DISCRETE SEMICONDUCTORS

DATA SHEET

BF245A; BF245B; BF245C N-channel silicon field-effect transistors

Product specification Supersedes data of April 1995 File under Discrete Semiconductors, SC07 1996 Jul 30

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

FEATURES

- Interchangeability of drain and source connections
- Frequencies up to 700 MHz.

APPLICATIONS

• LF, HF and DC amplifiers.

DESCRIPTION

General purpose N-channel symmetrical junction field-effect transistors in a plastic TO-92 variant package.

^	٨	ı	IT	IC	M
u	н	L	J I	IU	אוי

The device is supplied in an antistatic package. The gate-source input must be protected against static discharge during transport or handling.

PINNING

PIN	SYMBOL	DESCRIPTION
1	d	drain
2	s	source
3	g	gate

Fig.1 Simplified outline (TO-92 variant) and symbol.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DS}	drain-source voltage		_	_	±30	V
V_{GSoff}	gate-source cut-off voltage	I _D = 10 nA; V _{DS} = 15 V	-0.25	_	-8	V
V_{GSO}	gate-source voltage	open drain	_	_	-30	V
I _{DSS}	drain current	$V_{DS} = 15 \text{ V}; V_{GS} = 0$				
	BF245A		2	_	6.5	mA
	BF245B		6	_	15	mA
	BF245C		12	_	25	mA
P _{tot}	total power dissipation	T _{amb} = 75 °C	_	_	300	mW
y _{fs}	forward transfer admittance	V _{DS} = 15 V; V _{GS} = 0; f = 1 kHz; T _{amb} = 25 °C	3	_	6.5	mS
C _{rs}	reverse transfer capacitance	V _{DS} = 20 V; V _{GS} = -1 V; f = 1 MHz; T _{amb} = 25 °C	_	1.1	_	pF

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		_	±30	V
V_{GDO}	gate-drain voltage	open source	_	-30	V
V_{GSO}	gate-source voltage	open drain	_	-30	V
I _D	drain current		_	25	mA
I _G	gate current		_	10	mA
P _{tot}	total power dissipation	up to $T_{amb} = 75 ^{\circ}C;$	_	300	mW
		up to T _{amb} = 90 °C; note 1	_	300	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		_	150	°C

Note

1. Device mounted on a printed-circuit board, minimum lead length 3 mm, mounting pad for drain lead minimum $10 \text{ mm} \times 10 \text{ mm}$.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient	in free air	250	K/W
	thermal resistance from junction to ambient		200	K/W

STATIC CHARACTERISTICS

 $T_i = 25$ °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{(BR)GSS}	gate-source breakdown voltage	$I_G = -1 \mu A; V_{DS} = 0$	-30	_	V
V _{GSoff}	gate-source cut-off voltage	I _D = 10 nA; V _{DS} = 15 V	-0.25	-8.0	V
V_{GS}	gate-source voltage	$I_D = 200 \mu\text{A}; V_{DS} = 15 \text{V}$			
	BF245A		-0.4	-2.2	V
	BF245B		-1.6	-3.8	V
	BF245C		-3.2	-7.5	V
I _{DSS}	drain current	V _{DS} = 15 V; V _{GS} = 0; note 1			
	BF245A		2	6.5	mA
	BF245B		6	15	mA
	BF245C		12	25	mA
I _{GSS}	gate cut-off current	$V_{GS} = -20 \text{ V}; V_{DS} = 0$	_	-5	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0; T_j = 125 ^{\circ}\text{C}$	_	-0.5	μΑ

Note

1. Measured under pulse conditions: t_p = 300 $\mu s;~\delta \leq 0.02.$

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

DYNAMIC CHARACTERISTICS

Common source; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _{is}	input capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = -1 \text{ V}; f = 1 \text{ MHz}$	_	4	_	pF
C _{rs}	reverse transfer capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = -1 \text{ V}; f = 1 \text{ MHz}$	_	1.1	_	pF
Cos	output capacitance	$V_{DS} = 20 \text{ V}; V_{GS} = -1 \text{ V}; f = 1 \text{ MHz}$	_	1.6	_	pF
gis	input conductance	V _{DS} = 15 V; V _{GS} = 0; f = 200 MHz	_	250	_	μS
9 _{os}	output conductance	$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 200 \text{ MHz}$	_	40	_	μS
y _{fs}	forward transfer admittance	$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}$	3	_	6.5	mS
		V _{DS} = 15 V; V _{GS} = 0; f = 200 MHz	_	6	_	mS
y _{rs}	reverse transfer admittance	$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 200 \text{ MHz}$	_	1.4	_	mS
y _{os}	output admittance	$V_{DS} = 15 \text{ V}; V_{GS} = 0; f = 1 \text{ kHz}$	_	25	_	μS
f _{gfs}	cut-off frequency	V_{DS} = 15 V; V_{GS} = 0; g_{fs} = 0.7 of its value at 1 kHz	_	700	_	MHz
F	noise figure	V_{DS} = 15 V; V_{GS} = 0; f = 100 MHz; R_G = 1 k Ω (common source); input tuned to minimum noise	_	1.5	_	dB

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

gate-source voltage; typical values.

Fig.17 Reverse transfer capacitance as a function of gate-source voltage; typical values.

1996 Jul 30 8

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

Fig.21 Noise figure as a function of frequency; typical values.

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

PACKAGE OUTLINE

N-channel silicon field-effect transistors

BF245A; BF245B; BF245C

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.