Multiple Linear Regression (MLR) Models

Stat 230

April 13 2022

Overview

Today:

- Multiple predictors
- Quadratic predictors
- Interactions of predictors
- Interpretation

MLR Variables

Y =quantitative response

- $x_1, \ldots, x_p: p$ explanatory (predictor) variables
- x_j can be either quantitative or categorical
- we will cover categorical predictors in another lecture!

Statistical Modeling

$$Y_i = \mu(Y \mid x) + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma)$$

Simple Linear Regression model mean function:

$$\mu(Y\mid x) = \beta_0 + \beta_1 x$$

Multiple Linear Regression (MLR) model mean function:

$$\mu(Y\mid x)=eta_0+eta_1x_1+eta_2x_2+\cdots$$

MLR: Basic model

$$\mu(Y\mid x)=\mu_{Y\mid x_1,\ldots,x_p}=eta_0+eta_1x_1+eta_2x_2+\cdotseta_px_p$$

- General: β_j is the change in the mean response for a one unit increase in x_j holding all other predictors fixed.
- β_0 : mean response when all predictor values are 0

MLR: Presence of logged variables

If Y is logged, then any changes in predictors result in a multiplicative change in the median of Y

- If x is unlogged, this interpretation is like the SLR exponential model
- If x is also logged, this interpretation is like the SLR power model

MLR: Model interpretation

- β_j have the same basic interpretation as in a SLR, holding all other predictors constant!
- E.g. Holding all other predictors fixed, increasing x_1 by 1 unit results in a β_1 change in the mean of Y

$$egin{aligned} \mu\left(y \mid x_1 + 1, x_2, \dots, x_p
ight) &= eta_0 + eta_1\left(x_1 + 1
ight) + eta_2 x_2 + \dots + eta_p x_p \ &= eta_0 + eta_1 x_1 + eta_1 + eta_2 x_2 + \dots + eta_p x_p \ &= \mu\left(y \mid x_1, x_2, \dots, x_p
ight) + eta_1 \end{aligned}$$

EDA Tools

• Scatterplot matrix: a p by p matrix of scatterplots for all combos of (quantitative) variables in a data frame

```
pairs(my_data) # base-R
```

- GGally package (which is installed on Maize)
 - also includes correlation coefficient and density plots

```
ggpairs(my_data) # includes all variables
```

select variables (and order)

```
ggpairs(my_data, columns = c("y", "x1", "x2")) # include only y, x1, x2 variables
```

Example: RECS MLR

```
library(GGally)
ggpairs(energy,
columns = c("CostTotal", "SqftMeasur
lower = list(continuous = wrap("smoo
```


Example: RECS

Regression of log of energy cost against log of square footage and household size

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	4.367	0.071	61.386	0	4.227	4.506
logSqft	0.372	0.010	38.750	0	0.353	0.391
HHSize	0.084	0.005	18.191	0	0.075	0.093

$$\hat{\mu}(\log({
m \,Cost}\,) \mid x) = 4.3667 + 0.3722\log({
m \,Sqft}\,) + 0.0839 {
m \,HHSize}$$

In the original scale of the response

$$ext{med}(ext{ Cost } \mid x) = e^{4.3667 + 0.3722 \log(ext{ Sqft }) + 0.0839 HH ext{ Size}} \ = e^{4.3667} imes (Sqft)^{0.3722} imes e^{0.0839 HH ext{ Size}}$$

Example: RECS

$$\hat{\mu}(\log(ext{ Cost })\mid x) = 4.3667 + 0.3722\log(ext{ Sqft }) + 0.0839 ext{ HHSize}$$
 $\hat{\min}(ext{ Cost }\mid x) = e^{4.3667} imes (Sqft)^{0.3722} imes e^{0.0839HH ext{ Size}}$

- $\hat{\beta}_1=0.3722$: An increase in log of square footage of 1 unit is associated with an estimated 0.3722 unit increase in the mean of the log of cost, holding household size constant.
- **Power model** effect $2^{0.3722}=1.29:$ A doubling of square footage is associated with an estimated 29% increase in the median energy cost, holding household size constant.

Example: RECS

$$\hat{\mu}(\log(ext{ Cost })\mid x) = 4.3667 + 0.3722\log(ext{ Sqft }) + 0.0839 ext{ HHSize}$$
 $\hat{\min}(ext{ Cost }\mid x) = e^{4.3667} imes (Sqft)^{0.3722} imes e^{0.0839HH ext{ Size}}$

- $\hat{\beta}_2=0.0839$: An increase in household size of 1 person is associated with an estimated 0.0839 unit increase in the mean of the log of cost, holding square footage constant.
- **Exponential model** effect $e^{0.0839}=1.09$: An increase in household size of 1 person is associated with an estimated 9% increase in the median energy cost, holding square footage constant.

Example: Corn Yield (Textbook Ex. 9.15)

MLR: Quadratic model

$$\mu_{y|x_1,x_2} = eta_0 + eta_1 x_1 + eta_2 x_1^2 + eta_3 x_2$$

- Quadratic with respect to x_1
- What happens when we change x_1 by one unit (holding x_2 constant)?

$$egin{aligned} \mu\left(y\mid x_{1}+1,x_{2}
ight) &=eta_{0}+eta_{1}\left(x_{1}+1
ight)+eta_{2}\left(x_{1}+1
ight)^{2}+eta_{3}x_{2}\ &=eta_{0}+eta_{1}x_{1}+eta_{1}+eta_{2}x_{1}^{2}+eta_{2}2x_{1}+eta_{2}+eta_{3}x_{2}\ &=\mu\left(y\mid x_{1},x_{2}
ight)+eta_{1}+eta_{2}\left(2x_{1}+1
ight) \end{aligned}$$

MLR: Quadratic model

$$\mu\left(y\mid x_{1}+1,x_{2}
ight)=\mu\left(y\mid x_{1},x_{2}
ight)+eta_{1}+eta_{2}\left(2x_{1}+1
ight)$$

- x_1 effect: a 1 unit increase in x_1 is associated with a $\beta_1 + \beta_2 (2x_1 + 1)$ change in the mean response holding all other predictors fixed.
- Because of the nonlinear association, the change in y depends on the value of x_1 .
- ullet For example, if x_1 moves from 1 to 2 units, the mean change is $eta_1+3eta_2.$

Example: Corn Yield

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	-5.015	11.442	-0.438	0.664	-28.242	18.213
Rainfall	6.004	2.039	2.945	0.006	1.865	10.144
I(Rainfall^2)	-0.229	0.089	-2.588	0.014	-0.409	-0.049

$$\hat{\mu}_{ ext{yield} \, | \, ext{rain}} \, = -5.015 + 6.004 (\, ext{rain} \,) - 0.229 (\, ext{rain} \,)^2$$

Example: Corn Yield

 An increase from 9 to 10 inches of rainfall is associated with a mean yield increase of 1.646 bushels per acre.

$$6.004 - 0.229(2 \times 9 + 1) = 1.646$$

• An increase from 14 to 15 inches of rainfall is associated with a mean yield decrease of 0.648 bushels per acre.

$$6.004 - 0.229(2 \times 14 + 1) = -0.648$$

Example: Perch interaction

```
library(Stat2Data)
data("Perch")
glimpse(Perch)
ggplot(Perch, aes(x = Width, y = Weight)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_wrap(~ ntile(Length, n = 4))
```

MLR: Interaction model

$$\mu_{y|x_1,x_2} = eta_0 + eta_1 x_1 + eta_2 x_2 + eta_3 x_1 x_2$$

• What happens when we change x_1 by one unit (holding x_2 constant)?

$$egin{aligned} \mu\left(y\mid x_{1}+1,x_{2}
ight) &= eta_{0} + eta_{1}\left(x_{1}+1
ight) + eta_{2}x_{2} + eta_{3}\left(x_{1}+1
ight)x_{2} \ &= eta_{0} + eta_{1}x_{1} + eta_{1} + eta_{2}x_{2} + eta_{3}x_{1}x_{2} + eta_{3}x_{2} \ &= \mu\left(y\mid x_{1},x_{2}
ight) + eta_{1} + eta_{3}x_{2} \end{aligned}$$

• The effect of x_1 on the response, depends on the value of x_2 !

Example: Perch

term	estimate	std_error	statistic	p_value	lower_ci	upper_ci
intercept	113.935	58.784	1.938	0.058	-4.025	231.894
Length	-3.483	3.152	-1.105	0.274	-9.808	2.842
Width	-94.631	22.295	-4.244	0.000	-139.370	-49.892
Length:Width	5.241	0.413	12.687	0.000	4.412	6.070

$$\hat{\mu}_{ ext{Weight}\,|x} = 113.93 - 3.48 ext{ Length } -94.63 ext{ Width } +5.24 ext{ Length } imes ext{ Width }$$

Example: Perch

$$\hat{\mu}_{ ext{Weight}\,|x} = 113.93 - 3.48 ext{ Length } -94.63 ext{ Width } +5.24 ext{ Length } imes ext{ Width }$$

- How does width affect mean weight?
 - it depends on the length of the fish in a model with a length and width interaction
- Holding length fixed, a 1 unit increase in width is associated with an estimated mean change in weight of

$$\hat{eta}_{
m Width} + \hat{eta}_{
m Width:Length}$$
 Length $= -94.63 + 5.24$ Length

Example: Perch

$$\hat{\mu}_{ ext{Weight}\,|x} = 113.93 - 3.48 ext{ Length } -94.63 ext{ Width } +5.24 ext{ Length } imes ext{ Width }$$

 \bullet Holding length fixed at $20~\rm cm$, a $1~\rm cm$ increase in width is associated with an estimated mean increase in weight of

$$\hat{eta}_{
m Width} + \hat{eta}_{
m Width: Length} \, 20 = -94.63 + 5.24(20) = 10.194 {
m grams}$$

• Holding length fixed at $40~{
m cm}$, a $1~{
m cm}$ increase in width is associated with an estimated mean increase in weight of

$${\hat eta}_{
m Width} + {\hat eta}_{
m Width: Length} \, 20 = -94.63 + 5.24(40) = 115.02 ~
m grams$$

- The positive interaction parameter estimate means the effect of width on weight is greater for larger values of length
- same is true for the effect of length on weight

Fitting MLR in R

Planar

```
lm(y~x1 + x2 + x3, data = )
```

Quadratic

```
lm(y \sim x1 + I(x1^2) + x2, data = )
```

Interaction

```
lm(y ~ x1 + x2 + x1:x2, data = ) # explicitly add interaction
lm(y ~ x1*x2, data = ) # equals x1 + x2 + x1:x2
```

Updating an existing model

```
my_lm <- lm(y ~ x1, data = ) # initial model
new_lm <- update(my_lm, . ~ . + x2 + x3) # equals y ~ x1 + x2 + x3</pre>
```


05:00

- Get the in class activity file from moodle
- We will further practice the concepts seen in the slides