Verification in Quantum Computing

Matthew Amy

University of Waterloo & Institute for Quantum Computing

Design Automation for Quantum Computing November 16th, 2017

Quantum computing

Theory:

Quantum computing

Reality:

Quantum computing is weakened by a high degree of overhead

Sources of overhead:

- Intrinsic overhead of an algorithm e.g. overhead of Grover's search
- Overhead incurred at the logical layer due to reversibility e.g. $g: |x\rangle|y\rangle \to |x\rangle|y \oplus f(x)\rangle$
- Additional overhead at the physical layer due to error correction

Example

Breaking SHA (arXiv:1603.09383)

Algorithmic overhead: Additional query of f, 4n-8 Toffolis Logical overhead: 1600 qubits, $> 2 \times$ the number of gates Physical overhead: 2^{38} times as many "executions of SHA-256"

Matthew Amy (IQC) Verification Nov. 16 4 / 48

Resource estimation

Estimate how much resources (time & space) a realistic implementation of an algorithm uses

Errors can (and do) occur at any stage!

Example

Eager cleanup bug

Without optimization:

With optimization:

Why verify?

- 1.) Quantum resource estimates are being used to guide real security policies
 - Open Quantum Safe (https://openquantumsafe.org/)
 - Bitcoin (Aggarwal et. al. arXiv:1710.10377)
 - Symmetric key systems (Ling et. al. arXiv:1707.02766)
 - Resource analyses of AES (Grassl et. al. arxiv:1512.04965), SHA (Amy et. al. arXiv:1603.09383) etc.
- 2.) Resource estimates vary wildly between compilers
- e.g. for binary welded tree (n = 100, s = 100)
 - ScaffCC gives 571805 qubits, 33966707 gates
 - Quipper gives 314/1932 qubits, 30424410/36257210 gates

Matthew Amy (IQC) Verification Nov. 16 7 / 48

Why verify formally?

- 3.) Testing capability is limited
 - Quantum simulation doesn't scale
 - Circuits are special-purpose and monolithic

Verifying a resource analysis design flow

Program verification

- Prove properties of expected behaviour for specific programs
- Properties may not be true of all programs, e.g. integer overflow
- Techniques include abstract interpretation (Entanglement analysis), model checking (Quantum model-checker), type systems (Quipper), formal proof (Quantum Hoare Logic)

Quantum-specific challenges:

• What are the program properties of interest?

Matthew Amy (IQC) Verification Nov. 16 9 / 48

Verifying a resource analysis design flow

Compiler verification

- Compiled program executes as expected
- Techniques include translation validation (per program), formal proof (all programs)
- CompCert, CAKENL A Verified Implementation of ML, REVERC

Quantum-specific challenges:

- Explicit clean-up and reuse of memory
- Probabilistic semantics

Matthew Amy (IQC) Verification Nov. 16 10 / 48

Formal proof in compiler verification

ML-like language with dependent types developed at MSR

What are Dependent types?

- Types may depend on terms i.e. Array n
- Corresponds to predicate logic (Curry-Howard isomorphism)

What are they useful for? writing logical specifications/theorems

```
val head : 1:List{not (is_Empty 1)} -> Tot int
val insert_is_heap : h:Heap -> i:int ->
   Lemma (is_heap h ⇒ is_heap (insert h i))
val compile_correct :
   Lemma (∀ P:program, i:inputs.
   eval_program P i = eval_assembly (compile P) i)
```

How do we verify specifications/theorems are correct?

• F* compiler checks specifications with SMT solver

11 / 48

REVERC (arXiv:1603.01635)

https://github.com/msr-quarc/ReVerC

Reversible circuit compiler for the F# embedded DSL Revs

- Compiles irreversible code into reversible circuits
- Performs optimizations for space-efficiency
- Formally verified in F*
- Includes a BDD-based assertion-checker for program verification & additional translation validation

Compiler architecture

REVS

REVS

```
Var x, Bool b \in \{0,1\} = \mathbb{B}, Nat i, j \in \mathbb{N}, Loc l \in \mathbb{N}
   Val v ::= \text{unit} \mid I \mid \text{reg } I_1 \dots I_n \mid \lambda x.t
Term t ::= let x = t_1 in t_2 | \lambda x.t
                 |(t_1 t_2)|
                 |t_1;t_2|
                 |x|
                 |t_1 \leftarrow t_2|
                 | b | t_1 \oplus t_2 | t_1 \wedge t_2
                 |\operatorname{reg} t_1 \dots t_n | t.[i] | t.[i..j] | append t_1 t_2 | rotate i t
                 | clean t | assert t
```

REVS by example

n-bit adder

```
let adder n = < 0
  fun a b ->
    let maj a b c = (a \land (b \oplus c)) \oplus (b \land c)
    let result = Array.zeroCreate(n)
    let mutable carry = false
    result.[0] \leftarrow a.[0] \oplus b.[0]
    for i in 1 .. n-1 do
       carry \leftarrow maj \ a.[i-1] \ b.[i-1] \ carry
       result.[i] ← a.[i] ⊕ b.[i] ⊕ carry
       assert result.[i] = (a.[i] + b.[i] + carry)
    result
@>
```

**Note: all control is compile-time static

$\ensuremath{\mathrm{Revs}}$ by example

n-bit adder

REVS by example

SHA-256

```
let s0 a =
 let a2 = rot 2 a
 let a13 = rot 13 a
 let a22 = rot 22 a
 let t = Array.zeroCreate 32
 for i in 0 .. 31 do
   t.[i] \leftarrow a2.[i] \oplus
             a13.[i] ⊕
             a22.[i]
 t.
let s1 a =
 let a6 = rot 6 a
 let a11 = rot 11 a
 let a25 = rot 25 a
 let t = Array.zeroCreate 32
 for i in 0 .. 31 do
   t.[i] ← a6.[i] ⊕
             a11.[i] ⊕
             a25.[i]
 t.
 let t = Array.zeroCreate 32
 for i in 0 .. 31 do
   t.[i] \leftarrow (b.[i] \land c.[i]) \oplus
     (a.[i] \land (b.[i] \oplus c.[i]))
 t
```

```
let ch e f g =
let t = Array.zeroCreate 32
 for i in 0 .. 31 do
   t.[i] \leftarrow e.[i] \land f.[i] \land g.[i]
 t.
fun k w x \rightarrow
 let hash x =
   let a = x.[0..31],
     b = x.[32..63]
     c = x.[64..95],
     d = x.[96..127],
     e = x.[128..159],
     f = x.[160..191],
     g = x.[192..223]
     h = x.[224..255]
   (%modAdd 32) (ch e f g) h
   (%modAdd 32) (s0 a) h
   (%modAdd 32) w h
   (%modAdd 32) k h
   (%modAdd 32) h d
   (%modAdd 32) (ma a b c) h
   (%modAdd 32) (s1 e) h
 for i in 0 .. n - 1 do
   hash (rot 32*i x)
 x
```

Typed REVS

Typed Revs

Type
$$T ::= X \mid \text{Unit} \mid \text{Bool} \mid \text{Reg } n \mid T_1 \rightarrow T_2$$

Inferred type system with statically typed registers sizes

- Main purpose is to simplify the job of the compiler
 - ► Simpler compiler ⇒ easier verification!
- Verification-light
 - Prevents out-of-bounds register accesses
 - Sanity check for register sizes

```
let f = fun a : Reg 8 -> ... in
let a = Array.zeroCreate 8 in
let b = Array.zeroCreate 16 in
f a
f b
```

Type/parameter inference

Basic idea: solve a system of integer linear arithmetic constraints

- e.g. $(x = \text{Reg } y) \land (y \ge z 3) \land (y \ge 8)$
- let c = append a b \rightarrow (c: Reg x) \land (a: Reg y) \land (b: Reg z) \land (x \geq y + z)

Solver overview:

- Solve equalities by unification
- Merge arithmetic constraints & reduce to normal form
- For constraints $x \ge n$, set x = n
- Check remaining arithmetic constraints are satisfied

Caveat: doesn't always find a solution

Boolean abstract machine

Boolean abstract machine

Only one operation:

assign a store location to the result of a Boolean expression

Partial evaluation used to transform REVS code into the abstract machine

- Lvalue most be a new, 0-valued store location
- RHS is a Boolean expression
- Semantics & transformation coincide ⇒ easier verification!

**Strictly more general than reversible circuits

Example

Adder circuit

```
fun a b ->
  let carry_ex a b c = (a \lambda (b \lambda c)) \lambda (b \lambda c)
  let result = Array.zeroCreate(4)
  let mutable carry = false

result.[0] \lefta a.[0] \lefta b.[0]
  for i in 1 .. 4-1 do
      carry \lefta carry_ex a.[i-1] b.[i-1] carry
      result.[i] \lefta a.[i] \lefta b.[i] \lefta carry
      assert (result.[i] = (a.[i] \lefta b.[i] \lefta carry))
  result
```

↓ partial evaluation

Recall

Reversible computing

Every operation must be invertible

- $x \wedge y = 0 \implies x = ???, y = ???$
- Can't re-use memory without "uncomputing" its value first

To perform classical functions reversibly, embed in a larger space

- $Toffoli(x, y, z) = (x, y, z \oplus (x \land y))$
- $Toffoli(x, y, 0) = (x, y, x \land y)$

Recall

Reclaiming space

Naïve "reversibilification": replace every AND gate with a Toffoli

- Temporary bits are called ancillas
- Uses space linear(!) in the number of AND gates

Bennett's trick: copy out result of a computation & uncompute

Circuit compilation

A.K.A. garbage collection

After line 4, we can garbage-collect carry₁ and reuse its space for carry₃

Problem: we can't overwrite $carry_1$ with the 0 state Solution: each location i is associated with an expression $\kappa(i)$ s.t.

$$i \oplus \kappa(i) = 0$$

Interpretations

Compilation methods defined by providing interpretations ${\mathcal I}$ of the abstract machine

An interpretation consists of a domain D and two operations

$$\mathsf{assign}: D \times \mathbb{N} \times \mathbf{BExp} \to D$$

eval :
$$D \times \mathbb{N} \times \mathsf{State} \rightharpoonup \mathbb{B}$$
.

**Semantic function eval is provided to unify verification

Circuit synthesis

Bexp $B ::= 0 | 1 | i | \neg B | B_1 \oplus B_2 | B_1 \wedge B_2$

To be reversible compiled expression must have the form $i \oplus B$

A.K.A. garbage collection

In the 4-bit adder example, after the assignment

```
carry_2 \leftarrow (a.[1] \land (b.[1] \oplus carry_1)) \oplus (b.[1] \land carry_1)
```

the location of carry₁ is no longer in use, so we can reuse it for carry₃

Problem: we can't overwrite carry₁ with the "0" state

Solution: if carry₁ is in the state B, carry₁ $\oplus B = 0$ \Rightarrow location i is associated with an expression $\kappa(i)$ such that $i \oplus \kappa(i) = 0$

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow c_{1} \oplus \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \oplus c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow c_{2} \oplus \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

I	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2			
3			
4			
5			
6			

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow \ c_{1} \ \oplus \ \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \ \oplus \ c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow \ c_{2} \ \oplus \ \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

- 1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3			
4			
5			
6			

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow c_{1} \oplus \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \oplus c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow c_{2} \oplus \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

I	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0
4			
5			
6			

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow \ c_{1} \ \oplus \ \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \ \oplus \ c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow \ c_{2} \ \oplus \ \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0
4	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	0
5			
6			

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow \ c_{1} \ \oplus \ \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \ \oplus \ c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow \ c_{2} \ \oplus \ \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(c_1)$
1	0	0	0
2	$a_0 \wedge b_0$	0	0
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0
4	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	0
5	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	$(a_2 \wedge (b_2 \oplus c_2)) \oplus (b_2 \wedge c_2)$
6			

Eager Cleanup

```
\begin{array}{l} ^{1} \ c_{1} \leftarrow a.[0] \ \land \ b.[0] \\ ^{2} \ c_{2} \leftarrow (a.[1] \ \land \ (b.[1] \ \oplus \ c_{1})) \ \oplus \ (b.[1] \ \land \ c_{1}) \\ ^{3} \ clean \ c_{1} \ (* \ c_{1} \leftarrow \ c_{1} \oplus \kappa(c_{1}) \ *) \\ ^{4} \ c_{3} \leftarrow (a.[2] \ \land \ (b.[2] \oplus \ c_{2})) \ \oplus \ (b.[2] \ \land \ c_{2}) \\ ^{5} \ clean \ c_{2} \ (* \ c_{2} \leftarrow \ c_{2} \oplus \kappa(c_{2}) \ *) \\ ^{6} \end{array}
```

1	$\kappa(c_1)$	$\kappa(c_2)$	$\kappa(\mathtt{c}_1)$		
1	0	0	0		
2	$a_0 \wedge b_0$	0	0		
3	$a_0 \wedge b_0$	$(a_1 \wedge (b_1 \oplus c_1)) \oplus (b_1 \wedge c_1)$	0		
4	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	0		
5	0	$(a_1 \wedge (b_1 \oplus (a_0 \wedge b_0))) \oplus (b_1 \wedge (a_0 \wedge b_0))$	$(a_2 \wedge (b_2 \oplus c_2)) \oplus (b_2 \wedge c_2)$		
6	0	0	???		

Formal verification of $\mathrm{ReVer}\mathrm{C}^1$ carried out in F^\star

- \sim 2000 lines of code
- \sim 2200 lines of proof code, written in 1"person month"

Main theorems:

- Circuit synthesis produces correct output
- Circuit synthesis cleans all intermediate ancillas
- Each abstract machine compiler preserves the semantics
- All optimizations correct, etc.

Matthew Amy (IQC) Verification Nov. 16 33 / 48

Verifying Bennett

The Bennett trick:

Works because the middle gate does not affect bits used in U_f

Verifying Bennett

A generalized Bennett method

Given a circuit C and set of bits A, we can uncompute C on \overline{A} if no bits of A are used as controls in C

Verifying Bennett

```
val bennett : C:circuit -> copy:circuit -> st:state ->
  Lemma (requires (wfCirc C /\ disjoint (uses C) (mods copy)))
        (ensures (agree_on st
                     (evalCirc (C@copy@(rev C)) st)
                     (uses C)))
let bennett C copy st =
  let st', st'' = evalCirc C st, evalCirc (C@copy) st in
    eval_mod st' copy;
    ctrls_sub_uses (rev C);
    evalCirc_state_swap (rev C) st' st'' (uses C);
    rev_inverse C st
val uncompute_mixed_inverse : C:circuit -> A:set int -> st:state ->
  Lemma (requires (wfCirc C /\ disjoint A (ctrls C)))
        (ensures (agree_on st
                     (evalCirc (rev (uncompute C A)) (evalCirc C st))
                     (complement A))
let uncompute_mixed_inverse C A st =
  uncompute_agree C A st;
  uncompute_ctrls_subset C A;
  evalCirc_state_swap (rev (uncompute C A))
                      (evalCirc C st)
                      (evalCirc (uncompute C A) st)
                      (complement A);
  rev_inverse (uncompute C A) st
```

Nov. 16

38 / 48

```
(* "Circuit" interpretation preserves semantics *)
type valid_circ_state (cs:circState) (init:state) =
  (forall 1 1'. not (1 = 1') ==>
    not (lookup cs.subs l = lookup cs.subs l')) //
 disjoint (vals cs.subs) (elts cs.ah) /\
 zeroHeap init cs.ah /\
 zeroHeap (evalCirc cs.gates init) cs.ah /
  (forall bit. Set.mem bit (vals cs.subs) ==>
    (lookup cs.zero bit = true ==>
     lookup (evalCirc cs.gates init) bit = false))
type equiv_state (cs:circState) (bs:boolState) (init:state) =
 cs.top = forall i. circEval cs init i = boolEval bs init i
val assign_pres_equiv : cs:circState -> bs:boolState -> l:int ->
                        bexp:boolExp -> init:state ->
 Lemma (requires (valid_circ_state cs init /\ equiv_state cs bs init
        (ensures (valid_circ_state (circAssign cs l bexp) init /\
                   equiv_state (circAssign cs l bexp)
                           (boolAssign bs 1 bexp) init))
```

```
(* "Eager cleanup" interpretation preserves semantics *)
type valid_GC_state (cs:circGCState) (init:state) =
  (forall 1 1'. not (1 = 1') ==>
    not (lookup cs.symtab l = lookup cs.symtab l')) /\
  (disjoint (vals cs.symtab) (elts cs.ah)) /\
  (zeroHeap init cs.ah) /\
  (zeroHeap (evalCirc cs.gates init) cs.ah) /\
  (forall bit. Set.mem bit (vals cs.symtab) ==>
    (disjoint (vars (lookup cs.cvals bit)) (elts cs.ah))) /
  (forall bit. Set.mem bit (vals cs.symtab) ==>
    (b2t(lookup cs.isanc bit) ==> lookup init bit = false)) /\
  (forall bit. Set.mem bit (vals cs.symtab) ==>
    (evalBexp (BXor (BVar bit, (lookup cs.cvals bit)))
              (evalCirc cs.gates init) = lookup init bit))
type equiv_state (cs:circGCState) (bs:boolState) (init:state) =
  cs.top = forall i. circGCEval cs init i = boolEval bs init i
val assign_pres_equiv : cs:circGCState -> bs:boolState -> l:int ->
                        bexp:boolExp -> init:state ->
  Lemma (requires (valid_GC_state cs init /\ equiv_state cs bs init))
        (ensures (valid_GC_state (circGCAssign cs l bexp) init /\
                   equiv_state (circGCAssign cs 1 bexp)
                           (boolAssign bs 1 bexp) init))
```

Experiments

Bit counts with eager cleanup \sim to state-of-the-art compiler

Benchmark	Revs (eager)			ReVerC (eager)		
	bits	gates	Toffolis	bits	gates	Toffolis
carryRippleAdd 32	129	467	124	113	361	90
carryRippleAdd 64	257	947	252	225	745	186
mult 32	128	6016	4032	128	6016	4032
mult 64	256	24320	16256	256	24320	16256
carryLookahead 32	109	1036	344	146	576	146
carryLookahead 64	271	3274	1130	376	1649	428
modAdd 32	65	188	62	65	188	62
modAdd 64	129	380	126	129	380	126
cucarroAdder 32	65	98	32	65	98	32
cucarroAdder 64	129	194	64	129	194	64
ma4	17	24	8	17	24	8
SHA-2 round	353	2276	754	449	1796	594
MD5	7905	82624	27968	4769	70912	27520

Matthew Amy (IQC) Verification Nov. 16 41 / 48

Towards functional verification

Given a circuit C, can we verify that C implements a unitary matrix U? What about an optimized circuit C'?

The reversible case

 Classical CAD techniques such as miters & BDDs or SAT solvers applicable here

- \bullet BDD-based verification in ReVerC starts thrashing at \sim 75 bits with 8 Gb memory
- May be able to go further with functional coverage techniques

The quantum case

- Decision diagram-based techniques applied in the past (QuIDD)
- Limited by size of unitaries

Sum-over-paths

A space-efficient, natural mathematical description of unitaries

$$R_{z}(\theta) : |x\rangle \mapsto e^{2\pi i \theta x} |x\rangle$$

$$H : |x\rangle \mapsto \frac{1}{\sqrt{2}} \sum_{y \in \{0,1\}} \omega^{4xy} |y\rangle$$

$$\text{Toffoli}_{n} : |x_{1}x_{2} \cdots x_{n}\rangle \mapsto |x_{1}x_{2} \cdots (x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n})\rangle$$

$$\text{Adder}_{n} : |\mathbf{x}\rangle |\mathbf{y}\rangle |0\rangle \mapsto |\mathbf{x}\rangle |\mathbf{y}\rangle |\mathbf{x} + \mathbf{y}\rangle$$

$$\text{QFT}_{n} : |\mathbf{x}\rangle \mapsto \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{y}=0}^{2^{n}-1} e^{2\pi i \mathbf{x} \mathbf{y}/2^{n}} |\mathbf{y}\rangle$$

In general:

$$U: |\mathbf{x}\rangle \mapsto rac{1}{\sqrt{2}^k} \sum_{\mathbf{y} \in \{0,1\}^k} e^{2\pi i p(\mathbf{x},\mathbf{y})} |f(\mathbf{x},\mathbf{y})\rangle$$

** Efficiently composable & computable from a circuit representation!

Matthew Amy (IQC) Verification Nov. 16 43 / 48

An equivalence checking methodology

Basic fact:

$$U = I \iff H^{\otimes n}UH^{\otimes n}|0\rangle = |0\rangle$$

To check equivalence of a circuit C w.r.t. a circuit or specification C',

- lacktriangledown Compute sum-over-paths representations U_C and $U_{C'}$
- ② Construct quantum miter $U = H^{\otimes n}U_C \circ U_{C'}^{\dagger}H^{\otimes n}$
- 3 If

$$U: |\mathbf{x}\rangle \mapsto \frac{1}{\sqrt{2}^k} \sum_{\mathbf{y} \in \{0,1\}^k} e^{2\pi i p(\mathbf{x},\mathbf{y})} |f(\mathbf{x},\mathbf{y})\rangle,$$

verify

$$\frac{1}{\sqrt{2}^k} \sum_{\mathbf{y} \in \{0,1\}^k, f(0,\mathbf{y}) = 0} e^{2\pi i p(0,\mathbf{y})} = 1$$

If $p \in \mathbb{Z}_2[\mathbf{x}, \mathbf{y}]$, then step 3 reduces to #SAT. Moreover, if $\deg(p) \le 2$, step 3 is efficiently computable (Montanaro, arXiv:1607.08473)

Symbolic reductions

Can we do better for other polynomials?

Recall: for Clifford+T, $p \in \mathbb{Z}_8[\mathbf{x}, \mathbf{y}]$

$$\frac{1}{\sqrt{2}^{k+1}} \sum_{\substack{y \in \{0,1\}^k \\ y' \in \{0,1\}}} \omega^{4y'q(x,y)+r(x,y)} |f(x,y)\rangle = \frac{1}{\sqrt{2}^{k-1}} \sum_{\substack{y \in \{0,1\}^k \\ q(x,y)=0}} \omega^{r(x,y)} |f(x,y)\rangle \tag{1}$$

$$\frac{1}{\sqrt{2}^{k+1}} \sum_{\substack{y \in \{0,1\}^k \\ y' \in \{0,1\}}} \omega^{2y'+4y'q(x,y)+r(x,y)} |f(x,y)\rangle = \frac{1}{\sqrt{2}^k} \sum_{y \in \{0,1\}^k} \omega^{1+6q(x,y)+r(x,y)} |f(x,y)\rangle \quad (2)$$

Using just relation (1), possible to verify a number of optimized arithmetic operators on 32-bit registers against specifications in seconds

Matthew Amy (IQC) Verification Nov. 16 45 / 48

Conclusion

- \bullet Formalized an irreversible language ${\rm Revs}$
- Designed a new eager cleaning method based on cleanup expressions
- ullet Implemented & formally verified a compiler (REVERC) in F*

Take aways

- Proving theorems about real code is not unreasonably difficult
- Design code in such a way to minimize the scope of difficult logic

Matthew Amy (IQC) Verification Nov. 16 46 / 48

Going forward

Formally verify quantum circuit compilers

- Verifying library function implementations
- Verifying optimization

Develop methods for

• Functional coverage?

Thank you!

Questions?