

IIC2223 — Teoría de autómatas y lenguajes formales — 2' 2020

TAREA 2

Publicación: Viernes 28 de agosto.

Entrega: Jueves 3 de septiembre hasta las 23:59 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Para cada lenguaje escriba una expresión regular que lo defina. Explique su respuesta.

- 1. Sea $\Sigma_1 = \{0, 1\}$. L_1 es el lenguaje de todas las palabras $w \in \Sigma_1^*$ tal que $w \notin \mathcal{L}(01^+(011)^*(0+1))$.
- 2. Sea $\Sigma_2 = \{0,1\} \times \{0,1\}$. L_2 es el lenguaje de todas las palabras $w \in \Sigma_2^*$ tal que para todo par consecutivo (a,b) y (c,d) se tiene que b=c. Por ejemplo, $(0,1)(1,0) \in L_2$ pero $(0,1)(0,1) \notin L_2$.

Pregunta 2

Sea Σ un alfabeto finito y sea R_1 y R_2 expresiones regulares sobre Σ . Se define el operador:

$$R_1 \downarrow \downarrow R_2$$

tal que $w \in \mathcal{L}(R_1 \downarrow R_2)$ si, y solo si, w se puede descomponer como $w = u_1 v_1 u_2 v_2 \dots u_k v_k$ para algún $k \ge 1$ y con $u_i, v_i \in \Sigma^*$ para todo $i \le k$ tal que $u_1 u_2 \dots u_k \in \mathcal{L}(R_1)$ y $v_1 v_2 \dots v_k \in \mathcal{L}(R_2)$. Por ejemplo, la expresión $(a^*) \downarrow (b^*)$ define todas las palabras en $\{a, b\}^*$.

Demuestre que para toda expresiones regulares R_1 y R_2 , el resultado de $R_1 \downarrow \downarrow R_2$ define un lenguaje regular.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.