MOWNIT laboratorium 1

Analiza Błędów

Zadanie 1

Sprawdzenie dokładności przybliżania pochodnej za pomocą wzoru

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

oraz

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

dla funkcji $f(x)=\tan(x)$ i x=1. Porównanie dokładności obu metod, obliczenie błędu porównując je do pochodnej obliczonej analitycznie. Sprawdzenie działania metod dla $h=10^{-k}$, gdzie k=1,2,...,16. Obliczenie oraz wyznaczenie empiryczne wartości h_{\min} .

Różnica prawostronna (wzór pierwszy):

Błąd dla różnicy prawostronnej:

$$E(h) \leq \frac{Mh}{2} + \frac{2\varepsilon}{h}$$

$$h_{\min} = 2\sqrt{\frac{\varepsilon_{\mathrm{mach}}}{M}} \text{ , gdzie } M \approx |f''(x)|$$

Rysunek 1: Wartości bezwzględne błędów metody, numerycznego i obliczeniowego Minimum funkcji błędu obliczeniowego E(h) wyznaczone empirycznie to $h_{\rm min}=10^{-8}$ Wyznaczone analitycznie to $h_{\rm min}\approx 9.124*10^{-9}$

Różnica centralna (wzór drugi):

Błąd dla różnicy prawostronnej:

$$\begin{split} E(h) & \leq \frac{Mh^2}{6} + \frac{\varepsilon}{h} \\ h_{\min} & = \sqrt[3]{3\frac{\varepsilon_{\mathrm{mach}}}{M}} \text{ , gdzie } M \approx |f'''(x)| \end{split}$$

Rysunek 2: Wartości bezwzględne błędów metody, numerycznego i obliczeniowego Minimum funkcji błędu obliczeniowego E(h) wyznaczone empirycznie to $h_{\rm min}=10^{-7}$ Wyznaczone analitycznie to $h_{\rm min}\approx 2.273*10^{-6}$

Porównanie metod

- Minimalny błąd różnicy prawostronnej: $E(h_{\min}) \approx 9.776 * 10^{-8}$
- Minimalny błąd różnicy centralnej: $E(h_{\min}) \approx 2.221*10^{-9}$

Metoda różnicy centralnej ma mniejszy minimalny błąd, więc jest dokładniejsza.

Zadanie 2

Zliczanie sumy n liczb zmiennoprzecinkowych pojedynczej precyzji z zakresu [0,1] na różne sposoby, porównanie błędów wszystkich metod. Sposoby sumowania:

- a sumowanie w kolejności losowania, akumulator podwójnej precyzji
- b sumowanie w kolejności losowania, akumulator pojedynczej precyzji
- c sumowanie algorytmem Kahana z kompensacją, w kolejności losowania, akumulator pojedynczej precyzji
- d sumowanie w porządku rosnącym, akumulator pojedynczej precyzji
- e sumowanie w porządku malejącym, akumulator pojedynczej precyzji

Rysunek 3: Wykres błędów poszczególnych metod w zależności od n, za wynik dokładny przyjmuję wynik funkcji math.fsum()

Rysunek 4: Ten sam wykres, w skali logarytmicznej

Nie ma znaczących różnic między metodami b, d i e, prawdopodobnie wynika to z użycia niskiej precyzji przy obliczeniach. Metoda a jest zauważalnie lepsza dzięki użyciu akumulatora podwójnej precyzji. Zdecydowanie najlepszy jest jednak algorytm Kahana, który za każdym razem dał dokładny wynik.

Zadanie 3

Przepisanie poniższych wyrażeń tak, aby uniknąć błędu kancelacji.

• a)
$$\sqrt{x+1}-1, x\approx 0$$

$$\sqrt{x+1} - 1 = \left(\sqrt{x+1} - 1\right) \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} = \frac{x}{\sqrt{x+1} + 1}$$

• b) $x^2 - y^2, x \approx y$

$$x^{2} - y^{2} = (x - y)(x + y) = x(x + y) - y(x + y)$$

• c) $1 - \cos x, x \approx 0$

$$1 - \cos x = 1 - \left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right) = \sin^2\frac{x}{2} + \cos^2\frac{x}{2} - \left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right) = 2\sin^2\frac{x}{2}$$

• d) $\cos^2 x - \sin^2 x$, $x \approx \frac{\pi}{4}$

$$\cos^2 x - \sin^2 x = \cos 2x$$

• e) $\ln x - 1$, $x \approx e$

$$\ln x - 1 = \ln x - \ln e = \ln \frac{x}{e}$$

• f) $e^x - e^{-x}, x \approx 0$

$$e^x - e^{-x} = \sum_{i=0}^{\infty} \frac{x^i}{i!} - \sum_{i=0}^{\infty} (-1)^i \frac{x^i}{i!} = 2 \sum_{i=0}^{\infty} \frac{x^{2i+1}}{(2i+1)!} = 2 \sinh x$$

Zadanie 4

Sprawdzenie, czy możemy z pewnością wyznaczyć kolektor o lepszej sprawności, biorąc pod uwagę błędy w obliczanych składnikach wzoru.

$$\eta = K \frac{QT_d}{I}$$

• S1:

$$\eta = 0.76$$

$$\varepsilon_Q = 1.5\% \; \varepsilon_{T_d} = 1\% \; \varepsilon_I = 3.6\%$$

• S2:

$$\eta = 0.70$$

$$\varepsilon_Q = 0.5\% \; \varepsilon_{T_d} = 1\% \; \varepsilon_I = 2\%$$

Przy pomocy wzorów z wykładu obliczamy niepewności względne η dla S1 i S2. Dla mnożenia i dzielenia błędy względne zwyczajnie się dodają.

$$\begin{split} \varepsilon_{\eta_{\text{S1}}} &= 1.5\% + 1\% + 3.6\% = 6.1\% \\ \varepsilon_{\eta_{\text{S2}}} &= 0.5\% + 1\% + 2\% = 3.5\% \\ \eta_{\text{S1}} &= 0.76 \pm 6.1\% * 0.76 = 0.76 \pm 0.04636 \\ \eta_{\text{S2}} &= 0.70 \pm 3.5\% * 0.70 = 0.70 \pm 0.0245 \end{split}$$

Zakresy niepewności pomiarów η_{S1} i η_{S2} nachodzą na siebie, zatem nie możemy być pewni że S1 ma większą sprawność niż S2.

Wnioski

To laboratorium pokazuje znaczenie uwzględniania błędów przy jakichkolwiek obliczeniach. Zadanie pierwsze pokazuje powstawanie błędów metodologicznych nieuchronnie powstających w obliczeniach numerycznych. Ćwiczenie drugie ukazuje że nawet w pełni poprawna metoda, może produkować błędy w arytmetyce komputerowej, dlatego zawsze trzeba zwracać uwagę na przyjętą metodę. W obu tych ćwiczeniach można było zauważyć, że wraz ze spadkiem błędu metodologicznego, rośnie błąd obliczeniowy. Z ostatniego ćwiczenia można wynieść to, że nawet wyniku które na pierwszy rzut oka wydają się jednoznaczne, mogą okazać się bezużyteczne po uwzględnieniu błędów obliczeniowych.

Bibliografia

- https://en.wikipedia.org/wiki/Machine_epsilon artykuł na wikipedii na temat epsilona maszynowego wraz z tabelką z jego wartościami
- Wprowadzenie do laboratorium na platformie Teams w katalogu lab01