Representation Theory of the Finite Group $GL_2(\mathbb{F}_p)$

Tushar Muralidharan

October 28, 2022

1 Introduction

In this paper, we study the representations of the general linear group $GL_2(\mathbb{F}_p)$ over a finite field up to isomorphism. We do so in a constructive manner relying on basic results in representation theory.

2 $GL_2(\mathbb{F}_p)$

The group $GL_2(\mathbb{F}_p)$ of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p with p elements, where p is a prime, is an important object of study in representation theory. For starters, the group is finite and non-abelian. There are p^2-1 possibilities for the first column whose entries are both nonzero and p^2-p possibilities for the second column that are not multiples of the first column. Let $G=GL_2(\mathbb{F}_p)$. Hence we have $|G|=(p^2-1)(p^2-p)=p(p+1)(p-1)^2$.

3 Conjugacy Classes of $GL_2(\mathbb{F}_p)$

It is well known that there is a bijective correspondence between the conjugacy classes of a group and its irreducible representations, so we start our investigation there.

Each of the p-1 matrices $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ is fixed under conjugation and defines a conjugacy class with one element. These matrices have one repeated eigenvalue and are diagonalizable.

Next we consider the matrices that are conjugate to $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$. These matrices have one repeated eigenvalue but are not diagonalizable. Since conjugation preserves eigenvalues, each such matrix defines a distinct conjugacy class. The centralizer of this matrix consists of the p(p-1) matrices $\begin{pmatrix} b & c \\ 0 & b \end{pmatrix}$. The counting formula then tells us that the order of the conjugacy class is |G|/p(p-1) = (p+1)(p-1). We have p-1 such conjugacy classes, one for each choice of a.

Now we consider the matrices that are conjugate to $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ for $a \neq b$. These matrices have two distinct eigenvalues and are always diagonalizable. The centralizer of this matrix consists of the $(p-1)^2$ diagonal matrices in G. The counting formula then tells us that the order of the conjugacy class is $|G|/(p-1)^2 = p(p+1)$. Since $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is conjugate to $\begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix}$, there are $\binom{p-1}{2} = (p-1)(p-2)/2$ such conjugacy classes, one for each choice of $a \neq b$. Since \mathbb{F}_p need not be algebraically closed, the roots of a characteristic polynomial may not be in \mathbb{F}_p . Fix some x in \mathbb{F}_p that is not a perfect square (the existence of which is guaranteed for all p > 2), and consider the matrices that are conjugate to $\begin{pmatrix} a & xb \\ b & a \end{pmatrix}$ for $b \neq 0$. The eigenvalues of this matrix are $a \pm b\sqrt{x}$, which is not in \mathbb{F}_p but the quadratic extension thereof. The number of elements in this conjugacy class is p(p-1), and there are p(p-1)/2 such conjugacy classes [1].

Since the classes are disjoint and account for |G| elements, these are all of the conjugacy classes of G. In total, we find $p^2 - 1$ conjugacy classes, which must be equal to the number of irreducible representations of G.

4 Representations of $GL_2(\mathbb{F}_p)$

4.1 Type I

For any character χ of \mathbb{F}_p^{\times} , we obtain a one-dimensional and hence irreducible character $\chi \circ \det \colon G \to \mathbb{C}^{\times}$. This character acts on each type of conjugacy class as follows.

There are p-1 characters of this form because each character is uniquely determined by $\chi(1)$, which must be a (p-1)th root of unity.

4.2 Type II (Steinberg)

We identify the subgroups

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right\} \supset N = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \right\}, \quad B/N = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\} \cong \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times}.$$

For any character χ of \mathbb{F}_p^{\times} , consider the character $\operatorname{Ind}_B^G \operatorname{Res}_B^G(\chi \circ \operatorname{det})$ of G. However, this character is not irreducible since the Frobenius reciprocity gives

$$\langle \operatorname{Ind}_B^G \operatorname{Res}_B^G(\chi \circ \operatorname{det}), \chi \circ \operatorname{det} \rangle_G = \langle \operatorname{Res}_B^G(\chi \circ \operatorname{det}), \operatorname{Res}_B^G(\chi \circ \operatorname{det}) \rangle_B = \frac{1}{|B|} \sum_{b \in B} |\chi \circ \operatorname{det}(b)|^2 = 1.$$

We see that $\operatorname{Ind}_B^G \operatorname{Res}_B^G(\chi \circ \operatorname{det}) - \chi \circ \operatorname{det}$ is an irreducible character by computing its inner product with itself [2]. The values of this character are computed using the induced character formula [3] and subtracting the values of the corresponding characters.

$$\operatorname{Ind}_B^G \operatorname{Res}_B^G(\chi \circ \operatorname{det}) - \chi \circ \operatorname{det} \mid p\chi(a)^2 \mid 0 \mid \chi(ab) \mid -\chi(a^2 - xb^2)$$

We again have p-1 such irreducible characters, one for each χ .

4.3 Type III (Principal Series)

Let $\pi \colon B \to B/N$ be a quotient map. For any two characters χ_1, χ_2 of \mathbb{F}_p^{\times} , let consider the character of B that sends

$$B \xrightarrow{\pi} B/N \cong \mathbb{F}_p^{\times} \times \mathbb{F}_p^{\times} \xrightarrow{\chi_1,\chi_2} \mathbb{C}^{\times} \times \mathbb{C}^{\times} \xrightarrow{\cdot} \mathbb{C}^{\times}.$$

Then the induced representation $\chi_{1,2}$ on G is irreducible [1] and acts according to:

$$\chi_{1,2} \mid (p+1)\chi_1(a)\chi_2(a) \mid \chi_1(a)\chi_2(a) \mid \chi_1(a)\chi_2(b) + \chi_1(b)\chi_2(a) \mid 0$$

There are (p-1)(p-2)/2 such characters, one for each distinct χ_1 and χ_2 .

4.4 Type IV (Cuspidal)

Consider the subgroup

$$K = \left\{ \begin{pmatrix} a & xb \\ b & a \end{pmatrix} \right\}$$

of G. For any character $\varphi \colon K^{\times} \to \mathbb{C}^{\times}$, we have the induced character $\chi_{\operatorname{Ind}\varphi}$ on G. We may also invoke a type II character with the trivial representation and a type III character with χ_1 arbitrary and χ_2 trivial to obtain the characters $\chi_{II(\operatorname{triv})}$ and $\chi_{III(_{-},\operatorname{triv})}$, respectively. A class of irreducible representations is then given by $\chi_{II(\operatorname{triv})} - \chi_{III(_{-},\operatorname{triv})} - \chi_{\operatorname{Ind}\varphi}$, of which there are p(p-1)/2 [1].

$$\chi_{II(\text{triv})} - \chi_{III(_,\text{triv})} - \chi_{\text{Ind }\varphi} \mid (p-1)\varphi(a) \mid -\varphi(a) \mid 0 \mid -(\varphi(a+b\sqrt{x})+\varphi(a+b\sqrt{x})^p)$$

5 Summary

In a lengthier paper, it might be illuminating to verify the irreducibility of characters of types II, III, and IV via Schur's orthogonality relations and the conditions on χ_1, χ_2 that lead to irreducibility in the type III case. Also, additional motivation for the constructions could be of immense utility to the reader. In total, we have accounted for $p^2 - 1$ irreducible representations, so the complete character table for the irreducible representations of $GL_2(\mathbb{F}_p)$ is provided below.

	$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}_{a \neq b}$	$\begin{pmatrix} a & xb \\ b & a \end{pmatrix}_{b \neq 0}$
$\chi \circ \det$	$\chi(a)^2$	$\chi(a)^2$	$\chi(ab)$	$\chi(a^2 - xb^2)$
$\operatorname{Ind}_B^G \operatorname{Res}_B^G(\chi \circ \det) - \chi \circ \det$	$p\chi(a)^2$	0	$\chi(ab)$	$-\chi(a^2 - xb^2)$
$\chi_{1,2}$	$(p+1)\chi_1(a)\chi_2(a)$	$\chi_1(a)\chi_2(a)$	$\chi_1(a)\chi_2(b) + \chi_1(b)\chi_2(a)$	0
$\chi_{II(\text{triv})} - \chi_{III(-,\text{triv})} - \chi_{\text{Ind }\varphi}$	$(p-1)\varphi(a)$	$-\varphi(a)$	0	$-(\varphi(a+b\sqrt{x})+\varphi(a+b\sqrt{x})^p)$

Table 1: Character table of $GL_2(\mathbb{F}_p)$

References

- [1] Fulton, W. & Harris, J. (1996) Representation Theory: A First Course, Springer-Verlag.
- [2] Lang, S. (2002) Algebra, Springer-Verlag.
- [3] Serre, J.-P. (1977) Linear Representations of Finite Groups, Springer-Verlag.