ARvores-RA: Explorando Árvores com Realidade Aumentada

Aluno: Bruno Geisler Vigentas

Orientador: prof. Dalton S. dos Reis

Coorientador: prof. Mauricio Capobianco

Introdução

- Aulas de campo são uma maneiras de diversificar a aula.
- Levar para fora da aula o conteúdo estudado.
- Alunos compreendem o ecossistema, instruindo-se sobre a flora e fauna local.
- Descobrem novos ambientes, fazendo a observação e registro de imagens.
- Realidade Aumentada trás informações virtuais ao mundo real.
- Na educação pode enriquecer o material didático.
- Auxiliar o conhecimento de árvores, permitindo visualização de informações e modelo 3D da árvore a partir da digitalização das folhas da árvore.
- Amplia a possibilidade de interação dos alunos em suas saídas a campo.
- Facilita o conhecimento sobre árvores.

Objetivos

Objetivo Geral

 Disponibilizar um aplicativo para auxiliar a busca do conhecimento de árvores por intermédio da Realidade Aumentada.

Objetivos Específicos

- utilizar as folhas das árvores como marcadores para apresentação do conteúdo em Realidade Aumentada;
- II. testar diferentes estados das folhas como marcadores;
- III. analisar a eficácia do aplicativo com estudantes em aulas de campo.

Trabalho Correlato 1

- Plantarum Bortolon (2014)
- Cadastro e classificação de plantas
- Utiliza API Plantarum
- Aplicativo construído em Android com Java.
- Servidor construído com C#

Trabalho Correlato 2

- Gaia Oliveira e Prado (2018)
- Auxilia na compra de flores e plantas.
- Usa Realidade Aumentada para mostrar informações da planta.
- Utiliza marcadores para ancorar conteúdo da Realidade Aumentada.
- Construído na Unity com a SDK.
 Vuforia na linguagem C#.
- Informações sobre a planta armazenada no banco de dados.

Trabalho Correlato 3

- PlantSnap PlantSnap (2020)
- Identifica 620 mil espécies.
- Algoritmo de machine learning.
- Possibilita compartilhar suas fotos com outros.
- Interações com Realidade Aumentada.

Proposta: justificativa

- Não há um trabalho que faça o reconhecimento da espécie e disponibilize as informações com o uso da Realidade Aumentada ao mesmo tempo.
- Criar uma nova interação nas aulas de campo com o uso da Realidade aumentada ajudando os alunos a aprenderem mais sobre as espécies de árvores.

Proposta: requisitos

- **RF01** permitir ao usuário iniciar o *scan* a partir de um menu na tela inicial;
- RF02 permitir ao usuário utilizar a câmera do celular para realizar o reconhecimento da folha;
- RF03 o sistema irá renderizar um modelo 3D da árvore correspondente à folha;
- **RF04** o sistema irá exibir informações sobre a árvore à qual a folha pertence;
- RNF01 permitir ao usuário capturar uma foto do conteúdo sendo mostrado em sua tela e salvar em sua galeria;
- RNF02 utilizar a folha da árvore como marcador para ancoragem do conteúdo virtual;
- RNF03 utilizar o ambiente de desenvolvimento Unity;
- RNF04 utilizar a biblioteca OpenCV;
- RNF05 ser desenvolvido para plataforma Android;
- RNF06 utilizar o banco de dados SQLite.

Proposta: metodologia

		2021									
etapas / quinzenas	fe	fev.		mar.		abr.		mai.		jun.	
	1	2	1	2	1	2	1	2	1	2	
levantamento bibliográfico											
elicitação de requisitos											
seleção de espécies											
modelagem3D											
modelagem de diagramas											
carga banco de dados											
definição do método para reconhecimento da espécie											
desenvolvimento											
testes de requisitos											
teste do reconhecimento das imagens											
testes com usuários											

Revisão bibliográfica

Assunto	Referências Bibliográficas.			
Árvores	Lorenzi (1992), Lorenzi (1998) e Lorenzi (2009).			
Realidade Aumentada	Azuma (2001), Kirner <i>et al</i> . (2006), Schmalstieg e Höllerer (2016), Kirner e Siscoutto (2007).			
Visão Computacional	Maia (2010), Marengoni e Stringhini (2009), Queiroz e Gomes (2006).			

Questionamentos

