National University of Singapore Department of Computer Science CS1231 Discrete Structures

2021/22 (Sem.1)

Tutorial 10

- 1. Suppose A is a set with n elements.
 - (i) How many binary relations are there on A?
 - (ii)* How many of these relations are reflexive?
 - (iii) How many of these relations are symmetric?
 - (iv) How many of these relations are antisymmetric?
 - (v) How many of these relations are antisymmetric and symmetric?
 - (vi)* How many of these relations are not reflexive and not symmetric?

[Hint: Consider the graph representation of the relation.

You should use small values of n to check the validity of your formulas.

- 2. Let \mathcal{G}_3 be the set of all undirected graphs whose vertices are a, b, c. Suppose $G = (\{a, b, c\}, E) \in \mathcal{G}_3$. Determine the number of possible G's such that:
 - (i)* G has a loop;
- (ii)* G has a cycle;
- (iii) G is cyclic;
- (iv)* G is connected;
- (v) G is a tree;
- (vi) G has exactly two connected components.
- 3.* The diagram here illustrates an undirected graph K, called a **3-sided wheel**:
 - (i) Let $K = (V_K, E_K)$. List the elements of E_K .
 - (ii) How many different 3-sided wheels are there with $V_K = \{u, x, y, z\}$?
 - (iii) Determine the number of different 3-sided wheels with $V_K \subseteq \{1, 2, 3, 4, 5, 6\}$ (e.g. u = 4, x = 6, y = 2, z = 3)?

3-sided wheel K with vertices u, x, y, z

The diagram here shows two **4-sided wheels** H and H':

(iv) Explain why $H \neq H'$.

4-sided wheel H

4-sided wheel H'

- (v) Determine the number of different 4-sided wheels H with vertex set $V_H = \{1, 2, 3, 4, 5\}$.
- (vi) Determine the number of different 4-sided wheels H with vertex set $V_H \subseteq \{1, 2, 3, 4, 5, 6, 7\}$.

4. Our definition for undirected graphs *labels* the vertices. Thus (a) and (b) below are considered different:

However, they are the same if we ignore the labels, as in (c). We now define what "same" means: Two finite loopless undirected graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ are **isomorphic** (denoted $G \simeq H$) iff there is a permutation $\pi: V_G \to V_H$ such that $\{u, v\} \in E_G \leftrightarrow \{\pi(u), \pi(v)\} \in E_H$. (An undirected graph is **loopless** if and only if all its vertices do not have loops.) Thus (a) and (b) are isomorphic — consider $\pi(1) = 3, \pi(2) = 1, \pi(3) = 4, \pi(4) = 2$.

- (i) Which of the graphs in (d), (e), (f) and (g) are isomorphic?
- (ii)* Let \mathcal{G} be the set of all loopless undirected graphs whose nodes are $\{1, 2, \dots, n\}$. Prove that \simeq is an equivalence relation on \mathcal{G} . What are in each equivalence class?
- (iii) Determine the number of nonisomorphic loopless undirected graphs with n nodes, for n = 2, 3, 4.

[The computational complexity for determining whether two given graphs are isomorphic is a 30-year-old open problem that lies at the heart of the $P\neq NP$ question.]

- 5.* Prove that if a loopless undirected graph has n vertices, where $n \geq 2$, and more than $\binom{n-1}{2}$ edges, then it is connected. Is the converse true?
- 6. Let G = (V, E) be a loopless undirected graph. The **complement** of G is the loopless graph $\overline{G} = (V, F)$, where $\{u, v\} \in F$ if and only if $\{u, v\} \notin E$. Draw the complement of the following graph:

Prove that (for any G) G and \overline{G} cannot both be unconnected.

- 7.* Let R be a binary relation on a set. Prove that R is transitive if and only if $R_+ \subseteq R$.
- 8. Recall from Tutorial 9 (Problem 8) the definition of a complete graph. Let R be an equivalence relation on a nonempty set A, and let G be the undirected graph representing R. Prove that every connected component of G is a complete graph.
- 9. Consider an undirected graph G, whose connected components are H_1, \ldots, H_k , where $k \geq 2$. Suppose G = (V, E) and $H_1 = (V_1, E_1), \ldots, H_k = (V_k, E_k)$. Prove that $\{V_1, \ldots, V_k\}$ is a partition of V. Is $\{E_1, \ldots, E_k\}$ a partition of E?