Probabilistic Modeling and Statistical Computing Fall 2015

December 1, 2015

Constructing Tests

Recall maximum likelihood estimators: general method for constructing estimation formulae, often leads to identification of good statistics ("data reduction").

Is there a similar approach for constructing hypothesis tests?

Need to balance two objectives: significance level (should be kept small) and power (should be large).

- $H_0: N(\mu_0, \sigma_0^2)$ vs. $H_a: N(\mu_1, \sigma_1^2)$
- Exponential distribution. $H_0: \lambda = \lambda_0$ vs. $H_a: \lambda = \lambda_1$
- Multinomial distribution: $H_0:(p_1,\ldots,p_n)$ vs. $H_a:(q_1,\ldots,q_n)$

Find a test of H_0 against H_a that has given significance level α and maximum power.

Find a test statistic and a critical value!

Likelihood Ratio

Assume that both H_0 and H_a consist of single, well specified distributions with pdf's or pmf's $f_0(x)$, $f_a(x)$. The **likelihood function** for H_0 is

$$L_0(x_1,\ldots,x_n)=f_0(x_1)\times\cdots\times f_0(x_n)$$

and similarly for H_a .

Likelihood Ratio

For a sample (x_1, \ldots, x_n) , the likelihood ratio is

$$T = \frac{L_0(x_1, \dots, x_n)}{L_a(x_1, \dots, x_n)} = \frac{f_0(x_1) \times \dots \times f_0(x_n)}{f_a(x_1) \times \dots \times f_a(x_n)}$$

Likelihood Ratio

The likelihood ratio is

$$T = \frac{L_0(x_1, \ldots, x_n)}{L_a(x_1, \ldots, x_n)} = \frac{f_0(x_1) \times \cdots \times f_0(x_n)}{f_a(x_1) \times \cdots \times f_a(x_n)}$$

Interpretation: If T is small, the sample is more likely to come from the alternative distribution. If T is large, the sample is more likely to come from the null distribution.

Likelihood Ratio Test

Likelihood Ratio Test: Given a critical value C, reject H_0 if T < C. The significance level is $\mathcal{P}(T < C|H_0)$. The power is $\mathcal{P}(T < C|H_a)$.

Neyman - Pearson Lemma

Of all tests of H_0 versus H_a with given significance level α , the likelihood ratio test has the largest power (the lowest type II error probability).

This tells one how to find a test statistic. It does not tell us how to find the critical value C.

Example: Exponential Distribution

Consider data coming from an exponential distribution with rate $= \lambda$.

$$H_0: \lambda = \lambda_0 \text{ versus } H_a: \lambda = \lambda_a > \lambda_0$$

Given a sample (x_1, \ldots, x_n) .

Likelihood function for H_0 :

$$L_0(x_1,\ldots,x_n)=\lambda_0^n e^{-\lambda_0 x_1}e^{-\lambda_0 x_2}\ldots e^{-\lambda_0 x_n}=\lambda_0^n e^{-\lambda_0 \sum_i x_i}$$

and similarly for H_a .

Consider data coming from an exponential distribution.

Likelihood ratio for this case:

$$T = \frac{L_0(x_1, \dots, x_n)}{L_a(x_1, \dots, x_n)} = \frac{\lambda_0^n e^{-\lambda_0 \sum_i x_i}}{\lambda_a^n e^{-\lambda_a \sum_i x_i}}$$
$$= \left(\frac{\lambda_0}{\lambda_a}\right)^n e^{(-\lambda_0 + \lambda_a) \sum_i x_i}$$

Reject H_0 if T < C, where C depends on α . This means reject H_0 if $\tilde{T} = \sum_i x_i < c_1$, since T depends only on \tilde{T} .

Where are we now? What is left?

The **likelihood ratio test** uses the test statistic $\tilde{T} = \sum_{i} x_{i}$ and rejects H_{0} if \tilde{T} is small, $\tilde{T} < c_{1}$.

Need to find a relation between critical value c_1 and desired significance level α .

To do this, need the distribution of \tilde{T} if H_0 is true.

This can be done analytically or by a simulation.

Critical Region and Power

Compute the critical region of the most powerful test and its power as a function of *n*.

Fact: $\tilde{T} = \sum_{i} X_{i}$ has a Γ distribution, shape parameter = n, rate parameter λ .

 c_1 = lower α quantile for a $\Gamma(n, \lambda_0)$ distribution.

```
c1 <- qgamma(alpha, shape = n, rate
= lambda0, lower.tail = T)</pre>
```

power <- cgamma(c1, shape = n, rate
= lambdaA, lower.tail = T)</pre>

Critical Region and Power

Compute the critical region of the most powerful test and its power as a function of *n*.

Fact: $\tilde{T} = \sum_{i} X_{i}$ has a Γ distribution, shape parameter = n, rate parameter λ .

 c_1 = lower α quantile for a $\Gamma(n, \lambda_0)$ distribution.

```
c1 <- qgamma(alpha, shape = n, rate
= lambda0, lower.tail = T)</pre>
```

power <- cgamma(c1, shape = n, rate
= lambdaA, lower.tail = T)</pre>

Sample Variance

Recall the variance of X:

$$var(X) = \mathcal{E}((X - \mathcal{E}(X))^{2})$$
$$= \mathcal{E}(X^{2}) - \mathcal{E}(X)^{2}$$

Unbiased plug-in version: Given a sample x_1, \ldots, x_n , define

Sample Variance

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$cov(X, Y) = \mathcal{E}((X - \mathcal{E}(X))(Y - \mathcal{E}(Y)))$$

= $\mathcal{E}(XY) - \mathcal{E}(X)\mathcal{E}(Y)$

Unbiased plug-in version: Given a sample of pairs $(x_1, y_1), \dots, (x_n, y_n)$, define

Sample Covariance

$$cov_{x,y} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Sample Correlation

Recall the correlation coefficient of X and Y:

$$\rho(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Plug-in version: Given a sample of pairs

$$(x_1, y_1), \ldots, (x_n, y_n)$$
, define

Sample Correlation Coefficient

$$r=r_{xy}=\frac{cov_{x,y}}{s_xs_y}$$

Weight ∼ Gestation

Fitting a Line

Summarize this plot with a straight line:

Set-Up: Minimizing Residuals

Given *n* pairs $(x_1, y_1), \dots, (x_n, y_n)$. We want to find a straight line $y = \alpha + \beta x$ such that

$$y_i \approx \alpha + \beta x_i \quad (i = 1, 2, \dots, n)$$

Residuals: $r_i = y_i - (\alpha + \beta x_i)$

Least squares: Minimize $F_2(\alpha, \beta) = \sum_i r_i^2$

Least absolute values:

Minimize $F_1(\alpha, \beta) = \sum_i |r_i|$

LASSO: Pick $\lambda > 0$.

Minimize $F(\alpha, \beta, \lambda) = \sum_{i} r_{i}^{2} + \lambda(|\alpha| + |\beta|)$

Set-Up: Minimizing Residuals

Given *n* pairs $(x_1, y_1), \dots, (x_n, y_n)$. We want to find a straight line $y = \alpha + \beta x$ such that

$$y_i \approx \alpha + \beta x_i \quad (i = 1, 2, \dots, n)$$

Residuals: $r_i = y_i - (\alpha + \beta x_i)$

Least squares: Minimize

$$F_2(\alpha,\beta) = \sum_i r_i^2 = \sum_i (y_i - \alpha - \beta x_i)^2$$

Solution

- Unless all points are on a vertical line, there exists a unique solution.
- Formula for α, β : See *textbook*
- The optimal straight line satisfies $\bar{y} = \alpha + \beta \bar{x}$ and $\beta = r \frac{s_y}{s_x}$
- R implementation via 1m, linear model

Some Notation

- The x_i come from an **explanatory variable**
- The y_i are values of the **response variable**
- Given α , β , the $\hat{y}_i = \alpha + \beta x_i$ are predicted values or fits
- The $r_i = y_i \hat{y}_i$ are **residuals**
- Explanatory variables may not be causes for responses
- Explanatory variables are not necessarily independent variables, response variables are not necessarily dependent variables.

Regression toward the Mean

Recall

$$\beta = r \frac{s_y}{s_y}, \quad \bar{y} = \alpha + \beta \bar{x}, \quad y_i = \alpha + \beta x_i$$

Therefore:

$$\hat{y}_i - \bar{y} = \beta(x_i - \bar{x}) = r \frac{s_y}{s_x} (x_i - \bar{x})$$

$$\implies \frac{\hat{y}_i - \bar{y}}{s_v} = r \frac{x_i - \bar{x}}{s_x}$$

So $x_i - \bar{x} \approx s_x \implies \hat{y}_i - \bar{y} \approx rs_y$: "Regression toward the mean"

Variation Explained

One can show

$$\frac{\sum_{i}(y_{i}-\bar{y})^{2}}{n-1}=\frac{\sum_{i}(y_{i}-\hat{y}_{i})^{2}}{n-1}+\frac{\sum_{i}(\hat{y}_{i}-\bar{y})^{2}}{n-1}$$

The LHS is s_{ν}^2 .

RHS = variation of the residuals (unexplained by the regression) + variation of the predictions.

One can show: $\frac{\sum_{i}(\hat{y}_{i}-\bar{y})^{2}}{n-1} = r^{2}s_{y}^{2}$.

Therefore, $r^2 = var(\hat{y}_i)/var(y_i)$ = "variation explained by the regression".

Examining Residuals

- Plot residuals against fitted values. Look for curvature, outliers.
- Histogram / QQ plot of residuals. Look for bell-shape / skewedness / heavy tails
- If available, time plot of residuals. Trends due to changes in measurements?

```
plot (lm(...)) does all this and more.
```

Theoretical Assumptions

- Each y_i comes from a $N(\mu_i, \sigma^2)$ distribution
- $\mu_i = \alpha + \beta x_i$ and the x_i are known exactly.
- The σ^2 are all the same
- The y_i are independent

Statistical tasks:

- Estimate α, β, σ^2 , Cls, hypothesis tests
- Estimate $\mu_i = \mathcal{E}(Y_i)$, CI
- Predict Y for a new x value

Basic Facts

- The MLEs $\hat{\alpha}$, $\hat{\beta}$ for α , β are exactly the least-squares estimates.
- Unbiased estimator: $\hat{\sigma^2} = \frac{1}{n-2} \sum_i (y_i \hat{y}_i)^2$
- $\hat{\alpha}$, $\hat{\beta}$ have normal distributions.
- Can use t-tests for hypotheses about α and β . Cls are t-test based.
- Can make CIs for $\mathcal{E}(Y_i) = \mu_i$.
- Prediction intervals for the Y_i are much wider.

Multiple Linear Regression

Allow for more than one explanatory variable:

$$y_i \approx \alpha_+ \beta_i x_{i1} + \beta_2 x_{i2} + \cdots + \beta_k x_{ik}$$

or in matrix notation

$$y \approx X\beta$$

Example: Indicator variables Try to explain birth weight by including information about gender.

New variable: g = 0/1 for male/female babies.

Bootstrap - Basic Idea

Sample complete rows with replacement and build many regression models. Observe variability of the estimates.

Example: Make a bootstrap confidence interval for correlations between weight and gestation.

Example: Make a bootstrap confidence interval for the slope relating weight and gestation.