B38DB: Digital Design and Programming Datapath Components – Adders and Comparators

Mustafa Suphi Erden

Heriot-Watt University
School of Engineering & Physical Sciences
Electrical, Electronic and Computer Engineering

Room: EM 2.01

Phone: 0131-4514159

E-mail: m.s.erden@hw.ac.uk

Adders

- Adds two N-bit binary numbers
 - 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
 - e.g., 01 + 11 = 100 (1 + 3 = 4)
- We can design using combinational design process, but doesn't work well for reasonable-size N.
 - Why not?

Inputs			Outputs			
a1	a0	b1	b0	С	s1	s0
0	0	0	0	0	0	0
	0	0	1	0	0	1
0 0 0 0 0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0
				-		

Why Adders Aren't Built Using Standard Combinational Design Process

- Truth table too big
 - 2-bit adder's truth table shown

- Has
$$2^{(2+2)}$$
 = 16 rows

- 8-bit adder: $2^{(8+8)} = 65,536$ rows
- 16-bit adder: $2^{(16+16)} = -4$ billion rows
- 32-bit adder: ...
- Plot shows number of transistors for N-bit adders, using state-of-the-art automated combinational design tool

Inputs			0	Outputs		
a1	a0	b1	b0	С	s1	s0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

Alternative Method to Design an Adder: Imitate Adding by Hand (1/2)

- Alternative adder design: mimic how people do addition by hand
- One column at a time
 - Compute sum, add carry to next column

Alternative Method to Design an Adder: Imitate Adding by Hand (2/2)

 Create a component for each column

> Add that column's bits, generate sum and carry bits

Half-Adder

- Half-adder: Adds 2 bits, generates sum and carry
- Design using combinational design process as we did before

Step 1: Capture the function

Inputs		Outputs		
а	b	co	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	<u>,</u> 1	0	
			١	

Step 2: Convert to equations

$$co = ab \leftarrow$$

 $s = a'b + ab'$ (same as $s = a \times b; a \oplus b$) \leftarrow

Step 3: Create the circuit

Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
- Design using combinational design process

Step 1: Capture the function

Inputs			Outputs		
а	b	ci	∞	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Step 2: Convert to equations

$$co = bc + ac + ab$$

Step 3: Create the circuit

Carry-Ripple Adder (1/2)

- Using half-adder and full-adders, we can build an adder that adds like we would do by hand.
- Called a carry-ripple adder
 - 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
 - 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
 - Can easily build any size adder

Carry-Ripple Adder (2/2)

- Using a full-adder instead of a half-adder for the first bit, we can include a "carry in" bit in the addition
 - Useful to connect smaller adders to form bigger adders

Cascading Adders

Adder Example: DIP-Switch-Based Adding Calculator (1/2)

Calculator that adds two 8-bit binary numbers, specified using DIP switches

Adder Example: DIP-Switch-Based Adding Calculator (2/2)

 To prevent spurious values from appearing at the output while data propagation through the carry-ripple adder's gates, we can place a register at the output.

Comparators

- N-bit equality comparator: Outputs 1 if two N-bit numbers are equal
 - 4-bit equality comparator with inputs A and B
 - Recall that XNOR outputs 1 if its two input bits are the same

$$-eq = (a3 \otimes b3) * (a2 \otimes b2) * (a1 \otimes b1) * (a0 \otimes b0)$$

Magnitude Comparator (1/3)

N-bit magnitude comparator: Indicates whether

A>B, A=B, or A<B, for its two N-bit inputs A and B

How to design?

1011 1001 Equal

1011 1001 Equal

1011 1001 Unequal

So A > B

Magnitude Comparator (2/3)

- Start at left, compare each bit pair, pass results to the right
- Each stage has 3 inputs indicating results of higher stage, passes results to lower stage

Magnitude Comparator (3/3)

Each stage:

- out_gt = in_gt OR (in_eq AND a AND b')
- out_lt = in_lt OR (in_eq AND a' AND b)
- out_eq = in_eq AND (a XNOR b)
- Simple circuit inside each stage, just a few gates (not shown)

Magnitude Comparator Example: Minimum of Two Numbers

- Design a combinational component that computes the minimum of two 8-bit numbers
 - Solution: Use 8-bit magnitude comparator and 8-bit 2x1 mux
 - If A<B, pass A through mux. Else, pass B.

