Eigenvalues and Eigenvectors

$$E \times 1$$
 $A = \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix}$ $V = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $W = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$

We observed:

$$AV = \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 0 \cdot V$$

$$AW = \begin{bmatrix} 1 & 2 \\ 10 & 20 \end{bmatrix} \begin{bmatrix} 1 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 10 \end{bmatrix} = 21 \cdot \begin{bmatrix} 1 \\ 10 \end{bmatrix} = 21 \cdot W$$

Say: Matrix A has eigenvalues 7=0 and 7=21 and corresponding eigenvectors V=(2,-1) and w=(1,10).

$$\begin{bmatrix} E \times 2 \end{bmatrix} B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
 eigenvalues $\lambda = 2$ and $\lambda = 3$ w everyors e_1 and e_2

In general, matrix A has eigenvalue λ with eigenvector x if $A \times = \lambda \times$.

$$Ax = \lambda x = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda I_n x$$
a vector

 $(A - \lambda I_n)_x = Ax - \lambda I_n x = 0$ only interesting if x = 0.

$$E \times 2$$
 $B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, B - \lambda I_2 = \begin{bmatrix} 2 - \lambda & 0 \\ 0 & 3 - \lambda \end{bmatrix}$

So 7=0 or 7=21.

$$0 = |B - \lambda I_2| = (2 - \lambda)(3 - \lambda)$$
. So $\lambda = 2$ or $\lambda = 3$.