AIR QUALITY MONITORING

PHASE 2: INNOVATION

PROJECT: AIR QUALITY MONITORING

INTRODUCTION:

Air is a basic requirement for the survival and development of all lives on Earth. It affects healthand influences the development of the economy. Today, due to the development of industrialization, the increase in the number of private cars, and the burning of fossil fuels, air quality is decreasing, withincreasingly serious air pollution. There are many pollutants in the atmosphere, such as SO2, NO2,CO2, NO, CO, NOx, PM2.5, and PM10. Internationally, a large number of scholars have conducted research on air pollution and air quality forecasts, concentrating on the forecasting of contaminants. Air pollution affects the life of a society, and even endangers the survival of mankind. During the Industrial Revolution, there was a dramatic increase in coal use by factories and households, and the smog caused significant morbidity and mortality, particularly when combined with stagnantatmospheric conditions. During the Great London Smog of 1952, heavy pollution for 5 days caused at least 4000 deaths [1,2]. This episode highlighted the relationship between air pollution and humanhealth, yet air pollution continues to be a growing problem in cities and households around the world.

Air pollution is made up of a mixture of gases and particles in harmful amounts that are releasedinto the atmosphere due to either natural or human activities [3]. The sources of pollutants can be divided into two categories:

- 1) Natural sources
- 2) Anthropogenic sources

(1) Natural sources:

Natural pollution sources are natural phenomena that discharge harmful substances or haveharmful effects on the environment. Natural phenomena, such as volcanic eruptions and forest fires, will result in air pollutants, including SO2, CO2, NO2, CO, and sulfate.

(2) Anthropogenic (man-made) sources:

Man-made sources such as the burning of fuels, discharges from industrial production processes, and transportation emissions are the main sources of air pollution. There are many kinds of pollutantsemitted by man-made pollution sources, including hydrogen, oxygen, nitrogen, sulfur, metal compounds, and particulate matter. With the increasing world population and the developing world economy, the demand for energyin the world has increased dramatically. The large-scale use of fossil energy globally has also ledto a series of environmental problems that have received much attention due to their detrimental effects on human health and the environment [3–5]. Air pollution is a fundamental problem in manyparts of the world, with two important concerns: the impact on human health, such as cardiovascular diseases, and the impact on the environment, such as acid rain, climate change, and global warming.

Introduction:

- Air pollution emission Natural source
 Anthropogenic sources
- Pollution effection Climate change Ozone Hole Particulate matter pollution
- Air pollution forecast Potential prediction methods Statistical methods Numerical methods Hybrid system

O2 PART

The current research status of pollution:

- Pollution emission inventories
- Health effect of pollution
- Air pollution assessment
- Control efficiency
- Early warning and prediction

Conclusions:

- Traditional artificial intelligence performance well than statistical methods, but next to the hybrid model
- The processed original series did better than unprocessed original series in terms of air pollution forecasting.
- It's proves that forecast better when considered the meteorological variables and the geographic factors etc..

A review of air pollution forecasting methods:

- Potential prediction methods
- Statistical prediction methods
- Three dimensional methods
- Hybrid methods

O3 PART

The construction of this paper

Air Pollution Assessment:

damaged the

In recent years, air pollution accidents have occurred frequently, which have

economy and human life. To assess the extent of the damage, air pollution control must be evaluated in order to have a quantitative understanding of pollution. Int. J. Environ. Res. Public

Health **2018**, 15, 780 6 of 44The assessment of air pollution is identify and measure the degree and scope of damage causedby environmental pollution cover the economic, legal, technical and other means reasonably [35–37].

Two of the more mature assessment methods will be described. The market value methodis a type of cost benefit analysis method. It uses the change of product yield and profit causedby the environmental quality change to measure the economic loss related to the environmental quality change. Environmental pollution and damage caused by air pollution can be prevented, restored, orreplaced by the existing environmental functions. Therefore, the cost of preventing, restoring, orreplacing the original functional protection facilities can be used to estimate the loss caused bypollution or damage to the environment. This method is called the engineering cost method. The main equation and the meaning of the variables in those methods are given in Table 1, andthe flowchart of the assessment methods is given in Figure 2. *Int. J. Environ. Res. Public Health* **2018**, *15*, x FOR PEER REVIEW 6 of 44.

Two of the more mature assessment methods will be described. The market value method is a typeof cost benefit analysis method. It uses the change of product yield and profit caused by theenvironmental quality change to measure the economic loss related to the environmental qualitychange.

Environmental pollution and damage caused by air pollution can be prevented, restored, orreplaced by the existing environmental functions. Therefore, the cost of preventing, restoring, orreplacing the original functional protection facilities can be used to estimate the loss caused bypollution or damage to the environment. This method is called the engineering cost method.

Air Pollution Early Warning and Forecast:

The most important function of air pollution early warning systems is to report the air quality torelevant departments when the air quality reaches the early warning standard. A complete pollution.

Warning system includes the pollutant, resource, and scope of influence [44]. Air quality forecasting is an effectiveway of protecting public health by providing an earlywarning against harmful air pollutants [9]. Urban air pollution events can be forecasted by meteorological elements to provide an early warning. Therefore, in the face of more and more urban air pollution incidents, in addition to risk prevention management and emergency measures, air pollution forecasts should also include the emergency warnings as an important part of the whole emergency system.

The early warning system for air pollution is triggered before the heavy pollution of urbanair, according to the forecast of meteorological elements. Corresponding emergency measures are initiated as early as possible to reduce the discharge of pollutants and mitigate the consequences.

Many countries have early warning systems for pollution. For example, the Air Quality Index (AQI)value is an index for the classification of the early warning level in China, and the early warning levelis determined according to the upper limit of the pollution forecast. Therefore, the forecasting of airpollution as the basis for pollution warning systems and pollution control should be highly valued by all countries.

The current research status of pollution

Health effect of pollution

- · Air pollution can affect sperm
- Air pollution will affect the development of infants and young children
- The risk of natural mortality was significantly increased in the air exposed to pollutants for a long time

Pollution emission inventories

El is a comprehensive list of various types of air pollutant • emission by various types of pollution sources in a given area, within a given time interval

Emission estimates formula: •

Emissions=Activity Level×Emission Factor×(1—Level of Control)

Air pollution assessment

The assessment method can be divided into four categories:

- 1.Whether can get the market price:yield variation method, alternative market prices
- 2.Ecological environment:opportunity cost method,land value method, replacement cost method,contingent value method
- 3.Air quality:cost effectiveness of prevention, preventive expenditure, substitution cost
- 4. Health effects:revenue loss, medical expense, cost of prevention

Early warning and forecast

The methods of air pollution forecast incluse potencial • statistical methods,numerical methods,artificial intelligence methods and hybrid methods

THE CURRENT RESURCH STATUS OF POLLUTION

TYPES OF PREDICTIVE MODELING TO FORECAST AIR QUALITY TRENDS:

Linear regression modeling (LM), Support vector regression (SVR), Artificial neural network (ANN), Decision tree (DT), Random forest (RF), Extreme gradient boosting tree (XGB)

Linear regression modeling (LM):

Air quality is predicted using the R squared value. R square determines the proportion of variance in the dependent variable of the system that can be explained by the independent variable. It is a statistical measure in a regression model. It is also called a coefficient of determination.

Support vector regression (SVR):

The is paper provides Support Vector Machine (SVM) model to forecast the quality of air with AQI for the upcoming 15 hours. The proposed model predicts the amount of pollutants such as PM 2.5, PM10, NO, NO2, NH3 and shows the better performance than linear prediction models when compared in terms of RMSE.

Artificial neural network (ANN):

Based on the analysis conducted, model with neural network structure 7-20-4 produces the best performance in the prediction of air quality compared to the first model based on the values of R and the prediction accuracy.

Decision tree (DT):

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks. It has a hierarchical, tree structure, which consists of a root node, branches, internal nodes and leaf nodes.

Random forest (RF):

In an urban sensing system, an algorithm (RAQ) based on a random forest concept is proposed to predict the urban area air quality through the use of historical air quality data, meteorology data, historical traffic and road status as well as POI distribution information

Extreme gradient boosting tree (XGB):

What is XGBoost? XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-boosted decision tree (GBDT) machine learning library. It provides parallel tree boosting and is the leading machine learning library for regression, classification, and ranking problems.

PROBLEM:

IP [1]:

This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory

For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os

```
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as outp ut when you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the curre nt session

IP [2]:

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns /opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >= 1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.5 warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"

IP [3]:

airqualitydatset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29531 entries, 0 to 29530
Data columns (total 16 columns):

OUTPUT:

#	Column	Non-Null Count Dtype				
0	City	29531 non-null object				
1	Date	29531 non-null object				
2	PM2.5	24933 non-null float64				
3	PM10	18391 non-null float64				
4	NO	25949 non-null float64				
5	NO2	25946 non-null float64				
6	NOx	25346 non-null float64				
7	NH3	19203 non-null float64				
8	CO	27472 non-null float64				
9	SO2	25677 non-null float64				
10	03	25509 non-null float64				
11 Benzene 23908 non-null float64						
12	2 Toluene	e 21490 non-null float64				
13 Xylene 11422 non-null float64						
14	l AQI	24850 non-null float64				
15 AQI_Bucket 24850 non-null object						
dtypes: float64(13), object(3)						
me	emory usa	age: 3.6+ MB				

IP [4]:

airqualitydatset["City"].unique()

OUTPUT:

array(['Ahmedabad', 'Aizawl', 'Amaravati', 'Amritsar', 'Bengaluru', 'Bhopal', 'Brajrajnagar', 'Chandigarh', 'Chennai', 'Coimbatore', 'Delhi', 'Ernakulam', 'Gurugram', 'Guwahati', 'Hyderabad', 'Jaipur', 'Jorapokhar', 'Kochi', 'Kolkata', 'Lucknow', 'Mumbai', 'Patna', 'Shillong', 'Talcher', 'Thiruvananthapuram', 'Visakhapatnam'], dtype=object)

IP [5]:

airqualitydatset = airqualitydatset.dropna() airqualitydatset # Dropped all null values in the Dataset as we could not average.

OUTPUT:															
	city	date	PM 2.5	PM 10	N O	N O2	N Ox	N H 3	С О	SO 2	О3	BEN ENE	TOLU ENE	A QI	AQI_B ucket
	0 Ahame dabad	2015. 01.01	Na n	NA n	12. 5	18. 22	17. 5	N a N	0.9	27. 64	133 .36	0.00	0.02	N a N	NaN
	1 Ahame dabad	2015. 01.02	Na n	Na n	15. 7	15. 69	16. 46	N a N	0.9 7	24. 55	34. 06	5.50	5.50	N a N	NaN
	2 Ahame dabad	2015. 01.03	Na n	Na n	17. 40	0.9	29. 70	N a N	17. 40	29. 07	30. 70	16.4 0	16.40	N a N	NaN
	3 Ahame dabad	2015. 01.04	Na n	Na n	1.7 0	0.9 7	17. 97	N a N	1.7 0	18. 59	36. 08	10.1 4	10.14	N a N	NaN
	4 Ahame dabad	2015. 01.05	Na n	Na n	22. 10	21. 42	37. 76	N a N	22. 10	39. 31	39. 31	18.8 9	18.89	N a N	NaN

IP [6] :

airqualitydatset.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 6236 entries, 2123 to 29529

OUTPUT:

Data columns (total 16 columns):
Column Non-Null Count Dtype

--- ----- -----

0	City	6236 non-null object				
1	Date	6236 non-null object				
2	PM2.5	6236 non-null float64				
3	PM10	6236 non-null float64				
4	NO	6236 non-null float64				
5	NO2	6236 non-null float64				
6	NOx	6236 non-null float64				
7	NH3	6236 non-null float64				
8	CO	6236 non-null float64				
9	SO2	6236 non-null float64				
10	O3	6236 non-null float64				
11	Benzene	e 6236 non-null float64				
12	Toluene	6236 non-null float64				
13	Xylene	6236 non-null float64				
14	AQI	6236 non-null float64				
15	AQI_Bu	cket 6236 non-null object				
dtypes: float64(13), object(3)						
		000 O . I/D				

memory usage: 828.2+ KB

IP [7]:

airqualitydatset.mean()

/tmp/ipykernel_20/855534917.py:1: FutureWarning: The default value of numeric_only in DataFra me.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_ only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silenc e this warning.

airqualitydatset.mean()

OUTPUT:

PM2.5 61.327365 PM10 123.418321 NO 17.015191 NO2 31.708190 NOx 32.448956 NH3 20.737070 CO 0.984344 SO2 11.514426 36.127691 O3 Benzene 3.700361 Toluene 10.323696 **Xylene** 2.557439 AQI 140.510103 dtype: float64

IP [8]:

airqualitydatset.max()

OUTPUT:

City Visakhapatnam Date 2020-07-01

PM2.5	639.19
PM10	796.88
NO	159.22
NO2	140.17
NOx	224.09
NH3	166.7
CO	16.23
SO2	70.39
O3	162.33
Benzene	64.44
Toluene	103.0
Xylene	125.18
AQI	677.0
AQI_Bucket	Very Poo

dtype: object

IP [9]:

airqualitydatset.min()

OUTPUT:

City	Amaravati
Date	2015-01-01
PM2.5	2.0
PM10	7.8
NO	0.25
NO2	0.17
NOx	0.17
NH3	0.12
CO	0.0
SO2	0.71
O3	1.55
Benzene	0.0
Toluene	0.0
Xylene	0.0
AQI	23.0
AQI_Bucke	et Good
dtype: obje	ect

IP [10]:

```
#mostreadingAQI.value_counts()
#mostreadingAQI = mostreadingAQI[['City', 'AQI_Bucket']]
#mostreadingAQIGood = mostreadingAQI.where(mostreadingAQI["City"] == "Amaravati")
#mostreadingAQI.dropna()
#mostreadingAQI = mostreadingAQI.where(mostreadingAQI["AQI_Bucket"] == "Good")
#mostreadingAQI
#mostreadingAQI
#mostreadingAQI["AQI_Bucket"].value_counts()
```

IP [11] :

```
mostreadingAQI = airqualitydatset[["City","AQI_Bucket"]]
mostreadingAQI.sort_values(['City'],inplace=True,ascending=True)
mostreadingAQI.groupby(['AQI_Bucket'])
mostreadingAQI
#mostreadingAQI.sort_values(['City'],inplace=True,ascending=True)
mostreadingAQI.value_counts(['City', 'AQI_Bucket'])
/tmp/ipykernel_20/565188966.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/i ndexing.html#returning-a-view-versus-a-copy

mostreadingAQI.sort_values(['City'],inplace=True,ascending=True)

OUTPUT:

City	AQI_ Bucket					
	Moderate 810					
	Satisfactory 645					
	am Moderat 555					
Satisfactory 438 Delhi Moderate 360						
	loderate 360					
Pod						
Ver	ry Poor 315					
Amaravatı	Satisfactory 305 Moderate 252					
Amnisar	iofostory 252					
Amarayati	isfactory 252 Moderate 191					
	Satisfactory 145					
Kolkata	Satisfactory 139					
Hyderahad	Good 126					
Delhi S	Good 126 evere 117					
Sat	isfactory 104					
Patna I	isfactory 104 Moderate 103					
Amaravati	Good 101					
	Moderate 97					
Kolkata	Good 95					
Мо	derate 87					
Pod	or 71					
Visakhapatna						
	Moderate 66					
Visakhapatna						
Amritsar	Poor 49					
Chandigarh	Good 48					
Chandigarh Amritsar Patna	Very Poor 47					
Patna I	Poor 42 Poor 41					
Amaravati Amritsar	Good 34					
Hyderabad	Satisfactory 31 Poor 30					
Gurugram	Satisfactory 20					
•	am Very Poor 18					
Chandigarh	Poor 15					
	/ery Poor 14					
Amaravati	Very Poor 8					
Hyderahad	Severe 1					

ry Poor 3	3
Very Poor	(
Very Poor	2
Severe	2
Poor	2
Severe	1
	Very Poor Very Poor Severe Poor

INDIA AIR QUALITY INFORMATION REANALYZED PM2.5 CONCENTRATIONS:

YEAR - 2015 TO 2020

India Air Quality Information - Reanalyzed PM_{2.5} Concentrations **Year 2016** Pollution Rank among 36 states/UTs 35 2 Uttar Prad Gujarat 26 3 Haryana 15 Mizoram 27 Manipur 4 Bihar 16 28 Tamilnadu 30 Punjab 18 30 Daman & Diu Trupura 19 20 32 33 Jharkhand 21 Chandigarh 22 34 Dadra & Nagar Haveli Madhya Pradesh 23 Arunachal Pradesh 12 Chhattisgarh 24 36 20 μ g/m³ 1 = most polluted; 36 = least polluted % India's area under various pollution bins 40% 5 to 20 **Bay of Bengal** Arabian Sea 35% 20 to 40 40 to 50 30% 50 to 60 25% 21.1% 60 to 80 10 20% 17.6% 80 to 100 16.3% 15% 100 to 200 11.9% Indian Ocean 9.8% 8.6% 10% 3.6% 85 95 2.9% 0% India Annual Standard = 40 μg/m³ 5-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 >100

* Map represents states and union territories from 2011 census and bifurcation of Andhra Pradesh. Map of Jammu & Kashmir includes Ladakh.

** Global historical reanalysis data as annual and monthly averages is accessible @ https://sites.wustl.edu/acag/datasets/surface-pm2-5

PM_{2.5} concentration bins (µg/m³)

URBAN emissions .info

YEAR - 2017

WHO Annual Guideline = 5 μg/m³

India Air Quality Information - Reanalyzed PM_{2.5} Concentrations Year 2017

India Air Quality Information - Reanalyzed PM_{2.5} Concentrations Year 2018

India Air Quality Information - Reanalyzed PM_{2.5} Concentrations Year 2019

TAMIL NADU AIR QUALITY INFORMATION – REANALYZED PM2.5 CONCENTRATION:

CUNCLUTION AND FUTURE WORK (PHASE 2):

Project conclution:

In the phase 2 coclution, we will summarize the key finding and insides from the advanced regression techniques. We will reiterate the impact of these techniques on improving the Air quality monitoring.