

COMMUNICATION SYSTEM

PHYSICS

1.	The velocity factor's 'x' is	ctor of a transmission l	ine 'x' If dielectric co	nstant of the	e medium is 2.6, the value	e of
2.	1) 0.26	2) 0.62	3) 2.6	4) 6	.2 tical angle at the core-clad	ldina
۷.	interface?	I has a relative remacti	ve mack of 0.8876. W	iiat is tiic ciii	ilear angle at the core-clac	uning
	1) 60°	2) 75°	3) 45°	4) N	Ione of these	
3.	A laser beam of cm^2 at the poin	= =	is focused on an obje	ect are 10^{-4}	cm^2 . The energy flux in	watt/
	1) 10^{20}	2) 1016	$3) 10^8$	4) 1	0^4	
4.	The carrier free	quency generated by a t	tank circuit containing	g 1nf capaci	tor and $10\mu H$ inductor is	
	1) 1592 <i>Hz</i>	2) 1592 <i>MHz</i>	3) 1592 <i>KHz</i>	4) 1	59.2 <i>Hz</i>	
5.	An oscillator is modulating inde	= =	of frequency 2 KHz w	vith a variati	on of 10 KHz. What is the	ne
	1) 0.20	2) 5.0	3)	0.67	4) 1.5	
6.	The maximum p 8mV. The mod	ulation factor is			nimum peak to peak volta	ige is
	1) 10%	2) 20%	3)) 25%	4) 50%	
7.	The audio signa	al used to modulate60 s	$\sin\left(2\pi\times10^6t\right)$ is 150 s	$\sin 300\pi t$. T	he depth of modulation is	8
	1) 50%	2) 40%	3)	25%	4) 15%	
8.	_	r communication system an feed if a channel req		ngth of 1.3 μ	<i>um</i> . The number of	
9.	1) 2.3×10^{10} The electron de	$2)1.15 \times 10^{-2}$ ensity of E, F_1, F_2 layer			4) None of these and $8 \times 10^{11} m^{-3}$ respecti	vely.
	What is the ration	o of critical frequency	for reflection of radio	wavs		
	1) 2:4:3	2) 4:3:2		2:3:4	4) 3:2:4	
10.	A antenna curre	ent of an AM broadcast	transmitter modulate	d by 50% is	11A. The carrier current	is
	1) 10.35A	2) 9.25A	3)) 10A	4) 5.5A	
11.	A transmitter tr 1) 5 kW	ansmits a power of 10k 2) 8.89 l		is 50% pow) 14 kW	er of carrier wave is 4) 5.7 kW	
12.	A telephone lin	k operating at a central	frequency of 10 GHz	z is establish	ed .If 1% this is available	e
	then how many bandwidth of 5	-	be simultaneously gi	ven when ea	ach telephone covering a	
	banawiam of J	MIL				

13.14.	 Carrier amplitude Carrier frequency 	rcent modulation is achieved e = signal amplitude 2) y = signal frequency 4) ation in a FM transmission is	Carrier amplitude ≠ sig Carrier frequency ≠ sig	gnal frequency
	then the percentage	modulation is		
	1) 10%	2) 25%	3) 50%	4) 75%
15.		given as $x_{AM}(t) = 100[p(t)]$		iterval $0 \le t \le 1$. One set of
	possible values of t	he modulating signal and mo	dulation index would be	
	1) t,0.5	2) t,1.0	3)t,1.5	4) t^2 , 2.0
16.	For good demodula	ation of AM signal of carrier t	frequency f, the value of	RC should be
	$1) RC = \frac{1}{f}$	$2) RC < \frac{1}{f}$	$3) RC \ge \frac{1}{f}$	$4) RC >> \frac{1}{f}$
17.	An audio signal rep	presented as 25 sin $2\pi (2000t)$	amplitude modulated b	by a carrier wave :60 sin
	$2\pi (100,000)t$. The	e modulation index of the mo	dulated signal is	
	1) 25%	2) 41.6%	3) 50%	4) 75%
18.19.20.	4.82×10 ⁻¹¹ T. The of 1) 0.014 N/C, 36m 3) 0.14 N/C, 360m Which of the follow 1) Ground wave sig 2) The critical frequency the layer when it 3) Electromagnetic 4) Sky wave signal.		gth are respectively 2) 0.14 N/C, 4) 0.014 N/C et? esky wave signals. e is the highest frequency than about 30 MHz cannot range are stronger at night	36m , 360m that will be reflected back of penetrate the ionosphere at than in the day time
	then equation of mo	odulated signal $[C_m(t)]$ and	its modulation index are	respectively
	$1) C_m(t) = A(1+\sin\theta)$	$(n \omega_m t) \sin \omega_c t$ and 2	$2) C_m(t) = A(1)$	$1 + \sin \omega_m t \sin \omega_m t$ and 1
	$3) C_m(t) = A(1+\sin t)$	$(n \omega_m t) \sin \omega_c t$ and 1	$4) C_m(t) = A(1)$	$1 + \sin \omega_c t \sin \omega_m t$ and 2
21.	of carrier wave is 10	r developed by an amplitude v 00V and modulation index is		of 100Ω , if the peak voltage
22.	1) 50watt Consider the follow	2) 54 watt ving amplitude modulated (A)	/	/
		$(\sin 2\pi f_m t)\cos 2\pi f_c t$ The average		
	1) 25	2) 12.5	3) 6.25	4) 3.125
23.	An antenna has a directive gain of the	radiation resistance of 68Ω ,	a load resistance of 10Ω	a, and power gain of 16. The
	1) 15	2) 16.02	3) 17.08	4) 18.35

24.		Hz carrier wathe channel			by an auc	I10 s1gnal	of freque	ncy rang	e 100-50	00Hz. Th	en the		
	1) 10			2) 20			3) 30		4) 40				
25.	An ampl	itude modu	lated volt	age is exp	pressed a	us $e = 10$	$(1+0.8\cos\theta)$	$(2000\pi t)$	$\cos 3 \times 1$	$0^6 \pi t$ volt	. The		
	peak volt	age (in Vol	ts) of car	rrier wav	e is								
	1) 20			2) 10			3) 30		4) 50				
26.		ast radio tr d carrier po			12 kW	when per	rcentage	of modul	ation is	50% ther	the un		
	1) 10.6			2) 12.6			3) 9.6		4) 11.6				
27.	Which of a) The sic b) The ba c) The ba	the waves of the following the band free andwidth records to be and free	ng staten quency arquired for quired for	nents are a e 1506 kH r amplitud amplitud	true? Hz and 14 de modul de is 3 M	194 kHz ation is 6 Hz		ate a car	rier signa	l of 1.5 M	ИНz.		
	1) a and	de band fred b	quency ar	2) b and		+9 / KHZ	3) a, b and d 4) all of the above						
	1) a ana	U		2) 0 and	u		3) u, o c	iiu u	4) un	or the do	ove		
28.	The heig benefitted	ht of a TV l	antenna	is 200m	n. The po	opulation	density	is 4000 i	km^{-2} .Fin	d the pop	pulation		
	1) 3.2×10	O_8		2) 3.2×1	10^{7}		3) 3.2×	10^{6}	4) 3.2	2×10^5			
29.	a height o	receiver start from the receiv	cated at a	distance	of 100 k	m from t	he receive						
	(Radius)	of earth =	$6.4 \times 10^6 n$	$n)$. N_{\max} i	is ionosph	$nere = 10^{12}$	$^2m^3$						
	1) Space	wave propa	gation				2) Groun	nd wave	propagat	ion			
	, •	ave propaga					· /	of the ab					
30.	In amplitude modulation, the modulation index m, is kept less than or equal to 1 because a) $m > 1$, will result in interference between carrier frequency and message frequency, resulting into distortion												
	b) $m > 1$	will result i	n overlap	pping of b	oth side	bands res	sulting int	o loss of	informat	ion			
		vill result in	_	_		_		_	_				
		indicates an	nplitude o	of massag	ge signal g	greater th	an amplit	ude of ca	ırrier sign	al resulti	ng into		
	distortion						2) 1	1					
	1) a and d					2) c and d 4) b and d							
	3) b and c	•					4) 0 and	u					
					PHYS	ICS							
	1-10	2	4	2	3	2	4	3	2	3	1		
	11-20	2	1	1	2	1	4	2	4	3	3		
					İ	1	İ		1		1		

1-10	2	4	2	3	2	4	3	2	3	1
11-20	2	1	1	2	1	4	2	4	3	3
21-30	2	3	4	1	2	3	2	2	3	4

SOLUTIONS

1. Velocity factor =
$$\frac{1}{\sqrt{k}} = \frac{1}{\sqrt{2.6}} = 0.26$$

2. Here
$$\frac{n_1 - n_2}{n_1} = \frac{0.88}{100} \Rightarrow \frac{n_2}{n_1} = 0.9912$$

:. Critical angle.

$$\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right) = \sin^{-1}\left(0.9912\right) = 84^0 24^0$$

3. The energy flux,
$$\phi = \frac{Pulse\ power}{Area} = \frac{10^{12}}{10^{-4}} = 10^{16} \frac{W}{cm^2}$$

4.
$$v = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\times 3.14\sqrt{10\times 10^{-6}\times 1\times 10^{-9}}} = 1592kHz$$

5. The formula for modulating index is given by

$$m_f = \frac{\delta}{v_m} = \frac{Frequency \text{ variation}}{Modulating freequency} = \frac{10 \times 10^3}{2 \times 10^3} = 5$$

6. Here
$$V_{\text{max}} = \frac{24}{2} = 12mV$$
 and $V_{\text{min}} = \frac{8}{2} = 2mV$

Now
$$m = \frac{V_{\text{max}} - V_{\text{min}}}{V_{\text{max}} + V_{\text{min}}} = \frac{12 - 4}{12 + 4} = \frac{8}{16} = \frac{1}{2} = 0.5 = 50\%$$

7.
$$m_a = \frac{E_m}{E_c} = \frac{15}{60} \times 100 = 25\%$$

8. Optical source frequency
$$f = \frac{c}{\lambda} = \frac{3 \times 10^8}{1.3 \times 10^{-6}} = 2.3 \times 10^{14} Hz$$

Numbers of channels are subscribers = $\frac{2.3 \times 10^{14}}{20 \times 10^3}$

$$=1.15\times10^{10}$$

9.
$$f_c \propto (N)^{1/2}$$

$$\Rightarrow (f_c)_E : (f_c)_E : (f_c)_{E_c}$$

=
$$(2 \times 10^{11})^{1/2}$$
 : $(5 \times 10^{11})^{1/2}$: $(8 \times 10^{11})^{1/2}$

$$-2\cdot 3\cdot 4$$

10.
$$l_{carrier} = \frac{I_{rms}}{\sqrt{1 + \frac{m_a^2}{2}}} = \frac{11}{\sqrt{1 + \frac{(0.5)^2}{2}}} = 10.35A$$

11.
$$P_c = \frac{P}{\left(1 + \frac{m_a^2}{2}\right)} = \frac{10000}{\left(1 + \frac{\left(0.5\right)^2}{2}\right)} = \frac{10000}{1.125} = 8.89kW$$

12.
$$1\% \text{ of } 10\text{GHz} = 10 \times 10^9 \times \frac{1}{100} = 10^8 \text{ Hz}$$

Number of channels =
$$\frac{10^8}{5 \times 10^3} = 2 \times 10^4$$

13. When signal amplitude is equal to the carrier amplitude, the amplitude of carrier wave varies between 2A and zero

$$m_c = \frac{\text{amplitude } ch \arg e \ of \ carrier}{\text{amplitude } of \ normal \ carrier} = \frac{2A - A}{A} \times 100 = 100\%$$

14. For given transmission band 88-108 $MHz(\Delta f)_{max}$

$$=75 \text{ kHz}$$

given
$$(\Delta f)_{actual} = 18.75 kHz$$

$$\therefore \% \bmod u lation \ m = \frac{\left(\Delta f\right)_{actual}}{\left(\Delta f\right)_{max}} \times 100 = \frac{18.75}{75} = 25\%$$

15. Comparing $(X_{AM})t = 100[1 + 0.5t]\cos \omega_c t$ for 0 < t < 1

With standard AM signal $x_{AM} = E_c \left[1 + m_a \cos \omega_m t \right] \cos \omega_c t$

We have modulating signal t and $m_a = 0.5$

16. For good demodulation

$$\frac{1}{f} << RC \text{ or } RC >> \frac{1}{f}$$

17. Modulation index = $\frac{B}{A}$

$$B = 25, A = 60$$

$$\Rightarrow M.I = \frac{25}{60} = 0.416 \Rightarrow m\% = 41.6\%$$

18. Frequency of EM wave v = 830 kHz

$$=830\times10^{3} Hz$$

Magnetic field
$$B = 4.82 \times 10^{-11} T$$

As we know, frequency, $v = \frac{c}{\lambda}$

or
$$\lambda = \frac{c}{v} = \frac{3 \times 10^8}{830 \times 10^3}$$

$$\lambda = 360 \ m$$

And
$$E = BC = 4.82 \times 10^{-11} \times 3 \times 10^{8}$$

$$= 0.014 N/C$$

19. Above critical frequency (f_c) , an electromagnetic wave penetrates the ionosphere and is not reflected by it.

5

20. Modulation index

$$m_a = \frac{E_m}{E_c} = \frac{A}{A} = 1$$

Equation of modulated signal $[C_m(t)]$

$$= E_{(C)} + m_a E_{(C)} \sin \omega_m t$$

$$= A(1 + \sin \omega_m t) \sin \omega_C t$$

$$\left(As\ E_{(C)} = A\sin\omega_C t\right)$$

21.
$$E_c = 100V, m_a = 0.4, R = 100\Omega,$$

$$P_c = \frac{E_c^2}{2R} = \frac{(100)^2}{2 \times 100} = 50$$
 watt

$$P = \left(1 + \frac{m_a^2}{2}\right)P_c = \left[1 + \frac{(0.4)^2}{2}\right] \times 50 = 54 \text{ watt}$$

22. Average side-band power
$$P_{av} = \frac{m_a}{4} P_c^2$$

Here
$$m_a = 0.5$$

$$P_{c} = 10$$

$$\therefore P_{av} = \frac{0.5 \times 10 \times 10}{4} = 6.25$$

23.
$$\eta = \frac{R}{R + R_L} = \frac{68}{68 + 10} 0.872$$

$$\Rightarrow$$
 Power gain = ηG

$$\Rightarrow$$
 directive gain $G = \frac{Power\ gain}{\eta} = \frac{16}{0.872} = 18.35$

$$= 2 \times frequency$$

$$= 2 \times 5000$$

$$=10kHz$$

$$(e)_{AM} = E_c (1 + m_a \cos \omega_m t) \cos \omega_c t$$

Peak value of carrier wave, $E_c = 10V$.

26.
$$P_c = \frac{P_t}{1 + \frac{m_a^2}{2}} = \frac{12}{1 + \frac{(0.5)^2}{2}} = \frac{12}{1.25} = 9.6 \text{ kW}$$

27.
$$\omega_m = 3 \text{ kHz}, \omega_c = 1.5 \text{MHz} = 1500 \text{ kHz}$$

side band frequences =
$$(\omega_c - \omega_m)$$
 and $(\omega_c + \omega_m)$

$$=(1500-3)kHz$$
 and $(1500+3)kHz$

$$Bandwidth = 2\omega_m = 2 \times 3 = 6 \text{ kHz}$$

28.
$$As, d = \sqrt{2Rh}$$

 $Population cov ered = \pi d^2 \times population density$

$$=\pi(2Rh)\times\rho$$

$$=\frac{22}{7}\times2\times6400\times0.2\times400$$

$$=3.2\times140^{7}$$

29. Maximum distance covered by space wave communication

$$\sqrt{2Rh} = 62km$$

Critical frequency
$$v_c = 9(N_{\text{max}})^{1/2} = 9 \, MHz$$

 $5MHz < v_c \Rightarrow sky$ wave propagation, i.e., ionospheric propagation

30. Modulation index

$$\mu = \frac{A_{\rm m}}{A_{\rm c}} = \frac{\Delta V_{\rm (max)}}{V_{\rm m~(max)}} = \frac{frequency~deviation}{{\rm max}.frequency~of~mod}\, ulated~wave$$

If $m_f > 1$ then $\Delta V_{\text{max}} > V_m$. this means there will be overlapping of both side bands of modulated wave resulting into loss of information.