Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

- 1. (Original) A method for visualising a spatially resolved data set (D) using an illumination model (BM), with a datum (D(α , β , γ)) of the data set (D) being associated in each case with a volume element (V) whose position is described by coordinates (α , β , γ) in a measurement coordinate system (K_m), with the data (D(α , β , γ)) being loaded as at least one texture (T α , T β , T γ k) into graphics hardware in order to generate a pictorial representation (5) in a projection space, characterised in that the illumination model (BM) is evaluated in the measurement coordinate system (K_M).
- 2. (Original) A method in accordance with claim 1, in which the data $(D(\alpha, \beta, \gamma))$ of the data set (D) are processed without transformation from the measurement coordinate system (K_M) into another coordinate system, in particular without transformation into a Cartesian and/or isotropic coordinate system.
- 3. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the measurement coordinate system (K_M) is a non-Cartesian measurement coordinate system (K_M) .
- 4. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the measurement coordinate system (K_M) is a cylindrical system or a spherical coordinate system (K_M) .
- 5. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which linear interpolation is carried out between the data $(D(\alpha, \beta, \gamma))$ of the data set (D) in the measurement coordinate system (K_M) .

- 6. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the illumination model in the data set (D) is evaluated close to a singularity.
- 7. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the data $(D(\alpha, \beta, \gamma))$ of the data set (D) represent a volume resolved scan of a body (G_0) ; and in which the pictorial representation (5) is a three-dimensional representation (5), in particular a semi-transparent representation (5), of the body (G_0) .
- 8. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the pictorial representation (5) is generated as a stereoscopic projection.
- 9. (Currently Amended) A method in accordance with any one of the preceding elaims claim 1, in which the data (D(α , β , γ)) of the data set (D) are generated by means of an ultrasonic measuring device (1).
- 10. (Currently Amended) Use of a method in accordance with any one of the preceding claims claim 1, in particular for medical purposes, for the fast generation of three-dimensional representations (5) of a body (G_0), in particular of a human body or parts thereof, with reference to data ($D(\alpha, \beta, \gamma)$) gained by a technical measurement.