#### Лекция С4 Нумерации и вычислимость, I

Пузаренко

Разрешимы е нумерации

Полурешётки

# Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

19 декабря 2023 г.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Определение С4.1.

Пусть S — непустое не более, чем счётное множество. Любое отображение  $\nu:\omega woheadrightarrow S$  из множества  $\omega$  натуральных чисел на множество S (сюръекция) называется **нумерацией** множества S. Множество всех нумераций множества S будем обозначать как N(S).

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Определение С4.1.

Пусть S — непустое не более, чем счётное множество. Любое отображение  $\nu:\omega woheadrightarrow S$  из множества  $\omega$  натуральных чисел на множество S (сюръекция) называется **нумерацией** множества S. Множество всех нумераций множества S будем обозначать как N(S).

Пусть  $\nu_0 \in N(S_0)$ ,  $\nu_1 \in N(S_1)$ .

### Определение С4.2.

Будем говорить, что  $\nu_0$  сводится к  $\nu_1$  (и использовать обозначение  $\nu_0\leqslant \nu_1$ ), если существует вычислимая функция f такая, что  $\nu_0=\nu_1 f$ .

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Определение С4.1.

Пусть S — непустое не более, чем счётное множество. Любое отображение  $\nu:\omega woheadrightarrow S$  из множества  $\omega$  натуральных чисел на множество S (сюръекция) называется **нумерацией** множества S. Множество всех нумераций множества S будем обозначать как N(S).

Пусть  $\nu_0 \in N(S_0)$ ,  $\nu_1 \in N(S_1)$ .

#### Определение С4.2.

Будем говорить, что  $\nu_0$  сводится к  $\nu_1$  (и использовать обозначение  $\nu_0\leqslant \nu_1$ ), если существует вычислимая функция f такая, что  $\nu_0=\nu_1 f$ .

#### Лемма С4.1.

Отношение  $\leq$  сводимости на N(S) является предпорядком (а именно, рефлексивным и транзитивным), для любого непустого не более, чем счётного множества (упражнение!!!)

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимы нумерации

Полурешётки

### Определение С4.3.

Будем говорить, что  $\nu_0$  и  $\nu_1$  **эквивалентны** (и использовать обозначение  $\nu_0 \equiv \nu_1$ ), если  $\nu_0 \leqslant \nu_1$  и  $\nu_1 \leqslant \nu_0$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.3.

Будем говорить, что  $\nu_0$  и  $\nu_1$  **эквивалентны** (и использовать обозначение  $\nu_0 \equiv \nu_1$ ), если  $\nu_0 \leqslant \nu_1$  и  $\nu_1 \leqslant \nu_0$ .

### Обозначение С4.1.

Отношение  $\equiv$  действительно является отношением эквивалентности на N(S). Положим  $L(S)={N(S)}/{\equiv}$  и  $L(S)=\langle L(S),\leqslant \rangle$ , где

$$[\nu_0]_{\equiv}\leqslant [\nu_1]_{\equiv}\Leftrightarrow (\nu_0\leqslant \nu_1)$$

для любых  $\nu_0, \nu_1 \in N(S)$  (здесь S — непустое не более, чем счётное множество).

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Обозначение С4.2.

Положим  $L^*(S)=\{[o]_{\equiv}\}\cup\bigcup_{\varnothing\neq S_0\subseteq S}L(S_0)$  и  $\mathbf{L}^*(S)=\langle L^*(S),\leqslant \rangle$ , где

$$[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv} \Leftrightarrow (\nu_0 = o) \lor (\nu_0 \leqslant \nu_1)$$

для любых  $\nu_0 \in N(S_0)$ ,  $\nu_1 \in N(S_1)$  (здесь  $S_0 \subseteq S_1 \subseteq S$ , а S — непустое не более, чем счётное множество). В этом случае o играет роль "пустой нумерации" (будем считать, что  $\delta o = \varnothing$ ).

## Упорядоченные множества

Лекция С4 Нумерации и вычислимость, I

> Вадим Пузаренко

Разрешимы нумерации

Полурешётки

Пусть  $\langle A_0,\leqslant_0
angle$ ,  $\langle A_1,\leqslant_0
angle$  — частично упорядоченные множества.

## Упорядоченные множества

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

Пусть  $\langle A_0, \leqslant_0 \rangle$ ,  $\langle A_1, \leqslant_0 \rangle$  — частично упорядоченные множества.

### Определение С4.4.

Будем говорить, что  $f: A_0 \to A_1$  — изоморфизм между  $\langle A_0, \leqslant_0 \rangle$  и  $\langle A_1, \leqslant_0 \rangle$ , если выполняются следующие условия:

- f биекция;
- ②  $a \leqslant_0 c \Leftrightarrow f(a) \leqslant_1 f(c)$  для всех  $a, c \in A_0$ .

## Упорядоченные множества

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёт

Пусть  $\langle A_0, \leqslant_0 \rangle$ ,  $\langle A_1, \leqslant_0 \rangle$  — частично упорядоченные множества.

### Определение С4.4.

Будем говорить, что  $f:A_0\to A_1$  — изоморфизм между  $\langle A_0,\leqslant_0\rangle$  и  $\langle A_1,\leqslant_0\rangle$ , если выполняются следующие условия:

- f биекция;
- ullet  $a \leqslant_0 c \Leftrightarrow f(a) \leqslant_1 f(c)$  для всех  $a, c \in A_0$ .

### Определение С4.5.

Будем говорить, что  $\langle A_0,\leqslant_0 \rangle$  и  $\langle A_1,\leqslant_0 \rangle$  изоморфны, если существует хотя бы один изоморфизм между  $\langle A_0,\leqslant_0 \rangle$  и  $\langle A_1,\leqslant_0 \rangle$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Предложение С4.1.

Пусть непустые не более, чем счётные множества  $S_0$  и  $S_1$  таковы, что  $|S_0|=|S_1|$ . Тогда  $\mathbf{L}^*(S_0)\simeq \mathbf{L}^*(S_1)$  и  $\mathbf{L}(S_0)\simeq \mathbf{L}(S_1)$ .

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Предложение С4.1.

Пусть непустые не более, чем счётные множества  $S_0$  и  $S_1$  таковы, что  $|S_0|=|S_1|$ . Тогда  $\mathbf{L}^*(S_0)\simeq \mathbf{L}^*(S_1)$  и  $\mathbf{L}(S_0)\simeq \mathbf{L}(S_1)$ .

### Доказательство.

Пусть  $\psi: S_0 \overset{1:1}{ o} S_1$  — биекция и пусть  $\Psi: L^*(S_0) \to L^*(S_1)$  — трансформация, для которой выполняются следующие условия:

- $\Psi([o]_{\equiv}) = [o]_{\equiv};$
- ullet  $\Psi([
  u]_{\equiv})=[\psi
  u]_{\equiv}$  для любой нумерации  $u\in igcup_{\varnothing
  eq S_0'\subseteq S_0} N(S_0').$

Докажем, что данная трансформация осуществляет изоморфизм между  $\mathbf{L}^*(S_0)$  и  $\mathbf{L}^*(S_1)$ . Зафиксируем также отображение  $\varphi$ , обратное к функции  $\psi$ . Сначала докажем, что  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv} \Leftrightarrow \Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$  для всех  $\nu_0 \in N(S_0') \cup \{o\}$ ,  $\nu_1 \in N(S_1') \cup \{o\}$  и  $\varnothing \neq S_0' \subseteq S_1' \subseteq S_0$ . Пусть  $\nu_0 \in N(S_0') \cup \{o\}$ ,  $\nu_1 \in N(S_1') \cup \{o\}$ ,  $\varnothing \neq S_0' \subseteq S_1' \subseteq S_0$  таковы, что  $(\Rightarrow)$   $\nu_0 \leqslant \nu_1$ . Если  $\nu_0 = o$ , то  $\Psi([\nu_0]_{\equiv}) = [o]_{\equiv} \leqslant \Psi([\nu_1]_{\equiv})$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

### Доказательство (продолжение).

Пусть теперь  $\nu_0 \neq o$ ; тогда найдётся вф f такая, что  $\nu_0 = \nu_1 f$ . Следовательно,  $\psi \nu_0 = \psi(\nu_1 f) = (\psi \nu_1) f$  и, тем самым,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ .

Лекция С4 Нумерации и вычислимость. І

Вадим Пузаренко

Разрешимые

### Доказательство (продолжение).

Пусть теперь  $\nu_0 \neq o$ ; тогда найдётся вф f такая, что  $\nu_0 = \nu_1 f$ . Следовательно,  $\psi \nu_0 = \psi(\nu_1 f) = (\psi \nu_1) f$  и, тем самым,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Далее, пусть  $(\Leftarrow) \Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Если  $\Psi([\nu_0]_{\equiv})=[o]_{\equiv}$ , то и  $\nu_0=o$ , а по определению,  $[\nu_0]_{\equiv}\leqslant [\nu_1]_{\equiv}$ ; если же

 $\Psi([\nu_0]_{\equiv}) \neq [o]_{\equiv}$ , то существует вф f такая, что  $\psi\nu_0 = (\psi\nu_1)f$ . Следовательно,

 $\nu_0 = (\varphi \psi) \nu_0 = \varphi(\psi \nu_0) = \varphi((\psi \nu_1) f) = \varphi(\psi(\nu_1 f)) = (\varphi \psi)(\nu_1 f) = \nu_1 f.$ Таким образом,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

Пусть теперь  $\nu_0 \neq o$ ; тогда найдётся вф f такая, что  $\nu_0 = \nu_1 f$ . Следовательно,  $\psi \nu_0 = \psi(\nu_1 f) = (\psi \nu_1) f$  и, тем самым,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Далее, пусть  $(\Leftarrow) \ \Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Если

 $\Psi([\nu_0]_{\equiv})=[o]_{\equiv}$ , то и  $\nu_0=o$ , а по определению,  $[\nu_0]_{\equiv}\leqslant [\nu_1]_{\equiv}$ ; если же  $\Psi([\nu_0]_{\equiv})\neq [o]_{\equiv}$ , то существует вф f такая, что  $\psi\nu_0=(\psi\nu_1)f$ .

Следовательно,

 $u_0 = (\varphi \psi) \nu_0 = \varphi(\psi \nu_0) = \varphi((\psi \nu_1) f) = \varphi(\psi(\nu_1 f)) = (\varphi \psi)(\nu_1 f) = \nu_1 f.$ Таким образом,  $[\nu_0]_{\equiv} \leq [\nu_1]_{\equiv}.$ 

 $\Psi$  — функция. Пусть  $[\nu_0]_{\equiv} = [\nu_1]_{\equiv}$ ; тогда  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$  и  $[\nu_1]_{\equiv} \leqslant [\nu_0]_{\equiv}$ , а по доказанному,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$  и  $\Psi([\nu_1]_{\equiv}) \leqslant \Psi([\nu_0]_{\equiv})$ . Таким образом,  $\Psi([\nu_0]_{\equiv}) = \Psi([\nu_1]_{\equiv})$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

Пусть теперь  $\nu_0 \neq o$ ; тогда найдётся вф f такая, что  $\nu_0 = \nu_1 f$ . Следовательно,  $\psi\nu_0 = \psi(\nu_1 f) = (\psi\nu_1)f$  и, тем самым,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Далее, пусть  $(\Leftarrow)$   $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Если  $\Psi([\nu_0]_{\equiv}) = [o]_{\equiv}$ , то и  $\nu_0 = o$ , а по определению,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$ ; если же  $\Psi([\nu_0]_{\equiv}) \neq [o]_{\equiv}$ , то существует вф f такая, что  $\psi\nu_0 = (\psi\nu_1)f$ . Следовательно,

 $u_0 = (\varphi \psi) \nu_0 = \varphi(\psi \nu_0) = \varphi((\psi \nu_1) f) = \varphi(\psi(\nu_1 f)) = (\varphi \psi)(\nu_1 f) = \nu_1 f.$ Таким образом,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$ .

 $\Psi$  — функция. Пусть  $[
u_0]_{\equiv} = [
u_1]_{\equiv}$ ; тогда  $[
u_0]_{\equiv} \leqslant [
u_1]_{\equiv}$  и  $[
u_1]_{\equiv} \leqslant [
u_0]_{\equiv}$ , а по доказанному,  $\Psi([
u_0]_{\equiv}) \leqslant \Psi([
u_1]_{\equiv})$  и  $\Psi([
u_1]_{\equiv}) \leqslant \Psi([
u_0]_{\equiv})$ . Таким образом,  $\Psi([
u_0]_{\equiv}) = \Psi([
u_1]_{\equiv})$ .

 $\Psi-$  инъекция. Пусть  $\Psi([\nu_0]_{\equiv})=\Psi([\nu_1]_{\equiv});$  тогда  $\Psi([\nu_0]_{\equiv})\leqslant \Psi([\nu_1]_{\equiv})$  и  $\Psi([\nu_1]_{\equiv})\leqslant \Psi([\nu_0]_{\equiv}),$  а по доказанному,  $[\nu_0]_{\equiv}\leqslant [\nu_1]_{\equiv}$  и  $[\nu_1]_{\equiv}\leqslant [\nu_0]_{\equiv}$ 

Таким образом,  $[\nu_0]_{\equiv} = [\nu_1]_{\equiv}$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

Пусть теперь  $\nu_0 \neq o$ ; тогда найдётся вф f такая, что  $\nu_0 = \nu_1 f$ . Следовательно,  $\psi\nu_0 = \psi(\nu_1 f) = (\psi\nu_1)f$  и, тем самым,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Далее, пусть  $(\Leftarrow)$   $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$ . Если  $\Psi([\nu_0]_{\equiv}) = [o]_{\equiv}$ , то и  $\nu_0 = o$ , а по определению,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$ ; если же  $\Psi([\nu_0]_{\equiv}) \neq [o]_{\equiv}$ , то существует вф f такая, что  $\psi\nu_0 = (\psi\nu_1)f$ .

Следовательно,

 $u_0 = (\varphi \psi) \nu_0 = \varphi(\psi \nu_0) = \varphi((\psi \nu_1) f) = \varphi(\psi(\nu_1 f)) = (\varphi \psi)(\nu_1 f) = \nu_1 f.$  Таким образом,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$ .

 $\Psi$  — функция. Пусть  $[\nu_0]_{\equiv} = [\nu_1]_{\equiv}$ ; тогда  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$  и  $[\nu_1]_{\equiv} \leqslant [\nu_0]_{\equiv}$ , а по доказанному,  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$  и  $\Psi([\nu_1]_{\equiv}) \leqslant \Psi([\nu_0]_{\equiv})$ . Таким образом,  $\Psi([\nu_0]_{\equiv}) = \Psi([\nu_1]_{\equiv})$ .

 $\Psi$  — инъекция. Пусть  $\Psi([\nu_0]_{\equiv}) = \Psi([\nu_1]_{\equiv})$ ; тогда  $\Psi([\nu_0]_{\equiv}) \leqslant \Psi([\nu_1]_{\equiv})$  и  $\Psi([\nu_1]_{\equiv}) \leqslant \Psi([\nu_0]_{\equiv})$ , а по доказанному,  $[\nu_0]_{\equiv} \leqslant [\nu_1]_{\equiv}$  и  $[\nu_1]_{\equiv} \leqslant [\nu_0]_{\equiv}$ .

Таким образом,  $[\nu_0]_{\equiv} = [\nu_1]_{\equiv}$ .  $\Psi$  — сюръекция. Пусть  $\mu \in N(S') \cup \{o\}$ ,  $S' \subseteq S_1$ . Если  $\mu = o$ , то

 $\Psi = \mathsf{сюрьекция}.$  Пусть  $\mu \in \mathcal{N}(3) \cup \{0\}, \ 3 \subseteq 3$ 1. Если  $\mu = 0$ , то  $\Psi([\phi\mu]_{\equiv}) = [\psi(\phi\mu)]_{\equiv} = [(\psi\phi)\mu]_{\equiv} = [\mu]_{\equiv}.$ 

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Доказательство (окончание).

$$\Psi \upharpoonright \mathbf{L}(S_0) : \mathbf{L}(S_0) \to \mathbf{L}(S_1)$$
. Если  $\nu_0 \in N(S_0)$ , то  $\psi \nu_0 \in N(S_1)$  и  $\Psi([\nu_0]_{\equiv}) = [\psi \nu_0]_{\equiv}$ ; если же  $\mu_0 \in N(S_1)$ , то  $\varphi \mu_0 \in N(S_0)$  и  $\psi(\varphi \mu_0) = (\psi \varphi) \mu_0 = \mu_0$ . Таким образом,  $\Psi([\varphi \mu_0]_{\equiv}) = [\mu_0]_{\equiv}$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Доказательство (окончание).

$$\Psi \upharpoonright \mathbf{L}(S_0) : \mathbf{L}(S_0) \to \mathbf{L}(S_1)$$
. Если  $\nu_0 \in N(S_0)$ , то  $\psi \nu_0 \in N(S_1)$  и  $\Psi([\nu_0]_{\equiv}) = [\psi \nu_0]_{\equiv}$ ; если же  $\mu_0 \in N(S_1)$ , то  $\varphi \mu_0 \in N(S_0)$  и  $\psi(\varphi \mu_0) = (\psi \varphi) \mu_0 = \mu_0$ . Таким образом,  $\Psi([\varphi \mu_0]_{\equiv}) = [\mu_0]_{\equiv}$ .

### Замечание С4.1.

Отметим, что  $[o]_{\equiv}$  — наименьший элемент  $\mathbf{L}^*(S)$ , где S — непустое не более, чем счётное множество. Если |S|=1, то |N(S)|=1 и, следовательно, |L(S)|=1,  $|L^*(S)|=2$ . В самом деле, если S одноэлементно, то существует только одна нумерация множества S, а именно,  $\lambda n.s$ , где  $S=\{s\}$ . В этом случае  $L^*(S)=\{\{o\},\{\lambda n.s\}\}$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Доказательство (окончание).

$$\Psi \upharpoonright \mathbf{L}(S_0) : \mathbf{L}(S_0) \to \mathbf{L}(S_1)$$
. Если  $\nu_0 \in \mathcal{N}(S_0)$ , то  $\psi \nu_0 \in \mathcal{N}(S_1)$  и  $\Psi([\nu_0]_{\equiv}) = [\psi \nu_0]_{\equiv}$ ; если же  $\mu_0 \in \mathcal{N}(S_1)$ , то  $\varphi \mu_0 \in \mathcal{N}(S_0)$  и  $\psi(\varphi \mu_0) = (\psi \varphi) \mu_0 = \mu_0$ . Таким образом,  $\Psi([\varphi \mu_0]_{\equiv}) = [\mu_0]_{\equiv}$ .

### Замечание С4.1.

Отметим, что  $[o]_{\equiv}$  — наименьший элемент  $\mathbf{L}^*(S)$ , где S — непустое не более, чем счётное множество. Если |S|=1, то |N(S)|=1 и, следовательно, |L(S)|=1,  $|L^*(S)|=2$ . В самом деле, если S одноэлементно, то существует только одна нумерация множества S, а именно,  $\lambda n.s$ , где  $S=\{s\}$ . В этом случае  $L^*(S)=\{\{o\},\{\lambda n.s\}\}$ .

### Определение С4.6.

Пусть S — непустое не более, чем счётное множество. Элемент  $\mathbf{a} \in L^*(S)$  называется минимальным, если  $\mathbf{a} \neq [o]_{\equiv}$  и  $\forall \mathbf{b}[\mathbf{b} \leqslant \mathbf{a} \to ((\mathbf{b} = \mathbf{a}) \lor (\mathbf{b} = [o]_{\equiv}))].$ 

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Предложение С4.2.

Пусть S — непустое не более, чем счётное множество. Тогда  $\mathbf{L}^*(S)$  имеет в точности |S| минимальных элементов.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренк

Разрешимые нумерации

Полурешётк

### Предложение С4.2.

Пусть S — непустое не более, чем счётное множество. Тогда  $\mathbf{L}^*(S)$  имеет в точности |S| минимальных элементов.

#### Доказательство.

того, что  $\rho\nu \neq \{s_0\} = \rho(\lambda n. s_0)$ ).

Пусть  $s \in S$ ; докажем сначала, что  $[\lambda n.s]_{\equiv}$  является минимальным элементом  $\mathbf{L}^*(S)$ . В самом деле, пусть  $\mathbf{b} \leqslant [\lambda n.s]_{=}$  таково, что  $\mathbf{b} \neq [o]_{\equiv}$ ; тогда найдётся вф f такая, что  $\nu(n) = (\lambda n.s \circ f)(n) = s$  для всех  $n \in \omega$  (здесь  $\nu \in \mathbf{b}$ ). Следовательно,  $\mathbf{b} = [\lambda n.s]_{\equiv}$ . Кроме того, если  $s_1 \neq s_2$ , то  $[\lambda n. s_1]_= \neq [\lambda n. s_2]_=$ . В самом деле, если  $(\lambda n.s_1 \circ f_1)(n) = (\lambda n.s_2 \circ f_2)(n)$ , to  $s_1 = (\lambda n. s_1 \circ f_1)(1) = (\lambda n. s_2 \circ f_2)(1) = s_2$ . Тем самым, количество минимальных элементов  $L^*(S)$  не меньше |S|. Докажем теперь, что других минимальных элементов структура  $\mathbf{L}^*(S)$ не имеет. Пусть  $\mathbf{b} \in L(S_0), S_0 \subseteq S, |S_0| \geqslant 2$ . Пусть  $\nu \in N(S_0)$  таково, что  $\mathbf{b} = [\nu]_{\equiv}$ ; тогда  $\nu(0) = s_0 \in S_0$  и  $\lambda n.s_0 = \nu(0) = \nu 0(n)$ . Таким образом,  $[\lambda n.s_0]_{\equiv}\leqslant [
u]_{\equiv}$  и  $[\lambda n.s_0]_{\equiv}\neq [
u]_{\equiv}$  (последнее вытекает из

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Следствие С4.1.

Пусть  $S_0, S_1$  — непустые не более, чем счётные множества. Тогда  $|S_0|=|S_1|$ , если и только если  $\mathbf{L}^*(S_0)\simeq \mathbf{L}^*(S_1)$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Следствие С4.1.

Пусть  $S_0, S_1$  — непустые не более, чем счётные множества. Тогда  $|S_0|=|S_1|$ , если и только если  $\mathbf{L}^*(S_0)\simeq \mathbf{L}^*(S_1)$ .

## Типы изоморфизма L(S).

- **①** Если |S| = 1, то |L(S)| = 1.
- ② Если |S| > 1, то  $|L(S)| = \mathfrak{c}$ .
- ullet Если  $|S|=\omega$ , то  ${f L}(S)$  имеет  ${f c}$  минимальных элементов.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимы нумерации

Полурешётк

### Следствие С4.1.

Пусть  $S_0, S_1$  — непустые не более, чем счётные множества. Тогда  $|S_0|=|S_1|$ , если и только если  $\mathbf{L}^*(S_0)\simeq \mathbf{L}^*(S_1)$ .

## $\mathsf{T}$ ипы изоморфизма $\mathsf{L}(S)$ .

- **1** Если |S| = 1, то |L(S)| = 1.
- ② Если |S| > 1, то  $|L(S)| = \mathfrak{c}$ .
- ullet Если  $|S|=\omega$ , то  ${f L}(S)$  имеет  ${\mathfrak c}$  минимальных элементов.
- lacktriangle Если  $1<|S|<\omega$ , то lacktriangle имеет наименьший элемент.
- **©** Если  $1 < |S_0| < \omega$  и  $1 < |S_1| < \omega$ , то  $\mathbf{L}(S_0) \simeq \mathbf{L}(S_1)$  (Ершов Ю.Л., Палютин Е.А.; доказательство данного утверждения громоздкое, поэтому здесь не приводится).

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

Лекция С4 Нумерации и вычислимость, І

> Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}.$  Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренк

Разрешимые нумерации

Полурешёткі

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}$ . Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

### Определение С4.7.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}.$  Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

### Определение С4.7.

Нумерация u называется

• однозначной, если  $\eta_{\nu}=\imath_{\omega}$  (а именно,  $\nu(m)=\nu(n)\Leftrightarrow m=n$ );

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in N(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}.$  Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

### Определение С4.7.

- однозначной, если  $\eta_{\nu}=\imath_{\omega}$  (а именно,  $\nu(m)=\nu(n)\Leftrightarrow m=n$ );
- **разрешимой**, если  $\eta_{\nu}$  вычислимо;

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}$ . Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

### Определение С4.7.

- ullet однозначной, если  $\eta_{
  u}=\imath_{\omega}$  (а именно,  $u(m)=
  u(n)\Leftrightarrow m=n);$
- **разрешимой**, если  $\eta_{\nu}$  вычислимо;
- ullet позитивной, если  $\eta_
  u$  вычислимо перечислимо;

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

Пусть S — непустое не более, чем счётное множество и пусть  $\nu \in \mathcal{N}(S)$ .

### Обозначение С4.3.

Положим  $\eta_{\nu}=\{\langle n,m\rangle|\nu(n)=\nu(m)\}.$  Заметим, что  $\eta_{\nu}$  — отношение эквивалентности на натуральных числах, разбивающее множество натуральных чисел на |S| классов.

### Определение С4.7.

- однозначной, если  $\eta_{\nu}=\imath_{\omega}$  (а именно,  $\nu(m)=\nu(n)\Leftrightarrow m=n$ );
- **разрешимой**, если  $\eta_{\nu}$  вычислимо;
- ullet позитивной, если  $\eta_
  u$  вычислимо перечислимо;
- ullet негативной, если  $\omega^2 \setminus \eta_
  u$  вычислимо перечислимо.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Основные свойства.

💿 Любая однозначная нумерация является разрешимой.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Основные свойства.

- 🛛 🔾 Любая однозначная нумерация является разрешимой.
  - Любая разрешимая нумерация одновременно и позитивна, и негативна.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Основные свойства.

- Любая однозначная нумерация является разрешимой.
- Любая разрешимая нумерация одновременно и позитивна, и негативна.
- Если нумерация является позитивной и негативной одновременно, то она разрешима (следствие теоремы С3.2 Поста).

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Основные свойства.

- Любая однозначная нумерация является разрешимой.
- Любая разрешимая нумерация одновременно и позитивна, и негативна.
- Ответи в померация в померация в померация померация померация в померация и помераци

### Определение С4.8.

Нумерация  $\nu$  называется **минимальной**, если выполняется соотношение  $\mu \leqslant \nu \to \mu \equiv \nu$  для всех  $\mu \in N(S)$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Основные свойства.

- Любая однозначная нумерация является разрешимой.
- Любая разрешимая нумерация одновременно и позитивна, и негативна.
- Если нумерация является позитивной и негативной одновременно, то она разрешима (следствие теоремы С3.2 Поста).

### Определение С4.8.

Нумерация  $\nu$  называется **минимальной**, если выполняется соотношение  $\mu\leqslant \nu\to \mu\equiv \nu$  для всех  $\mu\in N(S)$ .

## Предложение С4.3.

Любая позитивная нумерация минимальна.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

## Доказательство.

Пусть  $\nu \in N(S)$  — позитивная нумерация и пусть нумерация  $\mu \in N(S)$  такова, что  $\mu \leqslant \nu$ . Возьмём вф f, для которой выполняется  $\mu = \nu f$  и определим бинарный вп предикат R следующим образом:

$$R \leftrightharpoons \{\langle n, m \rangle | \exists t [(f(m) = t) \land \eta_{\nu}(n, t)]\}.$$

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство.

Пусть  $\nu \in N(S)$  — позитивная нумерация и пусть нумерация  $\mu \in N(S)$  такова, что  $\mu \leqslant \nu$ . Возьмём вф f, для которой выполняется  $\mu = \nu f$  и определим бинарный вп предикат R следующим образом:

 $R \leftrightharpoons \{\langle n, m \rangle | \exists t [(f(m) = t) \land \eta_{\nu}(n, t)]\}.$ 

Сначала докажем, что  $\Pr_1(R) = \omega$ . В самом деле, пусть  $n \in \omega$ ; тогда  $\nu(n) = s \in S$  и, следовательно, найдётся  $m_0 \in \omega$ , для которого имеет место  $\mu(m_0) = s$ . Далее,  $s = \mu(m_0) = \nu(f(m_0))$  и  $\eta_{\nu}(n, f(m_0))$ ; таким образом,  $R(n, f(m_0))$  и  $n \in \Pr_1(R)$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

#### Доказательство.

Пусть  $\nu \in N(S)$  — позитивная нумерация и пусть нумерация  $\mu \in N(S)$  такова, что  $\mu \leqslant \nu$ . Возьмём вф f, для которой выполняется  $\mu = \nu f$  и определим бинарный вп предикат R следующим образом:

 $R \leftrightharpoons \{\langle n, m \rangle | \exists t [(f(m) = t) \land \eta_{\nu}(n, t)]\}.$ 

Сначала докажем, что  $\Pr_1(R) = \omega$ . В самом деле, пусть  $n \in \omega$ ; тогда  $\nu(n) = s \in S$  и, следовательно, найдётся  $m_0 \in \omega$ , для которого имеет место  $\mu(m_0) = s$ . Далее,  $s = \mu(m_0) = \nu(f(m_0))$  и  $\eta_{\nu}(n, f(m_0))$ ; таким образом,  $R(n, f(m_0))$  и  $n \in \Pr_1(R)$ .

По теореме об униформизации (C3.3), существует вф g такая, что  $\Gamma_g\subseteq R$ . Покажем, что  $\nu=\mu g$ . В самом деле, R(n,g(n)), поэтому найдётся  $t_0\in\omega$ , для которого выполняется  $\eta_{\nu}(n,t_0)$  и  $f(g(n))=t_0$ . Отсюда заключаем, что  $\nu(n)=\nu(t_0)=\nu(f(g(n)))=\mu(g(n))$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Доказательство.

Пусть  $\nu \in N(S)$  — позитивная нумерация и пусть нумерация  $\mu \in N(S)$  такова, что  $\mu \leqslant \nu$ . Возьмём вф f, для которой выполняется  $\mu = \nu f$  и определим бинарный вп предикат R следующим образом:

 $R \leftrightharpoons \{\langle n, m \rangle | \exists t [(f(m) = t) \land \eta_{\nu}(n, t)]\}.$ 

Сначала докажем, что  $\Pr_1(R) = \omega$ . В самом деле, пусть  $n \in \omega$ ; тогда  $\nu(n) = s \in S$  и, следовательно, найдётся  $m_0 \in \omega$ , для которого имеет место  $\mu(m_0) = s$ . Далее,  $s = \mu(m_0) = \nu(f(m_0))$  и  $\eta_{\nu}(n, f(m_0))$ ; таким образом,  $R(n, f(m_0))$  и  $n \in \Pr_1(R)$ .

По теореме об униформизации (C3.3), существует вф g такая, что  $\Gamma_g \subseteq R$ . Покажем, что  $\nu = \mu g$ . В самом деле, R(n,g(n)), поэтому найдётся  $t_0 \in \omega$ , для которого выполняется  $\eta_{\nu}(n,t_0)$  и  $f(g(n))=t_0$ . Отсюда заключаем, что  $\nu(n)=\nu(t_0)=\nu(f(g(n)))=\mu(g(n))$ .

### Следствие С4.2.

Любая однозначная (разрешимая, позитивная) нумерация минимальна.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Лемма С4.2.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация и пусть нумерация  $\nu_0$  такая, что  $\nu_0 \leqslant \nu$ . Тогда  $\nu_0$  также является разрешимой (позитивной, негативной) нумерацией.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Лемма С4.2.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация и пусть нумерация  $\nu_0$  такая, что  $\nu_0\leqslant \nu$ . Тогда  $\nu_0$  также является разрешимой (позитивной, негативной) нумерацией.

#### Доказательство.

Пусть вф f такова, что  $\nu_0=\nu f$ . Тогда  $\eta_{\nu_0}(n,m)\Leftrightarrow [\nu(f(n))=\nu_0(n)=\nu_0(m)=\nu(f(m))]\Leftrightarrow \eta_{\nu}(f(n),f(m)).$ 

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

#### Лемма С4.2.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация и пусть нумерация  $\nu_0$  такая, что  $\nu_0 \leqslant \nu$ . Тогда  $\nu_0$  также является разрешимой (позитивной, негативной) нумерацией.

#### Доказательство.

Пусть вф f такова, что  $\nu_0 = \nu f$ . Тогда  $\eta_{\nu_0}(n,m) \Leftrightarrow [\nu(f(n)) = \nu_0(n) = \nu_0(m) = \nu(f(m))] \Leftrightarrow \eta_{\nu}(f(n),f(m)).$  Роѕ Пусть  $\nu$  — позитивная нумерация, т.е.  $\eta_{\nu}$  вп. Следовательно,  $\eta_{\nu_0} = \{\langle n,m\rangle | \eta_{\nu}(f(n),f(m))\}$  и, по лемме СЗ.9,  $\eta_{\nu_0}$  — впм. Таким образом,  $\nu_0$  позитивна.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

#### Лемма С4.2.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация и пусть нумерация  $\nu_0$  такая, что  $\nu_0 \leqslant \nu$ . Тогда  $\nu_0$  также является разрешимой (позитивной, негативной) нумерацией.

#### Доказательство.

Пусть вф f такова, что  $\nu_0 = \nu f$ . Тогда  $\eta_{\nu_0}(n,m) \Leftrightarrow [\nu(f(n)) = \nu_0(n) = \nu_0(m) = \nu(f(m))] \Leftrightarrow \eta_{\nu}(f(n),f(m)).$  Роз Пусть  $\nu$  — позитивная нумерация, т.е.  $\eta_{\nu}$  вп. Следовательно,  $\eta_{\nu_0} = \{\langle n,m\rangle | \eta_{\nu}(f(n),f(m))\}$  и, по лемме СЗ.9,  $\eta_{\nu_0}$  — впм. Таким образом,  $\nu_0$  позитивна.

**Neg** Пусть  $\nu$  — негативная нумерация, т.е.  $\omega^2 \setminus \eta_{\nu}$  вп. Следовательно,  $\omega^2 \setminus \eta_{\nu_0} = \{\langle n,m \rangle | \langle f(n),f(m) \rangle \not\in \eta_{\nu} \}$  и, по лемме C3.9,  $\omega^2 \setminus \eta_{\nu_0}$  — впм. Таким образом,  $\nu_0$  негативна.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

#### Лемма С4.2.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация и пусть нумерация  $\nu_0$  такая, что  $\nu_0\leqslant \nu$ . Тогда  $\nu_0$  также является разрешимой (позитивной, негативной) нумерацией.

#### Доказательство.

Пусть вф f такова, что  $\nu_0 = \nu f$ . Тогда  $\eta_{\nu_0}(n,m) \Leftrightarrow [\nu(f(n)) = \nu_0(n) = \nu_0(m) = \nu(f(m))] \Leftrightarrow \eta_{\nu}(f(n),f(m)).$  Роѕ Пусть  $\nu$  — позитивная нумерация, т.е.  $\eta_{\nu}$  вп. Следовательно,  $\eta_{\nu_0} = \{\langle n,m\rangle | \eta_{\nu}(f(n),f(m))\}$  и, по лемме СЗ.9,  $\eta_{\nu_0}$  — впм. Таким образом,  $\nu_0$  позитивна.

Neg Пусть  $\nu$  — негативная нумерация, т.е.  $\omega^2\setminus\eta_{\nu}$  вп. Следовательно,  $\omega^2\setminus\eta_{\nu_0}=\{\langle n,m\rangle|\langle f(n),f(m)\rangle\not\in\eta_{\nu}\}$  и, по лемме СЗ.9,  $\omega^2\setminus\eta_{\nu_0}$  — впм. Таким образом,  $\nu_0$  негативна.

**Dec** Пусть  $\nu$  — разрешимая нумерация, а значит, позитивна и негативна одновременно. По доказанному,  $\nu_0$  также является позитивной и негативной одновременно. По теореме C3.2 Поста,  $\nu_0$  разрешима.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Лемма С4.3.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация множества S и пусть  $s\in S$ . Тогда  $\nu^{-1}(s)$  вычислимо (вычислимо перечислимо).

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Лемма С4.3.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация множества S и пусть  $s\in S$ . Тогда  $\nu^{-1}(s)$  вычислимо (вычислимо перечислимо).

#### Доказательство.

Пусть 
$$n_0$$
 таково, что  $\nu(n_0) = s$ . Тогда ( $\mathbf{Dec}$ ,  $\mathbf{Pos}$ )  $n \in \nu^{-1}(s) \Leftrightarrow (\nu(n) = s) \Leftrightarrow (\nu(n) = \nu(n_0)) \Leftrightarrow \eta_{\nu}(n, n_0)$  и ( $\mathbf{Neg}$ )  $n \notin \nu^{-1}(s) \Leftrightarrow (\nu(n) \neq s) \Leftrightarrow (\nu(n) \neq \nu(n_0)) \Leftrightarrow \neg \eta_{\nu}(n, n_0)$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Лемма С4.3.

Пусть  $\nu$  — разрешимая (позитивная, негативная) нумерация множества S и пусть  $s\in S$ . Тогда  $\nu^{-1}(s)$  вычислимо (вычислимо перечислимо).

#### Доказательство.

Пусть 
$$n_0$$
 таково, что  $\nu(n_0)=s$ . Тогда ( $\mbox{Dec},\mbox{Pos}\mbox)  $n\in \nu^{-1}(s)\Leftrightarrow (\nu(n)=s)\Leftrightarrow (\nu(n)=\nu(n_0))\Leftrightarrow \eta_\nu(n,n_0)$  и ( $\mbox{Neg}\mbox)  $n\not\in \nu^{-1}(s)\Leftrightarrow (\nu(n)\neq s)\Leftrightarrow (\nu(n)\neq \nu(n_0))\Leftrightarrow \neg\eta_\nu(n,n_0)$ .$$ 

#### Лемма С4.4.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда  $\nu$  разрешима, если и только если  $\nu^{-1}(s)$  вычислимо для всех  $s \in S$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полувещётк

Доказательство.

( $\Rightarrow$ ) Непосредственно следует из леммы C4.3. ( $\Leftarrow$ ) Пусть  $S = \{s_1, s_2, \ldots, s_k\}$ ; тогда  $\eta_{\nu}(n, m) \Leftrightarrow [((n \in \nu^{-1}(s_1)) \land (m \in \nu^{-1}(s_1))) \lor \lor ((n \in \nu^{-1}(s_2))) \land (m \in \nu^{-1}(s_2))) \lor \ldots \lor \lor ((n \in \nu^{-1}(s_k)) \land (m \in \nu^{-1}(s_k)))].$ 

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

#### Доказательство.

( $\Rightarrow$ ) Непосредственно следует из леммы С4.3. ( $\Leftarrow$ ) Пусть  $S = \{s_1, s_2, \ldots, s_k\}$ ; тогда  $\eta_{\nu}(n, m) \Leftrightarrow [((n \in \nu^{-1}(s_1)) \land (m \in \nu^{-1}(s_1))) \lor \lor ((n \in \nu^{-1}(s_2)) \land (m \in \nu^{-1}(s_2))) \lor \ldots \lor \lor ((n \in \nu^{-1}(s_k)) \land (m \in \nu^{-1}(s_k)))].$ 

### Пример С4.1.

Пусть  $\eta=\imath_\omega\cup\{\langle 2n,2n+1\rangle,\langle 2n+1,2n\rangle|n\in A\}$ , где A— вп, но не вычислимо. Определим нумерацию  $\nu$  множества  $^\omega/_\eta$  как  $\nu(n)=[n]_\eta$ ; тогда  $\eta_\nu=\eta$ , причём каждый класс эквивалентности содержит не более двух элементов и, в частности, вычислим. Однако нумерация  $\nu$  позитивна, но не является разрешимой, поскольку имеет место  $n\in A\Leftrightarrow (\nu(2n)=\nu(2n+1))$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Лемма С4.5.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда любая позитивная нумерация разрешима.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Лемма С4.5.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда любая позитивная нумерация разрешима.

#### Доказательство.

Пусть  $S = \{s_1, s_2, \dots, s_k\}$ ; без ограничения общности будем

считать, что 
$$k>1$$
. Тогда  $u^{-1}(s_i)$  и  $\omega\setminus 
u^{-1}(s_i)=igcup_{\substack{j=1\\(j\neq i)}}^k 
u^{-1}(s_j)$  вп,

по лемме C4.3, а по теореме Поста (C3.2),  $\nu^{-1}(s_i)$  вычислимо  $(1 \leqslant i \leqslant k)$ . По лемме C4.4,  $\nu$  разрешима.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Лемма С4.6.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда любая негативная нумерация разрешима.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Лемма С4.6.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда любая негативная нумерация разрешима.

### Доказательство.

Пусть  $S = \{s_1, s_2, \dots, s_k\}$ ; без ограничения общности будем

считать, что 
$$k>1$$
. Тогда  $\omega\setminus 
u^{-1}(s_i)$  и  $u^{-1}(s_i)=\bigcap_{\substack{j=1\\(j\neq i)}}^\kappa \omega\setminus 
u^{-1}(s_j)$ 

вп, по лемме C4.3, а по теореме Поста (C3.2),  $\nu^{-1}(s_i)$  вычислимо (1  $\leq i \leq k$ ). По лемме C4.4,  $\nu$  разрешима.

# Однозначные нумерации

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Предложение С4.4.

Пусть  $\nu$  — нумерация бесконечного множества S. Тогда  $\nu$  разрешима, если и только если она эквивалентна некоторой однозначной.

# Однозначные нумерации

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Предложение С4.4.

Пусть  $\nu$  — нумерация бесконечного множества S. Тогда  $\nu$  разрешима, если и только если она эквивалентна некоторой однозначной.

### Доказательство.

 $(\Leftarrow)$  Пусть однозначная нумерация  $\nu_0$  такова, что  $\nu \equiv \nu_0$ . Тогда  $\nu \leqslant \nu_0$  и, по лемме С4.2,  $\nu$  разрешима.

## Однозначные нумерации

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Предложение С4.4.

Пусть  $\nu$  — нумерация бесконечного множества S. Тогда  $\nu$  разрешима, если и только если она эквивалентна некоторой однозначной.

### Доказательство.

( $\Leftarrow$ ) Пусть однозначная нумерация  $\nu_0$  такова, что  $\nu\equiv\nu_0$ . Тогда  $\nu\leqslant\nu_0$  и, по лемме С4.2,  $\nu$  разрешима.

 $(\Rightarrow)$  Пусть  $\nu$  — разрешимая нумерация. Тогда  $\eta_{\nu}$  вычислимо. Покажем, что функция g, перечисляющая в порядке строгого возрастания наименьшие числа из классов, вычислима:

$$\begin{bmatrix} g(0) = 0, \\ g(n+1) = \mu t.[(t > g(n)) \land \forall i < t \ \eta_{\nu}(i,t)]. \end{bmatrix}$$

Положим  $\nu_0(n) \leftrightharpoons \nu g(n)$  для всех  $n \in \omega$  (g всюду определена, поскольку S бесконечно). Нумерация  $\nu_0$  однозначна, поскольку каждый класс  $\eta_{\nu}$ -эквивалентности присутствует в точности один раз; кроме того,  $\nu_0 \leqslant \nu$ , что вытекает непосредственно из определения. Условие  $\nu \equiv \nu_0$  вытекает из следствия C4.2.

Лекция С4 Нумерации и вычислимость. I

> Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Предложение С4.5.

Пусть  $\nu$  — негативная нумерация бесконечного множества S. Тогда существует однозначная нумерация  $\nu_0$  множества S такая, что  $\nu_0\leqslant \nu$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

### Предложение С4.5.

Пусть  $\nu$  — негативная нумерация бесконечного множества S. Тогда существует однозначная нумерация  $\nu_0$  множества S такая, что  $\nu_0\leqslant \nu$ .

#### Доказательство.

Пусть  $A=c(\omega^2\setminus\eta_\nu)$ ; возьмём сильную аппроксимацию  $\varnothing=A_0\subseteq A_1\subseteq\ldots\subseteq A_s\subseteq\ldots\subseteq\bigcup_s A_s=A$  для A, дополнительно удовлетворяющим условию  $|A_{s+1}-A_s|\leqslant 1$  для всех  $s\in\omega$ . Определим функцию f следующим образом:

$$\begin{bmatrix} f(0) &= & 0, \\ f(n+1) &= & l(\mu k.[(l(k) \not\in \{f(0), \dots, f(n)\}) \land \\ & & \land \forall u < l(k)(c(u, l(k)) \in A_{r(k)})]). \end{bmatrix}$$

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Предложение С4.5.

Пусть  $\nu$  — негативная нумерация бесконечного множества S. Тогда существует однозначная нумерация  $\nu_0$  множества S такая, что  $\nu_0\leqslant \nu$ .

#### Доказательство.

Пусть  $A=c(\omega^2\setminus\eta_\nu)$ ; возьмём сильную аппроксимацию  $\varnothing=A_0\subseteq A_1\subseteq\ldots\subseteq A_s\subseteq\ldots\subseteq\bigcup_s A_s=A$  для A, дополнительно удовлетворяющим условию  $|A_{s+1}-A_s|\leqslant 1$  для всех  $s\in\omega$ . Определим функцию f следующим образом:

$$f(0) = 0,$$
  

$$f(n+1) = l(\mu k.[(l(k) \notin \{f(0), \dots, f(n)\}) \land \forall u < l(k)(c(u, l(k)) \in A_{r(k)})]).$$

Докажем сначала, что функция f(n) частично вычислима. Возьмём вспомогательную функцию  $g(n)=p_0^{f(0)+1}\cdot p_1^{f(1)+1}\cdot \ldots \cdot p_n^{f(n)+1}$  и докажем, что g(n) частично вычислима; тогда  $f(n)=ex(n,g(n))\stackrel{\bullet}{-}1$  и, в частности, f(n) будет чвф.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

### Доказательство (продолжение).

В самом деле,

$$g(0) \leftrightharpoons 2, \\ g(n+1) \leftrightharpoons g(n) \times \\ p_{n+1}^{s(I(\mu k. [\forall i \leqslant n(I(k) \neq ex(i,g(n))^{\bullet} 1) \land \forall u < I(k)(c(u,I(k)) \in A_{r(k)})]))}.$$

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Доказательство (продолжение).

В самом деле,

$$g(0) \leftrightharpoons 2, \\ g(n+1) \leftrightharpoons g(n) \times \\ p_{n+1}^{s(I(\mu k. [\forall i \leqslant n(I(k) \neq ex(i,g(n))^{\bullet} 1) \land \forall u < I(k)(c(u,I(k)) \in A_{r(k)})]))}$$

Покажем теперь, что для каждого наименьшего  $\nu$ -номера  $n_0$  найдётся шаг  $s_{n_0}$  такой, что  $\forall u < n_0[c(u,n_0) \in A_{s_{n_0}}]$ . В самом деле, для каждого  $u < n_0$  выберем шаг  $s_u$ , для которого выполняется  $c(u,n_0) \in A_{s_u}$ ; в силу монотонности аппроксимации, все числа попадут в  $A_s$ , где  $s \leftrightharpoons \max\{s_u|u < n_0\}$ . Отсюда вытекает, что функция f всюду определена, поскольку S бесконечно.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Доказательство (окончание).

Наконец, любой наименьший  $\nu$ -номер попадёт в  $\rho f$ . Возьмём любой наименьший  $\nu$ -номер  $m_0$ ; по доказанному, найдётся шаг  $s_{m_0}$ , для которого выполняется  $c(u,m_0)\in A_{s_{m_0}}$  для всех  $u< m_0$ . Заметим, что существует лишь конечное число пар вида  $\langle p,s_p\rangle$ , для которых имеет место  $c(p,s_p)< c(m_0,s_{m_0})$ . Следовательно, среди чисел f(0), f(1), ...,  $f(m_0+s_{m_0}+1)$  обязательно будет присутствовать число  $m_0$ , поскольку  $m_0+s_{m_0}$  — количество диагоналей, мѐньших данной.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Доказательство (окончание).

Наконец, любой наименьший  $\nu$ -номер попадёт в  $\rho f$ . Возьмём любой наименьший  $\nu$ -номер  $m_0$ ; по доказанному, найдётся шаг  $s_{m_0}$ , для которого выполняется  $c(u,m_0)\in A_{s_{m_0}}$  для всех  $u< m_0$ . Заметим, что существует лишь конечное число пар вида  $\langle p,s_p\rangle$ , для которых имеет место  $c(p,s_p)< c(m_0,s_{m_0})$ . Следовательно, среди чисел  $f(0), f(1), \ldots, f(m_0+s_{m_0}+1)$  обязательно будет присутствовать число  $m_0$ , поскольку  $m_0+s_{m_0}$  — количество диагоналей, мѐньших данной.

Положим  $\nu_0 \leftrightharpoons \nu f$ . Из определения следует, что  $\nu_0 \leqslant \nu$ , а из вышеприведённых свойств вытекает, что  $\nu_0$  — однозначная нумерация множества S.

# $\mathsf{T}$ ипы изоморфизма $\mathsf{L}(S)$

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Лемма С4.7.

Если S счётно, то  $\mathbf{L}(S)$  имеет  $\mathfrak c$  минимальных элементов.

# Типы изоморфизма L(S)

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Лемма С4.7.

Если S счётно, то L(S) имеет  $\mathfrak c$  минимальных элементов.

### Доказательство.

Воспользуемся здесь тем, что группа  $\mathfrak G$  перестановок множества  $\omega$  континуальна (доказать !!!) Возьмём однозначную нумерацию  $\nu$  множества S. Зафиксируем также отображение  $\nu^*$ , обратное к  $\nu$ . Тогда  $\nu\psi$ ,  $\psi\in\mathfrak G$ , также будет однозначной нумерацией, как композиция двух биекций. Более того, трансформация  $\psi\in\mathfrak G \stackrel{\Psi}{\mapsto} \nu\psi\in N(S)$  осуществляет биективное соответствие между перестановками на натуральных числах и однозначными нумерациями множества S.

$$\Psi$$
 — инъекция. Пусть  $\psi_1, \psi_2 \in \mathfrak{G}$ ; тогда  $(\nu\psi_1 = \nu\psi_2) \Rightarrow (\psi_1 = (\nu^*\nu)\psi_1 = \nu^*(\nu\psi_1) = \nu^*(\nu\psi_2) = (\nu^*\nu)\psi_2 = \psi_2)$ .  $\Psi$  — сюръекция. Пусть  $\nu_0$  — однозначная нумерация множества  $S$ . Тогда  $\nu^*\nu_0 \in \mathfrak{G}$  и  $\nu_0 = (\nu\nu^*)\nu_0 = \nu(\nu^*\nu_0)$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

## Доказательство (окончание).

Так как множество однозначных нумераций континуально, множество их классов эквивалентности не более, чем континуально. Заметим, что каждый класс не более, чем счётен (на самом деле, в точности счётен):  $\nu_0 f \in [\nu_0]_{\equiv}$  для подходящей вф f, а множество всех вычислимых функций счётно. Далее, множество различных классов однозначных нумераций континуально, поскольку в противном случае  $\mathbf{c} > |\bigcup_{\psi \in \mathfrak{G}} [\nu\psi]_{\equiv}| \geqslant |\{\mu \in N(S)|\mu - \text{однозначная}\}|$ . Остаётся вспомнить, что любая однозначная нумерация минимальна (см. следствие C4.2).

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётк

### Доказательство (окончание).

Так как множество однозначных нумераций континуально, множество их классов эквивалентности не более, чем континуально. Заметим, что каждый класс не более, чем счётен (на самом деле, в точности счётен):  $\nu_0 f \in [\nu_0]_{\equiv}$  для подходящей вф f, а множество всех вычислимых функций счётно. Далее, множество различных классов однозначных нумераций континуально, поскольку в противном случае  $\mathbf{c} > |\bigcup_{\psi \in \mathfrak{G}} [\nu\psi]_{\equiv}| \geqslant |\{\mu \in \mathit{N}(S)|\mu - \text{однозначная}\}|$ . Остаётся вспомнить, что любая однозначная нумерация минимальна (см. следствие C4.2).

#### Лемма С4.8.

 $\mathsf{E}\mathsf{c}\mathsf{n}\mathsf{u}\ S$  конечно, то  $\mathsf{L}(S)$  имеет наименьший элемент.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

#### Разрешимые нумерации

Полурешётк

### Доказательство.

Пусть  $S = \{s_0, s_1, \dots, s_k\}$ ; без ограничения общности будем считать, что  $k \geqslant 1$ . Положим

$$u_0(n) \leftrightharpoons egin{cases} s_0, & ext{если } n=0; \ s_1, & ext{если } n=1; \ \dots & \dots \ s_k, & ext{если } n \geqslant k. \end{cases}$$

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

### Доказательство.

Пусть  $S = \{s_0, s_1, \dots, s_k\}$ ; без ограничения общности будем считать, что  $k \geqslant 1$ . Положим

$$u_0(n) \leftrightharpoons \begin{cases} s_0, & \text{если } n=0; \\ s_1, & \text{если } n=1; \\ \dots & \dots \\ s_k, & \text{если } n\geqslant k. \end{cases}$$

Докажем, что  $\nu_0\leqslant \nu$  для любой нумерации  $\nu\in N(S)$ . Возьмём числа  $n_i$  такие, что  $\nu(n_i)=s_i$   $(0\leqslant i\leqslant k)$ . Определим функцию  $f_0$  следующим образом:

$$f_0(x) \leftrightharpoons egin{cases} n_0, & ext{если } x = 0; \ n_1, & ext{если } x = 1; \ \dots & \dots \ n_k, & ext{если } x \geqslant k. \end{cases}$$

Данная функция вычислима (даже примитивно рекурсивна) и, к тому же  $\nu_0(x)=\nu f_0(x)$  для всех  $x\in\omega$ .

# Типы изоморфизма L(S)

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Следствие С4.3.

Пусть  $S_0 \neq \emptyset$  — конечное множество и пусть  $S_1$  счётно. Тогда  $\mathbf{L}(S_0) \not\simeq \mathbf{L}(S_1)$ .

# Типы изоморфизма $\mathbf{L}(S)$

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешёткі

#### Следствие С4.3.

Пусть  $S_0 \neq \emptyset$  — конечное множество и пусть  $S_1$  счётно. Тогда  $\mathbf{L}(S_0) \not\simeq \mathbf{L}(S_1)$ .

#### Доказательство.

В самом деле,  $\mathbf{L}(S_0)$  имеет наименьший элемент, по лемме C4.8, а  $\mathbf{L}(S_1)$  не может иметь наименьшего элемента, по лемме C4.7.

# Типы изоморфизма $\mathbf{L}(S)$

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешёткы

#### Следствие С4.3.

Пусть  $S_0 \neq \varnothing$  — конечное множество и пусть  $S_1$  счётно. Тогда  $\mathbf{L}(S_0) \not\simeq \mathbf{L}(S_1)$ .

#### Доказательство.

В самом деле,  $\mathbf{L}(S_0)$  имеет наименьший элемент, по лемме C4.8, а  $\mathbf{L}(S_1)$  не может иметь наименьшего элемента, по лемме C4.7.

Перейдём к описанию алгебраических свойств частично упорядоченных множеств вида  $\mathbf{L}(S)$ , где  $S \neq \varnothing$ . Кроме того, дадим без доказательства описание типа изоморфизма  $\mathbf{L}(S)$ , где  $1 < |S| < \omega$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.9.

Пусть  $u_0$ ,  $u_1$  — нумерации; их **прямой суммой** называется

$$u_0\oplus 
u_1(x)= egin{cases} 
u_0\left(rac{x}{2}
ight), & ext{ если } x ext{ чётно;} \ \\ 
u_1\left(rac{x-1}{2}
ight), & ext{ если } x ext{ нечётно.} \end{cases}$$

Полурешётки

### Определение С4.9.

Пусть  $\nu_0$ ,  $\nu_1$  — нумерации; их **прямой суммой** называется

$$u_0\oplus 
u_1(x)=egin{cases} 
u_0\left(rac{x}{2}
ight), & ext{если } x ext{ чётно;} \ \\ 
u_1\left(rac{x-1}{2}
ight), & ext{если } x ext{ нечётно.} \end{cases}$$

#### Предложение С4.6.

Пусть  $\nu$ ,  $\nu_0$  и  $\nu_1$  — нумерации. Тогда  $\nu_0\oplus\nu_1\leqslant \nu$ , если и только если  $\nu_0\leqslant \nu$  и  $\nu_1\leqslant \nu$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Определение С4.9.

Пусть  $\nu_0$ ,  $\nu_1$  — нумерации; их **прямой суммой** называется

$$u_0\oplus 
u_1(x)=egin{cases} 
u_0\left(rac{x}{2}
ight), & ext{если } x ext{ чётно;} \ \\ 
u_1\left(rac{x-1}{2}
ight), & ext{если } x ext{ нечётно.} \end{cases}$$

#### Предложение С4.6.

Пусть  $\nu$ ,  $\nu_0$  и  $\nu_1$  — нумерации. Тогда  $\nu_0\oplus\nu_1\leqslant\nu$ , если и только если  $\nu_0\leqslant\nu$  и  $\nu_1\leqslant\nu$ .

#### Доказательство.

 $(\Rightarrow)$  Пусть  $u_0\oplus 
u_1\leqslant 
u$  с помощью вф g, а именно,

 $(\nu_0\oplus \nu_1)(n)=\nu(g(n))$  для всех  $n\in\omega$ . Возьмём  $g_0(x)\leftrightharpoons \lambda x.g(2x);$  тогда  $\nu g_0(x)=\nu g(2x)=(\nu_0\oplus \nu_1)(2x)=\nu_0(x)$  для всех  $x\in\omega$  и, следовательно,  $\nu_0\leqslant\nu$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Доказательство (окончание).

Возьмём  $g_1(x)\leftrightharpoons \lambda x.g(2x+1)$ ; тогда  $\nu g_1(x)=\nu g(2x+1)=(\nu_0\oplus\nu_1)(2x+1)=\nu_1(x)$  для всех  $x\in\omega$  и, следовательно,  $\nu_1\leqslant\nu$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство (окончание).

Возьмём  $g_1(x) \leftrightharpoons \lambda x. g(2x+1)$ ; тогда  $\nu g_1(x) = \nu g(2x+1) = (\nu_0 \oplus \nu_1)(2x+1) = \nu$ 

 $u g_1(x) = \nu g(2x+1) = (\nu_0 \oplus \nu_1)(2x+1) = \nu_1(x)$  для всех  $x \in \omega$  и, следовательно,  $\nu_1 \leqslant \nu$ .

( $\Leftarrow$ ) Пусть теперь  $\nu_0\leqslant \nu$  и  $\nu_1\leqslant \nu$ ; тогда найдутся вф  $f_0$  и  $f_1$ , для которых выполняются  $\nu_0=\nu f_0$  и  $\nu_1=\nu f_1$ . Тогда функция

$$f(x) \leftrightharpoons egin{cases} f_0\left(\left[rac{x}{2}
ight]
ight), & ext{если } x ext{ чётно;} \ f_1\left(\left[rac{x-1}{2}
ight]
ight), & ext{если } x ext{ нечётно;} \end{cases}$$

вычислима; кроме того,  $\nu f(x) = \nu f_0\left(\frac{x}{2}\right) = \nu_0\left(\frac{x}{2}\right) = (\nu_0 \oplus \nu_1)(x),$ 

если x чётно;  $\nu f(x) = \nu f_1\left(\frac{x-1}{2}\right) = \nu_1\left(\frac{x-1}{2}\right) = (\nu_0 \oplus \nu_1)(x),$ 

если x нечётно. В любом случае, имеем  $\nu_0\oplus\nu_1=\nu f$ ; таким образом,  $\nu_0\oplus\nu_1\leqslant\nu$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимы нумерации

Полурешётки



Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимы нумерации

Полурешётки



Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки



Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки



### Определение С4.10.

Частично упорядоченное множество  $\langle X,\leqslant \rangle$  называется верхней полурешёткой, если для любых  $x_0,x_1\in X$  существует точная верхняя грань  $x_0\sqcup x_1\leftrightharpoons \sup\{x_0,x_1\}.$ 

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.11.

Частично упорядоченное множество  $\langle X, \leqslant \rangle$  называется **нижней** полурешёткой, если для любых  $x_0, x_1 \in X$  существует точная нижняя грань  $x_0 \sqcap x_1 \leftrightharpoons \inf\{x_0, x_1\}$ .

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.11.

Частично упорядоченное множество  $\langle X,\leqslant \rangle$  называется **нижней полурешёткой**, если для любых  $x_0,x_1\in X$  существует точная нижняя грань  $x_0\sqcap x_1\leftrightharpoons\inf\{x_0,x_1\}.$ 

#### Определение С4.12.

Частично упорядоченное множество  $\langle X,\leqslant 
angle$  называется **решёткой**, если оно одновременно является и нижней, и верхней полурешетками.

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.11.

Частично упорядоченное множество  $\langle X,\leqslant \rangle$  называется **нижней полурешёткой**, если для любых  $x_0,x_1\in X$  существует точная нижняя грань  $x_0\sqcap x_1\leftrightharpoons\inf\{x_0,x_1\}.$ 

### Определение С4.12.

Частично упорядоченное множество  $\langle X,\leqslant 
angle$  называется решёткой, если оно одновременно является и нижней, и верхней полурешетками.

#### Пример С4.2.

Любое линейно упорядоченное множество является решёткой.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренк

Разрешимые нумерации

Полурешётки

#### Определение С4.11.

Частично упорядоченное множество  $\langle X,\leqslant \rangle$  называется нижней полурешёткой, если для любых  $x_0,x_1\in X$  существует точная нижняя грань  $x_0\sqcap x_1\leftrightharpoons\inf\{x_0,x_1\}.$ 

#### Определение С4.12.

Частично упорядоченное множество  $\langle X,\leqslant 
angle$  называется решёткой, если оно одновременно является и нижней, и верхней полурешетками.

#### Пример С4.2.

Любое линейно упорядоченное множество является решёткой.

### Следствие С4.4.

Структуры  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  являются верхними полурешётками для любого не более, чем счётного множества S. Если, к тому же, S счётно, то  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  не являются нижними полурешётками.

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство.

То, что данные структуры являются верхними полурешётками, непосредственно следует из предложения С4.6. Докажем теперь, что в случае, когда S счётно,  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  не являются нижними полурешётками. Возьмём два различных минимальных элемента  $a_0, a_1 \in L(S)$  (см. лемму C4.7); тогда не существует  $\mathbf{a}_0\sqcap_{\mathsf{L}(S)}\mathbf{a}_1\in \mathsf{L}(S)$  (если бы этот элемент существовал (обозначим его через c), то  $\mathbf{c} \leqslant \mathbf{a}_0 \Rightarrow \mathbf{c} = \mathbf{a}_0$  и  $\mathbf{c} \leqslant \mathbf{a}_1 \Rightarrow \mathbf{c} = \mathbf{a}_1$ ; следовательно,  $\mathbf{a}_0 = \mathbf{c} = \mathbf{a}_1$ , однако  $\mathbf{a}_0 \neq \mathbf{a}_1$ , противоречие). Допустим, что существует  $\mathbf{a}_0 \sqcap_{\mathbf{L}^*(S)} \mathbf{a}_1 \in L^*(S)$ ; если  $a_0 \sqcap_{\mathsf{L}^*(S)} a_1 \in L(S)$ , то  $a_0 \sqcap_{\mathsf{L}^*(S)} a_1$  — точная нижняя грань элементов  $\mathbf{a}_0$  и  $\mathbf{a}_1$  в  $\mathbf{L}(S)$ . Поэтому  $\mathbf{a}_0 \sqcap_{\mathbf{L}^*(S)} \mathbf{a}_1 \in L(S_0)$  для некоторого  $S_0 \subset S$ . Возьмём  $s_0 \in S \setminus S_0$ ; тогда  $[\lambda n. s_0]_{=} \leqslant \mathbf{a}_0$ ,  $[\lambda n.s_0]_{\equiv}\leqslant \mathbf{a}_1$ , но  $[\lambda n.s_0]_{\equiv}\notin \mathbf{a}_0\sqcap_{\mathsf{L}^*(S)}\mathbf{a}_1$ , противоречие.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  в случае, когда  $1<|S|<\omega$ , также не являются нижними полурешётками. Однако проверка данного условия не столь проста, как для счётного множества S. Тем самым, верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  являются решётками, если и только если |S|=1.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  в случае, когда  $1<|S|<\omega$ , также не являются нижними полурешётками. Однако проверка данного условия не столь проста, как для счётного множества S. Тем самым, верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  являются решётками, если и только если |S|=1.

#### Лемма С4.9.

Любая конечная верхняя полурешётка с наименьшим элементом является решёткой.

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренк

Разрешимые нумерации

Полурешётки

Верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  в случае, когда  $1<|S|<\omega$ , также не являются нижними полурешётками. Однако проверка данного условия не столь проста, как для счётного множества S. Тем самым, верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  являются решётками, если и только если |S|=1.

#### Лемма С4.9.

Любая конечная верхняя полурешётка с наименьшим элементом является решёткой.

#### Доказательство.

Пусть  $\mathfrak{L}=\langle L,\leqslant,\sqcup \rangle$  — конечная верхняя полурешётка и пусть  $\mathbf{0}\in L$  — наименьший элемент. Докажем, что  $\mathfrak{L}$  — решётка. Пусть  $\mathbf{c}_0,\,\mathbf{c}_1\in L$ , тогда положим  $X\leftrightharpoons \{\mathbf{c}\in L|\mathbf{c}\leqslant \mathbf{c}_0,\,\mathbf{c}\leqslant \mathbf{c}_1\}$ . Множество X не пусто, поскольку  $\mathbf{0}\in X$ ; кроме того, X конечно, как подмножество конечного множества L. Докажем, что  $\mathbf{c}_0\sqcap \mathbf{c}_1=\bigsqcup X$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренк

Разрешимые нумерации

Полурешётки

Верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  в случае, когда  $1<|S|<\omega$ , также не являются нижними полурешётками. Однако проверка данного условия не столь проста, как для счётного множества S. Тем самым, верхние полурешётки  $\mathbf{L}(S)$  и  $\mathbf{L}^*(S)$  являются решётками, если и только если |S|=1.

#### Лемма С4.9.

Любая конечная верхняя полурешётка с наименьшим элементом является решёткой.

#### Доказательство.

Пусть  $\mathcal{L} = \langle L, \leqslant, \sqcup \rangle$  — конечная верхняя полурешётка и пусть  $\mathbf{0} \in L$  — наименьший элемент. Докажем, что  $\mathcal{L}$  — решётка. Пусть  $\mathbf{c}_0$ ,  $\mathbf{c}_1 \in L$ , тогда положим  $X \leftrightharpoons \{\mathbf{c} \in L | \mathbf{c} \leqslant \mathbf{c}_0, \, \mathbf{c} \leqslant \mathbf{c}_1 \}$ . Множество X не пусто, поскольку  $\mathbf{0} \in X$ ; кроме того, X конечно, как подмножество конечного множества L. Докажем, что  $\mathbf{c}_0 \sqcap \mathbf{c}_1 = \bigsqcup X$ .

 $\bigcup X_0$  — нижняя грань  $\mathbf{c}_0$  и  $\mathbf{c}_1$  для любого  $X_0 \subseteq X$ . Доказывается индукцией по  $|X_0|$ . Если n=1, то  $X_0=\{\mathbf{a}\}$  и  $\mathbf{a}\leqslant \mathbf{c}_0$ ,  $\mathbf{a}\leqslant \mathbf{c}_1$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Доказательство (окончание).

Если n=k+1, то  $X_0=X_1\cup\{{\bf a}\}$  и  $|X_1|=k$ ; по предположению индукции,  $\bigsqcup X_1\leqslant {\bf c}_0$  и  $\bigsqcup X_1\leqslant {\bf c}_1$ ; кроме того,  ${\bf a}\leqslant {\bf c}_0$ ,  ${\bf a}\leqslant {\bf c}_1$ . Далее,  $\bigsqcup X_0=\bigsqcup (X_1\cup\{{\bf a}\})=\bigsqcup X_1\sqcup {\bf a}\leqslant {\bf c}_i$ , i=0,1.

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Если n=k+1, то  $X_0=X_1\cup\{\mathbf{a}\}$  и  $|X_1|=k$ ; по предположению индукции,  $\bigsqcup X_1\leqslant \mathbf{c}_0$  и  $\bigsqcup X_1\leqslant \mathbf{c}_1$ ; кроме того,  $\mathbf{a}\leqslant \mathbf{c}_0$ ,  $\mathbf{a}\leqslant \mathbf{c}_1$ . Далее,  $\bigsqcup X_0=\bigsqcup (X_1\cup\{a\})=\bigsqcup X_1\sqcup \mathbf{a}\leqslant \mathbf{c}_i$ , i=0,1.  $\mathbf{a}\leqslant \mathbf{c}_0$ ,  $\mathbf{a}\leqslant \mathbf{c}_1\Rightarrow \mathbf{a}\leqslant \bigsqcup X$ . Пусть справедлива посылка (т.е.  $\mathbf{a}\leqslant \mathbf{c}_0$ ,  $\mathbf{a}\leqslant \mathbf{c}_1$ ), тогда  $\mathbf{a}\in X$  и, следовательно,  $\mathbf{a}\leqslant \bigsqcup X$ .

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство (окончание).

Если n=k+1, то  $X_0=X_1\cup\{{\bf a}\}$  и  $|X_1|=k$ ; по предположению индукции,  ${\textstyle \bigsqcup X_1\leqslant {\bf c}_0}$  и  ${\textstyle \bigsqcup X_1\leqslant {\bf c}_1}$ ; кроме того,  ${\bf a}\leqslant {\bf c}_0$ ,  ${\bf a}\leqslant {\bf c}_1$ . Далее,  ${\textstyle \bigsqcup X_0=\bigsqcup (X_1\cup\{a\})=\bigsqcup X_1\sqcup {\bf a}\leqslant {\bf c}_i}$ , i=0,1.  ${\bf a}\leqslant {\bf c}_0$ ,  ${\bf a}\leqslant {\bf c}_1\Rightarrow {\bf a}\leqslant {\textstyle \bigsqcup X}$ . Пусть справедлива посылка (т.е.  ${\bf a}\leqslant {\bf c}_0$ ,  ${\bf a}\leqslant {\bf c}_1$ ), тогда  ${\bf a}\in X$  и, следовательно,  ${\bf a}\leqslant {\textstyle \bigsqcup X}$ .

### Верхняя полурешётка, но не решётка





Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Предложение С4.7.

Пусть нумерации  $\nu_0$ ,  $\nu_1$ ,  $\nu$ ,  $\mu$  таковы, что  $\nu\leqslant\nu_0\oplus\nu_1$  и  $\mu\leqslant\nu_0$ ,  $\mu\leqslant\nu_1$ ,  $\mu\leqslant\nu$ . Тогда найдутся нумерации  $\nu_0'$  и  $\nu_1'$ , для которых выполняется следующее:  $\nu\equiv\nu_0'\oplus\nu_1'$ ,  $\mu\leqslant\nu_0'\leqslant\nu_0$ ,  $\mu\leqslant\nu_1'\leqslant\nu_1$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Предложение С4.7.

Пусть нумерации  $\nu_0$ ,  $\nu_1$ ,  $\nu$ ,  $\mu$  таковы, что  $\nu\leqslant\nu_0\oplus\nu_1$  и  $\mu\leqslant\nu_0$ ,  $\mu\leqslant\nu_1$ ,  $\mu\leqslant\nu$ . Тогда найдутся нумерации  $\nu_0'$  и  $\nu_1'$ , для которых выполняется следующее:  $\nu\equiv\nu_0'\oplus\nu_1'$ ,  $\mu\leqslant\nu_0'\leqslant\nu_0$ ,  $\mu\leqslant\nu_1'\leqslant\nu_1$ .

#### Доказательство.

Пусть вф f такова, что  $\nu=(\nu_0\oplus\nu_1)f$ . Положим  $R_0\leftrightharpoons\{n|f(n)$  чётно} и  $R_1\leftrightharpoons\{n|f(n)$  нечётно}. Определим нумерацию  $\nu_i',\ i=0,1,$  следующим образом:

если  $R_i=\varnothing$ , то  $\nu_i'\leftrightharpoons \mu$ ; если же  $R_i\ne\varnothing$ , то возьмём вф  $g_i$  так, что  $\rho g_i=R_i$ , и положим  $\nu_i'\leftrightharpoons \mu\oplus \nu g_i$ .

Лекция С4
Нумерации и
вычислимость. І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Предложение С4.7.

Пусть нумерации  $\nu_0$ ,  $\nu_1$ ,  $\nu$ ,  $\mu$  таковы, что  $\nu\leqslant\nu_0\oplus\nu_1$  и  $\mu\leqslant\nu_0$ ,  $\mu\leqslant\nu_1$ ,  $\mu\leqslant\nu$ . Тогда найдутся нумерации  $\nu_0'$  и  $\nu_1'$ , для которых выполняется следующее:  $\nu\equiv\nu_0'\oplus\nu_1'$ ,  $\mu\leqslant\nu_0'\leqslant\nu_0$ ,  $\mu\leqslant\nu_1'\leqslant\nu_1$ .

#### Доказательство.

Пусть вф f такова, что  $\nu=(\nu_0\oplus\nu_1)f$ . Положим  $R_0\leftrightharpoons\{n|f(n)$  чётно} и  $R_1\leftrightharpoons\{n|f(n)$  нечётно}. Определим нумерацию  $\nu_i',\ i=0,1,$  следующим образом:

если  $R_i=\varnothing$ , то  $\nu_i'\leftrightarrows \mu$ ; если же  $R_i\ne\varnothing$ , то возьмём вф  $g_i$  так, что  $\rho g_i=R_i$ , и положим  $\nu_i'\leftrightarrows \mu\oplus \nu g_i$ .

Проверим, что  $\nu_i'\leqslant \nu_i$ . Если  $R_i=\varnothing$ , то  $\nu_i'=\mu\leqslant \nu_i$ . Если  $R_i\ne\varnothing$ , то достаточно показать, что  $\nu g_i\leqslant \nu_i$ . Пусть i=0 и  $F\leftrightharpoons \lambda x\left\lceil \frac{fg_0(x)}{2}\right\rceil$ ,

тогда 
$$u g_0(x) = (
u_0 \oplus 
u_1) f g_0(x) = 
u_0 \left\lceil \frac{f g_0(x)}{2} \right\rceil = 
u_0 F(x);$$

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Доказательство (продолжение).

пусть 
$$i=1$$
 и  $G \leftrightharpoons \lambda x \left\lceil rac{fg_1(x)-1}{2} 
ight
ceil$  , тогда

$$u g_1(x) = (\nu_0 \oplus \nu_1) f g_1(x) = \nu_1 \left\lceil \frac{f g_1(x) - 1}{2} \right\rceil = \nu_1 G(x).$$
 Итак,  $\nu_i' \leqslant \nu_i$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Доказательство (продолжение).

пусть 
$$i=1$$
 и  $G \leftrightharpoons \lambda x \left\lceil rac{fg_1(x)-1}{2} 
ight
ceil$  , тогда

$$u g_1(x) = (
u_0 \oplus 
u_1) f g_1(x) = 
u_1 \left[ \frac{f g_1(x) - 1}{2} \right] = 
u_1 G(x).$$
 Итак,  $u_i' \leqslant 
u_i$ .

Так как  $\mu\leqslant \nu$  и  $\nu g_i\leqslant \nu$ , имеем  $\nu_i'\leqslant \nu$  и  $\nu_0'\oplus \nu_1'\leqslant \nu$ , по предложению C4.6.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство (продолжение).

пусть 
$$i=1$$
 и  $G \leftrightharpoons \lambda x \left[ rac{f g_1(x)-1}{2} 
ight]$ , тогда

$$u g_1(x) = (\nu_0 \oplus \nu_1) f g_1(x) = \nu_1 \left[ \frac{f g_1(x) - 1}{2} \right] = \nu_1 G(x).$$
 Μτακ,  $\nu_i' \leqslant \nu_i$ .

Так как  $\mu\leqslant \nu$  и  $\nu g_i\leqslant \nu$ , имеем  $\nu_i'\leqslant \nu$  и  $\nu_0'\oplus \nu_1'\leqslant \nu$ , по предложению С4.6.

Покажем, что  $\nu \leqslant \nu_0' \oplus \nu_1'$ . Рассмотрим случай  $R_0 \neq \emptyset$  и  $R_1 \neq \emptyset$  (остальные случаи рассматриваются аналогично). Пусть функция H определяется так:

$$H \leftrightharpoons \lambda x [\mu y ((g_0(y) = x) \lor (g_1(y) = x))],$$

а функция h — следующим образом:

$$h(x) \leftrightharpoons egin{cases} 2(2H(x)+1), & ext{ если } g_0(H(x)) = x \text{ (т.е. } x \in R_0); \\ 2(2H(x)+1)+1, & ext{ если } g_1(H(x)) = x \text{ (т.е. } x \in R_1). \end{cases}$$

Проверим, что  $u=(
u_0'\oplus 
u_1')h$ . Пусть  $x\in R_0$ , тогда

$$\nu x = \nu g_0(H(x)) = (\mu \oplus \nu g_0)(2H(x) + 1) = \nu'_0(2H(x) + 1) =$$

$$(\nu'_0 \oplus \nu'_1)(2(2H(x)+1)) = (\nu'_0 \oplus \nu'_1)(h(x));$$

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Доказательство (окончание).

если 
$$x \in R_1$$
, то  $\nu x = \nu g_1(H(x)) = (\mu \oplus \nu g_1)(2H(x)+1) = \nu_1'(2H(x)+1) = (\nu_0' \oplus \nu_1')(2(2H(x)+1)+1) = (\nu_0' \oplus \nu_1')(h(x)).$  Так как  $R_0 \cap R_1 = \varnothing$  и  $R_0 \cup R_1 = \omega$ , имеем  $\nu x = (\nu_0' \oplus \nu_1')h(x)$  для всех  $x \in \omega$ ; таким образом,  $\nu \leqslant \nu_0' \oplus \nu_1'$ .

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Доказательство (окончание).

если 
$$x \in R_1$$
, то  $\nu x = \nu g_1(H(x)) = (\mu \oplus \nu g_1)(2H(x)+1) = \nu_1'(2H(x)+1) = (\nu_0' \oplus \nu_1')(2(2H(x)+1)+1) = (\nu_0' \oplus \nu_1')(h(x)).$  Так как  $R_0 \cap R_1 = \varnothing$  и  $R_0 \cup R_1 = \omega$ , имеем  $\nu x = (\nu_0' \oplus \nu_1')h(x)$  для всех  $x \in \omega$ ; таким образом,  $\nu \leqslant \nu_0' \oplus \nu_1'$ .



Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Доказательство (окончание).

если 
$$x \in R_1$$
, то  $\nu x = \nu g_1(H(x)) = (\mu \oplus \nu g_1)(2H(x)+1) = \nu_1'(2H(x)+1) = (\nu_0' \oplus \nu_1')(2(2H(x)+1)+1) = (\nu_0' \oplus \nu_1')(h(x)).$  Так как  $R_0 \cap R_1 = \varnothing$  и  $R_0 \cup R_1 = \omega$ , имеем  $\nu x = (\nu_0' \oplus \nu_1')h(x)$  для всех  $x \in \omega$ ; таким образом,  $\nu \leqslant \nu_0' \oplus \nu_1'$ .



Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.13.

Верхняя полурешётка  $\langle L, \leqslant, \sqcup \rangle$  называется дистрибутивной, если выполняется следующее: для всех  $\mathbf{a}_0$ ,  $\mathbf{a}_1$ ,  $\mathbf{c} \in L$  таких, что  $\mathbf{c} \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1$ , найдутся  $\mathbf{c}_0 \leqslant \mathbf{a}_0$  и  $\mathbf{c}_1 \leqslant \mathbf{a}_1$ , для которых имеет место  $\mathbf{c} = \mathbf{c}_0 \sqcup \mathbf{c}_1$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Определение С4.13.

Верхняя полурешётка  $\langle L, \leqslant, \sqcup \rangle$  называется дистрибутивной, если выполняется следующее: для всех  $a_0$ ,  $a_1$ ,  $c \in L$  таких, что  $c \leqslant a_0 \sqcup a_1$ , найдутся  $c_0 \leqslant a_0$  и  $c_1 \leqslant a_1$ , для которых имеет место  $c = c_0 \sqcup c_1$ .

#### Определение С4.14.

Решётка  $\langle L, \leqslant, \sqcup, \sqcap \rangle$  называется дистрибутивной, если для всех  $\mathbf{a}_0$ ,  $\mathbf{a}_1$ ,  $\mathbf{c} \in L$  выполняется тождество  $(\mathbf{a}_0 \sqcup \mathbf{a}_1) \sqcap \mathbf{c} = (\mathbf{a}_0 \sqcap \mathbf{c}) \sqcup (\mathbf{a}_1 \sqcap \mathbf{c})$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Определение С4.13.

Верхняя полурешётка  $\langle L, \leqslant, \sqcup \rangle$  называется дистрибутивной, если выполняется следующее: для всех  $\mathbf{a}_0$ ,  $\mathbf{a}_1$ ,  $\mathbf{c} \in L$  таких, что  $\mathbf{c} \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1$ , найдутся  $\mathbf{c}_0 \leqslant \mathbf{a}_0$  и  $\mathbf{c}_1 \leqslant \mathbf{a}_1$ , для которых имеет место  $\mathbf{c} = \mathbf{c}_0 \sqcup \mathbf{c}_1$ .

#### Определение С4.14.

Решётка  $\langle L, \leqslant, \sqcup, \sqcap \rangle$  называется дистрибутивной, если для всех  $\mathbf{a}_0$ ,  $\mathbf{a}_1$ ,  $\mathbf{c} \in L$  выполняется тождество  $(\mathbf{a}_0 \sqcup \mathbf{a}_1) \sqcap \mathbf{c} = (\mathbf{a}_0 \sqcap \mathbf{c}) \sqcup (\mathbf{a}_1 \sqcap \mathbf{c})$ .

#### Определение С4.15.

Пусть  $\langle L,\leqslant,\sqcup \rangle$  — верхняя полурешётка и пусть  $\mathbf{a}\in L$ . Верхним конусом будем называть множество  $\mathbf{a}\uparrow L \leftrightharpoons \{\mathbf{c}\in L|\mathbf{a}\leqslant \mathbf{c}\}.$ 

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Следствие С4.5.

Пусть  $S \neq \varnothing$  — не более, чем счётное множество и пусть  $\mathbf{a} \in \mathbf{L}^*(S)$ . Тогда верхняя полурешётка  $\mathbf{a} \uparrow \mathbf{L}^*(S)$  дистрибутивна.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Следствие С4.5.

Пусть  $S \neq \varnothing$  — не более, чем счётное множество и пусть  $\mathbf{a} \in \mathbf{L}^*(S)$ . Тогда верхняя полурешётка  $\mathbf{a} \uparrow \mathbf{L}^*(S)$  дистрибутивна.

### Следствие С4.6.

Пусть  $S \neq \varnothing$  — не более, чем счётное множество и пусть  $\mathbf{a} \in \mathbf{L}(S)$ . Тогда верхняя полурешётка  $\mathbf{a} \uparrow \mathbf{L}(S)$  дистрибутивна.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Следствие С4.5.

Пусть  $S \neq \varnothing$  — не более, чем счётное множество и пусть  $\mathbf{a} \in \mathbf{L}^*(S)$ . Тогда верхняя полурешётка  $\mathbf{a} \uparrow \mathbf{L}^*(S)$  дистрибутивна.

### Следствие С4.6.

Пусть  $S \neq \varnothing$  — не более, чем счётное множество и пусть  $\mathbf{a} \in \mathbf{L}(S)$ . Тогда верхняя полурешётка  $\mathbf{a} \uparrow \mathbf{L}(S)$  дистрибутивна.

### Следствие С4.7.

Пусть  $S \neq \varnothing$  — конечное множество. Тогда верхняя полурешётка  $\mathbf{L}(S)$  дистрибутивна.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Предложение С4.8.

Пусть  $\mathfrak{L}=\langle L,\leqslant,\sqcup,\sqcap\rangle$  — решётка. Тогда  $\mathfrak{L}$  дистрибутивна как решётка, если и только если она дистрибутивна как верхняя полурешётка.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Предложение С4.8.

Пусть  $\mathfrak{L}=\langle L,\leqslant,\sqcup,\sqcap\rangle$  — решётка. Тогда  $\mathfrak{L}$  дистрибутивна как решётка, если и только если она дистрибутивна как верхняя полурешётка.

#### Доказательство.

 $(\Rightarrow)$  Пусть  $\mathbf{a}_0, \mathbf{a}_1, \mathbf{c} \in L$  таковы, что  $\mathbf{c} \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1$ ; тогда положим  $\mathbf{c}_0 \leftrightharpoons \mathbf{c} \sqcap \mathbf{a}_0$  и  $\mathbf{c}_1 \leftrightharpoons \mathbf{c} \sqcap \mathbf{a}_1$ . Следовательно,  $\mathbf{c}_i = \mathbf{c} \sqcap \mathbf{a}_i \leqslant \mathbf{a}_i$ , i = 0, 1, и  $\mathbf{c} = \mathbf{c} \sqcap (\mathbf{a}_0 \sqcup \mathbf{a}_1) = (\mathbf{c} \sqcap \mathbf{a}_0) \sqcup (\mathbf{c} \sqcap \mathbf{a}_1) = \mathbf{c}_0 \sqcup \mathbf{c}_1$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

#### Предложение С4.8.

Пусть  $\mathfrak{L}=\langle L,\leqslant,\sqcup,\sqcap\rangle$  — решётка. Тогда  $\mathfrak{L}$  дистрибутивна как решётка, если и только если она дистрибутивна как верхняя полурешётка.

### Доказательство.

- $(\Rightarrow)$  Пусть  $\mathbf{a}_0, \mathbf{a}_1, \mathbf{c} \in L$  таковы, что  $\mathbf{c} \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1$ ; тогда положим  $\mathbf{c}_0 \leftrightharpoons \mathbf{c} \sqcap \mathbf{a}_0$  и  $\mathbf{c}_1 \leftrightharpoons \mathbf{c} \sqcap \mathbf{a}_1$ . Следовательно,  $\mathbf{c}_i = \mathbf{c} \sqcap \mathbf{a}_i \leqslant \mathbf{a}_i, \ i = 0, 1$ , и  $\mathbf{c} = \mathbf{c} \sqcap (\mathbf{a}_0 \sqcup \mathbf{a}_1) = (\mathbf{c} \sqcap \mathbf{a}_0) \sqcup (\mathbf{c} \sqcap \mathbf{a}_1) = \mathbf{c}_0 \sqcup \mathbf{c}_1$ .
- $(\Leftarrow)$  Пусть  $\mathfrak L$  дистрибутивна как верхняя полурешётка; докажем, что выполняется соотношение  $\mathbf c \sqcap (\mathbf a_0 \sqcup \mathbf a_1) = (\mathbf c \sqcap \mathbf a_0) \sqcup (\mathbf c \sqcap \mathbf a_1)$ .
- $(\geqslant)$  В самом деле,  $\mathbf{c} \sqcap \mathbf{a}_i \leqslant \mathbf{c} \sqcap (\mathbf{a}_0 \sqcup \mathbf{a}_1), i = 0, 1$ , поскольку  $[\mathbf{b} \leqslant \mathbf{c}, \mathbf{b} \leqslant \mathbf{a}_i] \Rightarrow [\mathbf{b} \leqslant \mathbf{c}, \mathbf{b} \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1]$ ; следовательно,  $(\mathbf{c} \sqcap \mathbf{a}_0) \sqcup (\mathbf{c} \sqcap \mathbf{a}_1) \leqslant \mathbf{c} \sqcap (\mathbf{a}_0 \sqcup \mathbf{a}_1)$ .
- $(\leqslant)$  Так как  $\mathbf{c} \sqcap (\mathbf{a}_0 \sqcup \mathbf{a}_1) \leqslant \mathbf{a}_0 \sqcup \mathbf{a}_1$ , найдутся элементы  $\mathbf{c}_0 \leqslant \mathbf{a}_0$  и
- $\mathbf{c}_1\leqslant \mathbf{a}_1$  такие, что  $\mathbf{c}\sqcap(\mathbf{a}_0\sqcup\mathbf{a}_1)=\mathbf{c}_0\sqcup\mathbf{c}_1$ . Следовательно,  $\mathbf{c}_0\leqslant\mathbf{c}$ ,  $\mathbf{c}_1\leqslant\mathbf{c}$  и  $\mathbf{c}_0\leqslant\mathbf{c}\sqcap\mathbf{a}_0$ ,  $\mathbf{c}_1\leqslant\mathbf{c}\sqcap\mathbf{a}_1$ . Таким образом,
- $c \sqcap (a_0 \sqcup a_1) = c_0 \sqcup c_1 \leqslant (c \sqcap a_0) \sqcup (c \sqcap a_1).$

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренко

Разрешимы нумерации

Полурешётки

Пусть  $\mathfrak{L} = \langle L, \leqslant, \sqcup 
angle$  — верхняя полурешётка.

Лекция С4 Нумерации и вычислимость, I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Пусть  $\mathfrak{L} = \langle L, \leqslant, \sqcup \rangle$  — верхняя полурешётка.

### Определение С4.16.

Непустое множество  $\mathcal{I}\subseteq L$  называется **идеалом** полурешётки  $\mathfrak L$  (и обозначается как  $\mathcal I\lhd\mathfrak L$ ), если оно удовлетворяет следующим условиям:

- $2 b \in \mathcal{I}, a \in L, a \leqslant b \Rightarrow a \in \mathcal{I}.$

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Пусть  $\mathfrak{L} = \langle L, \leqslant, \sqcup \rangle$  — верхняя полурешётка.

### Определение С4.16.

Непустое множество  $\mathcal{I}\subseteq L$  называется **идеалом** полурешётки  $\mathfrak L$  (и обозначается как  $\mathcal I\lhd\mathfrak L$ ), если оно удовлетворяет следующим условиям:

- $2 b \in \mathcal{I}, a \in L, a \leqslant b \Rightarrow a \in \mathcal{I}.$

### Определение С4.17.

Идеал  $\mathcal{I} \lhd \mathfrak{L}$  полурешётки  $\mathfrak{L}$  называется **главным**, если он имеет наибольший элемент. В противном случае он называется **неглавным**.

Лекция С4 Нумерации и вычислимость. І

Вадим Пузаренко

Разрешимые

Полурешётки

Пусть  $\mathfrak{L} = \langle L, \leqslant, \sqcup \rangle$  — верхняя полурешётка.

#### Определение С4.16.

Непустое множество  $\mathcal{I}\subseteq L$  называется идеалом полурешётки  $\mathfrak L$  (и обозначается как  $\mathcal{I} \lhd \mathfrak{L}$ ), если оно удовлетворяет следующим условиям:

- $\mathbf{a}_1 \in \mathcal{I} \ \mathbf{a}_2 \in \mathcal{I} \Rightarrow \mathbf{a}_1 \sqcup \mathbf{a}_2 \in \mathcal{I}$ :
- $\mathbf{a} \in \mathcal{I}$   $\mathbf{a} \in \mathcal{L}$   $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{a} \in \mathcal{I}$

### Определение С4.17.

Идеал  $\mathcal{I} \lhd \mathfrak{L}$  полурешётки  $\mathfrak{L}$  называется главным, если он имеет наибольший элемент. В противном случае он называется неглавным.

### Примеры С4.3.

lacktriangle Пусть  $\mathbf{a} \in L$ , тогда  $\mathbf{a} \downarrow \mathfrak{L} \leftrightharpoons \{\mathbf{c} \in L | \mathbf{c} \leqslant \mathbf{a}\}$  — главный идеал.

Лекция С4 Нумерации и вычислимость. I

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

Пусть  $\mathfrak{L} = \langle L, \leqslant, \sqcup \rangle$  — верхняя полурешётка.

#### Определение С4.16.

Непустое множество  $\mathcal{I}\subseteq L$  называется **идеалом** полурешётки  $\mathfrak L$  (и обозначается как  $\mathcal I\lhd\mathfrak L$ ), если оно удовлетворяет следующим условиям:

- $\textbf{2} \ \textbf{b} \in \mathcal{I} \text{, } \textbf{a} \in \textbf{\textit{L}} \text{, } \textbf{a} \leqslant \textbf{b} \Rightarrow \textbf{a} \in \mathcal{I}.$

### Определение С4.17.

Идеал  $\mathcal{I} \lhd \mathfrak{L}$  полурешётки  $\mathfrak{L}$  называется главным, если он имеет наибольший элемент. В противном случае он называется неглавным.

### Примеры С4.3.

- $lackbox{1}$  Пусть  $\mathbf{a} \in L$ , тогда  $\mathbf{a} \downarrow \mathfrak{L} \leftrightharpoons \{\mathbf{c} \in L | \mathbf{c} \leqslant \mathbf{a}\}$  главный идеал.
- $oldsymbol{Q}$  Пусть не более, чем счётное множество S таково, что |S|>1; тогда  $L(S) \lhd L(S)$  неглавный идеал.

Лекция С4 Нумерации и вычислимость, І

Вадим

Разрешимы нумерации

Полурешётки

Под полурешёткой будем понимать верхнюю полурешётку.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Определение С4.18.

Дистрибутивную полурешётку  $\mathfrak{L}=\langle L,\leqslant,\sqcup,\mathbf{0}\rangle$  с нулём (наименьшим элементом) будем называть **допустимой**, если любой главный её идеал не более, чем счётен.

Под полурешёткой будем понимать верхнюю полурешётку.

Лекция С4 Нумерации и мость. І

Определение С4.18.

Разрешимые

Полурешётки

Дистрибутивную полурешётку  $\mathfrak{L} = \langle L, \leqslant, \sqcup, \mathbf{0} \rangle$  с нулём (наименьшим элементом) будем называть допустимой, если любой главный её идеал не более, чем счётен. Допустимую полурешётку  $\mathfrak L$  назовём  $\mathfrak c$ -универсальной, если она удовлетворяет следующему условию: если  $\mathfrak{L}'$  — допустимая полурешётка мощности  $<\mathfrak{c}, \varphi$  изоморфизм собственного идеала  $S' \lhd \mathfrak{L}'$  на идеал  $\mathfrak{L}$ , то существует изоморфизм  $\varphi'$  полурешётки  $\mathfrak{L}'$  на идеал  $\mathfrak{L}$ , продолжающий  $\varphi$ , т.е.  $\varphi' \upharpoonright S' = \varphi$ .

Под полурешёткой будем понимать верхнюю полурешётку.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые

Полурешётки

### Определение С4.18.

Дистрибутивную полурешётку  $\mathfrak{L}=\langle L,\leqslant,\sqcup,\mathbf{0}\rangle$  с нулём (наименьшим элементом) будем называть допустимой, если любой главный её идеал не более, чем счётен. Допустимую полурешётку  $\mathfrak{L}$  назовём  $\mathfrak{c}$ -универсальной, если она удовлетворяет следующему условию: если  $\mathfrak{L}'$  — допустимая полурешётка мощности  $<\mathfrak{c}, \varphi$  — изоморфизм собственного идеала  $S' \lhd \mathfrak{L}'$  на идеал  $\mathfrak{L}$ , то существует изоморфизм  $\varphi'$  полурешётки  $\mathfrak{L}'$  на идеал  $\mathfrak{L}$ , продолжающий  $\varphi$ , т.е.  $\varphi' \upharpoonright S' = \varphi$ .

Под полурешёткой будем понимать верхнюю полурешётку.

## Следствие С4.8.

Любые две  $\mathfrak{c}$ -универсальные полурешётки изоморфны.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

## Теорема С4.1.

Пусть множество S таково, что  $1<|S|<\omega$ . Тогда  $\mathbf{L}(S)$  является  $\mathfrak{c}$ -универсальной полурешёткой.

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Теорема С4.1.

Пусть множество S таково, что  $1<|S|<\omega$ . Тогда  $\mathbf{L}(S)$  является  $\mathfrak{c}$ -универсальной полурешёткой.

### Следствие С4.9.

Если конечные множества  $S_1$ ,  $S_2$  содержат по меньшей мере два элемента, то  $\mathbf{L}(S_1) \simeq \mathbf{L}(S_2)$ .

Лекция С4
Нумерации и
вычислимость, І

Вадим Пузаренко

Разрешимые нумерации

Полурешётки

### Теорема С4.1.

Пусть множество S таково, что  $1 < |S| < \omega$ . Тогда  $\mathbf{L}(S)$  является  $\mathfrak{c}$ -универсальной полурешёткой.

### Следствие С4.9.

Если конечные множества  $S_1$ ,  $S_2$  содержат по меньшей мере два элемента, то  $\mathbf{L}(S_1) \simeq \mathbf{L}(S_2)$ .

#### Следствие С4.10.

Пусть множество S таково, что  $1 < |S| < \omega$ . Тогда  $\mathbf{L}(S)$  — дистрибутивная верхняя полурешётка, не являющаяся решёткой.

Лекция С4 Нумерации и вычислимость, І

Вадим Пузаренк

Разрешимы нумерации

Полурешётки

# Спасибо за внимание.