The Engineering Staff of TEXAS INSTRUMENTS INCORPORATED Semiconductor Group

Supplement to The TTL Data Book

for Design Engineers

Second Edition

TEXAS INSTRUMENTS

INCORPORATED

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time in order to improve design and to supply the best product possible.

TI cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement.

Information contained herein is supplemental to the date published in LCC4112.

Copyright © 1977
Texas Instruments Incorporated

TABLE OF CONTENTS

										PAG
	SN54LS137, SN74LS137	3-Line to 8-Line Decoders/Demultiplexers with Address Latches .								- 2
_	SN54 LS189, SN74 LS189	84-Bit Random-Access Read/Write Memories with Inverting								
		3-State Outputs								4
	SN54LS219, SN74LS219	84-Bit Random-Access Read/Write Memories with Noninverting								
		3-State Outputs	٠	٠			•		-	4
_	SN54LS289, SN74LS289	84-Bit Random-Access Read/Write Memories with Inverting								
		Open-Collector Outputs								4
	SN54LS319, SN74LS319	64-Bit Random-Access Read/Write Memories with Noninverting								
		Open-Collector Outputs								4
	SN54LS320, SN74LS320	Crystal-Controlled Oscillators								٤
	SN54LS321, SN74LS321	Crystal-Controlled Oscillators with F/2 and F/4 Outputs								5
	SN54LS322, SN74LS322	8-Bit Shift Registers with Sign Extend								ε
	SN54LS347, SN74LS347	BCD-to-Seven-Segment Decoders/Drivers								10
	SN54LS381, SN74LS381	Arithmetic Logic Unit/Function Generator with Look-Ahead								
		Carry Cascading								12
	SN54LS382, SN74LS382	Arithmetic Logic Unit/Function Generator with Ripple-Carry								
		and Overflow Outputs								12
	SN54LS384, SN74LS384	8-Bit by 1-Bit Two's Complement Multipliers								14
	SN54LS385, SN74LS385	Quadruple Serial Adders/Subtractors								16
	SN54LS396, SN74LS396	Octal Storage Registers								18
	SN54LS442, SN74LS442	Quadruple Tri-Directional Noninverting Bus Transceivers								20
	SN54LS443, SN74LS443	Quadruple Tri-Directional Inverting Bus Transceivers								20
	SN54LS444, SN74LS444	Quadruple Tri-Directional Bus Transceivers with Inverting								
		and Noninverting Outputs								20
	SN54LS445, SN74LS445	8CD-to-Decimal Decoders/Drivers								22
	SN54LS447, SN74LS447	BCD to Seven Segment Decoders/Drivers								24
	SN54LS640, SN74LS640	Octal Inverting Bus Transceivers with 3-State Outputs								26
	SN54LS641, SN74LS641	Octal Noninverting Bus Transceivers with Open Collector Outputs								26
	SN54LS642, SN74LS642	Octal Inverting Bus Transceivers with Open-Collector Outputs								26
	SN54LS645, SN74LS645	Octal Noninverting Bus Transceivers with 3-State Outputs								26
	SN54LS668, SN74LS668	Synchronous 4-Bit Up/Down Decade Counters								27
	SN54LS669, SN74LS669	Synchronous 4-Bit Up/Down Binary Counters								27
	SN54LS673, SN74LS673	16-Bit Serial-In, Serial Out Shift Registers with 16-Bit	•	•	•	•	•	•	•	
	0.10.12.0.10, 0.11, 1.20.1.1	Parallel-Out Storage Registers								35
	SN54LS674, SN74LS674	16-Bit Parallel-In, Serial-Out Shift Registers								35
	SN54LS681, SN74LS681	4-Bit Parallel Binary Accumulators								38
	SN54LS690, SN74LS690	Synchronous Decade Counters/Registers with Multiplexed	•	•	•	•	•	•	•	-
	31134 20030; 31474 23030	3-State Outputs, Direct Clear								41
	SN54LS691, SN74LS691	Synchronous Binary Counters/Registers with Multiplexed								71
	31434 23031, 31474 23031	3-State Outputs, Direct Clear								41
	SN54LS692, SN74LS692	Synchronous Decade Counters/Registers with Multiplexed								71
	31434 £ 3032, 31474 £ 3032	3-State Outputs, Synchronous Clear								41
	SN54LS693, SN74LS693	Synchronous Binary Counters/Registers with Multiplexed	•	•	•	•		•	•	41
	31434 23093, 31474 23093	3-State Outputs, Synchronous Clear								41
	CNEAL COOK CHIZAL CODE	Synchronous Up/Down Decade Counters/Registers with	•	•	٠	•	•	•	•	41
	SN54LS696, SN74LS696	Multiplexed 3-State Outputs, Direct Clear								42
	CAIEAL CEOT CAITAL CEOT	Synchronous Up/Down Binary Counters/Registers with								42
	SN54 LS697, SN74 LS697									42
	SNEAL COOR CHILA COOR	Multiplexed 3-State Outputs, Direct Clear	•	٠	٠	•	•	•	•	42
	SN54 LS698, SN74 LS698	Synchronous Up/Down Decade Counters/Registers with								42
	CHEAL COOR CHIZAL COOR	Multiplexed 3 State Outputs, Synchronous Clear	•	•		•		•	•	42
	SN54LS699, SN74LS699	Synchronous Up/Down Binary Counters/Registers with								42
	Devisions to The TTL Description	Multiplexed 3-State Outputs, Synchronous Clear								
		look for Design Engineers, Second Edition								. 43
		rinting								44 56
	nevisions to the hirst a	nd Second Printing	•	•	٠	٠	•	•	•	56

TYPES SN54LS137, SN74LS137 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

NOVEMBER 1977

SN54LS137...JOR W PACKAGE SN74LS137...JOR N PACKAGE (TOP VIEW)

- Combines Decoder and 3-Bit Address Latch
- Incorporates 3 Enable Inputs to Simplify Cascading
- Low Power Dissipation . . . 65 mW Typ

description

The 'LS137 is a three-line to eight-line decoder demultiplexer with latches on the three address inputs. When the latch-enable input (\overline{GL}) is low, the 'LS137 acts as a decoder/demultiplexer. When \overline{GL} goes from low to high, the address present at the select inputs (A, B, and C) is stored in the latches. Further address changes are ignored as long as \overline{GL} remains high. The output enable controls, G1 and $\overline{G2}$, control the state of the outputs independently of the select or latch-enable inputs. All of the outputs are high unless G1 is high and $\overline{G2}$ is low. The 'LS137 is ideally suited for implementing glitch-free decoders in strobed (stored-address) applications in bus-oriented systems.

functional block diagram

FUNCTION TABLE

EA	INPUTS ENABLE SELECT						OUTPUTS									
<u>er</u>	GI	G2	c	В	A	νο	V1	Y 2	Y3	Y4	Y5	Y6	Y7			
_			_	_	-	-	• •	_	_		_	_				
X	×	н	×	х	×	н	н	н	н	н	н	н	н			
×	L	х	×	х	X	н	н	н	н	н	н	н	н			
L	н	ī	L	L	Ĺ	L	Н	н	н	Н	Н	н	н			
L	н	L	L	L	н	н	Ł	н	н	н	н	н	н			
L	н	L	L	н	L	н	н	L	н	н	н	н	н			
L	н	L	L	н	н	н	н	Н	L	н	н	н	н			
L	н	L	н	L	L	н	Н	Н	н	L	Н	н	н			
L	н	Ł	н	L	н	н	н	н	н	н	L	н	н			
L	н	L	н	н	L	н	н	н	н	н	н	L	Н			
L	н	L	н	н	н	н	н	н	н	н	Н	Н	L			
н	н	_	J	×	v	Out	put	corre	spor	nding	10 5	tore	d			
"	-	٠.	^	^	address, L, all others, H											

His high level, Livillow level, Ximirelevant

TYPES SN54LS137, SN74LS137 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS WITH ADDRESS LATCHES

schematics of inputs and outputs

TYPICAL APPLICATION DATA

TO BE ANNOUNCED

TYPES SN54LS189, SN54LS219, SN54LS289, SN54LS319, SN74LS189, SN74LS219, SN74LS289, SN74LS319 64-BIT RANDOM-ACCESS READ/WRITE MEMORIES

NOVEMBER 1977

- Organized as 16 Words of Four Bits Each
- Schottky-Clamped for High Performance
- Full On-Chip Decoding and Fast Chip-Enable Simplify System Decoding
- P-N-P Inputs Reduce Loading on System Buffers/Drivers
- Choice of 3-State or Open-Collector Outputs
- · Choice of True or Inverted Outputs

description

These monolithic TTL memories feature Schottky clamping for high performance and a fast chip-select access time to enhance decoding at the system level. A three-state-output version and an open-collector-output version are offered for both of the logic choices. A three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs, yet it retains the fast rise time characteristic of the TTL totem-pole output. An open-collector output offers the capability of direct interface with a data line having a passive pull-up.

write cycle

Information to be stored in the memory is written into the selected address (AD) location when the chip-select (\$\overline{S}\$) and the write-enable (\$\vec{V}\$) inputs are low. While the write-enable input is low, the memory outputs are off (three-state \in \overline{HiZ}, open-collector \in \hightarrow{high}). When a number of outputs are bus-connected, this off state neither loads nor drives the data bus; however, it permits the bus line to be driven by other active outputs or a passive pull-up.

read cycle

Information stored in the memory (see function table for input/output phase relationship) is available at the outputs when the write-enable input is high and the chip-select input is low. When the chip-select input is high, the outputs will be off.

\$N54L\$189, \$N54L\$289 . . , J OR W PACKAGE \$N74L\$189, \$N74L\$289 . . . J OR N PACKAGE (TOP VIEW)

SN54LS219, SN54LS319 . . . J OR W PACKAGE SN74LS219, SN74LS319 . . . J OR N PACKAGE (TOP VIEW)

FUNCTION TABLE

	INP	UTS		OUTPUTS	i	
FUNCTION	CHIP SELECT	WAITE ENABLE	'LS189	'LS289	'LS219	'L\$319
Write	L	L	2	011	Z	Off
Read	L	н	Complement of Data Entered	Complement of Data Entered	Data Entered	Data Entered
Inhibit	н	х	Z	011	Z	011

Hin high level L = low level, X = irrelevant, Z = high impedance

TO BE ANNOUNCED

TYPES SN54LS320, SN54LS321, SN74LS320, SN74LS321 CRYSTAL-CONTROLLED OSCILLATOR

NOVEMBER 1977

'LS320

- Crystal-Controlled Oscillator Operation from 1 Hz to 20 MHz
- High-Level 2-Phase Outputs
- TTL-Level 2-Phase Outputs

'LS321

 Similar to 'LS320 But Includes f/2 and f/4 TTL-Level Count-Down Outputs

description

The 'LS320' is a crystal-controlled oscillator/clock driver. It features complementary TTL-Level (5-volt) and high-level (5- to 12-volt) outputs.

The high-level outputs are very-low-impedance devices and can be used with VDD at 5 volts to drive highly capacitive TTL-level lines. If the high-level outputs are not used, then the VDD terminal can be left open. A synchronization flip-flop is included,

The 'LS321 is identical to the 'LS320 except it also features two TTL-level count-down outputs, 1/2 and 1/4.

The SN54LS320 and SN54LS321 will be characterized for operation over the full military temperature range of ~55°C to 125°C. The SN74LS320 and SN74LS321 will be characterized for operation from 0°C to 70°C.

SN54LS320...JORWPACKAGE SN74LS320...JORNPACKAGE

NC-No internal connection

\$N54L\$321...JOR W PACKAGE \$N74L\$321...JOR N PACKAGE (TOP VIEW)

functional block diagram

TYPES SN54LS322, SN74LS322 8-BIT SHIFT REGISTERS WITH SIGN EXTEND

BULLETIN NO. DL S 12587, OCTOBER 1977

SN54LS322 J PACKAGE SN74LS322 J OR N PACKAGE (TOP VIEW)

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- 3-State Outputs Drive Bus Lines Directly
- · Sign Extend Function
- Direct Overriding Clear

description

These low-power Schottky eight-bit shift registers feature multiplexed input/output data ports to achieve full eight-bit data handling in a single 20-pin package. Serial data may be entired into the shift-right register through either the D0 or the D1 input as selected by the data select input. A serial output $(O_H)'$ is also provided to facilitate expansion. Synchronous parallel loading is accomplished by taking both the register enable and the S/\tilde{P} inputs low. This places the three-state input/output ports in the data input mode. Data are entered on the low-to-high transition of the clock. The data extend function repeats the sign in the O_A flip-flop during shifting. A direct overriding clear input clears the internal registers when taken low whether the outputs are enabled or off. The output enable does not interfere with synchronous operation of the register.

FUNCTION TABLE

				INPUTS					NPUTS	OUTPU	TS	OUTPUT
OPERATION	01500	REGISTER	S/P	SIGN	DATA	OUTPUT	CLOCK	4/0	0/0	6/0		l
	CLEAR	ENABLE	5/1	EXTEND	SELECT	ENABLE	CLOCK	A/QA	B/Q _B	c/uc .	н/ан	ΩH,
Clear	L	н	×	×	×	L	×	L	L	L	L	L
	L	×	H	×	×	L	×	L	L	L	L	L
Hold	Н	Н	×	X	×	L	×	QAO	QBO	QCO	QHD	Оно
Shife Binhe	н	L	Н	н	L	L	1.	DO	QAn	OBn	QGn	O _{Gn}
Shift Right Sign Extend	н	L	н	н	н	L,	1	ÐI	QAn	OBn	OGn	a _{Gn}
	н	L	н	L	X	L	t	QAn	QAn	QBn	QGu	QGn
Load	Н	L	L	×	X	X	1	а	b	С	h	h

When the output enable is high, the eight input/output terminals are disabled to the high-impedance state, inavever, sequential operation or clearing of the register is not affected. If both the register enable input and the S/P input are low while the clear input is low, the register is cleared while the eight input/output terminals are disabled to the high-impediance state.

- H = high level (steady state)
- L n low level (steady state)
- X = irrelevant (any input, including transitions)
- 1 = transition from low to high level
- QAD . . . QHO * the level of QA through QH, respectively, before the indicated steady state conditions were established
- QAn. QHn = the level of QA through QH, respectively, before the most recent 1 transition of the clock
- D0, D1 = the level of steady-state inputs at inputs D0 and D1 respectively
- a. . h = the level of steady-state inputs at inputs A through H respectively

functional block diagram

TYPES SN54LS322, SN74LS322 **8-BIT SHIFT REGISTERS WITH SIGN EXTEND**

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

. 7 V Supply voltage, VCC (see Note 1) 7 V Input voltage 7 V Off-state output voltage -- 55°C to 125°C Operating free-air temperature range: SN54LS322 SN74LS322 0°C to 70°C -65°C to 150 C Storage temperature

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS322			s	N74LS3	22	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNI
Supply voltage, VCC		4.5	5	5.5	4.75	5	5 25	V
Wat I I I -	Q _A thru Q _H			-1			~2.6	mA
High-level output current, IOH	OH.			-0.4			-0.4	m~
Law law law and	QA thru QH			12			24	mA
Low-level output current, IQL	OH.			4			8	m-
Clock frequency, foliock		0		35	0		35	МН
Width of clock pulse, Iw(clock)	Clock high	14			14			ns.
Width of clock pulse, (w(clock)	Clock low	14			14			l .'''
Width of clear pulse, tw(clear)	Clear low	20			20			ns
	Data select	101			101			
P	High-level data	201			201			۱,
Setup time, t _{su}	Low-level data	201			201] ns
	Clear inactive-state				201			1
Marka aliana	Data select	101			101			
fold time, th	Data"	01			01			ns
Operating free-air temperature, TA		-55		125	0		70	°c

Data includes the two serial inputs and the eight input/output data lines. The arrow indicates that the rising edge of the clock pulse is used for reference.

TYPES SN54LS322, SN74LS322 8-BIT SHIFT REGISTERS WITH SIGN EXTEND

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONET	\$	N\$4L53	22	S	N74LS3	22	דומט
	PAHAMETER		1ESI CONI	DITIONS.	MIN	TYPI	MAX	MIN	TYP	MAX	וואטן
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage		VCC - MIN,	lj = -18 mA			-1.5			-1.5	V
VOH	High-level output voltage	QA thru QH	VCC * MIN,	V _{IH} = 2 V.	24	3.2		2.4	3.1		v
•ОН	migraever output vortage	Ωн	VIL - VILMAK,	IOH - MAX	2.7	3.4		2.7	3.4		l *
		QA thru QH	VCC . MIN,	10L = 12 mA		0.25	0.4		0.25	0.4	
VOL	Low-level output voltage	GA IIII GH	VIH - 2 V.	IOL - 24 mA					0.35	0.5	l v
*OL	Converse corpor voltage	OH,	VIL - VILMAX	IOL = 4 mA		0.25	0.4		0 25	0.4	ľ
		□ H	AIC - AICHRA	IOL * 8 mA					0.35	0.5	
lozh	Off-state output current,	QA Ihru QH	VCC " MAX.	VIH - 2 V.			40			40	μА
102H	high-level voltage applied	GA G GH	Vo = 2.7 V		1		40			~0	
IOZL	Off-state output current,	QA thru QH	VCC " MAX,	V _{IH} = 2 V,			-400			⊸ 400	μА
102L	low-level voltage applied	ag through	Vo = 0.4 V				-400				۳^
		A thru H		V ₁ = 5.5 V			0.1			0.1	
11	Input current at maximum	Data select	VCC " MAX	V1 = 7 V			0.2			0.2	mA
-1	input voltage	Sign extend	VCC - 11117	V1 - 7 V			0.3			0.3	
		Any other		V ₁ = 7 V			0.1			0.1	
		A thru H, DS					40			40	
ΉН	High-level input current	Sign extend	VCC - MAX,	V1 = 2.7 V			60			60	μA
		Any other					20			20	
		Data select					-0.8			-0.B	
HE	Low-level input current	Sign extend		V1 = 0.4 V			-1.2			-1.2	mΑ
		Any other					-0.4			-0.4	
los	Short-circuit output current§	Q _A thru Q _H			-30		-130	~30		-130	mA
-03		QH'			-20		-100	-20		-100	
lcc	Supply current		VCC - MAX			35	60		35	60	mΑ

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETERS	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^I max			See Note 2		35	50		MHz
1PLH	Clock	QH'	CL = 15 pF,	R ₁ = 2 kΩ,		15	25	
1PHL	Crack	Ч	See Note 2	n 2 Kiz,		15	25	ns
1PHL	Clear	QH.	266 MOIE 2			20	35	ns.
IPLH	Cleak	Clock QA thru QH				15	25	
1PHL	7 0.00	OA (IIIO OH	CL = 45 pF,	R _L = 665 Ω,		15	25	ns .
¹ PHL	Clear	Q _A thru Q _H		n[- 603 11,		20	35	ns
1PZH	Output enable	Q _A thru Q _H	See Note 2			20	35	
IPZL	Cotput ensois	OA tillo OH				20	35	ns.
1PHZ	Ourous souble	tenable ClathruClu	CL = 5 pF.	RL - 665 Ω,		15	25	
IPLZ	Output enable		See Note 2			15	25	ns

[¶] fmex = meximum clock frequency

I All typical values are at VCC = 5 V, TA = 25°C

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

tpZL □ output enable time to low level

PLH % propagation delay time, low to high level output $t_{pHZ} = 0$ output disable time from high level $t_{pHZ} = 0$ output disable time from low level $t_{pHZ} = 0$ output disable time from low level

tpZH = output enable time to high level

NOTE 2: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. See load circuits and waveforms on page 3-11 of The TTI, Data Book For Design Engineers, Second Edition, LCC4112.

TYPES SN54LS347, SN74LS347 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

BULLETIN NO DL-S 12696, NOVEMBER 1977

- Low-Voltage Version of SN54LS47/SN74LS47
- Open-Collector Outputs Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- Lamp Intensity Modulation Capability

		DRIVER OUT	PUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
_	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	
SN54LS347	low	open-collector	12 mA	7 V	35 mW	J, W
SN74LS347	10w	open-collector	24 ⊓A	7 🗸	35 mW	J, N
	(A)		. , , , , , , , , , , , , , , , , , , ,	<u></u>		11-11
<u> </u> °	انا					
- l	0	1 2 3 4	5 6 7	8 9	10 11 12	13 14

SEGMENT IDENTIFICATION

FUNCTION TABLE

NUMERICAL DESIGNATIONS AND RESULTANT DISPLAYS

DECIMAL		INPUTS					SI/RBO [†]			0	UTPUI	6			NOTE
FUNCTION	LT	ABI	D	С	8	A		•	ь	4	d	•	1		
0	н	н	L	L	L	_	н	ON	ON	ON	ON	QN	QN	OFF	
1	н	×	L	L	L	н	H	OFF	ON	ON	OFF	OFF	OFF	OFF	
2	н	x	L	L	н	L	₩	ON	ON	OFF	ON	ON	OFF	ON	
3	н	×	L	L	н	н	н	ON	ON	ON	ON	OFF	OFF	ON	ľ
4	н	х	L	H	L	L	н	OFF	ON	ON	OFF	OFF	ON	ON	
5	н	×	L	н	L	н	н	ON	OFF	ON	ON	OFF	ON	ON	
6	н	×	L	H	н	L	Н	OFF	OFF	ON	ON	110	ON	ON	
7	н	×	L	н	н	н	н	ON	ON	ON	OFF	OFF	OFF	OFF	١.
8	н	×	н		L	L	н	ON	ON	ON	ON	ON	ON	ON	١'
9	н	×	н	L	L	н	н	ON	ON	ON	OFF	OFF	ON	ON	
10	н	×	н	L	н	L	н	OFF	OFF	OFF	ON	ON	OFF	QN	
11	н	×	н	L	н	м	н	OFF	OFF	ON	ON	OFF	OFF	ON	
12	н	Х	н	Н	L	L	i H	OFF	ON	OFF	JFF	OFF	ON	ON	
13	н	×	н	H	L	н	H	ON	OFF	OFF	ON	OFF	ON	ON	l
14	н	×	н	н	н	L	н	OFF	OFF	OFF	ON	ON	ON	ON	
15	н	×	н	н	н	н	н	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
BI	ж	×	×	×	×	ж	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	2
RBI	н	L	L	L	L	L	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
LT	L	×	l x	×	×	×	н	ON	ON	ON	ON	ON	ON	ON	4

H = high level, L = low level, X = irrelevant

- NOTES 1. The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The
 - ripply blanking input (RBI) must be open or high it blanking of a decimal zero is not desired.

 When a low logic level is applied directly to the blanking input (BI), all segment outputs are off regardless of the level of any other inbut.
 - 3. When ripple blanking input (ABI) and Inputs A, B, C, and D are at a low level with the temp test input high, all segment outputs
 - go off and the ripple blanking output (ABO) goes to a low leval (response condition).

 4. When the blanking input/ripple blanking output (BI/ABO) is open or held high and a low is applied to the temp test input, all segment outputs are on

BI/RBO is wire AND logic serving as blanking input (Bi) and/or ripple blanking output IRBO).

TYPES SN54LS347, SN74LS347 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)														7 1	,
Input voltage														71	/
Peak output current (tw ≤ 1 ms, duty cycle ≤ 10%)													. 2	00 m/	١
Current forced into any output in the off state .														1 m/	4
Operating free-air temperature range: SN54LS347											-5	5°0	: to	125°0	2
SN74LS347							,					0°	Ct	o 70° (2
Storage temperature range											c	E° /	٠	1500	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	N54LS3	47	S	N74LS3	47	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	JUNIT
Supply voltage, VCC	-	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)	a thru g	1		7			7	V
On-state output current, IO(on)	a thru g			12			24	mA
High-level output current, IOH	BI/RBO			-50			-50	μА
Low-level output current, IOL	BI/RBO			1.6	Γ		3.2	mA
Operating free-air temperature, TA		-55		125	0		70	·c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		7557.004	IDITIONS!	S	N54LS:	347	S	N74LS3	147	
	PARAMETER		TEST CON	IDITIONS.	MIN	TYPI	MAX	MIN	TYPT	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7	1		0.8	v
VIK	input clamp voltage		VCC 1 MIN,	I _I = ~18 mA			-1.5	1		-1.5	V
Voн	High-level output voltage	BI/ABO	VCC = MIN, VIL * VIL max,	V _{IH} = 2 V, I _{OH} = -50 µA	2.4	4.2		2.4	4.2		v
VOL	Low level output voltage	BI/RBO	V _{CC} = MIN. V _{IH} = 2 V,	IOL - 16 mA		0 25	0 4		0.25	04	v
-01	zon kwi odina vonage	0111100	Vil • Vil max	IOL * 32 mA					0.35	0.5	Ľ
¹ Otoffi	Off-state output current	a thru g	V _{CC} - MAX, V _{IL} · V _{IL} max,	V _{IH} " 2 V, VO(eff) * 7 V			250		_	250	μА
VO(on)	On-state output voltage	a thru g	VCC = MAX, VIH = 2 V,	10(on) - 12 mA		0.25	0.4		0 25	0.4	V
- 010117			VIL • VIL max	10(on) = 24 mA					0 35	0.5	
l _k	Input current at maximur	n input voltage	VCC " MAX,	V1 - 7 V			0.1			0.1	mA
Чн	High-level input current		VCC " MAX,	V1 = 2 7 V			20			20	μΑ
III.	Low-level input current	Any input except BI/RBO	VCC " MAX,	VI - 0.4 V			-0,4			-0.4	mA
		BI/RBO					-1.2			-1.2	
los	Short circuit output current	81/R80	VCC MAX		-03		-2	-0.3		-2	mА
Icc	Supply current		VCC - MAX.	See Note 2		7	13		7	13	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2 ICC is measured with all outputs open and all inputs at 4.5 V.

switching characteristics,	ACC = 2 A' IY = 52	-
	PADAMETER	_

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
loff	Turn-off time from A input				100	ns
ton	Turn-on time from A input	CL • 15 pF, Rt = 665 1),			100	1 "
loff	Turn-off time from ABI input	See Note 4		_	100	- 03
ton	Turn-on time from RBI input				100	^s

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11 of The TTL Data Book for Design Engineers, Second Edition, LCC4112, Int. corresponds to tp_{LH} and t_{on} corresponds to tp_{HL}.

FAII typical values are at VCC - 5 V, TA - 25 C.

TO BE ANNOUNCED

TYPES SN54LS381, SN54LS382, SN74LS381, SN74LS382 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

NOVEMBER 1977

PIN DESIGNATIONS

DESIGNATION	PIN NOS.	FUNCTION
A3, A2, A1, A0	17, 19, 1, 3	WORD A INPUTS
B3, B2, B1, B0	16, 18, 2, 4	WORD B INPUTS
52 52 50	3.6.5	FUNCTION-SELECT
\$2, \$1, \$0	7, 6, 5	INPUTS
		CARRY INPUT FOR
	15	ADDITION, INVERTED
C _n		CARRY INPUT FOR
		SUBTRACTION
F3, F2, F1, F0	12, 11, 9, 8	FUNCTION OUTPUTS
p ("LS381	14	INVERTED CARRY
ONLY	14	PROPAGATE OUTPUT
G ('LS381	13	INVERTED CARRY
ONLY)	13	GENERATE OUTPUT
('LS382	14	RIPPLE-CARRY
Cn 4 ONLY)	14	OUTPUT
('LS382	13	OVERFLOW
OVR ONLY	1 13	OUTPUT
Vcc	20	SUPPLY VOLTAGE
GND	10	GROUND

- Fully Parallel 4-Bit ALU's in 20-Pin Package for 0.300-Inch Row Spacing
- Ideally Suited for High-Density Economical Processors
- 'LS381 Features G and P Outputs for Look-Ahead Carry Cascading
- 'LS382 Features Ripple Carry (Cn + 4) and Overflow (OVR) Outputs
- Arithmetic and Logic Operations
 Selected Specifically to Simplify System
 Implementation:

A Minus B
B Minus A
A Plus B
and Five Other Functions

SN54LS381...JPACKAGE SN74LS381...JOR N PACKAGE

SN54LS382...JPACKAGE SN74LS382...JOR N PACKAGE (TOP VIEW)

description

The 'LS381 and 'LS382 are low-power Schottky TTL arithmetic logic units (ALUs)/function generators that perform eight binary arithmetic/logic operations on two 4-bit words as shown in the function table. The exclusive-OR, AND, or OR function of the two Boolean variables is provided without the use of external circuitry. Also, the outputs can be cleared (low) or preset (high) as desired. The 'LS381 provides two cascade outputs (P and 6) for expansion utilizing SN54S182/SN74S182 look-ahead carry generators. The 'LS382 provides a $C_n + 4$ output to ripple the carry to the C_n input of the next stage. The 'LS382 detects and indicates two's complement overflow condition via the OVR output. The overflow output is logically equivalent to $C_n + 3 \oplus C_n + 4$. When the 'LS382 is cascaded to handle word lengths longer than four bits in length, only the most significant overflow (OVR) output is used.

The SN54LS381 and SN54LS382 will be characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS381 and SN74LS382 will be characterized for operation from 0°C to 70°C.

TYPES SN54LS381, SN54LS382, SN74LS381, SN74LS382 ARITHMETIC LOGIC UNITS/FUNCTION GENERATORS

functional block diagram, schematics of inputs and outputs, and function table

TO BE ANNOUNCED

TYPES SN54LS384, SN74LS384 8-BIT BY 1-BIT TWO'S-COMPLEMENT MULTIPLIERS

NOVEMBER 1977

- Two's-Complement Multiplication
- Magnitude Only Multiplication
- Cascadable for Any Number of Bits
- 8-Bit Parallel Multiplicand Data Input
- Serial Multiplier Data Input
- Serial Data Output for Multiplication Product
- 40 MHz Typical Maximum Clock Frequency

description

The 'LS384 is an 8-bit by 1-bit sequential logic element that performs digital multiplication of two numbers represented in two's-complement form to produce a two's-complement product without external correction by using Booth's algorithm internally. The device accepts an 8-bit multiplicand (X input) and stores this data in eight internal latches. These X latches are controlled via the clear input. When the clear input is low, all internal fing-flops are cleared and the X latches are opened to accept new multiplicand data. When the clear input is high, the latches are closed and are insensitive to X input changes.

The multiplier word data is passed by the Y input in a serial bit stream, least significant bit first. The product is clocked out the Σ output, least significant bit first.

SN54LS384 ... J OR W PACKAGE SN74LS384 ... J OR N PACKAGE (TOP VIEW)

schematics of inputs and outputs

The multiplication of an m-bit multiplicand by an n-bit multiplier results in an (m + n)-bit product. The 'LS384 must be clocked for m + n clock cycles to produce this two's complement product. The n-bit multiplier (Y-input) sign bit data must be extended for the remaining m bits to complete the multiplication cycle.

The device also contains a K input so that devices can be cascaded for longer length X words. The Σ output of one device is connected to the K input of the succeeding device when cascading. The mode input is used to indicate which device contains the most significant bit. The mode input is wired high or low depending on the position of the 8-bit slice in the total X word length. The device with the most significant bit is wired low and all lower order bit packages are wired high.

The SN54LS384 will be characterized for operation over the full military temperature range from -55°C to 125°C. The SN74LS384 will be characterized for operation from 0°C to 70°C.

FUNCTION TABLE

	INPL	TS		INTERNAL	OUTPUT	FILLETIAL
CLR	¢K	X,	Υ	Y-1	2	FUNCTION
L	×	Data	х	L	L	Load new multiplicand and clear internal sum and carry registers
Н	. 1	×	L	t	Output	Shift sum register
н	T	X	L	н	per	Add multiplicand to sum register and shift
н	1	×	н	L	Booth's	Subtract multiplicand from sum register and shift
н	1	x	Н	н	algorithm	Shift sum register

High-level, Limitow level, Xi intrelevant, 1.7 fow to high level transition

TYPES SN54LS384, SN74LS384 8-BIT BY 1-BIT TWO'S-COMPLEMENT MULTIPLIERS

TYPICAL APPLICATION DATA

FIGURE 1-BASIC 24-BIT SERIAL/PARALLEL CONNECTION

FIGURE 2-8-BIT BY 8-BIT MULTIPLIER, BUS ORGANIZED, WITH 8-BIT TRUNCATED PRODUCT

TYPES SN54LS385, SN74LS385 QUADRUPLE SERIAL ADDERS/SUBTRACTORS

BULLETIN NO. DL-S 12599, NOVEMBER 1977

- Four Synchronous Elements in a Single 20-Pin Package
- Buffered Clock and Direct Clear Inputs
- Independent Two's-Complement Addition/Subtraction

description

The 'LS385 is a general purpose adder/subtractor and is particularly useful as a companion part to the SNS4LS384/SN74LS384 serial/parallel two's-complement multiplier. The 'LS385 contains four independent adder/subtractor elements with common clock and clear.

Each of the four independent sum (Σ) outputs reflects its respective A and B input as controlled by the S/A control. When S/A is high the Σ function is A minus B. When S/A is low the Σ function is A plus B.

When low, the clear input asynchronously resets the sum flip-flop low and the carry flip-flop either high in the subtract mode or low in the add mode. The clock is positive-edge triggered and controls the sum and carry flip-flops according to the function table.

schematics of inputs and outputs

SN54LS385....JPACKAGE SN74LS385....JOR N PACKAGE (TOP VIEW)

FUNCTION TABLE

SELECTED		INP	ŲΤ	8_		INTERNAL CA	RRY D INPUT	EQUIPUT
FUNCTION	CLEAR	S/Ā	A	8	CLOCK	SEFORE "	APTER 1	AFTER I
C +4	L	Ļ	×	ĸ	×	L	L	, L
- **	L.	н	×	×	×	H	H	L
	н	L	4	L	· ·	L .	L	L
	H	L	L	L		H	L	н
	+	L		H	- 1	L	L.	ı' H
Aga	H	L	L	н		H	н	, L
400	-	L	×	L	,	ا ، ا	L	H .
	H	L	н	L	,	Н .	H	L
	н	L	×	н	,	L .	H	L
	-	L	H	н		н	H	H
	н	м	L	L	- 1	L	L	н
	H	н	L	L	- 1	н !	=	L.
	H	H	L	H	,	L	L	L.
Submer	H	H	Ł	H	٠ ا	H	L	+
278.480	H	н	×	L	+	L.	H	L
	-	н	×	L	١.	н ,	H	H
	н	м	H	н	,	١.	L	*
	H	H	н	н	1	h	H	l i

- H = high level, L = low level, X = irrelevent,
- * a transition from low to high level at the clock input

functional block diagram (each adder/subtractor)

TYPES SN64LS385, SN74LS385 QUADRUPLE SERIAL ADDERS/SUBTRACTORS

recommended operating conditions

		N54 L83	185		N74L83	88	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UAII
Supply voltage, VCC (see Nate 1)	4.5	5	5.5	4.78	- 5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mΑ
Clack frequency, f _{clack}	- 0		30	0		30	MHz
Width of clock pulse, tw	18			16			nı
Setup time, t _{eu}	10			10			ns.
Hold time, th	1 0			0			ng
Operating free-eir temperature, TA	-65		126	0		70	·c

NOTE 1: Voltage values are with respect to network ground terminal,

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	7.0	T CONDITIONS		. 3	N64LS3	85	8	UNIT		
	FARAMETER	,	II CONDITIONS	•	MIN	TYPI	MAX	MIN	TYP	MAX	UNII
YIH	High-fevel input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.6	V
Vik	Input clamp voltage	VCC - MIN,	lj = -18 mA				-1.5			-1.5	V
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, I _{OH} = -400 µA		2.5	3.6		2.7	3.5		v
14-	Low-level output voltage	VCC = MIN,	V _{IH} = 2 V,	IOL - 4 mA		0.25	0.4		0.25	0.4	V
VOL	COM-level Dotput voltage	VIL - VILMAX		IOL - 8 mA					0.35	0.5	1 *
łj	Input current at maximum input voltage	VCC - MAX,	V ₁ = 7 V				0.1			0.1	mΑ
Чн	High-level input current	VCC * MAX,	V ₁ = 2.7 V				20			20	μА
III.	Low-level input current	VCC - MAX.	V ₁ = 0.4 V				-0.4	_		-0.4	mA
los	Short-circuit output current	VCC = MAX			-20		-100	-20		-100	mA
1CC	Supply current	VCC - MAX,	See Note 2			48	76		48	75	mA

Tear conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER?	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				30	40		MHz
1PLH	Clock	,	CL = 15 pF, RL = 2 kΩ,		14	22	
tPHL .			See Note 3		18	27	ns.
^l PHL	Clear	Σ			18	30	nı

of_{mex} ≈ meximum clock frequency

All typical values are at VCC = 5 V, TA = 25°C.

Not more than one pulput should be shorted at a time.

NOTE 2: Igg is measured with all inputs grounded and all outputs open,

¹PLH 2 propagation dalay time, low-to high-level output

teric = propagation delay time, high-to low-level output

NOTE 3: Load circuit and voltage waveforms are shown on page 3-11 of The TTI. Data Book for Design Engineers, Second Edition, LCC4112

TTL MSI

TYPES SN54LS396, SN74LS396 OCTAL STORAGE REGISTERS

BULLETIN NO. DL-S 12502, MARCH 1977

- Parallel Access
- Typical Propagation Delay Time . . . 20 ns
- Typical Power Dissipation . . , 120 mW
- Applications:

N-Bit Storage Files Hex/BCD Serial-To-Parallel Converters

description

These octal registers are organized as two 4-bit bytes of storage. Upon application of a positive-going clock signal, the information stored in byte 1 is transferred into byte 2 as a new 4-bit byte is loaded into the byte 1 location via the four data lines. The full 8-bit word is available at the outputs after two clock cycles. Both the clock and the strobe lines are fully buffered.

SN54LS396...JOR W PACKAGE SN74LS396...JOR N PACKAGE (TOP VIEW)

	TAR	

	INI	PUTS							OL	ITPUTS														
STROBE	CLOCK DAT		DATA		DATA		DATA		DATA		DATA			CLOCK DATA			101	102	103	104	201	202	203	204
G	CLOCK	D1	DZ	2 D3 D4		''	102	103	104	201	202	203	244											
н	X	X	X	Х	X	L		L	L	L	L	L	L,											
L	1	a	b	c	ď	a	ь	С	d	101 _n	1Q2n	103 _n	1Q4 ₀											

Him high level (steady state), Limitow level (steady state), Xin irrelevant carry input, including transitions)

 $T \in \text{transition from low to high level}$

101_m, 102_m, 103_m, 104_m - the level of 101-102, 103, and 104, respectively, before the most recent I transition of the clock

functional block diagram

schematics of inputs and outputs

TYPES SN54LS396, SN74LS396 OCTAL STORAGE REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)												7 V
Input voltage												
Operating free-air temperature range	: SN54LS	396										-55°C to 125°C
												. 0°C to 70°C
Storage temperature range												-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal

recommended operating conditions

	s	s	N74LS3	96	UNIT		
	MIN	MOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	45	5	5 5	4 75	5	5 25	V
High-level output current, IOH			-400			-400	μΑ
Low-level output current, IOL			4			8	mA
Clock frequency, f _{clock}	0		30	٥		30	MHz
Width of clock puise, tw	20			20			ns
Setup time, t _{tu}	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	С

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					S	N54LS3	96	S	N74LS3	96	
	PARAMETER		TEST CO	INDITIONS	MIN	TYPI	MAX	MIN	TYPI	MAX	UNIT
VIH	High-level input voltage				2			2			V
VIL	Low level input voltage						0 7			0.8	V
VIK	Input clamp voltage	-	VCC - MIN,	l ₁ ≈ −18 mA			-1.5			-1.5	V
vон	High level output voltage		VCC * MIN.	V _{IH} = 2 V, I _{OH} = -400 µA	2 5	3 4		2.7	3.4		v
	*		VCC - MIN,	IOL * 4 mA		0 25	0 4		0.25	0.4	V
VOL	Low level output voltage		VIH + 2 V.	10L = 8 mA					0.35	0.5	*
1.	Input current at	Clock input	Vcc * MAX.	W = 7 W			02			02	mA
- U	maximum input voltage	Other inputs	ACC - MAY	01-70			0.1			0.1	
I	High-level	Clock input	Vcc * MAX,	V 2 7 W			40			40	μА
ΉН	input current	Other inputs	ACC - MOV'	V - 2.7 V			20			20	44
1	Low level	Clock input	VCC * MAX,	V: = 0.4 V			-0.8			-0.8	mA
HL.	input current	Other inputs	VCC MAA,	41 - 0 4 V			-0.4			-0.4	
los	Short circuit output current §		VCC MAX		~20		-100	-20		-100	mA
1CC	Supply current		VCC " MAX,	See Note 2	Γ	24	40		24	40	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
1PLH	Propagation delay time, low-to-high-level output from clock	CL = 15 pF,		20	30	ns
1PHL	Propagation delay time, high-to-low level output from clock	R ₁ = 2 kΩ,		20	30	
1PLH	Propagation delay time, low-to high level output from strobe	See Note 3		20	30	OS.
tPHL.	Propagation delay time, high to low level output from strobe	364 14016 3		20	30	

NOTE 3. Load circuit and voltage waveforms are shown on page 3-11 of The TTL Data Book for Design Engineers, Second Edition, LCC4112.

ÎAli typical values are at VCC = 5 V, TA = 25°C.

Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.

NOTE 2: ICC is measured with 4.5 V applied to all inputs and all outputs open.

TO BE ANNOUNCED

TYPE SN54LS442, SN54LS443, SN54LS444, SN74LS442, SN74LS443, SN74LS444 QUADRUPLE TRI-DIRECTIONAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

NOVEMBER 1977

- 3-Way Asynchronous Communication
- P-N-P Inputs Reduce DC Loading
- On-Chip Bus Selection Decoding
- Input Hysteresis Improves Noise Margin
- 3-State Outputs Rated at 12/24 mA IOL and -12/-15 mA IOH for SN54LS'/SN74LS', Respectively

description

These bus transceivers are designed for asynchronous three-way communication between four-line data buses. They give the designer a choice of selecting inverting, noninverting, or a combination of inverting and noninverting outputs. The devices feature high fan-out, improved fan-in, and 400-mV noise margin.

The SO and S1 inputs select the bus from which data are to be transferred. The G inputs enable the bus or buses to which data are to be transferred. The port for any bus selected for input and any other bus not enabled for output will be at high impedance.

The SN54LS442, SN54LS443, and SN54LS444 will be characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS442, SN74LS443, and SN74LS444 will be characterized for operation from 0°C to 70°C.

FUNCTION TABLE

			יטדנ			TRANSF	ERS BETWE	EN BUSES
ĊS.	S 1	S 0	ĞA	Ğв	ρ	'L\$442	'L\$443	'LS444
н	×	×	×	X	×	None	None	None
×	н	н	×	×	×	None	None	None
×.	×	×	н	н	н	None	None	None
×	L	L	×	н	н	None	None	None
×	L	н	н	X	н	None	None	None
×	н	L	н	н	×	None	None	None
L	L	L	×	L	L	A - B, A - C	Ā-B,Ā·C	Ā·B,Ā·C
L	L	н	L	X	L	B . C, B . A	B . C. B . A	B - C, B - A
L	н	L	L	Ļ	×	C + A, C + B	Ĉ · A,Ĉ · B	C · A, C · B
L	L	L	х	L	н	A + B	à + B	÷B
L	L	н	н	X	L	B ⋅ C	B - C	8 · C
L.	н	L	L	н	×	E + A	Ĉ∙A	Ē∙A
ī	L	L	×	Н	L	A · C	Ā-C	Ā-C
L	L	н	L	×	н	B + A	Ñ٠A	B∙A
L	н	L	н	L	X	C · B	Ĉ∙B	С•В

H = high level, L = low level, X = irrelevant,

A + B = noninverting transfer from A to B,

B + C = inverting transfer from B to C.

I/O ports to which data are not transferred are at high impedance

SN54LS442...JPACKAGE

SN54LS443...J PACKAGE SN74LS443...J OR N PACKAGE (TOP VIEW)

SN54L5444 . . . J PACKAGE SN74L5444 . . . J OR N PACKAGE (TOP VIEW)

TYPE SN54LS442, SN54LS443, SN54LS444, SN74LS442, SN74LS443, SN74LS444 QUADRUPLE TRI-DIRECTIONAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

functional block diagram (composite showing one of four transceivers from each type)

TYPES SN54LS445, SN74LS445 BCD-TO-DECIMAL DECODERS/DRIVERS

SN54LS445 . . . J OR W PACKAGE

BULLETIN NO DL S 12598, NOVEMBER 1977

FOR USE AS LAMP, RELAY, OR MOS DRIVERS

- Low-Voltage Version of SN54LS145/ SN74LS145
- Full Decoding of Input Logic
- SN74LS445 Has 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation . . . 35 mW Typical

logic

			_	_	UN	CTI	NC	TAE	LE					
NO.		INP	UTS					0	UTF	ידטי	s_			
140.	۵	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	٦	L	н	н	н	н	Н	Н	Н	н	н
1 '	L	L	L	н	н	L	н	н	н	н	н	н	н	н
2	L	L	н	L	н	н	L	н	н	н	н	н	н	н
3	L	L	н	н	н	н	н	L	н	н	н	н	н	н
4	L	н	L	L	н	н	н	н	L	н	н	н	н	н
5	L	н	L	н	н	Н	н	Н	н	L	Н	н	н	н
6	L	н	н	L	н	н	н	н	н	н	L	н	н	н
7	L	н	н	н	н	н	н	н	н	н	н	L	н	н
8	н	L	L	L	н	H٠	н	н	н	н	н	н	L	н
9	н	L	L	н	н	н	н	н	н	н	н	н	н	L
	Н	L	н	L	н	н	Н	н	Н	н	н	Н	Н	Н
10	н	L	н	н	н	н	н	н	н	н	н	н	н	н
15	н	н	L	L	н	н	н	н	н	н	н	н	н	н
INVALID	н	н	L	н	н	н	н	н	н	н	н	н	н	н
Ž	н	н	н	L	н	н	н	н	н	н	н	н	н	н
	н	н	н	н	н	н	н	н	н	н	н	н	н	н

H = high level (off), L = low level (on)

description

These monilithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remain off for all invalid binary input conditions. These decoders feature high performance, n-p-n output transistors designed for use as indicator/ relay drivers or as open-collector logic-circuit drivers. Each of the output transistors will sink up to 80 milliamperes of current. Each input is one Series 54LS/ 74LS standard load. Inputs and outputs are entirely compatible for use with TTL or DTL logic circuits, and the outputs are compatible for interfacing with most MOS integrated circuits. Power dissipation is typically 35 milliwatts

functional block diagram

TYPES SN54LS445, SN74LS445 BCD-TO-DECIMAL DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)					,			 				7 V
Input voltage								 				7 V
Operating free-air temperature range:	SN54LS445								-	-55°	'C to	125°C
	SN74LS445		 							. ()°C t	o 70°C
Storage temperature range									_	-65°	C 10	150°C

NOTE 1: Voltage values are with respect to network ground terminal,

recommended operating conditions

	SI	154LS4	45	SI	174LS4	45	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
Off-state output voltage, VO(off)			7			7	٧
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS!	S	N54LS4	145	S	N74LS4	45	
	FARAME IER	I EST CON	יצאטווט	MIN	TYPI	MAX	MIN	TYP1	MAX	UNII
VIH	High-level input voltage			2			2	-		V
VIL	Low-level input voltage					7			7	V
VIK	Input clamp voltage	VCC - MIN,	l ₁ = −18 mA			-1.5			-1.5	V
lO(off)	Off-state output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} * 2 V, V _{OH} * 7 V			250			250	Αц
		VCC = MIN.	IOL * 12 mA		0.25	0.4	_	0.25	0.4	
VOtoni	On-state output voltage	VIH = 2 V.	IOL = 24 mA					0.35	0.5	v
		VIL - VIL max	1 _{OL} = 80 mA					2.3	3	Ī
11	Input current at maximum input voltage	VCC - MAX,	V ₁ = 7 V			0.1			0.1	mA
чн	High-level input current	VCC = MAX.	V ₁ = 2.7 V			20			20	μА
li L	Low-level input current	VCC - MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
¹ CC	Supply current	VCC * MAX,	See Note 2		7	13		7	13	mA

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER		TEST CONDITI	ONS	MIN	MAX	UNIT
1PLH	Propagation delay time, low-to-high-level output	C: 0.45.05	R ₁ = 665 Ω,	See Note 4		50	ns.
IPHL	Propagation delay time, high-to-low-level output	CL = 45 pF.	UL - 000 11.	266 14016 4		50	nı

NOTE 4: Load circuit and waveforms are shown on page 3-11 of The TTL Data Book for Design Engineers, second edition, LCC 4112. schematic of inputs and outputs

TAll typical values are at VCC = 5 V, TA = 25°C.

NOTE 2. ICC is measured with all inputs grounded and outputs open.

TYPES SN54LS447, SN74LS447 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

BULLETIN NO. DL-S 12697, NOVEMBER 1977

Low-Voltage Version of SN54LS247/SN74LS247

- Open-Collector Outputs Drive Indicators Directly
- Lamp-Test Provision
- Leading/Trailing Zero Suppression
- Lamp Intensity Modulation Capability

		DRIVER OU	TPUTS		TYPICAL	
TYPE	ACTIVE	OUTPUT	SINK	MAX	POWER	PACKAGES
	LEVEL	CONFIGURATION	CURRENT	VOLTAGE	DISSIPATION	1
SN54LS247	low	open-collector	12 mA	7 V	35 mW	J. W
SN74LS247	low	open-collector	24 mA	7 🗸	35 mW	J, N

1		-			Ч	5	ĪĪ				Ξ			Ξ		
e c	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
'ــــا				HIME	RICA	LDES	IGNA	PIONS	AND	REGU	LTAN	T DIS	PLAY	s		

SEGMENT IDENTIFICATION

FUNCTION TABLE

DECIMAL															
OR	L_		INP	UTE			81/8801			0	UTPUT	18			NOTE
FUNCTION	LT	Rei	D	С		A				•		•	[+	•	
٥	н	=	L	l.	L	L	н	ON	ON	ON	ON	ON	ON	OFF	
1	H	×	L	1	L	H	₩	OFF	04	ON	OFF	Off	140	OFF	
2	H	ж.	١.	£	H	L	H	ON	ON	OFF	QN	ON	OFF	ON	ſ
3	H	X	١.	į.	H	×	H	ON	ON	ON	ON	OFF	QF F	QΝ	
4	H) X	1	H	L	L	H	OFF	QN	ON	OFF	OFF	O٨	ON	
5	H	K	١.	H	L	н	H	0%	OFF	ON	ON	OFF	ON	ON	
6	-	l x	اد	-	=	L	-	ON	OFF	ON	ON	ON	ON	04	
,	H	x	l L	H	H	H	h	ON	ON	ON	OFF	OFF	OFF	OFF	
	н	×	H	ī	L	ī.	H	07	ON	ON	ON	ON	ON	ON	,
	H .	×	× .	L	L	H	H	ON	ON	ON	ON	OFF	ON	ON	
10	H	X I	H	L	H	L	H	OFF	OFF	OFF	ON	ON	OFF	ON	
11	H	×	-	· ·	H	H	#	OFF	OFF	ON	ON	OFF	Off	ON	
12	-	×	H	н		-	H	OFF	ON	OFF	OFF	OFF	ON	ON	
13	H .	×	м	-	L	=	H	0.	0	OFF	ON	OFF	ON	ON	1
14	H	×	H	H	н	L	-	OFF	011	OFF	ON	ON	ON	ON	1
16	H -	×	H	H	-	Ħ	H	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
BI	×	X	×	×	×	×	L	OFF	OFF	OFF	OFF	OFF	OFF	OFF	3
Rei	=	L	l c	L	L	L	L	055	011	OFF	OFF	OFF	OFF	OFF	3
LT	ا ا	l ×	l x	×	×		н н	ON	ON	ON	ON	l on	O.	ON	4

H = high level, L = low level, X = Irrelevent

NOTES: 1. The blanking input (8) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.

- When a low logic level is applied directly to the blanking input (81), all segment outputs are off regardless of the level of any other input.
- When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs
 go off and the ripple-blanking output (RBO) goes to a low level (response condition).
- When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are on.

¹BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

TYPES SN54LS447, SN74LS447 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				 	,		. ,				7 V
Input voltage				 				٠,			7V
Peak output current (t _w ≤ 1 ms, duty cycle ≤ 10%)				 							200 mA
Current forced into any output in the off state .											
Operating free-air temperature range: SN54LS447				 						-6	55°C to 125°C
											0°C to 70°C
Storage temperature range				 						~6	55°C to 150°C

NOTE 1: Valtage ralues are with respect to network ground terminal

recommended operating conditions

		SNB4LS447			8N74L9447			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	ייאטן
Supply voltage, VCC		4.5	6	5.5	4.75	5	5.25	V
Off-state output voltage, Vo(aff)	a thru g			7			7	٧
On-state output current, IO(on)	a thru g			12			24	mA
High-level output current, IOH	81/880			-50			-50	μA
Low-level output current, IOL	BI/ABO			1.8			3.2	mA
Operating free-sir temperature, TA		-85		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SNE		N54L84	47	SN74L8447			UNIT	
PARAMETER			TEST CONDITIONS		MIN TYP		MAX	MIN	TYP#		MAX
VIH	High-level input voltage	-	,	-	2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	input clamp voltage		VCC " MIN,	I _I = -18 mA			-1.5		_	-1.5	V
VOH	High-level output voltage	BI/RBO	V _{CC} = MIN, V _{IL} = V _{IL} max.	V _{IH} = 2 V, I _{OH} = -50 µA	2.4	4.2		2.4	4,2		v
	Low-level output voltage	BI/RBO	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 1.6 mA		0.25	0.4		0.25	0.4	v
VOL	Consister Cothet Aprilage	"""	VIL = VIL max	IOL = 32 mA					0.35	0.5	L.
10(011)	Off-state output current	a thru g	V _{CC} = MAX, V _{IL} = V _{IL} max,	VIH * 2 V. VO(off) * 7 V			250			250	μΑ
Voteni	On-state output voltage	a thru g	V _{CC} = MAX, V _{IH} = 2 V,	10(on) = 12 mA		0.25	0.4		0.25	0.4	v
*Uloni	S. Hiero Corpor vortage		VIL - VIL max To	10(on) = 24 mA					0.35	0.5	Ì
lj -	Input current at maximus	n input voltage	VCC = MAX,	V ₁ = 7 V			0.1			0.1	πА
ТН	High-level input current		VCC - MAX,	V ₁ = 2.7 V			20			20	μА
lic.	Low-level input current	Any input except BI/RBO	VCC - MAX,	V ₁ = 0.4 V			-0.4			-0.4	mA
-		81/880					-1.2			-1.2	<u> </u>
los	Short-circuit	81/R8O	VCC - MAX		-03		-2	-0.3		-2	mA
	output current								_		-
lcc	Supply current		VCC - MAX,	See Note 2		7	13	l	7	13	mA_

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡All typical values are at V_{CC} = 5 V, T_A = 25°C. NOTE 2: I_{CC} is measured with all outputs open and all inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
toff	Turn-off time from A Input				100	ns.
ton	Turn-on time from A input	CL = 15 pF, RL = 865 D.			100	
toff	Turn-off time from RBI input	See Note 4			100	ns.
ton	Turn-on time from RBI input				100	

NOTE 4 Load circuit and voltage waveforms are shown on page 3-11 of The TTL Data Book for Design Engineers, Second Edition. LCC4112, toff corresponds to tPLH and ton corresponds to tPHL.

TO BE ANNOUNCED

TYPES SN54LS640, SN54LS641, SN54LS642, SN54LS645 SN74LS640, SN74LS641, SN74LS642, SN74LS645 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

- Bi-directional Bus Transceivers in High-Density 20-Pin Packages
- P-N-P Inputs Reduce D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improves Noise Margins
- Choice of True or Inverting Logic
- Choice of 3-State or Open-Collector Outputs

TYPE	LOGIC	OUTPUT
'LS640	Inverting	3-State
'LS641	True	Open-Collector
'LS642	Inverting	Open-Collector
'LS645	True	3-State

description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated.

FUNCTION TABLE

ENABLE	DIRECTION	OPERATION					
G	DIR	'LS640, 'LS642	'LS641, 'LS645				
L	L	B data to A bus	B data to A bus				
L	н	A data to B bus	A data to B bus				
н	×	Isolation	Isolation				

H = high level, U = low level, X = irrelevant schematics of inputs and outputs

SN54LS640, SN54LS642...J PACKAGE SN74LS640, SN74LS642...J OR N PACKAGE (TOP VIEW)

\$N54L\$641, \$N54L\$645... J PACKAGE \$N74L\$641, \$N74L\$645... J OR N PACKAGE (TOP VIEW)

TYPICAL OF OUTPUTS OF 'LS640, 'LS645 OF 'LS641, 'LS642 OF 'LS641, 'LS642 OUTPUT OUTPUT

1177

TTL MSI

TYPES SN54LS668, SN54LS669, SN74LS668, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

BULLETIN NO DL S 12517, APRIL 1977- REVISED NOVEMBER 1977

SERIES SN54LS' . . . J OR W PACKAGE SERIES SN74LS' . . , J OR N PACKAGE

'LS668 . . . SYNCHRONOUS UP/DOWN DECADE COUNTERS

'LS669 . . . SYNCHRONOUS UP/DOWN BINARY COUNTERS

Programmable Look-Ahead Up/Down Binary/Decade Counters

- **Fully Synchronous Operation for Counting** and Programming
- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- **Fully Independent Clock Circuit**
- **Buffered Outputs**

****	TYPICAL I		TYPICAL
TYPE	COUNTING	COUNTING	POWER
	UP	DOWN	DISSIPATION
'LS 668, 'LS 669	35 MHz	35 MHz	100 mW

description

These synchronous presettable counters feature an internal carry look ahead for rascading in high-speed counting applications. The 'LS668 are decade counters and the 'LS669 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation helps, eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four master slave flip flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable, that is, the outputs may each be preset to either level. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry provides for cascading counters for nibit synchronous applications without additional gating. Instrumental in accomplishing this function are two count enable inputs and a carry output. Both count enable inputs (P and T) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up, when low, it counts down. Input T is fed forward to enable the carry output. The carry output thus enabled will produce a low level output pulse with a duration approximately equal to the high portion of the QA output when counting up and approximately equal to the low portion of the QA output when counting down. This low level overflow carry pulse can be used to enable successive cascaded stages. Transitions at the enable P or T inputs are allowed regardless of the level of the clock input. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (enable P, enable T, load, up/down) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

The 'LS668 and 'LS669 are completely new designs. Compared to the original 'LS168 and 'LS169, they feature 0-nanosecond minimum hold time, reduced input currents I H and I H , and all buffered outputs.

TYPES SN54LS668, SN54LS669, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

'LS668 DECADE COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to BCD seven
- 2. Count up to eight, nine (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), nine, eight, and seven

'LS669 BINARY COUNTERS

typical load, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Load (preset) to binary thirteen
- 2. Count up to fourteen, lifteen (maximum), zero, one, and two
- 3. Inhibit
- 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen

TYPES SN54LS668, SN54LS669, SN74LS668, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage		7 🗸
Operating free-air temperature range:	SN54LS668, SN54LS669	55°C to 125°C
· · · · · · · · · · · · · · · · · · ·	SN74LS668, SN74LS669	. 0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1. Voltage values are with respect to network ground terminal

recommended operating conditions

		SN54LS668 SN74LS668 SN54LS669 SN74LS669		UNIT				
		MIN NOM MA	MAX	MIN	NOM	MAX		
Supply voltage, VCC		4.5	5	5.5	4.75	5	5,25	٧
High-level output current, IOH				-400			-400	μА
Low-level output current, IQL		T		4			8	mA
Clack frequency, fclack				25	0		25	MHz
Width of clock pulse, tw(clock) (high or lo	w) (see Figure 1)	25			25			ns
vidin of clock pulse, tw(clock) inigh or low) to	Data inputs A, B, C, D	20			20			
Setup time 1 (see Figure 1)	Enable P or T	20			20			ns.
etup time, t _{su} (see Figure 1)	Load	25			25] '''
	Up/Down	30			30			
Hold time at any input with respect to close	ck, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA		-55		125	0		70	°c

TYPES SN54LS668, SN54LS669, SN74LS668, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		PARAMETER TEST CONDITIONS?		SN54LS668 SN54LS669		1	68 69	UNIT				
					MIN	TYPI	MAX	MIN	TYP‡	MAX		
٧ін	High-level input voltage			-	2			2			٧	
VIL	Low-level input voltage						0.7			0.0	V	
VIK	Input clamp voltage		VCC = MIN,	I _I = -18 mA			-1.5			-1.5	V	
VOH High-level output voltage		VCC = MIN. VIL = VIL max.	V _{IH} = 2 V, I _{OH} = -400 µA	2.5	3.4		2.7	3.4		٧		
VOL LOW	law law law and a second second			IOL = 4 mA		0.25	0.4		0.25	0.4	V	
	Low-level output voltage		V _{IH} = 2 V, V _{IL} = V _{IL} max	10L = 8 mA					0.35	0.5] •	
	Input current	A, B, C, D, P, U/D					0.1			0.1		
կ	at maximum	Clock, T	VCC - MAX.	VCC = MAX.	V1 = 7 V			0.1			0.1	mA
	input voltage	Load	1				0.2			0.2	1	
	Minh Innat	A, B, C, D, P, U/D					20			20		
Чн	High-level	Clock, T	VCC - MAX.	V1 = 27 V			20	L		20	μА	
	input current	Load	1				40			40	1_	
	Low-level	A, B, C, D, P, U/D					-0.4			-0.4		
HL.	input current	Clock, T	VCC - MAX.	VCC - MAX.	V ₁ = 0.4 V			-0.4			-0,4	mA
	input surrent	Load]				-0.6			-0.8		
ios	Short-circuit output a	irrent §	VCC - MAX		-20		-100	-20		-100	mA	
100	Supply current		VCC * MAX.	See Note 2		20	34	T	20	34	mA	

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{C}$

PARAMETER !	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
r _{max}				25	32		MHZ
IPLH	Clock	Rippie			26	40	
IPHL	CIOER	CATTO		40	60	1 "	
1PLH	Clock	Any	CL = 15 pF, RL = 2 kΩ, See Figures 2 and 3		18	27	
tPHL .	CIDER	a			18	27	1."
1PLH	Enable T	Ripple	See Figures 2 and 3		11	17	
1PHL	Chebie 1	Carry			29	45	1 "
1PLH0	Up/Down	Ripple			22	35	J
\$PHLO	Oppoor	Carry			26	40	1 ^*

Fmax = Meximum clock frequency

^{*}All typical values are at V_{CC} = 5 V, T_A = 28°C Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: Igg is measured after applying a momentary 4.5 V, then ground, to the clock input with all other inputs grounded and the outputs

TPLI = propagation delay time, low-to-high-level output. tpHL # propagation dalay time, high-to-low-level output.

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry output transition will be in phase. If the count is maximum (9 for "LSSSS or 15 for "LSSSS), the rippis carry output will be out of phase.

TYPES SN54LS868, SN54LS669, SN74LS668, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

NOTES A The input pulses are supplied by a generator having the following characteristics. PRR \leq 1 MHz, duty cycle \leq 50%, $Z_{OUT} \approx$ 50 (i), $t_r \leq$ 18 ns, $t_f \leq$ 8 ns,

B. Vref - 1.3 V.

FIGURE 1-PULSE WIDTHS, SETUP TIMES, HOLD TIMES

- NOTES: A. The Input pulse is supplied by a generator having the following characteristics. PRR < 1 MHz, duty cycle < 80%, Z_{OU1} ≈ 90 Ω; t, < 16 ns, t_i < 6 ns.
 - tp_M and tp_M from enable T input to ripple carry output assume that the counter is at the maximum count (Q_A and Q_D high for 'L9688, all Q outputs high for 'L969).

C. Vret - 1,3 V.

D. Propagation datay time from up/down to rippia carry must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the rippia carry output will follow. If the count is minimum (0) the rippia carry output transition will be in phase. If the count is maximum (9 for "LS688, or 15 for "LS689) the rippia carry output will be out of phase.

FIGURE 2-PROPAGATION DELAY TIMES TO CARRY OUTPUT

TYPES SN54LS668, SN54LS669, SN74LS668, SN74LS669 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

PARAMETER MEASUREMENT INFORMATION

UP-COUNT VOLTAGE WAVEFORMS

- NOTES A. The input pulses are supplied by a generator having the following characteristics: PRR + 1 MHz, duty cycle < 50%, Zout = 50 \(\text{ } \),
 - t, C15 nr, t1 C5 nr, t14 C8 nr, t19 PRR to meeture I_{max}.

 B. Outputs Op and carry are tested at I_{n+10} for the 'LS658 and at t_{n+10} for the 'LS669, where I_n is the pit-time when all outputs
 - C. Vret 1.3 V

FIGURE 3-PROPAGATION DELAY TIMES FROM CLOCK

TO RE ANNOUNCED

TYPES SN54LS673, SN54LS674, SN74LS673, SN74LS674 16-BIT SHIFT REGISTERS

NOVEMBER 1977

'LS673

- 16-Bit Serial-In, Serial-Out Shift Register with 16-Bit Parallel-Out Storage Register
- Performs Serial-to-Parallel Conversion

'LS674

- 16-Bit Parallel-In, Serial-Out Shift Register
- Performs Parallel-to-Serial Conversion

description

SN54LS673, SN74LS673

The 'LS673 is a 16-bit shift register and a 16-bit storage register in a single 24-pin package, A threestate input/output (I/O) port to the shift register allows serial entry and/or reading of data. The storage register is connected in a parallel data loop with the shift register and may be asynchronously cleared by taking the clear input low. The storage register may be parallel loaded with shift-register data to provide shift register status via the parallel outputs. The shift register can be parallel loaded with the storageregister data upon command,

A high logic level at the chip select (CS) input disables both the shift-register clock and the storageregister clock and places the data I/O in the highimpedance state. The storage-clear function is not disabled by the chip select.

6N54LS873...JOR W PACKAGE

SN54LS674 . . . J OR W PACKAGE SN74LS674...JOR N PACKAGE (TOP VIEW)

NC-No internal connection

Caution must be exercised to prevent false clocking of either the shift register or the storage register via the chip select, input. The shift clock should be low during the low-to-high transition of chip select and the storage clock should be low during the high-to-low transition of chip select.

SN54LS674, SN74LS674

The 'LS674 is a 16-bit parallel-in, serial-out shift register. A three-state input/output (I/O) port provides access for entering serial data or reading the shift-register word in a recirculating loop.

The device has four basic modes of operation:

- 1) Hold (do nothing)
- 2) Write (serially via input/output)
- 3) Read (serially)
- 4) Load (parallel via data inputs)

Low-to-high-level changes at the chip select input should be made only when the clock input is low to prevent false clocking.

TYPES SN54LS673, SN54LS674, SN74LS673, SN74LS674 16-BIT SHIFT REGISTERS

functional block diagrams

SN54LS673, SN74LS673

SN54LS674, SN74LS674

^{*}When PE is low, data is synchronously parallel loaded into the shift registers from the 16 P inputs and no shifting takes place.

TYPES SN54LS673, SN54LS674, SN74LS673, SN74LS674 16-BIT SHIFT REGISTERS

'LS673 FUNCTION TABLE

		INPUT	s		SERIAL	
CHIP	SHII	FT REG	STO	RAGE	1/0	OPERATION
SELECT	R/W	CLOCK	CLEAR	CLOCK	PORT	
×	-	×	L	х	Z	L input to ST CLR clears
н	×	×	L	×	z	Storage registers; I/O depends
L	н	×	L	×	Q15	on CS and R/W.
н	×	×	×	×	2	No shifting or loading
L	L		×	×	Z	Shift and write (load)
L	н	1	×	L	Q14n	Shift and read
L	Н	1	L	н	L	Reload shift register from
L	н	4	н_	н	Y15n	storage, no shifting
L	L	×	н	†	Z	Load storage from shift register

'LS674 FUNCTION TABLE

		INPUTS		1/0	
cs	R/W	MODE	CLOCK	PORT	OPERATION
Н	×	×	×	Z	Do nothing
L	L	×	:	Z	Shift and write (serial load)
L	н	L	1	Q14n	Shift and read
L	н	н	4	P15	Parallel load

- H high level (steady state)
- L low level (steady state)
- $\Gamma \approx \text{transition from low to high level}$
- 1 = transition from high to low level
- X + irrelevant (any input including transitional
- 2 high impedance, I/O in input mode
- Q14n = content of 14th bit of the shift register before the most recent ‡ transition of the clock
- Q15 = present content of 15th bit of the shift register
- Y 15n = content of the 15th bit of the storage register before the most recent \$ transition of the clock.
- P15 " level of input P15

schematics of inputs and outputs

TO BE ANNOUNCED

TYPES SN54LS681, SN74LS681 4-BIT PARALLEL BINARY ACCUMULATORS

NOVEMBER 1977

SN54LS681...JPACKAGE SN74LS681...JOR N PACKAGE (TOP VIEW)

- Full 4-Bit Binary Accumulator in a Single 20-Pin Package
- Contains Two Synchronous Registers: Word A Word B Shift/Accumulator
- 16 Arithmetic Operations Including
- B Minus A and A Minus B
- 16 Logic-Mode Operations
- Expandable to Handle N-Bit Words with Full Carry Look-Ahead
- Bus Driving I/O Ports

description

These low-power Schottky IC's integrate a high-speed arithmetic logic unit (ALU) complete with word A and word B registers on a single chip. The ALU performs 16 arithmetic and 16 logic functions (see Tables 1 and 2). Full carry look-ahead is provided for fast carry of four-bit words. The carry input (C_n) and propagate and generate outputs (P and G) are provided for direct use with SN54S182/SN74S182 carry look-ahead generators for optimum performance with longer words.

The A and B registers are controlled by three inputs (RSO, RS1, and RS2). These pins define eight distinct register modes (see Table 3). The A register is a simple storage register while the B register is a combination storage/shift/accumulator register. The contents of the A and B registers provide the A and B words for the ALU.

Four I/O ports (I/O 0 thru I/O 3) are provided for parallel loading of word A and/or word B into their respective registers. These same ports also serve as bus driving outputs for the ALU/accumulator results (F_j). Two additional I/O ports (RI/LO and LI/RO) are provided to allow expansion of the accumulator for words greater than four bits in length.

The A or B register can be parallel loaded from the four I/O ports. The B register can also be parallel loaded from the ALU as an accumulator register and in addition, the B register can be serially loaded from either the RI/LO or the LI/RO ports.

The SN54LS681 will be characterized for operation over the full military temperature range from -55°C to 125°C. The SN74LS681 will be characterized for operation from 0°C to 70°C.

functional block diagram

schematics of inputs and outputs

TYPES SN54LS681, SN74LS681 4-BIT PARALLEL BINARY ACCUMULATORS

FUNCTION TABLES

TABLE 1 - ARITHMETIC FUNCTIONS

Mode Control (M) = Low

	ALU		ACTIVE-	HIGH DATA
SEL	ECT	ON	С, - Н	C _n = L
AS2	AS1	ASO	(with carry)	(no carry)
L	L	٦	Fj = L	F) = H
L	L	н	F = B MINUS A	F - B MINUS A MINUS 1
L	н	L	F - A MINUS B	F - A MINUS B MINUS 1
L	н	н	F - A PLUS B PLUS 1	F = A PLUS B
н	L	L	F ~ 8 PLUS 1	F1 = B1
н	L	н	F - B PLUS 1	F; = B;
н	н	L	F = A PLUS 1	Fi = Ai
н	н	н	F - A PLUS 1	F. = X.

TABLE 2 - LOGIC FUNCTIONS

Mode Control (M) = High

	ALU		ACTIVE-HIGH DATA						
SE	LECTI	ON	Cn-H Cn-L						
AS2	AS1	AS0	(with carry)	(no carry)					
L	Ļ	٦	Fo = H, F1 = F2 = F3 = L	Fj = L					
L	L	н	Fj = Aj @ BjPLUS 1	Fj - Aj ⊕ Bj					
L	н	L	Fi - Aj @ Bj PLUS 1	Fj - Aj (B) Bi					
L	н	н	Fj = L	Fi • H					
н	L	L	Fj - AjBj PLUS 1	Fj = AjBj					
н	L	н	F - A - B PLUS 1	Fi - Ai + Bi					
н	H	L	F - AB PLUS 1	Fi - Aiti					
н	н	н	Fj - Aj + Bj PLUS 1	F = A + B					

TABLE 1 - REQUESTED EVACTIONS

		NP1/	TE BE	FORE L	TOH	CLOC	KTRA	MEITIC				INTE	_	יטידדעים	BAFT	ERLT	O H CL	DCK 1	RANSI	ION			
FUNCTION	RE	BIST	ER			DATA		_			A REG	IBTER				HIPT R					AL	.u	
	RS2	RS 1	REG	LIVAD	1/0 3	1/0 5	1/0 1	1/0 0	RI/LO	043	QAZ	QAI	QAO	LI/RO	083	OB2	981	080	RI/LO	P3	P2	F1	FO
ACCUM	L	L	L	Z	F3	F2	FI	FO	Z	QA30	QA20	CATO	QAQ	Z	FJa	FZn	Fin	FOn	Z	P3	F2	#1	FO
LOAD B	L	L	н	Z	ÞĴ	p5	þì	100	Z	DAJO	QAZ ₀	QA10	QAO	2	ь3	b2	ьı	ь0	Z	Z	Z	Z	2
LEFT	\Box													1						Г			
SHIFT	L	н	L	- b	F3	F2	F1	FD	QBQ	CA30	QA20	QA10	QA00	1 6	l)	QB3 _n	Q82 _n	081,	GBIO	Fa	F 2	F 1	FO
LOGICAL				1						'				i						ľ			
LEFT														1						$\overline{}$			
SHIFT	L	н	H	- 11	Fa	F2	F 1	FO	CBD	CAZO	QAZO	QAIO	QAQ	1.6	Q83 ₀	b	0820	081,	0810	F3	F2	F1	FO
ARITH										1										ı			
AIGHT														1									
SHIFT	H	L	L	Q83	F3	F2	F1	FD	11	CA30	QA20	QAIO	QA00	Q82n	082,	0810	QB0 _n	**	**	F3	£ 2	F 1	FO
LOGICAL										l l				ľ									
RIGHT																				П			
SHIFT	н	L	н	Q87	83	F2	FI	FO		CA3o	GA20	GAIO	QAQ	OBIA	083,	081,	080,	ti	el	F3	F2	F١	FO
ARITH	١.																_						
HOLD	н	н	L	Z	F3	F2	F1	FO	2	OAJ0	QA20	QA1g	QAQ ₀	Z	0830	0830	0810	0800	Z	F30	F20	Fig	F00
LOAD A	н	H	н	Z	-63	17	#1	eO	- 2	ı)	02	91	*0	Z	OB3 _D	0820	Q81p	0800	2	Z	Z	Z	- 2

H = high level (steady state)

 QAG_{p_1} , ... QBG_{p_2} whe level of QAG through 3 before the most recent 1 transition of the clock ri, ii = the level of steady-state conditions at RI/LO or LI/RO, respectively

L = low level (steady state)

Z = high impedence (output off)

a0 . . . a3, b0 . . . b3 = the level of steady - state condition at I/O 0 thru I/O 3, respectively and intended as A or B input date

FO... F3 - Internal ALU results

QAO₀ ... QBO₀, FO₀ ... FO₀ = the level of QAO thru QB3 and FO thru F3, respectively, before the indicated steady-state input conditions were intublished

TYPES SN54LS690 THRU SN54LS693, SN74LS690 THRU SN74LS693 TO BE SYNCHRONOUS COUNTERS/REGISTERS ANNOUNCED WITH MULTIPLEXED 3-STATE OUTPUTS NOVEMBER 1977

- Replaces One SN54LS180/SN74LS160, 'LS161, 'LS162, or 'LS163, One 'LS175, and One 'LS257A in Some Applications
- Synchronously Presettable
- 3-State Outputs Drive Bus Lines Directly
- 'LS690 . . . Decade Counter, Direct Clear
- 'LS691 . . . Binary Counter, Direct Clear
- 'LS692... Decade Counter, Synchronous Clear
- 'LS693...Binary Counter, Synchronous Clear

SN54L8890 THRU 8N54L8893....JPACKAGE SN74L8890 THRU 8N74L8893....JOR N PACKAGE (TOP VIEW)

description

These low-power Schottky LSI devices incorporate synchronous counters, four-bit D-type registers, and quadruple two-line to one-line multiplexers with three-state outputs in a single 20-pin package. The counters can be preset via the data inputs and have enable P and anable T inputs and a ripple-carry output for easy expansion.

The register/counter input, R/\overline{C} , selects the counter or register data for the four three-state outputs, Q_A , Q_B , Q_C , and Q_D . These outputs are rated at 12 millamperes and 24 millamperes for good bus-driving performance.

Individual clock and clear inputs are provided for both the counter and the latch. Both clock inputs are positive-edge triggered.

functional block diagram

TYPES SN54LS696 THRU SN54LS699, SN74LS696 THRU SN74LS699 SYNCHRONOUS UP/DOWN COUNTERS/REGISTERS TO RE WITH MULTIPLEXED 3-STATE DUTPLITS ANNOUNCED

- Replaces One SN54LS168A/SN74LS168A or 'LS169A, One 'LS175, and One 'LS257A in Some Applications
- Synchronously Presettable
- 3-State Outputs Drive Bus Lines Directly
- 'LS696 . . . Decade Counter, Direct Clear
- 'LS697 . . . Binary Counter, Direct Clear
- 'LS698 . . . Decade Counter, Synchronous Clear
- 'LS699 . . . Binary Counter, Synchronous Clear

SN54LS696 THRU SN54LS699 J PACKAGE SN74LS696 THRU SN74LS699 J OR N PACKAGE (TOP VIEW)

description

These low-power Schottky LSI devices incorporate synchronous up/down counters, four-bit D-type registers, and quadruple two-line to one-line multiplexers with three-state outputs in a single 20-pin package. The counters can be preset via the data inputs and have enable P and enable T inputs and a ripple carry output for easy expansion

When the up/down input, U/D, is high, the counter counts up, when low, it counts down.

The register/counter input, R/C, selects the counter or register data for the four three-state outputs, QA, QB, QC, and Op. These outputs are rated at 12 milliamperes and 24 milliamperes for good bus driving performance.

Individual positive edge-triggered clocks are provided for both the up/down counter and the latch. The counter is also equipped with an active-low clear pin.

functional block diagram

1177

Revisions to The TTL Data Book for Design Engineers, Second Edition

This section contains new information and corrections for device specifications in the "Data Book" divided into two parts as shown below.

Revisions to the First Printing	P) Dev	es 4	4 thru 5	5
Revisions to the First and Second Printings				page 56	3

The reader should check the Important Notices on the back of the title page to determine the status of his data book. Second printing copies are identified by the statement "Second printing" below the copyright notice. All others are first printing.

PAGE	LOCATION		CHAN	GE					
1-3	Alphanumeric Index	Several types have updated specifications. Add suffix A to the type numbers listed below.							
thru 1-8		'LS73	'LS113	1	'LS365				
	1	'LS76	'LS114	1	'LS366				
		'LS78	'LS125	5	'LS367				
		'LS107	7 'LS126	3	'LS368				
		'LS112	2						
		2. Add at the end of the in							
		TIM99	7-448		7-448				
1-9 thru 1-28 and	Functional Index and Selection Guide	Add suffix A to type nu individual data sheet rev		For possible	changes in selection data, see				
partially	1	2. Remove * (indicating ne	av products) from ty	pe number	s listed below. These are now				
repeated		standard devices. This at	iso applies to data sho	pets.					
7-3 thru		'LS147			SN74LS362 [†]				
7-14	1	'LS148			'LS373				
		'LS183			'LS374				
		'S226		ļ†	'LS395A				
		TAppears twice in index							
5-32	107	Delete "MASTER-SLAVE" on page 5-22.	from title, Add fund	ction table	for 'LS107A like that for 'LS73	iA			
5-45	168 and 170	Change SN74S168 (J, W) to	SN74S168 (J, N) ar	nd SN7417	0 (J, W) to SN74170 (J, N)				
5-50	192	Change SN74192 (J, N) sec	ond line to SN74L11	92 (J, N)					
5-55	241 243	Re-label pin 17 to be 2A4 Change SN54243 (J, W) SN	174243 (J, N) to SNE	54LS243 (J	, W) SN74LS243 (J, N)				
5-58	266	Re-Jabel pin assignment dra	-						
		pin 4		3A					
	l .	pin 5		3B					
		pin 6	28 pin 10	3Y					
5-62	287	Change from \$N745287 (J.	, W) to \$N74S2B7 (J,	, N)					
	288	Change from SN74S288 (J.	, W) to SN74S288 (J.	, N)					
	289	Change from SN74S289 (J.	, W) to SN74S289 (J,	, NI					
	299	1. Re-label pin 9 connection	on "CLEAR" two pla	acas.					
5-64									
5-64		2. Re-label pin 12 connect	ion "CLOCK" two p	isces.					

PAGE	LOCATION: AFFECTED TYPES	CHANGE
6-33	'LS125, 'LS126	Add suffix A to type numbers two places.
	Recommended operating conditions 'LS125A, 'LS126A	Change I _{OL} max limits:
	Electrical characteristics: 'LS125A, 'LS126A	Change test condition for VOL for Series 74LS from IOL * 8 mA to IOL * 12 mA.
6-34	'LS125, 'LS126	Add suffix A to type numbers three places each.
	Switching characteristics: 'LS125A, 'LS126A	1. Change SN54LS/74LS test conditions to be C _L = 45 pF, R _L = 667 Ω C _L = 5 pF, R _L = 667 Ω 2. Change note to read "# Load circuit and voltage waveforms are shown on pages 3-10 and 3-11."
6-35	Schematic: 'LS125	Add suffix A to type number and add "C INPUT" to unlabeled input at left,
6-36	'LS365, 'LS366 'LS367, 'LS368	Add suffix A to type numbers two places.
	Recommended operating conditions 'LS365A thru 'LS368A	Change I _{OL} maximum limits: from to SN54 FAMILY 8 mA 12 mA SN74 FAMILY 16 mA 24 mA
	Electrical characteristics: 'LS365A thru 'LS368A	Change V _{OL} test conditions to be: V _{CC} = MIN, I _{OL} = MAX V _{IL} = V _{IL} max I _{OL} = 12 mA
6-37	'L\$365, 'L\$366 'L\$367, 'L\$368	Add suffix A to type numbers.
	Schematics. '357A, '368A	^{1}R is 800 Ω for the control section associated with \overline{G} 1 and 900 Ω for the control section associated with $\overline{G}2.$
	Switching characteristics: 'LS365A thru 'LS368A	Change SN54LS/74LS test conditions: CL = 45 pF, RL = 667 Ω CL = 5 pF, RL = 667 Ω
6-38	'LS365, 'LS366 'LS367, 'LS368	Add suffix A to type numbers.

PAGE	ECCATION: AFFECTED TYPES	CHANGE				
6-40	Electrical characteristics: 123, 150, 153	Change I _X maximum limit for SN7423 from −3.5 mA to −3.8 mA. Change V _{QL} test conditions: from to (SN54'). R _{XX} = 138 Ω R _{XX} = 4 (SN74') R _{XX} = 130 Ω R _{XX} = 4 3. Add note "A R _{XX} equals 114 Ω for SN5423, 138 Ω for SN5450 and SN5453, 105 Ω for SN7423, and 130 Ω for SN7450 and SN7453."				
643	Electrical characteristics: SN7460	Change test condition for V _{XX} (on) from I _X ≈ 3.5 mA to I _X ≈ 3.8 mA.				
6-56	'LS73, 'LS107, 'LS113 'LS76, 'LS112, 'LS78, 'LS114	Add suffix A to type numbers two places. Change I _{CC} maximum limit from 8 mA to 6 mA in first, third, and fourth columns only.				
6-57	'LS73, 'LS76, 'LS78, 'LS107, 'LS112, 'LS113, 'LS114	1. Add suffix A to the type numbers in the switching characteristics table, the functional block diagram, and the block diagram caption. 2. Change switching characteristics: from to tipLH typical 11 ns 15 ns tipHL maximum 30 ns 20 ns 3. Change schematics as shown below. **LS73A, 'LS76A, 'LS78A, 'LS112A, 'LS113A, 'LS114A** EQUIVALENT OF EACH INPUT FACH INPUT VCC Req INPUT IIL MAX Req NOM -0.4 mA 17 kii -0.8 mA 8 25 kii -1.8 mA 4 1 kii TYPICAL OF ALL OUTPUT OUTPUT				
6-61	Switching characteristics. 1279, 1LS279	1. Label existing limits column for '279 2. Add new column shown: CS279				
6-69	Equivalent input: 'L\$221	Delete "25 kΩ NOM" and replace with "R _{eq} ".				

PAGE	LOCATION: AFFECTED TYPES	CHANGE					
8-71	Recommended operating conditions:	Change "Output duty cycle" meximum limits for R _T = 2 kD from 67% to 50%.					
	Electrical characteristics: 'LS221	Change I _{IL} maximum limit for Input B from -0.4 mA	to -0.8 mA.				
6-83	'LS241, 'S241	Relabel pin 17 "2A4" in pin assignment drawing.					
6-84	Electrical characteristics: 'LS240, 'LS241, 'LS244	1. Change V _{OH} test conditions to be: 2. Change I _{OS} minimum limit from -50 mA to -40 m	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max, I _{OH} = -3 mA, V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.5 V, I _{OH} = MAX A two places.				
6-85	Electrical characteristics: SN745240, SN745241	Add a set of test conditions and limits for VOH and lab	el existing conditions as shown below. TYP MAX MIN TYP MAX UNIT				
	i	SN74S' V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -1 mA 2.7	2.7				
		SN545' end V _{CC} = MIN, V _{IH} = 2 V, SN745' V _{IL} = 0.8 V, I _{OH} = -3 mA 2.4	3.4 2.4 3.4 V				
		SN54S' and V _{CC} = MIN, V _{IH} = 2 V, SN74S' V _{IL} = 0.5 V, I _{OH} = MAX 2	2				
6-88	Electrical characteristics. 'LS242, 'LS243	Change LOZM maximum limit from 20 µA to 40 µA Add e set of test conditions and limits for i ₁ as show					
			TYP MAX MIN TYP MAX UNIT				
		A or B	0.1 0.1 mA				
		GAS OF GBA	0,1 0,1				
	<u></u>	3. Change Ios minimum limit from -50 mA to -40 m	A two places.				
6.96	Figure 10, Note B. Expandable gates	Delete the parenthetic statement regarding resistor valu	es and add the table below.				
	Exhericanie Aeres	RESISTANCE VALUE TABLE					
		SN5423 114 II					
		\$N5450, \$N5453 138 Ω					
	1	\$N7423 105 Ω \$N7450, \$N7453 130 Ω					

PAGE	LOCATION: AFFECTED TYPES		CHANGE						
7-74	'LS90, 'LS92, 'LS93	Delete Schottky diode in perallel with input transistor.	INPUT R1 R2 R3						
			A 8 ('LS90, 'LS92) 8 ('LS93)	10 kΩ 6.7 kΩ 15 kΩ	10 kΩ 6.7 kΩ 15 kΩ	10 kΩ 5 kΩ 10 kΩ			
7-78	Electrical characteristics: 'LS90, 'LS92	1. Change I _{1L} "output current" to "inp 2. Change note to be "¶ Q _A outputs ar							
7-79	Electrical characteristics.	Change I _{IL} "output current" to "input	current"						
7-100	Recommended operating conditions, 'LS96	Change "width of clock pulse, tw(clock)	" minimum limit fron	n 35 ns to 20	ns.				
7-123	Description: 'LS124, 'S124	Delete the last sentence of the fourth participation not recommended."	ragraph under descrip	tion, "Simult	taneous				
7-155	Electrical characteristics: 'LS147, 'LS148	Change SN54LS', SN74LS' maximum V	OH limits to minimur	n limits.					
	Switching characteristics: *LS147	Change 'LS147 limits column to be:		MIN TYP 12 12 12 21 15	MAX 18 18 33 23				
	Switching characteristics: LS148	Change 'LS148 fimits column to be:		MIN TYP 14 15 20 16 7 25 35 9 16 12 12 14 12 23	MAX 18 25 36 29 18 40 55 21 26 25 27 36 21 36 21 36				

PAGE	LOCATION: AFFECTED TYPES	CHANGE					
7-177	Electrical characteristics	Change V _{IK} test conditions from I _I = ~12 mA to I _I = ~8 mA.					
7-179	Electrical characteristics	Change V _{IK} test conditions from I _I = -12 mA to I _I = -8 mA.					
7-181	Pin assignment drawing: 'LS158, 'S158	Add inversion indicator for output 4Y.					
7-187	Electrical characteristics: 'S157, 'S158	1. Change Note 2 to read "I _{CC} is measured with all outputs open". 2. Change I _{CC} test conditions and limits columns to be: MIN TYP MAX MIN TYP MAX UNIT V _{CC} - MAX, All inputs at 4.5 V, See Note 2 V _{CC} - MAX, A Inputs at 4.5 V, B, G, S Inputs at 0 V, See Note 2					
7-190	Description. '160 thru '163, 'LS160A thru 'LS163A, 'S162, 'S163	Change third and fourth sentences of second peragraph to read: "Low-to-high transitions at the load input of the "160 thru "163 should be avoided when the clock is low if the enable inputs are high at or before the transition. This restriction is not applicable to the "LS180A thru "LS163A or "S162 or "S163."					
7-200	Equivalent schematic of each input. 'S162, 'S163	Add a 20-k12 resistor between V _{CC} and input for all inputs except clock and load. Clock and load inputs have no such resistor.					
7-219	Notes: '166	1. Change present Note 2 to Note 3. 2. Add new Note 2: An SNS4166 in the W package operating at free-air temperatures above 113°C requires a heat sink that provides a thermal resistance from case to free air, R _{BCA} , of not more than 48°C/W.					
	Absolute maximum ratings: SN54166	Add "(see Note 2)" to "Operating free-air temperature range: SN54166."					
	Recommended operating conditions: SN54166	Add "(tee Note 2)" to "Operating free-air temperature range, TA."					
	Electrical characteristics: 166	1. Change I _{CC} test condition from "See Note 2" to "See Note 3." 2. Change I _{CC} values as shown: MIN TYP MAX MIN TYP MAX 90 127 90 127					

PAGE	LOGATION: AFFECTED TYPES	CHANGE
7.220	Electrical characteristics: *LS166	Change "Note 2" to "Note 3" for I _{CC} test conditions and in notes.
7-227	Block Diagram, 'LS169A	Change the AND gate for Ripple Carry output, Pin 15, to a NAND gate.
7-233	Equivalent schematic of each input: 'S168, 'S169	Add a 20-kΩ resistor between V _{CC} and the Input for Load input only. All other inputs have no such resistor.
7-286	Typical application data: 182, 18182	Change " '181 or '5182" to " '182 or '5182".
7-288	Electrical characteristics: 'H183	1. Add I _{CCH} maximum limit of 65 mA. 2. Change Note 4 " and all outputs at 4.5 V" to " and all inputs at 4.5 V".
7.289	Note 4: 'LS183	Change Note 4 " and all outputs at 4.5 V." to " and all inputs at 4.5 V".
	Switching characteristics: 'LS183	Change limits column to be: MIN TYP MAX 9 15 20 33
7.302	Recommended operating conditions: 'LS190, 'LS191	Change minimum limit for "Count enable time, t _{enable} " from 20 ns to 40 ns two places.
7-306	Description: '192, '193, 'L192, 'L193, 'LS192, 'LS193	Change " count-down input" in the next-to-last line to " count-up input",
7-313	Recommended operating conditions: 'LS192, 'LS193	Add parameter "Clear inactive-state setup time, t _{su} " with minimum limit of 40 ns for SN54LS' and SN74LS'.
	Switching characteristics: 'LS142, 'LS143	Change limits column to be: MIN TYP MAX 25 32
7.332	Recommended operating conditions: '196, '197	Change "Pulse width, tw" Clock-1 input minimum limit from 20 ns to 10 ns two places, and Clock-2 input minimum limit from 30 ns to 20 ns two places.
7-334	Recommended operating conditions: 'L\$198, 'L\$197	Change "Count enable time, t _{enable} " minimum limit from 20 ns to 30 ns two places.

PAGE	LOCATIONS AFFECTED TYPES			CH	IANGE	!					
7-343	Electrical characteristics: 198, 199	Change limits columns (or ICC to be:		MIN	TYP 90	MAX J	MIN .	TYP 90	_	UNIT
7-346	Function tables:	Modify the first two line	rs to make the	table	read:						
	3213		BUS-MA			_					
			ERATION	S2	\$1	_	ATCH F			_	
			IVE BUS A	L	L	_	Bus B D			_	
			IVE BUS B	Н	L.		Bus A D			_	
			CHANGE	н	н	_	e Bus A			676	
		LBU	S A AND B	L	н	Rea	Out St	ored D	ata		
	Absolute maximum	1. Change operating to	mperature spa	cificat	tion to	be:					
	ratings:	Operating free-as	r temperature	range	: SN54	S226 (ee Note	2)			
	SN54S226	2. Add "NOTE 2: An									
		requires a heat-sink	that provides	a therr	mai res	istance	from car	e to fr	86 air.	, Roc	A, of
		not more than 48°C	/w."								
7-347	Recommended operating conditions: 'S226	Change minimum lif Change minimum lif Add (see Note 2) to	nit for "Data	hold t	ime, t _h	" from	51 to 30				
	Electrical characteristics: 'S226	1. Change present Note 2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	ditions from '	'See N	lota 2"	to "Se	e Note 3			maxir	num
7-348		2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	ditions from '	'See N - 300 ,	lots 2" uA to -	to "Se - 380 μ	e Note 3	r' and			num
7-348	'S226	2. Change I _{CC} test con Ilmit of 185 mA.	m limit from	'See N - 300 ,	lots 2" uA to -	to "Se - 380 μ	e Note 3	r' and	x UA	NIT	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	m limit from	'See N - 300 ,	lots 2" uA to -	to "Se - 380 μ	e Note 3 A. N. TYF	MA:	X UA	NIT	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	m limit from	'See N - 300 ,	lots 2" uA to -	to "Se - 380 μ	e Note 3 A. N TYF 20	MA:	X UA	NIT:	กนเก
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	m limit from	-300 , -300 ,	Iota 2"	to "Se - 380 μ	N TYF	" and -	X UA	NIT:	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	m limit from	See N -300 , CONDI	Iota 2"	to "Se - 380 μ	N TYP 20 15	" and a 30 37 37	X UA	NIT:	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C	See N -300 , CONDI	Iota 2"	to "Se - 380 μ	N TYP 20 15 25	" and 30 30 37 30	X UM	NIT:	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C	See N -300 , CONDI	Iota 2"	to "Se - 380 μ	N TYP 20 15 25	MA: 30 30 37	X UA	S S	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C	See N -300 , CONDI	Iota 2"	to "Se - 380 μ	N TYP 20 15 25 19	" and 30 30 37 30 37	X UA	S S	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C	-300 , -300 , -300 DI	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25	MA: 30 30 37 30 37	X UA	NIT: 5 5	num
7.348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C	F. RL	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12	9 MA: 30 30 37 30 20 20	X UA	NIT: 5 5	num
7-348	Switching characteristics:	2. Change I _{CC} test con Ilmit of 185 mA. 3. Change I _{IL} maximu	TEST C CL = 50 p See Note 4	F. RL	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	NIT: 5 5	num
7-348	'S226 Switching characteristics: 'S226 Notes: 'S226	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change premnt Note 2 than the chang	TEST C CL = 50 p See Note 4 C L = 5 pF See Note 4	F. RL	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	NIT: 5 5	num
7-348	Switching characteristics: 'S226 Notes: 'S226 Applications:	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change table as shown: Change premnt Note 2 to Change voltage wavefor.	TEST C CL = 50 p See Note c CL = 5 p See Note c Cu = 5 p Cu	-300, -300,	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	NIT: 5 5	num
7-348	'S226 Switching characteristics: 'S226 Notes: 'S226	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change table as shown: Change premnt Note 2 to Change voltage wavefor.	TEST C CL = 50 p See Note 4 C L = 5 pF See Note 4	-300, -300,	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	S S S S S	. <u> </u>
7-348	Switching characteristics: 'S226 Notes: 'S226 Applications:	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change table as shown: Change premnt Note 2 to Change voltage wavefor.	TEST C CL = 50 p See Note c CL = 5 p See Note c Cu = 5 p Cu	-300, -300,	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	S S S S S	Vін
7-348	Switching characteristics: 'S226 Notes: 'S226 Applications:	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change present Note 2 thange voltage wavefor.	TEST C CL = 50 p See Note 4 To Note 4. The selection of the selection	-300, -300,	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	S S S S S	
7-348	Switching characteristics: 'S226 Notes: 'S226 Applications:	2. Change I _{CC} test con limit of 185 mA. 3. Change I _{IL} maximu Change table as shown: Change present Note 2 thange voltage wavefor.	TEST C CL = 50 p See Note 4 To Note 4. The selection of the selection	-300, -300,	ITION:	- 380 μ. - 370 μ. - 380 μ.	N TYP 20 15 25 19 25 19 12 10	9 MA: 30 30 37 30 20 20	X UA	S S S S S	Vін

PAGE	LOCATION: AFFECTED TYPES	CHANGE	
7-349	Features. 'LS245	Typical Propagation Delay Times, Port-to-Port 8 ns	
7-350	Electrical characteristics: 'LS245	Change limits columns for parameters shown. MIN TYP MAX MIN TYP MAX UN	IIT
		10 10 10	
	1	1 _{OZL} -200 -200	_
		48 70 48 70	\neg
		ICC 62 90 62 90 m	A
		64 95 64 95	
		Change I ₁ test conditions and limits as shown below.	
		A or 8 VCC * MAX V 7 V	
	ľ	DIR or G VCC - 3000 V ₁ = 7 V 0.1 0.1	
	Switching characteristics.	Change limits column to be. MIN TYP MAX	
	'LS245	B 12	
		8 12	
		27 40	
		25 40	
		15 25	
		15 25	
7-374	Electrical characteristics: 'LS257, 'LS258	Change I _{OZH} test condition from V _O = 2.4 V to V _O = 2.7 V	_
	Switching characteristics: 'LS257, 'LS258	Change R _L = 667 kΩ to R _L = 667 Ω	
7-375	Electrical characteristics:	Add to VOH new test conditions and limits as shown.	
	'S257, 'S258		
		VCC = MIN, VIH = 2 V. SNIZES 2.7	
		V _{IL} = 0.8 V, I _{OH} = -1 mA SN74S' 2.7 2.7	_
7-393	Switching characteristics:	Change test conditions and limits columns as shown.	
	'LS275	MIN TYP MAX	
		Any C _L = 45 pF, R _L = 667 Ω, 35 62	
		See Note 2 42 66	
		CL = 45 pF, RL = 667 m, B 23	
		Enable G Any See Note 2 13 23 CL = 5 pF, RL = 667 11, 10 15	
		See Note 2 10 15	
	1		
7-407	Electrical characteristics: SN54LS280	Change I _{CC} minimum value for SN54LS280 to a typical value (16 mA).	

PAGE	LOCATION: AFFECTED TYPES	CHANGE
7-426	Electrical characteristics. '290, '293	Change t _L "High-level input" to "Low-level input"
	Switching characteristics: 1290	Change tpHL maximum limit, bottom line, from 24 ns to 40 ns.
7-428	Electrical characteristics: 'LS290, 'LS293	Change I ₁ L "Low-level output" to "Low-level input"
7-430	Electrical characteristics:	Change I _{CC} limits columns to be. MIN TYP MAX MIN TYP MAX UNIT 20 29 20 20 29 MA 22 33 22 33 MA
7-431	Switching characteristics: 'LS2958	Change limits column to be: MIN TYP MAX 30 45
7-440	Electrical characteristics: 'LS299	1. Change I ₁ as shown below. MIN TYP MAX MIN TYP MAX UNIT
7-449	Electrical characteristics.	Add IO2 for AO, A1, and A2 outputs exactly like that for the 'LS353 on page 7-459.
7.450	Switching characteristics. 'LS348 ITIM9908)	TEST CONDITIONS

PAGE	LOCATION: AFFECTED TYPES		CHAN	NGE				
7-453	Switching characteristics:	Add maximum values and change one	typical v	alue ar	shown	below		
	'351		MIN	TYP	MAX	UNIT	7	
				20	30		1	
				20	30	ns.		
				10	22		1	
				10	22	ns ns		
				18	33		1	
				20	33	7.	ì	
				8	20		7	
				10	20	ns	1	
_								
7-463	Switching characteristics: 'LS362 (TIM9904)	Change V _{CC1} to V _{CC} and V _{CC2} to Change minimum limits for t _f (a) at		from 1	O ne to	6 ns.		
	-	1191						
7-474	Electrical characteristics: 'LS374	Change Igg maximum I mit for 'LS37	4 from 4	15 mA	to 40 n	nA two	places	
	Switching characteristics:	Change limits columns to be.		'L\$37	3		'LS374	
	'LS373, 'LS374		MIN	TYP	MAX	MIN	TYP	MAX
						35	50	$\neg \neg$
		1		12	18			$\neg \neg$
				12	18			$\neg \neg$
				20	30		15	28
				18	30	_	19	28
				15	28		20	28
		1	—	25	36		21	28
			\vdash	12	20		12	20
			-	15	25	\vdash	14	25
				10	-40		14	40
7-485	Functional block diagram: 'S381	Add one input to the P gate and conne	ect 10 C _n	input				
7-497	Electrical characteristics.	Change limits columns for ICC as show	Nn.					
	'S395A		MIN	TYP	MAX	MIN	TYP	MAX
				22	34		22	34
	1	1		21	31		21	31
7-498	Switching characteristics:	Change limits column to be:				MIN	TYP	MAX
•	115398					30	45	
							22	35
							15	30
		Į.					20	30
						\vdash	15	25
		I					17	25
	1	\						
								17
						_	11	_

PAGE	LOCATION: AFFECTED TYPES	CHANGE
7-510	Switching characteristics: SN74LS424 (TIM8224)	1. Change minimum limit for t _{0.2L,0.1H} to be $\frac{2t_c}{g}$ - 30 ns. 2. Change minimum limit for t _{0.2H,SSL} to be $\frac{6t_c}{g}$ -50 ns.
	Example: SN74LS424 (TIMB224)	1. Change minimum limit for t _{02L,01H} from 86 ns to 70 ns. 2. Change minimum limit for t _{02H,SSL} from 270 ns to 250 ns.
7-513	Figure 6: SN74LS424 (TIM8224)	Add applications information shown below. CRYSTAL REQUIREMENTS
		Frequency tolerance: :0.005% for 0°C to 70°C Resonance Mode: series, fundamental luse 3rd overtone mode with tank circuit Load capacitance: 20 pF to 35 pF Equivalent resistance: 20 Ω to 75 Ω Minimum power dissipation: 4 mW
7-529	Switching characteristics: 'LS670	1. Change table as shown below for the bottom four parameters.
		Change snable time and disable time symbols shown below for definitions. from to
		12H 1PZH 12L 1PZL 1HZ 1PHZ
		¹LZ ^t PLZ

REVISIONS TO THE FIRST AND SECOND PRINTINGS

	LOCATION: AFFECTED TYPES		HANGE
7-153	Output schematic: 'LS147, 'LS148	Add a Schottky diode as shown.	TYPICAL OF ALL OUTPUTS 120 N NOM OUTPUT
7-440	Electrical characteristics:	1. Change VOH minimum limit for SN54LS25	
	'LS299	2. Change ICC typical and maximum from 35 l	mA and 60 mA to 33 mA and 53 mA respectively.
	Switching characteristics:	Change limits column to be:	MA and 60 mA to 33 mA and 53 mA respectively. MIN TYP MAX UNIT
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33
	Switching characteristics:		MIN TYP MAX UNIT
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 26 39 ns 27 40 ns
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 ns
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 26 39 ns 27 40 ns 17 25 26 39 26 40 ns 13 21
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 ns 26 39 ns
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 ns 26 39 ns 26 40 ns 13 21 ns 19 30 ns
	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 26 39 ns 26 40 ns 13 21 ns
7-494	Switching characteristics:		MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 ns 26 39 ns 27 40 ns 17 25 ns 13 21 ns 19 30 ns 10 15 ns
7-494	Switching characteristics 'LS299	Change limits column to be:	MIN TYP MAX UNIT 35 50 MHZ 22 33 ns 26 39 ns 27 40 ns 17 25 26 39 ns 26 40 ns 13 21 ns 19 30 ns 10 15 ns m 40 μA to 100 μA two places.

TI worldwide sales offices

4717 University Drive, Suite 101 Huntsville, Alabama 35805 205-437-7530

P O. Box 35160 8102 N 73rd Ave , Suite A Phoenix, Arizona 65069 602 749:1313

3186J Airwey Costa Mese, California 97626 714-640-7311

B31 S. Douglas St El Segundo, California 90245 213-073-2571

7827 Convoy Ct., Suite 412 San Diego, California 92111 714-279-2622

P O. Box 9064 776 Patomar Avenua https://doi.org/10.0066/ 408-732-1840

9725 E. Hampdon St., Suite 301 Denier, Colorado 80231 303 751-1780

CONNECTICUE

7405 Whitney Avenue Hamben, Connecticut 06518 703 231 0074

FLORIDA

4600 their Commercial Blvd. Forr Leuderdale Fronds 33319 305 733 3300

1850 Lee Road, Suite 115 Venter Park, Florida 32789 105 644-3535

515 W. Algoriquin non Meights, Illinois 60005 312 640-3000

2246 S. Lynnurst Dr., Suite 101 Indianapolis, Indiana 46241 217-248-8555

6024 Jamine Downs Numbre, Maryland 21045 301-997-4755

MASSACHUSETTS

504 Totten Pond Rose Waltham, Max. 02154 517 890 7400

MICHIGAN

Central Park Plaza 26211 Central Park Blvd., Suite 215 Southfield, Michigan 48076 213-353-0830

MINNESOTA

A I C. Bidg., Suite 702 7615 Metro Blvd. Edina, Minn., 55435 612-835-2900

8090 Ward Parking Karsas City, Missauri 54114 816-523-2500

NEW JERSEY

1245 Westfield Ave. Clark, New Jersey 07056 201-574-9800

MET HETECO

5907 Airce N E Sunte E prout, New Merico 87110 505-285-8491

BEW YORK

8700 Old Collamer Rd. East Syracuse, New York 13057 315-463-9291

112 Namicoke Ave., P.O. Sox 618 Endicott, New York 13750 607-754-7900

201 South Avenue Poughkeapine, New York 12501 914-173-2900

1210 Jefferson Rd. Rochetter, New York 14623 716-461-1800

MORTH CAROLINA

OHIO

Belmont Bidg., Suris 120 28790 Chapin Blid Cleretand, Onio 44122 216-464-2990

Samey Bids , Suite 101 4140 Linden Avenue Devton, Ohio 45432 513-253-3121

OREGON

10700 S.W. Seprerton Hery. Suita 11 Seprerton, Oregon 97006 503 643-6759

PERMITYL VANIA

275 Commerce Drive, Suite 300 Fort Washington, Pp. 19034 215-543-5450

TEVAS

5000 Denton D/me P.O. Son 5017, M/S 356 Dailes, Texes 75272 714-238-6805

600 Commerce Park Dr. Housson, Texas 77036 713-776 6511

VIRCINIA

Crystal Square 4 1745 Jelferson Davis Hery., Suite 600 Artington, Virginia 22202 703-979-9650

3930 Beulah Rd imond, Virginia 23234 804-275-8148

WASHINGTON

700 112th N E , Suite 10 Bellevue, Washington 96004 206-455-3480

ARGENTINA Texas Instruments Argentina S.A.I.C.F.

Rin. 25, 5 fluta Panamericana Don Forcusto. C.C. Box 2296 - Corren Central Burrin Aires Rigentina 748 1141

ASIA

Texas Instruments Asia Ltd.

Acyama Tower Bidg 4:5-8-6f 24-15 Minami Acyama 2 Chome, Minato Ku, Trikyo, Japan 107 03-402-6121

902, Asian House 1, Hennessy Road Hong Kong 5/2/9041

Room 507, Chia Hun Bidg 96 Chung Shan North Road, Sec. 7 Taiper, Tainan

P.O. Box 2093 990 Bendemee: Rd Singapore 1, Republic of Singapore

AUSTRALIA

Texas Instruments Australia Ltd.

Unit 1A, 9 Bytierd Street, P.O. Box 108 North Ryde, N.S.W. 2113 Sydney, Australia 887 1122

AUSTRIA

Texas Incomments Ges M 8 H

BELGIUM

Teas Instruments Bergrum SA

Avenue Edouard Lacomble 21 8-1040 Bruttels, Balg-um 733-9623

Texas Instrumentos Electronicos do Brasil Lide

Rua Padra Pereira Andrade, 591 05469 Seo Paulo, SP, Brasil 200 6347 & 200-5710

Trust instruments incorporated

945 McCallery Scient St. Laurent H4T1N3 Ourbec, Canada 514 341 3232

41 Shelley Road Richmond Hill (Toronto) LYC564 Onterio, Cenada 416 884 9181

DENMARK

Texas Instruments A/S

FINLAND

Taxas Instruments Finland DY

Fremenkatu 6 P.O. Box 917 00101 Helpinki 10, Finland 40 83 00

Texas Instruments France

La Bours-dere, Bioc A, R N. 186 97350 Le Plessa Robinson, France (1) 830 73 43

31, Quai Rambaud 69002 Lyon, France 1781 37 35 85

9, Place de Bretange 35000 Rennes, France 1991 79 54 81 L'Autan 100, Alle de Barcelone 31500 Toulouse, France (61) 21 30 32

1, Av. de la Chartreuse 38240 Meylan, France 1761 90 45 74

Texas Instruments Deutschland GmbH Happertystrase 1 8050 Fresing, Germany 08161/80-1

Frankfurter Ring 243 8000 Wunich 40, German 089/32 50 11-15

Carametristrana 19 4300 Essen, Germany 0201/23 35 51

Akazierstrase 22-76 6230 Frankfurt-Gresheim, Germany 0611/39 90 61

Riethorsi 4 3000 Hannover 51, Germany 0511/64 80 21

Krefelderstraise 11-15 7000 Stuttgert 50, Germany 0711/54 70 01

Kurfuerstendamm 146 1000 Berlin, Germany 030/89 27 053

ITALY

Texas Instruments Italia SpA

Via Della Giustizia 9 20125 Milan, Italy 02 688 31 41

Via L. Maricinetta 65 00199 Rome, Italy 06-83 77-45

Via Montebello 27 19124 Torino, Italy 011-83 22 76

MEXICO

Team Instruments on Mexico S.A.

Fonients 116 =489 Industrial Vallejo Mexico City, 15, D.F., Mexico 567-92-00

Texas instruments Holland B.V.

Lain Van de Helende Messiers No. 421 Amstelveen, Holfand 47 3391

Texas Instruments Norway A/S

PORTUGAL

Rue Eng. Frederico Uri-ch 7650 Moreria Da Maia, Fertugal 948/1003

Texas instruments Espana S A

Calle Mallorca 272-276 12 Bercelona 12, Spain 2 15 29 50

SWEDEN

Texas Instruments International Trade Corporation (Sver-getilialen)

Fack Norre Hannyagen 3 S = 100 54 Stockholm Sweden 08-73 54 80

UNITED KINGDOM

Texas Instruments Limited

Manton Lane Bedford, England 0234-67466

LCC4162 74207-117-IS Printed in U.S.A.