Universidade do Minho 2°Semestre 2017/18 (MIEI, 3°Ano)

# Modelos Estocásticos de Investigação Operacional

# Trabalho Prático

#### Identificação do Grupo

| <u>Número:</u> | Nome completo:                  | <u>Rubrica:</u> |
|----------------|---------------------------------|-----------------|
| A78957         | Diogo Emanuel da Silva Nogueira | Diogo Nogueira  |
| A78824         | Mariana Lino Lopes Costa        | Moriana Costa   |
| A76867         | Sarah Tifany Silva              | Sarah Sihva     |
|                |                                 |                 |

Data de entrega: 2018-04-23

# Índice

| 1.           | Formulação do Problema                                  | 3         |       |
|--------------|---------------------------------------------------------|-----------|-------|
| 1.1.         | Estágios                                                | 3         |       |
| 1.2.         | Estados                                                 | 4         |       |
| 1.3.         | Decisões                                                | 4         |       |
| 1.4.         | Objetivo                                                | 5         |       |
| 2.           | Descrição e Resolução do Problema                       | 6         |       |
| 2.1.         | Manutenção Tipo 1 e Reparação                           | 6         |       |
| 2.1.1        | . Matriz de Transição <b>Pnk</b>                        | 7         |       |
| 2.1.2        | . Matriz de Contribuição <b>Rnk</b>                     | 8         |       |
| 2.1.3        | . Diagrama                                              | 9         |       |
| <i>2.2</i> . | Manutenção Tipo 2 e Reparação                           | 10        |       |
| 2.2.1        | . Matriz de Transição <b>Pnk</b>                        | 10        |       |
| 2.2.2        | 2. Matriz de Contribuição <b>Rnk</b>                    | 11        |       |
| 2.2.3        | 3. Diagrama                                             | 12        |       |
| <i>2.3</i> . | Não Reparação                                           | 12        |       |
| 2.3.1        | . Matriz de Transição <b>Pnk</b>                        | 12        |       |
| 2.3.2        | 2. Matriz de Contribuição <b>Rnk</b>                    | 13        |       |
| 2.3.3        | 3. Diagrama                                             | 14        |       |
| 2.4.         | Cálculos Finais                                         | 15        |       |
| 3.           | Síntese e Discussão dos Resultados Obtidos              | 16        |       |
| 4.           | Política determinada aplicada em situações da vida real | 17        |       |
| 5.           | Aplicação de Processos Markovianos no estudo de         | problemas | reais |
| ,            | 18                                                      |           |       |
| 6.           | Anexos                                                  | 21        |       |
| 6.1.         | Anexo 1 – Probabilidades de Degradação                  | 21        |       |
| 6.2.         | Anexo 2 – Programa de Resolução do Problema             | 21        |       |

#### 1. Formulação do Problema

O problema apresentado refere-se a um equipamento que semanalmente passa por um inspecionamento onde se determina o seu estado de funcionamento atual. Este estado em que o equipamento se encontra pode, efetivamente, sofrer alterações, consoante a decisão que se opte por tomar aquando da inspeção do equipamento. Apesar destas possíveis decisões, existe ainda a imposição de se efetuar uma reparação imediata ao equipamento caso este se encontre no seu estado de degradação máximo. Sabe-se ainda que a eficiência do equipamento é tanto menor quanto maior é esse mesmo estado de degradação e que varia de acordo com o mesmo, segundo uma fórmula criada para o efeito.

Perante a análise do problema proposto, o grupo consegui também perceber que se trata de um problema com número de estágios indeterminado. Isto é algo que se deve ter em conta não só para a construção das várias redes, mas também para a determinação da finalização do cálculo da solução ótima final.

O objetivo deste problema passa então por averiguar que decisão se deve tomar no início de cada estágio e para cada um dos estados de degradação em que a máquina se pode encontrar.

É com base nestas informações e com um pensamento focado no problema em si que existiu a necessidade de apurar as informações que abaixo iremos abordar para se poder iniciar a resolução do problema com outra organização e método.

#### 1.1. Estágios

No problema em questão, os estágios correspondem ao **início de cada semana**, existindo 5 dias em cada uma delas. Assim, o início de cada semana e o início da próxima representam a transição de estágios e o renovar de uma nova inspeção

em que é determinado o novo estado do equipamento e consequentemente qual a decisão a se tomar para o mesmo.

#### 1.2. Estados

Perante a constatação de que o equipamento se vai deteriorando ao longo do tempo pode-se concluir que o mesmo se pode encontrar num dos seguintes estados i em que i = 1, 2, 3, 4, 5 ou 6:

- O estado 1 é o melhor estado de degradação;
- O estão 6 é o estado máximo de degradação.

#### 1.3. Decisões

No início de cada semana e após o inspecionamento do equipamento, é tomada uma decisão:

- Efetuar uma Manutenção do Tipo 1;
- Efetuar uma Manutenção do Tipo 2;
- Não efetuar qualquer Manutenção;

É imperativo ter em mente que independentemente da decisão que se opte por tomar, caso o equipamento se encontre no seu estado de degradação máximo, é obrigatório efetuar de imediato uma reparação ao equipamento.

# 1.4. Objetivo

O objetivo do problema é **minimizar a fração de tempo não produtivo do equipamento**, quer devido às paragens para manutenção e reparação, quer devido a ineficiência do funcionário.

#### 2. Descrição e Resolução do Problema

Após a formulação do problema onde se deixou definido as informações essenciais para se ingressar nesta fase do trabalho, estamos mais do que prontos para começar a esboçar a resolução do problema. Para isto, o grupo teve sempre em mente a elaboração de uma folha de cálculo *Excel*, não só por ser mais fácil de trabalhar e manipular valores, mas também por ser mais intuitiva de perceber e justificar

Tratando-se de um problema com um número de estágios indeterminado e com definidos num ciclo semanal, vamos realizar e analisar as iterações semana a semana.

Para uma melhor compreensão de toda a resolução do problema, o grupo decidiu separar as várias decisões e em cada uma delas abordar a matriz de transição, matriz de contribuição e ainda o respetivo diagrama/rede.

#### 2.1. Manutenção Tipo 1 e Reparação

Nesta secção consideramos que é sempre tomada a decisão de se efetuar uma Manutenção do Tipo 1 ao equipamento e por obrigação uma Reparação caso o meso se encontre completamente deteriorado.

Conforme ficou definido ser feito, vamos determinar as probabilidades em que é possível ocorrer a decisão em causa, através da matriz  $P_n^k$  e após isso determinar as contribuições associadas às mesmas, através da matriz  $R_n^k$ .

## 2.1.1. Matriz de Transição $P_n^k$

A matriz transição representa a matriz com as probabilidades de transição dos estados i para o i+1, entre o conjunto de estados {1,2,3,4,5,6}.

#### Nesta decisão:

- Um equipamento que se encontre no estado i é reposto, passando para o estado i 1 ou i 2 com probabilidades 0.6 e 0.4, respetivamente. Assim sendo, um equipamento que se encontre no estado 2, altera o seu estado para i=1.
  Um que se encontre no estado 3 pode alterar o seu estado para i=1 ou i=2, e assim sucessivamente.
- Para além da reposição destes estados que passam por uma Manutenção do Tipo 1, existe ainda a obrigatoriedade de um equipamento no estado i=6 ser reparado, passando para o estado i=1.

|         |     | P(n,k) |     |     |   |   |  |  |  |  |  |  |  |  |  |
|---------|-----|--------|-----|-----|---|---|--|--|--|--|--|--|--|--|--|
| Estados | 1   | 2      | 3   | 4   | 5 | 6 |  |  |  |  |  |  |  |  |  |
| 1       | 0   | 0      | 0   | 0   | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 2       | 1   | 0      | 0   | 0   | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 3       | 0.4 | 0.6    | 0   | 0   | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 4       | 0   | 0.4    | 0.6 | 0   | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 5       | 0   | 0      | 0.4 | 0.6 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 6       | 1   | 0      | 0   | 0   | 0 | 0 |  |  |  |  |  |  |  |  |  |

#### 2.1.2. Matriz de Contribuição $R_n^k$

A matriz de contribuição representa a matriz com os tempos totais de transição do estado i para o estado i+1, para todos os estados possíveis, isto é, o conjunto {1,2,3,4,5,6}.

Assim, o cálculo das contribuições para cada transição de estado (C<sub>ij</sub>) foi realizado com base na seguinte fórmula:

• Dos estados 1,2,3,4 e 5 para o estado 1: demorando esta manutenção meio dia a ser efetuada, o tempo produtivo do equipamento é igual a 4.5 e tempo não produtivo igual a 0.5 (em dias). Assim, a fórmula passa ser:

$$C_{ij} = \frac{e^k}{240} * 4.5 + 0.5$$

Em que o k corresponde à média aritmética dos valores dos estados no inicio de uma semana e no inicio da semana seguinte.

 Do estado 6 para o estado 1: por se tratar de uma reparação e por existir uma dualidade em termos de termos de tempo de serviço é necessário se efetuar uma média de tempo que esta reparação demora a ser efetuada. Assim, a fórmula sofre uma ligeira alteração:

$$C_{61}$$
 = (ineficiência)<sub>61</sub> \* (tempo produtivo) + ( $R_1*p_1 + R_2*p_2$ )

Em que  $R_1$  corresponde à primeira possibilidade de tempo de serviço e  $p_1$  a respetiva probabilidade.  $R_2$  corresponde então à segunda possibilidade de tempo de serviço e  $p_2$  a respetiva probabilidade. Assim, a fórmula passa ser:

$$C_{61} = \frac{e^{3.5}}{240} * (3.675) + (1*0.35 + 1.5*0.65).$$

|         |          | R(n,k) |        |        |   |   |  |  |  |  |  |  |  |  |  |
|---------|----------|--------|--------|--------|---|---|--|--|--|--|--|--|--|--|--|
| Estados | 1        | 2      | 3      | 4      | 5 | 6 |  |  |  |  |  |  |  |  |  |
| 1       | 0        | 0      | 0      | 0      | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 2       | 0.5840   | 0      | 0      | 0      | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 3       | 0.0.6385 | 0.7284 | 0      | 0      | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 4       | 0        | 0.8766 | 1.1209 | 0      | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 5       | 0        | 0      | 1.5237 | 2.1878 | 0 | 0 |  |  |  |  |  |  |  |  |  |
| 6       | 1.8321   | 0      | 0      | 0      | 0 | 0 |  |  |  |  |  |  |  |  |  |

#### 2.1.3. Diagrama



#### 2.2. Manutenção Tipo 2 e Reparação

Nesta decisão consideramos é sempre tomada a decisão e se efetuar uma Manutenção do Tipo 2 e também por imposição uma reparação de um equipamento que se encontre no estado máximo de degradação.

#### 2.2.1. Matriz de Transição $P_n^k$

A matriz de transição da decisão de efetuar uma Manutenção do Tipo 2 **é elaborada com base no seguinte princípio**:

- Um equipamento no estado i (i > 1) é resposto no estado i=1, como se estivesse novo. Assim, um equipamento que se encontre no estado 2, 3, 4 ou 5 após sofrer este tipo de manutenção, passa a estar no estado i=1.
- Um equipamento no estado i = 6, passa pela tal reparação obrigatória, sendo reposto também no estado i = 1.

|         | P(n,k) |   |   |   |   |   |  |  |  |  |  |  |  |  |
|---------|--------|---|---|---|---|---|--|--|--|--|--|--|--|--|
| Estados | 1      | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |  |  |  |
| 1       | 0      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 2       | 1      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 3       | 1      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 4       | 1      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 5       | 1      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 6       | 1      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

## 2.2.2. Matriz de Contribuição $R_n^k$

O cálculo das contribuições para cada transição de estado (C<sub>ij</sub>) foi realizado usando a mesma fórmula da decisão anterior. A única diferença incide no facto de uma Manutenção do Tipo 2 demorar 1 dia a ser efetivamente realizada.

 Dos estados 1,2,3,4 e 5 para o estado 1: demorando esta manutenção um dia a ser efetuada, o tempo produtivo do equipamento é igual a 4 e tempo não produtivo igual a 1 (em dias). Assim, a fórmula passa ser:

$$C_{ij} = \frac{e^k}{240} * 4 + 1$$

 Do estado 6 para o estado 1: segue exatamente o mesmo cálculo da decisão anterior:

$$C_{61} = \frac{e^{3.5}}{240} * (3.675) + (1*0.35 + 1.5*0.65).$$

|         | R(n,k) |   |   |   |   |   |  |  |  |  |  |  |  |  |
|---------|--------|---|---|---|---|---|--|--|--|--|--|--|--|--|
| Estados | 1      | 2 | 3 | 4 | 5 | 6 |  |  |  |  |  |  |  |  |
| 1       | 0      | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 2       | 1.0747 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 3       | 1.1232 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 4       | 1.2030 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 5       | 1.3348 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 6       | 1.8321 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

#### 2.2.3. Diagrama



#### 2.3. Não Reparação

Como última decisão existe a possibilidade de não se efetuar qualquer tipo de manutenção ao equipamento. Portanto, nesta secção estamos a considerar que a decisão passa sempre por não reparar o equipamento.

## 2.3.1. Matriz de Transição $P_n^k$

A matriz de transição da decisão de não se efetuar qualquer tipo de manutenção 2 **é elaborada com base no seguinte princípio**:

No início da semana seguinte, o equipamento encontrar-se-á no estado j (j >=i
 ) com a probabilidade atribuída na tabela abaixo.

Os valores destas probabilidades de degradação foram gerados de acordo com o número de Aluno A78957 (correspondente a um dos elementos do grupo) e tal como pedido, encontram-se comprovadas na Secção (ANEXO 1):

|         |      | P(n,k) |      |     |      |      |  |  |  |  |  |  |  |  |  |
|---------|------|--------|------|-----|------|------|--|--|--|--|--|--|--|--|--|
| Estados | 1    | 2      | 3    | 4   | 5    | 6    |  |  |  |  |  |  |  |  |  |
| 1       | 0.65 | 0.3    | 0.05 | 0   | 0    | 0    |  |  |  |  |  |  |  |  |  |
| 2       | 0    | 0.5    | 0.2  | 0.2 | 0.1  | 0    |  |  |  |  |  |  |  |  |  |
| 3       | 0    | 0      | 0.8  | 0.1 | 0.05 | 0.05 |  |  |  |  |  |  |  |  |  |
| 4       | 0    | 0      | 0    | 0.7 | 0.05 | 0.25 |  |  |  |  |  |  |  |  |  |
| 5       | 0    | 0      | 0    | 0   | 0.45 | 0.55 |  |  |  |  |  |  |  |  |  |
| 6       | 1    | 0      | 0    | 0   | 0    | 0    |  |  |  |  |  |  |  |  |  |

## 2.3.2. Matriz de Contribuição $R_n^k$

Como estamos perante uma situação em que não existe qualquer tipo de manutenção, o calculo das contribuições vai sofrer alterações.

 Dos estados 1,2,3,4 e 5 para os restantes estados: não existindo tempo não produtivo então o tempo produtivo do equipamento é máximo, ou seja, os 5 dias da semana. Assim, a fórmula passa ser:

$$C_{ij} = \frac{e^k}{240} * 5$$

• **Do estado 6 para o estado 1:** segue exatamente o mesmo cálculo das decisões anteriores:

$$C_{61} = \frac{e^{3.5}}{240} * (3.675) + (1*0.35 + 1.5*0.65).$$

|         |        | R(n,k) |        |        |        |        |  |  |  |  |  |  |  |  |  |
|---------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|--|--|--|--|
| Estados | 1      | 2      | 3      | 4      | 5      | 6      |  |  |  |  |  |  |  |  |  |
| 1       | 0.0566 | 0.0934 | 0.1539 | 0      | 0      | 0      |  |  |  |  |  |  |  |  |  |
| 2       | 0      | 0.1539 | 0.2538 | 0.4184 | 0.6899 | 0      |  |  |  |  |  |  |  |  |  |
| 3       | 0      | 0      | 0.4184 | 0.6899 | 1.1375 | 1.8754 |  |  |  |  |  |  |  |  |  |
| 4       | 0      | 0      | 0      | 1.1375 | 1.8754 | 3.0919 |  |  |  |  |  |  |  |  |  |
| 5       | 0      | 0      | 0      | 0      | 3.0919 | 5.0977 |  |  |  |  |  |  |  |  |  |
| 6       | 1.8321 | 0      | 0      | 0      | 0      | 0      |  |  |  |  |  |  |  |  |  |

# 2.3.3. Diagrama



#### 2.4. Cálculos Finais

A resolução do problema passou, primeiramente por calcular para cada decisão as matrizes de transição ( $P_n^k$ ) e de contribuição ( $R_n^k$ ) respetiva. Após se ter definido estas matrizes foi apenas necessário efetuar um conjunto de cálculos para cada uma das decisões e estágios de modo a se chegar a um resultado ótimo:

• Cálculos dos vetores das esperanças das contribuições ( $m{Q}_n^k$ ), para cada decisão, utilizando a seguinte fórmula:

$$q_{i,(n)} = \sum_{j=1}^{N} p_{ij,(n)} + r_{ij,(n)}$$

• Após a obtenção deste valor, prossegue-se ao cálculo do vetor  $V_n^k$  usando a seguinte formula:

$$V_n^k = Q_n^k + P_n^k * F_{n-1}$$

- Por fim, com os três vetores  $V_n^k$  (um por cada decisão), escolhemos o valor mínimo na posição i, para todas as posições do vetor, formando assim o vetor  $F_n$ .
- O raciocínio acima é utilizado para todos os estágios. Como o número de estágios é indeterminado é necessário encontrar um número de estágios para o qual exista a solução opima. Isto consegue-se com o cálculo de  $D_n$  para cada estágio:

$$D_n = F_n - F_{n-1}$$

Quando este vetor  $S_n$  for constituído por valores todos iguais, sabemos que encontramos a solução ótima do problema em questão.

#### 3. Síntese e Discussão dos Resultados Obtidos

Com base nos resultados obtidos, que se encontram apresentados no Anexo, as frações de tempo não produtivo do equipamento estabilizaram ao fim de 4 semanas, ou seja, no estágio 4. O valor obtido foi 0, o que significa, logicamente, que a fração de tempo não produtivo do equipamento, quer seja devido às paragens para manutenção e reparação ou à sua ineficiência de funcionamento, é nulo, ou por outras palavras inexistente.

De seguida é apresentado o plano de decisões de modo a obter o resultado supracitado anteriormente:

|         |                   | Estágios (início d | de cada semana)   |                   |
|---------|-------------------|--------------------|-------------------|-------------------|
| Estados | 1                 | 2                  | 3                 | 4                 |
| 1       | Manutenção Tipo 1 | Manutenção Tipo 1  | Manutenção Tipo 1 | Manutenção Tipo 1 |
|         | ou Tipo 2         | ou Tipo 2          | ou Tipo 2         | ou Tipo 2         |
| 2       | Não reparar       | Manutenção Tipo 1  | Manutenção Tipo 1 | Manutenção Tipo 1 |
| 3       | Não reparar       | Manutenção Tipo 1  | Manutenção Tipo 1 | Manutenção Tipo 1 |
| 4       | Manutenção Tipo 1 | Manutenção Tipo 2  | Manutenção Tipo 2 | Manutenção Tipo 2 |
| 5       | Manutenção Tipo 2 | Manutenção Tipo 2  | Manutenção Tipo 2 | Manutenção Tipo 2 |
| 6       | Manutenção Tipo 2 | Manutenção Tipo 2  | Manutenção Tipo 2 | Manutenção Tipo 2 |

# 4. Política determinada aplicada em situações da vida real

Fazendo uma análise dos resultados obtidos com a resolução deste problema e pensando-se num cenário mais realístico conseguimos facilmente perceber que toda a política determinada se revela razoável e aplicável a uma situação real, tanto em termos positivos como negativos, uma vez que existem diversos fatores que o comprovam.

- Com o cálculo de todas as contribuições e para cada uma das decisões, chegamos à conclusão de que uma Manutenção do Tipo 2, que representa uma reparação por completo é mais dispendiosa em termos de tempo de serviço em comparação com uma Manutenção do Tipo 1,
- Sabe-se que a inatividade do equipamento é um fator determinante no que toca à eficiência do equipamento.
   Aplicada à realidade, a ineficiência do equipamento vai sofrer um aumento inevitável ao fim de semana já que é um período de pausa obrigatório de ser
  - feito;
- Pensando numa Manutenção do Tipo 2 aplicada a uma situação real facilmente se deduz a impossibilidade de um equipamento que se encontre num estado de degradação significativo, passar de imediato para um estado que o defina novamente como novo.

# 5. Aplicação de Processos Markovianos no estudo de problemas reais

O artigo "Maintenance strategy selection in electric power distribution systems" vem resolver a problemática dos sistemas de distribuição de energia elétrica nas Organizações de Saúde, apresentando um modelo inovador que contribui para garantir uma melhor qualidade de serviço ao paciente e não só. De facto, é importante salientar que este aspeto relativo aos sistemas de distribuição de energia elétrica é de enorme relevância no que diz respeito às Organizações de Saúde, visto que estes sistemas têm de ser capazes de fornecer energia, por exemplo, para incubadoras de recém-nascidos, salas de operação, iluminação geral, unidades de tratamento intensivos, equipamentos de raio-X, de quimioterapia, entre muitos outros aspetos. Apesar da enorme importância que uma política de manutenção apropriada pode causar nos sistemas de distribuição esta é uma temática que ainda não foi desenvolvida em termos práticos.

Sendo assim, este modelo integra a Atratividade por Medição abordando uma Técnica de Avaliação baseada categoricamente em cadeias de Markov, permitindo obter o melhor resultado para diferentes sistemas de distribuição de energia elétrica. O resultado é uma classificação completa da combinação de políticas e ações de manutenção, escolhendo, a partir destas a melhor estratégia a aplicar nos sistemas de distribuição de energia.

Passando diretamente para a metodologia, é referido neste artigo que as cadeias de Markov têm sido aplicados a sistemas para permitir uma melhor modelação, confiabilidade e segurança nos parâmetros a serem estimados. É feito referência também em que sistemas é que se aplicou este tipo de modelo, como para determinar políticas de manutenção em unidades de fragmentação catalítica, prever o impacto de

estratégias de inspeções alternativas e a deteções de vazamentos nos sistemas de tubulação entre muitos outros que mencionados.

Assim sendo, o uso de cadeias de Markov considera um conjunto discreto de estados exaustivos e mutuamente exclusivos, no qual o tempo de mudança de um estado para o outro é aleatório. Por conseguinte, a metodologia aplicada será sucintamente explicada de seguida.

Primeiramente, foi realizada a análise dos sistemas de distribuição de energia elétrica – aspetos técnicos, políticas de manutenção aplicadas atualmente, recursos necessários, entre outros. Posteriormente, encontrou-se os modos de falhas dos sistemas de distribuição de energia elétrica, envolvendo a análise de cada elemento do sistema e a sua operação, as possíveis formas pelas quais ele pode falhar e consequências. De seguida, definiu-se as possíveis estratégias de manutenção para serem aplicadas segundo o sistema em análise como uma combinação de diferentes políticas de manutenção. Foi considerado também a possibilidade de incluir melhorias no sistema como, aumento de partes, entre outros. Esta ações terão um impacto positivo na disponibilidade do sistema. Seguidamente, foi calculado as taxas de falha e reparação através de uma equação, mencionado no artigo.

Nesta etapa, sendo a mais relevante, foi determinado o gráfico de Markov. A modelação do sistema através de cadeias de Markov consiste em obter um gráfico no qual se define os estados do sistema e onde a transição entre estados é realizada devido à falha ou à reparação. Assim, considera-se dois casos: falhas catastróficas ou não catastróficas. As catastróficas causam diretamente a paragem do sistema, enquanto que as não catastróficas são devidas aos estados de degradação ou desgaste.

Assim, o modelo de Markov avalia a probabilidade de ir de um estado conhecido para outro, através das dependências entre eles, quer sejam falhas ou reparações. Logo, o objetivo passa por estudar o desenvolvimento dos sistemas e, portanto, ser capaz de prever os seus comportamentos usando modelos de Markov, considerando

sistemas com m+1 estados, de tal forma que cada estado representa um nível desgaste e onde k é o número máximo de estados de desgaste permitido de forma a que o sistema possa continuar a funcionar. Por conseguinte, cada nível de desgaste é identificado pelo nº de elementos que não funcionam. **Portanto, os estados são os seguintes:** 

- Estado 0: sistema está a trabalhar normalmente.
- **Estado 1**: um dos elementos está a falhar ou o sistema está no nível 1 de desgaste.
- Estado 2: dois elementos estão a falhar ou o sistema está no estado de desgaste
  2;
- Estado (m-1): (m-1) elementos estão a falhar ou o sistema está no estado (m-1) de desgaste.
- **Estado m**: todos os elementos do sistema estão a falhar ou sistema está completamente desgastado.

Por conseguinte, foi calculada a matriz de transição onde se é definida através de uma equação probabilidade condicional de transição numa cadeia de Markov homogénea em tempo continuo. Foi obtido a matriz de transição quando  $t=\infty$ , sendo esta designada para calcular a disponibilidade em sistemas reparáveis. Resolveu-se os sistemas de equação de tempo continuo de cadeias de Markov para sistemas reparáveis e obteve-se a disponibilidade média dos sistemas.

Assim sendo, através da utilização deste modelo que foi aplicado em diversos sistemas de Distribuição energia elétrica, referidos no artigo, escolheram-se as melhores políticas para cada sistema.

## 6. Anexos

# 6.1. Anexo 1 – Probabilidades de Degradação

| ANEXO: Tabela de    | <u>dados</u> |            |            |           |              |      |
|---------------------|--------------|------------|------------|-----------|--------------|------|
| Aluno Nº            | <u>78957</u> |            |            |           |              |      |
| Probabilidades de t | ransição e   | ntre estad | los de deg | radação:  |              |      |
|                     | (            | Condição n | a próxima  | semana (j | <del>)</del> |      |
| Condição atual (i)  | 1            | 2          | 3          | 4         | 5            | 6    |
| 1                   | 0,65         | 0,3        | 0,05       | 0         | 0            | 0    |
| 2                   | 0            | 0,5        | 0,2        | 0,2       | 0,1          | 0    |
| 3                   | 0            | 0          | 0,8        | 0,1       | 0,05         | 0,05 |
| 4                   | 0            | 0          | 0          | 0,7       | 0,05         | 0,25 |
| 5                   | 0            | 0          | 0          | 0         | 0,45         | 0,55 |

# 6.2. Anexo 2 – Programa de Resolução do Problema

| N  | k                    |                          |                             | D                              | (n,k)                          |                                        |                                |                                                     |                                 | R (                                  | n ld                                 |                                                |                                           | Q (n,k)                                                       | P (n,k) * F (n-1)                                   | V (n,k)                                                  | F (n)                                               | D (n)                                               |
|----|----------------------|--------------------------|-----------------------------|--------------------------------|--------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| IN | K                    |                          |                             | Ρ                              | (п,к)                          |                                        |                                |                                                     |                                 | к (                                  | п,к)                                 |                                                |                                           | Q (n,k)                                                       | P (n,k) " F (n-1)                                   | v (n,k)                                                  |                                                     | υ (n)                                               |
|    | х                    |                          |                             |                                | х                              |                                        |                                |                                                     |                                 | :                                    | K                                    |                                                |                                           | X                                                             | X                                                   | x                                                        | 0<br>0<br>0<br>0                                    | x                                                   |
|    | Manutenção<br>Tipo 1 | 0<br>1<br>0,4<br>0<br>0  | 0<br>0,6<br>0,4<br>0        | 0<br>0<br>0<br>0,6<br>0,4<br>0 | 0<br>0<br>0<br>0<br>0,6<br>0   | 0<br>0<br>0<br>0<br>0,0                | 0<br>0<br>0<br>0,0<br>0,0      | 0<br>0,5840<br>0,6385<br>0<br>0<br>1,8321           | 0<br>0<br>0,7284<br>0,8766<br>0 | 0<br>0<br>0<br>1,1209<br>1,5237<br>0 | 0<br>0<br>0<br>0<br>2,1878<br>0      | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0                     | 0<br>0,5840<br>0,6925<br>1,0232<br>1,9222<br>1,8321           | 0<br>0<br>0<br>0<br>0                               | 0<br>0,5840<br>0,6925<br>1,0232<br>1,9222<br>1,8321      |                                                     |                                                     |
|    | Manutenção<br>Tipo 2 | 0<br>1<br>1<br>1<br>1    | 0<br>0<br>0<br>0            | 0<br>0<br>0<br>0               | 0<br>0<br>0<br>0               | 0<br>0<br>0<br>0<br>0                  | 0<br>0<br>0<br>0<br>0          | 0<br>1,0747<br>1,1232<br>1,2030<br>1,3348<br>1,8321 | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                          | 0<br>1,0747<br>1,1232<br>1,2030<br>1,3348<br>1,8321           | 0<br>0<br>0<br>0<br>0                               | 0<br>1,0747<br>1,1232<br>1,2030<br>1,3348<br>1,8321      | 0<br>0,2804<br>0,5544<br>1,0232<br>1,3348<br>1,8321 | 0<br>0,2804<br>0,5544<br>1,0232<br>1,3348<br>1,8321 |
|    | Não Reparar          | 0,65<br>0<br>0<br>0<br>0 | 0,30<br>0,50<br>0<br>0<br>0 | 0,05<br>0,20<br>0,80<br>0<br>0 | 0<br>0,20<br>0,10<br>0,70<br>0 | 0<br>0,10<br>0,05<br>0,05<br>0,45<br>0 | 0<br>0,05<br>0,25<br>0,55      | 0,0566<br>0<br>0<br>0<br>0<br>0<br>1,8321           | 0,0934<br>0,1539<br>0<br>0<br>0 | 0,1539<br>0,2538<br>0,4184<br>0<br>0 | 0<br>0,4184<br>0,6899<br>1,1375<br>0 | 0<br>0,6899<br>1,1375<br>1,8754<br>3,0919<br>0 | 0<br>0<br>1,8754<br>3,0919<br>5,0977<br>0 | 0,0725<br>0,2804<br>0,5544<br>1,6630<br>4,1951<br>1,8321      | 0<br>0<br>0<br>0<br>0                               | 0,0725<br>0,2804<br>0,5544<br>1,6630<br>4,1951<br>1,8321 |                                                     |                                                     |
|    | Manutenção<br>Tipo 1 | 0<br>1<br>0,4<br>0<br>0  | 0<br>0<br>0,6<br>0,4<br>0   | 0<br>0<br>0<br>0,6<br>0,4<br>0 | 0<br>0<br>0<br>0<br>0,6        | 0<br>0<br>0<br>0<br>0,0                | 0<br>0<br>0<br>0,0<br>0,0      | 0<br>0,5840<br>0,6385<br>0<br>0<br>1,8321           | 0<br>0<br>0,7284<br>0,8766<br>0 | 0<br>0<br>0<br>1,1209<br>1,5237<br>0 | 0<br>0<br>0<br>0<br>0<br>2,1878      | 0 0 0 0 0 0                                    | 0 0 0 0 0                                 | 0<br>0,5840<br>0,6925<br>1,0232<br>1,9222<br>1,8321           | 0<br>0<br>0,1682<br>0,4448<br>0,8357                | 0<br>0,5840<br>0,8607<br>1,4680<br>2,7578<br>1,8321      |                                                     |                                                     |
|    | Manutenção<br>Tipo 2 | 0<br>1<br>1<br>1<br>1    | 0 0 0 0 0 0 0               | 0 0 0 0 0 0 0                  | 0 0 0 0 0 0 0                  | 0 0 0 0 0 0 0 0                        | 0<br>0<br>0<br>0<br>0          | 0<br>1,0747<br>1,1232<br>1,2030<br>1,3348<br>1,8321 | 0 0 0 0 0 0 0                   | 0 0 0 0 0 0                          | 0<br>0<br>0<br>0<br>0                | 0 0 0 0 0 0 0                                  | 0<br>0<br>0<br>0                          | 0<br>1,074695<br>1,123151<br>1,203042<br>1,334759<br>1,832080 | 0<br>0<br>0<br>0<br>0                               | 0<br>1,0747<br>1,1232<br>1,2030<br>1,3348<br>1,8321      | 0<br>0,5840<br>0,8607<br>1,2030<br>1,3348<br>1,8321 | 0<br>0,3036<br>0,3063<br>0,1799<br>0                |
|    | Não Reparar          | 0,65<br>0<br>0<br>0<br>0 | 0,30<br>0,50<br>0<br>0<br>0 | 0,05<br>0,20<br>0,80<br>0<br>0 | 0<br>0,20<br>0,10<br>0,70<br>0 | 0<br>0,10<br>0,05<br>0,05<br>0,45<br>0 | 0<br>0<br>0,05<br>0,25<br>0,55 | 0,0566<br>0<br>0<br>0<br>0<br>0<br>1,8321           | 0,0934<br>0,1539<br>0<br>0<br>0 | 0,1539<br>0,2538<br>0,4184<br>0<br>0 | 0<br>0,4184<br>0,6899<br>1,1375<br>0 | 0<br>0,6899<br>1,1375<br>1,8754<br>3,0919<br>0 | 0<br>0<br>1,8754<br>3,0919<br>5,0977<br>0 | 0,0725<br>0,2804<br>0,5544<br>1,6630<br>4,1951<br>1,8321      | 0,1118<br>0,5892<br>0,7042<br>1,2410<br>1,6083<br>0 | 0,1844<br>0,8696<br>1,2586<br>2,9040<br>5,8034<br>1,8321 |                                                     |                                                     |

| N | k           |      |      | Ρ(   | (n,k) |      |      |        |        | R (ı   | n,k)   |        |        | Q (n,k)  | P (n,k) * F (n-1) | V (n,k) | F (n)  | D (n)  |
|---|-------------|------|------|------|-------|------|------|--------|--------|--------|--------|--------|--------|----------|-------------------|---------|--------|--------|
|   |             | 0    | 0    | 0    | 0     | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0                 | 0       |        |        |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 0,5840 | 0      | 0      | 0      | 0      | 0      | 0,5840   | 0                 | 0,5840  |        |        |
|   | Manutenção  | 0,4  | 0,6  | 0    | 0     | 0    | 0    | 0,6385 | 0,7284 | 0      | 0      | 0      | 0      | 0,6925   | 0,3504            | 1,0429  |        |        |
|   | Tipo 1      | 0    | 0,4  | 0,6  | 0     | 0    | 0,0  | 0      | 0,8766 | 1,1209 | 0      | 0      | 0      | 1,0232   | 0,7500            | 1,7732  |        |        |
|   |             | 0    | 0    | 0,4  | 0,6   | 0,0  | 0,0  | 0      | 0      | 1,5237 | 2,1878 | 0      | 0      | 1,9222   | 1,0661            | 2,9883  |        |        |
|   |             | 1,0  | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,8321   | 0                 | 1,8321  |        |        |
|   |             | 0    | 0    | 0    | 0     | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0                 | 0       | 0      | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,0747 | 0      | 0      | 0      | 0      | 0      | 1,0747   | 0                 | 1,0747  | 0,5840 | 0      |
| 3 | Manutenção  | 1    | 0    | 0    | 0     | 0    | 0    | 1,1232 | 0      | 0      | 0      | 0      | 0      | 1,1232   | 0                 | 1,1232  | 1,0429 | 0,1822 |
|   | Tipo 2      | 1    | 0    | 0    | 0     | 0    | 0    | 1,2030 | 0      | 0      | 0      | 0      | 0      | 1,2030   | 0                 | 1,2030  | 1,2030 | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,3348 | 0      | 0      | 0      | 0      | 0      | 1,3348   | 0                 | 1,3348  | 1,3348 | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,8321   | 0                 | 1,8321  | 1,8321 | 0      |
|   |             | 0,65 | 0,30 | 0,05 | 0     | 0    | 0    | 0,0566 | 0,0934 | 0,1539 | 0      | 0      | 0      | 0,0725   | 0,2182            | 0,2908  |        |        |
|   |             | 0    | 0,50 | 0,20 | 0,20  | 0,10 | 0    | 0      | 0,1539 | 0,2538 | 0,4184 | 0,6899 | 0      | 0,2804   | 0,8382            | 1,1187  |        |        |
|   | Não Reparar | 0    | 0    | 0,80 | 0,10  | 0,05 | 0,05 | 0      | 0      | 0,4184 | 0,6899 | 1,1375 | 1,8754 | 0,5544   | 0,9672            | 1,5216  |        |        |
|   | read repara | 0    | 0    | 0    | 0,70  | 0,05 | 0,25 | 0      | 0      | 0      | 1,1375 | 1,8754 | 3,0919 | 1,6630   | 1,3669            | 3,0299  |        |        |
|   |             | 0    | 0    | 0    | 0     | 0,45 | 0,55 | 0      | 0      | 0      | 0      | 3,0919 | 5,0977 | 4,1951   | 1,6083            | 5,8034  |        |        |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,8321   | 0                 | 1,8321  |        |        |
|   |             | 0    | 0    | 0    | 0     | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0                 | 0       |        |        |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 0,5840 | 0      | 0      | 0      | 0      | 0      | 0,5840   | 0                 | 0,5840  |        |        |
|   | Manutenção  | 0,4  | 0,6  | 0    | 0     | 0    | 0    | 0,6385 | 0,7284 | 0      | 0      | 0      | 0      | 0,6925   | 0,3504            | 1,0429  |        |        |
|   | Tipo 1      | 0    | 0,4  | 0,6  | 0     | 0    | 0,0  | 0      | 0,8766 | 1,1209 | 0      | 0      | 0      | 1,0232   | 0,8593            | 1,8825  |        |        |
|   |             | 0    | 0    | 0,4  | 0,6   | 0,0  | 0,0  | 0      | 0      | 1,5237 | 2,1878 | 0      | 0      | 1,9222   | 1,1390            | 3,0612  |        |        |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,8321   | 0                 | 1,8321  |        |        |
|   |             | 0    | 0    | 0    | 0     | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0,000000 | 0                 | 0       | 0      | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,0747 | 0      | 0      | 0      | 0      | 0      | 1,074695 | 0                 | 1,0747  | 0,5840 | 0      |
| 4 | Manutenção  | 1    | 0    | 0    | 0     | 0    | 0    | 1,1232 | 0      | 0      | 0      | 0      | 0      | 1,123151 | 0                 | 1,1232  | 1,0429 | 0      |
|   | Tipo 2      | 1    | 0    | 0    | 0     | 0    | 0    | 1,2030 | 0      | 0      | 0      | 0      | 0      | 1,203042 | 0                 | 1,2030  | 1,2030 | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,3348 | 0      | 0      | 0      | 0      | 0      | 1,334759 | 0                 | 1,3348  | 1,3348 | 0      |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,832080 | 0                 | 1,8321  | 1,8321 | 0      |
|   |             | 0,65 | 0,30 | 0,05 | 0     | 0    | 0    | 0,0566 | 0,0934 | 0,1539 | 0      | 0      | 0      | 0,0725   | 0,2274            | 0,2999  |        |        |
|   |             | 0    | 0,50 | 0,20 | 0,20  | 0,10 | 0    | 0      | 0,1539 | 0,2538 | 0,4184 | 0,6899 | 0      | 0,2804   | 0,8747            | 1,1551  |        |        |
|   | Não Reparar | 0    | 0    | 0,80 | 0,10  | 0,05 | 0,05 | 0      | 0      | 0,4184 | 0,6899 | 1,1375 | 1,8754 | 0,5544   | 1,1130            | 1,6673  |        |        |
|   |             | 0    | 0    | 0    | 0,70  | 0,05 | 0,25 | 0      | 0      | 0      | 1,1375 | 1,8754 | 3,0919 | 1,6630   | 1,3669            | 3,0299  |        |        |
|   |             | 0    | 0    | 0    | 0     | 0,45 | 0,55 | 0      | 0      | 0      | 0      | 3,0919 | 5,0977 | 4,1951   | 1,6083            | 5,8034  |        |        |
|   |             | 1    | 0    | 0    | 0     | 0    | 0    | 1,8321 | 0      | 0      | 0      | 0      | 0      | 1,8321   | 0                 | 1,8321  |        |        |