1

Cvičenie č. 4 Dátum:

Matice Inverzná matica. Maticové rovnice. Determinant matice

Teoretický rámec

Definícia (*Regulárna matica*). Štvorcovú maticu **A** *n*-tého stupňa nazývame *regulárnou* \Leftrightarrow

$$h(\mathbf{A}) = n$$

Ak $h(\mathbf{A}) < n$ matica je **singulárna**.

Veta. Štvorcová matica stupňa n je regulárna \Leftrightarrow ak je ekvivalentná s jednotkovou maticou \mathbf{E}_n .

Definícia (*Inverzná matica*). Maticu **B** nazývame inverznou maticou k matici **A** stupňa n ak platí $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = \mathbf{E}_n$. Maticu, ku ktorej existuje inverzná matica, nazývame *invertibilnou maticou*. Inverznú maticu k matici **A**, ak existuje, označujeme \mathbf{A}^{-1} .

Veta. Ak je štvorcová matica **A** stupňa n invertibilná, tak existuje k nej práve jedna inverzná matica A^{-1} .

Veta. Štvorcová matica **A** stupňa n je invertibilná \Leftrightarrow ak je regulárna.

Niektoré metódy výpočtu inverznej matice:

- 1. použitím elementárnej zmeny bázy,
- 2. ekvivalentnými riadkovými úpravami,
- 3. pomocou determinantov.

Maticovou rovnicou nazývame každú rovnicu, ktorá obsahuje maticu neznámych.

Základné typy maticových rovníc:

- 1. rovnice s operáciami sčítania matíc a násobenia matice skalárom (napr. $\mathbf{B} + 3\mathbf{A} = \mathbf{A} + \mathbf{X}$) postupujeme pomocou **operácii s reálnymi číslami**,
- 2. rovnice $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$ a $\mathbf{X} \cdot \mathbf{A} = \mathbf{B}$, kde \mathbf{A} je regulárna matica a \mathbf{B} má toľko stĺpcov (riadkov) ako matica \mathbf{A}^{-1} ; číslu 0 zodpovedá nulová matica $\mathbf{0}$ a číslu 1 jednotková matica \mathbf{E} postupujeme podľa **nasledujúcich dvoch viet**

Veta. Nech je regulárna matica **A** stupňa n a **B** je matica typu $n \times k$, potom rovnica:

$$\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$$
$$\mathbf{X} = \mathbf{A}^{-1} \cdot \mathbf{B}$$

má jediné riešenie:

Veta. Nech je daná rovnosť A = B, kde matice A, B sú typu $m \times n$, potom ak:

- a) k obom stranám rovnosti pripočítame maticu $C_{m \times n}$,
- b) obe strany rovnosti vynásobíme $\alpha \neq 0$,
- c) obe strany rovnosti vynásobíme zľava (sprava) regulárnou maticou $\mathbf{C}_{p \times m}$ ($\mathbf{D}_{n \times p}$)

dostaneme opäť rovnosť dvoch matíc A = B.

Maticové rovnice budeme riešiť:

- 1. pre l'ubovol'né vhodné matice, t.j. všeobecné riešenie,
- 2. pre konkrétne dané matice, ak existuje.

Poznámka. Špecifickými typmi maticových rovníc a ich riešením sa zaoberá odborná literatúra. V teórii matíc na viac existuje pojem *pseudoinverzná matica* (ozn. \mathbf{A}^+), ktorá sa používa vo výpočtoch, napríklad ak zodpovedajúca matica \mathbf{A} nie je štvorcová, resp. nie je regulárna. Ak $\mathbf{A} = \mathbf{B} \cdot \mathbf{C}$ je bázický rozklad matice \mathbf{A} na súčin matíc, potom $\mathbf{A}^+ = \mathbf{C}^\mathrm{T} \cdot \left(\mathbf{C} \cdot \mathbf{C}^\mathrm{T}\right)^{-1} \cdot \left(\mathbf{B}^\mathrm{T} \cdot \mathbf{B}\right)^{-1} \cdot \mathbf{B}^\mathrm{T}$.

Definícia (*Inverzia v permutácii*). Nech $(k_1, k_2, ..., k_n)$ je permutácia z čísel 1, 2, ..., $n, n \ge 2$. Potom dvojica čísel $k_i, k_j, i < j$ tvorí inverziu v permutácii $(k_1, k_2, ..., k_n) \Leftrightarrow \text{ked}^i k_i > k_j$. Počet inverzií v permutácii označujeme $I(k_1, k_2, ..., k_n)$. Definujeme I(1) = 1.

Definícia (*Determinant matice* **A**). Determinant *n*-tého stupňa, $n \ge 1$, z prvkov matice **A** je číslo, ktoré označujeme $|\mathbf{A}|$ (resp. det **A**) a určíme ho ako $|\mathbf{A}| = \sum_{(k_1, \dots, k_n)} (-1)^{I(k_1, \dots, k_n)} \cdot a_{1k_1} \cdot a_{2k_2} \cdot \dots \cdot a_{nk_n}$, kde $I(k_1, k_2, \dots, k_n)$ je počet inverzií v permutácii.

Výpočet determinantu (podľa stupňa n štvorcovej matice **A**):

1.
$$n = 1$$
; $|\mathbf{A}| = |a_{11}| = a_{11}$

2.
$$n = 2$$
; $|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

3.
$$n = 3$$
; Sarrusovo pravidlo; $|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} a_{12} a_{22} a_{23} a_{23} a_{33} a_{33} a_{34} a_{34} a_{34} a_{34}$

4. $n \ge 3$; rozvojom (viď odborná literatúra), metóda EZB, softvér.

Niektoré vlastnosti determinantov:

1.
$$|\mathbf{A}| = |\mathbf{A}^{\mathrm{T}}|$$
,

3. štvorcová matica **A** je regulárna $\Leftrightarrow |\mathbf{A}| \neq 0$,

2.
$$|\mathbf{E}_n| = 1$$
,

4. ďalšie viď študijná literatúra.

Veta (*Výpočet determinantu využitím EZB*). Nech **A** je štvorcová matica, $n \ge 2$ a nech je regulárna. Ak uskutočníme na stĺpcových vektoroch matice **A** takých n elementárnych zmien bázy, že postupne vektory jednotkovej bázy nahrádzame stĺpcovými vektormi matice **A**, až kým dostaneme bázu $B = \{\overline{a}_{k_1}, \overline{a}_{k_2}, ..., \overline{a}_{k_n}\}$ tvorenú iba stĺpcovými vektormi matice **A** v ľubovoľnom usporiadaní, potom $|\mathbf{A}|$ sa rovná súčinu vedúcich prvkov elementárnych zmien báz a čísla $(-1)^{I(k_1, ..., k_n)}$.

Poznámka. Ak z tabuľky EZB zistíme, že $h(\mathbf{A}) \neq n \implies |\mathbf{A}| = 0$.

Poznámka. S teóriou determinantov úzko súvisí pojem *adjungovaná matica*, ktorú možno využiť na výpočet inverznej matice; $\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \cdot \operatorname{adj} \mathbf{A}$. Potom pre štvorcovú maticu **druhého** stupňa, ktorá je regulárna, platí:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Jedná sa o najrýchlejší spôsob "manuálneho" výpočtu inverznej matice 2 × 2.

Príklady na riešenie

Príklad 1.

Nech je daná matica $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 3 & 4 \end{pmatrix}$. Úlohy:

- a) vypočítajte determinant matice A,
- b) určte inverznú maticu \mathbf{A}^{-1} k matici \mathbf{A} metódou EZB,

Báza		Σ

- c) výsledok z b) overte podľa definície,
- d) určte inverznú maticu A^{-1} k matici A pomocou adjungovanej matice,

Príklad 2.

Určte, pomocou determinantu, pre aké $p; p \in R$ je matica $\mathbf{A} = \begin{pmatrix} p & 8 \\ 2 & 3 \end{pmatrix}$ regulárna.

Príklad 3.

Vypočítajte determinant matice $\mathbf{B} = \begin{pmatrix} 4 & 2 & 5 \\ 2 & 1 & 1 \\ 2 & 0 & 4 \end{pmatrix}$.

Príklad 4.

Určte počet inverzií v daných permutáciách.

- a) (4, 2, 7, 5, 3, 6),
- b) (1, 2, 3, 4),
- c) (9, 5, 6, 7, 8, 4)

Príklad 5.

Použitím EZB vypočítajte determinant matice $\mathbf{A} = \begin{pmatrix} 3 & 0 & 2 & -1 \\ 2 & 3 & 5 & 11 \\ 0 & 1 & 0 & 3 \\ 1 & 0 & 2 & 1 \end{pmatrix}$, pričom poznáme poslednú

časť tabuľky EZB a informáciu, že ako *vedúce prvky* sa postupne zvolili čísla: 1; 1; 1; – 4.

$\overline{a}_{\scriptscriptstyle 4}$	0	0	0	1	1
\bar{a}_3	0	0	1	0	1 1 1 1
$egin{aligned} & \overline{a}_2 \ & \overline{a}_1 \end{aligned}$	0	1	0	0	1
\overline{a}_1	1	0	0	0	1

Príklad 6.

Určte metódou EZB inverznú maticu \mathbf{A}^{-1} k matici \mathbf{A} , ak matica $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & \alpha \end{pmatrix}$ a $\alpha \in R$. Výsledky riešenia vzhľadom na parameter α uvádzajte do prehľadnej tabuľky.

Báza		Σ

Príklad 7.

Na základe nižšie uvedenej časti rozšírenej tabuľky EZB, rozhodnite o existencii inverznej matice, v závislosti od hodnoty parametra $p, p \in R$. Ďalším riešením určte inverznú maticu \mathbf{P}^{-1} pre *najmenšie celé kladné číslo*, pre ktoré inverzná matica existuje. Pre výpočet využite už pripravenú tabuľku EZB.

\overline{a}_1	1	0	-5	-3	2	0	-5
\bar{a}_2	0	1	4	2	– 1	0	6
					-2		

\overline{a}_1	1	0	- 5	- 3	2	0	
\bar{a}_2	0	1	4	2	- 1	0	
\overline{e}_3	0	0		1	-2	1	

Príklad 8.

Riešte maticovú rovnicu 2X - B = 2C - XA;

- a) všeobecne, pre neznámu maticu **X** a vyslovte predpoklady pre aké matice riešenie ∃,
- b) pre dané matice $\mathbf{A} = \begin{pmatrix} -1 & 0 \\ -1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -2 & 1 \\ 4 & 0 \end{pmatrix}$, ak riešenie \exists .

Príklad 9.

Riešte všeobecne dané maticové rovnice, pre neznámu maticu X.

a)
$$2(X + 2A) = B + 3X + 2A$$

b)
$$A + XB = 2X - 3B$$

c)
$$2AX - 3B = 4B + 3BX$$

d) $\mathbf{BX} = \mathbf{BXA} + 3\mathbf{C}$

e) $\mathbf{CXA} = \mathbf{E} - 3\mathbf{A}$

f) 5X + XA = (C + A)B