Weather forecast in Australia

Our Team

JAN PAUL (PHYSICIST, PH.D.)

KATARINA (ENGINEER, PH.D.)

KEVIN (MATH MODELING)

Motivation

- Enhancing Preparedness and Resilience
- Optimizing Resource Allocation
- Supporting Economic Growth and Development
- Advancing Scientific Knowledge and Technological Innovation
- Empowering Decision-Makers and the General Public

Goals

- Leveraging AI and mathematical techniques
- Targeting agricultural businesses, insurance companies, energy distribution companies, and airlines
- Providing daily weather conditions
- Revolutionizing customizable, efficient, reliable, and highly accurate long-term predictions across Australia

Federal Bureau of Meteorology BOM of Australia

							Wind	Wind	Wind	Wind	Wind	Wind										
		Min	Max	Rain		Sun	Gust	Gust	Dir	Dir	Speed	Speed	Humidity	Humidity	Pressure	Pressure	Cloud	Cloud	Temp	Temp	Rain	Rain
Date	Location	Temp	Temp	fall	Evaporation	shine	Dir	Speed	9am	3pm	9am	3pm	9am	3pm	9am	3pm	9am	3pm	9am	3pm	Today	Tomorrow
	Mount																					
2010-04-02	Gambier	10.4	20.1	0.4	1.6	10.1	S	39	SE	SSE	20	24	84	47	1024.9	1023.4	2	NaN	15	18.9	No	No
	Mount																					
2010-04-03	Gambier	9	19.4	0	4.8	2.6	SSE	43	SSE	SSE	22	26	62	56	1024.8	1022.6	7	7	14.5	17.9	No	No
	Mount																					
2010-04-04	Gambier	9.6	25.3	0	3	7.8	SSW	30	ENE	NNE	15	7	81	39	1020	1015.5	7	7	15.6	24.2	No	No
	Mount																					
2010-04-05	Gambier	9	27.6	0	3.4	9.7	SSE	30	NE	SE	13	11	55	28	1015.6	1011.9	6	4	18.3	26.6	No	Yes
	Mount																					
2010-04-06	Gambier	15.7	17.6	2	5.4	0.2	ENE	57	NNE	ENE	15	43	91	88	1010.5	1006	8	7	16.7	15.9	Yes	Yes

https://www.kaggle.com/jsphyg/weather-dataset-rattle-package// http://www.bom.gov.au/climate/data/

I Development step's: preprocessing

Data cleaning

- Categorical variables RainToday/RainTomorrow:
 0 for no rain and 1 for rain
- Remove locations with minimal data: Exclude Uluru, Katherine, and Nhil
- Change variable type to datetime
- Perform feature engineering:Split the date into three new variables
- Model seasons in Australia: Account for summer/winter
- Handle missing values: Drop missing values, replace with mean for numerical variables, and mode for categorical variables.

Create Features

- WindDir: Create sin and cos features to represent compass directions as periodic values between 0 and 2pi
- Longitude/Latitude: Retrieve coordinates and elevation for each location from the BOM website, considering climate zones and their impact on temperature and seasons
- Train/Test Split Preparation: Handle categorical variables by dropping or replacing them, sort data by date, perform a time-series split without shuffling, and apply standard scaling to ensure comparability of data from different stations
- Imbalance in Target Variable: Address the imbalance (75% no rain, 25% rain) through different approaches, such as oversampling, undersampling, or no specific action

Heatmap

Modeling and solving the problem using Machine Learning techniques

- Logistic Regression
- Random Forest Classifier (Bagging, imblearn BalancedRF)

Support Vector Machine (SVM)

Neuronal Networks Keras

Adventages

- Simplicity and interpretability of results
- Ability to handle large datasets with high dimensionality
- Improves the performance of the model on the minority class by oversampling
- Effective in high-dimensional spaces and cases with a clear margin of separation
- Provides a wide range of pre-built layers and model

Disadventages

- Limited ability to capture complex non-linear relationships
- Can be computationally expensive for large datasets and complex models
- Less efficient with large datasets

 May require substantial amounts of data to avoid overfitting

I modelling results

	Logistic Regression				Random Forest Classifier		Bagging for Random Forest Classifier		Gaussian Naive Bayes		Random Forest Classifier (NaN replaced, no Sampling)		Random Forest Classifier (NaN dropped, over sampling)		Deep Learning - Keras	
Target class: 0/1: no/ rain	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Accuracy 0,78		,78	0,80		0,85		0,85		0,79		0,85		0,86		0,85	
Precision	0,92	0,51	0,93	0,53	0,87	0,76	0,87	0,76	0,88	0,54	0,87	0,76	0,88	0,73	0,87	0,76
Recall	0,79	0,76	0,80	0,79	0,95	0,51	0,96	0,50	0,86	0,58	0,95	0,51	0,94	0,55	0,95	0,51
F1-Score	0,85	0,61	0,86	0,64	0,91	0,61	0,91	0,60	0,87	0,56	0,91	0,61	0,91	0,63	0,91	0,61
												featur Rainfa Humid		importanc	e 0.04 0.04	
												Winde	SustSpeed		0.05	
													re9am		0.05	
												Cloud3	re3pm Snm		0.05	
													lity3pm		0.14	
												Sunshi	ne		0.14	

II Development steps: preprocessing

Preprocessing II – Remove Irrelevant Data...

• ... in space:

- Drop locations lacking at least one feature: 26 stations remain
- ... in time:
 - Drop data from before 2009-01-01

Red triangles: dropped locations

Preprocessing II – Enhanced Feature Engineering

Add information from nearby stations assuming these stations share similar information / weather conditions Metrics to classify stations as "nearby":

Correlation based on Rainfall feature

Geometric distance: radius around each station

- For each feature: create a new feature "avg_feature" based on weighted-average over nearby stations
- Use avg_features as additional features
- Use avg_features to replace missing values in corresponding features

II Modelling Results

- Best metric for avg_features: 100km distance
- Handling imbalance: Oversampling
- Scaling: Standard Scaler
- new preprocessing does not improve the performance
- More complex deep learning algorithms are required and might benefit from enhanced feature engineering (avg_features)
- avg_features are relevant, although they do not improve the performance as anticipated

		est Classifier essing II)	Random Forest Classifier (preprocessing I)				
	0	1	0	1			
Accuracy	0.	86	0.86				
Precision	Precision 0.89		0.88	0.73			
Recall	0.94	0.55	0.94	0.55			
F1-Score	0.91	0.63	0.91	0.63			

feature	importance
avg_Pressure3pm	0.03
Cloud3pm	0.03
avg_WindGustSpeed	0.03
avg_Cloud3pm	0.04
Sunshine	0.06
avg_Sunshine	0.07
avg_Humidity3pm	0.08
Humidity3pm	0.08

feature	importance
Rainfall	0.04
Humidity9am	0.04
WindGustSpeed	0.05
Pressure9am	0.05
Pressure3pm	0.05
Cloud3pm	0.06
Humidity3pm	0.14
Sunshine	0.14

Conclusions and Outlook

- We achieve the best possible performance given the limitations of the available data (low spatial / temporal resolution) by:
 - Exploring extensive feature engineering routes (e.g. features based on weighted-average over nearby stations)
 - Implementing Machine- and simple Deep-Learning models
- With a Random Forest Classifier, we are able to predict if it will rain on the next day with an accuracy of 0.86, a macro-averaged F1-score of 0.77, and a weighted-averaged F1-score of 0.85 on the test data set
- Based on the results, the project can be improved and extended in the future:
 - Use meteorological data of higher resolution in time and space (e.g. gridded satellite data with an hourly and 100km resolution, respectively.
 - Implement a sophisticated recurrent LSTM-based neural network or a physics-informed neural network
 (including meteorological and climatological equations)
 - Predict other meteorological variables (e.g. temperature) and do longterm predictions

Demo: Streamlit Application

