

UNIVERSIDADE DO VALE DO RIO DOS SINOS

Matemática para Computação Profa. Patrícia Pícolo Gil Noga

Lista 1: Teoria dos Conjuntos

Determine os conjuntos A e B tais que: 1)

$$A' = \{ f, g, h, I \}, A \cap B = \{ d, e \} e A \cup B = \{ a, b, d, e, f \}.$$

- **2)** Determine o conjunto das partes do conjunto $X = \{1, 2, \{2\}\}$
- 3) É possível encontrar um conjunto A tal que o conjunto das partes de A não possua nenhum elemento? Ou seja, $\exists A$ tal que $P(A) = \phi$?
- **4)** Seja $B = \{x \in \mathbb{Q} \mid -1 < x \le 2\}$. Quais das seguintes afirmações são verdadeiras?
 - (a) $0 \in B$
- **(b)** $-1 \in B$
- **(c)** $\sqrt{2} \in B$
- (d) $-0.87 \in B$
- **(e)** $2 \in B$
- **5)** Seja $B = \{x \in \mathbb{R} \mid -1 < x \le 2\}$. Quais das seguintes afirmações são verdadeiras?
 - (a) $0 \in B$
- **(b)** $-1 \in B$
- (c) $\sqrt{2} \in B$
- **(d)**-0.87 ∈ B
- **(e)** $2 \in B$
- 6) Descreva cada um dos conjuntos a seguir listando seus elementos (isto é, por extensão):

(a)
$$A = \{x \mid x \in \mathbb{N}, x^2 < 25\}$$

(b)
$$B = \{x \mid x \in \mathbb{N}, x \in par \ e \ 2 < x < 11\}$$

(c)
$$C = \{x \mid x \in \mathbb{N}, x^2 = -1\}$$

(d)
$$D = \{x \mid x \in \mathbb{N}, x^2 - 5x + 6 = 0\}$$

(e)
$$E = \{x \mid x \in \mathbb{R}, x^2 = 7\}$$

- 7) Sejam $A = \{x \in \mathbb{R} \mid 1 < x \le 3\} = \{1,3\}$ e $B = \{x \in \mathbb{R} \mid 2 \le x \le 5\} = [2,5]$. Determine:
 - (a) $A \cup B$
- (b) $A \cap B$

- (c) A B (d) B A (e) $(A \cup B)'$
- Sejam $U = \{a, b, c, d, e\}$, $A = \{a, b, d\}$ e $B = \{b, d, e\}$. Escrever: 8)
 - (a) $A \cup B$ (b) $B \cap A$ (c) B' (d) B A (e) $A' \cap B$

- (f) $A \cup B'$ (g) $A' \cap B'$ (h) B' A' (i) $(A \cap B)'$ (j) $(A \cup B)'$

Sejam $A = \{x \in \mathbb{R} \mid 1 < x \le 3\} = \{1,3\}$ e $B = \{x \in \mathbb{R} \mid 2 \le x \le 5\} = [2,5]$. Utilizando as operações 9) definidas nos conjuntos, descreva cada um dos conjuntos ilustrados abaixo em termos de A e B.

- **10)** Trace o diagrama de Venn para os três conjuntos não vazios A, B e C, de tal maneira que A, B e C tenham as seguintes propriedades:
 - (a) $A \subseteq B$, $C \subseteq B$, $A \cap C = \emptyset$
- **(b)** $A \subseteq B$, $C \not\subset B$, $A \cap C \neq \emptyset$
- (c) $A \subseteq C$, $A \neq C$, $B \cap C = \emptyset$ (d) $A \subseteq (B \cap C)$, $B \subseteq C$, $C \neq B$, $A \neq C$
- 11) Sejam A, B e C conjuntos. Verifique se as afirmações abaixo são verdadeiras ou falsas, justificando a sua resposta.
 - (a) $\{1\} \subseteq C$ se $C = \{\{I\}\}$
 - **(b)** Existem conjuntos $A \in B$ tais que $(A \cap B) \cup (A B) \neq A \cup B$.
 - (c) Existem conjuntos $A \in B$ tais que $(A \cap B) \cup (A B) = A \cup B$.
 - (d) $A \cap B = A \cap C \leftrightarrow B = C$
 - (e) $(A \cup B) C = A \cup (B C)$
 - (f) $A B = A C \leftrightarrow B = C$
 - (g) $(A \cup B) \cap C = A \cup (B \cap C)$
- **12)** A alternativa que representa na região sombreada a operação $(A \cup B) (A \cap B)$ é:

(e)

(d)

- **13)** (INSPER-SP) No diagrama abaixo, U representa o conjunto de todos os alunos de uma escola. Estão também representados os seguintes subconjuntos de U:
 - Q: alunos da escola que gostam de quiabo;
 - D: alunos da escola com mais de dezesseis anos de idade;
 - P: alunos da escola que gostam do professor Pedro;
 - M: alunos da escola que gostam de Matemática.

Em todas as regiões do diagrama, identificadas com um número de 1 a 8, há pelo menos um aluno representado. Então, é correto concluir que:

- a) Se um aluno gosta de quiabo, então ele não tem mais do que dezesseis anos
- b) Pelo menos um aluno que gosta de Matemática tem mais do que dezesseis anos e gosta de quiabo.
- c) Se um aluno gosta do professor Pedro, então ele gosta de Matemática.
- d) Todo aluno que gosta de Matemática e tem mais do que dezesseis anos gosta do professor Pedro.
- e) Se um aluno com mais de dezesseis anos não gosta do professor Pedro, então ele não gosta de quiabo.
- 14) Uma prova com três questões foi dada a uma classe de 50 alunos. Dez alunos acertaram as três questões, 15 alunos acertaram a primeira e a segunda questão, 12 alunos acertaram a segunda e a terceira, 20 acertaram a primeira e a terceira, 30 alunos acertaram a primeira questão, 21 alunos acertaram a segunda e 25 alunos acertaram a terceira questão. Com base nesses dados quantos alunos erraram as três questões?
- **15)** (Unifap) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças.
- **16)** Numa pesquisa sobre as emissoras de tevê a que habitualmente assistem, foram consultadas 450 pessoas, com o seguinte resultado: 230 preferem o canal A; 250 o canal B; e 50 preferem outros canais diferentes de A e B. Pergunta-se:
 - a) Quantas pessoas assistem aos canais A e B?
 - b) Quantas pessoas assistem ao canal A e não assistem ao canal B?
 - c) Quantas pessoas assistem ao canal B e não assistem ao canal A?
 - d) Quantas pessoas não assistem ao canal A?

Respostas:

- 1) $A = \{a, b, d, e\}, B = \{d, e, f\}$
- **2)** $P(X) = \{\emptyset, \{1\}, \{2\}, \{\{2\}\}, \{1,2\}, \{1,\{2\}\}, \{2,\{2\}\}, \{1,2,\{2\}\}\}\}$
- **3)** Não, pois como o conjunto vazio é um subconjunto de todos os conjuntos, ele é um elemento do conjunto das partes de qualquer conjunto: $\forall A, \emptyset \subseteq A \Rightarrow \emptyset \in P(A)$.
- 4) (a), (d), (e).
- 5) (a), (c), (d), (e).
- **6) (a)** $A = \{0,1,2,3,4\}$
- **(b)** $B = \{4,6,8,10\}$

(c) $C = \emptyset$

(d) $D = \{2,3\}$

(e) $E = \sqrt{7}, -\sqrt{7}$

7) (a) (1,5]

- **(b)** [2,3] **(c)** (1,2) **(d)**(3,5]
- **(e)** $(-\infty, 1] \cup (5, +\infty)$

- **8)** (a) $A \cup B = \{a, b, d, e\}$
- **(b)** $B \cap A = \{b, d\}$

(c) $B' = \{a, c\}$

- **(d)** $B A = \{e\}$
- **(e)** $A' \cap B = \{e\}$
- **(f)** $A \cup B' = \{a, b, c, d\}$

- **(f)** $A' \cap B' = \{c\}$
- **(h)** $B' A' = \{a\}$

(i) $(A \cap B)' = \{a, c, e\}$

- **(j)** $(A \cup B)' = \{c\}$
- 9) (a) A'
- **(b)** $A \cap B$
- (c) A B

10)

(b)

(c)

(d)

11)

- (a) A proposição é falsa, pois $1 \in \{1\}$ e $1 \notin C$.Na verdade, $\{1\} \in C$.
- **(b)** A proposição é verdadeira. Basta escolher dois conjuntos $Ae\ B$ tais que $B-A\neq\emptyset$. Por exemplo, se A = { 1, 2 } e B = { 2, 3 }, então A \cup B = {1, 2, 3}, mas (A \cap B) \cup (A B) = {1, 2}.
- (c) A proposição é verdadeira. Basta escolher dois conjuntos A e B tais que $B \subseteq A$.Por exemplo, se $A = \{1, 2, 3\}$ e $B = \{2, 3\}$, então $(A \cap B) \cup (A B) = \{1, 2, 3\} = A \cup B$.
- (d) A proposição é falsa. Por exemplo, existem os conjuntos $A = \{1, 2\}$, $B = \{1, 3, 4\}$ e $C = \{1, 5, 9\}$ tais que $A \cap B = \{1\} = A \cap C$, mas $B \neq C$.
- (e) A proposição é falsa. Por exemplo, existem os conjuntos A = {1, 2, 3}, B = {4, 5} e C = {1, 5} tais que
 A ∪ B = {1, 2, 3, 4, 5}, (A ∪ B) C = {2, 3, 4}, B C = {4} e A ∪ (B C) = {1, 2, 3, 4}
 Então, neste caso, (A ∪ B) C ≠ A ∪ (B C).
- (f) A proposição é falsa. Por exemplo, existem os conjuntos $A = \{1, 2\}$, $B = \{2, 3\}$ e $C = \{2, 4\}$ tais que $A B = \{1\} = A C$, mas $B \neq C$.
- **(g)** A proposição é falsa. Por exemplo, existem os conjuntos A = {1, 2}, B = {3, 4} e C = {4, 5} onde A \cup B = {1, 2, 3, 4}, (A \cup B) \cap C ={4}, B \cap C = {4} e A \cup (B \cap C) = {1,2,4}. Então, (A \cup B) \cap C \neq A \cup (B \cap C).
- 12) (d)
- **13)** d)
- 14) 11 alunos
- **15)** 40%
- **16)** a) O número de pessoas que assistem aos canais A e B é 80.
 - b) O número de pessoas que assistem ao canal A e não assistem ao canal B é 150.
 - c) O número de pessoas que assistem ao canal B e não assistem ao canal A é 170.
 - d) O número de pessoas que não assitem ao canal A é 220.