Econ 3040 Final Exam Formula Sheet

expected value (mean) of Y (for discrete Y)	$\mu_Y = \sum p_i Y_i$
variance of Y (for discrete Y)	$\sigma_Y^2 = \sum p_i \left(Y_i - \mu_y \right)^2$
standard deviation of Y	$\sigma_Y = \sqrt{\sigma_Y^2}$
covariance between X and Y	$\sigma_{XY} = E\left[(X - \mu_X) \left(Y - \mu_Y \right) \right]$
correlation coefficient (between X and Y)	$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
expected value of the sample average, \bar{Y}	$E(\bar{Y}) = \mu_Y$
variance of the sample average, \bar{Y}	$\sigma_{ar{Y}}^2 = rac{\sigma_Y^2}{n}$
sample variance of Y (estimator for σ^2)	$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$
sample variance of y in a regression model	$s_y^2 = \frac{1}{n-k-1} \sum_{i=1}^n e_i^2$
t-statistic (assuming large n)	$t = \frac{\text{estimate - hypothesis}}{\text{std. error}}$
95% confidence interval	estimate $\pm 1.96 \times \text{std.}$ error
LS estimator for β_1 (single regressor model)	$b_1 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$
LS estimator for β_0 (single regressor model)	$b_0 = \bar{Y} - b_1 \bar{X}$
variance of b_1 (single regressor model)	$\operatorname{var}\left[b_{1}\right] = \frac{\sigma_{\epsilon}^{2}}{\sum X_{i}^{2} - \frac{\left(\sum X_{i}\right)^{2}}{n}}$
LS predicted values (single regressor model)	$\hat{Y}_i = b_0 + b_1 X_i$
LS residuals	$e_i = Y_i - \hat{Y}_i$
R-squared	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$
adjusted-R-squared	$\bar{R}^2 = 1 - \frac{RSS/(n-k-1)}{TSS/(n-1)}$
F-statistic	$F = \frac{\left(R_U^2 - R_R^2\right)/q}{\left(1 - R_{IJ}^2\right)/(n - k_U - 1)}$
IV estimator	$\hat{\beta}_{IV} = \frac{\sum [(y-\bar{y})(z-\bar{z})]}{\sum [(x-\bar{x})(z-\bar{z})]}$