predicting tcp/ip network traffic using time series forecasting

Final Presentation

Thomas Mauerhofer, and Matthias Wlbitsch June 16, 2016

# recap

# goal: forecast TCP/IP traffic

• real-time and short-time

### data set

• network traffic of three months

## approaches

- classical time series prediction methods
- artificial neural networks

2

# holt-winter approach

## data set preparation

- split into training, and test set
- important to start at the beginning of a period

## optimize parameter

- with grid search
- from 0.01 to 1.0 with 0.05 steps

## parameter

- influence of the previous element
- weigth for the level  $(\alpha)$
- weigth for the trend  $(\beta)$
- weigth for the seasonality  $(\gamma)$

## linear:

• α: 0.1

• β: 0.2

mase:

1.17685709586

# addaptive:

α: 0.0

β: 0.0

γ: 1.0

• period: 7

mase:

0.316808789116

# forecast daily traffic



## linear:

• α: 0.15

• β: 0.1

mase:

4.34134852342

# addaptive:

α: 0.7

β: 0.0

γ: 1.0

• period: 24

mase:

3.24448701448

# forecast hourly traffic



### forecast 5 minute traffic

## addaptive:

• α: 0.9

β: 0.65

γ: 0.9

• period: 288

mase:

20.8613689301



# Error-development over the complete test set



# neural network approach

### data set preparation

- generate sequences using sliding window
- split into training, validation, and test set

## neural network library

- keras
- theano

## hyper parameter search

- sliding window, number of neurons, number of layers,...
- hyperopt library
- tree-structured parzen estimator

#### MLP

- *N* = 25
- $W = \{1, 2, 4, 8\} \cup \{287, 288, 289\}$

## 1 layer LSTM

- *N* = 19
- $W = \{1, 2, \dots, 19\}$

## 2 layer LSTM

- $N_1 = 13$
- $N_2 = 5$
- $W = \{1, 2, \dots, 14\}$

### forecast error for different horizons



# forecasting examples with h = 1 and h = 24 using MLP





## conclusion

### forecast horizon

- one step ahead forecasting
- direct vs. iterative forecasting

## training loss function

- MSLE
- penalizes underestimates
- numerical issues



# conclusion

### LSTM issues

- high expectations
- too few training samples
- slow

#### neural networks and time series

- used often for forecasting
- numerous different approaches
- problem solved?

