Indian Statistical Institute

Date: April 3, 2022 Instructor: Jaydeb Sarkar Analysis II (HW - 8)

(1) Prove that the series

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2},$$

defines a continuous function on \mathbb{R} .

(2) Prove that

$$\int_0^{\pi} \sum_{n=1}^{\infty} \frac{\sin nx}{n^2} \, dx = \sum_{n=1}^{\infty} \frac{2}{(2n-1)^3}.$$

(3) Let p > -1. Prove that

$$\lim_{n \to \infty} \int_{1}^{n} (1 - \frac{x}{n})^{n} x^{p} dx = \int_{1}^{\infty} e^{-x} x^{p} dx.$$

- (4) Can the series of functions $\sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$ be differentiated term by term? (5) Let p > 0. Consider the series $\sum_{n=1}^{\infty} \sin(\frac{x}{n^p})$. Prove that the series
- - (i) diverges for all $x \neq 0$ and $p \leq 1$, and
 - (ii) converges absolutely uniformly on bounded intervals, but not uniformly on \mathbb{R} for all p > 1.
- (6) Let f_n be continuous and $f_n \downarrow 0$ on \mathbb{R} . Prove that if [a,b] does not contain any odd multiple of π , then $\sum_{n=1}^{\infty} (-1)^n f_n(x) \cos nx$ converges uniformly on [a,b].
- (7) Let $\{a_n\}$ be a sequence of real numbers such that $\sum_{n=1}^{\infty} \frac{1}{|a_n|}$ converges. Prove that $\sum_{n=1}^{\infty} \frac{1}{|x-a_n|}$ converges uniformly on bounded intervals not containing any a_n .
- (8) Let $\{a_n\}$ be a monotonic sequence of real numbers such that $a_n \to 0$. Prove that the series

$$\sum_{n} a_n \sin nx \qquad \text{and } \sum_{n} a_n \cos nx,$$

converge uniformly on $\{x: \delta \leq |x| \leq \pi\}$, where $0 < \delta < \pi$.