## Trabalho UFO - Construção e Implementação de Ontologia de Domínio com a UFO

Gustavo A. de Lima, Lívia Cristina S. Nascimento

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre – RS – Brasil

- 1) Texto de ~10 linhas com visão geral do domínio de conhecimento. Definição das questões de competência a serem atendidas pela ontologia (feito em aula).
- R:. O método de cultura hidropônica consiste em cultivar plantas sem uso de solo, desta forma as raízes das plantas ficam imersas em soluções nutritivas que fornecem os nutrientes essenciais para o seu crescimento. A produção desta solução nutritiva é feita através da mistura de água com fertilizantes e para esse processo é necessário o controle de PH e EC em cada ciclo de produção desta solução. Neste trabalho a proposta é o desenvolvimento de uma ontologia que atenda a produção de solução nutritiva para este tipo de cultura de plantas. O sistema que gerencia a produção desta solução é composto por Sensores e Atuadores, aqui chamados de Industrial Assets, que são controlados por dispositivos IoT utilizando diferentes tipos de protocolos de comunicação, sendo assim a ontologia proposta tem o objetivo de a interoperabilidade do sistema e fornecer também de forma clara a estrutura física do sistema para possíveis replicações. Para isto, a Ontologia tem que atender as seguintes questões de competência:
  - 1. Tipologia de dispositivos
  - 2. Relações entre dispositivos
  - 3. Estrutura de dados de cada dispositivo
  - 4. Protocolos associados
  - 5. Tipologia protocolos
  - 6. Tipologia industrial assets
  - 7. Configuração física
  - 8. Unidade de medidas
- 2) Levantamento de outras ontologias publicadas no mesmo domínio: Lista das ontologias que podem ser úteis para reuso, com descrição (3-5 linhas) e link de onde baixar a ontologia, se disponível.
  - Ontology-Based Nutrient Solution Control System for Hydroponics: apresenta um sistema que usa ontologia e regras semânticas para controlar automaticamente a solução nutritiva para o cultivo de plantas em cultura hidropônica.

No artigo disponível em: <u>IEEE Explorer</u>, é descrito um sistema de solução nutritiva semelhante ao proposto como estudo de caso aqui abordado, consistindo em sensores, válvulas e bombas para ajustar os valores de condutividade elétrica (EC) e potencial hidrogeniônico (pH) da solução.



Figura1. Arvore disponibilizada no artigo.

SOSA: A lightweight ontology for sensors, observations, samples, and actuators:
 Apresenta uma especificação generalista de modelagem de interação entre entidades envolvidas em observação (sensores) e atuação (atuadores). Pode ser utilizada para complementar com maior detalhamento o ato de mensuração e sensores da ontologia do trabalho. O paper pode ser encontrado no link a seguir: SOSA: A lightweight ontology for sensors, observations, samples, and actuators - ScienceDirect

Figura 2. Overview da parte sensorial do SOSA.



Figura 3. Overview da parte de atuação do SOSA



3) Print da árvore com a visão geral do modelo na UFO, gerado no ONTOUML (Nosso modelo)



<sup>\*</sup> Também será enviado um arquivo .pdf para facilitar a visualização.

- 4) Utilize a tabela 1 para descrever os Universais Continuantes, Universais Ocorrentes e Particulares que atendam as questões de competência, com suas. Inclua as linhas necessárias
- 5) Associe cada entidade ao meta-tipo que melhor o descreve. Justifique brevemente sua escolha. Use a tabela abaixo para classificar os conceitos

## Tabela de meta-propriedades das entidades

| Entidade          | R  | 0  | I  | DR | DE1 | DE2 | Meta-tipo | Justificativa                                                                                                                                                    |
|-------------------|----|----|----|----|-----|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor            | R+ | 0- | I- | -  | -   | -   | Category  | É uma classe que agrupa vários tipos de aparelhos que capturam dados do Sistema. Um sensor é rígido, porque não pode deixar de ser sensor, sem parar de existir. |
| Digital Sensor    | R+ | 0- | I- | -  | -   | -   | Category  | É um grupo de tipos<br>de sensors. Dividido<br>em três tipos de<br>sensors.                                                                                      |
| Analog Sensor     | R+ | 0- | I- |    |     |     | Category  | É um grupo de tipos<br>de sensors.                                                                                                                               |
| Digital PH Sensor | R+ | 0+ | l+ |    |     |     | Kind      | É um tipo de sensor<br>que mede o PH da<br>solução por meio de<br>sinal digital.                                                                                 |
| Digital EC Sensor | R+ | 0+ | l+ |    |     |     | Kind      | É um tipo de sensor<br>que mede o EC (<br>condutividade<br>elétrica) da solução                                                                                  |

|                      |    |    |    |   |     |     |         | por meio de sinal                                                                                                                                       |
|----------------------|----|----|----|---|-----|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |    |    |    |   |     |     |         | digital.                                                                                                                                                |
| Digital Level Sensor | R+ | 0+ | I+ |   |     |     | Kind    | É um tipo de sensor o<br>nível de<br>preenchimento do<br>tanque.                                                                                        |
| Analog Level Sensor  | R+ | 0+ | I+ |   |     |     | Kind    | É um tipo de sensor<br>que mede<br>analogicamente o<br>nível de conteúdo do<br>tanque.                                                                  |
| PH Measure           | R+ | 0+ | I+ |   |     | D2+ | Relator | Foi criado o relator para a medição, reificando a relação material entre o sensor e o nutriente.                                                        |
| EC Measure           | R+ | 0+ | l+ |   |     | D2+ | Relator | Foi criado o relator para a medição, reificando a relação material entre o sensor e o nutriente.                                                        |
| Level Check          | R+ | 0+ | l+ |   |     | D2+ | Relator | Foi criado o relator para a medição, reificando a relação material entre o sensor e o tanque.                                                           |
| PH                   | R+ | 0+ | I+ | - | D1+ | -   | Quality | Qualidade que indica<br>a acidez ou<br>alcalinidade de uma<br>solução aquosa, é<br>dependente de<br>solução/fluido. Sendo<br>assim caracteriza<br>algo. |
| EC                   | R+ | 0+ | l+ | - | D1+ | -   | Quality | É uma medida que<br>caracteriza a<br>capacidade da<br>solução de conduzir                                                                               |

|                   |    |    |    |   |     |     |          | energia elétrica.  Possui dependencia existencial de um, pois caracteriza a solução.                                                                           |
|-------------------|----|----|----|---|-----|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Level             | R+ | 0+ | I+ | - | D1+ | -   | Quality  | É uma caracterização<br>que indica o quanto o<br>tanque está<br>preechido por algum<br>fluido.                                                                 |
| Fluid             | ~R | 0- | I- |   |     |     | Mixin    | Representa o que pode preencher o tanque, que pode ser água, fertilizante ou a solução pronta.                                                                 |
| Nutrient Solution | R+ | 0+ | I+ | - | -   | D2+ | Quantity | É a quantidade solução produzida, não é algo contável. É a quantidade que algo que depende de outras quantitys para existir (water, acid e fertilizer).        |
| Water             | R+ | 0+ | I- | - | -   | -   | Quantity | Para a criação da solução nutritiva é necessário a inclusão de algumas quantidades de água, o element água em si não é contável, mas suas porções sim.         |
| Liquid Phosphoric | R+ | 0+ | I- | - | -   | -   | Quantity | Para a criação da solução nutritiva é necessário a inclusão de algumas quantidades de Liquid Phosphoric, o element em si não é contável, mas suas porções sim. |

| Liquid Fertilizer Solution | R+ | 0+ | I- | - | - | - | Quantity | Para a criação da solução nutritiva é necessário a inclusão de algumas quantidades de Liquid Phosphoric, o element em si não é contável, mas suas porções sim. |
|----------------------------|----|----|----|---|---|---|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pump                       | R+ | 0- | l- |   |   |   | Category | É um agrupamento mais geral de tipos de dispositovos que movimentam fluidos entre os tanques durante a produção de solução nutritive.                          |
| Tank                       | R+ | 0+ | I+ |   |   |   | Kind     | É um tipo de container para os fluídos (water, acid, nutrients ou a propria solução nutritive) durante a produção da solução.                                  |
| Air                        | R+ | 0+ | I+ | - | - | _ | Quantity | É um element utilizado no processo de criação da solução da solução, mas não é um element contável.                                                            |
| Air Compressor             | R+ | 0- | I+ |   |   |   | Kind     | É um tipo de dispositivo da categoria compressor, usado dentro do Sistema.                                                                                     |
| Compressor                 | R+ | 0+ | I+ |   |   |   | Category | É um agrupamento de dispositivos que possuem a capacidade de comprimir ar, aumentando assim a pressão do ar e                                                  |

|                        |    |    |    |  |          | entregar-lo a outros dispositivos.                                                                                                                             |
|------------------------|----|----|----|--|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Valve                  | R+ | 0+ | l+ |  | Category | É um agrupamento<br>geral de dispositivos<br>que controlam<br>fluidos por meio de<br>um canais de tubos.                                                       |
| Solenoid Valve         | R+ | 0- | I+ |  | Kind     | É um tipo de<br>dispositivo de<br>controle de fluidos<br>pertencente a<br>categoria Valve.                                                                     |
| Actuators              | R+ | 0- | I- |  | Category | É um agrupamento de dispositivos que possuem a função de transformer sinais mecânicos, elétricos ou hidráulicos em movimento físico ou ações.                  |
| Filter                 | R+ | 0- | I- |  | Category | É um dispositivo projetado para a removação de impurezas ou substancias em indesejadas em um fluído.                                                           |
| Inverse Osmosis Filter | R+ | 0+ | I+ |  | Kind     | É um tipo de dispositivo de filtragem, atuando no processo de purificar a água, removendo impurezas e corpos estranhos, como também substancias contaminantes. |
| Industrial Assets      | ~R | 0- | I- |  | Mixin    | O termo reune todos<br>os components do<br>Sistema, podendo ser<br>usado para se referir                                                                       |

|                             | <del></del> | <del></del> | <del>1</del> |          |                                                                                                                                                                     |
|-----------------------------|-------------|-------------|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |             |             |              |          | a tank, valve, atuador<br>e pump.                                                                                                                                   |
| loT Devices                 | R+          | 0-          | I-           | Category | É um agrupamento de dispositivos conectados que possuem a capacidade coletar e compartilhar dados.                                                                  |
| Protocol                    | R+          | 0+          | I+           | Kind     | Conjunto de sistema de regras que permite duas entidades de se comunicar.                                                                                           |
| Gateway Device              | R+          | 0-          | I-           | Category | É um agrupamento de dispositivos que realizam agregação, tradução e encaminhamento de protocolos de comunição entre diferentes protocolos e padrões de comunicação. |
| MQTT                        | R+          | 0-          | I+           | Subkind  | Um tipo de protocolo de comunicação, especialização do protocolo.                                                                                                   |
| DDS                         | R+          | 0-          | I+           | Subkind  | Um tipo de protocolo de comunicação, especialização do protocolo.                                                                                                   |
| OPC UA                      | R+          | 0-          | l+           | Subkind  | Um tipo de protocolo de comunicação, especialização do protocolo.                                                                                                   |
| IoT Communication<br>Module | R+          | 0+          | I+           | Kind     | Conjunto de sistema<br>e hardware que<br>permite um                                                                                                                 |

|                               |    |    |    |    |     |         | dispositivo IoT de se<br>comunicar.                                                                     |
|-------------------------------|----|----|----|----|-----|---------|---------------------------------------------------------------------------------------------------------|
| Network Communication<br>Port | R+ | 0+ | l+ | D1 |     | Kind    | Parte de hardware de<br>um modulo de<br>comunicação que<br>conecta o modulo<br>com uma rede<br>externa. |
| Message                       | R+ | 0+ | l+ |    | D2+ | Relator | Truth-maker da relação entre a porta de comunicação de um dispositivo loT e um dispositivo de rede.     |
| Content                       | R+ | 0+ | l+ | D1 |     | Quality | Caracteriza uma<br>mensagem na<br>comunicação.                                                          |

6) Organize os conceitos de acordo com suas relações estruturantes (mereológicas e taxonômicas): Instance-of, Subclass-of, part-of, component-of, subquantity-of, element-of, Extension-of, Set-of, Subset-of, caracterizes, inheres, etc. Introduza outras relações de domínio necessárias à conceitualização que atendam as questões de competência. Para cada relação utilizada, descreva se ela é uma relação do tipo descritiva interna, descritiva externa, não-descritiva interna, não-descritiva externa.

| Relação           | Descrição              | Justificativa                                                                                                                                                                    |
|-------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exchange_messages | Descritiva Externa     | É uma relação bilateral de comunicação entre um dipositivo IoT e um Gateway, mantendo em virtude da existência de pertinentes momentos extrínsecos de seus relata.               |
| has               | Não-descritiva Externa | É uma relação primitiva não analisável, indicando que a mensagem de comunicação possui um protocolo.                                                                             |
| communicates_with | Descritiva Externa     | É uma relação bilateral de comunicação entre os sensores e atuadores e um dispositivo IoT, mantendo em virtude da existência de pertinentes momentos extrínsecos de seus relata. |

| measures | Descritiva Interna     | Todos os sensores (PH, EC,<br>Level) estão medindo<br>atributos intrínsecos dos<br>objetos mensurados.                                       |
|----------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| pumps_in | Não-descritiva Interna | É uma relação que não depende de nenhuma propriedade do relata, mas confere uma ação realizada entre o compressor de ar e um tanque.         |
| opens    | Não-descritiva Interna | É uma relação que não<br>depende de nenhuma<br>propriedade do relata, mas<br>confere uma ação realizada<br>entre uma válvula e um<br>tanque. |

7) Modele os intrinsic moments e seus quality domains, dispositions e funções.

| Intrinsic moments | Quality Domains, Dispositions e Functions                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН                | <b>Quality Domain</b> (0 – 7 indicando acidez, 8-14 indicando alcalinidade), possui a <b>disposição</b> de variar de valor entre 0 e 14 a depender da acidez ou alcalinidade da solução. Possui a <b>função</b> de indicar a acidez de uma solução, propriedade que interfere diretamente na disponibilização de nutrientes para o crescimento das plantas.                                               |
| EC                | Quality Domain (0 – 2.5 de acordo com o estágio de crescimento da planta), possui a disposição de variar de valor de acordo com as faixas adotadas para cultura hidropônica e função de indicar a concentração de nutrientes disponíveis para as plantas, é uma medida de concentração de ions.                                                                                                           |
| Level             | Quality Domain (0 –1 de acordo com a ativação ou não do sensor), possui a disposição de variar entre ligado e desligado (1 ou 0) de acordo com o nível de líquido presente em um tanque. Para sensores de alto nível, quando ativados (valor 1) indicam que o fluido atingiu o valor máximo dentro do tanque. Já para os sensores de baixo nível, sua ativação indica que o conteúdo precisa ser reposto. |

8) Teste a consistência do modelo implementando na ferramenta ONTOUML , plugin do Visual Paradigm.

O modelo não apresentou nenhum erro de consistência nas checagens de modelo e diagrama a partir do Plugin.



9) Introduza instâncias fornecidas pelo Pedro no chat da aula do dia 8 (aula foi gravada e está no Teams da disciplina). A ferramenta do ONTOUML não permite a inclusão das instâncias, para isso, é necessário exportar o modelo para o PROTÉGÉ, como feito na aula. As Introduza as instâncias e teste a consistência com o raciocinador Hermit.

Todas as instancias foram introduzidas, nenhum erro encontrado pelo raciocinador Hermit.



10) Relate as consultas que podem ser suportadas e as inconsistências apontadas pelos raciocinadores da ferramenta ONTOUML, no processo de modelagem.

Com essa ontologia podemos consultar informações como:

A lista de instancias de certas entidades (Tank tem quais instancias).

Todas as entidades que têm alguma instancia.

Toda a arvore de relação de subsumption de uma entidade (Sensor -> Digital -> EC/PH/Level Sensor)

Podemos consultar as qualities de certa entidade.

Consultar a tipologia de industrial assets presentes no modelo.

Qual o protocolo de certa comunicação.

Durante o período de modelagem o único problema encontrado pelo raciocinador eram relações proibidas, como a relação entre mixin e quality que não pode existir, ou dizer que a quality é um componentOf de alguma entidade. Mas todos esses erros foram corrigidos com o modelo totalmente consistente no final.