SEQUENCE LISTING <110> Scott, Robert E.											
<120>	cDNA encoding P2P proteins and use of P2P cDNA-derived antibodies and antisense reagents in determining the proliferative potential of normal, abnormal and cancer cells in animals and humans										
<130>	D6386D										
<140> <141> <150> <151>	2001-03-16 US 08/801,308 1997-02-18										
<160>	4										
<210> <211> <212> <213>	1 1404 PRT Unknown										
<220>											
<221> <223>	PEPTIDE P2P polypeptide										
<400>	1										
	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr										
Met Met Glu Va	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr										
Met Met Glu Va	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 40 45 r Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Ser	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 40 45 r Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 40 45 r Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 55 60 s Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy Cys Cys Gly As	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 40 45 r Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 55 60 s Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro 65 70 75 n Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy Cys Cys Gly As Leu Glu Ser As	Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 S Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 55 60 S Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro 65 70 75 n Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu 80 85 90 p Lys His Thr Cys Pro Thr Cys His Gln Asn Asp 95 p Ala Leu Ile Ala Asn Lys Phe Leu Arg Gln Ala										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy Cys Cys Gly As Leu Glu Ser As Val Ser Pro As	Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 S Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 55 60 S Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro 65 70 75 n Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu 80 85 90 p Lys His Thr Cys Pro Thr Cys His Gln Asn Asp 95 p Ala Leu Ile Ala Asn Lys Phe Leu Arg Gln Ala										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy Cys Cys Gly As Leu Glu Ser As Val Ser Pro As Val Asn Asn Ph	l Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 10 15 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 25 30 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 40 45 r Glu Glu Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 55 60 s Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro 65 70 75 n Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu 80 85 90 p Lys His Thr Cys Pro Thr Cys His Gln Asn Asp 95 p Ala Leu Ile Ala Asn Lys Phe Leu Arg Gln Ala 110 115 120 e Lys Asn Glu Thr Gly Tyr Thr Lys Arg Leu Arg										
Met Met Glu Va Asn Thr Gly Ly Ala Ile Gly Ly Ser Ser Ser Se Cys Leu Ile Cy Cys Cys Gly As Leu Glu Ser As Val Ser Pro As Val Asn Asn Ph Lys Gln Leu Pr	Lys Asp Pro Asn Met Lys Gly Ala Met Leu Thr 5 s Tyr Ala Ile Pro Thr Ile Asp Ala Glu Ala Tyr 20 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 s Lys Glu Lys Pro Pro Phe Leu Pro Glu Glu Pro 35 s Lys Asp Asp Pro Ile Pro Ala Glu Leu Leu 50 s Lys Asp Ile Met Thr Asp Ala Val Val Ile Pro 65 n Ser Ser Cys Asp Glu Cys Ile Arg Thr Thr Leu 80 s Lys His Thr Cys Pro Thr Cys His Gln Asn Asp 95 p Ala Leu Ile Ala Asn Lys Phe Leu Arg Gln Ala 110 e Lys Asn Glu Thr Gly Tyr Thr Lys Arg Leu Arg 125 o Pro Phe Leu Phe Leu Val Pro Pro Pro Arg Pro										

Cys	Ser	Asp	Thr	170 Lys 185	Thr	Ala	Gly	Ser	175 Cys 190	Ser	Asp	Ser	Gly	180 Thr 195
Leu	Ser	Arg	Leu		Ala	Pro	Ser	Ile		Ser	Leu	Thr	Ser	
Gln	Ser	Ser	Leu		Pro	Pro	Val	Ser		Asn	Pro	Ser	Ser	
Pro	Ala	Pro	Val		Asp	Ile	Thr	Ala		Va1	Ser	Ile	Ser	
His	Ser	Glu	Lys		Asp	Gly	Pro	Phe		Asp	Ser	Asp	Asn	
Leu	Leu	Pro	Ala		Ala	Leu	Thr	Ser		His	Ser	Lys	Gly	
Ser	Ser	Ile	Ala		Thr	Ala	Leu	Met		Glu	Lys	Gly	Val	
Gly	Thr	Ser	Pro		Asn	Ser	Ile	Phe		Gly	Gln	Ser	Leu	
His	Gly	Gln	Leu		Pro	Thr	Thr	Gly	Pro 310	Val	Arg	Ile	Asn	Ala 315
Ala	Arg	Pro	Gly	Gly 320	Gly	Arg	Pro	Gly	Trp 325	Glu	His	Ser	Asn	Lys 330
Leu	Gly	Tyr	Leu		Ser	Pro	Pro	Gln	Gln 340	Ile	Arg	Arg	Gly	Glu 345
Arg	Ser	Cys	Tyr		Ser	Ile	Asn	Arg	Gly 355	Arg	His	His	Ser	Glu 360
Arg	Ser	Gln	Arg		Gln	Ser	Pro	Ser	Leu 370	Pro	Ala	Thr	Pro	Cys 375
Phe	Val	Pro	Val		Pro	Pro	Pro	Leu	Tyr 385	Pro	Pro	Pro	Pro	His 390
Thr	Leu	Pro	Leu	Pro 395	Pro	Gly	Val	Pro	Pro 400	Pro	Gln	Phe	Ser	Pro 405
Gln	Phe	Pro	Ser	Ser 410	Gln	Pro	Pro	Thr	Ala 415	Gly	Tyr	Ser	Val	Pro 420
Pro	Pro	Gly	Phe	Pro 425	Pro	Ala	Pro	Ala	Asn 430	Ile	Ser	Thr	Ala	Cys 435
Phe	Ser	Pro	Gly	Val 440	Pro	Thr	Ala	His	Ser 445	Asn	Thr	Met	Pro	Thr 450
Thr	Gln	Ala	Pro	Leu 455	Leu	Ser	Arg	Glu	Glu 460	Phe	Tyr	Arg	Glu	Gln 465
	Asp			470					475					480
	Ser			485					490					495
	Ile			500					505					510
_	Leu			515					520					525
_	Ser			530					535					540
	Ala			545					550					555
Ser	Arg	Ser	Pro	Pro	Glu	Phe	Arg	Gly	Gln	Ser	Pro	Thr	Lys	Arg

				560					565					570
Asn	Val	Pro	Arg	Glu 575	Glu	Lys	Glu	Arg	Glu 580	Tyr	Phe	Asn	Arg	Tyr 585
Arg	Glu	Val	Pro	Pro 590	Pro	Tyr	Asp	Ile	Lys 595	Ala	Tyr	Tyr	Gly	Arg 600
Ser	Val	Asp	Phe	Arg 605	Asp	Pro	Phe	Glu	Lys 610	Glu	Arg	Tyr	Arg	Glu 615
Trp	Glu	Arg	Lys	Tyr 620	Arg	Glu	Trp	Tyr	Glu 625	Lys	Tyr	Tyr	Lys	Gly 630
Tyr	Ala	Val	Gly	Ala 635	Gln	Pro	Arg	Pro	Ser 640	Ala	Asn	Arg	Glu	Asp 645
Phe	Ser	Pro	Glu	Arg 650	Leu	Leu	Pro	Leu	Asn 655	Ile	Arg	Asn	Ser	Pro 660
Phe	Thr	Arg	Gly	Arg 665	Arg	Glu	Asp	Tyr	Ala 670	Ala	Gly	Gln	Ser	His 675
Arg	Asn	Arg	Asn	Leu 680	Gly	Gly	Asn	Tyr	Pro 685	Glu	Lys	Leu	Ser	Thr 690
Arg	Asp	Ser	His		Ala	Lys	Asp	Asn	Pro 700	Lys	Ser	Lys	Glu	Lys 705
Glu	Ser	Glu	Asn	Val 710	Pro	Gly	Asp	Gly	Lys 715	Gly	Asn	Lys	His	Lys 720
Lys	His	Arg	Lys	Arg 725	Arg	Asn	Glu	Glu	Lys 730	Gly	Glu	Glu	Ser	Glu 735
Ser	Phe	Leu	Asn	Pro	Glu	Leu	Leu	Glu	Thr 745	Ser	Arg	Lys	Cys	Arg 750
Gly	Ser	Ser	Gly	Ile 755	Asp	Glu	Thr	Lys	Thr 760	Asp	Thr	Leu	Phe	
Leu	Pro	Ser	Arg	Asp 770	Asp	Ala	Thr	Pro	Val 775	Arg	Asp	Glu	Pro	Met 780
Asp	Ala	Glu	Ser	Ile 785	Thr	Phe	Lys	Ser	Val 790	Ser	Asp	Lys	Asp	Lys 795
Arg	Glu	Lys	Asp	Lys 800	Pro	Lys	Val	Lys	Ser 805	Asp	Lys	Thr	Lys	Arg 810
Lys	Ser	Asp	Gly	Ser 815	Ala	Thr	Ala	Lys	Lys 820	Asp	Asn	Val	Leu	Lys 825
Pro	Ser	Lys	Gly	Pro 830	Gln	Glu	Lys	Val	Asp 835	Gly	Asp	Arg	Glu	Lys 840
Ser	Pro	Arg	Ser	Glu 845	Pro	Por	Leu	Lys	Lys 850	Ala	Lys	Glu	Glu	Ala 855
Thr	Lys	Ile	Asp	Ser 860	Val	Lys	Pro	Ser	Ser 865	Ser	Ser	Gln	Lys	Asp 870
Glu	Lys	Val	Thr	Gly 875	Thr	Pro	Arg	Lys	Ala 880	His	Ser	Lys	Ser	Ala 885
Lsy	Asp	Thr	Arg	Arg 890	Gln	Ser	Gln	Pro	Arg 895	Thr	Arg	Arg	Ser	Lys 900
Arg	Thr	Val	Pro	Lys 905	Thr	Ser	Ser	Gln	Lys 910	Ser	Gln	Pro	Val	Arg 915
Thr	Arg	Arg	Pro	Arg 920	Ser	Leu	Arg	Lys	Ile 925	Asn	Tyr	Leu	Ile	Ala 930
Arg	Glu	Lys	Asn	Glu 935	Arg	Glu	Lys	Arg	Lys 940	Lys	Ser	Val	Asp	Lys 945
Asp	Phe	Glu	Ser	Ser	Ser	Met	Lys	Ile	Ser	Lys	Val	Glu	Gly	Thr

		950				955				960
Glu Ile Val	Lys	Pro Ser 965	Pro	Lys	Arg	Lsy Met 970	Glu	Gly	Asp	Val 975
Glu Lys Leu	Glu	Arg Thr 980	Pro	Glu	Lys	Asp Lys 985	Ile	Ala	Ser	Ser 990
Thr Thr Pro	Ala	Lys Lys 995	Ile	Lys	Leu	Asn Arg 1000	Glu	Thr	Gly	Lys 1005
Lys Ile Gly	Asn	Ala Glu 1010	Asn	Ala	Ser	Thr Thr 1015	Lys	Glu	Pro	Ser 1020
Glu Lys Leu	Glu	Ser Thr 1025	Ser	Ser	Lys	Ile Lys 1030	Gln	Glu	Lys	Val 1035
Lys Gly Lys	Ala	Lys Arg 1040	Lys	Val	Ala	Gly Ser 1045	Glu	Gly	Ser	Ser 1050
Ser Thr Leu	Val	Asp Tyr 1055	Thr	Ser	Thr	Ser Ser 1060	Thr	Gly	Gly	Ser 1065
Pro Val Arg	Lys	Ser Glu 1070	Glu	Lys	Thr	Asp Thr 1075	Lys	Arg	Thr	Val 1080
Ile Lys Thr	Met	Glu Glu 1085	Tyr	Asn	Asn	Asp Asn 1090	Thr	Ala	Pro	Ala 1095
Glu Asp Val	Ile	Ile Met 1100	Ile	Gln	Val	Pro Gln 1105	Ser	Lys	Trp	Asp 1110
Lys Asp Asp		1115				1120				1125
Pro Ile Gln		1130				1135				1140
Thr Thr Lys	Pro	Ser Ala 1145	Thr	Ala	Lys	Tyr Thr 1150	Glu	Lys	Glu	Ser 1155
Glu Gln Pro		1160		_		1165				1170
Glu Leu Met		1175				1180	_			1185
Ser Glu Lys		1190				1195				1200
Lys Asp Asn		1205				1210				1215
Glu Ser Thr		1220				1225				1230
Leu Ser Gln		1235				1240				1245
Ser Val Arg	Gly	Ser Ser 1250	Asn	Lys	Asp	Phe Thr 1255	Pro	Gly	Arg	Asp 1260
Lys Lys Val		1265				1270				1275
Arg Asp Glu		1280				1285				1290
Arg Gly Lys		1295		_		1300				1305
Glu Arg Asp		1310	_	-		1315		_		1320
Ser Ser Pro		1325				1330				1335
Tyr Glu Thr	Lys	Arg Pro	Cys	Glu	Glu	Thr Lys	Pro	Val	Asp	Lys

```
1340
                                    1345
                                                         1350
Asn Ser Gly Lys Glu Arg Glu Lys His Ala Ala Glu Ala Arg Asn
                1355
                                    1360
                                                         1365
Gly Lys Glu Ser Ser Gly Ala Asn Cys His Val Tyr Leu Thr Arg
                1370
                                    1375
                                                         1380
Gln Thr Leu Pro Trp Arg Arg Ser Trp Leu Leu Gly Arg Trp Arg
                1385
                                                         1395
                                    1390
Arg Ala Pro Ser Ser Arg Asn Pro Ser
                1400
                                1404
     <210>
               2
               5173
     <211>
     <212>
               DNA
     <213>
               Unknown
     <220>
     <221>
               CDNA
     <223>
               P2P cDNA
     <400>
aggtccacca cetecatett acacetgett tegttgtggt aaacetggte attatattaa 60
gaattgccaa caaatgggga taagaacttt gaatctggtc ctaggatcaa aaagagcact 120
ggaattecta gaagttttat gatggaagtg aaagateeta acatgaaagg tgcaatgett 180
accaacactg gaaaatatgc aataccaact atagatgcag aggcctatgc aatcgggaag 240
aaagagaaac caccettett accagaggag ceateateat etteagaaga agatgateet 300
atcccagcag agetettgtg ceteatetge aaagacatea tgactgatge tgtggteatt 360
ccctgctgtg gaaacagttc atgtgatgaa tgtataagaa cgacactctt ggagtcagat 420
aaacatacat gtccaacatg tcaccaaaat gatgtttctc ctgatgcttt aattgccaac 480
aagtttttac gacaggctgt taataacttt aaaaatgaaa ctggctatac aaaacgacta 540
cgaaaacagt tacctccatt tttattttta gtaccaccac caagaccact cagtcagcgg 600
aacctacage ctcgtagtag atctccaata ctaagacage aggateetgt agtattcagg 660
tacactgtct cgcctacctg ctccgatact aagacagcag gatcctgtag tgattcaggt 720
acactgtctc gcctacctgc tccgtctata tcttcattaa cttctaatca gtcttccttg 780
gcccctcctg tgtctggaaa tccgtcttct gctccagctc cagtacctga tataactgca 840
accgtgtcta tatcagtcca ctcagaaaaa tcggatggac cttttcggga ttctgataat 900
aaattattgc cagctgccgc ccttacatca gaacattcaa agggagcctc ttcaattgct 960
attactgctc ttatggaaga aaaaggggta ccaggtacca gtccttggaa ctccatcttt 1020
gttggacagt cattattaca tggacagttg attcccacaa ctggcccagt aagaatcaat 1080
gctgctcgtc caggtggtgg ccggccaggc tgggagcatt ccaacaagct tgggtaccta 1140
gtttctccac cacagcaaat tagaagagga gaaagaagct gttacagaag tataaaccgc 1200
gggcgacacc acagcgaacg atcacagagg actcaaagcc catcacttcc agcaactcca 1260
tgctttgtgc ccgttccacc acctcctttg tatccgcctc ctccccatac acttcctctt 1320
cctccaggtg tacctcctcc acagttttct cctcagtttc cctcctccca gcctccaaca 1380
gcaggatata gtgtccctcc tccaggattt ccaccagctc ctgccaatat atcaacagct 1440
tgetttteac caggtgttcc cactgcccat tcaaatacca tgcccacaac acaagcacct 1500
cttttgtcca gggaagaatt ctatagagag caaaacgaca aaggaagaga gtctaaattt 1560
ccctatagtg ggtcatcgta ttcaagaagt tcatacactg actcaagtca aggtctggct 1620
caacacattc acgetettae teteagteet teagetgete acactetega tettetteae 1680
gatcatcccc atcctccaga agaggcagag gcaagatctg caatgattgt tcacatgcca 1740
gateteatgg atategeeca tgetaggtea aggteacete cetatagaeg atategetea 1800
cggtccagat ctcctccaga atttagggga cagtctccca ctaaacgtaa tgtacctcga 1860
```

gaagagaaag aacgtgagta ttttaataga tacagagaag ttccaccccc ttatgacatc 1920 aaagcctatt atgggcggag tgtcgacttt agagacccat ttgagaaaga acgctaccgg 1980 gaatgggaaa ggaaataccg agagtggtat gagaagtact acaaagggta cgcggtggga 2040 getcaaceta gaccetcage caatagagag gacttttete cagagagaet ettacetett 2100 aatatcaqaa attcaccctt cacaagaggc cgcagagaag actatgctgc tggacaaagt 2160 catagaaata gaaatctagg tggcaactat ccagaaaagc tttcaacaag ggacagtcac 2220 aatgcaaaag ataatccaaa atcgaaggag aaggagagtg agaatgttcc aggagacggc 2280 aaagggaaca agcataagaa acacaggaaa cgaagaaacg aagaaaaggg ggaagagagt 2340 gagagettee tgaacccaga getactggag acgtetagga aatgeagggg atcgteaggg 2400 attgatgaaa cgaagacaga tacactgttt gttctcccaa gcagagacga tgctacacct 2460 gttagggatg agccaatgga cgcagaatcg atcactttca agtcagtatc tgacaaagac 2520 aagagggaaa aggataagcc aaaagtaaaa agtgacaaga ccaaacggaa aagtgacggg 2580 tctgctacag ccaagaaaga caatgtttta aaaccttcta aaggacctca agaaaaggta 2640 gatggagacc gtgaaaagtc tcctcggtct gagccgccac tcaaaaaagc caaagaggag 2700 gctacaaaga ttgactctgt aaaaccttcc tcgtcttctc agaaggatga gaaggtcact 2760 ggaaccccta gaaaagccca ttctaaatct gcaaaagaca ccaggaggca aagccagcca 2820 aggacgagaa ggtcaaaaag gactgttcca aagacatcaa gtcagaaaag ccagccagta 2880 aggacgagaa ggccaagaag cctgagaaaa ataaactact tgatagcaag ggagaaaaac 2940 gaaagagaaa aacggaagaa gagtgtagat aaagattttg agtcgtcttc aatgaaaatc 3000 tctaaagtag aaggaacaga aatagtgaaa ccatcaccaa aacggaaaat ggaaggtgat 3060 gttgaaaagc tggaaaggac cccagaaaag gacaagattg catcatcaac tactccagcc 3120 aaaaaaatca aactcaacag agaaactgga aaaaaaattg gaaatgcaga aaatgcatct 3180 actacaaaag aaccctctga aaaattggag tcaacatcta gcaaaatcaa acaggaaaaa 3240 gtcaagggaa aggccaaacg gaaagtagct gggtcggaag gctccagctc cacgcttgtg 3300 gattacacca gtacaagttc aactggaggc agtcctgtga ggaaatctga agaaaagaca 3360 gatacaaagc gaacagtcat taaaactatg gaggaatata ataatgataa cacagctcct 3420 gctgaagatg ttataattat gatccaggtt cctcagtcca aatgggataa agatgacttt 3480 gagtctgaag aagaagatgt taaaaccaca caacctatac agagtgtagg gaaaccatcg 3540 agtattataa aaaatgtcac tactaagcca tcggctacgg ctaagtacac cgagaaggaa 3600 agcgagcagc ccgagaaact gcagaagctt cccaaggagg cgagccacga gctgatgcag 3660 cacgagetea ggageteaaa gggeagtgeg teeagtgaga agggeagage caaggaeegg 3720 gagcactcag ggtcggagaa ggacaaccct gacaagagga agagcggtgc ccagccagac 3780 aaggagagca ctgtggaccg cctgagtgag cagggacatt ttaagactct ctctcagtct 3840 tccaaagaga ccaggacttc agagaagcac gagtctgttc gtggttcctc aaataaagac 3900 ttcactcctg gtagagacaa gaaagtggac tacgacagca gggattattc cagttccaag 3960 cgaagagacg agagaggtga attagcaagg agaaaagact ctcctccccg gggcaaagag 4020 tctctgtctg ggcagaaaag caagctgagg gaggagagag atttacctaa aaagggggcc 4080 gagtcaaaaa aaagtaattc tagcccccca agagacaaaa agcctcatga tcataaagcc 4140 ccctacgaaa ctaaacgccc atgtgaagag acaaagcctg tagataaaaa ctctgggaag 4200 gagcgggaga agcatgctgc tgaagctcgc aatgggaaag agtccagtgg tgcaaactgc 4260 catgtatacc taacccgcca gaccctccca tggagaagga gctggctgct gggcaggtgg 4320 agaagagege egteaageeg aaaceeeage tgageeatte etegaggett teetetgace 4380 tgacccggga gacgaacgag gcagcctttg aaccagatta taatgagagc gacagtgaga 4440 gtaatgtgtc tgtgaaggaa gaagaagctg ttgccagtat ctccaaggac ttgaaagaga 4500 aaacaacaga gaaagcgaaa gagagcttga ctgtagcaac ggccagccag ccaggtgcag 4560 acaggagcca gagccaaagt agcccagtgt tagtcagtag agtcatagcc ttcggagcca 4620 gacccgaagc cacagcagca gtgccagctc agccggaagg ccaggacagc aaaaagaaga 4680 agaagaagaa ggagaagaaa aacgacaaga agcataaaaa gcacaagaag cacaagaagc 4740 acgcaggccg acggcgacgt ggagaagagc cagaaacaca aacacaagaa gaagaaggcc 4800 aagaagaaca aagacaagga gaaggagaaa gatgaccaaa aagtgagatc tgtcactgtg 4860 tgaaggacgg atgtgttaat tgacttaatt actaagtcat ctgtattaaa ttctgttata 4920 atgtaaagag attccagcct tgtaaataat gaatggaaga ccctgtgctg cacttaaaag 4980

```
tatttgctgc ttgattattt catttttaca tcagagcttt ataacgaact tttgtacaga 5040
attgtgagtt gtgaccatgg aacagtgaga ggttttgcta gggcctatta tttttaacca 5100
ccattaatta gttggggtgg agtttactgt actgtgaaat tttcacattt gaatttttt 5160
                                                                   5173
aattgcctgg caa
                3
     <210>
                16
     <211>
     <212>
               DNA
     <213>
               Unknown
     <220>
                primer_bind
     <221>
                P2P antisense oligonucleotide
     <223>
     <400>
cagcaggagc tgtgtt
     <210>
                16
     <211>
     <212>
                DNA
                Unknown
     <213>
     <220>
                primer_bind
     <221>
                P2P sense oligonucleotide
     <223>
     <400>
ctactaagcc atcggc
```