Einführung in die Algebra

BLATT 8

Jendrik Stelzner

12. Dezember 2013

Aufgabe 8.1.

(i)

Da $rs\cdot 1=rs\cdot 1$ für alle $(r,s)\in R\times S$ mit $1\in S$ ist \sim reflexiv. Die Symmetrie von \sim ergibt sich direkt aus der Symmetrie der Gleichheit. Für $(r,s),(r',s'),(r'',s'')\in R\times S$ mit $(r,s)\sim (r',s')\sim (r'',s'')$ gibt es $t,\tilde{t}\in S$ mit

$$rs't = r'st \text{ und}$$
 (1)

$$r's''\tilde{t} = r''s'\tilde{t}. (2)$$

Wegen der Abgeschlossenheit von S unter Multiplikation ist auch $s't\tilde{t}\in S$, und wegen der Kommutativität von R daher

$$rs''s't\tilde{t} = r's''st\tilde{t} = r''s'st\tilde{t} = r''ss't\tilde{t}.$$

Also ist $(r, s'') \sim (r'', s)$ und \sim daher transitiv.

(ii)

Aus der Notation der Restklassen und der Definition von \sim folgt direkt, dass für alle $(r,s),(r',s')\in R\times S$

$$\frac{r}{s} = \frac{r'}{s'} \Leftrightarrow \text{es gibt } t \in S \text{ mit } rs't = r'st. \tag{3}$$

Zunächst die Wohldefiniertheit: Seien $(r,s), (\tilde{r},\tilde{s}) \in R \times S$ mit $(r,s) \sim (\tilde{r},\tilde{s})$. Dann gibt es $t \in S$ mit $r\tilde{s}t = \tilde{r}st$. Wegen der Kommutativität von R ist daher für alle $(r',s') \in R \times S$

$$(rs'+r's)\tilde{s}s't = rs'\tilde{s}s't + r's\tilde{s}s't = \tilde{r}s'ss't + r's\tilde{s}s't = (\tilde{r}s',r'\tilde{s})ss't,$$

und

$$rr'\tilde{s}s't = \tilde{r}r'ss't.$$

Da die Ausdrücke

$$\frac{rs' + r's}{ss'}$$
 und $\frac{rr'}{ss'}$

wegen der Kommutativität von R symmetrisch in (r, s) und (r', s') sind folgt damit wegen (3) die Wohldefiniertheit.

Es ist klar, dass $R[S^{-1}]$ unter Addition und Multiplikation abgeschlossen ist. Die Addition ist assoziativ und kommutativ, da wegen der Kommutatvität von R für alle $\frac{r}{s}, \frac{r'}{s''}, \frac{r''}{s''} \in R[S^{-1}]$

$$\begin{split} \frac{r}{s} + \left(\frac{r'}{s'} + \frac{r''}{s''}\right) &= \frac{r}{s} + \frac{r's'' + r''s'}{s's''} = \frac{rs's'' + r'ss'' + r''ss'}{ss's''} \\ &= \frac{rs' + r's}{ss'} + \frac{r''}{s''} = \left(\frac{r}{s} + \frac{r'}{s'}\right) + \frac{r''}{s''}, \end{split}$$

sowie

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'} = \frac{r's + rs'}{s's} = \frac{r'}{s'} + \frac{r}{s}.$$

Das Element $\frac{0}{1} \in R[S^{-1}]$ ist bezüglich der Addition neutral, da für alle $\frac{r}{s} \in R[S^{-1}]$

$$\frac{r}{s} + \frac{0}{1} = \frac{r \cdot 1 + s \cdot 0}{s \cdot 1} = \frac{r}{s},$$

und $\frac{r}{s} \in R[S^{-1}]$ hat als additives Inverses $\frac{-r}{s}$, da

$$\frac{r}{s} + \frac{-r}{s} = \frac{rs - rs}{s^2} = \frac{0}{s^2} = \frac{0}{1}$$

denn aus der Definition von \sim folgt offenbar direkt, dass $\frac{0}{s}=\frac{0}{1}$ für alle $s\in S$, und wegen der Abgeschlossenheit von S bezüglich der Multiplikation ist $s^2\in S$. Also ist $R[S^{-1}]$ bezüglich der Addition eine abelsche Gruppe.

Da Multiplikation ist assoziativ und kommutativ, da für alle $\frac{r}{s},\frac{r'}{s'},\frac{r''}{s''}\in R[S^{-1}]$

$$\frac{r}{s}\left(\frac{r'}{s'}\frac{r''}{s''}\right) = \frac{r}{s}\frac{r'r''}{s's''} = \frac{rr'r''}{ss's''} = \frac{rr'}{ss'}\frac{r''}{s''} = \left(\frac{r}{s}\frac{r'}{s'}\right)\frac{r''}{s''},$$

und wegen der Kommutativität von R

$$\frac{r}{s}\frac{r'}{s'} = \frac{rr'}{ss'} = \frac{r'r}{s's} = \frac{r'}{s'}\frac{r}{s}.$$

Das Element $\frac{1}{1}\in R[S^{-1}]$ ist das multiplikativ Neutrale in $R[S^{-1}],$ da für alle $\frac{r}{s}\in R[S^{-1}]$

$$\frac{1}{1}\frac{r}{s} = \frac{r}{s}\frac{1}{1} = \frac{r \cdot 1}{s \cdot 1} = \frac{r}{s}.$$

Dies zeigt, dass $R[S^{-1}]$ bezüglich der Multiplikation ein abelsches Monoid ist. Zum Nachweis des Distributivgesetzes bemerken wir zunächst:

Bemerkung 1. Für alle $\frac{r}{s} \in R[S^{-1}]$ und $t \in S$ gilt nach (3) die Kürzungsregel

$$\frac{rt}{st} = \frac{r}{s},$$

denn wegen der Kommutativität von R ist $rts\cdot 1=rst\cdot 1$ mit $1\in S.$ Insbesondere gilt für alle $s\in S$

$$\frac{s}{1} \cdot \frac{1}{s} = \frac{s}{s} = \frac{1}{1}.$$

Mit der obigen Bemerkung erhalten wir, dass für alle $\frac{r}{s}, \frac{r'}{s'}, \frac{r''}{s''} \in R[S^{-1}]$

$$\begin{split} \frac{r}{s} \left(\frac{r'}{s'} + \frac{r''}{s''} \right) &= \frac{r}{s} \frac{r's'' + r''s'}{s's''} = \frac{rr's'' + rr''s'}{ss's''} \\ &= \frac{rr'ss' + rr''ss'}{s^2s's''} = \frac{rr'}{ss'} + \frac{rr''}{ss''} = \frac{r}{s} \frac{r'}{s'} + \frac{r}{s} \frac{r''}{s''}. \end{split}$$

Dies zeigt, dass $R[S^{-1}]$ ein kommutativer Ring (mit Einselement) ist.

(iii)

Da für alle $r, r' \in R$

$$\varphi(r+r') = \frac{r'+r}{1} = \frac{r \cdot 1 + r' \cdot 1}{1^2} = \frac{r}{1} + \frac{r'}{1} = \varphi(r) + \varphi(r'),$$

und

$$\varphi(rr') = \frac{rr'}{1} = \frac{rr'}{1^2} = \frac{r}{1}\frac{r'}{1} = \varphi(r)\varphi(r')$$

sowie

$$\varphi(1_R) = \frac{1}{1} = 1_{R[S^{-1}]}$$

ist φ ein Ringhomomorphismus. Aus Bemerkung 1 folgt, dass $\varphi(S)\subseteq (R[S^{-1}])^*$. Wir bemerken auch direkt, dass φ nicht zwangsweise injektiv ist: Ist $R\neq 0$ und $0\in S$, etwa S=R oder $S=\{0,1\}$, so ist offenbar $R[S^{-1}]\cong 0$, also $\varphi=0$ und wegen $R\neq 0$ damit nicht injektiv.

Für einen Homomorphismus $\psi_S:R[S^{-1}]\to R'$ mit $\psi=\psi_S\circ\varphi$ muss für alle $r\in R$ und $s\in S$

$$\psi_S\left(\frac{r}{1}\right) = \psi_S(\varphi(r)) = \psi(r)$$

und daher

$$\psi_S\left(\frac{1}{s}\right) = \psi_S\left(\left(\frac{s}{1}\right)^{-1}\right) = \psi_S\left(\frac{s}{1}\right)^{-1} = \psi_S(s)^{-1},$$

da ψ_S durch Einschränkung einen Gruppenhomomorphismus von $(R[S^{-1}])^*$ nach $(R')^*$ induziert. Also ist ψ_S durch

$$\psi_S\left(\frac{r}{s}\right) = \psi_S\left(\frac{r}{1}\frac{1}{s}\right) = \psi_S\left(\frac{r}{1}\right)\psi_S\left(\frac{1}{s}\right) = \psi(r)\psi(s)^{-1}$$

für alle $\frac{r}{s}\in R[S^{-1}]$ eindeutig bestimmt. Definiert man ψ_S auf diese Art, so handelt es sich bei ψ_S um einen Ringhomomorphismus, denn für alle $\frac{r}{s},\frac{r'}{s'}\in R[S^{-1}]$ ist

$$\psi_{S}\left(\frac{r}{s} + \frac{r'}{s'}\right) = \psi_{S}\left(\frac{rs' + r's}{ss'}\right) = \psi(rs' + r's)\psi(ss)^{-1}$$

$$= (\psi(r)\psi(s') + \psi(r')\psi(s))\psi(s)^{-1}\psi(s')^{-1}\psi$$

$$= \psi(r)\psi(s)^{-1} + \psi(r')\psi(s')^{-1} = \psi_{S}\left(\frac{r}{s}\right) + \psi_{S}\left(\frac{r'}{s'}\right),$$

sowie

$$\psi_S\left(\frac{r}{s}\frac{r'}{s'}\right) = \psi_S\left(\frac{rr'}{ss'}\right) = \psi(rr')\psi(ss')^{-1}$$

$$= \psi(r)\psi(r')\psi(s)^{-1}\psi(s')^{-1}$$

$$= \psi(r)\psi(s)^{-1}\psi(r')\psi(s')^{-1} = \psi_S\left(\frac{r}{s}\right)\psi_S\left(\frac{r'}{s'}\right),$$

und inbesondere

$$\psi_S\left(1_{R[S^{-1}]}\right) = \psi_S\left(\frac{1}{1}\right) = \psi(1)\psi(1)^{-1} = 1_{R'}.$$

Aufgabe 8.2.

Da ich diese Aufgabe sehr hässlich aufzuschreiben finde, gibt es hier nur kurze Skizze eines Beweises:

Zunächst bemerkt man, dass ein Unterring $R \subseteq \mathbb{Q}$ von der Menge

$$T_R = \left\{ \frac{1}{p} \in R : p \in P \right\}$$

erzeugt wird. Dadurch ergibt sich direkt, dass jeder Unterring von $\mathbb Q$ eindeutig dadurch festgelegt ist, welche Primzahlen in ihm invertierbar sind. Für jede Teilmenge $T\subseteq P$ ist die Lokalisierung $\mathbb Z[S(T)^{-1}]$ genau die Erweiterung von $\mathbb Z$, in der alle Elemente von $T^c=P\setminus T$ invertierbar sind, und alle Elemente von T nicht. Das Bild von $\psi_{S(T)}$ entspricht daher dem von

$$(T^c)^{-1} = \left\{ \frac{1}{p} : p \in T^c \right\}$$

erzeugten Unterring von $\mathbb Q$. Die Injektivität der Abbildung ergibt sich direkt aus der Nullteilerfreiheitvon $\mathbb Z$ und der Definition von $\psi_{S(T)}$. Die Surjektivität ergibt sich direkt daraus, dass man für einen Unterring R von $\mathbb Q$ geneau $\mathbb Z[S(T_R^c)^{-1}]$ wählen kann.

Aufgabe 8.3.

Bemerkung 2. Sei R ein kommutativer Ring. Dann ist R genau dann noethersch, wenn jedes Ideal von R endlich erzeugt ist.

Beweis. Angenommen R ist noethersch. Sei $I\subseteq R$ ein Ideal. Wir konstruieren eine wachsende Folge $I_0\subseteq I_1\subseteq\ldots$ von Idealen von R, mit $I_n\subseteq I$ für alle $n\in\mathbb{N}$, rekursiv wie folgt: Wir setzen $I_0:=0$. Für $n\geq 1$ setzen wir $I_n:=I_{n-1}+(a_n)$, falls es ein $a_n\in I\setminus I_{n-1}$ gibt, und sonst $I_n:=I_{n-1}$. Da R noethersch ist stabilisiert sich die Folge $(I_n)_{n\in\mathbb{N}}$, d.h. es gibt ein $N\in\mathbb{N}$ mit $I_{n+1}=I_n$ für alle $n\geq N$. Insbesondere ist $I_{N+1}=I_N$, nach Definition und von I_{N+1} und $I_N\subseteq I$ also $I=I_N$. Daher ist

$$I = I_N = (a_1) + \ldots + (a_N) = (a_1, \ldots, a_N)$$

endlich erzeugt.

Angenommen, jedes Ideal in von R. Für eine wachsende Folge $I_0\subseteq I_1\subseteq\ldots$ von Idealen von R setzen wir $I=\bigcup_{n\in\mathbb{N}}I_n=\sum_{n\in\mathbb{N}}I_n.$ I ist als Ideal von R endlich erzeugt, es gibt also $a_1,\ldots,a_m\in\mathbb{R}$ mit $I=(a_1,\ldots,a_m)$. Nach Definition von I gibt es ein $N\in\mathbb{N}$ mit $a_1,\ldots,a_m\in I_N$. Also ist $I=I_N$, und damit $I_n=I_{n+1}$ für alle $n\geq N$.

Bemerkung 3. Faktorringe kommutativer, noetherscher Ringe sind noethersch.

Beweis. Sei R ein kommutativer, noetherscher Ring und $I\subseteq R$ ein Ideal. Die kanonische Projektion $\pi:R\twoheadrightarrow R/I$ induziert eine Bijektion zwischen den Idealen von R/I und den Idealen von R, die I beinhalten. Jede wachsende Folge $J_0\subseteq J_1\subseteq\ldots$ von Idealen von R/I entspricht daher einer wachsenden Folge $I_0\subseteq I_1\subseteq\ldots$ von Idealen von R mit $I\subseteq I_i$ für alle $i\in\mathbb{N}$. Da R noethersch ist stabilisiert sich die Folge $(I_n)_{n\in\mathbb{N}}$ in R, also auch die Folge $(J_n)_{n\in\mathbb{N}}$ in R/I. Also ist R/I noethersch.

Wir zeigen nun, dass auch Lokalisierungen kommutativer, noetherscher Ringe wieder noethersch sind: Es sei R ein kommutativer, noetherscher Ring und $S\subseteq R$ ein Untermonoid bezüglich der Multiplikation. Es sei $I\subseteq R[S^{-1}]$ ein Ideal. Wir setzen

$$J := \left\{ \frac{r}{1} \in I : r \in R \right\}.$$

Es ist $(J)_{R[S^{-1}]}=I$, wobei $(J)_{R[S^{-1}]}$ das von J in $R[S^{-1}]$ erzeugte Ideal bezeichnet. Es ist klar, dass $(J)_{R[S^{-1}]}\subseteq I$. Andererseits ist für alle $\frac{r}{s}\in I$ auch $\frac{s}{1}\frac{r}{s}=\frac{rs}{s}=\frac{r}{1}\in I$, also $\frac{r}{1}\in J$, und daher auch $\frac{r}{s}=\frac{1}{s}\frac{r}{1}\in (J)_{R[S^{-1}]}$. Es ist $J\subseteq \operatorname{Im}\varphi$, wobei $\varphi:R\to R[S^{-1}],r\mapsto \frac{r}{1}$. Da R noethersch ist, ist es nach

Es ist $J\subseteq \operatorname{Im} \varphi$, wobei $\varphi:R\to R[S^{-1}],r\mapsto \frac{r}{1}$. Da R noethersch ist, ist es nach Bemerkung 3 auch $\operatorname{Im} \varphi\cong R/\operatorname{Ker} \varphi$. Es gibt also $a_1,\ldots,a_n\in \operatorname{Im} \varphi$ mit $(J)_{\operatorname{Im} \varphi}=(a_1,\ldots,a_n)_{\operatorname{Im} \varphi}$. Es ist daher

$$I = (J)_{R[S^{-1}]} = ((J)_{\operatorname{Im}\varphi})_{R[S^{-1}]}$$

= $((a_1, \dots, a_n)_{\operatorname{Im}\varphi})_{R[S^{-1}]} = (a_1, \dots, a_n)_{R[S^{-1}]},$

also I in $R[S^{-1}]$ endlich erzeugt. Aus Bemerkung 2 folgt, dass $R[S^{-1}]$ noethersch ist.

Aufgabe 8.4.

Ich werde im Folgenden Summen der Form $f=\sum_{i,j\in\mathbb{N}}a_{ij}X_1^iX_2^j$ für $f\in\mathbb{Z}[X_1,X_2]$, bzw. $f\in\mathbb{Q}[X_1,X_2]$ nutzen, ohne jedes Mal explizit anzugeben, dass fast alle a_{ij} gleich null sind.

(i)

$$\mathbb{Z}[X_1, X_2]$$

Das Ideal ist in $\mathbb{Z}[X_1,X_2]$ nicht maximal, da

$$(X_1, X_2, 2) = \left\{ \sum_{i,j \in \mathbb{N}} a_{ij} X_1^i X_2^j : a_{0,0} \text{ ist gerade } \right\}$$

ein größeres echtes Ideal von $\mathbb{Z}[X_1,X_2]$ ist. Es ist jedoch ein Primideal: Für $f,g\not\in (X_1,X_2)$ mit $f=\sum_{i,j\in\mathbb{N}}a_{ij}X_1^iX_2^j$ und $g=\sum_{i,j\in\mathbb{N}}b_{ij}X_1^iX_2^j$ ist $f,g\not\in 0$ und $a_{0,0},b_{0,0}=0$. Da $\mathbb{Z}[X_1,X_2]$ ein Integritätsring ist, ist $0\neq fg=\sum_{i,j\in\mathbb{N}}c_{ij}X_1^iX_2^j$, und wegen $c_{0,0}=a_{0,0}b_{0,0}=0$ also $fg\not\in (X_1,X_2)$.

$$\mathbb{Q}[X_1, X_2]$$

Das Ideal ist maximal in $\mathbb{Q}[X_1,X_2]$. Für $f \not\in (X_1,X_2)$ muss $f = \sum_{i,j\in\mathbb{N}} a_{ij}X_1^iX_2^j$ mit $a_{0,0} \neq 0$. Dann ist aber $a_{0,0} \in (X_1,X_2,f)$, also, da $a_{0,0} \in \mathbb{Q}^* = (\mathbb{Q}[X_1,X_2])^*$, bereits $(X_1,X_2,f) = \mathbb{Q}[X_1,X_2]$. Als maximales Ideal ist (X_1,X_2) insbesondere ein Primideal.

(ii)

$$\mathbb{Z}[X_1, X_2]$$

Das Ideal ist nicht maximal in $\mathbb{Z}[X_1,X_2]$, da $(X_1+X_2,X_1)=(X_1,X_2)$ ein größeres echtes Ideal von $\mathbb{Z}[X_1,X_2]$ ist. X_1+X_2 ist irreduzibel in $\mathbb{Z}[X_1,X_2]$: Für $f,g\in\mathbb{Z}[X_1,X_2]$ mit $fg=X_1+X_2$ muss $1=\deg(X_1+X_2)=\deg(f)+\deg(g)$, also o.B.d.A. $\deg(f)=0$ und $\deg(g)=1$. Also ist $f=c\in\mathbb{Z}\setminus\{0\}$ und $g=\frac{1}{c}X_1+\frac{1}{c}X_2$. Da $\frac{1}{c}\in\mathbb{Z}$ muss c=1 oder c=-1, also $c\in\mathbb{Z}^*=(\mathbb{Z}[X_1,X_2])^*$. Da $\mathbb{Z}[X_1,X_2]$ nach dem Satz von Gauß faktoriell ist, ist X_1+X_2 daher prim in $\mathbb{Z}[X_1,X_2]$, also (X_1+X_2) ein Primideal in $\mathbb{Z}[X_1,X_2]$.

$$\mathbb{Q}[X_1, X_2]$$

Es ergibt sich analog zur Argumentation für $\mathbb{Z}[X_1,X_2]$, dass das Ideal prim aber nicht maximal in $\mathbb{Q}[X_1,X_2]$ ist. Dabei ergibt sich $f\in(\mathbb{Q}[X_1,X_2])^*$ bereits durch $\deg(f)=0$.

(iii)

$$\mathbb{Z}[X_1, X_2]$$

Das Ideal ist maximal, und damit auch prim, in $\mathbb{Z}[X_1,X_2]$: Für $f\not\in (X_1,X_2,2)$ mit $f=\sum_{i,j\in\mathbb{N}}a_{i,j}X_1^iX_2^j$ muss $a_{0,0}$ ungerade sein. Es ist daher $f+1\in (X_1,X_2,2)$, und somit $1\in (X_1,X_2,2,f)$, also bereits $(X_1,X_2,2,f)=\mathbb{Z}[X_1,X_2]$.

$$\mathbb{Q}[X_1, X_2]$$

Da $(X_1, X_2, 2) \ni 2 \in \mathbb{Q}^* = (\mathbb{Q}[X_1, X_2])^*$ ist bereits $(X_1, X_2, 2) = \mathbb{Q}[X_1, X_2]$, also das Ideal weder prim noch maximal in $\mathbb{Q}[X_1, X_2]$.

(iv)

Es sei im Folgenden $R=\mathbb{Z}$ oder $R=\mathbb{Q}$, der Beweis läuft unabhängig von der Wahl des Ringes. Es ist

$$A := (X_1 + X_2^2, X_1^2 + X_2)_{R[X_1, X_2]}$$

kein Primideal, und damit auch kein maximales Ideal, von $R[X_1,X_2]$: Wir nehmen an, dass A prim ist. Es ist

$$X_1^2(X_1+X_2^2)=X_1^3+X_1^2X_2^2\in A \text{ und } X_2^2(X_1^2+X_2)=X_1^2X_2^2+X_2^3\in A,$$

also auch $X_1^3 - X_2^3 \in A$. Da

$$X_1^3 - X_2^3 = (X_1^2 + X_1X_2 + X_2^2)(X_1 - X_2)$$

muss nach Annahme $X_1^2+X_1X_2+X_2^2\in A$ oder $X_1-X_2\in A$. Da $X_1+X_2^2$ und $X_1^2+X_2$ bei (-1,-1) eine Nullstellle haben, muss f(-1,-1)=0 für alle $f\in A$. Da dies für $X_1^2+X_1X_2+X_2^2$ nicht der Fall ist, muss also $X_1-X_2\in A$. Es gibt also $f,g\in R[X_1,X_2]$ mit $f\cdot (X_1^2+X_2)+g\cdot (X_1+X_2^2)=X_1-X_2$. Durch den Einsetzhomomorphismus ergibt sich, dass für alle $x\in R$ mit x>0

$$0 = f(x)(x+x^2) + g(x)(x^2+x) = (f+g)(x)\underbrace{(x+x^2)}_{\neq 0}.$$

Es muss also f+g une ndlich viele Nullstellen haben, also f+g=0 und daher f=-g. Also ist

$$f \cdot (X_1^2 + X_2 - X_1 - X_2^2) = X_1 - X_2.$$

Insbesondere ist, da R ein Integritätsring ist,

$$\deg(f)\deg(X_1^2 + X_2 - X_1 - X_2^2) = \deg(X_1 - X_2),$$

also $2 \deg(f) = 1$, was offenbar nicht möglich ist. Also ist A nicht prim.

Aufgabe 8.5.

(i)

Gebe es $f,g\in\mathbb{Q}[X]$ mit $f,g\not\in(\mathbb{Q}[X])^*=\mathbb{Q}^*$ und $fg=X^3-2$, so muss $\deg f=1$ oder $\deg g=1$, da dann $1\leq \deg f,\deg g\leq 3$ und $\deg f+\deg g=3$. Also müsste X^3-2 dann eine rationale Nullstelle besitzen. Die einzige reelle Nullstelle des Polynomes ist jedoch $\sqrt[3]{2}\not\in\mathbb{Q}$, weshalb dies nicht möglich ist.

(ii)

Betrachten wir die Primzahl $p=3\in\mathbb{Z}$, so ergibt sich durch Reduktion der Koeffizienten bezüglich p aus $X^3+39X^2-4X+8\in\mathbb{Z}[X]$ das Polynom

$$X^3 - X + 2 \in \mathbb{F}_3[X].$$

Dieses hat keine Nullstellen in \mathbb{F}_3 , es ergibt sich also analog zur obigen Argumentation, dass es irreduzibel (in $\mathbb{F}_3[X]$) ist. Nach dem Reduktionskriterium ist daher auch $X^3 + 39X^2 - 4X + 8 \in \mathbb{Q}[X]$ irreduzibel.

(iii)

Es ist bekannt, dass $f=X^6+X^3+1\in\mathbb{Z}[X]$ genau dann irreduzibel ist, wenn f(X+1) irreduzibel ist. Da

$$f(X+1) = (X+1)^6 + (X+1)^3 + 1$$

= $X^6 + 6X^5 + 15X^4 + 21X^3 + 18X + 9X + 3$

ergibt sich dies aus dem Eisensteinkriterium, indem man die Primzahl p=3 betrachtet. (f(X+1) ist als normiertes Polynom offenbar primitiv.) Inbesondere ergibt sich damit auch, dass f irreduzibel in $\mathbb{Q}[X]$ ist.

(iv)

Für die Primzahl $7\in\mathbb{Z}$ ergibt sich durch Reduktion der Koeffizienten aus $X^7+21X^5+35X^2+34X-8\in\mathbb{Z}[X]$ das Polynom

$$X^7 - X - 1 \in \mathbb{F}_7[X].$$

Wie die folgende Bemerkung zeigen wird, ist dieses irreduzibel in $\mathbb{F}_7[X]$, und daher das ursprüngliche Polynom nach dem Reduktionskriterium in $\mathbb{Q}[X]$ irreduzibel.

Bemerkung 4. Sei p > 0 eine Primzahl. Dann ist das Polynom $f = X^p - X - 1 \in \mathbb{F}_p[X]$ irreduzibel.

Beweis. Wir nehmen an, dass f reduzibel in $\mathbb{F}_p[X]$ ist. Wir wählen als Repräsentantensystem P der Primelemente von $\mathbb{F}_p[X]$ die normierten Primelemente. Da \mathbb{F}_p ein Körper ist, ist $\mathbb{F}_p[X]$ ein faktorieller Ring, es gibt also eindeutig bestimmte $\varepsilon \in \mathbb{F}_p$ und $g_1, \ldots, g_n \in P, n \geq 2$, mit

$$f = \varepsilon g_1 \cdots g_n. \tag{4}$$

Da f und g_1, \ldots, g_n normiert sind, ist dabei $\varepsilon = 1$. Wir bemerken, dass f bezüglich der Abbildung

$$\tau: \mathbb{F}_p[X] \to \mathbb{F}_p[X], h \mapsto h(X+1)$$

invariant ist, da

$$\tau(f) = (X+1)^p - (X+1) - 1 = \left(\sum_{k=0}^p \binom{p}{k} X^k\right) - X = X^p - X - 1 = f.$$

Dabei setzen wir

$$\binom{p}{p} = 1.$$

Es ist klar, dass au ein Ringautomorphismus ist. Insbesondere ist

$$f = \tau(f) = \tau(g_1 \cdots g_n) = \tau(g_1) \cdots \tau(g_n).$$

Da die Darstellung (4) bis auf Assoziiertheit und Reihenfolge der Faktoren eindeutig ist, gibt es daher für alle $i=1,\ldots,n$ je $\varepsilon_i\in\mathbb{F}_p$ und $\sigma\in\mathfrak{S}_n$ mit

$$\tau(q_i) = \varepsilon_i q_{\sigma(i)}$$
 für alle $i = 1, \dots, n$.

Da $(X+p)^n=X^n$ für alle $n\in\mathbb{N}$ ist $\tau^p=$ id. Es ist daher insbesondere $\sigma^p=1$. Folglich ist ord $\sigma\mid p$, also ord $\sigma=1$ oder ord $\sigma=p$.

Ist ord $\sigma=p$, so muss σ in Zykelschreibweise einen Zykel der Ordnung p haben, also mindestens p Element miteinander kommutieren, d.h. $n\geq p$. Da $\deg(g_i)\geq 1$ für alle $i=1,\ldots,n$ und $\sum_{i=1}^n \deg(g_i)=\deg(X^p-X-1)=p$ muss n=p und $\deg(g_i)=1$ für alle $1=1,\ldots,n$. Folglich besitzt f mindestens eine Nullstelle; dies ist jedoch nicht der Fall, da $f(x)=-1\neq 0$ für alle $x\in \mathbb{F}_p$. Ist ord $\sigma=1$, so sind die g_i bis auf Assoziiertheit invariant unter τ . Da dann

$$\tau^p(g_i) = \varepsilon_i^p g_i = 1g_i$$

muss $\varepsilon_i^p=1$, nach dem kleinen Fermatschen Satz also $\varepsilon=1$ und damit $\tau(g_i)=g_i$ für $i=1,\ldots,n$. Da g_1 invariant unter τ ist, ist

$$g_1(x) = g_1(0)$$
 für alle $x \in \mathbb{F}_p[X]$.

Folglich ist $g_1-g_1(0)=0$. Da jedoch $\deg(g_1-g_1(0))=\deg(g_1)$ und $0<\deg(g_1)<\deg(X^p-X-1)=p$ ist dies ein Widerspruch dazu, dass $g_1-g_1(0)$ höchstens $\deg(g_1-g_1(0))$ viele Nullstellen haben kann.