Neural Network Classifier as Mutual Information Evaluator

Zhenyue Qin¹, Dongwoo Kim^{1,2}, Tom Gedeon¹ Australian National University¹, POSTECH²

Paper

Motivation

- The combination of softmax with cross-entropy is a standard choice to train neural network classifiers.
- It measures the cross-entropy between label and network output.
- We aim to know what relation the network aims to model between input x and label y.
- Also, arguably, it seem to be artificial to view the output of softmax as probabilities.
- We aim to rethink the meaning of softmax and cross-entropy.

Connecting Softmax with Cross-Entropy to Mutual Information

Definition of mutual information:

$$I(X,Y) = \int_{x \in X} \left[\sum_{y \in Y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)} \right] dx$$
$$= E_{(X,Y)} \left[\log \frac{P(y|x)}{P(y)} \right]$$
$$\ge E_{(X,Y)} \left[\log \frac{Q(y|x)}{P(y)} \right]$$

If we make $Q(x,y) = \frac{P(x)P(y)}{E_y[e^{f_{\phi}(x,y')}]}e^{f_{\phi}(x,y)}$, we have:

$$I(X,Y) \ge E_{(X,Y)} \left[\log \frac{e^{f_{\phi}(x,y)}}{E_{y'}e^{f_{\phi}(x,y')}}\right]$$

For the denominator, if the dataset is balanced:

$$E_{y'}\left[e^{f_{\phi}(x,y')}\right] = \frac{1}{M}\sum_{y'=1}^{M} e^{f_{\phi}(x,y')}$$

- Then, the RHS of (1) becomes softmax + M.
- Thus, given a balanced dataset, minimizing softmax with cross-entropy is to maximize the mutual information between input and label.
- If the dataset is imbalanced, we propose PC-softmax:

$$\frac{e^{f\phi(x,y)}}{\sum_{y'=1}^{M} P(y')e^{f\phi(x,y')}}$$

Experimental Performance: Estimating Mutual Information

Dim	Accuracy		Mutual Information			
	Softmax	PC- Softmax	GT	MINE	Softmax	PC- Softmax
1	79	79	1.02	0.99	1.11	0.96
2	87	88	1.23	1.17	1.31	1.20
5	93	95	1.44	1.27	1.41	1.31
10	95	96	1.48	1.22	1.36	1.34

Mutual information estimation results with softmax-based classification neural networks.

Experimental Performance: Classification

Dataset	MNIST		CUB-200-2011		
	Balanced	Imbalanced	Balanced	Imbalanced	
Softmax	97.95	95.05	89.21	84.63	
PC-Softmax	97.91	96.30	89.16	87.69	

Average-per-class classification accuracy of using softmax and PC-softmax.