ES Übungsblatt 12 Gruppe Fr. 8-10

Max Springenberg, 177792 Daniel Sonnabend, 190748

12.1

 α^l, α^u sind wie folgt definiert.

$$\alpha^l(\Delta) \stackrel{def}{=} \inf_{\lambda \geq 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

$$\alpha^{l}(\Delta) \stackrel{def}{=} \inf_{\lambda \geq 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$
$$\alpha^{u}(\Delta) \stackrel{def}{=} \sup_{\lambda \geq 0, \forall R} \{ R(\Delta + \lambda) - R(\lambda) \}$$

12.2

 β^l, β^u sind wie folgt definiert.

$$\beta^l(\Delta) \stackrel{def}{=} \inf_{\lambda \geq 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

$$\beta^u(\Delta) \stackrel{def}{=} \sup_{\lambda \geq 0, \forall C} \{ C(\Delta + \lambda) - C(\lambda) \}$$

12.3

12.4

Konkret können wir β^u, β^l wie folgt interpretieren:

$$\beta^{u}(\Delta)B\{\lceil \frac{\Delta}{\bar{c}} \rceil s_{i}, \Delta - lfloor \frac{\Delta}{\bar{c}} \rfloor (\bar{c} - s_{i})\}$$
$$\beta^{l}(\Delta)B\{\lfloor \frac{\Delta}{\bar{c}} \rfloor s_{i}, \Delta - \lfloor \frac{\Delta}{\bar{c}} \rfloor (\bar{c} - s_{i})\}$$

Daraus resultiert das folgende Diagramm für das Beispiel:

12.5

partitioniert	global
Jeder Task hat einen Prozessor	Jobs können auf beliebigen Prozessoren laufen
Prozessor schduled eigene Prozesse	Es gibt eine globale "ready queue"
kein on-line Overhead	M höchst priorisierten Jobs werde ausgeführt, mit $M \stackrel{def}{=} \#$ Prozessoren
	hoher on-line Overhead