Chapter 19: Two-Port Networks

- 19.1 Introduction
- 19.2 Impedance Parameters (z)
- 19.3 Admittance Parameters (y)
- 19.4 Hybrid Parameters (h)
- 19.5 Transmission Parameters (T)
- 19.6 Relationships between Parameters
- 19.7 Interconnection of Networks
- 19.9 Applications

- A port is an access to the network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so that the net current entering the port equals zero.
- One port networks include two-terminal devices such as resistors, capacitors, and inductors.
- A two-port network has two separate ports for input and output.
- Two port networks include op amps, transistors and transformers.

A PURDUE UNIVERSITY SCHOOL Indianapolis

- Characterizing a two-port network requires that we relate the terminal quantities V₁, V₂, I₁, I₂ out of which two are independent. Six sets of voltage and current parameters will be derived.
- Two port networks are useful in communications, control systems, power systems, and electronics.
- They are used in electronics to model transistors and to facilitate cascaded design.
- Additionally, if we know the parameters of a twoport network it can be treated as a "black box" when embedded within a larger network.

19.2 Impedance Parameters (1)

Often called "Z-parameters" since their units are in ohms and they represent an impedance relationship between V₁, V₂, I₁, I₂ for the two port network shown below:

 Z-parameters are commonly used in filter synthesis, impedance matching networks design, and power distribution networks analysis.

ECE 202 Ch 19

5

The values of parameters can be evaluated by setting $I_1=0$ or $I_2=0$ (open circuit)

Setting $I_2=0$

$$z_{11} = \frac{V_1}{I} \qquad \text{and} \qquad z_{21} = \frac{V_2}{I}$$

 z_{11} = Open-circuit input impedance z_{21} = Open-circuit transfer impedance from port 2 to port 1

Setting $I_1 = 0$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$

z12 = Open-circuit transfer impedance from port 1 to port 2

z22 = Open-circuit output impedance

19.2 Impedance Parameters (3)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Indianapolis

Properties of Z-parameters

- Symmetrical networks z₁₁ = z₂₂
 - Implies a mirror like symmetry
- Reciprocal networks z₁₂ = z₂₁
 - Any network made up entirely of resistors, capacitors, and inductors must be reciprocal.
 - Linear networks with no dependant sources are reciprocal.
 - Interchanging an ideal voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading.

SCHOOL OF ENGINEERING AND TECHNOLOGY A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A reciprocal network can be replaced by the T-network shown above
- •If not reciprocal, the General network is the T-equivalent.

19.2 Impedance Parameters (5)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Note: some circuits do not have zparameter equivalents. (they may have other 2-port equivalents, as we shall see)
- Consider an ideal transformer:

$$V_1 = V_2/n$$
 and $I_1 = -nI_2$.

This cannot be expressed by:

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$
$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (6)

Example 19.1

Answer:

Determine the z-parameters of the following circuit.

$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1} \bigg|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

10

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.2 Impedance Parameters (7)

Practice Problem 19.2

Determine I₁ and I₂ in the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Answer:
$$I_1 = 2$$

$$I_1 = 200 \angle 30^{\circ} \text{ mA}$$

 $I_2 = 100 \angle 120^{\circ} \text{ mA}$

A PURDUE UNIVERSITY SCHOOL

Indianapolis

19.3 Admittance Parameters (1)

$$\begin{bmatrix} I_1 = y_{11}V_1 + y_{12}V_2 \\ I_2 = y_{21}V_1 + y_{22}V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

where the **y** terms are called the <u>admittance parameters</u>, or simply y parameters, and they have units of <u>Siemens</u>.

ECE 202 Ch 19 12

19.3 Admittance Parameters (2)

\mathbf{I}_{1} $\mathbf{Y}_{11} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}$ \mathbf{V}_{1} $\mathbf{y}_{21} = \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}}$ $\mathbf{V}_{2} = 0$ $\mathbf{Q}_{21} = \mathbf{Q}_{21}$ $\mathbf{Q}_{31} = \mathbf{Q}_{31}$

Setting $V_2 = 0$ (Shorting the output)

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

 y_{11} = Short-circuit input admittance y_{21} = Short-circuit transfer admittance from port 1 to port 2

Setting $V_1 = 0$ (Shorting the input)

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

y₁₂ = Short-circuit transfer
 admittance from port 2 to port 1
 y₂₂ = Short-circuit output
 admittance

19.3 Admittance Parameters (3)

- •A reciprocal network $(y_{12} = y_{21})$ can be replaced by the Pi-network in figure (a).
- •If not reciprocal, the network in figure (b) is the Pi-equivalent.

19.3 Admittance Parameters (4)

Example 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:

$$y = \begin{bmatrix} 0.75 & -0.5 \\ -0.5 & 0.625 \end{bmatrix} S$$

19.3 Admittance Parameters (5) Practice Problem 19.3

Practice Problem 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:
$$y = \begin{bmatrix} 75.77 & -30.3 \\ -30.3 & 45.47 \end{bmatrix} mS$$

19.3 Admittance Parameters (6)

SCHOOL OF ENGINEERING
AND TECHNOLOGY
A PURDUE UNIVERSITY SCHOOL

Practice Problem 19.3

Practice Problem 19.3 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

$$y_{11} = \frac{I_1}{(1)} \Big|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{(1)} \Big|_{V_2=0}$

Find Input Impedance

$$Z_{in} = 6 + 12 \parallel 18 = 13.2$$

$$I_1 = \frac{V_1}{Z_{in}} = \frac{1}{13.2} = 0.07576$$

$$y_{11} = 0.07576$$

Similarly at Output

$$Z_{out} = 18 + 6 \parallel 12 = 22$$

$$I_2 = \frac{V_2}{Z_{in}} = \frac{1}{22} = 0.04545$$

$$y_{22} = 0.04545$$

Find I_2 from current divider equation

$$I_2 = \frac{-12}{12 + 18} I_1$$

$$I_2 = (-0.4)0.07576 = -0.0303$$

$$y_{21} = -0.0303$$

$$y_{12} = y_{21} = -0.0303$$

Reciprocal Network

A PURDUE UNIVERSITY SCHOOL

19.3 Admittance Parameters (7)

Example 19.4

Determine the y-parameters of the following circuit. $I_2 = y_{21}V_1 + y_{22}V_2$

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

Solution: Apply KVL

Mesh I₁:
$$V_1 = 8I_1 + 2(I_1 + I_2)$$

 $V_1 = 10I_1 + 2I_2$
Mesh I₂: $V_2 = 4(2i + I_2) + 2(I_1 + I_2)$
 $V_2 = 8I_1 + 4I_2 + 2I_1 + 2I_2$
 $V_2 = 10I_1 + 6I_2$

Answer: $y = \begin{bmatrix} 0.15 & -0.05 \\ -0.25 & 0.25 \end{bmatrix}$

Subtract #1 from #2:

$$V_2 - V_1 = 0 + 4I_2$$

$$I_2 = -0.25V_1 + 0.25V_2$$

Substitute back into #1

$$V_1 = 10I_1 - 0.5V_1 + 0.5V_2$$

 $10I_1 = 1.5V_1 - 0.5V_2$
 $I_1 = 0.15V_1 - 0.05V_2$

Note: Sometimes two port parameters will fall out directly from mesh equations.

ECE 202 Ch 19

19.3 Admittance Parameters (8) Practice problem 19.4

Practice Problem 19.4

Determine the y-parameters of the following circuit.

Answer:
$$y = \begin{bmatrix} 0.625 & -0.125 \\ 0.375 & 0.125 \end{bmatrix} S$$

19.3 Admittance Parameters (9) Practice problem 19.4

Practice Problem 19.4 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

First find i_o :

$$i_0 = \frac{1}{3}$$

Dependent current source is then 2/3, find I_I by repetitive source transformations of the dependant current source

$$I_1 = 0.625 \implies y_{11} = 0.625$$

Next find current across 6 Ω resistor $I_{6\Omega}$:

$$I_{6\Omega} = 0.625 - \frac{1}{3}$$

$$I_2 + I_{6\Omega} = 2i_0$$

$$I_2 = 2i_0 - I_{6\Omega} = \frac{2}{3} - \left(0.625 - \frac{1}{3}\right) = 0.375 \implies y_{12} = 0.375$$

ECE 202 Ch 19

Z and Y Parameters

Comparison

Z-Parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

- Open one port $(I_1=0 \text{ or } I_2=0)$
- Connect a source to the other port
- Solve to find z-parameters

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

$$\mathbf{z}_{11} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_{2}}{\mathbf{I}_{1}}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

Y-Parameters

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}$$
$$I_{2} = y_{21}V_{1} + y_{22}V_{2}$$

- Short one port $(V_1=0 \text{ or } V_2=0)$
- Connect a source to the other port
- Solve to find y-parameters

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

Z and Y parameters

Alternative method (1 Amp / 1 Volt sources)

Z-Parameters

- Open circuit one port
- Put a 1 Amp current source at other port
- Resulting voltages are the z-parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

Y-Parameters

- Short circuit one port
- Put a 1 Volt voltage source at other port
- Resulting current are the y-parameters

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

ECE 202 Ch 19 22

19.4 Hybrid Parameters (1)

•The z and y parameters of a two-port network do not always exist. Therefore, there is a need to develop another set of parameters based on making V₁ and I₂ the dependent variables.

Assume no independent source in the network

$$\begin{bmatrix} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{bmatrix} \longrightarrow \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} h \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

where the **h** terms are called the <u>hybrid parameters</u>, or simply h parameters.

- •Hybrid parameters are very useful for describing electronic devices such as transistors because it is much easier to measure the h parameters of these devices than to measure their z or y parameters.
- •The ideal transformer can also be described by h parameters.

23

19.4 Hybrid Parameters (2)

$$\begin{vmatrix} h_{11} = \frac{V_1}{I_1} \\ V_{2} = 0 \end{vmatrix}$$

$$b_{21} = \frac{I_2}{I_1} \Big|_{V_2 = 0}$$

 h_{11} = short-circuit input impedance (Ω)

h₂₁ = short-circuit forward current gain

$$\begin{aligned} h_{12} &= \frac{V_1}{V_2} \Big|_{I_1 = 0} \\ h_{22} &= \frac{I_2}{V_2} \Big|_{I_1 = 0} \end{aligned}$$

h₁₂ = open-circuit reverse voltage-gain

h₂₂ = open-circuit output admittance (S)

- •Note that the h parameters represent an impedance, voltage gain, current gain, and admittance, thereby the term hybrid parameters.
- •For reciprocal network, $h_{12} = -h_{21}$

19.4 Hybrid Parameters (3)

Assume no independent source in the network

Hybrid model of a two-port network:

19.4 Hybrid Parameters (4)

Example 19.5:

Determine the h-parameters of the following circuit.

$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$$
 and $\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

Answer:
$$h = \begin{bmatrix} 4\Omega & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{9}S \end{bmatrix}$$

19.4 Hybrid Parameters (5)

Practice Problem 19.5:

Determine the h-parameters of the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0}$$
 and $h_{21} = \frac{I_2}{I_1} \Big|_{V_2=0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

$$h = \begin{bmatrix} 2.4\Omega & 0.4 \\ -0.4 & 0.2S \end{bmatrix}$$

Answer:

$$\mathbf{h} = \begin{bmatrix} \mathbf{h}_{11} \mathbf{\Omega} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \mathbf{S} \end{bmatrix}$$

19.9.1 Transistor Circuits (1)

Hybrid Parameters

- H-parameters are often used to model transistor circuits
- The h-parameters vary depending on biasing conditions
- Parameters are given different subscripts:
 - h₁₁ → h_{ie} = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

Example 2N3904

2N3903 2N3904

ECE 202 Ch 19 28

19.9.1 Transistor Circuits (2)

Hybrid Parameters

- H parameters are often found in manufacturers spec sheets
- Provide ability to calculate the exact voltage gain, input impedance, and output impedance of the transistor.

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

Assume no independent source in the network

$$\begin{bmatrix} \mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2 \\ \mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

where the **T** terms are called the <u>transmission parameters</u>, or simply T or <u>ABCD parameters</u>.

•Note that $-I_2$ is used since the current is considered to be leaving the network. It is logical to think of I_2 as leaving the two-port; this is customary convention in the power industry.

19.5 Transmission Parameters (2)

- These two-port transmission parameters provide a measure of how a circuit transmits voltage and current form a source to a load.
- They are useful in the analysis of transmission lines and are therefore called transmission parameters.
- They are also known as ABCD parameters and are used in the design of telephone systems, microwave networks, and radars.

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$

A=open-circuit voltage ratio

C= open-circuit transfer admittance (S)

$$\mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = 0}$$

$$D = -\frac{I_1}{I_2} \bigg|_{V_2 = 0}$$

B= negative shortcircuit transfer impedance (Ω)

D=negative shortcircuit current ratio

19.5 Transmission Parameters (3) IUPUI

PUI SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Solving for Transmission Parameters

- To find the transmission parameters, analyze the circuit as follows:
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = -BI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (4)

Example 19.8

Determine the T-parameters of the following circuit.

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

Apply KVL

$$V_1 = 10I_1 + 20(I_1 + I_2)$$
$$V_2 = -3I_1 + 20(I_1 + I_2)$$

$$V_1 = \frac{30}{17} V_2 -$$

$$I_1 = \frac{1}{17} V_2 -$$

Answer:

$$T = \begin{bmatrix} 1.765 & 15.294\Omega \\ 0.059S & 1.176 \end{bmatrix}$$

19.5 Transmission Parameters (5) Example 19.8

From KVL:

$$V_1 = 10I_1 + 20(I_1 + I_2) = 30I_1 + 20I_2$$
$$V_2 = -3I_1 + 20(I_1 + I_2) = 17I_1 + 20I_2$$

If we "open circuit" the output we get:

$$V_1 = 30I_1 + 20I_2^0$$
 $V_1 = 30I_1$
 $V_2 = 17I_1 + 20I_2^0$ $V_2 = 17I_1$

$$A = \frac{V_1}{V_2} = \frac{30I_1}{17I_1} = \frac{30}{17} = 1.765$$

$$C = \frac{1}{17} = 0.0588$$

If we "short circuit" the output we get:

$$V_{1} = 30I_{1} + 20I_{2}$$

$$V_{2} = 17I_{1} + 20I_{2}$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = \frac{-(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{1} = \frac{-20}{17}I_{2}$$

$$D = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$B = -\frac{V_{1}}{I_{2}} = -\frac{(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$I_{2} = -\frac{-20}{17}I_{2} = -\frac{1}{17}I_{2} = \frac{20}{17}I_{2} = 1.176$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (6)

 Transmission Parameters can be cascaded with the result found through simple matrix multiplication

ECE 202 Ch 19

19.5 Transmission Parameters (7)

IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits

Consider the following simple circuits

We can find their T Parameters to be:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

19.5 Transmission Parameters (8)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Building Block Circuits

 We can use this to construct the following "building block T parameters" to find the T parameters for any ladder type circuit.

19.5 Transmission Parameters (9)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Transfer function / Thevenin Equivalent

 The "A" parameter can be used to provide the inverse of the voltage Transfer Function H(s).

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$

- Parameters "A" and "B" can be used to find a relationship between the Open Circuit Voltage (V_2) and the Short Circuit Current ($-I_2$).
- We can us this to find the parameters for the Thevenin Equivalent Circuit.

$$A = \frac{V_1}{V_2} \bigg|_{I_2 = 0} = \frac{V_1}{V_{oc}}$$

$$V_{Th} = V_{oc} = \frac{1}{A}$$

$$\left. -\frac{V_1}{I_2} \right|_{V_2=0} = \frac{V_1}{I_{sc}}$$
 $I_N = I_{sc} = \frac{V_1}{I_{sc}}$

$$Z_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{B}{A}$$

19.5 Transmission Parameters (10) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Transfer Function - Example

Problem 16.80(a)

Find the transfer function $V_o(s)/V_s(s)$ for the following circuit

Answer:

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (11) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

dianapolis

Transfer Function - Example

Problem 16.80(a) Solution:

- a) Break up the circuit into a series of cascaded series and shunt components
- b) Find the composite "T" parameters for the circuit
- c) Use the relationship between the parameter "A" and the Transfer function

19.5 Transmission Parameters (12) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transfer Function - Example

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ s+s^2(s+1)+(s+1) & s^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s^2 + s + 1 & s \\ s^3 + s^2 + 2s + 1 & s^2 \end{bmatrix}$$

$$\begin{bmatrix} s^{3} + 2s^{2} + 3s + 2 & s + s^{2} \\ s^{3} + s^{2} + 2s + 1 & s^{2} \end{bmatrix}$$
ECE 202 Ch 19

Finding the combined T-matrix

The transfer function can be found directly from the Transmission Parameter "A"!

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0} = \frac{1}{H(s)}$$

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (13)

Example 19.9

The ABCD parameters of the two-port network at right are

$$\mathsf{T} = \begin{bmatrix} 4 & 20 & \Omega \\ 0.1S & 2 \end{bmatrix}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Answer: $V_{TH} = 10V V$; $R_L = 8\Omega$; Pm = 3.125W.

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (14)

Solution: Example 19.9

- a) Cascade the Series Resistor with the network
- b) Find the composite "T" parameters for the circuit
- c) Use the relationships to find V_{Th} and Z_{Th}

$$\begin{bmatrix} T' \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 20 \\ 0.1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 40 \\ 0.1 & 2 \end{bmatrix}$$

Find the Thevenin Equivalent Circuit for the source

$$V_{Th} = \frac{50}{5} = 10$$
 (

ECE 202 Ch 19

For Max Power Transfer

$$R_L = Z_{Th} = 8 \Omega$$

$$P_{\text{max}} = I^2 R_L$$

$$P_{\text{max}} = \left(\frac{V_{Th}}{R_L + Z_{Th}}\right)^2 R_L$$

$$P_{\text{max}} = \left(\frac{10}{16}\right)^2 8 = 3.125 \,\text{W}$$

19.5 Transmission Parameters (15)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits – Ideal Transformer

 We can also use these "building blocks" to model ideal transformers. Remember from Chapter 13

19.5 Transmission Parameters (16) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Example 13.8 Revisited

19.5 Transmission Parameters (17) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

Example 13.8 Revisited

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.7 Interconnection of Networks (1)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Series Connection of two-port networks:

For Impedances; ADD matrices.

$$Z = Z_a + Z_b$$

19.7 Interconnection of Networks (2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Connection of two-port networks:

For Admittances; ADD matrices.

$$Y = Y_a + Y_b$$

19.6 Relationships Between Networks

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL Indianapolis

Use this table to convert between two port parameters

	z		у		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	z ₂₂	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$		$\frac{y_{21}}{y_{11}}$	$\frac{\mathbf{y}_{11}}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$rac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\dot{\mathbf{y}}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

ECE 202 Ch 19

SCHOOL OF ENGINEERING AND TECHNOLOGY

Z-Parameters

Parameters:
$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Open circuit the **output** to find z_{11} and z_{21}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}^{0} \qquad \qquad V_{1} = V_{2} = z_{21}I_{1} + z_{22}I_{2}^{0} \qquad \qquad V_{2} = V_{2} =$$

Set $I_1 = 1$ then solve for V_1 and V_2

Open circuit the **input** to find z_{21} and z_{22}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$V_{1} = z_{12}I_{2}$$

$$V_{2} = z_{22}I_{2}$$

Set $I_2 = 1$ then solve for V_1 and V_2

Z-Parameters (Given a circuit, find Z-parameters)

- Solving problems to find z-parameters:
 - 1. Refer to definition, apply 1 amp source at input and output with opposite port left open (see previous slide)

2. Sometimes, KVL (mesh current equations) will cause z-parameters to fall right out!:

$$V_1 = 2I_1 + 6(I_1 + I_2) = 8I_1 + 6I_2$$

 $V_2 = 6(I_1 + I_2) + 3I_2 = 6I_1 + 9I_2$

$$z = \begin{bmatrix} 8 & 6 \\ 6 & 9 \end{bmatrix} \Omega$$

This mesh defined in counter clockwise direction for convenience

A PURDUE UNIVERSITY S Indianapolis

Z-Parameters (Given Z parameters, find circuit parameters)

- If given, z-parameters can use following techniques to find other circuit parameters (V₁, V₂, I₁, I₂, etc.):
 - 1. Apply the model and solve the circuit:

2. Substitute the defining equations into your analysis:

Mesh Analysis

$$10 = 5I_1 + V_1 + 10(I_1 + I_2)$$
$$0 = V_2 + 10(I_1 + I_2) + 20I_2$$

Substitute for V_1 and V_2

$$10 = 5I_1 + (12I_1 + 8I_2) + 10(I_1 + I_2)$$
$$0 = (8I_1 + 20I_2) + 10(I_1 + I_2) + 20I_2$$

10 V

AND TECHNOLOGY

Y-Parameters

Parameters:
$$I_1 = y_{11}V_1 + y_{12}V_2$$

 $I_2 = y_{21}V_1 + y_{22}V_2$

Short circuit the **output** to find y_{11} and y_{21}

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}^{0}$$

$$I_{2} = y_{21}V_{1} + y_{22}V_{2}^{0}$$

$$I_{3} = y_{11}V_{1}$$

$$I_{4} = y_{11}V_{1}$$

$$I_{5} = y_{21}V_{1}$$

$$I_{7} = y_{11}V_{1}$$

$$I_{8} = y_{11}V_{1}$$

$$I_{9} = y_{11}V_{1}$$

$$I_{1} = y_{11}V_{1}$$

$$I_{2} = y_{21}V_{1}$$

Set $V_1 = 1$ then solve for I_1 and I_2

Short circuit the **input** to find y_{21} and y_{22}

$$I_1 = y_1 V_1 + y_{12} V_2$$
 $I_2 = y_2 V_1 + y_{22} V_2$
 $I_2 = y_{22} V_2$
 $I_3 = y_{22} V_2$

Set $V_2 = 1$ then solve for I_1 and I_2

Y-Parameters (Solving Problems)

- To solve Y-parameter problems, can use these techniques
 - 1. Apply method from previous slide. Apply 1 Volt source at input and output while shorting opposite port

2. If given Y parameters can apply the model and solve the circuit:

3. Make it easy on yourself! Use conversions from $Z \rightarrow Y$ or $Y \rightarrow Z$

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_y} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix} & \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_z} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix} \\ \Delta_y = y_{11}y_{22} - y_{12}y_{21} & \Delta_z = z_{11}z_{22} - z_{12}z_{21} \end{bmatrix}$$

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \left(\frac{1}{\Delta_z} \right) \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

$$\Delta_z = z_{11} z_{22} - z_{12} z_{21}$$

H-Parameters

Parameters (hybrid of z and y):
$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Short circuit the **output** to find h₁₁ and h₂₁

$$V_1 = h_{11}I_1 + h_{12}V_2^{0}$$
 $V_1 = h_{11}I_1$
 $V_2 = h_{21}I_1 + h_{22}V_2^{0}$
 $V_3 = h_{21}I_1$

Set $I_1 = 1$ then solve for V_1 and I_2

Open circuit the **input** to find h₂₁ and h₂₂

$$V_{1} = h_{11} I_{1}^{0} + h_{12} V_{2}$$

$$I_{2} = h_{21} I_{1}^{1} + h_{22} V_{2}$$

$$V_{1} = h_{12} V_{2}$$

$$I_{2} = h_{22} V_{2}$$

Set $V_2 = 1$ then solve for V_1 and I_2

- To solve H-parameter problems, can use these techniques
 - 1. Apply methods from previous slide.

- 2. H parameters can be found by performing a set of tests on the device
 - a) Shorting the output and applying a current
 - b) Leaving the input open and applying a voltage across the output
- If given H parameters can apply the model and solve the circuit:

4. If helpful, use conversion tables

H-Parameters (Transistor Model)

- H parameters are often used in modeling transistors
- Parameters vary depending on biasing conditions
- Spec sheets often use different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

H-Parameters (Transistor Model)

- Equations for calculating input impedance, output impedance, voltage gain, and current gain for simple transistor circuit:
 - V_s and R_s can be the Thevenin equivalent source driving the input.
 - R_L can be the input impedance looking into the load of the circuit connected to the output

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

ECE 202 Ch 19

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transmission ("T") Parameters

- Parameters: $V_1 = AV_2 BI_2$ $I_1 = CV_2 - DI_2$
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - PI_{2}$$

$$I_{1} = CV_{2} - PI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$V_{1} = -BI_{2} \Longrightarrow I_{1} = -DI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

Transmission ("T") Parameters (Cascading)

 Primary benefit of "T"-Parameters is their ability to be cascaded.

T - Parameters (Building Block models)

 We can create "building block" models of components by finding their T-parameters and use the cascading property to find the T-parameters for the complete circuit/system.

62

T - Parameters (Building Block models)

 With "Building Block" approach, circuits can be broke up into discrete components and analyzed using T-parameters

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

T - Parameters (Useful Properties)

- The T parameters give us useful properties in the analysis of circuits:
 - Open Circuit Voltage Transfer Function:

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$
 $H(s) = \frac{1}{A}$

Thevenin Equivalent Circuit (Replace circuit as a source)

Conversion between Parameters

Conversion tables exists to convert between parameters

	z		y		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_y}$	$rac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z} \\ \underline{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$ $\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{y_{21}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{y_{22}}{y_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

Chapter 19: Two-Port Networks

- 19.1 Introduction
- 19.2 Impedance Parameters (z)
- 19.3 Admittance Parameters (y)
- 19.4 Hybrid Parameters (h)
- 19.5 Transmission Parameters (T)
- 19.6 Relationships between Parameters
- 19.7 Interconnection of Networks
- 19.9 Applications

- A port is an access to the network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so that the net current entering the port equals zero.
- One port networks include two-terminal devices such as resistors, capacitors, and inductors.
- A two-port network has two separate ports for input and output.
- Two port networks include op amps, transistors and transformers.

A PURDUE UNIVERSITY SCHOOL Indianapolis

- Characterizing a two-port network requires that we relate the terminal quantities V₁, V₂, I₁, I₂ out of which two are independent. Six sets of voltage and current parameters will be derived.
- Two port networks are useful in communications, control systems, power systems, and electronics.
- They are used in electronics to model transistors and to facilitate cascaded design.
- Additionally, if we know the parameters of a twoport network it can be treated as a "black box" when embedded within a larger network.

19.2 Impedance Parameters (1)

Often called "Z-parameters" since their units are in ohms and they represent an impedance relationship between V₁, V₂, I₁, I₂ for the two port network shown below:

 Z-parameters are commonly used in filter synthesis, impedance matching networks design, and power distribution networks analysis.

ECE 202 Ch 19

5

The values of parameters can be evaluated by setting $I_1=0$ or $I_2=0$ (open circuit)

Setting $I_2=0$

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

 z_{11} = Open-circuit input impedance z_{21} = Open-circuit transfer impedance from port 2 to port 1

Setting $I_1 = 0$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$

z12 = Open-circuit transfer impedance from port1 to port 2

z22 = Open-circuit output impedance

19.2 Impedance Parameters (3)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Indianapolis

Properties of Z-parameters

- Symmetrical networks z₁₁ = z₂₂
 - Implies a mirror like symmetry
- Reciprocal networks z₁₂ = z₂₁
 - Any network made up entirely of resistors, capacitors, and inductors must be reciprocal.
 - Linear networks with no dependant sources are reciprocal.
 - Interchanging an ideal voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading.

SCHOOL OF ENGINEERING AND TECHNOLOGY A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A reciprocal network can be replaced by the T-network shown above
- •If not reciprocal, the General network is the T-equivalent.

19.2 Impedance Parameters (5)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Note: some circuits do not have zparameter equivalents. (they may have other 2-port equivalents, as we shall see)
- Consider an ideal transformer:

$$V_1 = V_2/n$$
 and $I_1 = -nI_2$.

This cannot be expressed by:

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$
$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (6)

Example 19.1

Answer:

Determine the z-parameters of the following circuit.

$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1} \bigg|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

10

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.2 Impedance Parameters (7)

Practice Problem 19.2

Determine I₁ and I₂ in the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Answer:
$$I_1 = 2$$

$$I_1 = 200 \angle 30^{\circ} \text{ mA}$$

 $I_2 = 100 \angle 120^{\circ} \text{ mA}$

A PURDUE UNIVERSITY SCHOOL

Indianapolis

19.3 Admittance Parameters (1)

$$\begin{bmatrix} I_1 = y_{11}V_1 + y_{12}V_2 \\ I_2 = y_{21}V_1 + y_{22}V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

where the **y** terms are called the <u>admittance parameters</u>, or simply y parameters, and they have units of <u>Siemens</u>.

ECE 202 Ch 19 12

19.3 Admittance Parameters (2)

\mathbf{I}_{1} $\mathbf{Y}_{11} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}$ \mathbf{V}_{1} $\mathbf{y}_{21} = \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}}$ $\mathbf{V}_{2} = 0$ $\mathbf{Q}_{21} = \mathbf{Q}_{21}$ $\mathbf{Q}_{31} = \mathbf{Q}_{31}$

Setting $V_2 = 0$ (Shorting the output)

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

 y_{11} = Short-circuit input admittance y_{21} = Short-circuit transfer admittance from port 1 to port 2

Setting $V_1 = 0$ (Shorting the input)

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

y₁₂ = Short-circuit transfer
 admittance from port 2 to port 1
 y₂₂ = Short-circuit output
 admittance

19.3 Admittance Parameters (3)

- •A reciprocal network $(y_{12} = y_{21})$ can be replaced by the Pi-network in figure (a).
- •If not reciprocal, the network in figure (b) is the Pi-equivalent.

19.3 Admittance Parameters (4)

Example 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:

$$y = \begin{bmatrix} 0.75 & -0.5 \\ -0.5 & 0.625 \end{bmatrix} S$$

19.3 Admittance Parameters (5) Practice Problem 19.3

Practice Problem 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:
$$y = \begin{bmatrix} 75.77 & -30.3 \\ -30.3 & 45.47 \end{bmatrix} mS$$

19.3 Admittance Parameters (6)

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Practice Problem 19.3

Practice Problem 19.3 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

$$y_{11} = \frac{I_1}{(1)} \Big|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{(1)} \Big|_{V_2=0}$

Find Input Impedance

$$Z_{in} = 6 + 12 \parallel 18 = 13.2$$

$$I_1 = \frac{V_1}{Z_{in}} = \frac{1}{13.2} = 0.07576$$

$$y_{11} = 0.07576$$

Similarly at Output

$$Z_{out} = 18 + 6 \parallel 12 = 22$$

$$I_2 = \frac{V_2}{Z_{in}} = \frac{1}{22} = 0.04545$$

$$y_{22} = 0.04545$$

Find I_2 from current divider equation

$$I_2 = \frac{-12}{12 + 18}I_1$$

$$I_2 = (-0.4)0.07576 = -0.0303$$

$$y_{21} = -0.0303$$

$$y_{12} = y_{21} = -0.0303$$

Reciprocal Network

19.3 Admittance Parameters (7)

A PURDUE UNIVERSITY SCHOOL Indianapolis

Example 19.4

Determine the y-parameters of the following circuit. $I_2 = y_{21}V_1 + y_{22}V_2$

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

Solution: Apply KVL

Mesh I₁:
$$V_1 = 8I_1 + 2(I_1 + I_2)$$

 $V_1 = 10I_1 + 2I_2$
Mesh I₂: $V_2 = 4(2i + I_2) + 2(I_1 + I_2)$
 $V_2 = 8I_1 + 4I_2 + 2I_1 + 2I_2$
 $V_2 = 10I_1 + 6I_2$

Answer: $y = \begin{bmatrix} 0.15 \\ -0.25 \end{bmatrix}$

 $y = \begin{bmatrix} 0.15 & -0.05 \\ -0.25 & 0.25 \end{bmatrix} S$

Subtract #1 from #2:

$$V_2 - V_1 = 0 + 4I_2$$
 $I_2 = -0.25V_1 + 0.25V_2$

Substitute back into #1

$$V_1 = 10I_1 - 0.5V_1 + 0.5V_2$$

 $10I_1 = 1.5V_1 - 0.5V_2$
 $I_1 = 0.15V_1 - 0.05V_2$

Note: Sometimes two port parameters will fall out directly from mesh equations.

ECE 202 Ch 19

19.3 Admittance Parameters (8) Practice problem 19.4

Practice Problem 19.4

Determine the y-parameters of the following circuit.

Answer:
$$y = \begin{bmatrix} 0.625 & -0.125 \\ 0.375 & 0.125 \end{bmatrix} S$$

19.3 Admittance Parameters (9) Practice problem 19.4

Practice Problem 19.4 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

First find i_o :

$$i_0 = \frac{1}{3}$$

Dependent current source is then 2/3, find I_I by repetitive source transformations of the dependant current source

$$I_1 = 0.625 \implies y_{11} = 0.625$$

Next find current across 6 Ω resistor $I_{6\Omega}$:

$$I_{6\Omega} = 0.625 - \frac{1}{3}$$

$$I_2 + I_{6\Omega} = 2i_0$$

$$I_2 = 2i_0 - I_{6\Omega} = \frac{2}{3} - \left(0.625 - \frac{1}{3}\right) = 0.375 \implies y_{12} = 0.375$$

ECE 202 Ch 19

Z and Y Parameters

Comparison

Z-Parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

- Open one port $(I_1=0 \text{ or } I_2=0)$
- Connect a source to the other port
- Solve to find z-parameters

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

$$\mathbf{z}_{11} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_{2}}{\mathbf{I}_{1}}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

Y-Parameters

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}$$
$$I_{2} = y_{21}V_{1} + y_{22}V_{2}$$

- Short one port $(V_1=0 \text{ or } V_2=0)$
- Connect a source to the other port
- Solve to find y-parameters

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

Z and Y parameters

Alternative method (1 Amp / 1 Volt sources)

Z-Parameters

- Open circuit one port
- Put a 1 Amp current source at other port
- Resulting voltages are the z-parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

Y-Parameters

- Short circuit one port
- Put a 1 Volt voltage source at other port
- Resulting current are the y-parameters

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

ECE 202 Ch 19 22

19.4 Hybrid Parameters (1)

•The z and y parameters of a two-port network do not always exist. Therefore, there is a need to develop another set of parameters based on making V₁ and I₂ the dependent variables.

Assume no independent source in the network

$$\begin{bmatrix} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{bmatrix} \longrightarrow \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} h \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

where the **h** terms are called the <u>hybrid parameters</u>, or simply h parameters.

- •Hybrid parameters are very useful for describing electronic devices such as transistors because it is much easier to measure the h parameters of these devices than to measure their z or y parameters.
- •The ideal transformer can also be described by h parameters.

23

19.4 Hybrid Parameters (2)

$$\begin{vmatrix} h_{11} = \frac{V_1}{I_1} \\ V_{2} = 0 \end{vmatrix}$$

$$b_{21} = \frac{I_2}{I_1} \Big|_{V_2 = 0}$$

 h_{11} = short-circuit input impedance (Ω)

h₂₁ = short-circuit forward current gain

$$\begin{aligned} h_{12} &= \frac{V_1}{V_2} \Big|_{I_1 = 0} \\ h_{22} &= \frac{I_2}{V_2} \Big|_{I_1 = 0} \end{aligned}$$

h₁₂ = open-circuit reverse voltage-gain

h₂₂ = open-circuit output admittance (S)

- •Note that the h parameters represent an impedance, voltage gain, current gain, and admittance, thereby the term hybrid parameters.
- •For reciprocal network, $h_{12} = -h_{21}$

19.4 Hybrid Parameters (3)

Assume no independent source in the network

Hybrid model of a two-port network:

19.4 Hybrid Parameters (4)

Example 19.5:

Determine the h-parameters of the following circuit.

$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$$
 and $\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

Answer:
$$h = \begin{bmatrix} 4\Omega & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{9}S \end{bmatrix}$$

19.4 Hybrid Parameters (5)

Practice Problem 19.5:

Determine the h-parameters of the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0}$$
 and $h_{21} = \frac{I_2}{I_1} \Big|_{V_2=0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

$$h = \begin{bmatrix} 2.4\Omega & 0.4 \\ -0.4 & 0.2S \end{bmatrix}$$

Answer:

$$\mathbf{h} = \begin{bmatrix} \mathbf{h}_{11} \mathbf{\Omega} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \mathbf{S} \end{bmatrix}$$

19.9.1 Transistor Circuits (1)

Hybrid Parameters

- H-parameters are often used to model transistor circuits
- The h-parameters vary depending on biasing conditions
- Parameters are given different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

Example 2N3904

2N3903 2N3904

ECE 202 Ch 19 28

19.9.1 Transistor Circuits (2)

Hybrid Parameters

- H parameters are often found in manufacturers spec sheets
- Provide ability to calculate the exact voltage gain, input impedance, and output impedance of the transistor.

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

Assume no independent source in the network

$$\begin{bmatrix} \mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2 \\ \mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

where the **T** terms are called the <u>transmission parameters</u>, or simply T or <u>ABCD parameters</u>.

•Note that $-I_2$ is used since the current is considered to be leaving the network. It is logical to think of I_2 as leaving the two-port; this is customary convention in the power industry.

19.5 Transmission Parameters (2)

- These two-port transmission parameters provide a measure of how a circuit transmits voltage and current form a source to a load.
- They are useful in the analysis of transmission lines and are therefore called transmission parameters.
- They are also known as ABCD parameters and are used in the design of telephone systems, microwave networks, and radars.

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$

A=open-circuit voltage ratio

C= open-circuit transfer admittance (S)

$$\mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = 0}$$

$$D = -\frac{I_1}{I_2} \bigg|_{V_2 = 0}$$

B= negative shortcircuit transfer impedance (Ω)

D=negative shortcircuit current ratio

19.5 Transmission Parameters (3) IUPUI

PUI SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Solving for Transmission Parameters

- To find the transmission parameters, analyze the circuit as follows:
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = -BI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (4)

Example 19.8

Determine the T-parameters of the following circuit.

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

Apply KVL

$$V_1 = 10I_1 + 20(I_1 + I_2)$$
$$V_2 = -3I_1 + 20(I_1 + I_2)$$

$$V_1 = \frac{30}{17} V_2 -$$

$$I_1 = \frac{1}{17} V_2 -$$

Answer:

$$T = \begin{bmatrix} 1.765 & 15.294\Omega \\ 0.059S & 1.176 \end{bmatrix}$$

19.5 Transmission Parameters (5) Example 19.8

From KVL:

$$V_1 = 10I_1 + 20(I_1 + I_2) = 30I_1 + 20I_2$$
$$V_2 = -3I_1 + 20(I_1 + I_2) = 17I_1 + 20I_2$$

If we "open circuit" the output we get:

$$V_1 = 30I_1 + 20I_2^0$$
 $V_1 = 30I_1$
 $V_2 = 17I_1 + 20I_2^0$ $V_2 = 17I_1$

$$A = \frac{V_1}{V_2} = \frac{30I_1}{17I_1} = \frac{30}{17} = 1.765$$

$$C = \frac{1}{17} = 0.0588$$

If we "short circuit" the output we get:

$$V_{1} = 30I_{1} + 20I_{2}$$

$$V_{2} = 17I_{1} + 20I_{2}$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = \frac{-(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{1} = \frac{-20}{17}I_{2}$$

$$D = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$B = -\frac{V_{1}}{I_{2}} = -\frac{(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$I_{2} = -\frac{-20}{17}I_{2} = -\frac{1}{17}I_{2} = \frac{20}{17}I_{2} = 1.176$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (6)

 Transmission Parameters can be cascaded with the result found through simple matrix multiplication

ECE 202 Ch 19

19.5 Transmission Parameters (7)

IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits

Consider the following simple circuits

We can find their T Parameters to be:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

19.5 Transmission Parameters (8)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Building Block Circuits

 We can use this to construct the following "building block T parameters" to find the T parameters for any ladder type circuit.

19.5 Transmission Parameters (9)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Transfer function / Thevenin Equivalent

 The "A" parameter can be used to provide the inverse of the voltage Transfer Function H(s).

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$

- Parameters "A" and "B" can be used to find a relationship between the Open Circuit Voltage (V_2) and the Short Circuit Current ($-I_2$).
- We can us this to find the parameters for the Thevenin Equivalent Circuit.

$$A = \frac{V_1}{V_2} \bigg|_{I_2 = 0} = \frac{V_1}{V_{oc}}$$

$$V_{Th} = V_{oc} = \frac{1}{A}$$

$$\left. -\frac{V_1}{I_2} \right|_{V_2=0} = \frac{V_1}{I_{sc}}$$
 $I_N = I_{sc} = \frac{V_1}{I_{sc}}$

$$Z_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{B}{A}$$

19.5 Transmission Parameters (10) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Transfer Function - Example

Problem 16.80(a)

Find the transfer function $V_o(s)/V_s(s)$ for the following circuit

Answer:

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (11) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

dianapolis

Transfer Function - Example

Problem 16.80(a) Solution:

- a) Break up the circuit into a series of cascaded series and shunt components
- b) Find the composite "T" parameters for the circuit
- c) Use the relationship between the parameter "A" and the Transfer function

19.5 Transmission Parameters (12) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transfer Function - Example

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ s+s^2(s+1)+(s+1) & s^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s^2 + s + 1 & s \\ s^3 + s^2 + 2s + 1 & s^2 \end{bmatrix}$$

$$\begin{bmatrix} s^{3} + 2s^{2} + 3s + 2 & s + s^{2} \\ s^{3} + s^{2} + 2s + 1 & s^{2} \end{bmatrix}$$
ECE 202 Ch 19

Finding the combined T-matrix

The transfer function can be found directly from the Transmission Parameter "A"!

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0} = \frac{1}{H(s)}$$

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (13)

Example 19.9

The ABCD parameters of the two-port network at right are

$$\mathsf{T} = \begin{bmatrix} 4 & 20 & \Omega \\ 0.1S & 2 \end{bmatrix}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Answer: $V_{TH} = 10V V$; $R_L = 8\Omega$; Pm = 3.125W.

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (14)

Solution: Example 19.9

- a) Cascade the Series Resistor with the network
- b) Find the composite "T" parameters for the circuit
- c) Use the relationships to find V_{Th} and Z_{Th}

$$\begin{bmatrix} T' \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 20 \\ 0.1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 40 \\ 0.1 & 2 \end{bmatrix}$$

Find the Thevenin Equivalent Circuit for the source

$$V_{Th} = \frac{50}{5} = 10$$
 (

ECE 202 Ch 19

For Max Power Transfer

$$R_L = Z_{Th} = 8 \Omega$$

$$P_{\text{max}} = I^2 R_L$$

$$P_{\text{max}} = \left(\frac{V_{Th}}{R_L + Z_{Th}}\right)^2 R_L$$

$$P_{\text{max}} = \left(\frac{10}{16}\right)^2 8 = 3.125 \,\text{W}$$

19.5 Transmission Parameters (15)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits – Ideal Transformer

 We can also use these "building blocks" to model ideal transformers. Remember from Chapter 13

19.5 Transmission Parameters (16) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Example 13.8 Revisited

19.5 Transmission Parameters (17) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

Example 13.8 Revisited

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.7 Interconnection of Networks (1)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Series Connection of two-port networks:

For Impedances; ADD matrices.

$$Z = Z_a + Z_b$$

19.7 Interconnection of Networks (2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Connection of two-port networks:

For Admittances; ADD matrices.

$$Y = Y_a + Y_b$$

19.6 Relationships Between Networks

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL Indianapolis

Use this table to convert between two port parameters

	z		у		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	z ₂₂	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$		$\frac{y_{21}}{y_{11}}$	$\frac{\mathbf{y}_{11}}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$rac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\dot{\mathbf{y}}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

ECE 202 Ch 19

SCHOOL OF ENGINEERING AND TECHNOLOGY

Z-Parameters

Parameters:
$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Open circuit the **output** to find z_{11} and z_{21}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}^{0} \qquad \qquad V_{1} = V_{2} = z_{21}I_{1} + z_{22}I_{2}^{0} \qquad \qquad V_{2} = V_{2} =$$

Set $I_1 = 1$ then solve for V_1 and V_2

Open circuit the **input** to find z_{21} and z_{22}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$V_{1} = z_{12}I_{2}$$

$$V_{2} = z_{22}I_{2}$$

Set $I_2 = 1$ then solve for V_1 and V_2

Z-Parameters (Given a circuit, find Z-parameters)

- Solving problems to find z-parameters:
 - 1. Refer to definition, apply 1 amp source at input and output with opposite port left open (see previous slide)

2. Sometimes, KVL (mesh current equations) will cause z-parameters to fall right out!:

$$V_1 = 2I_1 + 6(I_1 + I_2) = 8I_1 + 6I_2$$

 $V_2 = 6(I_1 + I_2) + 3I_2 = 6I_1 + 9I_2$

$$z = \begin{bmatrix} 8 & 6 \\ 6 & 9 \end{bmatrix} \Omega$$

This mesh defined in counter clockwise direction for convenience

A PURDUE UNIVERSITY S Indianapolis

Z-Parameters (Given Z parameters, find circuit parameters)

- If given, z-parameters can use following techniques to find other circuit parameters (V₁, V₂, I₁, I₂, etc.):
 - 1. Apply the model and solve the circuit:

2. Substitute the defining equations into your analysis:

Mesh Analysis

$$10 = 5I_1 + V_1 + 10(I_1 + I_2)$$
$$0 = V_2 + 10(I_1 + I_2) + 20I_2$$

Substitute for V_1 and V_2

$$10 = 5I_1 + (12I_1 + 8I_2) + 10(I_1 + I_2)$$
$$0 = (8I_1 + 20I_2) + 10(I_1 + I_2) + 20I_2$$

10 V

AND TECHNOLOGY

Y-Parameters

Parameters:
$$I_1 = y_{11}V_1 + y_{12}V_2$$

 $I_2 = y_{21}V_1 + y_{22}V_2$

Short circuit the **output** to find y_{11} and y_{21}

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}^{0}$$

$$I_{2} = y_{21}V_{1} + y_{22}V_{2}^{0}$$

$$I_{3} = y_{11}V_{1}$$

$$I_{4} = y_{11}V_{1}$$

$$I_{5} = y_{21}V_{1}$$

$$I_{7} = y_{11}V_{1}$$

$$I_{8} = y_{11}V_{1}$$

$$I_{9} = y_{11}V_{1}$$

$$I_{1} = y_{11}V_{1}$$

$$I_{2} = y_{21}V_{1}$$

Set $V_1 = 1$ then solve for I_1 and I_2

Short circuit the **input** to find y_{21} and y_{22}

$$I_1 = y_1 V_1 + y_{12} V_2$$
 $I_2 = y_2 V_1 + y_{22} V_2$
 $I_2 = y_{22} V_2$
 $I_3 = y_{22} V_2$

Set $V_2 = 1$ then solve for I_1 and I_2

Y-Parameters (Solving Problems)

- To solve Y-parameter problems, can use these techniques
 - 1. Apply method from previous slide. Apply 1 Volt source at input and output while shorting opposite port

2. If given Y parameters can apply the model and solve the circuit:

3. Make it easy on yourself! Use conversions from $Z \rightarrow Y$ or $Y \rightarrow Z$

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_y} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix} & \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_z} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix} \\ \Delta_y = y_{11}y_{22} - y_{12}y_{21} & \Delta_z = z_{11}z_{22} - z_{12}z_{21} \end{bmatrix}$$

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \left(\frac{1}{\Delta_z} \right) \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

$$\Delta_z = z_{11} z_{22} - z_{12} z_{21}$$

H-Parameters

Parameters (hybrid of z and y):
$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Short circuit the **output** to find h₁₁ and h₂₁

$$V_1 = h_{11}I_1 + h_{12}V_2^{0}$$
 $V_1 = h_{11}I_1$
 $V_2 = h_{21}I_1 + h_{22}V_2^{0}$
 $V_3 = h_{21}I_1$

Set $I_1 = 1$ then solve for V_1 and I_2

Open circuit the **input** to find h₂₁ and h₂₂

$$V_{1} = h_{11} I_{1}^{0} + h_{12} V_{2}$$

$$I_{2} = h_{21} I_{1}^{1} + h_{22} V_{2}$$

$$V_{1} = h_{12} V_{2}$$

$$I_{2} = h_{22} V_{2}$$

Set $V_2 = 1$ then solve for V_1 and I_2

- To solve H-parameter problems, can use these techniques
 - 1. Apply methods from previous slide.

- 2. H parameters can be found by performing a set of tests on the device
 - a) Shorting the output and applying a current
 - b) Leaving the input open and applying a voltage across the output
- If given H parameters can apply the model and solve the circuit:

4. If helpful, use conversion tables

H-Parameters (Transistor Model)

- H parameters are often used in modeling transistors
- Parameters vary depending on biasing conditions
- Spec sheets often use different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

H-Parameters (Transistor Model)

- Equations for calculating input impedance, output impedance, voltage gain, and current gain for simple transistor circuit:
 - V_s and R_s can be the Thevenin equivalent source driving the input.
 - R_L can be the input impedance looking into the load of the circuit connected to the output

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

ECE 202 Ch 19

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transmission ("T") Parameters

- Parameters: $V_1 = AV_2 BI_2$ $I_1 = CV_2 - DI_2$
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - PI_{2}$$

$$I_{1} = CV_{2} - PI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$V_{1} = -BI_{2} \Longrightarrow I_{1} = -DI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

Transmission ("T") Parameters (Cascading)

 Primary benefit of "T"-Parameters is their ability to be cascaded.

T - Parameters (Building Block models)

 We can create "building block" models of components by finding their T-parameters and use the cascading property to find the T-parameters for the complete circuit/system.

62

T - Parameters (Building Block models)

 With "Building Block" approach, circuits can be broke up into discrete components and analyzed using T-parameters

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

T - Parameters (Useful Properties)

- The T parameters give us useful properties in the analysis of circuits:
 - Open Circuit Voltage Transfer Function:

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$
 $H(s) = \frac{1}{A}$

Thevenin Equivalent Circuit (Replace circuit as a source)

Conversion between Parameters

Conversion tables exists to convert between parameters

	z		y		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_y}$	$rac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z} \\ \underline{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$ $\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{y_{21}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{y_{22}}{y_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

Chapter 19: Two-Port Networks

- 19.1 Introduction
- 19.2 Impedance Parameters (z)
- 19.3 Admittance Parameters (y)
- 19.4 Hybrid Parameters (h)
- 19.5 Transmission Parameters (T)
- 19.6 Relationships between Parameters
- 19.7 Interconnection of Networks
- 19.9 Applications

- A port is an access to the network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so that the net current entering the port equals zero.
- One port networks include two-terminal devices such as resistors, capacitors, and inductors.
- A two-port network has two separate ports for input and output.
- Two port networks include op amps, transistors and transformers.

A PURDUE UNIVERSITY SCHOOL Indianapolis

- Characterizing a two-port network requires that we relate the terminal quantities V₁, V₂, I₁, I₂ out of which two are independent. Six sets of voltage and current parameters will be derived.
- Two port networks are useful in communications, control systems, power systems, and electronics.
- They are used in electronics to model transistors and to facilitate cascaded design.
- Additionally, if we know the parameters of a twoport network it can be treated as a "black box" when embedded within a larger network.

19.2 Impedance Parameters (1)

Often called "Z-parameters" since their units are in ohms and they represent an impedance relationship between V₁, V₂, I₁, I₂ for the two port network shown below:

 Z-parameters are commonly used in filter synthesis, impedance matching networks design, and power distribution networks analysis.

ECE 202 Ch 19

5

The values of parameters can be evaluated by setting $I_1=0$ or $I_2=0$ (open circuit)

Setting $I_2=0$

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

 z_{11} = Open-circuit input impedance z_{21} = Open-circuit transfer impedance from port 2 to port 1

Setting $I_1 = 0$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$

z12 = Open-circuit transfer impedance from port1 to port 2

z22 = Open-circuit output impedance

19.2 Impedance Parameters (3)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Indianapolis

Properties of Z-parameters

- Symmetrical networks z₁₁ = z₂₂
 - Implies a mirror like symmetry
- Reciprocal networks z₁₂ = z₂₁
 - Any network made up entirely of resistors, capacitors, and inductors must be reciprocal.
 - Linear networks with no dependant sources are reciprocal.
 - Interchanging an ideal voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading.

SCHOOL OF ENGINEERING AND TECHNOLOGY A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A reciprocal network can be replaced by the T-network shown above
- •If not reciprocal, the General network is the T-equivalent.

19.2 Impedance Parameters (5)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Note: some circuits do not have zparameter equivalents. (they may have other 2-port equivalents, as we shall see)
- Consider an ideal transformer:

$$V_1 = V_2/n$$
 and $I_1 = -nI_2$.

This cannot be expressed by:

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$
$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (6)

Example 19.1

Answer:

Determine the z-parameters of the following circuit.

$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1} \bigg|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

10

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.2 Impedance Parameters (7)

Practice Problem 19.2

Determine I_1 and I_2 in the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_1 = z_{11}I_1 + z_{12}I_2$$
$$V_2 = z_{21}I_1 + z_{22}I_2$$

Answer:
$$I_1 = 200 \angle 30^{\circ} \text{ mA}$$

 $I_2 = 100 \angle 120^{\circ} \text{ mA}$

A PURDUE UNIVERSITY SCHOOL

Indianapolis

19.3 Admittance Parameters (1)

$$\begin{bmatrix} I_1 = y_{11}V_1 + y_{12}V_2 \\ I_2 = y_{21}V_1 + y_{22}V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

where the **y** terms are called the <u>admittance parameters</u>, or simply y parameters, and they have units of <u>Siemens</u>.

ECE 202 Ch 19 12

19.3 Admittance Parameters (2)

\mathbf{I}_{1} $\mathbf{Y}_{11} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}$ \mathbf{V}_{1} $\mathbf{y}_{21} = \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}}$ $\mathbf{V}_{2} = 0$ $\mathbf{Q}_{21} = \mathbf{Q}_{21}$ $\mathbf{Q}_{31} = \mathbf{Q}_{31}$

Setting $V_2 = 0$ (Shorting the output)

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

 y_{11} = Short-circuit input admittance y_{21} = Short-circuit transfer admittance from port 1 to port 2

Setting $V_1 = 0$ (Shorting the input)

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

y₁₂ = Short-circuit transfer
 admittance from port 2 to port 1
 y₂₂ = Short-circuit output
 admittance

19.3 Admittance Parameters (3)

- •A reciprocal network $(y_{12} = y_{21})$ can be replaced by the Pi-network in figure (a).
- •If not reciprocal, the network in figure (b) is the Pi-equivalent.

19.3 Admittance Parameters (4)

Example 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:

$$y = \begin{bmatrix} 0.75 & -0.5 \\ -0.5 & 0.625 \end{bmatrix} S$$

19.3 Admittance Parameters (5) Practice Problem 19.3

Practice Problem 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:
$$y = \begin{bmatrix} 75.77 & -30.3 \\ -30.3 & 45.47 \end{bmatrix} mS$$

19.3 Admittance Parameters (6)

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Practice Problem 19.3

Practice Problem 19.3 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

$$y_{11} = \frac{I_1}{(1)} \Big|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{(1)} \Big|_{V_2=0}$

Find Input Impedance

$$Z_{in} = 6 + 12 \parallel 18 = 13.2$$

$$I_1 = \frac{V_1}{Z_{in}} = \frac{1}{13.2} = 0.07576$$

$$y_{11} = 0.07576$$

Similarly at Output

$$Z_{out} = 18 + 6 \parallel 12 = 22$$

$$I_2 = \frac{V_2}{Z_{in}} = \frac{1}{22} = 0.04545$$

$$y_{22} = 0.04545$$

Find I_2 from current divider equation

$$I_2 = \frac{-12}{12 + 18}I_1$$

$$I_2 = (-0.4)0.07576 = -0.0303$$

$$y_{21} = -0.0303$$

$$y_{12} = y_{21} = -0.0303$$

Reciprocal Network

19.3 Admittance Parameters (7)

A PURDUE UNIVERSITY SCHOOL Indianapolis

Example 19.4

Determine the y-parameters of the following circuit. $I_2 = y_{21}V_1 + y_{22}V_2$

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

Solution: Apply KVL

Mesh I₁:
$$V_1 = 8I_1 + 2(I_1 + I_2)$$

 $V_1 = 10I_1 + 2I_2$
Mesh I₂: $V_2 = 4(2i + I_2) + 2(I_1 + I_2)$
 $V_2 = 8I_1 + 4I_2 + 2I_1 + 2I_2$
 $V_2 = 10I_1 + 6I_2$

Answer: $y = \begin{bmatrix} 0.15 \\ -0.25 \end{bmatrix}$

 $y = \begin{bmatrix} 0.15 & -0.05 \\ -0.25 & 0.25 \end{bmatrix} S$

Subtract #1 from #2:

$$V_2 - V_1 = 0 + 4I_2$$
 $I_2 = -0.25V_1 + 0.25V_2$

Substitute back into #1

$$V_1 = 10I_1 - 0.5V_1 + 0.5V_2$$

 $10I_1 = 1.5V_1 - 0.5V_2$
 $I_1 = 0.15V_1 - 0.05V_2$

Note: Sometimes two port parameters will fall out directly from mesh equations.

ECE 202 Ch 19

19.3 Admittance Parameters (8) Practice problem 19.4

Practice Problem 19.4

Determine the y-parameters of the following circuit.

Answer:
$$y = \begin{bmatrix} 0.625 & -0.125 \\ 0.375 & 0.125 \end{bmatrix} S$$

19.3 Admittance Parameters (9) Practice problem 19.4

Practice Problem 19.4 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

First find i_o :

$$i_0 = \frac{1}{3}$$

Dependent current source is then 2/3, find I_I by repetitive source transformations of the dependant current source

$$I_1 = 0.625 \implies y_{11} = 0.625$$

Next find current across 6 Ω resistor $I_{6\Omega}$:

$$I_{6\Omega} = 0.625 - \frac{1}{3}$$

$$I_2 + I_{6\Omega} = 2i_0$$

$$I_2 = 2i_0 - I_{6\Omega} = \frac{2}{3} - \left(0.625 - \frac{1}{3}\right) = 0.375 \implies y_{12} = 0.375$$

ECE 202 Ch 19

Z and Y Parameters

Comparison

Z-Parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

- Open one port $(I_1=0 \text{ or } I_2=0)$
- Connect a source to the other port
- Solve to find z-parameters

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

$$\mathbf{z}_{11} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_{2}}{\mathbf{I}_{1}}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

Y-Parameters

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}$$
$$I_{2} = y_{21}V_{1} + y_{22}V_{2}$$

- Short one port $(V_1=0 \text{ or } V_2=0)$
- Connect a source to the other port
- Solve to find y-parameters

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

Z and Y parameters

Alternative method (1 Amp / 1 Volt sources)

Z-Parameters

- Open circuit one port
- Put a 1 Amp current source at other port
- Resulting voltages are the z-parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

Y-Parameters

- Short circuit one port
- Put a 1 Volt voltage source at other port
- Resulting current are the y-parameters

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

ECE 202 Ch 19 22

19.4 Hybrid Parameters (1)

•The z and y parameters of a two-port network do not always exist. Therefore, there is a need to develop another set of parameters based on making V₁ and I₂ the dependent variables.

Assume no independent source in the network

$$\begin{bmatrix} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{bmatrix} \longrightarrow \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} h \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

where the **h** terms are called the <u>hybrid parameters</u>, or simply h parameters.

- •Hybrid parameters are very useful for describing electronic devices such as transistors because it is much easier to measure the h parameters of these devices than to measure their z or y parameters.
- •The ideal transformer can also be described by h parameters.

23

19.4 Hybrid Parameters (2)

$$\begin{vmatrix} h_{11} = \frac{V_1}{I_1} \\ V_{2} = 0 \end{vmatrix}$$

$$b_{21} = \frac{I_2}{I_1} \Big|_{V_2 = 0}$$

 h_{11} = short-circuit input impedance (Ω)

h₂₁ = short-circuit forward current gain

$$\begin{aligned} h_{12} &= \frac{V_1}{V_2} \Big|_{I_1 = 0} \\ h_{22} &= \frac{I_2}{V_2} \Big|_{I_1 = 0} \end{aligned}$$

h₁₂ = open-circuit reverse voltage-gain

h₂₂ = open-circuit output admittance (S)

- •Note that the h parameters represent an impedance, voltage gain, current gain, and admittance, thereby the term hybrid parameters.
- •For reciprocal network, $h_{12} = -h_{21}$

19.4 Hybrid Parameters (3)

Assume no independent source in the network

Hybrid model of a two-port network:

19.4 Hybrid Parameters (4)

Example 19.5:

Determine the h-parameters of the following circuit.

$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$$
 and $\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

Answer:
$$h = \begin{bmatrix} 4\Omega & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{9}S \end{bmatrix}$$

19.4 Hybrid Parameters (5)

Practice Problem 19.5:

Determine the h-parameters of the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0}$$
 and $h_{21} = \frac{I_2}{I_1} \Big|_{V_2=0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

$$h = \begin{bmatrix} 2.4\Omega & 0.4 \\ -0.4 & 0.2S \end{bmatrix}$$

Answer:

$$\mathbf{h} = \begin{bmatrix} \mathbf{h}_{11} \mathbf{\Omega} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \mathbf{S} \end{bmatrix}$$

19.9.1 Transistor Circuits (1)

Hybrid Parameters

- H-parameters are often used to model transistor circuits
- The h-parameters vary depending on biasing conditions
- Parameters are given different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

Example 2N3904

2N3903 2N3904

ECE 202 Ch 19 28

19.9.1 Transistor Circuits (2)

Hybrid Parameters

- H parameters are often found in manufacturers spec sheets
- Provide ability to calculate the exact voltage gain, input impedance, and output impedance of the transistor.

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

Assume no independent source in the network

$$\begin{bmatrix} \mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2 \\ \mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

where the **T** terms are called the <u>transmission parameters</u>, or simply T or <u>ABCD parameters</u>.

•Note that $-I_2$ is used since the current is considered to be leaving the network. It is logical to think of I_2 as leaving the two-port; this is customary convention in the power industry.

19.5 Transmission Parameters (2)

- These two-port transmission parameters provide a measure of how a circuit transmits voltage and current form a source to a load.
- They are useful in the analysis of transmission lines and are therefore called transmission parameters.
- They are also known as ABCD parameters and are used in the design of telephone systems, microwave networks, and radars.

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$

A=open-circuit voltage ratio

C= open-circuit transfer admittance (S)

$$\mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = 0}$$

$$D = -\frac{I_1}{I_2} \bigg|_{V_2 = 0}$$

B= negative shortcircuit transfer impedance (Ω)

D=negative shortcircuit current ratio

19.5 Transmission Parameters (3) IUPUI

PUI SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Solving for Transmission Parameters

- To find the transmission parameters, analyze the circuit as follows:
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = -BI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (4)

Example 19.8

Determine the T-parameters of the following circuit.

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

Apply KVL

$$V_1 = 10I_1 + 20(I_1 + I_2)$$
$$V_2 = -3I_1 + 20(I_1 + I_2)$$

$$V_1 = \frac{30}{17} V_2 -$$

$$I_1 = \frac{1}{17} V_2 -$$

Answer:

$$T = \begin{bmatrix} 1.765 & 15.294\Omega \\ 0.059S & 1.176 \end{bmatrix}$$

19.5 Transmission Parameters (5) Example 19.8

From KVL:

$$V_1 = 10I_1 + 20(I_1 + I_2) = 30I_1 + 20I_2$$
$$V_2 = -3I_1 + 20(I_1 + I_2) = 17I_1 + 20I_2$$

If we "open circuit" the output we get:

$$V_1 = 30I_1 + 20I_2^0$$
 $V_1 = 30I_1$
 $V_2 = 17I_1 + 20I_2^0$ $V_2 = 17I_1$

$$A = \frac{V_1}{V_2} = \frac{30I_1}{17I_1} = \frac{30}{17} = 1.765$$

$$C = \frac{1}{17} = 0.0588$$

If we "short circuit" the output we get:

$$V_{1} = 30I_{1} + 20I_{2}$$

$$V_{2} = 17I_{1} + 20I_{2}$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = \frac{-(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{1} = \frac{-20}{17}I_{2}$$

$$D = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$B = -\frac{V_{1}}{I_{2}} = -\frac{(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$I_{2} = -\frac{-20}{17}I_{2} = -\frac{1}{17}I_{2} = \frac{20}{17}I_{2} = 1.176$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (6)

 Transmission Parameters can be cascaded with the result found through simple matrix multiplication

ECE 202 Ch 19

19.5 Transmission Parameters (7)

IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits

Consider the following simple circuits

We can find their T Parameters to be:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

19.5 Transmission Parameters (8)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Building Block Circuits

 We can use this to construct the following "building block T parameters" to find the T parameters for any ladder type circuit.

19.5 Transmission Parameters (9)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Transfer function / Thevenin Equivalent

 The "A" parameter can be used to provide the inverse of the voltage Transfer Function H(s).

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$

- Parameters "A" and "B" can be used to find a relationship between the Open Circuit Voltage (V_2) and the Short Circuit Current ($-I_2$).
- We can us this to find the parameters for the Thevenin Equivalent Circuit.

$$A = \frac{V_1}{V_2} \bigg|_{I_2 = 0} = \frac{V_1}{V_{oc}}$$

$$V_{Th} = V_{oc} = \frac{1}{A}$$

$$\left. -\frac{V_1}{I_2} \right|_{V_2=0} = \frac{V_1}{I_{sc}}$$
 $I_N = I_{sc} = \frac{V_1}{I_{sc}}$

$$Z_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{B}{A}$$

19.5 Transmission Parameters (10) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Transfer Function - Example

Problem 16.80(a)

Find the transfer function $V_o(s)/V_s(s)$ for the following circuit

Answer:

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (11) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

dianapolis

Transfer Function - Example

Problem 16.80(a) Solution:

- a) Break up the circuit into a series of cascaded series and shunt components
- b) Find the composite "T" parameters for the circuit
- c) Use the relationship between the parameter "A" and the Transfer function

19.5 Transmission Parameters (12) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transfer Function - Example

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ s+s^2(s+1)+(s+1) & s^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s^2 + s + 1 & s \\ s^3 + s^2 + 2s + 1 & s^2 \end{bmatrix}$$

$$\begin{bmatrix} s^{3} + 2s^{2} + 3s + 2 & s + s^{2} \\ s^{3} + s^{2} + 2s + 1 & s^{2} \end{bmatrix}$$
ECE 202 Ch 19

Finding the combined T-matrix

The transfer function can be found directly from the Transmission Parameter "A"!

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0} = \frac{1}{H(s)}$$

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (13)

Example 19.9

The ABCD parameters of the two-port network at right are

$$\mathsf{T} = \begin{bmatrix} 4 & 20 & \Omega \\ 0.1S & 2 \end{bmatrix}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Answer: $V_{TH} = 10V V$; $R_L = 8\Omega$; Pm = 3.125W.

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (14)

Solution: Example 19.9

- a) Cascade the Series Resistor with the network
- b) Find the composite "T" parameters for the circuit
- c) Use the relationships to find V_{Th} and Z_{Th}

$$\begin{bmatrix} T' \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 20 \\ 0.1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 40 \\ 0.1 & 2 \end{bmatrix}$$

Find the Thevenin Equivalent Circuit for the source

$$V_{Th} = \frac{50}{5} = 10$$
 (

ECE 202 Ch 19

For Max Power Transfer

$$R_L = Z_{Th} = 8 \Omega$$

$$P_{\text{max}} = I^2 R_L$$

$$P_{\text{max}} = \left(\frac{V_{Th}}{R_L + Z_{Th}}\right)^2 R_L$$

$$P_{\text{max}} = \left(\frac{10}{16}\right)^2 8 = 3.125 \,\text{W}$$

19.5 Transmission Parameters (15)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits – Ideal Transformer

 We can also use these "building blocks" to model ideal transformers. Remember from Chapter 13

19.5 Transmission Parameters (16) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Example 13.8 Revisited

19.5 Transmission Parameters (17) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

Example 13.8 Revisited

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.7 Interconnection of Networks (1)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Series Connection of two-port networks:

Indianapolis

For Impedances; ADD matrices.

$$Z = Z_a + Z_b$$

19.7 Interconnection of Networks (2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Connection of two-port networks:

For Admittances; ADD matrices.

$$Y = Y_a + Y_b$$

19.6 Relationships Between Networks

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL Indianapolis

Use this table to convert between two port parameters

	z		у		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	z ₂₂	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$		$\frac{y_{21}}{y_{11}}$	$\frac{\mathbf{y}_{11}}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$rac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\dot{\mathbf{y}}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

ECE 202 Ch 19

Chapter 19 Review

SCHOOL OF ENGINEERING AND TECHNOLOGY

Z-Parameters

Parameters:
$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Open circuit the **output** to find z_{11} and z_{21}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}^{0} \qquad \qquad V_{1} = V_{2} = z_{21}I_{1} + z_{22}I_{2}^{0} \qquad \qquad V_{2} = V_{2} =$$

Set $I_1 = 1$ then solve for V_1 and V_2

Open circuit the **input** to find z_{21} and z_{22}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$V_{1} = z_{12}I_{2}$$

$$V_{2} = z_{22}I_{2}$$

Set $I_2 = 1$ then solve for V_1 and V_2

Chapter 19 Review

Z-Parameters (Given a circuit, find Z-parameters)

- Solving problems to find z-parameters:
 - 1. Refer to definition, apply 1 amp source at input and output with opposite port left open (see previous slide)

2. Sometimes, KVL (mesh current equations) will cause z-parameters to fall right out! :

$$V_1 = 2I_1 + 6(I_1 + I_2) = 8I_1 + 6I_2$$

 $V_2 = 6(I_1 + I_2) + 3I_2 = 6I_1 + 9I_2$

$$z = \begin{bmatrix} 8 & 6 \\ 6 & 9 \end{bmatrix} \Omega$$

This mesh defined in counter clockwise direction for convenience

Chapter 19 Review

A PURDUE UNIVERSITY SCHOO

Z-Parameters (Given Z parameters, find circuit parameters)

- If given, z-parameters can use following techniques to find other circuit parameters (V₁, V₂, I₁, I₂, etc.):
 - 1. Apply the model and solve the circuit:

2. Substitute the defining equations into your analysis:

Mesh Analysis

$$10 = 5I_1 + V_1 + 10(I_1 + I_2)$$
$$0 = V_2 + 10(I_1 + I_2) + 20I_2$$

Substitute for V₁ and V₂

$$10 = 5I_1 + (12I_1 + 8I_2) + 10(I_1 + I_2)$$
$$0 = (8I_1 + 20I_2) + 10(I_1 + I_2) + 20I_2$$

10 V

AND TECHNOLOGY

Y-Parameters

Parameters:
$$I_1 = y_{11}V_1 + y_{12}V_2$$

 $I_2 = y_{21}V_1 + y_{22}V_2$

Short circuit the **output** to find y_{11} and y_{21}

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}^{0}$$

$$I_{2} = y_{21}V_{1} + y_{22}V_{2}^{0}$$

$$I_{3} = y_{11}V_{1}$$

$$I_{4} = y_{11}V_{1}$$

$$I_{5} = y_{21}V_{1}$$

$$I_{7} = y_{11}V_{1}$$

$$I_{8} = y_{11}V_{1}$$

$$I_{9} = y_{11}V_{1}$$

$$I_{1} = y_{11}V_{1}$$

$$I_{2} = y_{21}V_{1}$$

Set $V_1 = 1$ then solve for I_1 and I_2

Short circuit the **input** to find y_{21} and y_{22}

$$I_1 = y_1 V_1 + y_{12} V_2$$
 $I_2 = y_2 V_1 + y_{22} V_2$
 $I_2 = y_{22} V_2$
 $I_3 = y_{22} V_2$

Set $V_2 = 1$ then solve for I_1 and I_2

Y-Parameters (Solving Problems)

- To solve Y-parameter problems, can use these techniques
 - 1. Apply method from previous slide. Apply 1 Volt source at input and output while shorting opposite port

2. If given Y parameters can apply the model and solve the circuit:

3. Make it easy on yourself! Use conversions from $Z \rightarrow Y$ or $Y \rightarrow Z$

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_y} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix} & \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_z} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix} \\ \Delta_y = y_{11}y_{22} - y_{12}y_{21} & \Delta_z = z_{11}z_{22} - z_{12}z_{21} \end{bmatrix}$$

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \left(\frac{1}{\Delta_z} \right) \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

$$\Delta_z = z_{11} z_{22} - z_{12} z_{21}$$

H-Parameters

Parameters (hybrid of z and y):
$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Short circuit the **output** to find h₁₁ and h₂₁

$$V_1 = h_{11}I_1 + h_{12}V_2^{0}$$
 $V_1 = h_{11}I_1$
 $V_2 = h_{21}I_1 + h_{22}V_2^{0}$
 $V_3 = h_{21}I_1$

Set $I_1 = 1$ then solve for V_1 and I_2

Open circuit the **input** to find h₂₁ and h₂₂

$$V_{1} = h_{11} I_{1}^{0} + h_{12} V_{2}$$

$$I_{2} = h_{21} I_{1}^{1} + h_{22} V_{2}$$

$$V_{1} = h_{12} V_{2}$$

$$I_{2} = h_{22} V_{2}$$

Set $V_2 = 1$ then solve for V_1 and I_2

- To solve H-parameter problems, can use these techniques
 - 1. Apply methods from previous slide.

- 2. H parameters can be found by performing a set of tests on the device
 - a) Shorting the output and applying a current
 - b) Leaving the input open and applying a voltage across the output
- If given H parameters can apply the model and solve the circuit:

4. If helpful, use conversion tables

H-Parameters (Transistor Model)

- H parameters are often used in modeling transistors
- Parameters vary depending on biasing conditions
- Spec sheets often use different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

H-Parameters (Transistor Model)

- Equations for calculating input impedance, output impedance, voltage gain, and current gain for simple transistor circuit:
 - V_s and R_s can be the Thevenin equivalent source driving the input.
 - R_L can be the input impedance looking into the load of the circuit connected to the output

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

ECE 202 Ch 19

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transmission ("T") Parameters

- Parameters: $V_1 = AV_2 BI_2$ $I_1 = CV_2 - DI_2$
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - PI_{2}$$

$$I_{1} = CV_{2} - PI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$V_{1} = -BI_{2} \Longrightarrow I_{1} = -DI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

Transmission ("T") Parameters (Cascading)

 Primary benefit of "T"-Parameters is their ability to be cascaded.

T - Parameters (Building Block models)

 We can create "building block" models of components by finding their T-parameters and use the cascading property to find the T-parameters for the complete circuit/system.

62

T - Parameters (Building Block models)

 With "Building Block" approach, circuits can be broke up into discrete components and analyzed using T-parameters

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

T - Parameters (Useful Properties)

- The T parameters give us useful properties in the analysis of circuits:
 - Open Circuit Voltage Transfer Function:

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$
 $H(s) = \frac{1}{A}$

Thevenin Equivalent Circuit (Replace circuit as a source)

Conversion between Parameters

Conversion tables exists to convert between parameters

	z		y		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_y}$	$rac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z} \\ \underline{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$ $\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{y_{21}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{y_{22}}{y_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

Chapter 19: Two-Port Networks

- 19.1 Introduction
- 19.2 Impedance Parameters (z)
- 19.3 Admittance Parameters (y)
- 19.4 Hybrid Parameters (h)
- 19.5 Transmission Parameters (T)
- 19.6 Relationships between Parameters
- 19.7 Interconnection of Networks
- 19.9 Applications

- A port is an access to the network and consists of a pair of terminals; the current entering one terminal leaves through the other terminal so that the net current entering the port equals zero.
- One port networks include two-terminal devices such as resistors, capacitors, and inductors.
- A two-port network has two separate ports for input and output.
- Two port networks include op amps, transistors and transformers.

A PURDUE UNIVERSITY SCHOOL Indianapolis

- Characterizing a two-port network requires that we relate the terminal quantities V₁, V₂, I₁, I₂ out of which two are independent. Six sets of voltage and current parameters will be derived.
- Two port networks are useful in communications, control systems, power systems, and electronics.
- They are used in electronics to model transistors and to facilitate cascaded design.
- Additionally, if we know the parameters of a twoport network it can be treated as a "black box" when embedded within a larger network.

19.2 Impedance Parameters (1)

Often called "Z-parameters" since their units are in ohms and they represent an impedance relationship between V₁, V₂, I₁, I₂ for the two port network shown below:

 Z-parameters are commonly used in filter synthesis, impedance matching networks design, and power distribution networks analysis.

ECE 202 Ch 19

5

The values of parameters can be evaluated by setting $I_1=0$ or $I_2=0$ (open circuit)

Setting $I_2=0$

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

 z_{11} = Open-circuit input impedance z_{21} = Open-circuit transfer impedance from port 2 to port 1

Setting $I_1 = 0$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$

z12 = Open-circuit transfer impedance from port1 to port 2

z22 = Open-circuit output impedance

19.2 Impedance Parameters (3)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Indianapolis

Properties of Z-parameters

- Symmetrical networks z₁₁ = z₂₂
 - Implies a mirror like symmetry
- Reciprocal networks z₁₂ = z₂₁
 - Any network made up entirely of resistors, capacitors, and inductors must be reciprocal.
 - Linear networks with no dependant sources are reciprocal.
 - Interchanging an ideal voltage source at one port with an ideal ammeter at the other port gives the same ammeter reading.

SCHOOL OF ENGINEERING AND TECHNOLOGY A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- A reciprocal network can be replaced by the T-network shown above
- •If not reciprocal, the General network is the T-equivalent.

19.2 Impedance Parameters (5)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Note: some circuits do not have zparameter equivalents. (they may have other 2-port equivalents, as we shall see)
- Consider an ideal transformer:

$$V_1 = V_2/n$$
 and $I_1 = -nI_2$.

This cannot be expressed by:

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$
$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

A PURDUE UNIVERSITY SCHOOL

19.2 Impedance Parameters (6)

Example 19.1

Answer:

Determine the z-parameters of the following circuit.

$$z_{11} = \frac{V_1}{I_1} \bigg|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1} \bigg|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

10

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.2 Impedance Parameters (7)

Practice Problem 19.2

Determine I_1 and I_2 in the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$V_1 = z_{11}I_1 + z_{12}I_2$$
$$V_2 = z_{21}I_1 + z_{22}I_2$$

Answer:
$$I_1 = 200 \angle 30^{\circ} \text{ mA}$$

 $I_2 = 100 \angle 120^{\circ} \text{ mA}$

A PURDUE UNIVERSITY SCHOOL

Indianapolis

19.3 Admittance Parameters (1)

$$\begin{bmatrix} I_1 = y_{11}V_1 + y_{12}V_2 \\ I_2 = y_{21}V_1 + y_{22}V_2 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

where the **y** terms are called the <u>admittance parameters</u>, or simply y parameters, and they have units of <u>Siemens</u>.

ECE 202 Ch 19 12

19.3 Admittance Parameters (2)

\mathbf{I}_{1} $\mathbf{Y}_{11} = \frac{\mathbf{I}_{1}}{\mathbf{V}_{1}}$ \mathbf{V}_{1} $\mathbf{y}_{21} = \frac{\mathbf{I}_{2}}{\mathbf{V}_{1}}$ $\mathbf{V}_{2} = 0$ $\mathbf{Q}_{21} = \mathbf{Q}_{21}$ $\mathbf{Q}_{31} = \mathbf{Q}_{31}$

Setting $V_2 = 0$ (Shorting the output)

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

 y_{11} = Short-circuit input admittance y_{21} = Short-circuit transfer admittance from port 1 to port 2

Setting $V_1 = 0$ (Shorting the input)

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

y₁₂ = Short-circuit transfer
 admittance from port 2 to port 1
 y₂₂ = Short-circuit output
 admittance

19.3 Admittance Parameters (3)

- •A reciprocal network $(y_{12} = y_{21})$ can be replaced by the Pi-network in figure (a).
- •If not reciprocal, the network in figure (b) is the Pi-equivalent.

19.3 Admittance Parameters (4)

Example 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:

$$y = \begin{bmatrix} 0.75 & -0.5 \\ -0.5 & 0.625 \end{bmatrix} S$$

19.3 Admittance Parameters (5) Practice Problem 19.3

Practice Problem 19.3

Determine the y-parameters of the following circuit.

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

$$\mathbf{y} = \begin{bmatrix} \mathbf{y}_{11} & \mathbf{y}_{12} \\ \mathbf{y}_{21} & \mathbf{y}_{22} \end{bmatrix} \mathbf{S}$$

Answer:
$$y = \begin{bmatrix} 75.77 & -30.3 \\ -30.3 & 45.47 \end{bmatrix} mS$$

19.3 Admittance Parameters (6)

SCHOOL OF ENGINEERING
AND TECHNOLOGY
A PURDUE UNIVERSITY SCHOOL

Practice Problem 19.3

Practice Problem 19.3 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

$$y_{11} = \frac{I_1}{(1)} \Big|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{(1)} \Big|_{V_2=0}$

Find Input Impedance

$$Z_{in} = 6 + 12 \parallel 18 = 13.2$$

$$I_1 = \frac{V_1}{Z_{in}} = \frac{1}{13.2} = 0.07576$$

$$y_{11} = 0.07576$$

Similarly at Output

$$Z_{out} = 18 + 6 \parallel 12 = 22$$

$$I_2 = \frac{V_2}{Z_{in}} = \frac{1}{22} = 0.04545$$

$$y_{22} = 0.04545$$

Find I_2 from current divider equation

$$I_2 = \frac{-12}{12 + 18} I_1$$

$$I_2 = (-0.4)0.07576 = -0.0303$$

$$y_{21} = -0.0303$$

$$y_{12} = y_{21} = -0.0303$$

Reciprocal Network

19.3 Admittance Parameters (7)

A PURDUE UNIVERSITY SCHOOL Indianapolis

Example 19.4

Determine the y-parameters of the following circuit. $I_2 = y_{21}V_1 + y_{22}V_2$

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

Solution: Apply KVL

Mesh I₁:
$$V_1 = 8I_1 + 2(I_1 + I_2)$$

 $V_1 = 10I_1 + 2I_2$
Mesh I₂: $V_2 = 4(2i + I_2) + 2(I_1 + I_2)$
 $V_2 = 8I_1 + 4I_2 + 2I_1 + 2I_2$
 $V_2 = 10I_1 + 6I_2$

Answer: $y = \begin{bmatrix} 0.15 \\ -0.25 \end{bmatrix}$

 $y = \begin{bmatrix} 0.15 & -0.05 \\ -0.25 & 0.25 \end{bmatrix} S$

Subtract #1 from #2:

$$V_2 - V_1 = 0 + 4I_2$$
 $I_2 = -0.25V_1 + 0.25V_2$

Substitute back into #1

$$V_1 = 10I_1 - 0.5V_1 + 0.5V_2$$

 $10I_1 = 1.5V_1 - 0.5V_2$
 $I_1 = 0.15V_1 - 0.05V_2$

Note: Sometimes two port parameters will fall out directly from mesh equations.

ECE 202 Ch 19

19.3 Admittance Parameters (8) Practice problem 19.4

Practice Problem 19.4

Determine the y-parameters of the following circuit.

Answer:
$$y = \begin{bmatrix} 0.625 & -0.125 \\ 0.375 & 0.125 \end{bmatrix} S$$

19.3 Admittance Parameters (9) Practice problem 19.4

Practice Problem 19.4 (Solution)

- Short the output
- Put a 1 volt source at input
- Find I_1 and I_2

First find i_o :

$$i_0 = \frac{1}{3}$$

Dependent current source is then 2/3, find I_I by repetitive source transformations of the dependant current source

$$I_1 = 0.625 \implies y_{11} = 0.625$$

Next find current across 6 Ω resistor $I_{6\Omega}$:

$$I_{6\Omega} = 0.625 - \frac{1}{3}$$

$$I_2 + I_{6\Omega} = 2i_0$$

$$I_2 = 2i_0 - I_{6\Omega} = \frac{2}{3} - \left(0.625 - \frac{1}{3}\right) = 0.375 \implies y_{12} = 0.375$$

ECE 202 Ch 19

Z and Y Parameters

Comparison

Z-Parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

- Open one port $(I_1=0 \text{ or } I_2=0)$
- Connect a source to the other port
- Solve to find z-parameters

$$z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$$
 and $z_{21} = \frac{V_2}{I_1}\Big|_{I_2=0}$

$$z_{12} = \frac{V_1}{I_2} \bigg|_{I_1=0}$$
 and $z_{22} = \frac{V_2}{I_2} \bigg|_{I_1=0}$

$$\mathbf{z}_{11} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}}$$

$$\mathbf{z}_{21} = \frac{\mathbf{V}_{2}}{\mathbf{I}_{1}}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{3}$$

$$\mathbf{v}_{4}$$

$$\mathbf{v}_{2}$$

$$\mathbf{v}_{2}$$

Y-Parameters

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}$$
$$I_{2} = y_{21}V_{1} + y_{22}V_{2}$$

- Short one port $(V_1=0 \text{ or } V_2=0)$
- Connect a source to the other port
- Solve to find y-parameters

$$y_{11} = \frac{I_1}{V_1} \bigg|_{V_2=0}$$
 and $y_{21} = \frac{I_2}{V_1} \bigg|_{V_2=0}$

$$y_{12} = \frac{I_1}{V_2} \bigg|_{V_1=0}$$
 and $y_{22} = \frac{I_2}{V_2} \bigg|_{V_1=0}$

Z and Y parameters

Alternative method (1 Amp / 1 Volt sources)

Z-Parameters

- Open circuit one port
- Put a 1 Amp current source at other port
- Resulting voltages are the z-parameters

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$
$$V_2 = Z_{21}I_1 + Z_{22}I_2$$

Y-Parameters

- Short circuit one port
- Put a 1 Volt voltage source at other port
- Resulting current are the y-parameters

$$I_1 = y_{11}V_1 + y_{12}V_2$$
$$I_2 = y_{21}V_1 + y_{22}V_2$$

ECE 202 Ch 19 22

19.4 Hybrid Parameters (1)

•The z and y parameters of a two-port network do not always exist. Therefore, there is a need to develop another set of parameters based on making V₁ and I₂ the dependent variables.

Assume no independent source in the network

$$\begin{bmatrix} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{bmatrix} \longrightarrow \begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} h \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$

where the **h** terms are called the <u>hybrid parameters</u>, or simply h parameters.

- •Hybrid parameters are very useful for describing electronic devices such as transistors because it is much easier to measure the h parameters of these devices than to measure their z or y parameters.
- •The ideal transformer can also be described by h parameters.

23

19.4 Hybrid Parameters (2)

$$\begin{vmatrix} h_{11} = \frac{V_1}{I_1} \\ V_2 = 0 \end{vmatrix}$$

$$b_{21} = \frac{I_2}{I_1} \Big|_{V_2 = 0}$$

 h_{11} = short-circuit input impedance (Ω)

h₂₁ = short-circuit forward current gain

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1 = 0}$$

$$h_{22} = \frac{I_2}{V_2} \Big|_{I_2 = 0}$$

h₁₂ = open-circuit reverse voltage-gain

h₂₂ = open-circuit output admittance (S)

- •Note that the h parameters represent an impedance, voltage gain, current gain, and admittance, thereby the term hybrid parameters.
- •For reciprocal network, $h_{12} = -h_{21}$

19.4 Hybrid Parameters (3)

Assume no independent source in the network

Hybrid model of a two-port network:

19.4 Hybrid Parameters (4)

Example 19.5:

Determine the h-parameters of the following circuit.

$$V_1 = h_{11}I_1 + h_{12}V_2$$
$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$\mathbf{h}_{11} = \frac{\mathbf{V}_1}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$$
 and $\mathbf{h}_{21} = \frac{\mathbf{I}_2}{\mathbf{I}_1} \Big|_{\mathbf{V}_2 = 0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

Answer:
$$h = \begin{bmatrix} 4\Omega & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{9}S \end{bmatrix}$$

19.4 Hybrid Parameters (5)

Practice Problem 19.5:

Determine the h-parameters of the following circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0}$$
 and $h_{21} = \frac{I_2}{I_1} \Big|_{V_2=0}$

$$h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$
 and $h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$

$$h = \begin{bmatrix} 2.4\Omega & 0.4 \\ -0.4 & 0.2S \end{bmatrix}$$

Answer:

$$\mathbf{h} = \begin{bmatrix} \mathbf{h}_{11} \mathbf{\Omega} & \mathbf{h}_{12} \\ \mathbf{h}_{21} & \mathbf{h}_{22} \mathbf{S} \end{bmatrix}$$

19.9.1 Transistor Circuits (1)

Hybrid Parameters

- H-parameters are often used to model transistor circuits
- The h-parameters vary depending on biasing conditions
- Parameters are given different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

Example 2N3904

2N3903 2N3904

ECE 202 Ch 19 28

19.9.1 Transistor Circuits (2)

Hybrid Parameters

- H parameters are often found in manufacturers spec sheets
- Provide ability to calculate the exact voltage gain, input impedance, and output impedance of the transistor.

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

Output Impedance

$$Z_{out} = \frac{V_c}{I_c}\Big|_{V_s=0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

Assume no independent source in the network

$$\begin{bmatrix} \mathbf{V}_1 = \mathbf{A}\mathbf{V}_2 - \mathbf{B}\mathbf{I}_2 \\ \mathbf{I}_1 = \mathbf{C}\mathbf{V}_2 - \mathbf{D}\mathbf{I}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{V}_1 \\ \mathbf{I}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \begin{bmatrix} \mathbf{V}_2 \\ -\mathbf{I}_2 \end{bmatrix}$$

where the **T** terms are called the <u>transmission parameters</u>, or simply T or <u>ABCD parameters</u>.

•Note that $-I_2$ is used since the current is considered to be leaving the network. It is logical to think of I_2 as leaving the two-port; this is customary convention in the power industry.

19.5 Transmission Parameters (2)

- These two-port transmission parameters provide a measure of how a circuit transmits voltage and current form a source to a load.
- They are useful in the analysis of transmission lines and are therefore called transmission parameters.
- They are also known as ABCD parameters and are used in the design of telephone systems, microwave networks, and radars.

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2 = 0}$$

A=open-circuit voltage ratio

C= open-circuit transfer admittance (S)

$$\mathbf{B} = -\frac{\mathbf{V}_1}{\mathbf{I}_2} \bigg|_{\mathbf{V}_2 = 0}$$

$$D = -\frac{I_1}{I_2} \bigg|_{V_2 = 0}$$

B= negative shortcircuit transfer impedance (Ω)

D=negative shortcircuit current ratio

19.5 Transmission Parameters (3) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Solving for Transmission Parameters

- To find the transmission parameters, analyze the circuit as follows:
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$V_{1} = -BI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (4)

Example 19.8

Determine the T-parameters of the following circuit.

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

Apply KVL

$$V_1 = 10I_1 + 20(I_1 + I_2)$$
$$V_2 = -3I_1 + 20(I_1 + I_2)$$

$$V_1 = \frac{30}{17} V_2 -$$

$$I_1 = \frac{1}{17} V_2 -$$

Answer:

$$T = \begin{bmatrix} 1.765 & 15.294\Omega \\ 0.059S & 1.176 \end{bmatrix}$$

19.5 Transmission Parameters (5) Example 19.8

From KVL:

$$V_1 = 10I_1 + 20(I_1 + I_2) = 30I_1 + 20I_2$$
$$V_2 = -3I_1 + 20(I_1 + I_2) = 17I_1 + 20I_2$$

If we "open circuit" the output we get:

$$V_1 = 30I_1 + 20I_2^0$$
 $V_1 = 30I_1$
 $V_2 = 17I_1 + 20I_2^0$ $V_2 = 17I_1$

$$A = \frac{V_1}{V_2} = \frac{30I_1}{17I_1} = \frac{30}{17} = 1.765$$

$$C = \frac{1}{17} = 0.0588$$

If we "short circuit" the output we get:

$$V_{1} = 30I_{1} + 20I_{2}$$

$$V_{2} = 17I_{1} + 20I_{2}$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = \frac{-(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{1} = \frac{-20}{17}I_{2}$$

$$D = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$V_{1} = 30I_{1} + 20I_{2}$$

$$0 = 17I_{1} + 20I_{2}$$

$$B = -\frac{V_{1}}{I_{2}} = -\frac{(30(\frac{-20}{17}) + 20)I_{2}}{I_{2}} = 15.29$$

$$V_{1} = 30(\frac{-20}{17})I_{2} + 20I_{2}$$

$$I_{2} = -\frac{I_{1}}{I_{2}} = \frac{20}{17} = 1.176$$

$$I_{2} = -\frac{-20}{17}I_{2} = -\frac{1}{17}I_{2} = \frac{20}{17}I_{2} = 1.176$$

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (6)

 Transmission Parameters can be cascaded with the result found through simple matrix multiplication

ECE 202 Ch 19

19.5 Transmission Parameters (7)

IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits

Consider the following simple circuits

We can find their T Parameters to be:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{Z} & 1 \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

19.5 Transmission Parameters (8)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Building Block Circuits

 We can use this to construct the following "building block T parameters" to find the T parameters for any ladder type circuit.

19.5 Transmission Parameters (9)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Properties: Transfer function / Thevenin Equivalent

 The "A" parameter can be used to provide the inverse of the voltage Transfer Function H(s).

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$

- Parameters "A" and "B" can be used to find a relationship between the Open Circuit Voltage (V_2) and the Short Circuit Current ($-I_2$).
- We can us this to find the parameters for the Thevenin Equivalent Circuit.

$$A = \frac{V_1}{V_2} \bigg|_{I_2 = 0} = \frac{V_1}{V_{oc}}$$

$$V_{Th} = V_{oc} = \frac{1}{A}$$

$$\left. -\frac{V_1}{I_2} \right|_{V_2=0} = \frac{V_1}{I_{sc}}$$
 $I_N = I_{sc} = \frac{V_1}{I_{sc}}$

$$Z_{Th} = \frac{V_{oc}}{I_{sc}} = \frac{B}{A}$$

19.5 Transmission Parameters (10) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Transfer Function - Example

Problem 16.80(a)

Find the transfer function $V_o(s)/V_s(s)$ for the following circuit

Answer:

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (11) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

dianapolis

Transfer Function - Example

Problem 16.80(a) Solution:

- a) Break up the circuit into a series of cascaded series and shunt components
- b) Find the composite "T" parameters for the circuit
- c) Use the relationship between the parameter "A" and the Transfer function

19.5 Transmission Parameters (12) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transfer Function - Example

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ (s+1) & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1+s(s+1) & s \\ s+s^2(s+1)+(s+1) & s^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} s^2 + s + 1 & s \\ s^3 + s^2 + 2s + 1 & s^2 \end{bmatrix}$$

$$\begin{bmatrix} s^{3} + 2s^{2} + 3s + 2 & s + s^{2} \\ s^{3} + s^{2} + 2s + 1 & s^{2} \end{bmatrix}$$
ECE 202 Ch 19

Finding the combined T-matrix

The transfer function can be found directly from the Transmission Parameter "A"!

$$A = \frac{V_1}{V_2} \Big|_{I_2 = 0} = \frac{1}{H(s)}$$

$$H(s) = \frac{1}{s^3 + 2s^2 + 3s + 2}$$

19.5 Transmission Parameters (13)

Example 19.9

The ABCD parameters of the two-port network at right are

$$\mathsf{T} = \begin{bmatrix} 4 & 20 & \Omega \\ 0.1S & 2 \end{bmatrix}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Answer: $V_{TH} = 10V V$; $R_L = 8\Omega$; Pm = 3.125W.

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

19.5 Transmission Parameters (14)

Solution: Example 19.9

- a) Cascade the Series Resistor with the network
- b) Find the composite "T" parameters for the circuit
- c) Use the relationships to find V_{Th} and Z_{Th}

$$\begin{bmatrix} T' \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 20 \\ 0.1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 40 \\ 0.1 & 2 \end{bmatrix}$$

Find the Thevenin Equivalent Circuit for the source

$$V_{Th} = \frac{50}{5} = 10$$
 (

ECE 202 Ch 19

For Max Power Transfer

$$R_L = Z_{Th} = 8 \Omega$$

$$P_{\text{max}} = I^2 R_L$$

$$P_{\text{max}} = \left(\frac{V_{Th}}{R_L + Z_{Th}}\right)^2 R_L$$

$$P_{\text{max}} = \left(\frac{10}{16}\right)^2 8 = 3.125 \,\text{W}$$

19.5 Transmission Parameters (15)

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOO

Properties: Building Block Circuits – Ideal Transformer

 We can also use these "building blocks" to model ideal transformers. Remember from Chapter 13

19.5 Transmission Parameters (16) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Example 13.8 Revisited

19.5 Transmission Parameters (17) IUPUI

SCHOOL OF ENGINEERING AND TECHNOLOGY

Example 13.8 Revisited

A PURDUE UNIVERSITY SCHOOL Indianapolis

19.7 Interconnection of Networks (1)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Series Connection of two-port networks:

Indianapolis

For Impedances; ADD matrices.

$$Z = Z_a + Z_b$$

19.7 Interconnection of Networks (2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Connection of two-port networks:

For Admittances; ADD matrices.

$$Y = Y_a + Y_b$$

19.6 Relationships Between Networks

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL Indianapolis

Use this table to convert between two port parameters

	z		y		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-\frac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	z ₂₂	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z}$	$\frac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$		$\frac{y_{21}}{y_{11}}$	$\frac{\mathbf{y}_{11}}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$rac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-\frac{\dot{\mathbf{y}}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

ECE 202 Ch 19

SCHOOL OF ENGINEERING AND TECHNOLOGY

Z-Parameters

Parameters:
$$V_1 = z_{11}I_1 + z_{12}I_2$$

 $V_2 = z_{21}I_1 + z_{22}I_2$

Open circuit the **output** to find z_{11} and z_{21}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}^{0} \qquad \qquad V_{1} = V_{2} = z_{21}I_{1} + z_{22}I_{2}^{0} \qquad \qquad V_{2} = V_{2} =$$

Set $I_1 = 1$ then solve for V_1 and V_2

Open circuit the **input** to find z_{21} and z_{22}

$$V_{1} = z_{11}I_{1} + z_{12}I_{2}$$

$$V_{2} = z_{21}I_{1} + z_{22}I_{2}$$

$$V_{1} = z_{12}I_{2}$$

$$V_{2} = z_{22}I_{2}$$

Set $I_2 = 1$ then solve for V_1 and V_2

Z-Parameters (Given a circuit, find Z-parameters)

- Solving problems to find z-parameters:
 - 1. Refer to definition, apply 1 amp source at input and output with opposite port left open (see previous slide)

2. Sometimes, KVL (mesh current equations) will cause z-parameters to fall right out! :

$$V_1 = 2I_1 + 6(I_1 + I_2) = 8I_1 + 6I_2$$

 $V_2 = 6(I_1 + I_2) + 3I_2 = 6I_1 + 9I_2$

$$z = \begin{bmatrix} 8 & 6 \\ 6 & 9 \end{bmatrix} \Omega$$

This mesh defined in counter clockwise direction for convenience

A PURDUE UNIVERSITY S Indianapolis

Z-Parameters (Given Z parameters, find circuit parameters)

- If given, z-parameters can use following techniques to find other circuit parameters (V₁, V₂, I₁, I₂, etc.):
 - 1. Apply the model and solve the circuit:

2. Substitute the defining equations into your analysis:

Mesh Analysis

$$10 = 5I_1 + V_1 + 10(I_1 + I_2)$$
$$0 = V_2 + 10(I_1 + I_2) + 20I_2$$

Substitute for V_1 and V_2

$$10 = 5I_1 + (12I_1 + 8I_2) + 10(I_1 + I_2)$$
$$0 = (8I_1 + 20I_2) + 10(I_1 + I_2) + 20I_2$$

10 V

AND TECHNOLOGY

Y-Parameters

Parameters:
$$I_1 = y_{11}V_1 + y_{12}V_2$$

 $I_2 = y_{21}V_1 + y_{22}V_2$

Short circuit the **output** to find y_{11} and y_{21}

$$I_{1} = y_{11}V_{1} + y_{12}V_{2}^{0}$$

$$I_{2} = y_{21}V_{1} + y_{22}V_{2}^{0}$$

$$I_{3} = y_{11}V_{1}$$

$$I_{4} = y_{11}V_{1}$$

$$I_{5} = y_{21}V_{1}$$

$$I_{7} = y_{11}V_{1}$$

$$I_{8} = y_{11}V_{1}$$

$$I_{9} = y_{11}V_{1}$$

$$I_{1} = y_{11}V_{1}$$

$$I_{2} = y_{21}V_{1}$$

Set $V_1 = 1$ then solve for I_1 and I_2

Short circuit the **input** to find y_{21} and y_{22}

$$I_1 = y_1 V_1 + y_{12} V_2$$
 $I_2 = y_2 V_1 + y_{22} V_2$
 $I_2 = y_{22} V_2$
 $I_3 = y_{22} V_2$

Set $V_2 = 1$ then solve for I_1 and I_2

Y-Parameters (Solving Problems)

- To solve Y-parameter problems, can use these techniques
 - 1. Apply method from previous slide. Apply 1 Volt source at input and output while shorting opposite port

2. If given Y parameters can apply the model and solve the circuit:

3. Make it easy on yourself! Use conversions from $Z \rightarrow Y$ or $Y \rightarrow Z$

$$\begin{bmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_y} \begin{bmatrix} y_{22} & -y_{12} \\ -y_{21} & y_{11} \end{bmatrix} & \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{pmatrix} \frac{1}{\Delta_z} \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix} \\ \Delta_y = y_{11}y_{22} - y_{12}y_{21} & \Delta_z = z_{11}z_{22} - z_{12}z_{21} \end{bmatrix}$$

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \left(\frac{1}{\Delta_z} \right) \begin{bmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{bmatrix}$$

$$\Delta_z = z_{11} z_{22} - z_{12} z_{21}$$

H-Parameters

Parameters (hybrid of z and y):
$$\begin{aligned} V_1 &= h_{11}I_1 + h_{12}V_2 \\ I_2 &= h_{21}I_1 + h_{22}V_2 \end{aligned}$$

Short circuit the **output** to find h₁₁ and h₂₁

$$V_1 = h_{11}I_1 + h_{12}V_2^{0}$$
 $V_1 = h_{11}I_1$
 $V_2 = h_{21}I_1 + h_{22}V_2^{0}$
 $V_3 = h_{21}I_1$

Set $I_1 = 1$ then solve for V_1 and I_2

Open circuit the **input** to find h₂₁ and h₂₂

$$V_{1} = h_{11} I_{1}^{0} + h_{12} V_{2}$$

$$I_{2} = h_{21} I_{1}^{1} + h_{22} V_{2}$$

$$V_{1} = h_{12} V_{2}$$

$$I_{2} = h_{22} V_{2}$$

Set $V_2 = 1$ then solve for V_1 and I_2

- To solve H-parameter problems, can use these techniques
 - 1. Apply methods from previous slide.

- 2. H parameters can be found by performing a set of tests on the device
 - a) Shorting the output and applying a current
 - b) Leaving the input open and applying a voltage across the output
- If given H parameters can apply the model and solve the circuit:

4. If helpful, use conversion tables

H-Parameters (Transistor Model)

- H parameters are often used in modeling transistors
- Parameters vary depending on biasing conditions
- Spec sheets often use different subscripts:
 - $h_{11} \rightarrow h_{ie}$ = Base input impedance
 - $h_{12} \rightarrow h_{re}$ = Reverse voltage feedback ration
 - $h_{21} \rightarrow h_{fe}$ = Base-collector current gain
 - $h_{22} \rightarrow h_{oe} = Output admittance$

H-Parameters (Transistor Model)

- Equations for calculating input impedance, output impedance, voltage gain, and current gain for simple transistor circuit:
 - V_s and R_s can be the Thevenin equivalent source driving the input.
 - R_L can be the input impedance looking into the load of the circuit connected to the output

Input Impedance

$$Z_{in} = \frac{V_b}{I_b} = h_{ie} - \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L}$$

Current Gain

$$A_{i} = \frac{I_{c}}{I_{b}} = \frac{h_{fe}}{1 + h_{oe}R_{L}}$$

ECE 202 Ch 19

Output Impedance

$$\left| Z_{out} = \frac{V_c}{I_c} \right|_{V_s = 0} = \frac{R_s + h_{ie}}{(R_s + h_{ie})h_{oe} - h_{re}h_{fe}}$$

Voltage Gain

$$A_{v} = \frac{V_{c}}{V_{b}} = \frac{-h_{fe}R_{L}}{h_{ie} + (h_{ie}h_{oe} - h_{re}h_{fe})R_{L}}$$

SCHOOL OF ENGINEERING
AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

Transmission ("T") Parameters

- Parameters: $V_1 = AV_2 BI_2$ $I_1 = CV_2 - DI_2$
- Perform the analysis with the output Open Circuited (I₂=0)

$$V_{1} = AV_{2} - PI_{2}$$

$$I_{1} = CV_{2} - PI_{2}$$

$$V_{1} = AV_{2}$$

$$I_{1} = CV_{2}$$

$$C = \frac{I_{1}}{V_{2}}$$

Perform the analysis with the output Short Circuited(V₂=0)

$$V_{1} = AV_{2} - BI_{2}$$

$$V_{1} = -BI_{2} \Longrightarrow I_{1} = -DI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$

$$I_{1} = -DI_{2}$$

$$D = -\frac{I_{1}}{I_{2}}$$

Transmission ("T") Parameters (Cascading)

 Primary benefit of "T"-Parameters is their ability to be cascaded.

T - Parameters (Building Block models)

 We can create "building block" models of components by finding their T-parameters and use the cascading property to find the T-parameters for the complete circuit/system.

62

T - Parameters (Building Block models)

 With "Building Block" approach, circuits can be broke up into discrete components and analyzed using T-parameters

SCHOOL OF ENGINEERING AND TECHNOLOGY

A PURDUE UNIVERSITY SCHOOL

T - Parameters (Useful Properties)

- The T parameters give us useful properties in the analysis of circuits:
 - Open Circuit Voltage Transfer Function:

$$A = \frac{V_1}{V_2}\Big|_{I_2=0} = \frac{1}{H(s)}$$
 $H(s) = \frac{1}{A}$

Thevenin Equivalent Circuit (Replace circuit as a source)

Conversion between Parameters

Conversion tables exists to convert between parameters

	z		y		h		T	
z	\mathbf{z}_{11}	\mathbf{z}_{12}	$rac{\mathbf{y}_{22}}{\Delta_y}$	$-rac{\mathbf{y}_{12}}{\Delta_y}$	$\frac{\Delta_h}{\mathbf{h}_{22}}$	$\frac{\mathbf{h}_{12}}{\mathbf{h}_{22}}$	$\frac{\mathbf{A}}{\mathbf{C}}$	$\frac{\Delta_T}{\mathbf{C}}$
	\mathbf{z}_{21}	\mathbf{z}_{22}	$-rac{\mathbf{y}_{21}}{\Delta_y}$	$\frac{\mathbf{y}_{11}}{\Delta_y}$	$-\frac{\mathbf{h}_{21}}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{h}_{22}}$	$\frac{1}{\mathbf{C}}$	$\frac{\mathbf{D}}{\mathbf{C}}$
y	$rac{\mathbf{z}_{22}}{\Delta_z}$	$-\frac{\mathbf{z}_{12}}{\Delta_z}$	\mathbf{y}_{11}	\mathbf{y}_{12}	$\frac{1}{\mathbf{h}_{11}}$	$-\frac{\mathbf{h}_{12}}{\mathbf{h}_{11}}$	$\frac{\mathbf{D}}{\mathbf{B}}$	$-\frac{\Delta_T}{\mathbf{B}}$
	$-\frac{\mathbf{z}_{21}}{\Delta_z} \\ \underline{\Delta_z}$	$rac{\mathbf{z}_{11}}{\Delta_z}$	\mathbf{y}_{21}	\mathbf{y}_{22}	$\frac{\mathbf{h}_{21}}{\mathbf{h}_{11}}$	$rac{\Delta_h}{\mathbf{h}_{11}}$	$-\frac{1}{\mathbf{B}}$	$\frac{\mathbf{A}}{\mathbf{B}}$
h	$\frac{\Delta_z}{\mathbf{z}_{22}}$	$\frac{\mathbf{z}_{12}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{y}_{11}}$	$-\frac{\mathbf{y}_{12}}{\mathbf{y}_{11}}$	\mathbf{h}_{11}	\mathbf{h}_{12}	$\frac{\mathbf{B}}{\mathbf{D}}$	$\frac{\Delta_T}{\mathbf{D}}$ $\frac{\mathbf{C}}{\mathbf{D}}$
	$-\frac{\mathbf{z}_{21}}{\mathbf{z}_{22}}$	$\frac{1}{\mathbf{z}_{22}}$	$\frac{y_{21}}{y_{11}}$	$\frac{\Delta_y}{\mathbf{y}_{11}}$	\mathbf{h}_{21}	\mathbf{h}_{22}	$-\frac{1}{\mathbf{D}}$	$\frac{\mathbf{C}}{\mathbf{D}}$
T	$\frac{\mathbf{z}_{11}}{\mathbf{z}_{21}}$	$\frac{\Delta_z}{\mathbf{z}_{21}}$	$-\frac{\dot{\mathbf{y}}_{22}}{\mathbf{y}_{21}}$	$-\frac{1}{y_{21}}$	$-rac{\Delta_h}{\mathbf{h}_{21}}$	$-\frac{\mathbf{h}_{11}}{\mathbf{h}_{21}}$	A	В
	$\frac{1}{\mathbf{z}_{21}}$	$\frac{\mathbf{z}_{22}}{\mathbf{z}_{21}}$	$-rac{\Delta_y}{\mathbf{y}_{21}}$	$-\frac{\mathbf{y}_{11}}{\mathbf{y}_{21}}$	$-\frac{\mathbf{h}_{22}}{\mathbf{h}_{21}}$	$-\frac{1}{\mathbf{h}_{21}}$	C	D

$$\Delta_{y} = y_{11}y_{22} - y_{12}y_{21} \qquad \Delta_{z} = z_{11}z_{22} - z_{12}z_{21} \quad \Delta_{h} = h_{11}h_{22} - h_{12}h_{21} \qquad \Delta_{T} = AD - BC$$

ECE 202 Ch 19