CSI3002	Applied Cryptography and Network Security	L	T	P	J	С
		2	0	2	0	3
Pre-requisite	Nil	Syllabus version				
		1.0				

Course Objectives:

- 1. To learn the emerging concepts of cryptography and algorithms
- 2. To defend the security attacks on information systems using secure algorithms and Authentication process
- 3. To categorize and analyze the key concepts in network and wireless security

Course Outcome:

- 1. Infer the need of security to introduced strong cryptosystems.
- 2. Analyze the cryptographic algorithms for information security.
- 3. Identify the authentication schemes for membership authorization.
- 4. Identify computer and network security threats, classify the threats and develop a security model for detect and mitigate the attacks.
- 5. Identify the requirements for secure communication and challenges related to the secure web services
- 6. Identify the need of ethical and professional practices, risk management using emerging security solutions.

security solutions.	0 0 0					
Student Learning Outcomes (SLO): 1, 9, 18						
Module:1 Introduction to Cryptography	4 hours					
Security trends, Security attacks, Security mechanism, Elementary number theorems.						
random bit generation. Basic security services: confidentiality, integrity, availability, non-						
repudiation, privacy.						
Module:2 Symmetric Key Cryptography	4 hours					
Block Ciphers: DES, Triple-DES, AES, Modes of Operation, Stream Cipher						
Module:3 Asymmetric Key Cryptography	4 hours					
RSA, Elgamal, Elliptic Curve Cryptography (ECC), Diffie-Hellman key exchange protocol						
Module:4 Hash Functions and Authentication	4 hours					
Message Authentication Code (MAC), MD5, Secure Hash algorithms (SHA), 1	HMAC, Digital					
Signatures, Digital Signature Standard (DSS).						
Module:5 Basic Applied Cryptography	3 hours					
Key management and distribution, digital certificates, identity-based encryption, Identification						
and authentication, zero knowledge protocols						
Module:6 Advanced Applied cryptography	5 hours					
Side-channel attack, Pretty Good Privacy (PGP), S/MIME, Kerberos, Homomorphic						
encryption, Quantum Cryptography, DNA Cryptography, Chaos Based Cryptosys	tem					
Module:7 Web and Wireless Security	4 hours					
IPsec: AH and ESP, IKE- SSL/TLS, Types of Firewalls, Intrusion detection and Prevention						
systems, Wireless Application Protocol (WAP)						
Module:8 Recent Trends	2 hours					
Total Hours:	30 hours					
List of Experiments						
1 Implement DES, Triple DES and AES Key Algorithms	4 Hours					
2 Implement RSA, ECC and Diffie-Hellman Key Establishment.	4 Hours					
3 Implement a Secret-Sharing algorithm and Homomorphic Encryption	2 Hours					
algorithm						
4 Implement message authentication (MAC) and HASH algorithms	3 Hours					
5 Consider and examine the Wireless network security and technology	2 Hours					

	integration for compliance using the case study of Cisco.					
6	Explore the Snort Intrusion Detection Systems. Study Snort IDS, a	4 Hours				
	signature-based intrusion detection system used to detect network					
	attacks. Snort can also be used as a simple packet logger. For the purpose					
	of this lab the students will use snort as a packet sniffer and write their					
	own IDS rules					
7	Explore ways to perform wireless attacks and understand potential	4 Hours				
	defences. The attacks that will be covered are inspecting & modifying					
	wireless card parameters, changing the wireless transmission channel, flooding attacks, and cracking keys of WPA2 protected networks.					
8	Pretty Good Privacy –	4 Hours				
	Create a public/private key pair in PGP	1110010				
	Create a revocation ley					
	Exchange PGP keys with other students					
	• Signing the new key					
	 Encrypting a file using your partner's public key 					
	Decrypting the file using your private key					
	Encrypting and signing a file					
	Verifying the signature					
	Sending secure Email with PGP					
	Adding a public key and sending secure email.					
9	Send and receive an encrypted email message using S/MIME.	3 Hours				
	Total Lecture hours:	30 hours				
Tex	t Book(s)					
	W. Stallings, Cryptography and Network Security: Principles and Prace	tice, 7 th Ed.				
	Pearson Publishers, 2017.					
	Behrouz A. Forouzan, Cryptography and Network Security:6 th Ed. McGraw-H	lill, 2017.				
	erence Books	' D 11'				
	Kaufman, Perlman and Speciner. Network Security: Private Communicatio	n in a Public				
	World., 2 nd edition, Pearson Publishers, 2002.					
	Menezes, van Oorschot, and Vanstone, The Handbook of Applied Cryptography, 20th Edition, WILEY, 2015					
	H. Silverman, A Friendly Introduction to Number Theory, 4 th Ed. Boston: Pearson,					
	2012.	,				
	le of Evaluation: CAT / Assignment / Quiz / FAT / Lab					
	ommended by Board of Studies 11-02-2021					
	roved by Academic Council No. 61 Date 18.02.2021					