PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-303981

(43) Date of publication of application: 02.11.1999

(51)Int.CI.

F16H 59/68 B60K 41/02 F02D 17/00 F02D 29/00 F02D 29/02

(21)Application number : 10-107630

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

17.04.1998

(72)Inventor: TABATA ATSUSHI

KURAMOCHI KOJIRO

NAGANO SHUJI

MATSUMOTO SHOGO

(54) CONTROLLER FOR RESTARTING OF VEHICULAR ENGINE

(57)Abstract:

PROBLEM TO BE SOLVED: To quickly engage a forward clutch of an automatic transmission with a little shock without taking special cost in restarting of an engine.

SOLUTION: A method for supplying oil is changed according to the oil releasing amount from an oil passage in relation to a forward clutch of an automatic transmission and the oil temperature in restarting of an engine. Concretely, the time Tfast for performing control for quick increasing pressure and target control pressure are changed according to the oil releasing amount and the oil temperature (steps 180, 190). Moreover, quick increasing pressure control is started (a step 200) from a time when the engine speed (the rotational speed of an oil pump) Ne becomes a specified value NE1 or more.

LEGAL STATUS

[Date of request for examination]

23.01.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(11)特許出願公開番号

特開平11-303981

(43)公開日 平成11年(1999)11月2日

(51) Int. Cl. 6	識別記号	FI		
F16H 59/68		F16H 59/68 B6OK 41/02		
B60K 41/02				
F02D 17/00 29/00		F02D 17/00 Q 29/00 C		
		審査請求 未請求 請求項の数14 OL (全11頁)		
(21)出願番号	特願平10-107630	(71)出願人 000003207		
		トヨタ自動車株式会社		
(22)出願日	平成10年(1998)4月17日	愛知県豊田市トヨタ町1番地		
		(72)発明者 田端 淳		
		愛知県豊田市トヨタ町1番地 トヨタ自動		
		車株式会社内		
		(72)発明者 倉持 耕治郎		
		愛知県豊田市トヨタ町1番地 トヨタ自動		
		車株式会社内		
		(72)発明者 永野 周二		
		愛知県豊田市トヨタ町1番地 トヨタ自動		
·		車株式会社内		
		(74)代理人 弁理士 牧野 剛博 (外2名)		
		最終頁に続く		

(54) 【発明の名称】車両のエンジン再始動時の制御装置

(57)【要約】

【課題】 エンジン再始動時に特別なコストニーニー 自動変速機の前進クラッチを速かに且つ小さなショックで係合させる。

【解決手段】 エンジンが再始動されるときに自動変速機の前進クラッチに対し油路からのオイルの抜け量、あるいは油温に応じてオイルの供給の仕方を変える。具体的には、オイルの抜け量、あるいは油温に応じて急速増圧制御を実行する時間Tfastや制御目標圧を変える(ステップ180、190)。又、急速増圧制御はエンジン回転速度(オイルポンプの回転速度)NEがデーニーン1以上となった時点(ステップ200)から開始する。

【特許請求の範囲】

【請求項1】所定の停止条件が成立したときにエンジン を自動停止するとともに、所定の再始動条件が成立した ときに該自動停止したエンジンを再始動する車両であっ て、該再始動の際に自動変速機の所定のクラッチを係合 させる車両のエンジン再始動時の制御装置において、

エンジンの再始動時における前記所定のクラッチの油路 からのオイルの抜け量を検出する手段を備え、

前記所定のクラッチを係合させるためのオイルの供給方 法を、エンジンの再始動時における前記オイルの抜け量 10 に応じて変更することを特徴とする車両のエンジン再始 動時の制御装置。

【請求項2】請求項1において、

前記オイルの供給開始時に、急速増圧制御を、零を含む 所定時間だけ実行するようにプログラム化すると共に、 該所定時間を、前記所定のクラッチの油路からのオイル の抜け量に応じて変更・決定することを特徴とする車両 のエンジン再始動時の制御装置。

【請求項3】請求項2において、前記オイルの抜け量が 多いほど前記急速増圧制御の実行時間を長くすることを 20 装置。 特徴とする車両のエンジン再始動時の制御装置。

【請求項4】請求項1において、

前記オイルの供給開始時に、急速増圧制御を実行するよ うにプログラム化すると共に、

該急速増圧制御における制御目標圧を、前記所定のクラ ッチの油路からのオイルの抜け量に応じて変更・決定す ることを特徴とする車両のエンジン再始動時の制御装

【請求項5】請求項1において、更に、

前記エンジンの停止指令から再始動指令までの時間を検 30 エンジン再始動時の制御装置。 出する手段を備え、

前記所定のクラッチの油路からのオイルの抜け質を エンジンの停止指令から再始動指令までの時間から推定 ・検出すること特徴とする車両のエンジン再始動時の制 御装置。

【請求項6】請求項1において、更に、

自動変速機のオイルポンプの回転速度を検出する手段を 備え、

前記所定のクラッチの油路からのオイルの抜け量を、該 オイルポンプの回転速度から推定・検出することを特徴 40 とする車両のエンジン再始動時の制御装置。

【讃求項7】讃求項1において、

前記エンジンの所定の停止条件の中に、シフトポジショ ンが非駆動ポジションという条件が含まれており、

前記オイルの抜け量に応じてオイルの供給方法を変更す る制御は、

シフトポジションが非駆動ポジションにあるときに、ま たは非駆動ポジションにシフトされることによって前記 エンジンの所定の停止条件が成立してエンジンが自動停 止し、

この状態からシフトポジションが非駆動ポジション以外 のポジションに移動されることによって前記再始動条件 が成立してエンジンが再始動されるときにも適用するこ とを特徴とする車両のエンジン再始動時の制御装置。

【請求項8】所定の停止条件が成立したときにエンジン を自動停止するとともに、所定の再始動条件が成立した ときに該自動停止したエンジンを再始動する車両であっ て、該再始動の際に自動変速機の所定のクラッチを係合 させる車両のエンジン再始動時の制御装置において、

自動変速機の油温を検出する手段を備え、

前記所定のクラッチを係合させるためのオイルの供給方 法を、エンジンの再始動時における前記油温に応じて変 更することを特徴とする車両のエンジン再始動時の制御

【請求項9】請求項8において、

前期オイルの供給開始時に、急速増圧制御を、零を含む 所定時間だけ実行するようにプログラム化すると共に、 該所定時間を、前記自動変速機の油温に応じて変更・決 定することを特徴とする車両のエンジン再始動時の制御

【請求項10】請求項9において、前記自動変速機の油 温が低いときに、前記急速増圧制御の実行時間を長くす ることを特徴とする車両のエンジン再始動時の制御装

【請求項11】請求項8において、

前期オイルの供給開始時に、急速増圧制御を実行するよ うにプログラム化すると共に、

該急速増圧制御における制御目標圧を、前記自動変速機 の油温に応じて変更・決定することを特徴とする車両の

【請求項12】請求項8において、更に、

ニンデンの冷却水温を領出する手段を備え、

前記自動変速機の油温を、前記エンジンの冷却水温から 推定・検出することを特徴とする車両のエンジン再始動 時の制御装置。

【請求項13】請求項8において、

前記エンジンの所定の停止条件の中に、シフトポジショ ンが非駆動ポジションという条件が含まれており、

前記自動変速機の油温に応じてオイルの供給方法を変更 する制御は、

シフトポジションが非駆動ポジションにあるときに、ま たは非駆動ポジションにシフトされることによって前記 エンジンの所定の停止条件が成立してエンジンが自動停

この状態からシフトポジションが非駆動ポジション以外 のポジションに移動されることによって前記再始動条件 が成立してエンジンが再始動されるときにも適用するこ とを特徴とする車両のエンジン再始動時の制御装置。

【請求項14】所定の停止条件が成立したときにエンジ 50 ンを自動停止するとともに、所定の再始動条件が成立し

たときに該自動停止したエンジンを再始動する車両であ って、該再始動の際に自動変速機の所定のクラッチを係 合させる車両のエンジン再始動時の制御装置において、 自動変速機のオイルポンプの回転速度を検出する手段を 備え、

前期オイルの供給開始時に、急速増圧制御を実行するよ うにプログラム化すると共に、

該急速増圧制御の開始タイミングを、前記自動変速機の オイルポンプの回転速度に応じて決定することを特徴と する車両のエンジン再始動時の制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、所定の停止条件が 成立したときにエンジンを自動停止するとともに、所定 の再始動条件が成立したときに該自動停止したエンジン を再始動する車両であって、該再始動の際に自動変速機 の所定のクラッチを係合させる車両のエンジン再始動時 の制御装置に関する。

[0002]

【従来の技術】従来、走行中において車両が停止し、且 20 つ所定の停止条件が成立した場合に、エンジンを自動的 に停止させ、燃料の節約、排気エミッションの低減、あ るいは騒音の低減等を図るように構成した車両が提案さ れ、すでに実用化されている(例えば特開平8-140 76号公報)。

【0003】このような車両にあっては、運転者がアク セルペダルを踏むなど走行の意思を示して所定の再始動 条件が成立したときには、直ちにエンジンを再始動させ る必要がある。

【0004】ところが、自動変速機が油圧式の自動変速 30 機であった場合には、エンジンが停止すると該エンジン と連結されているオイルポンプも停止してしまうた 例えば自動変速機の前進クラッチ(所定のクラッチ)に 供給されているオイルも油路から抜け、油圧が低下して しまう。そのため、エンジンが再始動されるときには、 当該前進走行時に係合されるべき前進クラッチもその係 合状態が解かれてしまった状態となってしまうことにな

【0005】この場合、エンジンが再始動された時に、 この前進クラッチが速やかに係合されないと、いわば二 40 ュートラルの状態のままアクセルペダルが触み込ま・・。 ことになり、エンジンが吹き上がった状態で前進クラッ チが係合して係合ショックが発生する可能性がある。

【0006】そのため、このような状態が発生しないよ うに、前記特開平8-14076号公報にかかる車両に おいては、エンジンが自動停止してから再始動されるま での間、大型のアキュムレータの機能により前進クラッ チを係合状態に維持する技術を提案している。

[0007] また特開平9-39613号公報では、エ

ンの燃料の供給のみを停止し、モータジェネレータを駆 動させて、該エンジンをほぼアイドリング回転速度に保 持し、オイルポンプが停止しないように配慮した技術を 提案している。

[0008]

【発明が解決しようとする課題】しかしながら、前記特 開平8-14076号公報にて提案された技術のよう に、大型のアキュムレータを組み込むことにより、エン ジンが停止中においても前進クラッチを係合状態に維持 10 するという技術は、例えばD(ドライブ)ポジションか らN (ニュートラル) ポジションへのシフト時のドレン 性能の悪化、即ち、前進クラッチの解放スピードが遅く なることや、油圧制御装置の大型化など、アキュムレー 夕を設けることにより新たな弊害が発生するのが避けら れなかった。

【0009】また、前記特開平9-39613号公報に て提案された技術のように、モータジェネレータによっ てエンジンをアイドリング回転速度に維持するという技 術は、燃費の向上は図れるものの、モータジェネレータ を駆動する必要があるためバッテリの消耗が著しく、そ のためバッテリを大型化 (大容量化) する必要があると いう問題があった。

【0010】本発明は、このような従来の問題に鑑みて なされたものであって、ドレン性能の悪化や油圧制御装 置あるいはバッテリの大型化などの新たな不具合を一切 生じることなく、エンジン再始動時に係合されるべき自 動変速機の所定のクラッチを、係合ショック等を生じる ことなく速やかに係合させることのできる車両の再始動 時の制御装置を提供することをその課題とする。

[0011]

【課題を解決するための手段】本発明は、所定の停止条 **「対域整理のと意識エンジンを自動停止するとともに、** 所定の再始動条件が成立したときに該自動停止したエン ジンを再始動する車両であって、該再始動の際に自動変 速機の所定のクラッチを係合させる車両のエンジン再始 動時の制御装置において、エンジンの再始動時における 前記所定のクラッチの油路からのオイルの抜け量を検出 する手段を備え、前記所定のクラッチを係合させるため のオイルの供給方法を、エンジンの再始動時における前 記オイルの抜け量に応じて変更することにより、上記課 題を解決したものである。

【0012】また、本発明は、所定の停止条件が成立し たときにエンジンを自動停止するとともに、所定の再始 動条件が成立したときに該自動停止したエンジンを再始 動する車両であって、該再始動の際に自動変速機の所定 のクラッチを係合させる車両のエンジン再始動時の制御 装置において、自動変速機の油温を検出する手段を備 え、前記所定のクラッチを係合させるためのオイルの供 給方法を、エンジンの再始動時における前記油温に応じ ンジンを完全に停止させてしまうのではなく、該エンジ 50 て変更することにより、上記課題を解決したものであ

る。

【0013】更に、本発明は、所定の停止条件が成立したときにエンジンを自動停止するとともに、所定の再始動条件が成立したときに該自動停止したエンジンを再始動する車両であって、該再始動の際に自動変速機の所定のクラッチを係合させる車両のエンジン再始動時の制御装置において、自動変速機のオイルポンプの回転速度を検出する手段を備え、前期オイルの供給開始時に、急速増圧制御を実行するようにプログラム化すると共に、該急速増圧制御の開始タイミングを、前記自動変速機のオ10イルポンプの回転速度に応じて決定することにより、上記課題を解決したものである。

【0014】本発明においては、上述した不具合を解消するために、大型のアキュムレータを設けたり、あるいは、車両停止中においてもエンジンを回転させておいて、所定のクラッチを係合状態に維持しておくのではなく、エンジン再始動と同時に所定のクラッチを係合させるためのオイルの供給を開始するが、その際、該再始動時の状況に応じてオイルの供給方法(供給の仕方)を変更するという構成を採用した。

【0015】請求項1に記載の発明においては、オイルの供給方法を、該所定のクラッチの油路からのオイルの抜け量に応じて変更するようにしている。

【0016】また、請求項8に記載の発明においては、 オイルの供給方法を、自動変速機の油温に応じて変更す るようにしている。

【0017】更に請求項14に記載の発明は、オイルの 供給方法に関し、特に急速増圧制御の開始タイミングの 設定に着目している。

【0018】これらの工夫により、大型のアキュムレー 30 夕を備えたり、エンジンをアイドル回転状態に維持しておいたりすることなく、所定のクラッチを懸合シを発生させることなく速やかに係合させることができる。

【0019】より具体的には、例えば、前記オイルの供給開始時に、急速増圧制御を、零を含む所定時間だけ実行するようにプログラム化すると共に、該所定時間を、前記所定のクラッチの油路からのオイルの抜け量、あるいは自動変速機の油温に応じて変更・決定する(請求項2、9)。

【0020】エンジンの再始動と同時に所定にプラントを速やかに係合させるためには急速増圧制御の実行が有効であると考えられる。しかしながら、前述したようにエンジン回転速度はすでに上昇段階にあるため、もし、この急速増圧制御が適正に実行されないと、該所定のクラッチが係合されるときに大きな係合ショックが発生する関れがある。そのためこの急速増圧制御の実行時間を、該所定のクラッチの油路のオイルの抜け量、あるいは油温に応じて変更する。

【0021】オイルの抜け虽に応じて急速増圧制御の実 50 にシフトされることによって前記エンジンの所定の停止

行時間を変更するのは、例えばエンジンが停止した直後 に再始動するときのように、所定のクラッチの油路中か らオイルが完全に抜けていない状態で急速増圧制御を実 行すると該所定のクラッチが直ちに急係合してしまい、 大きなショックが発生してしまうためである。

[0022] 当然にオイルの抜け量が大きければ実行時間は長めに設定される(請求項3)。

【0023】なお、ここで言う「急速増圧制御」は、要するに所定のクラッチに対する単位時間当りのオイルの供給速度を速くする制御を意味し、その具体的な構成は特に限定されない。例えばクラッチへの油路中の絞り通路の絞り度を一時的に緩くすること、絞り通路にバイパス路を設けて適宜該バイバス路を通してクラッチにオイルを供給すること、あるいは、プライマリレギレータバルブ(ライン圧を調圧するバルブ)の調圧値を一時的に高目に設定すること等の種々の構成が採用できる。

[0024] 一方、油温に応じて急速増圧制御の実行時間を変更するのは、油温が異なるとオイルの粘度が変わり、そのため同じ実行時間でもオイルの供給のされ方が20 異なってくるためである。油温が低いときは実行時間は長めに設定される(請求項10)。

【0025】なお、オイルの供給方法を変えるには、急速増圧制御の実行時間を変更すると共に、あるいは実行時間を変更することに代え、急速増圧制御における制御目標圧を変更するようにしてもよい(請求項4、11)。

[0026] オイルの抜け量は、必ずしも直接検出する必要はなく、例えばエンジンの停止指令から再始動指令までの時間から間接的に推定・検出することができる(請求項5)。

【0027】あるいは、自動変速機のオイルポンプの回 下意度からなるからは、自動変速機のオイルポンプの回 で意度からなるが、オイルポンプがエンジンと直結 されている場合は、エンジン回転速度からオイルの抜け 量を推定・検出できる。

[0028] 同様に、自動変速機の油温も、必ずしも直接検出する必要はなく、例えばエンジンの冷却水温から間接的に検出することができる(請求項12)。

【0029】ところで、車両が停止したときにエンジン を自動停止させる制御は、具体的には種々の実行条件に 基づいて実施されている。例えば、車両によっては、シフトポジションがDポジションあるいはRポジション等 の走行ポジションではエンジンを自動停止させず、NポジションあるいはPポジション等の非駆動ポジションに あるときにのみ自動停止制御を実行させるようにしたものもある。

[0030] 本発明は、このような自動停止制御システムを採用している車両において、シフトポジションが非駆動ポジションにあるときに、または非駆動ポジションにシフトされることによって前記エンジンの所定の停止

条件が成立してエンジンが自動停止し、この状態からシ フトポジションが非駆動ポジション以外のポジションに 移動されることによって前記再始動条件が成立してエン ジンが再始動されるときにも全く同様に適用可能である (請求項7、13)。

【0031】なお、急速増圧制御を実行する場合には、 エンジンの再始動指令と共に該急速増圧制御を直ちに開 始させるのではなく、自動変速機のオイルポンプの回転 速度に応じて、例えば自動変速機のオイルポンプの回転 速度が所定値以上となったときから開始させるようにす 10 リ5からモータジェネレータ3への電気エネルギの供給 ると良い(請求項14)。

【0032】これは、エンジンの再始動指令が出された 後、オイルポンプの回転がある程度のレベルにまで達す るまでの時間のばらつきが比較的大きいため、このばら つきが大きい期間が経過した後に急速増圧制御を開始す ることにより、小さなばらつきで(即ち小さな係合ショ ックで)係合を完了することができるためである。

[0033]

【発明の実施の形態】以下、図面を参照しながら本発明 の実施形態を詳細に説明する。

【0034】この実施形態では、図2に示されるような 車両の駆動システムにおいて、所定の停止条件が成立し たときにエンジンを自動停止させるとともに、所定の再 始動条件が成立したときに該自動停止したエンジンを再 始動させるようにしている。エンジンが停止するとオイ ルポンプも停止して自動変速機の前進クラッチ(所定の クラッチ) の係合状態が解かれるため、エンジン再始動 の際に該前進クラッチを係合させるが、このときに本発 明が適用される。

【0035】図2において、1は車両に搭載されるエン 30 イン圧コントロールソレノイド52によって制御され、 ジン、2は自動変速機である。このエンジン1には該工 ンジン1を再始動させるためのモータ及び発電線 : 機能するモータジェネレータ3が、該エンジン1のクラ ンク軸1aに、電磁クラッチ26、プーリ22、ペルト 8、プーリ23及び減速機構Rを介して連結されてい

【0036】減速機構Rは、遊星歯車式で、サンギア3 3、キャリア34、リングギア35を含み、プレーキ3 1、クラッチ32を介してモータジェネレータ3及びプ ーリ23の間に組込まれている。なお、クラッチ32は 40 ワンウェイクラッチに置き換えることができる。

【0037】自動変速機用2のオイルポンプ19は、従 来通りエンジン1のクランク軸1aに直結されている。 なお、想像線Pで囲まれた構成のように、オイルボンブ 19′を電磁クラッチ27を介してモニタジェネレータ 3と連結して設け、独自の入口配管24、出口配管25 によりオイルを自動変速機に供給するような構成として もよい。自動変速機2内には前進走行時に係合される公 知の前進クラッチC1が設けられている。

【0038】図の符号11、16は補機類で、例えばそ 50 滑に行われるように機能する。

れぞれパワーステアリング用のポンプ、エアコン用のコ ンプレッサー等に相当しており、エンジンのクランク軸 1 a 及びモータジェネレータ 3 とはプーリ 9、14とベ ルト8によって連結されている。

【0039】図2には図示していないが、補機類として は前記のほかに、エンジンオイルポンプ、エンジンウォ ータポンプ等も連結されている。符号4はモータジェネ レータ3に電気的に接続されるインバータである。この インバータ4はスイッチングにより電力源であるバッテ を可変にしてモータジェネレータ3の回転速度を可変に する。また、モータジェネレータ3からバッテリ5への 電気エネルギの充電を行うように切り換える。

【0040】符号7は電磁クラッチ26、27の断線の 制御、及びインバータ4のスイッチング制御を行うため のコントローラである。コントローラ7へは入力信号と してエンジン回転速度センサ49からのエンジン回転速 度信号(=オイルボンプの回転速度信号)、自動停止走 行モード(エコランモード)のスイッチ40の信号、エ アコン作動のスイッチ42の信号、シフトレバー44の シフトポジション信号、油温を推定検出するためのセン サの機能を兼ねたエンジン冷却水温センサ47からの信 号等が入力される。図中の矢印線は各信号線を示してい る。

【0041】次に、上記自動変速機2において前進クラ ッチC1を係合させる構成について説明する。 図3は自 動変速機の油圧制御装置において前進クラッチC1を係 合させる構成の要部を示す油圧回路図である。

【0042】プライマリレギュレータバルブ50は、ラ オイルポンプ19によって発生された元圧をライン圧P 1年最初後、エルデインEPLは、マニュアルバルブ 54に導かれる。マニュアルバルブ54は、シフトレバ ー44と機械的に接続され、ここでは、前進ポジショ ン、例えば、Dポジション、あるいは2ポジションが選 択されたときにライン圧PLを前進クラッチC1側に連 通させる。

【0043】マニュアルバルプ54と前進クラッチC1 との間には大オリフィス56と切換弁58が介在されて いる。切換弁58はソレノイド60によって制御され、 大オリフィス56を通過してきたオイルを選択的に前進 クラッチC1に導いたり遮断したりする。

【0044】切換弁58をバイパスするようにしてチェ ックボール62と小オリフィス64が並列に組み込まれ ており、切換弁58がソレノイド60によって遮断され たときには大オリフィス56を通過してきたオイルは更 に小オリフィス64を介して前進クラッチC1に到達す るようになっている。なお、チェックボール62は前進 クラッチC1の油圧がドレンされるときに該ドレンが円

【0045】切換弁58と前進クラッチC1との間の油 路66には、オリフィス68を介して(従来と同様の小 型の)アキュムレータ70が配置されている。このアキ ュムレータ70はピストン72及びスプリング74を備 え、前進クラッチC1にオイルが供給されるときに、ス プリング74によって決定される所定の油圧にしばらく 維持されるように機能し、前進クラッチC1の係合終了 付近で発生するショックを低減する。

【0046】次にこの実施形態の作用を説明する。

【0047】エンジン始動時には電磁クラッチ26が接 10 **続状態とされ、モータジェネレータ3を駆動してエンジ** ンを始動する。このときプレーキ31をオンにし、クラ ッチ32をオフにすることでモータジェネレータ3の回 転は減速機構Rのサンギア33個からキャリア34側に 減速して伝達される。これにより、モータジェネレータ 3とインバータ4の容量を小さくしてもエンジン1をク ランキングするのに必要な駆動力を確保できる。エンジ ン1の始動後はモータジェネレータ3は発電機として機 能し、例えば車両の制動時においてバッテリ5に電気エ ネルギを蓄える。

【0048】エンジン始動時にはモータジェネレータ3 の回転速度をコントローラ7が検出し、インバータ4に 対し、モータジェネレータ3の回転がエンジン1を始動 するのに必要なトルクと回転速度となるようにスイッチ ング信号を出力する。例えばエンジン始動時にエアコン スイッチ42の信号がオンとなっていれば、エアコンオ フ時に比べてより大きなトルクが必要であるから、コン トローラフは大きなトルク及び回転速度でモータジェネ レータ3が回転できるようにスイッチング信号を出力す

【0049】エコランモード信号がオンとなった状態で 車両が停止し、且つ所定のエンジン停止条件が歳し、 と、コントローラ7はエンジン1に燃料の供給をカット する信号を出力し、エンジンを停止させる。なお、燃料 の供給カットの出力信号線は図2では省略されている。 エコランモード信号は、車室内に設けられたエコランス イッチ42を運転者が押すことによってコントローラ7 に入力される。エコランモードでのエンジンの停止条件 としては、「車速が零」、「アクセルがオフ」、且つ 「シフトレバーのポジションがDポジションである」こ 40 とが一例としてあげられる。

【0050】なお、Dポジションにおいて自動停止をさ せないようにする場合には、エンジンの停止条件とし て、「シフトレバーのポジションがDポジションであ る」という条件に代え、例えば「シフトレバーのポジシ ョンがNポジションまたはPポジション(非駆動ポジシ ョン)である」という条件を設定しておけばよい。

【0051】エコランモードでエンジン1が自動停止し た状態では、コントローラ7は電磁クラッチ26に切断 は動力非伝達状態にある。一方、エンジン1が停止中で もエアコンやパワーステアリングは作動させておきたい ため、パワーステアリング用ポンプ、エアコン用コンプ レッサの負荷等が考慮されたトルクでモータジェネレー タ3が回転するように、コントローラ7はインバータ4 に対して相応のスイッチング信号を出力する。

10

【0052】なお、このときプレーキ31をオフにし、 クラッチ32をオンとし、電磁クラッチ26をオフとし ておく。このような状態とすることにより、モータジェ ネレータ3とプーリ23は直結状態となり、補機類1 1、16等を駆動するのに必要な回転速度を確保するこ とができる。また、エンジンが運転されている際に、モ ータジェネレータ3を発電機として使用したり、補機類 11、16等を駆動したりするには、ブレーキ31をオ フにし、クラッチ32をオンにし、電磁クラッチ26は オン状態としておく。このようにすることにより、モー タジェネレータ3とプーリ23とが直結状態となり、エ ンジンの回転速度が高くなってもモータジェネレータ3 や補機類1、16等が許容回転速度を超えるのを防止す 20 ることができる。なお、クラッチ32をワンウェイクラ ッチに置き換えても実質的に上記と同様な作用が得られ

【0053】次に、エンジン1が自動停止された状態か ら再始動される際に、前進クラッチC1を適切な急速増 圧制御によって速やかに、かつ小さな係合ショックで係 合させる作用について説明する。図3において、プライ マリレギュレータバルブ50で調圧されたライン圧は、 マニュアルバルプ54を介して最終的には前進クラッチ C1に供給される。

【0054】ここで、コントローラ7から急速増圧制御 30 の指令を受けてソレノイド60が切換弁58を開に制御 ているとも変してエスアルバルブ54を通過したライ ン圧PLは、大オリフィス56を通過した後、そのまま 前進クラッチC1に供給される。なお、この急速増圧制 御が実行されている段階では、スプリング74のばね定 数の設定によりアキュムレータ70は機能しない。

【0055】やがて、コントローラ7より急速増圧制御 の終了指令を受けてソレノイド60が切換弁58を遮断 制御すると、大オリフィス56を通過したライン圧PL は小オリフィス64を介して比較的ゆっくりと前進クラ ッチC1に供給される(従来と略同等のルート)。ま た、この段階では、前進クラッチC1に供給される油圧 はかなり高まっているため、アキュムレータ70につな がっている油路66の油圧がスプリング74に抗してピ ストン72を図の上方に移動させる。その結果、このピ ストン72が移動している間、前進クラッチC1に供給 される油圧の上昇が一時中止され、前進クラッチC1は 非常に円滑に係合を完了できる。

【0056】図4に前進クラッチC1の油圧の供給特性 の制御信号を出力しており、プーリ22とエンジン1と 50 を示す。図4において、細線は急速増圧制御を実行しな

かった場合、太線は実行した場合をそれぞれ示してい る。また、Tfastと付された部分が急速増圧制御を実行 している期間(所定期間)を示している。この期間Tfa stは、定性的には前進クラッチC1の図示せぬピストン が、いわゆるクラッチパックを詰める期間に対応し、ま た、エンジン回転速度が所定のアイドル回転速度に至る 若干前までの期間に対応する。なお、Tc、Tc′は前 進クラッチC1のクラッチパックが詰められる期間、T ac、Tac'はアキュムレータ70が機能している期間に 相当している。

【0057】もし急速増圧制御が実行されない場合に は、切換弁58をバイパスした従来と略同等のルートで オイルが供給されるため、前進クラッチC1のピストン のクラッチパックが詰められるまでの間にかなりの時間 Tc′が経過し、図の細線のような経過を辿って時刻t 2頃で係合を完了する。しかしながらこの実施形態では 適切な時間Tfastだけ急速増圧制御が実行されるため、 前進クラッチの係合を時刻 t 1 頃に、しかも小さなショ ックで完了させることができる。

【0058】なお、図4の表示から明らかなように、急 20 速増圧制御の開始タイミングTsは、エンジン回転速度 (=オイルポンプ19の回転速度) NEが所定値NE1 となったときに設定されている。このように、急速増圧 制御をエンジンの再始動指令Tcom と同時に開始させな いようにしたのは、エンジン1が回転速度零の状態から 若干立ち上がった状態 (NE1程度の値にまで立ち上が った状態) になるまでの時間T1が、走行環境によって 大きくばらつく可能性があるためである。

【0059】もし、急速増圧制御をエンジンの再始動指 を受けて、前進クラッチC1は、ときに該急速増圧制御 が実行されている間に係合を完了してします。郷別のこと きな係合ショックが発生する虞がある。そこで、ばらつ きの大きなエンジンの再始動直後を避け、エンジンが若 干上昇し始めた時点Tsを急速増圧制御の開始タイミン グとすることにより、走行環境の違いにかかわらず、ば らつきの小さな(安定した)オイルの供給制御を実現す ることができる。

【0060】ここで、急速増圧制御の実行時間(所定時 間) Tfastの設定について説明する。

【0061】このような自動停止システムを認用し、二十 両の場合、例えば市街地での交差点付近の走行のよう に、車両が停止した直後に再発進するという状況がしば しば発生すると考えられる。この場合に、ただ単に急速 増圧制御を一義的に実行すると、前進クラッチC1の油 路66中のオイルが未だほとんど抜けていない状態で該 急速増圧制御が実行されることになり、非常に大きな係 合ショックが発生してしまうことになる。そこで、この 実施形態では前進クラッチClの油路66中のオイルの 抜け量を検出し、このオイルの抜け量に応じて急速増圧 50 に供給されない。従って、急速増圧制御は常温時より長

制御の(零を含む)実行時間Tfastを決定するようにし ている。なお、実行時間Tfastを零とすべきと決定され たときには、急速増圧制御自体が実行されないことにな

12

【0062】オイルの抜け量は例えば圧力センサを油路 6.6中に設けてこれを直接検出するようにしてもよいの は当然であるが、より簡便的にはオイルポンプ19の回 転速度から間接的に検出する方法が採用できる。この実 施形態ではオイルポンプ19はエンジン1のクランク軸 10 1 a と直結されているため、エンジン回転速度NEを検 出することでオイルポンプ19の回転速度を知ることが できる。

【0063】図5に前進クラッチC1の油圧のドレン特 性とエンジン回転速度(=オイルポンプの回転速度)N Eとの関係を示す。時刻 t11でエンジンの停止指令が出 されると若干の遅れT12をもって時刻 t 12からエンジン 回転速度NEは徐々に低下する特性となる。

【0064】一方、前進クラッチC1の方のドレン特性 は、エンジン1の停止指令が時刻 t11で出された後(た とえオイルポンプ19の回転速度がエンジン回転速度N Eと同様に低下したとしても)油圧はより長目の期間T 13だけそのまま維持され、時刻 t14から急激に低下する 特性となる。

【0065】この特性は、油温が同一であれば、車両毎 に比較的高い再現性を有するため、エンジン停止指令が 出されてからの経過時間が分かれば、現在どの程度油路 66からオイルが抜けた状態であるかが推定できる。

【0066】従って、エンジン停止指令が出されてから 再始動指令が出されるまでの時間Tstopに基づいて図5 令Tcom と同時に開始させた場合、このばらつきの影響 30 に示したような特性を考慮して急速増圧制御の実行時間 (所定時間) Tfastを変更・設定すれば、たとえエンジ ■ が整備を正した主受は再始動されるような状況が発 生したとしても、係合ショックを最小限に抑えることが できるようになる。

> 【0067】なお、図5の特性から明らかなように、エ ンジン回転速度NE(=オイルポンプの回転速度)はエ ンジン停止指令が出されると、その若干後の時刻 t12か ら比較的リニアに低下してきている。従って、オイルの 抜け量を、エンジン回転速度NEの値そのものによって 40 も間接的に推定することが可能である。

【0068】次に、同じく急速増圧制御の実行時間(所 定時間)Tfastを最適に設定するための他の方法につい て説明する。

【0069】図6の上段のグラフは、自動変速機のオイ ルの油温と供給速度との関係を示している。自動変速機 のオイルは、温度に依存してその粘度が変わるという性 質を有する。低温時(例えば20℃以下)では、オイル の粘度が高いため、同じ実行時間だけ急速増圧を実行し たとしても、オイルは常温時ほどには前進クラッチC1

く実行する必要がある。一方、逆に例えば80℃以上の ように、油温が通常の状態よりも髙くなってくると、オ イルの粘度が低下し過ぎてバルブボディの各シール部等 からの洩れ量が多くなり、やはり同じ時間だけ急速増圧 制御を実行しても前進クラッチC1に供給されるオイル の量は低下気味となる。

13

【0070】そこで、図6下段に示されるように、この 特性を考慮して例えば油温Ot1、Ot2、Ot3を境にして 常温時用に定められている急速増圧制御の実行時間Tfa st1に対してある係数を乗じたり、あるいは、ある時間 10 を加算(又は減算)したりして実際の実行時間Tfastを 設定するようにすると、より走行環境に見合った態様で 前進クラッチC1を係合させることができる。

【0071】なお、自動変速機の油温は必ずしも油温セ ンサによってこれを直接検出する必要はなく、例えば通 常どの車両にも搭載されているエンジン冷却水温Tcol のセンサ47からの情報を利用すれば、これを間接的に 検出することが可能である。又、油温に応じた実行時間 の設定は上述したような2~3段階の場合分けに限定さ れず、よりきめ細かく(できるだけ本来の特性に沿っ て) 依存させるようにしても良いのは言うまでもない。

【0072】この油温に対する急速増圧制御の実行時間 の変更はこれを単独で採用してもよいが、前記抜け量に 依存して設定される実行時間と組合せて採用すると一層 正確な設定ができる。例えば、まず抜け量に応じて実行 時間を設定し、この実行時間Tfastを油温に応じて増減 補正するようにしたり、図7のようにマップ化したりし ておけば、現状に見合った最適の実行時間を設定するこ とができるようになる。

【0073】なお、上記実施形態においては、切換弁5 30 8を用いて前進クラッチC1への油路の連通度を調整す ることにより急速増圧制御を実行するようにしてい が、前進クラッチC1にオイルを急速に供給する方法 は、この方法には限定されない。

【0074】例えば、上記実施形態においては、プライ マリレギュレータバルブ50によって調圧されるライン **圧PLをライン圧コントロールソレノイド52によって** 制御するようにしていたが、このライン圧コントロール ソレノイド52によって調圧されるライン圧PLの調圧 値(制御目標圧)を通常よりも髙目に設定するようにし 40 てもよい。この場合、ライン圧の調圧値と設調圧値を記 目に維持している時間の掛合せで急速増圧制御の態様が 決定されることになる。

【0075】又、上記実施形態においては、切換弁58 によってオンーオフ的に前進クラッチC1へのオイルの 供給度合を切換えるようにしていたが、該切換弁58を 例えばデューティソレノイドによってデューティ制御す るようにすれば、該切換弁58による供給度合(急速増 圧制御の制御目標圧)をよりきめ細かに設定できるよう になる。即ち、この切換弁58によっても急速増圧制御 50 バーが「非駆動ポジションでない」という条件を盛込む

の実行時間との掛合せによる制御を実現することができ る。又、当然にライン圧の調圧値変更による制御と切換 弁58による制御とを組合せることもできる。

【0076】最後に、上記コントローラ7によって実行 される急速増圧制御に関する制御フローについて説明す

【0077】図1において、ステップ120では各種セ ンサからの入力信号が処理される。ステップ130では 現在エコランモードによる自動停止中であるか否かが判 断される。自動停止中でなければそのままリターンされ るが、自動停止中であったときにはステップ140に進 み該自動停止中における再始動条件が成立したか否かが 判断される。再始動条件が成立しない場合にはステップ 150に進んで自動停止が継続され、ステップ155で インジケータ(図示略)が点灯されリターンされる。

【0078】一方、再始動条件が成立したと判断された ときにはステップ160に進んでエンジンが再始動さ れ、同時に(ステップ170を経て)ステップ180に おいてオイルの抜け量を検出するための指標としてのエ 20 ンジン回転速度 (=オイルポンプの回転速度) NE、及 び油温を検出するための指標としてのエンジン冷却水温 Tcol の値がモニタされ、これらの値に応じて、ステッ プ190で、例えば図7で示されるようなNE-Tcol のマップによって予め設定されている急速増圧制御の実 行時間Tfastが決定される。

【0079】その後ステップ200でエンジン回転速度 NEが所定値NE1 に至ったか否かが判断されNE<N E1 が成立するうちはステップ210、及び220に進 んで急速増圧制御が中止(待機状態:インジケータ消 灯)とされ、NE≧NE1 が成立した段階でステップ2 20に進んで急速増圧制御がステップ190によって設 元された機能でTastに対象行され、実行後インジケータ が消灯される(ステップ230)。

【0080】なお、ステップ190において急速増圧制 御の実行時間Tfastが零に設定された場合にはステップ 220を通過しても実質的には急速増圧制御は実行され ない。

【0081】この制御フローにおいては、オイルの抜け 量及び油温に応じて急速増圧制御の実行時間Tfastをき め細かく設定するようにしていたが、制御をより簡便化 する場合には、例えばオイルの抜け量、あるいは油温に 応じて急速増圧制御を実行するか、しないかのオンーオ フ的な場合分けのみとするのは無論可能である。

【0082】又、例えば、Dポジション等の走行ポジシ ョンにおいてはたとえ車両が停止してもエンジンの自動 停止を行わず、Nポジション等の非駆動ポジションにお いてのみエンジンの自動停止を行うように構成する場合 には、停止条件の中に「非駆動ポジション」を盛込み、 又ステップ140における再始動の条件の中にシフトレ

ようにしておけばよい。

【0083】この場合、例えばオイルの抜け量をエンジンの停止時間によって推定・検出する場合には、Nポジションにおいて所定の停止条件が成立してエンジンを自動停止させる指令が出された後、NポジションからDポジションに移行することによってエンジンの再始動指令が出されるまでの時間、あるいは、DポジションからNポジションに移行することによって所定の停止条件が成立してエンジンに自動停止指令が出された後再びDポジションに移行されることによって再始動条件が成立して10該エンジンに再始動指令が出されるまでの時間(要するに、エンジンの自動停止指令が出されてから再起動指令が出されるまでの時間)に応じてオイルの抜け量を推定・検出することができる。

15

[0084]

【発明の効果】本発明によれば、自動変速機のオイルの 抜け量、あるいは油温に応じてオイルの供給の仕方を変 更するようにしたため、例えば大型のアキュムレータを 備えたり、大型のバッテリを備えたりすることなく、自 動変速機の所定のクラッチを速かに、且つ小さな係合シ 20 ョックで係合させることができるようになるという優れ た効果が得られる。

【図面の簡単な説明】

【図1】本発明に係る車両のエンジン再始動時の制御の 制御フローの例を示す流れ図

【図2】本発明が適用された車両のエンジン駆動装置の

システム構成図

【図3】急速増圧制御を実行するための油圧制御装置の 要部を示す油圧回路図

【図4】前進クラッチのオイルの供給特性等を時間軸に 沿って示した線図

【図5】オイルの抜け量とエンジン回転速度(オイルポンプの回転速度)との関係を示した線図

【図6】油温とオイルの供給速度、及び急速増圧制御の 実行時間との関係を示した線図

【図7】エンジン回転速度(オイルの抜け量)とエンジン冷却水温(油温)と急速増圧制御の実行時間との関係のマップ例を示した線図

【符号の説明】

1…エンジン

2…自動変速機

3…モータジェネレータ

4…インパータ

5…パッテリ

19…オイルポンプ

42…エコランスイッチ

44…シフトレバー

47…エンジン冷却水温センサ

49…エンジン回転速度センサ

R…減速機構

Tfast…急速増圧の実行時間

【図2】

[図3]

220

インジケータ 消 灯

インジケータ 別 灯

(リターン

【図4】

【図7】

	TSOL	NE(1)	NE(2)	,,	NE(n)
	Tool	Tfest	Tfest	,,	Tfast
	(1)	(11)	(21)	,	(n1)
	Tcol	Tfaet	Tfeet	"	Tfast
1	(2)	(12)	(22)		(n2)
J	<u> </u>				
Ì	ſī		[<u> </u>	ــــــــــــــــــــــــــــــــــــــ	
	Tool	Tfaat	Třast		Tfast
	(m)	(1m)	(2m)	<u>L_</u>	(nm)

フロントページの続き

(72)発明者 松本 章吾

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内