

Teen Marketing Classification

Problem Statement

The many millions of teenage consumers using social networking sites have attracted the attention of marketers struggling to find an edge in an increasingly competitive market. One way to gain this edge is to identify segments of teenagers who share similar tastes, so that clients can avoid targeting advertisements to teens with no interest in the product being sold.

Build K-means clustering model to classify the interest of teenagers by using various attributes.

Data Description

The SNS dataset contains 30000 observations (rows) each represents a high school student and 40 features (columns) that provides information for the student.

- 1 **Gradyear:** Graduation year of the student (2006, 2007, 2008, 2009)
- 2 **Gender**: Gender of the student (male, female)
- 3 **Age:** Age of the student
- 4 Friends: No of friends

For clustering, 36 words were chosen to represent five categories of interests: namely extracurricular activities, fashion, religion, romance, and antisocial behaviour. The 36 words include terms such as football, sexy, kissed, bible, shopping, death, and drugs. The final dataset indicates, for each person, how many times each word appeared in the person's SNS profile.

Word list

- 5 basketball
- 6 football
- 7 soccer
- 8 softball
- 9 volleyball
- 10 swimming
- 11 cheerleading
- 12 baseball
- 13 tennis
- 14 sports
- 15 cute
- 16 sex
- 17 sexy
- 18 hot
- 19 kissed
- 20 dance
- 21 band
- 22 marching
- 23 music

KPMG Data Science Prodegree Unsupervised Learning: Problem Statement

- 24 rock
- 25 god
- 26 church
- 27 jesus
- 28 bible
- 29 hair
- 30 dress
- 31 Blonde
- 32 mall
- 33 shopping
- 34 clothes
- 35 hollister
- 36 abercrombie
- 37 die
- 38 death
- 39 drunk
- 40 drugs

Evaluation

Evaluation will be based on:

- Feature Selection
- Model Comparison
- Cluster Selection

Feature Selection

Select the right features based on importance and significance.

Model Comparison

Use k-means to build multiple cluster.

Cluster Selection

Select the cluster using the Elbow method.

Expected Output

Model should be able to predict the cluster an observation belongs to.