Problem Set 3 solutions

Additional Problem 1. Consider an economy with two goods, good l and a numeraire good, 2 consumers, i = 1, 2, and 2 firms, j = 1, 2. Let $x_i \in \mathbb{R}_+$ denote consumer i's consumption of good l, and $m_i \in \mathbb{R}$ her consumption of the numeraire. The utility function of each consumer i is given by:

$$u_i(m_i, x_i) = m_i + 1 - \frac{(1 - x_i)^2}{2}$$
, if $0 \le x_i \le 1$
= $m_i + 1$, if $x_i > 1$.

Each firm *j* produces $q_i \ge 0$ units of good *l* using amount $c_i(q_i)$ of the numeraire where

$$c_i(q_i) = (q_i)^2.$$

Each consumer has an initial endowment of 50 units of the numeraire and owns $\frac{1}{2}$ share of each firm.

- (a) Derive the competitive equilibrium.
- (b) Write down the set of all the efficient allocations in this economy.

Answer.

(a) Let p > 0 be the price of good l. We first derive the demand curve for good l. Note that consuming more than 1 unit of good l cannot be utility-maximizing for each consumer. Each consumer i's marginal utility from good l is $1 - x_i$ when $x_i \in [0, 1]$. Hence his demand is

$$x_i(p) = 1 - p \text{ if } p \in (0, 1].$$

The aggregate demand for good l is

$$x(p) = 2 - 2p \text{ if } p \in (0, 1].$$

Next we find the supply. Profit maximization implies that each firm's marginal cost is equal to the price (corner solution is not possible since $c'_1(0) = c'_2(0) = 0 < p$). That

is, $p = 2q_1 = 2q_2$. Hence

$$q_1(p) = q_2(p) = \frac{p}{2}$$

and the aggregate supply for good l is

$$q(p) = p$$
.

Equate supply and demand for good *l*:

$$2 - 2p = p \Rightarrow p^* = \frac{2}{3}.$$

Given the competitive equilibrium price p^* , we have $x_i^* = \frac{1}{3}$ for each i, and $q_j^* = \frac{1}{3}$ for each j.

Each firm's profit is $\frac{2}{3} \cdot \frac{1}{3} - (\frac{1}{3})^2 = \frac{1}{9}$. Then each consumer i receives a profit of $\frac{1}{9}$ from the two firms. His expenditure on good l is $\frac{2}{9}$. Since i is also endowed with 50 units of the numeraire, we have $m_i^* = 50 + \frac{1}{9} - \frac{2}{9} = 49\frac{8}{9}$.

Therefore, the competitive equilibrium consists of the allocation $(x_1^* = \frac{1}{3}, x_2^* = \frac{1}{3}, q_1^* = \frac{1}{3}, q_2^* = \frac{1}{3}, m_1^* = 49\frac{8}{9}, m_2^* = 49\frac{8}{9})$ and the price $p^* = \frac{2}{3}$.

(b) Given that $m_1^* + m_2^* = 99\frac{7}{9}$, the set of efficient allocations is

$$\{(x_1, x_2, q_1, q_2, m_1, m_2) : x_1 = x_2 = q_1 = q_2 = \frac{1}{3}, m_1 + m_2 = 99\frac{7}{9}\}.$$

Additional Problem 2.

(a) Suppose that the preference relation \succeq on the set of lotteries \mathcal{L} is complete. Show that \succeq satisfies the independence axiom if and only if the following property holds:

For all $L_1, L_2, L_3 \in \mathcal{L}$ and $\alpha \in (0, 1)$, $L_1 \succ L_2$ if and only if $\alpha L_1 + (1 - \alpha)L_3 \succ \alpha L_2 + (1 - \alpha)L_3$.

(b) Show that if \succeq on $\mathscr L$ satisfies the independence axiom, then the following property holds:

For all $L_1, L_2, L_3 \in \mathcal{L}$ and $\alpha \in (0, 1)$, $L_1 \sim L_2$ if and only if $\alpha L_1 + (1 - \alpha)L_3 \sim \alpha L_2 + (1 - \alpha)L_3$.

Answer.

(a). "only if" part. Consider any $L_1, L_2, L_3 \in \mathcal{L}$ and $\alpha \in (0, 1)$, we have

$$\begin{split} L_1 \not\succ L_2 & \iff L_2 \succeq L_1 \\ & \iff \alpha L_2 + (1-\alpha)L_3 \succeq \alpha L_1 + (1-\alpha)L_3 \\ & \iff \alpha L_1 + (1-\alpha)L_3 \not\succ \alpha L_2 + (1-\alpha)L_3 \end{split}$$

where the second equivalence relation follows from the independence axiom, the first and the third equivalence relation follow from the completeness of \succeq as well as the definition of \succ .

Then, clearly,

$$L_1 \not\succ L_2 \Leftrightarrow \alpha L_1 + (1-\alpha)L_3 \not\succ \alpha L_2 + (1-\alpha)L_3$$

implies

$$L_1 \succ L_2 \Leftrightarrow \alpha L_1 + (1 - \alpha)L_3 \succ \alpha L_2 + (1 - \alpha)L_3$$

"if" part. The proof is similar. Consider any $L_1, L_2, L_3 \in \mathcal{L}$ and $\alpha \in (0, 1)$, we have

$$\begin{split} L_1 \not\succeq L_2 & \iff L_2 \succ L_1 \\ & \iff \alpha L_2 + (1-\alpha)L_3 \succ \alpha L_1 + (1-\alpha)L_3 \\ & \iff \alpha L_1 + (1-\alpha)L_3 \not\succeq \alpha L_2 + (1-\alpha)L_3 \end{split}$$

where the second equivalence relation follows from the property stated in part (a), the first and the third equivalence relation follow from the completeness of \succeq as well as the definition of \succ .

Then, clearly,

$$L_1 \not\succeq L_2 \Leftrightarrow \alpha L_1 + (1-\alpha)L_3 \not\succeq \alpha L_2 + (1-\alpha)L_3$$

implies

$$L_1 \succeq L_2 \Longleftrightarrow \alpha L_1 + (1-\alpha)L_3 \succeq \alpha L_2 + (1-\alpha)L_3$$

(b). If $L_1 \sim L_2$, then $L_1 \succeq L_2$ and $L_2 \succeq L_1$. By the independence axiom,

$$L_1 \succeq L_2 \Rightarrow \alpha L_1 + (1 - \alpha)L_3 \succeq \alpha L_2 + (1 - \alpha)L_3$$

$$L_2 \succeq L_1 \Rightarrow \alpha L_2 + (1 - \alpha)L_3 \succeq \alpha L_1 + (1 - \alpha)L_3$$

Therefore, $\alpha L_1 + (1 - \alpha)L_3 \sim \alpha L_2 + (1 - \alpha)L_3$.

On the other hand, if $\alpha L_1 + (1-\alpha)L_3 \sim \alpha L_2 + (1-\alpha)L_3$, then $\alpha L_1 + (1-\alpha)L_3 \succeq \alpha L_2 + (1-\alpha)L_3$ and $\alpha L_2 + (1-\alpha)L_3 \succeq \alpha L_1 + (1-\alpha)L_3$. By the independence axiom,

$$\alpha L_1 + (1 - \alpha)L_3 \succeq \alpha L_2 + (1 - \alpha)L_3 \Rightarrow L_1 \succeq L_2$$

$$\alpha L_2 + (1 - \alpha)L_3 \succeq \alpha L_1 + (1 - \alpha)L_3 \Rightarrow L_2 \succeq L_1$$

Therefore $L_1 \sim L_2$.