Exploiting Epochs and Symmetries in Analysing MPI Programs

Rishabh Ranjan, Ishita Agrawal, Subodh Sharma IIT Delhi, India

Automated Software Engineering, 12 Oct 2022, Rochester, MI, USA

Introduction

Motivation

Verify message-passing (MP) programs for deadlocks

- MP programs are prevalent in high-performance scientific computing, etc.
- The curse of deadlocks:
 easy to introduce, hard to detect, catastrophic manifestations
- Non-determinism makes verification hard: undecidable in general, NP-complete for terminating programs
- Message Passing Interface (MPI): a de facto standard for C/C++

Example - I

$$egin{array}{c|cccc} P_0 & P_1 & P_2 \\ \hline S_{0,0}(1) & R_{1,0}(*) & S_{2,0}(1) \\ B_{0,1}(0) & R_{1,1}(*) & B_{2,1}(0) \\ S_{0,2}(1) & W_{1,2}(h_{1,1}) & \\ & B_{1,3}(0) & \\ & R_{1,4}(*) & \\ \hline \end{array}$$

Figure 1: Example Message Passing Program

```
\begin{array}{ll} P_i & \rightarrow \text{process with rank } i \\ S_{i,k}(j) & \rightarrow \text{non-blocking send from } P_i \text{ to } P_j \text{ at index } k \\ R_{i,k}(j) & \rightarrow \text{non-blocking receive from } P_j \text{ to } P_i \text{ at index } k \\ R_{i,k}(\ ^*) & \rightarrow \text{wildcard receive to } P_i \text{ at index } k \\ W_{i,k}(h_{i,j}) & \rightarrow \text{blocking wait at index } k \text{ for action at index } j \text{ for process } P_i \\ B_{i,j}(k) & \rightarrow k^{\text{th}} \text{ barrier action from } P_i \text{ at index } j \end{array}
```

Example - II

$$egin{array}{c|cccc} P_0 & P_1 & P_2 \\ \hline S_{0,0}(1) & R_{1,0}(*) & S_{2,0}(1) \\ B_{0,1}(0) & R_{1,1}(*) & B_{2,1}(0) \\ S_{0,2}(1) & W_{1,2}(h_{1,1}) & \\ & B_{1,3}(0) & \\ & R_{1,4}(*) & \\ \hline \end{array}$$

Figure 1: Example Message Passing Program

- Trace: sequence of matches allowed by MPI semantics
- A complete trace: $\tau_1 = \langle \{S_{0,0}, R_{1,0}\}, \{S_{2,0}, R_{1,0}\}, \{W_{1,2}\}, \{B_{0,1}, B_{1,3}, B_{2,1}\}, \{S_{0,2}, S_{1,4}\} \rangle$
- A deadlocking trace: if $R_{1,1}(*)$ was $R_{1,1}(0)$, then $\tau'=\left\langle\{S_{0,0},R_{1,0}\}\right\rangle$ is a deadlocking trace
- MPI semantics are encoded in: a set of allowed matches \mathbb{M} , and a matches-before order $<_{mo}$

Methodology

Motivation - I

- Communication structure of real-world MPI programs:
 - can be decomposed into independently-verifiable epochs
 - has symmetries which lead to redundancies in the search space of traces
- Epochs can uncover local symmetries
- Redundant verification of repeated epochs can be avoided
- Symmetry breaking predicates can speed up the search

Motivation - II

P_0	P_1	P_2
$S_{0,0}(1)$	$R_{1,0}(*)$	$S_{2,0}(1)$
$B_{0,1}(0)$	$R_{1,1}(*)$	$B_{2,1}(0)$
$S_{0,2}(1)$	$W_{1,2}(h_{1,1})$	
	$B_{1,3}(0)$	
	$R_{1,4}(*)$	

Figure 1: Example Message Passing Program

Figure 2: Program Graph for Running Example

Epoch Decomposition

Figure 2: Program Graph for Running Example

- Program Graph (PG):
 - nodes for actions, uni-directional edges (solid) for matches-before order, bi-directional edge (dashed) for potential matches
- Epoch: strongly connected component (SCC) of PG
- Correctness: Theorem 4.3. P has a deadlocking trace τ if and only if some communication epoch $e \in E$ has a deadlocking trace τ_e .

Matchset refinement

- Potential matches: allowed matches which can be realized in some run
- Set of potential matches \mathbb{M}^+ is NP-hard to compute
- Correctness holds for any over-approximation ${\cal M}^+$ of ${\mathbb M}^+$
- But efficacy relies on **tightness** of \mathbb{M}^+
- Start with $M^+ = \mathbb{M}$ (allowed matches), refine using pruning heuristics

Pruning Heuristics

- Recursive matches-before order pruning: for c_1 to match c_2 , all ancestors of c_1 should find a match not successor of c_2
- Barrier-led pruning: pairs separated by a barrier cannot match
- Counting heuristic:
 if a set of Sends can match only a set of Recvs of same size,
 then this set of Recvs cannot match other Sends

Caching

- An epoch once verified is cached
- Epochs isomorphic to cached epochs are skipped
- BLISS package is used for graph isomorphism tests

Symmetry Detection

- Symmetry is captured by automorphisms of the epoch graph
- Example automorphism for epoch E_0 :

$$\pi: S_{0,0}(1) \mapsto S_{2,0}(1),$$
 $S_{2,0}(1) \mapsto S_{0,0}(1),$
 $R_{1,0}(*) \mapsto R_{1,0}(*),$
 $R_{1,1}(*) \mapsto R_{1,1}(*).$

 Correctness: Traces equivalent under an automorphism are equivalent w.r.t. deadlock

Figure 2: Program Graph for Running Example

Propositional Encoding

- $\phi_t(\tau) \to \tau$ is a valid trace
- $\phi_d(\tau) \to \tau$ is a deadlocking trace
- $\phi' = \phi_t \wedge \phi_d$ is SAT iff a deadlocking trace exists
- $\phi_s(\tau) o$ satisfied by at least one representative from each equivalence class
- $\phi = \phi_t \wedge \phi_d \wedge \phi_s$ is SAT iff a deadlocking trace exists
- But ϕ is faster to solve, as symmetric branches are pruned from search space

SAT encoding

- The encoding for ϕ_t and ϕ_d are borrowed from prior work (Mopper)
- ϕ_s is encoded using Lex-Leader constraints
- Let $[\tau]$ denote a bit-vector for trace τ in the SAT formula
- For set B of generators of the automorphism group, $\phi_s = \bigwedge_{\tau \in B} [\tau] \leq [\pi(\tau)], \text{ where } \leq \text{is a lexicographic order}$
- ullet B is obtained using the BLISS package

Results

Implementation

- A prototype tool called Simian (https://github.com/rishabh-ranjan/simian)
- Components:
 - Scheduler: dynamic execution engine, borrowed from prior work (ISP)
 - Analyzer: epoch decomposition + symmetry breaking
 - Solver: verification of SAT formulas, we use the Z3 solver

Baselines

- Mopper: a SAT encoding for the entire program
- Mopper-Opt: alternative SAT encoding optimized for consecutive wildcards
- Hermes: a dynamic-symbolic hybrid verifier with an SMT formulation

Benchmarks

- Adder: adds an array of numbers, master-worker communication
- Floyd: all-pairs shortest path algorithm, pipelined communication
- GaussElim: Gauss-Jordan elimination, pairwise communication
- Heat: heat conduction simulation, 2D grid topology
- HeatErrors: Heat, seeded with a deadlock
- Integrate: numerical integration using trapezoidal rule, master-worker communication
- Diffusion: iterative solver for diffusion, 2D grid topology
- MatMul: implementation of matrix multiplication, block-distributed communication over rows

Variations

- Diffusion with fixed timesteps, but varying number of processes
- **Diffusion** on 2x2 grid, 4 processes, with varying timesteps
- MatMul on 8x8 matrices with varying number of processes
- MatMul with pxp matrices for p processes
- MatMul with fixed number of processes, but varying matrix size

Table 1: Runtimes for ∞-buffering (in s)

Name vs X	Х	Deadlock	Mopper	Mopper-Opt	Hermes	Simian
Adder	8	No	0.268	0.042	0.212	0.061
vs	16	No	TO	0.212	TO	1.157
Processes	32	No	TO	1.497	TO	1.912
	64	No	TO	4.116	TO	7.257
Floyd	8	No	2.761	6.132	1.453	0.628
vs	16	No	283.524	399.156	2.148	1.939
Processes	32	No	TO	TO	5.021	2.491
	64	No	TO	TO	10.312	6.081
GaussElim	8	No	0.243	0.233	0.187	0.186
vs	16	No	0.628	1.655	0.258	0.283
Processes	32	No	4.314	4.282	1.993	2.334
	64	No	10.033	6.159	3.912	3.226
Heat	8	No	0.666	0.395	0.406	0.325
vs	16	No	1.581	0.845	0.636	1.506
Processes	32	No	6.543	1.623	2.005	4.255
	64	No	14.927	10.597	4.464	3.232
HeatErrors	8	Yes	0.523	0.395	0.309	0.353
vs	16	Yes	1.191	0.779	0.662	0.565
Processes	32	Yes	5.706	2.574	2.712	2.191
	64	Yes	10.392	4.799	6.435	5.051
Integrate	8	No	0.256	0.038	0.209	0.062
vs	16	No	TO	0.232	TO	0.131
Processes	32	No	TO	3.581	TO	1.854
	64	No	ТО	4.212	TO	7.583

Diffusion	4	No	ТО	3.729	239.77	0.122
(Timesteps=1)	8	No	TO	14.854	TO	0.716
	16	No	TO	49.069	ТО	8.566
vs Processes	24	No	TO	271.247	ТО	36.308
riocesses	24	No	10	2/1.24/	10	30.300
Diffusion	2	No	TO	1.598	TO	0.225
(Grid=2x2)	4	No	TO	26.347	TO	1.023
vs	8	No	TO	842.951	TO	7.197
Timesteps	16	No	TO	TO	TO	67.854
MatMul	8	No	2.719	0.083	1.815	0.076
(N=L=M=8)	16	No	3.572	0.274	3.032	0.114
vs	32	No	4.448	0.734	4.014	1.477
Processes	64	No	8.625	4.001	5.482	2.766
MatMul	8	No	2.708	0.086	1.918	0.076
(N=L=M=p)	16	No	TO	0.328	TO	0.224
vs	32	No	TO	3.728	TO	2.822
Processes	64	No	TO	4.808	TO	16.175
MatMul	4	No	0.061	0.062	0.071	0.065
(p=8)	6	No	0.101	0.066	0.112	0.079
vs	8	No	2.704	0.092	1.794	0.076
Size (N=L=M)	12	No	TO	9.772	TO	4.938

Table 2: Runtimes for 0-buffering (in s)

Name vs X	X	Deadlock	Mopper	Mopper-Opt	Hermes	Simian
Adder	8	No	0.281	0.043	0.285	0.061
vs	16	No	TO	1.249	TO	1.301
Processes	32	No	TO	1.684	TO	0.932
	64	No	TO	4.112	TO	7.065
Floyd	8	No	3.986	3.715	0.232	0.249
vs	16	No	7.171	22.413	1.582	2.108
Processes	32	No	112.793	157.188	4.665	5.619
	64	No	763.232	TO	10.941	32.261
GaussElim	8	No	0.223	0.235	0.177	0.185
vs	16	No	0.599	0.618	0.773	0.481
Processes	32	No	4.398	1.297	4.097	4.155
	64	No	5.748	6.085	5.612	5.429
Heat	8	No	0.323	0.325	0.241	0.225
vs	16	No	0.726	0.789	1.646	1.549
Processes	32	No	4.515	2.497	4.119	1.831
	64	No	4.139	3.706	5.341	9.121
HeatErrors	8	Yes	0.408	0.323	0.221	0.229
vs	16	Yes	1.226	1.772	0.587	0.461
Processes	32	Yes	4.351	2.515	4.568	1.987
	64	Yes	9.492	6.634	6.548	2.932
Integrate	8	No	0.281	0.042	0.251	0.079
vs	16	No	TO	0.223	TO	0.279
Processes	32	No	TO	3.592	TO	3.961
	64	No	TO	4.237	TO	9.119

Diffusion	4	Yes	0.029	0.032	0.115	0.137
	8	Yes	0.023	0.032	0.113	0.125
(Timesteps=1)		Yes				
VS	16		0.229	0.197	0.295	0.337
Processes	24	Yes	1.457	1.434	0.548	1.482
Diffusion	2	Yes	0.028	0.034	0.131	0.127
(Grid=2x2)	4	Yes	0.031	0.028	0.132	0.127
vs	8	Yes	0.029	0.035	0.121	0.112
Timesteps	16	Yes	0.032	0.038	0.124	0.139
MatMul	8	Yes	0.129	0.069	0.087	0.157
(N=L=M=8)	16	No	4.088	1.269	1.339	0.242
vs	32	No	5.097	1.488	3.714	3.582
Processes	64	No	7.544	4.065	3.835	4.209
MatMul	8	Yes	0.134	0.073	0.087	0.157
(N=L=M=p)	16	Yes	0.869	0.281	0.714	0.356
vs	32	Yes	4.649	0.633	9.545	1.169
Processes	64	Yes	24.643	4.586	98.515	9.554
MatMul	4	No	0.059	0.046	0.068	0.075
(p=8)	6	No	0.092	0.048	0.104	0.067
vs	8	Yes	0.127	0.071	0.098	0.157
Size (N=L=M)	12	Yes	0.189	0.099	0.121	0.187

Table 3: Communication Structure Summaries

Name vs X	Х	Trace Size	Epoc	Symmetry			
		11400 0140	(Size, Symmetry, Repeats)	Total	Unique	Repeated	Total
Adder	8	28	(14,6,1) (2,1,7)	8	2	6	7
vs	16	60	(30,14,1) (2,1,15)	16	2	14	15
Processes	32	124	(62,30,1) (2,1,31)	32	2	30	31
	64	252	(126,62,1) (2,1,63)	64	2	62	63
Floyd	8	176	(20,6,1) (147,0,1) (1,0,9)	11	3	8	6
vs	16	368	(20,6,1) (23,7,8) (147,0,1) (1,0,17)	27	4	23	13
Processes	32	752	(20,6,1) (23,7,24) (147,0,1) (1,0,33)	59	4	55	13
	64	1520	(20,6,1) (23,7,56) (147,0,1) (1,0,65)	123	4	119	13
GaussElim	8	84	(4,1,6) (2,1,2) (1,0,14)	22	3	19	2
vs	16	172	(4,1,14) (2,1,2) (1,0,22)	38	3	35	2
Processes	32	348	(4,1,30) (2,1,2) (1,0,38)	70	3	67	2
	64	700	(4,1,62) (2,1,2) (1,0,70)	134	3	131	2
Heat	8	144	(2,1,60) (1,0,24)	84	2	82	1
vs	16	296	(2,1,124) (1,0,48)	172	2	170	1
Processes	32	600	(2,1,252) (1,0,96)	348	2	346	1
	64	1208	(2,1,508) (1,0,192)	700	2	698	1
HeatErrors	8	144	(17,0,1) (2,1,31) (1,0,15)	47	3	44	1
vs	16	296	(33,0,1) (2,1,63) (1,0,31)	95	3	92	1
Processes	32	600	(65,0,1) (2,1,127) (1,0,63)	191	3	188	1
	64	1208	(129,0,1) (2,1,255) (1,0,127)	383	3	380	1
Integrate	8	28	(14,6,1) (2,1,7)	8	2	6	7
vs	16	60	(30,14,1) (2,1,15)	16	2	14	15
Processes	32	124	(62,30,1) (2,1,31)	32	2	30	31
	64	252	(126,62,1) (2,1,63)	64	2	62	63

Diffusion	4	88	(2,1,16) (18,8,2) (1,0,5)	23	3	20	9
(Timesteps=1)	8	188	(2,1,32) (42,20,2) (1,0,5)	39	3	36	21
vs	16	388	(90,44,1) (2,1,64) (90,44,1) (1,0,5)	71	4	67	89
Processes	24	588	(138,68,1) (2,1,96) (138,68,1) (1,0,5)	103	4	99	137
Diffusion	2	150	(2,1,32) (18,8,3) (1,0,8)	43	3	40	9
(Grid=2x2)	4	274	(2,1,64) (18,8,5) (1,0,14)	83	3	80	9
vs	8	522	(2,1,128) (18,8,9) (1,0,26)	163	3	160	9
Timesteps	16	1018	(2,1,256) (18,8,17) (1,0,50)	323	3	320	9
MatMul	8	54	(46,5,1) (1,0,8)	9	2	7	5
(N=L=M=8)	16	78	(2,1,7) (48,7,1) (1,0,16)	24	3	21	8
vs	32	126	(2,1,23) (48,7,1) (1,0,32)	56	3	53	8
Processes	64	222	(2,1,55) (48,7,1) (1,0,64)	120	3	117	8
MatMul	8	54	(46,5,1) (1,0,8)	9	2	7	5
(N=L=M=p)	16	110	(94,13,1) (1,0,16)	17	2	15	13
vs	32	222	(190,29,1) (1,0,32)	33	2	31	29
Processes	64	446	(382,61,1) (1,0,64)	65	2	63	61
MatMul	4	38	(2,1,3) (24,3,1) (1,0,8)	12	3	9	4
(p=8)	6	46	(2,1,1) (36,5,1) (1,0,8)	10	3	7	6
vs	8	54	(46,5,1) (1,0,8)	9	2	7	5
Size (N=L=M)	12	70	(62,5,1) (1,0,8)	9	2	7	5

Table 4: Component-wise Times (in s)

Name vs X	х		Time	
		Scheduler	Analyzer	Solver
Adder	8	0.031	0.014	0.013
vs	16	1.084	0.035	0.036
Processes	32	1.381	0.206	0.238
	64	2.358	1.957	2.938
Floyd	8	0.042	0.042	0.543
vs	16	1.290	0.094	0.553
Processes	32	1.708	0.239	0.541
	64	4.764	0.753	0.558
GaussElim	8	0.151	0.022	0.014
vs	16	0.223	0.032	0.014
Processes	32	2.273	0.028	0.011
	64	3.165	0.045	0.011
Heat	8	0.264	0.050	0.009
vs	16	1.468	0.031	0.006
Processes	32	4.195	0.052	0.008
	64	3.119	0.099	0.007
HeatErrors	8	0.353	0	0
vs	16	0.565	0	0
Processes	32	2.408	0.073	0.016
	64	3.407	0.183	0.019
Integrate	8	0.032	0.015	0.013
vs	16	0.058	0.035	0.037
Processes	32	1.372	0.198	0.235
	64	2.682	1.972	2.925

Diffusion	4	0.039	0.061	0.022
(Timesteps=1)	8	0.038	0.585	0.091
vs	16	0.135	6.635	1.783
Processes	24	1.021	27.953	7.294
Diffusion	2	0.022	0.185	0.021
(Grid=2x2)	4	0.027	0.968	0.021
vs	8	0.106	6.952	0.021
Timesteps	16	0.982	65.333	0.021
MatMul	8	0.032	0.018	0.026
(N=L=M=8)	16	0.065	0.024	0.023
vs	32	1.389	0.026	0.024
Processes	64	2.618	0.032	0.022
MatMul	8	0.032	0.017	0.026
(N=L=M=p)	16	0.066	0.043	0.112
vs	32	1.699	0.232	0.834
Processes	64	2.331	2.109	11.731
MatMul	4	0.032	0.017	0.015
(p=8)	6	0.031	0.018	0.021
vs	8	0.032	0.017	0.026
Size (N=L=M)	12	0.034	0.028	4.875

Figure 3: Total Times

Figure 4: Component Times

Future Directions

- Extension to multi-path programs where communication affects control flow
- Applicability of our techniques to other concurrency frameworks
- Expanding the scope of our tool and evaluating against recent benchmarks

Thank you! Questions?