AMATH 353: Homework 7 Due April, 23 2018 ID: 1064712

Trent Yarosevich

April 23, 2018

Instructor: Jeremy Upsal

Part 1.) Since f_0 is an odd function, we have:

$$f_0(z) = -f_0(-z)$$

$$f'_0(z) = f'_0(-z)$$

$$f''_0(z) = -f''_0(-z)$$
(1)

First we extend the problem to the entire real line and define f_0 and g_0 as follows:

$$f_0(x) = \begin{cases} f(x), x > 0 \\ -f(-x), x < 0 \end{cases}$$

and

$$g_0(x) = \begin{cases} g(x), x > 0 \\ -g(-x), x < 0 \end{cases}$$

This gives

$$u(x,t) = \frac{1}{2}(f_0(x-ct) + f(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g_0(s)ds$$
 (2)

Now the side conditions, with the integral of g_0 being zero because it is a definite integral across a zero domain:

$$u(x,0) = \frac{1}{2}(f_0(x) + f_0(x)) + 0 = f_0(x)$$
(3)

And since solutions are restricted to $x \ge 0$ and there is no t term we have $f_0(x) = f(x)$.

Now consider the following with $G_0(s) = \int g_0(s) ds$:

$$u_{t}(x,t) = \frac{1}{2}(-cf_{0,t}(x-ct) + cf_{0,t}(x+ct)) + \frac{1}{2c}\frac{\partial}{\partial t}(G_{0}(x+ct) - G_{0}(x-ct))$$

$$u_{t}(x,t) = \frac{1}{2}(-cf_{0,t}(x-ct) + cf_{0,t}(x+ct)) + \frac{1}{2c}(cg_{0}(x+ct) + cg_{0}(x-ct))$$

$$u_{t}(x,0) = \frac{1}{2}(-cf'_{0}(x) + cf'_{0}(x)) + \frac{1}{2c}(cg_{0}(x) + cg_{0}(x))$$

$$u_{t}(x,0) = 0 + g_{0}(x)$$

$$(4)$$

And again because of the restricted x and t = 0 we get $u_t(x, 0) = g_0(x) = g(x)$.

Lastly for the BC we have the following:

$$u(0,t) = \frac{1}{2}(f_0(-ct) + f_0(ct)) + \frac{1}{2c}(G_0(ct) - G_0(-ct))$$
 (5)

And because f_0 is an odd function, $f_0(-ct) = -f_0(ct)$, and because G_0 is the integral of an odd function, I am assuming it must be an even function¹, so $G_0(-ct) = G_0(ct)$ yielding:

$$u(0,t) = \frac{1}{2}(-f_0(ct) + f_0(ct)) + \frac{1}{2c}(G_0(ct) - G_0(ct)) = 0$$
 (6)

Part 2

$$f_0(x) = \begin{cases} -\cos(x) + 1, x > 0\\ \cos(x) - 1, x < 0 \end{cases}$$

and

$$g_0(x) = \begin{cases} xe^{-x^2}, x > 0\\ xe^{-x^2}, x < 0 \end{cases}$$

Note that xe^{-x^2} is the odd extension of itself and $\int g_0(s)ds = -\frac{1}{2}e^{-(s)^2}$ (constant of integration is zero), and $c = \sqrt{81} = 9$. From this we get the solution:

$$u(x,t) = \frac{1}{2}(f_0(x-9t) + f_0(x+9t)) + \frac{1}{36}(-e^{-(x+9t)^2} + e^{-(x-9t)^2})$$
 (7)

 $^{^1\}mathrm{I}$ didn't look all that hard for an authoritative proof of this, but there is one here that my admittedly ignorant self finds convincing: https://math.stackexchange.com/questions/2227677/proof-that-integral-of-odd-function-is-even-function