Theoretische Informatik

Teil 2 Reguläre Ausdrücke

Frühlingssemester 2019

L. Di Caro

D. Flumini

O. Stern

Reguläre Ausdrücke: Einführung

Viele Probleme in der Informatik beinhalten die Prüfung, ob gewisse Wörter zu einer gegebenen Sprache gehören.

- Ist eine Benutzereingabe sinnvoll?
- Gehört ein Wort zu einem Wörterbuch (Rechtschreibprüfung)?
- Bestimmte Folgen von "Events" sollen bestimmte Reaktionen auslösen (z. B. Getränkeautomat).

Bemerkung

Da IT-Systeme nur über **endliche Speicherressourcen** verfügen, ist es daher wichtig Sprachen **endlich repräsentieren** zu können.

Unendlich grosse Sprachen werden so einer **maschinellen Bearbeitung** überhaupt erst zugänglich gemacht.

Reguläre Ausdrücke: Einführung

Reguläre Ausdrücke sind Wörter, die Sprachen beschreiben, also eine Möglichkeit (gewisse) Sprachen endlich zu repräsentieren.

- Die Syntax der regulären Ausdrücke befasst sich mit der Frage, welche Form diese Wörter haben.
- In der **Semantik der regulären Ausdrücke** wird erklärt, wie man reguläre Ausdrücke als Sprachen **interpretiert**.

Reguläre Ausdrücke: Beispiel

Beispiel

Ein regulärer Ausdruck, der die Sprache aller Binärwörter der Länge 4 beschreibt:

$$\underbrace{(0|1)}_{0 \text{ oder } 1 \text{ nochmals dreimal}} \underbrace{(0|1)}_{0 \text{ elemal}} \underbrace{(0|1)}_{\text{genug}}$$

Ein passender regulärer Ausdruck ist also

Reguläre Ausdrücke: Beispiel

Beispiel

Ein regulärer Ausdruck für die Sprache der Binärwörter, die das Teilwort $00\,$ enthalten:

$$\underbrace{(0|1)^*}_{0 \text{ oder } 1 \text{ beliebig oft}} \underbrace{00}_{0 \text{ das Teilwort}} \underbrace{(0|1)^*}_{0 \text{ oder } 1 \text{ beliebig oft}}$$

Ein passender regulärer Ausdruck ist also

$$(0|1)^*00(0|1)^*$$

Reguläre Ausdrücke: Syntax

Definition (Reguläre Ausdrücke)

Es sei \varSigma ein beliebiges Alphabet. Die Sprache RA_{\varSigma} der **regulären Ausdrücke** über \varSigma ist wie folgt definiert:

- $\quad \blacksquare \, \varnothing, \epsilon \in \mathsf{RA}_{\varSigma}$
- $\quad \blacksquare \ \varSigma \subset \mathsf{RA}_{\varSigma}$
- $\blacksquare \ R \in \mathsf{RA}_{\varSigma} \Rightarrow (R^*) \in \mathsf{RA}_{\varSigma}$
- $\blacksquare \ R,S \in \mathsf{RA}_{\varSigma} \Rightarrow (RS) \in \mathsf{RA}_{\varSigma}$
- $\blacksquare \ R,S \in \mathsf{RA}_{\varSigma} \Rightarrow (R|S) \in \mathsf{RA}_{\varSigma}$

Reguläre Ausdrücke: Erläuterungen

Erläuterungen zur Definition

- \blacksquare Die Sonderzeichen ϵ und \varnothing sind reguläre Ausdrücke.
- \blacksquare Jedes Symbol aus dem Alphabet \varSigma ist auch ein regulärer Ausdruck über $\varSigma.$
- Ist R ein regulärer Ausdruck über Σ , dann ist auch (R^*) ein regulärer Ausdruck über Σ .
- \blacksquare Sind R und S reguläre Ausdrücke über \varSigma , dann auch (RS) und (R|S).

Reguläre Ausdrücke: Erweiterte Syntax

Bemerkung

Es gibt unzählige Erweiterungen der Sprache der regulären Ausdrücke. Einige verbreitete abkürzende Schreibweisen sind:

- Ist R ein regulärer Ausdruck, dann steht (R^+) für $R(R^*)$.
- Ist R ein regulärer Ausdruck, dann steht (R?) für $(R|\epsilon)$.
- Sind R_1, \ldots, R_k reguläre Ausdrücke, dann steht $[R_1, \ldots, R_k]$ für $R_1|R_2|\ldots|R_k^{-1}$.

Diese abkürzenden Schreibweisen (R^+ , R? und $R_1|R_2|\dots|R_k$) können in der Folge verwendet werden.

¹Streng genommen müsste man hier $R_1|(R_2|(\ldots|R_k)\ldots)$ schreiben.

Reguläre Ausdrücke: Beispiele

Beispiele

Einige reguläre Ausdrücke über dem Alphabet $\{a,b\}$.

- \blacksquare $((((aa)^*)(b^*))(a(ba)))$
- $\blacksquare ((a|(ab))^*)$
- \blacksquare ((ab)|(ba))
- \blacksquare (a(b(ba)))

Reguläre Ausdrücke: Erste Eigenschaften

Eigenschaften und Konventionen:

- Die Menge RA_{\varSigma} der regulären Ausdrücke über dem Alphabet \varSigma ist eine Sprache über dem Alphabet $\{\varnothing,\epsilon,^*,(,),|\}\cup\varSigma$.
- Der Lesbarkeit halber werden "überflüssige" Klammern weggelassen.
- Damit reguläre Ausdrücke auch mit (teilweise) weggelassenen Klammen eindeutig lesbar bleiben, gilt folgende Rangfolge der Operatoren:
 - "*" vor "Konkatenation" und
 - "Konkatenation" vor "|".

Der Ausdruck $ab^*|c$ wird beispielsweise als $((a(b^*))|c)$ gelesen.

Reguläre Ausdrücke: Semantik

Definition (Die Sprache von regulären Ausdrücken)

Es sei \varSigma ein beliebiges Alphabet. Für jeden regulären Ausdruck $R\in\mathsf{RA}_{\varSigma}$ definieren wir die **Sprache** L(R) **von** R wie folgt:

- $L(\varnothing) = \varnothing$
- $L(\epsilon) = \{ \epsilon \}$
- $L(a) = \{a\} \text{ für } a \in \Sigma$
- $L(R^*) = L(R)^*$
- $\blacksquare \ L(R|S) = L(R) \cup L(S)$
- L(RS) = L(R)L(S)

Reguläre Ausdrücke: Semantik

Erläuterungen zur Definition

- Ø beschreibt die leere Sprache.
- lacksquare beschreibt die Sprache $\{\varepsilon\}$.
- Jedes Symbol $a \in \Sigma$ beschreibt die Sprache $\{a\}$.
- (R^*) beschreibt alle durch Konkatenation kombinierten Wörter, die von R beschrieben werden.
- $lackbox{(}R|S)$ beschreibt alle Wörter, die entweder von R oder von S beschrieben werden.
- ullet (RS) beschreibt die Wörter, die durch Konkatenation aus einem von R beschriebenen Wort gefolgt von einem durch S beschriebenen Wort entstehen.

Reguläre Sprachen

Definition

Eine Sprache A über dem Alphabet Σ heisst $regul\"{a}r$, falls A=L(R) für einen regul\"{a}ren Ausdruck $R\in \mathsf{RA}_\Sigma$ gilt.

Beispiele

- \blacksquare Für $R=0|\:(-?)[1,\ldots,9][0,\ldots,9]^*$ gilt
- $\label{eq:resolvent} \mathbf{F}\ddot{\mathbf{u}}\mathbf{r}\,R = (0?)(10)^*(1?) \; \mathrm{oder} \; R = (10)^*|(01)^*|(10)^*1|(01)^*0 \; \mathrm{gilt}$
 - $L(R) = \begin{array}{c} \text{Menge der Binärw\"orter mit} \\ \text{abwechselnd Nullen und Einsen} \end{array}$

Reguläre Sprachen: Erste Eigenschaften

Lemma (Rechenregeln für reguläre Ausdrücke)

Für jedes Alphabet und alle regulären Ausdrücke $R,S,T\in\mathsf{RA}_{\varSigma}$ gelten folgende Identitäten.

- $\blacksquare L(R|S) = L(S|R)$
- L(R(ST)) = L((RS)T)
- L(R|(S|T)) = L((R|S)|T)
- L(R(S|T)) = L(RS|RT)
- $L((R^*)^*) = L(R^*)$
- $\blacksquare L(R|R) = L(R)$

Beweis.

Elementare Mengenumformungen.

Reguläre Ausdrücke: Anwendungen

Anwendungen von regulären Ausdrücken:

- Mustersuche in Texten
- Lexikalische Analyse (in Compilern); Erkennung von Schlüsselwörtern ("Token")
- Syntax Test (bei einer einfachen Syntax)