МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИЕТ ИМЕНИ П. О. СУХОГО

Кафедра «Электроснабжение»

Отчет по лабораторной работе №9

по дисциплине: «Электроника и информационно-измерительная техника» по теме: «Измерительные преобразователи с телеметрическим выходом»

Выполнил: студент гр. ЭН-21

Дубоделов А.С.

Принял: доцент

Зализный Д.И.

Цель работы: изучить принципы функционирования, основные характеристики и особенности применения измерительных преобразователей с телеметрическим выходом.

Исследование работы преобразователя Е828Н3

1. Номинальные параметры преобразователя Е828Н3:

Тип	Измеряемые величины	Y	Y _{макс}	$Y_{\text{мин}}$	I _{вых.макс}	I _{вых.мин}
E828H3	U	Частота	51 Гц	49 Гц	5 мА	0 мА

2. Автоматический выключатель и тумблер питания МЭ-01 в положении «Откл.». Регуляторы тока в положении «Минимум»

Рисунок 1 - Схема подключения E828H3 на линейное напряжение U_{ab}

3. Переключатель «Измерение телеметрического сигнала» в положение ИП1. Регулятор ЛАТРа в положение «Минимум». Преподаватель подал питание на стенд. Включение тумблера «Питание МЭ-01», дисплей прибора МЭ-01 включился. Включение автоматического выключателя стенда.

Регулятор ЛАТРа в положение «Максимум». С экрана МЭ-01 записаны в таблицу 1 необходимые фазные напряжения и частоты. Записаны в таблицу 1 показание милли-амперметра. Питание стенда и МЭ-01 отключено, схема разобрана.

Таблица 1

$oldsymbol{U}_{ ext{A}}$, $ ext{B}$	$oldsymbol{U_C}$, $oldsymbol{ ext{B}}$	$m{f}$, Γ ц	$I_{ m\scriptscriptstyle Bbix}^{ m\scriptscriptstyle H3M}$, м ${ m A}$	$m{I}_{ ext{вых}}^{ ext{расч}}$, м A	γ,%
57	52	50	2,4	2,5	4

4. Расчёт линейного напряжения с учётом коэффициента трансформации $k_{\mbox{\tiny TH}}=100$:

$$U_{AC} = \sqrt{U_B^2 + U_C^2 + U_B \cdot U_C} \cdot k = \sqrt{57^2 + 52^2 + 57 \cdot 52} \cdot 100 = 9442.9 \text{ B}$$

5. Расчёт значения $a_{\text{ном}}$ и тока смещения I_0 :

$$a_{\text{hom}} = \frac{I_{\text{вых.макс}} - I_{\text{вых.мин}}}{Y_{\text{макс}} - Y_{\text{мин}}} = \frac{5 - 0}{51 - 49} = 2.5$$

$$I_0 = I_{\text{вых.мин}} - a_{\text{ном}} \cdot Y_{\text{мин}} = 0 - 2.5 \cdot 49 = -122.5 \text{ MA}$$

6. Расчёт $I_{\text{вых}}^{\text{расч}}$ для $Y = f = 50 \; \Gamma \text{ц}$:

$$I_{\scriptscriptstyle
m BMX}^{
m pacq} = a_{\scriptscriptstyle
m HOM} \cdot Y + I_0 = 2.5 \cdot 50 - 122.5 = 2.5 \,{\rm mA}$$

7. Расчёт относительной погрешности:

$$\gamma = \frac{\left|I_{\text{BMX}}^{\text{M3M}} - I_{\text{BMX}}^{\text{pac4}}\right|}{I_{\text{BMX}}^{\text{pac4}}} \cdot 100\% = \frac{|2,4-2,5|}{2,5} \cdot 100\% = 4\%$$

Вывод: относительная погрешность получилась 4%, а заявленный класс точности 0,2 %, исходя из этого делаем вывод о непригодности к эксплуатации измерительного преобразователя, так как относительная погрешность превышает класс точности более чем в 2 раза.

Исследование работы преобразователя Е848НП

1. Номинальные параметры преобразователя Е848НП:

Тип	Измеряемые величины	Y	$Y_{ m\scriptscriptstyle Makc}$	$Y_{\text{мин}}$	I вых.макс	$I_{\scriptscriptstyle m BЫX.MИH}$
Е848НП	U_A , U_B , U_C , I_A , I_B , I_C	Активная мощность	$\frac{3 \cdot U_H \cdot I_H}{\sqrt{3}}$, BT	0 Вт	5 mA	0 мА

Рисунок 2 - Схема подключения Е848НП

2. Переключатель «Измерение телеметрического сигнала» в положение ИП2. Включение питания стенда и прибора МЭ-01. Установка ЛАТРом напряжения, заданного преподавателем. Регуляторы тока на максимум. В таблицу 2 занесены показания МЭ-01 и миллиамперметра при снижении в произвольном порядке токов. Питание стенда и МЭ-01 отключено, схема разобрана.

Таблица 2

$oldsymbol{U_A}$, B	$oldsymbol{U_B}$, $oldsymbol{B}$	$oldsymbol{U_{oldsymbol{\mathcal{C}}}}$, B	I_A , A	I_B , A	$I_{\mathcal{C}}$, A	$\cos \varphi_1$	$\cos \varphi_2$	$\cos \varphi_3$	$I_{ m\scriptscriptstyle BMX}^{ m\scriptscriptstyle M3M}$, м ${ m A}$
57	56	52	1,73	0,645	1,26	1	0,98	0,67	0,9
57	56	52	1,62	0,76	1,62	1	0,99	0,66	1
57	56	52	1,78	0,99	1,78	1	0,98	0,7	1,2
57	56	52	1,91	1,18	1,88	1	0,97	0,72	1,3
57	56	52	2	1,3	2,5	1	0,99	0,78	1,5
57	56	52	2,1	1,5	2,68	1	0,98	0,8	1,6
57	56	52	2,29	2,17	3,16	1	0,99	0,85	2

3. Расчёт значения Y_{Makc} , $U_H=100~\mathrm{B}$, $I_H=5~\mathrm{A}$:

$$Y_{\text{Makc}} = \frac{3 \cdot U_H \cdot I_H}{\sqrt{3}} = \frac{3 \cdot 100 \cdot 5}{\sqrt{3}} = 866 \text{ BT}$$

4. Расчёт значения $a_{\text{ном}}$:

$$a_{\text{HOM}} = \frac{I_{\text{BЫX.MAKC}} - I_{\text{BЫX.MИН}}}{Y_{\text{MAKC}} - Y_{\text{MИH}}} = \frac{5 - 0}{866 - 0} = 0.005774$$

5. Пример расчёта значений активной мощности. Рассчитанные значения заносим в таблицу 3:

$$P = U_{A} \cdot I_{A} \cdot \cos \varphi_{1} + U_{B} \cdot I_{B} \cdot \cos \varphi_{2} + U_{C} \cdot I_{C} \cdot \cos \varphi_{3} =$$

$$= 57 \cdot 2,29 \cdot 1 + 56 \cdot 2,17 \cdot 0,99 + 52 \cdot 3,16 \cdot 0,85 = 390,5 \text{ BT}$$

Таблица 3

P, BT	І _{вых} , мА	I ^{изм} , мА	γ,%
177,9	1,02	0,9	11,76
190,07	1,09	1	9
220,58	1,27	1,2	5,51
243,35	1,4	1,3	7,14
287,47	1,66	1,5	9,64
313,5	1,81	1,6	11,6
390,5	2,25	2	11,11

6. Пример расчёта $I_{\scriptscriptstyle \mathrm{BMX}}^{\mathrm{pacч}}$ для Y=P :

$$I_{\text{RMX}}^{\text{pact}} = a_{\text{HOM}} \cdot Y = 0.005774 \cdot 390,5 = 2,25 \text{ MA}$$

7. Пример расчёта относительной погрешности:

$$\gamma = \frac{\left|I_{\text{BMX}}^{\text{M3M}} - I_{\text{BMX}}^{\text{pac4}}\right|}{I_{\text{DMY}}^{\text{pac4}}} \cdot 100\% = \frac{|2 - 2.25|}{2.25} \cdot 100\% = 11.11\%$$

Вывод: максимальное значение относительной погрешность равно 11,76%, а заявленный класс точности 0,2 %, из чего делаем вывод о непригодности к эксплуатации измерительного преобразователя, так как значение относительной погрешности превышает класс точности более чем в 2 раза.

Исследование работы преобразователя Е855/1

1. Номинальные параметры преобразователя Е855/1:

Тип	Измеряемые величины	Y	Y _{makc}	У _{мин}	I вых.макс	$I_{\scriptscriptstyle m BЫX.MИH}$
E855/1	U	Напряжение	125 B	0 B	5 mA	0 мА

2. Автоматический выключатель и тумблер питания МЭ-01 в положении «Откл.». Регуляторы тока в положении «Минимум»

Рисунок 3 - Схема подключения E855/1

3. Переключатель «Измерение телеметрического сигнала» в положение ИП4. Включение питания стенда и прибора МЭ-01. Установка ЛАТРом максимального напряжения. Регуляторы тока на максимум. В таблицу 4 занесены значения напряжения прибора МЭ-01 и показания миллиамперметра в режиме измерения сигнала с ИП4 при снижении напряжения. Питание стенда и МЭ-01 отключено, схема разобрана.

Таблица 4

$oldsymbol{U}_{ ext{HH}oldsymbol{A}}$, $ ext{B}$	$oldsymbol{U}_{\mathtt{HH}\mathtt{C}}$, \mathtt{B}	$oldsymbol{U}_{ ext{HH}oldsymbol{A} ext{C}}$, $ ext{B}$	$oldsymbol{U}_{ ext{BH} extit{AC}}$, $ ext{B}$	$m{I}_{ ext{вых}}^{ ext{расч}}$, м $ ext{A}$	$I_{\scriptscriptstyle m BMX}^{\scriptscriptstyle m M3M}$, м ${ m A}$	γ,%
57	52	94,429	9442,9	3,77	3,7	1,86
54	50	90,088	9008,8	3,6	3,4	5,56
49	46	82,286	8228,6	3,29	3	0,3
46	42	76,236	7623,6	3,04	2.9	4,61

42	39	70,164	7016,4	2,8	2.6	7,14
39	36	64,969	6496,9	2,59	2.5	3,47
35	33	58,898	5889,8	2,35	2.2	6,38

4. Расчёт линейного напряжения с учётом коэффициента трансформации k=100:

$$U_{\text{HH }AC} = \sqrt{{U_A}^2 + {U_B}^2 + {U_A} \cdot {U_B}} = \sqrt{35^2 + 33^2 + 35 \cdot 33} = 58,898 \text{ B}$$

$$U_{\text{BH }AC} = U_{\text{HH }AC} \cdot k = 58,898 \cdot 100 = 5889,8 \text{ B}$$

5. Расчёт значения $Y_{\text{макс}}$ с учётом коэффициента трансформации измерительного трансформатора напряжения.

$$Y_{\text{MAKC, BH}} = Y_{\text{MAKC}} \cdot k = 125 \cdot 100 = 12500 \text{ B}$$

6. Расчёт значения $a_{\text{ном}}$:

$$a_{\text{HOM}} = \frac{I_{\text{BЫX.MAKC}} - I_{\text{BЫX.MИH}}}{Y_{\text{MAKC}} - Y_{\text{MUH}}} = \frac{5 - 0}{125 - 0} = 0.04$$

7. Пример расчёта $I_{\text{вых}}^{\text{расч}}$ для $Y = U_{\text{нн }AB}$:

$$I_{\scriptscriptstyle
m BMX}^{
m pacq} = a_{\scriptscriptstyle
m HOM} \cdot Y = 0$$
,04 · 58,898 $= 2$,35 мА

8. Пример расчёта относительной погрешности:

$$\gamma = \frac{\left|I_{\text{BMX}}^{\text{M3M}} - I_{\text{BMX}}^{\text{pac4}}\right|}{I_{\text{BMX}}^{\text{pac4}}} \cdot 100\% = \frac{|2,2-2,35|}{2,35} \cdot 100\% = 6,38\%$$

Вывод: сравнив максимальное значение относительной погрешность 7,14% с заявленным классом точности 0,5 %, делаем вывод о непригодности к эксплуатации измерительного преобразователя, так как значение относительной погрешности превышает класс точности более чем в 2 раза.

Исследование работы преобразователя Е842

1. Номинальные параметры преобразователя Е842:

Тип	Измеряемые величины	Y	Y _{makc}	$Y_{\text{мин}}$	I вых.макс	$I_{\scriptscriptstyle m BЫX.MUH}$
E842	I	Ток	5 A	0 A	5 мА	0 мА

2. Автоматический выключатель и тумблер питания МЭ-01 в положении «Откл.». Регуляторы тока в положении «Минимум»

Рисунок 4 - Схема подключения Е842

3. Переключатель «Измерение телеметрического сигнала» в положение ИП5. Включение питания стенда и прибора МЭ-01. Установка ЛАТРом максимального напряжения. Регуляторы тока на максимум. В таблицу 5 занесены значения тока фазы «А» с прибора МЭ-01 и показания миллиамперметра в режиме измерения сигнала с ИП5 при снижении тока. Питание стенда и МЭ-01 отключено, схема разобрана.

$I_{\scriptscriptstyle \mathrm{BX}}$, A	$m{I}_{ ext{вых}}^{ ext{расч}}$, м $ ext{A}$	$I_{\scriptscriptstyle m BMX}^{\scriptscriptstyle m M3M}$, м ${ m A}$	γ,%
2,8	2,8	2,5	10,71
2,48	2,48	2,2	11,29
2,3	2,3	2	13,04
2,01	2,01	1,8	10,45
1,77	1,77	1,5	15,25
1,58	1,58	1,4	11,39
1,49	1,49	1,35	9,4

4. Расчёт значения $Y_{\text{макс}}$ с учётом коэффициента трансформации измерительного трансформатора тока.

$$Y_{\text{Makc. BH}} = Y_{\text{Makc}} \cdot k_{\text{TT}} = 5 \cdot 100 = 500 \text{ A}$$

5. Расчёт значения $a_{\text{ном}}$:

$$a_{\text{HOM}} = \frac{I_{\text{BЫX.MAKC}} - I_{\text{BЫX.МИН}}}{Y_{\text{MAKC}} - Y_{\text{MUH}}} = \frac{5 - 0}{5 - 0} = 1$$

6. Пример расчёта $I_{\scriptscriptstyle \mathrm{BMX}}^{\mathrm{pacч}}$ для $Y=I_{\scriptscriptstyle \mathrm{HH}}$:

$$I_{\scriptscriptstyle
m BMX}^{
m pacq} = a_{\scriptscriptstyle
m HOM} \cdot Y = 1 \cdot 2,69 = 1,49 \ {
m мA}$$

7. Пример расчёта относительной погрешности:

$$\gamma = \frac{\left|I_{\text{BMX}}^{\text{M3M}} - I_{\text{BMX}}^{\text{pac4}}\right|}{I_{\text{BMX}}^{\text{pac4}}} \cdot 100\% = \frac{|2,38 - 2,69|}{2,69} \cdot 100\% = 9,4\%$$

Вывод: максимальное значение относительной погрешности составило 15,25%, а заявленный класс точности 1 %, делаем вывод о непригодности к эксплуатации измерительного преобразователя, так как значение относительной погрешности превышает класс точности более чем в 2 раза.