P R O J E C T D O C U M E N T

문제점 개요서

Project Name

한국어 기반 인공지능 생성 텍스트 탐지

17 조

202202501 조은비

202002494 박범창

202002565 좌진우

지도교수: 이종률 교수님 (서명)

Document Revision History

Rev#	DATE	AFFECIED SECTION	AUTHOR
1	2025/03/20	Survey Paper, Limitations and Research Gaps 추가	박범창
2	2025/03/20	Survey Paper, Limitations and Research Gaps 추가	조은비
3	2025/03/20	Survey Paper, Limitations and Research Gaps 추가	좌진우

Table of Contents

1.	SURVEY PAPER - LIMITATIONS FOCUS	.4
2.	LIMITATIONS AND RESEARCH GAPS	. 7

1. Survey Paper - Limitations Focus

번	연구 제목(저자)	저널/컨퍼런스	주요 내용 요약	한계점
호		(연도)		
1	A Million-Scale	SCOPUS(2023)	확산모델(Diffusion Model)과 적대 신경망(GAN)을 사용한 대규	동일한 생성기로 생성, 훈련한 경우 높은 정확
	Benchmark for		모 생성형 AI이미지 데이터 셋 구축 및 다양한 성능평가	도를 보여주었으나(98.5%) cross-generator 평
	Detecting AI-		기존 탐지모델(CNNSpot, Spec)등은 확산 모델로 생성된 이미지	가를 진행할경우 크게 저하(54.9%)
	Generated Image(Zhu		에 성능이 좋지않음.	
	Mingjian 외 9명)			
2	학생 작문 에세이와 AI	한국정보통신	학생 essay를 기반으로 KoELECTRA 모델을 적용해 10-Fold 교차	학습데이터인 학생 essay는 주제가 한정되어있
	생성 텍스트의 구분을	학회(2024)	검증을 통한 생성형 AI탐지 평가. KoELECTRA모델은 한국어 자	어 특정 데이터 셋에만 적용할 수 있는 연구
	위한 KoELECTRA 기반		연어 처리(NLP)에 특화된 모델. 정확도, 정밀도, 재현률, F1점	결과라는 점이 한계점.
	탐지 모델 적용(박소		수 모두 95% 이상으로 성공적인 실험	
	현)			
3	대규모 언어 모델을 활	한국지식경영	한국어 환경에서 LLM이 가짜뉴스 탐지에 적합한지,	학습 데이터셋이 전문 기자가 작성한 데이터라
	용한 한국어 가짜뉴스	학회,	어떤 요약방식이 탐지에 효과적이며 최적의 방법은 무엇인지	단순하고 감정적인 콘텐츠(ex 트위터, 커뮤니
	탐지: 한계와 가능성	KCI(2024)	가짜뉴스의 조작방식(정보왜곡, 사실-허위 결합, 감정적 접근)	티 토막글 등)에는 적용 불가.
	(고상훈, 안현철)		기존 가짜뉴스 탐지방법(뉴스 컨텐츠 분석, 배경정보 활용)	이유기반 프롬프트 방법을 사용해도 정확도는
			가짜뉴스를 추출, 생성형으로 나눠 어느 방법이 탐지에 적합한	62%정도라 실사용 하기에는 무리
			지 연구 -> 생성형이 탐지에 더 적합한 모습 확인	
			하지만, 이유기반 프롬프트 설정시 기존 뉴스 탐지(59.8%)보다	
			우수한 성능(62%) 확인	
4	인공지능 생성 텍스트	대한전자공학	영어권 AI 생성 텍스트(AIGT) 탐지 모델(DetectGPT, RADAR)의	기존 영어권 AIGT 탐지 모델을 한국어에 직접
	탐지 기술의 한국어 적	회 (2024)	한국어 적용 가능성을 분석. 다양한 한국어 도메인(뉴스, 과학	적용한 경우 탐지 성능이 0.5 AUROC 이하로 감

	6 (ul=12 =1ul=		Elalation elalata kal	2 -1-14 Ada Edo1-1-2 Ab
	용 (박현주, 김병준,		등)에 대한 AIGT 탐지 실험 수행.	소. 한국어의 언어적 특성을 고려하지 않은 모
	김부근)			델 구조로 인해 성능 저하 발생. 최신 AI 생성
				모델(Claude 3 등)이 인간과 유사한 텍스트를
				생성하여 탐지가 더욱 어려워짐
5	딥러닝 기반 인공지능	ACK 2024 학술	AI가 작성한 뉴스가 증가함에 따라 가짜뉴스 탐지 필요성이 대	기사 제목과 같은 짧은 문장에서는 탐지 성능
	생성 뉴스 탐지 (장예	발표대회	두됨. KoBART, KoELECTRA, 그리고 두 모델을 결합한 앙상블 모	이 현저히 떨어짐. KoELECTRA, KoBART 모델 모
	호) 관)	(2024)	델을 사용하여 AI 생성 뉴스 탐지 모델을 개발. 실험 결과	두 제목 분류에서 낮은 AUROC(0.55~0.62)와 비
			KoBART 모델이 Accuracy 0.9995로 가장 높은 성능을 기록.	정상적인 Precision 및 Recall 결과를 보임.
				AI 뉴스 생성에 GPT-3.5-turbo를 사용하였으
				며, 최신 한국어 특화 모델(KULLM, KLUE-BERT
				등) 적용이 필요함.
6	Have LLMs Reopened the	NAACL (2025)	인간이 LLM을 활용하여 가짜 뉴스를 생성하고, 별도의 참가자	- 데이터셋의 한계:
	Pandora's Box of AI-		들이 해당 뉴스가 가짜인지 판별하도록 실험을 설계함. 실제	뉴스 데이터가 참가자가 직접 LLM을 사용하여
	Generated Fake News?		뉴스 탐지의 경우 LLM(GPT-4o)이 인간보다 68% 더 정확하게	제작한 것이므로, 실제 온라인에서 발견되는
	(Xinyu Wang et al.)		실제 뉴스를 판별했지만, 가짜 뉴스의 경우 LLM과 인간 모두	가짜 뉴스와 다를 가능성이 있음. 실제 뉴스
			약 60% 정도의 정확도로 비슷한 정도를 보임 (사람은 미리 가	데이터는 주류 언론에서(신뢰도가 높은) 수집
			짜 뉴스의 존재 사실을 알았음)	되었지만, 현실에서는 신뢰도가 낮은 출처의
				기사도 많아 탐지 정확도가 달라질 수 있음
				- LLM 탐지 성능의 한계:
				현재 LLM의 탐지 성능이 가짜 뉴스에 대해 60%
				수준이기 때문에, 현실적인 탐지 도구로 사용
				하기 어려움. 또한, 가짜 뉴스 제작자가 LLM
				탐지를 회피하는 기술을 발전시킬 경우 탐지율
				이 더욱 낮아질 수 있음

종합설계 1

7	MAGE: Machine-	ACL (2024)	AI 생성 텍스트 탐지를 위해 다양한 도메인과 27개의 LLM에서	LLM이 생성한 텍스트는 연구팀이 사전 정의한
	generated Text		생성된 텍스트를 포함한 MAGE 테스트베드를 구축함. 특정 도	프롬프트를 기반으로 생성됨 → 실제 AI가 자
	Detection in the Wild		메인에서는 높은 성능(최대 99%)을 보였으나, 새로운 도메인이	율적으로 생성하는 텍스트보다 구조적일 가능
	(Yafu Li et al.)		나 LLM에서는 성능이 감소(최저 68.4%). 다양한 공격에 대해	성이 높음.
			탐지 모델의 성능이 크게 저하되어, 간단한 변형만으로도 탐지	모든 탐지 실험이 정형화된 데이터셋에서 수행
			회피가 가능함. 완벽한 AI 생성 텍스트 탐지는 아직 어렵고,	됨 → 실제 환경에서는 사용자가 직접 생성하
			탐지 성능을 높이기 위해 하이브리드 모델 및 새로운 기법이	거나 편집한 텍스트가 많기 때문에 탐지 성능
			필요함.	이 다를 수 있음.

2. Limitations and Research Gaps

번	기존 연구	한계점	연구 필요성	본 연구의 기여
호				
1	A Million-Scale	동일한 생성기로 생성, 훈련한 경우 높	cross-generator 평가에서도 높은 성능	학습 이미지 개수 증가 -> 탐지 성능 향상확인
	Benchmark for	은 정확도를 보여주었으나(98.5%)	을 낼 수 있도록 다양한 generator 학	얼굴 및 예술이미지에 대한 높은 정확도
	Detecting AI-	cross-generator 평가를 진행할경우 크	습 및 평가 필요.	저해상도(112x112), 가우시안 블러처리, JPEG
	Generated Image(Zhu	게 저하(54.9%)		형식등에서 우수한 성능 확인
	Mingjian 외 9명, 2023)			
2	학생 작문 에세이와 AI	학습데이터인 학생 essay는 주제가 한	다양한 주제에 대한 학습데이터가 필요	제한된 주제에서의 KoELECTRA 모델의 우수한
	생성 텍스트의 구분을	정되어있어 특정 데이터 셋에만 적용할	함. 이를 통한 재 학습을 실시한다면	성능 입증
	위한 KoELECTRA 기반	수 있는 연구 결과라는 점이 한계점.	광범위한 주제에서의 생성형 AI 텍스트	기존에 주로 사용되던 BERT모델보다 KoELECTRA
	탐지 모델 적용(박소		탐지를 실현할 수 있을 것.	모델의 우수한 부분(인간 - ai간 미세한 차이
	현, 2024)			식별)
3	대규모 언어 모델을 활	학습 데이터셋이 전문 기자가 작성한	데이터셋에 다양한 데이터(단순하고 짧	LLM 프롬프트 기반 가짜뉴스 탐지 성능평가
	용한 한국어 가짜뉴스	데이터라 단순하고 감정적인 콘텐츠(ex	은 토막글) 등 포함해 학습이 필요함	다양한 방법(요약, 추출, 프롬프트 설정)을 통
	탐지: 한계와 가능성	트위터, 커뮤니티 토막글 등)에는 적용	정확도를 향상시키기위한 다양한 방법	한 성능 향상법 탐구
	(고상훈, 안현철,	불가.	연구할 필요성 있음.	
	2024)	이유기반 프롬프트 방법을 사용해도 정		
		확도는 62%정도라 실사용 하기에는 무		
		리		
4	인공지능 생성 텍스트	기존 영어 기반 AI 생성 텍스트(AIGT)	한국어의 언어적 특성을 반영한 AIGT	한국어 전용 데이터셋을 구축하고, AIGT 생성
	탐지 기술의 한국어 적	탐지 모델(DetectGPT, RADAR)은 주로	탐지 모델 개발이 필요함. 기존 연구에	및 탐지 모델을 학습하여 한국어 환경에서의
	용 (박현주, 김병준,	영어와 같은 굴절어에서만 실험되었으	서 사용한 토큰화 및 데이터 전처리 방	탐지 성능 분석 고려.

	김부근, 2024)	며, 한국어와 같은 교착어에서는 성능	법이 한국어에 최적화되지 않음.	Claude 3, GPT-4 등 최신 생성 모델에 대한 탐
		이 저하됨.	한국어에 특화된 데이터셋(한국어 뉴	지 성능을 분석하고, 탐지 성능을 향상시키기
		기존 연구에서 사용한 데이터셋(XSum,	스, KorQuAD, 과학 데이터셋 등)을 사	위한 새로운 접근법을 제안함.
		SQuAD 등)은 영어 기반이며, 한국어에	용하여 실험이 필요함.	
		적용 시 성능 저하.	최신 AI 생성 모델(Claude 3, GPT-4	
		Claude 3가 생성한 AI 텍스트가 인간과	등)의 탐지를 위한 새로운 접근 방식이	
		유사하여 DetectGPT 및 RADAR 기반 탐	필요함.	
		지 모델의 성능이 더욱 저하됨.		
5	딥러닝 기반 인공지능	KoBART, KoELECTRA 모델 기반 탐지 모	짧은 문장(뉴스 제목)에 대한 탐지 성	기사 제목 탐지 성능 향상을 위해 기존
	생성 뉴스 탐지 (장예	델이 AI 생성 뉴스 내용을 정확하게 탐	능을 향상시키기 위한 새로운 접근법이	KoBART, KoELECTRA 모델의 fine-tuning을 최적
	훈, 2024)	지했지만, 뉴스 제목과 같은 짧은 문장	필요함.	화하고, 추가적인 데이터 증강 기법을 적용할
		에서는 탐지 성능이 크게 저하됨. 특히	또한, 최신 한국어 특화 AI 모델	예정.
		KoBART 모델의 Precision과 Recall이	(KULLM, KLUE-BERT 등)을 활용하여 AI	한국어에 특화된 KULLM, KLUE-BERT 등의 모델
		0.0으로 계산되는 등 정상적인 성능을	뉴스 생성 및 탐지 성능을 개선할 필요	을 활용하여 탐지 성능을 비교하고, 새로운 접
		보이지 않음. AI 뉴스 생성에 사용된	가 있음.	근법을 제안함.
		GPT-3.5-turbo는 최신 한국어 특화 모		단일 모델 대비 성능이 높은 앙상블 모델(soft
		델이 아니므로, 탐지 성능의 일반화에		voting, stacking 등)을 최적화하여 탐지 성능
		한계가 있음.		을 극대화함.
6	Have LLMs Reopened the	- 데이터셋의 한계:	AI가 생성한 가짜 뉴스를 탐지하는 실	본 연구는 한국어 기반 AI 생성 가짜 뉴스 및
	Pandora's Box of AI-	뉴스 데이터가 참가자가 직접 LLM을 사	험을 수행했지만, 실제 환경에서의 적	허위 정보 탐지 모델을 개발하여 기존 연구의
	Generated Fake News?	용하여 제작한 것이므로, 실제 온라인	용 가능성이 제한적이다. 실험이 특정	한계를 해결할 수 있다. 다양한 한국어 뉴스
	(Xinyu Wang et al.	에서 발견되는 가짜 뉴스와 다를 가능	도메인(주류 언론 뉴스)에 국한되었으	및 온라인 플랫폼(SNS, 블로그 등) 등에서 데
	2025)	성이 있음	며, 다양한 뉴스 출처나 언어적 변형	이터셋을 구축하여 실제 환경에서 발생하는 가
		- LLM 탐지 성능의 한계:	(패러프레이징, 번역 등)에 대한 탐지	짜 뉴스 탐지 성능을 검증할 수 있다.
		현재 LLM의 탐지 성능이 가짜 뉴스에	성능은 충분히 검증되지 않았다. 또한	

종합설계 1

		네케 ૧૦૦ 본 기 네 - 레 디 네 - 티 카 키 시		
		대해 60% 수준이기 때문에, 현실적인	한국어 환경에서 AI 생성 가짜 뉴스를	
		탐지 도구로 사용하기 어려움. 또한,	탐지하는 연구는 부족하여, 한국어 특	
		가짜 뉴스 제작자가 LLM 탐지를 회피하	성을 반영한 탐지 모델이 필요하다.	
		는 기술을 발전시킬 경우 탐지율이 더		
		욱 낮아질 수 있음		
7	MAGE: Machine-	LLM이 생성한 텍스트는 연구팀이 사전	이 연구는 AI 생성 텍스트 탐지를 위해	한국어 문법과 어휘적 특성을 반영하여 AI 모
	generated Text	정의한 프롬프트를 기반으로 생성됨 →	다양한 도메인과 LLM에서 생성된 텍스	델을 개발해 볼 수 있다. 실제 뉴스, SNS, 커
	Detection in the Wild	실제 AI가 자율적으로 생성하는 텍스트	트를 분석했지만, 주로 영어 데이터에	뮤니티 게시글 등에서 수집한 데이터를 활용한
	(Yafu Li et al. 2024)	보다 구조적일 가능성이 높음.	초점을 맞추었으며, 한국어 데이터에	한국어 AI 탐지 데이터셋을 구축하여 실제 환
		모든 탐지 실험이 정형화된 데이터셋에	대한 연구는 이루어지지 않았다. 또한,	경에서의 활용 가능성을 높여볼 수 있을 것이
		서 수행됨 → 실제 환경에서는 사용자	기존 탐지 모델들은 특정 도메인과 LLM	다.
		가 직접 생성하거나 편집한 텍스트가	에서 훈련되었을 때 높은 성능을 보였	
		많기 때문에 탐지 성능이 다를 수 있	지만, 새로운 도메인과 LLM에서 생성된	
		ᆼ.	텍스트 탐지는 여전히 어려운 문제로	
			남아 있다. 특히, 패러프레이징 공격에	
			취약하여 탐지 성능이 크게 저하되는	
			문제가 존재한다.	