코딩으로 공부하는 과학이야기 5차시: 네트워크 과학

서지범 (서울대학교 과학교육과 물리전공) *jabam1264@snu.ac.kr

수업 안내 및 학습 목표

회차	강의주제	강의내용	수업활동
1 (2시간)	프로그래밍 기초	- 파이쎤(python) 및 구글 코랩(colab) 소개 - 파이쎤 기본 문법 학습 - NumPy 및 Matplotlib 소개 및 실습	이론, 프로그래밍 실습
2 (2시간)	물체의 운동	- 기초 수학 학습(그래프, 미분) - 기초 물리 학습(운동방정식, 뉴턴법칙) - 등속운동, 등가속도운동, 포물선운동 학습 및 실습 - 진동운동 학습 및 실습	이론, 프로그래밍 실습
3 (2시간)	몬테카를로 방법	- 몬테카를로 방법 소개 - 몬테카를로 적분 학습 및 실습 - 몬테카를로 방법을 활용한 물리학 문제 해결 (톰슨 문제, 이징 모형)	이론, 프로그래밍 실습
4 (2시간)	행위자 기반 모형	- 행위자 기반 모형 소개 - '생명 게임' 학습 및 실습 - '셸링 모형' 학습 및 실습	이론, 프로그래밍 실습
4 (2시간)	네트워크 과학	- 네트워크 과학 소개 - 네트워크 동역학 소개 - NetworkX 소개 및 실습	이론, 프로그래밍 실습

Q&A 1. 지구과학 및 천문학 공부하고 싶어요.

고등학교 천문학 수업에서 코딩을 활용한 데이터 기반 탐구활동의 활성화 방안 탐색

Exploring the Ways to Activate Data Based Inquiry Activity using Coding in High school Astronomy Lesson ny Lesson

현장과학교육

2022, vol.16, no.5, pp. 602-618 (17 pages)

DOI: 10.15737/ssj.16.5.202212.602

발행기관: 한국현장과학교육학회

연구분야: 사회과학 > 교육학 > 교과교육학 > 과학

조훈 /Hoon Jo 1, 손정주 /Jungjoo Sohn 2

1한국교원대학교 지구과학교육과

2한국교원대학교

🜃 KCI 등재

파이썬 기반 해양 데이터 시각화 수업 자료 개발 -지구과학 II 교과서 조석 위상 지연을 중심으로-

Development of Python Instructional Materials for Ocean Data Visualization-Focused on Phase Delay of Tides in

현장과학교육

2022, vol.16, no.4, pp. 536-555 (20 pages)

DOI: 10.15737/ssj.16.4.202210.536

발행기관: 한국현장과학교육학회

연구분야: 사회과학 > 교육학 > 교과교육학 > 과학교육학

김수란 /Su Ran Kim 1, 박경애 /Kyung-Ae Park 6 2

¹서울대학교 과학교육과, 상일고등학교

²서울대학교

- 1. https://github.com/GodTANKS/Exoplanet and Globular Analysis DataScience
- 2. https://colab.research.google.com/drive/1Mgl6owW_E7ZmB8cr9meleSJnSMpQ29hg?us%20p=sharing

Q&A 2. 화학 및 생물학을 공부하고 싶습니다.

Q&A 3. 프랙탈 및 응용수학을 공부하고 싶습니다.

ᄤᆖᄤ Ѿ 비선형 동역학과 카

오스 2/e 물리학, 생물학, 화학, 공학으로 풀어보는 비선형 동역학의 기초

저자 스티븐 스트로가츠

번역 박혜진,김희태,이상훈

출판 에이콘출판 발행 2025.06.23.

랭킹 자연/과학 부문 133위 [교보문고]

책 소개

복잡한 세상 속 숨겨진 질서를 밝히는 과학 고전, 『비선형 동역학과 카오스』 제2판 출간 현대 과학과 공학, 생물학, 심지어 사회 현상까지.... 우리는 수많은 비선형(nonlinear) 시스템 속에서 살아간다. 나비효과로 대표...

$$\mathbf{\nabla \cdot E} = rac{
ho}{arepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$oldsymbol{
abla} imesoldsymbol{\mathbf{E}}=-rac{\partial\mathbf{B}}{\partial t}$$

$$\mathbf{
abla} imes \mathbf{B} = \mu_0 \mathbf{J} + arepsilon_0 \mu_0 rac{\partial \mathbf{E}}{\partial t}$$

- 1. 가우스 법칙:전하에 의해 발생된 전기장의 크기 설명 (쿨롱 법칙과 동일)
- 2. 가우스 자기 법칙: 자기홀극은 존재하지 않는다.
- 3. 패러데이 법칙: 변화하는 자기장은 전기장을 생성
- 4. 앙페르-맥스웰 법칙: 직류와 교류는 자기장을 생성

맥스웰의 업적은 시공간 법칙의 정확한 형태를 묘사한 것이다. 맥스웰은 전자기장을 두 극에서 퍼져 나오는 파동의 형태로 나타내었다. 그리고 이 파동은 빛의 속도로 퍼져나간다!

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\mathbf{\nabla} imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$$

$$\mathbf{
abla} imes \mathbf{B} = \mu_0 \mathbf{J} + arepsilon_0 \mu_0 rac{\partial \mathbf{E}}{\partial t}$$

$$egin{align} rac{1}{c_0^2}rac{\partial^2\mathbf{E}}{\partial t^2} -
abla^2\mathbf{E} &= \mathbf{0} \ rac{1}{c_0^2}rac{\partial^2\mathbf{B}}{\partial t^2} -
abla^2\mathbf{B} &= \mathbf{0} \ \end{matrix}$$

where

$$c_0 = rac{1}{\sqrt{\mu_0 arepsilon_0}} = 2.99792458 imes 10^8 \; \mathrm{m/s}$$

is the speed of light in free space.

맥스웰의 업적은 시공간 법칙의 정확한 형태를 묘사한 것이다. 맥스웰은 전자기장을 두 극에서 퍼져 나오는 파동의 형태로 나타내었다. 그리고 이 파동은 빛의 속도로 퍼져나간다!

$$\hat{H} = -rac{\hbar^2}{2m}
abla^2 + V(\mathbf{x},t)$$

즉, 슈뢰딩거 방정식은 다음과 같은 2차 편미분 방정식이 된다.

$$i\hbar rac{\partial}{\partial t} \psi(\mathbf{x},t) = \left(-rac{\hbar^2}{2m}
abla^2 + V(\mathbf{x},t)
ight) \psi(\mathbf{x},t)$$

$$\left(-rac{\hbar^2}{2\mu}
abla^2 - rac{e^2}{4\piarepsilon_0 r}
ight)\psi(r, heta,arphi) = E\psi(r, heta,arphi)$$

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2} \right] - \frac{e^2}{4\pi \varepsilon_0 r} \psi = E \psi$$

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \varphi^2} \right] - \frac{e^2}{4\pi \varepsilon_0 r} \psi = E \psi$$

radial:

$$rac{d}{dr}\left(r^2rac{dR}{dr}
ight)+rac{2\mu r^2}{\hbar^2}\left(E+rac{e^2}{4\piarepsilon_0 r}
ight)R-AR=0$$

polar:

$$rac{\sin heta}{\Theta} rac{d}{d heta} \left(\sin heta rac{d\Theta}{d heta}
ight) + A \sin^2 heta - B = 0$$

azimuth:

$$rac{1}{\Phi}rac{d^2\Phi}{darphi^2}+B=0.$$

The normalized position wavefunctions, given in spherical coordinates are:

$$\psi_{n\ell m}(r, heta,arphi) = \sqrt{\left(rac{2}{na_0^*}
ight)^3rac{(n-\ell-1)!}{2n(n+\ell)!}}\mathrm{e}^{-
ho/2}
ho^\ell L_{n-\ell-1}^{2\ell+1}(
ho)Y_\ell^m(heta,arphi)$$

Distance from nucleus (pm)

Q&A 5. 단진자 운동?

$$\frac{d^2\theta}{dt^2} + \frac{g}{\ell}\sin\theta = 0$$

$$heta(t) = heta_0 \cos\!\left(\sqrt{rac{g}{\ell}}\,t
ight)$$

$$\theta_0 \ll 1$$
.

$$Tpprox 2\pi\sqrt{rac{L}{g}}$$

Q&A 5. 단진자 운동?

고전역학에서의 라그랑지언은 계의 운동에너지 T에서 위치에너지 V를 뺀 것으로 정의된다.

$$L = T - V$$

라그랑지언을 알면 이를 오일러-라그랑주 방정식에 대입하여 운동방정식을 얻을 수 있다.

$$\begin{split} \frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) &= \frac{\partial \mathcal{L}}{\partial q_j}. \\ x &= \ell \sin \theta, \\ y &= -\ell \cos \theta, \\ y &= \ell \sin \theta. \end{split} \qquad \begin{aligned} \mathcal{L} &= E_k - E_p \\ &= \frac{1}{2} m v^2 - mgh \\ &= \frac{1}{2} m (\dot{x}^2 + \dot{y}^2) - mg\ell (1 - \cos \theta) \\ &= \frac{1}{2} m \ell^2 \dot{\theta}^2 - mg\ell + mg\ell \cos \theta. \end{aligned}$$

1. 네트워크

1. 네트워크

Thank you