Static Timing Analysis (STA)

Static Timing Analysis (STA)

- STA is a technique for digital design verification. It:
 - Validates if the design can operate at the set timing constraints
 - Is a complete and exhaustive verification of all timing checks of a design
 - Is used instead of simulation

Simulation

- Simulating (dynamically) circuit response for a specified set of input patterns
 - Circuit modeled as network of capacitors, resistors and voltage/current sources

STA (2)

- Vector-less topological analysis of a circuit.
 - ☐ The signal at the input is propagated through the gates at each level till it reaches the output

STA vs. Simulation

Simulation

- Advantages
 - Can be very accurate (Spice-level)
- Disadvantages
 - Analysis quality depends on stimulus vectors
 - Non-exhaustive, slow

Static Timing Analysis (STA)

- Advantages
 - Exhaustive timing coverage
 - Does not require input vectors
 - Faster operation
- Disadvantages
 - Less accurate
 - Must define timing requirements/exceptions
 - Difficulty in handling asynchronous designs, false paths

Digital Circuits Timing Goals

- Achievement of required frequency
 - Digital circuits are constrained to work under specific frequencies
 - All separate parts of circuit are constrained to have delay smaller than clock period
- Meeting timing constraints
 - Avoiding collision of signals
 - Avoiding failure
- STA verifies these

Components of Circuit Timing

- Delay components
 - Cells, Interconnects

- Constrained components
 - Clocked registers require setup/hold, recovery/removal constraints

For circuit to operate without failure it is required that delay components at no point violate constraints of other components.

Cell Timing Parameters

N	Parameter	Unit	Symbol	Figure	Definition
1.	Rise transition time	ns	t _R	$\begin{array}{c} V_{DD} \\ 0.9V_{DD} \\ \hline \\ V_{SS} \\ \hline \\ \end{array} t_{R} $	The time it takes a driving pin to make a transition from kV _{DD} to (1-k)V _{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
2.	Fall transition time	ns	t _F	V_{DD} $0.9V_{DD}$ $0.1V_{DD}$ V_{SS}	The time it takes a driving pin to make a transition from (1-k)V _{DD} to kV _{DD} value. Usually k=0.1 (also possible k=0.2, 0.3, etc)
3.	Propagation delay low-to-high (rise)	ns	t _{PLH} (t _{PR})	0.5V DD OUT	Time difference between the input signal crossing a $0.5V_{DD}$ and the output signal crossing its $0.5V_{DD}$ when the output signal is changing from low to high
4.	Propagation delay high-to-low (Fall)	ns	t _{PHL} (t _{PF})	OUT -0.5V _{DD}	Time difference between the input signal crossing a 0.5V _{DD} and the output signal crossing its 0.5V _{DD} when the output signal is changing from high to low

Cell Timing Constraints Setup/Hold, Recovery/Removal Constraints

N	Parameter	Unit	Symbol	Figure	Definition
1	Setup time (only for flip-flops or latches)	ns	t _{su}	0.5\60 DATA \$U. CLOCK	The minimum period in which the input data to a flip-flop or a latch must be stable before the active edge of the clock occurs
2	Hold time (only for flip-flops or latches)	ns	t _H	CLOCK 0.5Vm	The minimum period in which the input data to a flip-flop or a latch must remain stable after the active edge of the clock has occurred

Timing Closure Problem

Problem

• In clocked environment signals on the register inputs must arrive before next

Clock: Both registers store new value at specific points of time (with some frequency, like 1GHz)

Delay +
$$t_{setup} < T_{clock}$$

Static Timing Analysis Steps

Circuit is broken into timing paths

Delay of each path is calculated

For each path delays are checked against timing constraints

Path	Delay	Constraint
$a \rightarrow c$?	?
$b \rightarrow c$?	?
$clock \rightarrow d$?	?
$clock \rightarrow y$?	?

STA Concepts

- Timing Path
- Required Time
- Arrival Time
- Slack
- Critical Path

Timing Paths

- Timing path has a start point and an endpoint.
- Start point:
 - Input ports
 - Clock pins of flip-flops

- Endpoints:
 - Output ports
 - data input pins of flip-flops

Possible Paths

Paths			
	$a \to MUX1.0 \to MUX2.0 \to out$		
	$a \to MUX1.0 \to MUX2.1 \to out$		
	$b \to \text{MUX1.1} \to \text{MUX2.0} \to \text{out}$		
	$b \to MUX1.1 \to MUX2.1 \to out$		

False Paths

 Paths which physically exist in a design but are not logic paths. These paths never get sensitized under any input condition

	Paths
a → MUX1	$.0 \rightarrow MUX2.0 \rightarrow out$
$a \rightarrow MUX1$	$.0 \rightarrow MUX2.1 \rightarrow out$
$b \to \text{MUX1}$	$.1 \rightarrow MUX2.0 \rightarrow out$
$b \rightarrow MUX1$	$.1 \rightarrow MUX2.1 \rightarrow out$

Multi-cycle Paths

There are data paths that require more than one clock period for execution.

Required Time

- Required time specifies the time point (interval) at which data is required to arrive at end point (data is required to be stable after arrival).
 - Time point after which data can become unstable (change) is called earliest required time
 - □ Time point after which data cannot become unstable (change) is called latest required time
- The requirement is set by timing constraints like setup/hold, removal/recovery, etc.

Arrival Time

- Arrival time defines the time interval during which a data signal will arrive at a path endpoint (after arrival time signal will be stable).
- Data is normally triggered by clock edge
- Data arrival depend on circuit delay, which vary (depend on temperature, supply voltage, etc.)
- Minimum delay, early arrival
- Maximum delay, late arrival

Slack and Critical Path

- Slack is the difference between the required time and the arrival time.
 - Negative slack → violation
 - Positive slack → constraints have been met
 - Critical path is a path in the design that has smallest slack

Early and Latest Analysis

- STA tool calculates the slack of each logic path, in order to find critical path.
- Early and Latest analysis approaches:
 - Assumes circuits have minimum delay, compares arrival time to earliest required time (hold check)
 - Assumes circuits have maximum delay, compares arrival time to latest required time (setup check)

Path Groups

- Timing paths are grouped into path groups by the clocks controlling their endpoints
- Slack is calculated in relation to each clock

Thank You