Introduction to Geometry (20222)

2019

COURSEWORK

This assignment counts for 20% of your marks.

It will take about 8 hours of work

Solutions are due by 28 March, 3pm

Write solutions in the provided spaces.

STUDENT'S NAME:

Academic Advisor (Tutor):

a) Let (x^1, x^2) be coordinates of the vector \mathbf{x} , and (y^1, y^2) be coordinates of the vector $y \text{ in } \mathbf{R}^2.$

Consider the formula

$$(\mathbf{x}, \mathbf{y}) = x^1 y^1 + x^2 y^2 + k x^1 y^2 + k x^2 y^1$$

where k is a real parameter. Show that this formula defines a scalar product in \mathbf{R}^2 in the case if |k| < 1.

Give an example of orthonormal basis for this scalar product.

Explain why this formula does not define a scalar product on \mathbb{R}^2 in the case if $|k| \geq 1$.

[2 marks]

Calculate the matrix A^{2019} in the case if $\theta = \frac{\pi}{6}$.

[1 marks]

c) In Euclidean space \mathbf{E}^3 consider the following linear operator

$$A(\mathbf{x}) = \mathbf{x} + (\mathbf{a}, \mathbf{x})\mathbf{a}$$

where the vector $\mathbf{a} = 3\mathbf{e} + 4\mathbf{f} + 12\mathbf{g}$. Here $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in \mathbf{E}^3 .

Calculate the trace and determinant of the operator A.

[2 marks]

d) Let $\{e, f\}$ be an orthonormal basis of Euclidean space E^2 . Consider a linear operator P such that $\mathbf{a} = P(\mathbf{e}) = 91\mathbf{e} + 50\mathbf{f}$, $\mathbf{b} = P(\mathbf{f}) = 20\mathbf{e} + 11\mathbf{f}$.

Calculate determinant of the operator P.

Show that P is not an orthogonal operator.

Does this operator preserve an orientation of \mathbf{E}^2 ? Justify you ranswer.

Consider the parallelogram $\Pi_{\mathbf{a},\mathbf{b}}$ formed by the vectors \mathbf{a} and \mathbf{b} attached at the origin. Find the area of this parallelogram.

Show that the vertices of the parallelogram $\Pi_{\mathbf{a},\mathbf{b}}$ are the only points of $\Pi_{\mathbf{a},\mathbf{b}}$, whose coordinates are both integers.

[3 marks]

We consider in this question 3-dimensional Euclidean space \mathbf{E}^3 . We suppose that $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ is an orthonormal basis in this space.

a) Let P be a linear orthogonal operator acting in \mathbf{E}^3 such that its matrix in the basis $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ has the following appearance

$$P = \frac{1}{7} \begin{pmatrix} 3 & * & 6 \\ -6 & -3 & 2 \\ 2 & -6 & * \end{pmatrix}.$$

Find the entries of the matrix denoted by *.

Show that the operator P preserves orientation.

We know that due to the Euler Theorem the linear operator P considered above is a rotation operator. Find the axis and the angle of this rotation.

[3 marks]

b) Let P_1 be a rotation operator on the angle θ around the axis directed along the vector **g**, and P_2 be a rotation operator on the same angle θ around the axis directed along the vector **e**:

$$\{\mathbf{e}, \mathbf{f}, \mathbf{g}\} \xrightarrow{P_1} \{\cos \theta \mathbf{e} + \sin \theta \mathbf{f}, -\sin \theta \mathbf{e} + \cos \theta \mathbf{f}, \mathbf{g}\},$$

$$\{\mathbf{e}, \mathbf{f}, \mathbf{g}\} \xrightarrow{P_2} \{\mathbf{e}, \cos \theta \mathbf{f} + \sin \theta \mathbf{g}, -\sin \theta \mathbf{f} + \cos \theta \mathbf{g}\}.$$

Show that the operator $P = P_1 \circ P_2$ is also a rotation operator. Find the axis of rotation and the angle $\Phi = \Phi(\theta)$ of rotation for the operator P.

Calculate the angle $\Phi = \Phi(\theta)$ in the case $\theta = \frac{\pi}{2}$.

Show that in the case if θ is small, then $\Phi(\theta) \approx \sqrt{2}\theta$, i.e.

$$\lim_{\theta \to 0} \frac{\Phi(\theta)}{\theta} = \sqrt{2}.$$

[5 marks]

a) Consider the curve $\mathbf{r}(t)$: $\begin{cases} x = Rt \\ y = R\sqrt{1 - t^2} \end{cases}, \quad 0 \le t \le 1.$ Draw the image of this curve.

Give an example of a parameterisation of this curve with opposite orientation.

[1 marks]

b) Let f be a function in \mathbf{E}^2 given by $f = r^2 \cos 2\varphi$, where r, φ are polar coordinates in \mathbf{E}^2 ($x = r \cos \varphi, y = r \sin \varphi$). Consider vector fields which are given in Cartesian coordinates by $\mathbf{A} = x \partial_x + y \partial_y$, $\mathbf{B} = x \partial_y - y \partial_x$.

Calculate $\partial_{\mathbf{A}} f$, $\partial_{\mathbf{B}} f$.

Let g be a function on \mathbf{E}^2 such that differential form $\omega = dg$ vanishes at the vector field $\mathbf{B} = x\partial_y - y\partial_x$: $\omega(\mathbf{B}) \equiv 0$. Find a function g if it is known that

$$g(x,y)\big|_{y=0} = x^6$$
.

[3 marks]