# ECE 284: Low Power VLSI for ML Final Project : Systolic Array Implementation

Naman Sehgal and Pranav Gangwar

Group Name : Bubble

## Pytorch Implementation

```
(27): QuantConv2d(
  8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
  (weight_quant): weight_quantize_fn()
)
(28): ReLU(inplace=True)
(29): QuantConv2d(
```

#### Print of Modified Model



#### Activation(pre-padding)

- ni=nj=4
- Input Ch=8

#### Kernel

- ki=kj=3
- Input Ch=8
- Output Ch = 8

#### Output

- ni=nj=4
- Output Ch=8

## **Design Parameters**

nij<sub>in</sub>=6x6 (Input padded with zeros to make it 6x6 from 4x4)



Padded Input nij

# **Convolution Recap**

### Input Features 6x6 (with padding)

| _ |    |    |    |    |    |    |
|---|----|----|----|----|----|----|
|   | 0  | 1  | 2  | 3  | 4  | 5  |
|   | 6  | 7  | 8  | 9  | 10 | 11 |
|   | 12 | 13 | 14 | 15 | 16 | 17 |
|   | 18 | 19 | 20 | 21 | 22 | 23 |
|   | 24 | 25 | 26 | 27 | 28 | 29 |
|   | 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |
| 6 | 7 | 8 |  |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |
| 6 | 7 | 8 |  |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |
| 6 | 7 | 8 |  |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 24 | 25 | 20 | 21 | 20 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

### Input Features 6x6 (with padding)

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

### Conv 3x3 Kernel

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |
| 6 | 7 | 8 |

| 0  | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 |

## Input features utilisation mapped to Kernel Elements



### Alpha 1 (Sieving): Input features utilisation mapped to Kernel Elements



### Modifying the Input features sent to L0

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
|    |    |    |    |    |    |

| 0  |    |    | 3  | _  | )  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

#### Conv 3x3 Kernel



```
for (kij=0; kij<9; kij++)
    for (nij=0; nij <16; nij++)
        nij_prime = int(nij/4)*6 + nij%4;
        kij_prime = int(kij/3)*6 + kij%3;
        data_L0 = x_in[ kij_prime + nij_prime];

for (kij=0; kij<9; kij++)
    for (nij=0; nij <16; nij++)
        nij_prime = int(nij/4)*6 + nij%4;
        kij_prime = int(kij/3)*6 + kij%3;
        data_L0 = x_in[ kij_prime + nij_prime];</pre>
```

## Alpha 1 (Sieving): Generated Psums and their indexing





| 33 | 34       | 35             |
|----|----------|----------------|
| 37 | 38       | 39             |
| 41 | 42       | 43             |
| 45 | 46       | 47             |
|    | 37<br>41 | 37 38<br>41 42 |



| 64 | 65 | 66 | 67 |
|----|----|----|----|
| 68 | 69 | 70 | 71 |
| 72 | 73 | 74 | 75 |
| 76 | 77 | 78 | 79 |

| 80 | 81 | 82 | 83 |
|----|----|----|----|
| 84 | 85 | 86 | 87 |
| 88 | 89 | 90 | 91 |
| 92 | 93 | 94 | 95 |
| 92 | 93 | 94 | 9  |

| 96  | 97  | 98  | 99  |
|-----|-----|-----|-----|
| 100 | 101 | 102 | 103 |
| 104 | 105 | 106 | 107 |
| 108 | 109 | 110 | 111 |



| 128 | 129 | 130 | 131 |
|-----|-----|-----|-----|
| 132 | 133 | 134 | 135 |
| 136 | 137 | 138 | 139 |
| 140 | 141 | 142 | 143 |

#### Benefit of the Idea

- Lesser computations in Systolic Array
- Lesser memory required to store the Psums

There will be lower latency and lower energy usage due to both

|                                   | Computations in systolic array | Memory<br>Required |
|-----------------------------------|--------------------------------|--------------------|
| Vanilla                           | 324                            | 324 words          |
| Alpha 1:<br>Sieving the<br>inputs | 144                            | 144 words          |

# Alpha 2

| 0  | ) 1 | 2  | 3  |
|----|-----|----|----|
| 4  | 5   | 6  | 7  |
| 8  | 9   | 10 | 11 |
| 12 | 13  | 14 | 15 |

| 16 | 17 | 18 | 19 |
|----|----|----|----|
| 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |

| 32 | 33 | 34 | 35 |
|----|----|----|----|
| 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 |
| 44 | 45 | 46 | 47 |

| For | Nijout | = | 0 |
|-----|--------|---|---|
|-----|--------|---|---|

| 48 | 49 | 50 | 51 |
|----|----|----|----|
| 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 |
| 60 | 61 | 62 | 63 |

| 64 | 65 | 66 | 67 |
|----|----|----|----|
| 68 | 69 | 70 | 71 |
| 72 | 73 | 74 | 75 |
| 76 | 77 | 78 | 79 |

| 80 | 81 | 82 | 83 |
|----|----|----|----|
| 84 | 85 | 86 | 87 |
| 88 | 89 | 90 | 91 |
| 92 | 93 | 94 | 95 |

| 96  | 97  | 98  | 99  |
|-----|-----|-----|-----|
| 100 | 101 | 102 | 103 |
| 104 | 105 | 106 | 107 |
| 108 | 109 | 110 | 111 |

| 128 | 129 | 130 | 131 |
|-----|-----|-----|-----|
| 132 | 133 | 134 | 135 |
| 136 | 137 | 138 | 139 |
| 140 | 141 | 142 | 143 |

# Alpha 2

| 0  | ) 1 | 2  | 3  |
|----|-----|----|----|
| 4  | 5   | 6  | 7  |
| 8  | 9   | 10 | 11 |
| 12 | 13  | 14 | 15 |

| 16 | ) 17 | 18 | 19 |
|----|------|----|----|
| 20 | 21   | 22 | 23 |
| 24 | 25   | 26 | 27 |
| 28 | 29   | 30 | 31 |

| 32 | 33 | 34 | 35 |
|----|----|----|----|
| 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 |
| 44 | 45 | 46 | 47 |

| For Nij <sub>ol</sub> | <sub>ut</sub> = ( |
|-----------------------|-------------------|
|-----------------------|-------------------|

| 48 | 49 | 50 | 51 |
|----|----|----|----|
| 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 |
| 60 | 61 | 62 | 63 |

| 64 | 65 | 66 | 67 |
|----|----|----|----|
| 68 | 69 | 70 | 71 |
| 72 | 73 | 74 | 75 |
| 76 | 77 | 78 | 79 |

| 80 | 81 | 82 | 83 |
|----|----|----|----|
| 84 | 85 | 86 | 87 |
| 88 | 89 | 90 | 91 |
| 92 | 93 | 94 | 95 |

| •       | Symmetric relative addressing between the psums for output computation, so simple logic to call the psum to the SFU. |
|---------|----------------------------------------------------------------------------------------------------------------------|
| Cimaila | ar nottorn for root of the Nii alee                                                                                  |

| 96  | 97  | 98  | 99  |
|-----|-----|-----|-----|
| 100 | 101 | 102 | 103 |
| 104 | 105 | 106 | 107 |
| 108 | 109 | 110 | 111 |

| 128 | 129 | 130 | 131 |
|-----|-----|-----|-----|
| 132 | 133 | 134 | 135 |
| 136 | 137 | 138 | 139 |
| 140 | 141 | 142 | 143 |

 Similar pattern for rest of the Nij<sub>out</sub> also
 Opportunity to make architectural changes to the SFU unit.

### Alpha2: Modified SFU

After every kij iteration, instead of sending the data to psum SRAM, we are doing in-place accumulation

### **Architectural Changes**

- Removed the OFIFO
- Replaced by 16 sets of registers sitting in the SFU to store values for Nij<sub>out</sub> in the form of a running sum

# System Architecture













....and so on

## Alpha 2 (Modified SFU) Benefits

- Able to achieve computation in place without requirement of unnecessary SRAM reads and writes.
  - Zero added latency: Final outputs generated 1 clock cycle after the systolic array finishes execution of kij=8

- Requirement of huge SRAM to store intermediate psums removed
  - We do not need to store psums for each kij separately
  - Memory requirement reduced by a factor of 9!! (144 rows after alpha 1 vs only 16 rows after alpha2)

### Results

1. Frequency: 123.85 MHz

2. Core Dynamic Power: 16.94mW

3. Verification: a) Core's Output perfectly matches the one we got from Pytorch

b) The difference between the computed output and the next layer's input is  $\sim 10^{\circ}(-7)$ 

```
r=nn.ReLU()
next_layer_in_computed = r(output_recovered)
next_layer_in_ref = save_output.outputs[9][0]
difference = abs( next_layer_in_computed - next_layer_in_ref)
print(difference.mean())
topson(1,3146,07, devise, suda(0), grad for (MonPackword()))
```

tensor(1.3314e-07, device='cuda:0', grad\_fn=<MeanBackward0>)

|   | < <filter>&gt;</filter> |                 |            |      |
|---|-------------------------|-----------------|------------|------|
|   | Fmax                    | Restricted Fmax | Clock Name | Note |
| 1 | 123.85 MHz              | 123.85 MHz      | clk        |      |



| [pgangwar@ieng6-ece-03]:sim:683\$ iveri filelist                                     | 60-th read data is 20cc5735 Data matched                                                |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| [pgangwar@ieng6-ece-03]:sim:684\$ irun                                               | 61-th read data is 7f2707cf Data matched                                                |
| VCD info: dumpfile core tb.vcd opened for output.                                    | 62-th read data is ad46b640 Data matched                                                |
| Checking the weights written into the I-SRAM from weight.txt                         | 63-th read data is 797057d2 Data matched                                                |
| 0-th read data is b99a999c Data matched                                              | 64-th read data is b999999 Data matched                                                 |
| 1-th read data is 1c307f7d Data matched                                              | 65-th read data is 39b6be3d Data matched                                                |
| 2 th read data is 992a0497 Data matched                                              | 66-th read data is 7309abd0 Data matched                                                |
| 3-th read data is 27bb9d46 Data matched                                              | 67-th read data is b4241ad6 Data matched                                                |
| 4-th read data is 3c92a9f7 Data matched                                              | 68-th read data is eeld72d2 Data matched                                                |
| 5-th read data is 7d09le4c Data matched                                              | 69-th read data is f234d77d Data matched                                                |
|                                                                                      | 70-th read data is b0469f6e Data matched                                                |
| 6-th read data is 75dcee69 Data matched                                              | 71-th read data is 893c5776 Data matched                                                |
| 7-th read data is 179e79aa Data matched                                              | Checking the activations written into the I-SRAM from activation.txt                    |
| 8-th read data is d9999cc9 Data matched                                              | 0-th read data is 00000000 Data matched                                                 |
| 9-th read data is 1342c774 Data matched                                              | 1-th read data is 00000000 Data matched                                                 |
| 10-th read data is ef5daldf Data matched                                             | 2-th read data is 00000000 Data matched                                                 |
| 11-th read data is 31dec6a4 Data matched                                             | 3-th read data is 00000000 Data matched                                                 |
| 12-th read data is 7dc29c75 Data matched                                             | 4-th read data is 00000000 Data matched                                                 |
| 13-th read data is 3b7lfa46 Data matched                                             | 5-th read data is 00000000 Data matched                                                 |
| 14-th read data is 7cdfae79 Data matched                                             |                                                                                         |
| 15-th read data is 6000710d Data matched                                             | 6-th read data is 80000000 Data matched                                                 |
| 16-th read data is 9999cb99 Data matched                                             | 7-th read data is 02330000 Data matched                                                 |
| 17-th read data is 37d095be Data matched                                             | 8-th read data is 32260841 Data matched                                                 |
| 18-th read data is 44a5a9e5 Data matched                                             | 9-th read data is 31350132 Data matched                                                 |
| 19-th read data is 4acca591 Data matched                                             | 10-th read data is 10120040 Data matched                                                |
| 20-th read data is 3d67913d Data matched                                             | 11-th read data is 00000000 Data matched                                                |
| 21-th read data is θ94adde7 Data matched                                             | 12-th read data is 80800000 Data matched                                                |
| 22-th read data is 7b1le979 Data matched                                             | 13-th read data is 03020020 Data matched                                                |
| 23-th read data is 29cfd2lc Data matched                                             | 14-th read data is 15030071 Data matched                                                |
| 24-th read data is 999dbdca Data matched                                             | 15-th read data is 34520252 ··· Data matched                                            |
|                                                                                      | 16-th read data is 02200251 Data matched                                                |
| 25-th read data is 1ca77b23 Data matched                                             | 17-th read data is 00000000 Data matched                                                |
| 26-th read data is 1d5101b4 Data matched                                             | 18-th read data is 00000000 Data matched                                                |
| 27-th read data is f750c54d Data matched                                             | 19-th read data is 80898080 Data matched                                                |
| 28-th read data is 0fcf1077 Data matched                                             | 20-th read data is 21000050 Data matched                                                |
| 29-th read data is 4d4e309b Data matched                                             | 21-th read data is 30520140 Data matched                                                |
| 30-th read data is a703d551 Data matched                                             | 22-th read data is 00110140 Data matched                                                |
| 31-th read data is d7f3e52d Data matched                                             | 23-th read data is 00000000 Data matched                                                |
| 32-th read data is 9c99d999 Data matched                                             | 24-th read data is 00000000 Data matched                                                |
| 33-th read data is 73e7211f Data matched                                             | 25-th read data is 02120011 Data matched                                                |
| 34-th read data is 737143e6 Data matched                                             | 26-th read data is 02020040 Data matched                                                |
| 35-th read data is 277617f7 Data matched                                             | 27-th read data is 01530052 Data matched                                                |
| 36-th read data is 400b6d73 Data matched                                             | 28-th read data is 01220050 Data matched                                                |
| 37-th read data is d077e092 Data matched                                             |                                                                                         |
| 38-th read data is 2401d04f Data matched                                             | 29-th read data is 00000000 Data matched                                                |
| 39-th read data is 0300760d Data matched                                             | 30-th read data is 00000000 Data matched                                                |
| 40-th read data is aa999a9a Data matched                                             | 31-th read data is 00000000 Data matched                                                |
| 41-th read data is 7097d5ce Data matched                                             | 32-th read data is 00000000 Data matched                                                |
| 42-th read data is 7507ccc7 Data matched                                             | 33-th read data is 00000000 Data matched                                                |
| 43-th read data is 90949417 Data matched                                             | 34-th read data is 00000000 Data matched                                                |
|                                                                                      | 35-th read data is 00000000 Data matched                                                |
| 44-th read data is 3f7a773f Data matched                                             | Comparing the outputs written into the O-SRAM by the Systolic Array with the output.txt |
| 45-th read data is 9977c056 Data matched                                             | 0-th read data is 0000005d00970000005a0047002c0000 Data matched                         |
| 46-th read data is le7θe979 Data matched                                             | 1-th read data is 000000ac00790000005007d00150000 Data matched                          |
| 47-th read data is feca46f0 Data matched                                             | 2-th read data is 000e00ed003b001c00ab0056000a0000 Data matched                         |
| 48-th read data is 99bb99dc Data matched                                             | 3-th read data is 000009c00000300030004500000000 Data matched                           |
| 49-th read data is 9bc76bde Data matched                                             | 4-th read data is 9000005f001a0025000005000380000 Data matched                          |
| 50-th read data is 2374f0bb Data matched                                             | 5-th read data is 001600ce001700c700000012004e0000 Data matched                         |
| 51-th read data is f790900d Data matched                                             | 6-th read data is 806f0136001d00b9006b00000520000 Data matched                          |
| 52-th read data is leddd0f7 Data matched                                             | 7-th read data is 000f00a9000008400390000000000 Data matched                            |
| 53-th read data is 3ad6979b Data matched                                             | 8-th read data is 00000070000001000000000000000000000000                                |
| 54-th read data is e61da775 Data matched                                             | 9-th read data is 900000fc081808a80900000470000 Data matched                            |
| 55-th read data is 792df7c9 Data matched                                             |                                                                                         |
| 56-th read data is 999b9d99 Data matched                                             | 10-th read data is 000001150849084608490090990000 Data matched                          |
| 50-th read data is 99909099 Data matched<br>57-th read data is ca356bel Data matched | 11-th read data is 000009a000000000390000049000 Data matched                            |
| 57-th read data is cassodel Data matched<br>58-th read data is 73795el0 Data matched | 12-th read data is 9090905100130010900400049000 Data matched                            |
|                                                                                      | 13-th read data is 900000c8004800a50000000000000000000000000000000                      |
| 59-th read data is b7047f23 Data matched 60-th read data is 20cc5735 Data matched    | 14-th read data is 808000d6005b0076004200000580000 Data matched                         |
|                                                                                      | 15-th read data is 0000006f0000002700230000006b0000 Data matched                        |
| 61-th read data is 7f2707cf Data matched                                             | [pgangwar#ieng6-ece-83]:sim:685\$                                                       |

# **Summarizing Novelty**

- 1. Sending only relevant data to the Systolic Array
- 2. Doing in-place accumulation for Psum in SFU
- 3. Designed Controller for the whole design

# Thank You





## Modifying the Input features sent to L0

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
|    |    |    |    |    |    |

| 0  |    |    | 3  | _  | )  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |
| 0  | 1  | 2  | 3  | 4  | 5  |
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

#### Conv 3x3 Kernel



```
for (kij=0; kij<9; kij++)
    for (nij=0; nij <16; nij++)
        nij_prime = int(nij/4)*6 + nij%4;
        kij_prime = int(kij/3)*6 + kij%3;
        data_L0 = x_in[ kij_prime + nij_prime];

for (kij=0; kij<9; kij++)
    for (nij=0; nij <16; nij++)
        nij_prime = int(nij/4)*6 + nij%4;
        kij_prime = int(kij/3)*6 + kij%3;
        data_L0 = x_in[ kij_prime + nij_prime];</pre>
```

### Benefits of Idea

- Cycles for loading Activations in L0 = 9(Kij) \*16(Nij) = **144 cycles** vs 9(Kij)\*36(Nij in Reference) = **324 cycles**
- Cycles for computing Psum for Kij=0 = [16 (Nij) + 8 (Last row staggered offset) + 8 (reaching last PE)] = 32 cycles
   Cycles for computing all Psums = 32\*9(Kij) = 288 cycles
   Vs 9(Kij)\*[36(Nij Reference) +8 +8] = 468 cycles
- Cycles Saved in Computation = 792 432 = 360 cycles

- Cycles for loading weights in L0 = 9(Kij) \* 8 (Nij<sub>out</sub>) = 72 cycles
- Cycles for loading weights in Systolic Array = 9(Kij) \* [8 (Last Row Staggered offset) + 8 (Out Ch) \* 2(Cycles/wt loading)] =
   216 cycles
- Percentage of saved cycles in Computation = 360/1080 = 33%

### Benefits of Idea

Assuming 16 bit \* 8(Out Ch) = 128 bits can be written in the SRAM in one clock cycle.

Number of such 128 bit transactions = 36 (In Ch) \* 9 (Kij) = 324 cycles

With In-place Psum accumulation, **324 transactions** of 128 bits to the expensive SRAM were saved.

### **Modified SFU**



- This is the modified version of the SFU that will directly compute the final output without the need to store it in scratch pad memory.
- We have removed the need for scratch pad memory (16x16x9) and O-FIFO (16x8 minimum).
- Instead, we have added registers (16x16) and a counter (4bits) to achieve the output calculation.

Placement of Sieving Logic (1)



Placement of Sieving Logic (1)

### Can we do better?



Placement of Sieving Logic (2)



Placement of Sieving Logic (2)

## Can we do even better?



Placement of Sieving Logic (3): Proposed Design



# Algorithm to Hardware Mapping (Conv to 2D array)



Assumption: 3X3 kernel, 16X16 input feature map 64 in / out channels

#### Matrix multiplication

for kij = 0:8 (time, renew all the weights in registers)
for out\_ch = 0:63 (col #)
for in\_ch = 0:63 (row #)
for nij = 0:255 (time for horizontal input)
 psum(out\_ch, kij, nij) += w(out\_ch, in\_ch, kij) \* x(in\_ch, nij)



#### Accumulation (SFU)

```
for nij = 0:255 (output index)
for kij = 0:8 (time)
output (out_ch, nij) += psum(out_ch, kij, nij')
```

- Note nij' = f(nij, kij) is shifted index of nij for conv.
- Matmult and acc can be processed simultaneously.

## Psum indexing: After passing the inputs into Systolic array

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 108 | 109 | 110 | 111 | 112 | 113 |
|-----|-----|-----|-----|-----|-----|
| 114 | 115 | 116 | 117 | 118 | 119 |
| 120 | 121 | 122 | 123 | 124 | 125 |
| 126 | 127 | 128 | 129 | 130 | 131 |
| 132 | 133 | 134 | 135 | 136 | 137 |
| 138 | 139 | 140 | 141 | 142 | 143 |

|   | 216 | 217 | 218 | 219 | 220 | 221 |
|---|-----|-----|-----|-----|-----|-----|
|   | 222 | 223 | 224 | 225 | 226 | 227 |
|   | 228 | 229 | 230 | 231 | 232 | 233 |
|   | 234 | 235 | 236 | 237 | 238 | 239 |
|   | 240 | 241 | 242 | 243 | 244 | 245 |
|   | 246 | 247 | 248 | 249 | 250 | 251 |
| ı |     |     |     |     |     |     |

| 36 | 37 | 38 | 39 | 40 | 41 |
|----|----|----|----|----|----|
| 42 | 43 | 44 | 45 | 46 | 47 |
| 48 | 49 | 50 | 51 | 52 | 53 |
| 54 | 55 | 56 | 57 | 58 | 59 |
| 60 | 61 | 62 | 63 | 64 | 65 |
| 66 | 67 | 68 | 69 | 70 | 71 |

| 144 | 145 | 146 | 147 | 148 | 149 |
|-----|-----|-----|-----|-----|-----|
| 150 | 151 | 152 | 153 | 154 | 155 |
| 156 | 157 | 158 | 159 | 160 | 161 |
| 162 | 163 | 164 | 165 | 166 | 167 |
| 168 | 169 | 170 | 171 | 172 | 173 |
| 174 | 175 | 176 | 177 | 178 | 179 |
|     |     |     |     |     |     |

| 253 | 254                                                       | 255                                      | 256                                                                                               | 257                                                                                                                                                                                                   |
|-----|-----------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 259 | 260                                                       | 261                                      | 262                                                                                               | 263                                                                                                                                                                                                   |
| 265 | 266                                                       | 267                                      | 268                                                                                               | 269                                                                                                                                                                                                   |
| 271 | 272                                                       | 273                                      | 274                                                                                               | 275                                                                                                                                                                                                   |
| 277 | 278                                                       | 279                                      | 280                                                                                               | 281                                                                                                                                                                                                   |
| 283 | 284                                                       | 285                                      | 286                                                                                               | 287                                                                                                                                                                                                   |
|     | <ul><li>259</li><li>265</li><li>271</li><li>277</li></ul> | 259 260<br>265 266<br>271 272<br>277 278 | 259     260     261       265     266     267       271     272     273       277     278     279 | 253     254     255     256       259     260     261     262       265     266     267     268       271     272     273     274       277     278     279     280       283     284     285     286 |

| 72  | 73  | 74  | 75  | 76  | 77  |
|-----|-----|-----|-----|-----|-----|
| 78  | 79  | 80  | 81  | 82  | 83  |
| 84  | 85  | 86  | 87  | 88  | 89  |
| 90  | 91  | 92  | 93  | 94  | 95  |
| 96  | 97  | 98  | 99  | 100 | 101 |
| 102 | 103 | 104 | 105 | 106 | 107 |

| 180 | 181                      | 182                                      | 183                                                                                               | 184                                                                                                                               | 185                                                                           |
|-----|--------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 186 | 187                      | 188                                      | 189                                                                                               | 190                                                                                                                               | 191                                                                           |
| 192 | 193                      | 194                                      | 195                                                                                               | 196                                                                                                                               | 197                                                                           |
| 198 | 199                      | 200                                      | 201                                                                                               | 202                                                                                                                               | 203                                                                           |
| 204 | 205                      | 206                                      | 207                                                                                               | 208                                                                                                                               | 209                                                                           |
| 210 | 211                      | 212                                      | 213                                                                                               | 214                                                                                                                               | 215                                                                           |
|     | 186<br>192<br>198<br>204 | 186 187<br>192 193<br>198 199<br>204 205 | 186     187     188       192     193     194       198     199     200       204     205     206 | 186     187     188     189       192     193     194     195       198     199     200     201       204     205     206     207 | 192     193     194     195     196       198     199     200     201     202 |

| 288 | 289 | 290 | 291 | 292 | 293 |
|-----|-----|-----|-----|-----|-----|
| 294 | 295 | 296 | 297 | 298 | 299 |
| 300 | 301 | 302 | 303 | 304 | 305 |
| 306 | 307 | 308 | 309 | 310 | 311 |
| 312 | 313 | 314 | 315 | 316 | 317 |
| 318 | 319 | 320 | 321 | 322 | 323 |

#### Conv 3x3 Kernel



```
for (nij=0; nij<16; nij++)
    output[nij]=0
    for (kij=0; kij <9; kij++)
        nij_prime = int(nij/4)*6 + nij%4;
        kij_prime = int(kij/3)*114 + kij%3 * 37;
        output[nij] += psum[ kij_prime + nij_prime];
```

```
for (nij=0 ; nij<16; nij++)
  output[nij]=0
  for (kij=0 ; kij <9 ; kij++)
     nij_prime = int(nij/4)*6 + nij%4;
     kij_prime = int(kij/3)*114 + kij%3 * 37;
     output[nij] += psum[ kij_prime + nij_prime];</pre>
```

# Sieve (ie nij\_prime and kij\_prime)

```
for (nij=0; nij<16; nij++)
  output[nij]=0
  for (kij=0; kij < 9; kij++)
    nij prime = int(nij/4)*6 + nij%4;
    kij prime = int(kij/3)*114 + kij%3 * 37;
    output[nij] += psum[ kij prime + nij prime];
for (nij=0 ; nij<16; nij++)</pre>
     output[nij]=0
     for (kij=0 ; kij <9 ; kij++)
          nij prime = int(nij/4)*6 + nij%4;
          kij prime = int(kij/3)*114 + kij*3 * 37;
          output[nij] += psum[ kij prime + nij prime];
```

- Un-needed psums computed  $\Rightarrow$  (n+2)\*(n+2) n^2 = 4n+4
- The extra computations will take energy, storage and increase latency.

Can we do something about this?



# Recap: Input features utilisation mapped to Kernel

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |
|    |    |    |    |    |    |

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | 31 | 32 | 33 | 34 | 35 |

#### Conv 3x3 Kernel



### Modified Store for Psums and SFU



- Utilizing the natural alignment of the psums, we can add them up in place to produce the output.
- For this we will need to have a running counter that will have to keep track of the nij index.
- We can either use registers or a dual port SRAM for storing the running sum.
   We implemented using register for proof of concept, but an implementation with SRAM will be more scalable with increasing input dimension size.
   This logic will replace the O-FIFO

```
// reset to zero
for (nij=0; nij<16; nij++)
   output[:]=0

//SFU Computation
for (kij=0; kij <9; kij++)
   for (nij=0; nij<16; nij++)
      output[nij] += psum[ kij*16 + nij];

// reset to zero
for (nij=0; nij<16; nij++)
      output[:]=0

//SFU Computation
for (kij=0; kij <9; kij++)
   for (nij=0; nij<16; nij++)
      output[nij] += psum[ kij*16 + nij];</pre>
```

## Modified Psums and their indexing



| 16 | 17 | 18 | 19 |
|----|----|----|----|
| 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 |

| 32 | 33 | 34 | 35 |
|----|----|----|----|
| 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 |
| 44 | 45 | 46 | 47 |

| 48 | 49 | 50 | 51 |
|----|----|----|----|
| 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 |
| 60 | 61 | 62 | 63 |

| 64 | 65 | 66 | 67 |
|----|----|----|----|
| 68 | 69 | 70 | 71 |
| 72 | 73 | 74 | 75 |
| 76 | 77 | 78 | 79 |

| 80 | 81 | 82 | 83 |
|----|----|----|----|
| 84 | 85 | 86 | 87 |
| 88 | 89 | 90 | 91 |
| 92 | 93 | 94 | 95 |

| 96  | 97  | 98  | 99  |
|-----|-----|-----|-----|
| 100 | 101 | 102 | 103 |
| 104 | 105 | 106 | 107 |
| 108 | 109 | 110 | 111 |

| 112 | 113 | 114 | 115 |
|-----|-----|-----|-----|
| 116 | 117 | 118 | 119 |
| 120 | 121 | 122 | 123 |
| 124 | 125 | 126 | 127 |

| 128 | 129 | 130 | 131 |
|-----|-----|-----|-----|
| 132 | 133 | 134 | 135 |
| 136 | 137 | 138 | 139 |
| 140 | 141 | 142 | 143 |

- Symmetric relative addressing between the psums for output computation, so simple logic to call the psum to the SFU
- Lesser memory used to store the psums.
- Opportunity to make architectural changes to the SFU unit.

```
for (nij=0 ; nij<16; nij++)
output[nij]=0
for (kij=0 ; kij <9 ; kij++)
output[nij] += psum[ kij*16 + nij];
```

```
for (nij=0 ; nij<16; nij++)
  output[nij]=0
  for (kij=0 ; kij <9 ; kij++)
    output[nij] += psum[ kij*16 + nij];</pre>
```