Cohomologie des groupes

2024-2025

Table des matières

1	Cat	égories et catégories abéliennes.	5
	1.1	Yoneda, théorème d'isomorphisme et exactitude	5
	1.2	Adjonctions	6
		1.2.1 Propriétés d'exactitude	6
		1.2.2 Limites, adjoints et l'axiome du choix	6
		1.2.3 Fidélité d'un foncteur ayant un adjoint	7
	1.3	Exemples d'adjonctions	7
2	(co)	homologie	9
	2.1	(co)Homologie sur les résolutions acycliques	9
	2.2	Foncteurs dérivés et limites	9
3	Col	nomologies 1	l1
	3.1	Tenseur et Hom	11
		3.1.1 Exactitudes	11
	3.2	Ext	11
		3.2.1 Localisation	11
	3.3		11
			12
			12
		3.3.3 Localisation	12

TABLE DES MATIÈRES

Chapitre 1

Catégories et catégories abéliennes.

J'veux un petit inventaire de choses cool.

1.1 Yoneda, théorème d'isomorphisme et exactitude

On applique $h: \mathcal{A} \to Ab$.

De
$$0 \to A \to B \to C \to 0$$
 exacte on tire

$$0 \rightarrow h_A \rightarrow h_B \rightarrow h_C$$

pour l'exactitude à gauche et

$$0 \to h^C \to h^B \to h^A$$

pour l'exactitude à droite. On voit ça comme ça :

$$0 \longrightarrow A \xrightarrow{\mathsf{F}_{\mathsf{A}}} B \longrightarrow C$$

$$M$$

pour le premier, l'exactitude de $0 \to A \to B \to C$ montre que M va dans le noyau si $(M \to B \to C) = 0$. Et on utilise $A \simeq \operatorname{im}(A \to B) = \ker(B \to C)$ et la PU du noyau pour montrer qu'on a l'exactitude sur les hom. Pour le deuxième, on utilise :

et là de l'exactitude de $A \to B \to C \to 0$ et du théorème d'isomorphisme on a $coker(A \to B) \simeq coim(B \to C) \simeq C$ d'où $(A \to B \to M) = 0$ implique l'existence de la flèche vers $coker(A \to B)$ est la factorisation par C.

Montrer l'inverse consiste juste à spécialiser et utiliser les PU.

1.2 Adjonctions

Étant donné $F: \mathcal{C} \to \mathcal{D}: G$ si

$$\operatorname{Hom}_{\mathcal{D}}(F(_{\scriptscriptstyle{-}}),_{\scriptscriptstyle{-}}) \simeq \operatorname{Hom}_{\mathcal{C}}(_{\scriptscriptstyle{-}},G(_{\scriptscriptstyle{-}}))$$

naturellement alors F est adjoint à gauche de G qui lui est adjoint à droite de F. Via Yoneda ça dit que $h^{F(-)}(_{-}) \simeq h^{-}(G(_{-}))$ dans

$$Nat(\widehat{\mathcal{C} \times \mathcal{D}}, \widehat{\mathcal{D} \times \mathcal{C}})$$

y'a aussi la formulation $h^{FG(-)}(-) \simeq h^{G(-)}(G(-))$.

1.2.1 Propriétés d'exactitude

On déduit tout du premier isomorphisme. Un adjoint à gauche est exact à droite et inversement. Plus généralement un adjoint à gauche préserve les colimites et les limites finies (La preuve est non triviale).

Si F est adjoint à gauche de G on a

$$0 \to h^{F(C)} \to h^{F(B)} \to h^{F(A)}$$

qui est iso à

$$0 \to h^C \circ G \to h^B \circ G \to h^A \circ G$$

en particulier si $A \to B \to C \to 0$ est exacte à droite alors $F(A \to B \to C \to 0)$ est exacte à droite.

Maintenant si G est exact, alors $h^{F(P)} \simeq h^P \circ G$ d'où $h^{F(P)}$ est exact si P est projectif.

À l'inverse si F est exact, $h_{G(I)} \simeq h_I(F(_{-}))$ est exact dès que I est injectif.

1.2.2 Limites, adjoints et l'axiome du choix.

Quand j'ai une catégorie I-cocomplète pour I filtrante, genre Mod_R , bah y'a une adjonction cool pour les colimites

$$\varinjlim\colon \mathcal{A}^I \leftrightarrow \mathcal{A}\colon \Delta$$

Catégories et catégories abéliennes.

où Δ c'est le foncteur constant. MAIS, bah pour définir le foncteur \varinjlim faut faire un choix de colimite pour chaque foncteur! Penser le point dans Set.

Remarque 1. Pour I filtrante, \mathcal{A}^I est abélienne si \mathcal{A} l'est. Pour prouver que y'a les noyaux, via $C, D: I \to \mathcal{A}$ et $C \to D$, on prend $K^0: I^0 \to \mathcal{A}$ la donnée des noyaux termes à termes et on montre que ça s'étend naturellement en $K: I \to \mathcal{A}$ (on trouve juste un foncteur) tel que les flèches de noyaux termes à termes ça fait une transformation naturelle $K \to C$. C'est bien le noyau parce que ça l'est terme à terme.

1.2.3 Fidélité d'un foncteur ayant un adjoint

On déduit tout du deuxième isomorphisme, i.e. la counité. Et c'est clair que G est pleinement fidèle ssi la counité est un isomorphisme.

1.3 Exemples d'adjonctions

Les foncteurs Free qu'ont peut définir comme les adjoints à gauche de foncteurs d'oublis $C \to Set$. Et les foncteurs d'oublis plus généraux $(_)^{\times}$: $Ring \to Grp$ par exemple.

1.3 Exemples d'adjonctions

Chapitre 2

(co)homologie

2.1 (co)Homologie sur les résolutions acycliques

Le Weibel dit qu'en tronquant une résolution projective et de proche en proche on montre qu'une résolution acyclique calcule la cohomologie. I.e. via

$$0 \to \ker(d_{-1}) \to P \to A \to 0$$

puis

$$0 \to \ker(d_{m-1}) \to P_m \to \ldots \to P_0 \to A \to 0$$

avec les P_i acycliques et la suite exacte courte de proche en proche que $L_{m+1}F(A) \simeq \ker(F(\ker(d_{m-1})) \to F(P_m))$. Pour faire de proche en proche faut utiliser que $L_iF(A) \simeq L_{i-(m-1)}F(\ker(d_{m-1}))$ et ça c'est la suite exacte longue et l'acyclicité.

2.2 Foncteurs dérivés et limites

Sur une catégorie AB5 (\varinjlim : $\mathcal{A}^I \to \mathcal{A}$ est exact et \mathcal{A} est cocomplète.) on a

$$\underset{j}{\underline{\lim}} L_i F(C(j)) \simeq L_i F(\underset{j}{\underline{\lim}} C(j))$$

2.2 Foncteurs dérivés et limites

Chapitre 3

Cohomologies

J'prends que des bi-modules pour les preuves.

3.1 Tenseur et Hom

Y'a une adjonction:

$$h^{-\otimes_R A}(\underline{\ }) \simeq h^A(h^-(\underline{\ }))$$

c'est juste qu'à une application R-linéaire $B \otimes_R A \to C$ à gauche on associe l'application vers le dual $A \to (\operatorname{Hom}(B,C))$ via la propriété universelle des produits tensoriels.

3.1.1 Exactitudes

On a $\otimes_R A$ qui est adjoint à gauche d'où est exact à droite.

3.2 Ext

On déf
$$Ext^n(A, _) = R^n h^A(_)$$
 et $Ext^n(_, B) = R^n h_B(_)$.

3.2.1 Localisation

3.3 Tor

On déf $Tor_n^R(A, B) = L_n A \otimes_R (B)$. La notation est symétrique!

3.3.1 Groupes abéliens, $Mod_{\mathbb{Z}}$

On sé réduit à $A = \mathbb{Z}/n\mathbb{Z}$ où on a la résolution

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

alors en appliquant $\otimes_R B$, $Tor_*^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, B)$ est l'homologie

$$0 \to B \to B \to 0$$

où on multiplie par n, d'où $Tor_0^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, B) = B/nB$, $Tor_1^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, B) =_n B$ et le reste est nul.

Ensuite page 66 du weibel mais ca consiste tjr à écrire $A = \varinjlim A_i$ pour les sous groupes de types finis puis dans ce cas $A_i \simeq \mathbb{Z}^m \oplus_i \mathbb{Z}/n_i\mathbb{Z}$ et de tjr faire tout commuter avec Tor.

3.3.2 Modules plats

C'est les modules $\otimes_R B$ acycliques. Une liste :

- Les modules libres. Parce qu'alors l'injectivité se vérifie terme à terme. (C'est direct que $R^{(I)} \otimes N \simeq \bigoplus_I N$).
- \bullet Si R est un pid, les modules sans torsion.
- $S^{-1}R$. En particulier Frac(R).

3.3.3 Localisation

La localisation marche. Si R est commutatif et A, B des R-modules quelconques, $Tor_n^R(A, B) = 0$ ssi pour tout idéal maximal \mathfrak{m} on a

$$Tor_n^{R_{\mathfrak{m}}}(A_{\mathfrak{m}},B_{\mathfrak{m}})$$