MATH 541 Lecture Notes

Pongsaphol Pongsawakul

Spring 2023

Contents

1	Groups		
	1.1	Axioms of Groups	
		1.1.1 Properties	
	1.2	Dihedral Groups	
		1.2.1 Triangle	
		1.2.2 n-gon	
		1.2.3 Definition	
	1.3	Symmetric Group	
		1.3.1 Cycle Decomposition	
	1.4	Homomorphisms and Isomorphisms	
	1.5	Group Actions	
2	Subgroups 1		
	2.1	Definition and Examples	
	2.2	Centralizers and Normalizers, Stabilizers and Kernels	
	2.3	Cyclic groups	
3	Quotient Groups and Homomorphisms 14		
	3.1	Definition and Examples	
	3.2	More on Cosets and Lagrange's Theorem	
	3.3	The Isomorphism Theorems	
	3.4	Transpositions and the Alternating Group	
		3.4.1 The Alternating Group	
4	Group Actions 2		
	4.1	Group Actions and Permutation Representations	
		4.1.1 cycle decomposition	
	4.2	The left-multiplication action()	
	4.3	Conjugation action of G on G	

• Book: Dujmit Foote "Modern Algebra 3rd ed"

• Midterm 3/23 in class

• Final 5/8

• Homeworks: weekly

 \bullet Honors Credit: Extra sections + homeworks

1 Groups

Operations often modeled: $+, \cdot$

composition: space of thing that you are looking at \leftarrow alomst always not commutative

Groups: One operation \cdot

Rings: 2 operations: $+, \cdot$ that play nice

1.1 Axioms of Groups

By "operation" on S, I mean a function $\cdot S \times S \to S$

Instead of $\cdot(a,b)$, we write $a \cdot b$

A group is a set G with an operation \cdot satisfying:

- 1. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. There is an identity element: there is one special element $1 \in G$ so $1 \cdot a = a$ for any $a \in G$ and $a \cdot 1 = a$ for any $a \in G$
- 3. Inverses: For any $a \in G$, there is a $b \in G$ so $a \cdot b = b \cdot a = 1$

Note: $a \cdot b = b \cdot a$ is <u>not</u> an axiom.

If G satisfies this, we call it an abelian group

Example 1. $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$

- 1. 0 is the identity
- 2. inverses: -a is the inverse of a

Example 2. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot)$

- 1. 1 is the identity
- 2. Inverses: $\frac{1}{a}$ is the inverse of a

Note: $(\mathbb{Z} \setminus \{0\}, \cdot)$ is not a group

(V, +) is a group

Example 3. For n, a natural number, $(\mathbb{Z}/n\mathbb{Z}, +)$ is a group

On \mathbb{Z} , we say a, b are (mod n) equivalent (written $a \equiv b \pmod{n}$) if n divides a - b $\mathbb{Z}/n\mathbb{Z}$ is the set of equivalence classes mod n

Example 4. n = 2: (odds, evens) which is $\{0_{\text{mod } 2}, 1_{\text{mod } 2}\}$

 $17_{\text{mod }2} + 64_{\text{mod }2} = 81_{\text{mod }2} = 1_{\text{mod }2}$

Example 5. $\mathbb{Z}/3\mathbb{Z} = \{0_{\text{mod } 3}, 1_{\text{mod } 3}, 2_{\text{mod } 3}\}$

Example 6. $(2\mathbb{Z}, +)$ is a group (even numbers)

Example 7. If (G, \cdot_G) and (H, \cdot_H) are groups, then $(G \times H, \cdot_G \times \cdot_H)$ is a group

- $(g_1, h_1) \cdot_{G \times H} (g_2, h_2) = (g_1 \cdot_G g_2, h_1 \cdot_H h_2)$
- Identity: $1_{G \times H} = (1_G, 1_H)$
- Inverse of (g,h): (g^{-1},h^{-1})

1.1.1 Properties

- G has exactly 1 identity
- Each $g \in G$, there is exactly 1 inverse of g we write this g^{-1} (i.e. $^{-1}: G \to G$)
- $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$
- $(a_1 \cdot a_2 \cdot \ldots \cdot a_m)^{-1} = a_m^{-1} \cdot a_{m-1}^{-1} \cdot \ldots \cdot a_1^{-1}$

Proof.

- Suppose a, b are both identities in G. Then $a = a \cdot b = b$
- Suppose a, b are both inverses of g. i.e $a \cdot g = g \cdot a = 1$ and $b \cdot g = g \cdot b = 1$ Then $b = 1 \cdot b = (a \cdot g) \cdot b = a \cdot (g \cdot b) = a \cdot 1 = a$

- know $g \cdot g^{-1} = g^{-1} \cdot g = 1$ so $(g^{-1})^{-1} = g$
- $(a \cdot b)^{-1}$ satisfies: $x \cdot (a \cdot b) = (a \cdot b) \cdot x = 1$ we check $b^{-1}a^{-1}$ does this $(b^{-1}a^{-1}) \cdot (a \cdot b) = b^{-1}(a^{-1} \cdot a)b = b^{-1} \cdot 1 \cdot b = b^{-1}b = 1$ $(ab)(b^{-1}a^{-1}) = a(b \cdot (b^{-1}) \cdot a^{-1} = a \cdot 1 \cdot a^{-1} = aa^{-1} = 1$

Theorem 8. In G, there is exactly 1 solution to the equation ax = b for a fixed $a, b \in G$

Corollary 9. Cancellation laws:

$$ax = ay \implies x = y$$

 $xa = ya \implies x = y$

Proof. If $a \cdot x = b$

$$a^{-1} \cdot a \cdot x = a^{-1} \cdot b$$
$$(a^{-1} \cdot a) \cdot x = a^{-1} \cdot b$$
$$1x = x = a^{-1} \cdot b$$

Definition 10. For $x \in G$, the order of x, written |x|, is the least n > 0 so

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{n} = 1_G$$

If there is no such n, x has "infinite order"

Example 11. In $(\mathbb{R} \setminus \{0\}, \cdot)$, $|5| = \infty$, |-1| = 2, |1| = 1

Example 12. $(\mathbb{Z}/6\mathbb{Z}, +)$, $|1_{\text{mod } 6}| = 6$, $|2_{\text{mod } 6}| = 3$, $|3_{\text{mod } 6}| = 2$, $|4_{\text{mod } 6}| = 3$, $|5_{\text{mod } 6}| = 2$

1.2 Dihedral Groups

1.2.1 Triangle

Look at the collection of symmetries of an equilateral Triangle

Rotation right

$$\bullet$$
 1 \rightarrow 2

$$\bullet$$
 2 \rightarrow 3

•
$$3 \rightarrow 1$$

r

Reflection around 1

- \bullet 1 \rightarrow 1
- \bullet 2 \rightarrow 3
- \bullet 3 \rightarrow 2

s

Rotation Left

•
$$1 \rightarrow 3$$

$$\bullet$$
 2 \rightarrow 1

•
$$3 \rightarrow 2$$

 r^2

Reflection around 3

- $1 \rightarrow 2$
- \bullet 2 \rightarrow 1
- $3 \rightarrow 3$

$$r \circ s = s \circ r^2$$

Reflection around 2

- $1 \rightarrow 3$
- \bullet 2 \rightarrow 2
- $3 \rightarrow 1$

 $r^2 \circ s$

Identity

- $1 \rightarrow 1$
- \bullet 2 \rightarrow 2
- $3 \rightarrow 3$

 r^3, s^2

$$r^2 s = r \cdot (r \cdot s)$$

$$= (r \cdot s) \cdot r^{-1}$$

$$= s \cdot (r^{-1} \cdot r^{-1})$$

$$= s \cdot (r^{-1})^2$$

(Symmetry of \triangle, \circ) = D_6

1.2.2 n-gon

Rotation right

Reflection around 1

My Symmetry

• $k \to k+1$ (for k < n) • $k \to n+2-k$

• $1 \rightarrow k$

• $n \rightarrow 1$

 \bullet 1 \rightarrow 1

• $2 \rightarrow k+1$

r, |r| = n

s, |r| = n

 r^k

So, $\{r, s\}$ generates the group of sym of regular n-gon

(Symmetry of a regular n-gon, \circ) = D_{2n}

1.2.3 Definition

Rules of dihedral group multiplication in D_{2n} $\{r, s\}$

- a) $r^n = 1$
- b) $s^2 = 1$
- c) $r \cdot s = s \cdot r^{-1}$

When you have generators S for G and can list R_1, R_2, R_3 all the rules you need to know to do multiplication in G Then $\langle S, R_1, R_2, R_3 \rangle$ is a "presentation of the group G"

$$D_{2n} = \langle r, s \mid r^n = 1, s^2 = 1, rs = sr^{-1} \rangle = \{1, r, \dots, r^{n-1}, s, rs, \dots, rs^{n-1}\}$$

Fact: There is a finite set of rule R_1, \ldots, R_{2000} so $\langle a, b | R_1, \ldots, R_{2000} \rangle$ "undecidable word problem"

1.3 Symmetric Group

Given Ω any set, $S_{\Omega} =$ The permutations of $\Omega =$ The bijections $f : \Omega \to \Omega$

Example 13. $\Omega = \{1, 2, 3\}$

 $S_n = S_{\{1,2,\ldots,n\}}$ has n! elements

$$|S_3| = 6, |D_6| = 6, D_6 \subseteq S_3$$

$$|D_{2n}| = 2n$$

$$|S_n| = n!$$

1.3.1 Cycle Decomposition

 $1 \to 4, 2 \to 1, 3 \to 2, 4 \to 3, 5 \to 5$ can be written as (1432)(5)

 $(a_1 \dots a_{m_1})(a_{m_1+1} \dots a_{m_2})$ with a_i is disjoint represents the function which satisfies

- a_i to a_{i+1} unless $i = m_j$ for some j
- a_{m_i} to $a_{m_{i-1}} + 1$ $j \neq 1$
- a_{m_1} to a_1

$$(1)(2)(3)(4)(5)(6)(7) = 1$$

$$(1442) \circ (3421) = (124)$$

$$|(123)(45)| = 6$$

Order of a product of disjoint cycles is the lcm(lengths of the cycles)

1.4 Homomorphisms and Isomorphisms

Definition 14. A homorphism from (G, \cdot_G) to (H, \cdot_H) is a function $f: G \to H$ such that

$$f(x \cdot_G y) = f(x) \cdot_H f(y)$$

for all $x, y \in G$

•
$$f(x^{-1}) = f(x)^{-1}$$

$$f(x) = f(1_G \cdot_G x)$$

$$= f(1_G) \cdot_H f(x)$$

$$f(x) \cdot_H (f(x))^{-1} = f(1_G) \cdot_H f(x) \cdot_H (f(x))^{-1}$$

$$1_H = f(1_G)$$

$$1_H = f(1_G) = f(x \cdot_G x^{-1}) = f(x) \cdot_H f(x^{-1})$$

$$1_H = f(1_G) = f(x^{-1} \cdot_G x) = f(x^{-1}) \cdot_H f(x)$$

Definition 15. If f is a bijection and a homorphism, then f is an isomorphism

Example 16. $\cdot id: G \rightarrow G$

$$\cdot^{-1}: G \to G, x \mapsto x^{-1}$$

$$(x \cdot y)^{-1} = (x^{-1}) \cdot (y^{-1})$$

is an isomorphism if and only if G is abelian

$$xyx^{-1}y^{-1} = 1$$

Example 17. $e^x: (\mathbb{R}, +) \to (\mathbb{R}, \cdot), f(x+y) = f(x) \cdot f(y)$ is an isomorphism

Example 18. $f: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$

- \bullet $0 \rightarrow 0$
- $1 \rightarrow 1$
- $2 \rightarrow 2$
- $3 \rightarrow 0$
- $4 \rightarrow 1$
- $5 \rightarrow 2$

is a homorphism NOT an isomorphism

Definition 19. G and H is isomorphic if there is a $f:G\to H$ which is an isomorphism (written $G\cong H$)

If $G \cong H$ then

 \bullet G is a belian iff H is abelian

Abelian: For every $x, y \cdot x \cdot_G y = y \cdot_G x$

$$f(y) \cdot_H f(x) = f(y \cdot_G x) = f(x \cdot_G y) = f(x) \cdot_H f(y)$$

So, any 2 elements

If f is a \cong , $f: G \to H$ and $x \in G$ has order 2 Then $f(x) \in H$ has order 2

$$x^{2} = 1_{G}$$
$$(f(x))^{2} = f(x) \cdot f(x) = f(x \cdot x) = f(1_{G}) = 1_{H}$$

Recall $D_{2n} = \langle r, s \mid r^n = 1, s^2 = 1, rs = sr^{-1} \rangle$

If $G = \langle g_1, \dots, g_n \mid R_1, R_2, \dots \rangle$ and $h_1, \dots, h_n \in H$ so $R_1(h_1 \dots h_n) \dots$ Then $f : g_i \mapsto h_i$ is a homomorphism

1.5 Group Actions

Definition 20. A group action is a function

$$\alpha: G \times A \to A$$

so

$$\alpha(g, \alpha(h, a)) = \alpha(g \cdot h, a)$$

We write $g \cdot a$ for $\alpha(g, a)$

$$g \cdot (h \cdot a) = (g \cdot h) \cdot a$$

• $1_G \cdot a = a$ for any $a \in A$

For any $g \in G$ the function $g \cdot : A \to A$, $a \mapsto g \cdot a$ is a bijection of a.

$$(g \cdot (g^{-1} \cdot_G)) : A \to A$$
$$= (g \cdot g^{-1}) \cdot a$$
$$= 1_G \cdot a = a$$
$$q^{-1}(g \cdot a) = a$$

Since this function has an inverse (as a function) it is bijective

Recall: S_A is the group of all permutations of A

Get a function $\sigma: G \to S_A$ and $\sigma(g) =$ the function $a \mapsto g \cdot a$

Observation: σ is a homomorphism

$$\sigma(g \cdot h) = \sigma(g) \cdot \sigma(h)$$

Example 21. (\mathbb{R} , +) acts on $A = \{1, 2, 3\}$

$$g \cdot a = a$$

$$\sigma: \mathbb{R} \to S_3, g \mapsto 1_{S_3}$$

2 Subgroups

2.1 Definition and Examples

Definition 22. Let G be a group. The subset H of G is a subgroup of G if

- $1_G \in H$
- $\forall x, y \in H, x \cdot y \in H$
- $\forall x \in H, x^{-1} \in H$

We write $H \leq G$ to indicate that H is a subgroup of G.

Proposition 23. A subset H of a group G is a subgroup of G if and only if

- $H \neq \emptyset$
- $\forall x, y \in H, xy^{-1} \in H$

2.2 Centralizers and Normalizers, Stabilizers and Kernels

Definition 24 (Centralizer). Let G be a group and A be a subset of G. The centralizer of A in G is

$$C_G(A) = \{ g \in G \mid gag^{-1} = a \text{ for all } a \in A \}$$

Moreover, $C_G(A)$ is a subgroup of G.

Definition 25 (Center). Let G be a group. The center of G is

$$Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}$$

Definition 26 (Normalizer). Let G be a group and A be a subset of G. Let

$$gAg^{-1} = \{gag^{-1} \mid a \in A\}$$

The Normalizer of A in G is

$$N_G(A) = \{ g \in G \mid gAg^{-1} = A \}$$

Definition 27 (Stabilizer). If G is a group acting on a set S and s is some fixed element of S the stabilizer of s is

$$G_s = \{ g \in G \mid g \cdot s = s \}$$

2.3 Cyclic groups

Definition 28. A group H is a cyclic if H can be generated by a single element. i.e., $H = \langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$ for some $x \in H$.

Proposition 29. If $H = \langle x \rangle$, then |x| = n.

Proof. Let |x| = n then $1, x, x^2, \dots, x^{n-1}$ are distinct

If
$$x^a = x^b$$
 for $0 \le a < b < n$ then $x^{b-a} = 1$ but $b-a < n$ contradict

Proposition 30. Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^n = 1$ and $x^m = 1$, then $x^d = 1$, where d = (m, n).

Proof. By the Euclidean Algorithm, there exists $q, r \in \mathbb{Z}$ such that d = mr + ns where d = (m, n). Thus

$$x^{d} = x^{mr+ns} = (x^{m})^{r}(x^{n})^{s} = 1^{r}1^{s} = 1$$

Theorem 31. For any two cyclic groups of the same order are isomorphic.

Proof. Suppose $\langle x \rangle$ and $\langle y \rangle$ are both cyclic groups of order n. Let $\varphi : \langle x \rangle \to \langle y \rangle$ be defined by $\varphi(x^k) = y^k$

• φ is well defined, if $x^r = x^s$ then $\varphi(x^r) = \varphi(x^s)$. Because $x^r = x^s$ then from proposition 30, $n \mid r - s, r = tn + s$ then

$$\varphi(x^r) = \varphi(x^{tn+s})$$

$$= y^{tn+s}$$

$$= (y^n)^t y^s$$

$$= y^s$$

$$= \varphi(x^s)$$

- φ is injective
- φ is surjective

Theorem 32. If H_1, H_2 is cyclic groups and $|H_1| = |H_2|$ then $H_1 \cong H_2$.

Proposition 33. Let G be a group, let $x \in G$ and let $a \in \mathbb{Z} - \{0\}$.

- 1. If $|x| = \infty$, then $|x^a| = \infty$
- 2. If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$
- 3. If $|x| = n < \infty$ and $a \mid n$ then $|x^a| = \frac{n}{a}$

Proof.

- 1. Proof by contradiction, Suppose $|x| = \infty$ and $|x^a| = m < \infty$ then, $1 = (x^a)^m = x^{am}$ and $x^{-am} = (x^{am})^{-1} = 1^{-1} = 1$. Since either am or -am is greater than 0, then it is contradicts $|x| = \infty$
- 2. Since $x^n = 1$ so $(x^n)^{\frac{a}{(n,a)}} = (x^a)^{\frac{n}{(n,a)}}$ then $|x^a| = \frac{n}{(n,a)}$.
- 3. Just a special case of 2.

Theorem 34. If $H = \langle x \rangle$ and |x| = n then $x^a = 1$ if and only if $n \mid a$.

Theorem 35. If $H = \langle x \rangle$ and $K \leq H$. Then K is cyclic

Proof. Let a be the least positive integer such that $x^a \in K$, let $y = x^a$

Then we want to show $\langle y \rangle = K$.

- $\langle y \rangle \subseteq K$: Obvious
- $\langle y \rangle \supseteq K$: Given $x^b \in K$ we can write b = am + r with $0 \le r < a$

$$x^{b} = x^{am+r} = (x^{a})^{m} x^{r}$$
$$= y^{m} x^{r} (x^{r} \in K)$$
$$x^{r} = y^{-m} x^{b} (y^{-m}, x^{b} \in K)$$

So, $x^r \in K$ so r = 0, $x^b = y^m$

Therefore $\langle y \rangle = K$

3 Quotient Groups and Homomorphisms

3.1 Definition and Examples

Definition 36. If $\varphi: G \to H$ is a homomorphism then $\ker(\varphi) = \{x \in G \mid \varphi(x) = 1_H\}$

Lemma 37. $ker(\varphi) \leq G$

Proof. Proof eash properties of subgroup

• Closed identity, Since $\varphi(1_G) = 1_H$

$$\varphi(1_G) = \varphi(1_G 1_G) = \varphi(1_G) \cdot \varphi(1_G) = 1$$

So, $1_G \in \ker(\varphi)$

• Closed under inverses, if $x \in ker(\varphi)$

$$\varphi(x^{-1}) = (\varphi(x))^{-1} = (1_H)^{-1} = 1_H$$
$$1_H = \varphi(1_G) = \varphi(x^{-1}x) = \varphi(x) \cdot \varphi(x^{-1})$$

So, $x^{-1} \in \ker(\varphi)$

• Closed under multiplication, if $x, y \in \ker(\varphi)$

$$\varphi(xy) = \varphi(x) \cdot \varphi(y)$$
$$= 1_H \cdot 1_H = 1_H$$

So, $xy \in \ker(\varphi)$

Definition 38. Given $\varphi: G \to H$ a homomorphism and $K = \ker(\varphi)$ For any $a \in H$, let

$$X_a = \{ x \in G \mid \varphi(x) = a \}$$

then

$$G/K = (\{X_a \mid a \in H\}, \circ)$$

where

$$X_a \circ X_b = X_{ab}$$

Lemma 39. If $\varphi: G \to H$ is a homomorphism, $K = \ker(\varphi)$, and $\varphi(b) = a$ then $X_a = bK$ where $bK = \{bz \mid z \in K\}$

Proof. The goal is to show $X_a = bK$

• $X_a \supseteq bK$, Given $y \in bK$, y = bz for some $z \in K$

$$\varphi(y) = \varphi(b \cdot z) = \varphi(b) \cdot \varphi(z) = a \cdot 1_H = a$$

• $X_a \subseteq bK$, Given $\varphi(y) = a$

$$\varphi(b^{-1}y) = \varphi(b^{-1})\varphi(y) = (\varphi(b))^{-1} \cdot \varphi(y) = a^{-1} \cdot a = 1$$

Therefore $X_a = bK$

Definition 40. For any $N \leq G$ and for any $g \in G$ let

$$gN = \{gn \mid n \in N\}$$

and

$$Ng = \{ ng \mid n \in N \}$$

Theorem 41. Let G be a group and K be the kernel of some homomorphism. Then the set whose elements are the left cosets of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group G/K.

Proof. Let $X,Y \in G/K$ and let Z = XY in G/K. Since K is the kernel of some homomorphism, $\varphi : G \to H$, so $X = \varphi^{-1}(a)$ and $Y = \varphi^{-1}(b)$ for some $a,b \in H$. By definition of the operation in G/K, $Z = \varphi^{-1}(ab)$.

Let u, v be arbitrary representatives of X, Y ($\varphi(u) = a, \varphi(v) = b$ and X = uK, Y = vK)

GOAL: show $uv \in Z$

$$uv \in Z \iff uv \in \varphi^{-1}(a, b)$$

 $\iff \varphi(uv) = ab$
 $\iff \varphi(u)\varphi(v) = ab$

Therefore Z is the (left) coset (uv)K.

Proposition 42. If $N \leq G$ then for all $u, v \in G, uN = vN$ if and only if $v^{-1}u \in N$

Proof. Since N is a subgroup of G, since $1_G \in N$ then

$$G = \bigcup_{g \in G} gN$$

If $x \in uN \cap vN$ then for some $n_1, n_2 \in N$

$$x = un_1 = vn_2$$

 $v^{-1}u = n_2n_1^{-1} \in N$

For any $n \in N$

$$un = (vv^{-1})un = v(v^{-1}un) \in vN$$

So $uN \subseteq vN$, wlog, $vN \subseteq uN$. Therefore uN = vN.

Definition 43. The element gng^{-1} is called the *conjugate* of $n \in N$ by g. The set gNg^{-1} is called the *conjugate* of N by g. if $gNg^{-1} = N$ then g is said to *normalize* N.

If $N \leq G$ called *normal* if for any $g \in G$ normalizes N. In another word, $gNg^{-1} = N$ for all $g \in G$, written

$$N \trianglelefteq G$$

Theorem 44. For $N \leq G$, the following are equivalent

- $N \leq G$
- $N_G(N) = G$
- gN = Ng for all $g \in G$
- $gNg^{-1} \subseteq N$ for all $g \in G$

3.2 More on Cosets and Lagrange's Theorem

Theorem 45 (Lagrange's Theorem). Let G be a finite group and $H \leq G$, then

$$|H| \mid |G|$$

and

$$\frac{|G|}{|H|}$$

is the number of H-cosets in G.

Proof. let |H| = n and k be the number of H-cosets in G. By the definition, the map

$$H \to gH$$
$$h \mapsto gh$$

So

$$|gH| = |H| = n$$

Since G is partitioned into k disjoint subsets each of which has cardinality n, |G| = kn. Therefore, $k = \frac{|G|}{|H|}$.

Definition 46. If $H \leq G$, then the "index of H in G" is the number of left H cosets in G and denoted by |G:H|

Corollary 47. If G is a finite group and $x \in G$ then $|x| \mid |G|$, So, $x^{|G|} = 1$

Proof. let $H = \langle x \rangle \leq G$ So $|x| \mid |G|$ Since for $x^a = 1$ if and only if $|x| \mid a$, So $x^{|G|} = 1$

Corollary 48. If |G| = p is prime, then $G \cong \mathbb{Z}/p\mathbb{Z}$

Proof. Take any $x \in G \setminus \{1\}$, $|x| \mid |G|$, So, |x| = p Since $\langle x \rangle = H \leq G$ and p = |x| = |H| therefore H = G

Theorem 49. For any $n \in \mathbb{N}$ either $p \mid n$ or $p \mid n^{p-1} - 1$

Theorem 50 (Sylow). If G is finite of order $p^{\alpha} \cdot m$ where $p \nmid m$ where p is prime. Then G has a subgroup of size p^{α} .

Definition 51. If $H, K \leq G$ then

$$HK = \{hk \mid h \in H, k \in K\} = \bigcup_{h \in H} hK$$

Lemma 52. If cK intersects H then $|cK \cap H| = |K \cap H|$

Proof. Let $a \in cK \cap H$ let $f: K \cap H \to cK \cap H$, $x \mapsto ax$

Claim: $x \in K \cap H \implies ax \in cK \cap H \ ax \in H \ because \ a, x \in H \le G$

a=cl for some $l\in K$ because $a\in cK$ $ax=c\underbrace{(lx)}_{\in K}\in cK$ So, f is now injective

Claim: If $y \in cK \cap H$ then $a^{-1}y \in K \cap H$ $y \in cK$, y = cl, $a^{-1}y = (a^{-1}cl \in K)$

Theorem 53. If H, K are finite subgroups of G then

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Proof. $|HK| = |\bigcup_{h \in H} hK| = |K| \cdot \text{number of } K \text{-coests of the form } hK \text{ for } h \in H.$ Each

 $h \in H$ define a coset hK. But $h_1K = h_2K \iff h_2^{-1}h_1 \in K$ Thus

$$h_1K = h_2K \iff h_2^{-1}h_1 \in H \cap K \iff h_1(H \cap K) = h_2(H \cap K)$$

The number of distinct K-coset of the form hK for $h \in H$ is the number of distinct $H \cap K$ -cosets $h(H \cap K)$ for $h \in H$. By Lagrange Theorem, equal $\frac{|H|}{|H \cap K|}$

Proposition 54. For $H, K \leq G$ then $HK \leq G$ if and only if HK = KH

 $Proof. \Leftarrow assume HK = KH$

- $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$
- $(h_1k_1)(h_2k_2) = (h_1k_1)(k_3h_3) = h_1k_4h_3 = k_4h_5h_3 = k_4h_6 \in KH = HK$
- \Rightarrow Assume $HK \leq G$
 - $H, K \leq HK$ because $H = H \cdot 1 \subseteq HK, K = 1 \cdot K \subseteq HK$ So, for $a \in H, b \in K$, $a, b \in HK$ then $ba \in HK$. Therefore $KH \subseteq HK$
 - Let $y \in HK$, y = hk, $y^{-1} = k^{-1}h^{-1} \in KH$ So $HK \subseteq KH$

Corollary 55. If $H, K \leq G$ and $H \leq N_G(K)$. Then $HK \leq G$. In particular, if $K \subseteq G$ then $HK \leq G$ for any $H \leq G$.

3.3 The Isomorphism Theorems

Theorem 56 (First Isomorphism Theorem). If $\varphi: G \to H$ is a homomorphism then

- $\ker(\varphi) \leq G$
- $G/\ker(\varphi) \cong \varphi(G)$

Definition 57. $\varphi(G) = \operatorname{im}(\varphi) = \{ y \in H \mid \exists x \in G, \varphi(x) = y \}$

Proof.

• for any $x \in \ker(\varphi)$, for any $g \in G$

$$\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g^{-1})$$

$$= \varphi(g) \cdot 1_H \cdot \varphi(g^{-1})$$

$$= \varphi(g)\varphi(g^{-1})$$

$$= \varphi(g)\varphi(g)^{-1}$$

$$= 1_H$$

Since $\varphi(gxg^{-1}) = 1_H$, So $gxg^{-1} \in \ker(\varphi)$. Therefore $\ker(\varphi) \leq G$

• Let $f: G \to G/\ker(\varphi), \ a \cdot K \mapsto \varphi(a) \ (K = \ker(\varphi))$

$$aK = bK \iff b^{-1}a \in K$$

If aK = bK want $\varphi(a) = \varphi(b)$

$$\varphi(a) = \varphi(b \cdot b^{-1}a)$$

$$= \varphi(b) \cdot \varphi(b^{-1}a)$$

$$= \varphi(b) \cdot 1$$

$$= \varphi(b)$$

$$f(aK \cdot bK) = f(ab \cdot K) =$$

Corollary 58. Let $\varphi: G \to H$ be a homomorphism

- 1. φ is injective iff $\ker(\varphi) = \{1_G\}$
- 2. $|G : \ker(\varphi)| = |\varphi(G)|$

Theorem 59 (2nd or "Diamond" isonorphism theorem). Given G, a group, $A, B \leq G$ and $A \leq N_G(B)$ (i.e., $aBa^{-1} = B$ for every $a \in A$) then

- *AB* ≤ *G*
- $B \leq AB$
- $A \cap B \triangleleft A$

• $AB/B \cong A/(A \cap B)$

Proof.

• For $B \subseteq AB$. For any $a \in A, b \in B$

$$abB(ab)^{-1} = B$$

 $abB(ab)^{-1} = a(bBb^{-1})a^{-1} = aBa^{-1} = B$

• For $A \cap B \subseteq A$

we want for any $a \in A$, $a(A \cap B)a^{-1} = A \cap B$

$$a(A \cap B)a^{-1} \subseteq aAa^{-1} = A$$
$$a(A \cap B)a^{-1} \subseteq aBa^{-1} = B$$

Given $y \in A \cap B$, for any $a \in A$, WANT $y \in a(A \cap B)a^{-1}$

$$a^{-1}ya \in a^{-1}(A \cap B)A \subseteq A \cap B$$
$$y = a(a^{-1}ya)a^{-1} \in a(A \cap B)A^{-1}$$

Therefore $a(A \cap B)a^{-1} = A \cap B$, so $A \cap B \leq A$

• WANT $\varphi: A \to AB/B$

$$x \in ab \cdot B = aB$$

 $x = ab \cdot b' \text{ (for some } b' \in B)$
 $= a \cdot (bb') \text{ (for some } b' \in B)$

 $\varphi(a) = aB$

$$A \to AB \to AB/B$$

 $a \mapsto a \mapsto AB$

$$\varphi(a \cdot a') = a \cdot a'B$$

$$\varphi(a) \cdot \varphi(a') = aB \cdot a'B = aa'B$$

 φ is onto. For any $ab \in AB$

Theorem 60 (The 3rd theorem). Given G, a group, $H, K \subseteq G$ with $H \subseteq K$ Then $K/H \subseteq G/H$ and $(G/H)/(K/H) \cong (G/K)$

3.4 Transpositions and the Alternating Group

3.4.1 The Alternating Group

Let x_1, \ldots, x_n be independent variables and let Δ be the polynomial

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j)$$

For each $\sigma \in S_n$ let σ act on Δ by permuting the variable in the same way as σ

$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)})$$

For each $\sigma \in S_n$ let

$$\varepsilon(\sigma) = \begin{cases} 1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta \end{cases}$$

Definition 61.

- $\varepsilon(\sigma)$ is call the sign of σ
- if $\varepsilon(\sigma) = 1$, σ is called an even permutation, if -1 it is called an odd permutation

Proposition 62. The map $\varepsilon: S_n \to \{1, -1\}$ is a homomorphism

Proof. Let k_1 be the number of inversions in σ and k_2 be the number of inversions in τ Obviously, $\varepsilon(\sigma) = (-1)^{k_1}$ and $\varepsilon(\tau) = (-1)^{k_2}$. Let k be the number of inversion in $\sigma \circ \tau$, so, $k = k_1 + k_2 - 2 \cdot \text{(number of inversion in the same position)}$. Hence, $\varepsilon(\sigma \circ \tau) = (-1)^k = \varepsilon(\sigma) \cdot \varepsilon(\tau)$

Definition 63 (alternating group). The alternating group of degree n, A_n , is the kernel of the homomorphism ε

Proposition 64. The permutation σ is odd \iff the number of cycles of even length if its sycle decomposition is odd.

4 Group Actions

For any $g \in G$ we have

$$\sigma_g: A \to A$$
$$a \mapsto g \cdot a$$

 $\varphi:g\mapsto\sigma_g$

- $g \cdot (h \cdot a) = gh \cdot a$
- $1 \cdot a = a$

Example 65. $\varphi: G \to S_A$ is a homomorphism $g \cdot a = \varphi(g)(a)$, then φ is homomorphism then G action on A by $g \cdot a = \varphi(g)(a)$

Proof.

$$g \cdot (h \cdot a) = \varphi(g)(\varphi(h)(a))$$
$$= (\varphi(g) \circ \varphi(h))(a)$$
$$= \varphi(gh)(a)$$
$$= gh \cdot a$$

$$1 \cdot a = \varphi(1)(a)$$
$$= 1_{S_A}(a)$$
$$= a$$

Example 66. The Kernel of the action G on A is

$$\{g \in G \mid ga = a \ \forall a \in A\} = \{g \mid \sigma_g = id_A = 1_{S_A}\}$$

Example 67. For each $a \in A$, the stabilizer of a is

$$G_a = \{ g \in G \mid g \cdot a = a \}$$

Observation 68. If G acts on A, faithfully then

$$G \cong \varphi(G)$$

Proof.
$$G \cong G/\ker(\varphi) \cong \varphi(G) \subseteq S_A$$

4.1 Group Actions and Permutation Representations

Definition 69. Let G be a group, $\varphi: G \to S_A$ is a "permutation representation" of G into S_A

Proposition 70 (Orbit Equivalence Relations). Let G acts on A. Define the relation \sim on A by $a \sim b$ if a = gb for some $g \in G$ Then \sim is an equivalence relation

For each $a \in A$, |[a]| is $|G:G_a|$

Proof. Check \sim

- (reflexive $a \sim a$) $1_G \cdot a = a$
- (symmetric $a \sim b \implies b \sim a$) $\sigma(g^{-1}) = (\sigma_g)^{-1}$
- (transitive $a \sim b \wedge b \sim c \implies a \sim c$)

$$h \cdot b = a$$
$$h \cdot g \cdot c = a$$

$$(hg) \cdot c = a$$

Every element of G

Definition 71. Let G acts on A.

- $[a] = \{b \mid a \sim b\}$ is called the orbit of G containing a
- $a \sim b$ is said "a and b are equivalent"
- The action of G on A is **transitive** if there is only 1 orbit (orbit class)

4.1.1 cycle decomposition

Example 72. Every element $\sigma \in S_A$ has a cycle decomposition

$$\sigma = (a_1 \ a_2 \ \dots)(b_1 \ b_2 \ \dots) \dots$$

Theorem 73. Cycle decomposition are unique up to permutiting between cycles and rotating the cycles

Theorem 74. If $\sigma \in S_A$, then σ is a product of distinct elements $(n \ x)$ or $(n \ y)$ for $n \in A, x, y \notin A$

4.2 The left-multiplication action()

G acts on G by $g \cdot h = gh$, $g_1(g_2 \cdot h) = g_1g_2h = g_1g_2 \cdot h$

Observation 75. The left-multiplication action is transitive, faithful and $G_a = \{1\}$ for any $a \in G$

Proof. $(ba^{-1}) \cdot a = b$, so ba^{-1} moves a to b so, the action is transitive.

$$x \in G_a \iff x \cdot a = a \iff xaa^{-1} = a^{-1} \iff x = 1$$

Theorem 76. $H \leq G$, G act on A by left-multiplication

- 1. G acts transitively on A
- 2. $G_{1H} = H$
- 3. ker of the action $(= \{g \in G \mid g \cdot aH = aH\}) = \bigcap_{x \in G} xHx^{-1}$ =the normal subgroup of G which is contained in H

Proof. 1.
$$(ba^{-1}) \cdot aH = bH$$

2.

$$G_{1H} = \{g \in G \mid g \cdot 1H = 1H\}$$

$$= \{g \in G \mid gH = 1H\}$$

$$= \{g \in 1^{-1}g \in H\}$$

$$= \{g \in g \in H\}$$

$$= H$$

3.

$$g \in \ker(\mathrm{action}) \iff g \cdot xH = xH \quad \text{for every } x \in G$$

$$\iff g \in \bigcap_{x \in G} \{a \in G \mid a \cdot xH = xH\}$$

$$\iff g \in \bigcap_{x \in G} \{a \in G \mid x^{-1}ax \in H\}$$

$$\iff g \in \bigcap_{x \in G} \{a \in G \mid a \in xHx^{-1}\}$$

$$\iff g \in \bigcap_{x \in G} xHx^{-1}$$

Corollary 77. If G is a finite group of order n. Let p be the smallest prime dividing n. Suppose $H \leq G$ so |G:H| = p then $H \leq G$

Proof. $G \curvearrowright A = \{ \text{left } H\text{-cosets} \}$

 $\pi: G \to S_A$ be the representation of this action

 $k = \ker(\pi)$

Goal:
$$H = K$$
, i.e., $|H : K| = 1$

4.3 Conjugation action of G on G

$$g \cdot h = ghg^{-1}$$
$$g \cdot S = gSg^{-1} = \{gxg^{-1} \mid x \in S\}$$

Size of an orbit, orbit of $a = |G: G_a|$

Size of orbit of $h \in G = |G: C_G(h)|, S \subseteq G = |G: N_G(S)|$

Theorem 78 (the class equation). let G be a finite group and $g_1, g_2, \ldots g_r$ be reoresentatives of all the conjugacy classes then

$$|G| = \sum_{i=1}^{r} |\operatorname{Orbit}(g_i)| = \sum_{i=1}^{r} |G: G_{g_i}| = \sum_{i=1}^{r} |G: C_G(g_i)|$$

let g_1, \ldots, g_r be representative of every conjugate class not contained in Z(G)

$$|G| = \sum_{i=1}^{r} |G : C_G(g_i)| + |Z(G)|$$

Theorem 79. let p be prime, G a group of order p^{α} for some $\alpha \in \mathbb{N}$ then $|Z(G)| \neq 1$

Proof. let g_1, \ldots, g_r represents all conjugacy classes of size ≥ 1

$$p^{\alpha} = |G| = \sum_{i=1}^{r} |g : C_G(g_i)| + |Z(G)|$$
$$|G| = \underbrace{|G : C_G(g_i)|}_{\neq 1} \cdot |C_G(g_i)|$$

So,
$$p \mid |G : C_G(g_i)|$$
, so $p \mid |Z(G)| \implies |Z(G)| \ge p$

Example 80. Q:What is a conjugacy class in S_n ?

Describe when 2 diff, products of disj cycles are conjugate

$$\sigma = (1\ 2\ 3)(4\ 5)(6), \text{ for } \tau = (1\ 2\ 3\ 4\ 5\ 6)$$

$$\tau \sigma \tau^{-1} = (1)(2\ 3\ 4)(5\ 6)$$

$$\sigma = (6)(1\ 2\ 3)(4\ 5)$$

$$\tau \sigma \tau^{-1} = (\tau(6))(\tau(1)\ \tau(2)\ \tau(3))(\tau(4)\ \tau(5))$$

Observation 81. If $\sigma = (a_1 \ldots a_{r_1})(a_{r_1+1} \ldots a_{r_2}) \ldots$ then

$$\tau \sigma \tau^{-1} = (\tau(a_1) \dots \tau(a_{r_1}) \dots$$

Proof.

$$\tau \sigma \tau^{-1}(\tau(a_j)) = \tau \sigma(a_j) = \tau(a_{j_1})$$
$$\tau \sigma \tau^{-1}(\tau(a_{r_n})) = \tau \sigma(a_{r_n}) = \tau(a_{r_{n-1}} + 1)$$

If $\sigma =$ a product of disj cycles of lengths n_1, \ldots, n_r (including 1-cycles) and $n_1 \leq \ldots \leq n_r$ then $(n_1 \ldots n_r)$ is the cycle-type of σ

Observation 82. p is conj to $\sigma \iff$ they have the same cycle-type.

Example 83. The conj classes in S_5