Edison M. Murairi

Address:: 130 M ST NE UNIT 901 Washington, DC 20002

E-mail: emm712@gwu.edu * Telephone number: +1 202 913 7557

Github:: Edison Murairi ★ LinkedIn: Edison Murairi

Education

George Washington University (GWU)

Physics, Ph.D. Sept. 2020 - May 2024

GPA: 3.95/4.00

Thesis title: Simulating Gauge Theories on Quantum Computers

Relevant courses: Quantum computing, Quantum Chromodynamics, Advanced Quantum Mechanics,

Quantum Mechanics, Advanced Mathematical Methods, Computational Methods

George Washington University (GWU)

Data Science, Graduate Certificate

Jan. 2022 - Dec. 2023

GPA: 4.00/4.00

Relevant courses: Time Series Models and Analysis, Deep Learning and Data Mining

New York University Abu Dhabi

Bachelor of Science, Physics Sept. 2016 - May 2020

GPA: 3.70/4.00

Capstone Project: Cosmic Ray Production of Supernova Remnant Kes 17

Work experience

George Washington University

May 2021 - Present

PhD Research Assistant

Washington DC, USA

- Developed the best known quantum algorithm for simultaneous diagonalization of Pauli operators
- Extended the algorithm to arbitrary hardware connectivity and showed that the algorithm outperformed previously known results
- Developed an asymptotically optimal quantum algorithm in CNOT count for Hamiltonian simulation on near-term quantum computers
- Established a lower bound on the CNOT count for a wide class of quantum algorithms
- Benchmarked the algorithm on physical problems and showed that it outperformed previously known results
- Discovered the formulation of boolean function ESOP minimization in terms of graph theory, an important result for minimizing quantum circuits of boolean functions
- Used the new formulation of ESOP minimization to develop a Deep-Learning model to minimize the number of gates needed to compile quantum circuits

Fermi National Accelerator Laboratory (Fermilab)

PhD Visiting Researcher

May 2022 - Present Batavia IL, USA

- Built an approximation algorithm to simplify ESOP boolean functions, an important result for compiling quantum circuits of boolean functions
- Demonstrated that this algorithm reduced the number of T-gates by a factor of 10 when applied to a Gauge theory
- Calculated 'freezing' temperatures in lattice gauge theories of crystal-like subgroups of SU(3)
- Implemented an automated pipeline to analyze monte carlo simulations of gauge theories

Quantum Computing Internship for Physics Undergraduates (QCIPU)2022 & 2023Quantum Computing InstructorFermilab, Batavia IL, USA

- Taught quantum computing during the summer school
- Assisted students through programming projects

NYU Tandon School of Engineering

May 2018 - Aug. 2019 NY, USA

Research Fellow

- Studied the theory of quantum error-correcting codes
- Studied the AdS/CFT correspondence in term of quantum error-correcting codes
- Selected among 20 other groups to present findings at the Tandon Research Symposium

Awards

Parke Award for Excellence in Theoretical Physics

May 2023

Recognized for the success in developing quantum algorithms with applications to gauge theories.

NYU Tandon School of Engineering Fellowship

May 2018 - Aug. 2018

Selected among thousands of applicants to study Quantum Error Correcting Codes and the AdS/CFT correspondence

NYU Abu Dhabi Research Grant

May 2019

Won the award to conduct research in novel methods for calculating null geodesics in various spacetime *qeometries*

NYU Abu Dhabi Research Grant

May 2019

Won the award to conduct research in the cosmic ray production of supernova remnants

Talks

Lattice Conference 2023 - Fermilab

July 31st, 2023

How many quantum gates do gauge theories require?

GWU Nuclear Physics Seminar

Sept. 19th, 2023

Algorithms for Simulating Gauge Theories on a Quantum Computers

χ -QCD Meeting

Dec. 18th, 2022

Quantum Simulations of Gauge Theories

Fermilab Quantum Information Science Seminar

Nov. 2022

How many quantum gates do gauge theories require?

Technical skills

Quantum computing: Quantum algorithms, Quantum error correction, Quantum

machine learning

Mathematical Modeling:

Time series forecasting, Financial Modeling Programming Languages/Tools C, C++, Python, R, Mathematica, LATEX

Language proficiencies

English, French, Swahili

Memberships

American Physical Society (APS)