Greedy Algorithms

謝仁偉 副教授 jenwei@mail.ntust.edu.tw 國立台灣科技大學 資訊工程系 2017 Spring

- It makes a locally optimal choice in the hope that this

Greedy Algorithms

• For many optimization problems, using dynamic programming to determine the best choices is overkill; simpler, more efficient algorithms will

A greedy algorithm always makes the choice

choice will lead to a globally optimal solution.

- Greedy algorithms do not always yield optimal

solutions, but for many problems they do.

that looks best at the moment.

Outline

- An Activity-Selection Problem
- Elements of the Greedy Strategy
- Huffman Codes

- Suppose we have a set $S = \{a_1, a_2, ..., a_n\}$ of nproposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time.
- Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
 - If selected, activity a_i takes place during the half-open time interval $[s_i, f_i]$.
- Activities a_i and a_i are compatible if the intervals $[s_i, f_i]$ and $[s_i, f_i]$ do not overlap.
 - That is, a_i and a_i are compatible if $s_i \ge f_i$ or $s_i \ge f_i$.

do.

Activity-Selection Problem (1/2)

Activity-Selection Problem (2/2)

- In the activity-selection problem, we wish to select a maximum-size subset of mutually compatible activities.
- We assume that the activities are sorted in monotonically increasing order of finish time: $f_1 \le f_2 \le f_3 \le ... \le f_{n-1} \le f_n$.

5

Example

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	10 2 14	16

- The subset {a₃, a₉, a₁₁} consists of mutually compatible activities.
- Could you find a largest subset of mutually compatible activities?
- ➤ We will first consider a dynamic-programming approach and then show that we can always make greedy choices to arrive at an optimal solution.

The Optimal Substructure of the Activity-Selection Problem (1/3)

- Let us denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_i starts.
- Suppose that we wish to find a maximum set of mutually compatible activities in S_{ij} , and suppose further that such a maximum set is A_{ij} , which includes some activity a_k .
- By including a_k in an optimal solution, we are left with two subproblems: finding mutually compatible activities in the set S_{ik} and finding mutually compatible activities in the set S_{kj}.

The Optimal Substructure of the Activity-Selection Problem (2/3)

- Let $A_{ik} = A_{ij} \cap S_{ik}$ and $A_{kj} = A_{ij} \cap S_{kj}$, so that A_{ik} contains the activities in A_{ij} that finish before a_k starts and A_{kj} contains the activities in A_{ij} that start after a_k finishes.
- ightharpoonup We have $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$
- → The maximum-size set A_{ij} of mutually compatible activities in S_{ij} consists of $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$ activities.

U