Формат

В работе будет 6 задач. Задачи имеют равный вес. Продолжительность работы 120 минут. Можно будет использовать в качестве разрешенной шпаргалки один лист А4 со всех шести его сторон.

Вариант «Птолемей»

- 1. Случайные величины X и Y заданы на одном множестве исходов Ω и величину $W=\max\{X,Y\}$.
 - а) Докажите, что случайная величина W измерима относительно сигма-алгебры $\sigma(X,Y)$.
 - б) Приведите два примера нетривиальных событий (отличных от \emptyset и Ω), которые лежат в $\sigma(X,Y)$, но при этом не лежат в $\sigma(W)$.
 - в) Верно ли, что $\sigma(W) \cup \sigma(X,Y)$ сигма-алгебра?
- 2. На числовой прямой $\mathbb R$ заданы два набора подмножеств, $\mathcal A = \{$ все интервалы вида $(a;b], \$ где $a,b \in \mathbb R\}$ и $\mathcal I = \{$ все интервалы вида $[a;b), \$ где $a,b \in \mathbb Q\}.$

Совпадают ли сигма-алгебры $\sigma(A)$ и $\sigma(B)$?

Если совпадают, то докажите их совпадение. Если не совпадают, то приведите два примера множеств, которыми эти сигма-алгебры отличаются.

3. Рассмотрим последовательность характеристических функций

$$\phi_n(x) = \exp(3it/n - 4(1+1/n^2)t^2)(0.3\exp(it) + 0.7\exp(-it)).$$

Обозначим с помощью L — случайную величину, соответствующую пределу данной последовательности.

- а) Найдите предел последовательности ϕ_n при $n \to \infty$.
- б) Представьте L в виде суммы двух величин с классическими законами распределения.
- в) Найдите $\mathbb{E}(L)$ и \mathbb{V} ar(L).
- г) Что можно утверждать про независимость случайных величин последовательности (X_n) с характеристическими функциями (ϕ_n) ?
- 4. Клавдий подкидывает правильную монетку один раз. Если монетка выпадает орлом, то он складывает 50 независимых экспоненциально распределенных величин с интенсивностью 1 каждая. Если монетка выпадает решкой, то он складывает 100 независимых экспоненциально распределенных величин с интенсивностью 2 каждая. В результате Клавдий получает случайную величину K.
 - а) Найдите характеристическую функцию случайной величины K.
 - б) Разложите полученную характеристическую функцию $\phi(t)$ в ряд Тейлора до $o(t^2)$.
 - в) Какой вероятностный смысл несёт величина $\phi''(2025)$?
- 5. Величины (u_n) независимы и одинаково распределены с ожиданием 10 и дисперсией 20. Моменты $\mathbb{E}(u_n^3)$ и $\mathbb{E}(u_n^4)$ конечны. Определим $X_n = (u_1 + u_2 + \dots + u_n)^2/n^2$.
 - а) Найдите $\lim \mathbb{E}(X_n)$.

- б) Найдите $\lim Var(X_n)$.
- в) Найдите предел по вероятности plim X_n .
- 6. Величины X_n распределены биномиально Bin(n, 1/2).
 - а) Найдите предел по распределению последовательности $(X_n \mathbb{E}(X_n))/\sqrt{\mathbb{V}\mathrm{ar}(X_n)}$.
 - б) Найдите предел по вероятности последовательности $n \operatorname{\mathbb{V}ar}(X_n)/(nX_n-X_n^2).$
 - в) Найдите предел по распределению последовательности $\sqrt{n}(X_n \mathbb{E}(X_n))/\sqrt{nX_n X_n^2}$.

Уточнение: можно опираться на центральную предельную теорему и леммы Слуцкого.

Вариант «Коперник»

- 1. Величины X_n имеют функцию плотности $f(x) = nx^{n-1}$ на отрезке [0; 1].
 - а) Найдите $\lim \mathbb{E}(S_n)$.
 - б) Найдите $\lim Var(S_n)$.
 - в) К чему и в каких смыслах (по вероятности, почти наверное, по распределению, в L^1 , в L^2) сходится последовательность X_n ?
- 2. Николаю нужно сложить 100 независимых величин, равномерных на отрезке [0;1]. Однако каждую величину Николай забывает добавить в сумму с вероятностью 0.1, независимо значения величин и от того, добавил ли он остальные величины. В результате Николай получает случайную величину N.
 - а) Найдите характеристическую функцию случайной величины N.
 - б) Разложите полученную характеристическую функцию $\phi(t)$ в ряд Тейлора до $o(t^2)$.
 - в) Найдите математическое ожидание и дисперсию N.
- 3. Величины (u_n) независимы и одинаково распределены с ожиданием 10 и дисперсией 20. Определим $y_n = u_n + u_{n-1}$ и $S_n = y_1 + y_2 + \cdots + y_n$.
 - а) Найдите $\mathbb{E}(S_n)$ и $\lim \mathbb{E}(S_n)$.
 - б) Найдите $\mathbb{V}\mathrm{ar}(S_n)$ и $\lim \mathbb{V}\mathrm{ar}(S_n)$.
 - в) Найдите предел по распределению $\mathrm{plim}(S_n \mathbb{E}(S_n))/\sqrt{n}.$
- 4. Последовательность (X_n) сходится по вероятности к величине X, а про случайную величину Y ничего не известно.
 - а) Вспомнив аддитивность вероятности, с обоснованием найдите предел $\lim \mathbb{P}(|Y| \leq c_n)$, если $c_n \to \infty$.
 - б) С обоснованием найдите предел по вероятности последовательности $Y \cdot X_n$.

Уточнение: в пункте (б) можно опираться только на определение сходимости по вероятности.

5. Царь Кощей может в пределах своего благостояния каждый день утром закупать или продавать мем-койн YAGA. Курс YAGA за каждые сутки независимо от других с вероятностью 0.8 растёт в 2 раза, а с вероятностью 0.2 падает в 10 раз.

Изначально у Кощея $S_0 = 100$ рублей, инфляция в рублях равна нулю¹.

Определим долгосрочную дневную процентную ставку r условием plim $S_n/(1+r)^n=S_0$.

- a) Чему равна долгосрочная дневная процентная ставка, если Кощей держит все свои деньги в YAGA?
- б) Как выглядит стратегия Кощея, максимизирующая долгосрочную дневную процентную ставку?

Подсказка: https://en.wikipedia.org/wiki/Kelly_criterion

6. Царевна Несмеяна любит читать несмешные книжки. Всего у неё 8 книг, k-я по счёту книга оказывается несмешной с вероятностью 1/k. Цель Несмеяны — максимизировать вероятность прочесть все несмешные книги за наименьшее число попыток.

Как выглядит оптимальная стратегия Несмеяны?

Подсказка: https://en.wikipedia.org/wiki/Odds_algorithm

¹это сказочная задача!