State Minimization - DFA.

$$L(M_1) = \{a_1b\}$$

$$M_2 : \longrightarrow \underbrace{a_1b}_{a_1b} \xrightarrow{a_1b} \underbrace{a_1b}_{a_1b}$$

Example 2.

L(Mi) = {a,b} U {strings of length at least 3}.

M3:

Example 3.

 M_2

$$\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \bigcirc a,b$$

For a DFA M=(Q,Z,S, B,F) Ite state
Minimization process consists of

- 1. Remove maccessible states.
- 2. Collapse "equivalent" States.
- We do not want to collapse an final state p and a non-final State q.

 if $p = \hat{S}(B, x)$ and $q = \hat{S}(B, y)$ then $x \in L(M)$ and $y \notin L(M)$.
 - if we collapse states p & q than we should also collapse S(p,a) and S(q,a)
 Otherwise the resulting automation will not be deterministic.

Definition of an equivolence relation on Q. $P \approx q$ iff $\forall x \in \mathcal{E}^{*}(\hat{S}(P,x) \in F)$ iff $\hat{S}(q,x) \in F$. Claim. \approx is an equivalence relation.

≈ partitions a into a set of equivalence classes.

[P] = 22/2 ~ P3.

Easy to verify that p=2 iff [p]=[9].

Quotient Automata.

$$Q' = \{[P] \mid P \in Q\}$$
 - States of M/\approx are Ite \approx -equivalence closses.

To show. S' is well defined

Quotient Automata.

To show. S' is well defined.

Lemma 1. if $p \approx q$ Hen $S(p,a) \approx S(q,a)$

That is, if [p] = [2] than [S(p,a)] = [S(q,a)]

S(S(P,a),y)EF iff S(P,ay)EF

iff \$ (2, ay) EF [since p=2]

iff & (& (2, a), y) EF.

Since the above holds for all y Ext. 5(pa) = S(pp) [By defined =].

DFA $M = (Q, \xi, S, S, F)$ $M/_{\approx} = (Q', \xi, S', S', F')$ Lemma 2. $P \in F$ iff $[P] \in F'$.

Proof. => Follows from the definition of F'

E if p≈q and pEF then QEF. That is,

every = - equivalence class is either a subset of F

Follows by taking x= E in the definition of p=2.

Lemma 3. For all $x \in \mathcal{E}^*$, $\hat{S}'([P],x) = [\hat{S}(P,x)]$

Proof. By induction on 1x1.

Base case: $x = \epsilon$. $\hat{S}'([P], \epsilon) = [P] = [\hat{S}(P, \epsilon)]$

Induction Step.

$$\hat{S}'([p], xa) = S'(\hat{S}'([p], x), a) \quad [defn et \hat{S}']$$

$$= S'([\hat{S}(p, x)], a) \quad [Induction the protests]$$

$$= [S(\hat{S}(p, x), a)] \quad [Defn. et S']$$

$$= [\hat{S}(p, xa)] \quad [Defn et \hat{S}]$$

Lemma 3. For all $x \in \mathcal{E}^*$, $\hat{S}'([P],x) = [\hat{S}(P,x)]$ Lemma 2. $P \in F$ iff $[P] \in F'$.

Theorem. $L(m/\approx) = L(m)$.

Proof. For $x \in \mathcal{E}^*$, $x \in L(m/\approx)$ iff $\hat{S}'(s,x) \in F'$ iff $\hat{S}'([s],x) \in F'$ [Defn. $a_{l}s'$]

iff $\hat{S}(s,x) \in F'$ [Lemma 3]

iff $\hat{S}(s,x) \in F$ [Lemma 2]

iff $x \in L(m)$ [Defn. $a_{l}s(x) \in F'$]

What if you do the quotient construction again on m/2?

[P]~[9] ilf \xes" (\$'([P],x)EF' iff \$'((9],x)EF')

Use \sim to denote the equivalent relation on Q' to distinguish it from the relation \approx on Q.

 $[P] \sim [9] \Rightarrow \forall x \left(\hat{s}'([P], x) \in F' \text{ iff } \hat{s}'([9], x) \in F' \right)$ $[Defn. of \sim]$

 $\Rightarrow \forall x ([\hat{S}(p,x)] \in F' \text{ iff } [\hat{S}(q,x)] \in F')$ [Lemma 3]

 $\Rightarrow \forall \mathcal{L}(\hat{S}(P,x) \in F \text{ if } \hat{S}(P,x) \in F)$ [Lemma 2]

=> P ≈ 2 => [P] =[2]

. Two equivalent states of $11/\approx$ are equal and $\sim \subseteq Q' \times Q'$ is the identity relation.