Data Vis with ggplot2

Why and How

Przemysław Biecek http://biecek.pl

Package datasauRus

https://www.autodeskresearch.com/publications/samestats

Grammar of Graphics ggplot2

Three ecosystems for static statistical graphics

```
library(PBImisc)
# library graphics
plot(MDRD12~MDRD7, kidney)
# library lattice
xyplot(MDRD12~MDRD7, kidney)
# library ggplot2
qplot(MDRD12,MDRD7, data=kidney)
```

Find differences between these plots

Why ggplot2?

- + Elegant
- + Highly customisable
- + Uniform
- + Natural
- + Expressive
- + Popular

- Steep learning curve
- Slow
- Evolving pretty fast (too fast?)

Why ggplot2?

http://biecek.pl/Eseje/indexGramatyka.html

```
# Best 250 series http://www.imdb.com/chart/toptv/
## (1) read the new data with archivist
library(archivist)
series2017 <- aread("mi2-warsaw/RLadies/arepo/45aa16dc4dbf0d87e3e40eb9dc9d18ae")</pre>
## (2) or read the old data with Pogromcy Danych
library(PogromcyDanych)
serialeIMDB
## (3) or scrap the data from IMDB database
library(rvest)
library(dplyr)
# read links and titles
page <- read_html("http://www.imdb.com/chart/toptv/")</pre>
series <- html_nodes(page, ".titleColumn a")</pre>
titles <- html_text(series)</pre>
links <- html_attr(series, "href")</pre>
codes <- sapply(strsplit(links, split = "/"), `[`, 3)</pre>
allSeries <- lapply(seq_along(codes), function(i) {</pre>
 tab <- read_html(paste0("http://www.imdb.com/title/",codes[i],"/epdate?ref_=ttep_ql_4")) %>%
    html_node("table") %>%
    html_table()
  data.frame(Serie = titles[i], tab[,1:4], Season = gsub(tab[,1], pattern="\\..*", replacement=""))
```

User ratings for selected TV series

[hands on live R]

Data Visualization with ggplot2

Cheat Sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same. few components: a data set, a set of geoms—visual. marks that represent data points, and a coordinate.

To display data values, map variables in the data set. to aesthetic properties of the geom like size, color, and x and y locations.

Build a graph with qplot() or ggplot()

qplot(x = cty, y = hwy, color = cyt, dáta = mog, geóm = "point").Creates a complete plot with given data, geom, and mappings. Supplies many useful defaults.

ggplot(data = mpg, aes(x = cty, y = hwy)).

Begins a plot that you finish by adding layers to. No defaults, but provides more control than gplot().

ggplot(mpg, aes(hwy, cty)) + geom point(aes(color cyl)) + | geom_smooth(method ="lm") + coord cartesian() + mappings scale color gradient() : theme bw()

Add a new layer to a plot with a **geom_***(). or stat *() function. Lach provides a geom, a set of aesthetic mappings, and a default statand position adjustment.

last_plot()

Returns the last plot

ggsave("plot.png", width = 5, height = 5)

Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to life extension.

One Variable

Continuous

a <- ggplot(mpg, aes(hwy))

a + geom_area(stat = "bin") x, y, alpha, color, fill, linetype, size.

a + geom_density(kernel 'gaussian') x, y, alpha, color, fill, linetype, size, weight b | geom_density(aes(y = ..county..))

b + geom. area(acs(y = ..density..), stat = "bin")

a + geom_dotplot()

a + geom_freqpoly()

x, y, alpha, color, linetype, size b + geom_freqpoly(aes(y = ..density..));

a + geom_histogram(binwidth = 5). x, y, alpha, color, fill, linetype, size, weight b | geom_histogram(aes(y = ..density..)) |

Discrete

b <- ggplot(mpg, aes(fl))</pre>

b + geom_bar()

x, alpha, color, lill, linetype, size, weight.

Graphical Primitives

c <- ggplot(map, aes(long, lat))</p>

c + geom_polygon(acs(group group)) x, y, alpha, color, fill, linetype, size :

d <- ggplot(economics, aes(date, unemploy))</p>

d + geom_path(lineend "butt", linejoin="round", linemitre=1) x, y, alpha, color, linetype, size.

d **+ geom_ribbon(**aes(ymtn-unemploy - 900), ymax-unemploy ±900)). x, ymax, ymin, alpha, color, fill, linetype, size

e <- ggplot(seals, aes(x = long, y = lat))

+ geom_segment(acs(xend_long | delta_long, yend = lat + delta_lat()

x, xend, y, yend, alpha, color, linetype, size

e + geom_rect(acs(xmin long, ymin lat, xmax=long | delta long, ymax = lat + delta -lat))

xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

Two Variables

Continuous X, Continuous Y f <- ggplot(mpg, aes(cty, hwy))

Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

+ geom_blank()

· geom_jitter()

x, y, alpha, color, fill, shape, size.

· geom_point() x, y, alpha, color, fill, shape, size.

geom_rug(sides = "bl") alpha, color, linetype, size

geom_smooth(model lm)

x, y, alpha, color, fill, linetype, size, weight.

geom_text(acs(label cty))

x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

Discrete X, Continuous Y g <- ggplot(mpg, aes(class, hwy))

+ geom_bar(stat = "identity") x, y, alpha, color, fill, linetype, size, weight

g + geom_boxplot()

stackdir - "center")

x, y, alpha, color, fill g + geom_violin(scale = "area")

x, y, alpha, color, fill, linetype, size, weight.

Discrete X, Discrete Y

h + geom_jitter()

x, y, alpha, color, fill, shape, size

Continuous Bivariate Distribution I <- ggplot(movies, aes(year, rating))</p>

geom_bin2d(binwidth c(5, 0.5)) xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size, weight.

Continuous Function

j <- ggplot(economics, aes(date, unemploy))</p>

j + geom_area()

x, y, alpha, color, fill, linetype, size

geom_line() x, y, alpha, color, linetype, size-

Visualizing error

 $df \leftarrow data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)$ k <- ggplot(df, aes(grp, fit, ymin = fit-se, ymax = fit+se))

 s, ymax, ymin, alpha, color, linetype, size, ... width (also geom_errorbarh())

x, ymin, ymax, alpha, color, linetype, size

k + geom_pointrange() x, y, ymin, ymax, alpha, color, fill, linetype,

shape, size

data <- data.frame(murder = USArrestsSMurder, state = tolower(rownames(USArrests))) map <- map_data("state") 1 <- ggplot(data, aes(fill = murder))</pre>

.+ **geom_map**(aes(map_id=state), map=map) + | expand_limits(x map\$long, y map\$lat) map lid, alpha, color, fill, linetype, size

Three Variables

sealsSz <- with(seals, sqrt(delta_long^2 + delta_lat^2)) m <- ggplot(seals, aes(long, lat))

x, y, z, alpha, colour, linetype, size, weight.

m + geom_raster(aes(fill = z), hjust=0.5, vjust=0.5, Interpolate=FALSE) x, y, alpha, fill.

m + geom_tile(acs(fill z)) x, y, alpha, color, fill, linetype, size i

Do not lie

I.3 Wydatki deklarowane przez przedsiębiorców na B+R w programach NCBiR w latach 2010-2016.

źródło: Narodowe Centrum Badań i Rozwoju

30 732 398 Polaków

UPRAWNIONYCH DO GŁOSOWANIA

* Dane: Państwowa Komisja Wyborcza

History

Commercial and Political Atlas William Playfair (1786)

The Bottom line is divided into Wars, the Right hand line into LIQUOO each.

Names of Phone James & .. Protocol titan 1 Ble of Han America d Bujeta **Ar**tigae' Beilard Alexande H Guarrige Morney Standow High Section America Kafina beined

On the Mode of Communication of Cholera. John Snow. 1855

Diagram of the causes of mortality in the army in the East. Florence Nightingale. 1858

More resources

Odkrywać! Ujawniać! Objaśniać!

Zbiór esejów o sztuce prezentowania danych

Discover! Reveal! Describe!

Essays about the art of data presentation

http://biecek.pl/Eseje

(english version will be there soon)

International Business Communication Standards

http://www.ibcs-a.org/

Replace gauges, speedometers EX 2.2 Berlin Paris Berlin Paris Vienna Bern Vienna Bern UN 5.2 Unify scaling indicators 6.9 6 Α 3.6 1.0 1.3 1.2 D 2 8.0 2.5 1 0.4

Docs ggplot2 http://docs.ggplot2.org/current/ Cookbook for R http://www.cookbook-r.com/Graphs/

Docs ggvis http://ggvis.rstudio.com/

Great blog http://flowingdata.com/

Graphs in NYT http://kpq.github.io/chartsnthings/

Nature Methods, Points of View http://clearscience.info/wp/?p=546

Figure 1 | The hollow circle is a flexible and robust plotting symbol.

[bioproject]