Recurrent Neural Network

Ocngratulations! You passed!	Go to next item
Grade received 100% To pass 80% or higher	
Recurrent Neural Networks	
Latest Submission Grade 100%	
1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the s^{th} in the r^{th} training example?	hword 1/1 point
$\bigcirc \ x^{(s) < r>}$	
$\bigcirc \ x^{< s > (r)}$	
$\bigcirc \ x^{< r > (s)}$	
$left(x^{(r) < s>} $	
∠ [™] Expand	
\bigcirc Correct We index into the r^{th} row first to get to the r^{th} training example (represented by parentheses), then the s^{th} column to get to the s^{th} word (represented by the brackets).	ne

Recurrent Neural Network 1

2. Consider this RNN:

1/1 point

True/False: This specific type of architecture is appropriate when Tx=Ty

- False
- True

⊘ Correct

It is appropriate when the input sequence and the output sequence have the same length or size.

- Image classification (input an image and output a label)
- Music genre recognition
 - ✓ CorrectThis is an example of many-to-one architecture.
- Language recognition from speech (input an audio clip and output a label indicating the language being spoken)
- ✓ CorrectThis is an example of many-to-one architecture.
- Speech recognition (input an audio clip and output a transcript)

Recurrent Neural Network

4. Using this as the training model below, answer the following:

1/1 point

True/False: At the t^{th} time step the RNN is estimating $P(y^{< t>})$

- False
- True

⊘ Correct

No, in a training model we try to predict the next steps based on the knowledge of all prior steps.

5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

1/1 point

True/False: In this sample sentence, step t uses the probabilities output by the RNN to pick the highest probability word for that time-step. Then it passes the ground-truth word from the training set to the next time-step.

- False
- True

⊘ Correct

The probabilities output by the RNN are not used to pick the highest probability word and the ground-truth word from the training set is not the input to the next time-step.

6. You are training an RNN model, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1/1 point

- Vanishing gradient problem.
- Exploding gradient problem.
- The model used the ReLU activation function to compute g(z), where z is too large.
- The model used the Sigmoid activation function to compute g(z), where z is too large.

⊘ Correct

7.	Suppose you are training an LSTM. You have a 50000 word vocabulary, and are using an LSTM with 500-
	dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

1/1 point

50000

500

O 5

200

✓ Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

8. Sarah proposes to simplify the GRU by always removing the Γu . I.e., setting $\Gamma u = 0$. Ashely proposes to simplify the GRU by removing the Γr . I. e., setting $\Gamma r = 1$ always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

1/1 point

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[\ c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\;c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

- Sarah's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- (a) Ashely's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Ashely's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Sarah's model (removing Γ_u), because if $\Gamma_r \approx$ 0 for a timestep, the gradient can propagate back through that timestep without much decay.

⊘ Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependent on $c^{< t-1>}$.

9. Here are the equations for the GRU and the LSTM:

1/1 point

LSTM

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$a^{< t>} = c^{< t>} \qquad \qquad c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

- lacksquare Γ_u and $1-\Gamma_u$
- \bigcap Γ_u and Γ_r
- $\bigcap \ 1 \Gamma_u \ {\sf and} \ \Gamma_u$
- \bigcap Γ_r and Γ_u

Recurrent Neural Network 8