NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

\mathbb{MA} 1505 Mathematics I Tutorial 8

1. Find the area of the surface consisting of the part of the sphere of radius 2 centered at origin that lies above the horizontal plane z=1. (Equation of this sphere is given by $x^2+y^2+z^2=2^2$.)

Ans: 4π

2. Find the centre of mass of the lamina of density $\rho(x,y)=x^2$ that occupies the region R bounded by the parabola $y=2-x^2$ and the line y=x.

Ans: (-8/7, -20/49)

3. Evaluate the following triple integral:

 $\iiint\limits_{D} (x^2 + 2z) \, dV, \quad D \text{ is the solid cube } \{ -\frac{1}{2} \le x \le \frac{1}{2}, -\frac{1}{2} \le y \le \frac{1}{2}, -\frac{1}{2} \le z \le \frac{1}{2} \}.$

Ans: $\frac{1}{12}$

4. Let $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{k}$. Show that \mathbf{F} is a conservative vector field. Find a function f such that $\nabla f = \mathbf{F}$.

Ans: $f(x, y, z) = x^2y + y^2z + K$

5. Evaluate $\int_C g(x,y,z) ds$, where $g(x,y,z) = x^2 - yz + z^2$ and C is the line segment from (0,0,0) to (1,2,3).

Ans: $4\sqrt{14}/3$

6. Compute the work done by the force $\mathbf{F}(x, y, z) = yz\mathbf{i} + 2y\mathbf{j} - x^2\mathbf{k}$ on a particle that moves along the curve C given by the vector function $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$, for $0 \le t \le 1$.

Ans: 17/30

7. Evaluate $\int_C 2xy \, dx + (x^2 + z) \, dy + y \, dz$, where C consists of two line segments: C_1 from (0,0,0) to (1,0,2), and C_2 from (1,0,2) to (3,4,1).

Ans: 40