@Home Project: Storing Groceries

Linda Koine, Pascal Maczey and Oussama El Mahboubi

22. Jan 2019

Agenda

- Project Overview and Problem
- 2 Planner
- Planning strategy
- 4 Results
- Demo

Project Overview and Problem

- Project: Storing Groceries
 - objects are on table
 - cupboard has shelves
 - cupboard door is closed in the beginning
- task
 - model domain
 - model initial state for each of the four test cases
 - case 1: one object on table
 - case 2: *n* objects on table and location of table/cupboard is necessary
 - case 3: n objects on table and location of table/cupboard/objects is necessary
 - case 4: n objects on table, objects have categorie and location of table/cupboard/objects/shelves is necessary

3/9

- SHOP2: 2.9 (lisp version)
- sound and complete
- run with quicklisp

Planning strategy

Method decomposes to:

- if necessary: find table
- if necessary: find cupboard

Planning strategy

Method decomposes to:

- walk from current location to cupboard
- if necessary: open cupboard
- if necessary: explore cupboard (find all shelves recursively)
- walk from cupboard to table

Planning strategy

Method decomposes to:

- call method takeObjectFromTableToShelf
- call method movingAllObjectsFromTo (recusion) or
- end of recusion

Results

First plan found is returned:

	Plans	cost	Expansions	Inferences	CPU time	Real time
case1	1	10.0	37	112	0.001	0.001
case2	1	32.0	78	330	0.002	0.002
case3	1	37.0	84	362	0.003	0.003
case4	1	30.0	74	409	0.002	0.002

Demo

Enjoy the short demo!

Demo