# Slide 22-Orthogonality IV MAT2040 Linear Algebra

#### **Gram-Schmidt process**

Note that the linearly independent set  $\{u_1, u_2, \cdots, u_m\}$  may not the orthogonal set.

**Question:** Can we make a linearly independent set  $\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_m\}$  into an orthonormal set  $\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_m\}$  while keeping the same span  $(\mathbf{Span}(\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_m)=\mathbf{Span}(\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_m))$ ?

Idea is to use the projection and project it into the subspace and the remaining vector will be orthogonal to the subspace.

**Lemma 22.1** (**Projection onto a subspace**) Let S be a subspace of the inner product space V and  $\{\mathbf{u}_1,\mathbf{u}_2,\cdots,\mathbf{u}_m\}$  is the orthonormal basis for S, for any  $\mathbf{x}\in V$ . And let  $\mathbf{p}$  be the projection vector of  $\mathbf{x}$  onto S  $(\mathbf{x}-\mathbf{p}\perp S)$ , then  $\mathbf{p}$  is uniquely determined by

$$\mathbf{p} = \sum_{i=1}^{m} \langle \mathbf{x}, \mathbf{u}_i \rangle \mathbf{u}_i$$



Figure: Projection of  $\mathbf{x} \in V$  onto subspace S.

**Proof.** Since  $p \in S$ , then write

$$\mathbf{p} = \sum_{i=1}^m c_i \mathbf{u}_i$$

In addition,  $\mathbf{x} - \mathbf{p} \perp S$ , thus

$$<\mathbf{x}-\sum_{i=1}^m c_i\mathbf{u}_i,\mathbf{u}_i>=0,\ i=1,\cdots,m$$

$$\langle \mathbf{x}, \mathbf{u}_i \rangle - \sum_{i=1}^m c_j \langle \mathbf{u}_j, \mathbf{u}_i \rangle = 0$$

Thus

$$c_i = \langle \mathbf{x}, \mathbf{u}_i \rangle, i = 1, \dots, m$$

$$\mathbf{p} = \sum_{i=1}^m \langle \mathbf{x}, \mathbf{u}_i \rangle \mathbf{u}_i$$

and  $\mathbf{x} - \mathbf{p} \perp S$ 

4 D > 4 A > 4 B > 4 B > B B B 9 Q P

**Question:** Given an linearly independent set  $\{\mathbf{u}_1,\cdots,\mathbf{u}_m\}$  in an inner product vector space V, how can we find an orthonormal set  $\{\mathbf{v}_1,\cdots,\mathbf{v}_m\}$  such that  $\mathrm{Span}(\mathbf{u}_1,\cdots,\mathbf{u}_m)=\mathrm{Span}(\mathbf{v}_1,\cdots,\mathbf{v}_m)$ ?

Thinking geometrically for m = 2 as the following figure:



$$\mathbf{v}_1 = \mathbf{u}_1/||\mathbf{u}_1||$$
  $\mathbf{v}_2 = (\mathbf{u}_2 - \mathbf{p}_1)/||\mathbf{u}_2 - \mathbf{p}_1||$ 

#### Thinking geometrically for m = 3 as following figure:



$$\begin{aligned} \mathbf{p}_1 &= <\mathbf{u}_2, \, \mathbf{v}_1 > \, \mathbf{v}_1 \\ \mathbf{v}_1 &= \, \mathbf{u}_1 / || \, \mathbf{u}_1 || & \mathbf{v}_2 &= (\, \mathbf{u}_2 \cdot \, \mathbf{p}_1 ) / || \, \mathbf{u}_2 \cdot \, \mathbf{p}_1 || \\ & \mathbf{v}_3 &= (\, \mathbf{u}_3 \cdot \, \mathbf{v}_1 > \, \mathbf{v}_1 + < \, \mathbf{u}_3, \, \mathbf{v}_2 > \, \mathbf{v}_2 \\ & \mathbf{v}_3 &= (\, \mathbf{u}_3 \cdot \, \mathbf{p}_2 ) / || \, \mathbf{u}_3 \cdot \, \mathbf{p}_2 || \end{aligned}$$

#### **Gram-Schmidt Process**

#### (Gram-Schmidt Process)

Step 1: normalize  $\mathbf{u}_1$  to get  $\mathbf{v}_1$ , i.e.,  $\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|}$ 

Step 2: project  $\mathbf{u}_2$  onto  $\mathrm{Span}(\mathbf{v}_1)$  to get  $\mathbf{p}_1 = \langle \mathbf{u}_2, \mathbf{v}_1 \rangle \mathbf{v}_1$ , then  $\mathbf{r}_1 = \mathbf{u}_2 - \mathbf{p}_1 \perp \mathrm{Span}(\mathbf{u}_1)$ . Set  $\mathbf{v}_2 = \frac{\mathbf{r}_1}{\|\mathbf{r}_1\|} = \frac{\mathbf{u}_2 - \mathbf{p}_1}{\|\mathbf{u}_2 - \mathbf{p}_1\|}$ , then  $\{\mathbf{v}_1, \mathbf{v}_2\}$  are orthonormal set and  $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2) = \mathrm{Span}(\mathbf{u}_1, \mathbf{u}_2)$ .



 $v_1 = u_1/||u_1||$   $v_2 = (u_2 - p_1)/||u_2 - p_1||$ 



Step 3: project  $\mathbf{u}_3$  onto  $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2)$  to get  $\mathbf{p}_2 = \left\langle \mathbf{u}_3,\mathbf{v}_1 \right\rangle \mathbf{v}_1 + \left\langle \mathbf{u}_3,\mathbf{v}_2 \right\rangle \mathbf{v}_2$ , then  $\mathbf{u}_3 - \mathbf{p}_2 \perp \mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2)$ , set  $\mathbf{v}_3 = \frac{\mathbf{u}_3 - \mathbf{p}_2}{\|\mathbf{u}_3 - \mathbf{p}_2\|}$ , then  $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$  are orthonormal set and  $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3) = \mathrm{Span}(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)$ .

:

Step m: project  $\mathbf{u_m}$  onto  $\mathrm{Span}(\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_{m-1}})$  to get

$$\mathbf{p}_{m-1} = <\mathbf{u}_m, \mathbf{v}_1 > \mathbf{v}_1 + <\mathbf{u}_m, \mathbf{v}_2 > \mathbf{v}_2 + \dots + <\mathbf{u}_m, \mathbf{v}_{m-1} > \mathbf{v}_{m-1}$$

Then  $\mathbf{r}_{m-1} = \mathbf{u}_m - \mathbf{p}_{m-1} \perp \operatorname{Span}(\mathbf{v}_1, \cdots, \mathbf{v}_{m-1})$  and set  $\mathbf{v}_m = \frac{\mathbf{r}_{m-1}}{\|\mathbf{r}_{m-1}\|} = \frac{\mathbf{u}_m - \mathbf{p}_{m-1}}{\|\mathbf{u}_m - \mathbf{p}_{m-1}\|}$ . Then  $\{\mathbf{v}_1, \cdots, \mathbf{v}_m\}$  is an orthonormal set and  $\operatorname{Span}(\mathbf{u}_1, \cdots, \mathbf{u}_m) = \operatorname{Span}(\mathbf{v}_1, \cdots, \mathbf{v}_m)$ 

**Theorem 22.2** The set  $\{\mathbf{v}_1,\cdots,\mathbf{v}_m\}$  constructed by the above Gram-Schmidt process from linearly independent set  $\{\mathbf{u}_1,\cdots,\mathbf{u}_m\}$  is an orthonormal set and  $\mathrm{Span}(\mathbf{u}_1,\cdots,\mathbf{u}_m)=\mathrm{Span}(\mathbf{v}_1,\cdots,\mathbf{v}_m)$ .

**Proof** Skipped. See Steven's book p267.

#### Example 22.3 Let

$$S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\4\\4\\-1 \end{bmatrix}, \begin{bmatrix} 4\\-2\\2\\0 \end{bmatrix} \right\} \subseteq \mathbb{R}^4$$

In  $\mathbb{R}^n$ , the standard inner product is the scalar product  $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^T \mathbf{x}$ .

Now find the orthonormal basis for  $\mathrm{Span}(u_1,u_2,u_3)$ .

Step 1: 
$$\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{1}{2} \begin{vmatrix} 1\\1\\1\\1 \end{vmatrix} = \begin{vmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{vmatrix}$$
.

10 / 22

Slide 22-Orthogonality IV

#### Step 2: calculate

$$\begin{aligned} \mathbf{u}_{2}' = & \mathbf{u}_{2} - < \mathbf{u}_{2}, \mathbf{v}_{1} > \mathbf{v}_{1} \\ = & \begin{bmatrix} -1 \\ 4 \\ 4 \\ -1 \end{bmatrix} - \left( \begin{bmatrix} -1 & 4 & 4 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ = & \begin{bmatrix} -\frac{5}{2} \\ \frac{5}{2} \\ \frac{7}{2} \\ -\frac{5}{2} \end{bmatrix} \end{aligned}$$

then

$$\mathbf{v}_2 = \frac{\mathbf{u'}_2}{\parallel \mathbf{u'}_2 \parallel} = \frac{1}{5} \begin{bmatrix} -\frac{5}{2} \\ \frac{5}{2} \\ \frac{1}{2} \\ -\frac{5}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

#### Step3: calculate

$$\begin{aligned} \mathbf{u}_{3}' = & \mathbf{u}_{3} - \langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle \mathbf{v}_{1} - \langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle \mathbf{v}_{2} \\ = & \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix} - \left( \begin{bmatrix} 4 & -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right) \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\ - & \left( \begin{bmatrix} 4 & -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \right) \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix} \end{aligned}$$

then

$$\mathbf{v}_{3} = \frac{\mathbf{u}'_{3}}{\parallel \mathbf{u}'_{3} \parallel} = \frac{1}{4} \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$$

→ 4個 > 4 差 > 4 差 > 差 | 重 の Q (\*)

Let  $A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3]$  is a real matrix, whose the column vector set  $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$  is linearly independent. Gram-Schmidt process gives following orthonormal set

$$\textbf{q}_1 = \frac{\textbf{a}_1}{\parallel \textbf{a}_1 \parallel}, \quad \textbf{r}_1 = \textbf{a}_2 - \textbf{p}_1 \quad \textbf{(p}_1 = <\textbf{a}_2, \textbf{q}_1 > \textbf{q}_1\textbf{)}, \quad \textbf{q}_2 = \frac{\textbf{r}_1}{\parallel \textbf{r}_1 \parallel}$$

$$\mathbf{r}_2 = \mathbf{a}_3 - \mathbf{p}_2 \quad \big(\mathbf{p}_2 = <\mathbf{a}_3, \mathbf{q}_1 > \mathbf{q}_1 + <\mathbf{a}_3, \mathbf{q}_2 > \mathbf{q}_2\big), \quad \mathbf{q}_3 = \frac{\mathbf{r}_2}{\parallel \mathbf{r}_2 \parallel}$$

 $(\mathbf{q}_2 \perp \operatorname{Span}(\mathbf{q}_1) = \operatorname{Span}(\mathbf{a}_1), \quad \mathbf{q}_3 \perp \operatorname{Span}(\mathbf{q}_1, \mathbf{q}_2) = \operatorname{Span}(\mathbf{a}_1, \mathbf{a}_2))$ The above relations can be rewritten as

$$\begin{aligned} & \mathbf{a}_1 = \|\mathbf{a}_1\|\mathbf{q}_1, \\ & \mathbf{a}_2 = <\mathbf{a}_2, \mathbf{q}_1 > \mathbf{q}_1 + \|\mathbf{r}_1\|\mathbf{q}_2, \\ & \mathbf{a}_3 = <\mathbf{a}_3, \mathbf{q}_1 > \mathbf{q}_1 + <\mathbf{a}_3, \mathbf{q}_2 > \mathbf{q}_2 + \|\mathbf{r}_2\|\mathbf{q}_3. \end{aligned}$$

(ロ) (B) (B) (B) (B) (B) (C)

This gives

$$A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3] = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3] \begin{bmatrix} \|\mathbf{a}_1\| & <\mathbf{a}_2, \mathbf{q}_1 > & <\mathbf{a}_3, \mathbf{q}_1 \\ 0 & \|\mathbf{r}_1\| & <\mathbf{a}_3, \mathbf{q}_2 \\ 0 & 0 & \|\mathbf{r}_2\| \end{bmatrix}$$
  

$$\triangleq QR.$$

This is called the QR factorization. Here  $Q = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3]$ , and

$$R = \begin{bmatrix} \|\mathbf{a}_1\| & <\mathbf{a}_2, \mathbf{q}_1> & <\mathbf{a}_3, \mathbf{q}_1> \\ 0 & \|\mathbf{r}_1\| & <\mathbf{a}_3, \mathbf{q}_2> \\ 0 & 0 & \|\mathbf{r}_2\| \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \mathbf{q}_1^T \mathbf{a}_2 & \mathbf{q}_1^T \mathbf{a}_3 \\ 0 & \mathbf{q}_2^T \mathbf{a}_2 & \mathbf{q}_2^T \mathbf{a}_3 \\ 0 & 0 & \mathbf{q}_3^T \mathbf{a}_3 \end{bmatrix}$$

since 
$$<\mathbf{q}_1, \mathbf{a}_1> = \mathbf{q}_1^T \mathbf{a}_1 = \|\mathbf{a}_1\|, <\mathbf{q}_2, \mathbf{a}_2> = \mathbf{q}_2^T \mathbf{a}_2 = \|\mathbf{r}_1\|, <\mathbf{q}_3, \mathbf{a}_3> = \mathbf{q}_3^T \mathbf{a}_3 = \|\mathbf{r}_2\|.$$

- ◀ □ ▶ ◀ ∰ ▶ ◀ 볼 ▶ 세 볼 ▶ 및 I= 씨 및 ©

#### Example 22.4

Let 
$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3].$$

The orthonormal set  $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$  obtained is

$$\mathbf{q}_1 = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}]^T, \mathbf{q}_2 = [-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}]^T, \mathbf{q}_3 = [\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}]^T$$

15 / 22

Slide 22-Orthogonality IV

$$Q = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix},$$

$$R = Q^{T}A = \begin{bmatrix} \mathbf{q}_{1}^{T}\mathbf{a}_{1} & \mathbf{q}_{1}^{T}\mathbf{a}_{2} & \mathbf{q}_{1}^{T}\mathbf{a}_{3} \\ 0 & \mathbf{q}_{2}^{T}\mathbf{a}_{2} & \mathbf{q}_{2}^{T}\mathbf{a}_{3} \\ 0 & 0 & \mathbf{q}_{3}^{T}\mathbf{a}_{3} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

It is easy to check that

$$A = QR$$

**Theorem 22.5** (**QR decomposition** ) Let  $A \in \mathbb{R}^{m \times n}$  be an  $m \times n$  real matrix and rank(A)=n (column vectors are linearly independent), then A can be factorized as A = QR, where Q is an  $m \times n$  matrix with orthonormal column vectors and R is an upper triangular  $n \times n$  matrix with all positive diagonal elements.

**Proof.** Suppose that  $A = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$  and  $\{\mathbf{q}_1, \cdots, \mathbf{q}_n\}$  is the orthnormal set obtained from  $\{\mathbf{a}_1, \cdots, \mathbf{a}_n\}$  by the following Gram-Schmidt process (see step 1 and step 2).

Gram-Schmidt process

Step 1: 
$$\mathbf{q}_1 = \frac{\mathbf{a}_1}{\|\mathbf{a}_1\|}, \quad \mathbf{q}_1^T \mathbf{a}_1 = <\mathbf{a}_1, \mathbf{q}_1> = \parallel \mathbf{a}_1\parallel > 0$$

Step 2: For 
$$j = 2, \dots, n$$

1. Let

$$\mathbf{r}_{j-1} = \mathbf{a}_j - \mathbf{p}_{j-1}$$

where  $\mathbf{p}_{j-1} = \langle \mathbf{a}_j, \mathbf{q}_1 \rangle \mathbf{q}_1 + \cdots + \langle \mathbf{a}_j, \mathbf{q}_{j-1} \rangle \mathbf{q}_{j-1}$  is the projection of  $\mathbf{a}_j$  onto  $\mathrm{Span}\{\mathbf{q}_1, \cdots, \mathbf{q}_{j-1}\} = \mathrm{Span}\{\mathbf{a}_1, \cdots, \mathbf{a}_{j-1}\}$ 

2. Let 
$$\mathbf{q}_{j} = \frac{\mathbf{r}_{j-1}}{\|\mathbf{r}_{j-1}\|}$$
, then

$$\mathbf{a}_j = <\mathbf{a}_j, \mathbf{q}_1>\mathbf{q}_1+\cdots+<\mathbf{a}_j, \mathbf{q}_{j-1}>\mathbf{q}_{j-1}+\parallel \mathbf{r}_{j-1}\parallel \mathbf{q}_j.$$

The above relations can be rewritten as

$$\begin{split} \mathbf{a}_1 = & \parallel \mathbf{a}_1 \parallel \mathbf{q}_1 \\ \mathbf{a}_2 = < \mathbf{a}_2, \mathbf{q}_1 > \mathbf{q}_1 + \| \mathbf{r}_1 \| \mathbf{q}_2 \\ \mathbf{a}_3 = < \mathbf{a}_3, \mathbf{q}_1 > \mathbf{q}_1 + < \mathbf{a}_3, \mathbf{q}_2 > \mathbf{q}_2 + \| \mathbf{r}_2 \| \mathbf{q}_3 \\ & \vdots \\ \mathbf{a}_n = < \mathbf{a}_n, \mathbf{q}_1 > \mathbf{q}_1 + \dots + < \mathbf{a}_n, \mathbf{q}_{n-1} > \mathbf{q}_{n-1} + \| \mathbf{r}_{n-1} \| \mathbf{q}_n \end{split}$$

Thus,

$$\mathbf{q}_{j}^{T}\mathbf{a}_{j} = <\mathbf{a}_{j}, \mathbf{q}_{j}> = \parallel \mathbf{r}_{j-1} \parallel > 0 \quad (j = 2, \cdots, n).$$

and

$$\mathbf{q}_j \perp \mathrm{Span}(\mathbf{q}_1, \cdots, \mathbf{q}_{j-1}) = \mathrm{Span}(\mathbf{a}_1, \cdots, \mathbf{a}_{j-1}), (j=2, \cdots, n)$$

$$\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n] = [\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n] \begin{bmatrix} \|\mathbf{a}_1\| & \langle \mathbf{q}_1, \mathbf{a}_2 \rangle & \dots & \langle \mathbf{q}_1, \mathbf{a}_n \rangle \\ 0 & \|\mathbf{r}_1\| & \dots & \langle \mathbf{q}_2, \mathbf{a}_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \|\mathbf{r}_{n-1}\| \end{bmatrix}$$

$$\triangleq QR$$

Here  $Q = [\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_n]$ , and

$$R = \begin{bmatrix} \mathbf{q}_1^T \mathbf{a}_1 & \mathbf{q}_1^T \mathbf{a}_2 & \dots & \mathbf{q}_1^T \mathbf{a}_n \\ 0 & \mathbf{q}_2^T \mathbf{a}_2 & \dots & \mathbf{q}_2^T \mathbf{a}_n \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathbf{q}_n^T \mathbf{a}_n \end{bmatrix}$$

since 
$$\mathbf{q}_1^T \mathbf{a}_1 = <\mathbf{a}_1, \mathbf{q}_1> = \|\mathbf{a}_1\|, \quad \mathbf{q}_j^T \mathbf{a}_j = <\mathbf{a}_j, \mathbf{q}_j> = \|\mathbf{r}_{j-1}\| > 0 \quad (j = 2, \cdots, n).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶

# Appendix: Gram-Schmidt Process on a functional space (an inner product space)

**Example 22.7** For subspace  $\mathbf{Span}\{1, x, x^2\} \subseteq C[-1, 1]$ , find the orthonormal basis for  $\mathbf{Span}\{1, x, x^2\}$ , where the inner product and norm is defined as:

$$< f, g > = \int_{-1}^{1} f(x)g(x)dx, \quad ||f||^{2} = \int_{-1}^{1} |f(x)|^{2}dx$$

Now it can be verify that

$$<1, x>=0, < x, x^2>=0, <1, x^2>=\frac{2}{3}$$

$$\mathbf{p}_1 = x - \frac{< x, 1>}{<1, 1>} = x$$

$$\mathbf{p}_2 = x^2 - \frac{< x^2, 1>}{<1, 1>} - \frac{< x^2, x>}{< x, x>} x = x^2 - \frac{1}{3}$$

◆□ > ◆□ > ◆글 > ◆글 > 필급 \* 의익()

$$\mathbf{q}_{1} = \frac{1}{\parallel 1 \parallel} = \frac{1}{\sqrt{2}}$$

$$\mathbf{q}_{2} = \frac{\mathbf{p}_{1}}{\parallel \mathbf{p}_{1}} \parallel = \frac{x}{\sqrt{\frac{2}{3}}}$$

$$\mathbf{q}_{3} = \frac{\mathbf{p}_{2}}{\parallel \mathbf{p}_{2} \parallel} = \frac{x^{2} - \frac{1}{3}}{\sqrt{\frac{8}{45}}}$$

$$\{\frac{1}{\sqrt{2}}, \frac{x}{\sqrt{\frac{2}{3}}}, \frac{x^2 - \frac{1}{3}}{\sqrt{\frac{8}{45}}}\}$$
 are the orthonormal basis for  $\mathbf{Span}\{1, x, x^2\}$ .