

LU-6036

BF

Patent number:

WO9940129

Publication date:

1999-08-12

Inventor:

BOHNEN HANS (DE); FRITZE CORNELIA (DE)

Applicant:

BOHNEN HANS (DE); TARGOR GMBH (DE); FRITZE

CORNELIA (DE)

Classification:

- international:

C08F10/00; C08F4/649

- european:

C08F10/00

Application number: WO1999EP00725 19990205 Priority number(s): DE19981004970 19980207

Also published as:

EP1053263 (A1) US6482902 (B1) DE19804970 (A1)

EP1053263 (B1)

Cited documents:

EP0601830 WO9201005

WO9201005 WO9313140

WO9714700

DE19733017

Abstract not available for WO9940129

Abstract of corresponding document: US6482902

The present invention relates to a catalyst system comprising metallocene, cocatalyst, support material and, if desired, further organometallic compounds. The catalyst system can advantageously be used for the polymerization of olefins, where the use of aluminoxanes such as methylaluminoxane (MAO), which usually has to be used in a large excess, as cocatalyst can be dispensed with and a high catalyst activity and good polymer morphology are nevertheless achieved.

Data supplied from the esp@cenet database - Worldwide

PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:		(11) Internationale Veröffentlichungsnummer: WO 99/40129
C08F 10/00, 4/649	A1	(43) Internationales Veröffentlichungsdatum: 12. August 1999 (12.08.99)
(21) Internationales Aktenzeichen: PCT/EP9 (22) Internationales Anmeldedatum: 5. Februar 1999 (6)		US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES,
(30) Prioritätsdaten: 198 04 970.6 7. Februar 1998 (07.02.98) (71) Anmelder (für alle Bestimmungsstaaten ausser US): T		Veröffentlicht E Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen R eintreffen.
GMBH [DE/DE]; Rheinstrasse 4 G, D-55116 Mai		
(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): BOHNEN, Hans [Grenzstrasse 146, D-47441 Moers (DE). FRITZE, [DE/DE]; Geisenheimer Strasse 97, D-60529 (DE).	Cornel	ia
(74) Anwalt: ACKERMANN, Joachim; Aventis Research nologies GmbH & Co. KG, Patent- und Lizenza Gebäude K 801, D-65926 Frankfurt am Main (DE	ibteilun	

(54) Title: CATALYST SYSTEM

(54) Bezeichnung: KATALYSATORSYSTEM

(57) Abstract

The invention relates to a catalyst system containing metallocene, a cocatalyst which contains an organoboron aluminum compound, and optional additional organometallic compounds. The catalyst system can be advantageously used for the polymerization of olefins, whereby the use of aluminoxanes such as methyl aluminoxane (MAO) which normally must be used in high surplus can be abandoned, and nevertheless a high catalyst activity and a good polymer morphology are achieved.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Katalysatorsystem enthaltend Metallocen, Co-Katalysator, der eine Organoboraluminium-Verbindung enthält, Trägermaterial und gegebenenfalls weitere Organometallverbindungen. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden, wobei auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO), das üblicherweise in hohem Überschuß eingesetzt werden muß, als Co-Katalysator verzichtet werden kann und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt wird.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	\$Z	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten voi
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien •		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	L	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
ER	Estland	LR	Liberia	SG	Singapur		

Beschreibung

C)

15

25

30

35

Katalysatorsystem

Die vorliegende Erfindung beschreibt ein Katalysatorsystem enthaltend Metallocen, Co-Katalysator, Trägermaterial und gegebenenfalls weitere Organometallverbindungen. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden, wobei auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO), das üblicherweise in hohem Überschuß eingesetzt werden muß, als Cokatalysator verzichtet werden kann und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt wird.

Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H.H. Brintzinger, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283). Die Darstellung kationischer Alkylkomplexe eröffnet die Möglichkeit MAO-freie Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezustöchiometrisch eingesetzt werden kann, zu erhalten.

Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991, Band 113, Seite 3623 beschrieben.

Ein Verfahren zur Herstellung von Salzen der allgemeinen Form LMX⁺ XA⁻ nach dem oben beschriebenen Prinzip wird in EP-A-0,520,732 beansprucht.

EP-A-0,558,158 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6H_5)_4]^-$ dargestellt werden. Die Umsetzung eines solchen Salzes mit z.B. Cp_2ZrMe_2 liefert durch Protolyse unter Methanabspaltung intermediär ein Zirkonocenmethyl-Kation.

Dieses reagiert über C-H-Aktivierung zum Zwitterion Cp_2Zr^+ - $(m-C_6H_4)$ - BPh_3^- ab. Das Zr-Atom ist dabei kovalent an ein Kohlenstoffatom des Phenylrings gebunden und wird über agostische Wasserstoffbindungen stabilisiert.US-A-5,348,299 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6F_5)_4]^-$ durch Protolyse dargestellt werden. Die C-H-Aktivierung als Folgereaktion unterbleibt dabei.

WO 99/40129

(;

20

25

30

35

EP-A-0,426,637 nutzt ein Verfahren in dem das Lewis-saure CPh_3^+ Kation zur Abstraktion der Methylgruppe vom Metallzentrum eingesetzt wird. Als schwach koordinierendes Anion fungiert ebenfalls $B(C_6F_5)_4^-$.

5 Eine industrielle Nutzung von Metallocen-Katalysatoren fordert eine Heterogenisierung des Katalysatorsystems, um eine entsprechende Morphologie des resultierenden Polymers zu gewährleisten. Die Trägerung von kationischen Metallocen-Katalysatoren auf Basis der oben genannten Borat-Anionen ist in WO-91/09882 beschrieben. Dabei wird das Katalysatorsystem, durch Aufbringen einer Dialkylmetallocen-Verbindung und einer Brönsted-sauren, quatären Ammonium-10 Verbindung, mit einem nichtkoordinierenden Anion wie Tetrakis-pentafluorphenylborat, auf einem anorganischen Träger, gebildet. Das Trägermaterial wird zuvor mit einer Trialkylaluminium-Verbindung modifiziert. Nachteil dieses Trägerungsverfahren ist, daß nur ein geringer Teil des eingesetzten 15 Metallocens Physisorbtion an dem Trägermaterial fixiert ist. Bei der Dosierung des Katalysatorsystems in den Reaktor kann das Metallocen leicht von der Trägeroberfläche abgelöst werden. Dies führt zu einer teilweisen homogen verlaufenden Polymerisation, was eine unbefriedigende Morphologie des Polymers zur Folge hat.

In WO-96/04319 wird ein Katalysatorsystem beschrieben, in welchem der Cokatalysator kovalent an das Trägermaterial gebunden ist. Dieses Katalysatorsystem weist jedoch eine geringe Polymerisationsaktivität auf, zudem kann die hohe Empfindlichkeit der geträgerten kationischen Metallocen-Katalysatoren zu Problemen bei der Einschleusung in das Polymerisationssystem führen.

Es war daher wünschenswert ein Katalysatorsystem zu entwickeln, das wahlweise vor dem Einschleusen in den Reaktor bereits aktiviert ist oder erst im Polymerisationsautoklav aktiviert wird.

Die Aufgabe bestand darin ein Katalysatorsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymersationsaktivitäten und eine gute Polymermorphologie garantiert. Zudem war ein Verfahren zur Herstellung dieses Katalysatorsystems zu entwickeln, das es ermöglicht die Aktivierung des Katalysatorsystems wahlweise vor dem

÷

5

15

20

25

30

.4

3

Einschleusen oder aber erst im Polymerisationsautoklav durchzuführen.

Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem sowie dessen Verwendung bei der Polymerisation von Olefinen.

Das erfindungsgemäße Katalysatorsystem enthält

- a) mindestens ein Metallocen,
- b) mindestens eine Lewis-Base der Formel I,

$$M^2R^3R^4R^5 \tag{I}$$

10 worin

 R^3 , R^4 und R^5 gleich oder verschieden sind und für ein Wasserstoffatom, eine C_1 - C_{20} -Alkyl-, C_1 - C_{20} -Halogenalkyl-, C_6 - C_{40} -Aryl-, C_6 - C_{40} -Halogenaryl-, C_7 - C_{40} -Alkylaryl- oder C_7 - C_{40} -Arylalkyl-Gruppe stehen, wobei gegebenenfalls zwei Reste oder alle drei Reste R^3 , R^4 und R^5 über C_2 - C_{20} -Kohlenstoffeinheiten miteinander verbunden sein können und M^2 für ein Element der V. Hauptgruppe des Periodensystems der Elemente steht,

- c) einen Träger,
- mindestens eine Organoboraluminium-Verbindung, die aus Einheiten der Formel II

$$R_i^1 M^3 - O - M^3 R_i^2$$
 (II)

worin

R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe, insbesondere C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, Cィ-C₄₀-Arylalkyl, Cィ-C₄₀-Halogenarylalkyl, Cィ-C₄₀-Alkylaryl, Cィ-C₄₀-Halogenalkylaryl sind oder R¹ kann eine -OSiR₃-Gruppe sein, worin R gleich oder verschieden sind und die gleiche Bedeutung wie R¹ haben, M³ gleich oder verschieden ist und für ein Element der 3. Hauptgruppe des Periodensystems der Elemente steht und i und j jeweils eine ganze Zahl 0, 1 oder 2 steht, aufgebaut ist und die kovalent an den Träger gebunden ist, sowie gegebenenfalls

5

10

15

20

25

35

4

e) eine Organometallverbindung der Formel V [M⁴R⁶_D]_k

(V)

worin

M⁴ ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist,

 R^6 gleich oder verschieden ist und ein Wasserstoffatom, ein Halogenatom, eine $\mathsf{C}_1\text{-}\mathsf{C}_{40}\text{-}\mathsf{kohlenstoffhaltige}$ Gruppe, insbesondere $\mathsf{C}_1\text{-}\mathsf{C}_{20}\text{-}$ Alkyl-, $\mathsf{C}_6\text{-}\mathsf{C}_{40}\text{-}$ Aryl-, $\mathsf{C}_7\text{-}\mathsf{C}_{40}\text{-}$ Alkyl-aryl-Gruppe bedeutet, p eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4 ist.

Bevorzugt handelt es sich bei den Lewis-Basen der Formel (I) um solche bei denen M² für Stickstoff oder Phosphor steht. Beispiele für derartige Verbindungen sind Triethylamin, Triisopropylamin, Triisobutylamin, Tri(n-butyl)amin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-2,4,6-Pentamethylanilin, Dicyclohexylamin, Pyridin, Pyrazin, Triphenylphosphin, Tri(methylphenyl)phosphin und Tri(dimethylphenyl)phosphin.

Der Träger ist ein poröser anorganischer oder organischer Feststoff. Bevorzugt enthält der Träger mindestens ein anorganisches Oxid, wie Siliziumoxid, Aluminiumoxid, Alumosilicate, Zeolithe, MgO, ZrO₂, TiO₂, B₂O₃, CaO, ZnO, ThO₂, Na₂CO₃, K₂CO₃, CaCO₃, MgCO₃, Na₂SO₄, Al₂(SO₄)₃, BaSO₄, KNO₃, Mg(NO₃)₂, Al(NO₃)₃, Na₂O, K₂O, oder Li₂O, insbesondere Siliziumoxid und/oder Aluminiumoxid.

Der Träger kann auch mindestens ein Polymer enthalten, z.B. ein Homo- oder Copolymer, ein vernetztes Polymer oder Polymerblends. Beispiele für Polymere sind Polyethylen, Polypropylen, Polybuten, Polystyrol, mit Divinylbenzol vernetztes Polystyrol, Polyvinylchlorid, Acrylnitril-Butadien-Styrol-Copolymer, Polyamid, Polymethacrylat, Polycarbonat, Polyester, Polyacetal oder Polyvinylalkohol.

Der Träger weist eine spezifische Oberfläche im Bereich von 10 bis 1000 m²/g, bevorzugt von 150 bis 500 m²/g auf. Die mittlere Partikelgröße des Trägers beträgt 1 bis 500 μm, bevorzugt 5 bis 350 μm, besonders bevorzugt 10 bis 200 μm.

Bevorzugt ist der Träger porös mit einem Porenvolumen des Trägers von 0,5 bis 4,0 ml/g, bevorzugt 1,0 bis 3,5 ml/g. Ein poröser Träger weist einen gewissen Anteil an

10

15

20

25

Hohlräumen (Porenvolumen) auf. Die Form der Poren ist meist unregelmäßig, häufig sphärisch ausgebildet. Die Poren können durch kleine Porenöffnungen miteinander verbunden sein. Der Porendurchmesser beträgt vorzugsweise etwa 2 bis 50 nm. Die Partikelform des porösen Trägers ist abhängig von der Nachbehandlung und kann irregulär oder sphärisch sein. Die Teilchengröße des Trägers kann z. B. durch kryogene Mahlung und/oder Siebung beliebig eingestellt werden.

Das erfindungsgemäße Katalysatorsystem enthält als cokatalytisch wirkende chemische Verbindung eine Organoboraluminiumverbindung, die Einheiten der Formel (II) enthält. Bevorzugt sind solche Verbindungen der Formel (II), bei denen M³ für Bor oder Aluminium steht.

Die Einheiten der Formel (II)enthaltende Verbindung kann als Monomer oder als lineares, cyclisches oder käfigartiges Oligomer vorliegen. Es können auch zwei oder mehr chemische Verbindungen, welche Einheiten der Formel (II) enthalten durch Lewis-Säure-Base Wechselwirkungen oder Kondensationsreaktionen untereinander Dimere, Trimere oder höhere Assoziate bilden.

Bevorzugte cokatalytisch wirkende Organoboraluminium-Verbindungen gemäß d) entsprechen den Formeln (III) und (IV),

worin R¹ und R² die gleiche Bedeutung wie unter Formel (II) haben.

Beispiele für die cokatalytisch wirkenden Verbindungen der Formeln (III) und (IV) sind

Bei den Organometallverbindungen der Formel (V) handelt es sich vorzugsweise um neutrale Lewissäuren worin M⁴ für Lithium, Magnesium und/oder Aluminium, insbesondere Aluminium, steht. Beispiele für die bevorzugten Organometall-

10

15

20

25

30

35

98/22486 beschrieben.

Verbindungen der Formel (V) sind Trimethylaluminium, Triethylaluminium, Triisopropylaluminium, Trihexylaluminium, Trioctylaluminium, Tri-n-butylaluminium, Trin-propylaluminium, Triisoprenaluminium, Dimethylaluminiummonochlorid, Diethylaluminiummonochlorid, Diisobutylaluminiummonochlorid, Methylaluminiumsesquichlorid, Ethylaluminiumsesquichlorid, Dimethylaluminiumhydrid, Diethylaluminiumhydrid, Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(triethylsiloxid), Phenylalan, Pentafluorphenylalan und o-Tolylalan

Die im erfindungsgemäßen Katalysatorsystem enthaltenen Metallocenverbindungen können z.B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie beispielsweise in EP-A-0,129,368, EP-A-0,561,479, EP-A-0,545,304 und EP-A-0,576,970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die beispielsweise in EP-A-0,416,815 beschrieben sind, mehrkernige Cyclopentadienylkomplexe wie beispielsweise in EP-A-0,632,063 beschrieben, p-Ligand substituierte Tetrahydropentalene wie beispielsweise in EP-A-0,659,758 beschrieben oder p-Ligand substituierte Tetrahydroindene wie beispielsweise in EP-A-0,661,300 beschrieben. Außerdem können Organometallverbindungen eingesetzt werden in denen der komplexierende Ligand kein Cyclopentadienyl-Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. und IV. Nebengruppe des Periodensystems der Elemente, wie sie z.B. bei D.H. McConville, et al, Macromolecules, 1996, 29, 5241 und D.H. McConville, et al, J. Am. Chem. Soc., 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni²⁺ oder Pd²⁺ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1995, 117, 6414 und , Brookhart et al, J. Am. Chem. Soc., 1996, 118, 267 beschrieben werden, eingesetzt werden. Ferner lassen sich 2,6-bis(imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co²⁺ oder Fe²⁺ Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1998, 120, 4049 und Gibson et al, Chem. Commun. 1998, 849 beschrieben werden, einsetzen. Weiterhin können Metallocenverbindungen eingesetzt werden, deren komplexierender Ligand Heterocyclen enthält. Beispiele hierfür sind in WO

Bevorzugte Metallocenverbindungen sind unverbrückte oder verbrückte Verbindungen der Formel VI,

(VI)

worin

M¹ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf.

R⁷ 5 gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin ${\sf R}^{12}$ gleich oder verschieden ein Wasserstoffatom oder eine ${\sf C}_1{\sf -C}_{40}{\sf -}$ kohlenstoffhaltige Gruppe wie C_1 - C_{20} -Alkyl, C_1 - C_{10} -Fluoralkyl, C_1 - C_{10} -Alkoxy, $C_6-C_{20}-Aryl$, $C_6-C_{10}-Fluoraryl$, $C_6-C_{10}-Aryloxy$, $C_2-C_{10}-Alkenyl$, $C_7-C_{40}-Aryloxy$ Arylalkyl, C_7 - C_{40} -Alkylaryl oder C_8 - C_{40} -Arylalkenyl sind, oder R^7 sind eine C_1 -10 C₃₀ - kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C₄-C₂₄-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl, C₅-C₃₀-Heteroarylalkyl, C₇-C₃₀-Alkylaryl, C₅-C₃₀-Alkylheteroaryl, fluorhaltiges C₁- C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Arylalkyl, fluorhaltiges C_7 - C_{30} -Alkylaryl oder C_1 - C_{12} -Alkoxy ist, oder zwei oder mehrere 15 Reste R⁷ können so miteinander verbunden sein, daß die Reste R⁷ und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann,

gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin R¹² gleich oder verschieden ein Wasserstoffatom oder eine C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, C₆-C₁₄-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl sind, oder R⁸ sind eine C₁-C₃₀-kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl,

20

25

30

 C_7 - C_{30} -Alkylaryl, fluorhaltiges C_1 - C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C_7 - C_{30} -Arylalkyl, fluorhaltiges C_7 - C_{30} -Alkylaryl oder C_1 - C_{12} -Alkoxy ist, oder zwei oder mehrere Reste R^8 können so miteinander verbunden sein, daß die Reste R^8 und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C_4 - C_{24} -Ringsystem bilden, welches seinerseits substituiert sein kann,

- I gleich 5 für v = 0, und I gleich 4 für v = 1 ist,
- m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,
- L¹ gleich oder verschieden sein können und ein Wasserstoffatom, eine C₁-C₁₀-Kohlenwasserstoffgruppe wie C₁-C₁₀-Alkyl oder C₆-C₁₀-Aryl, ein Halogenatom, oder OR⁹, SR⁹, OSiR₃⁹, SiR₃⁹, PR₂⁹ oder NR₂⁹ bedeuten, worin R⁹ ein Halogenatom, eine C₁-C₁₀ Alkylgruppe, eine halogenierte C₁-C₁₀ Alkylgruppe, eine C₆-C₂₀ Arylgruppe oder eine halogenierte C₆-C₂₀
 Arylgruppe sind, oder L¹ sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluor-methansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,
 - o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist.
 - Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und v ist 0 oder 1.

Bevorzugt sind chirale verbrückte Metallocenverbindungen der Formel (VI), insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring, einen Schwefel, Stickstoff oder Sauerstoff enthaltenden Indenyl-analogen Heterocyclus

ď

5

10

15

oder einen Schwefel, Stickstoff oder Sauerstoff enthaltenden Pentalen-analogen Heterocyclus darstellen.

Die genannten Ringe sind bevorzugt substituiert, insbesondere (gemäß der Nomenklatur in Formel (VII)) in 2-, 4-, 2,4-, 2,4-,5-, 2,4-,6-, 2,4-,7 oder 2,4-,5-,6-Stellung, mit C_1 - C_{20} -kohlenstoffhaltigen Gruppen, wie C_1 - C_{10} -Alkyl oder C_6 - C_{20} -Aryl, wobei auch zwei oder mehrere Substituenten der genannten Ringe zusammen ein Ringsystem bilden können.

Chirale verbrückte Metallocenverbindungen der Formel (VI) können als reine racemische oder reine meso Verbindungen eingesetzt werden. Es können aber auch Gemische aus einer racemischen Verbindung und einer meso Verbindung verwendet werden.

Beispiele für Metallocenverbindungen sind: Dimethylsilandiylbis(indenyl)zirkoniumdichlorid Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid 30

Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
 Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
- Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdichlorid
 - Methyl(phenyl)silandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid
- 20 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid
- 25 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid
 - 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid
 - 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid
- $[4-(\eta^5 Cyclopentadienyl)-4,6,6-trimethyl-(\eta^5-4,5-tetrahydropentalen)]-dichlorozirconium$
 - [4-(η^5 -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η^5 -4,5-tetrahydropentalen)]-dichlorozirconium
 - $[4-(\eta^5-3'-lsopropyl-cyclopentadienyl)-4,6,6-trimethyl-(\eta^5-4,5-tetrahydropentalen)]-4,6-trimethyl-(\eta^5-4,5-tetrahydropentalen)]-4,6-trimethyl-(\eta^5-4,5-tetr$
- 35 dichlorozirconium
 - [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

¥

10

- [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]dichlorozirkonium
- [4- $(\eta^5$ -Cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]dichlorohafnium
- [4- $(\eta^5$ -3=-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl- $(\eta^5$ -4,5,6,7-tetrahydroindenyl)]-5 dichlorotitan
 - 4- $(\eta^5-3\approx$ -Isopropylcyclopentadienyl)-4,7,7-trimethyl- $(\eta^5-4,5,6,7$ -tetrahydroindenyl)]dichlorotitan
 - 4- $(\eta^5-3=-Methylcyclopentadienyl)$ -4,7,7-trimethyl- $(\eta^5-4,5,6,7$ -tetrahydroindenyl)]dichlorotitan
 - $4-(\eta^5-3=-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl-(\eta^5-4,5,6,7-1)-2-trimethylsilyl-4,7,7-trimethyl-(\eta^5-4,5,6,7-1)-2-trimethylsilyl-4,7,7-trimethyl-(\eta^5-4,5,6,7-1)-2-trimethylsilyl-4,7,7-trimethyl-(\eta^5-4,5,6,7-1)-2-trimethyl-1,7,7-trimethyl-1$ tetrahydroindenyl)]-dichlorotitan
 - $4-(\eta^5-3=-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(\eta^5-4,5,6,7-tetrahydroindenyl)]-4,7-trimethyl-(\eta^5-4,5,6,7-tetrahydroindenyl)]-4,7-trimethyl-(\eta^5-4,5,7-tetrahydroindenyl)]-4,7-trimethyl-(\eta^5-4,5,7-tetrahydroinden$ dichlorozirkonium
- (Tertbutylamido)-(tetramethyl-η5-cyclopentadienyl)-dimethylsilyl-dichlorotitan 15 (Tertbutylamido)-(tetramethyl-ŋ5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitandichlorotitan
 - $(Methylamido) (tetramethyl-\eta^5 cyclopentadienyl) dimethylsilyl dichlorotitan$ (Methylamido)-(tetramethyl-n5-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan
- (Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan 20 Bis-(cyclopentadienyl)-zirkoniumdichlorid Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid

 - Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid
 - Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-3- η^5 -cyclopenta-2,4-dien-1-
- 25 yliden)-3-n5-9H-fluoren-9-yliden)butan]di-zirkonium
 - Tetrachloro-[2-[bis(η^5 -2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(η^5 -2,3,4,5tetramethylcyclopenta-2,4-dien-1-yliden)-5-(n5-9H-fluoren-9-yliden)hexan]dizirkonium
 - Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-6-(η^5 -cyclopenta-2,4-dien-1-
- 30 yliden)-6-(n5-9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid
- 35 Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl 10 Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl 15 Dimethylsilandivlbis(2-methyl-4-(4'-trimethylsilvl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid 20 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 35 Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

٥.

Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)indenyl)zirkoniumbis(dimethylamid) Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 35 Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid

indenyl) zirkoniumdichlorid

5

10

15

20

25

35

Dimethylgermandiylbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Ethylidenbis(2-hexyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl Ethylidenbis(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)hafniumdimethyl Ethylidenbis(2-n-propyl-4-phenyl)-indenyl)titandimethyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid) Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4´-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-

- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-methylphenyl-

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-methylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- 5 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-
- propylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 20 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-4-(4'-n-propyl-4-(4'
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 10 indenyl) zirkoniumdichlorid

WO 99/40129

43

- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

WO 99/40129

5

10

20

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-

20 butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)

30 zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)
- 10 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

١.

WO 99/40129

indenyl)zirkoniumdichlorid

indenyl)zirkoniumdichlorid

35

4

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-s-butylphenylindenyl)zirkoniumdichlorid 5 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-s-butylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid 10 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-20 indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-25 indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tertbutylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-30 butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-

v.Z

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-pentylphenylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) 5 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-
- 10 indenyl)zirkoniumdichlorid

WO 99/40129

• 4

- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-pentylphenylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-pentylphenylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- 25 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-4-azapentalen) indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- 35 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-nhexylphenyl-indenyl) zirkoniumdichlorid

WO 99/40129

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)
- 10 zirkoniumdichlorid

٠,

- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-
- cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid

• 🖒

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-cyclohexylphenyl-
- 10 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

٠.

20

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid

 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-
- indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-10 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2.5-dimethyl-4-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-15 tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-20 tris(trifluormethyl)methylphenyl-indenyl) zirkonjumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid 25 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid 30 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-35

tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5,6-di-hydro-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-indenyl)
 - butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl/2 methyl 4 proporteleny/2 athyl 4 (4) 4 at hydral and b
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4'-tert-butylphenyl-
- tetrahydroindenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-n-butyl-4-(4´-tert-butylphenyl-indenyl)

 zirkoniumdichlorid
 - Ethyliden(2-methyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-trimethylsilyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-tolyl-5-azapentalen)(2-n-propyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylgermyldiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-
- butylphenyl-indenyl) zirkoniumdichlorid

 Methylethyliden(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)
 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-di-iso-propyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2,6-dimethyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-
- butylanthracenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-phosphapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Diphenylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
- Methylphenylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

Methyliden(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylmethyliden(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

- Diphenylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Diphenylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methylindenyl)
 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methylindenyl)
- 15 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-azapentalen)(indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-thiapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-oxapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-oxapentalen)(indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl)
- zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl)
 zirkoniumdichlorid

WO 99/40129

25

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-phenyl-indenyl)
- 10 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-phenyl-15 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-phenyl-indenyl)
- 20 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl)
- zirkoniumdichlorid 30 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) 35 zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) 5 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid 10 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4,5-benzo-20 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl) 25 zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-azapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-6-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-N-phenyl-4-azapentalen) zirkoniumdichlorid 30 Dimethylsilandiylbis(2-methyl-N-phenyl-5-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-N-phenyl-6-azapentalen) zirkoniumdichlorid
- Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-4-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2,5-dimethyl-4-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2,5-dimethyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-thiapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-5-thiapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-6-thiapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-6-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-5-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-6-oxapentalen)zirkoniumdichlorid

Das erfindungsgemäße Katalysatorsystem ist erhältlich durch Umsetzung einer Lewis-Base der Formel (I) und einer Organoboraluminium-Verbindung, die aus Einheiten der Formel (II) aufgebaut ist, mit einem Träger. Anschließend erfolgt die Umsetzung mit einer Lösung oder Suspension aus einem oder mehreren Metallocenverbindungen der Formel (VI) und optional einer oder mehrerer Organometallverbindungen der Formel (V).

Die Aktivierung des Katalysatorsystems kann dadurch wahlweise vor dem Einschleusen in den Reaktor vorgenommen werden oder aber erst im Reaktor durchgeführt werden. Ferner wird ein Verfahren zur Herstellung von Polyolefinen beschrieben. Die Zugabe einer weiteren chemischen Verbindung, die als Additiv vor der Polymerisation zudosiert wird, kann zusätzlich von Vorteil sein.

Zur Herstellung des erfindungsgemäßen Katalysatorsystems wird das Trägermeterial in einem organischen Lösemittel suspendiert. Geeignete Lösemittel sind aromatische oder aliphatische Lösemittel, wie beispielsweise Hexan, Heptan, Toluol oder Xylol oder halogenierte Kohlenwasserstoffe, wie Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie o-Dichlorbenzol. Der Träger kann zuvor mit einer Verbindung der Formel (V) vorbehandelt werden. Anschließend wird eine oder mehrere Verbindungen der Formel (I) zu dieser Suspension gegeben, wobei die Reaktionszeit zwischen 1 Minute und 48 Stunden liegen kann, bevorzugt ist eine Reaktionszeit zwischen 10 Minuten und 2 Stunden. Die Reaktionslösung kann isoliert und anschließend resuspendiert werden oder aber auch direkt mit einer cokatalytisch wirkenden Organoboraluminimverbindung, die aus Einheiten gemäß der Formel (II) aufgebaut ist, umgesetzt werden. Die Reaktionszeit liegt dabei zwischen 1 Minute und 48 Stunden, wobei eine Reaktionszeit von zwischen 10

WO 99/40129

5

10

15

20

25

30

35

Minuten und 2 Stunden bevorzugt ist. Bevorzugt ist die Menge von 1 bis 4 Äquivalenten einer Lewis-Base der Formel (I) mit einem Äquivalent einer cokatalytisch wirksamen Verbindung die gemäß der Formel (II) aufgebaut ist. Besonders bevorzugt ist die Menge von einem Äquivalent einer Lewis-Base der Formel (I) mit einem Äquivalent einer cokatalytisch wirksamen Verbindung die gemäß der Formel (II) aufgebaut ist. Das Reaktionsprodukt dieser Umsetzung ist eine metalloceniumbildende Verbindung, die kovalent an das Trägermaterial fixiert ist. Es wird nachfolgend als modifiziertes Trägermaterial bezeichnet. Die Reaktionslösung wird anschließend filtriert und mit einem der oben genannten Lösemittel gewaschen. Danach wird das modifizierte Trägermaterial im Hochvakuum getrocknet. Das modifizierte Trägermaterial kann nach dem Trocknen wieder resuspendiert werden und mit einer Verbindung der Formel (V) nachbehandelt werden. Die Verbindung der Formel (V) kann aber auch vor der Filtration und Trocknung des modifizierten Trägermaterials zugegeben werden. Das Aufbringen einer oder mehrerer Metallocenverbindungen vorzugsweise der Formel (VI) und einer oder mehrerer Organometallverbindungen der Formel (V) auf das modifizierte Trägermaterial geht vorzugsweise so vonstatten, daß eine oder mehrere Metallocenverbindungen der Formel (VI) in einem oben beschriebenen Lösemittel gelöst bzw. suspendiert wird und anschließend eine oder mehrere Verbindungen der Formel (V), die vorzugsweise ebenfalls gelöst bzw. suspendiert ist, umgesetzt werden. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel (VI) und einer Organometallverbindung der (V) beträgt 100 : 1 bis 10-4 : 1. Vorzugsweise beträgt das Verhältnis 1:1 bis 10-2:1. Das modifizierte Trägermaterial kann entweder direkt im Polymerisationsreaktor oder in einem Reaktionskolben in einem oben genannten Lösemittel vorgelegt werden. Anschließend erfolgt die Zugabe der Mischung aus einer Metallocenverbindung der Formel (VI) und einer Organometallverbindung der Formel (V). Optional kann aber auch eine oder mehrere Metallocenverbindungen der Formel (VI) ohne vorherige Zugabe einer Organometallverbindung der Formel (V) zu dem modifizieten Trägermaterial gegeben werden. Die Menge an modifizierten Träger zu einer Metallocenverbindung der Formel (VI) beträgt vorzugsweise 10g: 1 µmol bis 10-2g: 1 µmol. Das stöchiometrische

Verhältnis an Metallocenverbindung der Formel (VI) zu der geträgerten cokatalytisch wirkenden Organobor-aluminiumverbindung, bestehend aus Einheiten der Formel

Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden.

(II), beträgt 100 : 1 bis 10⁻⁴ : 1, vorzugsweise 1 : 1 bis 10⁻² : 1.

Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisätion eingesetzt werden. Der Vorteil dieser Aktivierungsmethode liegt darin, daß es die Option bietet das polymerisationsaktive Katalysatorsystem erst im Reaktor entstehen zu lassen. Dadurch wird verhindert, daß beim Einschleusen des luftempfindlichen Katalysators zum Teil Zersetzung eintritt.

Weiterhin wird ein Verfahren zur Herstellung eines Olefinpolymers in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.

10

15

20

35

5

Bevorzugt werden Olefine der Formel Rα-CH=CH-Rβ polymerisiert, worin Rα und Rβ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder Rα und Rβ mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele für solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbornen, Diene wie 1,3-Butadien oder 1,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.

Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C₃-C₂₀-1-Olefinen, insbesondere Propylen, und /oder einem oder mehreren C₄-C₂₀-Diene, insbesondere 1,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.
 Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300 °C, besonders bevorzugt 30 bis 250 °C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder

diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.

Das geträgerte Katalysatorsystem kann entweder direkt im Polymerisationssystem gebildet werden oder es kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das

10

15

25

30

35

PCT/EP99/00725

Polymerisationssystem eindosiert werden.

Mit Hilfe des erfindungsgemäßen Katalysatorsystems kann eine Vorpolymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e) verwendet.

Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z. B. Metallocene enthalten.

Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.

Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.

Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10-3 bis 10-8, vorzugsweise 10-4 bis 10-7 mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet.

Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel, wie beispielsweise Hexan oder Toluol, etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol. Vor Zugabe des erfindungsgemäßen Katalysatorsystems bzw. vor Aktivierung des erfindungsgemäßen Katalysatorsystems im Polymerisationssystem kann zusätzlich eine Alkylaluminiumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 200 bis 0,001 mmol Al pro kg Reaktorinhalt dem

25

35

Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 0,01 mmol Al pro kg Reaktorinhalt eingesetzt, dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M¹-Verhältnis klein gewählt werden.

- Weiterhin kann bei dem erfindungsgemäßen Verfahren ein Additiv wie ein Antistatikum verwendet werden z.B. zur Verbesserung der Kommorphologie des Olefinpolymers. Generell können alle Antistatika, die für die Polymerisation geeignet sind, verwendet werden. Beispiele hierfür sind Salzgemische aus Calciumsalzen der Medialansäure und Chromsalze der N-Stearylanthranilsäure, die in DE-A-3,543,360 beschreiben werden. Weitere geeignete Antistatika sind z.B. C₁₂- bis C₂₂-
- Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonsäureestern, Ester von Polyethylenglycolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine Übersicht über Antistatika wird in EP-A-0,107,127 angegeben.
- Außerdem kann als Antistatikum eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in EP-A-0,636,636 beschrieben.

Kommerziell erhältliche Produkte wie Stadis® 450 der Fa. DuPont, eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfonsäure, einem Polyamin, einem Copolymer aus Dec-1-en und SO₂ sowie Dec-1-en oder ASA®-3 der Fa. Shell und ARU5R® 163 der Firma ICI können ebenfalls verwendet werden.

Vorzugsweise wird das Antistatikum als Lösung eingesetzt, im bevorzugten Fall von Stadis® 450 werden bevorzugt 1 bis 50 Gew.-% dieser Lösung, vorzugsweise 5 bis 25 Gew.-%, bezogen auf die Masse des eingesetzten Trägerkatalysators (Träger mit kovalent fixierter metalloceniumbildende Verbindung und eine oder mehrere Metallocenverbindungen z.B. der Formel VI) eingesetzt. Die benötigten Mengen an Antistatikum können jedoch, je nach Art des eingesetzten Antistatikums, in weiten Bereichen schwanken.

Die eigentliche Polymerisation wird vorzugsweise in flüssigen Monomer (bulk) oder in der Gasphase durchgeführt.

Das Antistatikum kann zu jedem beliebigen Zeitpunkt zur Polymerisation zudosiert werden. Zum Beispiel ist eine bevorzugte Verfahrensweise die, daß das geträgerte Katalysatorsystem in einem organischen Lösemittel, bevorzugt Alkane wie Heptan oder Isododekan, resuspendiert wird. Anschließend wird es unter Rühren in den

15

20

25

30

35

Polymerisationsautoklav zugegeben. Danach wird das Antistatikum zudosiert. Die Polymerisation wird bei Temperaturen im Bereich von 0 bis 100°C durchgeführt. Eine weitere bevorzugte Verfahrensweise ist, daß das Antistatikum vor Zugabe des geträgerten katalysatorsystems in den Polymerisationsautoklav zudosiert wird. Anschließend wird das resuspendierte geträgerte Katalysatorsystem unter Rühren bei Temperaturen im Bereich von 0 bis 100°C zudosiert. Die Polymerisationszeit kann im Bereich von 0,1 bis 24 Stunden. Bevorzugt ist eine Polymerisationszeit im Bereich von 0,1 bis 5 Stunden.

Bei dem vorstehend beschriebenen Verfahren treten keine Reaktorbeläge auf, es bilden sich keine Agglomerate und die Produktivität des eingesetzten Katalysatorsystems ist hoch. Die mit dem erfindungsgemäßen Verfahren hergestellten Polymere zeichnen sich durch eine enge Molekulargewichtsverteilung und gute Kornmorphologie aus.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung

Allgemeine Angaben: Herstellung und Handhabung der Verbindungen erfolgten unter Ausschluß von Luft und Feuchtigkeit unter Argonschutz (Schlenk-Technik). Alle benötigten Lösemittel wurden vor Gebrauch durch mehrsthndiges Sieden über geeignete Trockenmittel und anschließende Destillation unter Argon absolutiert.

Beispiel 1: Synthese von Bis(dimethylalumoxy)pentafluorphenylboran 10ml Trimethylaluminium (2M in Toluol, 20mmol) werden in 40ml Toluol vorgelegt. Bei 40°C werden zu dieser Lösung 2,1g Pentafluorphenylboronsäure (10mmol) in 50ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur (RT). Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf Bor) von Bis(dimethylalumoxy)pentafluorphenylboran in Toluol.

Beispiel 2: Synthese von Bis(pentafluorphenylboroxy)methylalan 5ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45ml Toluol vorgelegt. Bei -40°C werden zu dieser Lösung 6.92g Bis(pentafluorphenyl)borinsäure (20mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe

Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf AI) von Bis(pentafluorphenylboroxy)methylalan in Toluol.

Beispiel 3: Synthese von Bis(phenylboroxy)methylalan

5ml Trimethylaluminium (2M in Toluol, 10 mmol) werden in 45ml Toluol vorgelegt.
Bei -40°C werden zu dieser Lösung 3,32g Bis(phenyl)borinsäure (20mmol) in 50 ml
Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und
anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe Lösung wird
über eine G4-Fritte filtriert. Es resultiert eine klare, farblose Lösung (0.1M bezogen
auf Al) von Bis(phenylboroxy)methylalan in Toluol.

Beispiel 4: Synthese von Bis(pentafluorphenylboroxy)isobutylalan 10ml Triisobutylaluminium (1M in Toluol, 10 mmol) werden in 40ml Toluol vorgelegt. Bei -40°C werden zu dieser Lösung 6,92g Bis(pentafluorphenyl)borinsäure (20mmol) in 50 ml Toluol über 15 Minuten zugetropft. Es wird 1 Stunde bei -40°C gerührt und anschließend eine weitere Stunde bei Raumtemperatur. Die leicht trübe, hellgelbe Lösung wird über eine G4-Fritte filtriert. Es resultiert eine klare, hellgelbe Lösung (0.1M bezogen auf Al) von Bis(pentafluorphenylboroxy)isobutylalan in Toluol.

- Beispiel 5: Trägerung von Bis(dimethylalumoxy)pentafluorphenylboran
 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml
 Toluol suspendiert und bei Raumtemperatur 0,63 ml N,N-Dimethylanilin zugegeben.
 Es wird auf 0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 1
 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt
 3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan
 gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur
 Gewichtskonstanz getrocknet. Es resultieren 3,03g eines schwach blau gefärbten
 Trägermaterials.
- Beispiel 6: Trägerung von Bis(pentafluorphenylboroxy)methylalan
 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml
 Toluol suspendiert und bei Raumtemperatur 0,5 ml N,N-Dimethylanilin zugegeben.
 Es wird auf 0°C gekühlt und über einen Tropftrichter 40ml der im Beispiel 2
 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt
 35 3 Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan
 gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur

30

35

Gewichtskonstanz getrocknet. Es resultieren 4,01g eines hellila gefärbten Trägermaterials.

Beispiel 7: Trägerung von Bis(phenylboroxy)methylalan

2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml

Toluol suspendiert und bei RT 0.63 ml N,N-Dimethylanilin zugegeben. Es wird auf

0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 3 hergestellten Lösung

zugetropft. Man läßt auf Raumtemperatur erwärmen und rührt 3 Stunden nach. Die

Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der

Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren

3,17g eines schwach gelb gefärbten Trägermaterials.

Beispiel 8: Trägerung von Bis(pentafluorphenylboroxy)isobutylalan
2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml
Toluol suspendiert und bei Raumtemperatur 0,63 ml N,N-Dimethylanilin zugegeben.
Es wird auf 0°C gekühlt und über einen Tropftrichter 50ml der im Beispiel 3
hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur kommen und rührt 3
Stunden nach. Die Suspension wird anschließend filtriert und mit Pentan
gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur
Gewichtskonstanz getrocknet. Es resultieren 4,22g eines schwach blau gefärbten
Trägermaterials.

Beispiel 9: Herstellung des Katalysatorsystems 1
Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μmol) in 3 ml Toluol werden bei Raumtemperatur 0,5g des im Beispiel 5 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml Trimethylaluminium (TMA) (2M in Toluol, 20 μmol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 10: Polymerisation mit dem Katalysatorsystem 1
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3ml
Triisobutylaluminium (TIBA) (20% ig in Varsol) zugegeben und 15 Minuten gerührt.
Anschließend wird das im Beispiel 9 hergestellte Katalysatorsystem 1 in 20ml

10

15

20

25

30

Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 151g Polypropylen-Pulver (PP). Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 26 kg PP/g Metallocen x h.

Beispiel 11: Herstellung des Katalysatorsystems 2 Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μmol) in 3 ml Toluol werden bei Raumtemperatur 0,43 g des im Beispiel 6 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 μmol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 12: Polymerisation mit dem Katalysatorsystem 2
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 11 hergestellte Katalysatorsystem 2 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 272 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 47 kg PP/g Metallocen x h.

Beispiel 13: Herstellung des Katalysatorsystems 3
Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μmol) in 3 ml Toluol werden bei Raumtemperatur 0,43 g des im Beispiel 6 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 14: Polymerisation mit dem Katalysatorsystem 3
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen

gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 13 hergestellte Katalysatorsystem 3 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 214 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 37 kg PP/g Metallocen x h.

10

15

20

25

5

WO 99/40129

Beispiel 15: Herstellung des Katalysatorsystems 4 Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μmol) in 3 ml Toluol werden bei Raumtemperatur 0,91 g des im Beispiel 7 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 μmol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 16: Polymerisation mit dem Katalysatorsystem 4

Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 15 hergestellte Katalysatorsystem 4 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 166 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 29 kg PP/g Metallocen x h.

30

35

Beispiel 17: Herstellung des Katalysatorsystems 5
Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 :mol) in 3 ml Toluol werden bei Raumtemperatur 0,44 g des im Beispiel 8 hergestellten Trägers gegeben. Die Suspension wird kurz gerührt und anschließend werden 0,01 ml TMA (2M in Toluol, 20 µmol) zugegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es

resultiert ein rosa farbendes, freifließendes Pulver.

WO 99/40129

5

10

25

30

35

Beispiel 18: Polymerisation mit dem Katalysatorsystem 5
Ein trockener 2l-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 17 hergestellte Katalysatorsystem 5 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 258 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 45 kg PP/g Metallocen x h.

Beispiel 19: Herstellung des Katalysatorsystems 6
Zu 5,8 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdimethyl (10 μmol) in 3 ml Toluol werden bei Raumtemperatur 0,44 g des im Beispiel 8 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

Beispiel 20: Polymerisation mit dem Katalysatorsystem 6
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 19 hergestellte Katalysatorsystem 6 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 198 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 34 kg PP/g Metallocen x h.

Beispiel 21: Herstellung des Katalysatorsystems 7
Zu 6,3 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdichlorid (10 μmol) in 3 ml Toluol werden 10 Minuten mit 0,02 ml TMA (2M in Toluol, 40 μmol)

gerührt. Anschließend werden bei Raumtemperatur 0,44 g des im Beispiel 6 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

5

10

15

20

WO 99/40129

× 1

Beispiel 22: Polymerisation mit dem Katalysatorsystem 7
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 21 hergestellte Katalysatorsystem 7 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 600 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 95 kg PP/g Metallocen x h.

Beispiel 23: Trägerung von Bis(pentafluorphenylboroxy)methylalan 2g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) werden in 30 ml Toluol suspendiert und bei Raumtemperatur 0,5 ml N,N-Dimethylanilin zugegeben. Es wird auf 0°C gekühlt und über einen Tropftrichter 40ml der im Beispiel 2 hergestellten Lösung zugetropft. Man läßt auf Raumtemperatur erwärmen und tropft anschließend 4 ml TIBA (1M in Toluol) zu. Nachfolgend wird noch 1 Stunde bei Raumtemperatur gerührt. Die Suspension wird anschließend filtriert und mit Pentan gewaschen. Danach wird der Rückstand im Ölpumpenvakuum bis zur Gewichtskonstanz getrocknet. Es resultieren 4,14g eines weißen Trägermaterials.

25

Beispiel 24: Herstellung des Katalysatorsystems 8
Zu 6,3 mg Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)-zirkoniumdichlorid (10 μmol) in 3 ml Toluol werden 10 Minuten mit 0,02 ml TMA (2M in Toluol, 40 μmol) gerührt. Anschließend werden bei Raumtemperatur 0,48 g des im Beispiel 23 hergestellten Trägers gegeben. Die Katalysatorlösung wird 1 Stunde gerührt und danach das Lösemittel im Ölpumpenvakuum abgezogen. Es resultiert ein rosa farbendes, freifließendes Pulver.

35

30

Beispiel 25: Polymerisation mit dem Katalysatorsystem 8
Ein trockener 2I-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 I flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird das im Beispiel 24 hergestellte Katalysatorsystem 8 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisationstemperatur von 60°C aufgeheizt und 1 Stunde polymerisiert. Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 640 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 102 kg PP/g Metallocen x h.

Vergleichsbeispiele:

5

10

15

20

Beispiel 26: Herstellung des Katalysatorsystems 9
100 mg (0,165 mmol) Dimethylsilandiylbis-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid werden in 7,5 ml 30%-iger MAO-Lösung in Toluol (Al/Zr=225) und weiteren 7,5 ml Toluol vermischt und 30 Minuten bei Raumtemperatur gerührt. Anschließend werden 10 g SiO₂ (PQ MS3030, vorbehandelt bei 140°C, 10 mbar, 10 Std.) dazugegeben und weitere 10 Minuten gerührt. Das Lösemittel wird im Ölpumpenvakuum entfernt.

Beispiel 27 Polymerisation mit dem Katalysatorsystem 9
Ein trockener 2l-Reaktor wird zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 1,5 l flüssigem Propylen befüllt. Dazu werden 3 ml TIBA (20% ig in Varsol) zugegeben und 15 Minuten gerührt. Anschließend wird 0,753 g (5,97 mg Dimethylsilandiylbis-(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid) des im Beispiel 26 hergestellten Katalysatorsystems 9 in 20 ml Heptan resuspendiert eingespritzt und mit 15ml Heptan nachgespült. Das Reaktionsgemisch wird auf die Polymerisations-temperatur von 60°C aufgeheizt und 1 Stunde polymerisiert.

Gestoppt wird die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Es resultieren 316 g Polypropylen-Pulver. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer. Die Katalysatoraktivität beträgt 53 kg PP/g Metallocen x h.

Patentansprüche:

- 1. Katalysatorsystem enthaltend
- a) mindestens ein Metallocen,
- b) mindestens eine Lewis-Base der Formel I,

 $M^2R^3R^4R^5 \qquad (I)$

worin

 R^3 , R^4 und R^5 gleich oder verschieden sind und für ein Wasserstoffatom, eine C_1 - C_{20} -Alkyl-, C_1 - C_{20} -Halogenalkyl-, C_6 - C_{40} -Aryl-, C_6 - C_{40} -Halogenaryl-, C_7 - C_{40} -Alkylaryl- oder C_7 - C_{40} -Arylalkyl-Gruppe stehen, wobei gegebenenfalls zwei Reste oder alle drei Reste R^3 , R^4 und R^5 über C_2 - C_{20} -Kohlenstoffeinheiten miteinander verbunden sein können und M^2 für ein ein Element der V. Hauptgruppe des Periodensystems der Elemente steht.

15 c) einen Träger,

10

d) mindestens eine Organoboraluminium-Verbindung, die aus Einheiten der Formel II

 $R_i^1 M^3 - O - M^3 R_i^2$ (II)

worin

R¹ und R² gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe, insbesondere C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, Cȝ-C₄₀-Arylalkyl, Cȝ-C₄₀-Halogenarylalkyl, Cȝ-C₄₀-Alkylaryl, Cȝ-C₄₀-Halogenalkylaryl sind oder R¹ kann eine -OSiR₃-Gruppe sein, worin R gleich oder verschieden sind und und die gleiche Bedeutung wie R¹ haben, M³ gleich oder verschieden ist und für ein Element der 3. Hauptgruppe des Periodensystems der Elemente steht und i und j jeweis eine ganze Zahl 0, 1 oder 2 steht, aufgebaut ist und die kovalent an den Träger gebunden ist, sowie gegebenenfalls

e) eine Organometallverbindung der Formel V

 $[\mathsf{M}^4\mathsf{R}^6_{\mathsf{p}}]_{\mathsf{k}} \qquad (\mathsf{V})$

worin

5

25

30

M⁴ ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist,

 R^6 gleich oder verschieden ist und ein Wasserstoffatom, ein Halogenatom, eine C_1 - C_{40} -kohlenstoffhaltige Gruppe, insbesondere C_1 - C_{20} - Alkyl-, C_6 - C_{40} -Aryl-, C_7 - C_{40} -Aryl-alkyl oder C_7 - C_{40} -Alkyl-aryl-Gruppe bedeutet, p eine ganze Zahl von 1 bis 3 und k ist eine ganze Zahl von 1 bis 4 ist.

- Katalysatorsystem gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich bei den Lewis-Basen der Formel (I) um solche handelt, bei denen M² für Stickstoff oder Phosphor steht.
- 3. Katalysatorsystem gemäß Anspruch 2, dadurch gekennzeichnet, daß es sich bei den Lewis-Basen der Formel (I) um Triethylamin, Triisopropylamin, Triisobutylamin, Tri(n-butyl)amin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-2,4,6-Pentamethylanilin, Dicyclohexylamin, Pyridin, Pyrazin, Triphenylphosphin, Tri(methylphenyl)phosphin und Tri(dimethylphenyl)phosphin handelt.
- 4. Katalysatorsystem gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Träger ist ein poröser anorganischer oder organischer Feststoff ist.
 - 5. Katalysatorsystem gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es sich um Organoboraluminiumverbindung handelt, bei der in der Formel (II) M³ für Bor oder Aluminium steht.
 - 6. Katalysatorsystem gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß es bei den Organoboraluminiumverbindung um Verbindungen der Formeln (III) und (IV),

worin R¹ und R² die gleiche Bedeutung wie unter Formel (II) haben, handelt.

7. Katalysatorsystem gemäß Anspruch 6, dadurch gekennzeichnet, daß es sich bei den Organoboraluminiumverbindung der Formeln (III) und (IV) um

handelt.

- 8. Katalysatorsystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es sich bei Organometallverbindungen der Formel (V) um Trimethylaluminium, Triethylaluminium, Tri-isopropylaluminium, Trihexylaluminium, Trioctylaluminium, Tri-n-butylaluminium, Tri-n-propylaluminium, Triisoprenaluminium, Dimethylaluminiummonochlorid, Diethyl-aluminiummonochlorid,
- Diisobutylaluminiummonochlorid, Methylaluminiumsesqui-chlorid, Ethylaluminiumsesquichlorid, Dimethylaluminiumhydrid, Diethylaluminium-hydrid, Diisopropylaluminiumhydrid, Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(triethylsiloxid), Phenylalan, Pentafluorphenylalan und o-Tolylalan, handelt.
- 9. Katalysatorsystem gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei dem Metallocen um ein unverbrücktes oder verbrücktes Metallocen der Formel (VI),

worin

20 M¹ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der

10

15

20

25

30

Elemente ist, insbesondere Ti, Zr oder Hf,

R7 gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin R^{12} gleich oder verschieden ein Wasserstoffatom oder eine C_1 - C_{40} kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, $C_6-C_{20}-Aryl$, $C_6-C_{10}-Fluoraryl$, $C_6-C_{10}-Aryloxy$, $C_2-C_{10}-Alkenyl$, $C_7-C_{40}-Aryloxy$ Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl sind, oder R⁷ sind eine C₁-C₃₀ - kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C5-C24-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C₃₀-Alkylaryl, fluorhaltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R7 können so miteinander verbunden sein, daß die Reste R7 und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann.

R8 gleich oder verschieden sind und ein Wasserstoffatom oder SiR₃¹² sind, worin ${\sf R}^{12}$ gleich oder verschieden ein Wasserstoffatom oder eine ${\sf C}_1{\sf -C}_{40}{\sf -C}_{40}$ kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy, ${\rm C_{6}\text{-}C_{14}\text{-}Aryl,\ C_{6}\text{-}C_{10}\text{-}Fluoraryl,\ C_{6}\text{-}C_{10}\text{-}Aryloxy,\ C_{2}\text{-}C_{10}\text{-}Alkenyl,\ C_{7}\text{-}C_{40}\text{-}}}$ Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder R8 sind eine C1-C₃₀ - kohlenstoffhaltige Gruppe wie C₁-C₂₅-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl, C₅-C₂₄-Heteroaryl, z. B. Pyridyl, Furyl oder Chinolyl, C₇-C₃₀-Arylalkyl, C_7 - C_{30} -Alkylaryl, fluorhaltiges C_1 - C_{25} -Alkyl, fluorhaltiges C_6 - C_{24} -Aryl, fluorhaltiges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R8 können so miteinander verbunden sein, daß die Reste R⁸ und die sie verbindenden Atome des Cyclopentadienylringes ein kohlenstoffhaltiges oder ein kohlenstoff- und heteroatomhaltiges C₄-C₂₄-Ringsystem bilden, welches seinerseits substituiert sein kann,

gleich 5 für v = 0, und I gleich 4 für v = 1 ist, m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,

15

25

- L1 gleich oder verschieden sein können und ein Wasserstoffatom, eine C_1 - C_{10} -Kohlenwasserstoffgruppe wie C_1 - C_{10} -Alkyl oder C_6 - C_{10} -Aryl, ein Halogenatom, oder OR^9 , SR^9 , $OSiR_3^9$, SiR_3^9 , PR_2^9 oder NR_2^9 bedeuten, worin R^9 ein Halogenatom, eine C_1 - C_{10} Alkylgruppe, eine halogenierte C_1 - C_{10} Alkylgruppe, eine C_6 - C_{20} Arylgruppe oder eine halogenierte C_6 - C_{20} Arylgruppe sind, oder L^1 sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluor-methansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-Gruppe,
- o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
- 10 Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet und v ist 0 oder 1, bedeutet, handelt.
 - 10. Katalysatorsystem gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es sich bei dem Metallocen der Formel (VI) worin Z für eine Gruppe MR¹⁰R¹¹ steht, worin M Kohlenstoff, Silizium, Germanium oder Zinn ist und R¹⁰ und R¹¹ gleich oder verschieden eine C₁-C₂₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₁₀-Alkyl, C₆-C₁₄-Aryl oder Trimethylsilyl bedeutet.
- 11. Katalysatorsystem gemäß Anspruch 10, dadurch gekennzeichnet, daß es sich bei dem Metallocen der Formel (VI) worin Z für CH_2 , CH_2CH_2 , $CH(CH_3)CH_2$, $CH(C_4H_9)C(CH_3)_2$, $C(CH_3)_2$ Si, $(CH_3)_2$ Si,
 - 12. Katalysatorsystem gemäß Anspruch 11, dadurch gekennzeichnet, daß als Metallocen Dimethylsilandiylbis(indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid,
- Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlorid,

Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid,

- Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid,
 Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid,
 Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid,
- Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid, Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid,
- Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlorid,
 Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid,
 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid,
 Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid,
 Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid,
- Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid, Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirk-oniumdichlorid,
 - Methyl(phenyl)silandiylbis(2-methyl-4--acenaphth-indenyl)zirkoniumdichlorid, Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid,
- 25 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlorid,
 - 1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid,
 - 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid,
 - 1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid,
 - 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid,
- 30 1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid,
 - 1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid.
 - 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid,
 - 1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid,
 - 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid,
- ³⁵ [4-(0⁵ -Cyclopentadienyl)-4,6,6-trimethyl-(0⁵-4,5-tetrahydropentalen)]-dichlorozirconium,

٧,

15

35

- [4-(0⁵ -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(0⁵ -4,5-tetrahydropentalen)]-dichlorozirconium,
- [4-(0⁵-3'-lsopropyl-cyclopentadienyl)-4,6,6-trimethyl-(0⁵-4,5-tetrahydropentalen)]-dichlorozirconium,
- [4-(0 ⁵-Cyclopentadienyl)-4,7,7-trimethyl-(0 ⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan, [4-(0⁵-Cyclopentadienyl)-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium,
 - [4-(0⁵-Cyclopentadienyl)-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorohafnium,
- [4-(0⁵-3=-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan,
 - 4-(0⁵-3=-Isopropylcyclopentadienyl)-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan,
 - 4-(0⁵-3=-Methylcyclopentadienyl)-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan,
 - 4-(0⁵-3=-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl-(0⁵-4,5,6,7-tetrahydroindenyl)]-dichlorotitan,
 - $4-(0^5-3=-\text{tert.Butyl-cyclopentadienyl})-4,7,7-\text{trimethyl-}(0^5-4,5,6,7-\text{tetrahydroindenyl})]-dichlorozirkonium,$
- (Tertbutylamido)-(tetramethyl-0⁵-cyclopentadienyl)-dimethylsilyl-dichlorotitan, (Tertbutylamido)-(tetramethyl-0⁵-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan,
 - (Methylamido)-(tetramethyl-0 ⁵-cyclopentadienyl)-dimethylsilyl-dichlorotitan, (Methylamido)-(tetramethyl-0 ⁵-cyclopentadienyl)-1,2-ethandiyl-dichlorotitan,
- 25 (Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan, Bis-(cyclopentadienyl)-zirkoniumdichlorid,
 - Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid,
 - Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid,
 - Tetrachloro-[1-[bis(05-1H-inden-1-yliden)methylsilyl]-3-05-cyclopenta-2,4-dien-1-
- yliden)-3-0⁵-9H-fluoren-9-yliden)butan]di-zirkonium,
 Tetrachloro-[2-[bis(0⁵-2-methyl-1H-inden-1-yliden)methoxysilyl]-5-(0⁵-2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yliden)-5-(0 ⁵-9H-fluoren-9-yliden)hexan]di-zirkonium,
 - Tetrachloro-[1-[bis(0⁵-1H-inden-1-yliden)methylsilyl]-6-(0⁵-cyclopenta-2,4-dien-1-yliden)-6-(0⁵-9H-fluoren-9-yliden)-3-oxaheptanldi-zirkonjum.

Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-methyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-methyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl 15 Dimethylsilandiylbis(2-ethyl-4-(4'-tert-butyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-methoxy-phenyl-indenyl)zirkoniumdimethyl 20 Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl Dimethylsilandiylbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdichlorid Dimethylsilandivlbis(2-ethyl-4-(4'-trimethylsilyl-phenyl-indenyl)zirkoniumdimethyl 25 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuimdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid 35 Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid 5 Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid 10 Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4´-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid 15 Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid 20 Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid 25 Dimethylsilandiylbis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid 30 Dimethylsilandiylbis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-35 indenyl)zirkoniumbis(dimethylamid)

indenyl) zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid 5 Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid 10 Ethylidenbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandibenzyl Ethylidenbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdimethyl 15 Ethylidenbis(2-n-propyl-4--phenyl)-indenyl)titandimethyl Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumbis(dimethylamid) Ethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titanbis(dimethylamid) Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid 20 Methylethylidenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid Phenylphosphandiyl(2-methyl-4-(4´-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) 25 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) 30 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-methylphenylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-methylphenylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-

zirkoniumdichlorid

indenyl) zirkoniumdichlorid

35

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl)

zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-10 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-methylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-methylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-methylphenylindenyl)zirkoniumdichlorid 20 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-methylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-methylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) 25 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) 30 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-

WO 99/40129

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
- 20 zirkoniumdichlorid

10

- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-ethylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl)
- 30 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-
- 10 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-
- 20 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-n-propylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

- 5 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- 20 isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-
- 30 indenyl) zirkoniumdichlorid

٠,,

10

WO 99/40129

- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl)
- 10 zirkoniumdichlorid

WO 99/40129

رة ہ

20

- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-s-
- 30 butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid

• .1

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-
- indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-s-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- 30 indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
- 5 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-
- indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)
- 20 zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-
- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)
 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)
- 10 zirkoniumdichlorid

WO 99/40129

- Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-n-pentylphenyl-indenyl)
- 20 zirkoniumdichlorid

indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl) zirkoniumdichlorid
- indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4´-n-hexylphenyl-
 - Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-n-hexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-nhexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-5 hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-10 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) 15 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl)zirkoniumdichlorid 20 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-hexylphenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) 25 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) 30 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'cyclohexylphenyl-indenyl) zirkoniumdichlorid 35 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-

cyclohexylphenyl-indenyl) zirkoniumdichlorid

×

را

- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- cyclohexylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-
- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-
- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

4

11

70

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-
- indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-

indenyl)zirkoniumdichlorid

Dimethylsilandiyl/2 5-dimethyl-4-thianentalen)/2-m

trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4´-trimethylsilylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-
- 30 indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

ارني

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-
- adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-
- adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl)zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl)zirkoniumdichlorid

indenyl)zirkoniumdichlorid

35

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-

٠,

الدنكي

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4´-adamantylphenyl-indenyl) zirkoniumdichlorid

- Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-
- tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid

ر.

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkoniumdichlorid

- Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4'-tert-butylphenyl-indenyl)
- zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-5,6-di-hydro-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4´-tert-butylphenyl-tetrahydroindenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-5-azapentalen)(2-n-butyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid Ethyliden(2-methyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-trimethylsilyl-4-azapentalen)(2-methyl-4-(4'-tert-
- butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2-methyl-N-tolyl-5-azapentalen)(2-n-propyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylgermyldiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
- 25 Methylethyliden(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-di-iso-propyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2,6-dimethyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylnaphthyl-indenyl) zirkoniumdichlorid

 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-
- Dimethylsilandiyl(2-methyl-4-phosphapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

butylanthracenyl-indenyl) zirkoniumdichlorid

٠,

10

Diphenylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Methylphenylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl)zirkoniumdichlorid

- Methyliden(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylmethyliden(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Diphenylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4´-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Diphenylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methylindenyl)
- 25 zirkoniumdichlorid
 - Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid
 - Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methylindenyl) zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
- Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methylindenyl)zirkoniumdichlorid
 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methylindenyl) zirkoniumdichlorid

٩,

35

zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methylindenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid 5 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandivl(2-methyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid 10 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(indenyl) zirkoniumdichlorid 15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(indenyl) zirkoniumdichlorid 20 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) 25 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 30 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-phenyl-indenyl)

zirkoniumdichlorid

76

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) 5 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-phenyl-10 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-phenyl-20 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-phenylindenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid 25 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl) 30 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 35 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4,5-benzo-indenyl)

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) 5 zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid 10 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4,5-benzo-15 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl) 20 zirkoniumdichlorid Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4,5-benzoindenyl)zirkoniumdichlorid Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4,5-benzo-25 indenyl)zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl) 30 zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-4-azapentalen)zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-5-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-6-azapentalen) zirkoniumdichlorid Dimethylsilandiylbis(2-methyl-N-phenyl-4-azapentalen) zirkoniumdichlorid 35 Dimethylsilandiylbis(2-methyl-N-phenyl-5-azapentalen) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-N-phenyl-6-azapentalen) zirkoniumdichlorid

5

10

15

20

Dimethylsilandiylbis(2,5-dimethyl-4-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-4-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-N-phenyl-6-azapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-thiapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-5-thiapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-6-thiapentalen) zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2-methyl-6-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlorid
Dimethylsilandiylbis(2,5-dimethyl-6-oxapentalen)zirkoniumdichlorid
oder ein Gemisch derselben, eingesetzt wird.

- 13. Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines oder mehrerer Olefine in Gegenwart eines Katalysatorsystems nach einem der Ansprüche 1 bis 12.
- 14. Verwendung eines Katalysatorsystems gemäß einem der Ansprüche 1 bis 12 zur Herstellung eines Polyolefins.

INTERNATIONAL SEARCH REPORT

Int tional Application No PCT/EP 99/00725

		PUI/E	r 99/00/25
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C08F10/00 C08F4/649		
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classification COSF	on symbols).	
	lon searched other than minimum documentation to the extent that s		
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search ten	ms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.
Y	EP 0 601 830 A (MITSUBISHI PETROCCO) 15 June 1994 see page 9, line 19 - line 27 see examples 1,2,11-14 see page 20; table 3 see claims 1,5,7,9	HEMICAL	1-14
Y	WO 92 01005 A (EXXON CHEMICAL PAT 23 January 1992 see examples 1-4	ENTS INC)	1-14
X	WO 93 13140 A (EXXON CHEMICAL PAT 8 July 1993 see page 19, line 23 - line 29 see page 28 - page 30; example 4; see claims 1,7,8,11-13	,	1-5,13, 14
ł	-	-/	
X Furth	er documents are listed in the continuation of box C.	X Patent family members a	re listed in annex.
° Special cat	legories of cited documents:	"T" later document published after	the international filing date
consider d	nt defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international	or priority date and not in con cited to understand the princip invention "X" document of particular relevan	flict with the application but ple or theory underlying the
citation	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another i or other special reason (as specified)	cannot be considered novel of involve an inventive step whe "Y" document of particular relevant cannot be considered to involve.	or cannot be considered to on the document is taken alone, on the claimed invention the an inventive step when the
other n "P" docume	nft referring to an oral disclosure, use, exhibition or neans not near the international filling date but an the priority date claimed		ne or more other such docu- ng obvious to a person skilled e patent family
	actual completion of the international search	Date of mailing of the internat	
25	5 May 1999	07/06/1999	
Name and m	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	GAMB, V	

1

In Itlonal Application No PCT/EP 99/00725

WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 see examples 9,16 see claims 1,5,8,11,16	Category Citation of document, with indication, where appropriate, of the relevant passages WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 3 ee examples 9,16 3 ee claims 1,5,8,11,16 DE 197 33 017 A (HOECHST AG) 4 February 1999 3 ee page 7 - page 8 3 see page 11, line 52 - line 53 3 see page 12, line 41 - line 48 3 see examples 1-4,7,8	WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 see examples 9,16 see claims 1,5,8,11,16 P,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8			PCT/EP 99/00725
WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 see examples 9,16 see claims 1,5,8,11,16 ,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 see examples 9,16 see claims 1,5,8,11,16 7,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	WO 97 14700 A (ALBEMARLE CORP) 24 April 1997 see examples 9,16 see claims 1,5,8,11,16 7,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8			
24 April 1997 see examples 9,16 see claims 1,5,8,11,16 DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	24 April 1997 see examples 9,16 see claims 1,5,8,11,16 ,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	24 April 1997 see examples 9,16 see claims 1,5,8,11,16 ,X DE 197 33 017 A (HOECHST AG) 4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.
4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	х	24 April 1997 see examples 9,16	1-5,9, 13,14
			P,X	4 February 1999 see page 7 - page 8 see page 11, line 52 - line 53 see page 12, line 41 - line 48 see examples 1-4,7,8	1-14

1

ادي

INTERNATIONAL SEARCH REPORT

information on patent family members

In ational Application No PCT/EP 99/00725

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
EP 0601830	A	15-06-1994	JP JP US US	6172438 A 6172439 A 5449650 A 5648440 A	21-06-1994 21-06-1994 12-09-1995 15-07-1997
WO 9201005	Α	23-01-1992	US	5001244 A	19-03-1991
WO 9313140	A	08-07-1993	CA DE DE EP ES JP JP US	2126317 A 69220676 D 69220676 T 0618931 A 2104122 T 2816766 B 7501846 T 5547675 A	08-07-1993 07-08-1997 11-12-1997 12-10-1994 01-10-1997 27-10-1998 23-02-1995 20-08-1996
WO 9714700	Α	24-04-1997	US EP	5670682 A 0882054 A	23-09-1997 09-12-1998
DE 19733017	Α	04-02-1999	WO	9906414 A	11-02-1999

(3

INTERNATIONALER RECHERCHENBERICHT

itionales Aktenzeichen PCT/EP 99/00725

A. KLASSIFIZIERUNG DEŞ ANMELDUNGSGEGENSTANDES IPK 6 C08F10/00 C08F4/649

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 6 \ C08F$

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	EP 0 601 830 A (MITSUBISHI PETROCHEMICAL CO) 15. Juni 1994 siehe Seite 9, Zeile 19 - Zeile 27 siehe Beispiele 1,2,11-14 siehe Seite 20; Tabelle 3 siehe Ansprüche 1,5,7,9	1-14
Υ	WO 92 01005 A (EXXON CHEMICAL PATENTS INC) 23. Januar 1992 siehe Beispiele 1-4	1-14
X	WO 93 13140 A (EXXON CHEMICAL PATENTS INC) 8. Juli 1993 siehe Seite 19, Zeile 23 - Zeile 29 siehe Seite 28 - Seite 30; Beispiel 4; Tabelle II siehe Ansprüche 1,7,8,11-13	1-5,13, 14

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Slehe Anhang Patentlamilie
 Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Rechercherbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussteltung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioniätsdatum veröffentlicht worden ist 	"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidlent, sondern nur zum Verständnls des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann alleln aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des Internationalen Recherchenberichts
25. Mai 1999	07/06/1999
Name und Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	GAMB, V

1

* •

INTERNATIONALER RECHERCHENBERICHT

In ationales Aktenzeichen PCT/EP 99/00725

		/EP 99/00725
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Te	ile Betr. Anspruch Nr.
Х	WO 97 14700 A (ALBEMARLE CORP) 24. April 1997 siehe Beispiele 9,16 siehe Ansprüche 1,5,8,11,16	1-5,9, 13,14
P,X	DE 197 33 017 A (HOECHST AG) 4. Februar 1999 siehe Seite 7 - Seite 8 siehe Seite 11, Zeile 52 - Zeile 53 siehe Seite 12, Zeile 41 - Zeile 48 siehe Beispiele 1-4,7,8 siehe Ansprüche 1-8	1-14

1

人

INTERNATIONAL RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int :ionales Aktenzeichen PCT/EP 99/00725

	nerchenbericht s Patentdokum		Datum der Veröffentlichung		tglied(er) der atentfamilie		Datum der Veröffentlichung
EP O	601830	A	15-06-1994	JP JP US US	6172438 6172439 5449650 5648440	A A	21-06-1994 21-06-1994 12-09-1995 15-07-1997
WO 9	201005	Α	23-01-1992	US	5001244	Α	19-03-1991
WO 9:	313140	A	08-07-1993	CA DE DE EP ES JP JP US		D T A T B T	08-07-1993 07-08-1997 11-12-1997 12-10-1994 01-10-1997 27-10-1998 23-02-1995 20-08-1996
WO 9	714700	Α	24-04-1997	US EP	5670682 0882054		23-09-1997 09-12-1998
DE 1	9733017	Α	04-02-1999	WO	9906414	A	11-02-1999