

Continuidad de Funciones

Departamento de Matemáticas

Estudiar y clasificar los puntos de discontinuidad de las siguientes funciones:

1)
$$f(x) = \frac{x^2 + x - 1}{x - 1}$$
 2) $f(x) = \frac{x^2 - 1}{x + 1}$

2)
$$f(x) = \frac{x^2 - 1}{x + 1}$$

3)
$$f(x) = \frac{3x-5}{x^2-4}$$

4)
$$f(x) = \frac{x-1}{x^3 - x^2 + 3x}$$

5)
$$f(x) = 3x^2 - \frac{2}{x}$$

5)
$$f(x) = 3x^2 - \frac{2}{x}$$
 6) $f(x) = \frac{1}{x} + \frac{1}{x-1} + \frac{1}{x+2}$ 7) $f(x) = \frac{3x^2 - 9}{x - \sqrt{3}}$ 8) $f(x) = \frac{x^2}{x^2 + 1}$

7)
$$f(x) = \frac{3x^2 - 9}{x - \sqrt{3}}$$

8)
$$f(x) = \frac{x^2}{x^2 + 1}$$

9)
$$f(x) = \begin{cases} x+1 & x \le 1 \\ x-1 & x > 1 \end{cases}$$

9)
$$f(x) = \begin{cases} x+1 & x \le 1 \\ x-1 & x > 1 \end{cases}$$
 10) $f(x) = \begin{cases} 3-2x & x < 2 \\ x-1 & x > 2 \end{cases}$ 11) $f(x) = \begin{cases} -5x & x \ne 2 \\ 1 & x = 2 \end{cases}$ 12) $f(x) = \begin{cases} 0 & x < 0 \\ -1 & x \ge 0 \end{cases}$

1)
$$f(x) = \begin{cases} -5x & x \neq 2 \\ 1 & x = 2 \end{cases}$$

12)
$$f(x) = \begin{cases} 0 & x < 0 \\ -1 & x \ge 0 \end{cases}$$

13)
$$f(x) = \begin{cases} x+1 & x < 0 \\ 2 & 0 \le x < 2 \\ x & x > 2 \end{cases}$$

14)
$$f(x) = \begin{cases} x & x < 3 \\ 2x + 1 & 3 \le x < 5 \\ 4 & x > 5 \end{cases}$$

13)
$$f(x) = \begin{cases} x+1 & x < 0 \\ 2 & 0 \le x < 2 \\ x & x \ge 2 \end{cases}$$
 14) $f(x) = \begin{cases} x & x < 3 \\ 2x+1 & 3 \le x < 5 \\ 4 & x \ge 5 \end{cases}$ 15) $f(x) = \begin{cases} x^2 + 2 & x < -1 \\ 0 & x = -1 \\ -2 - x & x > -1 \end{cases}$

16)
$$f(x) = \begin{cases} x^2 & x \le 0 \\ 1+x & x > 0 \end{cases}$$

16)
$$f(x) = \begin{cases} x^2 & x \le 0 \\ 1+x & x > 0 \end{cases}$$
 17) $f(x) = \begin{cases} 2x+3 & x \le 3 \\ 1-x^2 & x > 3 \end{cases}$

18)
$$f(x) = \begin{cases} 0 & x < 1 \\ 3x & x > 1 \end{cases}$$

19)
$$f(x) = \begin{cases} \frac{1}{x-1} & x < 1 \\ 3x & x \ge 1 \end{cases}$$

19)
$$f(x) = \begin{cases} \frac{1}{x-1} & x < 1 \\ 3x & x \ge 1 \end{cases}$$
 20) $f(x) = \begin{cases} \frac{x^2 - 4}{x+2} & x \ne 2 \\ -4 & x = -2 \end{cases}$

21)
$$f(x) = \begin{cases} \frac{3}{x-5} & x \neq 5 \\ 7 & x = 5 \end{cases}$$

22)
$$f(x) = \begin{cases} x + \frac{3}{2} & x < -2 \\ \frac{1}{x} & -2 < x < 0 \\ 2x & x \ge 0 \end{cases}$$
 23) $f(x) = \begin{cases} \frac{4x}{x-2} & x < -1 \\ \frac{6}{x-1} & -1 < x < 3 \\ \frac{6x}{x+3} & x > 3 \end{cases}$ 24) $f(x) = \begin{cases} \frac{-1}{2} & x < -2 \\ \frac{1}{x} & -2 \le x \le 2 \\ \frac{1}{2} & x > 2 \end{cases}$

23)
$$f(x) = \begin{cases} \frac{4x}{x-2} & x < -1 \\ \frac{6}{x-1} & -1 < x < 3 \\ \frac{6x}{x+3} & x > 3 \end{cases}$$

24)
$$f(x) = \begin{cases} \frac{-1}{2} & x < -2\\ \frac{1}{x} & -2 \le x \le 2\\ \frac{1}{2} & x > 2 \end{cases}$$

25)
$$f(x) = \begin{cases} \frac{x^4 - 1}{x^3 + 1} & x \neq -1\\ \frac{3}{4} & x = -1 \end{cases}$$

26)
$$f(x) = \begin{cases} \frac{2x^3 - 9x^2 + 12x - 4}{x^3 - 2x^2 - 4x + 8} & x \neq 2\\ \frac{3}{4} & x = 2 \end{cases}$$
 27) $f(x) = \begin{cases} \frac{\sqrt{x + 6} - 3}{\sqrt{\frac{x}{3}} - 1} & x \neq 3\\ 1 & x = 3 \end{cases}$

27)
$$f(x) = \begin{cases} \frac{\sqrt{x+6}-3}{\sqrt{\frac{x}{3}}-1} & x \neq 3\\ 1 & x = 3 \end{cases}$$

28)
$$f(x) =\begin{cases} x^2 - 5x + 6 & x < \frac{5}{2} \\ 0 & x = \frac{5}{2} \\ x - \frac{11}{4} & x > \frac{5}{2} \end{cases}$$
 29) $f(x) =\begin{cases} 0 & x < -1 \\ 1 - |x| & -1 \le x \le 1 \\ 1 & x > 1 \end{cases}$ 30) $f(x) =\begin{cases} \frac{|x-2|}{x-2} & x \ne 2 \\ 0 & x = 2 \end{cases}$

29)
$$f(x) = \begin{cases} 0 & x < -1 \\ 1 - |x| & -1 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

30)
$$f(x) = \begin{cases} \frac{|x-2|}{x-2} & x \neq 2\\ 0 & x = 2 \end{cases}$$

31)
$$f(x) = E(x)$$
 32) $f(x) = Mant(x) = x - E(x)$ 33) $f(x) = x \cdot E(x)$ 34) $f(x) = (-1)^{E(x)}$

2. Calcular k y t para que las siguientes funciones sean continuas en los puntos que se indican:

39)
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ k & x = 3 \end{cases}$$
 en $x = 3$

39)
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3 \\ k & x = 3 \end{cases}$$
 $en \ x = 3$ 40) $f(x) = \begin{cases} \frac{5x^4 - 3x^3}{7x^5 + kx^3} & x \neq 0 \\ \frac{2}{5} & x = 0 \end{cases}$ $en \ x = 0$ 41) $f(x) = \begin{cases} \frac{kx^4 - 3x^3}{7x^5 + 3x^3} & x \neq 0 \\ -1 & x = 0 \end{cases}$ $en \ x = 0$

0 **41**)
$$f(x) = \begin{cases} \frac{kx^4 - 3x^3}{7x^5 + 3x^3} & x \neq 0 \\ -1 & x = 0 \end{cases}$$
 en $x = 0$

42)
$$f(x) = \begin{cases} \frac{e^{kx}}{x+2} & \text{si } x \le 0 \\ x^2 + 2kx + k & \text{si } x > 0 \end{cases}$$
 43) $f(x) = \begin{cases} e^{kx} & \text{si } x < 0 \\ x + 2k & \text{si } 0 \le x \le 2 \\ -x + t & \text{si } 2 < x \end{cases}$ 44) $f(x) = \begin{cases} x^2 + 2 & \text{si } x < -1 \\ x + 2k & \text{si } -1 \le x \le 1 \\ -x + t & \text{si } 1 < x \end{cases}$

43)
$$f(x) = \begin{cases} e^{kx} & \text{si } x < 0 \\ x + 2k & \text{si } 0 \le x \le 2 \\ -x + t & \text{si } 2 < x \end{cases}$$

44)
$$f(x) = \begin{cases} x^2 + 2 & \text{si } x < -1 \\ x + 2k & \text{si } -1 \le x \le 1 \\ -x + t & \text{si } 1 < x \end{cases}$$

en todo R

Cálculo de Límites

Departamento de Matemáticas http://selectividad.intergranada.com

1)
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 4x}{-5x - 2x^3}$$
 (Sol: -1/2)

2)
$$\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^2 + 3x + 2}$$
 (Sol: 0)

3)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 8}{2x^2 - 5}$$
 (Sol: 1/2)

4)
$$\lim_{x \to +\infty} \frac{3x^2 - x + 1}{\sqrt{x^6 + 1}}$$
 (Sol: 0)

5)
$$\lim_{x \to 1} \frac{5x}{x - 1}$$
 (No existe)

6)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 4x^2 + 4x - 1}$$
 (Sol: -2)

7)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
 (Sol: 1)

8)
$$\lim_{x \to +\infty} \left(\sqrt{x+4} - \sqrt{x-4} \right)$$
 (Sol: 0)

9)
$$\lim_{x\to 2} \frac{x^2-4}{\sqrt{7+x}-3}$$
 (Sol: 24)

10)
$$\lim_{x \to +\infty} \left(8x - \sqrt{16x^2 - 3x} \right)$$
 (Sol: $+\infty$)

11)
$$\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^3 + x^2 - 2x}$$
 (Sol: 2)

12)
$$\lim_{x \to 3} \frac{x^3 - 2x^2 - 2x - 3}{x^3 - 4x^2 + 4x - 3}$$
 (Sol: 13/7)

13)
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x + 3} - 2}$$
 (Sol: 8)

14)
$$\lim_{x \to +\infty} \left(\frac{x^3 + 1}{x^2} - \frac{x^4 + x + 1}{x^3 + x} \right)$$
 (Sol: 0)

15)
$$\lim_{x \to \infty} (\sqrt{4x^2 + x} - 2x)$$
 (Sol: 1/4)

16)
$$\lim_{x \to +\infty} \frac{1+2x}{\sqrt{1+x^2}}$$
 (Sol: 2)

17)
$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x^2 - 4}$$
 (Sol: $\sqrt{2}$ /16)

18)
$$\lim_{x\to 0} \frac{5x}{\sqrt{1-x}-1}$$
 (Sol: -10)

19)
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^3 + 4x^2 + x - 6}$$
 (Sol: 1/6)

20)
$$\lim_{x \to a} \frac{x^2 - ax}{x^2 + ax - 2a^2}$$
 (Sol: 1/3)

21)
$$\lim_{x\to 0} \frac{x+x^2}{2-\sqrt{x+4}}$$
 (Sol: -4)

22)
$$\lim_{x \to 1} \frac{x^3 + x^2 + 5}{x^3 + x - 3}$$
 (Sol:-7)

23)
$$\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$$
 (Sol: 3)

24)
$$\lim_{x \to +\infty} \left(\sqrt{4x^2 + 4x + 2} - \sqrt{4x^2 - 5x + 2} \right) (9/4)$$

25)
$$\lim_{x\to 0} \frac{5x}{\sqrt{1-x}-1}$$
 (Sol: -10)

26)
$$\lim_{x \to -\infty} \frac{4x^4 - 3x}{1 - 3x^3}$$
 (Sol: $+\infty$)

27)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{2x^2 + 1} + \sqrt{x^2 - 1}}$$
 (Sol: $\sqrt{2}$ –1)

28)
$$\lim_{x \to \infty} \sqrt[3]{\frac{-27x^2 + 1}{2 + x^2}}$$
 (Sol:-3)

29)
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3}$$
 (Sol: 1/4)

30)
$$\lim_{x \to \infty} (\sqrt{x^2 - 1} - \sqrt{x^2 + 5})$$
 (Sol: 0)

31)
$$\lim_{x \to \infty} \left(\sqrt{x^2 - 2x} - x \right)$$
 (Sol: -1)

32)
$$\lim_{x \to \infty} \left(\frac{10x - 3}{5x + 3} \right)^{\frac{-x^2 + 3}{2x}}$$
 (Sol: 0)

33)
$$\lim_{x\to 0} \frac{\sqrt{x+9}-3}{\sqrt{x+16}-4}$$
 (Sol: 4/3)

34)
$$\lim_{x \to 1} \left(\frac{x-3}{2x-5} \right)^{\frac{x^2+1}{x^2-4x+4}}$$
 (Sol: 4/9)

35)
$$\lim_{x \to \infty} \left(\frac{2x+3}{3x-1} \right)^{\frac{4x+1}{x}}$$
 (Sol: 16/81)

36)
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x-1} \right)^{\frac{3x^2}{x-1}}$$
 (Sol: e^6)

37)
$$\lim_{x \to 2} (x-1)^{\frac{3}{x-2}}$$
 (Sol: e^3)

38)
$$\lim_{x \to 1} \left(\frac{x^3 + 1}{x^2 + 1} \right)^{\frac{3}{x - 1}}$$
 (Sol: $e^{3/2}$)

39)
$$\lim_{x \to 1} \left(\frac{5x - 2}{4x + 3} \right)^{2x}$$
 (Sol: e^{-2})

40)
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3x}{2x^2 - 5} \right)^{2x + 1}$$
 (Sol: e^3)

41)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 8} \right)^{\frac{x^2}{2}}$$
 (Sol: $e^{9/2}$)

42)
$$\lim_{x \to +\infty} \left(\frac{4x+7}{4x-5} \right)^{\frac{x^2}{x-1}}$$
 (Sol: e³)

Límites y Continuidad

1.- Calcula los límites:

$$\lim_{x \to 2} \frac{x^2 - 3x + 6}{5x - 1}$$

b)
$$\lim_{x \to 4} \sqrt{\frac{x^2 - 1}{x - 1}}$$

$$\lim_{x \to \frac{\pi}{2}} Sen(x-a)$$

$$\lim_{x \to \pi} \cos 3x$$

$$\lim_{x\to 0}\frac{4-\sqrt{16+x}}{x}$$

$$\lim_{x \to 4} \sqrt{\frac{25 - (x+1)^2}{5 + (x+1)}}$$

$$\lim_{x \to 4} \sqrt[3]{x+4}$$

h)
$$\lim_{x \to 1} \frac{x^3 - 2x^2 + x}{x - 1}$$

i)
$$\lim_{x \to \frac{\pi}{2}} Sen2x + Cos 2x$$

Sol: a) 4/9; b) $\sqrt{5}$; c) Cos a d)-1; e)-1/8; f) 0; g) 2; h) 0; i)-1

2.- Calcula los límites:

a)
$$\lim_{x \to +\infty} \frac{x^3 - 2x^2 + 4x}{-5x - 2x^3}$$

$$\lim_{x \to 2} \frac{x^2 - 4}{\sqrt{7 + x} - 3}$$

p)
$$\lim_{x\to 2} \frac{\sqrt{x} - \sqrt{2}}{x^2 - 4}$$

b)
$$\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^2 + 3x + 2}$$

$$\lim_{x \to 0} \frac{5x}{\sqrt{1-x} - 1}$$

$$\lim_{\mathbf{q})} \quad \lim_{\mathbf{x} \to +\infty} \left(8\mathbf{x} - \sqrt{16\mathbf{x}^2 - 3\mathbf{x}} \right)$$

c)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 8}{2x^2 - 5}$$

$$\lim_{x \to 1} \frac{x^3 + 2x^2 - x - 2}{x^3 + x^2 - 2x}$$

r)
$$\lim_{x \to 1} \frac{x^3 - 6x^2 + 11x - 6}{x^3 + 4x^2 + x - 6}$$

$$\lim_{x \to +\infty} \frac{3x^2 - x + 1}{\sqrt{x^6 + 1}}$$

$$\lim_{x \to 3} \frac{x^3 - 2x^2 - 2x - 3}{x^3 - 4x^2 + 4x - 3}$$

s)
$$\lim_{x \to a} \frac{x^2 - ax}{x^2 + ax - 2a^2}$$

e)
$$\lim_{x \to 1} \frac{5x}{x - 1}$$

m)
$$\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x + 3} - 2}$$

t)
$$\lim_{x\to 0} \frac{x+x^2}{2-\sqrt{x+4}}$$

f)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 4x^2 + 4x - 1}$$

n)
$$\lim_{x \to 1} \frac{x^3 + x^2 + 5}{x^3 + x - 3}$$

u)
$$\lim_{x \to +\infty} \left(\frac{x^3 + 1}{x^2} - \frac{x^4 + x + 1}{x^3 + x} \right)$$

g)
$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$
$$\lim_{x\to +\infty} \left(\sqrt{x+4} - \sqrt{x-4}\right)$$

$$\lim_{x\to\infty}(\sqrt{4x^2+x}-2x)$$

$$\lim_{x \to +\infty} \left(\sqrt{4x^2 - 5} - (2x - 3) \right)$$

h)
$$\lim_{x \to +\infty} \left(\sqrt{x+4} - \sqrt{x-4} \right)$$
 o) $\lim_{x \to +\infty} \frac{1+2x}{\sqrt{1+x^2}}$

w)
$$\lim_{x \to +\infty} \left(\sqrt{4x^2 + 4x + 2} - \sqrt{4x^2 - 5x + 2} \right)$$

Sol: a)-1/2; b)0; c)½; d)0; e)No existe; f)-2; g)1; h)0; i)24; j)-10; k)2; l)13/7; m)8; n)-7; ñ)¼; o)2; p) $\frac{\sqrt{2}}{16}$; q)+∞; r)1/6; s) 1/3; t) -4; u) 0; v)3; w) 9/4.

3.- Calcula los límites:

$$\lim_{x \to 0} \frac{5x}{\sqrt{1-x} - 1}$$

$$\lim_{x\to\infty} \left(\sqrt{x^2 - 2x} - x \right)$$

$$\lim_{x\to 2} (x-1)^{\frac{3}{x-2}}$$

b)
$$\lim_{x \to -\infty} \frac{4x^4 - 3x}{1 - 3x^3}$$

h)
$$\lim_{x \to \infty} \left(\frac{10x - 3}{5x + 3} \right)^{\frac{-x^2 + 3}{2x}}$$
 n) $\lim_{x \to 1} \left(\frac{x^3 + 1}{x^2 + 1} \right)^{\frac{3}{x - 1}}$

n)
$$\lim_{x \to 1} \left(\frac{x^3 + 1}{x^2 + 1} \right)^{\frac{3}{x - 1}}$$

c)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{2x^2 + 1} + \sqrt{x^2 - 1}}$$
 i) $\lim_{x \to 0} \frac{\sqrt{x + 9} - 3}{\sqrt{x + 16} - 4}$ ii) $\lim_{x \to 1} \left(\frac{5x - 2}{4x + 3}\right)^{2x}$

$$\lim_{x\to 0} \frac{\sqrt{x+9}-3}{\sqrt{x+16}-4}$$

$$\lim_{x \to 1} \left(\frac{5x - 2}{4x + 3} \right)^{2x}$$

d)
$$\lim_{x \to \infty} \sqrt[3]{\frac{-27x^2 + 1}{2 + x^2}}$$

j)
$$\lim_{x\to 1} \left(\frac{x-3}{2x-5}\right)^{\frac{x^2+1}{x^2-4x+4}}$$

o)
$$\lim_{x \to \infty} \left(\frac{2x^2 + 3x}{2x^2 - 5} \right)^{2x + 1}$$

e)
$$\lim_{x\to 3} \frac{\sqrt{x+1}-2}{x-3}$$

$$\lim_{x \to \infty} \left(\frac{2x+3}{3x-1} \right)^{\frac{4x+1}{x}}$$

p)
$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 - 8} \right)^{\frac{x^2}{2}}$$

$$\lim_{x \to \infty} (\sqrt{x^2 - 1} - \sqrt{x^2 + 5})$$

1)
$$\lim_{x \to \infty} \left(\frac{2x+3}{2x-1} \right)^{\frac{3x^2}{x-1}}$$

q)
$$\lim_{x \to +\infty} \left(\frac{4x+7}{4x-5} \right)^{\frac{x^2}{x-1}}$$

Sol: a)-10; b) $+\infty$; c) $\sqrt{2}$ -1; d)-3; e) $\frac{1}{4}$; f) 0; g)-1; h) 0; i) $\frac{4}{3}$; j) $\frac{4}{9}$; k) $\frac{16}{81}$; l) $\frac{e^6}{1}$; m) $\frac{e^3}{1}$; n) $\frac{9}{49}$; o) $\frac{e^3}{1}$; n) $\frac{e^{9/2}}{1}$; e) $\frac{1}{4}$; f) 0; g)-1; h) 0; i) $\frac{4}{3}$; j) $\frac{4}{9}$; k) $\frac{16}{81}$; l) $\frac{e^6}{1}$; m) $\frac{e^3}{1}$; n) $\frac{e^{9/2}}{1}$

Límites y Continuidad

Departamento de Matemáticas

4.- Determinar el valor de a para que: $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x+a} - \sqrt{x} \right) = 2$

Sol: a=4

- **5.-** Demuestra que la siguiente ecuación tiene solución: $2 x = \ln x$
- **6.-** Calcular el límite de la función $f(x) = \frac{1-\cos x}{x^2}$, en el punto 0, en el punto 1 y en $+\infty$

Sol: a) 1/; b) 1-cos1; c) 0

7.- Calcular el siguiente límite: $\lim_{x \to +\infty} \left(\frac{2x+3}{2x-1} \right)^x$

Sol: e2

8.- Calcular el valor de la constante c para que $\lim_{x\to +\infty} \left(\frac{x+3}{x}\right)^{cx} = e$

Sol: c = 1/3

9.- Estudiar en el cuerpo real la continuidad de la función definida por: $f(x) = \begin{cases} \frac{e^x}{e^x + 1} & \text{si } x \le 0 \end{cases}$

Sol: Así que la función f(x) es una función continua en $\mathbb{R} - \{0\}$, donde presenta una discontinuidad de salto.

10.- Determinar a y b para que la función definida por $f(x) = \begin{cases} ae^{\frac{\sec^2 x}{x}} + b\cos x & \text{si } x \le 0 \\ 3a\frac{\sec x}{x} + b(x-1) & \text{si } x > 0 \end{cases}$ sea continua.

Sol: No existen a y b, porque en x=0 no está definida.

11.- Estudiar la continuidad de la función definida por $f(x) = \frac{x^2 - 1}{x^3 + 7x - 8}$ en x=1, e indicar que tipo de discontinuidad presenta.

Sol: La función no está definida en x=1, por tanto no es continua, presenta una discontinuidad evitable.

12.- Halla los valores de a y b para que la función f sea continua: $f(x) = \begin{cases} a \cdot \text{senx} + b & \text{si} \\ -\frac{\pi}{2} < x < \frac{\pi}{2} \end{cases}$ $\cos x$ $\sin x \ge \frac{\pi}{2}$

Sol: a=-3/2; b=3/2

13.- La función $f(x) = 2^{\frac{1}{x}} - 1$ cambia de signo en el intervalo [-1,1] y sin embargo no se anula en dicho intervalo. <mark>¿Que</mark>da en entredicho el Teorema de Bolzano?

Sol: No.

14.- Demuestra que la función $f(x) = \frac{5}{2 + \cos x}$ toma el valor 4.

15.- Calcular: $\lim_{x \to +\infty} \sqrt{x} \left(\sqrt{x+a} - \sqrt{x} \right)$

Sol: a/2

16.- Demuestra que un polinomio de grado impar, tiene por lo menos una raíz.

Sol: Utilizar el teorema de Bolzano

- **17.-** Representa la función f(x) = 2|x+1| |x-2|
- **18.-** Calcula los límites: a) $\lim_{x \to 0^+} x^2 \cdot e^{\frac{1}{x}}$ b) $\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^3}$ c) $\lim_{x \to 0^+} (x^2 + x)^{\frac{1}{x}}$ d) $\lim_{x \to 0^+} \left(\frac{2x + 1}{x}\right)^x$
- Sol: a) $+\infty$; b) 0; c) 1; d)
- **19.-** Resuelve las siguientes ecuaciones: a) |2x-3|=4 b) $|x^2-2x|=1$

Sol: a) x=-1/2 y x=7/2; b) x=0; x=1; x=2