Projet de Compressed Sensing

Relaxations SDP pour l'optimisation en nombres entiers

Rémy Deshayes et Éric Lavergne ENSAE IP Paris

Lundi 29 mars 2021

Introduction: Problèmes étudiés

- Problèmes d'optimisation en nombre entiers
- Souvent présentés sous la forme de problèmes d'optimisation combinatoire

Optimisation combinatoire

Soit c le vecteur des coûts c_e associés à chaque élément e d'un ensemble fini E, Soit \mathscr{F} un ensemble fini de combinaisons d'éléments de E

$$z^* = \min\{c(F) := \sum_{e \in F} c_e : F \in \mathscr{F}\}$$
 (COP)

 Application en pratique au Max-cut (étudié dans cette présentation) et au Graph Coloring

Introduction 2/1.

Introduction : Le problème du Max-cut

 Trouver la séparation des sommets d'un graphe qui coupe le plus d'arêtes / de poids associés aux arêtes

$$z_{mc} = \max_{S \subseteq V} \sum_{ij \in \delta(S)} a_{ij}$$
 (MC)

Où $(a_{ij})_{i,j}$ est la matrice d'adjacence du graphe, V l'ensemble de ses sommets et $\delta(S)$ les arêtes reliant S à $V \setminus S$

Introduction 3/14

Sommaire

- 1. Introduction
- 2. Relaxation Semi-définie Positive
- 3. Méthodes de résolution des problèmes d'optimisation SDP
- 4. Procédure d'Hyperplane rounding

Introduction 4/1

Relaxation SDP (1/3): Idée générale

De l'approche polyhédrale...

Pour tout $F \in \mathscr{F}$, $x_F \in \{0,1\}^n$ où $(x_F)_e = 1$ quand $e \in F$.

On réecrit alors (COP) comme le **programme linéaire** suivant :

$$z^* = \min\{c^T x_F : F \in \mathscr{F}\} = \min\{c^T x : x \in P := \operatorname{conv}\{x_F : F \in \mathscr{F}\}\}\$$

...au Matrix Lifting

On introduit:

$$\mathcal{M} := \operatorname{conv}\{x_F x_F^T : F \in \mathcal{F}\}$$

- Passer à l'espace des matrices SDP en utilisant \mathcal{M} à la place de P
- Permet de transformer les contraintes quadratiques sur $x \in P$ en contraintes linéaires sur $X \in \mathcal{M}$

Relaxation Semi-définie Positive 5/14

Relaxation SDP (2/3): Optimisation SDP

Formulation du problème d'optimisation convexe SDP

$$z_p = \inf\{\langle C, X \rangle : \langle A_i, X \rangle = b_i, i = 1, \dots, m, X \succeq 0\}$$
 (SDP)

où C, A_1, \ldots, A_m sont symétriques de taille n et $b \in \mathbb{R}^m$

Relaxation Semi-définie Positive 6/14

Relaxation SDP (3/3): Application au Max-cut

On introduit:

- les vecteurs caractéristiques : $x \in \{-1, 1\}^n$ où $x_i = 1$ si $i \in S$
- Le Laplacien de la matrice A : L_A = Diag(Ae) A
 où e = (1,...,1)^T

On a ainsi:

$$\sum_{ij \in \delta(S)} a_{ij} = \sum_{ij \in E} a_{ij} \frac{1 - x_i x_j}{2} = \frac{1}{4} x^T L_A x$$
$$z_{mc} = \max_{x \in \{-1,1\}^n} \frac{1}{4} x^T L x$$

Relaxation Semi-définie Positive 7/14

Relaxation SDP (3/3): Application au Max-cut

Puis en introduisant $X = xx^T$ et en relâchant des hypothèses :

Relaxation SDP du problème du Max-Cut

$$z_{mc,sdp} = \max rac{1}{4} \langle L, X
angle$$

s.c :
$$Diag(X) = e$$

 $X \succ 0$

Relaxation Semi-définie Positive 8/14

Méthodes de résolution (1/2): Points intérieurs

- On exploite ici la méthode itérative de Newton
- On ajoute une **fonction barrière** (par exemple logarithmique) pour garantir que les itérations restent dans l'espace des points faisables (sur le **chemin primal-dual**)
- Cette fonction barrière est contrôlée par un paramètre μ que l'on fait décroître peu à peu pour aboutir à une solution du problème original

Méthodes de résolution (1/2): Points intérieurs

Méthodes de résolution (2/2): Lagrangien partiel

• Méthode du Lagrangien partiel : efficace pour un **nombre de contraintes** particulièrement grand :

$$\inf\{\langle C,X\rangle:A(X)=a,B(X)=b,X\succeq 0\}$$
 où B impraticable

• Une partie des contraintes est conservée telle que le problème soit résoluble raisonnablement :

$$\mathscr{X} = \{X : A(X) = a, X \succeq 0\}$$

 L'autre partie des contraintes est prise en compte en maximisant la fonction duale de Lagrange partielle :

$$\max_{v} \min_{X \in \mathscr{X}} L(X, y) \text{ où } L(X, y) = \langle C, X \rangle + y^{T}(b - B(X))$$

Hyperplane Rounding (1/2): Idée générale

- Obtenir à partir d'une solution X dans M de la relaxation SDP une solution (approximée) dans l'espace initial
- Procédure de l'hyperplane rounding d'abord présentée par Goemans et Williamson pour le Max-Cut
- Procédure aléatoire avec de bonnes garanties probabilistes
- Représenter les éléments de E par les colonnes de la matrice V tel que $X = V^T V$
- Tirer aléatoirement un ou des hyperplans pour définir les combinaisons à utiliser comme les éléments se trouvant dans une même région délimitée par les hyperplans

Hyperplane Rounding (2/2): Application au Max-Cut

Hyperplane rounding appliqué au Max-Cut (GW95)

- Obtenir X une solution de la relaxation SDP du Max-Cut, et V vérifiant $X = V^T V$
- Associer chaque colonne V_i au sommet i du graphe
- Tirer aléatoirement un vecteur r sur la sphère unité de façon à obtenir un hyperplan séparant les V_i en deux ensembles
- Retourner les deux ensembles de sommets

Cette partition fournit une bonne approximation en espérance ; on fait plusieurs tirages pour obtenir une partition satisfaisante.

$$\mathbb{E}[GW95] > 0.87856z_{sdp}^* > 0.87856z_{mc}^*$$

Procédure d'Hyperplane rounding

Conclusion

Conclusion 14/14