UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE COMPUTAÇÃO CURSO DE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO SOBRE A MODELAGEM DOS EXERCÍCIOS SOLICITADOS UTILIZANDO O SOFTWARE ARENA

Lucca Machado da Silva

Exercício 1)

Uma central de atendimento de emergência recebe uma chamada a cada 10 minutos em média com desvio padrão de 5 minutos, para o despacho de ambulâncias de UTI.

Os tipos de chamadas possuem as seguintes características:

Tipo de Chamada	Percentual das chamadas	Tempo de Atendimento (min.)
Falsa	15% do total de chamadas	10 +/- 2
Emergência sem Risco de Vida	83% das não falsas	29 +/- 5
Emergência com Risco Vida	17% das não falsas	18 +/- 10

Os processos de atendimento são distribuições normais como pode ser visto na tabela acima. Em média o deslocamento da ambulância gasta 7 min para chegar ao atendimento e 7 min para retornar para a central. Assuma que as chamadas falsas são descartadas.

- 1) Inicialmente, assuma que existam muitas ambulâncias. Valide o modelo e apresente como foi validado. Simule o sistema para um total de 250 chamadas.
 - Qual o tempo médio para o atendimento das chamadas?
- 2) Agora assuma que existe apenas uma ambulância, as chamadas que chegam quando esta estiver ocupada devem esperar pelo atendimento até que a ambulância fique livre novamente. Esta ambulância pode dar conta do serviço?
 - Explique por que com base nos resultados do seu relatório.

A partir da leitura do enunciado, pode-se obter a primeira informação que será de grande necessidade a fim de configurar a chegada ao sistema, utilizando uma distribuição normal com o desvio padrão de 5 minutos. Pode-se habilitar essa configuração diretamente no processo discreto chamado *Create* do software arena, de tal maneira que a estrutura deste processo se encontra na figura 1.

Além disso, deve-se salientar a utilização de *Delay* como *Action* nos processos de atendimento, visto que o exercício não especifica a quantidade de funcionários realizando os atendimentos de chamadas, assume-se que o sistema replica as configurações ideias, ou seja, sempre possui atendentes livres para atender as chamadas.

Logo após o *Create* deve-se criar um atributo de decisão chamado *Decide* com *n-way by chance*, visto que possuímos uma quantidade total de três casos, 15% dos quais irão ser chamadas falsas, 70,55% serão chamadas sem risco de vida, visto que as chamadas desse tipo são 83% das 85% restantes resultando em 70,55%, assim, nota-se que a probabilidade de chamadas com risco de vida é de 14.45%, desta maneira obtemos o total de 100%, a figura 2 exemplifica como a configuração dessa decisão é realizada.

Figura 1: Configuração do Create

Note que na figura acima o limite máximo de chegadas é de 250, devido ao enunciado do exercício solicitar a simulação para um total de 250 chamadas, além disso, nota-se que chegam somente uma chamada por vez com um tempo entre as chegadas dado pela distribuição normal informada.

Decide				?	×
Name:			Type:		
Decisao Chamada		×	N-way	by Chanc	e ×
Percentages:					
15 70.55				Add	
<end list="" of=""></end>				Edit	
				Dele	te
Comment:					
	OK	Car	ncel	Hel	р

Figura 2: Configuração de Decisão

Observe que na figura 2 é realizado a exibição de apenas duas probabilidades, contudo, a entidade decisão no software arena requer um caso *Else*, e como a soma das probabilidades resultam em 85,55% temos 14,55% restante para o caso *Else*, que irá ser utilizado como a chamada com risco de vida nessa simulação, a figura 3 exibe como é feita e conexão entre a decisão e os próximos processos da simulação.

Figura 3: Uma visão geral de como as conexões da simulação são realizadas

Pode-se observar a maneira com que as probabilidades estão distribuídas na simulação, com 15% sendo redirecionado para o processo de chamada falsa (figura 4), 80,55% para a chamada sem risco de vida (figura 5), e os restantes 14,55% que são encontrados no caso *Else*, para a chamada com risco de vida (figura 6).

Figura 4: Configurações da Chamada Falsa

A figura 4 exibe a configuração do processo de chamada falsa, que tem uma distribuição normal 10,2

Figura 5: Configuração da Chamada sem risco de vida

A figura 5 exibe a configuração do processo de chamada sem risco de vida, exibindo a distribuição normal 29,5

Figura 6: Configuração da Chamada com risco de vida

A figura 6 exibe a configuração do processo com risco de vida, mostrando a sua distribuição normal 18,10

Após isso é possível observar novamente a figura 3, nota-se que caso a chamada seja falsa essa entidade será direcionada para o fim da simulação. Caso as chamadas sejam válidas, ao fim desse processo elas serão redirecionadas ao processo da ambulância, a qual a configuração consta na figura 7.

Figura 7: Configuração da ambulância

Note que a configuração segue a parte 1 do exercício 1 para a realização da primeira simulação, conforme o enunciado nos informa temos um tempo médio que a ambulância gasta para chegar ao destino do atendimento e também para retornar a central de um total de 14 minutos.

Com todas essas informações, pode-se responder a questão 1, que solicita o tempo médio de atendimento de chamadas

Identifier	Average	Half Width	Minimum	Maximum	Observations
Tempo_Sem_Risco	15.554	(Insuf)	.04410	59.035	172
Chamada.VATime	35.141	(Insuf)	4.6036	55.163	250
Chamada.NVATime	.00000	(Insuf)	.00000	.00000	250
Chamada.WaitTime	83.334	(Insuf)	.00000	294.91	250
Chamada.TranTime	.00000	(Insuf)	.00000	.00000	250
Chamada.OtherTime	.00000	(Insuf)	.00000	.00000	250
Chamada.TotalTime	118.47	(Insuf)	4.6036	329.52	250
Deslocamento Abulancia.Queue.WaitingTime	100.64	(Insuf)	.00000	294.91	207

Figura 8: Resultado da simulação para a pergunta 1

Pode-se observar na figura 8 que temos um tempo médio para o atendimento das chamadas de 35,141 minutos.

Já para a pergunta 2, precisa-se alterar a configuração da ambulância do modelo para a configuração lógica *Seize Delay Release* visto que possui somente uma ambulância para o atendimento, logo, essa configuração ira permitir que uma fila possa ser gerada.

Figura 9: Nova configuração do processo de deslocamento

Note que a figura 9 ainda segue a mesma configuração de tempo de anteriormente, a única modificação foi no tipo da ação lógica.

Identifier	Average	Half Width	Minimum	Maximum	Observations
Tempo Sem Risco	15.554	(Insuf)	.04410	59.035	172
Chamada.VATime	35.141	(Insuf)	4.6036	55.163	250
Chamada.NVATime	.00000	(Insuf)	.00000	.00000	250
Chamada.WaitTime	83.334	(Insuf)	.00000	294.91	250
Chamada.TranTime	.00000	(Insuf)	.00000	.00000	250
Chamada.OtherTime	.00000	(Insuf)	.00000	.00000	250
Chamada.TotalTime	118.47	(Insuf)	4.6036	329.52	250
Deslocamento_Abulancia.Queue.WaitingTime	100.64	(Insuf)	.00000	294.91	207
DISCF	RETE-CHANGE	VARIABLES			
Identifier	Average	Half Width	Minimum	Maximum	Final Value
Chamada.WIP	9.9182	(Corr)	.00000	25.000	.00000
Motorista_1.NumberBusy	.97043	(Insuf)	.00000	1.0000	.00000
Motorista_1.NumberScheduled	1.0000	(Insuf)	1.0000	1.0000	1.0000
Motorista_1.Utilization	.97043	(Insuf)	.00000	1.0000	.00000
Deslocamento_Abulancia.Queue.NumberInQueue	6.9763	(Corr)	.00000	22.000	.00000

Figura 10: dados obtidos a partir da simulação 2

A partir dos dados obtidos dessa nova simulação, podemos notar que somente uma ambulância não irá ser suficiente, o tempo médio de espera na fila foi de 100 minutos, com seu tempo máximo tendo 294 minutos, vale salientar que diversos casos de risco de vida estão contidos nesse grupo que espera até mesmo mais que duas horas para ser atendido pela ambulância.

Questão 2)

Em um sistema de processamento multitarefas, as tarefas chegam em lotes uniformemente distribuídos de 1 a 500 tarefas, com uma EXPO (100) seg. Com a seguinte probabilidade de tipos de tarefas diferentes.

Tarefas	Probabilidade
0	0.19
1	0.31
2	0.23
3	0. 27

As tarefas do tipo 0 são descartadas, o tempo de atendimento do processador para as tarefas do tipo 1 são distribuídos por uma NORMAL com média de 52seg. e desvio padrão de 8seg. O tempo de processamento das tarefas tipo 2 são contínuos e levam em torno de 15seg cada uma. E finalmente, os tempos para atender as tarefas do tipo 3 são uma distribuição TRIANGULAR com parâmetros (15, 25,30) seg.

Modele o sistema e simule seu comportamento para 5 replicações para executar 10 lotes de tarefas cada uma. Responda as seguintes questões:

- a. Qual o tempo médio na fila em cada processo?
- b. Qual o tempo médio das tarefas no sistema?
- c. Qual o tempo médio de atendimento de cada processo?
- d. Qual a quantidade de tarefas descartadas?
- e. Qual a quantidade de tarefas tipo 1, tipo 2 e tipo 3 processadas?

Figura 11: visão geral da modelagem

A figura 11 exibe a visão geral de como a modelagem do exercício 2 foi realizada.

Figura 12: Configuração do Create

A figura 12 mostra como a configuração do Create da simulação foi realizada, vale salientar que como a versão da arena é para estudantes, não é possível utilizar uma expressão UNIF(1,500) como entidades por chegada, devido ao limite de 150 entidades imposto pelo ARENA, então, opta-se por utilizar UNIF(1,150) ou UNIF(1,100)

Figura 13: Assign

Após isso é criado um assign para atribuir um valor da tarefa a um atributo tarefa_tipo, esse valor pode ser 0,1,2 ou 3, e com suas respectivas probabilidades.

Figura 14: Configuração da decisão

A figura 14 exibe a configuração de como a decisão irá ser feita, dependendo do valor que o atributivo tipo_tarefa possui, irá para o seu respectivo tipo de tarefa.

Figura 15: Configuração da tarefa 1

A figura 15 nos exibe a configuração da tarefa 1, a qual possui uma distribuição normal com média de 52 segundos e desvio padrão de 8 segundos.

Figura 16: Configuração da tarefa 2

A figura 16 exibe a configuração da tarefa 2, que possui um tempo contínuo de 15 segundos.

Figura 17: Configuração da tarefa 3

A figura 17 exibe a configuração da tarefa 3, que utiliza uma distribuição triangular com um padrão 15,25,30 segundos.

Após todas as informações concedidas, vale salientar que a simulação utilizará a configuração de 5 replicações, assim, os dados analisados estão localizados ao fim do arquivo gerado pelo software arena, visto que esses dados são uma média das 5 replicações e não só de uma.

A) O tempo médio na fila em cada processo segue na tabela a baixo, vale salientar que esse é o tempo médio das 3 tarefas em cada repetição, rep1 até rep 5 seguindo suas respectivas repetições.

Identifier	Average	Observations
Tarefa1_R1	272.59	11
Tarefa2_R1	<u>22.500</u>	4
Tarefa3_R1	212.65	19
Tarefa1_R2	83.046	4
Tarefa2_R2	30.000	5
Tarefa3_R2	43.445	5
Tarefa1_R3	113.10	5
Tarefa2_R3	52.500	8
Tarefa3_R3	50.703	6
Tarefa1_R4	388.90	15
Tarefa2_R4	105.00	15
Tarefa3_R4	176.91	16
Tarefa1_R5	984.05	38
Tarefa2_R5	217.50	30
Tarefa3_R5	261.78	25

O gráfico acima representa a média no tempo de fila e as observações em cada processo com sua respectiva repetição.

B) A tabela a baixo exibe o tempo médio das tarefas em cada repetição, o atributo buscado foi Tarefa. Total Time

Identifier	Average	Observations
TarefaRep1	186.35	44
TarefaRep2	68.538	16
TarefaRep3	90.798	20
TarefaRep4	197.67	59
TarefaRep5	431.38	124

O gráfico acima representa o tempo médio das tarefas no sistema para cada replicação e a quantidade de observações.

C) A tabela abaixo especifica de cada repetição cada tarefa faz parte, obtendo os dados através do relatório por tarefa_(numero).VATimePerEntity

				•
Identifier	Average	Minimum	Maximum	Observations
Tarefa1_R1	51.742	30.414	64.458	11
Tarefa2_R1	15.000	15.000	15.000	4
Tarefa3_R1	23.235	16.464	27.820	19
Tarefa1_R2	52.167	40.658	59.692	4
Tarefa2_R2	15.000	15.000	15.000	5
Tarefa3_R2	22.705	17.195	29.429	5
Tarefa1_R3	55.491	49.309	63.940	5
Tarefa2_R3	15.000	15.000	15.000	8
Tarefa3_R3	21.463	16.326	27.714	6
Tarefa1_R4	55.401	34.344	69.376	15
Tarefa2_R4	15.000	15.000	15.000	15
Tarefa3_R4	22.962	16.838	26.573	16
Tarefa1_R5	53.183	41.986	70.235	38
Tarefa2_R5	15.000	15.000	15.000	30
Tarefa3_R5	22.258	15.251	28.604	25

O gráfico acima permite uma exemplificação de como é o tempo médio, mínimo e máximo de atendimento de cada tarefa em cada repetição, além disso, também nos informa a quantidade de observações de cada tipo de tarefa.

D) A tabela a seguir mostra a quantidade de tarefas descartadas seguindo as respectivas repetições

Identifier	Qtd_Descartados
Rep1	10
Rep2	2
Rep3	1
Rep4	13
Rep5	31

E) A tabela a seguir exibe a quantidade de tipo de tarefas processadas em cada repetição

Identifier	Quantidade
Tarefa1_R1	11
Tarefa2_R1	4
Tarefa3_R1	19
Tarefa1_R2	4
Tarefa2_R2	5
Tarefa3_R2	5
Tarefa1_R3	5
Tarefa2_R3	8
Tarefa3_R3	6
Tarefa1_R4	15
Tarefa2_R4	15
Tarefa3_R4	16
Tarefa1_R5	38
Tarefa2_R5	30
Tarefa3_R5	25

Quantidade vs Identifier 30 Quantidade 20 10 Tale faith and faith Taletal R3

Gráfico exibindo a relação entre as tarefas com seus respectivos tipos e de qual repetição fazem parte.

Identifier