Test & Verifikation

I dette dokument findes hvordan kode hentes, opsættes, flashes og køres. Desuden er der en udførlig guide på hvordan de forskellige moduler skal opsættes for at udføre en test.

Kameramodul

Forudgående betingelser

For at kunne udføre testen kræves følgende:

- Visual studio code installeret
- PlatformIO extension installeret
- TFDI board til flashing af kode til ESP32-CAM
- ESP32-CAM board

- Pull kode fra git: wifa lock/Cam/IOT-Cam at master · danimolsen1988/wifa lock (github.com)
- Åben projekt i Visual studio
- Tilslut FTDI board til ESP32-CAM
 - o TX (FTDI) til GPIO3 (ESP32-CAM)
 - o RX (FTDI) til GPIO1 (ESP32-CAM)
 - GND (FTDI) til GND (ESP32-CAM)
- Tilslut HC-SR501 sensor til ESP32-CAM

- Power (HC-SR501) til 5V,
- o Ground (HC-SR501) til GND
- Output (HC-SR501) til GPIO13 (ESP32-CAM)
- Opsætning af WiFi
 - Åben filen Network.cpp (Visual studio code)
 - Ændre ssid til netværk modulet skal tilslutte
 - Ændre pass til netværk modulet skal tilslutte
 - Ændre host*, dette er påkrævet for at kunne kommunikere med hovedmodul.
 - Ip-adresse til hovedmodul
- Tilslut FTDI board til computer
 - o USB kabel
- Tilslut forsyning til ESP32-CAM
 - o Tilslut 5V

- o Tilslut GND
- Flash program til ESP32-CAM
 - o Forbind GPIO0 til GND (ESP32-CAM)
 - o Tryk på RST (ESP32-CAM)
 - O Tryk på knappen "PlatformIO: Upload" (Visual studio code)
 - o Frakobl GPIO0 fra GND Når flash er fuldendt (ESP32-CAM)
- Tilslut Serial Monitor
 - o Tryk på knappen "PlatformIO: Serial Monitor
 - Vælg Com port USB er tilsluttet

Hovedmodul

Forudsætninger:

- Visual studio installeret
- Particle workbench extension installeret I Visual studio
- Putty installeret
- Netværksforbindelse

- 1. tilslut argon til usb.
- 2. hent kode fra https://github.com/danimolsen1988/wifa lock/tree/master/ArgonTLS
- 3. åben projekt i visual studio
- 4. gå ind under debug.h
- 5. sæt DEBUG_AZURE ==1
- 6. tilføj filen codes.h som kan findes under bilag [REF]
 - a. flyt filen fra Bilag\code\codes.h over er i src\ i projekt folderen
- 7. byg program
- 8. flash system
- 9. start
- 10. tilslut argon serielt via Putty
 - a. serial
 - b. COM porten Argon er tilsluttet
 - c. Speed: 115200

Test [1]

Følgende krav er testet i følgende test.

• Hovedmodulet skal aktiveres vha. netværkskommunikation

Forudsætninger:

• ip-adresse af Argon

- 1. setup Hovedmodul [Hovedmodul], i punkt 5, set i stedet DEBUG_AZURE == 0
- 2. se at Argon er gået i sleep mode. LED slukket.
- 3. åben cmd
- 4. skriv "ping xxx.xxx.xxx"
- 5. se argon svarer på ping

```
C:\Users\Keld>ping 192.168.0.22

Pinging 192.168.0.22 with 32 bytes of data:
Reply from 192.168.0.22: bytes=32 time=49ms TTL=255
Reply from 192.168.0.22: bytes=32 time=53ms TTL=255
Reply from 192.168.0.22: bytes=32 time=66ms TTL=255
Reply from 192.168.0.22: bytes=32 time=73ms TTL=255
Ping statistics for 192.168.0.22:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 49ms, Maximum = 73ms, Average = 60ms
```

Figur 1- ping svar fra argon

Test [2]

Følgende krav er testet i følgende test.

- Kameramodulet skal sende billeder til hovedmodulet
- Moduler skal kommunikere sammen vha. WiFi/bluetooth

Test.

- 1. setup af Kameramodul[Kameramodul]
- 2. setup af Hovedmodul[Hovedmodul]
- 3. placer ansigt ~80 cm. foran kamera og vent på billede er taget
- 4. se i terminal for Argon, at der skrives "client connected!" og en størrelse ud på billedet.
 - a. Er størrelsen over 2500, kan det forventes der er modtaget et billede. Og kravet "Kameramodulet skal sende billeder til hovedmodulet" godkendt.
 - b. Er der sendt et billede over wifi kan kravet "Modulet skal kommunikere sammen vha. WiFI/bluetooth" ligeledes godkendt

Figur 2 - argon output

Test [3]

Følgende krav er testet i følgende test.

- Når hovedmodulet modtager et billede fra kameramodulet, skal billedet sendes til (Online facial recognition service) og verificeres op mod reference billeder, hvis billedet matcher et referencebillede, skal låsen låses op.
- Når et billede afvises, skal LED lyse rødt.
- Når objektgenkendelse identificerer en person, sendes billede til hovedmodul.
- Hovedmodulet skal være forbundet til internettet vha. WiFi
- Mens lås er låst op, skal LED på kameramodulet lyse grønt
- Mens kameramodulet afventer verifikation, skal LED lyse blå.

Test.

Forudsætninger:

- 2 personer, 1 der er godkendt og en der ikke er godkendt adgang.
- 1. setup af Kameramodul[Kameramodul].
- 2. setup af Hovedmodul[Hovedmodul].
- 3. placer ansigt ~80 cm. foran kamera og vent på billede er taget.
- 4. se på Argon terminal der skrives "client connected!".
- 5. se på Kameramodulet rgb led lyser blåt
 - **a.** hvis led lyser blåt er kravet "Mens kameramodulet afventer verifikatipn, skal LED lyse blå" godkendt.
- 6. se der sendes et http request, tjek at "Content-Length:?" værdi er imellem 2500-8000, se Figur 3.


```
192.168.0.22

client connected!

POST /face/vl.0/detect?returnFaceId=true&returnFaceLandmarks=false&recognitionMo

del=recognition_03&returnRecognitionModel=false&detectionModel=detection_02 HTTP

/1.0

Ocp-Apim-Subscription-Key:b32144abaff740cca0lcf20584eb800d

Content-Type:application/octet-stream

Host:iot-facial-compare-test.cognitiveservices.azure.com

Content-Length:4896
```

Figur 3 http request detect

- 7. se der kommer respons tilbage fra Azure med statusen 200 og et faceld, se Figur 4.
 - a. er der et faceld i responset er kravet "Når objektgenendelse identificerer en person, sendes billede til hovedmodul" godkendt, da Azure har fundet et ansigt på billedet modtaget fra kameramodulet.
 - **b.** Kommer der respons er kravet "Hovedmodulet skal være forbundet til internetter vha. WiFi" godkendt.

```
HTTP/1.1 200 OK
Keep-Alive: true
Content-Length: 114
Content-Type: application/json; charset=utf-8
x-envoy-upstream-service-time: 233
apim-request-id: 23c2daca-6791-4aa6-940a-1661c3378807
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
x-content-type-options: nosniff
CSP-Billing-Usage: CognitiveServices.Face.Transaction=1
Date: Tue, 08 Dec 2020 16:16:35 GMT
Connection: close
[{"faceId":"fcec3e7c-300e-465d-a7c3-096766e5a39a","faceRectangle":{"top":-3,"left":144,"width":153,"height":209}}]
```

Figur 4 - http respons detect

8. se der sendes et nyt request, indeholdende det modtaget faceld fra Figur 4, se Figur 6.

```
POST /face/v1.0/verify HTTP/1.0
Ocp-Apim-Subscription-Key:b32144abaff740cca01cf20584eb800d
Content-Type:application/json
Host:iot-facial-compare-test.cognitiveservices.azure.com
Content-Length:123
{"faceId":"fcec3e7c-300e-465d-a7c3-096766e5a39a","personId":"376bbcec-3679-40fc-9d25-5072d8e29433","PersonGroupId":"1"}
```

Figur 5 http request verify

9. se der kommer respons tilbage fra Azure med status 200 og en isldentical=true/false afhænging af om personen der udfører testen, er i systemet, se Figur 6.

```
HTTP/1.1 200 OK
Keep-Alive: true
Content-Length: 41
Content-Type: application/json; charset=utf-8
x-envoy-upstream-service-time: 42
apim-request-id: b03daa68-944e-44c0-bb43-dd4b63d303d9
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
x-content-type-options: nosniff
CSP-Billing-Usage: CognitiveServices.Face.Transaction=1
Date: Tue, 08 Dec 2020 16:16:36 GMT
Connection: close
{"isIdentical":true,"confidence":0.70895}
```

Figur 6 - http respone verify

- 10. gennemfør testen igen for en person der er godkendt adgang.
- 11. se at servo motor åbner.
- 12. se at led lyser grønt på kameramodul.
 - a. Hvis led lyser grønt er kravet "Mens lås er låst op, skal LED på kameramodulet lyse grønt" godkendt.

- 13. se at servo motor lukker efter 8* sekunder.
- 14. gennemfør test igen for en person der ikke er godkendt adgang.
- 15. se at servo motor forbliver lukket.
- 16. se at led på kameramodul blinker rødt.
 - a. Blinker led rød er der nægtet adgang og derved er kravet "når et billede afvises skal led lyse rødt" godkendt.

Test [4]

Testen verificerer 2 krav på samme tid, kravene som udføres er:

- Når et menneske stiller sig foran, indenfor 2 meter af kameramodulet. Skal systemet tage et billede og foretage objektgenkendelse (Person)
- Kameramodulet skal implementeres som et edge device, hvor der udføreres ansigtsdetektering på billeder

- 1. setup af Kameramodul [Kameramodul]
- 2. Placerer kameramodul sådan forsiden peger udad, i et rum med mere end 3 m. til væg
- 3. Placerer dig 3 meter fra fronten af kameramodulet.
- 4. Udfør bevægelse uden at komme tættere på kameramodulet.
 - a. Verificer at der ikke udføres en blitz
- 5. gå 1 meter imod kameramodul, sådan der er en afstand på 2 meter mellem din placering og kameramodulet.
 - a. Verificer at der udføres en blitz.
- 6. se på konsol om ansigt er detekteret.
 - a. Se Figur 7, for hvordan konsol information skal se ud.

```
rst:0x5 (DEEPSLEEP_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:1044
load:0x40078000,len:8896
load:0x40080400,len:5828
entry 0x400806ac
Camera Ready!
Image captured
WiFi connecting
WiFi connected
Bytes sent:4531
Image sent
Connection closed
Client connected
Setting up Sleep
Entering sleep
ets Jun 8 2016 00:22:57
```

Figur 7 - Ansigt detekteret

- 7. Stil dig udenfor kameramodulet kameravinkel
- 8. Udfør bevægelse fora kameramodul med hånd
 - a. Hvis der detekteres en blitz, er der taget et billede
- 9. se på konsol om et ansigt er detekteret
 - **a.** se Figur 8, for hvordan konsol information skal se ud.

```
rst:0x5 (DEEPSLEEP_RESET),boot:0x13 (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:1044
load:0x40078000,len:8896
load:0x40080400,len:5828
entry 0x400806ac

Camera Ready!
Image captured
no human Face
Setting up Sleep
Entering sleep
ets Jun 8 2016 00:22:57
```

Figur 8 - Ansigt ikke detekteret

Test [5]

Testen verificerer to krav på samme tid, kravene er:

- Kameramodulet skal aktiveres vha. en sensor
- Mens kameramodulet er i power saving mode, skal systemet vågne op ved input fra digital indgang

- 1. setup af Kameramodul [Kameramodul]
- 2. Placerer kameramodul sådan forsiden peger udad, i et rum med mere end 3 m. til væg
- 3. verificer at sidste besked i konsollen er "Entering Sleep"

```
Setting up Sleep
Entering sleep
```

- 4. Placerer dig 1 meter fra fronten af kameramodulet.
- 5. Udfør bevægelse uden at komme tættere på kameramodulet.
 - a. Verificer at der kameramodulet blitzer

Test [6]

Testen verificerer kravet:

• Hvis kameramodulet ikke kan forbinde til WiFi/bluetooth skal modulet gå i power saving mode.

- 1. setup af Kameramodul [Kameramodul]
- 2. Sluk access point, så kameramodul ikke kan forbinde til WiFi.
- 3. Placerer kameramodul sådan forsiden peger udad, i et rum med mere end 3 m. til væg
- 4. Placerer dig 1 meter fra fronten af kameramodulet.
- 5. Udfør bevægelse uden at komme tættere på kameramodulet.
 - a. Verificer at der udføres en blitz
 - b. verificer ansigt detekteres
- 6. se på konsol om modul går i sleep-tilstand.
 - a. Se Figur 9, for hvordan konsol information skal se ud.

```
rst:0x5 (DEEPSLEEP RESET),boot:0x13 (SPI FAST FLASH BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:2
load:0x3fff0018,len:4
load:0x3fff001c,len:1044
load:0x40078000,len:8896
load:0x40080400,len:5828
entry 0x400806ac
Camera Ready!
Image captured
WiFi connecting
                ......WiFi - connection error
verify face failed
Setting up Sleep
Entering sleep
ets Jun 8 2016 00:22:57
```

Figur 9 - WiFi connection error

Test [7]

Testen verificerer kravet:

- Kameramodulet skal være low power og kunne holde strøm i op til 30 dage, ved normal brug
- 1. Download Otii Arc's software og installer dette (https://www.goitech.com/download/)
- 2. Tilslut Otii Arc til PC via USB og tilslut ekstern forsyning
- 3. Opsætning af Otii
 - Indstil udgangsspændingen til 5V
 - Indstil max current limit til det højest mulige
- 4. Tilstlut Otii Arc's til stel på ESP32-CAM
- 5. Tilslut Otii Arc's + til forsyning af ESP32-CAM
- 6. Tryk på Record
- 7. Udfør samme steps som i Test 3
- 8. Stop record og notér AVG: Current
- 9. Start en ny måling og lad enheden være idle i minimum et minut
- 10. Stop record og notér AVG: Current
- 11. Udregn et samlet energiforbrug ud fra gennemsnitsstrømmen fra de to målinger
 - Det antages at der er 6 aktiveringer pr dag i en periode på 30 dage
 - Fremgangsmåden for udregningen kan ses i bilaget strømUdregninger&målinger_bilag.pdf
- 12. Verificer at den samlede mængde energi er ca. 4400mAh