NLP Project Report

• • •

Youce Ji, Isabel Rozario, Jingyuan Xing, Huan Zhang

Application Structure

Information Extraction

Relation Extraction

• Main Idea:

- Identify the root of sentence and extract corresponding relations into [subject, verb, object]
- Parse every sentence based on root through dependency parser in SpaCy:
 - E.g. I have an apple \rightarrow root = "have" \rightarrow ['I', "have", "an apple"]
- Other than the root, we also pay attention to other potential valid verbs/actions in each sentence
 - E.g. I have an apple, which was eaten by Jack \rightarrow focus on "eaten" \rightarrow ["an apple", "was eaten by", "Jack"]
- Optional: Inclusion of context (time/place/conditions)

Question Asking

Wh- questions

Binary questions

Auxiliary Verbs:

Is/Are/Was/Were Has/Have

Must

...

- The first Pharaoh of the old kingdom was Djoser
- Was the first Pharaoh of the old kingdom Djoser?
 - The people in Egypt must fight the intruders
 - Must the people in Egypt fight the intruders

Question augmentation

nlpaug package

- Synonym substitution

- Who caused the collapse of the old kingdom?
- Who caused the fall of the pld kingdom?
 - Who succeeded the old king?
 - Who came after the old king?

Question Answering

Sentence Ranker

- Rank the quality of a question or answer based on several characteristics
 - Helper function
 converts questions
 into declarative
 sentences

Evaluating question - sentence similarity

- For each sentence in the text, evaluate its similarity with the question.
- Assign score from 0 to 10, and the sentence with higher similarity will likely to contain the answer.
- Word matching: evaluate by how much repeated vocabulary used.
- Semantic similarity Spacy function: determine the semantic similarity of vocabs based on word vectors.

Who/What/Which Questions

Spacy Part of Speech Matching:

- Subjects: NSUBJ, NSUBJPASS, CSUBJ, CSUBJPASS, AGENT, EXPL
- Objects: DOBJ, DATIVE, ATTR, OPRD

Relation Extractions:

- Subjects: Generate subject phrase by verb phrase
- ➤ Objects: Generate object phrase by verb phrase

4 Answer Candidates

Asking for subjects or objects?

2 Answer Candidates

Evaluating these two candidates?

1 Final Answer!

When/Where Questions

- Locate named entities within the candidate sentence
 - \circ "where" \rightarrow GPE, LOC, FAC, ORG, EVENT
 - "when" → DATE, TIME, PERCENT, MONEY, QUANTITY, ORDINAL, CARDINAL
- Find the prepositional phrase containing the most relevant/greatest number of named entities

How/Why Question Answering

- Emphasis on prepositions and specific phrases: "through", "by", "because", "due to" and extract dependencies
- For Why questions, we try to search for reasons in nearby sentences (the one before or one after)

Binary Questions

- Comparison between Question and the Sentence identified for having the answer
- Check if every word in the question exists in the sentence or is similar enough compared.
- Dealing with double negation

Looking forward...

- Entity coreference to remove ambiguity
- Write more rules for different sentences structures
- Not quite scalable for large-scale Q-A answering
 - Alternative: Transformer Model (Attention is all you need)

Thank You!