7 Appendix

7.1 Proof of Theorem 1

(1) An FA(&) recognizes the language defined by a regular expression with shuffle, where each alphabet symbol occurs at most once.

Proof. Let $res^{\leq 1}$ denote a regular expression with shuffle, where each alphabet symbol occurs at most once. For a regular expression r, if an FA(&) recognizes the language $\mathcal{L}(r)$, then, for the ith subexpression of the form $r_i = r_{i_1} \& r_{i_2} \& \cdots \& r_{i_k}$ $(i, k \in \mathbb{N}, k \geq 2)$ in r, there are start marker $\&_i$ and end marker $\&_i^+$ in an FA(&) for recognizing the strings derived by r_i . For each subexpression r_{i_j} $(1 \leq j \leq k)$ in r_i , there is a concurrent marker $||_{ij}$ in an FA(&) for recognizing the symbols or strings derived by r_{i_j} . Let the regular expression r be denoted by a $res^{\leq 1}$.

For strings recognition, an FA(&) recognizes a string by treating symbols in a string individually. A symbol y in a string $s \in \mathcal{L}(r)$ is recognized if and only if the current state (a set of nodes) p is reached such that $y \in p$. The end symbol \dashv is recognized if and only if the final state is reached. If y (resp. \dashv) is not consumed, then y (resp. \dashv) will be still read as the current symbol to be recognized.

Since the node in the node transition graph of an FA(&) is labelled by distinct symbols (including alphabet symbols), and the $res^{\leq 1}$ r where each alphabet symbol occurs at most once is a deterministic expression, every symbol in s can be uniquely matched in r, and for every symbol l in r, there must exist a state (a set of nodes) in an FA(&) including l. According to the transition function of an FA(&), for the FA(&) \mathcal{A} , every symbol in s can be recognized in a state in \mathcal{A} . When the last symbol of s was recognized, the end symbol \dashv is read as the current symbol, suppose the current state is q, q will finally transit to the state q_f such that \dashv is consumed. Therefore, $s \in \mathcal{L}(\mathcal{A})$. Then, $\mathcal{L}(r) \subseteq \mathcal{L}(\mathcal{A})$. The FA(&) recognizes the language defined by a $res^{\leq 1}$.

(2) For a regular expression r, an FA(&) recognizing the language $\mathcal{L}(r)$ has at most $\lceil \frac{|\Sigma|-1}{2} \rceil$ start markers (resp. end markers) and at most $|\Sigma|$ concurrent markers.

Proof. For a regular expression r, if an FA(&) recognizes the language $\mathcal{L}(r)$, r is a $res^{\leq 1}$. Then, for the ith subexpression of the form $r_i = r_{i_1} \& r_{i_2} \& \cdots \& r_{i_k}$ $(i, k \in \mathbb{N}, k \geq 2)$ in r, there are a start marker $\&_i$ and an end marker $\&_i^+$ in the FA(&) \mathcal{A} for recognizing the strings derived by r_i . For each subexpression r_{i_j} $(1 \leq j \leq k)$ in r_i , there is a concurrent marker $||_{ij}$ in the FA(&) \mathcal{A} for recognizing the symbols or strings derived by r_{i_j} .

For the $res^{\leq 1}$ r, the sum of the number of binary operators is at most $|\Sigma|-1$. Suppose that the number of the operators & is n_2 , the number of the other binary operators is n_2' . Then, there is $n_2 + n_2' = |\Sigma| - 1$. In worst case, for the syntax tree T of r, and each node v in T labelled by &, the parent node of v is labelled by other binary operator. Then, there is $n_2' = n_2$, the maximum number of the operator & is $\lceil \frac{|\Sigma|-1}{2} \rceil$.

For each node v in T labelled by &, since the parent node of v is labelled by other binary operator, the FA(&) \mathcal{A} has a corresponding start mark &_i and a corresponding end mark &⁺_i for the *i*th operator & in r. Thus, the FA(&) \mathcal{A} has at most $\lceil \frac{|\mathcal{D}|-1}{2} \rceil$ start markers (resp. end markers).

For each subexpression r_{i_j} in r_i , there is a concurrent marker $||_{ij}$ in the FA(&) \mathcal{A} for recognizing the symbols or strings derived by r_{i_j} . If the subexpression $r_{i_j} = a \in \mathcal{L}$, then the number of the concurrent markers is not over $|\mathcal{L}|$. Thus, the maximum number of the concurrent markers in the FA(&) \mathcal{A} is $|\mathcal{L}|$. The FA(&) \mathcal{A} has at most $|\mathcal{L}|$ concurrent markers.

7.2 Proof of Theorem 2

We have proven that an FA(&) recognizes the language defined by a regular expression with shuffle, where each alphabet symbol occurs at most once (See the proofs presented above).

(1) The uniform membership problem for FA(&)s is decidable in polynomial time.

Proof. An FA(&) recognizes a string by treating symbols in a string individually. A symbol y in a string s is recognized if and only if the current state p is reached such that $y \in p$. Let p_y denote the state (a set of nodes) p including symbol y. The next symbol of y in s is read if and only if y has been recognized at the state p_y . H is the node transition graph of an FA(&) A. The number of nodes in H(|H.V|) is not over $(2\lceil \frac{|\Sigma|-1}{2} \rceil + 2|\Sigma| + 2)$ ($< 3|\Sigma| + 2$) (including q_0 and q_f). A state is a set of nodes and does not include nodes &_i and &⁺_i $(i \in \mathbb{D}_{\Sigma})$ at the same time. Assume that the current read symbol is y and the current state is q:

- 1. q is a set: $|q| \ge 1$ and $\exists v \in \{||_{ij}\}_{i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma}} \cup \Sigma : v \in q \land y \in H. \succ (v)$. A state q $(q \notin \{q_0, q_f\})$ includes $\lceil \frac{|\Sigma|-1}{2} \rceil + 2|\Sigma|$ nodes at most. For FA(&), it takes $\mathcal{O}(|\Sigma|)$ time to search the node v, and it also takes $\mathcal{O}(H.V) = \mathcal{O}(|\Sigma|)$ time to decide whether $y \in H. \succ (v)$. If $y \in H. \succ (v)$, then the state $p_y = q \setminus \{v\} \cup \{y\}$ can be reached, y is recognized. Thus, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to decide whether y is recognized.
- 2. q is a set: $|q| \ge 1$ and $\exists \&_i \in q : y \in H.R(\&_i)$. For FA(&), it takes $\mathcal{O}(|\Sigma|)$ time to search the node $\&_i$ in state q, and it also takes $\mathcal{O}(|\Sigma|)$ time to decide whether $y \in H.R(\&_i)$. If $y \in H.R(\&_i)$, then the state q transits to the state $q' = q \setminus \{\&_i\} \cup H. \succ (\&_i)$, there is a node $||_{ij} \in H. \succ (\&_i), j \in \mathbb{P}_{\Sigma}$) in q' that is checked whether $y \in H. \succ (||_{ij})$. Case (1) will be considered. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to decide whether y is recognized.
- 3. q is a set: $|q| \ge 1$ and $\exists \&_i^+ \in q : y \in H.R(\&_i)$. It takes $\mathcal{O}(|\Sigma|)$ time to search the node $\&_i^+$ in state q, and it also takes $\mathcal{O}(|\Sigma|)$ time to decide whether $y \in H.R(\&_i)$. If $y \in H.R(\&_i)$, then the state including the node $\&_i^+$ will transit to the state including the node $\&_i$, case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to decide whether q is recognized.

4. $q = q_0$.

If $y \in H. \succ (q_0)$, then, for FA(&), it takes $\mathcal{O}(|\Sigma|)$ time to transit to the state $\{y\}$. Otherwise, a node &_i $(i \in \mathbb{D}_{\Sigma})$ is searched and then is decided whether $y \in H.R(\&_i)$. Then, it takes $\mathcal{O}(|\Sigma|^2)$ time for q to transit to the state $\{\&_i\}$. Case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to decide whether y is recognized.

For a symbol $y \in \Sigma_s$ and a current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to decide whether y is recognized. When the last symbol of s was recognized, the end symbol \dashv requires to be consumed, it takes $\mathcal{O}(|H.V|) = \mathcal{O}(|\Sigma|)$ time to decide whether q can transit to the final state q_f . For a deterministic FA(&), there is a unique non-terminal state p (resp. final state q_f) which is searched to check whether y can be recognized (i.e., check whether $y \in p$) (resp. \dashv can be consumed). It takes $\mathcal{O}(|s||\Sigma|^2)$ time to decide whether s can be recognized.

For a non-deterministic FA(&), since the final state q_f is unique, \dashv can be unambiguously recognized. However, for a symbol $y \in \Sigma_s$, there are at most |H.V| - 1 (excluding q_f) nodes in H which can transit to other nodes when y is read. Since a state in FA(&) is a set of nodes, there are at most |H.V| - 1 states which can be reached to check whether y can be recognized. I.e., there are $\mathcal{O}(|\Sigma|)$ states p which can be reached from the current state q to check whether y can be recognized (i.e., check whether $y \in p$). Additionally, it takes $\mathcal{O}(|H.E|)$ ($|H.E| < |H.V|^2$) time to reach the state p from the current state q. To ensure that each symbol in s can be recognized, it takes $\mathcal{O}(|\Sigma||H.E||s||\Sigma|^2) = \mathcal{O}(|s||\Sigma|^5)$ time to decide whether s can be finally recognized. Therefore, the uniform membership problem for FA(&)s is decidable in polynomial time.

(2) The non-uniform membership problem for FA(&)s is also decidable in polynomial time.

Proof. We refer the languages recognizing by FA(&)s as to FA(&) languages, which is a subclass of shuffle languages [12]. Since the non-uniform membership problem for shuffle languages can be decided in polynomial time [12], the non-uniform membership problem for FA(&) languages can be also decided in polynomial time. Thus, the non-uniform membership problem for FA(&)s is decidable in polynomial time.

Therefore, both the uniform and the non-uniform membership problem for FA(&)s are decidable in polynomial time.

7.3 Proof of Theorem 3

Proof. For any tuple $(a, b) \in U_{\&}$, the node a connects with the node b in the undigraph F(V, E) $(F.E = U_{\&})$. The nodes a and b are in a connected component of F. According to the algorithm *Shuffle Units*, for each connected component f of F, there is a corresponding shuffle unit.

First, the non-adjacent nodes, which are selected from f, compose a set M_f such that the sum of all node degrees is maximum. M_f is one of the sets in a

shuffle unit. Then, if one of the nodes a and b occurs in M_f (a and b cannot occur in M_f at the same time), after removing the nodes in M_f and their associated edges, a new undigraph f' is obtained. If f' is not a connected graph, $[M_f, f'.V]$ forms a shuffle unit, the other node occurs in f'.V. Otherwise, M_f is stored in a shuffle unit, algorithm *Shuffle Units* recursively works on f', the other node must occur in another obtained set.

If neither a nor b occurs in M_f , after removing the nodes in M_f and their associated edges, a new undigraph f' is obtained, algorithm ShuffleUnits recursively works on f'. In extreme case, $f'.V = \{a,b\}$ and $f'.E = \{(a,b)\}$, then $M_{f'} = \{a\}, \{b\}$ forms a shuffle unit. The nodes a and b occur in different sets.

All obtained shuffle units are put into $P_{\&}$, thus, for any tuple $(a,b) \in U_{\&}$, there exists a shuffle unit $l \in P_{\&}$ such that a and b are in different sets in l.

7.4 Proof of Theorem 4

(1) We use Lemma 1 to prove the Theorem 4.

Lemma 1. Let $P_{\&} = \{[e_1, e_2, \cdots, e_k]\}$ $(k \geq 2)$, and let $r(e_i)$ $(1 \leq i \leq k)$ denote a regular expression such that $e_i = \Sigma_{r(e_i)}$. Assume that the set $P_{\&}$ of shuffle units is returned by algorithm Shuffle Units. For a given finite sample S, and a shuffle unit $l' = [e'_1, e'_2, \cdots, e'_t]$ $(t \geq 2)$, if there exists $r(e_i)$ and $r'(e'_j)$ $(1 \leq j \leq t)$: $\mathcal{L}(r(e_1)\& \cdots \& r(e_k)) \supset \mathcal{L}(r'(e'_1)\& \cdots \& r'(e'_t)) \supseteq S$, then t = k and $e_i = e'_i$.

Proof. For $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset \mathcal{L}(r'(e_1')\&\cdots\&r'(e_t'))\supseteq S^6$, there is $t\leq k$. Additionally, according to the algorithm *Shuffle Units*, each connected component of the undigraph F(V,E), where $F.E=U_{\&}$, forms a shuffle unit, then $k\leq t$. Thus, there is t=k.

Let $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset\mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))\supseteq S$. If there exists $1\leq i\leq k$ such that $e_i\neq e_i'$, then $r(e_i)\neq r'(e_i')$, there exists a string s' such that $s'\in\mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))$ but $s'\notin\mathcal{L}(r(e_1)\&\cdots\&r(e_k))$. Then, $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\not\supset\mathcal{L}(r'(e_1')\&\cdots\&r'(e_k'))$. Therefore, $e_i=e_i'$ for any $1\leq i\leq k$.

(2) There does not exist an FA(&) A', which is learned from S such that $\mathcal{L}(A) \supset \mathcal{L}(A') \supseteq S$. The FA(&) A is a precise representation of S.

Proof. The FA(&) \mathcal{A} is learned by constructing the corresponding node transition graph H. We convert the SOA G built for S to the digraph H by traversing shuffle units in $P_{\&}$, which is obtained from Algorithm 2. The built SOA G is a precise representation of S [9].

Assume that there exists an FA(&) \mathcal{A}' learned from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. For the node transition graph H' of the FA(&) \mathcal{A}' , H' should be constructed from the SOA G built for S, otherwise, the above assumption can not hold. Suppose that there is the set $P'_{\&}$ of shuffle units such that the digraph H' can be constructed from the SOA G by traversing shuffle units in $P'_{\&}$.

⁶For simplicity of proof, let $r(e_1)\&\cdots\&r(e_k)$ denote that there exists $r(e_i)$ such that $r(e_1)\&\cdots\&r(e_k)$ is a regular expression supporting shuffle.

For constructing FA(&) \mathcal{A} , and for each shuffle unit $l \in P_{\&}$, let $l = [e_1, \cdots, e_k]$ $(k \geq 2)$. According to Algorithm 3, there are corresponding start marker $\&_m$ and end marker $\&_m^+$ $(m \in \mathbb{D}_{\Sigma})$ are added into G. Let \mathcal{B} denote the currently constructed FA(&). The FA(&) \mathcal{B} can recognize the shuffled strings which consist of the symbols from $\bigcup_{1\leq i\leq k} e_i$. Let $S_{\&}$ denote the set of the above shuffled strings extracted from S.

For constructing FA(&) \mathcal{A}' , and for each shuffle unit $l' \in P'_{\&}$, let $l' = [e'_1, \dots, e'_t]$ $(t \geq 2)$. We obtain the currently constructed FA(&) \mathcal{B}' by adding the corresponding start marker $\&_n$ and end marker $\&_n^+$ $(n \in \mathbb{D}_{\Sigma})$ into G. If $\mathcal{L}(\mathcal{B}) \supset \mathcal{L}(\mathcal{B}') \supseteq S_{\&}$ and there exists $r(e_i)$ and $r'(e'_j)$ $(1 \leq j \leq t)$ such that $\mathcal{L}(r(e_1)\& \cdots \& r(e_k)) \supset \mathcal{L}(r'(e'_1)\& \cdots \& r'(e'_t)) \supseteq S_{\&}$ (Let $\mathcal{L}(\mathcal{B}) = \mathcal{L}(r(e_1)\& \cdots \& r(e_k))$ and $\mathcal{L}(\mathcal{B}') = \mathcal{L}(r'(e'_1)\& \cdots \& r'(e'_t))$.), then according to Lemma 1, there are t = k and $e_i = e'_i$, then there is l = l'.

This implies that, if $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$, there is $P_{\&} = P'_{\&}$. For digraphs H and H', they are both constructed from the SOA G, then there is $\mathcal{A} = \mathcal{A}'$ and $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}') \supseteq S$. There is a contraction to the initial assumption. Therefore, the initial assumption does not hold, the FA(&) \mathcal{A} is a precise representation of S.