Natheetarn P. 64011474 SE

Introduction to Logic Assignment 5 (Part A)

King Mongkut's Institute of Technology Ladkrabang

September 11, 2021

P	9	۲	٦	91~r	pen(qanri	
0	0	٥		6	1	√
Ò	0	_	0	0	1	\checkmark
٥	1	0	1	1	0	V
1	0	0	1	0	0	~
0	1		0	0	1	√
\neg	0	П	0	0	0	$\overline{}$
	1	0	١	1	1	√
- (١ ١	<u>Γ</u>	-	0	9	

Problem 1

Suppose ϕ is the formula $p \leftrightarrow (q \land \neg r)$.

- (a) Find a formula in disjunctive normal form which is logically equivalent to ϕ . \mathcal{I}
- (b) Find a formula in conjunctive normal form which is logically equivalent to ϕ .

Problem 2

Determine whether each of the following formula is valid or not. If it is not valid, describe a truth assignment which makes the formula false.

(a)
$$(r \vee \neg r \vee q) \wedge (s \vee q) \vee \neg s) \wedge (p \vee r \vee \neg q) \wedge (s \vee q) \vee \neg p)$$

(b) $(p \vee q \vee \neg p) \wedge (s \vee \neg p) \wedge (s \vee p \vee s \vee \neg p)$

Paralalara 2

Problem 3

(a) Suppose ϕ is the conjunction of the following clauses:

$$r \vee \neg s \vee t$$

$$p \vee \neg r \vee \neg s$$

$$\neg t$$

$$\neg p \vee \neg q \vee t$$

$$s \vee t$$

$$\neg p \vee q$$

Demonstrate the application of the Davis-Putnam algorithm to check whether ϕ is satisfiable or not. If ϕ is satisfiable, describe a truth assignment which makes the formula true.

(b) Suppose ϕ is the conjunction of the following clauses:

$$\neg p \lor t$$
$$p \lor s \lor r$$
$$\neg s \lor t$$
$$p \lor \neg q$$
$$q \lor \neg r$$

Demonstrate the application of the Davis-Putnam algorithm to check whether ϕ is satisfiable or not. If ϕ is satisfiable, describe a truth assignment which makes the formula true.

$$r \vee \neg s \vee t$$

$$p \vee \neg r \vee \neg s$$

$$\neg t$$

$$\neg t$$

$$\neg p \vee \neg q \vee t$$

$$s \vee t$$

$$\neg p \vee q$$

$$g_{1}$$

$$g_{2}$$

$$g_{3}$$

$$g_{4}$$

$$g_{5}$$

$$g_{5}$$

$$g_{7}$$

$$g_{7}$$