Introduction to Number Theory HW1

Angus Joshi

January 26, 2024

Claim 1. For $n \in \mathbb{Z}_{>1}$, $x \in \mathbb{Z}$, $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + 1)$.

Proof. Simply multiplying out,

$$(x-1)(x^{n-1}+x^{n-2}+\ldots+1) = x^n+x^{n-1}+\ldots+x-x^{n-1}-x^{n-2}-\ldots-1$$

= x^n-1 .

Claim 2. For $d, n \in \mathbb{Z}_{>1}$, if $d^n - 1$ is prime then d = 2.

Proof. Suppose $d^n - 1$ is prime and d > 2. Then by claim 1 $d^n - 1 = (d - 1)(d^{n-1} + ... + 1)$. It follows that $(d-1)|d^n - 1$. Noting that d-1 > 1 by supposition, this contradicts $d^n - 1$ being prime. I conclude $d \le 2$, which combining with d > 1 gives d = 2.

Claim 3. If n = ab for $a, b \in \mathbb{Z}_{>1}$, then $2^n - 1$ is composite.

Proof. Suppose n = ab for $a, b \in \mathbb{Z}_{>1}$. Then,

$$2^{n} - 1 = 2^{ab} - 1$$
$$= (2^{a})^{b} - 1.$$

Since a > 1 I have $2^a > 2$. Applying the contrapositive of claim 2 I find $2^n - 1$ is not prime.

Claim 4. If $2^n - 1$ is prime then n is prime.

Proof. Precisely the contrapositive of claim 3.

Claim 5. For $n \in \mathbb{Z}_{>1}$ odd, $x \in \mathbb{Z}$, $x^n + 1 = (x+1)(x^{n-1} - x^{n-2} + ... + 1)$.

Proof. Again multiplying out,

$$(x+1)(x^{n-1}-x^{n-2}+\ldots+1) = x^n-x^{n-1}+x^{n-2}-\ldots+1 \\ +x^{n-1}-x^{n-2}+\ldots+x \\ = x^n+1.$$

Note that n odd was used to ensure the correct sign in the alternating sum. \square

Claim 6. For $n \in \mathbb{Z}_{\geq 1}$ if $2^n + 1$ is prime and n is odd, then n = 1.

Proof. Suppose n > 1 is odd and $2^n + 1$ is prime. Then by claim 5,

$$(2^{n} + 1) = (2 + 1)(2^{n-1} - \dots + 1).$$

So $3|2^n+1$. But this contradicts 2^n+1 being prime, from which I find n=1. \square

Claim 7. For $n \in \mathbb{Z}_{\geq 1}$ if $2^n + 1$ is prime then there is no odd q > 1 that divides n.

Proof. Suppose an odd q > 1 divides n. That is, for some m n = qm. Then using essentially the same argument as claim 6,

$$(2^{n} + 1) = 2^{mq} + 1$$

$$= (2^{m})^{q} + 1$$

$$= (2^{m} + 1)((2^{m})^{n-1} - \dots + 1).$$

It follows that $2^m + 1$ divides $2^n + 1$, which is a contradiction to primeness. \square

Claim 8. For $n \in \mathbb{Z}_{\geq 1}$ if $2^n + 1$ is prime then $n = 2^m$ for some $m \in \mathbb{Z}_{\geq 0}$.

Proof. From claim 7 I immediately find n has no odd factors. The only non-odd prime number is 2, so the unique prime factorisation of n must consist only of 2s, completing the proof.