第一章 大数定律与中心极限定理

Remark. 三个考点

(1) 切比雪夫不等式

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$
,或者 $P\{|X - EX| < \epsilon\} > 1 - \frac{DX}{\epsilon^2}$

(2) 大数定理

$$\frac{1}{n} \sum_{i=1}^{n} \overline{[X_i]} \xrightarrow{P} E\overline{[X_i]}$$

(3) 中心极限定理

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

1. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。由 切比雪夫不等式, 对任意 $\varepsilon > 0$,有 $P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i^2 - \mu_2\right| \ge \varepsilon\right\} \le$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution. 首先需要确定 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})$ 是否等于 μ_{2} 显然, 所以这个式子满足切比雪夫不等式, 故根据切比雪夫不等式有

原式
$$\geq \frac{D(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})}{\epsilon^{2}} = \frac{\mu_{4} - \mu_{2}^{2}}{n\epsilon^{2}}$$

2. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

Solution. 由大数定理有 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\overset{P}{\rightarrow}EX_{i}^{2}$, 又期望的定义有

$$EX_i^2 = 2\int_0^1 x^2(1-x)dx = \frac{1}{6}$$

3. (2020, 数一) 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}, \Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为

$$(A) \ 1 - \Phi(1) \quad (B) \ \Phi(1) \quad (C) \ 1 - \Phi(0.2) \quad (D) \ \Phi(0.2)$$

Solution. 由中心极限定理有 $\sum_{i=1}^{100} X_i \sim N(50,25)$ 标准化后所求概率为

$$P\{\frac{X-50}{5} \le 1\} \implies \Phi(1)$$