LAPORAN AKHIR PRAKTIK INSTRUMENTASI

Dosen: Gilang Nugraha Putu Pratama M.Eng.

Laporan disusun guna memenuhi Laporan Akhir mata kuliah

Praktik Instrumentasi

Disusun Oleh:

Nabilla Rifdah Qushoyyi

20507334034

DIV Teknik Elektronika

Jurusan Pendidikan Teknik Elektronika dan Informatika

Fakultas Teknik

Universitas Negeri Yogyakarta

2021

KATA PENGANTAR

Puji syukur kepada Allah SWT berkat Rahmat, Hidayah, dan Karunia-Nya kepada kita semua sehingga saya dapat menyelesaikan semua tugas dan menyusunya menjadi laporan akhir. Laporan ini disusun sebagai salah satu syarat untuk memenuhi tugas mata kuliah instrumnetasi.

Dalam penyusunan laporan akhir ini tidak akan selesai tanpa bantuan dari berbagai pihak. Karena itu pada kesempatan ini saya ingin mengucapkan terima kasih kepada semua pihak yang terlibat terutama kepada dosen mata kuliah praktik instrumnetasi yaitu yang terhormat Pak Gilang Nugraha Putu Pratama M.Eng terima kasih atas semua materi dan ilmu yang telah bapak berikan.

Saya menyadari laporan akhir ini tidak luput dari berbagai kekurangan oleh karena itu saya mengharapkan saran dan kritik demi kesempurnaan dan perbaikannya sehingga akhirnya laporan akhir ini dapat memberikan manfaat bagi bidang pendidikan dan penerapan di lapangan serta bisa dikembangkan lagi lebih lanjut.

Yogyakarta, 23 Desember 2021

Nabilla Rifdah Qushoyyi NIM.20507334034

A. PERTEMUAN 1

♣ Job 1 Mengukur Potensio

File Pot 1

Komponen:

- 1. POT-HG
- 2. DC Voltmeter

Langkah kerja:

1. Check pada properties dari tegangan sumber, berapa volt.

1. Check properties dari POT-HG, berapa resistansi yang tertera di sana.

Resistansi	20k ohm

2. Catat tegangan terukur saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur
Posisi di atas	5 volt
Posisi di tengah	2,5 volt
Posisi di bawah	0 volt

- 3. Tambahkan DC Amperemeter di antara POT-HG dengan ground.
- 4. Catat arus yang terukur saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Arus terukur
Posisi di atas	0,25 mA
Posisi di tengah	0,25 mA
Posisi di bawah	0,25 mA

5. Buat analisis dan kesimpulan sementara.

Kesimpulan yang dapat diambil dari file pot 1 adalah dari tegangan sumber mendapatkan nilai sebesar 5 volt, untuk nilai resistansi POT HG sebesar 20k ohm yang telah ditentukan. Pada saat posisi nilai POT HG saya ubah maka akan mengalami perubahan sehingga semakin meningkat persenannya maka semakin tinggi tegangan yang terukur.

File Pot2

Komponen:

- 1. POT-HG
- 2. LED-RED
- 3. BATTERY

Langkah kerja:

1. Check pada properties dari tegangan sumber dari battery, berapa volt.

Tegangan sumber battery	24 volt

2. Check properties dari POT-HG, berapa resistansi yang tertera di sana.

Resistansi	1k ohm

- 3. Tambahkan DC Voltmeter untuk mengukur tegangan yang malewati LED-RED.
- 4. Catat tegangan terukur dan nyala LED-RED saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur	Nyala LED-RED
Posisi di atas	22,6 volt	Terang
Posisi di tengah	2,32 volt	Terang
Posisi di bawah	0 volt	Mati

- 5. Ganti LED-RED dengan komponen MOTOR.
- 6. Catat tegangan terukur dan kecepatan putaran MOTOR saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur	Putaran MOTOR
Posisi di atas	23,6 volt	Cepat
Posisi di tengah	0,55 volt	Pelan
Posisi di bawah	0 volt	Berhenti

7. Buat analisis dan kesimpulan sementara.

Kesimpulan yang dapat diambil dari file pot 2 adalah dari tegangan sumber pada battre mendapatkan nilai sebesar 24 volt dengan nilai yang telah ditentukan, untuk nilai resistansi POT HG sebesar 1k ohm sesuai nilai yang telah ditentukan. Saya menggunakan DC Voltmeter untuk mengukur tegangan yang malewati LED-RED, pada posisi POT HG diatas tegangan ukur sebesar 22,6 volt dengan kondisi led menyala terang, posisi POT HG ditengah tegangan ukur bernilai 2,32 volt dengan kondisi led masih menyala terang dan pada posisi POT HG dibawah tegangan ukurnya berkurang sebesar 0 volt menjadikan led mati dan tidak menyala, hal ini memungkinkan lebih besar nilai POT HG maka akan lebih besar nilai tegangan ukur.

File Pot3

Komponen:

- 1. 2 Resistor
- 2. DC Voltmeter
- 3. BATTERY

Langkah kerja:

1. Check pada properties dari tegangan sumber dari battery, berapa volt.

Tegangan sumber battery	24 volt

2. Check properties dari dua buah resistor tersebut, berapa resistansi yang tertera di sana untuk R1 dan R2.

Resistansi R1 (Resistor atas)	1k ohm
Resistansi R2 (Resistor bawah)	1k ohm

3. Catat tegangan terukur saat R1 dan R2 pada kondisi awal.

Tegangan terukur kondisi awal	12 volt
-------------------------------	---------

4. Ubah nilai R1 dan R2 antara rentang 1000 ohm hingga 10000 ohm, lalu catat tegangan terukurnya.

Nilai R1	Nilai R2	Tegangan terukur
1000 ohm	1112 ohm	12 volt
1120 ohm	1125 ohm	12 volt
1200 ohm	1250 ohm	12,2 volt
1300 ohm	1350 ohm	12,2 volt
1450 ohm	1550 ohm	12,4 volt
5200 ohm	6000 ohm	12,9 volt
5500 ohm	6500 ohm	13 volt

5000 ohm	4500 ohm	11,4 volt
8000 ohm	7800 ohm	11,8 volt
9000 ohm	9000 ohm	12 volt

5. Buat analisis dan kesimpulan sementara.

Kesimpulan yang dapat diambil dari file pot 3 adalah nilai R1 dan R2 sama atau nilainya tidak beda jauh, jika nilai R1 lebih kecil dari R2 maka tegangan ukurnya akan terus membesar sedangkan jika nilai R2 yang lebih kecil dari R1 maka tegangan ukurnya akan mengecil.

B. PERTEMUAN 2

♣ Job 2 Jembatan Wheatstone

File Wheatstone 1

Komponen:

- 1. Resistor 4 buah
- 2. Battery

Langkah kerja:

1. Check pada properties dari tegangan sumber, battery yang digunakan berapa volt.

Tegangan sumber	9 volt

2. Check properties dari resistor R1, R2, R3, dan R4, berapa resistansi yang tertera di sana.

R1	1k ohm
R2	1k ohm
R3	1k ohm
R4	1k ohm

3. Ukur tegangan dengan menambahkan DC Voltmeter, seperti gambar berikut, kemudian catat.

DC Voltmeter	Tegangan terukur
DC Voltmeter 1	0 volt
DC Voltmeter 2	9 volt

4. Ukur arus dengan menambahkan DC Amperemeter, seperti gambar berikut, kemudian catat.

DC Amperemeter	Arus terukur
DC Amperemeter 1	4,5 mA
DC Amperemeter 2	4,5 mA
DC Amperemeter 3	9 mA

5. Ukur tegangan pada kondisi setimbang, seperti pada gambar.

- 6. Pada kondisi setimbang tegangan yang terukur = 0 volt, untuk itu nilai resistansi R1, R2, R3, dan R4 perlu dimodifikasi.
- 7. Lengkapi tabel berikut dengan mengisikan nilai R1, R2, R3, dan R4, sehingga nilai tegangan terukur = 0 volt.

R1	R2	R3	R4
2k ohm	1k ohm	2k ohm	1k ohm
2k ohm	2k ohm	m 1k ohm 1k	
4k ohm	2k ohm	4k ohm	2k ohm
6k ohm	6k ohm 2k ohm		2k ohm
8k ohm	8k ohm 4k ohm		4k ohm

8. Buat analisis dan kesimpulan sementara.

Analisis:

Untuk mendapatkan tegangan terukur 0 volt maka jumlah nilai R1 dan R2 harus sebanding dengan jumlah nilai R3 dan R4

File Wheatstone 2

Komponen:

- 1. POT-HG
- 2. Resistor 3 buah
- 3. Battery
- 4. DC Voltmeter

Langkah kerja:

1. Check pada properties dari tegangan sumber dari battery, berapa volt.

Tegangan sumber battery	Qv volt
regarigan sumber battery	9V VOIL

2. Check properties dari POT-HG, berapa resistansi yang tertera di sana.

Resistansi	1k ohm

3. Check properties dari resistor R1, R2, dan R3, berapa resistansi yang tertera di sana.

R1	1k ohm
R2	1k ohm
R3	1k ohm

4. Catat tegangan terukur saat toggle POT-HG di atas, tengah, dan bawah.

Posisi	Tegangan terukur
Posisi di atas	4,5 volt
Posisi di tengah	1,5 volt
Posisi di bawah	0 volt

5. Buat analisis dan kesimpulan sementara.

Dari hasil yang sudah ada dapat diketahui bahwa konsep dari wheatstone yaitu melakukan perbandingan antara besar hambatan yang telah diketahui dengan besar hambatan yang belum diketahui yang tentunya dalam keadaan seimbang.

C. PERTEMUAN 3

♣ Job 3 ADC With LDR

File ADC With LDR

Komponen:

- 1. Arduino Uno R3
- 2. MINRES10k (Resistor)
- 3. TORCH_LDR

```
Source Code
int adc;
float volt;

void setup()
{
    Serial.begin(9600);
}

void loop()
{
    adc = analogRead(A0);
    volt = adc * (5.0 / 1023.0);
    Serial.print("Nilai ADC: ");
    Serial.printn(adc);
    Serial.print("Nilai tegangan: ");
    Serial.printn(volt);
    delay(1000);
}
```

Langkah kerja:

1. Check pada properties dari tegangan sumber, berapa volt.

Tegangan sumber	5 volt
2. Check properties dari resistor R1 berapa resistan	si yang tertera di sana.
R1	10k ohm

- 3. Geser posisi torch, pada TORCH_LDR, lalu amati tegangan terukur, tegangan padaserial monitor, dan ADC.
- 4. Isi tabel pengamatan berikut.

No	Tegangan Voltmeter	Tegangan Serial	Selisih Tegangan	ADC
1	0.24 volt	0.24 volt	0 volt	49
2	0.45 volt	0.45 volt	0 volt	93
3	0.83 volt	0.84 volt	0.01volt	171
4	1.67 volt	1.67 volt	0 volt	341
5	2.5 volt	2.5 volt	0 volt	512
6	3.33 volt	3.34 volt	0.01 volt	683
7	4.17 volt	4.17 volt	0 volt	853
8	4.54 volt	4.55 volt	0.01 volt	931
9	4.76 volt	4.77 volt	0.01 volt	975
10	4.95 volt	4.96 volt	0.01 volt	1014

5. Berdasarkan tabel pengamatan, buatlah grafik hubungan ADC dengan tegangan serial.

6. Buat analisis dari tabel dan grafik tersebut.

Jawab:

Ketika posisi torch di tabel semakin menjauh maka tegangan volmeter, tegangan serial, serta ADC akan semakin besar dan pada grafik,semakin besar nilai tegangan serial maka ADC juga akan semakin besar

7. Analisis dan jelaskan source code untuk pembacaan ADC Arduino Uno denganLDR. Jawab:

int adc; //mendeklarasi variable adc dengan tipe data integer yakni berupa bilangan bulat float volt; //mendeklarasi variable volt dengan tipe data float yakni berupa bilangan pecahan

```
void setup() //bagian program yang dijalankan pertama kali
{
Serial.begin(9600); //berfungsi untuk membuka komunikasi serial
}
void loop() //bagian program yang dijalankan berulang kali
{
```

adc = analogRead(A0); //membaca sinyal analog pada pin A0 yang kemudian disimpan di variable adc

volt = adc * (5.0 / 1023.0); //menentukan nilai volt dengan rumus tersebut yang kemudian disimpan pada variable volt. Dimana 5.0 adalah tegangan catu daya dan 1023.0 adalah resolusi maksimal pada arduino uno

Serial.print("Nilai ADC: "); //menampilkan teks nilai adc pada monitor Serial.println(adc); //menampilkan nilai adc pada monitor diikuti dengan baris baru Serial.print("Nilai tegangan: "); //menampilkan teks nilai tegangan pada monitor Serial.println(volt); //menampilkan nilai volt pada monitor diikuti dengan baris baru delay(1000); //memberi jeda sebelum mengeksekusi perulangan berikutnya selama 1 detik }

- 8. Tambahkan DC Amperemeter pada ujung LDR dengan ground.
- 9. Ubah posisi torch, dan amati perubahan arus yang terukur.
- 10. Isi tabel berikut.

No.	Arus	Resistansi MINRES	Resistansi LDR
1	0.48 mA	10k ohm	500 ohm
2	0.45 mA	10k ohm	1k ohm
3	0.42 mA	10k ohm	2k ohm
4	0.33 mA	10k ohm	5k ohm
5	0.25 mA	10k ohm	10k ohm
6	0.17 mA	10k ohm	20k ohm

7	0.08 mA	10k ohm	50k ohm
8	0.04 mA	10k ohm	100k ohm
9	0.02 mA	10k ohm	200k ohm
10	4.95 mA	10k ohm	1000k ohm

11. Buat analisis dari tabel hubungan arus dan resistansinya.

Jawab:

Posisi torch tidak mempengaruhi resistansi MINRES yakni tetap bernilai 10k ohm dan semakin kecil nilai arus terukur maka nilai resistansi LDR akan semakin besar.

12. Buat kesimpulan dari analisis pada point 6, 7, dan 11.

Jawab:

Setelah mengerjakan praktikum diatas dapat disimpulkan bahwa pada grafik hubungan ADC dengan tegangan serial, semakin besar nilai tegangan serial maka ADC juga akan semakin besar. Secara garis besar source code diatas digunakan untuk melakukan pembacaan nilai ADC dan tegangan serial yang kemudian ditampilkan pada serial monitor.

D. PERTEMUAN 4

♣ Job 4 Meansure Temperature

File Meansure Temperature

Komponen:

- 1. Arduino Uno R3
- 2. LM016L (LCD)
- 3. LM35

```
Source Code

#include <LiquidCrystal.h>

LiquidCrystal lang(4, 5, 6, 7, 8, 9);

int lm35 = A0;
int val = 0;
float temp;

void setup()
{
    pinMode(A0, INPUT);
    pinMode(10, OUTPUT);
    lang.begin(16, 2);
    lang.setCursor(0, 0);
    lang.print("Arduino");
    lang.setCursor(0, 1);
    lang.print("Pengukur Suhu");
```

```
delay(1000);
lang.clear();
}

void loop()
{
  val = analogRead(lm35);
  delay(100);
lang.setCursor(0, 0);
lang.print("Suhu celsius:");
lang.setCursor(0, 1);
  temp = val * 5.0;
  temp *= 100.0;
  temp /= 1023.0;
lang.print(temp);
}
```

Langkah kerja:

1. Check pada properties dari tegangan sumber, berapa volt.

Tegangan sumber	5 volt

- 2. Tambahkan DC Voltmeter untuk mengukur tegangan keluaran dari LM35.
- 3. Naik dan turunkan suhu LM35, lalu amati tegangan terukur serta suhu terukur pada LCD.
- 4. Isi tabel pengamatan berikut, minimal ambil 10 data pengukuran.

No.	Tegangan Terukur	Suhu Terukur	
1	0.29 volt	29.30 Celcius	
2	0.30 volt	30.27 Celcius	
3	0.31 volt	31.25 Celcius	
4	0.32 volt	32.23 Celcius	
5	0.33 volt	33.20 Celcius	
6	0.34 volt	34.18 Celcius	
7	0.35 volt	35.16 Celcius	
8	0.36 volt	36.13 Celcius	
9	0.37 volt	37.11 Celcius	
10	0.38 volt	38.09 Celcius	
11	0.39 volt	39.06 Celcius	
12	0.40 volt	40.04 Celcius	

13	0.41 volt	41.02 Celcius
14	0.42 volt	41.99 Celcius
15	0.43 volt	4349 Celcius
16	0.44 volt	44.43 Celcius
17	0.45 volt	45.41 Celcius
18	0.46 volt	46.39 Celcius
19	0.47 volt	47.36 Celcius
20	0.48 volt	48.34 Celcius
21	0.49 volt	49.32 Celcius

5. Berdasarkan tabel pengamatan, buatlah hubungan grafik antara tegangan terukur dengan suhu terukur.

6. Buat analisis dari tabel dan grafik tersebut.

Pada pratikum di atas tegangan sumber yang terukur sebesar 5 volt, dan berdasarkan tabel di atas tegangan terukur dan suhu terukur yang paling rendah memiliki nilai sebesar 0.29 volt dan 29.30 °Celcius

7. Analisis dan jelaskan source code untuk pembacaan ADC Arduino Uno dengan LDR. val = analogRead(lm35); //variabel val berisi nilai ADC

delay(100);

lang.setCursor(0, 0);

```
lang.print("Suhu celsius:");
lang.setCursor(0, 1);
temp = val * 5.0; //untuk menentukan nilai suhu yakni dengan mengalikan nilai ADC dengan tegangan sumber 5 V.
temp *= 100.0; //suhu dikalikan 100
temp /= 1023.0; //suhu dibagi 1023
```

lang.print(temp); //menampilkan hasil akhir suhu yang sudah dikonversikan dari analog ke suhu Celcius

8. Buat kesimpulan.

Dari percobaan yang telah dilakukan diperoleh kesimpulan bahwa Arduino memiliki kemampuan termoelektrik yang berbeda, tapi hampir sama bila dilihat dari hasil pengukuran perubahan suhu. Arduino memiliki kemampuan pembacaan suhu yang lebih akurat. Skala temperatute yang banyak digunakan untuk jenis thermometer ini adalah skala Celcius.

E. PERTEMUAN 5

Job 5 Ultrasonic

Komponen:

- 1. Arduino Uno R3
- 2. HC-SR04
- 3. POT-HG

```
Source Code

#define echoPin 2

#define trigPin 3
long duration, distance, ultraSensor;

void setup()
{
    Serial.begin (9600);
    pinMode(trigPin, OUTPUT);
    pinMode(echoPin, INPUT);
}

void loop()
{
    sensorUltrasonic(trigPin, echoPin);
    ultraSensor = distance;
    Serial.print("Jarak ");
    Serial.print(ultraSensor);
```

```
Serial.println(" cm");
delay(1000);
}

void sensorUltrasonic(int pinTrigger, int pinEcho)
{
    digitalWrite(pinTrigger, LOW);
    delayMicroseconds(2);
    digitalWrite(pinTrigger, HIGH);
    delayMicroseconds(10);
    digitalWrite(pinTrigger, LOW);
    duration = pulseIn(pinEcho, HIGH);
    distance = (duration / 2) / 29.1;
}
```

Langkah kerja:

1. Check pada properties dari tegangan sumber, berapa volt.

No	Tegangan sumber		
1)	5 V		

- 2. DC Voltmeter untuk mengukur tegangan keluaran dari POT-HG.
- 3. Naik dan turunkan tegangan keluaran POT-HG, lalu amati tegangan terukur serta jarak terukur pada LCD.
- 4. Isi tabel pengamatan berikut, minimal ambil 10 data pengukuran.

No	Tegangan Terukur	Jarak Terukur
1	0.05	10
2	0.35	83
3	0.40	89
4	0.60	134
5	0.75	167
6	0.80	183
7	0.90	205
8	1.00	224
9	1.10	245
10	1.25	284

5. Berdasarkan tabel pengamatan, buatlah grafik hubungan antara tegangan terukur dengan jarak terukur.

6. Buatlah analisis dari tabel dan grafik tersebut.

Dari grafik diatas dapat ditarik kesimpulan yaitu grafik diatas dapat diketaui bahwa Grafik fungsi bukan linier karena tidak lurus hal itu disebebkan oleh nilai dari pot-hg yang posisinya saya naikan terus jadi nilai jaraknya semakin naik dan juga dipengaruhi oleh nilai teggangan yang semakin besar nilainya.

7. Buat kesimpulan

Dari praktikum diatas dapat ditarik kesimpulan yaitu Sensor ultrasonik tipe HCSR04 merupakan perangkat yang digunakan untuk mengukur jarak dari suatu objek. Kisaran jarak yang dapat diukur sekitar 2-450 cm. Perangkat ini menggunakan dua pin digital untuk mengkomunikasikan jarak yang terbaca. Sinyal dipancarkan oleh pemancar ultrasonik dengan frekuensi tertentu dan dengan durasi waktu tertentu. Sinyal tersebut berfrekuensi diatas 20kHz. Untuk mengukur jarak benda (sensor jarak), frekuensi yang umum digunakan adalah 40kHz. Nilai teggangan sangat mempegaruhi hasil dari jarak dibuktikan pada tabel semakin besar teggangannya semakin besar juga jarak yang terukur sebaliknya jika semakin kecil tegganganya maka semakin kecil juga jarak yang terukur.

F. PERTEMUAN 6

♣ Job 6 Strain Gauge

File Strain Gauge

Komponen:

- 1. 9C04021A12R0JLHF3 (Resistor)
- 2. 9C08052A1073FKHFT (Resistor)
- 3. 10 WATTOR1 (Resistor)
- 4. Alternator
- 5. Battery
- 6. LED-Red
- 7. Load Cell
- 8. Relay
- 9. Op-Amp
- 10. POT-HG

Langkah kerja:

1. Check pada properties dari tegangan sumber battery, berapa volt.

Tegangan sumber battery 12 volt

2. Tambahkan DC Voltmeter dan LED-Red sehingga menjadi seperti gambar berikut.

- 3. Naik dan turunkan tegangan keluaran dari Load Cell, lalu amati tegangan terukur pada terminal positif, negatif, dan keluaran dari Op-Amp.
- 4. Isi tabel pengamatan berikut, ambail sebanyak mungkin data pengukuran.

No.	Terminal Positif	Terminal Negatif	Tegangan Keluar	
Pengukuran	(mV)	(mV)	(Volt)	Nyala LED
1.	-2,40	1,50	-15,0	Mati
2.	-2,16	1,50	-15,0	Mati
3.	-1,92	1,50	-15,0	Mati
4.	-1,68	1,50	-15,0	Mati
5.	-1,44	1,43	-14,3	Mati
6.	-1,20	1,19	-11,9	Mati
7.	-0,96	-0,95	-9,52	Nyala
8.	-0,72	-0,71	-7,14	Nyala
9.	-0,48	-0,48	-4,76	Nyala
10.	-0,24	-0,24	-2,38	Nyala
11.	0,00	0,00	0,00	Nyala
12.	0,24	0,24	2,38	Nyala
13.	0,96	0,95	9,52	Nyala
14.	0,72	0,71	7,14	Nyala
15.	0,48	0,48	4,76	Nyala
16.	1,20	1,19	11,9	Mati
17.	1,44	1,43	14,3	Mati
18.	1,68	1,50	15,0	Mati
19.	1,92	1,50	15,0	Mati
20.	2,16	1,50	15,0	Mati
21.	2,40	1,50	15,0	Mati

5. Berdasarkan tabel pengamatan, buatlah kesimpulan dan analisis percobaan.

Berdasarkan praktik yang sudah dikerjakan dapat disimpulkan bahwa pengukuran Load Cell saat posisi diturunkan (dibawah 0,00) hasil nilai di terminal positif dan negatif hasilnya minus semua dan begitu sebalinya saat Pada pengukuran Load Cell saat posisi dinaikan (diatas 0,00) Hasil nilai di terminal positif dan negatif hasilnya positif semua. Semakin tinggi tekanan yang diberikan pada load cell maka semakin tinggi pula teggangan yang keluaranya. Teggangan keluaran dapat mempengaruhi nyala led jika teggangan keluaran kecil maka led akan menyala jika teggangan keluaran besar maka led akan mati.

G. PERTEMUAN 6

4 Job 6 Comparator

File comparator1

Komponen:

- 1. 10 WATT0R1 (Resistor)
- 2. LED-Red
- 3. 1458 (Op-Amp)

Langkah Kerja:

1. Check pada properties dari tegangan sumber tegangan, berapa volt.

No.	Sumber	Tegangan	Nyala LED
1.	Tegangan sumber Op-Amp	20 volt	
2.	Tegangan sumber Op-Amp Terminal Positif	15 volt	Nyala Nyala
3.	Tegangan sumber Op-Amp Terminal Negatif	12 volt	

2. Tambahkan DC Voltmeter dan ubah rangkaian sehingga menjadi seperti gambar berikut.

3. Isi tabel pengamatan berikut.

No.	Sumber	Tegangan Terukur
1.	Tegangan sumber Op-Amp	20 volt
2.	Tegangan sumber Op-Amp Terminal Positif	15 volt
3.	Tegangan sumber Op-Amp Terminal Negatif	12 volt
4.	Tegangan keluaran Op-Amp	18 volt

File comparator2

Komponen:

- 1. 10 WATT0R1 (Resistor)
- 2. LED-Red
- 3. 1458 (Op-Amp)
- 4. POT-HG

Langkah Kerja:

- 1. Tambahkan 2 DC Voltmeter untuk mengukur tegangan, masing-masing di terminal positif dan negatif.
- 2. Naik dan turunkan tegangan keluaran dari POT-HG, lalu isi tabel pengamatan berikut.

	Pengukuran		
No.	Terminal Positif	Terminal Negatif	Nyala LED
	(Volt)	(Volt)	
1.	1,92	5,00	Mati
2.	2,52	5,00	Mati

3.	3,36	5,00	M ati
		- 4	
4.	4,32	5,00	<mark>Mati</mark>
5.	5,04	5,00	Nyala Nyala
6.	6,12	5,00	Nyala
7.	7,08	5,00	Nyala
8.	8,04	5,00	Nyala
9.	9,00	5,00	Nyala
10.	11,0	5,00	Nyala

File comparator3

Komponen:

- 1. 10 WATT0R1 (Resistor)
- 2. LED-Red
- 3. 1458 (Op-Amp)
- 4. POT-HG
- 5. TORCH_LDR

Langkah Kerja:

- 1. Tambahkan 2 DC Voltmeter untuk mengukur tegangan, masing-masing di terminal positif dan negatif.
- 2. Naik dan turunkan tegangan keluaran dari POT-HG dan ubah jarak TORCH_LDR, lalu isi tabel pengamatan berikut.

	Pengukuran			
No.	Posisi POT-HG Terminal Positif Terminal Negatif		Nyala LED	
		(Volt)	(Volt)	

1.	45%	5,40	11,8	Mati
2.	46%	5,52	11,4	Mati
3.	47%	5,64	10,9	Mati
4.	48%	5,76	10	Mati
5.	49%	5,88	8	Mati
6.	50%	6	6	Nyala
7.	51%	6,12	4	Nyala
8.	52%	6,24	4	Nyala
9.	53%	6,34	4	Nyala
10.	54%	6,48	4	Nyala

Analisis dan Kesimpulan:

3. Buat analisis dan kesimpulan dari percobaan simulasifile comparator1.

Jawab

Pada rangkaian comparator 1 ketika tegangan positif op-amp lebih besar dari tegangan negative op-amp maka lampu akan menyala sebaliknya jika tegangan positif op-amp lebih kecil dari tegangan negative op-amp maka lampu akan mati.

4. Buat analisis dan kesimpulan dari percobaan simulasi file comparator2.

Jawab

Pada rangkaian comparator 2 di atas nilai tegangan negative pada op-amp bernilai konstan hal itu karena pada terminal negative pada op-amp tidak dipasang potensiometer.

5. Buat analisis dan kesimpulan dari percobaan simulasi file comparator3. Jawab:

Posisi potensiometer jika diatur secara menurun maka nilai tegangan positif opamp akan menurun dan tegangan negative op-amp akan meningkat namun jika posisi potensiometer jika diatur secara naik maka nilai tegangan positif op-amp akan naik dan tegangan negative op-amp akan menurun dan lampu LED akan menyala pada saat teggangan positif lebih tinggi daripada teggangan negative dan LED akan mati apabila tegangan positif op-amp semakain rendah.

H. PERTEMUAN 8

♣ Job 8 Penguat Inverting dan Non Inverting

File inverting

Komponen:

- 1. MINRES1K
- 2. MINRES10K 3. 741 (Op-Amp)

Langkah Kerja:

1. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

2. Amati besarnya tegangan keluaran dan isi tabel berikut.

Tegangan keluaran	Vout = -(Rf/Rin) * Vin Vout = -(10k/1k) * 1 Vout = -10 volt
	T.peguatan = vout/vin
Penguatan tegangan	= 10/1
	= 10 kali kali

3. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber tegangan SINE AC, seperti pada gambar berikut.

- 4. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 5. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 6. Simulasikan dan amati tampilan oscilloscope.
- 7. Ambil screenshot tampilan oscilloscope.
- 8. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 9. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
Channel A Input	0,5 volt/div	T.gelombang x volt/div = 4div x 0,5 volt/div = 2 volt Peak-to-peak
Channel B Output	2 volt/div	T.gelombang x volt/div = 5div x 2volt/div = 10 volt Peak-to-peak

10. Buat analisis dan kesimpulan.

Jawab:

Analisis dan kesimpulan setelah melakukan Pratik tersebut adalah besarnya penguatan inverting berbanding dengan besarnya Rf terhadap Rin yaitu jika Rf semakin besar maka

penguatan semakin besar juga begitu juga sebaliknya, Penguat inverting bekerja dengan cara membalikan contohnya apabila input positif maka output akan negative dan sebaliknya, penguat inverting berfungsi sebagai menguatkan sinyal akan tetapi sinyal yang dikuatkan akan berbanding terbalik dengan sinyal masukkannya.

File non inverting

Komponen:

- 1. MINRES1K
- 2. MINRES10K
- 3. 741 (Op-Amp)

Langkah Kerja:

1. Check pada properties dari tegangan sumber tegangan DC, pastikan tegangan masukan tidak bernilai 0 volt.

No.	Sumber	Tegangan
1.	Tegangan sumber Op-Amp Positif	12 volt
2.	Tegangan sumber Op-Amp Negatif	-12 volt
3.	Tegangan masukan	1 volt

2. Amati besarnya tegangan keluaran dan isi tabel berikut.

	Vout = (1 + Rf/RG) * Vin Vout = (1 + 10k / 1k) * 1 volt Vout = (1 + 10) * 1 volt Vout = 11 volt
Penguatan tegangan	T.peguatan = vout/vin
	= 11/1
	= 11 kali kali

3. Ganti DC voltmeter dengan Digital Oscilloscope dan sumber tegangan DC dengan sumber tegangan SINE AC.

- 4. Sumber AC dapat diakses dari menu Generators lalu pilih SINE.
- 5. Check properties sumber SINE lalu atur Frequency ke 1 kHz.
- 6. Simulasikan dan amati tampilan oscilloscope.
- 7. Ambil screenshot tampilan oscilloscope.
- 8. Amati berapa volt/div parameter pada oscilloscope untuk channel A dan B.
- 9. Hitung tegangan peak-to-peak pada channel A dan B, lalu isi tabel berikut.

Channel	Volt/Div	Peak-to-peak
		T.gel x volt/div
Channel A Input	2 void div	= 2div x 1volt/div
		= 2 volt Peak-to-peak
		T.gel x volt/div
Channel B Output	2,5 volt/div	= 2,5 div x 5 volt/div
		= 12,5 volt Peak-to-peak

10. Buat analisis dan kesimpulan.

Jawab

analisis dan kesimpulan setelah melakukan Pratik adalah pada penguat non inverting besarnya output keluaran lebih besar dari satu tetapi tidak melebihi besar satu daya yang masuk ke Op-Amp, fungsi penguat non inverting adalah menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output.