Costello Divisibility: Explorations of a Comedic Division Algorithm

Introduction

► The comedy duo Abbott and Costello (best known for the routine "Who's on First") performs a routine in several films in which Lou Costello proves to Bud Abbott that 7 × 13 = 28 with multiple methods. One of these is through a modified process of *long division*, where Costello divides 28 by 7 and gets 13 as a quotient. An outline of Costello's erroneous long division is below.

Symbol Glossary

- ► "⊕" represents the Concatenation operation. To concatenate two numbers, present them as base-10 representations and interpret them as strings. Then concatenate the strings.
- "%" represents the Remainder operation. a% b is the remainder produced by standard division of a by b
- ► " \oslash " represents the operation of Costello Division. See Algorithm 1. Since $m \oslash n = (q, r)$, we call q the *quotient* and r the *remainder* under Costello division.
- " $m^{(k)}$ " is the k-truncated representation of m. Present m in its base-10 expansion as $m_1 m_2 \cdots m_\ell$. Then $m^{(k)}$ is the number with base-10 expansion $m_1 \cdots m_k$.
- " r_k " is the kth-step remainder of Costello division of m by n. In particular, $m^{(k)} \oslash n = (q_k, r_k)$.

Formal Algorithm

Let $m_1 m_2 \cdots m_\ell$ be the base-10 expansion of a number $m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Algorithm 1 Costello Division of *m* by *n*

```
Require: m \in \mathbb{N}_0, n \in \{1, ..., 9\}.
q \leftarrow 0
 r \leftarrow 0
for 1 \le i \le \ell do
                                            ▶ This is the Component-wise Division Step
      if m_i \geq n then
           q \leftarrow q \oplus \lfloor \frac{m_i}{n} \rfloor
            r \leftarrow r \oplus (m_i \% n)
      else
            r \leftarrow r \oplus m_i
      end if
      if r \geq n then
                                                        This is the Standard Division Step
            q \leftarrow q \oplus \lfloor \frac{r}{n} \rfloor
            r \leftarrow r \% n
      end if
end for
        return (q, r)
```

Theorem 1: Costello Division by One

Let m > 0. Then the quotient of $m \oslash 1$ is the number m presented in its base-10 representation with zeros removed, and the remainder of $m \oslash 1$ is 0.

A photo of Bud Abbott (Left) and Lou Costello (Right).

Theorem 2: Costello Remainder Theorem

The remainder under Costello division of m by n is m % n.

The following is a sketch of the proof of this Theorem. Let $m_1 m_2 \cdots m_\ell$ be the base-10 expansion of m.

Proof.

Using induction on ℓ , the number of digits that m has, assume the result holds for numbers of length $\ell-1$.

It suffices to look at only the very last division step of the algorithm, and we find that

$$r = (r_{\ell-1} \oplus (m_{\ell} \% n)) \% n$$

By inductive hypothesis,

$$r = \left((m^{(\ell-1)} \% n) \oplus (m_{\ell} \% n) \right) \% n.$$

Careful analysis of the remainder operation then shows that

$$r = \left(m^{(\ell-1)} \oplus m_{\ell}\right) \% n = m \% n$$

which proves our result.

Further Explorations

▶ Costello Multiplication and Addition:

Costello proves that 7x13=28 with two other methods, which are akin to standard processes of multiplication and addition. However, results such as Theorem 1 show that neither of these can be inverse operations to Costello Division. Potential explorations into these topics involve creating well-defined general algorithms based on Costello's other proofs, as well as analyzing on what sets Costello Multiplication and Addition do indeed function as inverse operations to Costello Division.

► Alternate Costello Divisions:

There are many limitations on the algorithm presented, and potential explorations of expanding the definition of Costello Division may consider one or more of the following:

- 1. Costello Division with multi-digit divisors.
- **2.** Costello Division in bases other than 10, in particular, bases of the form 2^n .
- 3. Costello Polynomial Division, in the sense of dividing polynomials by monomials.

Acknowledgements

This project would not have been possible without the initial and continued support of my project mentor, Dr. Alexander N. Wilson. Dr. Wilson provided a variety of essential advice during the inception of this project, such as: "you should write a paper about this."

I would also like to thank all of the students in the Mathematics Department whom I cornered in King 203 to tell them about my work. You were the best captive audience a researcher could ask for.

Citations

Anže Kranjc. (2020, May 9). Abbott & Costello 7×13=28 [Video]. YouTube.

https://www.youtube.com/watch?v=A_xLOMdGWsU

Wikipedia contributors. (2025, April 1). Abbott and Costello. Wikipedia.

https://en.wikipedia.org/wiki/Abbott_and_Costello/media/File:Abbott_and_Costello_1950s.JPG

$m \vee \emptyset n = (q_k, r_k).$

Table of Computations

(q, r)	10	11	12	13	14	15	16	17	18	19	20
1	(1,0)	(11, 0)	(12, 0)	(13,0)	(14, 0)	(15,0)	(16,0)	(17,0)	(18,0)	(19,0)	(2,0)
2	(5,0)	(5, 1)	(15,0)	(15,1)	(25,0)	(25, 1)	(35,0)	(35, 1)	(45,0)	(45, 1)	(1,0)
3	(3,1)	(3,2)	(4,0)	(13, 1)	(13, 2)	(14,0)	(23, 1)	(23, 2)	(24,0)	(33, 1)	(6,2)
4	(2,2)	(2,3)	(3,0)	(3, 1)	(12,2)	(12,3)	(13,0)	(13,1)	(22,2)	(22,3)	(5,0)
5	(2,0)	(2,1)	(2,2)	(2,3)	(2,4)	(12,0)	(12,1)	(12,2)	(12,3)	(12,4)	(4,0)
6	(1,4)	(1,5)	(2,0)	(2,1)	(2, 2)	(2,3)	(11,4)	(11,5)	(12,0)	(12,1)	(3,2)
7	(1,3)	(1,4)	(1,5)	(1,6)	(2,0)	(2,1)	(2,2)	(11,3)	(11,4)	(11,5)	(2,6)
8	(1,2)	(1, 3)	(1,4)	(1,5)	(1,6)	(1,7)	(2,0)	(2,1)	(11,2)	(11,3)	(2,4)
9	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	(1,8)	(2,0)	(11,1)	(2,2)