Problem (Problem 1): A subset $A \subseteq \mathbb{R}^n$ is said to have *measure zero* if, for all $\varepsilon > 0$, the set A can be covered by open balls of total volume at most ε . Prove that a countable subset of \mathbb{R}^n has measure zero, and that the standard middle-thirds cantor set in $[0,1] \subseteq \mathbb{R}$ has measure zero.

Solution: Let A be countable, and let $\{a_k\}_{k\geqslant 1}$ be an enumeration of the points in A. Let $\epsilon > 0$. Let c_n be the constant dependent on n such that the volume of $U(x,r) = c_n r^n$. For each k, define

$$r_k = \left(\frac{1}{2^k c_n} \varepsilon\right)^{1/n}.$$

Then, we see that the family $\{U(a_k, r_k)\}_{k=1}^{\infty}$ has total volume no more than ε , seeing as if all the open balls are disjoint, their union has total volume ε . Thus, countable subsets of \mathbb{R}^n have measure zero.

Now, let C denote the standard middle-thirds Cantor set determined by the intersection of the intervals

$$\mathcal{C} = \bigcap_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} \left[\frac{3k}{3^n}, \frac{3k+1}{3^n} \right] \bigcup \left[\frac{3k+2}{3^n}, \frac{3k+3}{3^n} \right],$$

where $\mathcal{C}_0 = [0, 1]$. Now, let $\varepsilon > 0$. Before we move on, notice that at stage N of the construction, we have 2^N subintervals whose endpoints are distance 3^{-N} away from each other.

Find N large enough that

$$\left(\frac{2}{3}\right)^{N} < \varepsilon/3$$

Then, for each of the 2^N subintervals, we may find an open interval with length $\frac{1}{3^{N-1}}$ centered at the center of each subinterval; the total sum of the lengths of these intervals is less than ε .

Since $\mathcal{C} \subseteq \mathcal{C}_N$, and \mathcal{C}_N is able to be covered by open intervals with total length less than ε , we find that \mathcal{C} has measure zero.

Problem (Problem 2): Prove that if $A \subseteq U \subseteq \mathbb{R}^n$ has measure zero (with U open), and $f: U \to \mathbb{R}^n$ is smooth, show that f(A) has measure zero.

Solution: Let $f: U \to \mathbb{R}^n$ be smooth. Then, f is locally Lipschitz, as f' is continuous, hence attains a supremum on compact subsets. In particular, for any $a \in A$, we see that there is r > 0 such that $U(a,r) \subseteq B(a,r) \subseteq U$, meaning f has a Lipschitz constant C_a such that $|f(x) - f(y)| \le C_a|x - y|$. In particular, we may show that f(A) has measure zero if $f(A \cap U(a,r))$ has measure zero.

Since A has measure zero, so too does $A \cap U(\alpha, r)$, so that we may cover $A \cap U(\alpha, r)$ by a countable (since \mathbb{R}^n is a second countable space) $\{U(x_k, r_k)\}_{k\geqslant 1}$ with $\mathfrak{m}(\bigcup_{k=1}^\infty U(x_k, r_k)) < \varepsilon$ for any $\varepsilon > 0$. Then, since f is Lipschitz on $A \cap U(\alpha, r)$, we have that

$$\begin{split} f(A \cap U(\alpha,r)) &\subseteq f\left(\bigcup_{k=1}^{\infty} U(x_k,r_k)\right) \\ &\subseteq \bigcup_{k=1}^{\infty} U(x_k,r_k) \\ &\subseteq \bigcup_{k=1}^{\infty} U(f(x_k),C_{\alpha}r_k), \end{split}$$

meaning that

$$m(f(A \cap U(\alpha, r))) \le m \left(\bigcup_{k=1}^{\infty} U(f(x-k), C_{\alpha}r_k) \right)$$
$$= C_{\alpha}^{n} \varepsilon.$$

Since C_{α} is a constant and n is fixed, we thus have that $\mathfrak{m}(f(A \cap U(\alpha, r))) = 0$, meaning that $\mathfrak{m}(f(A)) = 0$.

Problem (Problem 3): In this exercise, we will prove Sard's Theorem. Let $U \subseteq \mathbb{R}^m$ be open, and let $f: U \to \mathbb{R}^n$ be C^{∞} . Let $A \subseteq U$ be the set of points where Df has rank less than n. Then, f(A) has measure zero in \mathbb{R}^n . Note that it need not be the case that A itself have measure zero.

We will let A_i be the set of points in U where all partial derivatives up to degree i vanish.

- (a) Prove that $f(A \setminus A_1)$ has measure zero.
- (b) Prove that $f(A_k \setminus A_{k+1})$ has measure zero for all $k \ge 1$.
- (c) Prove that $f(A_k)$ has measure zero for $k \gg 0$.

Solution:

(a) Let $x \notin A_1$, meaning some partial derivative does not vanish at x. Letting $f = (f_1, \ldots, f_n)$, by some rearrangement, we may assume that $\frac{\partial f_1}{\partial x_1}(x) \neq 0$. Let $h(x) = (f_1(x), x_2, \ldots, x_m)$. Since h consists of identity coordinate maps and f_1 , which has nonzero partial derivative with respect to x_1 , the inverse function theorem means that $h: U_x \supseteq \mathbb{R}^m \to V_x \subseteq \mathbb{R}^m$ is a local diffeomorphism.

We observe that $g = f \circ h^{-1}$ has critical points at $h(A \cap U_x)$, meaning that $g(A \cap U_x) = f(A \cap U_x)$. Notice then that for $(t, x_2, \dots, x_m) \subseteq \{t\} \times \mathbb{R}^{m-1}$,

$$f(A \cap U_x) = g(h(t, x_2, ..., x_m))$$

= $(t, f_2(t, x_2, ..., x_m), ..., f_n(t, x_2, ..., x_m)),$

meaning that g maps hyperplanes of the form $\{t\} \times \mathbb{R}^{m-1}$ to hyperplanes of the form $\{t\} \times \mathbb{R}^{m-1}$.

If we restrict g to $\{t\} \times \mathbb{R}^{m-1}$, then $Dg|_{\{t\} \times \mathbb{R}^{m-1}}$ mapping $\mathbb{R}^{m-1} \to \mathbb{R}^{n-1}$ (with some translation) is not of full rank on $h(A \cap U_x)|_{\{t\} \times \mathbb{R}^{m-1}}$. Via the induction hypothesis, we may reduce this to the case of m=0, and since $f(\{0\})$ has measure zero in \mathbb{R}^k for all $k \ge 1$.

Via Fubini's Theorem, we observe that if $B \subseteq \mathbb{R}^n$ is such that $B \cap (\{t\} \times \mathbb{R}^{n-1})$ has measure zero in \mathbb{R}^{n-1} , then

$$\int_{\mathbb{R}^n} \mathbb{1}_{B}(t) dm = \int_{\{t\} \times \mathbb{R}^{n-1}} \int \mathbb{1}_{B^t} dm_{n-1} dt$$

$$= 0.$$

so $f(A \setminus A_1)$ has measure zero.

Problem (Problem 4): Prove that Sard's Theorem is not necessarily true if f is not C^k for sufficiently large k.

- (a) Prove that there is a C^1 function f(x) on the real line whose set of critical values contains the middle-thirds Cantor set.
- (b) If $X \subseteq [0,1]$ is the middle thirds Cantor set, then X + X = [0,2].
- (c) Prove that $g: \mathbb{R}^2 \to \mathbb{R}$ given by g(x, y) = g(x) + g(y) is C^1 and the set of critical values does not have

measure zero.

Solution:

(a) If \mathcal{C}_n denotes the nth stage of the construction of the Cantor set, we define $g_n \colon \mathbb{R} \to \mathbb{R}$ by a finite sum of smooth bump functions such that g_n is supported on a compact subset of each of the subintervals

$$I_{k,n} = \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right).$$

We also multiply these bump functions by a constant value such that the integral from [0,1] of these bump functions is equal to 1. Then, defining $g = \lim_{n \to \infty} g_n$, we see that g is continuous as g is the uniform limit of smooth functions. Finally, take

$$f(x) = \int_0^x g(t) dt,$$

which gives a continuous function on \mathbb{R} .

We observe that \mathcal{C} is a subset of the critical points for f, as f'(x) = g(x) = 0 whenever $x \in \mathcal{C}$. Furthermore, we also observe that whenever $q \in \mathcal{C}$, the definition of f yields

$$q = \int_0^q g(t) dt,$$

implying that $q \in f^{-1}(\{q\})$, so that the set of critical values for f includes \mathcal{C} .

(b) If \mathcal{C} is the standard middle-thirds Cantor set, we notice that a number in [0,1] is an element of \mathcal{C} if and only if it admits a base-3 expansion entirely in $\{0,2\}$.

Now, if $c \in [0, 2]$, we write

$$c=\sum_{n=0}^{\infty}\frac{c_n}{3^n},$$

where $c_n \in \{0,1,2\}$. For a fixed n, there are three cases that we may write c_n :

- if $c_n = 0$, we may find $a, b \in \mathcal{C}$ with $a_n, b_n = 0$;
- if $c_n = 2$, we may find $a, b \in \mathcal{C}$ with $a_n = 2$ and $b_n = 0$, or vice versa;
- if $c_n = 1$, we may fin $a, b \in \mathcal{C}$ with $a_{n+1} = 2$ and $b_{n+2} = 2$.

Since, for any element in the base-3 expansion of c, we may find two elements of the Cantor set such that a + b = c at position n, we have that C + C = [0, 2].

(c) Letting h: $\mathbb{R}^2 \to \mathbb{R}$ be given by h(x,y) = f(x) + f(y), we see that h is the sum of two C^1 functions, meaning that h is C^1 , yet since \mathcal{C} is a subset of the critical values of f, we have that $\mathcal{C} + \mathcal{C}$ is a subset of the critical values of f(x) + f(y), meaning [0,2] is a subset of the critical values of f(x) + f(y), or that the set of critical values of f(x) + f(y) has nonzero measure.

Problem (Problem 5): Prove that $SL_2(\mathbb{R})$, the 2×2 real matrices of determinant one, is diffeomorphic to $\mathbb{R}^2 \times S^1$.

Solution: We consider the action of $SL_2(\mathbb{R})$ on the upper half-plane of \mathbb{C} , $\mathbb{H} = \{z \mid Im(z) > 0\}$, given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d}.$$

In particular, if z = x + iy with y > 0, then

Thus, this is a fractional linear transformation on $\mathbb C$ that is an automorphism of $\mathbb H$. Therefore, by composing these fractional linear transformations, we see that $SL_2(\mathbb R)$ acting on $\mathbb H$ via this map is a group action.

This action is transitive, since for any $x + iy \in \mathbb{H}$, we may calculate a map $i \mapsto x + iy$ in $SL_2(\mathbb{R})$ by using the transformation

$$\frac{ai+b}{ci+d}=i$$

which via multiplication and matching parts gives

$$a = cx + dy$$
$$b = xd - yc$$

so by multiplying and back-substituting, we get

$$c^2 + d^2 = \frac{1}{y}.$$

By setting c = 0, we get

$$d = \frac{1}{\sqrt{y}}$$

$$\alpha = \sqrt{y}$$

$$b = \frac{x}{\sqrt{y}}$$

Now, to understand the stabilizer of some $z \in \mathbb{H}$, we only need to understand the stabilizer of i. For this, we see that

$$\frac{ai + b}{ci + d} = i$$

$$ai + b = di - c$$

so

$$a = d$$
 $b = -c$

and by back-substituting into the determinant, we get

$$a^2 + c^2 = 1$$

so the stabilizer of i is all matrices of the form

$$R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Thus, by orbit-stabilizer, $\mathbb{H} \cong SL_2(\mathbb{R})/P$, where P is the group of rotation matrices and the action is left-multiplication. In particular, since every rotation matrix corresponds one-to-one with an element of $S^1 \subseteq \mathbb{C}$, given by

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \mapsto e^{i\theta},$$

we find that $\mathbb{H} \cong SL_2(\mathbb{R})/S^1$, or that $\mathbb{H} \times S^1 \cong SL_2(\mathbb{R})$.

In particular, we may view H to consist of matrices of the form

$$h = \begin{pmatrix} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & 1/\sqrt{y} \end{pmatrix}$$

that take i as their input. Since the former matrix is diffeomorphic to \mathbb{R} via a series of projections and inverse projections, and the latter is diffeomorphic to $\mathbb{R}_{>0}$ via another series of projections and inverse projections, which itself is diffeomorphic to \mathbb{R} by exponents/logarithms, we find that

$$SL_{2}(\mathbb{R}) \cong \mathbb{H} \times S^{1}$$
$$\cong \mathbb{R} \times \mathbb{R}_{>0} \times S^{1}$$
$$\cong \mathbb{R}^{2} \times S^{1}.$$

In particular, $\mathbb{R} \times \mathbb{R}_{>0} \times S^1$ has a corresponding element in $SL_2(\mathbb{R})$ given by the map

$$(x, y, \theta) \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{y} & 0 \\ 0 & 1/\sqrt{y} \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$