ICS Summer Academy Session II Topic 2: Nearest Neighbor Classifiers

Michael Shindler

A very early machine learning example

Recognizing flowers (by R. Fisher, 1936)

Types of Iris: setosa, versicolor, and virginica

Note: I (Michael) know almost nothing about flowers. This is somehow not going to be a problem for this example! Measuring the properties of the flowers

Features and attributes: the widths and lengths of sepal and petal

Pairwise scatter plots of 131 flower specimens

Visualization of data helps identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica

Different types seem well-clustered and separable

Using two features: petal width and sepal length

6 Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa

- What sort of problem is this solving?
 - ► This is a *classification* problem
 - ► This is a *supervised learning* problem

What sort of problem is this solving?

- This is a *classification* problem
- ► This is a *supervised learning* problem
- We are given training data
 - lackbox Feature vectors $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
 - Each has one of C labels
 - ▶ Training Data: set of $(x, y \in C)$ pairs
 - ▶ Goal: find $f(\cdot)$ such that y = f(x)
- ▶ We evaluate on test data / query points.

How do we classify a query point?

What about this point?

Input:

- hyper parameter
- ► An integer, k
- ► A set of training examples, D
- ► A distance measure function, d

Algorithm:

```
for each test instance z=(\boldsymbol{x'},y'): do 
 Compute d(\boldsymbol{x'},\boldsymbol{x}) between z and every example (\boldsymbol{x},y)\in D 
 Select D_z\subseteq D, the k closest training examples to z. 
 y'\leftarrow \arg\max_v\sum_{(\boldsymbol{x}_i,y_i)\in D_z}I(v=y_i) 
 end for
```

- ► This is not quite a rote learner
- ▶ This is a little more flexible than that.
- ► More of a *lazy learner*.

$$\lim_{x \to 8} \frac{1}{x - 8} = \infty$$

$$\lim_{x \to 5} \frac{1}{x - 5} =$$

Decision boundary

12

For every point in the space, we can determine its label using the NNC rule. This gives rise to a *decision boundary* that partitions the space into different regions.

When \boldsymbol{k} increases, the decision boundary becomes smooth.

- Accuracy : % test points correctly classified
- ► Error rate: % test points *incorrectly* classified.

Classifier is not just training data!

- Which value of k to use?
- What distance measure?
- What voting system?

You need to tune the hyperparameters!

Suppose k=1

- ► Accuracy?
- ► Error rate?
- ▶ Would another value of *k* help?

- ► For each point, treat as query & omit
- ▶ For k = 1, accuracy / error ?
- ightharpoonup Would another value of k help?

Exercise Set 1

Exercise Set 2

20

- Training data already provided
- ► Test data, fully independent of training data
- ► Now what can I do?

Cross-validation

- ▶ We usually aren't given a fully independent dataset
- ► How can we create one?

- We usually aren't given a fully independent dataset
- How can we create one?
 - ▶ Take, say, 1/5 of the points.
 - ▶ Train on other 4/5, test on the 1/5 reserved.
 - Repeat for each fifth.

- ▶ Much machine learning builds a *model* of the data.
- ▶ But classifying a test instance can be quite expensive.
- Uses local info to classify.

also: eager learner

Proximity usually needs all attributes.

Farbage in gorbage out

What about interacting attributes?

e.g., two attributes that together have more predictive power than alone 25

Proximity from irrelevant?

What about redundant?

What about scale issues?

26

• e.g., height in feet and weight in pounds?