Olimpiada Națională de Matematică

Etapa finală Iași, 17 Aprilie 2006 SOLUȚII ȘI BAREMURI

CLASA A XI-A

Subiectul 1. Fie A o matrice pătrată de ordin n, cu elemente numere complexe și A^* matricea sa adjunctă. Demonstrați că dacă există un număr natural $m \ge 1$ astfel încât $(A^*)^m = 0_n$, atunci $(A^*)^2 = 0_n$.

- dacă A are rangul cel mult n-2 atunci $A^*=0_n$,
- dacă A are rangul n-1 atunci din $AA^* = 0_n$ și din inegalitatea lui Sylvester reiese $0 = \operatorname{rang}(AA^*) \ge \operatorname{rang}(A) + \operatorname{rang}(A^*) n = \operatorname{rang}(A^*) 1$(3 puncte)

Să presupunem acum că $m \geq 3$ (în caz contrar nu avem nimic de demonstrat). Deoarece A are rangul cel mult 1 există matricea linie $X \in \mathcal{M}_{1n}(\mathbb{C})$ și matricea coloană $Y \in \mathcal{M}_{n1}(\mathbb{C})$ astfel încât A = YX. Notând $XY = a \in \mathbb{C}$ obținem $0_n = A^m = Y(XY)^{m-1}X = a^{m-1}YX = a^{m-1}A$, de unde a = 0 sau $A = 0_n$, deci $A^2 = aA = 0_n$. . . (2 puncte)

Subiectul 2. Vom spune că matricea $B \in \mathcal{M}_n(\mathbb{C})$ este o pseudo-inversă a matricei $A \in \mathcal{M}_n(\mathbb{C})$ dacă A = ABA și B = BAB.

- a) Demonstrați că orice matrice pătrată are cel puţin o pseudo-inversă.
 - b) Pentru care matrice este pseudo-inversa unică?

Soluţie. a) Fie r rangul matricei A. Există atunci matricele inversabile P,Q astfel încât matricea PAQ să aibă primele r elemente de pe diagonala principală egale cu 1, iar restul elementelor nule. Întradevăr, transformările care se fac pentru a evidenţia rangul lui A corespund unor înmulţiri ale lui A cu matrice inversabile:

- permutarea liniilor (coloanelor) i, j revine la înmulţirea la stânga (dreapta) cu matricea (x_{kl}) dată de $x_{ll} = 1$ pentru $l \neq i, j, x_{ij} = x_{ji} = 1$ și restul elementelor nule;
- adunarea liniei (coloanei) i înmulțite cu α la linia (coloana) j se realizează prin înmulțirea la stânga (dreapta) cu matricea (x_{kl}) care are $x_{ll} = 1$ pentru $l \neq i$, $x_{ii} = \alpha$, $x_{ij} = 1$ (respectiv $x_{ji} = 1$) și restul elementelor nule;
 - \bullet înmulțirea liniei (coloanei) i cu α revine la înmulțirea la stânga

(dreapta) cu matricea (x_{kl}) care are $x_{ll} = 1$ pentru $l \neq i$, $x_{ii} = \alpha$ şi restul elementelor nule.

Presupunând acum că avem

$$PAQ = D = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix},$$

$$D_x = \begin{pmatrix} 1 & 0 & \dots & x \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix},$$

Subiectul 3. Se dau în plan sistemele de puncte A_1, A_2, \ldots, A_n şi B_1, B_2, \ldots, B_n , având centre de greutate diferite. Demonstrați că există un punct P astfel încât

$$PA_1 + PA_2 + \ldots + PA_n = PB_1 + PB_2 + \ldots + PB_n$$
.

Soluție. Considerăm un sistem de coordonate astfel încât cele două centre de greutate să aibe abscise diferite. Să presupunem că avem coordonatele $A_i(a_i, a'_i)$ și $B(b_i, b'_i)$. Căutăm P pe Ox: P(p, 0). Considerăm funcția $f: \mathbb{R} \to \mathbb{R}, \dots$ (2 puncte)

$$f(p) = PA_1 + PA_2 + \ldots + PA_n - (PB_1 + PB_2 + \ldots + PB_n).$$

Avem

$$\lim_{p \to \infty} f(p) = \lim_{p \to \infty} \sum_{k=1}^{n} \frac{2p(b_k - a_k) + a_k^2 - b_k^2 + a_k'^2 - b_k'^2}{\sqrt{(p - a_k)^2 + a_k'^2} + \sqrt{(p - b_k)^2 + b_k'^2}}$$
$$= \sum_{k=1}^{n} (b_k - a_k)$$

Observație. Condiția referitoare la centrele de greutate este necesară pentru $n \geq 3$. Într-adevăr, dacă punctele B_1, B_2, \ldots, B_n sunt mijloacele segmentelor $[A_1A_2], [A_2A_3], \ldots, [A_nA_1]$, atunci punctul P nu există. În cazul n = 2, condiția se poate elimina.

Subiectul 4. Se consideră o funcție $f:[0,\infty)\to\mathbb{R}$, care are proprietatea: pentru orice x>0, șirul $(f(nx))_{n>0}$ este strict crescător.

- a) Dacă funcția este în plus continuă pe [0,1], rezultă că f este strict crescătoare?
 - b) Aceeași întrebare dacă funcția este continuă pe \mathbb{Q}_+ .

Soluție. a) Nu, deoarece avem contraexemplul

$$f(x) = \begin{cases} x & \text{dacă } x \in [0, 1] \cup \mathbb{Q}_+ \\ 2x & \text{dacă } x \in (1, \infty) \setminus \mathbb{Q}. \end{cases}$$
 (3 puncte)

b) În acest caz răspunsul este da.

Pentru aceasta vom folosi următoarea observație, care rezultă imediat din ipoteză: dacă (r_n) este un şir strict monoton de numere raționale și x este un număr pozitiv atunci șirul $(f(r_nx))$ este strict monoton.

Să presupunem acum prin reducere la absurd că există x < y astfel încât $f(x) \ge f(y)$. Fie a un număr rațional din intervalul (x, y). Există atunci un şir strict crescător (q_n) şi un şir strict descrescător (r_n) de numere raționale astfel încât $(q_n x) \to a$ şi $(r_n y) \to a$. Rezultă astfel

$$f(x) < \lim_{n \to \infty} f(q_n x) = f(a) = \lim_{n \to \infty} f(r_n y) < f(y),$$