Exponential Smoothing

Simon U., Michael Y., Ben H.

March X, 2020

What is exponential smoothing?

- Forecasting future observations
- Using weighted averages of past observations
 - weights decay exponentially as observations recede further into the past
- Basic idea: More recent observations are more predictive than older points

Exponential Smoothing Models

- 1. Naive—all weight is given to the last observation
- 2. Average—each past observation is given equal weight
- Exponential weighted average—Recent observations get higher weight, older observations less weight
- 4. Holt linear—Same as 3, but accounts for time series with trend
- 5. Holt-Winters—Same as 4, but also accounts for time series with seasonality
- 6. State space—

ES₁: Naive model

- ► The naive forecasting model can be thought of us exponential smoothing
- ▶ Where 100 percent of weight is given to the last observation:

```
forecast_naive <- function(y, h) {
    n <- length(y)
    y_hat <- rep(y[n], h)
    return( y_hat )
}</pre>
```

ES₁: Naive model: Example

```
y \leftarrow c(1, 4, 5, 2, 3, 6, 8)
y_hat <- forecast_naive(y, h=7)</pre>
plot_forecast(y, y_hat)
       0
                                                10
                                                        12
                                                                14
```

Note: No trend or seasonality!

ES₂: Average model

- ► All future values are forecast as the average of the observed data
- Equivalent to exponential smoothing where each observation is given equal weight

```
forecast_avg <- function(y, h) {
    y_hat <- rep(mean(y), h)
    return( y_hat )
}</pre>
```

ES₂: Average model: Example

ES₃: Simple exponential smoothing

- More sophisticated models would given recent observations more weight, and decreasing weight for past observations
- lacktriangle Parameter lpha controls smoothing; can be optimized

$$\hat{\mathbf{y}}_{\mathcal{T}} = \alpha \mathbf{y}_{\mathcal{T}} + (1 - \alpha)\hat{\mathbf{y}}_{\mathcal{T} - 1}$$

- $\hat{y}_T \equiv$ predicted value of y at time t
- $\alpha \equiv$ user-chosen smoothing parameter, $0 \le \alpha \le 1$
 - ► Closer to 0 gives historical data more weight, closer to 1 gives recent data more weight
 - ▶ Often between 0.1 -0.2 is best
- $\hat{y}_{T-1} \equiv$ predicted value of y at immediately previous period t-1

ES_3 : Simple exponential smoothing: Smoothing parameter

where y_t is the most recent observation:

Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
	0.2	0.4	0.6	0.8
y_{t-1}	0.16	0.24	0.26	0.16
y_{t-2}	0.128	0.144	0.096	0.032
y_{t-3}	0.1024	0.0864	0.0384	0.0064
:	:	:	:	:

ES₃: Simple exponential smoothing: Problem

Problem: What is \hat{y}_{T-1} when t = 1?

$$\hat{y}_T = \alpha y_T + (1 - \alpha)\hat{y}_{T-1}$$

- ▶ Textbook: Component form, the level ℓ_0
- Set for mean or median of the time series

```
forecast_simple <- function(y, h, alpha=0.1) {</pre>
    n <- length(y)</pre>
    1_0 \leftarrow mean(y)
    1 < -c()
    for (i in 1:(n+1)) {
         if (i == 1) {
              l_i \leftarrow alpha * y[i] + (1 - alpha) * l_0
         } else {
              l_i \leftarrow alpha * y[i] + (1 - alpha) * l[i-1]
         1 <- append(1 i, 1)
    y_{hat} < -1[n+1]
    return( rep(y_hat, h) )
}
```

*ES*₃: Simple exponential smoothing: Example

```
y_hat <- forecast_simple(y, h=7, alpha=0.25)
plot_forecast(y, y_hat)</pre>
```


*ES*₃: Weighted average: Optimizing α^*

BEN: Not sure if we want to keep this??

Interlude

- ► The previous method is effective for time series without trend or seasonality
- But what if your time series has trend?

ES₄: Holt Linear Trend Model

Appropriate for time series that can be described with

$$y_t = \beta_0 + \beta_1 t + \epsilon_t$$

where β_1 quantifies the trend

ES₄: Holt Linear Trend Model: Linear Time Series

► We can explicitly convert our previous time series to have trend using this formula:

```
beta_0 <- 0
beta_1 <- 1.5
t_ <- 1:7
( y_1 <- beta_0 + y + beta_1*t_ )
## [1] 2.5 7.0 9.5 8.0 10.5 15.0 18.5</pre>
```

ES₄: Holt Linear Trend Model: Linear Time Series

ES₄: Holt Linear Trend Model: Function/equations

TODO

ES₄: Holt Linear Trend Model: Linear Time Series: Problem

Problem: What if you expect the trend to 'stabilize' over time? Modify the above equations to use a *dampening* coefficient $0 < \phi < 1$:

ETS modeling (Innovations state space models)

Conclusion

