

# ALGEBRA Chapter 2





LEYES DE EXPONENTES PARA LA RADICACIÓN



# HELICO MOTIVATING





# ¿Puedes descifrar el Nombre encriptado?

Del primer número que obtengas, debes escribir la letra inicial. Del segundo, escribir la segunda letra y así sucesivamente



Rpta. TITO

# **HELICO THEORY**

**CHAPTHER 2** 

**Session I** 







# 1.- DEFINICIÓN

$$n_{\sqrt{a}=r} \Leftrightarrow r^{n}=a$$

Cuando n es par, a debe ser positivo.

Donde:

n:índice (n ∈ Z; n≥2)

a:radicando

r:raíz

**Ejemplos** 
$$\checkmark \sqrt[3]{125} = 5$$

$$\sqrt[3]{-27} = -3$$

$$\checkmark \sqrt[4]{-16} = \nexists \mathbb{R}$$

NOTA:Para  $n \in \mathbb{Z}^+ \land n > 2$ 

$$\sqrt[n]{0} = 0$$

$$\sqrt[n]{1} = 1$$

### Observación:



### 2.- EXPONENTE FRACCIONARIO:

Si las raíces existen en R.

$$a^{\frac{m}{n}} = {\binom{n}{\sqrt{a}}}^{m}$$

; 
$$m,n \in \mathbb{Z} \wedge n \geq 2$$

$$\checkmark 27^{\frac{1}{3}} = \sqrt[3]{27} = 3$$

$$\sqrt{16^{\frac{3}{4}}} = \sqrt[4]{16}^3 = 2^3 = 8$$



# 3.- PROPIEDADES: Si las raíces existen en R.

### Raíz de una multiplicación

### Raíz de una División

$$n\sqrt{\frac{x^m}{y^s}} = \frac{n\sqrt{x^m}}{n\sqrt{y^s}}$$

### Raíz de una Raíz

$$\int_{0}^{\infty} t w_{\sqrt{X}} = s \cdot t \cdot w_{\sqrt{X}}$$

# **Ejemplos**

$$> \sqrt[5]{32 \cdot x^{15}} = \sqrt[5]{32} \cdot \sqrt[5]{x^{15}} = 2 x^3$$

# HELICO PRACTICE

**CHAPTHER 2** 

**Session I** 





1. Reduzca 
$$A = \sqrt[3]{-27} + \sqrt[4]{16} + \sqrt[7]{128}$$

# RESOLUCIÓN

$$A = -3 + 2 + 2$$

$$A = 1$$



2. Efectúe: 
$$E = (\frac{1}{4})^{1/2} + (\frac{1}{27})^{1/3} + (\frac{1}{36})^{1/2}$$

$$E = \sqrt{\frac{1}{4}} + \sqrt{\frac{1}{27}} + \sqrt{\frac{1}{36}}$$

$$E = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = \frac{3+2+1}{6}$$

$$E = 1$$



# 3. Halle el equivalente de: $R = \int_{1}^{5} \frac{32x^{10}b^{20}}{x^5b^5}$

# RESOLUCIÓN

$$R=\sqrt[5]{32x^5b^{15}}$$

$$R = \sqrt[5]{32}.\sqrt[5]{x^5}.\sqrt[5]{b^{15}}$$

$$R=2xb^3$$

Rpta.: 
$$2xb^3$$



# 4. Calcule el valor de A-B, si:

$$A = \sqrt[3]{4x^7} \cdot \sqrt[3]{2x^2}$$
 ;  $x \neq 0$ 

$$B = \frac{\sqrt[5]{64x^{32}}}{\sqrt[5]{2x^{17}}}$$

# **RESOLUCIÓN**

$$A = \sqrt[3]{4.2 x^{7+2}} = \sqrt[3]{8x^9} = 2x^3$$

$$B = \int_{1}^{5} \frac{64}{2} x^{32-17} = \int_{1}^{5} \sqrt{32x^{15}} = 2x^3$$

Luego: A - B = 0

Rpta.:





5. Reduzca 
$$F = \sqrt[3]{\sqrt[4]{x^{23}}} \cdot \sqrt{\sqrt[12]{x}} ; x \neq 0$$

**RESOLUCIÓN**

$$F = \sqrt[3]{\sqrt[4]{x^{23}}} \cdot \sqrt[2]{12\sqrt{x^1}}$$

$$F = \sqrt[24]{x^{23}} \cdot \sqrt[24]{x^1} = \sqrt[24]{x^{23} \cdot x^1}$$

$$F = \sqrt[24]{x^{24}} = x$$

Rpta.:

6. Al reducir la expresión:  $E = 16^{1/4} + 4^{1/2} + 8^{1/3}$ el resultado indica la propina del alumno Jorge. ¿Cuánto recibe de propina Jorge?

$$E = \sqrt[4]{16} + \sqrt{4} + \sqrt[3]{8}$$

$$E = 2 + 2 + 2$$

$$E = 6$$

Rpta.: Jorge recibe 6 soles



# Reduzca

$$E = \sqrt[2]{\frac{2}{\sqrt{x}}} \cdot \sqrt[3]{\frac{2}{\sqrt{x}}} \cdot \sqrt[2]{\frac{2}{\sqrt{x}}} ; x \neq 0$$

si la diferencia del índice y exponente final indica la cantidad de propina que recibe Marco.

$$E = \sqrt[4]{x}$$
.  $\sqrt[6]{x}$ .  $\sqrt[8]{x}$ 

Donde: 
$$MCM(4;6;8)=24$$

$$E = \sqrt[6]{\frac{4}{\sqrt{x}}} \cdot \sqrt[4]{\frac{6}{\sqrt{x}}} \cdot \sqrt[3]{\frac{8}{\sqrt{x}}}$$

$$E = \sqrt[24]{x^6}$$
.  $\sqrt[24]{x^4}$ .  $\sqrt[24]{x^3} = \sqrt[24]{x^{6+4+3}}$ 

$$E = \sqrt[24]{x^{13}}$$

Rpta.: Marco recibe 11 soles