Dynamic OpenCL

DISTRIBUTED COMPUTING ON CLOUD SCALE

OUTLINE

- 1. Motivation
- 2. Related Work
- 3. Basics
- 4. Contributions
- 5. Evaluation
- 6. Future Work
- 7. Conclusion

MOTIVATION

COMPUTATIONAL COMPLEXITY

- Certain computations can not be efficiently computed on a single machine
- Single-threaded code → Multi-threaded code → Distributed code
- Code complexity increases drastically

Related Technologies: MapReduce, OpenMP, MPI, CUDA, OpenCL

COST EFFICIENT CLUSTERS

- Shared clusters face trade off scenario:
 - Underutilization → high total costs of ownership
 - Overutilization → job queues and increased waiting time
- Solution: dynamic resource adjustments

RESEARCH GOALS

Build a framework that provides ...

- Cluster execution of jobs on CPUs and GPUs of various vendors
- Dynamic scaling of cluster resources through cloud services
- Handling multiple simultaneous jobs efficiently by employing suitable scheduling algorithms
- Easy-to-use API in high-level language

RELATED WORK

RELATED WORK

- rCUDA
- Virtualizing CUDA Enabled GPGPUs on ARM Clusters
- DistCL
- Hadoop+Aparapi

BASICS

OpenCL

- Execute parallel programs (Kernels) on heterogeneous hardware (CPU, GPU, FPGA and more)
- Kernels written in OpenCL C
- Kernels are started on host from C or C++ programs

OpenCL Vector Addition Example


```
__kernel void run(__global double *a, __global double *b, __global double *c)
{
    int i = get_global_id(0);
    c[i] = a[i] + b[i];
}
```

OpenCL API Forwarding (dOpenCL)

- Access OpenCL devices on remote host
- No code changes necessary
- Reduces distribution complexity

Aparapi

- Translates Java code to OpenCL Kernels
- Kernels are started from Java
- Reduces programming complexity
- Minimizes auxiliary code

Aparapi Example

```
final double[] a = new double[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
final double[] b = new double[]{0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
final double[] c = new double[10];

Kernel kernel = new Kernel() {
    @Override
    public void run() {
        int i = getGlobalId();
        c[i] = a[i] + b[i];
    }
};
kernel.execute(10);
```

CONTRIBUTIONS

LEVELS OF PARALLELIZATION

CORE & DEVICE LEVEL

Choosing OpenCL:

- Code utilizes all cores of CPUs and GPUs
- Programs are portable and follow a fixed programming model

Alternatives:

- Low-level technologies like OpenMP and MPI provide complex APIs without a fixed programming model
- Targeting GPUs requires additional solutions like OpenACC

MACHINE & CLUSTER LEVEL

Choosing dOpenCL:

- API forwarding requires no code changes
- Minimal overhead and cluster management
- Similar libraries like SnuCL and VirtualCL could not be operated without errors

Alternatives:

- MPI increases code complexity
- MapReduce requires cluster management and adds startup/ memory overhead due to JVM

EVALUATING DOPENCL

EVALUATING DOPENCL

HIGH-LEVEL ABSTRACTION

- OpenCL requires much auxiliary code for data initialization and device selection
- Aparapi allows to write OpenCL in Java
 - Flatten learning curve
 - Reduce auxiliary code

But is it fast enough?

EVALUATING APARAPI

Connecting Aparapi and dOpenCL

- Both include incompatible design decisions
- Forked both libraries
- Fixed several bugs and design decisions
 - Dynamic resource adjustments
 - Device selection

DYNAMIC OPENCL

JOB DESIGN

HYBRID CLUSTER

- Created abstract class "Machine Manager"
- Handles dOpenCL cluster management
- One implementation per cloud service
 - Provides cloud service communication
 - Implementations required to fill 2 methods
 - Exemplary implementation for Amazon EC2

SCHEDULING

- Fairness vs. Efficiency
- Heterogeneous hardware offers optimization potential

SCHEDULING ALGORITHMS

JOB SCHEDULER DEVICE SCHEDULER

Round-Robin Device Preference

First-In-First-Out Performance Based

Network Based

USE CASES

- Job-based library
- Local cluster
- Hybrid cluster
- Cloud Cluster

EVALUATION

BENCHMARK SETUP

- Local FSOC hardware
- EC2 CPUs and GPUs
- Local, hybrid and cloud cluster
- Various Computations
 - Matrix Multiplication (data-heavy)
 - Mandelbrot Set (computation-heavy)
 - Multiple jobs in parallel: Matrix Multiplication, Mandelbrot, K-means and N-body

HARDWARE

Local Machine Type A:

144 logical cores and 1 Gbit/s Ethernet

Local Machine Type B:

8 logical cores and 10 Gbit/s Ethernet

EC2 c4.8xlarge:

36 logical cores and 10 Gbit/s Ethernet

EC2 g2.2xlarge:

NVIDIA GRID K520 and 1 Gbit/s Ethernet

LOCAL FULLY ASSISTED SETUP

FULLY ASSISTED MATRIX MULT.

FULLY ASSISTED MANDELBROT

LOCAL PARTLY ASSISTED SETUP

PARTLY ASSISTED MATRIX MULT.

- 1 Local Machine Type B + 1 Remote Machine Type B
- 1 Local Machine Type B + 2 Remote Machine Type B
- → 1 Local Machine Type B + 3 Remote Machine Type B
- → 1 Local Machine Type B + 4 Remote Machine Type B

PARTLY ASSISTED MANDELBROT

- → 1 Local Machine Type B + 1 Remote Machine Type B
- 1 Local Machine Type B + 2 Remote Machine Type B
- → 1 Local Machine Type B + 3 Remote Machine Type B
- → 1 Local Machine Type B + 4 Remote Machine Type B

CLOUD

CLOUD MATRIX MULT.

CLOUD MANDELBROT

HYBRID

HYBRID MATRIX MULT.

HYBRID MANDELBROT

HYBRID JOB SUITE SCHEDULING

FUTURE WORK

TASK QUEUE

EC2 SPOT INSTANCES

- Optimize cloud resource costs
- Reserve cheap instances over time
- Automated process with upfront user input

CONCLUSION

LIMITATIONS

- Network connection major bottleneck
- Limitations of Aparapi
 - Code translation
 - Device support
- Memory may become bottleneck when many jobs are executed in parallel

ACHIEVEMENTS

- Distributed computations on heterogeneous clusters
- Flat learning curve and little code necessary
- Cluster size can be dynamically increased by cloud resources
- Scheduling architecture adaptable to various use cases
- Small code base (less than 1500 Java LOC)

SOURCE CODES

https://github.com/florianroesler/dopencl

https://github.com/florianroesler/aparapi

https://github.com/florianroesler/dynamopencl

https://github.com/florianroesler/dynamo-server