TD - Graphes

On dit qu'un graphe est un **graphe simple** s'il n'a pas de boucles et s'il ne peut exister plusieurs arcs entre deux mêmes sommets (pas de multi-arcs).

Dans la suite, on ne considère que des graphes simples ayant un nombre fini de sommets.

Exercice 1 (Résultats théoriques sur les graphes).

- 1. Si g=(V,E) est un graphe non orienté, montrer que : $\sum_{v\in V}\delta(v)=2n_e$.
- 2. Montrer qu'un graphe non orienté ayant $n_v \geq 3$ sommets et dont tout sommet est de degré supérieur ou égal à 2 possède au moins un cycle.
- 3. Montrer qu'un graphe acyclique non orienté ayant $n_v \ge 1$ sommets possède au plus $(n_v 1)$ arêtes.
- **4.** Montrer qu'un graphe connexe non orienté ayant $n_v \geq 1$ sommets possède au moins $(n_v 1)$ arcs.
- 5. Un graphe non orienté est dit **complet** si deux sommets différents sont toujours les extrémités d'un arc
 - a. Dessiner le graphe complet à 5 sommets
 - **b.** Dénombrer le nombre d'arêtes d'un graphe complet ayant n_v sommets.
- 6. Rappeler la définition générale d'un arbre, puis montrer que les propriétés suivantes sont équivalentes.
 - g est un arbre.
 - g est un graphe non orienté connexe comportant $n_v 1$ arêtes.
 - g est un graphe non orienté acyclique comportant $n_v 1$ arêtes.

Exercice 2 (Graphe biparti).

Démontrer qu'un graphe est biparti si et seulement s'il ne contient aucun cycle de longueur impaire. Indication : on pourra remarquer qu'un graphe est biparti s'il existe une 2-coloration...

Exercice 3 (Degrés d'un graphe).

- 1. Montrer qu'un graphe simple non orienté a un nombre pair de sommets de degré (degré total) impair.
- 2. Montrer que, dans une assemblée de n personnes, il y a toujours au moins deux personnes qui ont le même nombre d'amis présents.
- 3. Est-il possible de relier quinze ordinateurs de sorte que chaque appareil soit relié exactement avec trois autres?
- 4. Une suite décroissante d'entiers est graphique s'il existe un graphe simple non orienté dont les degrés des sommets correspondent à cette suite. Les suites suivantes sont-elles graphiques?

$$(3,3,2,1,1)$$
 $(3,3,1,1,1)$ $(3,3,2,2)$ $(4,2,1,1,1,1)$ $(3,2,2,2,1)$

Exercice 4 (Nombre cyclomatique).

Le nombre cyclomatique ^a d'un graphe non orienté g à n_v sommets, n_e arêtes et n_c composantes connexes est :

$$\nu(G) = n_e - n_v + n_c$$

Démontrer que pour tout graphe $g, \nu(g) \geqslant 0$ et que $\nu(g) = 0$ si et seulement si g est acyclique.

 $a. \ \ http://www-igm.univ-mlv.fr/~dr/XPOSE2008/Mesure\%20de\%201a\%20qualite\%20du\%20code\%20source\%20-\%20Algorithmes\%20et\%20outils/complexite-cyclomatique.html$

Exercice 5 (Graphe biparti).

Trois conférenciers C_1 , C_2 , C_3 doivent intervenir le même jour pour assurer un certain nombre d'heures de formation à trois groupes G_1 , G_2 , G_3 .

- C_1 doit assurer 2 heures de formation à G_1 , 1 heure à G_2 . C_2 doit assurer 1 heure de formation à G_1 , 1 heure à G_2 , 1 heure à G_3 . C_3 doit assurer 1 heure de formation à G_1 , 1 heure à G_2 , 2 heures à G_3 .
- 1. Représenter cette situation par un graphe.
- 2. Combien faut-il de plages horaires au minimum?
- 3. Proposer un planning d'intervention des conférenciers.