R - Data visualisatie

J.J. van Nijnatten

Contents

Het doel van datavisualisatie	2
Wat wil je weergeven?	2
Hoe kies je de juiste manier van weergeven? (exp. design)	2
Essentiele onderdelen van datavisualisatie	2
gemiddelde	2
spreiding	2
legenda	2
titel	2
Introductie GGplot2 package	2
Installatie	2
Opbouw van figuren	2
Voorbeelden	5
Data-inspectie	2
Normaliteit	4
T-test	2
Correlatie	4
Regressie	4
One-way independent samples ANOVA	4
Factorial independent samples ANOVA	
One-way repeated measures ANOVA	4
Factorial repeated measures ANOVA	Ę

 $contact: \ J.J. van Nijnatten @uva.nl$

 $broncode:\ https://github.com/jonasvannijnatten/R_Data_Visualization$

Het doel van datavisualisatie

Wat wil je weergeven?

Hoe kies je de juiste manier van weergeven? (exp. design)

Essentiele onderdelen van datavisualisatie

gemiddelde

spreiding

legenda

titel

Introductie GGplot2 package

Installatie

Het package downloaden & installeren:

```
install.packages(pkgs=c("ggplot2","Hmisc"), repos = "https://cloud.r-project.org")
```

Het package library activeren:

```
library(package="Hmisc")
library(package="ggplot2")
```

Opbouw van figuren

Voorbeelden

Data-inspectie

Normaliteit

T-test

```
, varying = c("group1", "group2")
, v.names = "score"
, times = c('pre', 'post')
)

# plot means and standard deviations
ggplot(data.long, aes(x=time, y=score, fill=time)) +
  geom_bar ( stat = "summary", fun.y = "mean") +
  geom_errorbar( stat = "summary", fun.data = "mean_sdl", fun.args = 1, width = 0.3) +
  geom_jitter ( width = .05 )
```


To plot standard errors instead of standard deviations replace "mean_sdl" with "mean_se", and it is common use to plot 2 (or 1.96) times the standard error to get an 95% confidence interval, so replace "fun.arg = 1" with "fun.arg = 2".

```
ggplot(data.long, aes(x=time, y=score, fill=time) ) +
  geom_bar ( stat = "summary", fun.y = "mean" ) +
  geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3 ) +
  geom_jitter ( width = .05 )
```


Correlatie

Regressie

One-way independent samples ANOVA

Factorial independent samples ANOVA

One-way repeated measures ANOVA

Generate dataset

```
geom_line
             ( stat = "summary", fun.y = "mean", linetype= "dashed", aes(group=subj) ) +
             ( stat = "summary", fun.y = "mean", colour = "black", linetype= "solid", size=2 ) +
geom_line
             ( stat = "summary", fun.y = "mean", colour = "black", size=2 ) +
geom_point
geom_errorbar( stat = "summary", fun.data = "mean_se", fun.args = 2, width = 0.3, size=1 )
                                                                                     3
 20 -
                                                                                     9
                                                                                    10
                                                                                     11
                                                                                     12
                                                                                     13
 12 -
                                                                                     14
                                                                                     15
                                                                                     16
                                                                                     17
                                                                                     18
  8 -
                                                               Ċ
                                        В
                                                                                     19
                                      cond
                                                                                    20
```

Factorial repeated measures ANOVA