1-13. (Cancelled)

14. (Currently Amended) A method for anastomosing a first hollow tissue structure to a second hollow tissue structure having an aperture, the method comprising the steps of:

providing taking an anastomosis device having a longitudinal axis and comprising a hub having a plurality of openings, and a plurality of tissue securing elements each having a first end and a second end, the tissue securing elements comprised of a material capable of being biased from an unbiased configuration to a biased configuration, each separate tissue securing element being configured to be at least partially disposed within a separate one of the plurality of openings;

holding the plurality of tissue securing elements in the biased configuration in the plurality of openings;

inserting at least the first ends of the plurality of tissue securing elements through the aperture in the second hollow tissue structure while the plurality of tissue securing elements are in the biased configuration;

passing the second ends of the tissue securing elements through the first hollow tissue structure and through the plurality of openings of the hub;

ejecting at least a portion of each of the tissue securing elements from the plurality of openings-by applying a force along the longitudinal axis to the respective second ends of each of the plurality of tissue securing elements; and

permitting the plurality of tissue securing elements to move from the biased configuration to the unbiased configuration, whereat each first end of each tissue securing element contacts the inner surface of the second hollow tissue structure and each second end of each tissue securing element contacts the outer surface of the second hollow tissue structure.

15. (Previously Presented) The method of claim 14, wherein the first ends of the tissue securing elements do not pierce the inner wall of the second hollow tissue structure when the tissue securing elements are in the unbiased configuration.

16. (Previously Presented) The method of claim 14, wherein the first ends of the tissue securing elements are permitted to assume the unbiased configuration prior to the second ends of the tissue securing elements being permitted to assume the unbiased configuration.

- 17. (Previously Presented) The method of claim 14, wherein the first hollow tissue structure is a vascular conduit and the second hollow tissue structure is an aorta
- 18. (Currently Amended) The method of claim 14, wherein the anastomosis device <u>has a</u> longitudinal axis, and wherein the ejecting step comprises the step of ejecting at least a portion of each of the tissue securing elements from the plurality of openings by applying a force along the longitudinal axis to the respective second ends of each of the plurality of tissue securing elements, comprises a hub having a plurality of openings, each of the openings sized to receive a portion of a separate tissue securing element and comprising the step of passing the second ends of the tissue securing elements through the first hollow tissue structure and through the plurality of openings of the hub.
- 19. (Previously Presented) The method of claim 14, wherein the permitting step is performed such that the first ends and the second ends of the tissue securing elements compress a portion of the end of a first hollow tissue structure and a portion of the second hollow tissue structure adiacent to the aperture between the first ends and the second ends.
- 20. (Previously Presented) The method of claim 14, comprising everting the end of the first hollow tissue structure.
- 21. (Previously Presented) The method of claim 20, wherein the everting step is performed prior to the inserting step.

22. (Previously Presented) The method of claim 20, wherein the everting step comprises everting the end of the hollow tissue structure approximately 90 degrees.

- 23. (Previously Presented) The method of claim 20, wherein the everting step comprises everting the end of the hollow tissue structure less than 90 degrees.
- 24. (Previously Presented) The method of claim 20, wherein the everting step comprises everting the end of the hollow tissue structure greater than 90 degrees.
- 25. (Previously Presented) The method of claim 20, wherein the permitting step is performed such that the first ends and the second ends of the tissue securing elements compress a portion of the everted end of the first hollow tissue structure and a portion of the second hollow tissue structure adjacent to the aperture between the first ends and the second ends.
- 26. (Previously Presented) The method of claim 25, wherein the permitting step comprises compressing the inner surface of the portion of the everted end of the first hollow tissue against the outer surface of the second hollow tissue structure.
- 27. (Previously Presented) The method of claim 20, wherein the inserting step comprises inserting the first ends of the tissue securing elements from an exterior surface of the first hollow tissue structure toward an interior surface of the first hollow tissue structure.
- 28. (Previously Presented) The method of claim 27, wherein the anastomosis device comprises a hub having a bore sized to receive a portion of the first hollow tissue structure, and comprising the step of passing the first hollow tissue structure through the bore.

29. (Previously Presented) The method of claim 28, wherein the step of permitting the tissue securing elements to move from the biased configuration to the unbiased configuration causes the first ends and the second ends of the tissue securing elements to compress the portion of the end of a first hollow tissue structure, the hub and the portion of the second hollow tissue structure adjacent to the aperture.

30-36. (Cancelled)

37. (Currently Amended) The method of claim 36, A method for anastomosing a first hollow tissue structure to a second hollow tissue structure having an aperture, the method comprising the steps of:

taking an anastomosis device comprising a body having a plurality of openings, and a plurality of tissue securing elements each having a first end and a second end, the tissue securing elements comprised of a material capable of being biased from an unbiased configuration to a biased configuration, each separate tissue securing element being configured to be at least partially disposed within a separate one of the plurality of openings, wherein the body has a distal end and comprises a plurality of barbs at its distal end configured to engage for engaging the first hollow tissue structure:

holding the plurality of tissue securing elements in the biased configuration in the plurality of openings:

inserting at least the first ends of the plurality of tissue securing elements through the aperture in the second hollow tissue structure while the plurality of tissue securing elements are in the biased configuration;

engaging the first hollow tissue structure with the plurality of barbs;

ejecting at least a portion of each of the tissue securing elements from the plurality of openings; and

permitting the plurality of tissue securing elements to move from the biased configuration to the unbiased configuration, whereat each first end of each tissue securing element contacts the inner surface of the second hollow tissue structure and each second end of each tissue securing element contacts the outer surface of the second hollow tissue structure.

38. (Currently Amended) The method of claim 3637, wherein the body is a sleeve.

39. (Cancelled)

40. (Currently Amended) A method for anastomosing a first hollow tissue structure to a second hollow tissue structure having an aperture, the method comprising the steps of:

taking an anastomosis device comprising a body having a plurality of openings and a plurality of slots, wherein each of the plurality of slots communicates with a separate opening of the plurality of openings, a plurality of tissue securing elements each having a first end and a second end, the tissue securing elements comprised of a material capable of being biased from an unbiased configuration to a biased configuration, each separate tissue securing element being configured to be at least partially disposed within a separate one of the plurality of openings, and

The method of claim 39, wherein the anastomosis device comprises at least one plunger slidably disposed within at least one of the plurality of slots;

holding the plurality of tissue securing elements in the biased configuration in the plurality of openings;

inserting at least the first ends of the plurality of tissue securing elements through the aperture in the second hollow tissue structure while the plurality of tissue securing elements are in the biased configuration:

ejecting at least a portion of each of the tissue securing elements from the plurality of openings;

, and comprising the step of

moving the at least one plunger within the at least one of the plurality of slots to displace at least one tissue securing element from a first position, whereat at least a portion of the at least one tissue securing element is within the at least one of the plurality of slots, to a second position, whereat at least a portion of the at least one tissue securing element is outside the at least one of the plurality of slots; and permitting the plurality of tissue securing elements to move from the biased configuration to the unbiased configuration, whereat each first end of each tissue securing element contacts the inner surface of the second hollow tissue structure and each second end of each tissue securing element contacts the outer surface of the second hollow tissue structure.

- 41. (Previously Presented) The method of claim 40, wherein the plurality of tissue securing elements are disposed about a perimeter of the first hollow tissue structure and outside the lumen of the first hollow tissue structure, and comprising the step of everting the first hollow tissue structure.
- 42. (Previously Presented) The method of claim 41, comprising the step of passing at least a portion of each of the plurality of tissue securing elements through the everted first hollow tissue structure.
- 43. (Previously Presented) The method of claim 42, comprising the step of withdrawing the anastomosis device from the first hollow tissue structure.
- 44. (Previously Presented) The method of claim 43, comprising the step of, prior to the withdrawing step, moving at least one plunger through at least one of the plurality of slots to move at least a portion of each tissue securing element out of its respective opening.

45-72. (Cancelled)