

- SESAMI Web: An Accessible Interface for Surface
- ² Area Prediction of Materials from Adsorption
- 3 Isotherms
- 4 Gianmarco G. Terrones 19 1g, Yu Chen 2 , Archit Datar 3, Li-Chiang Lin 4,
- **5** Heather J. Kulik ^{1,5}, and Yongchul G. Chung ²¶
- 1 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 2
- 7 School of Chemical Engineering, Pusan National University, Busan, South Korea 3 William G. Lowrie
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
- ⁹ 4 Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 5 Department of
- Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA ¶ Corresponding author

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🖸
- Archive 🗗

Editor: Open Journals ♂ Reviewers:

@openjournals

Submitted: 01 January 1970 **Published:** unpublished

License

Authors of papers retain copyright, and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Statement of need

Surface area determination is important for the evaluation of material's viability in applications ranging from catalysis to separations to gas storage. The most widely used approach for the evaluation of a material's gravimetric surface area, i.e. surface area per unit mass, is the Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938). That is, given the adsorption isotherm of a gas (i.e., N_2 or Ar) in an adsorbent, one can use the BET method to determine the gravimetric surface area of the adsorbent upon identification of an appropriate linear region in the isotherm. The BET equation is used to fit the isotherm data to locate the linear region of pressure where a monolayer forms. Afterwards, the uptake value at a data point within the pressure range is chosen based on the Rouquerol consistency criteria (F. Rouquerol et al., 2013; J. Rouquerol et al., 2007). The value is then multiplied by the molecular cross-sectional area of the adsorbate to obtain the material's surface area, under the assumption that the material's surface is completely covered by the adsorbate molecules. Many researchers perform the analyses manually on a spreadsheet, which is time-consuming, and nearly impossible for some types of isotherms, which leads to large variability in BET-calculated areas (Osterrieth et al., 2022). These challenges have motivated the development of programs for the automated determination of BET areas (Datar et al., 2020; Iacomi & Llewellyn, 2019; Osterrieth et al., 2022; Sadeghi et al., 2020; Sinha et al., 2019). Furthermore, shortcomings of BET as a tool for surface area calculation, such as its relatively poor performance in treating high surface area materials with multimodal pore sizes Wang et al. (2015); (Gómez-Gualdrón et al., 2016), have led to the development of alternate methods for surface area calculation from isotherms (Datar et al., 2020; Sinha et al., 2019).

Theory background

In the BET method, the surface area is calculated using Equation 1. S is a material's surface area, q_m is the molar amount of adsorbate forming a monolayer per unit mass of adsorbent, N is the Avogadro constant, and A_m is the area taken up by a single adsorbate molecule in the

$$S = \frac{q_m}{N} A_m \tag{1}$$

 $_{
m 38}$ In order to attain q_m , it is necessary to identify the monolayer loading region. This region is

assigned to the section of the isotherm where $\frac{p/p_0}{1-p/p_0} \cdot \frac{1}{q}$ is linear as a function of $\frac{p}{p_0}$, where p is the vapor pressure, p_0 is the saturated vapor pressure, and q is the adsorbate loading. s is the slope of the line of $\frac{p/p_0}{1-p/p_0} \cdot \frac{1}{q}$ versus $\frac{p}{p_0}$ within the monolayer loading region, and i is the intercept of the line (Fagerlund, 1973). s and i can be used to calculate the BET constant, C, and q_m (see Equations 2 and 3).

$$C = \frac{s}{i} + 1 \tag{2}$$

$$q_m = \frac{1}{s+i} \tag{3}$$

The Rouquerol consistency criteria, which are recommended to use to select a linear region,

1. The linear region should only be a range of p/p_0 in which the value of $q(1-p/p_0)$ monotonically increases with p/p_0 .

48 2. The value of C should be positive.

3. The value of the monolayer loading capacity should correspond to a value of p/p_0 which falls within the selected linear region.

51 4. The value of p/p_0 calculated from BET theory, $1/(\sqrt{C}+1)$, and p/p_0 calculated from the third consistency rule should be equal (with $\pm 10\%$ tolerance).

5. The linear region should end at the knee of the isotherm.

Summary

In contrast to previously developed programs which require use of the command line (lacomi & Llewellyn, 2019; Osterrieth et al., 2022) and familiarity with Python (Datar et al., 2020; lacomi & Llewellyn, 2019; Sinha et al., 2019), the SESAMI web interface allows a user to make surface area predictions on their web browser simply by uploading isotherm data. The website facilitates access to the previously developed SESAMI models (SESAMI 1 and 2) for the evaluation of material's surface area (Datar et al., 2020; Sinha et al., 2019). The motivation for this interface is to lower the barrier of entry for research groups seeking to use SESAMI code, which was previously packaged in Python and Jupyter Notebook scripts.

SESAMI 1 applies computational routines to identify suitable linear regions of adsorption isotherms for BET surface area predictions (Fagerlund, 1973). The automated workflow includes consideration of Rouguerol criteria and the use of coefficients of determination as a measure of linearity. Furthermore, SESAMI 1 supports a combined BET+ESW (excess sorption work) approach for linear region selection; this combined approach has been shown to outperform the BET method in some cases (Sinha et al., 2019). A user can specify a cutoff R² and a minimum R², such that a candidate linear region is favored to be selected if it has an R² above the cutoff, and a candidate linear region is only considered if it has an R² above the minimum. On the other hand, SESAMI 2 applies a machine learning (specifically, regularized linear regression with LASSO) model for the accurate surface area prediction of high surface 72 area materials, improving on BET performance for these materials (Datar et al., 2020). The 73 LASSO model uses as input the average loading in seven isotherm pressure regions as well 74 as pairwise products of these loadings. The SESAMI routines support isotherms with N_2 and argon adsorbate at 77 K or 87 K, respectively. We note that a recent study shows that surface areas determined from N2 or Ar isotherms are similar, despite the latest 2015 IUPAC report's 77 suggested use of Ar (Datar et al., 2022; Thommes et al., 2015).

The SESAMI web interface has extensive error handling and clearly alerts users of issues with their adsorption isotherm data. For example, it alerts the user if no ESW minima is found by SESAMI 1 or if the data is incompatible with SESAMI 2 code due to data sparsity in certain pressure regions. As shown in Figure 1, the interface displays SESAMI 1 calculation results

including information on the chosen linear region, namely the satisfied Rouquerol criteria, the pressure range and number of data points in the region, and the coefficient of determination. The interface also displays intermediate SESAMI 1 values for surface area calculation, namely the BET constant, C, and the monolayer adsorption loading, q_m . Furthermore, the SESAMI web interface allows the user to download figures generated by SESAMI 1 that indicate, among other things, the chosen linear monolayer loading regions by the BET and BET+ESW approaches as well as the excess sorption work plot (Figure 1). The user can convert output from commercial equipment to AIF format and upload the converted data to the interface for analysis. The SESAMI web interface is publicly available at https://sesami-web.org/, and source code is available at https://github.com/hjkgrp/SESAMI_web.

a) SESAMI 1.0 (BET) results are:

BET area = 3827.6 m²/g C = 33.08 q_m = 39.23 mol/kg Rouquerol consistency criteria 1 and 2: Yes Rouquerol consistency criterion 3: Yes Rouquerol consistency criterion 4: Yes Number of points in linear region: 4 Lowest pressure of linear region: 9000 Pa Highest pressure of linear region: 30000 Pa

R² of linear region: 0.9996

SESAMI 1.0 (BET+ESW) results are:

BET area = 2861.8 m²/g
C = 265.3
q_m = 29.33 mol/kg
Rouquerol consistency criteria 1 and 2: Yes
Rouquerol consistency criterion 3: No
Rouquerol consistency criterion 4: No
Number of points in linear region: 10
Lowest pressure of linear region: 750 Pa
Highest pressure of linear region: 3500 Pa
R² of linear region: 0.9989

SESAMI 2.0 (LASSO) surface area prediction is:

2944.2 m²/g

Figure type

b)

Isotherm BET fit 60 BET+ESW fit BET region BET+ESW region 50 ESW minimum Consistency 1 maximum BET data points 40 q / mol/kg 30 20 10 0 10-8 10-4 10⁻² 10⁰ p/p_0 **Download figure**

Figure 1: Information displayed by the SESAMI web interface after a calculation has been run, here for a GCMC isotherm of MIL-101. Apart from the inclusion of the LASSO prediction, default settings were used (e.g. N_2 gas). a) Interface printout of information on the SESAMI 1 chosen linear regions, and SESAMI 1 and 2 calculation results. b) Figure download functionality for figures detailing the SESAMI 1 calculation.

Benchmarking

- ₉₄ To assess the performance of the SESAMI code in predicting surface areas from isotherms,
- $_{95}$ we benchmark the SESAMI routines against other similar programs for 13 simulated and 9
- $_{96}$ experimental N_2 isotherms obtained at 77 K for 14 metal-organic frameworks (MOFs), some

of which are shown in Figure 2. Simulated isotherms are obtained from grand canonical Monte Carlo (GCMC) simulations using the open-source RASPA 2.0.47 software (Dubbeldam et al., 2016), and experimental adsorption isotherms are obtained from the experimental data reported by Islamogu and coworkers (Islamoglu et al., 2022). The data are then used to calculate the surface areas from the SESAMI website, BETSI (Osterrieth et al., 2022; Rampersad et al., 2020), pyGAPS (Iacomi, 2019; Iacomi & Llewellyn, 2019), and BEaTmap (Sadeghi et al., 2020).

Figure 2: The crystal structures and isotherms of 3 of the 14 MOFs used to benchmark different isotherm to surface area codes.

We find that over the set of 13 GCMC isotherms, the SESAMI machine learning model (run from the web interface) and BEaTmap have the best correlation with Zeo++ version 0.3 surface areas (Willems et al., 2012) calculated with a 1.67 Å probe N_2 molecule (Tables 1 and 2). Nevertheless, all software are in generally good agreement, underscoring the benefit of a computational approach to surface area calculation. The agreement between software is also not surprising due to the similar approach taken by most of the codes of considering multiple subsets of consecutive data points and applying checks like the Rouquerol

106

107

108

110

criteria to select a linear region for BET analysis. Indeed, this agreement is also observed over the 9 experimental isotherms (Table 3). The benchmark isotherms, XLSX files of surface area predictions across different software tools for both GCMC and experimental isotherms, detailed settings used for each software, and analysis scripts employed are available at https://github.com/hjkgrp/SESAMI_web.

Table 1: Calculated surface areas (m^2/g) for the 13 MOFs with GCMC isotherms. Cases where a software does not find a surface area are denoted by N/A. Zeo++ calculations are conducted with the same CIF files used to generate GCMC isotherms, and a 1.67 Å probe N_2 molecule, the high accuracy flag, and 2,000 Monte Carlo samples per atom are used. All other software take as input the GCMC isotherms.

	SESAMI 1 (BET)	SESAMI 1 (BET+ESW)	SESAMI 2 (LASSO)	BETSI	py- GAPS	BEaTmap	Zeo++
HKUST-1	2001	1933	2089	1962	1902	1980	2397
IRMOF-1	3502	3543	3123	3519	3504	N/A	3722
MIL-100 (Cr)	2107	1853	2111	N/A	1852	2094	1957
MIĹ-100 (Fe)	2386	2438	2203	2426	82	2423	1933
MIĹ-101	3828	2862	2944	N/A	2939	3331	3164
MIL-53 (AI)	1221	1168	1405	1164	1183	1212	1510
MÓF-74 (Mg)	1828	1834	1902	N/A	1839	1791	1796
MOF-808	44	N/A	1275	N/A	N/A	1147	1690
NU-1000	2439	2181	2633	N/A	2144	2672	3050
NU-1200	2711	934	2601	N/A	1073	2930	3192
NU-1500	3543	3594	3111	N/A	3758	3492	3944
(Fe)							
UiO-66	1239	1239	1443	N/A	1242	1304	1289
ZIF-8	1429	1386	1575	1381	1390	1414	1588

Table 2: Comparison between surface area predictions from software for isotherm to surface area calculation and from Zeo++, over the 13 MOFs with GCMC isotherms. The mean absolute percent error and Pearson correlation coefficient are taken with respect to Zeo++ predictions for each software, over all successful surface area calculations for that software.

Software	Mean absolute percent error (MAPE)	Pearson correlation coefficient	Successful calculations (out of 13)
SESAMI 1 (BET)	19.4	0.85	13
SESAM1 1 (BET+ESW)	17.9	0.72	12
SESAMI 2 (LASSO)	12.4	0.95	13
BETSI	17.0	0.92	5
pyGAPS	23.0	0.75	12
BEaTmap	12.6	0.93	12

Table 3: Calculated surface areas (m^2/g) for the 9 MOFs with experimental isotherms. Cases where a software does not find a surface area are denoted by N/A. All other software take as input the experimental isotherms

	SESAMI 1 (BET)	SESAMI 1 (BET+ESW)	SESAMI 2 (LASSO)	BETSI	py- GAPS	BEaTmap
HKUST-1	1505	1466	1668	N/A	1495	1498
MOF-74 (Mg)	1580	1467	1692	N/A	1574	1565
MOF-808	1998	900	1727	N/A	2439	1752
NU-1000	2154	2090	2385	N/A	2654	2459
NU-1200	2893	2718	2781	2758	3917	3069
NU-1500 (Fe)	3305	3409	2809	N/A	3413	3227
SIFSIX-3 (Ni)	356	201	716	N/A	355	353
ÙiÓ-66	1251	1228	1413	1250	1249	1246
ZIF-8	1092	910	1214	N/A	1082	1047

Table 4: Settings used for software for isotherm to surface area calculation. All BET calculations by SESAMI 1 and pyGAPS reported in this work fulfill Rouquerol criteria 1 and 2.

Software	Mode of access	Settings
SESAMI 1 (BET) SESAMI 1 (BET+ESW) SESAMI 2 (LASSO)	Run from SESAMI web interface Accessed February 2023	Type of gas: Nitrogen Scope: BET and BET+ESW R ² cutoff: 0.9995 R ² min: 0.998 Include ML prediction?: Yes
BETSI	GUI started from the command line GitHub version 1.0.20	Minimum number of points in the linear region: 10 Minimum R ² : 0.998 Rouquerol criteria 1: Yes Rouquerol criteria 2: Yes Rouquerol criteria 3: No Rouquerol criteria 4: No Rouquerol criteria 5: No
pyGAPS	Python package Conda version 4.4.2	Used function area_BET Default values for keyword arguments
BEaTmap	Run from BEaTmap web interface Accessed February 2023	Adsorbate cross-sectional area: 16.2 Å ² /molecule Criteria 1: Yes Criteria 2: Yes Criteria 3: No Criteria 4: No Minimum number of data points: 5 BET calculation criteria: Maximum data points

Acknowledgements

This publication was made possible by the generous support of the Government of Portugal 117 through the Portuguese Foundation for International Cooperation in Science, Technology and 118 Higher Education and was undertaken in the MIT Portugal Program. Software and website development was supported by the Office of Naval Research under grant number N00014-20-1-120 2150, as well as by the National Research Foundation of Korea (NRF) under grant number 121 2020R1C1C1010373 funded by the government of Korea (MSIT). L. C. L. acknowledges the 122 support from the Yushan Young Scholar Program (NTU-110VV009) and the National Science of Technology Council (110-2222-E-002-011-MY3). We thank Timur Islamoglu, Karam Idrees, 124 and Omar Farha for kindly providing the raw data of the experimental isotherms in the work 125 by Islamoglu et al. (2022). 126

References

127

- Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. *Journal of the American Chemical Society*, 60(2), 309–319. https://doi.org/10.1021/ja01269a023
- Datar, A., Chung, Y. G., & Lin, L. (2020). Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method. *The Journal of Physical Chemistry Letters*, 11. https://doi.org/10.1021/acs.jpclett.0c01518
- Datar, A., Yoon, S., Lin, L., & Chung, Y. G. (2022). Brunauer–Emmett–Teller Areas from Nitrogen and Argon Isotherms Are Similar. *Langmuir*, 38(38), 11631–11640. https://doi.org/10.1021/acs.langmuir.2c01390
- Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials. *Molecular Simulation*, 42(2), 81–101. https://doi.org/10.1080/08927022.2015.1010082
- Fagerlund, G. (1973). Determination of Specific Surface by the BET Method. *Matériaux Et Construction*, 6, 239–245. https://doi.org/10.1007/BF02479039
- Gómez-Gualdrón, D. A., Moghadam, P. Z., Hupp, J. T., Farha, O. K., & Snurr, R. Q. (2016).

 Application of Consistency Criteria to Calculate BET Areas of Micro-and Mesoporous

 Metal–Organic Frameworks. *Journal of the American Chemical Society*, 138(1), 215–224.

 https://doi.org/10.1021/jacs.5b10266
- lacomi, P. (2019). *pyGAPS 4.4.0 documentation*. Sphinx. https://pygaps.readthedocs.io/en/master/
- lacomi, P., & Llewellyn, P. L. (2019). pyGAPS: a Python-Based Framework for Adsorption Isotherm Processing and Material Characterisation. *Adsorption*, *25*. https://doi.org/10.150 1007/s10450-019-00168-5
- Islamoglu, T., Idrees, K. B., Son, F. A., Chen, Z., Lee, S., Li, P., & Farha, O. K. (2022). Are
 You Using the Right Probe Molecules for Assessing the Textural Properties of Metal–Organic
 Frameworks? Journal of Materials Chemistry A, 10(1), 157–173. https://doi.org/10.1039/
 D1TA08021K
- Osterrieth, J. W. M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B.,
 Allendorf, M. D., Stavila, V., Snider, J. L., Ameloot, R., & others. (2022). How
 Reproducible are Surface Areas Calculated from the BET Equation? *Advanced Materials*,
 34. https://doi.org/10.1002/adma.202201502
- Rampersad, J., Osterrieth, J. W. M., & Rampal, N. (2020). *Betsi-gui*. GitHub. https://github.com/nakulrampal/betsi-gui

- Rouquerol, F., Rouquerol, J., Sing, K. S. W., Llewellyn, P., & Maurin, G. (2013). *Adsorption by Powders and Porous Solids: Principles, Methodology and Applications* (2nd Edition). Academic press.
- Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the BET Equation Applicable to Microporous Adsorbents? *Studies in Surface Science and Catalysis*, 160(07), 49–56.
- Sadeghi, A., Bell, E., & Gostick, J. (2020). *Beatmap v0.1.2*. GitHub. https://github.com/ PMEAL/beatmap
- Sinha, P., Datar, A., Jeong, C., Deng, X., Chung, Y. G., & Lin, L. (2019). Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. *The Journal of Physical Chemistry C*, 123. https://doi.org/10.1021/acs.jpcc.9b02116
- Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). *Pure and Applied Chemistry*, 87(9-10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Wang, T. C., Bury, W., Gómez-Gualdrón, D. A., Vermeulen, N. A., Mondloch, J. E., Deria, P.,
 Zhang, K., Moghadam, P. Z., Sarjeant, A. A., Snurr, R. Q., & others. (2015). Ultrahigh
 Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory.
 Journal of the American Chemical Society, 137(10), 3585–3591. https://doi.org/10.1021/ja512973b
- Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., & Haranczyk, M. (2012). Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials.
 Microporous and Mesoporous Materials, 149(1), 134–141. https://doi.org/10.1016/j.micromeso.2011.08.020

