

Artificial Neural Network: MLP

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

- 01 Artificial Neural Networks: Perceptron
- 02 Multi-layer Perceptron (MLP)

Perceptron: Limitation

The Limitation of Linear Models

✓ Classification:

- Linear (Fisher) discriminant analysis, logistic regression, etc.
- Can only produce a linear class boundary

✓ Regression:

- Multiple linear regression
- Can only capture the linear relationship between the predictors and the outcome
- ✓ Cannot results in good prediction performance when the classification boundary or the predictor/outcome relationship is not linear

Perceptron: Limitation

- The Limitation of Linear Models
 - ✓ Draw a straight line that perfectly separates the circles and crosses (XOR)

- Combine multiple perceptrons!
 - ✓ If we cannot solve a complex problem directly, then it is better to decompose it into some small and simple problems that can be solved!

Linear classifiers cannot solve this

$$\sigma(20^*\mathbf{0} + 20^*\mathbf{0} - 10) \approx \mathbf{0}$$
 $\sigma(-20^*\mathbf{0} - 20^*\mathbf{0} + 30) \approx \mathbf{1}$ $\sigma(20^*\mathbf{0} + 20^*\mathbf{1} - 30) \approx \mathbf{0}$ $\sigma(20^*\mathbf{1} + 20^*\mathbf{1} - 10) \approx \mathbf{1}$ $\sigma(-20^*\mathbf{1} - 20^*\mathbf{1} + 30) \approx \mathbf{0}$ $\sigma(20^*\mathbf{1} + 20^*\mathbf{0} - 30) \approx \mathbf{0}$ $\sigma(20^*\mathbf{0} + 20^*\mathbf{1} - 10) \approx \mathbf{1}$ $\sigma(-20^*\mathbf{0} - 20^*\mathbf{1} + 30) \approx \mathbf{1}$ $\sigma(20^*\mathbf{1} + 20^*\mathbf{1} - 30) \approx \mathbf{1}$ $\sigma(20^*\mathbf{1} + 20^*\mathbf{1} - 30) \approx \mathbf{1}$ $\sigma(20^*\mathbf{1} + 20^*\mathbf{1} - 30) \approx \mathbf{1}$

- Non-linear model
 - ✓ Can find an arbitrary shape of class boundary or regression functions

- Decision boundary of MLP
 - ✓ Assume that the class decision boundary can be regarded as a combination of piecewise linear boundaries

	Logstic Regression	Decision Tree	MLP	
No. of lines	I	No restriction	User defined (No of hidden layers and hidden nodes)	
Direction of lines	No restriction	Vertical to an axis	No restriction	

MLP has the highest degree of freedom to defined the decision boundary

- Basic Structure: Feed-forward Neural Network with One Hidden Layer
 - ✓ Each hidden node can be considered as an independent perceptron
 - ✓ The output node is a combination of all perceptrons

- Basic Structure: Feed-forward Neural Network with One Hidden Layer
 - ✓ Each hidden node can be considered as an independent perceptron
 - ✓ The output node is a linear combination of all perceptrons (regression)

- Basic Structure: Feed-forward Neural Network with One Hidden Layer
 - ✓ Each hidden node can be considered as an independent perceptron
 - √ The output node is a linear combination of all perceptrons (regression)

- The role of hidden nodes
 - ✓ Determines the complexity of ANN
 - ✓ If we use more number of hidden nodes, we can find a more sophisticated decision boundary (classification) or an arbitrary shape of function (regression)

XOR problem revisited

$$h_1 = g(a_1) = \begin{cases} 1 & \text{if } a_1 \ge 0 \\ -1 & \text{if } a_1 < 0 \end{cases}$$

XOR problem revisited (cont')

$$h_2 = g(a_2) = \begin{cases} 1 & \text{if } a_2 \ge 0 \\ -1 & \text{if } a_2 < 0 \end{cases}$$

x_l	x_2	a ₂	h ₂	
1/2	1/2	-3/2	-I	
3/2	1/2	-1/2	-1	
1/2	3/2	-1/2	-l	
3/2	3/2	1/2	1	

XOR problem revisited (cont')

x _I	x ₂	a _l	h _l	a ₂	h ₂	0	у
1/2	1/2	-1/2	-1	-3/2	-l	-1	-1
3/2	1/2	1/2	- 1	-1/2	-1	I	I
1/2	3/2	1/2	- 1	-1/2	-1	- 1	- 1
3/2	3/2	3/2	1	1/2	I	-1	-1

$$o = h_1 + h_2 - 1$$

$$y = a_0 + b_1 + b_2 - 1$$
 $y = g(o) = \begin{cases} 1 & \text{if } o \ge 0 \\ -1 & \text{if } o < 0 \end{cases}$

if
$$o \ge 0$$

General formulation

√ The output of the hidden node j (when the activation function is sigmoid):

$$a_j = \sum_{i=0}^{d} w_{ji}^{(1)} x_i, \quad h_j = g(a_j) = \frac{1}{1 + \exp(-a_j)}$$

√ The output of the output node (when the activation function is linear):

$$y = \sum_{j=0}^{p} w_j^{(2)} h_j$$

✓ The final outcome of the neural network:

$$y = \sum_{j=0}^{p} w_j^{(2)} \cdot g(\sum_{i=0}^{d} w_{ji}^{(1)} x_i)$$

- Error Back-Propagation
 - ✓ The loss of kth observation

$$L_k = \frac{1}{2}(y_k - \hat{y}_k)^2$$
, $y_k = \sum_{j=0}^p w_j^{(2)} \cdot g(\sum_{i=0}^d w_{ji}^{(1)} \mathbf{x}_{ki})$

 \checkmark The weight $w_j^{(2)}$ which connects the jth hidden node and the output node will be updated by

• Error Back-Propagation

 \checkmark The weight $w_{ii}^{(1)}$ which connects the ith input node and jth hidden node

$$\frac{\partial L_k}{\partial w_{ji}^{(1)}} = \frac{\partial L_k}{\partial y_k} \cdot \frac{\partial y_k}{\partial w_j^{(2)}} \cdot \frac{\partial h_j}{\partial a_j} \cdot \frac{\partial a_j}{\partial w_{ji}^{(1)}}$$

$$= (y_k - \hat{y}_k) \cdot w_j^{(2)} \cdot a_j \cdot (1 - a_j) \cdot \mathbf{x}_{ki}$$

- Error Back-Propagation: Example
 - ✓ Initial weight: Random generation

$$a_1 = \sum w_{1i}^{(1)} x_i = 1 \times 0.5 + 1 \times 0.5 + 0 \times 1 = 1$$

$$h_1 = \frac{1}{1 + \exp(1)} = 0.269$$

$$a_2 = \sum w_{2i}^{(1)} x_i = 0 \times 0.5 + 1 \times 0.5 + (-2) \times 1 = -1.5$$
 $h_2 = \frac{1}{1 + \exp(-1.5)} = 0.818$

$$h_2 = \frac{1}{1 + \exp(-1.5)} = 0.818$$

$$\hat{y} = \sum_{j=1}^{n} w_j^{(2)} h_j = 1 \times 0.269 + 1 \times 0.818 + 1 \times 1 = 2.087$$

• Error Back-Propagation: Example

✓ Update the weights between the output and the hidden nodes

$$w_1^{(2)}(new) = w_1^{(2)}(old) - \eta \times (y - \hat{y}) \times h_1 = 1 - 0.1 \times (1 - 2.087) \times 0.269 = 1.029$$

$$w_2^{(2)}(new) = w_2^{(2)}(old) - \eta \times (y - \hat{y}) \times h_2 = 1 - 0.1 \times (1 - 2.087) \times 0.818 = 1.089$$

$$w_0^{(2)}(new) = w_0^{(2)}(old) - \eta \times (y - \hat{y}) \times b^{(2)} = 1 - 0.1 \times (1 - 2.087) \times 1 = 1.109$$

Error Back-Propagation: Example

✓ Update the weights between the H₁ and the input nodes

$$w_{11}^{(1)}(new) = w_{11}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{1}^{(2)} \times h_{1} \times (1 - h_{1}) \times x_{1} = 1.011$$

$$w_{12}^{(1)}(new) = w_{12}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{1}^{(2)} \times h_{1} \times (1 - h_{1}) \times x_{2} = 1.011$$

$$w_{10}^{(1)}(new) = w_{10}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{1}^{(2)} \times h_{1} \times (1 - h_{1}) \times b^{(1)} = 0.021$$

• Error Back-Propagation: Example

✓ Update the weights between the H₁ and the input nodes

$$w_{21}^{(1)}(new) = w_{21}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{2}^{(2)} \times h_{2} \times (1 - h_{2}) \times x_{1} = -0.005$$

$$w_{22}^{(1)}(new) = w_{22}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{2}^{(2)} \times h_{2} \times (1 - h_{2}) \times x_{2} = 0.995$$

$$w_{20}^{(1)}(new) = w_{20}^{(1)}(old) - \eta \times (y - \hat{y}) \times w_{2}^{(2)} \times h_{2} \times (1 - h_{2}) \times b^{(1)} = -1.984$$

Goal

√ Find the weights that yield best predictions

Features

- √ The process described before is repeated for all records
- ✓ At each record, compare the prediction to the actual target
- ✓ Difference is the error for the output node
- ✓ Error is propagated back and distributed to all the hidden nodes and used to update
 their weights

- Why it works
 - √ Big errors lead to big changes in weights
 - √ Small errors leave weights relatively unchanged
 - ✓ Over thousand of updates, a given weight keeps changing until the error associated with it is negligible

- Common criteria to stop updating
 - √ When weights change very little from one epoch to the next.
 - √ When the misclassification rate reaches a required threshold
 - √ When a limit on runs is reached

Goal

√ Find the weights that yield best predictions

Features

- √ The process described before is repeated for all records
- ✓ At each record, compare the prediction to the actual target
- ✓ Difference is the error for the output node
- ✓ Error is propagated back and distributed to all the hidden nodes and used to update
 their weights

- With sufficient iterations, neural networks can easily over-fit the data.
- To avoid over-fitting,
 - ✓ Track error in validation data
 - ✓ Limit iterations
 - √ Limit complexity of network
 - √ N. of hidden layers, nodes, etc.

Various Structure of Artificial Neural Networks

A mostly complete chart of

Various Structure of Artificial Neural Networks

Recommended Video Lectures

• 유튜브 3Blue I Brown Neural Network 강좌

KOREA UNIVERSITY

√ https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

Recommended Video Lectures

- 유튜브 Brandon Rohrer 강좌
 - √ https://www.youtube.com/watch?v=ILsA4nyG7I0&list=PLVZqIMpoM6kbaeySxhdtgQPFEC5nV7Faa&index=2

