LECTURE 1 NOTES

1. Statistical models. A statistical model \mathcal{F} is a set of probability distributions (or a set of densities). A parametric model is one that is parametrized by a finite number of parameters. That is, a parametric model has the form

$$\mathcal{F} = \{ F_{\theta} : \theta \in \Theta \}.$$

The set $\Theta \subset \mathbf{R}^p$ is the *parameter space*. For now, we focus on such parametric models. Later, we consider non-parametric models.

At a abstract level, the goal of a statistical investigation is to learn about a random variable from observations. An investigator begins by choosing a parametric model \mathcal{F} . The choice is usually based on domain knowledge, although it is also influenced by other (such as computational) concerns. For example, suppose an investigator who wishes to study the probability a coin comes up heads may choose the Bernoulli model:

$$\mathcal{F} = \{ \operatorname{Ber}(p) : p \in (0,1) \},$$

where Ber(p) is the Bernoulli distribution with mean p.

The investigator then collects data by observing the random variable \mathbf{x} taking values in a sample space \mathcal{X} . Usually, the observations consists of independent observations of the same random variable: $\mathbf{x} = {\{\mathbf{x}_i\}_{i \in [n]}}$. In the coin study, the observations may consist of the outcomes of n tosses of the coin.

EXAMPLE 1.1 (Location-scale model). Let \mathbf{x} be a real-valued random variable, and let f(x) be its density. The location-scale model of \mathbf{x} consists of densities of the form $\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$, where $\mu \in \mathbf{R}$ is the location parameter and $\sigma > 0$ is the scale parameter. Intuitively, the location parameter translates the density, while the scale parameter disperses or concentrates the density.

The choice of a model is subjective. However, it is in some sense necessary. By choosing a model, the investigator introduces prior knowledge about the data generating process. There is a theorem, called the *No Free Lunch* theorem, which in essence says that without any prior knowledge of the data generating process, statistical inference is impossible. In pseudomathematical terms:

$$Inference = data + knowledge,$$

2 STAT 201B

hence the need to introduce prior knowledge by choosing a model.

A statistic is a function of the data that summarizes the data. When the function is not invertible (and it usually isn't), the summary is lossy. Thus statistics are a form of data reduction. Formally, a statistic $\mathbf{t} := \phi(\mathbf{x})$ for some function $\phi: \mathcal{X} \to \mathcal{T}$ partitions the sample space \mathcal{X} into its pre-images:

$$\mathcal{X} = \bigcup_t \mathcal{A}_t$$
, where $\mathcal{A}_t := \{x \in \mathcal{X} : \phi(\mathbf{x}) = t\}.$

Thus observing $\{\phi(\mathbf{x})=t\}$ informs the investigator of that $\mathbf{x}\in\mathcal{A}_t$, but not the exact value of \mathbf{x} . Some examples of statistics are:

- 1. sample mean: $\bar{\mathbf{x}} := \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i$, 2. sample variance: $\mathbf{s}^2 = \frac{1}{n-1} \sum_{i \in [n]} (\mathbf{x}_i \bar{\mathbf{x}})$, 3. order statistics: $\mathbf{x}_{(i)} \leq \cdots \leq \mathbf{x}_{(n)}$.

In the coin tossing example, a relevant statistic may be the fraction of times the coin came up heads:

(1.1)
$$\bar{\mathbf{x}}_n := \frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i.$$

It is a form of data reduction because many sequences of heads and tails give the same fraction. Since \mathbf{x} is stochastic, any function of \mathbf{x} is also a random variable, and its distribution is called its sampling distribution.

Example 1.2. Let $\mathbf{x}_i \overset{\text{i.i.d.}}{\sim} \text{Ber}(p)$. Then $\sum_{i \in [n]} \mathbf{x}_i \sim \text{bin}(n, p)$. Indeed, the moment-generating function (MGF) of $n\bar{\mathbf{x}}$ is

$$\mathbf{E}\left[e^{t\sum_{i\in[n]}\mathbf{x}_i}\right] = \mathbf{E}\left[\prod_{i\in[n]}e^{t\mathbf{x}_i}\right].$$

Since $\{\mathbf{x}_i\}_{i\in[n]}$ are i.i.d.,

$$= \prod_{i \in [n]} \mathbf{E} \left[e^{t \mathbf{x}_i} \right] = \left(\mathbf{E} \left[e^{t \mathbf{x}_1} \right] \right)^n.$$

The MGF of a Ber(p) random variable is $1-p+pe^t$. Thus the MGF of $n\bar{\mathbf{x}}_n$ is $(1 - p + pe^t)^n$, which is the MGF of a bin(n, p) random variable.

EXAMPLE 1.3. Let $\mathbf{x}_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \Sigma)$. Then $\bar{\mathbf{x}} \sim \mathcal{N}(\mu, \frac{1}{n}\Sigma)$. Indeed, the MGF of $\frac{1}{n} \sum_{i \in [n]} \mathbf{x}_i$ is

$$\mathbf{E}\left[e^{\frac{1}{n}\sum_{i\in[n]}t^T\mathbf{x}_i}\right] = \mathbf{E}\left[\prod_{i\in[n]}e^{\frac{1}{n}t^T\mathbf{x}_i}\right] = \prod_{i\in[n]}\mathbf{E}\left[e^{\frac{1}{n}t^T\mathbf{x}_i}\right] = \left(\mathbf{E}\left[e^{\frac{1}{n}t^T\mathbf{x}_1}\right]\right)^n.$$

The MGF of a $\mathcal{N}(\mu, \Sigma)$ random variable is $e^{t^T \mu + \frac{1}{2}t^T \Sigma t}$. Thus the MGF of $\bar{\mathbf{x}}_n$ is

$$\left(e^{\frac{1}{n}t^T\mu + \frac{1}{2n^2}t^T\Sigma t}\right)^n = e^{t^T\mu + \frac{1}{2}t^T\left(\frac{1}{n}\Sigma\right)t},$$

which is the MGF of a $\mathcal{N}(\mu, \frac{1}{n}\Sigma)$ random variable.

EXAMPLE 1.4. If $\mathbf{x} \sim \mathcal{N}(0,1)$, then $\mathbf{x}^2 \sim \chi_1^2$. The MGF of \mathbf{x}^2 is

$$\mathbf{E}\left[e^{t\mathbf{x}^{2}}\right] = \int_{\mathbf{R}} \frac{1}{\sqrt{2\pi}} e^{\left(t - \frac{1}{2}\right)x^{2}} dx$$
$$= \int_{\mathbf{R}} \frac{1}{\sqrt{2\pi}} e^{\frac{x^{2}}{\left(t - \frac{1}{2}\right)^{-1}}} dx.$$

The integrand is "almost" the density of a $\mathcal{N}(0, (t-\frac{1}{2})^{-1})$ random variable. To make it so, we multipy and divide by $(t-\frac{1}{2})^{-1/2}$ to obtain

$$= (t - \frac{1}{2})^{-1/2} \int_{\mathbf{R}} \frac{1}{\sqrt{2\pi} (t - \frac{1}{2})^{-1/2}} e^{\frac{x^2}{(t - \frac{1}{2})^{-1}}} dx$$
$$= (t - \frac{1}{2})^{-1/2},$$

which is the MGF of a χ_1^2 random variable. If $\mathbf{x} \sim \mathcal{N}(0, I_k)$, $\|\mathbf{x}\|_2^2 \sim \chi_k^2$:

$$\mathbf{E}\left[e^{t\|\mathbf{x}\|_2^2}\right] = \mathbf{E}\left[e^{t\sum_{i\in[k]}\mathbf{x}_i^2}\right] = \mathbf{E}\left[\prod_{i\in[k]}e^{t\mathbf{x}_i^2}\right].$$

Since $\{\mathbf{x}_i\}_{i\in[n]}$ are i.i.d.,

$$= \prod_{i \in [n]} \mathbf{E}\left[e^{t\mathbf{x}_i^2}\right] = \left(t - \frac{1}{2}\right)^{-n/2}.$$

Example 1.5. If $\mathbf{x}_j \overset{\text{i.i.d.}}{\sim} \sim \text{Cauchy}(a, b)$, then $\bar{\mathbf{x}} \sim \text{Cauchy}(a, b)$. The Cauchy distribution is heavy-tailed; its MGF is undefined. However, its characteristic function is well-defined. Thus

$$\mathbf{E}\left[e^{i\frac{t}{n}\sum_{j\in[n]}\mathbf{x}_j}\right] = \mathbf{E}\left[\prod_{j\in[n]}e^{i\frac{t}{n}\mathbf{x}_j}\right].$$

Since $\{\mathbf{x}_j\}_{j\in[n]}$ are i.i.d.,

$$\begin{split} &= \prod_{j \in [n]} \mathbf{E} \left[e^{i \frac{t}{n} \mathbf{x}_j} \right] = \left(\mathbf{E} \left[e^{\frac{t}{n} \mathbf{x}_1} \right] \right)^n \\ &= \left(e^{i \mu \frac{t}{n} - \sigma \left| \frac{t}{n} \right|} \right)^n = e^{i \mu t - \sigma \left| t \right|}, \end{split}$$

which is the characteristic function of a Cauchy(a, b) random variable.

4 STAT 201B

Table 1 The conditional distribution of three coin tosses given the number of heads $\mathbf{t} = \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$

		. 0
$(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_2)$	\mathbf{t}	$f_p(\mathbf{x} \mid \mathbf{t})$
(0,0,0)	0	1
(1,0,0)	1	1/3
(0,1,0)	1	1/3
(0,0,1)	1	1/3
(1,1,0)	2	1/3
(0,1,1)	2	1/3
(1,0,1)	2	1/3
(1,1,1)	3	1

2. Sufficiency. In Section 1, we saw that statistics are a form of data reduction. In the rest of these notes, we formalize the notion of data reduction.

DEFINITION 2.1 (sufficient statistic). Let $\mathbf{x} \sim F \in \mathcal{F}$. A statistic $\mathbf{t} := \phi(\mathbf{x})$ is a sufficient statistic for the parametric model \mathcal{F} if the conditional distribution of \mathbf{x} given \mathbf{t} does not depend on the parameter θ .

A sufficient statistic \mathbf{t} summarizes all the information in \mathbf{x} about θ . That is, as long as the goal is to learn about θ , observing a sufficient statistic \mathbf{t} is as good as observing \mathbf{x} . Why? Consider two investigators: Alice and Bob. Alice observes \mathbf{x} , while Bob observes \mathbf{t} . Since \mathbf{t} is a sufficient statistic, the conditional distribution of $\mathbf{x} \mid \mathbf{t}$ does not depend on θ , so Bob can draw a new sample \mathbf{x}' from the conditional distribution. Further, \mathbf{x} and \mathbf{x}' are (unconditionally) identically distributed:

$$\mathbf{E}[g(\mathbf{x})] = \mathbf{E}[\mathbf{E}[g(\mathbf{x}) \mid \mathbf{t}]]$$
 (tower property)
=
$$\mathbf{E}[\mathbf{E}[g(\mathbf{x}') \mid \mathbf{t}]]$$
 (sufficiency)
=
$$\mathbf{E}[g(\mathbf{x}')]$$

for any g. Since Bob can draw a new sample \mathbf{x}' with the same law as Alice's sample \mathbf{x} , Bob can use any method that Alice may use to learn about θ .

In terms of partitions, a sufficient statistic partitions the sample space into regions on which the distribution of $\mathbf{x} \mid \mathbf{t}$ does not depend on θ . Going back to the coin tossing example, let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2 \stackrel{i.i.d.}{\sim} \mathrm{Ber}(p)$. Tables 1 and 2 gives the conditional distributions of $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \mid \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ and $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \mid \mathbf{x}_1$. We observe that the former (conditional) distribution does not depend on p, but the latter depends on p. Thus $\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3$ is a sufficient statistic, but \mathbf{x}_1 is not.

Table 2

The conditional distribution of three coin tosses given the outcome of the first toss \mathbf{x}_1

$(\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_2)$	\mathbf{x}_1	$f_p(\mathbf{x} \mid \mathbf{x}_1)$
(0,0,0)	0	$(1-p)^2$
(0,1,0)	0	p(1 - p)
(0,0,1)	0	p(1 - p)
(0,1,1)	0	p^2
(1,0,0)	1	$(1-p)^2$
(1,1,0)	1	p(1 - p)
(1,0,1)	1	p(1 - p)
(1,1,1)	1	p^2

Definition 2.1 is intuitive, but not very useful for finding sufficient statistics. If a statistical model has densities, sufficient statistics can be found by factorizing the densities.

THEOREM 2.2. A statistic $\mathbf{t} := \phi(\mathbf{x})$ is sufficient for a parametric model \mathcal{F} if and only if there are functions $g_{\theta} : \mathcal{X} \to \mathbf{R}$ and $h : \mathcal{X} \to \mathbf{R}$ such that any density $f_{\theta}(x) \in \mathcal{F}$ has the form

$$f_{\theta}(x) = g_{\theta}(\phi(x))h(x).$$

PROOF. A proof of the factorization theorem for continuous densities depends on measure theoretic arguments. We focus on the discrete case.

Assume $\mathbf{t} := \phi(\mathbf{x})$ is a sufficient statistic. It is possible to check that

$$q_{\theta}(t) = \mathbf{P}_{\theta}(\phi(\mathbf{x}) = t)$$
 and $h(x) = \mathbf{P}(\mathbf{x} = x \mid \phi(\mathbf{x}) = \phi(x))$

is a valid factorization. Indeed,

$$g_{\theta}(\phi(x))h(x) = \mathbf{P}_{\theta}(\phi(\mathbf{x}) = \phi(x))\mathbf{P}(\mathbf{x} = x \mid \phi(\mathbf{x}) = \phi(x))$$
$$= \mathbf{P}_{\theta}(\mathbf{x} = x, \phi(\mathbf{x}) = \phi(x))$$
$$= \mathbf{P}_{\theta}(\mathbf{x} = x),$$

Assume $\mathbf{P}_{\theta}(\mathbf{x} = x) = g_{\theta}(\phi(x))h(x)$. It is possible to check that the conditional law of \mathbf{x} given $\phi(\mathbf{x})$ does not depend on θ :

$$\begin{aligned} \mathbf{P}_{\theta}(\mathbf{x} = x \mid \phi(\mathbf{x}) = t) &= \frac{\mathbf{P}_{\theta}(\mathbf{x} = x, \phi(\mathbf{x}) = t)}{\mathbf{P}_{\theta}(\phi(\mathbf{x}) = t)} \\ &= \frac{\mathbf{P}_{\theta}(\mathbf{x} = x, \phi(\mathbf{x}) = t)}{\sum_{x \in \mathcal{X}} \mathbf{P}_{\theta}(\mathbf{x} = x) \mathbf{1} \{\phi(\mathbf{x}) = t\}}, \end{aligned}$$

which, by assumption, is

$$= \frac{g_{\theta}(t)h(x)}{\sum_{x \in \mathcal{X}} g_{\theta}(\phi(x))h(x)\mathbf{1}\{\phi(x) = t\}}$$

$$= \frac{g_{\theta}(t)h(x)}{\sum_{x \in \mathcal{X}} g_{\theta}(t)h(x)\mathbf{1}\{\phi(x) = t\}}$$

$$= \frac{h(x)}{\sum_{x \in \mathcal{X}} h(x)\mathbf{1}\{\phi(x) = t\}}.$$

Since the conditional law has no dependence on θ , we deduce $\mathbf{t} := \phi(\mathbf{x})$ is a sufficient statistic.

Returning to the coin tossing example, we check that $\sum_{i \in [n]} x_i$ is a sufficient statistic for the model

$$\mathcal{F} = \{ \operatorname{Ber}(p)^n = \operatorname{Ber}(p) \times \cdots \times \operatorname{Ber}(p) : p \in (0, 1) \}$$

by factorizing the density:

$$\mathbf{P}_p(\mathbf{x} = x) = \prod_{i \in [n]} p^{x_i} (1 - p)^{1 - x_i} = p^{\sum_{i \in [n]} x_i} (1 - p)^{1 - \sum_{i \in [n]} x_i}.$$

In light of the factorization theorem, let

$$g_p(t) = \mathbf{P}_{\theta}(\phi(\mathbf{x}) = t) = \binom{n}{t} p^t (1-p)^{1-t}$$

and observe

$$\frac{\mathbf{P}_p(\mathbf{x} = x)}{g_p(\sum_{i \in [n]} x_i)} = \binom{n}{\sum_{i \in [n]} x_i}^{-1},$$

which does not depend on p.

Example 2.3. Let $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \text{Poi}(\theta)$. Then the distribution of \mathbf{x} is

$$f_{\theta}(x) = \prod_{i \in [n]} \frac{\theta^{x_i}}{x_i!} e^{-\theta} = \frac{\theta^{\sum_{i \in [n]} x_i} e^{n\theta}}{\prod_{i \in [n]} x_i!},$$

which factorizes as

$$= \underbrace{\left(\prod_{i \in [n]} x_i!\right)^{-1}}_{h(x)} \underbrace{\left(\theta^{\sum_{i \in [n]} x_i} e^{n\theta}\right)}_{g_{\theta}(x)}.$$

Thus $\mathbf{t} := \sum_{i \in [n]} \mathbf{x}_i$ is a sufficient statistic.

Two other examples of sufficient statistics are

1. **max of uniform:** Let $\mathbf{x}_1, \dots, \mathbf{x}_n$ be *i.i.d.* according to the uniform law on $[0, \theta]$. The statistic $\mathbf{t} := \max_{i \in [n]}(\mathbf{x}_i)$ is sufficient for the model

$$\mathcal{F} = \{ \text{unif}(0, \theta) : \theta > 0 \}.$$

Intuitively, given the max is t, the other n-1 random variables are i.i.d. according to the uniform law on [0,t]. Since the conditional law does not depend on θ , the max is sufficient.

2. **order statistics:** The order statistics $\mathbf{t} = \begin{bmatrix} \mathbf{x}_{(1)} & \dots & \mathbf{x}_{(n)} \end{bmatrix}$ are sufficient for any model of *i.i.d.* random variables:

$$\mathcal{F} = \{ F_{\theta}^n : \theta \in \Theta \}.$$

Given the order statistics, the possible values of \mathbf{x} are the n! permutations of \mathbf{t} . Since $\{\mathbf{x}_i\}_{i\in[n]}$ are i.i.d., each permutation occurs with probability $\frac{1}{n!}$. Thus the conditional law of $\mathbf{x} \mid \mathbf{t}$ is independent of θ .

To warp up, we observe that sufficient statistics are not unique. If **t** is a sufficient statistic, $g(\mathbf{t})$ for any invertible g is also a sufficient statistic. Since the events $\{\mathbf{t}=t\}$ and $\{g(\mathbf{t})=g(t)\}$ are equivalent, the laws conditioned on $\{\mathbf{t}=t\}$ and $\{g(\mathbf{t})=g(t)\}$ are identical.

Yuekai Sun Berkeley, California December 3, 2015