Interacting Particle Systems Diploma Thesis Presentation

Stavros Birmpilis

National Technical University of Athens

July 7, 2017

Outline

- 1 Introduction and Some Background
- Independent Random Walks
- 3 Simple Exclusion Process
- 4 Zero Range Process

Outline

- Introduction and Some Background
- 2 Independent Random Walks
- Simple Exclusion Process
- 4 Zero Range Process

Interacting Particle Systems?

- Large-scale systems of components interacting with each other governed by stochastic dynamics
- Several applications on
 - natural sciences: reaction diffusion, gas particles systems...
 - social sciences: traffic flow, opinion dynamics, spread of epidemics...

Introduction and Some Background Independent Random Walks Simple Exclusion Process Zero Range Process

Goal?

Goal?

Deduce macroscopic behavior

Goal?

Deduce macroscopic behavior

from microscopic interactions.

Introduction and Some Background Independent Random Walks Simple Exclusion Process Zero Range Process

ullet State Space: both closed and bounded space X

- ullet State Space: both closed and bounded space X
- Stochastic Process: family of random variables $(\eta_t)_{t\geq 0}$ in X

- ullet State Space: both closed and bounded space X
- Stochastic Process: family of random variables $(\eta_t)_{t>0}$ in X
- Markov Process: collection $(\mathbb{P}^{\eta}:\eta\in X)$ of probability measures **with**
- Markov Property: $\mathbb{P}^{\eta}(\eta_{t+s} \in A|\mathcal{F}_t) = \mathbb{P}^{\eta_t}(\eta_s \in A)$ "Memorylessness"

- ullet State Space: both closed and bounded space X
- Stochastic Process: family of random variables $(\eta_t)_{t\geq 0}$ in X
- Markov Process: collection $(\mathbb{P}^{\eta}:\eta\in X)$ of probability measures **with**
- Markov Property: $\mathbb{P}^{\eta}(\eta_{t+s} \in A | \mathcal{F}_t) = \mathbb{P}^{\eta_t}(\eta_s \in A)$ "Memorylessness"
- Markov Chain: Markov Process on countable now X characterized by transition rates $c(\eta, \eta')$

Main question: What about invariant measures in Interacting Particle Systems?

Main question: What about invariant measures in Interacting Particle Systems?

• A measure μ is *invariant* or *stationary* for a process if it remains the same after time t.

Main question: What about invariant measures in Interacting Particle Systems?

- A measure μ is *invariant* or *stationary* for a process if it remains the same after time t.
- A Markov process is called *irreducible*, if it can get from any state to any state.

Main question: What about invariant measures in Interacting Particle Systems?

- A measure μ is *invariant* or *stationary* for a process if it remains the same after time t.
- A Markov process is called *irreducible*, if it can get from any state to any state.

Theorem

An irreducible Markov chain with finite state space X has a unique invariant measure.

Main question: What about invariant measures in Interacting Particle Systems?

- A measure μ is *invariant* or *stationary* for a process if it remains the same after time t.
- A Markov process is called *irreducible*, if it can get from any state to any state.

Theorem

An irreducible Markov chain with finite state space X has a unique invariant measure.

 Phase transitions, i.e. existence of more that one invariant measures, occur only in infinite systems.

Outline

- Introduction and Some Background
- Independent Random Walks
- Simple Exclusion Process
- 4 Zero Range Process

Space

- ullet \mathbb{Z}^d the d-dimensional integer lattice
- $\mathbb{T}_L = \mathbb{Z}_L = \{0,1,...,L-1\}$ the torus with L points and $\mathbb{T}_L^d = (\mathbb{T}_L)^d$
- \bullet L represents the inverse of the distance between the points of \mathbb{T}^d_L , namely the particle sites

Space and Stochastics

- ullet \mathbb{Z}^d the d-dimensional integer lattice
- $\mathbb{T}_L = \mathbb{Z}_L = \{0,1,...,L-1\}$ the torus with L points and $\mathbb{T}_L^d = (\mathbb{T}_L)^d$
- ullet L represents the inverse of the distance between the points of \mathbb{T}^d_L , namely the particle sites
- Transition probability p(x,y)=p(0,y-x)=:p(y-x) for some $p(\cdot)$ on \mathbb{Z}^d (elementary transition probability)

We have that:

We have that:

• the state space is finite,

We have that:

- the state space is finite,
- ullet the total number of particles N is the unique quantity conserved,

We have that:

- the state space is finite,
- the total number of particles N is the unique quantity conserved,
- the elementary transition probability $p(\cdot)$ generates \mathbb{Z}^d .

We have that:

- the state space is finite,
- the total number of particles N is the unique quantity conserved,
- the elementary transition probability $p(\cdot)$ generates \mathbb{Z}^d .

Thus, there is only one invariant measure.

Poisson distribution of parameter $\alpha>0$ is the probability measure

$$p_{\alpha,k} = p_k = e^{-\alpha} \frac{\alpha^k}{k!}, \ k \in \mathbb{N}.$$

Poisson distribution of parameter $\alpha>0$ is the probability measure

$$p_{\alpha,k} = p_k = e^{-\alpha} \frac{\alpha^k}{k!}, \ k \in \mathbb{N}.$$

Call a Poisson measure $\nu^L_{\rho(\cdot)}$ on \mathbb{T}^d_L associated to a fixed positive function $\rho:\mathbb{T}^d_L\to\mathbb{R}_+$, a probability on $\mathbb{N}^{\mathbb{T}^d_L}$, denoted by $\nu^L_{\rho(\cdot)}$, satisfying that:

Poisson distribution of parameter $\alpha>0$ is the probability measure

$$p_{\alpha,k} = p_k = e^{-\alpha} \frac{\alpha^k}{k!}, \ k \in \mathbb{N}.$$

Call a Poisson measure $\nu^L_{\rho(\cdot)}$ on \mathbb{T}^d_L associated to a fixed positive function $\rho:\mathbb{T}^d_L\to\mathbb{R}_+$, a probability on $\mathbb{N}^{\mathbb{T}^d_L}$, denoted by $\nu^L_{\rho(\cdot)}$, satisfying that:

• under $\nu^L_{\rho(\cdot)}$ the random variables $(\eta(x):x\in\mathbb{T}^d_L)$ must be independent,

Poisson distribution of parameter $\alpha>0$ is the probability measure

$$p_{\alpha,k} = p_k = e^{-\alpha} \frac{\alpha^k}{k!}, \ k \in \mathbb{N}.$$

Call a Poisson measure $\nu^L_{\rho(\cdot)}$ on \mathbb{T}^d_L associated to a fixed positive function $\rho:\mathbb{T}^d_L\to\mathbb{R}_+$, a probability on $\mathbb{N}^{\mathbb{T}^d_L}$, denoted by $\nu^L_{\rho(\cdot)}$, satisfying that:

- under $\nu^L_{\rho(\cdot)}$ the random variables $(\eta(x):x\in\mathbb{T}^d_L)$ must be independent,
- $\bullet \ \ \text{for every fixed site} \ x \in \mathbb{T}^d_L,$

$$\nu_{\rho(\cdot)}^L(\eta(x) = k) = p_{\rho(x),k}.$$

Theorem

If particles are initially distributed according to a Poisson measure associated to a constant function equal to α then the distribution at time t is exactly the same Poisson measure ν_{α}^{L} .

Theorem

If particles are initially distributed according to a Poisson measure associated to a constant function equal to α then the distribution at time t is exactly the same Poisson measure ν_{α}^{L} .

Note that

$$E_{\nu_{\alpha}^{L}}(\eta(x)) = \sum_{k>0} e^{-\alpha} \frac{\alpha^{k}}{k!} k = \alpha.$$

The Poisson measures are in this way naturally parametrized by the density of particles.

Figure: Distribution at time t of IRW on \mathbb{T}^1_{1000} with $\alpha=10$

 \bullet Microscopic space $\mathbb{T}^d_L \to \mathsf{Macroscopic}$ space $\mathbb{T}^d = [0,1)^d$

- \bullet Microscopic space $\mathbb{T}^d_L \to \mathsf{Macroscopic}$ space $\mathbb{T}^d = [0,1)^d$
- Let $\rho_0(\cdot)$ be the initial (smooth) profile on \mathbb{T}^d .
- What about $\rho(t,\cdot)$?

- \bullet Microscopic space $\mathbb{T}^d_L \to \mathsf{Macroscopic}$ space $\mathbb{T}^d = [0,1)^d$
- Let $\rho_0(\cdot)$ be the initial (smooth) profile on \mathbb{T}^d .
- What about $\rho(t,\cdot)$?
- In microscopic space:

$$\rho_t^L(x) = \sum_{x_0 \in \mathbb{T}_L^d} p_t^L(x - x_0) \rho_0(x_0/L)$$

- \bullet Microscopic space $\mathbb{T}^d_L \to \mathsf{Macroscopic}$ space $\mathbb{T}^d = [0,1)^d$
- Let $\rho_0(\cdot)$ be the initial (smooth) profile on \mathbb{T}^d .
- What about $\rho(t,\cdot)$?
- In microscopic space:

$$\rho_t^L(x) = \sum_{x_0 \in \mathbb{T}_L^d} p_t^L(x - x_0) \rho_0(x_0/L)$$

By taking:

$$\lim_{L \to \infty} \rho_t^L([uL]) = \rho_0(u).$$

- \bullet Microscopic space $\mathbb{T}^d_L \to \mathsf{Macroscopic}$ space $\mathbb{T}^d = [0,1)^d$
- Let $\rho_0(\cdot)$ be the initial (smooth) profile on \mathbb{T}^d .
- What about $\rho(t,\cdot)$?
- In microscopic space:

$$\rho_t^L(x) = \sum_{x_0 \in \mathbb{T}_L^d} p_t^L(x - x_0) \rho_0(x_0/L)$$

By taking:

$$\lim_{L \to \infty} \rho_t^L([uL]) = \rho_0(u).$$

• Is that the same profile?

- ullet We have different space scales, \mathbb{T}^d and $L^{-1}\mathbb{T}^d_L$.
- Why not distinguish between two different time scales?
- ullet A microscopic time t and a macroscopic time infinitely large with respect to t.

- ullet We have different space scales, \mathbb{T}^d and $L^{-1}\mathbb{T}^d_L$.
- Why not distinguish between two different time scales?
- A microscopic time t and a macroscopic time infinitely large with respect to t.
- Let $m := \sum x p(x) \in \mathbb{R}^d$, the expectation of $p(\cdot)$.

- ullet We have different space scales, \mathbb{T}^d and $L^{-1}\mathbb{T}^d_L$.
- Why not distinguish between two different time scales?
- ullet A microscopic time t and a macroscopic time infinitely large with respect to t.
- Let $m := \sum xp(x) \in \mathbb{R}^d$, the expectation of $p(\cdot)$.
- Introducing time scale tL:

$$\lim_{L \to \infty} p_{tL}^L([uL]) = \rho_0(u - mt) =: \rho(t, u)$$

ullet Now the profile did change. We observe a new macroscopic profile: the original one translated by mt.

ullet Scaling limits o Hydrodynamic description

$$\partial_t \rho + m \cdot \nabla \rho = 0.$$

 $\bullet \ \, \mathsf{Scaling} \ \, \mathsf{limits} \to \mathsf{Hydrodynamic} \ \, \mathsf{description} \\$

$$\partial_t \rho + m \cdot \nabla \rho = 0.$$

- However, if the random walk is not asymmetric, then again the profile remains the same.
- Still, if we consider a larger time scale, times of order L^2 , even when m=0, we can observe an interesting time evolution.

Introduction and Some Background Independent Random Walks Simple Exclusion Process Zero Range Process

Outline

- Introduction and Some Background
- Independent Random Walks
- 3 Simple Exclusion Process
- 4 Zero Range Process

Model

- First of all, SEP allows at most one particle per site.
- State space: $\{0,1\}^{\mathbb{T}^d_L}$
- ullet $\eta^{x,y}$: configuration from η letting a particle jump from x to y

$$\eta^{x,y}(z) = \begin{cases} \eta(z) & \text{if } z \neq x, y, \\ \eta(x) - 1 & \text{if } z = x, \\ \eta(y) + 1 & \text{if } z = y \end{cases}$$

Model

- First of all, SEP allows at most one particle per site.
- State space: $\{0,1\}^{\mathbb{T}^d_L}$
- ullet $\eta^{x,y}$: configuration from η letting a particle jump from x to y

$$\eta^{x,y}(z) = \left\{ \begin{array}{ll} \eta(z) & \text{if } z \neq x, y, \\ \eta(x) - 1 & \text{if } z = x, \\ \eta(y) + 1 & \text{if } z = y \end{array} \right.$$

ullet Each particle in x jumps to y at rate

$$\eta(x)(1-\eta(y))p(y-x)$$

Again, there is a unique invariant measure for the process.

Again, there is a unique invariant measure for the process. Let $(\nu_{\alpha}: 0 \leq \alpha \leq 1)$, the *Bernoulli measure* on $\{0,1\}^{\mathbb{T}^d_L}$ of parameter α , satisfying that:

- under ν_{α} , the variables $(\eta(x):x\in\mathbb{T}^d_L)$ are independent,
- $\nu_{\alpha}(\eta(x) = 1) = \alpha = 1 \nu_{\alpha}(\eta(x) = 0).$

Again, there is a unique invariant measure for the process. Let $(\nu_{\alpha}: 0 \leq \alpha \leq 1)$, the *Bernoulli measure* on $\{0,1\}^{\mathbb{T}^d_L}$ of parameter α , satisfying that:

- under ν_{α} , the variables $(\eta(x):x\in\mathbb{T}^d_L)$ are independent,
- $\nu_{\alpha}(\eta(x) = 1) = \alpha = 1 \nu_{\alpha}(\eta(x) = 0).$

Theorem

The Bernoulli measures are invariant for simple exclusion processes.

Again, there is a unique invariant measure for the process. Let $(\nu_{\alpha}: 0 \leq \alpha \leq 1)$, the *Bernoulli measure* on $\{0,1\}^{\mathbb{T}^d_L}$ of parameter α , satisfying that:

- under ν_{α} , the variables $(\eta(x):x\in\mathbb{T}^d_L)$ are independent,
- $\nu_{\alpha}(\eta(x) = 1) = \alpha = 1 \nu_{\alpha}(\eta(x) = 0).$

Theorem

The Bernoulli measures are invariant for simple exclusion processes.

Again, the hydrodynamic description given by the heat equation

$$\partial_t p = (1/2)\Delta \rho$$

ASEP with step initial condition

- Consider the integer lattice \mathbb{Z} .
- Particles will begin from \mathbb{Z}_+ .

ASEP with step initial condition

- Consider the integer lattice \mathbb{Z} .
- Particles will begin from \mathbb{Z}_+ .
- p(+1) = p = 1 q = 1 p(-1) (nearest neighbor)
- Assume p < q, so there is a drift to the left.
- Let $\gamma = q p$.

ASEP with step initial condition

- Consider the integer lattice \mathbb{Z} .
- Particles will begin from \mathbb{Z}_+ .
- p(+1) = p = 1 q = 1 p(-1) (nearest neighbor)
- Assume p < q, so there is a drift to the left.
- Let $\gamma = q p$.

Main quantity of interest: the position of the $m{\rm th}$ particle from the left at time t

$$x_m(t)$$
, with $x_m(0) = m$.

Marginal particle

Behavior of $|x_1|$, i.e. the distance that the marginal particle has covered on a given time t?

Marginal particle

Behavior of $|x_1|$, i.e. the distance that the marginal particle has covered on a given time t?

Assume that

$$E(|x_1(t)|) \sim ct^a$$

which transforms to

$$\log E(|x_1(t)|) \sim a \log t + \log c.$$

Expected value

Performing experiments for $\gamma = 0.5$:

$$E(|x_1(t)|) \sim \frac{t}{2} = \gamma t$$

Expected value

Performing experiments for $\gamma = 0.5$:

$$E(|x_1(t)|) \sim \frac{t}{2} = \gamma t$$

It is true that, in general,

$$E(|x_1(t/\gamma)|) \sim t$$

for every $\gamma \in (0,1]$.

Variance

Also, the order of the variance of $|x_1(t)|$, provides the suitable normalization, in order to get its distribution for every t.

Variance

Also, the order of the variance of $|x_1(t)|$, provides the suitable normalization, in order to get its distribution for every t. With the same strategy:

$$|x_1(t)| - E(|x_1(t)|) \sim \mathcal{O}(t^{0.6})$$

Variance

Also, the order of the variance of $|x_1(t)|$, provides the suitable normalization, in order to get its distribution for every t. With the same strategy:

$$|x_1(t)| - E(|x_1(t)|) \sim \mathcal{O}(t^{0.6})$$

Therefore, what about

$$\frac{|x_1(t)| - \gamma t}{t^{0.6}}$$

?

Tracy-Widom distribution!

Biologist Robert May, in 1972:

ullet population of N distinct species with strong pair-wise interactions between them ...

Biologist Robert May, in 1972:

- ullet population of N distinct species with strong pair-wise interactions between them ...
- ... can be modeled by a random matrix J, of size $N \times N$.

Biologist Robert May, in 1972:

- ullet population of N distinct species with strong pair-wise interactions between them ...
- ... can be modeled by a random matrix J, of size $N \times N$.

What is the probability, $P_{stable}(\alpha, N)$, where α represents the strength of interactions, that the system remains stable?

Biologist Robert May, in 1972:

- ullet population of N distinct species with strong pair-wise interactions between them ...
- ... can be modeled by a random matrix J, of size $N \times N$.

What is the probability, $P_{stable}(\alpha,N)$, where α represents the strength of interactions, that the system remains stable? The eigenvalues λ_i of J must satisfy

$$\alpha \lambda_i - 1 \le 0 \Leftrightarrow \lambda_{max} \le \frac{1}{\alpha}.$$

Biologist Robert May, in 1972:

- ullet population of N distinct species with strong pair-wise interactions between them ...
- ... can be modeled by a random matrix J, of size $N \times N$.

What is the probability, $P_{stable}(\alpha,N)$, where α represents the strength of interactions, that the system remains stable? The eigenvalues λ_i of J must satisfy

$$\alpha \lambda_i - 1 \le 0 \Leftrightarrow \lambda_{max} \le \frac{1}{\alpha}.$$

So, distribution of the largest eigenvalue λ_{max} ?

Appearance of the distribution

 Two decades later, in 1992, Tracy and Widom specified that distribution!

Appearance of the distribution

- Two decades later, in 1992, Tracy and Widom specified that distribution!
- But... in 1999, the same distribution was found in the length of the longest increasing subsequence of random permutations.

Appearance of the distribution

- Two decades later, in 1992, Tracy and Widom specified that distribution!
- But... in 1999, the same distribution was found in the length of the longest increasing subsequence of random permutations.
- It started to appear in models all over physics and mathematics.
- Especially in systems with interacting components.

 Universality: diverse microscopic effects → same collective behavior

- Universality: diverse microscopic effects → same collective behavior
- Tracy-Widom complex cousin of the familiar bell curve...

 Central Limit Theorem: natural observations and other uncorrelated variables form a Normal distribution. (rigorous about a century ago)

- Central Limit Theorem: natural observations and other uncorrelated variables form a Normal distribution. (rigorous about a century ago)
- Tracy-Widom from strongly correlated variables, such as interacting species, stock prices, matrix eigenvalues...

- Central Limit Theorem: natural observations and other uncorrelated variables form a Normal distribution. (rigorous about a century ago)
- Tracy-Widom from strongly correlated variables, such as interacting species, stock prices, matrix eigenvalues...
- Tracy-Widom universally proved to hold for certain classes of random matrices.
- Looser handle in counting problems, random walk problems, growth models...

Maybe an explanation?

ullet Asymmetric character of the distribution o some kind of universal phase transition

Maybe an explanation?

 \bullet Asymmetric character of the distribution \to some kind of universal phase transition

In general,

- left tail: all components act in concert, (unstable)
- right tail: the components act alone. (stable)

Outline

- Introduction and Some Background
- Independent Random Walks
- Simple Exclusion Process
- 4 Zero Range Process

Model and Hydrodynamics

- ullet State space is $\mathbb{N}^{\mathbb{T}^d_L}$
- Let $g: \mathbb{N} \to \mathbb{R}_+$ with g(0) = 0, represent the rate at which one particle leaves a site
- \bullet Transition probability $p(\cdot,\cdot)$ on \mathbb{Z}^d

Model and Hydrodynamics

- ullet State space is $\mathbb{N}^{\mathbb{T}^d_L}$
- Let $g:\mathbb{N} \to \mathbb{R}_+$ with g(0)=0, represent the rate at which one particle leaves a site
- Transition probability $p(\cdot, \cdot)$ on \mathbb{Z}^d
- ullet Each particle in x jumps to y at rate

$$g(\eta(x))p(y-x)\frac{1}{\eta(x)}$$

Model and Hydrodynamics

- ullet State space is $\mathbb{N}^{\mathbb{T}^d_L}$
- Let $g: \mathbb{N} \to \mathbb{R}_+$ with g(0)=0, represent the rate at which one particle leaves a site
- Transition probability $p(\cdot, \cdot)$ on \mathbb{Z}^d
- ullet Each particle in x jumps to y at rate

$$g(\eta(x))p(y-x)\frac{1}{\eta(x)}$$

Non-linear (parabolic) hydrodynamic description

$$\partial_t \rho = (1/2)\Delta(\Phi(\rho))$$

where $\Phi(\cdot)$ is the inverse of $\rho(\cdot)$ until a critical density ρ_c .

Duality

• Let g(k) be decreasing \rightarrow induces an effective attraction between particles.

- Let g(k) be decreasing \rightarrow induces an effective attraction between particles.
- Specifically, the jump rates will be given by

$$g(k) = \begin{cases} 0, & \text{if } k = 0\\ 1 + \frac{b}{k}, & \text{if } k \ge 1 \end{cases}$$

- Let g(k) be decreasing \rightarrow induces an effective attraction between particles.
- Specifically, the jump rates will be given by

$$g(k) = \begin{cases} 0, & \text{if } k = 0\\ 1 + \frac{b}{k}, & \text{if } k \ge 1 \end{cases}$$

• For b > 2, there is a critical density

$$\rho_c = \frac{1}{b-2}$$

Order of time needed to reach equilibrium?

Order of time needed to reach equilibrium?

Performing experiments, for 3 initial states,

totally asymmetric zero range process:

$$T_{eq} = \mathcal{O}(L^2)$$

• symmetric zero range process:

$$T_{eq} = \mathcal{O}(L^3)$$

(diffusion without a drift)

Tagged Particles

Three classes \rightarrow a jump occurs from the tagged particle's site x,

- First class: the tagged will jump,
- Random: the tagged will jump with probability $1/\eta(x)$,
- Second class: the tagged will jump last.

Tagged Particles

Three classes \rightarrow a jump occurs from the tagged particle's site x,

- First class: the tagged will jump,
- Random: the tagged will jump with probability $1/\eta(x)$,
- Second class: the tagged will jump last.

Distance covered by the tagged particle in a given time: (space scale L, time scale L^2)

- First class: $X_{tag}(tL^{-2})/L = \mathcal{O}(1)$,
- Random: $X_{tag}(tL^{-2})/L = \mathcal{O}(\sqrt{t})$,
- Second class: $X_{tag}(tL^{-2})/L = \mathcal{O}(\sqrt{t})$.

Introduction and Some Background Independent Random Walks Simple Exclusion Process Zero Range Process

Thank you very much!

