Final Project Team 6

Berenice, Gabriela, Juan, Héctor, Damián

May 2021

Problem

Let f be a three times differentiable function (defined on \mathbb{R} and real-valued) such that f has at least five distinct real zeros. Prove that f+6f'+12f''+8f''' has at least two distinct real zeros.

Polynomial Function

A polynomial is generally represented as P(x). The highest power of the variable of P(x) is known as its degree. Degree of a polynomial function is very important as it tells us about the behaviour of the function P(x) when x becomes very large, and also helps us to know the number of roots that we can have in a function. The domain of a polynomial function is entire real numbers \mathbb{R} .

Rolle's Thorem

Let f be a continuous function on [a, b] and differentiable on]a, b[such that f(a) = f(b). Then there exists $c \in]a, b[$ such that f'(c) = 0.

Hint

Use $g: x \to e^{\alpha x}$

Rolle's Theorem

$$\int_{a}^{b} f(x)dx$$