The in-class correction of last year's (I think) exam paper

Denote by † the basic AI problem of an agent acting intelligently in its environment.

What is a Turing machine and what does it have to do with \dagger ?

• Environment is the Tape, it needs to halt

What is the halting problem and how does it relate to †?

- Whether a turing machine on a particular input will halt or not
- Undecidable in general

What is the SAT problem and how is it related to †?

- Trying to find an assignment to the variables satisfying an expression
- Might be the task the agent is trying to complete
- Boolean expressions are a way of expressing what it's trying to complete

What is the P vs NP problem, and how does it relate to SAT?

- Feasible computation
- Cobham's theoerm
- SAT feasible if P = NP
- N allows for non determinism

A Simple way in Prolog to search is

```
search(Node) :- goal(node).
search(Node) :- arc(Node, Next), goal(next)
```

What is non-determinism? And how does it relate to search?

• There could be more than one next

Modify this search to do:

Bounded Depth First

```
depth first to a specific depth
bs(Node, _) := goal(Node).
bs(Node, s(X)) := arc(Node, Next), bs(Next, X).

Iterative Deepening

bounded depth fist until search succeeds
iterSearch(Node) := bound(Bd), bs(Node, Bd).
bound(s(X)) := bound(X).
```

What are the ingredients for A Star Search?

- 1. A cost on arcs
- 2. heuristic function on nodes indicating how close to goal node (minimum cost path to goal node)
- 3. Frontier search: put at head of list the node with minimal F-Value
 - F(node) := Cost(node) + HeuristicValue(node)

```
fs([H|_]) := goal(H).
fs([H|T]) :=
  findall(X, arc(H, X), Children),
  addToFrontier(Children, T, New),
  fs(New).
```

What does it mean For A-Star to be admissible?

- If the search returns a solution, it returns an optimal solution (smallest cost).
- Minimal progress is made (within some epsilon), never overestimate cost.

What are the ingredients of a Contstraint Satisfaction Problem?

- 1. Variables
- 2. Domain
- 3. Constraints
- 3 Color problem: Variables are nodes
- Domain is $\{Red, Green, Blue\}^3$
 - every node can take 3 colors, Red, Green and Blue

```
-m=3
```

• If there's an arc between nodes, the colors must be different

What is Generate and test?

• Instantiate all of the variables before testing the constraints

Consider the knowlege base

```
false :- p.
false :- a, b.
p :- b,c.
p :- q.
a :- r, s.
b.
```

What are Integrity Constraints?

- A rule in the KB where head is false
 - Horn clause: clause with at most 1 positive literal

Suppose q, r, s were assumable. What are the conflicts? The Minimal conflicts?

Find minimal conflicts by repeated substitution

What's the complete knowlege assumption (CKA)?

• Only atoms that are true are ones we can prove. If we can't prove it we take it as false.

What does non monotonicity with respect to inference systems mean?

•
$$KB \vdash C \implies KB \cup \{a\} \vdash C$$

What does it mean for a KB to be Consistent?

- Consistent KB $\implies \exists$ a model for the knowlege base
 - Model: Interpretation where all clauses are true