L. Mereu – A. Nanni Serie numeriche

8. Serie a termini di segno alternato - Criterio di Leibniz

Se la serie

$$\sum_{k=1}^{\infty} (-1)^k a_k$$

con $a_k > 0$, è a termini di segno alterno e se la successione

$$\{|a_k|\}$$

- è decrescente , cioè $a_k>a_{k+1}$ è infinitesima, cioè $\lim_{k\to+\infty}a_k=0$

allora la serie data è convergente.

Esempi

a) La serie $\sum_{k=0}^{\infty} (-1)^k \frac{1}{3+k^3}$ a termini di segno alterno converge, infatti la successione $\left\{\frac{1}{3+k^3}\right\}$ è decrescente e $\lim_{k\to\infty}\frac{1}{3+k^3}=0$. Si osserva che la serie data converge anche assolutamente, infatti la serie dei valori assoluti $\sum_{k=0}^{\infty} \frac{1}{3+k^3}$ converge per il criterio del confronto con la serie $\sum_{k=0}^{\infty} \frac{1}{k^3}$.

b) Sia data la serie a termini di segno alterno $\sum_{k=1}^{\infty} \frac{(-1)^k}{4^k}$. Poiché la successione

$$\{|a_k|\} = \left\{\frac{1}{4^k}\right\}$$

- è decrescente , infatti $\frac{1}{4^{k+1}} < \frac{1}{4^k} \ \ \forall k > 1$
- è infinitesima , infatti $\lim_{k\to\infty}\frac{1}{4^k}=0$

la serie data è convergente. Si osserva che la serie data converge anche assolutamente, infatti la serie dei valori assoluti $\sum_{k=0}^{\infty} \frac{1}{4^k}$ converge, in quanto è una serie geometrica di ragione $\frac{1}{4}$

c) Alla serie a termini di segno alterno

$$\sum_{k=1}^{\infty} (-1)^k e^{-k} |sink|$$

non è possibile applicare il criterio di Leibniz poiché i termini tendono a zero oscillando ; la serie è però assolutamente convergente, in quanto, risultando

$$e^{-k}|sink| \le e^{-k}$$

i suoi termini in valore assoluto sono maggiorati dai termini della serie geometrica

$$\sum_{k=1}^{\infty} e^{-k}$$
 convergente.

Esercizi

(gli esercizi con asterisco sono avviati)

Stabilire se le seguenti serie convergono semplicemente

*1.
$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k^3}$$

*2.
$$\sum_{k=1}^{\infty} (-1)^k \frac{k+1}{k}$$

*3.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{(\log k)^2}$$

4.
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2+k}$$

5.
$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{\sqrt[4]{k+1}}$$

6.
$$\sum_{k=1}^{\infty} (-1)^k \frac{k}{2^k}$$

7.
$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{1+2^k}$$

$$8. \sum_{k=1}^{\infty} (-1)^k \frac{\log k}{e^k}$$

9.
$$\sum_{k=0}^{\infty} (-1)^k 3^k$$

$$10.\sum_{k=1}^{\infty} (-1)^k \frac{k}{k^2+1}$$

11.
$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{(e+2)^k}$$

*12.
$$\sum_{k=1}^{\infty} (-1)^k \left(1 + \frac{1}{k}\right)^k$$

13.
$$\sum_{k=2}^{\infty} (-1)^k \frac{k}{(k+2)^2}$$

Soluzioni

- *1. S. sì, infatti $\frac{1}{k^3} > \frac{1}{(k+1)^3} e \lim_{k \to +\infty} \frac{1}{k^3} = 0$;
- *2. S. no, irregolare, infatti $\lim_{k \to +\infty} \frac{k+1}{k} = 1$;
- *3. S. sì, infatti , $\forall k \geq 2$, $\{(logk)^2\}$ è monotona crescente, quindi $\{\frac{1}{(logk)^2}\}$ è monotona

decrescente, inoltre $\lim_{k\to+\infty} \frac{1}{(\log k)^2} = 0$;

- **4. S.** sì;
- **5. S.** sì;
- **6. S**. sì ; **7. S.** sì ;
- **8. S.** sì;
- **9. S.** no, irregolare
- **10. S.** sì
- **11. S.** sì
- *12. S. no, irregolare, poiché il $\lim_{k \to +\infty} \left(1 + \frac{1}{k}\right)^k = e$
- **13. S** si