A Denotational Semantics for Polymorphic Effect Systems Part III Project

Alexander Taylor, at736

University of Cambridge

April 10, 2019

Introduction Slide

- code example - "apply" function + three different invocations - Launch Missile - Throw Error - Read environment variables

What is denotational Semantics?

- Type relation instance - mapping function ($[\![-]\!]$) - compositional, sound, adequate? - equivalence \Leftrightarrow equal denotations

Denotational Semantics using Category Theory

(Objects, Morphisms, etc)

Language features (1)

cartesian closed categories - pairs, unit, and functions

Language features (2)

Monads, graded monads

- diagrams, natural transformations

Language Features (3)

Subtyping, Subeffecting, If-Expressions

- If expression example - Co-product diagram

An Effectful Language

 ${\sf EC\ Syntax} + {\sf example\ program}$

Semantics of EC

- example of some denotational rules - return? - lambda? - bind? - S-Category - definition

An Ugly Example

- Example of a program that would benefit from polymorphism.

Let's add polymorphism

- PEC Syntax, Type System (Particularly Gen and Spec rules)

An Ugly Example - With a Makeover

- Example of a program that would benefit from polymorphism.

How do we Model the Semantics of a Polymorphic Language?

- For a given effect variable environment Φ , excluding the polymorphic terms, we have EC, which there exist models for. - Effect-variable environments of length n are isomorphic by α -equivalence

How do we Model the Semantics of a Polymorphic Language?

- Stack of S-categories and their morphisms
- type rule for generalisation "Need functors"

Base Category

- We need a way of reasoning about effect-variable environment categorically
- We can model effects and environments in new category.
- Objects: 1, U, U^n (write I for U^n) Morphisms: $\llbracket e \rrbracket : 1 \to U$ Monoidal operator Mul : $\mathbb{C}(I,U) \times \mathbb{C}(I,U) \to \mathbb{C}(I,U)$ Can represent each effect environment as an object I, and common transformations between environments, such as weakening and substitutions, are morphisms between effect environments.

Indexed Category

- full index diagram with fibres, re-indexing functor

Quantification

- Quantification functor definition

Instantiating a Model (1)

final indexed category construction

- Can we actually instantiate a category with the required structure?
- Models of particular instantiations of EC based on Set exist.
- Next step is use a Set-based model to build a model of EC

Instantiating a Model (2) - Base Category

- Category of monotone functions of ground effects (with no variables) to ground effects. - $\llbracket \diamond, \alpha \vdash \alpha \cdot \mathtt{I0} \colon \mathtt{Effect} \rrbracket = e \mapsto e \cdot \mathtt{I0}$ - $\mathtt{Mul}(f,g)\vec{\epsilon} = (f\vec{\epsilon}) \cdot (g\vec{\epsilon})$

Instantiating a Model (3) - Fibres

- The fibre $\mathbb{C}(n)$ is the category of functors $[E^n, \operatorname{Set}]$ - I.E. objects are functions that take a vector of ground effects and return sets - Morphisms are functions that return functions in Set - S-Category features (products, exponentials, graded monad) can be constructed pointwise (Graded monad definition)

Instantiating a Model (4) - Functors and Adjunctions

- Re-indexing functors are formed by pre-composition - \forall_{E^n} functor is formed by a product over all effects. - Adjunction operations become pairing and projection.

The End

- Dissertation and github links