Résumé de l'article de Ivan Stojmenovic et David Simplot Localized minimum-energy broadcasting in ad-hoc networks

Dans cet article, comme dans le premier, l'auteur essaye de résoudre le problème de l'économie d'énergie en réduisant le graphe de départ par les deux protocoles RNG et LMST qui supposent d'avoir une connaissance locale du réseau.

1. Algorithme RBOP

Return

Le protocole RBOP se base sur le contrôle de topologie pour réduire le nombre d'arcs, donc le nombre de nœuds inondés par le broadcast tout en maintenant la connectivité du réseau.

```
Soit:
```

```
m le message envoyé
RNG(v) la liste des voisins RNG du nœud v
RNG(G) le graphe RNG de G
E<sub>rng</sub> l'ensemble des liens RNG dans le graphe G
Entrée un réseau G (V, E)
Soit G(V, E_{rng}) = RNG(G)
  Pour chaque nœud u \in E_{rng}
     Pour chaque nœud v \in E_{rng}
                Si v reçoit le broadcast pour la premiere fois
                   Si u \in RNG(v)
                         Si \exists w \in E_{rng} \land w \in RNG(v)
                         Calculer le plus loin nœud RNG qui n'a pas reçu m
                         Retransmettre m
                         Sinon
                         Ignorer m
                         Fin si.
                   Sinon
                         Calculer RNG(V) qui n'ont pas reçu m
                         Si RNG(V) ≠ Ø
                         Retransmettre m
                         Sinon
                         Ignorer m
                         Fin si.
                   Fin si.
               Sinon
                   Si v a déjà transmis m
                   Ignorer m
                  Sinon
                         Si RNG(v) ≠ Ø
                         Supprimer les nœuds qui ont reçu m dans RNG(v)
                         Retransmettre m
                         Sinon
                         Ignorer m
                         Fin si.
                   Fin sin.
               Fin si.
        Fin pour.
Fin pour.
```


2. Résultats des tests :

Les tests supposent :

- Le nombre de nœuds est 100, ils sont **statiques.**
- Le rayon maximum(la portée) pour la transmission est 250metrs.
- Les nœuds sont placés aléatoirement dans une surface carrée.
- 5000 braodcasts ont été éffectués.
- La probabilté qu'un nœud reçoit le broadcast est de 100%.
- Le premier test : α =2, c = 0. Le deuxième : α = 4, c = 10^8 .

Durant les tests on observe la consommation totale en energie qui est donnée par : $E_{total} = \sum_{u \in V} E(u)$

density	degree	EER				
		MTCP	RTCP	BIP	RBOP	
6	5.197	41.784	46.675	12.575	25.448	
8	6.856	33.700	39.965	24.776	23.988	
10	8.394	28.260	34.896	26.366	21.234	
12	9.972	24.176	30.538	24.307	18.307	
14	11.483	21.074	26.977	21.962	15.865	
16	12.945	18.630	24.027	19.860	13.997	
18	14.317	16.672	21.573	18.111	12.470	
20	15.685	15.103	19.606	16.632	11.251	
22	17.170	13.759	17.854	15.375	10.156	
24	18.369	12.635	16.414	14.367	9.236	
26	19.790	11.665	15.166	13.468	8.509	
28	20.988	10.842	14.093	12.692	7.890	
30	22.312	10.136	13.199	11.986	7.383	
		TABI	EI			
E	XPENDED I	ENERGY RA	TIO FOR α	=2, c=0.		

		EER				
density	degree	MTCP	RTCP	BIP	RBOP	
6	5.188	26.182	30.739	10.115	16.363	
8	6.869	19.041	24.315	20.374	14.165	
10	8.385	14.848	19.860	21.590	11.783	
12	9.948	11.935	16.267	19.994	9.590	
14	11.459	9.843	13.516	18.079	7.972	
16	12.936	8.328	11.336	16.370	6.655	
18	14.312	7.271	9.767	15.019	5.731	
20	15.709	6.442	8.530	13.799	5.069	
22	17.151	5.806	7.570	12.863	4.513	
24	18.388	5.282	6.766	12.007	4.095	
26	19.784	4.891	6.173	11.334	3.750	
28	20.990	4.570	5.677	10.675	3.446	
30	22.269	4.313	5.283	10.136	3.236	
		TABL	E II			
E	XPENDED E	NERGY RAT	IO FOR $\alpha =$	$4, c = 10^8$		