ASCII, Unicode, UTF-8

Informatik

Ein Computer speichert Zahlen. Um mit Zeichen umgehen zu können, wird über eine Zeichensatztabelle (Codepage) jedem Zeichen eine Zahl zugeordnet. Der **ASCII-Code** (American Standard Code for Information Interchange) sieht in seiner ursprünglichen Version 7 Bits zur Codierung von Zeichen vor. Damit lassen sich $2^7 = 128$ Zeichen darstellen.

ASCII-Zeichentabelle, hexadezimale Nummerierung

Code	0	1	2	3	4	5	6	7	8	9	А	В	с	D	Е	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	so	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	ЕМ	SUB	ESC	FS	GS	RS	US
2	SP	!	"	#	\$	%	&		()	*	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	L	J	K	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[١]	۸	_
6		а	b	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	q	r	s	t	u	V	w	x	у	z	{		}	~	DEL

ISO-8859-1 ist eine Erweiterung des ASCII-Codes auf 8 bit und reicht für die meisten westeuropäischen Sprachen aus. Es fehlt aber das Eurozeichen und einige französische Zeichen.

ISO/IEC 8859-1

Unicode ist ein internationaler Standard, der jedem Schriftzeichen aller bekannter Sprachen einen eindeutige Zahl zuordnet (Code Point).

 $A \rightarrow 65$

a \rightarrow 97

 $\beta \rightarrow 223$

€ → 8364

UTF-8 (1992) ist die am weitesten verbreitete Kodierung für Unicode-Zeichen.

Unicode-Zeichen größer als 127 werden in der UTF-8-Kodierung zu Byteketten der Länge zwei bis vier kodiert.

Unicode- Bereich (hexadezimal)	UTF-8-Kodierung (binär)	Bemerkungen	Möglichkeiten (theoretisch)			
0000 0000 – 0000 007F	Oxxxxxx	In diesem Bereich (128 Zeichen) entspricht UTF-8 genau dem ASCII-Code: Das höchste Bit ist 0, die restliche 7-Bit-Kombination ist das ASCII-Zeichen.	27	128		
0000 0080 – 0000 07FF	110xxxxx 10xxxxxx	Das erste Byte beginnt immer mit 11, die folgenden Bytes mit 10. Die xxxxx stehen für die Bits des Unicode-Zeichenwerts. Dabei wird das	2 ¹¹ – 2 ⁷ (2 ¹¹)	1920 (2048)		
0000 0800 – 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx	niederwertigste Bit des Zeichenwerts auf das rechte x im letzten Byte abgebildet, die höherwertigen Bits fortschreitend von rechts nach links. Die Anzahl der	2 ¹⁶ – 2 ¹¹ (2 ¹⁶)	63.488 (65.536)		
0001 0000 – 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx	Einsen vor der ersten 0 im ersten Byte ist gleich der Gesamtzahl der Bytes für das Zeichen. (In Klammern jeweils die theoretisch maximal möglichen.)	2 ²⁰ (2 ²¹)	1.048.576 (2.097.152		

Beispiel: Die UTF-8 Codierung von €.

Code Point (dezimal) = 8364

Code Point (hex) = 20AC (zur Codierung werden 3 Bytes benötigt)

Code Point (binär) = $0010\ 0000\ 1010\ 1100$

Aufteilung der bits in die 3 Bytes :

1110xxxx 10xxxxxx 10xxxxxx

11100010 10000010 10101100

E2 82 AC ist die Codierung des Eurozeichens.

In Python ist ein String-Objekt eine Folge von Zeichen in Unicode. Die Funktionen chr und ord wandeln den Unicode-Codepoint in das Zeichen um und umgekehrt.

Die Methode encode ('utf8') gibt die UTF-8 Codierung des Zeichens als Bytefolge zurück.

```
>>> '\u20ac'
'€'
>>> chr(8364)
'€'
>>> chr(8364).encode('utf8')
b'\xe2\x82\xac'
>>>
```

Ein Texteditor soll folgenden Speicherbereich darstellen:

7	ddress	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	0000000	11101111	10111011	10111111	11100010	10011001	10010100	00001010	11100010	10011001	10010101	00001010	11100010	10011001	10010110	00001010	11100010
(0000010	10011001	10010111	00001010	11100010	10011001	10011000	00001010	11100010	10011001	10011001	00001010	11100010	10011001	10011010	00001010	11100010
(0000020	10011001	10011011	00001010	11100010	10011001	10011100	00001010	11100010	10011001	10011101	00001010	11100010	10011001	10011110	00001010	11100010
	0000020	10011001	10011111	00001010													

Ein Texteditor soll folgenden Speicherbereich darstellen:

Address	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	£
00000000	11101111	10111011	10111111	11100010	10011001	10010100	00001010	11100010	10011001	10010101	00001010	11100010	10011001	10010110	00001010	11100010
00000010	10011001	10010111	00001010	11100010	10011001	10011000	00001010	11100010	10011001	10011001	00001010	11100010	10011001	10011010	00001010	11100010
00000020	10011001	10011011	00001010	11100010	10011001	10011100	00001010	11100010	10011001	10011101	00001010	11100010	10011001	10011110	00001010	11100010
00000030	10011001	10011111	00001010													

Derselbe Speicherbereich hexadezimal:

```
Address 0 1 2 3 4 5 6 7 8 9 9 a b c d e f
00000000 ef bb bf e2 99 94 0a e2 99 95 0a e2 99 96 0a e2
00000010 99 97 0a e2 99 98 0a e2 99 90 0a e2
00000020 99 9b 0a e2 99 9c 0a e2 99 9d 0a e2 99 9e 0a e2
00000030 99 9F 0a
```

Die Bytefolge EF BB BF heißt **Byte Order Mark (BOM)** und gibt den Editor einen Hinweis darauf, dass eine UTF-8 Kodierung vorliegt.

OA ist die ASCII (und UTF-8) Codierung für den Zeilenvorschub.

Ein Texteditor soll folgenden Speicherbereich darstellen:

Address	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
00000000	11101111	10111011	10111111	11100010	10011001	10010100	00001010	11100010	10011001	10010101	00001010	11100010	10011001	10010110	00001010	11100010
00000010	10011001	10010111	00001010	11100010	10011001	10011000	00001010	11100010	10011001	10011001	00001010	11100010	10011001	10011010	00001010	11100010
00000020	10011001	10011011	00001010	11100010	10011001	10011100	00001010	11100010	10011001	10011101	00001010	11100010	10011001	10011110	00001010	11100010
00000030	10011001	10011111	00001010													

Derselbe Speicherbereich hexadezimal:

Die Bytefolge EF BB BF heißt **Byte Order Mark (BOM)** und gibt den Editor einen Hinweis darauf, dass eine UTF-8 Kodierung vorliegt.

OA ist die ASCII (und UTF-8) Codierung für den Zeilenvorschub.

E2 99 94 ist die UTF-8 Codierung des hexadezimalen Codepoints 2654

Darstellung der Bit-Folge mit dem Font Lucida Sans Unicode.

