Actividad 6: Determinantes de Matrices

Gerardo Enrique Torres Flores 2064063

15 de febrero de 2025

La regla de Sarrus se utiliza para matrices 3×3 . Se copia las dos primeras columnas de la matriz original a la derecha:

$$\begin{pmatrix} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{pmatrix}.$$

Luego se suman los productos de las diagonales descendentes y se restan los productos de las diagonales ascendentes:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh).$$

1. Para una Matriz 4×4

¿Se puede aplicar el método de la lluvia en la siguiente matriz de 4×4 ?

$$B = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix}.$$

No. Copiar columnas y formar diagonales no se extiende de forma sistemática a matrices de mayor orden, ya que no se logra abarcar todos los productos de forma equivalante junto con la distribución de signos. Por lo tanto, se deben usar otros métodos.

2. Métodos Alternativos para Matrices 4×4

- Expansión de Laplace: Se expande el determinante en cofactores dependiendo del pivote (fila o culumna) seleccionado.
- Eliminación Gaussiana: Se transforma la matriz en una forma triangular, el determinante es el producto de los elementos de la diagonal principal.

Ejemplo:

$$B = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 4 \\ 5 & 0 & 3 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}.$$

Calcular det(B).

2.1. Método de Expansión de Laplace

Iniciamos a lo largo de la segunda fila, que tiene dos ceros, para simplificar el cálculo. La fórmula es:

$$\det(B) = \sum_{j=1}^{4} (-1)^{2+j} b_{2j} \det(M_{2j}),$$

La fila 2 es: (0, 1, 0, 4), por lo que solo se consideran los términos con $b_{22} = 1$ y $b_{24} = 4$.

$$M_{22} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Aquí podemos usar el método de lluvia:

$$\det(M_{22}) = 1(3 \cdot 1 - 1 \cdot 0) - 2(5 \cdot 1 - 1 \cdot 0) + 3(5 \cdot 0 - 3 \cdot 0) = 3 - 10 + 0 = -7.$$

$$M_{24} = \begin{pmatrix} 1 & 0 & 2 \\ 5 & 0 & 3 \\ 0 & 2 & 0 \end{pmatrix}.$$

De nuevo, podemos usar el método de lluvia:

$$\det(M_{24}) = 1(0 \cdot 0 - 3 \cdot 2) - 0(5 \cdot 0 - 3 \cdot 0) + 2(5 \cdot 2 - 0 \cdot 0) = -6 + 0 + 20 = 14.$$

Por lo tanto, multiplicando los términos de la segunda fila por las determinantes respectivas:

$$\det(B) = 1 \cdot (-7) + 4 \cdot (14) = -7 + 56 = 49.$$

2.2. Método de Eliminación Gaussiana

Hay que transformar la matriz B en una matriz triangular superior.

$$B = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 4 \\ 5 & 0 & 3 & 1 \\ 0 & 2 & 0 & 1 \end{pmatrix}.$$

Paso 1: Hacemos 0 el 5 de la tercera fila.

$$Fila_3 \rightarrow Fila_3 - 5 \cdot Fila_1$$
.

$$(5, 0, 3, 1) - 5 \cdot (1, 0, 2, 3) = (0, 0, 3 - 10, 1 - 15) = (0, 0, -7, -14).$$

Paso 2: Hacemos 0 el 2 de la cuarta fila. Se utiliza la fila 2:

$$Fila_4 \rightarrow Fila_4 - 2 \cdot Fila_2$$
.

$$(0, 2, 0, 1) - 2 \cdot (0, 1, 0, 4) = (0, 0, 0, 1 - 8) = (0, 0, 0, -7).$$

3

La matriz nos queda de la siguiente forma:

$$B' = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & -7 & -14 \\ 0 & 0 & 0 & -7 \end{pmatrix}.$$

Ya obteniendo la forma de triangular superior, el determinante es el producto de los elementos de la diagonal:

$$\det(B') = 1 \times 1 \times (-7) \times (-7) = 49.$$

 $\det(B) = 49.$

3. Cofactores y Regla de Sarrus

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}$$

$$= a \begin{bmatrix} f & g & h \\ j & k & l \\ n & o & p \end{bmatrix} - b \begin{bmatrix} e & g & h \\ i & k & l \\ m & o & p \end{bmatrix} + c \begin{bmatrix} e & f & h \\ i & j & l \\ m & n & p \end{bmatrix} - d \begin{bmatrix} e & f & g \\ i & j & k \\ m & n & o \end{bmatrix}$$

Aquí podemos usar el método de lluvia (Regla de Sarrus) para facilitar el cálculo de los determinantes de las matrices de 4×4 :

$$= a \begin{bmatrix} f & g & h & f \\ j & k & l & j \\ n & o & p & n \end{bmatrix} - b \begin{bmatrix} e & g & h & e \\ i & k & l & i \\ m & o & p & m \end{bmatrix} + c \begin{bmatrix} e & f & h & e \\ i & j & l & i \\ m & n & p & m \end{bmatrix} - d \begin{bmatrix} e & f & g & e \\ i & j & k & i \\ m & n & o & m \end{bmatrix}$$

$$= afkp + agln + ahjo - ahkn - aflo - agjp$$

$$- bekp - bglm - bhio + bhkm + belo + bgip$$

$$+ cejp + cflm + chin - chjm - celn - cfip$$

$$- dejo - dfkm - dgin + dgim + dekn + dfio$$

Ordenando:

$$= afkp + agln + ahjo - ahkn - aflo - agjp$$

$$+ bhkm + belo + bgip - bekp - bglm - bhio$$

$$+ cejp + cflm + chin - chjm - celn - cfip$$

$$+ dgim + dekn + dfio - dejo - dfkm - dgin$$

3.1. Conclusión

El método de lluvia se puede aplicar en una matriz de 4×4 , pero no inmediatamente, solo desarrollándola por los métodos de Pivote (Laplace) y/o por Cofactores.