SDP and Max Cut

Example I,
$$VV^T$$
 for any $n \times k$ matrix V

$$(x^T A \times = x^T V V^T \times = \|V^T \times\|_2^2 \ge 0)$$
A, B psd. A , $B \ge 0 \Rightarrow A + (BB) psd$

SDP and Vectors

vars: XEJ	X >0 <> X=VVT
max : <cx></cx>	Now, let V=[-u,-]
9.t. $: \langle A_1, X \rangle \leq b_1$	
i	L
$\langle A_{m_1} X \rangle \leq b_m$	So that Xij= < Ui, Uj>.
XEO	Then $\langle C, X \rangle$ and $\langle A_i, X \rangle$
	become deg-2 poly in W,-, un!".
$C,A_{c},A_{m}\in S^{n}$	0 1 3
bin. bm ER.	

Relaxation for Max Cut. (Say G=(In], E)).

Var: $[X_{1..}, X_{n}]$ having ±1 value

max $\sum_{i \in J} (1 - X_{i} X_{j})/2$ S.t. $X_{i}^{3} = 1$ i.

Exact if $X_1 \in \mathbb{R}$. Relax X_1 to vector U_1 ?

(dim upresticted)

Var: $[u_1, u_n]$ having $\int_{value}^{value} \{u \in \mathbb{R}^n : ||u||_2 = 1\}$ $\max_{x_{inj} \in \mathbb{R}} (1 - \langle u_i u_i \rangle)/2$ S.t. $\langle u_1, u_i \rangle = 1$. $X = \begin{bmatrix} u_1 & u_1 \\ u_2 & u_3 \end{bmatrix}$

Therefore, SDP is a relaxation!

Goemans-Williamson

Var: fur, und having I value max (inj) = (1- <ui, mg)/2 S.t. < u1, U1)=1

Rounding

- Choose a random vector 9 E Bn-1

- A < fi: < u1,9> >0?

- Output A.

Analysis. Fix (iii) EE.

It contributes (1-<ui, uj>)/2 to SDP

Pr[i, j separal] to ALG.

Can we say Pij/((1-<u1,45)/2)>?

WLOG. U:= (1,0, ...,0) Uj=(d,B,0,...,0)

$$P_{ij} = \frac{2\theta}{2\pi} = \frac{\theta}{\pi} = \frac{\text{orccos}(4u_{i},u_{i})}{\pi}$$

.: = 0.878-approx. algo. for Max-cut.

Thus, Assuming Unique Games Conjecture, 4 E70,

#(dG6+E)-approx. algo.