

[Chap.2-2] Representing and Manipulating Information

Young Ik Eom (<u>yieom@skku.edu</u>, 031-290-7120)

Distributing Computing Laboratory

Sungkyunkwan University

http://dclab.skku.ac.kr

Contents

- **■** Introduction
- **■** Information storage
- **■** Integer representations
- Integer arithmetic
- **■** Floating point
- Summary

Unsigned addition

- w-bit integers x, y
- Compute the true sum

•
$$0 \le x + y \le 2^{w+1} - 2$$

- True sum requires one more bit ("carry")
 - Values increase
 linearly with x and y
 - Forms planar surface

- Ignores carry output
- Wraps around when true sum ≥ 2^w

$$x +_{w}^{u} y = \begin{cases} x + y, & x + y < 2^{w} \\ x + y - 2^{w}, & 2^{w} \le x + y \end{cases}$$

True Sum

Unsigned addition

- Example-1) 4-bit unsigned integers
 - (Decimal) $3 + 5 \rightarrow 8$
 - (Binary) $0011 + 0101 \rightarrow 1000$
- Example-2) 4-bit unsigned integers (overflow)
 - (Decimal) $9 + 12 \rightarrow 21 16 \rightarrow 5$
 - (Binary) $1001 + 1100 \rightarrow 10101 \rightarrow 0101$

Unsigned addition in C

 When executing C programs, overflows are not signaled as errors

$$s \doteq x + w y$$

- To determine whether overflow has occurred
 - Check **s** < **x** (or **s** < **y**)

- Signed (2's-complement) addition
 - w-bit integers x, y

•
$$-2^{w-1} \le x, y \le 2^{w-1} - 1$$

Compute the true sum

•
$$-2^w \le x + y \le 2^w - 2$$

- True sum requires one more bit ("carry")
- But, in signed addition (in C),
 - The leading (carry) bit is truncated and
 - Treat the remaining bits as 2's-complement integer

- Signed (2's-complement) addition
 - Example) 4-bit integers (-8 ~ 7)

<u></u>				
	$x + ^{t}_{4} y$	x + y	у	х
Negative overflow	3	-13	-5	-8
	[0011]	[10011]	[1011]	[1000]
Negative overflow	0	-16	-8	-8
	[0000]	[10000]	[1000]	[1000]
Normal	-3	-3	5	-8
	[1101]	[11101]	[0101]	[1000]
Normal	7	7	5	2
	[0111]	[00111]	[0101]	[0010]
Positive overflow	-6	10	5	5
	[1010]	[01010]	[0101]	[0101]

- Signed (2's-complement) addition
 - Notes)
 - When both x and y are negative, but the sum ≥ 0
 - ✓ Negative overflow
 - When both x and y are positive, but the sum < 0
 - ✓ Positive overflow

■ 2's-complement negation

- w-bit integers x
 - $-2^{w-1} \le x \le 2^{w-1} 1$
- Compute the true negation

•
$$-(2^{w-1}-1) \le -x \le 2^{w-1}$$

- No problem when $-2^{w-1} < x \le 2^{w-1} 1$
- But, when $\mathbf{x} = -2^{\mathbf{w}-1}$, $-\mathbf{x}$ can not be represented as a \mathbf{w} -bit number
 - In this case, 2's-complement negation of x becomes -2^{w-1}

$$-\frac{1}{w}x = \begin{cases} -2^{w-1}, & x = -2^{w-1} \\ -x, & x > -2^{w-1} \end{cases}$$

- 2's-complement negation
 - Example)

[1100] -4 [0100] 4 [1000] -8 [1000] -8 [0101] 5 [1011] -5	x		-x	
	[1100]	-4	[0100]	4
[010 <i>I</i>] 5 [101 <i>I</i>] -5	[1000]	-8	[1000]	-8
	[0107]	5	[1017]	-5
[0111] 7 [1001] -7	[0117]	7	[1007]	-7

Unsigned multiplication

- w-bit unsigned integers x, y
 - $0 \le x, y \le 2^w 1$
- Maximum value of the product xy
 - $0 \le x \cdot y \le 2^{2w} 2^{w+1} + 1$
- Requires 2w bits to represent x·y
- But, in unsigned multiplication (in C),
 - The multiplication yields to the *w*-bit value given by the low-order *w* bits of the 2*w*-bit integer product

Unsigned multiplication in C

- Ignores high order w bits
- Implements modular arithmetic

$$x *_w^u y = (x \cdot y) \mod 2^w$$

- 2's-complement multiplication
 - w-bit signed integers x, y
 - $-2^{w-1} \le x, y \le 2^{w-1} 1$
 - The product x y can range between
 - $-2^{w-1} \cdot (2^{w-1} 1) \le x \cdot y \le (-2^{w-1}) \cdot (-2^{w-1})$
 - $-2^{2w-2} + 2^{w-1} \le x \cdot y \le 2^{2w-2}$
 - Requires 2w bits to represent x·y
 - But, in 2's-complement multiplication (in C),
 - The multiplication yields to the *w*-bit value given by the low-order *w* bits of the 2*w*-bit integer product

$$x *_w^t y = U2T_w((x \cdot y) \bmod 2^w)$$

■ 2's-complement multiplication

■ Example) 3-bit integers (unsigned: 0~+7, signed: -4~+3)

Mode	х	у	х·у	Truncated x · y
Unsigned	5 [101]	3 [011]	15 [001111]	7 [111]
2's-complement	-3 [101]	3 [011]	-9 [110111]	-1 [111]
Unsigned	4 [100]	7 [111]	28 [011100]	4 [100]
2's-complement	-4 [100]	-1 [111]	4 [000100]	-4 [100]
Unsigned	3 [011]	3 [011]	9 [001001]	1 [001]
2's-complement	3 [011]	3 [011]	9 [001001]	1 [001]

Multiplying by constants

- Multiplication by $2^k (x \cdot 2^k)$
 - Left shift k-times (x << k)
 - Applicable to both unsigned and signed

Multiplying by constants

- Note)
 - In most machines, integer multiplication is much more costly than shifting and adding
 - ✓ 10 or more clock cycles for integer multiplication
 - ✓ 1 clock cycle for addition, subtraction, shift, and bit-level operations
 - Many C compilers try to substitute multiplication by constant with combinations of shifting, adding, and subtracting (automatically during translation and code generation)
 - Example)

 Example) Shift/add code generated automatically by the C compiler (for the multiply-by-constant statement)

C function

```
int mul12 (int x)
{
    return x * 12;
}
```

Compiled code

```
leal (%eax, %eax, 2), %eax ; t ← x + x * 2 sall $2, %eax ; return t << 2
```


Division

- Even slower than integer multiplication
- 30 or more clock cycles
- Division by 2^k can be transformed to right shift operation
 - Division by arbitrary constant k cannot be expressed in terms of division by powers of 2

- Division: Unsigned power-of-2 division and shift
 - x >> k gives $\lfloor x/2^k \rfloor$
 - Uses logical shift

Expression	Division	Result	Hex	Binary
X	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

- Division: Unsigned power-of-2 division and shift
 - Compiled unsigned division code
 - Uses logical shift for unsigned
 - Logical shift written as >>> in Java

C function

```
unsigned udiv8 (unsigned x)
{
   return x / 8;
}
```

Compiled code

```
shrl $3, %eax ; return t >> 3
```


- x >> k gives $\lfloor x/2^k \rfloor$
- Uses arithmetic shift (rounds wrong direction when x < 0)

Expression	Division	Result	Hex	Binary
X	-12340	-12340	CF CC	11001111 11001100
x >> 1	-6170.0	-6170	E7 E6	1 1100111 11100110
x >> 4	-771.25	-772	FC FC	1111 1100 11111100
x >> 8	-48.203125	-49	FF CF	1111111 11001111

- Division: Correct power-of-2 division
 - We want $[x/2^k]$ (Round Toward 0) when x < 0
 - Compute as $\lfloor (x + 2^k 1) / 2^k \rfloor$
 - In C, (x + (1 << k) 1) >> k
 - Using the property [x/y] = [(x+y-1)/y]
 - Biases dividend toward 0

Expression	Division	Result	Hex	Binary
X	-12340	-12340	CF CC	11001111 11001100
x >> 1	-6170.0	-6170	E7 E6	1 1100111 11100110
x >> 4	-771.25	-771	FC FC	11111100 111111101
x >> 8	-48.203125	-48	FF CF	1111111 11010000

- Division: Correct power-of-2 division
 - Case 1: No rounding
 - Biasing has no effect

- Division: Correct power-of-2 division
 - Case 2: Rounding
 - Biasing adds 1 to the final result

TEAL HAND

- Division: Correct power-of-2 division
 - Compiled signed division code
 - Uses arithmetic shift for signed

Compiled code

```
testl %eax, %eax
js L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

C function

```
int idiv8 (int x)
{
    return x / 8;
}
```

Explanation

```
if (x < 0)
    x += 7;
return x >> 3;
```

Summary

