Report – Task C.5: Machine Learning 2 Title

COS30018 – Intelligent Systems Task C.5 – Machine Learning 2 Anh Vu Le – 104653505

Semester 2, 2025

1. Introduction

This task extends the baseline stock predictor (Task C.4, univariate single-step) to include:

- 1. **Multistep prediction** forecasting multiple future days.
- 2. Multivariate prediction using multiple features.
- 3. Combined prediction multivariate + multistep.

2. Summary of Effort

- **Data processing (data_processing.py):** enabled multi-feature input, scaling, caching, NaN handling, flexible splitting.
- Advanced prediction (task5_adv_prediction.py): implemented multistep, multivariate, and combined models using LSTM.
- **Result generation:** predictions logged and visualized for qualitative and quantitative assessment.

3. Results Summary

Figure 1 – Training History (Loss & MAE)

- The training loss/MAE (blue) drops quickly and converges near zero → model fits training data well.
- The validation loss/MAE (orange) also decreases but stabilises at a higher value
 → model generalises reasonably but has a performance gap.
- This shows **no severe overfitting**, but the model has limitations on unseen data.

Figure 2 – Multistep Prediction (Univariate, Closing Price)

- Blue = actual price, Red = predicted price.
- The model captures the overall upward trend, but predictions lag behind actual spikes.
- Short-term predictions are close, but longer horizons flatten → error increases as step horizon increases.

Figure 3 – Model Summary (Architecture)

- Two Bidirectional LSTM layers (256 + 128 units) with dropout for regularization.
- Final dense layer outputs 1 value (closing price).
- Total parameters: ~227k trainable.
- This architecture balances sequence modelling power and overfitting control (via dropout).

Model Summary:

Model: "sequential_1"

Layer (type)	Output Shape	Param #
<pre>bidirectional_2 (Bidirectional)</pre>	(None, 60, 256)	102,912
dropout_2 (Dropout)	(None, 60, 256)	0
<pre>bidirectional_3 (Bidirectional)</pre>	(None, 128)	123,648
dropout_3 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 1)	129

Total params: 226,689 (885.50 KB)

Trainable params: 226,689 (885.50 KB)

Non-trainable params: 0 (0.00 B)

4. Conclusion

- **Multistep forecasting** broadens prediction capability but introduces higher error at longer horizons.
- **Multivariate inputs** improve short-term accuracy by leveraging correlations between features.
- **Multivariate + multistep** balances both, providing more realistic long-term forecasts while still capturing trends.
- All requirements of Task C.5 were implemented and validated with quantitative metrics and visual evidence.