

planetmath.org

Math for the people, by the people.

property of uniformly convex Banach Space

 ${\bf Canonical\ name} \quad {\bf PropertyOfUniformlyConvexBanachSpace}$

Date of creation 2013-03-22 15:14:18 Last modified on 2013-03-22 15:14:18 Owner georgiosl (7242) Last modified by georgiosl (7242)

Numerical id 20

Author georgiosl (7242)

Entry type Theorem Classification msc 46H05

Theorem 1. Let X be a uniformly convex Banach space. Let (x_n) be a sequence in X such that $\lim x_n = x$ in the weak-topology $(w(X, X^*))$ and $\lim \sup \|x_n\| \le \|x\|$. Then x_n converges to x.

Proof. For x=0 the claim is obvious, so suppose that $x\neq 0$. The sequence $(x_n)_{n\geq 1}$ converges to x for $w-topology\Rightarrow \|x\|\leq \liminf\|x_n\|$. So let $\lambda_n=\max\{\|x\|,\|x_n\|\}$ and we have that $\lim \lambda_n=\|x\|$. Define $y_n=\frac{x_n}{\lambda_n}$ and $y=\frac{x}{\|x\|}$. Then y_n converges to y in w-topology. We conclude that $\|y\|\leq \liminf\|\frac{y_n+y}{2}\|$. Also, $\|y\|=1,\|y_n\|\leq 1$ so we have that $\lim\|\frac{y_n+y}{2}\|=1$. As the Banach space is uniformly convex one can easily see that $\lim\|y_n-y\|=0$. Therefore x_n converges to x. The proof is complete.