

Probabilistic Models

- We have considered many probabilistic models
 - Linear Regression
 - Logistic Regression
 - Gaussian Mixture Models
- Most of these have been very simple
 - Assume a label (observed or unobserved)
 - Estimate probabilities from data

Model Representations

- No formal language to talk about model
 - We've described the models and given intuition
- Example: Gaussian Mixture Models
 - Assume that we first select a cluster
 - We then generate an example (features) given the cluster
- How can we describe this model formally

Example Probabilistic System

- A collection of related binary random variables
 - We will have an exam today
 - Student 1 studies hard
 - The exam is hard
 - The grades of student 1 are good

Example

- How do we answer these questions
 - What is the structure of these variables
 - What probabilities do I need to compute
 - Are any of the variables independent of each other
- We need some representation for these variables

Graphical Models

Graphical Models

- Combination of probability theory and graph theory
 - Combines uncertainty (probability) and complexity (graphs)
 - Represent a complex system as a graph
 - Gives Modularity
 - Standard algorithms for solving graph problems
- Your favorite algorithms are graphical models
 - Logistic regression, linear Regression, GMMs, etc.

Representation

- A probabilistic system is encoded as a graph
 - Nodes
 - Random Variables
 - Could be discrete or continuous
 - Edges
 - Connections between two nodes
 - Indicates a direct relationship between two random variables
 - Note: the lack of an edge is very important
 - No direct relationship

Graph Types

- Edge type determines graph type
- Directed graphs
 - Edges have directions (A -> B)
 - Assume DAGs (no cycles)
 - Typically called Bayesian Networks
- Undirected graphs
 - Edge don't have directions (A − B)
 - Typically called Markov Random Fields (MRFs)

Directed Graphs

- The direction of the edge indicates causation
- Causation can be very intuitive
 - We may know which random variable causes the other
 - Use this intuition to create a graph structure

Example

Generative Model

Advantages

- What have we gained by this representation
 - We could just draw a graph where everything is connected

- Consider the joint probability of our example
 - P(E, H, S, G), this is complex
 - What can we do to simplify?
 - Notice that H, S are independent given E

Product Rule

- Can use the product rule to decompose joint probabilities
 - P(a,b,c) = P(c|a,b)P(a,b)
 - P(a,b,c)=P(c|a,b)P(b|a)P(a)
- This is true for any distribution
- Same for K variables

- For any graphical model, we can write the joint distribution using conditional probabilities
 - We just need conditional probabilities for a node given its parents
 - $p(x) = \prod_k p(x_k | parents_k)$

- Consider the joint probability of our example
 - P(E, H, S, G), this is complex
 - What can we do to simplify?
 - Notice that H, S are independent given E
- Factor the joint probability according to the graph
 - P(E, H, S, G)=p(G|H, S) p(H|E)p(S|E)p(E)
 - This is much simpler to compute
 - We are likely to have these conditional probabilities

Observed Variables

- Variables are either
 - Observed- we observe values in data
 - Hidden- we cannot see values in data
- Indicate observed variables by shading
- Compute the remaining probabilities given shaded value

Plate Notation

- Plates in Graphical Models
 - When many variables have same structure, we replace them with a plate
 - The plate indicates repetition
 - There are n problems presented in the exam
 - Each conditioned on the same H,S

Example

- A model where we have label Y and example X
- Test time, no Y
 - Estimate Y using X
- What model is this?

Naïve Bayes

- Generative Story
 - Generated a label Y
 - Given Y, generate each feature X independently
- Learning
 - We observe X and Y, maximum likelihood solution
- Prediction
 - Compute most likely value for Y given X

•
$$p(y,x) = p(x|y)p(y) = \prod p(x_j|y)p(y)$$

Learning

- We assumed both examples (X) and labels (Y) for learning naïve Bayes
 - Maximum likelihood solution
- What if we only have X
 - General purpose method for maximizing likelihood where we have missing variables
 - EM
 - Unsupervised NB: clustering
 - Some labels: semi-supervised NB

Naïve vs. Reality

- Positive: we now can parameterize our model using conditional independence
- Reality: naïve assumption very unlikely to be true
- Example
 - Document classification: sports vs. finance
 - Each word in a document is a feature
 - Naïve assumption: once I know the topic is sports, every word is conditionally independent
 - Not true! Would be total nonsense.

Naïve vs. Reality

- Reality: works pretty well in practice
- Caution: features that are too dependent are difficult for model
 - Create features that are minimally dependent
 - Limits the expressiveness of features

Assumptions

- Naïve Bayes makes an assumption
- Features (X) conditionally independent given label (Y)

Undirected Networks

- Conditional Independence
 - D-separation used directionality of the edges
- Can we define it without directionality?
 - Yes!
- If all path from set A to set B pass through set C, then A is d-separated from B given C
 - Notice no distinction between head to head and tail to tail
 - "Explaining away" not an issue since no causation
 - Actually easier to check

- How can we express the joint distribution as a product of functions over local sets of variables
 - The directions in directed graphs indicated conditional relationship
- Step 1 is easier than with directed graphs
 - Given two nodes xi and xj , they are conditionally independent given the entire graph if they are not neighbors
 - $p(x_i, x_j | X_{\{i,j\}}) = p(x_i | X_{\{i,j\}}) p(x_j | X_{\{i,j\}})$

Defining Factors

- The factorization of the joint distribution is such that xi and xj do not appear in the same factor
- Graph concept: clique
 - A set of nodes that are fully connected
 - There exists an edge between every pair of nodes
- Maximal clique
 - A clique such that adding any other node means it is no longer a clique

Cliques

- Cliques in the graph
 - A/B, A/C, B/D, B/C, C/D
 - Maximal Cliques: A/B/C, B/C/D
 - A/B/C/D is not a clique, since no edge from A to D

- Define
 - Xc as all nodes in clique C
 - $\psi_{\mathcal{C}}(\mathbf{x}_c)$ is a potential function over clique C
- We can define the joint distribution of the graph as a product of potential functions over maximal cliques
 - $p(x) = \frac{1}{Z} \prod_C \psi_C(\mathbf{x}_C)$

Partition Function

•
$$p(x) = \frac{1}{Z} \prod_C \psi_C(\mathbf{x}_C)$$

- Notice that $\psi_{\mathcal{C}}(\mathbf{x}_c)$ is not a probability
 - Must be non-negative
 - Will not sum to 1
- Therefore, we need to normalize to get a probability

•
$$Z = \sum_{x} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

• Z is called the partition function

Example

- A model where we have label Y and example X
- Test time, no Y
 - Estimate Y using X
- What model is this?

Logistic Regression

- No Generative Story
 - Graph does not encode causality
 - We can say that X and Y are related
- Learning
 - We observe X and Y, maximum likelihood solution
- Prediction
 - Compute most likely value for Y given X

- $p(y|x) = \frac{1}{Z} \prod_m \psi_m(\mathbf{x}_m, y)$
- $\psi_m(\mathbf{x}_m, y) = \exp(w_m, f(x_m, y))$
- $Z = \sum_{y} \prod_{m} \psi_{m}(\mathbf{x}_{m}, y)$

MRF

- Pros:
 - Define arbitrary potential functions
 - Much more flexibility than directed models
 - Easier to compute condition independence
 - Don't need to express causation relationship
- Cons
 - Z!!!
 - Sum over all states x
 - M discrete nodes, each with K discrete states, K^{M}
 - However, we just need Z for learning
 - To evaluate, we need most likely option, so Z cancels

Inference

- Computing probabilities of network configurations
 - We know some values of the network (observed)
 - How do we compute the posterior of a set of nodes?
- Previously, we did this by explicitly working out the probabilities
- How can we do this in an efficient and general way?

Two Approaches

- Exact inference
 - We get the exact value of the probability we want
 - While some efficient algorithms exist, very slow for some graphs
- Approximate inference
 - Compute an approximation of the desired probability
 - The only solution for some types of graphs

Chain Graphical Model

- Consider a linear chain of random variables
 - Notice this is undirected
 - We can convert directed models to undirected model
- Joint distribution of the Chain
 - $p(x) = \frac{1}{Z}\psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3)... \psi_{N-1,N}(x_{N-1}, x_N)$
 - Given N nodes with K states
 - Each potential function is a K*K table
 - Joint has $(N-1)K^2$ parameters

Chain Inference

- What is p(xn) for some node n in the chain
 - Assuming no observed nodes
- Sum over all other nodes in the chain
 - $p(x_n) = \sum_{x_1} ... \sum_{x_{n-1}} \sum_{x_{n+1}} ... \sum_{x_N} p(x)$
 - Notice there are K^N values to consider in the summation
 - Our computations are exponential in the length of the chain

Conditional Independence

- Conditional independence to the rescue!
 - We can write the joint in terms of potentials
 - Each potential depends on 2 nodes
- Plug the factorized joint into the marginal for $p(x_n)$

Grouping Potential Function

•
$$p(x_n) = \frac{1}{Z} \mu_{\alpha} \cdot \mu_{\beta} = \frac{1}{Z}$$

$$\left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \dots \left[\sum_{x_2} \psi_{2,3}(x_2, x_3) \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \right] \right]$$

$$\left[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \dots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \right]$$

Rewriting as Factors

- The marginal can be written in terms of two factors
 - $p(x_n) = \frac{1}{Z}\mu_{\alpha}(x_n) \cdot \mu_{\beta}(x_n)$
 - Each Factor depends only on the odes to one side
 - This information is passed along the network to xn
 - We call this a message
 - Each message contains K values (for every xn)

Normalization Constant

- Z is a sum over all states in
 - $p(x_n) = \frac{1}{Z}\mu_{\alpha}(x_n) \cdot \mu_{\beta}(x_n)$

Computing Probabilities

- What about observed variables
 - Clamp their value, remove the sum
- What about joint distribution over two neighboring nodes

•
$$p(x_{n-1}, x_n) = \frac{1}{Z} \mu_{\alpha}(x_{n-1}) \cdot \psi_{n-1,n}(x_{n-1}, x_n) \cdot \mu_{\beta}(x_n)$$

Most Likely Configuration

- We know how to find the probability of configuration
- How do we find the most likely configuration
 - Run the sum product algorithm, for each marginal
 - Select the most probable value for each node
 - Problem: this gives a node specific max probability
- How to do:
- Simply replace the sum to max

Structured Prediction

What is structured prediction

- Input x
 - Typically a structured input
 - Maintain structure of input in x
 - Do not flatten into list of features in an instance
- Output y
 - Y is now from a large set of possible outputs
 - Outputs defined based on input
 - Often exponential in size of input

Previous Approaches

- Naturally multi-class algorithm,
 - Neural Networks
 - Decision Tree
- Reduction to binary
 - E.g. one classifier per class
- These methods don't work when
 - Exponential number of output
 - Outputs defined based on input

Structured Prediction Challenges

- Scoring
 - How do we assign a score/probability to a possible output structure
- Search/Inference
 - Find the best scoring output structure
 - How do we search through an exponential number of options

Sequence Models

- Many events happen in sequence
 - Weather on consecutive days
 - Words in a written sentence
 - Spoken sounds by a person
 - Movements in the stock market
 - DNA base pairs

Sequential Model

- Simple Approach
 - Each event is independent

1

2

•••

N-1

N

• Simple but not helpful

Sequential Model

- Complex Approach
 - Each event is dependent on previous events

• Captures dependencies, but way too complex

Markov Assumption

- The current state depends on a fixed number of previous states
 - The weather today depends on the past three days, but not two weeks ago
 - The next word in the sentence depends on the past three words, but nothing before
- Pros: make for simple models
- Cons: doesn't capture full history

Markov Chains

• First order Markov chain

Second order Markov chain

Hidden Markov Model

Joint Probability of an HMM

- The joint probability of an HMM
- $p(X, Z|\theta) = p(z_i|\pi) [\prod_n p(z_n|z_{n-1}, A)] \prod_m p(x_m|z_m, \phi)$
- A transition probabilities
 - The probability of moving from state i to j
- Pi vector with starting probabilities
- Phi emission probabilities

Unsupervised Training

- How do we train a probabilistic model
 - Maximum likelihood
 - $\max_{\theta} p(X, Z|\theta)$
 - Problem: we don't know z
- Solution: EM

Step1: Write the likelihood

- $p(X|\theta) = \sum_{Z} p(X, Z|\theta)$
- $p(X,Z|\theta) = p(z_i|\pi) \left[\prod_n p(z_n|z_{n-1},A)\right] \prod_m p(x_m|z_m,\phi)$

EM for HMMs

- E step
 - Find the expected values for the hidden variables Z given the model parameters
 - The most likely Z given X and current model parameters
- M-step
 - Pretend to observe the values for Z
 - Update model parameters to maximize complete data likelihood

E step

Given Q function, evaluate probabilities for Z

•
$$Q(\theta, \theta^{old}) = \sum_{Z} p(Z|X, \theta^{old}) \log p(X, Z|\theta)$$

For HMM:

$$Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(Z_{lk}) \log \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi(Z_{n-1, j}, Z_{nk}) \log A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(Z_{nk}) \log p(X_n | \phi_k)$$

$$\gamma(Z_n) = p(Z_n | X, \theta^{old}) \qquad \pi, \Phi \text{ and } \mathbf{A} \text{ are model parameters}$$

$$\xi(Z_{n-1}, Z_n) = p(Z_{n-1}, Z_n | X, \theta^{old})$$

How can we get these values

- What is the probability of being in state zn
- What is the probability of bing in state zn and zn+1
- Inference
 - Forward-backward algorithm

M-step

Maximize Q function with respect to pi, phi and A

Assuming values for Z, we get:

$$\pi_{k} = \frac{\gamma(Z_{1k})}{\sum_{j=1}^{K} \gamma(Z_{1j})} \qquad A_{jk} = \frac{\sum_{n=2}^{N} \xi(Z_{n-1,j}, Z_{nk})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(Z_{n-1,j}, Z_{nl})} \qquad \phi_{ik} = \frac{\sum_{n=1}^{N} \gamma(Z_{nk}) X_{ni}}{\sum_{n=1}^{N} \gamma(Z_{nk})}$$

Prediction

- Given a new sequence X, find the most likely set of states to have generated X
 - Find the sequence Z with the maximum probability given X
- Viterbi Decoding! (replace sum to max)

Supervised Training

- We actually observe Z
 - Just compute M step a single time
 - Very fast and easy
- What if we observe only some Z
 - Case 1: only some examples are labeled with Z
 - Case 2: each example has only some labels for Z
- Semi-supervised Learning
 Use EM algorithm but fix Z when know

Notes on HMMs

An HMM can have continuous or discrete emissions

- Discrete- base pair, word in sentence
- Continuous- stock price, frequency of a sound

An HMM has discrete hidden states

A Linear Dynamical System has continuous hidden states

Sequence Models

- An HMM is a directed graphical model
 - Bayesian Network
 - What happens if we have an undirected graphical model
 - Markov Random Field

Conditional Random Fields

- Replace conditional probabilities with potential functions
- The joint probability is a product of potential functions

Conditional Random Fields: Learning

- Given some data, we want to learn a CRF
- How should we learn the model
 - Maximum Likelihood
- Questions
 - What are the parameters of our model
 - The potential functions
 - What is the objective
 - How do we compute model probabilities efficiently

Model Parameters

- Parameterize the potential functions
 - Learn the parameters

•
$$\phi(x,z) = \exp(\sum_k \theta_k f_k(x,z))$$

- Parameter theta determine value of potential function
- Fk is a feature function
- Notice: linear combination of features(linear model!)

Objective

- Let's maximize the likelihood of the data
 - For a single example

•
$$p(x,z|\theta) = \frac{1}{z} \prod_A \phi_A(x_A, z_A)$$

• What about Z?

•
$$Z = \sum \prod_A \phi_A(x_A, z_A)$$

- Sum over all X!
 - All possible sequences of base pairs
- It's too hard to learn X

Discriminative Training

- Solution: don't learn p(x)
- Maximize the conditional likelihood of the data
 - For a single example

CRF conditional log likelihood of all examples

$$p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) = \frac{1}{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A})$$
$$\mathbf{Z} = \sum_{Z} \prod_{A} \psi_{A}(\mathbf{x}_{A}, \mathbf{z}_{A})$$

$$\log p(z|x) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_{k} f_{k}(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^{N} \log Z(x_{i})$$

Problem with Objective

- Recall the logistic regression (discriminative training) maximum likelihood over-fit the data
- Solution: regularization
- Gaussian prior

$$\log p(z|x) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_{k} f_{k}(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^{N} \log Z(x_{i}) - \sum_{k=1}^{K} \frac{\theta_{k}^{2}}{2\sigma^{2}}$$

Training a CRF

- The conditional log likelihood is convex
 - Take the derivative and solve for θ

$$\frac{\partial L}{\partial \theta_k} = \sum_{i=1}^N \sum_{t=11}^T f_k(z_{it}, z_{it-1}, x_{it}) - \sum_{i=1}^N \sum_{t=1}^T \sum_{z, z} f_k(z, z, x_{it}) p(z, z \mid x_{it}) - \sum_{k=1}^K \frac{\theta_k}{\sigma^2}$$

- The derivative is 0 when
 - The last term (regularizer) is 0
 - The first term and the second term cancel each other
 - First term: the expected value for fk under the empirical distribution (from the data)
 - Second term: expectation for fk given odel distribution

Computing Probabilities

- What do we need to compute the values in the derivative?
 - Marginal probability of $p(z, z'|x_{it})$
 - The normalization constant Z
 - Total score for all possible labeling of the sequence
 - Forward-Backward
- Prediction
 - Sequence of states with max probability
 - Prediction
 - How do we find the highest probability sequence?
 - Viterbi Decoding

CRF summary

- CRFs are
 - Markov Random Fields
 - The MRF equivalent of a supervised HMM
 - Discriminatively trained using conditional log likelihood
 - Linear model(recall linear potential functions)

Why CRFs

- CRF training is much harder than HMM
 - · Computing gradients, optimization vs. counting
 - 11 labels, 200k tokens: 2 hours / 45 labels, 1m tokens: 1 week
- Why bother?
 - HMMs require
 - Assumptions of causation / generative story
 - Independence assumptions for observations
 - These aren't problems for CRFs!
 - Can allow arbitrary dependencies
 - Transition can depend on x and z
 - Can condition on the whole sequence x
 - Recall:
 - Generative models limit the features
 - Discriminative models can have any types of features

HMMs and CRFs

Generative/Discriminative pairs

- A generative and discriminative parametric model family that can represent the same set of conditional probability distributions
- Naïve Bayes/Logistic Regression
- HMM/CRF

HMM is a Naïve Bayes classifier at each node CRF is a Logistic Regression classifier at each node

Q&A