Введение в лямбда-исчисление

N.

Дополнительная лекция $2025 \ \epsilon$.

Перегруженность равенства

$$f(\alpha)=g(\alpha+1)$$

Это:

• равенство заранее заданных f, g в точке а?

Перегруженность равенства

$$f(\alpha) = g(\alpha + 1)$$

Это:

- равенство заранее заданных f, g в точке a?
- равенство заранее заданных f, g для всех а?

Перегруженность равенства

$$f(\alpha) = g(\alpha + 1)$$

Это:

- равенство заранее заданных f, g в точке a?
- равенство заранее заданных f, g для всех а?
- способ описания **новой** функции f с помощью заранее заданной функции *g*?

$$f(\alpha) = g(\alpha + 1)$$

Происхождение знака λ (согласно Россеру)

$$g(\boldsymbol{\hat{\alpha}}+1) \rightarrow \boldsymbol{\hat{\alpha}}.g(\boldsymbol{\alpha}+1) \rightarrow / \backslash \boldsymbol{\alpha}.g(\boldsymbol{\alpha}+1)$$

$$f(\alpha) = g(\alpha + 1)$$

Наше время

$$f = \lambda \alpha. q(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

$$f(\alpha) = g(\alpha + 1)$$

Наше время

$$f = \lambda a.g(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

Парадокс Карри

Пусть $D = \lambda x.(x \ x) \Rightarrow A$, тогда $(D \ D) \Leftrightarrow ((D \ D) \Rightarrow A)$, что влечёт A.

$$f(\alpha) = g(\alpha + 1)$$

Наше время

$$f = \lambda a.g(\alpha + 1)$$

Алонзо Чёрч: порождение функций (абстракция) + применение + логические связки = надежда на формализацию математики.

Высказывание Карри

Высказывание C, являющееся собственной посылкой: $C = C \Rightarrow A$.

- Мощная модель вычислений, позволяет компактно описывать семантику языков программирования, без акцента на детали реализации.
- Бестиповая версия А. Черч, 1930-е (и много типизированных).
- Базисные операции применение (функция \rightarrow данные) и абстракция (данные \rightarrow функция).

Абстракция + применение + безопасная подстановка = достаточно мощный инструмент, чтобы выразить любую рекурсивную функцию.

Зачем это нужно знать?

- Культурный минимум ПМИ. Статьи по статическому анализу чаще всего используют тот или иной вариант λ-исчисления.
- Параметрический полиморфизм. Система типов в λ-исчислении — теоретическая основа для функциональных дженериков.
- Композиционный (комбинаторный) стиль. Элементы ФП проникли в мейнстримовые языки (Python, Kotlin, etc). Программирование в комбинаторном стиле замена паттерну DI в ООП.
- Проектирование DSL. Безопасная подстановка важный аспект метапрограммирования, статического анализа и DSL. Согласно статье 2014 года на OOPSLA больше 80% DSL реализованы небезопасно.

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным). Различения по типам нет, возможно самоприменение: F F.

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x.M$ обозначает анонимную (неименованную) функцию от $x: x \mapsto M[x]$.

Пусть F, X — термы. F X — операция применения терма F (функции) к терму X (данным). Различения по типам нет, возможно самоприменение: F F.

Scheme

```
; Первый элемент пары -- функция, применяемая
; ко второму элементу.
(Fun1 Fun2)
```

Пусть $M \equiv M[x]$ — терм, возможно содержащий x. Тогда абстракция $\lambda x.M$ обозначает анонимную (неименованную) функцию от $x: x \mapsto M[x]$.

Scheme

(lambda (x) M)

Применение и абстракция согласованы:

$$(\lambda x.x \ x) \ (\lambda y.y) = (\lambda y.y) \ (\lambda y.y) = \lambda y.y$$

β-эквивалентность:

$$(\lambda x.M) N =_{\beta} M[x := N].$$

Чистое λ-исчисление

- Конструктор применения
- Конструктор абстракции
- β-эквивалентность.

Термы λ-исчисления

- $x \in V \Rightarrow x \in \Lambda$;
- $M, N \in \Lambda \Rightarrow (M, N) \in \Lambda;$
- $M \in \Lambda$, $x \in V \Rightarrow (\lambda x.M) \in \Lambda$.

Пример

```
((\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x))
```


Соглашения о скобках

- Внешние скобки опускаются.
- Применение ассоциативно влево:

$$M \ N \ P \ Q$$
 — то же, что ((($M \ N) \ P$) Q).

• Можно группировать абстракции (не в Scheme!):

$$\lambda x$$
 у.F — то же, что ($\lambda x.(\lambda y.F)$).

• Тело абстракции простирается максимально вправо.

$$\lambda x.M \ N \ P$$
 — то же, что $\lambda x.(M \ N \ P)$.

Пример

Внешние скобки опускаются.

$$((\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x))$$

Пример

Применение ассоциативно влево.

$$(\lambda x.(x x)) (((\lambda x.(\lambda y.x)) ((\lambda y.y) y)) x)$$

Пример

Абстракции можно сгруппировать.

$$(\lambda x.x \ x) \ ((\lambda x.(\lambda y.x)) \ ((\lambda y.y) \ y) \ x)$$

Пример

Итоговый терм (остальные скобки снять нельзя):

 $(\lambda x.x \ x) \ ((\lambda x \ y.x) \ ((\lambda y.y) \ y) \ x)$

Свободные и связанные переменные

Абстракция $\lambda x. M$ **связывает** переменную x в терме M.

Пример

$$(\lambda x. x x) ((\lambda x y. x) ((\lambda y. y) z) w)$$

Связанные вхождения переменных выделены красным; свободные — синим.

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$

Множество связанных переменных BV(M):

- $BV(x) = \emptyset$;
- $BV(M N) = BV(M) \cup BV(N)$;
- $BV(\lambda x.M) = BV(M) \cup \{x\}.$

Верно ли, что BV(M) — множество всех переменных, входящих в M, минус FV(M)?

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$

Множество связанных переменных BV(M):

- $BV(x) = \emptyset$;
- $BV(M N) = BV(M) \cup BV(N)$;
- $BV(\lambda x.M) = BV(M) \cup \{x\}.$

Верно ли, что BV(M) — множество всех переменных, входящих в M, минус FV(M)? Heт! Пример: $(\lambda x.x)$ x.

Свободные переменные: формально

Множество свободных переменных FV(M) в терме M определяется индуктивно:

- $FV(x) = \{x\};$
- $FV(M N) = FV(M) \cup FV(N)$;
- $FV(\lambda x.M) = FV(M) \setminus \{x\}.$
- Разные вхождения переменной х могут иметь разный статус!
- Каждая связанная переменная x в λx.М относится к самой внутренней абстракции, связывающей ее!

$$\lambda x.(\lambda x y.y (x x)) (\lambda y.x (\lambda x.(x y)))$$

Комбинаторы

Определение

Терм M называется комбинатором, если $FV(M) = \emptyset$.

Часто используемые комбинаторы

 $I = \lambda x.x;$ $\Omega = (\lambda x.x x) (\lambda x.x x);$

 $\mathbf{K} = \lambda x y.x;$ $\mathbf{C} = \lambda f x y.f y x;$

 $\mathbf{K}_{*} = \lambda x y.y;$ $\mathbf{B} = \lambda f g x.f (g x);$

 $\omega = \lambda x.x x;$ $S = \lambda f g x.f x (g x).$

Scheme

(define K (lambda (x y) x))

α-эквивалентность

Связанные переменные можно переименовывать.

α-эквивалентные λ-термы

$$I = \lambda x. x = \lambda y. y = \lambda f. f$$

 α -эквивалентные термы дают один и тот же результат при β -преобразовании.

- $(\lambda x.x)$ M = M;
- $(\lambda y.y) M = M;$
- $(\lambda f.f)$ M = M.

Частичные функции

Пусть x, y свободны в $\phi[x, y]$. Построим абстракции:

- $\bullet \ \Phi_x = \lambda y. \phi[x,y];$
- $\Phi = \lambda x. \Phi_x = \lambda x. (\lambda y. \varphi[x, y]) = \lambda x \ y. \varphi[x, y].$

Применим эти абстракции к двум аргументам (каррирование, карринг):

$$\Phi X Y = (\Phi X) Y = \Phi_X Y = (\lambda y. \phi[X, y]) Y = \phi[X, Y].$$

Например, $(\lambda x y.x + y) 3 =_{\beta} \lambda y.3 + y в \lambda$ -исчислении можно понимать как операцию прибавления 3.

Частичные функции

Пусть x, y свободны в $\phi[x, y]$. Построим абстракции:

- $\Phi_{x} = \lambda y. \phi[x, y];$
- $\Phi = \lambda x. \Phi_x = \lambda x. (\lambda y. \varphi[x, y]) = \lambda x y. \varphi[x, y].$

Применим эти абстракции к двум аргументам (каррирование, карринг):

$$\Phi X Y = (\Phi X) Y = \Phi_X Y = (\lambda y. \phi[X, y]) Y = \phi[X, Y].$$

Ассоциативность применения влево ⇒ можно специализировать только слева направо

Комбинаторная логика

Комбинаторы можно определить через их поведение на аргументах:

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\omega x = x x$
- $\mathbf{S} \times \mathbf{y} z = \mathbf{x} z (\mathbf{y} z)$

Базис $\{K, S\}$ + применение — система, эквивалентная λ -исчислению.

Упражнение

λ-исчисление

$$S K I K =_{\beta} ?$$

Упражнение

λ-исчисление

$$\underline{S} \ K \ I \ K =_{\beta} \underline{K} \ K \ (I \ K) =_{\beta} K$$

$$\underline{S} K K K =_{\beta} \underline{K} K (K K) =_{\beta} K$$

Подстановка

Определение

```
x[x := N] = N

y[x := N] = y

(P Q)[x := N] = (P[x := N]) (Q[x := N])

(\lambda y.P)[x := N] = \lambda y.(P[x := N]), y \notin FV(N)

(\lambda x.P)[x := N] = \lambda x.P
```


Подстановка

Определение

```
x[x := N] = N

y[x := N] = y

(P Q)[x := N] = (P[x := N]) (Q[x := N])

(\lambda y.P)[x := N] = \lambda y.(P[x := N]), y \notin FV(N)

(\lambda x.P)[x := N] = \lambda x.P
```

Что делать, если $y \in FV(N)$ (4 правило)? Пример: $\lambda y.x \ y[x := y]$

Вопрос

Подойдет ли следующее правило, если $y \in FV(N)$? $(\lambda y.P)[x := N] = \lambda z.((P[y := z])[x := N]), \ z \notin FV(N) \cup FV(P)$

Коллизия (захвата) имен

Соглашение Барендрегта

Имена связанных переменных всегда выбираются так, чтобы они отличались от имен свободных переменных.

Пример

```
Редукция ((\lambda x \ y.x \ y) \ y) приводит к коллизии: (\lambda y.x \ y)[x := y]. В редукции ((\lambda x \ z.x \ z) \ y) коллизии нет.
```

18 / 41

Аксиомы λ-исчисления

Основная аксиома β-конверсии

Для любых $M, N \in \Lambda$ (($\lambda x.M$) N = M[x := N]).

Аксиомы равенства

M = M

 $M = N \Rightarrow N = M$

 $M = N \& N = L \Rightarrow M = L$

 $M = M' \Rightarrow M Z = M' Z$

 $M = M' \Rightarrow Z M = Z M'$

 $M = M' \Rightarrow \lambda x. M = \lambda x. M'$

M = N доказуемо — $\lambda \vdash M = N$.

19/41

α-преобразование

Основная аксиома α-конверсии

Для любых M, y таких, что $y \notin FV(M)$, $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

α-преобразование

Основная аксиома α-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

...но есть нюанс

Рассмотрим $\lambda x.(\lambda y.x\ y)$. Формально у не свободна в $\lambda y.x\ y$. После подстановки [x:=y] получаем: $\lambda y.(\lambda y.y\ y)$. В чем ошибка?

20 / 41

α-преобразование

Основная аксиома α-конверсии

Для любых M, у таких, что у \notin FV(M), $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

Вопрос

Подойдет ли следующее правило, если $y \in FV(N)$?

$$(\lambda y.P)[x := N] = \lambda z.((P[y := z])[x := N]), \ z \notin FV(N) \cup FV(P)$$

20 / 41

α-преобразование

Основная аксиома α-конверсии

Для любых M, y таких, что $y \notin FV(M)$, $\lambda x.M =_{\alpha} \lambda y.M[x := y].$

Подстановка не определена полностью, пока не будет пройден весь терм. Имея $(\lambda y.(\lambda z.(y\ z\ x)))[x:=y],$ формально строим последовательность:

$$\lambda z.((\lambda z.(y z x))[y := z])[x := y])$$

 $\lambda z.((\lambda w.((y z x)[z := w])[y := z]))[x := y])$
 $\lambda z.((\lambda w.(y w x)[y := z]))[x := y])$
 $\lambda z.((\lambda w.(z w x))[x := y])$
 $\lambda z.(\lambda w.(z w y))$

Применение α-конверсии

Пусть $\boldsymbol{\omega} = \lambda x.x \ x, \mathbf{1} =_{\alpha} \lambda y z.y \ z.$

$$\mathbf{w} \ \mathbf{1} = (\lambda \underline{x} \cdot \underline{x} \ \underline{x}) (\lambda y z \cdot y z)$$

$$=_{\beta} (\lambda \underline{y} z \cdot \underline{y} z) (\lambda y z \cdot y z)$$

$$=_{\beta} \lambda z \cdot (\lambda y z \cdot y z) z$$

$$=_{\alpha} \lambda z \cdot (\lambda \underline{y} z' \cdot \underline{y} z') z$$

$$=_{\beta} \lambda z \cdot (\lambda z' \cdot z z')$$

$$= \lambda z z' \cdot z z'$$

21 / 41

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M\ x)\ N) =_{\beta} (M\ N)$, термы $\lambda x.M\ x$ и M неразличимы по свойствам (экстенсиональность равенства).

22 / 41

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M \ x) \ N) =_{\beta} (M \ N)$, термы $\lambda x.M \ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

$$\lambda x y . x y =_{\eta} ?$$

$$\lambda x y.y x =_{\eta} ?$$

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M \ x) \ N) =_{\beta} (M \ N)$, термы $\lambda x.M \ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

конверсия

$$\lambda x y.x y = \lambda x. (\lambda y.x y) =_{\eta} \lambda x.x$$

$$\lambda x y.y x =_{\eta} ?$$

22 / 41

Схема аксиом η-конверсии

Пусть $x \notin FV(M)$. Тогда $\lambda x.M \ x =_{\eta} M$.

Поскольку $\forall N((\lambda x.M \ x) \ N) =_{\beta} (M \ N)$, термы $\lambda x.M \ x$ и M неразличимы по свойствам (экстенсиональность равенства).

Примеры

$$\lambda x y.x y = \lambda x. (\underline{\lambda y}.x \underline{y}) =_{\eta} \lambda x.x$$

х во внутренней абстракции

 λx у.у $x = \lambda x$. $(\lambda y.(y x))$ редукция невозможна.

22 / 41

Пусть x не свободна в M. Тогда $\lambda x. M$ $x =_{\eta} M$.

Пример редукции:

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$(\lambda y \ z.y \ z) \ (\lambda y \ z.y \ z)$$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z)$$

$$\downarrow x \mapsto \lambda y \ z.y \ z$$

$$\downarrow (\lambda y. (\lambda z.y \ z)) \ (\lambda y \ z.y \ z)$$

$$\downarrow y \mapsto \lambda y \ z.y \ z$$

$$\downarrow \lambda z. (\lambda y \ z.y \ z) \ z$$

$$(\lambda x. x \ x) \ (\lambda y \ z. y \ z)$$
 $x \mapsto \lambda y \ z. y \ z$
 $(\lambda y. (\lambda z. y \ z)) \ (\lambda y \ z. y \ z)$
 $y \mapsto \lambda y \ z. y \ z$
 $\lambda z. (\lambda y \ z. y \ z) \ z$
 α —преобразование
 ψ
 $\lambda z. (\lambda y \ z'. y \ z') \ z$

$$(\lambda x. x x) (\lambda y z. y z)$$

$$\downarrow x \mapsto \lambda y z. y z$$

$$\downarrow (\lambda y. (\lambda z. y z)) (\lambda y z. y z)$$

$$\downarrow y \mapsto \lambda y z. y z$$

$$\downarrow \lambda z. (\lambda y z. y z) z$$

$$\alpha - \text{преобразование}$$

$$\downarrow \lambda z. (\lambda y. (\lambda z'. y z')) z$$

$$\downarrow y \mapsto z$$

$$\downarrow \lambda z z'. z z'$$

$$(\lambda x.x \ x) \ (\lambda y \ z.y \ z) \xrightarrow{\eta - pe д.} (\lambda x.x \ x) \ (\lambda y.y)$$

$$(\lambda y.y) \qquad \eta - pe д.y к.ция \qquad (\lambda y. (\lambda z.y \ z)) \qquad \eta - pe д.y k.ция \qquad (\lambda y. (\lambda z.y \ z)) \qquad (\lambda y.y.y \ z)$$

$$(\lambda y.y.y.z) \qquad (\lambda y.y.y.z) \qquad (\lambda y.y.y.z) \qquad (\lambda y.y.y.z)$$

$$\lambda z.(\lambda y.y) \ z \xrightarrow{\eta - pe д.y k.ция} \lambda z.(\lambda y.y.y.z) \ z \xrightarrow{\eta - pe d.y k.ция} \lambda y.z.y.z$$

$$\lambda z.(\lambda y.y.z) \ z \xrightarrow{\eta - pe d.y k.ция} \lambda z.(\lambda y.y.y.z) \ z \xrightarrow{\eta - pe d.y k.ция} \lambda y.z.y.z$$

$$\lambda z.(\lambda y.y.z) \ z \xrightarrow{\eta - pe d.y k.ция} \lambda y.z.y.z$$

Применение η-конверсии

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\mathbf{S} \times \mathbf{y} z = \mathbf{x} z (\mathbf{y} z)$

Базис $\{K, S\}$ + применение + <u>η-конверсия</u> — система, эквивалентная λ -исчислению.

24/41

Применение η-конверсии

- I x = x
- $\mathbf{K} \times \mathbf{y} = \mathbf{x}$
- $\bullet S x y z = x z (y z)$

Базис $\{K, S\}$ + применение + <u>η-конверсия</u> — система, эквивалентная λ -исчислению.

Задачи

- lacktriangle Выразить I в базисе $\{K, S\}$.
- **2** Верно ли, что если $\forall x (X \ x = Y \ x)$, то X и Y можно свести к одному терму без η -конверсии, используя только правила применения I, K, S, данные выше?
- **3** Упростить S(S(K S)(S(K K) K))(K(S K K)).

Интерпретатор S + K = минимальный интерпретатор Тьюринг-полного ЯП. Чтобы перевести λ -терм в комбинаторный «байт-код», используется функция скобочной абстракции $\mu(\bullet)$.

- \bullet $\mu(\lambda x.x) \longrightarrow SKK$ (для краткости обозначается I);
- $m{\varrho}\ \mu(\lambda x.M) \longrightarrow \mathbf{K}\mu(M),$ если x не свободна в M;

Таким образом удаётся перейти к бесточечному представлению λ -функции.

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

• По алгоритму: $\lambda x.S$ ($\lambda y.y$) ($\lambda y.x$) $\rightarrow \lambda x.S$ I (Kx) \rightarrow S ($\lambda x.SI$) ($\lambda x.Kx$) \rightarrow S (K(SI))(S ($\lambda x.K$) ($\lambda x.x$)) \rightarrow S (K(SI))(S (KK) I).

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

- По алгоритму: $\lambda x.S$ ($\lambda y.y$) ($\lambda y.x$) $\rightarrow \lambda x.S$ I (Kx) \rightarrow S ($\lambda x.SI$) ($\lambda x.Kx$) \rightarrow S (K(SI))(S ($\lambda x.K$) ($\lambda x.x$)) \rightarrow S (K(SI))(S (KK) I).
- А если подумать?

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

• λx у. у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $\mathbf{S}\ M_1\ M_2\ x = M_1\ x\ (M_2\ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = \mathbf{K}\ M_3$.

Перейдём к комбинаторной версии flip id: $\lambda x y . y x$.

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. A ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $\mathbf{S}\ M_1\ M_2\ x = M_1\ x\ (M_2\ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = \mathbf{K}\ M_3$.
- Получаем M_3 (M_2 x). Из переменных остался только y, значит, M_3 должен иметь вид M_4 M_5 , причём $M_4 = S$, иначе до y добраться не удастся.

Перейдём к комбинаторной версии flip id: $\lambda x y.y.x.$

- λx у.у x меняет местами переменные, а K линейна \Rightarrow внешняя функция точно S. А ей нужен ещё хотя бы один аргумент-комбинатор, кроме x и у. Пишем заглушку: S M_1 .
- Тестируем: $S M_1 x y = M_1 y (x y)$. Это плохо: из (x y) нельзя извлечь x. Нужен ещё один аргумент-комбинатор для S.
- $S \ M_1 \ M_2 \ x = M_1 \ x \ (M_2 \ x)$. Переменная x раздвоилась, причём её первое вхождение явно лишнее. Избавимся от него, положив $M_1 = K \ M_3$.
- Получаем M_3 (M_2 x). Из переменных остался только у, значит, M_3 должен иметь вид M_4 M_5 , причём $M_4 = S$, иначе до у добраться не удастся.
- $S M_5 (M_2 x) y = M_5 y (M_2 x y)$. Теперь очевидно, что $M_5 = \lambda x. x = I, M_2 = K$. Значит, flip id = S(K(SI))K.

Подытожим

- α-преобразование переименование связанных переменных;
- β-редукция применение функции к терму;
- η-преобразование переход к бесточечным версиям функций и обратно.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс. Замена редекса на M[x := N] — сокращение редекса.

- Сколько редексов может быть в терме (один или...)?
- Всегда ли сокращение редекса приводит к сокращению терма?

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Одношаговая β-редукция

 $M \to_{\beta} N$ определяется следующим образом:

- $(\lambda x.M) N \rightarrow_{\beta} M[x := N]$
- $\bullet \ M \to_{\beta} N \Rightarrow M \ Z \to_{\beta} N \ Z$
- $M \rightarrow_{\beta} N \Rightarrow Z M \rightarrow_{\beta} Z N$
- $M \rightarrow_{\beta} N \Rightarrow \lambda x. M \rightarrow_{\beta} \lambda x. N$

β-редукция

Определение

- β -редукция транзитивное рефлексивное замыкание \rightarrow_{β} .
- β -эквивалентность $=_{\beta}$ симметричное транзитивное замыкание β -редукции.
- Терм находится в β-нормальной форме (NF), если он не содержит редексов.
- Терм M имеет β -нормальную форму, если существует N: $M =_{\beta} N$ и N находится в β -NF.

Все ли λ-термы имеют нормальную форму?

Теорема Чёрча-Россера

Теорема (конфлюэнтность)

Если терм M β -редуцируется к термам N и N', то существует терм L такой, что N и N' оба β -редуцируются к L.

Единственность β-NF

 λ -терм имеет не больше одной β -NF.

Стратегии редукции

- **Нормальная** сокращается самый левый внешний редекс.
- **Аппликативная** сокращается самый левый внутренний редекс.

Теорема о нормализации

Если терм имеет β -NF, то к ней гарантированно приводит нормальная стратегия редукции.

Термы без нормальной формы

Термы вида $\lambda x_1, \dots x_n.x_i$ Q, где Q произвольно (в том числе может содержать редексы), называются термами в головной нормальной форме.

- Если для терма T выполняется условие: $\exists N_1 \dots N_k (T \ N_1 \dots N_k = I)$, он называется разрешимым.
- Терм разрешим ⇔ у него существует головная нормальная форма .

Неразрешимые термы (вроде Ω) понимаются как всегда зацикливающиеся и условно отождествляются друг с другом. Разрешимые термы без нормальной формы — частично определенные функции.

Противоречивость \(\lambda\)-исчисления

Парадокс Рассела

Рассмотрим $\mathbf{R} = \lambda \mathbf{x}$. $\neg (\mathbf{x} \ \mathbf{x})$.

$$\begin{array}{lll} (\textbf{R} \ \textbf{R}) & = & (\lambda \underline{x}. \, \neg(\underline{x} \ \underline{x})) \ (\lambda x. \, \neg(x \ x)) \\ & =_{\beta} & \neg((\lambda x. \, \neg(x \ x)) \ (\lambda x. \, \neg(x \ x))) \\ & = & \neg(\textbf{R} \ \textbf{R}) \end{array}$$

Чистое (без логических операторов) λ -исчисление непротиворечиво.

Противоречивость \(\lambda\)-исчисления

Чистое (без логических операторов) λ -исчисление непротиворечиво.

Пример

 $\mathbf{K}=\lambda x$ у.х, $\mathbf{K}_*=\lambda x$ у.у. Если $\mathbf{K}=\mathbf{K}_*$, то $\forall x$, у(x=y), поэтому $\mathbf{K}\neq\mathbf{K}_*$ в чистом λ -исчислении.

Противоречивость \(\lambda\)-исчисления

Чистое (без логических операторов) λ -исчисление непротиворечиво.

Пример

 $\mathbf{K}=\lambda x$ у.х, $\mathbf{K}_*=\lambda x$ у.у. Если $\mathbf{K}=\mathbf{K}_*$, то $\forall x$, у(x=y), поэтому $\mathbf{K}\neq\mathbf{K}_*$ в чистом λ -исчислении.

A как насчет K = I?

Практика

Booleans

Положим $T = \lambda x$ y.x, $F = \lambda x$ y.y, $IF = \lambda b$ x y.b x y. Построить AND, OR, NOT.

Практика

Нумералы Черча

Положим $\mathbf{0} = \lambda x$ у.у, $\mathbf{1} = \lambda x$ у.х у, $\mathbf{2} = \lambda x$ у.х (x y) и т.д. Как выразить IsZero? Succ?

Полуформально о типизации λ функций

- Если M[x] имеет тип σ в контексте $x : \tau$, тогда естественно, что $\lambda x. M$ имеет тип $\tau \to \sigma$;
- **2** Если (M N) имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Полуформально о типизации λ - функций

- Если M[x] имеет тип σ в контексте $x : \tau$, тогда естественно, что $\lambda x. M$ имеет тип $\tau \to \sigma$;
- **2** Если (M N) имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Логическая спецификация

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x . M : \tau \to \sigma}$$

$$\frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

Проблема типизации λ -функций

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

Рассмотрим терм $\lambda x.(x \ x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Зацикливается не только унификация: см. $(\lambda x.(x \ x)) \ (\lambda x.(x \ x))$. Иногда успешно вычисляется: напр. $(\lambda x.(x \ x)) \ (\lambda x.(\lambda y.(y \ x)))$.

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Зацикливается не только унификация: см. $(\lambda x.(x x)) (\lambda x.(x x))$. Иногда успешно вычисляется: напр. $(\lambda x.(x x)) (\lambda x.(\lambda y.(y x)))$.

 $\lambda x.(x \ x)$ — частичная функция и не может быть конечным образом определена на всех полиморфных типах.

Просто типизированное λ-исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma,\,x:\tau\vdash M:\sigma}{\Gamma\vdash\lambda x.M:\tau\to\sigma} \quad \frac{\Gamma\vdash M:\tau\to\sigma,\,\Gamma\vdash N:\tau}{\Gamma\vdash(M\;N):\sigma}$$

Просто типизированное λ-исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau \to \sigma} \quad \frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \; N) : \sigma}$$

...а теперь забудем про термы и посмотрим только на типы. Что получилось?

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \to \sigma} \qquad \text{(правило введения импликации)}$$

$$\frac{\Gamma \vdash \tau \to \sigma, \Gamma \vdash \tau}{\Gamma \vdash \sigma} \qquad \text{(правило удаления импликации aka modus ponens)}$$

Связь логики и ФВП: соответствие Карри–Ховарда

- Существует взаимно-однозначное соответствие между типами замкнутных термов в просто типизированном λ-исчислении и тавтологиями в минимальной импликативной логике.
- (теорема о нормализации) Все термы просто типизированного λ-исчисления имеют нормальную форму.
- Доказательствам в минимальной логике соответствуют всюду определенные полиморфные функции высшего порядка.

Вывод = конструкция

Комбинаторная логика Карри

- комбинатор $\mathbf{K} :: \mathbf{A} \Rightarrow (\mathbf{B} \Rightarrow \mathbf{A})$
- комбинатор S ::

$$(A \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$$

А теперь перенесёмся на 100 лет назад, во времена Д. Гильберта...

Схемы аксиом для минимальной импликативной логики:

- $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$, где Φ, Ψ любые формулы;
- $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$, где Φ, Ψ, Ξ любые формулы.

Правила вывода — подстановка + дедукция: $\mathfrak{T} \vdash \Phi \Rightarrow \Psi$ влечёт \mathfrak{T} ; $\Phi \vdash \Psi$. Перенос в контекст отсутствует.

Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

• Возьмём ($\Phi \Rightarrow (\Psi \Rightarrow \Xi)$) $\Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$ и положим $\Xi := A$ и $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Заметим, что Ψ — теорема (частный случай схемы $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$).

Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- Возьмём ($\Phi \Rightarrow (\Psi \Rightarrow \Xi)$) $\Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$ и положим $\Xi := A$ и $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Заметим, что Ψ теорема (частный случай схемы $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$).
- $m{Q}$ Получается теорема $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$.

Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- lacktriangle Возьмём $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$ и положим $\Xi := A$ и $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Заметим, что Ψ — теорема (частный случай схемы $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$).
- 2 Получается теорема $(A \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow A$ $(A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A).$
- Φ Теперь возьмём $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ и положим $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Получим $A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)$.

Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

- lacktriangle Возьмём $(\Phi \Rightarrow (\Psi \Rightarrow \Xi)) \Rightarrow (\Phi \Rightarrow \Psi) \Rightarrow (\Phi \Rightarrow \Xi)$ и положим $\Xi := A$ и $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Заметим. что Ψ — теорема (частный случай схемы $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$).
- **2** Получается теорема $(A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow$ $(A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A).$
- **3** Теперь возьмём $\Phi \Rightarrow (\Psi \Rightarrow \Phi)$ и положим $\Phi := A$, $\Psi := A \Rightarrow (B \Rightarrow A)$. Получим $A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)$.
- Применим дедукцию дважды. Теорема А ⇒ А доказана.

Выведем $A \Rightarrow A$ в стиле логики 100-летней давности...

 $S: (A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)) \Rightarrow (A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$

 $\mathbf{K}: A \Rightarrow ((A \Rightarrow (B \Rightarrow A)) \Rightarrow A)$

дедукция: $(A \Rightarrow (B \Rightarrow A)) \Rightarrow (A \Rightarrow A)$

 $\mathbf{K}: A \Rightarrow (B \Rightarrow A)$

дедукция: $A \Rightarrow A$

"I'm not logician! I'm human!"
(c) R. Glück