Course number: 80240743

Deep Learning

Xiaolin Hu (胡晓林) & Jun Zhu (朱军) Dept. of Computer Science and Technology Tsinghua University

Topic 4: Convolutional Neural Networks-I

Xiaolin Hu
Dept. of Computer Science and
Technology
Tsinghua University

Outline

- Introduction
- Convolution
 - Forward pass
 - Backward pass

Local detectors and shift invariance in the cortex

- (Hubel & Wiesel 1962)
 - Simple cells detect local features
 - complex cells "pool" the outputs of simple cells within a retinotopic neighborhood

The multistage Hubel-Wiesel architecture

- Building a complete artificial vision system
 - Stack multiple stages of simple cells / complex cells layers
 - Higher stages compute more global, more invariant features
 - Stack a classification layer on top
- Models
 - Neocognitron [Fukushima 1971-1982]
 - Convolutional net [LeCun 1988]
 - HMAX [Poggio 2002-2006]
 - fragment hierarchy [Ullman 2002-2006]
 - HMAX [Lowe 2006]

Convolutional neural network (CNN)

- Local connections and weight sharing
- C layers: convolution
 - Output $y_i = f(\sum_{\Omega} w_j x_j + b)$ where Ω is the patch size, $f(\cdot)$ is the sigmoid function, w and b are parameters
- S layers: subsampling (avg pooling)
 - Output $y_i = f\left(\frac{1}{|\Omega|}\sum_{\Omega} x_j\right)$ where Ω is the pooling size

Two new layers

- Convolutional layer and pooling layer
 - Define two additional layers with forward computation and backward computation

Outline

- Introduction
- Convolution
 - Forward pass
 - Backward pass

Motivation

- Suppose there are two 1D sequences A and B where the length of B is smaller than that of A
- Compute the similarity between B and each part of A
- Naively, we could slide B on A and calculate the similarity one by one
 - For simplicity, we call it "correlation calculation"

But this process could be slow

Cosine similarity between two vectors x and y:

$$s \equiv \cos \theta = \frac{x^{\mathsf{T}} y}{||x|| ||y||}$$
$$= \sum_{i} x_{i} y_{i}$$

if the two vectors have unit length

Motivation

- Suppose there are two 2D images A and B where the size of B is smaller than that of A
- Compute the similarity between B and each part of A
- Naively, we could slide B on A and calculate the similarity one by one
 - For simplicity, we call it "correlation calculation"

Cosine similarity between two matrices x and y:

$$s = \sum_{i,j} x_{ij} y_{ij}$$

if the two matrices have unit Frobenius norm

Continuous convolution

$$(f * g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Discrete convolution (for finite length sequences)

$$(f * g)[m] \triangleq \sum_{n=1}^{N} f[m-n]g[n]$$

Continuous convolution

$$(f * g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Discrete convolution (for finite length sequences)

$$(f * g)[m] \triangleq \sum_{n=1}^{N} f[m-n]g[n]$$

Continuous convolution

$$(f * g)(t) \triangleq \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Discrete convolution (for finite length sequences)

$$(f * g)[m] \triangleq \sum_{n=1}^{N} f[m-n]g[n]$$

Three shapes of convolution

Length of f: M, length of g: N, where $M \ge N$

valid

full

- Same
 - truncate full result to M dimension

Example

- "Same" convolution can be also obtained by "valid" convolution of g with zero-padded f
- Suppose there are two sequences

$$f = [0, 1, 2, -1, 3]$$

 $g = [1, 1, 0]$

Then

$$(f * g)_{\text{valid}} = [3, 1, 2]$$

 $(f * g)_{\text{full}} = [0, 1, 3, 1, 2, 3, 0]$
 $(f * g)_{\text{same}} = [1, 3, 1, 2, 3]$

Python commands

import numpy as np from scipy import signal

```
f = np.array([0,1,2,-1,3])
g = np.array([1,1,0])
h = signal.convolve(f,g,mode='valid')
h = signal.convolve(f,g,mode='full')
h = signal.convolve(f,g,mode='same')
```

Relationship between similarity and convolution

• Calculating the the similarity between sequence g and each part of sequence f is equivalent to calculating $f * \tilde{g}$ where

$$ilde{g}_1=g_N$$
 , $ilde{g}_2=g_{N-1}$, ... , $ilde{g}_N=g_1$

 The above flip operation can be realized by applying the command numpy.rot90() twice (denoted by rot180() hereafter)

It's equivalent to *flip the vector along the axis 0*

- Suppose that there are two matrices f and g with sizes $M \times N$ and $K_1 \times K_2$, respectively, where $M \geq K_1$, $N \geq K_2$
- Discrete convolution of the two matrices

$$h[m,n] = (f * g)[m,n] \triangleq \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} f[m-k_1, n-k_2]g[k_1, k_2]$$

When
$$m=4, n=4$$

$$(f*g)_{m,n} = f_{3,3}g_{1,1} + f_{3,2}g_{1,2} + f_{3,1}g_{1,3} + f_{2,3}g_{2,1} + \cdots$$

- valid shape: the size of h is $(M K_1 + 1) \times (N K_2 + 1)$
- full shape: the size of h is $(M + K_1 1) \times (N + K_2 1)$
- same shape: the size of h is $M \times N$

Matlab example

```
>> A = round(3*rand(4))
A =
  2 2 0 0
  2 1 2 2
>> B = round(2*rand(3))-1
B =
  0 0 -1
```

```
>> C = conv2(A,B,'full')
C =
  0 0 -1 -1 -1 2
  2 0 -3 0 1 0
0 -1 4 3 -1 1
1 -2 5 1 4 3
  -3 3 2 0 2 1
>> D = conv2(A,B,'valid')
D =
  4
```

Matlab example

```
>> A = round(3*rand(4))
A =
  2 2 0 0
  2 1 2 2
>> B = round(2*rand(3))-1
B =
  0 0 -1
```

```
>> C = conv2(A,B,'full')
C =
  0 0 -1 -1 -1
  2 0 -3 0 1 0
  0 -1 4 3 -1 1
    -2 5 1 4
>> D = conv2(A,B,'same')
D =
 0 -1 -1 -1
 0 -3 0 1
-1 4 3 -1
-2 5 1 4
```

Python example

```
import numpy
from scipy import signal
A = numpy.array([[0,0,1,2],[2,2,0,0],[2,1,2,2],[3,0,1,1]])
B = numpy.array([[0,0,-1],[1,-1,1],[-1,1,1]])
C = signal.convolve2d(A,B,mode='full')
print(C)
C = signal.convolve2d(A,B,mode='valid')
print(C)
C = signal.convolve2d(A,B,mode='same')
print(C)
```

You would obtain the same results as before

Relationship between similarity and convolution

• Calculating the the similarity between matrix g and each part of matrix f is equivalent to calculating $f * \tilde{g}$ where

$$\begin{split} \tilde{g}_{1,1} &= g_{M,N}, \tilde{g}_{1,2} = g_{M,N-1}, \dots, \tilde{g}_{1,N} = g_{M,1} \\ \tilde{g}_{2,1} &= g_{M-1,N}, \tilde{g}_{2,2} = g_{M-1,N-1}, \dots, \tilde{g}_{2,N} = g_{M-1,1} \\ & \vdots \\ \tilde{g}_{M,1} &= g_{1,N}, \tilde{g}_{M,2} = g_{1,N-1}, \dots, \tilde{g}_{M,N} = g_{1,1} \end{split}$$

 The above operation can be realized by applying the command numpy.rot90() twice (denoted by rot180() hereafter)

It's equivalent to flip the matrix along the axes 0 then 1

Example

feature map

The higher a pixel value (brighter) in the feature map, the more similar between the filter and the corresponding patch in the figure

Outline

- Introduction
- Convolution
 - Forward pass
 - Backward pass

Derive BP algorithm in different cases

1. The 1D convolution case without feature combination

2. The 1D convolution case with feature combination

3. The 2D convolution case

Case 1: 1D convolution without feature combination

• Suppose that the l-th layer is a convolutional layer

In what follows, we drop the indexp p

• Convolve every filter $\pmb{w}_p^{(l)}$ with the p-th feature map $\pmb{y}_p^{(l-1)}$ in the previous layer and obtain a new feature map

$$\mathbf{y}_p^{(l)} = \mathbf{y}_p^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(\mathbf{w}_p^{(l)}\right) + b_p^{(l)}$$
A scalar

[We actually want to compute $oldsymbol{y}_p^{(l)} = oldsymbol{y}_p^{(l-1)} \mathbf{corr} \, oldsymbol{w}_p^{(l)} + b_p^{(l)}]$

Recap: Derivative of two-step composition

Suppose we have:

- Independent input variables $x_1, x_2, ..., x_n$
- Dependent intermediate variables, $u_1, u_2, ..., u_m$, each of which is a function of $x_1, x_2, ..., x_n$
- Dependent output variables $w_1, w_2, ..., w_p$, each of which is a function of $u_1, u_2, ..., u_m$

Then for any $i \in \{1,2,\ldots,p\}$ and $j \in \{1,2,\ldots,n\}$ we have

$$\frac{\partial w_i}{\partial x_j} = \sum_{k=1}^{m} \frac{\partial w_i}{\partial u_k} \frac{\partial u_k}{\partial x_j}$$
 Sum over the intermediate variables

Gradient calculation in an example

Consider one single feature map in layer l

• Gradient of $oldsymbol{w}^{(l)}$: scalar form

$$\begin{split} \frac{\partial E^{(n)}}{\partial w_1^{(l)}} &= \sum_{i=1}^3 \frac{\partial E^{(n)}}{\partial y_i^{(l)}} \frac{\partial y_i^{(l)}}{\partial w_1^{(l)}} = \delta_1^{(l)} y_1^{(l-1)} + \delta_2^{(l)} y_2^{(l-1)} + \delta_3^{(l)} y_3^{(l-1)} \\ \frac{\partial E^{(n)}}{\partial w_2^{(l)}} &= \sum_{i=1}^3 \frac{\partial E^{(n)}}{\partial y_i^{(l)}} \frac{\partial y_i^{(l)}}{\partial w_2^{(l)}} = \delta_1^{(l)} y_2^{(l-1)} + \delta_2^{(l)} y_3^{(l-1)} + \delta_3^{(l)} y_4^{(l-1)} \\ \frac{\partial E^{(n)}}{\partial w_3^{(l)}} &= \sum_{i=1}^3 \frac{\partial E^{(n)}}{\partial y_i^{(l)}} \frac{\partial y_i^{(l)}}{\partial w_3^{(l)}} = \delta_1^{(l)} y_3^{(l-1)} + \delta_2^{(l)} y_4^{(l-1)} + \delta_3^{(l)} y_5^{(l-1)} \end{split}$$

Gradient calculation in general

Consider one single feature map in layer l

• Gradient of $oldsymbol{w}^{(l)}$: vector form

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}^{(l)}} = \boldsymbol{y}^{(l-1)} *_{\text{valid rot}} 180(\boldsymbol{\delta}^{(l)})$$

• Gradient of $b^{(l)}$

$$\frac{\partial E^{(n)}}{\partial b^{(l)}} = \sum_{i=1}^{3} \frac{\partial E^{(n)}}{\partial y_i^{(l)}} \frac{\partial y_i^{(l)}}{\partial b^{(l)}} = \sum_i \delta_i^{(l)}$$

Local sensitivity in the example

Consider one single feature map in layer l

• $y_1^{(l-1)}$ appears once in $y^{(l)}$, and thus in the error function

$$\delta_1^{(l-1)} = \frac{\partial E^{(n)}}{\partial y_1^{(l-1)}} = \frac{\partial E^{(n)}}{\partial y_1^{(l)}} \frac{\partial y_1^{(l)}}{\partial y_1^{(l-1)}} = \delta_1^{(l)} w_1^{(l)}$$

Local sensitivity in the example

Consider one single feature map in layer l

• $y_2^{(l-1)}$ appears twice in $\mathbf{y}^{(l)}$, and thus in the error function

$$\delta_2^{(l-1)} = \frac{\partial E^{(n)}}{\partial y_2^{(l-1)}} = \frac{\partial E^{(n)}}{\partial y_1^{(l)}} \frac{\partial y_1^{(l)}}{\partial y_2^{(l-1)}} + \frac{\partial E^{(n)}}{\partial y_2^{(l)}} \frac{\partial y_2^{(l)}}{\partial y_2^{(l-1)}} = \delta_1^{(l)} w_2^{(l)} + \delta_2^{(l)} w_1^{(l)}$$

• Similarly we can obtain $\delta_3^{(l)}$, $\delta_4^{(l)}$ and $\delta_5^{(l)}$

Local sensitivity in general

Local sensitivity in the vector form

$$\boldsymbol{\delta}^{(l-1)} \triangleq \frac{\partial E^{(n)}}{\partial \boldsymbol{y}^{l-1}} = \begin{pmatrix} \delta_{1}^{(l)} w_{1}^{(l)} \\ \delta_{1}^{(l)} w_{2}^{(l)} + \delta_{2}^{(l)} w_{1}^{(l)} \\ \delta_{1}^{(l)} w_{3}^{(l)} + \delta_{2}^{(l)} w_{2}^{(l)} + \delta_{3}^{(l)} w_{1}^{(l)} \\ \delta_{2}^{(l)} w_{3}^{(l)} + \delta_{3}^{(l)} w_{2}^{(l)} \\ \delta_{3}^{(l)} w_{3}^{(l)} \end{pmatrix} = \boldsymbol{\delta}^{(l)} *_{\text{full}} \boldsymbol{w}^{(l)}$$

Full convolution of $\boldsymbol{\delta}^{(l)}$ and $\boldsymbol{w}^{(l)}$

Case 2: 1D convolution with feature combination---An example

Suppose that the l-th layer is a convolutional layer

(The subscripts now index the feature maps, not elements in vectors)

- Let ${m w}_{qp}^{(l)}$ denote the p-th filter in layer l-1 to the q-th filter in layer l
- Forward pass: the first feature map in layer l combines the output of two feature maps in layer l-1

$$y_1^{(l)} = y_1^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(w_{11}^{(l)} \right) + y_2^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(w_{12}^{(l)} \right) + b_1^{(l)}$$
A vector

A scalar

Forward pass in general

• Suppose that the l-th layer is a convolutional layer

• This is generalized to multiple feature maps in layer l, and each feature map is obtained by $\frac{A \text{ scalar}}{l}$

$$\mathbf{y}_{q}^{(l)} = \sum_{p \in M_{q}} \mathbf{y}_{p}^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(\mathbf{w}_{qp}^{(l)}\right) + b_{q}^{(l)}$$

where M_q denotes the set of feature maps in layer l-1 connected to the q-th feature map in layer l

Feature map selection

• M_q often contains all feature maps in layer l-1, but sometimes it does not

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	Χ		Χ	Χ
1	X	Χ				Χ	Χ	Χ			\mathbf{X}	Χ	Χ	Χ		Χ
2	X	Χ	Χ				\mathbf{X}	Χ	Χ			Χ		Χ	Χ	\mathbf{X}
3		Χ	Χ	Χ			Χ	Χ	Χ	Χ			Χ		Χ	Χ
4			Χ	\mathbf{X}	Χ			Χ	Χ	Χ	X		Χ	Χ		Χ
5				Χ	Χ	Х			Χ	Χ	X	Χ		Χ	Χ	Χ

Each column indicates which feature map in S2 are combined to produce a particular feature map of C3

Feature map selection

AlexNet, 2012

ResNeXt, 2017

Gradient calculation in the example

• In layer l, calculate gradients of parameters in this layer

Are these eqns correct?

(A)
$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{11}^{(l)}} = \boldsymbol{y}_{1}^{(l-1)} *_{\text{valid }} \text{rot} 180(\boldsymbol{\delta}_{1}^{(l)}), \quad \text{(B)} \quad \frac{\partial E^{(n)}}{\partial b_{1}^{(l)}} = \sum_{i} (\delta_{1}^{(l)})_{i},$$

(C)
$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{22}^{(l)}} = \boldsymbol{y}_2^{(l-1)} *_{\text{valid }} \text{rot} 180(\boldsymbol{\delta}_2^{(l)}), \quad \text{(D)} \quad \frac{\partial E^{(n)}}{\partial b_2^{(l)}} = \sum_i (\delta_2^{(l)})_i.$$

Gradient calculation in the example

• In layer l, calculate gradients of parameters in this layer

- How about $\partial E^{(n)}/\partial w_{12}^{(l)}$?
- How about the corresponding bias term?

Gradient calculation in general

In layer l, calculate

$$rac{\partial E^{(n)}}{\partial oldsymbol{w}_{11}^{(l)}} = oldsymbol{y}_1^{(l-1)} *_{ ext{valid}} \operatorname{rot} 180(oldsymbol{\delta}_1^{(l)}), \quad rac{\partial E^{(n)}}{\partial b_1^{(l)}} = \sum_{l} oldsymbol{w}_{11}^{(l)}$$

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{12}^{(l)}} = \boldsymbol{y}_{2}^{(l-1)} *_{\mathrm{valid}} \mathrm{rot} 180(\boldsymbol{\delta}_{1}^{(l)})$$

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{22}^{(l)}} = \boldsymbol{y}_{2}^{(l-1)} *_{\text{valid rot}} 180(\boldsymbol{\delta}_{2}^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b_{2}^{(l)}} = \sum_{i} (\delta_{2}^{(l)})_{i}.$$

In general

Layer
$$l-1$$
 Layer l

$$\mathbf{y}_{p}^{(l-1)} \mathbf{y}_{q}^{(l)} \mathbf{y}_{q}^{(l)} \frac{\partial E^{(n)}}{\partial \mathbf{w}_{qp}^{(l)}} = \mathbf{y}_{p}^{(l-1)} *_{\text{valid }} \operatorname{rot} 180(\boldsymbol{\delta}_{q}^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b_{q}^{(l)}} = \sum_{i} (\boldsymbol{\delta}_{q}^{(l)})_{i}$$

In layer l, calculate the local sensitivity in layer l-1

Is the eqn of local sensitivity $\boldsymbol{\delta}_1^{(l-1)} = \partial E^{(n)}/\partial \boldsymbol{y}_1^{(l-1)}$ the same as before, say,

$$oldsymbol{\delta}_1^{(l-1)} = oldsymbol{\delta}_1^{(l)} *_{ ext{full}} oldsymbol{w}_{11}^{(l)}$$
 ?

• In layer l, calculate the local sensitivity in layer l-1

$$\mathbf{y}_{11}^{(l)} = \mathbf{y}_{1}^{(l-1)} *_{\text{valid}} \text{ rot} 180 \left(\mathbf{w}_{11}^{(l)}\right) \\ + \mathbf{y}_{2}^{(l-1)} *_{\text{valid}} \text{ rot} 180 \left(\mathbf{w}_{12}^{(l)}\right) + b_{1}^{(l)} \\ \mathbf{y}_{2}^{(l)} = \mathbf{y}_{2}^{(l-1)} *_{\text{valid}} \text{ rot} 180 \left(\mathbf{w}_{22}^{(l)}\right) + b_{2}^{(l)}$$

Intermediate variable between $y_2^{(l-1)}$ and $E^{(n)}$

• Is the eqn of local sensitivity $\delta_2^{(l-1)} = \partial E^{(n)}/\partial y_2^{(l-1)}$ the same as before, that is,

$$oldsymbol{\delta}_2^{(l-1)} = oldsymbol{\delta}_2^{(l)} *_{ ext{full}} oldsymbol{w}_{22}^{(l)}$$
 ?

Local sensitivity in general

• In layer l, calculate the local sensitivity in layer l-1

$$oldsymbol{\delta}_1^{(l-1)} = oldsymbol{\delta}_1^{(l)} *_{ ext{full}} oldsymbol{w}_{11}^{(l)}$$

$$oldsymbol{\delta}_2^{(l-1)} = oldsymbol{\delta}_1^{(l)} *_{ ext{full}} oldsymbol{w}_{12}^{(l)} + oldsymbol{\delta}_2^{(l)} *_{ ext{full}} oldsymbol{w}_{22}^{(l)}$$

In general

Layer
$$l-1$$
 Layer l $\mathbf{y}_{qp}^{(l-1)}$ $\mathbf{y}_{q}^{(l)}$ $\mathbf{y}_{qr}^{(l)}$ $\mathbf{y}_{qr}^{(l)}$

$$oldsymbol{\delta}_p^{(l-1)} = \sum_{q \in ilde{M}_p} oldsymbol{\delta}_q^{(l)} *_{ ext{full}} oldsymbol{w}_{qp}^{(l)}$$

where \widetilde{M}_p denotes the set of feature maps in layer l that the p-th feature map in layer l-1 connects to

Summary for 1D convolutional layer

Suppose that the l-th layer is a convolutional layer

Forward pass

$$\mathbf{y}_{q}^{(l)} = \sum_{p \in M_q} \mathbf{y}_{p}^{(l-1)} *_{\text{valid}} \text{rot} 180(\mathbf{w}_{qp}^{(l)}) + b_{q}^{(l)}$$

where M_q denotes the set of feature maps in layer l-1 connected to the q-th feature map in layer l

Backward pass

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{qp}^{(l)}} = \boldsymbol{y}_p^{(l-1)} *_{\text{valid}} \operatorname{rot} 180(\boldsymbol{\delta}_q^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b_q^{(l)}} = \sum_i (\boldsymbol{\delta}_q^{(l)})_i$$

$$\boldsymbol{\delta}_p^{(l-1)} = \sum_{q \in \tilde{M}} \boldsymbol{\delta}_q^{(l)} *_{\text{full}} \boldsymbol{w}_{qp}^{(l)}$$

where \widetilde{M}_p denotes the set of feature maps in layer l that the p-th feature map in layer l-1 connects to

42

Derive BP algorithm in different cases

The 1D convolution case without feature combination

The 1D convolution case with feature combination

The 2D convolution case

2D convolution

- Suppose that there are two matrices f and g with sizes $M \times N$ and $K_1 \times K_2$, respectively, where $M \geq K_1$, $N \geq K_2$
- Discrete convolution of the two matrices

$$h[m,n] = (f * g)[m,n] \triangleq \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} f[m-k_1, n-k_2]g[k_1, k_2]$$

When
$$m=4, n=4$$

 $(f*g)_{m,n}$
 $=f_{3,3}g_{1,1}+f_{3,2}g_{1,2}$
 $+f_{3,1}g_{1,3}+f_{2,3}g_{2,1}+\cdots$

- valid shape: the size of h is $(M K_1 + 1) \times (N K_2 + 1)$
- full shape: the size of h is $(M + K_1 1) \times (N + K_2 1)$
- same shape: the size of h is $M \times N$

2D convolution without feature combination

• Suppose that the l-th layer is a convolutional layer

In what follows, we drop the index p

• Convolve every filter $\pmb{w}_p^{(l)}$ with the p-th feature map $\pmb{y}_p^{(l-1)}$ in the previous layer and obtain a new feature map

$$\mathbf{y}_{p}^{(l)} = \mathbf{y}_{p}^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(\mathbf{w}_{p}^{(l)}\right) + b_{p}^{(l)}$$

[We actually want to compute $oldsymbol{y}_p^{(l)} = oldsymbol{y}_p^{(l-1)} \mathbf{corr} \, oldsymbol{w}_p^{(l)} + b_p^{(l)}]$

Forward pass in an example

Consider one single feature map in layer l

Layer l-1

Layer *l*

• The output in layer l

$$y_p^{(l)} = y_p^{(l-1)} *_{\text{valid}} \operatorname{rot} 180 \left(w_p^{(l)} \right) + b_p^{(l)}$$

$$y_{11}^{(l)} = w_{11}^{(l)} y_{11}^{(l-1)} + w_{12}^{(l)} y_{12}^{(l-1)} + w_{21}^{(l)} y_{21}^{(l-1)} + w_{22}^{(l)} y_{22}^{(l-1)} + b^{(l)}$$

$$y_{12}^{(l)} = w_{11}^{(l)} y_{12}^{(l-1)} + w_{12}^{(l)} y_{13}^{(l-1)} + w_{21}^{(l)} y_{22}^{(l-1)} + w_{22}^{(l)} y_{23}^{(l-1)} + b^{(l)}$$

$$y_{21}^{(l)} = w_{11}^{(l)} y_{21}^{(l-1)} + w_{12}^{(l)} y_{22}^{(l-1)} + w_{21}^{(l)} y_{31}^{(l-1)} + w_{22}^{(l)} y_{32}^{(l-1)} + b^{(l)}$$

$$y_{22}^{(l)} = w_{11}^{(l)} y_{22}^{(l-1)} + w_{12}^{(l)} y_{23}^{(l-1)} + w_{21}^{(l)} y_{32}^{(l-1)} + w_{32}^{(l)} y_{33}^{(l-1)} + b^{(l)}$$

Gradient calculation in the example

$$\mathbf{y}_p^{(l)} = \mathbf{y}_p^{(l-1)} *_{\text{valid}} \text{rot} 180 \left(\mathbf{w}_p^{(l)}\right) + b_p^{(l)}$$

$$y_{11}^{(l)} = w_{11}^{(l)} y_{11}^{(l-1)} + w_{12}^{(l)} y_{12}^{(l-1)} + w_{21}^{(l)} y_{21}^{(l-1)} + w_{22}^{(l)} y_{22}^{(l-1)} + b^{(l)}$$

$$y_{12}^{(l)} = w_{11}^{(l)} y_{12}^{(l-1)} + w_{12}^{(l)} y_{13}^{(l-1)} + w_{21}^{(l)} y_{22}^{(l-1)} + w_{22}^{(l)} y_{23}^{(l-1)} + b^{(l)}$$

$$y_{21}^{(l)} = w_{11}^{(l)} y_{21}^{(l-1)} + w_{12}^{(l)} y_{22}^{(l-1)} + w_{21}^{(l)} y_{31}^{(l-1)} + w_{22}^{(l)} y_{32}^{(l-1)} + b^{(l)}$$

$$y_{22}^{(l)} = w_{11}^{(l)} y_{22}^{(l-1)} + w_{12}^{(l)} y_{23}^{(l-1)} + w_{21}^{(l)} y_{32}^{(l-1)} + w_{32}^{(l)} y_{33}^{(l-1)} + b^{(l)}$$

• Gradient of $w^{(l)}$ and $b^{(l)}$

$$\begin{split} \partial E^{(n)}/\partial w_{11}^{(l)} &= \delta_{11}^{(l)} y_{11}^{(l-1)} + \delta_{12}^{(l)} y_{12}^{(l-1)} + \delta_{21}^{(l)} y_{21}^{(l-1)} + \delta_{22}^{(l)} y_{22}^{(l-1)} \\ \partial E^{(n)}/\partial w_{12}^{(l)} &= \delta_{11}^{(l)} y_{12}^{(l-1)} + \delta_{12}^{(l)} y_{13}^{(l-1)} + \delta_{21}^{(l)} y_{22}^{(l-1)} + \delta_{22}^{(l)} y_{23}^{(l-1)} \\ \partial E^{(n)}/\partial w_{21}^{(l)} &= \delta_{11}^{(l)} y_{21}^{(l-1)} + \delta_{12}^{(l)} y_{22}^{(l-1)} + \delta_{21}^{(l)} y_{31}^{(l-1)} + \delta_{22}^{(l)} y_{32}^{(l-1)} \\ \partial E^{(n)}/\partial w_{22}^{(l)} &= \delta_{11}^{(l)} y_{22}^{(l-1)} + \delta_{12}^{(l)} y_{23}^{(l-1)} + \delta_{21}^{(l)} y_{32}^{(l-1)} + \delta_{22}^{(l)} y_{33}^{(l-1)} \\ \partial E^{(n)}/\partial b^{(l)} &= \delta_{11}^{(l)} + \delta_{12}^{(l)} + \delta_{21}^{(l)} + \delta_{22}^{(l)} \end{split}$$

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}^{(l)}} = \boldsymbol{y}^{(l-1)} *_{\text{valid }} \text{rot} 180(\boldsymbol{\delta}^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b^{(l)}} = \sum_{i,j} \delta_{ij}^{(l)}$$

Consider one single feature map in layer l

Note that

$$\begin{aligned} y_{11}^{(l)} &= w_{11}^{(l)} y_{11}^{(l-1)} + w_{12}^{(l)} y_{12}^{(l-1)} + w_{21}^{(l)} y_{21}^{(l-1)} + w_{22}^{(l)} y_{22}^{(l-1)} + b^{(l)} \\ y_{12}^{(l)} &= w_{11}^{(l)} y_{12}^{(l-1)} + w_{12}^{(l)} y_{13}^{(l-1)} + w_{21}^{(l)} y_{22}^{(l-1)} + w_{22}^{(l)} y_{23}^{(l-1)} + b^{(l)} \\ y_{21}^{(l)} &= w_{11}^{(l)} y_{21}^{(l-1)} + w_{12}^{(l)} y_{22}^{(l-1)} + w_{21}^{(l)} y_{31}^{(l-1)} + w_{22}^{(l)} y_{32}^{(l-1)} + b^{(l)} \\ y_{22}^{(l)} &= w_{11}^{(l)} y_{22}^{(l-1)} + w_{12}^{(l)} y_{23}^{(l-1)} + w_{21}^{(l)} y_{32}^{(l-1)} + w_{32}^{(l)} y_{33}^{(l-1)} + b^{(l)} \end{aligned}$$

$$\begin{split} y_{11}^{(l)} &= w_{11}^{(l)} y_{11}^{(l-1)} + w_{12}^{(l)} y_{12}^{(l-1)} + w_{21}^{(l)} y_{21}^{(l-1)} + w_{22}^{(l)} y_{22}^{(l-1)} + b^{(l)} \\ y_{12}^{(l)} &= w_{11}^{(l)} y_{12}^{(l-1)} + w_{12}^{(l)} y_{13}^{(l-1)} + w_{21}^{(l)} y_{22}^{(l-1)} + w_{22}^{(l)} y_{23}^{(l-1)} + b^{(l)} \\ y_{21}^{(l)} &= w_{11}^{(l)} y_{21}^{(l-1)} + w_{12}^{(l)} y_{22}^{(l-1)} + w_{21}^{(l)} y_{31}^{(l-1)} + w_{22}^{(l)} y_{32}^{(l-1)} + b^{(l)} \\ y_{22}^{(l)} &= w_{11}^{(l)} y_{22}^{(l-1)} + w_{12}^{(l)} y_{23}^{(l-1)} + w_{21}^{(l)} y_{32}^{(l-1)} + w_{22}^{(l)} y_{33}^{(l-1)} + b^{(l)} \end{split}$$

- It's easy to calculate $\delta_{ij}^{(l-1)}$
- If we define

$$m{\delta}^{(l)} = \left(egin{array}{cc} \delta_{11}^{(l)} & \delta_{12}^{(l)} \ \delta_{21}^{(l)} & \delta_{22}^{(l)} \end{array}
ight), m{w}^{(l)} = \left(egin{array}{cc} w_{11}^{(l)} & w_{12}^{(l)} \ w_{21}^{(l)} & w_{22}^{(l)} \end{array}
ight)$$

What's the relationship between $\delta^{(l)}$ and $\delta^{(l-1)}$?

same as 1D cas

Summary for 2D convolution without feature combination

Suppose that the l-th layer is a convolutional layer

Forward pass

$$\mathbf{y}^{(l)} = \mathbf{y}^{(l-1)} *_{\text{valid}} \text{rot} 180(\mathbf{w}^{(l)}) + b^{(l)}$$

- Backward pass
 - Gradient:

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}^{(l)}} = \boldsymbol{y}^{(l-1)} *_{\text{valid rot}} 180(\boldsymbol{\delta}^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b^{(l)}} = \sum_{i,j} \delta_{ij}^{(l)}$$

– Local sensitivity:

$$\boldsymbol{\delta}^{(l-1)} = \boldsymbol{\delta}^{(l)} *_{\mathrm{full}} \boldsymbol{w}^{(l)}$$

Same as 1D cas

Summary for 2D convolution *with* feature combination

Suppose that the l-th layer is a convolutional layer

Forward pass

$$\mathbf{y}_{q}^{(l)} = \sum_{l} \mathbf{y}_{p}^{(l-1)} *_{\text{valid}} \text{rot} 180(\mathbf{w}_{qp}^{(l)}) + b_{q}^{(l)}$$

- Backward pass $p \in \mathcal{M}_q$
 - Gradient:

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{qp}^{(l)}} = \boldsymbol{y}_p^{(l-1)} *_{\text{valid}} \text{rot} 180(\boldsymbol{\delta}_q^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b_q^{(l)}} = \sum_i (\boldsymbol{\delta}_q^{(l)})_{ij}$$

– Local sensitivity:

Replace the summation using 3D convolution

$$m{y}_q^{(l)}$$
 Forward pass: $m{y}_q^{(l)} = \sum_{p \in M_q} m{y}_p^{(l-1)} *_{ ext{valid}} \operatorname{rot} 180(m{w}_{qp}^{(l)}) + b_q^{(l)}$

height

width

Define 3D matrices (tensors)

ine 3D matrices (tensors)
$$oldsymbol{Y}^{(l-1)} = [oldsymbol{y}_1^{(l-1)}, \ldots, oldsymbol{y}_p^{(l-1)}, \ldots, oldsymbol{y}_{p}^{(l-1)}, \ldots, oldsymbol{y}_{|\mathcal{M}_q|}^{(l-1)}] \in R^{|\mathcal{M}_q| imes M imes N}$$
 $oldsymbol{W}_q^{(l)} = [oldsymbol{w}_{q1}^{(l)}, \ldots, oldsymbol{w}_{qp}^{(l)}, \ldots, oldsymbol{w}_{q|\mathcal{M}_q|}^{(l)}] \in R^{|\mathcal{M}_q| imes K_1 imes K_2}$

where $|\cdot|$ denotes the cardinality of a set; M, K_1 : width; N, K_2 : height

The forward pass can be expressed as

$$oldsymbol{y}_q^{(l)} = oldsymbol{Y}^{(l-1)} *_{ ext{valid}} \operatorname{rot} 180(oldsymbol{W}_q^{(l)}) + b_q^{(l)}$$

3D convolution

- We assume the number of channels in the input is the same as that in the kernel (filter)
- Correlate a 2D feature map in the 3D input with the corresponding 2D section in the 3D kernel, then sum over all sections to yield one feature map
 - This can be realized by flipping the 3D kernel and do 3D convolution

The number of parameters in this layer is $\left|\widetilde{\mathcal{M}}_p\right| \times \left|\mathcal{M}_a\right| \times K_1 \times K_2$

Replace the summation using 3D convolution

Backward pass:

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{w}_{qp}^{(l)}} = \boldsymbol{y}_p^{(l-1)} *_{\text{valid}} \text{rot} 180(\boldsymbol{\delta}_q^{(l)}), \quad \frac{\partial E^{(n)}}{\partial b_q^{(l)}} = \sum_i (\boldsymbol{\delta}_q^{(l)})_{ij}$$

Gradient w.r.t. w

$$\frac{\partial E^{(n)}}{\partial \boldsymbol{W}_{q}^{(l)}} = \boldsymbol{Y}^{(l-1)} *_{\text{valid}} \operatorname{rot} 180(\boldsymbol{\delta}_{q}^{(l)})
= [\boldsymbol{y}_{1}^{(l-1)} *_{\text{valid}} \operatorname{rot} 180(\boldsymbol{\delta}_{q}^{(l)}), \dots, \boldsymbol{y}_{|M_{q}|}^{(l-1)} *_{\text{valid}} \operatorname{rot} 180(\boldsymbol{\delta}_{q}^{(l)})]$$

- Gradient w.r.t. b does not change
- How about the local sensitivity?

Replace the summation using 3D convolution

Backward pass:

$$oldsymbol{\delta}_p^{(l-1)} = \sum_{q \in ilde{M}_p} oldsymbol{\delta}_q^{(l)} *_{ ext{full}} oldsymbol{w}_{qp}^{(l)}$$

Define

$$\begin{split} \boldsymbol{\tilde{W}}_{q}^{(l)} &= [\boldsymbol{\delta}_{1p}^{(l)}, \dots, \boldsymbol{\delta}_{qp}^{(l)}, \dots, \boldsymbol{\delta}_{|\tilde{M}_{p}|p}^{(l)}] \in R^{|\tilde{M}_{p}| \times M' \times N'} \\ \tilde{\boldsymbol{W}}_{p}^{(l)} &= [\boldsymbol{w}_{1p}^{(l)}, \dots, \boldsymbol{w}_{qp}^{(l)}, \dots, \boldsymbol{w}_{|\tilde{M}_{p}|p}^{(l)}] \in R^{|\tilde{M}_{p}| \times K_{1} \times K_{2}} \end{split}$$
 width height

Then

$$oldsymbol{\delta}_p^{(l-1)} = oldsymbol{\Delta}_q^{(l)} *_{ ext{full}} ext{flip}_0(ilde{oldsymbol{W}}_p^{(l)})$$

where flip₀ means flip along the first dimension

- This "full" convolution only applies in the 2^{nd} and 3^{rd} dimension, while in the 1^{st} dimension (along q) the convolution type is "valid"
- $\pmb{W}_q^{(l)}$ and $\pmb{\widetilde{W}}_p^l$ are sections of a 4D tensor $\pmb{W}^{(l)} \in R^{\left|\widetilde{M}_p\right| \times \left|M_q\right| \times K_1 \times K_2}$

$$\boldsymbol{W}_{q}^{(l)} = \boldsymbol{W}_{(q,:,:,:)}^{(l)} \in R^{|M_{q}| \times K_{1} \times K_{2}}, \ \tilde{\boldsymbol{W}}_{p}^{(l)} = \boldsymbol{W}_{(:,p,:,:)}^{(l)} \in R^{|\tilde{M}_{p}| \times K_{1} \times K_{2}}$$
 55

Summary

- Introduction
 - Two new layers to MLP: convolution and pooling
- Convolution
 - A fast method for computing similarity
 - Akin to "simple cell"
 - With/without feature combination
 - 1D case and 2D case