

Chapter 4 Combinational Logic

FIGURE 4.1Block diagram of combinational circuit

Sequential Logic

Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs \rightarrow the outputs $\frac{at\ any\ time}{}!$

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.

Propagation Delay (Gate Delay) ≈ Δt

https://en.wikipedia.org/wiki/Propagation_delay#Electronics

Propagation Delay (Gate Delay) $\approx \Delta t \approx 0$

https://en.wikipedia.org/wiki/Propagation_delay#Electronics

What we've done so far

Combinational Logic aka. Combinational Circuit

Design a combinational logic circuit:

- 1. Truth Table (Inputs, Outputs)
- 2. Output Boolean Functions (SoP: ∑m | PoS: ∏M)
- 3. Minimization
 - Algebraically | K-Map | Quine-McCluskey

4. Logic Diagram | Circuit

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & Logical Op Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & Logical Op

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coding

A → Encode→B

A ← Decode ← B

$A \leftrightarrow [Enc][Dec]code \leftrightarrow B$

By a convention

- Math, e.g., conversion in radix numbering system
- Non-math, e.g., in base-64, the value of characters
- Engineering
- etc

1-way Coding

 $A \rightarrow Encode \rightarrow B$

A + Decode + B

2-way Coding

A ↔ Look up Table ↔ B

Base-64

A ↔ Look up Table ↔ B

Digit	Value		Digit	Value		Digit	Value		Digit	Value
А	0		Q	16		g	32		W	48
В	1		R	17		h	33		Х	49
С	2		S	18		i	34		У	50
D	3		Т	19		j	35		Z	51
Е	4		U	20		k	36		0	52
F	5		V	21			37		1	53
G	6		W	22		m	38		2	54
Н	7	→	Χ	23	→	n	39	→	3	55
l	8		Υ	24		0	40		4	56
J	9		Z	25		р	41		5	57
K	10		а	26		q	42		6	58
L	11		b	27		r	43		7	59
М	12		С	28		S	44		8	60
Ν	13		d	29		t	45		9	61
0	14		е	30		U	46		+	62
Р	15		f	31		V	47		/	63

Binary Codes

Assigning binary numbers to things

A ↔ Look up Table ↔ Binary Number

Binary Coded Decimal BCD (8421)

Decimal ↔ Look up Table ↔ Binary Number

Table 1.4 *Binary-Coded Decimal (BCD)*

Decimal Symbol	BCD Digit		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

Decimal	BCD (Binary Code)	Binary Number		
10	0001 0000	0000 1010		
11	0001 0001	0000 1011		
12	0001 0010	0000 1100		
13	0001 0011	0000 1101		
14	0001 0100	0000 1110		
15	0001 0101	0000 1111		
16	0001 0110	0001 0000		
17	0001 0111	0001 0001		
18	0001 1000	0001 0010		
19	0001 1001	0001 0011		
20	0010 0000	0001 0100		
21	0010 0001	0001 0101		
22	0010 0010	0001 0110		
23	0010 0011	0001 0111		
•••		•••		

Decimal	BCD (Binary Code)	Binary Number		
10	0001 0000	0000 1010		
11	0001 0001	0000 1011		
12	0001 0010	0000 1100		
13	0001 0011	0000 1101		
14	0001 0100	0000 1110		
15	0001 0101	0000 1111		
16	0001 0110	0001 0000		
17	0001 0111	0001 0001		
18	0001 1000	0001 0010		
19	0001 1001	0001 0011		
20	0010 0000	0001 0100		
21	0010 0001	0001 0101		
22	0010 0010	0001 0110		
23	0010 0011	0001 0111		
•••		•••		

$$(185)_{10} = (?)_{BCD} = (?)_{2}$$

$$(185)_{10} = (0001)_{BCD} = (?)_2$$

$$(185)_{10} = (0001 \, 1000)_{BCD} = (?)_2$$

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (?)_2$$

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (?)_2$$

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (?)_2$$

	Remainder
185÷2	1
92÷2	0
46÷2	0
23÷2	1
11÷2	1
5÷2	1
2÷2	0
1÷2	1
0	

$$(185)_{10} = (0001\ 1000\ 0101)_{BCD} = (10111001)_{2}$$

Other Binary Codes

A ↔ Look up Table ↔ B

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111

Other Binary Codes Aiken (2421)

https://en.wikipedia.org/wiki/Aiken_code

Howard Hathaway Aiken

(March 8, 1900 – March 14, 1973)

Physicist

Pioneer in computing

Original conceptual designer behind IBM's Harvard Mark I

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	> 0001	0100	0111
2	0010	0010	0101	0110
3	0011	> 0011 NOT	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	> 1110	1011	1000
9	1001	1111	1100	1111

```
(185)_{10} = (0001 1000 0101)_{BCD (8421)}
= (10111001)_2
= (0001 NOT(1) NOT(4))_{Aiken (2421)}
```

```
(185)_{10} = (0001 \ 1000 \ 0101)_{BCD \ (8421)}
= (10111001)_2
= (0001 \ NOT(0001) \ NOT(0100))_{Aiken \ (2421)}
```

```
(185)_{10} = (0001 \ 1000 \ 0101)_{BCD (8421)}
= (10111001)_{2}
= (0001 \ 1110 \ 1011)_{Aiken (2421)}
```

Other Binary Codes Excess-3 (XS-3)

https://en.wikipedia.org/wiki/Excess-3

George Robert Stibitz

(April 30, 1904 – January 31, 1995)
Bell Labs researcher
One of the fathers of the modern first digital computer

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	Aiken 2421	+3 Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111


```
(185)_{10} = (0001 1000 0101)_{BCD (8421)}
= (10111001)_2
= (0001 1110 1011)_{Aiken (2421)}
= ((1+3) (8+3) (5+3))_{Excess-3}
```

```
(185)_{10} = (0001 \ 1000 \ 0101)_{BCD \ (8421)}
= (10111001)_2
= (0001 \ 1110 \ 1011)_{Aiken \ (2421)}
= ((4) \ (11) \ (8))_{Excess-3}
```

```
(185)_{10} = (0001 \ 1000 \ 0101)_{BCD \ (8421)}
= (10111001)_2
= (0001 \ 1110 \ 1011)_{Aiken \ (2421)}
= (0100 \ 1011 \ 1000)_{Excess-3}
```

Other Binary Codes 84(-2)(-1)

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000 <
1	0001	0001	0100	> 0111
2	0010	0010	0101	/ 0110 ← \
3	0011	0011	0110	> 0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	> 1010
7	0111	1101	1010	1001
8	1000	1110	1011	> 1000
9	1001	1111	1100	1111

```
(185)_{10} = (0001\ 1000\ 0101)_{BCD\ (8421)}
= (10111001)_2
= (0001\ 1110\ 1011)_{Aiken\ (2421)}
= (0100\ 1011\ 1000)_{Excess-3}
= (0111\ 1000\ 1011)_{84-2-1}
```

What's nice about *some* binary codes?

Self-complementing

The 9's complement of the decimal number =

The 1's complement (NOT) of its binary code

```
(185)_{10} = (0001 1110 1011)_{Aiken (2421)}
= (0100 1011 1000)_{Excess-3}
= (0111 1000 1011)_{84-2-1}
```

```
9's\text{-comp}(185)_{10} = (814)_{10}
= NOT(0001 1110 1011)<sub>Aiken (2421)</sub>
= NOT(0100 1011 1000)<sub>Excess-3</sub>
= NOT(0111 1000 1011)<sub>84-2-1</sub>
```

```
(185)_{10} = (0001 1110 1011)_{Aiken (2421)}
= (0100 1011 1000)_{Excess-3}
= (0111 1000 1011)_{84-2-1}
```

```
9's-comp(185)<sub>10</sub> = (814)_{10}
= (1110\ 0001\ 0100)_{Aiken\ (2421)}
= (1011\ 0100\ 0111)_{Excess-3}
= (1000\ 0111\ 0100)_{84-2-1}
```

Other Binary Codes Gray

Table 1.6 *Gray Code*

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Gray Code Analog → Digital

Table 1.6 *Gray Code*

Gray Code	Decimal Equivalent
0000 1 hit chang	0
0001 1-bit change	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Gray Code Analog → Digital

Straight binary number sequence for 7 to 8: 0111 \rightarrow 1000; causes all four bits to change values. Gray code for 7 \rightarrow 8: 0100 to 1100; only the first bit changes from 0 to 1; the other three bits remain the same.

Gray Code Algorithm

Step 0: Convert the decimal number to binary number.

Step 1: The MSB (Most Significant Bit) of a gray code and binary code is the same.

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

Step 0: Convert the decimal number to binary number.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code					

Step 1: The MSB (Most Significant Bit) of a gray code and binary code is the same.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1				

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1	1⊕0=1			

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1	1	0⊕1=1		

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1	1	1	1⊕0=1	

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1	1	1	1	0⊕0=0

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

(20) ₁₀	Binary Number	1	0	1	0	0
	Gray Code	1	1	1	1	0

(21) ₁₀	Binary Number	1	0	1	0	1
	Gray Code	1	1	1	1	1

ASCII Code

American Standard Code for Information Interchange

USASCII code chart

07 b Β	5 -				-	° 0 0	° 0 ,	0	0 1	00	0	1 0	1 1
8,7,6	4+	b 3	p 5	- +	Row	0	-	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	0	Р	`	Р
	0	0	0	_		SOH	DC1	!	1	Α.	Q	O	q
	0	0		0	2	STX	DC 2	11	2	В	R	b	r
	0	0	-	_	3	ETX	DC3	#	3	C	S	С	\$
	0	1	0	0	4	EOT	DC4	•	4	D	T	đ	t
	0		0	1	5	ENQ	NAK	%	5	Ε	U	е	U
	0	1	-	0	6	ACK	SYN	8	6	F	V	f	V
	0	_	-	1	7	BEL	ETB	•	7	G	W	g	w
	-	0	0	0	8	BS	CAN	(8	н	×	ħ	×
	_	0	0	-	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	1	0	_	1	11	VT	ESC	+	•	K	C	k .	{
	-	1	0	0	12	FF	FS	•	<	L	\	ì	1
	1	1	0	ı	13	CR	GS	-	#	М	כ	E	}
	_	1	-	0	14	so	RS		>	N	^	n	~
		1	_		15	SI	US	/	?	0	-	0	DEL

 $"0" = (011\ 0000)_2 = (48)_{10}$

Table 1.7American Standard Code for Information Interchange (ASCII)

	$b_7b_6b_5$									
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111		
0000	NUL	DLE	SP	0	@	P	`	p		
0001	SOH	DC1	!	1	Α	Q	a	q		
0010	STX	DC2	66	2	В	R	b	r		
0011	ETX	DC3	#	3	C	S	c	S		
0100	EOT	DC4	\$	4	D	T	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	V	f	v		
0111	BEL	ETB	4	7	G	W	g	w		
1000	BS	CAN	(8	H	X	h	X		
1001	HT	EM)	9	I	Y	i	y		
1010	LF	SUB	*	:	J	Z	j	Z		
1011	VT	ESC	+	;	K	[k	{		
1100	FF	FS	,	<	L	\	1	ĺ		
1101	CR	GS	_	=	M	1	m	}		
1110	SO	RS		>	N	٨	n	~		
1111	SI	US	/	?	O	_	O	DEL		

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

Combinational Logic Binary Codes

Combinational Logic Code Conversion

Decimal Equivalent	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1	Gray Code
0	0000	0000	0011	0000	0000
1	0001	0001	0100	0111	0001
2	0010	0010	0101	0110	0011
3	0011	0011	0110	0101	0010
4	0100	0100	0111	0100	0110
5	0101	1011	1000	1011	0111
6	0110	1100	1001	1010	0101
7	0111	1101	1010	1001	0100
8	1000	1110	1011	1000	1100
9	1001	1111	1100	1111	1101
10					1111
11					1110
12					1010
13					1011
14					1001
15					1000