NP Completude

Prof^a Jerusa Marchi

Departamento de Informática e Estatística
Universidade Federal de Santa Catarina
e-mail: jerusa@inf.ufsc.br

Classes de Complexidade

- Se \mathcal{P} difere de \mathcal{NP} , então a distinção entre \mathcal{P} e $\mathcal{NP}-\mathcal{P}$ é muito importante
 - 1. Todos os problemas em \mathcal{P} podem ser solucionados em tempo polinomial
 - 2. Todos os problemas em $\mathcal{NP} \mathcal{P}$ são intratáveis
- **▶** Dado um problema Π em \mathcal{NP} , se $\mathcal{P} \neq \mathcal{NP}$, qual das duas possibilidades pode ser atribuída a Π ?

Classes de Complexidade

- Até que se prove que $P \neq \mathcal{NP}$, n\u00e3o h\u00e1 como mostrar que um problema em particular pertence a $\mathcal{NP} \mathcal{P}$
- Isso se reflete nas demostrações
 - os resultados são provados de um modo fraco

"Se $\mathcal{P} \neq \mathcal{NP}$ então o problema $\Pi \in \mathcal{NP} - \mathcal{P}$ "

Classes de Complexidade

- Para elaborar tais provas, muitos dos conceitos e técnicas aplicados ao estudo da indecidibilidade são transportados para o estudo da complexidade, porém limitados no tempo
 - Reduções polinomiais
 - Análogo ao conceito de redução utilizado na demonstração da indecidibilidade de problemas

- Uma redução polinomial de uma linguagem $L_1 \in \Sigma_1^*$ para uma linguagem $L_2 \in \Sigma_2^*$ é uma função $f: \Sigma_1^* \to \Sigma_2^*$ que satisfaz as seguintes condições:
 - 1. Há uma máquina de Turing determinística polinomialmente limitada que computa f
 - 2. Para todos $x \in \Sigma_1^*$, $x \in L_1$ se e somente se $f(x) \in L_2$

- **Teorema**: Se uma linguagem L_1 se reduz polinomialmente a uma linguagem L_2 ($L_1 \propto L_2$), então $L_2 \in \mathcal{P}$ implica $L_1 \in \mathcal{P}$ (de modo equivalente $L_1 \notin \mathcal{P}$ implica $L_2 \notin \mathcal{P}$
- Prova: Sejam $Σ_1$ e $Σ_2$ alfabetos de L_1 e L_2 respectivamente. Seja $f: Σ_1^* → Σ_2^*$ uma redução polinomial de L_1 para L_2 . Seja M_f uma máquina de Turing determinística polinomialmente limitada que computa f e M_2 uma máquina de Turing polinomialmente limitada que computa L_2 . Uma máquina de Turing determinística polinomialmente limitada que reconheça L_1 pode ser construída pela composição de M_f com M_2 .

Prova (cont.): Uma entrada $x \in \Sigma_1^*$, é iniciamente transformada por M_f , gerando $f(x) \in \Sigma_2^*$. Em seguida, f(x) é fornecida como entrada para M_2 , determinando se $f(x) \in L_2$. Desde que $x \in L_1$ sse $f(x) \in L_2$, então a composição M_fM_2 é uma Máquina de Turing determinística que reconhece L_1 . O fato de M_fM_2 operar em tempo polinomial decorre diretamente do fato de M_f e M_2 serem limitadas polinomialmente. Se p_f e p_2 são funções polinomiais que limitam M_f e M_2 respectivamente, então $|f(x)| \leq p_f(|x|)$ e o tempo de execução da máquina M_fM_2 é $O(p_f(|x|) + p_2(p_f(|x|))$, que é polinomial em |x|.

- Das linguagens para os problemas de decisão:
 - A redução de um problema de decisão Π_1 para um problema de decisão Π_2 significa que:
 - Se Π_2 puder ser resolvido em tempo polinomial, Π_1 também o será
 - Se Π_1 é intratável, Π_2 também é
 - Ou seja, $\Pi_1 \propto \Pi_2$ significa "O problema Π_2 é pelo menos tão difícil quando Π_1 "

- Exemplo: Redução do problema do Circuito Hamiltoniano para o problema da Satisfazibilidade Booleana
 - Seja dada uma instância do Circuito de Hamilton, ou seja, um grafo $G \subseteq V \times V$, onde $V = \{1, 2, ..., n\}$. Seja f um algoritmo que produza uma fórmula booleana em CNF f(G), tal que G apresente um circuito Hamiltoniano se e somente se f(G) é satisfazível.
 - A fórmula f(G) envolverá n^2 variáveis booleanas, denotadas x_{ij} , com $1 \le i, j \le n$
 - x_{ij} tem o seguinte significado: "O vértice i de G é o j-ésimo vértice do circuito de Hamilton de G.

- Exemplo: Redução do CH para SAT
 - As cláusulas em f(G) expressarão os vínculos que um circuito de Hamilton deve satisfazer
 - No mínimo um vértice deve aparecer na i-ésima posição do circuito: constrói-se para j=1,...,n cláusulas do tipo

$$(x_{1j} \vee x_{2j} \vee ...x_{nj})$$

• Um único vértice de G pode ser o i-ésimo elemento do circuito: constrói-se para i,j,k=1,...,n e $j\neq k$ (se x_{ij} então $\neg x_{ik}$)

$$(\neg x_{ij} \lor \neg x_{ik})$$

- Exemplo: Redução do CH para SAT
 - O vértice i deve aparecer exatamente uma vez no circuito: constrói-se para i=1,...,n

$$(x_{i1} \vee x_{i2} \vee ...x_{in})$$

e para
$$i, j, k = 1, ..., n$$
 e $i \neq k$

$$(\neg x_{ij} \vee \neg x_{kj})$$

- Exemplo: Redução do CH para SAT
 - Para garantir que a permutação seja de fato um circuito em G: constrói-se para j=1,...,n e para cada par (i,k) de vértices tal que (i,k) não seja uma aresta de G cláusulas do tipo

$$(\neg x_{ij} \vee \neg x_{k,j+1})$$

se não há uma aresta (i, k) em G, i e k não poderão aparecer em posições sucessivas no suposto circuito

- A redução polinomial é interessante, pois é transitiva
 - ullet Se $L_1 \propto L_2$ e $L_2 \propto L_3$ então $L_1 \propto L_3$
- **●** Diz-se que duas linguagens (L_1 e L_2) ou problemas de decisão (Π_1 e Π_2) são polinomialmente equivalentes sempre que $L_1 \propto L_2$ e $L_2 \propto L_1$ (ou $\Pi_1 \propto \Pi_2$ e $\Pi_2 \propto \Pi_1$)
 - - m o A classe $\mathcal P$ constitui a menor classe nesta ordem parcial e pode ser vista como sendo constituida pelas linguagens ou problemas computacionalmente "simples"
 - A classe de linguagens ou problemas \mathcal{NP} -Completos forma outra classe de problemas equivalentes que contém as linguagens ou problemas de decisão mais "difíceis" em \mathcal{NP}

- Uma linguagem L é definida como sendo \mathcal{NP} -Completa se:
 - 1. $L \in \mathcal{NP}$
 - 2. para todas as outras linguagens $L' \in \mathcal{NP}$, $L' \propto L$

- ullet Em outras palavras, a classe de problemas \mathcal{NP} -Completos contém "os problemas mais difíceis em \mathcal{NP} "
 - Se qualquer problema \mathcal{NP} -Completo puder ser resolvido em tempo polinomial, então todos os problemas em \mathcal{NP} também poderão
 - Se qualquer problema \mathcal{NP} for intratável, então todos os problemas \mathcal{NP} -Completos também serão
- Se $\mathcal{P} \neq \mathcal{NP}$ então um problema \mathcal{NP} -Completo Π pertence a $\mathcal{NP} \mathcal{P}$

- Por definição, provar que um problema é \mathcal{NP} -Completo implica reduzir **todos** os problemas em \mathcal{NP} a ele
- A priori também não é aparente que haja algum problema NP-Completo
- Esta tarefa pode ser simplificada considerando a transitividade da função

- **Teorema**: Se L_1 e L_2 pertencem a \mathcal{NP} , L_1 é \mathcal{NP} -Completo, e $L_1 \propto L_2$ então L_2 é \mathcal{NP} -Completo
- **Prova**: Uma vez que $L_2 \in \mathcal{NP}$, tudo o que precisamos fazer é mostrar que, para cada $L' \in \mathcal{NP}$, $L' \propto L_2$. Considere qualquer $L' \in \mathcal{NP}$. Uma vez que L_1 é \mathcal{NP} -Completo, então é o caso que $L' \propto L_1$. A transitividade de \propto e o fato que $L_1 \propto L_2$ então implica que $L' \propto L_2$

- Traduzindo o teorema anterior para problemas de decisão, temos um modo direto de provar novos problemas \mathcal{NP} -Completos, uma vez que tenhamos um problema reconhecidamente \mathcal{NP} -Completo disponível
 - ullet Para provar que Π é \mathcal{NP} -Completo, basta mostrar que
 - 1. $\Pi \in \mathcal{NP}$, e
 - 2. algum problema reconhecidamente \mathcal{NP} -Completo Π' se reduz a Π

- ullet O problema da Satisfazibilidade Booleana foi o primeiro problema de decisão a ser provado $\mathcal{NP} ext{-}$ Completo
 - ${\color{red} \bullet}$ Teorema de Cook O problema da Satisfazibilidade é ${\mathcal N}{\mathcal P}$ Completo

Prova: Como visto, SAT está em NP, pois uma MT não determinística pode testar todas as possíveis combinações de valores verdade em tempo polinomial. Portanto o primeiro dos dois requisitos para \(\mathcal{NP}\)-Completude está assegurado.

Para o segundo, seja L_{SAT} a linguagem que codifica o problema SAT. O que deve ser mostrado é que para toda linguagem $L \in \mathcal{NP}$, $L \propto L_{SAT}$. Cada linguagem $L \in \mathcal{NP}$ tem associada a si uma MT não determinística M que reconhece L em tempo polinomial. Seja L_M a linguagem reconhecida por M, assim, devemos mostrar como transformar L_M para L_{SAT} . Então, em essência, apresenta-se uma prova simultânea para toda a linguagem $L \in \mathcal{NP}$ que $L \propto L_{SAT}$.

- Seja $M=(K,\Sigma,\Gamma,\delta,q_0,q_a,q_r)$ uma MT não determinística arbitrária que reconhece a linguagem L.
- Seja p(n) o polinômio que limita o tempo de execução de M.
- ♣ A redução f_L deve ser derivada de M e p. Então f_L terá a propriedade que para cada $x \in \Sigma^*$, $x \in L$ se e somente se $f_L(x)$ for satisfazível
- Se a entrada $x \in \Sigma^*$ é aceita por M, então há uma computação de M com a entrada x tal que o número de passos é limitado por p(n) onde n = |x|.

- $m{ ilde p}_L$ inicialmente constrói um conjunto de variáveis booleanas U como segue:
 - Nomeia os elementos de K como $q_0,q_1=q_a,q_2=q_r,q_3,...,q_k$ onde k=|K|-1
 - ${\color{red} \bullet}$ Nomeia os elementos de Γ como $s_0=\sqcup,s_1,s_2,...,s_v$ onde $v=|\Gamma|-1$

Há três tipos de variáveis, cada um com um significado distinto:

Variável	Limites	Significado
$Q_{i,k}$	$0 \le i \le p(n)$	no instante i
	$0 \le k \le r$	M está no estado q_k
$H_{i,j}$	$0 \le i \le p(n)$	no instante i , o cabeçote
	$0 \le j \le p(n) + 1$	está na posição j da fita
$S_{i,j,k}$	$0 \le i \le p(n)$	no instante i , o conteúdo
	$0 \le j \le p(n) + 1$	da fita na posição j
	$0 \le k \le v$	é o símbolo k

As cláusulas em f_L se dividem em 6 grupos que impõem tipos distintos de restrições que fazem com que uma atribuição de valores verdade válida corresponda a uma computação que aceita x

Grupo de Cláusulas	Restrição imposta
G_1	a cada instante i , M está em exatamente um estado
G_2	a cada instante i , o cabeçote está varrendo
	exatamente 1 posição da fita
G_3	a cada instante i , cada posição da fita contém
	exatamente um símbolo de Γ
G_4	no instante 0, a computação está na
	configuração inicial
G_5	no instante $p(n)$, M está no estado q_a , aceitando x
G_6	para cada instante i , $0 \le i < p(n)$, a configuração
	de M no instante $i+1$ segue pela aplicação de uma
	transição δ para a configuração no instante i ——

● Grupo 1 (G_1): a cada instante i, M está em exatamente um estado

$$\{Q_{i,0} \lor Q_{i,1} \lor ... \lor Q_{i,r}\}, 0 \le i \le p(n)$$

$$\{\overline{Q_{i,j}} \vee \overline{Q_{i,j'}}\}, 0 \le i \le p(n), 0 \le j < j' \le r$$

■ Grupo 2 (G_2): a cada instante i, o cabeçote está varrendo exatamente 1 posição da fita

$$\{H_{i,0} \vee H_{i,1} \vee ... \vee H_{i,p(n)+1}\}, 0 \le i \le p(n)$$

$$\{\overline{H_{i,j}} \vee \overline{H_{i,j'}}\}, 0 \le i \le p(n), 0 \le j < j' \le p(n) + 1$$

● Grupo 3 (G_3): a cada instante i, cada posição da fita contém exatamente um símbolo de Γ

$$\{S_{i,j,0} \lor S_{i,j,1} \lor \dots \lor S_{i,j,v}\}, 0 \le i \le p(n), 0 \le j \le p(n) + 1$$

$$\{\overline{S_{i,j,k}} \lor \overline{S_{i,j,k'}}\}, 0 \le i \le p(n), 0 \le j \le p(n) + 1, 0 \le k < k' \le v$$

■ Grupo 4 (G_4): no instante 0, a computação está na configuração inicial

$$\{Q_{0,0}\},\{H_{0,1}\},\{S_{0,0,0}\}$$

$$\{S_{0,1,k_1}\},\{S_{0,2,k_2}\},...,\{S_{0,n,k_n}\}\text{//entrada}$$

$$\{S_{0,n+1,0}\},\{S_{0,n+2,0}\},...,\{S_{0,p(n)+1,0}\}\text{//restante branco}$$

• Grupo 5 (G_5): no instante p(n), M está no estado q_a , aceitando x

$$Q_{p(n),1}$$

- \blacksquare Grupo 6 (G_6): este grupo se subdivide em 2 subgrupos de cláusulas
 - o primeiro diz que se o cabeçote de leitura não está varrendo a fita na posição j no instante i, então o símbolo na posição j não muda entre os instantes i e i+1.

$$\{\overline{S_{i,j,l}}, H_{i,j}, S_{i+1,j,l}\}, 0 \le i < p(n), 0 \le j \le p(n) + 1, 0 \le l \le v$$

- \blacksquare Grupo 6 (G_6)
 - o segundo subgrupo assegura que as mudanças feitas de uma configuração para outra estão de acordo com a tabela de transição δ de M
 - Para cada quádrupla (i,j,k,l), $0 \le i \le p(n), 0 \le j \le p(n) + 1, 0 \le k \le r$ e $0 \le l \le v$ o subgrupo contém as seguintes três fórmulas

$$\{\overline{H_{i,j}}, \overline{Q_{i,k}}, \overline{S_{i,j,l}}, H_{i+1,j+\Delta}\}$$

$$\{\overline{H_{i,j}}, \overline{Q_{i,k}}, \overline{S_{i,j,l}}, Q_{i+1,k'}\}$$

$$\{\overline{H_{i,j}}, \overline{Q_{i,k}}, \overline{S_{i,j,l}}, S_{i+1,j,l'}\}$$

onde se $q_k \in Q - \{q_a, q_r\}$, então os valores de Δ, k' e l' são tais que $\delta(q_k, s_l) = (q_{k'}, s_{l'}, \Delta)$, com $\Delta = \{+1, -1\}$. Se $q_k \in \{q_a, q_r\}$, então $\Delta = 0$, k' = k e l' = l

ullet Se $x\in L$, então há uma computação em M que aceita x em p(n) passos ou menos, e esta computação, dada a interpretação das variáveis, impõe uma atribuição que satisfaz todas as cláusulas em

$$C = G_1 \cup G_2 \cup G_3 \cup G_4 \cup G_5 \cup G_6$$

Portanto, SAT é NP-Completo.□

- Tendo provado um primeiro problema NP-Completo, é possível reduzi-lo a outro e este a outros, concluindo serem todos NP-Completos
- Identificar problemas \mathcal{NP} -Completos e/ou demonstrar que algum problema é \mathcal{NP} -Completo é muito importante, pois:
 - Problemas NP-Completos aparecem disfarçados em diversos campos e aplicações
 - Identificá-los economiza tempo e recursos
 - Incentiva o estudo de técnicas "heurísticas" ou "aproximadas" para elaboração de soluções viáveis

- lacksquare Técnicas para tratar problemas \mathcal{NP} -Completos
 - Técnicas de Inteligência Artificial
 - algoritmos genéticos
 - métodos de busca heurísticos (A^* , busca gulosa, subida de encosta, têmpera simulada)
 - Técnicas algorítmicas
 - algoritmos aproximados (ou de aproximação)
 - algoritmos de divisão e conquista
 - programação dinâmica

- 3-Satisfazibilidade Booleana (3SAT)
 - caso particular do problema da satisfazibilidade onde as cláusulas envolvem 3 literais ou menos.
- MAX SAT
 - Dado um conjunto F de cláusulas e um inteiro K, existe alguma atribuição que satisfaça pelo menos K cláusulas?

- Problema do Circuito Hamiltoniano/Caminho Hamiltoniano
- Problema do Caixeiro Viajante
- Caminho mais longo/Caminho mais curto
- Problema da Mochila
- Escalonamento de tarefas/Alocação ótima de registradores

Cobertura Exata

- Dados um conjunto finito $U = \{u_1, u_2, ..., u_n\}$ (o conjunto universo) e a família de m subconjuntos de U, $\mathcal{F} = \{S_1, S_2, ..., S_m\}$, pergunta-se de existiria uma *cobertura exata* $\mathcal{C} \subseteq \mathcal{F}$ tal que os conjuntos em \mathcal{C} são disjuntos e a sua união é U
 - ullet Exemplo: Seja $U=\{u_1,u_2,u_3,u_4,u_5,u_6\}$ o universo, e seja uma família de subconjunto $\mathcal{F}=$

$$\{\{u_1, u_3\}, \{u_2, u_3, u_6\}, \{u_1, u_5\}, \{u_2, u_3, u_4\}, \{u_5, u_6\}, \{u_2, u_4\}\}$$

$$\mathcal{C} = \{\{u_1, u_3\}, \{u_5, u_6\}, \{u_2, u_4\}\}\$$

- Conjuntos Independentes
 - Dado um grafo não orientado G=(V,E), um conjunto independente V' de G é um subconjunto de vértices tal que não existem dois vértices adjacentes contidos em V'

$$V' = \{u | u \in V \text{ e para todo } u' \in V, (u, u') \notin E\}$$

Outros Problemas NP-Completos

Clique

• Dado um grafo G=(V,E), um clique C é um subconjunto de vértices de G tal que para cada par de vértices em C existe uma aresta que os conecta.

$$C = \{u | u \in V \mathbf{e} \ \forall u' \in C, (u, u') \in E\}$$

\mathcal{NP} -Difícil

- ${\color{red} \blacktriangleright}$ Lembrando: Para provar que um problema Π é ${\mathcal N}{\mathcal P}\text{-Completo,}$ basta mostrar que
 - 1. $\Pi \in \mathcal{NP}$, e
 - 2. algum problema reconhecidamente $\mathcal{NP}\text{-}\mathsf{Completo}\ \Pi'$ se reduz a Π

\mathcal{NP} -Difícil

- Alguns problemas são tão difíceis que apesar de ser possível demonstrar a condição (2) da definição de NP-Completude, não é possível provar a condição (1)
- **Solution** Estes problemas formam a classe \mathcal{NP} -Difícil ou \mathcal{NP} -Hard
 - O termo "intratável" é comumente usado indicar problemas \mathcal{NP} -Hard, ainda que em princípio possa haver problemas que requerem tempo exponencial mesmo não estando em \mathcal{NP} -Hard no sentido formal