Esercizio 1

Un corpo, posto a una quota h da terra, viene lanciato con velocità iniziale v_A lungo un piano inclinato di un angolo θ rispetto all'orizzontale. Nel tratto AB è presente un coefficiente di attrito dinamico μ_d . Arrivato nel punto B, il corpo sale lungo una guida circolare di raggio R priva di attrito, passando per il punto C che si trova lungo la circonferenza ad un angolo α rispetto alla direzione verticale. Determinare:

- a) il lavoro fatto dalla forza di attrito tra A e B (2 punti)
- b) la velocità del corpo nel punto B (2 punti)
- c) la velocità del corpo nel punto C (2 punti)
- d) il valore minimo della quota iniziale h tale che il corpo raggiunga il punto C (2 punti)

Risolvere in modo simbolico in funzione dei dati (h, v_A , μ_d , θ , R, α)

Soluzione:

- a) $L_{AB} = \mu_d N d$; $N=mgcos \theta$; $d=h/sin \theta$; $L_{AB}=-\mu_d mgh/tan \theta$
- b) $E_A=1/2$ m v_A^2 + mgh $E_B=1/2$ m v_B^2 E_A + L_{AB} = E_B ; E_A - μ_d mgh/tan θ = E_B v_B =sqrt(v_A^2 +2gh(1- μ_d /tan θ)
- c) $E_B=1/2 \text{ m } v_B^2$ $E_C=1/2 \text{ m } v_C^2+ \text{ mgR}(1-\cos \alpha)$ $E_B=E_C$ $v_C = \text{ sgrt}(v_B^2-2\text{ gR}(1-\cos \alpha))$
- d) il valore minimo di h si ottiene quando $v_c=0$ $0=v_B^2-2gR(1-\cos\alpha)=v_A^2+2gh_{min}(1-\mu_d/\tan\theta)-2gR(1-\cos\alpha)$ $h_{min}=(2gR(1-\cos\alpha)-v_A^2)/(2g(1-\mu_d/\tan\theta))$

Esercizio 2

Si apre un buco nella parete di un sottomarino. Il buco ha una sezione trasversa A e si trova a una distanza di X metri della superficie del mare (densità dell'acqua ρ).

- a) Con quale velocità entra l'acqua nel sottomarino? (3 punti)
- b) Un corpo di massa m con la stessa velocità, che tipo di moto descrive? (1 punto)
- c) Assumendo che il sottomarino si mantenga alla stessa profondità mentre l'acqua entra e che il volume del sottomarino sia equivalente a quello di una sfera di raggio R, quanto tempo passa fino a che il sottomarino si riempie di acqua? (3 punti)

Risolvere in modo simbolico in funzione dei dati (A,X,ρ)

Soluzione:

a) Applichiamo la legge di Bernoulli tra la superficie del mare e il buco:

$$p_0+1/2 \rho v_1^2=p_0+1/2 \rho v_2^2-\rho g X$$

dato che $v_1 << v_2$, possiamo assumere $v_1=0$
 $\frac{1}{2} \rho v_2^2=\rho g X$; $v_2=sqrt(2g X)$

- b) Un corpo di massa m in caduta libera ha la stessa velocita' v₂
- c) V=4/3 π R² portata=v₂ A (m³/s); t=V/portata=4/3 π R²/(v₂ A) (s)

Esercizio 3

N moli di un gas perfetto, inizialmente a volume V_1 e pressione p_1 , compiono nell'ordine le seguenti trasformazioni:

- 1) una isocora reversibile che porta la pressione al valore p₂;
- 2) una isobara reversibile che porta il volume al volume V₂;
- 3) una isocora reversibile che porta la pressione a p₃;
- 4) una isobara reversibile che porta il volume a V₃;
- a) Disegnare le trasformazioni sul piano pV (1 punto) Calcolare:
- b) il lavoro totale compiuto dal gas (2 punti)
- c) la temperatura iniziale e quella finale del gas (2 punti)
- d) la variazione totale dell'energia interna del gas (2 punti)
- e) la variazione totale della sua entropia (2 punti)

Dati: N = 0.5, V_1 = 10 I, p_1 = 4 atm, p_2 = 2.5 atm, V_2 = 25 I, p_3 = 1.0 atm, V_3 = 40 I, 1 atm = 1.013 · 10⁵ Pa, R = 0.082 I*atm.

Soluzione (figura non in scala):

b) Il lavoro totale si calcola come somma dei lavori delle singole trasformazioni per cui (le isocore sono a lavoro nullo):

$$L = 0 + p_2*(V_2-V_1)+0+p_3*(V_3-V_2) = 2.5*(25-10)+1*(40-25) = 52.5 I*atm = 5318.2 J$$

c) La temperatura iniziale T_i è:

$$T_i = p_1V_1/NR = 4*10/(0.5*0.082) = 976 K$$

La temperatura finale T_f è:

$$T_f = p_3V_3/NR = 1*40/(0.5*0.082) = 976 K$$

Il punto iniziale e finale si trovano su un'isoterma

d) La variazione di energia interna è zero perché non c' è variazione di temperatura

e) Possiamo calcolare la variazione di entropia lungo la trasformazione reversibile (isoterma) che connette lo stato iniziale e finale:

$$\Delta S = \int \delta Q/T = Q/T$$

Q può essere calcolato dal primo principio della termodinamica:

$$Q = \Delta U + L (o \Delta U - W)$$

con
$$\Delta U = 0$$
 e L = NRTIn(V_f/V_i) = NRTIn(V_3/V_1)

Per cui:

$$\Delta S = NRln(V_3/V_1) = 0.5*8.314*ln(40/10) = 5.76 J/K$$

Esercizio 4

Due cariche $q_A = q_B$ si trovano ferme ad una distanza d. Una terza carica $q_C = q_A$ viene posta ferma a una distanza d_2 da d_2 sul segmento che unisce d_2 e d_2 e d_3 e lettrostatica d_3 finanza d_3 modulo d_4 .

a) Specificare direzione e verso di **F** (2 punti)

Calcolare:

- b) il valore (comune) delle tre cariche (2 punti)
- c) il potenziale elettrostatico nel punto che divide a metà il segmento d (2 punti)

Dati: F = 24 N, d = 15 cm,
$$d_2$$
 = 5 cm, k_0 = 9 · 10⁹ Nm²/C²

Soluzione:

a) la forza elettrostatica su q_C è diretta lungo il segmento d e risulta come somma vettoriale delle due forze esercitate da q_A e q_B . Essendo le tre cariche uguali, le due forze saranno di tipo repulsivo e di verso opposto. Scegliendo come verso positivo dell' asse x quello che va da q_C verso q_B e indicando come \hat{i} il versore corrispondente abbiamo:

$$F_{AC} = k_0(q/d_2)^2 \cdot \hat{\mathbf{i}}$$

$$F_{BC} = -k_0(q/(d-d_2))^2 \cdot \hat{\mathbf{i}}$$

poiché d₂<(d-d₂) la risultante è sicuramente diretta nel verso scelto come positivo delle x

b) Proiettando le forze lungo l'asse x:

$$k_0(q/d_2)^2$$
- $k_0(q/(d-d_2))^2$ = F

$$=> q = \sqrt{(F/(k_0/d_2^2 - k_0/(d-d_2)^2)} = 3.0 \cdot 10^{-6} C$$

c) Il potenziale elettrostatico nell'origine si calcola come:

$$V = qk_0(1/0.5d+1/0.5d+1/(0.5d-d_2)) = 1788 \text{ kV}$$