Supplemental Information

Assessment of enzyme diversity in the fermented food microbiome

Peng Li^{1,#}, Jingyu Sun^{1,#}, Yu Geng¹, Yiru Jiang¹, Yue-zhong Li^{1,*}, Zheng Zhang^{1,*}

¹ State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China

[#] These authors contributed equally: Peng Li, Jingyu Sun.

* Address correspondence to Yue-zhong Li (E-mail: lilab@sdu.edu.cn, ORCID: 0000-0001-8336-6638) or Zheng Zhang (E-mail: zhangzheng@sdu.edu.cn, ORCID: 0000-0001-9971-6006)

This PDF file includes the following:

Figures S1-S6

Legends for Data S1-S4

Other supplementary materials for this manuscript include the following:

Data S1-S4

Figure S1: Sources of fermented food metagenome-assembled genomes (MAGs) and validation of enzyme annotation methods.

- (A) Distribution of MAGs across different sample sources and food categories (n = number of MAGs).
- **(B)** Error rates of EC assignment for enzyme cluster level and sequence level under varying protein clustering thresholds.
- (C, D) Performance comparison of CLEAN, FEDKEA, and ProTrek for annotating 472,428 representative sequences of protein clusters.

Figure S2: Distribution of enzyme cluster diversity and novelty across enzyme classes.

- (A) Total cluster/sequence counts and median size per four-digit EC number within primary enzyme categories.
- **(B)** Cluster size distribution by novelty status (known vs. novel) (n = number of enzyme clusters).
- (C) Cluster size distribution stratified by primary EC category and novelty status (n = number of enzyme clusters). Statistical significance was assessed using the Wilcoxon rank-sum test. NS, P > 0.05; * $P \le 0.05$; ** $P \le 0.01$; *** $P \le 0.001$; *** $P \le 0.0001$.

Figure S3: Taxonomic distribution of known and novel enzyme clusters and their relationship with genome size.

- **(A)** Number of known and novel enzyme clusters in bacteria and fungi (n = number of enzyme clusters).
- **(B)** Enzyme coding density of MAGs in bacteria and fungi (n = number of enzyme clusters).
- **(C)** Correlation between genome size (bp) of each MAG and the type of enzyme cluster encoded.
- (D) Difference in the number of known or novel MAGs assigned to different species.
- (E) Difference in the number of known or novel MAGs assigned to different species for different primary EC categories (n = number of enzyme clusters). Statistical significance was assessed using the Wilcoxon rank-sum test. NS, P > 0.05; * $P \le 0.05$; ** $P \le 0.01$; *** $P \le 0.001$; **** $P \le 0.0001$.

Figure S4: Characterization of known and novel enzyme clusters.

- **(A)** Number of novel enzyme clusters in the biosynthetic pathways of lipids, sugars, terpenes and other secondary metabolisms.
- **(B)** Predicted optimum pH of glycosidic bond, peptide bond and ester bond hydrolases (n = number of enzyme clusters).
- (C) Predicted optimum temperature of glycosidic bond, peptide bond and ester bond hydrolases (n = number of enzyme clusters). Statistical significance was assessed using the Wilcoxon rank-sum test. NS, P > 0.05; * $P \le 0.05$; ** $P \le 0.01$; **** $P \le 0.001$.

Figure S5: Distribution of microbial enzymes across food categories.

- (A) Category distribution of known and novel enzyme clusters in different niche groups (n = number of enzyme clusters).
- (B) Correlation between MAGs and the type of enzyme cluster encoded within samples.
- **(C)** Correlation between Shannon index and the type of enzyme cluster encoded within samples.

Figure S6: Model performance and variable importance of random forest classification.

- **(A)** Evaluation of the predictive ability of a classifier for food matrix types constructed via the random forest model.
- **(B)** Receiver operating characteristic (ROC) curve area under the curve (AUC) of 0.986 (hand-till method), indicating the relative reliability of the model.
- **(C)** List of model variable importance, classified according to the first level of the number of ECs.

Supplementary Data

- Data S1. Information on clusters identified as enzymes.
- **Data S2.** Information on the identification of 3,017 different types of enzymes.
- **Data S3.** Information on the sequence diversity of each enzyme within individual samples.
- Data S4. List of variable importance in the machine learning model.