Forelesning 7 og 8: Oscillasjoner og rotasjoner

KJM2601

Klassisk harmonisk oscillator (1)

- OBS: Presentasjonen blir litt mer rigorøst enn i boka.
- To partikler x_1 og x_2 (med masser m_1 , m_2) er koblet sammen med en fjær. Fjæren har en likevektsavstand l_0 .
- Avstanden mellom partiklene er gitt ved $I = x + I_0$, så x er "avvik fra likevekt": $x = x_2 x_1 I_0$
- Partiklene føler en kraft fra fjæren (Hookes lov) og tilsvarende akselerasjon (Newtons andre lov)

$$F_1 = kx = m_1\ddot{x}_1$$
$$F_2 = -kx = m_2\ddot{x}_2$$

hvor k er fjærkonstanten. Tenk på fortegn: Gir kreftene mening?

Klassisk harmonisk oscillator (2)

- Newton's andre lov: $\ddot{x}_1 = \frac{1}{m_1}kx$ og $\ddot{x}_2 = -\frac{1}{m_2}kx$
- Vi ser at

$$m_1\ddot{x}_1+m_2\ddot{x}_2=0$$

Definer massesentrumet $x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$.

Da har vi $\ddot{x}_{cm} = 0$. Hva slags bevegelse tilsvarer dette?

• Relativ bevegelse av $x = x_2 - x_1 - l_0$:

$$\ddot{x} = \ddot{x}_2 - \ddot{x}_1 = -\frac{k}{m_2} x - \frac{k}{m_1} x$$

$$= -k \left(\frac{1}{m_2} + \frac{1}{m_1} \right) x$$

$$= -k \left(\frac{1}{\mu} \right) x$$

der vi har definert den reduserte massen $\frac{1}{\mu} = \left(\frac{1}{m_2} + \frac{1}{m_1}\right)$

Differensialligning og løsning

Vi må løse

$$\ddot{x} = -\frac{k}{\mu}x$$

- Har vi sett denne differensialligningen før?
- Definer frekvensen $\omega = \sqrt{\frac{k}{\mu}}$.
- Den generelle løsningen blir (som for partikkel i en boks)

$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$

- A, B bestemmes fra inisialbetingelsene x(0) og v(0) = x'(0).
- Potensiell og kinetisk energi:
 - $E_{kin.} = \frac{1}{2}\mu v(t)^2 = \frac{1}{2\mu}p^2$
 - $E_{pot.} = \frac{1}{2}kx(t)^2$
 - Klassisk system med konservative krefter: Energien er bevart.
 - Tidsgjennomsnitt over energiene:

$$\langle E_{kin.} \rangle = \langle E_{pot.} \rangle$$

• Hamiltonoperatoren: $H=\frac{1}{2}kx(t)^2+\frac{1}{2\mu}p^2$

Kvantemekanisk Harmonisk Oscillator

- $\hat{H}=\hat{T}+\hat{V}$ hvor $\hat{T}=-rac{1}{2}rac{\hbar^2}{2\mu}rac{d^2}{dx^2}$, $V(x)=rac{1}{2}kx^2$
- Vi er interessert i egentilstandenene:

$$\hat{H}\Psi_n(x) = E_n\Psi_n(x)$$

- Dette kan løses på flere måter, men det går utover pensum.
- Om man gjør utledningen, får man energiene

$$E_n=\hbar\omega(n+\frac{1}{2})$$

hvor $n=0,1,2,\ldots$ og $\omega=\sqrt{\frac{k}{\mu}}$. Hva er nullpunktsenergien?

• Definere en hjelpekonstant $\alpha = \frac{\mu \omega}{\hbar}$

Egenfunksjonene til en harmonisk oscillator

Egenfunksjonene blir

$$\Psi_n(x) = \frac{(\alpha/\pi)^{1/4}}{\sqrt{2^n n!}} H_n(\alpha^{1/2} x) e^{-0.5\alpha x^2}$$

der $H_n(x)$ kalles Hermite polynomer.

- $H_0(\alpha^{0.5}x) = 1$
- $H_1(\alpha^{0.5}x) = 2\alpha^{0.5}x$
- $H_2(\alpha^{0.5}x) = 4\alpha x^2 2$
- $H_3(\alpha^{0.5}x) = 8\alpha^{1.5}x^3 12\alpha^{0.5}x$
- $H_4(\alpha^{0.5}x) = 16\alpha^2x^4 48\alpha x^2 + 12$
- Rekursjonsformel: $H_{n+1}(x) = 2xH_n(x) H'_n(x)$
- Fra rekursjonsformelen ser vi: For partall n er funksjonene jevne, for odde n er funksjonene odde
- Hovedpoeng: Egenfunksjonene til en Harmonisk Oscillator er polynomer ganget med $e^{-0.5\alpha x^2}$

Visualisering av egenfunksjonene

Høyenergitilstand av en harmonisk oscillator

Figure: Sannsynlighetstettheten $|\Psi_{30}(x)|^2$ (oscillerende funksjon) sammenlignet med klassisk sannsynlighetstetthet (stiplet funksjon) og klassisk forbudt område (stiplet vertikal linje)

Egenskaper til HO egenfunksjonene

Kinetisk energi forventningsverdi

$$\langle \hat{T} \rangle_n = \int_{-\infty}^{\infty} \Psi_n^*(x) \hat{T} \Psi_n(x) dx = \frac{1}{2} E_n$$

hvor $\hat{\mathcal{T}}=-rac{1}{2}rac{\hbar^2}{2\mu}rac{d^2}{dx^2}.$

• Triks for å finne $\langle \hat{V} \rangle$ når vi vet $\langle \hat{H} \rangle$:

$$\langle \hat{V} \rangle = \langle \hat{H} - \hat{T} \rangle = \langle \hat{H} \rangle - \langle \hat{T} \rangle$$

(oppgave: Vis dette!)

- For egentilstander $\Psi_n(x)$ har vi $\langle \hat{H} \rangle_n = E_n$
- Så: $\langle \hat{V} \rangle_n = \langle \hat{T} \rangle_n$, lik som klassisk harmonisk oscillator!
- Grunntilstanden er "så klassisk som mulig": $\sigma_x \sigma_p = \frac{\hbar}{2}$. (Dette ble kanskje vist forrige uke på gruppetime?)

Harmonisk oscillator som approksimasjon til molekylær vibrasjon

Figure: I nærheten av likevektsavstanden r_e ligner potensialet som funksjon av avstanden mellom atomene r, på en harmonisk oscillator.

Oppsummering

- To-partikkel problemer kan ofte reduseres til lettere en-partikkel problemer ved å separere massesentrum-bevegelse og relativ bevegelse
- Den harmoniske oscillatoren er en approksimasjon til molekylær vibrasjon og kan løses analytisk, med energinivåene $\hbar\omega(n+\frac{1}{2})$.
- Den kvantemekaniske og den klassiske harmoniske oscillatoren har mye til felles: Jf. oblig 2 som utleveres på fredag

Klassisk rigid rotasjon

- Mål: Beskrive bevegelse av punktpartikler med masse m_1 , m_2 i posisjonene \mathbf{r}_1 og \mathbf{r}_2 , med fast avstand $r = |\mathbf{r}_1 \mathbf{r}_2|$, som roterer rundt massesentrumet
- ullet Denne bevegelsen kan matematisk sett reduseres til bevegelsen av en partikkel med redusert masse μ

Klassisk rigid rotasjon

- Rotasjonsfrekvens: $\nu_{rot.}$: Omdreinger per tidsenhet (f.eks. per sekund)
- Hastighet: $v = \nu_{rot} \cdot 2\pi r = \omega r$
- ullet Vinkelhastighet ω er endring i vinkel: $\omega=\dot{\phi}$
- Ingen krefter virker: All energi er kinetisk
- $E = \frac{1}{2}\mu v^2 = \frac{1}{2}\mu \omega^2 r^2$
- Vi definerer treghetsmomentet $I = \mu r^2$
- Dette gir $E = \frac{1}{2}I\omega^2$
- Vi definerer angulærmomentet $\ell = \mu {\it vr} = \mu r^2 \omega = I \omega$
- Dette gir $E = \frac{\ell^2}{2I}$
- Mer generelt for rotasjon med ikke-konstant r (dvs. ikke sirkulær bevegelse, jf. oblig 1): $\ell = r \times p$
- Generelt er energien da gitt som $E = \frac{|\boldsymbol{\ell}|^2}{2I}$.

Oppdeling av ulike bevegelsestyper

- Man kan approksimativt separere bevegelsen til et molekyl i:
 - Massesentrumbevegelse: Translasjon (partikkel i en boks/fri partikkel). Energien her avhenger bare av x_{cm} .
 - Rotasjon rundt massesentrumet: Beskrives med vinkler θ, ϕ (og ψ for ikke-linære molekyler).
 - Bevegelse av de relative posisjonene mellom atomene: $\tau_{internal}$.
- Obs: Flere antagelser her som ikke alltid er gyldige:
 - Bindingslengde avhenger ofte av rotasjon ($\tau_{internal}$ ikke frakoblet θ, ϕ).
 - Eksterne felt kan ødelegge radiell symmetri: \mathbf{x}_{cm} og $\tau_{internal}, \theta, \phi$ ikke frakoblet.

Separasjon av energibidrag

• Med disse antagelsene kan Hamiltonoperatoren deles i 3:

$$\hat{H} = \hat{H}_{trans.}(\mathbf{x}_{cm}) + \hat{H}_{rot.}(\theta, \phi) + \hat{H}_{vib.}(\tau_{internal})$$

 På grunn av denne separasjonen (husk fra gruppetimen) har vi at

$$E = E_{trans.}(\mathbf{x}_{cm}) + E_{rot.}(\theta, \phi) + E_{vib.}(\tau_{internal})$$

Bølgefunksjonen kan da skrives som produkt:

$$\Psi(\mathbf{\textit{x}}_{\textit{cm}}, \theta, \phi, \tau_{\textit{internal}}) = \Psi_{\textit{trans.}}(\mathbf{\textit{x}}_{\textit{cm}})\Psi_{\textit{rot.}}(\theta, \phi)\Psi_{\textit{vib.}}(\tau_{\textit{internal}})$$

 Dette gjør at vi kan løse translasjon, rotasjon og vibrasjon uavhengig av hverandre!

Rotasjon i xy planet

- Vi ser først på rotasjon av en partikkel i xy planet og antar at avstanden r er konstant. Det er ingen eksternt potensial, V(x,y)=0.
- Vi vil l
 øse Schr
 ødingerligningen

$$\frac{-\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \Psi(x, y) = E \Psi(x, y)$$

- Vi bytter koordinatsystem til polarkoordinater: $x = r \sin \phi$, $y = r \cos \phi$
- Schrödingerligningen blir da, dersom r er holdt konstant

$$-\frac{\hbar^2}{2\mu r^2}\frac{d^2\Phi(\phi)}{d\phi^2} = E\Phi(\phi)$$

hvor $\Phi(\phi)$ avhenger bare av vinkelen ϕ .

Rotasjon i xy planet

Neste samme differensialligning som for en fri partikkel:

$$-\frac{\hbar^2}{2\mu r^2}\frac{d^2\Phi(\phi)}{d\phi^2}=E\Phi(\phi)$$

- Løsningene blir på formen $\Phi_{m_\ell}(\phi) = Ae^{im_\ell\phi}$
- Rammebetingelser: $\Phi_{m_\ell}(0) = \Phi_{m_\ell}(2\pi)$. Derfor er bare heltall m_ℓ tillatt: $m_\ell \in [\ldots, -2, -1, 0, 1, 2, \ldots]!$
- Normaliseringskonstanten $A=1/\sqrt{2\pi}$
- Rotasjonell energi for egentilstandene blir

$$E_{m_{\ell}} = \frac{\hbar^2}{2\mu r^2} m_{\ell}^2 = \frac{\hbar^2}{2I} m_{\ell}^2$$

• Hva blir sannsynlighetstettheten $|\Phi_{m_\ell}(\phi)|^2$?

Visualisering av rammebetingelsene

(b) $m_l \neq \pm integer$

Visualisering av bølgefunksjonenes realdel

Figure: Visualisering av realdelen av egenfunksjonene $\Phi_{m_{\ell}}(\phi)$ på en sirkel for $m_{\ell}=1, m_{\ell}=3, m_{\ell}=5$.

Kobling til angulær moment

• Vi definerer den kvantemekaniske angulærmomentoperatoren

$$\hat{\boldsymbol{L}} = \boldsymbol{r} \times \hat{\boldsymbol{p}} = -i\hbar \boldsymbol{r} \times \nabla = (\hat{L}_x, \hat{L}_y, \hat{L}_z)^T$$

- ullet I sfæriske koordinater har vi at $\hat{L}_z = -i\hbarrac{\partial}{\partial\phi}$
- Egenfunksjonene til Hamiltonoperatoren er også egenfunksjoner til angulær moment i z-retning:

$$\hat{L}_z \Phi_{m_\ell}(\phi) = \hbar m_\ell \Phi_{m_\ell}(\phi)$$

Så Hamiltonoperatoren for 2D-rotasjon kan også skrives som

$$\hat{H} = -\frac{\hbar^2}{2\mu r^2} \frac{d^2 \Phi(\phi)}{d\phi^2} = \frac{1}{2I} \hat{L}_z^2$$

Sammenlign dette med klassisk mekanikk:

$$E = \frac{\ell_z^2}{2I}$$

Oppsummering

- Energien til to klassiske partikler som roterer rundt sitt massesentrum kan uttrykkes ved hjelp av angulærmoment I.
- Hamiltonoperatoren for rotasjon i x-y planet kan uttrykkes ved hjelp av angulærmomentoperatoren \hat{L}_z
- På grunn av rammebetingelsene er energien kvantisert, selv om egenfunksjonene er ellers på samme form som for en fri partikkel.
- Hamiltonoperatoren til et molekyl kan approksimativt separeres i translasjonell bevegelse, rotasjonell bevegelse, og vibrasjonell bevegelse av interne frihetsgrader

Rotasjon i tre dimensjoner

- Vi ser nå på generell rotasjon i tre dimensjoner. Vi antar at avstanden r er konstant. Det er ingen eksternt potensial, V(x, y, z) = 0.
- Vi vil løse Schrødingerligningen

$$\frac{-\hbar^2}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \Psi(x, y, z) = E \Psi(x, y, z)$$

- Vi bytter koordinatsystem til sfæriske koordinater: $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = z = r \cos \theta$, der $r \in [0, \infty]$, $\phi \in [0, 2\pi]$, $\theta \in [0, \pi]$
- Schrödingerligningen blir da, dersom r er holdt konstant

$$-\frac{\hbar^2}{2\mu r^2}\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right)+\frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right)Y(\theta,\phi)=EY(\theta,\phi)$$

hvor $Y(\theta, \phi)$ avhenger bare av vinklene θ, ϕ .

Hvordan løse for $Y(\theta, \phi)$?

• Vi deler på E og definerer $\beta = \frac{2\mu r^2 E}{\hbar^2}$, da får vi

$$-\frac{1}{\beta}\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right)Y(\theta,\phi) = Y(\theta,\phi)$$

• Vi ganger begge sidene med $\sin^2(\theta)\beta$, da får vi

$$-\left(\sin\theta\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{\partial^2}{\partial\phi^2}\right)Y(\theta,\phi) = \beta\sin^2(\theta)Y(\theta,\phi)$$

• Vi flytter alt som avhenger av θ til venstre og alt som avhenger av ϕ til høyre og ganger med -1:

$$\left(\sin\theta \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) + \beta \sin^2(\theta)\right) Y(\theta, \phi) = -\frac{\partial^2}{\partial \phi^2} Y(\theta, \phi)$$

Løse for $Y(\theta, \phi)$

Differensialligningen vår er nå

$$\left(\sin\theta \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial}{\partial \theta}\right) + \beta \sin^2(\theta)\right) Y(\theta,\phi) = -\frac{\partial^2}{\partial \phi^2} Y(\theta,\phi)$$

På venstresiden virker vi kun med noe som avhenger av θ , på høyresiden kun med noe som avhenger av ϕ . Derfor gjetter vi en løsning på formen¹

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$$

• Vi setter inn denne ansatsen og deler på $\Theta(\theta)\Phi(\phi)$:

$$\frac{1}{\Theta(\theta)} \left(\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) + \beta \sin^2(\theta) \right) \Theta(\theta) = -\frac{1}{\Phi(\phi)} \frac{d^2}{d\phi^2} \Phi(\phi)$$

¹OBS: Argumentet boken bruker er ikke helt riktig. Det finnes nemlig også løsninger som ikke er på denne formen.

Frakobling av løsningene

• Ligningen vår er nå

$$\frac{1}{\Theta(\theta)} \left(\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) + \beta \sin^2(\theta) \right) \Theta(\theta) = -\frac{1}{\Phi(\phi)} \frac{d^2}{d\phi^2} \Phi(\phi)$$

- Venstresiden inneholder ikke ϕ , høyresiden inneholder ikke θ . Den eneste måten de to sidene kan være like, er hvis de er samme tall. La oss kalle dette tallet m_ℓ^2 .
- Vi har nå to ordinære egenverdiproblemer:

$$m_{\ell}^2 \Phi(\phi) = -\frac{d^2}{d\phi^2} \Phi(\phi) \tag{1}$$

$$m_{\ell}^2 \Theta(\theta) = \left(\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) + \beta \sin^2(\theta) \right) \Theta(\theta)$$
 (2)

Løsning av ligningene

• (1) har vi sett før: Akkurat samme som for rotasjon i 2D!

$$\Phi_{m_\ell}(\phi) = A e^{im_\ell \phi}$$

for $m_\ell \in [\dots, -2, -1, 0, 1, 2, \dots]$ med rammebetingelsene $\Phi_{m_\ell}(0) = \Phi_{m_\ell}(2\pi)$.

• (2) er litt vanskelig å løse, men om man gjør det, får man følgende løsning:

Løsningen $\Theta(\theta)$ avhenger altså av både m_ℓ og ℓ , og man skriver løsningen som $\Theta_\ell^{m_\ell}(\theta)$.

• Den endelige løsningen blir da

$$Y_{\ell}^{m_{\ell}}(\theta,\phi) = \Theta_{\ell}^{m_{\ell}}(\theta)\Phi_{m_{\ell}}(\phi)$$

Løsning av Schrödingerligningen

- Vi husker at $\beta = \frac{2\mu r^2 E}{\hbar^2} = \frac{2I}{\hbar^2} E$. Energiene blir $E_\ell = \frac{\hbar^2}{2I} \ell (\ell+1)$.
- Vi konkluderer altså: Når vi har at

$$\hat{H} = -\frac{\hbar^2}{2I} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

blir egenverdiene og egenfunksjonene på formen

$$Y_{\ell}^{m_{\ell}}(\theta,\phi) = \Theta_{\ell}^{m_{\ell}}(\theta)\Phi_{m_{\ell}}(\phi)$$

$$\hat{H}Y_{\ell}^{m_{\ell}}(\theta,\phi) = \frac{\hbar^2}{2I}\ell(\ell+1)Y_{\ell}^{m_{\ell}}(\theta,\phi), \quad \text{for } \ell=0,1,2,3,\dots$$

• For en gitt ℓ har vi $2\ell+1$ degenererte tilstander.

Litt mer om angulærmoment

Forrige forelesning introduserte vi angulærmomentet

$$\hat{\boldsymbol{L}} = \boldsymbol{r} \times \hat{\boldsymbol{p}} = -i\hbar \boldsymbol{r} \times \nabla = (\hat{L}_x, \hat{L}_y, \hat{L}_z)^T$$

- Boken bruker notasjonen $\hat{\ell}$, men $\hat{\boldsymbol{L}}$ er standardnotasjon.
- Når vi gjør utregningen, får vi, i kartesiske og sfæriske koordinater:

$$\hat{L}_{x} = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right) = -i\hbar \left(-\sin \phi \frac{\partial}{\partial \theta} - \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{y} = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right) = -i\hbar \left(\cos \phi \frac{\partial}{\partial \theta} - \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$\hat{L}_{z} = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = -i\hbar \left(\frac{\partial}{\partial \phi} \right)$$

Vi ser at \hat{L}_z har det enkleste uttrykket i sfæriske koordinater.

Kommutasjonsregler for angulær moment

• Angulærmomentoperatorene kommuterer ikke med hverandre!

$$\begin{bmatrix} \hat{L}_x, \hat{L}_y \end{bmatrix} = i\hbar \hat{L}_z$$
$$\begin{bmatrix} \hat{L}_y, \hat{L}_z \end{bmatrix} = i\hbar \hat{L}_x$$
$$\begin{bmatrix} \hat{L}_z, \hat{L}_x \end{bmatrix} = i\hbar \hat{L}_y$$

- Fordi de ikke kommuterer, er det umulig å bestemme alle tre komponenter \hat{L}_x , \hat{L}_y og \hat{L}_z samtidig.
- Men det kan vises at alle tre kommuterer med total angulær momentoperator:

$$\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$$

dvs.

$$\left[\hat{L}_x,\hat{L}^2\right]=\left[\hat{L}_y,\hat{L}^2\right]=\left[\hat{L}_z,\hat{L}^2\right]=0$$

Angulær moment og energi

• For fri rotasjon med fiksert r har vi at

$$\hat{H}(\theta,\phi) = \frac{1}{2I}\hat{L}^2$$

og dermed $[\hat{H},\hat{L}^2]=[\hat{H},\hat{L}_z]=0$

• Funksjonene $Y_{\ell}^{m_{\ell}}(\theta,\phi)$ er egenfunksjonene til \hat{L}^2 og \hat{L}_z :

$$\begin{split} \hat{L}^2 Y_{\ell}^{m_{\ell}}(\theta, \phi) &= \hbar^2 \ell (\ell + 1) Y_{\ell}^{m_{\ell}}(\theta, \phi) \\ \hat{L}_z Y_{\ell}^{m_{\ell}}(\theta, \phi) &= \hbar m_{\ell} Y_{\ell}^{m_{\ell}}(\theta, \phi) \end{split}$$

ullet Størrelsen av angulær moment blir altså $\hbar\sqrt{\ell(\ell+1)}$

Konsekvenser av kommutasjonsreglene

- Vi husker: \hat{H} kommuterer med \hat{L}^2 og hver enkel komponent $\hat{L}_x, \hat{L}_y, \hat{L}_z$.
- \hat{L}^2 kommuterer med \hat{H} og hver enkel komponent $\hat{L}_x, \hat{L}_y, \hat{L}_z$.
- \hat{L}_x , \hat{L}_y , \hat{L}_z kommuterer ikke med hverandre.
- Konsekvens: Vi kan bestemme energien, lengden av angulærmomentoperatoren \hat{L}^2 , og $\grave{e}n$ av komponentente $\hat{L}_x, \hat{L}_y, \hat{L}_z$ samtidig.
- Vi velger \hat{L}_z fordi det har den enkleste formen, men det er ingenting spesielt med den.
- Sagt på en annen måte: Det finnes en funksjon $\Psi(x,y,z)$ som er en egenfunksjon til både \hat{H} , \hat{L}^2 , og \hat{L}_z .

Kort oppsummering

 Egenfunksjonene for Hamiltonoperator som representerer rotasjon i tre dimensjoner er på formen

$$Y_{\ell}^{m_{\ell}}(\theta,\phi) = \Theta_{\ell}^{m_{\ell}}(\theta)\Phi_{m_{\ell}}(\phi)$$

hvor
$$l = 0, 1, 2, \dots$$
 og $m_{\ell} \in [-l, -l+1, \dots, l-1, l]$.

 Disse funksjonene er også egenfunksjoner til total angulær moment og angulær moment i z-retning:

$$\hat{L}^2 Y_{\ell}^{m_{\ell}}(\theta, \phi) = \hbar^2 \ell (\ell + 1) Y_{\ell}^{m_{\ell}}(\theta, \phi)$$
$$\hat{L}_z Y_{\ell}^{m_{\ell}}(\theta, \phi) = \hbar m_{\ell} Y_{\ell}^{m_{\ell}}(\theta, \phi)$$

 Pga. kommutasjonsreglene kan vi ikke bestemme angulær moment i alle tre dimensjonene samtidig, bare lengden til angulær moment, samt angulær moment i en retning.

Litt om funksjonene $Y_{\ell}^{m_{\ell}}(\theta,\phi)$

- Funksjonene $Y_{\ell}^{m_{\ell}}(\theta,\phi)$ kalles "sfærisk harmoniske funksjoner" (engelsk: "spherical harmonics") eller "kuleflatefunksjoner".
- For I = 0, 1, 2 har vi de følgende funksjonene:

$$Y_0^0(\theta,\phi) = \frac{1}{(4\pi)^{1/2}}$$

$$Y_1^0(\theta,\phi) = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta$$

$$Y_1^{\pm 1}(\theta,\phi) = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{\pm i\phi}$$

$$Y_2^0(\theta,\phi) = \left(\frac{5}{16\pi}\right)^{1/2} \left(3\cos^2 \theta - 1\right)$$

$$Y_2^{\pm 1}(\theta,\phi) = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin \theta \cos \theta e^{\pm i\phi}$$

$$Y_2^{\pm 2}(\theta,\phi) = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2 \theta e^{\pm 2i\phi}$$

Noen diskusjonsspørsmål

- Kan vi finne funksjoner som er egenfunksjoner av \hat{L}^2 , men ikke \hat{L}_z ?
- Kan vi finne funksjoner som er egenfunksjoner av \hat{L}_z , men ikke \hat{L}^2 ?

²Svarene på disse spørsmålene forklarer hvorfor forklaringen i boka ikke er helt riktig.

Litt om funksjonene $Y_{\ell}^{m_{\ell}}(\theta,\phi)$

De sfærisk harmoniske er normalisert:

$$\int_0^{2\pi} \int_0^\pi |Y_\ell^{m_\ell}(heta,\phi)|^2 \sin(heta) d heta d\phi = 1$$

- For $m_{\ell} \neq 0$ er sfærisk harmoniske funksjoner komplekse!
- Det er mulig å lage reelle lineærkombinasjoner. Eksempel:

$$d_{z^2} = Y_2^0 = \sqrt{\frac{5}{16\pi}} \left(3\cos^2\theta - 1 \right)$$

$$p_x = \frac{-1}{\sqrt{2}} \left(Y_1^1 - Y_1^{-1} \right) = \sqrt{\frac{3}{4\pi}} \sin\theta \cos\phi \qquad d_{xz} = \frac{-1}{\sqrt{2}} \left(Y_2^1 - Y_2^{-1} \right) = \sqrt{\frac{15}{4\pi}} \sin\theta \cos\theta \cos\phi$$

$$p_y = \frac{-1}{\sqrt{2}i} \left(Y_1^1 + Y_1^{-1} \right) = \sqrt{\frac{3}{4\pi}} \sin\theta \sin\phi \qquad d_{yz} = \frac{-1}{\sqrt{2}i} \left(Y_2^1 + Y_2^{-1} \right) = \sqrt{\frac{15}{4\pi}} \sin\theta \cos\theta \sin\phi$$

$$p_z = Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos\theta \qquad \qquad d_{x^2 - y^2} = \frac{1}{\sqrt{2}} \left(Y_2^2 + Y_2^{-2} \right) = \sqrt{\frac{15}{16\pi}} \sin^2\theta \cos2\phi$$

$$d_{xy} = \frac{1}{\sqrt{2}i} \left(Y_2^2 - Y_2^{-2} \right) = \sqrt{\frac{15}{16\pi}} \sin^2\theta \sin2\phi$$
35/40

Visualisering

Figure 7.13 Three-dimensional perspective plots of p and d linear combinations of spherical harmonics. The plots show three-dimensional surfaces in which the relationship of the angles θ and ϕ to the Cartesian axes is defined in Math Essential 8. The distance from the origin to a point on the surface (θ, ϕ) represents the absolute magnitude of the functions defined by Equations (7.66). And (7.67). The sign of the functions in the different lobes is indicated by buls and minus signs.

Noe mer om funksjonene

- Funksjonene p_x og p_y er egenfunksjoner til \hat{L}^2 , men ikke \hat{L}_z !
- På samme måte er bare d_{z^2} en egenfunksjon til både \hat{L}^2 og \hat{L}_z , mens de andre d-funksjonene kun er egenfunksjoner til \hat{L}^2 .
- De sfærisk harmoniske er også ortogonale:

$$\int_0^\pi \int_0^{2\pi} \left(Y_\ell^{m_\ell}(\theta,\phi) \right)^* Y_{\ell'}^{m'_\ell}(\theta,\phi) \sin(\theta) d\theta d\phi = 0$$

med mindre $\ell = \ell'$, $m_{\ell} = m'_{\ell}$.

- Flere noder med økende ℓ : Økende kinetisk energi.
- ullet For små $|m_\ell|$ ligger funksjonene mest langs z-aksen.
- For store $|m_{\ell}|$ ligger funksjonene mest i xy-planet.
- Sammenlign dette med klassisk rotasjon: Hvis $\ell_x = \ell_y = 0$, har vi rotasjon rundt z-aksen, i.e. bevegelse kun i xy-planet.

Semiklassisk tolkning av kvantemekanisk angulær moment

- $Y_\ell^{m_\ell}$ er egenfunksjoner til \hat{L}^2 og \hat{L}_z , men ikke \hat{L}_x og \hat{L}_y . Pga. kommutasjonsreglene kan vi ikke bestemme ℓ_x og ℓ_y samtidig som ℓ_z .
- Hvis alt kommuterte, kunne vi bestemme en "klassisk" angulærmomentvektor $\ell = [\ell_x, \ell_y, \ell_z]^T$.
- Men vi kan bare bestemme lengden til ℓ og z-komponent:

$$|\ell| = \hbar \sqrt{\ell(\ell+1)}$$
 $\ell_z = \hbar m_\ell$

- Dette forklarer kvalitativt hvorfor $|m_{\ell}| \leq I$: Vi kan ikke ha at $|\ell_z| > |\ell|$.
- Det eneste vi vet om ℓ_x, ℓ_y er at

$$\ell_x^2 + \ell_y^2 = |\boldsymbol{\ell}|^2 - \ell_z^2$$

• Vi visualiserer dette som en "ring" i en kule med radius $\hbar\sqrt{\ell(\ell+1)}$, med høyde $\hbar m_\ell$.

Visualisering av reglene

Figure 7.16 Possible orientations of an angular momentum vector. The angular momentum vector shown is $|\mathbf{l}| = \sqrt{l(l+1)} \, \hbar$ and $l_z = m_l \hbar, \, l \geq |m_l|$ for l=2.

Figure 7.18 All possible orientations of an angular momentum vector with l = 2. The z component of the angular momentum is also shown.

Oppsummering

- De sfærisk harmoniske funksjonene er egenfunksjoner til angulærmomentoperatorene \hat{L}^2 og \hat{L}_z .
- Med økende ℓ får funksjonene flere noder.
- Med økende m_ℓ ligger funksjonene "nesten" i xy-planet.
- Funksjonene er komplekse, men det er mulig å lage reelle linærkombinasjoner. Disse er *ikke* egenfunksjoner til \hat{L}_z .
- Man kan representere de mulige verdiene av angulær moment som ringer på kule.
- Husk innlevering av oblig 1 innen kl. 12 på fredag!