TRAINING CELL SESSION 2

LINEAR REGRESSION LOGISTIC REGRESSION

ADIL OUBAIBOU ADNANE MAJDOUB

PLAN

- 1. Linear regression algorithm
- 2. Loss function vs Cost function
- 3. Gradient Descent
- 4. Practice Lab 1
- 5. Logistic Regression algorithm
- 6. Practice Lab 2

What's our objective?

We want to fit a linear equation that's the closer to all the data points

Simple Linear regression $f_{w,b}(x) = wx + b$

How the model find the best w, b?

Correlation

Loss vs Cost function

Loss Function =
$$(y_i - \hat{y})^2$$

Cost Function
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Cost Function
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Objective

 $\underset{w,b}{\text{minimize}} J(w,b)$

Gradient Descent

Gradient Descent formula

```
Repeat until converge {
w = w - \alpha \left[ \frac{\partial J(w,b)}{\partial w} \right]
b = b - \alpha \left[ \frac{\partial J(w,b)}{\partial b} \right]
}
```


Small learning rate Big learning rate

Algorithm 1 Ordinary Least Squares (OLS) linear regression

Input: Training data $S = (x_i, y_i)$ such that $x_i \in \mathbf{R^m}$ for i = 1, 2, ..., n, learning rate α , tolerance δ , max iteration number N_{max}

Initialize weights vector $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$ and iter = 0 and we define the function :

$$f_w(x) = w^T x = \sum_{i=0}^m w_i x_i$$

Compute mean square error: $MSE = \frac{1}{n} \sum_{i=1}^{n} (f_w(x_i) - y_i)^2$ while $iter \leq N_{max}$ or $MSE > \delta$ do
Update coefficients:

$$w \leftarrow w - \alpha \cdot \frac{\partial MSE}{\partial w}$$

 $iter \leftarrow iter + 1$

end while

Output: weights vector w

Logistic Regression

Is linear regression good for this type of data?

This one is better

Logistic Regression = CLASSIFIER

Sigmoid function

$$y = \frac{1}{1 + e^{-(m*x+b)}}$$

Cost function

$$\operatorname{Log} \operatorname{Loss} = \sum_{(x,y) \in D} -y \log(y') - (1-y) \log(1-y')$$

Thank you!