Strength of O.A.s and R.A.s

1 Feasibility of an reaction

- tt较full equ.两边的O.A./RA.,看是强力弱/弱力强.
- eg. Explain why Cu cannot react w/ H2SO4 (ag) while Fe can.

作告 - :: Strength of reducing agent:
$$Cu < H_z$$
 :: No reaction :: Strength of reducing agent: $Fe > H_z$:: \lor reaction

- eg2. There are 2 green solutions, containing $Cr^{3+}caq$, / $Ni^{2+}caq$, respectively. The following is a part of the electrochemical series.

$$Cr^{3+}(aq) + 3e^{-} \rightleftharpoons Crcs$$
, $Co^{2+}(aq) + 2e^{-} \rightleftharpoons Cocs$, $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Nics$,

Briefly describe and explain how the solutions can be distinguished.

作答-Add identical Cocs, to both solutions respectively.

Cr3+ cap: Strength of reducing agent: Cr>Co > 20x3+20x > 20x3+20x

Ni²⁺ (ag): Strength of reducing agent: Co > Ni
Solution turns from green to pink

2 Acidifying reactants

- acid: similar to cortalysts

	Mn04 (ag)	Cr2072- (ag)
Conc./dilute HC1 (019)		$\begin{pmatrix} \operatorname{Cr}_2 \operatorname{O_7}^{2-} + \operatorname{Cl}^- \to \operatorname{Cr}^{3+} + \operatorname{Cl}_2, \text{ but } \\ \operatorname{RA. strength} : \operatorname{Cr}_2 \operatorname{O}_1^{2-} \times \operatorname{Cl}_2 \to \operatorname{no} \operatorname{ra} \end{pmatrix}$
dilute H2SO4 (019)	\checkmark	
Conc. HzSO4 (2) Conc./dilute HNO3 (aq)	(H2SO4 (A) / NO 5 也是很强的O.A., 会把RA.搞走) → 不知適最后乘正引RA. react 的是MinO4 还是 Mcid)	

3 Proving the strengths of O.A./R.A.

- eg. Prove O.A. Strength: Clz > Brz > 12
 - a. Theoretically
 - > : not of e shell + down Grp VII
 - ... nucleus attraction to incoming e +
 - :. Strength of O.A. decreases down Cirp VII
 - :. Cl2 > Br2 > 12 > Oxidating power
 - b. Experimentally
 - > exp. 1 prove O.A. Strength: C12 > Brz
 - Add KBriag, into Clz (ag)
 - Clz + 2Br -> 2Cl + Brz
 - soln turns from palle yellowish green to brown.
 - : Strength of O.A.: Clz > Brz
 - > exp. 2 prove O.A. strength: Br= > 12
 - Add Brz (ag) into Kl (ag) mixed w/ hexane w/ shaking.
 - $Br_2 + 2|^{-} \Rightarrow 2Br^{-} + |_2$
 - Upper organic layer will be purple. Lower aqueous layer will be brown.
 - : Strength of O.A.: Brz > 12
 - > : Strength of O.A .: Cl2 > Brz > 12