Trabalho prático número 02 Polígonos

A resolução desta tarefa deverá ser postada no AVA até às **23h59min** do dia **26 de abriu de 2024**.

1. Calculando áreas

Calcular a área de polígonos é importante em diversos contextos, especialmente na cartografia e no processo de elaboração de mapas, dada a possibilidade de se representar, no espaço \mathbb{R}^2 , a superfície curva do globo terrestre. A título de exemplo vê-se, na figura, um mapa no qual foi destacada uma região poligonal, ou seja, cujos lados são formados por segmentos de reta.

Figura 1. Foto de uma região aleatória capturada pelo Google Maps.

Para determinar a área dessa região, uma possibilidade é, a partir de um vértice, traçar diagonais desse polígono para dividi-lo em triângulos. Assim, a área a ser determinada é equivalente ao somatório das áreas dos triângulos obtidos a partir das diagonais traçadas. Veja, a seguir, que a região sombreada em cor azul foi dividida em 8 triângulos, o que nos permite estabelecer a relação:

$$A(poligono) = A_1 + A_2 + A_3 + \dots + A_8$$

em que cada A_i é área de um dos triângulos que compõe o polígono azul.

Figura 2. Dividindo o polígono em triângulos.

2. O que deve ser feito

Escreva, em C, um algoritmo para determinar a área de uma região poligonal cujos vértices estão organizados em um arquivo texto. Nesse arquivo, a primeira linha mostra o número de lados (ou vértices) do polígono e cada uma das linhas a seguir trazem as coordenadas x e y desses vértices separadas por um espaço. Por exemplo, caso o polígono tenha vértices (1, 2), (3, 8) e (5, 1), o arquivo de entrada terá o seguinte aspecto:

Como saída, o programa deve informar a área desse polígono em uma mensagem exibida no painel terminal ou no prompt de comando. Assim, no caso do triângulo indicado acima, a saída deveria ser: "A área do polígono é 13".

Atenção:

No desenvolvimento deste trabalho prático, devem ser observadas as seguintes restrições:

Deve ser usado a struct Ponto:

```
typedef struct {
    float X;
    float Y;
} Ponto;
```

- 2. Novas structs podem ser implementadas (e explicadas como comentários);
- 3. Para criar exemplos de polígonos de teste, use o software Geogebra (www.geogebra.org);
- 4. O código-fonte deve ser modularizado.
- 5. Deve ser implementada a função float AreaTriangulo (Ponto A, Ponto B, Ponto C);

Essa função determinará a área do triângulo de vértices A, B e C passados como parâmetros.

- 6. Para polígonos de 3 ou mais lados, a área deve ser calculada a partir da decomposição em triângulos.
- 7. Devem ser enviados o código-fonte em arquivo .c.
- 8. Não envie arquivos executáveis.
- 9. Para cada dia de atraso, sua nota será reduzida de 10%;
- 10. Esta atividade vale 3,0 pontos;
- 11. Este trabalho é individual.

Antes de enviar, verifique se todos os requisitos propostos foram adequadamente implementados.

3. A área do triângulo

Sejam $A(x_A, y_A)$, $B(x_B, y_B)$ e $C(x_C, y_C)$ vértices do triângulo ABC.

A área do triângulo ABC é igual a $\frac{|Det|}{2}$, em que $Det = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$.

Por exemplo, no caso do triângulo de vértices A = (1, 2), B = (3, 8) e C = (5, 1), a área seria igual a 13, uma vez que o determinante tem valor absoluto 26 e tem cálculos detalhados a seguir:

$$Det = \begin{matrix} x_A & y_A & 1 & x_A & y_A & 1 & 2 & 1 & 1 & 2 \\ x_B & y_B & 1 & x_B & y_B & 3 & 8 & 1 & 3 & 8 = 8 + 10 + 3 - 40 - 1 - 6 = -26 \\ x_C & y_C & 1 & x_C & y_C & 5 & 1 & 1 & 5 & 1 \end{matrix}$$