MODEL CATEGORIES

Talk by Xiyuan Wang

References: Dwyer and Spalinski: Homotopy theories and model categories

1. MOTIVATION

Category of topological space : Top_*

In this we have three kinds of morphisms: weak equivalence eg. homotopy equivalence, fibrations, cofibrations

Weak equivalence is not an isomorphism in Top_* , so we want to create a category in which the weak equivalences would be isomorphisms. So we want to formally invert the weak equivalences and create a Homotopy category.

2. Model categories

Definition 2.1. $X \in ob(\mathcal{C})$ is a retract of $Y \in ob(\mathcal{C})$ if

$$\exists i: X \to Y \text{ and } r: Y \to X$$

such that $r \circ i = 1_X$.

Ex: Consider the category $\mathcal{D} = \{ \circ \to \circ \}$. Then the category of functors from \mathcal{D} to \mathcal{C} is the category of morphisms $Mor(\mathcal{C})$, denote this by $\mathcal{C}^{\mathcal{D}}$. We are interested in the retracts in this category,

Definition 2.2. A model category is a category \mathcal{C} with 3 classes of maps

- $\stackrel{\sim}{\longrightarrow}$ weak equivalences
- $\bullet \rightarrow$ fibrations
- $\bullet \hookrightarrow \text{cofibrations}$

closed under cofibrations and contains 1. And satisfying the axioms

- (bicomplete) finite limits and colimits exist
- (2 out of 3) for morphisms f, g, fg if two of these are weak equivalences then so is the third
- (closed under retract)
- (Lifting property)

• (Factorization) Every morphism can be factored as a composition of a cofibration followed by a fibration. And one can further force either of the maps to be weak equivalences. (Factorization is not functorial.)

Definition 2.3. For ϕ initial object and * the final object, if $\phi \hookrightarrow A$ is a cofibration then A is called a cofibrant object. If $B \to *$ is a fibration then B is a fibrant object.

Proposition 2.4. C is model category in which all objects are fibrant. Given a cofibrant object A. If there exists

$$A \xrightarrow{\sim} \xleftarrow{\sim} \cdots \xrightarrow{\sim} \xleftarrow{\sim} B$$

then $A \xrightarrow{\sim} B$.

Proof. It suffices to show this for the case $A \xrightarrow{\sim} \circ \xleftarrow{\sim} B$. In this we have the diagram

$$\phi \longrightarrow B$$
acyclic fibration

and by the Lifting property axiom the diagonal map exists.

3. Homotopies

Definition 3.1. A cylinder object for A is an object $A \wedge I$ together with a diagram

$$A \coprod A \xrightarrow{i} A \wedge I \xrightarrow{\sim} A$$

which factors the map $1_A + 1_A : A \coprod A \to A$.

Two maps $f,g:A\to X$ are said to be *left homotopic* $f\sim^l g$ if there exists a cylinder object $A\wedge I$ such that the map $f+g:A\coprod A\to X$ extends to a map $H:A\wedge I\to X$.

Definition 3.2. A path object for X is an object X^I along with a diagram

$$X \xrightarrow{\sim} X^I \to X \times X$$

which factors the diagonal map $X \to X \times X$.

Two maps $f,g:A\to X$ are said to be *left homotopic* $f\sim^r g$ if there exists a cylinder object $A\wedge I$ such that the map $f\times g:A\to X\times X$ factors through a map $H:A\to X^I$.

Proposition 3.3. If A is cofibrant then \sim^l is an equivalence relation on $\hom(A, X)$ and the equivalence classes are denoted by $\pi^l(A, X)$. If X is fibrant then \sim^r is an equivalence relation on $\hom(A, X)$ and the equivalence classes are denoted by $\pi^r(A, X)$. If A is cofibrant and X is fibrant then the two equivalence relations agree and the equivalence classes are simply denoted by $\pi(A, X)$.

4. Homotopy category

 \mathcal{C} model category and S the set of weak equivalences, the localized category $Ho(\mathcal{C}) := \mathcal{C}[S^{-1}]$ is called the homotopy category.

We have a natural functor $\gamma: \mathcal{C} \to Ho(\mathcal{C})$. (In general creating a homotopy category without a model category leads to set theory problems)

Definition 4.1. For any map $\phi \to A$ factor it via $\phi \hookrightarrow QA \twoheadrightarrow A$ such that the fibration is a weak equivalence then QA is called a cofibrant replacement. Similarly a fibrant replacement RA.

Proposition 4.2.

$$hom_{Ho(\mathcal{C})}(X,Y) = \pi(PQX, PQY)$$

5. Examples

5.1. Constructing a model category from a model category. Given that $\mathcal C$ is model category

- C^{op} has a natural model structure
- For $a \in ob(\mathcal{C})$ the $a \to \mathcal{C}$ has a natural model structure structure.
- If \mathcal{D} is a "very small" category then $\mathcal{C}^{\mathcal{D}}$ has as natural model structure. This allows to define homotopy limits and colimits.

5.2. From geometry: Spaces, spectra, simplicial sets,

- Top_*
 - $\stackrel{\circ_{P*}}{-} \xrightarrow{\sim}$ weak homotopy equivalence
 - \hookrightarrow is a 'retract' of inclusion of a subcomplex inside a CW complex.
 - \rightarrow Serre fibration
 - Fibrant object: every topological object is fibrant
 - Cofibrant object: hard to describe, but every CW complex is a cofibrant object
 - Homotopy category: classical homotopy category
- Top_*
 - $-\stackrel{\sim}{\longrightarrow}$ homotopy equivalence
 - \hookrightarrow closed Hurewicz cofibration
 - \rightarrow Serre fibration
 - Homotopy category: classical homotopy category
- Simplicial sets
 - $\begin{array}{c}
 \xrightarrow{\sim} ?? \\
 \hookrightarrow ??
 \end{array}$

 - $\rightarrow ??$

5.3. From algebra: CDGM, DGA.

- $(Ch_R)_{\geq 0}$
 - $-\stackrel{\sim}{\longrightarrow}$ quasi isomorphisms
 - \hookrightarrow , for $f: M \to N$ and $k \ge 0$ we want $f_k: M_k \to N_k$ to be injective with a projective cokernel.
 - \Rightarrow for $f: M \to N$ and k > 0 we want $f_k: M_k \to N_k$ is surjective.
 - Fibrant object: every topological object is fibrant
 - Cofibrant object: projective resolutions
 - Cofibrant replacement is a projective resolution
 - Homotopy category: is the Derived category

Proposition 5.1.

$$\hom_{Ho(Ch_{\mathbb{R}})}(K(A,m),K(B,n)) \cong Ext_R^{n-m}(A,B)$$

Proof.

6. Quillen equivalence

Given a model category \mathcal{C} and a functor $F: \mathcal{C} \to \mathcal{D}$.

Definition 6.1. Consider pairs (G, s) consisting of a functor $G: Ho(\mathcal{C}) \to \mathcal{D}$ and a natural transformation $s: G\gamma \to F$. A left derived functor is a pair (LF, t) of this type which is universal from the left, that is for any other pair (G, s) there exists a unique natural transformation $s': G \to LF$ such that the composite natural transformation

$$G\gamma \xrightarrow{s'\circ\gamma} (LF)\gamma \xrightarrow{t} F$$

is the natural transformation s.

One can similarly define a right derived functor.

Definition 6.2. Given a functor $F: \mathcal{C} \to \mathcal{D}$ between two model categories a *total left derived functor* is a functor

$$LF: Ho(\mathcal{C}) \to Ho(\mathcal{D})$$

which is a left derived functor of the composition $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{\gamma} Ho(\mathcal{D})$. A right derived functor of the same is called a *total right derived functor*.

Theorem 6.3. If $F: \mathcal{C} \leftrightarrow \mathcal{D}: G$ are a pair of adjoint functors such that F preserves cofibrations and G preserves fibrations then the total derived functors exist and form an adjoint pair,

$$LF: Ho(\mathcal{C}) \leftrightarrow Ho(\mathcal{D}): RG$$

If in addition, for each cofibrant object A of C and fibrant object X of D, a map $f: A \to G(X)$ is a weak equivalence in C if and only if its adjoint $f^{\flat}: F(A) \to X$ is a weak equivalence in D, then $\mathbf{L}F$ and $\mathbf{R}G$ are inverse equivalences of categories.