Partial Vowel Height Harmony and Partial Transparency via Gestural Blending

Princeton Phonology Forum (PΦF)
Princeton University
April 5, 2019

Caitlin Smith

University of North Carolina at Chapel Hill

Introduction

- Harmony: spreading of some phonological property throughout domain
 - Rounding harmony: $/o-a-a/ \rightarrow [o-o-o]$
 - Nasal harmony: /mawa/ → [mãlãwã]
- Transparency: some segments are apparently skipped by harmony process
 - Rounding harmony: $/o-i-a/ \rightarrow [o-i-o]$
 - Nasal harmony: /mata/ → [mãtã]
- Partial harmony: segment takes on phonological property of trigger to only partial degree

Partial Height Harmony

- Partial height harmony: vowel approaches height of trigger vowel, but does not necessarily reach it
- Servigliano Italian metaphony (raising harmony that targets stressed vowel; Camilli 1929, Nibert 1998, Walker 2011):

Non-Metaphony Context	Metaphony Context
[kɾ <u>é</u> d-o] 'I believe'	[kɾi̞d-i] 'you believe'
[fj <u>ó</u> r-e] 'flower (masc. sg.)'	[f <u>jú</u> ɾ-i] 'flower (masc. pl.)'
[p <u>έ</u> tten-e] 'comb (masc. sg.)'	[péttin-i] 'comb (masc. pl.)'
[m <u>ó</u> r-e] 'he dies'	[m <u>ó</u> ɾ-i] 'you die'

Difficulties of Analyzing Partial Height Harmony

- Different height changes may rely on manipulation of different vowel features (e.g.,[±high] vs. [±low] vs. [±ATR])
- Scalar height features make undesirable predictions about possible direction of feature change (low to high vs. high to low) in partial height harmony
- *Stepwise* $(X \rightarrow Y \rightarrow Z)$ partial harmonies involve chain shifts, which require additional theoretical machinery in OT

Proposals

- 1. Subsegmental units of phonological representation are goal-based, dynamically-defined gestures
- 2. Harmony is result of extension of gesture to overlap gestures of other segments in a word
- 3. Transparency to harmony is result of blending/competition between gestures with different articulatory goals
- 4. Partial transparency/partial undergoing is result of blending of gestures with similar strength parameter values
- 5. Partial height harmony is a type of *partial transparency*

Gestures as Phonological Units

Gestural Units

Gestures: dynamically-defined, goal-based units of phonological representation (Browman & Goldstein 1986, 1989)

Gestural Parameters

- Target articulatory state:
 - Constriction location
 - Constriction degree
- Stiffness (k): how quickly a gesture's target articulatory state is reached
- Blending strength (a): ability to command vocal tract articulators
- Ability to self-activate and self-deactivate (C. Smith 2016, 2018, inter alia)

Constriction Location and Degree for Lingual Gestures

- Constriction location of gesture specifies target point along polar coordinate system
- Constriction degree of gesture specifies distance between active articulator and constriction location point

Vowel Gestures

Each vowel includes two tongue body gestures:

- Constriction location 'upper surface'
- Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Vowel Gestures

Each vowel includes two tongue body gestures:

- Constriction location 'upper surface'
- Constriction location 'back surface'
- Constriction degree of upper surface gesture determines vowel height
- Constriction degree of back surface gesture determines vowel backness

Representing Phonological Forms with Gestural Scores

12

Gestural Blending Between Consonants and Vowels

Gestural Strength and Blending

- Antagonistic gestures: gestures with conflicting target articulatory states
- Antagonism resolved by blending goal articulatory states of concurrently active gestures according to Task Dynamic Model of speech production (Saltzman & Munhall 1989, Fowler & Saltzman 1993)

Target₁ *
$$\alpha_1$$
 + Target₂ * α_2 = Blended Target
(where $\alpha_1 + \alpha_2 = 1$)

Gestural Blending Between Consonants and Vowels

Gestural Activation and Deactivation

(C. Smith 2016, 2018, inter alia)

typical protrusion gesture starting timepoint, target articulatory state reached, gesture activates gesture self-deactivates persistent Lip protrusion gesture target articulatory state reached, gesture does not self-deactivate anticipatory protrusion gesture starting timepoint, gesture already activated

Halh Mongolian Rounding Harmony

(Svantesson 1985, Steriade 1987, van der Hulst & N. Smith 1987, Svantesson et al. 2005)

- Root-initial non-high round vowel triggers rounding of following non-high vowels
- High front /i/ and /ı/ are transparent

Full harmony	Transparency
[peːr-e] 'kidney (refl.)'	[peːr-ig-e] 'kidney (acc. refl.)'
	cf. [piːr-ig-e] 'brush (acc. refl.)'
[xɔːʤ-ɔ] 'food (refl.)'	[xɔːʤ-ɪg-ɔ] 'food (acc. refl.)'
	cf. [chaːs-ɪg-a] 'paper (acc. refl.)'

Halh Mongolian Rounding Harmony

Transparency as Gestural Blending

- Transparency: competition between two concurrently active antagonistic gestures
- Gestural antagonism: two concurrently active gestures with directly opposing goal articulatory states
 - Lip protrusion vs. lip spreading
 - Velum opening vs. velum closure

Gestural Representation of High Front Vowels

■ Lip spreading gesture for /i/: raises F2, maximizing perceptual distance from back vowels

 Controlled lip spreading reported during production of /i/ (Hadding, Hirose, & Harris 1976; Sussman & Westbury 1981; Goldstein 1991)

Transparency in Halh Mongolian Rounding Harmony

Advantages of Transparency via Gestural Blending

- Correctly predicts which segments can be transparent within nasal harmony and rounding harmony
- Avoids over-generation of predicted transparent segments (C. Smith 2016, 2018)
- Harmony is represented locally (without skipping), resulting in gestural antagonism with transparent segments

Prediction: Partial Transparency via Gestural Blending

- Full transparency: overlapped gesture of transparent segment is much stronger than harmonizing gesture
- Identical or similar blending strengths of harmonizing gesture and overlapped gesture predicts partial transparency/partial undergoing of harmony
- Partial transparency attested in Coeur d'Alene Salish faucal (retraction) harmony (C. Smith 2017, 2018)

Partial Height Harmony in Servigliano Italian

(Camilli 1929, Nibert 1998, Walker 2011)

Non-Metaphony Context	Metaphony Context
[kréd-o] 'I believe'	[kɾi̞d-i] 'you believe'
[p <u>é</u> s-a] 'heavy (fem. sg.)'	[pís-u] 'heavy (masc. sg.)'
[fjór-e] 'flower (masc. sg.)'	[fjúɾ-i] 'flower (masc. pl.)'
[l <u>ó</u> ŋg-a] 'long (fem. sg.)'	[lúŋg-u] 'long (masc sg.)'
[p <u>é</u> tten-e] 'comb (masc. sg.)'	[péttin-i] 'comb (masc. pl.)'
[sgw <u>é</u> ts-a] 'suspicious (fem. sg.)'	[sgwéts-u] 'suspicious (masc. sg.)'
[m <u>ó</u> r-e] 'he dies'	[m <u>ó</u> ɾ-i] 'you die'
[m½∫-a] 'dejected (fem. sg.)'	[m <u>ó</u> ʃ-u] 'dejected (masc. sg.)'

- Suffix high vowels trigger raising of preceding stressed vowels
- High-mid vowels raised to high
- Low-mid vowels raised to highmid
- Partial step-wise raising harmony

- Vowel raising harmony due to overlap by anticipatory upper surface narrowing gesture of suffix high vowels /i/ and /u/
- Vowels of different heights have antagonistic target states for upper surface constriction degree, resulting in gestural blending

- Wide-mid vowels /ε/ and /ɔ/ surface as narrow-mid, partially resisting raising to narrow due to strength equal with trigger gesture
- Relatively weaker narrow-mid vowels /e/ and /o/ do not resist raising and surface as narrow

Gestural Blending Strength Calculations

Gestural blending successfully generates $\varepsilon \to e \to i$ and $\mathfrak{d} \to o \to u$ patterns with the following strength parameter settings for their upper surface gestures:

Vowel	Target Constriction Degree	Trigger Strength	Undergoer Strength	Normalized Strengths	Blended Target Constriction Degree
/i/, /u/	4 mm	10			
/e/, /o/	8 mm	10	1	0.91 0.09	4*0.91 + 8*0.09 = 4.36 mm
/ε/, /ɔ/	12 mm	10	10	0.5 0.5	4*0.5 + 12*0.5 = 8 mm

Servigliano Italian: Analysis

- Overlap between gestures of wide-mid vowels /ε/ and /ɔ/ and high /i/ and /u/ produces narrow-mid [e] and [o]
- Intermediate blended articulatory state due to equal gestural strengths

Servigliano Italian: Analysis

- Narrow-mid vowels /e/ and /o/ fully undergo harmony
- Relative gestural blending strengths favor goal articulatory state (narrow upper surface constriction) of high vowels

Featural Approaches to Partial Height Harmony

Binary Vowel Height Features

Servigliano Italian

a

- In vowel inventory with more than two heights, multiple binary features must be used to distinguish them (e.g., [±high], [±low], [±ATR])
- Stepwise height harmony may involve spreading/assimilation of two or more different features in a single harmony process

Binary Vowel Height Features

- In vowel inventory with more than two heights, multiple binary features must be used to distinguish them (e.g., [±high], [±low], [±ATR])
- Stepwise height harmony may involve spreading/assimilation of two or more different features in a single harmony process

Stepwise Partial Height Harmony as Chain Shift

• Height harmony can produce apparent chain shifts:

$$\varepsilon \to e \to i$$
 $s \to o \to u$

- Synchronic chain shifts in non-derivational framework via conjunction of faithfulness constraint (Kirchner 1996, Moreton & Smolensky 2002)
- Servigliano Italian (Walker 2011): conjoined constraint IDENT(high)&IDENT(ATR) prevents $ε \rightarrow i$ and $ρ \rightarrow u$
- Independently motivated individual constraints can produce unattested patterns when conjoined (Itô & Mester 1998, Fukazawa & Lombardi 2003, Pater 2009)

Underlying and Derived Vowels

• Underlying mid-high vowel /e/:

Tongue Body back surface wide₁

Tongue Body upper surface narrow-mid₁

• Mid-high vowel [e] derived by blending $/\epsilon/_1$ and $/i/_2$:

$[$ $e_{\scriptscriptstyle 1}$	$\mathbf{i_2}$
Tongue Body back surface wide ₁	Tongue Body back surface wide ₂
Tongue Body upper surface wide-mid ₁	Tongue Body upper surface narrow ₂

Scalar Vowel Height Features

- Incremental Constriction Model (Parkinson 1996): stacked [closed] features attached to Height node
- Partial height harmony is result of autosegmental spreading of lowest [closed] feature only

Scalar Vowel Height Features

- Incremental Constriction Model incorrectly predicts that partial height harmony always involves vowel raising
 - -Spreading single [closed] features results in vowel raising
 - -Vowel lowering only accomplished by spreading entire Height node
- Partial vowel lowering attested in Pende (Hyman 1999) and Herero (Kula & Marten 2000, Kula 2002)

Conclusion

Conclusion

- Partial height harmony can be analyzed as case of partial transparency to harmony
- Partial transparency is predicted by gestural model of harmony in which transparency is modeled as competition/blending of gestures with antagonistic goal states
- Avoids issues that arise in analyses that rely on binary or scalar height features

Work in Progress & Next Steps

- Work in progress: Extend analysis to vowel lowering harmonies (common in Bantu languages)
 - Partial vowel lowering in Pende and Herero
 - -Lowering of some high vowels and not others in Bemba—a possible case of contrastive gestural strength?
- Next steps: computational modeling of speech production in TADA (Task Dynamic Application; Nam et al. 2004) using new vowel gesture constriction locations