Zusammenfassung für Analysis I

(Prof. Dr. Schnürer)

Wintersemester 2014/2015

von Dagmar Sorg

Grundlagen: Logik, Mengenlehre

UND REELLE ZAHLEN

KAP. 1

LOGISCHE GRUNDLAGEN

PART 1.1

Definition (Aussage)

D. 1.1

- (i) Eine Aussage ist etwas, dem der Wahrheitsgehalt "wahr" oder "falsch" zugeordnet ist.
- (ii) Eine ${\it Aussage form}$ ist eine Aussage, die eine noch unbestimmte oder freie Variable enthält.

Definition (Negation, Verneinung)

D. 1.3

Ist p eine Aussage, so bezeichnet $\neg p$ die Negation dieser Aussage.

D. 1.3

Definition (Konjunktion)

D. 1.5

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \wedge q$ ("p und q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \end{array}$$

Definition (Disjunktion)

D. 1.6

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \vee q$ ("p oder q") mittels der folgenden Wahrheitstabelle:

p	q	$p \lor q$
w	w	w
w	f	w
f	w	w
f	f	f

Definition (Kontravalenz)

D. 1.7

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \lor q$ ("entweder p oder q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline w & w & f \\ w & f & w \\ f & w & w \\ f & f & f \end{array}$$

Definition (Implikation)

D. 1.8

Seien p und q Aussagen. Dann definieren wir den Wahrheitswert von $p \Rightarrow q$ ("p impliziert q") mittels der folgenden Wahrheitstabelle:

$$\begin{array}{c|cccc} p & q & p \Rightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & w \\ f & f & w \end{array}$$

- (i) p heißt Voraussetzung, Prämisse oder hinreichende Bedingung für q
- (ii) q heißt Behauptung, Konklusion oder notwendige Bedingung

Definition

D. 1.10

(i) Seien p,q Aussagen. Definiere $p\Leftrightarrow q$ ("p und q sind äquivalent", "genau dann, wenn p gilt, gilt auch q") durch

p	q	$p \Leftrightarrow q$
w	w	w
w	f	f
f	w	f
f	f	w

(ii) p_1, p_2, \ldots heißen äquivalent, falls für je zwei dieser Aussagen, p und $q, p \Leftrightarrow q$ gilt.

Proposition

P. 1.11

Seien p, q, r Aussagen. Dann gelten

- (i) $\neg \neg p \Leftrightarrow p$
- (ii) $p \lor \neq p$
- (iii) $(p \land q) \Leftrightarrow (q \land p)$

(iv) $(p \lor q) \Leftrightarrow (q \lor p)$

 $\begin{array}{c} (1V) & (p \lor q) \Leftrightarrow (q \lor p) \\ (V) & (p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p) \end{array}$

(vi) $(p \wedge p) \Leftrightarrow p$

(vii) $(p \lor p) \Leftrightarrow p$

- (viii) $(p \land q) \Rightarrow p$
- (ix) $p \Rightarrow (p \lor q)$
- (x) $(p \Leftrightarrow q) \Rightarrow ((p \lor r) \Leftrightarrow (q \lor r))$
- (xi) $(p \Leftrightarrow q) \Rightarrow ((p \land r) \Leftrightarrow (q \land r))$
- (xii) $(p \Leftrightarrow q) \Rightarrow ((p \Leftrightarrow r) \Leftrightarrow (q \Leftrightarrow r))$

(xiii) $((p \land q) \land r) \Leftrightarrow (p \land (q \land r))$

 $(xin) ((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$ $(xiv) ((p \lor q) \lor r) \Leftrightarrow (p \lor (q \lor r))$

 $(xv) (p \lor (q \land r)) \Leftrightarrow ((p \lor q) \land (p \lor r))$

 $(xvi) (p \lor (q \land r)) \Leftrightarrow (p \lor q) \land (p \lor r))$ $(xvi) (p \land (q \lor r)) \Leftrightarrow ((p \land q) \lor (p \land r))$

(xvii) $\neg (p \land q) \Leftrightarrow (\neg p) \lor (\neg q)$

(xviii) $\neg (p \lor q) \Leftrightarrow (\neg p) \land (\neg q)$

 $(p \lor q) \Leftrightarrow (p) \land (q)$

- (xix) $(p \Leftrightarrow q) \Leftrightarrow ((p \Rightarrow q) \land (q \Rightarrow p))$
- $(xx) ((p \Leftrightarrow q) \land (q \Leftrightarrow r)) \Rightarrow (p \Leftrightarrow r)$ $(xxi) ((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
- (xxii) $(p \Rightarrow q) \Leftrightarrow ((\neg p) \lor q)$
- (xxiii) $(p \Rightarrow q) \Leftrightarrow ((\neg q) \Rightarrow (\neg p))$

(xxiv) $p \Leftrightarrow ((p \land r) \lor (p \land \neg r))$

(Fallunterscheidung)

(Symmetrie)

(Symmetrie)

(Symmetrie)

(Idempotenz)

(Idempotenz)

(Assoziativität)

(Assoziativität)

(Distributivität)

(Distributivität)

(De Morgan)

(De Morgan)

Erste Mengenlehre

PART 1.2

Definition (naive Definition einer Menge)

D. 1.12

Eine Menge ist eine Zusammenfassung von Objekten, Elemente genannt. Ist A eine Menge, x ein Objekt, so schreiben wir $x \in A$, falls x ein Element von A ist. $x \notin A :\Leftrightarrow \neg(x \in A)$ Für eine Menge A, die genau die Elemente a,b und c enthält, schreiben wir $A = \{a,b,c\}$. Es ist irrelevant, ob a mehrfach auftaucht oder wie die Elemente angeordnet werden.

Definition

D. 1.13

Seien A, B Mengen.

- (i) Dann ist A eine Teilmenge von B ($A \subset B$ oder $A \subseteq B$), falls aus $x \in A$ auch $x \in B$ folgt.
- (ii) A und B heißen gleich (A=B), falls $A\subset B$ und $B\subset A$ gelten. $A\neq B:\Leftrightarrow \neg(A=B)$ (Extensionalitätsaxiom)
- (iii) Schreibe $A \subseteq B$ für $A \subset B$ und $A \neq B$.

Lemma	L. 1.14
Seien A, B, C Mengen. Dann gelten:	
(i) $A \subset A$ (Reflexivi	tät)
(ii) $x \in A$ und $A \subset B$ implizieren $x \in B$	
(iii) $A \subset B \subset C \Rightarrow A \subset C$ (Transitivi	/
Axiom (Aussonderungsaxiom) Sei A eine Menge und $a(x)$ eine Aussageform. Dann gibt es eine Menge B , deren Eleme genau die $x \in A$ sind, die $a(x)$ erfüllen. Schreibe $B = \{x \in A : a(x)\}$.	A. 1.15 ente
Bemerkung	Bem. 1.17
Zu jeder Menge A gibt es eine Menge B und eine Aussageform $a(x): A = \{x \in B: a(x) \in B : a(x) \in B = A, a(x) = (x \in A).$	
Bemerkung (Russelsche Antinomie)	Bem. 1.18
Nimmt man im Aussonderungsaxiom statt A die "Allmenge" (Menge aller Elemente), de bekommt man Probleme: Sei $A = \text{Allmenge}, B = \{X \in A : X \notin X\}$. Es gilt $y \in B \Leftrightarrow (y \in A \land y \notin y) \Leftrightarrow y \notin y$. Gilt $B \in B$? \to Widerspruch. Lemma (Existenz der leeren Menge) Es gibt eine Menge \emptyset , die leere Menge, die kein Element enthält. Sie erfüllt: (i) $\emptyset \subset A$ für alle Mengen A	L. 1.19
Quantoren	Part 1.3
•	
Definition	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } a(x) \text{ der Menge } A, \text{ sodass dieses } x a(x) \text{ erfüllt."}$	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } x$	D. 1.20
 Definition Sei A eine Menge, a(x) eine Aussageform. (i) Existenzquantor: Wir schreiben ∃x ∈ A : a(x) oder ∃ a(x) für "Es gibt ein x der Menge A, sodass dieses x a(x) erfüllt." Schreibe ∃!x ∈ A : a(x) für es gibt genau ein x ∈ A mit a(x). Dies zeigt man, ind man ∃x ∈ A : a(x) und für alle x, y ∈ A mit a(x), a(y) : x = y zeigt. (ii) Allquantor: Schreibe ∀x ∈ A : a(x) oder ∀ a(x) manchmal auch a(x)∀x ∈ A "Für alle x ∈ A gilt a(x)." 	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder $\exists a(x)$ für "Es gibt ein $x \in A$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$. Dies zeigt man, incoman $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x = y$ zeigt. (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall a(x) \in A$ manchmal auch $a(x) \forall x \in A$ "Für alle $x \in A$ gilt $a(x)$." Lemma	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x)$ oder $\exists a(x)$ für "Es gibt ein $x \in A$ menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists !x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$. Dies zeigt man, independent man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x = y$ zeigt. (ii) Allquantor: Schreibe $\forall x \in A : a(x)$ oder $\forall x \in A : a(x)$ manchmal auch $a(x) \forall x \in A$ "Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelten (1.1) $\forall x \in A \in$	D. 1.20
Definition Sei A eine Menge, $a(x)$ eine Aussageform. (i) Existenzquantor: Wir schreiben $\exists x \in A : a(x) \text{ oder } \underset{x \in A}{\exists} a(x) \text{ für "Es gibt ein } x$ der Menge A , sodass dieses x $a(x)$ erfüllt." Schreibe $\exists ! x \in A : a(x)$ für es gibt genau ein $x \in A$ mit $a(x)$. Dies zeigt man, ind man $\exists x \in A : a(x)$ und für alle $x, y \in A$ mit $a(x), a(y) : x = y$ zeigt. (ii) Allquantor: Schreibe $\forall x \in A : a(x) \text{ oder } \underset{x \in A}{\forall} a(x) \text{ manchmal auch } a(x) \forall x \in A$ "Für alle $x \in A$ gilt $a(x)$." Lemma Seien A, B Mengen. $p(x), p(x, y)$ Aussageformen. Dann gelten (1.1) $\underset{x \in A}{\forall} y \underset{y \in B}{\forall} y (x, y) \iff \underset{y \in B}{\forall} x \underset{x \in A}{\forall} y \underset{y \in B}{\forall} x \underset{x \in A}{\forall} y \underset{y \in B}{\forall} x \underset{x \in A}{\forall} y $	D. 1.20

Weitere Mengenlehre		Part 1.4
Axiom (Existenz einer Obermenge)		A. 1.24
Sei \mathcal{M} eine Menge von Mengen. Dann gibt es eine Menge	M (=Obermenge) mit $A \in$	
$\mathcal{M} \Rightarrow A \subset M$. Bemerkung: M ist eindeutig bestimmt.		
Definition (Vereinigung und Durchschnitt)		D. 1.25
Seien A, B Mengen mit Obermenge X .		2.1.20
(i) Dann ist die $\textit{Vereinigung}$ von A und B $(A \cup B)$ defini	iert durch	
$A \cup B := \{x \in X : x \in A \lor x \in B\}$ (ii) don (Parach) Schmitt von A und P (A \cap P) ist defini	out dunch	
(ii) der <i>(Durch-) Schnitt</i> von A und B $(A \cap B)$ ist defini $A \cap B := \{x \in X : x \in A \land x \in B\}$	ert durch	
Sei \mathcal{M} eine Menge von Mengen mit Obermenge X .		
(i) Vereinigung: $\bigcup A := \{x \in X : (\exists A \in \mathcal{M} : x \in A)\}$		
(ii) Schnitt: $\bigcap_{A \in \mathcal{M}} A := \{ x \in X : (\forall A \in \mathcal{M} : x \in A) \}$		
Bemerkung		Bem. 1.26
Enthält \mathcal{M} keine Menge, so gelten $\bigcup_{A \in \mathcal{M}} A = \emptyset$ sowie $\bigcap_{A \in \mathcal{M}} A = \emptyset$	=X	
Definition (Disjunkte Mengen) AEM AEM AEM		D. 1.27
Seien A, B Mengen.		D. 1.21
(i) A und B heißen disjunkt, falls $A \cap B = \emptyset$. Schreibe in di	iesem Fall $A \dot{\cup} B$ statt $A \cup B$	
(ii) Sei ${\mathcal M}$ eine Menge von Mengen. Dann heißen die Men		
$A, B \in \mathcal{M}, A \neq \emptyset$ stets $A \cap B = \emptyset$ gilt. Schreibe $\bigcup_{A \in \mathcal{M}} A$	statt $\bigcup_{A \in \mathcal{M}} A$.	
Definition (Komplement)		D. 1.28
Seien A, B Mengen mit fester Obermenge X .		
(i) Definiere das Komplement von A in B durch $B \setminus A := \{0\}$		
(ii) Definiere das Komplement von A durch $CA \equiv A^{C} := \{x \mid Proposition\}$	$\in A: x \notin A$	P. 1.29
Seien A, B, C Mengen mit Obermenge X . Dann gelten:		Γ. 1.23
(i) $A \cup B = B \cup A$	(Kommutativität)	
(ii) $A \cap B = b \cap A$	(Kommutativität)	
(iii) $(A \cup B) \cup C = A \cup (B \cup C)$	(Assoziativität)	
(iv) $(A \cap B) \cap C = A \cap (B \cap C)$	(Assoziativität)	
$ (v) (A \cap B) \cup C = (A \cup C) \cap (B \cup C) $ $ (A \cap B) \cap C = (A \cap C) \cap (B \cap C) $	(Distributivität)	
(vi) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (vii) $C(A \cup B) = CA \cap CB$	(De Margangaha Pagal)	
$(\text{viii}) \ \ C(A \cap B) = CA \cup CB$ $(\text{viiii}) \ \ C(A \cap B) = CA \cup CB$	(De Morgansche Regel) (De Morgansche Regel)	
(ix) CCA = A	(De Morgansene Reger)	
(x) $A \cup CA = X$		
(xi) $A \setminus B = A \cap \complement B$		
Axiom (Potenzmenge)		A. 1.30
Sei A eine beliebige Menge. Dann gibt es die Menge $\mathcal{P}(A)$ (
von A. Die Elemente von $\mathcal{P}(A)$ sind genau die Teilmengen von Axiom (Kortosisches Produkt)	on A.	Λ 1 21
Axiom (Kartesisches Produkt) Seien A, B Mengen. Dann gibt es eine Menge, das Kartesis	echo Produkt von Aund D	A. 1.32
Selen A, B Mengen. Dann glot es eine Menge, das Kartesis $(A \times B)$, die aus allen geordneten Paaren (a, b) mit $a \in A, b \in A$		
heißt zweite Komponente des Paares (a, b) .	· · · · · · · · · · · · · · · · · · ·	
$A \times B := \{(a,b) : a \in A \land b \in B\}$		

Bemerkung	Bem. 1.33
$(a,b) \equiv \{a,\{a,b\}\} \in \mathcal{P}(A \cup \mathcal{P}(A \cup B))$ Definition (Funktion Abbleitung)	D. 1.34
Definition (Funktion, Abbleitung) Seien A, B Mengen.	D. 1.34
(i) Eine Funktion (oder Abbildung) f von A nach B , $f:A\to B$, ist eine Teilmenge von $A\times B$, sodass es zu jedem $a\in A$ genau ein $b\in B$ mit $(a,b)\in f$ gibt: $\forall a\in A\exists b\in B:(a,b)\in f$. Schreibe $b=f(a),a\mapsto b$.	
Definiere den Graphen von f : $graph \ f := \{(x, f(x)) \in A \times B : x \in A\} = f \subset A \times B$	
(ii) A heißt Definitionsbereich von f , $D(f)$. $f(A) := \{f(x) : x \in A\} \equiv \{y \in B : (\exists x \in A : \underline{f(x)} = \underline{y})\} = im \ f = R(f)$	
heißt \boldsymbol{Bild} oder $\boldsymbol{Wertebereich}$ von f .	
(iii) Sei $M \subset A$ beliebig. $f(M) := \{y \in B : (\exists x \in M : f(x) = y)\} \equiv \{f(x) : x \in M\}$ Somit induziert $f : A \to B$ eine Funktion $\mathcal{P}(A) \to \mathcal{P}(B)$, die wir wieder mit f bezeichnen.	
(iv) Zu einer beliebigen Funktion $f:A\to B$ definieren wir die <i>Urbildabbildung</i> $f^{-1}:\mathcal{P}(B)\to\mathcal{P}(A)$ mit $F^{-1}(M):=\{x\in A:f(x)\in M\},M\subset B$ beliebig. $f^{-1}(M)$ heißt <i>Urbild</i> von M unter f .	
Bemerkung	Bem. 1.35
$f:A\to B$ und $g:C\to D$ sind gleich, falls sie als Teilmengen von $A\times B$ bzw. $C\times D$ gleich sind, insbesondere $B=D$.	
Definition	D. 1.36
Sei $f: A \to B$.	
 (i) f heißt injektiv, falls für alle x, y ∈ A aus f(x) = f(y) auch x = y folgt. (ii) f heißt surjektiv, falls f(A) = B. Wir sagen, dass f die Menge A auf B abbildet. Bei nicht-surjektiven Abbildungen sagt man A wird nach oder in B abgebildet. (iii) f heißt bijektiv, falls f injektiv und surjektiv ist. f ist eine Bijektion. 	
(iv) ist f injektiv, so definieren wir die $Inverse$ von f durch $f^{-1}: R(f) \to A$ mit $f(x) \mapsto x$. Es gilt $f^{-1}(f(x)) = x$	
Bemerkung	Bem. 1.37
 (i) \$\mathcal{I}(f(x))\$ bezeichnet die \$\mathcal{Inverse}\$ von \$f(x)\$. (ii) \$U(\{f(x)\})\$ bezeichnet die Umkehrabbildung der Menge \$\{f(x)\}\$, sie ist definiert durch \$U:\mathcal{P}(B) \to \mathcal{P}(A)\$ mit \$M \subseteq B \mathread{\mathread{P}}\$ \{x \in A : f(x) \in M\}\$ 	Deim: 1.37
(iii) $f: A \to B$ induziert $g: \mathcal{P}(A) \to \mathcal{P}(B)$ $\Rightarrow \{f(x)\} = g(\{x\})$	
Definition (Komposition von Abbildungen)	D. 1.38
Seien $f:A\to B,g:B\to C$ Abbildungen. Dann heißt	_,_,
$g \circ f : A \to C \text{ mit } x \mapsto g(f(x)) \text{ Komposition von } f \text{ und } g.$	D 1.40
Bemerkung Seien $f: A \to B, g: B \to C, h: C \to D$ Abbildungen. Dann gilt $h \circ (g \circ f) = (h \circ g) \circ f$ Sowie für Inverse und Umkehrabbildungen:	Bem. 1.40
Sowie für Inverse und Umkehrabbildungen: $ (g \circ f)^{-1} = f^{-1} \circ g^{-1} $	

Definition (Relationen) Seien A, B Mengen.	D. 1.41
 (i) R ⊂ A × B heißt Relation. Statt (x,y) ∈ R sagen wir R(x,y) gilt. (ii) R ⊂ A × A heißt (a) reflexiv, falls R(x,x) für alle x ∈ A gilt (b) symmetrisch, falls R(x,y) ⇒ R(y,x) für alle x, y ∈ A (c) antisymmetrisch, falls R(x,y) ∧ R(y,x) ⇒ x = y für alle x, y ∈ A (d) transitiv, falls R(x,y) ∧ R(y,z) ⇒ R(x,z) für alle x, y, z ∈ A (iii) R ⊂ A × A heißt Äquivalenzrelation, falls R reflexiv, symmetrisch und transitiv ist. Schreibweise bei Äquivalenzrelationen: x ~ y statt R(x,y) 	
Definition Sei $R \subset A \times A$ eine Äquivalenzrelation. Sei $x \in A$. dann heißt $[x] := \{y \in A : R(x,y)\}$ Äquivalenzklasse von x . Schreibe $y \equiv x \pmod{R}$ für $y \in [x]$. $A/R := \{[x] : x \in A\}$ ist die Menge aller Äquivalenzklassen von R .	D. 1.42
DIE REELLEN ZAHLEN	Part 1.5
Definition Die reellen Zahlen, \mathbb{R} , sind eine Menge mit den folgenden Eigenschaften: (A) \mathbb{R} ist ein Körper, d.h. es gibt die Abbildung (i) $+: \mathbb{R} \times \mathbb{R}$, die Addition , schreibe $x+y$ für $x(x,y)$ (ii) $\cdot: \mathbb{R} \times \mathbb{R}$, die Multiplikation , mit $(x,y) \mapsto x \cdot y \equiv xy$ bezeichnet und zwei ausgezeichneten Elementen: $0,1$ mit $0 \neq 1$	D. 1.44
Es gilt, soweit nicht anders angegeben, für alle $x,y,z\in\mathbb{R}$: $(\text{K1})\ x+(y+z)=(x+y)+z$ $(\text{K2})\ x+y=y+x$ $(\text{K3})\ 0+x=x$ $(\text{K4})\ \forall x\in\mathbb{R}\ \exists y\in\mathbb{R}: x+y=0, \text{Schreibe}\ -x \text{ für }y\colon x+(-x)=0$ $(\text{K5})\ (xy)z=x(yz)$ $(\text{K6})\ xy=yx$ $(\text{K7})\ 1x=x$ $(\text{K8})\ \forall x\in\mathbb{R}\setminus\{0\}\ \exists y\in\mathbb{R}: xy=1, \text{Schreibe}\ x^{-1} \text{ für }y\colon xx^{-1}=1$ $(\text{K9})\ x(y+z)=xy+xz$ $(\text{B})\ \mathbb{R}\ \text{ist ein angeordneter K\"{o}rper, d.h. es gibt eine Relation }R\subset\mathbb{R}\times\mathbb{R}\ (\text{schreibe}\ x\leq y \text{ für }R(x,y)), \text{ die f\"{u}r alle }x,y,z\in\mathbb{R}\ \text{ folgendes erf\"{u}llt:}$	
(O1) $x \le y \land y \le z \Rightarrow x \le z$ (Transitivität) (O2) $x \le y \land y \le x \Rightarrow x = y$ (Antisymmetrie) (O3) es gilt $x \le y$ oder $y \le x$	

D. 1.45

(O4) aus $x \le y$ folgt $x + z \le y + z$ (O5) aus $0 \le x$ und $0 \le y$ folgt $0 \le xy$.

besitzt ein Supremum in \mathbb{R} .

Eine transitive, antisymmetrische Relation \leq , für die stets $x \leq y$ oder $y \leq x$ gilt, heißt (totale) Ordnung.

(C) $\mathbb R$ ist vollständig, d.h. jede nicht-leere nach oben beschränkte Teilmenge von $\mathbb R$

Schreibe $y \geq x$ statt $x \leq y$ und x < ybzw. y > x für $x \leq y$ und $x \neq y$

Definition (Supremum, Infimum	•		D. 1.46
(i) $A \subset \mathbb{R}$ heißt nach oben beschränkt (ii) $x_0 \in \mathbb{R}$ ist eine obere Schranke von			
(iii) $x_0 \in \mathbb{R}$ ist das Supremum von $A \subset \mathbb{R}$			
A stets $x \ge x_0$ gilt. x_0 heißt kleinste			
(iv) Ist $\sup A \in A$, so heißt $\sup A$ Maxim			
(v) Ist $A \subset \mathbb{R}$ nicht nach oben beschränkt,		$A = +\infty$. Für alle $x \in \mathbb{R}$ vereinbaren	
wir $-\infty < x < +\infty$.			
(vi) Entsprechend: nach unten beschrö	$inkt,\ unter$	$e\ Schranke,\ Infimum\ (=gr\"{o}eta te$	
$untere\ Schranke),\ Minimum.$	·1. · · · · · · · · · · · · · · · · · ·	A1	
Ist A nach unten unbeschränkt, so g A , $A \subset \mathbb{R}$.	$\inf A = -$	$-\infty$. Alternativ: $-A = \{-a : a \in$	
$A_f, A \subset \mathbb{R}$. A heißt nach unten beschränkt , fall	s - A nach o	oben beschränkt ist $x = \inf A$ falls	
$-x = \sup -A.$	5 21 Hacir C	been beschränkt ist. $x = 11171$, rans	
(vii) Ist $A \subset \mathbb{R}$ nach oben und unten besch	ränkt, so he	ißt A beschränkt .	
Bemerkung			Bem. 1.47
$\sup \emptyset = -\infty \text{ und inf } \emptyset = +\infty$			
Definition			D. 1.49
Seien $a, b \in \mathbb{R}, a < b$.			D11113
(i) $(a,b) := \{x \in \mathbb{R} : a < x < b\}$		(offenes Intervall)	
(ii) $(a, b] := \{x \in \mathbb{R} : a < x \le b\}$		(halboffenes Intervall)	
(iii) $[a, b) := \{x \in \mathbb{R} : a \le x < b\}$		(halboffenes Intervall)	
(iv) $[a, b] := \{x \in \mathbb{R} : a \le x \le b\}$		(abgeschlossenes Intervall)	
a,b heißen ${\it Endpunkte}$ der Intervalle.			
Lemma			L. 1.50
Sei $x \in \mathbb{R}$. Dann gilt $x0 = 0x = 0$.			L. 1.50
Lemma			L. 1.51
Sei $x \in \mathbb{R}$. Dann gelten			L. 1.51
(i) $(-1)x = -x$			
(ii) (-1)x = x $(ii) -(-x) = x$			
(iii) $(-1)(-1) = 1$			
Lemma			L. 1.52
Sei $x \in \mathbb{R}$. Dann ist die additive Inverser	-x eindeuti	g hestimmt	2,1,02
Lemma	w children	8 86841111114	L. 1.53
Es gelten $0 < 1 \text{ und } -1 < 0.$			L. 1.55
Lemma			L. 1.54
Seien $x, y \in \mathbb{R}$. Dann gilt genau ein der d	roi folgondor	Auggagan	L. 1.34
Seien $x,y \in \mathbb{R}$. Dann girt genau ein der d	rei ioigender	i Aussagen.	
x < y,	x = y,	x > y	
Lemma			L. 1.55
Gelte $0 < x < y$. Dann gelten:			
(i) $0 < x^{-1}$			
(ii) $0 < y^{-1} < x^{-1}$			
Lemma			L. 1.56
$x, y \in \mathbb{R}$. Gilt $xy = 0 \Rightarrow x = 0$ oder $y = 0$			
Lemma			L. 1.57
Seien $a, b \in \mathbb{R}$.			
(i) Aus $0 \le a \le b$ folgt $a^2 \le b^2$			
(ii) Aus $a^2 \le b^2$ und $b \ge 0$ folgt $a \le b$.			
0			

 $\mathrm{Mit}\ a^2 = a \cdot a.$

Definition (Natürliche Zahlen) Die natürlichen Zahlen \mathbb{N} sind die kleinste Teilmeng $(N1) = \in A$	e $A\subset\mathbb{R}$ mit	D. 1.58
$(N2) \ a+1 \in A, \forall a \in A$		
\mathbb{N} ist die kleinste Menge mit (N1), (N2) in dem Sin (N1) und (N2) auch $\mathbb{N} \subset \mathcal{N}$ gilt.	n, dass für alle $\mathcal{N} \subset \mathbb{R}$ mit \mathcal{N} erfüllt	
Lemma		L. 1.59
Es gibt die natürlichen Zahlen. Sie sind eindeutig be	estimmt.	L. 1.60
Lemma (Peanoaxiome) Es gelten:		L. 1.00
(i) $0 \in \mathbb{N}$	- 07	
(ii) jedes $a \in \mathbb{N}$ besitzt genau einen Nachfolger a^+ (iii) 0 ist kein Nachfolger einer natürlichen Zahl	$\in \mathbb{N}$	
(iv) $\forall n, m \in \mathbb{N} : m^+ = n^+ \Rightarrow n = m$		
(v) Sei $X \subset \mathbb{R}$ beliebig mit $0 \in X$ und $n^+ \in X, \forall n$		
Der Nachfolger von $a \in \mathbb{N}$ ist die Zahl $a^+ := a + 1 \in$ Theorem	₹ N.	T. 1.61
\mathbb{R} ist archimedisch , d.h. zu jedem $x \in \mathbb{R}$ gibt es n_0	$\in \mathbb{N}$, sodass für alle $\mathbb{N} \ni n \geq n_0$ auch	1.1.01
$n \ge x$ gilt.	, <u> </u>	14 1 60
Korollar Sei $x \in \mathbb{R}$ beliebig und sei $a > 0$.		K. 1.62
(i) Dann gibt es $n \in \mathbb{N}$ mit $an \geq x$		
(ii) Dann gibt es $m \in \mathbb{N}$ mit $0 < \frac{1}{n} \le a$		
(iii) Ist $a \leq \frac{1}{n}$ für alle $n \in \mathbb{N}$ (oder alle $n \in \mathbb{N}$ mit $n \in \mathbb{N}$	$n \ge n_0$), so ist $a \le 0$.	
Theorem (Vollständige Induktion)		T. 1.63
Erfüllt $M \subset \mathbb{N}$ die Bedingungen	(T. 1.1.)	
(i) $0 \in M$ (ii) $n \in M \Rightarrow n+1 \in M$	(Induktions an fang) $(Induktions schritt)$	
so gilt $M = \mathbb{N}$.	(
Theorem		T. 1.64
Sei p eine Aussageform auf \mathbb{N} . Gelten		
(i) $p(0)$ und (ii) $p(n) \Rightarrow p(n+1)$ für alle $n \in \mathbb{N}$,		
so gilt $p(n)$ für alle $n \in \mathbb{N}$.		
Definition (Familie, Folge)		D. 1.67
(i) Seien \mathcal{I}, X Mengen, $f: \mathcal{I} \to X$ eine Abbildung. mit $x_i = f(i), \forall i \in \mathcal{I}$ (\mathcal{I} bezeichnet die Indexmer		
(ii) Ist $\mathcal{I} = \mathbb{N}$, so heißt $(x_i)_{i \in \mathcal{I}}$ Folge: $(x_i)_{i \in \mathbb{N}} \subset X$. (iii) Ist $J \subset \mathcal{I}$, so heißt $(x_j)_{j \in J}$ Teilfamilie von $(x_i)_{i \in \mathbb{N}}$	$j_{i \in \mathcal{I}}$, falls die Werte auf J übereinstim-	
men. (iv) Ist $\mathcal{I} = \mathbb{N}, J \subset \mathbb{N}$ unendlich, so heißt $(x_j)_{j \in J}$ Te eine Folge mit $j_{k+1} > j_k, \forall k$ und $J = \bigcup_{k \in \mathbb{N}} \{j_k\}$, so		
(v) Sei $(x_i)_{i\in\mathcal{I}}$ eine Familie. Ist $\mathcal{I} = \{1, 2, \dots, n\}$ (\rightarrow		
(a) $n=2$: Die Familie heißt $\boldsymbol{Paar}\;(x_1,x_2)$		
(b) $n = 3$: Die Familie heißt Triple (x_1, x_2, x_2)		

(c) n beliebig: Die Familie heißt n-Tupel (x_1, x_2, \ldots, x_n)

Definition	D. 1.68
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen mit Obermenge X . (i) $\bigcup A_i := \{x \in X : (\exists i \in \mathcal{I} : x \in A_i)\}$	
(ii) $\bigcap_{i\in\mathcal{I}}^{i\in\mathcal{I}}A_i:=\{x\in X: (\forall i\in\mathcal{I}:x\in A_i)\}$	
(iii) $\mathcal{I} = \{1, 2, \dots, n\} : \bigcup_{i=1}^{n} A_i = \bigcup_{i \in \mathcal{I}} A_i$, sowie $\bigcap_{i=1}^{n} A_i = \bigcap_{i \in \mathcal{I}} A_i$	
	D. 1.69
Ist $(x_i)_{i\in\mathcal{I}}$ eine Familie reeller Zahlen, so gilt $\sup_{i\in\mathcal{I}} x_i := \sup\{x_i : i\in\mathcal{I}\}$, sowie	
$\inf_{i \in \mathcal{I}} x_i := \inf\{x_i : i \in \mathcal{I}\}.$	
Proposition	P. 1.70
 (i) Seien A, B ⊂ R, A ⊂ B. ⇒ sup A ≤ sup B, inf A ≥ inf B. (ii) Sei (A_i)_{i∈I} eine Familie von Mengen A_i ⊂ R, ∀i ∈ I. Dann definiere A := ∪ A_i 	
$\Rightarrow \sup_{i \in \mathcal{I}} A = \sup_{i \in \mathcal{I}} \sup_{i \in \mathcal{I}} A_i \text{ und inf } A = \inf_{i \in \mathcal{I}} \inf_{i \in \mathcal{I}} A_i.$	
Definition	D. 1.71
(i) Sei A eine Menge, $f: A \to \mathbb{R}$ eine Funktion. f heißt $nach oben (unten) beschränkt$, falls für $f(A)$ gilt:	
(a) $\sup f(A) = \sup_{x \in A} f(x)$	
(b) $\inf f(A) = \inf_{x \in A} f(x)$	
(ii) Sei A eine Menge und $f_i: A \to \mathbb{R}$ eine Familie von Funktionen. Gilt für alle $x \in A$, dass $\sup_{i \in \mathcal{I}} f_i(x) < \infty$, so definieren wir die Funktion	
$\sup_{i\in\mathcal{I}}f_i:A\to\mathbb{R}$	
$(\sup_{i\in\mathcal{I}}f_i)(x):=\sup_{i\in\mathcal{I}}f_i(x)$	
(iii) Ohne $\sup f_i(x) < \infty$ erhalten wir mit derselben Definition $\sup f_i : A \to \mathbb{R} \cup \{+\infty\}$	
(iv) Analog für $\inf_{i \in \mathcal{I}} f_i$.	
(v) Ist $\mathcal{I} = \{1, \dots, n\}$ gilt $\sup_{i \in \mathcal{I}} f_i = \sup(f_1, \dots, f_n) = \max(f_1, \dots, f_n).$	
Entsprechend für Infimum/Minimum.	- 4
Definition (Kartesisches Produkt)	D. 1.72
(i) Sei $\mathcal{I} \neq \emptyset$ und $(A_i)_{i \in \mathcal{I}}$ eine Familie von Mengen. Definiere das kartesische Produkt wie folgt:	
$\prod_{i \in \mathcal{I}} A_i := \{ (x_i)_{i \in \mathcal{I}} : (\forall i \in \mathcal{I} : x_i \in A_i) \}$	
(ii) Zu $j \in \mathcal{I}$ definieren wir die j -te Projektionsabbildung $\pi_j : \prod_{i} A_i \to A_j \text{ mit } \pi_j((x_i)_{i \in \mathcal{I}}) := x_j$	
Axiom	A. 1.74
Sei $(A_i)_{i\in\mathcal{I}}$ eine Familie von Mengen $A_i\neq\emptyset, \forall i\in\mathcal{I}$. Dann gilt $\prod A_i\neq\emptyset$, d.h. es gibt	
eine Familie $(x_i)_{i\in\mathcal{I}}$ mit $x_i\in A_i, \forall i\in\mathcal{I}.$	

P. 1.75
L. 1.76
D. 1.77
n
P. 1.78
e e
L. 1.79
P. 1.80
Part 1.6
D. 1.8 4

Bemerkung	Bem. 1.85
(i) \sim ist Äquivalenzrelation	
(ii) $A \prec B \prec C \Rightarrow A \prec C$	
(iii) $A \prec A$	
(iv) $G := \{2n : n \in \mathbb{N}\}, G \prec \mathbb{N} : 2n \mapsto 2n \text{ und } \mathbb{N} \prec G : n \mapsto 2n.$ Bijektiv: $\mathbb{N} \sim G$	T 1 00
Theorem (Schröder-Bernstein)	T. 1.86
Aus $A \prec B$ und $B \prec A$ folgt $A \sim B$.	D 1 0
Proposition A B C sind Mangan Science A A B B A C Abbildungan Sci f A A B B	P. 1.87
A,B,C sind Mengen. Seien $\varphi:A\to B,\psi:B\to C$ Abbildungen. Sei $f:A\to B$ Abbildung. Dann gelten:	
(i) Ist $\psi \circ \varphi$ injektiv, so ist φ injektiv	
(ii) Ist $\psi \circ \varphi$ surjektiv, so ist ψ surjektiv	
(iii) f surjektiv $\Leftrightarrow \exists g : B \to A, f \circ g = id_B$	
(iv) f injektiv $\Leftrightarrow \exists g: B \to A, g \circ f = id_A$	17 1 00
Korollar	K. 1.88
$A \prec B \Leftrightarrow \exists f: B \to A, \ f \ \text{ist surjektiv.}$ Definition	D 1 00
Sei A eine Menge.	D. 1.89
(i) A heißt endlich , falls es eine injektive Abbildung $f: A \to \mathbb{N}$ und $m \in \mathbb{N}$ mit	
$f(a)ym, \forall a \in A \text{ gibt.}$	
(ii) A heißt $unendlich$, falls A nicht endlich ist.	
(iii) Gibt es eine bijektive Abbildung $f: A \to \{0, 1, \dots, m-1\} \subset \mathbb{N}$, so hat A die	
Kardinalität $m(A = m)$. Gibt es keine solche Abbildung, so gilt $ A = \infty$. (iv) Sei P eine Aussageform auf A . Dann gilt P für fast alle $i \in A$, falls $\{i \in A : \neg P(i)\}$	
endlich ist.	
Lemma	L. 1.9 1
(i) Für jede endliche Menge A gilt $ A < \infty$, d.h. es gibt ein $m \in \mathbb{N}$ und eine Bijektion $f: A \to \{0, \dots, m-1\}$.	
(ii) Seien $m, n \in \mathbb{N}$ und $f : \{0, \dots, m\} \to \{0, \dots, n\}$ eine Bijektion. Dann gilt $n = m$. (\Rightarrow Kardinalität ist wohldefiniert).	
Lemma	L. 1.92
Sei $m \in \mathbb{N} \setminus \{0\}$ und $(a_i)_{1 \leq i \leq m}$ eine endliche Familie natürlicher Zahlen (oder reeller). Dann gibt es ein $i \in \{a, \dots, m\} : a_i \leq a_j, \forall 1 \leq j \leq m$. Schreibe $a_i = \min\{a_1, \dots, a_m\} \equiv \min(a_1, \dots, a_n)$. Entsprechend $\max\{a_1, \dots, a_m\} \equiv \max(a_1, \dots, a_n)$.	
Lemma	L. 1.93
Die natürlichen Zahlen sind wohlgeordnet, d.h. jede Menge $M \subset \mathbb{N}, M \neq \emptyset$, besitzt ein kleinstes Element, d.h. $\exists a \in M : a \leq b, \forall b \in M$.	
Lemma	L. 1.94
Sei A eine unendliche Menge. Dann besitzt A eine abzählbare Teilmenge.	
Lemma	L. 1.95
Sei A eine Menge. Dann ist A genau dann höchstes abzählbar, wenn A endlich ist oder $A \sim \mathbb{N}$.	
Lemma	L. 1.96
Sei A eine Menge. Dann ist A genau dann höchstens abzählbar, wenn es eine surjektive Abbildung $f: \mathbb{N} \to A$ gibt.	D 1 0
Proposition	P. 1.97
$\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.	

P. 1.97

Proposition P. 1.98 Sei $k \in \mathbb{N}_{\geq 0}$. Dann ist $\prod_{i=1}^{\kappa} \mathbb{N} = \mathbb{N}^k$ abzählbar. Dies gilt auch, wenn wir \mathbb{N} überall durch $A \sim \mathbb{N}$ ersetzen. L. 1.99 Lemma Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abzählbarer Mengen. Dann ist $A:=\bigcup_{i\in\mathbb{N}}A_i$ abzählbar. Bem. 1.100 Bemerkung P. 1.98 und L. 1.99 gelten auch mit "höchstens abzählbar" statt abzählbar. T. 1.101 Theorem (Cantor) Sei A eine Menge $\Rightarrow \mathcal{P}(A) \succ A$ und $\mathcal{P}(A) \not\sim A$. Betrag und Wurzel PART 1.7 **Definition** D. 1.102 (i) Sei $x \in \mathbb{R}$. Definiere den $\textbf{\textit{Betrag}}$ von x wie folgt: $|x| := \left\{ \begin{array}{ll} x, & x \geq 0 \\ -x, & x \leq 0 \end{array} \right.$ (ii) Ist $I \subset \mathbb{R}$ ein Intervall mit Endpunkten a und b, so heißt |a-b| Länge von I. **Proposition** P. 1.104 Seien $x, a \in \mathbb{R}$. Dann gelten (i) $x \leq |x|$ (ii) $|x| \le a \Leftrightarrow -a \le x \le a$ (iii) $|x| < a \Leftrightarrow -a < x < a$ Korollar K. 1.105 Sei $A \subset \mathbb{R}$. Dann ist A genau dann beschränkt, wenn es ein $a \in \mathbb{R}$ mit $|x| \leq a, \forall x \in A$ T. 1.106 Theorem (Dreiecksungleichung) Seien $a, b \in \mathbb{R}$. Dann gilt (i) $|a+b| \le |a| + |b|$ (ii) $|a - b| \ge |a| - |b|$ (iii) $|a-b| \ge ||a|-|b||$ **Proposition (Existenz der** *m***-ten Wurzel)** P. 1.107 Seien $m \in \mathbb{N} \setminus \{0\}, a \in \mathbb{R}_{geq0}$. Dann gibt es genau ein $x \in \mathbb{R}_{\geq 0} : x^m = a$. Definition D. 1.108

(ii) $\sqrt[m]{a}$ oder $a^{\frac{1}{m}}$ ist die Zahl in \mathbb{R}_+ mit $(\sqrt[m]{a})^m = a$

(iii)
$$a^0 := 1, a^{\frac{n}{m}} := \left(a^{\frac{1}{m}}\right)^n$$

Weitere Zahlen und Mächtigkeit

Part 1.8

Definition

D. 1.109

- (i) Die Menge der $x \in \mathbb{R}$, sodass es $n, m \in \mathbb{N}$ mit m n = x gibt, heißt die Menge der ganzen Zahlen: $\mathbb{Z} := \{m - n : m, n \in \mathbb{N}\}$
- (ii) Die *rationalen Zahlen* sind die Menge aller $x \in \mathbb{R}$, sodass es $m, n \in \mathbb{Z}$ mit $n \neq 0$ und $x = \frac{m}{n}$ gibt: $\mathbb{Q} := \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$
- (iii) $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ heißt die Menge der *irrationalen Zahlen*.
- (iv) Die **komplexen Zahlen** sind Paare reeller Zahlen : $\mathbb{C} := \{(a, b) : a, b \in \mathbb{R}\}.$

Addition: (a, b) + (c, d) := (a + c, b + d)

Multiplikation: $(a,b) \cdot (c,d) := (ac - bd, bc + ad)$

Schreibe $(a, b) \equiv a + ib$. Es gilt $i^2 = -1$.

Sei z = a + ib. Dann heißt $a = Re \ z \ \textit{Realteil von } z \ \text{und } b = Im \ z \ \textit{Imaginärteil}$

 $\overline{a+ib} := a-ib$ heißt **konjugiert komplexe Zahl zu** a+ib.

 $|a+ib| := \sqrt{a^2 + b^2}$ heißt **Betrag von** a+ib.

Für $a, b \in \mathbb{R}, z, w \in \mathbb{C}$ gilt:

- $|a+ib|^2 = (a+ib)\overline{(a+ib)}$
- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \cdot \overline{w}$
- $|z|^2 = |Re\ z|^2 + |Im\ z|^2$
- $|z|^2 = |\overline{z}|$

Betrachte \mathbb{R} mithilfe von $\mathbb{R} \ni x \mapsto (x,0) \in \mathbb{C}$ als Teilmenge von \mathbb{C} . $x \in \mathbb{R} \Rightarrow \overline{x} = x$.

Bemerkung

Bem. 1.110

- (i) Summen, Differenzen und Produkte ganzer Zahlen sind ganze Zahlen.
- (ii) $\mathbb Q$ bildet einen angeordneten Körper, $\mathbb Q$ ist nicht vollständig.
- (iii) $\mathbb C$ ist ein Körper, $\mathbb C$ ist nicht angeordnet, $\mathbb C$ ist als metrischer Raum vollständig.

$$(a+ib)(a-ib) = a^2 + b^2$$
. Für $(a,b) \neq 0$ ist daher $\frac{a}{a^2 + b^2} + i\frac{-b}{a^2 + b^2} = (a+ib)^{-1}$

- (iv) Seien $z, w \in \mathbb{C} \Rightarrow |z + w| \le |z| + |w|$
- $(\mathbf{v}) |zw| = |z| \cdot |w|$

Theorem (Dichtheit von \mathbb{Q} in \mathbb{R})

Sei $I \subset (a,b) \subset \mathbb{R}$ ein Intervall mit $I \neq \emptyset$. Dann ist $I \cap \mathbb{Q}$ unendlich.

Proposition

 $\mathbb{Q} \sim \mathbb{N}$

Proposition

 $\mathbb{R} \sim \mathcal{P}(\mathbb{N})$ Bemerkung (Cantorsches Diagonalverfahren ($\mathbb{R} \succ \mathbb{N}, \mathbb{R} \nsim \mathbb{N}$)) P. 1.112

Bem. 1.114

P. 1.113

T. 1.111

Alle reellen Zahlen werden untereinander aufgelistet. Man nimmt die Diagonale und schreibt eine neue Zahl unter die Liste, die zur Diagonale verschieden ist \rightarrow nicht in der

Liste! Bemerkung

 $\mathbb{R} \sim (\mathbb{R} \setminus \mathbb{Q})$

Bem. 1.115

Konvergenz	KAP. 2
Metrische Räume	Part 2.1
Folgen	Part 2.2
Definition Sei E ein metrischer Raum. Sei $x \in E, \varepsilon > 0$. Definiere $B_{\varepsilon}(x) := \{y \in E : d(y, x) < \varepsilon\}$	D. 2.1
die ε -Kugel. $B_{\varepsilon}(x)$ heißt auch ε -Umgebung von x Definition (Konvergenz)	D. 2.2
 Sei (x_n)_{n∈ℕ} ⊂ E eine Folge in einem metrischen Raum E. (i) Dann konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, falls für beliebige ε > 0 fast alle (nur endlich viele liegen außerhalb) Folgeglieder in B_ε(a) liegen (ii) Konvergiert (x_n)_{n∈ℕ} gegen a ∈ E, so heißt a Limes oder Grenzwert der Folge (x_n)_{n∈ℕ}: 	D. 2.2
$a = \lim_{n \to \infty} x_n \text{ oder } x_n \to a \text{ für } n \to \infty \text{ oder } x_n \xrightarrow[n \to \infty]{} a.$	D 0.2
Bemerkung	Bem. 2.3
Die Definition von Konvergenz ist äquivalent zu (i) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $x_n \in B_{\varepsilon}(a)$ gilt. (ii) Für alle $\varepsilon > 0$ gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \in \mathbb{N}$ mit $n \ge n_0$ auch $d(x_n, a) < \varepsilon$ gilt.	
Korollar (Bolzano-Weierstraß)	K. 2.4
Sei $(x_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n$ eine beschränkte Folge, d.h. $\exists r>0: x_k\in B_r(0), \forall k\in\mathbb{N}$. Dann besitzt $(x_k)_{k\in\mathbb{N}}$ eine konvergente Teilfolge mit Grenzwert a und $ a \leq r$.	
Bemerkung	Bem. 2.5
In \mathbb{R}^n gilt: $(x_k)_{k\in\mathbb{N}}$ konvergiert $\Leftrightarrow (x_k^i)_{k\in\mathbb{N}}$ konvergiert für alle i .	
Definition (Cauchyfolge, Vollständigkeit)	D. 2.6
 (i) Eine Folge (x_n)_{n∈ℕ} in einem metrischen Raum E heißt Cauchyfolge (CF), falls es zu jedem ε > 0 ein n₀ ∈ ℕ mit d(x_k, x_l) < ε, ∀k, l ≥ n₀ gibt. (ii) Ein metrischer Raum, in dem jede CF konvergiert, heißt vollständiger metrischer Raum. 	
(iii) Ein normierter Raum, in dem jede CF konvergiert, heißt <i>vollständiger normierter</i> Raum oder Banachraum (BR).	
(iv) Ein vollständiger Skalarproduktraum heißt <i>Hilbertraum (HR)</i> . Lemma	L. 2.7
Sei E ein metrischer Raum. Sei $(x_n)_{n\in\mathbb{N}}\subset E$ konvergent. Dann ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge.	L. 2.1
Reihen	Part 2.3
Gleichmässige Konvergenz	Part 2.4