DM1: L'ARQS - corrigé

Exercice 1: Un oscilloscope haut de gamme

FIGURE 1 – (à gauche) Photographie du circuit imprimé d'un oscilloscope Lecroy HDO4104. Les 4 convertisseurs analogique-numérique sont marqués de C1 à C4. (à droite) Agrandissement des traces allant des entrées 3 et 4 de l'oscilloscope aux convertisseurs analogique-numérique associés. On a marqué d'un point blanc un circuit intégré de format SO8

Key Specifications	
Bandwidth	200 MHz, 350 MHz, 500 MHz 1 GHz
Resolution	12-bit ADC resolution, up to 15-bit with enhanced resolution
Channels	2 or 4
Memory	up to 25 Mpts/Ch (50 Mpts interleaved)
Sample Rate	2.5 GS/s
Display	12.1" Wide TFT-LCD Touch Screen
Connectivity	USB Host, USB Device, LAN, GPIB

FIGURE 2 – Spécifications techniques de l'oscilloscope HDO4104 qui fonctionne avec des signaux ayant une fréquence jusqu'à 1 GHz

FIGURE 3 – Dimensions d'un circuit intégré de format SO8. marqué par un point blanc dans la figure 1

- 1. À l'aide des données fournies, on peut mesurer la longueur de la piste qui relie l'entrée au convertisseur A/N. On trouve $d\simeq 10$ cm. Si on suppose que les signaux se propagent à la vitesse c, le temps δt qu'ils mettent pour arriver au convertisseur est : $\delta t=\frac{d}{c}\simeq \frac{10^{-1}}{3\times 10^8}\simeq 0.3\,\mathrm{ns}$
- 2. L'oscilloscope mesure 2.5×10^9 échantillons par seconde (2.5 GS/s). Donc le temps qui sépare deux échantillons est $\Delta t = \frac{1}{2.5 \times 10^9} \simeq 0.4 \, \mathrm{ns}$
- 3. On ne peut pas appliquer l'ARQS au circuit de cet oscilloscope car $\delta t \simeq \Delta t$.
- 4. Les traces qui relient les entrées aux convertisseurs A/N associés font des zig-zag pour assurer qu'elles aient toutes la même longueur. Pour que des signaux qui arrivent en même temps sur deux entrées différentes soient convertis au même instant.
- 5. On mesure sur les photographies que toutes les traces liant les entrées aux convertisseurs A/N ont approximativement la même longueur (environ 10 cm)
- 6. Si les liaisons étaient plus directes, des signaux qui arrivent en même temps en entrée pourraient être convertis à des instants différents. Cela induirait un déphasage fictif entre les signaux.

2016–2017 page 1/2

Exercice 2 : BILAN DE PUISSANCE

- 1. Dans le premier circuit, la loi des nœuds donne $I' + I_0 = I$. De plus la tension aux bornes de R est E donc la loi d'Ohm donne I = E/R = 0.5 A et $I' = I I_0 = -3.5$ A
 - Dans le second circuit on applique la loi des mailles : $U_0 + E U = 0$ et la loi d'Ohm : U = RI. On a également $I = I_0 = 4$ A donc U = 80 V et $U_0 = U E = 70$ V.
- 2. Dans le premier circuit, la puissance fournie par le générateur de tension est $P_T = EI' = -35 \,\mathrm{W}$ (c'est un générateur mais il absorbe de l'énergie). La puissance fournie par le générateur de courant est $P_C = EI_0 = 40 \,\mathrm{W}$. Et la puissance reçue par la résistance est $P_R = EI = 5 \,\mathrm{W}$. On a bien $P_R = P_T + P_C$.

Dans le second circuit, la puissance fournie par le générateur de courant est $P_C = U_0 I_0 = 280 \,\text{W}$. La puissance fournie par le générateur de tension est $P_T = E I_0 = 40 \,\text{W}$. Et la puissance reçue par la résistance est $P_R = U I = 320 \,\text{W}$. Là encore, on a bien $P_T + P_C = P_R$.

Faire pour chacun des circuits un bilan de puissance. C'est à dire montrer que la puissance totale fournie par les générateurs est égale à la puissance reçue par la résistance.

Données : $I_0 = 4 \,\mathrm{A}$; $E = 10 \,\mathrm{V}$; $R = 20 \,\Omega$