T1. Introducción a la Arquitectura de Computadores

FUNDAMENTOS DE ARQUITECTURA DE COMPUTADORES

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Antecedentes de la Informática

- Informática: ciencia y tecnología aplicada a la automatización del razonamiento y tratamiento de la información.
- Se consideran "raíces" de la Informática:
 - Desarrollo de métodos, herramientas y máquinas para facilitar la realización de cálculos de forma eficiente y precisa.
 - Sistematización del razonamiento, como paso previo a su automatización y a la búsqueda de modelos formales de cálculo.

Era Mecánica

- Charles Babagge y Ada Augusta Byron (Condesa de Lovelace) precursores de la computación moderna.
- Babagge (1792-1871) elaboró los principios de la computadora digital moderna.
 - La máquina de diferencias (1821)
 - (1991) Museo de Ciencias de Inglaterra, construyó la máquina, verificando el diseño realizado.
 - La Máquina Analítica (1835)
 - Controlada por una secuencia de instrucciones
 - Unidad de proceso y memoria central
 - Dispositivos de entrada y salida

Personajes relevantes

- 1848, 1854, George Boole
 - Postulados lógicos expresables en notación algebraica
- 1912 1954, Alan Turing
 - Tesis de Church-Turing
 - Maquina Enigma
 - Test de Turing (IA)
- 1903 1957 von Neumann
 - Arquitectura von Neumann
 - "ENIAC"
 - Mergesort
 - Proyecto Manhattan

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Unidades Funcionales Básicas

Arquitectura von Neumann

- Unidad central de procesamiento: controla el funcionamiento del computador y lleva a cabo sus funciones de procesamiento de datos.
- Memoria: almacena datos e instrucciones.
- E/S: transfiere datos entre el computador y su entorno.
- Sistema de interconexión: es un mecanismo que proporciona la comunicación entre la CPU, la memoria principal y la E/S.

Organización estructural

Organización estructural (2)

- Ventajas de una descripción en niveles:
 - Posibilidad de ensamblar bloques propios de un nivel para constituir bloques de un nivel de abstracción superior
 - Posibilidad de implementación de cada nivel de forma casi independiente de los demás niveles
 - En algunos casos, para optimizar un nivel habrá que saber exactamente qué existe en los niveles inferiores
 - Ej. El desarrollo de compiladores para los niveles superiores depende de la arquitectura concreta de los elementos hardware del computador
- Diferentes descripciones por niveles

Organización Estructural (3)

1. Nivel de componentes:

- Electrónica física. Componentes semiconductores.
- Diodos, transistores, resistencias, condensadores, etc.

2. Nivel de circuito electrónico:

- Puertas lógicas, biestables, osciladores, etc.,
- A partir de los componentes anteriores.

3. Nivel de circuito digital:

Dispositivos combinacionales y secuenciales.

4. Nivel TR o Transferencia entre Registros:

- Encaminado o transformado por circuitos combinacionales.
- Buses, registros, bloques combinacionales, memorias, etc.
- Se estudia el camino de datos y el control.

5. Nivel de instrucciones maquina:

- Programas en lenguaje maquina.
- También se incluye en la programación en ensamblador.

Organización Estructural (4)

6. Nivel del sistema operativo:

- Capa software con la que se rodea el hardware para facilitar su utilización.
- Uso de periféricos, gestión de memoria, etc.

7. Nivel de programas en lenguaje de alto nivel:

- Concepto de compilación.
- Traducir el lenguaje de alto nivel a un lenguaje de bajo nivel que la maquina pueda entender.
- El resultado de dicha traducción recibe el nombre de código objeto.

8. Aplicaciones:

Paquetes de programas de aplicación en ciencia o gestión.

Arquitectura de Computadores

- Se puede definir la arquitectura de computadores como el estudio de la estructura, funcionamiento y diseño de computadores.
- Conjunto de instrucciones, recursos y características del procesador que son visibles al software que se ejecuta en el mismo. Determina:
 - Software que el procesador puede ejecutar directamente
 - Especificaciones de la microarquitectura (hardware).
- Microarquitectura
 - Colección de recursos y métodos utilizados para satisfacer las especificaciones que establece la arquitectura:
 - Cómo se organizan los recursos
 - Técnicas utilizas para alcanzar coste y prestaciones
 - Determina la implementación lógica
- Implementación lógica
 - Satisface implementaciones de la microarquitectura
 - Determina la implementación física

Arquitectura de Computadores (2)

- La Arquitectura de Computadores abarca:
 - Las abstracciones de las interfaces entre hardware/software y usuario/sistema
 - La estructura y organización que permiten implementar dichas abstracciones, proporcionando prestaciones a costes razonables en la ejecución de los programas del computador.

Arquitectura Abstracta	A nivel de programador	
	A nivel de diseñador físico	
Arquitectura Concreta	Estructura	
	Organización o funcionamiento	
Diseño	Procedimientos de diseño	
	Software de diseño	
	Test	
Eficiencia	Prestaciones	
	Coste	

Arquitectura Concreta y Abstracta

- Arquitectura concreta (Implementación):
 - Describe los módulos que componen el nivel, y la forma en que están interconectados
- Arquitectura abstracta (Función): Especifica la operación (función) que realiza cada componente individual del nivel, como parte de la estructura.

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Evolución de los computadores

- Desde 1946 hasta la actualidad, la evolución de los computadores se suele agrupar en 4 ó 5 generaciones.
- Están caracterizadas por la tecnología empleada en los computadores construidos durante la misma.

	Primera	Segunda ,	Tercera	Cuarta
Años	1946-54	1955-63	1964-70	1971-
Tecnología (dispositivos y período de reloj)	Tubos de vacío Memorias de líneas de retardo ms	Transistores Memorias de núcleos de ferritas µs	C.I. (SSI y MSI) Memorias de C.I.	C.I. (LSI y VLSI) Memorias DRAM
Arquitectura y Estructura	Aritmética de punto fijo	Aritmética exponencial. Registros indices Procesadores de E/S	Microprogramación Memorias cachés Memoria Virtual	Microprocesadores Arquitecturas RISC y paralelas
Sistemas Operativos	sin S.O.	Monitores "batch"	Multiprogramación Multiprocesamiento	S.O. en red S.O. distribuidos
Computadores representativos	ENIAC, EDSAC: IAS: UNIVAC I IBM 702.650	IBM 1401, 1620, 7094 UNIVAC 1004 CDC 6600: PDP-1	IBM 360. 370 DEC PDP-8: UNIVAC 1100	Cray-1. DEC VAX. IBM-PC, MIPS, SPARC. RS-6000; HP 9000/750

Las Cuatro Generaciones

- 1ª generación: la describe ENIAC, y se caracteriza por el empleo de tubos de vacío y se programaban en lenguaje maquina
- 2ª generación (1955): Se distingue por el uso de transistores (inventados en 1948), y se programan en lenguajes de alto nivel
- 3ª generación (1965): Usan circuitos integrados (chips) y lenguajes de control de los sistemas operativos
- 4ª generación (1970): Microprocesadores. Socialización de la informática
- http://www.computersciencelab.com/ComputerHistory/Hist ory.htm

Primera generación: (1938-1952)

- Computadores basados en válvula de vacío que se programaron en lenguaje máquina o en lenguaje ensamblador
- Arquitectura Von-Neumann
- Computadores:
 - Colossus (2ª Guerra Mundial): 1er dispositivo de cálculo electrónico.
 - ENIAC (1946): 1^{er} computador electrónico de propósito general. 30 toneladas de peso y 140 m² de superficie.
 - UNIVAC ~ comercial (1951)

2^a generación: (1953-1962)

- Computadores de transistores: consumo, espacio, refrigeración.
 - 1947 En los laboratorios "Bell Telephone", Shockley, Bardeen y Brattain inventan el Transistor de puntas de contacto.
 - Consiguieron Nobel en 1956
- 1955 Silicon Valley en Palo Alto (California): HP, Shockley Transistor Corporation, Fairchild Semiconductor Corporation, Texas Instruments
- Lenguajes de alto nivel: FORTRAN, COBOL...
- Tarjetas perforadas
- Núcleos de ferrita: elementos básicos de memoria principal.
- Computadores:
 - IBM 650 (1954): 1º basado en tambores magnéticos.
 - IBM 7090 y 7094: aplicaciones científicas, con procesadores específicos de E/S.

3^a generación: (1963-1971)

- Computadores basados en circuitos integrados: Kilby y Noyce & Moore.
 - Más puertas lógicas en menos espacio, sin soldaduras entre ellas y con coste de producción barato.
 - Silicio como material semiconductor por sus propiedades:
 - Fácil oxidación, Pasivación.
 - Su oxido puede ser eliminado sin atacar al Si.
 - Escalas de integración: SSI (10-100 c/c) → GLSI (10^6 transitores)
- Posibilidad de trabajar en tiempo compartido.
- IBM 360

Cuarta generación: (1972-1987)

- Computadores que integran toda la CPU en un solo circuito integrado (microprocesadores).
- VLSI: "Muy Alta Escala de Integración":
 - Procesadores y memoria;
 - Capacidad y velocidad.
- Microcomputadores: Commodore, Spectrum, Amstrad, ...
- Computadoras personales (PC): Apple II (1976)
- Intel vs. Motorola

5^a Generación: Tecnología fabricación

- http://www.intel.com/technology /45nm/index.htm
- Penryn (Core 2 Duo): primer procesador con esta tecnología
- La fabricación a menor escala (45 -> 32 -> 22) implica más circuitos en un espacio de igual tamaño:
 - Optimización de circuitos existentes
 - Mayor espacio entre componentes
 - Menor calor y mayor velocidad de trabajo.

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

(R)Evolución del Hardware

- La evolución de los computadores caracterizada por:
 - Incremento de la velocidad del procesador,
 - Disminución del tamaño de los componentes,
 - Aumento del tamaño y ancho de banda de la memoria
 - Aumento de la capacidad y velocidad de los dispositivos de E/S.
- La ganancia de rendimiento inicial era básicamente debido a mejoras tecnológicas.

Ley de Moore en Circuitos Integrados

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Escalón entre CPU y Memoria

- Existe un salto importante entre el rendimiento de la memoria y el procesador.
- Diferentes tecnologías han tratado de minimizar este impacto, aumentando la velocidad de trasferencia de datos.

Importancia de la Arquitectura

- La verdadera ganancia en velocidad actualmente se debe:
 - Organización del procesador,
 - Fuerte uso del encauzamiento y técnicas de ejecución paralela,
 - Uso de técnicas de ejecución especulativa.
- Máxima ocupación del procesador → máximo rendimiento.
- Estas técnicas se estudiarán en el siguiente tema.

Importancia de la Arquitectura (2)

- Aplicación de los conocimientos de Arquitectura de Computadores. Dado un problema con su correspondiente aplicación:
 - Ser capaces de determinar si será posible su ejecución en una arquitectura
 - Buscar estrategias de optimización de código para optimizar la ejecución
 - Poder decidir entre varias posibles arquitecturas evaluando sus componentes

Hitos en la evolución hardware

Fecha	Hito
1897	Primer tubo electrónico (de rayos catódicos).
1904	Diodo de vacío (llamado válvula de vacío), que reemplaza a los relés electromecánicos (relés telefónicos) y como dispositivo biestable (con dos estados).
1906	Diodos de silicio (semiconductores). Se construye el triodo (equivalente al transistor pero en válvula de vacío).
1929	Tiratron, comienzo de la electrónica de potencia.
1947	Transistor , que sustituyó a la válvula de vacío por su mayor fiabilidad, su menor tamaño y su menor coste.
1950	Transistor bipolar.
1955	Tiristor.
1958	Circuito integrado, usándose en un principio para chips de memoria.
1961	Comercialización de los circuitos integrados por <i>Texas Instruments</i> y <i>Fairchild</i> , con una pequeña escala de integración (SSI), menos de 10 componentes.
1962	MOSFET.
1966	Integración a mediana escala (MSI), más de 10 componentes y menos de 100.
1969	Integración a gran escala (LSI), más de 100 componentes y menos de 1000.

Hitos en la evolución hardware (2)

Fecha	Hito		
1971	Primer microprocesador (en un circuito integrado todo el procesador de una computadora), lo realizaron los ingenieros Ted Hoff y Federico Faggin en Intel y fue el 4004, de 4 bits y 275 transistores.		
1975	Integración a muy gran escala (VLSI), más de 1000 componentes.		
1999	Chip molecular, basado en moléculas de rotaxano, que harían las funciones de los transistores. Fuente: MIT News		

Panorama actual

- Paralelismo y supercomputadores (computadores de petaescala – 1015 operaciones por segundo).
 - Lista actualizada: http://www.top500.org.
- Computación:
 - Ubicua: varios computadores a disposición de una persona.
 - Embebida: parte de otro dispositivo mecánico.
- Cloud Computing
 - Servicios de computación a través de la red.
- Sistemas bioinspirados
 - Ejemplos: Redes Neuronales Artificiales, Sistemas Difusos y Computación Evolutiva.
- Nuevas generaciones de chips: moleculares, tamaño atómico, y cuánticos.

Nuevas Tendencias: Comp. Cuántica

- Avance en capacidad de cómputo:
 - Proviene principalmente de la mayor integración de componentes en los microchips.
- Límites
 - La miniaturización está llegando a los límites físicos.
 - Se produce el "Efecto túnel".
- Dualidad onda-partícula
 - A escalas nanométricas las partículas presentan propiedades de ondas.

Nuevas tendencias: Comp. cuántica(2)

Particle Particle Particle CLASSICAL PHYSICS Wave Wave is reflected by the Wall ... but some portion can go through the Wall

TUNNEL EFFECT 2

Nuevas tendencias: Comp. cuántica(3)

- Qubit (Quantum Bit)
 - Espacio de estados: {0, 1}
 - Superposición cuántica:
 - El qubit puede estar en ambos estados a la vez. (Gato)
- Las puertas lógicas cuánticas se aplican sobre ambos estados a la vez.
- Los algoritmos cuánticos se ejecutan sobre todos los estados a la vez.
- ¿Sabíais que tan sólo 30 qubits tienen una capacidad de cómputo de 10 teraflops?
 - Una PlayStation 3 alcanza los muy respetables 2.18 teraflops.

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Bibliografía

- Introducción a la Informática
 Capítulo 20: Evolución histórica y desarrollo de la informática.
 Alberto Prieto, Antonio I Joris y Juan Carlos Torres
 - Alberto Prieto, Antonio Lloris y Juan Carlos Torres (2006), McGraw Hill, ISBN 8448146247
- Historia de la Informática Sonia Lurueña Jiménez, Departamento de Matemática Aplicada, Universidad Politécnica de Madrid.

Recurso online:

http://www.dma.eui.upm.es/historia_informatica/Doc/principal.htm

Contenido del capítulo

- Antecedentes de la Informática
- Introducción a la Informática
- Breve Historia de los Ordenadores
- Evolución del Hardware
- Bibliografía
- Actividades

Actividades

- Prepara un pequeño trabajo (5 páginas bastarán) en equipo (hasta 5 personas) sobre:
 - Inicios de la informática
 - Personajes influyentes en la historia de la informática.
 - Fabricación de circuitos integrados
 - Evolución software en informática