CmpE 343

Introduction to Probability and Statistics for Computer Engineers Fall 2019

Homework 4

Emilcan ARICAN - 2016400231

Code

```
import numpy as np
            N_POINT = 100000
            N_PI
                    = 100
            def apprPi(point_num):
                X = np.random.rand(point_num)
                Y = np.random.rand(point_num)
                in_circle = 0
10
                for i in range(0,point_num):
12
                    if(X[i]**2 + Y[i]**2 <= 1):
13
                         in_circle = in_circle + 1
14
                appr_pi = 4*in_circle/point_num
16
                return appr_pi
18
19
            pi_array = [apprPi(N_POINT) for i in range(0,N_PI)]
20
21
            avg_pi = np.average(pi_array)
22
            var_pi = np.var(pi_array)
23
24
            print(pi_array)
25
            print("Avg: ", avg_pi)
26
            print("Var: ", var_pi)
27
```

Solution

Random sample of pi values

_									_
3.13256	3.14552	3.14812	3.13776	3.13716	3.13468	3.13136	3.14256	3.14484	3.13436
3.1332	3.13956	3.13476	3.13532	3.13956	3.1394	3.1332	3.1442	3.14436	3.14252
3.13652	3.14716	3.14024	3.14548	3.14716	3.13764	3.14912	3.13832	3.1432	3.14976
3.14224	3.1418	3.13944	3.14764	3.13488	3.13224	3.14388	3.14152	3.13572	3.14316
3.1542	3.13776	3.1358	3.136	3.14672	3.14492	3.13324	3.1474	3.1388	3.1584
3.14212	3.14288	3.1336	3.15032	3.14212	3.14384	3.15056	3.13288	3.13664	3.13756
3.13748	3.1458	3.13552	3.12928	3.147	3.14876	3.13944	3.1456	3.14588	3.14112
3.13652	3.14568	3.14144	3.13904	3.1434	3.13324	3.14432	3.14836	3.14952	3.14036
3.13188	3.1428	3.1556	3.14248	3.14004	3.15148	3.14016	3.14024	3.14248	3.1516
3.13208	3.13956	3.1352	3.13868	3.14584	3.14572	3.1422	3.13804	3.14688	3.13616
[3.13200	5.15550	3.1332	3.13000	3.14304	3.14312	5.1422	3.13004	3.14000	3.13010

$$\bar{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$$

$$\bar{X} = 3.1413476$$

$$S^{2} = \frac{1}{100 - 1} \sum_{i=1}^{100} (X_{i} - \bar{X})^{2}$$

$$\bar{X}=3.1413476$$

$$S^{2} = \frac{1}{99} \sum_{i=1}^{100} (X_{i} - \bar{X})^{2}$$

$$S^2 = 3.456779824 \cdot 10^{-5}$$

$$S = 0.00587943859$$

Givens

 $\bar{X} = 3.1413476$ S = 0.00587943859n = 100

Hypothesis

 $H_0: \mu = 3.2$ $H_1: \mu \neq 3.2$

Critical Region

 $\alpha = 0.05$ Two-tailed $t_{\alpha/2}=1.9842$ $-t_{\alpha/2} = -1.9842$

$$T > t_{\alpha/2} \; ; \; T < -t_{\alpha/2}$$

 $T > 1.9842 \; ; \; T < -1.9842$

Solution

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

$$T = \frac{3.1413476 - 3.14159265359}{0.00587943859/\sqrt{100}}$$

$$T = -0.4167979010$$

Since, T value lies between $t_{\alpha/2}$ and $-t_{\alpha/2}$ values, in other words since T is not in the critical region, we are failed to reject H_0 .