Математическое программирование, лекция 5

Безусловная оптимизация функций нескольких переменных

2. Норма вектора

Говорят, что в пространстве R^n задана норма, если каждому вектору х из R^n сопоставлено вещественное число $||\mathbf{x}||$, называемое нормой вектора х и обладающее следующими свойствами:

- 1. Положительная определенность ||x|| >= 0, причем ||x|| = 0 тогда и только тогда, когда x = 0;
- 2. *однородность* ||ax|| = |a| ||x|| для любого вектора х и любого числа а;
- 3. *неравенством* треугольника ||x+y||<=||x||+||y|| для любых векторов х и у.

Длина вектора обладает всеми этими тремя свойствами.

Используемые нормы:

- р-нормы $||x||_p = sqrt(sum(|x_i|^p, 1, n), p)$
- inf-норма (норма-максимум, sup-норма, кубическая норма):

$$||x||_{inf} = max|x_i|$$

В вычислительных методах наиболее

употребительными из р-норм являются следующие две нормы:

- норма-сумма $||x||_1 = sum(|x_i|, 1, n)$
- евклидова норма $||x||_2 = sqrt(sum(|x_i|^2,1,n))$ где x, x скалярные произведения векторов

3. Абсолютная и относительная погрешности вектора. Сходимость по норме вектора

В качестве меры степени близости векторов х и х естественно использовать величину \$||x-x||

, являющуюсяаналогомрасстояниямеждуточкамихих*. Абсолютно

Относительная погрешность вектора

$$x*: \delta(x*) = (||x - x*||)/||x||$$

Выбор нормы $||x||_1$ отвечает случаю, когда малой должна быть суммарная абсолютная ошибка в компонентах решения;

выбор $||x||_2$ соответствует критерию малости среднеквадратичной ошибки;

выбор нормы $||x||_{inf}$, означает, что малой должна быть максимальная из абсолютных ошибок в компонентах решения.

Сходимость по норме (на каждой итерации рассчитываем норму и анализировать насколько она мала) эквивалентна сходимости

4. Определение основных понятий

- 1. Градиент функции представляет собой векторстолбец, составленный из 1-ых производных функции по всем независимым переменным.
- 2. Матрица Гессе представляет собой симметричную матрицу вторых частных производных $\mathsf{V}^2 = H_f(x)$
- 3. Скалярная функция $\phi(x)$ n-переменных называется квадратичной формой, если $\phi(x) = x^T Q x$, Где Q некоторая симметричная матрица, x вектор переменных.
- 4. Матрица Q является положительно определенной тогда и только тогда, когда значение квадратичной формы $x^TQx>0$, для любого вектора $\forall x!=0$
- 5. Матрица Q является положительно полуопределенной тогда и только тогда, когда значение квадратичной формы $x^TQX>=0$, для любого вектора $\forall x$ и существует вектор Ex!=0, такой что $x^TQx=0$
- 6. Матрица Q является отрицательно полуопределенной тогда и только тогда, когда значение квадратичной формы $x^TQx <= 0$, такой что $x^TQx = 0$ или , если -Q -положительно полуопределенная матрица
- 7. Матрица Q является неопределенной, если её квадратичная форма может принимать как положительные так и отрицательные значения.
- 8. Главным минором порядка k квадратной матрицы Q порядка nxn называется определитель подматрицы

порядка kxk полученной путем исключения из матрицы Q произвольных n-k строк и соответствующих этим строкам столбцов. Общее колво главных миноров для квадратной матрицы порядка что равно 2^n-1

- 9. Ведущим (или угловым) главным минором порядка k квадратной матрицы Q порядка nxn называется определитель подматрицы порядка kxk полученной путем исключения из матрицы Q последних n-k строк и соответствующих этим строкам столбцов. Кол-во ведущих главных миноров для квадратной матрицы порядка nxn равно n.
- 10. Множество Р $_{\mathbf{C}}$ $_{\mathbf{C}}$ $_{\mathbf{R}}$ называется выпуклым, если оно содержит всякий отрезок, концы которого принадлежат Р. т.е. если для любых Р_1, Р_2 е Р и 0 <= (theta) <= 1 справедливо $(theta)p_2 + (1-(theta))p_1eP$

5. Проверка матрица на положительную определенность и полуопределенность

Для проверки определенности служит критерий Сильвестра:

Матрица положительно определена, если:

- 1) все диагональные элементы матрицы положительны
- 2) все угловые миноры матрицы положительны

Матрица отрицательно определена, если:

- 1. Все диагональные элементы матрицы отрицательны;
- 2. Все угловые миноры матрицы имеют чередующиеся знаки, начиная со знака "-".

6. Необх. и дост. условия сущ мин ф многих переменных

для наличия у дважды лфи функции f(x) опред. на множестве x с_ R^n в точке x е R^n локального минимума (строгого или нестрогого) $f(x) = \min(f(x))$ необходимо выполнения 2-ух условий:

- Равенства нулю градиента ▼f(x)=0 (условие экстремума первого порядка). Точки, удовлетворяющие этому условию называются стационарными
 условия положительной полуопределенности
- условия положительной полуопреоеленности матрицы Гессе: \$H_f(x)\$

Алгоритм решения задачи нахождения безусловного экстремума функции многих переменных классическим методом с помощью необходимых и достаточных условий

- 1. Записать необходимые суловия экстремума первого порядка и найти стацю точки в результате решения системы в общем случае n нелинейных алгебраических уравнений с n неизвестными
- 2. В найденных стационарных точках проверить выполнение достаточных условий, а если они не

- выполняются, то необходимых условий второго порядка
- 3. вычислить уравнение f(x*) В точках экстремума
- 4. Если достаточные условия не выполняются, а необходимые условия второго порядка выполняются. Необходимо проверить стац. точки на возможны экстремум, анализируя поведение функции на окрестностях