Why Deep Learning?

- Complexity: DL excels with complex data (images).
- Data Size: Takes advantage of big data (Uniprot 10⁸ sequences).
- Automatic Features: No manual feature crafting needed.
- Superiority: Outperforms ML in image and text generation.
- End-to-End: Direct input-output, e.g., AlphaFold for protein folding.

(generated with midjourney)

L

AlphaFold, Al to predict the fold of globular proteins at the experimental accuracy

J. Jumper et al, 2020, Nature (And > 50 years of data collection)

2

What are the DL techniques used in protein sequence generation?

Generative models to sample sequences

Deep Generative Models

- VAEs: Probabilistic; encoder-decoder structure.
- GANs: Generator vs. discriminator competition.
- RBMs: Energy-based with visible/hidden layers.
- Normalizing Flows: Complex distribution transformations.
- Autoregressive: Sequence prediction.
- Energy-Based Models (EBMs): Learn energy functions.

4

Variational Autoencoders (VAEs) in Protein Design

- VAEs: Generative models that learn to encode and decode data.
- Difference from standard autoencoders: Introduces probabilistic encoding.
- Application: Generating functional protein sequences efficiently.

Variational autoencoder framework [Ding et al, 2020, Nat. Com.]

- Linear dense NN: $H = W \times S + b$
- Activation function: $ReLU(H_i) = max(0, H_i)$
- Output function: $Softmax(X) = \hat{S} = \frac{exp\{X_i\}}{\sum_j expX_j}$
- $Z \sim \mathcal{N}(\mu = 0, \sigma^2 = Id)$

$$ELBO(\theta, \phi) = \sum_{Z} q_{\phi}(Z|X) \log p_{\theta}(X|Z) - \sum_{Z} q_{\phi}(Z|X) \log \frac{q_{\phi}(Z|X)}{p_{\theta}(Z)}$$
(1)

$$ELBO(\theta, \phi) = <\mathcal{L}(\hat{S}) > -D_{KL}(Encoder(S)||\mathcal{N}(Z|\mu, \sigma^2))$$

,

Training of a VAE

Architecture chosen by 5-fold cross validation

- ullet 1 imes hidden (linear) layer fully connected (Encoder and Decoder)
- 512 units per hidden layer
- Latent space dimension = 10
- Parameter space (W) dense layer: L imes 21 imes 512 o 10⁶

Training parameters

- Re-weigting sequences (reduce redundancy and emphasize diversity)
- 10⁴ optimization steps (ADAM optimizer)
- Regularization

Latent space representation of sequence space

[Ding et al, 2020, Nat. Com.]

•

Use a structure predictor to deduce sequences

AlphaFold is so good at predicting the structure, can't we just invert it? Yes, we can!

AlphaFold structure prediction

End-to-End prediction model accounting for evolutionary information as well as geometric information \rightarrow Any parameter on the way is differentiable, even the input sequences.

,

AlphaFold: inverting the prediction

Prediction of a structure's fold.

(J. Jumper et al, 2020, Nature)

AlphaFold: inverting the prediction

Compare the prediction to the true structure and update accordingly the parameters of AlphaFold using the gradient of the loss function.

AlphaFold: inverting the prediction

To design: use the gradient with respect to the input only to search for sequences that give the correct fold.

(Norm et al, 2021, PNAS)

Reverting AlphaFold

Encode the structure into distance matrices ($D_{i,j} = distance$ between residues i and j).

(Norm et al, 2021, PNAS)

Why doing so?

- Positive design: searching for sequences that fold into the target structure.
- Negative design: searching for sequences that fold only into the target structure.

(Norm et al, 2021, PNAS)

14

Graph neural network to model the structure

Represent protein structures using graph neural networks

Design proteins conditioned on the structure

[Dauparas et al, Science, 2022]

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Predict a molecular property using the contextualized node vectors, for example, the binding free energy to a protein target.

Mask the identity of one atom...

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

... predict back the identity of the masked atom.

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.