四川师范大学本科毕业论文

固体物理中 32 点群的群乘法表、不可约表示、 特征标以及群元的矩阵表达和具体实例演示和 分析

学生姓名	
院系名称	物理与电子工程学院
专业名称	物理学
班 级	2019 级 3 班
学 号	2019070333
指导教师	程才
完成时间	2023年5月20日

固体物理中 32 点群的群乘法表、不可约表示、特征标以 及群元的矩阵表达和具体实例演示和分析

物理学专业

学生姓名: 王淘 指导教师:程才

摘要: 晶体具有规则外形,来自内部原子的规则排列。晶体具有最小的重复单元,是由最小重复单元在三维空间堆积起来的,即晶体具有平移对称性。数学分析证明,由于平移对称性的限制,只有n=1,2,3,4,6度旋转轴,因此晶体只有32种点群。如果加上三维空间中的平移操作,则有230种空间群。

本文首先介绍群的基本概念,平移对称操作对五重旋转轴的限制。紧接着用矩阵的形式来表达32种点群的群元,并画出每个点群的示意图。列出每个点群的生成元,并通过群元的矩阵表示来构造出晶体点群的群乘法表。随后又列举了晶体点群的特征标表,并利用晶体点群的相关知识来分析和解决实际分子结构(如,苯分子、 BH_3 、 CH_4 、 H_2O 和 NH_3 分子等)对称性问题。我们的工作,希望成为一本关于点群的字典,方便查阅。

关键词: 固体物理; 点群; 群元的矩阵表示; 群乘法表; 特征标表

Demonstration and analysis of group multiplication tables, irreducible representations, character, matrix representations and group elements of 32-point groups in solid state physics

Specialty: Physics

Undergraduate: Tao Wang Supervisor: Cai Cheng

ABSTRACT: The crystal has a regular shape and is arranged from the rules of internal atoms. The crystal has the minimum duplicate unit, which is composed of the minimum repeat unit in three-dimensional space, that is, the crystal has translational symmetry. Mathematical analysis has proved that due to the limitation of translational symmetry, only n = 1,2,3,4,6 degrees rotation axis, so there are only 32-types of point groups in the crystal. If the translation operation in the three-dimensional space is added, there are 230 space groups.

This article first introduces the basic concepts of the group, and the translation of symmetrical operation on the limitation of the five-rotation axis. Then use the matrix to express the group elements of 32 point groups, and plot the schematic diagram of each point group. Listing the generating element of each point group, and constructing the group multiplication table through the matrix representation. Subsequently, the charater table of the point group was listed, and the relevant knowledge of the point group was used to analyze and solve the symmetry of the real molecular structure (such as the benzene molecule, BH₃, CH₄, H₂O, NH₃ molecules, *etc.*). Our works hopes to become a dictionary about the point group, which is convenient to check.

Keywords: Solid state physics; Point group; The matrix representation of group element; Charater tables.

目 录

摘要	I
ABSTRACT	II
目 录	1
第一章 引言	
1.1 群论的起源	1
1.2 群的基本概念	1
1.3 晶体点群简述	1
1.4 晶体点群类别有限原因	
第二章 32 点群的群元矩阵表示及群乘法表	
2.1 Cn 群 (C ₁ 群, C ₂ 群, C ₃ 群, C ₄ 群, C ₆ 群)	
2.2 C _{nh} 群(C _{1h} 群, C _{2h} 群, C _{3h} 群, C _{4h} 群, C _{6h} 群)	
2.3 C _{nv} 群(C _{2v} 群, C _{3v} 群, C _{4v} 群, C _{6v} 群)	
2.4 S _{2m} 群(S ₂ 群, S ₄ 群, S ₆ 群)	
2.5 D _n 群 (D ₂ 群, D ₃ 群, D ₄ 群, D ₆ 群)	20
2.6 D _{nh} 群(D _{2h} 群, D _{3h} 群, D _{4h} 群, D _{6h} 群)	
2.7 D _{nd} 群(D _{2d} 群, D _{3d} 群)	
2.8 立方体群(T 群, T _d 群, T _h 群, O 群, O _h 群)	
第三章 32 点群的特征标表	
第四章 32 点群的具体实例演示与分析	
4.1 利用点群求解 BH_3 的分子轨道	51
4.2 利用点群求解 CH_4 的分子轨道	53
4.3 利用点群求解 H_2O 的分子轨道 \dots	55
4.4 利用点群求解 NH ₃ 的分子轨道	57
参考文献	61
附录	62
致谢	82

固体物理中 32 点群的群乘法表、不可约表示、特征标以 及群元的矩阵表达和具体实例演示和分析

第一章 引言

1.1 群论的起源

对晶体结构的研究始于两个世纪以前。Haüy(阿羽依)从理论上推测出晶体中原子、分子有规则排列的几何形态,而 Laue(劳埃)等人则通过 X 射线衍射实验验证了这一结论。经过几十年的研究,大量晶体原子排列的具体形式被测定^[1]。在数学领域,群论是法国数学家 Galois(伽罗瓦 1811-1832 年)创造的,通过伽罗瓦群解决了五次方程问题。在此之前,柯西(Augustin-Louis Cauchy,1789-1857 年)和阿贝尔(Niels Henrik Abel,1802-1829 年)也为群论做出重要贡献^[2]。19 世纪末、20 世纪初,布拉维、熊夫利、赫尔曼、毛古因,等对晶体学的研究使群论在晶体点群中有了广泛的应用。

1.2 群的基本概念

有限或者无限多个元素的集合,通过群乘(一种与次序有关的运算方式),使集合中的任意两个元素 A, B得出一个确定的元素 C(记作 AB = C),如果满足:

- (1) 封闭性:集合的封闭性是指任意两元素的乘积都在该集合内,也包括自身元素的乘积^[3]:
- (2) 满足结合律:

$$A(BC) = (AB)C \tag{1-1}$$

(3) 存在单位元素 E, 能使集合中的任意元素 A满足

$$EA = AE = A \tag{1-2}$$

(4) 集合中的每个元素 A 都有逆元素 A^{-1} 存在,且满足

$$A^{-1}A = AA^{-1} = E ag{1-3}$$

则这个集合称为群。

1.3 晶体点群简述

所有宏观对称元素在晶体中至少交于一点,它们的组合形成了晶体的点群(point group),也可以被叫做对称类型。数学分析表明,考虑晶体结构的周期性重复,三维空间中可能存在 32 种点群,对应于旋转及旋转反演对称操作。当晶体具有超过一个对称元素时,它们必须共享一个公共点,对应的对称操作属于点操作。点群的研究是群论的一个分支,用于分析对称性。每一种晶体的宏观对称性都属于 32 种点群之一。

1.4 晶体点群类别有限原因

一个布拉伐格子(Bravais lattice) $\{l_1\alpha_1+l_2\alpha_2+l_3\alpha_3\}$ 可以表征晶体的周期性。晶体经历了对称性的操作后没有发生改变,则表明它的 Bravais lattice 经历过对称操作后也一定要和原来的完全重合重合。假设有一个任意的对称操作,其旋转角度为 θ ,画出

Bravais lattice 中垂直旋转轴的晶面,在这个晶面内选取基矢 α_1 , α_2 ,晶面上所有格点均可表示为

$$l_1\alpha_1 + l_2\alpha_2 \tag{1-4}$$

称位于原点的格点为 A, 由它画出 α 到达的格点为 B, 如**图 1.1**

图 1.1 转动变换示意图

绕 A 旋转 θ 角,则将使 B 格点到 A 位置,由于转动不改变格子,在 A 处必定原来就有一格点,因为 B 和 A 完全等价,所以转动同样也可绕 B 进行,设想绕 B 转动- θ 角,将使 A 格点转到图中 B 位置,说明 B 处原来也必有一格点 $(A \cap B)$ 心可以按 $(A \cap B)$ 式表示,但是由图可见,它与 $(A \cap B)$ 所以只能是 $(A \cap B)$ 的整数倍

$$B'A' = nAB$$

其中n为正整数。根据图形的几何关系得

$$\overline{B'A'} = \overline{AB}(1 - 2\cos\theta) \tag{1-5}$$

或
$$n = 1 - 2\cos\theta \tag{1-6}$$

因为 $\cos\theta$ 必须在1到-1之间,n只能有-1,0,1,2,3五个值,相应地

$$\theta = 0^{\circ},60^{\circ},90^{\circ},120^{\circ},180^{\circ}$$
 (1-7)

由于以上论证只假设了布拉伐格子的存在. 这就表明,不论任何晶体,它的宏观对称只可能有下列几种对称素:

$$1,2,3,4,6$$
 $\overline{1},\overline{2},\overline{3},\overline{4},\overline{6}$

上述结果也可以通过直观的方式理解。在平面内,长方形、正三角形、正方形和正六 边形可以周期性地紧密排列,而其他如正五边形一样的正 n 边形没有办法实现这种周期性紧密排列。所以,在晶体中不存在 5 重轴或 7 重轴等对称元素,只存在上面的 10 种对称元素。

基于这 10 种对称元素,可以构建成对称操作群,通常称为点群。当将对称元素组合成群时,对称轴之间的夹角和对称轴的数目受到严格限制^[1]。具体的分析表明,由于这些限制,由 10 种对称元素只能构建出 32 个不同的点群。换言之,晶体的宏观对称性可用 32 种不同类型的点群来描述^[5]。

第二章 32点群的群元矩阵表示及群乘法表

2.1 Cn群 (C₁群, C₂群, C₃群, C₄群, C₄群)

我们从四种第一类点群出发,配以适当的非正当转动,从而列出全部可能的晶体点群。在讨论群元作用于r(x,y,z)的结果时,将主轴取作坐标系的z轴。 C_n 群仅有一个n 重轴,因为这类群只有两个极点星(n,1)及(n,1);群元都是绕这个n 重轴的转动进行的操作。这种群称之为轴转动群, C_n 群是个循环群,即

$$C_n = \left\{ c_n, c_n^2, \dots, c_n^n = E \right\}$$
 (2-1)

由于绕同一轴的转动操作可以对易,所以, C_n 群的不可约表示都是一维的。因为 n 只能够取五个值,所以,只有五个群属于轴转动群 C_n . C_n 表示有一个 n 重旋转轴。

C₁群(g=1)

群元

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

是对称性最低的群。示意图[6](图 2.1)

图 2.1 C_1 群示意图

C₂群 (g=2)

$$C_2 = \left\{ c_2, c_2^2 = E \right\} \tag{2-2}$$

c,是绕z轴转动 π 角的操作,是 C_2 群的群元。群元

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2z}^2 = E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.1)

表2.1 C, 的群乘法表

	E	c_{2z}
E	E	c_{2z}
c_{2z}	C_{2z}	E

示意图 (图 2.2)

图 2.2 C_2 群示意图

C₃群(g=3)

$$C_3 = \left\{ c_3, c_3^2, c_3^3 = E \right\} \tag{2-3}$$

 C_3 是个三阶循环群。 c_3 是绕 z 轴转过 $\frac{2\pi}{3}$ 角的转动,是 C_3 群的生群元

群元

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^{-1}, \quad E = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.2)

表2.2 C_3 的群乘法表

	$\mid E \mid$	c_{3z}	c_{3z}^{2}
E	E	c_{3z}	c_{3z}^2
C_{3z}	c_{3z}	c_{3z}^2	E
c_{3z}^2	c_{3z}^2	E	c_{3z}

示意图(图 2.3)

图 2.3 C_3 群示意图

C₄群 (g=4)

$$C_4 = \left\{ c_4, c_4^2 = c_2, c_4^3, c_4^4 = E \right\}$$
 (2-4)

群元 c_4 是绕z轴转过 $\frac{\pi}{2}$ 角的转动,是 C_4 群的生群元

群元

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^2 = c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.3)

表2.3 C_4 的群乘法表

	$\mid E \mid$	C_{4z}	c_{4z}^2	c_{4z}^3
E	$\mid E \mid$	C_{4z}	c_{4z}^2	c_{4z}^3
\mathcal{C}_{4z}	C_{4z}	c_{4z}^2	c_{4z}^3	E
c_{4z}^2	c_{4z}^2	c_{4z}^3	E	C_{4z}
c_{4z}^3	c_{4z}^3	E	${\cal C}_{4z}$	c_{4z}^2

示意图 (图 2.4)

图 2.4 C_4 群示意图

C₆群(g=6)

$$C_6 = \left\{ c_6, c_6^2 = c_3, c_6^3 = c_2, c_6^4 = c_3^2, c_6^5, c_6^6 = E \right\}$$
 (2-5)

群元 c_6 是绕z轴转过 $\frac{\pi}{3}$ 角的转动,是 C_6 群的生群元

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^3 = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.4)

表2.4. C_6 群的群乘法表

	$\mid E \mid$	$c_{_{6z}}$	c_{6z}^2	c_{6z}^3	c_{6z}^4	c_{6z}^5
E	$\mid E \mid$	c_{6z}	c_{6z}^2	c_{6z}^3	c_{6z}^4	c_{6z}^5
C_{6z}	c_{6z}	c_{6z}^2	c_{6z}^3	c_{6z}^4	c_{6z}^5	E
$c_{\scriptscriptstyle 6z}^2$	c_{6z}^2	c_{6z}^3	$c_{\scriptscriptstyle 6z}^{\scriptscriptstyle 4}$	c_{6z}^5	E	c_{6z}
c_{6z}^3	c_{6z}^3	c_{6z}^4	c_{6z}^5	E	C_{6z}	c_{6z}^2
$c_{\scriptscriptstyle 6z}^{\scriptscriptstyle 4}$	c_{6z}^4	c_{6z}^5	E	C_{6z}	c_{6z}^2	c_{6z}^3
c_{6z}^5	c_{6z}^5	E	c_{6z}	c_{6z}^2	c_{6z}^3	c_{6z}^4

示意图 (图 2.5)

图 2.5 C_6 群示意图

2.2 C_{nh}群(C_{1h}群, C_{2h}群, C_{3h}群, C_{4h}群, C_{6h}群)

 C_{nh} 群是由 C_n 群与水面镜象 σ_h 组合而成,因此,这个类别群包含有n个转动以及n个旋转反演,所以 C_{nh} 群共有2n个群元,这类群共有五个。

 C_{1h} (C_{1v} , S_1 , C_s) 群 (g=2)

$$C_{1h} = \{ \sigma_h, E \} \tag{2-6}$$

群元 σ_h 是在xy平面上的镜象,是 C_{lh} 群的生成元

$$\left(\sigma_{h}\right)^{2} = E \tag{2-7}$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.5)

表2.5. C_{1h} 群的群乘法表

	E	$\sigma_{\scriptscriptstyle h}$
E	E	$\sigma_{\scriptscriptstyle h}$
$\sigma_{_h}$	$\sigma_{_h}$	E

示意图[6] (图 2.6)

图 2.6 C_{1h} 群示意图

若取主轴为坐标系的 y 轴,则

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

以此生成的群是二阶的,且与 C_{1h} 同构。这个群在主轴z的坐标系中,记作 C_{1v} ,所以 C_{1h} 与 C_{1v} 是同一个群。

C_{2k}群(g=4)

$$C_{2h} = \left\{ c_2, \sigma_h, c_2 \sigma_h, c_2^2 = \sigma_2^2 = E \right\}$$
 (2-8)

群元 c_2 是绕z轴转过 π 角的转动, σ_h 是在xy面上的镜象,这两个元是 C_{2h} 群的生群元。群元

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \sigma_{xy} = \sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

$$c_{2z}^2 = E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2z}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I .$$

乘法表 (表 2.6)

表2.6 C_{2h} 的群乘法表

	$\mid E \mid$	c_{2z}	$\sigma_{_h}$	I
E	E	c_{2z}	$\sigma_{_h}$	I
c_{2z}	c_{2z}	E	I	$\sigma_{_h}$
$\sigma_{\scriptscriptstyle h}$	$\sigma_{\scriptscriptstyle h}$	I	E	c_{2z}
I	I	$\sigma_{_h}$	c_{2z}	E

示意图 (图 2.7)

图 2.7 C_{2h} 群示意图

由于 $I^2 = E$,所以有

$$C_i = \{I, E\} \tag{2-9}$$

而

$$\sigma_{xy} = c_{2z}I \tag{2-10}$$

可知

$$C_{2h} = C_2 \otimes C_i \tag{2-11}$$

 C_{3h} (S_3)群 (g=6)

$$C_{3h} = \left\{ c_3, c_3^2, \sigma_h, c_3 \sigma_h, c_3^2 \sigma_h, E \right\} = C_3 \otimes C_{1h}$$
 (2-12)

生成元是 c_{3z} 及 $\sigma_h = \sigma_{xy}$

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \sigma_{h} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{3z}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_{3},$$

$$c_{3z}^{2} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^{-1}, \quad c_{3z}^{2}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_{3}^{-1}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.7)

表2.7 C_{3h} 的群乘法表

	$\mid E \mid$	C_{3z}	c_{3z}^2	$\sigma_{\scriptscriptstyle h}$	S_3	S_3^{-1}
E	E	C_{3z}	c_{3z}^2	$\sigma_{_h}$	S_3	S_3^{-1}
c_{3z}	c_{3z}	c_{3z}^2	E	S_3	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$
c_{3z}^2	c_{3z}^2	E	c_{3z}	S_3^{-1}	$\sigma_{_h}$	S_3
$\sigma_{_h}$	$\sigma_{_h}$	S_3	S_3^{-1}	E	C_{3z}	c_{3z}^2
S_3	S_3	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	C_{3z}	c_{3z}^2	E
S_3^{-1}	S_3^{-1}	$\sigma_{_h}$	S_3	c_{3z}^2	E	c_{3z}

示意图(**图 2.8**)

图 2.8 C_{3h} 群示意图

$$C_{4h} = \{c_4, c_2, c_4^3, \sigma_h, c_4\sigma_h, c_2\sigma_h, c_4^3\sigma_h, E\}$$
 (2-13)

群元 $c_4 = c_{4z}$ 及 $\sigma_h = \sigma_{xy}$ 是生群元。

$$\begin{split} c_{4z} = & \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ \sigma_h = & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{4z}\sigma_h = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z}^3, \\ c_{2z}\sigma_h = & \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I, \quad c_{4z}^3\sigma_h = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

乘法表 (表 2.8)

表2.8 C_{4h} 的群乘法表

	E	c_{4z}	c_{2z}	c_{4z}^{3}	$\sigma_{_h}$	Ic_{4z}^3	I	Ic_{4z}
E	E	\mathcal{C}_{4z}		c_{4z}^3	$\sigma_{_h}$		I	Ic_{4z}
C_{4z}	C_{4z}	c_{2z}	c_{4z}^3	E	Ic_{4z}^3	I	$Ic_{_{4z}}$	$\sigma_{_h}$
C_{2z}	c_{2z}	c_{4z}^3	E	C_{4z}	I	$Ic_{_{4z}}$	$\sigma_{\scriptscriptstyle h}$	Ic_{4z}^3
c_{4z}^3	c_{4z}^3	E	$c_{_{4z}}$	c_{2z}	$Ic_{_{4z}}$	$\sigma_{\scriptscriptstyle h}$	Ic_{4z}^3	I
$\sigma_{_h}$	$\sigma_{_h}$	Ic_{4z}^3	I	$Ic_{_{4z}}$	E	C_{4z}	c_{2z}	c_{4z}^3
Ic_{4z}^3	Ic_{4z}^3	I	Ic_{4z}	$\sigma_{_h}$	C_{4z}	c_{2z}	c_{4z}^3	E
I	I	Ic_{4z}	$\sigma_{\scriptscriptstyle h}$	Ic_{4z}^3	C_{2z}	c_{4z}^3	E	C_{4z}
$Ic_{_{4z}}$	Ic_{4z}	$\sigma_{_h}$	Ic_{4z}^3	I	c_{4z}^3	E	C_{4z}	c_{2z}

示意图 (图 2.9)

图 2.9 C_{4h} 群示意图

由于
$$\sigma_{xy} = Ic_{4z}^2$$
, $c_{2z}\sigma_{xy} = I$ 所以

$$C_{4h} = C_4 \otimes C_i \tag{2-14}$$

C_{6h}群(g=12)

$$C_{6h} = \left\{ c_6, c_6^2 = c_3, c_6^3 = c_2, c_6^4 = c_3^2, c_6^5, E, \sigma_h, c_6 \sigma_h, c_3 \sigma_h, c_2 \sigma_h, c_3^2 \sigma_h, c_6^5 \sigma_h \right\} \quad (2-15)$$

群元 c_6 及 σ_h 是这个群的生成元。

$$c_{ez} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{ez}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{ez}^3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{ez}^4 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{ez}^5 = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{ez}\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{ez}^2 + Ic_{sz}^2, \quad c_{sz}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_3,$$

$$c_{ez}\sigma_h = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I, \quad c_{sz}^2\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_3^{-1},$$

$$c_{ez}\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{ez}^2 = Ic_{sz}$$

	66 HJH 787242											
	c_{6z}	c_{3z}	c_{2z}	$c_{\scriptscriptstyle 3z}^{\scriptscriptstyle 2}$	c_{6z}^5	E	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}
C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5		C_{6z}	Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}	$\sigma_{_h}$
c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	S_3	I	S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2
c_{2z}	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}	I	S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3
c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	S_3^{-1}	Ic_{3z}	$\sigma_{_h}$	Ic_{3z}^2	S_3	I
c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3	I	S_3^{-1}
E	c_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}
$\sigma_{_h}$	Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}	$\sigma_{_h}$	E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5
Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E
S_3	I	S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2		c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	C_{6z}
I	S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3	I	c_{2z}	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}
S_3^{-1}	Ic_{3z}	$\sigma_{\scriptscriptstyle h}$	Ic_{3z}^2	S_3	I	S_3^{-1}	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}
Ic_{3z}	$\sigma_{_h}$	Ic_{3z}^2	S_3	I	S_3^{-1}	Ic_{3z}	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2

表2.9. C_{6h} 的群乘法表

示意图 (图 2.10)

图 2.10 C_{6h} 群示意图

由于 $\sigma_{xy}=Ic_{6z}^3,c_{3z}\sigma_{xy}=Ic_{6z}^5,c_{2z}\sigma_{xy}=I,c_{3z}^2\sigma_{xy}=Ic_{6z}$ 所以

$$C_{6h} = C_6 \otimes C_i \tag{2-16}$$

2.3 C_{nv} 群 $(C_{2v}$ 群, C_{3v} 群, C_{4v} 群, C_{6v} 群)

 C_m 群含有n度转轴以及包含n个过主轴的垂直镜面。因此 C_m 群的群元数为2n,其中n个是在垂直镜面上的反射,还有n个是绕主轴的转动。由于 $C_{1\nu}$ 群与 C_{1h} 群等价,所以,可能的 C_m 群只有四个。

C_{2v}群(g=4)

 $C_{2\nu}$ 群的生成元是 c_2 及 σ_{ν} ,g=4,群元

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \sigma_{v} = \sigma_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y},$$

$$\sigma'_{v} = c_{2z}\sigma_{xz} = \sigma_{xz}c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz} = Ic_{2x}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

乘法表 (表 2.10)[7]

表2.10. C_{2v} 的群乘法表

	$\mid E \mid$	c_{2z}	$\sigma_{_{\scriptscriptstyle \mathcal{V}}}$	$\sigma_{v}^{'}$
E	$\mid E \mid$	c_{2z}	$\sigma_{_{v}}$	$\sigma_{v}^{'}$
c_{2z}	c_{2z}	E	$\sigma_v^{'}$	$\sigma_{_{v}}$
$\sigma_{_v}$	σ_v	$\sigma_{v}^{'}$	E	c_{2z}
$\sigma_{v}^{'}$	σ_{v}	$\sigma_{_{\scriptscriptstyle \mathcal{V}}}$	c_{2z}	E

示意图^[6] (**图 2.11**)

图 2.11 $C_{2\nu}$ 群示意图

在 $C_{2\nu}$ 群中,E及 c_{2z} 各自成一类,两个镜面也各自成一类,所以,共四类g=4。

C_{3v}群(g=6)

 C_{3v} 群的生群元为 c_{3} 及 σ_{v} ,g=6,群元

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^{-1}, \quad \sigma_v = \sigma_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\sigma_{v}^{'} = c_{3z}\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad \sigma_{v}^{"} = c_{3z}^{2}\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

乘法表 (表 2.11)

表2.11. C_{3} 的群乘法表

	$\mid E \mid$	c_{3z}	$c_{_{3}_{z}}^{^{2}}$	$\sigma_{_v}$	$\sigma_{v}^{'}$	$\sigma_{_{v}}^{"}$
E	E	c_{3z}	c_{3z}^{2}	$\sigma_{_v}$	$\sigma_{v}^{'}$	$\sigma_{v}^{"}$
c_{3z}		c_{3z}^{2}	E	$\sigma_{v}^{'}$	$\sigma_{v}^{"}$	$\sigma_{_v}$
c_{3z} c_{3z}^2		E	c_{3z}	$\sigma_{v}^{"}$	$\sigma_{_{v}}$	$\sigma_{v}^{'}$
		$\sigma_{v}^{'}$	$\sigma_{v}^{"}$	E	c_{3z}	$c_{\scriptscriptstyle 3z}^{\scriptscriptstyle 2}$
$\sigma_{v}^{'}$		$\sigma_{v}^{"}$	$\sigma_{_v}$	c_{3z}^{2}	E	c_{3z}
$\sigma_{v}^{"}$	σ_v	$\sigma_{_v}$	$\sigma_{v}^{'}$	c_{3z}	c_{3z}^2	E

示意图 (图 2.12)

图 2.12 $C_{3\nu}$ 群示意图

因为 $c_{3z}^{-1} = c_{3z}^2$,所以 c_{3z} 与 c_{3z}^2 成一类,三个垂直镜面在 c_3 及 c_3^2 的作用下相互重合,所以成为一类,再加上恒等元E这一类,所以 C_{3y} 群有三个类。

C₄,群(g=8)

 C_4 ,群的生群元为 c_4 及 σ_1 ,g=8。群元

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^2 = c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \sigma_v = \sigma_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{4z}\sigma_{xz} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{d_1} = Ic_{2\overline{x}y}, \quad c_{4z}^2\sigma_{xz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz} = \sigma_v^{'},$$

$$c_{4z}^3\sigma_{xz} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{d_2} = Ic_{2xy}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \circ$$

乘法表 (表 2.12)

表2.12 C_{Av} 的群乘法表

	E	C_{4z}	c_{2z}	c_{4z}^{3}	$\sigma_{_v}$	$Ic_{2\overline{r}v}$	$\sigma_{v}^{'}$	Ic_{2xy}
E	E	\mathcal{C}_{4z}	C_{2z}	c_{4z}^3	$\sigma_{_{\scriptscriptstyle v}}$	$Ic_{2\bar{x}v}$	$\sigma_{v}^{'}$	Ic_{2xy}
$c_{_{4z}}$	C_{4z}	c_{2z}	c_{4z}^3	E	$Ic_{2\bar{x}v}$	$\sigma_{v}^{'}$	Ic_{2xy}	$\sigma_{_{v}}$
c_{2z}	c_{2z}	c_{4z}^3	E	C_{4z}	$\sigma_{v}^{'}$	Ic_{2xy}	$\sigma_{_{v}}$	$Ic_{2\overline{x}v}$
c_{4z}^3	c_{4z}^3	E	c_{4z}	c_{2z}	$Ic_{2\bar{x}v}$	$\sigma_{v}^{'}$	Ic_{2xy}	$\sigma_{_{v}}$
$\sigma_{_{\scriptscriptstyle u}}$	$\sigma_{_{\scriptscriptstyle \mathcal{V}}}$	$Ic_{2\overline{x}v}$	$\sigma_{v}^{'}$	Ic_{2xy}	E	$c_{_{4z}}$	c_{2z}	c_{4z}^3
$Ic_{2\bar{x}v}$	$Ic_{2\bar{x}v}$	$\sigma_{v}^{'}$	Ic_{2xy}	$\sigma_{_{\scriptscriptstyle v}}$	c_{4z}^3	E	$c_{_{4z}}$	c_{2z}
$\sigma_{v}^{'}$	$\sigma_{v}^{'}$	Ic_{2xy}	$\sigma_{_{v}}$	$Ic_{2\bar{x}v}$	c_{2z}	c_{4z}^3	E	$c_{_{4z}}$
Ic_{2xy}	Ic_{2xy}	$\sigma_{_{v}}$	$Ic_{2\overline{x}v}$	$\sigma_{v}^{'}$	C_{4z}	c_{2z}	c_{4z}^3	E

在这个群,E, $c_{4z}^2=c_{2z}$ 各自成一类, c_{4z} 与 $c_{4z}^{-1}=c_{4z}^3$ 成一类, σ_{d_1} 及 σ_{d_2} 成一类, σ_{xz} 与 σ_{yz} 成一类,所以共有五类。

示意图 (图 2.13) (虚线表示 σ 面,后同)

图 2.13 C_{4v} 群示意图

C_{6v}群(g=12)

 C_{6v} 是个 12 阶群,生成元为 c_{6z} 及 σ_{v} 。群元

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}\sigma_{xz} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{2}, \quad c_{6z}^{2} = c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{6z}^{2}\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{3}, \quad c_{6z}^{3} = c_{2z} = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^{3}\sigma_{xz} = \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz} = \sigma_{4},$$

$$c_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^{4} \sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{5}, \quad c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{6z}^{5}\sigma_{xz} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{6}, \quad E = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad E\sigma_{xz} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{xz} = \sigma_{1}$$

	$\mid E \mid$	C_{6z}	c_{3z}	c_{2z}	$c_{_{3z}}^{^{2}}$	c_{6z}^5	$\sigma_{_{\! 1}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{\scriptscriptstyle 3}$	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$
\overline{E}	Е	c_{6z}	c_{3z}		c_{3z}^{2}		$\sigma_{_{ m l}}$	$\sigma_{_2}$	$\sigma_{_3}$	$\sigma_{_4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$
C_{6z}	c_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{\scriptscriptstyle 3}$	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$
c_{3z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	C_{6z}	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{_3}$	$\sigma_{\scriptscriptstyle 4}$
c_{2z}	c_{2z}	c_{3z}^2	c_{6z}^5	E	c_{6z}	c_{3z}	$\sigma_{_4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$	$\sigma_{_{ m l}}$	$\sigma_{_2}$	$\sigma_{_3}$
c_{3z}^2	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}	$\sigma_{_3}$	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$
c_{6z}^5	c_{6z}^5	E	c_{6z}	c_{3z}	$c_{ m 2z}$	c_{3z}^2	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{\scriptscriptstyle 3}$	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$	$\sigma_{_{ m l}}$
$\sigma_{_{\! 1}}$	$\sigma_{_{ m l}}$	$\sigma_{_2}$	$\sigma_{_3}$	$\sigma_{_4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$	E	c_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5
$\sigma_{\scriptscriptstyle 2}$	σ_2	$\sigma_{\scriptscriptstyle 3}$	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$	$\sigma_{_6}$	c_{6z}^5	E	c_{6z}	c_{3z}	c_{2z}	c_{3z}^2
$\sigma_{_3}$	σ_3	$\sigma_{\scriptscriptstyle 4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_{ m l}}$	c_{3z}^2	c_{6z}^5	E	C_{6z}	c_{3z}	$c_{ m 2z}$
$\sigma_{\scriptscriptstyle 4}$	$\sigma_{_4}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{_6}$	$\sigma_{_{ m l}}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$	$c_{ m 2z}$	c_{3z}^2	c_{6z}^5	E	c_{6z}	c_{3z}
$\sigma_{\scriptscriptstyle 5}$	$\sigma_{\scriptscriptstyle 5}$	$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{\scriptscriptstyle 3}$	c_{3z}	c_{2z}	$c_{\scriptscriptstyle 3z}^{\scriptscriptstyle 2}$	c_{6z}^5	E	C_{6z}
$\sigma_{\scriptscriptstyle 6}$	$\sigma_{_6}$	$\sigma_{_{ m l}}$	$\sigma_{\scriptscriptstyle 2}$	$\sigma_{_3}$	$\sigma_{\scriptscriptstyle 3}$	$\sigma_{\scriptscriptstyle 5}$	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^5	E

表2.13. C_{6v} 的群乘法表

示意图 (图 2.14)

图 2.14 C_{6v} 群示意图

 C_{6v} 群中由 C_{6v} 群的元与 σ_{xz} 组合的五个元均是在垂直镜面上的反射,分别记作 σ_{2} , σ_{3} , σ_{4} , σ_{5} 及 σ_{6} ,其镜面与xz 平面的夹角分别为 $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, $\frac{2\pi}{3}$ 及 $\frac{5\pi}{6}$ 。在 C_{6v} 群的 12 个群元中,E 及 c_{2z} 各成一类; c_{6z} 及其逆 $c_{6z}^{-1}=c_{6z}^{5}$ 成一类; c_{6z}^{2} 与其逆 $c_{3z}^{-1}=c_{3z}^{2}=c_{6z}^{4}$ 成一类;六个垂直镜象中, σ_{1} , σ_{3} , σ_{5} 成一类,记作 $3\sigma_{v}$; σ_{2} , σ_{4} , σ_{6} 成一类,记作 $3\sigma_{d}$ 。所以 C_{6v} 群共有六类。

2.4 S_{2m}群(S₂群, S₄群, S₆群)

 S_{2m} 群只包含n 度旋转反演轴,且n=2m,当n 为奇数时,与 C_{nh} 群是一样的。所以,这类群只有三个群: S_2 , S_4 及 S_6 。这类群的群元都是旋转反演操作 $\left(S_{2m}\right)^n$,其中 $1 \le n \le 2m$ 。因为 S_{2m} 群中各元都是可以对易的,因此, S_{2m} 是阿贝尔群,共有2m 个类。

S₂群(g=2)

 S_2 群的生群元为 $S_2 = \sigma_h c_{2z} = c_{2z} \sigma_h = I$,群元

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

所以 $S_2 = C_i$

示意图 (图 2.15)

图 2.15 S_2 群示意图

S₄群(g=4)

 S_4 群的生群元为 $S_4 = \sigma_{xy}c_{2z} = c_{2z}\sigma_{xy}$

群元

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad s_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad s_{4z}^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z}, \quad s_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

乘法表 (表 2.14)

表2.14. S_4 的群乘法表

	E	S_{4z}	c_{2z}	S_{4z}^3
E	E	S_{4z}	c_{2z}	S_{4z}^3
s_{4z}	S_{4z}	c_{2z}	S_{4z}^3	E
$c_{\scriptscriptstyle 2z}$	c_{2z}	s_{4z}^3	E	S_{4z}
S_{4z}^3	S_{4z}^3	E	S_{4z}	c_{2z}

示意图 (图 2.16)

图 2.16 S_4 群示意图

S₆群 (g=6)

 S_6 群的生群元为 S_6 ,共有6个群元,

$$s_{6z} = c_{6z}\sigma_{xy} = \sigma_{xy}c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{3z}^{2}, \quad s_{6z}^{2} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = c_{3z},$$

$$s_{6z}^{3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I, \quad s_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^{2},$$

$$s_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{3z}, \quad s_{6z}^{6} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = E \circ$$

	$\mid E \mid$	Ic_{3z}^2	c_{3z}	I	c_{3z}^{2}	Ic_{3z}
E	E	Ic_{3z}^2	c_{3z}	I	c_{3z}^2	Ic_{3z}
Ic_{3z}^2	Ic_{3z}^2	c_{3z}	I	c_{3z}^2	Ic_{3z}	E
c_{3z}	c_{3z}	I	$c_{\scriptscriptstyle 3z}^{2}$	Ic_{3z}	E	Ic_{3z}^2
I	I	c_{3z}^{2}	Ic_{3z}	E	Ic_{3z}^2	c_{3z}
$c_{\scriptscriptstyle 3z}^{\scriptscriptstyle 2}$	c_{3z}^2	Ic_{3z}	E	Ic_{3z}^2	$c_{_{3z}}$	I
Ic_{3z}	Ic_{3z}	E	Ic_{3z}^2	c_{3z}	I	c_{3z}^2

表2.15. S_6 的群乘法表

示意图 (图 2.17)

图 2.17 S_6 群示意图

所以

$$S_6 = C_3 \otimes C_i \tag{2-17}$$

2.5 D。群(D。群. D。群. D。群. D。群. D。群.

 D_n 群有两个极点星(2,n)、(2,n)及(n,2),表面其包含有一个n 重旋转轴和n个 与之垂直的二重轴,所以这类群的阶为2n。由于二重轴的存在,使n 重轴成为双向轴。 可见, D_n 群中二重轴的作用于 C_n ,群中的垂直镜面相似,所以 D_n 群类的个数与 C_n ,群 相同。由于 D_1 群与 C_2 群相同,所以,可能的 D_n 群是 D_2 , D_3 , D_4 及 D_6 。

D₂ 群 (g=4)

$$D_2$$
 群的生成元是 c_{2z} 及 c_{2x} ,因为 $c_{2y} = c_{2z}c_{2x}$,所以群元为
$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.16)

表2.16. D_2 的群乘法表

	E	c_{2z}	c_{2x}	c_{2y}
E	E	c_{2z}	c_{2x}	c_{2v}
$c_{_{2z}}$	c_{2z}	E	c_{2y}	c_{2x}
c_{2x}	c_{2x}	$c_{2\nu}$	E	c_{2z}
$c_{_{2v}}$	c_{2y}	c_{2x}	c_{2z}	E

这四个群元自成一类,所以D2群有四类

示意图[6] (图 2.18)

图 2.18 D_2 群示意图

D₃群(g=6)

 D_3 群的生群元为 c_{3z} 及 c_{2x} 。 群元

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix},$$

$$c_{3z}c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{'}, \quad c_{3z}^{2}c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{"}, \quad c_{3z}^{3} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = E \circ$$

乘法表 (表 2.17)

	E	c_{3z}	c_{3z}^{2}	c_{2x}	$c_{2}^{'}$	$c_2^{"}$
E	E	c_{3z}	c_{3z}^2	c_{2x}	$c_2^{'}$	$c_2^{"}$
c_{3z}	c_{3z}	c_{3z}^2	E	$c_2^{"}$	c_{2x}	$c_2^{'}$
c_{3z}^2	c_{3z}^2	E	c_{3z}	$c_2^{'}$	$c_2^{"}$	c_{2x}
c_{2x}	c_{2x}	$c_2^{'}$	$c_2^{"}$	E	c_{3z}	c_{3z}^2
$c_2^{'}$	c_2	$c_2^{"}$	c_{2x}	c_{3z}^2	E	C_{3z}
$c_2^{"}$	c_2	c_{2x}	$c_2^{'}$	c_{3z}	$c_{_{3}z}^{^{2}}$	E

表2.17 D_3 的群乘法表

其中 c_2 和 c_2^* 分别是绕垂直于z轴的夹角为 $\frac{\pi}{3}$ 及 $\frac{2\pi}{3}$ 角的轴转过 π 角的操作。 D_3 群有三类,其中E自成一类, c_{3z} 与 c_{3z}^{-1} = c_{3z}^2 成一类, c_{2x} 、 $c_2^{'}$ 、 $c_2^{''}$ 成一类。

示意图(图 2.19)(浅色或空心表示在 z 轴负半轴,实心则在 z 轴正半轴,后同)

图 2.19 D, 群示意图

D₄群(g=8)

 D_4 群的生群元是 c_{4z} 及 c_{2x} , 群元

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{4z}c_{2x} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}', \quad c_{4z}^{2} = c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{4z}^{2}c_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}, \quad c_{4z}^{3} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{4z}^{3}c_{2x} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}'',$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表 2.18)

表2.18 D_4 的群乘法表

	E	C_{4z}	c_{2z}	c_{4z}^3	c_{2x}	$c_{2}^{'}$	C_{2y}	$c_2^{"}$
E	E	C_{4z}	C_{2z}	c_{4z}^3	C_{2x}	$c_{2}^{'}$	c_{2v}	$c_2^{"}$
C_{4z}	c_{4z}	C_{2z}	c_{4z}^3	E	$c_2^{"}$	C_{2x}	$c_{2}^{'}$	c_{2v}
c_{2z}	c_{2z}	c_{4z}^3	E	C_{4z}	c_{2v}	$c_2^{"}$	C_{2x}	$c_2^{'}$
c_{4z}^3	c_{4z}^3		C_{4z}	C_{2z}	$c_2^{'}$	c_{2v}		
c_{2x}		$c_2^{'}$	c_{2y}	$c_2^{"}$	E	C_{4z}	c_{2z}	c_{4z}^{3}
$c_2^{'}$	c_2	$c_{_{2v}}$	$c_2^{"}$	c_{2x}	c_{4z}^3	E	C_{4z}	C_{2z}
c_{2v}	c_{2v}	$c_2^{"}$	c_{2x}	$c_2^{'}$	c_{2z}		E	C_{4z}
$c_2^{"}$	c_2	C_{2x}	$c_2^{'}$	c_{2y}	C_{4z}	C_{2z}	$c_{_{4}z}^{_{3}}$	E

其中 c_2 是绕位于xy 平面上与x 轴的夹角为 $\frac{\pi}{4}$ 的轴转过 π 角的转动, c_2 "的轴则与x 轴的夹角为 $\frac{3\pi}{4}$ 。在 D_4 群中,E与 c_{2z} 各自成一类, c_{4z} 及 $c_{4z}^{-1}=c_{4z}^3$ 成一类, c_{2x} 与 c_{2y} 成一类, c_2 与 c_2 成一类,所以共有五类。

示意图 (图 2.20)

图 2.20 D_4 群示意图

D_6 群(g=12)

 D_6 群的生群元是 c_{6z} 及 c_{2x} , 群元

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{6z}c_{2x} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_2^{\odot},$$

$$c_{6z}^{2} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}, \quad c_{6z}^{2}c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{2}, \quad c_{6z}^{3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z},$$

$$c_{2z}c_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}, \quad c_{6z}^4 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^2, \quad c_{6z}^4c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}^3,$$

$$c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{6z}^{5}c_{2x} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{\textcircled{4}}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

	E	C_{6z}	c_{3z}	c_{2z}	$c_{_{3}_{z}}^{^{2}}$	c_{6z}^{5}	c_{2x}	$c_2^{\scriptscriptstyle{ ext{ ilde{1}}}}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle 2\!\scriptscriptstyle)}$	c_{2y}	$c_2^{\tiny \textcircled{3}}$	$c_2^{\tiny \textcircled{4}}$
E							c_{2x}					
C_{6z}	c_{6z}	c_{3z}	c_{zz}	c_{3z}^2	c_{6z}^5	E	$c_2^{^{\textcircled{4}}}$	c_{2x}	$c_2^{\scriptscriptstyle (1)}$	$c_2^{ ilde{ ilde{2}}}$	c_{2y}	$c_2^{\tiny \textcircled{3}}$
c_{3z}	c_{3z}	c_{2z}	c_{3z}^{2}	c_{6z}^5	E	C_{6z}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (3)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!4\!)}$	c_{2x}	$c_2^{\scriptscriptstyle{ ext{ iny 1}}}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)\!$	c_{2y}
c_{2z}	c_{2z}	c_{3z}^{2}	c_{6z}^5	E	C_{6z}	c_{3z}	c_{2y}	_	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle \textcircled{4}}$	C_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle ilde{\!}\!$
c_{3z}^{2}	c_{3z}^2	C_{6z}^5	E	C_{6z}	c_{3z}	C_{2z}	$c_2^{@}$	c_{2y}	$c_2^{\tiny \textcircled{3}}$	-	C_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)}$
c_{6z}^{5}	c_{6z}^5	E		c_{3z}	c_{2z}	c_{3z}^{2}	$c_2^{\tiny{ ext{(1)}}}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle ext{@}}$	c_{2y}	$c_2^{\tiny \textcircled{3}}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle \textcircled{4}}$	C_{2x}
c_{2x}	c_{2x}	$c_2^{\scriptscriptstyle{(\!\!1\!\!)}}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle \textcircled{2}}$	c_{2v}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!3\!)}$		E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2	c_{6z}^{5}
$c_2^{\scriptscriptstyle (\!\!1\!\!)}$	$c_2^{\scriptscriptstyle (\!1\!)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle @}$	c_{2y}	$c_2^{\scriptsize{\textcircled{3}}}$		c_{2x}	c_{6z}^{5}	E	C_{6z}	c_{3z}	c_{2z}	c_{3z}^2
$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!2\!)}$	$c_2^{^{ ilde{2}}}$	c_{2v}	c_2^{\circledcirc}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle \textcircled{4}}$	c_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!1\!)}$	c_{3z}^{2}	C_{6z}^5	E	C_{6z}	c_{3z}	c_{2z}
c_{2y}	c_{2v}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (3)}$	$c_2^{ ext{@}}$	c_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle \textcircled{2}}$	c_{2z}	c_{3z}^{2}		E	c_{6z}	c_{3z}
$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (3)}$	c_2^{\odot}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!4\!)}$	C_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle riangle}$	c_{2y}	c_{3z}	c_{2z}	c_{3z}^{2}	C_{6z}^5	E	C_{6z}
$c_2^{\stackrel{(4)}{2}}$	$c_2^{^{\textcircled{4}}}$	c_{2x}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)}$	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (\!\scriptscriptstyle)\!$	c_{2y}	$c_{\scriptscriptstyle 2}^{\scriptscriptstyle (3)}$	C_{6z}	c_{3z}	c_{2z}	$c_{_{3}z}^{^{2}}$	c_{6z}^{5}	E

表2.19 D_6 的群乘法表

其中 $c_{6z}c_{2x}$, $c_{6z}^2c_{2x}$, $c_{6z}^4c_{2x}$, $c_{6z}^5c_{2x}$ 的转轴均位于xy平面上,与x轴的夹角分别为 $\frac{\pi}{6}$, $\frac{\pi}{3}$, $\frac{2\pi}{3}$ 及 $\frac{5\pi}{6}$ 。 D_6 群共有六类,其中E与 c_{2z} 各成一类, c_{6z} 及 $c_{6z}^{-1}=c_{6z}^5$ 成一类, c_{3z} 与 $c_{3z}^{-1}=c_{3z}^2$ 成一类, c_{2x} , $c_{6z}^2c_{2x}$ 与 $c_{6z}^4c_{2x}$ 成一类, $c_{6z}c_{2x}$, $c_{6z}c_{2x}$, $c_{6z}^5c_{2x}$ 成一类。示意图(图 2. 21)

图 2.21 D_6 群示意图

2.6 Dnh群(D2h群, D3h群, D4h群, D6h群)

 D_{nh} 群由 D_n 群与水平镜象 σ_h 组合而成的。 D_n 群包含了在水平面上的二度转轴,它们与 σ_h 组合成垂直镜象 σ_v 。因此, D_{nh} 共有4n个群元,其中2n个是 D_n 群的正当转动,n个垂直镜象 σ_v 以及n个旋转反演操作 $s_n^k = \sigma_h c_n^k$ 。由于 σ_h 可与 σ_h 可与 σ_h 0,所以 σ_h 0,可表示为

$$D_{nh} = D_n \otimes C_i \tag{2-18}$$

由于

$$D_{1h} = D_1 \otimes C_{1h} = \{ E, c_{2x}, \sigma_{xy}, c_{2x}, \sigma_{xy} = \sigma_{xz} \} = C_{2y}$$
 (2-19)

所以,可能的 D_{nh} 群有四个: D_{2h},D_{3h},D_{4h} 及 D_{6h} 。

D_{2k}群(g=8)

 D_{2h} 群的生群元是 σ_h 及 D_2 群的生成元 c_{2z} 及 c_{2x} ,群元

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{2z}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I,$$

$$c_{2z}^2\sigma_{xy} = \sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{2x}\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y}, \quad c_{2y}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x},,$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

乘法表 (表2.20)

表2. 20 D_{2h} 的群乘法表

	E	c_{2z}	c_{2x}	c_{2y}	$\sigma_{\scriptscriptstyle h}$	I	Ic_{2y}	Ic_{2x}
E	E	c_{2z}	c_{2x}	c_{2y}	$\sigma_{\scriptscriptstyle h}$	I	Ic_{2y}	Ic_{2x}
c_{2z}	c_{2z}	E	c_{2y}	c_{2x}	I	$\sigma_{\scriptscriptstyle h}$	Ic_{2x}	Ic_{2y}
c_{2x}	c_{2x}	c_{2y}	E	c_{2z}	Ic_{2y}	Ic_{2x}	$\sigma_{\scriptscriptstyle h}$	I
c_{2y}	c_{2y}	c_{2x}	c_{2z}	E	Ic_{2x}	Ic_{2y}	I	$\sigma_{\scriptscriptstyle h}$
$\sigma_{\scriptscriptstyle h}$	$\sigma_{\scriptscriptstyle h}$	I	Ic_{2y}	Ic_{2x}	E	c_{2z}	c_{2x}	c_{2v}
I	I	$\sigma_{\scriptscriptstyle h}$	Ic_{2x}	Ic_{2y}	c_{2z}	E	c_{2y}	C_{2x}
Ic_{2y}	Ic_{2y}	Ic_{2x}	$\sigma_{\scriptscriptstyle h}$	I	c_{2x}	c_{2y}	E	c_{2z}
Ic_{2x}	Ic_{2x}	Ic_{2y}	I	$\sigma_{\scriptscriptstyle h}$	c_{2v}	c_{2x}	c_{2z}	E

可见 $D_{2h} = D_2 \otimes C_i$ 。

示意图 (**图 2.22**) [6]

图 2.22 D_{2h} 群示意图

D_{3h}群(g=12)

 D_{3h} 群的生群元是 σ_h 及 D_3 群的生群元 c_{3z} 与 c_{2x} ,群元

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

$$c_{3z}c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = \dot{c_2}, \quad c_{3z}^2c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = \ddot{c_2}, \quad c_{3z}^3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E,$$

$$c_{3z}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = s_3, \quad c_{2x}\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{xz} = \sigma_v,$$

$$c_{2}^{'}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{v}^{'}, \quad c_{3z}^{2}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = s_{3}^{-1},$$

$$c_{2}^{'}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_{v}^{"}, \quad c_{3z}^{3}\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix} = \sigma_{xy}$$

乘法表 (表 2.21)

表2. 21. D_{3h} 的群乘法表

	$\mid E \mid$	c_{3z}	c_{3z}^{2}	c_{2x}	$c_{2}^{'}$	$c_2^{"}$	S_3	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	$\sigma_{_v}$	$\sigma_{v}^{'}$	$\sigma_{v}^{"}$
	E										σ_{v}	
C_{3z}	c_{3z}	c_{3z}^2	E	$c_2^{"}$	c_{2x}	$c_2^{'}$	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	S_3	$\sigma_{v}^{"}$	$\sigma_{_{v}}$	$\sigma_{v}^{'}$
$c_{_{3z}}^{^{2}}$	c_{3z}^{2}	E	c_{3z}	$c_2^{'}$	$c_2^{"}$	c_{2x}	$\sigma_{_h}$	S_3	S_3^{-1}	σ_{v}	$\sigma_{v}^{"}$	$\sigma_{_v}$
c_{2x}	c_{2x}	$c_2^{'}$	$c_2^{"}$	E	c_{3z}	c_{3z}^{2}	σ_{v}	$\sigma_{v}^{"}$	$\sigma_{\scriptscriptstyle v}$	$\sigma_{\scriptscriptstyle h}$	S_3	S_3^{-1}
$c_2^{'}$	c_2	$c_2^{"}$	c_{2x}	c_{3z}^2	E	c_{3z}	$\sigma_{\scriptscriptstyle v}^{"}$	$\sigma_{_v}$	σ_{v}	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	S_3
$c_2^{"}$	$c_2^{"}$	c_{2x}	$c_2^{'}$	c_{3z}	$c_{_{3z}}^{^{2}}$	E	$\sigma_{_v}$	$\sigma_{v}^{'}$	$\sigma_{v}^{"}$	S_3	S_3^{-1}	$\sigma_{_h}$
S_3	S_3	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	$\sigma_{v}^{"}$	$\sigma_{\scriptscriptstyle v}$	$\sigma_{v}^{'}$	c_{3z}^{2}	E	c_{3z}	$c_2^{"}$	c_{2x}	$c_2^{'}$
S_3^{-1}	s_3^{-1}	$\sigma_{\scriptscriptstyle h}$	S_3	σ_{v}	$\sigma_{v}^{"}$	$\sigma_{_v}$	E	c_{3z}	$c_{_{3z}}^{^{2}}$	$c_2^{'}$	$c_2^{"}$	c_{2x}
$\sigma_{\scriptscriptstyle h}$	$\sigma_{\scriptscriptstyle h}$	S_3	S_3^{-1}	$\sigma_{_{v}}$	σ_{v}	$\sigma_{v}^{"}$	c_{3z}	$c_{_{3z}}^{^{2}}$	E	c_{2x}	$c_2^{'}$	$c_2^{"}$
$\sigma_{\scriptscriptstyle v}$	σ_v	$\sigma_{v}^{'}$	$\sigma_{v}^{"}$	$\sigma_{\scriptscriptstyle h}$	S_3	S_3^{-1}	$c_2^{'}$	$c_2^{"}$	c_{2x}	E	c_{3z}	c_{3z}^{2}
σ_{v}	σ_{v}	$\sigma_{v}^{"}$	$\sigma_{_v}$	S_3^{-1}	$\sigma_{_h}$	S_3	$c_2^{"}$	c_{2x}	$c_2^{'}$	$c_{_{3}z}^{^{2}}$	E	c_{3z}
$\sigma_{v}^{"}$	σ_{v}	$\sigma_{\scriptscriptstyle v}$	$\sigma_{v}^{'}$	S_3	S_3^{-1}	$\sigma_{\scriptscriptstyle h}$	c_{2x}	$c_2^{'}$	$c_2^{"}$	c_{3z}	$c_{_{3}z}^{^{2}}$	E

在这十二个群元中, σ_{xy} 自成一类, s_3 与 s_3^{-1} 成一类,三个垂直镜象成一类,以及 D_3 群的三类,所以 D_{3h} 群共有六类。

示意图 (图 2.23)

图 2.23 D_{3h} 群示意图

D_{4h}群 (g=16)

 D_{4h} 群的生群元为 σ_{xy} 及 D_4 群的生群元 c_{4z} 及 c_{2x} ,群元

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{4z}c_{2x} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}, \quad c_{4z}^{2} = c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$c_{4z}^{2}c_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y} \quad , \quad c_{4z}^{3} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad , \quad c_{4z}^{3}c_{2x} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{2} \quad ,$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad , \quad c_{4z}\sigma_{xy} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z}^{3} \quad , \quad c_{2x}\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y} \quad ,$$

$$c_{4z}^{2}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I \quad , \quad c_{2y}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x} \quad , \quad c_{4z}^{3}\sigma_{xy} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z} \quad ,$$

$$c_{2}\sigma_{xy} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{2} \quad , \quad c_{xy}^{3}\sigma_{xy} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z} \quad ,$$

$$c_{2}\sigma_{xy} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{2} \quad , \quad c_{xy}^{3}\sigma_{xy} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{2}^{2} \quad ,$$

由此可见

$$D_{4h} = D_4 \otimes C_i \tag{2-20}$$

 D_{4h} 群共有十类,I , σ_{xv} 各自成一类, Ic_{4z} 与 Ic_{4z}^3 成一类, Ic_{2x} 与 Ic_{2v} 成一类, Ic_2^* 与 Ic_2^* 成一类,加上 D_4 群中的五类。

示意图 (图 2.24)

图 2.24 D_{4h} 群示意图

D_{6h}群(g=24)

 D_{60} 群的生群元为 σ_{xx} 及 D_{6} 群的生群元 c_{6z} 与 c_{2x} ,群元

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{6z}c_{2x} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_2^{\text{\tiny 0}},$$

$$c_{6z}^{2} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z} , \quad c_{6z}^{2} c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{2} , \quad c_{6z}^{3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z} ,$$

$$c_{2z}c_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}, \quad c_{6z}^4 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^2, \quad c_{6z}^4c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{\frac{3}{2}}^3,$$

$$c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} , c_{6z}^{5} c_{2x} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{\textcircled{4}} , E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ,$$

$$c_{6z}^{3}\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I \qquad , \qquad c_{2}^{\text{\tiny 0}}\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{\text{\tiny 3}} = \sigma_{2} \qquad ,$$

$$c_{6z}^{4}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z} \qquad , \qquad c_{2}^{@}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{@} = \sigma_{3}$$

$$c_{6z}^{5}\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z}^{2} , \qquad c_{2}^{\odot}\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{\odot} = \sigma_{5} ,$$

$$c_{6z}^{6}\sigma_{xy} = \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad c_{2}^{\oplus}\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{\circledcirc} = \sigma_{6}$$

$$g = 24$$
且

$$D_{6h} = D_6 \otimes C_i \tag{2-21}$$

所以 D_{6h} 共有十二类,其中六个垂直镜面的配置与分类和 C_{6v} 群相同。示意图(**图 2. 25**)

图 2.25 D_{6h} 群示意图

2.7 Dnd群(D2d群, D3d群)

 D_{nd} 群是由 D_n 群与垂直镜象 σ_d 组合而成,其中 σ_d 的镜面包含主轴并平分垂直于主轴的相邻二度轴之间的夹角,这样的垂直镜面共有n个。垂直镜面的存在,使n度转轴成为双向轴,并使相邻的二度轴互换而彼此等价。由于 σ_d 以及二度轴的存在,使主轴不仅是n度轴,而且是2n度旋轴反射轴。因此,对于n>3的 D_{nd} 群是不存在的,且 D_{1d} 与 C_{2v} 相同,所以,可能的 D_{nd} 群只有 D_{2d} 和 D_{3d} 。

D_{2d}群(g=8)

 D_{2d} 群的生群元是 c_{2x} , c_{2z} 与 σ_{d_1} , 其中 σ_{d_1} 的镜面垂直于 xy 平面并平分 x,y 轴之间的 夹角,群元

$$\begin{split} c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, & c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, & c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, & E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ c_{2z}\sigma_{d_1} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{d_2}, & c_{2z}^2\sigma_{d_1} = \sigma_{d_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, & c_{2x}\sigma_{d_1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_4^3, \\ c_{2y}\sigma_{d_1} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_4 \end{split}$$

乘法表 (表 2.21)

表2. 21 D_{2d} 的群乘法表

	E	c_{2z}	c_{2x}	c_{2y}	$\sigma_{_{d_1}}$	$\sigma_{d_{\gamma}}$	S_4^3	S_4
E	E	c_{2z}	c_{2x}		σ_{d_1}	$\sigma_{d_{\gamma}}$	S_4^3	S_4
c_{2z}	c_{2z}	E	$c_{_{2v}}$	c_{2x}	$\sigma_{\scriptscriptstyle d},$	$\sigma_{\scriptscriptstyle d_1}$	S_4	S_4^3
c_{2x}	c_{2x}	$c_{_{2v}}$	E	$c_{_{2z}}$	S_4	S_4^3	σ_{d}	$\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}$
c_{2y}	c_{2y}	c_{2x}	c_{2z}	E	S_4^3	S_4	σ_{d_1}	$\sigma_{\scriptscriptstyle d},$
$\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}$	$\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}$	$\sigma_{\scriptscriptstyle d,}$	S_4^3	S_4	E	c_{zz}	c_{2x}	c_{2v}
$\sigma_{\scriptscriptstyle d}$	$\sigma_{\scriptscriptstyle d,}$	$\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}$	S_4	S_4^3	c_{2z}	E	c_{2y}	c_{2x}
S_4^3	S_4^3	S_4	$\sigma_{\scriptscriptstyle d_1}$	$\sigma_{\scriptscriptstyle d}$	$c_{_{2v}}$	c_{2x}	c_{2z}	E
S_4	S_4	S_4^3	$\sigma_{\scriptscriptstyle d}$	$\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}$	c_{2x}	$c_{_{2v}}$	E	c_{2z}

群的阶是 g=2n=8,这八个群元分成五类,其中 E 与 c_{2z} 各自成一类, c_{2x} 和 c_{2y} 成一类, s_4 和 s_4^3 成一类,两个垂直镜象 σ_{d_1} 和 σ_{d_2} 成一类。

D_{3d}群(g=12)

 D_{3d} 群的生群元是 c_{2x} , c_{3z} 与 σ_{d_1} , σ_{d_1} 的镜面平分x轴与 c_2 轴之间的夹角,即

$$\sigma_{d_1} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

D_{3d} 群的群元

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

$$c_{3z}c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{'}, \quad c_{3z}^{2}c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{''}, \quad c_{3z}^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E,$$

$$c_{3z}\sigma_{d_1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz} = Ic_{2x}, \quad c_{3z}^2\sigma_{d_1} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_6 = Ic_2',$$

$$c_{3z}^{3}\sigma_{d_{1}} = \sigma_{d_{1}} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{"}, \quad c_{2x}\sigma_{d_{1}} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{3z},$$

$$\vec{c_2}\sigma_{d_1} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{3z}^2, \quad \vec{c_2}\sigma_{d_1} = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix} = I \circ$$

乘法表 (表2.22)

表2.22 D_{3d} 的群乘法表

	E	c_{3z}	$c_{_{3}{_{z}}}^{^{2}}$	c_{2x}	$c_2^{'}$	$c_2^{"}$	I	Ic_{2x}	$Ic_{2}^{'}$	$Ic_2^{"}$	Ic_{3z}	Ic_{3z}^2
E	E	c_{3z}	$c_{_{3}z}^{^{2}}$	c_{2x}	$c_2^{'}$	$c_2^{"}$	I	Ic_{2x}	Ic_2	$Ic_2^{"}$	Ic_{3z}	Ic_{3z}^2
c_{3z}	c_{3z}	$c_{_{3z}}^{^{2}}$	E	$c_2^{"}$	c_{2x}	$c_2^{'}$	Ic_{3z}	$Ic_2^{"}$	Ic_{2x}	Ic'_2	Ic_{3z}^2	I
$c_{_{3z}}^{^{2}}$	c_{3z}^2	E	c_{3z}	$c_2^{'}$	$c_2^{"}$	c_{2x}	Ic_{3z}^2	Ic'_2	$Ic_2^{"}$	Ic_{2x}	I	Ic_{3z}
c_{2x}	c_{2x}	$c_2^{'}$	$c_2^{"}$	E	c_{3z}	$c_{_{3}_{z}}^{^{2}}$	Ic_{2x}	I	Ic_{3z}	Ic_{3z}^2	Ic'_2	$Ic_2^{"}$
$c_2^{'}$	$c_2^{'}$	$c_2^{"}$	c_{2x}	$c_{_{3}z}^{^{2}}$	E	c_{3z}	Ic'_2	Ic_{3z}^2	I	Ic_{3z}	$Ic_2^{"}$	Ic_{2x}
$c_2^{"}$	$c_2^{"}$	c_{2x}	$c_2^{'}$	c_{3z}	c_{3z}^2	E	$Ic_2^{"}$	Ic_{3z}	Ic_{3z}^2	I	Ic_{2x}	Ic_2
I	I	Ic_{3z}	Ic_{3z}^2	Ic_{2x}	Ic'_2	$Ic_2^{"}$	E	c_{2x}	$c_2^{'}$	$c_2^{"}$	c_{3z}	$c_{_{3z}}^{^{2}}$
Ic_{2x}	Ic_{2x}	Ic'_2	$Ic_2^{"}$	I	Ic_{3z}	Ic_{3z}^2	c_{2x}	E	c_{3z}	$c_{_{3z}}^{^{2}}$	$c_2^{'}$	$c_2^{"}$
Ic_2	Ic'_2	$Ic_2^{"}$	Ic_{2x}	Ic_{3z}^2	I	Ic_{3z}	$c_2^{'}$	$c_{_{3z}}^{^{2}}$	E	c_{3z}	$c_2^{"}$	c_{2x}
$Ic_2^{"}$	$Ic_2^{"}$	Ic_{2x}	Ic'_2	Ic_{3z}	Ic_{3z}^2	I	$c_2^{"}$	c_{3z}	c_{3z}^{2}	E	c_{2x}	$c_2^{'}$
Ic_{3z}	Ic_{3z}	Ic_{3z}^2	I	$Ic_2^{"}$	Ic_{2x}	Ic'_2	c_{3z}	$c_2^{"}$	c_{2x}	$c_2^{'}$	$c_{_{3}{_{z}}}^{^{2}}$	E
Ic_{3z}^2	Ic_{3z}^2	I	Ic_{3z}	Ic'_2	$Ic_2^{"}$	Ic_{2x}	$c_{_{3}z}^{^{2}}$	$c_2^{'}$	$c_2^{"}$	c_{2x}	E	c_{3z}
可见D	$O_{3d} = D_3$	$\otimes C_{\scriptscriptstyle i} \circ $	D_{3d} 群	一共有	六类,	I 自成	文一类,	$Ic_2 =$	Ic" 成-	一类,	$Ic_{3z} = I$	c_{3z}^2 成一
类. 加	1上D。#	詳有 三	类。									

 \mathfrak{Z} ,加上 D_3 群有二 \mathfrak{Z} 。

2.8 立方体群(T群, T₄群, T₅群, 0群, 0群)

T 群和 O 群也是可能的第一类晶体点群。这些点群存在互相垂直的等价轴,但并 不存在主轴,所以,这些群是描述正多面体的对称性的群。在三维空间中,仅有五种 正多面体是可能的。由于立方体的六个面心是镶嵌其中的正八面体的六个顶角,所以, 它们属于同一点群[8]。正十二面体与正二十面体属于同一点群,但是由于晶体不存在五 度轴的对称性,所以,这两种多面体结构不可能是晶体所具有的[8]。

T 群 (g=12)

T 群含有三个极点星(2,6),(3,4)及(3,4),即具有三个二度轴及四个三度轴,只有十二 个群元。这是使正四面体自身重合的全部正当转动构成的群,也称做正四面体群。 选取三个二度轴为坐标轴的x, y, z轴,四个三度旋转轴就是立方体的空间对角线。由于 绕三度轴的转动使三个二度轴彼此重合,所以,所有绕二度轴的转动成一类;绕二度 轴的转动使四个三度轴彼此重合,所以是等价轴。这样, T 群的十二个群元就分成四 类: $E;3c_2;4c_3;4c_3^{-1}$ 。

T_d群(g=24)

 T_d 群是包括了正当转动与非正当转动操作的,由使正四面体自身重合的全部操作组成的。所以, T_d 群是完全的正四面体群。它包含正四面体一个边的对角镜面 σ_d 和六个垂直于立方体面并且包含了 T 群的十二个群元;同时还存在 Ic_{4x},Ic_{4y},Ic_{4z} 及其逆 $Ic_{4x}^{-1},Ic_{4y}^{-1},Ic_{4z}^{-1}$ 。所以, T_d 群共有 24 个群元,分成五类: $E;8c_3;3c_2;6Ic_4$ 及6 σ_d 。 $T_h=T\otimes C_i$, T_d 群不是正四面体的对称性群是由于正四面体不存在反映中心。 T_h 群共有 24 个群元,分成八类: $E;3c_2;4c_3;4c_3^{-1};I;3Ic_2;4Ic_3;4Ic_3^{-1}=4Ic_3^2$ 。

T_h群 (g=24)

$$T_b = T \otimes C_i \tag{2-22}$$

O群(g=24)

o 群有三个极点星(2,12),(3,8),(4,6)。这表明 o 群具有三个四度轴,四个三度轴以及六个二度轴,共有 24 个群元。使简单立方体自身重合的全部正当转动组成了 o 群的二十四个群元。由于正八面体与简单立方体的对称性相同,所以,o 群也称为八面体群。群元表(**表** 2, 23)(按逆时针转动):

表2.23 Ø 群群元的矩阵表示

类	群元	操作
1 <i>c</i> ₁	$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	不动
$3c_2$	$c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 x 轴转动 π 角
	$c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 y 轴转动 π 角
	$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 Ζ 轴转动 π 角
6c'_2	$c_{2xy} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 $i+j$ 轴转动 π 角

	$c_{2x\overline{y}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 $i-j$ 轴转动 π 角
	$c_{2xz} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	绕 <i>i</i> + <i>k</i> 轴转动π角
	$c_{2x\bar{z}} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	绕 <i>i – k</i> 轴转动π角
	$c_{2yz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $j+k$ 轴转动 π 角
	$c_{2y\overline{z}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	绕 $j-k$ 轴转动 π 角
$8c_3$	$C_{3xyz} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3xyz}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $-\frac{2\pi}{3}$
	$c_{3\overline{x}y\overline{z}} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3\overline{3}xy\overline{z}}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $-\frac{2\pi}{3}$ 角
	$c_{3x\overline{yz}} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3xyz}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $-\frac{2\pi}{3}$
	$c_{3\overline{x}yz} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	$-i-j+k$ 轴转动 $\frac{2\pi}{3}$ 角

	$c_{3\overline{x}\overline{y}z}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$	$-i-j+k$ 轴转动 $-\frac{2\pi}{3}$ 角
$6c_4$	$c_{4x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$	绕 x 轴转动 $\frac{\pi}{2}$ 角
	$c_{4x}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$	绕 x 轴转动 $-\frac{\pi}{2}$ 角
	$c_{4y} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $\frac{\pi}{2}$ 角
	$c_{4y}^{-1} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $-\frac{\pi}{2}$ 角
	$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 z 轴转动 $\frac{\pi}{2}$ 角
	$c_{4z}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 z 轴转动 $-\frac{\pi}{2}$ 角

O_h群(g=48)

$$O_h = O \otimes C_i \tag{2-23}$$

简单立方体(或正八面体)自身重合的一切对称操作组成 O_h 群的群元。 O_h 群是晶体点群中最大的一个群,一共含有 48 个群元,群元表(**表 2. 24**)(按逆时针转动)**:**

表2. 24. O_h 群群元的矩阵表示

类	群元	操作
$1c_1$	$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	不动
$3c_2$	$c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 x 轴转动 π 角

	Г	
	$c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 y 轴转动 π 角
	$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 Ζ 轴转动 π 角
6c'_2	$c_{2xy} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 $i+j$ 轴转动 π 角
	$c_{2x\bar{y}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 $i-j$ 轴转动 π 角
	$c_{2xz} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	绕 <i>i</i> + <i>k</i> 轴转动π角
	$c_{2x\overline{z}} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	绕 <i>i – k</i> 轴转动π角
	$c_{2yz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $j+k$ 轴转动 π 角
	$c_{2y\overline{z}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	绕 $j-k$ 轴转动 π 角
$8c_3$	$c_{3xyz} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3xyz}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $-\frac{2\pi}{3}$
	$c_{3\bar{x}y\bar{z}} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3\bar{x}y\bar{z}}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $-\frac{2\pi}{3}$ 角

	F	
	$c_{3x\overline{yz}} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{3xyz}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $-\frac{2\pi}{3}$
	$c_{3\overline{x}yz} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	$-i-j+k$ 轴转动 $\frac{2\pi}{3}$ 角
	$c_{\frac{-1}{3x}}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$	$-i-j+k$ 轴转动 $-\frac{2\pi}{3}$ 角
$6c_4$	$c_{4x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$	绕 x 轴转动 $\frac{\pi}{2}$ 角
	$c_{4x}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$	绕 x 轴转动 $-\frac{\pi}{2}$ 角
	$c_{4y} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $\frac{\pi}{2}$ 角
	$c_{4y}^{-1} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $-\frac{\pi}{2}$ 角
	$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 z 轴转动 $\frac{\pi}{2}$ 角
	$c_{4z}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	绕 z 轴转动 $-\frac{\pi}{2}$ 角
1 <i>Ic</i> ₁	$I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	中心反演
$3Ic_2(\sigma)$	$Ic_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz}$	在 yz 面上的反射

	$Ic_{2y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{xz}$	在xz面上的反射
	$Ic_{2z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \sigma_{xy}$	在xy 面上的反射
$6Ic_2(\sigma_d)$	$Ic_{2xy} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	在含 z 轴过 ac 的面上的 反射
	$Ic_{2x\bar{y}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	在含 z 轴过 db 的面上的 反射
	$Ic_{2xz} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	在含 y 轴过 cb 的面上的 反射
	$Ic_{2x\bar{z}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	在含 y 轴过 ad 的面上的 反射
	$Ic_{2yz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	在含 <i>x</i> 轴过 <i>ab</i> 的面上的 反射
	$Ic_{2yz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	在含 <i>x</i> 轴过 <i>cd</i> 的面上的 反射
$8Ic_3$	$Ic_{3xyz} = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $\frac{2\pi}{3}$ 后接着反演
	$Ic_{3xyz}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}$	绕 $i+j+k$ 轴转动 $-\frac{2\pi}{3}$ 后接着反演
	$Ic_{3\bar{x}y\bar{z}} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $\frac{2\pi}{3}$ 后接着反演
	$Ic_{3\bar{x}y\bar{z}}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$	绕 $-i+j-k$ 轴转动 $-\frac{2\pi}{3}$ 后接着反演

	Γο ο 17	2-
	$Ic_{3x\overline{yz}} = \begin{bmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & -1 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $\frac{2\pi}{3}$ 后接着反演
	$Ic_{3x\overline{yz}}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $i-j-k$ 轴转动 $-\frac{2\pi}{3}$ 后接着反演
	$Ic_{3xyz}^{} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	绕 $-i-j+k$ 轴转动 $\frac{2\pi}{3}$ 后接着反演
	$Ic_{3\overline{x},yz}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$	绕 $-i-j+k$ 轴转动 $-\frac{2\pi}{3}$ 后接着反演
6 <i>Ic</i> ₄	$Ic_{4x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$	绕 x 轴转动 $\frac{\pi}{2}$ 后接着反演
	$Ic_{4x}^{-1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$	绕 x 轴转动 $-\frac{\pi}{2}$ 后接着 反演
	$Ic_{4y} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $\frac{\pi}{2}$ 后接着反演
	$Ic_{4y}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$	绕 y 轴转动 $-\frac{\pi}{2}$ 后接着 反演
	$Ic_{4z} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 z 轴转动 $\frac{\pi}{2}$ 后接着反演
	$Ic_{4z}^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	绕 z 轴转动 $-\frac{\pi}{2}$ 后接着 反演

在这 32 个点群中,除正六面体 O_h 以及 D_{6h} 是相互没有关系的两个群外,其余的 30 个点群都是 O_h 群或 D_{6h} 群的子群。

第三章 32点群的特征标表

表 3.1 C_1 群的特征标表

$C_1(1)$	E
A	1

表3.2 C_2 群的特征标表

	$C_{2}(2)$		E	c_2
x^2, y^2, z^2, xy	R_z, z	A	1	1
xz, yz	x, y R_x, R_y	В	1	1

表3.3 C_3 群的特征标表

	$C_3(3)$		E	c_3	c_3^2	
$x^2 + y^2, z^2$	R_z, z	A	1	1	1	
(xz, yz)	(x,y)		1	ω	ω^2	$\omega = e^{2\pi i/3}$
$(x^2 - y^2, xy)$	(R_x, R_y)	Е	1	ω^2	ω	

表3.4 C_4 群的特征标表

$C_4(4)$			E	c_2	\mathcal{C}_4	c_4^2
$x^2 + y^2, z^2$	R_z, z	A	1	1	1	1
$x^2 - y^2, xy$		В	1	1	-1	– 1
	(x,y)	r	1	-1	i	<i>−i</i>
(xz, yz)	$\left(R_x,R_y\right)$	E	1	-1	<i>−i</i>	i

表3.5 C_5 群的特征标表

•	$C_{5}(5)$		E	c_5	c_5^2	c_5^3	c_5^4	
$x^2 + y^2, z^2$	R_z, z	A	1	1	1	1	1	
	(x,y)	E'	1	ω	ω^2	ω^3	ω^4	$\omega = e^{2\pi i/5}$
(xz, yz)	(R_x, R_y)	E	1					
(-2 -21)		$E^{"}$	1	ω^2 ω^3	ω^4	ω	ω^3	
$\left(x^2-y^2,xy\right)$		L.	1	ω^3	ω	ω^4	ω^2	

表3.6 C_6 群的特征标表

$C_{6}(6)$			E	c_6	c_3	c_2	c_3^2	c_6^5	
$x^2 + y^2, z^2$	R_z, z	A	1	1	1	1	1	1	
		В	1	-1	1	-1	1	-1	
	(x,y)	-	1	ω	ω^2	ω^3	ω^4	ω^{5}	$2\pi i/4$
(xz, yz)	(R_x, R_y)	E	1	ω^5	ω^4	ω^3	ω^2	ω	$\omega = e$
$\left(x^2-y^2,xy\right)$		E"	1	ω^2	ω^4	1	ω^2	ω^4	
(x - y, xy)		L	1	ω^4	ω^2	1	ω^4	ω^2	

表3.7 $C_{2\nu}$ 群的特征标表

$C_{2v}(2mm)$			E	c_2	$\sigma_{_v}$	$\sigma_{v}^{'}$
x^2, y^2, z^2	Z	$A_{\rm l}$	1	1	1	1
xy	R_z	A_2	1	1	-1	-1
XZ	R_y, x	B_1	1	-1	1	-1
yz	R_x, y	B_2	1	-1	-1	1

表3.8 $C_{3\nu}$ 群的特征标表

	$C_{3v}(3m)$		E	$2c_2$	$3\sigma_{_{\scriptscriptstyle V}}$
$x^2 + y^2, z^2$	Z	A_{l}	1	1	1
	R_z	A_2	1	1	-1
$\frac{\left(x^2-y^2,xy\right)}{\left(xz,yz\right)}$	(x,y) (R_x,R_y)	E	2	-1	0

表3.9 $C_{4\nu}$ 群的特征标表

	$G_{4v}(4mm)$		E	c_2	$2c_4$	$2\sigma_v$	$2\sigma_d$
$x^2 + y^2, z^2$	Z	A_{l}	1	1	1	1	1
	R_z	A_2	1	1	1	-1	-1
x^2-y^2		B_{1}	1	1	-1	1	-1
xy		B_{2}	1	1	-1	-1	1
(xz, yz)	$\frac{\left(x,y\right)}{\left(R_{x},R_{y}\right)}$	E	2	-2	0	0	0

表3.10 C_{5v} 群的特征标表

C_5	(5m)		E	$2c_5$	$5c_5^2$	$5\sigma_{v}$	
$x^2 + y^2, z^2$	z	$A_{\rm l}$	1	1	1	1	
	R_z	A_2	1	1	1	-1	
(xz, yz)	$\frac{(x,y)}{(R_x,R_y)}$	$E_{\rm l}$	2	$2\cos x$	$2\cos 2x$	0	$x = \frac{2\pi}{5}$
(x^2-y^2,xy)		E_2	2	$2\cos 2x$	$2\cos 4x$	0	

表3.11 C_{6v} 群的特征标表

C_{6v}	(6mm)		E	c_2	$2c_3$	$2c_{6}$	$3\sigma_d$	$3\sigma_{v}$
$x^2 + y^2, z^2$	Z	$A_{\rm l}$	1	1	1	1	1	1
	R_z	A_2	1	1	1	1	-1	-1
		B_{1}	1	-1	1	-1	-1	1
		B_2	1	-1	1	-1	1	-1
(xz, yz)	$\frac{(x,y)}{(R_x,R_y)}$	$E_{\rm l}$	2	-2	- 1	1	0	0
(x^2-y^2,xy)		E_{2}	2	2	-1	-1	0	0

表3. 12 C_{1h} 群的特征标表

	$C_{1h}\left(m\right)$		E	$\sigma_{_h}$
x^2, y^2, z^2, xy	R_z, x, y	À	1	1
(xz, yz)	R_x, R_y, z	Å	1	- 1

表3.13 C_{2h} 群的特征标表

	$C_{2h}(2/m)$		E	c_2	$\sigma_{_h}$	I
x^2, y^2, z^2, xy	R_z	A_{g}	1	1	1	1
	Z	A_u	1	1	-1	-1
xz, yz	R_x, R_y	B_{g}	1	-1	-1	1
	x, y	$B_{"}$	1	-1	1	-1

表3.14 C_{3h} 群的特征标表

$C_{3h} = C_3$	$\otimes \sigma_{_h}(\overline{6})$		E	c_3	c_3^2	$\sigma_{\scriptscriptstyle h}$	S_3	$\sigma_h c_3^2 = s_3^{-1}$	
$x^2 + y^2, z^2$	R_z	À	1	1	1	1	1	1	
	\boldsymbol{z}	Å	1	1	1	-1	-1	-1	
(x^2-y^2,xy)		Ľ	1	ω	ω^2	1	ω	ω^2	
(x - y, xy)	(x,y)	L	1	ω^2	ω	1	ω^2	ω	$\omega = e^{2\pi i/3}$
(xz, yz)	(p,p)	E"	1	ω	ω^2	-1	$-\omega$	$-\omega^2$	
(xz, yz)	(Λ_x, Λ_y)		1	ω^2	ω	-1	$-\omega^2$	$-\omega$	

$$C_{4h} = C_4 \otimes C_i (4/m)$$
, $C_{5h} = C_5 \otimes C_{1h} (\overline{10})$, $C_{6h} = C_6 \otimes C_i (6/m)$

表3.15 S_2 群的特征标表

	E	I		
$x^2, y^2, z^2, xy, xz, yz$	R_x, R_y, R_z	1	1	
	x, y, z	A_u	1	-1

表3.16 S_4 群的特征标表

	$S_4(\overline{4})$		E	c_2	S_4	S_4^3			
$x^2 + y^2, z^2$	R_z	A	1	1	1	1			
	Z	В	1	1	-1	-1			
(xz, yz)	(x,y)	F	1	-1	i	-i			
(x^2-y^2,xy)	(R_x, R_y)	E	1	-1	<i>−i</i>	i			
$S_6 = C_3 \otimes C_i(\overline{3})$									

表3.17 D_2 群的特征标表

	$D_2(222)$		E	c_{2z}	c_{2y}	c_{2x}
x^2, y^2, z^2		A_{l}	1	1	1	1
xy	R_z, z	B_{1}	1	1	– 1	-1
XZ	R_{y}, y	B_2	1	-1	1	-1
yz	R_{x}, x	B_3	1	-1	-1	1

表3.18 D_3 群的特征标表

	$D_{3}(32)$		E	$2c_3$	$3c_2$
$x^2 + y^2, z^2$		$A_{ m l}$	1	1	1
	R_z, z	A_2	1	1	-1
$\frac{(xz, yz)}{(x^2 - y^2, xy)}$	(x,y) (R_x,R_y)	E	2	-1	0

表3. 19 D_4 群的特征标表

	$D_4(422)$		E	$c_2 = c_4^2$	$2c_4$	$\left 2c_2'(c_{2x},c_{2y}) \right $	$2c_2^{"}$
$x^2 + y^2, z^2$		$A_{ m l}$	1	1	1	1	1
	R_z, z	A_2	1	1	1	– 1	-1
x^2-y^2		$B_{_{1}}$	1	1	-1	1	-1
xy		B_{2}	1	1	-1	– 1	1
(xz, yz)	$ \begin{array}{c} (x,y) \\ (R_x,R_y) \end{array} $	E	2	-2	0	0	0

表3. 20 D_5 群的特征标表

	$D_{5}(52)$		E	$2c_5$	$2c_{5}^{2}$	$5c_2$	
$x^2 + y^2, z^2$		A_{l}	1	1	1	1	
	R_z, z	A_2	1	1	1	-1	
(xy, yz)	(x,y) (R_x,R_y)	$E_{\rm l}$	2	$2\cos x$	$2\cos 2x$	0	$x = \frac{2\pi}{5}$
(x^2-y^2,xy)		E_{2}	2	$2\cos 2x$	$2\cos 4x$	0	

表3. 21 D_6 群的特征标表

D_{ϵ}	(622)		E	c_2	$2c_3$	$2c_6$	$3c_2$	$3c_2^{"}$
$x^2 + y^2, z^2$		A_{l}	1	1	1	1	1	1
	R_z, z	A_2	1	1	1	1	-1	-1
		B_{1}	1	-1	1	-1	1	-1
		B_2	1	-1	1	-1	-1	1
(xz, yz)	$\frac{\left(x,y\right)}{\left(R_{x},R_{y}\right)}$	E_{1}	2	-2	-1	1	0	0
(x^2-y^2,xy)		E_2	2	2	-1	-1	0	0

表3. 22 D_{2d} 群的特征标表

	$O_{2d}\left(\overline{4}2m\right)$		E	c_2	$2s_4$	$2c_{2}^{'}$	$2\sigma_d$
$x^2 + y^2, z^2$		A_{l}	1	1	1	1	1
	R_z	A_2	1	1	1	-1	-1
x^2-y^2		B_{1}	1	1	-1	1	-1
xy	Z	B_{2}	1	1	-1	-1	1
	$ \begin{array}{c c} (x,y) \\ \hline (R_x,R_y) \end{array} $	E	2	-2	0	0	0

$$D_{3d} = D_3 \otimes C_i (3m)$$

$$D_{2h} = D_2 \otimes C_i (mmm)$$

表3. 23 D_{3h} 群的特征标表

$D_{3h} = D$	$_{3}\otimes C_{1h}(\overline{6}m$	2)	E	$\sigma_{_h}$	$2c_3$	$2s_3$	$3c_2$	$3\sigma_{v}$
$x^2 + y^2, z^2$		$A_{\mathrm{l}}^{'}$	1	1	1	1	1	1
	R_z	$A_2^{'}$	1	1	1	1	-1	-1
		$A_{ m l}^{"}$	1	-1	1	-1	1	-1
		$A_{2}^{"}$	1	– 1	1	-1	– 1	1
(x^2-y^2,xy)	(x,y)	Ë	2	2	– 1	-1	0	0
(xz, yz)	(R_x, R_y)	E"	2	-2	-1	1	0	0

$$D_{4h} = D_4 \otimes C_i \left(\frac{4}{mmm} \right)$$

$$D_{5h} = D_5 \otimes C_{1h} \left(\overline{10} m2 \right)$$

$$D_{6h} = D_6 \otimes C_i \left(\frac{6}{mmm} \right)$$

表3.24 T 群的特征标表

T(2	3)	E	$3c_2$	$4c_3$	$4c_{3}^{-1}$	
	A	1	1	1	1	
		1	1	ω	ω^2	
	E	1	1	ω^2	ω	$\omega = e^{2\pi i/2}$
$\frac{\left(R_{x}, R_{y}, R_{z}\right)}{\left(x, y, z\right)}$	T	3	-1	0	0	

$$T_h = T \otimes C_i(m3)$$

表3.25 0群的特征标表

O(432)		E	$8c_3$	$3c_2 = 3c_4^2$	$6c_2^{'}$	$6c_4$
	A_{l}	1	1	1	1	1
	A_2	1	1	1	-1	-1
$(x^2-y^2,3z^2-r^2)$	E	2	-1	2	0	0
$\frac{\left(R_{x}, R_{y}, R_{z}\right)}{\left(x, y, z\right)}$	$T_{_1}$	3	0	-1	-1	1
(xy, yz, zx)	T_2	3	0	-1	1	-1
		0	$O \otimes C = (m^2)$.)		

$O_h = O \otimes C_i (m3m)$

表3. 26 T_d 群的特征标表

$T_d(\overline{4})$	3m)	E	$8c_3$	$3c_2$	$6\sigma_{_d}$	6 <i>Ic</i> ₄
	A_{l}	1	1	1	1	1
	A_2	1	1	1	-1	-1
	E	2	-1	2	0	0
(R_x, R_y, R_z)	T_1	3	0	-1	-1	1
(x, y, z)	T_2	3	0	-1	1	-1

第四章 32点群的具体实例演示与分析

4.1 利用点群求解 BH₃ 的分子轨道

1、判断分子所属的点群,判断能否用子群使运算简便;

已知 BH_3 分子为正三角形构型,其分子点群为 D_{3h} 。我们可用其子群 D_3 或者 C_3 处理简化运算。在这里,我们采用 D_3 群处理 BH_3 分子轨道。

 D_{nn} 群的特征标投影和 D_{n} 与 C_{n} 群的特征标投影算子等效,可以简化对称分子轨道的计算。

图 4.1. BH, 的分子构型

2、按照特征标表中各个不可约表示(A B E T)对应的基(x y z...)将中心原子轨道进行分类:

$D_3(32)$				E	$2c_3$	$3c_2$
	$x^2 + y^2, z^2$		A_{l}	1	1	1
		R_z, z	A_2	1	1	-1
	$\frac{(xz, yz)}{(x^2 - y^2, xy)}$	(x,y) (R_x,R_y)	E	2	-1	0
				百乙炔送上。	2 2 2 5	

表 4.1 D_3 群的特征标表

已知 BH_3 中心原子为B原子,价层原子轨道为 $2s,2p_x,2p_y,2p_z^{[9]}$;因为s轨道为球对称,所以我们由表可得出s轨道恒属于A不可约表示;因为 $2p_x,2p_y,2p_z$ 波函数为线性函数,根据特征标表的线性基函数就可判断其对称性, $2p_x,2p_y\to E;2p_z\to A_2$

总结,中心原子轨道的对称性分类 $2s \to A_1$; $2p_x$, $2p_y \to E$; $2p_z \to A_2$ 3、构造配体群轨道的可约表示,得到配体群轨道的不可约表示,利用投影算符和波函数正交归一得到各个配体群原子轨道;

利用视察法(视察法是一种常用来计算特征标的方法,在对称操作下保持不动的原子对特征标贡献为 1,移动了的则贡献为 0。通过视察法,可以计算出在对称操作下有多少个原子位置不变,从而获得对应特征标的贡献)得出,在 E 操作下, 3 个氢原子位置都没有发生变化,所以对特征标的贡献为 3;在 $2c_{32}$ 操作下, 3 个氢原子位置都发生了变化,所以对特征标的贡献为

0; 在 $3c_2$ 操作下,只有 1 个氢原子位置没 有变化,所以对特征标的贡献为 $1^{[10]}$ 。

根据约化公式,进行约化:

$$n_{A_1} = \frac{1}{6} (1 \times 1 \times 3 + 2 \times 1 \times 0 + 3 \times 1 \times 1) = 1$$
 (2-24)

$$n_E = \frac{1}{6} (1 \times 2 \times 3 + 2 \times 1 \times 0 + 3 \times 0 \times 1) = 1$$
 (2-25)

三个氢原子的轨道,分别在4和E不可约表示有分量。

$$\Gamma = A_1 + E \tag{2-26}$$

此时,我们已经清晰地对中心原子和配体原子的对称性进行了分类, A_1 不可约表示——中心原子 2s 一个轨道,配体原子一个轨道;线性组合形成了两个分子轨道,所以可直接得出为一个成键轨道,一个反键轨道。 A_2 不可约表示——中心原子 $2p_z$ 一个轨道,配体原子无轨道提供;所以我们可直接得出 $2p_z$ 为非键轨道[10][11]。

E不可约表示——中心原子 $2p_x, 2p_y$ 两个轨道,可直接得出为两个简并的成键轨道和两个简并的反键轨道。

可以根据矢量投影或投影算符方法,利用三个氢原子群轨道的不可约表示方向,计算出它们在相应方向上的分量:第一种,通过矢量投影,由于 4 基函数为球对称,所以三个氢原子的原子轨道贡献相同

$$\phi_{A_{1}} = \frac{1}{\sqrt{3}} \left(1s_{A} + 1s_{B} + 1s_{C} \right) \tag{2-27}$$

E 不可约表示是二维不可约表示,两个轨道分量投影方法如下[12]

图 4.2 BH3分子投影

$$\phi_{E_x} = \frac{1}{\sqrt{2}} \left(\cos\left(\frac{\pi}{2}\right) 1 s_A + \cos\left(\pi + 30^\circ\right) 1 s_B + \cos\left(2\pi - 30^\circ\right) 1 s_C \right)$$

$$= -\frac{1}{\sqrt{2}} \left(1 s_B - 1 s_C \right)$$
(2-28)

$$\phi_{E_{y}} = \frac{1}{\sqrt{2}} \left(\sin\left(\frac{\pi}{2}\right) 1s_{A} + \sin\left(\pi + 30^{\circ}\right) 1s_{B} + \sin\left(2\pi - 30^{\circ}\right) 1s_{C} \right)$$

$$= \frac{1}{\sqrt{6}} \left(21s_{A} - 1s_{B} - 1s_{C} \right)$$
(2-29)

第二种办法,根据投影算符方法

$$\hat{P}^{j} = \frac{l^{j}}{h} \sum_{\hat{R}} \chi_{j}^{*} (\hat{R}) \hat{R}$$
(2-30)

$$\varphi^{A} \propto \hat{P}^{A} f_{1} = \frac{1}{3} \left(1 \cdot \hat{E} + 1 \cdot \hat{C} + 1 \cdot \hat{C}_{3}^{2} \right) f_{1} = \frac{1}{3} \left(f_{1} + f_{2} + f_{3} \right)$$
 (2-31)

$$\varphi^{E_1} \propto \hat{P}^{E_1} f_1 = \frac{1}{3} \left(f_1 + \varepsilon^* f_2 + \varepsilon f_3 \right)$$

$$\varphi^{E_2} \propto \frac{1}{3} \left(f_1 + \varepsilon f_2 + \varepsilon^* f_3 \right)$$
(2-32)

变为实系数:

$$E: \begin{cases} \varphi_{1}^{E} \propto \frac{1}{3} (2f_{1} - f_{2} - f_{3}) \\ \varphi_{2}^{E} \propto \sqrt{3} (f_{2} - f_{3}) \end{cases}$$
 (2-33)

- 4、根据各不可约表示代表的对称性,判断成键、反键、非键轨道的组合方式, 求解低阶休克尔行列式,简化运算;
- 5、判断能级顺序,得出分子轨道能级图

图 4.3 BH_3 分子轨道能级图

4.2 利用点群求解 CH4 的分子轨道

1、判断分子所属的点群,判断能否用子群使运算简便;

 CH_4 为正四面体构型,分子点群为 T_d

图 4.4 CH4的分子构型

2、按照特征标表各个不可约表示(A B E T)对应的基(x y z...)将中心原子轨道进行分类;

$T_d(\overline{4}3m)$		\mid_{E}	$ 8c_3 $	$3c_2$	$\delta \sigma_{_d}$	$ 6Ic_4 $
$I_d(\exists 3m)$		E	3	302		0704
	$A_{\rm l}$	1	1	1	1	1
	A_2	1	1	1	-1	-1
	E	2	-1	2	0	0
(R_x, R_y, R_z)	T_1	3	0	-1	-1	1
(x, y, z)		3	0	-1	1	-1

表 4.2: T_d 群的特征标表

已知 CH_4 中心原子为C原子,价层原子轨道为 $2s,2p_x,2p_y,2p_z$ ^[9]; s 轨道为球对称,得出 s 轨 道 恒 属于 A_I 不可约表示; $2p_x,2p_y,2p_z$ 波 函 数 为 线 性 函 数 , 可 得 , $2p_x,2p_y,2p_z\to T_2$

总结,中心原子轨道的对称性分类 $2s \rightarrow A_1; 2p_x, 2p_y, 2p_z \rightarrow T_2$

3、构造配体群轨道的可约表示得到各个配体群原子轨道;利用视察法,在 E 操作下,对特征标的贡献为 4;在 $8c_3$ 操作下,对特征标的贡献为 1;在 $3c_2$ 操作下,对特征标的贡献为 0;在 $6s_4$ 操作下,对特征标的贡献为 0; $6\sigma_d$ 操作下,对特征标的贡献为 $2^{[10]}$ 。根据约化公式,进行约化

$$n_{A_1} = \frac{1}{24} (1 \times 1 \times 4 + 8 \times 1 \times 1 + 6 \times 1 \times 2) = 1$$
 (2-34)

$$n_{T_2} = \frac{1}{24} (1 \times 3 \times 4 + 8 \times 0 \times 1 + 6 \times 1 \times 2) = 1$$
 (2-35)

四个氢原子的轨道,分别在 A_1 和 T_2 不可约表示有分量。

$$\Gamma = A_1 + T_2 \tag{2-36}$$

此时我们已经将中心原子和配体原子的对称分类清晰, A_1 不可约表示——中心原子 2s 一个轨道,配体原子一个轨道;因此可以直接确定它们为一个成键轨道和一个反键轨道。 T_2 不可约表示——中心原子 $2p_x,2p_y,2p_z$ 三轨道,配体原子三轨道;线性组合形成了六个分子轨道,所以可直接得出为三个简并的成键轨道,三个简并的反键轨道[11]。

得到了四个氢原子群轨道的不可约表示方向,可以根据矢量投影或者投影算符方法得到分量,根据投影算符方法^[12]

$$\phi_{A_1} = \frac{1}{2} \left(1s_a + 1s_b + 1s_c + 1s_d \right)$$
 (2-37)

$$\phi_{T_{2x}} = \frac{1}{\sqrt{2}} ((x)_a 1s_a + (x)_b 1s_b + (x)_c 1s_c + (x)_d 1s_d)$$

$$= \frac{1}{2} (1s_a - 1s_b + 1s_c - 1s_d)$$
(2-38)

$$\phi_{T_{2y}} = \frac{1}{\sqrt{2}} ((y)_a 1s_a + (y)_b 1s_b + (y)_c 1s_c + (y)_d 1s_d)$$

$$= \frac{1}{2} (1s_a + 1s_b - 1s_c - 1s_d)$$
(2-39)

$$\phi_{T_{2z}} = \frac{1}{\sqrt{2}} \left((z)_a \, 1s_a + (z)_b \, 1s_b + (z)_c \, 1s_c + (z)_d \, 1s_d \right)$$

$$= \frac{1}{2} \left(1s_a - 1s_b - 1s_c + 1s_d \right)$$
(2-40)

- 4、求解低阶休克尔行列式,避免求解高阶的久期行列式,简化运算;
- 5、判断能级顺序,得出分子轨道能级图!

图 4.5 CH₄分子轨道能级图

- 4.3 利用点群求解H₂O的分子轨道
- 1、判断分子所属点群,是否可用其子群简化运算;

 H_2O 为 V 构型,分子点群为 $C_{2,1}$

图 4.6 H_2O 的分子构型

2、按照特征标表各个不可约表示对应的基将中心原子轨道进行分类;

表 4.3: $C_{2\nu}$ 群的特征标表

$C_{2v}(2mm)$			$\mid E \mid$	c_2	σ_v	σ_{v}
x^2, y^2, z^2	Z	A_{l}	1	1	1	1
\overline{xy}	R_z	A_2	1	1	-1	-1
\overline{xz}	R_y, x	B_1	1	-1	1	-1
yz	R_x, y	B_2	1	-1	1	1

 H_2O 中心原子为O原子,价层原子轨道为 $2s, 2p_x, 2p_y, 2p_z$ [9],中心原子轨道的对称性分类 $2p_x \to B_1, 2p_y \to B_2, 2s, 2p_z \to A_1$

3、构造配体群轨道的可约表示。利用视察法,在E、 σ_{yz} 操作下,对特征标的贡献为均 2;在 c_{2z} 、 σ_{xz} 操作下,特征标均为 $0^{[10]}$;

根据约化公式,进行约化

$$n_{A_1} = \frac{1}{4} (1 \times 2 + 1 \times 0 + 1 \times 0 + 1 \times 2) = 1$$
 (2-41)

$$n_{A_2} = \frac{1}{4} (1 \times 2 + 1 \times 0 - 1 \times 0 - 1 \times 2) = 0$$
 (2-42)

$$n_{B_1} = \frac{1}{4} (1 \times 2 - 1 \times 0 + 1 \times 0 - 1 \times 2) = 0$$
 (2-43)

$$n_{B_2} = \frac{1}{4} (1 \times 2 - 1 \times 0 - 1 \times 0 + 1 \times 2) = 1$$
 (2-44)

2个氢原子的轨道,分别在4和B,不可约表示有分量。

$$\Gamma = A_1 + B_2 \tag{2-45}$$

此时我们已经将中心原子和配体原子的对称分类清晰, A_i 不可约表示——中心原子 2s和 $2p_z$ 两个轨道,配体原子一个轨道;线性组合形成了三个分子轨道,由于有能量较低的 2s 存在,所以可直接得出为两个成键轨道,一个反键轨道。 B_i 不可约表示——中心原子 $2p_x$ 两个轨道,配体原子无轨道提供;所以可直接得出 $2p_x$ 为非键轨道。 B_2 不可约表示——中心原子 $2p_y$ 一个轨道,配体原子一个轨道;可直接得出为一个成键轨道,一个反键轨道。得到了两个氢原子群轨道的不可约表示方向,可以根据矢量投影或者投影算符方法得到分量:第一种办法,矢量投影,由于 A_i 基函数为球对称,所以两个氢原子的原子轨道贡献相同均为 50% [10];

$$\begin{pmatrix} \phi_{a_1} \\ \phi_{a_2} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
 (2-46)

第二种办法,根据投影算符方法

$$P^{A_1} \varphi_1 = 1 \times \varphi_1 + 1 \times \varphi_2 + 1 \times \varphi_1 + 1 \times \varphi_2 = 2 \times \varphi_1 + 2 \times \varphi_2 \tag{2-47}$$

$$P^{B_2}\varphi_1 = 2 \times \varphi_1 - 2 \times \varphi_2 \tag{2-48}$$

归一化得

$$\varphi_{A_1} = \frac{1}{\sqrt{2}} (\varphi_1 + \varphi_2) \tag{2-49}$$

$$\varphi_{B_2} = \frac{1}{\sqrt{2}} (\varphi_1 - \varphi_2) \tag{2-50}$$

- 4、求解低阶休克尔行列式,可以避免求解高阶的久期行列式,简化运算;
- 5、判断能级顺序,得出分子轨道能级图!

图 4.7 H_2O 分子轨道能级图

4.4 利用点群求解 NH3 的分子轨道

- 1、判断分子所属点群 ,是否可用其子群简化运算; NH_3 为三角锥构型,分子点群为 C_{3v} 。
- 2、按照特征标表中各个不可约表示对应的基将中心原子轨道进行分类;

表 4.4: $C_{3\nu}$ 群的特征标表

$C_{3v}(3m)$			$\mid E \mid$	$2c_2$	$3\sigma_{v}$
$x^2 + y^2, z^2$	Z	A_{l}	1	1	1
	R_z	A_2	1	1	-1
(x^2-y^2,xy)	(x,y)	E	2	-1	0
(xz, yz)	$\left(R_{x},R_{y}\right)$		2	1	O .

 NH_3 中心原子为N原子,价层原子轨道为 $2s,2p_x,2p_y,2p_z$ [9];判断得出中心原子轨道的对称性分类 $2s,2p_z\to A_1;2p_x,2p_y\to E$

3、利用视察法,在 E 操作下,对特征标的贡献为 3;在 $2c_{3z}$ 操作下,对特征标的贡献为为 0;在 $3\sigma_{z}$ 操作下,对特征标的贡献为为 1。

根据约化公式,进行约化:

$$n_{A_1} = \frac{1}{6} (1 \times 3 + 2 \times 0 + 3 \times 1) = 1$$
 (2-51)

$$n_{A_2} = \frac{1}{6} (1 \times 3 + 1 \times 0 - 3 \times 1) = 0$$
 (2-52)

$$n_E = \frac{1}{6} (3 \times 2 - 2 \times 0 - 1 \times 0 + 3 \times 0) = 1$$
 (2-53)

三个氢原子的轨道,分别在 4和 E 不可约表示有分量

$$\Gamma = A_1 + E \tag{2-54}$$

此时我们已经将中心原子和配体原子的对称分类清晰,A不可约表示——中心原子 2s 和 $2p_z$ 两个轨道,配体原子一个轨道;线性组合形成了三个分子轨道,所以可直接得出为两个成键轨道,一个反键轨道。E 不可约表示——中心原子 $2p_x,2p_y$ 两个轨道,配体原子两个轨道;线性组合形成了四个分子轨道,所以可直接得出为两个简并的成键轨道,两个简并的反键轨道 [10][11]。

得到了三个氢原子群轨道的不可约表示方向,可以根据矢量投影或者投影算符方法得到分量:第一种办法,矢量投影,由于 A 基函数为球对称,所以三个氢原子的原子轨道贡献相同

$$\phi_{A_1} = \frac{1}{\sqrt{2}} \left(1s_A + 1s_B + 1s_C \right) \tag{2-55}$$

E不可约表示是二维不可约表示,两个轨道分量投影方法如下[12]

$$\phi_{E_x} = \frac{1}{\sqrt{2}} \left(\cos\left(\frac{\pi}{2}\right) 1 s_A + \cos\left(\pi + 30^\circ\right) 1 s_B + \cos\left(2\pi - 30^\circ\right) 1 s_C \right)$$

$$= -\frac{1}{\sqrt{2}} \left(1 s_B - 1 s_C \right)$$
(2-56)

$$\phi_{E_{y}} = \frac{1}{\sqrt{2}} \left(\sin\left(\frac{\pi}{2}\right) 1s_{A} + \sin\left(\pi + 30^{\circ}\right) 1s_{B} + \sin\left(2\pi - 30^{\circ}\right) 1s_{C} \right)$$

$$= \frac{1}{\sqrt{6}} \left(21s_{A} - 1s_{B} - 1s_{C} \right)$$
(2-57)

第二种办法,根据投影算符方法

$$\hat{P}^{j} = \frac{l^{j}}{h} \sum_{\hat{p}} \chi_{j}^{*} (\hat{R}) \hat{R}$$
(2-58)

$$\varphi^{A} \propto \hat{P}^{A} f_{1} = \frac{1}{3} \left(1 \cdot \hat{E} + 1 \cdot \hat{C} + 1 \cdot \hat{C}_{3}^{2} \right) f_{1} = \frac{1}{3} \left(f_{1} + f_{2} + f_{3} \right)$$
 (2-59)

$$\varphi^{E_1} \propto \hat{P}^{E_1} f_1 = \frac{1}{3} \left(f_1 + \varepsilon^* f_2 + \varepsilon f_3 \right)$$

$$\varphi^{E_2} \propto \frac{1}{3} \left(f_1 + \varepsilon f_2 + \varepsilon^* f_3 \right)$$
(2-60)

变为实系数:

$$E: \begin{cases} \varphi_1^E \propto \frac{1}{3} (2f_1 - f_2 - f_3) \\ \varphi_2^E \propto \sqrt{3} (f_2 - f_3) \end{cases}$$
 (2-61)

- 4、求解低阶休克尔行列式,避免求解高阶的久期行列式,简化运算;
- 5、判断能级顺序,得出分子轨道能级图

图 4.8 NH₃分子轨道能级

第五章 总结与展望

点群作为群论中的特殊而又至关重要的一部分,为我们处理晶体分子的结构,进 而对其进行更多的研究提供了便利。本文对晶体点群的对称操作展开研究,通过列举 不同分类的点群的群元的矩阵形式,晶体点群的群乘法表以及特征标表对晶体点群, 对分子在空间中的一系列操作有更直观的数学表达形式,同时我们还可以看到晶体结 构的对称性,发现晶体结构对称性的美。同时通过对晶体点群内容的研究,使我们能 够将所研究的内容在处理具体实例时提供便利,让其能够更方便快捷地处理分子的实 际问题。

不过本文在对晶体点群的研究还不够完善,比如:晶体点群是否有更好的表示形式?群乘法表是否有更多规律总结并且简化表示形式?晶体点群是否对晶体分子的所有情况与问题都能够优化处理?晶体点群还能用来处理哪方面的问题?我们期望晶体点群有更进一步的发展,以期晶体点群的发展能为我们带来科技的进步,为我们人民,社会,国家以及人类的发展带来更多的便利。

参考文献

- [1] 黄昆著. 固体物理学 黄昆原著韩汝琦改编[M]. 北京: 高等教育出版社, 1998
- [2] 杨凡. 反模糊子群的性质研究[D]. 成都理工大学, 2011.
- [3] 赵金, 刘合国. 关于群的定义[J]. 高等数学研究, 2016, 19(01):35+38.
- [4] 朱海霞. "晶格旋转对称性"研究性教学探索[J]. 现代商贸工业, 2010, 22(03):231-232
- [5] 曹则贤. 晶体几何系列之一 晶体的点群与空间群[J]. 物理, 2019, 48(02):113-116.
- [6] 奥特拜因大学的对称资源: https://symotter.org/gallery
- [7] 周 佳,魏 梦 娇. Mathematica 在 化 学 群 论 教 学 中 的 应 用 [J]. 大 学 化 学,2022,37(06):203-208
- [8]徐婉棠,喀兴林 群论及其在固体物理中得应用[M] 北京:高等教育出版社,1999
- [9] 赵 苹 苹 , 蔡 苹 , 胡 锴 等 . 图 解 中 心 原 子 轨 道 的 杂 化 方 式 [J]. 大 学 化 学, 2020, 35(08):93-97.
- [10] 林俊, 马若梦, 马路遥, 林鸿. 基于群论方法的苯分子振动模式研究[J]. 计量学报, 2023, 44(01):132-137.
- [11] 周玉清. 群论方法在处理分子轨道类型方面的应用[J]. 怀化师专学报, 1995, (05):84-87...
- [12] 骆定法,梁斌,邓中国,刘雪.环状共轭多烯烃简并分子轨道的群论处理[J].山东农业大学学报(自然科学版),2007(02):257-260.

附录

32 点群的群生成元:

(*32 个空间点群的矩阵表达式*)

$$(*C_1$$
群,只有一个群元 E*)
$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

(*
$$C_2$$
群, $C_2 = \{c_2, c_2^2 = E\}_*$)
$$c_{2z} = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}; E = c_{2z}^2$$

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; E = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{4z}^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; c_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; c_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; c_{6z}^3 = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix};$$

$$c_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(* C_{1h} #, C_{1h} = \{\sigma_h, E\}_*)$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(*^{C_{2h}}$$
 群, $C_{2h} = \{c_2, \sigma_h, c_2\sigma_h, c_2^2 = \sigma_h^2 = E\}*)$

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_2.\sigma_h = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I, \quad 中心反演*)$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_2^2 = \sigma_h^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad *)$$

$$(*C_2 \otimes C_i$$
, 也就是 $\{c_2,E\} \otimes \{C_i,E\}*)$

$$(*C_{3h}(S_3) 群, C_{3h} = \left\{c_3, c_3^2, \sigma_h, c_3\sigma_h, c_3^2\sigma_h, E\right\}*)$$

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{3z}^2 = \begin{vmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{vmatrix}; *)$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{3z}.\sigma_h) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{3} \otimes c_{1h}, \text{ bind} \notin \{c_{3}, c_{3}^{2}, E\} \otimes \{\sigma_{h}, E\} *)$$

$$(*c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$(*c_{4z} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$\sigma_h = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{3z}.\sigma_{h} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{2z}.\sigma_{h} = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{3z}^{2}.\sigma_{h} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{3z}^{2}.\sigma_{h} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{6z}^{5}.\sigma_{h} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix}; *)$$

$$(*c_{6z}^{5}.\sigma_{h} = c_{3z}^{5}.\sigma_{h}^{5} = c_{3z}^{5}.c_{6z}^{5}.c_{6z}^{6} = c_{3z}^{5}.c_{6z}^{6}.c_{6z}^{6} = c_{3z}^{5}.c_{6z}^{6}.$$

(*
$$C_6 \otimes C_i$$
, 也就是 $\left\{c_6, c_6^2 = c_3, c_6^3 = c_2, c_6^4 = c_3^2, c_6^5, c_6^6 = E\right\} \otimes \left\{C_i, E\right\} *$)

$$(*^{C_{2v}}$$
 群,生成元为 c_2 , $\sigma_v *$)
$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_v = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*\sigma_v' = c_{2z}.\sigma_v = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$(*\sigma_v = \sigma_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2v} *)$$

$$(*\sigma_v' = c_{2z}.\sigma_{xz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x} ; *)$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

 $(*^{C_{3\nu}}$ 群,生成元为 c_3 及 $\sigma_{\nu}*)$

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_v = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$(*\sigma'_{v} = c_{3z}.\sigma_{v} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$(*\sigma_{v}^{"} = c_{3z}^{2}.\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

 $(*C_{4v}$ 群,生群元为 c_4 , σ_v *)

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{4z}^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*\sigma_{d_1} = c_{4z}.\sigma_v = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$(*\sigma_{v}^{'}=c_{4z}^{2}.\sigma_{v}=\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; *)$$

$$(*\sigma_{d_{2}} = c_{4z}^{3}.\sigma_{v} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} *)$$

$$(*\sigma_{v} = \sigma_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y} *)$$

$$(*\sigma_{v}^{'} = c_{2z}.\sigma_{xz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x} ; *)$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ;$$

$$(*C_{6v}$$
群,生成元为 c_{6z} , $\sigma_{v}*)$

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$c_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*\sigma_2 = c_{6z}.\sigma_{xz} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_v = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}.\sigma_v *)$$

$$(*\sigma_{3} = c_{6z}^{2}.\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{2}.\sigma_{v}^{*})$$

$$(*\sigma_{4} = c_{6z}^{3}.\sigma_{xz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{3}.\sigma_{v}^{*})$$

$$(*\sigma_{5} = c_{6z}^{4}.\sigma_{xz} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{4}.\sigma_{v}^{*})$$

$$(*\sigma_{6} = c_{6z}^{5}.\sigma_{xz} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$(*\sigma_{6} = c_{6z}^{5}.\sigma_{xz} = \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$(*\sigma_{6} = c_{6z}^{5}.\sigma_{xz} = \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$(*\sigma_{7} = E\sigma_{xz} = \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$(*\sigma_{7} = E\sigma_{xz} = \sigma_{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{6z}^{5}.\sigma_{v}^{*})$$

$$(*\sigma_{8} = c_{6z}^{5}.\sigma_{xz} = \sigma_{v}^{5}.\sigma_{v}^{5}.\sigma_{v}^{5} = \sigma_{v}^{5}.\sigma_{v}^{5} = \sigma_{v}^{5}.\sigma_{v}^{5}$$

 $(*S_4$ 群的生群元为 $S_{4z} = \sigma_{xy}C_{2z} = C_{2z}\sigma_{xy}*)$

69

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad s_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad s_{4z}^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z}; \quad s_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{4z}.\sigma_{xy}; \quad \sigma_{xy}.c_{4z}*)$$

 $(*S_6(C_{3i})$ 群的生群元为 $S_6 == \sigma_{xy} c_{6z} = c_{6z} \sigma_{xy} *)$

$$s_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix}; \quad s_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad s_{6z}^3 = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix};$$

$$s_{6z}^{4} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad s_{6z}^{5} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}; \quad s_{6z} = Ic_{3z}^{2}; \quad c_{6z}.\sigma_{xy}; \quad \sigma_{xy}.c_{6z}*)$$

$$(*s_{6z}^{2} = c_{3z}*)$$

$$(*s_{6z}^{3} = I*)$$

$$(*s_{6z}^{4} = c_{3z}^{2}*)$$

$$(*s_{6z}^{5} = Ic_{3z}*)$$

 $(*S_6 = C_3 \otimes C_i$, 也就是 $\{c_3, c_3^2, E\} \otimes \{C_i, E\} *$)

(* D_2 群, 生成元是 c_{2z} , c_{2x} ; $c_{2y} = c_{2z}c_{2x}$ *)

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \\ (*c_{2z}.c_{2x}//\mathrm{MatrixForm*})$$

$$(*D_3$$
群, 生成元为 c_{3z} , $c_{2x}*)$

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}; \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad E = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix};$$

$$(*c_{3z}.c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_2'*)$$

$$(*c_{3z}^{2}.c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{"}*)$$

$$(*D_4$$
群,生成元是 c_{4z} , c_{2x} *)

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{4z}.c_{2x} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_2'*)$$

$$(*c_{4z}^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z} *)$$

$$(*c_{4z}^2.c_{2x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y} *)$$

$$(*c_{4z}^3 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} *)$$

$$(*c_{4z}^{3}c_{2x} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{"}*)$$

$$(*c_{4z}^{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E*)$$

 $(*D_6$ 群,生成元是 c_{6z} , $c_{2x}*)$

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{6z}.c_{2x} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_2^{\oplus} *)$$

$$(*c_{6z}^2 = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = c_{3z}*)$$

$$(*c_{6z}^{2}.c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{2} *)$$

$$(*c_{6z}^{3} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{2z} *)$$

$$(*c_{2z}.c_{2x}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y} *)$$

$$(*c_{6z}^{4}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = c_{3z}^{2} = c_{3z}^{-1} *)$$

$$(*c_{6z}^{4}.c_{2x}) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}^{@} *)$$

$$(*c_{6z}^{4}.c_{2x}) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} *)$$

$$(*c_{6z}^{5}.c_{2x}) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}^{@} *)$$

$$(*c_{6z}^{5}.c_{2x}) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} = c_{2y}^{@} *)$$

 $(*c_{6z}^6 = E //MatrixForm *)$

 $(*D_{2h}$ 群,生成元为 σ_h 和 D_2 群的生成元 c_{2z} , c_{2x} ; $c_{2y}=c_{2z}c_{2x}$;*)

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{2z}.\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I *)$$

$$(*c_{2z}^{2}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \sigma_{h} *)$$

$$(*c_{2x}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y} *)$$

$$(*c_{2y}.\sigma_{xy}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x} *)$$

 $(*D_{2h} = D_2 \otimes C_i$,也就是 $\{c_{2z}, c_{2z}^2, c_{2x}, c_{2y}\} \otimes \{C_i, E\} *)$

 $(*D_{3h}$ 群,生成元是 σ_h 和 D_3 群的生成元 c_{3z} , $c_{2x}*$)

$$c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix};$$

$$c_{3z}c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = \dot{c_2}; \quad c_{3z}^2c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = \dot{c_2};$$

$$(*c_{3z}.\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = s_3*)$$

$$(*c_{2x}.\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{xz} = \sigma_{v} *)$$

$$(*c'_{2}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma'_{v} *)$$

$$(*c'_{2}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = s_{3}^{-1} *)$$

$$(*c'_{3z}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma''_{v} *)$$

$$(*c'_{3z}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{bmatrix} = \sigma_{xy} *)$$

 $(*D_{4h}$ 群,生成元为 c_{4z} , c_{2x} , σ_{xy} 和 D_4 群的全部群元以及这些群元与 σ_h 的组合操作 *)

$$c_{4z} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$c_{2}^{'} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{4z}.\sigma_{xy}) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z}^{3} *)$$

$$(*c_{2x}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y} *)$$

$$(*c_{4z}^{2}.\sigma_{xy}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = I*)$$

$$(*c_{2y}\sigma_{xy}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x}*)$$

$$(*c_{4z}^{3}\sigma_{xy}) = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{4z}*)$$

$$(*c_{2}^{*}\sigma_{xy}) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x}^{*}*)$$

$$(*\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x}^{*}*)$$

$$(*\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = Ic_{2x}^{*}*)$$

$$(*c_{2x}^{*}\sigma_{xy}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x}^{*}*)$$

$$(*c_{2x}^{*}\sigma_{xy}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x}^{*}*)$$

$$(*D_{4h}) = D_{4} \otimes C_{i}, \quad \text{Like} \{c_{4z}, c_{4z}^{4}, c_{2x}, c_{2y}\} \otimes \{C_{i}, E\} *)$$

 $(*D_{6h}$ 群,生成元为 c_{6z} , c_{2x} , σ_{xy} 和 D_{6} 群的全部群元外,还包括一下 12 个群元*)

$$c_{6z} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2}^{\text{\tiny 0}} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}; c_$$

$$(*c_{6z}.c_{2x} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_2^{\text{\tiny{0}}} *)$$

$$(*c_{6z}.c_{2x} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_2^{\text{\tiny{0}}} *)$$

$$(*c_{6z}^4.c_{2x} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_2^{3} *)$$

$$(*c_{6z}^{5}.c_{2x} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = c_{2}^{\textcircled{4}} *)$$

(*以下为12个群元*)

$$(*c_{6z}.\sigma_{xy}) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z}^{4} *)$$

$$(*c_{2x}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2y} = \sigma_{xz} = \sigma_1 *)$$

$$(*c_{6z}^{2}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z}^{5} *)$$

$$(*c_{2y}.\sigma_{xy}) = \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_{2x} = \sigma_{yz} = \sigma_{4}^{*} *)$$

$$(*c_{6z}^3.\sigma_{xy} = \begin{bmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix} = I*)$$

$$(*c_2^{\textcircled{1}}.\sigma_{xy}) = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_2^{\textcircled{3}} = \sigma_2 *)$$

$$(*c_{6z}^4.\sigma_{xy} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z} *)$$

$$(*c_2^{\circ}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_2^{\circ} = \sigma_3 *)$$

$$(*c_{6z}^5.\sigma_{xy} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{6z}^2 *)$$

$$(*c_{2}^{\mathfrak{F}}.\sigma_{xy}) = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{\mathfrak{F}} = \sigma_{5}^{*}$$

$$(*c_{6z}^{\mathfrak{F}}.\sigma_{xy}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{*}$$

$$(*c_{2}^{\mathfrak{F}}.\sigma_{xy}) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{\mathfrak{F}} = \sigma_{6}^{*}$$

 $(*D_{6h} = D_6 \otimes C_i$,也就是 $\{c_{6z}, c_{6z}^6, c_{2x}, c_{2y}\} \otimes \{C_i, E\} *)$

 $(*D_{2d}$ 群,生成元是 c_{2x} , c_{2z} , σ_{d_1} ; 由 D_2 群的元与 σ_{d_1} 组合的元有*)

$$\sigma_{d_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \sigma_{d_2} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$c_{2z} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$

 $c_{\scriptscriptstyle 2y}.\sigma_{\scriptscriptstyle d_{\scriptscriptstyle 1}}//{
m MatrixForm}$

$$(*c_{2z}\sigma_{d_1}) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{d_2} *)$$

$$(*c_{2z}\sigma_{d_1}) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{d_1} *)$$

$$(*c_{2x}\sigma_{d_1}) = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_4^3 *)$$

$$(*c_{2y}\sigma_{d_1}) = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = s_4^3 *)$$

 $(*D_{3d}$ 群,生成元是 c_{2x} , c_{3z} , σ_{d_1} ;由 D_3 群的 6 个群元外,还有以下 6 个群元*)

$$\sigma_{d_{1}} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{2}' = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2}' = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{2x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$c_{2y} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; \quad c_{3z} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad c_{3z}^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix};$$

$$(*c_{3z}\sigma_{d_1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \sigma_{yz} = Ic_{2x} *)$$

$$(*c_{3z}^2 \sigma_{d_1} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = \sigma_6 = Ic_2'*)$$

$$(*c_{3z}^{3}\sigma_{d_{1}} = \sigma_{d_{1}} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} = Ic_{2}^{"}*)$$

$$(*c_{2x}\sigma_{d_1} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & -1 \end{bmatrix} = Ic_{3z}*)$$

致谢

光阴似箭,岁月如梭,一转眼四年大学时光就过去了。当我开始写这篇毕业论文的时候,就意味着我还能在学校的时间就不多了。回想着这四年时光,我经历了很多,也学习到了很多。临近毕业,心中也有了无限的感慨。

首先, 我要感谢父母, 感谢他们在我读书求学的路上给予我的无限支持与鼓励, 感谢他们对我的教导,感谢他们千辛万苦将我养育成人。其次我要感谢我的老师们, 在我进行学业期间,他们不仅传授我们知识,还教给了我为人处世的道理,让我能够 在以后的生活中不会经历更多曲折的道路。感谢赵奕熹老师和张康康老师,有了他们 对班级的良好管理,有了他们的关心,我们才能在这大学四年乐观积极阳光开朗。此 外我要特别感谢我的导师程才老师,是他带我体会到了什么是学术研究,也让我深刻 了解到了一分耕耘一分收获的道理,只要努力就一定能成功,可以说我的毕业设计一 点一滴都少不了程老师不厌其烦的帮助,程老师对学术严谨的态度,扎实的学识功底, 敏锐的洞察力,都是我终生学习的榜样。也多亏了程老师的悉心指导与监督还有细致 入微的教导和鼓励,为我的论文选题,写作进展以及文章各方面内容修改等问题提供 了非常大的帮助,让我能够按时完成毕设,如果没有程老师的指导与帮助,我也不可 能将这篇论文这么快就很好完成的,在此,我再次由衷的感谢程才老师对我极大的帮 助。同时,我也要感谢学校,感谢学校的栽培和教育,我一定谨记我们四川师范大学 "重德,博学,务实,尚美"的校训。我还记得四年前刚到这里就被我们学校的美丽 风景深深吸引,临近毕业,我依然深爱着这里,深爱着学校的每一寸土地,学校的花 草树木依然是充满活力。我还要感谢我们寝室的兄弟,大学四年我们共同学习、共同 成长、互相帮助,感谢大学四年一直都有你们。大学是美好的,只是毕业了要各奔东 西,但我相信纵使山高路远,兄弟情一直都会在这里。