Correction du TP

Au programme

Savoir

- ♦ Décalage temporel/Déphasage à l'aide d'un oscilloscope numérique.
- ♦ Reconnaître une avance ou un retard.

Savoir-faire

- ♦ Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.
- \diamond Passer d'un décalage temporel à un déphasage et inversement.
- ♦ Agir sur un signal électrique à l'aide des fonctions simples suivantes : filtrage

I | Objectifs

- ♦ Apprendre à utiliser un dBmètre.
- ♦ Apprendre à déterminer rapidement une fréquence de coupure.
- ♦ Apprendre à mesurer un déphasage à l'oscilloscope.
- ♦ Apprendre à tracer un diagramme de Bode sur papier semi-log et papier millimétré.

II

S'approprier

II/A Méthode pour mesurer un déphasage – rappel de cours

Supposons $e(t) = E_m \cos(\omega t)$ sur la voie Y_1 et $s(t) = S_m \cos(\omega t + \varphi)$ sur la voie Y_2 de l'oscillogramme ci-contre. Le déphasage φ entre deux signaux est un nombre appartenant à l'intervalle $]-\pi$; π]. Il se mesure grâce à l'oscilloscope.

- 1) Déterminer la valeur absolue de $\Delta \varphi_{s/e}$: pour cela, il faut placer les curseurs verticaux de manière à déterminer le décalage temporel Δt , puis $|\Delta \varphi_{s/e}| = \omega \Delta t$ (en rad).
- 2) Ensuite déterminer le signe de $\Delta \varphi_{s/e}$: pour cela, on cherche quelle courbe est en avance sur l'autre. Sur l'oscillogramme ci-contre, s est en retard sur e puisqu'il s'annule après e: on en déduit $\Delta \varphi_{s/e} < 0$.

Figure 13.1 – Déphasage

II/B Méthode pour mesurer un gain en dB

Le gain se mesure grâce à un multimètre.

Mesure de gain

- 1) Appuyez sur la fonction Volt alternatif (symbole $[V\sim]$), **puis** dBmètre (bouton [dB]) pour activer la fonction dBmètre;
- 2) Brancher le multimètre sur l'entrée e(t) du montage;
- 3) Appuyer sur $\lfloor rel \rfloor$ une ou deux fois jusqu'à ce que le multimètre affiche 0 : on indique alors au multimètre que c'est cette tension e(t) qui sert de référence.
- 4) Brancher ensuite le multimètre sur la sortie s(t). Il affiche directement le gain en dB.

Attention

Il faut refaire le zéro relatif pour chaque fréquence.

II/C Méthode pour tracer un diagramme de Bode

Pour tracer le diagramme de Bode, il est nécessaire pour chaque fréquence de déterminer :

- 1) le déphasage $\Delta \varphi_{s/e}$ de s(t) par rapport à e(t);
- 2) Le gain en dB.

III Analyser

Le montage étudié, schématisé ci-contre, est un circuit RC série alimenté par la tension $e(t) = E_m \cos(\omega t)$. On pose $s(t) = S_m \cos(\omega t + \varphi)$ la tension aux bornes du condensateur.

(1) Établir l'expression de la fonction de transfert.

- Réponse ·

Pont diviseur:

$$\underline{S} = \frac{1/\mathrm{j}C\omega}{R + 1/\mathrm{j}C\omega} \underline{E}$$

$$\Leftrightarrow \underline{S} = \frac{1}{1 + \mathrm{j}RC\omega} \underline{E}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}RC\omega}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}\frac{\omega}{\omega_c}}$$

$$\Leftrightarrow \underline{H} = \frac{1}{1 + \mathrm{j}x}$$

$$x = \frac{\omega}{\omega_c}$$

III. Analyser 3

(2) Déterminer le comportement asymptotique du filtre pour le gain et le déphasage.

——— Réponse –

 $H(x) \xrightarrow[x \to 0]{} \frac{1}{1+0} = 1$ et $H(x) \xrightarrow[x \to \infty]{} \frac{1}{jx}$

2) \diamond Pour le gain :

$$G_{\mathrm{dB}}(x) \xrightarrow[x \to 0]{} 20 \log(1) = 0$$
 et $G_{\mathrm{dB}}(x) \xrightarrow[x \to \infty]{} 20 \log \left| \frac{1}{\mathrm{j}x} \right| = -20 \log x$

Ainsi, à hautes fréquences, le gain diminue de $20\,\mathrm{dB}$ par décade : si ω est multiplié par 10, le gain en décibel baisse de $20\,\mathrm{dB}$ (i.e. l'amplitude est divisée par 10).

♦ Pour la phase :

$$\varphi(x) \xrightarrow[x \to 0]{} \operatorname{arg}(1) = 0 \quad \text{ et } \quad \varphi(x) \xrightarrow[x \to \infty]{} \operatorname{arg}\left(\frac{1}{\mathrm{j}x}\right) = -\frac{\pi}{2}$$

_____ Réponse ____

On a trouvé

$$\omega_c = \frac{1}{RC} \Leftrightarrow \boxed{f_c = \frac{1}{2\pi RC}}$$
 avec
$$\begin{cases} R = 1.0 \text{ k}\Omega \\ C = 0.10 \text{ \muF} \end{cases}$$
A.N. : $\underline{f_c} = 1.59 \times 10^{+3} \text{ Hz}$

4 Compléter le schéma avec les branchements de la carte Sysam permettant de visualiser simultanément e(t) sur la voie EA0 et s(t) sur la voie EA1 de l'oscilloscope.

- 🔷

——— Réponse -

FIGURE 13.2 – Schéma complété.

(5)	On souhaite	éliminer	toute co	omposant	e continue	des	signaux	observés,	doit-on	choisir	le n	node
	AC ou DC?	(vous po	ourrez fai	ire une re	cherche su	r inte	ernet ce	que signif	ie mode	AC et	DC	d'un
	oscilloscope)).										

- Réponse —

On choisit le mode AC (courant alternatif).

— Réponse –

À la fréquence coupure, on obtient

$$S_m(f_c) = |\underline{H}(f_c)|E_m = \frac{E_m}{\sqrt{2}}$$

L'application numérique donne bien $S_m(f_c) \approx 2$ carreaux.

IV Réaliser

A Étude rapide de comportement

Diagramme automatique

- 1) Connecter la carte Sysam à l'ordinateur;
- 2) Ouvrir Oscillo5 (Programmes Physique-chimie → Eurosmart → Oscillo5);
- 3) Alimenter votre filtre RC avec la sortie analogique SA1 de la carte Sysam.
- 4) Relever la tension e(t) sur le canal EAO et la tension s(t) sur le canal EA1.
- 5) Passer en mode Bode;
- 6) Afficher gain et phase;
- 7) Prendre une échelle log avec une étendue de fréquence cohérente avec la fréquence de coupure que vous avez préalablement déterminée;
- 8) Sélectionner EAO en entrée;
- 9) Effacer acquisitions précédentes. Choisir : toutes;
- 10) Déclencher.
- 11) Les diagrammes sont tracés de manière automatique. Pratique si on veut être rapide!

IV/B Mesures pour le tracé du diagramme de BODE

Il s'agit maintenant de faire un relevé fréquence par fréquence pour apprendre à le faire « à la main ».

IV. Réaliser 5

Ço

À la main

- 1) Choisir maintenant le mode BALAYAGE, pour utiliser Oscillo5 comme un oscilloscope;
- Dans le panneau de contrôle (boîte flottante en haut de l'écran), cliquer sur Voir GBF1 et appuyer sur Marche;
- 3) Prendre comme amplitude du signal d'entrée environ $2\,\mathrm{V}$ (soit $4\,\mathrm{Vpp}$). Pour des fréquences entre $100\,\mathrm{Hz}$ et $50\,\mathrm{kHz}$:
- 4) Mesurer le déphasage entre s(t) et e(t) à l'aide d'Oscillo5, comme indiqué dans S'approprier. Pour plus de facilité, utiliser les curseurs (en bas à droite du menu d'Oscillo5) et les calibres horizontaux (à droite) et verticaux (en bas).
- 5) Mesurer le gain en dB à l'aide du dBmètre, comme indiqué dans S'approprier.
- 6) Une échelle logarithmique de variation de la fréquence est pertinente et vous pourrez faire plus de mesures autour de la fréquence de coupure f_c précédemment établie.

1 Regrouper les valeurs dans un tableau :

Tableau 13.1 – Mesures pour diagramme de Bode.

f (Hz)	G_{dB} (dB)	$ \Delta t $ (s)	$ \Delta \varphi_{s/e} $ (rad)	$\Delta \varphi_{s/e} \text{ (rad)}$
÷	:	÷	i i	÷ :
<u>:</u>	÷	÷	÷	:

Réponse

Tableau 13.2 – Mesures pour diagramme de Bode.

f (Hz)	$G_{\mathrm{dB}} \; (\mathrm{dB})$	$ \Delta t $ (s)	$ \Delta \varphi_{s/e} $ (rad)	$\Delta \varphi_{s/e} \text{ (rad)}$
100	-0.02	$-9,99 \times 10^{-5}$	0,06	-0.06
300	-0.15	$-9,88 \times 10^{-5}$	0,19	-0.19
600	-0.58	$-9,56 \times 10^{-5}$	0,36	-0.36
1000	-1,44	$-8,93 \times 10^{-5}$	$0,\!56$	$-0,\!56$
1200	-1,95	$-8,57 \times 10^{-5}$	$0,\!65$	-0.65
1600	-3,03	$-7,84 \times 10^{-5}$	0,79	-0.79
2000	-4,11	$-7,15 \times 10^{-5}$	0,90	-0,90
3000	-6,58	$-5,75 \times 10^{-5}$	1,08	-1,08
5000	$-10,\!36$	$-4,02 \times 10^{-5}$	1,26	$-1,\!26$
7000	-13,08	$-3,06 \times 10^{-5}$	1,35	-1,35
10000	-16,07	$-2,25 \times 10^{-5}$	1,41	-1,41
20000	-22,01	$-1,19 \times 10^{-5}$	1,49	-1,49
30000	$-25,\!52$	$-8,05 \times 10^{-6}$	1,52	-1,52
40000	-28,01	$-6,09 \times 10^{-6}$	1,53	-1,53
50 000	-29,95	$-4,90 \times 10^{-6}$	1,54	-1,54

V Valider et conclure

2 Tracer le diagramme de Bode expérimental sur papier semi-log (fourni en fin de sujet) en mettant la fréquence en abscisse (les 2 courbes sur une même feuille en prenant l'échelle du gain en haut et l'échelle du déphasage en bas).

Réponse —

Voir fin du sujet.

3 Ajouter sur le diagramme, les asymptotes obtenues grâce à l'étude théorique de l'analyse.

______ Réponse _______

Idem. _____ ♦ ______

- 4 En déduire :
 - a La fréquence de coupure expérimentale $f_{c,\text{exp}}$ en considérant $G_{dB}(f_{c,\text{exp}}) = G_{dB,\text{max}} 3 \, dB$. La comparer à la valeur théorique en calculant l'écart **normalisé**.

Réponse -

On trouve $f_{c, \rm exp} = (1.57 \pm 0.02)\, {\rm kHz},$ d'où l'écart normalisé

$$\boxed{E_n = \frac{|f_{c, \exp} - f_{c, \text{theo}}|}{u_{f_{c, \exp}}}} \Rightarrow \underline{E_n = 1} < 2 \quad \text{donc compatibles.}$$

b – Le déphasage expérimental $\varphi_{c,\text{exp}}$ pour $f=f_{c,\text{exp}}$. Le comparer à la valeur théorique en calculant l'écart **normalisé**.

Réponse —

Calcul similaire.

c – La nature du filtre.

Réponse —

C'est un passe-bas.

