1 Covariance

Figure 1: Case 1 : Corrélation positive $\,$ Figure 1: Case 2 : Corrélation négative

 $2 \quad Var(X+Y) = \sigma_x^2 + \sigma_y^2$

 $3 \quad Var(X+Y) = \sigma_x^2 + \sigma_y^2 + 2\sigma_x\sigma_y$

 $4 \quad Var(X+Y) = \sigma_x^2 + \sigma_y^2 - 2\sigma_x\sigma_y$

 $5 \quad |Cov(X,Y)| \le \sqrt{\sigma_x^2 + \sigma_y^2}$

6 Positive covariance

7 Negative covariance first representation...!

8 Negative covariance, perfect negative correlation

9 Negative covariance

10 Un peu de calculs

Variance de la somme de deux variables aléatoires.

$$\begin{split} Var(X+Y) &= Cov(X+Y,X+Y) \\ &= E((X+Y)^2) - E(X+Y)E(X+Y) \\ \text{en d\'eveloppant,} \\ &= E(X^2) - (E(X))^2 + E(Y^2) - (E(Y))^2 + 2(E(XY) - E(X)E(Y)) \\ &= Var(X) + Var(Y) + 2(E(XY)) - E(X)E(Y)) \\ &= Var(X) + Var(Y) + 2Cov(X,Y) \end{split}$$

Si les variables X, Y sont indépendantes E(XY) = E(X)E(Y) on alors Var(X+Y) = Var(X) + Var(Y)

Limite de Cov(X, Y)

Soit, $Var(\lambda X + Y)$ où $\lambda \in \mathbb{R}$ $Var(\lambda X + Y) = \lambda^2 Var(X) + 2\lambda Cov(X, Y) + Var(Y)$ Comme une variance est positive ou nulle, le polynôme du second degré obtenu $P(\lambda) = Var(\lambda X + Y)$ a un discriminant négatif ou nul.

$$\Delta = 4Cov(X, Y)^2 - 4Var(X)Var(Y)$$
$$= 4[Cov(X, Y)^2 - Var(X)Var(Y)] \le 0$$

Donc $Cov(X,Y)^2 \leq Var(X)Var(Y)^{-1}$ ou encore $-\sigma_x\sigma_y \leq Cov(X,Y) \leq \sigma_x\sigma_y$. Remarquons que si $\Delta=0$ alors on a l'égalité $Cov(X,Y)^2=Var(X)Var(Y)$, i.e. s'il existe λ tel que $Var(\lambda X+Y)=0$ Mais pour conclure, si l'on a $\lambda X+Y$ égal avec probabilité 1 à une constante, disons c, c'est bien que $Y=c-\lambda X$ presque surement, autrement dit un lien linéaire parfait entre les deux variables.

Définition du coefficient de corrélation linéaire (Bravais-Pearson)

• cas
$$Cov(X, Y) \ge 0$$

On définit
$$\rho = \frac{2Cov(X,\,Y)}{Var_{max} - Var_{min}}$$

$$Var_{max} = \sigma_X^2 + \sigma_Y^2 + 2\sigma_X\sigma_Y$$

 $^{^1}$ En théorie des probabilités, l'inégalité de Cauchy-Schwarz permet la preuve du résultat en raison de l'inégalité $E(XY) < \sqrt{E(X^2)E(Y^2)}$

$$Var_{min} = \sigma_X^2 + \sigma_Y^2$$

$$Var_{max} - Var_{minx} = 2\sigma_X \sigma_Y$$

d'où en simplifiant

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

• cas
$$Cov(X, Y) \le 0$$

On définit
$$\rho = \frac{2Cov(X, Y)}{Var_{max} - Var_{min}}$$

$$Var_{max} = \sigma_X^2 + \sigma_Y^2$$

$$Var_{min} = \sigma_X^2 + \sigma_Y^2 - 2\sigma_X\sigma_Y$$

$$Var_{max} - Var_{minx} = 2\sigma_X \sigma_Y$$

d'où en simplifiant

$$\rho = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

 $1\ il\ faut\ replacer\ la\ définition\ usuelle\ du\ coeff\ de\ corrélation\ et\ discuter\ de\ l'intérêt\ de\ notre\ présentation\ +\ intuitive\ ?$

2 donner l'encadrement de var(x+y)en fonction de rho

11 LS diagram

12 LS diagram and R^2

13 Multiple regression partialling out

14 Appendix 1: Venn Diagram

15 Appendix 2: explained variance

16 Appendix 3: explained variance and unexplained variance

17 Appendix 4: unexplained variance

