

# Rail-Rail Dual Channel Voltage Comparator, Dual Power Supply.

#### 1 Features

- Rail-Rail Voltage Comparator.
- Dual Channel.
- Dual Power Supply.
- No Hysteresis.
- 12 ns Propagation Delay Input to Output.
- 371 μA Max Quiescent Current.
- Input Voltage range 0V to 3.3V.
- Output Voltage range 0 V to 1.8V.
- 5mV input offset voltage.

### 2 Applications

- SAR-ADC.
- Pulse Generator.
- Threshold Detector.

### 3 Description

The EF\_R2RVC02 is a Dual channel rail-to-rail voltage comparator with a built-in reference circuit. Its input consists of an n-differential pair connected with a p-differential pair in parallel. While a class B, which is a CMOS inverter, is utilised for the comparator's output stage. The comparator operates with dual power supplies of 3.3V and 1.8V. It provides a propagation delay of 12 nA and a maximum quiescent current of 371  $\mu\text{A}.$ 



Figure 1. Functional Block Diagram





# **Pin Configuration and Functions**

| Pin's Name | I/O                  | Description                                                           |
|------------|----------------------|-----------------------------------------------------------------------|
| AVDD       | Supply               | Positive power supply voltage for analog IP block, 3.3 V              |
| AVSS       | Supply               | Analog ground.                                                        |
| DVDD       | Supply               | Positive power supply voltage for analog IP block, 1.8 V              |
| DVSS       | Supply               | Digital ground.                                                       |
| Vo         | Digital Output       | The output of the comparator                                          |
| A1, A2     | Analog input         | Dual channel analog input for the positive terminal of the comparator |
| B1, B2     | Analog input         | Dual channel analog input for the negative terminal of the comparator |
| SELA       | Digital Input (1.8V) | Select line for the channel A1 and A2                                 |
| SELB       | Digital Input (1.8V) | Select line for the channel B1 and B2                                 |



Figure 2. Typical Application



Figure 3. Timing Diagram





### **4 Electrical Characteristics**

The listed parameters are reported at room temperature (27°C), CL=1pF, SELA=1.8V, SELB=1.8V

| Symbol | Parameter                      | Conditions                                                 | MIN | TYP   | MAX | Unit |
|--------|--------------------------------|------------------------------------------------------------|-----|-------|-----|------|
| AVDD   | Analog Power Supply            |                                                            |     | 3.3   |     | V    |
| AVDD   | Digital Power Supply           |                                                            |     | 1.8   |     |      |
| IQ     |                                | AVDD=3.3V, DVDD=1.8V, A1=B1=1.65                           |     | 0.371 |     | mA   |
|        |                                | AVDD=3.3V, DVDD=1.8V, A1=0V, B1=1.65V                      |     | 0.315 |     |      |
|        | Total Supply Current           | AVDD=3.3V, DVDD=1.8V, A1=1.65V, B1=0V                      |     | 0.323 |     |      |
|        |                                | AVDD=3.3V, DVDD=1.8V, A1=3.3V, B1=3.3V                     |     | 0.273 |     |      |
|        |                                | AVDD=3.3V, DVDD=1.8V, A1=0V, B1=0V                         |     | 0.295 |     |      |
| VIL    | Low Input Voltage              | ow Input Voltage                                           |     | 0     |     |      |
| VIH    | High Input Voltage             | AVDD=3.3V, DVDD=1.8V                                       |     | 3.3   |     | V    |
| Vol    | Low Output Voltage             |                                                            |     | 0     |     |      |
| Vон    | High Output Voltage            |                                                            |     | 1.8   |     |      |
| Vos    | Input Offset Voltage           | AVDD=3.3V, DVDD=1.8V, A1=1.65V, VINP swept from 0V to 3.3V |     | 4.99  |     | mV   |
| tr     | Rise Time                      |                                                            |     | 12.4  |     |      |
| tf     | Fall Time                      | @f=100KHz, CL= 1pF, A1=1.65V, B step from 0V to            |     | 5.6   |     |      |
| tphl   | Propagation Time (High to Low) | 3.3V                                                       |     | 10.8  |     | ns   |
| tplh   | Propagation Time (Low to High) |                                                            |     | 12.8  |     |      |
|        | <sup>a</sup> Temperature Range |                                                            | 0   | 27    | 70  | °C   |
|        | Core Silicon area              | SKYWATER 130nm                                             |     | 76x96 | _   | μm²  |

a : Commercial Temperature Range.





### **5 Typical Performance Curves**

The listed parameters are reported at room temperature (27°C), CL=1pF, SELA=1.8V, SELB=1.8V

## 5.1 DC Sweep of VINP



Figure 4. DC sweep simulation result, (a) input (A1) and output (Vout) voltages, (b) Quiescent current .





### 5.2 DC Sweep of VINP and VINM



Figure 5. DC sweep simulation result, (a) inputs of A1, B1, and output (Vo) voltages, (b) Quiescent current .





## 5.3 Transient Ramp and Sin Signals



(b)
Figure 6. (a) Ramp, (b) Input and output voltages of the comparator.





## 5.4 Transient Step Signal



Figure 7. Step Input and output voltages of the comparator.

### 5.5 Core Silicon area



Figure 8. Rail-rail voltage comparator

