Diseño VLSI

Caracterización de circuitos MOS

Enric Pastor, Ramon Canal

Dept. Arquitectura de Computadors

UPC

Adaptat Q1 2020-2021

Caracterización modular

- No es posible analizar un circuito con miles de transistores mirando individualmente cada uno de ellos.
- Estrategia de análisis modular (igual que el diseño modular).
- Agrupar el comportamiento de transistores en puertas, el comportamiento de las puertas en bloques y así sucesivamente.
- Claves para el análisis en un circuito MOS:
 - El comportamiento interno es independiente del circuito que genera las entradas (en condiciones razonables).
 - Parámetros en la interficie: capacidad de las entradas/salidas e impedancia en la salida.
 - Las puertas de paso son un caso aparte.

Caracterización modular

- Elementos en la caracterización de un módulo:
 - Función lógica.
 - Capacidad de las entradas (~ puertas de transistores).
 - Capacidad de las salidas.
 - Impedancia de las salidas.
 - Tiempos de propagación internos.
- Los parámetros de capacidad e impedancia son fijos.
- Los tiempos de propagación internos varían con los datos y el tipo de operación:
 - Caracterizar el tiempo mayor/menor.
 - Crear caracterizaciones por funcionalidad, tipos de datos, análisis estadístico de las operaciones, etc.

• Retardo depende de la relación R C:

Retardo depende de la relación R C:

- La capacidad C depende de:
 - Capacidad de las difusiones en el nodo de salida.
 - Capacidad de las conexiones.
 - Capacidad de las puertas conectadas al nodo de salida.

- La resistencia R depende de:
 - Dimension de los transistores que realizan la carga / descarga de la capacidad en la salida (~ L/W).
 - Transistores en serie aumentan la resistencia: L₁/W₁ L₂/W₂
 - $R \sim L_1/W_1 + L_2/W_2$
 - Transistores en paralelo la reducen: L₁/W₁ L₂/W₂
 - R ~1 / $(1/(\hat{L}_1/W_1) + 1/(L_2/W_2))$

- Definimos FO1 como el retardo de un inversor atacando otro inversor equivalente:
 - FO2 equivale a conectar dos inversores, etc.

Elementos en la caracterización

Visión general de un módulo:

- Capacidad de las entradas:
- Capacidad de las salidas:
- Impedancia de las salidas.

Tiempo de propagación proporcional a la carga:

- Tiempos de propagación internos:

 C_{O} ga: T_{pf} T_{p}

Ejemplo: caracterización puerta NAND

Parámetros en una puerta combinacional: NAND2

- Capacidad de las salidas:
 C_{O-Y}
 25 fF
- Tiempos de propagación:

Proporcionales a la carga:

Internos:

Ejemplo: caracterización inversor

Parámetros en una puerta combinacional: INV

- Capacidad de la entrada: C_{I-A} 30 fF
- Capacidad de la salida:C_{O-Y}25 fF
- Tiempos de propagación:

Proporcionales a la carga:

Internos:

Ejemplo: caracterización MUX

- Podemos caracterizar un multiplexor utilizado los parámetros disponibles para la puerta NAND y el inversor:
 - Simplicidad: utilizamos/generamos los mismos parámetros.
 - Análisis conservador: se produce un cierto "error".

Caracterización de las capacidades

Capacidades:

$$\begin{aligned} & - \text{ C}_{\text{A}} = \text{C}_{\text{I-NAND}} = 40 \text{fF} & \text{C}_{\text{B}} = \text{C}_{\text{I-NAND}} = 40 \text{fF} \\ & - \text{C}_{\text{S}} = \text{C}_{\text{I-NAND}} + \text{C}_{\text{I-NOT}} = 70 \text{fF} & \text{C}_{\text{Y}} = \text{C}_{\text{O-NAND}} = 25 \text{fF} \end{aligned}$$

Caracterización del T_{pf}

- o Tiempos de propagación proporcionales a la carga:
 - $-T_{pf Y} = T_{pf NAND} = 0.02 ns/fF$
 - Separando carga/descarga:

$$T_{pf Y+} = T_{pf NAND+}$$
 $T_{pf Y-} = T_{pf NAND-}$

Caracterización del Tp crítico

- Tiempos de propagación internos:
 - Depende del camino crítico: camino más lento desde una entrada hacia cada salida del circuito.
 - Debe demostrarse su existencia: existen "caminos críticos falsos".

Caracterización del Tp crítico (cont.)

Cálculo del tiempo de propagación máximo:

$$-T_{p Y} = T_{p INV} + T_{pf INV} C_{I-NAND1} + T_{p NAND1} + T_{p NAND1} + T_{p NAND2} + T_{p NAND2}$$

Caracterización del Tp mínimo

Cálculo del tiempo de propagación mínimo:

$$-T_{pY} = T_{pNAND1} + T_{pfNAND1} C_{I-NAND2} + T_{pNAND2}$$

Buffers para mejorar el rendimiento

- La velocidad de un componente depende de su tiempo de cálculo, pero también de su conexión.
- Podemos mejorar el rendimiento sacrificando el T_p para conseguir un T_{pf} más reducido.

Conclusiones

- La tecnología MOS permite un análisis modular.
- Podemos caracterizar un sistema utilizando un subconjunto de sus parámetros de funcionamiento.
- Los tiempos de propagación T_{pf} solo dependen de los transistores que generan las salidas.
- Buffers en las salidas *aumentan* el T_p, pero *reducirán* el T_{pf}.
- Existe un máximo y mínimo, pero no siempre es el parámetro que necesitamos, e.g. en un sumador RCA:
 - T_p máximo es proporcional al número de bits.
 - En promedio solo 4-5 bits propagan acarreo.

Diseño VLSI

Caracterización de circuitos MOS

Enric Pastor

Dept. Arquitectura de Computadors

UPC

Diseño VLSI

Caracterización de circuitos MOS PROBLEMES

Enric Pastor

Dept. Arquitectura de Computadors

UPC

2.1 Donat el circuit de la figura, es demana que el caracteritzeu, determinant la capacitat a les entrades, i el retard intern (Tp) i el retard depenent de la capacitat a la sortida (Tpf) per cadascuna de les sortides.

	Cin	Tp (ns)	Tpf (ns/fF)
AND2	45fF	1.3	0.01
NOR2	35fF	0.9	0.02
NAND2	45fF	0.8	0.02
NOT	30fF	0.8	0.01
XNOR2	40fF	1.5	0.03

- 2.2 Donat el circuit de la figura, i la següent taula amb els valors de capacitat d'entrada (Cin), retard intern (Tp) i retard depenent de la capacitat a la sortida (Tpf), es demana:
 - a) Caracteritzeu el circuit indicant per cada entrada la seva capacitat, i per cada sortida el seu retard intern i retard depenent de la capacitat a la sortida.
 - b) Si les capacitats de sortida són: Ccout = 30 Cg i Csum =40 Cg, calcular el consum dinàmic mitjà si la freqüència de treball de les entrades és 25 MHz i les sortides Cout i Sum commuten el 50% de les vegades (Vdd = 3.3V).

	Cin	Тр	Tpf
OR2	35fF	1.1ns	0.025ns/fF
AND2	45fF	1.3ns	0.01ns/fF
NOR2	35fF	0.9ns	0.02ns/fF
NOT	30fF	0.8ns	0.01ns/fF

OR3	40fF	1.5ns	0.03ns/fF
AND3	50fF	1.8ns	0.015ns/fF

Diseño VLSI

Caracterización de circuitos MOS PROBLEMES

Enric Pastor

Dept. Arquitectura de Computadors

UPC