# Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark





Group 1030

# ntroduktio

rensningsanlæg

Problem formuler

# System beskrivel

Løsninger o begrænsnir

# begrænsninger

Modellerin

# ....

Struktur

Preissmann

Implementerin

# Kontrol

MPC

Resulta

Diskussion/Konklusion

# Introduktion

Kloakker og rensningsanlæg Problem formulering

# System beskrivelse

Løsninger og begrænsninger

# Modellering

# Simulering

Struktur

Preissmann Implementering

# Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems
Aalborg University
Denmark
47



# Typisk opbygning af kloak ledning

Agenda

Group 1030

# Introduktio

Kloakker og rensningsanlæg

Problem formulering

## System beskrivels

Løsninger og

## begrænsninger

# Modellering

Simulering

Droinomono

Preissmann

Implementeri

# Kontro

Lineariserin

....

nesultat





Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

System beskriver

Løsninger og

begrænsninge

Modellering

Cimularina

Struktur

Preissmann

Implementeri

Kontro

Linearisering

Resultat

Diskussion/Konklusion

Mekanisk rensning



Agenda

Group 1030

## ntroduktion

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

## begrænsninger

Modellering

## 11100001101111

Simulerin

OII UKUUI

Preissmann

impiementerin

# KOHITOI

Lineariserin

Resultat

- ▶ Mekanisk rensning
- Sandfang



Agenda

Group 1030

## ntroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

### begrænsninger

Modellering

Simulerir

Drojoomon

i iolooillailli

.....

## Kontro

Linearisering

Resulta

- ► Mekanisk rensning
- Sandfang
- Primær rensning



# Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

# Modellering

11100001101111

## Simulerin

Projesmann

FIBISSIIIdilli

Implementering

# Kontrol

Lineariserin

Resulta

- ► Mekanisk rensning
- Sandfang
- Primær rensning
- ► Sekundær rensning



Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

# Modellerin

# .

Simulerir

Draicemann

Preissmann

Implementerin

# Kontro

Linearisering

....

Diekussion/Konklusio

► Mekanisk rensning

- Sandfang
- ▶ Primær rensning
- Sekundær rensning
- Kemisk rensning



Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

Virksomheds besøg ved Fredericia Spildevand og Energi A/S.



Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

### System beskrivels

Løsninger og

### begrænsninger

Modellerin

### Modellelli

Otendatu

Droinomor

FIEISSIIIdilli

Implementerin

# Kontro

Lineariserin

MPC

Resulta

- ► Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
  - Større udledninger uden varsel



Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

### System beskrivel

Løsninger og

## begrænsninger

Modellerin

Struktur

Droinomono

Preissmann

Implementer

# Kontro

Linearisering

Resulta

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
  - Større udledninger uden varsel
  - ► Problemer for aerobe bakterier



Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

### System beskrivel

Løsninger og

### begrænsninger

. . . . . .

## Modellerin

## Simularina

Struktur

Preissmann

Preissmann

Implementeri

# Kontroi

Linearisering

Resulta

- Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
  - Større udledninger uden varsel
  - ► Problemer for aerobe bakterier
  - Andre forstyrelser



# Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.



# Udgangspunkt i et virkeligt setup

# Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

# Modellering

# ....

Simulering

Droinomon

r reissiliani

Implementeri

# Kontrol

Lineariserin

Resultat





# Udgangspunkt i et virkeligt setup

# Agenda

Group 1030

# ntroduktio

Kloakker og rensningsanlæg

# System beskrivelse

Løsninger og

# Modellerina

Modellelll

# Simulen

Preissmann

Implementerin

# Lineariaeri

Lineariserin

Resulta

- Data fra industri.
- ► Flow profiler af beboelse og mindre industri.







# Løsninger og begrænsninger

Agenda

Group 1030

# ntroduktion

rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og begrænsninger

bogiconomig

Modellering

### Modelleriii

Olas de de

Struktur

Preissmann

Implementerin

# Kontro

Lineariserin

MPC

Resultat

Diskussion/Konklusion

▶ Indsættelse af tank



# Løsninger og begrænsninger

# Agenda

Group 1030

## troduktion

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og begrænsninger

. . . . .

### 1110001101111

Simularin

Struktur

Preissmann

Implementer

### Kontro

Lineariserin

Diskussion/Konklusio

▶ Indsættelse af tank

► Afgrænse simulering til enkelt kemisk component



# Løsninger og begrænsninger

# Agenda

Group 1030

# troduktion

Kloakker og rensningsanlæg

Problem formulerin

# System beskrivelse

Løsninger og bearænsninger

begrænsning

## Simulering

Struktur

Preissmann

Implementer

### Kontro

Lineariserin

Diskussion/Konklusion

Indsættelse af tank

► Afgrænse simulering til enkelt kemisk component

► Runde kloak rør



# Agenda

# Group 1030

# Modellering

Diskussion/Konklusion

# Kloak ledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right)$$

Antagelser

Transport af concentrat i kloak ledning

Sammenkobling af kloakledninger

Tank.



# Agenda

Group 1030

# stroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrive

Løsninger og hearænsning

# begrænsninger

# Modellering

Struktur

Preissmann

Implementer

# ...

Lineariserir

Resulta

Diskussion/Konklusion

# ► Kloak ledning

- ► Saint-Venant
- ► Kontinuitet:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

- ► Transport af concentrat i kloak ledning
  - ► Afhænger af flow i kloak ledning
  - Antagelser
- ► Sammenkobling af kloakledninger

► Tank.



# Agenda

Group 1030

Modellerina

Diskussion/Konklusion

# Kloak ledning

► Impuls: Antagelser

- Saint-Venant
- Kontinuitet:

$$\frac{\partial A(x, t)}{\partial t}$$

$$\frac{\partial (x,t)}{\partial t} + \frac{\partial}{\partial t}$$

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{Q}{X} \left( \frac{Q^2}{A} \right)$$

$$\left(\frac{Q}{A}\right)$$

$$\left(\frac{\overline{A}}{A}\right)$$

$$\left(\frac{a}{A}\right)$$

$$\left(\frac{\overline{A}}{A}\right)$$
 +

$$\left(\frac{}{A}\right)$$
 +

$$\frac{\partial S}{\partial x} + S_f - S_b$$

- Transport af concentrat i kloak ledning
  - Afhænger af flow i kloak ledning
  - Antagelser
- Sammenkobling af kloakledninger
  - Summering af flow og koncentrat
  - Antagelser
- Tank.



# Agenda

Group 1030

Modellerina

Diskussion/Konklusion

# Kloak ledning

- Saint-Venant
- Kontinuitet:

► Impuls: Antagelser

$$\frac{\partial A(x,t)}{\partial t}$$
 +

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{Q^2}{Q^2}$$

$$\left(\frac{Q^2}{A}\right)$$

$$\left(\frac{Q^{2}}{A}\right)$$

$$\frac{1}{x}\left(\frac{Q^{2}}{A}\right)$$

$$\left(\frac{Q^2}{A}\right) +$$

$$\left(\frac{Q}{A}\right)$$
 +

$$\left(\frac{\partial}{\partial x}\right) + \frac{\partial n}{\partial x}$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

- Transport af concentrat i kloak ledning
  - Afhænger af flow i kloak ledning
  - Antagelser
- Sammenkobling af kloakledninger
  - Summering af flow og koncentrat
  - Antagelser
- Tank.
  - Ændring i højde og koncentrat
  - Antagelser



Agenda

Group 1030

# ntroduktion

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

Modellering

# modolioning

# i.

Struktur

issmann

# impiementerini

Lineariserin

Resultat

Diskussion/Konklusion

Intialisering



# Agenda

Group 1030

## ntroduktio

rensningsanlæg

Problem formulerin

# System beskrivelse

Løsninger og

### begrænsninge

Modellering

# Simulering

# Struktur

# in untui

eissmann

## Implementering

Kontrol

# Lineariserir

MPC

# Resultat

Diskussion/Konklusion

# ► Intialisering

Opsætning af komponenter



Agenda

Group 1030

# ntroduktio

rensningsanlæg

Problem formulerin

# System beskrivelse

Løsninger og

bogiconorning

## wodellering

## Simulering

Struktur

Preissmann

Preissmann

# IZ. . I . . I

Lineariseri

Resulta

Diskussion/Konklusion

# ► Intialisering

- Opsætning af komponenter
- ► System i steady state



Agenda

Group 1030

# Introduktio

rensningsanlæg

Problem formulerin

# System beskrivelse

Løsninger og

begrænsning

### Modellerin

# Simulering

# Struktur

reissmann

Implementering

Lineariserin

MPC

nesulta

Diskussion/Konklusion

# ► Intialisering

- Opsætning af komponenter
- System i steady state
- Simulering



# Agenda

Group 1030

# ntroduktio

rensningsanlæg

Problem formulerin

### System beskrivel

Løsninger og

--5.----

### Modellerin

## Simulering

# Struktur

reissmann

Implementerin

IIIpieilieilieili

# Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

# ► Intialisering

- Opsætning af komponenter
- System i steady state

# Simulering

Iterativ beregning af komponenterne



# Agenda

Group 1030

Struktur

Diskussion/Konklusion

# ► Intialisering

- Opsætning af komponenter
- System i steady state
- Simulering
  - Iterativ beregning af komponenterne
- ► Gennemgang af resultat



Group 1030

# ntroduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

# Modellering

.

# Struktur

ruktur

rieissilialili

Implementerin

# Kontrol

Lineariserin

MPC

Resultat





Group 1030

# Introduktio

Kloakker og rensningsanlæg

Problem formulerin

# System beskrivelse

Løsninger og

## Degraonaring

Modellering

# \_\_\_\_\_

Simuleri

Ou diktor

Preissmann

Implementeri

# ...,

Lineariserin

Resultat

- ► Kinematisk bølge aproksimering
- ► Fyldningsgrad kurve for rør



Group 1030

# and the second

Kloakker og

Problem formularin

# System beskrivelse

Løsninger og

# Modellering

Simulerii

# Preissmann

### Implemente

## Implementer

# Kontrol Lineariserii

MPC

Resultat

Diskussion/Konklusion



Dept. of Electronic Systems Aalborg University Denmark



# Preissmann iteration

# Agenda

Group 1030

# ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

# System beskrivel

Løsninger og

# Modellering

Cincillania

Struktur

### Preissmann

Implementer

# mpiomonion

Lineariserir

Resultat





# Preissmann stabilitet

Agenda

Group 1030

# ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

## System beskrivels

Løsninger og

# Modellering

# ....

\_\_\_\_\_

Preissmann

Implementeri

# Implementen

KOHITOI

Diskussion/Konklusion

Ubetinget stabilitet



# Courant's tal

Agenda

Group 1030

# Introduktio

Kloakker og rensningsanlæg

Problem formulering

# System beskrivelse

Løsninger og

# Modellering

Simulering

Struktur

Preissmann

Implementer

# . . . .

Lineariserin

Resultat

Diskussion/Konklusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}} \cdot \Delta t}}{\Delta x}$$



Group 1030

# Introduktio

Kloakker og

Problem formuleri

### System beskrivel

Løsninger og

# Modellering

### Modelleilli

Ollifuletti

Preissmann

### Implementer

# Kontrol

Lineariser

Resultat





Group 1030

# Introduktio

Kloakker og

Problem formulering

### System beskrivel

Løsninger og

### bogradilaringor

# Modellering

Simulerir

Preissmann

### Implementer

# Kontrol

Lineariseri

Resultat





Group 1030

### System beskrivelse

Modellering

Implementering

Resultat

- ► Implementation
- ► Kontrol
- Resultater
- Diskussion
- ► Konklusion



Group 1030

### ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### --5-----5-

## Modellering

Simulering

Struktur

Preissmann

Implementering

## Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion





Group 1030

Implementering

Diskussion/Konklusion

# 1. Pipe

- ▶ længde [m]
- sektioner
- ► S<sub>b</sub> (Hældning) [‰]
- $\Delta x = Længde/Sektioner [m]$
- Diameter [m]
- Theta
- $Q_f[m^3/s]$
- Side inflow
- Placering i data

# 2. Tank

- Størrelse [m³]
- ► Højde [m]
- Areal = Size / Height [m²]
- ► Maximum outflow [m³/s]
- Placering i data



Group 1030

## System beskrivelse

### Modellering

# Simulering

Implementering

Resultat

# ► Rør specifikationer

| Fields | length | = sections | <b>⊞</b> Dx | <b>⊞</b> Sb | <b>⊞</b> d | H Theta | ■ Qf   | ☐ side_inflow | data_location |
|--------|--------|------------|-------------|-------------|------------|---------|--------|---------------|---------------|
| 1      | 700    | 35         | 20          | 0.0030      | 0.9000     | 0.6500  | 0.9730 | 0             | 1             |
| 2      | 303    | 15         | 20.2000     | 0.0030      | 0.9000     | 0.6500  | 0.9730 | 0             | 3             |
| 3      | 27     | 2          | 13.5000     | 0.0030      | 1          | 0.6500  | 1.2843 | 1             | 4             |
| 4      | 155    | 8          | 19.3750     | 0.0041      | 1          | 0.6500  | 1.5014 | 0             | 5             |
| 5      | 295    | 14         | 21.0714     | 0.0122      | 0.8000     | 0.6500  | 1.4386 | 0             | 6             |
| 6      | 318    | 15         | 21.2000     | 0.0053      | 0.9000     | 0.6500  | 1.2932 | 1             | 8             |



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

hoarmeninger

### Modellering

### Modelleilli

----

Droinomono

Preissmann

Implementering

### . . . .

Lineariserin

MPC

Resultat

Diskussion/Konklusion

# ► Tank specifikationer

| Fields | Ш | size | height | area |   | Q_out_max | data_location |
|--------|---|------|--------|------|---|-----------|---------------|
| 1      |   | 90   | 10     |      | 9 | 0.9730    | 2             |
| 2      |   | 90   | 10     |      | 9 | 1.2932    | 7             |



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

# Modellering

### Modellerin

Simulering

Struktur

Preissmann

Implementering

### .

### KOHITOI

MPC

Resultat

Diskussion/Konklusio

# ► System specifikationer

| Fields | type type | $\coprod$ component | sections     sections |
|--------|-----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 'Pipe'    | 1                   | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2      | 'Tank'    | 1                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3      | 'Pipe'    | 4                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4      | 'Tank'    | 1                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5      | 'Pipe'    | 14                  | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6      | 'Total'   | 21                  | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



Group 1030

### ntroduktion

Kloakker og rensningsanlæg

Problem formulering

### System beskrivelse

Løsninger og

begrænsninger

### Modellering

Ollilulei

Desirence

Preissmann

Implementering

# Kontrol

Lineariserin

MPG

Resultat

Diekussien/Kenklusien





Group 1030

### Modellering

## Implementering





Group 1030

### ntroduktio

rensningsanlæg

Systom backrivals

### System beskrives

Løsninger og

begrænsninger

# Modellering

Simularing

Struktur

Preissmann

## Implementering

....

### Kontrol

Lineariseri

Resulta

Dickussion/Konklusio





Group 1030

### Introduktio

Kloakker og

Problem formulering

### System beskrivels

Løsninger og

### begrænsninger

Modellering

### Simulering

Struktur

Preissmann

Implementering

28

### implomentering

### 1.01101

Linearisering

IVIFO

nesultat

Diskussion/Konklusion

► Itererer igennem rør og tank for hvert tidsskridt





### Group 1030

### ntroduktio

rensningsanlæg

Problem formuleri

### System beskrivels

Løsninger og

### begrænsninger

# Modellering

### Simulering

Projeemann

## Implementering

# Kontrol

Lineariseri

# Resultat

Diskussion/Konklusion

29











Group 1030

### ntroduktio

rensningsanlæg

Problem formulering

### System beskrivel

Løsninger og

.....

### Modellerin

....

----

- ·

Preissmann

Implementer

Kontro

### Linearisering

Linearisering

Resulta

Diskussion/Konklusion

► Linearisering af ulineær model

► Opstilles på state space form

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

### System beskrive

Løsninger og

....

### Modellering

----

Droinomone

FIEISSIIIdIIII

Implementer

...

### Kontro

Linearisering

Resulta

Diskussion/Konklusion

# ► Priessmann scheme

► Opsat på matrix og vektor form

$$\left[ \underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{b} \right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[ \underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{c} \underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix}$$



Group 1030

### stroduktion

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivels

Løsninger og

### begrænsninger

# Modellering

### Simulering

- ·

Preissmann

Implementer

### Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & b_1 & 0 & \cdots & 0 \\ 0 & a_1 & b_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & a_{m-1} & b_m \end{bmatrix}}_{\xi} \underbrace{\begin{bmatrix} h_0^{i+1} \\ h_1^{i+1} \\ h_1^{l+1} \\ \vdots \\ h_m^{i+1} \end{bmatrix}}_{\chi(k+1)} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ c_0 & d_1 & 0 & \cdots & 0 \\ 0 & c_1 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & c_{m-1} & d_m \end{bmatrix}}_{\chi(k)} \underbrace{\begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{\chi(k)}$$

 $-a_0$ 

 $\overline{dQ}$ 

 $B_d$ 



Group 1030

### Introduktio

Kloakker og rensningsanlæg

Problem formuler

### System beskrivel

Løsninger og

begrænsninger

# Modellering

### Simulerir

- ·

1 1010011101111

Implementeri

## Kontrol

Linearisering

WPG

Resultat

Diskussion/Konklusion

► e - Forøgelse af højde i tank(inflow)

- ► f Reducering af højde i tank(Outflow)
- ► g Inflow i efterfølgende rør

$$= \underbrace{ \begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} }_{x(k+1)} + \underbrace{ \begin{bmatrix} d_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c_{2,0} & d_{2,1} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i} \\ h_{2,0}^{i} \\ h_{2,1}^{i} \\ h_{2,1}^{i} \end{bmatrix}}_{x(k)} }_{B} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix} }_{B}$$



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### begrænsninger

Modellering

### Simulerin

Struktur

1 1010011101111

# Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

► Samligning af ulineær og linear model

- ► System setup
- ► Sinus input

| Туре  | Components | Sections |
|-------|------------|----------|
| Pipe  | 1          | 35       |
| Tank  | 1          | 1        |
| Pipe  | 18         | 227      |
| Total | 20         | 263      |





Group 1030

## Modellering

### Kontrol Linearisering

Resultat



47



Group 1030

### System beskrivelse

# Modellering

MPC

# ▶ Cost function

- Afgrænset til at minimiere output variationer
- ▶ Constraints
  - ▶ Højde
  - ► Kontrol input
- ► Prediction model



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivel

Løsninger og

### begrænsninger

# Modellering

### Simularia

### Simulem

Draicemann

1 1010011101111

implemente

### KOHITOI

Lineariseri MPC

....

Resultat

Diskussion/Konklusio

► Bestemmelse af Prediction horizon

- ► Flow profiler
- ▶ Industri
- ► Begrænsning af Prediction horizon
- ► System setup
- ▶ Forstyrrelses input

| Fields | type type | component | <b></b> sections |
|--------|-----------|-----------|------------------|
| 1      | 'Pipe'    | 1         | 5                |
| 2      | 'Tank'    | 1         | 1                |
| 3      | 'Pipe'    | 1         | 5                |
| 4      | 'Total'   | 3         | 11               |





Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulering

### System beskrivelse

Løsninger og

### begrænsninger

bogiconoming

# Modellering

### Simulering

Struktur

. . .

impiementen

# Kontrol

Linearisering MPC

Resultat

Diskussion/Konklusio







Group 1030

### and the second

Kloakker og rensningsanlæg

Problem formulering

### System beskrivelse

Løsninger og

### Løsninger og

begrænsninge

## Modellering

### Simulering

Struktur

Preissmann

Implementer

# Kontrol

Linearicarina

MPC

Resultat

Diskussion/Konklusion





Group 1030

### ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### Løsninger og

Modellering

### Simulerin

Struktur

Preissmann

Implementeri

# Kontrol

Lineariserin

MPC Resultat

Dickussion/Konklusio



Dept. of Electronic Systems Aalborg University Denmark

47



Group 1030

### ntroduktio

rensningsanlæg

Problem formulering

### System beskrivelse

Løsninger og

### Dogradianing

### Modellering

### 1410000110111

## Simulering

Struktui

Preissmann

Implementerin

### Kontro

Linearisering

### Resultat

Diskussion/Konklusio

 System setup, efterligning af Fredericia

► Flow profiler

| Туре  | Component | Sections |
|-------|-----------|----------|
| Pipe  | 1         | 35       |
| Tank  | 1         | 1        |
| Pipe  | 17        | 207      |
| Tank  | 1         | 1        |
| Pipe  | 1         | 38       |
| Total | 21        | 282      |



Group 1030

### ntroduktio

Kloakker og rensningsanlæg

### Problem formulering

System beskrivelse

### Løsninger og

begrænsninge

## Modellering

### Cimularina

Struktur

Preissmann

Implementeri

# Kontrol

Lineariserin

### Resultat

Diskussion/Konklusion





Group 1030

### ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### Løsninger og

# Modellering

### Simulering

Oli tikitui

Preissmann

Implementer

## Kontrol

Lineariserir

### Resultat

Diskussion/Konklusion





Group 1030

### ntroduktio

rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### begrænsning

### Modellering

## Simulering

Struktur

Preissmann

Preissmann

Implementeri

## Kontrol

Linearisering

Resultat

esuitat

► Over dimensioneret tank

► Konstant output af tank



Group 1030

### System beskrivelse

# Modellering

### Kontrol

### Resultat





Group 1030

### System beskrivelse

## Modellering

Resultat

Diskussion/Konklusion 46

► Courant's tal

- ► Model reduction
- ► Wastewater of Aerobic/Anaerobic Transformations in Sewers (WATS)



Group 1030

Kloakker og rensningsanlæg

Problem formulerin

### System beskrivelse

Løsninger og

### begrænsninge

## Modellering

### Cimularia

Struktur

Preissmann

Preissmann

Implementerin

### Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion 47

► Simulering

► MPC