

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/52, 1/21, 9/00, C12P 21/00 // (C12N 1/21, C12R 1:03)		A1	(11) International Publication Number: WO 98/11230 (43) International Publication Date: 19 March 1998 (19.03.98)
(21) International Application Number: PCT/US96/14791 (22) International Filing Date: 13 September 1996 (13.09.96)		(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(71) Applicant: BRISTOL-MYERS SQUIBB COMPANY [US/US]; Route 206 - Province Line Road, P.O. Box 4000, Princeton, NJ 08543-4000 (US). (72) Inventors: OKI, Toshikazu; 4-20-10, Shodo, Saka-ku, Yokohama 247 (JP). DAIKI, Tohru; 5-139, Tsukioka-cho, Toyama, Toyama 939 (JP). (74) Agent: BLOOM, Allen; Dechert Price & Rhoads, Princeton Pike Corporate Center, P.O. Box 5218, Princeton, NJ 08543-5218 (US).		Published <i>With international search report.</i>	

(54) Title: POLYKETIDE SYNTHASES FOR PRADIMICIN BIOSYNTHESIS AND DNA SEQUENCES ENCODING SAME

(57) Abstract

The present invention provides, *inter alia*, nucleic acids and corresponding amino acid sequences of several *Actinomadura* polyketide synthase genes that are useful, for example, in preparing pradimicin and analogs thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

**POLYKETIDE SYNTHASES FOR PRADIMICIN BIOSYNTHESIS
AND DNA SEQUENCES ENCODING SAME**

The present invention relates, *inter alia*, to purified nucleic acids 5 encoding polyketide synthase genes for pradimicin biosynthesis, and purified polypeptides having polyketide synthase activity. Polyketide metabolites are natural products made by microorganisms and plants from simple fatty acids. Many polyketides are used as human and animal pharmaceuticals such as antibiotics, chemotherapeutics and 10 growth promoting agents, as well as flavoring agents and pigments.

Biosynthesis of polyketides is believed to occur by a series of condensations of carbon units in a manner similar to that of long chain fatty acids which are formed by fatty acid synthase. The fatty acids are formed by a process in which a chain starter, usually a 2-carbon acetate 15 residue, which is joined by condensation to a chain extender unit, such as malonate, to form an even-numbered chain. The resulting β -keto group is then processed, by β -ketoacyl reduction, dehydration and enoyl reduction. The cycle then begins again with the condensation of a new extender unit. A typical fatty acid synthase is a multivalent system 20 involving eight functional units, acetyl, malonyl and palmitoyl transferases, acyl carrier protein, ketoacyl synthase, ketoacyl reductase, dehydratase and enoyl reductase. The organization of these units varies in different organisms. See, for example, *EMBO J.* 8:2717-2725 (1989).

25 The fatty acid synthesis process differs from polyketide synthesis since most polyketides contain structural complexities due to the use of different starter and extender units, such as acetate, propionate and butyrate. The polyketide synthesis is further complicated by variations in the extent of processing of the β -carbon (β -ketoreduction, 30 dehydration, enoylreduction) as well as the introduction of chiral carbons. See, for example, *Science* 252:675-679 (1991).

The tetracenomycin C polyketide synthase genes (*tmcl*) from *Streptomyces glaucescens*, for example, have been sequenced, and the

- sequence data revealed three complete open reading frames. An analysis of the sequence data resulted in a conclusion that polyketide synthesis in *S.glaucescens* involves a multienzyme complex consisting of at least five types of enzymes. These enzymes, which are
- 5 homologous to counterparts involved in fatty acid synthesis, are presumably involved in the assembly of the tetracenomycin C decaketide.

Additionally, for example, the structure and function of the granaticin-producing polyketide synthase gene cluster of *Streptomyces violaceoruber* has also been studied. This gene cluster has six open reading frames, thereby indicating that the granaticin-producing polyketide synthesis likely consists of at least six separate enzymes involved in carbon chain assembly. See *EMBO J.* 8:2717-2725 (1989). Further, *Streptomyces* polyketide synthase gene clusters involved in the biosynthesis of actinorhodin and the *whE* spore pigment have also been described. See *J. Biol. Chem.* 267:19278-19290 (1992) and *Gene* 130:107-116 (1993).

The molecular organization of the polyketide biosynthesis genes of *Saccharopolyspora erythraea*, which govern synthesis of the polyketide portion of the macrolide antibiotic erythromycin, is similarly complex. The genes are organized in six repeated units that encode fatty acid synthase-like activities. Two repeated units are contained in a single open reading frame. It is believed that each repeated unit encodes a functional synthase unit and each synthase unit participates in one of six fatty acid synthase-like elongation steps required for the formation of the polyketide. See *EMBO J.* 8:2727-2736 (1989).

Based on the above data, a model has been proposed in which polyketide genes have repeated units designated modules, and the corresponding proteins are called synthase units, wherein each synthase unit is responsible for one of the fatty acid synthase-like cycles required for completing the polyketide. Thus, each synthase unit carries the

elements required for the condensation process, for selecting the particular extender unit to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the acyl carrier protein

5 (ACP) it occupies to the β -ketoacyl ACP synthase of the next synthase unit utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, using a new synthase unit for each elongation cycle, until the programmed length has been reached.

According to this model, formation of complex polyketides requires the

10 participation of a different synthase unit for each cycle, thereby ensuring that the correct molecular structure is produced. See, for example, *Annu. Rev. Microbiol.* 47:875-912 (1993).

An actinomycete, namely, *Actinomadura*, certain strains of which were previously isolated from soil samples collected in the Fiji Islands

15 and in India, was found to produce a complex of antibiotics designated pradimicin. See, for example, *J. Antibiot.* 43:755-762 (1990). Pradimicin A, as shown in Figure 1, has a unique dihydrobenzo[a]naphthacenequinone aglycon substituted with D-alanine and two sugars, and is a potent antifungal antibiotic produced, for example,

20 by *Actinomadura hibisca* and *Actinomadura verrucosospora* subsp. *neohibisca*. See, for example, *J. Antibiot.* 43:755-762 (1990) and *J. Antibiot.* 46:387-397 (1993). Pradimicin is an antibiotic useful for multiple purposes, particularly for use as a pharmaceutical. For example, pradimicin has been shown to have activity against system

25 fungal infections caused by *Candida albicans*, *Aspergillus fumigatus* and *Cryptococcus neoformans*. Further, pradimicin is active *in vitro* against a wide variety of fungi and yeasts, some Gram-positive bacteria, and viruses. *J. Org. Chem.* 54:2536-2539 (1989). Purified polypeptides having polyketide synthase activity and purified nucleic acids encoding

30 such polypeptides are therefore desirable, for example, to provide pharmaceutically useful products.

SUMMARY OF THE INVENTION

Until now, the sequences encoding polyketide synthase genes in *Actinomadura* had not been identified. These sequences are provided in the present invention.

- 5 One preferred embodiment of the present invention is a substantially pure nucleic acid comprising a nucleic acid sharing at least about 75% nucleic acid identity with an open reading frame (ORF) of an *Actinomadura* polyketide synthase gene, and more preferably, at least about 80% identity, and most preferably, at least about 90% identity.
- 10 In certain preferred embodiments, the nucleic acid comprises a nucleic acid selected from the group consisting of SEQ ID NO:1-12. A further preferred embodiment is a substantially pure nucleic acid comprising a nucleic acid encoding an *Actinomadura* polyketide synthase gene sharing at least about 75% amino acid identity, and more preferably, at least about 80% identity, and most preferably, at least about 90% identity with a polypeptide encoded by a nucleic acid selected from the group consisting of SEQ ID NO:1-12.
- 15 In certain preferred embodiments, the substantially pure nucleic acid comprises a nucleic acid encoding a polypeptide differing from an *Actinomadura* polyketide synthase gene by no more than about 20 amino acid substitutions, and more preferably, no more than about 10 amino acid substitutions. Preferably, the substitutions cause a conservative substitution in the amino acid sequence of the encoded polyketide synthase. The nucleic acids of the invention also include

- 20 nucleic acid analogs.

- 25 Further, the present invention provides a substantially pure nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 75% amino acid identity with a polyketide synthase for biosynthesis of a benzo(*a*)naphthacenequinone. Preferably, the nucleic acid encodes a polypeptide sharing at least about 80%, and more preferably, at least about 90% amino acid identity with a polyketide

synthase for biosynthesis of a benzo(*g*)naphthacenequinone. In preferred embodiments, the polyketide synthase is an *Actinomadura* polyketide synthase, and the polyketide is preferably a dihydrobenzo(*g*)naphthacenequinone aglycon, 5 and preferably pradimicin, such as Pradimicin A, B, C, D, E, FA-1, FA-2, FL, FS, H, 11-O-L-xylosylpradimicin H, L, S, T1, T2 or BMS181184.

Yet another embodiment of the invention is a substantially pure nucleic acid comprising a nucleic acid that hybridizes, under stringent conditions, to a nucleic acid comprising a nucleic acid encoding a 10 polypeptide sharing at least about 75% amino acid identity with an *Actinomadura* polyketide synthase. More preferably, the nucleic acid hybridizes to a nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 80% amino acid identity with an *Actinomadura* polyketide synthase, and even more preferably, encoding 15 a polypeptide sharing at least about 90% amino acid identity with an *Actinomadura* polyketide synthase. Most preferably, the nucleic acid hybridizes with a nucleic acid comprising a nucleic acid selected from the group consisting of SEQ ID NO:1-12. Such a hybridizing nucleic acid can be used, for example, to screen for organisms that produce 20 pradimicin.

The invention additionally includes vectors capable of reproducing in a eukaryotic or prokaryotic cell having a nucleic acid described above as well as transformed eukaryotic or prokaryotic cells having such nucleic acid.

25 Thus, another preferred embodiment is a transformed eukaryotic or prokaryotic cell comprising a nucleic acid encoding a polypeptide sharing at least about 70% amino acid identity with an *Actinomadura* polyketide synthase gene, and more preferably, at least about 80% identity, and most preferably, at least about 90% identity. Most 30 preferably, the nucleic acid sequence comprises a nucleic acid selected from the group consisting of SEQ ID NO:1-12. Preferably, the

transformed cell expresses one of the *Actinomadura* polyketide synthase genes described herein.

- Yet another preferred embodiment is a vector capable of reproducing in a eukaryotic or prokaryotic cell comprising a nucleic acid
- 5 encoding a polypeptide sharing at least about 70% nucleic acid identity with an *Actinomadura* polyketide synthase gene, and more preferably, at least about 80% identity, and most preferably, at least about 90% identity. Preferably, the nucleic acid comprises a nucleic acid selected from the group consisting of SEQ ID NO:1-12. Preferably, the inventive
- 10 vector expresses, intracellularly or extracellularly, one of the *Actinomadura* polyketide synthases described herein.

- Another embodiment of the present invention provides a substantially pure polypeptide comprising an amino acid sequence sharing at least about 75% amino acid identity with an *Actinomadura* polyketide synthase, and more preferably, at least about 80% identity, and most preferably, at least about 90% identity. Preferably, the polypeptide shares at least about 75% amino acid identity with a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:13-15.

- 20 Yet another preferred embodiment is a method of preparing pradimicin or a pradimicin analog thereof, comprising transforming a eukaryotic or prokaryotic cell with an expression vector for expressing intracellularly or extracellularly a nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 70% amino acid identity
- 25 with an *Actinomadura* polyketide synthase, growing the transformed cell in culture, and isolating the pradimicin or analog thereof from the transformed cell or the culture medium. Preferably, the polypeptide shares at least about 80% amino acid identity with an *Actinomadura* polyketide synthase, and more preferably, the polypeptide shares at
- 30 least about 90% amino acid identity with an *Actinomadura* polyketide synthase. Most prefereably, the expression vector comprises a nucleic

acid encoding all polyketide synthase genes necessary for synthesis of pradimicin, such as SEQ ID NO:1.

BRIEF DESCRIPTION OF THE DRAWINGS

5 **Figure 1** shows the chemical structure of two types of pradimicin, pradimicin A and pradimicin S.

10 **Figure 2** shows conserved amino acid sequences in β -ketosynthases and acyl transferases for granaticin, tetracenomycin and actinorhodin. These conserved sequences were used to create two probes for cloning the polyketide synthase genes in *Actinomadura*.

15 **Figure 3** shows a restriction map of *Actinomadura* polyketide synthase genes, ORFs 1-11.

20 **Figure 4** provides an alignment of the *Actinomadura* ORF1 gene product ("A") (SEQ ID NO:13) with a *Streptomyces* polyketide synthase gene product for tetracenomycin biosynthesis ("B").

25 **Figure 5** provides an alignment of the *Actinomadura* ORF2 gene product ("A") (SEQ ID NO:14) with a *Streptomyces* polyketide synthase gene product for actinorhodin biosynthesis ("B").

DETAILED DESCRIPTION

25 The present invention provides, *inter alia*, nucleic acids and corresponding amino acid sequences of *Actinomadura* polyketide synthase genes. The polyketide synthases are responsible for the biosynthesis of pradimicin, such as zwitterionic pradimicins A, B and C, 30 which are produced, for example, by *Actinomadura hibisca*, and pradimicin S, which is produced, for example, by *Actinomadura spinosa*.

- See Figure 1, which provides the chemical structures of pradimicins A and S. See also *J. Antibiot.* 43:755-762 (1990). Pradimicin is useful, for example, as an antibiotic, including use as an anti-fungal and an anti-viral agent. For example, pradimicin has been shown to have activity
- 5 against system fungal infections caused by *Candida albicans*, *Aspergillus fumigatus* and *Cryptococcus neoformans*. Further, pradimicin is active *in vitro* against a wide variety of fungi and yeasts, some Gram-positive bacteria, and viruses. *J. Org. Chem.* 54:2536-2539 (1989). For instance, pradimicin is believed to be active against HIV. See, for
- 10 example, *J. Antibiot.* 41:1708 (1988) and *Virology* 176:467 (1990).
- Techniques used in the prior art were not applicable for cloning pradimicin A biosynthetic genes from *Actinomadura hibisca*. Specifically, many antibiotic biosynthetic genes including self-defense genes in actinomycetes are clustered in a genomic region. The close
- 15 linkage between antibiotic biosynthetic genes and self-defense genes has provided a useful tool for cloning of antibiotic biosynthetic genes, since transformants carrying antibiotic resistance determinants can be selected. However, this technique could not be applied to the cloning of the pradimicin A biosynthetic gene cluster because pradimicin A had not
- 20 been shown to have significant antibacterial activity. Therefore, the polyketide synthase genes for pradimicin A biosynthesis were cloned from *Actinomadura hibisca* using oligonucleotide probes based on the conserved amino acid sequences of other polyketide synthase genes, followed by cloning of the flanking region of pradimicin A polyketide
- 25 synthase genes. Specifically, certain amino acid sequences of β -keto synthase, acyl transferase and acyl carrier protein of polyketide synthases are strongly conserved in *Streptomyces* strains producing polyketide antibiotics. See *Annu. Rev. Microbiol.* 47:875-912 (1993) and *J. Biol. Chem.* 267:19278-19290 (1992). Based on these
- 30 sequences, two oligonucleotide probes were synthesized, as shown in

Figure 2. See also Example 1, which provides experimental details of the cloning of the pradimicin A polyketide synthase genes.

After screening with an *Actinomadura hibisca* library, an 8.2 kb Sac I fragment was identified, which hybridized with these 5 oligonucleotide probes. By DNA sequencing of the 8.2 kb Sac I fragment (SEQ ID NO:1), eleven open reading frames (ORFs) were identified. All of ORFs except for ORF10 are believed to be translated in the same direction. Referring to SEQ ID NO:1, ORF1 spans from position 72 (beginning with GTG) to position 1347 (ending with TGA); 10 ORF2 spans from 1346 (GTG) to 2567 (TGA); ORF3 spans from 2594 (ATG) to 2855 (TGA); ORF4 spans from 2854 (ATG) to 3313 (TGA); ORF5 spans from 3312 (GTG) to 3771 (TGA); ORF6 spans from 3794 (ATG) to 4817 (TGA); ORF7 spans from 4857 (ATG) to 5595 (TGA); ORF8 spans from 5594 (GTG) to 5933 (TGA); ORF9 spans from 5932 (GTG) to 6241 (TAA); ORF10 spans, in reverse direction, from 7534 (ATG) to 6301 (TAG) and ORF11 spans from 7668 (ATG) to 8010 (TGA).

Each of the deduced ORFs has a significant similarity to a protein responsible for polyketide biosynthesis or spore color formation in other 20 organisms. ORF1, ORF2 and ORF3 have particularly strong similarities (50% - 70% amino acid identity) with polyketide synthases for actinorhodin biosynthesis. See, for example, Figure 4, which provides an alignment of the ORF1 gene product with a *Streptomyces* polyketide synthase gene product for tetracenomycin biosynthesis, and Figure 5, 25 which provides an alignment of the ORF2 gene product with a *Streptomyces* polyketide synthase gene product for actinorhodin biosynthesis. See also Table 1 below.

Table 1

30	ORFs	Number of amino acids	Molecular weight	Translational coupling	Homologous proteins
----	------	--------------------------	---------------------	---------------------------	---------------------

	ORF1	426	44,440	Unknown	Hypothetical protein 4 of <i>Sac. hirsuta</i> (73% identity among 413 amino acids) ¹¹ <i>tcm la</i> gene of <i>S. glaucescens</i> (73%/412) ² <i>gra I</i> gene of <i>S. violaceruber</i> (71%/413) ³ <i>act I</i> ORF1 of <i>S. coelicolor</i> (69%/415) ⁴
	ORF2	408	41,610	ORF1/ORF2	<i>act I</i> ORF2 of <i>S. coelicolor</i> (57%/397) ⁴ <i>tcm Id</i> gene of <i>S. glaucescens</i> (54%/403) ² Beta-ketoacyl synthase chain 2 of <i>S. cinnamonensis</i> (50%/397) ⁵
	ORF3	88	9,688	—	Hypothetical protein 6 of <i>Sac. hirsuta</i> (51%/78) ¹¹ Granaticin-producing PKS acyl carrier protein of <i>S. violaceruber</i> (53%/75) ³ Actinorhodin-producing PKS acyl carrier protein of <i>S. coelicolor</i> (51 %/75) ⁴
	ORF4	154	17,694	ORF3/ORF4	Hypothetical protein 7 of <i>S. coelicolor</i> (58%/149) ⁶ PKS cyclase <i>curF</i> of <i>S. cyanus</i> (61%/142) ⁷ <i>tcmN</i> protein of <i>S. glaucescens</i> (52%/149) ⁸
5	ORF5	154	15,784	ORF4/ORF5	Hypothetical protein 6 of <i>Mixococcus xanthus</i> (46%/39) ⁹ Histidine protein kinase <i>divJ</i> of <i>Caulobacter crescentus</i> (26%/102) ¹⁰ Multicatalytic endopeptidase complex chain Y7 of <i>Sac. cerevisiae</i> (23%/105) ¹¹
	ORF6	342	37,004	—	<i>tcmN</i> protein of <i>S. glaucescens</i> (47%/330) ⁸ Carminomycin 4-O-methyltransferase of <i>S. peucetius</i> (30%/317) ¹² O-demethylpuromycin O-methyltransferase of <i>S. anulatus</i> (33%/334) ¹³
	ORF7	247	25,583	—	3-ketoacyl-ACP reductase <i>fab G</i> of <i>E. coli</i> (38%/244) ¹⁴ Granaticin-producing PKS chain 5 of <i>S. violaceruber</i> (30%/251) ³ Granaticin-producing PKS chain 6 of <i>S. violaceruber</i> (35%/252) ³
	ORF8	114	12,986	ORF7/ORF8	Hypothetical protein 1 of <i>S. coelicolor</i> (24%/80) ⁶

ORF9	104	11,279	ORF8/ORF9	Hypothetical protein 1 of <i>S. coelicolor</i> (24%/91) ⁶⁾ Hypothetical protein 6 of <i>Sec. hirsuta</i> (27%/48) ¹¹⁾ Hypothetical 41.2 KD protein of <i>S. halstedii</i> (24%/91) ¹⁵⁾
ORF10	412	44,857	—	Cytochrome P450 105B1 of <i>S. griseolus</i> (40%/404) ¹⁶⁾ Cytochrome P450 P450CVIIB1 of <i>Sec. erythraea</i> (38%/405) ¹⁷⁾ Cytochrome P450 105C1 of <i>Streptomyces</i> sp. (41%/323) ¹⁸⁾
ORF11	115	13,036	—	Hypothetical protein 7 of <i>S. coelicolor</i> (51% 107) ⁶⁾ <i>curG</i> protein of <i>S. cyaneus</i> (45%/108) ⁷⁾ <i>tcml</i> protein of <i>S. glaucescens</i> (35%/105) ¹⁹⁾

5

- ¹⁾ *Mol. Gen. Genet.* 240:146-150 (1993).
- ²⁾ *EMBO J.* 8:2727-2736 (1989).
- ³⁾ *EMBO J.* 8:2717-2725 (1989).
- ⁴⁾ *J. Biol. Chem.* 267:19278-19290 (1992).
- ⁵⁾ *Mol. Gen. Genet.* 234:254-264 (1992).
- ⁶⁾ *Mol. Microbiol.* 4:1679-1691 (1990).
- ⁷⁾ *Gene* 117:131-136 (1992).
- ⁸⁾ *J. Bacteriol.* 174:1810-1820 (1992).
- ⁹⁾ EMBL data library no. S32173.
- ¹⁰⁾ *Proc. Natl. Acad. Sci.* 89:10297-10301 (1992).
- ¹¹⁾ *Mol. Cell. Biol.* 11:344-353 (1991).
- ¹²⁾ *J. Bacteriol.* 175:3900-3904 (1993).
- ¹³⁾ *Gene* 109:55-61 (1991).
- ¹⁴⁾ *J. Biol. Chem.* 267:5751-5754 (1992).
- ¹⁵⁾ *Gene* 130:107-116 (1993).
- ¹⁶⁾ *J. Bacteriol.* 173:3335-3345 (1990).
- ¹⁷⁾ *J. Bacteriol.* 174:725-735 (1992).
- ¹⁸⁾ *J. Bacteriol.* 172:3644-3653 (1990).

¹⁹⁾ EMBL data library no. S27691.

DNA regions homologous to the *Actinomadura* polyketide synthase genes were specifically found in all of pradimicin producers
5 examined, but not in pradimicin non-producers in genomic Southern hybridization, thereby providing evidence that the genes cloned encode polyketide synthases for pradimicin biosynthesis.

Thus, the present invention provides, *inter alia*, nucleic acids encoding *Actinomadura* polyketide synthase genes and polypeptides and
10 analogs thereof, including nucleic acids that bind to an *Actinomadura* polyketide synthase gene. The nucleic acids can be used, for example, to screen for organisms that produce pradimicin or that have homologous polyketide synthase gene sequences. Further, the nucleic acids can be used, for instance, to synthesize polyketide synthases,
15 which can in turn be used, for example, to produce pradimicin.

The *Actinomadura* species include but are not limited to *Actinomadura hibisca*, *Actinomadura verrucospora*, and particularly subsp. *neohibisca*, *Actinomadura libanotica*, *Actinomadura echinospora*, *Actinomadura chengduensis*, *Actinomadura kijaniata*, *Actinomadura atramentaria*, *Actinomadura citrea*, *Actinomadura cremea*, *Actinomadura fulvescens*, *Actinomadura viridis*, *Actinomadura roseoviolacea*, *Actinomadura verrucosopora*, *Actinomadura madurae*, *Actinomadura pelletieri* and, for example, other soil isolates.

25 1. Nucleic Acids

The present invention provides, *inter alia*, nucleic acids. The nucleic acid embodiments of the invention are preferably deoxyribonucleic acids (DNAs), both single- and double-stranded, and most preferably double-stranded deoxyribonucleic acids. However, they
30 can also be ribonucleic acids (RNAs), as well as hybrid RNA:DNA double-stranded molecules.

Nucleic acids encoding an *Actinomadura* polyketide synthase gene include all *Actinomadura* polyketide synthase gene-encoding nucleic acids, whether native or synthetic, RNA, DNA, or cDNA, that encode an *Actinomadura* polyketide synthase gene, or the complementary strand thereof, including but not limited to nucleic acid found in an *Actinomadura* polyketide synthase gene-expressing organism. For recombinant expression purposes, codon usage preferences for the organism in which such a nucleic acid is to be expressed are advantageously considered in designing a synthetic polyketide synthase-encoding nucleic acid.

Further, the present invention provides a substantially pure nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 75% amino acid identity with a polyketide synthase for biosynthesis of a benzo(a)naphthacenequinone. Preferably, the nucleic acid encodes a polypeptide sharing at least about 80%, and more preferably, at least about 90% amino acid identity with a polyketide synthase for biosynthesis of a benzo(a)naphthacenequinone. In preferred embodiments, the polyketide synthase is an *Actinomadura* polyketide synthase, and the polyketide is preferably a dihydrobenzo(a)naphthacenequinone aglycon, and preferably pradimicin, such as Pradimicin A, B, C, D, E, FA-1, FA-2, FL, FS, H, 11-O-L-xylosylpradimicin H, L, S, T1, T2 or BMS181184. For a description of the foregoing pradimicins, see, for example, *J. Antibiot.* 41:1701 (1988), *J. Org. Chem.* 54:2536 (1989), *J. Antibiot.* 43:771 (1990), *J. Antibiot.* 43:1223 (1990), *J. Antibiot.* 46:265 (1993), *J. Antibiot.* 46:398 (1993), *J. Antibiot.* 46:406 (1993), *J. Antibiot.* 46:598 (1993), and *J. Antibiot.* 46:1589 (1993).

In addition to nucleic acids encoding an *Actinomadura* polyketide synthase gene, the present invention includes nucleic acids encoding polypeptides that are homologous to or share a percentage amino acid identity with *Actinomadura* polyketide synthases.

Numerous methods for determining percent homology are known in the art. One preferred method is to use version 6.0 of the GAP computer program for making sequence comparisons. The program is available from the University of Wisconsin Genetics Computer Group 5 and utilizes the alignment method of Needleman and Wunsch, *J. Mol. Biol.* 48, 443, 1970, as revised by Smith and Waterman *Adv. Appl. Math.* 2, 482, 1981.

Numerous methods for determining percent identity are also known in the art, such as use of the FASTA computer program, which 10 is also available from the University of Wisconsin. Preferably, the program used to determine percent identity is the DNASIS program, which is available from Hitachi Corp. (Tokyo, Japan).

To construct non-naturally occurring *Actinomadura* polyketide synthase gene-encoding nucleic acids, the native sequences can be used 15 as a starting point and modified to suit particular needs. The nucleic acids of the invention include, for example, the nucleic acids of SEQ ID NO:1-12.

The invention is also directed to a nucleic acid encoding a segment of an *Actinomadura* polyketide synthase gene. Preferably, the 20 encoded polypeptide will be effective to perform its function, such as an enzymatic function, that is performed by the full-size polyketide synthase.

For identifying the active domain or domains of *Actinomadura* polyketide synthase genes, one approach is to take an *Actinomadura* 25 polyketide synthase gene cDNA and create deletional mutants lacking segments at either the 5' or the 3' end by, for instance, partial digestion with S1 nuclease, Bal 31 or Mung Bean nuclease (the latter approach described in literature available from Stratagene, San Diego, CA, in connection with a commercial deletion cloning kit). Alternatively, the 30 deletion mutants are constructed by subcloning restriction fragments of an *Actinomadura* polyketide synthase gene cDNA. The deletional

constructs are cloned into expression vectors and tested for their polyketide synthase activity.

These structural genes can be altered by mutagenesis methods such as that described by Adelman et al., *DNA*, 2: 183 (1983) or 5 through the use of synthetic nucleic acid strands. The products of mutant genes can be tested for polyketide synthase activity.

- The nucleic acid sequences can be further mutated, for example, to incorporate useful restriction sites. See Maniatis et al. *Molecular Cloning, a Laboratory Manual* (Cold Spring Harbor Press, 1989). Such 10 restriction sites can be used to create "cassettes," or regions of nucleic acid sequence that are facilely substituted using restriction enzymes and ligation reactions. The cassettes can be used to substitute synthetic sequences encoding mutated *Actinomadura* polyketide synthase amino acid sequences.
- 15 *Actinomadura* polyketide synthase gene-encoding sequences can be, for instance, substantially or fully synthetic. See, for example, Goeddel et al., *Proc. Natl. Acad. Sci. USA*, 76, 106-110 (1979). For recombinant expression purposes, codon usage preferences for the organism in which such a nucleic acid is to be expressed are 20 advantageously considered in designing a synthetic *Actinomadura* polyketide synthase gene-encoding nucleic acid. Since the nucleic acid code is degenerate, numerous nucleic acid sequences can be used to create the same amino acid sequence.
- Further, with an altered amino acid sequence, numerous methods 25 are known to delete sequences from or mutate nucleic acid sequences that encode a polypeptide and to confirm the function of the polypeptides encoded by these deleted or mutated sequences. Accordingly, the invention also relates to a mutated or deleted version 30 of an *Actinomadura* polyketide synthase nucleic acid that encodes a polypeptide that preferably retains polyketide synthase activity.

Conservative mutations are preferred. Such conservative mutations include mutations that switch one amino acid for another within one of the following groups:

1. Small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr,
- 5 Pro and Gly;
2. Polar, negatively charged residues and their amides: Asp, Asn, Glu and Gln;
3. Polar, positively charged residues: His, Arg and Lys;
4. Large aliphatic, nonpolar residues: Met, Leu, Ile, Val and Cys;
- 10 and
5. Aromatic residues: Phe, Tyr and Trp.

A preferred listing of conservative substitutions is the following:

15	Original Residue	Substitution
	Ala	Gly, Ser
	Arg	Lys
	Asn	Gln, His
	Asp	Glu
20	Cys	Ser
	Gln	Asn
	Glu	Asp
	Gly	Ala, Pro
	His	Asn, Gln
25	Ile	Leu, Val

	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Tyr, Ile
	Phe	Met, Leu, Tyr
5	Ser	Thr
	Thr	Ser
	Trp	Tyr
	Tyr	Trp, Phe
	Val	Ile, Leu

10

- The types of substitutions selected may be based on the analysis of the frequencies of amino acid substitutions between homologous proteins of different species developed by Schulz et al., *Principles of Protein Structure*, (Springer-Verlag, 1978), pp. 14-16, on the analyses of structure-forming potentials developed by Chou and Fasman, *Biochemistry* 13: 211 (1974) or other such methods reviewed by Schulz et al, *Principles in Protein Structure*, (Springer-Verlag, 1978), pp. 108-130, and on the analysis of hydrophobicity patterns in proteins 20 developed by Kyte and Doolittle, *J. Mol. Biol.* 157: 105-132 (1982).

2. Polypeptides

- In addition to analogs of nucleic acid sequences, the present invention includes analogs of *Actinomadura* polyketide synthases that 25 preferably retain polyketide synthase activity. Preferably, the analogs will share at least about 75% amino acid identity, more preferably, at least about 80% identity, even more preferably, at least about 85%

identity, even more preferably at least about 90% identity, and most preferably at least about 95% identity to an *Actinomadura* polyketide synthase, such as the polypeptide of SEQ ID NO:13, SEQ ID NO:14 or SEQ ID NO:15.

5

3. Methods of Synthesizing Polypeptides

In one embodiment, the polypeptides of the invention are made as follows, using a gene fusion. For example, fusion to maltose-binding protein ("MBP") can be used to facilitate the expression and purification 10 of a polyketide synthase in a prokaryote such as *E.coli*. The hybrid protein can be purified, for example, using affinity chromatography using the binding protein's substrate. See, for example, *Gene* 67: 21-30 (1988). When using a fusion protein that includes maltose binding protein, a cross-linked amylose affinity chromatography column can be 15 used to purify the protein.

The cDNA specific for a given polyketide synthase or analog thereof can also be linked using standard means to a cDNA for glutathione S-transferase ("GST"), found on a commercial vector, for example. The fusion protein expressed by such a vector construct 20 includes the polyketide synthase or analog and GST, and can be treated for purification.

Should the MBP or GST portion of the fusion protein interfere with function, it is removed by partial proteolytic digestion approaches that preferentially attack unstructured regions, such as the linkers 25 between MBP or GST and the polyketide synthase. The linkers are designed to lack structure, for instance using the rules for secondary structure-forming potential developed by Chou and Fasman, *Biochemistry* 13, 211, 1974. The linker is also designed to incorporate protease target amino acids, such as trypsin, arginine and lysine 30 residues. To create the linkers, standard synthetic approaches for making oligonucleotides are employed together with standard subcloning

methodologies. Other fusion partners other than GST or MBP can also be used.

Additionally, the *Actinomadura* polyketide synthases can be directly synthesized from nucleic acid (by the cellular machinery)

- 5 without use of fusion partners. For instance, nucleic acids having the sequence of any of SEQ ID NO:1-12 are subcloned into an appropriate expression vector having an appropriate promoter and expressed in an appropriate organism. Antibodies against *Actinomadura* polyketide synthases can be employed to facilitate purification.

- 10 Additional purifications techniques are applied as needed, including without limitation, preparative electrophoresis, FPLC (Pharmacia, Uppsala, Sweden), HPLC (e.g., using gel filtration, reverse-phase or mildly hydrophobic columns), gel filtration, differential precipitation (for instance, "salting out" precipitations), ion-exchange
- 15 chromatography and affinity chromatography (including affinity chromatography using the RE1 duplex nucleotide sequence as the affinity ligand).

- 20 A polypeptide or nucleic acid is "isolated" in accordance with the invention in that the molecular cloning of the nucleic acid of interest, for example, involves taking an *Actinomadura* polyketide synthase gene nucleic acid from a cell, and isolating it from other nucleic acids. This isolated nucleic acid may then be inserted into a host cell, which may be yeast or bacteria, for example. A polypeptide or nucleic acid is "substantially pure" in accordance with the invention if it is predominantly free of other polypeptides or nucleic acids, respectively.
- 25 A macromolecule, such as a nucleic acid or a polypeptide, is predominantly free of other polypeptides or nucleic acids if it constitutes at least about 50% by weight of the given macromolecule in a composition. Preferably, the polypeptide or nucleic acid of the present
- 30 invention constitutes at least about 60% by weight of the total polypeptides or nucleic acids, respectively, that are present in a given

composition thereof, more preferably about 80%, still more preferably about 90%, yet more preferably about 95%, and most preferably about 100%. Such compositions are referred to herein as being polypeptides or nucleic acids that are 60% pure, 80% pure, 90% pure, 95% pure, or 5 100% pure, any of which are substantially pure.

4. Means for Identifying Polypeptides with *Actinomadura* Polyketide Synthase Activity

In one aspect, the present invention provides methods for 10 identifying polypeptides that are homologous to an *Actinomadura* polyketide synthase using an *Actinomadura* polyketide synthase cDNA, for example.

Additionally, probes for *Actinomadura* polyketide synthase expression can be used, for example, to detect the presence of an 15 *Actinomadura* polyketide synthase. Such probes include antibodies directed against an *Actinomadura* polyketide synthase or fragments thereof, nucleic acid probes that hybridize, under stringent conditions, to an *Actinomadura* polyketide synthase mRNA, and oligonucleotides that specifically prime a PCR amplification of an *Actinomadura* polyketide 20 synthase mRNA. Nucleic acid molecules that bind to an *Actinomadura* polyketide-encoding nucleic acid under high stringency conditions are identified functionally, or by using the hybridization rules reviewed in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed. (Cold Spring Harbor Press, 1989).

25 Many deletional or mutational analogs of nucleic acid sequences for an *Actinomadura* polyketide synthase are effective hybridization probes for *Actinomadura* polyketide synthase-encoding nucleic acid. Accordingly, the present invention relates to nucleic acids that hybridize with such *Actinomadura* polyketide synthase-encoding nucleic acids 30 under stringent conditions. Preferably, the nucleic acid of the present

invention hybridizes, under stringent conditions, with at least a segment of any of the nucleic acids described as SEQ ID NO:1-12.

- "Stringent conditions" refers to conditions that allow for the hybridization of substantially related nucleic acids, where relatedness is
- 5 a function of the sequence of nucleotides in the respective nucleic acids. For instance, for a nucleic acid of 100 nucleotides, such conditions will generally allow hybridization thereto of a second nucleic acid having at least about 85% homology, and more preferably having at least about 90% homology. Such hybridization conditions are described by
- 10 Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed. (Cold Spring Harbor Press, 1989).

PCR (polymerase chain reaction) can be used to detect nucleic acids having *Actinomadura* polyketide synthase sequences through amplification of such sequences using *Actinomadura* polyketide synthase nucleic acid primers. PCR methods of amplifying nucleic acids utilize at least two primers. One of these primers is capable of hybridizing to a first strand of the nucleic acid to be amplified and of priming enzyme-driven nucleic acid synthesis in a first direction. The other is capable of hybridizing the reciprocal sequence of the first strand

20 (if the sequence to be amplified is single stranded, this sequence is initially hypothetical, but is synthesized in the first amplification cycle) and of priming nucleic acid synthesis from that strand in the direction opposite the first direction and towards the site of hybridization for the first primer. Conditions for conducting such amplifications, particularly

25 under preferred high stringency conditions, are well known. See, for example, *PCR Protocols* (Cold Spring Harbor Press, 1991).

Antibodies against *Actinomadura* polyketide synthases can also be used to identify polypeptides that are homologous to *Actinomadura* polyketide synthases. Antigens for eliciting the production of antibodies

30 against an *Actinomadura* polyketide synthase can be produced recombinantly by expressing all of or a part of the nucleic acid of an

Actinomadura polyketide synthase in a bacteria or a yeast or other eukaryotic cell line. In one embodiment, the recombinant protein is expressed as a fusion protein, with the non-*Actinomadura* polyketide synthase portion of the protein serving either to facilitate purification or

- 5 to enhance the immunogenicity of the fusion protein. For instance, the non-*Actinomadura* polyketide synthase portion comprises a protein for which there is a readily-available binding partner that is utilized for affinity purification of the fusion protein. The antigen includes an "antigenic determinant," i.e., a minimum portion of amino acids
- 10 sufficient to bind specifically with an anti-*Actinomadura* polyketide synthase antibody.

Antisera to an *Actinomadura* polyketide synthase can be made, for example, by creating an *Actinomadura* polyketide synthase antigen by linking a portion of the cDNA for *Actinomadura* polyketide synthase

- 15 to a cDNA for glutathione s-transferase ("GST") found on a commercial vector. The resulting vector expresses a fusion protein containing an antigenic segment of an *Actinomadura* polyketide synthase and GST that is readily purified from the expressing bacteria using a glutathione affinity column. The purified antigenic fusion protein is used to
- 20 immunize rabbits. The same approach is used to make antigens based on other segments of *Actinomadura* polyketide synthase. Procedures for making antibodies and for identifying antigenic segments of proteins are well known. See, for instance, Harlow, *Antibodies*, Cold Spring Harbor Press, 1989.

5. Polyketides

In addition to polyketide synthases, the present invention also provides polyketides, including purified pradimicin and pradimicin analogs, and methods for synthesizing polyketides. For example, a

5 vector containing a nucleic acid comprising SEQ ID NO:1 can be expressed in an organism, preferably *Streptomyces*, thereby resulting in pradimicin A synthesis. Preferably, all of the polyketide synthase genes required for polyketide synthesis are present in a single vector, and the genes are preferably in the same configuration as the cDNA.

10 Preferred *Streptomyces* organisms for polyketide synthesis include, for example, *Streptomyces lividans*, *Streptomyces coelicor* and *Streptomyces griseus*. Preferred vectors for expression include, for example, plasmids pIJ61, pIJ702 and pIJ922, which are described in Hopwood et. al., *Gene Manipulation of Streptomyces, A Laboratory*

15 15 Manual

(The John Innes Foundation, Norwich, UK 1985). Preferably, the vector includes a promoter that functions well at idiophase, which is a stage of secondary metabolite production, such as the promoter of the *mel* gene, which is present in vector pIJ702.

Preferred methods for preparing a polyketide such as pradimicin or
20 20 an analog thereof comprise transforming a eukaryotic or prokaryotic cell with an expression vector for expressing intracellularly or extracellularly a nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 70% amino acid identity with an *Actinomadura* polyketide synthase, growing the transformed cell in culture, and isolating the
25 25 pradimicin or analog thereof from the transformed cell or the culture medium. Preferably, the polypeptide shares at least about 80% amino acid identity with an *Actinomadura* polyketide synthase, and more preferably, the polypeptide shares at least about 90% amino acid identity with an *Actinomadura* polyketide synthase. Most preferably,
30 30 the expression vector comprises a nucleic acid encoding all polyketide synthase genes necessary for synthesis of pradimicin, such as SEQ ID

NO:1. The production of pradimicin A, for example, can be detected by the presence of a red pigment. Purification of pradimicin from *Actinomadura*, for example, is described in *J. Antibiot.* 41:1701-1704 (1988).

5

The present invention is further exemplified by the following non-limiting example.

Example 1. Cloning of *Actinomadura* Polyketide Synthase Genes

10 Bacterial strains and plasmids

Escherichia coli XL1-Blue and pSE101 (*Biosci. Biotech. Biochem.* 59:1835-1841 (1995)), a shuttle cosmid vector replicable in both *Streptomyces lividans* and *E. coli*, were used for preparation of an *Actinomadura hibisca* genomic library. *E coli* XL1-Blue and plasmids pUC118 and pUC119 were used for sequencing analysis.

DNA isolation and manipulation

Plasmid and genomic DNA isolations were done by the method of Hopwood et. al., *Gene Manipulation of Streptomyces, A Laboratory*

20 Manual (The John Innes Foundation, Norwich, UK 1985). Plasmids from *E. coli* were prepared with the Qiagen Plasmid Kit (Qiagen Inc., Chatsworth, CA). All restriction enzymes, T4 ligase and calf intestinal alkaline phosphatase were obtained from Takara (Kyoto, Japan). The procedure for library preparation is described, for example, in *Mol. Gen. Genet.* 236:39-48 (1992).

DNA hybridization

The hybridization conditions employed for reactions with the oligonucleotide probe, ³²P-labeled with T4 kinase, were as follows: a

30 Nylon membrane with immobilized DNA was prehybridized at 40°C for 4 hours in 6X SSC buffer, which contains 5X Denhardt's solution

(Maniatis et al., *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Laboratory Press, 1982)), 0.5% SDS and 100 µg/ml of heat denatured salmon sperm DNA. For overnight hybridization, the same buffer and temperature conditions were used. The genomic DNA

- 5 blotted filter and plasmid DNA blotted filter were washed twice with 6X SSC buffer at 40°C for 30 minutes and with 0.6X SSC buffer at 60°C for 1 hour, respectively.

Cloning of the genes homologous to type II PKS genes

- 10 Amino acid sequences of β-keto synthase, acyl transferase and acyl carrier protein of polyketide synthases are strongly conserved in *Streptomyces* strains producing polyketide antibiotics. See *Annu. Rev. Microbiol.* 47:875-912 (1993) and *J. Biol. Chem.* 267:19278-19290 (1992). Based on these sequences, two oligonucleotide probes were
15 synthesized. One was designed based on the amino acid sequences of the *Streptomyces* β-keto synthase around the cysteine residue which is thought to be an active site of the enzyme. See Figure 2, probe 1 (SEQ ID NO:16). The other probe was synthesized based on the amino acid sequences of the *Streptomyces* acyl transferase around the serine
20 residue which is believed to be a catalytic domain. See Figure 2, probe 2 (SEQ ID NO:17). Genomic DNA from *Actinomadura hibisca* P157-2 (ATCC 53557) that was digested with several restriction enzymes was subjected to Southern blot analysis with probes 1 and 2, which were separately labeled with ³²P and then mixed. Weak but specific signals
25 could be detected. To clone the hybridized fragment, a library was prepared from the strain P157-2 and screened by the colony hybridization with probes 1 and 2 under the same conditions as that for genomic Southern analysis. Several positive cosmid clones were found to hybridize to the probes. Two clones, designated pPRM1 and
30 pPRM14, were selected for further analysis.

- The physical maps of pPRM1 and pPRM14 were determined and are shown in Figure 3. Using Southern blot hybridization analysis of chromosomal DNA of the strain P-157-2 with these two cosmid clones as probes, it was confirmed that the inserted DNAs of pPRM1 and
- 5 pPRM14 had not been structurally rearranged during the construction of the library. The position of the hybridized region with oligonucleotide probes was defined by Southern blot analysis.

Sequence analysis.

- 10 The 8.2-kb *SacI* fragment prepared from pPRM1 was cloned into the *SacI* sites of pUC118 and pUC119 (pUC118 and pUC119 are available, for example, from Takara Syuzo, Kyoto, Japan). After construction of a series of plasmids subcloned from these plasmids, single stranded DNAs were prepared with helper phage M13 KO7,
- 15 which is also available, for example, from Takara Syuzo. Sequencing was done by the dideoxy chain termination method of Sanger *et al.*, using an automatic DNA sequencer ALF (Pharmacia, Sweden). It was also done with [α -³⁵S]-dCTP as the radioactive label.
- 20 Nucleotide sequence of the DNA fragment hybridized to the probe
As one approach to examine whether the DNA fragment hybridized to the probes carries the PKS gene for biosynthesis of PRM A, the nucleotide sequence of the 8.2-kb *SacI* fragment containing hybridized region was determined. Computer analysis of the DNA
- 25 sequence, using Frame Analysis (See *Gene* 30:157-166 (1984)), revealed eleven ORFs (ORF1-11), which are oriented in the same direction except for ORF10. To understand the functions of each the ORFs deduced by DNA sequencing, databases, including DNASIS, were searched using their translated products. The results are summarized in
- 30 Table 1, *infra*. The ORF1, ORF2 and ORF3 gene products show strong similarities (44-73% amino acid identity) with ORF 1, 2 and 3 gene

products of *gra* (*EMBO J.* 8:2717-2725 (1989)), *tcm* (*EMBO J.* 8:2727-2736 (1989)) and *act* (*J. Biol. Chem.* 267:19278-19290(1992)), which are known to encode condensing enzyme, acyltransferase and acyl carrier protein for granaticin, tetracenomycin and actinorhodin

5 biosynthesis, respectively. The proteins encoded by ORF4 and ORF6 have similarities with the N and C-terminal half of the TcmN protein (*J. Bacteriol.* 174:1810-1820 (1992)) (52% and 46% amino acid identity), respectively, which is thought to be a multifunctional cyclase/dehydratase participating in tetracenomycin biosynthesis. The

10 ORF7 gene product is homologous to the *fabG* product of *E coli* (*J. Biol. Chem.* 267:5751-5754 (1992)) (3-ketoacyl-ACP reductase, 38% amino acid identity) and granaticin-producing polyketide synthase chains 5 and 6 (*EMBO J.* 8:2717-2725 (1989)) (30% and 35% amino acid identity, respectively). Both of the ORF8 and ORF9 gene products have some

15 similarity to hypothetical protein 1 participating in spore color formation in *Streptomyces coelicolor* (*Mol. Microbiol.* 4:1679-1691 (1990)) (23 and 24% amino acid identity, respectively) in a limited region. The ORF10 gene product has a significant similarity to a variety of monooxygenases, including cytochrome P450 (28-40% amino acid

20 identity). The ORF11 gene product shows similarity with the hypothetical protein 1 participating in spore color formation in *Streptomyces coelicolor* (*Mol. Microbiol.* 4:1679-1691 (1990)) (51% amino acid identity), and less extensive, although significant, with the CurG protein of *Streptomyces cyaneus* (*Gene* 117:131-136 (1992))

25 (45% amino acid identity) and the *tcml* protein of *Streptomyces glaucescens* (EMBL data library no. S27691) (35% amino acid identity). The ORF5 gene product shows some similarity to a histidine kinase of *Caulobacter crescentus* (*Proc. Natl. Acad. Sci.* 89:10297-10301 (1992)) and multicatalytic endopeptidase of *S. cerevisiae* (*Mol. Cell. Biol.* 11:344-353 (1991)).

SEQUENCE LISTING**(1) GENERAL INFORMATION:**

- (i) APPLICANT: Oki, Toshikazu
Dairi, Tohru
- (ii) TITLE OF INVENTION: POLYKETIDE SYNTHASES FOR PRADIMICIN BIOSYNTHESIS AND DNA SEQUENCES ENCODING SAME
- (iii) NUMBER OF SEQUENCES: 25
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Dechert Price & Rhoads
 - (B) STREET: Princeton Pike Corporate Center, PO Box 5218
 - (C) CITY: Princeton
 - (D) STATE: NJ
 - (E) COUNTRY: USA
 - (F) ZIP: 08543-5218
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bloom, Allen
 - (B) REGISTRATION NUMBER: 29,135
 - (C) REFERENCE/DOCKET NUMBER: BMS-X25
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (609) 520-3214
 - (B) TELEFAX: (609) 520-3259

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8169 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAGCTCGGCC	ACGTCGACAC	CGAGGAGCTG	CCCGCCCCCG	ACGAGCAGGG	GCTCGACGTC	60
GGGGGCCGCA	CGTGAGCGGA	CCGCAGGGGG	GGGGGCCGCG	CCGCGTGC	ATCACCGGCA	120
TGGGGGTGGT	CGCGCCCGGC	GGCTCGGCC	GGAAAGGCGTT	CTGGAACCTG	CTGACCGACG	180
GCCGCACCGC	GACCCGGAAG	ATCTCGCTGT	TCGACCCGGC	GGGCTTCCGG	TCCCGGATCG	240
CCGCCGAGTG	CGACTTCGAC	CCCGCCGCCG	AGGGGCTGAC	GCCCCGCGAG	GTCCGGCGCA	300
TGGACCGGGC	CGGCCAGCTC	CGGGTGGTGT	CGGCGCGCGA	GGCGCTCGCC	GACAGCGGGC	360
TGGGGGCGGG	CGAGGGCGAC	CGGGCGCGGT	TCGCGGTGTC	GCTCGGCAGC	GCCGTCGGCT	420
GCACGATGGG	GCTGGAGGAC	GAGTACGTG	TGGTCAGCGA	CCAGGGCCGC	GAUTGGCTGG	480
TCGACCACTC	CTACGGCGTG	CCGCACCTGT	ACCGGCACCT	GGTGCCCAGC	TCGCTGGCGG	540
CCGAGGTCGC	CTGGGCGGGC	GGGGCCGAGG	GCCCCGTCAC	GCTGATCTCG	ACGGGCTCGA	600
CCTCCGGGCT	CGACCGGGTC	GGGCACGGCG	CGCGCGTCAT	CGCCGAGGGC	TCGGCGGACG	660
TGGCGCTCGC	CGGGGCCACC	GACGGGCCCA	TCTCGCCGAT	CACGGTGGCG	TGCTTCGACG	720
CCATCCGGGC	GACCTCGCCG	AACAACGACG	ACCCCGAGCA	CGCGTCCCGG	CCGTTCGACC	780
GGGAGCGCAA	CGGGTTCGTG	CTCGGGCGAGG	GCGCGGCGGT	GTTCGTCTG	GAGGAGCTGG	840
AGCACGCCCG	CCGCCGGGGC	GCGCACGTCT	ACTGCGAGGT	CGCGGGGTAC	GCCACCGCGC	900
GCAACGCCCTA	CCACATGACG	GGCCTGAAGC	CCGACGGCCG	CGAGATGCC	GAGGCGATCA	960
GGGTGGCGAT	GGACGCCGCC	CGGGTCGCC	CGGCCGACCT	CGACTACATC	AACCGCGACG	1020
GCTCGGGCAC	CAAGCAGAAC	GACCGGCACG	AGACGGCCGC	GTCAAGCGC	AGCCTCGGCG	1080
AGCGCGCCTA	CGAGCTGCCG	GTCAGCTCCA	TCAAGTCGAT	GGTCGGGCAC	TCGCTCGGCG	1140
CGATCGGCTC	GATCGAGCTG	CCCGCGTGC	CGCTGGCGAT	CGAGCACGGT	GTGGTGC	1200
CGACCGCCAA	CCTGCACAAC	GCCGACCCCG	AATGCGACCT	GGACTACGTG	CCGCTGGTGG	1260

CGCGCGAGGG CCCGATCCGC ACGGTGCTGA GCGTGGCAG CGGCTTCGGC GGCTTCAGT	1320
CCGCCACCGT CCTGCGGGAG GCCGCGTGAG CGTCCTGACG GCGGACGCC CGGCAGTCAC	1380
CGGGATCGGC GTGGTCGCC CGACCGGGAT CGGGCTCGAG GAGCACTGGG CGGCAGCGTT	1440
GCGCGGCGTC CCGGTCATCG GGCGCTGAC CAGGTCGAC GCCGCGCGT ACCCGTCGCC	1500
GTTCGGGGGC GAGGTGCCCCG GTTTCGACGC CGCCGAGCGC GTCCCGGGGC GGCTCATCCC	1560
GCAGACCGAC CACTGGACGC ACCTGGCGCT GGCGCCACC GACCTCGCCC TCGCCGACGC	1620
GGGCGTGGTC CGGGCCGAGC TGCCCGAGTA CGAGATGGCG GTGGTGACCG CCAGCTCGTC	1680
GGGCGGCGTG GAGTTCGGGC AGCGCGAGAT CCAGGCGTTG TGGCGGGACG GGCCCCGGCA	1740
CGGCGGGGCC TACCAAGTCGA TCGCCTGGTT CTACGCGCG ACCGACCGGCC AGATCTCCAT	1800
CCGGCACGGG ATGCGCGGCC CCTGCGGGGT CGTGGTCGCC GAGCAGGCCG GGGCGCTGGA	1860
GTCGTTCGCG CAGGCCCGCC GCTACCTGGC GGACGGGGCG CGGGTGGTGG TGTCCGGCGG	1920
CACCGACGCG CCGTTCAGTC CGTACGGCCT GACCTGCCAG CTCGGCAGCG GGCGGCTTAG	1980
CACGGGTGCC GACCCGGCCC GCGCCTACCT GCGTTCGAC GCCGCGCGA ACGGCTCGT	2040
GCCGGGCGAG GCGGGCGCGA TCCCATCAT CGAGCAAGCC GCCACCGCGC AGGACCGCTC	2100
CTACGGGCGG ATCGCGGGCT ACGCGCGAC CTTCGACCCG CCGCCGGGCT CGGGCCGCC	2160
TCCGACGCTG GAGCGAGCCG TGGCGCCGC CTTGGACGAC GCCCGGCTCA CACCCGCCGA	2220
CGTGGACGTG GTGTTCGCCG ACGCGGCGGG CGTCCCGGAT CTGGACCGCG CGGAGGCCGA	2280
CGCGATCGGC GCGGTCTCG GCCCGCGCG CGTGCCCCGTC ACCGCGCCCA AGAGCCTGAC	2340
CGGCCGCCTG TACCGGGCG GCCCCCGCCT CGACGCCCGC ACGCGCTGC TGGCCATGCA	2400
CGACTCGGTG ATCCCGCCGA CGGCCGGCGG CGCGGACGTC CGGCCCCGCT ACGCGCTCGA	2460
CCTGGTCGGC GCGGAACCGC GCCCGGCCG GCTGGCGACC GCACTGATCA TCGCCCGCG	2520
CTACGGGGGC TTCAACGCCG CCCTGGTGCT GCGCGGCCCG AACACCTGAC AACGACCGA	2580
GAGGACGGAC GAGATGGCAA CCCCGAACG CACCATCGAC GACCTGCGCG CGCTGATGCG	2640
CGCCGCCGTC GGCGAGGCCG ACGACATCGA CCTGGACGGC GACATCCTCG ACTCCACCTT	2700
CACCGAGCTG GAGTACGACT CGCTCGCCGT GCTGGAGCTC GCGGCCCCGA TCGAGACGCA	2760

GTGGGGCGTG	CTGATCCCCG	AGGACGACGC	GTCCGGCTG	GAGACCCCGC	GCATGTTCCCT	2820
CGACTACGTG	AACGGGCGGG	CGGTGGCCGA	GCGATGACGC	AGTGGCGCAC	CGACAGCGTG	2880
ATCGTGATCG	ACGGGCCGCT	CGACGTGTC	TGGGACATGA	CCAACGACGT	CGCCTCCTGG	2940
CCGGAGCTGT	TCGACGAGTA	CGCCTCGGCC	GAGATCCTGG	AGCGCGACGG	CGACACCGTC	3000
CGCTTCCGGC	TGACCGATGCA	CCCCGACGCC	GACGGCAACG	CCTGGTCGTG	GGTGTGGAG	3060
CGCACGCCG	ACCGCGCCGC	GTCACCGTC	AACGCGCACC	CGTGGAGAC	CGGCTGGTTC	3120
GAGCACATGA	ACCTGCGCTG	GGACTACCGC	GAGGTGCCCG	CGGGCGTGG	GATGCGCTGG	3180
CGGCAGGACT	TCGCGATGAA	GGAGGGCTCG	CCGGTGTCCC	TGGCGGGAT	GACCGAGCGC	3240
ATCCAGAGCA	ACTCCCCCGT	CCAGATGAAG	CTGATCAAGG	ACAAGGTGGA	CGGGCGGCC	3300
CGGGGCGCGC	GGTGATCGAG	TTCCTGCTCC	CGGTGCGCT	GCTCGGCAAC	GGTTTGTGCG	3360
CGGGCGTGCT	GACGGGCAGC	GTCCTCGGCC	TCGTGCCGTA	CTACCGGACG	CTGCCCAGGG	3420
ACCGCTACAT	CGCCGCCAC	GCCTTCGCCG	TCGGCCGCTA	CGACCCGTT	CAGCCGGTGT	3480
GCCTGCTGGT	CACGGTGGCG	GCCGACGCCG	TCGGGGCGGC	GGTCGCGCCG	ACCGCCGCCG	3540
CCCGGGTGCT	CTGCGCGCTC	CCCGCCGTGC	TCGGCCTGGC	GGTGGTGGCG	ATCTCGCTCA	3600
CCCCAACGT	GCCGATGAAC	CGCCGGATCA	AGCGGCTGGA	CCCGGCCGCG	CCGCCCCCG	3660
GGITTCAGCGC	GCCCCGTTTC	CTGCGCCGCT	GGGCGGGCTG	GAACGCGGCG	CGCACCGGCC	3720
TGACGCTGGC	CGCCCTTCTC	AGAACACAGG	CCGCCCTCGG	CGTGTGCTG	TGACCGATCG	3780
GGAAGGGAGG	GACATGACCG	AACCGGAAGG	ACCGCACGCC	GCGAGCCTGC	GGCTCCAATC	3840
TCTGCTGGAC	GGCATGCGCG	TCGCCAAGGT	CGTCCAGGTG	CTCGCCGAAC	TCCAGGTGGC	3900
CGACGCGGTC	GCCGACGGCC	CCTGCAAGCC	CGCCGAGATC	CCCGCCGACG	TCGGCGCCGA	3960
CCCCGACGCC	CTGTACCGGG	TGCTGCGCTG	CGCCGCCCTCG	TTCGGGGTGT	TCACCGAGGA	4020
CGAGGACGCC	CGGTTCGGGC	TCACCCCGAT	GCCCGCGCTG	CTGCGCACCG	GCACCGACGA	4080
CAGCCACCGC	GACCTGTTCA	TGATGGCGGC	GGGCGACCTG	TGGTGGCGGC	CGTACGGCGA	4140
GCTGCTGGAG	ACGGTGCAGGA	CCGGCCGCC	CGCCGCCGAG	CTGGCGTTCG	GGATGCCGTT	4200
CTACGACTAC	CTCGGCACCG	ACCCGGCCGC	CGCCGGCTC	TCGACCGCG	CGATGACGCA	4260
GGTCAGCAAG	GGCCAGGCCA	AGGCGATCCT	CGGGCGCTGC	TCGTTCGAGC	GGTACGCGCG	4320

GATCGCCGAC	GTGGGCGGCG	GCCACGGCTA	CTTCCTCGCG	CAGGTGTTGC	GCAGCAGCCC	4380
GCGCACCGAG	GGCGTGCTGC	TGGACCTGCC	GCACGTGGTG	GCCGGAGCCC	CGGCGGTGCT	4440
GGAGAACGAC	GAGGTGCCCG	ACCGCGTCCA	GGTCGTCCCG	GGCAGCTTCT	TCGACCGCCT	4500
GCCCCACCGGC	TGCGACCCCT	ACCTGCTGAA	ACCGATCCTC	ATCAACTGGC	CCGACGCCGA	4560
CGCCGAACGC	ATCCTGCACC	GGGTGCCGCA	GGCGATCGGC	AACGACCGCG	ACGCGCGGCT	4620
GCTGGTGGTC	GAGCCCCTCG	TCCCGCCCGG	CGACGTCCGC	GACTACAGCA	AGGCCACCGA	4680
CATCGACATG	CTCGCCATCA	TGGCGGGCG	GCAGCGCACC	GTCGCCGAGT	GGCGCGGCT	4740
GCTGCGCGCG	GGCGGCTTCG	AGCTGGTGGG	CGAGCCCCACG	CCGGGCGGCC	GCGAGGTCAT	4800
GGAGTGCCGC	CCCATCTGAA	CCCGTCCCAC	CCGTCGCCCA	CATCCAGGGA	GAACGCATGA	4860
CCGACACATC	GTTCGCCGGC	AAGAACGCGC	TGATCACCGG	CGGCACCCGG	GGCATCGGCC	4920
GGGCCGTCGC	GCTCGGCTG	GCCGGCGCCG	GGGCAAATGT	CACCGTCTGC	TACCGCAGCG	4980
ACGCCGAGTC	CGCCGCCGCG	ATGGAAGCCG	AGCTGGCCGC	CACCGACGGC	AAGCACCACG	5040
TCCTCCAGGC	CGACATCGGC	AACGCCGGGG	ACGTCCGCCG	CCTGCTGGAC	GAGGTGCGCG	5100
CCCCCATGGG	CTCGCTCGAC	GTAGTCGTGC	ACAACGCCGG	GCTGATCAGC	CACGTGCCGT	5160
TCGCGACCT	GGAGCCCCAG	GAGTGGCACC	GGATCGTCGA	CTCCAACCTG	ACCGGCATGT	5220
ACCTGGTGGT	GGGGGCCGCG	CTGCCGCTGC	TGTCGGAGGG	CGGCGCGGTC	GTCGGCGTCG	5280
GCTCCAAGGT	CGCGCTCGTC	GGCATCTCGC	AGCGCACCCA	CTACACCGCC	GCCAAGGCCG	5340
GGCTCATCGG	GTTCGTGCAC	TCGCTCAGCA	AGGAGCTGGG	GCCGCTCGGC	ATCCGGGTCA	5400
ACCTGGTCGC	GCCCCGGCATC	ACCGAGACCG	ACCAGGCCGC	GCACCTGCC	CCCGTGCAGC	5460
GCGAGCGCTA	CCAGAGCATG	ACCGCGCTCA	AGCGGCTCGG	CCAGGCCGAC	GAGGTGCGCG	5520
ACGTGGTGCT	GTTCTCGCC	GGTCCCAGCG	CGCGCTACGT	CACCGCGAG	ACCGTCAACG	5580
TGGACGGGGG	GATGTGACCA	TGGCCGACAG	CGGCCCCGGTG	TTCCGGGTGA	TGCTCCGGAT	5640
GGAGATCGTC	CCGGGCAGGG	AGGCGGAGTT	CGAGCGGGTC	TGGTACTCGG	TCGGCGACAC	5700
CGTCAGCGGC	AAACCCGCCA	ACCTCGGCCA	GTGCGTGCCTG	CGCAGCGACG	ACGAGGAGAG	5760
CGTCTACTAC	ATCATGAGCG	ACTGGATCGA	CGAGGCCGCG	TTCCGGAGT	TCGAGCGCAG	5820

CGACGGCCAC	GTCTAGCACC	GCCGCAAGCT	GCACCCGTAC	CGGGTGAAGG	GCAGCATGGC	5880
GACGATGAAG	GTCGTGCACG	ACCTCGGCCG	CGCGGCGGCG	GAGCCGGTCC	GGTGACGGCC	5940
GGGCAGGTGC	GGGTCTGGT	CCGCTACCAG	GCTCCGGGCG	ACGACCCCGA	GCCCCTCGTC	6000
CAGGCGTACA	AGCTGGTCTG	CGAGGAAC TG	CGCGGGACGC	CCGGCCTGCT	CGGCAGCGAG	6060
CTGCTGGCGT	CGCACGCTCG	ACGAGGGACG	GTTCGCGGTG	CTGAGCCTGT	GGAGCGACGC	6120
CGCGCGGTTTC	CAGGAATGGG	AGCAGGGCCC	GGCGCACAAG	GGCCAGACGT	CCGGCCTGCG	6180
CCC GTTCCGG	GACACCTCTT	CGGGGCGCGG	CTTCGATTTC	TACGAAGTGG	TGCACGCCCT	6240
GTAAGAACAA	CGAAGGGCCC	GGCACCGCGA	TGGCGTGC CG	GGCCCTTTCA	CATCCGTGCC	6300
TACCAGGGCA	TGGGCAGCGC	GTCCGGCCGC	GGCGAACGCCA	AGCCGGCCG	CCAGGTGATC	6360
TCGGCATCGT	CGATAGCGAG	ACGCAGCGCG	GGCGTCCGCT	CCACCAGCGT	CTCCAGCAGG	6420
ACCTGAAGCT	CCAGCCGGGC	GAGCGGGCGC	CCCAGGCAGT	AGTGGATGCC	GTGGCCGAGC	6480
GCGATGTGCG	GGTTGTCGGT	ACGGCCGAGG	TCGAGTTCCCT	CGGGATCGGC	GAACACCTCC	6540
GGATCGCGGT	TGGCGCGTT	GAAAAGCGGG	ATGACCGCCT	CGCCCGCGCG	CACGAGGGTG	6600
CCGCGACTT	CCACATCCTC	GACCGCGATG	CGGATCGCGC	CCGCGCCGCC	GCCGATCTGC	6660
CCGTACCGTA	GCAGTTCCCTC	AACGGCCGCC	GGGATAACCG	ACGGGTCCCTC	GCCCAGCCGC	6720
GCGTACCGCG	ACGGCTCGCG	CAGCAGGTGG	TAGACCGAGT	GCGTGATCGC	CGCCGTGGTG	6780
GTGTGGTAAC	CCGCGGCCAG	CAGCGTCATG	CCGAAGGTGA	GCAGTTCCCTC	CTCGCTGAGG	6840
CCGTCGTCGG	CGTGCGCCGG	GCTCAGCAAC	GACAGCAGGT	CGTCGGCGGG	CGCGGCCGTC	6900
TTGGCGTCGA	TCAGCTCGGC	GAGGTAGCCG	CGCAGCCGCC	CGACCCGGC	CTTGATCTCG	6960
TCGGCCTGCG	CGAGAGCGGG	CGCGCCGATG	GTGAGCATCC	GGTCGGTCCA	GTCCTGGAAG	7020
CGCGGCCGAT	CCTCCGGCGG	AACGCCAGC	ATCTCGCAGA	TGACGGTGAC	CGGCAGCGGC	7080
AGCGCCAGGT	GCGCGATCAG	GTCGGCGGGC	GGGCCGTGCT	CGACCATCTC	GTCCACGAAC	7140
CCCGACGTCA	GGTCGCGCAC	GTGCGCGCG	ATCCCCTCCA	CACGACGGGC	GGTGAACCGC	7200
CGAGACACGA	TCTTGCACAT	CCTCGTGTGC	TCGGCGGGC	TCATGATGAC	CAGCGACTTG	7260
GAGCCCGCCT	GCATCGGGAT	CAGGCGCGGC	GGCCCCGGCC	GGGTACCCGC	CTCCTTGCTG	7320
AAGCGCCGGT	CCGAGGTGAC	GAACCGGACG	CTGGCGTAGC	CGTCACCGAC	CCACGCGTGG	7380

TCGCCGGTCG	GCAGCACCAC	CTTGGCGACC	GGGTCGGACG	CGCCGAGGCG	CGCGTGCTCG	7440
CACGGCGGCT	GGAAGGGGTC	GTCCGGCCGG	AACGGGAAGG	CCGGCGTGAC	GTCGGGGCGG	7500
GGGTCGACGG	TCGGGGCATC	CTTCGAGGAG	GGCATACGCC	AGGCTTGCAA	GGACGCCCTCG	7560
AAGCGGGCTC	AACGCGGGCT	CGCTCCACCG	TCCTTCGAGC	GGCCCCCGAG	CTGCGGTGAC	7620
CACACTCTGC	GGCTACCGGC	TCACAGCCCC	GACCGAGGGA	TGGTTCCCAT	GGACAGGTTC	7680
CTGATCGTGC	CCCGCATGTC	CCCCTCGTGC	GAGAAGGAGG	TGGCGCGCCT	GTTCGCCGAG	7740
TCCGACGAGG	GCACCGAGCT	GCCCCGAGGTG	GCCCCGGACGG	TCAGCCGCAG	CCTGCTGTGC	7800
TTCCACGGCC	TGTACTTCCA	CCTGACGGAG	CTGGAGGAGA	GCACGGACAG	GACGCTCAAC	7860
GGCATCCACG	AACACCCCGA	GTTCGTCCGG	CTGAGCCGCC	AGCTGTCCGG	TCACGTCCAG	7920
GCGTACGACC	CGAAGACGTG	GCGCTCGCCC	GCCGACGCCA	TGGCCCGCGA	GTTCTACCGG	7980
TGGGAGGCAGG	GGACCGGGCGT	CGTGCGCCGC	TGACCCGTCC	CGAGTCCCAC	CGGTCGCCAGG	8040
TTCGTCACTC	TCCGTTGACT	CCCTTCCTCG	ATAGCGTCAT	CGTTGGTGGC	CCACCTGGAC	8100
GACGGAGCCA	TCTGAGGGGA	AGCGTTGGGT	ACCGATACTC	TCCCGAGACT	CACCGACGCC	8160
GGAGAGCTC						8169

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1278 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GTGAGCCGAC	CGCAGGGGGG	CGGGCCGCCG	CGCGTCGCCGA	TCACCGGCAT	GGGGGTGGTC	60
CGGCCCGGCCG	GCTCGGGCCG	GAAGGCCTTC	TGGAACCTGC	TGACCGACGG	CCGCACCGCG	120

ACCCGGAAGA TCTCGCTGTT CGACCCGGCG GGCTTCGGT CCCGGATCGC CGCCGAGTGC	180
GACTTCGACC CCGCCGCCGA GGGGCTGACG CCCCCGAGG TCCGGCGCAT GGACCGGGCC	240
GCGCAGCTCG CGGTGGTGTC GGCGCGCGAG GCGCTCGCCG ACAGCGGCT GGTGGCGGGC	300
GAGGGCGACC CGGCCGGTT CGCGGTGTCG CTGGCAGCG CCGTCGGCTG CACGATGGGG	360
CTGGAGGACG AGTACGTCTG GGTCAAGCGAC CAGGGCCGCG ACTGGCTGGT CGACCACTCC	420
TACGGCGTGC CGCACCTGTA CCGGCACCTG GTGCCAGCT CGCTGGCGGC CGAGGTCGCC	480
TGGGCAGGGCG GGGCCGAGGG CCCGGTCACG CTGATCTCGA CGGGCTGCAC CTCCGGGCTC	540
GACGCGGTG GGCACGGCGC GCGCGTCATC GCCGAGGGCT CGGCGGACGT GGCGCTCGCC	600
GGGGCCACCG ACGCGCCCAT CTGGCCGATC ACGGTGGCCT GCTTCGACGC CATCCGGCG	660
ACCTCGCCGA ACAACGACGA CCCCAGCAC GCGTCCCAGC CGTTCGACCG GGAGCGAAC	720
GGGTTCGTGC TCGGGAGGG CGCGCGGGTG TTGGTCTGG AGGAGCTGGA GCACGCCCCG	780
CGCCGGGGCG CGCACGTCTA CTGCGAGGTC CGGGGGTACG CCACGCGCG CAACGCCCTAC	840
CACATGACGG GCCTGAAGCC CGACGGCCGC GAGATGGCCG AGGCGATCAG GGTGGCGATG	900
GACGCCGCCG GGGTCGCCCC GGCGCACCTC GACTACATCA ACGCGCACGG CTCCGGCACC	960
AAGCAGAACG ACCGGCACGA GACGGCCGCG TTCAAGCGCA GCCTCGGCCA GCGCGCCTAC	1020
GAGCTGCCGG TCAGCTCCAT CAAGTCGATG GTCGGGCACT CGCTCGGCCG GATCGGCTCG	1080
ATCGAGCTGG CCGCGTGCAGC GCTGGCGATC GAGCACGGTG TGGTGCCGCC GACCGCCAAC	1140
CTGCACAACG CCGACCCCGA ATGCGACCTG GACTACGTGC CGCTGGTGGC GCGCGAGGGC	1200
CGCATCCGCA CGGTGCTGAG CGTGGGCAGC GGCTTCGGCG GCTTCCAGTC CGCCACCGTC	1260
CTGCGGGAGG CCGCGTGA	1278

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1223 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GTGAGCGTCC	TGACGGCGGA	CGCGCCGGCG	GTCACGGGGA	TCGGCGTGGT	CGCGCCGACC	60
GGGATCGGCG	TCGAGGGAGCA	CTGGGCGGCG	ACGTTGCAGC	GCGTCCCGGT	CATCGGGCCG	120
CTGACCCAGGT	TCGACGCCCTC	GCGCTACCCG	TCGCCCCTTCG	GCGGCGAGGT	GCCC GGTTTC	180
GACGCCGCG	AGCGCGTCCC	GGGGCGGCTC	ATCCCCAGA	CCGACCACTG	GACGCCACCTG	240
GCGCTGGCCG	CCACCGACCT	CGCCCTCGCC	GACGCCGGCG	TGGTCCCGGC	CGAGCTGCC	300
GAGTACGAGA	TGGCGGTGGT	GACCGCCAGC	TCGTCGGCG	GCGTGGAGTT	CGGGCAGCGC	360
GAGATCCAGG	CGTTGTGGCG	GGACGGGCC	CGGCACGTG	GGCCTACCA	TCGATCGCCT	420
GGTTCTACGC	GGCGACGACC	GGCAGATCT	CCATCCGGCA	CGGGATCGC	GGCCCTGCG	480
GCGTCGTGGT	CGCCGAGCAG	GCCGGGGCGC	TGGAGTCGTT	CGCGCAGGCC	CGCCGCTACC	540
TGGCGGACGG	GGCGCGGGTG	GTGGTGTCCG	GCGGCACCGA	CGCGCCGTT	AGTCCGTACG	600
GCCTGACCTG	CCAGCTCGGC	AGCGGGCGGC	TTAGCACGGG	TGCCGACCCG	GCCC GCGCCT	660
ACCTGCCGTT	CGACGCCGCC	GCGAACGGCT	TCGTGCCGGG	CGAGGGCGGC	GCGATCCTCA	720
TCATCGAGCA	AGCCGCCACC	GCGCAGGACC	GCTCCTACGG	CGGGATCGC	GGCTACCGG	780
CGACCTTCGA	CCC GCCGCCG	GGCTCGGGCC	GCCCTCCGAC	GCTGGAGCGA	CCC GTGCCGCG	840
CCGCCTTGGA	CGACGCCCGG	CTCACACCCG	CCGACGTGGA	CGTGGTGTTC	CCCGACGCCG	900
CGGGCGTCCC	GGATCTGGAC	CGCGCGGAGG	CCGACCGGAT	CGGCGCGGTC	TTCGGGCCGC	960
CGGGCGTGCC	CGTCACCGCG	CCCAAGAGCC	TGACCGGCCG	CCTGTACCGC	GGCGGCCCG	1020
CGCTCGACGC	CGCGACGGCG	CTGCTGGCCA	TGCACGACTC	GGTGATCCCG	CCGACGCCG	1080
CGGGCGCGGA	CGTCCCGCCC	GGCTACCGC	TCGCCCTGGT	CGGCGCGGAA	CCGCGCCCGG	1140
CCCGGCTGCCG	CACCGCACTG	ATCATCGCCC	CGGGCTACGG	GGCCTTCAAC	GCCGCCCTGG	1200
TGCTGCCGCGG	CCCGAACACC	TGA				1223

-37-

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 264 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGCAACCC GCGAACGCAC CATCGACGAC CTGCGCGCG TGATGCGCC CGCCGTCGGC	60
GAGGCCGACG ACATCGACCT GGACGGCGAC ATCCTCGACT CCACCTTCAC CGAGCTGGAG	120
TACGACTCGC TCGCCGTGCT GGAGCTCGCG GCCCGCATCG AGACGCAGTG GGGCGTGCTG	180
ATCCCCGAGG ACGACCGCGTC CGGGCTGGAG ACCCCCGCGCA TGTTCCCTCGA CTACGTGAAC	240
GGGCGGGCGG TGGCCGAGCG ATGA	264

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 462 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGACGCAGT GGCGCACCGA CAGCGTGATC GTGATCGACG CGCCGCTCGA CGTCGTCTGG	60
GACATGACCA ACGACGTGCG CTCCTGGCCG GAGCTGTTCG ACGAGTACGC CTCGGCCGAG	120

ATCCTGGAGC GCGACGGCGA CACCGTCCGC TTCCGGCTGA CGATGCACCC CGACGCCGAC	180
GGCAACGCCT GGTCGTGGGT GTCTGGAGCGC ACGCCCCACC GCGCCGCGCT CACCGTCAAC	240
GCGCACCGCG TGGAGACCGG CTGGTTCGAG CACATGAACC TGCGCTGGGA CTACCGCGAG	300
GTGCCCAGCG GCGTGGAGAT GCGCTGGCGG CAGGACTTCG CGATGAAGGA GGCGTCGCCG	360
GTGTCGCTGG CGGCGATGAC CGAGCGCATC CAGAGCAACT CCCCGTCCA GATGAAGCTG	420
ATCAAGGACA AGGTGGAGCG GGCGGCCCGG GGCGCCGGT GA	462

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 462 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GTGATCGAGT TCCTGCTCCC GGTGGCGCTG CTCGGCAACG GGTTGTGCGC GGGCGTGCTG	60
ACGGGCAGCG TCCTCGCGT CGTGCCGTAC TACCGGACGC TGCCCGAGGA CCGCTACATC	120
GCCCGCGACG CCTTCGGCGT CGGCGCGTAC GACCCGTTCC AGCCGGTGTG CCTGCTGGTC	180
ACGGTGGCGG CCGACGCGGT CGCGGGGGCG GTCGCGCCGA CCCGCCGCCGC CGGGGTGCTC	240
TGCGCGCTCG CCGCCGTGCT CGCGCTGGCG GTGGTGGCGA TCTCGCTCAC CCGCAACGTG	300
CCGATGAACC GCCGGATCAA GCGGCTGGAC CGGGCCGCGC CGCCCGCCGG GTTCAGCGCG	360
CCCGCGTTCC TGCGCCGCTG GGCGGGCTGG AACGCGGCGC GCACCGGCCT GACGCTGGCC	420
GCCCTGCTCA GCAACACGGC CGCCCTCGGC GTGCTGCTGT GA	462

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1026 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGACCGAAC CGGAAGGACC GCACGCCGCG AGCCTGCGGC TCCAATCTCT GCTGGACGGC	60
ATGCGCGTCG CCAAGGTCTG CTGAGGTGCTC GCCGAACTCC AGGTGGCCGA CGCGGTGCGCC	120
GACGGCCCT GCAAGCCCGC CGAGATCGCC GCCGACGTCT GCGCCGACCC CGACCGCGCTG	180
TACCGGGTGC TGCGCTGCGC CGCCTCGTTTC GGGGTGTTCA CCGAGGACGA GGACGGCCGG	240
TTCGGGCTCA CCCCAGATGGC CGCGCTGCTG CGCACCGGCA CCGACGACAG CCACCGCGAC	300
CTGTTCATGA TGGCGGCGGG CGACCTGTGG TGGCGGCCGT ACGGCGAGCT GCTGGAGACG	360
GTGCGGACCG GCGCCCCCGC CGCCGAGCTG CGCTTCGGGA TGCCGTTCTA CGACTACCTC	420
GGCACCGACC CGGCCGCCGC CGGGCTCTTC GACCGCGCGA TGACGCAGGT CAGCAAGGGC	480
CAGGGCAAGG CGATCCTCGG CGCGCTGCTG TTGAGCGGT ACGCGCGGAT CGCCGACGTG	540
GGCGGCGGGC ACGGCTACTT CCTCGCGCAG GTGTTGCGCA GCAGCCCCGG CACCGAGGGC	600
GTGCTGCTGG ACCTGCCGCA CGTGGTGGCC GGAGCCCCGG CGGTGCTGGA GAAGCACGAG	660
GTGCGCGACC GCGTCCAGGT CGTCCCCGGC AGCTTCTTCG ACGCGCTGCC CACCGGCTGC	720
GACGCCTACC TGCTGAAAGC GATCCTCATC AACTGGCCCG ACGCCGACGC CGAACGCATC	780
CTGCAACCGGG TGCGCGAGGC GATCGGCACC GACCGCGACG CGCGGCTGCT GGTGGTCGAG	840
CCCGTCGTCC CGCCCCGGCGA CGTCCCGCAG TACAGCAAGG CCACCGACAT CGACATGCTC	900
GCCATCATCG CGGGGCGGGCA GCGCACCGTC GCCGAGTGGC GGCGGCTGCT GCGCGCGGGC	960
GGCTTCGAGC TGGTGGGCGA GCCCACGCCG GGCGCCCGCG AGGTCATGGA GTGCCGCCCC	1020
ATCTGA	1026

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 741 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATGACCGACA	CATCGTTCGC	CGGCAAGAAC	GCGCTGATCA	CCGGCGGCAC	CCGGGGCATC	60
GGCCGGGCCG	TCGCGCTCGG	CCTGGCCCGC	GCCGGGGCCA	ATGTCACCGT	CTGCTACCGC	120
AGCGACGCCG	AGTCCGCCGC	CGCGATGGAA	GCCGAGCTGG	CCGCCACCGA	CGGCAAGCAC	180
CACGTGCTCC	AGGCCGACAT	CGGCAACGCC	GGGGACGTCC	GCCGCCTGCT	GGACGAGGTC	240
GCCGCCCCGA	TGGGCTCGCT	CGACGTAGTC	GTGCACAACG	CCGGGCTGAT	CAGCCACGTG	300
CCGTTCGCCG	ACCTGGAGCC	CGAGGGAGTGG	CACCGGATCG	TCGACTCCAA	CCTGACCGGC	360
ATGTACCTGG	TGGTGCGGGC	CGCGCTGCCG	CTGCTGTCGG	AGGGCGGCCG	GGTCCTCGGC	420
GTCGGCTCCA	AGGTCGCGCT	CGTCGGCATC	TCGCAGCGCA	CCCACTACAC	CGCCGCCAAG	480
GCCGGGCTCA	TGGGGTTCGT	GGCGCTCGCTC	AGCAAGGAGC	TGGGGCCGCT	CGGCATCCGG	540
GTCAAACCTGG	TCGCGCCCGG	CATCACCGAG	ACCGACCAGG	CCGCGCACCT	GCCCCCCCCTG	600
CAGCGCGAGC	GCTACCAGAG	CATGACCGCG	CTCAAGCGGC	TCGGCCAGGC	CGACGAGGTC	660
GCCGACGTGG	TGCTGTTCT	CGCCGGTCCC	GGCGCGCGCT	ACGTCACCGG	CGAGACCGTC	720
AACGTGGACG	GGGGATGTG A					741

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 342 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GTGACCATGG CCGACAGCGG CCCGGTGTTC CGGGTGATGC TCCGGATGGA GATCGTCCCC	60
GGCAGGGAGG CGGAGTTCGA GCGGGTCTGG TACTCGGTG GCGACACCGT CAGCGGCAAC	120
CCCGCCAACC TCGGCCAGTG CGTGCTGCC AGCGACGACG AGGAGAGCGT CTACTACATC	180
ATGAGCGACT GGATCGACGA GGCGCGTTTC CGCGAGTTCG AGCGCAGCGA CGGCCACGTC	240
GAGCACCGCC GCAAGCTGCA CCCGTACCGG GTGAAGGGCA GCATGGCGAC GATGAAGGTC	300
GTGCACGACC TCGGCCGCGC GGCGCGGGAG CCGGTCCGGT GA	342

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 312 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GTGACGGCCG GGCAGGTGCG GGTCTGGTC CGCTACCAGG CTCCGGCGA CGACCCCGAG	60
GCCGTCGTCC AGGCGTACAA GCTGGTCTGC GAGGAACCTGC GCGGGACGCC CGGCCTGCTC	120
GGCAGCGAGC TGCTGGCGTC CACGCTCGAC GAGGGACGGT TCGCGGTGCT GAGCCTGTGG	180

AGCGACGCCG CGCGGTTCCA GGAATGGGAG CAGGGCCCGG CGCACAAAGGG CCAGACGTCC	240
GGCCTGCGCC CGTTCCGGGA CACCTCCTCG GGGCGCGGCT TCGATTCTA CGAAGTGGTG	300
CACGCCCTGT AA	312

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1236 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGCCCTCCT CGAAGGATGC CCCGACCGTC GACCCCCGCC CCGACGTAC GCCGGCCTTC	60
CCGTTCCGGC CGGACGACCC CTTCCAGCCG CCGTGCAGGC ACAGCGCGCT GCGCCCGTCC	120
GACCCGGTCG CCAAGGTGGT GCTGCCGACC GGCGACCAAG CGTGGGTCGT GACGCGCTAC	180
GCCGACGTCC GGTTCGTCAC CTGGACCGG CGCTTCAGCA AGGAGGCGGT GACCCGGCCG	240
GGCGCGCCGC GCCTGATCCC GATGCAGCGC GGCTCCAAGT CGCTGGTCAT CATGGACCCG	300
CCCGAGCACA CGAGGATGCG CAAGATCGT TCTCGCGCGT TCACCGCCCG TCGTGTGGAG	360
GGGATGCGCG CGCACGTGCG CGACCTGACG TCGGGGTTCG TGGACGAGAT GGTCGAGCAC	420
GGCCCGCCCG CCGACCTGAT CGCGCACCTG GCGCTGCCGC TGCCGGTCAC CGTCATCTGC	480
GAGATGCTGG GCGTTCCGCC GGAGGATCGG CCGGGCTTCC AGGACTGGAC CGACCCGATG	540
CTCACCATCG CGCGGCCCGC TCTCGCGCAG GCGACGAGA TCAAGGCCGC GGTCGGCGG	600
CTGCGCGGCT ACCTCGCCGA GCTGATCGAC GCCAAGACGG CGCGGCCCGC CGACGACCTG	660
CTGTCGTTGC TGAGCCCGCG GCACGCCGAC GACGGCCTCA GCGAGGAGGA ACTGCTCACC	720
TTCGGCATGA CGCTGCTGGC GGCGGGTTAC CACACCACCA CGCGGGCGAT CACGCACTCG	780

GTCTACCACC	TGCTGCGCGA	GCCGTCGCGG	TACGGCGCGC	TGCGCGAGGA	CCCGTCGGGT	840
ATCCC GGCGG	CCGTTGAGGA	ACTGCTACGG	TACGGGCAGA	TCGGCGCGG	CGCGGGCGCG	900
ATCCGCA TCG	CGGTCGAGGA	TGTGGAAGTC	GGCGGCACCC	TCGTGCCGC	GGGCGAGGCC	960
GTCATCCCGC	TTTCAACGC	CGCCAACCGC	GATCCGGAGG	TGTTGCCGA	TCCCGAGGAA	1020
CTCGACCTCG	GCCGTACCGA	CAACCCGCAC	ATCGCGCTCG	GCCACGGCAT	CCACTACTGC	1080
CTGGGCGCGC	CGCTCGCCCG	GCTGGAGCTT	CAGGTCGTGC	TGGAGACGCT	GGTGGAGCGG	1140
ACGCCCCGCC	TGCGTCTCGC	TATCGACGAT	GCCGACATCA	CCTGGCGGCC	CGGCTTGGCG	1200
TTCGCGCGGC	CGGACCGCGCT	GCCCCATCGCC	TGGTAG			1236

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 347 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGGACAGGT	TCCTGATCGT	CGCCCGCATG	TCCCCCTCGT	CGGAGAAAGGA	GGTGGCGCGC	60
CTGTTCGCCG	AGTCCGAACG	AGGGCACCGA	GCTGCCGGAG	GTGGCCGGGA	CGGTCAGCCG	120
CAGCCTGCTG	TCGTTCCACG	CCCTGTACTT	CCACCTGACG	GAGGTGGAGG	AGAGCACCGA	180
CAGGACGCTG	AACGGCATCC	ACGAACACCC	CGAGTTCGTC	CGGCTGAGCC	GCCAGCTGTC	240
CGGTACGTC	CAGGCGTACG	AACCCGAAGA	CGTGGCGCTC	GCCC GCGGAC	GCCATGGCCC	300
GCGAGTTCTA	CCGGTGGGAG	GGGGGGACCG	CGTGTGCG	CCGCTGA		347

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 425 amino acids

(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met Ser Arg Pro Gln Gly Gly Gly Pro Arg Arg Val Ala Ile Thr Gly
1 5 10 15

Met Gly Val Val Ala Pro Gly Gly Ser Gly Arg Lys Ala Phe Trp Asn
20 25 30

Leu Leu Thr Asp Gly Arg Thr Ala Thr Arg Lys Ile Ser Leu Phe Asp
35 40 45

Pro Ala Gly Phe Arg Ser Arg Ile Ala Ala Glu Cys Asp Phe Asp Pro
50 55 60

Ala Ala Glu Gly Leu Thr Pro Arg Glu Val Arg Arg Met Asp Arg Ala
65 70 75 80

Ala Gln Leu Ala Val Val Ser Ala Arg Glu Ala Leu Ala Asp Ser Gly
85 90 95

Leu Val Ala Gly Glu Gly Asp Pro Ala Arg Phe Ala Val Ser Leu Gly
100 105 110

Ser Ala Val Gly Cys Thr Met Gly Leu Glu Asp Glu Tyr Val Val Val
115 120 125

Ser Asp Gln Gly Arg Asp Trp Leu Val Asp His Ser Tyr Gly Val Pro
130 135 140

His Leu Tyr Arg His Leu Val Pro Ser Ser Leu Ala Ala Glu Val Ala
145 150 155 160

Trp Ala Gly Gly Ala Glu Gly Pro Val Thr Leu Ile Ser Thr Gly Cys
165 170 175

Thr Ser Gly Leu Asp Ala Val Gly His Gly Ala Arg Val Ile Ala Glu
180 185 190

-45-

Gly Ser Ala Asp Val Ala Leu Ala Gly Ala Thr Asp Ala Pro Ile Ser
195 200 205

Pro Ile Thr Val Ala Cys Phe Asp Ala Ile Arg Ala Thr Ser Pro Asn
210 215 220

Asn Asp Asp Pro Glu His Ala Ser Arg Pro Phe Asp Arg Glu Arg Asn
225 230 235 240

Gly Phe Val Leu Gly Glu Gly Ala Ala Val Phe Val Leu Glu Glu Leu
245 250 255

Glu His Ala Arg Arg Gly Ala His Val Tyr Cys Glu Val Ala Gly
260 265 270

Tyr Ala Thr Arg Gly Asn Ala Tyr His Met Thr Gly Leu Lys Pro Asp
275 280 285

Gly Arg Glu Met Ala Glu Ala Ile Arg Val Ala Met Asp Ala Ala Arg
290 295 300

Val Ala Pro Ala Asp Leu Asp Tyr Ile Asn Ala His Gly Ser Gly Thr
305 310 315 320

Lys Gln Asn Asp Arg His Glu Thr Ala Ala Phe Lys Arg Ser Leu Gly
325 330 335

Glu Arg Ala Tyr Glu Leu Pro Val Ser Ser Ile Lys Ser Met Val Gly
340 345 350

His Ser Leu Gly Ala Ile Gly Ser Ile Glu Leu Ala Ala Cys Ala Leu
355 360 365

Ala Ile Glu His Gly Val Val Pro Pro Thr Ala Asn Leu His Asn Ala
370 375 380

Asp Pro Glu Cys Asp Leu Asp Tyr Val Pro Leu Val Ala Arg Glu Gly
385 390 395 400

Arg Ile Arg Thr Val Leu Ser Val Gly Ser Gly Phe Gly Gly Phe Gln
405 410 415

Ser Ala Thr Val Leu Arg Glu Ala Ala
420 425

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 407 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant

-
- (D) TOPOLOGY: not relevant
(ii) MOLECULE TYPE: peptide
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met Ser Val Leu Thr Ala Asp Ala Pro Ala Val Thr Gly Ile Gly Val
1 5 10 15
Val Ala Pro Thr Gly Ile Gly Val Glu Glu His Trp Ala Ala Thr Leu
20 25 30
Arg Gly Val Pro Val Ile Gly Pro Leu Thr Arg Phe Asp Ala Ser Arg
35 40 45
Tyr Pro Ser Pro Phe Gly Gly Glu Val Pro Gly Phe Asp Ala Ala Glu
50 55 60
Arg Val Pro Gly Arg Leu Ile Pro Gln Thr Asp His Trp Thr His Leu
65 70 75 80
Ala Leu Ala Ala Thr Asp Leu Ala Leu Ala Asp Ala Gly Val Val Pro
85 90 95
Ala Glu Leu Pro Glu Tyr Glu Met Ala Val Val Thr Ala Ser Ser Ser
100 105 110
Gly Gly Val Glu Phe Gly Gln Arg Glu Ile Gln Ala Leu Trp Arg Asp
115 120 125
Gly Pro Arg His Val Gly Ala Tyr Gln Ser Ile Ala Trp Phe Tyr Ala
130 135 140
Ala Thr Thr Gly Gln Ile Ser Ile Arg His Gly Met Arg Gly Pro Cys
145 150 155 160
Gly Val Val Val Ala Glu Gln Ala Gly Ala Leu Glu Ser Phe Ala Gln
165 170 175
Ala Arg Arg Tyr Leu Ala Asp Gly Ala Arg Val Val Val Ser Gly Gly
180 185 190
Thr Asp Ala Pro Phe Ser Pro Tyr Gly Leu Thr Cys Gln Leu Gly Ser
195 200 205

Gly Arg Leu Ser Thr Gly Ala Asp Pro Ala Arg Ala Tyr Leu Pro Phe
210 215 220

Asp Ala Ala Ala Asn Gly Phe Val Pro Gly Glu Gly Gly Ala Ile Leu
225 230 235 240

Ile Ile Glu Gln Ala Ala Thr Ala Gln Asp Arg Ser Tyr Gly Arg Ile
245 250 255

Ala Gly Tyr Ala Ala Thr Phe Asp Pro Pro Pro Gly Ser Gly Arg Pro
260 265 270

Pro Thr Leu Glu Arg Ala Val Arg Ala Ala Leu Asp Asp Ala Arg Leu
275 280 285

Thr Pro Ala Asp Val Asp Val Val Phe Ala Asp Ala Ala Gly Val Pro
290 295 300

Asp Leu Asp Arg Ala Glu Ala Asp Ala Ile Gly Ala Val Phe Gly Pro
305 310 315 320

Arg Gly Val Pro Val Thr Ala Pro Lys Ser Leu Thr Gly Arg Leu Tyr
325 330 335

Ala Gly Gly Pro Ala Leu Asp Ala Ala Thr Ala Leu Leu Ala Met His
340 345 350

Asp Ser Val Ile Pro Pro Thr Ala Gly Gly Ala Asp Val Pro Pro Gly
355 360 365

Tyr Ala Leu Asp Leu Val Gly Ala Glu Pro Arg Pro Ala Arg Leu Arg
370 375 380

Thr Ala Leu Ile Ile Ala Arg Gly Tyr Gly Gly Phe Asn Ala Ala Leu
385 390 395 400

Val Leu Arg Gly Pro Asn Thr
405

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 87 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met Ala Thr Arg Glu Arg Thr Ile Asp Asp Leu Arg Ala Leu Met Arg
1 5 10 15

Ala Ala Val Gly Glu Ala Asp Asp Ile Asp Leu Asp Gly Asp Ile Leu
20 25 30

Leu Ala Ala Arg Ile Glu Thr Gln Trp Gly Val Leu Ile Pro Glu Asp
50 55 60

Asp Ala Ser Gly Leu Glu Thr Pro Arg Met Phe Leu Asp Tyr Val Asn
 65 70 75 80

Gly Arg Ala Val Ala Glu Arg
85

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 153 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Thr Gln Trp Arg Thr Asp Ser Val Ile Val Ile Asp Ala Pro Leu
1 5 10 15

Asp Val Val Trp Asp Met Thr Asn Asp Val Ala Ser Trp Pro Glu Leu
20 25 30

Phe Asp Glu Tyr Ala Ser Ala Glu Ile Leu Glu Arg Asp Gly Asp Thr
 35 40 45
 Val Arg Phe Arg Leu Thr Met His Pro Asp Ala Asp Gly Asn Ala Trp
 50 55 60
 Ser Trp Val Ser Glu Arg Thr Pro Asp Arg Ala Ala Leu Thr Val Asn
 65 70 75 80
 Ala His Arg Val Glu Thr Gly Trp Phe Glu His Met Asn Leu Arg Trp
 85 90 95
 Asp Tyr Arg Glu Val Pro Gly Gly Val Glu Met Arg Trp Arg Gln Asp
 100 105 110
 Phe Ala Met Lys Glu Ala Ser Pro Val Ser Leu Ala Ala Met Thr Glu
 115 120 125
 Arg Ile Gln Ser Asn Ser Pro Val Gln Met Lys Leu Ile Lys Asp Lys
 130 135 140
 Val Glu Arg Ala Ala Arg Gly Ala Arg
 145 150

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant

- (ii) MOLECULE TYPE: peptide

- (iii) HYPOTHETICAL: NO

- (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Ile Glu Phe Leu Leu Pro Val Ala Leu Leu Gly Asn Gly Leu Cys
 1 5 10 15
 Ala Gly Val Leu Thr Gly Ser Val Leu Gly Val Val Pro Tyr Tyr Arg
 20 25 30
 Thr Leu Pro Glu Asp Arg Tyr Ile Ala Ala His Ala Phe Ala Val Gly
 35 40 45

-50-

Arg Tyr Asp Pro Phe Gln Pro Val Cys Leu Leu Val Thr Val Ala Ala
50 55 60
Asp Ala Val Ala Ala Val Ala Pro Thr Ala Ala Ala Arg Val Leu
65 70 75 80
Cys Ala Leu Ala Ala Val Leu Ala Leu Ala Val Val Ala Ile Ser Leu
85 90 95
Thr Arg Asn Val Pro Met Asn Arg Arg Ile Lys Arg Leu Asp Pro Ala
100 105 110
Ala Pro Pro Ala Gly Phe Ser Ala Pro Ala Phe Leu Arg Arg Trp Ala
115 120 125
Gly Trp Asn Ala Ala Arg Thr Gly Leu Thr Leu Ala Ala Leu Leu Ser
130 135 140
Asn Thr Ala Ala Leu Gly Val Leu Leu
145 150

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 341 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO

-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Met Thr Glu Pro Glu Gly Pro His Ala Ala Ser Leu Arg Leu Gln Ser
1 5 10 15
Leu Leu Asp Gly Met Arg Val Ala Lys Val Val Gln Val Leu Ala Glu
20 25 30
Leu Gln Val Ala Asp Ala Val Ala Asp Gly Pro Cys Lys Pro Ala Glu
35 40 45
Ile Ala Ala Asp Val Gly Ala Asp Pro Asp Ala Leu Tyr Arg Val Leu

50 55 60
Arg Cys Ala Ala Ser Phe Gly Val Phe Thr Glu Asp Glu Asp Gly Arg
65 70 75 80
Phe Gly Leu Thr Pro Met Ala Ala Leu Leu Arg Thr Gly Thr Asp Asp
85 90 95
Ser His Arg Asp Leu Phe Met Met Ala Ala Gly Asp Leu Trp Trp Arg
100 105 110
Pro Tyr Gly Glu Leu Leu Glu Thr Val Arg Thr Gly Arg Pro Ala Ala
115 120 125
Glu Leu Ala Phe Gly Met Pro Phe Tyr Asp Tyr Leu Gly Thr Asp Pro
130 135 140
Ala Ala Ala Gly Leu Phe Asp Arg Ala Met Thr Gln Val Ser Lys Gly
145 150 155 160
Gln Ala Lys Ala Ile Leu Gly Arg Cys Ser Phe Glu Arg Tyr Ala Arg
165 170 175
Ile Ala Asp Val Gly Gly His Gly Tyr Phe Leu Ala Gln Val Leu
180 185 190
Arg Ser Ser Pro Arg Thr Glu Gly Val Leu Leu Asp Leu Pro His Val
195 200 205
Val Ala Gly Ala Pro Ala Val Leu Glu Lys His Glu Val Ala Asp Arg
210 215 220
Val Gln Val Val Pro Gly Ser Phe Phe Asp Ala Leu Pro Thr Gly Cys
225 230 235 240
Asp Ala Tyr Leu Leu Lys Ala Ile Leu Ile Asn Trp Pro Asp Ala Asp
245 250 255
Ala Glu Arg Ile Leu His Arg Val Arg Glu Ala Ile Gly Thr Asp Arg
260 265 270
Asp Ala Arg Leu Leu Val Val Glu Pro Val Val Pro Pro Gly Asp Val
275 280 285
Arg Asp Tyr Ser Lys Ala Thr Asp Ile Asp Met Leu Ala Ile Ile Gly
290 295 300
Gly Arg Gln Arg Thr Val Ala Glu Trp Arg Arg Leu Leu Arg Ala Gly
305 310 315 320
Gly Phe Glu Leu Val Gly Glu Pro Thr Pro Gly Arg Arg Glu Val Met

325

330

335

Glu Cys Arg Pro Ile
340

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 246 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Met Thr Asp Thr Ser Phe Ala Gly Lys Asn Ala Leu Ile Thr Gly Gly
1 5 10 15

Thr Arg Gly Ile Gly Arg Ala Val Ala Leu Gly Leu Ala Arg Ala Gly
20 25 30

Ala Asn Val Thr Val Cys Tyr Arg Ser Asp Ala Glu Ser Ala Ala Ala
35 40 45

Met Glu Ala Glu Leu Ala Ala Thr Asp Gly Lys His His Val Leu Gln
50 55 60

Ala Asp Ile Gly Asn Ala Gly Asp Val Arg Arg Leu Leu Asp Glu Val
65 70 75 80

Ala Ala Arg Met Gly Ser Leu Asp Val Val Val His Asn Ala Gly Leu
85 90 95

Ile Ser His Val Pro Phe Ala Asp Leu Glu Pro Glu Glu Trp His Arg
100 105 110

Ile Val Asp Ser Asn Leu Thr Gly Met Tyr Leu Val Val Arg Ala Ala
115 120 125

Leu Pro Leu Leu Ser Glu Gly Gly Ala Val Val Gly Val Gly Ser Lys
130 135 140

Val Ala Leu Val Gly Ile Ser Gln Arg Thr His Tyr Thr Ala Ala Lys
145 150 155 160
Ala Gly Leu Ile Gly Phe Val Arg Ser Leu Ser Lys Glu Leu Gly Pro
165 170 175
Leu Gly Ile Arg Val Asn Leu Val Ala Pro Gly Ile Thr Glu Thr Asp
180 185 190
Gln Ala Ala His Leu Pro Pro Val Gln Arg Glu Arg Tyr Gln Ser Met
195 200 205
Thr Ala Leu Lys Arg Leu Gly Gln Ala Asp Glu Val Ala Asp Val Val
210 215 220
Leu Phe Leu Ala Gly Pro Gly Ala Arg Tyr Val Thr Gly Glu Thr Val
225 230 235 240
Asn Val Asp Gly Gly Met
245

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 113 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Val Thr Met Ala Asp Ser Gly Pro Val Phe Arg Val Met Leu Arg Met
1 5 10 15
Glu Ile Val Pro Gly Arg Glu Ala Glu Phe Glu Arg Val Trp Tyr Ser
20 25 30
Val Gly Asp Thr Val Ser Gly Asn Pro Ala Asn Leu Gly Gln Cys Val
35 40 45
Leu Arg Ser Asp Asp Glu Glu Ser Val Tyr Tyr Ile Met Ser Asp Trp
50 55 60

Ile Asp Glu Ala Arg Phe Arg Glu Phe Glu Arg Ser Asp Gly His Val
65 70 75 80

Glu His Arg Arg Lys Leu His Pro Tyr Arg Val Lys Gly Ser Met Ala
85 90 95

Thr Met Lys Val Val His Asp Leu Gly Arg Ala Ala Ala Glu Pro Val
100 105 110

Arg

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 103 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Val Thr Ala Gly Gln Val Arg Val Leu Val Arg Tyr Gln Ala Pro Gly
1 5 10 15

Asp Asp Pro Glu Ala Val Val Gln Ala Tyr Lys Leu Val Cys Glu Glu
20 25 30

Leu Arg Gly Thr Pro Gly Leu Leu Gly Ser Glu Leu Leu Ala Ser Thr
35 40 45

Leu Asp Glu Gly Arg Phe Ala Val Leu Ser Leu Trp Ser Asp Ala Ala
50 55 60

Arg Phe Gln Glu Trp Glu Gln Gly Pro Ala His Lys Gly Gln Thr Ser
65 70 75 80

Gly Leu Arg Pro Phe Arg Asp Thr Ser Ser Gly Arg Gly Phe Asp Phe
85 90 95

Tyr Glu Val Val His Ala Leu

100

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 411 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Met	Pro	Ser	Ser	Lys	Asp	Ala	Pro	Thr	Val	Asp	Pro	Arg	Pro	Asp	Val
1				5					10					15	
Thr	Pro	Ala	Phe	Pro	Phe	Arg	Pro	Asp	Asp	Pro	Phe	Gln	Pro	Pro	Cys
	20					25						30			
Glu	His	Ala	Arg	Leu	Arg	Ala	Ser	Asp	Pro	Val	Ala	Lys	Val	Val	Leu
	35					40						45			
Pro	Thr	Gly	Asp	His	Ala	Trp	Val	Val	Thr	Arg	Tyr	Ala	Asp	Val	Arg
	50					55				60					
Phe	Val	Thr	Ser	Asp	Arg	Arg	Phe	Ser	Lys	Glu	Ala	Val	Thr	Arg	Pro
	65				70				75			80			
Gly	Ala	Pro	Arg	Leu	Ile	Pro	Met	Gln	Arg	Gly	Ser	Lys	Ser	Leu	Val
				85				90				95			
Ile	Met	Asp	Pro	Pro	Glu	His	Thr	Arg	Met	Arg	Lys	Ile	Val	Ser	Arg
				100				105				110			
Ala	Phe	Thr	Ala	Arg	Arg	Val	Glu	Gly	Met	Arg	Ala	His	Val	Arg	Asp
				115			120					125			
Leu	Thr	Ser	Gly	Phe	Val	Asp	Glu	Met	Val	Glu	His	Gly	Pro	Pro	Ala
	130				135					140					
Asp	Leu	Ile	Ala	His	Leu	Ala	Leu	Pro	Leu	Pro	Val	Thr	Val	Ile	Cys
	145				150					155			160		

Glu Met Leu Gly Val Pro Pro Glu Asp Arg Pro Arg Phe Gln Asp Trp
 165 170 175
 Thr Asp Arg Met Leu Thr Ile Gly Ala Pro Ala Leu Ala Gln Ala Asp
 180 185 190
 Glu Ile Lys Ala Ala Val Gly Arg Leu Arg Gly Tyr Leu Ala Glu Leu
 195 200 205
 Ile Asp Ala Lys Thr Ala Ala Pro Ala Asp Asp Leu Leu Ser Leu Leu
 210 215 220
 Ser Arg Ala His Ala Asp Asp Gly Leu Ser Glu Glu Glu Leu Leu Thr
 225 230 235 240
 Phe Gly Met Thr Leu Leu Ala Ala Gly Tyr His Thr Thr Thr Ala Ala
 245 250 255
 Ile Thr His Ser Val Tyr His Leu Leu Arg Glu Pro Ser Arg Tyr Ala
 260 265 270
 Arg Leu Arg Glu Asp Pro Ser Gly Ile Pro Ala Ala Val Glu Glu Leu
 275 280 285
 Leu Arg Tyr Gly Gln Ile Gly Gly Ala Gly Ala Ile Arg Ile Ala
 290 295 300
 Val Glu Asp Val Glu Val Gly Gly Thr Leu Val Arg Ala Gly Glu Ala
 305 310 315 320
 Val Ile Pro Leu Phe Asn Ala Ala Asn Arg Asp Pro Glu Val Phe Ala
 325 330 335
 Asp Pro Glu Glu Leu Asp Leu Gly Arg Thr Asp Asn Pro His Ile Ala
 340 345 350
 Leu Gly His Gly Ile His Tyr Cys Leu Gly Ala Pro Leu Ala Arg Leu
 355 360 365
 Glu Leu Gln Val Val Leu Glu Thr Leu Val Glu Arg Thr Pro Ala Leu
 370 375 380
 Arg Leu Ala Ile Asp Asp Ala Asp Ile Thr Trp Arg Pro Gly Leu Ala
 385 390 395 400
 Phe Ala Arg Pro Asp Ala Leu Pro Ile Ala Trp
 405 410

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

-
- (A) LENGTH: 114 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Asp Arg Phe Leu Ile Val Ala Arg Met Ser Pro Ser Ser Glu Lys
1 5 10 15

Glu Val Ala Arg Leu Phe Ala Glu Ser Asp Glu Gly Thr Glu Leu Pro
20 25 30

Glu Val Ala Gly Thr Val Ser Arg Ser Leu Leu Ser Phe His Gly Leu
35 40 45

Tyr Phe His Leu Thr Glu Val Glu Glu Ser Thr Asp Arg Thr Leu Asn
50 55 60

Gly Ile His Glu His Pro Glu Phe Val Arg Leu Ser Arg Gln Leu Ser
65 70 75 80

Gly His Val Gln Ala Tyr Asp Pro Lys Thr Trp Arg Ser Pro Ala Asp
85 90 95

Ala Met Ala Arg Glu Phe Tyr Arg Trp Glu Ala Gly Thr Gly Val Val
100 105 110

Arg Arg

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 54 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "probe"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GGCGCGGAGG CCCCGGTAC GATGGTCTCC ACCGGCTGCA CCTCGGGCCT GGAC

54

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 54 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid
(A) DESCRIPTION: /desc = "probe"

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CCCGTCAGCT CCATCAAGTC CATGGTCGGC CACTCGCTCG GCGCGATCGG CTCC

54

WE CLAIM:

1. A substantially pure nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 75% amino acid identity with an *Actinomadura* polyketide synthase.

5

2. The nucleic acid of claim 1, encoding a polypeptide sharing at least about 80% amino acid identity with an *Actinomadura* polyketide synthase.

10

3. The nucleic acid of claim 2, encoding a polypeptide sharing at least about 90% amino acid identity with an *Actinomadura* polyketide synthase.

15

4. The substantially pure nucleic acid of claim 1, comprising a nucleic acid selected from the group consisting of SEQ ID NO:1-12.

5. A transformed eukaryotic or prokaryotic cell comprising the nucleic acid of claim 1.

20

6. A vector capable of reproducing in a eukaryotic or prokaryotic cell comprising the nucleic acid of claim 1.

7. A substantially pure nucleic acid comprising a nucleic acid that hybridizes to the nucleic acid of claim 1 under stringent conditions.

25

8. A substantially pure nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 75% amino acid identity with a polyketide synthase for biosynthesis of a benzo(*a*)naphthacenequinone.

30

9. The substantially pure nucleic acid of claim 8, encoding a polypeptide sharing at least about 80% amino acid identity with a polyketide synthase for biosynthesis of a benzo(a)naphthacenequinone.

35 10. The nucleic acid of claim 9, encoding a polypeptide sharing at least about 90% amino acid identity with a polyketide synthase for biosynthesis of a benzo(a)naphthacenequinone.

40 11. The nucleic acid of claim 10, wherein the polyketide synthase is an *Actinomadura* polyketide synthase.

12. The nucleic acid of claim 11, wherein the polyketide synthase is an *Actinomadura* polyketide synthase.

45 13. The nucleic acid of claim 12, wherein the polyketide synthase is an *Actinomadura* polyketide synthase.

50 14. The nucleic acid of claim 8, wherein the benzo(a)naphthacenequinone is a dihydrobenzo(a)naphthacenequinone aglycon.

15. The nucleic acid of claim 9, wherein the benzo(a)naphthacenequinone is a dihydrobenzo(a)naphthacenequinone aglycon.

55 16. The nucleic acid of claim 10, wherein the benzo(a)naphthacenequinone is a dihydrobenzo(a)naphthacenequinone aglycon.

60 17. The nucleic acid of claim 14, wherein the dihydrobenzo(a)naphthacenequinone aglycon is pradimicin.

18. The nucleic acid of claim 15, wherein the dihydrobenzo(*a*)naphthacenequinone aglycon is pradimicin.

65 19. The nucleic acid of claim 16, wherein the dihydrobenzo(*a*)naphthacenequinone aglycon is pradimicin.

70 20. A substantially pure polypeptide comprising an amino acid sequence sharing at least about 75% amino acid identity with an *Actinomadura* polyketide synthase.

21. The polypeptide of claim 20, comprising an amino acid sequence sharing at least about 80% amino acid identity with an *Actinomadura* polyketide synthase.

22. The polypeptide of claim 21, comprising an amino acid sequence sharing at least about 90% amino acid identity with an *Actinomadura* polyketide synthase.

23. The polypeptide of claim 22, comprising an amino acid sequence selected from the group consisting of SEQ ID NO:13, SEQ ID NO:14 and SEQ ID NO:15.

24. A method of preparing pradimicin or an analog thereof comprising:

(a) transforming a eukaryotic or prokaryotic cell with an expression vector for expressing intracellularly or extracellularly a nucleic acid comprising a nucleic acid encoding a polypeptide sharing at least about 70% amino acid identity with an *Actinomadura* polyketide synthase;

(b) growing the transformed cell in culture; and

(c) isolating the pradimicin or analog thereof from the transformed cell or the culture medium.

25. The method of claim 24, wherein the polypeptide shares at least about 80% amino acid identity with an *Actinomadura* polyketide synthase.

26. The method of claim 25, wherein the polypeptide shares at least about 90% amino acid identity with an *Actinomadura* polyketide synthase.

27. The method of claim 24, wherein the nucleic acid comprises SEQ ID NO:1.

1/5

Pradimicin A; R1=H, R2=H
Pradimicin S; R1=CH₂OH, R2=HO₃S

FIGURE 1

β - Keto synthase

Granatidin	G A E G P V T M V S D G C T S G L D
Tetracenomycin	G A E G P V T V V S T G C T S G L D
Actinorhodin	G A E G P V T M V S T G C T S G L D
CONSENSUS	G A E G P V T M V S T G C T S G L D

Probe 1 (54 mer) 5'-GGCGCGGAGGGCCCGGTACGATGGTCTCCACCGGCTGCACCTGGGCCTGGAC-3'

Acyl transferase

Granatidin	P V S S I K S M G G H S L G A I G S
Tetracenomycin	P V S S I K S M I G H S L G A I G S
Actinorhodin	P V S S I K S M V G H S L G A I G S
CONSENSUS	P V S S I K S M () G H S L G A I G S

Probe 2 (54 mer) 5'-CCCGTCAGCTCATCAAGTCCATGGTCGGCCACTCGCTGGCGCGATCGGCTCC-3'

FIGURE 3

A 1 MSRPQGGPRRVAITGMGVVAPGGSGRKAFWNLLTDGRTATRKISLFDPAGFRSRIAAEC 60
..** ****. * ***.***.*****.*****. * *****. *
B MTRHAEKRVVITGIGVRAPGGAGTAAFWDLTAGRTATRTISLFDAAPYRSRIAGEI 1 57
DFDPAAEGLTPREVRRMDRAAQOLAVVSAREALADSGLVAGEGDPARFAVSLGSAVGCTMG
***** . ***.***. ***.*****.*****.*****.*****. . . *.*.***.***.*****. *
DFDPIGEGLSPRQASTYDRATOLAVVCAREALKDSGLDPAAVNPERIGVSIGTAVGCTTG
LEDEYVVSDQGRDWLVDHSYGVPHLYRHLVPSSLAAEVAWAGGAEGPVTLISTGCTSGL
*. **. **. *. *****. * . *. . **. *. *****.*****.*****.*****.*****.*****
LDREYARVSEGGSRWLVDHTLAVEQLFDYFVPTSICREVAWEAGAEGPVTVVSTGCTSGL
DAVGHGARVIAEGSADVALAGATDAPISPITVACFDAIRATSPNNDDPEHASRPFDRENN
*****. * . *. ***. ***.*****.*****.*****.*****.*****.*****.*****. *.
DAVGYGTELIRDGRADVVCAGATDAPISPITVACFDAIKATSANNDPAHASRPFDRNRD
GFVLGEAAVFVLEELEHARRGAHVYCEVAGYATRGNAYHMTGLKPDGREMAEAIRVAM
*****.*****.*****.*****. * . *. ***.***.*****.*****.*****.*****. *.
GFVLGEGBSAVFVLELSAARRGAHAYAEVRGFATRSNAFHMTGLKPDGREMAEAITAAL
DAARVAPADLDYINAHGSGTKQNDRHETAALKRSLGGERAYELPVSSIKSMVGHSLGAIGS
*. **. **. *****.*****.*****.*****.*****.*****.*****.*****.*****.*****
DQARRTGDDLHYINAHGSGTRONDRHETAALKRSLGQRAYDVPVSSIKSMIGHSLGAIGS
IELAACALAIEHGVPPPTANLHNADPECDDYVPLVAREGRIRTVLSVGSGFGGFQSATV
*****.*****.*****. . . *****.*****.*****. * . *****.*****.*****. *
IELAACALAIEHGVIPPTANYEEPDECDLDYVPNVAREQRVDTLSVGSGFGGFQSAAV
425
LREAA
*
LARPK
422

FIGURE 4

FIGURE 5

INTERNATIONAL SEARCH REPORT

Int'l. Appl. No.

PCT/US 96/14791

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C12N15/52	C12N1/21	C12N9/00	C12P21/00	//(C12N1/21, C12R1:03)
-------	-----------	----------	----------	-----------	---------------------------

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>MOL. GEN. GENET., vol. 251, 1996, pages 113-120, XP000652375</p> <p>K. YLIHONKO ET AL.: "A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early-block mutations in the anthracycline pathway" see the whole document.</p> <p>---</p> <p>-/-</p>	1,6-8, 20,24

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- '&' document member of the same patent family

Date of the actual completion of the international search

10 July 1997

Date of mailing of the international search report

04.08.97

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Yeats, S

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 96/14791

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	MOL. GEN. GENET., vol. 240, 1993, pages 146-150, XP000654921 C. LE GOUILL ET AL.: "Saccharopolyspora hirsuta 367 encodes clustered genes similar to ketoacyl synthase, ketoacyl reductase, acyl carrier protein, and biotin carboxyl carrier protein" see the whole document. ---	1,6-8, 20,24
Y	J. BIOL. CHEM., vol. 267, 1992, pages 19278-19290, XP000652285 M.A. FERNANDEZ-MORENO ET AL.: "Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin" cited in the application see the whole document, especially the abstract and Figure 4. ---	1-27
Y	J. ANTIBIOTICS, vol. 48, 1995, pages 162-168, XP000654920 K. SAITO ET AL.: "Pradimicin S, a new pradimicin analog. III. Application of the Frit-FAB LC/MS technique to the elucidation of the pradimicin S biosynthetic pathway" see the whole document. -----	1-27