Clase 2 Resolución de ejercicios de Relaciones:

Puede ver la resolución de esta ejercitación en este video realizado en vivo. Acceda mediante el Link o el QR:

https://youtu.be/XpmP2o7CkZw

Manejo matricial;

1- Sean $A = \{\lambda, pa, opa, opo, pao\}$ y $B = \{0, 1, 2, 3\}$ y la relación $R \subseteq AxB$ definida por:

$$x R y \Leftrightarrow long(x) = y$$

Represente matricialmente a la relación R, R^C y R⁻¹

Resolución

$$M_{R} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{R}^{c} = \overline{M_{R}} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$M_{R^{-1}} = M_{R}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Operaciones entre relaciones-unión, intersección y producto booleano;

2- Para la relación $S \subseteq AxB$ (los mismos conjuntos del punto anterior) definida por su matriz de adyacencia:

:
$$M_{S} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A R \cup S.$$

Calcule matricialmente $R \cap S$, y $R \cup S$.

Resolución

$$M_{R \cap S} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_{R \cup S} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Composición de relaciones por extensión y matricialmente

3- Sean A = $\{1, 2, 3\}$, B = $\{a, b\}$ y C = $\{w, x, y, z\}$. Considere las siguientes relaciones R \subseteq AxB y S \subseteq BxC

$$R = \{(1; b), (2; a), (3; b)\}$$
 y $S = \{(a; x), (a; z), (b; w), (b; z)\}$

Encuentre la relación composición S o R gráficamente y por producto de matrices.

Resolución

$$M_{\text{SoR}} = M_{\text{R}} \otimes M_{\text{S}} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

 $SoR = \{(1; w), (1; z), (2; x), (2; z), (3; w), (3; z)\}$

Cálculo de R*.

- 4- Para la relación $T = \{(3; 1), (1; 2), (2; 3), (0; 0), (1; 0), (4; 2), (4; 4)\}$ definida en el conjunto $A = \{0, 1, 2, 3, 4\}$
 - a. Hallar todos los elementos que están conectados por un camino de longitud 3. Indíquelo matricialmente
 - b. ¿Coincide T² con T*? Verifíquelo matricialmente.

Resolución

4.a

$$M_{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$M_{T}^{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$M_{T}^{3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

 ${M_T}^3$ indica los elementos conectados por caminos de longitud 3

4.b.

$$M_T^{\infty} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

No, pues ${M_T}^{\infty}$ coincide con ${M_T}$ *. Pero ${M_T}$ * no coincide con ${M_T}^2$