CSE 546: Homework 3

Due on November ***, 2016

Brian de Silva

0 Collaborators and Acknowledgements

1 PCA and reconstruction

1.1 Matrix Algebra Review

1. Recall that for $A \in \mathbb{R}^{n \times d}$ and $C \in \mathbb{R}^{d \times n}$, $(AC)_{ij} = \sum_{k=1}^{d} a_{ik} c_{kj}$. Also, $(B^T)_{ij} = B_{ji}$. Hence

$$(AB^T)_{ij} = \sum_{i=1}^d (A)_{ik} (B^T)_{jk} = \sum_{i=1}^d a_{ik} b_{kj}.$$

Plugging this into the definition of the trace gives

$$\operatorname{Tr}(AB^{T}) = \sum_{i=1}^{n} \left(\sum_{k=1}^{d} (AB^{T})_{ii} \right)$$
$$= \sum_{i=1}^{n} \left(\sum_{k=1}^{d} a_{ik} b_{ik} \right).$$

Similarly,

$$(B^T A)_{ij} = \sum_{k=1}^n b_{ki} a_{kj}$$

and, by switching the order of addition,

$$\operatorname{Tr}(B^T A) = \sum_{i=1}^d (B^T A)_{ii}$$
$$= \sum_{i=1}^d \left(\sum_{k=1}^n b_{ki} a_{ki}\right)$$
$$= \sum_{i=1}^n \left(\sum_{k=1}^d b_{ki} a_{ki}\right)$$
$$= \operatorname{Tr}(AB^T).$$

2. The outer equality follows from the definition of the trace:

$$\operatorname{Tr}(\Sigma) = \operatorname{Tr}\left(\frac{1}{n}X^{T}X\right) = \frac{1}{n}\sum_{i=1}^{d}(X^{T}X)_{ii} = \frac{1}{n}\sum_{i=1}^{d}\left(\sum_{k=1}^{n}x_{ik}^{2}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{d}\|X_{i}\|^{2}.$$

For the other equality, we need some standard linear algebra results. Since Σ is symmetric and real, it has a real orthogonal eigendecomposition. That is to say, there exists an orthogonal matrix Q and a diagonal matrix Λ with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_d$ such that

$$\Sigma = Q\Lambda Q^T.$$

Using our result from part 1, we have

$$\operatorname{Tr}(\Sigma) = \operatorname{Tr}(Q\Lambda Q^T) = \operatorname{Tr}((Q\Lambda)Q^T) = \operatorname{Tr}(Q^T Q\Lambda) = \operatorname{Tr}(\Lambda) = \sum_{i=1}^d \lambda_i.$$

2 SVMs: Hinge loss and mistake bounds

1. To show that $\ell((x,y),w) = \max\{0,1-w\cdot x\}$ is convex with respect to w, we will need two observations. First, for any $a,k\in\mathbb{R}$ with $k\geq 0$, we have that

$$\max\{0, ka\} = k \max\{0, a\}.$$

In the case ka < 0, both sides of the equality are 0. If $ka \ge 0$, then $a \ge 0$ and the equality still holds. Next, for any $a, b \in \mathbb{R}$, we have

$$\max\{0, a + b\} \le \max\{0, a\} + \max\{0, b\}.$$

If both a and b are negative, then the above is an equality. If exactly one of a and b is negative and $a + b \le 0$ then the inequality clearly holds. If both are nonnegative then it is also an equality.

Recall that a function f is convex if for any $t \in [0,1]$ and for any x, y in its domain, $f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$. We will show that $\ell((x,y),w)$ has this property with respect to w. Let $w_1, w_2 \in \mathbb{R}^d$ be arbitrary and let $t \in [0,1]$. Then $0 \le (1-t) \le 1$, and so

$$\begin{split} \ell\left((x,y),tw_1+(1-t)w_2\right) &= \max\{0,1-y(tw_1+(1-t)w_2)\cdot x\} \\ &= \max\{0,1-tyw_1\cdot x-(1-t)yw_2\cdot x\} \\ &= \max\{0,1+(t-t)-tyw_1\cdot x-(1-t)yw_2\cdot x\} \\ &= \max\{0,[t-tyw_1\cdot x]+[(1-t)-(1-t)yw_2\cdot x]\} \\ &\leq \max\{0,t-tyw_1\cdot x\}+\max\{(1-t)-(1-t)`yw_2\cdot x\} \\ &= t\max\{0,1-yw_1\cdot x\}+(1-t)\max\{1-yw_2\cdot x\} \\ &= t\ell((x,y),w_1)+(1-t)\ell((x,y),w_2). \end{split}$$

Therefore $\ell((x,y),w)$ is convex with respect to w.

2. By its definition it is clear that $0 \le \ell((x,y),w)$. If $y_i = \operatorname{sgn}(w \cdot x_i)$ then $y_i w \cdot x_i \ge 0$, implying that $1 - y_i w \cdot x_i \le 1$. Hence $\ell((x_i, y_i), w) = \max\{0, 1 - y_i w \cdot x_i\} \le 1$. Combining these bounds we get

$$0 < \ell((x_i, y_i), w) < 1$$

for correctly classified points.

3. Observe that if we misclassify a point (so that $y_i = -\operatorname{sgn}(w \cdot x_i)$) then $y_i w \cdot x_i \geq 0$. Hence $\ell((x_i, y_i), w) \geq 1$ for misclassified points. Let $I \subset \{1, 2, \dots, n\}$ be the indices corresponding to the data points which w misclassifies. It follows that |I| = M(w). By the previous part we know that for correct classifications the hinge loss is bounded between 0 and 1. Putting this all together we obtain

$$M(w) = \sum_{i=1}^{M(w)} 1 = \sum_{i \in I} 1 \le \sum_{i \in I} \ell((x_i, y_i), w) \le \sum_{i=1}^{n} \ell((x_i, y_i), w) = \sum_{i=1}^{n} \max\{0, 1 - y_i w \cdot x_i\}.$$

Dividing both sides by n gives the desired result.