

FS301 Series Datasheet (V1.1)

Lithium Battery Protection IC

1. Description

FS301 is a series of lithium ion and lithium polymer rechargeable battery protection ICs with high accurate voltage detection and delay circuits.

These ICs are suitable for protection of single cell lithium ion or lithium polymer battery packs from over charge, over discharge, and over current.

2. 1-Cell Protection ICs

Model	Package	Overcharge detection voltage [VOCU] (V)	Overcharge release voltage [VOCR] (V)	Overdischarge detection	Overdischarge release	Overcurrent 1 detection voltage [VOI1] (mV)	
	SOT-23-6			voltage [VODL] (V)	voltage [VODR] (V)		
	AN	4.200±0.025	4.000±0.1	2.3±0.1	3.0±0.1	200±30	
FS301	BN	4.350±0.025	4.150±0.1	2.4±0.1	3.0±0.1	200±30	
	GN	4.280±0.025	4.080±0.1	2.3±0.1	2.9±0.1	120±16	
	HN	4.200±0.025	4.000±0.1	2.3±0.1	2.9±0.1	200±30	
	JN	4.250±0.025	4.050±0.1	2.3±0.1	3.0±0.1	200±30	
	MN	4.250±0.025	4.100±0.1	2.4±0.1	3.0±0.1	150±20	
	SN	4.295±0.025	4.145±0.1	2.4±0.1	3.0±0.1	150±20	
	WN	4.325±0.025	4.125±0.1	2.5±0.1	3.0±0.1	200±30	

Overcharge and overdischarge voltages and overcurrent 1 detection voltage can be changed at the customer's request.

FS301 Series Datasheet

3. Features

1)	Low supply current	Operation: 5.0uA typ. @VDD=3.5V Power-down mode: 0.3uA typ.
2)	Overcharge detection voltage (VOCU)	4.0V~4.4V, Accuracy of ±25mV
3)	Overcharge release voltage (VOCR)	VOCR, Accuracy of ±100mV
4)	Overdischarge detection voltage 〔 VODL 〕	2.3V~2.5V, Accuracy of ±100mV
5)	Overdischarge release voltage (VODR)	VODR, Accuracy of ±100mV
6)	Over current 1 detection voltage (VOI1)	VOI1
7)	Over current 2(Short Current) detection voltage (V	Ol2) 1.3V
8)	Overcharge detection delay time	C_{TD} =0.01uF,100ms
9)	Charger detection voltage	-0.6V
10)	Load release function	>500KΩ
11)	Wide supply voltage range	1.8 ~ 8.0V
12)	Small package	SOT-23-6

Applications

1) Protection IC for One-Cell Lithium-Ion Battery Pack

Block Diagram 4.

Pin Configuration 5.

Pin No.	Symbol	Description		
1	CSI	Input pin for current sense, charger detect		
2	VDD	Positive power input pin		
3	TD	Pin for external capacitor setting output delay of VOCU		
4	ОС	PMOS open drain output for charge control		
5	VSS	Negative power input pin		
6	OD	FET gate connection pin for discharge control		

6. Typical Application Circuit

7. Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply voltage between VDD and VSS	VDD	VSS-0.3 to VSS+12	V
OC output pin voltage	VOC	VDD-16 to VDD+0.3	V
OD output pin voltage	VOD	VSS-0.3 to VDD+0.3	V
CSI input pin voltage	VCSI	VDD-16 to VDD+0.3	V
Operating Temperature Range	TOP	-10 to +70	°C
Storage Temperature Range	TST	-40 to +125	$^{\circ}\!\mathbb{C}$

8. Electrical Characteristic

(Unless otherwise specified Ta=25°C, VDD=3.5V, model name FS301BN)

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
CURRENT CONSUMPTION						
Supply Current	VDD=3.5V	IDD		5.0	10.0	uA

FS301 Series Datasheet

Power-Down Current	VDD=2.3V	IPD		0.3	0.5	uA	
OPERATING VOLTAGE							
Operating voltage between VDD and VSS		VDD	1.8		8.0	V	
DETECTION VOLTAGE							
Overcharge detection voltage		VOCU	4.325	4.350	4.375	V	
Overcharge release voltage		VOCR	4.05	4.15	4.25	V	
Overdischarge detection voltage		VODL	2.3	2.4	2.5	V	
Overdischarge release voltage		VODR	2.9	3.0	3.1	V	
Over current 1 detection voltage	VDD=3.5V	VOI1	0.17	0.2	0.23	V	
Over current 2 (Short Current) detection voltage	VDD=3.5V	VOI2	1.2	1.3	1.4	V	
Charger detection voltage	VDD=3.5V	VCH	-0.8	-0.6	-0.4	V	
DELAY TIME	•						
Overcharge detection delay time	C _{TD} =0.01uF	TOC	50	100	150	ms	
Overdischarge detection delay time		TOD	5	10	15	ms	
Over current 1 detection delay time	VDD=3.5V	TOI1	5	10	15	ms	
Over current 2 (Short Current) detection delay time	VDD=3.5V	TOI2		50	200	us	
OTHER	•						
OC pin source current	VDD=3.5V, OC pin short to VSS	IOC	300	400	500	uA	
OD pin output "H" voltage		VDH	VDD-0. 1	VDD-0. 02		V	
OD pin output "L" voltage		VDL		0.01	0.1	V	

9. State Diagram of Operation

10. Description of Operation

10.1 Normal Condition

If VODL<VDD<VOCU and VCH<VCSI<VOI1, M1 and M2 are both turned on. The charging and discharging processes can be operated normally.

10.2 Overcharge Detection

If the battery voltage detected from VDD reaches a certain value, charging from a charger is inhibited for overcharge protection. When VDD is larger than VOCU over a delay time of TOC, M2 is to be turned off.

10.3 Release of Overcharge Condition

There are two ways to return to normal condition from overcharge condition.

- 1) If the battery is self discharging and VDD<VOCR occurs, M2 is to be turned on and back to normal condition.
- Remove the charger and connected to a load. If VOCR<VDD<VOCU and VCSI>VOI1 occurs, M2 is to be turned on and back to normal condition.

10.4 Overdischarge Detection

If the battery voltage detected from VDD is lower to a certain value, discharge to a load stops. VDD is smaller than VODL over a delay time of TOD, M1 is to be turned off. In the meanwhile, CSI is pulled to VDD by way of internal resistance, RCSID. If VCSI>VOI2, the protection IC enters into Power-down mode. (Its current consumption is lower than 0.3uA).

10.5 Release of Power-down mode

A charger is connected while the battery remains in Power-down mode. If VCH<VCSI<VOI2 and VDD<VODR occur, M1 is still off but it releases Power-down mode. If VDD>VODR occurs, M1 is to be turned on and back to normal condition.

10.6 Charger Detection

If a charger is connected to the battery remained in Power-down mode, the voltages will become VCSI<VCH and VDD>VODL. M1 is to be turned on and back to normal condition.

10.7 Abnormal Charging Condition

If a charger is connected to the battery in normal condition, VCSI<VCH occurs for a delay time longer than TOC, M2 is to be turned off.

10.8 Over Current/Short Current Detection

When the discharging current is too large during discharging under normal condition and the voltage detected from CSI is larger than VOIX (VIO1 or VIO2) for over a certain delay time TOIX (TIO1 or TIO2), it means the over current/short current condition occurred. M1 is turned off. CSI is pulled to VSS by way of an internal resistance, RCSIS.

10.9 Release of Over Current/Short Current Condition

While the protection IC remains in Over Current/Short Current condition and load is removed or the impedance between VBAT+ and VBAT- is larger than 500K Ω and VCSI<VOI1, M1 is to be turned on and back to normal condition.

11. Timing Diagram

11.1 Overcharge Condition → Self Discharging → Normal Condition

11.2 Overcharge Condition → Load Discharging → Normal Condition

11.3 Overdischarge Condition → Charging by a Charger → Normal Condition

11.4 Overdischarge Condition → Abnormal Charging → Normal Condition

11.5 Over Current Condition → Normal Condition

