T8D1 Discussion

```
# Import Libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import ols
data = pd.read_csv('housing.csv')
numeric_data = data.select_dtypes(include=[int, float])
neighborhood_means = data.groupby('Neighborhood')['SalePrice'].mean().reset_index()
correlation_matrix = numeric_data.corr()
print(data.head())
summary_stats = data.describe()
print("Summary Statistics:")
print(summary_stats)
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```

```
plt.figure(figsize=(12, 6))
   sns.boxplot(x='Neighborhood', y='SalePrice', data=data)
   plt.title('Housing Prices by Neighborhood')
   plt.xlabel('Neighborhood')
   plt.ylabel('Sale Price')
   plt.xticks(rotation=45) # Rotate x-axis labels for readability
   for i, mean_price in enumerate(neighborhood_means['SalePrice']):
       plt.text(i, mean_price, f'Mean: ${mean_price:.2f}', ha='center', va='bottom')
   plt.show()
   model = ols('SalePrice ~ Neighborhood', data=data).fit()
   anova_table = sm.stats.anova_lm(model, typ=2)
   print("ANOVA Table:")
   print(anova_table)
 ✓ 2.2s
                                                                                 MagicPythor
   SalePrice LotArea Bedrooms Bathrooms Neighborhood YearBuilt \
0 444779.85
               22452
                                 1.100043
                                              Downtown
                                                             1951
1 266432.37
               23674
                                                             1995
                             6
                                 4.568718
                                               SuburbA
2 452819.42
               4570
                             2 1.930644
                                               SuburbA
                                                             1991
3 126971.70
                8723
                                 3.357063
                                               SuburbA
                                                             2017
4 467272.51
                                                             1933
               12649
                                 1.621918
                                              Downtown
```

Gar	ageArea Overal	.lQual HeatingT	-уре			
0	328	3	Gas			
1	532	1	Gas			
2	303	9 W	lood			
3	925	3 W	3 Wood			
4	194	7	Gas			
Summary Statistics:						
	SalePrice	LotArea	Bedrooms	Bathrooms	YearBuilt	\
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	
mean	322214.216550	13321.734000	3.640000	3.009127	1972.761000	
std	162185.565024	6684.791449	1.692118	1.165516	30.096506	
min	40778.130000	1506.000000	1.000000	1.000679	1920.000000	
25%	179270.127500	7344.500000	2.000000	1.975159	1946.000000	
50%	319734.390000	13643.500000	4.000000	2.993038	1974.000000	
75%	462176.635000	19058.000000	5.000000	4.030405	1998.000000	
max	599870.620000	24989.000000	6.000000	4.998288	2025.000000	
	GarageArea 0	verallQual				
25%	309.000000	3.000000				
50%	551.000000	6.000000				
75%	775.000000	8.000000				
max	1000.000000	10.000000				

ANOVA Table:

 sum_sq
 df
 F
 PR(>F)

 Neighborhood
 1.170017e+11
 3.0
 1.484835
 0.217085

 Residual
 2.616085e+13
 996.0
 NaN
 NaN

Interpretation:

ANOVA table suggests that there is no statistically significant difference in housing prices among different neighborhoods. Based on the p-value (PR(>F)) of 0. 217, which is greater than the conventional significance level of 0.05

Summary:

The analysis indicates that neighborhood difference do not account for statistically significant amount of variation in housing prices. Other factors, not included in the analysis, may have more substantial influence on sale prices.

Insight:

While Anova did not find significant differences in housing among neighborhoods, it is essential to consider various factor.

Also, we could use this as an example of how a housing price EDA works, however we could collect a real dataset to see if there is a statically significant difference between neighborhood and sales prices.

Additional research and data exploration are warranted to gain more comprehensive understanding of the determinants of house prices.