

L2 MIDO 2023-2024

Algèbre linéaire 3. Contrôle continu du 10 octobre 2023 (durée 1h).

NOM :			

PRÉNOM:

N°TD:

(lisiblement, en majuscules)

Toutes les réponses sont à faire sur la copie d'énoncés.

Il y a largement la place de répondre dans les cases, soyez efficaces (utilisez le brouillon) et n'utilisez la dernière page blanche qu'en cas d'extrême nécessité.

blanche qu'en cas d'extrême nécessité.	
On note Φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ donnée par $\Phi(P)(X) = P(X+1) + P(X-1)$.	
Montrer que Φ est un endomorphisme de $\mathbb{R}[X]$ et que les sous-espaces vectoriels F_{pair} et F_{impair} const polynômes pairs / impairs sont des sous-espaces stables par Φ .	itués des
Calculer $\Phi(1)$ et $\Phi(X^2)$, puis $\Phi(X)$ et $\Phi(X^3)$.	
En déduire que $\Phi _{\mathbb{R}_3[X]}$ est un endomorphisme et donner sa matrice dans la base $(1,X^2,X,X^3)$.	
Cet endomorphisme de $\mathbb{R}_3[X]$ est-il diagonalisable?	

Soient $A =$	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$0 \\ 2$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, B =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$0 \\ 2$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}, u =$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}, v =$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $w =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
polent 71 —	$\left(\begin{array}{c}1\\0\end{array}\right)$	0	$\binom{2}{2}$, $D - \binom{2}{2}$	\int_{0}^{0}	0	2 , $\alpha -$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $v =$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $w =$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Calculer χ_A , donner le rang de $A-I_3$ et $A-2I_3$ et en déduire les sous-espaces propres de A.

Calculer Aw - 2w et en déduire que A est semblable à B.

Soit
$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
. Quel est son polynôme caractéristique χ_A ?

Donner les valeurs de $\chi_A(-1)$, $\chi_A(0)$ et $\chi_A(1)$, ainsi que les limites de $\chi_A(x)$ lorsque $x \to \pm \infty$.

La matrice A est-elle diagonalisable dans \mathbb{R} ?

