代数学2,第8回の内容の理解度チェックの解答

2025/6/23 担当:那須

1 次の整域が一位分解整域 (UFD) でないことを示せ.

- (1) $R = \mathbb{Z}[\sqrt{-3}]$
- (2) $R = \mathbb{Z}[\sqrt{-5}]$
- (3) $R = \mathbb{Z}[\sqrt{-6}]$

(解答)

- (1) $R=\mathbb{Z}[\sqrt{-3}]$ において, $4\in R$ は $4=2^2=(1+\sqrt{-3})(1-\sqrt{-3})$ と既約元の積に分解されるため, R は UFD でない.
- (2) $R=\mathbb{Z}[\sqrt{-5}]$ において, $6\in R$ は $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ と既約元の積に分解されるため, R は UFD でない.
- (3) $R=\mathbb{Z}[\sqrt{-6}]$ において, $10\in R$ は $10=2\cdot 5=(2+\sqrt{-6})(2-\sqrt{-6})$ と既約元の積に分解されるため, R は UFD でない.

 $2 R = \mathbb{Q}[x]$ とする. 次の $f \in R$ を R の素元の積に分解せよ. すなわち,

$$f(x) = p_1 p_2 \dots p_r,$$

かつ p_i は $\mathbb{Q}[x]$ の素元 (既約元), となるような p_i (i = 1, ..., r) を求めよ.

- (1) $f = x^2 2x$
- (2) $f = x^2 2x + 1$
- (3) $f = x^3 + x^2 + x + 1$
- $(4) \ f = x^3 3x + 2$
- (5) $f = x^4 + 3x^3 + 4x^2 + 6x + 4$

(解答)

- (1) f = x(x-2)
- (2) $f = (x-1)^2$
- (3) $f = (x+1)(x^2+1)$
- (4) $f = (x-1)^2(x+2)$
- (5) $f = (x+1)(x+2)(x^2+2)$

③ $R=\mathbb{Q}[x]$ とする. 次の $f,g\in R$ に対し R における最大公約元 $\gcd(f,g)$ および最小公倍元 $\ker(f,g)$ を求めよ.

(1)
$$f = x^2 - 2x$$
, $g = x^2 - 2x + 1$

(2)
$$f = x^2 - 2x + 1$$
, $q = x^3 - 3x + 2$

(3)
$$f = x^3 - 3x + 2$$
, $g = x^4 + 3x^3 + 4x^2 + 6x + 4$

(解答)

$$gcd(f, g) = 1,$$
 $lcm(f, g) = fg = x(x - 1)^{2}(x - 2).$

$$gcd(f,g) = (x-1)^2$$
, $lcm(f,g) = g = (x-1)^2(x+2)$

$$gcd(f,g) = x + 2,$$
 $lcm(f,g) = (x-1)^2(x+1)(x+2)(x^2+2)$