CSE3140 — Lab 5

Mike Medved, Nithila Annadurai

November 19th, 2022

Deliverables

Part 1

Below are the various fields displayed on the main dashboard of the Pineapple we used to conduct the lab, followed by a screenshot of the main dashboard itself.

Setting	Explanation
System Status	Displays the current CPU and RAM usage percentages
Disk Usage	Displays the current disk usage percentage
Connected Clients	Displays each client that is currently, and was previously associated with the Pineapple
SSIDs Collected	Displays all SSIDs collected by the Pineapple since bootup
Campaigns	Displays a list of current campaigns, including their status, types, and names
Notifications	Displays all status notifications collected by the Pineapple regarding it's operation(s)

Part 2 Below are the various fields found on the Recon dashboard of the Pineapple we used to conduct the lab, followed by screenshots of the dashboard.

Page	Field	Explanation					
Scanning	Wireless Landscape	Displays a pie-chart containing the number APs, clients,					
Scanning	Wheless Landscape	and unassociated clients					
	Channel Distribution	Displays channel frequencies picked up by the Pineapple's antennas					
	Handshakes	Displays the number of handshakes captured during a Recon scan					
	Previous Scans	Displays the date and information regarding previous Recon scans					
	Access Points	Displays information regarding detected APs (SSID, MAC, OUI, clients,					
	Access I omits	security, MFP, WPS, channel, signal, and first + last seen times)					
	Clients	Displays information regarding all detected clients during scans (IP, MAC,					
	Cheffes	time of connection)					
Handshakes	Page Information	Displays information regarding captured WPA handshakes (BSSID, client,					
Tranusnakes	1 age illiormation	source, type, time since capture, message1, message2)					

For this question, we were able to see the access point created by personal hotspot on one of our phones:

From the Recon's scanning tab, we were unable to see the users connected to this AP, nor any other access point. This is by design, as the Pineapple should not be able to see the clients associated to unsecured APs, in which case the hotspot was using WPA3 security. The "cse3140" network was also visible during our scans, and we could see that it was using WPA2 security.

We also managed to capture some handshakes for devices connecting to our vulnerable network, as shown below:

BSSID	Client	Source	Туре	Captured	Message 1	Message 2
FE:E7:F2:30	:B0:39 BE:DC:34:FD:EA	A:1F Recon	Full PCAP	7m 14s ago	✓	✓
02:13:37:A7:	FF:3C 9C:FC:E8:CF:46	:E4 Recon	Partial Hashcat	6m 22s ago	✓	✓
02:13:37:A7:	FF:3C 9C:FC:E8:CF:46	:E4 Recon	Partial PCAP	6m 22s ago	✓	✓
02:13:37:A7:	FF:90 9C:FC:E8:D3:19:	F9 Recon	Partial PCAP	10m 4s ago	✓	✓
5C:5A:C7:AE	D:65:800C:EF:AF:CD:EA	A:3CRecon	Partial PCAP	35m 18s ago	✓	✓
5C:5A:C7:AE	0:65:800C:EF:AF:CD:E9	9:9D Recon	Full Hashcat	4m 25s ago	✓	✓
5C:5A:C7:AE	D:65:800C:EF:AF:CD:E9	9:9D Recon	Full PCAP	4m 25s ago	✓	✓
5C:5A:C7:AE	0:65:800C:EF:AF:CD:EA	A:3CRecon	Partial Hashcat	35m 18s ago	✓	✓

Field	Explanation
BSSID	The BSSID of the client (as it refers to APs) is essentially it's MAC address
Client	The client fields refers to the client whose handshake has been captured
Source	The source fields refers to the source of the capture, in this case the Recon module
Type	The type refers to the type of handshake that has been captured, and is available
Captured	The captured field refers to the time since the handshake has been captured
Message1	This boolean field refers to whether or not the Message1 from the handshake was captured
Message2	This boolean field, as with the last one, yields whether or not Message 2 was captured

For devices connected to our vulnerable network, we were able to capture unprotected HTTP traffic to the banking website, as shown below:

```
17:16.58.27.59269 3 12.16.48.08.08 11.58.1 1.9 data childs (correct), eep 341, ek 201, ek 201, ex 201. 2017 (correct) (correct) (correct), sep 341, ek 201, ek 201. 2017 (correct) (correc
```

Similarly, we were also able to observe unprotected HTTP traffic moving along our secure network in much the same way, as shown below:

```
1921.04.212.5000 N. 1921.04.200 M. 1921.04.200 M. 1922.05.200 N. 1921.05.200 M. 1920.05.200 M. 1
```

Notice however that the traffic looks pretty much the same as the previous capture from our vulnerable network. Principally, the security used to control who can get onto a network does not necessarily encrypt the traffic moving along that network. We can see this here, as the HTTP traffic is still visible in plaintext, and the only difference between the two captures is the IP addresses of the devices involved.

In order to be able to hide the contents of the HTTP traffic being sent over the network, we would need to use HTTPS, which is a secure version of HTTP that encrypts the traffic using SSL/TLS. This is the same protocol that is used to encrypt traffic on the internet.

We were able to detect all wireless APs in the lab when running the scan for this part of the lab, the results are shown below:

	SSID		MAC	OUI	Clients	Security	MFP	WPS	Channel	Signal	First Seen	Last Seen 👃
	⊒் open-al	ltschuler-01-11	00:13:37:A7:FF:9F	Orient Power Home Network Ltd.	0	Open	No	No	11	•	23m 59s ago	1m 23s ago
+	L UCONN	N-SECURE	00:27:E3:28:24:73	Cisco Systems Inc	1	WPA2 (802.1X Enterprise, 802.1X Enterprise FT)	No	No	11	•	23m 60s ago	1m 24s ago
	eduroar	m	00:27:E3:28:24:74	Cisco Systems Inc	0	WPA2 (802.1X Enterprise, 802.1X Enterprise FT)	No	No	11	•	25m 26s ago	1m 24s ago
+	secure-	-altschuler-001-	02:13:37:A7:FF:51	Unknown Vendor	1	WPA2 (PSK)	No	No	11	•	25m 13s ago	1m 24s ago
	🚠 Hidden		52:2F:AD:71:82:B8	Unknown Vendor	0	WPA2 (PSK)	No	No	6	•	1m 34s ago	1m 34s ago
+	J UCONN	N-SECURE	00:27:E3:9D:D4:E3	Cisco Systems Inc	1	WPA2 (802.1X Enterprise, 802.1X Enterprise FT)	No	No	1	•	21m 48s ago	1m 34s ago
+	hellofro	mBEN	5C:5A:C7:AD:65:81	Cisco Systems Inc	1	Open	No	No	6	•	25m 26s ago	1m 34s ago
	÷	H	00 40 07 47 55 05	Orient Power Home	^	0	ķ1.	k1	44		25m 25s	4 04

We were also able to identify some APs that announce more than one network due to the channel they were broadcasting. For example, in the above screenshot, we can see UCONN-SECURE twice, one with channel 11, and one with channel 1. This is because the AP is broadcasting on both channels, and the Pineapple is able to detect both of them.

We can also see all of the different wireless security protocols being used by the APs in and around the lab. They were all either WPA2 (Enterprise). WPA2 (PSK), or Open. For some APs, we were able to see a client count, but it varied from 0 to 1, so we were not able to conclude how accurate this figure was.

Part 7 and Part 8

We were unable to complete these questions due to the number of active APs in the room interfering with each other.

Part 9

1. We were able to create the DNS records on the Pineapple to redirect requests to bank.com and test.com to the static IP address of our VM. This was accomplished by modifying the /etc/hosts file as such:

```
127.0.0.1 localhost
172.16.51.49 bank.com
172.16.51.49 test.com
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
```

2. We were unable to complete this part due to the Pineapple not relaying the DNS configuration to our test machines.