FFBS

Step 1. Run particle filtering to obatin, $\{x_{1:T}^{1:K}, w_{1:T}^{1:K}\}$

Step 2. Run the following algorithm to obtain M sample realizations and their associated weights $\{\tilde{x}_{1:T}^{1:M}, \tilde{w}^{1:M}\}$

See section 3 in ref

Algorithm 1 (Sample realizations).

- 1. Choose $\widetilde{x}_T = x_T^{(i)}$ with probability $w_T^{(i)}$.
- 2. For t = T 1 to 1:
 - Calculate $w_{t|t+1}^{(i)} \propto w_t^{(i)} f(\widetilde{x}_{t+1}|x_t^{(i)})$ for each $i = 1, \ldots, N$.
 - Choose $\widetilde{x}_t = x_t^{(i)}$ with probability $w_{t|t+1}^{(i)}$.
- 3. $\widetilde{\mathbf{x}}_{1:T} = (\widetilde{x}_1, \widetilde{x}_2, \dots, \widetilde{x}_T)$ is an approximate realization from $p(x_{1:T}|y_{1:T})$.

Note that the weights are computed as follows:

$$p(x_{1:T}|y_{1:T}) = p(x_T|y_{1:T}) \prod_{t=1}^{T-1} p(x_t|x_{t+1:T}, y_{1:T}).$$

Then the weight asccociated with $\tilde{x}_{1:T}$ is $\tilde{w}=w_T^{(i_T)}\prod_{t=T-1}^1 w_{t|t+1}^{t_i}$, where t_i denotes the index of the selected particle.

Step 3.

Method 1, FFBS_score_loss

(In runner_flag.py, set the flag FFBS_score_loss=True)

Compute the surrogate loss as $rac{1}{M}\sum_{i=1}^{M}\log p_{ heta}(ilde{x}_{1:T}^{i},y_{1:T}).$

Then the gradient is $rac{1}{M}\sum_{i=1}^{M}
abla \log p_{ heta}(ilde{x}_{1:T}^{i}, y_{1:T})$

Method 2. ELBO-stype

(In runner_flag.py, set the flag FFBS_score_loss=False)

Compute the surrogate loss as $rac{1}{M}\sum_{i=1}^{M}[\log p_{ heta}(ilde{x}_{1:T}^i,y_{1:T})-\log ilde{w}^i]$

Then directly evaluate the gradient.

Question:

surrogate loss should be computed as $ilde{w}^i \sum_{i=1}^M [\log p_{ heta}(ilde{x}_{1:T}^i, y_{1:T}) - \log ilde{w}^i]$?

But if it is this case, using Jensen's inequality,

$$ilde{w}^i \sum_{i=1}^M [\log p_{ heta}(ilde{x}_{1:T}^i, y_{1:T}) - \log ilde{w}^i] \leq \log \sum_{i=1}^m ilde{w}^i rac{p_{ heta}(ilde{x}_{1:T}^i, y_{1:T})}{ ilde{w}^i}$$

the RHS is just FFBS_score_loss