MALA and Barker's Proposal: Gradient-Based MCMC Methods

From RWM to more advanced methods

Random Walk Metropolis (RWM):

$$q^* = q + \sigma W, \quad W \sim N(0, I_d)$$

Fundamental Trade-off:

▶ Large step-size σ : Low acceptance

▶ Small σ : Slow exploration

▶ Optimal: $\sigma = \mathcal{O}(d^{-1})$

Problem: In high dimensions, RWM becomes inefficient

▶ Optimal acceptance rate: 0.234

► Curse of dimensionality: step size $\propto 1/d$

From Langevin Diffusion to MALA

Continuous Langevin Diffusion:

$$dX_t = \frac{1}{2}\nabla \log \pi(X_t)dt + dB_t$$

- ► Has π as stationary distribution
- Gradient provides moves toward high-probability regions

Euler-Maruyama Discretization (ULA):

$$X^{(t)} = X^{(t-1)} + \frac{\epsilon}{2} \nabla \log \pi (X^{(t-1)}) + \sqrt{\epsilon} W$$

Problem π is **not** the invariant distribution of ULA! **Solution:** Add Metropolis-Hastings correction \Rightarrow MALA

Metropolis-Adjusted Langevin Algorithm

just for reference. do not write down algorithm during exam

Algorithm 1 MALA

Input: Initial $X^{(0)}$

for t = 1, 2, ... do

Propose: $X^* = X^{(t-1)} + \frac{\epsilon}{2} \nabla \log \pi (X^{(t-1)}) + \sqrt{\epsilon} W$

Compute acceptance ratio:

$$\alpha = \min \left\{ 1, \frac{\pi(X^*)q(X^{(t-1)}|X^*)}{\pi(X^{(t-1)})q(X^*|X^{(t-1)})} \right\}$$

Accept $X^{(t)} = X^*$ with probability α , else $X^{(t)} = X^{(t-1)}$ end for

Optimal Scaling Theory

Maximizing Expected Squared Jump Distance (ESJD) $\mathbb{E}\left[\|X^{(t+1)} - X^{(t)}\|^2\right]$

Dimension Scaling:

- ▶ RWM: $\sigma = \mathcal{O}(d^{-1})$
- ▶ MALA: $\sigma = \mathcal{O}(d^{-1/3})$

Optimal Acceptance:

- ► RWM: 0.234
- ► MALA: 0.574

Implication: MALA maintains larger step sizes in high dimensions

- ► Better exploration efficiency
- ► Faster convergence to target distribution
- ► Catch requires gradient computation

From Local-Balanced Proposals to Local-Informed and back again

General idea: Start with symmetric proposal $K_{\sigma}(x,y) = K_{\sigma}(y,x)$ with step-size σ and create informed proposal

$$Q_{\pi}(x,y) \propto \pi(y) K_{\sigma}(x,y)$$

that bias the proposal toward high-probability states. For large σ $K_{\sigma}(x,y) \approx$ Uniform and when σ is tiny, $K_{\sigma}(x,z) \approx 0$ except when z is near x and in that case $\pi(x) \approx \pi(z)$. General form for informed proposals:

$$Q_g(x,y) = \frac{g\left(\frac{\pi(y)}{\pi(x)}\right)K(x,y)}{Z_g(x)}$$

Remarkable result:, Q_g is locally balanced if g(t) = tg(1/t).

Barker's Proposal

Expand $\pi(y)/\pi(x)$ around x with local (first-order) approximation:

$$e^{\log \pi(y)} \approx e^{\log \pi(x) + (\nabla \log \pi(x)^T)(y-x)}$$

and use g(t) = t/(1+t). This gives $Z_g(x) = 1/2$ and **Proposal Density:**

$$Q_B(x, dy) = \frac{2}{1 + e^{-(\nabla \log \pi(x))^T (y - x)}} K(x, dy)$$

where K(x, dy) is a base kernel (e.g., Gaussian)

Key Idea: Use gradient to stochastically bias proposal direction

Algorithm 2 1D case with Gaussian kernel

Sample
$$Z \sim N(0, \sigma^2)$$

Calculate
$$p(x, z) = 1/(1 + \exp(-Z^T \nabla \log \pi(x)))$$
:

Set
$$b(x,z) = 1$$
 with probability $p(x,z)$, else $b(x,z) = -1$

Propose Y = x + b(x, z)Z

Just for my own reference

This help to understand why Barker proposal use gradient to stochastically bias proposal direction.

Weight of proposal:

$$w = \frac{1}{1 + e^{-(\nabla \log \pi(x))^T (y - x)}} = \frac{1}{1 + e^{-g(y - x)}}$$

where $g = \nabla \log \pi(x)$.

Behavior analysis: Consider four scenarios based on the signs of g and (y - x):

Scenario	(y-x)	g(y-x)	$e^{-g(y-x)}$	Weight	Meaning
g > 0, move right	> 0	> 0	≈ 0	pprox 1	Favored
g > 0, move left	< 0	< 0	$\rightarrow \infty$	≈ 0	Penalized
g < 0, move left	< 0	> 0	≈ 0	pprox 1	Favored
g < 0, move right	> 0	< 0	$\rightarrow \infty$	≈ 0	Penalized

Table: Barker proposal weight behavior

MALA vs Barker's Proposal

Aspect	MALA	Barker
Proposal	$Y = x + \frac{\sigma^2}{2} \nabla \log \pi(x) + \sigma Z$	$Y = x \pm Z$ with directional prob
Gradient use	Drift term (deterministic shift)	Direction selection (probabilistic)
Robustness	Sensitive to step size	More robust to large gradients
Scaling	$\mathcal{O}(d^{-1/3})$	$\mathcal{O}(d^{-1/3})$