Principle of Communications --- The Wireless Channel

Speaker Teacher: Dr. Xiang Cheng (程 翔)

Research Center of Wireless Communications and Signal Processing
Institute of Modern Communications
School of Electronics Engineering and Computing Sciences

Teaching Contents

- I. Why Study Wireless Channels?
- **II. What Are Wireless Channels?**
- **III. Three Phenomena in Wireless Channels**
- IV. Multipath Fading
- V. Summary

I. Why Study Wireless Channels?

Any w System

Transmitter (Tx)

Tx ar and Wireless Channels

en reliability

Enabling foundation for successful analysis and design of any wireless system!

工作中・・・

II. What Are Wireless Channels?

Wireless channels are the real environments in which the Tx and Rx are operating.

Common Problems

Draw a trol

Provide a unified and conceptually simple explanation of a morass of concepts for wireless channels.

III. Three Phenomena in Wireless Channels

Fading: variation of the received signal power due to the environment, multipaths, and mobility.

IV. Multipath Fading

$$y(t) = h(t, \tau) \otimes x(t)$$
 $y(t) = \sum_{n} c_n(t) e^{-j\phi_n(t)} x(t - \tau_n(t))$ (Linear TV system)

TV channel impulse response

(system function):
$$h(t,\tau) = \sum_{n} c_n(t) e^{-\int_{\phi_n}^{\phi_n(t)}} \delta(\tau - \tau_n(t))$$

Time-invariant
$$h(\tau) = \sum_{n} c_n e^{-\int_{\phi_n}^{\phi_n}} \delta(\tau - \tau_n)$$

- c_n : amplitude of the *n*th propagation path.
- τ_n : time delay of the *n*th propagation.
- ϕ_n : phase of the *n*th propagation.
- TV: time-varying

Channel Impulse Response

• **Assumption**: The distance between the BS and the MS is sufficiently large so that the radio propagation environment can be modeled as two-dimensional (2-D).

Möxed Rx:
$$h(\mathbf{r},\mathbf{t}) \neq \mathbf{r} \Rightarrow \mathbf{c}_{n} \neq \mathbf{c}_{n} \neq$$

Multipath

Motion of: spandylipiahum Doppler frequency

the Rx

antennas

4th Dec. 2010@PKU 8/21

Duality of Wireless Channels

Duality: to express the same phenomena in different domains.

Dispersion and Seclectivity of Wireless Channels

- **Dispersion:** spread effect of wireless channels, which means that wireless channels spread the transmitted signal in a certain domain.
- Selectivity: wireless channel changes over a certain domain.

Delay Dispersion

- Delay dispersion: multipaths with different time delays lead to the spread of the transmitted signal.
 - Measured by delay spread, De_s , $De_s \coloneqq \max \left| \tau_i \tau_j \right|$.

Impulse response:
$$h(\tau) = \sum_{n} c_n e^{-j2\pi f_c \frac{d'_n}{c}} \delta(\tau - \tau_n)$$

$$T_s > De_s$$
 No inter-symbol interference (ISI)

$$T_s \leftarrow De_s$$
 Inter-symbol interference (ISI)

Narrowband (frequency non-selective) channels

Wideband (frequency selective) channels

Frequency Seclectivity

Fourier transform
$$h(\tau) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c}} \delta(\tau - \tau_{n})$$

$$T$$
Impulse response
$$H(f_{c}) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c}} e^{-j2\pi f_{c} \tau_{n}}$$

$$Transfer function$$

- Frequency selectivity: channel changes over frequency.
 - Measured by coherence bandwidth, C_B : the bandwidth over which channels express similar characteristic.

Delay Dispersion-Frequency Selectivy Duality

Transfer function
$$H(f_c) = \sum_n c_n e^{-j2\pi f_c \frac{d_n}{c}} e^{-j2\pi f_c \tau_n}$$

- A wireless channel with higher De_s (lower C_B) is easier to be a wideband channel.
- A wireless system with higher transmission rate (higher signal wideband) is easier to incur wideband channels.

Time Selectivity

Doppler Dispersion

- **Doppler dispersion:** the motion of the Rx results in a broadening of the transmitted signal spectrum.
 - Measured by Doppler spread, D_s , $D_s := \max \left| f_D \cdot e(\theta_i) f_D \cdot e(\theta_j) \right|$.

$$h(t) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c} - j2\pi f_{D} e(\theta_{n})t}$$

$$T(f_{D}) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c}} \mathcal{S}(f_{D} - f_{D}^{n})$$

$$B_s > D_s$$

$$B_s \ll D_s$$

Slow fading channels

Fast fading (time-selective) channels

Doppler Dispersion-Time Selectivy Duality

Time variant function
$$h(t) = \sum_{n} c_n e^{-j2\pi f_c \frac{d_n'}{c} - j2\pi f_D e(\theta_n)t}$$

$$f_D = f_c \frac{v}{c}$$

- A wireless channel with higher D_s (lower C_T) is easier to be a fast fading channel.
- A wireless system with higher transmission rate (higher signal wideband) is easier to incur slow fading channels.

Angle Dispersion

- Angle dispersion: multiple antennas lead to the spread of the transmitted signal in angle domain.
 - Measured by angle spread, A_s , $A_s := \max |\alpha'_i \alpha'_j|$.

$$m(\varepsilon) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c} - j2\pi\lambda^{-1}\varepsilon \cdot k(\alpha_{n})}$$
Inverse Fourier transform
$$M(\alpha) = \sum_{n} c_{n} e^{-j2\pi f_{c} \frac{d'_{n}}{c}} \delta(\alpha - \alpha'_{n})$$

• Angle dispersion also relates to the pattern of multiple antenna arrays!

Angle Dispersion-Distance Selectivy Duality

Time variant function
$$m(\varepsilon) = \sum_{n} c_n e^{-j2\pi f_c \frac{d'_n}{c} - j2\pi \lambda^{-1} \varepsilon \cdot k(\alpha_n)}$$

$$\lambda^{-1} = \frac{f_c}{c}$$

• A multiple antenna wireless system with larger antenna spacing is easier to incur spatial uncorrelated channels.

Thank you for your attention!

