## Practice:

Write the follow using Summation notation.

$$\frac{3}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{20^2}$$

$$= \frac{20}{2} \frac{1}{12}$$

$$= \sum_{i=3}^{100} x_i^2$$

| (2) Sample Variance formula                                                                       |
|---------------------------------------------------------------------------------------------------|
|                                                                                                   |
| Given the sample: (x, x,, x,)                                                                     |
|                                                                                                   |
| The sample variance is                                                                            |
| , ' <u> </u>                                                                                      |
| $\sum (x; -\overline{x})^2$                                                                       |
| n - 1                                                                                             |
|                                                                                                   |
| where $\overline{X} = \frac{\sum x_i}{n}$ , which is the sample mean.                             |
| n                                                                                                 |
|                                                                                                   |
| Sample Standard Deviation, S                                                                      |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
| S = Sample variance                                                                               |
|                                                                                                   |
|                                                                                                   |
| OR (X Z)2                                                                                         |
| $\frac{\partial E}{\partial x} = \frac{\sum (x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2}$ |
| n-1                                                                                               |
|                                                                                                   |
| Nok: The variance can be denoted by U, Vor or                                                     |
|                                                                                                   |
| s <sup>2</sup>                                                                                    |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |

$$Vorices_{Q} = \frac{\sum (x_{1} - \overline{x})^{2}}{n-1}$$

$$= \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \cdots + (x_{M} - \overline{x})^{2}}{n-1}$$

