NAME ____

- 1. For the surface given by $z = e^{x \cos y} + 1/(x^2 + 1)$,
- (10) (i) find a normal vector to the surface at (0,0,2),

Answer:

(10) (ii) find the equation of the tangent plane at (0,0,2).

2. For the integral

$$\int_C (\frac{2xy}{1+x^2} + z) \, dx + \ln(1+x^2) \, dy + x \, dz,$$

(15) (i) show that the form under the integral sign is exact,

(10) (ii) evaluate the integral for a curve C which goes from (0,1,2) to (1,0,3).

- 3. Let $\vec{F} = 3x\vec{i} + 3y\vec{j} + z\vec{k}$ and T be the solid region bounded above by the surface of $z = 9 x^2 y^2$, and below by the xy plane.
- (15) (i) Without using the divergence theorem, compute the surface integral $\int \int_S \vec{F} \cdot \vec{n} dA$, where S is the boundary of T, and \vec{n} is the outward unit normal.

Answer:			

(15) (ii)	Use the	${\rm divergence}$	theorem 1	to recompi	ite the	integral	in (i)	l as a r	volume	integra	1
1	TO) (11)	ose me	divergence	meorem	to recomp	ate the	miegrai	111 (1)	j as a	vorume	miegra	1

- 4. Let S be the surface given by the portion of the graph of $z=4-y^2$ cut off by the planes $x=0,\,z=0,$ and y=x. Let ${\bf F}=xz{\bf j}.$
- (10) (i) Set up, but do not evaluate, the integral $\int \int_S curl \mathbf{F} \cdot \mathbf{n} \, dA$, where \mathbf{n} is the unit upward pointing normal to S.

(10) (ii) Using Stokes's Theorem, evaluate the integral in (i) by means of a line integral.