Fundamentals of Solid State Physics

Preliminary Knowledge

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Preliminary Knowledge

Maths

- Calculus
- Linear algebra
- Probability and statistics

Physics

- Classical mechanics
- Electrodynamics
- Statistical mechanics
- Quantum mechanics

Chemistry

elements, atoms, molecules, bonding, ...

Table of Constants

- Free electron mass
- Planck's constant
- Reduced Planck's constant $\hbar = h/2\pi = 1.05*10^{-34} \text{ J s}$
- Electron charge
- **Energy**
- Avogadro's number
- Boltzmann constant
- Room temperature
- Speed of light in vacuum
- Permittivity of vacuum
- Permeability of vacuum

$$m_e = 9.11*10^{-31} \text{ kg}$$

$$h = 6.63*10^{-34} \text{ J s}$$

$$\hbar = h/2\pi = 1.05*10^{-34} \text{ J s}$$

$$e = 1.6*10^{-19} C$$

$$1 \text{ eV} = 1.6*10^{-19} \text{ J}$$

$$N_{\Delta} = 6.02*10^{23} / \text{mol}$$

$$k_B = 1.38*10^{-23} \text{ J/K}$$

$$T = 300 \text{ K}$$

$$c = 3*10^8 \text{ m/s}$$

$$\varepsilon_0 = 8.85*10^{-12} \text{ F/m}$$

$$\mu_0 = 4\pi^* 10^{-7} \text{ H/m}$$

Optics

visible wavelength: 400-700 nm

Wave Functions

- **Optical / Electromagnetic Wave**

- **Mechanical Wave**
- **Electron Wave**

plane wave
$$F(x,t) = Ae^{i(kx-\omega t + \varphi)}$$

A - amplitude

k - wave vector (m⁻¹)

 ω - angular frequency (Hz)

 φ - phase

 ν - frequency (Hz)

T - period (s)

 λ - wavelength (m)

$$\omega = 2\pi v$$

$$\omega = 2\pi \nu$$

$$T = \frac{1}{\nu}$$

$$k = \frac{2\pi}{\lambda}$$

Photons

• Photon Energy
$$E = \hbar \omega = h \nu = h \frac{c}{\lambda}$$

Photon Momentum

$$p = \frac{E}{c} = \frac{h}{\lambda}$$

Optical Wavelength

$$\lambda = \frac{hc}{E} \longrightarrow \lambda(\text{nm}) = \frac{1240}{E(\text{eV})}$$

E (eV)	λ (nm)
1	1240
2	620
3	413

Electrons in Electromagnetic Fields

Lorentz force

Hall Effect 霍尔效应

- A current flows through a conductor
- V_H is generated when applying B_z

Hall Effect 霍尔效应

- A current flows through a conductor
- V_H is generated when applying B_z

$$V_H = E_y \cdot w$$

$$E_y = R_H \cdot B_z \cdot j_x$$

R_H - Hall coefficient

By definition:

positive charge: $R_H > 0$

negative charge: $R_H < 0$

- Wave-Particle Duality 波粒二象性
- De Broglie Wave 徳布罗意波 / 物质波

$$\lambda = \frac{h}{p}$$

wavelength 波长 $\lambda = \frac{h}{p}$ wavevector 波矢 $k = \frac{2\pi}{\lambda}$

$$k = \frac{2\pi}{\lambda}$$

momentum 动量 $p = mv = \hbar k$

$$p = mv = \hbar k$$

energy 能量
$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

$$\hbar = \frac{h}{2\pi}$$

• Wave function for electrons $\psi(\mathbf{r},t)$

$$\psi(\mathbf{r},t)$$

$$|\psi|^2 = \psi * \cdot \psi$$
 probability at (r, t)

$$\psi(\mathbf{r},t) = \psi(\mathbf{r}) \cdot \xi(t)$$

Schrodinger Equation

$$\hat{H}\psi(\mathbf{r},t) = E\psi(\mathbf{r},t)$$

Schrodinger Equation (time dependent)

$$-i\hbar\frac{\partial}{\partial t}\psi(\mathbf{r},t) = E\psi(\mathbf{r},t) \longrightarrow \left[\xi(t) = \exp\left(-i\frac{E}{\hbar}t\right)\right]$$

Schrodinger Equation (time independent)

$$\hbar = \frac{h}{2\pi}$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r},t) + V(\mathbf{r})\cdot\psi(\mathbf{r},t) = E\psi(\mathbf{r},t)$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Free electrons

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

free electron

$$V(\mathbf{r}) = 0$$

$$k^2 = \frac{2mE}{\hbar^2}$$

$$\longrightarrow \psi(\mathbf{r}) = \sum_{\mathbf{k}} A_{\mathbf{k}} \exp(i\mathbf{k} \cdot \mathbf{r}) \qquad \int_{V} \psi * \cdot \psi d\mathbf{r} = 1$$

$$\int_{V} \psi * \cdot \psi d\mathbf{r} = 1$$

probability = 1

Electron in a box (1D infinite well)

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\cdot\psi(x) = E\psi(x)$$

$$k^2 = \frac{2mE}{\hbar^2}$$

for 0 < x < a

$$\psi(x) = A \exp(ikx) + B \exp(-ikx)$$

$$\begin{cases} V(x) = +\infty, & \text{when } x < 0 \\ V(x) = 0, & \text{when } 0 < x < a \\ V(x) = +\infty, & \text{when } x > a \end{cases}$$

$$\psi(x=0) = \psi(x=a) = 0$$

$$\int_0^a \psi(x) dx = 1$$

Electron in a box (1D infinite well)

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\cdot\psi(x) = E\psi(x)$$

$$k^2 = \frac{2mE}{\hbar^2}$$

1D Harmonic Oscillator

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\cdot\psi(x) = E\psi(x)$$

$$V(x) = \frac{1}{2}Kx^2 = \frac{1}{2}m\omega^2 x^2 \qquad \omega = \sqrt{\frac{K}{m}}$$

$$\omega = \sqrt{\frac{K}{m}}$$

$$n = 0, 1, 2, \dots$$

$$|\psi_n(x) = e^{-\beta x^2/2} \cdot H_n(x)|$$

$$\beta = \frac{\sqrt{Km}}{\hbar}$$

 $H_n(x)$ **Hermite polynomial**

Hydrogen atom

$$V(\mathbf{r}) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{\mathbf{r}}$$

Hydrogen atom

$$V(\mathbf{r}) = -\frac{e^2}{4\pi\varepsilon_0} \frac{1}{\mathbf{r}}$$

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) + V(\mathbf{r})\cdot\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$\psi(r,\theta,\varphi) = R_{nl}(r) \cdot Y_{lm}(\theta,\varphi)$$

$$E_n = -\frac{me^4}{8\varepsilon_0^2 h^2 n^2} = -\frac{13.6 \text{ eV}}{n^2}$$

n, l, m - quantum numbers m_S - spin (+1/2, -1/2)

Hydrogen atom

$$E_n = -\frac{13.6 \,\text{eV}}{n^2}$$

Emissions of atomshave discrete
energy lines

Atoms with Many Electrons

- Quantum Numbers n, l, m, m_s
 - \Box Principal: n = 1, 2, 3, 4, ...
 - □ Angular momentum: I = 0, 1, 2, 3, ... (n-1)
 - Magnetic: m = -I, ..., -1, 0, +1, ... +I
 - □ Spin: $m_s = +1/2, -1/2$

$$\psi(r,\theta,\varphi) = R_{nl}(r) \cdot Y_{lm}(\theta,\varphi)$$

Atoms with Many Electrons

Quantum Numbers n, I, m, m_s

	$s (\ell = 0)$ $m = 0$ s	p ($\ell = 1$)			d (ℓ = 2)				f (ℓ = 3)							
		m = 0 Pz	m	m = ±1		m = ±1		m = ±2		m = 0	m = ±1		m = ±2		m = ±3	
			Px	Py	d₂	d _{xz}	d _{yz}	d _{xy}	d _{x²-y²}	f ₂	f _{x2} 2	fyz²	f _{xyz}	f _{z(x²-y²)}	1x(x2-3y2)	1 _{y(3x²-y²)}
n = 1	1															
n = 2	•		()	0												
n = 3	•	3	60		-	***	8		99							
n = 4	•	2	00		*	*	2		60	*	*	8	*	35	000	00
n = 5	•	3	00	0	*	*	2	(3)	80						•••	
n = 6	•	3	00	•												
n = 7		4.40			2.20											

- Angular momentum: I = 0, 1, 2, 3
- Atomic orbitals: s p d f

Examples

- Hydrogen (H)
 1s¹
- □ Helium (He) 1s²
- □ Lithium (Li) [1s²] 2s¹
- Carbon (C) [1s²] 2s² 2p²
- Neon (Ne) [1s²] 2s² 2p6
- Sodium (Na) [1s² 2s² 2p6] 3s¹
- Silicon (Si) [1s² 2s² 2p⁶] 3s² 3p²

- Maxwell-Boltzmann Distribution 玻尔兹曼分布
 - distinguishable, non-interaction particles: ideal gas, ...
- Bose–Einstein Distribution 玻色-爱因斯坦分布
 - indistinguishable particles
 - Bosons: photons, phonons, ...
 - integer spin
- Fermi-Dirac Distribution 费米-狄拉克分布
 - indistinguishable particles
 - Fermions: electrons, ...
 - half-integer spin
 - □ Pauli exclusion principle (泡利不相容原理)

Maxwell-Boltzmann

At T > 0 K

Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac

- Fermi–Dirac Distribution
 - **□** Fermions: electrons, ...

$$f(E) = \frac{1}{e^{(E-\mu)/k_B T} + 1}$$

f(E) - probability that an energy state E is occupied μ - chemical potential E_F - Fermi energy

 $\mu = E_F$ when T = 0 K

At
$$T = 0$$
 K

$$f(E) = 1$$
 for $E < \mu$
 $f(E) = 0$ for $E > \mu$

Chemistry

Chemistry

- Periodic Table
- Atomic number
- Mass number
 - □ amu / atom
 - □ g/mol

- Avogadro's number N_A
 - \Box 1 mol = 6.022 * 10²³

Chemical Bonding 化学键

- Solids are formed by chemical bonding between atoms
 - Metallic Bonding 金属键
 - **□ Ionic Bonding 离子键**
 - □ Covalent Bonding 共价键
 - □ Van der Waals Bonding 范德华键
 - Hydrogen Bonding 氢键
 - **---**

□ Silicon (Si) [1s² 2s² 2p6] 3s² 3p²

atom

solid

Metallic Bonding 金属键

Positive metal ions in a sea of delocalised electrons

Ionic Bonding 离子键

NaCl

- Na loses an electron Na⁺ (cation)
- □ Cl gains an electron
 □ Cl⁻ (anion)
- Cations and anions are held by electrostatic attractions

Covalent Bonding 共价键

Electron pairs are shared between atoms

Example: Carbon

- Diamond is the hardest material and an insulator
 - all the 4 valence electrons form covalent bonds
- diamond 金刚石

- Graphite is the softest solid and a conductor
 - atoms in each plane form covalent bonds (3 electrons)
 - There is one free electron
 - stacking layers form metallic bonds

Electronegativity (EN) 电负性

- Tendency of an atom to attract a bonding pair of electrons
 - \Box EN(Li) = 1.0 EN(F) = 4.0
- A-B bond usually has mixed bonding properties
 - ¬ similar EN more covalent bonding
 - different EN more ionic bonding

Electronegativity (EN) 电负性

- NaCl has pure ionic bonding
- Silicon has pure covalent bonding
- Solids like GaAs and ZnSe have mixed ionic and covalent bonding

Van der Waals Bonding 范德华键

Attraction energy between neutral molecules / atoms

$$U(r) \propto -\frac{1}{r^6}$$

gecko 壁虎

Hydrogen Bonding 氢键

- A special Van der Waals bond
 - generated by hydrogen

water

protein

Further Reading

- Quantum Mechanics
 - Physical Chemistry by Mortimer, Chap. 14-16
- Atoms and Chemical Bonding
 - Chemistry: The Central Science, Chap. 6, 8
 - https://ocw.mit.edu/courses/earth-atmospheric-andplanetary-sciences/12-108-structure-of-earth-materials-fall-2004/lecture-notes/lec5.pdf

Thank you for your attention