제 9 장 학습곡선과 라인밸런싱

학습곡선 (Learning Curve)

■ 이론적 배경

- ❖ 인간의 활동은 동일한 것을 반복 수행할 때 그 일을 처리하는 능력이 향상
- ❖ 만약 주어진 작업이 단순한 것이면, 몇 번만 반복하여도 학습효과 발현
- ❖ 복잡하고 어려운 작업은 오랜 시간 동안 반복한 후에 학습효과 발현

■ 최초의 연구

- ❖ 1936년 Wright가 비행기동체 조립공정을 대상으로 연구
- ❖ 항공산업에서 항공기의 누적생산량이 증가함에 따라 항공기 당 총 직접 노동의 투입량이 상당한 정도의 규칙성을 보이면서 감소한다는 것이 발견되면서 처음으로 개발

Wright 의 연구 결과

- 항공기 종류별로 최초의 첫 번째 제품을 생산하는데 소요되는 시간이 달랐음에도 불구하고 유사성을 보임
- 생산이 일단 시작된 이후
 - 8번째 단위의 직접노동시간은 4번째 단위의 80%에 불과
 - 12번째 단위에 있어서는 6번째 단위의 80%에 불과
- 어느 경우에나 생산량이 배로 증가하면 생산시간은 20% 감소

항공산업에 있어서는 생산량이 2배 증가할 때마다 80%의 학습률을 나타낸다고 결론

학습곡선의 작성 예

■ 학습곡선(학습율)에 영향을 미치는 요인

- 노동에 의한 작업과 기계에 의한 작업의 비율
- 제품의 복잡도 단순한 작업의 학습율은 미미함
- 유사 제품에 대한 조직의 경험
- 자본투입률 자동화설비, 작업장 개선
- 공구, 치구, 고정구 등
- 작업장 관리능력

■ 학습곡선의 적용 분야

계획용

- 비용(원가 분석) : 입찰가격 산정, 자체생산/구매 결정
- 일정계획 수립

평가용

- 작업자 작업수행도 평가
- 대안 평가

■ 학습곡선 이용 시 주의점

학습곡선계수(학습율)는 **기업조직과 작업의 형태**에 따라 다르므로 과거의 운영자료와 경험에 근거해서 결정한 학습곡선에 의한 작업시간의 예측치는 실제의 작업시간에 대한 추정값.

- 첫 번째 단위의 작업시간을 정확하게 측정하는 것이 가장 중요함.
- 작업을 반복하는 과정에서 어떤 단위에서는 학습효과가 높지만 그렇지 않은 단위도 있음. 따라서 학습효과가 일정하지 않을 때에는 그 추이를 면밀히 분석해야 함.
- 학습효과는 때로는 실제보다 더 많아질 수도 있으며 간접비용을 증가시켜 작업시간을 단축시킬 수도 있음
- 학습곡선은 생산공정이 안정되기 전에 일반적으로 이용되고 있으며 공정이 안정된 후 대량생산이 이루어지는 시점에는 적용하지 않음.
- 학습곡선을 이용하는 사람들은 때로는 작업자가 주어진 작업에 투입되기 이전에 유사한 작업활동에서 경험한 것을 정확하게 반영할 수 없음

■ 누적평균시간모형

생산량: 2배 --> 누적평균생산시간: (1-R)만큼 감소

x: 제품 생산량

 Y_{r} : x개 생산 시 누적평균생산시간

a: 첫 번째 제품의 생산시간

m: 생산량이 2배로 증가된 횟수

R : 학습률

$$Y_x = aR^m$$

$$x = 2^m$$

■ 누적평균시간모형

$$\log x = m \log 2 \qquad \Longrightarrow \qquad m = \frac{\log x}{\log 2}$$

$$Y_x = aR^{\frac{\log x}{\log 2}} \implies \log Y_x = \log a + \frac{\log x}{\log 2} \log R = \log a + b \log x$$

■ 누적평균시간모형

 $\bullet x$ 개를 생산하는데 소요된 총 생산시간

$$T_x = x \times Y_x = x \times a \times x^b = ax^{b+1}$$

• x 번째 제품의 생산소요시간

$$U_{x} = T_{x} - T_{x-1} = ax^{b+1} - ax^{b}$$

$$\cong \frac{dT_{x}}{dx} = a(b+1)x^{b} = (1+b)Y_{x}$$

■ 한계시간모형

생산량: 2배 --> 2배 째 단위의 생산시간: (1-R)만큼 감소

x: 제품 생산량

 Z_x : x개 째 제품의 생산소요시간

a: 첫 번째 제품 생산시간

m: 생산량이 2배로 증가된 횟수

R : 학습률

$$Z_x = aR^m$$

$$x = 2^m$$

■ 한계시간모형

$$\log x = m \log 2 \qquad \Longrightarrow \qquad m = \frac{\log x}{\log 2}$$

$$Z_{x} = aR^{\frac{\log x}{\log 2}} \quad \Longrightarrow \quad \log Z_{x} = \log a + \frac{\log x}{\log 2} \log R = \log a + b \log x$$

$$b = \frac{\log R}{\log 2} \qquad \Longrightarrow \qquad Z_x = ax^b$$

■ 한계시간모형

• x 개를 생산하는데 소요된 총 생산시간

$$T_{x} = \sum_{n=1}^{x} Z_{n}$$

$$\cong \int_{0.5}^{x+o.5} ax^{b} dx$$

$$= \frac{a}{b+1} [(x+0.5)^{b+1} - 0.5^{b+1}]$$

 $\bullet x$ 번째 제품까지 개당 평균 생산소요시간

$$Y_{x} = \frac{a}{(b+1)x} \left[(x+0.5)^{b+1} - 0.5^{b+1} \right]$$

■ 누적평균시간모형과 한계시간모형의 비교

학습률 R=	0.9		b=	-0.152			
		누적평균생산시긴		<u></u> 모형 한계		생산시간 모형	
	생산대수	누적평균	총생산시	x번째 생	누적평균	총생산시	x번째 생
		생산시간	간	산시간	생산시간	간	산시간
	1	100	100	100	100	100	100
	2	.90.0	180.0	80.0	95.0	190.0	90.0
	3	84.6	253.9	73.9	91.5	274.6	
	4	81.0	324.0	70.1	88.9	355.6	
	5	78.3	391.5	67.5	86.8	433.9	78.3
	6	76.2	457.0	65.5	85.0	510.1	76.2
	7	74.4	520.8	63.8	83.5	584.5	74.4
	8	.72.9	583.2	62.4	82.2	657.4	72.9
	9	71.6	644.5	61.3	81.0	729.0	71.6
	10	70.5	704.7	60.2	79.9	799.4	70.5
	11	69.5	764.0	59.3	79.0	868.9	69.5
	12	68.5	822.5	58.5	78.1	937.4	68.5
	13	67.7	880.3	57.8	77.3	1005.2	67.7
	14	67.0	937.4	57.1	76.6	1072.1	67.0
	15	66.3	993.9	56.5	75.9	1138.4	
	16	65.6	1049.8	55.9	75.2	1204.0	65.6

학습곡선 수학적 모형

■ 누적평균시간모형과 한계시간모형의 비교

- 학습률(R)이 같다면 누적평균생산시간 모형의 영향이 큼
- 같은 상황에 다른 모형을 적용하려면 학습률 값을 변경해야 함

■ 학습률을 결정하는 방법

- 우리 공장에 어떤 모형을 적용하고, 학습률은 얼마로 결정해야 할 것인가 ?
- 유사한 작업에 대한 자료를 확보하고 있는가 ?

- 누적표준시간 모형이 맞을지 한계시간 모형이 맞을지 선택
- 보유하고 있는 유사 사례를 통하여 적절한 학습률을 추정해야 함

학습곡선

■ 학습률을 결정하는 방법 (누적평균시간 모형)

$$Y_{x} = aR^{m} = ax^{b} = ax^{\frac{\log R}{\log 2}}$$

$$\log Y_x = \log a + \frac{\log R}{\log 2} \log x$$

$$\begin{cases} \log Y_x = I_C \\ \log a = A \\ \frac{\log R}{\log 2} = B \end{cases}$$
로 치환
$$\log x = C$$

1차 선형함수에서 편차제곱합을 최소로 하는 A와 B 값을 추정

■ 학습률을 결정하는 방법 (누적평균시간 모형)

$$A = \overline{I} - B\overline{C}$$

$$B = \frac{\sum_{k=1}^{n} (C_k - \overline{C})(I_k - \overline{I})}{\sum_{k=1}^{n} (C_k - \overline{C})^2}$$

$$\frac{\log R}{\log 2} = B$$

$$\log R = B \log 2$$

$$R = 2^{B}$$

A 와 B의 추정치

Ms-Excel에서 A와 B를 구하려면 함수 INTERCEPT()와 SLOPE() 사용 학습곡선

수학적 모형

						/ 11		
Х	관측치(Ui)	누적평균 (Yi)	l=LogY	C=logX	Ck-E(C)2	(lk- E(l))*(Ck-E ©)	추정누적 평균치	x번째시간 추정치
1	25.2	25.2	1.4014	0.0000	1.22518	-0.04834	25.20	25.20
2	24.6	24.90	1.3962	0.3010	0.64939	-0.03101	24.01	22.82
3	25.8	25.20	1.4014	0.4771	0.39660	-0.02751	23.34	22.01
4	24.6	25.05	1.3988	0.6021	0.25484	-0.02074	22.88	21.49
5	24.6	24.96	1.3972	0.6990	0.16639	-0.01612	22.53	21.12
6	22.8	24.60	1.3909	0.7782	0.10806	-0.01092	22.24	20.82
7	23.4	24.43	1.3879	0.8451	0.06853	-0.00790	22.01	20.58
8	22.8	24.23	1.3843	0.9031	0.04153	-0.00541	21.80	20.37
9	21.0	23.87	1.3778	0.9542	0.02330	-0.00306	21.62	20.20
10	22.2	23.70	1.3747	1.0000	0.01142	-0.00182	21.46	20.04
11	25.2	23.84	1.3772	1.0414	0.00429	-0.00128	21.32	19.90
12	21.6	23.65	1.3738	1.0792	0.00077	-0.00045	21.19	19.78
13	19.8	23.35	1.3684	1.1139	0.00005	0.00008	21.08	19.66
14	20.4	23.14	1.3644	1.1461	0.00154	0.00026	20.97	19.56
15	19.8	22.92	1.3602	1.1761	0.00479	0.00017	20.87	19.46
16	19.8	22.73	1.3565	1.2041	0.00946	-0.00012	20.77	19.37
17	20.4	22.59	1.3539	1.2304	0.01527	-0.00047	20.69	19.28
18	22.2	22.57	1.3535	1.2553	0.02202	-0.00063	20.60	19.21
19	19.2	22.39	1.3500	1.2788	0.02954	-0.00132	20.53	19.13
20	19.2	22.23	1.3469	1.3010	0.03769	-0.00209	20.45	19.06
21	20.4	22.14	1.3452	1.3222	0.04637	-0.00269	20.38	19.00
22	16.8	21.90	1.3404	1.3424	0.05548	-0.00407	20.32	18.93
23	18.6	21.76	1.3376	1.3617	0.06495	-0.00513	20.25	18.87
24	17.4	21.58	1.3340	1.3802	0.07471	-0.00650	20.19	18.82
25	18.0	21.43	1.3311	1.3979	0.08472	-0.00776	20.14	18.76
26	17.4	21.28	1.3279	1.4150	0.09492	-0.00919	20.08	18.71
27	18.6	21.18	1.3259	1.4314	0.10529	-0.01033	20.03	18.66
28	18.0	21.06	1.3235	1.4472	0.11579	-0.01163	19.98	18.61
29	17.4	20.94	1.3209	1.4624	0.12639	-0.01308	19.93	18.56
30	16.8	20.80	1.3181	1.4771	0.13708	-0.01468	19.88	18.52
31	16.2	20.65	1.3150	1.4914	0.14783	-0.01644	19.84	18.48
32	16.2	20.51	1.3120	1.5051	0.15862	-0.01820	19.79	18.44
평균	20.5	22.84	1.3577	1.1069	0.13384	-0.00932	21.1	
합					4.28281	-0.29839		
		B=	-0.06967					
		A=	1.434841					
		R=	0.952856					
		b=	-0.06967					

학습곡선 수학적 모형

						I	1
한계시간모	. 영	A=log(a)=	1.401401				
						/ II	
X	관측치(Ui)	누적평균 (Yi)	l=LogUi	C=logX	Ck-E(C)2	(lk- E(l))*(Ck-E ©)	x번째시간 추정치
1	25.2		1.4014	0.0000	1.22518	-0.10366	25.20
2	24.6	24.90	1.3909	0.3010	0.64939	-0.06703	22.80
3	25.8		1.4116	0.4771	0.39660	-0.06541	21.51
4	24.6		1.3909	0.6021	0.25484	-0.04199	20.63
5	24.6	24.96	1.3909	0.6990	0.16639	-0.03393	19.98
6	22.8	24.60	1.3579	0.7782	0.10806	-0.01650	19.46
7	23.4	24.43	1.3692	0.8451	0.06853	-0.01609	19.03
8	22.8	24.23	1.3579	0.9031	0.04153	-0.01023	18.67
9	21.0	23.87	1.3222	0.9542	0.02330	-0.00221	18.36
10	22.2	23.70	1.3464	1.0000	0.01142	-0.00413	18.08
11	25.2	23.84	1.4014	1.0414	0.00429	-0.00613	17.83
12	21.6	23.65	1.3345	1.0792	0.00077	-0.00074	17.61
13	19.8		1.2967	1.1139	0.00005	-0.00008	17.41
14	20.4	23.14	1.3096	1.1461	0.00154	0.00007	17.22
15	19.8		1.2967	1.1761	0.00479	-0.00077	17.05
16	19.8		1.2967	1.2041	0.00946	-0.00108	16.90
17	20.4		1.3096	1.2304	0.01527	0.00023	16.75
18	22.2		1.3464	1.2553	0.02202	0.00573	16.61
19	19.2		1.2833	1.2788	0.02954		16.48
20	19.2		1.2833	1.3010	0.03769	-0.00475	16.36
21	20.4		1.3096	1.3222	0.04637	0.00040	16.25
22	16.8	21.90	1.2253	1.3424	0.05548	-0.01942	16.14
23	18.6		1.2695	1.3617	0.06495	-0.00974	16.03
24	17.4		1.2405	1.3802	0.07471	-0.01837	15.94
25	18.0	21.43	1.2553	1.3979	0.08472	-0.01527	15.84
26	17.4		1.2405	1.4150	0.09492	-0.02070	15.75
27	18.6		1.2695	1.4314	0.10529	-0.01241	15.67
28	18.0		1.2553	1.4472	0.11579	-0.01786	15.59
29	17.4		1.2405	1.4624	0.12639	-0.02389	15.51
30	16.8		1.2253	1.4771	0.13708	-0.03052	15.43
31	16.2		1.2095	1.4914	0.14783	-0.03777	15.36
32	16.2		1.2095	1.5051	0.15862	-0.03912	15.29
평균	20.5	22.84	1.3078	1.1069	0.13384	-0.01930	17.6
합					4.28281	-0.61757	
		B=	-0.1442				
		A=	1.46736				
		R=	0.904883				
		b=	-0.1442				

학습곡선의 이용 예

Lot size=6개

- <u>표준 Lot size : 100개</u>
- Set-up 시간 : 3시간
- 개당 자재비 : 1,000원
- 학습률(R) : 95%
- 평균생산시간: 1시간
- 시간당 인건비: 3,000원

자재비 1,000원
인건비 세트업
$$\left(\frac{3}{100}\right) \times (3,000) = 90$$
원
작업 $(1) \times (3,000) = 3,000$ 원
생산비/개 4,090원

$$b = \frac{\log 0.95}{\log 2} = \frac{-0.0223}{0.3010} = -0.0741$$

$$-1 = a(100)^{-0.0741}$$

a=1.4066시간

y=(1.4066)(6)-0.0741=1.23시간

자재비

인건비 셋업 3x3,000/6 = 1,500원

작업 1.23x3,000= 3,690원

생산비/개

6,190원

1,000원

라인 밸런싱 (Line Balancing)

Line 작업의 개요

Line 이란: 설비, 사람 등 생산의 구성요소를 공정순서에 따라 연속적으로 배치한 것

Line 작업: 작업을 공정으로 분할하여 순서대로 배열하고 여러 작업자가 업무를 분담하며 균형을 맞추어 작업하는 흐름작업방식

Line 작업의 조건

- 이상적인 Line 작업의 조건
 - ① 전후의 작업공정은 서로 인접하며,
 - ② 물품은 균형이 잡힌 일련의 작업공정을 일정한 속도로,
 - ③ 합리적인 직선 경로를 거치면서 완성 방향으로 이동하며,
 - ④ Line 전체가 동시에 작업
- ▶ Line 작업의 장단점

장 점	단 점
-작업이 분업화 되어 숙련이 용이	-Line별 기계 설치로 설비비 증가
-생산능력의 파악이 용이	-고장/결근/결품 등에 대응력 낮음
-물품의 운반/이동거리가 짧음	-감독자는 全 공정을 이해해야 함
-공정의 동기화로 재공품 감소	-업무가 단조롭고 작업의욕 저하
-생산시간의 단축	
-공정관리가 용이	

라인 밸런싱 (Line Balancing)(1)

라인밸런싱이라?

- 흐름라인에서 작업장간의 전후능력이 균형을 이루지 못하면 공정간 대기 현상이 발생하여 중간재고품의 저장면적이 많이 소요되거나 혹은 작업할 물량이 없는 유휴현상이 발생
- 이상과 같은 흐름라인의 공정 균형을 맞추는 문제

■ 직선형 라인밸런싱의 특징

- 일반적인 라인 밸런싱은 설비들이 직선형으로 배치되는 상황을 대상으로 함
- 따라서 작업장으로 묶어 가는 과정에서 한 작업자는 직선상의 연속적인 몇 개 공정만 담당하도록 해야 한다는 가정 하에 공정의 선후관계를 고려하여 작업장 구성을 함

라인 밸런싱 (Line Balancing)(2)

라인밸런싱 문제의 유형

- 1) 피치타임(Pitch time)을 결정한 상태에서 작업장의 수를 최소화

 ➡ 비용(인건비) 최소화

✓ 라인밸런싱 문제의 자료

- ① 요소작업별 표준작업시간
- ② 요소작업 간의 작업선후관계
- ③ 생산량 목표치
- ④ 불량률, 가동률 등의 작업 성능 지표

라인 밸런싱 (Line Balancing)(3)

- ➤ 생산량과 피치타임(Pitch Time)
 - 현재, 가까운 장래의 수요를 만족하기 위해 필요로 하는 <u>생산속도</u>

라인 밸런싱 (Line Balancing)(4)

• 1일 제품판매량 = 240개/일

1일 가용시간 = 480분/일

• Pitch Time = 2분/개

불량률 = 10%

가동률 = 90%인 경우의 PT는?

[피치타임의 한계(단위: 분)]

컨베이어 속도 = 컨베이어상의 제품간격 피치타임

작업방법	제품의 크기	컨베이어상	컨베이어에서 꺼 냄	비고
대	형	1.00	***	자동차
중	쳥	0.40	1.00	텔리비젼, 냉장고
소	형	0.20	0.40	소형기기
극 :	소형	0.05~0.10	0.20	전기부품, 잡화

애니콜 라인의 '초단위 생산성 향상'

삼성전자 구미공장은 최근 휴대폰 생산라인을 개 선해 휴대폰을 평균 5초에 1대씩 만들어내고 있 다고 밝혔다. 이는 지난해 8초에서 올해 초 6초 로 2초 앞당긴 뒤 다시 1초를 줄인 것으로 육상 100m 달리기로 치면 세계 최고기록을 0.01초 단축한 것과 같다. 특히 2000년 대당 생산속도가 23초였던 것에 비하면 생산시간을 5년여 만에 거 의 4분의 1로 줄인 셈이다. 이 라인은 비교적 생 산시간이 많이 드는 다품종 소량생산 체제에도 적용할 수 있을 정도로 응용력이 획기적이라고 삼성측은 설명했다. **삼성은 1초를 줄이기 위해 생** 산라인 공정을 재배치했고 장비도 교체했다. 삼성 전자 관계자는 "2000년 23초에서 올해 5초로 줄 인 것은 장비와 공정 혁신의 결과"라며 "대당 평 균 생산시간을 4초대로 끌어올려 볼 계획"이라고 말했다.

- 2006. 6. 20. 한국경제신문

LG 휘센 에어컨 라인의 생산성 향상

(2006년)

"10초마다 한 대씩 에어컨을 생산합니다. 10%에 달하는 가전(家電)부문 영업 이익률 의 비결이 바로 생산성에 있습니다."

경남 창원의 LG전자 생활가전(DA사업본 부) 공장. 160m 길이의 에어컨 생산 라인 에 배속된 60여 명의 손놀림은 잠시도 쉴 줄 몰랐다. 실제 작업 라인 끝에서는 에어 컨 완제품이 10초마다 한 대씩 쏟아져 나 왔다. 에어컨 생산을 맡고 있는 박재현 상 무는 "월풀이나 일렉트로룩스 같은 글로벌 가전업체도 에어컨 1대를 생산하는 데 13~18초나 걸린다"며 "2~3년 전 16초 정 도였던 에어컨 생산 속도가 이제 10초로까 지 단축된 결과 과거에는 예약 물량을 대기 위해 전체 6개 라인 가운데 4개를 주·야 24 시간 체제로 돌려야 했지만 이제는 6개 라 인 가운데 한 개만 야간에 돌아가고 있다."

-2007. 3. 20. 조선일보

라인 편성효율

▶ Line 작업에 투입된 총 시간 중에서 작업에 사용된 시간의 비율

편성효율
$$(E) = \frac{\sum (각 공정시간)}{ 피치타임×인원수} \times 100$$

라인작업 개선의 착안점

- 1) 선후관계를 고려하여 각 공정시간을 가능하면 피치타임에 근접시킨다
- 2) 애로공정의 cycle time은 가능하면 피치타임에 근접시킨다
- 3) 분업화, 동기화의 원칙에 따른다
- 4) 흐름을 직선화, 단순화 한다
- 5) 피치타임이 극히 짧은 경우에는 라인을 늘리거나 단독작업화 한다
- 6) 공구 교환, 기계 조정을 고려한다
- 7) 작업환경 및 휴식, 흐름의 레이아웃 간의 관계를 합리적으로 조정한다
- 8) 수작업 라인의 경우 극단적인 분업화는 심리적으로 좋지 않다

라인작업 개선의 Check List(1)

체크 항목	체크 내용				
	① 각 공정 및 구성원의 업무 부하를 균등하게 할 것				
	② 기계설비를 사용하는 경우 그 활용도를 높일 것				
	③ 애로 공정의 업무량을 평준화할 것				
1) 기본원칙	④ 공정을 가능한 한 줄일 것				
	⑤ 공정을 가능한 한 합병할 것				
	⑥ 각 공정을 가능한 한 편하게 할 것				
	⑦ 편성효율 100%에 접근시킨다 … 대기 없음, 정체 없음				
	① 피치타임 내에 들어가는 다른 공정과 결합할 수 없는가				
아 - 그리스 메라워 스 어느리	② 다른 설비를 사용하고 생략할 수 없는가				
2) 그 공정은 생략할 수 없는가	③ 작업을 개선하여 생략할 수 없는가				
	④ 컨베이어와 슈트 등을 사용하여 생략할 수 없는가				
	① 공정의 담당을 바꾸어 이동 동작을 없앨 수 없는가				
3) 이동 동작을 없앨 수 없는가	② 배치를 바꾸어 이동 동작을 없앨 수 없는가				

라인작업 개선의 Check List(2)

체크 항목	체크 내용
AND THE PERSON NAMED IN	① 다른 공정으로부터 작업을 가지고 와서 대기를 없앨 수 없는가
4) 대기를 없앨 수 없는가	② 인원수를 줄여서 대기를 없앨 수 없는가
	③ 작업순서를 개편하여 대기를 없앨 수 없는가
	① 중복 검사가 불필요하게 이루어지고 있지 않은가
5) 검사를 없앨 수 없는가	② 공정 계열 가운데 최적 위치에서 필요한 검사를 하고 있나
	③ 각 검사 작업자 체크 항목은 반드시 필요한가
	① 정해진 피치타임대로 진행하고 있는가
	② 물품 간격은 정해져 있는가
6) 정체를 없앨 수 없는가	③ 애로공정의 작업량은 피치타임의 범위내 인가
	④ 정체 해소의 수단으로는 어떤 대책을 취해 왔는가

라인 밸런싱 (Line Balancing) 문제의 해법

- 순위가중배열법(Ranked Positional Weight)
 - 1961년 미국 GE 사의 Hegelson과 Birnie 가 개발
 - 쉽고 신속하게 해를 구할 수 있음
 - 순위가중치의 의미
 - 어떤 공정 자신의 Process Time 과 후속공정들의 Process Time을 모두 더한 값
 - 가중치가 큰 공정의 의미는 잔여공정시간이 길다는 것을 의미함
 - 따라서 가중치가 큰 공정을 우선 배정하는 것이 타당함
 - 순위가중배열법에 의한 해가 최적해를 보장하지는 못함

라인 밸런싱 (Line Balancing)의 예제(1/8)

$$W_7 = 3+5+4=12$$

라인 밸런싱 (Line Balancing)의 예제(2/8)

1단계

/ 직접후속작업 + 간접후속작업

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		/	/	/	- /	+	+	+	+	+	+	46
2	2						- /		+		+	+	19
3	5							/		+		+	17
4	7							- /		+		+	19
5	1							- /		+		+	13
6	2								/		+	+	17
7	3									/		+	12
8	6										- /	+	15
9	5											- /	9
10	5											/	9
11	4												4

작업장1

CT=10

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		/	/	/	/	+	+	+	+	+	+	46
2	. 2 .						/		+		+	+	19
4	7							/		+		+	19
3	5							/		+		+	17
6	2								/		+	+	17
8	6										/	+	15
5	1							/		+		+	13
7	3									/		+	12
9	5											1	9
10	5											/	9
11	4												4

라인 밸런싱 (Line Balancing)의 예제(3/8)

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치	
1	6		/	/	/	/	+	+	+	+	+	+	46	
2	2						/		+		+	+	19	
6	2								/		+	+	17	
4	7							/		+		+	19	
3	5							/		+		+	17	
8	6										- /	+	15	
5	1							/		+		+	13	
7	3									/		+	12	
9	5											/	9	
10	5											/	9	
11	4												4	

라인 밸런싱 (Line Balancing)의 예제(4/8)

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		- /	/	- /	/	+	+	+	+	+	+	46
2	2						/		+		+	+	19
6	2								/		+	+	17
4	7							1		+		+	19
5	1							1		+		+	13
3	5							/		+		+	17
8	6										/	+	15
7	3									/		+	12
9	5											/	9
10	5											1	9
11	4												4

라인 밸런싱 (Line Balancing)의 예제(5/8)

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		/	/	1	/	+	+	+	+	+	+	46
2	2						1		+		+	+	19
6	2								/		+	+	17
4	7							/		+		+	19
5	1							1		+		+	13
3	5							/		+		+	17
7	3									/		+	12
8	6										/	+	15
9	5											1	9
10	5											/	9
11	4												4

라인 밸런싱 (Line Balancing)의 예제(6/8)

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		/	/	/	/	+	+	+	+	+	+	46
2	2						/		+		+	+	19
6	2								/		+	+	17
4	7							/		+		+	19
5	1							/		+		+	13
3	5							/		+		+	17
7	3									/		+	12
8	6										/	+	15
9	5											/	9
10	5											1	9
11	4											·	4

라인 밸런싱 (Line Balancing)의 예제(7/8)

공정	공정시간	1	2	3	4	5	6	7	8	9	10	11	가중치
1	6		/	/	/	/	+	+	+	+	+	+	46
2	2						1		+		+	+	19
6	2								/		+	+	17
4	7							/		+		+	19
5	1							- /		+		+	13
3	5							/		+		+	17
7	3									/		+	12
8	6										/	+	15
9	5											/	9
10	5											/	9
11	4												4

작업장 수 = 6개

라인 밸런싱 예제(8/8)

	WS1	WS2	WS3	WS4	WS5	WS6	합계(분)
배정시간	10	8	8	6	10	4	46
Tact time	10	10	10	10	10	10	60
유휴시간	0	2	2	4	0	6	14
배정작업	1, 2, 6	4, 5	3, 7	8	9, 10	11	

편성효율 = 46분/60분 = 76.7%

생산시스템 혁신 바람

[한국경제신문]

U라인 시스템 제품 작업자

♥특징

- ●작업자의 만족도가 높음
- ◈라인설치의 유연성 확보
- ●작업자의 책임감이 부여됨 ●소량 다품종생산에 적합

♥ 도입공장

- ●LG전자 편향코일생산
- LG정보통신 휴대폰생산
- ◈삼성전기 헤드드럼 생산

셀라인 시스템

♥ 특징

- 1인이 작업완료 가능
- ◈숙련작업자가 요구됨
- ◈라인설비가 쉬움
- ₩다품종 변량생산에 대용
- ◈작업자의 성취감을 높임

♥ 도입공장

- ◈삼성전자 백색가전제품생산
- ◈LG전자 TV생산
- ◈대우전자 TV VTR생산

병렬라인 시스템

순차생산 시스템

혼류생산 시스템

₩특징

- ◈대량생산 가능
- ◈검사공정에서 걸리는 시간을 줄여줌

♥ 도입공장

⇒삼성전자 PC 및 HDD생산

♥ 특징●라인

- ♥라인 자동화(PC로 제어)
- ·시간차 생산가능
- ●라인정렬에 효율적 대용
- ♥부품적기공급이 관건

♥ 도입공장

- ■삼성전자 프린터용 PCB생산
- ◦LG전자 냉장고 생산등

U 라인(1/2)

U 라인이란?

• 라인의 형태를 U자 모양으로 만드는 것

U 라인(2/2)

U 라인 편성을 하는 이유

- 공정간의 이상을 순간적으로 파악할 수 있음
- 라인의 균형이 무너질 때 서로 협력하기가 수월하기 때문에 곧 라인의 균형을 유지할 수 있음
- 입구와 출구를 한 사람이 담당하기 때문에 택트타임의 유지가 용이하고 생산관리가 수월함
- 좁은 장소에서도 응용할 수 있음 면적이 직선라인의 절반 정도
- 다공정 담당의 유지가 촉진됨
- Team Play도 촉진시키기 때문에 불량과 재작업이 줄어듦
- 다품종 소량생산의 품종교체가 직선라인에 비해 용이

U 라인 밸런싱 (Line Balancing)(1/2)

•U 라인 밸런싱을 위한 순위가중배열법

lacksquare 기호 U_i^p : 공정 ${}_{
m i}$ 의 선행공정들의 집합

 U_i^s : 공정 i의 후속공정들의 집합

 P_i : 공정 i의 소요시간

⁷₀ : 작업장의 생산주기(Cycle Time)

 T_R : 작업장의 할당 여유시간

 W_i : 공정 i의 순위 가중치(Positional Weights)

$$W_i = \max \left\{ \left(P_i + \sum_{i \in \mathcal{O}_i^*} P_i \right) \left(P_i + \sum_{k \in \mathcal{O}_i^*} P_k \right) \right\}$$

≠ : 어느 단계에서 할당 가능한 공정들의 집합

U 라인 밸런싱 (Line Balancing)(2/2)

절차

- 단계 1 : 모든 공정 i에 대하여 순위가중치 W_i 를 구한다
- 단계 2 : 첫번째 작업장에 대하여 $T_R = T_C$ 로 놓는다
- 단계 3 : 공정의 선후관계를 고려하여 할당 가능한 공정들의 집합 V를 찾는다
- 단계 4 : V에 포함된 공정들에 대하여 W_j 값이 가장 큰 공정을 찾는다. 이 때 그 공정이 k라고 하면 k를 대상 작업장에 포함시킨다.
- 단계 5: 만일 P_k〉T_R 이면 공정 k를 작업장에 할당시킬 수 없으며,
 W_j 값이 다음으로 큰 공정을 찾는다. 만일 더 이상 할당할 수 있는 공정이 없으면 대상 작업장의 구성을 종료하고 새로운 작업장 구성을 위하여 단계 2로 돌아간다.
- 단계 $5 : T_R = T_R P_k$ 로 갱신한 후 단계 3으로 돌아간다

U 라인 밸런싱 (Line Balancing) 예제(1/4)

U 라인 밸런싱 (Line Balancing) 예제(2/4)

• 선후관계도를 이용하여 각 공정 i에 대한 순위가중치 W_i를 계산

$$W_7 = \max \{(P_7 + P_1 + P_3 + P_4 + P_5), (P_7 + P_9 + P_{11})\}$$

= $\max \{22,12\} = 22$

$$W_1 = \max(6,46) = 46$$

$$W_2 = \max(8,19) = 19$$

$$W_3 = \max(11,17) = 17$$

$$W_4 = \max(13,19) = 19$$

$$W_5 = \max(7,13) = 13$$

$$W_6 = \max(10,17) = 17$$

$$W_7 = \max(22,12) = 22$$

$$W_8 = \max(16,15) = 16$$

$$W_9 = \max(27,9) = 27$$

$$W_{10} = \max(21,9) = 21$$

$$W_{11} = \max(46,4) = 46$$

U 라인 밸런싱 (Line Balancing) 예제(3/4)

- 먼저 작업장 1에 대하여 할당 가능한 공정들의 집합 V={1, 11}
 - 두 공정의 가중치는 46으로 같으므로 임의로 공정 1을 먼저 할당
 - 공정 1의 소요시간은 6이므로 첫번째 작업장의 잔여공정시간은 4가 됨.
- 공정 1이 할당된 상태에서 변경된 V={2, 3, 4, 5, 11}
 - 다섯 공정 중에서 가중치가 가장 큰 것은 공정 11이며, 공정 11의소요시간은 4이므로 잔여공정시간 4를 넘지 않음
 - 따라서 공정 11을 작업장 1에 할당
- 작업장 1에 할당된 공정 1과 공정 11의 소요시간의 합이 10이 되었으므로 작업장 1의 구성을 종료
- 작업장 2 구성 시작
- 작업장 2에 할당될 수 있는 공정들의 집합 V={2, 3, 4, 5, 9, 10}
 - 이들 중 가중치가 가장 큰 것은 공정 9이며 소요시간은 5
 - 작업장 2에 공정 9를 할당
- 새로운 V= {2, 3, 4, 5, 7, 10}, 가중치가 가장 큰 것은 공정 7
 - 공정 7의 소요시간은 3이며 잔여시간은 5이므로 공정 7을 작업장 2에 할당
- 새로운 V= {2, 3, 4, 5, 10}, 가중치가 가장 큰 것은 공정 10
 - 공정 10의 소요시간은 5이며 잔여시간은 2이므로 공정 10 할당 불가
- 가중치가 큰 순서대로 잔여시간을 만족하는 공정
 - 공정 2가 선택되어 작업장 2에 할당

U 라인 밸런싱 (Line Balancing) 예제(4/4)

작업장 수 = 5개

	WS1	WS2	WS3	WS4	WS5	합계(분)
배정시간	10	10	10	10	6	46
Tact time	10	10	10	10	10	50
유휴시간	0	0	0	0	4	4
배정작업	1, 11	2, 7, 9	3, 10	4, 5, 6	8	

편성효율 = 46분/50분 = 92.0%