Simplefian in Prish gimensions

= D simulation rectors

1) issues with techniques a know with random vectors

2) simulaty from a few special kinds of rought rectus

3) Copilis /similation with copilis

4) MCMC - P metopolis - hostigs Transon welk metropolis histors - Homiltonia Monte Corlo

what is a random vector

 $\overline{X} = (X_1, \dots, X_d)$

that his joint odf F joint density f

general, retre not concerned

with the case when the components are independent = if components are independent, then re Jist simple each component one-by-one according to their aspective merzinel distributions In 1-d, or princes techs

1 Inverse

3 rejection scrph)

(1) X = (X,, X2,..., X)

Joint coft

 $F(x_1,...,x_n) = P(X_1 \leq x_1,...,X_n)$

F: Rd - [0,1]

2 rejection scrph)

fortanget donsity

got proposals

if f(x) \(\)

04~9 $01-v_{ni}(10,1)$ $3If U \leq \frac{f(7)}{cg(7)} = p$ return Yolm 20 purt to steb (1) _p need to be able to sample for g in the 1st place T if components of g or independent, and not for f, and dis los em if fcn = cg(x) c vill be ver lone

.

$$X = \begin{pmatrix} X_{11} & --- & X_{nd} \end{pmatrix}$$

$$X = \begin{pmatrix} X_{11} & --- & X_{nd} \end{pmatrix}$$

$$X = \begin{pmatrix} X_{11} & --- & X_{nd} \end{pmatrix}$$

$$X = \begin{pmatrix} X_{11} & --- & X_{nd} \end{pmatrix}$$

$$X = \begin{pmatrix} X_{11} & --- & X_{nd} \end{pmatrix}$$

aER

DeVos(aTX) = aTVos(X)a

LD implies positive 1-9 00 semi-definite Ae Rard Vor (AX) = A Vor (X) AT a e Rd V5 (aX) = a2 V5 (X) symmetric poss. det. metrix A har Cholesky decomposition A=LLT L is love triogula wife,x rify vou-ver ger grosse Def Multivoriete Normal in Jimensions Rd Multivorier 1

Multivorier 2

Multivorier 1

Multivorier 1

Multivorier 1

Multivorier 1

Multivorier 1

Multivorier 2

Multiv $f(x) = \frac{1}{(2 - 1)^{3/2}} = \frac{1}{(2 - 1)^$ ((m-x)

note:
$$d=1$$
 $M \in \mathbb{R}$

$$\sum_{7} O$$

$$\frac{1}{2\pi \sqrt{2}} \exp\left(-\frac{1}{2}(x-n), \frac{1}{2}(x-n)\right)$$

in 1-9: mension fr:> 2> = voinel gistin

$$O E[X] = M$$

$$V_{cr}(X) = Z$$

(3)
$$Z = I$$

$$\int_{(2\pi)^{d/2}} u = \tilde{0}$$

$$f(x) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(x)\right)$$

 $= \frac{0}{1} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} |X_i|) / \frac{1}{1}$ $= \frac{1}{1} \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} |X_i|) / \frac{1}{1}$ =7 density of d'independent standard normals I must to scubbe from a MUN with M=0, Z=I simple d'independent vco, n Y~MUN (M, Z) (II,O)ULM~X

AX-MUN (A.O=O, AIAT) TAA ve se Chlesky decorposition L.LT=Z Décorpasiton of Z

2 LY-MUNCO, LLT=Z) LY+M~MUNCM, Z) Def $X = (X, \dots, X)$ F.,..., FJ F, (X,) ~ Unif(0,) $Y = (F_1(X_1), F_2(X_2), \dots,$ FICXIII = Vnif(0,1) mersinels not necessarily independent Copula is the joint colt'ot cargon rector that his Unif (0,1) mer);no15 his coby, if if his millions coffs $F_{,,..}, F_{,}$ the joint coff (F, (X,), ---, F)(X))

F(x1,1-78))=

C(F(x,), ..., F(xd))

Def Gossien copole is

the copole associated

with moltivation,

distribution.

Ex suppose I wont to supple from X= (X,,..., X)) X: wexp (7)

they have gaussian with som metrix Z ment to work a) Z = 1 Hor to scrple: D X-MUN(O, Z) 2= (2,,-, 2) $(\chi = L^T Z)$ p(0,7))

$$(3) Y = \left(-\ln\left(\frac{\mathbb{E}(X, Y)}{Y}\right), \dots, \right)$$