# CS 70 Discrete Mathematics and Probability Theory Spring 2018 Satish Rao and Babak Ayazifar Discussion 08A

## 1 Aces

Consider a standard 52-card deck of cards:

- (a) Find the probability of getting an ace or a red card, when drawing a single card.
- (b) Find the probability of getting an ace or a spade, but not both, when drawing a single card.
- (c) Find the probability of getting the ace of diamonds when drawing a 5 card hand.
- (d) Find the probability of getting exactly 2 aces when drawing a 5 card hand.
- (e) Find the probability of getting at least 1 ace when drawing a 5 card hand.
- (f) Find the probability of getting at least 1 ace or at least 1 heart when drawing a 5 card hand.

**Solution:** 

- (a) Inclusion-Exclusion Principle:  $\frac{4}{52} + \frac{26}{52} \frac{2}{52} = \frac{28}{52} = \frac{7}{13}$ .
- (b) Inclusion-Exclusion, but we exclude the intersection:  $\frac{4}{52} + \frac{13}{52} 2 \cdot \frac{1}{52} = \frac{15}{52}$ .
- (c) Ace of diamonds is fixed, but the other 4 cards in the hand can be any other card:  $\frac{\binom{51}{4}}{\binom{52}{5}}$ .
- (d) Account for the number of ways to draw 2 aces and the number of ways to draw 3 non-aces:  $\frac{\binom{4}{2}\cdot\binom{48}{3}}{\binom{52}{5}}.$
- (e) Complement to getting no aces:  $1 \frac{\binom{48}{5}}{\binom{52}{5}}$ .
- (f) Complement to getting no aces and no hearts:  $1 \frac{\binom{36}{5}}{\binom{52}{5}}$ . This is because 52 13 3 = 36, where 13 is the number of hearts and 3 is the number of non-heart aces.

## 2 Balls and Bins, All Day Every Day

You throw n balls into n bins uniformly at random, where n is a positive *even* integer.

- (a) What is the probability that exactly k balls land in the first bin, where k is an integer  $0 \le k \le n$ ?
- (b) What is the probability p that at least half of the balls land in the first bin? (You may leave your answer as a summation.)
- (c) Using the union bound, give a simple upper bound, in terms of *p*, on the probability that some bin contains at least half of the balls.
- (d) What is the probability, in terms of p, that at least half of the balls land in the first bin, or at least half of the balls land in the second bin?
- (e) After you throw the balls into the bins, you walk over to the bin which contains the first ball you threw, and you randomly pick a ball from this bin. What is the probability that you pick up the first ball you threw? (Again, leave your answer as a summation.)

#### **Solution:**

- (a) The probability that a particular ball lands in the first bin is 1/n. We need exactly k balls to land in the first bin, which occurs with probability  $(1/n)^k$ , and we need exactly n-k balls to land in a different bin, which occurs with probability  $(1-1/n)^{n-k}$ , and there are  $\binom{n}{k}$  ways to choose which of the n balls land in first bin. Thus, the probability is  $\binom{n}{k}(1/n)^k(1-1/n)^{n-k}$ .
- (b) This is the summation over k = n/2, ..., n of the probabilities computed in the first part, i.e.,  $\sum_{k=n/2}^{n} {n \choose k} (1/n)^k (1-1/n)^{n-k}$ .
- (c) The event that some bin has at least half of the bins is the union of the events  $A_k$ , k = 1, ..., n, where  $A_k$  is the event that bin k has at least half of the balls. By the union bound,  $\mathbb{P}(\bigcup_{i=1}^n A_k) \le \sum_{i=1}^n \mathbb{P}(A_k) = np$ .
- (d) The probability that the first bin has at least half of the balls is p; similarly, the probability that the second bin has at least half of the balls is also p. There is overlap between these two events, however: the first bin has half of the balls and the second bin has the second half of the balls. The probability of this event is  $\binom{n}{n/2}n^{-n}$ : there are  $n^n$  total possible configurations for the n balls to land in the bins, but if we require exactly n/2 of the balls to land in the first bin and the remaining balls to land in the second bin, there are  $\binom{n}{n/2}$  ways to choose which balls land in the first bin. By the principle of inclusion-exclusion, our desired probability is  $p+p-\binom{n}{n/2}n^{-n}=2p-\binom{n}{n/2}n^{-n}$ .
- (e) Condition on the number of balls in the bin. First we calculate the probability  $\mathbb{P}(A_k)$ , where  $A_k$  is the event that the bin contains k balls and  $k \in \{1, ..., n\}$  (note that  $k \neq 0$  since we know at least one ball has landed in this bin).  $A_k$  is the event that, in addition to the first ball you threw,

an additional k-1 of the other n-1 balls landed in this bin, which by the reasoning in Part (a) has probability

$$\mathbb{P}(A_k) = \binom{n-1}{k-1} (1/n)^{k-1} (1-1/n)^{n-k} .$$

If we let B be the event that we pick up the first ball we threw, then

$$\mathbb{P}(\boldsymbol{B} \mid A_k) = 1/k$$

since we are equally likely to pick any of the *k* balls in the bin. Thus the overall probability we are looking for is, by an application of the law of total probability,

$$\mathbb{P}(B) = \sum_{k=1}^{n} \mathbb{P}(A_k \cap B) = \sum_{k=1}^{n} \mathbb{P}(A_k) \mathbb{P}(B \mid A_k) = \sum_{k=1}^{n} \frac{1}{k} \binom{n-1}{k-1} \left(\frac{1}{n}\right)^{k-1} \left(1 - \frac{1}{n}\right)^{n-k}.$$

### 3 Pairs of Beads

Sinho has a set of 2n beads ( $n \ge 2$ ) of n different colors, such that there are two beads of each color. He wants to give out pairs of beads as gifts to all the other n-1 TAs, and plans on keeping the final pair for himself (since he is, after all, also a TA). To do so, he first chooses two beads at random to give to the first TA he sees. Then he chooses two beads at random from those remaining to give to the second TA he sees. He continues giving each TA he sees two beads chosen at random from his remaining beads until he has seen all n-1 TAs, leaving him with just the two beads he plans to keep for himself. Prove that the probability that any other TA (not including Sinho himself) gets two beads of the same color is no more than  $\frac{1}{2}$ .

#### **Solution:**

We first examine the probability that any given TA gets two beads of the same color given no information about what beads any other TA got. Since we have no information about what anyone else got, we can do our calculations as if our arbitrarily chosen TA was actually the first TA Sinho gave beads to. In this case, no matter what the first bead Sinho chose to give this TA was, for the second bead Sinho has 2n-1 choices of which only 1 results in the other TA getting two beads of the same color. Thus, the probability that a given TA gets two beads of the same color is  $\frac{1}{2n-1}$ .

Of course, this is not immediately the probability we are interested in—we actually want to know the probability that *any* of the other TAs gets two beads of the same color. However, we notice that the event we're interested in is just the union over all n-1 TAs of the event we already calculated the probability for. Thus, we can apply a union bound, which tells us that the probability we're looking for is no bigger than  $(n-1)\frac{1}{2n-1} \le \frac{n-1}{2n-2} = \frac{1}{2}$ , which was the bound we were looking for.