МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Лабораторная работа №5 дисциплина «Системный анализ» по теме «Уравнение регрессии»

Выполнил: студент группы ВТ-31 Макаров Д.С.

Проверил: Полунин А. И.

Лабораторная работа №5

«Уравнение регрессии»

Цель работы:определить функцию зависящую от 2 аргументов, найти ее коэффициенты, оценить коэффициенты и шум.

Задание: Исследуемый процесс определяется системой дифференциальных уравнений.

Baxp N	У	! 21	1 12	
6 1	434.6056050	8,000	12.000	
2	99.4576048	7,000	4.000	
3	426,5185026	9.000	11.000	
4	219.8754453	5.000	9.000	
5	261.1813246	8.000	8.000	
6	113.2138322	4.000	6.000	-
7	293.0785722	5,000	11.000	
8	811.3168444	10,000	17.000	
9	325.0937345	6.000	11.000	
10	209.3121888	4.000	9.000	
11	506.5148699	5.000	16.000	
12	140.8936827	4.000	7.000	
13	185.8041733	5.000	8.000	
14	189.7014111			
15	187.8794151			
16	190.7171421			
17	192.7927908			
13	193.4331172			
19	185.9415325			
20	185.9871731			
21	194.3002881			
22	191.4144151			

Рис. 1: Задание к работе

В таблице находятся результаты эксперимента для определения функции, зависящей от двух аргументов. Эксперименты 1-12 использовать для оценки коэффициентов математической модели a, эксперименты 13-22 использовать для оценки дисперсии погрешности измерений σ_{ϵ} .

Ход работы

```
1. 4.3395 \times_1 \times_2 + 12.63661 \times_2 + -14.85473 \times_1 Rr: 0.9844168175198087 Roct: 0.9935220024997524  
2. 7.5885 \times_1^2 + 40.28835 \times_2 + -66.12757 \times_1 Rr: 0.9951115915334204 Roct: 0.991580466562496  
3. 2.59578 \times_2^2 + -14.00299 \times_2 + 26.50111 \times_1 Rr: 0.9277305511370146 Roct: 0.9728269166592233  
4. -3.24687 \times_1^2 + 6.2375 \times_1 \times_2 + 7.85926 \times_1 Rr: 0.9840643713939677 Roct: 0.9891928211951432  
5. 1.07002 \times_2^2 + 2.89199 \times_1 \times_2 + 0.95272 \times_1 Rr: 1.0085387173824495 Roct: 0.9993237710303345  
6. 1.93084 \times_2^2 + 2.68162 \times_1^2 + -2.90833 \times_1 Rr: 1.0033622103033342 Roct: 0.99839365337929491  
7. -2.0437 \times_1^2 + 5.43998 \times_1 \times_2 + 5.05622 \times_2 Rr: 0.9667963894671152 Roct: 0.99911920896761623  
8. 0.99591 \times_2^2 + 2.9445 \times_1 \times_2 + 1.14978 \times_2 Rr: 0.99673878771299906 Roct: 0.9994723448920507  
9. 1.89924 \times_2^2 + 2.36179 \times_1^2 + 0.16008 \times_2 Rr: 0.962241868194272 Roct: 0.9883981651932157  
10. 1.04104 \times_2^2 + -0.02687 \times_1^2 + 3.03552 \times_1 \times_2 Rr: 1.025175381449643 Roct: 0.9992270864215934  
Лучшие полиномы: R^2 \text{ uepes QR: } \times_2^2 + \times_1^2 + \times_1 \times_2 Re uepes QStop: \times_2^2 + \times_1^2 \times_1 \times_2
```

Рис. 2: Подбор уравнения регрессии при помощи программы

1.07002 x₂² + 2.89199 x₁x₂ + 0.95272 x₁

Рис. 3: Полученное уравнение регрессии

Приложение

Содержимое файла lab5regression.py

```
from itertools import combinations
import matplotlib.pyplot as plt
import numpy as np
def get_polynom_list(polynom_parts, polynom_parts_count=3):
    polynoms = []
    combination_list = combinations(range(len(polynom_parts)), polynom_parts_count)
    for combination in combination_list:
        combination = sorted(combination, reverse=True)
        result_element = []
        for part_num in combination:
            result_element.append(polynom_parts[part_num])
        polynoms.append(result_element)
    return polynoms
def get_functions_labels(functions):
    labels = []
    for func in functions:
        labels.append(func.__name__)
    return labels
def get_all_F_matrices(polynoms_list, x_vectors):
    F_matrices = []
    for polynom in polynoms_list:
        F_matrix = []
        for x_vector in x_vectors:
            F_matrix_str = []
            for polynom_part in polynom:
                F_matrix_str.append(polynom_part(x_vector[0], x_vector[1]))
            F_matrix.append(F_matrix_str)
        F_matrices.append(np.array(F_matrix))
    return F_matrices
def get_all_a_vectors(F_matrices, Y_vector):
    a_vectors = []
    for F_matrix in F_matrices:
        a_vector = np.linalg.inv((F_matrix.T.dot(F_matrix))).dot(
            F_matrix.T.dot(Y_vector)
        a_vectors.append(a_vector)
    return a_vectors
def get_best_polynom(F_matrices, a_vectors, Y_vector,polynoms):
    y_cap_vectors = []
    for F, a in zip(F_matrices, a_vectors):
        y_cap_vectors.append(F.dot(a))
    R2_1list = []
    R2_2list = []
    Q = sum(map(lambda y: (y - np.mean(Y_vector)) ** 2, Y_vector))
    for index,y_cap_vector in enumerate(y_cap_vectors):
```

```
QR = sum(map(lambda y_cap_i: (y_cap_i - np.mean(Y_vector)) ** 2, y_cap_vector))
        Qstop = sum(
            map(lambda y_cap_i, Y_i: (Y_i - y_cap_i) ** 2, y_cap_vector, Y_vector)
       R2_1 = QR / Q
       R2_2 = 1 - Qstop / Q
       R2_1_list.append(R2_1)
       R2_2_list.append(R2_2)
        print('{}.
        - '.format(index+1),get_regression_equation(get_functions_labels(polynoms[index]),a_vectors[i
        → ' Rr:' ,R2_1, 'RocT: ',R2_2)
    return (R2_1_list.index(max(R2_1_list)), R2_2_list.index(max(R2_2_list)))
def get_regression_equation(polynom_labels, a_vector):
   result_str = ""
    for index, label in enumerate(polynom_labels, start=1):
       result_str += str(round(a_vector[index - 1],5))
       result_str += " " + label + " + "
    return result_str[:-3]
```