Course Code	Course Name	Teaching Scheme (Contact Hours)			Cr	redits Assigned			
		Tł	neory	Pra	c Tut	Theory	Prac	Tut	Total
MEAIC103	Mathematical		04	-	-	04	-	-	04
	Foundations of	Examination Scheme							
	Data Science	Theory							
		Internal End			Exam	TW	Oral/	Total	
		Test 1	Test 2	Avg	Sem.	Duration	1 '''	Prac	Total
					Exam	(in Hrs)			
		20	20	20	80	03	-	-	100

Course Objectives:

This course will introduce students to the fundamental mathematical concepts required for applying data science.

Course Outcomes:

Upon completion of the course, the learners will be able to:

- 1. Understand the importance of linear algebra, statistics and probability from data science perspective.
- 2. Understand the elements of structured data and data distribution for binary as well as categorical data.
- 3. Apply the knowledge of sampling and distribution algorithms to evaluate the real distribution of sampling data.
- 4. Apply the knowledge of significance testing, use of null value hypothesis to outline the conditions for a particular test.
- 5. Evaluate and analyze the results of confusion matrix.
- 6. Apply optimization techniques for improvising performance.

Prerequisites: Fundamentals of Probability and Statistics.

Sr.	Module	Detailed Content	Hours
No.			
1	Basics of Data	Introduction; Importance of linear algebra, statistics	8
	Science	and optimization from a data science perspective;	
		Structured thinking for solving data science problems;	
		Probability, Statistics and Random Processes:	
		Probability theory and axioms; Random variables.	
2	Linear Algebra	Matrices and their properties (determinants, traces,	8
		rank, nullity, etc.); Eigenvalues and eigenvectors;	
		Matrix factorizations; Inner products; Distance	
		measures.	
3	Exploratory Data	Elements of structured data; Estimates of location;	8
	Analysis	Estimates of variability; Expectations and moments;	
		Exploring the data distribution; Exploring binary and	
		categorical data; Covariance and correlation;	
		Exploring two or more variables.	
4	Data and Sampling	Random sampling and sample bias; Selection bias;	8
	Distributions	Central limit theorem; Standard error; Bootstrap;	

		Confidence intervals; Normal distribution; Long-tailed	
		distributions; Student's t-distribution; Binomial	
		distribution; Poisson distributions; Exponential	
		distribution; Weibull distribution; Fitting a model.	
5	Statistics and	Hypothesis tests; A/B testing; Chi-square test;	8
	Significance Testing	confidence intervals; p-values; ANOVA; t-test;	
		Confidence (statistical) intervals; Degrees of freedom;	
		White-noise process.	
6	Evaluation and	Mathematics in algorithmic performance evaluation:	8
	Optimization	Confusion matrix; Precision; Recall; Specificity; ROC	
		Curve; AUC; Lift; Optimization: Global and local	
		optima; Unconstrained and constrained optimization;	
		Introduction to least squares optimization.	

Text Books:

- 1. P. Bruce and A. Bruce, Practical Statistics for Data Scientists: 50 Essential Concepts, O'Reilly.
- 2. C. O'Neil and R. Schutt, Doing Data Science, O'Reilly.

Reference Books:

- 1. G. Strang, Introduction to Linear Algebra, 5th edition, Wellesley-Cambridge Press, USA.
- 2. W. Hines, D. Montgomery, D. Goldman, C. Borror, Probability and Statistics in Engineering, Wiley India Pvt. Ltd.
- 3. A. Agresti, C. Franklin, B. Klingenberg, Statistics: The Art and Science of Learning from Data, Global Edition, Pearson.

Internal Assessment:

Assessment consists of two tests out of which one should be compulsorily class test (on minimum 02 modules) and the other can be either a class test or assignment on real-world problems or course related project.

Theory Examination:

- 1. Question paper will comprise of total 6 questions.
- 2. All questions carry equal marks.
- 3. Questions will be mixed in nature (for example, suppose Q2 has part (a) from module 3, then Q2 part (b) will be from any module other than module 3).
- 4. Only 4 questions need to be solved.
- 5. In question paper, weightage of each module will be proportional to the number of respective lecture hours as mentioned in the syllabus.