Use LATEX as SLiCAP report generator

Anton J.M. Montagne

May 13, 2025

Contents

Intr	roducti	on	3
1.1	Projec	t file locations	3
1.2	The pr	reambule	3
SLi	CAP c	reation of LaTeX output	4
2.1	SLiCA	P functions	4
	2.1.1	makeCircuit()	4
	2.1.2	$plot(), plotSweep(), and plotPZ() \dots \dots \dots \dots \dots \dots \dots$	5
2.2	ĿŢĘX	formatter	6
	2.2.1	<pre>coeffsTransfer(transferCoeffs, label="", caption="",</pre>	
		color="myyellow")	6
	2.2.2	dcvarContribs(resultObject, label="", caption="",	
		color="myyellow")	7
	2.2.3	dictTable(dct, head=None, label="", caption="",	
		<u>-</u>	7
	2.2.4		
	2.2.5	3 , 1	9
	2.2.6		9
	2.2.7		
	2.2.8	<u> </u>	
			10
	2.2.9		11
	2.2.10		11
		· · · · · · · · · · · · · · · · · · ·	
		5	12
	2.2.12		12
			13
			13
	2.2.15	<pre>specs(specs. specType. label="". caption="". color="myvellow")</pre>	15
	<u>_</u> 0	color="myyellow")	16
Cha	nge st	yle	17
	1.1 1.2 SLi (2.1 2.2	1.1 Project 1.2 The properties of the properties	SLiCAP creation of ETeX output 2.1 SLiCAP functions 2.1.1 makeCircuit() 2.1.2 plot(), plotSweep(), and plotPZ() 2.2 ETeX formatter 2.2.1 coeffsTransfer(transferCoeffs, label="", caption="", color="myyellow") 2.2.2 dcvarContribs(resultObject, label="", caption="", color=myyellow") 2.2.3 dictTable(dct, head=None, label="", caption="", color=myyellow") 2.2.4 elementData(circuitObject, label="", caption="") 2.2.5 eqn(LHS, RHS, units="", label="", multiline=False) 2.2.6 eqnInline(LHS, RHS, units="") 2.2.7 expr(expr, units="") 2.2.8 file(fileName, lineRange=None, firstNumber=None, language=None style=None) 2.2.9 matrixEqn(Iv, M, Dv, label="") 2.2.10 netlist(netlistFile, lineRange=None, firstNumber=None) 2.2.11 noiseContribs(resultObject, label="", caption="", color="myyellow") 2.2.12 params(circuitObject, label="", caption="", color="myyellow") 2.2.14 pz(resultObject, label="", caption="", color="myyellow") 2.2.15 specs(specs, specType, label="", caption="", color="myyellow") 2.2.16 stepArray(stepVars, stepArray, label="", caption="", color="myyellow")

Abstract

This document describes how to use LATEX as SLiCAP report generator and obtain documents with expressions, equations, figures, and tables all updated at document compilation.

1 Introduction

Combining SLiCAP with LaTeX makes it possible to write technical reports while doing the design work. Each time, before before document compilation, figures, tables, graphs, expressions and equations generated by SLiCAP are automatically updated and imported in the LaTeX source.

This document briefly describes the way of working. The LATEX source code of this document is tex/SLiCAP_latex.tex; the path is relative to the SLiCAP project folder. The SLiCAP (Python) source code for this document is latexReport.py; in the SLiCAP project folder.

1.1 Project file locations

The project file locations are set and can be altered in the [projectpaths] section of the SLiCAP.ini file in the SLiCAP project folder. Below the listing of this section for this project:

```
[projectpaths]
47
   html = html/
48
   cir = cir/
50 lib = lib/
51 csv = csv/
52 txt = txt/
53 \text{ img} = \text{img}/
54 mathml = mathml/
55 sphinx = sphinx/
  tex = tex/
57
  tex_snippets = tex/SLiCAPdata/
58 rst_snippets = sphinx/SLiCAPdata/
59 html_snippets = sphinx/SLiCAPdata/
60 myst_snippets = sphinx/SLiCAPdata/
61 md_snippets = sphinx/SLiCAPdata/
```

Below the relevant paths for making SLiCAP LATEX reports. All paths are relative to the project folder; not shown, absolute path is listed in line 62: project=

- cir: path to circuit netlist files, e.g. netlist files generated with makeCircuit()
- csv: path to .csv files, e.g. .csv files generated with specs2csv()
- tex_snippets: path to LATEX snippets generated by the LATEX formatter.
- img: path to image files .svg, .png, .pdf, gif, etc., e.g. generated with plot instructions and with makeCircuit().
- tex: path to your LATEX report files and to preambuleSLiCAP.tex.

1.2 The preambule

The file preambuleSLiCAP.tex imports packages, and defines colors and styles for SLiCAP. It must be imported at the beginning of the document, before \begin{document}. Below you will find the opening of this document:

```
1 \documentclass[a4paper,12pt]{article}
2 \input{preambuleSLiCAP.tex}
3 \title{Use \LaTeX$\,$ as SLiCAP report generator}
4 \author{Anton J.M. Montagne}
5 \begin{document}
```

2 SLiCAP creation of LaTeX output

SLiCAP lets you create LATEX output in two ways:

- Create images and code listings with SLiCAP functions

 The generation and inclusion of images and code listings in LaTeX will be discussed in section 2.1.
- Use the SLiCAP LATEX formatter to produce LATEX snippets

 The generation and inclusion of LATEX snippets using the formatter will be discussed in section 2.2.

2.1 SLiCAP functions

In the next sections we will describe SLiCAP functions that generate data that can directly be imported by LATEX.

2.1.1 makeCircuit()

if KiCad or Lepton-EDA is used as schematic capture program, makeCircuit() creates drawing size images in .svg and .pdf format in the images folder (see section 1.1 for file locations).

```
# Create a circuit object
cir = sl.makeCircuit("kicad/myPassiveNetwork/myPassiveNetwork.kicad_sch")
```

The LATEX code to include the schematic circuit diagram of cir is:

```
72 \begin{figure}[h]
73 \centering
74 \includegraphics[width=16cm]{../img/myPassiveNetwork.pdf}
75 \caption{Schematic diagram}
76 \label{fig-myPassiveNetwork}
77 \end{figure}
```

The result is shown in Figure 1.

Figure 1: Schematic diagram

The netlist file that is created with makeCircuit() can be displayed in the LATEX document using:

```
\$5 \lstinputlisting[language=ltspice, numbers=left]{../cir/myPassiveNetwork.cir}
```

This will render as follows:

```
"myPassiveNetwork"
2
   .source V1
3
   .detector V_out
  .param R_s=150 R_ell=50 L=1u C_a=25n C_b=250p S_v=4e-18
4
  .param V_DC = 5 sigma_V=0.05 sigma_R1 = 0.02 sigma_R2=0.01
  C1 0 out C value={C_a} vinit=0
  C2 out 1 C value={C_b} vinit=0
  L1 1 out L value={L} iinit=0
  R1 1 in R value={R_s} noisetemp={T} noiseflow=0 dcvar={sigma_R1^2} dcvar
10
  R2 out 0 R value={R_ell} noisetemp={T} noiseflow=0 dcvar={sigma_R2^2} dc
      varlot=0
  V1 in 0 V value=\{1/s\} noise=\{S_v\} dc=\{V_DC\} dcvar=\{(sigma_V*V_DC)^2\}
11
12
  .end
```

2.1.2 plot(), plotSweep(), and plotPZ()

Figure 2 shows the dBmag plot of the source-to-load transfer of the circuit.

Figure 2: Magnitude plot of the source-to-load transfer

The SLiCAP code for creating this plot is:

```
# Plot the magnitude plot
result = sl.doLaplace(cir, pardefs="circuit", numeric=True)
sl.plotSweep("dBmag", "dB magnitude plot of the transfer", result, 0.01,
100, 500, sweepScale="M", funcType="dBmag")
```

The LATEX source for including it is:

```
91 \begin{figure}[h]
92 \centering
93 \includegraphics[width=12cm]{../img/dBmag.pdf}
94 \caption{Magnitude plot of the source-to-load transfer}
95 \label{fig-dBmag}
96 \end{figure}
```

2.2 LaTeX formatter

The LaTeX formatter in SLiCAP generates LaTeX snippets that can be imported in LaTeX documents using \input{} statements. It needs to be initialized. An example of the initialization of this formatter is shown below (see line 12).

```
8 import re
9 import os
10
11 sl.initProject("LATEX formatter") # Initialize the SLiCAP project
12 ltx = sl.LaTeXformatter() # Initialize a LaTeX formatter
```

In the following sections we describe formatter methods (in aplhabetic order) that generate specific LATFX snippets.

This method is used to display the numerator and denominator coefficients of a rational function in the form of a table.

Let
$$H(s) = \frac{R_{\ell}(C_{b}Ls^{2}+1)}{(R_{\ell}+R_{s})\left(\frac{C_{a}C_{b}LR_{\ell}R_{s}s^{3}}{R_{\ell}+R_{s}} + \frac{s^{2}(C_{a}LR_{\ell}+C_{b}LR_{\ell}+C_{b}LR_{s})}{R_{\ell}+R_{s}} + \frac{s(C_{a}R_{\ell}R_{s}+L)}{R_{\ell}+R_{s}} + 1\right)}$$

Table 1 shows the numerator and denominator coefficients of the Laplace variable s of H(s).

\mathbf{Coeff}	Value
b_0	R_{ℓ}
b_1	0
b_2	$C_{ m b}LR_{\ell}$
a_0	$R_{\ell} + R_{\mathrm{s}}$
a_1	$C_{\rm a}R_{\ell}R_{\rm s} + L$
a_2	$L\left(C_{\rm a}R_{\ell}+C_{\rm b}R_{\ell}+C_{\rm b}R_{\rm s}\right)$
a_3	$C_{ m a}C_{ m b}LR_{\ell}R_{ m s}$

Table 1: Numerator and denominator coefficients of H(s), b_i and a_i , respectively

SLiCAP script:

```
# Coefficients of the transfer:

# Define a transfer function:

# Ls = sl.doLaplace(cir).laplace

# Assign the gain, the normalized numerator coefficients and the

# normalized denominator coefficients to the variable 'coeffs'

coeffs = sl.coeffsTransfer(H_s)

# Generate a LaTeX snippet of the coefficient table with the

# LaTeX formatter 'ltx':

| Ltx.coeffsTransfer(coeffs, label="tab-coeffs",
```

```
caption="Numerator and denominator coefficients of " + "$H(s)$, $b_i$ and $a_i$, respectively").save("coeffs")
```

LATEX code:

123 \input{SLiCAPdata/coeffs.tex}

The individual contributions of independent DC error sources to the detector-referred and source-referred dc variance can be exported in the form of a LATEX table.

SLiCAP code:

```
74 dcVarResults = sl.doDCvar(cir)
75 ltx.dcvarContribs(dcVarResults, label="tab-dcvar",
76 caption="dcvar analysis results").save("dcvar")
```

LATEX code:

147 \input{SLiCAPdata/dcvar.tex}

The result is shown in Table 2.

Value	Units
$V_{ m DC}^2\sigma_{ m V}^2$	V^2
$V_{\rm DC}^2 \sigma_{\rm V}^2 \left(C_{\rm b} L s^2 + 1 \right)^2$	V^2
$\frac{R_{\ell}^{2}V_{\rm DC}^{2}\sigma_{\rm V}^{2}\left(C_{\rm b}Ls^{2}+1\right)^{2}}{\left(R_{\ell}+R_{\rm s}\right)^{2}}$	V^2
$\frac{V_{\mathrm{DC}}^2 \sigma_{\mathrm{R1}}^2}{\left(R_\ell + R_{\mathrm{s}}\right)^2}$	A^2
$\frac{R_{\rm s}^2 V_{ m DC}^2 \sigma_{ m R1}^2}{(R_{\ell} + R_{ m s})^2}$	V^2
$rac{R_{\ell}^2 R_{ m s}^2 V_{ m DC}^2 \sigma_{ m R1}^2}{\left(R_{\ell} + R_{ m s}\right)^4}$	V^2
$rac{V_{ m DC}^2 \sigma_{ m R2}^2}{(R_{\ell} + R_{ m s})^2}$	A^2
$rac{R_{ m s}^2 V_{ m DC}^2 \sigma_{ m R2}^2}{(R_{\ell} + R_{ m s})^2}$	V^2
$rac{R_{\ell}^2 R_{ m s}^2 V_{ m DC}^2 \sigma_{ m R2}^2}{\left(R_{\ell} + R_{ m s}\right)^4}$	V^2
	$\frac{V_{\rm DC}^2 \sigma_{\rm V}^2}{V_{\rm DC}^2 \sigma_{\rm V}^2 \left(C_{\rm b} L s^2 + 1\right)^2}$ $\frac{R_\ell^2 V_{\rm DC}^2 \sigma_{\rm V}^2 \left(C_{\rm b} L s^2 + 1\right)^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{V_{\rm DC}^2 \sigma_{\rm R1}^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{R_{\rm s}^2 V_{\rm DC}^2 \sigma_{\rm R1}^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{R_\ell^2 R_{\rm s}^2 V_{\rm DC}^2 \sigma_{\rm R1}^2}{\left(R_\ell + R_{\rm s}\right)^4}$ $\frac{V_{\rm DC}^2 \sigma_{\rm R2}^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{R_{\rm s}^2 V_{\rm DC}^2 \sigma_{\rm R2}^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{R_{\rm s}^2 V_{\rm DC}^2 \sigma_{\rm R2}^2}{\left(R_\ell + R_{\rm s}\right)^2}$ $\frac{R_{\rm s}^2 V_{\rm DC}^2 \sigma_{\rm R2}^2}{\left(R_\ell + R_{\rm s}\right)^2}$

Table 2: dcvar analysis results

This method displays the key-value pairs of a dictionary in the form of a table. SLiCAP code:

```
# Use the dictTable method to display a dictionary as a table
mydct = cir.parDefs
head = ["Name", "Value"]

1tx.dictTable(mydct, head, label='tab-mydct',
caption='Circuit parameters using the dictTable format ' +
'and modified alternate row color.',
color="mygray").save('mydct')
```

LATEX code:

```
163 \input{SLiCAPdata/mydct.tex}
```

The result is shown in Table 3. Please notice the change of the default alternate row color as specified in line 52 of the SLiCAP script above.

Name	Value
$R_{ m s}$	150
R_{ℓ}	50
L	$1.0 \cdot 10^{-6}$
$C_{\rm a}$	$2.5 \cdot 10^{-8}$
$C_{ m b}$	$2.5 \cdot 10^{-10}$
$S_{ m v}$	$4.0 \cdot 10^{-18}$
$V_{ m DC}$	5
$\sigma_{ m V}$	0.05
$\sigma_{ m R1}$	0.02
$\sigma_{ m R2}$	0.01
T	300

Table 3: Circuit parameters using the dictTable format and modified alternate row color.

2.2.4 elementData(circuitObject, label="", caption="")

This method displays the expanded netlist of a circuit object in the form of a table. SLiCAP code:

```
19 ltx.elementData(cir, label="tab-expanded",
20 caption="Expanded netlist").save("expanded")

EMEX code:

177 Table \ref{tab-expanded} shows the result.
```

Table 4 shows the result.

179

\input{SLiCAPdata/expanded.tex}

ID	Nodes	\mathbf{Refs}	Model	Param	Symbolic	Numeric
C1	0 out		С	value	C_{a}	$2.5 \cdot 10^{-8}$
				vinit	0	0
C2	out 1		С	value	$C_{ m b}$	$2.5 \cdot 10^{-10}$
				vinit	0	0
L1	1 out		L	value	L	$1.0 \cdot 10^{-6}$
				iinit	0	0
R1	1 in		R	value	$R_{\rm s}$	150
				noise temp	T	300
				noiseflow	0	0
				dcvar	$\sigma_{ m R1}^2$	0.0004
				dcvarlot	0	0
R2	out 0		R	value	R_{ℓ}	50
				noisetemp	T	300
				noise flow	0	0
				dcvar	$\sigma_{ m R2}^2$	0.0001
				dcvarlot	0	0
V1	in 0		V	value	$\frac{1}{s}$	$\frac{1}{s}$
				noise	$S_{ m v}$	$4.0 \cdot 10^{-18}$
				dc	$V_{ m DC}$	5
				dcvar	$V_{ m DC}^2\sigma_{ m V}^2$	0.0625

Table 4: Expanded netlist

2.2.5 eqn(LHS, RHS, units="", label="", multiline=False)

The formatter method eqn() creates a LaTeX snippet of a displayed and numbered equation. SLiCAP code:

```
# Evaluate the transfer of the network
transfer = sl.doLaplace(cir).laplace

# Save the transfer as a LaTeX displayed equation
tx.eqn("V_out/V_in", transfer, label="eq-H1").save("H1")
```

LATEX code:

```
The transfer function is shown in (\ref{eq-H1}).

196 \input{SLiCAPdata/H1.tex}
```

This renders as:

The transfer function is shown in (1).

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_{\ell} \left(C_{\text{b}} L s^2 + 1 \right)}{\left(R_{\ell} + R_{\text{s}} \right) \left(\frac{C_{\text{a}} C_{\text{b}} L R_{\ell} R_{\text{s}} s^3}{R_{\ell} + R_{\text{s}}} + \frac{s^2 \left(C_{\text{a}} L R_{\ell} + C_{\text{b}} L R_{\ell} + C_{\text{b}} L R_{\text{s}} \right)}{R_{\ell} + R_{\text{s}}} + \frac{s \left(C_{\text{a}} R_{\ell} R_{\text{s}} + L \right)}{R_{\ell} + R_{\text{s}}} + 1 \right)} \tag{1}$$

If multiline=True SLiCAP breaks the equation in parts of a sum or a product.

2.2.6 eqnInline(LHS, RHS, units="")

The method eqnInline() produces a LaTeX snippet for an inline equation. SLiCAP code:

```
# Save the transfer as a LaTeX inline equation
tx.eqnInline("V_out/V_in", transfer).save("H3")
```

LATEX code:

- 214 You can write (\ref{eq-H1}) inline as:
- 215 \input{SLiCAPdata/H3.tex}.

This renders as:

You can write (1) inline as:
$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_{\ell}(C_{\text{b}}Ls^{2}+1)}{(R_{\ell}+R_{\text{s}})\left(\frac{C_{\text{a}}C_{\text{b}}LR_{\ell}R_{\text{s}}s^{3}}{R_{\ell}+R_{\text{s}}} + \frac{s^{2}(C_{\text{a}}LR_{\ell}+C_{\text{b}}LR_{\text{e}}+C_{\text{b}}LR_{\text{s}})}{R_{\ell}+R_{\text{s}}} + \frac{s(C_{\text{a}}R_{\ell}R_{\text{s}}+L)}{R_{\ell}+R_{\text{s}}} + 1\right)}$$

2.2.7 expr(expr, units="")

The method expr() creates a LATEX snippet of an inline expression.

SLiCAP code:

```
# Save the transfer as a LaTeX inline expression
tx.expr(transfer).save("H2")
```

LATEX code:

- 231 The transfer can be written as:
- 232 \input{SLiCAPdata/H2.tex}.

This renders as:

```
The transfer can be written as: \frac{R_{\ell}(C_{\rm b}Ls^2+1)}{(R_{\ell}+R_{\rm s})\left(\frac{C_{\rm a}C_{\rm b}LR_{\ell}R_{\rm s}s^3}{R_{\ell}+R_{\rm s}}+\frac{s^2(C_{\rm a}LR_{\ell}+C_{\rm b}LR_{\rm s})}{R_{\ell}+R_{\rm s}}+\frac{s(C_{\rm a}R_{\ell}R_{\rm s}+L)}{R_{\ell}+R_{\rm s}}+1\right)}
```

2.2.8 file(fileName, lineRange=None, firstNumber=None, language=None, style=None)

The method file() generates a LaTeX snippet for displaying a code file. The keyword language overrides style. SLiCAP built-in styles can be seen in preambule.tex.

SLiCAP code:

```
92 f = ltx.file("../cir/myPassiveNetwork.cir", language="ltspice").save("f")
```

Please notice the file path relative to the LATEX document.

LATEX code:

```
250 \input{SLiCAPdata/f.tex}
```

This renders as:

File: myPassiveNetwork.cir

2.2.9 matrixEqn(Iv, M, Dv, label="")

The method matrixEqn() generates a LaTeX snippet for a displayed matrix equation. Iv, M, and Dv must be Sympy matrices, representing the vector with independent variables, the transfer matrix, and the vector with dependent variables, respectively.

SLiCAP code:

```
# Obtain the MNA matrix equation of this network
matrixResult = sl.doMatrix(cir)
Iv = matrixResult.Iv
Dv = matrixResult.Dv

M = matrixResult.M

# Save the matrix equation as LaTeX snippet
Itx.matrixEqn(Iv, M, Dv, label="eq-matrices").save("matrices")
```

LATEX code:

```
The matrix equation of the network is given in (ref{eq-matrices}). 
 logon{content{} 268 \\ logon{content{} content{} conte
```

This renders as:

The matrix equation of the network is given in (2).

$$\begin{bmatrix}
0 \\ \frac{1}{s} \\ 0 \\ 0 \\ 0
\end{bmatrix} = \begin{bmatrix}
-Ls & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & C_{b}s + \frac{1}{R_{s}} & -\frac{1}{R_{s}} & -C_{b}s \\
0 & 1 & -\frac{1}{R_{s}} & \frac{1}{R_{s}} & 0 \\
-1 & 0 & -C_{b}s & 0 & C_{a}s + C_{b}s + \frac{1}{R_{s}}
\end{bmatrix} \cdot \begin{bmatrix}
I_{L1} \\
I_{V1} \\
V_{1} \\
V_{in} \\
V_{out}
\end{bmatrix}$$
(2)

2.2.10 netlist(netlistFile, lineRange=None, firstNumber=None)

This method creates an \input{} statement for a SLiCAP netlist file.

SLiCAP code:

```
15 cir = sl.makeCircuit("kicad/myPassiveNetwork/myPassiveNetwork.kicad_sch")
16
17 ltx.netlist("myPassiveNetwork.cir").save("netlist")
```

LATEX code:

284 \input{SLiCAPdata/netlist.tex}

This renders as:

Netlist: myPassiveNetwork.cir

```
6  C1  O out C value={C_a} vinit=0
7  C2 out 1  C value={C_b} vinit=0
8  L1  1 out L value={L} iinit=0
9  R1  1 in R value={R_s} noisetemp={T} noiseflow=0 dcvar={sigma_R1^2} dcvar
lot=0
10  R2 out 0  R value={R_ell} noisetemp={T} noiseflow=0 dcvar={sigma_R2^2} dc
varlot=0
11  V1 in 0 V value={1/s} noise={S_v} dc={V_DC} dcvar={(sigma_V*V_DC)^2}
12 .end
```

2.2.11 noiseContribs(resultObject, label="", caption="", color="myyellow")

The method noiseContribs() creates a table with noise sources and their contributions to the source-referred noise and the detector-referred noise.

SLiCAP code:

LATEX code:

```
300 \input{SLiCAPdata/noise.tex}
```

This renders as shown in Table 5.

Name	Value	\mathbf{Units}
V1: Value	$4.0 \cdot 10^{-18}$	$\frac{\frac{V^2}{Hz}}{\frac{V^2}{Hz}}$
V1: Source-referred	$4.0 \cdot 10^{-18}$	$\frac{\overline{\mathrm{V}^2}}{\mathrm{Hz}}$
V1: Detector-referred	$\frac{6.4 \cdot 10^{23} \left(9.87 \cdot 10^{-15} f^2 - 1\right)^2}{8653.0 f^6 - 1.594 \cdot 10^{18} f^4 + 8.846 \cdot 10^{31} f^2 + 2.56 \cdot 10^{42}}$	$ \begin{array}{c} V^2 \\ Hz \\ A^2 \\ Hz \\ V^2 \\ Hz \end{array} $
I_noise_R1: Value	$1.105 \cdot 10^{-22}$	$\frac{\mathrm{A}^2}{\mathrm{Hz}}$
I_noise_R1: Source-referred	$2.485 \cdot 10^{-18}$	$\frac{\mathrm{V}^2}{\mathrm{Hz}}$
I_noise_R1: Detector-referred	$\frac{3.976 \cdot 10^{23} \left(9.87 \cdot 10^{-15} f^2 - 1\right)^2}{8653.0 f^6 - 1.594 \cdot 10^{18} f^4 + 8.846 \cdot 10^{31} f^2 + 2.56 \cdot 10^{42}}$	$\frac{\frac{V^2}{Hz}}{\frac{A^2}{Hz}}$
I_noise_R2: Value	$3.314 \cdot 10^{-22}$	$\frac{A^2}{Hz}$
I_noise_R2: Source-referred	$\frac{8.284 \cdot 10^{-49} \left(876.7 f^4 - 1.619 \cdot 10^{17} f^2 + 9.0 \cdot 10^{30}\right)}{\left(9.87 \cdot 10^{-15} f^2 - 1\right)^2}$	$\frac{\mathrm{V}^2}{\mathrm{Hz}}$
I_noise_R2: Detector-referred	$\frac{(9.87 \cdot 10^{-15} f^2 - 1)^2}{1.325 \cdot 10^{-7} \left(876.7 f^4 - 1.619 \cdot 10^{17} f^2 + 9.0 \cdot 10^{30}\right)}{8653.0 f^6 - 1.594 \cdot 10^{18} f^4 + 8.846 \cdot 10^{31} f^2 + 2.56 \cdot 10^{42}}$	$\frac{\mathrm{V}^2}{\mathrm{Hz}}$

Table 5: Noise contributions

2.2.12 params(circuitObject, label="", caption="", color="myyellow")

This method creates a single-column table with names of undefined parameters. SLiCAP code:

```
25 ltx.params(cir, label="tab-params", caption="Undefined parameters").save("params")

LATEX code:
```

```
316 Undefined parameters are given in Table \ref{tab-params} 317 318 \input{SLiCAPdata/params}
```

This renders as:

Undefined parameters are given in Table??

No undefined parameters in: myPassiveNetwork

2.2.13 parDefs(circuitObject, label="", caption="", color="myyellow")

This method creates a single-column table with circuit parameter definitions. SLiCAP code:

```
22 ltx.parDefs(cir, label="tab-pardefs",
23 caption="Circuit parameter definitions").save("pardefs")
```

LATEX code:

334 Parameter definitions are given in Table \ref{tab-pardefs}

335

336 \input{SLiCAPdata/pardefs}

This renders as:

Parameter definitions are given in Table 6

ID	Nodes	Refs	Model	Param	Symbolic	Numeric
C1	0 out		С	value	C_{a}	$2.5 \cdot 10^{-8}$
				vinit	0	0
C2	out 1		\mathbf{C}	value	$C_{ m b}$	$2.5 \cdot 10^{-10}$
				vinit	0	0
L1	1 out		L	value	L	$1.0 \cdot 10^{-6}$
				iinit	0	0
R1	1 in		R	value	$R_{\rm s}$	150
				noise temp	T	300
				noiseflow	0	0
				dcvar	$\sigma_{ m R1}^2$	0.0004
				dcvarlot	0	0
R2	out 0		R	value	R_{ℓ}	50
				noisetemp	T	300
				noise flow	0	0
				dcvar	$\sigma^2_{ m R2}$	0.0001
				dcvarlot	0	0
V1	in 0		V	value	$\frac{1}{s}$	$\frac{1}{s}$
				noise	$S_{ m v}$	$4.0 \cdot 10^{-18}$
				dc	$V_{ m DC}$	5
				dcvar	$V_{ m DC}^2 \sigma_{ m V}^2$	0.0625

Table 6: Circuit parameter definitions

2.2.14 pz(resultObject, label="", append2caption="", color="myyellow")

This method creates LATEX table snippets for results of pole-zero analysis results. SLiCAP code:

```
81 polesResult = sl.doPoles(cir, pardefs="circuit")
82 zerosResult = sl.doZeros(cir, pardefs="circuit")
```

```
83 pzResult = sl.doPZ(cir, pardefs="circuit")
84
  symZeros
               = sl.doZeros(cir)
85
  ltx.pz(polesResult, label="tab-poles", caption="Poles of the transfer").
86
      save("poles")
  ltx.pz(zerosResult, label="tab-zeros", caption="Zeros of the transfer").
87
      save("zeros")
  ltx.pz(pzResult, label="tab-pz", caption="Poles and zeros of the transfer
88
      ").save("pz")
  ltx.pz(symZeros, label="tab-symzeros", caption="Symbolic zeros of the
89
      transfer").save("symzeros")
90 ltx.expr(pzResult.DCvalue).save("dcValue")
```

LATEX code for the poles table:

```
352 The numeric poles are listed in Table \ref{tab-poles}. 353
```

354 \input{SLiCAPdata/poles.tex}

This renders as:

The numeric poles are listed in Table 7.

#	${ m Re} \ [{ m Hz}]$	${ m Im}[{ m Hz}]$	f [Hz]	\mathbf{Q}
p_1	$-1.701 \cdot 10^5$	0	$1.701 \cdot 10^5$	
	$-2.122 \cdot 10^6$		$1.006 \cdot 10^7$	
p_3	$-2.122 \cdot 10^6$	$-9.83 \cdot 10^6$	$1.006 \cdot 10^7$	2.37

Table 7: Poles of the transfer

LaTeX code for the symbolic zeros table:

```
362 The symbolic zeros are listed in Table \ref{tab-symzeros}.
363
364 \input{SLiCAPdata/symzeros.tex}
```

This renders as:

The symbolic zeros are listed in Table 8.

f [Hz]
$$z_{1} - \frac{0.5(-\frac{1}{C.bL})^{0.5}}{\pi}$$

$$z_{2} \frac{0.5(-\frac{1}{C.bL})^{0.5}}{\pi}$$

Table 8: Symbolic zeros of the transfer

LaTeX code for the numeric zeros table:

```
372 The numeric zeros are listed in Table \ref{tab-zeros}.
373
374 \input{SLiCAPdata/zeros}
```

This renders as:

The numeric zeros are listed in Table 9.

#	Re [Hz]	${ m Im}[{ m Hz}]$	f [Hz]	\mathbf{Q}
z_1	0	$1.007 \cdot 10^7$	$1.007 \cdot 10^7$	$ ilde{\infty}$
z_2	0	$-1.007 \cdot 10^7$	$1.007 \cdot 10^{7}$	$ ilde{\infty}$

Table 9: Zeros of the transfer

LATEX code for the numeric poles-zeros table:

This renders as:

The poles and zeros are listed in Table 10.

#		${ m Im} \ [{ m Hz}]$	f [Hz]	\mathbf{Q}
p_1	$-1.701 \cdot 10^5$	0	$1.701 \cdot 10^5$	
p_2	$-2.122 \cdot 10^6$	$9.83 \cdot 10^{6}$	$1.006 \cdot 10^7$	2.37
p_3	$-2.122 \cdot 10^6$	$-9.83 \cdot 10^6$	$1.006 \cdot 10^7$	2.37
z_1	0	$1.007 \cdot 10^7$	$1.007 \cdot 10^7$	$ ilde{\infty}$
z_2	0	$-1.007 \cdot 10^7$	$1.007 \cdot 10^7$	$ ilde{\infty}$

Table 10: Poles and zeros of the transfer

The DC value of the transfer equals: 0.25.

2.2.15 specs(specs, specType, label="", caption="", color="myyellow")

This method exprots a LATEX snippet for a specification tabel.

SLiCAP code:

LATEX code for the performance specifications table:

```
The performance specifications are listed in Table \ref{tab-performance}. 404 405 \input{SLiCAPdata/performance.tex}
```

This renders as:

The performance specifications are listed in Table 11.

name	$\operatorname{description}$	value	${f units}$
f_{\min}	Lower limit noise bandwidth	10	Hz
$f_{\rm max}$	Upper limit noise bandwidth	$1.0 \cdot 10^{7}$	Hz

Table 11: Performance specifications

LATEX code for the design specifications table:

```
The design specifications are listed in Table \ref{tab-design}.

414
415 \input{SLiCAPdata/design.tex}
```

This renders as:

The design specifications are listed in Table 12.

Table 12: Design specifications

2.2.16 stepArray(stepVars, stepArray, label="", caption="", color="myyellow")

This method exports a LaTeX table snippet with step-data for array-type stepping. SLiCAP code:

LATEX code for the step array table:

```
The step values that apply to Figure \ref{fig-dBmagStepped} are shown in Table \ref{tab-stepdict}.

439
440 \input{SLiCAPdata/stepdict.tex}
```


Figure 3: Magnitude plot of the source-to-load transfer

This renders as:

The step values that apply to Figure 3 are shown in Table 13.

	\mathbf{C}_{b}	\mathbf{R}_ℓ
Run 1:	$1.0 \cdot 10^{-10}$	150
Run 2:	$2.5 \cdot 10^{-10}$	100
Run 3:	$5.0 \cdot 10^{-10}$	50

Table 13: Step array

3 Change style

Some publishers require authors to provide material formatted in predefined styles. There are different ways to format LATEX snippets created with SLiCAP:

- 1. Colors of code listings can be changed in the LATEX preambule file
- 2. If alternate row colors in tables are not desired, use color=white in formatter methods that create tables.
- 3. If specific formatting of table captions is required, use caption=',' and label=',' in formatter methods that create tables. The table snippet will then be in the form of a \begin{tabular} \cdots \end{tabular} fragment that can be imported in a \begin{table} \cdots \end{table} environment to which a label and caption can be added.
- 4. Subscripts in math (italic) can be converted into \mathrm{} subscripts with the function sub2rm(<latex snippet>). This function is provided in LaTeXreport.py, and used for the creation of this document.

```
# Work-around to change subscripts to mathrm:
121
122
123
   def sub2rm(textext):
        0.00
124
125
        Converts LaTeX subscripts in italic fonts into mathrm fonts.
126
127
        :param textext: LaTeX snippet
128
        :type textxt: str
129
130
        :return: Modified LaTeX snippet
131
        :rtype: str
132
133
        :example:
134
135
        >>> textext = "\\frac{V_{out}}{V_{in}}"
136
        >>> print(sub2rm(textext))
137
        \frac{V_{\mathrm{out}}}{V_{\mathrm{in}}}
138
139
        0.00
140
        pos = 0
        out = ''
141
142
        pattern = re.compile(r'_{\{([a-zA-Z0-9]+)\}')}
143
        for m in re.finditer(pattern, textext):
144
             out += textext[pos:m.start()+1]+'{\\mathrm'+textext[m.start
                ()+1: m.end()]+'}'
145
            pos = m.end()
        out += textext[pos:]
146
147
        return out
148
149
    # Convert all the snippets
150
151 files = os.listdir(sl.ini.tex_snippets)
152 for fi in files:
        f = open(sl.ini.tex_snippets + fi, "r")
153
154
        textext = f.read()
155
        f.close()
        f = open(sl.ini.tex_snippets + fi, "w")
156
157
        f.write(sub2rm(textext))
158
        f.close()
```

5. Another option is to manually edit one or more LATEX snippets generated with SLiCAP. Care has to be taken not to override these edits when rerunning the SLiCAP script.