

TÀI LIỆU THUỘC KHÓA HỌC "LIVE VIP 9+ TOÁN"

THẦY HỔ THỨC THUẬN

INBOX THẦY ĐỂ ĐƯỢC TƯ VẤN VÀ ĐĂNG KÝ HỌC!

Đề Thi Thử THPT Quốc Gia Đề Dự Đoán - Số 09

Câu 1.	Phần ảo của số phức	z = -7 + 6i bằng						
	$\mathbf{A.}$ -6 i .	B. −6.	C. 6.	D. 6 <i>i</i> .				
Câu 2.	Cho hai số phức $z_1 = 3 - 7i$ và $z_2 = 2 + 3i$. Tìm số phức $z = z_1 + z_2$.							
	A. $z = 3 - 10i$.		C. z = 3 + 3i.	D. $z = 5 - 4i$.				
Câu 3.	Cho mặt cầu bán kính $R=2$. Diện tích mặt cầu đã cho bằng							
	A. 8π .	B. $\frac{32}{3}\pi$.	C. $\frac{16}{3}\pi$.	D. 16π .				
Câu 4.	Trong không gian $Oxyz$, vector $\vec{u}(1;-1;2)$ là một vector chỉ phương của đường thẳng nào sau đ							
		` ,	$\int x = 2 + t$	$\int x = 1 - t$				
	A. $\frac{x-1}{x} = \frac{1-y}{x} = \frac{z-1}{x}$	$\frac{-2}{2}$. B. $\frac{x}{z} = \frac{y+1}{z-2} = \frac{z-2}{z-2}$.	$C \downarrow v = -t$	D. $\begin{cases} v = -1 + t \end{cases}$				
	1 –1 2	$\frac{-2}{x} \cdot \mathbf{B} \cdot \frac{x}{1} = \frac{y+1}{-1} = \frac{z-2}{2} \cdot \frac{y+1}{2} = \frac{z-2}{2} = \frac{y+1}{2} =$	z = -1 - 2t	z = 2 + 2t				
Câu 5.	Biết $\log_2 5 = a$. Khi	đó log 5 bằng:						
	A. $\frac{1}{a}$.	B. <i>a</i> +1.	C. $\frac{a}{a+1}$.	D. $\frac{a+1}{a}$.				
Câu 6.	Số nghiêm của phươ	$ng trình \log_2(x+3) = 1 +$	$\log_2(x+1)$ là	•				
	A. 2.	B. 3.	C. 0.	D. 1.				
	2	5 5		27.1.				
Câu 7.	Nêu $\int f(x) dx = -1$	và $\int_{2}^{5} f(x) dx = 3 \text{ thì } \int_{1}^{5} -2$	f(x)dx bằng					
	A_{-2} .	B. −4.	C. 4.	D. 2.				
Câu 8.	Có bao nhiêu cách x	ếp chỗ ngồi cho 4 bạn họ	oc sinh vào dãy có 4 gh					
	A. 24 cách.	B. 4 cách.	C. 8 cách.	D. 12 cách.				
Câu 9.	Diện tích xung quan	n của hình trụ có bán kính		2 <i>a</i> là?				
	A. $6\pi a^2$.	B. $4\sqrt{3}\pi a^2$.	C. $3\pi a^2$.	D. $2\sqrt{3}\pi a^2$.				
Câu 10.	Cho hàm số $y = f(x)$ có bảng biến thiên như sau:							
	x	-∞ -1	0 1	+∞				
	f'(x)	$\frac{-\infty}{}$ $\frac{-1}{0}$ $+$	0 - 0	+				
	- ()	+∞		+∞				
	f(x)		, 2	1				
		1	1					

Số nghiệm thực của phương trình 2f(x)-11=0 là

B. 3.

D. 0.

A. 2.

C. 4.

Class đăng kí khóa học <mark>livestream –</mark> Chinh Phục điểm 8, 9, 10 môn <mark>toán!</mark>

Câu 12. Số điểm cực trị của hàm số $y = x(x^2 - 4)(-x^2 + 3x - 2)$ là

Câu 13. Trong không gian Oxyz, tọa độ tâm của mặt cầu (S): $x^2 + y^2 + z^2 + 8y - 2z + 8 = 0$ là:

A. (-4;0;1).

B. (0;-4;1).

C. (0;4;-1).

Câu 14. Cho khối chóp S.ABC có diện tích đáy bằng $2a^2$, đường cao SH = 3a. Thể tích khối chóp bằng:

 \mathbf{A}, a^3

B. $2a^3$.

C. $3a^3$.

D. $\frac{3a^3}{2}$.

Câu 15. Tập nghiệm của bất phương trình $\log_2 x \le 3$ là:

A. (0;9].

B. (0;8].

Câu 16. Trong không gian Oxyz, đường thẳng $\Delta : \frac{x+1}{3} = \frac{y-3}{-1} = \frac{z}{2}$ đi qua điểm nào dưới đây?

A. P(1;-3;0).

B. M(3;-1;0). **C.** O(3;-1;2).

D. N(-1; 3; 0).

Câu 17. Nếu $\int_{0}^{2} f(x) dx = 2$ thì $\int_{0}^{2} \left[-3f(x) + 2x \right] dx$ bằng

D. −2.

Câu 18. Trên khoảng $(0; +\infty)$, họ nguyên hàm của hàm số $f(x) = 2\sqrt[3]{x}$ là

A. $\int f(x) dx = \frac{2}{2} x \sqrt[3]{x} + C$.

B. $\int f(x) dx = \frac{3}{2} x \sqrt[3]{x^2} + C$.

C. $\int f(x) dx = \frac{3}{2} x \sqrt[3]{x} + C.$

D. $\int f(x) dx = \frac{2}{3} x \sqrt[3]{x^2} + C$.

Câu 19. Tập xác định của hàm số $y = \ln(x-1)^2$ là

A. $D = [1; +\infty)$.

B. $D = \mathbb{R} \setminus \{1\}$.

C. $D = (1; +\infty)$. **D.** $D = \mathbb{R}$.

Câu 20. Trong các hàm số sau, hàm số nào nghịch biến trên \mathbb{R} ?

A. $v = -x^3 - x^2$.

B. $y = \frac{x-1}{x+2}$.

C. $v = 2x^2 + 5$.

D. $y = -x^3 + 3x^2 - 9x + 2$.

Câu 21. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A. (-1;1).

B. (0;2).

C. $(0;+\infty)$.

D. (0;4).

Câu 22. Tiệm cận ngang của đồ thị hàm số $y = \frac{x}{2x^2 - 5}$ là đường thẳng có phương trình

A. $y = -\frac{1}{5}$. **B.** $y = \frac{1}{2}$.

C. y = 0. **D.** y = 2.

ASS ĐĂNG KÍ KHÓA HỌC LIVESTREAM – CHINH PHỤC ĐIỂM 8, 9, 10 MÔN TOÁN!

A.
$$\sqrt{29}$$
.

C.
$$\sqrt{21}$$
.

Câu 24. Trong không gian tọa độ Oxyz, cho hai véc-tơ $\vec{u} = (-1;1;3)$ và $\vec{v} = (-2;1;-3)$. Tính độ dài $|2\vec{u} - 3\vec{v}|$.

A.
$$\sqrt{152}$$

B. $\sqrt{322}$.

C.
$$\sqrt{242}$$
.

Câu 25. Cho hàm số y = f(x) có đồ thị hình vẽ bên. Giá trị cực đại của hàm số đã cho là

B. −1.

C. 0.

D. 2.

Câu 26. Cho hàm số $f(x) = 1 - \sin x$. Khẳng định nào dưới đây đúng?

$$\mathbf{A.} \int f(x) \, \mathrm{d}x = x - \sin x + C.$$

B.
$$\int f(x) dx = x + \cos x + C.$$

C.
$$\int f(x) dx = x - \cos x + C.$$

D.
$$\int f(x) dx = x + \sin x + C.$$

Câu 27. Trên tập số thực \mathbb{R} , đạo hàm của hàm số $y = 3^{x^2 - x}$ là:

A.
$$y' = 3^{x^2 - x - 1}$$
.

B.
$$y' = (2x-1)3^{x^2-x}$$
.

C.
$$y' = (2x-1)3^{x^2-x} \ln 3$$
.

D.
$$y' = (x^2 - x)3^{x^2 - x - 1}$$
.

Câu 28. Có tất cả bao nhiều giá trị nguyên của tham số m thuộc đoạn $\begin{bmatrix} -10;10 \end{bmatrix}$ để hàm số $y = \frac{1}{3}x^3 - 2x^2 + mx - 3$ đồng biến trên (2,6)?

A. 4.

C. 7.

D. 6.

Câu 29. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \frac{2x+1}{x-1}$ trên đoạn [2;4]. Khi đó M-m bằng:

A. 3.

B. 2.

 C_{1} -2.

Câu 30. Cho lăng trụ đều ABC.A'B'C' có cạnh đáy bằng 2a, độ dài cạnh bên bằng $a\sqrt{3}$. Thể tích V của khối lăng tru bằng:

A.
$$V = a^3$$
.

B.
$$V = \frac{3}{4}a^3$$
. **C.** $V = 3a^3$. **D.** $V = \frac{1}{4}a^3$.

C.
$$V = 3a^3$$
.

D.
$$V = \frac{1}{4}a^3$$

Câu 31. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), $SA = a\sqrt{3}$, tam giác ABC đều cạnh có độ dài bằng a. Gọi $\alpha = (AB, (SBC))$, khi đó $\sin \alpha$ bằng:

A..
$$\frac{\sqrt{3}}{5}$$

B. $\frac{\sqrt{15}}{3}$. **C.** $\frac{\sqrt{5}}{3}$. **D.** $\frac{\sqrt{15}}{5}$.

Câu 32. Với mọi a,b thoả mãn $\frac{\log_3 a \cdot \log_2 3}{1 + \log_2 5} + \log b = 1$. Khẳng định nào dưới đây đúng?

A. $a \log_2 5 + b = 1$ **B.** a + b = 1. **C.** $a = 1 - b \log_2 5$. **D.** ab = 10.

Class Đăng kí khóa học <mark>Livestream –</mark> Chinh Phục Điểm <mark>8, 9, 10 môn toán!</mark>

A.
$$\frac{3}{55}$$

B.
$$\frac{1}{22}$$
.

B.
$$\frac{1}{22}$$
. **C.** $\frac{3}{11}$.

$$\frac{1}{110}$$
.

Câu 34. Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(-1;2;1), B(2;-1;3) và C(-2;1;2). Đường thẳng đi qua A đồng thời vuông góc với BC và trục Oy có phương trình là:

A.
$$\begin{cases} x = -1 + t \\ y = 2 \\ z = 1 + 4t \end{cases}$$
B.
$$\begin{cases} x = -1 - t \\ y = 2 \\ z = 1 + 4t \end{cases}$$
C.
$$\begin{cases} x = -1 - t \\ y = 2 \\ z = 1 - 4t \end{cases}$$
D.
$$\begin{cases} x = -1 + t \\ y = 2 \\ z = 1 + 4t \end{cases}$$

B.
$$\begin{cases} x = -1 - t \\ y = 2 \\ z = 1 + 4t \end{cases}$$

C.
$$\begin{cases} x = -1 - t \\ y = 2 \\ z = 1 - 4t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = -1 + t \\ y = 2 \\ z = 1 + 4t \end{cases}$$

Câu 35. Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (α) vuông góc với mặt phẳng (Oxy), đồng thời (α) song song và cách đường thẳng $\Delta : \frac{x+2}{-1} = \frac{y-2}{2} = \frac{z-3}{-3}$ một khoảng bằng $\sqrt{5}$ có phương

A.
$$2x + y + 7 = 0$$
 hoặc $2x + y - 3 = 0$. **B.** $2x - y + 7 = 0$ hoặc $2x - y + 5 = 0$.

B.
$$2x - v + 7 = 0$$
 hoặc $2x - v + 5 = 0$

C.
$$2x + y + 7 = 0$$
 hoặc $2x + y - 5 = 0$

C.
$$2x + y + 7 = 0$$
 hoặc $2x + y - 5 = 0$.
D. $2x + y + 7 = 0$ hoặc $2x - y - 3 = 0$.

Câu 36. Cho hình chóp S.ABCD có $SA \perp (ABCD)$, đáy ABCD là hình chữ nhật. Biết AD = 2a, SA = a. Khoảng cách từ A đến (SCD) bằng:

A.
$$\frac{3a\sqrt{2}}{2}$$

A.
$$\frac{3a\sqrt{2}}{2}$$
. **B.** $\frac{2a\sqrt{3}}{3}$. **C.** $\frac{2a}{\sqrt{5}}$. **D.** $\frac{3a}{\sqrt{7}}$.

C.
$$\frac{2a}{\sqrt{5}}$$
.

D.
$$\frac{3a}{\sqrt{7}}$$

Câu 37. Biết số phức z = -3 + 4i là một nghiệm của phương trình $z^2 + az + b = 0$, trong đó a, b là các số thực. Giá trị của a-b bằng:

Câu 38. Cho $\int_{c}^{1/2} \frac{dx}{x\sqrt{x+4}} = \frac{1}{a} \ln \frac{b}{c}$ với a,b,c là các số nguyên dương. Khẳng định nào dưới đây đúng?

A.
$$a = b - c$$
.

B.
$$b = c - a$$
.

C.
$$c = a - b$$
.

D.
$$b = 2c$$
.

Câu 39. Cho hình chóp S.ABCD có cạnh bên SB vuông góc với mặt đáy và ABCD là hình chữ nhật. Biết SB = 2a, AB = 3a, BC = 4a và gọi α là góc giữa mặt phẳng (SAC) và mặt đáy. Giá trị $\tan \alpha$ bằng

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{3}$$

B.
$$\frac{4}{3}$$
. **C.** $\frac{5}{6}$. **D.** $\frac{6}{5}$.

D.
$$\frac{6}{5}$$

Câu 40. Có bao nhiều giá trị thực của m để phương trình $4z^2 + 4(m-1)z + m^2 - 3m = 0$ có hai nghiệm z_1, z_2 thỏa mãn $|z_1| + |z_2| = 2$?

Câu 41. Cho z_1, z_2 thỏa mãn $|z_1| = 2$, $|z_2| = 3$ và $z_1 \cdot \overline{z_2}$ là số thuần ảo. Giá trị lớn nhất của $P = |4z_1 - 3z_2 + 1 - 2i|$ **A.** $\sqrt{65} + \sqrt{5}$. **B.** $\sqrt{145} + \sqrt{5}$. **C.** $15 + \sqrt{5}$. **D.** $5 + \sqrt{5}$.

A.
$$\sqrt{65} + \sqrt{5}$$

B.
$$\sqrt{145} + \sqrt{5}$$

C.
$$15 + \sqrt{5}$$

D.
$$5 + \sqrt{5}$$
.

Class đẳng kí khóa học Livestream – Chinh Phục điểm 8, 9, 10 môn toán!

A.
$$\frac{15}{4}$$
.

B.
$$\frac{17}{4}$$
.

B.
$$\frac{17}{4}$$
. **C.** $\frac{15}{2}$.

D.
$$\frac{17}{2}$$
.

Câu 43. Cho phương trình $\log_2^2 x - (m^2 - 2m) \log_2 x + m + 3 = 0$ (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x_1, x_2 thỏa mãn $x_1.x_2 = 8$. Tổng các phần tử của S là:

Cho hai hàm số $f(x) = ax^3 - 3x^2 + bx + 1 - 2d$ và $g(x) = cx^2 - 2x + d$ có bảng biến thiên như sau:

x	$-\infty$		α		β		$+\infty$
<i>y'</i>		+	0	_	0	+	
g(x)	+∞	\	0	_4		<i></i>	+∞
f(x)			<i>y</i>				+∞

Biết rằng đồ thị hai hàm số đã cho cắt nhau tại ba điểm phân biệt có hoành độ x_1, x_2, x_3 thỏa mãn $x_1^2 + x_2^2 + x_3^2 = 30$. Diên tích hình phẳng các đường y = f(x), y = g(x), x = -3, x = 6 bằng:

A.
$$\frac{2113}{12}$$
.

B.
$$\frac{1123}{12}$$
.

C.
$$\frac{1231}{12}$$
.

B.
$$\frac{1123}{12}$$
. **C.** $\frac{1231}{12}$. **D.** $\frac{1321}{12}$.

Câu 45. Cho hàm số $f(x) = x^3 - 3x^2 + 1$, gọi S là tập tất cả các giá trị nguyên của tham số m để phương trình $\left[f(x)\right]^2 - (2m+4)f(x) + m(m+4) = 0 \text{ có đúng 4 nghiệm phân biệt. Tổng các phần tử của } S \text{ bằng}$ **C.** -18.

Câu 46. Có bao nhiều cặp số nguyên dương (x, y) thỏa mãn $\log_7 \left(\frac{2x^3 - 3x^2 + 1}{6xv + 1 + 2x + 3v} \right) = 14x + 3y - 7(x^2 + 1)$ đồng thời 1 < x < 2022

A. 1347.

B.1348.

C. 674.

Câu 47. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{1} = \frac{y}{2} = \frac{z-2}{1}$ và mặt phẳng (P): x-2y-2z-7=0 và điểm A(1;1;3). Đường thẳng Δ đi qua A cắt d và mặt phẳng (P) lần lượt tại M và N sao cho M là trung điểm của AN, biết rằng Δ có một vecto chỉ phương $\vec{u} = (a;b;6)$. Khi đó giá trị của T = 14a - 5b bằng:

A. T = 63.

B. T = 81.

C. T = 72. **D.** T = -81.

A.
$$T = -46$$
. **B.** $T = -124$. **C.** $T = 46$. **D.** $T = 124$.

Câu 49. Cho khối nón đỉnh S có đường cao bằng 3a. SA,SB là hai đường sinh của khối nón. Khoảng cách từ tâm đường tròn đáy đến mặt phẳng (SAB) bằng a và diện tích tam giác SAB bằng $3a^2$. Tính thể tích khối nón.

A.
$$\frac{145\pi a^3}{48}$$
. **B.** $\frac{145\pi a^3}{72}$. **C.** $\frac{145\pi a^3}{54}$. **D.** $\frac{145\pi a^3}{36}$.

Câu 50. Cho hàm số y = f(x) có bảng biến thiên của hàm số g(x) = f(x-1) + 2 như sau:

\boldsymbol{x}	$-\infty$	1		3		$+\infty$
g'(x)	-	- 0	+	0	_	
g(x)	+∞	0		4		<u>_</u>

Giá trị lớn nhất của hàm số $y = f(-|\sqrt{3}\sin x - \cos x| + 2) + 2\cos 2x + 4\sin x - 1$ là:

- **A.** −9.
- **B.** -2.
- **C.** 2.
- **D.** 4.