P. Maurer

ENS Rennes

Recasages: 103, 108, 160, 161, 204.

Référence: FGN, Oraux X-ENS, Algèbre 3

Simplicité de $SO_3(\mathbb{R})$

On considère l'espace euclidien $(\mathbb{R}^3, \langle ., . \rangle)$, où $\langle ., . \rangle$ désigne le produit scalaire habituel. On munit $\mathcal{L}(\mathbb{R}^3)$ de sa topologie d'espace vectoriel normé.

1 Définitions et rappels

Définition 1. On note $O_3(\mathbb{R})$ l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ qui vérifient $M^TM = MM^T = I_3$. C'est un sous-groupe de $(GL_3(\mathbb{R}), \times)$.

Définition 2. L'application det: $O_3(\mathbb{R}) \to \mathbb{R}^*$ est un morphisme de groupes. Son noyau est appelé le sous-groupe spécial orthogonal, et est note $SO_3(\mathbb{R})$. En particulier, $SO_3(\mathbb{R})$ est un sous-groupe distingué de $O_3(\mathbb{R})$.

Proposition 3. Soit $A \in SO_3(\mathbb{R})$. Alors A est semblable à une matrice de la forme :

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

De plus, on peut choisir une base orthonormé pour diagonaliser A sous la forme précédente.

2 Simplicité

Théorème 4. $SO_3(\mathbb{R})$ est un sous-groupe simple de $O_3(\mathbb{R})$.

On commence par démontrer le :

Lemme 5. Soit $G \subset SO_3(\mathbb{R})$ un sous-groupe distingué et connexe par arcs, non réduit à $\{I_3\}$. Alors $G = SO_3(\mathbb{R})$.

Démonstration. Nous allons montrer que G contient une rotation d'angle π .

• Soit $R_{\theta} \in G$ une rotation d'angle $\theta \in \mathbb{R}$. Alors R est semblable à :

$$\left(\begin{array}{ccc}
\cos\theta & -\sin\theta & 0\\
\sin\theta & \cos\theta & 0\\
0 & 0 & 1
\end{array}\right)$$

On a alors $\operatorname{Tr}(R_{\theta})=2\cos\theta+1$, donc $\cos(\theta)=\frac{\operatorname{Tr}(R_{\theta})-1}{2}$. L'application $\varphi\colon G\to\mathbb{R}$ qui à R_{θ} associé $\cos(\theta)$ est continue. Commençons par montrer qu'on peut trouver une rotation R d'angle $\frac{\pi}{2}$ dans G: alors la rotation $R^2\in G$ sera d'angle π .

Par hypothèse, G contient un élément g distinct de I_3 . Quitte à changer la direction de l'axe de rotation, on peut supposer que $\theta \in]0,\pi]$.

• Si $\theta \in \left[\frac{\pi}{2}, \pi\right[$, on a trouvé une rotation g dont l'angle vérifie $\cos(\theta) \leq 0$. Sinon, on pose $N = \left\lfloor \frac{\pi}{2\theta} \right\rfloor$, et on remarque que $g^{N+1} \in G$ est une rotation d'ordre $(N+1) \theta$ avec $\frac{\pi}{2} < (N+1) \theta \leq \frac{\pi}{2} + \theta$, donc $(N+1)\theta \in \left\lceil \frac{\pi}{2}, \pi \right\rceil$.

De fait, il existe toujours dans G une rotation s dont l'angle γ vérifie $\cos(\gamma) \leq 0$.

- Par connexité de G, il existe un chemin γ qui relie I_3 à s. L'application ψ : $\varphi \circ \gamma$ est continue de [0,1] vers \mathbb{R} , et vérifie $\psi(0) = 1$ et $\psi(1) \leq 0$. Le théorème des valeurs intermédiaires affirme qu'il existe $t_0 \in [0,1]$ tel que $\psi(t_0) = 0$: en particulier, $r := \gamma(t_0) \in G$ est une rotation d'angle $\frac{\pi}{2}$, donc $R := r^2$ est un retournement dans G.
- Montrons qu'alors $G = SO_3(\mathbb{R})$. Comme G est distingué, pour tout $g \in SO_3(\mathbb{R})$, gRg^{-1} est aussi dans G. Or si Δ est l'axe de rotation de R, alors gRg^{-1} est encore un retournement, d'axe $g(\Delta)$. Comme $SO_3(\mathbb{R})$ agit transitivement sur les droites de \mathbb{R}^3 , on en déduit que G contient tous les retournements, et donc contient $SO_3(\mathbb{R})$ qui est engendré par ces derniers.

Revenons à la preuve du théorème.

Démonstration.

Soit $G \subset SO_3(\mathbb{R})$ un sous-groupe distingué. Notons G_0 la composante connexe par arcs de I_3 dans G.

• Etape $1: G_0$ est un sous-groupe de G.

Soit $A, B \in G_0$. On note $\gamma_A: [0, 1] \to G$ et $\gamma_B: [0, 1] \to G$ deux chemins continus tels que $\gamma_A(0) = I_3$, $\gamma_A(1) = A$, $\gamma_B(0) = I_3$ et $\gamma_B(1) = B$. Notons que le chemin γ_B^{-1} défini par $\gamma_B^{-1}(t) := \gamma_B(t)^{-1}$ est bien défini car l'application $A \mapsto A^{-1}$ est continue sur $\mathrm{GL}_3(\mathbb{R})$. On définit alors le chemin $\gamma_{AB}(t) := \gamma_A(t) \ \gamma_B^{-1}(t)$ pour tout $t \in [0, 1]$.

 γ_{AB} est une application continue de [0,1] vers G, le déterminant étant multiplicatif. De plus, on a $\gamma_{AB}(0) = \gamma_A(0) \ \gamma_B(0)^{-1} = I_3$, et $\gamma_{AB}(1) = \gamma_A(1) \ \gamma_B(1)^{-1} = AB^{-1}$. On en déduit que $AB^{-1} \in G_0$.

• Etape $2: G_0$ est distingué.

Soit $A \in G_0$ et $H \in SO_3(\mathbb{R})$. Comme $G \triangleleft SO_3(\mathbb{R})$, $HAH^{-1} \in G$. Notons $J \in G$ une matrice dans la composante connexe de H, γ_A un chemin reliant I_3 à A et γ_H un chemin reliant H à J. On considère le chemin γ défini par $\gamma(t) := \gamma_H(t) \gamma_A(t) \gamma_H^{-1}(t)$.

Par définition, on a $\gamma(0) = HAH^{-1}$, et $\gamma(1) = JI_3 J^{-1} = I_3$. Par ailleurs, γ est continu et $\gamma(t) \in G$ (puisque G est distingué). Donc $HAH^{-1} \in G_0 : G_0$ est distingué dans G.

• Etape $3: G = \{I_3\}$ ou $G = SO_3(\mathbb{R})$

D'après ce qui précède, G_0 est connexe par arcs et distingué dans $SO_3(\mathbb{R})$. Si G_0 n'est pas trivial, le lemme permet de conclure que $G = SO_3(\mathbb{R})$. Supposons $G_0 = \{I_3\}$, et montrons que dans ce cas, G est trivial. On raisonne par l'absurde en supposant qu'il existe $A \in G$ distincte de I_3 .

Tout d'abord, montrons que toutes les composantes connexes de G sont des singletons. En effet, soit B dans la composante connexe de A: il existe un chemin γ_{AB} continu de [0,1] vers G vérifiant $\gamma_{AB}(0) = A$ et $\gamma_{AB}(1) = B$. On considère le chemin γ donné par $\gamma(t) := B^{-1}\gamma_{AB}(t)$: γ est continu et $\gamma(t) \in G$, de plus $\gamma(0) = B^{-1}A$ et $\gamma(1) = I_3$, donc $\beta^{-1}A \in G_0 = \{I_3\}$, et de fait, $\beta = B$.

Considérons alors une rotation $R \in SO_3(\mathbb{R})$, d'angle $\theta \in \mathbb{R}$. On définit le chemin γ_R par :

$$\forall t \in [0,1] \quad \gamma_R(t) := \left(\begin{array}{ccc} \cos\left(\theta t\right) & -\sin(\theta t) & 0 \\ \sin(\theta t) & \cos(\theta t) & 0 \\ 0 & 0 & 1 \end{array} \right) \in \mathrm{SO}_3(\mathbb{R})$$

Alors γ_R est continu, et pour γ_A un chemin reliant A à lui-même, le chemin $\gamma:=\gamma_R\gamma_A\gamma_R^{-1}$ vérifie $\gamma(0)=A$ et $\gamma(1)=RAR^{-1}$. De plus, pour tout $t\in[0,1],\ \gamma(t)\in G$ qui est distingué. Comme la composante connexe de A dans G est un singleton, on obtient $A=RAR^{-1}$.

Or, si Δ est l'axe de la rotation A, alors l'axe de RAR^{-1} est $R(\Delta)$: on a donc $\Delta = R(\Delta)$ pour tout $R \in SO_3(\mathbb{R})$. Autrement dit, Δ est une droite stable par toute rotation de l'espace, d'où la contradiction souhaitée.