Didactica_4

July 21, 2021

0.1 Divisor capacitivo

Dado el circuito de la figura, realizaremos el analisis mediante conversiones serie-paralelo.

Buscamos que el circuito presente una capacidad C, R dada una R_o .

Para el valor de C_2 . Para ello realizamos la conversión paralelo a serie, con lo que obtenemos el circuito de la figura.

Para calcular los valores de $R_o s$ con C s, calculamos Q_{m2} , partiendo de los valores de C, R que son los que buscamos que presente el circuito (son datos).

Del circuito R y C paralelo:

$$Q_{m2} = R\omega C$$

La conversión de paralelo a serie:

$$R_o s = \frac{R}{(1 + Q_{m2}^2)}$$

$$Cs = C(1 + \frac{1}{Q_{m2}^2})$$

A partir del valor de R_os podemos calcular Q_{m1} (de 'matching') para llegar al paralelo de R_o y C_2 :

$$R_o = R_o s (1 + Q_{m1}^2)$$

Despejando el valor de Q_{m1}

$$Q_{m1} = \sqrt{\frac{R_o}{R_o s} - 1}$$

Remplazando el valor de R_os :

$$Q_{m1} = \sqrt{\frac{R_o}{R}(1 + Q_{m2}^2) - 1}$$

A partir del valor de Q_{m1} , calculamo C_2

$$Q_{m1} = R_o \omega C_2$$

$$C_2 = \frac{Q_{m1}}{R_o \omega}$$

Entonces, planteadno la conversión de paralelo a serie.

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$

La serie de C_2s y C_1 deben ser igual a C_s

$$Cs = \frac{C_1 C_2 s}{C_1 + C_2 s}$$

Despejando C_1 :

$$C_1 = \frac{CsC_2s}{Cs - C_2s}$$

Por lo tanto:

Los datos son C, R y R_o .

Buscamos los valores de C_1 y C_2 .

$$Q_{m2} = R\omega C$$

$$Q_{m1} = \sqrt{\frac{R_o}{R}(1 + Q_{m2}^2) - 1}$$

$$C_2 = \frac{Q_{m1}}{R_o \omega}$$

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$

$$C = \frac{C}{(1 + \frac{1}{Q_{m2}^2})}$$

$$C_1 = \frac{CsC_2s}{C_2s - Cs}$$

0.1.1 Divisor capacitivo como autotransformador

A partir de $:Q_{m2} > 10$ y $Q_{m1} > 10$.

$$Q_{m1} = \sqrt{\frac{R_o}{R}(1 + Q_{m2}^2) - 1}$$

Podemos llamar $N^2 = \frac{R}{R_o}$, donde N será mayor a 1 ya que $R > R_o$.

$$Q_{m1} = \sqrt{\frac{(1 + Q_{m2}^2)}{N^2} - 1}$$

Si ahora $Q_{m2} > 10$, entonces:

$$Q_{m1} = \sqrt{\frac{(Q_{m2}^2)}{N^2} - 1}$$

Donde si $Q_{m1} > 10$, podemos escribir:

$$Q_{m1} \sim \frac{Q_{m2}}{N}$$

Calculo de C_2

$$C_2 = \frac{Q_{m1}}{R_o \omega}$$

Siendo Q_{m1} :

$$Q_{m1} \sim \frac{Q_{m2}}{N}$$

$$C_2 \sim \frac{Q_{m2}}{NR_o\omega}$$

$$C_2 \sim \frac{R\omega C}{NR_L\omega}$$

$$C_2 \sim \frac{N^2 \omega C}{N \omega}$$

$$C_2 \sim NC$$

Calculo de C_1

$$C_1 = \frac{CC_2s}{C - C_2s}$$

$$C_2 s \sim C_2$$

$$C_1 = \frac{CC_2}{C - C_2}$$

$$C_1 = \frac{NC}{N-1}$$

0.1.2 Procedimiento de calculo

$$N = \sqrt{\frac{R}{R_o}}$$

$$Q_{m2} = R\omega C$$

Si $Q_{m2} > 10$

$$Q_{m1} \sim \frac{Q_{m2}}{N}$$

Si $Q_{m1} > 10$

$$C_2 \sim NC$$

$$C_1 = \frac{NC}{N-1}$$

Si $Q_{m1} \leq 10$

Volvemos a calcular Q_{m1} :

$$Q_{m1} = \sqrt{\frac{(1 + Q_{m2}^2)}{N^2} - 1}$$

Teniendo el valor de Q_{m1} :

$$C_2 = \frac{Q_{m1}}{R_o \omega}$$

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$

$$Cs = \frac{C}{(1 + \frac{1}{Q_{m2}^2})}$$

$$C_1 = \frac{CsC_2s}{C_2s - Cs}$$

Ejemplo divisor capacitivo En este ejemplo trabajamos con $Q_{m1} > 10$ y $Q_{m2} \le 10$.

Suponer que $R=8100\Omega,\,R_o=100\Omega,\,f_o=1.5MHz$ y B=100KHz. Suponer que el inductor tiene un factor de merito de $Q_o=40$. El generador tiene un resistencia de generador de $r_g=8100\Omega$.

Se busca un ancho de banda de B=100KHz a una frecuencia de $f_o=1.5MHz$. Diseñar para máxima transferencia de energía a Q constante.

Para un circuito RLC paralelo, podiamos calcular el Q_c del circuito como:

$$Q_c = \frac{f_o}{B}$$

$$Q_c = 15.00$$

Entonces, para el caluclo de L:

$$w_o = 2\pi f_o$$

$$r_{ext} = \frac{rgR}{rg + R}$$

$$XL = r_{ext} \left(\frac{1}{Q_c} - \frac{1}{Q_o}\right)$$
$$L = \frac{XL}{w_o}$$

$$L = 179 \times 10^{-9} Hy$$

$$XC = XL$$

$$C = \frac{1}{w_o XC}$$

$$C = 629 \times 10^{-12} C$$

Diseño del divisor capacitivo

$$N = \sqrt{\frac{R}{R_o}}$$

$$N = 9.00$$

$$Q_{m2} = R\omega C$$
$$Q_m 2 = 48.00$$

 $Q_{m2} > 10$

$$Q_{m1} \sim \frac{Q_{m2}}{N}$$
$$Q_{m1} = 5.33$$

 $Q_{m1} \le 10$

Volvemos a calcular Q_{m1} :

$$Q_{m1} = \sqrt{\frac{(1 + Q_{m2}^2)}{N^2} - 1}$$
$$Q_{m1} = 5.24$$

Teniendo el valor de Q_{m1} :

$$C_2 = \frac{Q_{m1}}{R_o \omega}$$
$$C_2 = 5.56 \times 10^{-9} F$$

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$

$$C_2 s = 5.76 \times 10^{-9} F$$

$$Cs = \frac{C}{(1 + \frac{1}{Q_{m2}^2})}$$

$$C_s = 628 \times 10^{-12} F$$

$$C_1 = \frac{CsC_2s}{C_2s - Cs}$$
$$C_1 = 705 \times 10^{-12}F$$

Ejemplo divisor capacitivo $Q_{m1} > 10$ y $Q_{m2} > 10$ Suponer $r_g = 10K\Omega$, $R_o = 1K\Omega$, $f_o = 10.7MHz$ y B = 200KHz. El inductor tiene un factor de selectividad de $Q_o = 80$.

Para un circuito RLC paralelo, podiamos calcular el \mathcal{Q}_c del circuito como:

$$Q_c = \frac{f_o}{B}$$

$$Q_c = 53.50$$

Entonces, para el caluclo de L:

$$w_o = 2\pi f_o$$

$$r_{ext} = \frac{rgR}{rg + R}$$

$$XL = r_{ext}(\frac{1}{Q_c} - \frac{1}{Q_o})$$

$$L = \frac{XL}{w_o}$$

$$L = 460 \times 10^{-9} Hy$$

$$XC = XL$$

$$C = \frac{1}{w_o XC}$$

$$C = 480 \times 10^{-12} F$$

Diseño del divisor capacitivo

$$N = \sqrt{\frac{R}{R_o}}$$

$$N = 3.16$$

$$Q_{m2} = R\omega C$$
$$Q_m 2 = 323.02$$

Si
$$Q_{m2} > 10$$

$$Q_{m1} \sim \frac{Q_{m2}}{N}$$

$$Q_{m1} = 102.15$$

Si
$$Q_{m1} > 10$$

$$C_2 \sim NC$$

$$C_2 = 1.52 \times 10^{-9} F$$

$$C_1 = \frac{NC}{N-1}$$

$$C_1 = 703 \times 10^{-12} F$$

0.2 Filtro PI

Dado el circuito de la figura, realizaremos el analisis mediante conversiones serie-paralelo.

Buscamos que el circuito presente una resistencia R dada una R_o a la frecuancia de sintonia, con un determinado Q_c .

Empezando por este último y suponiendo que el inductor tiene un factor de merito de Q_o .

$$\frac{1}{Q_c} = \frac{1}{Q_o} + \frac{wL}{R_{ext}}$$

donde R_{ext} corresponde a las resistencias totales que cierran el circuito con masa $(R \ y \ r_g \ por \ ejemplo)$.

Entonces, C_1 sintoniza con L.

Dado L, podemos calcular el Q_{m2} , para la conversión paralelo a serie de R y L.

$$Q_{m2} = \frac{R}{\omega L}$$

Obteniendo de esta manera L_1a y R_os .

$$L_1 a = \frac{L}{(1 + \frac{1}{Q_{m2}^2})}$$

$$R_{o}s = \frac{R}{(1 + Q_{m2}^2)}$$

De igual manera, desde la salida

Del circuito R_o y C_2 paralelo:

$$Q_{m1} = R_o \omega C_2$$

La conversión de paralelo a serie, que debe coincidir con el valor de conversión encontrado $R_o s$.

$$R_o s = \frac{R_o}{(1 + Q_{m1}^2)}$$

Despejando Q_{m1}

$$Q_{m1} = \sqrt{\frac{R_o}{R_o s} - 1}$$

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$

Solo queda neutralizar el capacitor C_2s con un indictor que llamamo L_1b .

Por último, el valor de L_1 es la suma de ambos inductores.

0.2.1 Ejemplo filtro PI

Suponer que $R=100\Omega,\,R_o=100\Omega$ y $f_o=100MHz$. Suponer que el inductor tiene un factor de merito de $Q_o=40$. El generador tiene un resistencia de generador de $r_g=100\Omega$.

Diseñar para máxima transferencia de energía a ${\cal Q}$ constante.

Empezando por este último y suponiendo que el inductor tiene un factor de merito de Q_o .

$$\frac{1}{Q_c} = \frac{1}{Q_o} + \frac{wL}{R_{ext}}$$

$$R_{ext} = \frac{rgR}{(rg+R)}$$

$$XL = rext(\frac{1}{Q_c} - \frac{1}{Q_o})$$

$$L = \frac{XL}{w_o}$$

$$L = 5.97 \times 10^{-9} Hy$$

$$XC1 = XL$$

$$C1 = \frac{1}{(woXC1)}$$

$$C1 = 424 \times 10^{-12} F$$

$$Q_{m2} = \frac{R}{(woL)}$$

$$Q_m 2 = 26.67$$

$$L_1 a = \frac{L}{(1 + \frac{1}{Q_{m2}^2})}$$

$$L_1 a = 5.96 \times 10^{-9} Hy$$

$$R_o s = \frac{R}{(1 + Q_{m2}^2)}$$
$$R_o s = 0.14\Omega$$

$$Q_{m1} = \sqrt{\left(\frac{R_o}{R_o s}\right) - 1}$$
$$Q_m 1 = 18.84$$

$$C_2 = \frac{Q_{m1}}{Rowo}$$

$$C_2 = 600 \times 10^{-12} F$$

$$C_2 s = C_2 (1 + \frac{1}{Q_{m1}^2})$$
$$L_1 b = \frac{1}{(C2swo^2)}$$

$$L_1 b = 4.21 \times 10^{-9} Hy$$

$$L_1 = L_1 a + L_1 b$$
$$L_1 = 10.2 \times 10^{-9} Hy$$

[]: