

EM506 - RESISTÊNCIA DOS MATERIAIS II 1º Semestre de 2014 – Turma B TESTE II - 26/03/2014

Professor: José Ricardo P. Mendes

NOME DO ALUNO:	RA	\:	Assinatura:

INSTRUÇÕES:

- 1. A prova é sem consulta;
- 2. A duração da prova é de 1h e 50min;
- 3. Qualquer dado que o aluno julgar necessário e que não tenha sido fornecido deve ser assumido;
- 4. Preencha com suas respostas o Quadro de Respostas (no verso)
- 5. Devolver a folha de questões e as resoluções (papel almaço);

OUESTÕES:

1. (1,0) O estado de tensões em um ponto A de uma estrutura é mostrado na figura. Determine a tensão normal σ e o ângulo θ .

Figura da questão 1.

- **2.** (2,0) Um vaso de pressão, de raio interno r e espessura de parede t, é fabricado a partir de um tubo soldado com ângulo de hélice φ e equipado com duas placas de extremidade conforme a figura. Se a pressão interna do vaso é p, determine:
 - a) A tensão normal perpendicular à solda;
 - b) A tensão de cisalhamento paralela a solda

Dados: r = 4 ft; $t = \frac{1}{2}$ in; $\varphi = 38^{\circ}$ e p = 200 psi

Figura da questão 2.

- 3. (1,0) Um eixo de ferro fundido de seção transversal circular possui uma extremidade engastada e a outra livre. Este eixo é submetido simultaneamente ao torque T e à carga P na extremidade livre. Calcule o diâmetro d do eixo com um fator de segurança n, empregando:
 - a) A teoria de falha da tensão normal máxima;
 - b) A teoria de falha de Mohr.
- **4.** (2,0) Um reservatório cilíndrico de aço, com extremidades fechadas, possui raio r (na horizontal) e altura h. Ele é completamente preenchido com um líquido de peso específico γ e está sujeito a uma pressão interna adicional p imposta por um gás. Calcule a espessura da parede necessária:
 - a) No topo do reservatório;
 - **b)** A um quarto da altura do reservatório;
 - c) Na metade da altura do reservatório.

Dados: p = 400 kPa; h = 20 m; r = 5 m e $\gamma = 15 \text{kN/m3}$.

Requistos: A tensão admissível atuante nas paredes do cilindro é limitada a 150 MPa.

5. (2,0) Um elemento de tensões está sujeito as seguintes tensões:

$$\sigma_x = 50 \text{ MPa}$$
 $\sigma_y = 10 \text{ MPa}$ $\tau_{xy} = -40 \text{ MPa}$ $\sigma_z = 25 \text{ MPa}$

Determine:

- a) As tensões principais;
- b) A tensão cisalhante máxima absoluta.
- 6. (2,0) Um tubo cilíndrico, de paredes grossas, com raio interno a e raio externo b, é submetido a uma pressão interna p_i . Determine:
- a) A relação entre a espessura da parede e o raio interno, para o caso em que a pressão interna é igual a metade da tensão tangencial máxima.
 - **b)** O aumento do raio interno do tubo, se a = 2 ft, $p_i = 1, 2$ ksi, E = 30 x 10^6 psi e v = 0, 3.

Ouadro de Respostas

(PREENCHIMENTO OBRIGATÓRIO)

Questão 1: (a) _______ MPa (b) ______ °(graus)

(b) ______ *ksi* **Questão 2:** (a) ______ ksi

Questão 3: (a) ______ in **(b)** *in*

Questão 4: (a) ______ mm (b) _____ mm

(b) τ_{max} *MPa* Questão 5: (a) σ_1 MPa σ_2 ____MPa

Questão 6: (a) _____ (b) _____ *in*

FORMULARIO:

$$\sigma_{r} = \frac{a^{2} p_{i}}{b^{2} - a^{2}} \left(1 - \frac{b^{2}}{r^{2}} \right)$$

$$(\sigma_{t})_{max} = p_{i} \left(\frac{b^{2} + a^{2}}{b^{2} - a^{2}} \right)$$

$$(\sigma_{t})_{max} = p_{i} \left(\frac{b^{2} + a^{2}}{b^{2} - a^{2}} \right)$$

$$(\sigma_{t})_{max} = p_{i} \left(\frac{2a^{2}}{b^{2} - a^{2}} \right)$$

$$(\sigma_{t})_{medio} = \frac{p_{i} a}{t}$$

$$u = \frac{a^2 p_i r}{E(b^2 - r^2)} \left[(1 - v) + (1 + v) \frac{b^2}{r^2} \right]$$