Blending for gesture recognition

Reason:

- Synthetic image dataset generation
- Reducing the cost of data collection and labeling

Objective:

- •we want to see if a seamless and more natural looking synthesized image can still be recognized properly
- Is a better blending method really beneficial

Image blending

Shawson Hsiao

Image Pyramids

Image Pyramids

Gaussian Pyramid

Laplacian Pyramid

Pyramid blending

Create a fully in-focus image

Pyramid blending

Pyramid

Poisson Blending

Naive blending causes the discrepancy

 We are not working on the pixel value but the rate of change – gradients!

Poisson Blending

Gradients captures the edges information

- Make the gradients inside the blending area as similar as the resource (The overall contour remains)
- The pixel values of the border remain the same as the background (The hue follows the background)
- Use the pixel value of the background image and follow the pattern of the resource's gradients to regenerate the picture in the blending area

Poisson Blending

• It's more like we "grow" the whole image with the border

 Not like frequency domain blending by which we blend the two images in multiple frequency bands, gradientdomain blending artificially regenerates the image

Successful examples

Fail examples

Comparison

Pyramid

Poisson

Conclusion

Pyramid blending

pros:

- 1. Much faster
- 2. Not restricted to the background

Cons:

- 1. Need to be windowed well to get a good result
- 2. Does not get a good blending when the color is very different with the background

Conclusion

Poisson blending

pros:

1. Have a more natural-looking and seamless result

Cons:

- 1. Takes lots of time for approximation
- 2. Be prone to a bad result when encounters a mismatched border
- 3. Might accumulate noise(black in the middle) when the cropping area is too large

Code Demo