Transformée de Fourier (2)

Bruno Brouard, Bertrand Lihoreau, Laurent Simon

Licence Acoustique

Année universitaire 2014-2015

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Transformée de Fourier (TF) des signaux à temps continu

$$X(F) = \mathsf{TF}\{x(t)\} = \int_{t=-\infty}^{t=+\infty} x(t) e^{-j2\pi Ft} dt$$

X(F) représente le spectre du signal temporel x(t).

Transformée de Fourier (TF) des signaux à temps continu

$$X(F) = \mathsf{TF}\{x(t)\} = \int_{t=-\infty}^{t=+\infty} x(t) e^{-j2\pi Ft} dt$$

X(F) représente le spectre du signal temporel x(t).

Transformée de Fourier inverse (TFI) des signaux à temps continu

$$x(t) = TFI\{X(F)\} = \int_{F=-\infty}^{F=+\infty} X(F)e^{+j2\pi Ft}dF$$

Transformée de Fourier (TF) des signaux à temps continu

$$X(F) = TF\{x(t)\} = \int_{t=-\infty}^{t=+\infty} x(t) e^{-j2\pi Ft} dt$$

X(F) représente le spectre du signal temporel x(t).

Transformée de Fourier inverse (TFI) des signaux à temps continu

$$x(t) = TFI\{X(F)\} = \int_{F=-\infty}^{F=+\infty} X(F) e^{+j2\pi Ft} dF$$

2 représentations (pour le prix d'une)

- **1** domaine temporel : signal temporel x(t), variable t
- \bigcirc domaine fréquentiel : signal fréquentiel (spectre) X(F), variable F
- **3** * IL EST ABSOLUMENT INTERDIT D'ÉCRIRE F = 1/t !!! *

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- 2 Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Exponentielle décroissante (1/2)

Le signal

$$x(t) = egin{cases} e^{-lpha t} & ext{si} & t \geq 0 \ 0 & ext{sinon} \end{cases}$$

a une TF qui s'écrit

$$X(F) = \frac{1}{\alpha + j2\pi F}$$

Exercice : Calculer le module et la phase de X(F).

Exponentielle décroissante (2/2)

$$x(t) = egin{cases} e^{-lpha t} & ext{si} & t \geq 0 \ 0 & ext{sinon} \end{cases}$$

$$X(F) = \frac{1}{\alpha + j2\pi F}$$

Fenêtre rectangulaire (1/2)

Le signal

$$x(t) = \mathsf{Rect}_{\mathcal{T}}(t)$$

a une TF qui s'écrit

Fenêtre rectangulaire (1/2)

Le signal

$$x(t) = \operatorname{Rect}_{\mathcal{T}}(t)$$

a une TF qui s'écrit

$$X(F) = T \cdot \frac{\sin(\pi FT)}{\pi FT} \equiv T \cdot \operatorname{sinc}(\pi FT)$$

où sinc désigne le sinus cardinal, avec sinc $(\alpha) \equiv \frac{\sin(\alpha)}{\alpha}$.

Exercice: Donner l'expression des fréquences F_k qui vérifient $X(F_k) = 0$.

Fenêtre rectangulaire (2/2)

$$x(t) = \text{Rect}_{T}(t)$$

$$x(t)$$

Exercice : La TF X(F) est constitué d'un lobe principal et de plusieurs lobes secondaires. Exprimer en dB l'écart de niveau entre le maximum du lobe principal et le maximum du premier lobe secondaire.

4 11 1 4 11 1

Exponentielle complexe, cosinus et sinus (1/4)

A partir de la définition de la Transformée de Fourier Inverse, calculer la TFI de

$$X(F) = \delta(F - F_0)$$
 où F_0 est une constante.

En déduire la TF du signal

$$x(t) = e^{-j2\pi F_0 t}$$
 où F_0 est une constante.

En déduire les TFs des signaux

$$x(t) = A_0 \cos(2\pi F_0 t + \phi_0)$$

et

$$x(t) = A_0 \sin(2\pi F_0 t + \phi_0)$$

Exponentielle complexe, cosinus et sinus (2/4)

- Le signal $x(t) = e^{+j2\pi F_0 t}$ a une TF qui vaut $X(F) = \delta(F F_0)$.
- 2 Le signal $x(t) = e^{-j2\pi F_0 t}$ a une TF qui vaut $X(F) = \delta(F + F_0)$.
- 3 Le signal $x(t) = A_0 \cos(2\pi F_0 t + \phi_0)$ a une TF qui s'écrit

$$X(F) = \frac{A_0}{2} e^{j\phi_0} \delta(F - F_0) + \frac{A_0}{2} e^{-j\phi_0} \delta(F + F_0).$$

• Le signal $x(t) = A_0 \sin(2\pi F_0 t + \phi_0)$ a une TF qui s'écrit

$$X(F) = \frac{A_0}{2j} e^{j\phi_0} \delta(F - F_0) - \frac{A_0}{2j} e^{-j\phi_0} \delta(F + F_0).$$

Exponentielle complexe, cosinus et sinus (3/4)

Exponentielle complexe, cosinus et sinus (4/4)

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Rappel (1)

Tout signal x(t) périodique de période T_0 peut s'écrire suivant

$$x(t) = \sum_{n} c_n e^{j2\pi \frac{nt}{T_0}} = \sum_{n} c_n e^{j2\pi nF_0 t}$$

où $F_0 = 1/T_0$ est la fréquence fondamentale et c_n représente le poids de l'harmonique n (voir cours sur les séries de Fourier).

Rappel (1)

Tout signal x(t) périodique de période T_0 peut s'écrire suivant

$$x(t) = \sum_{n} c_n e^{j2\pi \frac{nt}{T_0}} = \sum_{n} c_n e^{j2\pi nF_0 t}$$

où $F_0 = 1/T_0$ est la fréquence fondamentale et c_n représente le poids de l'harmonique n (voir cours sur les séries de Fourier).

Rappel (2)

Le signal $e^{j2\pi nF_0t}$ a une TF de la forme $\delta(F - nF_0)$.

Rappel (1)

Tout signal x(t) périodique de période T_0 peut s'écrire suivant

$$x(t) = \sum_{n} c_n e^{j2\pi \frac{nt}{T_0}} = \sum_{n} c_n e^{j2\pi nF_0 t}$$

où $F_0 = 1/T_0$ est la fréquence fondamentale et c_n représente le poids de l'harmonique n (voir cours sur les séries de Fourier).

Rappel (2)

Le signal $e^{j2\pi nF_0t}$ a une TF de la forme $\delta(F-nF_0)$.

Rappel (3)

La TF d'une somme est égale à la somme des TF (voir plus loin).

TF du signal périodique

Le signal x(t) périodique de période T_0 , tel que (développement en série de Fourier)

$$x(t) = \sum_{n} c_n e^{j2\pi \frac{nt}{T_0}} = \sum_{n} c_n e^{j2\pi nF_0 t}$$

a donc une TF de la forme

TF du signal périodique

Le signal x(t) périodique de période T_0 , tel que (développement en série de Fourier)

$$x(t) = \sum_{n} c_n e^{j2\pi \frac{nt}{T_0}} = \sum_{n} c_n e^{j2\pi nF_0 t}$$

a donc une TF de la forme

$$X(F) = \sum_{n} c_n \delta(F - nF_0)$$

On parle alors de spectre de raies. L'information est disponible seulement pour les fréquences F multiples entiers de F_0 (terme nF_0).

Signaux périodiques (1)

Exercice : Sur la figure, préciser où sont les c_n .

Signaux périodiques (2)

<u>Exercice</u>: Comparer les 2 signaux périodiques: quelles ressemblances, quelles dissemblances?

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Dirac

Dirac temporel

Exercice : Calculer la TF du signal $x(t) = \delta(t)$.

Dirac temporel

Exercice : Calculer la TF du signal $x(t) = \delta(t)$.

Solution: $X(F) = 1, \forall F \in \mathbb{R}$.

Dirac fréquentiel

Exercice : Calculer la TFI du signal $X(F) = \delta(F)$.

Dirac fréquentiel

Exercice : Calculer la TFI du signal $X(F) = \delta(F)$.

Solution: $x(t) = 1, \forall t \in \mathbb{R}$.

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

TF d'une somme pondérée

Si $X_1(F)$ est la TF de $x_1(t)$ et si $X_2(F)$ est la TF de $x_2(t)$, alors la TF de $y(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t)$ s'écrit

TF d'une somme pondérée

Si $X_1(F)$ est la TF de $x_1(t)$ et si $X_2(F)$ est la TF de $x_2(t)$, alors la TF de $y(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t)$ s'écrit

$$Y(F) = \alpha_1 X_1(F) + \alpha_2 X_2(F)$$

Exercice : Calculer le module et la phase de Y(F) en fonction des modules et des phases de $X_1(F)$ et de $X_2(F)$.

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Translater un contenu fréquentiel en "hautes fréquences"

Objectif: Comment passer de X(F) à $X(F - F_0)$ avec $F_0 > 0$?

Exercice : calculer la TFI de $Y(F) = X(F - F_0)$.

- **1** Si $x(t) \in \mathbb{R}$, le signal y(t) est-il à valeurs réelles ?
- ② Si on souhaite que $y(t) \in \mathbb{R}$, comment faut-il compléter $X(F F_0)$?
- **3** Quelle conséquence a ce décalage fréquentiel sur la forme de y(t) ?

Solution: La TFI de $X(F - F_0)$ s'écrit $x(t) \cdot e^{j2\pi F_0 t}$

Application audio

Décalage fréquentiel

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Signal décalé en temps

Exercice: Si le signal x(t) a une TF X(F), comment s'écrit la TF de $y(t) = \alpha x(t - t_0) ?$

Signal décalé en temps

Exercice : Si le signal x(t) a une TF X(F), comment s'écrit la TF de $y(t) = \alpha x(t - t_0)$?

Solution: $Y(F) = X(F) \cdot e^{-j2\pi F t_0}$

Dessiner $x(t) = \text{Rect}_T(t - T/2)$ et calculer sa TF.

Sommaire

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Quelques exercices

Exercice : Calculer la TF du signal $x(t) = \delta(t - t_0) + \delta(t + t_0)$.

Exercice : Calculer la TF du signal $y(t) = x(t - t_1) + \alpha x(t - t_2)$ en fonction de X(F).

Attention : $|X_1(F) + X_2(F)| \neq |X_1(F)| + |X_2(F)|$

TF et somme de signaux

$$x(t) = x_1(t) + x_2(t)$$

$$|X(F)| = |X_1(F) + X_2(F)|$$

Sommaire

- Rappels du précédent cours
 - Définitions
 - Exercices (suite et fin du précédent cours)
- Autres signaux
 - Signaux périodiques
 - Dirac
- 3 Transformée de Fourier : propriétés
 - Linéarité
 - Décalage fréquentiel
 - Décalage temporel
 - Somme de signaux
 - Autres propriétés

Dilatation et compression du temps

Si
$$X(F)$$
 est la TF de $x(t)$, alors la TF de $y(t) = x(at)$ s'écrit $Y(F) = \frac{1}{a}X\left(\frac{F}{a}\right)$, avec $a > 0$.

Si 0 < a < 1, on dilate le signal temporel et on décale son spectre vers les basses fréquences (BF). Si a > 1, on compresse le signal et on décale son spectre dans les hautes fréquences (HF).

Application audio

Retournement temporel

Si X(F) est la TF de $x(t) \in \mathbb{R}$, alors la TF de y(t) = x(-t) s'écrit

Retournement temporel

Si X(F) est la TF de $x(t) \in \mathbb{R}$, alors la TF de y(t) = x(-t) s'écrit

$$Y(F) = X(-F) = X^*(F)$$

Les modules des TF Y(F) et X(F) sont identiques. Les phases des TF Y(F) et X(F) sont opposées.

Application audio

Parité et imparité (symétrie hermitienne)

Si $x(t) \in \mathbb{R}$ a une TF X(F), alors $X^*(-F) = X(F)$. On en déduit donc que

- $|X(-F)| = |X(F)| \Rightarrow$ le module de spectre est pair
- $\theta_X(-F) = -\theta_X(F) \Rightarrow$ le spectre de phase est impair

Égalité de Bessel-Parseval

Si X(F) et Y(F) sont les TF de x(t) et de y(t), alors

$$\int_t x(t)y^*(t)dt = \int_F X(F)Y^*(F)dF$$

Dans le cas particulier où x(t) = y(t)

$$\int_t |x(t)|^2 dt = \int_F |X(F)|^2 dF$$

Cette quantité est notée E_x et appelée l'énergie du signal.

Dérivation

Si X(F) est la TF de x(t), alors

- \bullet $\frac{dx^n(t)}{dt^n}$ a pour TF $(j2\pi F)^n X(F)$, $\forall n \in \mathbb{N}$

Application audio