Lecture 2: Preliminaries and One-sample problem

Pratheepa Jeganathan

04/05/2019

Example 1.7 (Spatial Ability Scores of Students)

- Data on a student's spatial ability using four tests of visualization.
- ► For each student, a single score representing their overall measure of spatial ability.
- ► The spatial ability scores for 68 female and 82 male high school students enrolled in advanced placement calculus classes in Florida.
 - What is the distribution of spatial ability scores for the population represented by this sample of data?
 - ► Does the distribution for the male students appear to possess different characteristics than that of the female students?
- ► These questions are problems in density estimation

Example 1.8 (Sunspots)

- Data on mean monthly sunspot observations collected at the Swiss Federal Observatory in Zurich and the Tokyo Astronomical Observatory from the years 1749 to 1983.
- Excessive variability over time, obscuring any underlying trend in the cycle of sunspot appearances.
- ▶ No apparent analytical form or simple parametric model.
- Powerful method for obtaining the trend from a noise in this case is wavelet estimation and thresholding.

Notations

- X: random variable
- x: realizations (observed random variables)
- f(x): probability density function (pdf)
- ▶ $F_X(x) = P(X \le x)$: cumulative distribution function (cdf)
- $X_1, \dots X_n$: random sample (independent and identically distributed)

Distribution-free test statistic

- ▶ Test statistic: $T(\cdot) = T(X_1, \dots, X_n)$, function of the data.
 - Example: $T = \frac{\bar{X} \mu}{s/\sqrt{n}}$, where $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ and $s^2 = \frac{\sum_{i=1}^{n} \left(X_i \bar{X}\right)^2}{n-1}$, μ is known under H_0 .
- Distribution-free test statistic
 - ightharpoonup Example: $\mathcal{U} = \mathsf{MVN}\left(oldsymbol{\mu} = (\mu, \cdots, \mu), oldsymbol{\Sigma} = \sigma^2 \mathbf{I}\right)$
 - $\qquad \qquad T_1 = \frac{\bar{X} \mu}{\sigma / \sqrt{n}} \sim \mathsf{N} \, (0, 1).$
 - $T_2 = \frac{\bar{X} \mu}{s/\sqrt{n}} \sim \mathsf{t}_{n-1}.$
- Nonparametric distribution-free test statistic
 - ▶ The class \mathcal{U} , $T(\cdot)$ is distribution free over contains more than one distributional forms.

- ► Distribution-free confidence interval, distribution-free multiple comparison procedure, distribution-free confidence band,
 - comparison procedure, distribution-free confidence band, asymptotically distribution-free test statistic, asymptotically distribution-free multiple comparison procedure, and asymptotically distribution-free confidence band.

Rank statistic

- ▶ Absolute rank: For any random variable Z_1, \dots, Z_n , the absolute rank of Z_i , denoted by R_i is the rank of $|Z_i|$ among $|Z_1|, \dots, |Z_n|$.
- Rank statistic: A statistic T (R) based only on the ranks of a sample is rank statistic.
 - ightharpoonup T(R) is distribution-free over iid joint continuous distribution.
- ▶ Signed rank: The signed rank of Z_i is $R_i\psi_i$, where

$$\psi_i = \begin{cases} 1, & \text{if} & Z_i > 0, \\ 0, & \text{if} & Z_i < 0. \end{cases}$$
 (1)

- Signed rank statistic: A statistic $T(\psi, \mathbf{R}) = T(R_1\psi_1, \cdots, R_n\psi_n)$ that is a function of $Z_1, \cdots Z_n$ only through the signed ranks is the signed rank statistic.
 - $T(\psi, R)$ is ditribution-free over iid joint continuous distribution symmetric about 0.

Sign test (Fisher) - paired replicates data/one-sample data

Sign test

- ▶ $Z_1, \dots Z_n$ random sample from a continuous population that has a common median θ .
 - ▶ If $Z_i \sim F_i$, $F_i(\theta) = F_i(Z_i \le \theta) = F_i(Z_i > \theta) = 1 F_i(\theta)$.
- Hypothesis testing:
 - $H_0: \theta = 0$ versus $H_A: \theta \neq 0$.

Sign test (Cont.)

- ▶ Sign test statistic: $B = \sum_{i=1}^{n} \psi_i$.
- Motivation:
 - When θ is larger than 0, there will be larger number of positive $Z_i s big B$ value big big B value big big B value big b
- ▶ Under H_0 , $B \sim (n, 1/2)$
- ▶ Significance level α : probability of rejecting H_0 when it is true.
- Note
 - choices of α are limited to possible values of the $B\sim (n,1/2)$ cdf.
 - compare the distribution of B under H₀ and the observed test statistic value.

Sign test (Cont.)

- Rejection regions
 - ▶ H_A : $\theta > 0$, Reject H_0 if $B \ge b_{\alpha;n,1/2}$.
 - ▶ H_A : θ < 0, Reject H_0 if $B \le n b_{\alpha:n,1/2}$.
 - ▶ $H_A: \theta \neq 0$, Reject H_0 if $B \geq b_{\alpha/2;n,1/2}$ or $B \leq n b_{\alpha/2;n,1/2}$.

Large-Sample Approximation (Sign test)

$$ho B^* = rac{B - \mathbb{E}_0\left(B\right)}{\mathbb{V}_0\left(B\right)^{1/2}} \sim \mathsf{N}\left(0,1\right) \quad \text{as} \quad n o \infty \quad , \text{where}$$

$$ightharpoonup \mathbb{E}_0\left(B
ight) = rac{n}{2} ext{ and } \mathbb{V}_0\left(B
ight) = rac{n}{4}$$

- Rejection regions
 - ▶ H_A : $\theta > 0$, Reject H_0 if $B^* \ge z_\alpha$.
 - $H_A: \theta < 0$, Reject H_0 if $B^* \leq -z_{\alpha}$.
 - ▶ H_A : $\theta \neq 0$, Reject H_0 if $B^* \geq z_{\alpha/2}$ or $B \leq -z_{\alpha/2}$.

Ties (Sign test)

- Discard zero Z values and redefine n.
- ▶ If too many zeros, choose alternative statistical procedure (Chapter 10)

References for this lecture

HWC: Chapter 1.2

HWC: Chapter 1.3

HWC: Chapter 3.4-3.6