Дополнительные главы комбинаторики. Весна 2010.

- 1. Пользуясь формулой Стирлинга, найдите асимптотику по n следующих функций:
 - (a) $f(n) = C_{2n}^n$,
 - (b) $f(n) = C_{n^3}^{n^2}$,
 - (c) $f(n) = \sum_{k=0}^{n} (C_n^k)^2$.
- 2. Доказать оценку: $C_n^k\geqslant \frac{n^k}{k!}e^{-\frac{k(k-1)}{2n}+O(\frac{k^3}{n^2})}.$
- 3. Доказать, что число всех вхождений натурального числа k в упорядоченные разбиения числа $n, n \geqslant k+1$, равно $(n-k+3) \cdot 2^{n-k-2}$.
- 4. Найти асимптотику для количества неупорядоченных разбиений натурального числа N на слагаемые, каждое из которых не превосходит $\left|\frac{N}{100}\right|$.
- 5. Найдите количество неупорядоченных разбиений p(4), p(5), p(6) и p(7), и сравните полученный результат с формулой Харди-Рамануджана.
- 6. Найти количество различных циклических слов длины 10 в трёхбуквенном алфавите.
- 7. Пусть (S,\leqslant) частично упорядоченное множество, такое, что для каждого $x\in S$ существует лишь конечное число элементов y таких, что $y\leqslant x$. Функция Мёбиуса ч. у. м. зависит от двух аргументов и определяется рекурсивно. $\mu(x,y)=0$ для несравнимых элементов x,y. Если x=y, то $\mu(x,y)=1$. Если x< y, то $\mu(x,y)=-\sum_{z:\,x\leqslant z< y}\mu(x,z)$. Доказать обобщённую формулу обращения Мёбиуса: если функции f и g,

действующие из S в \mathbb{R} , связаны соотношением $f(y) = \sum_{x: x \leqslant y} g(x)$, то $g(y) = \sum_{x: x \leqslant y} f(x) \mu(x,y)$.

- 8. Найдите асимптотику n-го члена последовательности, заданной соотношением $a_{n+2}=3a_{n+1}+a_n$ и начальными условиями $a_0=0,\ a_1=2.$
- 9. Примените теорему Холла для доказательства следующего факта. Пусть граф G таков, что для любого его подграфа H число рёбер в H не более чем в d раз больше числа вершин в H. Тогда в G можно так ориентировать рёбра, чтобы для каждой вершины число выходящих из неё дуг было не больше d.
- 10. Приведите пример сети, на которой алгоритм Форда-Фалкерсона будет работать (при некотором, неудачном, выборе потока в остаточной сети на каждом шаге) время, пропорциональное максимальной пропускной способности рёбер.
- 11. Приведите пример сети на n вершинах, число различных максимальных потоков в которой экспоненциально по n.
- 12. Дана сеть на вершинах A, B, C, D, E, F, G, H. Вершины A и H являются истоком и стоком соответственно. Список дуг с пропускными способностями: AB(4), AE(2), BC(1), BE(1), BH(1), CD(3), DF(3), DH(2), EC(2), EF(4), FG(2), GH(2). На первом шаге алгоритма Форда-Фалкерсона был построен поток $A \to B \to C \to D \to H$ величины 1. Продемонстрировать дальнейшие шаги поиска максимального потока в указанной сети.
- 13. Докажите, что рёбра любого графа, у которого степень каждой вершины не превосходит k, можно правильно раскрасить в $\left\lceil \frac{3}{2}k \right\rceil$ цветов. (Указание: примените теорему о существовании 2-фактора).
- 14. Пусть КНФ от переменных $\{x_1,\ldots,x_n\}$ такова, в каждой элементарной дизъюнкции ровно k литералов, и каждая переменная входит не более чем в $\frac{2^{k-2}}{k}$ элементарных дизъюнкций. Докажите, что эта КНФ задаёт не равную тождественно нулю функцию. (Указание: возьмите случайный набор значений переменных.)
- 15. Докажите, что для любого фиксированного графа H почти все графы содержат H в качестве порождённого подграфа.
- 16. С помощью вероятностного метода докажите нижнюю оценку для $R_r(p,q)$ при произвольном r.
- 17. Пусть (S, \mathfrak{F}_1) и (S, \mathfrak{F}_2) матроиды. Докажите, что матроидом является пара (S, \mathfrak{F}) , где $\mathfrak{F} = \{I_1 \cup I_2 \mid I_1 \in \mathfrak{F}_1, I_2 \in \mathfrak{F}_2\}$. Докажите, что матроидом является пара (S, \mathfrak{F}) , где $\mathfrak{F} = \{I_1 \cap I_2 \mid I_1 \in \mathfrak{F}_1, I_2 \in \mathfrak{F}_2\}$.
- 18. Докажите вторую часть теоремы Франкла-Уилсона (оцените размер максимальной клики в графе).
- 19. Выведите из теоремы Франкла-Уилсона оценку для чисел Рамсея, заявленную на лекции: $R_2(s, s) \geqslant (e^{1/4} + o(1))^{\frac{(\ln s)^2}{\ln \ln s}}$.