Élément chimique			Famille	Configura	Configuration électronique	
24	Cr	Chrome	Métal de transition	[Ar]	$4\mathrm{s}^13\mathrm{d}^5$	
28	Ni	Nickel	Métal de transition	[Ar]	$4 { m s}^1 3 { m d}^9 \ ^{(*)}$	
29	Cu	Cuivre	Métal de transition	[Ar]	$4\mathrm{s}^13\mathrm{d}^{10}$	
41	Nb	Niobium	Métal de transition	[Kr]	$5\mathrm{s}^14\mathrm{d}^4$	
42	Mo	Molybdène	Métal de transition	[Kr]	$5\mathrm{s}^14\mathrm{d}^5$	
44	Ru	Ruthénium	Métal de transition	[Kr]	$5\mathrm{s}^14\mathrm{d}^7$	
45	Rh	Rhodium	Métal de transition	[Kr]	$5\mathrm{s}^14\mathrm{d}^8$	
46	Pd	Palladium	Métal de transition	[Kr]	$4\mathrm{d}^{10}$	
47	Ag	Argent	Métal de transition	[Kr]	$5\mathrm{s}^14\mathrm{d}^{10}$	
57	La	Lanthane	Lanthanide	[Xe]	$6s^2$ 5 $\mathbf{d^1}$	
58	Ce	Cérium	Lanthanide	[Xe]	$6s^2$ 4f 1 5d 1	
64	Gd	Gadolinium	Lanthanide	[Xe]	$6s^2$ 4f 7 5d 1	
78	Pt	Platine	Métal de transition	[Xe]	$6s^{1}4f^{1}45d^{9}$	
79	Au	Or	Métal de transition	[Xe]	$6s^{1}4f^{14}5d^{10}$	
89	Ac	Actinium	Actinide	[Rn]	$7s^2$ 6 $\mathbf{d^1}$	
90	Th	Thorium	Actinide	[Rn]	$7s^2$ 6 d ²	
91	Pa	Protactinium	Actinide	[Rn]	$7s^2$ 5f 2 6d 1	
92	U	Uranium	Actinide	[Rn]	$7s^2$ 5f 3 6d 1	
96	Cm	Curium	Actinide	[Rn]	$7s^2$ 5f 7 6d 1	
103	Lr	Lawrencium	Actinide	[Rn]	$7s^2$ 5 $\mathbf{f^{14}7p^1}$	

 $^{(*)}$ Le nickel présente deux configurations électroniques : Une configuration régulière [Ar] $4s^23d^8$ présentant le niveau d'énergie le plus bas expérimentalement;

Une configuration irrégulière [Ar] $4s^13d^9$ présentant le niveau d'énergie moyen le plus bas. C'est cette configuration qui sera utilisée dans les calculs.

Tab. 0.1 – Distribution des électrons dans les orbitales atomiques par sous-couche électroniqueWiki:TPE

