1、实验名称及目的

获取相机、物体、靶标中心精确三维位置方法实验:通过调用平台接口获取相机、物体、 靶标中心精确三维位置。

2、实验原理

使用 sendUE4Pos 函数生成飞机与球,对于 sendUE4Pos 函数其有如下参数

- 1. copterID: 设置的 Copter 的 ID 。
- 2. vehicleType: 设置的 Copter 的样式(在 xml 中确定)本例程使用 1 表示 Copter 为多旋翼, 152 表示 Copter 为红色小球。
 - 3. MotorRPMSMean:表示8位执行器数据的平均值(8个执行器的值相同)
 - 4. PosE: 表示设置的该 Copter 的位置(米, 北东地)
 - 5. AngEuler: 表示设置的该 Copter 的欧拉角(弧度, roll,pitch,yaw)
- 6. windowID: 影响发送目标端口,正常组播时取-1 即可,如果需要指定电脑上的指 定的 RflySim3D 进行接收,则可以根据目标电脑 IP 与 RflySim3D 程序的窗口标题序号来设置。(这个序号与上面提到的 20010~20029 这 20 个端口是一一对应的关系,例如 RflySim3D-0 就是指的它在监听 20010, RflySim3D-3 就是指的它在监听 20013)

最后通过计算得到球与飞机的相对位置。

3、实验效果

4、文件目录

文件夹/文件名称	说明
GetRelativePosDemo.bat	一键启动脚本。
GetRelativePosDemo.py	十小球图像例程。

5、运行环境

序号 软件要求 硬件要求	
--------------	--

		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		
3	Visual Studio Code		

① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6、实验步骤

Step 1:

双击打开运行 GetRelativePosDemo.bat。

GetRelativePosDemo.bat	2023/10/25 15:25	Windows 批处理	1 KB
GetRelativePosDemo.py	2021/2/6 22:16	Python File	7 KB
method of application.txt	2021/3/13 17:02	文本文档	1 KB

Step 2:

运行 PX4PSPRfySimAPIs\RflySimSDK 目录下的 ReLabPath.py 文件。

Step 3:

通过 Visual Studio Code 打开 3-VisionAIAPI\ 3.CameraCalcDemo2 文件夹。

点击 GetRelativePosDemo.py 文件。

点击运行此文件。

进入调试模式,逐句执行语句。

7、参考文献

[1] 无

8、常见问题

Q1: 无 A1: 无