Math 5358 - Midterm

- 1. Answer the following for the set $S = \{1, 2, 3, 4\}$
 - a. How many 3-permutations of S are there?
 - b. How many 3-combinations of S are there?
 - c. Write two different 3-permutations of S that correspond to the same 3-combination.
 - d. How many partitions of S into 3, non-empty, subsets are there?
 - e. How many partitions of S into 3, non-empty, cycles are there?
- 2. Answer the following for the multiset $T = \{2 \cdot a, 3 \cdot b, 4 \cdot c\}$
 - a. How many permutations of T are there?
 - b. How many 3-combinations of T are there?
- c. How many (multi)subsets of size 4 can be formed, if each subset must contain at least one element of each type a, b, and c?
- d. What is the smallest set size that guarantees that there will be at least 2 a's, or at least 3 b's, or at least 4 c's?
- 3. a. Determine the coefficient of x^3 on $(x-2)^7$.
 - b. Determine the coefficient of x^2y on $(x+y-2)^7$.
- 4. Find the general form for the solution to the recurrence relation $a_n = 8a_{n-2} 16a_{n-4}$. (Suppose $a_n = q^n$).
- 5. Three different computer programs are to be run simultaneously on a multi-core processor.
- a. Determine the generating function that counts the number of ways to allocate the core usage, given that each of the three programs MUST use at least one core.
- b. Using your answer from part a. determine the number of ways the three programs can utilize 8 processing cores.
- 6. Answer the following for the sequence $h_n = \{0, 2, 6, 12, 20, ...\}$.
 - a. Using Δ -sequences, show that h_n is an evaluation of a polynomial.
 - b. Using the 0th diagonal of your answer in part a. show that $h_n = n^2 + n$.
- c. Express n^2 and n^1 as polynomials in $[n]_k$ using the Stirling numbers of the Second kind. Use this to rewrite your answer from part b.
- 7. Consider the set $S = \{1, 2, 3\}$.
 - a. Determine the number of permutations of this set.
 - b. Determine the number of permutations where $1 \to 1$.

- c. Determine the number of permutations where $1 \to 1$ and $2 \to 2.$
- d. Determine the number of permutations where $1 \to 1, 2 \to 2$, and $3 \to 3$.
- e. Use the principle of inclusion-exclusion to determine the number of permutations with no fixed points. (That is, $1 \nrightarrow 1$, $2 \nrightarrow 2$, and $3 \nrightarrow 3$.)