Lehrstuhl für Steuerungs- und Regelungstechnik / Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Einführung in die Roboterregelung (ERR)

Kurzlösung zur 2. Übung

Aufgabe 1:

1.1
$${}^{a}T_{b} = \begin{bmatrix} n_{x} & s_{x} & a_{x} & 0 \\ n_{y} & s_{y} & a_{y} & 0 \\ n_{z} & s_{z} & a_{z} & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -s\Psi c\Theta s\Phi & + & c\Psi c\Phi & -s\Psi c\Theta c\Phi & - & c\Psi s\Phi & s\Psi s\Theta & 0 \\ c\Psi c\Theta s\Phi & + & s\Psi c\Phi & c\Psi c\Theta c\Phi & - & s\Psi s\Phi & -c\Psi s\Theta & 0 \\ \hline s\Theta s\Phi & s\Theta c\Phi & s\Theta c\Phi & c\Theta & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
1.2

1.2
$${}^{a}T_{b}(\Theta = 0) = \begin{bmatrix} c(\Psi + \Phi) & -s(\Psi + \Phi) & 0 & 0 \\ s(\Psi + \Phi) & c(\Psi + \Phi) & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{a}T_{b}(\Theta = \pi) = \begin{bmatrix} c(\Psi - \Phi) & s(\Psi - \Phi) & 0 & 0 \\ s(\Psi - \Phi) & -c(\Psi - \Phi) & 0 & 0 \\ \hline 0 & 0 & -1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

1.3
$$\Theta=0 \longrightarrow \Psi+\Phi:=\mathrm{atan2}(n_y,n_x)$$
 D.h. Ψ,Φ sind nicht eindeutig bestimmbar. $\Theta=\pi \longrightarrow \Psi-\Phi:=\mathrm{atan2}(n_y,n_x)$

Um Eindeutigkeit zu erzielen wird festgesetzt: $\Phi=0$ Somit ergibt sich: $\Psi=\mathrm{atan2}(n_u,n_x)$

1.4.1 In der Übung wird ein allgemeines Verfahren besprochen, hier soll jedoch ein direkter Weg angegeben werden:

 $\Theta = \arccos(a_z) \ \longrightarrow \ 2 \ \mathsf{L\"{o}sungen} \colon \ +/- \ \Theta_{\mathsf{Hauptwert}}$

Numerisch günstiger als die Auswertung des Arcuscosinus ist:

$$\sin\Theta = \sqrt{1-a_z^2} \longrightarrow 0 \le \Theta \le \pi \; ; \quad \Theta = \text{atan2}(\sqrt{1-a_z^2}, \ a_z), \text{ bzw:}$$

$$\sin\Theta = -\sqrt{1-a_z^2} \longrightarrow -\pi \le \Theta \le 0 \; ; \quad \Theta = \text{atan2}(-\sqrt{1-a_z^2}, \ a_z)$$

1.4.2
$$\sin \Theta = \sqrt{1 - a_z^2} \longrightarrow \Psi = \operatorname{atan2}(a_x, -a_y); \quad \Phi = \operatorname{atan2}(n_z, s_z), \text{ bzw}:$$

$$\sin \Theta = -\sqrt{1 - a_z^2} \longrightarrow \Psi = \operatorname{atan2}(-a_x, a_y); \quad \Phi = \operatorname{atan2}(-n_z, -s_z)$$

Aufgabe 2:

$$2.1 \ \underline{k}^{T} = [0, 1, 0]; \longrightarrow R(\underline{k}, \Theta) = \begin{bmatrix} \cos \Theta & 0 & \sin \Theta \\ 0 & 1 & 0 \\ -\sin \Theta & 0 & \cos \Theta \end{bmatrix} = R(y, \Theta)$$

$$2.2 \qquad R(\underline{k}, \Theta) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

- 1.Schritt: $\cos\Theta=0, 5\cdot(n_x+s_y+a_z-1)=-1$; $\sin\Theta=0$ daraus folgt: $\mathrm{atan}2(0,-1)=\pi$
- 2. Schritt: Aus den Diagonalelementen der allgemeinen Rotationsmatrix ergeben sich die Elemente von \underline{k} .

$$k_x^2 \cdot \text{vers}\Theta + \cos\Theta = n_x = 0 \longrightarrow k_x = \pm 0, 5 \cdot \sqrt{2}$$

 $k_y^2 \cdot \text{vers}\Theta + \cos\Theta = s_y = -1 \longrightarrow k_y = 0$
 $k_z^2 \cdot \text{vers}\Theta + \cos\Theta = a_z = 0 \longrightarrow k_z = \pm 0, 5 \cdot \sqrt{2}$

Zusatzaufgabe:

Z.1

Bereich	Defini	tionsb	ereich	Wertebereich			Berechnungsvorschrift			
	y/x	x	y		in Grad					
G0	=0	> 0	= 0		$\Phi =$	0				
la	< 1	> 0	> 0	0	$<\Phi<$	45	$\Phi :=$		$\arctan(y/x)$	
G1	= 1	> 0	> 0		$\Phi =$	45				
lb	> 1	> 0	> 0	45	$<\Phi<$	90				
G2	∞	=0	> 0		$\Phi =$	90	$\Phi :=$	90	$-\arctan(x/y)$	
lla	> 1	< 0	> 0	90	$<\Phi<$	135				
G3	= 1	< 0	> 0		$\Phi =$	135				
IIb	< 1	< 0	> 0	135	$<\Phi<$	180	$\Phi :=$	180	$+\arctan(y/x)$	
G4	=0	< 0	=0		$\Phi =$	180				
IIIa	< 1	< 0	< 0	-180	$<\Phi<$	-135	$\Phi :=$	-180	$+\arctan(y/x)$	
G5	= 1	< 0	< 0		$\Phi =$	-135				
IIIb	> 1	< 0	< 0	-135	$<\Phi<$	-90				
G6	∞	=0	< 0		$\Phi =$	-90	$\Phi :=$	-90	$-\arctan(x/y)$	
IVa	> 1	> 0	< 0	-90	$<\Phi<$	-45				
G7	= 1	> 0	< 0		$\Phi =$	-45				
IVb	< 1	> 0	< 0	-45	$<\Phi<$	0	$\Phi :=$		$\arctan(y/x)$	
S1		=0	=0				$\Phi :=$	0;	per def.	

Fall	Teill	pereiche	E	Bedingungen		Winkelbereich			
			y/x	x	y		in Grad		
А		S1		x = y = 0			$\Phi =$	0	
В	IIIa	G5	≤ 1	< 0	< 0	-180	$<\Phi \le$	-135	
С	IIIb, IVa	G6	> 1		< 0	-135	$<\Phi<$	-45	
D	IVb, Ia	G0, G1, G7	≤ 1	> 0		-45	$\leq \Phi \leq$	45	
E	lb, IIa	G2	> 1		> 0	45	$<\Phi<$	135	
F	Ilb	G3, G4	≤ 1	< 0	≥ 0	135	$\leq \Phi \leq$	180	

Z.3 Algorithmus

Funktion: atan2(y, x)

gegeben: x, y

gesucht: $-\pi < \Phi < \pi$

- 1. a) $|y| \le |x| \wedge |x| \ne 0$; $\longrightarrow \Phi := \arctan(y/x)$; H := x; (B,D,F)
 - b) $|y| \le |x| \land |x| = 0$; $\longrightarrow \Phi := 0$; H := x; (A)
- 2. |y| > |x| $\longrightarrow \Phi := \pi/2 \arctan(x/y)$; H := y; (C,E)
- 3. Korrektur für die Fälle B,C,F:
 - a) $H < 0 \land y > 0$ $\longrightarrow \Phi := \Phi + \pi$
 - b) $H < 0 \land y \le 0$ $\longrightarrow \Phi := \Phi \pi$

Z.4 Auswerten von $\arctan(y/x)$ mittels Tabelle

- a) Berechnung von y/x, danach nächsten Tabellenwert suchen bzw. interpolieren Beispiel: Winkelauflösung $0,02^0\longrightarrow$ Tabelle mit 2250 Winkelwerten
- b) x und y als Eingangsgrößen einer Matrixtabelle, dadurch entfällt die Berechnung von y/x. (Voraussetzung: $0 \le x \le y \le 1 \longrightarrow 0 \le \Phi \le \pi/4$)

Beispiel: 128 Werte für x,y ergibt eine Tabelle der Dimension $128 \cdot 128 = 16384$. Wegen der Symmetrie der Tabelle müssen aber nur 8192 Werte gespeichert werden.