Deeds:

E-Learning Environment for Digital Design

Deeds is the acronym of

Digital Electronics Education and Design Suite

What is **Deeds**?

- Deeds is a set of educational tools for Digital Electronics, characterised by a "learn-by-doing" approach.
- Deeds covers the following areas:
 - combinational and sequential logic
 - finite state machines
 - microcomputers

What is **Deeds**?

- Deeds includes three design tools:
 - Deeds-DcS (Digital Circuit Simulator)
 - Deeds-FsM (Finite State Machine Simulator)
 - Deeds-McE (Micro Computer Emulator)

What is **Deeds**?

- Deeds tools are available to the community of Digital Design teachers and students.
- Deeds learning materials can be shared within the community.
- Deeds website

Deeds website

Digital Electronics Deeds

HOME

DEEDS SIMULATOR

LEARNING MATERIALS

BOOKS

Home

Deeds Simulator

Downloads

Version Notes

Learning Materials

Discussion Group

Books & Digital Contents

Welcome to Digital Electronics Deeds

(by Giuliano Donzellini)

In this web site you'll find *digital circuits*, *ideas*, *projects*, *tools for simulation* and *testing on FPGA*, and more. A complete learning path to understanding and designing digital systems, supported step-by-step by <u>Deeds simulator</u>. We tried to do our best but... is up to you to judge if our "deeds" (literal meaning of the word!) are good or bad...

News

New Deeds version published (2.50.200)

The new version introduces the *Digital Storage*Oscilloscope (DSO) (associated with the virtual
DAC component) and the new *Attenuator*components... (read more)

Introduction to Microprocessor-based Systems Design

Ideas & Projects

Synchronous Serial Transmitter (4 bits)

In this example, we'll design a simplified 4-bits synchronous serial transmitter... (<u>read more</u>)

Synchronous Serial Receiver (4 bits)

Let's design a 4-bits synchronous serial receiver. The unit will receive serial sequences on... (read more)

Synchronous Serial Communication System (4 bits)

In this example, starting from the

What **Deeds** includes? (1)

- The Main Program and the Official Deeds website, to navigate among lessons, exercises and laboratory assignements
- A Digital Circuit Simulator, that includes:
 - A schematic Editor
 - An interactive circuit Animator
 - An interactive Timing Simulator

What **Deeds** includes? (2)

- A Finite State Machine designer
- A Microcomputer Board Emulator (include a code editor, an assembler and an interactive debugger)
- A Student Report Builder

Interaction among the tools

- The Main Program and the Official Deeds website can launch the other tools
- The web browsers interact with editors and simulators, providing a true interaction between internet content and experiments
- Simulators interact with each other

Deeds as Learning Environment

- A collection of tools and text material that help students acquiring:
 - Theoretical foundations of the subject
 - Analysis capabilities
 - Ability to solve problems
 - Practical synthesis and design skills

Deeds - The online Learning Materials

- The page showing an index with aside a lab exercises
- All text and objects in the page can be Active.
- By clicking on the schematics, the circuit shown will be loaded in the Digital Circuit Simulator, ready to be tested or modified

Deeds - The d-DcS Digital Circuit Simulator

- The basic operations of professional tools have been adapted to the educational needs
- The components available on the bin are simple to understand
- We avoided complex real components, that could confuse the beginner
- Two simulation mode are available:
 - a) Interactive Animation
 - b) Timing diagram

Deeds - The d-DcS Timing Simulator

_ | _ | × |

📆 Digital Circuit Simulator - [analisi.pbs]

- Timing simulation can be executed in various operation modes
- Clock and input signals can be easily edited
- Timing simulation can be interactive, for the beginners, with a event-by-event approach, or can be launched defining a time interval, as in professional tools

Demo: XOR circuit

Exercise: Create this circuit

Exercise:

Verify your circuit with this Truth Table

TABLE 5-4				
Inputs			Output	
\boldsymbol{A}	В	<i>C</i>	X	Product Term
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	$\overline{A}BC$
1	0	0	0	
1	0	1	1	$A\overline{B}C$ $AB\overline{C}$
1	1	0	1	$AB\overline{C}$
1	1	1	0	