

DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustc.edu.cn

Assignment #4

Please submit your assignments before class!

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

Suppose that 25 students are in a room. What is the probability that at least two of them share a birthday?

It's greater than 1/2! (only need 23)

 A_n – "there are n students in a room and at least two of them share a birthday."

We may assume that a year has 365 days and there are no twins in the room.

This will be very similar to the analysis of hashing *n* keys into a table of size 365.

 $A_n -$ "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 \blacksquare A_n – "there are n students in a room and at least two of them share a birthday."

Sample space: $|S| = 365^n$

 B_n – "there are n students in a room and none of them share a birthday."

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

 \blacksquare A_n — "there are n students in a room and at least two of them share a birthday."

Sample space:
$$|S| = 365^n$$

 B_n – "there are n students in a room and none of them share a birthday."

$$\#B_n = 365 \times 364 \times \cdots \times (365 - (n-1))$$

$$\#A_n + \#B_n = 365^n$$

n	A_{n}	B_n	n	A_{n}	B_n
1	0.00000000	1.00000000	16	0.28360400	0.71639599
2	0.00273972	0.99726027	17	0.31500766	0.68499233
3	0.00820416	0.99179583	18	0.34691141	0.65308858
4	0.01635591	0.98364408	19	0.37911852	0.62088147
5	0.02713557	0.97286442	20	0.41143838	0.58856161
6	0.04046248	0.95953751	21	0.44368833	0.55631166
7	0.05623570	0.94376429	22	0.47569530	0.52430469
8	0.07433529	0.92566470	23	0.50729723	0.49270276
9	0.09462383	0.90537616	24	0.53834425	0.46165574
10	0.11694817	0.88305182	25	0.56869970	0.43130029
11	0.14114137	0.85885862	26	0.59824082	0.40175917
12	0.16702478	0.83297521	27	0.62685928	0.37314071
13	0.19441027	0.80558972	28	0.65446147	0.34553852
14	0.22310251	0.77689748	29	0.68096853	0.31903146
15	0.25290131	0.74709868	30	0.70631624	0.29368375

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

The Euclidean algorithm in pseudocode

ALGORITHM 1 The Euclidean Algorithm.

```
procedure gcd(a, b): positive integers)
x := a
y := b
while y \neq 0
r := x \mod y
x := y
y := r
return x\{\gcd(a, b) \text{ is } x\}
```

The number of divisions required to find gcd(a, b) is $O(\log b)$, where $a \ge b$. (this will be proved later.)

Why?

Key steps in the Euclidean algorithm

```
egin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n \ . \end{array}
```

Key steps in the Euclidean algorithm

```
egin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ & r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ & r_{n-1} &= r_n q_n \end{array}
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 < r_3
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Key steps in the Euclidean algorithm

$$r_0 = r_1q_1 + r_2$$
 $0 \le r_2 < r_1$, $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $0 \le r_3 < r_2$, $0 \le r_3 < r_3$, $1 \le r_3$,

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

Key steps in the Euclidean algorithm

```
r_0 = r_1q_1 + r_2 0 \le r_2 < r_1, r_1 = r_2q_2 + r_3 0 \le r_3 < r_2, r_1 = r_1q_1 + r_2 0 \le r_3 < r_2, 0 \le r_3 < r_3, 0 \le r_3 <
```

Observation:

$$r_{i+2} = r_i \mod r_{i+1}$$

We claim that $r_{i+2} < \frac{1}{2}r_i$

Case (i):
$$r_{i+1} \leq \frac{1}{2}r_i$$
: $r_{i+2} < r_{i+1} \leq \frac{1}{2}r_i$.

Case (ii):
$$r_{i+1} > \frac{1}{2}r_i$$
: $r_{i+2} = r_i \mod r_{i+1} = r_i - r_{i+1} < \frac{1}{2}r_i$.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

♦ linear: it is a linear combination of previous terms

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_j 's

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_i 's
- \diamond degree k: a_n is expressed by the previous k terms

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_i 's
- \diamond degree k: a_n is expressed by the previous k terms
- constant coefficients: coefficients are constants

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

- ♦ linear: it is a linear combination of previous terms
- \diamond homogeneous: all terms are multiples of a_i 's
- \diamond degree k: a_n is expressed by the previous k terms
- constant coefficients: coefficients are constants

By induction, such a recurrence relation is uniquely determined by this recurrence relation, and k initial conditions $a_0, a_1, \ldots, a_{k-1}$.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$
 $f_n = f_{n-1} + f_{n-2}$
 $a_n = a_{n-1} + a_{n-2}^2$
 $H_n = 2H_{n-1} + 1$
 $B_n = nB_{n-1}$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

$$a_n = a_{n-1} + a_{n-2}^2$$

$$H_n = 2H_{n-1} + 1$$

$$B_n = nB_{n-1}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$

$$H_n = 2H_{n-1} + 1$$

$$B_n = nB_{n-1}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$

NOT linear

$$H_n=2H_{n-1}+1$$

$$B_n = nB_{n-1}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$

NOT linear

$$H_n = 2H_{n-1} + 1$$

NOT homogeneous

$$B_n = nB_{n-1}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Examples

$$P_n = (1.11)P_{n-1}$$

linear homogeneous recurrence relation of degree 1

$$f_n = f_{n-1} + f_{n-2}$$

linear homogeneous recurrence relation of degree 2

$$a_n = a_{n-1} + a_{n-2}^2$$

NOT linear

$$H_n = 2H_{n-1} + 1$$

NOT homogeneous

$$B_n = nB_{n-1}$$

coefficients are not constants

Example Consider the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}$$

Which of the following are solutions?

$$\diamond a_n = 3n$$
:

$$\diamond a_n = 2^n$$
:

$$\diamond a_n = 5$$
:

Example Consider the recurrence relation

$$a_n = 2a_{n-1} - a_{n-2}$$

Which of the following are solutions?

$$\diamond a_n = 3n$$
: YES

$$\diamond a_n = 2^n$$
: NO

$$\diamond a_n = 5$$
: YES

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

 \diamond Bring $a_n = r^n$ back to the recurrence relation:

i.e.,
$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$$
, $r^{n-k} (r^k - c_1 r^{k-1} - \cdots - c_k) = 0$

Solving Linear Recurrence Relations

■ **Definition** A *linear homogeneous relation of degree k* with constant coefficients is a recurrence relation of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

where c_1, c_2, \ldots, c_k are real numbers, and $c_k \neq 0$.

Basic idea: Look for solutions of the form $a_n = r^n$, where r is a constant.

 \diamond Bring $a_n = r^n$ back to the recurrence relation:

i.e.,
$$r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$$
, $r^{n-k}(r^k - c_1 r^{k-1} - \cdots - c_k) = 0$

♦ The solutions to the *characteristic equation* can yield an explicit formula for the sequence.

$$(r^k - c_1 r^{k-1} - \cdots - c_k) = 0$$

Recall: Problem IV

■ Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

Recall: Problem IV

■ Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

 \diamond What is the closed-form expression of F_n ?

Recall: Problem IV

■ Fibonacci number

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$

 \diamond What is the closed-form expression of F_n ?

Consider $x^n = x^{n-1} + x^{n-2}$, with $x \neq 0$. There are two different roots

$$\phi = \frac{1+\sqrt{5}}{2}, \quad \psi = \frac{1-\sqrt{5}}{2}$$

Then F_n can be the form of $a\phi^n + b\psi^n$. By $F_0 = 0$ and $F_1 = 1$, we have a + b = 0 and $\phi a + \psi b = 1$, leading to $a = \frac{1}{\sqrt{5}}$, b = -a. Therefore,

$$F_n = \frac{\phi^n - \psi^n}{\sqrt{5}}$$

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2-c_1r-c_2=0.$$

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2 - c_1 r - c_2 = 0.$$

Theorem If this CE has 2 roots $r_1 \neq r_2$, then the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ and constants α_1, α_2 .

Consider an arbitrary linear homogeneous relation of degree 2 with constant coefficients:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2}$$
.

The characteristic equation (CE) is:

$$r^2 - c_1 r - c_2 = 0.$$

Theorem If this CE has 2 roots $r_1 \neq r_2$, then the sequence $\{a_n\}$ is a solution of the recurrence relation if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for $n \geq 0$ and constants α_1, α_2 .

Proof?

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$
.

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$
.

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

$$a_1 = 2\alpha_1 - \alpha_2 = 7$$

Example 1 $a_n = a_{n-1} + 2a_{n-2}$, with $a_0 = 2$, $a_1 = 7$

The characteristic equation is

$$r^2 - r - 2 = 0$$

Two roots are 2 and -1. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 (-1)^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = 2\alpha_1 - \alpha_2 = 7$

We get $\alpha_1 = 3$ and $\alpha_2 = -1$. Thus, $a_n = 3 \cdot 2^n - (-1)^n$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$
.

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

$$a_1=2\alpha_1+5\alpha_2=1$$

Example 2 $a_n = 7a_{n-1} - 10a_{n-2}$, with $a_0 = 2$, $a_1 = 1$

The characteristic equation is

$$r^2 - 7r + 10 = 0$$

Two roots are 2 and 5. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 5^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 + \alpha_2 = 2$$

 $a_1 = 2\alpha_1 + 5\alpha_2 = 1$

We get $\alpha_1 = 3$ and $\alpha_2 = -1$. Thus, $a_n = 3 \cdot 2^n - 5^n$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}.$$

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Theorem If this CE has k distinct roots r_i , then the solutions to the recurrence are of the form

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i 's are constants.

Consider an arbitrary linear homogeneous relation of degree k with constant coefficients:

$$a_n = \sum_{i=1}^k c_i a_{n-i}$$
.

The characteristic equation (CE) is:

$$r^{k} - \sum_{i=1}^{k} c_{i} r^{k-i} = 0.$$

Theorem If this CE has k distinct roots r_i , then the solutions to the recurrence are of the form

$$a_n = \sum_{i=1}^k \alpha_i r_i^n$$

for all $n \ge 0$, where the α_i 's are constants.

Example
$$a_n = 2a_{n-1} + 5a_{n-2} - 6a_{n-3}$$

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Theorem If the CE $r^2 - c_1 r - c_2 = 0$ has only 1 root r_0 , then

$$a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n,$$

for all $n \geq 0$ and two constants α_1 and α_2 .

Proof?

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$
.

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

Example $a_n = 4a_{n-1} - 4a_{n-2}$, with $a_0 = 1$, $a_1 = 0$

The characteristic equation is

$$r^2 - 4r + 4 = 0$$

The only root is 2. So, assume that

$$a_n = \alpha_1 2^n + \alpha_2 n 2^n.$$

By the two initial conditions, we have

$$a_0 = \alpha_1 = 1$$

 $a_1 = 2\alpha_1 + 2\alpha_2 = 0$

We get $\alpha_1 = 1$ and $\alpha_2 = -1$. Thus, $a_n = 2^n - n2^n$

The Case of Degenerate Roots in General

Theorem [Theorem 4, p.519] Suppose that there are t roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n,$$

for all $n \geq 0$ and constants $\alpha_{i,j}$.

The Case of Degenerate Roots in General

Theorem [Theorem 4, p.519] Suppose that there are t roots r_1, \ldots, r_t with multiplicities m_1, \ldots, m_t . Then

$$a_n = \sum_{i=1}^t \left(\sum_{j=0}^{m_i-1} \alpha_{i,j} n^j \right) r_i^n,$$

for all $n \geq 0$ and constants $\alpha_{i,j}$.

Example

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
 with $a_0 = 1$, $a_1 = -2$, $a_2 = -1$

Linear Nonhomogeneous Recurrence Relations

■ **Definition** A *linear nonhomogeneous relation* with constant coefficients may contain some terms F(n) that depend only on n

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$
.

The recurrence relation

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ is called the associated homogeneous recurrence relation.

Linear Nonhomogeneous Recurrence Relations

Theorem If $a_n = p(n)$ is any particular solution to the linear nonhomogeneous relation with constant coefficients,

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n),$$

Then all its solutions are of the form

$$a_n = p(n) + h(n),$$

where $a_n = h(n)$ is any solution to the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$

Solving Linear Nonhomogeneous Recurrence Relations

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

Solving Linear Nonhomogeneous Recurrence Relations

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

Solving Linear Nonhomogeneous Recurrence Relations

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Solving Linear Nonhomogeneous Recurrence Relations

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(-2c + 2)n + (3c - 2d) = 0$.

Solving Linear Nonhomogeneous Recurrence Relations

Example $a_n = 3a_{n-1} + 2n$. Which solution has $a_1 = 3$?

The *characteristic equation* of the associated linear homogeneous recurrence relation is $r^2 - 3r = 0$. Thus, the solution to the original problem are all of the form $a_n = \alpha 3^n + p(n)$.

We try a degree-t polynomial as the particular solution p(n).

Let
$$p(n) = cn + d$$
, then $cn + d = 3(c(n-1) + d) + 2n$, which means $(-2c + 2)n + (3c - 2d) = 0$.

We get
$$c = 1$$
 and $d = 3/2$. Thus, $p(n) = n + 3/2$

We may use generating functions to characterize sequences.

We may use generating functions to characterize sequences.

 \diamond The sequence $\{a_k\}$ with $a_k = 3$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

 \diamond The sequence $\{a_k\}$ with $a_k = 2^k$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$

$$\sum_{k=0}^{\infty} 3x^k$$

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 2^k$

$$\sum_{k=0}^{\infty} 2^k x^k$$

We may use generating functions to characterize sequences.

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 3$
$$\sum_{k=0}^{\infty} 3x^k$$

$$\diamond$$
 The sequence $\{a_k\}$ with $a_k = 2^k$
$$\sum_{k=0}^{\infty} 2^k x^k$$

Definition The *generating funciton* for the sequence $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{3} a_k x^k$$

■ A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

 \diamond What is the generating function for the sequence a_0, a_1, \ldots, a_m , with $a_k = C(m, k)$?

A finite sequence a_0, a_1, \ldots, a_n can be easily extended by setting $a_{n+1} = a_{n+2} = \cdots = 0$

The generating function G(x) of this infinite sequence $\{a_n\}$ is a polynomial of degree n, i.e.,

$$G(x) = a_0 + a_1x + \cdots + a_nx^n$$

 \diamond What is the generating function for the sequence a_0, a_1, \ldots, a_m , with $a_k = C(m, k)$?

$$G(x) = C(m, 0) + \cdots + C(m, m)x^{m} = (1 + x)^{m}$$

$$\phi G(x) = 1/(1-x) \text{ for } |x| < 1$$

$$\Leftrightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$$

 $1, 1, 1, 1, 1, \dots$

$$\Rightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$$
 $1, 1, 1, 1, 1, \dots$

$$\diamond G(x) = 1/(1 - ax)$$
 for $|ax| < 1$

- $\Rightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Rightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$

- $\Leftrightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Leftrightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$
- $\diamond G(x) = 1/(1-x)^2 \text{ for } |x| < 1$

- $\Leftrightarrow G(x) = 1/(1-x) \text{ for } |x| < 1$ $1, 1, 1, 1, 1, \dots$
- $\Leftrightarrow G(x) = 1/(1 ax) \text{ for } |ax| < 1$ $1, a, a^2, a^3, a^4, \dots$
- $\Rightarrow G(x) = 1/(1-x)^2 \text{ for } |x| < 1$ 1, 2, 3, 4, 5, . . .

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k)x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$\Leftrightarrow G(x) = 1/(1-x)^2 \text{ for } |x| < 1$$

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k)x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$G(x) = 1/(1-x)^2 for |x| < 1$$

$$f(x) = 1/(1-x), g(x) = 1/(1-x)$$

$$G(x) = f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} 1\right) x^k = \sum_{k=0}^{\infty} (k+1)x^k$$

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k)x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$\Leftrightarrow G(x) = 1/(1 - ax)^2 \text{ for } |x| < 1$$

$$f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$$

$$f(x)g(x) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} a_j b_{k-j}\right) x^k$$

$$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$$
$$(1+ax)^n = \sum_{k=0}^n C(n,k)a^kx^k$$
$$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$$

$$(1+x)^{n} = \sum_{k=0}^{n} C(n,k)x^{k}$$

$$(1+ax)^{n} = \sum_{k=0}^{n} C(n,k)a^{k}x^{k}$$

$$(1+x^{r})^{n} = \sum_{k=0}^{n} C(n,k)x^{rk}$$

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^{k} = 1+x+x^{2}+\cdots+x^{n}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1+x+x^{2}+\cdots$$

$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^{k}x^{k} = 1+ax+a^{2}x^{2}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1+x^{r}+x^{2r}+\cdots$$

$$(1+x)^{n} = \sum_{k=0}^{n} C(n,k)x^{k}$$

$$(1+ax)^{n} = \sum_{k=0}^{n} C(n,k)a^{k}x^{k}$$

$$(1+x^{r})^{n} = \sum_{k=0}^{n} C(n,k)x^{rk}$$

$$\frac{1-x^{n+1}}{1-x} = \sum_{k=0}^{n} x^{k} = 1+x+x^{2}+\cdots+x^{n}$$

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k} = 1+x+x^{2}+\cdots$$

$$\frac{1}{1-ax} = \sum_{k=0}^{\infty} a^{k}x^{k} = 1+ax+a^{2}x^{2}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} a^{k}x^{k} = 1+x^{r}+x^{2r}+\cdots$$

$$\frac{1}{1-x^{r}} = \sum_{k=0}^{\infty} x^{rk} = 1+x^{r}+x^{2r}+\cdots$$

$$\frac{1}{(1-x)^{2}} = \sum_{k=0}^{\infty} (k+1)x^{k} = 1+2x+3x^{2}+\cdots$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$$

$$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$$

$$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of r-combinations from a set with n elements when repetition is allowed.

Problem 1 How many solutions are there to the equation

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers?

This is **equivalent** to the problem of *r*-combinations from a set with *n* elements when repetition is allowed.

$$C(n+r-1, n-1) = C(19, 2)$$

Problem 2 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Problem 2 Find the number of solutions of

$$x_1 + x_2 + x_3 = 17$$
,

where x_1, x_2, x_3 are nonnegative integers with $2 \le x_1 \le 5$, $3 \le x_2 \le 6$, $4 \le x_3 \le 7$.

Using generating functions, the number is the coefficient of x^{17} in the expansion of

$$(x^2 + x^3 + x^4 + x^5)(x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)$$

Problem 3 In how many ways can eight identical cookies be ditributed among three distinct children if each child receives at least two cookies and no more than four cookies?

Problem 3 In how many ways can eight identical cookies be ditributed among three distinct children if each child receives at least two cookies and no more than four cookies?

The coefficient of x^8 in the expansion

$$(x^2 + x^3 + x^4)^3$$

Problem 4 Use generating functions to find the number of k-combinations of a set with n elements, C(n, k).

Counting and Generating Functions

Problem 4 Use generating functions to find the number of k-combinations of a set with n elements, C(n, k).

Each of the n elements in the set contributes the term (1+x) to the generating function $f(x) = \sum_{k=0}^{n} a^k x^k$. Hence, $f(x) = (1+x)^n$.

Then by the binomial theorem, we have $a_k = \binom{n}{k}$.

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian Product

Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, the Cartesian product $A \times B$ is the set of pairs $\{(a_1, b_1), (a_2, b_2), \dots, (a_1, b_n), \dots, (a_m, b_n)\}$

Cartesian product defines a set of all ordered arrangements of elements in the two sets.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Definition: Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

Let $R \subseteq A \times B$ denote R is a set of ordered pairs of the form (a, b) where $a \in A$ and $b \in B$.

We use the notation a R b to denote $(a, b) \in R$, and aRb to denote $(a, b) \notin R$.

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$

- \diamond Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B?
- \diamond Is $Q = \{(1, a), (2, b)\}$ a relation from A to B?
- \diamond Is $P = \{(a, a), (b, c), (b, a)\}$ a relation from A to A?

• We can graphically represent a binary relation R as:

if a R b, then we draw an arrow from a to b: $a \rightarrow b$

• We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can graphically represent a binary relation R as: if a R b, then we draw an arrow from a to b: $a \rightarrow b$

Example: Let $A = \{0, 1, 2\}$ and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, v), (2, u)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

• We can also represent a binary relation R by a table showing the ordered pairs of R.

Example: Let
$$A = \{0, 1, 2\}$$
 and $B = \{u, v\}$, and $R = \{(0, u), (0, v), (1, u), (2, v)\}$. $(R \subseteq A \times B)$

R	и	v
0	×	×
1	×	
2		×

Relations and Functions

• Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

Relations and Functions

Relations represent one to many relationships between elements in A and B.

What is the difference between a relation and a function from A to B?

■ **Definition**: A relation on the set *A* is a relation from *A* to itself.

■ **Definition**: A relation on the set A is a relation from A to itself.

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

■ **Definition**: A relation on the set A is a relation from A to itself.

$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$$

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

Theorem The number of binary relations on a set A, where |A| = n is 2^{n^2} .

Proof

If |A| = n, then the cardinality of the Cartesian product $|A \times A| = n^2$.

R is a binary relation on A if $R \subseteq A \times A$ (R is subset)

The number of subsets of a set with k elements is 2^k

Next Lecture

relation ...

