Geometry of Principal Bundles Lecture 1: Introduction to Principal Bundles

Abstract

If a vector bundle $\pi: E \to M$ with fiber $V = \mathbb{R}^n/\mathbb{C}^n$ has an additional algebraic structure, then the structure group reduces from GL(V) to a subgroup $G \subseteq GL(V)$. Using this as motivation, we introduce principal G-bundles. Examples of U(1)-bundles over S^2 is discussed. Lastly, the relationship between vector bundles and principal bundles through frame bundles, transition maps, and Lie group representations is discussed.

Motivation: vector bundles with extra structure

Suppose $\pi: E \to M$ is a vector bundle over a smooth manifold M with fiber $E_x = \mathbb{R}^n$ over each $x \in M$. Let $\{U_\alpha\}_{\alpha \in I}$ be an open cover of M and $\varphi_\alpha: E|_{U_\alpha} \to U_\alpha \times \mathbb{R}^n$ be the trivializations of the vector bundle E. The transition maps of E are $\tau_{\alpha\beta}(x) := \varphi_{\alpha,x} \circ \varphi_{\beta,x}^{-1}$ and they define maps:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(n, \mathbb{R}).$$

Note that E is completely determined by the collection of transition maps $\{\tau_{\alpha\beta}\}_{\alpha,\beta\in I}$.

Recall that an affine connection/covariant derivative on E is locally specified by a collection of matrix-valued 1-forms $\{\Gamma_{\alpha}\}$ (sometimes called connection matrix and/or Christoffel symbols) and they define maps:

$$\Gamma_{\alpha}: TU_{\alpha} \xrightarrow{C^{\infty}\text{-linear}} M(n, \mathbb{R}) = Lie(GL(n, \mathbb{R}))$$

$$\Gamma_{\alpha} \in \Gamma(T^{*}U_{\alpha} \otimes M(n, \mathbb{R}))$$

$$\Gamma_{\alpha} \in \Gamma(T^{*}U_{\alpha} \otimes Lie(GL(n, \mathbb{R}))).$$

Lemma 1. Suppose that each fiber $E_x = \mathbb{R}^n$ of E is given an inner product/metric that smoothly varies with $x \in M$. Let ∇ be a covariant derivative on E that is compatible with the fiber metric, i.e.,

$$\partial_i \langle X, Y \rangle = \langle \nabla_{\partial_i} X, Y \rangle + \langle X, \nabla_{\partial_i} Y \rangle.$$

Then we can choose certain special trivializations of E such that the transition maps $\tau_{\alpha\beta}$ and the connection matrix Γ_{α} take the following special form:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to O(n, \mathbb{R})$$

$$\Gamma_{\alpha}: TU_{\alpha} \xrightarrow{C^{\infty}\text{-linear}} Lie(O(n, \mathbb{R})).$$

<u>Proof Sk.</u> Given a trivializations $\varphi_{\alpha}^{-1}: U_{\alpha} \times \mathbb{R}^{n} \to E|_{U_{\alpha}}$ we can pullback the fiber metric on E to the fibers of $U_{\alpha} \times \mathbb{R}^{n}$, i.e., $\{x\} \times \mathbb{R}^{n}$ for $x \in U_{\alpha}$. Now, choose trivializations φ_{α}

such that the metric on each $\{x\} \times \mathbb{R}^n$ is the standard Euclidean metric on \mathbb{R}^n ; equivalently, φ_α is such that the standard basis $\{e_\mu : 1 \le \mu \le n\}$ of \mathbb{R}^n is orthonormal. Such a trivialization can be constructed by Gram-Schmidt process.

In these trivializations, the transition map $\tau_{\alpha\beta}(x):\mathbb{R}^n\to\mathbb{R}^n$ is an isometry of \mathbb{R}^n with the standard Euclidean metric. Hence, $\tau_{\alpha\beta}(x)$ sends orthonormal bases to orthonormal bases, i.e., $\tau_{\alpha\beta}(x)\in O(n,\mathbb{R})$. Next, the connection matrix in these trivializations are skew-symmetric because:

$$\Gamma_{i\nu}^{\mu}(x) = \langle \nabla_{i}e_{\mu}(x), e_{\nu}(x) \rangle$$

$$= \partial_{i}\langle e_{\mu}(x), e_{\nu}(x) \rangle - \langle e_{\mu}(x), \nabla_{i}e_{\nu}(x) \rangle$$

$$= 0 - \Gamma_{i\mu}^{\nu}(x).$$

General principle: If a vector bundle E has some additional algebraic structure then the trivializations can be chosen/arranged such that the transition map takes the form

$$\tau_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$$
,

where G is a Lie group. The group G is called the <u>structure group</u> of E. Furthermore, if E has an affine connection/covariant derivative that is "compatible" with the additional structure on E, then, the connection matrix in these trivializations take the form:

$$\Gamma_{\alpha}: TU_{\alpha} \xrightarrow{C^{\infty}\text{-linear}} Lie(G).$$

Examples:

Additional algebraic structure on fibers of ${\cal E}$	Structure group
Orientation + metric	SO(n)
Complex vector space	$GL(n,\mathbb{C})$
Hermitian metric	U(n)

What is a Principal *G*-bundle?

1. If *G* is a Lie group, then a principal bundle and a connection on it is just the collection of the following data:

$$\tau_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to G,$$

$$\Gamma_{\alpha}: TU_{\alpha} \xrightarrow{C^{\infty}\text{-linear}} Lie(G).$$

2. Informally, a principal G-bundle captures two properties of a vector bundle E: (i) the structure group G of E and (ii) the "twist" present in the vector bundle E.

<u>Principal</u> G-bundles and examples

Example 1 (trivial principal bundle).

Given a manifold M and Lie group G, consider the product $M \times G$ and define a right

action:

$$(x,h) \cdot g := (x,hg).$$

This is called the trivial principal G-bundle over M.

Definition 1. Fix a manifold M and a Lie group G. A <u>principal G-bundle</u> over M is a smooth manifold P with:

1. A right action of *G* on *P*:

$$P \times G \to P$$
$$(p,g) \mapsto pg$$

- 2. A surjective map $\pi: P \to M$ that is *G*-invariant, i.e., $\pi(pg) = \pi(p)$.
- 3. Trivializations $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times G$ such that if $\psi(p) = (x, h)$, then $\psi(pg) = (x, hg)$. This property of ψ_{α} is called *G-equivariance*.

Figure 1: Non-trivial Z/2Z principal bundle over the circle. (created by Tazerenix and licensed under CC BY-SA 4.0.)

transition maps of a principal bundle: Note the transition maps are given by:

$$\psi_{\alpha} \circ \psi_{\beta}^{-1} : (U_{\alpha} \cap U_{\beta}) \times G \to (U_{\alpha} \cap U_{\beta}) \times G.$$

Write $\psi_{\alpha} \circ \psi_{\beta}^{-1}(x,h) = (x,f(x,h))$. Now, as $\psi_{\alpha},\psi_{\beta}$ are G-equivariant, we have

$$\psi_{\alpha} \circ \psi_{\beta}^{-1}(x, hg) = (x, f(x, h)g),$$

$$\Longrightarrow f(x, h) = f(x, e)h$$

$$\Longrightarrow \psi_{\alpha} \circ \psi_{\beta}^{-1}(x, h) = (x, f(x, e)h).$$

Thus, the transition maps reduce to $\tau_{\alpha\beta}:(U_\alpha\cap U_\beta)\to G$ defined by $\tau_{\alpha\beta}(x)=f(x,e)$, or equivalently,

$$\psi_{\alpha} \circ \psi_{\beta}^{-1}(x,h) = (x, \tau_{\alpha\beta}(x)h).$$

Definition 2 (co-cycle definition). Let M be a manifold with open cover $\{U_{\alpha}\}_{\alpha\in I}$. A <u>principal G-bundle</u> over M can be defined by a collection of transition maps $\tau_{\alpha\beta}: (U_{\alpha}\cap U_{\beta}) \to G$ satisfying the co-cycle condition:

$$\tau_{\alpha\beta}(x)\cdot\tau_{\beta\gamma}(x)\cdot\tau_{\gamma\alpha}(x)=e \qquad \forall \ x\in U_\alpha\cap U_\beta\cap U_\gamma.$$

Note: The two definitions of principal bundles are equivalent.

Example 2. A family of principal U(1)-bundles over the sphere S^2 .

Let NP and SP denote the north pole and south pole of S^2 , respectively. Consider the open cover of S^2 by two open sets $U_1 = S^2 \setminus \{\text{NP}\}$ and $U_2 = S^2 \setminus \{\text{SP}\}$. We define a principal $U(1) = S^1$ -bundle over S^2 by describing the transition map

$$\tau_{12}: U_1 \cap U_2 \to S^1$$

 $\Leftrightarrow \tau_{12}: \mathbb{R}^2 \setminus \{0\} \to S^1.$

First, for each $m \in \mathbb{Z}$, define a function $f_m : S^1 \to S^1$ by $f(z) = z^m$. Then, define

$$U_{1} \cap U_{2} = \mathbb{R}^{2} \setminus \{0\} - - - \frac{\tau_{12}^{(m)}}{- - - - -} S^{1}$$

$$\frac{(x_{1}, x_{2})}{||x||} \qquad f_{m}(z) = z^{m}$$

For each transition map $au_{12}^{(m)}$ we get a principal U(1)-bundle $P^{(m)}$ over S^2 . For example, $P^{(0)}$ is the trivial bundle $S^2 \times U(1)$ because the transition maps are trivial.

<u>Remark:</u> If S^n is a Lie group, then the same construction gives a principal S^n -bundle over S^{n+1} , i.e., we define a transition map from the equator S^n of S^{n+1} to the group S^n by $f_m(g) = g^m$. Other than the circle, S^0 and S^3 are Lie groups (Recall $S^3 = SU(2)$). Following this circle of ideas, we can get "exotic spheres" that are homeomorphic but not diffeomorphic to S^7 (see example 10.6 of [Taubes]).

Gauge group of P

An <u>isomorphism</u> $\eta: P \to P'$ of two principal G-bundles P, P' over M is a bundle map that is G-equivariant. By equivariant, we mean η commutes with the right action of G, i.e., $\eta(p \cdot g) = \eta(p) \cdot g$.

The set of principal bundle automorphisms of P is called the <u>gauge group</u> of P and is denoted by G.

Exercise 1. Let $P = M \times G$ be the trivial bundle. Show that the gauge group G of P is isomorphic to $C^{\infty}(M; G)$. Moreover, the tangent space at identity is $C^{\infty}(M; Lie(G))$.

Question 1. Given a manifold M and a Lie group G, what are all the principal G-bundles over M?

Fact 1. When $M=S^2$ and $G=U(1)=S^1$, a principal U(1)-bundle over S^2 is completely and uniquely determined by the degree of the transition map $\tau_{12}:S^1\to S^1$. Thus, there are only $\mathbb Z$ many principal U(1)-bundle over S^2 up to isomorphism. This can be proved using the following facts:

- 1. If two transition maps $\tau_{12}: U_1 \cap U_2 \to S^1$, $\tilde{\tau}_{12}: U_1 \cap U_2 \to S^1$ are homotopic, then the resulting principal bundles are isomorphic.
- 2. The homotopy class of $\tau_{12}: S^1 \to S^1$ is completely determined by the degree of the map τ_{12} .

Relationship between principal G-bundles and vector bundles (associated vector bundles)

General principle:

Note: This is a 1-1 correspondence for matrix Lie groups, i.e. $G \subseteq GL(V)$.

Vector bundles to principal bundles (the case of G = O(n))

Let $\pi: E \to M$ denote a rank n vector bundle with a smoothly varying fiber metric. We shall construct a principal G-bundle $P_{O(E)}$ associated with E.

Description 1 (transition maps). Let

$$\left\{ \tau_{\alpha\beta} : (U_{\alpha} \cap U_{\beta}) \to O(n) \right\}_{\alpha\beta \in I}$$

be the transition maps of E. These transition maps also describe a principal G-bundle which we call $P_{O(E)}$.

<u>Description 2 (frame bundles)</u>. Introduce $P_{O(E)}$ to be submanifold of $\bigcap^n E$ such that:

$$P_{O(E)} = \left\{ (x, (v_1, v_2, \ldots, v_n)) \in \bigoplus^n E : (v_1, v_2, \ldots, v_n) \text{ is an orthonormal basis for } E_x \right\}.$$

Further, $P_{O(E)}$ is principal bundle because we have:

- 1. A projection $\pi_n: P_{O(n)} \to M$ which is the restriction of the projection $\pi_n: \bigoplus^n E \to M$.
- 2. A right O(n)-action on $P_{O(n)}$ given by:

$$(x,(v_1,v_2,\ldots,v_n))\cdot g = (x,(v_1,v_2,\ldots,v_n)\cdot g)$$

$$= \left(x,\left(\sum_k g_{k,1}v_k,\sum_k g_{k,2}v_k,\ldots,\sum_k g_{k,n}v_k\right)\right)$$

- 3. Trivializations $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times O(n)$ defined as follows. Let $\varphi_{\alpha}: E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{n}$ be a trivialization of E where the fiber metric on $\{x\} \times \mathbb{R}^{n}$ is the standard Euclidean metric. This gives $\varphi_{\alpha,n}: \bigoplus^{n} E|_{U_{\alpha}} \to U_{\alpha} \times \mathbb{R}^{n \times n}$ whose restriction to $P|_{U_{\alpha}}$ is $\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times O(n)$, where each element of $\mathbb{R}^{n \times n}$ is thought of an n columns vectors listed consecutively.
- 4. The transition maps $\tau_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to O(n)$ of $P_{O(n)}$ are defined by

$$\psi_{\alpha} \circ \psi_{\beta}^{-1} : U_{\beta} \times O(n) \to U_{\alpha} \times O(n)$$

$$\psi_{\alpha} \circ \psi_{\beta}^{-1}(x, (v_1, v_2, \dots, v_n)) = (x, \tau_{\alpha\beta}(x) \cdot (v_1, v_2, \dots, v_n)),$$

On the other hand, $\psi_{\alpha} \circ \psi_{\beta}^{-1}$ is by definition the restriction of $\varphi_{\alpha,n} \circ \varphi_{\beta,n}^{-1} : U_{\beta} \times \mathbb{R}^{n \times n} \to U_{\alpha} \times \mathbb{R}^{n \times n}$ which is given by:

$$\varphi_{\alpha,n} \circ \varphi_{\beta,n}^{-1}(x,(v_1,v_2,\ldots,v_n)) = \left(x,\left(\varphi_{\alpha,x} \circ \varphi_{\beta,x}^{-1}(v_1),\ldots,\varphi_{\alpha,x} \circ \varphi_{\beta,x}^{-1}(v_n)\right)\right).$$

Thus, $\tau_{\alpha\beta}(x) = \varphi_{\alpha,x} \circ \varphi_{\beta,x}^{-1}$, i.e., the transition maps of the principal bundle O(n) and the vector bundle E are the same!

Figure 2: The orthonormal frame bundle of the mobius bundle is a non-trivial principal Z/2 bundle over the circle. (created by Tazerenix and licensed under CC BY-SA 4.0.)

Exercise 2. Let P be a principal G-bundle over M. If P has a global section $s: M \to P$,

then P is isomorphic to the trivial bundle $M \times G$.

Remark. The above is analogous to the following fact: a rank n vector bundle E over M is isomorphic to the trivial bundle $M \times \mathbb{R}^n$ if and only if E has n global sections $\{s_1, \ldots, s_n\}$ such that at each point $x \in M$, the collection $\{s_1(x), \ldots, s_n(x)\}$ is a basis for the fiber $E|_x$.

Exercise 3 (principal bundles over S^1). When G is a connected Lie group, show that every principal G-bundle over $M = S^1$ is isomorphic to the trivial bundle, i.e. $S^1 \times G$.

Principal bundles to vector bundles via representations

If G is a matrix subgroup, i.e., a subgroup of GL(V) and $\pi:P\to M$ is a principal G-bundle over M, we can reverse the above steps to obtain a rank n vector bundle over M with structure group G. For a slightly more general construction, fix a representation $\rho:G\to GL(V)$ of G (when G is a subgroup of GL(V)), we can take ρ to be the inclusion map). Now, we shall construct a vector bundle $P\times_{\rho}V$ associated with P via the representation ρ .

Description 1 (transition maps). Let

$$\left\{\tau_{\alpha\beta}: (U_{\alpha}\cap U_{\beta})\to G\right\}_{\alpha\beta\in I}$$

be the transition maps of P. Now consider the collection of maps:

$$\left\{\rho\circ\tau_{\alpha\beta}:(U_{\alpha}\cap U_{\beta})\to GL(V)\right\}_{\alpha\beta\in I}.$$

These transition maps describe a vector bundle over M with fiber V and structure group $\rho(G) \subseteq GL(V)$. This vector bundle is denoted by $P \times_{\rho} V$.

<u>Description 2 (quotient construction)</u>.

Introduce $P \times_{\rho} V$ as a set obtained by the quotient of $P \times V$ with the equivalence relation that relates (p, v) to all pairs of the form $(pg^{-1}, \rho(g)v)$ with $g \in G$.

$$P \times V \xrightarrow{\qquad \qquad } P \times_{\rho} V$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P \xrightarrow{\qquad \qquad } M$$

Further, $P \times_{\rho} V$ is principal bundle because we have:

- 1. A projection map that sends the equivalence class [(p, v)] to $\pi(p) \in M$.
- 2. An action of \mathbb{R}/\mathbb{C} on $P \times_{\rho} V$ given by $\lambda \cdot (p,v) \mapsto (p,\lambda v)$ and a 0-section given by $x \mapsto [(p_x,0)]$.
- 3. Trivializations φ_{α} that are defined as follows. Let

$$\psi_{\alpha}: P|_{U_{\alpha}} \to U_{\alpha} \times G$$

$$\psi_{\alpha}: p \mapsto (\pi(p), g_{n})$$

be the trivializations of P. Define the trivializations of $P\times_{\rho}V$ as

$$\varphi_{\alpha}: (P \times_{\rho} V)|_{U_{\alpha}} \to U_{\alpha} \times V$$

$$\varphi_{\alpha}: [(p, v)] \mapsto (\pi(p), \rho(g_n)v).$$

4. The transitions functions $au_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to GL(V)$ is defined by

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, v) = (x, \tau_{\alpha\beta}(x)v).$$

But on the other hand, unpacking the definition of φ_{α} , we also obtain

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}(x, v) = \left(x, \rho\left(\psi_{\alpha} \circ \psi_{\beta}^{-1}(x)\right)v\right).$$

Hence, the transition maps $\tau_{\alpha\beta}$ of $P \times_{\rho} V$ is given by $x \mapsto \rho \circ \left(\psi_{\alpha} \circ \psi_{\beta}^{-1}(x) \right)$, i.e. ρ composed with the transition maps of P.

Pullback of principal bundles

Given $f: N \to M$ and a principal G-bundle $\pi: P \to M$, we can pullback P to get a principal G-bundle f^*P over N.

More about pullbacks:

1. f^*P is defined as:

$$f^*P = \{(p, x) \in P \times N : \pi(p) = f(x)\},\$$

with *G*-action given by: $(p, x) \cdot g = (pg, x)$.

2. If $\{U_{\alpha}\}$ is an open cover for M and $\tau_{\alpha\beta}:U_{\alpha}\cap U_{\beta}\to G$ is the transition maps for P, then the transition maps for f^*P with respect to the open cover $\{f^{-1}(U_{\alpha})\}$ is given by

$$\begin{split} \tilde{\tau}_{\alpha\beta} : f^{-1}(U_\alpha) \cap f^{-1}(U_\beta) \to G \\ \tilde{\tau}_{\alpha\beta} : x \mapsto \tau_{\alpha\beta}(f(x)) \end{split}$$

- 3. Any section $s: M \to P$ induces a section $f^*s: N \to f^*P$.
- 4. Pullbacks are natural in the following two ways:
 - (a) Let E be a vector bundle and P_E be the principal bundle of frames in E. Then,

$$f^*P_E = P_{f^*E}.$$

(b) Let ρ be a representation and $P \times_{\rho} V$ be an associated vector bundle. Then,

$$f^*(P \times_{\rho} V) = (f^*(P) \times_{\rho} V).$$

Further reading

Chapter 10, Taubes, C. H. (2011). *Differential geometry: bundles, connections, metrics and curvature* (Vol. 23). OUP Oxford.