TP n°12 : Étude d'un dipôle RC série

I. Contexte du sujet

La capacité d'un condensateur est une de ces caractéristiques. Il est indispensable de la connaître afin de choisir correctement le condensateur adapté à l'utilisation que l'on veut en faire. Un condensateur peut servir à limiter les variations de tension dans un circuit électrique, puisque son temps caractéristique de charge (et de décharge) s'oppose aux variations. Ainsi, certains condensateurs peuvent être utilisés pour « lisser » un signal électrique qui subit des variations indésirables. Plus la capacité du condensateur est grande, plus celui-ci va lisser la tension.

Pour finaliser la transformation d'un signal alternatif en signal continu, un élève de STI2D a besoin d'un condensateur de capacité comprise entre 800 µF et 1200 µF, mais il ne trouve qu'un condensateur sans inscription.

« Comment l'élève peut-il déterminer s'il peut utiliser le condensateur trouvé ? »

II. Documents à disposition.

Doc n°1: Circuit électrique permettant l'étude de la charge ET de la décharge d'un condensateur

Doc n°2: Temps caractéristique

Le *temps caractéristique* (ou constante de temps) τ de la charge ou de la décharge d'un dipôle RC est défini par

$$\tau \text{ en s}$$
 $\tau = R \times C$ $\tau \in \mathbb{R}$ $T \in \mathbb{R}$

Exemple de détermination de τ par lecture graphique ou par tracé de la tangente à l'origine

Dans le cas de la charge du dipôle RC initialement déchargé, la solution de l'équation différentielle est :

$$u_C = E \times \left(1 - e^{-\frac{1}{R \times C}}\right)$$
Pour $t = \tau = R \times C$, on obtient:

$$u_C(\tau) = E \times (1 - e^{-1}) = E \times (1 - 0.37) = 0.63E$$

<u>Doc n°3</u>: Relation de proportionnalité

Deux grandeurs A et B sont proportionnelles s'il existe une constante k telle que A = k.B. Dans ce cas, la représentation graphique de A en fonction de B est une droite passant par l'origine dont le coefficient directeur est égal à k.

II. Matériel à disposition

- Un condensateur de capacité inconnue
- Une boite à décade de résistances
- Un générateur de tension continue.
- Un interrupteur 3 points
- Un voltmètre

- Un ordinateur muni d'une carte d'acquisition et du logiciel Latis-Pro

III. Travail à effectuer.

ANALYSER

1°- A l'aide de la liste de matériel et des documents, proposer une démarche permettant de déterminer le plus précisément possible si le condensateur est adapté à l'utilisation que veut en faire l'élève.

Appel n°1	Appelez le professeur pour lui proposer votre démarche

RÉALISER

• Réaliser le protocole fourni. *ATTENTION* : Appeler le professeur après avoir schématisé les branchements demandés !

- Décharger le condensateur en basculant l'interrupteur dans la position adapté et vérifier à l'aide du voltmètre que la tension a ses bornes est bien nulle.
- Allumer le générateur, lancer l'acquisition (F10) puis basculer l'interrupteur dans la position adaptée pour le charger.
- Mettre en œuvre la démarche et présenter les résultats de mesures (minimum 4) sous la forme d'un tableau en précisant la méthode utilisée. *ATTENTION*: *Bien décharger le condensateur entre chaque mesure*.

Remarques : Latis-Pro dispose d'une case « ajouter les courbes » et d'un outil « Tangente » (clic droit). Renommer les courbes si vous voulez vous y retrouver.

VALIDER

2°- Répondre à la problématique.

Appel n°4	Appelez le professeur pour lui montrer vos résultats
-----------	--