MULTIPLE CHOICE

2012 EXAM

- 21. Which one of the following is a substitution reaction?
 - (a) $CH_3CH_2CH_2Br + Br_2 \rightarrow CH_3CH_2CH_2CHBr_2 + HBr$
 - (b) $CH_3CH_2CHCH_2 + Br_2 \rightarrow CH_3CH_2CHBrCH_2Br$
 - (c) $CH_3CH_2COOH + CH_3OH \rightarrow CH_3CH_2CH_2COOCH_3 + H_2O$
 - (d) $CH_3CH_2CHCH_2 + H_2 \rightarrow CH_3CH_2CH_2CH_3$

Examine the structures for compounds (i), (ii), (iii) and (iv) below to answer Questions 22 to 24.

- 22. Which of these compounds are geometric isomers?
 - (a) (i) and (ii)
 - (b) (i), (ii) and (iii)
 - (c) (i) and (iv)
 - (d) (iii) and (iv)
- 23. How many moles of oxygen will be consumed in the complete combustion of 1 mole of compound (i)?
 - (a) 1 mol
 - (b) 3.5 mol
 - (c) 5 mol
 - (d) 7.5 mol
- 24. Which one of the following is the product from the reaction of bromine with Compound (iii)?
 - (a) CH₃CH₂CBr(CH₃)CH₂Br
 - (b) CH₃CH₂BrCH(CH₃)CH₃
 - (c) CH₃CH₂BrCH(CH₃)CH₂Br
 - (d) CH₃CH₂CH(CH₃)CH₂Br
- 25. Which one of the following will react with acidified potassium dichromate to give a ketone?
 - (a) CH₃CH₂CH₂OH
 - (b) CH₂CH₂CHO
 - (c) CH₃CH(OH)CH₃
 - (d) (CH₃)₃COH

2010 EXAM

22. Which one of the following compounds is an α -amino acid?

Use the information below to answer questions 23 and 24.

- 23. Which one of the following is the formula for the product B from the reaction of A with hydrogen chloride?
 - (a) CH₃CHCHCH₂Cℓ
 - (b) CH₃CHCℓCHCℓCH₃
 - (c) CH₃CH₂CHC ℓ CH₃
 - (d) $CH_3CH_2CH_2CH_2C\ell$
- 24. Which one of the following is the formula for the product C from reaction of A with chlorine?
 - (a) CH₃CHCHCH₂Cℓ
 - (b) CH₃CHCℓCHCℓCH₃
 - (c) CH₃CH₂CHC ℓ CH₃
 - (d) $CH_2C\ell CHCHCH_2C\ell$
- 25. Ethene (CH₂CH₂) can be used to manufacture ethyl ethanoate, CH₃COOCH₂CH₃, in three steps, as indicated below:

2007 exam

- 2. Which one of the following will show hydrogen bonding between neighbouring molecules?
 - (a) Ethane
 - (b) Ethanol
 - (c) Ethene
 - (d) Ethanal
- 13. Fatty acids are important in our diet and can be saturated or unsaturated. The unsaturated fatty acids can have *cis* or *trans* forms. Which one of the following representations of various fatty acids **best** shows the structure of a *cis* type unsaturated fatty acid?

(a)
$$CH_3(CH_2)_2$$
 (CH₂)₈COOH

(b) $CH_3(CH_2)_5CH = CH(CH_2)_6COOH$

(c)
$$\operatorname{CH_3(CH_2)_6}^{H}$$
 $\operatorname{(CH_2)_8COOH}$

$$(d) \qquad \operatorname{CH_3(CH_2)_6} \qquad \operatorname{H}$$

14. Below is a section of the structure of an addition polymer:

Which one of the following compounds could polymerise to form this chain?

- 15. How many primary alcohols have the molecular formula C₄H₉OH?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 16. Which one of the following will react readily with acidified dichromate (Cr₂O₇²⁻) solution
 - (a) CH₃COCH₃
 - (b) CH₃CH₂CHO

(d) CH₃CH₂CH₃

1999 EXAM

- 20. Which of the following will most readily cause a warm solution containing both potassium dichromate and sulfuric acid to change colour?
 - (a) CH₃CH₂OH
 - (b) CH₃COOH
 - (c) CH₃COCH₂CH₃
 - (d) (CH₃)₃OH

23. For complete oxidation to carbon dioxide and water, requires 3 moles of oxygen gas. Which one of the following		mplete oxidation to carbon dioxide and water, 1 mole of an organic compound as 3 moles of oxygen gas. Which one of the following could the compound be?	
	(a)	acetic acid (ethanoic acid)	
	(b)	ethanal	
	(c)	ethane	
	(d)	ethanol	
24.	Which	one of the following gases readily decolourises bromine water?	
	(a)	carbon dioxide	
	(b)	ethane	
	(c)	ethene	
	(d)	hydrogen chloride	
25.	Which one of the following structures will exhibit geometrical (cis-trans) isomerism:		
	(a)	$CH_3CBr=CC\ell_2$	
	(b)	CH ₂ =CH-CH ₂ -CH=CH ₂	
	(c)	$CH_2=C(CH_3)_2$	
	(d)	C ₆ H ₅ CH=CHCOOH	
26. How		nany esters are there with the molecular formula C ₄ H ₈ O ₂ ?	
	(a)	1	
	(b)	2	
	(c)	3	
	(d)	4	

Question 27 (4 marks)

Examine the data in the table below. Use your knowledge of intermolecular forces to explain the differences in boiling points of the three compounds listed in the table.

Compound	Structure	Molar mass (g mol-1)	Boiling point (°C)
Butan-1-ol	CH³CH²CH²CH²OH	74.24	118
Butanal	сн,сн,с	72.22	75
Butanoic acid	CH³CH²CH²C	88.22	163

Question 31 (4 marks)

Examine the two compounds below. Compound 1 is the naturally occurring flavouring agent vanillin. Compound 2 is the local anaesthetic procaine. Name the functional groups circled in these two compounds.

Compound 1: Vanillin

Compound 2: Procaine

2010 EXAM

a)	An excess of 2-butan	ol is oxidised by acidified Na ₂ Cr ₂ O ₇ .	(3 marks)
	Observations		
	Structural formula of organic product Show all atoms		
	Name of organic		
	product		
b)	,	vith methanol in the presence of H_2SO_4 .	(3 marks)
b)	,	vith methanol in the presence of H ₂ SO ₄ .	(3 marks)
b)	Butanoic acid reacts	vith methanol in the presence of H ₂ SO ₄ .	(3 marks)

Question 30

(6 marks)

Question 31 (3 marks)

Condensation polymers form from two monomers, each with functional groups at their terminal carbon atoms (that is, the monomers are difunctional). Examine the polyester structure below.

- (a) Circle **all** the ester linkages (functional groups that link the monomers) represented in the above structure. (1 mark)
- (b) Identify the two monomer compounds (A and B) used in the production of this polymer and draw their molecular structures. (2 marks)

2009 EXAM

2007 EXAM

LONG ANSWER

203

Ques	tion 10	(6 marks)
	the structure and give the IUPAC name of the descriptions.	ne organic compounds that match the
Show	all atoms in the structure	
(a)	A primary amine containing 9 hydrogen at	oms.
	Structure	Name
(b)	The product of the oxidation of 2-pentanol	
	Structure	Name
(c)	A compound X has the molecular formula hydrogen in the presence of powdered nic formula C ₅ H ₁₀ . Give the structure and name of compound	kel, it forms a compound with the molecular
	Structure	Name
	Structure	Ivalle

2008 EXAM

Question 5 (9 marks)

Describe a chemical test that can be used to distinguish between each substance in the following pairs of substances. Describe fully the chemical test and the observations expected for each substance.

Substances	Chemical Test	Expected observations
Cyclohexane (C ₆ H ₁₂) and cyclohexene (C ₆ H ₁₀)		C ₆ H ₁₂
1 mol L ⁻¹ sulfuric acid solution (H₂SO₄) and 1 mol L ⁻¹ hydrochloric acid solution (HCℓ)		H ₂ SO ₄
Propanone (CH₃COCH₃) and propanal (CH₃CH₂CHO)		CH₃COCH₃ CH₃CH₂CHO

1999 EXAM

(0.0026 atm = 0.263 kPa)

1.	An unknown organic compound 'A' melts sharply at 53°C and is therefore assumed to be pure. At 1.00 atm 'A' decomposes above 100°C before it boils. Its empirical formula is determined to be CH ₂ O.
(a)	When 0.0033 g of 'A' is vaporised on a steam bath at 100°C and 0.0026 atm it occupies 460 mL. Calculate the molecular weight of 'A'. Show your working. [5 marks]
(b)	It is difficult to measure gas volumes accurately at such high temperatures and very low pressures. Nevertheless the inaccurate value you calculate for a molecular weight still enables you to establish the molecular formula. What is the molecular formula for 'A'? [2 marks]
(c)	When 'A' is dissolved in water the solution is quite acidic. Therefore 'A' must be a carboxylic acid. When the solution is titrated with sodium hydroxide solution the titration curve of this solution shows that 'A' is a monoprotic acid. When 1 mole of 'A' is treated with excess sodium, 1 mole of H ₂ is produced. Besides the carboxylic acid, what other functional group is present in 'A'? [1 mark]
	(, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(d)	Draw one of the two possible structural formulae for 'A'.
	[1 mark]