

Webscraping für die Metadatengewinnung

Das DFG-Projekt Smart Harvesting II

Mandy Neumann, Technische Hochschule Köln (University of Applied Sciences), Cologne, Germany Technology

Arts Sciences

TH Köln

Das Projektteam

GESIS

Brigitte Mathiak

Nadine Dulisch

dblp

Michael Ley

Christopher Michels

TH Köln

Philipp Schaer

Mandy Neumann

GESIS

- Leibniz-Institut für Sozialwissenschaften
- Größte Infrastruktureinrichtung für die Sozialwissenschaften in Europa
- Zusammenschluss des
 - Informationszentrums Sozialwissenschaften,
 - des Zentralarchivs für empirische Sozialforschung und
 - des Zentrums für Umfragen, Methoden und Analysen.
- Use Case für Harvesting
 - 46.000 Volltexte in SSOAR
 - Akquise neuer Volltexte (viele davon von kleineren Verlagen, aber auch Self-Archiving und Kooperationen mit großen Verlagen)

dblp - computer science bibliography

- "Die Personennormdatei für die Informatik"
- Offene Daten für Recherche und Forschung
- Flache (nicht inhaltliche) bibliografische Erschließung und Nachweis qualitativ hochwertiger Metadaten
 - > 4,1 Mio. Publikationen,
 - > 2 Mio. Autoren,
 - > 5.400 Konferenzbände und
 - > 1.500 Journale
- DOIs, ORCIDs, Google Scholar Profile, etc.

Technische Hochschule Köln

 Größte Hochschule für ang. Wissenschaften mit über 26.000 Studierenden

- Institut für Informationswissenschaft:
 - 3 BA-Studiengänge: Data and Information Science, Bibliothek und digitale Kommunikation, Online-Redaktion
 - 2 MA-Studiengänge: Library and Information Science, Markt- und Medienforschung
- Professur für Information Retrieval seit 07/2016 (P. Schaer):
 - Forschung: Web Information Extraction, Retrieval Evaluation, Living Labs, digitale Bibliotheken, Bias in Web Search Engines
 - Projektförderungen u.a. durch

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Was ist Web Harvesting?

"Web scraping, web harvesting, or web data extraction is data scraping used for extracting data from websites."

→ automatisch und gezielt

Grundproblem

Wir sind an Quellen interessiert, die

- nicht durch Schnittstellen, wie z.B. OAI-PMH, abbildbar sind, sowie daran
- die dazugehörigen Harvesting-Prozesse zu verbessern.

Beispiel:

Ein kleiner Verlag, ein Open Access-Journal oder eine Konferenz möchte die Metadaten teilen, aber verfügt nicht über das Know-How oder die Ressourcen um strukturierte Daten zu liefern.
 Unstrukturierte Quellen

Unstrukturierte Quellen
Harvester
Harvester
Literatur-Metadaten

Datenfluss in dblp

dblp vs. GESIS

Harvesting für dblp:

- 130 Wrapper decken etwa 90% der wichtigsten Verlage für dblp ab
- Wrapper basierten auf Java-Code und regulären Ausdrücken
- Große Probleme bei der Erweiterung und der Wartung

Harvesting für **GESIS**:

- Anpassung auf große Verlage für GESIS ist trivial (Springer, etc.)
- Die Anzahl kleiner Verlage ist in den Sozialwissenschaften signifikant höher als in der Informatik
- 34,4% der relevanten Publikationen (Artikel) verteilen sich auf mehr als 1.000 Zeitschriften (2001–2005)

Wie macht man das nun "Smart"?

"Smarte" Wrapper (dblp, TH):

- Schwerpunkt der ersten Projektphase, technisch, Java-basiert
- Seit Smart Harvesting II basierend auf OXPath
- Interactive Wrapper: Bezieht den Faktor Mensch mit ein

Datenqualität (GESIS):

- Autorendisambiguierung
- Plausibilitätsprüfung
- Entity Recognition
- Linked Open Data Infrastruktur

Monitoring (dblp, TH):

- Wie verwaltet man viele 1000 Quellen?
- Scheduling von Harvesting-Vorgängen

Wie macht man das nun "Smart"?

"Smarte" Wrapper (dblp, TH):

- Schwerpunkt der ersten Projektphase, technisch, Java-basiert
- Seit Smart Harvesting II basierend auf OXPath
- Interactive Wrapper: Bezieht den Faktor Mensch mit ein

Datenqualität (GESIS):

- Autorendisambiguierung
- Plausibilitätsprüfung
- Entity Recognition
- Linked Open Data Infrastruktur

Monitoring (dblp, TH):

- Wie verwaltet man viele 1000 Quellen?
- Scheduling von Harvesting-Vorgängen

Grundlage für OXPath - XPath

OXFORD JOURNALS	
THE COMPUTER JOURNAL	
ABOUT THIS JOURNAL CONTACT THIS JOURNAL SUBSCRIPTIONS	CURRENTISSUE ARCHIVE SEARCH
Oxford Journals > Science & Mathematics > Computer Journal > Volume 59 Issue 9	
Table of Contents	« Previous Next »
Volume 59 Issue 9 September 2016	This Issue September 2016 59 (9)
For checked items	
view abstracts download to citation manager Go Clear	THE COMPUTER
■ Section C	JOURNAL 2016
▲ ORIGINAL ARTICLES	-
Arambam Neelima and Kh Manglem Singh Perceptual Hash Function based on Scale-Invariant Feature Transform and Singular Valu Decomposition The Computer Journal (2016) 59 (9): 1275-1281 doi:10.1093/com/nl/bxx079 **Abstract** Full Text (HTML) **Full Text (PDF)	Gara Onton
Wei Ni Minimized Error Propagation Location Method Based on Error Estimation The Computer Journal (2016) 59 (9): 1282-1288 doi:10.1093/com/jnl/bxx081 **Abstract** **Full Text (HTML) **Full Text (PDF)	» Index By Author » Front Matter (PDF) » Table of Contents (PDF) » Back Matter (PDF) > Section C
D. Thenmozhi and Chandrabose Aravindan Paraphrase Identification by Using Clause-Based Similarity Features and Machine	> ORIGINAL ARTICLES
Translation Metrics The Computer Journal (2016) 59 (9): 1289-1302 doi:10.1093/comin/bxx083	Find articles in this issue containing these words:
» Abstract » Full Text (HTML) » Full Text (PDF)	90
Alok Kumar Singh Kushwaha and Rajeev Srivastava	Advance Access
Maritime Object Segmentation Using Dynamic Background Modeling and Shadow Suppression	
The Computer Journal (2016) 59 (9): 1303-1329 doi:10.1093/comjnl/bxx091	
» Abstract » Full Text (HTML) » Full Text (PDF)	

Grundlage für OXPath - XPath

THE COMPUTER JOURNAL	Table 160	
BOUT THIS JOURNAL CONTACT THIS JOURNAL SUBSCRIPTIONS	CURRENT ISSUE	ARCHIVE SEARCH
Oxford Journals > Science & Mathematics > Computer Journal > Volume 59 Issue 9		
Table of Contents		« Previous Next »
/olume 59 Issue 9 September 2016	This Issu September	-
For checked items		
view abstracts download to citation manager Go Clear		MPUTER
Section C	JO 20	URNAL 16
ORIGINAL ARTICLES		
Perceptual Hash Function based on Scale-Invariant Feature Transform and Singular Note of the Computer Journal (2016) 59 (9): 1275-1281 doi:10.1093/comjn/lbw079 **Abstract** **Full Text** (HTML) **Full Text** (PDF)	9100	The manufacture of CEPS OXIOND Incident line
Wei Ni Minimized Error Propagation Location Method Based on Error Estimation The Computer Journal (2016) 59 (9): 1282-1288 doi:10.1093/comin/libw081	» Table of	y Author atter (PDF) Contents (PDF) atter (PDF)
» Abstract » Full Text (HTML) » Full Text (PDF)	> Section	С
D. Thenmozhi and Chandrabose Aravindan Paraphrase Identification by Using Clause-Based Similarity Features and Machine	> ORI	GINAL ARTICLES
Translation Metrics The Computer Journal (2016) 59 (9): 1289-1302 doi:10.1093/comjn/l/bxv083	Find article	s in this issue containing these
» Abstract » Full Text (HTML) » Full Text (PDF)	words:	GO
Alok Kumar Singh Kushwaha and Rajeev Srivastava Maritime Object Segmentation Using Dynamic Background Modeling and Shadow	Advance	Access
Suppression		
The Computer Journal (2016) 59 (9): 1303-1329 doi:10.1093/comjnl/bxx091	į	
» Abstract » Full Text (HTML) » Full Text (PDF)		

Grundlage für OXPath - XPath

```
THE COMPUTER JOURNAL

■ <h3 id="SectionCORIGINALARTICLES">

■ <span>

     <a class="toc-section-return" href="#content-block"/>
    ORIGINAL ARTICLES
   </span>
 </h3>
■ 
 ■ 
       <h4 class="cit-title-group">Perceptual Hash Function based on
      Scale-Invariant Feature Transform and Singular Value Decomposition
     □ <cite>
        <abbr class="site-title" title="The Computer
        Journal">The Computer Journal</abbr>

■ <span class="cit-print-date">
        <span class="cit-vol">59 </span>

■ <span class="cit-issue">

■ <span class="cit-ahead-of-print-date">

■ <span class="cit-doi">
      </cite>
    </div>

■ <div class="cit-extra">

■ 
  ■ 
  class="cit has-earlier-version from-current-issue toc-cit">
 <! class="cit has-earlier-version from-current-issue toc-cit">
 di class="cit has-earlier-version from-current-issue toc-cit">
 I class="cit has-earlier-version from-current-issue toc-cit">
 I class="cit has-earlier-version from-current-issue toc-cit">
  class="cit has-earlier-version from-current-issue toc-cit">
 class="cit has-earlier-version from-current-issue toc-cit">

■
```

XPath

- Abfragesprache für XML
- XML-Dokument als Baum von Knoten
- XPath-Ausdrücke als Lokalisierungspfade

Dateipfad-Beispiele

1C:\Program Files\Microsoft Office

2C:\Users\Jane Doe

XPath in a Nutshell

XML-Datei 1 <?xml version="1.0" encoding="UTF-8"?> 2 < results> 3 <record class="current"> <volume>30</volume> <issue>11</issue> <year>2016 <url>http://.../tadr20/30/11</url> </record> <record> <volume>30</volume> 10 11 <issue>10</issue> <year>2016 <url>http://.../tadr20/30/10</url> 14 </record> 15 <record> 16 <volume>30</volume> 17 <issue>9</issue> <year>2016</year> <url>http://.../tadr20/30/9</url>

20 </record> 21 </results>

XPath Ausdruck

1/results/record[@class="current"]

Ergebnismenge

Was fügt OXPath hinzu?

Aktionen:

- Ausfüllen von Formularfeldern
- Klicks auf Links, Buttons etc.

Extraktion:

- Extraktionsmarker an ausgewählten Knoten
- Funktionen zur Manipulation der zu extrahierenden Daten

Iteration:

Schleifen, z.B. für Paginierung

XPath	OXPath
Statisches Web	Dynamisches Web
Pures HTML	AJAX
Kompletter Inhalt	Content on demand

OXPath-Beispiel


```
XML-Ausgabe

1<?xml version="1.0" encoding="UTF-8"?>
2<results>
3 <title>Tim Furche, Georg Gottlob, [...]</title>
4 <title>Special Issue: Big Data [...]</title>
5 <!--[...]-->
6</results>
```

Toolbox rund um OXPath

Im Rahmen des Projektes wurde eine Reihe von Tools entwickelt um die Arbeit mit OXPath zu vereinfachen.

Atom-Modul

- Syntax-Hervorhebung für Schlüsselwörter
- Für verbesserte Fehlererkennung und Lesbarkeit
- Soll Einstiegshürden mindern

Docker-Container

- Ursprüngliches OXPath nur unter Linux
- Durch Docker auch unter Windows/Mac
- Alle Abhängigkeiten in Container erfüllt

OXPath – The Missing Manual

- Unterstützt durch Teile des ursprünglichen Entwicklungsteams von OXPath aus Oxford
- Enthält:
 - eine Zusammenfassung zu XPath
 - Einrichtungs- und Nutzungsanweisungen für OXPath
 - Liste aller verfügbaren Action-Schlüsselwörter
 - Liste aller Funktionen für Extraktion und DOM-Navigation
 - Einstiegsbeispiele aus der bibliographischen Domäne

http://www.oxpath.org/papers/2017-IntroductionToOxpath-ed1.pdf

Monitoring

Harvesting "en gros" denken!

- Im Zweifelsfalle werden viele 100 Quellen und dazugehörige Wrapper verwendet.
- Im OAI-Umfeld gibt es Tools wie z.B. REPOX.

Allerdings:

- Jede Nacht jede Quelle anfragen ist sinnlos, da viele Quellen (z.B. Konferenzen) nur jährlich und unregelmäßig erscheinen.
- Auch die Wartung der Wrapper sollte nur stattfinden, wenn nötig.

Gebraucht werden daher "smarte" Monitoring-Ansätze.

Ja	nuar						Feb	orua	r					Mä	rz						Ар	ril					
М	D	M	D	F	S	S	М	D	М	D	F	S	S	M	D	М	D	F	S	S	M	D	M	D	F	S	S
26	27	28	29		31	1		31	1	2	3	4	5	27	28	1	2	3	4	5	27	28	29		31	1	2
2	3	4	5	6	7	8	6	7	8	9	10	11	12	6	7	8	9	10	11	12	3	4	5	6	7	8	9
9	10	11	12	13	14	15	13	14	15	16	17	18	19	13	14	15	16	17	18	19	10	11	12	13	14	15	16
16	17	18	19	20	21	22	20	21	22	23	24	25	26	20	21	22	23	24	25	26	17	18	19	20	21	22	23
23	24	25	26	27	28	29	27	28	1	2	3	4	5	27	28	29	30	31	1	2	24	25	26	27	28	29	30
30	31	1	2	3	4	5	6	7	8	9	10	11	12	3	4	5	6	7	8	9	1	2	3	4	5	6	7
Ma	ai						Jur	ni						Jul	i						Au	gust					
M	D	M	D	F	S	S	М	D	М	D	F	S	S	M	D	M	D	F	S	S	M	D	M	D	F	S	S
1	2	3		5	6	7	29		31	1	2	3	4	26	27	28	29		1	2	31	1	2	3	4	5	6
8	9	1	11	2	13	14	5	6	7	8	9	10	11	3	4	5	6	7	8	9	7	8	9	10	11	12	13
15	16	17		19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20
	I/_	£		-	_		19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27
	Ko	MI	er	er	1Z		26	27	28	29	30	1	2	24	25	26	27	28	29	30	28	29	30	31	1	2	3
	ir	\) (15			3	4	5	6	7	8	9	31	1	2	3	4	5	6	4	5	6	7	8	9	10
	11	1 4	-0	ı	l																						
Se	pten	nber					Okt	tobe	r					No	vem	ber					De	zem	ber				
M	D	M	D	F	S	S	Μ	D	Μ	D	F	S	S	M	D	M	D	F	S	S	M	D	M	D	F	S	S
28	29		31	1	2	3	25	26	27	28	29		1		31	1	2	3	4	5	27	28	29		1	2	3
4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12	4	5	6	7	8	9	10
11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19	11	12	13	14	15	16	17
18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26	18	19	20	21	22	23	24
25	26	27	20	20	20	4	22	24	25	26	27	20	20	27	20	20	20	4	2	0	25	26	27	20	20	20	21

Ranking von Harvesting-Kandidaten

Experiment in dblp: Wie können wir alle Konferenzen so ranken, dass die für Neuaufnahme dringlichsten ganz oben stehen?

Datensets:

- Historische dblp Daten
 - Datum der Aufnahme einer Konferenz über Jahre hinweg
 - Ort einer Konferenz
 - Autorenschaften
- Microsoft Academic Graph
 - Zitationsraten
- CORE Konferenz-Ratings

Historische Daten zu Konferenzreihen

stream *	I	мо	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002
conf/3dgis		08 131												-	2.6				
conf/3dic	1	118			9.9	8.2	11.2	9.3		8.2	9.6	10.4							
conf/3dica	1	02 17			8.0	8.6	8.7	8.5	8.4	6.4	6.6		5.2		5.0		8.1		5.5
conf/3dim	1	10		17.3	22.7	16.5	24.6	20.0	18.9	15.3				11.7		14.0		14.5	
conf/3dor	1	05 2		18.1	29.0	21.2	22.8	25.5	21.9	20.9	35.9	18.8	13.4						
conf/3dph		12 91										14.0							
conf/3dpvt	2	0649							18.9?	<u>15.3</u> ?					16.2		15.2		15.3
conf/3dtv	1	07		15.1	14.0	15.1	18.0	8.5	17.9										
conf/3dui	1	034		12.9	14.7	15.1	16.5	16.1	14.5	10.3	11.4	14.4	9.9	12.0	13.3				
conf/3pgcic	1	118			10.3	17.5	9.3	18.2	11.5	16.4	15.2								
conf/5gu																			
conf/a2cwic		09 82									1.7								
conf/a4cloud		06 37					4.5												
conf/aaa-idea	3	06 109													10.2	7.1			
conf/aaai	1	02	22.3	22.6	25.5	22.6	25.6	20.0	22.9	19.0	21.5		20.1	20.0	17.6	17.0	<u>15.0</u>		12.9
conf/aaaifs	1	11 56							5.8	7.6	17.1	5.0	3.5						
conf/aaaiss	1	03 52						5.5	4.3	3.5	6.3	12.0	10.5	6.5	6.4	7.7			
conf/aaate	2	09		4.4		4.0													
conf/aacc		10 153															2.8		
conf/aadebug	2	09 130														7.2		3.4?	
conf/aadios		06 61							2.8										
conf/aaecc	2	02 89										7.7		8.0	9.9			7.2	
conf/aafd	2	49							2.2		4.6		3.5		6.3				
conf/aaim	1	06 13			19.2		13.9	16.3	17.4	13.8	13.5	17.4	25.0	13.7	13.0	9.6			
conf/aaip		09 94										4.5							
conf/aamas		181																	5.7
conf/ab	1	07 108											9.5	11.1					
conf/abials	5	06 61											6.7					6.3?	

I = interval, M = month, O = overdue

Merkmale für das Ranking

Faktoren zur Bestimmung der "Dringlichkeit":

- $\Delta(c)$ Erwartetes nächstes Auftreten
- w_{delay} Maß für "Überfälligkeit"
- w_r Rating der Konferenz
- w_i Internationalität der Konferenzen
- w_d Wahrscheinlichkeit der Diskontinuität
- w_c Zitationshäufigkeit
- w_{prm} Autorenprominenz basierend auf Ko-Autorenschaften

c	$\Delta(c)$	<i>w</i> delay	w_r	w_i	w_d	w_{cit}	w_{prm}
jcdl	3	4	1.88	1.192	0.250	1.029	1.312
tpdl	0	4	1.63	1.577	0.250	1.024	1.352
icadl	0	4	1.75	1.385	0.250	1.009	1.347
dl	146	1	1.00	1.039	0.004	1.091	1.445

Ranking von Harvesting-Kandidaten

Vergleich der Baseline (Ranking nur nach Delay) mit jeweils Delay + einem weiteren Gewichtungsfaktor. Pseudo-Relevanz basierend auf tatsächlichen Aufnahmedaten aus 2016.

system	ndcg-10	ndcg-20	ndcg-100	ndcg-200
baseline	0.530	0.545	0.505	0.439
conf. rating	0.739**	0.716**	0.645***	0.597***
internationality	0.616	0.632	0.608***	0.575***
discontinued	0.713**	0.686***	0.643***	0.594***
citations	0.588	0.575	0.554***	0.548***
prominence	0.681**	0.662**	0.608***	0.577***

Ergebnisse in Neumann et al. (2018) - JCDL 2018

https://doi.org/10.1145/3197026.3197069

Zukünftige Projektarbeiten

"Smarte" Wrapper (dblp, TH):

 Interactive Wrapper: Entwicklung eines GUI-basierten Tools zum Web-Harvesting von Metadaten, abgestimmt auf Bedarfe der Ziel-Nutzergruppe

Monitoring (dblp, TH):

- Scheduling von Harvesting-Vorgängen: Weiterführung der Forschung
- Überführung in eine Anwendung

Vielen Dank! Gibt es Fragen?

Einstieg zu OXPath:

- Hands-on-Lab digital "Smart Harvesting mit OXPath"
- 15.6.2018 @ Bibliothekartag 2018

OXPath-Tutorial

 http://www.oxpath.org/papers/2017-IntroductionToOxpath-ed1.pdf

Try it out

- OXPath als Docker-Container <u>https://github.com/irgroup/oxpath_docker</u>
- Syntax-Modul für Atom <u>https://atom.io/packages/language-oxpath</u>