text{ mit } v_2' = v_2''a$. Da jedoch die Menge der synchronisierten Aktionen bezüglich [BV14] erweitert wurde liegt a in $Synch(S_1, S_2)$, also folgt $(q_1, q_2) \stackrel{a}{\Rightarrow} \text{ schon aus } q_1 \stackrel{a}{\Rightarrow}$. Somit kann hier $v := v''a = v' \in MIT_{12}$ gewählt werden.
 - Fall Id) $(a \in O_2)$: Es gilt $v_2' = v_2''a$ und $q_{02} \stackrel{v_2'}{\Rightarrow}$. Man erhält also $q_{02} \stackrel{v_2''}{\Rightarrow} q_2 \stackrel{a}{\Rightarrow}$ mit $v'' \in v_1' || v_2''$. Daraus ergibt sich $(q_{01}, q_{02}) \stackrel{v''}{\Rightarrow} (q_1, q_2)$ mit $q_1 \stackrel{a}{\not{\rightarrow}}, a \in I_1, q_2 \stackrel{a}{\Rightarrow}, a \in O_2$, somit gilt $(q_1, q_2) \in E_{12}$. Es wird $v := prune(v'') \in PrET_{12}$ gewählt.
- Fall II $(v_1 \in PrET_1)$: $\exists u_1 \in O_1^* : q_{01} \stackrel{v_1}{\Rightarrow} q_1 \stackrel{u_1}{\Rightarrow} q_1' \text{ mit } q_1' \in E_1$. Da es hier keine disjunkten Inputmengen wie in [BV14] gibt kann das a, auf das v_1 im Fall $v_1 \neq \varepsilon$

endet, ebenfalls der letzte Buchstabe von v_2 sein. Im Fall von $v_2 \in MIT_2$ kann somit a=b gelten und somit wäre $v_2=v_2'$. Dieser Fall verläuft jedoch analog zu Fall Ic) und wird somit hier nicht weiter betrachtet. Es gilt somit für alle anderen Fälle hier $q_{02} \stackrel{v_2'}{\Rightarrow} q_2$ mit $(q_{01}, q_{02}) \stackrel{v'}{\Rightarrow} (q_1, q_2)$.

- Fall IIa) $(u_2 \in (O_1 \cap I_2)^*, c \in (O_1 \cap I_2)$, sodass u_2c Präfix von $u_1|_{I_2}$ mit $q_2 \stackrel{u_2}{\Rightarrow} q_2' \stackrel{c}{\not\rightarrow}$): Für das Präfix $u_1'c$ von u_1 mit $u_1'c|_{I_2} = u_2c$ weiß man, dass $q_1 \stackrel{u_1'}{\Rightarrow} q_1'' \stackrel{c}{\rightarrow}$. Somit gilt $u_1' \in u_1' \| u_2 \text{ und } (q_1, q_2) \stackrel{u_1'}{\Rightarrow} (q_1'', q_2') \in E_{12}$, da für S_2 der entsprechende Input fehlt, der mit dem c Output von S_1 zu koppeln wäre. Es handelt sich also um einen neuen Error. Es wird $v := prune(v'u'_1) \in$ $PrET(S_1||S_2)$ gewählt, dies ist ein Präfix von v', da $u_1 \in O_1^*$.
- Fall IIb) $(q_2 \stackrel{u_2}{\Rightarrow} q_2' \text{ mit } u_2 = u_1|_{I_2})$: Somit ist $u_1 \in u_1 || u_2 \text{ und } (q_1, q_2) \stackrel{u_1}{\Rightarrow} (q_1', q_2') \in E_{12}$, da $q_1' \in E_1$ und somit handelt es sich um einen geerbten Error. Es wird nun $v := prune(v'u_1) \in PrET(S_1||S_2)$ gewählt, das wiederum ein Präfix von v' ist.

2.:

Der Beweis für diesen Punkt konnte bezüglich [BV14] fast unverändert übernommen werden, bis auf die Ersetzung der Zeichen der Parallelkomposition.

Es ist durch die Definition klar, dass $L_i \subseteq EL_i$ und $ET_i \subseteq EL_i$ gilt. Die Argumentation wird von der rechten Seite der Gleichung aus begonnen:

$$(EL_{1}||EL_{2}) \cup ET_{12}$$

$$\stackrel{3.4}{=} (L_{1} \cup ET_{1})||(L_{2} \cup ET_{2}) \cup ET_{12}$$

$$= \underbrace{(L_{1}||ET_{2})}_{\subseteq (EL_{1}||ET_{2})} \cup \underbrace{(ET_{1}||L_{2})}_{\subseteq (ET_{1}||EL_{2})} \cup \underbrace{(ET_{1}||ET_{2})}_{\subseteq (EL_{1}||ET_{2})} \cup ET_{12}$$

$$\stackrel{1.}{\subseteq} ET_{12} \qquad \stackrel{1.}{\subseteq} ET_{12}$$

$$= (L_{1}||L_{2}) \cup ET_{12}$$

$$\stackrel{2.5}{=} L_{12} \cup ET_{12}$$

$$\stackrel{3.4}{=} EL_{12}.$$

Die folgende Proposition wurde hier noch explizit mit Beweis eingefügt im Gegensatz zu den Ausführungen in [BV14], in denen diese Präkongruenz nur als Folgerung aus dem letzten Satz erwähnt wird. Die Feststellung, dass es sich um eine Präkongruenz handelt, ist wichtig, da dann die erste Eigenschaft erfüllt ist, um eine operationale Beschreibung der vollständig abstrakten Präkongruenz \sqsubseteq_E^C zu erhalten.

Proposition 3.6 (*Error-Präkongruenz*). \sqsubseteq_E ist eine Präkongruenz bezüglich $\cdot \| \cdot \|$

Beweis. Es muss gezeigt werden: Wenn $S_1 \sqsubseteq_E S_2$ gilt, dann für jedes komponierbare S_3 auch $S_3 || S_1 \subseteq_E S_3 || S_1$. D.h. es ist zu zeigen, dass aus $ET_1 \subseteq ET_2$ und $EL_1 \subseteq EL_2$,

 $ET(S_3||S_1) \subseteq ET(S_3||S_2)$ und $EL(S_3||S_1) \subseteq EL(S_3||S_2)$ folgt. Dies ergibt sich aus der Monotonie von cont, prune und $\cdot||\cdot|$ auf Sprachen wie folgt:

•
$$ET(S_3||S_1) \stackrel{3.5}{=} \stackrel{1.}{=} cont(prune((ET_3||EL_1) \cup (EL_3||ET_1)))$$

$$\stackrel{ET_1 \subseteq ET_2}{\stackrel{\text{und}}{\subseteq}} EL_1 \subseteq EL_2 \stackrel{\text{und}}{\subseteq} cont(prune((ET_3||EL_2) \cup (EL_3||ET_2)))$$

$$\stackrel{3.5}{=} \stackrel{1.}{=} ET(S_3||S_2),$$

•
$$EL(S_3||S_1) \stackrel{3.5}{=}^{2.} (EL_3||EL_1) \cup E_{31}$$

$$\stackrel{EL_1 \subseteq EL_2}{\stackrel{\text{und}}{\subseteq}} \stackrel{\text{und}}{\subseteq} (EL_3||EL_2) \cup ET_{32}$$

$$\stackrel{3.5}{=}^{2.} EL(S_3||S_2).$$

In [BV14] wurde auch die Verfeinerung von EIOs als Relation betrachtet mit Spezifikation und Implementierung. Hier soll ebenfalls eine Verfeinerungsrelation über EIOs betrachtet werden, jedoch sollen die synchronisierten Aktionen nicht verborgen werden. Dadurch ändern sich natürlich auch Teile des Beweises, vor allem muss statt mit StET mit der Menge PrET argumentiert werden. Dieses Lemma existiert in dieser Form nicht in [Sch12], da es dort mit der Aussage von Satz 3.8 kombiniert wurde. Jedoch ist die Aussage dieses Lemmas trotzdem Teil dessen, was gezeigt wird und somit finden sich die Teile dieses Beweises auch dort wieder.

Die Verfeinerungsrelation, die in dem nächsten Lemma betrachtet werden soll, verfeinert über guter Kommunikation im Sinne der error-freien Kommunikation.

Lemma 3.7 (Verfeinerung mit Errors). Gegeben sind zwei EIOs S_1 und S_2 mit der gleichen Signatur. Wenn $U||S_1 \sqsubseteq_E^B U||S_2$ für alle Partner U gilt, dann folgt daraus die Gültigkeit von $S_1 \sqsubseteq_E S_2$.

Beweis. Da S_1 und S_2 die gleichen Signaturen haben wird $I := I_1 = I_2$ und $O := O_1 = O_2$ definiert. Für jeden der Partner U gilt $I_U = O$ und $O_U = I$. Um $S_1 \sqsubseteq_E S_2$ zu zeigen, wird nachgeprüft, ob folgendes gilt:

- $ET(S_1) \subseteq ET(S_2)$,
- $EL(S_1) \subset EL(S_2)$.

Für ein gewähltes präfix-minimales Element $w \in ET(S_1)$ wird gezeigt, dass dieses w oder eines seiner Präfixe in $ET(S_2)$ enthalten ist. Dies ist möglich, da beide Mengen durch cont abgeschlossen sind.

- Fall 1 $(w = \varepsilon)$: Es handelt sich um einen lokal erreichbaren Error in S_1 . Für U wird ein Transitionssystem verwendet, das nur aus dem Startzustand und einer Schleife für alle Inputs $x \in I_U$ besteht. Somit kann S_1 die gleichen Error-Zustände lokal erreichen wie $U||S_1$. Daraus folgt, dass auch $U||S_2$ einen lokal erreichbaren Error-Zustand haben muss. Durch die Definition von U kann dieser Error nur von S_2 geerbt sein. Es muss also in S_2 ein Error-Zustand durch interne Aktionen und Outputs erreichbar sein, d.h. es gilt $\varepsilon \in PrET(S_2)$.
- Fall 2 ($w = x_1 \dots x_n x_{n+1} \in \Sigma^+$ mit $n \ge 0$ und $x_{n+1} \in I$): Es wird der folgenden Partner U bedachtet (siehe auch Abbildung 3.1):

```
-Q_{U} = \{q_{0}, q_{1}, \dots, q_{n+1}\},\
-q_{0U} = q_{0},\
-E_{U} = \emptyset,\
-\delta_{U} = \{(q_{i}, x_{i+1}, q_{i+1}) \mid 0 \le i \le n\}\
\cup \{(q_{i}, x, q_{n+1}) \mid x \in I_{U} \setminus \{x_{i+1}\}, 0 \le i \le n\}\
\cup \{(q_{n+1}, x, q_{n+1}) \mid x \in I_{U}\}.
```


Abbildung 3.1: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$

Für w können zwei Fälle unterscheiden werden. Beide führen zu $\varepsilon \in PrET(U||S_1)$. Dieses Resultat unterscheidet sich von dem in [BV14], da hier die synchronisierten Aktionen als Outputs vorhanden bleiben und somit kann nicht $\varepsilon \in StET(U||S_1)$ gelten.

- Fall 2a) $(w \in MIT(S_1))$: In $U \| S_1$ erhält man $(q_0, q_{01}) \stackrel{x_1 \dots x_n}{\Longrightarrow} (q_n, q')$ mit $q' \stackrel{x_{n+1}}{\leadsto}$ und $q_n \stackrel{x_{n+1}}{\Longrightarrow}$. Deshalb gilt $(q_n, q') \in E_{U \| S_1}$ und $x_1 \dots x_n \in StET(U \| S_1)$. Da alle Aktionen aus w bis auf x_{n+1} synchronisiert werden gilt $x_1, \dots, x_n \in O_{U \| S_1}$. Daraus ergibt sich dann $\varepsilon \in PrET(U \| S_1)$.
- Fall 2b) ($w \in PrET(S_1)$): In $U||S_1$ erhält man $(q_0, q_{01}) \stackrel{w}{\Rightarrow} (q_{n+1}, q'') \stackrel{u}{\Rightarrow} (q_{n+1}, q')$ für $u \in O^*$ und $q' \in E_1$. Daraus folgt $(q_{n+1}, q') \in E_{U||S_1}$ und somit $wu \in StET(U||S_1)$. Da alle Aktionen aus w synchronisiert werden, gilt

 $x_1, \ldots, x_n, x_{n+1} \in O_{U||S_1}$ und, da $u \in O^*$, folgt $u \in O^*_{U||S_1}$. Somit ergibt sich $\varepsilon \in PrET(U||S_1)$.

Da $\varepsilon \in PrET(U||S_1)$ gilt, kann durch $U||S_1 \sqsubseteq_E^B U||S_2$ geschlossen werden, dass auch in $U||S_2$ ein Error lokal erreichbar sein muss. Dieser Error kann geerbt oder neu sein.

- Fall 2i) (neuer Error): Da jeder Zustand von U alle Inputs $x \in O = I_U$ zulässt, muss ein lokal erreichbarer Error der Form sein, dass ein Output $a \in O_U$ von U möglich ist, der nicht mit einem passenden Input aus S_2 synchronisiert werden kann. Durch die Konstruktion von U sind in q_{n+1} keine Outputs möglich. Ein neuer Error muss also die Form (q_i, q') haben mit $i \leq n, q' \not\to u$ und $x_{i+1} \in O_U = I$. Durch Projektion erhält man dann $q_{02} \stackrel{x_1 \dots x_i}{\Rightarrow} q' \not\to u$ und damit gilt $x_1 \dots x_{i+1} \in MIT(S_2) \subseteq ET(S_2)$. Somit ist ein Präfix von w in $ET(S_2)$ enthalten.
- Fall 2ii) (geerbter Error): U hat $x_1 ldots x_i u$ ausgeführt mit $u \in I_U^* = O^*$ und ebenso hat S_2 diesen Weg ausgeführt. Durch dies hat S_2 einen Zustand in E_2 erreicht, da von U keine Errors geerbt werden können. Es gilt dann $prune(x_1 ldots x_i u) = prune(x_1 ldots x_i) \in PrET(S_2) \subseteq ET(S_2)$. Da $x_1 ldots x_i$ ein Präfix von u ist, führt auch in diesem Fall ein Präfix von u zu einem Error.

Um die zweiten Inklusion zu beweisen, reicht es aufgrund der ersten Inklusion und der Definition von EL aus zu zeigen, dass $L(S_1)\backslash ET(S_1)\subseteq EL(S_2)$ gilt. Es wird dafür ein beliebiges $w\in L(S_1)\backslash ET(S_1)$ gewählt und gezeigt, dass es in $EL(S_2)$ enthalten ist.

- Fall 1 $(w = \varepsilon)$: Da ε immer in $EL(S_2)$ enthalten ist, ist hier nichts zu zeigen.
- Fall 2 ($w = x_1 \dots x_n$ mit $n \ge 1$): Es wird einen Partner U wie folgt konstruiert (siehe dazu auch Abbildung 3.2):

```
- Q_U = \{q, q_0, q_1, \dots, q_n\},\
- q_{0U} = q_0,\
- E_U = \{q_n\},\
- \delta_U = \{(q_i, x_{i+1}, q_{i+1}) \mid 0 \le i < n\}\
\cup \{(q_i, x, q) \mid x \in I_U \setminus \{x_{i+1}\}, 0 \le i \le n\}\
\cup \{(q, x, q) \mid x \in I_U\}.
```

Da $q_{01} \stackrel{w}{\Rightarrow} q'$ gilt, kann man schließen, dass $U \| S_1$ einen lokal erreichbaren geerbten Error hat. Somit muss $U \| S_2$ ebenfalls einen lokal erreichbaren Error haben.

- Fall 2a) (neuer Error aufgrund von $x_i \in O_U$ und $q_{02} \stackrel{x_1 \dots x_{i-1}}{\Rightarrow} q'' \stackrel{x_i}{\neq}$): Es gilt $x_1 \dots x_i \in MIT(S_2)$ und somit $w \in EL(S_2)$. Anzumerken ist, dass nur auf diesem Weg Outputs von U möglich sind, deshalb gibt es keine anderen Outputs von U, die zu einem neuen Error führen können.

Abbildung 3.2: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}, q_n$ ist der einzige Error-Zustand

- Fall 2b) (neuer Error aufgrund von $a \in O_2$): Der einzige Zustand, in dem U nicht alle Inputs erlaubt sind, ist q_n , der bereits ein Error-Zustand ist. Falls dieser Zustand erreichbar ist in $U||S_2$, dann besitzt das komponierte EIO einen geerbten Error und es gilt $w \in L(S_2) \subseteq EL(S_2)$, wegen Fall 2c).
- Fall 2c) (geerbter Error von U): Da der einzige Zustand aus E_U q_n ist und alle Aktionen synchronisiert sind, ist dies nur möglich, wenn gilt $q_{02} \stackrel{x_1 \dots x_n}{\Longrightarrow}$. In diesem Fall gilt, $w \in L(S_2) \subseteq EL(S_2)$.
- Fall 2d) (geerbter Error von S_2): Es gilt dann $q_{02} \stackrel{x_1 \dots x_i u}{\Rightarrow} q' \in E_2$ für $i \geq 0$ und $u \in O^*$. Somit ist $x_1 \dots x_i u \in StET(S_2)$ und damit $prune(x_1 \dots x_i u) = prune(x_1 \dots x_i) \in PrET(S_2) \subseteq EL(S_2)$. Somit gilt $w \in EL(S_2)$.

Der folgende Satz sagt aus, dass \sqsubseteq_E die gröbste Präkongruenz ist, die charakterisiert werden soll, also gleich der vollständig abstrakten Präkongruenz \sqsubseteq_E^C .

Satz 3.8 (Full Abstractness für Error-Semanik). Seien S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_E^C S_2 \Leftrightarrow S_1 \sqsubseteq_E S_2$, insbesondere ist \sqsubseteq_E eine Präkongruenz.

Beweis. " \Leftarrow ": Nach Definition gilt, genau dann wenn $\varepsilon \in ET(S)$, ist ein Error lokal erreichbar in S. $S_1 \sqsubseteq_E S_2$ impliziert, dass $\varepsilon \in ET(S_2)$ gilt, wenn $\varepsilon \in ET(S_1)$. Somit ist ein Error in S_1 nur dann lokal erreichbar, wenn dieser auch in S_2 lokal erreichbar ist. Dadurch folgt, dass $S_1 \sqsubseteq_E^B S_2$ gilt, da \sqsubseteq_E^B in Definition 3.2 über die lokale Erreichbarkeit der Error-Zustände definiert wurde. Somit ist \sqsubseteq_E in \sqsubseteq_E^B enthalten. Wie in Proposition 3.6 gezeigt, ist \sqsubseteq_E eine Präkongruenz. Da \sqsubseteq_E^C die gröbste Präkongruenz bezüglich $\cdot \parallel \cdot$ ist, die in \sqsubseteq_E^B enthalten ist, muss \sqsubseteq_E in \sqsubseteq_E^C enthalten sein. Es folgt also aus $S_1 \sqsubseteq_E S_2$, dass auch $S_1 \sqsubseteq_E^C S_2$ gilt.

"⇒": Durch die Definition von \sqsubseteq_E^C als Präkongruenz in 3.2 folgt aus $S_1 \sqsubseteq_E^C S_2$, dass $U \| S_1 \sqsubseteq_E^C U \| S_2$ für alle EIOs U, die mit S_1 komponierbar sind. Da \sqsubseteq_E^C nach Definition auch in \sqsubseteq_E^B enthalten sein soll folgt aus $U \| S_1 \sqsubseteq_E^C U \| S_2$ auch die Gültigkeit von $U \| S_1 \sqsubseteq_E^B U \| S_2$ für alle diese EIOs U. Mit Lemma 3.7 folgt dann $S_1 \sqsubseteq_E S_2$.

Es wurde somit jetzt eine Kette an Folgerungen gezeigt, die sich zu einem Ring schließt. Dies ist in Abbildung 3.3 dargestellt.

Abbildung 3.3: Folgerungskette

Aus Satz 3.8 und Lemma 3.7 ergibt sich das folgende Korollar. S_1 soll dabei S_2 verfeinern, genau dann wenn für alle Partner EIOs U für die S_2 error-frei mit U kommuniziert, folgt S_1 kommuniziert ebenfalls error-frei mit U.

Korollar 3.9. Es gilt: $S_1 \sqsubseteq_E S_2 \Leftrightarrow U || S_1 \sqsubseteq_E^B U || S_2$ für alle Partner U.

3.2 Hiding und Error-Freiheit

Es soll nun untersucht werden, was für Auswirkungen Hiding auf die Verfeinerungsrelationen hat. Es werden also Outputs der Systeme internalisiert.

Proposition 3.10 (*Error-Basisrelation bzgl. Internalisierung*). Wenn $S_1 \sqsubseteq_E^B S_2$ gilt, dann folgt daraus, dass auch $(S_1/X) \sqsubseteq_E^B (S_2/X)$ gilt.

Beweis. Da die Definition der lokalen Erreichbarkeit auf lokalen Aktionen beruht, die aus den Outputs und der internen Aktion besteht, ändert sich durch das Verbergen von Outputs nichts an der Error-Erreichbarkeit. Somit ist jeder Error, der in S_i lokal erreichbar ist über ein Trace, das Outputs aus X enthält, auch in S_i/X erreichbar, jedoch enthält das Trace nicht mehr diesen Output. Alle Traces, die keine Outputs aus der Menge hinter dem Internalisierungsoperator enthalten, bleiben unverändert erhalten. Es ist auch nicht möglich, dass durch das Verbergen von Outputs neue Errors entstehen. Somit folgt die Behauptung.

Satz 3.11 (Error-Präkongurenz bzgl. Interalisierung). Seinen S_1 und S_2 zwei EIOs für die $S_1 \sqsubseteq_E S_2$ gilt, somit gilt auch $S_1/X \sqsubseteq_E S_2/X$. Daraus folgt insbesondere, dass \sqsubseteq_E eine Präkongruenz bezüglich \cdot/\cdot ist. Es gilt für die Sprachen und Traces:

- (i) $L(S/X) = \{ w \in (\Sigma \setminus (X \cap O))^* \mid \exists w' |_{\Sigma \setminus (X \cap O)} = w \},$
- $(ii) \ ET(S/X) = \{ w \in (\Sigma \setminus (X \cap O))^* \mid \exists w' \in ET(S) : w'|_{\Sigma \setminus (X \cap O)} = w \},$
- $(iii) \ EL(S/X) = \{ w \in (\Sigma \setminus (X \cap O))^* \mid \exists w' \in EL(S) : w'|_{\Sigma \setminus (X \cap O)} = w \}.$

Beweis. Zuerst wird hier die Richtigkeit der Aussagen (i) bis (iii) gezeigt. Daraus kann dann der Rest des Satzes gefolgert werden.

- (i) Für ein Wort aus der Sprache L eines Transitionssystems S gilt nach Definition $q_0 \stackrel{w}{\Rightarrow} q$ mit $q \in Q$. Es gibt also zu jedem $w = a_1 a_2 \dots a_n \in L(S)$ ein Ablauf $q_0 \stackrel{a_1}{\Rightarrow} q_1 \stackrel{a_2}{\Rightarrow} \dots \stackrel{a_n}{\Rightarrow}$. Hier ist wichtig zu beachten, dass die jeweiligen Zustände nicht exakt für eine Transition erreicht werden müssen. Es kann sich hier um eine Transitionsfolge aus beliebig vielen τ s und dem jeweiligen $a_i \in \Sigma$ handeln. Dabei ist egal, an welcher Stelle das a_i auftaucht. Dies ist notwendig, das auf Trace-Ebene nicht mehr festgehalten wird, wann τ -Transitionen auszuführen sind um mit einer bestimmten Transition den Weg fortsetzen zu können. Dies ändert jedoch nichts daran, dass alle a_i atomare Aktionen darstellen.
 - Fall 1 (n = 0): Es gilt $w = \varepsilon$. Somit enthält w keine Aktionen aus X. Es werden also durch die Anwendung des Internalisierungsoperators in diesem w keine Aktionen verborgen. Es gilt also $w \in L(S/X)$. Somit ist für diesen Fall die Aussage über L korrekt.
 - Fall 2 $(n \ge 1)$: Nach der Internalisierung bleiben von dem Ablauf nur noch die Aktionen übrig, die nicht Elemente aus $X \cap O$ sind. Der Ablauf reduziert sich τ falls $a_1 \in X \cap O$ τ falls $a_2 \in X \cap O$ τ falls $a_n \in X \cap O$ also auf $q_0 \stackrel{\text{sonst}}{\Longrightarrow} q_1 \stackrel{\text{sonst}}{\Longrightarrow} a_2 \dots \stackrel{\text{sonst}}{\Longrightarrow} a_n = q_n$. Dabei bleibt durch das Hiding von Aktionen aus X in w nur noch $w|_{\Sigma \setminus (X \cap O)}$ erhalten. Diese Projektion des Wortes w auf die eingeschränkte Aktionenmenge ist dann in L(S/X) enthalten, da immer noch der selbe Zustand durch das Worte erreicht wird. Es gilt also auch für diesen Fall die Aussage über die Sprache L.
- (ii) Es wird einen Trace $w = a_1 a_2 \dots a_n \in ET$ gewählt. Dieser Traces muss nicht wie bei Punkt (i) einem Ablauf in S entsprechen. Jedoch gibt es einen Ablauf für ein Präfix dieses ws, mit dem ein Zustand aus E erreicht wird oder ein Zustand, für den nicht alle Input-Transitionen möglich sind. Der Ablauf hat also die Form $q_0 \stackrel{a_1}{\to} q_1 \stackrel{a_2}{\to} \dots \stackrel{a_m}{\to} q_m$ mit $m \leq n$. Zusätzlich gilt $a_1 a_2 \dots a_m \in StET_1$ oder $a_1 a_2 \dots a_m \in MIT_1$. Analog wie im Beweisteil zu (i) wird der Ablauf bis a_m durch die Internalisierung reduziert. Somit ist die Projektion des Präfixes von w auf jeden Fall in ET(S/X) enthalten. Da ET eine Menge ist, die nach Definition immer unter cont abgeschlossen ist, ist die entsprechende Verlängerung der Projektion des Präfixes von w ebenfalls in ET(S/X) enthalten. Es gilt also $w|_{\Sigma\setminus (X\cap O)}\in ET(S/X)$. Da alle Elemente aus ET(S/X) nur Aktionen aus ET(S/X) enthalten, ist ausgeschlossen, dass das projizierte Präfix mit Aktionen außerhalb dieser Menge vorgesetzt wird.
- (iii) Für einen Trace $w = a_1 a_2 \dots a_n \in EL(S)$ gilt $w \in L(S)$ oder $w \in ET(S)$. Für beide Fälle wurde oben bereits gezeigt, dass dann $w|_{\Sigma \setminus (X \cap O)}$ in der entsprechenden Menge des Transitionssystems S/X enthalten ist. Da EL als Vereinigung aus den Mengen L und ET definiert ist, ist dadurch dann auch gezeigt, dass $w|_{\Sigma \setminus (X \cap O)} \in EL(S/X)$ gilt.

Da $S_1 \sqsubseteq_E S_2$ gilt, weiß man, dass $ET_1 \subseteq ET_2$ und $EL_1 \subseteq EL_2$ gilt. Diese Definitionen stützen sich nur auf die bereits bekannten Mengen ET(S) und EL(S). Somit ist klar, dass zu jedem Ablauf des Systems ohne Hiding ein passender in dem

3 Verfeinerung und Error-Freiheit

System mit Hiding gefunden werden kann, falls diese Definitionen korrekt sind. Es muss nun also die Korrektheit dieser Definitionen gezeigt werden.

Nach Voraussetzung gilt $w \in ET_2$, wenn $w \in ET_1$. Nach analoger Argumentation wie oben gilt dann auch $w|_{\Sigma \setminus (X \cap O)} \in ET(S_2/X)$.

Somit bleibt jetzt nur noch zu zeigen, dass $L(S_1/X) \setminus ET(S_1/X) \subseteq EL(S_2/X)$ gilt, bzw. dass EL(S/X) richtig definiert wurde. Die Argumentation wieso nur diese Inklusion zu zeigen ist, kann dem Beweis zu Lemma 3.7 entnommen werden. Da bereits bekannt ist, dass $L_1 \setminus ET_1 \subseteq EL_2$ gilt, kann geschlossen werden, dass alle relevanten Traces bereits in EL_2 enthalten sind.

Es folgt also insgesamt, dass die Relation \sqsubseteq_E trotz Hiding erhalten bleibt und somit diese Relation bezüglich des Internalisierungsoperator eine Präkongruenz darstellt. \square

Aus 3.6 ist bekannt, dass \sqsubseteq_E eine Präkongruenz bezüglich ·||· ist, und aus 3.11, dass \sqsubseteq_E auch eine Präkongruenz bezüglich ·/· ist. Da sich nach Definition 2.7 die Parallel-komposition mit Internalisierung nur aus diesen Operatoren zusammensetzt, erhalten man das folgende Korollar.

Korollar 3.12 (*Error-Präkongurenz mit Internalisierung*). \sqsubseteq_E ist eine Präkongruenz bezüglich $\cdot | \cdot \rangle$.

4 Verfeinerung, Error- und Ruhe-Freiheit

4.1 Präkongruenz für Ruhe

In diesem Kapitel wird es nicht mehr nur um die Erreichbarkeit von Error-Zuständen gehen, sondern auch um die Erreichbarkeit von Ruhe-Zuständen. Es wird dabei ein ähnlich vorgehen wie im letzten Kapitel angewandt, jedoch wird [CJK13] als Quelle verwendet. Darin werden ähnliche Konzepte beschrieben, jedoch aus Sicht der Traces. Es werden dort zudem gleichzeitig auch noch Traces mit Divergenz betrachtet. Diese Eigenschaft wird hier zunächst nicht betrachtet.

Die Zustände, die keine Outputs und keine Transitionsmöglichkeit für eine interne Aktion haben werden, als eine Art Verklemmung angesehen, da sie ohne einen Input von einem Kommunikationspartner den Zustand nicht mehr verlassen können.

Definition 4.1 (Ruhe). Ein Ruhe-Zustand ist ein Zustand in einem EIO, der keine Outputs und kein τ zulässt.

Somit ist die Menge der Ruhe-Zustände in einem EIO wie folgt formal definiert: Qui := $\left\{q \in Q \mid \forall \alpha \in (O \cup \{\tau\}) : q \xrightarrow{\alpha} \right\}$.

Für die Erreichbarkeit wird wie im letzten Kapitel wieder der optimistischen Ansatz der lokalen Erreichbarkeit für die Error-Zustände verwendet. Ruhe ist kein unabwendbaren Fehler, sondern kann durch einen Input repariert werden. Somit ist ein Ruhe-Zustand als nicht so "schlimmer Fehler" anzusehen wie ein Error. Somit ist ein Ruhe-Zustand ebenso wie ein Error-Zustand erreichbar, sobald er durch Outputs und τ s erreicht werden kann, jedoch ist nicht jede beliebige Fortsetzung eines Traces, der die Eigenschaft erfüllt ein Ruhe-Trace.

Definition 4.2 (error- und ruhe-freie Kommunikation). Zwei EIOs S_1 und S_2 kommunizieren error- und ruhe-frei, wenn in ihrer Parallelkomposition $S_1||S_2|$ keine Errors und keine Ruhe-Zustände lokal erreichbar sind.

Definition 4.3 (Ruhe-Verfeinerungs-Basisrelation). Für EIOs S_1 und S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_{Qui}^B S_2$ geschrieben, wenn ein Error oder Ruhe-Zustand in S_1 nur dann lokal erreichbar ist, wenn ein solcher auch in S_2 lokal erreichbar ist. Diese Basisrelation stellt eine Verfeinerung bezüglich Errors und Ruhe-Zustände dar. \sqsubseteq_{Qui}^C bezeichnet die vollständig abstrakte Präkongruenz von \sqsubseteq_{Qui}^B bezüglich $\cdot \| \cdot \|$.

Um eine genauer Auseinandersetzung mit den Präkongruenzen zu ermöglichen, benötigt man wie im letzten Kapitel die Definition von Traces auf der Struktur. Dadurch

erhält man die Möglichkeit die gröbste Präkongruenz charakterisieren zu können. Wie bereits oben erwähnt, sind Ruhe-Zustände reparierbare Fehler im Gegensatz zu Errors. Somit werden keine gekürzten Ruhetraces benötigt, bei denen die *prune*-Funktion zur Anwendung käme, da auch keine beliebigen Verlängerungen davon benötigt werden.

Definition 4.4 (Ruhetraces). Sei S ein EIO und definiere:

• strikte Ruhetraces: $StQT(S) := \{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Qui \}.$

Es wird nur eine Semantik für die Ruhe definiert, die Error-Semantik wird aus dem letzten Kapitel übernommen. Somit gelten für ET und EL die Definitionen aus dem letzten Kapitel.

Definition 4.5 (Ruhe-Semantik). Sei S ein EIO.

• Die Menge der error-gefluteten Ruhetraces von S ist $QT(S) := StQT(S) \cup ET(S)$.

Für zwei EIOs S_1, S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_{Qui} S_2$ geschrieben, wenn $S_1 \sqsubseteq_E S_2$ und $QT(S_1) \subseteq QT(S_2)$ gilt.

Für die Menge der error-gefluteten Ruhetraces QT wurde eine Informationsvermischung mit den Errortraces vorgenommen wie beim Fluten der Sprache EL. Da jedoch durch die Ruhetraces keine neuen Traces entstehen, die nicht bereits in der gefluteten Sprache EL enthalten wären, würde eine neue Flutung nichts ändern. Es wird also durch die Relation \sqsubseteq_{Qui} nur die bereits existierende Präkongruenz \sqsubseteq_E eingeschränkt. Das folgende Lemma soll explizit festhalten, wie Ruhezustände sich unter der Parallelkomposition verhalten. Dies ist vor allem in dem danach folgenden Satz relevant.

Lemma 4.6 (Ruhe-Zustände unter Parallelkomposition).

- 1. Ein Zustand (q_1, q_2) aus der Parallelkomposition $S_{12} = S_1 || S_2$ ist ruhig, wenn es auch die Zustände q_1 und q_2 in S_1 bzw. S_2 sind.
- 2. Wenn der Zustand (q_1, q_2) ruhig ist und nicht in E_{12} enthalten ist, dann sind auch die auf die Teilsysteme projizierten Zustände q_1 und q_2 ruhig.

Beweis.

1.:

Da $q_1 \in Qui_1$ und $q_2 \in Qui_2$ gilt, haben diese beiden Zustände jeweils höchstens die Möglichkeiten Transitionen auszuführen, die mit Inputs beschriftet sind. Jedoch keine Möglichkeiten für Outputs oder τ s. Der Zustand, der durch Parallelkomposition aus diesen beiden Zuständen entsteht hat nur die Transitionsmöglichkeiten dieser Zustände die parallel ausgeführt werden. Es gibt somit drei unterschiedliche Möglichkeiten:

• Fall 1 $(a \in I_i \setminus Synch(S_1, S_2) \land q_i \xrightarrow{a}$ für ein $i \in \{1, 2\}$): Da a ein Input ist, der nicht in der Menge der synchronisierten Aktionen enthalten ist, wird dieser unabhängig ausgeführt, somit hat (q_1, q_2) ebenfalls die Möglichkeit eine Transition mit a als Input auszuführen.

- Fall 2 $(a \in I_1 \cap I_2 \wedge q_i \xrightarrow{a}$ für beide $i \in \{1, 2\}$): Da beide Zustände den gleichen Input ausführen können, der zu synchronisieren ist, gilt somit $(q_1, q_2) \xrightarrow{a}$. Wobei $a \in I_{12}$ gilt.
- Fall 3 $(a \in I_i \cap Synch(S_1, S_2) \land q_i \xrightarrow{a}$ für ein $i \in \{1, 2\}$): Hier handelt es sich um eine Transition, die für (q_1, q_2) nicht ausführbar ist, da es keine passende Transition für das andere System gibt, mit dem diese Aktion synchronisiert werden könnte. Da es sich hier jedoch um den Input der zu synchronisierenden Aktion handelt, entsteht daraus auch kein neu Fehler, sondern einfach nur eine Transition, die nicht genommen werden kann, weil der passende Output bzw. Input im anderen System nicht vorhanden ist.

Dies sind alle Fälle, die auftreten können für die Parallelkomposition der Transitionsmöglichkeiten. Bei keinen dieser Möglichkeiten ist ein Output oder ein τ entstanden und somit hat der Zustand (q_1, q_2) auch keine Möglichkeiten solche Transitionen auszuführen. Daraus folgt also, dass $(q_1, q_2) \in Qui_{12}$ gilt.

2.:

Es gilt $(q_1, q_2) \in Qui_{12} \setminus E_{12}$, somit hat dieser Zustand maximal die Möglichkeit Transitionen für Inputs auszuführen. Diese Transitionen für Inputs können nur aus Inputs, die nicht in der Menge der synchronisierten Aktionen enthalten sind oder aus der Synchronisation von zwei Inputs aus der Menge $I_1 \cap I_2$ enstehen. Durch die Parallelkomposition von Outputs mit anderen Aktionen können keine Inputs entstehen und in der hier verwendeten Definition der Parallelkomposition auch keine τ s. Outputs, die nicht in der Menge $Synch(S_1, S_2)$ enthalten sind, würden als Outputs des zusammengesetzten Zustandes übernommen werden und können somit weder bei q_1 noch bei q_2 vorhanden sein. Falls jedoch $(q_1, q_2) \in E_{12}$ zulassen wäre, wäre es möglich, dass einer der beiden Zustände q_i eine Transitionsmöglichkeit für einen Output hat, der aufgrund eines fehlenden Inputs des anderen Zustandes nicht synchronisiert werden kann und somit ein neuer Error entsteht. Dieser Fall wird jedoch durch die zusätzliche Einschränkung ausgeschlossen. Falls einer der beiden Zustände eine Transitionsmöglichkeit für ein τ gehabt hätte, müsste dies auch der zusammengesetzte Zustand haben und könnte somit nach Definition nicht ruhig sein. Es folgt also, dass q_1 und q_2 ebenso nur Transitionen mit Inputs ausführen können. Es gilt also $q_1 \in Qui_1$ und $q_2 \in Qui_2$.

In dem folgenden Satz sind Punkt 1. und 3. nur zur Vollständigkeit aufgeführt. Sie entsprechen Punkt 1. und 2. aus Satz 3.5.

Satz 4.7 (*Error- und Ruhe-Semantik für Parallelkompositonen*). Für zwei komponierbare EIOs S_1, S_2 und ihre Komposition $S_{12} = S_1 || S_2$ gilt:

- 1. $ET_{12} = cont(prune((ET_1||EL_2) \cup (EL_1||ET_2))),$
- 2. $QT_{12} = (QT_1 || QT_2) \cup ET_{12}$,
- 3. $EL_{12} = (EL_1 || EL_2) \cup ET_{12}$.

Beweis. Es wird nur der 2. Punkt bewiesen.

Hier muss unterscheiden werden ob ein $w \in StQT_{12} \backslash ET_{12}$ oder ein $w \in ET_{12}$ betrachtet wird. Im zweiten Fall ist das w in der rechten Seite enthalten. Somit wird ab jetzt ein $w \in StQT_{12} \backslash ET_{12}$ betrachtet und dessen Zugehörigkeit zur rechten Menge versucht zu zeigen. Aufgrund von Definition 4.4 weiß man, dass $(q_{01}, q_{02}) \stackrel{w}{\Rightarrow} (q_1, q_2)$ gilt mit $(q_1, q_2) \in Qui_{12}$. Durch Projektion erhält man $q_{01} \stackrel{w_1}{\Rightarrow} q_1$ und $q_{02} \stackrel{w_2}{\Rightarrow} q_2$ mit $w \in w_1 || w_2$. Aus $(q_1, q_2) \in Qui_{12}$ kann mit Punkt 2. von Lemma 4.6 gefolgert werden, dass bereits $q_1 \in Qui_1$ und $q_2 \in Qui_2$ gilt. Somit gilt $w_1 \in StQT_1 \subseteq QT_1$ und $w_2 \in StQT_2 \subseteq QT_2$. Daraus folgt dann $w \in QT_1 || QT_2$ und somit ist w in der rechten Seiten der Gleichung enthalten.

Es muss wieder danach unterschieden werden aus welcher Menge das betrachtete Element stammt. Falls $w \in ET_{12}$ gilt, so kann die Zugehörigkeit zur linken Seite direkt folgert werden. Somit wird für den weiteren Beweis dieser Inklusionsrichtung ein Element $w \in QT_1 || QT_2$ betrachtet und gezeigt, dass es in der linken Menge enthalten ist. Da $QT_i = StQT_i \cup ET_i$ gilt, existieren für w_1 und w_2 mit $w \in w_1 || w_2$ unterschiedliche Möglichkeiten:

- Fall 1 ($w_1 \in ET_1 \lor w_2 \in ET_2$): OBdA gilt $w_1 \in ET_1$. Nun kann $w_2 \in StQT_2 \subseteq L_2$ gelten oder $w_2 \in ET_2$ und somit gilt auf jeden Fall $w_2 \in EL_2$. Daraus kann dann mit dem ersten Punkt von Satz 3.5 gefolgert werden, dass $w \in ET_{12}$ gilt und somit w in der linken Seite der Gleichung enthalten ist.
- Fall 2 ($w_1 \in StQT_1 \setminus ET_1 \land w_2 \in StQT_2 \setminus ET_2$): Es gilt in diesem Fall $q_{01} \stackrel{w_1}{\Rightarrow} q_1 \in Qui_1$ und $q_{02} \stackrel{w_2}{\Rightarrow} q_2 \in Qui_2$. Da q_1 und q_2 in der Ruhe-Menge enthalten sind, ist auch der Zustand, der aus ihnen zusammengesetzt ist, in der Parallelkomposition ruhig und lässt keine τ -Transitionen zu, wie bereits in Punkt 1. von Lemma 4.6 gezeigt. Es gilt also für die Komposition $(q_{01}, q_{02}) \stackrel{w}{\Rightarrow} (q_1, q_2) \in Qui_{12}$ und dadurch ist w in der linken Seite der Gleichung enthalten, da $w \in StQT_{12} \subseteq QT_{12}$ gilt.

Die folgende Proposition ist eine direkte Folgerung aus dem letzten Satz. Jedoch ist es eine wichtige Feststellung für den weiteren Verlauf die gröbste Präkongruenz charakterisieren zu wollen.

Proposition 4.8 (*Ruhe-Präkongruenz*). \sqsubseteq_{Qui} ist eine Präkongruenz bezüglich $\cdot \| \cdot \|$

Beweis. Es muss gezeigt werden: Wenn $S_1 \sqsubseteq_{Qui} S_2$ gilt, so auch $S_3 || S_1 \sqsubseteq_{Qui} S_3 || S_2$ für jedes S_3 . D.h. es ist zu zeigen, dass aus $S_1 \sqsubseteq_E S_2$ und $QT_1 \subseteq QT_2$, $S_{31} \sqsubseteq_E S_{32}$ und $QT_{31} \subseteq QT_{32}$ folgt. Dies ergibt sich wie im Beweis zu Proposition 3.6 aus der Monotonie von · $\|\cdot\|$ auf Sprachen wie folgt:

Proposition 3.6 and
$$S_1 \sqsubseteq_E S_2$$
• $S_{31} \sqsubseteq_E S_2$
 $\subseteq_E S_{32}$,

•
$$QT_{31} \stackrel{4.7}{=}^{2.} (QT_3 \| QT_1) \cup ET_{31}$$

$$\stackrel{ET_{31} \subseteq ET_{32}}{\underset{\text{und}}{\text{und}}} QT_1 \subseteq QT_2$$

$$\stackrel{QT_1 \subseteq QT_2}{\subseteq} (QT_3 \| QT_2) \cup ET_{32}$$

$$\stackrel{4.7}{=}^{2.} QT_{32}.$$

Im nächsten Lemma soll eine Verfeinerungsrelation über guten Kommunikation im Sinne von error- und ruhe-freier Kommunikation betrachtet werden.

Lemma 4.9 (Verfeinerung mit Ruhe-Zuständen). Gegeben sind zwei EIOs S_1 und S_2 mit der gleichen Signatur. Wenn $U||S_1 \sqsubseteq_{Qui}^B U||S_2$ für alle Partner U gilt, dann folgt daraus $S_1 \sqsubseteq_{Qui} S_2$.

Beweis. Da davon ausgegangen wird, dass S_1 und S_2 die gleiche Signatur haben, definiert man $I := I_1 = I_2$ und $O := O_1 = O_2$. Für jeden Partner U gilt $I_U = O$ und $O_U = I$. Um zu zeigen, dass die Relation $S_1 \sqsubseteq_{Qui} S_2$ gilt, müssen die folgenden Punkte nachweisen werden:

- \bullet $S_1 \sqsubseteq_E S_2$,
- $QT(S_1) \subseteq QT(S_2)$.

In Lemma 3.7 wurde bereits etwas ähnliche gezeigt, jedoch wurde dort als Voraussetzung $U\|S_1 \sqsubseteq_E^B U\|S_2$ für alle Partner U verwendet und hier die selbe Aussage mit der Basisrelation der Ruhe. Dadurch, dass die hier verwendete Basisrelation nichts über die Art der erreichbaren Fehlers in den Komponenten aussagt, kann der Beweis aus 3.7 nicht verwendet werden. Es kann also aus der lokalen Erreichbarkeit eines Errors in S'_1 und dem relationalen Zusammenhang von $S'_1 \sqsubseteq_{Qui}^B S'_2$ nur geschlossen werden, dass in S'_2 auch ein Fehler lokal erreichbar ist, jedoch kann dieser Fehler ein Error oder ein Ruhe-Zustand sein. Analog verhält es sich, wenn in S'_1 ein Ruhe-Zustand lokal erreichbar ist. Es muss also für den ersten Punkt folgendes nachgewiesen werden:

- $ET(S_1) \subset ET(S_2)$,
- $EL(S_1) \subseteq EL(S_2)$.

Es wird nur damit begonnen der ersten Unterpunkt des ersten Beweispunktes zu zeigen, d.h. es wird unter der Voraussetzung, dass $U\|S_1\sqsubseteq_{Qui}^BU\|S_2$ gilt gezeigt, dass $ET_1\subseteq ET_2$ gilt. Da beide ET-Mengen unter cont abgeschlossen sind, reicht es ein präfix-minimales Element $w\in ET_1$ zu betrachten und zu zeigen, dass dieses w oder eines seiner Präfixe in ET_2 enthalten ist.

• Fall 1 $(w = \varepsilon)$: Es handelt sich um einen lokal erreichbaren Error in S_1 . Für U wird ein Transitionssystem verwendet, das nur aus dem Startzustand, einer Schleife für alle Inputs $x \in I_U$ und einer Schleife für τ besteht. Somit kann S_1 die gleichen Error-Zustände lokal erreichen wie $U||S_1$ und zusätzliche wurde durch

die τ -Schlinge sicher gestellt, dass in $U||S_1$ kleine Ruhe-Zustände vorhanden sind. Es folgt also, dass in $U||S_2$ ein Fehler lokal erreichbar ist. Es kann sich bei dem Fehler nur um einen Error handeln, da es in der Komposition mit U keine Ruhe-Zustände geben kann. Da U keinen Error-Zustand und auch keine fehlenden Input-Möglichkeiten enthält, kann der Error nur von S_2 geerbt sein. Somit muss in S_2 ein Error-Zustand lokal erreichbar sein, d.h. es gilt $\varepsilon \in PrET(S_2) \subseteq ET_2$.

• Fall 2 ($w = x_1 \dots x_n x_{n+1} \in \Sigma^+$ mit $n \ge 0$ und $x_{n+1} \in I$): Es wird der folgende Partner U betrachtet (siehe auch Abbildung 4.1):

$$-Q_{U} = \{q_{0}, q_{1}, \dots, q_{n+1}\},\$$

$$-q_{0U} = q_{0},\$$

$$-E_{U} = \emptyset,\$$

$$-\delta_{U} = \{(q_{i}, x_{i+1}, q_{i+1}) \mid 0 \le i \le n\}$$

$$\cup \{(q_{i}, x, q_{n+1}) \mid x \in I_{U} \setminus \{x_{i+1}\}, 0 \le i \le n\}$$

$$\cup \{(q_{n+1}, x, q_{n+1}) \mid x \in I_{U}\}$$

$$\cup \{(q_{i}, \tau, q_{i}) \mid 0 \le i \le n+1\},\$$

$$-Qui_{U} = \emptyset.$$

Abbildung 4.1: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$

Da im Vergleiche zum Transitionssystem in Abbildung 3.1 nur die τ -Schlingen ergänzt wurden, ändert sich nichts an den Fällen 2a) und 2b). Die Begründungen, wieso in den beiden Fällen $\varepsilon \in PrET(U|S_1)$ gilt bleibt also analog zum Beweis von Lemma 3.7. Durch die τ -Schlingen wurde, genau wie im letzten Fall, nur erreicht, dass in einer Parallelkomposition mit U keine Ruhe-Zustände möglich sind. Es kann also auch hier aus der lokalen Erreichbarkeit eines Error-Zustandes in $U|S_1$ auf die lokale Erreichbarkeit eines Errors in $U|S_2$ geschlossen werden. Die weitere Argumentation verläuft dann analog zu Fall 2 der selben Inklusion im Beweis zu Lemma 3.7. Da τ s nur interne Aktionen eines einzelnen Systems sind,

verändert sich auch nichts an den Traces, über die argumentiert wird. Es können zwar möglicherweise τ Transitionen ausgeführt werden, die können jedoch weder zu einem Fehler führen noch beeinflussen, dass ein anderer Trace nicht ausgeführt werden kann.

Nun wird mit dem zweiten Unterpunkt des ersten Beweispunktes begonnen. Genau wie im Beweis zu 3.7 ist hier jedoch auf Grund des bereits geführten Beweisteils nur noch $L(S_1)\backslash ET(S_1)\subseteq EL(S_2)$ zu zeigen. Es wird also für ein beliebig gewähltes $w\in L(S_1)\backslash ET(S_1)$ gezeigt, dass es auch in $EL(S_2)$ enthalten ist.

- Fall 1 $(w = \varepsilon)$: Ebenso wie in 3.7 gilt auch hier, dass ε immer in $EL(S_2)$ enthalten ist.
- Fall 2 ($w = x_1 \dots x_n$ mit $n \ge 1$): Die Konstruktion des Partners U weicht wie im letzten Beweisteil nur durch die τ -Schleifen an den Zuständen des Transitionssystems vom Beweis zu Lemma 3.7 ab. Somit ist der Partner U dann wie folgt definiert (siehe dazu auch Abbildung 4.2):

$$-Q_{U} = \{q, q_{0}, q_{1}, \dots, q_{n}\},\$$

$$-q_{0U} = q_{0},\$$

$$-E_{U} = \{q_{n}\},\$$

$$-\delta_{U} = \{(q_{i}, x_{i+1}, q_{i+1}) \mid 0 \leq i < n\}\$$

$$\cup \{(q_{i}, x, q) \mid x \in I_{U} \setminus \{x_{i+1}\}, 0 \leq i \leq n\}\$$

$$\cup \{(q_{i}, \tau, q_{i}) \mid 0 \leq i \leq n\}\$$

$$\cup \{(q_{i}, \tau, q_{i}) \mid 0 \leq i \leq n\}\$$

$$\cup \{(q, \tau, q)\},\$$

$$-Qui_{U} = \emptyset.$$

Abbildung 4.2: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}, q_n$ ist der einzige Error-Zustand

Da durch die τ -Schlingen an den Zuständen wie oben vermieden wird, dass es in einer Komposition mit U Ruhe-Zustände gibt, verläuft der Rest des Beweises

dieses Punktes analog zum Beweis von Lemma 3.7. Und somit gilt für alle Fälle (2a) bis 2d)), dass w in $EL(S_2)$ enthalten ist.

So bleibt nun nur noch der letzte Beweispunkt zu zeigen, d.h. die Inklusion $QT_1 \subseteq QT_2$. Diese Inklusion kann jedoch noch anlog zum Beweis der Inklusion der errorgefluteten Sprachen weiter einschränken. Da bereits bekannt ist, dass $ET_1 \subseteq ET_2$ gilt, muss nur noch $StQT_1 \setminus ET(S_1) \subseteq QT_2$ gezeigt werden.

Es wird ein $w \in StQT(S_1) \backslash ET(S_1)$ gewählt und gezeigt, dass es auch in $QT(S_2)$ enthalten ist.

Es ist vom Startzustand von S_1 durch das Wort w ein ruhiger Zustand erreichbar. Dies hätte keine Auswirkungen auf die Parallelkomposition $U||S_1$, wenn in U kein Ruhe-Zustand durch w erreicht wäre.

- Fall 1 $(w = \varepsilon)$: Es ist ein Ruhe-Zustand lokal erreichbar in S_1 , da jedoch $\varepsilon \notin ET(S_1)$ gilt, ist kein Error lokal erreichbar. Für U wird ein Transitionssystem verwendet, das nur aus dem Startzustand und einer Schleife für alle Inputs $x \in I_U$ besteht. Somit ist auch in U ein Ruhe-Zustand lokal erreichbar. Es folgt also mit Lemma 4.6, dass auch in $U||S_1$ ein Ruhe-Zustand lokal erreichbar ist und kein Error lokal erreicht werden kann, da keiner geerbt werden kann und durch die Transitionsmöglichkeiten von U auch kein neuer Error entstehen kann. Es muss also auch in $U||S_2$ ein Fehler lokal erreichbar sein. Bei diesem Fehler kann es sich nun um einen Error oder um einen Ruhe-Zustand handeln, dies ist jedoch Aufgrund der Definition der Menge QT nicht relevant. Somit folgt in beiden Fällen, dass w in $QT(S_2)$ enthalten ist.
- Fall 2 ($w = x_1 \dots x_n \in \Sigma^+$ mit $n \ge 1$): Es wird der folgende Partner U betrachtet (siehe auch Abbildung 4.3):

Abbildung 4.3: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$

Es gilt somit, dass auch in der Parallelkomposition $U||S_1$ ein Ruhe-Zustand mit w erreicht wird. Da es sich bei allen in w befindlichen Aktionen um synchronisierte

Aktionen handelt und $I_U \cap I = \emptyset$, gilt $w \in O_{U||S_1}^*$ und $w \in StQT(U||S_1)$. Es kann also in der Parallelkomposition durch w ein Ruhe-Zustand lokal erreicht werden. Da $w \neq ET(S_1)$ gilt, kann auf dem Weg, der mit w im Transitionssystem S_1 zurück gelegt wird kein Error lokal erreicht werden. Es kann also weder von S_1 noch von U ein Error auf diesem Weg geerbt werden und durch den Aufbau von U wird auch verhindert, dass auf dem Weg ein neuer Error entsteht. Es gilt also sogar $w \in StQT(U||S_1) \setminus ET(U||S_1)$. Somit muss auch ein Fehler in $U||S_2$ lokal erreichbar sein. Hier kann jedoch zunächst keine Aussage darüber getroffen werden, ob das w ausführbar ist und ob es sich bei dem Fehler um Ruhe oder Error handelt.

- Fall 2a) ($\varepsilon \in ET(U||S_2)$): Es handelt sich bei dem lokal erreichbaren Fehler um einen Error. Es ist somit egal, ob das w ausführbar ist. Der Error kann sowohl von S_2 geerbt sein, wie auch durch fehlende synchronizations Möglichkeiten als neuer Error in der Parallelkomposition entstanden sein. Es gilt also, dass bereits in S_2 ein Präfix von w in ET_2 enthalten ist, wegen des Beweises des ersten Punktes aus Lemma 3.7. Da die Menge ET unter contabgeschlossen ist, gilt also auch $w \in ET(S_2) \subseteq QT(S_2)$.
- Fall 2b) (Ruhe-Zustand lokal erreichbar in $U||S_2$): Da in U nur durch w ein ruhiger Zustand erreicht werden kann, muss es sich bei dem lokal erreichbaren Ruhe-Zustand in $U||S_2$ um einen handeln, der mit w erreicht werden kann. Mit Lemma 4.6 kann somit gefolgert werden, dass auch in S_2 ein Ruhe-Zustand mit w erreichbar sein muss. Es gilt also $w \in StQT(S_2) \subseteq QT(S_2)$.

Mit dem folgenden Satz wird festgehalten, dass mit \sqsubseteq_{Qui} die gröbste Präkongruenz charakterisiert wurde bezüglich $\cdot \parallel \cdot$ die in \sqsubseteq_{Qui}^B enthalten ist.

Satz 4.10 (Full Abstractness für Ruhe-Semantik). Seien S_1 und S_2 zwei EIOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_{Qui}^C S_2 \Leftrightarrow S_1 \sqsubseteq_{Qui} S_2$, insbesondere ist \sqsubseteq_{Qui} eine Präkongruenz.

Beweis. " \Leftarrow ": Nach Definition gilt $w \in QT(S)$ mit $w \in O^*$, genau dann wenn in S ein Ruhe-Zustand oder ein Error-Zustand lokal erreichbar ist. $S_1 \sqsubseteq_{Qui} S_2$ impliziert, dass $w \in QT_2$ gilt, wenn $w \in QT_1$ gilt. Somit ist ein Ruhe-Zustand oder ein Error-Zustand nur dann in S_1 lokal erreichbar, wenn auch ein solcher in S_2 lokal erreichbar ist. Daraus folgt, dass $S_1 \sqsubseteq_{Qui}^B S_2$ gilt. Somit ist \sqsubseteq_{Qui} in \sqsubseteq_{Qui}^B enthalten. In Proposition 4.8 wurde festgestellt, dass \sqsubseteq_{Qui} eine Präkongruenz ist. Da jedoch \sqsubseteq_{Qui}^C nach Definition die gröbste Präkongruenz bezüglich · $\|\cdot\|$ ist, die in \sqsubseteq_{Qui}^B enthalten ist, muss \sqsubseteq_{Qui} in \sqsubseteq_{Qui}^C enthalten sein. Es folgt also aus $S_1 \sqsubseteq_{Qui} S_2$, dass auch der relationale Zusammenhang $S_1 \sqsubseteq_{Qui}^C S_2$ gilt.

"⇒": Durch die Definition von \sqsubseteq_{Qui}^C als Präkongruenz in 4.3 folgt aus $S_1 \sqsubseteq_{Qui}^C S_2$, dass $U \| S_1 \sqsubseteq_{Qui}^C U \| S_2$ für alle EIOs U gilt, die mit S_1 komponierbar sind. Somit folgt auch die Gültigkeit von $U \| S_1 \sqsubseteq_E^B U \| S_2$ für alle diese EIOs U. Mit Lemma 4.9 folgt dann $S_1 \sqsubseteq_{Qui} S_2$.

Es wurde somit, wie im letzten Kapitel, eine Kette an Folgerungen gezeigt, die sich zu einem Ring schließen. Dies ist in Abbildung 4.4 dargestellt.

Abbildung 4.4: Folgerungskette

Aus Satz 4.10 und Lemma 4.9 erhält man das folgende Korollar. S_1 soll dabei S_2 verfeinern, genau dann wenn für alle Partner EIOs U für die S_2 error- und ruhe-frei mit U kommuniziert, folgt S_1 kommuniziert ebenfalls error- und ruhe-frei mit U.

Korollar 4.11. Es gilt: $S_1 \sqsubseteq_{Qui} S_2 \Leftrightarrow U || S_1 \sqsubseteq_{Qui}^B U || S_2$ für alle Partner U.

4.2 Hiding und Ruhe-Freiheit

Es soll nun auch hier die Auswirkungen der Internalisierung von Aktionen auf die Verfeinerungsrelationen untersucht werden. Es werden Outputs in interne Aktionen umgewandelt. Da jedoch bei den Ruhe-Zuständen auch τ -Transitionen verboten wurden, verändert sich nichts an der Menge der ruhigen Zustände. Da die Erreichbarkeit von Ruhe-Zuständen mittels lokaler Aktionen betrachtet wurde, kann sich auch nichts an der Erreichbarkeit der Ruhe-Zustände ändern. Somit kann eine analoge Proposition zu 3.10 zu formuliert werden.

Proposition 4.12 (Ruhe-Basisrelation bzgl. Internalisierung). Wenn $S_1 \sqsubseteq_{Qui}^B S_2$ gilt, dann folgt daraus, dass auch $S_1/X \sqsubseteq_{Qui}^B S_2/X$ gilt.

Beweis. Dass die Error-Erreichbarkeit unverändert bleibt unter Hiding wurde bereits im Beweis zu Proposition 3.10 gezeigt. Mit der analogen Argumentation folgt auch, dass sich nichts an der Erreichbarkeit der Ruhe-Zustände ändert. Es können durch Hiding nämlich nur Outputs verborgen werden, die bereits in der Menge der lokalen Aktionen enthalten sind. Die Menge der Ruhe-Zustände kann sich durch das Internalisieren auch nicht vergrößern oder verkleinern, wie oben bereits festgestellt. □

Satz 4.13 (Ruhe-Präkongurenz bzgl. Internalisierung). Seien S_1 und S_2 zwei EIOs für die $S_1 \sqsubseteq_{Qui} S_2$ gilt, somit gilt auch $S_1/X \sqsubseteq_{Qui} S_2/X$. Es ist also \sqsubseteq_{Qui} eine Präkongruenz bezüglich ·/·.

Beweis. Da $S_1 \sqsubseteq_{Qui} S_2$ gilt, kann geschlossen werden, dass $S_1 \sqsubseteq_E S_2$ und $QT_1 \subseteq QT_2$ gilt. Aufgrund von Satz 3.11 ist bekannt, dass daraus $S_1/X \sqsubseteq_E S_2/X$ folgt. Es wird hier nun wie im Beweis zu Satz 3.11 erst einmal definiert, wie die neuen Ruhetraces nach dem Hiding aussehen:

•
$$QT(S/X) = \{ w \in (\Sigma \setminus (X \cap O))^* \mid \exists w' \in QT(S) : w'|_{\Sigma \setminus (X \cap O)} = w \}.$$

Diese Definition stützt sich nur auf die bereits bekannte Menge QT(S). Es kann also zu jedem Ablauf des Systems ohne Hiding ein passender in dem System mit Hiding gefunden werden, falls die Definition korrekt ist.

Die Korrektheit der Definition kann analog zum Beweis von Satz 3.11 gezeigt werden. Die Internalisierung hat also keine Auswirkung auf die Inklusion der Mengen. Es kann also aus der Gültigkeit von $QT_1 \subseteq QT_2$ bzw. $StQT_1 \setminus ET_1 \subseteq QT_2$ gefolgert werden, dass auch $QT(S_1/X) \subseteq QT(S_2/X)$ bzw. $StQT(S_1/X) \setminus ET(S_1/X) \subseteq QT(S_2/X)$ gilt. Die Argumentation läuft dabei über die zweiten Inklusionen analog zu der Argumentation für die error-gefluteten Sprachen in 3.11.

Daraus folgt dann, dass die Relation \sqsubseteq_{Qui} trotz Hiding erhalten bleibt und somit bezüglich des Hiding diese Relation eine Präkongruenz ist.

In Definition 2.7 wurde mit Hilfe des Internalisierungsoperator aus der Parallelkomposition ohne Verbergen die Parallelkomposition mit Verbergen der synchronisierten Aktionen nachgebildet. Es kann deren Eigenschaft als Präkongruenz aus den Präkongruenz-Eigenschaften von · $\|\cdot\|$ und ·/· bezüglich \sqsubseteq_{Qui} aus der Proposition 4.8 und dem Satz 4.13 geschlossen werden.

Korollar 4.14 (Ruhe-Präkongruenz mit Internalisierung). \sqsubseteq_{Qui} ist eine Präkongruenz bezüglich $\cdot | \cdot |$

4.3 Diskussion für Veränderungen und weiterführende Definitionen

Wie bereits oben erwähnt wurden in [CJK13] auch noch divergente Zustände als Fehler-Zustände betrachtet. Um zu klären, was darunter verstanden wird, wird nun noch eine Definition für Divergenz gegeben.

Definition 4.15 (*Divergenz*). Ein Divergenz-Zustand ist ein Zustand in einem EIO, der eine unendliche Folge an τs ausführen kann.

TODO: Erweiterungsmöglichkeiten:

- Ruhe-Semantik analog zu Error-Semantik (EL würde nicht mehr alle Informationen enthalten)
- Ruhe-Semantik mit *prune* jedoch nur Traces Fortsetzungen wie im System möglich (4.7 2. ⊇ wegen fortsetzen mit Outputs und Synchronisation nicht mehr möglich)
- alternative Definition für Ruhe mit $\forall a \in O: q \neq$ (vor allem Veränderungen in Lemma 4.9, dort kann nicht mehr an Partner festgehalten werden, da die τ -Schleifen dann nicht ausreichen, sondern ein Output aus der Menge der nicht synchronisierten Aktionen hinzugefügt werden muss)

Literaturverzeichnis

- [BV14] Ferenc Bujtor und Walter Vogler, Error-Pruning in Interface Automata, preprint, Universität Augsburg, 2014.
- [CJK13] Chris Chilton, Bengt Jonsson, und Marta Z. Kwiatkowska, An Algebraic Theory of Interface Automata, preprint, University of Oxford, 2013.
- [Lyn96] Nancy A. Lynch, *Distributed Algorithms*, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.
- [Sch12] Christoph Franz Schlosser, EIO-Automaten mit Parallelkomposition ohne Internalisierung, Bachelorarbeit, Universität Augsburg, 2012.