COL352 Lecture 16

Contents

1	Recap	1
2	Definitions	1
9	Content	•

1 Recap

Discussion about grammars, parse trees, yields, and context free languages.

2 Definitions

Definition 1

A (non-deterministic) pushdown automaton ((N)PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \Delta, q_0, A)$ where

- 1. Q finite nonempty set of states
- 2. Σ finite nonempty input alphabet
- 3. Γ finite stack alphabet
- 4. $q_0 \in Q$ initial state
- 5. A set of accepting states
- 6. $\Delta \subseteq Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \times Q \times \Gamma_{\epsilon}$, where X_{ϵ} is defined as $X \cup \{\epsilon\}$

Note that in an NFA, $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$.

Informally, a string is accepted if \exists a run which reads the entire string and does what ??????

Definition 2

Let $P = (Q, \Sigma, \Gamma, \Delta, q_0, A)$ be a PDA. An instantaneous description (i.d.) of P is a tuple (q, x, α) where $q \in Q, x \in \Sigma^*, \alpha \in \Gamma^*$. (The set of instantaneous descriptions is $Q \times \Sigma^* \times \Gamma^*$).

Informally, it consists of the current state, the string left to be read, and the description of the current stack.

Definition 3

Let $P = (Q, \Sigma, \Gamma, \Delta, q_0, A)$ be a PDA. The relation \vdash_P (read as "changes to") is defined on the set of i.d.s as follows:

If $(q, a, B, q', B') \in \Delta$, then $(q, ax, B\alpha) \vdash_P (q', x, B'\alpha)$, and no other pairs of i.d.s are related.

In other words:

$$(q, y, \beta) \vdash_P (q', y', \beta') \iff \exists a \in \Sigma_{\epsilon}, B \in \Gamma_{\epsilon}, \alpha \in \Gamma^*, B' \in \Gamma_{\epsilon} \text{ such that } y = ay', \beta = B\alpha, \beta' = B'\alpha, (q, a, B, q', B') \in \Delta$$

Definition 4

 \vdash_{P}^{*} is defined as the reflexive transitive closure of \vdash (read as "changes to in finitely many steps").

Definition 5

 $x \in \Sigma^*$ is said to be accepted by PDA $P = (Q, \Sigma^*, \Gamma, \Delta, q_0, A)$ iff

$$(q_0, x, \epsilon) \vdash_P^* (q, \epsilon, \alpha)$$

for some $q \in A$ and some $\alpha \in \Gamma^*$.

3 Content

We begin with an informal discussion first.

Note that we look at two kinds of objects - languages and recognizers.

Language Class	Recognizer	Generator
Regular	DFA/NFA	Regular expressions
Context-free	Non deterministic pushdown automaton	Grammar

Note that unlike DFA/NFAs (which have the same power), NPDAs are more powerful that DPDAs.

An NFA looks like a tape where we have a read head pointing to a location in the string, with some state associated to the read head, and transitions can either go to the next position (in the string) or remain at the same position.

A PDA is similar to this, except that it has a stack as well.

(q, a, B, q', B') is a transition in a PDA.

- 1. q is the current state.
- $2. \ a$ is the current input.
- 3. B is the top of the stack that can be popped (ϵ if not popping).
- 4. q' is the next state.
- 5. B' is the top of the stack after pushing B' on the stack (ϵ if we don't push anything on the stack).

Claim 0.1

A PDA can recognize $\{a^nb^n \mid n \in \mathbb{N} \cup \{0\}\}$.

Intuition: try to think in terms of the stack. When is it empty? Do we need it to be empty? See definitions section for the formal definition.

Example 1

 $\Sigma = \{0, 1\}, L$ is the set of all palindromes. $\Gamma = \{0, 1, \bot\}, Q = \{q_0, q_1, q_2, q_3\}$. Define in the usual sense (see lecture).

Claim 0.2

$$x \in L \iff (q_0, x, \epsilon) \vdash_P^* (q_3, \epsilon, \epsilon).$$

Proof. Exercise.