

Deep tensor factorization characterizes the human epigenome through imputation of thousands of epigenomic and transcriptomic experiments

Jacob Schreiber

Paul G. Allen School of Computer Science and Engineering University of Washington

jmschreiber91

@jmschrei

@jmschreiber91

The signal of epigenomic assays vary across cell types

The Roadmap Compendium includes over a thousand epigenomic experiments

Unfortunately the Roadmap compendium is incomplete. Previous work sought to fill in the matrix through imputing all potential experiments (ChromImpute¹, PREDICTD²)

^{1.} Ernst, et al. Nature Methods, 2015

^{2.} Durham, et al. Nature Communications, 2018

Avocado is a deep tensor factorization approach

Initial inspection of the imputations suggest that Avocado performs well

Avocado performs well genome-wide

MSE-	global	1obs	1imp	Prom	Gene	\mathbf{Enh}
ChromImpute	0.113	0.941	1.09	0.3246	0.1494	0.3164
PREDICTD	0.1	1.76	0.897	0.2576	0.1295	0.267
Avocado	0.1	1.66	0.845	0.249	0.1295	0.26

MSE-global: Mean squared error (MSE) across the full length of the genome

MSE-10bs: MSE at the top 1% of genomic positions ranked by experimental signal

MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal

MSE-Prom: MSE at promoter regions defined by GENCODE

MSE-Gene: MSE at gene bodies defined by GENCODE

MSE-Enh: MSE at enhancer regions defined by FANTOM5

Okay, so have we characterized human epigenomics now?

Histone Modification ChIP-seq Chromatin Accessibility

The ENCODE compendium has more biosamples...

Cell Types: from 127 to 400

Histone Modification ChIP-seq Chromatin Accessibility

8

... and more assays

Cell Types: from 127 to 400 # Assays: from 24 to 76

Histone Modification ChIP-seq Chromatin Accessibility Gene Transcription Transcription Factor ChIP-seq

Cell Type Factors

Avocado can jointly model many forms of activity

Avocado's imputations are of high accuracy

56

65

0.6

0.4

Avocado imputes TF binding better than the participants in the ENCODE-DREAM challenge*

Biosample Assay Method	iPSC CTCF	PC-3 CTCF	liver EGR1	liver FOXA1	liver GABPA	liver JUND	liver MAX	liver REST	liver TAF1
Yuanfang Guan	0.729	0.600	0.397	0.282	0.353	0.533	0.441	0.319	0.281
dxquang	0.866	0.783	0.274	0.400	0.347	0.260	0.330	0.312	0.264
autosome.ru	0.778	0.486	0.331	0.243	0.342	0.416	0.384	0.264	0.221
J-TEAM	0.812	0.747	0.363	0.462	0.344	0.415	0.377	0.196	0.272
Avocado	0.723	0.791	0.530	0.354	0.396	0.660	0.574	0.477	0.384
Similar Biosample	—		0.363	0.389	0.226	0.568	0.446	0.408	
Same Biosample	0.741	0.878	0.648	0.716	0.573	0.731	0.622	0.622	0.556
Average Activity	0.574	0.735	0.240	0.299	0.253	0.223	0.349	0.124	0.140

Performance metric is auPR (average precision)

^{*} read about the caveats in our preprint

Okay so now have we fully characterized human epigenomics?

No; the ENCODE compendium does not include hundreds of protein binding assays or a number of cell states, diseases, and mutations.

However:

- New biosamples and assays can be added to a pre-trained model with as little as a single experiment
- We are exploring zero-shot imputation approaches that precalculate assay embeddings using protein similarity and interaction networks

Leveraging the large amount of human data enables zero-shot imputation of TF binding across species

Average Activity: 0.09677 Mouse + 3,814 Human Experiments: 0.09252 Mouse + 6,870 Human Experiments: 0.08570

GitHub repo, pretrained models, and preprints online!

New Results

Comment on this paper

Multi-scale deep tensor factorization learns a latent representation of the human epigenome

Jacob Schreiber, Timothy Durham, Jeffrey Bilmes, William Stafford Noble doi: https://doi.org/10.1101/364976

New Results

Comment on this paper

Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples

Jacob Schreiber, Jeffrey Bilmes, William Noble doi: https://doi.org/10.1101/533273

New Results

Comment on this paper

Zero-shot imputations across species are enabled through joint modeling of human and mouse epigenomics

Jacob Schreiber, Deepthi Hedge, William Stafford Noble doi: https://doi.org/10.1101/801183

Acknowledgements

Deepthi Hedge

Jeffrey Bilmes

William Noble

The learned latent representations capture known associations

ESC

iPSC

Blood

ES-Derived

HSC & B-cell

Epithelial

Mesench

Digestive

Muscle

Brain