# EFFECT OF MOLDING CONDITIONS ON THE EFFECTIVE STRESS-STRENGTH BEHAVIOR OF A STABILIZED CLAYEY SILT

by

Anwar E.Z. Wissa Samuel Feferbaum-Zyto Jose Guillermo Paniagua

Sponsored by

110.1451-8-52 A-U.S. Army Materiel Command DA Project No. I-T-O-1451-B-52-A30

#### Conducted for

U.S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi

under

Contract No. DA IT0611102852A-01

Research Report No. R69-55 Soil Mechanics Division Department of Civil Engineering Massachusetts Institute of Technology

January, 1970

Soils Publication No. 242

This document has been approved for public release and sale; its distribution is unlimited.



#### FOREWORD

This report is the eighth in a series of reports on soil stabilization issued by the Massachusetts Institute of Technology for the U.S. Army Materiel Command under Project Number DA IT061102B52A-01. The work was conducted during fiscal years 1966-1968 under Contract No. DA-22-079-eng-465 between the U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, and the Soils Research Laboratory of the Department of Civil Engineering at the Massachusetts Institute of Technology.

The work covered by this report was conducted by Mr. Samuel Feterbaum-Zyto, and Mr. Jose Guillermo Paniagua, both Research Assistants in Soils, under the direct supervision of Dr. Anwar E.Z. Wissa, Associate Professor of Civil Engineering. Dr. Wissa and Mr. Paniagua prepared the report.

The contract was monitored by Mr. Royce C. Eaves, Chief Stabilization Section, Expedient Surfaces Branch, under the general supervision of Mr. J.P. Sale, Chief, Soils Division, W.E.S. Contracting Officer was Col. L.A. Brown, C.E.

# LIST OF SOIL STABILIZATION PHASE REPORTS

| Phase Report | Title                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|
| No. 1        | "Engineering Behavior of Partially Saturated Soils", May 1963.                                                              |
| No. 2        | "Triaxial Equipment and Computer<br>Program for Measuring the Strength<br>Behavior of Stabilized Soils",<br>September 1963. |
| No. 3        | "Effective Stress-Strength Behavior of Compacted Stabilized Soils", July 1964.                                              |
| No. 4        | "Chemical Stabilization of Selected Tropical Soils (From Puerto Rico and Panama)", October 1964.                            |
| No. 5        | "Shear Strength Generation in Stabi-<br>lized Soils", June 1965.                                                            |
| No. 6        | "Compressibility-Permeability Behavior of Untreated and Cement-Stabilized Clayey Silt", December 1968.                      |
| No. 7        | "A Durability Test for Stabilized Soils", June 1969.                                                                        |
| No. 8        | "Effect of Molding Conditions on the Effective Stress-Strength Behavior of a Stabilized Clayey Silt", January 1970.         |

# TABLE OF CONTENTS

|                                           |                    | <u>Title</u>                                                                                                                                                                                                                         | Page                                      |
|-------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Table of<br>List of<br>List of<br>Summary | So:<br>F Co<br>Tal | bles .                                                                                                                                                                                                                               | i<br>iii<br>iv<br>vi<br>vii<br>xv<br>xvii |
| Chapter                                   | 1                  | INTRODUCTION                                                                                                                                                                                                                         | 1                                         |
| Chapter                                   | 2                  | MATERIALS AND TESTING PROCEDURES 2.1 Soil 2.2 Type and Amount of Stabilizer 2.3 Mixing Procedure 2.4 Compaction Procedure 2.5 Curing Procedures 2.6 Testing Procedures                                                               | 4<br>4<br>5<br>6<br>8<br>9                |
| Chapter                                   | 3                  | INFLUENCE OF MOLDING WATER CONTENT AND DRY DENSITY 3.1 Effective Stress-Strength Behavior 3.2 Pore Pressure Response 3.3 Pore Pressure During Shear 3.4 Total Stress-Strength Behavior 3.5 Stress-Strain Behavior                    | 14<br>14<br>18<br>20<br>26<br>28          |
| Chapter                                   | 4                  | INFLUENCE OF DELAY TIME PRIOR TO COMPACTION 4.1 Delay Time Compaction 4.2 Effective Stress-Strength Behavior 4.3 Pore Pressure Response 4.4 Pore Pressure During Shear 4.5 Total Stress-Strength Behavior 4.6 Stress-Strain Behavior | 78<br>78<br>78<br>81<br>82<br>85<br>86    |
| Chapter                                   | 5                  | CONCLUSIONS                                                                                                                                                                                                                          | 100                                       |
| List of                                   | Re                 | ferences                                                                                                                                                                                                                             | 103                                       |
| Appendia                                  | κA                 | STRESS-STRAIN BEHAVIOR                                                                                                                                                                                                               | 105                                       |

# LIST OF TABLES

| No. | <u>Title</u>                                                       | Page |
|-----|--------------------------------------------------------------------|------|
| 2.1 | Properties of Untreated M-21                                       | 10   |
| 2.2 | Atterberg Limits for M-21 Systems                                  | 11   |
| 3.1 | Preshear Data for Untreated M-21                                   | 31   |
| 3.2 | Preshear Data for M-21 + 5% Lime                                   | 32   |
| 3.3 | Preshear Data for M-21 + 5% Cement                                 | 33   |
| 3.4 | Summary of Stress-Strain Character-<br>istics for Untreated M-21   | 34   |
| 3.5 | Summary of Stress-Strain Character-<br>istics for M-21 + Lime      | 35   |
| 3.6 | Summary of Stress-Strain Character-<br>istics for M-21 + 5% Cement | 36   |
| 4.1 | Preshear Data for M-21 + 5% Cement                                 | 88   |
| 4.2 | Summary of Stress-Strain Character-<br>istics for M-21 + 5% Cement | 89   |

# LIST OF FIGURES

| Fig. No.  | <u>Title</u>                                                                                                                                                        | Page |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Chapter 2 | MATERIALS AND TESTING PROCEDURES                                                                                                                                    |      |
| 2.1       | Grain Size Distribution of Untreated Massachusetts Clayey Silt                                                                                                      | 12   |
| 2.2       | Moisture-Density Relationship at Compaction for M-21 Systems. Static Compaction Method.                                                                             | 13   |
| Chapter 3 | INFLUENCE OF MOLDING WATER CONTENT AND DRY DENSITY                                                                                                                  |      |
| 3.1       | Effective Stress-Strength Behavior of Untreated M-21 Compacted Dry of Optimum                                                                                       | 37   |
| 3.2       | Effective Stress-Strength Behavior of Untreated M-21 Compacted Dry of Optimum                                                                                       | 38   |
| 3.3       | Effective Stress-Strength Behavior of Untreated M-21 Compacted at Optimum                                                                                           | 39   |
| 3.4       | Effective Stress-Strength Behavior of Untreated M-21 Compacted Wet of Optimum                                                                                       | 40   |
| 3.5       | Effective Stress-Strength Behavior of Untreated M-21 Compacted to High Density                                                                                      | 41   |
| 3.6       | Influence of Water Content During<br>Shear on the Effective Principal Stress<br>Ratio of Untreated Massachusetts Clayey<br>Silt as a Function of Molding Conditions | 42   |
| 3.7       | Influence of Molding Conditions on<br>the Effective Stress-Strength Relation<br>of Untreated Massachusetts Clayey<br>Silt at Ultimate.                              | 43   |
| 3.8       | Effective Stress-Strength Behavior of M-21 + 5% Lime Compacted very dry of Optimum                                                                                  | 44   |
| 3.9       | Effective Stress-Strength Behavior of M-21 + 5% Lime Compacted Dry of Optimum                                                                                       | 45   |

| 3.10  | Effective Stress-Strength Behavior of M-21 + 5% Lime Compacted at Optimum                                                                      | 46 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.11  | Effective Stress-Strength Behavior of M-21 + 5% Lime Compacted Wet of Optimum                                                                  | 47 |
| 3.12  | Effective Stress-Strength Behavior of M-21 + 5% Lime Compacted to High Density                                                                 | 48 |
| 3.1.3 | Effective Stress-Strength Behavior of M-21 + 5% Cement Compacted Dry of Optimum                                                                | 49 |
| 3.14  | Effective Stress-Strength Behavior of M-21 + 5% Cement Compacted at Optimum                                                                    | 50 |
| 3.15  | Effective Stress-Strength Behavior of M-21 + 5% Cement Compacted Wet of Optimum                                                                | 51 |
| 3.16  | Effective Stress-Strength Behavior of M-21 + 5% Cement Compacted at High Density                                                               | 52 |
| 3.17  | Influence of Molding Conditions on<br>the Mohr-Coulomb Effective Stress-<br>Strength Parameters of M-21 Stabilized<br>with 5% Lime             | 53 |
| 3.18  | Influence of Molding Conditions on<br>the Mohr-Coulomb Effective Stress-<br>Strength Parameters of M-21 Stabilized<br>with 5% cement.          | 53 |
| 3.19  | Effective Stress-Strength Relation at Ultimate for M-21 + 5% Lime                                                                              | 54 |
| 3.20  | Effective Stress-Strength Relation at Ultimate for M-21 + 5% Cement                                                                            | 55 |
| 3.21  | Comparison of Effective Principal<br>Stress Ratio for M-21 with 5% Lime<br>at Mohr-Coulomb and Ultimate as<br>a Function of Molding Conditions | 56 |

| 3.22 | Comparison of Effective Principal<br>Stress Ratio for M-21 with 5% Cement<br>at Mohr-Coulomb and Ultimate as a<br>Function of Molding Conditions       | 56 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.23 | Effective Stress-Strength Relation at Ultimate for the M-21 Systems                                                                                    | 57 |
| 3.24 | Influence of Molding Dry Density on the Undrained Strength of M-21 Stabilized with 5% Lime                                                             | 58 |
| 3.25 | Influence of Molding Dry Density<br>on the Undrained Strength of M-21<br>Stabilized with 5% Cement                                                     | 58 |
| 3.26 | Pore Pressure Response of Untreated<br>Massachusetts Clayey Silt                                                                                       | 59 |
| 3.27 | Pore Pressure Response of Lime<br>Stabilized Massachusetts Clayey<br>Silt                                                                              | 60 |
| 3.28 | Pore Pressure Response of Cement<br>Stabilized Massachusetts Clayey Silt                                                                               | 61 |
| 3.29 | Influence of Molding Conditions on<br>the Effective Minor Principal Stress<br>of Untreated Massachusetts Clayey<br>Silt During Undrained Shear         | 62 |
| 3.30 | Influence of Molding Conditions on<br>the Effective Minor Principal Stress<br>of Untreated Massachusetts Clayey<br>Silt at Ultimate                    | 63 |
| 3.31 | Influence of Static Compaction Effort<br>on the Normalized Effective Minor<br>Principal Stress of Untreated Massa-<br>chuestts Clayey Silt at Ultimate | 64 |
| 3.32 | Influence of Molding Water Content<br>on the A-Factor of Untreated Massa-<br>chusetts Clavey Silt                                                      | 65 |

| 3.33 | Influence of Molding Conditions on the Effective Minor Principal Stress of M-21 Stabilized with 5% Lime                                   | 66 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.34 | Influence of Molding Condtions on<br>the Effective Minor Principal Stress<br>of M-21 Stabilized with 5% Cement                            | 67 |
| 3.35 | Influence of As-Molded Dry Density<br>on the A-Factor of Massachusetts<br>Clayey Silt Stabilized with 5%<br>Lime                          | 68 |
| 3.36 | Influence of As-Molded Dry Density<br>on the A-Factor of Massachusetts<br>Clayey Silt Stabilized with 5%<br>Cement                        | 69 |
| 3.37 | Influence of As-Molded Dry Density on the Ultimate A-Factor of M-21 + 5% Lime and M-21 + 5% Cement                                        | 70 |
| 3.38 | Influence of Molding Conditions on<br>the Stress-Strength Behavior of Un-<br>treated Massachusetts Clayey Silt                            | 71 |
| 3.39 | Influence of Molding Conditions on<br>the Total Stress-Strength Behavior<br>of Massachusetts Clayel Silt Stabi-<br>lilized with 5% Lime   | 72 |
| 3.40 | Influence of Molding Conditions on<br>the Total Stress-Strength Behavior<br>of Massachusetts Clayel Silt Stabi-<br>lilized with 5% Cement | 73 |
| 3.41 | Influence of Molding Conditions on<br>the Axial Strain Required to Reach<br>Maximum Stress Difference                                     | 74 |
| 3.42 | Development of Frictional Resistance<br>as a Function of Axial Strain for<br>Untreated Massachusetts Clayey Silt                          | 75 |
| 3,43 | Development of Frictional and Cohesive<br>Resistance of Massachusetts Clayey<br>Silt with 5% Lime as a Function of                        | 76 |

| 3.44      | Development of Frictional and Co-<br>hesive Resistance of Massachusetts<br>Clayey Silt with 5% Cement as a<br>Function of Axial Strain | 77 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| Chapter 4 | INFLUENCE OF DELAY TIME PRIOR TO COMPACTION                                                                                            |    |
| 4.1       | Effective Stress-Strength Behavior in Undrained Shear of M-21 + 5% Cement No Delay Time Prior to Compaction at Constant Effort         | 90 |
| 4.2       | Effective Stress-Strength Behavior in Undrained Shear of M-21 + 5% Cement 5 hours Delay Time Prior to Compaction at Constant Effort    | 91 |
| 4.3       | Effective Stress-Strength Behavior in Undrained Shear of M-21 + 5% Cement 5 hours Delay Time Prior to Compaction at Constant Density   | 92 |
| 4.4       | Effective Stress-Strength Behavior of M-21 + 5% Cement at Ultimate No Delay and 5 Hours Delay Time of Compaction                       | 93 |
| 4.5       | Effect of Delay Time of Compaction on the Effective Principal Stress Ratio                                                             | 94 |
| 4.6       | Pore Pressure Response of M-21 ÷ 5%<br>Cement                                                                                          | 95 |
| 4.7       | Pore Pressure Response of M-21 + 5%<br>Cement and Initial Tangent Modu-<br>lus                                                         | 96 |
| 4.8       | Influence of Delay Time of Compaction on the Effective Minor Principal Stress                                                          | 97 |
| 4.9       | Influence of Delay Time of Compaction on the Total Stress-Strength Behavior of M-21 + 5% Cement                                        | 98 |
| 4.10      | Influence of Delay Time of Compaction on the Axial Strain Required to Reach Maximum Stress Difference                                  | 99 |

| Appendix A | STRESS-STRAIN BEHAVIOR                                                               |     |
|------------|--------------------------------------------------------------------------------------|-----|
| A-1        | Undrained Stress-Strain Behavior of Untreated M-21 Samples Compacted Dry of Optimum  | 107 |
| A-2        | Undrained Stress-Strain Behavior of Untreated M-21 Samples Compacted Dry of Optimum  | 108 |
| A-3        | Undrained Stress-Strain Behavior of Untreated M-21 Samples Compacted at Optimum      | 109 |
| A-4        | Undrained Stress-Strain Behavior of Untreated M-21 Samples Compacted Wet of Optimum  | 110 |
| A-5        | Undrained Stress-Strain Behavior of Untreated M-21 Samples Compacted to High Density | 111 |
| A-6        | Undrained Stress-Strain Behavior of M-21 + 5% Lime Samples Compacted Dry of Optimum  | 112 |
| A-7        | Undrained Stress-Strain Behavior of M-21 + 5% Lime Compacted Dry of Optimum          | 113 |
| A-8        | Undrained Stress-Strain Behavior of M-21 + 5% Lime Compacted at Optimum              | 114 |
| A-9        | Undrained Stress-Strain Behavior of M-21 + 5% Lime Compacted Wet of Optimum          | 115 |
| A-10       | Undrained Stress-Strain Behavior of M-21 + 5% Lime Compacted to High Density         | 116 |
| A-11       | Undrained Stress-Strain Behavior of M-21 + 5% Cement Compacted Very Dry of Optimum   | 117 |
| A-12       | Undrained Stress-Strain Behavior of M-21 + 5% Cement Compacted at                    | 118 |

| A-13 | Undrained Stress-Strain Behavior of M-21 + 5% Cement Compacted Wet of Optimum                                    | 119 |
|------|------------------------------------------------------------------------------------------------------------------|-----|
| A-14 | Undrained Stress-Strain Behavior of M-21 + 5% Cement, No Delay Time Prior to Compaction at Constant Effort       | 120 |
| A-15 | Undrained Stress-Strain Behavior of M-21 + 5% Cement. 5 Hours Delay Time Prior to Compaction at Constant Effort  | 121 |
| A-16 | Undrained Stress-Strain Behavior of M-21 + 5% Cement. 5 Hours Delay Time Prior to Compaction to Constant Density | 122 |

# BLANK PAGE

#### SUMMARY

The influence of molding water content, as-molded dry density, and delay time prior to compaction after mixing in of the molding water on the effective stress-strength behavior of a clayey silt stabilized with hydrated lime and portland cement is presented in this report. This investigation used the results of high pressure consolidated-undrained triaxial compression tests with pore water pressure measurements.

It is shown that molding conditions have no significant effect on the Mohr-Coulomb effective stress-strength parameters,  $\overline{c}$  and  $\overline{\phi}$ , of the untreated compacted soil. For both the cement and lime stabilized systems, the effective cohesion intercept,  $\overline{c}$ , significantly increases with increases in as-molded dry density while  $\overline{\phi}$  does not change. Molding water content per se does not influence either  $\overline{c}$  or  $\overline{\phi}$ .

For a given compactive effort, delay time prior to compaction produces a drop in the as-molded dry density of the cement stabilized soil which shows up primarily as a drop in the effective angle of shearing resistance,  $\overline{\phi}$ . It also lowers the strains required to reach Mohr-Coulomb failure, which is an undesirable characteristic.

At ultimate failure (large strains), it is shown that neither molding conditions nor delay time prior to compaction have any

significant effect on the effective stress-strength parameters of the stabilized systems.

# DEFINITIONS OF SYMBOLS

| Symbol          | <u>Definition</u>                                                                                                  |
|-----------------|--------------------------------------------------------------------------------------------------------------------|
| A               | Skempton A Factor or pore pressure coefficient A.                                                                  |
| X               | Skempton $\overline{A}$ Factor or pore pressure coefficient $\overline{A}$ . $\overline{A}$ = AB                   |
| В               | Skempton B Factor or pore pressure coefficient B. Also called pore pressure response when given as a percentage.   |
| c               | Cohesion intercept in terms of total stresses. kg/cm <sup>2</sup> .                                                |
| ਟੋ              | Effective cohesion intercept of Mohr-Coulomb effective stress envelope, kg/cm <sup>2</sup> .                       |
| E               | Initial tangent modulus or Young's modulus, kg/cm <sup>2</sup> .                                                   |
| L.L.            | Liquid limit, %.                                                                                                   |
| M-21            | Massachusetts clayey silt                                                                                          |
| $Subscript_{M}$ | At maximum stress difference                                                                                       |
| P.I.            | Plasticity index, %                                                                                                |
| P.L.            | Plasticity limit, %.                                                                                               |
| p               | Maximum Axial Load in Unconfined Test, kg/cm <sup>2</sup>                                                          |
| व               | Effective normal stress on 45° plane, $kg/cm^2$ . $\overline{p} = 1/2 (\overline{\sigma}_1 + \overline{\sigma}_3)$ |
| q               | Shear stress on 45° plane or half principal stress difference, $kg/cm^2$ . $q = 1/2 (\sigma_1 - \sigma_3)$         |
| s               | Degree of saturation, %                                                                                            |
| u               | Pore Pressure, kg/cm <sup>2</sup>                                                                                  |
| Δu              | Change in pore pressure, kg/cm <sup>2</sup>                                                                        |

# DEFINITIONS OF SYMBOLS (Continued)

| Symbol                          | Definition                                                                                                                                                    |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w                               | Water content, %                                                                                                                                              |
| tan α                           | Slope of total stress envelope on p versus q plot. $\tan \alpha = \sin \phi$                                                                                  |
| tan ā                           | Slope of effective stress envelope on p versus q plot. Tan $\bar{\alpha} = \sin \bar{\phi}$ . Also slope of axial strain contours on $\bar{p}$ versus q plot. |
| $\tan \overline{\alpha}_{ult}$  | Slope of effective stress versus strength relation at ultimate conditions on p versus q plot                                                                  |
| ε                               | Axial strain, %                                                                                                                                               |
| ε <sub>M</sub>                  | Axial strain at maximum principal stress difference, %                                                                                                        |
| σ                               | Total normal stress, kg/cm <sup>2</sup>                                                                                                                       |
| $\overline{\sigma}$             | Normal effective stress, kg/cm <sup>2</sup>                                                                                                                   |
| σ <sub>o</sub>                  | Cell pressure, kg/cm <sup>2</sup>                                                                                                                             |
| $^{\Delta\sigma}$ o             | Increment of cell pressure, kg/cm <sup>2</sup>                                                                                                                |
| $\bar{\sigma}_{o}$              | Consolidation pressure, kg/cm <sup>2</sup>                                                                                                                    |
| $\sigma_1$                      | Total major principal stress, kg/cm <sup>2</sup>                                                                                                              |
| $\overline{\sigma}_1$           | Effective major principal stress, kg/cm <sup>2</sup>                                                                                                          |
| σ <sub>3</sub>                  | Total minor principal stress, kg/cm <sup>2</sup>                                                                                                              |
| $\bar{\sigma}_3$                | Effective minor principal stress, kg/cm <sup>2</sup>                                                                                                          |
| $\bar{\sigma}_1/\bar{\sigma}_3$ | Effective principal stress ratio (obliquity) Shear stress, kg/cm <sup>2</sup>                                                                                 |

# DEFINITIONS OF SYMBOLS (Continued)

| Symbols                        | <u>Definition</u>                                                                          |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------|--|--|
| ф                              | Angle of shearing resistance in terms of total stresses, and degrees                       |  |  |
| $\overline{\phi}$              | Angle of shearing resistance in terms of effective stresses, degrees                       |  |  |
| $	an \overline{\phi}_{	t ult}$ | Slope of effective normal stress versus shear stress relation at maximum stress difference |  |  |
| $\gamma_{\bar{d}}$             | Dry Density, lb/cu ft                                                                      |  |  |



#### Chapter 1

#### INTRODUCTION

Numerous investigators have shown that the unconfined compressive strength of lime or cement stabilized fine-grained soils is influenced to a large extent by the asmolded dry density and molding water content. Usually, the maximum unconfined compressive strength of a stabilized soil for a given compaction effort occurs close to the optimum water content for maximum dry density, and therefore it is common practice to specify field compaction at optimum water content. In previous phase reports Wissa and Ladd (1964 and 1965)\* have shown that the unconfined compression test is of limited use in studying the strength behavior of stabilized soils since it measures strength under only one specific set of testing conditions that does not usually represent the most critical conditions in the field.

In order to overcome most of the limitation inherent in the unconfined compression test, M.I.T. is using consolidated-drained triaxial tests with volume-change measurements and consolidated-undrained triaxial tests with pore pressure

<sup>\*</sup> Items indicated thus, (Wissa and Ladd, 1964) or Wissa and Ladd (1965), refer to corresponding entries arranged alphabetically in the List of References.

measurements to study the strength behavior of stabilized soils. From such test results it is possible to apply the effective stress principle (Terzaghi, 1923) to determine the strength behavior of stabilized soils under a variety of field conditions.

In previous phase reports (Wissa and Ladd, 1964 and 1965), the influence of soil type, type and amount of stabilizer, curing time, and curing history, on the strength behavior of stabilized soils was investigated. It was shown that for a given soil-stabilized system, the frictional resistance in terms of effective stresses is independent of environmental changes during curing and testing; whereas the cohesive resistance is very sensitive to these changes. It was also shown that, in the case of granular soils, lime and cement stabilization has only a minor influence on the effective angle of shearing resistance of the soil; whereas in the case of fine-grained soils, the stabilizers cause a large increase in the angle of shearing resistance. It was hypothesized that the increase in the frictional resistance of fine-grained soils is due to the formation of strongly cemented soil aggregates formed by soil particles surrounding nuclei of high cement particle concentrations. The formation of these cemented soil aggregates causes fine-grained soils to behave like granular materials having high effective angles of shearing resistance. The weaker cementation between aggregates is responsible for the increase in effective cohesion, which is influenced by environmental conditions such as curing time and cycles of wet-dry or freeze-thaw.

This report is an extension of the work described in Phase Reports No. 3 and 5\* and is a study of the influence of molding water content and as-molded dry density as well as delay time of compaction on the strength behavior of stabilized fine-grained soils. The testing procedures followed in this study are basically the same as those used in the previous reports, and the results are examined in terms of the same hypotheses and concepts.

<sup>\*</sup> See Wissa and Ladd (1964) and (1965).

#### Chapter 2

# MATERIALS AND TESTING PROCEDURES

#### 2.1 SOIL

The soil used for this investigation was Massachusetts clayey silt M-21, the fine fraction (material passing No. 40 sieve size) of a glacial till from a drumlin overlooking Logan International Airport in East Boston. The particle size distribution of the batch of soil used for this investigation differed slightly from that used in the previous studies (Fig2.1). While the percentages of sand, silt, and clay were essentially the same, the silt fraction in this batch was coarser than in the previous batch. The properties of the soil are given in Table 2.1 and 2.2.

# 2.2 TYPE AND AMOUNT OF STABILIZER

The two chemical stabilizers used were reagent grade calcium hydroxide (hydrated lime) and portland cement Type I (commercial grade). The influence of molding conditions was studied for untreated soil and soil stabilized with five per cent lime or five per cent cement by weight.

#### 2.3 MIXING PROCEDURES

The stabilizers were mixed with the air-dry soil until homogeneous mixtures were obtained. About 1 per cent extra water, above the desired amount, was added to all the mixes to compensate for evaporation losses that occurred during mixing. The water was mixed in by hand for about five minutes.

#### 2.3.1 Untreated Soil

After addition of the desired amount of water and mixing, the mixes were allowed to equilibrate for one day in sealed glass containers prior to compaction.

## 2.3.2 Soil-Lime Mixes

A batch of soil-lime for 4 or 5 compacted samples was prepared at a time. The lime was added to the pulverized air-dry soil and thoroughly mixed in with a spoon until no traces of lime could be observed. The desired amount of water was then added and thoroughly mixed with the soil-lime mixture. While each sample was being compacted, the remaining soil was kept covered with a moist towel and intermittently remixed. All samples from a batch were compacted within four hours after addition of the mixing water. A water content of the mix was taken before compacting each sample.

#### 2.3.3 Soil-Cement Mixes

The soil for each compacted sample was mixed separately and compacted immediately after mixing. The cement
and water were added in the same manner as for the limestabilized samples. Two water contents of the mix were
taken for each sample, one before and one after compaction.
The time between first mixing in of the water and final
compaction was not allowed to exceed fifteen minutes, when
studying the influence of molding conditions.

For the delay time prior to compaction study, after adding and mixing in the water for each sample, the mixture was sealed in a plastic bag for five hours prior to compaction. During this delay time the mixtures were hand kneaded in the bags at half-hour intervals.

#### 2.4 COMPACTION PROCEDURE

All test specimens were prepared by two-end static compaction. A compaction effort of 400 psi or 800 psi was gradually applied to the two rams by means of a hydraulic press. The full pressure was maintained on the samples for approximately one minute before releasing the load off the rams. Sufficient mix was placed in the mold such that neither ram reached the end of its travel when the full compactive effort was applied. Precautions were taken to prevent the

top and bottom rams from moving together at different rates so that neither ram reached the end of its travel under the full load.

# 2.4.1 Compaction Effort

To investigate the effect of molding water content and dry density on the effective stress-strength behavior of the stabilized systems, the samples were prepared using a compaction effort of 400 psi. The mold was reflon lined to minimize wall friction during compaction, and it had guided top and bottom plungers.

For studying the effect of dry density, per se, samples were prepared using 800 psi instead of 400 psi compaction effort.

To investigate the effect of delayed time of compaction on the effective stress-strength behavior of the portland cement-stabilized system, some samples were prepared using the same compaction effort of 400 psi as the zero delay time samples. Other samples were compacted to the same dry density as the zero delay time samples (at the same molding water content) by increasing the static compaction effort to approximately 800 psi.

The mositure-density relations of the test specimens used in this investigation are plotted in Fig. 2.2.

# 2.4.2 Size of Specimens

The size of the mold used to compact the specimens was:

Length = 3.150 in.

Diameter = 1.405 in.

Volume = 80 cc.

#### 2.5 CURING PROCEDURES

In the investigation of the effect of molding water content and dry density on the stress-strength behavior of the stabilized systems, the lime-stabilized samples were humid cured in glass containers at 100 per cent relative humidity and at room temperature for 243 days minimum. The portland cement-stabilized samples were subject to an accelerated humid curing by storing them in glass containers at 100 per cent relative humidity and at a temperature of 70°C. These samples were allowed to cure for 14 days prior to testing. The untreated samples were not stored before testing.

In the investigation of the effect of delay time of compaction on the stress-strength behavior of the portland cement-stabilized system, the samples were humid cured in glass containers at 100 per cent relative humidity and at room temperature for a time no less than 83 days.

#### 2.6 TESTING PROCEDURE

The method used to test the samples was the same as that presented in previous reports (Phase Reports Nos. 3 and 5) with the following variations:

- a) The untreated samples were saturated and tested under back pressure of 150 psi.
- b) Stabilized samples were saturated and tested under back pressures of 200 psi or 220 psi.
- c) The cell pressures were applied first to a pressure level a little above the back pressure, at which time the back pressure was applied to the samples and immediately following, the cell pressure was increased to achieve the desired effective consolidation pressure.

# Table 2.1

# PROPERTIES OF UNTREATED M-21

| Text | cural Composition, % by wt.                                                                                                |                                              |
|------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|      | Sand 2mm to 0.06m<br>Silt 0.06mm to 0.002m<br>Clay 0.002mm                                                                 | 42<br>43<br>15                               |
| Phys | sical Properties                                                                                                           |                                              |
|      | Liquid Limit % Plastic Limit % Flastic Index % Specific Gravity Max. Dry Density (1) lb/cu ft. Optimum Water Content (1) % | 20.5<br>14.7<br>5.8<br>2.75<br>122.5<br>12.9 |
| Clas | ssification                                                                                                                |                                              |
|      | Unified<br>AASHO                                                                                                           | CL-ML<br>A-4(0)                              |
| Chem | mical Properties (2)                                                                                                       |                                              |
|      | Organic Matter, % by wt. Gation Exchange Capacity meq/100 gm Glycol Retention mg/gm                                        | 0.2<br>10<br>22                              |
| Mine | eralogic Composition (3)                                                                                                   |                                              |
|      | Clay Composition, % by wt. Illite: Montmorillonoid Free Iron Oxide, %Fe203                                                 | 30<br>1:0<br>2.9                             |
| (1)  | Static Compaction, 400 psi effort                                                                                          |                                              |
| (2)  | For minus No. 200 sieve (0.074mm) fractions obt from a different batch of soil.                                            | ained                                        |
| (3)  | Most montmorillonoid mineral is montmorillonite                                                                            | •                                            |

Table 2.2

# ATTERBERG LIMITS FOR M-21 SYSTEMS

| System         | Liquid Limit       | Plastic Limit    | Plasticity Index |  |
|----------------|--------------------|------------------|------------------|--|
|                | M <sup>T</sup> g . | W <sub>P</sub> & | P.I.%            |  |
|                |                    |                  |                  |  |
| Untreated M-21 | 20.5               | 14.7             | 5.8              |  |
| M-21+5% Lime*  | 22.5               | 19.4             | 3.1              |  |
| M-21+5% Cement | * 21.2             | 17.6             | 3.6              |  |

Determined immediately after mixing in of the water

MEDICA CLAY FIG. 2.1 GRAIN SIZE DISTRIBUTION OF UNTREATED MASSACHUSETTS CLAYEY SILT COARSE FINE COARSE MEDIUM SIL FINE SAND MEDIUM COARSE CLASSIFICATION 8 WEIGHT РЕВСЕИТ В 8 8 8 2

FINER

48



FIG. 2.2 MOISTURE - DENSITY RELATIONSHIP
AT COMPACTION FOR M-21 SYSTEMS
STATIC COMPACTION METHOD.

#### Chapter 3

#### INFLUENCE OF MOLDING WATER CONTENT AND DRY DENSITY

# 3.1 EFFECTIVE-STRESS-STRENGTH BEHAVIOR

# 3.1.1 Untreated Soil

Table 3.1 summarizes preshear data for the untreated M-21.

The Mohr-Coulomb effective stress-strength envelope of untreated Massachusetts clayey silt at the various molding conditions shown in Fig. 2.2 are given in Figs. 3.1 through 3.5. Over the wide range of consolidation pressures used in this investigation the envelopes at all molding conditions were straight lines having no measureable effective cohesion intercepts. As summarized in Fig. 3.6a molding conditions only slightly influenced the effective Mohr-Coulomb angle of shearing resistance, \$\overline{\phi}\$. For a molding water content ranging from 8 per cent to 14.5 per cent and an asmolded dry density ranging from 108 lb/cu ft. to 123 lb/cu ft. the change in \$\overline{\phi}\$ was only 2.5°, which, from a practical point of view, is not significant.

The small differences in  $\overline{\phi}$  due to molding conditions are probably caused by small differences in soil fabric still remaining in the failure zone at the time Mohr-Coulomb failure is reached. However, by the time ultimate conditions are reached at larger shear strains, these minor differences

in fabric have been eliminated and then the effective angle of shearing resistance is independent of molding conditions as shown in Figs. 3.7 and 3.6b ( $\overline{\phi}_{ult}$  for this soil was 32°).

In summary it can be said that molding conditions do not significantly influence the effective stress-strength envelope of this fine-grained soil.

## 3.1.2 Stabilized Soil

The preshear data for the stabilized soils are shown in tables 3.2 and 3.3.

The effective stress-strength behavior of Massachusetts clayey silt M-21, stabilized with 5 per cent lime and 5 per cent cement at the various molding conditions given in Fig. 2.2, are shown in Figs. 3.8 through 3.12 and Figs. 3.13 through 3.16 respectively. Over the wide range of molding conditions investigated with each stabilizer, the Mohr-Coulomb effective angle of shearing resistance, \$\overline{\pi}\$, varied by only 1.5° (Figs. 3.17a and 3.17b, and 3.18a and 3.18b), which is probably within experimental error. However, the Mohr-Coulomb effective cohesion intercepts, \$\overline{\pi}\$, increased significantly with increasing as-molded dry density (Figs. 3.17c and 3.18c).

Molding water content, per se, did not control c since samples at approximately the same as-molded dry density, compacted dry and wet of optimum water content, had the same

c. Further, an increase in as-molded dry density both dry and wet of optimum water content (caused by an increase in compaction effort) caused an increase in c that corresponded to the c obtained at a lower compaction effort and a different molding water content.

This behavior can be explained by the mechanistic picture proposed in Phase Report No. 5 (Wissa and Ladd, 1965). It was hypothesized that, even under ideal mixing conditions in the laboratory, cementing agents, such as portland cement and hydrated lime, do not get uniformly distributed in finegrained soils. Strongly cemented soil aggregates thus form around nuclei of high cement particle concentration. These cemented aggregates cause the fine-grained soil to behave like a cemented granular material having a high effective angle of shearing resistance. Distribution of the cementing agent in the pulverized soil primarily occurs during the dry mixing process, and further mixing during addition of the molding water and during static compaction has very little influence on redistributing the cementing agent in the soil. A change in the molding water content and/or in the compaction effort will therefore cause no significant change in the size gradation of the cemented soil aggregates and thus no large change in effective angle of shearing resistance occurs. The cementation between soil aggregates will increase with increasing molding dry density, since the area of contact

and the number of contacts between adjacent aggregates increases. This causes the effective cohesive resistance of the stabilized soil to increase with increasing dry density.

By the time ultimate conditions are reached at large strains, the weaker cementation between the strongly cemented soil aggregates is completely destroyed in the failure zone, and the soil then behaves like a granular material having zero effective cohesion intercept and a high effective angle of shearing resistance,  $\overline{\phi}_{\rm ult}$ . Since molding conditions apparently do not influence the aggregation,  $\overline{\phi}_{\rm ult}$  of the stabilized soil is independent of molding conditions as shown in Figs. 3.19 and 3.20.

Figs. 3.21 and 3.22 show the influence of molding conditions on the effective principal stress ratio of the cemented soil systems at Mohr-Coulomb and ultimate conditions, as a function of effective minor principal stress. At Mohr-Coulomb failure, the effective principal stress ratio is a function of both  $\overline{\sigma}_3$  and molding conditions, because the cemented soil possesses an effective cohesion intercept,  $\overline{c}$ , which is a function of molding conditions. At ultimate,  $\overline{\sigma}_1/\overline{\sigma}_3$  is independent of  $\overline{\sigma}_3$ , since  $\overline{c}$  is zero and  $\overline{\phi}$  ultimate is independent of molding conditions.

For the lime-stabilized soil,  $\overline{\phi}_{ult}$  was 37.5° and for the cement-stabilized soil, it was 38.5°. This compares with

 $\bar{\phi}_{\rm ult}$  of 32° for the untreated soils (see Fig. 3.23). Figures 3.24 and 3.25 show the influence of molding dry density on the undrained strength of both the cement and the lime stabilized systems.

#### 3.2 PORE PRESSURE RESPONSE

## 3.2.1 Pore Pressure Response Prior to Shear

The pore pressure response, B (B =  $\Delta u/\Delta \sigma_c$ )\*, was determined after consolidation and saturation, but prior to shear, to check that complete saturation had been achieved. Since B was often less than 100 per cent, (see Tables 3.1 through 3.3) several consecutive 2 kg/cm<sup>2</sup>increments of cell pressure were used to insure that B values less than 100 per cent were due to the rigidity of the soil skeleton and not due to entrapped air (Wissa, 1969).

No correlation appeared to exist between molding conditions and B for both the stabilized and the untreated soil as can be seen from Figs. 3.26, 3.27, and 3.28. In general the pore pressure response prior to shear, B<sub>O</sub>, decreased with increasing consolidation pressure, since the rigidity of the soil skeleton increases with increasing consolidation pressure (Wissa 1969). This can be seen from Figs. 3.26b, 3.27b and 3.28b, which are plots of B<sub>O</sub> versus initial tangent modulus, E, obtained from the undrained stress-strain

<sup>\*</sup> See Skempton (1954).

curves. The large scatter in the results is believed to be due to the large seating imperfections at the initial stages of shear, which made it difficult to obtain accurate values of E (see Tables 3.4 through 3.6). The pore pressure responses of the samples compacted dry of optimum were not usually lower than those of the samples compacted wet of optimum. This is further evidence that all samples were completely saturated prior to shear. A possible exception was the untreated samples compacted very dry of optimum.

# 3.2.2 Pore Pressure Response after Shearing

After shearing, the test specimens were unloaded at constant cell pressure without allowing drainage. The excess pore pressures existing after unloading were allowed to equalize overnight and then the final pore pressure response,  $B_f$ , determined in a similar manner to  $B_o$ . Plots of  $B_o$  versus  $B_f$  are shown in Figs. 3.26c, 3.27c and 3.28c. In most cases  $B_f$  was greater than  $B_o$ , since the results plotted above the 45° line shown in the figures. In the case of the untreated samples, the effective stresses after shear and unloading were usually lower than the effective consolidation pressures prior to shear, since positive residual excess pore pressures remained in the test specimens. The lower effective stress after shear causes a decrease in the rigidity of the soil skeleton and consequently an increase in B. This also

occurred with most of the stabilized test specimens; however, in addition, for stabilized specimens, a breakdown of the cemented soil skeleton also occurs during shear resulting in a further decrease in the rigidity of the soil skeleton that would also cause  $B_{\rm f}$  to be higher than  $B_{\rm o}$ .

In summary a back pressure of 200 psi was sufficient to ensure complete saturation prior to shear at all molding conditions investigated. Since the rigidity of the soil skeleton is changing during undrained shear, the pore pressure response also changes during shear; and therefore, the initial pore pressure response prior to shear cannot be used to correct for the rigidity of the soil skeleton on the excess pore pressures developed during shear.

## 3.3 PORE PRESSURE DURING SHEAR

### 3.3.1 Untreated Soil

According to Lambe (1958) and Seed et al (1960), fine-grained soils compacted dry of optimum have a more flocculated fabric than when compacted wet of optimum. Seed et al showed that at low consolidation pressures (up to 2.0 kg/cm<sup>2</sup>), the excess pore water pressures developed during undrained shear were lower for samples compacted dry of optimum than for samples compacted wet of optimum. Their explanation for the

observed behavior was that a flocculated fabric is more resistant to applied stress and consequently lower excess pore pressures develop during undrained shear.

Fig. 3.29 shows the influence of molding water content and molding dry density (using 400 psi static compaction) on the effective minor principal stress\* of untreated Massachusetts clayey silt at ultimate failure in undrained shear. (Similar trends existed at maximum principal stress difference and at tangency with the effective Mohr-Coulomb envelope.) Over the wide range of consolidation pressures investigated, the effective minor principal stress at a given consolidation pressure increased with increasing molding water content. In other words, the more flocculated the soil fabric after compaction, the larger the excess pore pressures developed during undrained shear. This behavior is contrary to that reported by Seed et al, and is probably due to the fact that Seed et al only investigated the behavior of compacted soils at low consolidation pressures up to 2.0 kg/cm2, while these results are for higher consolidation pressures ranging from 5 kg/cm<sup>2</sup> to 50 kg/cm<sup>2</sup>. The pore pressure developed during

<sup>\*</sup> Since the total minor principal stress was kept constant during consolidation and shear, the excess pore pressure developed during undrained shear is equal to the consolidation pressure minus the effective minor principal stress.

undrained shear is dependent on the change in fabric that occurs during shear. The change in fabric during shear is not only dependent on the initial fabric but also on the applied stresses and strains required to produce failure. The higher the stresses and the larger the strains at failure, the greater is the tendency for the soil to develop a preferred orientation (dispersed fabric) and consequently, the larger the change of fabric during shear. At low consolidation pressures, the stresses and strains required to reach Mohr-Coulomb failure are relatively small, and therefore, only a small change in fabric has occured by the time failure is reached. Under these conditions samples compacted dry of optimum, having a higher resistance to the applied stresses, will produce smaller excess pore pressures during shear than samples compacted wet of optimum as reported by Seed et al. However, higher consolidation pressures were used in this investigation. The applied stresses and strains required to produce failure were larger, and therefore, the tendency for a dispersed fabric to occur during shear is consequently greater than would have existed at lower consolidation pressures. At a given consolidation pressure, the samples compacted dry of optimum, therefore, developed much larger excess pore pressures during shear than samples compacted wet of optimum since their initial fabric after compaction was more flocculated than samples compacted wet of optimum and consequently

underwent larger changes in fabric during shear. From Fig. 3.30 it is apparent that for a constant compaction effort of 400 psi molding water content rather than molding dry density controls the pore pressure behavior of the untreated soil.

The influence of an increase in dry density due to increasing the compaction effort from 400 psi to 800 psi is shown in Fig. 3.31. This figure consists of plots of molding water content and as-molded dry density versus the normalized effective minor principal stress at ultimate,  $(\overline{\sigma}_3 \text{ult}/\overline{\sigma}_c)$ , for the samples consolidated to 25 kg/cm<sup>2</sup> and 50 kg/cm<sup>2</sup>. Here again molding water content primarily controls the pore pressures. At a molding water content of about 9.2 per cent, the high-density samples had about the same excess pore pressures at failure as the low-density samples (Fig. 3.31a). However, from Fig. 3.31b it is apparent that at the same as-molded dry density of about 118 1b/cu ft., samples compacted to 400 psi corresponding to a molding water content of about 11.3 per cent developed a lower excess pore pressure during shear than the samples compacted to 800 psi at a molding water content of 9.2 per cent. This is reasonable, since static compaction does not induce very large shear stresses during molding and consequently an increase in compaction effort does not significantly alter the soil fabric after compaction. Fig. 3. 32

shows the influence of molding water content on the A-factor of untreated M-21 at maximum stress difference and at tangency with the effective Mohr-Coulomb envelope. The use of the A-factor\* rather the excess pore pressure or minor effective principal stress to describe the pore pressure behavior adjusts the excess pore pressures for the effect of differences in the magnitude of the applied principal stress difference. Once the prestress effects due to compaction were overcome at the higher consolidation pressures, the A-factor was independent of consolidation pressure and was solely a function of molding water. (The low consolidation pressure test results are not included in this figure.) The change in A-factor with changes in molding water content indicates that the differences in magnitude of the applied shear stresses do not solely account for the differences in the excess pore pressures but also differences in the soil fabric existing prior to shear influence the pore pressures generated.

In summary, molding water content rather than molding dry density controls the pore pressure behavior of compacted untreated Massachusetts clayey silt in undrained shear. At consolidation pressures ranging from 5 kg/cm<sup>2</sup> to 50 kg/cm<sup>2</sup>, samples compacted dry of optimum develop higher pore pressures

<sup>\*</sup> See Skempton (1954).

during undrained shear than samples compacted wet of optimum because they have a more flocculated fabric prior to shear and consequently undergo a larger change in fabric during shear.

## 3.3.2 Stabilized Soils

As shown in Figs. 3.33a and 3.34a molding conditions had no significant influence on the effective minor principal stress, and consequently the excess pore pressure, of the stabilized soil at Mohr-Coulomb failure. This was also the case at the maximum principal stress difference. However, the A-factors at a given consolidation pressure decreased with increasing as-molded dry density (Figs. 3.35 and 3.36 because  $(\sigma_1 - \sigma_3)$  at tangency and at maximum stress difference increased with increasing dry density due to the influence of molding dry density on the effective cohesion of the cemented soil.

At ultimate conditions when the cementation between soil aggregates was completely destroyed,  $\bar{\sigma}_3$  increased and consequently the excess pore pressure decreased with increasing dry density (Figs. 3.33c and 3.34c). The A-factor also decreased (Fig. 3.37). This is similar to the influence of density on the pore pressure and A-factor behaviors of uncemented sands. It is interesting to note that at ultimate

conditions, the same relation existed between as-molded dry density and A-factor for both the lime-and cement-stabilized soil.

In summary as-molded dry density rather than molding water content controls the pore pressure behavior of cemented fine-grained soils. This is further evidence that molding water content does not significantly influence the fabric of stabilized soils. However, it should be noted that static compaction was used in this investigation and it is possible that if kneading compaction had been used, molding water content might have had an influence on the pore pressure behavior since with untreated fine-grained soils kneading compaction causes a greater change in fabric as a function of molding water content than does static compaction (Seed et al 1960).

## 3.4 TOTAL STRESS-STRENGTH BEHAVIOR

#### 3.4.1 Untreated Soil

The influence of molding conditions on the total stressstrength behavior of untreated Massachusetts clayey silt is shown in Fig. 3.38. Even though the effective angle of shearing resistance is not significantly influenced by molding conditions, the excess pore pressure developed during undrained shear is a function of molding water content, and consequently, the angle of shearing resistance in terms of total stress, \$\phi\$, is influenced by molding conditions. At a given consolidation pressure, the higher the pore pressures developed during shear the lower the angle of shearing resistance in terms of total stresses. For this soil \$\phi\$\* at maximum stress difference ranged from 13.5° dry of optimum to 22.5° wet of optimum and from 13° to 21° at ultimate. Comparing this with a 2.5° variation of the angle of shearing resistance in terms of effective stresses is a good demonstration of the advantage of using effective stress-strength parameters rather in the strength behavior of compacted soils.

#### 3.4.2 Stabilized Soil

In the case of the stabilized soil, both the cohesion intercept, c, and angle of shearing resistance,  $\phi$ , in terms of total stresses are influenced by molding conditions (Figs. 3.39 and 3.40). This is due to the fact that both the effective cohesion intercept and the pore water pressures developed during undrained shear are influenced by the as-molded dry density.

<sup>\*</sup> Note that the angles shown in Fig. 3.35 are in terms of  $\alpha$  rather than  $\phi$ . (tan  $\alpha = \sin \phi$ ).

It is of interest to note that while the effective cohesion intercept of the cemented soils at ultimate was zero at all molding conditions, it had an appreciable value in terms of total stresses and was also a function of molding dry density (Figs. 3.39b and 3.40b). Since the cementation between soil aggregates in the failure zone has been completely destroyed by the time ultimate conditions are reached at large strains, this apparent cohesion intercept is not a measure of the cementation but rather reflects the influence of the pore pressures on the ultimate shear resistance of the soil.

#### 3.5 STRESS-STRAIN BEHAVIOR

Stress-strain data for the untreated and stabilized M-21 systems during undrained shear are summarized in Tables 3.4 through 3.6.

#### 3.5.1 Initial Tangent Modulus

As can be seen in Tables 3.4 through 3.6, seating corrections had to be applied to the stress-strain curves of most of the stabilized soils test specimens. This made it impossible to determine the influence of molding conditions on the initial tangent modulus.

#### 3.5.2 Axial Strain to Reach Maximum Stress Difference

The influence of molding conditions on the axial strain required to reach maximum stress difference,  $\epsilon_{\rm m}$ , for untreated M-21, M-21 plus 5% lime, and M-21 plus 5% cement is shown in

Fig. 3.41. With the exception of the samples compacted very dry of optimum, molding conditions had no influence on  $\varepsilon_{m}$  of the untreated soil. In the case of the stabilized soils,  $\varepsilon_{m}$  increased with increasing molding water content but did not appear to be a function of the as-molded dry density. While no definite explanation can be given for this trend, it is believed to reflect the volume changes that occured during humid curing. Samples compacted dry of optimum tend to swell during humid curing, while samples compacted wet of optimum tend to shrink. The shrinkage cracking that takes place during curing and soaking of the wet samples makes it necessary for them to undergo larger strains during shear before the sum of their frictional and cohesive resistance reaches a maximum. In order to verify the above hypothesis, it would be necessary to prevent any changes in moisture during curing and then check that molding water content no longer had an effect on  $\epsilon_{m}$ . Stress-strain curves, as well as change in pore pressure and A-factor versus percentage of axial strain, are presented in Appendix A.

#### 3.5.3 Friction and Cohesion

Figs. 3.42, 3.43, and 3.44 are plots of mobilization of the effective frictional and the effective cohesive resistance as a function of axial strain. For the untreated soil (Fig. 3.42), the rate at which the frictional resistance increased

with increasing axial strain appears to be a function of the molding water content. The flocculated soil fabrics (dry of optimum) appear to develop their frictional resistance at a slower rate than the dispersed fabrics (wet of optimum). In the case of the stabilized soils (Figs. 3.43 and 3.44). no general trend was apparent as a function of molding conditions. This is probably due to the large influence seating imperfections have on the slopes and intercepts of the strain contours at small strain levels.

TABLE 3.1

PRESHEAR DATA FOR UNTREATED M-21

|               | COMPAC-<br>TIVE | AS-MOL | DED   | CONSOLIDA                | FINAL<br>WATER | PORE<br>PRESSURE |
|---------------|-----------------|--------|-------|--------------------------|----------------|------------------|
| SAMPLE<br>No. | EFFORT<br>PSI   | W %    | 6/F43 | PRESSURE<br>To<br>Kg/cm² |                | RESPONSE<br>8 %  |
| 2001          | 400             | 8.0    | 108   | 10.0                     | 10.6           | 96.0             |
| 2002          | 400             | 8.0    | 108   | 25.0                     | 130            | 830              |
| 2003          | 400             | 8.0    | 108   | 50.0                     | 11.5           | 71.0             |
| 2004          | 400             | 9.2    | 112.2 | 4.96                     | 15.0           | 100              |
| 2005          | 400             | 9.0    | 112.0 | 10.0                     | 13.9           | 92.0             |
| 2006          | 400             | 9.2    | 113.0 | 25.0                     | 13.0           | 100              |
| 2007          | 400             | 9.2    | 112.5 | 50.0                     | -              | 90.0             |
| 2008          | 400             | 13.0   | 123.3 | 4.93                     | 13.1           | 100              |
| 2009          | 400             | 12.8   | 122.3 | 10.0                     | 12.5           | 96.0             |
| 2010          | 400             | 13.2   | 122.7 | 25.0                     | 25.0 11.6      |                  |
| 2011          | 400             | 12.7   | 122.4 | 50.0                     | 10.7           | 84:0             |
| 2012          | 400             | 14.6   | 120.1 | 4.95                     | 12.6           | 100              |
| 2013          | 400             | 14.6   | 121.1 | 10.0                     | 11.5           | 90.0             |
| 2014          | 400             | 14.2   | 121.1 | 25.0                     | 11.0           | 95.0             |
| 2015          | 400             | 14.5   | 121.0 | 50.0                     | 10.2           | 85.0             |
| 2016          | 800             | 9.3    | 120.4 | 50                       | 15.6           | 98.0             |
| 2017          | 800             | 9.2    | 120.6 | 10.0                     | 130            | 95.0             |
| 2018          | 800             | 9.2    | 118.0 | 25.0                     | 13./           | 92.0             |
| 2019          | 800             | 9.1    | 118.2 | 50.0                     | 13.2           | 86.0             |

TABLE 3.2

PRESHEAR DATA FOR M-21 +5% LIME

|               | COMPAC-<br>TIVE | AS-MC | OLDEO   | CUR                    | NO TIME          | Ε                      | CONSQUOA                 | FINAL<br>WATER | PORE<br>PRESSURE<br>RESPONSE<br>B % |  |
|---------------|-----------------|-------|---------|------------------------|------------------|------------------------|--------------------------|----------------|-------------------------------------|--|
| SAMPLE<br>No. | EFFORT<br>PSI   | ω%    | 16/ 443 | HUMID<br>CURE,<br>DAYS | SOAKING,<br>DAYS | TUTAL<br>CURE,<br>DAYS | PRESSURE<br>To<br>Kg/cm² | CONTENT<br>Yo  |                                     |  |
| 1005          | 400             | 12.6  | 109.0   | 251                    | 23               | 274                    | 5.0                      | 21.1           | 100                                 |  |
| 1003          | 400             | 12.7  | 108.9   | 243                    | 20               | 263                    | 10.0                     | 20.5           | 86.7                                |  |
| 1009          | 400             | 12.6  | 109.0   | 243                    | 47               | 290                    | 25.0                     | 20.8           | 76.0                                |  |
| 1007          | 400             | 12.5  | 109.0   | 251                    | 22               | 273                    | 50.0                     | 20.2           | 83.0                                |  |
| 1004          | 400             | 14.8  | ///./   | 251                    | 14               | 265                    | 5.0                      | 20.0           | 100                                 |  |
| 1010          | 400             | 14.1  | 112.0   | 251                    | 40               | 29/                    | 10.0                     | 20.0           | 80.0                                |  |
| 1002          | 400             | 14.5  | 111.4   | 251                    | 10 261           |                        | 25.0                     | 18.9           | -                                   |  |
| 1006          | 400             | 14.5  | 111.1   | 260                    | 11               | 271                    | 50.0                     | 19.1           | _                                   |  |
| 1015          | 400             | 17.8  | 112.8   | 284                    | 41               | 325                    | 5.0                      | 18.0           | 98.0                                |  |
| 1016          | 400             | 17.8  | 112.0   | 284                    | 16               | 300                    | 10.0                     | 18.7           | 83.0                                |  |
| 1017          | 400             | 17.8  | 112.3   | 290                    | 23               | 3/3                    | 25.0                     | 18.2           | 80.0                                |  |
| 1018          | 400             | 17.8  | 112.0   | 277                    | 10               | 287                    | 50.0                     | 17.8           | 71.0                                |  |
| 1019          | 400             | 15.8  | 11.3.6  | 281                    | 12               | 293                    | 5.0                      | 17.6           | 87.5                                |  |
| 1012          | 400             | 15.8  | 113.7   | 29/                    | 33               | 324                    | 10.0                     | 17:5           | 82.0                                |  |
| 1024          | 400             | 15.8  | //3.3   | 287                    | 9/               | 278                    | 25.0                     | 18.9           | 77.5                                |  |
| 1014          | 400             | /6./  | 112.4   | 28/                    | 13               | 294                    | 50.0                     | 18.5           | 71.8                                |  |
| 1020          | 800             | 17.8  | 114.5   | 266                    | 10               | 276                    | 5.0                      | 17.4           | 100                                 |  |
| 1021          | 800             | 18.0  | 114.4   | 27/                    | 7                | 278                    | 10.0                     | 17.2           | 76.0                                |  |
| 1022          | 800             | 18.2  | 114.2   | 266                    | 16               | 282                    | 25.0                     | 17.4           | 75.0                                |  |
| 1023          | 800             | 18.5  | 114.0   | 266                    | 18               | 284                    | 50.0                     | 17.9           | 78.0                                |  |

TABLE 3.3

PRESHEAR DATA FOR M-21 + 5% CEMENT

|               | COMPAC-       | AS-MO | DLDED          | · CUR                  | ING TIME         |                        | CONSOLIDA-               | FINAL<br>WATER | PORE<br>PRESSURE |  |
|---------------|---------------|-------|----------------|------------------------|------------------|------------------------|--------------------------|----------------|------------------|--|
| SAMPLE<br>No. | EFFORT<br>PSI | ω%    | 8d<br>16/ Ft 3 | HUMID<br>CURE,<br>DAYS | SOAKING,<br>DAYS | TOTAL<br>CURE,<br>DAYS | FION PRESSURE  To Kg/cm² | CONTENT<br>°/o | RESPONSE<br>B%   |  |
| 3001          | 400           | 9.9   | 109.4          | 14                     | 10               | 24                     | 49.65                    | 19.1           | 78.0             |  |
| 3002          | 400           | 9.9   | 109.0          | 14                     | 10               | 24                     | 24.8                     | 19.6           | 81.0             |  |
| 3003          | 400           | 10.1  | 108.5          | 14                     | 10               | 24                     | 7.95                     | 20.4           | 89.0             |  |
| 3021          | 400           | 11.0  | 110.5          | 14                     | 10               | 24                     | 10.28                    | 19.3           | 92.0             |  |
| 3007          | 400           | 16.3  | 114.6          | 14                     | 10               | 24                     | 49.9                     | 16.4           | 82.0             |  |
| 3009          | 400           | 16.5  | 114.5          | 14                     | 10               | 24                     | 25.7                     | 16.7           | 82.0             |  |
| 3009          | 400           | 16.4  | 114.0          | 14                     | 10               | 24                     | 10.0                     | 16.9           | 89.0             |  |
| 3010          | 400           | 16.5  | 114.6          | 14                     | 10               | 24                     | 5.0                      | 16.7           | 84.0             |  |
| 30//          | 400           | 14.9  | 115.7          | 14                     | 7                | 21                     | 50.0                     | 15.4           | 78.0             |  |
| 3012          | 400           | 14.9  | 115.3          | 14                     | 7                | 21                     | 25.7                     | /6.6           | 78.0             |  |
| 30/3          | 400           | 14.7  | 115.3          | 4                      | 7                | 21                     | 10.0                     | 16.6           | 79.0             |  |
| 3014          | 400           | 14.6  | 115.3          | 14                     | 8                | 22                     | 5.0                      | 16.9           | 89.0             |  |
| 30/6          | 800           | 11.2  | 115.5          | 14                     | 8                | 22                     | 50.0                     | 16.9           | 80.0             |  |
| 3017          | 800           | 11.0  | 115.1          | 14                     | 8                | 22                     | 25.6                     | 17.9           | 79.4             |  |
| 3018          | 800           | 10.9  | 115.0          | 14                     | 8                | 22                     | 10.0                     | 17.7           | 92.0             |  |
| 3019          | 800           | 11.2  | 115.6          | 14                     | 10               | 24                     | 5.0                      | 17.9           | 80.0             |  |

TABLE 3.4 SUMMARY OF STRESS - STRAIN CHARACTERISTICS FOR UNTREATED M - 21

|                     | AND MARKED              | WC.T      |          | nec 7         |          |               | -    |             |      |      |          | ING<br>ECT | •        | M.G.          |           |          | ING<br>ECT. |           |          |           |
|---------------------|-------------------------|-----------|----------|---------------|----------|---------------|------|-------------|------|------|----------|------------|----------|---------------|-----------|----------|-------------|-----------|----------|-----------|
|                     |                         | COMPLET   | <u> </u> | COMMECT       | 7.3      | *             | *    | *           | *    |      |          | SEATING    |          | SEATING       | *         |          | COMPECT     | *         | *        | *         |
| FINAL               | 7AC70                   | 596       | 38.3     | 39.5          | 8        | 970           | 8    | 8           | 9    | 8    | 976      | 006        | 8        | 8,            | 27.5      | 1.78     | 980         | 95.0      | 95.0     | 90.0      |
| ULTIMATE            | Ā                       | 122       | 167      | 153           | 1.13     | 0.77          | /08  | /8          | 040  | 950  | 0.62     | 064        | 0.28     | 6/0           | 043       | 045      | 870         | 050       | 1.39     | 1.47      |
|                     | ing for                 | 2.5       | 11.0     | 23.5          | 30       | 76            | 851  | 3/6         | 2.4  | 001  | 25.3     | 43.7       | 5.6      | 0.9/          | 583       | 57.1     | 5.5         | 10.0      | 62/      | 25.6      |
| T ULT               | au<br>Kgkm              | 7.3       | 20.0     | 38.5          | 3.6      | 6.8           | 174  | 34.8        | 67   | 5.3  | 16.3     | 20.6       | 1.7      | 5.0           | 12.0      | 24.1     | 5.6         | 5.2       | 18.9     | 38.7      |
| AY 6                | 9<br>49/cm              | 3.0       | 0.0      | 12.0          | 9./      | n,            | 82   | 16.4        | 2.5  | 2.4  | 12.6     | 23.3       | ₹.<br>₩. | 8.8           | 6.0       | 31.3     | 3./         | 2,5       | 68       | 13.7      |
|                     | P<br>Rg/cm²             | 57        | ///      | 235           | 59       | 7.2           | 84/  | 307         | 5.3  | 26   | 21.5     | 40.4       | 15       | 6//           | 23.3      | 47.6     | 5.4         | 0.0/      | 128      | 25.0      |
| 98                  | 9<br>49,600             | 58        | 28       | 120           | 9.1      | *             | 82   | 15.9        | 2.8  | 6.4  | 9//      | 51.6       | 2.7      | 99            | 12.5      | 56.6     | 300         | N         | 6.8      | 13.3      |
| ENVELOPE            | Ā                       | 124       | 170      | 160           | 111      | 083           | 5/1  | 9//         | 140  | 850  | 0.65     | 072        | 0.48     | 20            | 0.58      | 550      | 0.43        | 050       | 1.40     | 145       |
| WITH                | Δυ<br>*9/c#             | 7.2       | 80       | 38.5          | 36       | 89            | 08/  | 35.2        | 4.   | 5.4  | 15.3     | 512        | 56       | 7.7           | 14.2      | 280      | 5.6         | 124       | 06/      | 383       |
| VGENC)              | 0,-0.                   | 58        | 9//      | 340           | 3.2      | 18            | 156  | 3/.8        | 56   | 80   | 232      | 432        | 55       | 132           | 25.0      | 532      | 6.0         | 8.01      | 13.6     | 26.6      |
| AT FIRST TANGENCY   | 0.5 Mg/cm               | 82        | 5.3      | 11.5          | 1.3      | 3.2           | 70   | 8+1         | 55   | 43   | 7.6      | 88/        | 24       | 53            | 801       | 0/0      | 2.4         | 9         | 60       | 11.7      |
| A 7 F               | AYIAL<br>SIRAIN<br>OB   | 150       | 4        | 12.5          | 100      | 00            | 011  | 13.5        | 8/   | 801  | 96       | 901        | 32       | 69            | 2.2       | 9.9      | 1.0         | 11.7      | 0.11     | 126       |
|                     | ₽<br>49/cm              | 18        | 163      | 25.4          | 43       | 12            | 156  | 5,5         | 53   | 00/  | 233      | 439        | 50       | 09/           | 782       | 570      | 9.9         | 00/       | 206      | 25.7      |
| - Os) M             | 9<br>Mg/cm              | 30        | 65       | 021           | 8/       | 45            | /8   | <b>*9</b> / | 68   | 4.6  | 125      | 23/        | 58       | 6.8           | 15.5      | 3/2      | 32          | 54        | 7.5      | 13.7      |
| د (۵)               | Ā                       | 085       | 9//      | 09/           | 070      | 810           | 8    | 0//         | 140  | 050  | 050      | 065        | 810      | 9/0           | 030       | 0.39     | 024         | 0,40      | 080      | 1.37      |
| E ACNC              | au<br>ng/cm             | 64        | 152      | 386           | 25       | 70            | 175  | 348         | 24   | 55   | 142      | 292        | 56       | 60            | 15.1      | 242      | 15          | 3.5       | 11.7     | 580       |
| A MARMUM DIFFERENCE | 8,-83 AU<br>19/01 19/01 | 09        | 130      | 340           | 36       | 8.6           | 16.2 | 327         | 26   | 107  | 250      | 462        | 55       | 821           | 310       | 623      | 63          | 8.0/      | 146      | 273       |
| MARIM               | 6.<br>12/cm             | 15        | 86       | 501           | 50       | 32            | 5/2  | 181         | 25   | 14   | 801      | 88         | 54       | 1             | 12.9      | 25.8     | 3,5         | 94        | /3.3     | 12.0      |
| ₹                   | AKIAL<br>Strain<br>96   | 12        | 9/       | *"            | *        | 155           | 16.3 | 191         | 8/   | /9/  | 15.0     | 16.5       | 32       | 16.4          | /6/       | 156      | 1.3         | 16.5      | 16.0     | 16.5      |
| INITIAL             | S Cont                  | 2440      | 250 6590 | ¥11 00281 005 | 3650     | 5824          | 6310 | 01111 00%   | 3810 | 2750 | 250 6690 | 500 9220   | 2800     | 2013 100 4870 | 25.0 6270 | 500 9/30 | 50 4629     | 10.0 4850 | 250 5310 | 50.0 7660 |
| 05.00               | 25 July 1               | 2001 1002 | 380      | 800           |          | 5005 102 4285 | 250  | 200         | *8   | 001  |          | 200        | 48       | 001           | 25.0      |          | 20          | 10.0      |          | 50.0      |
| 05.00               | 4                       | 2007      | 3005     | 2003          | 3000 438 | 5005          | 2006 | 2007        | 2008 | 5009 | 2010     | 102        | 2012     | 2013          | \$100     | 2015     | 30/6        | 2017      | 8/02     | 6/02      |

TABLE 3.5 SUMMARY OF STRESS - STRAIN CHARACTERISTICS FOR M-21+LIME

| 12.25 0.08 12.9 15.7 11.1 -0.70 16.8 16.6 10.4 44 15.9 16.6 136 17.7 20.9  |
|----------------------------------------------------------------------------|
| 0.08 12.9 15.7 11.1 -0.70 0.26 12.8 16.4 10.4 4.4 0.46 1.80 26.6 13.6 17.7 |
| 5 0.26 1.28 16.4 104 4.4                                                   |
| 6 046 182 266 136 177                                                      |
|                                                                            |
| 32.9 058 28.5 45.6 19.4 394 30.0                                           |
| 28 008 178 201 192 -52 294                                                 |
| 6.9 0.17 202 233 21.8 -1.6 354                                             |
| 16.8 0.56 23.8 32.0 21.0 12.9 33.1                                         |
| 337 054 311 484 258 336 422                                                |
| 2.7 005 194 216 21.3 -79 34.2                                              |
| 60 0/4 2/0 250 26.0 -70 43                                                 |
| 17.5 059 22.3 29.8 27.6 7.4 45.3                                           |
| 345 054 315 971 322 283 53.9                                               |
| 0 007 206 22.9 24.7 -8.9 38.8                                              |
| 6.7 0.14 22.2 25.6 269 -1.2 38.1                                           |
| 184 036 259 32.5 273 76 44.8                                               |
| 347 053 326 478 316 300 51.7                                               |
| 075 001 229 27, 206 -7,5 35.0                                              |
| 5.4 0.11 25.3 29.9 25.2 -4.5 39.8                                          |
| 178 0.32 282 354 30.2 6.2 49.0                                             |
| 381 0,59 31.8 45.8 32.8 29.2 53.7                                          |

TABLE 3.6 SUMMARY OF STRESS - STRAIN CHARACTERISTICS FOR M-21+5% CEMENT

|                            | REMARKS                                          | COMMECT             | Ł                   | *             | *              | ı               | 2                | ł               | *              |                     | 2              |                 | SEATIME         |                                  |                  | SELVING<br>COMMECT. | "              |
|----------------------------|--------------------------------------------------|---------------------|---------------------|---------------|----------------|-----------------|------------------|-----------------|----------------|---------------------|----------------|-----------------|-----------------|----------------------------------|------------------|---------------------|----------------|
| FINEL                      | FACTO                                            | 888                 | 508                 | 250           | 970            | 92.7            | 870              | 970             | 1              | 234                 | 980            | 90/             | 900             | 8                                | 80               | 80.0                | 7.06           |
| Γ                          | Ā                                                | 1.27                | /8                  | 0.27          | 030            | 0.58            | 0.13             | 0.12            | 1              | 930                 | 217            | 35.8 -009       | 325-019         | 15.0                             | 030              | 32.6 -005           | 32.1 -0.24     |
| MATE                       | A Ada                                            | 290                 | 99/                 | 12.1          | /5.3           | 603             | 108              | 450             | J              | 28.0                | 64.9           | 35.8            | 325             | 54.8                             | 38.2             | 326                 | 32./           |
| AT LETIMATE                | 9 AU                                             | 37.7                | 18.8                | 8             | 20             | 26.8            | S.               | -62             | 1              | 3.2                 | 8.5            | -35             | -6.8            | 28.5                             | 11.6             | 9:/-                | -6.9           |
| 4                          | 9<br>1964                                        | 021                 | 901                 | 8.6           | 0.01           | 372             | 320              | 288             | ı              | 356                 | 27.5           | 22.4            | 207             | 34.0                             | 24.2             | 210                 | 20.1           |
| SPE                        | P<br>Rojem                                       | 34.65               | 88                  | 150           | 118            | 463             | 54.7             | 346             | 1              | 52.0                | 31.8           | 223             | 20.1            | 52.1                             | 33.5             | 22.3                | 197            |
| ENVELOPE                   | 40cm                                             | 502                 | 12.5                | 90/           | 5.11           | 334             | 300              | 28.0            | 1              | 34.0                | 24.4           | 18.3            | 121             | 34.1                             | 24.6             | 18.7                | 69/            |
| WITH                       | Ā                                                | 980                 | 0.70                | 0.17          | 0.18           | 053             | 140              | 0.00            | ı              | 640                 | 0.39           | 0.14            | 90.0            | 14:0                             | 0.34             | 97.0                | 000            |
| BENCY                      | 40/gr                                            | 355                 | 521                 | 3.6           | 40             | 37.0            | 21.0             | AR              | 1              | 32.0                | 18.5           | 6.0             | 5.0             | 32.0                             | 1.91             | 4.0                 | 2.2            |
| T TAN                      | 0.00<br>1000                                     | 61.0                | 052                 | 21.2          | 23.0           | 899             | 009              | 56.0            | Ţ              | 089                 | 887            | 366             | 34.2            | 69.2                             | 492              | 37.4                | 358            |
| AT FIRST TANGENCY          | ryloh                                            | 51.71               | 7.5                 | 4.36          | 6.28           | 621             | 14               | 99              | 1              | 081                 | 74             | 40              | Ŋ               | 08/                              | 8.9              | 36                  | 2.8            |
| •                          | AXIAL<br>STRAIN<br>9/0                           | 30                  | 30                  | 5.0           | 30             | 2.6             | 1.3              | 2.6             | 1              | 2.5                 | 4.             | 9.0             | 0.7             | 5.0                              | Ö                | 0.                  | 80             |
|                            | ρ<br>φ/επ                                        | 40.2                | 23.4                | 641           | 80             | 409             | 466              | 16.2            | 1              | 56.7                | 45.6           | 36./            | 34.5            | 54.5                             | 38.5             | 22.7                | 302            |
| 93) 11                     | 9 rates                                          | 512                 | 135                 | 90/           | 12.5           | 385             | 33.3             | 32./            | 1              | 35.7                | 86             | 23.5            | 235             | 350                              | 25.4             | 22.0                | 205            |
| AT MASIMUM DIFFERENCE ( G. | ۲                                                | 073                 | 055                 | 090           | 510            | 850             | 810              | 0/0             | 1              | 240                 | 9/0            | -0.05           | -0/4            | 0.45                             | 026              | -0.012              | -015           |
| IFFEREN                    | ण्ड , ज्,-जु ।<br>कु/वर्गे क्ट्रांटर्ने स्वुट्ने | 310                 | 64                  | M             | 38             | 200             | 125              | 642 -5.9        | 1              | 29.0                | 9.5            | 470 -26         | -6.0            | 305                              | 1.29 808 12.7    | 10.7 440 -070       | 410-47         |
| MUMO                       | 9. 9.                                            | 1865 430            | 270                 | 212           | 250            | 200             | 88.7             |                 | ı              | 24                  | 888            | 470             | 11.0 470 -6.0   | 20                               | 808              | 40                  |                |
| V MAE!                     |                                                  | 99                  | 88                  | 43            | 65             | 8               | 132              | 83              | 1              | 510                 | /6.2           | 921             |                 | 8                                | 129              | 10.7                | 9.7            |
|                            | ANIAL<br>STRUM                                   | 7                   | 80                  | 25            | 80             | 70              | 3.7              | 83              | 1              | 2.8                 | 80             | 77              | 6,5             | 4.5                              | 35               | N. K.               | 40             |
|                            | 00 00 00 00 00 00 00 00 00 00 00 00 00           | 21 20012 59 67 1008 | 3002 24.80 15600 08 | 3003 796 8500 | 3021 1028 9750 | 3007 4990 16000 | 3008 25.70 2500C | 3009 10.00 8800 | 30/0 500 10000 | 3011 5000 10400 5.5 | 30/2 25/0/0300 | 30/3 10.00 8900 | 30/4 500 500 65 | 3016 500012500 4.5 19,5 70 0 305 | 3017 25.60 20800 | 30/8 10.00/0500 5.3 | 30/9 5.00 6250 |
| -05MQJ                     | N . 3                                            | 4965                | 24.80               | 796           | 1028           | 49%             | 25.70            | 100             | 200            | 8g                  | 28.70          | 10.00           | 28              | 20.0X                            | 25.88            | 10.00               | 5.00           |
| 20                         | 7 on o                                           | ò                   | 3005                | 3003          | 36%            | 3007            | 3008             | 3009            | 30/0           | 1/00                | 30/2           | 30/3            | 30/4            | 30/6                             | 3017             | 30/8                | 30/5           |



FIGURE 3/ EFFECTIVE STRESS-STRENGTH BEHAVIOR OF UNTREATED M-21 COMPACTED DRY OF OPTIMUM



FIGURE 3.2 EFFECTIVE STRESS - STRENGTH BEHAVIOR OF M-21 COMPACTED DRY OF OPTIMUM



FIGURE 3.3 EFFECTIVE STRESS-STRENGTH JEHAVIOR OF UNTREATED M-21 COMPACTED AT OPTIMUM



FIGURE 3.4 EFFECTIVE STRESS - STRENGTH BEHAVIOR OF UNTREATED M-21 COMPACTED WET OF OPTIMUM



FIGURE 3.5 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF UNTREATED M-21 COMPACTED TO HIGH DENSITY





FIG.3.6 INFLUENCE OF WATER CONTENT DURING SHEAR ON THE EFFECTIVE PRINCIPAL STRESS RATIO OF UNTREATED MASSACHUSETTS CLAYEY SILT AS A FUNCTION OF MOLDING CONDITIONS



INFLUENCE OF MOLDING CONDITIONS ON THE EFFECTIVE STRESS-STRENGTH RELATION OF UNTREATED MASSACHUSETTS CLAYEY SILT AT ULTIMATE FIGURE 3.7



FIGURE 3.8 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21 + 5% LIME COMPACTED VERY DRY OF OPTIMUM



FIGURE 3.9 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21 + 5 % LIME COMPACTED DRY OF OPTIMUM



FIGURE 3.10 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21+5% LIME COMPACTED AT OPTIMUM



FIGURE 3.// EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21 + 5% LIME COMPACTED WET OF OPTIMUM



FIGURE 3.12 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21+5% LIME COMPACTED TO HIGH DENSITY



M-21 + 5% CENENT COMPACTED DRY OF OPTIMUM FIGURE 3.13 EFFECTIVE STRESS - STRENGTH BEHAVIOR



FIGURE 3.4 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M- 21 + 5% CEMENT COMPACTED AT OPTIMUM



FIGURE 3.15 EFFECTIVE STRESS - STRENGTH BEHAVIOR OF M- 21 + 5% CEMENT COMPACTED WET OF OPTIMUM



FIGURE 3.16 EFFECTIVE STRESS - STRENGTH BEHAVIOR OF M-21 + 5% CEMENT COMPACTED AT MIGH DENSITY



FIG.3.17 INFLUENCE OF MOLDING CONDITIONS ON THE MOHR-COULOMB EFFECTIVE STRESS-STRENGTH PARAMETERS OF M-21 STABILIZED WITH 5% LIME



FIG. 3.18 INFLUENCE OF MOLDING CONDITIONS ON THE MOHR-COULOMB EFFECTIVE STRESS-STRENGTH PARAMETERS OF M-21 STABILIZED WITH 5% CEMENT



EFFECTIVE STRESS-STRENGTH RELATION AT ULTIMATE FOR M-21+5% LIME FIGURE 3.19



FIGURE 3.20 EFFECTIVE STRESS - STRENGTH RELATION AT ULTIMATE FOR M-21 + 5% CEMENT

3



FIG.3.21 COMPARISON OF EFFECTIVE PRINCIPAL STRESS RATIO FOR M-21 WITH 5% LIME AT MOHR-COULOMB AND ULTIMATE AS A FUNCTION OF MOLDING CONDITIONS



FIG. 3.22 COMPARISON OF EFFECTIVE PRINCIPAL STRESS RATIO FOR M-21 WITH 5% CEMENT AT MOHR-COULOMB AND ULTIMATE AS A FUNCTION OF MOLDING CONDITIONS



EFFECTIVE STRESS-STRENGTH RELATION AT ULTIMATE FOR THE M-21 SYSTEMS FIGURE 3.23



FIG.3.24 INFLUENCE OF MOLDING DRY DENSITY ON THE UNDRAINED STRENGTH OF M-21 STABILIZED WITH 5% LIME.



FIG. 3.25 INFLUENCE OF MOLDING DRY DENSITY ON THE UNDRAINED STRENGTH OF M-21 STABILIZED WITH 5% CEMENT.



FIG.3.26 PORE PRESSURE RESPONSE OF UNTREATED MAS-SACHUSETTS CLAYEY SILT.



FIG. 3,27 PORE PRESSURE RESPONSE OF LIME STABILIZED MASSACHUSETTS CLAYEY SILT.



FIG. 3.28 PORE PRESSURE RESPONSE OF CEMENT STABI-LIZED MASSACHUSETTS CLAYEY SILT.



FIG. 3.29 INFLUENCE OF MOLDING CONDITIONS ON THE EFFECTIVE MINOR PRINCIPAL STRESS OF UNTREATED MASSACHUSETTS CLAYEY SILT AT ULTIMATE



FIG. 3.30 INFLUENCE OF MOLDING CONDITIONS ON THE EFFECTIVE MINOR PRINCIPAL STRESS OF UNTREATED MASSACHUSETTS CLAYEY SILT DURING UNDRAINED SHEAR



FIG.3.31 INFLUENCE OF STATIC COMPACTION EFFORT ON THE NORMALIZED EFFECTIVE MINOR PRINCIPAL STRESS OF UNTREATED MASSACHUSETTS SILT AT ULTIMATE



FIG.3.32 INFLUENCE OF MOLDING WATER CONTENT ON THE A-FACTOR OF UNTREATED MASSACHUSETTS CLAYEY SILT



FIG. 3.33 INFLUENCE OF MOLDING CONDITIONS ON THE EFFECTIVE MINOR PRINCIPAL STRESS OF M-21 STABILIZED WITH 5% LIME



FIG. 3.34 INFLUENCE OF MOLDING CONDITIONS ON THE EFFECTIVE MINOR PRINCIPAL STRESS OF M-21 STABILIZED WITH 5% CEMENT



FIG. 3.35 INFLUENCE OF AS-MOLDED DRY DENSITY ON THE A-FACTOR OF MASSACHUSETTS CLAYEY SILT STABILIZED WITH 5% LIME



FIG.3.36INFLUENCE OF AS-MOLDED DRY DENSITY ON THE A-FACTOR OF MASSACHUSETTS CLAYEY SILT STABILIZED WITH 5% CEMENT



FIG.3.37INFLUENCE OF AS-MOLDED DRY DENSITY ON THE ULTIMATE A-FACTOR OF M-21+5% LIME AND M-21+5% CEMENT



FIG.3.38 INFLUENCE OF MOLDING CONDITIONS ON THE STRESS-STRENGTH BEHAVIOR OF UNTREATED MASSACHUSETTS CLAYEY SILT



FIG.339 INFLUENCE OF MOLDING CONDITIONS ON THE TOTAL STRESS-STRENGTH BEHAVIOR OF MASSACHUSETTS CLAYEY SILT STABILIZED WITH 5% LIME



FIG.3.40 INFLUENCE OF MOLDING CONDITIONS ON THE TOTAL STRESS-STRENGTH BEHAVIOR OF MASSACHUSETTS CLAYEY SILT STABILIZED WITH 5% CEMENT



FIG.3.4/ INFLUENCE OF MOLDING CONDITIONS ON THE AXIAL STRAIN REQUIRED TO REACH MAXIMUM STRESS DIF-



FIG. 3.42 DEVELOPMENT OF FRICTIONAL RESISTANCE AS A FUNCTION OF AXIAL STRAIN FOR UNTREATED MASSACHUSETTS CLAYEY SILT.





FIG.3.43 DEVELOPMENT OF FRICTIONAL AND COHESIVE RESIST-ANCE OF MASSACHUSETTS CLAYEY SILT WITH 5 % LIME AS A FUNCTION OF AXIAL STRAIN.





FIG. 3.44 DEVELOPMENT OF FRICTIONAL AND COHESIVE RESIST-ANCE OF MASSACHUSETTS CLAYEY SILT WITH 5% CEMENT AS A FUNCTION OF AXIAL STRAIN.

### Chapter 4

# INFLUENCE OF DELAY TIME PRIOR TO COMPACTION

### 4.1 DELAY TIME COMPACTION

In order to investigate the effect of delaying the time of compaction after mixing on the stress-strength behavior of M-21 + 5 per cent cement, three sets of samples were prepared using two-end static compaction. Samples of the set named DTO were compacted at an effort of 400 psi immediately after mixing. Samples of the set DT1 were compacted at the same effort as the DTO set after 5 hours delay following mixing in of the molding water. Samples of the set DT2 were compacted to a dry density equal to that of the DTO set after 5 hours delay following mixing in of the molding water, by increasing the compaction effort to about 800 psi in order to obtain the same density as the DTO set.

All the samples of the three sets were compacted at an average molding water content of 13.4 per cent (see summary data in Table 4.1).

### 4.2 EFFECTIVE STRESS-STRENGTH BEHAVIOR

The Mohr-Coulomb effective stress-strength envelopes of the three sets tested (sets DTO, DT1, and DT2) are shown

in Figs. 4.1 through 4.3. Over the range of consolidation pressures used, the envelopes for the three conditions investigated were straight lines.

As shown in Figs. 4.1 and 4.3, delay time of compaction, per se, had no effect on either the effective Mohr-Coulomb angle of shearing resistance or the effective cohesion intercept since these two sets of samples, which had the same as-molded dry density (a higher compactive effort was needed for the delay time set), have the same envelope.

In Fig. 4.2 samples of the DT1 set showed a slightly lower cohesion intercept and a much lower angle of shearing resistance than series DTO and DT2. This reflects the effect of the much lower as-molded dry density obtained in the DT1 samples, which had a delay time prior to compaction of 5 hours and were compacted at a constant effort of 400 psi. The drop in density with delay time has been observed by other investigators (Armen et al. 1965).

In summary, it can be said that delay time prior to compaction causes a significant drop in the as-molded dry density for a given compactive effort and this in turn is reflected as a much lower effective Mohr-Coulomb angle of shearing resistance. Nevertheless, if delay time mixes

are compacted to the same as-molded dry density as the non-delay time mixes, there is no difference in the effective stress-strength parameters for a given molding water content. This may not be practical to achieve in the field since it requires a considerable increase in the applied compaction effort.

By the time ultimate conditions are reached at large strains, the soil behaves like a granular material having zero effective cohesion intercept and a high effective angle of shearing resistance  $(\overline{\phi}_{\text{ult}})$  which is not only independent of molding conditions but also is independent of delay time prior to compaction (see Fig. 4.4).

Fig. 4.5 shows the influence of delay time on the effective principal stress ratio of the cemented soil at Mohr-Coulomb and ultimate conditions as a function of effective minor principal stress. At Mohr-Coulomb (Fig. 4.5a), the data of sets DTO and DT2 show that the effective principal stress ratio is not influenced by delay time of compaction, per se, although it is a function of  $\overline{\sigma}_3$  for the same reasons as given in Art. 3.1.2 for molding conditions. At ultimate conditions  $\overline{\sigma}_1/\overline{\sigma}_3$  is independent of  $\overline{\sigma}_3$ , as shown in Fig. 4.5b, since  $\overline{c}$  is zero and  $\overline{\phi}_{\rm ult}$  is independent of delay time prior to compaction, and of molding conditions.

### 4.3 PORE PRESSURE RESPONSE

# 4.3.1 Prior to Shear

The pore pressure response was determined after consolidation and saturation, but prior to shear for the reasons stated in Art. 3.2.1. In addition, leak checks were run after each pore pressure response determination by closing the drainage valve and measuring the change in pore pressure as a function of time. Leaks in the system proved to be the cause for the low B factors initially obtained (not reported herein). Once the leaks were corrected, the pore pressure response went up to its normal values for the soil-cement system at the different consolidation pressures as shown in Fig. 4.6a.

No correlation appears to exist between delay time prior to compaction and B factor as can be seen in Fig. 4.6a. In general the pore pressure response prior to shear, B<sub>O</sub>, decreased with increasing rigidity of the soil skeleton as expected. Fig. 4.7b is a plot of initial tangent modulus versus consolidation pressure. The data points show significant scatter but an important observation can be made. Sample DT2-1 shows a significantly higher modulus than sample DT2-2, both being at approximately the same consolidation pressure. Sample DT2-1 was brought up to the effective

consolidation pressure in four increments, allowing for consolidation after each increment, while sample DT2-2 was brought up to the final value of consolidation pressure in one step. This same procedure was used with samples DT1-3 and DT1-4. Also, samples DT2-1 and DT1-3 showed a higher strength than samples DT2-2 and DT1-4, respectively (see Figs. 4.2 and 4.3). This seems to indicate that applying the consolidation stress in one increment, especially at the higher consolidation pressures, produces some premature cracking that weakens the samples and lowers its rigidity. Keeping this in mind, one can conclude that the general trend is for an increase in rigidity with increase in consolidation pressure if the samples do not crack prematurely during consolidation, the increase being smaller for the more strongly cemented (stiffer) test sets.

## 4.3.2 After Shearing

Pore pressure response after shearing was determined as explained in Section 3.2.2. The results are plotted in Fig. 4.6b. This shows that  $B_{\rm f}$  was greater than  $B_{\rm O}$ , since the results plotted above the 45° line shown in the figure.

### 4.4 PORE PRESSURE DURING SHEAR

Since the total minor principal stress was kept constant

during consolidation and shear, the excess pore pressure developed during undrained shear is equal to the consolidation pressure minus the effective minor principal stress. Therefore from Figs. 4.8a and 4.8b, which are plots of  $\overline{\sigma}_{3}$  at maximum stress difference and at tangency versus consolidation pressure, respectively, it is seen that the excess pore pressure during undrained shear is not influenced by delay time. Even though the delay samples at constant compactive effort (DTl set) had a much lower as-molded dry density, their excess pore pressures at Mohr-Coulomb tangency, for a given consolidation pressure, were the same as for the higher as-molded dry density samples of the sets DTO and DT2 (Fig. 4.8b). This is in agreement with the results reported in Section 3.3.2, which showed that molding conditions had no significant influence on the excess pore pressures of the stabilized soil at Mohr-Coulomb failure.

From Fig. 4.8a it is also seen that delay time, per se, and as-molded dry density does not influence the excess pore pressure at maximum stress difference. At ultimate failure (Fig. 4.8c), the excess pore pressure at any given consolidation pressure is independent of delay time, per se, since the DTO and DT2 sets had the same pore water pressures; however, the delay time DT1 set, which had a lower as-molded dry density than the other two sets, developed higher excess

pore water pressures. This is also in agreement with the results presented in Section 3.3.2.

Apparently, at Mohr-Coulomb and tangency conditions, the cementation between the soil-cement aggregates containing high cement concentrations has not yet been appreciably destroyed; therefore, the differences in dry density are not reflected as a difference in excess pore pressure. This is reinforced by the fact that at Mohr-Coulomb, the three sets of samples had about the same effective cohesion intercept. This does not necessarily mean that the maximum cohesive resistance in the low density delay time samples is as large as for the higher density samples. Based on the fact that at Mohr-Coulomb \$\overline{\pi}\$ for the low density delay time samples was lower than for the high density samples, whereas at ultimate all the sets had the same  $\overline{\phi}_{ult}$ , it appears that in the low density set, more of the shearing resistance at Mohr-Coulomb was due to cohesion and less due to friction than for the high density sets. As will be shown later in Section 4.6.2, the axial strains needed to reach maximum stress difference were lower for the low density delay time set (DT1) than for the high density sets (DTO and DT2). Therefore, less friction is mobilized and less cohesion (cementation between aggregates) is destroyed in the low density delay set at Mohr-Coulomb failure than in the high density sets.

At ultimate failure the excess pore water pressures in the low density delay time set were higher than for the high density sets at the same consolidation pressure, because the cementation between aggregates has now been destroyed and the soil behaves like uncemented sands, which show an increase in excess pore pressure during undrained shear with a decrease in dry density.

### 4.5 TOTAL STRESS-STRENGTH BEHAVIOR

Fig. 4.9 shows plots of average principal stress difference,  $1/2(\sigma_1-\sigma_3)$ , versus average total principal stress,  $1/2(\sigma_1+\sigma_3)$ , at maximum stress difference and at ultimate. The data in Fig. 4.9a show that delay time has little effect on the total strength parameters at maximum stress difference. However, as seen from Fig. 4.9b, at ultimate conditions the low density delay time samples DT1 have a lower cohesion intercept in terms of total stresses than the high density samples DT0 and DT2, whereas there is no difference between the DT0 and DT2 sets of samples, meaning that delay time, per se, has no effect on the strength parameters in terms of total stresses. This solely is a reflection of the influence of the excess pore water pressures on the ultimate shear resistance of the soil, since  $\overline{c}$  at ultimate was zero and  $\overline{\phi}_{\rm ult}$  was independent of delay time and molding conditions.

### 4.6 STRESS-STRAIN BEHAVIOR

# 4.61 Initial Tangent Modulus

Although seating corrections had to be made to the stress-strain curves of all these tests, the initial tangent modulus was computed from the straight line portion of the curves (see Table 4.2). A plot of initial tangent modulus versus consolidation pressure was presented in Fig. 4.7b and discussed in Section 4.3.1.

# 4.6.2 Axial Strain to Reach Maximum Stress Difference

Fig. 4.10 is a plot of axial strain at maximum stress difference,  $\varepsilon_{\rm m}$ , versus consolidation pressure. By comparing  $\varepsilon_{\rm m}$  for the DTO and DT2 sets (which had the same as-molded dry density) at a given consolidation pressure, it is seen that delay time, per se, has no effect on the axial strains required to reach maximum stress difference. However, at the lower consolidation pressures, the DT1 set, which had a lower as-molded dry density than the other two sets, DTO and DT2, reached maximum stress difference at lower axial strains. This is probably due to the more open packing of the DT1 set, which causes, at these relatively small strains, more of the shearing stress to be carried by the cementation between cemented soil aggregates and less by inter-aggregate friction.

Stress-strain curves, as well as change in pore pressure and A-factor versus percentage of axial strain, are presented in Appendix A.

TABLE 4.1

PRESHEAR DATA FOR M-21+5% CEMENT

|               | COMPACT-              | AS-MO  | DLDED   | CONSOLI-<br>DATION | FINAL                 | PORE<br>PRESS.<br>RESPONSE<br>B % |  |
|---------------|-----------------------|--------|---------|--------------------|-----------------------|-----------------------------------|--|
| SAMPLE<br>Nº. | TIVE<br>EFFORT<br>PSI | ယ<br>% | 16./f43 | PRESS.             | WATER<br>CONTENT<br>% |                                   |  |
| 070-1         | 400                   | 13.4   | 112     | 49.2               | 18.0                  |                                   |  |
| DTO-2         | 400                   | 13.4   | 112     | 10.0               | 19.0                  |                                   |  |
| 070-3         | 400                   | 13.3   | 112     | 25.0               | 18.9                  | _                                 |  |
| DTO-4         | 400                   | 13.6   | 112     | 50.0               | _                     | 93.2                              |  |
| DT1-1         | 400                   | 13.2   | 104     | 25.0               | 22.7                  | _                                 |  |
| DT1-2         | 400                   | 13.4   | 104     | 10.1               | 22.5                  |                                   |  |
| DT 1-3        | 400                   | 13.4   | 103     | 50.1               | 21.6                  | 85.1                              |  |
| D71-4         | 400                   | 13.4   | 103     | 50.0               | 20.3                  |                                   |  |
| DT2-/         | 400                   | 13.3   | 112     | 50.1               | 18.3                  | 90.7                              |  |
| DT2-2         | ~800                  | 13.3   | 112     | 50.0               |                       | 86.6                              |  |
| 072-3         | ~800                  | 13.5   | 112     | 10.0               | 18.8                  | 91.4                              |  |
| DT 2-5        | ~800                  | 13.5   | 112     | 25.0               | 18.0                  | 86.9                              |  |

SUMMARY OF STRESS - STRAIN CHARACTERISTICS FOR M - 21 + 5% CEMENT TABLE 4.2

|             |                                                 | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REMARKS     |                                                 | Seating Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •        | •                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| B<br>FACTOR | *                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 93.2     | ı                   | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.17       | \$.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ×           | Kg/cm*                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57     | 0.97                | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.72        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n           | Kerem                                           | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.6     | 9                   | . 8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36.5        | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ٦ď          | Kg/cm                                           | ā                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ¥.       | 17.8                | 80<br>4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.7        | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0           | Kg/cm²                                          | 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.6     | 8                   | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| اه          | Kg/cm²                                          | 1.8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.<br>8. | 24.3                | <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4.4       | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| σ           | Kg/cm²                                          | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.9     | 16.3                | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.8        | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Y           | Kg/cm²                                          | 924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65     | 0.47                | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.52        | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nσ          | Kg/cm <sup>2</sup>                              | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.1     | <u>.</u>            | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.7        | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| £ - 9       | Kg/cm²                                          | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.8     | 32.6                | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57.6        | 31.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ď,          | Kg/cm <sup>2</sup>                              | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.9     | <del>-</del>        | .s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.6        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Axial       | %                                               | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u> | 0.8                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9           | <b>6</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ia.         | Kg/cm                                           | 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.9     | 25.9                | 17.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.7        | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| σ           | Kg/cm                                           | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>ē</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.5     | 8.8                 | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.3        | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| i«          |                                                 | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61     | 0.42                | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.49        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nσ          | Kg/cm                                           | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.5     | ₹                   | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.<br>8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.9        | ю.<br>Ю.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | Kg/cm                                           | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.0     | 33.6                | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.7        | 36.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ₽,          |                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₹.       | <del>-</del>        | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6.</b> 4 | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Axial       | *                                               | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>8.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0      | 9.0                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E.          | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pod         | Kg/cm                                           | 11,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23,000   | 26,800              | 9,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11,500      | 17,142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| i k         | Ka/cm*                                          | 96.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.92    | 24.96               | 10.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49.95       | 9.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 P. E.     | į                                               | DT0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DT0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PT0-4    | 071-1               | DT1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DTI-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DTI-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DT2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DT2-2       | DT2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DT2-5 25.03 12,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | d. Axiei or | Kg/cm² Kg | .d. Axial G5 G7-55 Du A q p Axial G5 G7-55 Du A q p Axial G5 G7-55 Du A q p q D q Du P A FACTOR  Strain Kg/cm² Kg/ | - Strein | 4. Axial 65 6755 Au | "A siel         G5         G7 - G5         Au         A         q         p         A siel         G5         G7 - G5         Au         A         q         p         A siel         G5         G7 - G5         Au         A         q         p         A         F a CTOR           Em         "Strain         Kg/cm"         Kg/cm" <td>"Anial         GF         Anial         GF         Anial         GF         GF</td> <td>d. Strein         G5         G7 - G5         Au         A         G         G         Aniel         G5         G7 - G5         Au         A         G         G         G         G7 - G5         Au         A         G         G         G         G         G7 - G5         Au         A         G         G         G         G         G         G7 - G5         G7 - G5<td>4.1. Strein         6.5 g         6.7 - 5y         Au         A kiel         6.5 g         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A         A kiel         6.5 strein         A kiel         A kiel<td>                                     </td><td>4.1         A1         A1</td><td>4.1.         Azial         Azial</td></td></td> | "Anial         GF         Anial         GF         Anial         GF         GF | d. Strein         G5         G7 - G5         Au         A         G         G         Aniel         G5         G7 - G5         Au         A         G         G         G         G7 - G5         Au         A         G         G         G         G         G7 - G5         Au         A         G         G         G         G         G         G7 - G5         G7 - G5 <td>4.1. Strein         6.5 g         6.7 - 5y         Au         A kiel         6.5 g         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A         A kiel         6.5 strein         A kiel         A kiel<td>                                     </td><td>4.1         A1         A1</td><td>4.1.         Azial         Azial</td></td> | 4.1. Strein         6.5 g         6.7 - 5y         Au         A kiel         6.5 g         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A kiel         6.5 strein         6.7 - 5y         Au         A         A kiel         6.5 strein         A kiel         A kiel <td>                                     </td> <td>4.1         A1         A1</td> <td>4.1.         Azial         Azial</td> |             | 4.1         A1         A1 | 4.1.         Azial         Azial |



EFFECTIVE STRESS - STRENGTH BEHAVIOR IN UNDRAINED SHEAR OF M-21+5% CEMENT NO DELAY TIME PRIOR TO COMPACTION AT CONSTANT EFFORT FIGURE 4.1



EFFECTIVE STRESS - STRENGTH BEHAVIOR IN UNDRAINED SHEAR OF M-21 + 5% CEMENT S HOURS DELAY TIME PRIOR TO COMPACTION AT CONSTANT EFFORT FIGURE 4.2



EFFECTIVE STRESS-STRENGTH BEHAVIOR IN UNDRAINED SHEAR OF M-21+5% CEMENT. 5 HOURS DELAY TIME PRIOR TO COMPACTION AT CONSTANT DENSITY FIGURE 4.3

FIGURE 4.4 EFFECTIVE STRESS-STRENGTH BEHAVIOR OF M-21 + 5 % CEMENT. AT ULTIMATE

NO DELAY AND 5 HOURS DELAY TIME PRIOR TO COMPACTION



HALF PRINCIPAL STRESS DIFFERENCE AT ULTIMATE







FIG. 4.6 PURE PRESSURE RESPONSE OF M-21 + 5% CEMENT





FIG. 4.7 PORE PRESSURE RESPONSE OF M-21 + 5 % CEMENT AND INITIAL TANGENT MODULUS







FIG. 4.8 INFLUENCE OF DELAY TIME OF COMPAC-TION ON THE EFFECTIVE MINOR PRINCIPAL STRESS



FIG. 4.9 INFLUENCE OF DELAY TIME OF COMPACTION ON THE TOTAL STRESS - STRENGTH BEHAVIOR OF M-21+5% CEMENT.



FIG. 4.10 INFLUENCE OF DELAY TIME OF COMPACTION ON THE AXIAL STRAIN REQUIRED TO REACH MAXIMUM STESS DIFFERENCE

## Chapter 5

## CONCLUSIONS

The following conclusions are drawn regarding the effects of molding conditions and delay time after mixing and prior to compaction, on the effective stress-strength and stress-strain behavior of a clayer silt both untreated and stabilized with 5 per cent hydrated lime and 5 per cent portland cement type 1.

- 1) Molding conditions have no significant effect on the strength parameters of the untreated compacted soil in terms of effective stresses but cause large changes in the total stress-strength parameters.
- 2) For both the lime-and the cement-stabilized soil, a significant increase in the Mohr-Coulomb effective cohesion intercept,  $\overline{c}$ , is produced by increasing as-molded dry density, but this does not cause any significant change in the effective angle of shearing resistance. Molding water content, per se, has no effect on the effective stress-strength parameters.

- At ultimate conditions, the stabilized systems have no effective cohesion intercept and have an effective angle of shearing resistance that is independent of molding conditions. This is also the case for the untreated soil.
- 4) Molding water content rather than molding dry density controls the pore water pressure behavior of untreated fine-grained soils in undrained shear. Samples compacted dry of optimum develop the higher pore pressures during shear.
- As-molded dry density, rather than molding water content, controls the pore water pressure behavior of cemented fine-grained soil in undrained shear. The higher the as-molded dry density, the lower the pore pressure induced during shear.
- belay time prior to compaction results in significantly lower as-molded dry density than non-delay compaction for the same compaction effort. This shows up in the effective stress-strength behavior primarily as a drop in the Mohr-Coulomb effective angle of shearing resistance. Nevertheless, if the delay time mixes are compacted to the same as-molded dry density as the non-delay mixes,

there is no difference in the effective stress-strength parameters. Delay time does not influence  $\overline{\phi}_{ult}$  of this soil-cement system.

Delay time prior to compaction, per se, has
no significant effect on the stress-strain
behavior of this soil-cement system. However,
the drop in as-molded dry density, which occurs
due to delay time at constant compactive effort,
causes the soil-cement system to reach maximum
stress difference at lower axial strains.
This is especially the case at low consolidation pressures and may be undesirable in the
field.

## LIST OF REFERENCES

- Arman, A. and Saifan, F.S. (1965). "The Effect of Delayed Compaction on Stabilized Soil-Cement", Louisiana State University, Division of Eng. Research (Baton Rouge, La.), Bull. No. 88.
- Lambe, T.W., (1958). "The Structure of Compacted Clay", and "The Engineering Behavior of Compacted Clay", Soil Mechanics and Foundations Division, ASCE, Vol. 84, No. SM2.
- Seed, H.B., Mitchell, J.K. and Chan, C.K., (1960).
  "The Strength of Compacted Cohesive Soils",
  Amer. Soc. of Civil Engr., Research Conference
  on Shear Strength of Cohesive Soils, Boulder
  Colorado.
- Skempton, A.W., (1954). "Pore Pressure Coefficients A and B", Geotechnique, 4:4:148.
- Terzaghi, K., (1923). Die Berechnug der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungser-Scheinungen, Sitz. Akad. Wissen, Wien Mathnaturskl Abt. IIa, 132, 105-124.
- Wissa, A.E.Z. and Ladd, C.C., (1964). "Effective Stress-Strength Behavior of Compacted Stabilized Soils", M.I.T. Soils Publication No. 164.
- Wissa, A.E.Z. and Ladd, C.C., (1965). "Shear Strength Generation in Stabilized Soils", M.I.T. Soils Publication No. 173.
- Wissa, A.E.Z. (1969). "Pore Pressure Measurements in Saturated Stiff Soils", Soil Mechanics and Foundation Division, ASCE, Vol. 95, No. SM4, July 1969.

Appendix A

STRESS-STRAIN BEHAVIOR





FIG. A-I UNDRAINED STRESS-STRAIN BEHAVIOR OF UNTREATED M-21 SAMPLES COMPACTED DRY OF OPTIMUM



FIG. A-2 UNDRAINED STRESS-STRAIN BEHAVIOR OF UNTREATED M-21 SAMPLES COMPACTED DRY OF OPTIMUM



FIG. A-S UNDRAINED STRESS-STRAIN SCHAMOR OF UNTREATED M-21 SAMPLES COMPACTED AT OPTIMUM

NOT REPRODUCIBLE

FIG. A-4 UNDRAINED STRESS-STRAIN BEHAVIOR OF UNTREATED M-21 SAMPLES COMPACTED WET OF OPTIMUM



FIG. A-S UNDRAINED STRESS-STRAIN BEHAVIOR OF UNTREATED M-21 SAMPLES COMPACTED TO HIGH DENSITY



FIG. A-G UNDRAINED STRESS STRAIN BEHAVIOR OF M-21+5% LIME SAMPLES COMPACTED DRY OF OPTIMUM



FIG. A-7 UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21 + 5% LIME COMPACTED DRY OF OPTIMUM



FIG. A-8 UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21 + 5% LIME COMPACTED AT OPTIMUM



FIG. A-9 UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21+ 5% LIME COMPACTED WET OF OPTIMUM



FIG A-10 UNDRAIMED STRESS-STRAIN BEHAVIOR OF N-21+ 5% LIME COMPACTED TO HIGH DENSITY

of the same of



FIG. A-II UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21+5% CEMENT COMPACTED VERY DRY OF OPTIMUM



FIG. A-12 UNDRAINED STRESS STRAIN-BEHAVIOR OF M-21+ 6% CEMENT COMPACTED AT OPTIMUM



STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

Secretary Secret



FIG. A-B UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21+5% CEMENT COMPACTED WET OF OPTIMUM



FIG A.14 UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21+5% CEMENT. NO DELAY TIME TO COMPACTION AT CONSTANT EFFORT



FIG 4-15 IMDRANED CTRESS-STRAIN BEHAVIOR OF M-21-5% CEMENT. S HOURS DELAY TIME TO COMMETION AT CONSTANT EFFORT



FIG A-16 UNDRAINED STRESS-STRAIN BEHAVIOR OF M-21+5% CEMENT. 5 HOURS DELAY TIME TO COMPACTION TO CONSTANT DENSITY

| DOCUMENT CONTROL DATA - R & D (Security classification of title, body of abottest and indexing annotation must be entered when the everall report is classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------|--|--|--|--|
| 1. ORIGINATING ACTIVITY (Corporate author)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           | 20. REPORT SECURITY CLASSIFICATION |                                   |  |  |  |  |
| Soil Mechanics Division, Department of Civil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                           | Unclassified                       |                                   |  |  |  |  |
| Engineering, Massachusetts Institute of Technology,<br>Cambridge, Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                           | 2b. GROUP                          |                                   |  |  |  |  |
| 3. REPART TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| SOIL STABILIZATION; EFFECT OF MOLDING CONDITIONS ON THE EFFECTIVE STRESS-STRENGTH<br>BEHAVIOR OF A STABILIZED CLAYEY SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Phase Report No. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| 5. AUTHOR(5) (First name, middle initial, last neme)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| Anwar E. 2. Wissa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                         |                                    |                                   |  |  |  |  |
| Samuel Feferbaum-Zyto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| Jose Guillermo Paniagua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78. TOTAL NO. OF                                                                                                                                                          | PAGES                              | 78. NO. OF PEFS                   |  |  |  |  |
| January 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 136                                                                                                                                                                       |                                    | 8                                 |  |  |  |  |
| Se. CONTRACT OR GRANT NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M. ORIGINATOR'S                                                                                                                                                           | REPORT NUM                         |                                   |  |  |  |  |
| DA-IT0611102B52A-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soils Publication No. 242                                                                                                                                                 |                                    |                                   |  |  |  |  |
| A. PROJECT NO. I-T-0-1451-B-52-A30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Research Report R69-55                                                                                                                                                    |                                    |                                   |  |  |  |  |
| e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. OTHER REPOR                                                                                                                                                            | T NO(8) (Any of                    | ther numbers that may be energied |  |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bb. OTHER REPORT NO(8) (Any other numbers that may be excluded this report) U. S. Army Engineer Waterways Experiment Station Contract Report No. 3-63, Phase Report No. 8 |                                    |                                   |  |  |  |  |
| 10. DISTRIBUTION STATEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thuse hope.                                                                                                                                                               | , 110. 0                           |                                   |  |  |  |  |
| This document has been approved for public release and sale; its distribution is unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                           |                                    |                                   |  |  |  |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. SPONTORING M                                                                                                                                                          | ILITARY ACTI                       | VITY                              |  |  |  |  |
| Conducted for U. S. Army Engineer Water-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U. S. Army Materiel Command                                                                                                                                               |                                    |                                   |  |  |  |  |
| ways Experiment Station, CE, Vicksburg,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                         | •                                  | 1 Ochanica (C                     |  |  |  |  |
| Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Washington, D. C.                                                                                                                                                         |                                    |                                   |  |  |  |  |
| The influence of molding water content, as-molded dry density, and delay time prior to compaction after mixing in of the molding water on the effective stress-strength tehavior of a clayey silt stabilized with hydrated lime and portland cement is presented in this report. This investigation used the results of high pressure consolidated-undrained triaxial compression tests with pore water pressure measurements. It is shown that molding conditions have no significant effect on the North-Coulomb effective stress-strength parameters, and of , of the untreated compacted soil. For both the cement and lime stabilized systems, the effective cohesion intercept, of , significantly increases with increases in as-molded dry density while of does not change. Molding water content per se does not influence either of or of . For a given compactive effort, delay time prior to compaction produces a drop in the as-molded dry density of the cement stabilized soil which shows up primarily as a drop in the effective angle of shearing resistance, of . It also lowers the strains required to reach Mohr-Coulomb failure, which is an undesirable characteristic. At ultimate failure (large strains), it is shown that neither molding conditions nor delay time prior to compaction have any significant effect on the effective stress-strength parameters of the stabilized systems. |                                                                                                                                                                           |                                    |                                   |  |  |  |  |

DD Point 1473 REPLACES DO PORM 1475, 1 JAN 64, WHICH 15

Unclassified

Unclassified

| Security Classification   |      | LINKA |      | LINK B |      | LINKC |  |
|---------------------------|------|-------|------|--------|------|-------|--|
| KEY WORDS                 | ROLE |       | ROLE | WY .   | ROLE | WT    |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      | Ì      | Ε.   |       |  |
| Cement soil stabilization |      |       |      |        |      |       |  |
| Clay soils                |      |       | 1    |        |      |       |  |
| Silts                     | į    |       |      |        | 1    |       |  |
| Soil stabilization        |      |       |      |        |      |       |  |
| Soil tests                |      |       |      |        |      |       |  |
|                           |      |       |      | }      | Ì    |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      | ļ     |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       | 7.1  |        |      |       |  |
|                           |      |       | 1    |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           | - 1  |       |      |        |      |       |  |
|                           | ŀ    |       |      |        |      |       |  |
|                           |      | !<br> |      |        |      |       |  |
|                           | 12   |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        | ·    |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       | -    |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           |      |       |      |        |      |       |  |
|                           | 1    |       |      |        | ĺ    |       |  |

| Unclassified .         |  |
|------------------------|--|
| Paralle Classification |  |