APPLIED CRYPTOGRAPHY

LECTURE NOTE

Spring 2023

Cao, Ganyuan

Contents

1	Sec	urity Proof 4
	1.1	Game-based Security Proof Framework
	1.2	Advantage Rewriting Lemma
	1.3	The Difference Lemma
${f 2}$	Syn	ametric Encryption 6
_	2.1	Symmetric Encryption
	2.2	Block Cipher
	2.3	Pseudorandom Permutation/Function
	2.0	2.3.1 PRP Security
		2.3.2 PRF Security
		2.3.3 PRP-PRF Switching Lemma
	2.4	Ciphertext/Plaintext Integrity
	2.4	2.4.1 INT-CTXT Security
		2.4.2 INT-PTXT Security
		2.4.3 INT-CTXT > INT-PTXT
	2.5	Ciphertext Indistinguishability
	۷.0	2.5.1 IND-CPA Security
		2.5.2 IND-CCA Security
	2.6	Authenticated Encryption
	2.0	2.6.1 AE Security
		2.6.2 Nonce-based AEAD
	2.7	Case Study: Prove CTR mode is IND-CPA
	2.7	Case Study: CBC Padding Oracle Attack
	2.0	Case Study: CDC radding Oracle Attack
3	Has	sh Function 17
	3.1	Hash Function
	3.2	Security Goals for Hash Function
		3.2.1 Informal Definition
		3.2.2 Collision Resistance
		3.2.3 Second Pre-image Resistance
		3.2.4 Pre-image Resistance
		$3.2.5 CR > 2Pre \dots 19$
	3.3	Merkle-Damgård Construction

	3.4	Construct from compression function	19
		3.4.1 Security	20
	3.5	Universal Hashing Function (UHF)	21
		3.5.1 UHF Security	21
		3.5.2 UHF from Polynomial	21
	3.6	Difference Unpredictable Hashing Function (DUHF)	21
		3.6.1 DUHF Security	21
		3.6.2 DUHF from Polynomial	22
		·	
4		ssage Authentication Code	23
	4.1	Message Authentication Code (MAC)	23
	4.2	MAC Unforgeability	23
		4.2.1 EUF-CMA (WUF-CMA) Security	23
		4.2.2 SUF-CMA Security	23
		4.2.3 No-verify SUF-CMA	24
	4.3	MACs from PRFs	25
		4.3.1 MACs-from-PRFs Construction	25
		4.3.2 MACs-from-PRFs Security	25
	4.4	Domain Extension Theorem	26
	4.5	Nonce-based MACs	27
		4.5.1 NMAC	27
		4.5.2 SUF-CMA Security of NMAC	28
	4.6	UHF-then-PRF Composition	28
		4.6.1 Compose UHF and PRF	28
		4.6.2 UHF-then-PRF Composition Security	28
	4.7	Carter-Wegman (CW) MAC	29
		4.7.1 CW-MAC Construction	29
		4.7.2 CW-MAC Security	30
		·	
5	\mathbf{Asy}	mmetric Encryption	32
	5.1	Public Key Encryption	32
		5.1.1 Public Key Encryption Scheme	32
		5.1.2 IND-CCA security of PKE	32
	5.2	KEM and DEM	32
		5.2.1 Key Encapsulation Mechanism	32
		5.2.2 IND-CCA Security for KEM	33
		5.2.3 KEM/DEM Composition	33
		5.2.4 Security of KEM/DEM Composition	34
	5.3	RSA Encryption	34
		5.3.1 Textbook RSA	34
		5.3.2 RSA inversion Problem	34
		5.3.3 Build KEM from RSA	35
	5.4	Discrete Log Setting	35
		5.4.1 DLog Problem	35
		5.4.2 CDH Problem	36
		5.4.3 DDH Problem	36
	5.5	Diffie-Hellman Key Exchange	36
		·,	- 0

		ElGamal Encryption	
6	Dig	al Signature	39
	6.1	Digital Signature Scheme	39
	6.2	Signature Unforgeability	36
		3.2.1 EUF-CMA Security	36
		3.2.2 SUF-CMA Security	39

1 Security Proof

1.1 Game-based Security Proof Framework

To prove the statment: "If a scheme F_1 is S_1 secure, then a scheme F_2 is S_2 secure", we follow the steps:

- 1. Suppose by contraposition that there is an adversary \mathcal{A} against \mathcal{S}_2 security of F_2 s.t. $\mathbf{Adv}_{\mathsf{F}_2}^{\mathcal{S}_2}(\mathcal{A})$ is not negligible.
- 2. Construct the adversary \mathcal{B} against \mathcal{S}_1 security of F_1 with \mathcal{A} as subroutine.
- 3. Deduce that $\mathbf{Adv}_{\mathsf{F}_1}^{\mathcal{S}_1}(\mathcal{B})$ is not negligible.

Remarks:

- 1. Assume that \mathcal{B} is given an oracle $O_{\mathcal{B}}$, we use $O_{\mathcal{B}}$ to simulate the pre-defined oracle for $O_{\mathcal{A}}$. In the adversary \mathcal{B} , the adversary \mathcal{A} instead calls the simulation oracle $OSim_{\mathcal{A}}$.
- 2. The adversary \mathcal{B} together with the oracle $OSim_{\mathcal{A}}$ simulates the \mathcal{S}_2 security game of F_2 .
- 3. The framework also works for problem reduction. If we want to prove a problem \mathcal{P}_1 reduces to a problem \mathcal{P}_2 , it is equivalent to prove "if there is an adversary that break the problem \mathcal{P}_2 with non-negligible advantage, then there is an adversary \mathcal{B} that break \mathcal{P}_1 with non-negligible advantage."
- 4. In the case that the primitive S_1 is too "far" from S_2 , and distinguishibility game in involved, it is better to use "game-chaining" method by decomposing the distinguishibility game into sub-games and chain the sub-games to prove the advantage. Note that the framework proposed by Ballare can be used to write the games for better readability.

1.2 Advantage Rewriting Lemma

Let b be a uniformly random bit, b' be the output of some algorithm. Then

$$2\left|\Pr[b'=b] - \frac{1}{2}\right| = \left|\Pr[b'=1|b=1] - \Pr[b'=1|b=0]\right|$$
$$= \left|\Pr[b'=0|b=0] - \Pr[b'=0|b=1]\right|$$

Proof.

$$\Pr[b' = b] - \frac{1}{2} = \Pr[b' = b \mid b = 1] \cdot \Pr[b = 1] + \Pr[b' = b \mid b = 0] \cdot \Pr[b = 0] - \frac{1}{2}$$

$$= \Pr[b' = b \mid b = 1] \cdot \frac{1}{2} + \Pr[b' = b \mid b = 0] \cdot \frac{1}{2} - \frac{1}{2}$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] + \Pr[b' = 0 \mid b = 0] - 1)$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] - (1 - \Pr[b' = 0 \mid b = 0]))$$

$$= \frac{1}{2} (\Pr[b' = 1 \mid b = 1] - \Pr[b' = 1 \mid b = 0])$$

1.3 The Difference Lemma

Let Z, W_1, W_2 be (any) events defined over some probability space. Suppose that $\Pr[W_1 \land \neg Z] = \Pr[W_2 \land \neg Z]$. Then we have $|\Pr[W_2] - \Pr[W_1] \leq \Pr[Z]|$. (In typical uses, we have that $(W_1 \land \neg Z)$ occurs if and only if $(W_2 \land Z)$ occurs)

Proof.

$$\begin{aligned} |\Pr[W_2] - \Pr[W_1]| &= |\Pr[(W_1 \wedge Z) \vee (W_1 \wedge \neg Z)] - \Pr[(W_2 \wedge Z) \vee (W_2 \wedge \neg Z)]| \\ &= |\Pr[W_1 \wedge Z] + \Pr[W_1 \wedge \neg Z] - \Pr[W_2 \wedge Z] - \Pr[W_2 \wedge \neg Z]| \\ &= |\Pr[W_1 \wedge Z] - \Pr[W_2 \wedge Z]| \\ &\leq \Pr[Z] \end{aligned}$$

2 Symmetric Encryption

2.1 Symmetric Encryption

A symmetric encryption scheme with key space \mathcal{K} , plaintext space \mathcal{M} , ciphertext space \mathcal{C} , consists of a triple of efficient algoritms: SE = (KGEN, ENC, DEC) where

$$\begin{aligned} & \text{KGEN} : \{\} \to \mathcal{K} \\ & \text{Enc} : \mathcal{K} \times \mathcal{M} \to \mathcal{C} \\ & \text{Dec} : \mathcal{K} \times \mathcal{C} \to \mathcal{M} \cup \{\bot\} \end{aligned}$$

such that

$$\forall K \ \forall m, \mathrm{Dec}_K(\mathrm{Enc}_K(m)) = m$$

2.2 Block Cipher

A block cipher E with key length k and block size n consists of a pair of efficiently computable permutations $(\mathcal{E}, \mathcal{D})$ where

$$\mathcal{E}: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$$
$$\mathcal{D}: \{0,1\}^n \times \{0,1\}^k \to \{0,1\}^n$$

such that

$$\forall K \in \{0,1\}^k \ \forall m \in \{0,1\}^n, \mathcal{D}(K,\mathcal{E}(K,m)) = m$$

2.3 Pseudorandom Permutation/Function

2.3.1 PRP Security

A block cipher E is defined to be (q, t, ε) secure as a pseudorandom permutation (PRP), if for any adversary \mathcal{A} running in time at most t and making at most q queries to \mathcal{E}_K/π , the advantage $\mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \ \mathrm{PRP}(\mathcal{A}, E) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Game $PRP(A, E)$		Oracle $RoR(x)$	
1:	$b \leftarrow \$ \{0,1\}$	1:	if $b = 0$ then
2:	$K \leftarrow \$ \{0,1\}^k$	2:	$y \leftarrow \mathcal{E}_K(x)$
3:	$\pi \leftarrow \hspace{-0.1cm} \$ \operatorname{Perms}[\{0,1\}^n]$	3:	else
4:	$b' \leftarrow \mathcal{A}^{\mathrm{RoR}}()$	4:	$y \leftarrow \pi(x)$
5:	$\mathbf{return}\ b' = b$	5:	$\mathbf{return}\ y$

Figure 1: PRP Game

Remark:

- 1. Subsaction of $\frac{1}{2}$ to measure how much better than random guessing the adversary \mathcal{A} does.
- 2. Scaling factor 2 turns the advantage into a number in the range [0,1].
- 3. Here the oracle RoR refers to "real or random". In the real world (b = 0), the block cipher E is used. In ideal world (b = 1), a random permutation π is used.

2.3.2 PRF Security

A block cipher E is defined to be (q, t, ε) -secure as a pseudorandom function (PRF), if for any adversary \mathcal{A} running in time at most t and making at most q queries to \mathcal{E}_K/ρ , the advantage $\mathbf{Adv}_E^{\mathrm{PRF}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_E^{\mathrm{PRF}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \ \mathrm{PRF}(\mathcal{A}, E) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Game $PRF(A, E)$		Ora	cle $RoR(x)$
1:	$b \leftarrow \$ \{0,1\}$	1:	if $b = 0$ then
2:	$K \leftarrow \$ \{0,1\}^k$	2:	$y \leftarrow \mathcal{E}_K(x)$
3:	$\rho \leftarrow \hspace{-0.1cm} \$ \operatorname{Funcs}[\{0,1\}^n]$	3:	else
4:	$b' \leftarrow \!\!\!\!+ \mathcal{A}^{\mathrm{RoR}}()$	4:	$y \leftarrow \rho(x)$
5:	$\mathbf{return}\ b' = b$	5:	$\mathbf{return}\ y$

Figure 2: PRF Game

Remarks:

- 1. A pseudorandom Function (PRF) is a function $\rho : \mathcal{K} \times \mathcal{D} \to \mathcal{R}$ defined over $(\mathcal{K}, \mathcal{D}, \mathcal{R})$ s.t. $\rho(k, x)$ can be evaluated efficiently.
- 2. A pseudorandom Permutation (PRP) is a permutation $\pi : \mathcal{K} \times \mathcal{D} \to \mathcal{R}$ defined over $(\mathcal{K}, \mathcal{D}, \mathcal{R})$ s.t. $\pi(k, x)$ can be evaluated efficiently; $\pi(k, \cdot)$ is injective; there exists an efficient inversion algorithm π^{-1} .
- 3. The difference between a PRF and a PRP is that PRF does lazy sampling. So a PRF may sample $y_i, y_j \in \mathcal{R}$ such that $y_i = y_j$ for some $i \neq j$. Suppose q queries are made to a PRF, there are $\frac{q(q-1)}{2}$ such pairs and each happens with probability $\frac{1}{|\mathcal{R}|}$. Thus such event happens with probability $\frac{q(q-1)}{2|\mathcal{R}|}$.

2.3.3 PRP-PRF Switching Lemma

Let E be a bock cipher. Then for any adversary A making q queries,

$$|\mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{A}) - \mathbf{Adv}_E^{\mathrm{PRF}}(\mathcal{A})| \leq \frac{q^2}{2^{n+1}}$$

Proof. Let \mathcal{A} be an (q, t, ε) adversary that plays the game $G_0 - G_2$ in Figure 3. We have that $G_0 = G_E^{PRP} = G_E^{PRF}$, $G_1 = G_\pi^{PRP}$, $G_2 = G_\rho^{PRF}$. Thus we have that

$$\mathbf{Adv}_{\mathit{E}}^{\mathrm{PRP}}(\mathcal{A}) = \Pr[G_0(\mathcal{A})] - \Pr[G_1(\mathcal{A})]$$

and

$$\mathbf{Adv}_{\mathit{E}}^{\mathrm{PRF}}(\mathcal{A}) = \Pr[G_0(\mathcal{A})] - \Pr[G_2(\mathcal{A})]$$

Hence,

$$\left|\mathbf{Adv}_{\mathit{E}}^{\mathrm{PRP}}(\mathcal{A}) - \mathbf{Adv}_{\mathit{E}}^{\mathrm{PRF}}(\mathcal{A})\right| \leq \left|\Pr[G_2(\mathcal{A})] - \Pr[G_1(\mathcal{A})]\right|$$

We have that G_1 and G_2 are identical unless a repeated value occurs amongst the output values in G_2 . Consider that in game G_2 , the adversary queries q times. Thus we need to sample q output values y_i uniformly at random from $\{0,1\}^n$. Thus $\Pr[y_i = y_j] = 2^{-n}$ for each pair of (i,j). There are $\frac{q(q-1)}{2} \leq \frac{q^2}{2}$ pairs of indices. By union bound, we have that

$$\Pr[y_i = y_j \text{ for some } i \neq j] \le \frac{q^2}{2} \cdot 2^{-n} = \frac{q^2}{2^{n+1}}$$

By the Difference Lemma, we have that

$$\left|\mathbf{Adv}_{E}^{\mathrm{PRP}}(\mathcal{A}) - \mathbf{Adv}_{E}^{\mathrm{PRF}}(\mathcal{A})\right| \leq \left|\Pr[G_{2}(\mathcal{A})] - \Pr[G_{1}(\mathcal{A})]\right|$$

$$\leq \frac{q^{2}}{2^{n+1}}$$

Game G_0 Game G_1 Game G_1 procedure Init procedure Init procedure Init $K \leftarrow \mathfrak{K}$ $\pi \leftarrow \mathcal{P}[\{0,1\}^n]$ $\rho \leftarrow \mathcal{F}[\{0,1\}^n]$ 2: 2: **procedure** OEnc(m)**procedure** OEnc(m)**procedure** OEnc(m)3: return E(K,m)return $\pi(m)$ return $\rho(m)$

Figure 3: Proof of PRP/PRF Switching Lemma

Remark: This leads to the following game that on an adversary's distinguishibility between a pseudorandom permutation and a pseudorandom function. The advantage is

$$\mathbf{Adv}^{\mathrm{PRP/PRF}}(\mathcal{A}) = \frac{q^2}{2^{n+1}}$$

Figure 4: PRP / PRF Game

2.4 Ciphertext/Plaintext Integrity

2.4.1 INT-CTXT Security

A symmetric encryption scheme SE is said to be (q_e, t, ε) -ciphertext integrity (INT-CTXT) secure, if for any adversary \mathcal{A} running in time t and making at most q_e encryption oracle queries and exact one try query to oracle OTry, the advantage $\mathbf{Adv}_{\mathrm{SE}}^{\mathrm{INT-CTXT}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{INT-CTXT}}_{\mathrm{SE}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{INT-CTXT} \Rightarrow 1]$$

Game INT-CTXT(\mathcal{A} , SE)	Oracle $OEnc(m)$	
1: $K \leftarrow \$ \operatorname{KGen}(1^{\lambda})$	1: $c \leftarrow \text{Enc}(K, m)$	
$2: \mathcal{Q} \leftarrow \emptyset$	$2: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{c\}$	
$3: \mathcal{A}^{OEnc,OTry}()$	3: return c	
4: return win	Oracle $OTry(c^*)$	
	1: $win \leftarrow 0$	
	$2: m^* \leftarrow \mathrm{DEC}(K, c^*)$	
	3: if $c^* \notin \mathcal{Q} \wedge m^* \neq \bot$ then	
	$4: win \leftarrow 1$	

Figure 5: INT-CTXT Game

2.4.2 INT-PTXT Security

A symmetric encryption scheme SE is said to be (q_e, t, ε) -plaintext integrity (INT-PTXT) secure if for all adversary \mathcal{A} running in time t and making at most q_e encryption oracle queries with $\mathbf{Adv}_{\mathrm{SE}}^{\mathrm{INT-PTXT}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathsf{SE}}^{\mathrm{INT-PTXT}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{INT\text{-}PTXT} \Rightarrow 1]$$

Figure 6: INT-PTXT Game

2.4.3 INT-CTXT > INT-PTXT

If a symmetric encryption scheme SE is INT-CTXT secure, then it is also INT-PTXT secure.

Proof. We prove by contraposition that if SE is not INT-CTXT, then it is not INT-PTXT. Let \mathcal{A} be a INT-CTXT adversary against SE, we construct an adversary \mathcal{B} against INT-PTXT of SE such that \mathcal{B} runs \mathcal{A} and replys \mathcal{A} 's queries to \mathcal{B} 's OEnc and OTry.

We have that \mathcal{B} simulates the INT-CTXT game of \mathcal{A} since \mathcal{B} makes the exact the same number of queries as \mathcal{A} and \mathcal{B} returns the same c^* as \mathcal{A} .

We have that \mathcal{B} wins if \mathcal{A} wins. Let c^* be the ciphertext query \mathcal{A} makes to OTry. Since \mathcal{A} wins, we have that $c^* \notin \mathcal{Q}_c$, which implies $m^* \notin \mathcal{Q}_m$ where $m^* = \text{Dec}(K, c^*)$. Thus \mathcal{B} wins if \mathcal{A} wins.

2.5 Ciphertext Indistinguishability

2.5.1 IND-CPA Security

A symmetric encryption scheme SE is defined to be (q, t, ε) -indistinguishibility under chosen plaintext attack (IND-CPA) secure, if for any adversaries \mathcal{A} running in time at most t and making at most q encryption queries, the advantage $\mathbf{Adv}_{\mathrm{SE}}^{\mathrm{IND-CPA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathrm{SE}}^{\mathrm{IND-CPA}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \; \mathrm{IND-CPA}(\mathcal{A}, \mathrm{SE}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Figure 7: IND-CPA Game

- 1. IND-CPA security imples decryption security.
- 2. IND-CPA security implies key recovery (TKR) security.
- 3. IND-CPA security ensures that every bit of the plaintext is hidden.
- 4. One-time Pad is IND-CPA is 1-query IND-CPA secure.
- 5. Here oracle LoR refers to "left or right".
- 6. A special form of IND-CPA security, which formalize the indistinguishability of a symmetric encryption scheme from random bits, named IND\$-CPA, is defined as in Figure 8.

Game IND\$-CPA(\mathcal{A} , SE)	Oracle $RoR(m)$
$1: b \leftarrow \$ \{0,1\}$	1: if $b = 0$ then
$2: K \leftarrow s KGen(1^{\lambda})$	$2: c \leftarrow \$ \operatorname{Enc}(K, m)$
$3: b' \leftarrow \mathcal{A}^{RoR}()$	3: else
4: return $b' = b$	$4: c \leftarrow \$ C$
	$5: \mathbf{return} \ c$

Figure 8: IND\$-CPA Game

2.5.2 IND-CCA Security

A symmetric encryption scheme SE is defined to be $(q_e, q_d, t, \varepsilon)$ -indistinguishibility under chosen ciphertext attack secure (IND-CCA), if for any adversaries \mathcal{A} running in time at most t and making at most q_e encryption queries to oracle LoR and at most q_d decryption queries to oracle ODec, the advantage $\mathbf{Adv}_{\mathrm{SE}}^{\mathrm{IND-CPA}}(\mathcal{A}) \leq \varepsilon$.

$$\mathbf{Adv}^{\mathrm{IND\text{-}CCA}}_{\mathrm{SE}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \; \mathrm{IND\text{-}CCA}(\mathcal{A}, \mathrm{SE}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Game IND-CCA (A, SE)	Oracle LoR (m_0, m_1)	Oracle $ODec(c)$
$1: b \leftarrow \$ \{0,1\}$	1: if $ m_0 \neq m_1 $ then	1: if $c \in \mathcal{Q}$ then
$2: K \leftarrow SKGEN(1^{\lambda})$	$_2$: return \perp	$_2$: return ot
$3: \mathcal{Q} \leftarrow \emptyset$	$3: c \leftarrow \$ \operatorname{Enc}_K(m_b)$	$3: m \leftarrow \mathrm{DEC}(K,c)$
$4: b' \leftarrow \mathcal{A}^{LoR,ODec}()$	$4: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{c\}$	4: return m
5: return $b' = b$	5: return c	

Figure 9: IND-CCA Game

2.6 Authenticated Encryption

2.6.1 AE Security

A symmetric encryption scheme SE is said to be *authenticated encryption* (AE) if it is IND-CPA secure and an adversary \mathcal{A} with access to an encryption oracle cannot forge any new ciphertexts i.e.,

$$AE := IND-CPA + INT-CTXT$$

2.6.2 Nonce-based AEAD

A nonce-based AEAD scheme with key space \mathcal{K} , message space \mathcal{M} , ciphertext space \mathcal{C} , nonce space \mathcal{N} , and associated data space \mathcal{AD} , consists of a triple of algorithms (KGEN, ENC, DEC) where:

$$\begin{aligned} & \text{KGen}: \{\} \to \mathcal{K} \\ & \text{Enc}: \mathcal{K} \times \mathcal{N} \times \mathcal{A} \mathcal{D} \times \mathcal{M} \to \mathcal{C} \\ & \text{Dec}: \mathcal{K} \times \mathcal{N} \times \mathcal{A} \mathcal{D} \times \mathcal{C} \to \mathcal{M} \cup \{\bot\} \end{aligned}$$

such that:

$$\forall k \in \mathcal{K} \ \forall m \in \mathcal{M} \ \forall N \in \mathcal{N} \ \forall AD \in \mathcal{AD}, \mathrm{DEC}(K, N, AD, \mathrm{Enc}(K, N, AD, m)) = m$$

2.7 Case Study: Prove CTR mode is IND-CPA

In this section, we prove that the following theorem:

Theorem 1. Let A be an IND-CPA adversary against the (simplified) CTR mode SE based on a block cipher E, then we can construct a PRP adversary B against E such that

$$\mathbf{Adv}^{\mathrm{IND-CPA}}_{\mathrm{SE}_{\mathrm{CTR}}}(\mathcal{A}) \leq 2 \cdot \mathbf{Adv}^{\mathrm{PRP}}_{E}(\mathcal{B}) + rac{q^{2}}{2^{n-1}}$$

Proof. Consider the games $G_0 - G_3$ defined in Figure 10. Let W_i be the event that b = b' in G_i respectively, we have that

$$\mathbf{Adv}_{\mathrm{SE}_{\mathrm{CTR}}}^{\mathrm{IND-CPA}}(\mathcal{A}) = \mathbf{Adv}_{\mathrm{SE}_{\mathrm{CTR}}}^{\mathrm{G_0}}(\mathcal{A}) = 2 \cdot \left| \Pr[W_0] - \frac{1}{2} \right|$$

Note that we have

$$\begin{split} \left| \Pr[W_0] - \frac{1}{2} \right| &= \left| (\Pr[W_0] - \Pr[W_1]) + (\Pr[W_1] - \Pr[W_2]) + (\Pr[W_2] - \Pr[W_3]) + (\Pr[W_3] - \frac{1}{2}) \right| \\ &\leq \left| (\Pr[W_0] - \Pr[W_1]) \right| + \left| (\Pr[W_1] - \Pr[W_2]) \right| + \left| (\Pr[W_2] - \Pr[W_3]) \right| + \left| (\Pr[W_3] - \frac{1}{2}) \right| \end{split}$$

Since in G₃, we have that the encryption is done via a OTP, which has perfect secrecy, we have that

$$\mathbf{Adv}_{\mathrm{SE}_{\mathrm{CTR}}}^{\mathrm{G_3}}(\mathcal{A}) = 2 \cdot \left| \Pr[W_3] - \frac{1}{2} \right| = 0$$

Thus we have that

$$\left|\Pr[W_0] - \frac{1}{2}\right| \le \left|\left(\Pr[W_0] - \Pr[W_1]\right)\right| + \left|\left(\Pr[W_1] - \Pr[W_2]\right)\right| + \left|\left(\Pr[W_2] - \Pr[W_3]\right)\right|$$

We first want to show that $|\Pr[W_0] - \Pr[W_1]| \leq \mathbf{Adv}_E^{\operatorname{PRP}}(\mathcal{B})$ for some PRP adversary \mathcal{B} against the block cipher E. We define \mathcal{B} as in Figure 11. Observe that \mathcal{B} makes the same number of queries as \mathcal{A} makes, \mathcal{B} internally flips a coin and uses its own RoR oracle to simulate the queries \mathcal{A} makes to the LoR oracle. Also, the running time of \mathcal{B} is essentially of \mathcal{A} . Thus we have that \mathcal{B} perfectly simulate the IND-CPA that \mathcal{A} plays. Let d be the secret bit in the PRP game that \mathcal{B} plays, we have that

$$\Pr[W_0] = \Pr[b' = b \mid G_0(A)] = \Pr[b = b' \mid d = 0] = \Pr[d' = 0 \mid d = 0]$$

and

$$\Pr[W_1] = \Pr[b' = b \mid G_1(A)] = \Pr[b = b' \mid d = 0] = \Pr[d' = 0 \mid d = 1]$$

By Advantage Rewriting Lemma, we have that

$$\mathbf{Adv}_{E}^{PRP}(\mathcal{B}) = |\Pr[d' = 0|d = 0] - \Pr[d' = 0|d = 1]|$$

= |\Pr[W_0] - \Pr[W_1]|

We then prove that $|\Pr[W_1] - \Pr[W_2]| \leq \frac{q^2}{2^{n+1}}$ where q denotes the number of queries. We construct an adversary \mathcal{B}_1 that distinguish between a random permutation and a random function as in Figure 12. Note that \mathcal{B}_1 makes the same number of queries that \mathcal{A} does, \mathcal{B}_1 flips the coin internally and simulates the LoR oracle queries made by \mathcal{A} with its own oracle RoR. Also, \mathcal{B}_1 runs in the essentially the same time as \mathcal{A} . Thus \mathcal{B}_1 perfectly simulates the IND-CPA game that \mathcal{A} plays. Let d be the secret bit in the PRP – PRF game that \mathcal{B}_1 plays, we have that:

$$\Pr[W_1] = \Pr[b' = b \mid G_1(A)] = \Pr[b = b' \mid d = 0] = \Pr[d' = 0 \mid d = 0]$$

and

$$\Pr[W_2] = \Pr[b' = b \mid G_2(A)] = \Pr[b = b' \mid d = 0] = \Pr[d' = 0 \mid d = 1]$$

By Advantage Rewriting Lemma and PRP-PRF Switching Lemma, we have that:

$$\mathbf{Adv}_{E}^{\mathrm{PRP}}(\mathcal{B}) = \left| \Pr[d' = 0 | d = 0] - \Pr[d' = 0 | d = 1] \right|$$
$$= \left| \Pr[W_1] - \Pr[W_2] \right|$$
$$\leq \frac{q^2}{2^{n+1}}$$

We finally want to show that $\Pr[W_2] - \Pr[W_3] \le \frac{q^2}{2^{n+1}}$. We construct a IND-CPA challenger \mathcal{B}_2 . Define \mathcal{B}_2 as in Figure 13. Observe that G_2 and G_3 are identical unless the randomly chosen values for ctr are not all distinct. Let Z be such event. We have that $(W_2 \wedge \neg Z)$ happens if and only if $(W_3 \wedge \neg Z)$ occurs. Similarly, we have that $\Pr[Z] = \frac{q(q-2)}{2^{n+1}} \le \frac{q^2}{2^{n+1}}$. Thus by Difference Lemma, we have that

$$|\Pr[W_2] - \Pr[W_3]| \le \Pr[Z] \le \frac{q^2}{2^n + 1}$$

Finally, we have that:

$$\begin{aligned} \mathbf{Adv}_{\mathrm{SE}_{\mathrm{CTR}}}^{\mathrm{IND\text{-}CPA}}(\mathcal{A}) &= 2 \cdot \left| \Pr[W_0] - \frac{1}{2} \right| \\ &\leq 2 \cdot \left| (\Pr[W_0] - \Pr[W_1]) \right| + 2 \cdot \left| (\Pr[W_1] - \Pr[W_2]) \right| + 2 \cdot \left| (\Pr[W_2] - \Pr[W_3]) \right| \\ &\leq 2 \cdot \mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{B}) + \frac{2q^2}{2^{n+1}} + \frac{2q^2}{2^{n+1}} \\ &= 2 \cdot \mathbf{Adv}_E^{\mathrm{PRP}}(\mathcal{B}) + \frac{q^2}{2^{n-1}} \end{aligned}$$

 $\begin{array}{lll} \textbf{Game} \ \textbf{G}_0 \ \hline \textbf{G}_1 \ \textbf{G}_2 \ \hline \textbf{G}_3(\mathcal{A}, \textbf{SE}) & \textbf{Oracle} \ \textbf{LoR}(m_0, m_1) \\ \hline 1: \ b \leftarrow \$ \{0, 1\} & 1: \ ctr \leftarrow \$ \{0, 1\}^n \\ 2: \ K \leftarrow \$ \ \textbf{KGEN}(1^{\lambda}) & 2: \ r \leftarrow E_K(ctr) \\ 3: \ \hline \pi \leftarrow \$ \ \mathcal{P}(\{0, 1\}^n) & 3: \ \hline r \leftarrow \pi(ctr) \\ 4: \ \rho \leftarrow \$ \ \mathcal{F}(\{0, 1\}^n) & 4: \ r \leftarrow \rho(ctr) \\ 5: \ b' \leftarrow \$ \ \mathcal{A}^{\text{LoR}_0}() & 5: \ \hline r \leftarrow \$ \{0, 1\}^n \\ 6: \ c_0 \leftarrow m_b \oplus r \\ 7: \ c \leftarrow ctr || c_0 \\ 8: \ \textbf{return} \ c \\ \hline \end{array}$

Figure 10: Game for IND-CPA CTR proof

${\bf Adversary} {\cal B}^{\rm RoR}$	Oracle $RoR(m)$	Oracle LoR _{SIM} (m_0, m_1)
$1: b \leftarrow \$ \{0,1\}$	1: if $b = 0$ then	$1: ctr \leftarrow \$ \{0,1\}^n$
$2: b' \leftarrow \mathcal{A}^{\mathrm{LoR}_{\mathrm{Sim}}}()$	2: return $E_K(m)$	$2: r \leftarrow \operatorname{RoR}(ctr)$
3: if $b = b'$ then	3: else	$3: c_0 \leftarrow m_b \oplus r$
4: return 0	4: return $\pi(m)$	$4: c \leftarrow ctr c_0$
5: else		$5: \mathbf{return} \ c$
6: return 1		

Figure 11: Adversary \mathcal{B} for IND-CPA CTR proof

$\boxed{ \textbf{Adversary} \mathcal{B}_1^{\text{RoR}} }$	Oracle $RoR(m)$	Oracle $LoR_{Sim}(m_0, m_1)$
$1: b \leftarrow \$ \{0,1\}$	1: if $b = 0$ then	1: $ctr \leftarrow \$ \{0,1\}^n$
$2: b' \leftarrow \mathcal{A}^{\mathrm{LoR}_{\mathrm{Sim}}}()$	2: return $\pi(m)$	$2: r \leftarrow \operatorname{RoR}(ctr)$
$3: \mathbf{if} \ b = b' \ \mathbf{then}$	3: else	$3: c_0 \leftarrow m_b \oplus r$
4: return 0	4: return $\rho(m)$	$4: c \leftarrow ctr c_0$
5: else		$5: \mathbf{return} \ c$
6: return 1		

Figure 12: Adversary \mathcal{B}_1 for IND-CPA CTR proof

Challenger \mathcal{B}_2	Oracle $RoR(m)$	Oracle LoR _{SIM} (m_0, m_1)
$1: b \leftarrow \$ \{0,1\}$	1: if $b = 0$ then	$1: ctr \leftarrow \$ \{0,1\}^n$
	2: return $\rho(m)$	$2: r \leftarrow \operatorname{RoR}(ctr)$
	3: else	$3: c_0 \leftarrow m_b \oplus r$
	$4: \qquad r \leftarrow \$ \{0,1\}^n$	$4: c \leftarrow ctr c_0 $
	5: return r	$5: \mathbf{return} \ c$

Figure 13: Challenger \mathcal{B}_2 for IND-CPA CTR proof

2.8 Case Study: CBC Padding Oracle Attack

The CBC mode of encryption is defined as:

```
\begin{array}{lll} \operatorname{CBC}[E].\mathcal{E}_K(M_1||\cdots||M_\ell) & \operatorname{CBC}[E].\mathcal{D}_K(C_0||C_1||\cdots||C_\ell) \\ \hline 1: & C_0 \leftarrow \$ \left\{0,1\right\}^n & 1: & \mathbf{for} \ i=1,\cdots,\ell \ \mathbf{do} \\ 2: & \mathbf{for} \ i=1,\cdots,\ell \ \mathbf{do} \\ 3: & C_i \leftarrow E_K(M_i \oplus C_{i-1}) \\ 4: & \mathbf{return} \ C_0||C_1||\cdots||C_\ell \end{array}
```

First is to recover the Last Byte. Let pad denote the minimum possible padding byte of a legitimate padding scheme, to recovery $M_{\ell}[n]$, follow the process

Padding-Oracle-Last-Byte

```
1: for i = 0x00, \dots, 0xff do
2: C'_{\ell-1} \leftarrow C_{\ell-1} \oplus (0x00||...||i)
3: C' \leftarrow C_0||...||C_{\ell-1}||C_{\ell}
4: good-pad \leftarrow Padding(C')
5: if good-pad = true then
6: v \leftarrow (0x00||...||i) \oplus (0x00||...||pad)
7: return v[n]
```

Denote $\Delta_{\ell,n}$ as the value of i such that good-pad is set to true, according to the decryption scheme, we have that

$$\begin{split} C_{\ell-1}[n] \oplus \Delta_{\ell,n} \oplus E^{-1}(C_\ell)[n] &= \mathsf{pad} \\ C_{\ell-1}[n] \oplus E^{-1}(C_\ell)[n] &= \mathsf{pad} \oplus \Delta_{\ell,n} \\ M_\ell[n] &= \mathsf{pad} \oplus \Delta_{\ell,n} \end{split}$$

Then we can recover the full block following the similar strategy. Let $\mathsf{pad}' = \mathsf{pad} + 1$, compute $\Delta'_{\ell,n} = \Delta_{\ell,n} \oplus \mathsf{pad}'$ and $C'_{\ell} = C_{\ell} \oplus (\mathsf{0x00}||\cdots||\Delta'_{\ell,n})$ and run the above process again. Note this time, we have

$$\begin{split} (C_{\ell-1}[n-1]||C_{\ell-1}[n]) \oplus (\Delta_{\ell,n-1}||\Delta'_{\ell,n}) \oplus (E^{-1}(C_{\ell})[n-1]||E^{-1}(C_{\ell})[n]) &= \mathsf{pad'}||\mathsf{pad'} \\ (C_{\ell-1}[n-1]||C_{\ell-1}[n]) \oplus (E^{-1}(C_{\ell})[n-1]||E^{-1})(C_{\ell})[n]) &= \mathsf{pad'}||\mathsf{pad'} \oplus \Delta_{\ell,n-1}||\Delta'_{\ell,n}||D_{\ell}(n-1)||D_{\ell$$

3 Hash Function

3.1 Hash Function

A (cryptographic) hash function H with message space \mathcal{M} and digest space \mathcal{T} is an efficiently computable function $H: \mathcal{M} \to \mathcal{T}$ mapping an arbitrary length input string to a fixed-length message digest. A keyed hash function H with key space \mathcal{K} , message space \mathcal{M} and digest space \mathcal{T} is deterministic algorithm that takes two inputs, a key $K \in \mathcal{K}$ and a message $m \in \mathcal{M}$ and output $t := H(K, m) \in \mathcal{T}$.

3.2 Security Goals for Hash Function

3.2.1 Informal Definition

- Primary Security Goals
 - 1. Pre-image Resistance (one-wayness): Given h, it is infeasible to find $m \in \{0, 1\}^*$ such that H(m) = h. (See *Digital Signature Lecture Note* for adversary-based definition).
 - 2. Second Pre-image Resistance: given m_1 , it is infeasible to find $m_2 \neq m_1$ such that $H(m_1) = H(m_2)$.
 - 3. Collision Resistance: it is infeasible to find $1 \neq m_2$ such that $H(m_1) \neq H(m_2)$.
- Secondary Security Goals
 - 1. Near-collision Resistance: it is infeasible to find $m_1 \neq m_2$ such that $H(m_1) \approx H(m_2)$.
 - 2. Partial Pre-image Resistance 1: given H(m), it is infeasible to recover any partial information about m.
 - 3. Partial Pre-image Resistance 2: given a target string t of bit-length ℓ , it is infeasible to find $m \in \{0,1\}^*$ such that H(m) = t||z| in time significantly faster than 2^{ℓ} hash evulations.

3.2.2 Collision Resistance

Let $H: \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) collision resistance (CR) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{\mathrm{CR}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{CR} \Rightarrow 1] = \varepsilon$$

Figure 14: Collision Resistance (CR) Game

- 1. Collision must exist because $|\mathcal{D}| \gg |\mathcal{R}|$.
- 2. Fix a hash function H, there must be an efficient algorithm \mathcal{A} that outputs collisions.
- 3. Thus we cannot have a security definition for collision resistance that quantifies over all efficient algorithms \mathcal{A} .

3.2.3 Second Pre-image Resistance

Let $H: \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) second pre-image resistance (2PRE) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_{H}^{\mathrm{2PRE}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{2Pre} \Rightarrow 1] = \varepsilon$$

```
Game 2\operatorname{Pre}(\mathcal{A},H)

1: m \leftarrow \mathcal{D}

2: h \leftarrow H(m)

3: m' \leftarrow \mathcal{A}(m,h)

4: if m \neq m' \land H(m') = h then

5: return 1

6: else

7: return 0
```

Figure 15: Second Preimage Resistance (2Pre) Game

3.2.4 Pre-image Resistance

Let $H : \mathcal{D} \to \mathcal{R}$ be a hash function. An algorithm \mathcal{A} is said to be (t, ε) pre-image resistance ((r)PRE) adversary against H if \mathcal{A} runs in time t with advantage

$$\mathbf{Adv}_H^{(\mathrm{R})\mathrm{PRE}}(\mathcal{A}) = \Pr[\mathbf{Game}\ (\mathrm{r})\mathrm{Pre} \Rightarrow 1] = \varepsilon$$

Game $rPre(A, H)$		Game $Pre(A, H)$	
1:	$h \leftarrow \mathfrak{R}$	1:	$m \leftarrow \!\!\!\! \$ \mathcal{D}$
2:	$m \leftarrow \!\!\! * \mathcal{A}(h)$	2:	$h \leftarrow H(m)$
3:	if $H(m) = h$ then	3:	$m' \leftarrow \mathcal{A}(m,h)$
4:	return 1	4:	if $H(m') = h$ then
5:	else	5:	return 1
6:	return 0	6:	else
		7:	return 0

Figure 16: rPre and Pre Game

1. The notation PRE is also denoted as one-wayness. We then say that H is a one-way function (OWF).

3.2.5 CR > 2Pre

Any hash function that is collision resistant is also second pre-image-resistant

Proof. Assume by contraposition a hash function H is not second pre-image-resistance, we want to prove that H is not collision resistant. Let \mathcal{A} be an adversary against second pre-image resistance of H, we want to construct an \mathcal{B} against collision resistance of H. Define \mathcal{B} as follows:

Adversary \mathcal{B} $1: m \leftarrow \mathcal{D}$ $2: h \leftarrow H(m)$ $3: m' \leftarrow \mathcal{A}(m,h)$ $4: \mathbf{return} (m,m')$

We have that $\mathbf{Adv}_{H}^{\mathrm{CR}}(\mathcal{A}') = \mathbf{Adv}_{H}^{\mathrm{2PRE}}(\mathcal{A})$. Thus if H is collision resistant, H is second pre-image resistant.

3.3 Merkle-Damgård Construction

3.4 Construct from compression function

Let k be block length, n be output length, $\mathsf{IV} \in \{0,1\}^n$ be constant. Let $h: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$. The Merkle-Damgård Construction is as defined in Figure 17.

Figure 17: Merkle-Damgård Construction

1. Classical construction from block cipher to compression including Davis-Meyer Construction by:

$$h(m_i, t_{i-1}) = E(m_i, t_{i-1}) \oplus t_{i-1}$$

Note that Davis-Meyer Construction gives a collision resistant compression function if E is an $ideal\ cipher$.

3.4.1 Security

Suppose PAD(m) transforms m into $m' = m||10^t||[|m|]_L$ where $0 \le t < k$ is minimal such that k divides |m'| and $[\cdot]_L$ denotes L-bit representation of a number where $L \le K$. If the compression function h is collision-resistant, then so is H.

Proof. Let \mathcal{A} be an adversary against CR of hash function H built from compression function h using the Merkle-Damgård Construction. We construct an adversary \mathcal{B} from \mathcal{A} that breaks CR security of h.

Suppose that \mathcal{A} outputs a colliding pair $X \neq Y$ with non-negligible advantage. Since we know $X \neq Y$, we have that PAD(X) and PAD(Y) do not need to have the same number of blocks. Let x_i, y_j be their blocks after being padded. We write $PAD(X) = x_1, x_2, \dots, x_u$ and $PAD(Y) = y_1, y_2, \dots, y_v$. Let s_i be the chaining values for X and t_1 be the chaining values for Y. Thus if we look at the last blocks in the two chains, we have that

$$h(s_{u-1}, x_u) = H(X) = H(Y) = h(t_{v-1}, y_v)$$

Now we consider two cases. In the first case, we have that $(s_{u-1}, x_u) \neq (t_{v-1}, y_v)$. In this case, the pair (s_{u-1}, x_u) and (t_{v-1}, y_v) if a collision for h. Then the adversary \mathcal{B} outputs the collision and terminates.

In the second case, we have that we have that $(s_{u-1}, x_u) = (t_{v-1}, y_v)$. Since x_u, y_v both uniquely encode the length of X and Y respectively, we can deduce from $x_u = y_v$ that u = v and the message are of identical length. Now since $s_{u-1} = t_{u-1}$, we have that

$$h(s_{u-2}, x_{u-1}) = s_{u-1} = t_{u-1} = h(t_{v-2}, y_{v-1})$$

We then follow the process and the process must end with a collision in h, otherwise we would eventually find hat all blocks of PAD(X) equal those of PAD(Y), contradicting the fact that $X \neq Y$. Thus we have that \mathcal{B} must outputs a collision and h.

Therefore, by contraposition, if a compression h is collision resistant, the then hash function constructed from h with Merkle-Damgård Construction is collision resistant.

3.5 Universal Hashing Function (UHF)

3.5.1 UHF Security

A keyed hash function H is an ε -bounded universal hash function (ε -UHF) if for any adversary A, the advantage $\mathbf{Adv}_{H}^{\mathrm{UHF}}(A) \leq \varepsilon$ where

$$\mathbf{Adv}_H^{\mathrm{UHF}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{UHF} \Rightarrow 1]$$

Game $\mathrm{UHF}(\mathcal{A},H)$		
1:	$K \leftarrow \mathfrak{k} \mathcal{K}$	
2:	$(m_0,m_1) \leftarrow \mathcal{A}()$	
3:	if $H(K, m_0) = H(K, m_1)$	
4:	$\wedge m_0 \neq m_1$ then	
5:	return 1	
6:	else	
7:	return 0	

Figure 18: UHF Game

3.5.2 UHF from Polynomial

Let \mathbb{F} be a finite field, set $\mathcal{K} = \mathcal{T} = \mathbb{F}$, $\mathcal{M} = (\mathbb{F})^{\leq L}$. Define a hash function H_{poly} as:

$$H_{\text{poly}}(K, (a_1, \dots, a_v)) = K^v + a_1 K^{v-1} + a_2 K^{v-2} + \dots + a_{v-1} K + a_v \in \mathbb{F}$$

We have that H_{poly} is an $\varepsilon\text{-UHF}$ for $\varepsilon = \frac{L}{|\mathbb{F}|}$

3.6 Difference Unpredictable Hashing Function (DUHF)

3.6.1 DUHF Security

A keyed hash function H with digest space \mathcal{T} equipped with a group operation "+", is an ε -bounded difference unpredictable hashing function if for any adversary \mathcal{A} , the advantage $\mathbf{Adv}_{H}^{\mathrm{DUHF}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_H^{\mathrm{DUHF}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{DUHF} \Rightarrow 1]$$

```
Game UHF(\mathcal{A}, H)

1: K \leftarrow \$ \mathcal{K}

2: (m_0, m_1, \delta) \leftarrow \$ \mathcal{A}()

3: if H(K, m_0) - H(K, m_1) = \delta

4: \wedge m_0 \neq m_1 then

5: return 1

6: else

7: return 0
```

Figure 19: DUHF Game

3.6.2 DUHF from Polynomial

Let \mathbb{F} be a finite field, set $\mathcal{K} = \mathcal{T} = \mathbb{F}$, $\mathcal{M} = (\mathbb{F})^{\leq L}$. Define a hash function H_{poly} as:

$$H_{\text{Xpoly}}(K, (a_1, \dots, a_v)) = K^{v+1} + a_1 K^v + a_2 K^{v-1} + \dots + a_{v-1} K^2 + a_v K \in \mathbb{F}$$

= $K \cdot H_{\text{poly}}(K, (a_1, \dots, a_v))$

We have that H_{xpoly} is an $\varepsilon\text{-UHF}$ for $\varepsilon = \frac{L+1}{|\mathbb{F}|}$

4 Message Authentication Code

4.1 Message Authentication Code (MAC)

A MAC scheme with key space K, message space M and tag space T consists of a triple of efficient algorithms (KGEN, TAG, VFY) where

$$\begin{aligned} & \text{KGen} : \{\} \to \mathcal{K} \\ & \text{Tag} : \mathcal{K} \times \mathcal{M} \to \mathcal{T} \\ & \text{Vfy} : \mathcal{K} \times \mathcal{M} \times \mathcal{T} \to \{0, 1\} \end{aligned}$$

such that

$$\forall K \ \forall m, \mathrm{VFY}(K, m, \mathrm{TAG}(K, m)) = 1$$

4.2 MAC Unforgeability

4.2.1 EUF-CMA (WUF-CMA) Security

A MAC scheme is $(q_t, q_v, t, \varepsilon)$ -existential unforgeability under chosen message attack (EUF-CMA) secure, if for any adversaries making q_t queries to tagging oracle OTag, q_v queries to verification OVfy, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{EUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{EUF\text{-}CMA}}_{\mathrm{MAC}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{EUF\text{-}CMA} \Rightarrow 1]$$

Gai	me EUF-CMA (A, MAC)	Oracle $OTag(m)$
1:	$K \leftarrow \$ \operatorname{KGen}(1^{\lambda})$	1: $\tau \leftarrow \mathrm{TAG}_K(m)$
2:	$\mathcal{Q} \leftarrow \emptyset$	$2: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\}$
3:	$(m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}, \mathrm{OVFY}}()$	3: return $ au$
4:	$\textbf{if} m^* \in \mathcal{Q} \textbf{then}$	Oracle $OVfy(m, \tau)$
5:	return 0	
6:	else	1: $b \leftarrow \mathrm{VFY}_K(m, \tau)$
7:	$b \leftarrow \mathrm{Vfy}_K(m,\tau)$	2: return b
8:	$\mathbf{return}\ b$	

Figure 20: EUF-CMA Game for MAC

4.2.2 SUF-CMA Security

A MAC scheme is $(q_t, q_v, t, \varepsilon)$ -strong existential unforgeability under chosen message attack (SUF-CMA) secure, if for any adversaries making q_t queries to tagging oracle OTag, q_v queries to verification oracle OVfy, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{SUF\text{-}CMA}}_{\mathrm{MAC}}(\mathcal{A}) = \Pr[\mathbf{Game}\ \mathrm{SUF\text{-}CMA} \Rightarrow 1]$$

```
Game SUF-CMA(\mathcal{A}, MAC)
                                                       Oracle OTag(m)
1: K \leftarrow \text{\$} KGen(1^{\lambda})
                                                         1: \tau \leftarrow \mathrm{Tag}_K(m)
2: \mathcal{Q} \leftarrow \emptyset
                                                         2: Q \leftarrow Q \cup \{(m,\tau)\}
3: (m^*, \tau^*) \leftarrow \mathcal{A}^{\text{OTag,OVFY}}()
                                                         3: \mathbf{return} \ \tau
       if (m^*, \tau^*) \in \mathcal{Q} then
                                                       Oracle OVfy(m, \tau)
           {f return} \ 0
                                                         1: b \leftarrow \mathrm{VFY}_K(m,\tau)
6: else
                                                         2:  return b
           b \leftarrow \mathrm{Vfy}_K(m^*, \tau^*)
7:
           return b
```

Figure 21: SUF-CMA game for MAC

- 1. EUF-CMA and SUF-CMA security are equivalent if Tag is deterministic and VFY is built using Tag.
- 2. For any m and K, there is precisely one value τ for which $VFY(K, m, \tau) = 1$, so a SUF-CMA adversary does not have more advantage than a EUF-CMA adversary.

4.2.3 No-verify SUF-CMA

Let MAC = (KGEN, TAG, VFY) be a MAC scheme. For any $(q_t, q_v, t, \varepsilon)$ -SUF-CMA adversary \mathcal{A} against MAC, there is a $(q_t, t', \varepsilon/q_v)$ -no-verify-SUF-CMA advesary \mathcal{B} against MAC with $t' \approx t$.

```
Game SUF-CMA(\mathcal{A}, MAC)
                                                           Oracle OTag(m)
1: K \leftarrow \$ KGEN(1^{\lambda})
                                                            1: \tau \leftarrow \mathrm{Tag}_K(m)
2: \mathcal{Q} \leftarrow \emptyset
                                                            2: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{(m^*, \tau^*)\}
3: (m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}}()
                                                            3: \mathbf{return} \ \tau
4: if (m^*, \tau^*) \in \mathcal{Q} then
5:
            return 0
6: else
7:
            b \leftarrow \mathrm{VFY}_K(m,\tau)
8:
            return b
```

Figure 22: No Verify Oracle SUF-CMA game for MAC

Remarks:

- 1. This theorem does not hold for EUF-CMA as there are (artifical) MAC schemes which are EUF-CMA secure if $q_t=q$ but there exists an efficient EUF-CMA adversary with advantage 1 if $q_t>1$
- 2. The theorem holds if TAG is deterministic and VFY is built using TAG.

4.3 MACs from PRFs

4.3.1 MACs-from-PRFs Construction

Let $F: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ be a pseudorandom function, we build a MAC scheme MAC(F) from F with key space \mathcal{K} , message space \mathcal{M} , and tag space \mathcal{T} as in Figure 23.

KGEN	$\mathrm{Vfy}(K,m, au)$
$1: K \leftarrow \$ \{0,1\}^k$	1: $\tau' \leftarrow F(K, m)$
2: return K	2: if $\tau = \tau'$ then
$ \operatorname{TAG}(K,m) $	3: return 1
	4: else
1: $\tau \leftarrow F(K, m)$	5: return 0
2: return $ au$	

Figure 23: MAC from PRF construction

4.3.2 MACs-from-PRFs Security

Let $F: \mathcal{K} \times \mathcal{M} \to \mathcal{T}$ be a function. For any (q_t, t, ε) -SUF-CMA adversary \mathcal{A} against MAC(F), there exists an adversary \mathcal{B} against PRF security of F that runs in time $t' \approx t$, making $q_t + 1$ queries, and has advantage at least $\varepsilon - \frac{1}{|\mathcal{T}|}$.

Proof. Since we have that TAG is deterministic, it suffices to show that if there is an adversary \mathcal{A} against no-verify EUF-CMA security of MAC(F), then there is an adversary \mathcal{B} against PRF security of F with advantage at least $\varepsilon - \frac{1}{|\mathcal{T}|}$. Consider the games G_0 and G_1 in Figure 24. We have that $G_0 = G_F^{\text{EUF-CMA}}$ and $G_1 = G_f^{\text{EUF-CMA}}$. We define two events W_0 and W_1 where:

- W_0 : \mathcal{A} plays G_0 and outputs (m^*, τ^*) such that $\tau^* = F(K, m^*)$ and $m^* \notin \mathcal{Q}$.
- W_1 : \mathcal{A} plays G_1 and outputs (m^*, τ^*) such that $\tau^* = f(m^*)$ and $m^* \notin \mathcal{Q}$.

We claim that

$$\mathbf{Adv}_F^{\text{EUF-CMA}}(\mathcal{A}) = \Pr[W_0] = |\Pr[W_0] - \Pr[W_1] + \Pr[W_1]|$$

$$\leq |\Pr[W_0] - \Pr[W_1]| + \Pr[W_1]$$

We construct the adversary \mathcal{B} as in Figure 24. Observe that \mathcal{B} queries its RoR oracle to tag m queried by \mathcal{A} , with either the pseudorandom function F or the random function ρ , which simulates the behavior of G_1 or G_2 . By the Advantage Rewriting Lemma, we have that

$$\mathbf{Adv}_{F}^{\text{PRF}}(\mathcal{B}) = \left| \Pr[b' = 0 \mid b = 0] - \Pr[b' = 0 \mid b = 1] \right|$$

$$= \left| \Pr[\tau^* = F(K, m^*) \mid G_0(\mathcal{A}) \right] - \Pr[\tau^* = f(m^*) \mid G_1(\mathcal{A}) \right|$$

$$= \left| \Pr[W_0] - \Pr[W_1] \right|$$

We next bound $\Pr[W_1]$. Consider that \mathcal{A} has seen the output of f with input m_1, m_1, \cdots and \mathcal{A} is required to guess the value of f with some new value m^* as input. We have that f is a

truly random function, the value of f at m^* is uniformly random and independent from its value on all other inputs. Thus we have that $\Pr[W_1] = \frac{1}{|\mathcal{T}|}$. Therefore, we have that

$$\mathbf{Adv}_F^{\mathrm{EUF\text{-}CMA}}(\mathcal{A}) \leq \mathbf{Adv}_F^{\mathrm{PRF}}(\mathcal{B}) + \frac{1}{|\mathcal{T}|}$$

Adversary \mathcal{B}^{RoR} Game G_0 G_1 Oracle OTag(m)1: $(m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}_{\mathrm{SIM}}}()$ 1: $K \leftarrow \$ KGEN(1^{\lambda})$ 1: $\tau \leftarrow F(K, m)$ $2: \mathcal{Q} \leftarrow \emptyset$ $2: \quad \tau \leftarrow f(m)$ $2: \quad \tau' \leftarrow \operatorname{RoR}(m^*)$ 3: if $\tau^* = \tau'$ then 3: $(m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}}()$ $3: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\}$ $4: \mathbf{return} \ \tau$ return 0if $m^* \in \mathcal{Q}$ then 5: **else** return 0 Oracle $OTag_{Sim}(m)$ return 1 else 6: 1: $\tau \leftarrow \operatorname{RoR}(m)$ $\tau' \leftarrow F(K, m^*)$ 7: $2: \mathbf{return} \ \tau$ $\tau' \leftarrow f(m^*)$ 8: 9: return $\tau^* = \tau'$

Figure 24: Security Proof of MAC construction from PRF

Remark:

(1) This statements implies if F is a PRF, then MAC(F) is SUF-CMA.

4.4 Domain Extension Theorem

Let MAC = (KGEN, TAG, VFY) be a MAC scheme for message input space \mathcal{M} with taglength t and key length k. Let $H: \mathcal{M}' \to \mathcal{M}$ be a hash function. Define a new MAC scheme HTMAC = (KGEN, TAG', VFY') for message input space \mathcal{M}' by

- $\operatorname{TAG}'(K, m) = \operatorname{TAG}(K, H(m))$
- $VFY'(K, m, \tau) = VFY(K, H(m))$

For any SUF-CMA adversary \mathcal{A} against HTMAC, we can construct an SUF-CMA adversary \mathcal{B} against MAC, or a collision resistance adversary \mathcal{C} against of H such that

$$\mathbf{Adv}_{\mathrm{HTMAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF-CMA}}(\mathcal{B}) + \mathbf{Adv}_{H}^{\mathrm{CR}}(\mathcal{C})$$

Proof. Let W_0 denote the event that \mathcal{A} wins SUF-CMA game. Let W_1 denote the event that $H(m) = H(m^*)$ where $m \neq m^*$. We claim that

$$\mathbf{Adv}^{\mathrm{SUF-CMA}}_{\mathrm{HTMAC}}(\mathcal{A}) = \Pr[W_0]$$

$$= \Pr[W_0 \land \neg W_1] + \Pr[W_1 \land W_1]$$

$$\leq \Pr[W_0 \land \neg W_1] + \Pr[W_1]$$

We first construct the adversary \mathcal{B} as in Figure 25. Observe that in the simulated oracle, \mathcal{B} computes the hash of the message queried by \mathcal{A} , and queries its oracle OTag to get the tag, which simulates the SUF-CMA game \mathcal{A} plays. Note that if \mathcal{A} wins the SUF-CMA game, (m^*, τ^*) output by \mathcal{A} has never been queried before. Since in this case, we assume that collision does not happen, thus we have that the hash of m^* has never been queried. Thus if \mathcal{A} wins, we have \mathcal{B} wins, which implies

$$\mathbf{Adv}^{\mathrm{SUF-CMA}}_{\mathrm{HTMAC}}(\mathcal{A}) = \mathbf{Adv}^{\mathrm{SUF-CMA}}_{\mathrm{MAC}}(\mathcal{B})$$

We now construct the adversary C as in Figure 25. Similarly, \mathcal{C} simulates the SUF-CMA game that \mathcal{A} plays. Also, since we assume that collision happens in this case, there must exist some $m' \in \mathcal{Q}$ such that H(m') = H(m) and $m \neq m'$. Thus $\Pr[W_1] \leq \mathbf{Adv}_H^{\operatorname{CR}}(\mathcal{C})$.

Finally, we have that

$$\begin{aligned} \mathbf{Adv}_{\mathrm{HTMAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) &\leq \Pr[W_0 \wedge \neg W_1] + \Pr[W_1] \\ &= \mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF-CMA}}(\mathcal{B}) + \mathbf{Adv}_H^{\mathrm{CR}}(\mathcal{C}) \end{aligned}$$

 $\overline{\mathbf{Adversary}} \ \mathcal{B}^{\mathrm{OTag}}$ Oracle $OTag_{Sim}(m)$ $1: (m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}_{\mathrm{Sim}}}()$ $2: h^* \leftarrow H(m^*)$ $2: \tau \leftarrow \mathrm{OTag}($ 2: $\tau \leftarrow \mathrm{OTag}(h)$ 3: return (h^*, τ^*) $3: \mathbf{return} \ \tau$ Oracle $OTag'_{Sim}(m)$ ${\bf Adversary} \,\, {\cal C}$ $\mathbf{1}: \quad (X,Y) \leftarrow (\bot,\bot) \qquad \mathbf{1}: \quad h \leftarrow H(m)$ 2: **if** $\exists m' \in \mathcal{Q} : H(m') = h$ $2: \mathcal{Q} \leftarrow \emptyset$ $3: K \leftarrow \$ KGEN$ 3: $\wedge m \neq m'$ then $4: \mathcal{A}^{\mathrm{OTag}'_{\mathrm{Sim}}}$ $(X,Y) \leftarrow (m,m')$ 4: $5: \quad \tau \leftarrow \$ \operatorname{TAG}(K, h)$ $5: \mathbf{return}(X, Y)$ $6: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\}$ 7: return τ

Figure 25: Adversary \mathcal{B} and \mathcal{C} for proof of Domain Extension Theorem

4.5 Nonce-based MACs

4.5.1 NMAC

A nonce-based MAC scheme with key space \mathcal{K} , nonce space \mathcal{N} and tag space \mathcal{T} , consists of a triple of efficient algorithms (KGEN, TAG, VFY) where

$$\begin{split} & \text{KGen}: \{\} \to \mathcal{K} \\ & \text{Tag}: \mathcal{K} \times \mathcal{N} \times \mathcal{M} \to \mathcal{T} \\ & \text{Vfy}: \mathcal{K} \times \mathcal{N} \times \mathcal{M} \times \mathcal{T} \to \{0,1\} \end{split}$$

such that

$$\forall K \in \mathcal{K} \ \forall N \in \mathcal{N} \ \forall m \in \mathcal{M}, \text{Vfy}(K, N, m, \text{Tag}(K, N, m))$$

4.5.2 SUF-CMA Security of NMAC

A nonce-based MAC scheme is $(q_t, q_v, t, \varepsilon)$ -SUF-CMA secure if for all adversaries \mathcal{A} running in time at most t, making at most q_t tagging queries and at most q_v verification queries, the advantage $\mathbf{Adv}_{\mathrm{NMAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}_{\mathrm{NMAC}}^{\mathrm{SUF\text{-}CMA}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{SUF\text{-}CMA} \Rightarrow 1]$$

Game SUF-CMA(\mathcal{A}, MAC)	Oracle $OTag(N, m)$
1: $K \leftarrow \$ \operatorname{KGen}(1^{\lambda})$	1: $\tau \leftarrow \mathrm{Tag}_K(N,m)$
$2: \mathcal{Q} \leftarrow \emptyset$	$2: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{(N, m, \tau)\}$
$3: (N^*, m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag,OVfy}}()$	3: return $ au$
4: if $(N^*, m^*, \tau^*) \in \mathcal{Q}$ then	Oracle $\text{OVfy}(N, m, \tau)$
5: return 0	
6: else	1: $b \leftarrow \mathrm{VFY}_K(N, m, \tau)$
7: $b \leftarrow \mathrm{VFY}_K(N, m, \tau)$	2: return b
8: return b	

Figure 26: SUF-CMA game for NMAC

4.6 UHF-then-PRF Composition

4.6.1 Compose UHF and PRF

Let H be an ε -UHF with key space \mathcal{K} , message space \mathcal{M} and digest space \mathcal{T} . Let F be a secure PRF with key space \mathcal{K}' , message space \mathcal{T} and output space \mathcal{X} . Define a function F' by

$$F'((K_1, K_2), m) := F(K_2, H(K_1, m))$$

Then F' is a secure PRF with key space $\mathcal{K} \times \mathcal{K}'$, message space \mathcal{M} and output space \mathcal{X} .

4.6.2 UHF-then-PRF Composition Security

Let \mathcal{A} be a PRF adversary against F' making at most q queries, then there exists a PRF adversary \mathcal{B} against F making q queries such that

$$\mathbf{Adv}_{F'}^{\mathrm{PRF}}(\mathcal{A}) \leq \mathbf{Adv}_{F}^{\mathrm{PRF}}(\mathcal{B}) + \frac{q^2}{2} \cdot \varepsilon$$

Proof. Let \mathcal{A} be a PRF adversary against F', we construct a PRF adversary \mathcal{B} against F as in Figure 28. Observe that \mathcal{B} makes the same number of queries as \mathcal{A} does, also \mathcal{B} first hashes the query from \mathcal{A} and then queries the hashes with its oracle RoR, which simulates the PRF game that \mathcal{A} plays. Also, \mathcal{B} runs in essentially the same time as \mathcal{A} . Thus \mathcal{B} perfectly

simulates the PRF game of \mathcal{A} . Observe that \mathcal{B} returns the same bit as \mathcal{A} . Thus if \mathcal{A} wins the game, then \mathcal{B} wins the game.

In the second case, we can construct a UHF adversary \mathcal{D} against H as in Figure 27. Since ρ is a random function, if we have that $f(H(K_1, m)) = f(H(K_2, m'))$ for $m \neq m'$, then \mathcal{D} wins the UHF game. Since \mathcal{A} makes q queries, there are $\frac{q(q-1)}{2}$ pairs of indices.

By Union Bound, we have that

$$\begin{aligned} \mathbf{Adv}_{F'}^{\mathrm{PRF}}(\mathcal{A}) & \leq \mathbf{Adv}_{F}^{\mathrm{PRF}}(\mathcal{B}) + \frac{q(q-1)}{2} \cdot \varepsilon \\ & \leq \mathbf{Adv}_{F}^{\mathrm{PRF}}(\mathcal{B}) + \frac{q^2}{2} \cdot \varepsilon \end{aligned}$$

Adversary \mathcal{B}^{RoR} Oracle $RoR_{SIM}(m)$ 1: $K_1 \leftarrow \$ \mathcal{K}$ 1: $h \leftarrow H(K_1, m)$ 2: $b' \leftarrow \$ \mathcal{A}^{RoR_{SIM}}()$ 2: $c \leftarrow RoR(h)$ 3: return b'3: return c

Figure 27: Adversary \mathcal{B} for UHF-PRF Construction

$\textbf{Adversary} \mathcal{D}$		Oracle $OIdeal(m)$	
1:	$(X,Y) \leftarrow (\bot,\bot)$	1:	$h \leftarrow H(K_1, m)$
2:	$\mathcal{Q} \leftarrow$	2:	if $\exists m' \in \mathcal{Q}$:
3:	$K_1 \leftarrow \mathfrak{K}$	3:	$m \neq m' \wedge h = H(K_1, m')$ then
4:	$ ho \leftarrow \!\!\!\! \$ \mathcal{F}[\mathcal{T}]$	4:	$(X,Y) \leftarrow (m,m')$
5:	$\mathcal{A}^{\mathrm{OIdeal}}()$	5:	$c \leftarrow \rho(h)$
6:	$\mathbf{return}\ (X,Y)$	6:	$\mathbf{return}\ c$

Figure 28: Adversary \mathcal{D} for UHF-PRF Construction

4.7 Carter-Wegman (CW) MAC

4.7.1 CW-MAC Construction

Let H be a ε -DUHF with outputs in \mathcal{T}_H ; Let F be a PRF on $\{0,1\}^n$ with output in \mathcal{T}_H ; assume that $(\mathcal{T}_H,+)$ is a group, define CW-MAC(F,H) as follows:

Figure 29: CW-MAC Construction

4.7.2 CW-MAC Security

For any SUF-CMA adversary \mathcal{A} against CW-MAC(F, H) making q_t tag queries, there exists a PRF adversary \mathcal{B} against F such that

$$\mathbf{Adv}^{\mathrm{SUF\text{-}CMA}}_{\mathrm{CW\text{-}MAC}(F,H)}(\mathcal{A}) \leq \mathbf{Adv}^{\mathrm{PRF}}_F(\mathcal{B}) + \varepsilon + \frac{1}{|\mathcal{T}_H|}$$

Proof. Since we have that TAG is deterministic, it suffices to show the no-verify EUF-CMA security. Define G_0 and G_1 as in Figure 30. Let W_i be the event that \mathcal{A} wins in game G_i respectively. We have that

$$\mathbf{Adv}^{\text{SUF-CMA}}_{\text{CW-MAC}(F,H)}(\mathcal{A}) \leq |\Pr[W_0] - \Pr[W_1]| + \Pr[W_1]$$

We construct a PRP adversary \mathcal{B} against F as in Figure 30. Observe that \mathcal{B} makes the same number of queries as \mathcal{A} , and \mathcal{B} samples the a hash key and run $H(K_1, m)$ with m from \mathcal{A} , queries its oracle RoR with the nonce queried by \mathcal{A} , and then output the tag after group operation, which simulates the SUF-CMA game that \mathcal{A} plays. By Advantage Rewriting Lemma, we have that

$$\mathbf{Adv}_F^{\text{PRF}}(\mathcal{B}) = \left| \Pr[b' = 0 \mid b = 0] - \Pr[b' = 0 \mid b = 1] \right|$$

= $\left| \Pr[W_0] - \Pr[W_1] \right|$

We then show that $\Pr[W_1] \leq \varepsilon + \frac{1}{|\mathcal{T}_H|}$. Let E_1 denote the event that \mathcal{A} wins and output a triple (N^*, m^*, τ^*) in which N^* has neven been used in any of \mathcal{A} 's tag queries. Let E_2 denote the event that \mathcal{A} wins and output a triple (N^*, m^*, τ^*) in which $N^* = N$ with N repeated from some previous tag query. We claim that

$$\Pr[W_1] = \Pr[E_1] + \Pr[E_2]$$

In E_1 , for \mathcal{A} to win, we must have $\tau^* = H(K_1, m^*) + f(N^*)$. Note that after rearranging, we have that $f(N^*)$ is a group element in \mathcal{T}_H . Since N^* is new, $f(N^*)$ is uniformly random in \mathcal{T}_H and independent from all the other outputs of f seen by \mathcal{A} . Thus we have that

$$\Pr[E_1] = \frac{1}{|\mathcal{T}_H|}$$

In E_2 , we then have $\tau^* = H(K_1, m^*) + f(N)$ and $\tau = H(K_1, m) + f(N)$ for some N. Thus we have that $\tau^* - \tau = H(K_1, m^*) - H(K_1, m)$. We can then build an adversary \mathcal{D} that breaks DUHF security of H with output $(m^*, m, \tau^* - \tau)$. Thus we have that

$$\Pr[E_2] \leq \mathbf{Adv}_H^{\mathrm{DUHF}}(\mathcal{D}) \leq \varepsilon$$

Finally, we have that

$$\mathbf{Adv}_{\text{CW-MAC}(F,H)}^{\text{SUF-CMA}}(\mathcal{A}) \leq |\Pr[W_0] - \Pr[W_1]| + \Pr[W_1]$$
$$= \mathbf{Adv}_F^{\text{PRP}}(\mathcal{B}) + \varepsilon + \frac{1}{|\mathcal{T}_H|}$$

Game G_0 G_1	Oracle $OTag(N, m)$	$\textbf{Adversary} \mathcal{B}^{\text{RoR}}$
1: $(K_1, K_2) \leftarrow \text{\$} KGen(1^{\lambda})$	1: $\tau \leftarrow H(K_1, m) + F(K, N)$	$1: K_1 \leftarrow \mathcal{S} \mathcal{K}_H$
$2: \rho \leftarrow \$ \mathcal{F}[\{0,1\}^n]$	$2: \tau \leftarrow H(K_1, m) + f(N)$	$2: (N^*, m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}_{\mathrm{SIM}}}()$
$3: \mathcal{Q} \leftarrow \emptyset$	$3: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\}$	$3: c' \leftarrow \operatorname{RoR}(m^*)$
4: $(N^*, m^*, \tau^*) \leftarrow \mathcal{A}^{\mathrm{OTag}}()$	4: return $ au$	$4: \tau' \leftarrow H(K_1, m^*) + c'$
5: if $m^* \in \mathcal{Q}$ then	Oracle $OTag_{Sim}(N, m)$	5: if $ au^* = au'$ then
6: return 0		6: return 0
7: else	$1: c \leftarrow \operatorname{RoR}(N)$	7: else
8: $\tau' \leftarrow H(K_1, m^*) + F(K_2, N^*)$	$2: \tau \leftarrow H(K_1, m) + c$	8: return 1
9: $\tau' \leftarrow H(K_1, m^*) + f(N^*)$	3: return $ au$	
10: return $\tau^* = \tau'$		

Figure 30: Security Proof of MAC construction from PRF

5 Asymmetric Encryption

5.1 Public Key Encryption

5.1.1 Public Key Encryption Scheme

A public key encryption scheme PKE with public key space \mathcal{PK} , secret key space \mathcal{SK} , message space \mathcal{M} , and ciphertext space \mathcal{C} , consists of a triple of efficient algorithms PKE = (KGEN, ENC, DEC) where

 $\begin{aligned} & \text{KGEN}: \{\} \rightarrow \mathcal{PK} \times \mathcal{SK} \\ & \text{Enc}: \mathcal{PK} \times \mathcal{M} \rightarrow \mathcal{C} \\ & \text{Dec}: \mathcal{SK} \times \mathcal{C} \rightarrow \mathcal{M} \cup \{\bot\} \end{aligned}$

such that

$$\forall (\mathsf{pk}, \mathsf{sk}) \in \mathcal{PK} \times \mathcal{SK} \ \forall m \in \mathcal{M}, \mathrm{DEC}(\mathsf{sk}, \mathrm{Enc}(\mathsf{pk}, m)) = m$$

5.1.2 IND-CCA security of PKE

A public key encryption scheme PKE is defined to be $(q_e, q_d, t, \varepsilon)$ -indistinguishibility under chosen ciphertext attack (IND-CCA), if for any adversaries \mathcal{A} running in time at most t and making at most q_e encryption queries to oracle LoR and at most q_d decryption queries to oracle ODec, the advantage $\mathbf{Adv}_{\mathrm{PKE}}^{\mathrm{IND-CPA}}(\mathcal{A}) \leq \varepsilon$.

$$\mathbf{Adv}^{\mathrm{IND\text{-}CCA}}_{\mathrm{PKE}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \ \mathrm{IND\text{-}CCA}(\mathcal{A}, \mathrm{SE}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Game IND-CCA(\mathcal{A} , PKE)	Oracle LoR (m_0, m_1)	Oracle $ODec(c)$
$1: b \leftarrow \$ \{0,1\}$	1: if $ m_0 \neq m_1 $ then	1: if $c \in \mathcal{Q}$ then
$2: pk, sk \leftarrow \$ \mathrm{KGen}(1^{\lambda})$	$_2$: return \perp	$_2$: return \perp
$3: \mathcal{Q} \leftarrow \emptyset$	$3: c \leftarrow \$ \operatorname{ENC}(pk, m_b)$	$3: m \leftarrow \mathrm{DEC}(sk, c)$
$4: b' \leftarrow \mathcal{A}^{LoR,ODec}(pk)$	$4: \mathcal{Q} \leftarrow \mathcal{Q} \cup \{c\}$	4: return m
5: return $b' = b$	5: return c	

Figure 31: IND-CCA Game of a Public Key Encryption Scheme

5.2 KEM and DEM

5.2.1 Key Encapsulation Mechanism

A key encapusation mechanism KEM with public key space \mathcal{PK} , secret key space \mathcal{SK} , symmetric key space \mathcal{K} , and encapsulation space \mathcal{C} , consists of a triple of efficient algorithms KEM = (KGEN, ENCAP, DECAP) where

 $\begin{aligned} & \text{KGen}: \{\} \rightarrow \mathcal{SK} \times \mathcal{PK} \\ & \text{Encap}: \mathcal{PK} \rightarrow \mathcal{C} \times \mathcal{K} \\ & \text{Decap}: \mathcal{SK} \times \mathcal{C} \rightarrow \mathcal{K} \cup \{\bot\} \end{aligned}$

such that

$$\forall (\mathsf{sk}, \mathsf{pk}) \in \mathcal{SK} \times \mathcal{PK}, \text{Encap}(\mathsf{pk}) = (c, K) \Rightarrow K = \text{Decap}(\mathsf{sk}, c)$$

5.2.2 IND-CCA Security for KEM

A key encapsulation mechanism KEM is defined to be $(q_e, q_d, t, \varepsilon)$ -indistinguishibility under chosen ciphertext attack (IND-CCA), if for any adversaries \mathcal{A} running in time at most t and making at most q_e encryption queries to oracle LoR and at most q_d decryption queries to oracle ODec, the advantage $\mathbf{Adv}_{\mathrm{KEM}}^{\mathrm{IND-CPA}}(\mathcal{A}) \leq \varepsilon$.

$$\mathbf{Adv}^{\mathrm{IND\text{-}CCA}}_{\mathrm{KEM}}(\mathcal{A}) = 2 \cdot |\Pr[\mathbf{Game} \ \mathrm{IND\text{-}CCA}(\mathcal{A}, \mathrm{KEM}) \Rightarrow \mathsf{true}] - \frac{1}{2}|$$

Gar	me IND-CCA (A, KEM)	Ora	acle $ODec(c)$
1:	$b \leftarrow \$ \{0,1\}$	1:	if $c = c_0$ then
2:	$pk, sk \leftarrow \!$	2:	$\mathbf{return} \perp$
3:	$(c_0, K_0) \leftarrow \text{\$} \text{Encap}(pk)$	3:	$K \leftarrow \text{Decap}(sk, c)$
4:	$K_1 \leftarrow \mathfrak{K}$	4:	$\mathbf{return}\ K$
5:	$b' \leftarrow \!\!\! * \mathcal{A}^{\mathrm{ODec}}(pk, c_0, K_b)$		
6:	$\mathbf{return}\ b' = b$		

Figure 32: IND-CCA Game of a Public Key Encryption Scheme

5.2.3 KEM/DEM Composition

Let KEM = (KGEN, ENCAP, DECAP), and DEM = (KGEN, ENC, DEC) be a DEM such that KEM. $\mathcal{K} = \text{DEM}.\mathcal{K}$, then we build a PKE scheme PKE = (KGEN, ENC, DEC) from KEM and DEM as in Figure 33.

PKE.KGen	PKE.Enc(m)	$\mathrm{PKE.Dec}(sk,c)$
1: sk, pk ←\$ KEM.KGEN 2: return (sk, pk)	1: $(c_K, K) \leftarrow \text{$\mathbb{K}EM.ENCAP(pk)$}$ 2: $c_m \leftarrow \text{$\mathbb{D}EM.ENC}(K, m)$ 3: return $c_K c_m$	1: $c_K c_m \leftarrow c$ 2: $K \leftarrow \text{KEM.DECAP}(sk, c_K)$ 3: if $K = \bot$ then 4: return \bot 5: $m \leftarrow \text{DEM.DEC}(K, c_m)$ 6: return m

Figure 33: KEM/DEM Composition

5.2.4 Security of KEM/DEM Composition

For any 1-query IND-CCA adversary $\mathcal A$ against PKE from KEM/DEM composition, there exist adversaries $\mathcal B$ and $\mathcal C$ such that

$$\mathbf{Adv}_{\mathrm{PKE}}^{\mathrm{IND\text{-}CCA}}(\mathcal{A}) \leq 2 \cdot \mathbf{Adv}_{\mathrm{KEM}}^{\mathrm{IND\text{-}CCA}}(\mathcal{B}) + \mathbf{Adv}_{\mathrm{DEM}}^{\mathrm{IND\text{-}CCA}}(\mathcal{C})$$

5.3 RSA Encryption

5.3.1 Textbook RSA

Define the textbook RSA cryptosystem as in Figure 34.

$\mathrm{KGen}(\ell)$		$\mathrm{Enc}(pk,m)$	
1:	$p,q \leftarrow \$ \operatorname{Prime}(\ell/2)$	1:	$(e,N) \leftarrow pk$
2:	$/\!\!/ p,q$ of bit-size $\ell/2$	2:	$c \leftarrow m^e \bmod N$
3:	$N \leftarrow p \cdot q$	3:	$\mathbf{return}\ c$
	$d \leftarrow \mathbb{Z}_N^*$ $e \leftarrow d^{-1} \bmod \phi(N)$	DEC	$\mathrm{C}(sk,c)$
	$pk \leftarrow (e, N)$	1:	$d \leftarrow sk$
7:	$sk \leftarrow d$	2:	$m \leftarrow c^d \bmod N$
8:	$\mathbf{return}\ (pk,sk)$	3:	return m

Figure 34: Textbook RSA

By Euler's Theorem, the correctness is defined by:

$$(m^e)^d \equiv m^{k \cdot \phi(N) + 1} \equiv m^{k \cdot \phi(N)} \cdot m \equiv m \pmod{N}$$

5.3.2 RSA inversion Problem

Define the RSA Inversion Problem as in Figure 35.

Figure 35: RSA Inversion Problem

Remarks:

- (1) If A can factor N, then A can solve the RSA inversion problem.
- (2) The reverse implication is open, but no algorithm faster than factoring N is known for solving RSA inversion in general.

5.3.3 Build KEM from RSA

Let $H: \mathbb{Z}_N \to \{0,1\}^k$ be a hash function. We can build a KEM from RSA as in Figure 36.

KG	$\mathrm{En}(\ell)$	Enc	$\mathtt{CAP}(pk,m)$
1:	$p,q \leftarrow \hspace{-0.1cm} \$ \operatorname{Prime}(\ell/2)$	1:	$(e,N) \leftarrow pk$
2:	$/\!\!/ p,q$ of bit-size $\ell/2$	2:	$s \leftarrow \mathbb{Z}_N$
3:	$N \leftarrow p \cdot q$	3:	$c \leftarrow s^e \bmod N$
4:	$d \leftarrow \!\!\!\!/ \mathbb{Z}_N^*$	4:	$K \leftarrow H(s)$
5:	$e \leftarrow d^{-1} \bmod \phi(N)$	5:	$\mathbf{return}\ (c,K)$
6:	$pk \leftarrow (e, N)$	Dec	$ extsf{CAP}(sk,c)$
7:	$sk \leftarrow d$		
8:	return (pk, sk)	1:	$d \leftarrow sk$
		2:	$s \leftarrow c^d \bmod N$
		3:	$K \leftarrow H(s)$
		4:	$\mathbf{return}\ K$

Figure 36: Build KEM from RSA

Remarks:

1. RSA-KEM is IND-CCA secure under Random Oracle Model (ROM) provided RSA inversion problem is hard.

5.4 Discrete Log Setting

5.4.1 DLog Problem

Let p,q be primes such that p=kq+1 for some $k\in\mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G}=\langle g\rangle$ for some geneator g and $|\mathbb{G}|=q$. Define the discrete log problem (DLP) as in Figure 37.

Game $DLog(A)$		
1:	$x \leftarrow \mathbb{Z}_q$	
2:	$x' \leftarrow \mathcal{A}(g, g^x)$	
3:	$\mathbf{return}\ x = x'$	

Figure 37: Discrete Log Problem

5.4.2 CDH Problem

Let p, q be primes such that p = kq + 1 for some $k \in \mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G} = \langle g \rangle$ for some geneator g and $|\mathbb{G}| = q$. Define the *computational Diffie-Hellman problem* (CDH) as in Figure 38.

```
Game CDH(\mathcal{A})

1: x, y \leftarrow \mathbb{Z}_q

2: Z \leftarrow \mathcal{A}(g, g^x, g^y)

3: return Z = g^{ab}
```

Figure 38: Computational Diffie-Hellman Problem

5.4.3 DDH Problem

Let p, q be primes such that p = kq + 1 for some $k \in \mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G} = \langle g \rangle$ for some geneator g and $|\mathbb{G}| = q$. Define the *Decisional Diffie-Hellman problem* (DDH) as in Figure 39.

```
Game DDH(\mathcal{A})

1: b \leftarrow \$ \{0,1\}

2: x, y, z \leftarrow \$ \mathbb{Z}_q

3: Z_0 \leftarrow g^{ab}

4: Z_1 \leftarrow g^c

5: b' \leftarrow \mathcal{A}(g, g^x, g^y, Z_b)

6: return b = b'
```

Figure 39: Decisional Diffie-Hellman Problem

5.5 Diffie-Hellman Key Exchange

Let p, q be primes such that p = kq + 1 for some $k \in \mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G} = \langle g \rangle$ for some geneator g and $|\mathbb{G}| = q$. Define the *Diffie-Hellman Key Exchange* as in Figure 40.

Alice		Bob
$a \leftarrow \mathbb{Z}_q$		
$K_a \leftarrow g^a$	$\xrightarrow{K_a}$	
		if $K_a^q \neq 1$ then
		$\mathbf{return} \perp$
		$b \leftarrow \!\!\!\!/ \mathbb{Z}_q$
	\leftarrow K_b	$K_b \leftarrow g^b$
if $K_b^q \neq 1$ then		
$\mathbf{return} \perp$		
$K \leftarrow \mathrm{KDF}(K_b^a)$		$K \leftarrow \mathrm{KDF}(K_a^b)$

Figure 40: Diffie-Hellman Key Exchange

5.6 ElGamal Encryption

Let p,q be primes such that p=kq+1 for some $k\in\mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G}=\langle g\rangle$ for some geneator g and $|\mathbb{G}|=q$. Define the *ElGamal Public-Key Encryption Scheme* as in Figure 41

$KGen(\ell)$	$\mathrm{Enc}(pk,M)$	$\mathrm{DEC}(sk,R,C)$
$1: x \leftarrow \mathbb{Z}_q$	$1: X \leftarrow pk$	$1: x \leftarrow sk$
$2: X \leftarrow g^x$	$2: r \leftarrow \$ \ \mathbb{Z}_q$	2: if $R^q \neq 1$ then
$3: pk \leftarrow X$	$3: R \leftarrow g^r$	$_3$: return \perp
$4: \operatorname{sk} \leftarrow x$	$4: Z \leftarrow X^r$	$4: Z \leftarrow R^x$
	$5: C \leftarrow M \cdot Z$	$5: M \leftarrow C \cdot Z^{-1}$
	6: return (R,C)	$6: \mathbf{return} \ M$

Figure 41: ElGamal Public Key Encryption

The correctness is defined by:

$$M \cdot X^r \cdot R^{-x} = M \cdot g^{xr} \cdot g^{-rx} = M$$

5.7 DHIES

Let p,q be primes such that p=kq+1 for some $k\in\mathbb{Z}^+$. Let \mathbb{G} be a subgroup of \mathbb{Z}_p^* such that $\mathbb{G}=\langle g\rangle$ for some geneator g and $|\mathbb{G}|=q$. Let H be a hash function with suitable output domain. Let AE be an authenticated encryption scheme. Define the *Diffie-Hellman Integrated Encryption Scheme* (DHIES) as in Figure 42.

$KGen(\ell)$	$\mathrm{Enc}(pk,M)$	$\mathrm{DEC}(sk,R,C)$
$1: x \leftarrow \mathbb{Z}_q$	$1: X \leftarrow pk$	$1: x \leftarrow sk$
$2: X \leftarrow g^x$	$2: r \leftarrow \$ \ \mathbb{Z}_q$	2: if $R^q \neq 1$ then
$3: pk \leftarrow X$	$3: R \leftarrow g^r$	3: return ot
$4: sk \leftarrow x$	$4: Z \leftarrow X^r$	$4: X \leftarrow g^x$
	$5: K \leftarrow H(X, R, Z)$	$5: Z \leftarrow R^x$
	$6: K_e, K_m \leftarrow K$	$6: K \leftarrow H(X, R, Z)$
	7: $C \leftarrow AE.Enc(K_e, K_m, M)$	$7: K_e, K_m \leftarrow K$
	8: return (R,C)	8: $M \leftarrow AE.Dec(K_e, K_m, C)$
		9: return M

Figure 42: Diffie-Hellman Intergrated Encryption Scheme

1. DHIES is IND-CCA secure under Random Oracle Model.

6 Digital Signature

6.1 Digital Signature Scheme

A signature scheme Sig with signing key space \mathcal{SK} , verification key space \mathcal{VK} , message space \mathcal{M} , and signature space Σ consists of a triple algorithm (KGEN, Sig, VFY) where

$$\begin{aligned} & \text{KGen}: \{\} \rightarrow \mathcal{SK} \times \mathcal{VK} \\ & \text{Sig}: \mathcal{SK} \times \mathcal{M} \rightarrow \Sigma \\ & \text{Vfy}: \mathcal{VK} \times \Sigma \times \mathcal{M} \rightarrow \{0,1\} \end{aligned}$$

such that

$$\forall m \in \mathcal{M} \ \forall (sk, vk) \in \mathcal{SK} \times \mathcal{VK}, \text{VFY}(vk, \text{Sig}(sk, m), m) = 1$$

6.2 Signature Unforgeability

6.2.1 EUF-CMA Security

A signature scheme is (q_s, t, ε) -existential unforgeability under chosen message attack (EUF-CMA) secure, if for any adversaries making q_s queries to signing oracle OSig, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{EUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{EUF\text{-}CMA}}_{\mathrm{SIG}}(\mathcal{A}) = \Pr[\mathbf{Game} \ \mathrm{EUF\text{-}CMA}(\mathrm{SIG}, \mathcal{A}) \Rightarrow 1]$$

Gai	me EUF-CMA (A, Sig)	Ora	ncle $OSig(m)$
1:	$vk, sk \leftarrow \$ KGen(1^{\lambda})$	1:	$\sigma \leftarrow \mathrm{Sig}(sk,m)$
2:	$\mathcal{Q} \leftarrow \emptyset$	2:	$\mathcal{Q} \leftarrow \mathcal{Q} \cup \{m\}$
3:	$(m^*, \sigma^*) \leftarrow \mathcal{A}^{\mathrm{OSig}}()$	3:	return σ
4:	$\textbf{if} m^* \in \mathcal{Q} \textbf{then}$		
5:	return 0		
6:	else		
7:	$b \leftarrow \text{Vfy}(pk, m, \sigma)$		
8:	$\mathbf{return}\ b$		

Figure 43: EUF-CMA Game for Sig

6.2.2 SUF-CMA Security

A signature scheme is (q_s, t, ε) -strong existential unforgeability under chosen message attack (SUF-CMA) secure, if for any adversaries making q_s queries to signing oracle OSig, and running in time at most t, the advantage $\mathbf{Adv}_{\mathrm{MAC}}^{\mathrm{SUF-CMA}}(\mathcal{A}) \leq \varepsilon$ where

$$\mathbf{Adv}^{\mathrm{SUF\text{-}CMA}}_{\mathrm{SIG}}(\mathcal{A}) = \Pr[\mathbf{Game}\ \mathrm{SUF\text{-}CMA}(\mathrm{SIG},\mathcal{A}) \Rightarrow 1]$$

Figure 44: SUF-CMA Game for Sig