Contextual Bandits

Vipul Patil

Problem statement (theoretical)

Repeat:

- Learner presented with context
- 2. Learner chooses an action
- 3. Learner observes reward (but only for chosen action)

Goal: learn to choose actions to maximize rewards

Problem Protocol: Contextual bandits

For each round $t \in [T]$:

- 1. algorithm observes a "context" x_t ,
- 2. algorithm picks an arm a_t ,
- 3. reward $r_t \in [0,1]$ is realized.
- Goal: Maximize total reward: ∑ r,
- Reward r_t in each round t depends both on the context x_t and the chosen action a_t

Example

Improve user satisfaction by tailoring recommendations to specific user's need

- Arms: ads, movies, articles, or whatever is being recommended
- **Context**: user data and cookies, which can be utilized to predict their preferences.

Exploration versus Exploitation

- Exploitation: Pick choices that seem best based on past outcomes
- Exploration: Pick choices not yet tried out (or not tried enough)
- Exploitation has notions of "being greedy" and being "short-sighted"
- Too much Exploitation ⇒ Regret of missing unexplored "gems"
- Exploration has notions of "gaining info" and being "long-sighted"
- Too much Exploration ⇒ Regret of wasting time on "duds"

Examples

Restaurant Selection

Exploitation: Go to your favorite restaurant

Exploration: Try a new restaurant

Online Banner Advertisement

Exploitation: Show the most successful advertisement

Exploration: Show a new advertisement

Oil Drilling

Exploitation: Drill at the best known location

Exploration: Drill at a new location

ε- Greedy/ Epoch-Greedy Algorithm

Explicit exploration and exploitation

On each round, choose action:

- According to "best" policy so far (with probability $1-\epsilon$)
- Uniformly at random (with probability ϵ)

Applications

Online advertising (personalized advertising):

 System aims to select the most relevant ad to display to a user based on their context (such as user demographics, browsing history, or current webpage content)

Healthcare Treatment Selection:

- Treatment decisions can be made based on patient characteristics and contextual factors.
- The bandit algorithm can learn from historical patient data to suggest the most suitable treatment options, considering individual patient needs and potential outcomes.

Dynamic Pricing:

- The system adapts pricing decisions based on contextual information such as customer segment, demand patterns, and market conditions.
- The bandit algorithm learns from past pricing experiments and user responses to optimize pricing for maximizing revenue or other desired objectives.