

# BooVAE: A scalable framework for continual VAE learning under boosting approach





Anna Kuzina & Evgenii Egorov, Evgenii Burnaev ADASE, Skolkovo Institute of Science and Technology

10

20

50

100

500

# Summary

- We propose algorithm to train VAE model with data-driven prior
- We propose simple and efficient algorithm for incremental learning which shares prior knowledge between tasks, keeping the single encoder-decoder pair.
- We empirically validate the proposed algorithm on commonly used benchmark datasets (MNIST, and Fashion-MNIST) for both offline and incremental setting.

# **Objectives**

- Use data-driven prior to train VAE
- Construct feasible approximation for the optimal prior, avoiding ovefitting
- Reduce catastrophic forgetting in incremental learning setting, using data-driven prior

# Optimal Prior

 $\log p(x) \ge \mathcal{L}(x; \theta; q) = \mathbb{E}_{z \sim q(z)}[\log p_{\theta}(x|z)] - D_{\mathrm{KL}}[q(z)||p(z)],$ 

Optimal prior in terms of Empirical Bayes:

$$p^*(z) = \arg \max_{p(z)} \mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n).$$

# Boosting for density estimation

Approximates complex distribution by the simple mixture

$$p^* pprox \sum\limits_{i=1}^K lpha_i p^{(i)} = p_K$$

New component h is learned greedily, using MaxEntropy approach

$$\max_{h \in Q} \mathcal{H}(h) \qquad \qquad + \text{linearization}$$

$$D_{\mathrm{KL}}(p_{t-1}|p^*) - D_{\mathrm{KL}}(p_t|p^*) > 0$$



## **BooVAE**

Input: Dataset :  $\{(x_i)\}_{i=1}^N$ 

**Input:**  $\lambda$ , Maximal number of components K

Choose random subset  $\mathcal{M}\subset\mathcal{D}$ 

Initialize prior  $p_0 = \mathcal{N}(\mu_0, \Sigma_0)$ 

 $\theta^*, \phi^*, \mu_0, \Sigma_0 = \mathcal{L}(p_0, \theta, \phi)$ 

k = 1

while not converged do

Update network parameters  $\theta^*, \phi^* = \arg\max \mathcal{L}(p_{k-1}, \theta, \phi)$ 

if k < K then

Update optimal prior  $p^*(z) = \frac{1}{n} \sum_{x \in \mathcal{M}} q_{\phi^*}(z|x)$ 

Add new component  $p_k = \alpha h + (1 - \alpha)p_{k-1}$ 

 $h = \arg\min D_{\mathrm{KL}} \left( h || \left[ \frac{p^*}{p_{k-1}} \right]^{\lambda} \right)$ 

 $\alpha = \arg\min D_{\mathrm{KL}} (\alpha h + (1 - \alpha) p_{k-1} || p^*)$ 

k = k + 1

end if

end while

return  $p_K$ ,  $\theta^*$ ,  $\phi^*$ 

#### MNIST Fashion MNIST # comp. Vamp Boo Boo Vamp 90.39 **89.98** 232.53 231.94 **89.78** 232.22 231.84 **89.16** 232.19 231.63 **88.90** 232.01 231.5588.82 **88.68 231.67** 231.85 Table: NLL, Offline setting

|         | MNIST  |        | Fashion MNIST |        |
|---------|--------|--------|---------------|--------|
| # Tasks | EWC    | Boo    | EWC           | Воо    |
| 2       | 256.55 | 100.11 | 271.14        | 227.83 |
| 5       | 192.84 | 132.08 | 270.44        | 253.12 |
| 8       | 189.06 | 140.80 | 565.81        | 260.05 |
| 10      | 170.26 | 142.92 | 427.83        | 284.86 |

Table: INLL, Incremental setting

# **MNIST**

# Fashion MNIST

## **IWAE** bound on NLL

Results









## **Generation diversity**

$$\sum_k D_{\mathrm{KL}}\left(u||\widehat{x}_k
ight),\; u \sim \mathsf{Be}\left(rac{1}{K}
ight),\; \widehat{x}_k \sim \mathsf{Be}\left(rac{N_k}{N}
ight)$$





Generation after seeing 10 tasks (EWC and Boo)



| 2 | a. | 7 | 3 | 4 |
|---|----|---|---|---|
| 7 | 9  | 7 | 7 | 1 |
| 6 | 9  | 3 | 6 | 6 |
| 2 | 1  | 6 | 8 | 7 |
| 9 | 6  | 8 | 8 | 8 |



