CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

Le Proprietà Periodiche degli Elementi

e le Reazioni di Ossidoriduzione

Capitolo 8
e parti dei capitoli 4, 9, 18

Le Proprietà Periodiche degli Elementi

La Struttura Elettronica degli Atomi)

Cationi e anioni

Na [Ne]3s¹

Na⁺ [Ne]

 $Ca [Ar]4s^2$

 Ca^{2+} [Ar]

Al $[Ne]3s^23p^1$

Al³⁺ [Ne]

Gli atomi perdono elettroni così il catione ha una configurazione elettronica esterna di gas nobile

Gli atomi acquistano elettroni in modo che l'anione abbia una configurazione elettronica esterna di gas nobile.

H 1s¹

 H^{-} 1s² or [He]

 $F 1s^2 2s^2 2p^5$

 $F^{-} 1s^{2}2s^{2}2p^{6} o [Ne]$

 $O 1s^2 2s^2 2p^4$

 O^{2-} 1s²2s²2p⁶ o [Ne]

 $N 1s^2 2s^2 2p^3$

 N^{3-} 1s²2s²2p⁶ o [Ne]

La Carica Nucleare Effettiva

Carica Nucleare Effettiva (Z_{eff}) è la carica positiva effettivamente sentita da un elettrone

$$Z_{eff} = Z - s$$
 $0 < s < Z (s = costante di schermo)$

 $Z_{eff} \approx Z - numero degli elettroni interni (n-1)$

APPROSSIMAZIONE

	<u>Z</u>	<u>e[–] interni</u>	$\underline{Z}_{\underline{eff}}$	<u>Raggio (pm)</u>
Na	11	10	1	186
Mg	12	10	2	160
Al	13	10	3	143
Si	14	10	4	132

Andamento periodico

- All'interno del periodo aumenta il numero di elettroni del guscio esterno
- Tra periodi aumenta il numero di elettroni dei gusci interni

Il Raggio Atomico

Raggio atomico: semidistanza tra i due nuclei di due atomi adiacenti

H 37 Be B C N O F Ne D O O O O O O O O O O O O O O O O O O			77072.707	-				
Li Be O	H	2A	3A	4A	5A	6A	7A	
186 160 143 118 110 103 99 98 K Ca Ga Ge As Se Br Kr 227 197 135 123 120 117 114 112 Rb Sr In Sn Sb Te I Xe 248 215 166 140 141 143 133 131 Cs Ba Tl Pb Bi Po At Rn								Ne () 70
227 197 135 123 120 117 114 112 Rb Sr In Sn Sb Te I Xe 248 215 166 140 141 143 133 131 Cs Ba Tl Pb Bi Po At Rn								Ar 98
248 215 166 140 141 143 133 131 Cs Ba T1 Pb Bi Po At Rn								Kr 112
								Xe
								Rn 140

Increasing atomic radius

Il Raggio Ionico

- Il catione è sempre più piccolo dell'atomo da cui deriva (stessa carica nucleare ma diminuisce repulsione e⁻ - e⁻)
- L'anione è sempre più grande dell'atomo da cui deriva (stessa carica nucleare, ma aumenta repulsione e e -)

Stesso andamento del raggio atomico nel gruppo

L'Energia di Ionizzazione

L'energia di ionizzazione (EI) è l'energia (kJ/mol) richiesta per rimuovere un elettrone da un atomo gassoso nel suo stato fondamentale

$$I_1: X_{(g)} \longrightarrow X^+_{(g)} + e^-$$

*I*₁ Energia di prima ionizzazione

$$I_2: X^+_{(g)} \longrightarrow X^{2+}_{(g)} + e^-$$

*I*₂ Energia di seconda ionizzazione

$$I_3: X^{2+}_{(g)} \longrightarrow X^{3+}_{(g)} + e^{-}$$

*I*₃ Energia di terza ionizzazione

$$I_1 < I_2 < I_3$$

N.B.: Elementi con basse El perdono facilmente elettroni per formare cationi

L'Energia di Ionizzazione

Andamento periodico

TAE	BELLA 8.2	Le energ 20 eleme	ie di ionizz nti	azione (kJ/mol) c	lei primi	
Z	Elemento	Prima	Seconda	Terza	Quarta	Quinta	Sesta
1	Н	1312					
2	He	2373	5251				
3	Li	520	7300	11815			
4	Be	899	1757	14850	21005		
5	В	801	2430	3660	25 000	32820	
6	C	1086	2350	4620	6220	38000	47 261
7	N	1400	2860	4580	7500	9400	53000
8	O	1314	3390	5300	7470	11000	13000
9	F	1680	3370	6050	8400	11000	15 200
10	Ne	2080	3950	6120	9370	12 200	15000
11	Na	495.9	4560	6900	9540	13400	16600
12	Mg	738.1	1450	7730	10500	13600	18000
13	Al	577.9	1820	2750	11600	14800	18400
14	Si	786.3	1580	3230	4360	16000	20000
15	P	1012	1904	2910	4960	6240	21000
16	S	999.5	2250	3360	4660	6990	8500
17	Cl	1251	2297	3820	5160	6540	9300
18	Ar	1521	2666	3900	5770	7240	8800
19	K	418.7	3052	4410	5900	8000	9600
20	Ca	589.5	1145	4900	6500	8100	11000

Andamento periodico

Variazione dell'energia di prima ionizzazione con il numero atomico

El₁ aumenta

L'Affinità Elettronica

L'affinità elettronica (AE) è il valore cambiato di segno della variazione di energia che si ha quando un atomo allo stato gassoso acquisisce un elettrone per formare un anione

$$X_{(g)} + e^{-} \longrightarrow X_{(g)}$$

$$F_{(g)} + e^{-} \longrightarrow X_{(g)}$$

$$O_{(g)} + e^{-} \longrightarrow O_{(g)}$$

$$\Delta H = -328 \text{ kJ/mol}$$

$$\Delta H = -141 \text{ kJ/mol}$$

$$AE = +328 \text{ kJ/mol}$$

$$AE = +141 \, kJ/mol$$

N.B.: elementi con valori di AE elevati acquistano facilmente elettroni per formare ioni negativi (anioni)

L'Energia di Ionizzazione

Andamento periodico

1 IA 18 8A 2 2A 13 14 15 16 17 3A 4A 5A 6A 7A C4-N3-O2-Li+ F-Mg²⁺ P3-Na+ 3 6 9 10 11 12 A13+ S2-CIT **3B 7B** 4B 5B 6B 8B -1B 2BFe²⁺ Cr2+ Mn²⁺ Co2+ Ni2+ Cu⁺ Cu²⁺ Ca2+ Se2- K^{+} Zn2+ Br- Cr^{3+} Ni^{3+} Fe³⁺ Mn³⁺ Co3+ Sn2+ Sr2+ Cd2+ Te2-Rb+ Ag+ 1 Sn4+ Au+ Hg_{2}^{2+} Pb2+ Ba²⁺ Cs+ Au3+ Hg²⁺ Pb4+

El₁ aumenta

L'Elettronegatività

L'elettronegatività è la tendenza relativa di un atomo ad attrarre elettroni a sé quando legato chimicamente ad un altro atomo

Scala di elettronegatvità relativa di Pauling

Aumento dell'elettronegatività

Г	1A	l																8A
	H 2.1	2A	_										3A	4A	5A	6A	7A	
	Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	
	Na 0.9	Mg 1.2	3B	4B	5B	6B	7B		-8B-		1B	2B	Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	
	K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
	Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
	Cs 0.7	Ba 0.9	La-Lu 1.0-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.2	
	Fr 0.7	Ra 0.9																

- Elementi con elevata elettronegatività (non metalli) attraggono elettroni per formare anioni
- Elementi con bassa elettronegatività (metalli) perdono elettroni per formare cationi

Aumento dell'elettronegatività

Riassunto

Numero di ossidazione: la carica che l'atomo avrebbe in una molecola o in un composto ionico se gli elettroni fossero trasferiti completamente

1. Gli atomi allo stato elementare (non combinati in composti) hanno numero di ossidazione zero

Na, Be, K, Pb,
$$H_2$$
, O_2 , P_4 n. o. = 0

2. Negli ioni monoatomici, il numero di ossidazione è uguale alla carica dello ione

$$Li^+$$
, $Li = +1$; Fe^{3+} , $Fe = +3$; O^{2-} , $O = -2$

3. Il numero di ossidazione dell'ossigeno è generalmente -2. In H_2O_2 e O_2^{2-} è -1

- 4. Il numero di ossidazione dell'idrogeno è +1 tranne quando è legato a metalli in composti binari. In questi casi, il suo numero di ossidazione è −1
- 5. Nel gruppo 1 (metalli alcalini) +1, nel gruppo 2 (metalli alcalino-terrosi) +2
- 6. Il fluoro è sempre –1. Cl, Br, I hanno n.o. negativo quando sono alogenuri e positivo se si combinano con ossigeno (ossoacidi, ossoanioni)

7. La somma dei numeri di ossidazione di tutti gli atomi in una molecola o ione è uguale alla carica della molecola o dello ione

1 1A														18 8A			
1 H +1 -1	2 2A	loro composti 2 2A 3A 4A 5A 6A 7A													2 He		
3 Li +1	4 Be +2	-	- Elementi poco elettronegativi: n.o. positivi $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
11 Na +1	12 Mg +2	3 3B	4 4B	sitivi 5 5B	6 6B	7 7B	8	9 8B-	10	11 1B	12 2B	13 Al +3	14 Si +4 -4	15 P +5 +3 -3	16 S +6-2 +4 +2	17 Cl +7 +4-1 +6 +3 +5 +1	18 Ar
19 K +1	20 Ca +2	21 Sc +3	22 Ti +4 +3 +2	23 V +5 +2 +4 +3	24 Cr +6+3 +5+2 +4	25 Mn +7+3 +6+2 +4	26 Fe +3 +2	27 Co +3 +2	28 Ni +2	29 Cu +2 +1	30 Zn +2	31 Ga +3	32 Ge +4 -4	33 As +5 +3 -3	34 Se +6 +4 -2	35 Br +5 -1 +3 +1	36 Kr +4 +2
37 Rb +1	38 Sr +2	39 Y +3	40 Zr +4	41 Nb +5 +4	42 Mo +6 +4 +3	43 Tc +7 +6 +4	44 Ru +8 +3 +6 +4	45 Rh +4 +3 +2	46 Pd +4 +2	47 Ag +1	48 Cd +2	49 In +3	50 Sn +4 +2	51 Sb +5 +3 -3	52 Te +6 +4 -2	53 I +7 -1 +5 +1	54 Xe +6 +4 +2
55 Cs +1	56 Ba +2	57 La +3	72 Hf +4	73 Ta +5	74 W +6 +4	75 Re +7 +6 +4	76 Os +8 +4	77 Ir +4 +3	78 Pt +4 +2	79 Au +3 +1	80 Hg +2 +1	81 Tl +3 +1	82 Pb +4 +2	83 Bi +5 +3	84 Po +2	85 At -1	86 Rn

I numeri di ossidazione degli elementi nei loro composti

Element(s)	Common Oxidation States	Examples	Other Oxidation States
Н	+1	H ₂ O, CH ₄ , NH ₄ Cl	−1 in metal hydrides, e.g., NaH, CaH ₂
Group 1A	+1	KCl, NaH, RbNO ₃ , K ₂ SO ₄	None
Group 2A	+2	CaCl ₂ , MgH ₂ , Ba(NO ₃) ₂ , SrSO ₄	None
Group 3A	+3	AlCl ₃ , BF ₃ , Al(NO ₃) ₃ , GaI ₃	None in common compounds
Group 4A	+2 +4	CO, PbO, SnCl ₂ , Pb(NO ₃) ₂ CCl ₄ , SiO ₂ , SiO ₃ ²⁻ , SnCl ₄	Many others are also seen for C and Si
Group 5A	-3 in binary compounds with metals	Mg ₃ N ₂ , Na ₃ P, Cs ₃ As	-3, e.g., NO ₂ ⁻ , PCl ₃
	-3 in NH ₄ ⁺ , binary compounds with H	NH ₃ , PH ₃ , AsH ₃ , NH ₄ ⁺	+5, e.g., NO ₃ ⁻ , PO ₄ ⁵⁻ , AsF ₅ , P ₄ O ₁₀
O	-2	H ₂ O, P ₄ O ₁₀ , Fe ₂ O ₃ , CaO, ClO ₃ ⁻	+2 in OF ₂ -1 in peroxides, e.g., H ₂ O ₂ , Na ₂ O ₂ -\frac{1}{2} in superoxides, e.g., KO ₂ , RbO ₂
Group 6A (other than O)	-2 in binary compounds with metals and H	H ₂ S, CaS, Fe ₂ S ₃ , Na ₂ Se	+4 with O and the more electronegative halogens, e.g., SO ₂ , SeO ₂ , Na ₂ SO ₃ ,
	−2 in binary compounds with NH ₄ ⁺	(NH ₄) ₂ S, (NH ₄) ₂ Se	SO ₃ ²⁻ , SF ₄ +6 with O and the more electronegative halogens, e.g., SO ₃ , TeO ₃ , H ₂ SO ₄ , SO ₄ ²⁻ , SF ₆
Group 7A	 1 in binary compounds with metals and H 	MgF ₂ , KI, ZnCl ₂ , FeBr ₃	Cl, Br, or I with O or with a more electronegative halogen
	–1 in binary compounds with NH ₄ ⁺	NH ₄ Cl, NH ₄ Br	+1, e.g., BrF, ClO ⁻ , BrO ⁻ +3, e.g., ICl ₃ , ClO ₂ ⁻ , BrO ₂ ⁻ +5, e.g., BrF ₅ , ClO ₃ ⁻ , BrO ₃ ⁻ +7, e.g., IF ₇ , ClO ₄ ⁻ , BrO ₄ ⁻

Esempio 4.4

Assegna i numeri di ossidazione a tutti gli elementi dei seguenti composti e ioni: (a) Li₂O, (b) HNO₃, (c) Cr₂O₇²-.

Problema di verifica Assegna i numeri di ossidazione a tutti gli elementi nei seguenti composti o ioni: (a) PF₃, (b) MnO₄⁻.

Determinazione del numero di ossidazione di un elemento in un composto

PROBLEMA DI VERIFICA 4.6

Problema Si determini il numero di ossidazione di ciascun elemento in questi composti:

(a) Cloruro di zinco (b) Triossido di zolfo (c) Acido nitrico

PROBLEMA DI APPROFONDIMENTO 4.6 Si determini il numero di ossidazione di ciascun elemento nei seguenti composti:

- (a) Ossido di scandio (Sc₂O₃) (b) Cloruro di gallio (GaCl₃)
- (c) Ione idrogenofosfato (d) Trifluoruro di Bromo

Reazioni di trasferimento di elettroni

Reazione di Combustione

$$A + O_2 \longrightarrow B$$

$$S + O_2 \longrightarrow SO_2$$

$$2 Mg + O_2 \longrightarrow 2 MgO$$

Semi-reazione di riduzione (acquisto di e⁻)

Semi-reazione di ossidazione (perdita di e⁻)

$$2 Mg \longrightarrow 2 Mg^{2+} + 4 e^{-} \longleftarrow$$

$$O_2 + 4 e^{-} \longrightarrow 2 O^{2-}$$

$$2 Mg + O_2 + A e^{-} \rightarrow 2 Mg^{2+} + 2 O^{2-} + A e^{-}$$

$$2 Mg + O_2 \rightarrow 2 MgO$$

Attenzione: - Mg si ossida, ed è il riducente - O₂ si riduce, ed è l'ossidante

Periodicità delle reazioni dell'ossigeno e degli ossidi

Proprietà degli ossidi attraverso un periodo

TABELLA 8.4	Alcune proprietà degli ossidi degli elementi
	del terzo periodo

	Na_2O	MgO	Al_2O_3	SiO_2	P_4O_{10}	SO_3	Cl_2O_7
Tipo di composto		- Ionico –		←	— Molec	olare —	
Struttura	← T	ridimens	ionale este	sa ——	→← Unit	à molec discrete	
P. to di fusione (°C)	1275	2800	2045	1610	580	16.8	-91.5
P. to di ebollizione (°C)	?	3600	2980	2230	?	44.8	82
Natura acido-basica	Basico	Basico	Anfotero	←	—— Aci	do ——	

$$Na_{2}O_{(s)} + H_{2}O_{(l)} \longrightarrow 2Na(OH)_{(aq)}$$

$$MgO_{(s)} + 2HCI_{(\overline{aq})} \longrightarrow MgCI_{2(aq)} + H_{2}O_{(l)}$$

$$AI_{2}O_{3(s)} + 6HCI_{(\overline{aq})} \longrightarrow 2AICI_{3(aq)} + 3H_{2}O_{(l)}$$

$$AI_{2}O_{3(s)} + 2Na(OH)_{(aq)} + 3H_{2}O_{(l)} \longrightarrow 2NaAI(OH)_{4(aq)}$$

$$SiO_{2(s)} + 2Na(OH)_{(a\overline{q})} \longrightarrow Na_{2}SiO_{3(aq)} + H_{2}O_{(l)}$$

$$P_{4}O_{10(s)} + 6H_{2}O_{(l)} \longrightarrow 4H_{3}PO_{4(aq)}$$

$$SO_{3(g)} + H_{2}O_{(l)} \longrightarrow H_{2}SO_{4(aq)}$$

$$CI_{2}O_{7(l)} + H_{2}O_{(l)} \longrightarrow 2HCIO_{4(aq)}$$

La barretta di Zn è in una soluzione acquosa di CuSO₄

22+

Gli ioni Cu²⁺ vengono convertiti in atomi Cu, gli atomi di Zn passano in soluzione come ioni Zn²⁺.

(a)

è immerso in una soluzione acquosa di AgNO₃ gli atomi di rame passano in soluzione come ioni Cu²⁺, e gli ioni Ag⁺

vengono convertiti in Ag solido.

$$Zn(s) + CuSO_4(aq) \longrightarrow ZnSO_4(aq) + Cu(s)$$

$$Zn \longrightarrow Zn^{2+} + 2e^{-}$$

Zn si ossida, Zn è l'agente riducente

$$Cu^{2+} + 2e^{-} \longrightarrow Cu$$

Cu²⁺ si riduce, Cu²⁺è l'agente ossidante

$$Cu(s) + 2AgNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + 2Ag(s)$$

$$Cu \longrightarrow Cu^{2+} + 2e^{-}$$

Cu si ossida, Cu è l'agente riducente

$$Ag^+ + 1e^- \longrightarrow Ag$$

Ag⁺ si riduce, Ag⁺ è l'agente ossidante

Riconoscimento degli agenti ossidanti e degli agenti riducenti

PROBLEMA DI VERIFICA 4.7

Problema Si identifichino l'agente ossidante e l'agente riducente in ciascuna delle seguenti reazioni:

- (a) $2Al(s) + 3H_2SO_4(aq) \longrightarrow Al_2(SO_4)_3(aq) + 3H_2(g)$
- **(b)** $PbO(s) + CO(g) \longrightarrow Pb(s) + CO_2(g)$
- (c) $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$

PROBLEMA DI APPROFONDIMENTO 4.7 Si identifichi ciascun agente ossidante e ciascun agente riducente:

- (a) $2Fe(s) + 3Cl_2(g) \longrightarrow 2FeCl_3(s)$
- **(b)** $2C_2H_6(g) + 7O_2(g) \longrightarrow 4CO_2(g) + 6H_2O(g)$
- (c) $5CO(g) + I_2O_5(s) \longrightarrow I_2(s) + 5CO_2(g)$

Metodo delle semireazioni in ambiente acido o basico

- Es. Ossidazione di Fe^{2+} a Fe^{3+} ad opera di $Cr_2O_7^{2-}$ in soluzione acida
- 1. Scrivere l'equazione non bilanciata della reazione nella forma ionica

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

- Separare l'equazione in due semireazioni
 - Il numero di ossidazione del ferro passa da +2 a +3, quindi si ossida $Fe^{2+} \longrightarrow Fe^{3+}$
 - Il numero di ossidazione del cromo passa da +6 a +3, quindi si riduce

$$Cr_2O_7^{2-} \longrightarrow Cr^{3+}$$

3. Bilanciare gli atomi diversi da O e H nelle semireazioni

$$Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+}$$
 $Fe^{2+} \longrightarrow Fe^{3+}$

Metodo delle semireazioni in ambiente acido o basico

 Per le reazioni in ambiente acido, aggiungere H₂O per bilanciare gli atomi di O e H⁺ per bilanciare gli atomi di H

$$Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+} + 7 H_2O$$

14 H⁺ + $Cr_2O_7^{2-} \longrightarrow 2 Cr^{3+} + 7 H_2O$

 Aggiungere elettroni su entrambi i lati di ognuna delle semireazioni per bilanciare le cariche delle semireazioni

$$Fe^{2+} \longrightarrow Fe^{3+} + 1e^{-}$$

 $6 e^{-} + 14 H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2 Cr^{3+} + 7 H_{2}O$

 Se necessario, uguagliare il numero di elettroni nelle due semireazioni moltiplicandole per un appropriato coefficiente

$$6 Fe^{2+} \longrightarrow 6 Fe^{3+} + 6e^{-}$$

$$6 e^{-} + 14 H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2 Cr^{3+} + 7 H_{2}O$$

Metodo delle semireazioni in ambiente acido o basico

7. Unire le due semireazioni e bilanciare la reazione finale mediante verifica. Gli elettroni presenti su entrambi i lati devono elidersi

Ossidazione:
$$6 \ Fe^{2+} \longrightarrow 6 \ Fe^{3+} + 6 \ e^{-}$$

Riduzione: $6 \ e^{-} + 14 \ H^{+} + Cr_{2}O_{7}^{2-} \longrightarrow 2 \ Cr^{3+} + 7 \ H_{2}O$
 $14 \ H^{+} + Cr_{2}O_{7}^{2-} + 6 \ Fe^{2+} \longrightarrow 6 \ Fe^{3+} + 2 \ Cr^{3+} + 7 \ H_{2}O$

8. Verificare che il numero degli atomi e le cariche siano bilanciati

Cariche:
$$14x1 - 2 + 6x2 = 24 = 6x3 + 2x3$$

24 cariche positive a sinistra e 24 cariche positive a destra

9. Per le reazioni in soluzioni basiche, aggiungere OH^- a entrambi i lati dell'equazione per ogni H^+ che compare nell'equazione finale. Combinare gli H^+ e OH^- che sono sullo stesso lato dell'equazione a dare H_2O

$$MnO_4^- + I^- \longrightarrow MnO_2 + I_2$$
 In ambiente basico

Oxidation: $I^- \longrightarrow I_2$

Reduction: $MnO_4^- \longrightarrow MnO_2$

 $2I^- \longrightarrow I_2$

$$MnO_4^- \longrightarrow MnO_2 + 2H_2O$$

$$MnO_4^- + 4H^+ \longrightarrow MnO_2 + 2H_2O$$

$$2I^- \longrightarrow I_2 + 2e^-$$

$$MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + 2H_2O$$

$$3(2I^{-} \longrightarrow I_{2} + 2e^{-})$$

$$2(MnO_{4}^{-} + 4H^{+} + 3e^{-} \longrightarrow MnO_{2} + 2H_{2}O)$$

$$6I^{-} + 2MnO_{4}^{-} + 8H^{+} + 6e^{-} \longrightarrow 3I_{2} + 2MnO_{2} + 4H_{2}O + 6e^{-}$$

$$6I^- + 2MnO_4^- + 8H^+ \longrightarrow 3I_2 + 2MnO_2 + 4H_2O$$

Ambiente basico

$$6I^{-} + 2MnO_{4}^{-} + 8H^{+} + 8OH^{-} \longrightarrow 3I_{2} + 2MnO_{2} + 4H_{2}O + 8OH^{-}$$

$$6I^- + 2MnO_4^- + 4H_2O \longrightarrow 3I_2 + 2MnO_2 + 8OH^-$$

Da equazioni ioniche a equazioni con specie neutre e viceversa

Per convertire le equazioni con specie neutre in equazioni ioniche nette si considerano dissociati nei loro ioni tutti gli elettroliti forti e si semplificano da entrambe le parti gli ioni spettatori

Equazioni ioniche ——> Equazioni con specie neutre

Alla fine della procedura di bilanciamento di una redox in soluzione acquosa acida o basica, se si vuole avere l'equazione con specie neutre si devono aggiungere ioni spettatori carichi negativamente che si combinino con specie cariche positivamente e ioni spettatori carichi positivamente che si combinino con specie cariche negativamente

N.B.: Qualsiasi ione spettatore aggiunto dal lato dei reagenti deve essere aggiunto anche ai prodotti!

ESEMPIO:

Gli ioni permanganato ossidano il Fe(II) a Fe(III) in soluzione di acido solforico. Gli ioni permanganato sono ridotti a Mn(II)

Scrivere l'equazione ionica netta bilanciata per questa reazione

 $10\text{FeSO}_4(\text{aq}) + 2\text{KMnO}_4(\text{aq}) + 8\text{H}_2\text{SO}_4(\text{aq}) \longrightarrow$

 Scrivere l'equazione con specie neutre bilanciate se i reagenti sono introdotti come permanganato di potassio, acido solforico e solfato di ferro(II)

$$Fe^{2+} + MnO_4^- \longrightarrow Fe^{3+} + Mn^{2+}$$

$$Fe^{2+} \longrightarrow Fe^{3+} \qquad (ox. half-reaction)$$

$$Fe^{2+} \longrightarrow Fe^{3+} + 1e^- \qquad (balanced ox. half-reaction)$$

$$MnO_4^- \longrightarrow Mn^{2+} \qquad (red. half-reaction)$$

$$MnO_4^- + 8H^+ \longrightarrow Mn^{2+} + 4H_2O$$

$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \qquad (balanced red. half-reaction)$$

$$5(Fe^{2+} \longrightarrow Fe^{3+} + 1e^-)$$

$$1(MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O)$$

$$5Fe^{2+}(aq) + MnO_4^-(aq) + 8H^+(aq) \longrightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(\ell)$$

$$10[Fe^{2+}(aq) + SO_4^{2-}(aq)] + 2[K^+(aq) + MnO_4^-(aq)] + 8[2H^+(aq) + SO_4^{2-}(aq)] \longrightarrow$$

$$5[2Fe^{3+}(aq) + 3SO_4^{2-}(aq)] + 2[Mn^{2+}(aq) + SO_4^{2-}(aq)] + 8H_2O(\ell)$$

$$+ [2K^+(aq) + SO_4^{2-}(aq)]$$

 $5\text{Fe}_{2}(SO_{4})_{3}(aq) + 2\text{MnSO}_{4}(aq) + \text{K}_{2}SO_{4}(aq) + 8\text{H}_{2}O(\ell)$

- 1. Assegnare i n.o. a tutti gli elementi che partecipano alla reazione
- 2. In base alle variazioni dei n.o. individuare la specie ossidata e ridotta

$$+2$$
 $+5$ 0 $+4$ $CO + I_2O_5 \longrightarrow I_2 + CO_2$

3. Calcolare il numero di elettroni ceduti nell'ossidazione e acquistati nella riduzione (Tracciare linee di collegamento tra gli atomi per indicare le variazioni)

$$CO + I_2O_5 \longrightarrow I_2 + CO_2$$

$$-2 e^{-}$$

$$(+5 e^{-})x2$$

4. Moltiplicare uno di questi numeri o entrambi per fattori appropriati per far sì che il numero di elettroni ceduti sia uguale a quello degli elettroni acquistati e usare i fattori come coefficienti stechiometrici di bilanciamento

ESERCIZIO:

Bilanciare le seguenti redox, indicando i numeri di ossidazione delle specie ridotte e ossidate, e gli elettroni acquistati e ceduti:

Tipi di redox

Reazione di Combinazione

$$A + B \longrightarrow C$$

$$2AI + 3Br_2 \longrightarrow 2AIBr_3$$

Reazione di Decomposizione

$$C \longrightarrow A + B$$

$$2 \text{ KCIO}_3 \longrightarrow 2 \text{ KCI} + 3 \text{ O}_2$$

Reazione di combinazione

Reazione di decomposizione

Tipi di redox

Reazione di Spostamento

$$A + BC \longrightarrow AC + B$$

$$Sr + 2 H_2O \longrightarrow Sr(OH)_2 + H_2$$

Spostamento di idrogeno

$$TiCl_4 + 2 Mg \longrightarrow Ti + 2 MgCl_2$$

Spostamento di metallo

$$Cl_2 + 2 KBr \longrightarrow 2 KCl + Br_2$$

Spostamento di alogeno

Reazione di Disproporzione

L'elemento è simultaneamente ossidato e ridotto

$$Cl_2 + 2 OH^- \longrightarrow ClO^- + Cl^- + H_2O$$

N.B.: La reazione opposta si dice di comproporzione

Reazione di spostamento di idrogeno

Serie di attività redox dei metalli

Anche nota come serie elettrochimica

$Li \rightarrow Li^{+} + e^{-}$ $K \rightarrow K^{+} + e^{-}$ $Ba \rightarrow Ba^{2+} + 2e^{-}$ $Ca \rightarrow Ca^{2+} + 2e^{-}$ $Na \rightarrow Na^{+} + e^{-}$	Reagisce con acqua fredda per produrre H ₂
Mg \rightarrow Mg ²⁺ + 2e ⁻ Al \rightarrow Al ³⁺ + 3e ⁻ Zn \rightarrow Zn ²⁺ + 2e ⁻ Cr \rightarrow Cr ³⁺ + 3e ⁻ Fe \rightarrow Fe ²⁺ + 2e ⁻ Cd \rightarrow Cd ²⁺ + 2e ⁻	Reagisce con il vapore per produrre H ₂
$Co \rightarrow Co^{2+} + 2e^{-}$ $Ni \rightarrow Ni^{2+} + 2e^{-}$ $Sn \rightarrow Sn^{2+} + 2e^{-}$ $Pb \rightarrow Pb^{2+} + 2e^{-}$	Reagisce con gli acidi per produrre H ₂
$H_2 \rightarrow 2H^+ + 2e^-$	
$Cu \rightarrow Cu^{2+} + 2e^{-}$ $Ag \rightarrow Ag^{+} + e^{-}$ $Hg \rightarrow Hg^{2+} + 2e^{-}$ $Pt \rightarrow Pt^{2+} + 2e^{-}$ $Au \rightarrow Au^{3+} + 3e^{-}$	Non reagisce con acqua o acidi per produrre H ₂

- I metalli sono disposti secondo la loro capacità di spostare idrogeno dall'acqua o da un acido
- Qualsiasi metallo più in alto dell'idrogeno lo sposterà da un acido o dall'acqua, se più in basso no
- Qualsiasi metallo della serie reagirà (come riducente) con qualsiasi metallo che si trova più in basso nella serie

Reazioni chimiche e periodicità

Reazione di spostamento di idrogeno

Gruppo 1: Tutti i metalli del primo gruppo reagiscono con acqua

$$2M(s) + 2 H_2O \longrightarrow 2MOH + H_2(g)$$

Gruppo 2: Be non reagisce con acqua; Mg lentamente; Ca, Sr e Ba sì

$$M(s) + 2 H_2O \longrightarrow M(OH)_2 + H_2(g)$$

$$Mg(s) + 2 H^+ \longrightarrow Mg^{2+} + H_2(g)$$

Gruppo 13: B (non metallo) non reagisce con acqua;

$$2AI(s) + 6 H^{+} \longrightarrow 2AI^{3+} + H_{2}(g)$$

Gruppo 14: gli unici elementi metallici sono Sn e Pb

$$Sn(s) + 2H^+ \longrightarrow Sn^{2+} + H_2(g)$$

$$Pb(s) + 2H^+ \longrightarrow Pb^{2+} + H_2(g)$$

Reazione di spostamento di metallo

Identificazione del tipo di reazione redox

PROBLEMA DI VERIFICA 4.10

Problema Si classifichi ciascuna delle seguenti reazioni redox come una reazione di combinazione, una reazione di decomposizione, o una reazione di scambio (o di spostamento), si scriva un'equazione molecolare bilanciata per ciascuna di esse, nonché l'equazione ionica totale e l'equazione ionica netta per la parte (c), e si identifichino l'agente ossidante e l'agente riducente:

- (a) magnesio(s) + azoto(g) \longrightarrow nitruro di magnesio(s)
- (b) perossido di idrogeno(l) → acqua + ossigeno gassoso
- (c) alluminio(s) + nitrato di piombo(II)(aq) \longrightarrow nitrato di alluminio(aq) + piombo(s)

PROBLEMA DI APPROFONDIMENTO 4.10 Si classifichi ciascuna delle seguenti reazioni redox come una reazione di combinazione, una reazione di decomposizione o una reazione di scambio (o di spostamento), si scriva un'equazione molecolare bilanciata per ciascuna, nonché l'equazione ionica totale e l'equazione ionica netta per le parti (b) e (c), e si identifichino l'agente ossidante e l'agente riducente:

- (a) $S_8(s) + F_2(g) \longrightarrow SF_4(g)$
- **(b)** $CsI(aq) + Cl_2(aq) \longrightarrow CsCl(aq) + I_2(aq)$
- (c) $Ni(NO_3)_2(aq) + Cr(s) \longrightarrow Cr(NO_3)_3(aq) + Ni(s)$

Titolazioni redox

- Titolazioni redox: usate per misurare quantitativamente la presenza di sostanze ossidanti o riducenti in una soluzione acquosa
- Per misurare la quantità di sostanze ossidabili (riducenti) in una soluzione la si fa reagire con una quantità misurata di una soluzione standard di ossidante
- Molto usato come ossidante è il $KMnO_4$ che funziona anche come indicatore del punto equivalente perché di colore viola intenso, viene ridotto in soluzione acida a Mn^{2+} incolore
- Un altro ossidante è il $K_2Cr_2O_7$ di color arancio che viene ridotto a Cr^{3+} verde

Ripasso

Concetti fondamentali e parole chiave

CAPITOLO 8

- Carica nucleare effettiva
- Raggio atomico
- Energia di ionizzazione
- Affinità elettronica
- Raggi ionici
- Le proprietà degli ossidi attraverso un periodo
- Reazione di spostamento di H2 da parte di metalli

CAPITOLO 9

Elettronegatività

CAPITOLO 4

- Numero di ossidazione
- Reazioni Redox
- Bilanciamento delle reazioni redox
- Tipi di reazioni redox

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby

Domande	Esercizi
Capitolo 4 4.35-4.38	Capitolo 4 4.39-4.50
Capitolo 8	4.81, 4.85, 4.86, 4.88, 4.113
8.3-8.6	Capitolo 8
8.12-8.13	8.15-8.22
8.23-8.25	8.27-8.328.39-8.42
8.33-8.36	8.59-8.60
8.49-8.50	8.69, 8.70, 8.72
8.58-8.58	8.73-8.78
8.64	8.85
Capitolo 9 9.31	8.89-8.92 8.96, 8.104, 8.105