WS 17/18
- Blatt 8 -

Dr. W. Spann F. Hänle, M. Oelker

Lineare Algebra für Informatiker und Statistiker

Aufgabe 29 (4 Punkte)

Sei K ein Körper, $m, n \in \mathbb{N}$ und $A \in K^{m \times m}$, $B \in K^{m \times n}$, $C \in K^{n \times m}$.

- (a) Zeigen Sie: A BC invertierbar \iff $\begin{pmatrix} A & B \\ C & E_n \end{pmatrix}$ invertierbar
- (b) Sei A-BC invertierbar. Geben Sie die inverse Matrix von $\begin{pmatrix} A & B \\ C & E_n \end{pmatrix}$ in Blockschreibweise an.

Aufgabe 30 (4 Punkte)

Sei K ein Körper, $n \in \mathbb{N}$.

(a) Sei $R \in K^{n \times n}$, $r \in K^n$ und $\rho \in K$. Zeigen Sie:

$$\left(\begin{array}{cc} R & r \\ 0 & \rho \end{array}\right) \text{ invertierbar } \iff R \text{ invertierbar } \wedge \ \rho \neq 0$$

(b) Sei $R \in K^{n \times n}$ eine rechte Dreiecksmatrix. Zeigen Sie durch vollständige Induktion:

R invertierbar
$$\iff \forall i \in \{1, ..., n\} : r_{ii} \neq 0$$

Aufgabe 31 (4 Punkte)

Sei K ein Körper, $n \in \mathbb{N}$, $a \in K^n$, $b_1, \ldots, b_n \in K^n$. Zeigen Sie:

- (a) $(\forall x \in K^n : a^{\top} x = 0) \iff a = 0$
- (b) Ist b_i , i = 1, ..., n, Basis von K^n , dann ist $b_i b_j^{\top}$, i, j = 1, ..., n, Basis von $K^{n \times n}$.

Bitte wenden!

Aufgabe 32 (4 Punkte)

$$\begin{split} & \text{Sei } \mathcal{H} := \left\{ \left(\begin{array}{cc} w & -z \\ \bar{z} & \bar{w} \end{array} \right) : \ w,z \in \mathbb{C} \right\} \\ & \text{und } E := \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)\!, \, I := \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right)\!, \, J := \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)\!, \, K := \left(\begin{array}{cc} 0 & -i \\ -i & 0 \end{array} \right)\!. \\ & \text{Zeigen Sie:} \end{aligned}$$

(a) $(\mathcal{H}, +, \cdot)$ ist mit der Matrizenaddition und -multiplikation ein Ring mit Einselement und $(\mathcal{H} \setminus \{0\}, \cdot)$ ist eine Gruppe.

Hinweis: Zeigen Sie unter Verwendung von T32a, dass $(\mathcal{H} \setminus \{0\}, \cdot)$ eine Untergruppe von $GL(2, \mathbb{C})$ ist.

Bemerkung: Eine algebraische Struktur mit diesen Eigenschaften heißt Schiefkörper. Der Unterschied zum Körper besteht darin, dass die Multiplikation nicht als kommutativ vorausgesetzt ist.

(b)
$$I^2 = J^2 = K^2 = -E$$
, $IJ = K = -JI$, $JK = I = -KJ$, $KI = J = -IK$.

(c) Zeigen Sie, dass \mathcal{H} mit der Matrizenaddition und skalaren Matrixmultiplikation ein \mathbb{R} -Vektorraum mit der Basis E,I,J,K ist.

Bemerkung: Mit der bijektiven Abbildung $\mathbb{R}^4 \to \mathcal{H}$, $(a,b,c,d) \mapsto \begin{pmatrix} a+ib & -c-id \\ c-id & a-ib \end{pmatrix}$ und der durch die Matrizenmultiplikation induzierten Multiplikation * wird $(\mathbb{R}^4,+,*)$ zum Hamiltonschen Quaternionenschiefkörper

Abgabe einzeln, zu zweit oder zu dritt: Dienstag, 9.1.2018 bis 10¹⁵ Uhr, Übungskasten vor der Bibliothek im 1. Stock