Számítási modellek

12. előadás

Definíció

Definíció

Beszúró-törlő rendszernek (InsDel rendszernek) nevezzük a

 $\gamma = \langle V, T, A, I, D \rangle$ rendezett 5-öst, ahol

V egy ábécé,

Definíció

Beszúró-törlő rendszernek (InsDel rendszernek) nevezzük a

- $\gamma = \left\langle \textit{V}, \textit{T}, \textit{A}, \textit{I}, \textit{D} \right\rangle$ rendezett 5-öst, ahol
 - V egy ábécé,
 - T ⊆ V a terminális ábécé,

Definíció

- V egy ábécé,
- $T \subseteq V$ a terminális ábécé,
- A ⊆ V* véges nyelv (az axiómák halmaza),

Definíció

- V egy ábécé,
- $T \subseteq V$ a terminális ábécé,
- ▶ $A \subseteq V^*$ véges nyelv (az axiómák halmaza),
- ▶ *I* a beszúró szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$,

Definíció

- V egy ábécé,
- T ⊆ V a terminális ábécé,
- ▶ $A \subseteq V^*$ véges nyelv (az axiómák halmaza),
- ▶ *I* a beszúró szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$,
- ▶ *D* a törlő szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$.

Definíció

Beszúró-törlő rendszernek (InsDel rendszernek) nevezzük a $\gamma = \langle V, T, A, I, D \rangle$ rendezett 5-öst, ahol

- V egy ábécé,
- ▶ $T \subseteq V$ a terminális ábécé,
- A ⊆ V* véges nyelv (az axiómák halmaza),
- ▶ *I* a beszúró szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$,
- ▶ *D* a törlő szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$.

 $(u, \alpha, v) \in I$ beszúró szabály az $uv \to u\alpha v$ szabálynak felel meg. $(\alpha$ -t beszúrhatjuk az (u, v) környezetbe.)

Definíció

Beszúró-törlő rendszernek (InsDel rendszernek) nevezzük a $\gamma = \langle V, T, A, I, D \rangle$ rendezett 5-öst, ahol

- V egy ábécé,
- ▶ $T \subseteq V$ a terminális ábécé,
- A ⊆ V* véges nyelv (az axiómák halmaza),
- ▶ *I* a beszúró szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$,
- ▶ *D* a törlő szabályok véges halmaza, elemei (u, α, v) rendezett 3-asok, ahol $u, \alpha, v \in V^*$.

 $(u, \alpha, v) \in I$ beszúró szabály az $uv \to u\alpha v$ szabálynak felel meg. (α -t beszúrhatjuk az (u, v) környezetbe.)

 $(u, \alpha, v) \in D$ törlő szabály az $u\alpha v \to uv$ szabálynak felel meg. (α -t törölhetjük az (u, v) környezetből.)

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

y beszúrása u és v közé hibás illesztéssel:

1. Egy kémcsőben $5' - x_1 uvx_2 z - 3'$ -hez adjuk $3' - \bar{u}\bar{y}\bar{v} - 5'$ -t.

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

- 1. Egy kémcsőben $5' x_1 uvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{y}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva a \bar{y} -t.

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

- 1. Egy kémcsőben $5' x_1 uvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{y}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva a \bar{v} -t.
- 3. Az első szál elvágása restrikciós enzimmel u és v között

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

- 1. Egy kémcsőben $5' x_1 uvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{y}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva a \bar{v} -t.
- 3. Az első szál elvágása restrikciós enzimmel u és v között
- 4. A hiányzó komplemensekkel való dupla szállá történő kiegészítés a \bar{z} primer és egy polimeráz hozzáadására.

Az evolúció során is beszúródhat vagy törlődhet, általában egyszerre csak egyetlen szimbólum a DNS szekvenciából.

- 1. Egy kémcsőben $5' x_1 uvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{y}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva a \bar{v} -t.
- 3. Az első szál elvágása restrikciós enzimmel u és v között
- 4. A hiányzó komplemensekkel való dupla szállá történő kiegészítés a \bar{z} primer és egy polimeráz hozzáadására.
- 5. A két szál szétválasztása olvasztás hatására.

1. lépés: 5' \overline{u} \overline{v} \overline{v} \overline{v} \overline{v} 3'

5. lépés: 5' 3'

y törlése u és v közül hibás illesztéssel:

1. Egy kémcsőben $5' - x_1 uyvx_2 z - 3'$ -hez adjuk $3' - \bar{u}\bar{v} - 5'$ -t.

y törlése u és v közül hibás illesztéssel:

- 1. Egy kémcsőben $5' x_1 uyvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva y-t.

y törlése u és v közül hibás illesztéssel:

- 1. Egy kémcsőben $5' x_1 uyvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva y-t.
- 3. A z̄ primer hozzáadására egy restrikciós emzim az első szálat elvágja u y illetve y és v között, azaz eltávolítja y-t, majd polimerizációval a hiányzó komplemensekkel való dupla szállá egészülnek ki.

y törlése u és v közül hibás illesztéssel:

- 1. Egy kémcsőben $5' x_1 uyvx_2 z 3'$ -hez adjuk $3' \bar{u}\bar{v} 5'$ -t.
- 2. Hő hatására \bar{u} u-hoz, \bar{v} v-hez tapad meghajlítva y-t.
- 3. A z̄ primer hozzáadására egy restrikciós emzim az első szálat elvágja u y illetve y és v között, azaz eltávolítja y-t, majd polimerizációval a hiányzó komplemensekkel való dupla szállá egészülnek ki.
- 4. A két szál szétválasztása olvasztás hatására.

2. lépés:

3. lépés:

4. lépés: 5' 3

Definíció

 $x \Longrightarrow_{\mathsf{ins}} y$ akkor és csak akkor, ha $x = x_1 u v x_2, y = x_1 u \alpha v x_2$ valamely $(u, \alpha, v) \in I$ -re és $x_1, x_2 \in V^*$ -ra.

Definíció

 $x \Longrightarrow_{\mathsf{ins}} y$ akkor és csak akkor, ha $x = x_1 u v x_2, y = x_1 u \alpha v x_2$ valamely $(u, \alpha, v) \in I$ -re és $x_1, x_2 \in V^*$ -ra.

 $x \Longrightarrow_{\mathsf{del}} y$ akkor és csak akkor, ha $x = x_1 u \alpha v x_2, y = x_1 u v x_2$ valamely $(u, \alpha, v) \in D$ -re és $x_1, x_2 \in V^*$ -ra.

Definíció

 $x \Longrightarrow_{\mathsf{ins}} y$ akkor és csak akkor, ha $x = x_1 u v x_2, y = x_1 u \alpha v x_2$ valamely $(u, \alpha, v) \in I$ -re és $x_1, x_2 \in V^*$ -ra.

 $x \Longrightarrow_{\mathsf{del}} y$ akkor és csak akkor, ha $x = x_1 u \alpha v x_2, y = x_1 u v x_2$ valamely $(u, \alpha, v) \in D$ -re és $x_1, x_2 \in V^*$ -ra.

Ekkor a közvetlen (egylépéses) levezetést a következőképpen definiálhatjuk: $(x \Longrightarrow y) \stackrel{\text{def}}{\Leftrightarrow} (x \Longrightarrow_{\text{ins}} y) \lor (x \Longrightarrow_{\text{del}} y)$

Definíció

 $x \Longrightarrow_{\mathsf{ins}} y$ akkor és csak akkor, ha $x = x_1 u v x_2, y = x_1 u \alpha v x_2$ valamely $(u, \alpha, v) \in I$ -re és $x_1, x_2 \in V^*$ -ra.

 $x \Longrightarrow_{\mathsf{del}} y$ akkor és csak akkor, ha $x = x_1 u \alpha v x_2, y = x_1 u v x_2$ valamely $(u, \alpha, v) \in D$ -re és $x_1, x_2 \in V^*$ -ra.

Ekkor a közvetlen (egylépéses) levezetést a következőképpen definiálhatjuk: $(x \Longrightarrow y) \stackrel{\text{def}}{\Leftrightarrow} (x \Longrightarrow_{\text{ins}} y) \lor (x \Longrightarrow_{\text{del}} y)$

Definíció

Közvetett (többlépéses) levezetés: a ⇒ reflexív, tranzitív lezártja. Jelölése: ⇒* .

Definíció

A $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszer által **generált nyelv**: $L(\gamma) = \{ w \in T^* \mid x \Longrightarrow^* w \text{ valamely } x \in A\text{-ra} \}$

Egy beszúró-törlő rendszer komplexitásának mértéke lehet a beszúrható/törölhető sztringek maximális hossza, illetve a beszúró/törlő kontextusok maximális hossza.

Egy beszúró-törlő rendszer komplexitásának mértéke lehet a beszúrható/törölhető sztringek maximális hossza, illetve a beszúró/törlő kontextusok maximális hossza.

Definíció

A $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszer súlya (n, m; p, q), ahol

- ▶ $m = \max\{|u| | (u, \alpha, v) \in I \text{ vagy } (v, \alpha, u) \in I\},$
- $q = \max \{ |u| | (u, \alpha, v) \in D \text{ vagy } (v, \alpha, u) \in D \},$
- γ összsúlya n+m+p+q.

Egy beszúró-törlő rendszer komplexitásának mértéke lehet a beszúrható/törölhető sztringek maximális hossza, illetve a beszúró/törlő kontextusok maximális hossza.

Definíció

A $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszer súlya (n, m; p, q), ahol

- ► $m = \max\{ |u| | (u, \alpha, v) \in I \text{ vagy } (v, \alpha, u) \in I \},$
- $\mathbf{q} = \max \{ |u| \mid (u, \alpha, v) \in D \text{ vagy } (v, \alpha, u) \in D \},$
- γ összsúlya n + m + p + q.
- **1.** Példa $\gamma_1 = \langle \{a, b\}, \{a, b\}, \{ab\}, \{(a, ab, b)\}, \emptyset \rangle$

Egy beszúró-törlő rendszer komplexitásának mértéke lehet a beszúrható/törölhető sztringek maximális hossza, illetve a beszúró/törlő kontextusok maximális hossza.

Definíció

A $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszer súlya (n, m; p, q), ahol

- ► $m = \max\{|u| | (u, \alpha, v) \in I \text{ vagy } (v, \alpha, u) \in I\},$

 γ összsúlya n + m + p + q.

1. Példa $\gamma_1 = \langle \{a, b\}, \{a, b\}, \{ab\}, \{(a, ab, b)\}, \emptyset \rangle$

$$L(\gamma_1) = \{a^n b^n \mid n \geqslant 1\}.$$

Ez egy (2,1,0,0) súlyú (azaz 3 összsúlyú) rendszer.

2. Példa $\gamma_2 = \langle \{S, S', a, b\}, \{a, b\}, \{S\}, \{(\varepsilon, S'aSb, \varepsilon), (\varepsilon, S'ab, \varepsilon)\}, \{(\varepsilon, SS', \varepsilon)\} \rangle$

2. Példa $\gamma_2 =$

$$\langle \{S,S',a,b\}, \{a,b\}, \{S\}, \{(\varepsilon,S'aSb,\varepsilon), (\varepsilon,S'ab,\varepsilon)\}, \{(\varepsilon,SS',\varepsilon)\} \rangle$$

Állítás: Minden terminális szót eredményző mondatforma néhány szomszédos SS' pár elhagyásával a^nSb^n vagy a^nb^n alakú.

Az állítás bizonyítása: A levezetés hosszára vonatkozó teljes indukcióval. Tegyük fel, hogy egy szó *n* levezetési lépés után ilyen alakú.

Egy szomszédos SS' pár elhagyásával továbbra is ilyen alakú marad.

2. Példa $\gamma_2 = \langle \{S, S', a, b\}, \{a, b\}, \{S\}, \{(\varepsilon, S'aSb, \varepsilon), (\varepsilon, S'ab, \varepsilon)\}, \{(\varepsilon, SS', \varepsilon)\} \rangle$

Állítás: Minden terminális szót eredményző mondatforma néhány szomszédos SS' pár elhagyásával a^nSb^n vagy a^nb^n alakú.

Az állítás bizonyítása: A levezetés hosszára vonatkozó teljes indukcióval. Tegyük fel, hogy egy szó *n* levezetési lépés után ilyen alakú.

Egy szomszédos SS' pár elhagyásával továbbra is ilyen alakú marad.

A beszúró szabályok S'-vel kezdődnek. Terminális után (vagy a szó legelejére) nem történhet beszúrás, mivel akkor a további levezetés során a most beszúrt S' előtt közvetlenül mindig egy terminális állna (vagy semmi se), így nem lehetne törölni a szóból.

S' után közvetlenül azért nem szúrhatunk be, mert bármely két S között van legalább egy terminális (minden S beszúrásakor mögé és elé is terminális kerül), és így bár az előtte lévő S' később esetleg törölhető egy S-sel együtt, de minden további S-et (a később beszúrandókat is beleértve) legalább egy terminális választaná el a most beszúrt S'-től.

S' után közvetlenül azért nem szúrhatunk be, mert bármely két S között van legalább egy terminális (minden S beszúrásakor mögé és elé is terminális kerül), és így bár az előtte lévő S' később esetleg törölhető egy S-sel együtt, de minden további S-et (a később beszúrandókat is beleértve) legalább egy terminális választaná el a most beszúrt S'-től.

Így csak közvetlenül *S* után történhetnek beszúrások. Ekkor viszont az indukciós feltevés alapján a szavak alakja továbbra is az állítás szerinti lesz. Ezzel az állítást beláttuk.

S' után közvetlenül azért nem szúrhatunk be, mert bármely két S között van legalább egy terminális (minden S beszúrásakor mögé és elé is terminális kerül), és így bár az előtte lévő S' később esetleg törölhető egy S-sel együtt, de minden további S-et (a később beszúrandókat is beleértve) legalább egy terminális választaná el a most beszúrt S'-től.

Így csak közvetlenül *S* után történhetnek beszúrások. Ekkor viszont az indukciós feltevés alapján a szavak alakja továbbra is az állítás szerinti lesz. Ezzel az állítást beláttuk.

Tehát
$$L(\gamma_2) = \{a^n b^n \mid n \geqslant 1\}.$$

Ez egy (4,0,2,0) súlyú (azaz 6 összsúlyú) rendszer.

Beszúró-törlő nyelvcsaládok

Definíció

```
\begin{split} \mathsf{INS}^m_n\mathsf{DEL}^q_p := \{\, L \,|\, L \text{ generálható } (n',m';p',q') \text{ súlyú beszúró-törlő } \\ & \mathsf{rendszerrel, ahol } \,n' \leqslant n,m' \leqslant m,p' \leqslant p,q' \leqslant q \,\} \end{split}
```

Beszúró-törlő nyelvcsaládok

Definíció

 $\mathsf{INS}^m_n\mathsf{DEL}^q_p := \{ \, L \, | \, L \text{ generálható } (n',m';p',q') \text{ súlyú beszúró-törlő rendszerrel, ahol } n' \leqslant n,m' \leqslant m,p' \leqslant p,q' \leqslant q \, \}$

Ha az n, m, p, q paraméterek közül valamelyik nem korlátozott, akkor a megfelelő paraméter helyére *-t írunk.

Beszúró-törlő nyelvcsaládok

Definíció

 $\mathsf{INS}^m_n\mathsf{DEL}^q_p := \{ \ L \ | \ L \ \text{generálható} \ (n',m';p',q') \ \text{súlyú beszúró-törlő} \\ \text{rendszerrel, ahol} \ n' \leqslant n,m' \leqslant m,p' \leqslant p,q' \leqslant q \, \}$

Ha az n, m, p, q paraméterek közül valamelyik nem korlátozott, akkor a megfelelő paraméter helyére *-t írunk.

Tehát az összes beszúró-törlő rendszer családját INS*DEL* jelöli.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_*^0DEL_*^0 = RE$

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS^0_*DEL^0_* = RE$

Bizonyítás:

Minden RE-beli nyelv generálható 0-típusú grammatikával. Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges 0-típusú grammatika.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS^0_*DEL^0_* = RE$

Bizonyítás:

Minden RE-beli nyelv generálható 0-típusú grammatikával. Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges 0-típusú grammatika.

Minden P-beli szabály $R:u\to v$ alakú, ahol R a szabály egyedi címkéje. Jelölje M a címkék halmazát. Feltehető, hogy M és $N\cup T$ diszjunkt halmazok.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS^0_*DEL^0_* = RE$

Bizonyítás:

Minden RE-beli nyelv generálható 0-típusú grammatikával. Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges 0-típusú grammatika.

Minden P-beli szabály $R: u \to v$ alakú, ahol R a szabály egyedi címkéje. Jelölje M a címkék halmazát. Feltehető, hogy M és $N \cup T$ diszjunkt halmazok.

Definiáljuk az alábbi $\gamma = \langle N \cup T \cup M, T, \{S\}, I, D \rangle$ beszúró-törlő rendszert, ahol

$$I = \{(\varepsilon, vR, \varepsilon) \mid R : u \to v \in P, R \in M, u, v \in (N \cup T)^*\} \text{ \'es } D = \{(\varepsilon, Ru, \varepsilon) \mid R : u \to v \in P, R \in M, u, v \in (N \cup T)^*\}.$$

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS^0_*DEL^0_* = RE$

Bizonyítás:

Minden RE-beli nyelv generálható 0-típusú grammatikával. Legyen $G = \langle N, T, P, S \rangle$ egy tetszőleges 0-típusú grammatika.

Minden P-beli szabály $R: u \to v$ alakú, ahol R a szabály egyedi címkéje. Jelölje M a címkék halmazát. Feltehető, hogy M és $N \cup T$ diszjunkt halmazok.

Definiáljuk az alábbi $\gamma = \langle N \cup T \cup M, T, \{S\}, I, D \rangle$ beszúró-törlő rendszert, ahol

$$I = \{(\varepsilon, vR, \varepsilon) \mid R : u \to v \in P, R \in M, u, v \in (N \cup T)^*\} \text{ \'es } D = \{(\varepsilon, Ru, \varepsilon) \mid R : u \to v \in P, R \in M, u, v \in (N \cup T)^*\}.$$

A $(\varepsilon, vR, \varepsilon)$ és $(\varepsilon, Ru, \varepsilon)$ szabálypárt *M*-kapcsolatban állónak nevezzük.

$$L(G) \subseteq L(\gamma)$$
.

$$L(G) \subseteq L(\gamma)$$
.

Az az $R: u \to v$ szabályt használó G-beli $x_1ux_2 \Longrightarrow x_1vx_2$ derivációs lépés γ -ban a $x_1ux_2 \Longrightarrow_{\mathsf{ins}} x_1vRux_2$ beszúró és a $x_1vRux_2 \Longrightarrow_{\mathsf{del}} x_1vx_2$ törlő lépésekkel szimulálható.

$$L(G) \subseteq L(\gamma)$$
.

Az az $R: u \to v$ szabályt használó G-beli $x_1ux_2 \Longrightarrow x_1vx_2$ derivációs lépés γ -ban a $x_1ux_2 \Longrightarrow_{\mathsf{ins}} x_1vRux_2$ beszúró és a $x_1vRux_2 \Longrightarrow_{\mathsf{del}} x_1vx_2$ törlő lépésekkel szimulálható.

$$L(G) \supseteq L(\gamma)$$

$$L(G) \subseteq L(\gamma)$$
.

Az az $R: u \to v$ szabályt használó G-beli $x_1ux_2 \Longrightarrow x_1vx_2$ derivációs lépés γ -ban a $x_1ux_2 \Longrightarrow_{\mathsf{ins}} x_1vRux_2$ beszúró és a $x_1vRux_2 \Longrightarrow_{\mathsf{del}} x_1vx_2$ törlő lépésekkel szimulálható.

$$L(G) \supseteq L(\gamma)$$

Állítás: Ha γ -ban $S \Longrightarrow^* \omega \in T^*$, akkor ω -nak van olyan γ -beli levezetése is, ahol minden $n \geqslant 1$ -re a 2n-1-edik és 2n-edik lépésben alkalmazott szabály M-kapcsolatban áll.

$$L(G) \subseteq L(\gamma)$$
.

Az az $R: u \to v$ szabályt használó G-beli $x_1ux_2 \Longrightarrow x_1vx_2$ derivációs lépés γ -ban a $x_1ux_2 \Longrightarrow_{\mathsf{ins}} x_1vRux_2$ beszúró és a $x_1vRux_2 \Longrightarrow_{\mathsf{del}} x_1vx_2$ törlő lépésekkel szimulálható.

$$L(G) \supseteq L(\gamma)$$

Állítás: Ha γ -ban $S \Longrightarrow^* \omega \in T^*$, akkor ω -nak van olyan γ -beli levezetése is, ahol minden $n \geqslant 1$ -re a 2n-1-edik és 2n-edik lépésben alkalmazott szabály M-kapcsolatban áll.

Az állítás bizonyítása:

Legyen $\delta: S \Longrightarrow \omega_1 \Longrightarrow \omega_2 \Longrightarrow \cdots \Longrightarrow \omega_{2k} = \omega \ \gamma$ -beli levezetés.

$$L(G) \subseteq L(\gamma)$$
.

Az az $R: u \to v$ szabályt használó G-beli $x_1ux_2 \Longrightarrow x_1vx_2$ derivációs lépés γ -ban a $x_1ux_2 \Longrightarrow_{\mathsf{ins}} x_1vRux_2$ beszúró és a $x_1vRux_2 \Longrightarrow_{\mathsf{del}} x_1vx_2$ törlő lépésekkel szimulálható.

$$L(G) \supseteq L(\gamma)$$

Állítás: Ha γ -ban $S \Longrightarrow^* \omega \in T^*$, akkor ω -nak van olyan γ -beli levezetése is, ahol minden $n \geqslant 1$ -re a 2n-1-edik és 2n-edik lépésben alkalmazott szabály M-kapcsolatban áll.

Az állítás bizonyítása:

Legyen
$$\delta: S \Longrightarrow \omega_1 \Longrightarrow \omega_2 \Longrightarrow \cdots \Longrightarrow \omega_{2k} = \omega \ \gamma$$
-beli levezetés.

Minden δ -ban megjelenő $R \in M$ címke törlődik is később. Ez alapján párosíthatunk minden alkalmazott beszúró szabályt egy vele M kapcsolatban lévő későbbi törlő szabállyal. Így éppen k darab egymással M-kapcsolatban álló szabálypárt kapunk.

Azt mondjuk, hogy ilyen pár illeszkedik egymáshoz, ha δ -ban közvetlenül egymást követi az alkalmazásuk.

Azt mondjuk, hogy ilyen pár illeszkedik egymáshoz, ha δ -ban közvetlenül egymást követi az alkalmazásuk.

Tegyük fel, hogy a párjaink között $0 < m \le k$ darab egymáshoz nem illeszkedő pár van.

Azt mondjuk, hogy ilyen pár illeszkedik egymáshoz, ha δ -ban közvetlenül egymást követi az alkalmazásuk.

Tegyük fel, hogy a párjaink között $0 < m \le k$ darab egymáshoz nem illeszkedő pár van.

Legyen $(\varepsilon, vR, \varepsilon) \in I$ és $(\varepsilon, Ru, \varepsilon) \in D$ egy ilyen pár.

Azt mondjuk, hogy ilyen pár illeszkedik egymáshoz, ha δ -ban közvetlenül egymást követi az alkalmazásuk.

Tegyük fel, hogy a párjaink között $0 < m \le k$ darab egymáshoz nem illeszkedő pár van.

Legyen
$$(\varepsilon, vR, \varepsilon) \in I$$
 és $(\varepsilon, Ru, \varepsilon) \in D$ egy ilyen pár. Ekkor $\delta: S \Longrightarrow^* z_1z_2 \Longrightarrow_{\mathsf{ins}} z_1vRz_2 \Longrightarrow^+ y_1Ruy_2 \Longrightarrow_{\mathsf{del}} y_1y_2 \Longrightarrow^* \omega$ valamely $z_1, z_2, y_1, y_2 \in (\mathsf{N} \cup \mathsf{T} \cup \mathsf{M})^*$ -ra.

Azt mondjuk, hogy ilyen pár illeszkedik egymáshoz, ha δ -ban közvetlenül egymást követi az alkalmazásuk.

Tegyük fel, hogy a párjaink között $0 < m \le k$ darab egymáshoz nem illeszkedő pár van.

Legyen
$$(\varepsilon, vR, \varepsilon) \in I$$
 és $(\varepsilon, Ru, \varepsilon) \in D$ egy ilyen pár. Ekkor $\delta: S \Longrightarrow^* z_1z_2 \Longrightarrow_{\mathsf{ins}} z_1vRz_2 \Longrightarrow^+ y_1Ruy_2 \Longrightarrow_{\mathsf{del}} y_1y_2 \Longrightarrow^* \omega$ valamely $z_1, z_2, y_1, y_2 \in (N \cup T \cup M)^*$ -ra.

Ez azt jelenti, hogy δ az alábbi részekből áll:

- $(1) S \Longrightarrow^* z_1 z_2,$
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (3) $z_1 v \Longrightarrow^* y_1$, // szabályalkalmazások R-en nem nyúlhatnak át
- (4) $z_2 \Longrightarrow^* uy_2$, // az illeszkedő párok egyazon oldalon vannak
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- (6) $y_1y_2 \Longrightarrow^* \omega$.

Ezeket (1), (4), (2), (5), (3), (6) sorrendben átrendezve

- (1) $S \Longrightarrow^* z_1 z_2$,
- (4) $z_2 \Longrightarrow^* uy_2$,
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- $(3) z_1 v \Longrightarrow^* y_1,$
- (6) $y_1y_2 \Longrightarrow^* \omega$.

Ezeket (1), (4), (2), (5), (3), (6) sorrendben átrendezve

- (1) $S \Longrightarrow^* z_1 z_2$,
- (4) $z_2 \Longrightarrow^* uy_2$,
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- $(3) z_1 v \Longrightarrow^* y_1,$
- (6) $y_1y_2 \Longrightarrow^* \omega$.

 ω alábbi levezetését kapjuk:

$$\delta':S\Rightarrow^*z_1z_2\Rightarrow^*z_1uy_2\Rightarrow_{\mathsf{ins}}z_1vRuy_2\Rightarrow_{\mathsf{del}}z_1vy_2\Rightarrow^*y_1y_2\Rightarrow^*\omega.$$

Ezeket (1), (4), (2), (5), (3), (6) sorrendben átrendezve

- (1) $S \Longrightarrow^* z_1 z_2$,
- (4) $z_2 \Longrightarrow^* uy_2$,
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- (3) $z_1 v \Longrightarrow^* y_1$,
- (6) $y_1y_2 \Longrightarrow^* \omega$.

 ω alábbi levezetését kapjuk:

$$\delta':S\Rightarrow^*z_1z_2\Rightarrow^*z_1uy_2\Rightarrow_{\mathsf{ins}}z_1vRuy_2\Rightarrow_{\mathsf{del}}z_1vy_2\Rightarrow^*y_1y_2\Rightarrow^*\omega.$$

Ezáltal illeszkedő párok nem válhattak szét, ezért így már csak legfeljebb m-1 nem illeszkedő szabálypárunk maradt.

Ezeket (1), (4), (2), (5), (3), (6) sorrendben átrendezve

- (1) $S \Longrightarrow^* z_1 z_2$,
- (4) $z_2 \Longrightarrow^* uy_2$,
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- $(3) z_1 v \Longrightarrow^* y_1,$
- (6) $y_1y_2 \Longrightarrow^* \omega$.

 ω alábbi levezetését kapjuk:

$$\delta':S\Rightarrow^*z_1z_2\Rightarrow^*z_1uy_2\Rightarrow_{\mathsf{ins}}z_1vRuy_2\Rightarrow_{\mathsf{del}}z_1vy_2\Rightarrow^*y_1y_2\Rightarrow^*\omega.$$

Ezáltal illeszkedő párok nem válhattak szét, ezért így már csak legfeljebb m-1 nem illeszkedő szabálypárunk maradt.

Tehát a nem illeszkedő szabálypárok száma 0-ra csökkenthető, ezzel az állítást bizonyítottuk.

Ezeket (1), (4), (2), (5), (3), (6) sorrendben átrendezve

- (1) $S \Longrightarrow^* z_1 z_2$,
- (4) $z_2 \Longrightarrow^* uy_2$,
- (2) $(\varepsilon, vR, \varepsilon) \in I$ alkalmazása
- (5) $(\varepsilon, Ru, \varepsilon) \in D$ alkalmazása
- (3) $z_1 v \Longrightarrow^* y_1$,
- (6) $y_1y_2 \Longrightarrow^* \omega$.

 ω alábbi levezetését kapjuk:

$$\delta':S\Rightarrow^*z_1z_2\Rightarrow^*z_1uy_2\Rightarrow_{\mathsf{ins}}z_1vRuy_2\Rightarrow_{\mathsf{del}}z_1vy_2\Rightarrow^*y_1y_2\Rightarrow^*\omega.$$

Ezáltal illeszkedő párok nem válhattak szét, ezért így már csak legfeljebb m-1 nem illeszkedő szabálypárunk maradt.

Tehát a nem illeszkedő szabálypárok száma 0-ra csökkenthető, ezzel az állítást bizonyítottuk. Két egymást követő derivációs lépés γ -ban, amely M-kapcsolatban álló szabályokat használ megfelel egy G-beli levezetési lépésnek, így ω G-ben is generálható.

CF InsDel rendszer – példa

Példa: Legyen $G = \langle \{S, X, Y\}, \{a, b, c\}, P, S \rangle$ az $L = \{a^i b^i c^i \mid i \geqslant 1\}$ nyelvet generáló grammatika a következő szabályrendszerrel

 $R_1: S \rightarrow aSX,$ $R_2: S \rightarrow aY,$

 $R_3: YX \rightarrow bYc$, $R_4: cX \rightarrow Xc$,

 $R_5: Y \rightarrow bc.$

CF InsDel rendszer - példa

Példa: Legyen $G=\langle\{S,X,Y\},\{a,b,c\},P,S\rangle$ az $L=\{a^ib^ic^i\mid i\geqslant 1\}$ nyelvet generáló grammatika a következő szabályrendszerrel

 $R_1: S \rightarrow aSX$, $R_2: S \rightarrow aY$, $R_3: YX \rightarrow bYc$,

 $R_4: cX \to Xc$

 $R_5: Y \rightarrow bc.$

A megfelelő $\gamma = \langle V, \{a, b, c\}, \{S\}, I, D \rangle$ beszúró-törlő rendszer, ahol $V = \{S, X, Y, a, b, c, R_1, R_2, R_3, R_4, R_5\}$:

ロト 4周ト 4 手 ト 4 手 ト ヨ めの()

D-beli szabályok
$(\varepsilon, R_1 S, \varepsilon)$
$(\varepsilon, R_2S, \varepsilon)$
$(\varepsilon, R_3 YX, \varepsilon)$
$(\varepsilon, R_4 cX, \varepsilon)$
$(\varepsilon, R_5 Y, \varepsilon)$

Következmény (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_3^0 = RE$

Következmény (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_3^0 = RE$

Bizonyítás:

Ismeretes, hogy minden $G = \langle N, T, P, S \rangle$ nulladik típusú grammatika **0-adik típusú Kuroda normálformára** hozható. A normálforma alakja:

$$A \rightarrow a, A \rightarrow BC, A \rightarrow \varepsilon, AB \rightarrow CD$$
, ahol $A, B, C, D \in N$ és $a \in T$.

Következmény (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_3^0 = RE$

Bizonyítás:

Ismeretes, hogy minden $G = \langle N, T, P, S \rangle$ nulladik típusú grammatika **0-adik típusú Kuroda normálformára** hozható. A normálforma alakja:

$$A \rightarrow a, A \rightarrow BC, A \rightarrow \varepsilon, AB \rightarrow CD$$
, ahol $A, B, C, D \in N$ és $a \in T$.

Minden szabály mindkét oldalának hossza legfeljebb 2, így a Tétel bizonyításában szereplő konstrukció szerint a beszúró-törlő szabályok középső α komponensére $|\alpha| \leqslant 3$ adódik.

Egy élesebb tétel a következő:

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_2^0 = RE$

Egy élesebb tétel a következő:

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_2^0 = RE$

Bizonyítás: Legyen $G = \langle N, T, P, S \rangle$ egy 0-típusú Kuroda-normálformában adott grammatika, ahol P szabályai M elemeivel injektív módon vannak címkézve és $M \cap (N \cup T) = \emptyset$.

Egy élesebb tétel a következő:

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_2^0 = RE$

Bizonyítás: Legyen $G = \langle N, T, P, S \rangle$ egy 0-típusú Kuroda-normálformában adott grammatika, ahol P szabályai M elemeivel injektív módon vannak címkézve és $M \cap (N \cup T) = \emptyset$.

A konstruált beszúró-törlő rendszer a következő:

$$\gamma = \langle N \cup \{A' \mid A \in N\} \cup T \cup M \cup \{R', R'' \mid R \in M\}, T, \{S\}, I, D \rangle.$$

Egy élesebb tétel a következő:

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_2^0 = RE$

Bizonyítás: Legyen $G = \langle N, T, P, S \rangle$ egy 0-típusú Kuroda-normálformában adott grammatika, ahol P szabályai M elemeivel injektív módon vannak címkézve és $M \cap (N \cup T) = \emptyset$.

A konstruált beszúró-törlő rendszer a következő:

$$\gamma = \langle \mathsf{N} \cup \{ \mathsf{A}' \mid \mathsf{A} \in \mathsf{N} \} \cup \mathsf{T} \cup \mathsf{M} \cup \{ \mathsf{R}', \mathsf{R}'' \mid \mathsf{R} \in \mathsf{M} \}, \mathsf{T}, \{ \mathsf{S} \}, \mathsf{I}, \mathsf{D} \rangle.$$

Minden $R: u \to v \in P$ környezetfüggetlen szabályra hozzáadunk γ -hoz egy $(\varepsilon, vR, \varepsilon) \in I$ beszúró és egy $(\varepsilon, Ru, \varepsilon) \in D$ törlő szabályt.

Egy élesebb tétel a következő:

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_3^0DEL_2^0 = RE$

Bizonyítás: Legyen $G = \langle N, T, P, S \rangle$ egy 0-típusú Kuroda-normálformában adott grammatika, ahol P szabályai M elemeivel injektív módon vannak címkézve és $M \cap (N \cup T) = \emptyset$.

A konstruált beszúró-törlő rendszer a következő:

$$\gamma = \langle \mathsf{N} \cup \{ \mathsf{A}' \mid \mathsf{A} \in \mathsf{N} \} \cup \mathsf{T} \cup \mathsf{M} \cup \{ \mathsf{R}', \mathsf{R}'' \mid \mathsf{R} \in \mathsf{M} \}, \mathsf{T}, \{ \mathsf{S} \}, \mathsf{I}, \mathsf{D} \rangle.$$

Minden $R:u\to v\in P$ környezetfüggetlen szabályra hozzáadunk γ -hoz egy $(\varepsilon,vR,\varepsilon)\in I$ beszúró és egy $(\varepsilon,Ru,\varepsilon)\in D$ törlő szabályt.

Az $R:AB \to CD \in P$ nem környezetfüggetlen szabályra adjuk hozzá γ -hoz a $(\varepsilon,CDR',\varepsilon), (\varepsilon,R''B'A',\varepsilon) \in I$ és a $(\varepsilon,A'A,\varepsilon), (\varepsilon,B'B,\varepsilon), (\varepsilon,R'R'',\varepsilon) \in D$ szabályokat.

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Az $R: AB \rightarrow CD$ szabályt a következőképpen lehet szimulálni:

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Az $R: AB \rightarrow CD$ szabályt a következőképpen lehet szimulálni:

$$x_1ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'R''B'A'ABx_2 \Longrightarrow_{\mathsf{del}}^3 x_1CDx_2.$$

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Az $R:AB \rightarrow CD$ szabályt a következőképpen lehet szimulálni:

$$x_1ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'R''B'A'ABx_2 \Longrightarrow_{\mathsf{del}}^3 x_1CDx_2.$$

$$L(G) \supseteq L(\gamma)$$
:

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Az $R:AB \rightarrow CD$ szabályt a következőképpen lehet szimulálni:

$$x_1ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'R''B'A'ABx_2 \Longrightarrow_{\mathsf{del}}^3 x_1CDx_2.$$

$$L(G) \supseteq L(\gamma)$$
:

Az előző tételben látottakhoz hasonlóan bármely γ -beli deriváció, amely nem egymást követő M-kapcsolatban álló szabályokból áll, átrendezhető úgy, hogy olyan ekvivalens derivációt kapjunk, amelyben az egymást követő lépések összeillenek.

Ilyenkor azt mondjuk, hogy ezek a szabályok **M-kapcsolatban** állnak.

$$L(G) \subseteq L(\gamma)$$
:

G környezetfüggetlen szabályai γ -ban hasonlóképpen szimulálhatók, mint ahogy azt az előző Tételben csináltuk.

Az $R: AB \rightarrow CD$ szabályt a következőképpen lehet szimulálni:

$$x_1ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'ABx_2 \Longrightarrow_{\mathsf{ins}} x_1CDR'R''B'A'ABx_2 \Longrightarrow_{\mathsf{del}}^3 x_1CDx_2.$$

$$L(G) \supseteq L(\gamma)$$
:

Az előző tételben látottakhoz hasonlóan bármely γ -beli deriváció, amely nem egymást követő M-kapcsolatban álló szabályokból áll, átrendezhető úgy, hogy olyan ekvivalens derivációt kapjunk, amelyben az egymást követő lépések összeillenek.

Ezt most nem részletezzük.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_2^0DEL_3^0 = RE$

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_2^0DEL_3^0 = RE$

Bizonyítás: Minden $G = \langle N, T, P, S \rangle$ nulladik típusú grammatika az alábbi normálformára is hozható. A normálforma alakja:

 $A \rightarrow a, A \rightarrow BC, A \rightarrow \varepsilon, AB \rightarrow \varepsilon$, ahol $A, B, C, D \in N$ és $a \in T$.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_2^0DEL_3^0 = RE$

Bizonyítás: Minden $G = \langle N, T, P, S \rangle$ nulladik típusú grammatika az alábbi normálformára is hozható. A normálforma alakja:

$$A \rightarrow a, A \rightarrow BC, A \rightarrow \varepsilon, AB \rightarrow \varepsilon$$
, ahol $A, B, C, D \in N$ és $a \in T$.

Világos, hiszen egy $AB \to CD$ alakú szabály $(A, B, C, D \in N)$ az alábbi 3 szabállyal szimulálható:

 $A \to CD_R, D_R \to DX_B, X_BB \to \varepsilon$, ahol D_R, X_B új egyedi nemterminálisok.

Tétel (Margenstern-Paun-Rogozhind-Verlan, 2005)

 $INS_2^0DEL_3^0 = RE$

Bizonyítás: Minden $G = \langle N, T, P, S \rangle$ nulladik típusú grammatika az alábbi normálformára is hozható. A normálforma alakja:

$$A \rightarrow a, A \rightarrow BC, A \rightarrow \varepsilon, AB \rightarrow \varepsilon$$
, ahol $A, B, C, D \in N$ és $a \in T$.

Világos, hiszen egy $AB \to CD$ alakú szabály $(A, B, C, D \in N)$ az alábbi 3 szabállyal szimulálható:

 $A \to CD_R, D_R \to DX_B, X_BB \to \varepsilon$, ahol D_R, X_B új egyedi nemterminálisok.

Konstruálunk egy $\gamma = \langle N \cup \{A' \mid A \in N\} \cup T \cup M, T, \{S\}, I, D \rangle$ (2,0;3,0) súlyú beszúró-törlő rendszert a következőképpen:

- ▶ Minden $u \to \varepsilon \in P$ szabályhoz legyen $(\varepsilon, u, \varepsilon) \in D$
- ▶ Minden $R: A \rightarrow a \in P$ esetén legyen $(\varepsilon, aR, \varepsilon) \in I$ és $(\varepsilon, RA, \varepsilon) \in D$
- ▶ Minden $A \to BC$ szabály esetén legyen $(\varepsilon, BB', \varepsilon) \in I$, $(\varepsilon, CC', \varepsilon) \in I$ és $(\varepsilon, C'B'A, \varepsilon) \in D$

- ▶ Minden $u \to \varepsilon \in P$ szabályhoz legyen $(\varepsilon, u, \varepsilon) \in D$
- ▶ Minden $R: A \rightarrow a \in P$ esetén legyen $(\varepsilon, aR, \varepsilon) \in I$ és $(\varepsilon, RA, \varepsilon) \in D$
- ▶ Minden $A \to BC$ szabály esetén legyen $(\varepsilon, BB', \varepsilon) \in I$, $(\varepsilon, CC', \varepsilon) \in I$ és $(\varepsilon, C'B'A, \varepsilon) \in D$

Az $R:A\to BC$ szabályt a következőképpen lehet szimulálni (a többi szabályra a szimuláció nyilvánvaló):

$$x_1Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BB'Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BCC'B'Ax_2 \Longrightarrow_{\mathsf{del}} x_1BCx_2$$

- ▶ Minden $u \to \varepsilon \in P$ szabályhoz legyen $(\varepsilon, u, \varepsilon) \in D$
- ▶ Minden $R: A \rightarrow a \in P$ esetén legyen $(\varepsilon, aR, \varepsilon) \in I$ és $(\varepsilon, RA, \varepsilon) \in D$
- ▶ Minden $A \to BC$ szabály esetén legyen $(\varepsilon, BB', \varepsilon) \in I$, $(\varepsilon, CC', \varepsilon) \in I$ és $(\varepsilon, C'B'A, \varepsilon) \in D$

Az $R:A\to BC$ szabályt a következőképpen lehet szimulálni (a többi szabályra a szimuláció nyilvánvaló):

$$x_1Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BB'Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BCC'B'Ax_2 \Longrightarrow_{\mathsf{del}} x_1BCx_2$$

Ez bizonyítja az $L(G) \subseteq L(\gamma)$ tartalmazást.

- ▶ Minden $u \to \varepsilon \in P$ szabályhoz legyen $(\varepsilon, u, \varepsilon) \in D$
- ▶ Minden $R: A \rightarrow a \in P$ esetén legyen $(\varepsilon, aR, \varepsilon) \in I$ és $(\varepsilon, RA, \varepsilon) \in D$
- ▶ Minden $A \to BC$ szabály esetén legyen $(\varepsilon, BB', \varepsilon) \in I$, $(\varepsilon, CC', \varepsilon) \in I$ és $(\varepsilon, C'B'A, \varepsilon) \in D$

Az $R:A\to BC$ szabályt a következőképpen lehet szimulálni (a többi szabályra a szimuláció nyilvánvaló):

$$x_1Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BB'Ax_2 \Longrightarrow_{\mathsf{ins}} x_1BCC'B'Ax_2 \Longrightarrow_{\mathsf{del}} x_1BCx_2$$

Ez bizonyítja az $L(G) \subseteq L(\gamma)$ tartalmazást.

A fordított irányú tartalmazás hasonlóan igazolható, mint az előző bizonyításokban, bebizonyítható, hogy a nem illeszkedő szabálypárok száma 0-ra csökkenthető.

Lemma (Verlan, 2005)

Minden (2,0;2,0) súlyú $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszerhez megadható egy vele ekvivalens (2,0;0,0) súlyú $\gamma' = \langle T', T', A', I', \varnothing \rangle$ beszúró-törlő rendszer.

Lemma (Verlan, 2005)

Minden (2,0;2,0) súlyú $\gamma = \langle V,T,A,I,D \rangle$ beszúró-törlő rendszerhez megadható egy vele ekvivalens (2,0;0,0) súlyú $\gamma' = \langle T',T',A',I',\varnothing \rangle$ beszúró-törlő rendszer.

A lemmát nem bizonyítjuk. A bizonyítása többlépcsős, először megmutatható, hogy $A=\{\varepsilon\}$ esetén a nemterminálisok kiküszöbölhetők, majd ez belátható tetszőleges axiómarendszerre is, végül a törlő szabályokat is ki lehet váltani.

Lemma (Verlan, 2005)

Minden (2,0;2,0) súlyú $\gamma = \langle V, T, A, I, D \rangle$ beszúró-törlő rendszerhez megadható egy vele ekvivalens (2,0;0,0) súlyú $\gamma' = \langle T', T', A', I', \varnothing \rangle$ beszúró-törlő rendszer.

A lemmát nem bizonyítjuk. A bizonyítása többlépcsős, először megmutatható, hogy $A=\{\varepsilon\}$ esetén a nemterminálisok kiküszöbölhetők, majd ez belátható tetszőleges axiómarendszerre is, végül a törlő szabályokat is ki lehet váltani.

Tétel (Verlan, 2005)

- 1. $INS_2^0DEL_2^0 \subseteq CF$
- 2. $REG \subseteq INS_2^0 DEL_2^0$
- 3. $INS_2^0DEL_2^0 \oplus REG$

Bizonyítás:

1. A lemma szerint minden γ egy (2,0;2,0) súlyú InsDel rendszerhez $\exists \ \gamma' = \langle T, T, A, I, \varnothing \rangle \ \gamma$ -val ekvivalens (2,0;0,0) súlyú InsDel rendszer. Legyen a $G = \langle \{S,Z\}, T, P_A \cup P_I \cup \{Z \to \varepsilon\}, S \rangle$ CF grammatika a következő:

$$P_A = \{ S \rightarrow Za_1Za_2Z \cdots Za_nZ \mid a_1a_2 \cdots a_n \in A \}$$

$$P_I = \{ Z \rightarrow ZaZbZ \mid ab \in I \} \cup \{ Z \rightarrow ZaZ \mid a \in I \}.$$
Ekkor könnyen látható, hogy $L(G) = L(\gamma')$.

Bizonyítás:

1. A lemma szerint minden γ egy (2,0;2,0) súlyú InsDel rendszerhez $\exists \ \gamma' = \langle T, T, A, I, \varnothing \rangle \ \gamma$ -val ekvivalens (2,0;0,0) súlyú InsDel rendszer. Legyen a $G = \langle \{S, Z\}, T, P_A \cup P_I \cup \{Z \to \varepsilon\}, S \rangle$ CF grammatika a következő:

$$P_A = \{ S \rightarrow Za_1Za_2Z \cdots Za_nZ \mid a_1a_2 \cdots a_n \in A \}$$

$$P_I = \{ Z \rightarrow ZaZbZ \mid ab \in I \} \cup \{ Z \rightarrow ZaZ \mid a \in I \}.$$
Ekkor könnyen látható, hogy $L(G) = L(\gamma')$.

2. $L=\{a^nb^m\,|\,n,m\geqslant 0\}$ nem generálható (2,0;2,0) súlyú InsDel rendszerrel. Valóban, tegyük fel, hogy $\gamma'=\langle T,T,A,I,\varnothing\rangle$ InsDel rendszer generálja (a lemma szerint ilyen is van).

Bizonyítás:

1. A lemma szerint minden γ egy (2,0;2,0) súlyú InsDel rendszerhez $\exists \ \gamma' = \langle T, T, A, I, \varnothing \rangle \ \gamma$ -val ekvivalens (2,0;0,0) súlyú InsDel rendszer. Legyen a $G = \langle \{S, Z\}, T, P_A \cup P_I \cup \{Z \to \varepsilon\}, S \rangle$ CF grammatika a következő:

$$P_{A} = \{ S \rightarrow Za_{1}Za_{2}Z \cdots Za_{n}Z \mid a_{1}a_{2}\cdots a_{n} \in A \}$$

$$P_{I} = \{ Z \rightarrow ZaZbZ \mid ab \in I \} \cup \{ Z \rightarrow ZaZ \mid a \in I \}.$$
Ekkor könnyen látható, hogy $L(G) = L(\gamma')$.

2. $L = \{a^n b^m \mid n, m \ge 0\}$ nem generálható (2,0;2,0) súlyú InsDel rendszerrel. Valóban, tegyük fel, hogy $\gamma' = \langle T, T, A, I, \varnothing \rangle$ InsDel rendszer generálja (a lemma szerint ilyen is van). $I \ne \varnothing$, különben nem tudnánk egy végtelen nyelvet generálni. Legyen $(\varepsilon, \alpha, \varepsilon) \in I$ és $w \in L$ tetszőleges olyan szó, mely mindkét betűt tartalmazza, ekkor $\alpha^i w \alpha^i \in L(i \ge 0)$, de ez nem lehet.

3. Tekintsük a $G_n = \langle \{S\}, T_n, P_n, S \rangle$ grammatika által generált $D_n := L(G_n)$ nyelvet, ahol $T_n = \{a_1, a'_1, \dots, a_n, a'_n\}$ és $P_n = \{S \to SS, S \to \varepsilon\} \cup \{S \to a_i Sa'_i \mid 1 \leqslant i \leqslant n\}.$

3. Tekintsük a $G_n = \langle \{S\}, T_n, P_n, S \rangle$ grammatika által generált $D_n := L(G_n)$ nyelvet, ahol $T_n = \{a_1, a'_1, \dots, a_n, a'_n\}$ és $P_n = \{S \to SS, S \to \varepsilon\} \cup \{S \to a_i Sa'_i \mid 1 \leqslant i \leqslant n\}.$

 D_n a helyes zárójelezések nyelve n zárójelpártípussal. Ezt a nyelvet szokás Dyck-nyelvnek is nevezni.

3. Tekintsük a $G_n = \langle \{S\}, T_n, P_n, S \rangle$ grammatika által generált $D_n := L(G_n)$ nyelvet, ahol $T_n = \{a_1, a'_1, \dots, a_n, a'_n\}$ és $P_n = \{S \to SS, S \to \varepsilon\} \cup \{S \to a_i Sa'_i \mid 1 \leqslant i \leqslant n\}.$

 D_n a helyes zárójelezések nyelve n zárójelpártípussal. Ezt a nyelvet szokás Dyck-nyelvnek is nevezni.

Ismert, de könnyen be látható például a Myhill-Nerode tétellel vagy a reguláris nyelvek pumpálási lemmájával (kis Bar-Hillel lemma), hogy D_n nem reguláris.

3. Tekintsük a $G_n = \langle \{S\}, T_n, P_n, S \rangle$ grammatika által generált $D_n := L(G_n)$ nyelvet, ahol $T_n = \{a_1, a'_1, \dots, a_n, a'_n\}$ és $P_n = \{S \to SS, S \to \varepsilon\} \cup \{S \to a_i Sa'_i \mid 1 \leqslant i \leqslant n\}.$

 D_n a helyes zárójelezések nyelve n zárójelpártípussal. Ezt a nyelvet szokás Dyck-nyelvnek is nevezni.

Ismert, de könnyen be látható például a Myhill-Nerode tétellel vagy a reguláris nyelvek pumpálási lemmájával (kis Bar-Hillel lemma), hogy D_n nem reguláris.

Viszont a $\gamma_n = \langle T_n, T_n, \{\varepsilon\}, \{(\varepsilon, a_i a_i', \varepsilon) \mid 1 \leqslant i \leqslant n\}, \emptyset \rangle$ beszúró-törlő rendszer D_n -t generálja.

3. Tekintsük a $G_n = \langle \{S\}, T_n, P_n, S \rangle$ grammatika által generált $D_n := L(G_n)$ nyelvet, ahol $T_n = \{a_1, a'_1, \dots, a_n, a'_n\}$ és $P_n = \{S \to SS, S \to \varepsilon\} \cup \{S \to a_i Sa'_i \mid 1 \leqslant i \leqslant n\}.$

 D_n a helyes zárójelezések nyelve n zárójelpártípussal. Ezt a nyelvet szokás Dyck-nyelvnek is nevezni.

Ismert, de könnyen be látható például a Myhill-Nerode tétellel vagy a reguláris nyelvek pumpálási lemmájával (kis Bar-Hillel lemma), hogy D_n nem reguláris.

Viszont a
$$\gamma_n = \langle T_n, T_n, \{\varepsilon\}, \{(\varepsilon, a_i a_i', \varepsilon) \mid 1 \leqslant i \leqslant n\}, \emptyset \rangle$$
 beszúró-törlő rendszer D_n -t generálja.

Következmény $\mathsf{INS}^0_2\mathsf{DEL}^0_2\subset\mathsf{CF}$

No	súly	(n, m; p, q)	ereje	hivatkozás
1	6	(3, 0; 3, 0)	RE	Margenstern et al, 2005
2	5	(1, 2; 1, 1)	RE	Kari et al, 1997
3	5	(1, 2; 2, 0)	RE	Kari et al, 1997
4	5	(2, 1; 2, 0)	RE	Kari et al, 1997
5	5	(1, 1; 1, 2)	RE	Takahara-Yokomori, 2003
6	5	(2, 1; 1, 1)	RE	Takahara-Yokomori, 2003
7	5	(2, 0; 3, 0)	RE	Margenstern et al, 2005
8	5	(3, 0; 2, 0)	RE	Margenstern et al, 2005
9	4	(1, 1; 2, 0)	RE	Paun et al, 1998
10	4	(1, 1; 1, 1)	RE	Takahara-Yokomori, 2003
11	4	(2, 0; 2, 0)	⊂CF	Verlan, 2005
12	m+1	(m, 0; 1, 0)	⊂CF	Verlan, 2005
13	p + 1	(1, 0; p, 0)	⊂REG	Verlan, 2005

No	súly	(n, m; p, q)	ereje	hivatkozás
1	6	(3, 0; 3, 0)	RE	Margenstern et al, 2005
2	5	(1, 2; 1, 1)	RE	Kari et al, 1997
3	5	(1, 2; 2, 0)	RE	Kari et al, 1997
4	5	(2, 1; 2, 0)	RE	Kari et al, 1997
5	5	(1, 1; 1, 2)	RE	Takahara-Yokomori, 2003
6	5	(2, 1; 1, 1)	RE	Takahara-Yokomori, 2003
7	5	(2, 0; 3, 0)	RE	Margenstern et al, 2005
8	5	(3, 0; 2, 0)	RE	Margenstern et al, 2005
9	4	(1, 1; 2, 0)	RE	Paun et al, 1998
10	4	(1, 1; 1, 1)	RE	Takahara-Yokomori, 2003
11	4	(2, 0; 2, 0)	⊂CF	Verlan, 2005
12	m+1	(m, 0; 1, 0)	⊂CF	Verlan, 2005
13	p + 1	(1, 0; p, 0)	⊂REG	Verlan, 2005

Mivel 4-súlyúra többféle eredmény is van érdemes a súly fogalmát finomítani.

Beszúró-törlő rendszerek súlya

Definíció

```
Legyen \gamma = \langle V, T, A, I, D \rangle beszúró-törlő rendszer
n := \max\{ |\alpha| | (u, \alpha, v) \in I \},
m := \max\{|u| | (u, \alpha, v) \in I\},
m' := \max\{ |v| | (u, \alpha, v) \in I \},
p := \max \{ |\alpha| | (u, \alpha, v) \in D \},
q := \max\{ |u| | (u, \alpha, v) \in D \},
q' := \max\{ |v| | (u, \alpha, v) \in D \}.
A beszúró-törlő rendszer módosított súlya az (n, m, m'; p, q, q')
vektorral adható meg, módosított összsúlya
n + m + m' + p + q + q'.
```

Beszúró-törlő rendszerek súlya

Az új súlyozással az eredmények:

No	súly	(n, m; p, q)	ereje	új súly	(n, m, m'; p, q, q')
1	6	(3, 0; 3, 0)	RE	6	(3, 0, 0; 3, 0, 0)
2	5	(1, 2; 1, 1)	RE	8	(1, 2, 2; 1, 1, 1)
3	5	(1, 2; 2, 0)	RE	7	(1, 2, 2; 2, 0, 0)
4	5	(2, 1; 2, 0)	RE	6	(2, 1, 1; 2, 0, 0)
5	5	(1, 1; 1, 2)	RE	8	(1, 1, 1; 1, 2, 2)
6	5	(2, 1; 1, 1)	RE	7	(2, 1, 1; 1, 1, 1)
7	5	(2, 0; 3, 0)	RE	5	(2, 0, 0; 3, 0, 0)
8	5	(3, 0; 2, 0)	RE	5	(3, 0, 0; 2, 0, 0)
9	4	(1, 1; 2, 0)	RE	5	(1, 1, 1; 2, 0, 0)
10	4	(1, 1; 1, 1)	RE	6	(1, 1, 1; 1, 1, 1)
11	4	(2, 0; 2, 0)	⊂CF	4	(2, 0, 0; 2, 0, 0)

További eredmények:

No	súly	(n, m, m'; p, q, q')	ereje	hivatkozás
14	5	(2, 0, 0; 1, 1, 1)	RE	Krassovitskiy et al., 2008
15	6	(1, 1, 0; 1, 1, 2)	RE	Krassovitskiy et al., 2008
16	6	(1, 1, 0; 2, 0, 2)	RE	Matveevici et al., 2007
17	5	(2, 0, 0; 2, 0, 1)	RE	Krassovitskiy et al., 2008
18	5	(1, 1, 0; 1, 1, 1)	⇒REG	Krassovitskiy et al., 2008