APPM 4650 — Exam 2 Review Sheet

- 1. (a) Write down the Lagrange interpolating polynomial through x_0 , x_1 and x_2 that approximates f(x).
 - (b) What is the error in the approximation?
 - (c) Apply the interpolation to $f(x) = 10\sin(x)$ and $x_0 = -\pi$, $x_1 = 0$ and $x_2 = \pi$. What is the error bound? What does this tell you about interpolation?
- 2. What are the key properties of Hermite interpolation? What is the highest degree polynomial that can be intergrated exactly with Hermite interpolation?
- 3. (a) Define a cubic spline.
 - (b) What does it mean for a spline to be clamped? Natural?
- 4. Determine the order of the following finite difference approximation.

$$f'(x) \sim \frac{f(x) - 4f(x-h) + f(x-2h)}{2h}$$

5. Assume the error in a numerical method has the asymptotic expansion

$$M - N_1(h) = C_1 h^2 + C_2 h^4 + C_3 h^6 + C_4 h^8 + \cdots$$

Derive the general form for Richardson extrapolation to create high order estimates of M. Assume that you are able to evaluate $N_1(h)$, $N_1(h/2)$, etc as needed.

- 6. Consider the integral $\int_a^b \int_c^d f(x,y) dy dx$ being evaluated via Composite Simpson's rule in both the x and y direction. Assume f is $C^5([a,b] \times [c,d])$.
 - (a) Write down the error in the approximation using the Composite Simpson's rule to approximate this integral.
 - (b) Use this error term to figure out what how many nodes are needed to approximate the integral

$$\int_0^{0.5} \int_0^{0.5} e^{x-y} dy dx$$

with an error of approximately 10^{-6} . You can assume uniform spacing in the x and y direction. (i.e. $h = h_x = h_y$)

7. Use composite Simpson's rule to approximate the following integral

$$\int_0^1 \frac{e^{-x}}{\sqrt{1-x}} dx$$

with n = 6 points.

8. Use composite Simpson's rule to approximate the following integral

$$\int_{1}^{\infty} \frac{1}{1+x^4} dx$$

with n=4 points.

- $\pi, -\infty \le y \le \infty\}.$
 - (b) Show that the function $f(t,y) = \sin(ty)$ is Lipschitz in D via the definition.
- $3, -\infty \le y \le \infty \}.$

$$y' = -y + ty^{-1/2}$$
 $2 \le t \le 3$
 $y(2) = 2$

- $y'=-y+ty^{-1/2}\quad 2\leq t\leq 3$ y(2)=2 11. (a) Is the function $f(t,y)=\frac{1+y}{1+t}$ Lipschitz with respect to the y variable on $D=\{(t,y):0\leq t\leq 1,-\infty\leq y\leq\infty\}$?
 - (b) Use Theorem 5.6 to show whether or not the following initial value problem is well-posed on D.

$$y' = \frac{1+y}{1+t} \quad 0 \le t \le 1$$
$$y(0) = 1$$