

Dynamic Flux Balance Analysis (DFBA) with SBML (core, comp, fbc)

Matthias König, Leandro Watanabe & Chris Meyers

LiSyM Systems Medicine of the Liver Humboldt University Berlin, Institute for Theoretical Biology livermetabolism.com

Dynamic FBA (DFBA)

Coupling of dynamical model parts to steady state networks (FBA)

- Subset of general problem of coupling models with different simulation frameworks
 - Logical/boolean models
 - Stochastic simulations

Approaches

- Resource allocation (creating large optimization problem based)
 - Very large optimization problems
 - Dynamic achieved via optimization boundary conditions like biomass(24h) = k *biomass(0h) in combination with resource variables
 - Coupling to arbitrary ODEs not possible

Coupling of ODE to FBA model

- **Direct embedding** of LP-Solver in ODE solver
 - execution in every time step
 - complex implementation (high level expertise on ODE solver design)
 - Stiffness of system at borders of flux-cone
- Stationary Optimization Approach (SOA)
- Dynamic Optimization Approach (DOA)

Examples

Whole-cell model (Karr et al)

Table I. Overview of existing DFBA simulation studies (sorted by date).

Refs.	FBA model	Met.	Fluxes	Method/solver
Varma and Palsson (1994)	Based on Majewski and Domach (1990)	24	34	SOA/—
Mahadevan et al. (2002)	Based on Schilling et al. (2000)	3	4	SOA/CPLEX
				DOA/fmincon
Sainz et al. (2003)	_	43	38	SOA/—
Luo et al. (2006) (MDFBA)	_	7	8	DOA/fmincon
Hjersted and Henson (2006, 2009)	iGH99	98	82	DA/CONOPT
Pizarro et al. (2007)	Based on Sainz et al. (2003)	38	39	SOA/—
Hjersted et al. (2007)	iND750	1,059	1,265	DA/MOSEK
Anesiadis et al. (2008)	iJR904	625	931	SOA/CPLEX
Lee et al. (2008) (idFBA)	_	_	13	SOA/—
Luo et al. (2009) (MDFBA)	_	8	5	DOA/fmincon
Oddone et al. (2009)	IL1403	422	621	SOA/Mathematica
Lequeux et al. (2010) (MDFA)	_	24	34	polynomial fitting
Salimi et al. (2010)	iFS2007	679	712	DA/—
	iFS431	603	621	
Zhuang et al. (2011)	G. sulfurreducens	541	522	DA/LINDO
	R. ferrireducens	790	762	
Meadows et al. (2010)	Based on Varma and Palsson (1994)	30	123	ODE15S/linprog
Vargas et al. (2011)	idFV715(iFF708)	590	1,181	SOA/LINDO
Nolan and Lee (2011) (MDFA)	_	150	136	SOA/—
Hanly and Henson (2011)	iRJ904	625	931	DA/MOSEK
Hanly et al. (2012)	iND750	1,059	1,265	

Applications & Use cases

Circadian Liver metabolism

 Coupling circadian blood metabolite & gene/protein expression patterns to FBA model of liver metabolism (HepatoNet1)

Whole-body PKPD

- Coupling of tissue specific FBA models to whole body PKPD
- Glucose regulation
- (liver, muscle, fat, pancreas, stomach)
- Cori cycle & other multi-tissue physiological cycles
 - Glucose alanine/pyruvate shuttle

Model embedding

 Coupling ODE pathway models to genome-scale metabolic models (liver)

SBML

De facto standard for Systems Biology Models (ODE, FBA, mixed compartments)

- Good description for kinetic and FBA models, but no implementation of DFBA in standard
- Core language (core) & extension packages
 - core

Kinetic models

- Compartments, Parameters, Species, Reactions, RateRules, AssignmentRules, Events, FunctionDefinitions)
- fbc

FBA encoding

- objective functions, upper & lower bounds, GPR encoding
- · comp

Coupling of models

 ExternalModelDefinitions, ModelDefinitions replacements, replacedBy, deletions, ports, submodels,

Encoding

https://github.com/matthiaskoenig/dfba https://github.com/matthiaskoenig/dfba/blob/ master/DFBA%20models%20in%20SBML.md

TOP

- kinetic part & coupling of submodelsBOUNDS
- kinetic bounds calculation

UPDATE

kinetic update of species from FBA
 FBA

FBA problem (interface via exchange reactions)

Interface

- exchange reactions (boundaryCondition=True species)
 - What is taken up, what is imported, how unbalanced are metabolites?
- update kinetics
 - How does flux effect metabolites (scaling by biomass, ...)
- bound kinetics
 - How do kinetic players effect bounds
 & resource limitation of FBA

Simulation Algorithm

Implementations

- sbmlutils
 - https://github.com/matthiaskoenig/sbmliils
 - iBioSim
 - http://www.async.ece.utah.edu/ibiosim

Challenges

- standardized encoding of DFBA models
- uniqueness of FBA solutions
- bounds limitations based on species amounts/concentrations
- the (in)famous hack
- if (c<0): c=0

Example Models

Toy model

3 reactions, linear chain, 2 exchange reactions

Diauxic growth

4 effective reactions, 4 exchange reactions

E.coli core

- 95 reactions, 72 metabolites, 137 genes, 4 exchange reactions)
 - http://bigg.ucsd.edu/models/e_coli_core
 - https://escher.github.io/builder/index.h tml?enable_editing=true&map_name=e_coli_ core.Core%20metabolism

