Выпускная квалификационная работа

по курсу

«Data Science»

по теме:

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Слушатель: Титов Александр Юрьевич

Этапы работы

- Разведочный анализ данных
- Удаление выбросов
- Анализ признаков и визуализация с целью выявления зависимостей
- Предобработка данных
- ❖ Разработка и обучение регрессионных моделей для прогнозирования
 «Модуль упругости при растяжении, ГПА» и «Прочность при растяжении»
- ❖ Нейронная сеть для рекомендации «Соотношение матрица-наполнитель»
- ❖ Разработка приложения Flask

Разведочный анализ данных

Даны 2 файла: **X_bp.xlsx** (с данными о параметрах, состоящий из 1023 строк и 10 столбцов данных) и **X_nup.xlsx** (данными нашивок, состоящий из 1040 строк и 3 столбцов данных). После объединения - 1023 строки, 13 столбцов.

	Соотношение матрица- наполнитель	Плотность, кг/м3	модуль упругости, ГПа	Количество отвердителя, м.%	Содержание эпоксидных групп,%_2	Температура вспышки, С_2	Поверхностная плотность, г/ м2	Модуль упругости при растяжении, ГПа	Прочность при растяжении, МПа	Потребление смолы, г/м2	Угол нашивки, град	Шаг нашивки	Плотность нашивки
0	1.857143	2030.000000	738.736842	30.000000	22.267857	100,000000	210.000000	70.000000	3000.000000	220.000000	0.0	4.000000	57.000000
1	1.857143	2030.000000	738.736842	50.000000	23.750000	284.615385	210.000000	70.000000	3000.000000	220.000000	0.0	4.000000	60.000000
2	1.857143	2030.000000	738.736842	49.900000	33.000000	284.615385	210.000000	70.000000	3000.000000	220.000000	0.0	4.000000	70.000000
3	1.857143	2030.000000	738.736842	129.000000	21.250000	300.000000	210.000000	70.000000	3000.000000	220.000000	0.0	5.000000	47.000000
4	2.771331	2030.000000	753.000000	111.860000	22.267857	284.615385	210.000000	70.000000	3000.000000	220.000000	0.0	5.000000	57.000000
	***		-		4	1875	1-9	***	1,44	_	(455)	444	***
1018	2.271346	1952.087902	912.855545	86.992183	20.123249	324.774576	209.198700	73.090961	2387.292495	125.007669	90.0	9.076380	47.019770
1019	3.444022	2050.089171	444.732634	145.981978	19.599769	254.215401	350.660830	72.920827	2360.392784	117.730099	90.0	10.565614	53.750790
1020	3.280604	1972.372865	416.836524	110.533477	23.957502	248.423047	740.142791	74.734344	2662.906040	236.606764	90.0	4.161154	67.629684
1021	3.705351	2066.799773	741.475517	141.397963	19.246945	275.779840	641.468152	74.042708	2071.715856	197.126067	90.0	6.313201	58.261074
1022	3.808020	1890.413468	417.316232	129.183416	27.474763	300.952708	758.747882	74.309704	2856.328932	194.754342	90.0	6.078902	77.434468

Разведочный анализ данных

Разведочный анализ данных

Удаление выбросов

После удаления всех выбросов осталась 921 строка с данными

Анализ признаков и визуализация с целью выявления зависимостей

Гистограмма распределения

Тепловая карта

Анализ признаков и визуализация с целью выявления зависимостей

Предобработка данных

Значения признаков находятся в разных диапазонах, поэтому сделаем нормализацию данных (MinMaxScaler). Также проведем стандартизацию как дополнительный способ предобработки данных (StandardScaler)

Разработка и обучение регрессионных моделей

На примере Ridge регрессии: выбор модели, подбор гиперпараметров по сетке (GridSearchCV) с перекрестной проверкой (cross validation K-fold), обучение модели, денормализация предсказанных значений и оценка результатов при помощи метрик МАЕ и R2, запись результатов для итоговой таблицы


```
ратт. 4 Последняя контрольная точка: 14 часов назад (автосохранение)
                               Widgets
                      Kernel
Лучший параметр для гребневой регрессии:
{'alpha': 20, 'solver': 'saga'}
Лучший средний балл перекрестной проверки:
-0.19174314477874627
# модель линейной регрессии Ridge
alpha = cv.best params ['alpha']
solver = cv.best params ['solver']
modelRidge = Ridge(alpha=alpha, solver=solver)
modelRidge.fit(X train norm,y train norm)
print (modelRidge.predict(X test norm).shape)
y pred = scaler norm y.inverse transform (modelRidge.predict(X test norm))
MAERidge 1 = mean absolute error(y test.iloc[:,0],y pred[:,0])
MAERidge_2 = mean_absolute_error(y_test.iloc[:,1],y_pred[:,1])
R2Ridge_1 = r2_score(y_test.iloc[:,0],y_pred[:,0])
R2Ridge_2 = r2_score(y_test.iloc[:,1],y_pred[:,1])
print (MAERidge_1)
print (MAERidge_2)
print (R2Ridge 1)
print (R2Ridge 2)
(277, 2)
383.5410203855528
2.455327142435743
0.0027313899871075353
0.0012358297310369748
# записываем данные об ошибках в итоговую таблицу
MAE y1.append(['Ridge norm', MAERidge 1])
MAE y2.append(['Ridge norm', MAERidge 2])
R2_y1.append(['Ridge_norm',R2Ridge_1])
R2_y2.append(['Ridge_norm',R2Ridge_2])
```


Разработка и обучение регрессионных моделей

Оценка результатов работы моделей с использованием МАЕ и R2

	Модель регрессии	R2 Модуль упругости при растяжении, ГПа	R2 Прочность при растяжении, МПа
0	Ridge_norm	-0.000235	-0.000848
1	Lasso_norm	0.002850	-0.001080
2	Elastic_norm	-0.000235	-0.000864
3	GBR_norm	-0.041779	-0.064270
4	KNeighborsRegressor_norm	-0.051453	-0.197266
5	DecisionTreeRegressor_norm	-0.090393	-0.281006
6	$RandomForestRegressor_norm$	0.003441	-0.009041
7	AdaBoostRegressor_norm	-0.059174	-0.154297

Нейронная сеть для рекомендации «Соотношение матрица-наполнитель»

Нейронная сеть для рекомендации «Соотношение матрица-наполнитель»

Разработка приложения Flask

Разработка приложения Flask

edu.bmstu.ru

+7 495 182-83-85

edu@bmstu.ru

Москва, Госпитальный переулок , д. 4-6, с.3

