Algebra Übungsblatt 2

Ida Hönigmann March 24, 2022

Abstract

*, + ... 2-stellig cos, sin ... 1-stellig i ... 0-stellig a, b, c ... Variablen

Präfix	Infix	Postfix
*sin+abc	sin(a+b)*c	ab+sinc*
sin+ab	sin(a+b)	ab+sin
+sinab	sin(a)+b	asinb+
+*sinbicosa	sin(b)*i+cos(a)	acosibsin*+
	*sin+abc sin+ab +sinab	*sin+abc sin(a+b)*c sin+ab sin(a+b) +sinab sin(a)+b

Definition

$$C$$
 heißt Klon auf $A:\iff (i)\forall n\in\mathbb{N}\setminus\{0\}\forall i\in\{1,...,n\}:\pi_i^{(n)}\in C$
$$(ii)f_1,f_2,...,f_k:A^n\to A,g:A^k\to A\in C$$

$$\implies g\circ_{n,k}(f_1,...,f_k)=g(f_1(a_1,...,a_n),...,f_k(a_1,...,a_n))\in C$$

gesucht: 3 Klone C auf $A := \{1, ..., k\}$ mit $A^A \subseteq C$, wobei $k \ge 3$.

 $C_a := \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{ f : A^n \to A | \exists i \in \{1, ..., n\} \exists \tilde{f} \in A^A : f(x_1, ..., x_n) = \tilde{f}(x_i) \}$

- Sei $\pi_i^{(n)}$ eine beliebige Projektion. $\pi_i^{(n)} \in C_a$, da für $\tilde{f} = id$ gilt $f(x_1, ..., x_n) = x_i$.
- Sei $f_1,...,f_k,g\in C_c$ (mit Stelligkeiten wie oben beschrieben) beliebig. Nennen wir $h:=g\circ_{n,k}(f_1,...,f_k)$.

$$g(x_1,...,x_k) = \tilde{g}(x_i)$$

$$f_1(x_1,...,x_n) = \tilde{f}_1(x_j)$$

$$\vdots$$

$$f_k(x_1,...,x_n) = \tilde{f}_k(x_l)$$

$$\implies h(x_1,...,x_n) = \tilde{g}(\tilde{f}_i(x_l)) \in C_a$$

– Für n=1 ist $f:A\to A$ mit $f=\tilde{f}$ beliebig in C_a .

 $C_b := \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{f : A^n \to A\}$

- Alle Projektionen $\pi_i^{(n)}$ liegen in der Menge aller Funktionen von A^n nach A.
- Alle beliebigen Verknüpfungen von Funktionen liegen in der Menge alller Funktionen von \mathbb{A}^n nach A Widerspruch!.
- Alle A^A liegen in der Menge aller Funktionen von A^1 nach A.

 $C_c := C_a \cup \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{f : A^n \to A | f \text{ ist nicht surjektiv}\}$

- Wir haben schon gezeigt, dass alle Projektionen $\pi_i^{(n)} \in C_a$. Gemeinsam mit $C_a \subseteq C_c$ ergibt das $\pi_i^{(n)} \in C_c$.
- Sei $f_1,...,f_k,g\in C_c$ (mit Stelligkeiten wie oben beschrieben) beliebig. Nennen wir $h:=g\circ_{n,k}(f_1,...,f_k)$.

Falls g eine nicht surjektive Funktion ist, ist klarerweise auch h nicht surjektiv und somit $h \in C_c$. Sonst gilt $g \in C_a$ und somit $\exists \tilde{g}: A \to A \exists i \in \{1,...,k\} | g(x_1,...,x_k) = \tilde{g}(x_i)$. $\Longrightarrow h = \tilde{g}(f_i(x_1,...,x_n))$. Falls auch $f_i \in C_a$ so haben wir bereits gezeigt, dass $h \in C_a$. Anderenfalls ist h nicht surjektiv, da f_i nicht surjektiv ist. – Wir haben schon gezeigt, dass $A^A \subseteq C_a \subseteq C_c$.

Nun müssen wir zeigen, dass es sich um drei unterschiedliche Klone handelt.

$$f: A^2 \to A$$
$$(a,b) \mapsto ((a+b)mod|A|) + 1$$

f liegt (klarerweise) in C_b . Angenommen f liegt in $C_a \implies f(a,b) = \tilde{f}(a) \lor f(a,b) = \tilde{f}(b)$. o.B.d.A $f(a,b) = \tilde{f}(a)$.

$$f(1,1)=3 \implies \tilde{f}(1)=3$$

$$f(1,2)=1 \text{ falls } |A|=3 \text{ und 4 falls } |A|>3 \implies \tilde{f}(1)\neq 3 \text{ Widerspruch!}$$

Also $C_a \neq C_b$.

f ist surjektiv, da man mit $\{(1,l): l \in \{1,...,k\}\}$ alle Elemente in A erreichen kann. Also $f \notin C_c$ und somit $C_b \neq C_c$.

$$g: A^2 \to A$$

 $(a, b) \mapsto 1 \text{ falls } a = b \text{ und } 2 \text{ sonst}$

Die Funktion g ist offensichtlich nicht surjektiv $(3 \notin g(A))$ also $g \in C_c$. Angenommen g liegt in $C_a \implies g(a,b) = \tilde{g}(a) \vee g(a,b) = \tilde{g}(b)$. o.B.d.A $g(a,b) = \tilde{g}(a)$.

$$g(1,1) = 1 \implies \tilde{g}(1) = 1$$

 $g(1,2) = 2 \implies \tilde{g}(1) = 2$ Widerspruch!

Also $C_a \neq C_b$.

A ... Menge, \mathcal{O}_A ... Menge aller Klone auf A **zu zeigen:** $(\mathcal{O}_A, \subseteq)$ bildet einen vollständigen Verband Sei $P \subseteq \mathcal{O}_A$ beliebig. Für $P = \emptyset$ ist

$$inf(P) = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{f : A^n \to A\}$$

$$sup(P) = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \{\pi_i^{(n)} : i \in \{1, ..., n\}\}.$$

Was auch mit den unteren Definitionen übereinstimmt, wenn man die Vereinigung und den Schnitt über die leere Menge entsprechend definiert.

Wir wollen zeigen $\exists C \in \mathcal{O}_A : C = inf(P)$ also

$$\forall D \in P: C \subseteq D \text{ und}$$

$$\forall \tilde{C} \in \mathcal{O}_A: (\forall D \in P: \tilde{C} \subseteq D) \implies \tilde{C} \subseteq C.$$

$$C:=\bigcap_{D\in P}D$$

• zz: C ist ein Klon auf A

Sei $\pi_i^{(n)}$ eine beliebige Projektion auf A. $\forall D \in P : \pi_i^{(n)} \in D$, da $D \in \mathcal{O}_A$. Das bedeutet aber, dass $\pi_i^{(n)} \in \bigcap_{D \in P} D = C$.

Sei $f_1, ..., f_k : A^n \to A, g : A^k \to A$ aus C beliebig. $\Longrightarrow \forall D \in P : f_1, ..., f_k, g \in D$ und daher auch $\forall D \in P : h := g \circ_{n,k} (f_1, ..., f_k) \in D$. Das bedeutet aber, $h \in C$. Also ist $C \in \mathcal{O}_A$.

• **zz:** $\forall D \in P : C \subseteq D$ gilt nach Definition von C.

• **zz:** $\forall \tilde{C} \in \mathcal{O}_A : (\forall D \in P : \tilde{C} \subseteq D) \implies \tilde{C} \subseteq C$ Sei $\tilde{C} \in \mathcal{O}_A$ mit $\forall D \in P : \tilde{C} \subseteq D$ beliebig. Angenommen $C \subsetneq \tilde{C}$. Das bedeutet $\exists f \in \tilde{C} \setminus C$. Da $f \notin C$ gilt $\exists D \in P : f \notin D$ und somit $\neq (\tilde{C} \subseteq D)$ was ein Widerspruch ist. Also muss gelten $\tilde{C} \subseteq C$.

Insgesamt ist also C = inf(P).

Da $(\mathcal{O}_A, \subseteq)$ eine Halbordnung ist und jede Teilmenge ein Infimum besitzt gilt nach Aufgabe 52 von letzer Woche, dass auch jede Teilmenge ein Supremum besitzt.

Alternativer Beweis des Supremums:

Zu zeigen: $\exists C \in \mathcal{O}_A : C = sup(P)$ also

$$\forall D\in P:D\subseteq C \text{ und}$$

$$\forall \tilde{C}\in\mathcal{O}_A:(\forall D\in P:D\subseteq \tilde{C})\implies C\subseteq \tilde{C}.$$

$$C:=\left[\bigcup_{D\in P}D\right]$$
wobei $[M]$ den Abschluss unter allen $\circ_{n,k}$ bezeichnet

 \bullet **zz:** C ist ein Klon auf A

Sei $\pi_i^{(n)}$ eine beliebige Projektion auf A. $\forall D \in P : \pi_i^{(n)} \in D$, da $D \in \mathcal{O}_A$. Das bedeutet aber, dass $\pi_i^{(n)} \in \bigcup_{D \in P} D = C$.

Die Abgeschlossenheit bezüglich aller $\circ_{n,k}$ gilt nach Definition.

Also ist $C \in \mathcal{O}_A$.

- **zz:** $\forall D \in P : D \subseteq C$ gilt nach Definition von C.
- zz: $\forall \tilde{C} \in \mathcal{O}_A : (\forall D \in P : D \subseteq \tilde{C}) \implies C \subseteq \tilde{C}$ Sei $\tilde{C} \in \mathcal{O}_A$ mit $\forall D \in P : D \subseteq \tilde{C}$ beliebig. Angenommen $\tilde{C} \subsetneq C$. Das bedeutet $\exists f \in C \setminus \tilde{C}$. Da $f \in C$ gilt entweder $\exists D \in P : f \in D$ was aber ein Widerspruch zu $D \subseteq \tilde{C}$ ist, da $f \notin \tilde{C}$ oder f entsteht durch $\circ_{n,k}$ auf $\bigcup_{D \in P} D$. Da $\forall D \in P : D \subseteq \tilde{C} \implies \bigcup_{D \in P} D \subseteq \tilde{C}$ kann \tilde{C} kein Klon sein, da $f \notin \tilde{C}$ und somit \tilde{C} nicht unter allen $\circ_{n,k}$ abgeschlossen ist.

Insgesamt also $C = \sup(P)$.

1. $E := \{\{0\}, \{0, 1\}, \{0, 2\}, \{0, 3\}, \{0, 2, 3\}, \{0, 1, 2, 3\}\}$ gesucht: Algebra \mathcal{A} auf $A := \{0, 1, 2, 3\}$, sodass $\forall M \in E : M$ ist Unteralgebra von A

$$\mathcal{A} = (A, w_1, w_2, w_3) \text{ (Typ } (0,2,2))$$

$$w_1 : A^0 \to A \quad w_2 : A^3 \qquad \to A \quad w_3 : A^3 \to A$$

$$() \mapsto 0 \quad (a, b, c) \quad \mapsto \begin{cases} 2 & \text{, falls } \{a, b, c\} = \{0, 1, 3\} \\ a & \text{, sonst} \end{cases} \quad (a, b, c) \mapsto \begin{cases} 3 & \text{, falls } \{a, b, c\} = \{0, 1, 2\} \\ a & \text{, sonst} \end{cases}$$

$$\mathcal{P}(A) = \{ \qquad \emptyset, \quad w_1! \qquad \{0\}, \qquad \{1\}, \quad w_1! \qquad \{2\}, \quad w_1! \\ \{3\}, \quad w_1! \quad \{0, 1\}, \qquad \{0, 2\}, \qquad \{0, 3\}, \\ \{1, 2\}, \quad w_1! \quad \{1, 3\}, \quad w_1! \quad \{2, 3\}, \quad w_1! \quad \{0, 1, 2\}, \quad w_3! \\ \{0, 1, 3\}, \quad w_2! \quad \{0, 2, 3\}, \qquad \{1, 2, 3\}, \quad w_1! \quad \{0, 1, 2, 3\} \end{cases} \}$$

Wobei $w_i!$ bedeutet, dass die Menge nicht unter w_i abgeschlossen ist.

2. Ist 1. für beliebiges $E \subseteq \mathcal{P}(A)$ lösbar?

Nein, z.B. für $E = \emptyset$ gibt es keine Algebra $\mathcal{A} = (A, (w_i)_{i \in I})$ ohne Unteralgebren, da A immer eine Unteralgebra von sich selbst ist!

3. **gesucht:** Kriterium / Algorithmus um entscheiden zu können ob für gegebenes, endliches A und $E \subseteq \mathcal{P}(A)$ eine Algebra $\mathcal{A} = (A, w_1, w_2, ...)$ existiert mit $Sub(\mathcal{A}) = E$.

Algorithmus (A ... Menge, E ... gewünschte Unteralgebren) for $(P \in \mathcal{P}(A) \setminus E)$ { (1) $C:=\bigcap_{B\in E, P\subseteq B}B$; (2)if $(C \setminus P = \emptyset)$ { (3)(4)raise Error("nicht lösbar"); (5)} else { $w_P:A^{|P|}\to A, (x_1,...,x_{|P|})\mapsto \begin{cases} y\in C\setminus P & \text{, falls }\{x_1,...,x_{|P|}\}=P\\ x_1 & \text{, sonst} \end{cases}$ (6)(7)füge w_P zur Algebra hinzu; (8)} } (9)

Jede Operation w erreicht (für unsere Zwecke), dass wenn $x_1,...,x_n$ in einer Unteralgbra U liegen, dass dann auch $y=w(x_1,...,x_n)\in U$ sein muss.

Damit ein $P \in \mathcal{P}(A) \setminus E$ nicht in $Sub(\mathcal{A})$ liegt muss also ein w_P garantieren, dass wenn $P \subseteq U \Longrightarrow \exists y \notin P : y \in U$. Natürlich muss das y so gewählt werden, dass $\forall B \in E : P \subset B \Longrightarrow y \in B$, da sonst $B \notin Sub(\mathcal{A})$. $\Longrightarrow y \in (\bigcap_{B \in E, P \subseteq B} B)$.

Falls aber $\left(\bigcap_{B\in E,P\subseteq B}B\right)=\emptyset$ kann nach der Überlegung von oben keine Lösung existieren. Sonst garantiert die Operation wie in (6) beschrieben, dass $P\notin Sub(\mathcal{A})$ für alle $P\notin E$ (wegen der Schleife in (1)). Für $Q\in E$ hat keine der Funktionen $(w_P)_{P\in\mathcal{P}(A)\setminus E}$ einen Effekt, da immer entweder gilt

• $P \subseteq Q$ und somit

$$\forall q_1,...,q_{|P|} \in Q: w_P(q_1,...,q_{|P|}) = \begin{cases} y & \text{, falls } \{q_1,...,q_{|P|}\} = P \\ q_1 & \text{, sonst} \end{cases}$$

Da $Q \in E$ und $P \subseteq Q$ gilt nach Konstruktion, dass $y \in Q$ und $q_1 \in Q$ sowieso.

• $P \setminus Q \neq \emptyset$ und somit $\exists p \in P \setminus Q$ damit kann nicht der Fall $\{q1,...,q_{|P|}\} = P$ eintreten. Also gilt

$$\forall q_1, ..., q_{|P|} \in Q : w_P(q_1, ..., q_{|P|}) = q_1 \in Q.$$

In beiden Fällen gilt also, dass Q bezüglich allen $(w_P)_{P \in \mathcal{P}(A) \setminus E}$ abgeschlossen ist.