Directed equality with dinaturality

Andrea Laretto, Fosco Loregian, Niccolò Veltri

Tallinn University of Technology

5th Itaca Workshop, Padova December 20th, 2024

- A very interesting aspect of Martin-Löf type theory/logic: equality.
- For simplicity, consider first order logic:

$$\frac{A \text{ type}}{[a:A,b:A] \ a=b \text{ prop}}$$

- A very interesting aspect of Martin-Löf type theory/logic: equality.
- For simplicity, consider first order logic:

$$\frac{A \text{ type}}{[a:A,b:A] \ a=b \text{ prop}}$$

$$\frac{}{[x:A] \ \Gamma \vdash x = x} \ (refl)$$

- A very interesting aspect of Martin-Löf type theory/logic: equality.
- For simplicity, consider first order logic:

$$\frac{A \text{ type}}{[a:A,b:A]\ a=b \text{ prop}}$$

$$\frac{[z:A,x:C] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:A,b:A,x:C]\ a=b,\ \Gamma(a,b,x) \vdash P(a,b,x)} \text{ (J)}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 1/32

- A very interesting aspect of Martin-Löf type theory/logic: equality.
- For simplicity, consider first order logic:

$$\frac{A \text{ type}}{[a:A,b:A]\ a=b \text{ prop}}$$

$$\frac{[z:A,x:C] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:A,b:A,x:C]\ a=b,\ \Gamma(a,b,x) \vdash P(a,b,x)} \text{ (J)}$$

• Transitivity of equality:

$$\frac{\overline{[z:A,c:A]} \qquad z=c\vdash z=c}{[a:A,b:A,c:A] \ a=b, \ b=c\vdash a=c} \text{ (id)}$$

- A very interesting aspect of Martin-Löf type theory/logic: equality.
- For simplicity, consider first order logic:

$$\frac{A \text{ type}}{[a:A,b:A] \ a=b \text{ prop}}$$

$$\frac{[z:A,b:A] \ a=b \text{ prop}}{[a:A,b:A] \ \Gamma\vdash x=x} \text{ (refl)} \ \frac{[z:A,x:C] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:A,b:A,x:C] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \text{ (J)}$$

• Transitivity of equality:

$$\frac{\overline{[z:A,c:A]} \qquad z=c\vdash z=c}{[a:A,b:A,c:A] \ a=b, \ b=c\vdash a=c} \text{ (id)}$$

Equality in MLTT is inherently symmetric:

$$\frac{\overline{[z:A]} \quad \top \vdash z = z}{[a:A,b:A] \ a = b \vdash b = a} \ \mathsf{(refl)}$$

Models of MLTT

What can types be?

Martin-Löf type theory admits a sound interpretation in:

Types as sets. [Martin-Löf 1971]

• Types as groupoids. [Hoffmann-Streicher 1999]

Types as ∞-groupoids. [Voevodsky 2013], [van der Berg-Garner 2010]

Types as sSets, Top, cubical sets, ... [Awodey-Warren 2007], [CCHM 2007]

Types as reflexive graphs for parametricity. [Atkey-Ghani-Johann 2007]

Andrea Laretto ItaCa 2024 December 20th, 2024 2 / 32

What can types be?

Martin-Löf type theory admits a sound interpretation in:

Types as sets. [Martin-Löf 1971]

Types as groupoids. [Hoffmann-Streicher 1999]
 Types as ∞-groupoids. [Voevodsky 2013], [van der Berg-Garner 2010]

• Types as **sSets**, **Top**, cubical sets, ... [Awodey-Warren 2007], [CCHM 2007]

• Types as reflexive graphs for parametricity. [Atkey-Ghani-Johann 2007]

Intuition: types are groupoids, equalities are always-invertible morphisms.

Andrea Laretto ItaCa 2024 December 20th, 2024 2 / 32

What can types be?

Martin-Löf type theory admits a sound interpretation in:

• Types as sets. [Martin-Löf 1971]

• Types as groupoids. [Hoffmann-Streicher 1999]

• Types as ∞-groupoids. [Voevodsky 2013], [van der Berg-Garner 2010]

Types as sSets, Top, cubical sets, ... [Awodey-Warren 2007], [CCHM 2007]

Types as reflexive graphs for parametricity. [Atkey-Ghani-Johann 2007]

Intuition: types are groupoids, equalities are always-invertible morphisms.

Some familiar structures are missing...

What can types be?

Martin-Löf type theory admits a sound interpretation in:

• Types as sets. [Martin-Löf 1971]

Types as groupoids. [Hoffmann-Streicher 1999]
 Types as ∞-groupoids. [Voevodsky 2013], [van der Berg-Garner 2010]

• Types as **sSet**s, **Top**, cubical sets, ... [Awodey-Warren 2007], [CCHM 2007]

• Types as reflexive graphs for parametricity. [Atkey-Ghani-Johann 2007]

Intuition: types are groupoids, equalities are always-invertible morphisms.

Some familiar structures are missing... what about categories and posets?!

Andrea Laretto ItaCa 2024 December 20th, 2024 2 / 32

Martin-Löf type theory with refl/J is intrinsically about symmetric equality. **Directed type theory** is the generalization to "directed equality".

Martin-Löf type theory with refl/J is intrinsically about symmetric equality. **Directed type theory** is the generalization to "directed equality".

The interpretation of directed type theory with (1-) categories:

```
\begin{array}{c} \mathsf{Types} \leadsto \mathsf{Categories} \\ \mathsf{Terms} \leadsto \mathsf{Functors} \\ \mathsf{Relations} \leadsto \mathsf{Profunctors} \\ \mathsf{Points} \ \mathsf{of} \ \mathsf{a} \ \mathsf{type} \leadsto \mathsf{Objects} \ \mathsf{of} \ \mathsf{a} \ \mathsf{category} \\ \mathsf{Equalities} \ e : a = b \leadsto \mathsf{Morphisms} \ e : \mathsf{hom}(a,b) \\ \mathsf{Equality} \ \mathsf{types} =_A : A \times A \to \mathsf{Type} \leadsto \mathsf{Hom} \ \mathsf{types} \ \mathsf{hom}_{\mathbb{C}} : \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbf{Set} \end{array}
```

 \to Now types have a *polarity*, $\mathbb C$ and $\mathbb C^{op}$, i.e., the opposite category.

Andrea Laretto ItaCa 2024 December 20th, 2024 3 / 32

Martin-Löf type theory with refl/J is intrinsically about symmetric equality. **Directed type theory** is the generalization to "directed equality".

The interpretation of directed type theory with (1-) categories:

```
\begin{array}{c} \mathsf{Types} \leadsto \mathsf{Categories} \\ \mathsf{Terms} \leadsto \mathsf{Functors} \\ \mathsf{Relations} \leadsto \mathsf{Profunctors} \\ \mathsf{Points} \ \mathsf{of} \ \mathsf{a} \ \mathsf{type} \leadsto \mathsf{Objects} \ \mathsf{of} \ \mathsf{a} \ \mathsf{category} \\ \mathsf{Equalities} \ e: a = b \leadsto \mathsf{Morphisms} \ e: \mathsf{hom}(a,b) \\ \mathsf{Equality} \ \mathsf{types} =_A: A \times A \to \mathsf{Type} \leadsto \mathsf{Hom} \ \mathsf{types} \ \mathsf{hom}_{\mathbb{C}}: \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbf{Set} \\ \end{array}
```

- \rightarrow Now types have a *polarity*, $\mathbb C$ and $\mathbb C^{op}$, i.e., the opposite category.
- ightarrow Now equalities $e: \hom(a,b)$ have directionality: rewrites, trans., processes.

Andrea Laretto ItaCa 2024 December 20th, 2024 3 / 32

Martin-Löf type theory with refl/J is intrinsically about symmetric equality. **Directed type theory** is the generalization to "directed equality".

The interpretation of directed type theory with (1-) categories:

```
\begin{array}{c} \mathsf{Types} \leadsto \mathsf{Categories} \\ \mathsf{Terms} \leadsto \mathsf{Functors} \\ \mathsf{Relations} \leadsto \mathsf{Profunctors} \\ \mathsf{Points} \ \mathsf{of} \ \mathsf{a} \ \mathsf{type} \leadsto \mathsf{Objects} \ \mathsf{of} \ \mathsf{a} \ \mathsf{category} \\ \mathsf{Equalities} \ e: a = b \leadsto \mathsf{Morphisms} \ e: \hom(a,b) \\ \mathsf{Equality} \ \mathsf{types} =_A: A \times A \to \mathsf{Type} \leadsto \mathsf{Hom} \ \mathsf{types} \ \hom_{\mathbb{C}}: \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbf{Set} \\ \end{array}
```

- ightarrow Now types have a *polarity*, $\mathbb C$ and $\mathbb C^{op}$, i.e., the opposite category.
- ightarrow Now equalities $e: \hom(a,b)$ have *directionality:* rewrites, trans., processes.

We want to find which syntactic restriction of MLTT allow for types can be interpreted as categories.

• Semantically, refl should be $\mathrm{id}_c \in \mathrm{hom}_{\mathbb{C}}(c,c)$ for $c:\mathbb{C}$.

- Semantically, refl should be $\mathrm{id}_c \in \mathrm{hom}_{\mathbb{C}}(c,c)$ for $c:\mathbb{C}$.
- Transitivity of directed equality \rightsquigarrow composition of morphisms in \mathbb{C} .

- Semantically, refl should be $id_c \in hom_{\mathbb{C}}(c,c)$ for $c : \mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in $\mathbb{C}.$

$$\frac{\overline{[z:\mathbb{C}^{\mathsf{op}},c:\mathbb{C}]} \quad \operatorname{hom}(z,c) \vdash \operatorname{hom}(z,c)}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \quad \operatorname{hom}(a,b), \ \operatorname{hom}(b,c) \vdash \operatorname{hom}(a,c)} \ (J)$$

- Semantically, refl should be $\mathrm{id}_c \in \mathrm{hom}_{\mathbb{C}}(c,c)$ for $c:\mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in \mathbb{C} .

$$\frac{1}{[z:\mathbb{C}^{\mathsf{op}},c:\mathbb{C}]} \frac{\hom(z,c) \vdash \hom(z,c)}{\hom(a,b), \, \hom(b,c) \vdash \hom(a,c)} \, (\mathsf{id}) \, (J)$$

However, directed type theory is not so straightforward:

$$\frac{a:\mathbb{C}}{\mathsf{refl}_a...?:\mathsf{hom}_{\mathbb{C}}(a,a)}$$

• *Problem:* rule is not functorial w.r.t. variance of $\hom_{\mathbb{C}}: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$, since $a: \mathbb{C}$ appears both contravariantly and covariantly.

- Semantically, refl should be $\mathrm{id}_c \in \mathrm{hom}_{\mathbb{C}}(c,c)$ for $c:\mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in \mathbb{C} .

$$\frac{[z:\mathbb{C}^{\mathsf{op}},c:\mathbb{C}] \qquad \operatorname{hom}(z,c) \vdash \operatorname{hom}(z,c)}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \operatorname{hom}(a,b), \operatorname{hom}(\overline{b},c) \vdash \operatorname{hom}(a,c)} (J)$$

However, directed type theory is not so straightforward:

$$\frac{a:\mathbb{C}}{\mathsf{refl}_a...?:\mathsf{hom}_{\mathbb{C}}(a,a)} \quad \rightsquigarrow \quad \frac{a:\mathbb{C}^\mathsf{core}}{\mathsf{refl}_a:\mathsf{hom}(\mathsf{i}^\mathsf{op}(a),\mathsf{i}(a))} \ [\mathsf{North} \ 2018]$$

- Problem: rule is not functorial w.r.t. variance of $\hom_{\mathbb{C}}: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$, since $a: \mathbb{C}$ appears both contravariantly and covariantly.
- Current approach to DTT in Cat: [North 2018], [Neumann 2024]
 → Use the maximal subgroupoid C^{core} to collapse the two variances,

- Semantically, refl should be $\mathrm{id}_c \in \mathrm{hom}_{\mathbb{C}}(c,c)$ for $c:\mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in $\mathbb{C}.$

$$\frac{[z:\mathbb{C}^{\mathsf{op}},c:\mathbb{C}] \qquad \operatorname{hom}(z,c) \vdash \operatorname{hom}(z,c)}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \operatorname{hom}(a,b), \operatorname{hom}(\overline{b},c) \vdash \operatorname{hom}(a,c)} (J)$$

However, directed type theory is not so straightforward:

$$\frac{a:\mathbb{C}}{\mathsf{refl}_a...?:\mathsf{hom}_{\mathbb{C}}(a,a)} \quad \leadsto \quad \frac{a:\mathbb{C}^\mathsf{core}}{\mathsf{refl}_a:\mathsf{hom}(\mathsf{i}^\mathsf{op}(a),\mathsf{i}(a))} \ [\mathsf{North} \ 2018]$$

- Problem: rule is not functorial w.r.t. variance of $\hom_{\mathbb{C}}: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$, since $a: \mathbb{C}$ appears both contravariantly and covariantly.
- Current approach to DTT in Cat: [North 2018], [Neumann 2024]
 - o Use the maximal subgroupoid $\mathbb{C}^{\mathsf{core}}$ to collapse the two variances, since $(\mathbb{C}^{\mathsf{core}})^{\mathsf{op}} \cong \mathbb{C}^{\mathsf{core}}$, then use $\mathsf{i} : \mathbb{C}^{\mathsf{core}} \to \mathbb{C}$ and $\mathsf{i}^{\mathsf{op}} : \mathbb{C}^{\mathsf{core}} \to \mathbb{C}^{\mathsf{op}}$.

- Semantically, refl should be $id_c \in hom_{\mathbb{C}}(c,c)$ for $c : \mathbb{C}$.
- Transitivity of directed equality \leadsto composition of morphisms in $\mathbb{C}.$

$$\frac{[z:\mathbb{C}^{\mathsf{op}},c:\mathbb{C}] \qquad \operatorname{hom}(z,c) \vdash \operatorname{hom}(z,c)}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \operatorname{hom}(a,b), \operatorname{hom}(\overline{b},c) \vdash \operatorname{hom}(a,c)} (J)$$

However, directed type theory is not so straightforward:

$$\frac{a:\mathbb{C}}{\mathsf{refl}_a...?:\mathsf{hom}_{\mathbb{C}}(a,a)} \quad \leadsto \quad \frac{a:\mathbb{C}^\mathsf{core}}{\mathsf{refl}_a:\mathsf{hom}(\mathsf{i}^\mathsf{op}(a),\mathsf{i}(a))} \ \ [\mathsf{North} \ 2018]$$

- Problem: rule is not functorial w.r.t. variance of $\hom_{\mathbb{C}}: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$, since $a: \mathbb{C}$ appears both contravariantly and covariantly.
- Current approach to DTT in Cat: [North 2018], [Neumann 2024]
 - ightarrow Use the maximal subgroupoid $\mathbb{C}^{\mathsf{core}}$ to collapse the two variances, since $(\mathbb{C}^{\mathsf{core}})^{\mathsf{op}} \cong \mathbb{C}^{\mathsf{core}}$, then use $i: \mathbb{C}^{\mathsf{core}} \to \mathbb{C}$ and $i^{\mathsf{op}}: \mathbb{C}^{\mathsf{core}} \to \mathbb{C}^{\mathsf{op}}$.
- ullet Then a J-like rule is validated, but again using groupoidal structure.

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

Our approach: yes, by validating rules with dinatural transformations.

 Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly → solving the issue with refl.

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

- Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly → solving the issue with refl.
- We will see how dinaturality validates both
 → a refl rule (directed equality introduction),

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

- Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly → solving the issue with refl.
- We will see how dinaturality validates both
 - \rightarrow a refl rule (directed equality introduction),
 - \rightarrow a J rule (directed equality elimination).

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

- Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly → solving the issue with refl.
- We will see how dinaturality validates both
 - \rightarrow a refl rule (directed equality introduction),
 - \rightarrow a J rule (directed equality elimination).
- ullet The directed J rule is extremely similar to the standard MLTT J rule,

Is there a way to interpret a directed type theory in 1-categories without having to collapse categories back to the "undirected" groupoidal case?

- Intuition: dinatural transformations allow for the same variable to appear both covariantly and contravariantly → solving the issue with refl.
- We will see how dinaturality validates both
 - \rightarrow a refl rule (directed equality introduction),
 - \rightarrow a J rule (directed equality elimination).
- The directed J rule is extremely similar to the standard MLTT J rule, but with a syntactic restriction which does not allow for symmetry.
- This comes at the cost of compositionality:
 we have a cut rule only if variables appear naturally in a entailment.

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \operatorname{hom}(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom)}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 6/32

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\hom)$$

- **Idea:** now variables have variance, *positive* $(a : \mathbb{A})$ or *negative* $(\overline{a} : \mathbb{A}^{op})$.
- **Restriction:** a, b must appear only *positively* in P, and *negatively* in Γ .

Andrea Laretto ItaCa 2024 December 20th, 2024 6/32

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom)}$$

- **Idea:** now variables have variance, *positive* $(a : \mathbb{A})$ or *negative* $(\overline{a} : \mathbb{A}^{op})$.
- **Restriction:** a,b must appear only *positively* in P, and *negatively* in Γ .
- (Again, dinaturality allows z to appear twice in P(z,z,x).)

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\hom)$$

- **Idea:** now variables have variance, *positive* $(a : \mathbb{A})$ or *negative* $(\overline{a} : \mathbb{A}^{op})$.
- Restriction: a,b must appear only positively in P, and negatively in Γ .
- (Again, dinaturality allows z to appear twice in P(z,z,x).)
- Same terms provable in MLTT about equality: transitivity, transport, congruence, but not symmetry!

Andrea Laretto ItaCa 2024 December 20th, 2024 6/32

Comparison between symmetric equality and our directed equality rule:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a=b, \ \Gamma(a,b,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \operatorname{hom}(a,b),\ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\operatorname{hom})$$

- Idea: now variables have variance, positive $(a : \mathbb{A})$ or negative $(\overline{a} : \mathbb{A}^{op})$.
- **Restriction:** a,b must appear only *positively* in P, and *negatively* in Γ .
- (Again, dinaturality allows z to appear twice in P(z,z,x).)
- ➤ Same terms provable in MLTT about equality: transitivity, transport, congruence, but not symmetry!
- ▶ Proving properties about them follows precisely the steps in MLTT. (e.g., we have the same computation rules.)

Andrea Laretto ItaCa 2024 December 20th, 2024 6/32

Contribution 2 – (Co)end calculus

Another important open question:

Contribution 2 – (Co)end calculus

Another important open question:

What should the quantifiers of directed type theory be?

Another important open question:

What should the quantifiers of directed type theory be?

• Dinaturality again gives us a hint: ends and coends.

Another important open question:

What should the quantifiers of directed type theory be?

- Dinaturality again gives us a hint: ends and coends.
- We present a series of "logical rules", inspired by the doctrinal approach, to view (co)ends as the directed quantifiers of DTT.

Another important open question:

What should the quantifiers of directed type theory be?

- Dinaturality again gives us a hint: ends and coends.
- We present a series of "logical rules", inspired by the doctrinal approach, to view (co)ends as the directed quantifiers of DTT.
- ▶ We then use the rules to give *simple proofs* of theorems in category theory, using dinaturality and viewing hom as directed equality.

Another important open question:

What should the quantifiers of directed type theory be?

- Dinaturality again gives us a hint: ends and coends.
- We present a series of "logical rules", inspired by the doctrinal approach, to view (co)ends as the directed quantifiers of DTT.
- ▶ We then use the rules to give *simple proofs* of theorems in category theory, using dinaturality and viewing hom as directed equality.
- Claim: (co)end calculus is the first-order instantiation of a directed type theory with quantifiers, with semantics in 1-categories.

Another story, now in CT:

Rel → Prof

Sets → Categories

Relations $A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$ Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition: $\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$

Conjunction of truth values \rightsquigarrow Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \rightsquigarrow$ Identity profunctor: $\hom_{\mathbb{C}}$

Andrea Laretto ItaCa 2024 December 20th, 2024 7/32

Another story, now in CT:

Rel → Prof

Sets → Categories

Relations $A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$ Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition: $\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$

Conjunction of truth values \leadsto Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \leadsto$ Identity profunctor: $\hom_{\mathbb{C}}$

Why do unitality and associativity hold?

Because of rules for equality in FOL. \rightsquigarrow Because of the coYoneda lemma. Because of rules for \exists and \land in FOL. \rightsquigarrow Because of properties of coends.

Andrea Laretto ItaCa 2024 December 20th, 2024 7/3:

Another story, now in CT:

Rel → Prof

Sets → Categories

Relations $A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$ Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition: $\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$

Conjunction of truth values \rightsquigarrow Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \rightsquigarrow$ Identity profunctor: $\hom_{\mathbb{C}}$

Why do unitality and associativity hold?

Because of rules for equality in FOL. \rightsquigarrow Because of the coYoneda lemma. Because of rules for \exists and \land in FOL. \rightsquigarrow Because of properties of coends.

• We use FOL in **Rel**: there is no *directed logic* for **Prof**.

Another story, now in CT:

Rel → Prof

Sets → Categories

Relations $A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$ Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition: $\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$

Conjunction of truth values \rightsquigarrow Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \rightsquigarrow$ Identity profunctor: $\hom_{\mathbb{C}}$

Why do unitality and associativity hold?

Because of rules for equality in FOL. \rightsquigarrow Because of the coYoneda lemma. Because of rules for \exists and \land in FOL. \rightsquigarrow Because of properties of coends.

- We use FOL in Rel: there is no directed logic for Prof.
- A proper treatment of coends as quantifiers.

Another story, now in CT:

Rel → Prof

Sets → Categories

Relations $A \times B \to \{\top, \bot\} \leadsto \mathsf{Profunctors} \ \mathbb{C}^\mathsf{op} \times \mathbb{D} \to \mathbf{Set}$ Existential quantifiers $\exists x \leadsto \mathsf{Coends} \ \int^x$

Composition: $\exists b \in B. \ R(a,b) \land Q(b,c) \leadsto \int^{b:\mathbb{B}} R(a,b) \times Q(b,c)$

Conjunction of truth values \rightsquigarrow Cartesian products of **Set**s Identity relation: $=_{\mathbb{C}} \rightsquigarrow$ Identity profunctor: $\hom_{\mathbb{C}}$

Why do unitality and associativity hold?

Because of rules for equality in FOL. \rightsquigarrow Because of the coYoneda lemma. Because of rules for \exists and \land in FOL. \rightsquigarrow Because of properties of coends.

- We use FOL in **Rel**: there is no *directed logic* for **Prof**.
- A proper treatment of coends as quantifiers.
- A syntactic treatment of directed logic (with directed equality and its rules, and quantifiers), e.g., using a doctrinal approach.

Andrea Laretto ItaCa 2024 December 20th, 2024 7/3:

Can we interpret logic in **Cat**, viewed as a category of contexts?

Can we interpret logic in **Cat**, viewed as a category of contexts?

From type theory: why Cat is not a model for Martin-Löf type theory:

- Cat is not locally cartesian closed,
- Cat is not even regular (but it is 2-regular [Street CBS 1982])

Can we interpret logic in **Cat**, viewed as a category of contexts?

From type theory: why Cat is not a model for Martin-Löf type theory:

- Cat is not locally cartesian closed,
- Cat is not even regular (but it is 2-regular [Street CBS 1982])

From the doctrinal perspective: **Set** plays the role of *generalized truth* values in **Prof**, and presheaves are "generalized logical predicates", but:

Can we interpret logic in **Cat**, viewed as a category of contexts?

From type theory: why Cat is not a model for Martin-Löf type theory:

- Cat is not locally cartesian closed,
- Cat is not even regular (but it is 2-regular [Street CBS 1982])

From the doctrinal perspective: **Set** plays the role of *generalized truth* values in **Prof**, and presheaves are "generalized logical predicates", but:

Equality in the presheaf hyperdoctrine

$$\mathcal{P} \mathsf{sh}(\mathbb{C}) \!:=\! [\mathbb{C}^\mathsf{op}, \textbf{Set}] \!:\! \textbf{Cat}^\mathsf{op} \!\to\! \textbf{CAT}$$

does not validate Frobenius and Beck-Chevalley: [Melliès-Zeilberger 2016]

Can we interpret logic in **Cat**, viewed as a category of contexts?

From type theory: why Cat is not a model for Martin-Löf type theory:

- Cat is not locally cartesian closed,
- Cat is not even regular (but it is 2-regular [Street CBS 1982])

From the doctrinal perspective: **Set** plays the role of *generalized truth* values in **Prof**, and presheaves are "generalized logical predicates", but:

Equality in the presheaf hyperdoctrine

$$\mathcal{P}\mathsf{sh}(\mathbb{C})\!:=\![\mathbb{C}^\mathsf{op},\textbf{Set}]\!:\!\textbf{Cat}^\mathsf{op}\!\to\!\textbf{CAT}$$

does not validate Frobenius and Beck-Chevalley: [Melliès-Zeilberger 2016]

$$\begin{split} \mathrm{Eq}_{\mathbb{C}} &:= \, \exists_{\Delta_{\mathbb{C}}}(\top_{\mathbb{C}}) \,\, \in \,\, \mathcal{P}\mathrm{sh}(\mathbb{C} \times \mathbb{C}) \\ \mathrm{Eq}_{\mathbb{C}} &= (a,b) \mapsto \int^{x \, \in \mathbb{C}} \hom_{\mathbb{C}}(a,x) \times \hom_{\mathbb{C}}(b,x) \end{split}$$

i.e., any two objects forming a cospan for some \boldsymbol{x} should be equated. *Note:* These conditions also fail in groupoids.

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for \mathcal{P} sh:

[Lawvere 1970, Equality in Hyperdoctrines]

Andrea Laretto ItaCa 2024 December 20th, 2024 7 / 32

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for $\mathcal{P}sh$:

• [...] This should not be taken as indicative of a lack of vitality of \mathcal{P} sh as hyperdoctrine, or even of a lack of a satisfactory theory of equality for it.

[Lawvere 1970, Equality in Hyperdoctrines]

Andrea Laretto ItaCa 2024 December 20th, 2024 7/32

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for \mathcal{P} sh:

- [...] This should not be taken as indicative of a lack of vitality of \mathcal{P} sh as hyperdoctrine, or even of a lack of a satisfactory theory of equality for it.
- Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.

[Lawvere 1970, Equality in Hyperdoctrines]

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for $\mathcal{P}sh$:

- [...] This should not be taken as indicative of a lack of vitality of \mathcal{P} sh as hyperdoctrine, or even of a lack of a satisfactory theory of equality for it.
- Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.
- Equality should be the "graph" of the identity term. But present categorical conceptions indicate that the graph of a functor $F: \mathbb{C} \to \mathbb{D}$ should be [...] a binary attribute of mixed variance $\mathcal{P}sh(\mathbb{C}^{op} \times \mathbb{D})$.
- Thus in particular "equality" should be the functor $\hom_{\mathbb{C}}$ [...].

[Lawvere 1970, Equality in Hyperdoctrines]

Lawvere commenting on the failure of Frobenius/Beck-Chevalley for $\mathcal{P}sh$:

- [...] This should not be taken as indicative of a lack of vitality of \mathcal{P} sh as hyperdoctrine, or even of a lack of a satisfactory theory of equality for it.
- Rather, it indicates that we have probably been too naive in defining equality in a manner too closely suggested by the classical conception.
- Equality should be the "graph" of the identity term. But present categorical conceptions indicate that the graph of a functor $F:\mathbb{C}\to\mathbb{D}$ should be [...] a binary attribute of mixed variance $\mathcal{P}\mathit{sh}(\mathbb{C}^\mathit{op}\times\mathbb{D})$.
- Thus in particular "equality" should be the functor $\hom_{\mathbb{C}}$ [...].
- The term which would take the place of $\Delta_{\mathbb{C}}$ in such a more enlightened theory of equality would be the forgetful functor $\mathsf{Tw}(\mathbb{C}) \to \mathbb{C}^\mathsf{op} \times \mathbb{C}$. [...]
- Of course to abstract from this example would require at least the addition of a functor $T \xrightarrow{\text{op}} T$ to the structure of a [doctrine].

[Lawvere 1970, Equality in Hyperdoctrines]

Background on dinaturality and (co)ends

• A **difunctor** from $\mathbb C$ to $\mathbb D$ is a functor $F,G:\mathbb C^{\mathsf{op}}\times\mathbb C\to\mathbb D$.

- A **difunctor** from \mathbb{C} to \mathbb{D} is a functor $F, G : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$.
- A **dipresheaf** on $\mathbb C$ is an endoprofunctor $P:\mathbb C^{\mathsf{op}}\times\mathbb C\to \mathbf{Set}.$

- A **difunctor** from \mathbb{C} to \mathbb{D} is a functor $F,G:\mathbb{C}^{op}\times\mathbb{C}\to\mathbb{D}$.
- A dipresheaf on $\mathbb C$ is an endoprofunctor $P:\mathbb C^{\mathsf{op}}\times\mathbb C\to \mathbf{Set}.$
- Given difunctors $F,G:\mathbb{C}^{\mathsf{op}}\times\mathbb{C}\to\mathbb{D}$, a **dinatural transformation** $\alpha:F\overset{\dots}{\longrightarrow}G$ is a family of morphisms of \mathbb{D} for each $x:\mathbb{C}$,

$$\alpha_x: F(x,x) \longrightarrow G(x,x)$$

- A **difunctor** from $\mathbb C$ to $\mathbb D$ is a functor $F,G:\mathbb C^{\mathsf{op}}\times\mathbb C\to\mathbb D$.
- A dipresheaf on $\mathbb C$ is an endoprofunctor $P:\mathbb C^{\mathsf{op}}\times\mathbb C\to \mathbf{Set}.$
- Given difunctors $F,G:\mathbb{C}^{\mathsf{op}}\times\mathbb{C}\to\mathbb{D}$, a **dinatural transformation** $\alpha:F\overset{\dots}{\longrightarrow}G$ is a family of morphisms of \mathbb{D} for each $x:\mathbb{C}$,

$$\alpha_x: F(x,x) \longrightarrow G(x,x)$$

such that for every $a,b:\mathbb{C}$ and $f:a\to b$ this hexagon commutes:

$$F(\mathrm{id},f) \xrightarrow{F(\mathrm{id},f)} F(b,b) \xrightarrow{\alpha_b} G(b,b) \xrightarrow{G(f,\mathrm{id})} G(a,b)$$

$$F(b,a) \xrightarrow{F(f,\mathrm{id})} F(a,a) \xrightarrow{\alpha_a} G(a,a) \xrightarrow{G(\mathrm{id},f)} G(a,b)$$

Andrea Laretto ItaCa 2024 December 20th, 2024 7/32

- A **difunctor** from $\mathbb C$ to $\mathbb D$ is a functor $F,G:\mathbb C^{\mathsf{op}}\times\mathbb C\to\mathbb D$.
- A dipresheaf on $\mathbb C$ is an endoprofunctor $P:\mathbb C^{\mathsf{op}}\times\mathbb C\to\mathsf{Set}.$
- Given difunctors $F,G:\mathbb{C}^{\mathsf{op}}\times\mathbb{C}\to\mathbb{D}$, a **dinatural transformation** $\alpha:F\overset{\bullet}{\longrightarrow}G$ is a family of morphisms of \mathbb{D} for each $x:\mathbb{C}$,

$$\alpha_x: F(x,x) \longrightarrow G(x,x)$$

such that for every $a,b:\mathbb{C}$ and $f:a\to b$ this hexagon commutes:

$$F(\mathrm{id},f) \xrightarrow{F(\mathrm{id},f)} F(b,b) \xrightarrow{\alpha_b} G(b,b) \xrightarrow{G(f,\mathrm{id})} G(a,b)$$

$$F(b,a) \xrightarrow{F(f,\mathrm{id})} F(a,a) \xrightarrow{\alpha_a} G(a,a)$$

Theorem (Naturals are dinaturals [Dubuc and Street 1969])

A dinatural between functors which do not depend on \mathbb{C}^{op} is just a natural.

Andrea Laretto ItaCa 2024 December 20th, 2024 7/32

Background: Dinaturals don't always compose

• Dinaturals don't always compose: $\alpha: F \xrightarrow{\bullet \bullet} G$, $\beta: G \xrightarrow{\bullet \bullet} H$,

Andrea Laretto ItaCa 2024 December 20th, 2024 7 / 32

Background: Dinaturals don't always compose

• Dinaturals don't always compose: $\alpha: F \xrightarrow{\bullet \bullet} G$, $\beta: G \xrightarrow{\bullet \bullet} H$,

• They always compose with naturals: $\alpha: F \xrightarrow{\bullet \bullet} G$, $\beta: G \longrightarrow H$,

$$F(b,b) \xrightarrow{\alpha_b} G(b,b) \xrightarrow{\beta_{bb}} H(b,b)$$

$$F(b,a) \xrightarrow{G(a,b)} H(a,b)$$

$$F(a,a) \xrightarrow{\alpha_a} G(a,a) \xrightarrow{G(\operatorname{id},f)} H(a,a)$$

Andrea Laretto ItaCa 2024 December 20th, 2024 7/3:

• (Co)ends give elegant characterizations of theorems of category theory.

- (Co)ends give elegant characterizations of theorems of category theory.
- Natural transformations as ends:

$$\operatorname{\mathsf{Nat}}(F,G) \cong \int_{x:\mathbb{C}} \hom_{\mathbb{D}}(F(\overline{x}),G(x))$$

- (Co)ends give elegant characterizations of theorems of category theory.
- Natural transformations as ends:

$$\mathsf{Nat}(F,G) \cong \int_{x:\mathbb{C}} \hom_{\mathbb{D}}(F(\overline{x}),G(x))$$

Quantifier exchange

$$\begin{aligned} &(Q:(\mathbb{C}^{\mathsf{op}}\times\mathbb{C})\\ &\times(\mathbb{D}^{\mathsf{op}}\times\mathbb{D})\to \mathbf{Set}):\\ &\int_{x:\mathbb{C}}\int_{y:\mathbb{D}}Q(\overline{x},x,\overline{y},y)\\ &\cong \int_{y:\mathbb{D}}\int_{x:\mathbb{C}}Q(\overline{x},x,\overline{y},y)\\ &\cong \int_{(x,y):\mathbb{C}\times\mathbb{D}}Q(\overline{x},x,\overline{y},y) \end{aligned}$$

- (Co)ends give elegant characterizations of theorems of category theory.
- Natural transformations as ends:

$$\operatorname{Nat}(F,G)\cong\int_{x:\mathbb{C}}\hom_{\mathbb{D}}(F(\overline{x}),G(x))$$

• Quantifier exchange $(Q: (\mathbb{C}^{op} \times \mathbb{C}) \times (\mathbb{D}^{op} \times \mathbb{D}) \rightarrow \mathbf{Set}):$

$$\int_{x:\mathbb{C}} \int_{y:\mathbb{D}} Q(\overline{x}, x, \overline{y}, y)$$

$$\cong \int_{y:\mathbb{D}} \int_{x:\mathbb{C}} Q(\overline{x}, x, \overline{y}, y)$$

$$J_{y:\mathbb{D}} J_{x:\mathbb{C}}$$

$$\cong \int_{(x,y):\mathbb{C}\times\mathbb{D}} Q(\overline{x},x,\overline{y},y)$$

• (Co)Yoneda lemma: $(P: \mathbb{C} \to \mathbf{Set})$

$$P(a) \cong \int_{x:\mathbb{C}} \hom_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)$$

$$P(a) \cong \int_{-\infty}^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x}, a) \times P(x)$$

- (Co)ends give elegant characterizations of theorems of category theory.
- Natural transformations as ends:

$$\mathsf{Nat}(F,G) \cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}),G(x))$$

• Quantifier exchange $(Q: (\mathbb{C}^{op} \times \mathbb{C}) \times (\mathbb{D}^{op} \times \mathbb{D}) \rightarrow \mathbf{Set}):$

$$\int_{x:\mathbb{C}} \int_{y:\mathbb{D}} Q(\overline{x}, x, \overline{y}, y)$$

$$\cong \int_{y:\mathbb{D}} \int_{x:\mathbb{C}} Q(\overline{x},x,\overline{y},y)$$

$$\cong \int_{(x,y):\mathbb{C}\times\mathbb{D}} Q(\overline{x},x,\overline{y},y)$$

• (Co)Yoneda lemma: $(P: \mathbb{C} \to \mathbf{Set})$

$$P(a) \cong \int_{x:\mathbb{C}} \hom_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)$$

$$P(a) \cong \int^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x}, a) \times P(x)$$

• Kan extensions: $(F:\mathbb{C}\to\mathbb{D})$

$$\begin{split} (\mathsf{Ran}_F P)(a) &\cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(a, F(\overline{x})) \Rightarrow P(x) \\ (\mathsf{Lan}_F P)(a) &\cong \int^{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}), a) \times P(x) \end{split}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 8/32

Logical interpretation of (co)end calculus

(Co)Yoneda lemma:

Logical interpretation of (co)end calculus

(Co)Yoneda lemma:

• (Pointwise) right/left Kan extensions using ends/coends:

Andrea Laretto ItaCa 2024 December 20th, 2024 9 / 32

Motivation 4: Computing adjoints to reindexings

Consider a doctrine $\mathcal{P}: \mathbb{C}^{\mathsf{op}} \to \mathsf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.

Motivation 4: Computing adjoints to reindexings

- Consider a doctrine $\mathcal{P}: \mathbb{C}^{\mathsf{op}} \to \mathbf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.
- With just these assumptions, we can compute the adjoints $\forall_f, \exists_f : \mathcal{P}(C) \to \mathcal{P}(D)$ along any $f: C \to D$, not just projections.

Andrea Laretto ItaCa 2024 December 20th, 2024 10 / 32

Motivation 4: Computing adjoints to reindexings

- Consider a doctrine $\mathcal{P}: \mathbb{C}^{\mathsf{op}} \to \mathsf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.
- With just these assumptions, we can compute the adjoints $\forall_f, \exists_f: \mathcal{P}(C) \to \mathcal{P}(D)$ along any $f: C \to D$, not just projections.
- In the syntactic model, for $P: \mathcal{P}(C), f: C \to D$:

$$(\forall_f(P))(y) := \forall x.(y =_D f(x) \Rightarrow P(x))$$
$$(\exists_f(P))(y) := \exists x.(f(x) =_D y \land P(x))$$

Motivation 4: Computing adjoints to reindexings

- Consider a doctrine $\mathcal{P}: \mathbb{C}^{\mathsf{op}} \to \mathsf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.
- With just these assumptions, we can compute the adjoints $\forall_f, \exists_f : \mathcal{P}(C) \to \mathcal{P}(D)$ along any $f : C \to D$, not just projections.
- In the syntactic model, for $P: \mathcal{P}(C), f: C \to D$:

$$(\forall_f(P))(y) := \forall x.(y =_D f(x) \Rightarrow P(x))$$
$$(\exists_f(P))(y) := \exists x.(f(x) =_D y \land P(x))$$

Compare these to the formula to compute Kan extensions via (co)ends:

$$\begin{split} (\mathsf{Ran}_F P)(y) &\cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(y, F(\overline{x})) \Rightarrow P(x) \\ (\mathsf{Lan}_F P)(y) &\cong \int^{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}), y) \times P(x) \end{split}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 10/32

Motivation 4: Computing adjoints to reindexings

- Consider a doctrine $\mathcal{P}: \mathbb{C}^{op} \to \mathbf{Pos}$ with $\wedge, \Rightarrow, \forall_{A[\Gamma]}, \exists_{A[\Gamma]}, \mathsf{Eq}_A$.
- With just these assumptions, we can compute the adjoints $\forall_f, \exists_f: \mathcal{P}(C) \to \mathcal{P}(D)$ along any $f: C \to D$, not just projections.
- In the syntactic model, for $P: \mathcal{P}(C)$, $f: C \to D$:

$$(\forall_f(P))(y) := \forall x.(y =_D f(x) \Rightarrow P(x))$$

$$(\exists_f(P))(y) := \exists x.(f(x) =_D y \land P(x))$$

Compare these to the formula to compute Kan extensions via (co)ends:

$$\begin{aligned} (\mathsf{Ran}_F P)(y) &\cong \int_{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(y, F(\overline{x})) \Rightarrow P(x) \\ (\mathsf{Lan}_F P)(y) &\cong \int^{x:\mathbb{C}} \mathsf{hom}_{\mathbb{D}}(F(\overline{x}), y) \times P(x) \end{aligned}$$

▶ there is yet no decomposition of these properties for doctrines, e.g., coends as quantifiers/adjoints, or "having directed equality".

Andrea Laretto ItaCa 2024 December 20th, 2024 10 / 32

Motivation 4: Computing Kan extensions with (co)ends

• A logical proof that $\forall_f(P)$ is right adjoint to precomposition with f:

$$\begin{array}{ccc}
 & \Gamma(y) \vdash (\forall_f P)(y) \\
 & := \forall x. (y = f(x) \Rightarrow P(x)) \\
\hline
 & [x:C,y:D] & \Gamma(y) \vdash y = f(x) \Rightarrow P(x) \\
\hline
 & [x:C,y:D] & y = f(x), \Gamma(y) \vdash P(x) \\
\hline
 & [x:C] & \Gamma(f(x)) \vdash P(x)
\end{array}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 11/32

Motivation 4: Computing Kan extensions with (co)ends

• A logical proof that $\forall_f(P)$ is right adjoint to precomposition with f:

$$\begin{array}{c|c} [y:D] & \Gamma(y) \vdash (\forall_f P)(y) \\ & := \forall x. (y = f(x) \Rightarrow P(x)) \\ \hline \underline{[x:C,y:D]} & \Gamma(y) \vdash y = f(x) \Rightarrow P(x) \\ \hline \underline{[x:C,y:D] \ y = f(x), \Gamma(y) \vdash P(x)} \\ \hline \underline{[x:C]} & \Gamma(f(x)) \vdash P(x) \\ \end{array}$$

▶ There is yet no formal system to do this for the directed case;

Andrea Laretto ItaCa 2024 December 20th, 2024 11/32

Motivation 4: Computing Kan extensions with (co)ends

• A logical proof that $\forall_f(P)$ is right adjoint to precomposition with f:

$$\begin{array}{c|c} [y:D] & \Gamma(y) \vdash (\forall_f P)(y) \\ & := \forall x. (y = f(x) \Rightarrow P(x)) \\ \hline \hline [x:C,y:D] & \Gamma(y) \vdash y = f(x) \Rightarrow P(x) \\ \hline \hline [x:C,y:D] & y = f(x), \Gamma(y) \vdash P(x) \\ \hline \hline [x:C] & \Gamma(f(x)) \vdash P(x) \\ \hline \end{array}$$

- ▶ There is yet no formal system to do this for the directed case;
- We follow exactly this proof for Lan/Ran, using our rules for dinaturality.

Andrea Laretto ItaCa 2024 December 20th, 2024 11/32

We present the semantics for a *first-order* non-dependent directed type theory using dinaturality, where types are interpreted by categories, directed equality by hom-functors, quantifiers by (co)ends.

We present the semantics for a *first-order* non-dependent directed type theory using dinaturality, where types are interpreted by categories, directed equality by hom-functors, quantifiers by (co)ends.

We consider the following interpretation:

Types \rightsquigarrow Categories (possibly with $-^{op}$)

Contexts → Lists of categories

Terms \leadsto Functors $\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}$

Propositions \leadsto Endoprofunctors $\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}$

Entailments \infty Dinatural transformations (not required to compose)

Directed equality \leadsto hom-functors $\mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$.

We present the semantics for a *first-order* non-dependent directed type theory using dinaturality, where types are interpreted by categories, directed equality by hom-functors, quantifiers by (co)ends.

We consider the following interpretation:

```
Types \leadsto Categories (possibly with -^{\mathsf{op}})

Contexts \leadsto Lists of categories

Terms \leadsto Functors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}

Propositions \leadsto Endoprofunctors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{D}

Entailments \leadsto Dinatural transformations (not required to compose)

Directed equality \leadsto hom-functors \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbf{Set}.
```

• **Warning:** we do not give a doctrinal presentation of this logic, precisely because dinaturals do not compose in general.

We present the semantics for a *first-order* non-dependent directed type theory using dinaturality, where types are interpreted by categories, directed equality by hom-functors, quantifiers by (co)ends.

We consider the following interpretation:

Types
$$\leadsto$$
 Categories (possibly with $-^{op}$)
Contexts \leadsto Lists of categories
Terms \leadsto Functors $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$
Propositions \leadsto Endoprofunctors $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$

Entailments → Dinatural transformations (not required to compose)

Directed equality $\leadsto \operatorname{hom\text{-}functors} \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \textbf{Set}.$

- **Warning:** we do not give a doctrinal presentation of this logic, precisely because dinaturals do not compose in general.
- Guiding intuition: we study the "doctrine" (in paracategories)

$$\begin{aligned} & \mathsf{Dinats}: \mathbf{Cat}^\mathsf{op} \to \mathbf{PARACAT} \\ & \mathsf{Dinats}(\mathbb{C}) := [\mathbb{C}^\mathsf{op} \times \mathbb{C}, \mathbf{Set}]_\mathsf{dinaturals} \end{aligned}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 12 / 32

Directed type theory: notation

Example of an entailment:

$$[x:\mathbb{C},y:\mathbb{D}]\ P(\overline{x},\overline{y},x,y) \vdash \alpha:Q(\overline{x},\overline{y},x,y)$$

Semantics: " α is a dinatural from P to $Q:(\mathbb{C}\times\mathbb{D})^{\mathrm{op}}\times(\mathbb{C}\times\mathbb{D})\to \mathbf{Set}$."

- **Crucial:** variables now can appear both as $x : \mathbb{C}$ or $\overline{x} : \mathbb{C}^{op}$.
- We give names to assumptions p, q:

$$[x:\mathbb{C}]\ p:P(\overline{x},x),q:Q(\overline{x},x)\vdash h[p,q]:R(\overline{x},x)$$

prop. context \rightarrow interpreted as pointwise product of presheaves in Set.

Andrea Laretto ItaCa 2024 December 20th, 2024 13/32

Directed type theory: notation

Example of an entailment:

$$[x:\mathbb{C},y:\mathbb{D}]\ P(\overline{x},\overline{y},x,y) \vdash \alpha:Q(\overline{x},\overline{y},x,y)$$

Semantics: " α is a dinatural from P to $Q:(\mathbb{C}\times\mathbb{D})^{\mathsf{op}}\times(\mathbb{C}\times\mathbb{D})\to\mathsf{Set}$."

- Crucial: variables now can appear both as $x : \mathbb{C}$ or $\overline{x} : \mathbb{C}^{op}$.
- We give names to assumptions p, q:

$$[x:\mathbb{C}]\ p:P(\overline{x},x),q:Q(\overline{x},x)\vdash h[p,q]:R(\overline{x},x)$$

prop. context \rightarrow interpreted as pointwise product of presheaves in Set.

• The following dinaturals are the same:

$$[x:\mathbb{C}] \ F(\overline{x}) \vdash \alpha : G(\overline{x},x)$$

$$[x:\mathbb{C}^{\mathsf{op}}] \ F(x) \vdash \alpha' : G(x,\overline{x})$$

Andrea Laretto ItaCa 2024 December 20th, 2024 13 / 32

Directed type theory: propositional rules – Products

• Dinaturals support propositional conjunction, using products in **Set**.

Directed type theory: propositional rules – Products

Dinaturals support propositional conjunction, using products in Set.

Theorem (Product of dipresheaves) ("")

There is an isomorphism of sets natural in $\Gamma, P, Q : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash P(\overline{x},x) \times Q(\overline{x},x)}{[x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash P(\overline{x},x), \qquad [x:\mathbb{C}]\ \varGamma(\overline{x},x) \vdash Q(\overline{x},x).}$$

Bottom side: product of sets of dinaturals.

Similarly, $\top_{\mathbb{C}}: \mathbb{C}^{\diamond} \to \textbf{Set} := (c,c') \mapsto \{*\}$ has a unique dinat $\Gamma \xrightarrow{\bullet \bullet} \top_{\mathbb{C}}$.

Andrea Laretto ItaCa 2024 December 20th, 2024 14/32

• Contrary to naturals, "exponentials" of dipresheaves are pointwise:

• Contrary to naturals, "exponentials" of dipresheaves are pointwise:

Theorem ("Exponential" of dipresheaves) ()

There is an isomorphism of sets natural in $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ F(\overline{x},x)\times G(\overline{x},x)\vdash H(\overline{x},x)}{[x:\mathbb{C}]\qquad G(\overline{x},x)\vdash F^{\mathsf{op}}(x,\overline{x})\Rightarrow H(\overline{x},x)}\ (\mathsf{exp})$$

Proof. Obvious by currying the families of morphisms.

• Contrary to naturals, "exponentials" of dipresheaves are pointwise:

Theorem ("Exponential" of dipresheaves) ()

There is an isomorphism of sets natural in $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ F(\overline{x},x)\times G(\overline{x},x)\vdash H(\overline{x},x)}{[x:\mathbb{C}]\qquad G(\overline{x},x)\vdash F^{\mathrm{op}}(x,\overline{x})\Rightarrow H(\overline{x},x)}\ (\exp)$$

Proof. Obvious by currying the families of morphisms.

• Why are exponentials of presheaves with naturals not pointwise?

$$\frac{[x:\mathbb{C}]\ F(x)\times G(x)\vdash H(x)}{[x:\mathbb{C}]}\ G(x)\vdash F^{\mathrm{op}}(\overline{x})\Rightarrow H(x)}\ (\exp)$$

Andrea Laretto ItaCa 2024 December 20th, 2024 15/32

• Contrary to naturals, "exponentials" of dipresheaves are pointwise:

Theorem ("Exponential" of dipresheaves) ()

There is an isomorphism of sets natural in $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ F(\overline{x},x)\times G(\overline{x},x)\vdash H(\overline{x},x)}{[x:\mathbb{C}]\qquad G(\overline{x},x)\vdash F^{\mathrm{op}}(x,\overline{x})\Rightarrow H(\overline{x},x)}\ (\exp)$$

Proof. Obvious by currying the families of morphisms.

• Why are exponentials of presheaves with naturals not pointwise?

$$\frac{[x:\mathbb{C}]\ F(x)\times G(x)\vdash H(x)}{[x:\mathbb{C}]}\ G(x)\vdash F^{\mathsf{op}}(\overline{x})\Rightarrow H(x)}\ (\mathsf{exp})$$

but, the bottom family would be dinatural in x.

• Contrary to naturals, "exponentials" of dipresheaves are pointwise:

Theorem ("Exponential" of dipresheaves) (****)

There is an isomorphism of sets natural in $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$:

$$\frac{[x:\mathbb{C}]\ F(\overline{x},x)\times G(\overline{x},x)\vdash H(\overline{x},x)}{[x:\mathbb{C}]\qquad G(\overline{x},x)\vdash F^{\mathsf{op}}(x,\overline{x})\Rightarrow H(\overline{x},x)}\ (\mathsf{exp})$$

Proof. Obvious by currying the families of morphisms.

• Why are exponentials of presheaves with naturals not pointwise?

$$\frac{[x:\mathbb{C}]\ F(x)\times G(x)\vdash H(x)}{[x:\mathbb{C}]}\ G(x)\vdash F^{\mathrm{op}}(\overline{x})\Rightarrow H(x)}\ (\exp)$$

but, the bottom family would be *dinatural* in x.

▶ We will show how to use our rules to justify the usual exponential.

Andrea Laretto ItaCa 2024 December 20th, 2024 15/32

Directed type theory: term rules - Reindexing

Entailments/dinaturals can be reindexed by terms/difunctors:

Theorem (Reindexing with difunctors) (***)

Take a difunctor $F:\mathbb{C}^{\diamond} \to \mathbb{D}$ and a dinat $\alpha:P \xrightarrow{\bullet \bullet} Q$ for $P,Q:\mathbb{D}^{\diamond} \to \mathbb{E}$.

$$\frac{[x:\mathbb{D}] \qquad P(\overline{x},x) \vdash \alpha: Q(\overline{x},x)}{[x:\mathbb{C}] \ P(F^{\mathsf{op}}(x,\overline{x}),F(\overline{x},x)) \vdash F^*(\alpha): Q(F^{\mathsf{op}}(x,\overline{x}),F(\overline{x},x))} \ \text{(reindex)}$$

defined by $F^*(\alpha)_x := \alpha_{F(x,x)}$.

Directed type theory with dinaturality – refl

• Dinaturality allows us to solve the variance issue of refl: [North 2018]

Directed type theory with dinaturality – refl

Dinaturality allows us to solve the variance issue of refl: [North 2018]

Theorem (Directed equality introduction) ("")

There is a dinatural transformation $refl_{\mathbb{C}}: \top \xrightarrow{\bullet \bullet} \hom$,

$$\frac{}{[x:\mathbb{C}] \top \vdash \mathsf{refl}_{\mathbb{C}} : \hom_{\mathbb{C}}(\overline{x},x)}} \text{ (refl)}$$

where \top denotes the dipresheaf constant in \top_{Set} .

Proof. $\alpha_x(*) := \mathrm{id}_x$. Dinaturality: for any $f: a \to b$, f; $\mathrm{id}_b = \mathrm{id}_a$; f.

Andrea Laretto ItaCa 2024 December 20th, 2024 17/32

Directed type theory with dinaturality – refl

Dinaturality allows us to solve the variance issue of refl: [North 2018]

Theorem (Directed equality introduction) ()

There is a dinatural transformation $refl_{\mathbb{C}}: \top \xrightarrow{\bullet \bullet} \hom$,

$$\frac{}{[x:\mathbb{C}] \top \vdash \mathsf{refl}_{\mathbb{C}} : \mathsf{hom}_{\mathbb{C}}(\overline{x},x)}} \mathsf{(refl)}$$

where \top denotes the dipresheaf constant in \top_{Set} .

Proof. $\alpha_x(*) := \mathrm{id}_x$. Dinaturality: for any $f : a \to b$, $f ; \mathrm{id}_b = \mathrm{id}_a ; f$.

This is reflexivity of directed equality, via identities.

ullet Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

ullet Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

Theorem (Characterization of dinaturals via naturality) ()

There is an isomorphism, natural in $P,Q:\mathbb{C}^{op}\times\mathbb{C}\to \textbf{Set}$, between the set of dinaturals $P\overset{\bullet\bullet}{\longrightarrow}Q$ and certain natural transformations:

$$\frac{[x:\mathbb{C}]\ P(\overline{x},x) \xrightarrow{\bullet \bullet} Q(\overline{x},x)}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C}] \hom(a,b) \longrightarrow P^{\mathsf{op}}(b,a) \Rightarrow Q(a,b)}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 18 / 32

 Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

Theorem (Characterization of dinaturals via naturality) ()

There is an isomorphism, natural in $P,Q:\mathbb{C}^{op}\times\mathbb{C}\to \textbf{Set}$, between the set of dinaturals $P\overset{\bullet\bullet}{\longrightarrow}Q$ and certain natural transformations:

$$\frac{[x:\mathbb{C}]\ P(\overline{x},x) \xrightarrow{\bullet \bullet} Q(\overline{x},x)}{\overline{[a:\mathbb{C}^{\sf op},b:\mathbb{C}] \hom(a,b) \longrightarrow P^{\sf op}(b,a) \Rightarrow Q(a,b)}}$$

Proof.

 (\Downarrow) Given $\alpha: P \xrightarrow{\bullet \bullet} Q$ and $f: \hom(a,b)$, the map $P(b,a) \to Q(a,b)$ is exactly the side of the hexagon in the definition of dinaturality. This is obtained via the functorial action of P,Q.

Andrea Laretto ItaCa 2024 December 20th, 2024 18 / 32

 Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

Theorem (Characterization of dinaturals via naturality) ()

There is an isomorphism, natural in $P,Q:\mathbb{C}^{op}\times\mathbb{C}\to \textbf{Set}$, between the set of dinaturals $P\overset{\bullet\bullet}{\longrightarrow}Q$ and certain natural transformations:

$$\frac{[x:\mathbb{C}]\ P(\overline{x},x) \xrightarrow{\bullet \bullet} Q(\overline{x},x)}{\overline{[a:\mathbb{C}^{\sf op},b:\mathbb{C}]\operatorname{hom}(a,b) \longrightarrow P^{\sf op}(b,a) \Rightarrow Q(a,b)}}$$

Proof.

- $(\Downarrow) \ \textit{Given } \alpha: P \xrightarrow{\bullet \bullet} Q \ \textit{and} \ f: \hom(a,b), \ \textit{the map} \ P(b,a) \to Q(a,b)$ is exactly the side of the hexagon in the definition of dinaturality. This is obtained via the functorial action of P,Q.
- (\uparrow) Take a = b and precompose with $id_a \in hom(a, a)$.

 Before introducing the directed J rule, we show its fundamental idea: the connection between naturality and dinaturality.

Theorem (Characterization of dinaturals via naturality) ()

There is an isomorphism, natural in $P,Q:\mathbb{C}^{op}\times\mathbb{C}\to \textbf{Set}$, between the set of dinaturals $P\overset{\bullet\bullet}{\longrightarrow}Q$ and certain natural transformations:

$$\frac{[x:\mathbb{C}]\ P(\overline{x},x) \xrightarrow{\bullet \bullet} Q(\overline{x},x)}{\overline{[a:\mathbb{C}^{\sf op},b:\mathbb{C}] \hom(a,b) \longrightarrow P^{\sf op}(b,a) \Rightarrow Q(a,b)}}$$

Proof.

- (\Downarrow) Given $\alpha: P \xrightarrow{\bullet \bullet} Q$ and $f: \hom(a,b)$, the map $P(b,a) \to Q(a,b)$ is exactly the side of the hexagon in the definition of dinaturality. This is obtained via the functorial action of P,Q.
- (\uparrow) Take a=b and precompose with $id_a \in hom(a,a)$. The isomorphism follows from (di)naturality of both maps.

Andrea Laretto ItaCa 2024 December 20th, 2024 18/32

Directed type theory with dinaturality – Directed J

Directed equality elimination is just this result, uncurried.

Theorem (Directed equality elimination) ("")

Take
$$\Gamma, P: (\mathbb{A}^{\mathsf{op}}) \times (\mathbb{A}) \times (\mathbb{C}^{\mathsf{op}} \times \mathbb{C}) \to \textit{Set}.$$

Given a dinatural $h: \Gamma \xrightarrow{\cdot \cdot \cdot} P$, there is a dinatural J(h) as follows:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \qquad k:\Gamma(\overline{z},z,\overline{x},x) \vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x) \vdash J(h)[e,k]:P(a,b,\overline{x},x)} \ (J(b)) = 0$$

Andrea Laretto ItaCa 2024 December 20th, 2024 19 / 32

Directed type theory with dinaturality – Directed J

Directed equality elimination is just this result, uncurried.

Theorem (Directed equality elimination) ("")

Take $\Gamma, P: (\mathbb{A}^{\mathsf{op}}) \times (\mathbb{A}) \times (\mathbb{C}^{\mathsf{op}} \times \mathbb{C}) \to \textit{Set}.$

Given a dinatural $h: \Gamma \xrightarrow{\bullet \bullet} P$, there is a dinatural J(h) as follows:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x)\vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{op},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x)\vdash J(h)[e,k]:P(a,b,\overline{x},x)} \ (J_{\underline{b},\overline{a},\overline{a},\overline{a},x})$$

The dinatural J(h) satisfies the following "computation rule",

$$J(h)_{zzx}[\mathsf{refl}_{\mathbb{A}_z}, k] = h_{zx}[k]$$

for any object $z : \mathbb{A}, x : \mathbb{C}$ and $k \in \Gamma(z, z, x, x)$.

Directed type theory with dinaturality – Directed J

Directed equality elimination is just this result, uncurried.

Theorem (Directed equality elimination) ("")

Take $\Gamma, P : (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \mathbf{Set}$.

Given a dinatural $h: \Gamma \xrightarrow{\cdot \cdot \cdot} P$, there is a dinatural J(h) as follows:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x)\vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x)\vdash J(h)[e,k]:P(a,b,\overline{x},x)}\ (J_{a}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]$$

The dinatural J(h) satisfies the following "computation rule",

$$J(h)_{zzx}[\mathsf{refl}_{\mathbb{A}_z}, k] = h_{zx}[k]$$

for any object $z : \mathbb{A}, x : \mathbb{C}$ and $k \in \Gamma(z, z, x, x)$.

Proof. Explicitly, the dinatural J(h) is given by

$$J(h)_{abx}[e,k] := (\Gamma(\mathsf{id}_b, e, \mathsf{id}_x, \mathsf{id}_x) ; h_{bx} ; P(e, \mathsf{id}_b, \mathsf{id}_x, \mathsf{id}_x))[k].$$

Computation clearly holds for $e = id_z$, without dinaturality.

Andrea Laretto ItaCa 2024 December 20th, 2024 19/32

Intution for the directed J rule

▶ Whenever there are two positions $a : \mathbb{A}^{op}, b : \mathbb{A}$ in the conclusion P,

Intution for the directed J rule

- ▶ Whenever there are two positions $a : \mathbb{A}^{op}, b : \mathbb{A}$ in the conclusion P,
- \blacktriangleright and I have a directed equality in context $\hom_{\mathbb{A}}(a,b)$,

Intution for the directed J rule

- \blacktriangleright Whenever there are two positions $a: \mathbb{A}^{op}, b: \mathbb{A}$ in the conclusion P,
- \blacktriangleright and I have a directed equality in context $\hom_{\mathbb{A}}(a,b)$,
- ▶ it is enough to prove that P holds "on the diagonal", where a, b are identified with the same dinatural variable $z : \mathbb{A}$.

ItaCa 2024 December 20th, 2024 20/32

Intution for the directed J rule

- ▶ Whenever there are two positions $a : \mathbb{A}^{op}, b : \mathbb{A}$ in the conclusion P,
- \blacktriangleright and I have a directed equality in context $\hom_{\mathbb{A}}(a,b)$,

▶ it is enough to prove that P holds "on the diagonal",

- where a,b are identified with the same dinatural variable $z:\mathbb{A}.$
- lacktriangle Moreover, a,b can be identified in context *only if they appear negatively*.
- With the directed J rule we can define maps+properties directed equality.
- Examples: transitivity, congruence, transport for directed equality.

Directed type theory with dinaturality – Example

Example (Composition in a category)

Transitivity of directed equality \rightsquigarrow categories \mathbb{C} have *composition maps*.

Example (Composition in a category)

Transitivity of directed equality \leadsto categories $\mathbb C$ have *composition maps*. Composition is natural in $a:\mathbb C^{\mathsf{op}},c:\mathbb C$ and dinatural in $b:\mathbb C$:

$$\frac{\overline{[z:\mathbb{C},c:\mathbb{C}] \quad \hom(\overline{z},c) \vdash \mathsf{id} : \hom(\overline{z},c)}}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \ \hom(a,b), \ \hom(\overline{b},c) \vdash J(\mathsf{id}) : \hom(a,c)}} (J)$$

Andrea Laretto ItaCa 2024 December 20th, 2024 21/32

Example (Composition in a category)

Transitivity of directed equality \leadsto categories $\mathbb C$ have *composition maps*. Composition is natural in $a:\mathbb C^{\operatorname{op}},c:\mathbb C$ and dinatural in $b:\mathbb C$:

$$\frac{\overline{[z:\mathbb{C},c:\mathbb{C}] \quad \hom(\overline{z},c) \vdash \mathsf{id} : \hom(\overline{z},c)}}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C},c:\mathbb{C}] \quad \hom(a,b), \, \hom(\overline{b},c) \vdash J(\mathsf{id}) : \hom(a,c)}} (J)$$

We contract hom(a,b). Rule (J) can be applied: a,b appear only negatively in ctx (a does not) and positively in conclusion $(\overline{b}$ does not).

Andrea Laretto ItaCa 2024 December 20th, 2024 21/32

Example (Composition in a category)

Transitivity of directed equality \rightarrow categories \mathbb{C} have composition maps. Composition is natural in $a: \mathbb{C}^{op}, c: \mathbb{C}$ and dinatural in $b: \mathbb{C}$:

$$\frac{\overline{[z:\mathbb{C},c:\mathbb{C}] \quad \operatorname{hom}(\overline{z},c) \vdash \operatorname{id}:\operatorname{hom}(\overline{z},c)}}{[a:\mathbb{C}^{\operatorname{op}},b:\mathbb{C},c:\mathbb{C}] \ \operatorname{hom}(a,b), \ \operatorname{hom}(\overline{b},c) \vdash J(\operatorname{id}):\operatorname{hom}(a,c)}} (J)$$

We contract hom(a, b). Rule (J) can be applied: a, b appear only negatively in ctx (a does not) and positively in conclusion (\bar{b} does not).

The computation rule for f; g := J(id)[f, g] states unitality on the left.

Andrea Laretto ItaCa 2024 December 20th, 2024 21/32

Failure of symmetry for directed equality

These restrictions do *not* allow us to obtain directed equality is symmetric:

$$[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C}]\ e: \hom(a,b) \not\vdash \mathsf{sym}: \hom(\overline{b},\overline{a})$$

hom(a, b) cannot be contracted: a, b must appear positively in conclusion.

Directed type theory -J as iso

• As in the classical case, the rule for directed equality is an isomorphism.

Theorem (J as isomorphism)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x) \vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x) \vdash J(h)[e,k]:P(a,b,\overline{x},x)} \ \text{(hom)}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 23 / 32

Directed type theory -J as iso

As in the classical case, the rule for directed equality is an isomorphism.

Theorem (J as isomorphism)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x) \vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x) \vdash J(h)[e,k]:P(a,b,\overline{x},x)} \ (\hom)$$

Proof. The inverse is $J^{-1}(\alpha)_{zx}[k] := \alpha_{zzx}[\text{refl}_{\mathbb{A}z}, k]$.

Directed type theory -J as iso

As in the classical case, the rule for directed equality is an isomorphism.

Theorem (J as isomorphism)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad k:\Gamma(\overline{z},z,\overline{x},x)\vdash h[k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{op},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{b},\overline{a},\overline{x},x)\vdash J(h)[e,k]:P(a,b,\overline{x},x)}$$
(hom)

Proof. The inverse is $J^{-1}(\alpha)_{zx}[k] := \alpha_{zzx}[\operatorname{refl}_{\mathbb{A}z}, k]$.

The computation rule for hom-elimination is precisely J; $J^{-1} = id$.

On the other hand, J^{-1} ; J = id follows using (di)naturality.

Andrea Laretto ItaCa 2024 December 20th, 2024 23 / 32

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?
- Using the same method of MLTT: by *dependent* hom induction.

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?
- Using the same method of MLTT: by dependent hom induction.
- We work with *proof-relevant entailments*: we need a judgm. for $\alpha = \beta$.

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?
- Using the same method of MLTT: by dependent hom induction.
- We work with *proof-relevant entailments*: we need a judgm. for $\alpha = \beta$.

Theorem (Dependent J rule for judgemental equality) (\ref{U})

Take $\Gamma, P : (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \textbf{Set}$. Given dinats α, β where J can be applied, then the equality above implies the one below:

$$\frac{[z:\mathbb{A},x:\mathbb{C}]\ k:\Gamma(\overline{z},z,\overline{x},x)\vdash\alpha[\mathsf{refl}_z,k]=\beta[\mathsf{refl}_z,k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]\ e:\mathsf{hom}(a,b),k:\Gamma(\overline{a},\overline{b},\overline{x},x)\vdash\alpha[e,k]=\beta[e,k]:P(a,b,\overline{x},x)}\ (J\text{-eq})$$

Andrea Laretto ItaCa 2024 December 20th, 2024 24 / 32

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?
- Using the same method of MLTT: by dependent hom induction.
- We work with *proof-relevant entailments*: we need a judgm. for $\alpha = \beta$.

Theorem (Dependent J rule for judgemental equality) (\ref{U})

Take $\Gamma, P: (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \textbf{Set}$. Given dinats α, β where J can be applied, then the equality above implies the one below:

$$\frac{[z:\mathbb{A},x:\mathbb{C}]\;k:\Gamma(\overline{z},z,\overline{x},x)\vdash\alpha[\mathsf{refl}_z,k]=\beta[\mathsf{refl}_z,k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^\mathsf{op},b:\mathbb{A},x:\mathbb{C}]\;e:\hom(a,b),k:\Gamma(\overline{a},\overline{b},\overline{x},x)\vdash\alpha[e,k]=\beta[e,k]:P(a,b,\overline{x},x)}\;\text{(J-eq)}$$
 i.e., $\forall k\!:\!P(z,z,x,x).\;\alpha_{zzx}[\mathsf{refl}_z,k]=\beta_{zzx}[\mathsf{refl}_z,k]\;\textit{implies}\;\alpha=\beta.$

- Back to the transitivity example.
- How do we prove associativity of transitivity and unitality on the right?
- Using the same method of MLTT: by dependent hom induction.
- We work with *proof-relevant entailments*: we need a judgm. for $\alpha = \beta$.

Theorem (Dependent J rule for judgemental equality) ((J)

Take $\Gamma, P : (\mathbb{A}^{op}) \times (\mathbb{A}) \times (\mathbb{C}^{op} \times \mathbb{C}) \to \textbf{Set}$. Given dinats α, β where J can be applied, then the equality above implies the one below:

$$\frac{[z:\mathbb{A},x:\mathbb{C}]\ k:\Gamma(\overline{z},z,\overline{x},x)\vdash\alpha[\mathsf{refl}_z,k]=\beta[\mathsf{refl}_z,k]:P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}]\ e:\hom(a,b),k:\Gamma(\overline{a},\overline{b},\overline{x},x)\vdash\alpha[e,k]=\beta[e,k]:P(a,b,\overline{x},x)}\ (J\text{-eq})}$$
 i.e., $\forall k\!:\!P(z,z,x,x).\ \alpha_{zzx}[\mathsf{refl}_z,k]=\beta_{zzx}[\mathsf{refl}_z,k]\ \textit{implies}\ \alpha=\beta.$

Proof. By hypothesis, $J^{-1}(\alpha) = J^{-1}(\beta)$, simply apply J.

Andrea Laretto ItaCa 2024 December 20th, 2024 24 / 32,

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

$$\overline{[z:\mathbb{C},c:\mathbb{C}]\ g:\hom(\overline{z},c)\vdash \mathsf{refl}_z\ ; g=g:\hom(\overline{z},c)}\ \ (J\text{-comp})$$

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

$$\overline{[z:\mathbb{C},c:\mathbb{C}]\ g:\hom(\overline{z},c)\vdash \mathsf{refl}_z\ ;g=g:\hom(\overline{z},c)}\ \ (J\text{-comp})$$

Unitality on the right is shown by dependent hom induction:

$$\frac{[w:\mathbb{C}] \top \vdash \mathsf{refl}_w \; ; \mathsf{refl}_w = \mathsf{refl}_w : \hom(\overline{w}, w)}{[a:\mathbb{C}^\mathsf{op}, z:\mathbb{C}] \; f : \hom(a, z) \vdash f \; ; \mathsf{refl}_z = f : \hom(a, z)} \; (J\text{-eq})} \; (J\text{-eq})$$

Andrea Laretto | ItaCa 2024 | December 20th, 2024 | 25 / 32

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

$$\overline{[z:\mathbb{C},c:\mathbb{C}]\ g:\hom(\overline{z},c)\vdash \mathsf{refl}_z\ ;g=g:\hom(\overline{z},c)}\ \ (J\text{-comp})$$

Unitality on the right is shown by dependent hom induction:

$$\frac{[w:\mathbb{C}] \top \vdash \mathsf{refl}_w \; ; \mathsf{refl}_w = \mathsf{refl}_w : \mathsf{hom}(\overline{w},w)}{[a:\mathbb{C}^\mathsf{op},z:\mathbb{C}] \; f : \mathsf{hom}(a,z) \vdash f \; ; \mathsf{refl}_z = f : \mathsf{hom}(a,z)} \; (J\text{-eq})} \; (J\text{-eq})$$

To prove associativity, simply contract f : hom(a, b):

$$\frac{[z:\mathbb{C},c:\mathbb{C},d:\mathbb{C}] \qquad \qquad g:\hom(\overline{z},c),h:\hom(\overline{c},d)\vdash \mathsf{refl}_z\ ; (g\ ; h) = (\mathsf{refl}_z\ ; g)\ ; h:\hom(\overline{z},d)}{[a:\mathbb{C},b:\mathbb{C},c:\mathbb{C},d:\mathbb{C}]\ f:\hom(\overline{a},b),g:\hom(\overline{b},c),h:\hom(\overline{c},d)\vdash f\ ; (g\ ; h) = (f\ ; g)\ ; h:\hom(\overline{a},d)} (J\text{-eq})$$

where the top sequent = g; h by computation rules for comp := J(id).

Andrea Laretto ItaCa 2024 December 20th, 2024 25 / 32

Example (Properties of composition)

Back to composition: we want to prove unitality and associativity.

$$\overline{[z:\mathbb{C},c:\mathbb{C}]\ g:\hom(\overline{z},c)\vdash \mathsf{refl}_z\ ;g=g:\hom(\overline{z},c)}\ \ (J\text{-comp})$$

Unitality on the right is shown by dependent hom induction:

$$\frac{[w:\mathbb{C}] \; \top \vdash \mathsf{refl}_w \; ; \mathsf{refl}_w = \mathsf{refl}_w : \hom(\overline{w},w)}{[a:\mathbb{C}^\mathsf{op},z:\mathbb{C}] \; f : \hom(a,z) \vdash f \; ; \mathsf{refl}_z = f : \hom(a,z)} \; \begin{matrix} (J\mathsf{-comp}) \\ (J\mathsf{-eq}) \end{matrix}$$

To prove associativity, simply contract f : hom(a, b):

$$\frac{[z:\mathbb{C},c:\mathbb{C},d:\mathbb{C}] \qquad \qquad g:\hom(\overline{z},c),h:\hom(\overline{c},d)\vdash \mathsf{refl}_z\;;(g\;;h)=(\mathsf{refl}_z\;;g)\;;h:\hom(\overline{z},d)}{[a:\mathbb{C},b:\mathbb{C},c:\mathbb{C},d:\mathbb{C}]\;f:\hom(\overline{a},b),g:\hom(\overline{b},c),h:\hom(\overline{c},d)\vdash f\;;(g\;;h)=(f\;;g)\;;h:\hom(\overline{a},d)} \qquad (J\text{-eq})$$

where the top sequent = g; h by computation rules for comp := J(id).

• *Note!* These are exactly the steps in MLTT for transitivity of paths.

• Every term respects directed equality, i.e., it is a "congruence": semantically, this is just the functorial action of terms *F* on morphisms.

• Every term respects directed equality, i.e., it is a "congruence": semantically, this is just the functorial action of terms F on morphisms.

Example (Directed equality is a congruence)

Let
$$F: \mathbb{C} \to \mathbb{D}$$
 be a functor.

$$\frac{F:\mathbb{C}\to\mathbb{D}\text{ be a functor.}}{[z:\mathbb{C}]\top\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{z}),F(z))} \text{ (reindex)+(refl)}$$
$$\frac{[z:\mathbb{C}]\to \mathbb{D}\text{ hom}_{\mathbb{C}}(\overline{z},y)\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{x}),F(y))}{[x:\mathbb{C},y:\mathbb{C}]\text{ hom}_{\mathbb{C}}(\overline{x},y)\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{x}),F(y))} \text{ (}J\text{)}$$

Andrea Laretto ItaCa 2024 December 20th, 2024 26 / 32

ullet Every term respects directed equality, i.e., it is a "congruence": semantically, this is just the functorial action of terms F on morphisms.

Example (Directed equality is a congruence)

Let $F:\mathbb{C}\to\mathbb{D}$ be a functor.

$$\frac{[z:\mathbb{C}] \perp \operatorname{hom}_{\mathbb{D}}(F^{\operatorname{op}}(\overline{z}), F(z))}{[z:\mathbb{C}] \operatorname{hom}_{\mathbb{D}}(F^{\operatorname{op}}(\overline{z}), F(z))} \text{ (reindex)+(refl)}$$

$$\frac{[z:\mathbb{C}] + \operatorname{hom}_{\mathbb{D}}(F^{\operatorname{op}}(\overline{z}), F(z))}{[z:\mathbb{C}] \operatorname{hom}_{\mathbb{C}}(\overline{x}, y) + \operatorname{hom}_{\mathbb{D}}(F^{\operatorname{op}}(\overline{x}), F(y))} \text{ (}J\text{)}$$

Take $\operatorname{map}_F[f] := J(F^*(\operatorname{refl}_{\mathbb C}))$. Computation rule: F maps refl to refl :

$$\overline{[z:\mathbb{C}] \top \vdash \mathsf{map}_F[\mathsf{refl}_z] = F^*(\mathsf{refl}_z) : \mathsf{hom}_{\mathbb{D}}(F^\mathsf{op}(\overline{x}), F(x))} \ \ (J\text{-comp})$$

Andrea Laretto ItaCa 2024 December 20th, 2024 26 / 32

 Every term respects directed equality, i.e., it is a "congruence": semantically, this is just the functorial action of terms F on morphisms.

Example (Directed equality is a congruence)

Let $F: \mathbb{C} \to \mathbb{D}$ be a functor.

$$\frac{F:\mathbb{C}\to\mathbb{D}\text{ be a functor.}}{[z:\mathbb{C}]\top\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{z}),F(z))} \text{ (reindex)+(refl)}$$
$$\frac{[z:\mathbb{C}]\to\mathbb{D}\text{ hom}_{\mathbb{C}}(\overline{x},y)\vdash \hom_{\mathbb{D}}(F^{\mathsf{op}}(\overline{x}),F(y))}{[J]} \text{ (}J\text{)}$$

Take $\operatorname{\mathsf{map}}_F[f] := J(F^*(\operatorname{\mathsf{refl}}_{\mathbb{C}}))$. Computation rule: F maps refl to refl:

$$\frac{}{[z:\mathbb{C}]\top\vdash\mathsf{map}_F[\mathsf{refl}_z]=F^*(\mathsf{refl}_z):\mathsf{hom}_{\mathbb{D}}(F^\mathsf{op}(\overline{x}),F(x))}}\;(J\text{-}\mathsf{comp})$$

Functoriality holds, since both top sides = $map_F[g]$ via computation rules:

$$\frac{[z:\mathbb{C},c:\mathbb{C}] \qquad \qquad g:\hom(\overline{z},c)\vdash \mathsf{map}_F[\mathsf{refl}_z\,;g]=\mathsf{refl}_{F(z)}\,;\,\mathsf{map}_F[g]:\hom(\overline{z},d)}{[a:\mathbb{C},b:\mathbb{C},c:\mathbb{C}]\,\,f:\hom(\overline{a},b),g:\hom(\overline{b},c)\vdash \mathsf{map}_F[f\,;g]=\mathsf{map}_F[f]\,;\,\mathsf{map}_F[g]:\hom(\overline{a},d)} (J\text{-eq})$$

Andrea Laretto ItaCa 2024 December 20th, 2024 26 / 32

Directed type theory – transport along directed equalities

• Transporting points of predicates (i.e., presheaves) along directed equalities is the functorial action of $P: \mathbb{C} \to \mathbf{Set}$:

Directed type theory – transport along directed equalities

• Transporting points of predicates (i.e., presheaves) along directed equalities is the functorial action of $P: \mathbb{C} \to \mathbf{Set}$:

Example (Transporting along directed equality)

For any $P: \mathbb{C} \to \mathbf{Set}$:

$$\frac{\overline{[z:\mathbb{C}]\ P(z)\vdash P(z)}}{[a:\mathbb{C}^{op},b:\mathbb{C}]\ \hom(a,b),P(\overline{a})\vdash P(b)}\ (J)$$

Directed type theory – transport along directed equalities

• Transporting points of predicates (i.e., presheaves) along directed equalities is the functorial action of $P: \mathbb{C} \to \mathbf{Set}$:

Example (Transporting along directed equality)

For any $P: \mathbb{C} \to \mathbf{Set}$:

$$\frac{\overline{[z:\mathbb{C}]\ P(z)\vdash P(z)}}{[a:\mathbb{C}^{\mathsf{op}},b:\mathbb{C}]\ \hom(a,b),P(\overline{a})\vdash P(b)}\ (J)$$

Computation rule for subst[f, k] := J(id):

"transporting a point of P(a) along the path refl_z is the identity":

$$\overline{[z:\mathbb{C}]\,k:P(z)\vdash \mathsf{subst}[\mathsf{refl}_z,k]=k:P(z)} \ \, \big(J\text{-}\mathsf{comp}\big)$$

Directed type theory – Groupoidal case

• When $\mathbb{A} \cong \mathbb{A}^{op}$ is a groupoid, hom is the characterization of symmetric equality as left adjoint to reindexing on diagonals. (with Frobenius)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b), \ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\hom)$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a \ \cong \ b, \ \Gamma(b,a,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

Directed type theory – Groupoidal case

• When $\mathbb{A} \cong \mathbb{A}^{op}$ is a groupoid, hom is the characterization of symmetric equality as left adjoint to reindexing on diagonals. (with Frobenius)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \quad \mathsf{hom}(a,b), \ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\mathsf{hom})$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a \ \cong \ b, \ \Gamma(b,a,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

• The *proof-relevant directness* of **Cat** seems to be the fundamental obstacle to a fully compositional theory of dinaturals:

Theorem (Dinaturals in groupoids compose) ("")

Given a groupoid $\mathbb{C} \cong \mathbb{C}^{op}$ and any \mathbb{D} for $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$, all dinaturals $\alpha : F \xrightarrow{\bullet \bullet} G$, $\beta : G \xrightarrow{\bullet \bullet} H$ compose.

Directed type theory – Groupoidal case

• When $\mathbb{A} \cong \mathbb{A}^{op}$ is a groupoid, hom is the characterization of symmetric equality as left adjoint to reindexing on diagonals. (with Frobenius)

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(\overline{z},z,\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom(a,b), \ \Gamma(\overline{b},\overline{a},\overline{x},x) \vdash P(a,b,\overline{x},x)} \ (\hom)$$

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \Gamma(z,z,x) \vdash P(z,z,x)}{[a:\mathbb{A},b:\mathbb{A},x:\mathbb{C}] \ a \ \cong \ b, \ \Gamma(b,a,x) \vdash P(a,b,x)} \ (\mathsf{eq})$$

• The *proof-relevant directness* of **Cat** seems to be the fundamental obstacle to a fully compositional theory of dinaturals:

Theorem (Dinaturals in groupoids compose) (***/)

Given a groupoid $\mathbb{C} \cong \mathbb{C}^{op}$ and any \mathbb{D} for $F, G, H : \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{D}$, all dinaturals $\alpha : F \xrightarrow{\cdot \cdot \cdot} G$, $\beta : G \xrightarrow{\cdot \cdot \cdot} H$ compose.

Can the directed rule also be characterized as an adjunction? Yes!...

Andrea Laretto ItaCa 2024 December 20th, 2024 27/32

Symmetric equality is a left adjoint to identifying two variables together.

Symmetric equality is a left adjoint to identifying two variables together.

Idea: *Directed equality* is a *relative* left adjoint to identifying two *natural* variables together with a *dinatural* one.

Symmetric equality is a left adjoint to identifying two variables together.

Idea: *Directed equality* is a *relative* left adjoint to identifying two *natural* variables together with a *dinatural* one.

 The relative part imposes the syntactic restrictions of directed J: the relative functor is just reindexing along projections.

Symmetric equality is a left adjoint to identifying two variables together.

Idea: *Directed equality* is a *relative* left adjoint to identifying two *natural* variables together with a *dinatural* one.

- The relative part imposes the syntactic restrictions of directed J: the relative functor is just reindexing along projections.
- Unfortunately, for **Cat** we can only state this as a relative *para*-adjunction, because of non-compositionality of dinaturals.

Symmetric equality is a left adjoint to identifying two variables together.

Idea: *Directed equality* is a *relative* left adjoint to identifying two *natural* variables together with a *dinatural* one.

- The relative part imposes the syntactic restrictions of directed J: the relative functor is just reindexing along projections.
- Unfortunately, for Cat we can only state this as a relative para-adjunction, because of non-compositionality of dinaturals.
- Para- indicates that composition is partial: paracategories, parafunctors, para-adjunctions. [Hermida 2003]

Background: Relative adjunctions

Definition (Left relative adjunction [Arkor 2024])

Consider this situation of functors and categories:

We say that L is the J-relative left adjoint to R, written $L \dashv_J R$, if

$$\mathbb{D}(L(x),y)\cong \mathbb{X}(J(x),R(y))$$

is a bijection natural in both arguments $x : \mathbb{C}, y : \mathbb{D}$.

Andrea Laretto ItaCa 2024 28 / 32

Directed equality as adjoint (1)

Theorem (Directed equality as relative left adjoint) ($ilde{\!\!\!/}\!\!/\!\!\!\sim$)

▶ Let $[\mathbb{A}^{op} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ the paracategory where morphisms are dinats natural in \mathbb{A}^{op} , \mathbb{A} and dinatural in \mathbb{C} , and $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ as dinaturals.

Directed equality as adjoint (1)

Theorem (Directed equality as relative left adjoint) ($ilde{\!\!\!/}\!\!/\!\!\!\sim$)

- ▶ Let $[\mathbb{A}^{op} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ the paracategory where morphisms are dinats natural in \mathbb{A}^{op} , \mathbb{A} and dinatural in \mathbb{C} , and $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ as dinaturals.
- ▶ Take the parafunctor $\pi_{\mathbb{A}}^* : [\mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ defined in the intuitive way by precomposing with projections.

Directed equality as adjoint (1)

Theorem (Directed equality as relative left adjoint) ($ilde{\!\!\!/}\!\!/\!\!\!\sim$)

- ▶ Let $[\mathbb{A}^{op} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ the paracategory where morphisms are dinats natural in \mathbb{A}^{op} , \mathbb{A} and dinatural in \mathbb{C} , and $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ as dinaturals.
- ▶ Take the parafunctor $\pi_{\mathbb{A}}^* : [\mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ defined in the intuitive way by precomposing with projections.
- ▶ There is a dipresheaf $hom_A \in [A^{op} \times A, \textbf{Set}]$ such that the functor

$$\operatorname{hom}_{\mathbb{A}} \times - : [\mathbb{C}^{\diamond}, \mathbf{Set}] \to [\mathbb{A}^{\operatorname{op}} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \mathbf{Set}] \\
\operatorname{hom}_{\mathbb{A}} \times \Gamma := (\overline{a}, a, \overline{x}, x) \mapsto \operatorname{hom}(\overline{a}, a) \times \Gamma(\overline{x}, x), \\
(\operatorname{hom}_{\mathbb{A}} \times \alpha_{x})_{abc} := \lambda(e \in \operatorname{hom}(a, b), k \in \Gamma(c, c)).(e, \alpha_{c}(k))$$

Directed equality as adjoint (1)

Theorem (Directed equality as relative left adjoint) ($\H = \infty$

- ▶ Let $[\mathbb{A}^{op} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ the paracategory where morphisms are dinats natural in \mathbb{A}^{op} , \mathbb{A} and dinatural in \mathbb{C} , and $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ as dinaturals.
- ▶ Take the parafunctor $\pi_{\mathbb{A}}^* : [\mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}]$ defined in the intuitive way by precomposing with projections.
- ▶ There is a dipresheaf $hom_{\mathbb{A}} \in [\mathbb{A}^{op} \times \mathbb{A}, \textbf{Set}]$ such that the functor

$$\hom_{\mathbb{A}} \times - : [\mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{A}^{\mathsf{op}} \times \mathbb{A} \times \mathbb{C}^{\diamond}, \textbf{Set}]$$

$$\hom_{\mathbb{A}} \times \Gamma := (\overline{a}, a, \overline{x}, x) \mapsto \hom(\overline{a}, a) \times \Gamma(\overline{x}, x),$$

$$(\hom_{\mathbb{A}} \times \alpha_{x})_{abc} := \lambda(e \in \hom(a, b), k \in \Gamma(c, c)).(e, \alpha_{c}(k))$$

determines a $\pi_{\mathbb{A}}^*$ -relative left adjoint to the functor

$$egin{aligned} \Delta_{\mathbb{A}} imes-: [\mathbb{A}^{\mathsf{op}} imes\mathbb{A} imes\mathbb{C}^{\diamond}, extbf{\it Set}] & \rightarrow [\mathbb{A}^{\diamond} imes\mathbb{C}^{\diamond}, extbf{\it Set}] \\ \Delta_{\mathbb{A}} imes P & := P \\ (\Delta_{\mathbb{A}} imeslpha_{abc})_{zx} := lpha_{zzx}. \end{aligned}$$

Directed equality as adjoint (2)

Theorem (Directed equality as relative left adjoint, cont.) (%)

► Thus the left relative adjointness situation

$$\hom_{\mathbb{A}} \times - \dashv_{\pi_{\mathbb{A}}^*} \Delta_{\mathbb{A}} \times -$$

is as follows:

Directed equality as adjoint (2)

Theorem (Directed equality as relative left adjoint, cont.) ($extstyle extstyle ag{0.5})$

► Thus the left relative adjointness situation

$$\hom_{\mathbb{A}} \times - \dashv_{\pi_{\mathbb{A}}^*} \Delta_{\mathbb{A}} \times -$$

is as follows:

Proof. The required isomorphism is the following:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \qquad \Gamma(\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom_{\mathbb{A}}(a,b) \times \Gamma(\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom-rel-adj)}$$

which is an instance of directed J, where Γ is mute in $\overline{a}: \mathbb{A}, \overline{b}: \mathbb{A}^{\mathsf{op}}$.

Directed equality as adjoint (2)

Theorem (Directed equality as relative left adjoint, cont.) ($ilde{ ilde{\psi}} pprox)$

► Thus the left relative adjointness situation

$$\hom_{\mathbb{A}} \times - \dashv_{\pi_{\mathbb{A}}^*} \Delta_{\mathbb{A}} \times -$$

is as follows:

Proof. The required isomorphism is the following:

$$\frac{[z:\mathbb{A},x:\mathbb{C}] \qquad \qquad \Gamma(\overline{x},x) \vdash P(\overline{z},z,\overline{x},x)}{[a:\mathbb{A}^{\mathsf{op}},b:\mathbb{A},x:\mathbb{C}] \ \hom_{\mathbb{A}}(a,b) \times \Gamma(\overline{x},x) \vdash P(a,b,\overline{x},x)} \ \text{(hom-rel-adj)}$$

which is an instance of directed J, where Γ is mute in $\overline{a}: \mathbb{A}, \overline{b}: \mathbb{A}^{op}$. (hom-rel-adj) \Leftrightarrow (hom): $pick\ P := \Gamma^{op}(b, a, x, \overline{x}) \Rightarrow P(a, b, \overline{x}, x)$, use (exp).

(Co)end calculus via dinaturality

- What are the quantifiers of directed type theory?
- Dinaturality allows us to view (co)ends as "adjoints" to weakening:

Theorem (Ends and coends as quantifiers) ((")

Take $P: \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$, and the functor precomposing with projections

$$\pi_{\mathbb{A}}^*(P): \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} \to \textit{Set}$$

$$\pi_{\mathbb{A}}^*(P) := (\overline{a}, a, \overline{x}, x) \mapsto P(\overline{x}, x),$$

(Co)end calculus via dinaturality

- What are the quantifiers of directed type theory?
- Dinaturality allows us to view (co)ends as "adjoints" to weakening:

Theorem (Ends and coends as quantifiers) ((")

Take $P: \mathbb{C}^{op} \times \mathbb{C} \to \textbf{Set}$, and the functor precomposing with projections

$$\begin{split} \pi_{\mathbb{A}}^*(P) : \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} &\to \textit{Set} \\ \pi_{\mathbb{A}}^*(P) := (\overline{a}, a, \overline{x}, x) &\mapsto P(\overline{x}, x), \end{split}$$

There are isos of sets of dinats, natural in $P: \mathbb{C}^{\diamond} \to \textbf{Set}, Q: \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} \to \textbf{Set}$:

$$\frac{[a:\mathbb{A},x:\mathbb{C}]\ P(\overline{x},x)\vdash Q(\overline{a},a,\overline{x},x)}{[x:\mathbb{C}]\ P(\overline{x},x)\vdash \int_{a:\mathbb{A}}Q(\overline{a},a,\overline{x},x)} \text{ (end)}$$

$$\frac{[x:\mathbb{C}]\ \int^{a:\mathbb{A}}Q(\overline{a},a,\overline{x},x)\vdash P(\overline{x},x)}{\overline{[a:\mathbb{A},x:\mathbb{C}]}\ Q(\overline{a},a,\overline{x},x)\vdash P(\overline{x},x)} \text{ (coend)}$$

(Co)ends as quantifiers

Theorem (Beck-Chevalley and Frobenius condition for (co)ends)

(Co)ends satisfy a Beck-Chevalley condition: for $F: \mathbb{C}^{\diamond} \to \mathbb{D}$ there is a strict isomorphism in the (large) functor category $[[\mathbb{A}^{\diamond} \times \mathbb{D}^{\diamond}, \textbf{Set}], [\mathbb{D}^{\diamond}, \textbf{Set}]]$

$$\int_{\mathbb{A}[\mathbb{D}]} \mathbf{F}^* \cong (\mathrm{id}_{\mathbb{A}^{\diamond}} \times F)^* \mathbf{F}_{\mathbb{A}[\mathbb{C}]}$$

where $\int_{\mathbb{A}[\mathbb{C}]}$, $\int^{\mathbb{A}[\mathbb{C}]}$: $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{C}^{\diamond}, \textbf{Set}]$ are parametric (co)ends, and F^* : $[\mathbb{D}^{\diamond}, \textbf{Set}] \to [\mathbb{C}^{\diamond}, \textbf{Set}]$ is precomposition with F^{\diamond} .

(Co)ends as quantifiers

Theorem (Beck-Chevalley and Frobenius condition for (co)ends)

(Co)ends satisfy a Beck-Chevalley condition: for $F: \mathbb{C}^{\diamond} \to \mathbb{D}$ there is a strict isomorphism in the (large) functor category $[[\mathbb{A}^{\diamond} \times \mathbb{D}^{\diamond}, \textbf{Set}], [\mathbb{D}^{\diamond}, \textbf{Set}]]$

$$\int_{\mathbb{A}[\mathbb{D}]} \mathbf{F}^* \cong (\mathrm{id}_{\mathbb{A}^{\diamond}} \times F)^* \mathbf{F}_{\mathbb{A}[\mathbb{C}]}$$

where $\int_{\mathbb{A}[\mathbb{C}]}$, $\int^{\mathbb{A}[\mathbb{C}]}$: $[\mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond}, \textbf{Set}] \to [\mathbb{C}^{\diamond}, \textbf{Set}]$ are parametric (co)ends, and $F^{*}: [\mathbb{D}^{\diamond}, \textbf{Set}] \to [\mathbb{C}^{\diamond}, \textbf{Set}]$ is precomposition with F^{\diamond} . Moreover, a Frobenius condition for coends holds: there is an isomorphism natural in $\Gamma: \mathbb{A}^{\diamond} \times \mathbb{C}^{\diamond} \to \textbf{Set}, P: \mathbb{C}^{\diamond} \to \textbf{Set}$,

$$\int^{\mathbb{A}[\mathbb{C}]} (\pi_{\mathbb{A}[\mathbb{C}]}^*(P) \wedge \Gamma) \cong \pi_{\mathbb{A}[\mathbb{C}]}^*(P) \wedge \int^{\mathbb{A}[\mathbb{C}]} (\Gamma),$$

where $- \wedge -: [\mathbb{C}, \textbf{Set}] \times [\mathbb{C}, \textbf{Set}] \to [\mathbb{C}, \textbf{Set}]$ is the pointwise product. **Proof.** Beck-Chevalley is easy. For Frobenius, we can use logical rules to mirror the argument in [Jacobs 1999, 1.9.12(i)] with exponentials.

(Co)end calculus using our rules

- Using dinaturals as semantics, we can prove useful theorems "logically". Rules for (co)ends as quantifiers + directed equality for proofs of:
- (Co)Yoneda,
- Adjointess of Kan extensions via (co)ends,
- Presheaves are closed under exponentials,
- Associativity of composition of profunctors,
- · Right lifts in profunctors,
- (Co)ends preserve limits,
- Adjointness of (co)ends in natural transformations,
- Characterization of dinaturals as certain ends,
- Frobenius property of (co)ends using exponentials.

(Co)end calculus with dinaturality (1)

Yoneda lemma:
$$(P, \Gamma: \mathbb{C} \to \mathbf{Set})$$

$$= \underbrace{\frac{[a:\mathbb{C}] \ \Gamma(a) \vdash \int_{x:\mathbb{C}} \hom^{\mathsf{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)}{[a:\mathbb{C}, x:\mathbb{C}] \ \Gamma(a) \vdash \hom^{\mathsf{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)}}_{[a:\mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a}, x) \times \Gamma(a) \vdash P(x)} \text{ (end)}$$

$$= \underbrace{\frac{[a:\mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a}, x) \times \Gamma(a) \vdash P(x)}{[z:\mathbb{C}] \ \Gamma(z) \vdash P(z)}}_{[x:\mathbb{C}] \ \Gamma(z) \vdash P(z)} \text{ (hom)}$$

(Co)end calculus with dinaturality (1)

$$\begin{array}{c} \text{Yoneda lemma: } (P, \varGamma : \mathbb{C} \to \textbf{Set}) \\ & \underbrace{ \begin{bmatrix} a : \mathbb{C} \end{bmatrix} \ \varGamma (a) \vdash \int_{x : \mathbb{C}} \hom^{\text{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x) }_{\left[a : \mathbb{C}, x : \mathbb{C} \right] \ \varGamma (a) \vdash \hom^{\text{op}}_{\mathbb{C}}(a, \overline{x}) \Rightarrow P(x)} \\ & \underbrace{ \frac{[a : \mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a}, x) \times \varGamma (a) \vdash P(x)}{\left[z : \mathbb{C} \right] \ \varGamma (z) \vdash P(z)}} \ \text{(hom)} \end{array} }_{\left[z : \mathbb{C} \right] \ \varGamma (z) \vdash P(z)} \end{array}$$

CoYoneda lemma:

$$\frac{[a:\mathbb{C}] \ \int^{x:\mathbb{C}} \hom_{\mathbb{C}}(\overline{x},a) \times P(x) \vdash \Gamma(a)}{\underline{[a:\mathbb{C},x:\mathbb{C}] \ \hom_{\mathbb{C}}(\overline{a},x) \times P(a) \vdash \Gamma(x)}} \ \text{(coend)}}{[z:\mathbb{C}] \ P(z) \vdash \Gamma(z)} \ \text{(hom)}$$

(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: $(\Gamma, A, B : \mathbb{C} \to \mathbf{Set})$

(Co)end calculus with dinaturality (3)

Right Kan extensions via ends are right adjoints to precomposition with $F:\mathbb{C}\to\mathbb{D}$ $(P:\mathbb{C}\to\mathbf{Set},\Gamma:\mathbb{D}\to\mathbf{Set})$:

$$\begin{aligned} & [y:\mathbb{D}] \ \varGamma(y) \vdash (\mathsf{Ran}_F P)(y) \\ & := \int_{x:\mathbb{C}} \mathsf{hom}^{\mathsf{op}}_{\mathbb{D}}(y, F^{\mathsf{op}}(\overline{x})) \Rightarrow P(x) \\ & \overline{[x:\mathbb{C},y:\mathbb{D}] \ \varGamma(y) \vdash \mathsf{hom}^{\mathsf{op}}_{\mathbb{D}}(y, F^{\mathsf{op}}(\overline{x})) \Rightarrow P(x)}} \ \underline{[x:\mathbb{C},y:\mathbb{D}] \ \mathsf{hom}_{\mathbb{D}}(\overline{y}, F(x)) \times \varGamma(y) \vdash P(x)}} \ \underline{[x:\mathbb{C}] \ \int^{y:\mathbb{D}} \mathsf{hom}_{\mathbb{D}}(\overline{y}, F(x)) \times \varGamma(y) \vdash P(x)} \ \underline{[x:\mathbb{C}] \ \varGamma(F(x)) \vdash P(x)}} \ \mathsf{(coYoneda)} \end{aligned}$$

(Co)end calculus with dinaturality (4)

Composition (on both sides) in **Prof** has a right adjoint (right lifts). $(P : \mathbb{C}^{op} \times \mathbb{A} \to \mathbf{Set}, Q : \mathbb{A}^{op} \times \mathbb{D} \to \mathbf{Set}, \Gamma : \mathbb{C}^{op} \times \mathbb{D} \to \mathbf{Set})$:

(Co)end calculus with dinaturality (5)

Fubini for ends
$$(\Gamma: \mathbf{Set}, P: (\mathbb{C}^{\mathsf{op}} \times \mathbb{C}) \times (\mathbb{D}^{\mathsf{op}} \times \mathbb{D}) \to \mathbf{Set})$$

$$= \underbrace{\frac{[] \ \Gamma \vdash \int_{x:\mathbb{C}} \int_{y:\mathbb{D}} P(\overline{x}, x, \overline{y}, y)}{[x:\mathbb{C}] \ \Gamma \vdash \int_{y:\mathbb{D}} P(\overline{x}, x, \overline{y}, y)}}_{[x:\mathbb{C}, y:\mathbb{D}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

$$= \underbrace{\frac{[x:\mathbb{C}, y:\mathbb{D}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)}{[y:\mathbb{D}, x:\mathbb{C}] \ \Gamma \vdash P(\overline{x}, x, \overline{y}, y)}}_{[y:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

$$= \underbrace{\frac{[y:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)}_{[x:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)}_{[x:\mathbb{D}] \ \Gamma \vdash \int_{x:\mathbb{D}} \int_{x:\mathbb{C}} P(\overline{x}, x, \overline{y}, y)} \text{ (end)}$$

(Co)end calculus with dinaturality (6)

Composition of profunctors is associative: $(\Gamma : \mathbb{A}^{op} \times \mathbb{D} \to \mathbf{Set}, P : \mathbb{A}^{op} \times \mathbb{B} \to \mathbf{Set}, Q : \mathbb{B}^{op} \times \mathbb{C} \to \mathbf{Set}, R : \mathbb{C}^{op} \times \mathbb{D} \to \mathbf{Set})$

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

Future work:

1 Big piece missing from the story: compositionality of dinaturals.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ► Claim: non-compositionality is intrinsic to Cat, like failure of UIP.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ► Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
 - ► Find suitable structures axiomatizing composition of dinaturality (e.g., operads/multicategories but with explicit variances of variables.).

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ► Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
 - ► Find suitable structures axiomatizing composition of dinaturality (e.g., operads/multicategories but with explicit variances of variables.).
- 2 Everything shown so far can be done in **Pos**, where all dinats compose.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ► Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
 - ► Find suitable structures axiomatizing composition of dinaturality (e.g., operads/multicategories but with explicit variances of variables.).
- 2 Everything shown so far can be done in **Pos**, where all dinats compose.
 - ▶ This can be used to characterize *the directed logic of posets*.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

Future work:

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ▶ Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
 - ► Find suitable structures axiomatizing composition of dinaturality (e.g., operads/multicategories but with explicit variances of variables.).
- 2 Everything shown so far can be done in Pos, where all dinats compose.
 - ▶ This can be used to characterize *the directed logic of posets*.
 - ► The left relative adjunction characterizes directed equality in **Pos**.
 - ▶ Axiomatize this logic of directed equality using *directed doctrines*.

We have seen how dinaturality allows us to give a semantic interpretation towards a directed type theory in **Cat** with quantifiers, where directed equality is given by hom-functors and quantifiers by (co)ends.

Future work:

- 1 Big piece missing from the story: compositionality of dinaturals.
 - ► *Claim*: non-compositionality is intrinsic to **Cat**, like failure of UIP.
 - ► Find suitable structures axiomatizing composition of dinaturality (e.g., operads/multicategories but with explicit variances of variables.).
- 2 Everything shown so far can be done in **Pos**, where all dinats compose.
 - ▶ This can be used to characterize *the directed logic of posets*.
 - ► The left relative adjunction characterizes directed equality in **Pos**.
 - ► Axiomatize this logic of directed equality using *directed doctrines*.
- 3 Long-term future: now that types are categories,
 - ▶ Internalize semantics of type theory inside type theory (e.g., dQIIT).
 - ▶ Naturality for free, since it can be proven internally.

The \int .

Paper: "Directed equality with dinaturality" (arXiv:2409.10237)
Agda code: github.com/iwilare/dinaturality

Thank you for the attention!

Directed doctrine (WIP)

- ullet Take a category ${\mathbb C}$ with binary products and terminal.
- The category $\mathbb{C}^{N\Delta P}$ is defined as follows:
 - Objects: $\mathbb{C}_0 \times \mathbb{C}_0 \times \mathbb{C}_0$
 - Morphisms $(N, \Delta, P) \rightarrow (N', \Delta', P')$: triples (n, p, d) where
 - $n: N \times \Delta \to N'$
 - $p: P \times \Delta \to P'$
 - $d: \Delta \to \Delta'$
 - Identities: $(\pi_1, id_{\Delta}, \pi_1)$
- **Definition**: a *directed doctrine* is a pseudofunctor $\mathcal{P}: \mathbb{C}^{N\Delta P} \to \mathbf{Pos}$.
- ullet P has **products** when each fiber has products.
- ullet has **exponentials** when certain left/right-relative adjunctions hold.
- ullet ${\cal P}$ has **directed equality** when a certain left relative adjunction holds.
- \mathcal{P} has **involutions** when \mathbb{C} has a functor $-^{\mathsf{op}}: \mathbb{C} \to \mathbb{C}$ s.t. op ; $\mathsf{op} = \mathsf{id}_{\mathbb{C}}$ and an iso $\mathcal{P}(P, \Delta, N) \cong \mathcal{P}(N^{\mathsf{op}}, \Delta^{\mathsf{op}}, N^{\mathsf{op}})$ natural in P, Δ, N .

Directed doctrines - relative adj. for exponentials (WIP)

Downgrade to dinaturality:

Dinatural to positive:

$$\frac{[a:^{\Delta}\mathbb{C},\mathbb{x}:\Gamma] \ A(\overline{a},\mathbb{x}) \times \uparrow_{a}^{\Delta}\Gamma(a,\mathbb{x}) \vdash \uparrow_{a}^{\Delta}B(a,\mathbb{x})}{[a:^{+}\mathbb{C},\mathbb{x}:\Gamma] \ \Gamma(a,\mathbb{x}) \vdash A^{\mathsf{op}}(a,\mathbb{x}) \Rightarrow B(a,\mathbb{x})}$$

Inversion:

$$\frac{[a:^{+}\mathbb{C},\mathbb{z}:\Gamma] \ A(a,\mathbb{z}) \times \Gamma(\mathbb{z}) \vdash B(\mathbb{z})}{[a:^{-}\mathbb{C},\mathbb{z}:\Gamma] \ \pi_{a}^{-}\Gamma(\mathbb{z}) \vdash A^{\mathsf{op}}(\overline{a},\mathbb{z}) \Rightarrow \pi_{a}^{-}B(\mathbb{z})}$$

$$\frac{[a:^{-}\mathbb{C},\mathbb{z}:\Gamma] \ A(\overline{a},\mathbb{z}) \times \Gamma(\mathbb{z}) \vdash B(\mathbb{z})}{[a:^{+}\mathbb{C},\mathbb{z}:\Gamma] \ \pi_{a}^{+}\Gamma(\mathbb{z}) \vdash A^{\mathsf{op}}(a,\mathbb{z}) \Rightarrow \pi_{a}^{+}B(\mathbb{z})}$$

Dinatural to negative:

$$\frac{[a : ^{\Delta} \mathbb{C}, \mathbb{x} : \Gamma] \ A(a, \mathbb{x}) \times \uparrow_{a}^{\Delta} \Gamma(\overline{a}, \mathbb{x}) \vdash \uparrow_{a}^{\Delta} B(\overline{a}, \mathbb{x})}{[a : ^{-} \mathbb{C}. \mathbb{x} : \Gamma] \ \Gamma(\overline{a}, \mathbb{x}) \vdash A^{\mathsf{op}}(\overline{a}, \mathbb{x}) \Rightarrow B(\overline{a}, \mathbb{x})}$$

Homotopical interpretation of dinaturality

We have maps both ways between these entailments:

$$\frac{[\]}{[x:C]\ x = x \vdash P}$$

but in MLTT they are not isomorphic.

In the directed case, we do not even have both maps!

$$\frac{[\] \qquad \top \vdash P}{[x : \mathbb{C}] \ \hom(\overline{x}, x) \vdash P}$$

We only have a map from top to bottom.

Related works

- [Caccamo-Winskel 2001]: axiomatic system to manipulate (co)ends; quantifier exchange is postulated, no type theory presented.
- [Licata 2011]: a model in Cat with directed equality defined judgementally and not propositionally.
- [Nuyts 2015]: a preliminary system of contexts variances is given, with no formal syntax nor models.
- [North 2018]: dependent type theory, but uses groupoid structure to type the refl rule. We use dinaturality precisely to avoid this problem.
- [Riehl-Shulman 2017]: a synthetic theory of $(\infty, 1)$ -categories with a directed interval type, no model in Cat.
- [New-Licata 2022]: a DTT with models in virtual equipments, with directed equality and quantifiers, but very different syntax w.r.t. MLTT
- [Ahrens 2023]: judgemental structure for directed equality reminiscent of a bicategorical model.
- [Neumann 2024]: groupoids are used in contexts rather than in the type of the conclusion.