Interest Rate Derivatives

Bond prices:

In the Cox-Ingersoll-Ross model, the risk-neutral process of short rate is given by

$$\Delta r_t = a(b - r_t) \Delta t + \sigma \sqrt{r_t} \sqrt{\Delta t} \epsilon(0, 1)$$

where a, b, σ , and r_0 are constant parameters. Interest rate derivatives are considered to be function over this stochastic variable for which current value of derivatives can be determined through risk-neutral expectation of discounted payoff at maturity. Use Monte-Carlo simulation to estimate the risk-neutral pricing of pure discount bond with maturity at T given by

$$P_0(T) = (\$1) \widehat{E} \left(e^{-\int_0^T r_t \, dt} \mid r_0 \right)$$

where $\{a, b, \sigma, r_0\}$ are taken to be input parameters.

(1) As control variate in the simulation, consider the analytic solution from the Vasicek model written as

$$P_{0, \, Vasicek}(T) = (\$1) \, exp \left(\frac{(\, B(T) - T\,) \left(\, a^2b - \frac{1}{2}\sigma^2\,\right)}{a^2} - \frac{\sigma^2 B(T)^2}{4a} \right) e^{-B(T)\, r_0} \ , \ B(T) = \frac{(1 - e^{-aT})}{a} e^{-B(T)\, r_0} + \frac{1}{a} e^{-B(T)\, r_0}$$

In this model, short rate follows instead the risk-neutral process given by

$$\Delta r_t^{vasicek} = a(b - r_t^{vasicek}) \Delta t + \sigma \sqrt{\Delta t} \, \epsilon(0, 1)$$

with the same parameters. The Monte-Carlo pricng of the discount bond then becomes

$$P_0(T) = P_{0,Vasicek}(T) + \widehat{E}\left(e^{-\int_0^T r_t dt} (\$1) - e^{-\int_0^T r_t^{vasicek} dt} (\$1) \mid r_0\right)$$

(2) For the antithetic variate method, the Monte-Carlo pricng of the discount bond is given by

$$P_0(T) = \widehat{E}\left(\frac{1}{2}\left(e^{-\int_0^T r_t \, dt} \, \left(\$1\right) + e^{-\int_0^T r_t^a \, dt} \, \left(\$1\right)\right) \mid r_0\right)$$

Note: We can estimate the discount path as

$$\int_0^T r_t dt \cong (r_{t_0} + r_{t_1} + \dots + r_{t_{N-1}}) \Delta t \quad \text{, where } t_i = i \Delta t \quad \text{, } \Delta t = \frac{T}{N}$$

or
$$\int_0^T r_t dt \cong \frac{1}{3} (r_{t_0} + 4r_{t_1} + 2r_{t_2} + 4r_{t_3} + \dots + 4r_{t_{N-1}} + r_{t_N}) \Delta t$$
 (Simpson's rule with even N)

 $CMC_CIRZeroCouponBondPrice(a, b, \sigma, r_0, T, par, N, n, f_0, error)$

define the size of time interval

$$\Delta t = T / N$$

zeroize the sample sum and squared sum

$$sum = 0$$
, $sum 2 = 0$

For(
$$L_s = 1$$
 to n)

initialize the short rates and discount paths

ReSampling:
$$r = r_0$$
, $y = r\Delta t$
 $r_c = r_0$, $y_c = r_c \Delta t$

generate the short rates at each intermediate time and accumulate the discount paths

For
$$(i = 1 \text{ to } N - 1)$$
 { $\varepsilon = \text{StdNormNum}()$ } $\Delta r = a(b - r) \Delta t + \sigma \sqrt{r} \sqrt{\Delta t} \varepsilon$ } $r = r + \Delta r$ If $(r \le 0)$ goto $ReSampling$ $y = y + r\Delta t$

$$\Delta r = a(b - r_c) \Delta t + \sigma \sqrt{\Delta t} \varepsilon$$

$$r_c = r_c + \Delta r$$
If $(r_c \le 0)$ goto ReSampling
$$y_c = y_c + r_c \Delta t$$

evaluate the payoff function

$$PV = e^{-y} par - e^{-y_c} par$$

accumulate the sample sum and squared sum

$$sum = sum + PV$$

$$sum2 = sum2 + PV^{2}$$

evaluate the estimates of mean and variance

$$m = sum / n$$

$$s = \sqrt{\frac{1}{n-1} \ sum2 - \frac{n}{n-1} m^2}$$

return the estimation of option price and standard error

$$f_0 = m + VasicekZeroCouponBondPrice(r_0, a, b, \sigma, T)$$

$$error = s / \sqrt{n}$$

 $AMC_CIRZeroCouponBondPrice(a, b, \sigma, r_0, T, par, N, n, f_0, error)$

define the size of time interval

$$\Delta t = T / N$$

zeroize the sample sum and squared sum

$$sum = 0$$
, $sum 2 = 0$

For(
$$L_s = 1 \text{ to } n$$
)

initialize the short rates and discount paths

ReSampling:
$$r = r_0$$
, $y = r\Delta t$
 $r_a = r_0$, $y_a = r_a \Delta t$

generate the short rates at each intermediate time and accumulate the discount paths

For(
$$i=1$$
 to $N-1$){ $\varepsilon = \operatorname{StdNormNum}(\)$
 $\Delta r = a(\ b-r\)\ \Delta t + \sigma \sqrt{r} \sqrt{\Delta t}\ \varepsilon$
 $r = r + \Delta r$
If($r \le 0$) goto $ReSampling$
 $y = y + r\Delta t$
 $\Delta r = a(\ b-r_a\)\ \Delta t + \sigma \sqrt{r_a}\ \sqrt{\Delta t}\ (-\varepsilon)$
 $r_a = r_a + \Delta r$
If($r_a \le 0$) goto $ReSampling$
 $y_a = y_a + r_a \Delta t$ }

evaluate the payoff function

$$PV = \frac{1}{2} (e^{-y} par + e^{-y_a} par)$$

accumulate the sample sum and squared sum

$$sum = sum + PV$$

$$sum2 = sum2 + PV^{2}$$
 }

evaluate the estimates of mean and variance

$$m = sum / n$$

$$s = \sqrt{\frac{1}{n-1} \ sum2 - \frac{n}{n-1} m^2}$$

return the estimation of option price and standard error

$$f_0 = m$$

$$error = s / \sqrt{n}$$

Bond option prices:

Use Monte-Carlo simulation to estimate the risk-neutral pricing of a call option, with maturity at T and strike K, written on a zero coupon bond with maturity at T^* and face value L.

$$c_0(T) = \widehat{E}\left(e^{-\int_0^T r_s \, ds} \, \max\{\, B_T\left(T^*, \, r_T\right) - K, \, 0\} \, | \, r_0\right)$$

It is convenient to use the antithetic variate method and consider the pricing given by

$$c_0(T) = \widehat{E}\left(\frac{1}{2}\left(e^{-\int_0^T r_s \, ds} \, \max\{\, B_T\left(T^*, \, r_T\right) - K, \, 0\} + e^{-\int_0^T r_s^a \, ds} \, \max\{\, B_T\left(T^*, \, r_T^a\right)\right) \, | \, r_0\right)$$

 $AMC_CIRBondCallPrice(a, b, \sigma, r_0, T, K, T^*, par, N, n, f_0, error)$

define the size of time interval and the number steps from T to T^*

$$\Delta t = T / N$$
, $M = CINT \left(N \left(\frac{T^* - T}{T} \right) \right)$

zeroize the sample sum and squared sum

$$sum = 0$$
, $sum2 = 0$

For(
$$L_s = 1$$
 to n)

initialize the short rates and discount paths

ReSampling:
$$r = r_0$$
, $y = r\Delta t$
 $r_a = r_0$, $y_a = r_a \Delta t$

generate the short rates at each intermediate time and accumulate the discount paths

For(
$$i=1$$
 to N) { $\varepsilon = \operatorname{StdNormNum}(\)$ $\Delta r = a(\ b-r\)\ \Delta t + \sigma \sqrt{r}\ \sqrt{\Delta}t\ \varepsilon$ $r = r + \Delta r$ If($r \le 0$) goto $ReSampling$ $y = y + r\Delta t$
$$\Delta r = a(\ b-r_a\)\ \Delta t + \sigma \sqrt{r_a}\ \sqrt{\Delta}t\ (-\varepsilon)$$
 $r_a = r_a + \Delta r$ If($r_a \le 0$) goto $ReSampling$ $y_a = y_a + r_a \Delta t$ }

evaluate the payoff function

Call
$$AMC_CIRZeroCouponBondPrice(a, b, \sigma, r, T^* - T, par, M, n, B, PFerror)$$

Call $AMC_CIRZeroCouponBondPrice(a, b, \sigma, r_a, T^* - T, par, M, n, B_a, PFerror)$
 $PV = \frac{1}{2}(e^{-y}max\{B - K, 0\} + e^{-y_a}max\{B_a - K, 0\})$

accumulate the sample sum and squared sum

$$sum = sum + PV$$

$$sum2 = sum2 + PV^{2}$$

evaluate the estimates of mean and variance

$$m = sum / n$$

$$s = \sqrt{\frac{1}{n-1} \ sum2 - \frac{n}{n-1} m^2}$$

return the estimation of option price and standard error

$$f_0 = m$$

$$error = s / \sqrt{n}$$