COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 14

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

SUMMARY

Next Few Classes: Low-rank approximation, the SVD, and principal component analysis (PCA).

- Reduce d-dimensional data points to a smaller dimension m.
- Like JL, compression is linear, i.e., by applying a matrix.
- Chose matrix taking into account structure of dataset.
- Can give better compression than random projection.

Will be using a fair amount of linear algebra: orthogonal basis, column/row span, eigenvectors, etc,

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace $\mathcal V$ of $\mathbb R^d$.

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

Assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie in any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all \vec{x}_i, \vec{x}_j :

$$\|\mathbf{V}^T \vec{x}_i - \mathbf{V}^T \vec{x}_j\|_2 = \|\vec{x}_i - \vec{x}_j\|_2.$$

• $\mathbf{V}^T \in \mathbb{R}^{k \times d}$ is a linear embedding of $\vec{x}_1, \dots, \vec{x}_n$ into k dimensions with no distortion.

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

Proof:

• If $\vec{y} = \sum_i c_i \vec{v}_i$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\bullet ||\vec{y}||_2^2 = \vec{y}^T \vec{y}$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c})$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$
- $\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y}$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$
- $\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$
- $\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$
- But $\mathbf{V}^T\mathbf{V} = I$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$
- $\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$
- But $V^TV = I$ since

$$[\mathbf{V}^T \mathbf{V}]_{i,j} = \vec{v}_i^T \vec{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Claim: Let $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns. For all $\vec{y} \in \mathcal{V}$:

$$\|\mathbf{V}^T y\|_2 = \|y\|_2.$$

Proof:

- If $\vec{y} = \sum_i c_i \vec{v_i}$ then $\vec{y} = \mathbf{V}\vec{c}$ where $\vec{c}^T = (c_1, \dots, c_k)$
- $\|\vec{y}\|_2^2 = \vec{y}^T \vec{y} = (\mathbf{V}\vec{c})^T (\mathbf{V}\vec{c}) = \vec{c}^T \mathbf{V}^T \mathbf{V}\vec{c}$
- $\|\mathbf{V}^T \vec{y}\|_2^2 = (\mathbf{V}^T \vec{y})^T (\mathbf{V}^T \vec{y}) = \vec{y}^T \mathbf{V} \mathbf{V}^T \vec{y} = \vec{c}^T \mathbf{V}^T \mathbf{V} \mathbf{V}^T \mathbf{V} \vec{c}$
- But $V^TV = I$ since

$$[\mathbf{V}^T \mathbf{V}]_{i,j} = \vec{v}_i^T \vec{v}_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

• So $\|\vec{y}\|_2^2 = \vec{c}^T \vec{c} = \|\mathbf{V}^T \vec{y}\|_2^2$.

Now assume that data points $\vec{x_1}, \dots, \vec{x_n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Now assume that data points $\vec{x_1}, \dots, \vec{x_n}$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Now assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$.

Now assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1,\ldots,\vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V}\in\mathbb{R}^{d\times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T\vec{x}_i\in\mathbb{R}^k$ is still a good embedding for $x_i\in\mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

Now assume that data points $\vec{x}_1, \dots, \vec{x}_n$ lie close to any k-dimensional subspace \mathcal{V} of \mathbb{R}^d .

Letting $\vec{v}_1, \ldots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} and $\mathbf{V} \in \mathbb{R}^{d \times k}$ be the matrix with these vectors as its columns, $\mathbf{V}^T \vec{x}_i \in \mathbb{R}^k$ is still a good embedding for $x_i \in \mathbb{R}^d$. The key idea behind low-rank approximation and principal component analysis (PCA).

- How do we find \mathcal{V} and \mathbf{V} ?
- How good is the embedding?

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

Claim: $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Letting $\vec{v}_1, \dots, \vec{v}_k$ be an orthonormal basis for \mathcal{V} , can write any \vec{x}_i as:

$$\vec{x}_i = \mathbf{V}\vec{c}_i = c_{i,1} \cdot \vec{v}_1 + c_{i,2} \cdot \vec{v}_2 + \ldots + c_{i,k} \cdot \vec{v}_k.$$

• So $\vec{v}_1, \ldots, \vec{v}_k$ span the rows of **X** and thus rank(**X**) $\leq k$.

Claim: $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^d$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point $\vec{x_i}$ (row of **X**) can be written as $\vec{x_i} = \mathbf{V}\vec{c_i} = c_{i,1} \cdot \vec{v_1} + \ldots + c_{i,k} \cdot \vec{v_k}$.

 $\vec{x}_1, \ldots, \vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V} \in \mathbb{R}^{d \times k}$: matrix with columns $\vec{v}_1, \ldots, \vec{v}_k$.

Claim: $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point $\vec{x_i}$ (row of **X**) can be written as $\vec{x_i} = \mathbf{V}\vec{c_i} = c_{i,1} \cdot \vec{v_1} + \ldots + c_{i,k} \cdot \vec{v_k}$.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point $\vec{x_i}$ (row of **X**) can be written as $\vec{x_i} = \mathbf{V}\vec{c_i} = c_{i,1} \cdot \vec{v_1} + \ldots + c_{i,k} \cdot \vec{v_k}$.

• **X** can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: $\vec{x_1}, \dots, \vec{x_n} \in \mathbb{R}^d$ lie in a k-dimensional subspace $\mathcal{V} \Leftrightarrow$ the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ has rank $\leq k$.

• Every data point $\vec{x_i}$ (row of **X**) can be written as $\vec{x_i} = \mathbf{V}\vec{c_i} = c_{i,1} \cdot \vec{v_1} + \ldots + c_{i,k} \cdot \vec{v_k}$.

- **X** can be represented by $(n+d) \cdot k$ parameters vs. $n \cdot d$.
- The rows of X are spanned by k vectors: the columns of V ⇒ the columns of X are spanned by k vectors: the columns of C.

 $\vec{x}_1,\ldots,\vec{x}_n$: data points (in \mathbb{R}^d), \mathcal{V} : k-dimensional subspace of \mathbb{R}^d , $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^d$: orthogonal basis for \mathcal{V} . $\mathbf{V}\in\mathbb{R}^{d\times k}$: matrix with columns $\vec{v}_1,\ldots,\vec{v}_k$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

•
$$X = CV^T \implies XV = CV^TV$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

•
$$X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as $\mathbf{X} = \mathbf{C}\mathbf{V}^T$.

Exercise: What is this coefficient matrix **C**? **Hint:** Use that $V^TV = I$.

•
$$X = CV^T \implies XV = CV^TV \implies XV = C$$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = CV^T$$
.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_8 $v_$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie in a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be written as

$$X = XVV^T$$
.

• \mathbf{VV}^T is a projection matrix, which projects the rows of \mathbf{X} (the data points $\vec{x}_1, \dots, \vec{x}_n$) onto the subspace \mathcal{V} .

d-dimensional space v_1 v_2 v_3 v_4 v_4 v_5 v_6 v_7 v_8 $v_$

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$

d-dimensional space

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$

d-dimensional space v_1 v_2 v_2 v_3 v_4 v_4 v_4 v_5 v_6 v_8 $v_$

Note: XVV^T has rank k. It is a low-rank approximation of **X**.

Claim: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^T$$

d-dimensional space

Note: XVV^T has rank k. It is a low-rank approximation of X.

$$\mathbf{XVV^T} = \mathop{\arg\min}_{\mathbf{B} \text{ with rows in } \mathcal{V}} \|\mathbf{X} - \mathbf{B}\|_F^2 = \mathop{\arg\min}_{\mathbf{B} \text{ with rows in } \mathcal{V}} \sum_{i,j} (\mathbf{X}_{i,j} - \mathbf{B}_{i,j})^2.$$

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$\mathbf{X} \approx \mathbf{X} \mathbf{V} \mathbf{V}^{\mathsf{T}}.$$

This is the closest approximation to \boldsymbol{X} with rows in \mathcal{V} (i.e., in the column span of \boldsymbol{V}).

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to \boldsymbol{X} with rows in \mathcal{V} (i.e., in the column span of \boldsymbol{V}).

• Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i - (\mathbf{X}\mathbf{V}\mathbf{V}^T)_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\mathbf{V}^T\|_2 = \|[(\mathbf{X}\mathbf{V})_i - (\mathbf{X}\mathbf{V})_j]\|_2.$

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i (\mathbf{X}\mathbf{V}\mathbf{V}^T)_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i (\mathbf{X}\mathbf{V})_j]\mathbf{V}^T\|_2 = \|[(\mathbf{X}\mathbf{V})_i (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

So Far: If $\vec{x}_1, \dots, \vec{x}_n$ lie close to a k-dimensional subspace \mathcal{V} with orthonormal basis $\mathbf{V} \in \mathbb{R}^{d \times k}$, the data matrix can be approximated as:

$$X \approx XVV^T$$
.

This is the closest approximation to X with rows in \mathcal{V} (i.e., in the column span of V).

- Letting $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i$, $(\mathbf{X}\mathbf{V}\mathbf{V}^T)_j$ be the i^{th} and j^{th} projected data points, $\|(\mathbf{X}\mathbf{V}\mathbf{V}^T)_i (\mathbf{X}\mathbf{V}\mathbf{V}^T)_j\|_2 = \|[(\mathbf{X}\mathbf{V})_i (\mathbf{X}\mathbf{V})_j]\mathbf{V}^T\|_2 = \|[(\mathbf{X}\mathbf{V})_i (\mathbf{X}\mathbf{V})_j]\|_2.$
- Can use $XV \in \mathbb{R}^{n \times k}$ as a compressed approximate data set.

Key question is how to find the subspace ${\cal V}$ and correspondingly ${f V}.$