# **Distributed Processing**

# Review of Spark on YARN (1)



# Review of Spark on YARN (2)



# Review of Spark on YARN (3)



### **Data Partitioning (1)**

- Data in Datasets and DataFrames is managed by underlying RDDs
- Data in an RDD is partitioned across executors
  - This is what makes RDDs distributed
  - Spark assigns tasks to process a partition to the executor managing that partition
- Data Partitioning is done automatically by Spark
  - In some cases, you can control how many partitions are created
  - More partitions = more parallelism



# **Data Partitioning (2)**

- Spark determines how to partition data in an RDD, Dataset, or DataFrame when
  - The data source is read
  - An operation is performed on a DataFrame, Dataset, or RDD
  - Spark optimizes a query
  - You call repartition or coalesce

### **Partitioning from Data in Files**

#### Partitions are determined when files are read

- Core Spark determines RDD partitioning based on location, number, and size of files
  - Usually each file is loaded into a single partition
  - Very large files are split across multiple partitions
- Catalyst optimizer manages partitioning of RDDs that implement DataFrames and Datasets

### Finding the Number of Partitions in an RDD

 You can view the number of partitions in an RDD by calling the function getNumPartitions

myRDD.getNumPartitions

Language: Scala

myRDD.getNumPartitions()

Language: Python

# **Example: Average Word Length by Letter (1)**

avglens = sc.textFile(mydata)

Language: Python



# **Example: Average Word Length by Letter (2)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' '))

Language: Python
```



# **Example: Average Word Length by Letter (3)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word)))

Language: Python
```



### **Example: Average Word Length by Letter (4)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word))) \
    .groupByKey()

Language: Python
```



### **Example: Average Word Length by Letter (5)**

```
avglens = sc.textFile(mydata) \
  .flatMap(lambda line: line.split(' ')) \
  .map(lambda word: (word[0],len(word))) \
  .groupByKey() \
  .map(lambda (k, values): \
     (k, sum(values)/len(values)))
                                                Language: Python
```



### **Stages and Tasks**

- A task is a series of operations that work on the same partition and are pipelined together
- Stages group together tasks that can run in parallel on different partitions of the same RDD
- Jobs consist of all the stages that make up a query
- Catalyst optimizes partitions and stages when using DataFrames and Datasets
  - Core Spark provides limited optimizations when you work directly with RDDs
    - You need to code most RDD optimizations manually
  - To improve performance, be aware of how tasks and stages are executed when working with RDDs

### **Example: Query Stages and Tasks (1)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word))) \
    .groupByKey() \
    .map(lambda (k, values): \
        (k, sum(values)/len(values)))

avglens.saveAsTextFile("avglen-output")

Language: Python
```



### **Example: Query Stages and Tasks (2)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word))) \
    .groupByKey() \
    .map(lambda (k, values): \
        (k, sum(values)/len(values)))

avglens.saveAsTextFile("avglen-output")

Language: Python
```



# **Example: Query Stages and Tasks (3)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word))) \
    .groupByKey() \
    .map(lambda (k, values): \
        (k, sum(values)/len(values)))

avglens.saveAsTextFile("avglen-output")

Language: Python
```



# **Example: Query Stages and Tasks (4)**

```
avglens = sc.textFile(mydata) \
    .flatMap(lambda line: line.split(' ')) \
    .map(lambda word: (word[0],len(word))) \
    .groupByKey() \
    .map(lambda (k, values): \
        (k, sum(values)/len(values)))

avglens.saveAsTextFile("avglen-output")

Language: Python
```



# **Example: Query Stages and Tasks (5)**

```
avglens = sc.textFile(mydata) \
  .flatMap(lambda line: line.split(' ')) \
  .map(lambda word: (word[0],len(word))) \
  .groupByKey() \
  .map(lambda (k, values): \
     (k, sum(values)/len(values)))
avglens.saveAsTextFile("avglen-output")
                                                Language: Python
```



# **Summary of Spark Terminology**

- Job—a set of tasks executed as a result of an action
- Stage—a set of tasks in a job that can be executed in parallel
- Task—an individual unit of work sent to one executor
- Application—the set of jobs managed by a single driver



### **Execution Plans**

- Spark creates an execution plan for each job in an application
- Catalyst creates SQL, Dataset, and DataFrame execution plans
  - Highly optimized
- Core Spark creates execution plans for RDDs
  - Based on RDD lineage
  - Limited optimization

#### **How Execution Plans are Created**

# Spark constructs a DAG (Directed Acyclic Graph) based on RDD dependencies

#### Narrow dependencies

- Each partition in the child RDD depends on just one partition of the parent RDD
- No shuffle required between executors
- Can be pipelined into a single stage
- Examples: map, filter, and union

#### Wide (or shuffle) dependencies

- Child partitions depend on multiple partitions in the parent RDD
- Defines a new stage
- Examples: reduceByKey, join, and groupByKey





### **Controlling the Number of Partitions in RDDs (1)**

- Partitioning determines how queries execute on a cluster
  - More partitions = more parallel tasks
  - Cluster will be under-utilized if there are too few partitions
    - But too many partitions will increase overhead without an offsetting increase in performance
- Catalyst controls partitioning for SQL, DataFrame, and Dataset queries
- You can control how many partitions are created for RDD queries

### **Controlling the Number of Partitions in RDDs (2)**

#### Specify the number of partitions when data is read

- Default partitioning is based on size and number of the files (minimum is two)
- Specify a different minimum number when reading a file

```
myRDD = sc.textFile(myfile,5)
```

#### Manually repartition

- Create a new RDD with a specified number of partitions using repartition or coalesce
  - coalesce reduces the number of partitions without requiring a shuffle
  - repartition shuffles the data into more or fewer partitions

```
newRDD = myRDD.repartition(15)
```

### **Controlling the Number of Partitions in RDDs (3)**

- Specify the number of partitions created by transformations
  - Wide (shuffle) operations such as reduceByKey and join repartition data
  - By default, the number of partitions created is based on the number of partitions of the parent RDD(s)
  - Choose a different default by configuring the spark.default.parallelism property

```
spark.default.parallelism 15
```

 Override the default with the optional numPartitions operation parameter

```
countRDD = wordsRDD. \
  reduceByKey(lambda v1, v2: v1 + v2, 15)
```

### **Catalyst Optimizer**

- Catalyst can improve SQL, DataFrame, and Dataset query performance by optimizing the DAG to
  - Minimize data transfer between executors
    - Such as broadcast joins—small data sets are pushed to the executors where the larger data sets reside
  - Minimize wide (shuffle) operations
    - Such as unioning two RDDs—grouping, sorting, and joining do not require shuffling
  - Pipeline as many operations into a single stage as possible
  - Generate code for a whole stage at run time
  - Break a query job into multiple jobs, executed in a series

### **Catalyst Execution Plans**

- Execution plans for DataFrame, Dataset, and SQL queries include the following phases
  - Parsed logical plan—calculated directly from the sequence of operations specified in the query
  - Analyzed logical plan—resolves relationships between data sources and columns
  - Optimized logical plan—applies rule-based optimizations
  - Physical plan—describes the actual sequence of operations
  - Code generation—generates bytecode to run on each node, based on a cost model

### **Viewing Catalyst Execution Plans**

- You can view SQL, DataFrame, and Dataset (Catalyst) execution plans
  - Use DataFrame/Dataset explain
    - Shows only the physical execution plan by default
    - Pass true to see the full execution plan
  - Use SQL tab in the Spark UI or history server
    - Shows details of execution after job runs

### **Example: Catalyst Execution Plan (1)**

```
peopleDF = spark.read. \
   option("header", "true").csv("people.csv")
pcodesDF = spark.read. \
   option("header", "true").csv("pcodes.csv")
joinedDF = peopleDF.join(pcodesDF, "pcode")
joinedDF.explain(True)

== Parsed Logical Plan ==
'Join UsingJoin(Inner, ArrayBuffer('pcode))
:- Relation[pcode#0,lastName#1,firstName#2,age#3] csv
+- Relation[pcode#9,city#10,state#11] csv

Language: Python continued on next slide...
```

### **Example: Catalyst Execution Plan (2)**

```
== Analyzed Logical Plan ==
pcode: string, lastName: string, firstName: string, age:
 string, city: string, state: string
Project [pcode#0, lastName#1, firstName#2, age#3, city#10,
 state#111
+- Join Inner, (pcode#0 = pcode#9)
   :- Relation[pcode#0,lastName#1,firstName#2,age#3] csv
   +- Relation[pcode#9,city#10,state#11] csv
== Optimized Logical Plan ==
Project [pcode#0, lastName#1, firstName#2, age#3, city#10,
 state#111
+- Join Inner, (pcode#0 = pcode#9)
   :- Filter isnotnull(pcode#0)
   : +- Relation[pcode#0,lastName#1,firstName#2,age#3] csv
   +- Filter isnotnull(pcode#9)
      +- Relation[pcode#9,city#10,state#11] csv
                                                Language: Python
                                               continued on next slide...
```

### **Example: Catalyst Execution Plan (3)**

```
== Physical Plan ==
*Project [pcode#0, lastName#1, firstName#2, age#3, city#10,
 state#111
+- *BroadcastHashJoin [pcode#0], [pcode#9], Inner, BuildRight
   :- *Project [pcode#0, lastName#1, firstName#2, age#3]
   : +- *Filter isnotnull(pcode#0)
   : +- *Scan csv [pcode#0,lastName#1,firstName#2,age#3]
 Format: CSV, InputPaths: file:/home/training/people.csv,
 PushedFilters: [IsNotNull(pcode)], ReadSchema:
 struct<pcode:string,lastName:string,firstName:string,age:string>
   +- BroadcastExchange
 HashedRelationBroadcastMode(List(input[0, string, true]))
      +- *Project [pcode#9, city#10, state#11]
         +- *Filter isnotnull(pcode#9)
            +- *Scan csv [pcode#9,city#10,state#11]
 Format: CSV, InputPaths: file:/home/training/pcodes.csv,
 PushedFilters: [IsNotNull(pcode)], ReadSchema:
 struct<pcode:string,city:string,state:string></</pre>
pcode:string,city:string,state:string>
                                               Language: Python
```

# **Example: Catalyst Execution Plan (4)**

| Jobs              | Stages                                                                                                                                                             | Storage       | Environment   | Exec    | utors   | SQL        |          |          |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------|---------|------------|----------|----------|--|--|--|
| SQL               |                                                                                                                                                                    |               |               |         |         |            |          |          |  |  |  |
| Completed Queries |                                                                                                                                                                    |               |               |         |         |            |          |          |  |  |  |
|                   | ription                                                                                                                                                            |               |               |         | Submitt |            | Duration | Jobs     |  |  |  |
| 0 collec          | ct at <ipytho< td=""><td>n-input-65-31</td><td>b1b37d0504&gt;:1</td><td>details</td><th>2017/05</th><td>/24 08:45:</td><td>13 1 s</td><td>31<br/>32</td></ipytho<> | n-input-65-31 | b1b37d0504>:1 | details | 2017/05 | /24 08:45: | 13 1 s   | 31<br>32 |  |  |  |

# **Example: Catalyst Execution Plan (5)**



### **Viewing RDD Execution Plans**

- You can view RDD (lineage-based) execution plans
  - Use the RDD toDebugString function
  - Use Jobs and Stages tabs in the Spark UI or history server
    - Shows details of execution after job runs
- Note that plans may be different depending on programming language
  - Plan optimization rules vary

### **Example: RDD Execution Plan (1)**

```
val peopleRDD = sc.textFile("people2.csv").keyBy(s => s.split(',')(0))
val pcodesRDD = sc.textFile("pcodes2.csv").keyBy(s => s.split(',')(0))
val joinedRDD = peopleRDD.join(pcodesRDD)
joinedRDD.toDebugString

(2) MapPartitionsRDD[8] at join at ...
| MapPartitionsRDD[7] at join at ...
| CoGroupedRDD[6] at join at ...
| -(2) MapPartitionsRDD[2] at keyBy at ... 2
| | people2.csv MapPartitionsRDD[1] at textFile at ...
| -(2) MapPartitionsRDD[5] at keyBy at ... 3
| pcodes2.csv MapPartitionsRDD[4] at textFile at ...
| pcodes2.csv MapPartitionsRDD[4] at textFile at ...
| pcodes2.csv MapPartitionsRDD[3] at textFile at ...
| pcodes2.csv HadoopRDD[3] at textFile at ... | Language: Scala
```

- Stage 2
- Stage 1
- Stage 0
- Indents indicate stages (shuffle boundaries)

### **Example: RDD Execution Plan (2)**



# **Example: RDD Execution Plan (3)**

#### Details for Job 0

Status: SUCCEEDED Completed Stages: 3

- ▶ Event Timeline
- ▼ DAG Visualization



#### Completed Stages (3)

| 5 | Stage Id ▼ | Description                                | Submitted           | Duration | Tasks: Succeeded/Total | Input   | Output | Shuffle Read | Shuffle Write |
|---|------------|--------------------------------------------|---------------------|----------|------------------------|---------|--------|--------------|---------------|
| 2 | 2          | collect at <console>:31 +details</console> | 2017/05/24 11:09:52 | 0.2 s    | 2/2                    |         |        | 586.0 B      |               |
| 1 | 1          | keyBy at <console>:24 +details</console>   | 2017/05/24 11:09:51 | 99 ms    | 2/2                    | 170.0 B |        |              | 339.0 B       |
| C | )          | keyBy at <console>:24 +details</console>   | 2017/05/24 11:09:51 | 0.7 s    | 2/2                    | 105.0 B |        |              | 247.0 B       |

#### **Essential Points**

- Spark partitions split data across different executors in an application
- Executors execute query tasks that process the data in their partitions
- Narrow operations like map and filter are pipelined within a single stage
  - Wide operations like groupByKey and join shuffle and repartition data between stages
- Jobs consist of a sequence of stages triggered by a single action
- Jobs execute according to execution plans
  - Core Spark creates RDD execution plans based on RDD lineages
  - Catalyst builds optimized query execution plans
- You can explore how Spark executes queries in the Spark Application UI

# Hands-On Exercise: Jobs Monitoring: Using Web UI.

- In this exercise, you will explore how Spark plans and executes RDD and DataFrame/Dataset queries
  - Please refer to the Hands-On Exercise Manual for instructions