73 (31 на хор). Двумерная теорема Минковского. Ее уточнение для замкнутых множеств (6/д).

74 (32 на хор). Применение двумерной теоремы Минковского для передоказательства теоремы Дирихле. Теорема Дирихле о совместном диофантовом приближении (б/д)

Двумерная теорема Минковского.

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) > 4$, Ω выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Доказательство: Рассмотрим $(\Omega \cap \frac{1}{m}\mathbb{Z}^2)$, $m \in \mathbb{N}$. Пусть $N_m = |(\Omega \cap \frac{1}{m}\mathbb{Z}^2)|$. Заметим, что с увеличением m суммарная площадь «квадратиков» на узлах решетки будет стремиться к $\mu(\Omega)$ хоть по

Жордану, хоть по Лебегу, то есть $\frac{N_m}{m^2} \to \mu(\Omega) > 4$. Значит $\exists m_0 : \forall m > m_0 \hookrightarrow \frac{N_m}{m^2} > 4 \Longrightarrow N_m > 4m^2 = (2m)^2$.

Рассмотрим две точки такой решетки с координатами $(\frac{a_1}{m}, \frac{a_2}{m})$ и $(\frac{b_1}{m}, \frac{b_2}{m})$. По модулю 2m существует ровно 2m вычетов для числителя первой и второй координат. Тогда число различных пар с точки зраения вычетов по модулю 2m ровно $(2m)^2$.

Но $N_m > (2m)^2$, значит существуют две различные точки $a' = \left(\frac{a_1}{m}, \frac{a_2}{m}\right)$ и $b' = \left(\frac{b_1}{m}, \frac{b_2}{m}\right)$ такие, что $a_1 \equiv b_1$ (2m) и $a_2 \equiv b_2$ (2m). Теперь рассмотрм точку $c' = \frac{a'-b'}{2}$, при этом так как $b' \in \Omega$, $-b' \in \Omega$. Так как Ω выпукла, значит и вель отрезок от a' ло b' лежит в Ω , при этои c' тоже в Ω , так как c' — середина отрезка. Но c' имеет целые координаты, при этом она пенулевая, так как $a' \neq b'$.

Уточнение двумерной теоремы Минковского для замкнутых множеств.

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) \geq 4$, Ω замкнуто, выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Теорема Дирихле.

Тh. (Дирихле) Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных дробей $\frac{p}{q}$ таких, что $\left|\alpha - \frac{p}{q}\right| \leq \frac{1}{q^2}$.

Доказательство: Рассмотрим $\Omega = \{(x,y)||x| \leq Q, |\alpha x - y| \leq Q^{-1}\}$

Тогда $\mu(\Omega)=2Q\cdot\frac{2}{Q}=4$ и Ω выпукло, замкнуто и симметрично. Тогда по теореме Минковского $\exists (q,p)\in (\Omega\cap\mathbb{Z}^2)\setminus\{0\}.$ Тогда $0\leq q\leq Q,\ |\alpha q-p|\leq \frac{1}{Q}\Longrightarrow \left|\alpha-\frac{p}{q}\right|\leq \frac{1}{qQ}\leq \frac{1}{q^2}.$

А как получить бесконечно много таких дробей? Ну отметим полученную точку (p,q) и выберем $\frac{1}{Q}$ так, чтобы прямые были ниже этой точки и повторить рассуждения выше.

Теорема Дирихле о совместном диофантовом приближении.

 $\alpha_1,\ldots,\alpha_n\notin\mathbb{Q}\Rightarrow\exists$ бесконечно много различных $(p_1/q,\ldots,p_n/q):|\alpha_i-p_i/q|\leqslant \frac{1}{q^{1+1/n}}$