Stability for inverse point source problem

Yimin Zhong

March 16, 2013

1 Problem 1

Consider problem, without special notation, assume γ and Λ as their usual definitions. The domain $\Omega \subset \mathbb{R}^3$.

$$\Delta u + k^2 n(x)u = F \tag{1}$$

$$\gamma u = f \tag{2}$$

$$\Lambda \gamma u = g \tag{3}$$

where the source $F(x) = \sum_{j=1}^{m} P_j \delta(x - x_j)$, with $P_j \in \mathbb{R}$, $x_j \in \Omega$, for convenience, n(x) is known as a smooth real function with compact support on Ω .

1.1 Stability of recovering location, respect to Cauchy data

What is the stability of recovering the location of x_j . Suppose the number of point sources is known as m. Or we formulate the stability argument as following statement.

Statement 1.1 If u_l for l=1,2 be the solutions of equation 1 associated with Cauchy data (f^l,g^l) and sources $F^l=\sum_{j=1}^m P^l_j\delta(x-x^l_j)$, if we have $\|(f^1,g^1)-(f^2,g^2)\|\leq \epsilon$, can we find a permutation π of $\{1,2,\ldots,m\}$ such that

$$\max_{j \ge 1} \|x_j^1 - x_{\pi(j)}^2\| \le \epsilon'$$

and as $\epsilon \to 0$, $\epsilon' \to 0$ as well.

1.2 Construction with perturbation

Since the speed is known n(x), thus we set space $M = \{v \in H^s, \Delta v + k^2 nv = 0\}$, for any solution u satisfies 1, we have

$$\int v\Delta u + k^2 nuv dx = \sum_{j=1}^m P_j v(x_j)$$
(4)

$$\int u\Delta v + k^2 nvu dx = 0 (5)$$

Thus by Green's formula, we have

$$\int_{\Gamma} (vg - f\frac{\partial v}{\partial n})d\sigma = \sum_{j=1}^{m} P_j v(x_j)$$
(6)

And in order to find out the distance between points x_j^l , we are going to generate a function which sits in M and has zeros x_j^l .

Remark Now our problem is to find a differentiable function ϕ such that $\phi \in M$ and $\phi(\xi_j) = 0$, where $j = 1, 2, \dots, m$.

1.3 Existence by induction

Suppose φ satisfies that $\Delta \varphi + k^2 n \varphi = 0$, and $\varphi(\xi_j) = 0$. Here $j = 1, \dots, m$, where $m \ge 0$. We are going to find $u = \varphi \phi$ such that $\Delta u + k^2 n u = 0$, where $\phi(\zeta) = 0, \zeta \ne \xi_j$, then

$$0 = \Delta(\varphi\phi) + k^2 n \varphi \phi = \phi \Delta \varphi + 2\nabla \varphi \cdot \nabla \phi + \varphi \Delta \phi + k^2 n \varphi \phi = \varphi \Delta \phi + 2\nabla \varphi \cdot \nabla \phi \tag{7}$$

We set out to find ϕ such that $\Delta \phi = 0$, and $\nabla \phi \cdot \nabla \varphi = 0$.

1.3.1 Moving frame

We consider local coordinate $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, where $\mathbf{e}_1 = \frac{\nabla \varphi}{|\nabla \varphi|}$, when $\nabla \varphi \neq \mathbf{0}$, this defines a coordinate change $\mathbf{u} = \mathbf{u}(\mathbf{r})$. By vector analysis,

$$\Delta \phi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial \phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial u_3} \right) \right]$$
(8)

where $h_1 = h_2 = h_3 = 1$ and $\frac{\partial \phi}{\partial u_1} = 0$, which simplifies the problem as

$$\Delta \phi = \left[\left(\frac{\partial}{\partial u_2} \right)^2 + \left(\frac{\partial}{\partial u_3} \right)^2 \right] \phi = 0 \tag{9}$$

Any solution ϕ to this function will admit a solution to our original problem by setting $\widetilde{\phi} = \phi(u) - \phi(u(\zeta))$. Here we can always select $\phi = u_2 + iu_3$.

1.3.2 Existence

We have seen that if m=0, we can always find a solution to the Helmholtz equation, then by induction, we can find the solution $\phi \in M$, such that $\phi(\xi_j) = 0$, for $j=1,\dots,m$.

Initially we take a Φ_0 , satisfies Helmholtz equation, then

$$\Delta\Phi_0 + k^2 n\Phi_0 = 0 \tag{10}$$

And $\nabla \Phi_0 \neq \mathbf{0}$ in Ω . Apply the moving local coordinate, and take $\phi = u_2 + iu_3$.

- For ξ_1 , we take $\Phi_1(\xi) = \Phi_0(\xi) (\phi(\xi) \phi(\xi_1))$, then $\langle \nabla \Phi_0, \nabla \phi \rangle = 0$ and $\Delta \phi = 0$.
- For ξ_{k+1} , we take $\Phi_{k+1}(\xi) = \Phi_k(\xi) (\phi(\xi) \phi(\xi_{k+1}))$, we can see that

$$\nabla \phi = [0, 1, i]^{t}$$

$$\nabla \Phi_{k} = \left[\frac{\partial \Phi_{k}}{\partial u_{1}}, \frac{\partial \Phi_{k}}{\partial u_{2}}, i \frac{\partial \Phi_{k}}{\partial u_{2}} \right]^{t}$$
(11)

which means $\langle \nabla \Phi_k, \nabla \phi \rangle = 0$, $\Delta \phi = 0$. And the last thing is to check $\nabla \Phi_k \neq \mathbf{0}$, since

$$\nabla \Phi_k = \left[\frac{\partial \Phi_k}{\partial u_1}, \frac{\partial \Phi_k}{\partial u_2}, i \frac{\partial \Phi_k}{\partial u_2} \right]^t \tag{12}$$

$$\frac{\partial \Phi_k}{\partial u_1} = \frac{\partial \Phi_0}{\partial u_1} \prod_{i=1}^k (\phi(\xi) - \phi(\xi_i))$$
(13)

$$\frac{\partial \Phi_k}{\partial u_2} = \Phi_0 \sum_{j=1}^k \prod_{l=1, l \neq j}^k (\phi(\xi) - \phi(\xi_l))$$
(14)

Since every root is simple, we know $\nabla \Phi_k$ is never going to be zero vector.

• Thus we take

$$\Phi(\xi) = \Phi_m(\xi) = \Phi_0(\xi) \prod_{j=1}^{m} (\phi(\xi) - \phi(\xi_j))$$
(15)

which satisfies the Helmholtz equation and vanishes at ξ_j , $j=1,\cdots,m$.

Definition 1.2 We define projection map $S : \mathbb{R}^3 \to \mathbb{C}$, $S(\xi) = \phi(\xi)$, then our generated function is

$$\Phi = \Phi_0 \prod_{j=1}^{m} (\mathcal{S}(\xi) - \mathcal{S}(\xi_j))$$
(16)

Definition 1.3 We define function ϕ_l such that $\phi_l \in M$ and ϕ_l vanishes at x_j^1 and x_j^2 except x_l^2 .

1.4 Main proof

$$\int_{\Gamma} (g^1 \phi_l - f^1 \frac{\partial \phi_l}{\partial n}) d\sigma = \sum_{j=1}^m P_j^1 \phi_l(x_j^1) = 0$$

$$\tag{17}$$

$$\int_{\Gamma} (g^2 \phi_l - f^2 \frac{\partial \phi_l}{\partial n}) d\sigma = \sum_{j=1}^m P_j^2 \phi_l(x_j^2) = P_l^2 \phi_l(x_l^2)$$
(18)

Subtract the above one from the below one,

$$\left| \int_{\Gamma} ((g^2 - g^1)\phi_l - (f^2 - f^1) \frac{\partial \phi_l}{\partial n}) d\sigma \right| \tag{19}$$

$$= |P_l^2 \phi_l(x_l^2)| \tag{20}$$

$$= |P_l^2 \prod_{j=1}^m (\mathcal{S}(x_l^2) - \mathcal{S}(x_j^1)) \prod_{i \neq l} (\mathcal{S}(x_l^2) - \mathcal{S}(x_i^2)) \Phi_0(x_l^2)|$$
 (21)

$$\geq C|c\eta_l^m \xi^{m-1}| \tag{22}$$

$$\geq C|c\eta_l^m \xi^{m-1}| \tag{23}$$

where $c = \min_{l} P_{l}^{2}, \eta_{l} = \min_{j} |\mathcal{S}(x_{l}^{2}) - \mathcal{S}(x_{j}^{1})|, \ \xi = \min_{i \neq l} |\mathcal{S}(x_{l}^{2}) - \mathcal{S}(x_{i}^{2})|$

While by Cauchy-Schwarz inequality.

$$\left| \int_{\Gamma} ((g^2 - g^1)\phi_l - (f^2 - f^1) \frac{\partial \phi_l}{\partial n}) d\sigma \right| \tag{24}$$

$$\leq (\|g^2 - g^1\|\|\phi_l\| + \|f^2 - f^1\|\|\frac{\partial \phi_l}{\partial p}\|)$$
 (25)

And $\|\phi_l\|_{L^2(\Gamma)} \leq C\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-1}$, $\|\frac{\partial \phi_l}{\partial n}\|_{L^2(\Gamma)} \leq C_1\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-1}$.

For each l, we have

$$|c\eta_l^m(\xi)^{m-1}e^{-kT}| \le C\{|g^2 - g^1\| + ||f^2 - f^1||\}\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-1}$$
(26)

Thus,

$$\max_{l} \eta_{l} \leq \left\{ \frac{C\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-1}}{c\xi^{m-1}} \left\{ \|g^{2} - g^{1}\| + \|f^{2} - f^{1}\| \right\} \right\}^{\frac{1}{m}}$$
 (27)

1.5 Stability of intensity, respect to Cauchy data

We set out to find a two-step stability for intensities. Suppose we have reconstructed the locations, and intensities are remained unknown. The problem is formulated as following.

Statement 1.4 Suppose our sources are $F^1 = \sum_{j=1}^m P_j^1 \delta(x-x_j^1)$ and $F^2 = \sum_{j=1}^m P_j^2 \delta(x-x_j^2)$ associated with Cauchy data (f^l, g^l) and with the knowledge of the maximal error on local locations of point sources, we are going to find out the stability on intensities w.r.t perturbation on Cauchy data.

Take

$$H_l = \prod_{i \neq l} (\mathcal{S}(\xi) - \mathcal{S}(x_i^1)) \prod_{j \neq l} (\mathcal{S}(\xi) - \mathcal{S}(x_j^2))$$
(28)

then according our construction, there is a $\Phi_0: \mathbb{R}^3 \to \mathbb{C}$ such that $u_l = H_l \Phi_0$ satisfies the Helmholtz equation:

$$\Delta u_l + k^2 n u_l = 0 \tag{29}$$

Similarly, we have

$$\int_{\Gamma} (g^1 u_l - f^1 \frac{\partial u_l}{\partial n}) d\sigma = \sum_{j=1}^m P_j^1 u_l(x_j^1) = P_l^1 u_l(x_l^1)$$
(30)

$$\int_{\Gamma} (g^2 u_l - f^2 \frac{\partial u_l}{\partial n}) d\sigma = \sum_{j=1}^m P_j^2 u_l(x_j^2) = P_l^2 u_l(x_l^2)$$
(31)

Therefore

$$P_l^1 u_l(x_l^1) - P_l^2 u_l(x_l^2) = \int_{\Gamma} ((g^1 - g^2) u_l - (f^1 - f^2) \frac{\partial u_l}{\partial n}) d\sigma$$
 (32)

The RHS can be bounded by Hölder estimation.

$$\left| \int_{\Gamma} ((g^1 - g^2)u_l - (f^1 - f^2)\frac{\partial u_l}{\partial n})d\sigma \right| \le C \left(\|g^1 - g^2\| + \|f^1 - f^2\| \right) \sqrt{|\Gamma|} (\operatorname{diam}(\Omega))^{2m-2}$$
 (33)

And LHS can be written as

$$|P_l^1 u_l(x_l^1) - P_l^2 u_l(x_l^2)| = |(P_l^1 - P_l^2) u_l(x_l^1) + P_l^2 (u_l(x_l^1) - u_l(x_l^2))|$$
(34)

$$\geq \left| \left| (P_l^1 - P_l^2) u_l(x_l^1) \right| - \left| P_l^2 (u_l(x_l^1) - u_l(x_l^2)) \right| \right| \tag{35}$$

$$\geq |(P_l^1 - P_l^2)u_l(x_l^1)| - |P_l^2(u_l(x_l^1) - u_l(x_l^2))|$$
(36)

Observe 33 and 36, we can see

$$\begin{split} &|P_{l}^{1}-P_{l}^{2}||u_{l}(x_{l}^{1})|\\ &\leq &C\Big(\|g^{1}-g^{2}\|+\|f^{1}-f^{2}\|\Big)\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-2}+|P_{l}^{2}(u_{l}(x_{l}^{1})-u_{l}(x_{l}^{2}))|\\ &\leq &C\Big(\|g^{1}-g^{2}\|+\|f^{1}-f^{2}\|\Big)\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-2}+\beta M\eta \end{split}$$

where $\beta = \max_{i=1}^m |P_i^2|$, $M = \max_{\Omega} |\nabla u|$, $\eta = \max_{l} \eta_l$ is defined in 27. And

$$|P_l^1 - P_l^2||u_l(x_l^1)| \ge C|P_l^1 - P_l^2|\xi^{m-1}\gamma_l^{m-1}$$
(37)

where $\xi = \min_{j \neq i} |\mathcal{S}(x_i^1) - \mathcal{S}(x_i^1)|, \gamma_l = \min_{j \neq l} |\mathcal{S}(x_l^1) - \mathcal{S}(x_i^2)|.$

Thus

$$|P_l^2 - P_l^1| \le \frac{C(\|g^1 - g^2\| + \|f^1 - f^2\|)\sqrt{|\Gamma|}(\operatorname{diam}(\Omega))^{2m-2} + \beta M\eta}{C\xi^{m-1}\gamma_l^{m-1}}$$
(38)

Remark Here we can see that $\gamma_l = \min_{j \neq l} |\mathcal{S}(x_l^1) - \mathcal{S}(x_j^2)| \ge \min_{j=1}^m |\mathcal{S}(x_l^1) - \mathcal{S}(x_j^2)| = \eta_l$

2 Problem 2

2.1 Stability, respect to n(x)

We expect the stability as the following informal statement.

Statement 2.1 Consider fixed Cauchy data (f,g) on the boundary, and refractive index n_l , l=1,2, the associated point sources are $F^l=\sum_{j=1}^m P_j^l\delta(x-x_j^l)$. If there is small difference (under some norm) on n^1, n^2 , we need to find out if there is small difference between the sources.

$$\Delta u_1 + k^2 n_1 u_1 = \sum_{j=1}^m P_j^1 \delta(x - x_j^1)$$
(39)

$$\Delta u_2 + k^2 n_2 u_2 = \sum_{j=1}^{m} P_j^2 \delta(x - x_j^2)$$
(40)

If we consider any ϕ such that

$$\Delta \phi + k^2 n_1 \phi = 0 \tag{41}$$

Then for u_1 ,

$$\int_{\Gamma} \left(\phi g - f \frac{\partial \phi}{\partial n} \right) d\sigma = \sum_{j=1}^{m} P_j^1 \phi(x_j^1)$$
(42)

and for u_2 ,

$$\int_{\Gamma} \left(\phi g - f \frac{\partial \phi}{\partial n} \right) d\sigma = \sum_{j=1}^{m} P_j^2 \phi(x_j^2) + \int_{\Omega} k^2 (n_1 - n_2) u_2 \phi \tag{43}$$

subtract the above one from the below one,

$$\sum_{j=1}^{m} P_j^2 \phi(x_j^2) + \int_{\Omega} k^2 (n_1 - n_2) u_2 \phi = \sum_{j=1}^{m} P_j^1 \phi(x_j^1)$$
(44)

- We choose $\phi = \phi_l$ to vanish at x_j^1 and x_j^2 except x_l^2 , then we can get a similar result on location's stability.
- Suppose we have been aware of the approximated locations, we take u_l to vanish at x_j^1 and x_i^2 except x_l^1 and x_l^2 . Then we can get a similar result about the stability of intensity.