SRv6-uSID Deployment

Bell Domains and services

Bell Network 3.0 is a journey to...

Transform how Bell delivers the best customer experience with seamless access to a software-driven, cloud-based ecosystem

Bell deployed one of the first SR-MPLS networks

- One of the first SR-MPLS deployments
- Deployment went very well (positive tone) TI-LFA was the first benefits collected
- But then why shifting to SRv6 so quickly?
- Answer: "the power of SRv6 uSID's".
- Let's review this

Unified End-to-End SRv6 uSID Dataplane

- Remove the complexity of getting MPLS to the host/socket/container
- Remove SR-MPLS/LDP /SRv6 GW at the DC & Network edge
- Simplification

Economical gains

- Summary of the gains from Dan B's session
- + other OPEX gains,
- Not having MPLS
- Not having BGP3107 simpler interconnect
- Not having vXLAN/MPLS gateways
- Having summarization

Reduce carrier network services costs by up to 90% footprint by 75% power consumption by as much as 66%

Technical Director, Bell Canada VP Product Management, NoviFlow in

Routing Scale

	SRv6 uSID	MPLS
Unique Nodes in the SR domain	15M-240M	0.8M
Unique Services per node	512k	0.2M
ISIS Summarization	Yes	No
BGP3107 complexity tax to scale ISIS Host Routes	No	Yes

- Available functionalities: 256 blocks (/32's). For each block, we have 16 bits space for uSID ID's. 8k are reserved for the LIB, 57k for GIB.
 - ≥256*57k Global ID = 15M Global ID. In the future we could go up to 4096 blocks
- If more than 8k for LIB, then 8 Wide-LIB spaces could be added for a total of 8*64K = 512k services
- More information on <u>segment-routing.net</u>

HW Scale

	SRv6 uSID	MPLS
Linerate steering into SR Policy of N SID's	N=26	N=~12
Number of counters associated to a remote ISIS node	1	4
Number of dataplane entries associated to remote ISIS node	1	4

- Blog: https://www.segment-routing.net/demos/26-usid-push-linerate/ with NCS5700 Jericho2
- 1 vs 4: ip2ip, ip2mpls, mpls2ip, mpls2mpls

Other Benefits

	SRv6 uSID	MPLS
SR Domain Security	Same	Same
Optimal Load balancing	yes	no

SRv6: 20-bit rich flow entropy at fixed offset within outer IPv6 header (Flow Label)

MPLS: DPI to random location without guaranteed outcome:

- ➤ label stack walk to inner IP header fields
- ➤ label stack to Entropy Label (plus additional label stack overhead and PE complexity)

A few notes on our deployment

- We deploy SRv6 uSID with a negligeable sub-space of FD/8
 - > 0.0015% of FD/8 private space (/24 out of /8 = 2^(-16))
- We have conducted many SRv6 uSID Interoperability with different vendors
 - Cisco, Ciena, Nokia, Juniper, Arrcus, FD.IO, Intel, Noviflow,

uSID Interop Description & Objectives

Today, Bell has deployed uSID on Cisco platform in productions. We are investigating interoperability with other vendors that are implemented in different part of the Bell's backbone where SRv6-uSID is required;

The **main objective for** – Bell/Nokia/Juniper – is to demonstrate that uSID can be "interoperable" with the existing SRv6 functions deployed in Bell network;

The baseline for the interop is with the L3VPN service. **Nokia & Juniper will act as an SRv6-PE** peering with a **Cisco SRv6-PE**, both using uSID F3216.

- The nodes that provide transport (LSR) for SRv6-PEs, will be Cisco acting as LSR node when running SRv6-uSID.
- The node acting as LSR without SRv6 (IPv6-only) could be Nokia, Cisco, Ciena, Juniper, Arrcus, etc.

LIB encoded using 0xE & 0xF in the first nibble of the uSID (e.g., "EXXX", "FXXX" --> Local uSIDs; Global uSIDs otherwise)

IPv6 addressing used during the test will be ULA fc::/8 range. IPv6 addressing used for point-to-point will be link-local;

Success of the test will be a demonstration that L3VPN routes are advertised from 1 PE to the other and we are able to ping and or traceroute from within the VRF interfaces.

Highlights (for testing only)

Phase 1 – uSID interop testing

- 1. Cisco R1 and Nokia R9 acting as PE's
- L3VPN name: cust-1
 IPv6 P2P link-local
- 4. Nokia IPv6 loopback: fccc:cc00:dc09:1/128
- 5. Nokia locator0: fccc:cc03::/32 with micro-segment-locator value 56329 (decimal value of dc09)

OAM – Example Traceroute that help validating uSID

fccc:cc00:103::1 17 msec 6 msec 4 msec

RP/0/RP0/CPU0:r8#

Explicit path traceroute with uSID node as reference point Node 9, node 7, node 4 and then node 1 (node 4 and 1 encode different ISIS area) Encap (SRH) traceroute from node 8 to node 3 Node 9 shifted by 16 /0/RP0/CPU0:r8#traceroute fccc:cc00:103:: via srv6-carriers fccc:cc00:dc09:107:104:a01:: Wed Nov 16 17:11:11.182 EST Type escape sequence to abort. Tracing the route to fccc:cc00:103:: 1 fccc:cc03:dcff:dc09::1 [IP tunnel: DA=fccc:cc00:dc09 107:104:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1)8 msec [IP tunnel: DA=fccc:cc00:dc09:107:104:a01:: SRH Stack 0 = fccc:cc00:103:: ,SL=1) 5 msec [IP tunnel: DA=fccc:cc00:dc09:107:104:a01:: SRH Stack @ =(fccc:cc00:103:: .SL=1) 4 msec 2 fccc:cc00:107::1 Node 9 removed [IP tunnel: DA=fccc:cc00:107:104:a01:: SRH Stack 0 =(fccc:cc00:103:: .SL=1)] 7 msec [IP tunnel: DA=fccc:cc00:107:104.a31:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1)3 msec [IP tunnel: DA=fccc:cc00:107:104:a01:: SRH Stack 0 =(Tccc.cc00:103:: .SL=1) 2 msec Node 7 3 fccc:cc00:5::1 shifted by [IP tunnel: DA=fccc:cc00:104:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1) 14 msec [IP tunnel: DA=fccc:cc00:104:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1) 7 msec 16 [IP tunnel: DA=fccc:cc00:104:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1)8 msec fccc:cc00:104::1 [IP tunnel: DA=fccc:cc00:104:a01:. SRH Stack 0 =(fccc:cc00:103:: SL=1] 17 msec [IP tunnel: DA=fccc:cc00:104:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1)] 3 msec fccc:cc00:a01::1 Node 4 remov [IP tunnel: DA=fccc:cc00:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1)

[IP tunnel: DA=fccc:cc00:a01:: SRH Stack 0 =(fccc:cc00:103:: ,SL=1) } 3 msec *

Thank You

