

Table of Contents

01

02

Introduction

Problem definition and context

EDA

Data Cleansing and Association Analysis

03

04

05

Key fidings & insights

Major discoveries from the data

Model

Design process and Metrics Comparison

Conclusions

Business implementation plan review

The term "loan default" refers to when a borrower fails to meet the conditions of a loan, such as interest or principal payments, due to financial difficulties, job loss, or other economic problems. Banks, which generate significant revenue through mortgage loans, face the risk of default by borrowers. Traditional risk assessment methods are not always accurate, which is why this project focuses on solving this issue by using advanced Machine Learning techniques to provide a more accurate prediction and help banks mitigate the risk of mortgage loan defaults.

	-		/		
T	#	Column	Non-	Null Count	Dtype
	0	ID	1486	70 non-null	int64
	1	year	1486	70 non-null	int64
	2	loan_limit	1453	26 non-null	object
	3	Gender	1486	70 non-null	object
Y	4	approv_in_adv	1477	62 non-null	object
1	5	loan_type	1486	70 non-null	object
1	6	loan_purpose	1485	36 non-null	object
ı	7	Credit_Worthiness	1486	70 non-null	object
1	8	open_credit	1486	70 non-null	object
ı	9	business_or_commercial	1486	70 non-null	object
ı	10	loan_amount	1486	70 non-null	int64
1	11	rate_of_interest	1122	31 non-null	float64
1	12	Interest_rate_spread	1120	31 non-null	float64
1	13	Upfront_charges	1090	28 non-null	float64
	14	term	1486	29 non-null	float64
ı	15	Neg_ammortization	1485	49 non-null	object
L	16	interest_only	1486	70 non-null	object
ı	17	lump_sum_payment	1486	70 non-null	object
ı	18	property_value	1335	72 non-null	float64
ı	19	construction_type	1486	70 non-null	object
	20	occupancy_type	1486	70 non-null	object
	21	Secured_by		70 non-null	object
	22	total_units	1486	70 non-null	object
	23	income	1395	20 non-null	float64
	24	credit_type		70 non-null	object
	25	Credit_Score		70 non-null	int64
	26	co-applicant_credit_type		70 non-null	object
	27	age		70 non-null	object
	28	submission_of_application		70 non-null	object
	29	LTV		72 non-null	float64
	30	Region		70 non-null	object
	31	Security_Type		70 non-null	object
	32	Status		70 non-null	
	33	dtir1	1245	49 non-null	float64

		1 1 1 1 1 1			
Column	Туре	Description			
loan_amount	int64	Total loan amount granted			
rate_of_intere	st float64	Interest rate applied to the loan (%)			
Credit_Score	int64	Credit score of the borrower			
income	float64	Income of the borrower			
LTV	float64	Loan-to-value ratio			

Dataset

Loan term in months

Property value

Debt-to-income ratio

These are the top 8 feature that can influence the prediction of "loan default".

float64

float64

float64

The whole dataset has 34 columns and 148,669 records.

term

property_value

dti

Key fidings & insights

Deep Learning

```
model_reg = tf.keras.models.Sequential([
    Dense(512, activation='relu'),
    BatchNormalization(),
    Dropout(0.5),
    Dense(256, activation='relu', kernel_regularizer=regularizers.12(0.01)),
    BatchNormalization(),
    Dropout(0.5),
    Dense(128, activation='relu'),
    BatchNormalization(),
    Dropout(0.5),
    Dense(1, activation='sigmoid')
])
```

Random Forest

Model description

The image shows a grid search setup for a Random Forest classifier to find the best hyperparameters for a classification task. The parameter grid (param_grid) includes options for the number of trees (n_estimators: 50, 100, 200), the maximum number of features considered for splitting a node (max_features: 2, 4, 6), and whether bootstrap samples are used (bootstrap: True, False). The RandomForestClassifier is defined and a GridSearchCV object is created to perform 5-fold cross-validation (cv=5). The grid search aims to optimize the model based on accuracy (scoring='accuracy'). The fitting process is carried out on the training data (X_train_pca, y_train) to find the best combination of parameters.

The param_grid dictionary specifies the hyperparameters to be tested: n_estimators (number of trees in the forest) with values 50, 100, and 200; max_features (maximum number of features considered for splitting a node) with values 2, 4, and 6; and bootstrap (whether bootstrap samples are used) with True and False options. A RandomForestClassifier instance is created and then passed to GridSearchCV along with the param_grid to perform a 5-fold cross-validation (cv=5). The grid search is configured to optimize for accuracy (scoring='accuracy'). The grid_search object is set to verbose mode (level 2) for detailed output and to use all available processors (n_jobs=-1). The fit method is called on the training data (X_train_pca, y_train) to find the best combination of hyperparameters.

Deep Learning

Random Forest

Thanks

You can find the spanish version here!

https://github.com/Oghalis/proyecto

Contact info:

https://www.linkedin.com/in/katherineoghalisbravo/

