

UNIVERSIDADE FEDERAL DE SÃO CARLOS

Campus de Sorocaba

Introdução à Criptografia

Profa. Yeda

Aula 04 – Corpos Finitos

Cap. 4.3 Christof Paar & Jan Pelzl Cap. 4 (parcial) Stallings

Introdução aos Corpos Finitos

- Utilizado por diversos algoritmos criptográficos
 - AES, Elliptic Curve, IDEA, Public Key
- Relaciona-se a operações sobre "números"
 - Onde o que constitui um "número" e o tipo de operações pode variar consideravelmente.
- Definições: grupos, anéis, corpos.

Grupo

- Definido por um conjunto G de elementos ou "números",
- com alguma operação (•) cujo resultado também está no conjunto (fechamento)
 - Para todo $a,b \in G$, se $c = a \cdot b$ então $c \in G$.
- A operação de grupo obedece: $(p/qualquer a, b \in G)$
 - lei associativa: $(a \bullet b) \bullet c = a \bullet (b \bullet c)$
 - tem elemento identidade e: $e \cdot a = a \cdot e = a$
 - tem inverso a^{-1} : $a \bullet a^{-1} = a \bullet a^{-1} = e$
- Se comutativa $a \bullet b = b \bullet a$, para qualquer $a,b \in G$
 - então forma um grupo abeliano
- Operação: normalmente chamada de adição ou multiplicação, com seus respectivos inversos, subtração ou divisão.

Grupo Cíclico

- define exponenciação como repetida aplicação do operador
 - exemplo: $a^3 = a \cdot a \cdot a$
- \blacksquare e a identidade seja: $e=a^0$
- um grupo é cíclico se todo elemento é uma potência de algum elemento fixo
 - $b = a^k$ para algum a e todo b no grupo
- a é dito ser um gerador do grupo

Anél

- Um conjunto de "números " com 2 operações (adição e multiplicação) o qual forma:
- um grupo abeliano sobre a operação de adição,
- E a multiplicação:
 - se a multiplicação é comutativa, ela forma um anél comutativo

Corpo (F)

- Definido por um conjunto de números,
- com 2 operações as quais formam:
 - um grupo abeliano para a adição (+), com elemento neutro 0;
 - um grupo abeliano para a multiplicação (×) (ignorando 0), com elemento neutro 1.
 - Obs.: propriedade distributiva
- tem hierarquia com mais axiomas/leis
 - Grupo \rightarrow anél \rightarrow corpo

- Corpo finito tem papel chave na criptografia.
 - Corpos com *m* elementos.
- TEOREMA: "Um corpo com ordem m somente existe se m é uma potência prima, isto é $m = p^n$, para algum inteiro positivo n e inteiro primo p. Onde p é chamado a característica do corpo finito."
- Notação: $GF(p^n)$
- Normalmente usa-se os corpos:
 - GF(p) e $GF(2^n)$

- GF(p) é o conjunto de inteiros $\{0,1, ..., p-1\}$ com aritmética módulo um primo p.
- Formam um corpo finito, pois
 - Tem um inverso multiplicativo.
 - Assim como uma aritmética bem conhecida e pode-se adicionar, subtrair, multiplicar, e dividir sem deixar o corpo GF(p) (fechamento)

- Seja a,b inteiros positivos $\{0,1, ..., p-1\}$
- Adição: (*a* + *b*) *mod p*
- Inverso da adição (subtração): (a + (-a)) mod p
 - Qual é o elemento de GF(p) correspondente ao inverso de a para p=5?

- Seja a,b inteiros positivos $\{0,1, ..., p-1\}$
- Adição: $(a + b) \mod p$
- Inverso da adição (subtração):
 - $(a + (-a)) \bmod p = 0 \bmod p$
 - Qual é o elemento de GF(p) correspondente ao <u>inverso</u> aditivo de a para p=5?

1		1			
+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	თ	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

- Seja a,b inteiros positivos $\{0,1, ..., p-1\}$
- Multiplicação: (a × b) mod p
- Inverso da multip.(divisão):
 - $(a \times a^{-1})) \bmod p = 1 \bmod p$
 - Qual é o elemento de GF(p) correspondente ao inverso multiplicativo de a para p=5?

				_	
x	0	1	2	3	4
0					
1					
2					
3					
4					

- Seja a,b inteiros positivos $\{0,1, ..., p-1\}$
- Multiplicação: (a × b) mod p
- Inverso da multip.(divisão): $(a \times a^{-1}) \mod p$
 - Qual é o elemento de GF(p) correspondente ao inverso multiplicativo de a para p=5?

x	0	1	2	3	4
0					
1					
2					
3					
4					

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- Seja a,b inteiros positivos $\{0,1, ..., p-1\}$
- Multiplicação: (a × b) mod p
- Inverso da multip.(divisão): $(a \times a^{-1})$) mod p
 - Qual é o elemento de GF(p) correspondente ao inverso multiplicativo de a para p=5?

x	0	1	2	3	4
0					
1					
2					
3					
4					

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

0^{-1} = não existe
$1^{-1} = 1$
$2^{-1} = 3$
$3^{-1}=2$
$4^{-1} = 4$

- \blacksquare GF(2) = {0,1}
- Adição:

+	0	1
0	0	1
1	1	0

XOR

Multiplicação:

X	0	1
0	0	0
1	0	1

AND

Corpos de Extensão

- Se a ordem m de um corpo finito não é primo, as operações de adição e multiplicação não podem ser definidas para aritmética modular para p^n . Exemplo: $m = 2^n$.
- São os chamados corpos de extensão.
 - Elementos representados como polinômios,
 - Aritmética polinomial módulo polinômio irredutível.

Corpo de Galois GF(2ⁿ)

- Pode-se obter um corpo $GF(2^n)$:
 - Polinômios com coeficientes módulo 2
 - cujo grau é menor que n
 - assim deve reduzir módulo um polinômio irredutível de grau *n* (p/ multiplicação somente)
- Pode-se sempre achar um inverso
 - pode-se estender o algoritmo do inverso de Euclides para achar.

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	х	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	х	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	x	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^{2} + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	Х	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	x^2	x + 1

Módulo (x^3+x+1)

Considerações Computationais

- Uma vez que os coeficientes são 0 or 1, podese representar qualquer polinômio como uma string de bits
- Adição e subtração torna-se XOR destes bits
- Multiplicação obtida por shift & XOR
 - Contra multiplicações longas
- A redução modular é feita repetidamente substituindo a potência mais alta pelo resto do polinômio irredutível (shift & XOR também)

Computational Example

- Em GF(2^3) tem-se que(x^2+1) é 101_2 e (x^2+x+1) is 111_2
- Assim a adição é:
 - $(x^2+1) + (x^2+x+1) = x$
 - \blacksquare 101 XOR 111 = 010₂
- E multiplicação é
 - $(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - 011.101 = (101)<<1 XOR (101)<<0 = 1010 XOR 101 = 11111₂

Computational Example

- Redução módulo polinomial (q(x) & r(x)) is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - \blacksquare 1111 mod 1011 = 1111 XOR 1011 = 0100₂
 - Observe o módulo para elementos individuais, como x^4 , x^5 , etc.
 - O resto corresponde a um XOR do operando e polinômio irredutível (deslocado a esquerda)
 - $x^3 \mod (x^3+x+1) = 1.(x^3+x+1) + (x+1) = (x+1) \mod (x^3+x+1)$
 - $x^5 \mod (x^3+x+1)$ = $x^2.(x^3+x+1) + (x^3+x^2) = x^2.(x^3+x+1) + (x+1+x^2)$ = x^2+x+1