Summary

p-type

n-type

$$E_i = q \Phi_{p_{\psi}^{\wedge}}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q \phi_p}{kT}}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q\varphi_p}{kT}}$$

$$n = \frac{n_i^2}{N_a} = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{-q\varphi_p}{kT}}$$

$$np = n_i^2$$

$$\mathbf{n} = N_d = \mathbf{n}_i e^{\frac{E_f - E_i}{kT}} = \mathbf{n}_i e^{\frac{q \varphi_n}{kT}}$$

$$n = N_d = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{q\varphi_n}{kT}}$$

$$p = \frac{n_i^2}{N_d} = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{-q\varphi_n}{kT}}$$

$$np = n_i^2$$

At 300 K ₹Ua ₹7-1) =]s = Is(e 2026 -1) DC sweep Leverse

Si Diode I-V Characteristics

$$I_{D} = I_{S} \left(e^{\frac{qV_{a}}{kT}} - 1 \right)$$

- Turn-on voltage typically 0.5 to 0.7 V
- Saturation current (I_s) typically 10⁻¹⁸ to 10⁻⁹ A
- kT/q = 0.025875 V at 300 K

constant constant · Vout2 = I2R2 (I2

Ideal arrent soutre

A Voltage Proportional to Absolute Temperature

For a fixed I_D >> I_S:

$$I_D = I_S \left(e^{\frac{q V_a}{k T}} - 1 \right) \ \ \, \Rightarrow \ \ \, V_a = \frac{k T}{q} \ln \left(\frac{I_D}{I_S} + 1 \right) \cong \frac{k T}{q} \ln \frac{I_D}{I_S}$$

Source: Microelectronic Circuit Design, 4th Edition, by R. C. Jaeger and T. N. Blalock

I₁ and I₂ are ideal current source.

$$V_{PTAT} = V_{D1} - V_{D2} = \frac{RT}{q} \ln \frac{I_1}{I_2} = T \times constant$$

Diode in Reverse Bias

Avalanche Breakdown in Reverse Bias

- Si diode with breakdown voltages greater than about 5.6 V enter breakdown through an avalanche mechanism.
- Carriers accelerated by electric field gain sufficient energy to break covalent bonds upon impact, thereby creating electronhole pairs.

Zener Breakdown in Reverse Bias

- Si diode with very heavy doping (i.e. very narrow depletion region) easily enter into Zener breakdown under reverse bias.
- Electrons tunnel directly between valence and conduction bands.

Diode Spice Model and Layout

Diode Spice Model

$$I_{D} = IS \left[exp \left(\frac{qV_{a}}{NkT} \right) - 1 \right]$$

$$C_{\rm D} = \mathbf{TT} \frac{I_{\rm D}}{\mathbf{N}(kT/q)}$$

$$C_{j} = \frac{CJO}{(1 - \frac{V_{a}}{VJ})^{M}} RAREA$$

Not covered in Ve311

TABLE 3.1

SPICE Diode Parameter Equivalences

PARAMETER	SPICE	TYPICAL DEFAULT VALUES
Saturation current	IS	10 fA
Ohmic series resistance	RS	0 Ω
Ideality factor or emission coefficient	N	1
Transit time	TT	0 sec
Zero-bias junction capacitance for a unit area diode RAREA = 1	CJO	0F/_{m^2}
Built-in potential	VJ	1 V
Junction grading coefficient	M	0.5
Relative junction area	RAREA	1 m^2

Source: Microelectronic Circuit Design, 4th Edition,

by R. C. Jaeger and T. N. Blalock

Diode Layout

