Análise e Projeto de Algoritmos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciências da Computação, 2013

Exemplo 4.8

- Como armazenar. em um compartimento qualquer, muitos itens com valores agregados, de forma que o somatório dos valores de tais itens seja o máximo possível dentre as possibilidades de combinação de itens?
- ► Matriz bidimensional (M), de ordem $(N + 1) \times (C + 1)$, onde:

N: Número de itens;

C: Capacidade da mochila.

- Idéia do algoritmo:
 - Começar com uma mochila de capacidade 1 e descobrir o valor máximo possível para esta mochila.
 - 2. Passar para uma mochila de capacidade 2 e aproveitar as informações da mochila de capacidade atual 1 (nesse caso,
 - 1) para descobrir o valor máximo para uma mochila de capacidade 2.
 - Repetir esse procedimento até capacidade atual ser igual a C. Além da capacidade ir crescendo, também vai se adicionando novos itens no processo.

- Idéia do algoritmo:
 - 1. Percorrendo a tabela por linha (por item), e para a coluna *j* atual (capacidade atual), analisar se o item atual *i* (linha atual) cabe na mochila de capacidade *j*.
 - 2. Se couber é preciso escolher o maior valor entre:
 - 2.1 Valor na mochila de mesma capacidade j que não tinha esse item (essa informação estará em M[i-1][j]).
 - 2.2 Soma do valor do item com o valor na mochila de capacidade (j peso do item i) e que não tinha esse item (M[i-1][j-peso do item i]).
 - 3. Se não couber, o maior valor para essa mochila será o valor da mochila de mesma capacidade, mas que não tem esse item (M[i][j] = M[i-1][j]).

Item	Peso	Valor
1	4	2
2	2	1
3	1	3
4	2	4
5	2	1

Algoritmo

5

6

8

```
Knapsack(N, C)
 Entrada: Número de produtos (N) e Capacidade da mochila (C).
 Saída: Valor máximo para a capacidade C.
para i \leftarrow 0 até N faça M[i][0] \leftarrow 0;
para i \leftarrow 1 até C faca M[0][i] \leftarrow 0;
para i \leftarrow 1 até N faça
       para j \leftarrow 1 até C faça
             se itens[i].peso \le j então
                   M[i][j] \leftarrow \max \left( \begin{array}{c} M[i-1][j], \\ M[i-1][j-itens[i].peso] + itens[i].valor \end{array} \right);
             senão
                   M[i][j] \leftarrow M[i-1][j];
retorna M[N][C];
```

- ► Mochila 0-1 sem pesos:
 - $S = \{s_1, s_2, \ldots, s_n\}.$
 - $s_i \in \mathbb{Z}^+, i = 1, \ldots, n.$
 - $K \in \mathbb{Z}^+$.
 - ▶ $\exists S' \subset S$ tal que $\sum_{s_i \in S'} s_i = K$?
- ► M(n, K) → problema da mochila com n itens e mochila de tamanho K.
- ▶ M(i,k), $i \le n$ → problema da mochila com os i primeiros itens de S e mochila de tamanho k.

- Solução: hipótese de indução simples (errado!)
 - ▶ Suponha que sabe-se resolver M(n-1, K).
 - Base: há uma solução se e somente se n = 1 e s₁ = K.
 - ▶ M(n-1,K) tem solução → problema está terminado.
 - ▶ item s_n não é utilizado.
 - ► M(n-1,K) não tem solução.
 - ▶ Solução de M(n, K) deve incluir o item s_n .
 - ▶ n-1 primeiros itens em uma mochila de tamanho $K-s_n$.
 - ► M(n, K) reduzido para M(n 1, K) e $M(n 1, K s_n)$.
 - ► $M(n-1, K-s_n)$ ⇒ problema não coberto pela hipótese de indução!

- Solução: hipótese de indução forte.
 - ▶ Suponha que sabe-se resolver M(n-1,k), $\forall 0 \le k \le K$.
 - ► Base:
 - Se k = 0 existe uma solução.
 - Se k = 1 há uma solução se e somente se n = 1 e $s_1 = K$.

- Passo da indução:
 - ▶ M(n-1,K) tem solução → problema está terminado.
 - ▶ item s_n não é utilizado.
 - ▶ M(n-1,K) não tem solução.
 - ▶ solução de M(n, K) deve incluir o item s_n .
 - ▶ n-1 primeiros itens em uma mochila de tamanho $K-s_n$.
 - ► M(n, K) reduzido para M(n 1, K) e $M(n 1, K s_n)$.
 - ► Se $K s_n < 0$, $M(n 1, K s_n)$ é ignorado.

```
Mochila-Decisão(n, K, S = (s_1, \ldots, s_n))
M[0,0] \leftarrow verdadeiro;
para i \leftarrow 1 até K faça M[0, i] \leftarrow sem solução;
para i \leftarrow 1 até n faça
     para k \leftarrow 0 até K faça
           M[i,k] \leftarrow sem solução;
           se (tem_solução(M[i-1,k])) então
                 M[i,k] \leftarrow tem solução não pertence;
           senão
                 se (k - S[i] \ge 0) então
                       se (tem_solução(M[i-1,k-S[i]])) então M[i,k] \leftarrow tem\_solução\_pertence;
retorna M[n, K]:
```

- ▶ Algoritmo recursivo \Rightarrow complexidade exponencial em m.
- Máximo de n.K problemas distintos.
 - ► M(i, k) para todos os valores possíveis de i e k.
- Programação Dinâmica:
 - ▶ Tabela $n \times K$.
 - ► Elemento [i, k] → problema M(i, k).
 - Para i = 1,...,n e k = 0..., K → nenhum problema é computado duas vezes.
 - ▶ Solução na posição [n, K].
 - ► Complexidade *O*(*n*.*K*).

►
$$S = \{s_1, s_2, s_3, s_4\} = \{2, 3, 5, 6\}$$
 e $K = 6$:

Tam. Mochila →		1	2	3	4	5	6
$S_0 = \emptyset$		_	_	_	_	_	_
$s_1 = 2$, $S_1 = \{s_1\} \cup S_0$	∉	_	€	_	_	_	_
$s_2 = 3$, $s_2 = \{s_2\} \cup s_1$	∉	_	∉	€	_	€	_
$s_3 = 5$, $s_3 = \{s_3\} \cup s_2$	∉	_	∉	∉	_	∉	_
$s_4 = 6$, $s_4 = \{s_4\} \cup s_3$	∉	_	∉	∉	_	∉	€

- Este algoritmo não é polinomial:
 - ► Entrada do problema: $(K, n, s_1, s_2, \ldots, s_n)$.
 - ► Se *K* fosse fixo, o algoritmo seria polinomial (linear).
 - Caso geral instância pode ser dividida em duas partes:
 - uma parte de tamanho O(n).
 - uma parte de tamanho $O(\log K)$.
 - ► Se K >> n, O(n.K) é exponencial em relação a $O(\log K)$.

Livros Texto

T. H. Cormen, C. E. Leiserson e R. L. Rivest.

Introduction to Algorithms.

McGraw-Hill. New York. 1990.

C. H. Papadimitriou, U. V. Vazirani e S. Dasgupta.

Algoritmos.

Mcgraw-Hill Brasil, 2009.

U. Manber.

Algorithms: A Creative Approach.

Addison-Wesley, 1989.

D. E. Knuth.

 $\label{thm:computer} \textit{The Art of Computer Programming. Volume 1-Fundamental Algorithms}.$

Addison Wesley, 1998.

D. E. Knuth.

The Art of Computer Programming. Volume 2 – Sorting and Searching.

Addison Wesley, 1998.

N. Ziviani.

Projeto de Algoritmos com Implementações em Pascal e C.

Editora Thomson. 2a Edição. 2004.