

Calefactor eléctrico controlado mediante Internet

Autor:

Ing. Leonardo Mancini

Director:

Mg. Ing. Diego Javier Brengi (INTI)

Codirector:

Ing. Salvador Tropea (INTI)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar
2. Identificación y análisis de los interesados
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	26 de abril de 2022
1	Se completa hasta el punto 5 inclusive	10/05/2022

Acta de constitución del proyecto

Buenos Aires, 26 de abril de 2022

Por medio de la presente se acuerda con el Ing. Ing. Leonardo Mancini que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Calefactor eléctrico controlado mediante Internet", consistirá esencialmente en la implementación de un prototipo de un sistema de conexión a internet de calefactor eléctrico, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$XXX, con fecha de inicio 26 de abril de 2022 y fecha de presentación pública 15 de mayo de 2023.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Pablo Barbero Intelligentgas

Mg. Ing. Diego Javier Brengi Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

El presente proyecto plantea desarrollar una solución IoT para calefactores eléctricos comercializados por Intelligentgas. El proyecto es realizado como parte del trabajo final de la especiladidad en Internet de las cosas, mediante convenío con el INTI (Instituto Nacional de Tecnología Industrial). Actualmente la empresa comercializa soluciones IoT enfocadas en el contról y monitoreo de sensores de diversos gases. Un producto que se encuentra en desarrollo es la de un calefactor eléctrico, el cual se lo diseña pensando formar parte de soluciones smart home, una industra en auge. En el mercado argentino no existen productos similares, por lo que para la empresa es un nicho en el cual innovar. La posibilidad de configurarlo en forma remota, monitorear su uso y consumo lo dotarán de una caracteristica importante, tanto por una cuestion ambiental como comercial. Para lograr este objetivo, es que se da inicio al proyecto de brindarle conectividad a Internet mediante el desarrollo del modulo de comunicaciónes. Cabe destacar que la comunicacón no es el único objetivo de la solución, ya que un valor agregado directamente para el cliente es la de poder tener datos que le permitirán conocer las costumbres de uso de los usuarios. Por lo tanto la solución planteada es una infraestreutura IoT además del desarrollo del modulo WiFi.

1.1. Detalle de funcionalidad a implementar

La solución planteada consta de:

- Módulo de comunicación WiFi, que permitirá conectar el calefactor a Internet, recibiendo datos del calefactor y enviandolas mediante MQTT a un servidor web. También recibirán las configuraciones por parte del usuario.
- Servidor en la nube, en donde se encontrará la base de datos con información de cada calefactor y de cada usuario.
- Aplicación móvil mediante la cual el usuario podrá interactuar con los calefactores de su propiedad

El desarrollo del sistema permitiría a cada usuario configurar y monitorear los calefactores de su propiedad. Tambíen podrá permitirá encender/apagar los calefactores en determinado rango de tiempo y/o por distancia geografica (Si deja el hogar/está volviendo al hogar). En la Figura 1 se presenta el diagrama en bloques del sistema. Se observan los principales componentes del sistema.

Figura 1. Diagrama en bloques del sistema

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organi-zación	Puesto
Auspiciante	-	-	-
Cliente	Pablo Barbero	Intelligentgas	-
Impulsor	-	-	-
Responsable	Ing. Leonardo Mancini	FIUBA	Alumno
Colaboradores	-	-	-
Orientador	Mg. Ing. Diego Javier	INTI	Director Trabajo final
	Brengi		
Equipo	-	-	-
Opositores	-	-	-
Usuario final	Usuarios de calefactores	-	-
	IoT		

- Director: Muy detallista en los procesos de gestión de proyectos. Se programan las reuniones mediante meet durante el mediodía en forma semanal.
- Cliente: Tiene conocimientos técnicos, ya cuenta con desarrollos similares. Se puede comunicar por teléfono en cualquier momento. También solicita guardar confidencialidad en detalles técnicos/comerciales al ser un producto comercial.

3. Propósito del proyecto

El proposito de este proyecto es brindar funcionalidad IoT a los calefactores comercializados por la empresa del cliente. El objetivo se logrará con el desarrollo de un módulo de comunicaciones WiFi, que permitirá enviar y recibir eventos entre un servidor en la nube y el calefactor. De esta forma se podra monitorear e interactuar en forma remota y lograr un uso mas eficiente del calefactor.

4. Alcance del proyecto

El desarrollo del presente proyecto incluye:

- Desarrollo de firmware para modulo de conexión WiFi.
- Desarrollo de aplicación móvil hibrida para el usuario final, que permitirá monitorear/configurar el calefactor.
- Desarrollo de servidor en la nube.
- Construcción de prototipo de hardware.

El desarrollo NO incluirá:

- Construccion del producto final.
- Gestión de usuarios con Third Party.
- Distribución comercial de las aplicaciones.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- El cliente proveerá el hardware controlador del calefactor.
- El cliente proveerá el hardware de conexión WiFi (Módulo ESP-32)
- El cliente proveerá acceso a lps servidores de Google Cloud Plattform
- Durante el cursado de la especialidad se obtendrán los conocimientos necesarios para lograr el objetivo.
- Acceso a los repositorios de Android/IoS para la publicación

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación

- 2.1. Requerimiento 1
- 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware

- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas hs)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas hs)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas hs)
 - 2.2. Tarea 2 (tantas hs)
 - 2.3. Tarea 3 (tantas hs)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas hs)
 - 3.2. Tarea 2 (tantas hs)
 - 3.3. Tarea 3 (tantas hs)
 - 3.4. Tarea 4 (tantas hs)
 - 3.5. Tarea 5 (tantas hs)

Cantidad total de horas: (tantas hs)

Se recomienda que no haya ninguna tarea que lleve más de 40 hs.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

Figura 2. Diagrama en $Activity\ on\ Node$

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa.
 https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
COSTOS INDIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
SUBTOTAL							
TOTAL							

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.