第二节 边缘分布

- 一、边缘分布函数
- 二、离散型随机变量的边缘分布律
- 三、连续型随机变量的边缘分布

四、小结

一、边缘分布函数

问题:已知(X,Y)的分布,如何确定X,Y的分布?

$$F(x,y) = P\{X \le x, Y \le y\}, F(x) = P\{X \le x\},$$

$$P\{X \le x\} = P\{X \le x, Y < \infty\} = F(x, \infty) = F_X(x)$$

(X,Y)关于X的边缘分布函数.

定义 设 F(x,y) 为随机变量 (X,Y) 的分布函数,

则
$$F(x,y) = P\{X \le x, Y \le y\}.$$

令 $y \to \infty$, 称 $P\{X \le x\} = P\{X \le x, Y < \infty\} = F(x, \infty)$ 为随机变量 (X,Y) 关于X的边缘分布函数 .

记为
$$F_X(x) = F(x,\infty)$$
.

同理令 $x \to \infty$,

$$F_Y(y) = F(\infty, y) = P\{X < \infty, Y \le y\} = P\{Y \le y\}$$

为随机变量 (X,Y)关于Y 的边缘分布函数.

二、离散型随机变量的边缘分布律

定义 设二维离散型随机变量 (X,Y)的联合分布

律为
$$P\{X = x_i, Y = y_j\} = p_{ij}, i, j = 1, 2, \cdots$$

记
$$p_{i\bullet} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1, 2, \dots,$$

$$p_{\bullet j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1, 2, \dots,$$

分别称 $p_{i\bullet}$ ($i=1,2,\cdots$) 和 $p_{\bullet j}$ ($j=1,2,\cdots$) 为 (X,Y) 关于 X 和关于 Y 的边缘分布律 .

Y	\boldsymbol{x}_1	\boldsymbol{x}_{2}	•••	\boldsymbol{x}_{i}		
y_1	p ₁₁	p_{21}	•••	<i>p</i> _{<i>i</i>1}		
y_2	$p_{_{_{12}}}$	<i>p</i> ₂₂	• • •	p_{i^2}	•••	
				:		
y_j	p_{1j}	p_{2j}	•••	p_{ij}	•••	
			121175			

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij}, i = 1,2,\dots;$$

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \dots$$

因此得离散型随机变量关于X和Y的边缘分布函数分别为

$$F_X(x) = F(x,\infty) = \sum_{x_i \le x} \sum_{j=1}^{\infty} p_{ij},$$

$$F_{Y}(y) = F(\infty, y) = \sum_{y_{j} \leq y} \sum_{i=1}^{\infty} p_{ij}.$$

例1 已知下列分布律求其边缘分布律.

YX	0	1	
0	$\frac{12}{42}$	$\frac{12}{42}$	
1	$\frac{12}{42}$	$\frac{6}{42}$	

解

77			
A	0	1	$p_{\bullet j} = P\{Y = y_j\}$
0	12	+ 12	4
	42	42	7
	12	6	3
	42	42	7
$p_{i\bullet} = P\{X = x_i$.} 4	<u>3</u>	1
	7	7	

注意

联合分布

边缘分布

例2 一整数 N 等可能地在 1,2,3,...,10 十个值中取一个值. 设 D = D(N) 是能整除 N 的正整数的个数, F = F(N) 是能整除 N 的素数的个数.试写出 D 和 F 的联合分布律,并求边缘分布律.

解

样本点	1	2	3	4	5	6	7	8	9	10
D	1	2	2	3	2	4	2	4	3	4
F	() 1	1	1	1	2	1	1	1	2

由此得 D和 F的联合分布律与边缘分布律:

F D	1	2	3	4	$P\{F=j\}$
0	1/10	0	0	0	1/10
1	0	4/10	2/10	1/10	7/10
2	0	0	0	2/10	2/10
$P\{D=i\}$	1/10	4/10	2/10	3/10	1

或将边缘分布律表示为

D	1	2	3	4	F	0	1	2
p_{k}	1/10	4/10	2/10	3/10	$p_{_k}$	1/10	7/10	2/10

三、连续型随机变量的边缘分布

定义对于连续型随机变量(X,Y),设它的概率 密度为 f(x,y), 由于

$$F_X(x) = F(x, \infty) = \int_{-\infty}^{x} \left[\int_{-\infty}^{\infty} f(u,v) dv \right] du,$$

记

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$$

称其为随机变量(X, Y)关于 X 的边缘概率密度.

同理可得 Y的边缘分布函数

$$F_{Y}(y) = F(\infty, y) = \int_{-\infty}^{y} \left| \int_{-\infty}^{+\infty} f(u, v) \, du \, dv, \right|$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx.$$

$$Y 的边缘概率密度.$$

例3 设随机变量 X和 Y 具有联合概率密度

$$f(x,y) = \begin{cases} 6, & x^2 \le y \le x, \\ 0, & 其他. \end{cases}$$

求边缘概率密度 $f_X(x), f_Y(y)$.

$$=6(x-x^2).$$

当x < 0或x > 1时,

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \,\mathrm{d} y = 0.$$

因而得
$$f_X(x) = \begin{cases} 6(x-x^2), & 0 \le x \le 1, \\ 0, & \text{其他.} \end{cases}$$

当
$$0 \le y \le 1$$
时,

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$
$$= \int_{y}^{\sqrt{y}} 6 dx$$
$$= 6(\sqrt{y} - y).$$

当 y < 0 或 y > 1时, $f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = 0$.

得
$$f_Y(y) = \begin{cases} 6(\sqrt{y} - y), & 0 \le y \le 1, \\ 0, & \text{其他.} \end{cases}$$

例4 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$\cdot \exp \left\{ \frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$$

$$-\infty < x < +\infty, -\infty < y < +\infty,$$

其中 $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 都是常数,且 $\sigma_1 > 0, \sigma_2 > 0$, $-1 < \rho < 1$.

试求二维正态随机变量的边缘概率密度.

解
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
,

曲于
$$\frac{(y-\mu_2)^2}{\sigma_2^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}$$

$$= \left[\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1}\right]^2 - \rho^2 \frac{(x-\mu_1)^2}{\sigma_1^2},$$

$$f_{X}(x) = \frac{1}{2\pi \sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}} e^{-\frac{(x-\mu_{1})^{2}}{2\sigma_{1}^{2}}} \int_{-\infty}^{+\infty} e^{\frac{-1}{2(1-\rho^{2})}\left[\frac{y-\mu_{2}}{\sigma_{2}}-\rho\frac{x-\mu_{1}}{\sigma_{1}}\right]^{2}} dy,$$

$$\Rightarrow t = \frac{1}{\sqrt{1-\rho^2}} \left(\frac{y-\mu_2}{\sigma_2} - \rho \frac{x-\mu_1}{\sigma_1} \right),$$

则有
$$f_X(x) = \frac{1}{2\pi\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt$$

即
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, -\infty < x < +\infty.$$

同理可得

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}, -\infty < y < +\infty.$$

二维正态分布的两个边缘分布都是一维正态分布,并且都不依赖于参数 ρ .

请同学们思考

边缘分布均为正态分布的随机变量,其联合分布一定是二维正态分布吗?

答 不一定. 举一反例以示证明.

令(X,Y)的联合密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}} (1 + \sin x \sin y),$$

显然,(X,Y)不服从正态分布,但是

$$f_X(x) = \frac{1}{2\pi} e^{-\frac{x^2}{2}}, \quad f_Y(y) = \frac{1}{2\pi} e^{-\frac{y^2}{2}}.$$

因此边缘分布均为正态分布的随机变量,其联合分布不一定是二维正态分布.

四、小结

$$F_X(x) = F(x,\infty) = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d} y \right] \, \mathrm{d} x.$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d} y.$$

$$F_{Y}(x) = F(\infty, y) = \int_{-\infty}^{y} \left[\int_{-\infty}^{+\infty} f(x, y) dx \right] dy.$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d} x.$$

联合分布 边缘分布

