Université Abderrahmane Mira de Béjaia Faculté des Sciences Exactes **Département d'informatique**

Cours 3 Logiciels Libres chapitre 1: Technologie de l'Information

Etablir des Classifications de Concepts tout en mettant en Valeur les Différences

- 1. Comparaison des Différents Types de Puces Intelligentes (Déjà Pris)
- 2. Comparaison des Différents Types d'ordinateurs
- 3. Comparaison des Différents Outils de Hardware permettant la Connexion à Internet (Wifi, Switch, ...)

Assimiler les concepts et différences entre libre et propriétaire

- 1. Définir les 4 libertés du logiciel libre
- 2. Quelle différence entre « libre » et « gratuit » ? Donnez des exemples
- 3. Quelle différence entre « libre », "proprétaire" et « gratuit » ? Donnez des exemples

Assimiler les concepts et différences entre libre et propriétaire

- 4. Comparez : Firefox (libre) vs Google Chrome (propriétaire)
- 5. Recherchez et classez une dizaine de logiciels que vous utilisez en 2 colonnes : Libres vs Propriétaires

1 - Définition des périphériques matériels

Les **périphériques** sont des composants matériels <u>connectés</u> à un **ordinateur** ou à un **système** pour **entrer, sortir ou stocker des données**. Ils permettent à l'utilisateur d'<u>interagir</u> avec l'ordinateur ou à l'ordinateur d'<u>interagir</u> avec le monde extérieur

On distingue principalement trois types:

Périphériques d'entrée : permettent à l'utilisateur de <u>saisir</u> des données (ex. clavier, souris, scanner)

Périphériques de sortie : permettent à l'ordinateur de **fournir** des informations à l'utilisateur (ex. imprimante, écran)

Périphériques d'entrée/sortie : peuvent à la fois <u>recevoir</u> et envoyer des données (ex. caméra, capteurs)

2 - Périphériques & Différences

Périphérique	Type	Fonction principale	Exemple	Image (idée)
Clavier	Entrée	Permet de saisir du texte et des commandes	Clavier AZERTY ou QWERTY, clavier gaming	Photo d'un clavier filaire ou sans fil
Souris	Entrée	Permet de pointer, cliquer et sélectionner des objets sur l'écran	Souris optique ou laser	Photo d'une souris classique ou ergonomique
Scanner	Entrée	Permet de numériser des documents ou images pour les transformer en fichiers numériques	Scanner à plat, scanner portable	Image d'un scanner plat avec un document à l'intérieur
Imprimante	Sortie	Permet de produire des copies papier de documents numériques	Imprimante laser ou jet d'encre	Photo d'une imprimante en action
Caméra	Entrée/Sortie	Capture des images ou vidéos, parfois pour la visioconférence	Webcam USB, caméra IP	Photo d'une webcam sur un écran
Capteurs	Entrée/Sortie	Mesurent des données physiques ou environnementales et les transmettent à l'ordinateur	_	Image d'un capteur connecté à un ordinateur

3 - Explications Supplémentaires

Clavier et souris sont les périphériques les plus courants pour <u>interagir</u> directement avec un ordinateur

Scanner et imprimante sont complémentaires : le scanner <u>numérise</u>, l'imprimante <u>matérialise</u>.

Caméras et capteurs permettent de <u>relier</u> le monde réel à l'ordinateur, <u>utilisés</u> dans la **visioconférence**, la **surveillance**, ou la **domotique**

4 - Dispositifs mobiles — Definition générale

Les dispositifs mobiles sont des appareils électroniques portables permettant d'effectuer diverses tâches informatiques et de communication en mobilité.

Ils se distinguent par leur taille compacte, leur autonomie sur batterie, et leur capacité à se connecter à internet et à d'autres appareils.

Composants matériels typiques :

- . Écran tactile : principal moyen d'interaction (smartphone, tablette).
- . **Processeur** : "cerveau" de l'appareil, gère les applications et le système.

4 - Dispositifs mobiles – Definition générale (2)

Composants matériels typiques :

- Écran tactile : principal moyen d'interaction (smartphone, tablette)
- . **Processeur** : "cerveau" de l'appareil, gère les applications et le système
- . Mémoire RAM et stockage interne : pour exécuter des apps et stocker des données
- . **Batterie**: alimentation portable
- Caméra : frontale et/ou arrière pour photos, vidéos, visioconférences
- . Capteurs : GPS, accéléromètre, gyroscope, capteur de proximité, de Température, Agriculture, Urgences
- Connectivité : Wi-Fi, Bluetooth, 4G/5G, NFC (Near Field Communication)

4 – Comparaison des Dispositifs mobiles Principaux

Dispositif	Taille et Portabilité	Usage principal	Exemples	Particularités matérielles
Smartphone	Très compact (5–7 pouces)	Communication (appels, SMS, messagerie), navigation internet, applications diverses	iPhone 15, Samsung Galaxy S23	Écran tactile haute résolution, multiples capteurs (empreinte, reconnaissance faciale), caméras avancées, batterie intégrée
Tablette	Moyen (7–13 pouces)	Consultation de contenus multimédias, jeux, travail léger, lecture	iPad, Samsung Galaxy Tab	Écran tactile plus grand, processeur souvent puissant pour multimédia, peut intégrer stylet, moins de portabilité qu'un smartphone
Assistant Numérique Personnel (PDA)	Compact à moyen (3–7 pouces)	Gestion personnelle : agenda, contacts, notes, petites applications	Palm Pilot, HP iPAQ	Clavier ou écran tactile, processeur et mémoire limités, souvent pas de téléphonie, utilisé historiquement avant smartphones

3 - Explications avec Exemples d'usage

Smartphone

Appel vidéo avec Zoom ou Teams

Navigation GPS en temps réel

Prise de photo ou vidéo haute qualité

Paiement sans contact via NFC (Near Field Communication)

Tablette

Lecture de livres numériques et journaux

Visionnage de films ou séries sur grand écran

Dessin ou prise de notes avec un stylet

Cours en ligne ou présentations interactives

PDA (moins courant aujourd'hui)

- Organisation de l'agenda et contacts professionnels
- Prise de notes et mémos rapides
- Synchronisation avec ordinateur pour transfert d'informations

4 - Suggestion d'images

Smartphone: photo d'un iPhone ou Samsung Galaxy posé sur une table

Tablette: image d'une iPad avec stylet et applications ouvertes

PDA: photo vintage d'un Palm Pilot ou HP iPAQ

générale

Les puces intelligentes (ou smart chips) sont des circuits électroniques miniaturisés capables de traiter des données, de communiquer et d'interagir avec leur environnement

Elles sont au cœur des **objets connectés** et des systèmes embarqués

Caractéristiques matérielles typiques :

Microprocesseur intégré pour le traitement de l'information

Mémoire pour stocker des programmes et données Modules de communication (radio, NFC, Wi-Fi) Capteurs pour mesurer des paramètres physiques ou environnementaux

2 – Comparaison des Principaux Types de Puces intelligentes

Type de puce	Fonction principale	Exemples d'usage	Particularités matérielles		
RFIC (Radio Frequency Integrated Circuit)	Gestion et traitement des signaux radio	Antennes Wi-Fi, modules Bluetooth, RFID	Convertit les signaux radio en signaux numériques; miniaturisé pour intégration dans smartphones, objets connectés		
NFC (Near Field Communication)			Intégrée dans smartphones et cartes intelligentes; faible consommation d'énergie; fonctionne à 13,56 MHz		
Processeurs embarqués	Exécution de programmes et contrôle des systèmes	Microcontrôleurs Arduino, Raspberry Pi Pico, ESP32	CPU intégré + mémoire RAM/ROM; faible consommation; gère capteurs et périphériques externes		
Capteurs IoT (Internet of Things)	Mesure de paramètres physiques ou environ-	Capteurs de température, humidité, pression, mouvement (IMI)	Généralement très petits; envoient les données à un microcontrôleur via filaire ou sans fil; essentiels pour smart home, santé, industrie		

3 - Explication Avec Exemples — Pratiques

RFIC (Radio-Frequency Integrated Circuit)

- Permet à un smartphone de capter le Wi-Fi et le Bluetooth simultanément

Exemple: puce Wi-Fi Broadcom BCM4375 intégrée aux smartphones.

NFC (Near Field Communication)

Permet de payer simplement en approchant son smartphone d'un terminal

Exemple: puce NFC NXP PN532 dans un smartphone Android **Processeurs embarqués**

Contrôle un robot ou un capteur **intelligent**

Exemple: microcontrôleur ESP32 utilisé pour un thermostat intelligent **Capteurs IoT**

 Mesurent la température et <u>envoient</u> les données à une application mobile

Exemple: capteur de température DHT22 dans une station météo connectée

4 - Suggestions d'Images

RFIC: image d'un circuit RF miniature intégré sur une carte électronique.

NFC: smartphone approchant une borne de paiement.

Processeurs embarqués : microcontrôleur Arduino ou ESP32 avec câbles et LED.

Capteurs IoT: petit capteur de température ou capteur de mouvement sur un circuit imprimé.

Logiciels (Software)

1 - Systèmes d'Exploitation-Définition Générale

Un système d'exploitation (OS) est un logiciel qui permet à un ordinateur, un smartphone ou un autre dispositif informatique de fonctionner et de gérer les ressources matérielles (processeur, mémoire, stockage, périphériques). Il fournit aussi une interface utilisateur pour interagir avec le matériel et les applications.

Fonctions principales d'un OS:

Gestion du processeur, mémoire et stockage

Gestion des périphériques (clavier, souris, écran, imprimante)

Exécution des applications

Sécurité et contrôle des droits utilisateurs

Interface graphique (GUI) ou interface en ligne de commande (CLI)

2 – Comparaison des Principaux Systèmes d'Exploitation

OS	Type de dispositifs	Usage principal	Exemples	Particularités
Windows	PC de bureau, ordinateurs portables	Informatique générale, bureautique, jeux vidéo, entreprises	Windows 10, Windows 11	Interface conviviale, compatible avec de nombreux logiciels, grande communauté d'utilisateurs
Linux	PC, serveurs, systèmes embarqués	Informatique avancée, serveurs web, programmation	Ubuntu, Debian, Fedora	Open-source, personnalisable, stable, sécurisé, gratuit
macOS	Ordinateurs Apple	Bureautique, création multimédia, programmation	macOS Ventura, macOS Sonoma	Interface élégante, intégration avec l'écosystème Apple, sécurité renforcée
Android	Smartphones, tablettes	Applications mobiles, jeux, communication	Samsung Galaxy, Google Pixel	Open-source (partiellement), personnalisable par les fabricants, large choix d'applications
iOS	iPhone, iPad	Applications mobiles, jeux, communication	iPhone 15, iPad Pro	Fermé et sécurisé, optimisé pour appareils Apple, interface intuitive

3 - Explication Avec Exemples – Pratiques

Windows

Utilisé pour Microsoft Office, jeux PC et logiciels professionnels.

Exemple : création de documents Word et Excel sur Windows 11.

Linux

Serveurs web, programmation et sécurité informatique.

Exemple : hébergement d'un site web sur Ubuntu Server.

macOS

Montage vidéo, graphisme, programmation iOS.

Exemple : édition vidéo avec Final Cut Pro sur macOS Ventura.

Android

Téléphone mobile pour apps, jeux, messagerie et navigation.

Exemple: utiliser Google Maps et WhatsApp sur Samsung Galaxy.

iOS

Smartphone et tablette Apple, apps et sécurité.

Exemple: utiliser FaceTime et Apple Wallet sur iPhone 15.

4 - Explication Avec Exemples – Pratiques

Windows

Utilisé pour Microsoft Office, jeux PC et logiciels professionnels.

Exemple : création de documents Word et Excel sur Windows 11.

Linux

Serveurs web, programmation et sécurité informatique.

Exemple : hébergement d'un site web sur Ubuntu Server.

macOS

Montage vidéo, graphisme, programmation iOS.

Exemple : édition vidéo avec Final Cut Pro sur macOS Ventura.

Android

Téléphone mobile pour apps, jeux, messagerie et navigation.

Exemple: utiliser Google Maps et WhatsApp sur Samsung Galaxy.

iOS

Smartphone et tablette Apple, apps et sécurité.

Exemple: utiliser FaceTime et Apple Wallet sur iPhone 15.

4 - Suggestions d'Images

Windows: écran d'ordinateur avec bureau Windows 11.

Linux: terminal Linux avec interface graphique Ubuntu.

macOS: écran MacBook affichant le bureau macOS.

Android: smartphone Android affichant le menu d'applications.

iOS: iPhone avec écran d'accueil iOS.