7.12 PDE HW 12

Question 191

Prove that the eigenfunctions $\{\sin my \sin nz\}$ are orthogonal on the square $\{0 < y < \pi, 0 < z < \pi\}$.

Proof. Let p, q be a pair of integer such that $p \neq m$ and $q \neq n$. Because $\{\sin(ix)\}_{i \in \mathbb{Z}}$ is an orthogonal system on $(0, \pi)$, we may compute

$$\int_0^{\pi} \int_0^{\pi} \sin(my) \sin(nz) \sin(py) \sin(qz) dy dz$$

$$= \int_0^{\pi} \sin(my) \sin(py) dy \int_0^{\pi} \sin(nz) \sin(qz) dz$$

$$= 0 \cdot 0 = 0$$

This shows that $\{\sin(my)\sin(nz)\}$ are indeed orthogonal on the square $\{0 < y < \pi, 0 < z < \pi\}$. Note that we used the Fubini's theorem in our first equality, and the reason we can use the Fubini's theorem is that the function $\sin(my)\sin(nz)\sin(py)\sin(qz)$ is bounded by 1 on the bounded domain $[0,\pi]^2$.