Kompleksne mreže

2. predavanje

Svojstva mreža

- Sličnost među susjedima
- Najkraći put koji povezuje čvorove
- Trokuti koji povezuju zajedničke susjede

Socijalne mreže

- Svojstva čvorova:
 - Godine
 - Spol
 - Nacionalnost
 - Lokacija
 - Seksualne preferencije
 - Teme interesa

Cambridge Analytica

- Ocean model:
 - Openness to experience, conscientiousness, extraversion, agreeableness and neuroticism.
- Inicijalni kviz
- Informacije o susjedima
- 11 US država

Asortativnost

- Povezani čvorovi imaju slična svojstva asortativnost
- Primjeri:
 - Rođaci mogu živjeti blizu jedni drugih
 - Prijatelji mogu dijeliti iste interese
- Predviđanje osobnih kvaliteta poznajući susjedstvo:
 - Facebook seksualna orijentacija
 - Twitter/X– političke preferencije

Asortativnost

Veća vjerojatnost povezivanje čvorova iste boje

Razlozi za pojavu asortativnosti

- Povezivanje sa sličnima homofilija
- S vremenom postajemo sličniji (socijalni utjecaj)
- Ljudi su skloni imitiranju drugih
- Eho komore zatvaranje u krugove sličnih
- Sklonost potvrđivanju (engl. confirmation bias)

Asortativnost stupnja

- Asortativna mreža
 - Čvorovi s velikim stupnjem su povezani sa sličnima.
 - Čvorovi s niskim stupnjem su povezani sa sličnim
- Čvorovi s velikim stupnjem (hubovi)
- Jezgra periferija strategija
- Disortativne mreže (Internet, biološke mreže)

Mjere asortativnosti

- Koeficijent asortativnosti Pearsonova korelacija između stupnjeva para povezanih čvorova
- Srednji stupanj susjeda čvora i

$$k_{nn}(i) = \frac{1}{k_i} \sum_{j} a_{ij} k_j$$

- $a_{ij} = 1$, ako su *i* i *j* susjedi, inače 0
- $\langle k_{nn}(k) \rangle$ k najbližih susjeda za stupanj k
- Ako $\langle k_{nn}(k) \rangle$ raste s k asortativna mreža

Šetnja, staza, put, ciklus

- **Šetnja** konačan ili beskonačan slijed veza koja povezuje slijed čvorova
- Staza šetnja u kojoj svakom vezom prolazimo jedanput
- Put staza u kojoj svakim čvorom prolazimo jedanput
- Ciklus put koji počinje i završava istim čvorom

Eulerov put/staza

- Zadatak Proći svih sedam mostova u Konigsbergu točno jedanput
- Eulerova staza postoji ako:
 - Svi čvorovi osim početnog i krajnjeg imaju paran stupanj

Udaljenost između čvorova u mreži

- Najkraći put
 - Minimalan broj veza koje treba proći u putu između dva čvora

Prosječan najkraći put

- Neusmjerena, netežinska mreža
 - $\langle l \rangle = \frac{\sum_{i,j} l_{ij}}{\binom{N}{2}} = \frac{2 \sum_{i,j} l_{ij}}{N(N-1)}$, gdje je l_{ij} najkraći put između čvorova i i j, a N broj cvorova
- Usmjerena, netežinska mreža
 - $\langle l \rangle = \frac{\sum_{i,j} l_{ij}}{N(N-1)}$
- Neusmjerena mreža u kojoj ne postoje neki putovi

•
$$\langle l \rangle = \left(\frac{\sum_{i,j} \frac{1}{l_{ij}}}{\binom{N}{2}} \right)^{-1}$$

Diametar mreže

- Maksimalan najkraći put među svim parovima čvorova
- $l_{max} = \max_{i,j} l_{ij}$
- Više komponenti mreže
 - Maksimalna vrijednost diametara pojedinih komponenti

Povezanost mreže i komponente

- Povezana mreža
 - Mogućnost dosizanja svakog čvora iz bilo kojeg čvora
- Nepovezana mreža
 - Više od jedne komponente
 - Komponenta podmreža od jednog ili više čvorova gdje postoji put između bilo kojeg para čvorova
 - Gigantska komponenta najveća povezana komponenta u mreži

Komponente

- Bojama označene komponente
- Usmjerena mreža:
 - Slabo povezana komponenta kada ignoriramo usmjerenost (gigantska različite nijanse plave)
 - Strogo povezana komponenta (najveća tamna plava)

Stabla

- Povezane mreže koje bi brisanje bilo koje veze bi razdvojilo mrežu na dvije komponente
- L = N 1, nema ciklusa
- Na slici dva prikaza stabla sa čvorovima a i b kao korijenima stabala
- Stabla imaju hijerarhiju

Pronalazak najkraćeg puta - BFS

Breadth first search

- Nerekurzivni algoritam za BFS grafa G krenuvši od vrha v:
 - procedura BFS (G, i) označi i kao obiđen ispiši i
 - stavi i u red Q
 - dok ima elemenata u redu Q
 - uzmi i iz reda Q
 - ullet za sve neobiđene vrhove j susjedne vrhu i
 - ako j nije obiđen
 - ullet označi j kao obiđen
 - ispiši j
 - stavi j u red Q
- Složenost Θ(|E|+|V|)

BFS – najkraća udaljenost

Krenemo s početnim čvorom s i stavimo ga u red Q. Njegova udaljenost je l(s,s)=0, a za sve ostale čvorove postavimo -1. Inicijaliziramo stablo najkraćeg puta sa čvorovima bez veza.

U svakoj iteraciji posjetimo slijedeći čvor u redu.

Za svakog neobiđenog susjeda i od i ponavljamo ova tri koraka

- 1. Stavimo *j* u red *Q*.
- 2. Postavimo udaljenost j od s na l(s,j) = l(s,i) + 1.
- 3. Dodamo direktnu vezu $(i \rightarrow j)$ u stablo najkraćeg puta

Put pretražimo unatrag od odredišnog do izvorišnog čvora (stablo)

Network	Nodes (N)	Links (L)	Average path length $(\langle \ell \rangle)$	Clustering coefficient (C)
Facebook Northwestern Univ.	10,567	488,337	2.7	0.24
IMDB movies and stars	563,443	921,160	12.1	0
IMDB co-stars	252,999	1,015,187	6.8	0.67
Twitter US politics	18,470	48,365	5.6	0.03
Enron email	87,273	321,918	3.6	0.12
Wikipedia math	15,220	194,103	3.9	0.31
Internet routers	190,914	607,610	7.0	0.16
US air transportation	546	2,781	3.2	0.49
World air transportation	3,179	18,617	4.0	0.49
Yeast protein interactions	1,870	2,277	6.8	0.07
C. elegans brain	297	2,345	4.0	0.29
Everglades ecological food web	69	916	2.2	0.55

Socijalna udaljenost

- Očekivanje koliko su dva čvora u mreži udaljena
- U mreži cesta i energentskog napajanja mogu biti jako daleko
- Mreža koautorstva Erdosov broj

Six degrees of Kevin Bacon

Mali svijet

- Otkrivanje zajedničkih prijatelja
- "Svijet je mali!!"
- Socijalne mreže imaju mali diametar i još manji prosječni najkraći put
- 6 stupnjeva razdvojenosti

Stanley Milgram

- 160 učesnika iz Nebraska i Kanzasa su slali pismo do ciljane osobe u Massachusettsu
- Pismo je slano nekom koga znamo i tko bi mogao znati ciljanu osobu
- 42 pisma (26 %) došla su do cilja
- Prosječni najkraći put je bio 6
- Facebook 2011 4.74
- Kratak put $\langle l \rangle = \log N$
- *N* veličina mreže

Prijateljev prijatelj

- Primjer ako su Andrej i Zoran prijatelji s Gordanom, vjerojatno su i sami prijatelji
- "Prijatelj moga prijatelja je moj prijatelj"
- Tri prijatelj tvore trokut
- Triada skup od tri čvora kada su svi povezani -> trokut

Trokuti i triade

Koeficijent klasteriranja čvora

- Postotak parova susjeda promatranog čvora koji su međusobno povezani
- Omjer broja trokuta koji uključuju čvor i maksimalan broj trokuta u kojima može sudjelovati

•
$$C(i) = \frac{\tau(i)}{\tau_{max}(i)} = \frac{\tau(i)}{\binom{k_i}{2}} = \frac{2\tau(i)}{k_i(k_i-1)},$$

- $\tau(i)$ broj trokuta koji uključuje i
- $au_{max}(i)$ maksimalan broj trokuta koji uključuje i i njegove susjede k_i
- $k_i > 1$

Koeficijent klasteriranja mreže

$$\bullet \ C = \frac{\sum_{i:k_i > 1} C(i)}{N_{k > 1}}$$

• Čvorovi za koje je k < 2 ne ulaze u računanje prosječno koeficijenta klasteriranja

Primjer koeficijenta klasteriranja

Koeficijent klasteriranja

- Definicija se odnosi samo na neusmjerene mreže
- Za usmjerene potrebno je definirati tipove trokuta
- Socijalne mreže obično imaju velik koeficijent klasteriranja (preporuke)

Watts-Strogatz (1998) – Mali svijet

