Manifold (Contd.)

Date: 2023-08-11 8:00-10:00 AM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Def Let X be an n-dimensional C^{α} -manifold. A closed m-dimensional submanifold of X is a closed subset $Y \subseteq X$ such that for each $x \in Y$, there is a neighborhood $V \subseteq X$ such that $x \in V$ and an C^{α} -isomorphism $h: V \to B \subseteq \mathbb{R}^n$ such that $h(V \cap Y) = B \cap L$ for some m-dimensional subspace $L \subseteq \mathbb{R}^m$ (complex submanifold is similarly defined as the above.)

Lemma/Def Let $(X, \mathcal{C}_X^{\alpha})$ be an *n*-dimensional C^{α} -manifold, $Y \subseteq X$ closed *m*-dimensional submanifold. Define \mathcal{C}_X^{α} as follows:

For each $U \stackrel{\circ}{\subset} Y$, set

$$\mathcal{C}_Y^{\alpha}(U) = \{ f : U \to \mathbb{R} \mid \forall x \in U \exists V_x \subseteq X, x \in V_x \text{ and } \exists \tilde{f} \in \mathcal{C}_X^{\alpha}(C_x) : \tilde{f}|_{V_x \cap U} = f|_{V_x \cap U} \}$$

Then $(Y, \mathcal{C}_Y^{\alpha})$ is an *m*-dimensional C^{α} -manifold.

Proof. Suffices to show:

Each $x \in Y$ has a neighborhood $U \subseteq Y$ that is isomorphic to $(\tilde{B}, \mathcal{C}_{\mathbb{R}^m}^{\alpha}|_{\tilde{B}})$ for some $\tilde{B} \subseteq \mathbb{R}^m$.

Choose $V \subseteq X$ as in the definition of submanifold.

Without loss of generality, $L = \mathbb{R}^m \times \{0\} \subseteq \mathbb{R}^n$.

Define $\tilde{B} := B \cap L$ (identify L with \mathbb{R}^m) and $U = V \cap Y \subseteq Y$.

Claim. $h: V \xrightarrow{\sim} B$ induces an isomorphism $(U, \mathcal{C}_Y^{\alpha}|_U) \cong (\tilde{B}, \mathcal{C}_{\mathbb{R}^m}^{\alpha}|_{\tilde{B}})$.

In fact, every C^{α} -function $f(x_1, \ldots, x_m)$ on \tilde{B} can be extended trivially to B. Hence, every function from $\mathcal{C}_Y^{\alpha}|_U$ yields a function from $\mathcal{C}_{\mathbb{R}^m}^{\alpha}|_{\tilde{B}}$ and vice versa.

Consequence Let $f_1, \ldots, f_r \in \mathcal{C}^{\alpha}(\mathbb{R}^n)$ and $X := \{a \in \mathbb{R}^n \mid f_1(a) = f_2(a) = \cdots = f_r(a) = 0\}.$

Assume that $\forall a \in X, \operatorname{rank}(J_{f_1,\dots,f_r}(a)) = n - m$ (Full-rank; if r = n - m) Then, X is an m-dimensional \mathcal{C}^{α} -manifold (as closed submanifold of \mathbb{R}^n , the proposition can be proved by using the *Implicit function theorem*.)

Also, the same result holds for complex submanifold \mathbb{C}^n .

Examples. $S^n, O(n), U(n)$

Further examples

1. $\mathbb{T}^1 := \mathbb{R}/\mathbb{Z}$ (Real 1-torus as a quotient group) such that $U \subseteq \mathbb{T}^1 \iff \pi^{-1}(U) \subseteq \mathbb{R}$ is open. This topological space is Hausdorff and compact. (Check: \mathbb{T}^1 is homeomorphic with S^1 under the map $t \mapsto (\cos(2\pi t), \sin(2\pi t))$.)

Two possible ways to define $\mathcal{C}^{\alpha}_{\mathbb{T}^1}$:

• Use atlas: $U_1 := \{x + \mathbb{Z} : x \in (0,1)\}$ and $U_2 := \{x + \mathbb{Z} : x \in (-\frac{1}{2},\frac{1}{2})\}$. This gives an homeomorphism $\varphi_1:(0,1)\stackrel{\sim}{\to} U_1$ and $\varphi_2:(-\frac{1}{2},\frac{1}{2})\stackrel{\sim}{\to} U_2$ with compatible change of charts.

$$(\varphi_2|)^{-1}\circ(\varphi_1|):\left(0,\frac{1}{2}\right)\cap\left(\frac{1}{2},1\right)\stackrel{\sim}{\to} U_1\cap U_2\stackrel{\sim}{\to} \left(-\frac{1}{2},0\right)\cap\left(0,\frac{1}{2}\right)$$

with
$$x \mapsto \begin{cases} x, & x < 1/2. \\ x - 1, & x > 1/2. \end{cases}$$

Define $\mathcal{C}^{\alpha}_{\mathbb{T}^1}(V) = \{ f : V \to \mathbb{R} \mid f \circ (\varphi_1|) \in \mathcal{C}^{\alpha}_{\varphi_1^{-1}(V \cap U_1)}, f \circ (\varphi_2|) \in \mathcal{C}^{\alpha}_{\varphi_2^{-1}(V \cap U_2)} \}$

• Define directly: for $V \subseteq \mathbb{T}^1$, define

$$\mathcal{C}^{\alpha}_{\mathbb{T}^1}(V) = \{ f : V \to \mathbb{R} \mid f \circ (\pi|) \in C^{\alpha} : \pi^{-1}(V) \to \mathbb{R} \}$$

Check: $\mathcal{C}^{\alpha}_{\mathbb{T}^1}$ defined by both ways are the same.

Remark. the method 2 defined by both ways are the same.

Exercise X is a manifold $(C^{\alpha} \text{ or complex}), \Gamma \leq \operatorname{Aut}(X) = \{X \stackrel{\sim}{\to} X \text{ is isomorphism.}\}$ Assume that the action of Γ on X has no fixed point $(\forall \sigma \in \Gamma \setminus \{id\} \forall x \in X : \sigma(x) \neq x)$ and is properly discontinuous $(\forall x \in X \exists V_x, x \in V_x \text{ and } \forall \sigma \in \Gamma \setminus \{id\}, V_x \cap \sigma(V_x) = \emptyset)$

Let $X := p \setminus X$ $(X/(x \sim \sigma(x) \text{ for } x \in X, \sigma \in \Gamma))$ be endowed with the quotient topology under the canonical projection $\pi: X \to Y$. Define \mathcal{C}_Y^{α} or \mathcal{O}_Y by "f is $\mathcal{C}^{\alpha} \iff f \circ \pi$ is ..."

Show that $(Y, \mathcal{C}_Y^{\alpha})$ respect to is (Y, \mathcal{O}_Y) is a manifold with dim $Y = \dim X$.

Examples: $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ and $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. $\tau \in \mathbb{C}/\mathbb{R}$ that $E_{\tau} := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ is a complex manifold of dimension 1.

2. The projective space. Let $k \in \{\mathbb{R}, \mathbb{C}\}$.

$$\mathbb{P}^{n}(k) = (k^{n+1} \setminus \{0\}) / (x \sim \lambda x : x \in k^{n+1} \setminus \{0\}, \lambda \in k^{*})$$

Notation: $[a_0:a_1:\cdots:a_n]=$ equivalence class of (a_0,a_1,\ldots,a_n) . Another interpretation $P^n(k) = \{1 - \text{dimensional subspaces of } k^{n+1}\}$ Endow $\mathbb{P}^n(k)$ with the quotient topology (check: which is Hausdorff and compact.) Sheaf of functions: $f: U \to k$ $(U \subseteq \mathbb{P}^n(k))$ is C^{α} /holomorphic $\iff f \circ (\pi)$ is C^{α} /holomorphic.

Claim. $\mathbb{P}^n(k)$ is a manifold.

Proof. Cover $\mathbb{P}^n(k)$ by $U_j := \{ [a_0, a_1, \dots, a_n] \mid a_j \neq 0 \}$ for $j = 1, 2, \dots, n$. Check that $(U_j, \mathcal{C}^{\alpha}_{\mathbb{P}^n}|_{U_i}) \to (R^n, \mathcal{C}^{\alpha}_{\mathbb{R}^n}|_{U_i})$ (also with \mathcal{O}_n) is an isomorphism. (By removing coordinates)

Exercises 2.2.14-2.2.20 (Arapura)

Sheaves

Excursion: Categories and Functors.

Def. A category \mathcal{C} consists of the following data:

- A class $Ob(\mathcal{C})$ of objects,
- For any objects $X, Y \in Ob(\mathcal{C})$, a set $Hom_{\mathcal{C}}(X, Y)$ of morphisms (or arrows)
- For any any $X \in \text{Ob}(\mathcal{C})$, an identity morphism $\text{id}_X \in \text{Hom}_{\mathcal{C}}(X,X)$,
- For any $X, Y, Z \in \mathrm{Ob}(\mathcal{C})$, a composition law $\mathrm{Hom}_{\mathcal{C}}(X, Y) \times \mathrm{Hom}_{\mathcal{C}}(Y, Z) \to \mathrm{Hom}_{\mathcal{C}}(X, Z)$ that $(f, g) \mapsto g \circ f$, such that the following properties are satisfied:
- identity idempotency
- associativity of compositions

Examples (Cat, Obs, Morph)

- 1. Sets, sets, mappings
- 2. Grps, groups, group homomorphism
- 3. Top, topological spaces, continuous maps
- 4. C^{α} Mfd, C^{α} -manifolds, morphisms of concrete \mathbb{R} -space
- 5. \mathbb{C} Mfd, complex manifolds, morphisms of concrete \mathbb{C} -space (holomorphic maps)

6.
$$(P, \leq)$$
 (Poset), P , and $\operatorname{Hom}_{\mathcal{C}}(x, y) = \begin{cases} \{f_{x,y}\} & x \leq y \\ \emptyset & \text{otherwise} \end{cases}$

Def An isomorphism in \mathcal{C} is a morphism $f: X \to Y$ such that $\exists g: Y \to X: g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_Y$.

Notation $X \cong Y$ if \exists isomorphism $X \to Y$.

Observe that \cong is an equivalence relation on $Ob(\mathcal{C})$.

- g as the above is called the inverse of f and denoted by f^{-1} .
- An automorphism of X is an isomorphism on $X \to X$. (Aut_C(X) := automorphisms of X).

Examples (Isomorphism).

- An isomorphism in (Grps) is a bijective homomorphism.
- An isomorphism in (Top) is a homeomorphism.
- An isomorphism in $(C^{\alpha}\text{-Mfd})$ is a diffeomorphism.
- An isomorphism in $(\mathbb{C}\text{-Mfd})$ is a biholomorphism.