

Вариант 6, 7, 8

- Найти (в пределе) регулярные язык префиксов и суффиксов, содержащие хотя бы одну итерацию.
- Для каждой пары «накачек» из выбранных регулярных префиксов и суффиксов проверить, что с достаточно высокой вероятностью слова из накачек формируют слово из языка \mathscr{L} .

Вариант 0, 1, 3, 9

- Дано разбиение $\langle \omega_1, \omega_2, \omega_3, \omega_4, \omega_5 \rangle$, предположительно описывающее серию слов $\omega_1 \omega_2^n \omega_3 \omega_4^n \omega_5$ в языке \mathcal{L} .
- Найти (в пределе) языки отдельно $\mathscr{L}(\omega_1), \mathscr{L}(\omega_3), \mathscr{L}(\omega_5).$
- Проверить, что пары слов из $\mathscr{L}(\omega_1)$ и $\mathscr{L}(\omega_5)$ действительно совместны относительно накачек ω_2 и ω_4 в языке \mathscr{L} .

2/9

Вариант 2, 4, 5

- Найти языки разбиений относительно букв алфавита Σ слов языка \mathscr{L} .
- В рамках этих языков найти неразличимые элементы лексем и последовательные элементы лексем.

Варианты алгоритмов вывода

- (Чётная последняя цифра зачётки) алгоритм L*.
- (Нечётная последняя цифра зачётки) алгоритм NL*.

Если вы в числе приоритетных (оба сдали ЛР до 16 октября), то можете выбрать в этой позиции любой вариант.

Минимально адекватный (MAT)

МАТ отвечает на два типа запросов к оракулу.

- Membership (принадлежность): $\omega \mapsto \omega \in \mathscr{L}$. Возвращает 1, если ω принадлежит \mathscr{L} , и 0 иначе.
- Equivalence (эквивалентность): $\mathscr{A} \equiv \mathscr{L}$ (т.е. принимает на вход описание регулярного языка, например, конечным автоматом). Возвращает либо сообщение о том, что эквивалентность выполнена, либо контрпример: слово ω такое, что либо $\omega \in \mathcal{L}(\mathscr{A})$, но $\omega \notin \mathcal{L}$, либо $\omega \in \mathcal{L}$, но $\omega \notin \mathcal{L}(\mathcal{A})$.

Расширенная таблица наблюдений

Алгоритмы L* и NL* строят описание КА при условии обращения к МАТ посредством постепенных приближений таблицы классов эквивалентности. На каждом этапе вычислений таблица должна удовлетворять следующим свойствам:

- полнота при заглядывании «на шаг вперёд» не должно получаться строк, демонстрирующих иное поведение относительно уже существующих.
- непротиворечивость если два префикса демонстрируют согласованное поведение в таблице, то при заглядывании «на шаг вперёд» они также должны вести себя согласованно.

Чтобы осуществить требуемое заглядывание, таблица строится из двух частей. Основная состоит из множества строк $\mathcal S$ и столбцов $\mathcal E$, содержимое таблицы — отметки, принадлежат ли $\mathcal U$ языку $\mathcal L$, где $\mathcal U \in \mathcal S$, $\mathcal V \in \mathcal E$. Расширенная часть — это строки из $\mathcal S$, не являющиеся префиксами других строк из $\mathcal S$, с приписанными к ними элементами алфавита $\mathcal S$, и всё те же столбцы $\mathcal E$.

Общая канва алгоритмов L^* и NL^*

- Если таблица $S \times \mathcal{E}$ неполна, то существует элемент из $S.\Sigma$, который порождает новую строку в таблице. Добавляем его в S и обновляем расширенную таблицу.
- **2** Если $S \times E$ противоречива, то существует суффикс v из E, показывающий различное поведение строк u_1 , u_2 при приписывании κ ним суффикса γv ($\gamma \in \Sigma$). Добавляем суффикс γv в E и достраиваем таблицу.
- Результат описание регулярного языка, которое признаётся оракулом как корректное.

Алгоритм L

- Условие полноты отсутствие в $S.\Sigma \times \mathcal{E}$ строк, которые отличаются от строк в $S \times \mathcal{E}$.
- Условие непротиворечивости отсутствие в $S.\Sigma \times \mathcal{E}$ таких позиций i, j, k, что $u_i v_k \neq u_j v_k$, притом что $u_i = u_i' \gamma$, $u_j = u_j' \gamma$, и строки в таблице $S \times \mathcal{E}$ для u_i' и u_j' совпадают.
- ДКА по таблице строится следующим образом.
 - Состояния ДКА кратчайшие слова из δ , порождающие разные строки в $\delta \times \mathcal{E}$.
 - Начальное состояние соответствует префиксу ε.
 - Конечные состояния те, которые содержат 1 в столбце, помеченном ε.
 - Если $u\gamma \equiv u'$ (т.е. $u\gamma$ и u' соответствуют одинаковым строчкам в таблице), то $\langle u, \gamma \rangle \to u'$ добавляется в ДКА как переход.

Алгоритм NL^*

Алгоритм строит минимальный остаточный НКА (RFSA). Скажем, что строка r накрывается $\bigcup_k r_k$, если $\forall i (r[i] = \bigvee_k r_k[i])$ (т.е. она является поэлементной дизъюнкцией строк r_k). Строка r_1 поглощает r_2 ($r_2 \sqsubseteq r_1$), если $\forall i (r_1[i] \geqslant r_2[i])$.

- Условие полноты отсутствие в $S.\Sigma \times \mathcal{E}$ строк, которые не накрываются строками в $S \times \mathcal{E}$.
- Условие непротиворечивости отсутствие в $S \times \mathcal{E}$ таких позиций i, j, k, что $u_i \sqsubseteq u_j$, но для некоторого $\gamma \in \Sigma$ $u_i \gamma \not\sqsubseteq u_j \gamma$ в расширенной таблице.
- НКА по таблице строится следующим образом.
 - Состояния НКА кратчайшие слова из δ , базисные (т.е. не накрывающиеся набором других) в $\delta \times \mathcal{E}$.
 - Начальные состояния включают строки, поглощаемые строкой ε (чтобы перейти к классическому НКА, придётся стянуть их в одно).
 - Конечные состояния те, которые содержат 1 в столбце, помеченном ε.
 - Если $\nu \sqsubseteq u\gamma$, то $\langle u, \gamma \rangle \to \nu$ добавляется в НКА как переход.