1. Stacking up a four-layer board

To create a good stack up from a mix of materials, the following techniques must be considered:

- 1) Having a thick core layer and thin outer prepreg layers
- 2) The core layer should be copper clad to easily form planes
- 3) The outer layers are never HDI (high-density interconnection layers) build-up layers
- 4) The core and prepreg materials could have any Tg value (Tg or Glass transition temperature, is the base material parameter for the temperature)
- 5) The materials could be low-loss FR4 (fiberglass-reinforced epoxy-laminated sheets used in printed circuit board manufacturing) or PTFE laminates (PTFE or polytetrafluoroethylene is a synthetic thermoplastic fluoropolymer and is the second most commonly used PCB laminate material).

2. Types of four-layer PCBs

2.1 Two internal GND planes

- > Applications
 - 1) computer motherboards as routings are needed on both sides of the PCB and, controlled impedance is needed for high-speed signals
 - 2) Double-sided high-speed PCBs
 - 3) Mixed-signal PCBs
- ➤ Advantages

Power does not always require a power plane

Disadvantages

2.2 Two external GND planes

> Applications

Low-noise PCBs

Specialty mixed-signal PCBs

> Advantages

Due to the ground shielding the exterior of the board, this stack up could be used for some specialized low-noise systems, such as specialized analog systems that require low noise.

Disadvantages

Crosstalk between signals happens in the internal layers so it is not the chosen option for highspeed routing

2.3 Signal-GND-Power-Signal

> Applications

Single-sided high-speed PCBs

Power electronic PCBs

Advantages

Having many signals and high power in the same PCB

Disadvantages

The stack up requires a power layer so, the bottom signal layer may not be able to accommodate high-speed signals unless it is kept as a plane layer.

2.4 Signal-GND-GND-Power

> Applications

Power electronics with a digital section

➤ Advantages

Suitable for a design that needs large rails for power

Disadvantages

Having lower signal count such that all signals can fit onto a single layer, but also the dedicated layer for power routing is needed. So, routing of multiple voltages on different rails, or using of a single large plane to provide high current is needed.