Sterowanie Procesami Dyskretnymi Ćwiczenie nr. 2

Kacper Maj 235348 Patryk Sobów 235345

11 Kwietnia 2019

1 Opis problemu

Algorytm PD dla $1||\sum (wiTi)$ wykorzystywany jest dla problemu obsługi pojedyńczej maszyny, która wykonuje n zadań. Jeśli które kolwiek z zadań zostanie spóźnione naliczana jest kara, algorytm pomaga znaleźć najlepsze uszeregowanie naliczające najmnieszą sumę kar.

2 Opis wykorzystanego algorytmu

W Programie zaprogramowano algorytm dynamicznego programowania, który zwraca optymalną sumę sumę uzyskanych kar. W algorytmie najwazniejszą częścią jest fragment wykorzystujący koniunkcję biotową 2 liczb która w wynniku daję wartość różną od zera.

3 Uzyskane Wykresy

Rysunek 1: Wykresy uzyskanych wyników

4 Tabela wyników

nr danych	ilość danych	czas
data 10	10	0.235
data 11	11	0.447
data 12	12	1.036
data 13	13	2.271
data 14	14	4.271
data 15	15	8.449
data 16	16	18.603
data 17	17	38.396
data 18	18	76.432
data 19	19	164.292
data 20	20	335.148

5 Wnioski

 Na podstawie uzyskanenego porównania przeglądu zupełnego oraz algorytmu Witi widzimy przewagę zaprohjektowanego przez nas rozwiązania problemu ważonej sumy kar. Czas wykonania dla wielu zadań algorytmu Witi jest diametralnie mniejszy od czasu wykonania małej ilości zadań w przypadku przeglądu zupełnego co widać na zamieszczonym wcześniej wykresie.

6 Proponowana ocena:

Na podstawie zakresu wykonenego zadania podanego na stronie prowadzącego oraz braku spóźnienia przy oddaniu programu proponujemy ocenę 3.5