OzonMasters - Математическая статистика

Лекция 1

Преподаватель: Владимир Панов Автор конспекта: Жибоедова Анастасия

(Due: 18/09/20)

## 1 Рекомендуемая литература

- 1. М.Б. Лагутин "Наглядная математическая статистика"
- 2. Robert Hogg, Elliot Tanis, Dale Zimmerman "Probability and Statistical Inference"
- 3. Yuri Suhov, Mark Kelbert "Basic Probability and Statistics"
- 4. Vladimir Spokoiny, Thorsten Dickhaus "Basics of Modern Mathematical Statistics"

# 2 Статистический эксперимент

## 2.1 Описание статистического эксперимента

Введем некоторые опредления для дальнейшего описания эксперимента с математической строгостью.

Определение 1.  $\Omega$  - sample space, множество элементарных исходов.

**Определение 2.**  $\mathcal{F}$  -  $\sigma$ -алгебры - множество подмножество пространства  $\Omega$ , обладающее следующими свойствами:

- 1.  $\emptyset, \Omega \in \mathcal{F}$
- 2.  $A \in \mathcal{F} \Rightarrow \Omega \backslash A \in \mathcal{F}$
- 3.  $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup A_i, \cap A_i \in \mathcal{F}$

**Определение 3.** Борелевская  $\sigma$ -алгебры - это минимальное множество

**Определение 4.** Вероятностная мера  $\mathbb{P} : \mathcal{F} - > [0, 1]$ :

- 1.  $\mathbb{P}\{\Omega\}=1$ ,
- 2.  $A_i, A_2 \cdots \in \mathcal{F}, A_i \cap A_j = \emptyset \Rightarrow \mathbb{P}\{\cup A_i\} = \sum \mathbb{P}\{A_i\}$

Предположим, что вероятностная мера  $\mathbb{P} \in \mathcal{P}$ , если:

- $\mathcal{P} = \mathcal{P}_{\theta} = \{\mathbb{P}_{\theta}\}$  модель параметрическая;
- $\mathcal{P}$  пространство бесконечной размерности,  $\mathcal{P} = \{$ абсолютно непрерывная $\}$  непараметрическая модель.

**Определение 5.** Статистические эксперимент - это модель, задаваемая следующей тройкой параметров:  $(\Omega, \mathcal{F}, \mathcal{P})$ .  $\Omega, \mathcal{F}$  - описывают как проводится эксперимент, а  $\mathcal{P}$  - оценивается по итогам эксперимента.

### 2.2 Примеры экспериментов

Реконструируем модели стандартных статистических экспериментов: подбрасывание монеты и выбор случайной точки на отрезке.

| Эксперимент          | Ω      | F                                                                                                                                                                                                             | $\mathbb{P}$                                     |
|----------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Бросание монеты      | {0,1}  | $\{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$                                                                                                                                                                       | $\mathbb{P}\{1\} = p; \mathbb{P}\{0\} = 1 - p$   |
| Выбор точки на [0,1] | [0, 1] | $\{\{[a,b], 0 \le a < b \le 1\}, (a,b) = \Omega \setminus ([0,a] \cup [b,1]),$ $[a,b) = \cap (a-\frac{1}{n},b), (a,b] = \cap (a,b+\frac{1}{n})$ $\{a\} = [0,a] \cap [a,1]\}$ - Борелевская $\sigma$ - алгебра | $\mathbb{P}\{[a,b]\} = b - a$ - HeT KOCOIVIASHY, |

# 3 Выборка (sample)

Определение 6. (Простые учебники)  $x_1, \dots x_n \in \mathbb{R}$  - выборка, это значения из набора случайных величин  $X_1, \dots X_n$  - i.i.d. (independent and identically distributed) с фиксированной  $\omega \in \Omega$  (реализация случайных величин).

Примечание. На пространстве  $(\Omega.\mathcal{F}, \mathbb{P})$  - нет независимых случайных величин, они либо тривиальны, либо зависимы. Чтобы провести статистический эксперимент, необходимо рассмотреть пространство  $(\Omega \times \cdots \times \Omega), \mathcal{F} \times \cdots \times \mathcal{F}, \mathbb{P} : \mathbb{P}\{B \times \cdots \times B_n\} = \mathbb{P}_{\theta}(B_1) \cdot \cdots \cdot \mathbb{P}_{\theta}(B_n)).$ 

# 4 Описательная статистика (descriptive statistics)

**Определение 7.**  $x_{(1)} \leq \cdots \leq x_{(n)}$ , где  $x_{(1)} = min(x_1, \cdots x_n)$  - варианционный ряд, порядковые статистики **Определение 8.** Эсперическая p-квантиль - это такое число x, что:

- $\approx np$  чисел < x
- $\approx np$  чисел > x

Примечание. Понятие описательных статистик вышло за рамки описания параметров.

**Определение 9.** Медиана - (самый известный квантиль)  $\frac{1}{2}$  - квантиль.

$$Med = egin{cases} x_{(k)}, ext{если } n = 2k+1 \ x_{(k)} + x_{(k+1)}, ext{если } n = 2k \end{cases}$$

## 4.1 Оценивание квантилей

## offtop

Абсолютно непрерывные распредления, это такие распределения, что функция распредления имеет производную F'(x) = p(x), где p(x) - плотность распредления (probability density function).

Собирается статистика количества клиентов в магазине без понимания вида распределения. В случае, если распределение никаким образом не ограничивается параметрами, оно считается непараметрическим.

Из определения квантиля можно увидеть то, что нам необходимо решить уравнение F(x) = p (cumulative distribution function) - , где  $\mathbb{P}\{X \leq x\}$ . Решение уравнения возможно двумя способами: из книжек и из пакетов.

## 4.1.1 Способ 1

Теоретический способ решения уравнения.  $\hat{F}_n(x)$  - empirical distribution function - оценка функции F(x).

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{X_i \le x\}$$



Решить уравнение из предположения  $\hat{F}_n(x) = F(x)$ , тогда  $\hat{F}_n(x) = p$ :

$$x = q_p = \begin{cases} x_{(pn)}, pn \in \mathbb{N} \\ x_{(|pn|+1)}, pn \notin \mathbb{N} \end{cases}$$

Иногда встречается упрощенная модификация решения (выборочная  $\alpha$  - квантиль)  $q_p = x_{(\lfloor pn \rfloor + 1)}$  Недостатком данного способа решения является то, что на выходе получается разрывная функция  $q_p$ .

#### 4.1.2 Способ 2

Определим функцию следующим образом:

- определим значения функций в наборе точек как  $(x_{(k)}), k = 1, \cdots n;$
- доопределим функцию на отрезках линейными функциями.

В описанном подходе точки выбраны из значений функции эмперического распредления, но в пакетах используются иные значения.

Построим последовательность  $F(x_{(1)}), F(x_{(2)})\cdots F(x_{(n)})$  - n чисел, являющихся реализациями случайных величин  $F(X_{(1)}), F(X_{(2)})\cdots F(X_{(n)})$ . Поскольку функция  $F(X_{(i)})$  - монотонно возрастающая, то можно трактовать это так, что послежовательность i.i.d случайных величин  $F(X_{(1)}), F(X_{(2)})\cdots F(X_{(n)})$  соответствует расположению в порядке возрастания случайных величин  $F(X_1), F(X_2)\cdots F(X_n)$ .  $\mathbb{P}\{F(X) \leq x\} = \mathbb{P}\{X \leq F^{-1}(x)\} = F(F^{-1}(x)) = x$ , тогда с.в.  $F(X_1), F(X_2)\cdots F(X_n)$  - имеют равномерные распредления. Построим следующую цепочку выводов (без доказтельств):

- $U_1 \cdots U_n Unif([0,1])$  равномерно распределенные с.в.,
- ullet тогда  $U_{(i)} \sim Beta(i,n-i+1)$  i-ый член вариационного ряда
- тогда  $p_i(x) = \frac{n!}{(i-1)!(n-i)!} x^{i-1} (1-x)^{n-i}$  плотность случайной величины  $F(X_{(i))}$
- ullet можно доказать, что  $\mathbb{E} U_i = \mathbb{E} F(X_{(i)} = \frac{i}{n+1}$
- из вышесказанного следует, что в качестве опорных точек построения квантилей можно взять  $(\frac{k}{n+1}, x_{(k)}), k = 1, \cdots n$  реализация пакета spss (и др.).

Почему характерным значением называется среднее??? Оказывается, что это не совсем так.

**Определение 10.** Мода абсолютно непрерывного распределения - точка максимума плотности (наиболее модное значение).

Во многих пакетах вместо среднего берется мода -  $mode(U_i) = \frac{i-1}{n-1}$ , соответственно в качестве опорных точек  $(\frac{k-1}{n-1}, x_{(k)}), k = 1, \cdots n$ .

## 5 BoxPlot - box and whiskers

**Определение 11.** IQR (interval quartile range) - межквартильный размах, расстояние между  $\frac{1}{4}$  - квантилем (нижний квартиль) и  $\frac{3}{4}$  - квантилем (верхний квартиль).

BoxPlot строится для выборки  $x_1, \cdots x_n$  следующим образом:

- 1. коробка на графике функции отмечается  $\frac{1}{2}$  квантиль и вокруг него строится межквартильный размах (IQR) в виде прямоугольника;
- 2. усы отменяается ближайшее сверху значение из выборки к границе  $q_{\frac{1}{4}}-1.5*IQR$  и ближайшее снизу значение из выборки к границе  $q_{\frac{3}{4}}+1.5*IQR$ , эти значения являются концами усов



Определение 12. Значения, не попавшие в boxplot называются выбросами.

Примечание. Чем меньше коробка, тем больше мы можем доверять медиане. Рассмотрим на примере подбрасывания монеты. Собирается статистика эксперимента. Полученная медиана выборки = 30 (30 раз выпал орел), но выборка имеет очень большой разброс (IQR - большой, относительно медианы). Это означает, что значению медиане нельзя достаточно доверять и результаты эксперимента не надежны.

## 6 Оценивание параметров

### 6.1 Постановка задачи

Дан набор  $X_1, \dots X_n$  - i.i.d., случайные величины имеют параметрическое распределение  $\sim \mathbb{P}_{\overrightarrow{\theta}}$ . Рассматривая выборку  $x_1, x_2 \dots x_n$  - оценить параметр  $\overrightarrow{\theta}$ .

## 6.2 Метод моментов

Рассматриваем математическое ожидание некоторой функции -  $\mathbb{E}g(X) = m(\overrightarrow{\theta})$ , где  $X \sim X_i$ . Оцениваем математическое ожидание как:  $\frac{1}{n} \sum g(x_i) = m(\hat{\theta}_n)$ , тогда  $\hat{\theta}_n = m(^{-1})(\frac{1}{n} \sum g(x_i))$ 

#### Пример 1

Задано нормальное распредление  $\mathcal{N}(\mu,1)$ . Предположим g(x)=x, тогда  $\mathbb{E}(X)=\mu\Rightarrow \frac{1}{n}\sum x_i=\hat{\mu}_n$ .

### Пример 2

Задано нормальное распредление  $\mathcal{N}(\mu, \sigma^2)$ . Предположим g(x) = x, тогда  $\mathbb{E}(X) = \mu \Rightarrow \frac{1}{n} \sum x_i = \hat{\mu}_n$  и  $g(x) = x^2$ , тогда  $\mathbb{E}(X^2) = \mu^2 + \sigma^2 \Rightarrow \frac{1}{n} \sum x_i, 2 = \mu_n^2 + \sigma_n^2 \Rightarrow \hat{\sigma}_n^2 = \frac{1}{n} \sum x_i^2 - \hat{\mu}_n^2$ 

## 6.3 Метод максимального правдоподобия

**Определение 13.**  $L(\overrightarrow{\theta}) = \Pi p_{\theta}(x_i)$  - функция правдоподобия.

Метод заключается в формировании предположение о плотности распредления набора i.i.d.  $(X_1, \cdots X_n \sim p(\overrightarrow{x}))$ .

## Пример 1

Задано нормальное распредление  $\mathcal{N}(\mu,1)$ . Предположим  $p_{\mu}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$ , тогда

$$\log L(\overrightarrow{\theta}) = \sum \log \left( \frac{1}{\sqrt{2\pi\sigma}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}} \right) = n \log \left( \frac{1}{\sqrt{2\pi\sigma}} \right) - \sum \frac{(x-\mu)^2}{2\sigma^2} \to \max_{\mu} \left( \frac{1}{\sqrt{2\pi\sigma}} \right) = n \log \left( \frac{1}{\sqrt$$

*Примечание*. Пакеты работают по следующей логике: на вход подается подсчитанная функция и внутри пакета рассчитывается ее максимум или минимум по параметру.

## 6.4 Экспоненциальное семейство распредлений

**Определение 14.** Семейство распределений  $\mathcal{P}-(p_v(x))$  - называется экспоненциальным, если  $\exists g,d$  - функции, такие что  $p_v(x)=g(x)e^{xv-d(v)}$ 

#### Пример 1

Задано нормальное распредление  $\mathcal{N}(\mu, 1)$ . Предположим

$$p_{\mu}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2}\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{-x+2x\mu-\mu^2}{2}\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-x}{2}\right) \exp\left(x\mu-\frac{\mu^2}{2}\right)$$

Тогда 
$$v = \mu, d(v) = \frac{\mu^2}{2} = \frac{v^2}{2}$$

## Пример 2

Схема Бернулли (подрасывание монеты) - дискретное распредление  $p_v(x) = \mathbb{P}X = x$ .

$$p_v(x) = \begin{cases} p, x = 1\\ 1 - p, x = 0 \end{cases} = p^x (1 - p)^{1 - x} = e^{x \log p} e^{(1 - x) \log(1 - p)} = e^{x \log \frac{p}{1 - p}} e^{\log(1 - p)}$$

Обозначим 
$$v=\frac{p}{1-p}\Rightarrow p=\frac{e^v}{e^v+1},$$
 тогда  $d(v)=-log(1-p)=-\log\left(1-\frac{e^v}{e^v+1}\right)=\log(e^v+1)$ 

Утверждение 1.  $d'(v) = \mathbb{E}(\xi), \xi \sim p_v(x), d''(v) = \mathbb{D}(\xi).$ 

Доказательство. —

Из первого примера 
$$d(v)=\frac{v^2}{2}\Rightarrow d'(v)=v=\mu, d''(v)=1.$$
 Из второго примера  $d(v)=\log(e^v+1)\Rightarrow d'(v)=\frac{e^v}{e^v+1}=p, \, d''(v)=\frac{e^v}{(e^v+1)^2}=p(1-p)$ 

### 6.4.1 Метод моментов для э.с.р.

$$\mathbb{E}\xi=d'(v),$$
 тогда  $\frac{1}{n}\sum x_i=d'(\hat{v}_n).$ 

 $\mathbb{E}\xi=d'(v)$ , тогда  $\frac{1}{n}\sum x_i=d'(\hat{v}_n)$ . Поскольку  $d''(v)\leq 0$  (дисперсия), тогда d'(v) - монотонно возрастающая и непрерывная (посколькую имеет производную)  $\Rightarrow \exists (d')^(-1) \Rightarrow \hat{v_n} = (d')^{(-1)} \left(\frac{1}{n} \sum x_i\right)$ 

### 6.4.2 Метод максимального правдоподобия для э.с.р.

$$\begin{split} L(\hat{v}) &= \Pi p_v(x_i) = \frac{1}{n} \sum \log(g(x_i)e^{x_iv - d(v)}) = \frac{1}{n} \sum \log(g(x_i)) + \frac{1}{n} \sum (x_iv - d(v)) \\ &\log L(v) = argmax \frac{1}{n} \sum (x_iv - d(v)), \text{ обозначим } G(v) = \frac{1}{n} \sum (x_iv - d(v)), \text{ тогда } G'(v) = \frac{1}{n} \sum x_i - d'(\hat{v_n}) = 0, \\ \hat{v_n} &= (d')^{(-1)} \left(\frac{1}{n} \sum x_i\right) \end{split}$$

#### 7 Достаточная статистика

Может ли функция от выборки заменить саму выборку? Что если нам известны только агрегированные параметры (метапараметры)?

Определение 15. Достаточная статистика (sufficient statistics) - статистика  $T(x_1, \cdots x_n)$  называется достаточной, если  $\mathbb{P}\{(X_1,\cdots X_n)\in B|T(X_1,\cdots X_n)=t\}$  не зависит от параметров распредления  $B\in\mathbb{R}^n$ 

. Критерий факторизации. Статистика называется достаточной тогда и только тогда, когда  $p_v(x_1)\cdots p_v(x_n) = g(T(x_1,\cdots x_n),\theta)h(x_1,\cdots x_n)$ 

Выборка моделируется следующим образом:

- 1. выбирается значением статистики  $T(X_1, \cdots X_n)$ .
- 2. зная условное распредление строю выборку на основе информации о статистике.

## Пример 1

Найдем достаточную статистику для экспоненциального семейства распредления, если она существует. Запишем произведение плотностей из критерия факторизации:

$$p_v(x_1) * \cdots p_v(x_n) = g(x_1) * \cdots g(x_n) e^{v \sum x_i - nd(v)}$$

Тогда видим, что функция зависит неподредственно от суммы выборки и не зависит от каждого значения в отдельности. По критерию факторизации достаточная статистика  $T = \sum x_i$ 

#### Пример 2

Выборка из ранвомерного распредления на отрезке  $[0,\theta], X_1, \cdots X_n \sim Unif([0,\theta]).$  Тогда  $p_{\theta}(x) = \frac{1}{\theta}\mathbb{I}\{x \in$  $[0, \theta]$ . Применим критерий факторизации:

$$p_v(x_1)\cdots p_v(x_n) = \frac{1}{\theta^n} \mathbb{I}\{x_1 \in [0, \theta] \cdots x_n \in [0, \theta]\} = \frac{1}{\theta^n} \mathbb{I}\{max(x_1, \dots x_n) < \theta\}$$

. Получаем, что  $T = max(x_1, \cdots x_n)$  - достаточная статистика.