Artificial Intelligence Fundamentals

Artificial Intelligence (AI) enables machines to mimic human intelligence.

ALCATEGORIES:

- 1. Narrow AI (Weak AI)
 - Designed for specific tasks
 - Examples: Siri, Netflix recommendations, chess AI
 - Current state of AI
- 2. General AI (Strong AI)
 - Human-level intelligence
 - Can perform any intellectual task
 - Theoretical, not yet achieved
- 3. Super Al
 - Surpasses human intelligence
 - Hypothetical future stage

MACHINE LEARNING (ML):

Subset of AI that learns from data without explicit programming.

Types:

- 1. Supervised Learning
 - Labeled training data
 - Predicts output for new input
 - Algorithms:
 - * Linear Regression (continuous output)
 - * Logistic Regression (classification)
 - * Decision Trees
 - * Random Forest
 - * Support Vector Machines (SVM)
 - * Neural Networks
- 2. Unsupervised Learning
 - Unlabeled data
 - Finds patterns and structure
 - Algorithms:
 - * K-Means Clustering
 - * Hierarchical Clustering
 - * Principal Component Analysis (PCA)
 - * Apriori Algorithm
- 3. Reinforcement Learning
 - Learn through trial and error
 - Reward-based learning
 - Applications: Game playing, robotics
 - Algorithms: Q-Learning, Deep Q-Networks

DEEP LEARNING:

Subset of ML using neural networks with multiple layers.

Neural Network Structure:

- Input Layer: Receives data
- Hidden Layers: Process information
- Output Layer: Produces result

Types:

- 1. Feedforward Neural Networks (FNN)
 - Data flows in one direction
 - Used for classification
- 2. Convolutional Neural Networks (CNN)
 - Image recognition and processing
 - Uses convolutional layers
 - Applications: Face detection, self-driving cars
- 3. Recurrent Neural Networks (RNN)
 - Processes sequential data
 - Has memory of previous inputs
 - Applications: Language translation, speech recognition
- 4. Long Short-Term Memory (LSTM)
 - Special type of RNN
 - Solves vanishing gradient problem
 - Better at long sequences
- 5. Generative Adversarial Networks (GAN)
 - Two networks compete (Generator vs Discriminator)
 - Creates realistic synthetic data
 - Applications: Image generation, deepfakes

NATURAL LANGUAGE PROCESSING (NLP):

Enables computers to understand human language.

Tasks:

- Tokenization: Breaking text into words
- 2. Stemming/Lemmatization: Reducing words to root form
- 3. Part-of-Speech Tagging: Identifying word types
- 4. Named Entity Recognition (NER): Identifying names, places
- 5. Sentiment Analysis: Determining positive/negative tone
- 6. Machine Translation: Google Translate
- 7. Text Summarization: Creating summaries
- 8. Question Answering: Chatbots

COMPUTER VISION:

Enables machines to interpret visual information.

Tasks:

- 1. Image Classification: Categorizing images
- 2. Object Detection: Locating objects (YOLO, R-CNN)
- 3. Image Segmentation: Pixel-level classification
- 4. Facial Recognition: Identifying faces
- 5. Optical Character Recognition (OCR): Reading text

AI ALGORITHMS:

- 1. Search Algorithms
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
 - A* Algorithm (heuristic-based)
 - Minimax (game playing)
- 2. Optimization Algorithms
 - Gradient Descent
 - Genetic Algorithms
 - Particle Swarm Optimization

AI APPLICATIONS:

- ? Healthcare: Disease diagnosis, drug discovery
- ? Finance: Fraud detection, algorithmic trading
- ? Transportation: Self-driving cars, route optimization
- ? E-commerce: Recommendation systems, chatbots
- ? Manufacturing: Quality control, predictive maintenance
- ? Entertainment: Content generation, game AI

ETHICAL CONCERNS:

- Bias in Al models
- Job displacement
- Privacy issues
- Autonomous weapons
- Deepfakes and misinformation
- Al safety and control

POPULAR AI FRAMEWORKS:

- TensorFlow (Google)
- PyTorch (Facebook)
- Keras (High-level API)
- scikit-learn (ML algorithms)
- OpenCV (Computer Vision)
- NLTK/spaCy (NLP)