ESG aproach: a Model Comparison to predict the Controller Strategic-impact Performance

Diego Vallarino

2022-06-21

1 Introduction

The processes of generating ESG (environmental, social and governance) initiatives are challenging companies (Bloomberg, 2022).

In this way, Managers and investors ask for higher and faster management information, not only accounting information. Technology, new regulations (i.e., Sarbanes Oxley), unique business model's irruptions, and organizational complexity increase decision-making difficulty (Byrne and Pierce 2006). The controller must support these demands and understand the company's whole business, process, and departments. Only with this knowledge can cooperate with other managers and distribute essential information at every organization level

This new approach to the controller's role has added substantial duties and tasks (Morales & Lambert 2013). See (Ahrens 1996, Burns & Baldvinsdottir 2005, Friedman & Lyne 1997, Mourtisen 1996, Herzog 1999, Northcott and Scapens 2007,) for reviews. These studies frequently define two separate functions for controllers: the bean-counter; a controller focused on accounting where numbers are an end in themselves, and the business controller or business advisor, where the role is focused on helping and advising other areas, give an opinion in front of different kind of operational decisions, participate in strategic decisions and measuring ESG (environmental, social and governance) company impact (Järvenpää 2007, Zoni & Merchgant 2007, Vaivio Kokko 2006, Semenova N. 2021, Serafeim G. 2021).

Even the controller's professional organizations (ICV-IGC 2007) tend to see this role change positively. This progression means that the controller role plays a more significant function in management control, and generates more predictive management accounting methods, complements budgetary and power process, designs, more convenient control systems for organization, creates closer cooperation between accountants and managers, permits a broader administrative control, and becomes a facilitator of strategic decision making (Byrne and Pierce, 2007).

Therefore, it is important to ask ourselves which machine learning model best allows us to predict the behavior of a "new generation" Controller, with a more strategic than accounting vision. Next, I present some prediction model options and their associated performance. Just for preliminary analysis.

2 Data

For the present analysis, a survey developed in Chile, between the years 2020 and 2021, to different companies was used. The sample size covered 151 companies. Through a process of descriptive analysis and cleaning of the data set, we ended up working with 72 Controllers, where 156 explanatory variables or regressors were created.

##		vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
##	V1	1	72	12.86	9.34	16.0	12.88	11.86	1	25	24	-0.16	-1.76	1.10
##	V2	2	72	5.17	1.94	5.0	5.26	1.48	1	8	7	-0.31	-0.69	0.23
##	VЗ	3	72	6.06	4.67	6.0	5.28	2.97	1	21	20	1.69	3.00	0.55
##	٧4	4	72	1.82	0.81	2.0	1.78	1.48	1	3	2	0.33	-1.42	0.10
##	V 5	5	72	5.28	1.27	5.0	5.36	1.48	2	7	5	-0.36	-0.66	0.15
##	V6		72	5.44	1.40	6.0	5.60	1.48	2	7	5	-0.75	-0.13	0.17
##	٧7	7	72	1.00	0.00	1.0	1.00	0.00	1	1	0	${\tt NaN}$	NaN	0.00
##	87	8	72	6.21	0.98	6.0	6.38	1.48	3	7	4	-1.58	2.62	0.12
##	V9	9	72	4.00	1.81	4.0	4.07	2.97	1	7	6	-0.21	-1.25	0.21
##	V10	10	72	5.56	1.59	6.0	5.78	1.48	2	7	5	-0.85	-0.44	0.19
##	V11	11	72	5.56	1.54	6.0	5.78	1.48	2	7	5	-0.96	-0.19	0.18
##	V12	12	72	4.72		5.0	4.84	1.48	1	7	6	-0.40	-0.86	0.21
##	V13	13	72		1.94	6.0	5.12	1.48	1	7		-0.78	-0.56	0.23
##	V14	14	72		1.80	4.0	3.88	1.48	1	7	6	-0.05	-1.17	0.21
##	V15	15	72		1.22	5.0	4.78	1.48	1	7	6	-0.51	0.26	0.14
##	V16	16	72		1.56	2.0	2.78	1.48	1	6	5	0.47	-1.05	0.18
##	V17	17	72	4.94	1.62	5.0	5.07	1.48	1	7	6	-0.54	-0.66	0.19
##	V18	18	72	3.82	1.91	4.0	3.79	2.97	1	7	6	0.10	-1.27	0.22
##	V19	19	72	3.31		3.0	3.24	1.48	1	7	6	0.24	-0.87	0.19
##	V20	20	72	3.97	1.77	4.0	4.03	1.48	1	7	6	-0.17	-1.16	0.21
	V21	21	72	4.19		4.0	4.16	1.48	2	7	5	0.08	-1.11	
	V22	22	72		2.13	3.0	3.28	2.97	1	7	6	0.41	-1.23	
	V23	23			0.71	2.0	1.71	0.00	1	6	5	2.73	15.40	
	V24	24			2.02	5.0	4.40	2.97	1	7		-0.24	-1.28	
	V25	25			1.74	6.0	5.59	1.48	1	7		-1.10	0.35	
	V26	26		4.32		4.5	4.40	2.22	1	7		-0.39	-0.79	
	V27	27		4.42		5.0	4.50	1.48	1	7		-0.42	-0.64	
	V28	28		5.21		6.0	5.50	1.48	1	7		-1.14	0.05	
	V29	29		4.07		4.0	4.09	2.97	1	7		-0.02	-1.09	
	V30	30			1.80	4.0	4.29	1.48	1	7		-0.12	-0.93	
	V31	31			1.88	4.0	4.09	2.97	1	7		-0.28	-1.21	
	V32	32		4.11		4.0	4.14	2.97	1	7		-0.17	-1.14	
	V33	33		4.25		4.0	4.38	2.97	1	7		-0.40	-1.11	
	V34	34		3.75		4.0	3.69	2.97	1	7	6	0.05	-1.39	
	V35	35		2.08		2.0	1.98	1.48	1	4	3	0.51	-1.07	
	V36	36		3.40		4.0	3.57	0.00	1	4	_	-1.34	0.81	
	V37	37		5.56		6.0	5.78	1.48	1	7		-1.36	1.59	
	V38	38		4.29		5.0	4.31	1.48	1	7		-0.18	-1.12	
	V39	39		5.36		6.0	5.50	1.48	2	7		-0.78	-0.25	
	V40	40		4.88		5.0	5.02	1.48	1	7		-0.65	-0.34	
	V41	41		4.40		5.0	4.45	1.48	1	7		-0.29	-0.77	
	V42	42		4.54		5.0	4.62	2.22	1	7		-0.22	-1.07	
	V43	43		4.83		5.0	4.93	1.48	1	7		-0.53	-0.31	
	V44	44		5.46		6.0	5.67	1.48	1	7		-1.10	0.26	
	V45	45 46		4.64		5.0	4.74	1.48	1	7 7		-0.42	-0.65	
	V46	46		5.15		5.5	5.36	0.74	1	7		-0.90 -0.67	-0.13	
	V47 V48	47 48		4.82 3.99		5.0 4.5	4.98 3.98	1.48 2.22	1 1	7		-0.67 -0.17	-0.44 -1.31	
	V48 V49	48		4.53		5.0	4.66	1.48	1	7		-0.17 -0.56	-0.95	
	V49 V50	50		5.10		6.0	5.33	1.48	1	7		-0.94	-0.38	
	V50 V51	51		6.03		6.0	6.24	1.48	1	7		-0.94 -2.10	5.62	
	V51	52		4.93		5.0	5.03	1.48	1	7		-0.43	-0.66	
	V52	53		5.07		5.0	5.03	1.48	1	7		-0.43	-0.03	
##	vuo	00	12	5.01	1.00	5.0	0.∠0	1.40	1	1	O	0.01	-0.03	0.20

##	V54	54 72	4.28 1.85	4.0	4.34	1.48	1	7	6 -0.17	-0.97 0.22
	V55	55 72	5.12 1.28	5.0	5.21	1.48	1	7	6 -0.67	0.26 0.15
	V56	56 72	4.61 1.76	5.0	4.72	1.48	1	7	6 -0.35	-0.76 0.21
	V57	57 72	5.46 1.45	6.0	5.62	1.48	2	7	5 -0.71	-0.55 0.17
	V58	58 72	5.57 1.33	6.0	5.71	1.48	1	7	6 -0.89	0.41 0.16
	V59	59 72	4.74 1.58	5.0	4.83	1.48	1	7	6 -0.43	-0.21 0.19
	V60	60 72	5.78 1.39	6.0	5.98	1.48	1	7	6 -1.29	1.33 0.16
	V61	61 72	5.40 1.46	6.0	5.55	1.48	1	7	6 -0.71	-0.20 0.17
	V62	62 72	4.81 1.92	5.0	5.00	1.48	1	7	6 -0.66	-0.66 0.23
	V63	63 72	5.12 1.77	5.0	5.34	1.48	1	7	6 -0.73	-0.32 0.21
	V64	64 72	5.74 1.54	6.0	6.03	1.48	1	7	6 -1.46	1.52 0.18
	V65	65 72	5.60 2.69	6.0	5.66	2.97	1	10	9 -0.20	-1.03 0.32
	V66	66 72	3.88 1.88	4.0	3.88	2.22	1	7	6 -0.11	-1.15 0.22
	V67	67 72	4.96 1.81	6.0	5.17	1.48	1	7	6 -1.01	-0.22 0.21
	V68	68 72	3.99 1.83	4.0	4.03	1.48	1	7	6 -0.28	-1.10 0.22
	V69	69 72	3.97 1.81	4.0	4.00	1.48	1	7	6 -0.20	-1.01 0.22
	V70	70 72	4.06 1.74	4.0	4.00	1.48	1	7	6 -0.05	-0.83 0.20
	V70	70 72	3.74 1.85	4.0	3.69	2.97	1	7	6 0.11	-1.09 0.22
	V71	72 72	4.08 1.76	4.0	4.14	1.48	1	7	6 -0.23	-0.92 0.21
	V73	73 72	4.06 1.70	4.5	4.31	2.22	1	7	6 -0.23	-1.05 0.22
	V73	74 72	4.23 1.89	5.0	4.41	1.48	1	7	6 -0.40	-0.76 0.21
	V75	75 72	3.89 1.70				1	7	6 -0.13	
	V75	76 72	4.36 1.80	4.0	3.93	1.48		7	6 -0.13	-1.00 0.20 -0.98 0.21
	V77	77 72	4.69 1.93	5.0	4.43	1.48 1.48	1	7		-0.96 0.21
				5.0	4.84		1		6 -0.59	
	V78	78 72 70 72	3.22 0.98	3.0	3.09	0.00	2	6	4 1.40	2.06 0.12
	V79	79 72	2.81 0.78	3.0	2.76	0.00	1	5	4 0.34	1.38 0.09
	V80	80 72	3.79 2.01	4.0	3.71	1.48	1	8	7 0.23	-0.89 0.24
	V81	81 72	5.75 1.51	6.0	6.05	1.48	1	7	6 -1.59	1.93 0.18
	V82	82 72	5.78 1.55	6.0	6.09	1.48	1	7	6 -1.47	1.54 0.18
	V83	83 72	5.78 1.64	6.0	6.10	1.48	1	7	6 -1.43	1.31 0.19
	V84	84 72	5.22 1.87	6.0	5.45	1.48	1	7	6 -0.85	-0.54 0.22
	V85	85 72	6.03 1.35	6.0	6.28	1.48	1	7	6 -2.07	4.67 0.16
	V86	86 72	5.78 1.58	6.0	6.12	1.48	1	7	6 -1.68	2.22 0.19
	V87	87 72	4.43 1.75	5.0	4.53	1.48	1	7	6 -0.52	-0.68 0.21
	V88	88 72	5.06 1.63	5.0	5.26	1.48	1	7	6 -0.92	0.33 0.19
	V89	89 72	4.99 1.66	5.0	5.19	1.48 1.48	1	7	6 -0.95	0.27 0.20
	V90	90 72	5.25 1.54	6.0	5.45	1.48	1	7	6 -0.97	0.60 0.18
	V91	91 72	4.60 1.80	5.0	4.74		1	7	6 -0.59	-0.58 0.21
	V92	92 72	5.19 1.51 5.28 1.47	5.0	5.36	1.48	1	7	6 -0.77	0.19 0.18
	V93	93 72	5.28 1.47	5.5	5.47	0.74	1 1	7 7	6 -0.98	0.72 0.17 0.35 0.17
	V94	94 72 95 72	4.61 1.70	6.0	5.43	1.48	1	7	6 -0.88	-0.62 0.20
	V95			5.0	4.71	1.48			6 -0.51	
	V96	96 72 97 72	4.57 1.72 5.92 1.24	5.0	4.69	1.48	1	7 7	6 -0.63	-0.53 0.20
	V97	98 72		6.0	6.14	1.48	1	7	6 -1.85 6 -1.36	3.99 0.15
	V98 V99		5.58 1.55	6.0	5.86	1.48	1			1.46 0.18
	V99 V100	99 72	4.86 1.75	5.0	5.02	1.48	1	7	6 -0.59	-0.55 0.21
		100 72	5.53 1.33	6.0	5.69	1.48	1	7	6 -1.12	1.16 0.16
	V101 V102	101 72	5.67 1.42	6.0	5.91	1.48	1	7 7	6 -1.34 6 -1.34	1.32 0.17
	V102 V103	102 72	5.60 1.52	6.0	5.84	1.48	1	7	6 -1.34 6 -0.16	1.12 0.18
		103 72	4.11 1.85	4.0	4.14	2.97	1	7	6 -0.16	-1.10 0.22
	V104	104 72	2.72 1.58	2.0	2.53	1.48	1	7	6 0.77	-0.26 0.19
	V105	105 72	3.08 1.73	3.0	2.95	1.48	1	7	6 0.52	-0.83 0.20
	V106	106 72	3.65 1.85	3.5	3.60	2.22	1		6 0.18	-1.16 0.22
##	V107	107 72	4.65 1.87	5.0	4.79	1.48	1	7	6 -0.54	-0.86 0.22

##	V108	108 72	2.96 1.80	2.5	2.78	2.22	1	7	6 0.62	-0.74 0.21
##	V109	109 72	6.07 1.17	6.0	6.26	1.48	1	7	6 -2.34	7.44 0.14
##	V110	110 72	5.50 1.30	6.0	5.66	1.48	1	7	6 -1.04	1.06 0.15
	V111	111 72	6.12 1.03	6.0	6.28	1.48	1	7	6 -1.98	6.54 0.12
	V112	112 72	6.07 1.20	6.0	6.29	1.48	1	7	6 -2.00	4.74 0.14
##	V113	113 72	5.36 1.69	6.0	5.60	1.48	1	7	6 -1.10	0.14 0.20
##	V114	114 72	4.90 1.77	5.0	5.09	1.48	1	7	6 - 0.74	-0.37 0.21
##	V115	115 72	5.33 1.37	6.0	5.50	1.48	1	7	6 -0.96	0.70 0.16
##	V116	116 72	5.49 1.49	6.0	5.71	1.48	1	7	6 -1.10	0.51 0.18
	V117	117 72	4.93 1.70	5.0	5.09	1.48	1	7	6 -0.71	-0.42 0.20
	V118	118 72	4.71 1.83	5.0	4.86	1.48	1	7	6 -0.63	-0.63 0.22
	V119	119 72	4.90 1.65	5.0	5.05	1.48	1	7	6 -0.68	-0.30 0.19
##	V120	120 72	4.79 1.81	5.0	4.97	1.48	1	7	6 -0.64	-0.52 0.21
##	V121	121 72	4.99 1.62	5.0	5.14	1.48	1	7	6 -0.58	-0.41 0.19
##	V122	122 72	5.89 1.49	6.0	6.19	1.48	1	7	6 -1.66	2.26 0.18
##	V123	123 72	4.57 1.84	5.0	4.67	1.48	1	7	6 -0.28	-0.91 0.22
	V124	124 72	4.97 1.63	5.0	5.14	1.48	1	7	6 -0.75	-0.23 0.19
	V125	125 72	4.93 1.57	5.0	5.05	1.48	1	7	6 -0.62	0.03 0.18
	V126	126 72	5.11 1.43	5.0	5.21	1.48	1	7	6 -0.59	-0.29 0.17
	V127	127 72	5.92 1.41	6.0	6.17	1.48	1	7	6 -1.34	1.02 0.17
##	V128	128 72	4.61 1.79	5.0	4.74	1.48	1	7	6 -0.42	-0.57 0.21
##	V129	129 72	4.78 1.88	5.0	4.95	2.97	1	7	6 -0.44	-0.78 0.22
##	V130	130 72	5.47 1.77	6.0	5.78	1.48	1	7	6 -1.19	0.45 0.21
##	V131	131 72	4.62 1.80	5.0	4.74	1.48	1	7	6 -0.50	-0.83 0.21
	V132	132 72	4.71 1.75	5.0	4.83	1.48	1	7	6 -0.41	-0.73 0.21
	V133	133 72	4.94 1.69	5.0	5.09	1.48	1	7	6 -0.45	-0.64 0.20
	V134	134 72	5.44 1.63	6.0	5.69	1.48	1	7	6 -0.97	0.18 0.19
	V135	135 72	5.51 1.61	6.0	5.72	1.48	1	7	6 -0.95	0.03 0.19
##	V136	136 72	6.11 1.38	7.0	6.41	0.00	1	7	6 -2.29	5.49 0.16
##	V137	137 72	6.49 0.73	7.0	6.62	0.00	4	7	3 -1.44	1.86 0.09
##	V138	138 72	6.10 1.27	7.0	6.33	0.00	1	7	6 -1.97	4.87 0.15
##	V139	139 72	6.25 1.15	7.0	6.47	0.00	1	7	6 -1.87	4.42 0.14
##	V140	140 72	6.56 0.99	7.0	6.81	0.00	2	7	5 -2.63	7.10 0.12
	V141	141 72	5.40 1.53	6.0	5.62	1.48	1	7	6 -1.06	0.92 0.18
	V141	142 72	5.24 1.59	5.0	5.41	1.48	1	7	6 -0.76	0.08 0.19
	V143	143 72	5.47 1.48	6.0	5.64	1.48	1	7	6 -0.65	-0.32 0.17
	V144	144 72	5.88 1.23	6.0	6.07	1.48	1	7	6 -1.37	2.24 0.15
##	V145	145 72	6.43 1.11	7.0	6.67	0.00	1	7	6 -2.35	6.56 0.13
##	V146	146 72	5.28 1.61	5.5	5.52	2.22	1	7	6 -1.05	0.70 0.19
##	V147	147 72	5.92 1.17	6.0	6.07	1.48	1	7	6 -1.29	2.45 0.14
##	V148	148 72	6.54 0.89	7.0	6.71	0.00	1	7	6 -3.65	18.74 0.10
	V149	149 72	5.86 1.20	6.0	6.03	1.48	1	7	6 -1.32	2.35 0.14
	V150	150 72	5.86 1.37	6.0	6.09	1.48	1	7	6 -1.52	2.49 0.16
			5.89 1.22					7		
	V151	151 72		6.0	6.07	1.48	1		6 -1.36	2.30 0.14
	V152	152 72	6.72 0.65	7.0	6.86	0.00	3	7	4 -3.22	13.10 0.08
	V153	153 72	6.65 0.70	7.0	6.79	0.00	3	7	4 -2.65	9.12 0.08
##	V154	154 72	3.64 1.59	4.0	3.67	1.48	1	6	5 -0.09	-1.06 0.19
##	V155	155 72	2.43 1.24	2.0	2.31	1.48	1	5	4 0.63	-0.67 0.15
##	V156	156 72	3.22 0.88	3.0	3.21	1.48	1	5	4 0.06	-0.38 0.10

3 Model Development

Understanding that the process of developing ESG policies in the company is a strategic decision, we will try to understand, and therefore predict, the strategic behavior of the Controller. To do this, we will use the variable V30 = Controller Function: Help/advice to align the control with the company's strategy as an independent variable. This behavior of the Controller implies a more strategic vision of the role of control and monitoring.

3.1 Train and Test data

In this section we will only do an ETL process, to later be able to separate the data groups in training and in test.

4 Model Comparison

4.1 Tree Model

```
Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 2 3 4 5 6 7
            1 3 0 0 0 0 0 0
##
##
            2 0 1 0 0 0 0 0
            3 0 0 3 0 0 0 0
##
            4 0 0 1 2 1 0 0
##
            50000400
##
            60000021
##
            70000103
##
##
  Overall Statistics
##
##
##
                  Accuracy : 0.8182
##
                    95% CI: (0.5972, 0.9481)
##
       No Information Rate: 0.2727
##
       P-Value [Acc > NIR] : 1.545e-07
##
##
                     Kappa: 0.7843
##
##
   Mcnemar's Test P-Value : NA
##
##
  Statistics by Class:
##
##
                        Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
                                 1.00000
                                                    1.00000
                                                               0.6667
## Sensitivity
                          1.0000
                                            0.7500
                                                                       1.00000
## Specificity
                          1.0000 1.00000
                                            1.0000
                                                    0.90000
                                                               1.0000
                                                                       0.95000
## Pos Pred Value
                          1.0000
                                 1.00000
                                            1.0000
                                                     0.50000
                                                               1.0000
                                                                       0.66667
## Neg Pred Value
                                  1.00000
                                                     1.00000
                                                               0.8889
                          1.0000
                                            0.9474
                                                                       1.00000
## Prevalence
                          0.1364 0.04545
                                            0.1818
                                                     0.09091
                                                               0.2727
                                                                       0.09091
## Detection Rate
                          0.1364 0.04545
                                            0.1364
                                                    0.09091
                                                               0.1818
                                                                       0.09091
                                            0.1364
## Detection Prevalence
                          0.1364 0.04545
                                                    0.18182
                                                               0.1818
                                                                       0.13636
## Balanced Accuracy
                          1.0000 1.00000
                                            0.8750 0.95000
                                                               0.8333
                                                                       0.97500
```

##		Class: 7
##	Sensitivity	0.7500
##	Specificity	0.9444
##	Pos Pred Value	0.7500
##	Neg Pred Value	0.9444
##	Prevalence	0.1818
##	Detection Rate	0.1364
##	Detection Prevalence	0.1818
##	Balanced Accuracy	0.8472

4.2 Random Forest Model

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 2 3 4 5 6 7
            1 3 0 0 0 0 0 0
##
##
            2 0 1 0 0 0 0 0
##
            3 0 0 3 0 0 0 0
            4 0 0 1 2 1 0 0
##
##
            5 0 0 0 0 4 0 0
##
            6 0 0 0 0 0 2 0
##
            7 0 0 0 0 1 0 4
##
```

Overall Statistics

```
##
##
                  Accuracy : 0.8636
##
                    95% CI: (0.6509, 0.9709)
##
      No Information Rate: 0.2727
##
      P-Value [Acc > NIR] : 1.191e-08
##
##
                     Kappa: 0.8374
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                        Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
##
## Sensitivity
                          1.0000 1.00000
                                           0.7500 1.00000
                                                              0.6667 1.00000
## Specificity
                          1.0000 1.00000
                                            1.0000
                                                   0.90000
                                                              1.0000 1.00000
## Pos Pred Value
                          1.0000 1.00000
                                            1.0000
                                                   0.50000
                                                              1.0000 1.00000
## Neg Pred Value
                         1.0000 1.00000
                                            0.9474
                                                   1.00000
                                                              0.8889 1.00000
## Prevalence
                         0.1364 0.04545
                                            0.1818 0.09091
                                                              0.2727
                                                                      0.09091
## Detection Rate
                         0.1364 0.04545
                                           0.1364 0.09091
                                                              0.1818 0.09091
## Detection Prevalence
                          0.1364 0.04545
                                            0.1364 0.18182
                                                              0.1818 0.09091
## Balanced Accuracy
                          1.0000 1.00000
                                           0.8750 0.95000
                                                              0.8333 1.00000
                        Class: 7
## Sensitivity
                          1.0000
## Specificity
                          0.9444
## Pos Pred Value
                         0.8000
## Neg Pred Value
                         1.0000
## Prevalence
                          0.1818
## Detection Rate
                          0.1818
## Detection Prevalence
                          0.2273
## Balanced Accuracy
                          0.9722
     Naive Bayes Model
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 1 2 3 4 5 6 7
           1 2 0 0 0 0 0 0
##
##
           2 1 1 0 0 0 0 0
           3 0 0 2 0 0 0 0
##
##
           4 0 0 1 2 1 0 1
           5 0 0 1 0 5 0 0
##
##
            6 0 0 0 0 0 2 0
##
           70000003
## Overall Statistics
##
##
                  Accuracy: 0.7727
##
                    95% CI: (0.5463, 0.9218)
##
      No Information Rate: 0.2727
```

P-Value [Acc > NIR] : 1.523e-06

Kappa: 0.7291

##

```
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                      Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
## Sensitivity
                       0.66667 1.00000 0.50000 1.00000 0.8333 1.00000
                       1.00000 0.95238 1.00000 0.85000 0.9375 1.00000
## Specificity
## Pos Pred Value
                       1.00000 0.50000 1.00000 0.40000 0.8333 1.00000
## Neg Pred Value
                       0.95000 1.00000 0.90000 1.00000 0.9375 1.00000
## Prevalence
                       0.13636 0.04545 0.18182 0.09091
                                                          0.2727 0.09091
                       0.09091 0.04545 0.09091 0.09091
                                                          0.2273 0.09091
## Detection Rate
## Detection Prevalence 0.09091 0.09091 0.09091 0.22727
                                                          0.2727 0.09091
                       0.83333 0.97619 0.75000 0.92500
                                                          0.8854 1.00000
## Balanced Accuracy
##
                      Class: 7
## Sensitivity
                        0.7500
## Specificity
                        1.0000
## Pos Pred Value
                        1.0000
## Neg Pred Value
                        0.9474
## Prevalence
                        0.1818
## Detection Rate
                        0.1364
## Detection Prevalence
                        0.1364
## Balanced Accuracy
                        0.8750
```

4.4 SVA Model

4 0 0 2 2 4 0 2

5 0 0 0 0 1 0 0

6 0 0 0 0 1 2 2 7 0 0 0 0 0 0 0

##

##

##

##

Overall Statistics

```
## Support Vector Machine object of class "ksvm"
## SV type: C-svc (classification)
## parameter : cost C = 1
##
## Gaussian Radial Basis kernel function.
## Hyperparameter : sigma = 0.00114786804737896
## Number of Support Vectors : 50
## Objective Function Value : -6.0635 - 8.9034 - 6.8235 - 6.0536 - 7.9432 - 4.7253 - 6.3101 - 5.5766 - 5.0469 -
## Training error : 0.3
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 1 2 3 4 5 6 7
           1 2 0 0 0 0 0 0
##
           20000000
##
##
           3 1 1 2 0 0 0 0
```

```
##
                  Accuracy : 0.4091
##
                    95% CI: (0.2071, 0.6365)
##
       No Information Rate: 0.2727
       P-Value [Acc > NIR] : 0.1178
##
##
##
                     Kappa: 0.3286
##
##
    Mcnemar's Test P-Value : NA
##
##
   Statistics by Class:
##
##
                         Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
                                             0.50000
                                                      1.00000
## Sensitivity
                          0.66667
                                   0.00000
                                                               0.16667
                                                                         1.00000
## Specificity
                                   1.00000
                                             0.88889
                                                      0.60000
                                                                1.00000
                                                                         0.85000
                          1.00000
## Pos Pred Value
                          1.00000
                                             0.50000
                                                      0.20000
                                                                1.00000
                                                                         0.40000
                                       NaN
## Neg Pred Value
                          0.95000
                                   0.95455
                                             0.88889
                                                      1.00000
                                                               0.76190
                                                                         1.00000
## Prevalence
                                   0.04545
                                                      0.09091
                          0.13636
                                             0.18182
                                                                0.27273
                                                                         0.09091
## Detection Rate
                          0.09091
                                   0.00000
                                             0.09091
                                                      0.09091
                                                                0.04545
                                                                         0.09091
                          0.09091
## Detection Prevalence
                                   0.00000
                                             0.18182
                                                      0.45455
                                                               0.04545
                                                                         0.22727
## Balanced Accuracy
                          0.83333
                                   0.50000
                                             0.69444
                                                      0.80000
                                                               0.58333
                                                                         0.92500
##
                         Class: 7
## Sensitivity
                           0.0000
## Specificity
                           1.0000
## Pos Pred Value
                              NaN
## Neg Pred Value
                           0.8182
## Prevalence
                           0.1818
## Detection Rate
                           0.0000
## Detection Prevalence
                           0.0000
## Balanced Accuracy
                           0.5000
```

5 Conclution

Based on the evidence presented, we can affirm that for this specific case, there is evidence that the **Random Forest model** is the one with the best Accuracy. All those companies that want to predict the strategic behavior of the Controller, with a focus on the implementation of ESG policies and initiatives, should use the model mentioned above.