ETSI TS 126 102 V3.1.0 (2000-03)

Technical Specification

Universal Mobile Telecommunications System (UMTS);

Mandatory speech codec;

AMR speech codec;

Interface to lu and Uu

(3G TS 26.102 version 3.1.0 Release 1999)

Reference
RTS/TSGS-0426102UR1

Keywords

UMTS

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/

If you find errors in the present document, send your comment to: editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by the ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under www.etsi.org/key.

Contents

Forew	vord	4
1	Scope	5
2	References	5
3	Definitions and abbreviations	
3.1 3.2	Definitions	
4	General	6
5	RAB aspects	7
6	Iu Interface User Plane (RAN)	
6.1	Frame structure on the Iu UP transport protocol	
6.1.1 6.1.2	Initialisation	
6.2	Mapping of the bits	
6.3	Frame handlers	
6.3.1	Handling of frames from TC to Iu interface (downlink)	
6.3.1.1	· · · · · · · · · · · · · · · · · · ·	
6.3.1.2		
6.3.1.3	V 1	
6.3.1.4	Codec Mode Request	10
6.3.1.5	Optional internal 8 bits CRC	11
6.3.1.6	Mapping of Speech or Comfort Noise parameter bits	11
6.3.2	Handling of frames from Iu interface to TC (uplink)	11
6.3.2.1		11
6.3.2.2	√ 1	
6.3.2.3		11
6.3.2.4	1	
6.3.2.5	1	
6.3.2.6	Speech and Comfort noise parameter bits	12
7	Uu Interface User Plane (UE)	12
8	Other aspects	12
Anne	x A (informative): Change history	13

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document specifies the mapping of the AMR generic frame format (TS 26.101) to the Iu Interface (TS 25.415) and the Uu Interface.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.

[1] 3G TS 25.415: "Iu Interface CN-UTRAN User plane Protocols".

[2] 3G TS 26.101: "AMR Speech Codec, Frame structure".

[3] 3G TS 23.107: "QoS Concept and Architecture".

[Editor's note: To add references to the 3G TS 28.062 (TFO), GSM EFR, IS-641 and PDC 6,70.]

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document the following terms and definitions apply:

AMR Generic Frame Interface: this interface transports the AMR IF1 generic frame as defined in TS 26.101.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AAL2 ATM Adaptation Layer 2
ACS Active Codec Set
AMR Adaptive Multi-Rate
AS Access Stratum

ATM Asynchronous Transfer Mode

BFH Bad Frame Handling

CMR/CMC Codec Mode Request or Codec Mode Command

CMI Codec Mode Indication

CN Core Network

CDMA Code Division Multiple Access
DRC Downlink Rate Command
FDD Frequency Duplex Division

FQC Frame Quality Classification (IU Interface)
FQI Frame Quality Indication (AMR IF1)
GSM Global System for Mobile communications

ITU-T International Telecommunication Union – Telecommunication standardisation sector (former

CCITT)

PDC Personal Digital Communication
PLMN Public Land Mobile Network

RAN Radio Access Network
RAB Radio Access Bearer
RF Radio Frequency

RFC Rab sub Flow Combination

RFCI RFC Indicator RFCS RFC Set RX Receive

SCR Source Controlled Rate
SID Silence Insertion Descriptor

SMpSDU Support Mode for Predefined SDU sizes

SPD SPeech Decoder SPE SPeech Encoder TC Transcoder

TDD Time Duplex Division
TFO Tandem Free Operation
TrFO Transcoder Free Operation

TX Transmit

UE User Equipment (terminal)
URC Uplink Rate Command

4 General

The mapping of the Speech Codec parameters to the Iu interface specifies the frame structure of the speech data exchanged between the RNC and the TC in case of normal operation and Tandem Free Operation, respectively between RNC 1 and RNC 2 in case of Transcoder Free Operation. This mapping is independent from the radio interface in the sense that it has the same structure for both FDD and TDD modes of the UTRAN.

The mapping between the Speech Codec and the MAC layer within the UE is not an open interface and need not to be detailed.

5 RAB aspects

During the RAB Assignment procedure initiated by the CN to establish the RAB for AMR, the RAB parameters are defined. The AMR RAB is established with one or more RAB co-ordinated sub flows with predefined sizes and QoS parameters. In this way, each Transport Format Combination between sub flows corresponds to one AMR frame type. On the Iu interface, these RAB parameters define the corresponding parameters regarding the transport of AMR frames.

Some of the QoS parameters in the RAB assignment procedure are determined from the Bearer Capability Information Element used at call set up. These QoS parameters as defined in [3], can be set as follows:

Table 5-1: Example of mapping of BC IE into QoS parameters for UMTS AMR

RAB service attribute	RAB service attribute value			Comments		
Traffic Class	Conversational					
RAB Asymmetry Indicator	Symmetric, bidirectional			Symmetric RABs are used for uplink and downlink		
Maximum bit rate	12.2 / 10.2 / 7.95 / 7.4 / 6.7 / 5.9 / 5.15 / 4.75 kbit/s			This value depends on the highest mode rate in the RFCS		
Guaranteed bit rate	kbit/s			One of the values is chosen, depending on the lowest rate controllable SDU format (note 2)		
Delivery Order	Yes			(note 1)		
Maximum SDU size	95 bits			Maximum size of payload field in IU UP, according to the highest mode rate in the RFCS		
Traffic Handling Priority	Not applicable			Parameter not applicable for the conversational traffic class. (note 1)		
Source statistics descriptor	Speech			(note 1)		
SDU Parameters	RAB subflow 1 (Class A bits)	RAB subflow 2 (Class B bits)	RAB subflow 3 (Class C bits)	The number of SDU, their number of RAB subflow and their relative subflow size is subject to operator tuning (note 3)		
SDU error ratio	7 * 10 ⁻³	-	-	(note 3)		
Residual bit error ratio	10 ⁻⁶	10 ⁻³	5 * 10 ⁻³	(note 3 – applicable for every subflow)		
Delivery of erroneous SDUs	yes	-	-	Class A bits are delivered with error indication; Class B and C bits are delivered without any error indication.		
SDU format information 1-9				(note 4)		
Subflow SDU size 1-9	(note 5)	(note 5)	(note 5)			
SDU format information 10				(note 4)		
Subflow SDU size 10	0	0	0	(note 6)		

- NOTE 1: These parameters apply to all UMTS speech codec types.
- NOTE 2: The guaranteed bit rate depends on the periodicity and the lowest rate controllable SDU size.
- NOTE 3: These parameters are subject to operator tuning.
- NOTE 4: SDU format information has to be specified for each AMR core frame type (i.e. with speech bits and comfort noise bits) included in the RFCS as defined in [2].
- NOTE 5: The subflow SDU size corresponding to an AMR core frame type indicates the number of bits in the class A, class B and class C fields.
- NOTE 6: SDU size = 0 is needed for Initial Time Alignment.

The conversational traffic class shall be used for the speech service, which is identified by the ITC parameter of the bearer capability information element in the SETUP message. This shall apply for all UMTS speech codec types. The parameters traffic class, transfer delay, traffic handling priority and source statistics descriptor shall be the same for all speech codec types applicable for UMTS.

6 Iu Interface User Plane (RAN)

The data structure exchanged on the Iu interface are symmetrical, i.e. the structure of the uplink data frames is identical to that of the downlink data frames. This facilitates Tandem Free Operation and Transcoder Free Operation.

6.1 Frame structure on the lu UP transport protocol

6.1.1 Initialisation

At the initialisation of the SMpSDU mode of operation, several parameters are set by the CN. The initialisation procedure is described in TS 25.415 [1].

- RFCS:

In the case of AMR, the RFCS corresponds to the Active Codec Set (ACS) authorised in the communication. Annex A of [1] gives an illustration of the usage of RFCI for AMR speech RAB. RFCS used in downlink may differ from that in uplink.

- Delivery of erroneous SDUs:

This parameter shall be set to YES. Erroneous speech frames may be used to assist the error concealment procedures.

[Editor's note: This might need to be specified in another specifications] PDU type.

The PDU type 0 shall be used for the transport of AMR data.

[Editor's note: This might need to be specified in another specifications].

6.1.2 Time Alignment Procedure

TC should adjust timing of speech data transmission according to time alignment frame sent by RNC.

TC should get into Initial Time Alignment state immediately after Iu initialisation. At Initial Time Alignment state, TC shall send Iu userplane PDU type 0 frame with SDU size = 0 to RNC until speech data transmission starts.

Time alignment procedure shall be dismissed in case of TFO.

6.2 Mapping of the bits

The mapping of the bits between the generic AMR frames and the PDU is the same for both uplink and downlink frames.

The following table gives the correspondence of the bit fields between the generic AMR frames at the TC interface and the PDU exchanged with the Iu transport layer.

Table 6-1: Mapping of generic AMR frames onto lu PDUs

PDU field	Corresponding AMR generic frame	Comment
	field	
PDU Type	N/A	Type 0
Frame Number	N/A	
FQC	Frame Quality Indicator	
RFCI	AMR Frame Type	
Payload CRC	N/A	
Header CRC	N/A	
Payload Fields (N Sub Flows)	Class A or SID payload	
	Class B	
	Class C	1
SDU #1	Most important speech bits come first	Mandatory
SDU #2	Next bits follow	Optional
	1	
	 	Optional
SDU #N	Least important speech bits	:Optional

The number of RAB sub flows, their corresponding sizes, and their attributes such as "Delivery of erroneous SDUs" shall be defined at the RAB establishment and signalled in the RANAP RAB establishment request, as proposed in clause 5. The number of RAB sub flows are corresponding to the desired bit protection classes. The total number of bits in all sub flows for one RFC shall correspond to the total number given in TS 26.101 for the corresponding Codec Mode respectively Frame Type.

Guidance for setting the number of bits in each RAB Sub Flow according to their relative subjective importance is given in TS 26.101.

The following two tables are examples of mapping of RAB sub flows.

Table 6-2 gives three examples of sub flow mapping.

The RFCI definition is given in order of increasing SDU sizes.

- Example 1 describes Codec Type UMTS_AMR, with all eight codec modes foreseen in the Active Codec Set (ACS) and provision for Source Controlled Rate operation (SCR). In this example, Blind Transport Format Detection is supported and the sub flow mapping follows the 26.101 class division guidance.
- Example 2 describes Codec Type GSM_EFR, with one codec mode, including SCR.
- Example 3 describes Codec Type GSM_AMR, including AMR SCR

Table 6-2: Example for AMR with SCR and three sub flows, according to subjective class division indication of TS 26.101

UMTS_AMR	GSM_EFR	GSM_AMR	RAB sub-flows			Total size of		
RFCI Example 1	RFCI Example 2	RFCI Example 3	RAB sub- Flow 1 (Optional)	RAB sub- Flow 2 (Optional)	RAB sub- Flow 3 (Optional)	bits/RAB sub- flows combination (Mandatory)	Source rate	
2		2	42	53	0	95	AMR 4.75 kbps	
3			49	54	0	103	AMR 5.15 kbps	
4		3	55	63	0	118	AMR 5.9 kbps	
5			58	76	0	134	AMR 6.7 kbps	
6		4	61	87	0	148	AMR 7.4 kbps	
7			75	84	0	159	AMR 7.95 kbps	
8		5	65	99	40	204	AMR 10.2 kbps	
9	2		81	103	60	244	AMR 12.2 kbps	
1		1	39	0	0	39	AMR SID	
	1		47	0	0	47	GSM EFR SID	
0	0	0	0	0	0	0	NO DATA	

Table 6-3 gives one example of sub flow mapping that supports Equal Error Protection.

The RFCI definition is given in order of increasing SDU sizes.

- Example 4 describes Codec Type PDC_EFR and the corresponding Source Controlled Rate operation (SCR).

Table 6-3: Example of SDU sizes for PDC_EFR with SCR and Equal Error Protection

PDC_EFR	RAB sub-flow	Total size of	
RFCI Example 4	RAB sub- Flow 1 (Mandatory)	bits/RAB sub-flows combination (Mandatory)	Source rate
	95	95	AMR 4.75kbps
	103	103	AMR 5.15kbps
	118	118	AMR 5.9kbps
2	134	134	AMR 6.7kbps
	148	148	AMR 7.4kbps
	159	159	AMR 7.95kbps
	204	204	AMR 10.2kbps
	244	244	AMR 12.2kbps
	39	39	AMR SID
	47	47	GSM EFR SID
	42	42	IS-641 SID
1	41	41	PDC 6,7 SID
0	0	0	NO DATA

6.3 Frame handlers

Iu PDU Frame handling functions are described in TS 25.415. This sections describes the mandatory frame handling functions at the AMR Generic frame interface.

6.3.1 Handling of frames from TC to lu interface (downlink)

The frames from the TC in AMR generic frame format are mapped onto the Iu PDU as follows.

6.3.1.1 Frame Quality Indicator

The Frame Quality Indicator from the TC, respectively from the distant TFO partner, is directly mapped to the Frame Quality Classification of the Iu frame according to Table 6-4.

Table 6-4: FQI AMR to FQC lu PDU mapping

FQI AMR	FQC PDU	FQC value
GOOD	GOOD	0
BAD	BAD	1

6.3.1.2 Frame Type

The received Frame Type Index is mapped onto the RFCI thanks to the assigned RFCS table: the correspondence between Codec Mode, Frame Type Index and RFCI is defined at RAB assignment.

6.3.1.3 Codec Mode Indication

The Codec Mode Indication is not used because it is redundant to the Frame Type.

6.3.1.4 Codec Mode Request

Codec Mode Request (CMR) in downlink direction is forwarded to the rate control procedure if it changes.

6.3.1.5 Optional internal 8 bits CRC

The internal AMR CRC is not used on the Iu interface.

6.3.1.6 Mapping of Speech or Comfort Noise parameter bits

Let define the N payload fields of the N Sub flows for RFCI j as follow:

- $U_i(k)$ shall be the bits in Sub Flow i, for k = 1 to Mi
- M_i shall be the size of Sub Flow i, for i = 1 to N
- S(k) shall be the bits of the speech or comfort noise parameters of the corresponding Frame Type j in decreasing subjective importance.

Then the following mapping in pseudo code applies:

$$\begin{array}{lll} U_1(k) & = & S(k) & & \text{with } k = 1, & \dots M_1 \\ \\ U_2(k) & = & S(k+M_1) & & \text{with } k = 1, & \dots M_2 \\ \\ U_3(k) & = & S(k+M_2) & & \text{with } k = 1, & \dots M_3 \\ \\ \dots & & & & & & & & & \\ U_N(k) & = & S(k+M_{N-1}) & & \text{with } k = 1 & \dots M_N \end{array}$$

6.3.2 Handling of frames from lu interface to TC (uplink)

The uplink Iu frames are mapped onto generic AMR frames as follow.

6.3.2.1 Frame Quality Indicator

At reception of Iu PDU the Iu frame handler function set the Frame Quality Classification according to the received FQC, Header-CRC check, and Payload-CRC check (see 25.415). AMR Frame Type and Frame Quality Indicator are determined according to the following table:

Table 6-5: FQC lu PDU type 0 to AMR FQI and AMR Frame Type mapping

FQC	Resulting FQI	resulting Frame Type
GOOD	GOOD	from RFCI
BAD	BAD	NO_DATA
BAD Radio	BAD	from RFCI
Reserved	Reserved	Reserved

6.3.2.2 Frame Type

The received RFCI is mapped onto the Frame Type thanks to the RFCS table. I.e. the Type_Index is set according to the AMR mode.

6.3.2.3 Codec Mode Indication

The Codec Mode Indication is not used because it is redundant to the Frame Type.

6.3.2.4 Codec Mode Request

The received Downlink Rate Control command is mapped onto the Codec Mode Request. In case a new DRC is received it is mapped into the corresponding CMR AMR generic frame format. It is remembered by the TC until the next DRC is received. In each new frame that is sent to the AMR Codec, the stored CMR is resent, in order to control the Codec Mode for the downlink direction.

6.3.2.5 Optional internal 8 bits CRC

The internal AMR CRC is not used on the Iu interface.

6.3.2.6 Speech and Comfort noise parameter bits

The speech and Comfort noise parameter bits are mapped from the sub flows to the payload of the generic AMR frames with the reverse function of subclause 6.3.1.6.

7 Uu Interface User Plane (UE)

The interface between the UE AMR speech codec (see TS 26.101) and the Radio Access Network is an internal UE interface and is not detailed. The mapping is corresponding to the mapping described in clause 6 for the IU interface.

8 Other aspects

[ffs]

Annex A (informative): Change history

	Change history							
Date	TSG#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	
1999-12	6	SP-99563			Approved at TSG-SA#6 Plenary		3.0.0	
2000-03	7	SP-000025	001	3	Introduction of QoS parameters used at RAB assignment	3.0.0	3.1.0	
2000-03	7	SP-000025	002		Introduction of different RFCS set on lu User Plane	3.0.0	3.1.0	
2000-03	7	SP-000025	003	2	Introduction of Time Alignment	3.0.0	3.1.0	

History

Document history					
V3.1.0	March 2000	Publication			