1	is the first step in solving the problem			
		Gather data and identify required results		
		Analyse the problem		
	✓	Understand and define the problem		
		Reach an appropriate solution using problem solving techniques		
2. Matri	x multi	plication can be achieved using which of the following algorithms?		
		Dynamic programming		
		Recursion		
	V	All of the above		
3. When a problem is solved by combining optimal solutions to non-overlapping sub-problems, the strategy is called				
		Dynamic programming		
		Greedy Algorithm		
	•	Divide and Conquer		
		Brute Force		
4. Which	ı is Trı	ne of a dynamic programming problem?		
		Substructure is optimal		
		Overlapping sub-Problems		
		Disjoint sub-problems		
	•	Overlapping sub-Problems and Optimal substructure		
5. An Algorithm must always have a finite number of steps.				
	✓	TRUE		
		FALSE		

6. Which of the following is not a type of instruction			
	Iterative		
	•	Heuristic	
		Conditional	
		Sequential	
7. Match	n the fo	llowing criteria that comes into play for Problem solving and Algorithms	
	(b) T	Completeness (i) How long it takes to find a solution Time complexity (ii) Memory needed to perform the search pace complexity (iii) Whether the solution works for all given inputs	
	✓	a-iii, b-i, c-ii	
		a-i, b-iii, c-ii	
		a-ii, b-i, c-iii	
		None of the Above	
8. True	or False	e: When solving a problem, the Process is an Optional step	
		TRUE	
	✓	FALSE	
9	_is the	first step in solving the problem	
		Gather data and identify required results	
		Analyse the problem	
	•	Understand and define the problem	
		Reach an appropriate solution using problem solving techniques	
10. When computing the bill amount for a dinner at a restaurant, what are the inputs to the process?			
		List of Items ordered	
		Quantity of Items ordered	
		Price of each Item	

	✓	All of the Above			
11. Matr	11. Matrix multiplication can be achieved using which of the following algorithms?				
		Dynamic programming			
		Recursion			
		Brute Force			
	✓	All of the Above			
12. In an condition		we algorithm the steps branch into one or more of the provided options depending on a			
		TRUE			
	✓	FALSE			
1. Which	ı data s	tructure would result in the data being sorted soon after being inserted			
		Queues			
		Stack			
		Circular queue			
	•	Priority Queues			
2. A normal queue, if implemented using an array of size MAX_SIZE, gets full when					
	•	Rear=MAX_SIZE-1			
		Front=(rear+1)mod MAX_SIZE			
		Front=rear+1			
		Rear=front			
3. If the elements "A", "B", "C" and "D" are placed in a queue one after the other and are deleted one at a time, in what order will they be removed?					
	•	ABCD			

DCBA

		DCAB
		ABDC
4. Binary	y search	is used for searching an unordered list
		TRUE
	•	FALSE
5. When	workin	g with Queue, initial values for front and rare should be
		0 and 1
	•	0 and -1
		1 and 0
		0 and 0
6. Which	of the	following data structure is non linear type ?
		Strings
		Lists
		Stacks
	✓	Tree
7. In link	ked repr	esentation of stack holds the elements of the stack.
	✓	Info field
		Top field
		Link field
		next field
8 is not the operation that can be performed on stacks		
		Push
		Pop
		Display

		Retrieve
9. Consi	der the	Pre-order traversal of a tree:
FOPQ	RST	
Which is	s the roo	ot node of the tree
		Q
		Т
		P
	✓	F
10. Cons	sider the	e Graph with 5 vertices, $V = \{A,B,C,D,E\}$ and Edges as
		$\{A,E\},(B,C),(B,D),(B,E),(C,E)\}$
select the	e edges	to be removed to make the graph a directed tree
		(A,C), (B,D) and (A,E)
	✓	(B,C), (A,E), (C,E)
		(A,C), (A,E) and (B,D)
		(B,E), (A,E), (C,E)
11. The	differer	nce between an array and a structure is
		An array is suitable for homogeneous data and structures are used to store heterogeneous data
		In a structure there may not be a natural ordering in opposed to linear array.
		A structure form a hierarchical structure but a linear array does not
	•	All of above
12. Which	ch of th	e following statement is false
		Arrays are dense lists and static data structure
		data elements in linked list need not be stored in adjacent space in memory

Linked lists are pointers storing the next data element of a list

linked lists are collection of the nodes that contain information part and pointer to the next node in the

✓

13. The	13. The term "push" and "pop" is related to		
		Arrays	
		Lists	
	•	Stacks	
		Queues	
14. A da	ata struc	ture where eleme	nts can be added or removed at either end but not in the middle
		Linked Lists	
		Stacks	
	✓	Deque	
		Arrays	
15. A tre	ee is a		
		Directed graph	
		Cyclic Graph	
	✓	Directed and A	Acyclic Graph
		Acyclic Graph	
1. What $T(n) = 2$			mplexity of the below equation?
			O (n)
			O (log n)
	•		$O(n^2)$
			O(1)
			nce of steps, three steps have individual complexities of O(n), O (n ²) ll complexity of the algorithm will be
	V	O (n ²)	
		O (n)	

		cannot be determined
		$O(n^3)$
3. For an	algorith	nm, if we want to express the "running is at least", then we use
	C	Big O Notation
		Theta Θ Notation
	✓	Omega Ω Notation
		None of the Above
4. The A	verage c	ease Analysis of an Algorithm is represented by
	·	Big O Notation
	•	Theta Θ Notation
		Omega Ω Notation
		None of the Above
5. Size th	ne functi	on (n+2)*(n-5) in big Oh notation
		O (log n)
		O (n)
	•	$O(n^2)$
		O (nlog n)
6. What is		ne complexity of adding an element into a dynamic array that is already filled
		$O(n^2)$
	✓	O (n)
		O (log n)
		O (nlog n)

7. Which of the following is less efficient than O (n^2)

Neither A nor B 11. Examples of O(1) algorithms are Multiplying two numbers. assigning some value to a variable displaying some integer on console All of the above 12. Which of these factors are not part of the Space Complexity computation Instruction space
Multiplying two numbers. assigning some value to a variable displaying some integer on console All of the above 12. Which of these factors are not part of the Space Complexity computation
assigning some value to a variable displaying some integer on console All of the above 12. Which of these factors are not part of the Space Complexity computation
displaying some integer on console All of the above 12. Which of these factors are not part of the Space Complexity computation
All of the above 12. Which of these factors are not part of the Space Complexity computation
12. Which of these factors are not part of the Space Complexity computation
Instruction space
Free hard disk space in the system
Data space
Environment stack space
13. For Algorithm analysis, the worst case scenario is usually considered because
It is better to get an upper bound of the execution time
It is easy to do this analysis
Computers are slow and will always deliver the worst case scenario
The Machine load and network latency can have an impact on performance
4. The concept of order Big Oh is useful for Algorithm analysis because
It can be used to determine the most efficient algorithm for a given problem
It determines the maximum size of a problem that can be solved in a given amount of time
It is the lower bound of the growth rate of algorithm
Both A and B
15. For searching an element in an array, what is the operation count estimate of time complexity?
Initializing the array
<u> </u>

		Reading the array
	✓	Number of search operations
		Displaying whether the element is found or not
16. A Pr	ofiler is	s used to perform
		Security Scan
		A priori Analysis
	•	A Posteriori analysis
		Binary Search of data in a dataset
7. It is 1	preferal	ble to always perform a posteriori analysis since it is easier and gives reliable results
		TRUE
	✓	FALSE
		average- and best-case analysis measurements are machine dependant and vary from another
		TRUE
	✓	FALSE
9. Anal ound	yzing t	he lower bound is preferred in most of the situations rather than specifying the upper
		TRUE
	•	FALSE
20. The 1	time Co	omplexity when evaluating the efficiency of algorithm is measured by
		Counting microseconds
	•	Counting the number of key operations
		Counting the number of statements
		Counting the kilobytes of algorithm
1. Com	pared t	o Step Count, Operation Count is a more accurate way of measing Time Complexity
		TRUE

	✓	FALSE
1. What happens when you push a new node onto a stack which is implemented using linked lists?		
	•	The new node is placed at the front of the linked list
		The new node is placed at the back of the linked list
		The new node is placed at the selected position of the linked list
		Depends on the ordering of a list
2. Which	n of the	e following is true
		In linear search the search starts from the beginning of the list
		Binary search searches on sorted array
	•	Both the options
		None of the options
3. Which	n of the	e following is not a limitation of binary search algorithm?
		to have a sorted array
		requirement of sorted array is expensive when a lot of insertion and deletions are needed
	•	there must be a mechanism to access middle element directly
		There are no limitations of binary search algorithm
4. Which	n sortir	ng technique requires movement of data elements
		Selection sort
		Bubble sort
	✓	Insertion sort

Quick sort

5. under what circumstances a linear search algorithm takes less execution time

When the search element is at the middle of the array

		When the search element is at the end of the array
	✓	When the search element is at the beginning of the array
		When the array is sorted
6. under	what c	ircumstances a Binary search algorithm takes less execution time
	•	When the search element is at the middle of the array
		When the search element is at the end of the array
		When the search element is at the beginning of the array
		When the array is sorted
7. The la	ast argu	ment of the qsort library function
		The no of elements to be sorted
		The address of the array to be sorted
	•	The pointer to the comparator function
		Size of the elements to be sorted
8. The q	sort lib	rary function takes the address of each element of the array to be sorted as an argument
		TRUE
	✓	FALSE
9. Which	h of the	following is not a limitation of binary search algorithm?
		must use a sorted array
		requirement of sorted array is expensive when a lot of insertion and deletions are needed
		there must be a mechanism to access middle element directly
	V	binary search algorithm is not efficient when the data elements more than 1500.
10	is p	butting an element in the appropriate place in a sorted list yields a larger sorted order

list.

	<u> </u>	Insertion
		Extraction
		Selection
		Distribution
11	is re	arranging pairs of elements such that values are inter changed.
		Insertion
	•	Swapping
		Selection
		Distribution
12	is	the method used by card sorter
		Radix sort
	•	Insertion
		Неар
		Quick
13. Whi	ch of the	e following sorting algorithm is of divide and conquer type?
		Bubble sort
		Insertion sort
	✓	Merge sort
		Selection sort
14	sortin	g algorithm is frequently used when n is small where n is total number of elements.
		Heap
	✓	Insertion
		Bubble

15. Partition and exchange sort is

A. QUICK SORT

1. What is the output of the given code?

```
int a = 10;
int b = ++a + a++;
System.out.println("a=" + a + ", b=" + b);
```

•	a=12, b=22
	a=22, b=12
	a=22, b=22
	a=12, b=12

2. Which of the following is an invalid variable name in java?

	\$var
	variable
✓	double
	var123

3. What is the output of the following?

int arr[][]={{1,2,3},{4,5},{6}}; System.out.println(arr[1][1]);

	4
	6
✓	5
	ArrayIndexOutOfBoundsException

4. Predict the output of the following?

```
public class HelloWorld {
public static void main( String[] argv ) {

  int a[]={1,3,5};
  for(int b:a)
   {
     System.out.print(++b);
   }
}
```

5. Predict the output of the following?

```
public class HelloWorld {
public static void main( String[] argv ) {

int a=3;
int b=a<<2;
int c=b>>1;
System.out.println(c);
```

	}		
	}		
	_		
		5	
	②	6	
		1	
		2	
6. Whi	ch packa	age do you need to import to use Scanner class?	
		java.io	
		java.lang	
	✓	java.util	
		java.scanner	
7. Whi	ch of the	e following is not a primitive data type?	
		char	
	✓	String	
		boolean	
		double	
8. Whi	ch of the	e following statement is true regarding array in java?	
		Array is a primitive data type in java	
	✓	Array is java is represented as an object	

```
Array can contain only primitive values and not objects
                 Java Arrays can be up to 3 dimensional and does not support bigger dimensions.
9. What is the output of the following?
             public class HelloWorld {
             public static void main( String[] argv ) {
             int a=4%2*3-1/0;
             System.out.println(a);
             }
             }
                 2
                 -1
                 5
                 Arithmatic Exception
10. Which of the following is the ternary operator?
                 ?:
                 <>
                 &&
                 11. ___
                 is a named memory location which can store a value and can change its contents
                 data type
                 variable
                 constant
                 literal
12. What is the output of the following code?
                  boolean bool = true;
                  if(bool = false) {
```

```
System.out.println("a");
} else if (bool) {

System.out.println("b");
} else if (!bool) {

System.out.println("c");
} else {

System.out.println("d");
}
```

a
b
c
d

13. What is the output of the given code?

```
int a=3;
int b=8;

if(a<b && b<0)
a=b;
else
b=a++;

System.out.println("a="+a+"b="+b);
```

```
a=3 b=4

a=3 b=3

a=4 b=4

a=4 b=3
```

14. What is the output of the following?

```
public class HelloWorld {
public static void main( String[] argv ) {
```

```
int n = 10;
switch(n++){
    case 10:
    System.out.println("n="+ --n);
    break;
    case 11:
    System.out.println("n="+ ++n);
    break;
}
```

```
n=11
n=9

n=10
n=0
```

15. Predict the output of the following?

```
public class HelloWorld {
public static void main( String[] argv ) {
int i = 1;
for (; i <5; i += 2) {
   System.out.print(i + "");
}
System.out.println(i);
}</pre>
```

123

135

```
256
145
```

16. Predict the output of the following?

```
public class HelloWorld {
  static boolean printChar(char c) {
   System.out.print(c);
  return true;
}

public static void main( String[] argv ) {
  int i =0;
  for ( printChar('A'); printChar('B')&&(i<2); printChar('C')){
  i++;
  printChar('D');
}
}</pre>
```

```
ABDCBDCB

ABDCBDBC

BADCBDCB

ABDCCB
```

17. Predict the output of the following?

```
public class HelloWorld{
public static void main(String args[])
{
int x = 1, y = 6;
while (y--) {
  x++;
}
```

```
System.out.println("x =" + x + "y =" +y);
}
```

```
x=6 y=0
x=7 y=0

Compilation error
x=6 y=-1
```

18. Predict the output of the following code.

```
public class HelloWorld{

public static void main(String args[])
{
  int i =1,j =10;
  do {
  if(i++ > --j) {
    continue;
  }
} while (i <5);
System.out.println("i = " +i+ "and j = "+j);
}</pre>
```

```
i = 5 \text{ and } j = 5
i = 6 \text{ and } j = 6
i = 5 \text{ and } j = 6
i = 6 \text{ and } j = 5
```

19. Predict the output of the given code?

```
public class HelloWorld{
    public static void main(String []args){
    int i = 1,j = 10;
    do {
        if(i>j) {
            break;
        }
        j--;
    } while (++i <5);
    System.out.println("i =" +i+" and j = "+j);
    }
}</pre>
```

```
i = 6 and j = 5
i = 5 \text{ and } j = 6
i = 5 \text{ and } j = 5
i = 6 \text{ and } j = 6
```

20. Predict the output of the following?

```
public class HelloWorld{

public static void main(String []args){

float f1[], f2[];

f1 = new float[10];

f2 = f1; //line 5

System.out.println("f2[0]= " + f2[0]); //line 6
```

```
}
}
```

```
f2[0]=10

f2[0]= null

✓ f2[0]= 0.0

Compilation Error
```

1. Given:

```
class TestSuper(int i) { }
}
class TestSub extends TestSuper { }

class TestAll {
  public static void main (String [] args) {
    new TestSub();
  }
}
Which of the given options is true?
```


2. What will be the output of the program?

```
abstract class Vehicle {
   public int speed() {
```

```
return 0; }
class Car extends Vehicle {
public int speed() {
   return 150;
}
class RaceCar extends Car {
public int speed() {
   return 60;
}
public class Test{
public static void main(String[] args) {
 RaceCar racer = new RaceCar();
 Car car = new RaceCar();
 Vehicle vehicle = new RaceCar();
 System.out.println(racer.speed() + ", " + car.speed() + ", " + vehicle.speed());
```

0 ,60, 150 60,60,60
60 ,150
150, 150, 150

Feedback:

All the three objects are of type RaceCar, hence the overridden method speed() of class RcaeCar time. (Runtime Polymorphism)

3. What is the output of the below code?

```
class Herbivore{
  void eat(){
    System.out.print("Eating");
  }
}

public class Goat extends Herbivore{
  void eat(String food){
    eat();
    System.out.print(food);
  }

public static void main(String[] args) {
    Goat g1 = new Goat();
    g1.eat("leaves");
  }
}
```

```
Eating

Eatingleaves

leaves

Compilation fails due to improper overriding
```

4. What is the output of the below code?

```
class Address{
String city;
public Address(String city){ this.city = city; }
}

public class Customer {
int cid;
Address addr;

public Customer( int cid ){ this.cid = cid; }
public void setAddress(Address addr){ this.addr = addr;}

public static void main(String[] args) {
Address a1 = new Address("Bangalore");
Customer c2 = new Customer(101);
System.out.print(c2.cid + c2.addr.city);
```

}
}

	101 Bangalore
	101 null
	101 0
•	NullPointerException occurs
	In the constructor of Customer only the cid variable is set. Variable addr has the default value null. NullpointerException occurs when c2.addr.city is accessed

5. What is the output of below code?

```
package pack1;
public class One {
  protected int var = 10;
  public static int statVar = 30;
}

package pack2;
import pack1.One;
public class Two extends One{
  private int var = 20;
  public void calc(){
    System.out.println(statVar + var + super.var);
  }
  public static void main(String[] args) {
    One.statVar = 100;
    Two obj = new Two();
    obj.calc();
  }
}
```

	60
	110
✓	130
	Class Two doesn't compile

6. Given:

```
public class Test {
  private static int a;
  public static void main(String [] args) {
    modify(a);
    System.out.println(a);
  }
  public static void modify(int a) {
    a++;
  }
}
```

What is the result?

7. Given:

```
class Super {
  public float getNum() { return 3.0f; }
}

public class Sub extends Super {
}
Which method, placed at line6, causes compilation to fail?
```

```
public void getNum() { }

public void getNum(double d) { }

public float getNum() { return 4.0f; }
```

```
public double getNum(float d) { return 4.0d; }
```

8. Given:

```
class A {
  static void method1(){
    System.out.println("A.method1");
  }
} class B extends A {
  static void method1(){
    System.out.println("B.method1");
  }
} class Test {
  public static void main(String[]args){
    A a1 = new B();
    a1.method1();
  }
}
```

What is the result?

Compilation error
Runtime error
Prints A.method1
Feedback: Even though there is a subclass for A and it overrides the method1, since the method1 was called reference of the super class, it will always invoke the static method present in the class of which t created.
Prints B.method1

9. Given:

```
interface A {
  static int n=0;
}
class B implements A {
  B(){
   ++n;
```

```
}
}
class Test {
public static void main(String[]args){
    new B();
    new B();
    new B();
    System.out.println(''n='' + A.n);
}
```

What will be the result?

10. What will be the output of the given code?

```
abstract class A {
    static int n;
}
class B implements A {
    B() {
        ++n;
}
}
class Test {
    public static void main(String[]args) {
        new B();
        new B();
        new B();
        system.out.println("n=" + A.n);
}
```

Prints n=0

Prints n=3

Compilation fails

Encounters runtime error

11. What will be the output of the given code?

```
abstract class A {
    void f1(){
        f2();
    }
    abstract void f2();
}

class B extends A {
    void f2(){
        System.out.println("Hello");
    }
}

class Test {
    public static void main(String[]args){
        B b1 = new B();
        b1.f1();
    }
}
```

```
Compilation fails

Encounters an error at runtime

Prints Hello

Feedback:
The super class method f1() calls f2() which has been overridden in the subclass to print the "Hell Prints null
```

12. What is the result of the given code?

```
class A {
    void f1(){
    f2();
    }
    abstract void f2();
}
class B extends A {
```

```
void f2(){
    System.out.println("Hello");
}
class Test {
    public static void main(String[]args){
        A a1 = new A();
        a1.f1();
}
```

		j
	✓	Compilation fails
		Encounters an error at runtime
		Prints Hello
		Prints null
13. Whi	ch of the	following is incorrect with respect to java.lang.Object?
		The class java.lang.Object is the only class in Java API that does not have a super class
		Whenever a class is created, it automatically inherits from Object
	✓	Every class must override the inherited methods equals and hashCode from java.lang.Object
		If a class has a different super class, the Object class is still inherited via multi-level inheritance
14.The c	default ir	mplementation in java.lang.Object, ensures the uniqueness of hashCode by
		returning the current timestamp in milliseconds
	✓	converting the internal address of the object into an integer

converting the internal address of the object into an integer

returning a combination of timestamp, and ip address

returning a combination of timestamp, ip address and the thread id of the current thread

15. What will be the result of the given code?

```
interface A {
  void f1();
}
```

```
class B implements A{
  @Override

void f1(){
    System.out.println("Hello");
  }
} class Test {
  public static void main(String[]args){
    A a1 = new B();
    a1.f1();
  }
}
```

```
Compilation fails

Encounters an error at runtime

Prints Hello

Prints null
```

16. What is the output of the given code?

```
class Super {
    protected int n;
    Super(int n){
        this.n = n;
    }
    public void print(){
        System.out.println("n=" + n);
    }
}

class Sub {
    Sub(int m){
        super.n = m;
    }
}

class Test {
    public static void main(String[]){
        Sub s = new Sub(10);
        s.print();
    }
}
```

}

17. A class must have a default, no-argument constructor.

TRUE

FALSE

18. Given:

```
class A {
  final public int method1(int a, int b) {return 0; }
}
class B extends A {
  public int method1(int a, int b) { return 1; }
}

public class Test {
  public static void main(String args[]) {
    B b = new B();
    System.out.println("x = " + b.method1(0, 1));
}
```

What is the result?

```
x = 0
x = 1
Compilation fails
An exception is thrown at runtime
```

19. Which of the following is incorrect?

		An interface can extend multiple interfaces
		An abstract class need not have any abstract methods
		An abstract class can implement multiple interfaces
	✓	An abstract class must have atleast one abstract method
20. Whi	ch of tl	ne following is incorrect with respect to overriding?
		Signature must match
		Return type should not change
	V	Access can be made narrower, but not wider
		Final methods cannot be overridden
21. An a	access 1	nodifier can not be applied on a
		Class
		Field
	•	Static block
		Constructor
22. Give	en:	
		public Object m() {
		Object o = new Float(3.14F);
		Object [] oa = new Object[1];
		oa[0] = o;
		o = null;
		return oa[0];
		}
		When is the Float object, created in the first line of the method m(), eligible for garbage collection?

Just after - oa[0] = o;

Just after - o = null;

	✓	Never in this method
		Just after - return oa[0];
23. Wh	at orgar	nizes the classes into a family by placing the class files in appropriate folders?
		A jar file
	•	A package
		A collection
		An array
		class to have access to members of another class in the same package. Which is the access that accomplishes this objective?
		Public
		Private
		Protected
	•	Default access
25. The	packag	ge statement must be the first statement in the source code.
	₹	TRUE
		Feedback: The package statement must be the first statement in the source code apart from the code comments
		FALSE
26. Wh	ich of tl	ne statements is incorrect?
		The default constructor has the same access as its class.
		The default constructor invoked the no-arg constructor of the superclass.
	V	If a class lacks a no-arg constructor, the compiler always creates a default constructor.
		The compiler creates a default constructor only when there are no other constructors.
27. Wh	at is the	result of the given program?

```
public class Test {
  public int aMethod() {
    static int i = 0;
    i++;
    return i;
}

public static void main (String args[]) {
    Test test = new Test();
    test.aMethod();
    int j = test.aMethod();
    System.out.println(j);
}
```

```
3
1
2
Compilation fails
```

28. Given:

```
class A {
  protected int someMethod(int a, int b) {
   return 0;
}
Which of the following is valid in a class that extends class A?
```

```
private int someMethod(int a, int b) { return 0; }

private int someMethod(int a, long b) { return 0; }

public short someMethod(int a, int b) { return 0: }

static protected int someMethod(int a, int b) { return 0; }
```

29. Given:

```
class Test {
private int n = 10;
```

```
static {
    n = 11;
}

public Test(){
    n = 12;
}

public void print(){
    System.out.println("n="+n);
}

public static void main(String args[]){
    Test t = new Test();
    t.print();
}
```

What is the result?

```
Prints n=10

Prints n=11

Prints n=12

Compilation fails
```

30. What is the result of the given code?

```
class A {
  int a=0;
  B b;
  public String toString(){
   return "a=" + a + ", b.a=" + b.a;
  }
}
class B {
  int a=1;
}
```

```
class Test {
  public static void main(String[]args){
    A a1=new A();
    System.out.println(a1);
  }
}
```

```
Prints a=0, b.a=1

Prints a=0, b.a=null

Compilation error

Runtime error
```

31. What will be the output of the given program?

```
class A {
    B b;
    A(){
    b = new B();
    System.out.println("A()");
}

class B {
    A a;
    B(){
    a = new A();
    System.out.println("B()");
}

class Test {
    public static void main(String[]args){
        A a1=new A();
}
```

	Prints A() B()
	Prints B() A()
	Compilation fails

		Feedback: Both constructors call each other resulting in a recursion.					
32. Give	n:						
				alana Tana (
				class Test {			
				J			
				How do you create an instance of the same?			
			Test t1;	·			
			Test $t1 = new Te$	est;			
	•		Test t1 = new To	est();			
			Test $t1 = new Te$	est(100);			
1. Cloud	comput	ing means you ha	ive to buy expensi	ve hardware before you can use it.			
		TRUE					
	•	FALSE					
2. Share	dPool re	fers to shared stor	rage, RAM and CI	PU.			
	•	TRUE					
		FALSE					
3. Which	n of the f	following is not a	ttribute of cloud co	omputing?			
		Rapid deployme	ent				
	✓	Upfront cost					
		On demand service					
		All of the above					
4. Cloud computing does not support elasticity.							

Encounters a runtime error

TRUE

	✓	FALSE			
1. The data stored in cloud is always on a single location.					
		TRUE			
	•	FALSE			
2. A data	center	is nothing but a cloud.			
		TRUE			
	✓	FALSE			
3. Virtua	lization	means			
	✓	Installing multiple OS on single physical server			
		Installing one virtual machine on one physical machine			
		Hyper-visor			
		None of the above			
4. In a cl	oud sto	rage data is stored in logical pools.			
	•	TRUE			
		FALSE			
5. Which	of the	following offers cloud storage service?			
		Amazon			
		Microsoft			
	✓	Google & Amazon			
		Google			
6. The cloud stores data on Internet.					
	✓	TRUE			
		FALSE			

1. There are	three cloud service models.
9	TRUE
	FALSE
2. SaaS offe	rs applications as a service.
•	TRUE
	FALSE
3. There are	two type of cloud models.
	TRUE
	FALSE
4. PaaS offe	rs OS as service .
	TRUE
	FALSE
5. IaaS offer	s hardware & software as service .
	TRUE
	FALSE
1. Facebook	is built on Web 2.0.
	TRUE
	FALSE
2. SOA sta	ands for
	Standard Operating Architecture
	Service Oriented Architecture
	Service Oriented Applications
	None of the above

3. Web services are platform neutral.					
	⊘	TRUE			
		FALSE			
4. Appli	cation se	ervers run the code in cloud.			
	•	TRUE			
		FALSE			
1. Cloud	manage	ement software installs cloud in a data center			
		TRUE			
	✓	FALSE			
2. Accor	ding to	recent survey which of the following is market leader in cloud computing?			
		Microsoft			
		RackSpace			
	✓	Amazon			
		VmWare			
3. Which	n of the	following is market leader in virtualization technology?			
		REDHAT			
		RackSpace			
		Microsoft			
	✓	VMWare			
4. Which of the following is has the highest demand?					
		Private			
	•	Public			
		community			

		None of the above
1. Which	h of the	following is the most feasible method of securing data in network?
	②	Encryption
		Firewall
		Anti-virus
		None of the above
2. Which	h of the	following is susceptible to data theft?
		data in transit
		data at rest
		data in processing
		all of the above
3. Cloud	l securit	y is not a big concern for enterprises.
		TRUE
	✓	FALSE