Math 298 Fundamental Concepts in Computational and Applied Mathematics

Lecture 4

Juan Meza School of Natural Sciences University of California, Merced

Structured Grids

- Some terminology
 - cells, elements; triangles, quads, tetrahedrons, hex
 - node, vertex
 - edge, face
- Properties
 - quality of mesh
 - degeneracy
 - dof

Uniform Grid

- Simplest of all structured grids, (i, j, k) indexing
- Easy formula determining location of all nodes
- What are the advantages/disadvantages?

Rectilinear Grid

- Similar to uniform grid
- What is the main advantage here?
- What are the disadvantages?

Curvilinear Grid

- Note that each node still has the same number of neighbors
- What is the main advantage here?
- What are the disadvantages?

Adaptive Mesh Refinement Grid

- Block structured
- Solves problem of having too much resolution in places that you don't need it
- Software is more complicated
- Error analysis more difficult

Properties of Structured Grids

- Number of adjacent mesh elements is always the same
- Generally more accurate per dof
- Convergence of algorithms (linear solvers) usually faster
- Better data layout, which is good for computation

5-Point Stencil

5-point stencil

- Simplest 2-D case
- Leads directly to a sparse (penta-diagonal) matrix
- Easy to solve with iterative methods

Structured Grid Applications: Climate Modeling

Summary

- Structured grids exist in many shapes and forms
- Well developed and well understood methods available
- Work extremely well on parallel and other high performance computing environments