Step 1: Downloading the dataset of chum_modelling(csv format)

▼ Step 2: Importing the libraries and loading the dataset

```
import numpy as np
import pandas as pd

data = pd.read_csv('/content/Churn_Modelling.csv')

file = pd.DataFrame(data)
file
file.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balan
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.
2	3	15619304	Onio	502	France	Female	42	8	159660.
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.
-									>

```
file['HasCrCard'] = file['HasCrCard'].astype('category')
file['IsActiveMember'] = file['IsActiveMember'].astype('category')
file['Exited'] = file['Exited'].astype('category')

file = file.drop(columns=['RowNumber', 'CustomerId', 'Surname'])
#Removing the RowNumer,CustomerId and Surname column labels from the dataset

file.head()
#Displaying the data without first three columns
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA
0	619	France	Female	42	2	0.00	1	1	

→ 3.Performing the visualizations

- Uni-variate Analysis
- Bi-variate Analysis
- Multi-variate Analysis

```
#Importing seabron library
import seaborn as sns
depth = file['Exited'].value_counts(normalize=True).reset_index()
sns.barplot(data=depth,x='index',y='Exited')
```


depth

	index	Exited			
0	0	0.7963			
1	1	0.2037			

From the above relation analysis, it can be said as the data is imbalanced For to correct this, we are processing and visualizing the data using matplotlib libary below

```
import matplotlib.pyplot as plt
```

```
categorical = file.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary'
```

```
rows = int(np.ceil(categorical.shape[1] / 2)) - 1

fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
axes = axes.flatten()

#Generating subplots
for row in range(rows):
    cols = min(2, categorical.shape[1] - row*2)
    for col in range(cols):
        col_name = categorical.columns[2 * row + col]
        ax = axes[row*2 + col]

        sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);
```

plt.tight_layout()

4.Performing Descriptive Statistics method for to explain the features on the dataset

[] Ļ 2 cells hidden

▶ 5. Handling and checking for any missing values

[] L, 3 cells hidden

▶ 6. Finding the outliers and replacing the outliers

[] Ļ 2 cells hidden

→ 19 outliers in the analysis view

```
box_scatter(file,'Age','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(file.loc[file['Age'] > 87])}")
```


3 outliers in the above analysis view

```
box_scatter(file,'Balance','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(file.loc[file['Balance'] > 220000])}")
```

of Bivariate Outliers: 4

We can see that there are four outliers above

box_scatter(file,'EstimatedSalary','Exited');
plt.tight_layout()

•	Removing the outliers						
	[] L, 4 cells hidden						
•	After removing outliers, boxplot can visualized as below						
	[] Ļ3 cells hidden						
>	7. Checking for categorical columns and performing label encoding						
	Label encoding is performed to convert the labels into numerical(binary digits) values						
	[] Ļ1 cell hidden						
•	8. Splitting the data into dependent and independent variables						
	[] Ļ 2 cells hidden						
•	9. Scaling the independent variables						
	It can done using StandardScaler from sciket-learn framework						
	[] Ļ1 cell hidden						
•							
	10. Splitting the data into training and testing						
	[] ҍ, 6 cells hidden						

Colab paid products - Cancel contracts here

X