

Introduction to Machine Learning

Course Logistics

林彦宇 教授 Yen-Yu Lin, Professor

國立陽明交通大學 資訊工程學系 Computer Science, National Yang Ming Chiao Tung University

About Yen-Yu Lin

- Work Experience
 - > Professor, CS, NCTU/NYCU, August 2019 ~ present
 - > Associate research fellow, CITI, Academia Sinica, 2015 ~ 2019
 - > Assistant research fellow, CITI, Academia Sinica, 2011 ~ 2015
- Research interests
 - Computer Vision (CV):

 Let computers see, recognize, and interpret the world like humans
 - ➤ Machine Learning (ML):

 Provide a statistical way to learn how human visual system works
 - ➤ Goal: Design ML methods to facilitate CV applications

Today's agenda

- Course logistics
- Course overview

Today's agenda

- Course logistics
- Course overview

How to choose and take this course?

- Please use the online course management system
 - Max number: 90 -> 110 students
- I do not plan to add additional students
 - > The size of the classroom
 - > The loading of our TAs
 - Teaching quality
 - ➤ If you have some strong reason why you must take this course, send me an email with the reason
- Be a guest student?
 - > Yes. Send TAs an email with your student ID. We will add you to the student list on E3

Instructor and teaching assistants

- Instructor: Yen-Yu Lin 林彦宇
 - > Email: lin@cs.nycu.edu.tw
 - Office: EC706 (please email me first)
- Teaching assistants:
 - ➤ Wei-Hsiang Yu 游為翔 Email: weihsiang.yu@gmail.com
 - ➤ Si-Yu Huang 黄思瑜 Email: stella900604@gmail.com
 - ➤ Jian-Zhe Wang 王健哲 Email: jzwang.cs13@nycu.edu.tw
 - ➤ Chun-Cheng Chu 朱峻正 Email: jasonchu.cs13@nycu.edu.tw
- Office hour (email first)
 - > 4:20 pm ~ 5:20 pm on Tuesdays at EC234-C or EC701

Textbook

- Pattern Recognition and Machine Learning
 - Christopher Bishop
 - > Springer-Verlag, Berlin, 2006
 - > Free online at

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

- > I. Goodfellow, Y. Bengio, and A. Courville
- ➤ MIT Press, 2016
- Free online at https://www.deeplearningbook.org/

Grading policy

- Four homework assignments: 60% (= 15% x 4)
- For each assignment
 - You are required to implement machine learning algorithms and complete some short answer questions
 - > Late policy: 20% off per late day
- Final exam: 40%
 - ➤ In the 15th week

Syllabus

Week	Data	Course Due susee Courtente Touries
vveek	Date	Course Progress, Contents, Topics
1	2024-09-03(二)	Introduction
2	2024-09-10(_)	Linear Model for Regression I
3	2024-09-17(_)	No Lecture: The Mid-Autumn Festival (holiday)
HW1 4	2024-09-24(_)	Linear Model for Regression II
5	2024-10-01(_)	Linear Model for Classification I (pre-recorded videos)
6	2024-10-08(_)	Linear Model for Classification II
HW2 7	2024-10-15(_)	Neural Networks
8	2024-10-22(_)	Ensemble Model I
9	2024-10-29(_)	Ensemble Model II
HW3 10	2024-11-05(_)	Kernel Method I
11	2024-11-12(_)	Kernel Method II
12	2024-11-19(_)	Deep Neural Networks (DNN)
HW4 13	2024-11-26(_)	Convolutional Neural Networks (CNN) I
14	2024-12-03(_)	Convolutional Neural Networks (CNN) II and Transformers I
15	2024-12-10(_)	Final Exam
16	2024-12-17(_)	Transformers II

Pre-requisite

- Linear algebra, probability, calculus, and programming
- Python
 - We strongly encourage students who are not familiar with Python to complete the following tutorial first
 - http://cs231n.github.io/python-numpy-tutorial/
- One deep learning framework, Pytorch or Keras
 - Pytorch: https://pytorch.org/tutorials/
 - Keras: https://elitedatascience.com/keras-tutorial-deep-learning-in-python

Homework 1: Linear regression (previous years)

Find the value of β0 and β1

Gradient descent

- x-axis and y-axis represent the values of two variables
- z-axis represents the loss of the corresponding variables
- Targets: Find the variable values that minimize the loss

Gradient descent pseudo code

Algorithm

- 1. Initialize weights randomly $\sim N(0, \sigma^2)$
- Loop until convergence:
 - i. Pick batch of B data points
 - ii. Compute gradient. $\frac{\partial J(\Theta)}{\partial \Theta} =$

$$\frac{1}{B}\sum_{k=1}^{B} \frac{\partial J_k(\Theta)}{\partial \Theta}$$

- iii. Update weights $\theta < \theta \eta \frac{\partial J(\Theta)}{\partial \Theta}$
- Return weights

Homework 2: Fisher's linear discriminant

- FLD (or LDA) is a "supervised" method and computes the directions representing the axes that maximize the separation between multiple classes.
- FLD seeks the projection w that gives a large distance between the projected data means while giving a small variance within each class

LDA:

maximizing the component axes for class-separation

Eigenvalue problem

Homework 3: Decision tree algorithm

- How to find the feature for making decisions? What's the value of feature?
- Find the features to separate data that the class at the resulting nodes are as pure as possible

Ensemble method of decision trees: Bagging

 Bagging (Bootstrap aggregating): Fit many large trees to bootstrap-resampled versions of the training data, and classify by majority vote

Another ensemble method: Random Forest

- Bootstraped dataset
- Each tree in the forest may grow with different data and features
- Which features or data to be used is randomly sampled to grow the tree

Homework 4: Deep learning

 Use a deep learning algorithm, such as convolutional neural networks or multi-layer perceptron, to carry out image classification or digit detection

Thank You for Your Attention!

Yen-Yu Lin (林彥宇)

Email: lin@cs.nycu.edu.tw

URL: https://www.cs.nycu.edu.tw/members/detail/lin

