Graphenalgorithmen: Blatt 2

Lukas Kalbertodt, Elena Resch, Mirko Wagner

3. Mai 2015

Aufgabe 4:

- (a) (i) Ist zyklisch (A -> C -> B) und stark zusammenhängend.
 - (ii) Ist weder zyklisch noch stark zusammenhängend, aber zusammenhängend.
 - (iii) Ist zyklisch ($A \rightarrow C \rightarrow B$), aber nicht zusammenhängend (also auch nicht stark zusammenhängend).

- (b) In der $n \times n$ Matrix B mit ist $b_{ii} = \sum_{j=1}^{n} A_{ij} \cdot A_{ji}$. Da A ungerichtet ist, ist $A_{ij} = A_{ji}$. Der Eintrag A_{ij} hat genau dann eine 1, wenn eine Kante von i nach j existiert. Weil $1^2 = 1$ und $0^2 = 0$, sind alle Summanden entweder 0 oder 1. Die Einsen (d.h. die Kanten von Knoten i) werden aufaddiert, also gezählt, und somit ergibt der Eintrag b_{ii} den Knotengrad von i.
- (c) Wenn sich zwei Knoten e_1 und e_2 in der selben starken Zusammenhangskomponente befindet, gibt es einen gerichteten Weg von e_1 zu e_2 und umgekehrt. Das heißt, dass in dem transitiven Abschluss des Graphen, eine direkte Kante von e_1 nach e_2 und von e_2 nach e_1 existiert. Die Formel zur Berrechnung von b_{ii} aus (b) lautet: $b_{ii} = \sum_{j=1}^{n} A_{ij} \cdot A_{ji}$. Allerdings ist der transitive Abschluss gerichtet, d.h. A_{ij} und A_{ji} müssen nicht gleich sein. Ein Summand ist nur genau dann 1, wenn es eine Kante von i nach j und umgekehrt gibt. Wie oben bereits gesagt ist das genau dann der Fall, wenn i und j im Ursprungsgraphen in der selben starken Zusammenhangskomponente waren. Mit der Summe zählen wir die Einsen, also die Anzahl der Knoten in der selben starken Zusammenhangskomponente.

Aufgabe 5:

- (a) Adjazenzmatrix: Es muss ein Element der Matrix überprüft werden. $\to \mathcal{O}(1)$ Adjazentlisten: Es wird bei dem kleineren Knoten seine Adjazentliste nach dem größeren Knoten durchsucht. Im Worstcase könnte die Liste |V| Einträge halten, die man alle nach dem größeren Knoten durchsuchen muss. $\to \mathcal{O}(|V|)$
- (b) Da jeder Knoten n Nachbarn haben könnte, dauert es also mindestens $\Omega(|V|)$. Adjazenzmatrix: Es muss eine komplette Spalte oder Zeile (in \mathcal{O} Notation gleichwertig) durchgegangen werden. Auch wenn der Knoten nur wenige oder keine Nachbarn hat, muss man trotzdem immer alle $\mathcal{O}(|V|)$ Einträge durchsuchen. $\to \mathcal{O}(|V|)$ Adjazentlisten: Man fügt zuerst alle Einträge in der Adjazentliste des betreffenden Knoten zu seiner Ergebnismenge hinzu. Danach muss in den Listen aller kleinerer Knoten $(\mathcal{O}(|V|))$ nach dem betreffenden Knoten gesucht werden $(\mathcal{O}(|V|))$. $\to \mathcal{O}(|V|^2)$