The Farey Fraction Spin Chain in an External Field

Thomas Prellberg¹, Jan Fiala², and Peter Kleban³

 1 Queen Mary, University of London, 2 Central Michigan University, 3 University of Maine

Statistical Mechanics/Combinatorics Seminar
The University of Melbourne
Thu 13th September

Outline

- Definition of the spin chain model(s)
- Phase transition in zero field
- Coupling to an external field
 - Renormalization group analysis
 - Dynamical systems analysis
- Result: full phase diagram

Farey Fraction Spin Chain - Definition

- Chain of *N* spins $\vec{\sigma} = \{\sigma_i\}_{i=1}^N$ with $\sigma_i \in \{\uparrow, \downarrow\}$
- Associate with each spin $\sigma_i \in \{\uparrow, \downarrow\}$ a matrix

$$A_{\uparrow} = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right) \quad \text{and} \quad A_{\downarrow} = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right)$$

Farey Fraction Spin Chain - Definition

- Chain of *N* spins $\vec{\sigma} = {\{\sigma_i\}_{i=1}^N \text{ with } \sigma_i \in \{\uparrow, \downarrow\}}$
- Associate with each spin $\sigma_i \in \{\uparrow, \downarrow\}$ a matrix

$$A_{\uparrow} = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right)$$
 and $A_{\downarrow} = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right)$

• Energy of a configuration $\vec{\sigma}$

$$E_N(\vec{\sigma}) = f\left(\prod_i A_{\sigma_i}\right)$$

Partition function

$$Z_N(\beta) = \sum_{\vec{\sigma}} e^{-\beta E_N(\vec{\sigma})}$$

Farey Fraction Spin Chain - Definition

- Chain of *N* spins $\vec{\sigma} = \{\sigma_i\}_{i=1}^N$ with $\sigma_i \in \{\uparrow, \downarrow\}$
- Associate with each spin $\sigma_i \in \{\uparrow, \downarrow\}$ a matrix

$$A_{\uparrow} = \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix} \right)$$
 and $A_{\downarrow} = \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \right)$

ullet Energy of a configuration $ec{\sigma}$

$$E_N(\vec{\sigma}) = f(\prod_i A_{\sigma_i})$$

Partition function

$$Z_N(\beta) = \sum_{\vec{\sigma}} e^{-\beta E_N(\vec{\sigma})}$$

• Thermodynamic limit $-\beta f(\beta) = \lim_{N\to\infty} \frac{1}{N} \log Z_N(\beta)$

Write

$$M_N = \prod_i A_{\sigma_i} = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathrm{SL}(2, \mathbb{Z})$$

Write

$$M_N = \prod_i A_{\sigma_i} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

"Trace" model:

$$E_N(\vec{\sigma}) = 2\operatorname{Tr}(M_N) = 2\log(a+d)$$

Write

$$M_N = \prod_i A_{\sigma_i} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

"Trace" model:

$$E_N(\vec{\sigma}) = 2\operatorname{Tr}(M_N) = 2\log(a+d)$$

Generalised Knauf model:

$$E_N(\vec{\sigma}; x) = 2\log(cx + d)$$

for
$$x \in [0, 1]$$
.

Write

$$M_N = \prod_i A_{\sigma_i} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z})$$

"Trace" model:

$$E_N(\vec{\sigma}) = 2\operatorname{Tr}(M_N) = 2\log(a+d)$$

Generalised Knauf model:

$$E_N(\vec{\sigma}; x) = 2\log(cx + d)$$

for $x \in [0, 1]$.

Thermodynamic limit is the same

The Transfer Operator

Using the notation

$$f(x)\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{1}{(cx+d)^{2\beta}}f\left(\frac{ax+b}{cx+d}\right)$$

we find

$$Z_N(\beta;x)=1(x)\left|\left(A_{\uparrow}+A_{\downarrow}\right)^N\right|$$

The Transfer Operator

Using the notation

$$f(x)\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{1}{(cx+d)^{2\beta}}f\left(\frac{ax+b}{cx+d}\right)$$

we find

$$Z_N(\beta;x)=1(x)\left|(A_\uparrow+A_\downarrow)^N\right|$$

Equivalently, using the transfer operator

$$\mathcal{L}_{eta} = \mathcal{L}_{eta}^{\uparrow} + \mathcal{L}_{eta}^{\downarrow}$$

where

$$\mathcal{L}_{eta}^{\uparrow}f(x)=f(x)\left|A_{\uparrow}
ight.$$
 and $\mathcal{L}_{eta}^{\downarrow}f(x)=f(x)\left|A_{\downarrow}
ight.$

we obtain

$$Z_N(\beta;x) = \mathcal{L}_{\beta}^N 1(x)$$

Phase Transition

- ullet One-dimensional spin chain with phase transition at $eta_c=1$
- For $-\beta f(\beta) = \lim_{N\to\infty} \frac{1}{N} \log Z_N(\beta)$ we have

•
$$-\beta f(\beta)$$
 analytic in $\beta < \beta_c$

•
$$-\beta f(\beta) \sim \frac{\beta_c - \beta}{-\log(\beta_c - \beta)}$$
 as $\beta \to \beta_c^-$

•
$$-\beta f(\beta) = 0$$
 $\forall \beta \geq \beta_c$

Fiala et al (2003) using results from Prellberg and Slawny (1992)

Phase Transition

- ullet One-dimensional spin chain with phase transition at $eta_c=1$
- For $-\beta f(\beta) = \lim_{N\to\infty} \frac{1}{N} \log Z_N(\beta)$ we have

•
$$-\beta f(\beta)$$
 analytic in $\beta < \beta_c$

•
$$-\beta f(\beta) \sim \frac{\beta_c - \beta}{-\log(\beta_c - \beta)}$$
 as $\beta \to \beta_c^-$

•
$$-\beta f(\beta) = 0$$
 $\forall \beta \geq \beta_c$

2 β

Fiala et al (2003) using results from Prellberg and Slawny (1992)

- Necessarily long-range interactions
- High temperature state is paramagnetic
- Low temperature state is completely ordered, no thermal effects
- The phase transition is second-order, but the magnetization jumps at β_c from saturation to zero (first-order like)

Farey Fraction Spin Chain with Field

Natural generalisation: coupling to external magnetic field h

$$E_N(\vec{\sigma},h) = E_N(\vec{\sigma}) + h \sum_i (\chi_{\uparrow}(\sigma_i) - \chi_{\downarrow}(\sigma_i))$$

Farey Fraction Spin Chain with Field

Natural generalisation: coupling to external magnetic field h

$$E_N(\vec{\sigma},h) = E_N(\vec{\sigma}) + h \sum_i (\chi_{\uparrow}(\sigma_i) - \chi_{\downarrow}(\sigma_i))$$

This leads directly to

$$Z_N(\beta, h; x) = 1(x) \left| \left(e^{-\beta h} A_{\uparrow} + e^{\beta h} A_{\downarrow} \right)^N \right|$$

respectively

$$Z_N(\beta, h; x) = \mathcal{L}_{\beta,h}^N 1(x)$$

where

$$\mathcal{L}_{eta,h} = e^{-eta h} \mathcal{L}_{eta}^{\uparrow} + e^{eta h} \mathcal{L}_{eta}^{\downarrow}$$

Renormalization Group Analysis

Fiala and Kleban (2004)

- Mean field expansion $f_{MF} = a + btM^2 + uM^4 ghM + ...$
- Two relevant fields $t=1-eta/eta_c$ and h, one marginal field u
- RG transformation for singular part $f_s(t, h, u)$
- Result for high-temperature phase

$$f_s(t, h, u) \sim \left| \frac{t}{t_0} \right| \left(\frac{x}{y_t} u \log \frac{t_0}{t} \right)^{-1} a - \frac{h^2}{t} \left(\frac{x}{y_t} u \log \frac{t_0}{t} \right) \frac{3g^2}{16b}$$

 $(x, y_t \text{ are scaling exponents})$

Combine with low-temperature result to get phase boundary

$$-|h|\sim t/\log t$$

Phase Diagram from RG

Disordered phase, small field:

$$t=1-\beta/\beta_c$$

$$f(\beta, h) \sim a \frac{t}{\log t} - b \frac{h^2 \log t}{t}$$

ullet Phase boundary, $h_c = |h| = -f$: $h_c(eta) \sim -a rac{t}{\log t}$

$$h_c(\beta) \sim -a \frac{t}{\log t}$$

The Associated Dynamical System

The operator

$$\mathcal{L}_{eta,h} = \mathrm{e}^{-eta h} \mathcal{L}_{eta}^{\uparrow} + \mathrm{e}^{eta h} \mathcal{L}_{eta}^{\downarrow}$$

is a (weighted) Ruelle-Perron-Frobenius operator of the map

$$T: x \mapsto \left\{ \begin{array}{l} x/(1-x), & 0 \le x < 1 \\ x-1, & x \ge 1 \end{array} \right.$$

The Associated Dynamical System

The operator

$$\mathcal{L}_{eta,h} = \mathrm{e}^{-eta h} \mathcal{L}_{eta}^{\uparrow} + \mathrm{e}^{eta h} \mathcal{L}_{eta}^{\downarrow}$$

is a (weighted) Ruelle-Perron-Frobenius operator of the map

$$T: x \mapsto \left\{ \begin{array}{ll} x/(1-x), & 0 \le x < 1 \\ x-1, & x \ge 1 \end{array} \right.$$

• Conjugating with C(x) = x/(1-x) gives a symmetric map on [0,1]

Identities and Spectral Relations I

Consider the generating function

$$G(\beta, h, z; x) = \sum_{N=0}^{\infty} z^{N} Z_{N}(\beta, h; x)$$

Identities and Spectral Relations I

• Consider the generating function

$$G(\beta, h, z; x) = \sum_{N=0}^{\infty} z^{N} Z_{N}(\beta, h; x)$$

Observe that

$$G(\beta, h, z; x) = 1(x) \left| [1 - z(e^{-\beta h} A_{\uparrow} + e^{\beta h} A_{\downarrow})]^{-1} \right|$$

= $[1 - z \mathcal{L}_{\beta, h}]^{-1} 1(x)$

Identities and Spectral Relations I

Consider the generating function

$$G(\beta, h, z; x) = \sum_{N=0}^{\infty} z^{N} Z_{N}(\beta, h; x)$$

Observe that

$$G(\beta, h, z; x) = 1(x) \left| [1 - z(e^{-\beta h} A_{\uparrow} + e^{\beta h} A_{\downarrow})]^{-1} \right|$$

= $[1 - z \mathcal{L}_{\beta, h}]^{-1} 1(x)$

We find

$$\beta f(\beta, h) = \log z_c(\beta, h) = -\log r(\beta, h)$$

 $z_c(\beta, h)$ is the smallest singularity of $G(\beta, h, z; x)$ $r(\beta, h)$ is the spectral radius of $\mathcal{L}_{\beta, h}$

ullet $\mathcal{L}_{eta,h}$ is quasi-compact

- ullet $\mathcal{L}_{eta,h}$ is quasi-compact
- ullet $\mathcal{L}_{eta,h}$ has continuous spectrum $[0,e^{|eta h|}]$

- $\mathcal{L}_{\beta,h}$ is quasi-compact
- $\mathcal{L}_{eta,h}$ has continuous spectrum $[0,e^{|eta h|}]$
- For $\beta \geq 1$, $\mathcal{L}_{\beta,0}$ has only continuous spectrum [0,1]

- $\mathcal{L}_{\beta,h}$ is quasi-compact
- $\mathcal{L}_{eta,h}$ has continuous spectrum $[0,e^{|eta h|}]$
- ullet For $eta \geq 1$, $\mathcal{L}_{eta,0}$ has only continuous spectrum [0,1]

This is hard to handle. But there is a trick we can use to overcome this problem.

Identities and Spectral Relations II

Lemma

$$[1+\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow}][1-\mathsf{z}\mathcal{L}_{\beta,h}][1+\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow}] = [1-\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow}\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow}]$$

where

$$\tilde{\mathcal{M}}_{\beta,\tau}^{\uparrow} = \tau \mathcal{L}_{\beta}^{\uparrow} [1 - \tau \mathcal{L}_{\beta}^{\uparrow}]^{-1} \quad \text{and} \quad \tilde{\mathcal{M}}_{\beta,\tau}^{\downarrow} = \tau \mathcal{L}_{\beta}^{\downarrow} [1 - \tau \mathcal{L}_{\beta}^{\downarrow}]^{-1}$$

Moreover,
$$1 + \tilde{\mathcal{M}}_{\beta, \tau}^{\uparrow} = [1 - \tau \mathcal{L}_{\beta}^{\uparrow}]^{-1}$$
 and $1 + \tilde{\mathcal{M}}_{\beta, \tau}^{\downarrow} = [1 - \tau \mathcal{L}_{\beta}^{\downarrow}]^{-1}$

Identities and Spectral Relations II

Lemma

$$[1+\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow}][1-z\mathcal{L}_{\beta,h}][1+\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow}] = [1-\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow}\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow}]$$

where

$$\tilde{\mathcal{M}}_{\beta,\tau}^{\uparrow} = \tau \mathcal{L}_{\beta}^{\uparrow} [1 - \tau \mathcal{L}_{\beta}^{\uparrow}]^{-1} \quad \text{and} \quad \tilde{\mathcal{M}}_{\beta,\tau}^{\downarrow} = \tau \mathcal{L}_{\beta}^{\downarrow} [1 - \tau \mathcal{L}_{\beta}^{\downarrow}]^{-1}$$

Moreover,
$$1 + \tilde{\mathcal{M}}_{\beta,\tau}^{\uparrow} = [1 - \tau \mathcal{L}_{\beta}^{\uparrow}]^{-1}$$
 and $1 + \tilde{\mathcal{M}}_{\beta,\tau}^{\downarrow} = [1 - \tau \mathcal{L}_{\beta}^{\downarrow}]^{-1}$

• A formal expansion for the associated matrices gives

$$\tilde{M}_{\uparrow}(au) = \sum_{n=1}^{\infty} au^n A_{\uparrow}^n$$
 and $\tilde{M}_{\downarrow}(au) = \sum_{n=1}^{\infty} au^n A_{\downarrow}^n$

The First-Return Map ...

• The operators $\tilde{\mathcal{M}}_{\beta,\tau}^{\uparrow}$ and $\tilde{\mathcal{M}}_{\beta,\tau}^{\downarrow}$ can be associated with a first-return map

... Is the Gauss Map (well, nearly)

• Introduce the weighted transfer operator for the Gauss map $x\mapsto 1/x\mod 1$

$$\mathcal{M}_{\beta,\tau}f(x) = \sum_{n=1}^{\infty} \frac{\tau^n}{(n+x)^{2\beta}} f\left(\frac{1}{n+x}\right)$$

... Is the Gauss Map (well, nearly)

• Introduce the weighted transfer operator for the Gauss map $x\mapsto 1/x \mod 1$

$$\mathcal{M}_{\beta,\tau}f(x) = \sum_{n=1}^{\infty} \frac{\tau^n}{(n+x)^{2\beta}} f\left(\frac{1}{n+x}\right)$$

We find

$$\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow} \tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow} = \mathcal{M}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}} \mathcal{M}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}$$

... Is the Gauss Map (well, nearly)

• Introduce the weighted transfer operator for the Gauss map $x\mapsto 1/x\mod 1$

$$\mathcal{M}_{\beta,\tau}f(x) = \sum_{n=1}^{\infty} \frac{\tau^n}{(n+x)^{2\beta}} f\left(\frac{1}{n+x}\right)$$

We find

$$\tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}}^{\downarrow} \tilde{\mathcal{M}}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}^{\uparrow} = \mathcal{M}_{\beta,\mathsf{z}\mathsf{e}^{\beta h}} \mathcal{M}_{\beta,\mathsf{z}\mathsf{e}^{-\beta h}}$$

Lemma

Let $z \notin \left[0, \mathrm{e}^{|\beta h|}\right]$. If f is an eigenfunction of $\mathcal{M}_{\beta, \mathrm{ze}^{\beta h}} \mathcal{M}_{\beta, \mathrm{ze}^{-\beta h}}$ with eigenvalue 1, then $[1 + \tilde{\mathcal{M}}_{\beta, \mathrm{ze}^{-\beta h}}^{\uparrow}]f$ is an eigenfunction of $\mathcal{L}_{\beta, h}$ with eigenvalue $\lambda = 1/z$.

Not-so-standard Perturbation Theory

• Consider normalised Eigenfunctions $g_{\beta,h,z}$ and Eigenmeasures $\mu_{\beta,h,z}$ associated with the Eigenvalue $\lambda_{\beta,h,z}$ of

$$\mathcal{M}_{eta,z\mathrm{e}^{eta h}}\mathcal{M}_{eta,z\mathrm{e}^{-eta h}}$$

on a suitable space of functions on $[1,\infty]$

Not-so-standard Perturbation Theory

• Consider normalised Eigenfunctions $g_{\beta,h,z}$ and Eigenmeasures $\mu_{\beta,h,z}$ associated with the Eigenvalue $\lambda_{\beta,h,z}$ of

$$\mathcal{M}_{eta,z\mathrm{e}^{eta h}}\mathcal{M}_{eta,z\mathrm{e}^{-eta h}}$$

on a suitable space of functions on $[1, \infty]$

• At $\beta = 1$, z = 1, and h = 0 we have

$$g_{1,1,0}(x) = \frac{1}{\log(2)x(1+x)}$$
 and $\mu_{1,1,0} = \mu_L$

Not-so-standard Perturbation Theory

• Consider normalised Eigenfunctions $g_{\beta,h,z}$ and Eigenmeasures $\mu_{\beta,h,z}$ associated with the Eigenvalue $\lambda_{\beta,h,z}$ of

$$\mathcal{M}_{\beta, z e^{\beta h}} \mathcal{M}_{\beta, z e^{-\beta h}}$$

on a suitable space of functions on $\left[1,\infty\right]$

• At $\beta = 1$, z = 1, and h = 0 we have

$$g_{1,1,0}(x) = \frac{1}{\log(2)x(1+x)}$$
 and $\mu_{1,1,0} = \mu_L$

Solve

$$1 = \lambda_{\beta,h,z} = \mu_{\beta,h,z} \left(\mathcal{M}_{\beta,ze^{\beta h}} \mathcal{M}_{\beta,ze^{-\beta h}} g_{\beta,h,z} \right)$$

perturbatively to get $z(\beta, h)$...

Perturbation Results

- Recall $z = e^{\beta f}$, so that $f(\beta, h) = \frac{1}{\beta} \log z(\beta, h)$
- To leading order

$$2\log(2)\lambda_G(1-\beta) \sim (f+h)\log(-(f+h))+(f-h)\log(-(f-h))$$

where λ_G is the Lyapunov exponent of the Gauss map $G(x)=1/x \mod 1$

$$\lambda_G = \int_0^1 \log |G'(x)| \frac{1}{\log 2} \frac{dx}{1+x} = \frac{\zeta(2)}{\log 2}$$

Phase Diagram revisited

• Disordered phase, small field:

$$t = 1 - \beta$$

$$f(\beta, h) \sim \zeta(2) \frac{t}{\log t} - \frac{1}{2\zeta(2)} \frac{h^2}{t}$$
 where $|h| \ll |t/\log t|$

• Phase boundary, $h_c = |h| = -f$:

$$h_c(\beta) \sim -\zeta(2) \frac{t}{\log t}$$

- Definition of the spin chain model(s)
- Phase transition in zero field
- Coupling to an external field
 - Renormalization group analysis
 - Dynamical systems analysis

- Definition of the spin chain model(s)
- Phase transition in zero field
- Coupling to an external field
 - Renormalization group analysis
 - Dynamical systems analysis
- The result confirms calculations from a cluster approximation obtained via a Gaspard-Wang linearised map

 Prellberg et al (2006)

- Definition of the spin chain model(s)
- Phase transition in zero field
- Coupling to an external field
 - Renormalization group analysis
 - Dynamical systems analysis
- The result confirms calculations from a cluster approximation obtained via a Gaspard-Wang linearised map

 Prellberg et al (2006)
- The application of RG, while slightly problematic $(h^2 \log t/t)$ vs h^2/t , is surprisingly accurate

- Definition of the spin chain model(s)
- Phase transition in zero field
- Coupling to an external field
 - Renormalization group analysis
 - Dynamical systems analysis
- The result confirms calculations from a cluster approximation obtained via a Gaspard-Wang linearised map

 Prellberg et al (2006)
- The application of RG, while slightly problematic $(h^2 \log t/t)$ vs h^2/t , is surprisingly accurate
- \bullet The amplitude of the free energy expansion (pressure) at $\beta=1$ is related to the Lyapunov exponent of the induced map

