pre_process

September 18, 2024

1 Preprocess Required for Generating Train Data:

```
[1]: import urllib.request
                    import time
                    import sys
                    import getopt
                    import pandas as pd
                    import numpy as np
                    import pickle
[11]: %run ../utils.ipynb
   [2]: embSize = 200
                    ftrain='../data/EUADR_target_disease.csv'
                    # Replace with path of word embdding file
                    \#wefile = \#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin\#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA\_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/Admin/GDA_backup/Dataset/embeddings/PubMed-and-PMC-w2v.bin#/mnt/Admin/GDA_backup/Dataset/embeddings/PubMed-and-pmc-admin/GDA_backup/Dataset/embeddings/PubMed-and-pmc-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Dataset/embeddings/PubMed-admin/GDA_backup/Datas
                    wefile = "../support/PubMed-and-PMC-w2v.bin"
                    random_seed=1331
[11]: import pandas as pd
                    from tabulate import tabulate
                    ftrain = '../data/EUADR_target_disease.csv'
                    with open(ftrain, 'r', encoding='latin1') as file:
                                 first_line = file.readline()
                                 print(first_line)
                    import pandas as pd
                    ftrain = '../data/EUADR_target_disease.csv'
                    # Specify the delimiter for tabs
                    df = pd.read_csv(ftrain, encoding='latin1', sep='\t')
                    # Display the first 10 rows of the DataFrame as a table
                    print(tabulate(df.head(4), headers='keys', tablefmt='grid'))
```

"ASSOCIATION_TYPE" "PMID" "NUM_SENTENCE" "ENTITY1_TEXT" "ENTITY1_INI"

"ENTITY2_TYPE	"ENTITY1_TYPE" "ENTITY2_TEXT" "ENTITY2_INI" "ENTITY2_END" "SENTENCE"
+	
ASSOCI ENTITY1_INI ENTITY2_INI +===+=====	ATION_TYPE PMID NUM_SENTENCE ENTITY1_TEXT ENTITY1_END ENTITY1_TYPE ENTITY2_TEXT ENTITY2_END ENTITY2_TYPE SENTENCE
	17241106 16 LRP5 23 Genes & Molecular Sequences osteoporosis 92 Diseases & Disorders Our work supported LRP5 genetic cossible susceptibility factors for osteoporosis and fractures in
+	+
1 SA 20 108 its strongly osteoporosis ++	28 SNP & Sequence variations osteoporosis 120 Diseases & Disorders Especially, the SNP rs491347 and associated SNPs (e.g., rs1784235) could be important to human
2 SA 69 108 its strongly osteoporosis ++	17241106 17 rs1784235 78 SNP & Sequence variations osteoporosis 120 Diseases & Disorders Especially, the SNP rs491347 and associated SNPs (e.g., rs1784235) could be important to human phenotypes.
	18697826 0 fetal haemoglobin

```
110 | Genes & Molecular Sequences | beta-thalassaemia |
                 149 | Diseases & Disorders | The HBS1L-MYB intergenic region on
    132 l
    chromosome 6q23 is a quantitative trait locus controlling fetal haemoglobin
    level in carriers of beta-thalassaemia.
    ______
    ______
[19]: import pandas as pd
    from tabulate import tabulate
    # Load the CSV file
    ftrain = '../data/EUADR_target_disease.csv'
    df = pd.read_csv(ftrain, encoding='latin1', sep='\t')
     # Display the first line to understand the structure
    with open(ftrain, 'r', encoding='latin1') as file:
        first_line = file.readline()
        print("First line of the file:", first_line)
     # Display the column names to identify the one that corresponds to the entity_
     ⇔association type
    print("Column names:", df.columns)
    # Check for unique association types
    unique_association_types = df['ASSOCIATION_TYPE'].unique()
    print("Unique association types:", unique_association_types)
     # Filter the DataFrame to exclude rows where the association type is NaN (if \Box
     \rightarrowapplicable)
    df_filtered = df[df['ASSOCIATION_TYPE'].notna()]
    # Display the filtered rows
    print(tabulate(df_filtered.head(15), headers='keys', tablefmt='grid'))
                                            "PMID" "NUM_SENTENCE"
    First line of the file: "ASSOCIATION_TYPE"
    "ENTITY1_TEXT"
                 "ENTITY1 INI"
                              "ENTITY1_END"
                                            "ENTITY1_TYPE" "ENTITY2_TEXT"
    "ENTITY2 INI"
                 "ENTITY2 END"
                              "ENTITY2_TYPE" "SENTENCE"
    Column names: Index(['ASSOCIATION_TYPE', 'PMID', 'NUM_SENTENCE', 'ENTITY1_TEXT',
          'ENTITY1_INI', 'ENTITY1_END', 'ENTITY1_TYPE', 'ENTITY2_TEXT',
          'ENTITY2_INI', 'ENTITY2_END', 'ENTITY2_TYPE', 'SENTENCE'],
         dtype='object')
    Unique association types: ['SA' 'FA' 'PA' nan]
    ______
```

93 I

+
'
+ ASSOCIATION_TYPE PMID NUM_SENTENCE ENTITY1_TEXT ENTITY1_INI ENTITY1_END ENTITY1_TYPE ENTITY2_TEXT ENTITY2_INI ENTITY2_END ENTITY2_TYPE SENTENCE
+===+======+=====+=====+=====+=========
=====+====+====++=====++=====++====++====
=======+=====+=====+=====+=====+=====+====
=====+=================================
=======================================
======================================
80 92 Diseases & Disorders Our work supported LRP
genetic variants as possible susceptibility factors for osteoporosis and
fractures in humans.
++
+
-
1 SA
20 28 SNP & Sequence variations osteoporosis
108 120 Diseases & Disorders Especially, the SNP
rs491347 and its strongly associated SNPs (e.g., rs1784235) could be important
to human osteoporosis phenotypes.
++
++++
-

		+	
2 SA	I	17241106	17 rs1784235
1	69	78 SNP & Sequence v	variations osteoporosis
1 1	.08 I	-	rders Especially, the SNP
rs491347 and	its strongly a		rs1784235) could be important
	oporosis pheno		isiro4250) could be important
i i i i i i i i i i i i i i i i i i i	oporosis pheno	ctypes.	
			+
		·	
		+	
3 FA	I	18697826	0 fetal haemoglobin
I	93		_
+1-7	93	110 Genes & Molecula	-
thalassaemia		132	
			romosome 6q23 is a quantitative
	_	al haemoglobin level in	n carriers of beta-
thalassaemia.			
+	+		+
	+	+	+
		+	
		+	
4 PA		18697826	1 HbF
	19	22 Genes & Molecula	ar Sequences HBB disorders
1	64	77 Diseases & Dison	rders Fetal haemoglobin (HbF)
level modifie	s the clinical	severity of HBB disord	ders.
1		·	
· +	+		+
			· +
			·
		+	
5 PA	I	18697826	1 Fetal haemoglobin

1		77 Diseases & Disorder severity of HBB disorder	
			+
6 FA thalassaemia Disorders	4 The HBS1L-MYB i controlling fet	132	Sequences beta- 149 Diseases & mosome 6q23 is a quantitative
			+
7 FA thalassaemia	 46 	·	149 Diseases &
	controlling fet	ntergenic region on chron al haemoglobin level in o	nosome 6q23 is a quantitative carriers of beta-
	+		+
+			
8 FA 			7 HbF Sequences HBB disorders ers Functional studies to

unravel the biological significance of this region in regulating HbF production is clearly indicated, which may lead to new strategies to modify the disease course of severe HBB disorders.
++
++++
·
9 PA
++
10 FA
11 PA

(p=0.028), IL-1R C TNFalpha G -308 all significantly in th polymorphic variati role in susceptibil +	pst1 1970 allele (pele (p=0.0002) and e patients versus rons of these pro-ir ity of Iranian mult	quency of IL-1a p=0.0001) and C GG genotype (p normal subjects iflammatory cyt ciple sclerosis	19ha TT -889 genotype C genotype (p=0.00006) =0.000001) decreased These results suggest okines may play an importants.	t that portant
12 PA 0 sclerosis Disorders IL-1, I multiple sclerosis. ++	18322311 4 Gene 	es & Molecular 69 gene polymorphi	0 IL-1 Sequences multiple 87 Diseases & sms in Iranian patient	kts with
13 PA the GNAS1 oropharyngeal Diseases & Disorder hypopharyngeal squa polymorphism of the ++	18347176 127 s Overall and rel mous cell carcinoma GNAS1 gene.	158 SNP & Se 	0 T393C polymorphism quence variations 37 50 ival in oropharyngeal d with genotypes of T3	and 393C
		+ +	 0 T393C polymorphism	 n of

```
the GNAS1 |
                       127 l
                                    158 | SNP & Sequence variations
    hypopharyngeal squamous cell carcinoma |
                                                55 I
                                                             93 I
    Diseases & Disorders | Overall and relapse-free survival in oropharyngeal and
    hypopharyngeal squamous cell carcinoma are associated with genotypes of T393C
    polymorphism of the GNAS1 gene.
                -----
    ______
            ______
    _____+___
    ______
[16]: import pandas as pd
     from tabulate import tabulate
     # Load the CSV file
     ftrain = '../data/EUADR_target_disease.csv'
     df = pd.read_csv(ftrain, encoding='latin1', sep='\t')
     # Display the first line to understand the structure
     with open(ftrain, 'r', encoding='latin1') as file:
        first line = file.readline()
        print("First line of the file:", first_line)
     # Display the column names to identify the one that corresponds to the entity_
     →association type
     print("Column names:", df.columns)
     # Get unique association types and their counts
     association_type_counts = df['ASSOCIATION_TYPE'].value_counts()
     print("Association types and their counts:")
     print(tabulate(association_type_counts.reset_index(), headers=['Association_u
      →Type', 'Count'], tablefmt='grid'))
     # If you want to see a sample of rows for each association type
     # Display the first 10 rows for each unique association type
     for assoc_type in df['ASSOCIATION_TYPE'].unique():
        print(f"\nSample rows for association type '{assoc_type}':")
        sample df = df[df['ASSOCIATION TYPE'] == assoc type].head(10)
        print(tabulate(sample_df, headers='keys', tablefmt='grid'))
```

First line of the file: "ASSOCIATION_TYPE" "PMID" "NUM_SENTENCE"

"ENTITY1_TEXT" "ENTITY1_INI" "ENTITY1_END" "ENTITY1_TYPE" "ENTITY2_TEXT"

"ENTITY2_INI" "ENTITY2_END" "ENTITY2_TYPE" "SENTENCE"

```
Column names: Index(['ASSOCIATION_TYPE', 'PMID', 'NUM_SENTENCE', 'ENTITY1_TEXT',
   'ENTITY1_INI', 'ENTITY1_END', 'ENTITY1_TYPE', 'ENTITY2_TEXT',
   'ENTITY2_INI', 'ENTITY2_END', 'ENTITY2_TYPE', 'SENTENCE'],
   dtype='object')
Association types and their counts:
+---+
  | Association Type | Count |
+===+=======+
I O I PA
+---+
1 | FA
+---+
Sample rows for association type 'SA':
____+___
___+____
______
    ______
   | ASSOCIATION TYPE |
                PMID |
                     NUM SENTENCE | ENTITY1 TEXT
ENTITY1_INI | ENTITY1_END | ENTITY1_TYPE
                             | ENTITY2_TEXT
 ENTITY2_INI | ENTITY2_END | ENTITY2_TYPE
                           | SENTENCE
_____+__+___+____+___+___+____
______
_____+
             | 17241106 |
                          16 | LRP5
        23 | Genes & Molecular Sequences | osteoporosis
19 l
        92 | Diseases & Disorders | Our work supported LRP5 genetic
variants as possible susceptibility factors for osteoporosis and fractures in
humans.
-------
| 1 | SA
             | 17241106 |
                          17 | rs491347
20 |
        28 | SNP & Sequence variations | osteoporosis
        120 | Diseases & Disorders | Especially, the SNP rs491347 and
108
its strongly associated SNPs (e.g., rs1784235) could be important to human
osteoporosis phenotypes.
.____+___
```


+		+	-+
		+	
86 SA	18708184 1	NRG3	1
51 l	55 Genes & Molecular Sequences schi	zonhrenia	· 1
•		-	
65	78 Diseases & Disorders The study in	-	possible
association of	f NRG3 gene and schizophrenia in a Han Chi	nese population.	
+		+	-+
·		•	
		+	
98 SA	19098911 6	NLRP3	1
31	36 Genes & Molecular Sequences Croh	n's disease	1
130 l	145 Diseases & Disorders These result		the .
•			one
_	is also implicated in the susceptibility of	r more common	
	diseases such as Crohn's disease.		
+		+	-+
	+		
+	+	+	
102 SA		MDR1	ı
32	36 Genes & Molecular Sequences infla	ammatory bowel d:	isease
93	119 Diseases & Disorders Therefore,	the mutations of	the MDR1
gene are thou	ght to be related with the pathogenesis of	inflammatory box	wel
disease.	 		
	· 		
	+		
+	+	+	
		+	
C	i-tion town ITAL.		
-	or association type 'FA':		
	+		
	-+		
+		+	
	+		
ASSOCIA	ATION_TYPE PMID NUM_SENTENCE	ENTITY1 TEXT	1
	ENTITY1_END ENTITY1_TYPE	ENTITY2_TEXT	Г
		, -MIIIIA_IDA.	•

1	ENTITY2_END ENTITY2_TYPE SENTENCE	
=======================================	:======+==+====+===++====++====++====++====	=
_	18697826 0 fetal haemoglobin 110 Genes & Molecular Sequences beta-thalassaemia 149 Diseases & Disorders The HBS1L-MYB intergenic region on is a quantitative trait locus controlling fetal haemoglobin ers of beta-thalassaemia.	
	·	
+	+	_
6 FA 4 132 chromosome 6q2		
_	ers of beta-thalassaemia.	
++		_
	+	
		-
_	18697826 0 6q23 50 Genes & Molecular Sequences beta-thalassaemia 149 Diseases & Disorders The HBS1L-MYB intergenic region on is a quantitative trait locus controlling fetal haemoglobiners of beta-thalassaemia.	
++	+++++	-

+
· · · · · · · · · · · · · · · · · · ·
87 90 Genes & Molecular Sequences HBB disorders
196 209 Diseases & Disorders Functional studies to unravel the
biological significance of this region in regulating HbF production is clearly
indicated, which may lead to new strategies to modify the disease course of
severe HBB disorders.
ı ++
+++++++
+
10 FA
35 52 SNP & Sequence variations multiple sclerosis
406 424 Diseases & Disorders On the other hand the frequency of
IL-1alpha TT -889 genotype (p=0.028), IL-1R C pst1 1970 allele (p=0.0001) and CC
genotype (p=0.00006), TNFalpha G -308 allele (p=0.0002) and GG genotype
(p=0.000001) decreased significantly in the patients versus normal
subjects. These results suggest that polymorphic variations of these pro-
inflammatory cytokines may play an important role in susceptibility of Iranian
multiple sclerosis patients.
+++++
·
15 FA
4 9 SNP & Sequence variations hypopharyngeal cancer
130 151 Diseases & Disorders The T393C SNP could be considered
as a genetic marker to predict the clinical course of patients suffering from
oropharyngeal and hypopharyngeal cancer.

++
+
+
17 FA 18347176 3 T393C
8 33 SNP & Sequence variations oropharyngeal
21 134 Diseases & Disorders The prognostic value of the T393C
NP was evaluated in an unselected series of patients treated with curative
ntent for oropharyngeal and hypopharyngeal squamous cell carcinomas, including
ll tumor stages with different therapeutic regimens.
+
++++++
18 FA 17430902 3 Wnt
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer
18 FA 17430902 3 Wnt
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA 17430902 3 Wnt 9 72 Genes & Molecular Sequences colon cancer 5 37 Diseases & Disorders However, the majority of colon ancer cells have deregulation of the Wnt/beta-catenin pathway.
18 FA

	+	
28 FA 5 89 etween the CYP	19097922 1 CYP4F2 51 Genes & Molecular Sequences MI 141 Diseases & Disorders This study assessed associated associated associated (MI), using a haplotic control of the co	
	tudy of 234 MI patients and 248 controls genotyped for symorphisms (rs3093105, rs3093135, rs1558139, rs2108622,	5 single
	+	
	+	
	+	
-	+++++	-+
 ASSOCIAT	+	Y2 TEXT
	I ENTITY2_END ENTITY2_TYPE SENTENCE	_
===+=====		
===+======		=+=====
===+===================================	+	=+=====
===+====== =====+====== ====+========	======+====+====+=====+=====+=====+=====	=+===== ======== =======
===+====== =====+====== ====+==========	+++++	=+===== ======== =======
+		=+===== ==============================
	++++	-+
		-+

64	77 Diseases & Disorders Fetal haemoglobin (HbF)
level modifies the clinical	severity of HBB disorders.
	+
	· · · · · · · · · · · · · · · · · · ·
	+
5 PA	18697826 1 Fetal haemoglobin
0	17 Genes & Molecular Sequences HBB disorders
64	77 Diseases & Disorders Fetal haemoglobin (HbF)
level modifies the clinical	severity of HBB disorders.
1	
	++
	+
•	
	18322311 0 TNFalpha gene
polymorphisms	16 43 Genes & Molecular Sequences
multiple sclerosis	69 87
-	, IL-1R and TNFalpha gene polymorphisms in Iranian
patients with multiple scle	
1	
++	
	++
	+
+	
	+
	18322311 7 TNFalpha G -308 allele
138	160 Genes & Molecular Sequences multiple
sclerosis	406 424 Diseases &
	nd the frequency of IL-1alpha TT -889 genotype
-	0 allele (p=0.0001) and CC genotype (p=0.00006),
-	.0002) and GG genotype (p=0.000001) decreased
significantly in the patien	ts versus normal subjects. These results suggest that

polymorphic variations of these pro-inflammatory cytokines may play an important process of these pro-inflammatory cytokines may play an important play in susceptibility of Iranian multiple sclerosis patients.	
12 PA	
13 PA	of and 93C
14 PA	and

++
+
16 PA
4 9 SNP & Sequence variations oropharyngeal
112 125 Diseases & Disorders The T393C SNP could be
considered as a genetic marker to predict the clinical course of patients
suffering from oropharyngeal and hypopharyngeal cancer.
++
+
+ 20 PA
20 PA
57 69 Diseases & Disorders A recent study showed
that LPA-mediated proliferation of colon cancer cells requires activation of
beta-catenin.
++
+
t
+
21 PA
*3/*3 29 57 Genes & Molecular Sequences
leukocytopenia 211 225
Diseases & Disorders On multivariate analysis the CYP3A5 A6986G genotype *3/*3
(OR 8.205, 95% CI 1.616-41.667, p = 0.011) and smaller number of treatment
cycles (OR 0.156, 95% CI 0.037-0.659, p = 0.011) were independent factors for leukocytopenia (grade 3 or greater) throughout the period of chemotherapy.
reakocy copenia (grade o or greater) unroughout the period or chemotherapy.

```
Sample rows for association type 'nan':
   +-----
   --+----+
   | ASSOCIATION_TYPE
               | PMID | NUM_SENTENCE
                                | ENTITY1_TEXT
                                          | ENTITY1_INI
   | ENTITY1_END | ENTITY1_TYPE | ENTITY2_TEXT
                                 | ENTITY2_INI
                                          | ENTITY2_END
   | ENTITY2_TYPE
            | SENTENCE
   +-----
   +-----
   --+----+
[18]: import pandas as pd
   # Load the CSV file
   ftrain = '../data/EUADR_target_disease.csv'
   df = pd.read_csv(ftrain, encoding='latin1', sep='\t')
   # Display the column names to identify the one that corresponds to the entity \Box
    →association type
   print("Column names:", df.columns)
   # Check if 'SA' exists in the 'ASSOCIATION_TYPE' column
   association_types = df['ASSOCIATION_TYPE'].unique()
   if 'NA' in association_types:
      print("Association type 'SA' is present in the data.")
   else:
      print("Association type 'SA' is not present in the data.")
   Column names: Index(['ASSOCIATION_TYPE', 'PMID', 'NUM_SENTENCE', 'ENTITY1_TEXT',
       'ENTITY1_INI', 'ENTITY1_END', 'ENTITY1_TYPE', 'ENTITY2_TEXT',
       'ENTITY2_INI', 'ENTITY2_END', 'ENTITY2_TYPE', 'SENTENCE'],
       dtype='object')
   Association type 'SA' is not present in the data.
```

2 Read Data

```
[13]: from tabulate import tabulate
      Tr_sent_contents, Tr_entity1_list, Tr_entity2_list, Tr_sent_lables = utils.
       ⇒dataRead_befree_EUADR(ftrain)
      # Convert the lists to a DataFrame
      df = pd.DataFrame({
          'Sent Contents': Tr_sent_contents,
          'Entity 1': Tr_entity1_list,
          'Entity 2': Tr entity2 list,
          'Sent Labels': Tr_sent_lables
      })
      # Display the first 10 rows of the DataFrame as a table
      print(tabulate(df.head(4), headers='keys', tablefmt='grid'))
      Tr_word_list, Tr_d1_list, Tr_d2_list = utils.
       →get_wordList_and_distances_befree(Tr_sent_contents)
      df = pd.DataFrame({
          'word list': Tr_word_list,
          'd1 list': Tr_d1_list,
          'd2 list': Tr_d2_list,
      })
      # Display the first 10 rows of the DataFrame as a table
      print(tabulate(df.head(4), headers='keys', tablefmt='grid'))
     print ("train_size", len(Tr_word_list))
```

Input File Reading
train_size 355

2.1 Prepare Lable Matrix

```
[17]: # Y : is positive association
# N: is negative association
label_dict = {'FA':0, 'NA':0,'PA':1,'SA':1}

Y_t = mapLabelToId_befree_EUADR(Tr_sent_lables, label_dict)
Y_train = np.zeros((len(Y_t), 2))
for i in range(len(Y_t)):
    Y_train[i][Y_t[i]] = 1.0
```

3 Generate Word and Position Embedding Vectors

3.0.1 Word Embedding

```
Found 1355 unique words (10062 in total) word dictonary length 1355
Reading word vectors
Loaded 1356 pretrained embeddings.
number of unknown word in word embedding 814
W_train 355
word_vectors 1355
```

3.0.2 Position Embedding

```
[19]: d1_dict = makeDistanceList([Tr_d1_list])
d2_dict = makeDistanceList([Tr_d2_list])
d1_train = mapWordToId_list(Tr_d1_list, d1_dict)
d2_train = mapWordToId_list(Tr_d2_list, d2_dict)
```

3.0.3 Pad Embdding Vectors

```
sentMax 102
W_train 355
d1_train 355
d2_train 355
```

4 Save Prepared Data as Pickle File

```
[21]: with open('../data/pickles/befree_EUADR_2class_PubMed-and-PMC-w2v.pickle',
       pickle.dump(W_train, handle)
         pickle.dump(d1_train, handle)
         pickle.dump(d2_train, handle)
         pickle.dump(Y_train, handle)
         pickle.dump(Tr_word_list, handle)
         pickle.dump(word_vectors, handle)
         pickle.dump(word_dict, handle)
         pickle.dump(d1_dict, handle)
         pickle.dump(d2_dict, handle)
         pickle.dump(label_dict, handle)
         pickle.dump(sentMax, handle)
 []:
 []:
 []:
```