

Propositional Equivalences

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a **tautology**. The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

A compound proposition that is always false is called a **contradiction**.

A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Example of a Tautology:

Example of a Contradiction:

р	$\neg p$	$p \land \neg p$
7	F	F
F		F

Example: Show that $\neg (p \land q) \equiv \neg p \lor \neg q$

					S	t	DAD
р	q	7P	79	P19	7(P19)	7p V79	
	7	F	F		F	F	
	F	F	T	F			
F	T	T	·	F		7	7
F	F	T	T	F		7	#
	•	0	•	•	•		

tautology

Example: Show that $\neg (p \lor q) \equiv \neg p \land \neg q$ $S \qquad \underline{t}$

tautology

		_			<u> </u>	<u> </u>	
р	q	79	79	PV9	7(pvq)	7p 1/79	S⇔t
+		F	F		F	F	
+	F	F	T	T	F	F	
F	T	T	F		F	F	
F		T	+	F		7	
match							

We just Proved:

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Other Equivalences (from our book)

TABLE 7 Logical Equivalences Involving Conditional Statements.

 $p \rightarrow q \equiv \neg p \lor q$ Relation by Implication (RBI)

$$\not p \rightarrow q \equiv \neg q \rightarrow \neg p$$
 Contraposition

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg(p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$${\boldsymbol{\cdot}} \ (p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABLE 8 Logical

Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p) \quad \text{Biconditional}$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Alternate definition of xor

Other Equivalences (from our book)

To show that two compound propositions are logically equivalent:

- Prove it with a Truth Table
- Use Equivalence Rules to go from one to the other.

Example: Show that $p \rightarrow q \equiv \neg q \rightarrow \neg p$ (without a truth table)

$$P \rightarrow Q \equiv \neg P \vee Q$$
 Relation by Implication
$$\equiv q \vee \neg P$$
 Commutativity
$$\equiv \neg (1q) \vee \neg P$$
 double negation
$$\equiv \neg Q \rightarrow \neg P$$
 RBI (backwards)

Example: Show that $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$ (without a truth table)

$$(P \rightarrow q)V(P \rightarrow r) \equiv (\neg P \vee q) V(\neg P \vee r)$$
 RBI
 $\equiv \neg P \vee q \vee \neg P \vee r$ Associative
 $\equiv \neg P \vee \neg P \vee q \vee r$ Commutative
 $\equiv \neg P \vee q \vee r$ idempotent
 $\equiv \neg P \vee (q \vee r)$ associative
 $\equiv P \rightarrow (q \vee r)$ RBI!

A compound proposition is <u>satisfiable</u> if there is an assignment of truth values to its variables that makes it true. If there is no such case then we say it is <u>unsatisfiable</u> (i.e. a contradiction)

<u>Example</u>: Show that $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$ is satisfiable.

7 1. (pV-q)
$$\Lambda(\neg p \vee q)$$
 P,q must have Same.
FT P,q must have Same.
+ E T P,q must be false.

Example: Show that $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$ is not satisfiable.

Example: Sudoku puzzles can be written (and solved) as a satisfiability problems

Solving this:

- 1) First chain together the propositions with provided values: $p(1,1,5) \land p(1,2,3) \land p(1,5,7) \land \dots$
- 2) Assert that every row contains every number: $\bigwedge_{i=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$
- 3) Assert that every column contains every number:

$$\bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{9} p(i,j,n)$$

4) Assert that every 3x3 block contains every number:

$$\bigwedge_{r=0}^{2} \bigwedge_{s=0}^{2} \bigwedge_{n=1}^{9} \bigvee_{i=1}^{3} \bigvee_{j=1}^{3} p(3r+i, 3s+j, n)$$

		_				_	_	
5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Let p(i,j,n) denote the proposition that a number n is in the cell in row i and column j

9 rows, 9 columns, 9 numbers = $9 \times 9 \times 9 = 729$ propositions

5) Assert that no cell contains more than one number:

$$\bigwedge_{i=1}^{9} \bigwedge_{j=1}^{9} \bigwedge_{n=1}^{9} \bigwedge_{m=1, m \neq n}^{9} (p(i, j, n) \to \neg p(i, j, m))$$

6) String 1-5 together with conjunctions