

Advanced Mathematics

East China University of Science and Technology

目录

第一章	预备知识	3
1.1	基础知识	3
	1.1.1 函数的概念和特性	3
	1.1.2 函数的图像	4
	1.1.3 常用基础知识	9
1.2	习题	12
	1.2.1 复合函数	12
	1.2.2 函数的性态	12
第二章	数列极限	13
2.1	基础知识	
2.1	2.1.1 数列极限的定义	
	2.1.2 收敛数列的性质	
	2.1.3 极限运算规则	
	2.1.4 夹逼准则	
	2.1.5 单调有界准则	
2.2	习题	
2.2	2.2.1 求解数列极限	
	2.2.2 <i>n</i> 项和的数列极限	
	2.2.3 <i>n</i> 项连乘的数列极限	
	2.2.4 递推关系定义的数列	
第三章	****	15
3.1	基础知识	15
	3.1.1 邻域	
	3.1.2 函数极限的定义	
	3.1.3 收敛函数的性质	
	3.1.4 极限运算法则	16
	3.1.5 夹逼准则	17
	3.1.6 单调有界准则	17
		17
		17
	7 = 7 • •	18
3.2	,,_	18
	3.2.1 极限的概念/性质/存在准则	18

目录	2

	3.2.2 求解极限	19
	3.2.3 求解函数极限 (七种不定式的计算)	20
		22
4.1	基础知识	
	4.1.1 连续的定义	
	4.1.2 间断点的定义	
4.2	习题	
	4.2.1 求间断点	22
第五音	一元函数微分学(代数)	23
5.1	基础知识	
3.1	5.1.1 导数的定义	
	5.1.2 微分的定义	
	5.1.3 导数和微分的计算	
	OLIO G SATHUMAN HINTER TO THE CONTROL OF THE CONTRO	_0
第六章	一元函数微分学 (几何)	26
6.1	基础知识	26
	6.1.1 三点	26
	6.1.2 两性	27
	6.1.3 一线	28
6.2	习题	28
な レ辛	中值定理	29
第七早 7.1	基础知识	
1.1	- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-	
	7.1.2 介值定理	
	7.1.3 平均值定理	
	7.1.4 零点定理	
	7.1.6 罗尔定理	
	2 1 /2 —	29
	7.1.8 柯西中值定理	
	4.04-0.4	30 30
7.0	7.1.10 似分中值定理 · · · · · · · · · · · · · · · · · · ·	
1.2	夕越	30
第八章	零点问题与微分不等式	31
8.1	基础知识	31
	8.1.1 零点问题	31
	8.1.2 用函数性态证明不等式	31
8.2	习题	32
		0.0
		33
9.1	基础知识	
	9.1.1 概念	33

第一章 预备知识

1.1 基础知识

1.1.1 函数的概念和特性

函数

反函数

设函数 y = f(x) 的定义域为 D, 值域为 R, 若对于每一个 $y \in R$, 必存在唯一的 $x \in D$ 使得 y = f(x) 成立, 则由此定义了一个新的函数 $x = \varphi(y)$, 称这个函数是 y = f(x) 的反函数, 一般记作 $x = f^{-1}(y)$, 它的定义域为 R, 值域为 D.

- 1. 严格单调的函数一定有反函数 (严格单调函数不一定是反函数, 如某些分段函数)
- 2. $x = f^{-1}(y)$ 和 y = f(x) 是同一个函数, 只有写成 $y = f^{-1}(x)$, 图像才关于 y = x 对称

复合函数

函数 u = g(x) 在 $x \in D$ 上有定义, 函数 y = f(u) 在 $u \in D_1$ 上有定义, 且 $g(D) \subset D_1$, 则称 y = f(g(x)) 为复合函数, 定义域为 D, u 为中间变量.

函数的四种特性和重要结论

1. 有界性

设 f(x) 的定义域为 D, 数集 $I \subset D$. 若存在某个正数 M, 使得对于任一 $x \in I$, 有 $|f(x)| \leq M$ 成立, 则称 f(x) 在 I 上有界. 如果这样的 M 不存在, 则称 f(x) 在 I 上无上界.

2. 单调件

设 f(x) 的定义域为 D, 区间 $I \subset D$, 如果对于区间上的任一两点 x_1, x_2 , 当 $x_1 < x_2$ 的时候有 $f(x_1) < f(x_2)$ 成立,则称 f(x) 在 I 上单调增加. 反之如果 $f(x_1) > f(x_2)$ 成立,则称 f(x) 在 I 上单调减少.

3. 奇偶性

设 f(x) 的定义域 D 关于原点对称. 如果对于任一 $x \in D$, 恒有 f(x) = f(-x), 则称 f(x) 为偶函数. 如果对于任一 $x \in D$, 恒有 f(x) = -f(-x), 则称 f(x) 为奇函数. 偶函数的图像关于 y 轴对称, 奇函数的图像关于原点对称.

第一章 预备知识

- (a) 奇函数在 0 点有定义则 f(0) = 0
- (b) 偶函数当 f'(0) 存在时则 f'(0) = 0
- (c) 函数 f(x) 和 -f(x) 关于 x 轴对称, 函数 f(x) 和 f(-x) 关于 y 轴对称, 函数 y(x) 和 -y(-x) 关于原 点对称
- (d) 函数 f(x) 关于 x = T 对称 $\Leftrightarrow f(x + T) = f(T x)$

4. 周期性

设 f(x) 的定义域为 D, 若存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x + T) = f(x). 则称 f(x) 为 周期函数, T 称为 f(x) 的周期.

- 5. 重要结论
 - (a) 函数和其导函数

偶函数的导函数是奇函数 奇函数的导函数是偶函数 周期函数的周期和其导函数的周期相同

(b) 函数和其原函数

连续的奇函数的原函数是偶函数 连续的偶函数的原函数只有一个是奇函数 连续的周期函数和其原函数的周期相同

(c) 若 f(x) 在 (a,b) 内可导且 f'(x) 有界, 则 f(x) 在 (a,b) 内有界

1.1.2 函数的图像

直角坐标系

- 1. 常见图像
 - (a) 基本初等函数与初等函数
 - i. 常数函数 y = C, C 为常数, 图形为平行于 x 轴的水平直线.
 - ii. 幂函数 $y = x^{\mu} (\mu \text{ 是实数})$
 - A. 见到 \sqrt{u} , $\sqrt[3]{u}$, 用 u 来研究最值
 - B. 见到 |u| 时, 用 u^2 来研究最值
 - C. 见到 $u_1u_2u_3$ 时, 用 $ln(u_1u_2u_3) = lnu_1 + lnu_2 + lnu_3$ 来研究最值
 - D. 见到 $\frac{1}{u}$ 时, 用 u 来研究最值
 - iii. 指数函数 $y = a^x \ (a > 0, a \neq 1)$

iv. 对数函数 $y = log_a x \ (a > 0, a \neq 1)$

常用公式:
$$x = e^{lnx} (x > 0), u^v = e^{lnu^v} = e^{vlnu} (u > 0)$$

v. 三角函数

A. 正弦函数和余弦函数 正弦函数 $y = \sin x$, 余弦函数 $y = \cos x$.

B. 正切函数和余切函数 正切函数 $y = \tan x$, 余切函数 $y = \cot x$.

(b) 余切函数图像

C. 正割函数和余割函数 正割函数 $y = \sec x$, 余割函数 $y = \csc x$.

(b) 余割函数图像

vi. 反三角函数

A. 反正弦函数和反余弦函数 反正弦函数 $y = \arcsin x$, 反余弦函数 $y = \arccos x$.

B. 反正切函数和反余切函数 $y = \arctan x$, 反余切函数 $y = \arctan x$

vii. 初等函数

由基本初等函数经过有限次的四则运算,以及有限次的复合所构成的可以用一个式子表示的函数称为初等函数.

(b) 分段函数

在自变量的不同范围中,对应法则不同式子来表示的函数称为分段函数.一般来说它不是初等函数.

i. 绝对值函数

$$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

ii. 符号函数

$$y = \text{sgn } x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

第一章 预备知识 7

iii. 取整函数

y = [x], 设 x 为任一实数, 不超过 x 的最大整数称为 x 的整数部分, 记作 [x].

2. 图像变换

(a) 平移变换

- i. 将函数 y = f(x) 沿 x 轴向左平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x + x_0)$ 的图像; 将函数 y = f(x) 沿 x 轴向右平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x x_0)$ 的图像
- ii. 将函数 y = f(x) 沿 y 轴向上平移 y_0 $(y_0 > 0)$ 个单位长度,得到函数 $f(x) + y_0$ 的图像;将函数 y = f(x) 沿 y 轴向下平移 y_0 $(y_0 > 0)$ 个单位长度,得到函数 $f(x) y_0$ 的图像

(b) 对称变换

- i. 将函数 y = f(x) 的图像关于 x 轴对称, 得到函数 y = -f(x) 的图像
- ii. 将函数 y = f(x) 的图像关于 y 轴对称, 得到函数 y = f(-x) 的图像
- iii. 将函数 y = f(x) 的图像关于原点对称, 得到函数 y = -f(-x) 的图像
- iv. 将函数 y = f(x) 的图像关于直线 y = x 对称, 得到函数 $y = f^{-1}(x)$ 的图像
- v. 保留函数 y = f(x) 在 x 轴及 x 轴上方的部分,把 x 轴下方的部分关于 x 轴对称到 x 轴上方并去掉原来下方的部分,得到函数 y = |f(x)| 的图像
- vi. 保留函数 y = f(x) 在 y 轴及 y 轴右侧的部分,去掉 y 轴左侧的部分,再将 y 轴右侧图像对称到 y 轴左侧,得到函数 y = f(|x|) 的图像

(c) 伸缩变换

- i. 水平伸缩: y = f(kx)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标缩短到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到. y = f(kx)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标伸长到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到
- ii. 垂直伸缩: y = kf(x)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标伸长到原来的 k 倍且横坐标不变得到; y = kf(x)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标缩短到原来的 k 倍且横坐标不变得到

极坐标系

1. 用描点法画常见图像

(a) 心形线

$$r = a(1 - \cos \theta)(a > 0)$$

图 1.5: 心形线

(b) 玫瑰线

 $r = a\sin 3\theta (a > 0)$

图 1.6: 玫瑰线

(c) 阿基米德螺线

 $r = a\theta(a > 0, \theta \ge 0)$

图 1.7: 阿基米德螺线

(d) 伯努利双纽线

$$r^2 = a^2 \cos 2\theta (a > 0)$$
 或 $r^2 = a^2 \sin 2\theta (a > 0)$.

图 1.8: 伯努利双纽线

参数方程

1. 摆线

$$\begin{cases} x = r(t - \sin t) \\ y = r(1 - \cos t) \end{cases}$$

图 1.9: 摆线

2. 星形线

$$\begin{cases} x = r\cos^3 t \\ y = r\sin^3 t \end{cases}$$

图 1.10: 星形线

1.1.3 常用基础知识

数列

1. 等差数列

首项为 a_1 , 公差为 $d(d \neq 0)$ 的数列 $a_1, a_1 + d, a_1 + 2d, ..., a_1 + (n-1)d, ...$

- (a) 通项公式: $a_n = a_1 + (n-1)d$
- (b) 前 n 项的和: $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$

2. 等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1 r, ..., a_1 r^{n-1},$

- (a) 通项公式: $a_n = a_1 r^{n-1}$
- (b) 前 n 项的和 $S_n = \begin{cases} na_1 & r = 1 \\ \frac{a_1(1-r^n)}{1-r} & r \neq 1 \end{cases}$
- (c) 一些常见数列前 n 项的和

i.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(1+n)}{2}$$

$$\begin{array}{ll} \text{i. } \sum_{k=1}^n k=1+2+3+\ldots+n=\frac{n(1+n)}{2}\\ \text{ii. } \sum_{k=1}^n k^2=1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6} \end{array}$$

iii.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

三角函数

1. 三角函数的基本关系

$$\csc \alpha = \frac{1}{\sin \alpha}, \ \sec \alpha = \frac{1}{\cos \alpha}, \ \cot \alpha = \frac{1}{\tan \alpha}$$
$$\sin^2 \alpha + \cos^2 \alpha = 1, \ 1 + \tan^2 \alpha = \sec^2 \alpha, \ 1 + \cot^2 \alpha = \csc^2 \alpha$$
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \ \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

- 2. 重要公式
- 3. 倍角公式

$$\begin{split} \sin 2\alpha &= 2 \sin \alpha \cos \alpha, \ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha \\ &= 2 \cos^2 \alpha - 1, \ \tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \end{split}$$

4. 半角公式

$$\sin^2\frac{\alpha}{2} = \frac{1}{2}(1-\cos\alpha), \ \cos^2\frac{\alpha}{2} = \frac{1}{2}(1+\cos\alpha)$$
$$\tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$

5. 和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

6. 积化和差公式

$$\begin{split} \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

7. 和差化积公式

$$\begin{split} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{split}$$

8. 万能公式

若
$$u = \tan \frac{x}{2}(-\pi < x < \pi)$$
,则 $\sin x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$.

指数运算法则

$$a^{\alpha} \cdot a^{\beta} = a^{\alpha+\beta}, \ \frac{a^{\alpha}}{a^{\beta}} = a^{\alpha-\beta}$$
$$(a^{\alpha})^{\beta} = a^{\alpha\beta}, \ (ab)^{\alpha} = a^{\alpha}b^{\alpha}, \ (\frac{a}{b})^{\alpha} = \frac{a^{\alpha}}{b^{\alpha}}$$

对数运算法则

- 1. $\log_a(MN) = \log_a M + \log_a N$
- 2. $\log_a \frac{M}{N} = \log_a M \log_a N$
- $3. \, \log_a^n = n \log_a M$
- $4. \log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$

一元二次方程基础

- 1. 一元二次方程: $ax^2 + bx + c = 0 (a \neq 0)$
- 2. 根的公式: $x_{1,2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- 3. 根和系数的关系: $x_1 + x_2 = -\frac{b}{a}$, $x_1 x_2 = \frac{c}{a}$
- 4. 判别式: $\Delta = b^2 4ac$
- 5. 抛物线定点坐标: $(-\frac{b}{2a}, c \frac{b^2}{4a})$

因式分解公式

- 1. $(a+b)^2 = a^2 + b^2 + 2ab$
- 2. $(a-b)^2 = a^2 + b^2 2ab$
- 3. $(a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3$
- 4. $(a-b)^3 = a^3 3a^2b + 3b^2a b^3$
- 5. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- 6. $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- 7. $a^2 b^2 = (a+b)(a-b)$
- 8. 二项式定理: $(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$

阶乘和双阶乘

- 1. $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$, 规定 0! = 1
- 2. $(2n)!! = 2 \cdot 4 \cdot 6 \cdot ... \cdot (2n) = 2^n n!$
- 3. $2(n-1)!! = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)$

第一章 预备知识 12

常用不等式

1. 设 a,b 为实数,则有:

(a)
$$|a \pm b| \le |a| + |b|$$

(b)
$$||a| - |b|| \le |a - b|$$

2.
$$\sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}(a, b > 0)$$

4. 若
$$0 < a < x < b, 0 < c < y < d, 则 $\frac{c}{b} < \frac{y}{x} < \frac{d}{a}$$$

- 5. $\sin x < x < \tan x (0 < x < \frac{\pi}{2})$
- 6. $\sin x < x(x > 0)$
- 7. $\arctan x \le x \le \arcsin x (0 \le x \le 1)$
- 8. $e^x \ge x + 1(\forall x)$
- 9. $x-1 \ge \ln x (x > 0)$

10.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0)$$

1.2 习题

1.2.1 复合函数

复合函数会结合分段函数或者是其定义域考, 注意这里的定义域是 x 的范围不是括号里面表达式的范围. 如: f(x+1) 的定义域为 [0,1], 则 $x \in [0,1]$, $x+1 \in [1,2]$.

1.2.2 函数的性态

这里常考的是有界. 要清楚有界的三个充分条件:

- 1. 函数在 [a,b] 内连续, 则有界
- 2. 函数在 (a,b) 内连续, 且函数在 a 点处的右极限存在, 在 b 点处的左极限存在 (特别是这个, 经常考证明极限是否存在, a 或者 b 其中一个是 ∞ 也成立)
- 3. f'(x) 在 I 上连续, 则 f(x) 在 I 上连续

此外, (局部) 保号性也是经常考的, 要清楚脱帽和戴帽规则, 说白了:

1. 脱帽:
$$\lim_{x \to x_0} f(x) > 0 \Rightarrow \exists \xi > 0, \, \stackrel{\circ}{\exists} x \in \mathring{U}(x_0, \xi)$$
时, 有 $f(x) > 0$

2. 戴帽:
$$\exists \xi > 0, \, \exists x \in \mathring{U}(x_0, \xi)$$
时, $f(x) \geq 0 \Rightarrow \lim_{x \to x_0} f(x) \geq 0$

第二章 数列极限

2.1 基础知识

2.1.1 数列极限的定义

设 $\{x_n\}$ 为一数列, 若存在常数 a, 对于任意的 $\epsilon>0$, 总存在正整数 N, 使得当 n>N 的时候, $|x_n-a|<\epsilon$ 恒成立, 则称数 a 是数列 $\{x_n\}$ 的极限, 或者称数列 $\{x_n\}$ 收敛于 a, 记为

$$\lim_{n\to\infty} x_n = a \ or \ x_n \to a(n\to\infty).$$

- 1. 至多有 N 个项会落在 $(a-\epsilon,a+\epsilon)$ 之外
- 2. 数列极限的存在性和大小和前 N 项无关
- 3. 子数列和父数列的极限相同, 即 $\lim_{n\to\infty} x_n = \lim_{k\to\infty} x_{2k-1} = \lim_{k\to\infty} x_{2k+1} = a$
- 4. 若 $\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} |a_n| = |a|$

2.1.2 收敛数列的性质

- 1. 唯一性: 若数列存在极限, 则极限唯一
- 2. 有界性: 若数列存在极限,则数列有界
- 3. 保号性
 - (a) 脱帽: 设有数列 $\{x_n\}$, 若 $\lim_{n \to \infty} x_n = a > 0$ (或 < 0) \Rightarrow 存在正整数 N, 当 n > N 时, 有 $x_n > 0$ (或 $x_n < 0$)
 - (b) 戴帽: 设有数列 $\{x_n\}$, 若存在正整数 N, 当 n>N 时, 有 $x_n\geq 0$, 且数列存在极限 $\Rightarrow \lim_{n\to\infty}x_n=a\geq 0$

2.1.3 极限运算规则

设
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} y_n = b$, 则

- 1. $\lim_{n \to \infty} (x_n \pm y_n) = a \pm b$
- $2. \lim_{n \to \infty} x_n y_n = ab$

注意, 当 $\lim f(x)$, $\lim g(x)$ 其中一个存在, 另一个不存在的时候, 上述左边的极限一定不存在. 当 $\lim f(x)$, $\lim g(x)$ 两个都不存在的时候, 左边的极限不一定不存在.

第二章 数列极限 14

2.1.4 夹逼准则

若数列 $\{x_n\}, \{y_n\}$ 及 $\{z_n\}$ 满足条件:

- 1. $y_n \le x_n \le z_n (n = 1, 2, 3...)$
- $2. \lim_{n\to\infty}y_n=a, \lim_{n\to\infty}z_n=a$

则数列 $\{x_n\}$ 的极限存在, 且 $\lim_{n\to\infty}x_n=a$.

2.1.5 单调有界准则

单调有界数列必有极限.

2.2 习题

2.2.1 求解数列极限

不定式

与求函数不定式极限的方法完全相同, 但是对数列极限不能直接用洛必达法则, 必须先转化为函数, 再用洛必达法则.

2.2.2 n 项和的数列极限

常用二种方法:

- 1. 夹逼定理
- 2. 转化为 0-1 上的定积分

2.2.3 n 项连乘的数列极限

常用两种方法:

- 1. 夹逼原理
- 2. 取对数化为 n 项和

2.2.4 递推关系定义的数列

用单调有界准则做, 具体见单调有界准则算极限.

第三章 函数极限

3.1 基础知识

3.1.1 邻域

一维

- 1. 邻域: 点 x_0 的邻域为数轴上以 x_0 为中心的任何开区间, 记作 $U(x_0)$
- 2. δ 邻域: 点 x_0 的 δ 邻域为 $(x_0 \delta, x_0 + \delta)$, 记作 $U(x_0, \delta)$
- 3. 去心 δ 邻域: 点 x_0 的去心 δ 邻域为 $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, 记作 $\mathring{U}(x_0, \delta)$
- 4. 左右 δ 邻域
 - (a) 左邻域: 点 x_0 的左邻域为 $(x_0 \delta, x_0)$, 记作 $U^+(x_0, \delta)$
 - (b) 右邻域: 点 x_0 的右邻域为 $(x_0, x_0 + \delta)$, 记作 $U^-(x_0, \delta)$

二维

- 1. δ 邻域: 与点 $P_0(x_0,y_0)$ 的距离小于 δ 的点 P(x,y) 的全体, 称为点 P_0 的 δ 邻域, 记作 $U(P_0,\delta)$
- 2. 去心 δ 邻域: 与点 $P_0(x_0,y_0)$ 的距离小于 δ 但不等于 0 的点 P(x,y) 的全体, 称为点 P_0 的去心 δ 邻域, 记作 $\mathring{U}(P_0,\delta)$

3.1.2 函数极限的定义

设函数 f(x) 在某点 x_0 的某一去心邻域内有定义.

1. 自变量趋近于无穷大

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \ \ \, \exists \ |x| > X \ \ \ \, \forall, \ \ \, \bar{f} \ |f(x) - A| < \epsilon$$

$$\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \ \ \, \exists \ x > X \ \ \, \forall, \ \ \, \bar{f} \ |f(x) - A| < \epsilon$$

$$\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists X > 0, \ \ \, \exists \ x < -X \ \ \, \forall, \ \ \, \bar{f} \ |f(x) - A| < \epsilon$$

2. 自变量趋近于有限值

单侧极限

- 1. 左极限: $\lim_{x \to x_0^-} f(x) = A$ or $f(x_0^-) = A$
- 2. 右极限: $\lim_{x \to x_0^+} f(x) = A \text{ or } f(x_0^+) = A$

第三章 函数极限 16

充要条件

函数 f(x) 在点 x_0 处有极限的充要条件分别有:

$$1. \lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$$

$$2. \ \lim_{x \to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha(x), \lim_{x \to x_0} \alpha(x) = 0$$

极限不存在

极限不存在 $\Leftrightarrow \lim f(x) = \infty$.

函数收敛

函数收敛 $\Leftrightarrow \lim_{x \to x_0} f(x) = C(C)$ 为常数).

3.1.3 收敛函数的性质

- 1. 唯一性: 若函数存在极限,则极限唯一
- 2. 局部有界性: 若函数存在极限,则函数在某一区间内有界
- 3. 局部保号性
 - (a) 脱帽: 设有函数 f(x), 若 $\lim_{x\to x_0} f(x) = A > 0$ (或A < 0) ⇒ 存在常数 δ , 当 $0 < |x-x_0| < \delta$ 时, 有 f(x) > 0(或f(x) < 0)
 - (b) 戴帽: 设有函数 f(x), 若存在常数 δ , 当 $0 < |x x_0| < \delta$ 时, 有 $f(x) \ge 0$ (或 $f(x) \le 0$) $\Rightarrow \lim_{x \to x_0} f(x) = A \ge 0$ (或 ≤ 0)

由局部保号性可以得到局部保序性: 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$

- 1. 脱帽: 若 $A > B \Rightarrow \exists \delta > 0$, 当 $0 < |x x_0| < \delta$ 时, 有 f(x) > g(x).
- 2. 戴帽: 若 $\exists \delta > 0$, 当 $0 < |x x_0| < \delta$ 时, 有 $f(x) \ge g(x) \Rightarrow A \ge B$

3.1.4 极限运算法则

设
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$, 则

1.
$$\lim_{x \to x_0} [kf(x) \pm lg(x)] = k \lim_{x \to x_0} f(x) \pm l \lim_{x \to x_0} g(x) = kA \pm lB$$
, 其中 k, l 为常数

$$2. \ \lim_{x \rightarrow x_0} [f(x) \cdot g(x)] = \lim_{x \rightarrow x_0} f(x) \cdot \lim_{x \rightarrow x_0} g(x) = A \cdot B$$

3.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{A}{B} (B \neq 0)$$

4.
$$\lim_{x\rightarrow x_0}[f(x)]^n=[\lim_{x\rightarrow x_0}f(x)]^n,$$
 n 为正整数

注意, 当 $\lim f(x)$, $\lim g(x)$ 其中一个存在, 另一个不存在的时候, 上述左边的极限一定不存在. 当 $\lim f(x)$, $\lim g(x)$ 两个都不存在的时候, 左边的极限不一定不存在.

3.1.5 夹逼准则

若函数 f(x), g(x) 及 h(x) 满足条件:

- $1. \ g(x) \le f(x) \le h(x)$
- 2. $\lim_{x \to x_0} g(x) = A$, $\lim_{x \to x_0} h(x) = A$

则函数 f(x) 极限存在, 且 $\lim_{x \to x_0} f(x) = A$.

3.1.6 单调有界准则

单调有界函数必有极限.

3.1.7 洛必达法则

- 1. $\frac{0}{0}$: $\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x \to \infty} \frac{f(x)}{F(x)} = \lim_{x \to \infty} \frac{f'(x)}{F'(x)}$), 需要以下条件:
 - (a) 若 $x \to a($ 或 $x \to \infty)$ 时, 函数 f(x) 及 F(x) 都趋近于 0
 - (b) 且 f'(x) 及 F'(x) 在点 a 的去心邻域内 (或当 |x| > X 时, X 为充分大的正数) 存在, 且 $F'(x) \neq 0$
 - (c) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f'(x)}{F'(x)}$) 存在或者无穷大
- 2. $\frac{\infty}{\infty}$: $\lim_{x\to a} \frac{f(x)}{F(x)} = \lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f(x)}{F(x)} = \lim_{x\to\infty} \frac{f'(x)}{F'(x)}$), 需要以下条件:
 - (a) 若 $x \to a($ 或 $x \to \infty)$ 时, 函数 f(x) 及 F(x) 都趋近于 ∞
 - (b) 且 f'(x) 及 F'(x) 在点 a 的去心邻域内 (或当 |x| > X 时, X 为充分大的正数) 存在, 且 $F'(x) \neq 0$
 - (c) $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ (或 $\lim_{x\to\infty} \frac{f'(x)}{F'(x)}$) 存在或者无穷大

对于 $\lim_{x\to a} \frac{f(x)}{F(x)} = \lim_{x\to a} \frac{f'(x)}{F'(x)}$, 右存在, 则左存在; 但左存在, 并不意味着右存在

3.1.8 泰勒公式

泰勒公式表

• $\sin x = x - \frac{x^3}{3!} + o(x^3)$

• $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$

• $\arcsin x = x + \frac{x^3}{3!} + o(x^3)$

• $\tan x = x + \frac{x^3}{2} + o(x^3)$

- $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$
- $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$
- $\arctan x = x \frac{x^3}{3} + o(x^3)$
- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + o(x^3)$

用泰勒公式求极限

- 1. $\frac{A}{B}$: 适用于 "上下同阶" 的原则 如果分母 (或者分子) 是 x 的 k 此幂, 则应该把分子 (或分母) 展开到 x 的 k 次幂.
- 2. A-B: 适用于幂次最低原则

将 A, B 分别展开到它们的系数不相等的 x 的最低次幂为止.

第三章 函数极限 18

3.1.9 无穷小

无穷小定义

如果当 $x \to x_0($ 或 $x \to \infty)$ 函数 f(x) 的极限为零 \Rightarrow 函数 f(x) 为当 $x \to x_0($ 或 $x \to \infty)$ 时的无穷小.

无穷小的比阶

- 1. 高阶无穷小: $\lim \frac{\alpha(x)}{\beta(x)}=0, \ \alpha(x)$ 是 $\beta(x)$ 的高阶无穷小, 记作 $\alpha(x)=o(\beta(x))$
- 2. 低阶无穷小: $\lim \frac{\alpha(x)}{\beta(x)} = \infty$, $\alpha(x)$ 是 $\beta(x)$ 的低阶无穷小
- 3. 同阶无穷小: $\lim \frac{\alpha(x)}{\beta(x)} = c (\neq 0), \, \alpha(x)$ 是 $\beta(x)$ 的同阶无穷小
- 4. 等价无穷小: $\lim \frac{\alpha(x)}{\beta(x)} = 1$, $\alpha(x)$ 是 $\beta(x)$ 的等阶无穷小
- 5. k 阶无穷小: $\lim_{|\beta(x)|^k} \frac{\alpha(x)}{|\beta(x)|^k} = c \neq 0, k > 0, \alpha(x)$ 是 $\beta(x)$ 的 k 阶无穷小

并不是任意两个无穷小都可以进行比阶的, 如: 当 $x \to 0$ 的时候, $\lim_{x \to 0} \frac{x \sin \frac{1}{x}}{x^2} = \lim_{x \to 0} \frac{1}{x} \sin \frac{1}{x}$ 不存在

无穷小的运算规则

- 1. 有限个无穷小的和(差)是无穷小
- 2. 有限个无穷小的乘积还是无穷小
- 3. 有界函数和无穷小的乘积还是无穷小
- 4. 无穷小的运算
 - (a) $o(x^m) \pm o(x^n) = o(x^{min\{m,n\}})$
 - (b) $o(x^m)\cdot o(x^n)=o(x^{m+n}), x^m\cdot o(x^n)=o(x^{m+n})$
 - (c) $o(x^m) = o(kx^m) = k \cdot o(x^m)$

等价无穷小表

- $\sin x \sim x$
- $\arcsin x \sim x$
- $\ln(1+x) \sim x$
- $\alpha^x 1 \sim x \ln a$
- $\tan x \sim x$

- $\arctan x \sim x$
- $e^x 1 \sim x$
- $(1+x)^{\alpha}-1\sim \alpha x$
- $1 \cos x \sim \frac{1}{2}x^2$

3.2 习题

3.2.1 极限的概念/性质/存在准则

首先记住一条结论: $\lim_{n\to\infty}a_n=a\Rightarrow\lim_{n\to\infty}|a_n|=|a|$. 这里常考的是直接举反例, 或者是结合极限运算的前提考察.

3.2.2求解极限

首先,要明确一点的是,如果极限中的某一部分可以直接求出来的话,是可以用结果替代掉的.

极限的基本运算

这里用到的是极限的四个运算法则:

- 1. $\lim(f(x) \pm g(x)) = \lim f(x) \pm \lim g(x)$
- 2. $\lim(f(x) \cdot g(x)) = \lim f(x) \cdot \lim g(x)$
- 3. $\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to 0} f(x)}{\lim_{x \to 0} g(x)}, g(x) \neq 0, \lim_{x \to 0} g(x) \neq 0$
- 4. $(\lim f(x))^n = \lim^n f(x)$

要特别注意的是:

 $\lim f(x), \lim g(x)$ 中两个都不存在 $\Rightarrow \lim f(x) \pm \lim g(x)$ 可能存在.

 $\lim f(x), \lim g(x)$ 中一个存在, 另一个不存在 $\Rightarrow \lim f(x) \pm g(x)$ 一定不存在.

基本极限

要牢记以下的基本极限:

•
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

•
$$\lim_{x \to \infty} \sqrt[x]{x} = 1$$

•
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

•
$$\lim_{x \to 0} \frac{\alpha^x - 1}{x} = \ln \alpha (\alpha > 1)$$

$$\bullet \lim_{x \to 0} \frac{\alpha^{x} - 1}{x} = \ln \alpha (\alpha > 1)$$

$$\bullet \lim_{x \to 0} \frac{a_{m} x^{m} + a_{m-1} x^{m-1} + \dots + a_{0}}{b_{n} x^{n} + b_{n-1} x^{n-1} + \dots + b_{0}} = \begin{cases} \frac{a_{m}}{b_{n}}, & m = n \\ 0, & m > n \\ \infty, & m < n \end{cases}$$

•
$$\lim_{n\to\infty} x^n = \begin{cases} 0, & |x|<1\\ \infty, & |x|>1\\ 1, & x=1\\ \text{不存在}, & x=-1 \end{cases}$$

•
$$\lim_{n \to \infty} e^{nx} = \begin{cases} 0, & x < 0 \\ +\infty, & x > 0 \\ 1, & x = 0 \end{cases}$$

等价无穷小

常用的等价无穷小

- $\sin x \sim x$
- $\tan x \sim x$
- $\arcsin x \sim x$
- $\arctan x \sim x$

等价无穷小替换的原则

设
$$f(x) \sim \alpha, g(x) \sim \beta$$

1. 乘除关系可以直接替换

•
$$\ln(1+x) \sim x$$

•
$$e^x - 1 \sim x$$

•
$$(1+x)^{\alpha}-1\sim \alpha x$$

•
$$\alpha^x - 1 \sim x \ln \alpha$$

第三章 函数极限

2. 加减关系需要满足:

$$\begin{split} &\lim \tfrac{\alpha}{\beta} = A \neq 1 \Rightarrow f(x) - g(x) \sim \alpha - \beta \\ &\lim \tfrac{\alpha}{\beta} = A \neq -1 \Rightarrow f(x) + g(x) \sim \alpha + \beta \end{split}$$

加减关系的条件换一句话说就是:替换后加减的结果不能为 0.

泰勒公式

常用的泰勒公式

• $\sin x = x - \frac{x^3}{3!} + o(x^3)$

• $\tan x = x + \frac{x^3}{3!} + o(x^3)$

• $\cos x = 1 - \frac{x^2}{2!} + o(x^2)$

• $\arcsin x = x + \frac{x^3}{3!} + o(x^3)$

• $\arctan x = x - \frac{x^3}{3!} + o(x^3)$

 $\bullet \ e^x - 1 = x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$

• $\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)$

• $(1+x)^{\alpha} - 1 = \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + o(x^3)$

20

要注意到, 泰勒公式其实和无穷小有很大的相通性.

洛必达法则

洛必达法则在前面已经介绍过,不再赘述. 七种不定式几乎都可以用洛必达做.

单调有界准则

单调有界准则常常用于求数列的极限, 步骤是:

- 1. 证明数列有界
- 2. 证明数列单调
- 3. 当 $n \to \infty$ 时, $x_n = x_{n+1} = x_{n-1}$, 将关系式中的 x_n, x_{n-1}, x_{n+1} 全部换成 a, 求解 a 就是极限注意先后顺序, 先证明有界, 再证明单调.

夹逼定理

夹逼定理在前面已经介绍过,不再赘述. 常常会用到放缩法.

定积分的含义

$$\int_0^1 f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$$

其核心是提取公因子 $\frac{1}{n}$, 然后将其余部分化为 $\sum_{k=1}^{n} f(\frac{k}{n})$.

3.2.3 求解函数极限(七种不定式的计算)

七种不定式中, 最基础的是 $\frac{0}{0},\frac{\infty}{\infty}$. 其次是 $\infty-\infty,0\cdot\infty$, 其中后者可以细分为 $0^0,1^\infty,\infty^0$.

0 型

三种方法:

- 1. 等价无穷小替换: 要注意加减时候等价无穷小替换的规则 (结果不能为 0)
- 2. 泰勒公式替换: 无穷小的阶数一定要和分母的阶数保持一致
- 3. 洛必达法则

∞ 型

两种方法:

- 1. 洛必达法则
- 2. 分母分子同处以最高阶的无穷大

$\infty - \infty$ 型

三种方法:

- 1. 分式差: 将其化为 ∞ ∞
- 2. 根式差: 将根式有理化
- 3. 提取无穷因子: 将无穷因子作为一个整体做变量代换

$0 \cdot \infty$ 型

直接化为 $\frac{0}{0}$ 型或者 $\frac{\infty}{\infty}$ 型.

1∞ 型

如果想慢慢算, 可以用 exp 做, 如果不想算, 直接用公式:

若
$$\lim \alpha(x) = 0$$
, $\lim \beta(x) = \infty$, $\lim \alpha(x)\beta(x) = A$ 则 $\lim (1 + \alpha(x))^{\beta(x)} = e^A$

$\infty^0,0^0$ 型

可以转为为 exp 形式.

第四章 函数的连续和间断

4.1 基础知识

4.1.1 连续的定义

设函数 f(x) 在点 x_0 的某一邻域内有定义,且有 $\lim_{x\to x_0} f(x) = f(x_0)$,则称函数 f(x) 在点 x_0 处连续.

左连续和右连续

1. 左连续: $\lim_{x \to x_0^-} f(x) = f(x_0)$

2. 右连续: $\lim_{x \to x_0^+} f(x) = f(x_0)$

充要条件

极限存在 (左极限 = 右极限) 且等于函数在这个点的函数值:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

4.1.2 间断点的定义

1. 第一类间断点: 左导数和右导数都存在

(a) 可去间断点 (左导数 = 右导数): $\lim_{x \to x_0} f(x) = A \neq f(x_0)$

(b) 跳跃间断点 (左导数 \neq 右导数): $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$

2. 第二类间断点: 左导数和右导数至少有一个不存在

(a) 无穷间断点: $\lim_{x \to x_0} f(x) = \infty$

(b) 振荡间断点: $\lim_{x \to x_0} f(x)$ 振荡不存在

4.2 习题

4.2.1 求间断点

求间断点的步骤:

- 1. 找间断点: 无定义点, 绝对值函数分界点, 分段函数分段点
- 2. 求找到点的左极限和右极限和函数在该点的值
- 3. 判定间断点的类型

第五章 一元函数微分学(代数)

5.1 基础知识

5.1.1 导数的定义

导数是函数增量 Δy 与自变量增量 Δx 在 $\Delta x \to 0$ 的时候的比值, 即:

$$f'(x_0) = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = \left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x = x_0}$$

f(x) 在 x_0 处可导 \Leftrightarrow f(x) 在 x_0 处导数存在 \Leftrightarrow $f'(x_0) = A \Leftrightarrow f(x)$ 在 x_0 处可微.

单侧导数

- 1. 左导数: $f'_{-}(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$
- 2. 右导数: $f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$

充要条件

函数 f(x) 在点 x_0 可导的充要条件是左导数 $f'_-(x_0)$ 和右导数 $f'_+(x_0)$ 存在且相等.

5.1.2 微分的定义

设函数 f(x) 在点 x_0 的某邻域内有定义, 且 $x_0 + \Delta x$ 在该邻域内, 函数的增量 Δy 有:

$$\Delta y = A\Delta x + o(\Delta x)$$

其中, $o(\Delta x)$ 是在 $\Delta \to 0$ 时比 Δ 更高阶的无穷小, 则称 f(x) 在点 x_0 处可微, 并称 $A\Delta x$ 为 f(x) 在点 x_0 处的微分.

5.1.3 导数和微分的计算

四则运算

若以下函数可导,则:

- 1. 和/差的导数
 - (a) $[u(x) \pm v(x)]' = [u'(x) + v'(x)]$
 - (b) $d[u(x) \pm v(x)] = d[u(x)] \pm d[v(x)]$
- 2. 积的导数
 - (a) [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)

- (b) d[u(x)v(x)] = d[u(x)]v(x) + d[v(x)]u(x)
- 3. 商的导数

$$\begin{array}{l} \text{(a)} \ \ [\frac{u(x)}{v(x)}]' = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}, v(x) \neq 0 \\ \text{(b)} \ \ \mathrm{d}[\frac{u(x)}{v(x)}] = \frac{v(x)\mathrm{d}u(x) - u(x)\mathrm{d}v(x)}{[v(x)]^2}, v(x) \neq 0 \end{array}$$

(b)
$$d\left[\frac{u(x)}{v(x)}\right] = \frac{v(x)du(x) - u(x)dv(x)}{[v(x)]^2}, v(x) \neq 0$$

分段函数的导数

设函数
$$f(x) = \begin{cases} f_1(x), x \geq x_0 \\ f_2(x), x < x_0 \end{cases}$$
则 $f'_+(x_0) = \lim_{x \to x_0^+} \frac{f_1(x) - f(x_0)}{x - x_0}, f'_-(x_0) = \lim_{x \to x_0^-} \frac{f_2(x) - f(x_0)}{x - x_0},$ 根据 $f'_+(x_0) \stackrel{?}{\to} f'_-(x_0)$ 来判定 $f'(x_0)$

复合函数的导数

设 u = g(x) 在点 x 处可导, y = f(u) 在点 u = g(x) 可导, 则

$$f[g(x)]' = f'[g(x)]g'(x)$$
$$df[g(x)] = f'[g(x)]g'(x)dx$$

微分形式的不变性: 无论 u 是中间变量还是自变量, dy = f'(x)du 都成立.

反函数的导数

设
$$y=f(x)$$
 可导, 且 $f'(x)\neq 0$, 则存在反函数 $x=\varphi(y)$, 且 $\frac{\mathrm{d}x}{\mathrm{d}y}=\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$, 即 $\varphi'(y)=\frac{1}{f'(x)}$

参数方程的导数

设函数 f(x) 由参数方程 $f(x) = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ 确定, 其中 t 是参数, 且 $\varphi(t), \psi(t)$ 均对 t 可导, $\varphi'(t) \neq 0$, 则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{\psi'(t)}{\varphi'(t)}$$

隐函数求导法

设函数 y = f(x) 是由方程 F(x,y) = 0 确定的可导函数, 则

- 1. 方程 F(x,y) = 0 两边对自变量 x 进行求导, 将 y 看作中间变量, 得到一个关于 y' 的方程
- 2. 解该方程便可求出 y'

对数求导法

对于多项相乘, 相除, 开方, 乘方的式子, 一般先取对数再求导. 设 y = f(x)(f(x) > 0)

- 1. 等式两边取对数, 得 $\ln y = \ln f(x)$
- 2. 两边对自变量 x 求导, 将 y 看作中间变量, 得到一个关于 y' 的方程
- 3. 解该方程便可求出 y'

幂指函数求导法

对于 $u(x)^{v(x)}(u(x) > 0, v(x)$ 不恒为1), 可以将上式先化成指数函数:

$$u(x)^{v(x)} = e^{v(x)\ln u(x)}$$

然后, 对上式进行求导,

$$[u(x)^{v(x)}]' = [e^{v(x)\ln u(x)}]' = u(x)^{v(x)}[v'(x)\ln u(x) + v(x)\frac{u'(x)}{u(x)}]$$

高阶导数

求高阶导数主要有三种方法:

1. 归纳法

逐次求导,探索规律,得出通式.

2. 莱布尼茨公式

设 u(x), v(x) 均 n 阶可导, 则:

$$\begin{split} &(u\pm v)^{(n)}=u^{(n)}\pm v^{(n)}\\ &(uv)^{(n)}=u^{(n)}v+\mathbf{C}_n^1u^{(n-1)}v'+\mathbf{C}_n^2u^{(n-2)}v''+\cdots+\mathbf{C}_n^ku^{(n-k)}v^{(k)}+\cdots+\mathbf{C}_n^{n-1}u'v^{(n-1)}+uv^{(n)} \end{split}$$

- 一般见到两个函数的乘积要求导,直接用莱布尼茨公式即可.
- 3. 泰勒公式

变限积分求导公式

设 $F(x) = \int_{\varphi_1(x)}^{\varphi_2(x)} f(t) dt$, 其中 f(x) 在 [a,b] 上连续, 可导函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的值域在 [a,b] 上, 则在函数 $\varphi_1(x)$ 和 $\varphi_2(x)$ 的公共定义域上, 有:

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d}t \right] = f[\varphi_2(x)] \varphi_2'(x) - f[\varphi_1(x)] \varphi_1'(x)$$

基本求导公式

•
$$(x_{\alpha})' = \alpha x^{\alpha - 1} (\alpha 为常数)$$

• $(e^x)' = e^x$

• $(\ln |x|)' = \frac{1}{x}$

• $(\log_a x)' = \frac{1}{x \ln a} (a > 0, a \neq 1)$

• $(\sin x)' = \cos x$

• $(\cos x)' = -\sin x$

• $(\tan x)' = \sec^2 x$

• $(\cot x)' = -\csc^2 x$

•
$$(\sec x)' = \sec x \tan x$$

•
$$(\csc x)' = -\csc x \cot x$$

•
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

•
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

•
$$(\arctan x)' = \frac{1}{1+x^2}$$

•
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

•
$$[\ln(x+\sqrt{x^2+1})]' = \frac{1}{\sqrt{x^2+1}}$$

•
$$[\ln(x+\sqrt{x^2-1})]' = \frac{1}{\sqrt{x^2-1}}$$

第六章 一元函数微分学(几何)

该章的内容可以概括为"三点两性一线".

6.1 基础知识

6.1.1 三点

一点:极值点

若存在 x_0 的某个邻域, 使得在该邻域内任意一点 x, 均有:

$$f(x) \le f(x_0)(\vec{ x}f(x) \ge f(x_0))$$

成立,则称 x_0 为 f(x) 的极大值点 (或极小值点), $f(x_0)$ 为 f(x) 的极大值 (或极小值).

极值点的必要条件:

 x_0 为极值点 \Rightarrow 设 f(x) 在 $x = x_0$ 处可导, 则 $f'(x_0) = 0$.

极值点的充分条件:

- 1. 根据一阶导数判断: f(x) 在 $x=x_0$ 的某邻域内一阶可导 左邻域内 f'(x)<0,右邻域内 $f'(x)>0 \Rightarrow x_0$ 为极小值点 左邻域内 f'(x)>0,右邻域内 $f'(x)<0 \Rightarrow x_0$ 为极大值点
- 2. 根据二阶导数判断: f(x) 在 $x=x_0$ 的某邻域内二阶可导, 且 $f'(x_0)=0, f''(x_0)\neq 0$ $f''(x_0)>0\Rightarrow x_0$ 为极小值点 $f''(x_0)<0\Rightarrow x_0$ 为极大值点
- 3. 根据 n 阶导数判断: f(x) 在 $x=x_0$ 的某邻域内 n 阶可导,且 $f^{(m)}(x_0)=0 (m=1,2,...,n-1), f^{(n)}(x_0)\neq 0 \ (n\geq 2)$ 当 n 为偶数且 $f^{(n)}(x_0)>0\Rightarrow x_0$ 为极小值点 当 n 为偶数且 $f^{(n)}(x_0)<0\Rightarrow x_0$ 为极大值点
 - 1. 对于定义域为 [a,b] 的函数, 极值点只能在 (a,b) 上, 定义域的两端点不可能是极值点 (根据极值的定义)
 - 2. 对于定义域为 [a,b] 的函数, 如果函数的最大值 (最小值) 在 (a,b) 上取得, 则函数在该点一定取得极大值 (极小值)

二点: 最值点

设 x_0 为 f(x) 定义域内一点, 若对于 f(x) 的定义域内任意一点 x, 均有:

$$f(x) \le f(x_0)(\vec{x}f(x) \ge f(x_0))$$

成立, 则称 $f(x_0)$ 为 f(x) 的最大值 (或最小值).

求闭区间 [a,b] 上的最值点

- 1. 求出 f(x) 在 (a,b) 内的可疑点: 驻点和不可导点, 求出这些可疑点处的函数值
- 2. 求出端点的函数值
- 3. 比较上述所有求得的函数值, 其中最大值对应的点就是最大值点, 最小值对应的点就是最小值点

求开区间 (a,b) 上的最值点

- 1. 求出 f(x) 在 (a,b) 内的可疑点: 驻点和不可导点, 求出这些可疑点处的函数值
- 2. 求出两端的单侧极限, 若 a,b 为有限常数, 则求 $\lim_{x\to a^+} f(x)$ 与 $\lim_{x\to b^-} f(x)$
- 3. 比较上述所有求得的函数值, 确定最大值点最小值点 (可能没有)

三点: 拐点

连续曲线的凹弧和凸弧的分界点成为该曲线的拐点.

拐点的必要条件:

 x_0 为拐点 \Rightarrow 设 f(x) 在 $x = x_0$ 处二阶可导, 则 $f''(x_0) = 0$

拐点的充分条件:

- 1. 根据二阶导数判断: f(x) 在 $x=x_0$ 的某邻域内二阶可导, 该点左/右邻域内 f''(x) 变号 $\Rightarrow x_0$ 为拐点
- 2. 根据三阶导数判断: f(x) 在 $x = x_0$ 的某邻域内三阶可导, 且 $f''(x_0) = 0, f'''(x_0) \neq 0 \Rightarrow x_0$ 为拐点
- 3. 根据 n 阶导数判断: f(x) 在 $x=x_0$ 的某邻域内 n 阶可导, 且 $f^{(m)}(x_0)=0 (m=2,...,n-1), f^{(n)}(x_0)\neq 0$ (n 为奇数) $\Rightarrow x_0$ 为拐点

6.1.2 两性

一性: 单调性

若 y=f(x) 在区间 I 上有 f'(x)>0,则 y=f(x) 在 I 上严格单调增加; 若 y=f(x) 在区间 I 上有 f'(x)<0,则 y=f(x) 在 I 上单调减小.

二性: 凹凸性

设函数 f(x) 在区间 I 上连续, 如果对于 I 上不同的两点 x_1, x_2 , 恒有:

$$f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2}$$

则称 y = f(x) 在 I 上的图形是凹的 (或凹弧). 如果恒有:

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$

则称 y = f(x) 在 I 上的图形是凸的 (或凸弧).

判别凹凸性

设函数 f(x) 在 I 上二阶可导,则:

- 1. 若在 $I \perp f''(x) > 0 \Rightarrow f(x)$ 在 I 上的图形是凹的
- 2. 若在 $I \perp f''(x) < 0 \Rightarrow f(x)$ 在 I 上的图形是凸的

6.1.3 一线

一线: 渐近线

铅锤渐近线

若
$$\lim_{x \to x_0^+} f(x) = \infty$$
(或 $\lim_{x \to x_0^-} f(x) = \infty$) $\Rightarrow x = x_0$ 为一条铅锤渐近线.

水平渐近线

若
$$\lim_{x \to +\infty} f(x) = y_1 \Rightarrow y = y_1$$
 为一条水平渐近线;

若
$$\lim_{x \to \infty} f(x) = y_2 \Rightarrow y = y_2$$
 为一条水平渐近线

若
$$\lim_{x \to +\infty} f(x) = y_1 \Rightarrow y = y_1$$
 为一条水平渐近线; 若 $\lim_{x \to -\infty} f(x) = y_2 \Rightarrow y = y_2$ 为一条水平渐近线; 若 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = y_0 \Rightarrow y = y_0$ 为一条水平渐近线;

斜渐近线

若
$$\lim_{x \to +\infty} \frac{f(x)}{x} = a_1$$
, $\lim_{x \to +\infty} [f(x) - a_1 x] = b_1 \Rightarrow y = a_1 x + b_1$ 是曲线 $y = f(x)$ 的一条斜渐近线.

若
$$\lim_{x \to -\infty} \frac{f(x)}{x} = a_2$$
, $\lim_{x \to -\infty} [f(x) - a_2 x] = b_2 \Rightarrow y = a_2 x + b_2$ 是曲线 $y = f(x)$ 的一条斜渐近线.

若
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} = a$$
, $\lim_{x \to +\infty} [f(x) - ax] = \lim_{x \to -\infty} = b \Rightarrow y = ax + b$ 是曲线 $y = f(x)$ 的一条斜渐近线.

习题 6.2

第七章 中值定理

这一章要掌握十大定理.

7.1 基础知识

7.1.1 有界与最值定理

 $m \le f(x) \le M$, 其中, m, M 分别为 f(x) 在 [a, b] 上的最小值和最大值.

7.1.2 介值定理

当 $m \le \mu \le M$ 时, 存在 $\xi \in [a,b]$, 使得 $f(\xi) = \mu$.

7.1.3 平均值定理

当 $a < x_1 < x_2 < \dots < x_n < b$ 的时候, 在 $[x_1, x_2]$ 内至少存在一点 ξ , 使得

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$$

7.1.4 零点定理

当 $f(a) \cdot f(b) < 0$ 时, 存在 $\xi \in (a,b)$, 使得 $f(\xi) = 0$.

7.1.5 费马定理

设 f(x) 满足在点 x_0 处①可导②取极值, 则 $f'(x_0) = 0$.

7.1.6 罗尔定理

设 f(x) 满足①在 [a,b] 上连续②在 (a,b) 内可导③f(a) = f(b), 则存在 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$.

7.1.7 拉格朗日中值定理

设 f(x) 满足①在 [a,b] 上连续②在 (a,b) 内可导,则存在 $\xi \in (a,b)$,使得 $f(b)-f(a)=f'(\xi)(b-a)$ 或 $f'(\xi)=\frac{f(b)-f(a)}{b-a}$.

7.1.8 柯西中值定理

设 f(x) 满足①在 [a,b] 上连续②在 (a,b) 内可导③ $g'(x) \neq 0$,则存在 $\xi \in (a,b)$,使得 $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

第七章 中值定理 30

7.1.9 泰勒公式

带拉格朗日余项的泰勒公式

设 f(x) 在点 x_0 的某个邻域内 n+1 阶的导数存在,则对该邻域内的任意点 x,有:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

其中 ξ 介于 x, x_0 之间.

带佩亚诺余项的泰勒公式

设 f(x) 在点 x_0 处 n 阶可导,则存在 x_0 的一个邻域,对于该邻域内的任意点 x,有:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o((x - x_0)^n)$$

当 $x_0 = 0$ 时的泰勒公式成为麦克劳林公式.

1.
$$f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}$$
, 其中 ξ 介于 0 和 x 之间

2.
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

7.1.10 积分中值定理

设 f(x) 在 [a,b] 上连续, 则存在 $\xi \in [a,b]$, 使得:

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

7.2 习题

第八章 零点问题与微分不等式

8.1 基础知识

8.1.1 零点问题

零点定理(主要用于证明根的存在性)

若 f(x) 在 [a,b] 上连续, 且 f(a)f(b) < 0, 则 f(x) = 0 在 (a,b) 内至少有一个根.

单调性(主要用于证明根的唯一性)

若 f(x) 在 (a,b) 内单调,则 f(x)=0 在 (a,b) 内至多有一个根,这里 a,b 可以看作是有限数,也可以是无穷大.

罗尔原话

若 $f^{(n)}(x) = 0$ 至多有 k 个根, 则 f(x) = 0 至多有 k + n 个根.

实系数奇次方程至少有一个实根

8.1.2 用函数性态证明不等式

- 1. 若有 $f'(x) \ge 0, a < x < b,$ 则有 $f(a) \le f(x) \le f(b)$
- 2. 若有 $f''(x) \le 0$, a < x < b, 则有 $f'(x) \le f'(x) \le f'(b)$ 当 f'(a) > 0 时, $f'(x) > 0 \Rightarrow f(x)$ 单调增加 当 f'(b) < 0 时, $f'(x) < 0 \Rightarrow f(x)$ 单调减小
- 3. 设 f(x) 在 I 内连续,且有唯一的极值点 x_0 ,则 当 x_0 为极大值点时, $f(x_0) \ge f(x)$ 当 x_0 为极小值点时, $f(x_0) \le f(x)$
- 4. 若有 $f''(x) \ge 0$, a < x < b, f(a) = f(b) = 0, 则有 f(x) < 0

用常数变量化证明不等式

如果欲证的不等式中都是常数,则可以将其中一个或者几个常数变量化,再利用上面所述的导数工具证明.

用中值定理证明不等式

主要用拉格朗日中值定理或者是泰勒公式.

8.2 习题

第九章 一元函数积分学(代数)

9.1 基础知识

9.1.1 概念

不定积分

原函数和不定积分

设函数 f(x) 定义在某区间 I 上,若存在可导函数 F(x),对于该区间上的任意一点都有 F'(x) = f(x) 成立,则称 F(x) 是 f(x) 在区间 I 上的一个原函数,称 $\int f(x) dx = F(x) + C$ 为 f(x) 在区间 I 上的不定积分.

原函数存在定理

- 1. 连续函数 f(x) 必有原函数 f(x)
- 2. 含有第一类间断点和无穷间断点的函数 f(x) 包含该间断点的区间必没有原函数 F(x).