Class Survey Project

All Members of Table 12

2025-10-09

Executive Summary

Data Description

Question of Interest

Basic Regression of the Class Survey Data

Here, we read in the standardized proficiency score dataset first.

```
csv_path <- "data/PSTAT197A_ Standardized_Proficiency_Score.csv"
df <- read_csv(csv_path, show_col_types = FALSE)
names(df)[names(df) == "Score_Avg (Difficulty of Courses)"] <- "Score_Avg"</pre>
```

```
# make sure columns are numeric
df <- df %>%
  mutate(
    Score_Avg
                     = as.numeric(Score_Avg),
    Prog_Proficiency = as.numeric(Prog_Proficiency),
    Stat_Proficiency = as.numeric(Stat_Proficiency),
    Math_Proficiency = as.numeric(Math_Proficiency)
  )
# define pairs and fit models
pairs <- tribble(</pre>
  "Prog_Proficiency", "Score_Avg",
  "Stat_Proficiency", "Score_Avg",
  "Math_Proficiency", "Score_Avg"
fit_1 <- function(y, x, data) {</pre>
  sub <- data %>% select(all_of(c(y, x))) %>% drop_na()
  m <- lm(reformulate(x, y), data = sub)</pre>
    glance = glance(m) \%>% mutate(y = y, x = x, n = nobs(m)),
   tidy = tidy(m) \%% mutate(y = y, x = x),
```

```
model = m,
   data = sub
)

fits <- pairs %>%
   pmap(fit_1, data = df)

# summarize coefficients & fit stats
coef_tbl <- map_dfr(fits, "tidy") %>%
   select(y, x, term, estimate, std.error, statistic, p.value)

glance_tbl <- map_dfr(fits, "glance") %>%
   select(y, x, n, r.squared, adj.r.squared, AIC, BIC, sigma, p.value)

kable(coef_tbl, caption = "Regression Coefficients Summary")
```

Table 1: Regression Coefficients Summary

у	X	term	estimate	std.error	statistic	p.value
Prog_Proficiency	Score_Avg	(Intercept)	2.6153854	3.444774	0.7592329	0.4513503
Prog_Proficiency	Score_Avg	Score_Avg	1.8530853	1.613662	1.1483729	0.2563901
Stat_Proficiency	Score_Avg	(Intercept)	-3.6097496	3.662698	-0.9855440	0.3291985
Stat_Proficiency	$Score_Avg$	Score_Avg	5.1699736	1.715745	3.0132521	0.0040832
Math_Proficiency	$Score_Avg$	(Intercept)	5.3375240	3.900490	1.3684241	0.1774213
Math_Proficiency	$Score_Avg$	$Score_Avg$	0.7766173	1.827136	0.4250462	0.6726638

```
kable(glance_tbl, caption = "Model Fit Statistics Summary")
```

Table 2: Model Fit Statistics Summary

у	X	n	r.squared	adj.r.squared	AIC	BIC	sigma	p.value
Prog_Proficiency	Score_Avg	51	0.0262081	0.0063348	216.8064	222.6019	1.949931	0.2563901
Stat_Proficiency	$Score_Avg$	51	0.1563316	0.1391138	223.0633	228.8588	2.073288	0.0040832
Math_Proficiency	Score_Avg	51	0.0036735	-0.0166597	229.4793	235.2748	2.207891	0.6726638

```
# Plots with fitted line
plot_one <- function(y, x, data) {
    rngx <- range(data[[x]], na.rm = TRUE) + c(-0.05, 0.05)
    rngy <- range(data[[y]], na.rm = TRUE) + c(-0.5, 0.5)

ggplot(data, aes(x = .data[[x]], y = .data[[y]])) +
    geom_point(
    alpha = 0.7,
    size = 2,
    color = "#2C7FB8",
    position = position_jitter(width = 0.01, height = 0.01)
    ) +
    geom_smooth(</pre>
```

```
method = "lm",
      se = TRUE,
     color = "#D95F0E",
     fill = "#FEEOB6"
    coord_cartesian(xlim = rngx, ylim = rngy) +
    labs(
     title = paste(y, "vs", x),
    x = x,
     y = y
    ) +
    theme_minimal(base_size = 12) +
     plot.title = element_text(face = "bold", hjust = 0.5),
     panel.grid.minor = element_blank(),
     panel.grid.major = element_line(color = "grey90")
}
plots <- pmap(</pre>
 pairs,
 \(y, x) plot_one(y, x, df \%\% select(all_of(c(y, x))) \%\% drop_na())
```

plots[[1]]

```
## 'geom_smooth()' using formula = 'y ~ x'
```


plots[[2]]

'geom_smooth()' using formula = 'y ~ x'

plots[[3]]

'geom_smooth()' using formula = 'y ~ x'

Findings