```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]:
         mydata =sns.load_dataset('iris')
         mydata.head()
Out[3]:
            sepal_length sepal_width petal_length petal_width species
                   5.1
                              3.5
                                         1.4
                                                   0.2
         0
                                                        setosa
          1
                   4.9
                              3.0
                                                   0.2
                                         1.4
                                                        setosa
          2
                   4.7
                              3.2
                                         1.3
                                                   0.2
                                                        setosa
          3
                   4.6
                              3.1
                                         1.5
                                                   0.2
                                                        setosa
                   5.0
                              3.6
                                         1.4
                                                   0.2
                                                        setosa
In [5]: mydata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 5 columns):
          #
              Column
                              Non-Null Count
                                                Dtype
              sepal_length
          0
                              150 non-null
                                                float64
          1
              sepal_width
                              150 non-null
                                                float64
          2
              petal_length
                              150 non-null
                                                float64
          3
              petal width
                              150 non-null
                                                float64
          4
              species
                              150 non-null
                                                object
         dtypes: float64(4), object(1)
         memory usage: 6.0+ KB
In [7]: mydata.isnull().sum()
Out[7]: sepal_length
                           0
         sepal_width
                           0
         petal_length
                           0
         petal width
                           0
         species
                           0
```

dtype: int64

In [9]: mydata.corr()

Out [9]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

In [11]: sns.heatmap(mydata.corr(),annot = True, cmap = 'RdBu')

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f96e2d82520>

In [4]: mydata_col = mydata[['sepal_length','sepal_width']]

```
In [13]: plt.scatter(mydata['sepal_length'], mydata['sepal_width'])
Out[13]: <matplotlib.collections.PathCollection at 0x7f96e2eead60>
           4.5
           4.0
           3.5
           3.0
           2.5
           2.0
                 4.5
                      5.0
                            5.5
                                       6.5
                                             7.0
                                                  7.5
                                                        8.0
In [15]: | x = mydata_col.values
          Χ
                  [U.Z, Z.O],
                  [6.1, 3.],
                  [6.4, 2.8],
                  [7.2, 3.],
                  [7.4, 2.8],
                  [7.9, 3.8],
                  [6.4, 2.8],
                  [6.3, 2.8],
                  [6.1, 2.6],
                  [7.7, 3.],
                  [6.3, 3.4],
                  [6.4, 3.1],
                  [6., 3.],
                  [6.9, 3.1],
                  [6.7, 3.1],
                  [6.9, 3.1],
                  [5.8, 2.7],
                  [6.8, 3.2],
                  [6.7, 3.3],
                  [6.7, 3.],
In [16]: from sklearn.neighbors import NearestNeighbors
```

```
In [21]: model = NearestNeighbors(n_neighbors = 3)
model.fit(x)
```

Out[21]: NearestNeighbors(n_neighbors=3)

```
In [23]: distances,indexes = model.kneighbors(x)
plt.plot(distances.mean(axis = 1))
```

Out[23]: [<matplotlib.lines.Line2D at 0x7f96e346c490>]


```
In [25]: outlier = np.where(distances.mean(axis = 1) > 0.15)
outlier
```

In [29]: mydata_filtered = mydata.iloc[outlier]
mydata_filtered

Out [29]:

	sepal_length	sepal_width	petal_length	petal_width	species
14	5.8	4.0	1.2	0.2	setosa
15	5.7	4.4	1.5	0.4	setosa
18	5.7	3.8	1.7	0.3	setosa
22	4.6	3.6	1.0	0.2	setosa
32	5.2	4.1	1.5	0.1	setosa
33	5.5	4.2	1.4	0.2	setosa
41	4.5	2.3	1.3	0.3	setosa
59	5.2	2.7	3.9	1.4	versicolor
60	5.0	2.0	3.5	1.0	versicolor
108	6.7	2.5	5.8	1.8	virginica
109	7.2	3.6	6.1	2.5	virginica
117	7.7	3.8	6.7	2.2	virginica
118	7.7	2.6	6.9	2.3	virginica
131	7.9	3.8	6.4	2.0	virginica

In [31]: plt.scatter(mydata['sepal_length'], mydata['sepal_width'], color = 'b',s
 plt.scatter(mydata_filtered['sepal_length'], mydata_filtered['sepal_wid

Out[31]: <matplotlib.collections.PathCollection at 0x7f96e3590940>


```
In [33]: from sklearn.preprocessing import LabelEncoder
         LE = LabelEncoder()
In [34]: | mydata_filtered["species"]=LE.fit_transform(mydata_filtered.species)
         <ipython-input-34-3cc25ca3e265>:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/panda
         s-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
         (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.htm
         l#returning-a-view-versus-a-copy)
           mydata_filtered["species"]=LE.fit_transform(mydata_filtered.species
         )
In [42]: y dep = mydata filtered["species"]
         y_dep
         len(y_dep)
Out[42]: 14
```

```
In [37]: x_ind = mydata_filtered.drop("species",axis = 1)
x_ind
```

Out [37]:

	sepal_length	sepal_width	petal_length	petal_width
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
18	5.7	3.8	1.7	0.3
22	4.6	3.6	1.0	0.2
32	5.2	4.1	1.5	0.1
33	5.5	4.2	1.4	0.2
41	4.5	2.3	1.3	0.3
59	5.2	2.7	3.9	1.4
60	5.0	2.0	3.5	1.0
108	6.7	2.5	5.8	1.8
109	7.2	3.6	6.1	2.5
117	7.7	3.8	6.7	2.2
118	7.7	2.6	6.9	2.3
131	7.9	3.8	6.4	2.0

```
In [39]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test= train_test_split(x_ind,y_dep,train_size
from sklearn.neighbors import KNeighborsClassifier
```

In [40]: x_ind.shape

Out[40]: (14, 4)

In [41]: y_dep.shape

Out[41]: (14,)

In [43]: np.sqrt(14)

Out[43]: 3.7416573867739413

In [45]: knn =KNeighborsClassifier(n_neighbors = 5, p=3,metric ='euclidean')

```
In [46]: knn.fit(x_train,y_train)
Out[46]: KNeighborsClassifier(metric='euclidean', p=3)
In [47]: from sklearn.metrics import confusion_matrix,classification_report,acc
In [49]: y_pred=knn.predict(x_test)
    y_pred
Out[49]: array([2, 0, 0])
In [50]: accuracy_score(y_test,y_pred)
Out[50]: 1.0
In []:
```