2.3 第三次习题课

2.3.1 基础矩阵与标准单位向量

定义 2.21

n 维标准列向量是指以下 n 个 n 维列向量

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

定义 2.22

n 阶基础矩阵是指 n^2 个 n 阶矩阵 $\{E_{ij}(i,j=1,2,\cdots,n)\}$. 其中 $E_{ij}\in\mathbb{F}^{n\times n}$, 它的第 (i,j) 元素是 1,其他元素为 0.

性质 (1) $e_i^T e_j = 0, e_i^T e_i = 1$. 其中 $i \neq j$;

- (2) 若 $A \in \mathbb{F}^{m \times n}$, 则 Ae_i 为 A 的第 i 个列向量; $e_i^T A$ 为 A 的第 i 个行向量;
- (3) 若 $A \in \mathbb{F}^{m \times n}$, 则 $e_i^T A e_i = a_{ii}$;
- $(4)E_{ij}E_{kl} = \delta_{jk}E_{il};$
- (5) 若 $A \in \mathbb{F}^{n \times n}$, 则 $E_{ij}A$ 将 A 的第 j 行变成第 i 行, 其他元素变为 0;
- (6) 若 $A \in \mathbb{F}^{n \times n}$, 则 AE_{ij} 将 A 的第 i 列变成第 j 列,其他元素变为 0.

习题 2.14

设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

证明:

$$A^k = \begin{pmatrix} 0 & I_{n-k} \\ I_k & 0 \end{pmatrix}.$$

证明 将矩阵 A 写成 $A = (e_n, e_1, \dots, e_{n-1})$. 由分块矩阵的乘法及性质 (2), 有 $A^2 = (Ae_n, Ae_1, Ae_2, \dots, Ae_{n-1}) = (e_{n-1}, e_n, e_1, \dots, e_{n-2})$. 如此下去便可得到结论.

习题 2.15

具有以下形状的矩阵称为循环矩阵

$$\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \cdots & \cdots & \cdots & \cdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}.$$

证明: 同阶循环矩阵的乘积仍然是循环矩阵.

证明 设

$$J = \begin{pmatrix} 0 & I_{n-1} \\ 1 & 0 \end{pmatrix}.$$

注意到任意循环矩阵 A 可以表示为 $A = a_1I_n + a_2J + a_3J^2 + \cdots + a_nJ^{n-1}$ 的形式,反之有如前形式的矩阵也一定是循环矩阵. 两个循环矩阵的乘积可以写成关于 J 的两个多项式的乘积,又 $J^n = I_n$, 即可得到结论.

习题 2.16

设 $A \in \mathbb{R}$ 阶上三角矩阵且主对角线上元素全为零,证明: $A^n = 0$.

证明 可以设

$$A = \sum_{i < j} a_{ij} E_{ij}.$$

当 $j \neq k$ 时, $E_{ij}E_{kl} = 0$,因此在 A^n 的乘法展开式中,可能的非 0 项只能具有形状 $E_{ij_1}E_{j_1j_2}\cdots E_{j_{n-1}j_n}$,且 $1 \leq i < j_1 < j_2 < \cdots < j_n \leq n$. 显然这是不可能的,因此 $A^n = 0$.

2.3.2 迹及其应用

定义 2.23

设 $A \in \mathbb{F}^{n \times n}$,则A上主对角线元素之和称为矩阵A的迹,记为trA.

性质 若 $A, B \in \mathbb{F}^{n \times n}, k \in \mathbb{F}$,则

- $(1)\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B);$
- $(2)\operatorname{tr}(kA) = k(\operatorname{tr} A);$
- $(3)\operatorname{tr} A^T = \operatorname{tr} A;$
- $(4)\operatorname{tr}(AB) = \operatorname{tr}(BA).$

命题 2.9 (迹的等价刻画)

若映射 $f: \mathbb{F}^{n \times n} \to \mathbb{F}$, 对任意 $A, B \in \mathbb{F}^{n \times n}, k \in \mathbb{F}$, 满足

- (1)f(A+B) = f(A) + f(B);
- (2) f(kA) = k f(A);
- (3) f(AB) = f(BA);
- $(4) f(I_n) = n.$
- 则 f 是迹.

证明 由 f 的线性性知, $f(E_{11}) + f(E_{22}) + \cdots + f(E_{nn}) = f(E_{11} + E_{22} + \cdots + E_{nn}) = f(I_n) = n$. 又 $f(E_{ii}) = f(E_{ij}E_{ji}) = f(E_{ji}E_{ij}) = f(E_{jj})$,故 $f(E_{ii}) = 1$. 当 $i \neq j$ 时, $E_{ij} = E_{i1}E_{1j}$,则 $f(E_{ij}) = f(E_{i1}E_{1j}) = f(E_{i1}E_{1j}) = f(E_{i1}E_{ij}) = f(E_{i1}$

习题 2.17

不存在矩阵 $A, B \in \mathbb{F}^{n \times n}$, 使得 $AB - BA = kI_n$, 其中 $k \neq 0$.

证明 若存在这样的矩阵 A, B, 使得 $AB - BA = kI_n$, 且 $k \neq 0$. 同时取迹, 有 $0 = \operatorname{tr}(AB) - \operatorname{tr}(BA) = \operatorname{tr}(AB - BA) = \operatorname{tr}(kI_n) = kn$, 矛盾!

习题 2.18

设 $A \in \mathbb{R}^{n \times n}$, 证明: $\operatorname{tr}(AA^T) \geq 0$, 等号成立当且仅当 A = 0.

证明 设 $A = (a_{ij})$, 经计算易得 $\operatorname{tr}(AA^T) = \sum_{i,j=1}^n a_{ij}^2 \ge 0$. 等号成立当且仅当 $a_{ij} = 0, \forall i, j,$ 即 A = 0.

习题 2.19

设 $A \in \mathbb{R}^{n \times n}$, 满足 $AA^T = A^2$, 证明: A 是对称矩阵.

证明 只需证明 $A-A^T=0$. 由上题知只需证明 $\operatorname{tr}((A-A^T)(A-A^T)^T)=0$ 即可. 由 $AA^T=A^2$,知 $A^TA=(A^T)^2$. $\operatorname{tr}((A-A^T)(A-A^T)^T)=\operatorname{tr}((A-A^T)(A^T-A))=\operatorname{tr}(AA^T-A^2-(A^T)^2+A^TA)=\operatorname{tr}(A^TA-AA^T)=\operatorname{tr}(A^TA)-\operatorname{tr}(AA^T)=0$,从而结论得证.

2.3.3 降阶公式及其应用

命题 2.10

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det A \cdot \det(D - CA^{-1}B).$$

证明 注意到

$$\begin{pmatrix} I_m & 0 \\ -CA^{-1} & I_n \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}$$

上述等式两边同时取行列式即可得到结论.

注 当 D 可逆时,有

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} I_m & 0 \\ -D^{-1}C & I_n \end{pmatrix} = \begin{pmatrix} A - BD^{-1}C & B \\ 0 & D \end{pmatrix}.$$

故

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det D \cdot \det(A - BD^{-1}C).$$

于是, 当矩阵 A, D 同时可逆时, 有如下等式

$$\det A \cdot \det(D - CA^{-1}B) = \det D \cdot \det(A - BD^{-1}C). \tag{2.44}$$

等式 (2.1) 我们称为降阶公式.

推论 2.2

若 $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, 且 $n \ge m$, 则

$$\det(\lambda I_n - AB) = \lambda^{n-m} \det(\lambda I_m - BA).$$

证明 当 $\lambda \neq 0$ 时,考虑矩阵

$$\begin{pmatrix} \lambda I_m & B \\ A & I_n \end{pmatrix}$$

对上述矩阵作同命题 2.2 及其注记中的处理.

当 $\lambda = 0$ 时,分别考虑m = n和n > m的情况.

习题 2.20 (小测第四题)

计算n 阶行列式

$$|A| = \begin{vmatrix} 0 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{vmatrix}.$$

解 注意到

$$A = -I_n + \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} (1, 1, \dots, 1).$$

由推论 2.1 知

$$\det A = \det \left(-I_n + \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} (1, 1, \dots, 1) \right) = (-1)^{n-1} \det \left(-1 + (1, 1, \dots, 1) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \right) = (-1)^{n-1} (n-1).$$

习题 2.21 (第五周作业)

计算下列n阶行列式

$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix}.$$

其中 $a_i \neq 0, i = 1, 2, \dots, n$.

解

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} = \det 1 \cdot \det \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} 1^{-1} (1,1,\cdots,1))$$

$$= \det \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} \cdot \det (1+(1,1,\cdots,1)) \begin{pmatrix} \frac{1}{a_1} & & & \\ & \frac{1}{a_2} & & \\ & & \ddots & \\ & & & \frac{1}{a_n} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}) = (\prod_{i=1}^n a_i)(1+\sum_{j=1}^n \frac{1}{a_j})$$

$$= \prod_{i=1}^n a_i + \sum_{j=1}^n \prod_{k \neq j} a_k.$$

注 后面将处理存在 $a_i = 0$ 的情形.

2.3.4 利用矩阵乘法计算行列式

习题 2.22

设 $s_k = x_1^k + x_2^k + \dots + x_n^k (k \ge 0), s_0 = n$

$$S = \begin{pmatrix} s_0 & s_1 & s_2 & \cdots & s_{n-1} \\ s_1 & s_2 & s_3 & \cdots & s_n \\ s_2 & s_3 & s_4 & \cdots & s_{n+1} \\ \vdots & \vdots & \vdots & & \vdots \\ s_{n-1} & s_n & s_{n+1} & \cdots & s_{2n-2} \end{pmatrix}.$$

求 $\det S$, 并证明当 $x_i \in \mathbb{R}$ 时, 有 $\det S \geq 0$.

解设

$$V = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}.$$

则 $S = VV^T$, 因此 $\det S = (\det V)^2 = \prod_{1 \le i < j \le n} (x_j - x_i)^2 \ge 0$.

习题 2.23

计算下列矩阵 A 的行列式

$$A = \begin{pmatrix} x & y & -z & w \\ y & -x & -w & -z \\ z & -w & x & y \\ w & z & y & -x \end{pmatrix}.$$

解 注意到 $AA^T = diag(u, u, u, u)$, 其中 $u = x^2 + y^2 + z^2 + w^2$. 于是

$$(\det A)^2 = (x^2 + y^2 + z^2 + w^2)^4.$$

因此 $\det A=(x^2+y^2+z^2+w^2)^2$ 或者 $\det A=-(x^2+y^2+z^2+w^2)^2$,带入 x=1,y=z=w=0,有 $\det A=1$,故 $\det A=(x^2+y^2+z^2+w^2)^2$.

2.3.5 摄动法及其应用

命题 2.11

若 A 是一个 n 阶方阵,则存在一个正数 a,使得对任意的 0 < t < a,矩阵 $tI_n + A$ 总是可逆矩阵.

证明 由行列式的展开式,可以假设

$$\det (tI_n + A) = t^n + a_1t^{n-1} + \dots + a_{n-1}t + a_n.$$

这是一个关于t的n次多项式,其上至多有n个不同的根.若上述多项式的根均为零,则可取a=1;若上述多项

式有非零根,则可取 a 为上述多项式模长的最小值. 无论上述哪种情况,当 $0 < t_0 < a$ 时, t_0 都不会是上述多项式的根,因此 $\det(t_0I_n + A) \neq 0$,即矩阵 $t_0I_n + A$ 可逆.

 $\dot{\mathbf{L}}$ 这个命题告诉我们对任意的 n 阶矩阵 A, 经过微小的一维摄动后, $tI_n + A$ 总能成为一个可逆矩阵.

笔记 摄动法原理: 设 A 是 n 阶矩阵,由上面命题知,存在一列有理数 $t_k \to 0$,使得 $t_k I_n + A$ 都是可逆矩阵. 如果一个矩阵问题对可逆矩阵成立,特别地对 $t_k I_n + A$ 成立,并且该问题关于 t_k 连续,则可让 $t_k \to 0$,最后得到该问题对一般的方阵 A 也成立. 需要注意的是: 摄动法处理矩阵问题时一定要关于 t_k 连续. 这一点非常重要,否则我们将不能用摄动法来归结处理. 一般而言,运用摄动法分为两步: 首先处理可逆矩阵情形; 其次再利用摄动以及取极限得到一般情况的证明. 接下来,我们来看一个具体的例子.

习题 2.24

设 $A, B, C, D \in \mathbb{F}^{n \times n}$ 且 AC = CA. 证明:

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det (AD - CB).$$

证明 若矩阵 A 可逆, 由命题 2.2 及矩阵 A, C 的交换性知

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det A \cdot \det(D - CA^{-1}B) = \det(AD - ACA^{-1}B) = \det(AD - CB).$$

对于一般的方阵 A,可以取到一列有理数 $t_k \to 0$,使得 $t_k I_n + A$ 是可逆矩阵,且 $(t_k I_n + A)C = C(t_k I_n + A)$. 由前面分析知

$$\det \begin{pmatrix} t_k I_n + A & B \\ C & D \end{pmatrix} = \det ((t_k I_n + A)D - CB).$$

注意到上述等式两边均为关于 t_k 的多项式,从而关于 t_k 连续 (适合摄动法使用条件).上述等式两边同时取极限,令 $t_k \to 0$,即有

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det (AD - CB).$$

结论得证.

2.3.6 运用多项式处理行列式

命题 2.12

设多项式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

若 f(x) 有 n+1 个不同的根 b_1,b_2,\cdots,b_{n+1} , 即 $f(b_1)=f(b_2)=\cdots=f(b_{n+1})=0$, 则 f(x) 是零多项式.

证明 由假设 $x_0 = a_0, x_1 = a_1, \dots, x_{n-1} = a_{n-1}, x_n = a_n$ 是下列方程组的解

$$\begin{cases} x_0 + b_1 x_1 + \dots + b_1^{n-1} x_{n-1} + b_1^n x_n = 0 \\ x_0 + b_2 x_1 + \dots + b_2^{n-1} x_{n-1} + b_2^n x_n = 0 \\ \dots \\ x_0 + b_{n+1} x_1 + \dots + b_{n+1}^{n-1} x_{n-1} + b_{n+1}^n x_n = 0 \end{cases}$$

上述线性方程组的系数是一个 V and er M ond e 行列式,又 $b_1, b_2, \cdots, b_{n+1}$ 互不相同,所以系数行列式不为零. 由 Cr $a_n = a_{n-1} = \cdots = a_1 = a_0 = 0$,故 f(x) 是零多项式.

习题 2.25

设 $f_k(x)(k=1,2,\cdots,n)$ 是次数不超过 n-2 的多项式,证明:对任意 n 个数 a_1,a_2,\cdots,a_n 均有

$$\begin{vmatrix} f_1(a_1) & f_2(a_1) & \cdots & f_n(a_1) \\ f_1(a_2) & f_2(a_2) & \cdots & f_n(a_2) \\ \vdots & \vdots & & \vdots \\ f_1(a_n) & f_2(a_n) & \cdots & f_n(a_n) \end{vmatrix} = 0.$$

证明 考虑如下多项式函数

$$g(x) \stackrel{\triangle}{=} \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f_1(a_2) & f_2(a_2) & \cdots & f_n(a_2) \\ \vdots & \vdots & & \vdots \\ f_1(a_n) & f_2(a_n) & \cdots & f_n(a_n) \end{vmatrix} = 0.$$

若 $a_i(i=2,\cdots,n)$ 中有相同者,则显然有 g(x)=0. 若诸 a_i 互不相同,则由 $g(a_i)=0$ $(i=2,\cdots,n)$,知 g(x) 有 n-1 个互不相同的根,由命题 2.4,知 g(x)=0. 综上,无论何种情况,总有 g(x)=0,特别 $g(a_1)=0$,因此原行列式值等于零.

习题 2.26

计算下列n阶行列式

$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix}.$$

解考虑如下多项式函数

$$f(x) \stackrel{\triangle}{=} \begin{vmatrix} 1 + a_1 + x & 1 & \cdots & 1 \\ 1 & 1 + a_2 + x & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 + a_n + x \end{vmatrix}.$$

存在自然数 N, 当 x>N 时, $a_i+x(i=1,2,\cdots,n)$ 全不为零. 于是由习题 2.8 知,当 x>N 时 $f(x)=\prod_{i=1}^n(a_i+x)+\sum_{j=1}^n\prod_{k\neq j}(a_k+x)$. 再由命题 2.4 知 $f(x)=\prod_{i=1}^n(a_i+x)+\sum_{j=1}^n\prod_{k\neq j}(a_k+x)$ 对任意 x 成立. 特别对 x=0 成立. 因此

$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix} = \prod_{i=1}^n a_i + \sum_{j=1}^n \prod_{k \neq j} a_k.$$