Colle 16A: Matrices et applications linéaires

Question de cours :

Définition de deux matrices équivalentes et preuve du fait que c'est une relation d'équivalence.

Exercice 1:

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$M = \begin{pmatrix} 1 & 1 & -1 \\ -3 & -3 & 3 \\ -2 & -2 & 2 \end{pmatrix}$$

Donner une base de Ker(f) et de Im(f). En déduire que pour tout $n \ge 2, M^n = 0$.

Exercice 2:

Soit H un hyperplan de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ tel que $H = \{M \in \mathcal{M}_n(\mathbb{R}), \operatorname{tr}(AM) = 0\}.$
- 2. En déduire que H contient une matrice inversible.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 16B: Matrices et applications linéaires

Question de cours :

Relations de changements de bases pour un vecteur, une application linéaire et un endomorphisme.

Exercice 1:

Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par :

$$a_{ij} = \begin{cases} \binom{j-1}{i-1} & \text{si } i \leqslant j \\ 0 & \text{sinon} \end{cases}$$

- 1. Interpéter A comme la matrice d'un endomorphisme de $\mathbb{R}_n[X]$.
- 2. En déduire que A est inversible et donner son inverse.

Exercice 2:

1. Soit $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ deux à deux distincts et $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Déterminer l'image et le noyau de l'endomorphisme :

$$\varphi: \left| \begin{array}{ccc} \mathcal{M}_n(\mathbb{C}) & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ M & \longmapsto & AM - MA \end{array} \right|$$

- 2. Soit $M \in \mathcal{M}_n(\mathbb{C})$ de trace nulle.
 - (a) Montrer que M est semblable à une matrice de diagonale nulle.
 - (b) Montrer qu'il existe $A, B \in \mathcal{M}_n(\mathbb{C})$ tel que M = AB BA.

Colle 16C: Matrices et applications linéaires

Question de cours :

Une matrice triangulaire supérieure T est inversible ssi tous ses éléments diagonaux sont non nuls. En cas d'inversibilité, la matrice inverse est également triangulaire supérieure avec sur la diagonale, l'inverse des éléments diagonaux de T.

Exercice 1:

Soit P le plan d'équation z=x-y dans \mathbb{R}^3 et D la droite d'équation x=-y=z. Trouver la matrice de la projection p de \mathbb{R}^3 sur P parallèlement à D.

Exercice 2:

Dans tout cet exercice, on travaille dans l'espace vectoriel $E = \mathbb{R}_3[X]$.

- 1. Montrer que $\mathcal{B} = ((X-1)^3, (X-1)^2(X+1), (X-1)(X+1)^2, (X+1)^3)$ est une base de E.
- 2. Déterminer M, la matrice de passage de la base canonique de E à \mathcal{B} .
- 3. Déterminer M^{-1} .
- 4. Retrouver ce résultat en utilisant l'endormorphisme de E qui transforme la base canonique en \mathcal{B} .