TIADEM – Advanced Embedded Sensor Networks (2014-Q2)

Lecture 3 Compressive Sensing and Its Application in WSNs

Qi Zhang

(Email: qz@eng.au.dk; office E314)

Wireless Sensor Networks

- Large numbers of sensors
 - image data bases, camera arrays, distributed wireless sensor networks, ...
- Some sensor measuring process is costly
- Deluge of data
 - Internet of things, M2M, 24 billion nodes in 2020
 - how to acquire, transmit/store, fuse, process efficiently?
- Facts
 - We are often not dealing with arbitrary signals
 - Most signals of our interests are sparse or highly compressible,
 i.e., it can be represented by a set of sparse coefficients

Shannon's Sampling Theorem

- Sampling: The process of reduction of a continuous signal to a discrete signal.
- Shannon's Sampling Theorem:
 - To exactly reconstruct an arbitrary bandlimited signal from its samples, the sampling rate needs to be at least twice of the bandwidth,
 - i.e., If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

Sufficient condition for perfect reconstruction but not necessary condition!

Claude Shannon (1916–2001)

Harry Nyquist (1889–1976)

Sensing by Sampling (Traditional)

- Long-established paradigm for digital data acquisition
 - uniformly sample data at Nyquist rate (2x Fourier bandwidth)
 - compress data (signal-dependent, nonlinear)

Rethink Shannon/Nyquist Theorem

- 2x oversampling Nyquist rate is a worst-case bound for any band-limited data
- Sparsity/compressibility irrelevant
- Shannon sampling is a linear process while compression is a nonlinear process

Compressive Sensing/ Compressed Sampling (CS)

- A new sampling theory that leverages compressibility
- Allows a sampling rate significantly lower than the Nyquist rate.
- based on new uncertainty principles
- randomness plays a key role

Summary the entire process of CS

- Steps of CS
 - 1. Signal sparse representation
 - 2. Linear encoding and measurement collection
 - 3. Non-linear decoding (sparse recovery)

Compressive Sensing

- Directly acquire "compressed" data
- Replace samples by more general "measurements"

Sampling

- Signal x is K-sparse in basis/dictionary
 - assume sparse in space domain

$$\Psi = I$$

Samples

Basis representation

 We can take the signal apart, writing it as a discrete linear combination of "atoms":

$$x(t) = \sum_{i \in N} \alpha(i) \psi_i(t)$$

for some fixed set of *basis* signal $\{\psi_i(t)\}_{i\in N}$

E.g. Fourier series:

$$x(t) = \sum_{k \in \mathbb{Z}} \alpha(k) e^{j2\pi kt}$$

Orthonormal basis (Orthobasis): if inner product

$$\langle \psi_i, \psi_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Compressive Data Acquisition

When data is sparse/compressible, can directly acquire a condensed representation with no/little information loss through dimensionality reduction

$$y = \Phi x$$

- Reconstruction/decoding: given $y = \Phi x$ (ill-posed inverse problem) find x
- Clearly $y = \Phi x$ is an underdetermined equation system
 - An infinite number of solutions
 - Sparsity of ${\mathcal X}$ plays its role!

Underdetermined Linear Systems

A linear system with fewer equations (M) than unknowns
 (N). (M<N) An example:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 1 & 1 & 3 & -2 \\ 2 & 5 & 6 & -9 & 4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$$

 $y_{M*1} = \Phi_{M*N} x_{N*1}$ under-determined, M<N

 Without additional constraints, it would have infinite many possible solutions!

Sparse Solutions

• If $x = [x_1 \ 0 \ 0 \ x_4 \ 0 \ 0]^T$, then the previous underdetermined system becomes

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 3 & 7 & 1 & 1 & 3 & -2 \\ 2 & 5 & 6 & -9 & 4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \\ 0 \\ x_4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix}$$

- x is a 2-sparse (has 2 non-zero elements) in this case.
 There is a unique solution.
- Questions: if x is K-sparse, K<=M will there be always a unique solution?

Solving for K-sparse Solution

- If the non-zero positions of x is known, the original underdetermined linear system $\Phi x = y$ will reduce to a M * K linear system $\Phi_r x_r = y$
 - where x_r is a reduced vector of non-zero elements of x.

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ -9 & 4 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ 0 \\ 0 \\ x_4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix}$$

$$y = \Phi x = \Phi_r x_r$$

Issue: Non-zero positions of a K-sparse vector solution are often unknown!

K-Sparse Solution with Unknown Positions

- An optimization formulation:
 - Find x that minimizes $||x||_0$ subject to $y = \Phi x$
 - Where $||x||_0 = \sum_{n=1}^N |x_n|^0$ = number of non-zero elements of x
- A Subset selection problem:
- An NP hard question with $\binom{N}{K} = \frac{N!}{K!(N-K)!}$ possible choices!

- Direct solution to "Find x that minimizes $||x||_0$ subject to $y = \Phi x$ " is hard (solving a subset selection problem which is NP-hard)
- A tractable decoder is needed!
- Replacing the l_0 "norm" by the l_1 norm, i.e., relaxing the objective function of "minimizing $\|x\|_0$ " to "minimizing $\|x\|_1$ "
 - Find x that minimizes $||x||_1$ subject to $y = \Phi x$.
 - Where $||x||_1 = \sum_{n=1}^{N} |x_n|$
- It is a convex optimization problem that can be solved using linear programming efficiently
- Also known as "Basis Pursuit"

- Ideally, to recover x when the number of measurement M=2K
 - The amount of information that x carries, as x is uniquely determined by the K indices and the K values of its non-zero entries
- However, we must pay a reasonable price for not knowing the support of x (i.e., the position of the nonzero entries. There are totally $\binom{N}{K} = \frac{N!}{K!(N-K)!}$ possiblilies!)

- When data is sparse/compressible, we can directly acquire a *condensed representation* with no/little information loss $y = \Phi x$
- Random projection will work

Incoherence

- Definition
 - The coherence between the sensing/sampling basis Φ and the representation basis Ψ is

$$\mu(\Phi, \Psi) = \sqrt{n} \cdot \max_{1 \le k, j \le n} \left| \left\langle \phi_k, \psi_j \right\rangle \right|$$

The coherence measures the largest correlation between any two elements of Φ and Ψ . $\mu(\Phi, \Psi) \in [1, \sqrt{n}]$

- Compressive sensing needs a pair with low coherence, i.e., maximum incoherence $\mu(\Phi, \Psi)=1$
 - E.g., One such pair is the time-frequency pair. A narrow rectangle function in the time domain corresponds to the widespread function in the frequency domain.
 - E.g., random matrices are largely incoherent with any fixed basis Ψ.

Incoherence (cont...)

By extension

Random waveform $\varphi_i(t)$ with independent identical distribution (i.i.d.) entries, e.g., Gaussian or ± 1 binary entries will exhibit a very low coherence with any fixed representation Ψ .

Universality

 Random measurements can be used for signals sparse in any basis

Universality

Random measurements can be used for signals sparse in any basis $y = \Phi x = \Phi \Psi \alpha$

Universality

Random measurements can be used for signals sparse in any basis

$$y = \Phi x = \Phi \Psi \alpha = \Phi' \alpha$$

 $N \times 1$ sparse coefficient

> nonzero entries

Sparse recovery example 1

- N=512;
- K=25;
- M=6*K;

Sparse recovery example 2

- N=512;
- K= 4 (nearly sparse)
- M=4*K

Apply CS to Spatial correlated sensor data

- N=750;
- Sample =75;
- Normalized MSE 0.000237

CS Hallmarks

- CS changes the rules of the data acquisition game
 - exploits a priori signal sparsity information

Universal

 same random projections / hardware can be used for any compressible signal class (generic)

Democratic

- each measurement carries the same amount of information
- simple encoding
- robust to measurement loss and quantization
- Asymmetrical (most processing at decoder)
- Random projections weakly encrypted

Toolbox for Sparse Recovery

Sparselab

http://sparselab.stanford.edu/

L1magic

http://users.ece.gatech.edu/~justin/l1magic/

Chong Luo et. Al, "Compressive Data Gathering for Large-Scale Wireless Sensor Networks", MobiCom'09, September 20–25, 2009, Beijing, China.

Compressive Sensing

 If an N-dimensional signal is K-sparse in a known domain Ψ, it can be recovered from M random measurements by:

$$\min_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{x}\|_{l_1} \quad s.t. \quad \mathbf{y} = \Phi \mathbf{d}, \ \mathbf{d} = \Psi \mathbf{x}$$

From Compressive Sensing to Compressive Data Gathering

 The asymmetrical property makes CS a perfect match for wireless sensor networks

Compressive Sensing	Compressive Data Gathering
Sample-then-compress	Compress-then-transmit
Sample-with-compression	Compress-with-transmission

Data Gathering in WSNs

- Challenges
 - Global communication cost reduction
 - Energy consumption load balancing

Basic Idea

A simple chain topology

	Global comm. cost	Bottleneck load
Baseline	N(N+1)/2	N
Proposed CDG	NM	M

Is Reconstruction Possible?

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{pmatrix} = \begin{pmatrix} \phi_{11} & \phi_{12} & \dots & \phi_{1N} \\ \phi_{21} & \phi_{22} & \dots & \phi_{2N} \\ \vdots & & \vdots & & \\ \phi_{M1} & \phi_{M2} & \dots & \phi_{MN} \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_N \end{pmatrix} \quad M << N$$

- Facts
 - Sensor readings exhibit strong spatial correlations
- According to CS theory
 - Reconstruction can be achieved in a noisy setting by solving: $\min_{\mathbf{x} \in \mathbb{R}^N} \|\mathbf{x}\|_{l_1} \quad s.t. \quad \|\mathbf{y} \Phi \mathbf{d}\|_{l_2} < \epsilon, \ \mathbf{d} = \Psi \mathbf{x}$

Practical Problem 1

Abnormal readings compromise data sparsity

7-sparse

Overcomplete

basis

Practical Problem 2

If a signal is not sparse in any intuitively known domain

Example 1

 CTD (Conductivity, temperature and depth) data from NOAA (National Oceanic and Atmospheric Adminstration)

■ N=1000, K≈40

M=100		
Recon. Precision	99.2%	
Comm. Reduction	5	
Capacity Gain	10	

Example 2

- Temperature data from data center
 - 498 temperature sensors

Example 2 cont...

sensor readings exhibit little spatial correlations

Reorder sensors according to their readings at t₀

Example 2 cont...

- Utilizing Temporal Correlation
- Sensor readings at t_0 + Δt are sparse as well
 - Temperatures do not change violently with time

Conclusion

- Compressive Sensing is an emerging field which may bring fundamental changes to networking and data communications research
- The Contributions of Compressive Data Gathering (CDG)
 - The first complete design to apply CS theory to sensor data gathering
 - CDG exploits "universal sparsity"
 - CDG improves network capacity
- Note: CDG is not suitable for small scale sensor networks when the signal sparsity may not be prominent enough and the potential capacity gain may be too small.

