

Yiran Lei, Yu Zhou, Yunsenxiao Lin, Mingwei Xu, Yangyang Wang

Tsinghua University

SLO Maintenance is Important

Industrial Control System

√ constantly low latency and packet loss

SLO Violation is Common and Destructive

Latency SLO violation causes monetary damages from Google and Bing

Latency SLO violation is common at busy time when playing games from Australian ISPs

- Amazon lost \$66,240/ minute on 2013.8.19 due to a blackout
- 40-80 machines suffer from packet loss in DCN per year
- Katz-Bassett discovered reachability problems involving about 10,000 distinct prefixes during 3 weeks
- Tens of Internet outages from https://www.thousandeyes.com/outages/ in last 24 hours

Fast Mitigation upon SLO Violation

detection =====> diagnosis ====> troubleshooting

- delay of flow A exceeds 120ms
- delay SLO is violated

discover SLO violation:

- √ measure performance
- √ compare with objectives

- traffic of flow B bursts
- flow A's SLO violation is due to flow B's burst

analyze causality of SLO violation:

find flow-level causes

- a server is sending large flow B
- the server is misconfigured
- fix and mitigate violation

repair hardware and software

. . .

Problems of Existing Solutions

Detection Tools									
	Fraintin a	Property					SLO Type		
	Existing Solutions	granularity	lags	overhead	control plane involvement	end-host involvement	packet loss	percentile delay	max delay
	ping	coarse	low	low	X	✓	✓	✓	√
	Netflow	coarse	high	low	X	×	×	×	X
	SNMP	coarse	high	low	×	×	×	×	X
	NetSight	fine	low	high	√	×	✓	✓	√
	SwitchPointer	fine	low	low	×	√	×	×	X
	TPP	fine	low	high	X	✓	✓	✓	√
	LossRadar	fine	high	low	√	×	✓	×	×
	INTSight	fine	low	low	√	×	×	×	√
	???	fine	low	low	×	×	✓	✓	√

Problems of Existing Solutions

DOVE: Diagnosis-driven SLO Violation Detection

Detection							Diagnosis	
	Property SLO Type							
granularity	lags	overhead	control plane involvement	end-host involvement	packet loss	percentile delay	max delay	✓
fine	low	low	×	×	✓	✓	✓	

Specific Flows

resource constraints of the data plane

detection does high diagnosis accuracy: accurate detection not rely on the SLO gather more causal diagnosis control plane verification information selected flows watched flows empirical and set by a wider set of flows, even the partial set of flows instead of the complete set of flows network operators complete set of flows data plane logics **ONLY** data plane resources & logics sketches Sonata & resources

Epoch and Segmentation

upstream and downstream switches ≠ neighbor switches

partial and incremental deployment

DOVE measures SLOs on each segment during each epoch

SLO Violation Detector

- Packet Loss
 Coloring Algorithm: the number of lost packet
 completely on the data plane
 - 1 upstream switch dyes packets red or green

- 2 switch's red/green counter records
 upstream ++ when switch sends
 - upstream == ++ when switch sends ==
- 3 upstream switch copies the counter value of previous epoch into the DOVE telemetry header

- carries the value of
- carries the value of
- 4 upstream switch clears control bit for the first half of epoch and sets the bit for the second
 - $t \in [0, e/2)$: \blacksquare carries control bit = 0
 - $t \in [e/2, e)$: \blacksquare carries control bit = I
 - resets resets
- 5 downstream switch stores upstream counter value and calculates packet loss upon first set control bit
 - stores the value of stores the value of
 - control bit = I: PL = resets resets
 - - sets 📋

SLO Violation Detector

Percentile Delay
approximation algorithm on the data plane

	measure flow-level percentile delay	verify SLO of percentile delay	
difficult	what is η -percentile delay of a series of measure delays?	does η -percentile delay exceeds threshold d ?	feasible

Given N values sorted in ascending order, the η -percentile value is:

- I. $(1 + (N-1) \cdot \eta\%)$ -th sorted value, if $(N-1) \cdot \eta\%$ is an integer
- II. some value between $1 + \lfloor (N-1) \cdot \eta \% \rfloor$ -th and $1 + \lceil (N-1) \cdot \eta \% \rceil$ -th value, if not

Statement I: η -percentile value > d

Statement2: let the number of value exceeding d be $n, n > N - \lfloor (N-1) \cdot \eta \% \rfloor - 1$

- I. if $(N-1)\cdot\eta\%$ is an integer, Statement I \Leftrightarrow Statement 2 proof: η -percentile value is $(1+(N-1)\cdot\eta\%)$ -th value
- II. if not, Statement I \Leftarrow Statement 2 proof: If $n = N \lfloor (N-1) \cdot \eta\% \rfloor 1$, d can be any value between $1 + \lfloor (N-1) \cdot \eta\% \rfloor$ -th and $1 + \lfloor (N-1) \cdot \eta\% \rfloor$ -th value. In this case, η -percentile value can have any size relations to d.

SLO Violation Detector

✓ Percentile Delay

Statement I: η -percentile value > d

Statement2: let the number of value exceeding d be $n, n > N - \lfloor (N-1) \cdot \eta \% \rfloor - 1$

 $\mathsf{StatementI} \overset{approximation}{\longleftarrow} \mathsf{Statement2} :$

calculate $N - \lfloor (N-1) \cdot \eta \% \rfloor$ from control plane and populate it as a threshold to the data plane

✓ Max Delay

compares the new measured delay with history delays and stores the bigger one

Suspicious Flow Behavior Monitor

Unlike SLO measuring, the monitor checks flow behaviors on each DOVE switch during each epoch

Suspicious Flow Behavior Monitor

what contributes to SLO violations?

high queue occupancy
inter- and intra-switch loop
...

SLO Violation Causes

queue overflow
link corruption and failure
software bugs

high delay
the most common one
queue-related cause
flows contributing much to queue occupancy

- ✓ Heavy Hitter:
 monitor flows with large traffic
- Heavy Changer: monitor flows whose traffic increases rapidly monitor newly-established flows

SLO Violation Analyzer

principle:

- I. location adjacency: flows sharing same queues
- 2. epoch adjacency: flows having close epochs

correlate the alert to:

- I. high queue occupancy at upstream switch:
 - events from alert's upstream switch
 - events sharing same egress port with the alert
 - events happen just before alerts
 - any heavy hitters or heavy changers
- 2. high queue occupancy at the previous switch of the downstream switch:
 - events from alert's downstream switch
 - events sharing same ingress port with the alert
 - events happen just before alerts
 - any heavy hitters and heavy changers

alert						
flow ID						
upstream switch id						
egress port						
downstream switch id						
ingress port						
if violate max delay SLO						
if violate percentile delay SLO						
if violate packet loss SLO						
epoch						

event					
flow ID					
switch id					
ingress port					
egress port					
if heavy hitter					
if heavy changer					
epoch					

Case Study - DOVE's effectiveness

settings and collected alerts:

diagnosis point I - 3.43s

selected flow A suffers performance degradation from flow B,C,D competition on link s2-s1

Case Study: DOVE's effectiveness diagnosis results:

- (a) provenance on diagnosis point 1
- diagnosis point 1:
 only flow B is the culprit flow
- diagnosis point 2:
 flow B, C, D are all the culprit flows

DOVE's overhead: alert, event, telemetry header

- there is a tradeoff between SLO measure accuracy (epoch length) and overhead
- telemetry header overhead is proportional to the size of selected flows

DOVE's packet loss: accuracy and overhead

(a) packet loss alert coverage rate (b) overhead of generating packet with 20 incast flows

loss alerts on 8Gbps link with 1% packet loss

DOVE's delay: accuracy and overhead

- packet loss:
 - good coverage rate (>97%)
 - generates much less traffic overhead compared with NetSight and LossRadar
 - heavy packet loss makes Coloring Algorithm less effective
- delay:
 - generate less traffic overhead than INTSight (simpler telemetry header)

DOVE's resource utilization over large networks

- 512 selected flows and 512 watched flows for each pair of nodes
- DOVE TCAM = 2x INTSight TCAM
 - DOVE monitors two sets of flows as INTSight only monitors one
- DOVE SRAM > INTSight SRAM
 - DOVE requires many registers to store intermediate values
- The required resources can fit into programmable switches such as Tofino.

Metadata of network topologies.

Network	Label	Nodes	Links	Average Path Length
Bell Canada	BC	48	130	5.3
US Signal	US	61	158	6.0
VTLW avenet	VW	92	192	13.1
TATA	TA	145	388	9.9
Cogent	CG	197	490	10.5
RF1239	RF1239	315	1944	4.0

THANKS