

Tolérancement dimensionnel l

Défaut dimensionnel, Tolérances générales, influence de la cotation

Dr. S. Soubielle

Dans ce cours, nous allons...

... Définir la notion de défaut dimensionnel

- ... Terminologie
- ... Limites admissibles
- ... Mesurage

... Définir la notion de tolérance dimensionnelle générale

- ... Écarts admissibles pour dimensions linéaires / angulaires
- ... Influence de la cotation sur les écarts admissibles

Objet du tolérancement dimensionnel

Cotation absolue (cours semaine 6)

- Attribution des cotes à une pièce pour définir ses dimensions
- Cas idéal d'une pièce parfaite

- Il est impossible de fabriquer une pièce de manière exacte selon ses cotes absolues
- Tout procédé de fabrication induit des défauts (imperfections, imprécisions)

Degré d'imprécision admissible

- Spécification, pour chaque cote du plan de fabrication, du niveau d'imprécision maximal admissible
- Doit être défini en lien avec les fonctions techniques

Mesurage des défauts dimensionnels

Contrôle des cotes linéaires

- Réglette graduée / ± 0,5 mm
- Pied à coulisse / ± 0,02 mm
 - Dimensions extérieures (y.c. Ø)
 - Dimensions intérieures (y.c. Ø)
 - Profondeur

D'extérieur (dimensions extérieures, y.c. \emptyset) / d'intérieur (y.c. alésages) / de profondeur

Micromètre d'extérieur Vogel®

Micromètre d'intérieur (alésages) Mitutoyo®

Micromètre de profondeur Tesa®

Mesurage des défauts dimensionnels (

- Contrôle des cotes angulaires
 - Rapporteur d'angle / ± 2' (± 0,03°)

La conformité aux tolérances dimensionnelles est vérifiée au moyen d'outils de mesure locale

S. Soubielle

Définitions et notation normalisée

- Dimension (taille) nominale
 Dimension de référence (cas idéal)
- Limite supérieure / inférieure
 Limites admissibles de la dim. réelle

Par ex.: de 22,470 (inclus) à 22,565 (inclus)

Ecart limite supérieur / inférieur

Différence entre les limites admissibles et la dim. nominale

Sup.:
$$22,565 - 22,5 = +0,065$$

Inf.: $22,470 - 22,5 = -0,030$

- Tolérance
 - = Limite admissible maximum
 - limite admissible minimum

Tolérance = 22,565 - 22,470= 0,095 mm

Intervalle de tolérance

Tolérances générales – ISO 2768-1 (1/3) EPFL

Tolérancement explicite systématique

- → Surcharge le dessin
- → Empêche de distinguer les tolérances exigeantes des autres

Tolérances générales ISO 2768-1

- Système de tolérances par défaut destinées aux cotes ne nécessitant pas de niveau de précision particulier
- Classe de tolérances notée sur le plan « ISO 2768-x » :
 - «f»: tol. gén. « fines »
 - « m » : tol. gén. « moyennes »
 - « c » : tol. gén. « grossières »
 - « v » : tol. gén. « très grossières »

→ ISO 2768-f → ISO 2768-m → ISO 2768-c

→ ISO 2768-v

Classes utilisées en GM et MT

Tolérances générales – ISO 2768-1 (2/3)

Ecarts limites pour dimensions linéaires (VSM, p. 114)

Tableau 114/1 Ecarts limites pour dimensions linéaires (dimensions extérieures et intérieures, longueurs de portées, distances, diamètres, cotes d'usinage de pièces à assembler) Dim. en mm

Classe de tolérance	Dimension nominale 1)								
	≥ 0,5	> 3	> 6	> 30	> 120	> 400	> 1000	> 2000	
	3	6	30	120	400	1000	2000	4000	
	Ecarts								
f (fine) ²)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,3	± 0,5		
m (moyenne)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	
c (grossière)	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2	± 3	± 4	
v (très grossière)	-	± 0,5	± 1	± 1,5	± 2,5	± 4	± 6	± 8	

Tableau 114/2 Tolérances générales pour rayons r et hauteurs de chanfreins h

Dimensions en mm

Classe de tolérance		Dimension nominale 1)				
			≥ 0,5	> 3	> 6	
			3	6		
			Ecarts			
f	(fine),	m (moyenne)	± 0,2	± 0,5	± 1	
c	(grossière),	v (très grossière)	± 0,4	± 1	± 2	

© Extrait de Normes 2018, p. 114

Ecarts limites pour dimensions angulaires (VSM, p. 115)

angles cotés ainsi que)°], angles de p	olygones réguli	iers, divisions o	de cercles) Dim	ensions en mm	
Classe de tolérance	Dimension nominale = longueur du plus petit côté L_{KS} mm, fig. 114/1								
		> 10	> 50	> 120		> 10	> 50	> 120	
	10	50	120	400	10	50	120	400	
	Ecarts $\pm \varepsilon$ (en degrés et minutes)				Ecarts $\pm \varepsilon_R$ (en mm/100 mm)				
f (fina) m (mayanna)	+ 10	+ 20'	+ 201	+ 10/	+17	+ 0.0	+ 0.6	+02	

		> 10	> 50	> 120		> 10	> 50	> 120
	10	50	120	400	10	50	120	400
	Ecarts $\pm \varepsilon$ (en degrés et minutes)				Ecarts ± ε _R (en mm/100 mm)			
f (fine), m (moyenne)	± 1°	± 30'	± 20'	± 10'	± 1,7	± 0,9	± 0,6	± 0,3
c (grossière)	± 1° 30′	± 1°	± 30'	± 15'	± 2,5	± 1,7	± 0,9	± 0,4
v (très grossière)	± 3°	± 2°	± 1°	± 30'	± 5	± 3,5	± 1,7	± 0,9

© Extrait de Normes 2018, p. 115

5 Ø15 ± 0,2 5 ± 0.1 (30)

Exercice d'application

Tableau 115/1 Ecarts limites pour dimensions angulaires

On suppose que la pièce ci-contre sera fabriquée selon la classe de tolérances générales ISO 2768-m. Supprimer toutes les tolérances redondantes.

S Soubielle 8

Tolérances générales – ISO 2768-1 (3/3)

Influence de la cotation sur les défauts admissibles

Supposons l'exemple d'une goupille à épaulement. Les cotes sont selon tolérance générale ISO 2768-m. Calculer la valeur de la tolérance de la cote auxiliaire dans chacun des trois cas suivants :

- → En tolérance générale, le choix des cotes effectives et des cotes auxiliaires a une répercussion directe sur les précisions exigées
- → Stratégie de cotation: coter en priorité 1. les dimensions fonctionnelles, et 2. les petites dimensions

S. Soubielle

Des questions?

Références normatives principales

ISO 129-1	Documentation technique de produit – Représentation des dimensions et tolérances – Partie 1 : Principes généraux
ISO/DIS 129-2	Documentation technique de produit – Indication des cotes et tolérances – Partie 2: Cotation dans le domaine de la construction mécanique
ISO 286-1	Spécification géométrique des produits (GPS) – Système de codification ISO pour les tolérances sur les tailles linéaires – Partie 1: Base des tolérances, écarts et ajustements
ISO 286-2	Spécification géométrique des produits (GPS) – Système de codification ISO pour les tolérances sur les tailles linéaires – Partie 2: Tableaux des classes de tolérance normalisées et des écarts limites des alésages et des arbres
ISO 2768-1	Tolérances générales – Partie 1: Tolérances pour dimensions linéaires et angulaires non affectées de tolérances individuelles
ISO 14405-1	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 1 : Tailles linéaires
ISO 14405-2	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 2 : Dimensions autres que tailles linéaires ou angulaires
ISO 14405-3	Spécification géométrique de produits (GPS) – Tolérancement dimensionnel – Partie 3 : Tailles angulaires
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

S. Soubielle