Manual for Package: tide

Karl Kastner

October 8, 2019

Contents

1	$@\mathbf{T}_{-}\mathbf{T}_{0}$	$_{ m ide}$
	1.1	T_Tide
	1.2	build_index
	1.3	from_tpxo
	1.4	get_constituents
	1.5	reorder
	1.6	select
	1.7	shift_time_zone
2	@Tida	ıl_Envelope 6
	2.1	Tidal_Envelope
	2.2	init
3	@Tide	e_{-} wft 6
	3.1	Tide_wft
	3.2	transform
4	@Tide	etable 7
	4.1	Tidetable
	4.2	analyze
	4.3	export_csv
	4.4	generate
	4.5	generate_tpxo_input
	4.6	import_tpxo
	4.7	plot_neap_spring
5		8
	5.1	constituents
	5.2	doodson
	5.3	envelope_amplitude
	5.4	envelope_slack_water

	5.5	interval_extrema
	5.6	interval_extrema2 9
	5.7	interval_zeros
	5.8	lunar_phase
	5.9	rayleigh_criterion
6	river-t	$ide/@River_Tide$
	6.1	River_Tide
	6.2	bcfun
	6.3	d2au1_dx2
	6.4	d2az1_dx2
	6.5	decompose
	6.6	dkq_dx
	6.7	dkz_dx
	6.8	friction_coefficient_dronkers
	6.9	friction_coefficient_godin
	6.10	friction_coefficient_lorentz
	6.11	friction_dronkers
	6.12	friction_exponential_dronkers
	6.13	friction_godin
	6.14	friction_trigonometric_dronkers
	6.15	friction_trigonometric_godin
	6.16	friction_trigonometric_lorentz
	6.17	init
	6.18	mwl_offset
	6.19	odefun
	6.20	odefun0
	6.21	odefun1
	6.22	odefun2
	6.23	q2z
	6.24	solve
	6.25	solve_swe
	6.26	solve_wave
	6.27	wave_number_analytic
	6.28	wave_number_approximation
7		ide/@River_Tide_Cai
	7.1	Gamma
	7.2	River_Tide_Cai
	7.3	river_tide_cai
	7.4	rt_quantities
8	river-t	ide/@River_Tide_Empirical
	8.1	River_Tide_Empirical

	8.2	fit_amplitude	16
	8.3	fit_mwl	16
	8.4	fit_phase	17
	8.5	fit_range	17
	8.6	predict_amplitude	17
	8.7	predict_mwl	17
	8.8	$\operatorname{predict_phase}. \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
	8.9	${\rm predict_range} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	17
	8.10	rt_model	17
9	river-t	${ m ide/@River_Tide_JK}$	17
	9.1	River_Tide_JK	17
	9.2	damping_modulus	18
	9.3	mean_level	18
	9.4	rivertide_predict	18
	9.5	rivertide_regress	18
	9.6	tidal_discharge	18
	9.7	tidal_range	18
10	river-t	$ide/@River_Tide_Map$	19
	10.1	River_Tide_Map	19
	10.2	fun	19
	10.3	key	19
	10.4	plot	19
11	river-t	$ide/@River_Tide_Network$	19
	11.1	River_Tide_Network	19
	11.2	$discharge_amplitude \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	19
	11.3	mean_water_level	20
	11.4	plot_mean_water_level	20
	11.5	plot_water_level_amplitude	20
	11.6	solve	20
	11.7	water_level_amplitude	20
12	river-t	ide	21
	12.1	$damped_wave_bvp \ \dots $	21
	12.2	$damped_wave_ivp \dots \dots \dots \dots \dots \dots$	21
	12.3	$damping_modulus_river \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	21
	12.4	$damping_modulus_tide . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	21
	12.5	$rdamping_to_cdrag_tide \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	22
	12.6	$river_tide_godin $	22
	12.7	$rt_celerity \dots \dots$	22
	12.8	$rt_quasi_stationary_complex . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	22
	12.9	rt_quasi_stationary_trigonometric	22

	10.10		00
	12.10		22
	12.11	1	23
	12.12	rt_z2q	23
10	t	:do/toot/toot	23
19		<i>'</i>	
	13.1	1 0	23
	13.2	v	23
	13.3	0	23
	13.4	r · · · · · · · · · · · · · · · · · · ·	24
	13.5		24
	13.6	1	24
	13.7	8	24
	13.8	test_power_series	24
	13.9	$test_reflection_coefficient_gradual \dots \dots \dots \dots$	24
	13.10	test_ricatti	24
	13.11	test_river_tide_models	24
	13.12	test_rt_reflection	24
	13.13		24
	13.14		25
	13.15	test_utm2latlon	25
	13.16		25
14	river-t	<i>'</i>	25
	14.1	test_bvp2c2	25
	140		
	14.2	test_complex_even_overtide	25
	14.2		$\frac{25}{25}$
		$test_fourier_power_exp \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	14.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25
	14.3 14.4	test_fourier_power_exp	$\frac{25}{25}$
	14.3 14.4 14.5	test_fourier_power_exp	25 25 25
	14.3 14.4 14.5 14.6 14.7	test_fourier_power_exp	25 25 25 25 26
	14.3 14.4 14.5 14.6 14.7 14.8	test_fourier_power_exp	25 25 25 25 26 26
	14.3 14.4 14.5 14.6 14.7	test_fourier_power_exp	25 25 25 25 26 26 26
	14.3 14.4 14.5 14.6 14.7 14.8 14.9	test_fourier_power_exp	25 25 25 25 26 26
15	14.3 14.4 14.5 14.6 14.7 14.8 14.9	test_fourier_power_exp	25 25 25 25 26 26 26
15	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation	25 25 25 26 26 26 26
15	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10	test_fourier_power_exp	25 25 25 26 26 26 26
15	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 river-t 15.1	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation ide tidal_ellipse wavetrainz	25 25 25 26 26 26 26 26
	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 river-t 15.1 15.2 15.3	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation ide tidal_ellipse wavetrainz wavetwopassz	25 25 25 26 26 26 26 26 27 27
	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 river-t 15.1 15.2 15.3 test	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation ide tidal_ellipse wavetrainz wavetwopassz	25 25 25 26 26 26 26 26 27 27
	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 river-t 15.1 15.2 15.3	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation ide tidal_ellipse wavetrainz wavetwopassz	25 25 25 26 26 26 26 26 27 27
	14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 river-t 15.1 15.2 15.3 test	test_fourier_power_exp test_friction test_reflection test_rt_wave_number test_tidal_river_network test_tidal_river_network_z0 test_wave_number_godin test_wave_numer_aproximation ide tidal_ellipse wavetrainz wavetwopassz test_tidal_harmonic_analysis	25 25 25 26 26 26 26 26 27 27

	17.2	tidal_energy_transport_1d	2'
	17.3	tidal_envelope	2
	17.4	tidal_envelope2	28
	17.5	$tidal_harmonic_analysis \ \dots \dots \dots \dots \dots \dots \dots$	28
18	tide-sa	venije	28
	18.1	savenije_phase_lag	28
	18.2	savenije_tidal_range	29
	18.3	savenije_tidal_range1	29
	18.4	savenije_timing_hw_lw	29
	18.5	tide-savenije	29

1 @T_Tide

$1.1 T_{-}Tide$

 ${\tt wrapper} \ {\tt for} \ {\tt TPXO} \ {\tt generated} \ {\tt tidal} \ {\tt time} \ {\tt series}$

1.2 build_index

build a structure whose field names contain the index

1.3 from_tpxo

read TPXO output into tidetable object

1.4 get_constituents

extract constituents of tpxo object

1.5 reorder

order constituents as specified by "name"

1.6 select

select a subsect of constituents

1.7 shift_time_zone

shift phase according to time zone

2 @Tidal_Envelope

2.1 Tidal_Envelope

process tidal data to extrac the tidal envelope

2.2 init

initialize with data

3 @Tide_wft

3.1 Tide_wft

wavelet transform of tidal time series

3.2 transform

4 @Tidetable

4.1 Tidetable

Tide table

4.2 analyze

extract tidal envelope from time series

4.3 export_csv

export tide table to csv file

4.4 generate

run TPXO to generate time series

4.5 generate_tpxo_input

```
generate tpxo input table
Note: superseeded by perl script
```

4.6 import_tpxo

import TPXO data into tidetable object

4.7 plot_neap_spring

plot average neap and spring tide

5

5.1 constituents

5.2 doodson

frequency of tidal constituents method of doodson source: wikipedia

5.3 envelope_amplitude

compute envelopes of hw and low water

5.4 envelope_slack_water

slack water envelope of the tide

5.5 interval_extrema

times and evelations for high and low water

5.6 interval_extrema2

mimimum and maximum within intervals of constant length, intended for periodic functions

5.7 interval_zeros

times of slack water determined frim velocity u

5.8 lunar_phase

lunar phase

5.9 rayleigh_criterion

raleigh criterion for resolving tidal constituents T > 1/|f1-f2|

6 river-tide/@River_Tide

6.1 River_Tide

```
river tide in a single 1D channel
TODO split in two classes:
one that stores data (RT_Solve), one that provides equations (
    RT_Analytic)
```

6.2 bcfun

```
Robin (mixed) boundary conditions for the river tide, supplied for each frequency component, wrapper that copies values are from the member struct "bc"
```

```
q*(p*Q_1^- + (1-p)*dQ_1^-/dx
input :
    x : coordinate (left or right end)
    id,ccdx : frequency component index
```

output :

- $\ensuremath{\mathbf{p}}$: linear combination of Dirichlet and Neumann boundary condition
 - 1 -> Dirichlet boundary condition
 0 -> Neumann boundary condition
- ${\bf q}$ linear combination of left and right travelling (incoming and outgoing) wave

rhs = 0 -> homogeneous boundary condition

function [rhs, p, q, obj] = bcfun(obj,x,y,ccdx)

$6.3 d2au1_dx2$

second derivative of the tidal velocity magnitude

note: this is for finding zeros, the true derivative has to be scaled up by z

$6.4 d2az1_dx2$

second derivative of the tidal surface elevation

note: this is for finding zeros, the true derivative has to be scaled up by z

6.5 decompose

decompose the tide into a right and left travelling wave, i.e. into incoming and reflected wave

$6.6 \, dkq_dx$

along-channel derivative of the wave number of the discharge neglects width variation

TODO, rederive with g as variable

$6.7 dkz_dx$

```
along channel derivative of the wave number of the tidal surface elevation ignores width variation dh/dx and second order depth variation (d^2 h/dx^2)
TODO rederive with g symbolic
```

6.8 friction_coefficient_dronkers

```
friction coefficient according to Dronkers

the coefficients are semi-autogenerated

c.f. dronkers 1964
c.f. Cai 2016

p = [p0,p1,p2,p3];
alpha = Ur/Ut = river velocity / tidal velocity amplitude = (umax+ umin)/(umax-umin)

function p = friction_coefficient_dronkers(alpha,order)
```

6.9 friction_coefficient_godin

```
friction coefficient according to Godin
these coefficients are identical to Dronker's for U_R = phi = 0
function G = friction_coefficient_godin(obj,phi)
```

6.10 friction_coefficient_lorentz

```
friction coefficient according to Lorent'z
identical to Dronker's coefficient for zero river flow
and a single frequency component
c.f. Cai
c.f. Dronkers

function L = friction_coefficient_lorentz(obj,phi)
```

6.11 friction_dronkers

Uhr : half-range of the velocity, less than the sum of the frequency amplitudes, except at perigean spring

function [uau_sum uau p] = friction_dronkers(u,Umid,Uhr,order)

6.12 friction_exponential_dronkers

friction coefficients for the frequency components computed by
 Dronkers method
c.f. Dronker's 1964 eq 8.2 and 8.4
Note: Cai dennominates alpha as phi

function [c uau uau_ p] = friction_trigonometric_dronkers(u,dp,Umid,Uhr,order,psym)

6.13 friction_godin

compute friction with the method of Godin

6.14 friction_trigonometric_dronkers

friction computed by the method of Dronkers expressed as coefficients for the frequency components c.f. dronkers 1964 eq 8.2 and 8.4 Note: Cai dennominates alpha as phi

6.15 friction_trigonometric_godin

```
friction computed by the method of Godin
expressed as coefficients of the frequency components (
    trigonometric form)

function [c, uau] = friction_trigonometric_godin(obj,u,dp,Umax)
```

6.16 friction_trigonometric_lorentz

friction computed by the method of Lorent'z
expressed as coefficients of the frequency components (
 trigonometric form)

6.17 init

solve backwater equation for surface level
TODO this should not be solved as a ivp but included in the bvp
iteration
TODO generate the mesh here and precompute fixed values instead of
passing functions

6.18 mwl_offset

offset of the tidally averaged surface elevation caused by tidal friction

Linear estimate of the mean water level offset (ignoring feed-back of tide)

6.19 odefun

coefficients of the backwater and wave equation for river-tides

6.20 odefun0

coefficients of the backwater equation for the river tide $\ensuremath{\texttt{TODO}}$ merge with backwater

6.21 odefun1

```
coefficients of the differential equation of the main tidal species
f1 Q'' + f2 Q' + f3 Q + f4 = 0
TODO rename f into c
TODO better pass dzb_dx instead of dz0_dx
TODO aa, oh and gh terms are not tested for width \tilde{\ } = 1
6.22 odefun2
coefficients of the ordinary differential quation of the even
    overtide
6.23 q2z
tidal component of surface elevation determined from tidal
    discharge
by continuity:
dz/dt + dq/dx = 0
\Rightarrow i o z = - dq/dx
     z = -1/(io) dq/dx
      z = 1i/o dq/dx
TODO allow Q as input
TODO rename into Q1_to_z1
Mon 7 Oct 19:04:14 PST 2019: added correction for change of width
6.24 solve
call stationary or non-stationary solver respectively
```

function obj = solve(obj)

6.25 solve_swe

```
determine river tide by the fully non-stationary FVM and then extract the tide this is experimental and not yet fully working
```

6.26 solve_wave

```
solve for the oscillatory (tidal) componets
function obj = solve_wave(obj)
```

6.27 wave_number_analytic

```
analytic expression of the wave number
```

valid for both tidally, river dominated and low friction conditions and converging channels $\,$

 ${\tt k}$ $\,$: complex wave number in a reach with constant width and bed ${\tt slope}$

im(k) : damping modulus (rate of amplitude change)
re(k) : actual wave number (rate of phase change)

c.f. derive_wave_number

6.28 wave_number_approximation

```
approximate wave number of the left and right traveling wave for variable coefficients

TODO merge with wave_number_analytic
```

function [k, k0, dk0_dx_rel, obj] = wave_numer_aproximation(obj)

7 river-tide/@River_Tide_Cai

7.1 Gamma

Gamma parameter for tidal propagation c.f. Cai 2014

7.2 River_Tide_Cai

prediction of river tide by the method of Cai (2014)

7.3 river_tide_cai_

determine the surface amplitude of the river-tide $\ensuremath{\text{c.f.}}$ Cai

7.4 rt_quantities

determine the quantities that determine the tidal propagation $\ensuremath{\text{c.f.}}$ Cai

Note: this computes 4 unknowns following Cai, however, lambda, mu and epsilon can be substituted making it an equation in one unknown (delta) only

8 river-tide/@River_Tide_Empirical

8.1 River_Tide_Empirical

class for fitting models to at-a-station time series of tidal elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

8.2 fit_amplitude

fit the oscillatory components

8.3 fit_mwl

fit the tidally averaged water level

$8.4 \quad fit_phase$

fit the phase of the oscillatory components

8.5 fit_range

fit the tidal range

8.6 predict_amplitude

predict the oscillatory components

$8.7 \quad predict_mwl$

predict the mean water level

8.8 predict_phase

predict tidal phase

8.9 predict_range

predict the tidal range

8.10 rt_model

select the model for fitting

$9 \quad river-tide/@River_Tide_JK$

9.1 River_Tide_JK

9.2 damping_modulus

```
damping modulus of the river tide
c.f. Jay and Kukula
function r = damping_modulus(obj,h0,b,Qr)
```

9.3 mean_level

tidally averaged surface elevation c.f. Jay and Kukulka

9.4 rivertide_predict

predict river tide by the method of jay and kukulka ${\tt TODO}$ rename

9.5 rivertide_regress

Regression of tidal coefficients according to Jay & Kulkulka coefficients of the r-regression factor 2 apart for specis (jay C7) this can be repeated for each tidal species (diurnal, semidiurnal)

9.6 tidal_discharge

```
tidal discharge
c.f. Jay and Kukulka
function Qt = tidal_discharge(obj,x,R0,h0,b,Qr)
```

9.7 tidal_range

predict tidal range

10 river-tide/@River_Tide_Map

$10.1 \quad River_Tide_Map$

container class to store individual river tide scenarios

10.2 fun

compute river tide for a scenario with specific boundary conditions
 and store it in the hash,
or retrive the scenario, if it was already computed

10.3 key

```
key for storing a scenario
function [key obj] = key(obj,varargin)
```

10.4 plot

```
quick plot of scenario result
function obj = plot(obj,Xi,Q0,W0,S0,z1_downstream,cd,zb_downstream,
    omega,q,opt)
```

11 river-tide/@River_Tide_Network

11.1 River_Tide_Network

tide in a fluvial delta channel network, extension of 1D river tide the network is a directed graph TODO convert from trig-to exponential form

11.2 discharge_amplitude

discharge amplitude

11.3 mean_water_level

predict the mean water level

11.4 plot_mean_water_level

plot tidally averaged water level

11.5 plot_water_level_amplitude

plot surface elevation amplitude

11.6 solve

solve for the tide in a fluvial chanel network

boundary condition at end points not connected to junctions [channel 1 id, endpoint id (1 or 2), s0, c0 ... channel n id, endpoint id (1 or 2), s0, c0]

conditions at junctions are specified as cells
 each cell contains an nx2 array
 n : number of connecting channels
 [channel id1, endpoint id (1 or 2), ...
 channel idn, endpoint id (1 or 2)]

every tidal species for each channel has 4 unknowns these are $2\mathrm{x}2$ unknowns for the \sin + \cos of left and right going wave

11.7 water_level_amplitude

predict the surface elevation amplitude

12 river-tide

12.1 damped_wave_bvp

@River_Tide_Network

```
solved damped wave equation z'' + a z = 0

z(0) = z0, z(L) = 0
```

12.2 damped_wave_ivp

linearly damped wave in rectangular channel solve tide as initial value problem damped wave approximation

- extension of River_Tide to networks

```
z'' + a z = 0
x_t = Ax + b
```

12.3 damping_modulus_river

damping modulus of the tidal wave for river flow only

12.4 damping_modulus_tide

damping modulus of the tide without river flow
c.f. friedrichs, ippen harleman
output :

k : wave number

re(k) : rate of phase change

im(k) : damping rate

12.5 rdamping_to_cdrag_tide

converts damping rate to drag coefficient c.f. friedrichs, ippen harleman

12.6 river_tide_godin

analytic solution to the river tide formulated as boundary value $\begin{array}{c} \text{problem} \\ \text{in a river with finite length} \end{array}$

c.f. Godin 1986

12.7 rt_celerity

celerity of the tidal wave

12.8 rt_quasi_stationary_complex

quasi-stationary solution of the SWE TODO staggered grid does not help: q1' needed

12.9 rt_quasi_stationary_trigonometric

quasi statinary form of the SWE

12.10 rt_reflection_coefficient_gradual

reflection coefficient for gradual varying cross section geometry without damping $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

12.11 rt_wave_equation

```
solve river tide as boundary value problem
omega : [nfx1] angluar frequency of tidal component, zero for mean
reach : [nrx1] struct
    : [1x1] length of reaches
       .width(x,h) width
       .bed(x,h)
                   bed level
       .surface(x,h) surface elevation
       .Cd(x,h) drag coefficient
.bc
    : [nd,nf] boundary/junction conditions
       bc(id,if).type : {surface, velocity, discharge} (dirichlet)
       bc(id,if).val : value
opt : [1x1] struct
      - constant surface elevation
      - deactivative advective acceleration
      .dx : spatial resolution
dimensions:
      nr : nurmber or reaches
      nd : upstream/downstream index
      nf : frequency index
```

$12.12 \quad rt_z2q$

determine tidal discharge from water level for tidal wave

- 13 river-tide/test/test
- $13.1 \quad test_bvp2c_sym$
- 13.2 test_celerity
- 13.3 test_characteristic_rate_of_change

13.4	test_dronkers_compound
13.5	$test_friction_dronkers$
13.6	$test_fv_compare_schemes$
13.7	$test_fv_convergence$
13.8	${\it test_power_series}$
13.9	$test_reflection_coefficient_gradual$
13.10	${ m test_ricatti}$
13.11	$test_river_tide_models$
13.12	$test_rt_reflection$

13.13 test_rt_zs0

9

 $14.6 \quad test_rt_wave_number$

- 14.7 test_tidal_river_network
- 14.8 test_tidal_river_network_z0
- 14.9 test_wave_number_godin
- 14.10 test_wave_numer_aproximation

15 river-tide

analysis and prediction of river tides

Sub-Classes:

@River_Tide

- prediction of river tide in a backwater affected river with a sloping bed

@River_Tide_Cai

- prediction of river tide, method of Cai

@River_Tide_Empirical

- prediction of river tide, empirical

@River_Tide_JK

- prediction of river tide, empirical after Jay and Kukulka ${\tt QRiver_Tide_Map}$

- mulitple-scenaria container for River_Tide

@River_Tide_Network

- extension of River_Tide to networks

15.1 tidal_ellipse

tidal ellipse, numerical ode solution

15.2 wavetrainz

determine river tide by iterated integration of the surface elevation $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

15.3 wavetwopassz

two pass solution for the linearised wave equation, for surface elevation

16 test

16.1 test_tidal_harmonic_analysis

17

17.1 tidal_constituents

17.2 tidal_energy_transport_1d

energy transport of a tidal wave

17.3 tidal_envelope

envelope of the tide

input : t time in days

f surface elevation ouput : tl time of low water

vl surface elevation at low water

ldx index of low water th time of high water

vh surface elevation at high water

hdx index of high water

ndx neap index

```
sdx spring index
dmax:
drange: range per day
```

17.4 tidal_envelope2

```
surface levelation envelope of the tide
low water, high water and tidal range for lunar each day
input:
      time :
           : surface elevation
      order : interpolation order (default 2)
ouput:
      timei : vector eqispaced
      lmini : minimum level
      lmaxi : maximum level
      rangei : range
      midrangei : (min + max)/2, usually different from mean
      phii : pseudo phase
Note: the pseudo phase phi jumps, this is because if the tide is
   semidiurnal,
     sometimes the lower hw becomes the next day higher then than
      current high water, e.g. there is no smooth transition by
     51min but a jump by 12h
```

17.5 tidal_harmonic_analysis

```
tidal_harmonic analysis
```

18 tide-savenije

18.1 savenije_phase_lag

```
phase lag of high and low water
phi : u_river/u_tide < 1

delta_eps_hw = omega*(t_hws - t_hw)
delta_eps_hw = omega*(t_lws - t_lw)</pre>
```

c.f. savenije

18.2 savenije_tidal_range

tidal range

based on Savenije 2012

x : distance to river mouth

eta : range

eta0 : range at river mouth
hbar : mean water depth

phi : velocity ratio u_tide/u_river

note: this varies in strongly convergent estuaries

K : mannings coefficient
I : residual surface slope I

18.3 savenije_tidal_range1

tidal range

based on Horrevoets/Savenije, 2004

HO : tidal range at river mouth

h0 : initial water depth
v : velocity scale
b : convergence length

sine : phase lag

K : Mannings coefficient \mathbb{Q}_{-r} : river discharge

18.4 savenije_timing_hw_lw

time of high water and low water c.f. savenije 2012

18.5 tide-savenije