CS1 356 Lecture 41

A problem T is NP Hand if all problems in the class

NP can be polynomially reduced to T

re. If $X' \in \mathcal{N} p$ then

If $X \in NP$ Un X is NP complete

NP hand/complete under polytime reduction

Re call	that p	My hme reduction
s atu fy	tions; 4 v	ty hme reduction
兀' ≤	"大 "	and $\pi'' \leq \eta \pi^*$
7	<pre>poly</pre>	
If π	is NPC	and there h

a polytime algerithm for It

(1) => polytime algori-Ums for all

problems in NP.

The we can show there there cannot exist a polytime algorithm for T, then P 7 NP

How does one show the This NP complete? ?? Suppose NPC and i NP C >poly 7-JENP 才 < T'

Cook-Levin theorem: The Salufialility

problem of Boolean formula is

NPC.

Give n broken variables say x_1, x_2, \dots, x_n $x_i \in \{T, F\}$ then given any Boolean formula $\frac{say}{V: ov}$ $(x_1 \vee x_3) \lambda (x_4 \vee x_5)$ $\Lambda: and$ $\Lambda: and$ $\Lambda: and$ $(x_1 \vee x_3) \lambda (x_4 \vee x_5)$ $Say}$ $Say}$ $Say}$ A: and $Say}$ $Say}$ A: and $Say}$ $Say}$ Sais there an assignment of di's such that the expression is True. Cook- Levinthy strayer): The saturfishil] boolean formule goven problem of a as Conjunctive Normal Form (CNF) 4 3 literals per claux NP complete

Sey m clauses wach having 3 diterals (a literal is a broken variable or its complement)

3 CNF formula

Verter Cover großen

Does every edge have at least one of its end points in the cover (marked by ved)

Does there exist a Vertex cover of size K $(K \leq n)$?

Is $V \cdot C \cdot in NP$?

It soffices to show that 3 CNF < prey V.C. Given any instance of the 3 CNF problem, song a formulat we have to map it & some Instance of the V.C. problem, say such that $P(F) \subset G$ Such that G has a verten cover of size k 4/8 F is satisfiable. polynomial time.