

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE20MA151

END SEMESTER ASSESSMENT (ESA), B.TECH. II- SEMESTER- JULY- 2021

UE20MA151- ENGINEERING MATHEMATICS-II

	Tim	ne: 3	Hrs Answer All Questions Max Marks: 10	0					
	1.	a)	Evaluate $\int_0^{\frac{a}{\sqrt{2}}} \int_0^x x dy dx + \int_{\frac{a}{\sqrt{2}}}^a \int_0^{\sqrt{a^2 - x^2}} x dy dx$ by changing the order of integration. Also	6					
		1-)	sketch the region of integration. Find the mass of the lemniscate $(x^2 + y^2)^2 = x^2 - y^2$, with density function given by	7					
		b)	$\frac{1}{(1+x^2+y^2)^2}$						
		c)	The temperature at a point (x, y, z) of a solid E bounded by the planes $x = 0, y = 0, z = 0$	7					
			and the plane $x + y + z = 1$ is $\frac{1}{(1+x+y+z)^3}$ degree Celsius. Find the average temperature over the solid.						
	2.	a)	Find the Directional derivative of \vec{V}^2 , where $\vec{V} = xy^2i + zy^2j + xz^2k$ at the point (2,0,3) in the direction of the outward normal to the sphere $x^2 + y^2 + z^2 = 14$ at the point (3,2,1).	7					
		b)	bounding curve of the hemisphere $x^2 + y^2 + z^2 = 9$, $z > 0$, oriented in a positive direction						
		c)	Use Gauss's Divergence theorem to evaluate $\iint \vec{v} \cdot \hat{n} dA$, where $\vec{v} = x^2zi + yj - xz^2k$ over the boundary of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4y$.	7					
	3.	a)	Find Laplace transform of the periodic function whose graph is given below.	6					
		b)	Find $L\{coshat sinbt + 2^t + sin2t cos3t + t^{3/2}\}$.	7					
		c)	Find $L\{\int_0^t \frac{\sin t}{t} + \delta(t-a)u(t-a) + t e^{-t}\sin 2t\}$.	7					
	4.	a)	Find $L^{-1}\left\{\frac{1-3s}{s^2+8s+21} + \frac{s^2-1}{(s^2+1)^2} + \cot^{-1}s\right\}$	6					
		b)	Apply Convolution theorem to evaluate the inverse Laplace transform of $L^{-1}\left\{\frac{s^2}{s^4+4a^4}\right\}$.	7					
		c)	The deflection of a beam of length L, clamped, horizontally at both ends and loaded at $x =$	7					
			$\frac{L}{4}$ by a weight W is given by EI $\frac{d^4y}{dx^4} = W \delta(x - \frac{L}{4})$. Find the deflection curve, given that						
			$y = \frac{dy}{dx} = 0$ when $x = 0$ and $x = L$.						
	5.	a)	Find the complex form of the Fourier Series of the function $f(x) = e^x$ in $-\pi \le x \le \pi$	6					
		b)	Find the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.	7					

c)	The following table gives displacement 'u' (in min) of a sliding piece from a fixed reference point for every 30 degrees of rotation of the crank.														
		θ	0	30	60	90	120	150	180	210	240	270	300	330	
		u	298	356	373	337	254	155	80	51	60	93	147	221	