CSC 137 Cokgor - K-Map Exercises

(Answers are at the back)

1) Simplify the following Boolean equation using K-maps.

$$Y = AC + A'B'C$$

2) Simplify the following Boolean equation using K-maps.

$$Y = A'B' + A'BC' + (A+C')'$$

3) Simplify the following Boolean function using K-maps.

$$Y(A, B, C) = \sum_{m} (0, 1, 2, 3, 4, 5)$$

4) Simplify the following Boolean function using K-maps.

$$Y(A, B, C, D) = \sum_{m} (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)$$

5) Find a minimal Boolean equation for the function with the truth table as shown below. Remember to take advantage of the don't care entries.

Α	В	\boldsymbol{c}	D	Y
0	0	0	0	Х
0	0	0	1	X
0	0	1	0	X
0	0	1	1	0
0	1	0	0	0
0	1 1	0	1	Х
0	1	1	0	0
0	1	1	1	X
1	0	0	0	1
1		0	1	0
1	0 0 0	1	0	Х
1	0	1 1	1	1
1	1	0	0 1 0 1 0 1 0 1 0 1	1
1	1	0	1	1
0 0 0 0 0 0 0 0 1 1 1 1 1	1	1	1 0	X X X 0 0 X 0 X 1 0 X 1 1 1 X 1
1	1	1	1	1

6) Find a minimal Boolean equation for the function with the truth table as shown below. Remember to take advantage of the don't care entries.

Α	В	С	D	Υ
0	0	0	0	0
0 0 0	0	0	1	1
0	0	1	1	X
0	0	1	1	X
0	1	0	0	0
0	1	0	1	X
0	1	1		Х
0	1	1	1	X
1 1 1	0	0	0	X X X 1
1	0	0	1	0
1	0	1	1 0	0
1	0	1	1	1
1	1	0	0	1 0
1	1	0	1	1
1	1	1	0	X 1
1	1	1	1	1

7) A circuit has four inputs and two outputs. The inputs A3, A2, A1 and A0 represent a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

8) An M-bit thermometer code for the number k consists of k 1's in the least significant bit positions and M- k 0's in all the more significant bit positions. A binary-to-thermometer code converter has N inputs and 2^N-1 outputs. It produces a 2^N-1 bit thermometer code for the number specified by the input.

For example, if the input is 110, the output should be 0111111. Design a 3:7 binary-to-thermometer code converter. Give a simplified Boolean equation for each output, and sketch a schematic.

Answers:

1) Simplify the following Boolean equation using K-maps.

$$Y = AC + A'B'C$$

$$Y(A, B, C) = \sum_{m} (1, 5, 7)$$

$$Y = AC + B'C$$

2) Simplify the following Boolean equation using K-maps.

$$Y = A'B' + A'BC' + (A+C')'$$

$$Y = A'B'C + A'B'C' + A'BC' + A'C$$

$$Y = A'B'C + A'B'C' + A'BC' + A'BC + A'B'C$$

$$Y(A, B, C) = \sum_{m} (0, 1, 2, 3)$$

$$Y = A'$$

3) Simplify the following Boolean function using K-maps.

$$Y(A, B, C) = \sum_{m} (0, 1, 2, 3, 4, 5)$$

$$Y = A' + B'$$

4) Simplify the following Boolean function using K-maps.

$$Y(A, B, C, D) = \sum_{m} (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13)$$

$$Y = C' + A' D' + B' D'$$

5) Find a minimal Boolean equation for the function with the truth table as shown below. Remember to take advantage of the don't care entries.

Α	В	С	D	Y
0	0	0	0	X
0	0	0	1	X
0	0	1	1 0	X X 0
0	0	1		0
0 0 0	1	0	1 0	0
	1	0	1	X
0	1	1	1 0 1 0 1 0 1	0
0 0 0 1 1	1	1	1	X 0 X 1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	
1	0	1	1	1
1	1	0	0	1
1 1 1	1	0	1 0	X 1 1 X 1
1	1	1		X
1	1	1	1	1

One solution:

Y = A B + A C + B' D'

6) Find a minimal Boolean equation for the function with the truth table as shown below. Remember to take advantage of the don't care entries.

Α	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	1 0	X
0	0	1	1	X
0	1	0	0	0
0	1	0	1 0	X
0	1	1		X
0	1	1	1	X X X
1	0	0	0	1
1	0	0	1	0
1	0	1	1 0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1 0	1
1	1	1	0	X 1
1	1	1	1	1

One solution:

7) A circuit has four inputs and two outputs. The inputs A3, A2, A1 and A0 represent a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

Decimal Value	A ₃	A ₂	<i>A</i> ₁	A_0	D	P
0	0	0	0	0	0	0
1	0	0	0	1	0	0
2	0	0	1	0	0	1
2 3	0	0	1	1	1	1
4 5	0	1	0	0	0	0
	0	1	0	1	0	1
6	0	1	1	0	1	0
7	0	1	1	1	0	1
8	1	0	0	0	0	0
9	1	0	0	1	1	0
10	1	0	1	0	0	0
11	1	0	1	1	0	1
12	1	1	0	0	1	0
13	1	1	0	1	0	1
14	1	1	1	0	0	0
15	1	1	1	1	1	0

P has two possible minimal solutions:

8) An M-bit thermometer code for the number k consists of k 1's in the least significant bit positions and M- k 0's in all the more significant bit positions. A *binary-to-thermometer code converter* has N inputs and 2^N-1 outputs. It produces a 2^N-1 bit thermometer code for the number specified by the input.

For example, if the input is 110, the output should be 0111111. Design a 3:7 binary-to-thermometer code converter. Give a simplified Boolean equation for each output, and sketch a schematic.

$$\begin{split} Y_6 &= A_2 A_1 A_0 \\ Y_5 &= A_2 A_1 \\ Y_4 &= A_2 A_1 + A_2 A_0 \\ Y_3 &= A_2 \\ Y_2 &= A_2 + A_1 A_0 \\ Y_1 &= A_2 + A_1 \\ Y_0 &= A_2 + A_1 + A_0 \end{split}$$

