

УДК 517.984

Осцилляционный метод в задаче о спектре дифференциального оператора четвёртого порядка с самоподобным весом

А. А. Владимиров

Аннотация. Рассматриваются самосопряжённые граничные задачи для дифференциального выражения

$$y^{(4)} - \lambda \rho y = 0,$$

где вес $\rho \in W_2^{-1}[0, 1]$ представляет собой обобщённую производную самоподобной функции канторовского типа. На основе изучения осцилляционных свойств собственных функций уточняются характеристики известных спектральных асимптотик таких задач.

§ 1. Введение

1. Целью настоящей статьи является применение разработанного в [1] осцилляционного метода исследования спектральных асимптотик задач с самоподобными весами к случаю самосопряжённой граничной задачи

$$(1) \quad y^{(4)} - \lambda \rho y = 0,$$

$$(2) \quad (U - 1)y^\vee + i(U + 1)y^\wedge = 0,$$

где $\rho \in W_2^{-1}[0, 1]$ — неотрицательная обобщённая весовая функция, $U \in \mathbb{C}^{4 \times 4}$ — унитарная матрица граничных условий, а y^\wedge и y^\vee — числовые векторы

$$y^\wedge = (y^{[0]}(0) \quad y^{[1]}(0) \quad y^{[0]}(1) \quad y^{[1]}(1))^T, \quad y^\vee = (y^{[3]}(0) \quad y^{[2]}(0) \quad -y^{[3]}(1) \quad -y^{[2]}(1))^T.$$

Через $y^{[k]}$, где $k \in \{0, \dots, 3\}$, здесь обозначены стандартные [2, § 15], [3, (7.46)] квазипроизводные $y^{[0]} \rightleftharpoons y$, $y^{[1]} \rightleftharpoons y'$, $y^{[2]} \rightleftharpoons y''$ и $y^{[3]} \rightleftharpoons -y'''$. Содержание работы [1] будет далее предполагаться известным.

2. Граничные задачи 1 (1), 1 (2) будут далее рассматриваться не в максимальной общности. А именно, соотношения 1 (2) мы намерены предполагать допускающими запись в виде

$$(1) \quad y^{[2]}(0) + \alpha y^{[0]}(0) - \beta y^{[1]}(0) = \beta y^{[3]}(0) + \alpha y^{[2]}(0) = \\ = y^{[2]}(1) + \alpha y^{[0]}(1) + \beta y^{[1]}(1) = \beta y^{[3]}(1) - \alpha y^{[2]}(1) = 0,$$

где $\alpha \geq 0$, $\beta > 0$. Кроме того, функция ρ будет обычно предполагаться обобщённой производной неубывающей функции $P \in C[0, 1]$ канторовского типа самоподобия. Это означает [1, § 2] выполнение равенств $P(0) = 0$ и $P(1) = 1$, а также существование натурального числа $\varkappa > 1$ и пары вещественных чисел $a \in (0, 1/\varkappa)$, $b \rightleftharpoons (1 - \varkappa a)/(\varkappa - 1)$ со следующими свойствами:

¹⁾ Работа поддержана РФФИ, грант № 10-01-00423.

1°. Независимо от выбора индекса $k \in \{0, \dots, \varkappa - 1\}$ функция $P_k \in C[0, 1]$ вида

$$P_k(x) = \varkappa P(k[a + b] + ax)$$

совпадает с функцией P с точностью до аддитивной постоянной.

2°. Независимо от выбора индекса $k \in \{1, \dots, \varkappa - 1\}$ функция P постоянна на интервале $(k[a + b] - b, k[a + b])$.

Некоторые факты о распределении спектра задач рассматриваемого типа могут быть найдены в работе [4, § 3].

3. Формальной задаче 1 (1), 2 (1) обычным образом [5] сопоставляется линейный пучок $T : \mathbb{C} \rightarrow \mathcal{B}(W_2^2[0, 1], W_2^{-2}[0, 1])$ операторов вида

$$(1) \quad \langle T(\lambda)y, y \rangle \equiv \int_0^1 |y''|^2 dx + \frac{|\alpha y(0) - \beta y'(0)|^2 + |\alpha y(1) + \beta y'(1)|^2}{\beta} - \lambda \langle \rho, |y|^2 \rangle.$$

Интегрированием по частям [5, Лемма 2] легко устанавливается, что пара $\{\lambda, y\}$ из числа $\lambda \in \mathbb{C}$ и нетривиальной функции $y \in W_2^2[0, 1]$ является собственной парой пучка T в том и только том случае, когда функции y'' и $y''' - \lambda Py$ непрерывно дифференцируемы и удовлетворяют уравнению

$$(2) \quad [y''' - \lambda Py]' + \lambda Py' = 0$$

совместно с понимаемыми в обычном смысле граничными условиями 2 (1). Это наблюдение постоянно будет использоваться нами в дальнейшем.

4. Статья имеет следующую структуру. В § 2 излагаются сведения об осцилляции собственных функций задач рассматриваемого типа. Они являются достаточно стандартными [6], [7] и не претендуют в полной мере на научную новизну. В § 3 рассматривается явление спектральной периодичности и вытекающие из него свойства спектральных асимптотик, а также приводятся иллюстрирующие полученные теоретические результаты данные численных экспериментов.

§ 2. Осцилляция собственных функций

1. Имеют место следующие два факта:

1.1. Пусть $\lambda > 0$, а $y \in C^3[0, 1]$ есть нетривиальное решение уравнения § 1.3(2), удовлетворяющее при некотором $a \in [0, 1)$ неравенствам

$$y(a) \geq 0, \quad y'(a) \geq 0, \quad y''(a) \geq 0, \quad y'''(a) \geq 0.$$

Тогда выполняются также неравенства

$$y(1) > 0, \quad y'(1) > 0, \quad y''(1) > 0, \quad y'''(1) > 0.$$

Доказательство. Зафиксируем последовательность $\{P_n\}_{n=0}^{\infty}$ равномерно стремящуюся к функции P функций класса $C^1[0, 1]$, имеющих равномерно положительные производные и удовлетворяющих равенствам $P_n(a) = P(a)$. Зафиксируем также последовательность $\{y_n\}_{n=0}^{\infty}$ решений начальных задач

$$(1) \quad [y_n''' - \lambda P_n y_n]' + \lambda P_n y_n' = 0, \\ y_n^{(k)}(a) = y^{(k)}(a), \quad k \in \{0, \dots, 3\}.$$

Стандартными методами теории линейных дифференциальных уравнений для вектор-функций [2, § 16] легко устанавливается факт равномерной на отрезке $[0, 1]$ сходимости последовательностей $\{y_n\}_{n=0}^{\infty}$, $\{y'_n\}_{n=0}^{\infty}$, $\{y''_n\}_{n=0}^{\infty}$ и $\{y'''_n - \lambda P_n y_n\}_{n=0}^{\infty}$ к функциям y , y' , y'' и $y''' - \lambda P y$, соответственно.

Согласно [7, Lemma 2.1], каждая из функций y_n , y'_n , y''_n и y'''_n строго положительна на полуинтервале $(a, 1]$. Объединяя этот факт с уравнениями (1), устанавливаем справедливость оценок

$$(\forall x \in (a, 1)) \quad y'''_n(1) \geq \lambda[P_n(1) - P_n(x)]y_n(x).$$

Посредством предельного перехода теперь немедленно устанавливается факт неотрицательности на полуинтервале $(a, 1]$ каждой из функций y , y' , y'' и y''' , а также справедливость оценок

$$(2) \quad (\forall x \in (a, 1)) \quad y'''(1) \geq \lambda[P(1) - P(x)]y(x).$$

При этом, ввиду нетривиальности функции y , заведомо найдётся величина $\gamma > 0$ со свойством

$$(3) \quad (\forall x \in (a, 1]) \quad y(x) \geq \gamma \cdot (x - a)^3.$$

Объединяя оценки (2) и (3) с фактом непостоянности функции P в любой левой окрестности точки 1, убеждаемся в выполнении неравенства $y'''(1) > 0$, а тогда и прочих требуемых неравенств. \square

1.2. Пусть $\lambda > 0$, а $y \in C^3[0, 1]$ есть нетривиальное решение уравнения § 1.3(2), удовлетворяющее при некотором $a \in (0, 1]$ неравенствам

$$y(a) \geq 0, \quad y'(a) \leq 0, \quad y''(a) \geq 0, \quad y'''(a) \leq 0.$$

Тогда выполняются также неравенства

$$y(0) > 0, \quad y'(0) < 0, \quad y''(0) > 0, \quad y'''(0) < 0.$$

Утверждение 1.2 доказывается полностью аналогично утверждению 1.1.

2. Имеют место следующие два факта:

2.1. Спектр пучка T составлен последовательностью $\{\lambda_n\}_{n=0}^{\infty}$ неотрицательных — а в случае $\alpha > 0$ даже строго положительных — простых собственных значений. Независимо от выбора индекса $n \in \mathbb{N}$ отвечающая собственному значению λ_n собственная функция y_n имеет только простые нули и удовлетворяет условиям $y_n(0) \neq 0$ и $y_n(1) \neq 0$.

Доказательство. Из выражения § 1.3 (1) квадратичной формы оператора $T(0)$ немедленно вытекает, что ядро этого оператора образовано линейными функциями, удовлетворяющими равенствам

$$\alpha y(0) - \beta y'(0) = \alpha y(1) + \beta y'(1) = 0.$$

В случае $\alpha > 0$ единственной такой функцией является тождественно нулевая. Соответственно, в этом случае все собственные значения пучка T строго положительны. В случае $\alpha = 0$ такие функции образуют одномерное подпространство постоянных функций.

Пусть некоторое собственное значение $\lambda > 0$ пучка T обладает собственной функцией y со свойством $y(0) = 0$. Тогда без ограничения общности рассмотрения можно считать, что функция y вещественнозначна, а знаки величин $y'(0)$, $y''(0)$ и $y'''(0)$ совпадают [§ 1.2 (1)]. Однако это влечёт противоречащее граничным условиям § 1.2 (1) совпадение знаков величин $y''(1) \neq 0$ и $y'''(1) \neq 0$ [1.1].

Пусть некоторое собственное значение $\lambda > 0$ пучка T обладает собственной функцией y со свойством $y(1) = 0$. Тогда без ограничения общности рассмотрения можно считать, что функция y вещественнозначна, а знаки величин $-y'(1)$, $y''(1)$ и $-y'''(1)$ совпадают [§ 1.2 (1)]. Однако это влечёт противоречащее граничным условиям § 1.2 (1) совпадение знаков величин $y''(0) \neq 0$ и $-y'''(0) \neq 0$ [1.2].

Пусть некоторое собственное значение $\lambda > 0$ пучка T является кратным. Тогда для него найдётся собственная функция y со свойством $y(0) = 0$, что противоречит сказанному ранее.

Наконец, пусть для некоторого собственного значения $\lambda > 0$ пучка T существует кратный нуль $a \in (0, 1)$ соответствующей собственной функции y . Тогда знаки величин $y''(a)$ и $y'''(a)$ являются либо совпадающими, либо различными. Первый случай означает противоречащее граничным условиям § 1.2 (1) совпадение знаков величин $y''(1) \neq 0$ и $y'''(1) \neq 0$ [1.1]. Второй случай означает противоречащее граничным условиям § 1.2 (1) совпадение знаков величин $y''(0) \neq 0$ и $-y'''(0) \neq 0$ [1.2]. \square

2.2. В случае $\alpha > 0$ оператор $[T(0)]^{-1}T' : W_2^2[0, 1] \rightarrow W_2^2[0, 1]$ не увеличивает числа перемен знака никакой вещественнозначной функции.

Доказательство. Ввиду непрерывной в смысле равномерной операторной топологии зависимости оператора $[T(0)]^{-1}T'$ от выбора весовой функции $\rho \in W_2^{-1}[0, 1]$, достаточно рассмотреть случай, когда функция ρ непрерывна и равномерно положительна. Иначе говоря, достаточно установить, что независимо от выбора натуральных чисел $n > 0$ и t наличие у удовлетворяющей граничным условиям § 1.2 (1) вещественнозначной функции $y \in C^4[0, 1]$ не менее $n + t$ перемен знака влечёт наличие не менее n перемен знака у функции $y^{(4)}$. В случае $t \geq 4$ этот факт немедленно вытекает из теоремы Лагранжа о среднем значении. Общий случай будет рассмотрен нами на основе метода арифметической индукции.

Итак, пусть известно, что наличие у произвольной удовлетворяющей граничным условиям § 1.2 (1) вещественнозначной функции $y \in C^4[0, 1]$ не менее $n + m + 1$ перемен знака заведомо влечёт наличие не менее n перемен знака у функции $y^{(4)}$. Пусть также некоторая вещественнозначная функция $y \in C^4[0, 1]$ удовлетворяет граничным условиям § 1.2 (1), и

пусть найдутся $n + m + 1$ упорядоченных по возрастанию точек

$$0 < \xi_{0,1} < \dots < \xi_{0,n+m+1} < 1$$

со свойствами $y(\xi_{0,k}) \cdot y(\xi_{0,k+1}) < 0$, где $k \in \{1, \dots, n + m\}$.

Согласно теореме Лагранжа, найдутся $n + m$ точек $\xi_{1,k} \in (\xi_{0,k}, \xi_{0,k+1})$ со свойствами $y'(\xi_{1,k}) \cdot y(\xi_{0,k}) < 0$. При этом либо найдётся точка $\xi \in (0, \xi_{0,1})$ со свойством $y(\xi) \cdot y(\xi_{0,1}) < 0$, либо $y'(0) \cdot y'(\xi_{1,1}) < |y'(\xi_{1,1})|^2$, либо $y''(0) \cdot y'(\xi_{1,1}) > 0$. Обоснование указанной альтернативы использует фигурирующее среди граничных условий § 1.2 (1) выражение величины $y''(0)$ через $y(0)$ и $y'(0)$. В первом случае функция y имеет не менее $n + m + 1$ перемен знака, что, по индуктивному предположению, означает наличие не менее n перемен знака у функции $y^{(4)}$. Во втором и третьем случаях найдётся точка $\xi_{2,1} \in (0, \xi_{1,1})$ со свойством $y''(\xi_{2,1}) \cdot y'(\xi_{1,1}) > 0$. Аналогичным образом, либо найдётся точка $\xi \in (\xi_{0,n+m+1}, 1)$ со свойством $y(\xi) \cdot y(\xi_{0,n+m+1}) < 0$, либо $y'(1) \cdot y'(\xi_{1,n+m}) < |y'(\xi_{1,n+m})|^2$, либо $y''(1) \cdot y'(\xi_{1,n+m}) < 0$. В первом случае функция y имеет не менее $n + m + 1$ перемен знака. Во втором и третьем случаях найдётся точка $\xi_{2,n+m+1} \in (\xi_{1,n+m}, 1)$ со свойством $y''(\xi_{2,n+m+1}) \cdot y'(\xi_{1,n+m}) < 0$.

Объединяя сказанное, получаем, что либо функция $y^{(4)}$ имеет не менее n перемен знака, либо найдутся $n + m + 1$ упорядоченных по возрастанию точек

$$0 < \xi_{2,1} < \dots < \xi_{2,n+m+1} < 1$$

со свойствами $y''(\xi_{2,k}) \cdot y''(\xi_{2,k+1}) < 0$.

Далее, согласно граничным условиям § 1.2 (1), выполняется либо неравенство $y''(0) \cdot y''(\xi_{2,1}) < |y''(\xi_{2,1})|^2$, либо неравенство $y'''(0) \cdot y''(\xi_{2,1}) > 0$. В обоих случаях найдётся точка $\xi_{3,0} \in (0, \xi_{2,1})$ со свойством $y'''(\xi_{3,0}) \cdot y''(\xi_{2,1}) > 0$. Аналогичным образом, выполняется либо неравенство $y''(1) \cdot y''(\xi_{2,n+m+1}) < |y''(\xi_{2,n+m+1})|^2$, либо неравенство $y'''(1) \cdot y''(\xi_{2,n+m+1}) < 0$. В обоих случаях найдётся точка $\xi_{3,n+m+1} \in (\xi_{2,n+m+1}, 1)$ со свойством $y'''(\xi_{3,n+m+1}) \cdot y''(\xi_{2,n+m+1}) < 0$. Тем самым, функция y''' имеет не менее $n + m + 1$ перемен знака, что, согласно теореме Лагранжа, означает наличие не менее $n + m \geq n$ перемен знака у функции $y^{(4)}$. \square

3. Имеют место следующие два факта:

3.1. Пусть вещественнозначная функция $f \in W_2^2[0, 1]$ удовлетворяет неравенствам $f(0) \neq 0$, $f(1) \neq 0$ и имеет на интервале $(0, 1)$ ровно n , причём простых, нулей. Тогда существует величина $\varepsilon > 0$, для которой любая вещественнозначная функция $y \in W_2^2[0, 1]$ со свойством $\|y - f\|_{W_2^2[0,1]} < \varepsilon$ также имеет на интервале $(0, 1)$ ровно n простых нулей.

Это утверждение тривиальным образом вытекает из факта непрерывности естественного вложения $W_2^2[0, 1] \hookrightarrow C^1[0, 1]$.

3.2. Пусть $\{\lambda_n\}_{n=0}^\infty$ — последовательность занумерованных в порядке возрастания собственных значений пучка T . Тогда независимо от выбора индекса $n \in \mathbb{N}$ отвечающая собственному значению λ_n собственная функция y_n имеет в точности n нулей на интервале $(0, 1)$.

Доказательство. Рассмотрим сначала случай $\alpha > 0$. Заметим, что с каждой вещественнозначной функцией вида

$$(1) \quad f = \sum_{k=0}^n c_k y_k$$

можно связать функциональную последовательность $\{f_m\}_{m=0}^\infty$ вида

$$f_m \rightleftharpoons \sum_{k=0}^n c_k \lambda_k^m \lambda_n^{-m} y_k.$$

Пределом этой последовательности в пространстве $W_2^2[0, 1]$ является функция $c_n y_n$. Соответственно [2.2, 2.1, 3.1], при $c_n \neq 0$ число знакоперемен функции f минорирует число нулей функции y_n . Однако, ввиду линейной независимости семейства собственных функций пучка T , заведомо найдётся функция вида (1), удовлетворяющая условию $c_n \neq 0$ и имеющая не менее n перемен знака на интервале $(0, 1)$. Тем самым, функция y_n имеет не менее n нулей.

Далее, зафиксируем нетривиальный вещественнозначный многочлен Q не превышающей n степени, принадлежащий инвариантному подпространству оператора $[T(0)]^{-1}T'$, которое отвечает дополнительной к набору $\{\lambda_k\}_{k=0}^{n-1}$ части спектра. Ввиду бесконечности носителя весовой функции ρ , многочлен Q не может быть элементом ядра оператора $[T(0)]^{-1}T'$. Соответственно, существует номер $N \geq n$, для которого функциональная последовательность $\{Q_m\}_{m=0}^\infty$ вида

$$Q_m \rightleftharpoons \lambda_N^m \{[T(0)]^{-1}T'\}^m Q$$

сойдётся в пространстве $W_2^2[0, 1]$ к нетривиальному кратному собственной функции y_N . При этом [2.2, 2.1, 3.1] число нулей функции y_N не может превосходить числа знакоперемен многочлена Q , а тогда и величину n . Объединяя сказанное, убеждаемся в выполнении равенства $N = n$ и наличии у собственной функции y_n в точности n нулей на интервале $(0, 1)$.

Распространение полученных результатов на общий случай $\alpha \geq 0$ проводится предельным переходом с учётом утверждений 2.1 и 3.1. \square

§ 3. Спектральная периодичность и асимптотики собственных значений

1. Имеют место следующие два факта:

1.1. Пусть $\{\lambda_n\}_{n=0}^\infty$ — последовательность занумерованных в порядке возрастания собственных значений граничной задачи § 1.1(1), § 1.2(1) при $\alpha = 0$, $\beta = 2/b$, а $\{\mu_n\}_{n=0}^\infty$ — аналогичная последовательность для граничной задачи того же типа при $\alpha = 0$, $\beta = 2a/b$. Тогда независимо от выбора индекса $n \in \mathbb{N}$ выполняется равенство

$$\lambda_{zn} = (\varkappa/a^3) \mu_n.$$

Доказательство. Ввиду очевидного выполнения искомого равенства для собственных значений $\lambda_0 = \mu_0 = 0$, достаточно ограничиться рассмотрением случая $n > 0$.

Зафиксируем отвечающую собственному значению $\mu_n > 0$ собственную функцию y , имеющую на интервале $(0, 1)$ в точности n различных нулей и не обращающуюся в нуль на границе этого интервала [§ 2.3.2, § 2.2.1]. Ввиду простоты собственного значения μ_n , тождество $P(x) \equiv 1 - P(1-x)$ [1, 1.1] гарантирует, что удовлетворяющая уравнению

$$[y''' - \mu_n Py]' + \mu_n Py' = 0$$

и граничным условиям § 1.2(1) собственная функция y является относительно точки $1/2$ либо чётной, либо нечётной. Это наблюдение позволяет построить функцию $z \in C^3[0, 1]$, удовлетворяющую следующим условиям:

1°. При любом выборе индекса $k \in \{0, \dots, \varkappa - 1\}$ функция z_k вида

$$z_k(x) = z(k[a + b] + ax)$$

совпадает с функцией y с точностью до знака.

2°. При любом выборе индекса $k \in \{1, \dots, \varkappa - 1\}$ на интервале $(k[a + b] - b, k[a + b])$ выполняется тождество

$$|z(x)| \equiv \left| y(0) + \frac{y''(0)}{2a^2} \cdot (x - k[a + b] + b) \cdot (x - k[a + b]) \right|.$$

Непосредственным вычислением с учётом факта самоподобия функции P устанавливается, что функция z удовлетворяет уравнению

$$[z''' - (\varkappa/a^3) \mu_n P z]' + (\varkappa/a^3) \mu_n P z = 0.$$

Кроме того, из неравенства $y(0) \cdot y''(0) < 0$ [§ 1.2(1), § 2.1.1] вытекает наличие у функции z в точности $\varkappa n$ нулей на интервале $(0, 1)$. Тем самым, доказываемое утверждение является верным [§ 2.3.2]. \square

1.2. Пусть $\{\lambda_n\}_{n=0}^\infty$ — последовательность занумерованных в порядке возрастания собственных значений граничной задачи § 1.1(1), § 1.2(1) при $\alpha = 12/b^2$, $\beta = 6/b$, а $\{\mu_n\}_{n=0}^\infty$ — аналогичная последовательность для граничной задачи того же типа при $\alpha = 12a^2/b^2$, $\beta = 6a/b$. Тогда независимо от выбора индекса $n \in \mathbb{N}$ выполняется равенство

$$\lambda_{\varkappa(n+1)-1} = (\varkappa/a^3) \mu_n.$$

Доказательство. Данное утверждение доказывается аналогичным утверждению 1.1 образом с тем основным отличием, что при „шивке“ копий исходной собственной функции используются не квадратичные, а кубические параболы видов

$$(1) \quad \zeta_k \cdot \left[\frac{y''(0)}{3a^2b} \cdot \left(\zeta_k^2 - \frac{b^2}{4} \right) + \frac{2y(0)}{b} \right],$$

где положено $\zeta_k = x - k[a + b] + b/2$. Ввиду заведомого различия знаков величин $y(0)$ и $y''(0)$ [§ 1.2(1), § 2.1.1], каждая из парабол (1) имеет на отвечающем ей интервале $(k[a + b] - b, k[a + b])$ единственный нуль. Последнее означает наличие у функции z в точности $\varkappa(n+1) - 1$ нулей на интервале $(0, 1)$. \square

2. Имеет место следующий факт:

2.1. Пусть $N : (0, +\infty) \rightarrow \mathbb{N}$ — считающая функция собственных значений пучка T . Тогда при $\lambda \rightarrow +\infty$ справедливо асимптотическое соотношение

$$(1) \quad N(\lambda) = \lambda^D \cdot [s(\ln \lambda) + o(1)],$$

где $D \rightleftharpoons \nu^{-1} \ln \varkappa$, $\nu \rightleftharpoons \ln \varkappa - 3 \ln a$, а s — ν -периодическая функция, допускающая на периоде $[0, \nu]$ представление

$$(2) \quad s(t) \equiv e^{-Dt} \sigma(t),$$

в котором σ — некоторая чисто сингулярная неубывающая функция.

Доказательство. Заметим [§ 1.3(1)], что замена значений параметров α и β приводит к возмущению операторов пучка T некоторым оператором не превосходящего 4 ранга. Соответственно, главный член асимптотики считающей функции N не зависит от выбора указанных значений. На протяжении оставшейся части доказательства в качестве основной будет рассматриваться задача вида $\alpha = 0$, $\beta = 2a/b$ с последовательностью собственных значений $\{\mu_n\}_{n=0}^\infty$. Последовательность собственных значений задачи $\alpha = 0$, $\beta = 2/b$ при этом будет обозначаться через $\{\lambda_n\}_{n=0}^\infty$.

Введём в рассмотрение последовательность заданных на отрезке $[0, \nu]$ функций вида $\sigma_k(t) \rightleftharpoons \varkappa^{-k} N(e^{k\nu+t})$. Заметим, что независимо от выбора значений $k, n \in \mathbb{N}$ и $t \in [0, \nu]$ выполнение неравенств

$$\mu_n < e^{k\nu+t} \leq \mu_{n+1}$$

влечёт [1.1, § 1.3(1)] выполнение неравенств

$$\mu_{\varkappa n} \leq \lambda_{\varkappa n} < e^{(k+1)\nu+t} \leq \lambda_{\varkappa(n+1)} \leq \mu_{\varkappa(n+1)+2}.$$

Таким образом, при любых $k \in \mathbb{N}$ и $t \in [0, \nu]$ выполняется неравенство

$$(3) \quad |\sigma_{k+1}(t) - \sigma_k(t)| \leq \varkappa^{-k},$$

автоматически означающее равномерную сходимость последовательности $\{\sigma_k\}_{k=0}^\infty$ к некоторой функции σ со свойствами (1), (2).

Далее, независимо от выбора значений $k, n \in \mathbb{N}$ и $t \in [0, \nu]$ выполнение неравенств

$$\sup(\mu_{\varkappa(n+1)-1}, \lambda_{\varkappa n}) < e^{(k+1)\nu+t} \leq \mu_{\varkappa(n+1)}$$

влечёт выполнение равенства $\sigma_{k+1}(t) = \sigma_k(t)$. При этом, путём почти дословного повторения рассуждений из доказательств утверждений [1, § 5.1.1] и [1, § 5.2.1], устанавливается [1.1, 1.2] ограниченность последовательностей частичных сумм рядов

$$\begin{aligned} & \sum_{n=1}^{\infty} |\ln \mu_{\varkappa(n+1)-1} - \ln \mu_{\varkappa n}|, \\ & \sum_{n=1}^{\infty} |\ln \lambda_{\varkappa n} - \ln \mu_{\varkappa n}|. \end{aligned}$$

Соответственно, последовательность мер множеств вида

$$\{t \in [0, \nu] : \sigma_{k+1}(t) \neq \sigma_k(t)\}$$

имеет при $k \rightarrow \infty$ асимптотику $o(1)$, что влечёт [(3)] справедливость асимптотических соотношений

$$\begin{aligned} \|\sigma_{k+1} - \sigma_k\|_{L_2[0,1]} &= o(\varkappa^{-k}), \\ \|\sigma_k - \sigma\|_{L_2[0,1]} &= o(\varkappa^{-k}). \end{aligned}$$

n	μ_n	$54\mu_n$	λ_n
1	$2,2131 \cdot 10^1 \pm 10^{-3}$	$1,1951 \cdot 10^3 \pm 10^{-1}$	$4,0965 \cdot 10^1 \pm 10^{-3}$
2	$8,1717 \cdot 10^2 \pm 10^{-2}$	$4,4127 \cdot 10^4 \pm 10^0$	$1,1951 \cdot 10^3 \pm 10^{-1}$
3	$3,175 \cdot 10^3 \pm 10^0$	$1,714 \cdot 10^5 \pm 10^2$	$3,867 \cdot 10^3 \pm 10^0$
4	$3,849 \cdot 10^4 \pm 10^1$	$2,078 \cdot 10^6 \pm 10^3$	$4,412 \cdot 10^4 \pm 10^1$

ТАБЛИЦА 1. Оценки первых собственных значений задач $\alpha = 0, \beta = 2$ и $\alpha = 0, \beta = 6$ для случая $\varkappa = 2, a = b = 1/3$.

n	μ_n	$54\mu_n$	λ_n
0	$8,2987 \cdot 10^0 \pm 10^{-4}$	$4,4813 \cdot 10^2 \pm 10^{-2}$	$4,0965 \cdot 10^1 \pm 10^{-3}$
1	$1,3784 \cdot 10^2 \pm 10^{-2}$	$7,443 \cdot 10^3 \pm 10^0$	$4,4813 \cdot 10^2 \pm 10^{-2}$
2	$1,6311 \cdot 10^3 \pm 10^{-1}$	$8,808 \cdot 10^4 \pm 10^1$	$3,867 \cdot 10^3 \pm 10^0$
3	$4,380 \cdot 10^3 \pm 10^0$	$2,365 \cdot 10^5 \pm 10^2$	$7,443 \cdot 10^3 \pm 10^0$
4	$4,586 \cdot 10^4 \pm 10^1$	$2,476 \cdot 10^6 \pm 10^3$	$6,251 \cdot 10^4 \pm 10^1$
5	$6,465 \cdot 10^4 \pm 10^1$	$3,491 \cdot 10^6 \pm 10^3$	$8,808 \cdot 10^4 \pm 10^1$

ТАБЛИЦА 2. Оценки первых собственных значений задач $\alpha = 12, \beta = 6$ и $\alpha = 108, \beta = 18$ для случая $\varkappa = 2, a = b = 1/3$.

Учёт признака сингулярности [1, § 4.1.3] и того обстоятельства, что функции σ_k заведомо имеют не более $O(\varkappa^k)$ точек разрыва [(1)], завершает доказательство. \square

3. Таблицы из настоящего пункта содержат данные, относящиеся к уравнению, весовой функцией в котором выступает обобщённая производная канторовой лестницы. Данные таблицы 1 иллюстрируют утверждение 1.1. Данные таблицы 2 иллюстрируют утверждение 1.2.

Список литературы

- [1] А. А. Владимиров, И. А. Шейпак. *О задаче Неймана для уравнения Штурма–Лиувилля с самоподобным весом канторовского типа* // <http://arxiv.org/1102.4199>.
- [2] М. А. Наймарк. *Линейные дифференциальные операторы*. М.: Наука, 1969.
- [3] Ф. С. Рофе–Бекетов, А. М. Холькин. *Спектральный анализ дифференциальных операторов. Связь спектральных и осцилляционных свойств*. Мариуполь, 2001.
- [4] А. И. Назаров. *Логарифмическая асимптотика малых уклонений для некоторых гауссовых процессов в L_2 -норме относительно самоподобной меры* // Записки науч. семинаров ПОМИ. — 2004. — Т. 311. — С. 190–213.
- [5] А. А. Владимиров. *О сходимости последовательностей обыкновенных дифференциальных операторов* // Матем. заметки. — 2004. — Т. 75, № 6. — С. 941–943.
- [6] Ф. Р. Гантмахер, М. Г. Крейн. *Осцилляционные матрицы и ядра и малые колебания механических систем*. М.-Л.: ГИТТЛ, 1950.
- [7] W. Leighton, Z. Nehari. *On the oscillation of solutions of self-adjoint linear differential equations of the fourth order* // Trans. of AMS. — 1958. — V. 89. — P. 325–377.