Initial Data:-	
Q	
length of the hall:	l = 36 m
bay distance:	$l_f \!\coloneqq\! 6$ $m{m}$
bay distance.	<i>if</i> 0 <i>III</i>
Span of the frames:	b := 17.3 m
9	
The height of the side walls:	$h = 8.05 \; \boldsymbol{m}$
Inclination of the roofs:	$\beta \coloneqq 13 deg$
inclination of the roots.	$\beta = 13 \text{ deg}$
Number of purlins:	$n_p = 5$
Ć,	
Distance of the side purlin and the the	eoretical frame: $l_{p.h.1} = 800 \ mm = 0.8 \ m$
Diameter of scrouge	D . 5.5 mm
Diameter of screws:	$D_s \coloneqq 5.5$ mm
Characteristic value of permanent load	$g_k = 0.73 \frac{1}{m^2}$
	S
Characteristic value of the snow load:	$q_k = 1 \frac{kN}{2}$
	4
$g_{k,per} \coloneqq g_k \cdot \cos(\beta) = 0.711 \frac{kN}{m^2}$ $q_{k,per} \coloneqq q_k \cdot (\cos(\beta))^2 = 0.949 \frac{kN}{m^2}$	
m^2	
$q_{k.per} \coloneqq q_k \cdot (\cos(\beta))^2 = 0.949 \frac{kN}{2}$	195
m^z	
Safety factors of permanent load:	m^2 $q_k = 1$ $\frac{kN}{m^2}$ $\gamma_{g.sup} = 1.35$ $\gamma_{g.inf} = 1.0$
	rg.sup
$g_{d.inf} \coloneqq g_{k.per} \cdot \gamma_{g.inf} = 0.711 \; rac{m{kN}}{m{m}^2}$	
$g_{d.inf} = g_{k.per} + g_{g.inf} = 0.111$ m^2	Ó,
$g_{d.sup} \coloneqq g_{k.per} \cdot \gamma_{g.sup} = 0.96 \frac{kN}{m^2}$	
$m{m}$	
Safety factor of variable loads:	γ_q := 1.5
Combination factor for snow:	$\psi_s = 0.5$
Combination factor for wind:	$\psi_w^{rs} \coloneqq 0.6$
	$\gamma_{g.sup}$:= 1.35 $\gamma_{g.inf}$:= 1.0 $\gamma_{g.inf}$
	9

Height at the middle:
$h_{tot} = h + \frac{b}{2} \cdot \tan(\beta) = 10.047 \ m$
If the wind is parallel to the ridge:
$e_{par} \coloneqq min\left(b, 2 \cdot h_{tot}\right) = 17.3 \boldsymbol{m}$
If the wind is perpendicular to the ridge:
If the wind is perpendicular to the ridge: $e_{per} \coloneqq \min \left(l, 2 \cdot h_{tol} \right) = 20.094 \ m$ Length of trapezoidal sheets supported by n_p number of purlins: $s \coloneqq \frac{\frac{b}{2} + l_{p,h,1}}{\cos \left(\beta \right)} = 9.699 \ m$ Distance between two purlins: $l_p \coloneqq \frac{s}{n_p - 1} = 2.425 \ m$
Length of trapezoidal sheets supported by n_p number of purlins:
$\frac{b}{b} + l_{ab}$
$s := \frac{2}{(a)} = 9.699 m$
$\cos(\beta)$
Distance between two purlins:
$l_p := \frac{s}{n-1} = 2.425 \ m$
4
42.
3.
8
9,
3.
30.

Loads on the Trapezoidal Sheets:-Wind Sucking, crosswind:

$$w_{1.k.F.cs} = -1.46 \frac{kN}{m^2} \cdot 1 \ m = -1.46 \frac{kN}{m}$$
 $w_{1.k.G.cs} = -1.16 \frac{kN}{m^2} \cdot 1 \ m = -1.16 \frac{kN}{m}$

$$w_{1.k.G.cs} = -1.16 \frac{kN}{m^2} \cdot 1 \ m = -1.16 \frac{kN}{m}$$

$$\begin{aligned} & w_{1,k,F,c,s} = -1.46 \, \frac{kN}{m^2} \cdot 1 \, m = -1.46 \, \frac{kN}{m} \\ & w_{1,k,G,c,s} = -1.46 \, \frac{kN}{m^2} \cdot 1 \, m = -1.16 \, \frac{kN}{m} \\ & w_{1,k,H,c,s} = -0.66 \, \frac{kN}{m^2} \cdot 1 \, m = -0.66 \, \frac{kN}{m} \\ & w_{1,k,H,c,s} = -0.35 \, \frac{kN}{m^2} \cdot 1 \, m = -0.35 \, \frac{kN}{m} \\ & w_{1,k,L,c,s} = 0.02 \, \frac{kN}{m^2} \cdot 1 \, m = 0.02 \, \frac{kN}{m} \\ & w_{1,k,L,c,s} = 0.02 \, \frac{kN}{m^2} \cdot 1 \, m = 0.01 \, \frac{kN}{m} \\ & w_{1,k,H,c,p} = -0.32 \, \frac{kN}{m^2} \cdot 1 \, m = -0.32 \, \frac{kN}{m} \\ & w_{1,k,H,t,c,p} = -0.32 \, \frac{kN}{m^2} \cdot 1 \, m = -1.3 \, \frac{kN}{m} \\ & w_{1,k,H,t,s} = -1.30 \, \frac{kN}{m^2} \cdot 1 \, m = -1.19 \, \frac{kN}{m} \\ & w_{1,k,H,t,s} = -0.71 \, \frac{kN}{m^2} \cdot 1 \, m = -0.71 \, \frac{kN}{m} \\ & w_{1,k,H,t,s} = -0.71 \, \frac{kN}{m^2} \cdot 1 \, m = -0.71 \, \frac{kN}{m} \\ & w_{1,k,H,t,s} = -0.35 \, \frac{kN}{m^2} \cdot 1 \, m = -0.35 \, \frac{kN}{m} \\ & w_{1,k,H,t,s} = -0.35 \, \frac{kN}{m^2} \cdot 1 \, m = -0.35 \, \frac{kN}{m} \end{aligned}$$

$$w_{1.k.I.cs} = -0.35 \frac{kN}{m^2} \cdot 1 m = -0.35 \frac{kN}{m}$$

$$w_{1.k.J.cs} = 0.02 \frac{\mathbf{kN}}{\mathbf{m}^2} \cdot 1 \mathbf{m} = 0.02 \frac{\mathbf{kN}}{\mathbf{m}}$$

$$w_{1.k.FGH.cp} = 0.01 \frac{kN}{m^2} \cdot 1 m = 0.01 \frac{kN}{m}$$

$$w_{1.k.IJ.cp} = -0.32 \frac{kN}{m^2} \cdot 1 \ m = -0.32 \frac{kN}{m}$$

$$w_{1.k.F.ls} = -1.30 \frac{kN}{m^2} \cdot 1 m = -1.3 \frac{kN}{m}$$

$$w_{1.k.G.ls} = -1.19 \frac{kN}{m^2} \cdot 1 \ m = -1.19 \frac{kN}{m}$$

$$w_{1.k.H.ls} = -0.71 \frac{kN}{m^2} \cdot 1 \ m = -0.71 \frac{kN}{m}$$

$$w_{1.k.I.ls} = -0.35 \frac{kN}{m^2} \cdot 1 m = -0.35 \frac{kN}{m}$$

Total Design Load for the Trapezoidal Sheets in ULS: Crosswind Pressure, zones F,G,H: $P_{d.c.p.FGH} := \gamma_q \cdot q_{k.per} \cdot 1 \quad m + \gamma_q \cdot \psi_w \cdot w_{1.k.FGH.cp} = 1.433 \quad \frac{kN}{m}$ Crosswind Pressure, zones I,J: $P_{d.c.p.IJ} := \gamma_q \cdot q_{k.per} \cdot 1 \ m + \gamma_q \cdot \psi_w \cdot w_{1.k.IJ.cp} = 1.136 \ \frac{kN}{m}$ Crosswind Suction, zone F: $P_{d.c.s.F} := \gamma_q \cdot w_{1.k.F.cs} = -2.19 \frac{\mathbf{kN}}{\mathbf{m}}$ Crosswind Suction, zone H: $P_{d..c.s.H} := \gamma_q \cdot w_{1.k.H.cs} = -0.99 \frac{kN}{m}$ Crosswind Suction, zone I: $P_{d.c.s.I}\!\coloneqq\!\gamma_q\!\cdot\!w_{1.k.I.cs}\!=\!-0.525\;\frac{\mathbf{kN}}{\phantom{\mathbf{N}}}$ Crosswind Suction, zone J: $P_{d.c.s.J} := \gamma_q \cdot w_{1.k.J.cs} = 0.03 \frac{kN}{m}$ Longitudinal Suction, zone F: $P_{d.l.s.F} := \gamma_q \cdot w_{1.k.F.ls} = -1.95 \frac{kN}{m}$ Longitudinal Suction, zone G: $P_{d.l.s.G} := \gamma_q \cdot w_{1.k.G.ls} = -1.785 \frac{kN}{m}$ Longitudinal Suction, zone I: $P_{d.l.s.I} = \gamma_q \cdot w_{1.k.I.ls} = -0.525 \frac{kN}{m}$

Total Load for the Trapezoidal Sheets in SLS:
Crosswind Pressure, zones F,G,H:
$P_{k.c.p.FGH} := q_{k.per} \cdot 1 \ \mathbf{m} + \psi_w \cdot w_{1.k.FGH.cp} = 0.955 \ \frac{\mathbf{kN}}{\mathbf{m}}$
Crosswind Pressure, zones I,J:
$P_{k.c.p.IJ} = q_{k.per} \cdot 1 m + \psi_w \cdot w_{1.k.IJ.cp} = 0.757 \frac{kN}{m}$
Crosswind Suction, zone F:
$P_{k.c.s.F} := w_{1.k.F.cs} = -1.46 \frac{kN}{m}$
Crosswind Suction, zone H:
$P_{k.c.s.H} := w_{1.k.H.cs} = -0.66 \frac{kN}{m}$
$P_{k.c.s.H} \coloneqq w_{1.k.H.cs} = -0.66$ \boxed{m} Crosswind Suction, zone I: $P_{k.c.s.I} \coloneqq w_{1.k.I.cs} = -0.35 \frac{kN}{m}$ Crosswind Suction, zone J:
$P_{k.c.s.I} := w_{1.k.I.cs} = -0.35 \frac{kN}{m}$
Crosswind Suction, zone J:
$P_{k.c.s.J} := w_{1.k.J.cs} = 0.02 \frac{kN}{m}$
Longitudinal Suction, zone F:
Crosswind Suction, zone J: $P_{k.c.s.J} := w_{1.k.J.cs} = 0.02 \frac{kN}{m}$ Longitudinal Suction, zone F: $P_{k.l.s.F} := w_{1.k.F.ls} = -1.3 \frac{kN}{m}$ Longitudinal Suction, zone G: $P_{k.l.s.G} := w_{1.k.G.ls} = -1.19 \frac{kN}{m}$
Longitudinal Suction, zone G:
$P_{k.l.s.G} \coloneqq w_{1.k.G.ls} = -1.19 \; \frac{kN}{m}$
Longitudinal Suction, zone I:
$P_{k.l.s.G} := w_{1.k.G.ls} = -1.19 \frac{kN}{m}$ Longitudinal Suction, zone I: $P_{k.l.s.I} := w_{1.k.I.ls} = -0.35 \frac{kN}{m}$
30.

Loads on a Side Purlin:-

Wind Sucking (external), crosswind:

$$w_{10s.k.F.cs} = -0.96 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -1.164 \frac{kN}{m}$$

$$w_{10s.k.G.cs} = -0.69 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.837 \frac{kN}{m}$$

$$w_{10s.k.H.cs} = -0.34 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.412 \frac{kN}{m}$$

$$w_{10s,k,l,l,cs} \coloneqq -0.34 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.412 \frac{kN}{m}$$

$$w_{10s,k,l,cs} \coloneqq -0.35 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.424 \frac{kN}{m}$$

$$w_{10s,k,l,cs} \coloneqq 0.05 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.061 \frac{kN}{m}$$
Wind pressure (external), crosswind:
$$w_{10s,k,l,l,cp} \coloneqq 0.01 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.012 \frac{kN}{m}$$

$$w_{10s,k,l,l,cp} \coloneqq -0.32 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.388 \frac{kN}{m}$$
Wind Sucking, longitudinal:
$$w_{10s,k,l,l,s} \coloneqq -0.93 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -1.127 \frac{kN}{m}$$

$$w_{10s,k,l,l,s} \coloneqq -0.77 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.933 \frac{kN}{m}$$

$$w_{10s,k,l,l,s} \coloneqq -0.41 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.497 \frac{kN}{m}$$

$$w_{10s,k,l,l,s} \coloneqq -0.35 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.424 \frac{kN}{m}$$
Internal wind sucking:
$$w_{10s,k,int,s} \coloneqq -0.18 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.218 \frac{kN}{m}$$
Internal wind pressure:
$$w_{10s,k,int,p} \coloneqq 0.12 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.145 \frac{kN}{m}$$

$$w_{10s.k.J.cs} = 0.05 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.061 \frac{kN}{m}$$

$$w_{10s.k.FGH.cp} = 0.01 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.012 \frac{kN}{m}$$

$$w_{10s.k.IJ.cp} = -0.32 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.388 \frac{kN}{m}$$

$$w_{10s.k.F.ls} = -0.93 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -1.127 \frac{kN}{m}$$

$$w_{10s.k.G.ls} = -0.77 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.933 \frac{kN}{m}$$

$$w_{10s.k.H.ls} = -0.41 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.497 \frac{kN}{m}$$

$$w_{10s.k.I.ls} = -0.35 \frac{kN}{m^2} \cdot \frac{l_p}{2} = -0.424 \frac{kN}{m}$$

$$w_{10s.k.int.s} = -0.18 \frac{\mathbf{k}N}{\mathbf{m}^2} \cdot \frac{l_p}{2} = -0.218 \frac{\mathbf{k}N}{\mathbf{m}}$$

$$w_{10s.k.int.p} = 0.12 \frac{kN}{m^2} \cdot \frac{l_p}{2} = 0.145 \frac{kN}{m}$$

Total Design Load on a Side Purlin in ULS: Crosswind Pressure, zones F,G,H:

$$P_{d.c.p.FGH} \coloneqq g_{d.sup} \cdot \frac{l_p}{2} + \gamma_q \cdot q_{k.per} \cdot \frac{l_p}{2} + \gamma_q \cdot \psi_w \cdot w_{10s.k.FGH.cp} + \gamma_q \cdot \psi_w \cdot w_{10s.k.int.s} = 2.705 \ \frac{\mathbf{k}N}{\mathbf{m}}$$

Crosswind Pressure, zones I,J:

$$P_{d.c.p.IJ} \coloneqq g_{d.sup} \cdot \frac{l_p}{2} + \gamma_q \cdot q_{k.per} \cdot \frac{l_p}{2} + \gamma_q \cdot \psi_w \cdot w_{10s.k.IJ.cp} + \gamma_q \cdot \psi_w \cdot w_{10s.k.int.s} = 2.345 \ \frac{\mathbf{kN}}{\mathbf{m}}$$

Crosswind Suction, zone F:

$$P_{d.c.s.F} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{10s.k.F.cs} + \gamma_q \cdot w_{10s.k.int.p} = -0.665 \frac{kN}{m}$$

Crosswind Suction, zone G:
$$P_{d.c.s.G} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{10s.k.G.cs} + \gamma_q \cdot w_{10s.k.int.p} = -0.174 \ \frac{kN}{m}$$
 Crosswind Suction, zone I:
$$P_{d..c.s.I} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{10s.k.I.cs} + \gamma_q \cdot w_{10s.k.int.p} = 0.444 \ \frac{kN}{m}$$

$$P_{d..c.s.I} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{10s.k.I.cs} + \gamma_q \cdot w_{10s.k.int.p} = 0.444 \frac{\textit{kN}}{\textit{m}}$$

Longitudinal Suction, zone F:

$$P_{d.l.s.F} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{1.k.F.ls} + \gamma_q \cdot w_{10s.k.int.p} = -0.869 \frac{\mathbf{k}N}{\mathbf{m}}$$

Longitudinal Suction, zone H:

$$P_{d.l.s.H} \coloneqq g_{d.inf} \boldsymbol{\cdot} \frac{l_p}{2} + \gamma_q \boldsymbol{\cdot} w_{1.k.H.ls} + \gamma_q \boldsymbol{\cdot} w_{10s.k.int.p} = 0.016 \ \frac{\mathbf{kN}}{\mathbf{m}}$$

Longitudinal Suction, zone I:

$$P_{d.l.s.I} \coloneqq g_{d.inf} \cdot \frac{l_p}{2} + \gamma_q \cdot w_{1.k.I.ls} + \gamma_q \cdot w_{10s.k.int.p} = 0.556 \ \frac{\textit{kN}}{\textit{m}}$$

Total Load on a Side Purlin in SLS:

Crosswind Pressure, zones F,G,H:

$$P_{k.c.p.FGH} \coloneqq g_{k.per} \cdot \frac{l_p}{2} + q_{k.per} \cdot \frac{l_p}{2} + \psi_w \cdot w_{10s.k.FGH.cp} + \psi_w \cdot w_{10s.k.int.s} = 1.89 \frac{\textbf{kN}}{\textbf{m}}$$

Crosswind Pressure, zones I,J:

$$P_{k.c.p.IJ} \coloneqq g_{k.per} \cdot \frac{l_p}{2} + q_{k.per} \cdot \frac{l_p}{2} + \psi_w \cdot w_{10s.k.IJ.cp} + \psi_w \cdot w_{10s.k.int.s} = 1.65 \ \frac{\textbf{kN}}{\textbf{m}}$$

Crosswind Suction, zone F:

$$P_{k.c.s.F} \coloneqq g_{k.per} \cdot \frac{l_p}{2} + w_{10s.k.F.cs} + w_{10s.k.int.p} = -0.156 \ \frac{kN}{m}$$

Crosswind Suction, zone G

Crosswind Suction, zone G:
$$P_{k.c.s.G} \coloneqq g_{k.per} \cdot \frac{l_p}{2} + w_{10s.k.G.cs} + w_{10s.k.int.p} = 0.171 \frac{kN}{m}$$
 Crosswind Suction, zone I:

$$P_{k.c.s.I} := g_{k.per} \cdot \frac{l_p}{2} + w_{10s.k.I.cs} + w_{10s.k.int.p} = 0.583 \frac{kN}{m}$$

Longitudinal Suction, zone F:

$$P_{k.l.s.F} \coloneqq g_{k.per} \cdot \frac{l_p}{2} + w_{1.k.F.ls} + w_{10s.k.int.p} = -0.292 \frac{kN}{m}$$

Longitudinal Suction, zone H:

$$P_{k.l.s.H} \! \coloneqq \! g_{k.per} \! \cdot \! \frac{l_p}{2} \! + \! w_{1.k.H.ls} \! + \! w_{10s.k.int.p} \! = \! 0.298 \; \frac{\textbf{kN}}{\textbf{m}}$$

Longitudinal Suction, zone I:

$$P_{k.l.s.l} := g_{k.per} \cdot \frac{l_p}{2} + w_{1.k.l.ls} + w_{10s.k.int.p} = 0.658 \frac{kN}{m}$$

Loads on a Critical Intermediate Purlin:-Wind Sucking (external), crosswind:

$$w_{10i.k.FH,cs} \coloneqq -0.96 \ \frac{\textit{kN}}{\textit{m}^2} \left(\frac{l_p}{2} - \left(l_p - \frac{e_{per}}{10} \right) \right) + -0.34 \ \frac{\textit{kN}}{\textit{m}^2} \cdot \left(\frac{l_p}{2} + \left(l_p - \frac{e_{per}}{10} \right) \right) = -1.319 \ \frac{\textit{kN}}{\textit{m}}$$

$$w_{10i.k.GH.cs} \coloneqq -0.69 \; \frac{kN}{m^2} \cdot \left(\frac{l_p}{2} - \left(l_p - \frac{e_{per}}{10}\right)\right) + -0.34 \; \frac{kN}{m^2} \cdot \left(\frac{l_p}{2} + \left(l_p - \frac{e_{per}}{10}\right)\right) = -1.103 \; \frac{kN}{m}$$

$$w_{10i.k.I.cs} = -0.35 \frac{kN}{m^2} \cdot l_p = -0.849 \frac{kN}{m}$$

Wind pressure (external), crosswind

$$w_{10i.k.FGH.cp} = 0.01 \frac{kN}{m^2} \cdot l_p = 0.024 \frac{kN}{m}$$

$$w_{10i.k.IJ.cp} = -0.32 \frac{kN}{m^2} \cdot l_p = -0.776 \frac{kN}{m}$$

Wind Sucking, longitudinal:

$$w_{10i.k.F.ls} = -0.93 \frac{kN}{m^2} \cdot l_p = -2.255 \frac{kN}{m}$$

$$w_{10i.k.G.ls} = -0.77 \frac{kN}{m^2} \cdot l_p = -1.867 \frac{kN}{m}$$

$$w_{10i.k.H.ls} = -0.41 \frac{kN}{m^2} \cdot l_p = -0.994 \frac{kN}{m}$$

$$w_{10i.k.I.ls} = -0.35 \frac{kN}{m^2} \cdot l_p = -0.849 \frac{kN}{m}$$

Internal wind sucking:

$$w_{10i.k.int.s} = -0.18 \frac{kN}{m^2} \cdot l_p = -0.436 \frac{kN}{m}$$

Internal wind pressure:

$$w_{10i.k.int.p} = 0.12 \frac{kN}{m^2} \cdot l_p = 0.291 \frac{kN}{m}$$

Total Design Load on a Critical Intermediate Purlin in ULS: Crosswind Pressure, zones F,G,H: $P_{d.c.p.FGH} \coloneqq g_{d.sup} \cdot l_p + \gamma_q \cdot q_{k.per} \cdot l_p + \gamma_q \cdot \psi_w \cdot w_{10i.k.FGH.cp} + \gamma_q \cdot \psi_w \cdot w_{10i.k.int.s} = 5.41 \frac{\mathbf{kN}}{\mathbf{m}}$ Crosswind Pressure, zones I,J: $P_{d.c.p.IJ} := g_{d.sup} \cdot l_p + \gamma_q \cdot q_{k.per} \cdot l_p + \gamma_q \cdot \psi_w \cdot w_{10i.k.IJ.cp} + \gamma_q \cdot \psi_w \cdot w_{10i.k.int.s} = 4.69 \frac{\mathbf{kN}}{2}$ Crosswind Suction, zone FH: $P_{d.c.s.F} := g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.FH.cs} + \gamma_q \cdot w_{10i.k.int.p} = 0.183 \frac{kN}{m}$ Crosswind Suction, zone GH: $P_{d.c.s.G} \coloneqq g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.GH.cs} + \gamma_q \cdot w_{10i.k.int.p} = 0.506 \frac{kN}{m}$ Crosswind Suction, zone I: $P_{d..c.s.I} \coloneqq g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.I.cs} + \gamma_q \cdot w_{10i.k.int.p} = 0.888 \frac{\mathbf{kN}}{\mathbf{kN}}$ Longitudinal Suction, zone F: $P_{d.l.s.F} \coloneqq g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.F.ls} + \gamma_q \cdot w_{10i.k.int.p} = 1.221 \frac{\mathbf{kN}}{\mathbf{m}}$ Longitudinal Suction, zone H: $P_{d.l.s.H} \coloneqq g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.H.ls} + \gamma_q \cdot w_{10i.k.int.p} = 0.67$ Longitudinal Suction, zone I: $P_{d.l.s.I} \coloneqq g_{d.inf} \cdot l_p + \gamma_q \cdot w_{10i.k.I.ls} + \gamma_q \cdot w_{10i.k.int.p} = 0.888 \frac{kN}{l}$

Total Load on a Critical Intermediate Purlin in SLS:	
Crosswind Pressure, zones F,G,H:	_{2.770} kN
$P_{k.c.p.FGH} \coloneqq g_{k.per} \cdot l_p + q_{k.per} \cdot l_p + \psi_w \cdot w_{10i.k.FGH.cp} + \psi$	$\sigma_w \cdot w_{10i.k.int.s} = 3.179 {m}$
Crosswind Pressure, zones I,J:	1.37
$P_{d.c.p.IJ} \coloneqq g_{k.per} \cdot l_p + q_{k.per} \cdot l_p + \psi_w \cdot w_{10i.k.IJ.cp} + \psi_w \cdot w$	$v_{10i.k.int.s} = 3.299 \frac{kN}{m}$
Crosswind Suction, zone FH:	
$P_{d.c.s.F} := g_{k.per} \cdot l_p + w_{10i.k.FH.cs} + w_{10i.k.int.p} = 0.697$	$\frac{N}{n}$
Crosswind Suction, zone GH:	
$P_{d.c.s.G} = g_{k.per} \cdot l_p + w_{10i.k.GH.cs} + w_{10i.k.int.p} = 0.912 \frac{\mathbf{k}}{2}$	ž N
	n
Crosswind Suction, zone I:	
$P_{dc.s.I} = g_{k.per} \cdot l_p + w_{10i.k.I.cs} + w_{10i.k.int.p} = 1.167 \frac{m^2 \sqrt{m}}{m}$	
Longitudinal Suction, zone F:	V
$P_{d.l.s.F} := g_{k.per} \cdot l_p + w_{10i.k.F.ls} + w_{10i.k.int,p} = -0.239 \frac{m}{n}$	+
Longitudinal Suction, zone H:	
$P_{d.l.s.H} := g_{k.ver} \cdot l_p + w_{10i.k.H.ls} + w_{10i.k.int.v} = 1.021 \frac{kN}{l}$	-
Longitudinal Suction, zone I:	
$P_{d.l.s.I} := g_{k.per} \cdot l_p + w_{10i.k.I.ls} + w_{10i.k.int.p} = 1.167$	
	3
	C.
	80
	8
	3
	6.
	20.
	To .
	Dr.
	Q.
	3
	3

Lindab StructuralDesigner 1.5.1 - Noname

General Settings

Product Group: Roof Sheeting

Country: Magyarország

Structural Settings

Profile: TN-50 B

Default Static Model: Continuous

Flange Up: Narrow Extra Sidelap: 1

Parameters for Deflection Check

Limit for Span: L / 200 Limit for Cantilever: L / 150

Results ULS: 78% SLS: 38%

Geometry

No.	Supports						Hinges		
	Position	Туре	Width	L1	L2	Length	Thick. 1	Thick. 2	Position
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	0	Н	74	-	-	2425	0.5	-	
2	2425	С	74	-	-	2425	0.5	-	
3	4850	С	74	-	-	2425	0.5	-	
4	7275	С	74	-	-	2425	0.5	-	
5	9700	С	74	-	-	2425	0.5	-	
6	12125	Н	74	-	-				

Loads

No.	Type	Startp.	Endp.	Startint.	Endint.	Width	ULS/SLS
1	U			1.43			ULS
2	U			0.96			SLS

Calc. width: 1020 mm (Double)

Thicknesses [mm]

Strip #1		Strip #2		Strip #3		Strip #4	
Span	Thicknesses [mm]						
1	0.5	1	0.5	1	0.5	1	0.5
2	0.5	2	0.5	2	0.5	2	0.5
3	0.5	3	0.5	3	0.5	3	0.5
4	0.5	4	0.5	4	0.5	4	0.5

Strip #5	Strip #6							
Span	Thicknesses [mm]	Span	Thicknesses [mm]					
1	0.5	1	0.5					
2	0.5	2	0.5					
3	0.5	3	0.5					
4	0.5	4	0.5					

ULS = 78% SLS = 38%

	SLS		ULS cross-section utilization	
#	deflection	shear	bending	transverse
#	utilization	force	moment	force
	[%]	[%]	[%]	[%]
Support #1		5.8	0.0 3.2	62.2
Span #1	2.0 38.3	0.3 8.6	5.1 44.8	
Support #2		7.8 9.0	52.6 57.6	44.8
Span #2	0.0 8.8	0.4 7.4	2.7 46.5	
Support #3		7.0 7.4	39.1 43.2	38.6
Span #3	0.8 18.4	0.0 7.0	1.5 32.7	
Support #4		7.0 7.4	39.1 43.2	38.6
Span #4	0.0 8.8	0.4 7.4	2.7 46.5	
Support #5		7.8 9.0	52.6 57.6	44.8
Span #5	2.0 38.3	0.3 8.6	5.1 44.8	
Support #6		5.8	0.0 3.2	62.2

	ULS cross-section utilization				
#	NMV	NMR			
#	interaction	interaction			
	[%]	[%]			
Support #1	0.0 3.2				
Span #1	5.1 44.8				
Support #2	52.6 57.6	78.0 78.5			
Span #2	2.7 46.5				
Support #3	39.1 43.2	62.1 62.3			
Span #3	1.5 32.7				
Support #4	39.1 43.2	62.1 62.3			
Span #4	2.7 46.5				
Support #5	52.6 57.6	78.0 78.5			
Span #5	5.1 44.8				
Support #6	0.0 3.2				

ULS cross-section utilization - shear force [%]

ULS cross-section utilization - bending moment [%]

ULS cross-section utilization - transverse force [%]

ULS cross-section utilization - NMV interaction [%]

ULS cross-section utilization - NMR interaction [%]

Lindab StructuralDesigner 1.5.1 - Noname

General Settings

Product Group: Roof Sheeting

Country: Magyarország

Structural Settings

Profile: TN-50 B

Default Static Model: Continuous

Flange Up: Narrow Extra Sidelap: 1

Parameters for Deflection Check

Limit for Span: L / 200 Limit for Cantilever: L / 150

Results ULS: 78% SLS: 38%

Geometry

No.	Supports						Hinges		
	Position	Туре	Width	L1	L2	Length	Thick. 1	Thick. 2	Position
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	0	Н	74	-	-	2425	0.5	-	
2	2425	С	74	-	-	2425	0.5	-	
3	4850	С	74	-	-	2425	0.5	-	
4	7275	С	74	-	-	2425	0.5	-	
5	9700	С	74	-	-	2425	0.5	-	
6	12125	Н	74	-	-				

Loads

No.	Туре	Startp.	Endp.	Startint.	Endint.	Width	ULS/SLS
1	L	0	1730	-2.19	-2.19		ULS
2	L	1730	12125	-0.99	-0.99		ULS
3	L	0	1730	-1.46	-1.46		SLS
4	L	1730	12125	-0.66	-0.66		SLS

Calc. width: 1020 mm (Double)

Thicknesses [mm]

Strip #1		Strip #2		Strip #3		Strip #4	
Span	Thicknesses [mm]						
1	0.5	1	0.5	1	0.5	1	0.5
2	0.5	2	0.5	2	0.5	2	0.5
3	0.5	3	0.5	3	0.5	3	0.5
4	0.5	4	0.5	4	0.5	4	0.5

Strip #5	Strip #6								
Span	Thicknesses [mm]	Span	Thicknesses [mm]						
1	0.5	1	0.5						
2	0.5	2	0.5						
3	0.5	3	0.5						
4	0.5	4	0.5						

ULS = 78% SLS = 38%

	SLS		ULS cross-section utilization	
#	deflection	shear	bending	transverse
#	utilization	force	moment	force
	[%]	[%]	[%]	[%]
Support #1		5.8	0.0 3.2	62.2
Span #1	2.0 38.3	0.3 8.6	5.1 44.8	
Support #2		7.8 9.0	52.6 57.6	44.8
Span #2	0.0 8.8	0.4 7.4	2.7 46.5	
Support #3		7.0 7.4	39.1 43.2	38.6
Span #3	0.8 18.4	0.0 7.0	1.5 32.7	
Support #4		7.0 7.4	39.1 43.2	38.6
Span #4	0.0 8.8	0.4 7.4	2.7 46.5	
Support #5		7.8 9.0	52.6 57.6	44.8
Span #5	2.0 38.3	0.3 8.6	5.1 44.8	
Support #6		5.8	0.0 3.2	62.2

	ULS cross-sec	tion utilization
#	NMV	NMR
#	interaction	interaction
	[%]	[%]
Support #1	0.0 3.2	
Span #1	5.1 44.8	
Support #2	52.6 57.6	78.0 78.5
Span #2	2.7 46.5	
Support #3	39.1 43.2	62.1 62.3
Span #3	1.5 32.7	
Support #4	39.1 43.2	62.1 62.3
Span #4	2.7 46.5	
Support #5	52.6 57.6	78.0 78.5
Span #5	5.1 44.8	
Support #6	0.0 3.2	

ULS cross-section utilization - shear force [%]

ULS cross-section utilization - bending moment [%]

ULS cross-section utilization - transverse force [%]

ULS cross-section utilization - NMV interaction [%]

ULS cross-section utilization - NMR interaction [%]

Lindab StructuralDesigner 1.5.1 - Noname

General Settings

Product Group: Roof Sheeting

Country: Magyarország

Structural Settings

Profile: TN-50 B

Default Static Model: Continuous

Flange Up: Narrow Extra Sidelap: 1

Parameters for Deflection Check

Limit for Span: L / 200 Limit for Cantilever: L / 200

Results ULS: 67% SLS: 63%

Geometry

No.			Supports				Spans		Hinges
	Position	Туре	Width	L1	L2	Length	Thick. 1	Thick. 2	Position
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	0	Н	74	-	-	2425	0.5	-	
2	2425	С	74	-	-	2425	0.5	-	
3	4850	С	74	-	-	2425	0.5	-	
4	7275	С	74	-	-	2425	0.5	-	
5	9700	С	74	-	-	2425	0.5	-	
6	12125	Н	74	-	-				
						1			

Loads

No.	Туре	Startp.	Endp.	Startint.	Endint.	Width	ULS/SLS
1	L	0	5024	-1.95	-1.95		ULS
2	L	5024	12125	-1.79	-1.79		ULS
3	L	0	5024	-1.30	-1.30		SLS
4	L	5024	12125	-1.19	-1.19		SLS

Calc. width: 1020 mm (Double)

Thicknesses [mm]

Strip #1		Strip #2		Strip #3		Strip #4	
Span	Thicknesses [mm]						
1	0.5	1	0.5	1	0.5	1	0.5
2	0.5	2	0.5	2	0.5	2	0.5
3	0.5	3	0.5	3	0.5	3	0.5
4	0.5	4	0.5	4	0.5	4	0.5

Strip #5	Strip #6								
Span	Thicknesses [mm]	Span	Thicknesses [mm]						
1	0.5	1	0.5						
2	0.5	2	0.5						
3	0.5	3	0.5						
4	0.5	4	0.5						

ULS = 67% SLS = 63%

	SLS		ULS cross-section utilization	
#	deflection	shear	bending	transverse
#	utilization	force	moment	force
	[%]	[%]	[%]	[%]
Support #1		9.0	0.0 5.0	0.0
Span #1	4.4 62.5	0.6 9.9	0.5 67.4	
Support #2		6.2 10.1	57.8 63.4	0.0
Span #2	0.9 9.1	0.2 6.0	0.7 54.5	
Support #3		4.0 4.9	21.0 23.7	0.0
Span #3	0.8 15.6	0.2 5.1	1.2 24.1	
Support #4		4.9 5.3	28.7 31.7	0.0
Span #4	0.0 5.2	0.2 5.1	2.0 32.0	
Support #5		5.3 6.2	36.1 39.6	0.0
Span #5	1.4 26.6	0.2 6.0	3.2 30.7	
Support #6		4.0	0.0 2.2	0.0

	ULS cross-sec	ction utilization
#	NMV	NMR
#	interaction	interaction
	[%]	[%]
Support #1	0.0 5.0	
Span #1	0.5 67.4	
Support #2	57.8 63.4	57.8 59.9
Span #2	0.7 54.5	
Support #3	21.0 23.7	21.0 21.5
Span #3	1.2 24.1	
Support #4	28.7 31.7	28.7 28.9
Span #4	2.0 32.0	
Support #5	36.1 39.6	36.1 36.6
Span #5	3.2 30.7	
Support #6	0.0 2.2	

ULS cross-section utilization - shear force [%]

ULS cross-section utilization - bending moment [%]

ULS cross-section utilization - transverse force [%]

ULS cross-section utilization - NMV interaction [%]

ULS cross-section utilization - NMR interaction [%]

Lindab StructuralDesigner 1.5.1 - Noname

General Settings

Product Group: Z

Country: Magyarország

Structural Settings

Profile: Z200

Default Static Model: Overlapped

Orientation: Strong

Screws: 5,5

Restraint: Top Flange: Continuous/Bottom Flange: Continuous

Sheeting / Restraint CC: TN-50 B 0.5

Screw CC: 1 trough

Parameters for Deflection Check

Limit for Span: L / 200

Limit for Cantilever: L / 200

Results ULS: 14%

SLS: 0%

Geometry

No.			Supports				Spans		Hinges
	Position	Туре	Width	L1	L2	Length	Thick. 1	Thick. 2	Position
	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	0	Н	0	-	-	6000	2	-	
2	6000	0	0	600	1200	6000	2	-	
3	12000	0	0	600	600	6000	2	-	
4	18000	0	0	600	600	6000	2	-	
5	24000	0	0	600	600	6000	2	-	
6	30000	0	0	1200	600	6000	2	-	
7	36000	Н	0	-	-				
	1								

Loads

No.	Туре	Startp.	Endp.	Startint.	Endint.	Width	ULS/SLS
1	L	0	5024	-0.67	-0.67		ULS
2	L	5024	36000	-0.17	-0.17		ULS
3	L	0	5024	-0.16	-0.16		SLS
4	L	5024	36000	0.17	0.17		SLS

ULS = 14% SLS = 0%

	ULS cross-section utilization			
#	shear	bending	NMV	
	force	moment	interaction	
	[%]	[%]	[%]	
Support #1	3.9	0.0 0.0	0.0 0.0	
Span #1	0.3 4.3	0.4 14.1	0.4 14.1	
overlap end left	4.4	7.6	7.6	
Support #2	0.8 2.3	4.5 7.5	4.5 7.5	
overlap end right	1.6	8.9	8.9	
Span #2	0.0 1.4	0.0 7.3	0.0 7.3	
overlap end left	0.2	0.2	0.2	
Support #3	0.1 0.5	0.0 0.3	0.0 0.3	
overlap end right	0.8	0.8	0.8	
Span #3	0.1 1.2	0.2 2.9	0.2 2.9	
overlap end left	1.3	2.8	2.8	
Support #4	0.6 0.7	1.8 2.5	1.8 2.5	
overlap end right	1.1	3.1	3.1	
Span #4	0.1 1.0	0.2 2.4	0.2 2.4	
overlap end left	0.9	1.6	1.6	
Support #5	0.5 0.6	1.0 1.6	1.0 1.6	
overlap end right	0.9	1.6	1.6	
Span #5	0.0 0.8	0.0 1.2	0.0 1.2	
overlap end left	0.9	1.6	1.6	
Support #6	0.4 0.8	0.8 2.7	0.8 2.7	
overlap end right	1.3	3.1	3.1	
Span #6	0.0 1.2	0.1 3.1	0.1 3.1	
Support #7	0.9	0.0 0.0	0.0 0.0	

	ULS		
#	screw/bolt	screw/bolt	
	resistance	number	
	[kN]		
Support #1	-5.76	2	
Span #1			
overlap end left	5.76	2	
Support #2	-5.76	2	
overlap end right	-5.76	2	
Span #2			
overlap end left	5.76	2	
Support #3	-5.76	2	

	ULS		
#	screw/bolt	screw/bolt	
#	resistance	number	
	[kN]		
overlap end right	-5.76	2	
Span #3			
overlap end left	5.76	2	
Support #4	-5.76	2	
overlap end right	-5.76	2	
Span #4			
overlap end left	5.76	2	
Support #5	-5.76	2	
overlap end right	-5.76	2	
Span #5			
overlap end left	5.76	2	
Support #6	-5.76	2	
overlap end right	-5.76	2	
Span #6			
Support #7	-5.76	2	

ULS cross-section utilization - shear force [%]

Results (Single)

ULS cross-section utilization - bending moment [%]

ULS cross-section utilization - NMV interaction [%]

ULS - screw/bolt resistance [kN]

ULS - screw/bolt number

