Bayesian Thinking: Fundamentals, Regression and Multilevel Modeling

Jim Albert and Monika Hu

1/1/23

Webinar 1-3: Regression Models for Continuous Data

- Introduction: adding a continuous predictor variable
- A simple linear regression for the CE sample
- 3 A multiple linear regression for the CE sample
- Wrap-up and additional material

Section 1

Introduction: adding a continuous predictor variable

Review: the normal model

• When you have continuous outcomes, you can use a normal model:

$$Y_i \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma), \quad i = 1, \dots, n.$$
 (1)

- Suppose now you have another continuous variable available, x_i . And you want to use the information in x_i to learn about Y_i .
 - \bullet Y_i is the log of expenditure of CU's
 - 2 x_i is the log of total income of CU's
- Is the model in Equation (1) flexible to include x_i ?

An observation specific mean

• We can adjust the model in Equation (1) to Equation (2), where the common mean μ is replaced by an observation specific mean μ_i :

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma), \quad i = 1, \dots, n.$$
 (2)

• How to link μ_i and x_i ?

Linear relationship between the mean and the predictor

• One basic approach: use a linear relationship:

$$\mu_i = \beta_0 + \beta_1 x_i, \quad i = 1, \dots, n.$$
 (3)

- \bullet x_i 's are known constants.
- ullet eta_0 (intercept) and eta_1 (slope) are unknown parameters.
- Bayesian approach:
 - **1** assign a prior distribution to $(\beta_0, \beta_1, \sigma)$
 - perform inference
 - 3 summarize posterior distribution of these parameters

The simple linear regression model

To put everything together, a linear regression model:

$$Y_i \mid x_i, \beta_0, \beta_1, \sigma \overset{ind}{\sim} \operatorname{Normal}(\beta_0 + \beta_1 x_i, \sigma), \ i = 1, \cdots, n. \tag{4}$$

The simple linear regression model cont'd

Section 2

A simple linear regression for the CE sample

The CE sample

The CE sample comes from the 2017 Q1 CE PUMD: 4 variables, 994 observations.

Variable	Description
log(Expenditure)	Continuous; CU's total expenditures in last
	quarter (log)
log(Income)	Continuous; the amount of CU income before taxes in
	past 12 months (log)
Rural	Binary; the urban/rural status of CU: $0 = Urban$,
	1 = Rural
Race	Categorical; the race category of the reference person:
	1 = White, 2 = Black, 3 = Native American,
	4 = Asian, $5 = Pacific Islander$, $6 = Multi-race$

An SLR for the CE sample

• For now, we focus on a simple linear regression:

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \operatorname{Normal}(\mu_i, \sigma),$$
 (5)

$$\mu_i = \beta_0 + \beta_1 x_i. \tag{6}$$

Variable	Description
log(Expenditure)	Continuous; CU's total expenditures in last
log(Income)	quarter (log) Continuous; the amount of CU income before taxes in past 12 months (log)

A weakly informative prior

- Assume know little about $(\beta_0, \beta_1, \sigma)$.
- \bullet Assuming independence: $g(\beta_0,\beta_1,\sigma)=g(\beta_0)g(\beta_1)g(\sigma).$
- For example:

$$\begin{array}{lll} \beta_0 & \sim & \operatorname{Normal}(0,10), \\ \beta_1 & \sim & \operatorname{Normal}(0,10), \\ \sigma & \sim & \operatorname{Cauchy}(0,1). \end{array}$$

Fitting the model

• Use the brm() function with family = gaussian.

Saving posterior draws

Save post as a matrix of simulated posterior draws

```
post <- as_draws_df(SLR_fit)
head(post)</pre>
```

```
A draws_df: 6 iterations, 1 chains, and 5 variables
 b_Intercept b_log_TotalIncome sigma lprior lp__
                           0.44 0.71 -7.7 -1097
          4.1
         4.0
                           0.45 0.70 -7.7 -1099
          3.9
                           0.46 0.73 -7.7 -1099
         4.0
                           0.45 0.72 -7.7 -1098
5
         4.1
                          0.44 0.72 -7.7 -1097
6
         4.3
                           0.43 \quad 0.72 \quad -7.7 \quad -1096
  ... hidden reserved variables {'.chain', '.iteration', '.draw'}
```

Posterior plots

 Function mcmc_areas() displays a density estimate of the simulated posterior draws with a specified credible interval.

```
library(bayesplot)
mcmc_areas(post, pars = "b_log_TotalIncome", prob = 0.95)
```


Posterior plots cont'd

 Function mcmc_scatter() creates a simple scatterplot of two parameters.

```
mcmc_scatter(post, pars = c("b_Intercept", "b_log_TotalIncome"))
```


Plotting posterior inference against the data

• Plot the first 10 (β_0, β_1) fits to the data

Predictions

Use the predict() function to make predictions of observed CUs.

```
pred_logExp_obs <- predict(SLR_fit, newdata = CEData)
head(pred_logExp_obs)</pre>
```

```
Estimate Est.Error Q2.5 Q97.5 [1,] 9.148980 0.7303421 7.744953 10.62805 [2,] 8.581924 0.7085138 7.178463 9.93655 [3,] 9.049828 0.7330281 7.602280 10.43350 [4,] 9.345250 0.7148223 7.948808 10.74965 [5,] 9.281271 0.7468410 7.796945 10.74446 [6,] 8.691723 0.7101396 7.317222 10.05274
```

Predictions cont'd

• If we focus on one CU, i.e.g CU 1; set summary = FALSE to obtain predicted values.

Predictions cont'd

 Now suppose we get to know a new CU with log_TotalIncome = 10, and we want to predict its log_TotalExp

```
newdata <- data.frame(log_TotalIncome = c(10))
pred_logExp_new <- predict(SLR_fit, newdata = newdata)
pred_logExp_new</pre>
```

```
Estimate Est.Error Q2.5 Q97.5 [1,] 8.529487 0.7316265 7.097475 10.00999
```

Model checking

- Function pp_check() performs posterior predictive checks
 - plot density estimates for 10 replicated samples from the posterior predictive distribution and overlay the observed log income distribution

pp_check(SLR_fit)

Section 3

A multiple linear regression for the CE sample

Adding a binary predictor

Variable	Description
log(Expenditure)	Continuous; CU's total expenditures in last
	quarter (log)
Rural	Binary; the urban/rural status of CU: $0 = Urban$,
	1 = Rural

- Consider Rural as a binary categorical variable to classify two groups:
 - The urban group
 - The rural group
- Such classification puts an emphasis on the difference of the expected outcomes between the two groups.

With only one binary predictor

 For simplicity, consider a simplified regression model with a single predictor: the binary indicator for rural area x_i .

$$\mu_i = \beta_0 + \beta_1 x_i = \begin{cases} \beta_0, & \text{the urban group;} \\ \beta_0 + \beta_1, & \text{the rural group.} \end{cases}$$
 (7)

- The expected outcome μ_i for CUs in the urban group: β_0 .
- The expected outcome μ_i for CUs in the rural group: $\beta_0 + \beta_1$.
- β_1 represents the change in the expected outcome μ_i from the urban group to the rural group.

The multiple linear regression model

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma),$$
 (8)

$$\mu_i = \beta_0 + \beta_1 x_{i,logIncome} + \beta_2 x_{i,Rural}. \tag{9}$$

A weakly informative prior

 \bullet Assume know little about $(\beta_0,\beta_1,\beta_2,\sigma).$

$$eta_0 \sim \text{Normal}(0, 10),$$
 $eta_1 \sim \text{Normal}(0, 10),$
 $eta_2 \sim \text{Normal}(0, 10),$
 $\sigma \sim \text{Cauchy}(0, 1).$

Fitting the model

- Use the brm() function with family = gaussian.
- Use as.factor() for binary / categorical predictors.

Saving posterior draws

Save post as a matrix of simulated posterior draws

```
post_MLR <- as_draws_df(MLR_fit)</pre>
head(post_MLR)
```

```
A draws_df: 6 iterations, 1 chains, and 6 variables
 b_Intercept b_log_TotalIncome b_as.factorRural1 sigma lprior lp_
         4.6
                        0.40
                                        -0.25 0.73 -11 -1097
         4.3
                        0.42
                                       -0.27 0.71 -11 -1097
        4.6
                        0.40
                                       -0.22 0.72 -11 -1099
        4.5
                        0.41
                                      -0.22 0.74 -11 -1098
5
        4.1
                                      -0.19 0.73 -11 -1098
                        0.44
6
         4.6
                        0.40
                                   -0.28 0.72 -11 -1097
 ... hidden reserved variables {'.chain', '.iteration', '.draw'}
```

Posterior plots

 Function mcmc_areas() displays a density estimate of the simulated posterior draws with a specified credible interval.

Predictions

Use the predict() function to make predictions of observed CUs.

```
pred_logExp_obs <- predict(MLR_fit, newdata = CEData)
head(pred_logExp_obs)</pre>
```

```
Estimate Est.Error Q2.5 Q97.5 [1,] 9.167318 0.7434007 7.733100 10.621294 [2,] 8.580031 0.7188643 7.153949 9.982742 [3,] 9.079331 0.7315364 7.645074 10.521808 [4,] 9.329090 0.7353085 7.900423 10.790270 [5,] 9.297782 0.7258052 7.852181 10.680612 [6.] 8.738764 0.7167374 7.338820 10.150499
```

Predictions cont'd

- Now suppose we get to know two new CU with log_TotalExp = 10, one is rural and the other is urban, and we want to predict its log_TotalIncome.
- Can also use the posterior predict() function.

```
newdata <- data.frame(log_TotalIncome = c(10, 10), Rural = c(1, 0))</pre>
pred_logExp_new <- posterior_predict(MLR_fit, newdata = newdata)</pre>
apply(pred_logExp_new, 2, summary)
```

```
[,1] \qquad [,2]
Min.
        5.625982 5.505706
1st Qu. 7.834537 8.054925
Median 8.336935 8.545142
     8.330596 8.547190
Mean
3rd Qu. 8.831974 9.025794
Max.
       10.952766 10.922547
```

Model checking

 Function pp_check() plots density estimates for 10 replicated samples from the posterior predictive distribution and overlay the observed log income distribution.

pp_check(MLR_fit)

Section 4

Wrap-up and additional material

Wrap-up

- Bayesian linear regression:
 - Linear relationship between the expected outcome and the predictor(s)
 - Continuous predictors, binary predictors
 - Using the brms package; prior choices
- Bayesian inferences
 - Bayesian hypothesis testing and credible interval
 - Bayesian prediction
 - Posterior predictive checks

Additional material: adding a categorical predictor

Variable	Description
log(Expenditure)	Continuous; CU's total expenditures in last
	quarter (log)
Race	Categorical; the race category of the reference person:
	1 = White, 2 = Black, 3 = Native American,
	4 = Asian, $5 = Pacific Islander$, $6 = Multi-race$

- It is common to consider it as a categorical variable to classify multiple groups:
 - How many groups? What are the groups?
- Such classification puts an emphasis on the difference of the expected outcomes between one group to the reference group.

With only one categorical predictor

ullet For simplicity, consider a simplified regression model with a single predictor: the race category of the reference person x_i .

- ullet What is the expected outcome μ_i for CUs in the White group?
- What is the expected outcome μ_i for CUs in the Asian group?