Conclusões

Prof. Marcus Vinícius Midena Ramos

Universidade Federal do Vale do São Francisco

28 de junho de 2010

marcus.ramos@univasf.edu.br
www.univasf.edu.br/~marcus.ramos

Bibliografia

Linguagens Formais: Teoria, Modelagem e Implementação M.V.M. Ramos, J.J. Neto e I.S. Vega Bookman, 2009

Roteiro

Hierarquia de Chomsky

- 2 Uma Hierarquia de Classes de Linguagens
- 3 Próximos passos

Classes de linguagens

Tabela 1: Hierarquia de Chomsky

4/9

Hierarquia de Chomsky

Tabela 2: Linguagens, gramáticas e reconhecedores

Tipo	Classe de linguagens	Modelo de gramática	Modelo de reconhecedor	
0	Recursivamente enumeráveis	Irrestrita	Máquina de Tu- ring	
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita Iimitada	
2	Livres de contexto	Livre de contexto	Autômato de pilha	
3	Regulares	Linear (direita ou esquerda)	Autômato finito	

Classes de linguagens

Tabela 3: Classes de linguagens e suas características principais

Tipo (Hierarquia de Chomsky)	Classe de linguagens	Gramática	Reconhecedor	Reconhecedor deterministico = não- deterministico?	Estruturas sintáticas típicas da classe de linguagens
3	Regular	Regular	Autômato finito	Sim	Repetição, união e concatenação de termos
	Livre de contexto deterministica descendente	LL(k)	Autômato de pilha deterministico	N.A.	Aninhamento de construções sintáticas
2	Livre de contexto deterministica ascendente	LR (k)	Autómato de pilha deterministico	N.A.	ş
	Livre de contexto não-ambigua	Livre de contexto não-ambigua	Autômato de pilha	Não	?
	Livre de contexto	Livre de Contexto	Autômato de pilha	Não	?
1	Sensivel ao contexto	Sensivel ao contexto	Máquina de Turing com fita limitada	?	Dependência entre termos
	Recursiva	?	Máquina de Turing que sempre pára	Sim	?
Ů	Recursiva- mente enumerável	Irrestrita	Máquina de Turing	Sim	?
N.A	Não- gramaticais	N.A.	?	N.A.	?

Classes de linguagens

- $L_1 = a^*b^*$ (Regulares)
- L₂ = { $a^nb^n \mid n \geqslant 1$ } (Livres de contexto descendentes)
- L₃ = $\{x^{2n}y^{2n}e \mid n \geqslant 0\} \cup \{x^{2n+1}y^{2n+1}o \mid n \geqslant 0\}$ (Livres de contexto ascendentes)
- ► $L_4 = \{ww^R \mid w \in \{a,b\}^*\}$ (Livres de contexto não-ambíguas)
- ▶ $L_5 = \{a^n b^n c^m d^m \mid n \geqslant 1, m \geqslant 1\} \cup \{a^n b^m c^m d^n \mid n \geqslant 1, m \geqslant 1\}$ (Livres de contexto)
- L₆ = $\{a^nb^nc^n \mid n \geqslant 1\}$ (Sensíveis ao contexto)
- $L_7 = \{ \alpha_i \mid \alpha_i \notin L(G_i), \forall i \geqslant 1 \}$ (Recursivas)
- ► $L_8 = \{C(M)w \in \Sigma^* \mid w \in L(M)\}$ (Recursivamente enumeráveis)
- ► $L_9 = \{C(M)w \in \Sigma^* \mid w \notin L(M)\}$ (Estruturadas em frases)

Hierarquia

Figura 1: Hierarquia de inclusão própria das classes de linguagens

Novos conteúdos

- Especificação e processamento de linguagens de programação e similares (Compiladores, 7º período)
 - Como representar formalmente uma linguagem?
 - Como projetar e implementar um compilador ou interpretador para essa linguagem?
- Decidibilidade (Teoria da Computação, 8º período);
 - Todos os problemas podem ser resolvidos através de algoritmos?
 - Como identificar problemas que não podem ser solucionados algoritmicamente?
- Complexidade (Teoria da Computação, 8º período);
 - Qual a complexidade de um problema que possui solução algorítmica?
 - Como identificar problemas que não possuem soluções eficientes?