

Obsah

- Požadavky
- Modulace
 - BPSK
 - BOC
- Náhodné posloupnosti
- Posloupnost maximální délky
- Goldovy kódy
- Další posloupnosti

Požadavky

- 1. Přesné měření doby příchodu signálu
- 2. Možnost přenášet navigační zprávu

Požadavky na signál

Rozptyl měření času příchodu impulsního signálu

$$\sigma_{\tau_{min}}^2 = \frac{N_0}{2E\beta^2}$$

 N_0 jednostranná spektrální výkonová hustota šumu

E energie signál

 β efektivní šířka pásma signálu

$$\beta^2 = \frac{4\pi^2}{2E} \int_{-\infty}^{\infty} f^2 |S(f)|^2 df \,,$$

BPSK

Datový signál (komplexní obálka)

$$\tilde{s}_{d_BPSK}(t) = \sqrt{P}d(t)c(t)$$

Pilotní signál

$$\tilde{s}_{p_BPSK}(t) = \sqrt{P}c(t)$$

- P výkon signálu
- d(t) NRZ (non-return-to-zero) signál přenášející navigační zprávu
- c(t) dálkoměrný kód

BPSK signál

Nosná vlna

BPSK obdélníkový modulační impulz

$$d(t) = \sum_{k=-\infty}^{\infty} d_k \operatorname{rect}_{T_b}(t - kT_b)$$

 $d_k \qquad \text{posloupnost bitů navigační zprávy } d_k \in \{-1,1\}$ $\mathrm{rect}_{T_b}(.) \text{ obdélníkový modulační impuls o době trvání bitu navigační zprávy } T_b$

$$c(t) = \sum_{k=-\infty}^{\infty} c_k \operatorname{rect}_{T_C}(t - kT_C)$$

 c_k dálkoměrná posloupnost, $c_k \in \{-1,1\}$

 T_c doba trvání chipu dálkoměrného kódu

BPSK obecný modulační impulz

$$\varsigma_k = d'_k \cdot c_k$$

$$\varsigma(t) = \sum_{k=-\infty}^{\infty} \varsigma_k . g(t - kT_c)$$

 $g(t - kT_c)$ modulační impulz

$$\tilde{s}_{d_BPSK}(t) = \sqrt{P}\varsigma(t)$$

BPSK

Autokorelační funkce

$$\tilde{R}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \tilde{s}^*(t) \tilde{s}(t+\tau) dt$$

Spektrální výkonová hustota

$$C(\omega) = \mathbf{F}(R(\tau)),$$

BPSK obdélníkový modulační impulz

$$R(\tau) = \begin{cases} P\left(1 - \frac{|\tau|}{T_c}\right) & pro |\tau| \le T_c \\ 0 & jinde \end{cases}$$

$$C(\omega) = \frac{4P}{T_c \omega^2} sin^2 \frac{\omega T_c}{2}$$

BQC(m,n)

BOC signál

Nosná vlna

Korelační funkce BPSK a BOC(1,1)

Spektrum BPSK a BOC(1,1)

Spektrum BOC(10,5)

Náhodná posloupnost

$$R_{n,k} = \begin{cases} 1 & \text{pro } k = 0 \\ 0 & \text{jinde} \end{cases}$$

Pseudonáhodná posloupnost

Deterministická posloupnost jejíž vlastnosti se blíží náhodné posloupnosti

- Posloupnost maximální délky
- Goldovy kódy
- Další kódy

Posloupnost maximální délky

Posloupnost maximální délky

- Pro vhodně vybraný generující polynom g(D) má posuvný registr jen dva cykly:
 - pro nulové počáteční nastavení registru $(R_{m-1}, R_{m-2}, ... R_0) = (0,0, ... 0)$ se opakuje nulový stav (nulový cyklus) jehož perioda je 1.
 - Pro jakékoliv jiný počáteční stav prochází registr všemi možnými stavy kromě nulového.
- Posloupnost generovaná pro $(R_{m-1},R_{m-2},...R_0) \neq (0,0,...0)$ má maximální možnou délku $N=2^m-1$.
- Generující polynom g(D) je primitivní polynom, tj. dělí bezezbytku polynom D^N-1 .
 - Primitivní polynom je polynom stupně právě m, proto $g_0=1\,$ a $g_m=1.$
- Posloupnost obsahuje o jednu 1 více než 0.
- Součtem dvou stejných posloupností lišících se fází získáme tu samou posloupnost, ale s jinou fází.
- Autokorelační funkce posloupnosti maximální délky po přemapování na +1/-1 nabývá dvou hodnot

Posloupnost maximální délky

$$R_{c,k} = \begin{cases} 1 & \text{pro } k = N.l \\ -\frac{1}{N} & \text{jinde} \end{cases}$$

Goldovy kódy

- Lze použít v CDMA
- Generují se jako součet dvou různých posloupností maximální délky
- Vzájemná korelační funkce preferovaných posloupností nabývá tří hodnot -1, -t a t-2, kde t závisí na délce generátoru dílčích posloupností maximální délky

$$t = \begin{cases} 2^{(m+1)/2} + 1 & \text{pro } m \text{ sud\'e} \\ 2^{(m+2)/2} + 1 & \text{pro } m \text{ lich\'e} \end{cases}$$

Aplikace

GPS L1

Další kódy

- Části posloupnosti maximální délky
 - Počítačovou simulací se hledají vhodné úseky, které mají požadované korelační vlastnosti
- Weil-code
 - GPS L1 C