Druhé cvičení BIN - Statistické vyhodnocení experimentů

Jméno: Kateřina Fořtová (xforto00)

Náhodné veličiny

Mají veličiny 5 a 6 podobný rozptyl?

Využijeme F-testu na hladině významnosti 0,05.

Testovací kritérium:
$$F = \frac{max(s_1^2, s_2^2)}{min(s_1^2, s_2^2)} = 5,08823$$

Kritická hodnota: 1,48623

Testovací kritérium není menší jak kritická hodnota, tedy hypotézu, že mají veličiny 5 a 6 podobný rozptyl **zamítáme**.

Mají veličiny 5 a 6 podobnou střední hodnotu?

Využijeme T-testu na hladině významnosti 0,05.

Testovací kritérium:
$$T = \frac{\left|\overline{x_1} - \overline{x_2}\right|}{\sqrt{\frac{s_1^2 + s_2^2}{n}}} = 0,01514$$

Kritická hodnota: 1,97202

Testovací kritérium je menší jak kritická hodnota, hypotézu, že mají veličiny 5 a 6 podobnou střední hodnotu přijímáme (nezamítáme).

Má veličina 7 normální rozložení?

Využijeme Kolmogorov-Smirnov test. Testovací kritérium: D = 0, 18951

Kritická hodnota: 0,00128

Testovací kritérium není menší jak kritická hodnota, tedy hypotézu, že má veličina 7 normální rozložení **zamítáme**.

Mají veličiny 8 a 9 podobnou střední hodnotu?

Jelikož dle zadání veličiny 8 a 9 nepocházejí z normálního rozložení. je nutné využít Mann-Whitneyho U-test.

Musíme využít Mann-Whitneyho U-test s hladinou významnosti 0,05. Budeme provádět obousměrný test.

Z-skóre: - 4, 38222 P-hodnota: < 0, 00001

Výsledek je významný na dané hladině významnosti. Tedy rozdíl mezi střední hodnotou obou výběrů je významný a můžeme tedy brát v potaz, že výběry **nepochází z veličin s podobnou střední hodnotou**.

Práce s evolučním algoritmem

Využití CGP pro simulaci 3-bitové sčítačky.

Parametry:

#define POPULACE_MAX 5 //maximalni pocet jedincu populace

#define MUTACE MAX 3 //max pocet genu, ktery se muze zmutovat behem jedne mutace

#define PARAM_M 5 //pocet sloupcu #define PARAM_N 5 //pocet radku

#define L_BACK 1 //1 (pouze predchozi sloupec) .. param_m (maximalni mozny rozsah); - s tímto parametrem bude experimentováno

#define PARAM GENERATIONS 100000 //max. pocet generaci evoluce

#define PARAM RUNS 100 //max. pocet behu evoluce

#define FUNCTIONS 4 //max. pocet pouzitych funkci bloku (viz fitness())

Experimentování s nastavením parametru L_BACK na hodnoty 1 a 5 (maximum) a sledování počtu generací pro nalezení prvního správného řešení (fitness=0) - nemusí se zatím jednat o řešení s největší minimalizací bloků, ale o první správné nalezené řešení.

Parametr L_BACK	Střední hodnota	Rozptyl	Směrodatná odchylka	Minimum	Spodní kvartil	Medián	Horní kvartil	Maximum
1	1391,26	2250722	1500,24077	94	465	869	1618,5	9294
5	1545,11	12233379	3497,62478	118	484	913,5	1515,75	34102

Statistické testy

Pro analýzu zda výběry pocházejí z veličin s podobnou střední hodnotou jsem využila prvně Kolmogorov-Smirnov test pro ověření, zda oba výběry pocházejí z normálního rozložení.

Pro L BACK = 1

Testovací kritérium: D = 0,21866

Kritická hodnota: 0,00011

Testovací kritérium není menší jak kritická hodnota, tedy hypotézu, že má veličina normální rozložení **zamítáme**.

Pro L BACK = 5

Testovací kritérium: D = 0,34087

Kritická hodnota: < 0,00001

Testovací kritérium není menší jak kritická hodnota, tedy hypotézu, že má veličina normální rozložení **zamítáme**.

Musíme využít Mann-Whitneyho U-test s hladinou významnosti 0,05. Budeme provádět obousměrný test.

Z-skóre: 0, 11362 P-hodnota: 0, 9124 Výsledek není významný na dané hladině významnosti. Tedy rozdíl mezi střední hodnotou obou výběrů není významný a můžeme tedy brát v potaz, že výběry pochází z veličin s podobnou střední hodnotou.