Midterm 1: Patrick Kim

Section 1.1: Systems of Linear Equations

Definitions

- Linear equation
 - \circ $a_1x_1 + a_2x_2 + ... + a_nx_n = b$
 - o Organization of coefficients and variables with a solution 'b'
- System of linear equations
 - Collection of multiple linear equations
- Solution of a system
 - \circ (S₁, S₂, ..., S_n)
 - List of numbers that make each equation a true statement when the s values are substituted for the x variables
- Solution set
 - Set of all possible solutions of a linear system
- Equivalent linear systems
 - o 2 linear systems with the **same solution set**
- Consistent system
 - o 1 solution or infinitely many solutions
- Inconsistent system
 - No solution for a specific input
- Existence
 - o Does a solution set exist?
- Uniqueness
 - o If a solution exists, is there more than one solution?

- A system of linear equations has either:
 - No solution
 - o Exactly one solution
 - o Infinitely many solutions
- Matrix notation
 - o Rectangular format that contains info of a linear system
 - Example system
 - $1x_1 2x_2 + x_3 = 0$
 - $0x_1 + 2x_2 8x_3 = 8$
 - $= 5x_1 + 0x_2 5x_3 = 10$
 - Coefficient matrix

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

Augmented matrix

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

- o Size of a matrix
 - \blacksquare $m \times n$
 - \blacksquare m: rows
 - n: columns
- Row reduction operations
 - Replacement
 - Eliminating elements (making them 0) by comparing two rows and scaling one of them
 - Interchange
 - Swapping rows
 - Scaling
 - Usually done to make a leading entry into one
- Goal of row reduction: to create an **echelon form** or **RREF**
 - o Triangle of 0's

Section 1.2: Row Reduction and Echelon Forms

Definitions

- Non-zero row/column
 - o Row or column with **at least one** nonzero entry
- Zero row/column
 - Row or column with all zeros
- Leading entry
 - Leftmost nonzero entry in a row
- Row reduced echelon form (RREF)
 - o A simplified matrix that represents a potential solution set for a linear system
 - o Each matrix has only one RREF
- Pivot position
 - o Location in a matrix that corresponds to a leading 1 in RREF
- Pivot column
 - Column that contains a pivot position
- Basic/leading variables
 - Variables that correspond to a pivot
 - o Basic variables have an exact value for a solution set

- Free variables
 - Variables that do not correspond to any pivots and pivot columns
 - o Can be assigned **any value** for a consistent linear system
- Overdetermined system
 - # of rows > # of columns
 - o System of linear equations with more equations than unknowns
 - Can be consistent
 - Can have a unique solution

```
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

- Underdetermined system
 - # of columns > # of rows
 - System of linear equations with more unknowns than equations
 - Can **never** have a unique solution (always a **free variable**)
 - If system is consistent -> infinite solutions
 - If system is inconsistent -> no solution

```
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

- Echelon Form of a Matrix
 - o 3 Properties:
 - 1. All zero rows are **at the bottom**
 - 2. Each leading entry (non-zero entry) of a row is to the **right** of any leading entries in the row above it (if any)
 - 3. Below a leading entry, all entries are 0
- RREF
 - All leading entries are 1's
 - o There are 0's **above and below** each leading 1
- A matrix can be in **neither** echelon form nor RREF
 - This means that **more row reduction** needs to be done
- Uniqueness of the RREF
 - Each matrix is row equivalent (has same solution set) to one and only one reduced echelon matrix
 - A matrix has **only one RREF** matrix
- **Inconsistent** systems have **empty** solution sets

- Existence and Uniqueness Theorem
 - A linear system is consistent if and only if the rightmost column of the augmented matrix is **not** a pivot column
 - No row of the form:
 - [0 0 0 0 0 | b] with b non-zero
 - o If a linear system is consistent, the solution set has either:
 - Unique solution (no free variables)
 - Infinitely many solutions (at least one free variable)

Section 1.3: Vector Equations

Definitions

- Vector
 - o An ordered list of numbers
- Rⁿ
- R: collection of all lists of *n* real numbers
- o n: number of entries (rows) in the vector
- Zero vector: 0
 - Vector with all entries 0
- Linear combination
 - $\begin{array}{ll} \circ & \text{Given vectors} \ \{v_1, \, v_2, \, ..., \, v_p\} \ \text{in} \ R^n \ \text{and given scalars} \ \{c_1, \, c_2, \, ..., \, c_p\}, \ \text{a vector} \ y \\ & \text{defined by} & y = c_1 v_1 + c_2 v_2 + ... + c_p v_p & \text{is a linear combination} \end{array}$
- Span $\{v_1 \dots v_p\}$
 - o Collection of all vectors that can be written in the form

$$c_1V_1 + c_2V_2 + ... + c_pV_p$$

- Vectors in R^x
 - $\circ R^{2} \text{ vector:} \begin{bmatrix} a \\ b \end{bmatrix}$ $\circ R^{3} \text{ vector:} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$
- Vectors in R² can be represented as a line to a point in a 2D space
- Vectors in R³ can be represented as a line to a point in a 3D space
- Graphically adding vectors in R²
 - o Add "tip to tail"
- Algebraic properties of Rⁿ
 - o For all u, v, w in Rⁿ and all scalars c & d:

i.
$$u + v = v + u$$

$$v. c (u + v) = cu + cv$$

ii.
$$(u + v) + w = u + (v + w)$$
 vi. $(c + d) u = cu + du$
iii. $u + 0 = 0 + u = u$ vii. $c (du) = (cd) u$
iv. $u + (-u) = -u + u = 0$ viii. $1u = u$

- A **vector equation** $\mathbf{x}_1\mathbf{a}_1 + \mathbf{x}_2\mathbf{a}_2 + ... + \mathbf{x}_n\mathbf{a}_n = \mathbf{b}$ has the same solution set as the linear system whose augmented matrix is $\begin{bmatrix} a_1 & a_2 & ... & a_n \\ \end{bmatrix} \mathbf{b}$
 - \circ b can be generated by a linear combination of $a_1, ..., a_n$ if and only if there exists a **solution (weights: x_1, ..., x_n)** to the linear system corresponding to the matrix
- If $v_1 ... v_p$ are in R^n , then the set of all linear combinations of $v_1 ... v_p$ is denoted by $Span\{v_1 ... v_p\}$ and is called the subset of R^n spanned by $v_1 ... v_p$
 - $\circ \quad \text{Span}\{v_1 \, ... \, v_p\}\!\text{: collection of all vectors that can be written in the form}$

$$c_1v_1 + c_2v_2 + ... + c_pv_p$$

- Is vector b in Span $\{v_1, ..., v_p\}$? == does $x_1v_1 + x_2v_2 + ... + x_pv_p$ = b have a solution?
 - \circ Solve [$v_1 \dots v_p \mid b$]
 - o Is b a linear combination of the vectors in $\{v_1 ... v_p\}$?
 - Is there a pivot in every row?

Section 1.4: The Matrix Equation Ax=b

Definitions

- Identity matrix
 - The "one" of multiplying matrices
 - $\circ \quad \text{Outputs the same input} \\$
- x E Rⁿ
 - o x is a vector with *n* elements

Key Notes

• Star Equation

$$\begin{bmatrix} a1 & a2 & \dots & an \end{bmatrix} \cdot \begin{bmatrix} x1 \\ x2 \\ \dots \\ xn \end{bmatrix} = x_1a_1 + x_2a_2 + \dots + x_na_n$$

- x: weights
- Ax is defined only if the number of columns in A == number of entries in x
- If A is an $m \times n$ matrix, with columns $a_1, \dots a_n$, and if b is in R^m :
 - Matrix equation == vector equation == augmented matrix for a linear system
 - $(Ax = b) == (x_1a_1 + x_2a_2 + ... + x_na_n = b) == ([a_1 \ a_2 \ ... \ a_n \ | \ b])$
- Ax = b as a linear combination has **two parts**
 - 1. A vector
 - 2. x vector

- o Span of the columns essentially means multiplying these two parts
- Ax = b has a solution if and only if b is a linear combination of the columns of A
- Logically equivalent statements for an $m \times n$ matrix A (all true or all false)
 - \circ For each b in R^m, the equation Ax = b has a solution
 - Each b in R^m is a linear combination of the columns of A
 - The columns of A span R^m
 - A has a pivot position in every row
- If A is an $m \times n$ matrix, u & v are vectors in \mathbb{R}^n , and c is a scalar, then:
 - $\circ \quad A(u+v) = Au + Av$
 - \circ A(cu) = c(Au)

Section 1.5: Solution Sets of Linear Systems

Definitions

- Homogeneous linear system
 - System of linear equations written in the form: $A\mathbf{x} = 0$
- Trivial solution
 - \circ x vector = 0
- Nontrivial solution
 - o x vector that satisfies Ax = 0 and has **at least one** non-zero element
- Nonhomogeneous linear system
 - System of linear equations written in the form: A**x** = **b**
 - Where b != 0

Key Notes

• Homogeneous linear system (Ax = 0) always has **at least one solution**

- \circ Trivial solution: x = 0
- Homogeneous system has a nontrivial solution if there is at least one free variable
- **Implicit** description of a plane

$$\circ$$
 10x₁ - 3x₂ - 2x₃ = 0

• Explicit description of a plane (Parametric Vector Equation)

$$\circ$$
 $x = su + tv$

- x: x vector
- s, t in R

- \blacksquare x_2 and x_3 are free variables
- Parametric Vector Form for a consistent ...

$$\circ$$
 Ax = b

$$\mathbf{x} = \mathbf{u} + \mathbf{t}\mathbf{v}$$

$$\circ$$
 Ax = 0

$$\mathbf{x} = \mathbf{t}\mathbf{v}$$

• For a consistent Ax = b, the solution set of Ax = b is the set of all vectors of the form

$$w = p + v_k$$

where p is a solution and v_k is any solution of Ax = 0

- Writing a solution set in Parametric Vector Form
 - 1. Row reduce the augmented matrix to RREF
 - 2. Express each basic variable in terms of any **free variable** appearing in an equation
 - 3. Write a **typical solution** \mathbf{x} as a vector whose entries depend on the free variables
 - 4. Decompose **x** into a linear combination of vectors using the **free variables as parameters**

$$x=egin{bmatrix} x_1\x_2\x_3\end{bmatrix}=egin{bmatrix} 4-3x_3\-1+2x_3\x_3\end{bmatrix}
ightarrowegin{bmatrix} 4\-1\0\end{bmatrix}+x_3egin{bmatrix} -3\2\1\end{bmatrix}$$
 a. Ex: $[p]$

Section 1.7: Linear Independence

Definitions

- Linearly independent
 - Vector equation $x_1v_1 + x_2v_2 + ... + x_pv_p = 0$ has **only the trivial solution**
 - Matrix A has a **pivot in every column**
 - No free variables
- Linearly dependent

- Vector equation $c_1v_1 + c_2v_2 + ... + c_pv_p = 0$ where weights $c_1, ..., c_p$ are **not all zero**
- o At least one free variable

Key Notes

- If a set of vectors is **linearly independent**, there are **no free variables**
 - No free variables = pivot in every column
- If a set of vectors is **linearly dependent**, there is **at least one free variable**
- Quick facts
 - $\circ \quad \text{If \# of columns > \# of rows, then } \{v_{\text{\tiny 1}},...,v_{\text{\tiny p}}\} \text{ is linearly dependent} \\$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
: x_2 is free

o If $\{v_1,\,...,\,v_p\}$ is linearly independent, then # of rows \geq # of columns

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
: no free variables
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
: no free variables (there is no x_3 here)

- If Ax = 0 has a free variable, then $\{v_1, ..., v_p\}$ is linearly dependent
- Sets with **one vector**: x_1v_1
 - \circ Linearly independent if and only if v_1 is **not the 0 vector**
 - o If v_1 is the 0 vector $\rightarrow x_10$
 - Has infinite nontrivial solutions
 - Linearly dependent
- Sets with **two vectors**: x_1v_1 and x_2v_2
 - Linearly dependent if at least one of the vectors is a multiple of the other
 - Linearly **independent** if and only if **neither** of the vectors is a multiple of the other
- Sets with 2 or more vectors:
 - Linearly dependent if at least one of the vectors can be written as a linear combination of all the other vectors
 - One vector is **in the span** of the other vectors
 - Vector is a **multiple** of all the other vectors
- If at least one vector is the **zero vector**, then the system is **linearly dependent**

Section 1.8: Introduction to Linear Transformations

Definitions

- Matrix Transformation
 - Assigns (transforms) a vector **x** in Rⁿ to a vector T(**x**) in R^m
- Linear Transformation
 - A matrix transformation that preserves the operations of vector addition and scalar multiplication
 - T(cu + dv) = cT(u) + dT(V)
- Domain of transformation T: $\mathbb{R}^n \rightarrow \mathbb{R}^m$
 - \circ Input: set \mathbb{R}^n
- Codomain of transformation T: $\mathbb{R}^n \rightarrow \mathbb{R}^m$
 - \circ Output: set R^m
- Image of **x** under the action of T
 - \circ T(**x**) in R^m
- Range of T
 - \circ Set of all images $T(\mathbf{x})$
- Principle of superposition

- (Solving equation Ax = b) == (finding all vectors **x** in Rⁿ that are transformed into the vector **b** in R^m under the "action" of multiplication by A
- Let A be an $m \times n$ matrix -> derive a function:
 - Matrix transformation: T: $R^n \rightarrow R^m$, $T(\mathbf{x}) = A\mathbf{x}$
 - \circ Multiplier (A): $m \times n$
 - \circ Domain of T: \mathbb{R}^n
 - Number of entries in **x**
 - \circ Codomain of T: \mathbb{R}^m
 - Number of entries in $T(\mathbf{x})$: image of \mathbf{x} under T
 - \sim Vector T(**x**)
 - Image of **x** under T
 - o Range
 - \blacksquare Set of all possible images $T(\mathbf{x})$
- $T: R^y \rightarrow R^x$
 - \circ T has x rows and y columns
- A transformation T is **linear** if:
 - i. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T
 - ii. $T(c\mathbf{u}) = c(T\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T
 - o Example:
 - y = 2x
 - f(2 + 3) = f(2) + f(3): linear

- Every matrix transformation is a linear transformation
- $\bullet \quad T(\mathbf{x}) = r\mathbf{x}$
 - Contraction: 0 ≤ r < 1</p>
 - \circ Dilation: r > 1

Section 1.9: The Matrix of a Linear Transformation

Definitions

- Standard matrix for a linear transformation T
 - $\circ \quad A = [T(e_1) + ... + T(e_n)]$
- $e_1 \text{ in } R^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $e_2 \text{ in } R_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- Onto (existence question)
 - o T: $R^n \rightarrow R^m$ is **onto** R^m if each **b** in R^m is the image of **at least one x** in R^n
 - At least 1 solution of $T(\mathbf{x}) = \mathbf{b}$
 - Pivot in **every row**
 - Columns of A spans R^m
- One-to-one (uniqueness question)
 - o T: $R^n \rightarrow R^m$ is **one-to-one** if each **b** in R^m is the image of **at most one x** in R^n
 - T(x) = b has either 1 solution or no solutions
 - Pivot in **every column**
 - Columns of A are linearly independent

- Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is also a matrix transformation $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$
 - Finding A: observe what T does to the **standard matrix**
- Geometric Linear Transformations of R²
 - Reflections
 - Reflection through the x_1 axis: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
 - Reflection through the x_2 axis: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
 - Reflection through the line $x_2 = x_1$: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - Reflection through the line $x_2 = -x_1$: $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
 - Reflection through the origin: $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
 - Contractions & expansions

- \bullet 0 < k < 1: contraction
- \blacksquare k > 1: expansion
- Horizontal contraction & expansion: $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$
- Vertical contraction & expansion: $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$
- o Shears
 - Horizontal shear: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$
 - k < 0: left shear
 - k > 0: right shear
 - Vertical shear: $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$
 - k < 0: down shear
 - k > 0: up shear
- Projections
 - Projections on the x_1 -axis: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
 - Projections on the x_2 -axis: $\begin{bmatrix} 0 & 1 \end{bmatrix}$
- Rotation
 - $\text{ CCW rotation:} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
- Geometric description
 - Onto: can get to any vector with an image
 - One-to-one: cannot have multiple vectors have the same image
- Onto
 - A linear transformation T: $R^n \rightarrow R^m$ is **onto** if for all $\mathbf{b} \in R^m$ there is an $\mathbf{x} \in R^n$ so that $T(\mathbf{x}) = A\mathbf{x} = \mathbf{b}$
 - \blacksquare Ax = b is always consistent
 - At least one solution
 - Existence property
 - o T is onto if and only if its **standard matrix** has a **pivot in every row**
- One-to-one
 - A linear transformation T: $R^n \rightarrow R^m$ is one-to-one if for all $\mathbf{b} \in R^m$ there is at most one (possible 0) $\mathbf{x} \in R^n$ so that $T(\mathbf{x}) = A\mathbf{x} = \mathbf{b}$
 - \blacksquare Ax = **b** has **at most 1** solution
 - No free variables
 - Uniqueness property

- \circ T is one-to-one if and only if the only solution to T(x) = 0 is the **trivial** solution
- o T is one-to-one if and only if **every column** of A is **pivotal**

Section 2.1: Matrix Algebra

Key Notes

- Theorem 1
 - Let A, B, and C be matrices of the same size, and let r and s be scalars.

$$a. A + B = B + A$$

$$d. r (A + B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$
 e. $(r + s) A = rA + sA$

e.
$$(r + s) A = rA + sA$$

$$c. A + 0 = A$$

$$f. r(sA) = (rs) A$$

- Matrix multiplication
 - o If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns $b_1, ..., b_p$, then the product AB is the $m \times p$ matrix whose columns are Ab₁, ..., Ab_p

$$AB = A[b_1 \ b_2 \ \dots \ b_p] = [Ab_1 \ Ab_2 \ \dots \ Ab_p]$$

- # of columns in A == # of rows in B
- **Theorem 2: Properties of Matrix Multiplication**
 - Let A be an m x n matrix, and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

b.
$$A(B + C) = AB + AC$$

c.
$$(B + C) A = BA + BC$$

d.
$$r(AB) = (rA) B = A(rB)$$

e.
$$I_mA = A = AI_n$$

- Matrices that **commute**
 - Matrices A and B commute when AB = BA
- Warnings
 - **Order** when multiplying matrices **matters**
 - In general, AB ≠ BA
 - o AB = AC does not suggest B = C
 - If AB is the zero matrix, cannot conclude in general that either A = 0 or B = 0
- Transpose of a Matrix
 - o Given an $m \times n$ matrix, the transpose of A is the $n \times m$ matrix, denoted by A^T

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ $B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}$ $B^T = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}$

Theorem 3

- Led A and B denote matrices whose sizes are appropriate for the following sums and products
 - a. $(A^{T})^{T} = A$
 - b. $(A + B)^T = A^T + B^T$
 - c. For any scalar r, $(rA)^T = rA^T$
 - d. $(AB)^T = B^TA^T$
- The transpose of a product of matrices equals the product of their transposes in the reverse order
- Powers of Matrices
 - o Can **only** be applied to **square matrices**

Theorems

Theorem 1: Uniqueness of RREF

• Each matrix is row equivalent to one and only one row reduced echelon matrix.

Theorem 2: Existence and Uniqueness Theorem

• A linear system is consistent if and only if the rightmost column of the augmented matrix is **not** a pivot column - that is, if and only if an echelon form of the augmented matrix has **no** row of the form:

$$[0 \dots 0 b]$$
 with b nonzero

- If a linear system is consistent, then the solution set contains either:
 - i. a unique solution (no free variables)
 - ii. infinitely many solution (at least one free variable)

Theorem 3: Matrix, Vector, and Linear Equations

• If A is an $m \times n$ matrix, with columns $\mathbf{a_1}, \dots, \mathbf{a_n}$ and if \mathbf{b} is in \mathbb{R}^m , the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$X_1$$
a₁ + X_2 **a**₂ + ... + X_n **a**_n = **b**

• which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \mid \mathbf{b} \end{bmatrix}$$

Theorem 4: Logically Equivalent Statements

- Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
 - a. For each \mathbf{b} in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
 - b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
 - c. The columns of A span R^m.

d. A has a pivot position in every row.

Theorem 5: Properties of the Matrix-Vector Product Ax

- If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:
 - $a. A (\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
 - b. A(cu) = c(Au)

Theorem 6: Parametric Vector Form of a Nonhomogeneous System

Suppose the equation Ax = b is consistent for some given b, and let p be a solution.
 Then the solution set of Ax = b is the set of all vectors of the form w = p + v_h, where v_h is any solution of the homogeneous equation Ax = 0.

Theorem 7: Characterization of Linearly Dependent Sets

An indexed set S = {v₁, ..., v_p} of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and v₁ ≠ 0, then some v_j (with j > 1) is a linear combination of the preceding vectors, v₁, ..., v_{j-1}.

Theorem 8: Linear Dependence based on Matrix Size

• If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ in R^n is linearly dependent if the number of columns > than the number of rows.

Theorem 9: Linear Dependence based on a Zero Vector

• If a set $S = \{v_1, ..., v_p\}$ in R^n contains the zero vector, then the set is linearly dependent.

Theorem 10: Using the Standard Matrix to find Columns of A

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in R^n

• In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n

$$A = [T(\mathbf{e}_1) \dots T(\mathbf{e}_n)]$$

Theorem 11: One-to-One using the Homogeneous Equation

• Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution

Theorem 12: Onto and One-to-One

- Let T: $\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:
 - a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m
 - All rows have pivots
 - b. T is one-to-one if and only if the columns of A are linearly independent
 - All columns have pivots
 - A has linearly independent columns