Midterm Examination II April 11 (Th)

Closed books, Closed notes; you may refer to your own summary sheets. (one new sheet plus the one you used for Midterm Examination I)

[1] (30 points) We are given a single-input single-output controllable and observable linear time invariant plant described by

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

where $x \in \mathbb{R}^n$. The transfer function of the plant is

$$G_p(s) = C(sI - A)^{-1}B = \frac{B_p(s)}{A_p(s)}$$

Though the disturbance is not explicitly included in the model, we know that the plant is subjected to a sinusoidal disturbance input with known frequency ω_d . Suppose we focus only on rejecting this sinusoidal disturbance.

- a. Provide a FSLQ (Frequency Shaped Linear Quadratic) formulation to achieve the objective. Write down the cost function, formulate the symbolic state-space matrices for the enlarged system, and obtain the final control law including the Riccati equation. Use A_e , B_e , C_e and Q_e as the notations of the matrices. Assume that the plant is a second-order system with $y = x_1$. Write down a realization for A_e B_e C_e and Q_e . Your A_e B_e C_e and Q_e matrices should be composed of A, B, C, ω_d , and constant numbers.
- b. Assume that the transfer function is $G_p(s) = \frac{s+0.5}{s^2+1.414s+1}$ and $\omega_d=2$. Apply the internal model principle and obtain a controller to achieve the objective. The controller should be of second order and the closed-loop system must be asymptotically stable. Verify that the frequency response of the sensitivity function is zero at $\omega_d=2$.
- [2] (15 points) Consider a motion control system described by the pure inertia equation,

$$m\frac{d^2y(t)}{dt^2} = u(t) \; ; \quad m > 0$$

where u(t) and y(t) are the force input and the position output, respectively. The objective is to let the output follow the desired output $y_d(t)$. The computed force (torque) control law for this purpose is

$$u(t) = m\frac{d^{2}y_{d}(t)}{dt^{2}} + k_{d}\left(\frac{dy_{d}(t)}{dt} - \frac{dy(t)}{dt}\right) + k_{p}\left(y_{d}(t) - y(t)\right)$$

where k_d and k_p are real numbers. Define the tracking error by $e(t) = y_d(t) - y(t)$.

- a. Find the condition(s) such that the error equation is asymptotically stable.
- b. In the control law, all terms related to the desired output may be interpreted to define the feedforward control input, i.e.

$$u_{ff}(t) = m\frac{d^{2}y_{d}(t)}{dt^{2}} + k_{d}\frac{dy_{d}(t)}{dt} + k_{p}y_{d}(t)$$
 (2-1)

The control law is then PD feedback control with feedforward control. Obtain the (closed-loop) transfer function from $u_{ff}(t)$ to y(t). Show that (2-1) is an inverse-based feedforward control law.

[3] (20 points) Consider the following block diagram which has several similarities to the disturbance-observer structure.

(a) Obtain the transfer functions from D and U^* to V

For the remaining parts of the problem, assume that $A(z^{-1}) = A_n(z^{-1})$ and $B(z^{-1}) = B_n(z^{-1})$.

- (b) What is the condition for the closed loop to be stable? What is the (simplified) transfer function from the disturbance D to the output V? If $z^{-1}B(z^{-1})/A(z^{-1})$ is a minimum-phase system, how should $Q(z^{-1})$ be selected such that the above system behaves like a disturbance observer that we discussed in class?
- (c) Recall that a sinusoidal signal $d(k) = c\sin(\omega_d k + \phi)$ satisfies $(1 2\cos\omega_d q^{-1} + q^{-2})d(k) = 0$ where q^{-1} is the one-step-delay operator and it corresponds to z^{-1} in the transform domain. Based on the minimum-phase assumption of $z^{-1}B(z^{-1})/A(z^{-1})$, propose a $Q(z^{-1})$ to perfectly reject such a disturbance and explain why it will work.
- (d) Consider a simplified case where $B(z^{-1})/A(z^{-1})=1$ and $\omega_d=\pi/3$. In this case, if $Q(z^{-1})=0$, the transfer function from D to V is simply z^{-1} , namely, all disturbance components are transmitted to the output. For your $Q(z^{-1})$ design in (c), compute the DC gain (i.e., when z=1) and the gain at Nyquist frequency (i.e., when z=-1) of the transfer function you obtained in (c). Do you find one or both of the gains larger than 1 in your design? Explain the consequences from the perspective of disturbance amplification.