K-Means Clustering

... Or what to do when your data doesn't have labels

Some example use cases of Unsupervised Learning

 Unsupervised learning is performed when you don't have labels for your data, but you would like to check if there are any patterns.

- Group emails or search results
- Customer shopping patterns
- Regions of images
- Clusters of genes

Example: Data

Subject	Α	В
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Goal: Split the data into 2 classes K=2

Step 1: Randomly initialize the cluster centroids

- The centroid refers to the "middle point" of the cluster in Euclidean space.
- You can pick any point that is in the range of your dataset.
- Our random number generator returns the following:

Step 1: Randomly initialize the cluster centroids

	Red Cluster (0)	Blue Cluster (1)
Α	2	5
В	5	1

Step 2: Find the Euclidean Distance of Each Point from Each Cluster

Datapoint	Distance from centroid 0	Distance from centroid 1	Closest centroid
1	4.12	4	1
2	3.04	3.64	0
3	1.4	3.60	0
4	3.60	6.0	0
5	1.5	4.2	0
6	2.5	4.03	0
7	1.58	3.80	0

Give labels to your point: points get the label of the closest cluster

Recalculate the centroids: find the mean A & B for each cluster

```
   Centroid of cluster 0:

A=mean(1.5,3.0,5.0,3.5,4.5,3.5)
A = 3.5
B = mean(2.0,4.0,7.0,5.0,5.0,4.5)
 B=4.58

   Centroid of cluster 1:

A=mean(1)
A=1
B=mean(1)
B=1
```

Our new centroids!

Repeat the two steps until your labels don't change anymore

Reassign your labels:

Datapoint	Distance from centroid 0	Distance from centroid 1	Closest centroid
1	4.36	0	1
2	3.26	1.11	1
3	0.76	3.60	0
4	2.84	7.21	0
5	0.419	4.71	0
6	1.08	5.31	0
7	0.08	4.3	0

Repeat the two steps until your labels don't change anymore

- Recompute your centroids
- Centroid of cluster 0: A=mean(3.0,5.0,3.5,4.5,3.5) A = 3.89B = mean(4.0,7.0,5.0,5.0,4.5)B=5.09• Centroid of cluster 1: A=mean(1,1.5)A=1.25B=mean(1,2) B=1.5

Repeat the two steps until your labels don't change anymore

Reassign your labels:

Datapoint	Distance from centroid 0	Distance from centroid 1	Closest centroid
1	5.00	0.55	1
2	3.91	0.55	1
3	1.40	3.05	0
4	2.21	6.65	0
5	0.400	4.16	0
6	0.61	4.77	0
7	0.70	3.75	0

Our labels have not changed since the last iteration, so we're done!

When will K-Means fail?

When will K-means fail?

