space of all F-null sequences in m(E)

$$c_F(E) := \{(f_n) \in m(E) : F-\lim ||f_n|| = 0\}$$

is closed in $\,m\left(E\right)\,\,$ and invariant under $\,\left(\hat{T}\left(t\right)\right)_{\,t\,\geqq\,0}\,$. We call the quotient spaces

$$\mathbf{E}_{\mathbf{F}} := \mathbf{m}(\mathbf{E}) / \mathbf{c}_{\mathbf{F}}(\mathbf{E})$$
 and $\mathbf{E}_{\mathbf{F}}^{\mathsf{T}} := \mathbf{m}^{\mathsf{T}}(\mathbf{E}) / \mathbf{c}_{\mathbf{F}}(\mathbf{E}) \cap \mathbf{m}^{\mathsf{T}}(\mathbf{E})$

the <u>F-product of</u> E and the <u>F-product of</u> E with respect to the semigroup T, respectively. Thus E_F^T can be considered as a closed linear subspace of E_F . We have $E_F^T = E_F$ if (and only if) T has a bounded generator.

The canonical quotient norm on E_{r} is given by

$$\|(f_n) + c_F(E)\| = F-\lim \sup \|f_n\|$$
.

We can apply 3.3 in order to define the <u>F-product semigroup</u> $(T_F(t))_{t>0}$ on E_F^T by

$$T_{f}(t)((f_{n}) + c_{f}(E)) := (T(t)f_{n}) + c_{f}(E) \cap m^{T}(E)$$
.

Thus $T_F(t)$ is the restriction of $T(t)_F$ where $T(t)_F$ denotes the canonical extension of T(t) to the F-product E_F . (Note that $(T(t)_F)_{t\geq 0}$ is not strongly continuous unless T has a bounded generator.)

With the canonical injection $j:f\to (f,f,f,...)+c_F(E)$ from E into E_F^T the operators $T_F(t)$ are extensions of T(t) satisfying $\|T_F(t)\|=\|T(t)\|$. The basic facts about the generator $(A_F,D(A_F))$ of $(T_F(t))_{t\geq 0}$ follow from 3.3 and are collected in the following proposition.

<u>Proposition</u>. For the generator $(A_F,D(A_F))$ of the F-product semigroup the following holds:

(i)
$$D(A_F) = \{ (f_n) + c_F(E) : f_n \in D(A); (f_n), (Af_n) \in m^T(E) \},$$

(ii)
$$A_{F}((f_{n}) + c_{F}(E)) = (Af_{n}) + c_{F}(E)$$
.

In case A is a bounded operator then $D(A_F) = E_F^T = E_F$ and A_F is the canonical extension of A to E_F .

We will show in A-III,4.5 that the above construction preserves and even improves many spectral properties of the semigroup and its generator.

3.7. The Tensor Product Semigroup

Real- or complex-valued functions of two variables x, y are often limits of functions of the form $\sum_{i=1}^n f_i(x)g_i(y)$, which to some extent allows one to consider the variables x and y separately.