The calculus of p-variation

May 15, 2014

- PP[a, b] the set of all point partitions of [a, b] (def. 1.1).
- $s_p(f;\kappa)$ p-variation sum (def. 1.2).
- $v_p(f)$ p-variation of the function f (def. 1.2).
- $MP_p(f, [a, b])$ the set of meaningful partitions (def. 1.2).
- PM[a, b] a set of piecewise monotone functions (def. 1.6).
- CPM[a, b] a set of continuous piecewise monotone functions (def. 1.6).
- K(f, [a, b]) minimal size of PM partitions (prop. 1.7).
- X(f, [a, b]) the set of PM partitions with minimal size (def. 1.8).
- $\overline{BP}(f, [a, b])$ the set of break points (definition 1.25).
- $\overline{BP}(f,(a,b))$ the set of inner break points (def. 1.25).
- BP(f, [a, b]) the set of partitions that contains only break points (def. 1.25).
- BP(f,(a,b)) the set of partitions that contains only break points, but excludes the partition $\{a,b\}$. (def. 1.25).
- $\overline{MB}_p(f,[a,b])$ the set of meaningfully break points (def. 1.27).
- $MB_p(f, [a, b])$ the set of partitions that contains only meaningfully break points (def. 1.27).

1 Mathematical analysis

1.1 General known properties

Definition 1.1 (Partition). Let J = [a, b] be a closed interval of real numbers with $-\infty < a \le b < +\infty$. If a < b, an ordered set $\kappa = \{x_i\}_{i=0}^n$ of points in [a, b] such that a $a = x_0 < x_1 < x_2 < ... < x_n = b$ is called a *(point) partition*. The size of the partition is denoted $|\kappa| := \#\kappa - 1 = n$. The set of all point partitions of [a, b] is denoted by PP[a, b].

Definition 1.2 (p-variation). Let $f:[a,b] \to \mathbb{R}$ be a real function from an interval [a,b]. If a < b, for $\kappa = \{x_i\}_{i=0}^n \in PP[a,b]$ the *p-variation sum* is

$$s_p(f,\kappa) := \sum_{i=1}^n |f(x_i) - f(x_{i-1})|^p, \tag{1.1}$$

where 0 . Thus, the*p*-variation of <math>f over [a, b] is 0 if a = b and otherwise

$$v_p(f) = v_p(f, [a, b]) := \sup \{ s_p(f, \kappa) : \kappa \in PP[a, b] \}.$$
 (1.2)

The partition κ is called *meaningful* (in the content of *p*-variation) if it satisfies the property $v_p(f) = s_p(f, \kappa)$. The set of such partitions is denoted $MP_p(f, [a, b])$.

Lemma 1.3 (Elementary properties). Let $f : [a, b] \to \mathbb{R}$ and 0 . Then the following*p*-variation properties holds

- a) $v_p(f, [a, b]) \ge 0$,
- b) $v_p(f, [a, b]) = 0 \Leftrightarrow f \equiv Const.,$
- c) $\forall C \in \mathbb{R} : v_p(f + C, [a, b]) = v_p(f, [a, b]),$
- d) $\forall C \in \mathbb{R} : v_p(Cf, [a, b]) = C^p v_p(f, [a, b]),$
- e) $\forall c \in [a, b] : v_p(f, [a, b]) \ge v_p(f, [a, c]) + v_p(f, [c, b]),$
- f) $\forall [a', b'] \subset [a, b] : v_p(f, [a, b]) \ge v_p(f, [a', b']).$
- g) $\forall \kappa \in PP[a, b] : s_p(f; \kappa) \le v_p(f, [a, b]).$

All listed properties are elementary derived directly form the p-variation definition.

Definition 1.4 (Regulated function). ([1], Def. 3.1) For any interval J, which may be open or closed at either end, bound or unbound, real function f is called *regulated* on J if it has left and right limits f(x-) and f(x+) respectively at each point x in interior of J, a right limit at the left end point and a left limit at the right endpoint.

Proposition 1.5. ([1], Lemma 3.1) Let $1 \le p < \infty$. If f is regulated then $v_p(f)$ remains the same if points x+, x- are allowed as partition points x_i in the definition 1.2.

Definition 1.6 (Piecewise monotone functions). ([1], Def. 3.2) A regulated real-valued function f on closed interval [a, b] will be called *piecewise monotone* (PM) if there are points $a = x_0 < \cdots < x_k = b$ for some finite k such that f is monotone on each interval $[x_{j-1}, x_j], j = 1, \ldots, k$. Here for $j = 1, \ldots, k - 1, x_j$ may be point x- or x+. The set of all piecewise monotone functions is denoted PM = PM[a, b].

In addition to PM, if f is continuous function we will call it continuous piecewise monotone(CPM). The set of such functions is denoted CPM = CPM[a, b].

Proposition 1.7. ([1], Prop. 3.1) If f is PM, there is a minimal size of partition $|\kappa|$ for which the definition 1.6 holds. The minimal size of the the PM partition is denoted K(f, [a, b]) = K(f), namely

$$K(f) := \min \{ n : \exists \{x_i\}_{i=0}^n \in PP[a, b] : f \text{ is monotonic in each } [x_{j-1}, x_j] \}.$$
 (1.3)

Definition 1.8 (The set of PM partitions with minimal size). ([1], Def. 3.3) If f is PM, let X(f) = X(f, [a, b]) be the set of all $\{x_i\}_{i=0}^{K(f)}$ for which the definition of PM (def. 1.6) holds. X(f) is called the set of PM partitions with minimal size.

Proposition 1.9. ([1], Prop. 3.3) Let f is PM then the numbers $\alpha_j(f) := f(x_j) - f(x_{j-1})$ for $\{x_j\}_{j=0}^{K(f)} \in X(f)$ and j = 1, 2, ..., K(f) are uniquely determined.

Definition 1.10 (The equality by PM). ([1], Def. 3.4) If f, g are two PM functions, possibly on different intervals, such that K(f) = K(g) and $\alpha_j(f) = \alpha_j(g)$ for j = 1, 2, ..., K(f), then we say that $f \stackrel{PM}{=} g$.

Proposition 1.11. ([1], Cor. 3.1) Let p > 1 and functions f and g are PM. If $f \stackrel{PM}{=} g$ or $f \stackrel{PM}{=} -g$, then $v_p(f) = v_p(g)$.

Proposition 1.12. ([1], Them. 3.1) Let f is PM, $\kappa \in X(f)$ and $1 \le p < \infty$. Then the supremum of p-variation in Definition 1.2 is attained for some partition $r \subset \kappa$.

Corollary 1.13. The set $MP_p(f, [a, b])$ is not empty for all $f \in PM[a, b]$.

Definition 1.14 (Partial sum). Let X_1, X_2, \ldots, X_n be any real-value sequence. The *partial sum* of the first j terms is defined by

$$S_j := \sum_{i=1}^{j} X_i, \ j = 1, 2, \dots, n.$$
 (1.4)

In addition, lets denote $S_0 = 0$.

Definition 1.15 (Sample function). Suppose $X = \{X_i\}_{i=0}^n$ is any real-value sequence. We will call such sequence a *sample*, whereas n will be referred to as a *sample size*. Then the *sample function* $G_X : [0, n] \to \mathbb{R}$ is defined as

$$G_X(t) := X_{|t|}, \ t \in [0, n].$$
 (1.5)

Definition 1.16 (p-variation of the sequence). Let $X = \{X_i\}_{i=0}^n$. The p-variation of the sample X is defined as p-variation of the function $G_X(t)$, namely

$$v_p(X) := v_p(G_X(t), [0, n]).$$
 (1.6)

Definition 1.17 (Piecewise linear function). Let $X = \{X_i\}_{i=0}^n$ be any real-value sequence. The function $L_X : [0, n] \to \mathbb{R}$ is defined as

$$L_X(t) := (1 + \lfloor t \rfloor - t) X_{\lfloor t \rfloor} + (t - \lfloor t \rfloor) X_{\lfloor t \rfloor + 1}, \ t \in [0, n]$$

$$(1.7)$$

is called *piecewise linear function*.

1.2 General properties with proofs

Proposition 1.18. For all $f \in PM$ exists $g \in CPM$ such that $f \stackrel{PM}{=} g$.

Proof. Let f be PM. According to Proposition 1.9 the numbers $\alpha_j(f) := f(x_j) - f(x_{j-1}), j = 1, 2, ..., K(f)$ are uniquely determined. Then, the partial sums of the sequence $\alpha_j(f)$ are

$$S_j := \sum_{i=1}^j \alpha_i(f). \tag{1.8}$$

Lets connect points S_j by piecewise linear function (def. 1.17), namely

$$L_S(t) := (1 + \lfloor t \rfloor - t) S_{\lfloor t \rfloor} + (t - \lfloor t \rfloor) S_{\lfloor t \rfloor + 1}, \ t \in [0, K(f)]$$
 (1.9)

Function L_S is CPM. In addition, It is straight forward to see that

$$\alpha_j(L_S) = S_j - S_{j-1} = \alpha_j(f),$$
(1.10)

hence, by Definition 1.10 $f \stackrel{PM}{=} L_S$.

Corollary 1.19. Similar argument could be used to show that

$$G_X(t) \stackrel{PM}{=} L_X(t). \tag{1.11}$$

Therefore, according to Proposition 1.11, if p > 1 then

$$v_p(X) := v_p(G_X(t), [0, n]) = v_p(L_X(t), [0, n])$$
(1.12)

Proposition 1.20. Suppose $f:[a,b]\to\mathbb{R}$ is CPM. Let $\{x_i\}_{i=0}^n\in PP[a,b]$ be any partition of interval [a,b]. Then the proposition

$$\exists \kappa \in MP_p(f, [a, b]) : \forall i, x_i \in \kappa \tag{1.13}$$

is equivalent to

$$v_p(f, [a, b]) = \sum_{i=1}^n v_p(f, [x_{i-1}, x_i]).$$
(1.14)

Proof. Necessary. Let $f:[a,b]\to\mathbb{R}$ be $CPM,\,\{x_i\}_{i=0}^n\in PP[a,b]$ and

$$\exists \kappa \in MP_p(f, [a, b]) : \forall i, x_i \in \kappa. \tag{1.15}$$

Points from the partition κ will be denoted t_i , i.e. $\kappa = \{t_i\}_{i=0}^m$. Then, according to definitions of MP_p and p-variation (def. 1.2) the following equation holds

$$v_p(f, [a, b]) = s_p(f; \kappa) = \sum_{i=1}^{|\kappa|} |f(t_{i-1}) - f(t_i)|^p = \sum_{i=1}^n \sum_{j=h(i-1)+1}^{h(i)} |f(t_{j-1}) - f(t_j)|^p,$$
(1.16)

where $h: \{0, 1, ..., n\} \to \{0, 1, ..., m\}$ denotes a function from the set of index of x to the set of index of t, namely:

$$h(i) := (j_i : x_i = t_{j_i} = t_{h(i)}). (1.17)$$

The equation (1.16) holds, because it's just a rearranged sum.

Moreover, the inequality

$$\sum_{j=h(i-1)+1}^{h(i)} |f(t_{j-1}) - f(t_j)|^p \le v_p(f, [x_{i-1}, x_i])$$
(1.18)

holds according to Lemma 1.3(g).

As a result of (1.16) and (1.18) we get

$$v_p(f, [a, b]) \le \sum_{i=1}^n v_p(f, [x_{i-1}, x_i]).$$
 (1.19)

On the other hand, according to the same Lemma 1.3(g) the following inequality holds

$$v_p(f, [a, b]) \ge \sum_{i=1}^n v_p(f, [x_{i-1}, x_i]).$$
 (1.20)

Finally, from the (1.19) and (1.20) follows

$$v_p(f, [a, b]) = \sum_{i=1}^n v_p(f, [x_{i-1}, x_i]).$$
(1.21)

Sufficiency. Suppose $f:[a,b]\to\mathbb{R}$ is CPM and

$$v_p(f, [a, b]) = \sum_{i=1}^n v_p(f, [x_{i-1}, x_i]).$$
 (1.22)

Lets take any partition from each of the sets $MP_p(f, [x_{i-1}, x_i])$, $i = 1, \ldots, n$ and denote it κ_i . Then, let define a joint partition $\kappa := \bigcup_{i=1}^n \kappa_i$. Points from the partition κ will be denoted by t_i . In addition, we will use the function h, which is defined in (1.17). Then, continuing the equation (1.22) we get

$$v_p(f, [a, b]) = \sum_{i=1}^n \sum_{j=h(i-1)+1}^{h(i)} |f(t_{j-1}) - f(t_j)|^p = \sum_{i=1}^{|\kappa|} |f(t_{i-1}) - f(t_i)|^p. \quad (1.23)$$

This means that $\kappa \in MP_p(f, [a, b])$. Moreover, $\forall i : x_i \in \kappa$, because $\kappa = \bigcup_{i=1}^n \kappa_i$.

1.3 Meaningful break points

Definition 1.21 (Lexicographical order). Suppose f is CPM. Let κ and r denotes two partitions with minimal size, namely $\kappa = \{x_j\}_{j=0}^{K(f)} \in X(f)$ and $r = \{y_j\}_{j=0}^{K(f)} \in X(f)$. Then partitions κ and r could be compare using lexicographical order, namely we will say that $\kappa \succ r$, if

- $\exists j: x_j > y_j$; and
- $\forall i < j : x_i = y_i$.

We will say $\kappa = r$ if $\forall j : x_j = y_j$.

We will say $\kappa \succeq r$ if $\kappa \succ r$ or $\kappa = r$.

Proposition 1.22. Binary relation \succeq is a total order, i.e. the relationship is transitive, antisymmetric and total.

Proof. Need reference ...

Proposition 1.23. Let $f:[a,b]\to\mathbb{R}$ is CPM. Then there is a partition κ_f such that

$$\forall r \in X(f) : \kappa_f \succeq r. \tag{1.24}$$

Proof. Firstly, we will construct κ_f , latter, we will proof that the property (1.24) holds.

Suppose, $f:[a,b]\to\mathbb{R}$ is CPM. Let denote

$$x_1 := \sup \{x \in [a, b] : |f(y_1) - f(a)| \le |f(y_2) - f(a)|, \forall a \le y_1 < y_2 \le x\}.$$

Other x_i , i = 2, ..., K(f) will be defined by induction. Suppose x_{i-1} is defined and $x_{i-1} < b$, then

$$x_i := \sup \{x \in [x_{i-1}, b] : |f(y_1) - f(x_{i-1})| \le |f(y_2) - f(x_{i-1})|, \forall x_{i-1} \le y_1 < y_2 \le x \}.$$

According condition used in the definition of x_i , all (x_{i-1}, x_i) , i = 1, ..., K(f) are monotonic intervals.

In addition, points x_i have the greatest values, that satisfies the condition. Therefore, if the values x_i would increased, the condition would no longer be valid, i.e.

$$\forall i, \exists \delta : |f(x_i) - f(x_{i-1})| > |f(x_i + \varepsilon) - f(x_{i-1})|, \text{ if } \varepsilon \in (0, \delta). \tag{1.25}$$

We will show that $\kappa_f := \{x_i\}_{i=1}^n$ satisfies the condition (1.24). Suppose to the contrary that

$$\exists r = \{t_i\}_{i=1}^n \in X(f) : r \succ \kappa_s. \tag{1.26}$$

According to Definition of \succ we get

$$\exists j : t_j > x_j, \text{ and } t_i = x_i, \text{ if } i < j.$$
 (1.27)

Since $r \in X(f)$, the intervals $[t_{j-1}, t_j]$ are monotonic intervals, i.e.

$$|f(y_1) - f(t_{j-1})| \le |f(y_2) - f(t_{j-1})|,$$
 (1.28)

if $t_{j-1} \le y_1 < y_2 \le t_j$. But (1.28) contradicts (1.25), then $y_1 = x_j$ and $y_2 = x_j + \varepsilon$.

Lemma 1.24. Suppose $f:[a,b]\to\mathbb{R}$ is CPM and $\kappa_f=\{x_i\}_{i=1}^{K(f)}$ is the partition from (1.24). Then, for all $x_i, i=1,\ldots,K(f)-1$, the following proposition holds

$$\forall \varepsilon > 0 : f \text{ is not a constant in } [x_i, x_i + \varepsilon].$$
 (1.29)

Proof. Suppose $f:[a,b] \to \mathbb{R}$ is CPM and $\kappa_f = \{x_i\}_{i=1}^{K(f)}$ is the partition from (1.24). Suppose to the contrary, that exists x_j and $\varepsilon > 0$ such that f is not a constant in $[x_j, x_j + \varepsilon]$. Since f is constant in $[x_j, x_j + \varepsilon]$, the point $x_j + \varepsilon$ is also the end of monotone interval (def. 1.6).

Lets define the partition $\{y_i\}_{i=1}^{K(f)} \in X(f)$, which is

$$y_i := \begin{cases} x_i &, \text{ if } j \neq i \\ x_i + \varepsilon &, \text{ if } j = i \end{cases}$$
 (1.30)

where $\varepsilon \in (0, x_{j+1} - x_j)$.

It is straight forward to see that $\{y_i\}_{i=1}^{K(f)} \succ \kappa_f$, since $y_j > x_j$ and $y_i = x_i, i < j$. This contradict the definition of κ_f .

Definition 1.25 (Break points). Let κ_f be a partition form Proposition 1.23. The points $x_j \in \kappa_f$ will be called *break points* and the set of such points are denoted $\overline{BP}(f, [a, b])$, which is non empty and finite. The set of partitions that contains only break points are denoted BP(f, [a, b]), i.e.

$$BP(f) = BP(f, [a, b]) := \left\{ \kappa \in PP[a, b] : \kappa \subset \overline{BP}(f, [a, b]) \right\}. \tag{1.31}$$

BP(f, [a, b]) is also non empty and finite.

For the convenience let define the subsets of the sets \overline{BP} and BP that excludes the ends of the interval, namely

$$\overline{BP}(f,(a,b)) := \overline{BP}(f,[a,b]) \setminus \{a,b\}, \tag{1.32}$$

$$BP(f,(a,b)) := BP(f,[a,b]) \setminus \{\{a,b\}\}.$$
 (1.33)

Proposition 1.26. Let f is CPM function defined in [a, b] and $1 \le p < \infty$. Then the p-variations could be expressed as

$$v_p(f) = v_p(f, [a, b]) = \max\{s_p(f; \kappa) : \kappa \in BP(f, [a, b])\}.$$
 (1.34)

Proof. This result follows directly from the Proposition 1.12.

Definition 1.27 (Meaningfull break points). Suppose f is CPM and $1 \le p < \infty$. Let denote the set of partitions of meaningful break (points)

$$MB_p(f) = MB_p(f, [a, b]) := MP_p(f, [a, b]) \cap BP(f, [a, b]).$$
 (1.35)

The set $MB_p(f, [a, b])$ is not empty according to Proposition 1.26.

The point x will be called meaningful break if $\exists \kappa \in MB_p(f) : x \in \kappa$. The set of such points are denoted $\overline{MB}_p(f) = \overline{MB}_p(f, [a, b])$. The point a is called meaningless if $a \notin \overline{MB}_p(f, [a, b])$.

Lemma 1.28. Let $\{x_i\}_{i=0}^n \subset \kappa \in MB_p(f,[a,b])$, then

$$\forall i, j : v_p(f, [x_i, x_j]) = \sum_{k=i+1}^{j} v_p(f, [x_{k-1}, x_k]), \ 0 \le i < j \le n.$$
 (1.36)

Proof. Suppose $\{x_i\}_{i=0}^n \subset \kappa \in MB_p(f, [a, b])$. Let choose i and j such that $0 \leq i < j \leq n$. Because $MB_p \subset MP_p$, we can apply Proposition 1.20 for the partition $\{x_0, x_i, x_{i+1}, \dots, x_{j-1}, x_j, x_n\}$. Thus,

$$v_p(f, [a, b]) = v_p(f, [x_0, x_i]) + \sum_{k=i+1}^{j} v_p(f, [x_{k-1}, x_k]) + v_p(f, [x_j, x_n]). \quad (1.37)$$

In addition, we can apply the same proposition for the partition $\{x_0, x_i, x_j, x_n\}$, then

$$v_p(f, [a, b]) = v_p(f, [x_0, x_i]) + v_p(f, [x_i, x_j]) + v_p(f, [x_j, x_n]).$$
 (1.38)

By subtracting one equation form the other we get the result that

$$v_p(f, [x_i, x_j]) = \sum_{k=i+1}^{j} v_p(f, [x_{k-1}, x_k]).$$
 (1.39)

Proposition 1.29. Suppose $f:[a,b]\to\mathbb{R}$ is CPM. Then

$$\exists \kappa_{ab} \in MB_p(f, [a, b]) : \forall \kappa \in MB_p(f, [a, b])[|\kappa_{ab}| \ge |\kappa|]. \tag{1.40}$$

Proof. Suppose f is CPM, then $\forall \kappa \in BP(f) : |\kappa| \leq K(f)$. Since $MB_p(f) \subset BP(f)$, then $\forall \kappa \in MP_p(f) : |\kappa| \leq K(f)$. Therefore, the size of partitions from $MP_p(f)$ are bounded. As a result the size of the partition $|\kappa|$ is bounded natural number, whereas such set has the larges element.

Definition 1.30. The set of partitions κ_{ab} which satisfies 1.40 will be denoted $MB_p^m(f, [a, b]) = MB_p^m(f)$. This set is non empty according to Proposition 1.29.

In addition it could be shown (see Proposition 1.45) that the set $MB_p^m(f)$ has exactly one element and

$$\forall \kappa \in MB_p(f) : \kappa \subset \kappa_{ab} \in MB_p^m(f) \tag{1.41}$$

Lemma 1.31. Let f is CMD. Then $\{a,b\} \in MB_p^m(f,[a,b])$ if and only if

$$\forall \kappa \in BP(f,(a,b)) : v_p(f,[a,b]) > s_p(f,\kappa).$$

Here the BP(f,(a,b)) is the set of partitions of break points excluding $\{a,b\}$ (see def. 1.33).

Proof. Necessary. Let assume on the contrary that $\{a,b\} \in MP_p^m(f,[a,b])$, but

$$\exists \kappa \in BP(f, (a, b)) : v_p(f, [a, b]) = s_p(f, \kappa).$$

The partition $\kappa \in BP(f,(a,b))$ must have more points then the end of the intervals a and b, because if $\kappa = \{a,b\}$ then it contradicts to the definition of BP(f,(a,b)). Therefore, $|\kappa| > |\{a,b\}|$, but this contradicts to assumptions that $\{a,b\} \in MP_p^m(f,[a,b])$.

Sufficiency. Suppose

$$\forall \kappa \in BP(f, (a, b)) : v_p(f, [a, b]) > s_p(f, \kappa). \tag{1.42}$$

According to Proposition 1.26, the *p*-variation is achieved in the set BP(f, [a, b]), therefore, from the (1.42) follows that $\{a, b\}$ is the partition of meaningful break points, i.e. $\{a, b\} \in MP_p(f, [a, b])$. In addition, this partition is the only one, therefore it is the biggest partition, thus $\{a, b\} \in MP_p^m(f, [a, b])$.

Lemma 1.32. Let $f:[a,b]\to\mathbb{R}$ be CPM. Suppose $\{x_i\}_{i=0}^n\in MB_p^m(f,[a,b])$. Then

$$\forall i \in \{1, 2, \dots, n\} : \{x_{i-1}, x_i\} \in MB_p^m(f, [x_{i-1}, x_i]). \tag{1.43}$$

Proof. Suppose to the contrary that

$$\exists j \in \{1, 2, \dots, n\} : \{x_{j-1}, x_j\} \notin MB_p^m(f, [x_{j-1}, x_j]). \tag{1.44}$$

Then, according to Lemma 1.31

$$\exists \kappa \in BP(f, (x_{i-1}, x_i)) : v_p(f, [x_{i-1}, x_i]) = s_p(f, \kappa). \tag{1.45}$$

On the other hand, from the Proposition 1.20 we get

$$v_p(f, [x_0, x_n]) = v_p(f, [x_0, x_{j-1}]) + v_p(f, [x_{j-1}, x_j]) + v_p(f, [x_j, x_n])$$

= $s_p(f, \{x_i\}_{i=0}^{j-1}) + s_p(f, \kappa) + s_p(f, \{x_i\}_{i=j}^n).$

Thus, $\{x_i\}_{i=0}^{j-1} \cup \kappa \cup \{x_i\}_{i=j}^n \in MB_p(f, [a, b])$. Therefore, $\{x_i\}_{i=0}^n \notin MB_p^m(f, [a, b])$, because

$$|\{x_i\}_{i=0}^{j-1} \cup \kappa \cup \{x_i\}_{i=j}^n| > |\{x_i\}_{i=0}^n|,$$
 (1.46)

This contradicts the initial assumption.

1.4 f-join

Definition 1.33 (f-join). Suppose $f : [a,b] \to \mathbb{R}$ is CPM. We will say that points t_a and t_b ($t_a < t_b$) are f-joined in interval [a,b] if

$$\exists \{x_j\}_{j=0}^n \in MB_p(f, [a, b]) : [t_a, t_b] = [x_{j-1}, x_j], \text{ with some } j.$$
 (1.47)

Lemma 1.34. Suppose $f : [a, b] \to \mathbb{R}$ is CPM and $a \le t_a < t_b \le b$. If points t_a and t_b are f-joined, then

$$v_p(f, [t_a, t_b]) = |f(t_b) - f(t_a)|^p.$$
(1.48)

Proof. Let $f:[a,b] \to \mathbb{R}$ is CMD, $t_a < t_b$ and points t_a and t_b are f-joined. Then exists $\{x_j\}_{j=0}^n$ and j from the Definition 1.33. According to definition of the p-variation and properties of s_p function we get

$$v_p(f, [a, b]) = s_p(f, \{x_i\}_{i=0}^{K(f)}) = s_p(f, \{x_i\}_{i=0}^{j-1}) + s_p(f, \{x_{j-1}, x_j\}) + s_p(f, \{x_i\}_{i=j}^{K(f)}).$$
(1.49)

Suppose to the contrary that $\exists r \in PP_p(f, [x_{j-1}, x_j]) : s_p(f, r) > s_p(f, \{x_{j-1}, x_j\}),$ thus

$$v_p(f, [a, b]) < s_p(f, \{x_i\}_{i=0}^{j-1}) + s_p(f, r) + s_p(f, \{x_i\}_{i=j}^{K(f)}) = s_p(f, \kappa), \quad (1.50)$$

where $\kappa := \{x_i\}_{i=0}^{j-1} \cup r \cup \{x_i\}_{i=j}^{K(f)}$. The last inequality contradicts the definition of p-variation, therefore $\{x_{j-1}, x_j\}$ is the partition of meaningful break points in interval $[x_{j-1}, x_j]$, thus

$$v_p(f, [x_{j-1}, x_j]) = s_p(f, \{x_{j-1}, x_j\}) = |f(x_j) - f(x_{j-1})|^p.$$
(1.51)

Definition 1.35 (Extremum). We will call the point $t \in [a, b]$ an extremum of the function f in interval [a, b] if $f(t) = \sup\{f(z) : z \in [a, b]\}$ or $f(t) = \inf\{f(z) : z \in [a, b]\}$.

Definition 1.36 (Pseudo-monotonic function). A function f is called pseudo-monotonic in interval [a, b] if

$$\forall x \in [a, b] : f(x) \in [\min(f(a), f(b)), \max(f(a), f(b))]. \tag{1.52}$$

Proposition 1.37. Let $f : [a, b] \to \mathbb{R}$ be CPM and points t_a and t_b are f-joined. Then points t_a are t_b extremums of the function in the interval $[t_a, t_b]$. In addition, there is no other break point $d \in BP(f, (t_a, t_b))$ that is an extremum of the function in the interval $[t_a, t_b]$.

Proof. Let $f:[a,b] \to \mathbb{R}$ be CPM and points t_a and t_b are f-joined. Since $f \stackrel{PM}{=} -g$, with out loss of generality we can assume that $f(t_a) \leq f(t_b)$. Suppose to the contrary that $f(t_b)$ is not an extremum of the function in interval $[t_a,t_b]$. Hence, $\exists c \in [t_a,t_b]: f(c) > f(t_b)$. Therefore, $|f(c)-f(t_a)|^p > |f(t_b)-f(t_a)|^p$. According to Proposition 1.34, $v_p(f,[t_a,t_b]) = |f(t_b)-f(t_a)|^p$, thus, $|f(c)-f(t_a)|^p > v_p(f,[t_a,t_b])$, but this contradicts the definition of p-variation. So, point t_b must be an extremum in interval $[t_a,t_b]$. Completely symmetric arguments could be used for point t_a .

In addition, it could be shown that if $d \in BP(f,(t_a,t_b))$, then $f(d) < f(t_b)$. Suppose to the contrary that $\exists d \in BP(f,(t_a,t_b)) : f(d) = f(t_b)$. Then, $|f(d) - f(t_a)|^p = |f(t_b) - f(t_a)|^p$, therefore, $v_p(f,[t_a,d]) = v_p(f,[t_a,t_b])$. Since, $v_p(f,[t_a,t_b]) \ge v_p(f,[t_a,d]) + v_p(f,[d,t_b])$, we get that $v_p(f,[d,t_b]) \le 0$. So, $v_p(f,[d,t_b]) = 0$, because $v_p(f,[d,t_b]) < 0$ is not valid. According to Lemma 1.3(b), $v_p(f,[d,t_b]) = 0$ iff function is constant in $[d,t_b]$. But this contradicts to the fact that d is a break point (see Lemma 1.24).

Corollary 1.38. Let $f:[a,b] \to \mathbb{R}$ be CPM and points t_a and t_b are f-joined. Then function is pseudo-monotonic in interval $[t_a, t_b]$. So, if $f(t_a) \le f(t_b)$, then

$$\forall x \in (t_a, t_b) : f(t_a) \le f(x) \le f(t_b). \tag{1.53}$$

In addition,

$$\forall d \in BP(f, (a, b)) : f(a) < f(d) < f(b). \tag{1.54}$$

Proof. The result follows directly from the Proposition 1.37.

Proposition 1.39. Let $f:[a,b] \to \mathbb{R}$ is CPM. If point $d \in [a,b]$ is a break point, which is an extremums of the function f, then d is a meaningful break point.

Proof. Let $f:[a,b] \to \mathbb{R}$ is CPM. Suppose to the contrary that exists $d \in \overline{BP}(f,[a,b])$, which is an extremum of the function, but $d \notin \overline{MB}_p(f,[a,b])$.

Let $\{x_j\}_{j=0}^n \in MB(f, [a, b] \text{ be any partition from } MB(f)$. Since $d \in [a, b]$ and $d \notin \overline{MB}_p(f, [a, b])$,

$$\exists j \in 1, \dots, n : d \in (x_{j-1}, x_j).$$
 (1.55)

The points x_{j-1} and x_j are f-joined and d is break point, hence, according Corollary 1.38

$$f(x_{j-1}) < f(d) < f(x_j). (1.56)$$

But this contradicts the assumption that d is the extremum.

1.5 Main result

Lemma 1.40. Suppose $C \in \mathbb{R}$, $c_1 \geq 0$ and $1 \leq p < \infty$. Then function $f: [0, \infty) \to \mathbb{R}$ with the values

$$f(x) = (x + c_1)^p - x^p - C, \ x \in [0, \infty), \tag{1.57}$$

are non decreasing in interval $[0, \infty)$.

Proof. Suppose $C \in \mathbb{R}$, $c_1 \geq 0$ and $1 \leq p < \infty$. The the derivative of the function f is

$$f'(x) = p(x + c_1)^{p-1} - px^{p-1}$$

 $\geq p(x)^{p-1} - px^{p-1} = 0.$

The derivative of function f is non negative, thus the function f is non decreasing. \blacksquare

Corollary 1.41. Suppose $c_1 \geq 0$, $1 \leq p < \infty$ and $0 \leq x \leq y$. Then the following implication holds

$$|x + c_1|^p > x^p + C \Rightarrow |y + c_1|^p > y^p + C.$$
 (1.58)

Proof. Suppose $0 \le x \le y$. Since f is non decreasing, $f(x) \le f(y)$. Therefore, if f(x) > 0, then f(y) > 0.

Proposition 1.42. Let $f:[a,b]\to\mathbb{R}$ is CPM, $1\leq p<\infty,\,[a',b']\subset[a,b]$. If

$$\{a',b'\} \in MB_p^m(f,[a',b']),$$
 (1.59)

then

$$\forall x \in (a', b') : x \notin \overline{MB}_p(f, [a, b])$$
(1.60)

Proof. Suppose to the contrary that the assumptions of the proposition is valid and

$$\exists x \in (a', b') : x \in \overline{MB}_{p}(f, [a, b]). \tag{1.61}$$

According to the definition of $\overline{MB}_p(f, [a, b])$, the (1.61) means that

$$\exists \{t_i\}_{i=0}^n \in MB_p(f, [a, b]) : x \in \{t_i\}_{i=0}^n. \tag{1.62}$$

Moreover,

$$x \notin \{a, a', b', b\},\tag{1.63}$$

because $x \in (a', b')$.

Thus, from (1.63) and (1.62) it follows that

$$\exists j \in \{1, 2, \dots, n-1\} : x = t_j. \tag{1.64}$$

Lets denote variables l and k by

$$l := \max\{i \in \{1, 2, \dots, n-1\} : t_i \in (a', b')\}, \tag{1.65}$$

$$k := \min\{i \in \{1, 2, \dots, n-1\} : t_i \in (a', b')\}.$$
 (1.66)

Since (1.64) holds, the values l and k always exists. According to l and k definitions the following inequality holds

$$t_{k-1} \le a' < t_k \le t_l < b' \le t_{l+1}. \tag{1.67}$$

Points a' and b' are f-joined according to (1.59), therefore, function f is pseudo-monotonic in interval [a',b']. Since $v_p(f)=v_p(-f)$ (see Proposition 1.11), with out loss of generality we can assume that interval [a',b'] is decreasing, i.e.

$$f(a') > f(b').$$

Moreover, points t_l and t_k are breakpoints, because $\{t_i\}_{i=0}^n \in MB_p(f, [a, b]) \subset BP(f, [a, b])$. Therefore, according to Corollary 1.38 the values $f(t_l)$ and $f(t_k)$ can be only between f(a') and f(b'). So,

$$f(a') > f(t_l) > f(b'),$$
 (1.68)

$$f(a') > f(t_k) > f(b').$$
 (1.69)

In addition, since the pairs of points $\{t_l, t_{l+1}\}$ and $\{t_k, t_{k+1}\}$ are also f-joined, the inequalities (1.68) and (1.69) could be extended as follows

$$f(a') > f(t_l) > f(b') > f(t_{l+1}),$$
 (1.70)

$$f(t_{k-1}) \ge f(a') > f(t_k) > f(b').$$
 (1.71)

Since $\{a',b'\} \in MB_p^m(f,[a',b'])$, by the Lemma 1.31, any other partition in interval [a',b'] is not a meaningful partition, thus

$$|f(a') - f(b')|^p = v_p(f, [a', b']) > v_p(f, [a', t_k]) + v_p(f, [t_k, t_l]) + v_p(f, [t_l, b']).$$
(1.72)

According to Lemma 1.3(g), from the following proposition follows

$$|f(a') - f(b')|^p > |f(a') - f(t_k)|^p + v_p(f, [t_k, t_l]) + |f(t_l) - f(b')|^p$$

$$|f(a') - f(t_l) + f(t_l) - f(b')|^p > |f(a') - f(t_k)|^p + v_p(f, [t_k, t_l]) + |f(t_l) - f(b')|^p.$$

From the (1.70) the following inequalities holds

$$f(a') - f(t_l) > 0,$$

 $f(t_l) - f(t_{l+1}) \ge f(t_l) - f(b') > 0.$

Therefore, we can use Corollary 1.41. According to it, from the inequality (1.73) follows

$$|f(a') - f(t_l) + f(t_l) - f(t_{l+1})|^p > |f(a') - f(t_k)|^p + v_p(f, [t_k, t_l]) + |f(t_l) - f(t_{l+1})|^p |f(a') - f(t_{l+1})|^p > |f(a') - f(t_k)|^p + v_p(f, [t_k, t_l]) + v_p(f, [t_l, t_{l+1}]).$$

Absolutely symmetric argument could be used in other direction. Firstly lets modify last inequality

$$|f(a') - f(t_k) + f(t_k) - f(t_{l+1})|^p > |f(a') - f(t_k)|^p + v_p(f, [t_k, t_l]) + v_p(f, [t_l, t_{l+1}]),$$

then form the (1.71) holds the following inequalities

$$f(t_k) - f(t_{l+1}) > 0,$$

$$f(t_{k-1}) - f(t_k) > f(a') - f(t_k) > 0.$$

Thus, from Corollary 1.41 we get

$$|f(t_{k-1}) - f(t_k) + f(t_k) - f(t_{l+1})|^p > |f(t_{k-1}) - f(t_k)|^p + v_p(f, [t_k, t_l]) + v_p(f, [t_l, t_{l+1}])$$

$$|f(t_{k-1}) - f(t_{l+1})|^p > v_p(f, [t_{k-1}, t_k]) + v_p(f, [t_k, t_l]) + v_p(f, [t_l, t_{l+1}])$$

Finlay, using Lemma 1.28 we conclude that

$$|f(t_{k-1}) - f(t_{l+1})|^p > v_p(f, [t_{k-1}, t_{l+1}]).$$

This contradicts with the definition of p-variation.

Proposition 1.43. Suppose $f:[a,b]\to\mathbb{R}$ is CPM, $1\leq p<\infty$ and $x\in[a,b]$. Then the proposition

$$T := \exists (a', b') \in \left\{ (u, v) \in \mathbb{R}^2 : x \in [u, v] \subset [a, b] \right\} : x \notin \overline{MB}_p(f, [a', b'])$$

$$(1.73)$$

is equivalent to

$$S := x \notin \overline{MB}_p(f, [a, b]). \tag{1.74}$$

Proof. Sufficiency. Suppose $x \notin \overline{MB}_p(f, [a, b])$. Then the proposition (1.73) is obviously true then [a', b'] = [a, b].

Necessity. Suppose $f:[a,b]\to\mathbb{R}$ is CPM, $1\leq p<\infty,\ x\in[a,b]$ and (1.73) holds.

Let $\{t_i\}_{i=0}^n \in MB_p^m(f, [a', b'])$. Since $x \in [a', b']$, then $\exists j : x \in (t_{j-1}, t_j)$. In addition, the Lemma 1.32 ensures that $\{t_{j-1}, t_j\} \in MB_p^m(f, [t_{j-1}, t_j])$. Thus, we can apply Proposition 1.42 for interval [a, b] and point x. According to it $x \notin \overline{MB}_p(f, [a, b])$.

Corollary 1.44. Since $(T \Leftrightarrow S) \Leftrightarrow (\neg T \Leftrightarrow \neg S)$, we get

$$x \in \overline{MB}_p(f, [a, b]) \Leftrightarrow \forall [a', b'] \subset [a, b], x \in [a', b'] : x \in \overline{MB}_p(f, [a', b']).$$

1.6 Extra conclusions

Proposition 1.45. Suppose $f:[a,b]\to\mathbb{R}$ is CPM, $1\leq p<\infty$. Let $\kappa_{ab}\in MP_p^m(f,[a,b])$, then

$$x \in \overline{MB}_p(f, [a, b]) \Leftrightarrow x \in \kappa_{ab}.$$
 (1.75)

Proof. Sufficiency. If $x \in \kappa_{ab} \in MP_p^m(f, [a, b])$, then $x \in \overline{MB}_p(f, [a, b])$ according to the definition of $\overline{MB}_p(f, [a, b])$ (see Definition 1.27).

Necessary. Suppose to the contrary that $x \in \overline{MB}(f, [a, b])$, but $x \notin \kappa_{ab} \in MB_p^m(f, [a, b])$. The points of the partition κ_{ab} will be denoted t_i , i.e. $\kappa_{ab} = \{t_i\}_{i=0}^n$. Then

$$\exists j \in \{1, 2, \dots, n\} : x \in (t_{j-1}, t_j).$$

Since $\{(t_{j-1}, t_j) \in MB_p^m(f, [t_{j-1}, t_j]), x \notin \overline{MB}_p(f, [t_{j-1}, t_j])$. Therefore, we can apply Proposition 1.43. From it follows that

$$x \notin \overline{MB}_p(f, [a, b]).$$

This is the contradiction that proves the proposition. \blacksquare

Corollary 1.46. According to the definition of MB (see Definition 1.27), from the last proposition directly follows that

$$\forall \kappa \in MB_p(f, [a, b]) : \kappa \subset \kappa_{ab},$$

this means

$$\exists! \kappa_{ab} \in MB_p^m(f, [a, b]).$$

Lemma 1.47. Let $C \ge 0$ and $c_i \ge 0$, i = 1, ..., n. Suppose $1 \le p < q < \infty$. Then the implication holds

$$C^{p} > \sum_{i=1}^{n} c_{i}^{p} \Rightarrow C^{q} > \sum_{i=1}^{n} c_{i}^{q}.$$

Proof. Let denote the function f(p) as

$$f(p) = C^p - \left[\sum_{i=1}^n c_i^p\right].$$

The derivative of function f is

$$f'(p) = C^p \log p - \left[\sum_{i=1}^n c_i^p \log p \right]$$
$$= \left(C^p - \left[\sum_{i=1}^n c_i^p \right] \right) \log p.$$

Thus, if $1 \le p < \infty$ and $C^p > \sum_{i=1}^n c_i^p$, then f derivative is non negative. This means that function f is non decreasing, whereas this proof the Lemma 1.47

Proposition 1.48. Suppose $f:[a,b]\to\mathbb{R}$ is CPM and $1\leq p< q<\infty$. Then

$$\overline{MB}_q(f,[a,b]) \subset \overline{MB}_p(f,[a,b]).$$

Proof. Suppose to the contrary that

$$\exists x \in [a, b] : x \in \overline{MB}_q(f, [a, b]), \ x \notin \overline{MB}_p(f, [a, b]).$$

Let $\{t_i\}_{i=0}^n \in MB_p^m(f, [a, b])$. Because $x \in [a, b]$ and $x \notin \overline{MB}_p(f, [a, b])$, then

$$\exists j \in \{1, 2, \dots, n\} : x \in (t_{j-1}, t_j). \tag{1.76}$$

Let arbitrary choose $\kappa \in BP(f,(a,b))$. Then according to Lemma 1.31, the following inequality holds

$$|f(t_{j-1}) - f(t_j)|^p > s_p(f, \kappa).$$

Whereas, according to Lemma 1.47,

$$|f(t_{j-1}) - f(t_j)|^q > s_q(f, \kappa).$$

This means that

$$\{t_{j-1}, t_j\} \in MB_q^m(f, [t_{j-1}, t_j]).$$

Finlay, from the Proposition 1.42 follows that $x \notin \overline{MB}_q(f, [a, b])$, but this contradicts the assumptions.

2 p-variation calculus

This chapter will present the algorithm that calculates the p-variation for arbitrary piecewise monotone function. This algorithm will be called pvar. It is already realised in the R (see ???) package pvar and is publicly available on CRAN.

Let assume f is any piecewise monotone function. According to definition (see 1.6) there are points $a = x_1 < \cdots < x_n = b$ for some finite n such that f is monotone on each interval $[x_{j-1}, x_j], \ j = 1, 2, \ldots, n$. The sequence of values of the function f at the points of partition $\{x_i\}_{i=0}^n$ will be referred as sample and denoted $X = \{X_i\}_{i=0}^n := \{f(x_i)\}_{i=0}^n$. The value of n will be called sample size.

The algorithm pvar do not use f directly, rather it uses the sample X as an input and operates it to find the p-variation.

2.1 Algorithm

The procedure pvar that calculates p-variation will be presented here. Firstly, we will introduce the main schema, further, each step will be discussed in more details.

Procedure pvar. Input: sample X, scalar p.

- 1. Removing monotonic points. According to proposition ??? all points that are not the end of monotonic interval could be excluded from further consideration.
- 2. Checking all small intervals. Every sm
- 3. Partition splitting.
- 4. Indipenden intervals assesments.

5. Joining results.

Pseudo-code

```
pvar <- function(x, p){
    xNew = Remove_Monotonic_Points(x)
    xNew = Test_Points_In_Small_Intervals(xNew, p, sizeN = 7)
    IntervalList = Split_By_Extremums_All(xNew)
    for(Interval in IntervalList){
        Partition = Join(Partition, pvarMon(Interval, p, sizeN))
    }
    pvar = Pvar_Sum(Partition, p)
    return(pvar)
}</pre>
```

3 p-variation for pseudo-monotonic sample

Let suppose that the sample is

- Pseudo monotonic.
- There are no monotonic points.
- All possible small intervals are checked.
- 1. Check if the given interval is short.

Pseudo kodas:

```
pvarMon <- function(Interval, p, sizeN){
    # Jei tai trumpas intervalas, tai jis jau buvo patikrintas
    if(length(Interval)<=sizeN){
        return(Interval) # tiesiog grazinamas intervalas
    }

# Kitu atveju skaiciuojam giliau
NewIntervalList = Split_By_CumExtremums(x[a:b])
for(Int in NewIntervalList){
    (int1, int2) = Split_MinMax(Int)
        Partition1 = pvarMon(int1)
        Partition2 = pvarMon(int2)
        PassiblePartition = Join(PassiblePartition, Partition1,
        Partition2)
}</pre>
```

```
# Patikriname pontecialius skaidinio tasku,
    # is eiles tikrindami galimas jungtis
    PointList = EndPoints (NewIntervalList)
    for(Point in PointList){
19
      SubInt = Subset(PassiblePartition, from=1, to=Point)
20
      if(Pvar\_Sum(SubInt, p) < Pvar\_Sum(\{1, Point\}, p))
21
        DropPoints = SetDiff(PassiblePartition, {1,Point})
        PassiblePartition = SetDiff(PassiblePartition, DropPoints)
23
24
25
    return (PassiblePartition)
26
27 }
```

References

[1] J. Qian. The *p*-variation of Partial Sum Processes and the Empirical Process // Ph.D. thesis, Tufts University, 1997.