CMSC 474, Game Theory

1. Introduction

Dana Nau
University of Maryland

This lecture covers Chapter 1 of the textbook, plus several related topics

What is Game Theory?

- Game theory is about interactions among **agents** (or **individuals** or **players**) that are **self-interested**:
 - Different agents have different preferences
 - They like some outcomes more than others

- Studied mainly by mathematicians and economists
 - Businesses, markets, auctions, economic predictions, bargaining, fair division

Increasingly useful in other areas

- Government, politics, military
 - Negotiations
 - Voting systems
 - International relations
 - Conflicts

- Biology, psychology, sociology
 - > Population ratios, territoriality
 - Parasitism, symbiosis
 - Social behavior

- Engineering, computer science
 - Computer game programs
 - Multi-agent systems
 - Communication networks, computer networks, road networks

Example

- I need two volunteers to play a game
 - > Two people who don't know each other

Example

- I need two volunteers to play a game
 - > Two people who don't know each other
- Instructions
 - > Don't talk to each other
 - > Come to the front of the room
 - > Face opposite directions

- The rest of you:
 - Get out your computer or smartphone, and login to Piazza
 - In a moment I'm going to ask you to do a poll

Example

- I need two volunteers to play a game
 - > Two people who don't know each other

- Choose one of these actions, but keep your choice secret
 - Take: take 1 chocolate to keep for yourself
 - > Give: take 3 chocolates to give to the other player

Games in Normal Form

- A (finite, *n*-person) **normal-form game**:
 - 1. An ordered set N = (1, 2, 3, ..., n) of **agents** or **players**:
 - 2. For each agent i, a finite set A_i of possible actions
 - An **action profile** is an *n*-tuple $\mathbf{a} = (a_1, a_2, ..., a_n)$, where each $a_i \in A_i$
 - The set of all possible action profiles is $\mathbf{A} = A_1 \times \cdots \times A_n$
 - 3. For each agent *i*, a real-valued **utility** (or **payoff**) function $u_i(a_1, ..., a_n) = i$'s payoff if the action profile is $(a_1, ..., a_n)$
- Usually represented by an *n*-dimensional payoff (or utility) matrix
 - for each action profile, shows the utilities of all the agents
- Most other game representations can be reduced to normal form

give	take
3,3	0, 4
4, 0	1,1

give

take

The Chocolate Dilemma

- Actions:
 - > *Take*: take 1 to keep for yourself
 - > Give: take 3 to give to the other player
- Payoff matrix:

Player 2:

		give	take
Dlavan 1	give	3,3	0, 4
Player 1:	take	4, 0	1, 1

• http://theoryclass.wordpress.com/2010/03/05/the-chocolate-dilemma/

Poll 1.1

- Actions:
 - > Take: take 1 to keep for yourself
 - > Give: take 3 to give to the other player

Player 2:

		give	take
Dlarram 1.	give	3,3	0, 4
Player 1:	take	4, 0	1, 1

- Go to piazza.com and answer the following poll:
 - Suppose you're player 1. Which action will maximize the number of chocolates you get?
 - A. give
 - B. take
 - C. depends on which action player 2 chooses

Game-Theoretic Answer

• Regardless of what the other player does, *take* gets you one more chocolate than *give* does

give	take
3,3	0, 4
4, 0	1,1

give

take

> take is a dominant strategy

Suppose that—

- Both players are decision-theoretically rational
- The *only* thing each player cares about is to get as many chocolates as possible
- ➤ Those things are common knowledge* to both players
- Then each player will choose *take*
 - > If they can talk to each other beforehand, they'll still choose *take*
 - > Repeat any fixed number of times => they'll still choose *take*
 - Repeat an unbounded number of times => they might choose give
- Is this realistic?

^{*}Complicated topics; I'll discuss later

Chocolate-Dilemma Survey Results

31 people answered these survey questions in Fall 2014

	51 people allswered these survey questions in Fail 2014	%	%
	In each of the following circumstances, which action would you choose?	Take	Give
1	The other player is a stranger whom you'll never meet again.	68	32
2	The other player is an enemy.	90	10
3	The other player is a friend.	10	90
4	The other player is a computer program instead of a human.	94	6
5	You haven't eaten in two days.	97	3
6	Take means you take two chocolates instead of just one.	87	13
7	You and the other player can discuss what choices to make.	19	81
8	You will be playing the game repeatedly with the same person.	23	77
9	Thousands of people are playing the game anonymously. Nobody will ever know which of the others is the one they're playing the game with.	74	26
10	Thousands of people are playing the game anonymously. <i>Give</i> means the three chocolates go to a collection that will be divided equally among everyone.	23	77
11	The bag is filled with money. <i>Take</i> means you take \$2500 and keep it. <i>Give</i>		

Updated 9/1/16

means you take \$3000 to give to the other player.

100

The Prisoner's Dilemma

 Scenario: The police are holding two prisoners as suspects for committing a crime

- For each prisoner
 - The police have enough evidence for a 1 year prison sentence
 - They want to get enough evidence for a 4 year prison sentence
- > They tell each prisoner,
 - "If you testify against the other prisoner, we'll reduce your prison sentence by 1 years"
- > C = Cooperate (with the other prisoner): refuse to testify against him/her
- ightharpoonup D = Defect: testify against the other prisoner
- Both prisoners cooperate => both go to prison for 1 year
- One defects, other cooperates => defector goes free; cooperator goes to prison for 4 years
- ▶ Both prisoners defect => both go to prison for 4 1 = 3 years

	C	D
C	-1,-1	-4, 0
D	0,-4	-3,-3

Updated 9/1/16

Prisoner's Dilemma

The numbers we used:

$$\begin{array}{c|cccc}
C & D \\
C & -1, -1 & -4, 0 \\
D & 0, -4 & -3, -3
\end{array}$$

- Commonly used numbers:
 - > Still equivalent

$$\begin{array}{c|cc}
C & D \\
C & 3, 3 & 0, 5 \\
D & 5, 0 & 1, 1
\end{array}$$

Chocolate dilemma

Equivalent, just add 4

	give	take
give	3,3	0, 4
take	4,0	1, 1

General form:

$$t > r > p > s$$
$$2r > s + t$$

$$\begin{array}{c|cc}
C & D \\
C & r, r & s, t \\
D & t, s & p, p
\end{array}$$

Preferences

- Game-theoretic utilities are based on **preferences**
- Consider an agent that can choose among
 - \triangleright **prizes** (A, B, etc.), and
 - > lotteries (situations with uncertain prizes)
- Lottery $L = \{(p, A), (1-p, B)\}$
 - \triangleright Probability p of getting prize A,
 - \triangleright Probability 1-p of getting prize B

- Notation:
 - \rightarrow A > B agent prefers A to B
 - $\triangleright A \sim B$ agent is indifferent between A and B
 - \rightarrow $A \geq B$ A > B or $A \sim B$

Rational Preferences

- Idea: the preferences of a rational agent must obey some constraints
- Agent's choices are based on rational preferences
 - ⇒ agent's behavior is describable as maximization of expected utility
- Constraints:

Orderability (sometimes called **Completeness**):

$$(A \geq B) \vee (B \geq A) \vee (A \sim B)$$

Transitivity:

$$(A > B) \land (B > C) \Rightarrow (A > C)$$

Continuity:

$$A > B > C \Rightarrow \exists p \ B \sim \{(p, A), (1-p, C)\}$$

Substitutability (sometimes called **Independence**):

$$A \sim B \implies \{(p, A), (1-p, C)\} \sim \{(p, B), (1-p, C)\}$$

Monotonicity:

$$A > B \implies (p \ge q \iff \{(p, A), (1-p, B)\} \ge \{(q, A), (1-q, B)\}$$

Rational Preferences

- What happens if the constraints are violated?
- Example: *intransitive preferences*
 - Suppose an agent's preferences are
 - B > C, A > B, C > A
 - ➤ If agent has C, will trade C and some money to get B
 - ➤ If agent has B, will trade B and some money to get A
 - If agent has A, will trade A and some money to get C

Rational Preferences

- What happens if the constraints are violated?
- Example: *intransitive preferences*
 - Suppose an agent's preferences are
 - B > C, A > B, C > A
 - ➤ If agent has C, will trade C and some money to get B
 - ➤ If agent has B, will trade B and some money to get A
 - ➤ If agent has A, will trade A and some money to get C
- Self-evident irrationality
 - The agent can be induced to give away all its money

Utility Functions

- **Theorem** (Ramsey, 1931; von Neumann and Morgenstern, 1944).
- If the preferences satisfy the constraints, then there is a real-valued **utility function** *u* such that

$$u(A) \ge u(B) \iff A \ge B$$

$$u(\{(p_1, A_1), ..., (p_n, A_n)\}) = \sum_i p_i u(A_i)$$

- Maximum Expected Utility (MEU) principle:
 - ➤ If an agent's choices are based on rational preferences, then its behavior is describable as maximization of expected utility
- An agent can maximize the expected utility without ever representing or manipulating utilities and probabilities
 - > E.g., a lookup table to play tic-tac-toe perfectly

Human Utilities

- Standard approach to assessing human utilities:
 - \triangleright Compare a given state s to a **standard lottery** L_p that has
 - best possible outcome u_{max} with probability p
 - worst possible outcome u_{\min} with probability 1-p
 - ightharpoonup Adjust lottery probability p until $s \sim L_p$
- How much would you pay to avoid a 1/1,000,000 chance of death?
- State *s*: continue as before

- **Poll 1.2:** how much would you be willing to pay to avoid the lottery?
 - > \$10?

> \$1000?

\$100,000?

> \$100?

> \$10,000?

> more?

Human Utilities

- Standard approach to assessing human utilities:
 - \triangleright Compare a given state s to a **standard lottery** L_p that has
 - best possible outcome u_{max} with probability p
 - worst possible outcome u_{\min} with probability 1-p
 - ightharpoonup Adjust lottery probability p until $s \sim L_p$
- How much would you pay to avoid a 1/1,000,000 chance of death?
- State *s*: continue as before

- 1/1,000,000 chance of death = one **micromort**
 - ≈ Probability of accidental death in 230 miles of car travel
 - ≈ Probability of accidental death in 6000 miles of train travel

Judging from people's actions, they will pay about \$50 to avoid it

What we've covered so far

- Basic concepts:
 - > normal form, pure strategies, mixed strategies, expected utility
- Not in book:
 - > How utilities relate to rational preferences
 - Relationship to human decision making

Decision Making Under Risk

- Poll 1.3:
- Which lottery would you choose?
 - > A: 100% chance of getting \$3000
 - > B: 80% chance of getting \$4000; 20% chance of getting nothing

Decision Making Under Risk

- Poll 1.4:
- Which lottery would you choose?
 - > C: 100% chance of losing \$3000
 - > D: 80% chance of losing \$4000; 20% chance of losing nothing

Decision Making Under Risk

- Kahneman & Tversky, 1979
 - http://www.econport.org/econport/request?page=man_ru_advanced_prospect
- A: 100% chance of receiving \$3000
- B: 80% chance of getting \$4000; 20% chance of getting nothing
 - \triangleright EV(A) = \$3000 < EV(B) = \$3200, but most people would choose A
 - > For prospects involving gains, we're **risk-averse**
- C: 100% chance of losing \$3000
- D: 80% chance of losing \$4000; 20% chance of losing nothing
 - \rightarrow EV(C) = -\$3000 > EV(D) = -\$3200, but most people would choose D
 - > For prospects involving losses, we're **risk-prone**
- Either money isn't a utility function, or our preferences aren't rational, or both

Anchoring

- Influence of irrelevant information on human judgment
 - [D. Kahneman and A. Tversky (1974). Judgment under Uncertainty: Heuristics and Biases. *Science* **185**:4157, 1124–1131.]
 - Each subject first spun a wheel that supposedly would stop at random on any number between 1 and 100.
 - > Then the subject was asked what percentage of African countries belong to the United Nations.
- For one group of subjects, the wheel was rigged to stop on 10.
 - On average, these subjects guessed 25%
- For a second group, the wheel was rigged to stop on on 65.
 - On average, these subjects guessed 45%

Utility Scales

- Rational preferences are invariant with respect to positive affine (or positive linear) transformations
- Let

$$u'(x) = c \ u(x) + d$$

 $c \text{ and } d \text{ are constants, } c > 0$

 \triangleright Then u' models the same set of preferences that u does

Normalized utilities:

 \rightarrow define u such that $u_{\text{max}} = 1$ and $u_{\text{min}} = 0$

Utility Scales for Games

- Suppose all the agents have rational preferences, and that this is common knowledge*
- Then games are insensitive to positive affine transformations of the payoffs
 - \triangleright Let c and d be constants, c > 0
 - \triangleright For one or more agents, replace each payoff x with cx + d
 - Both players still have the same preferences

	b_1	b_2		b_1	b_2
a_1	x_1, y_1	x_2, y_2	a_1	cx_1+d, y_1	cx_2+d, y_2
a_2	x_3, y_3	x_4, y_4	a_2	cx_3+d, y_3	cx_4+d, y_4

	b_1	b_2
a_1	cx_1+d , ey_1+f	cx_2+d , ey_2+f
a_2	cx_3+d , ey_3+f	cx_4+d , ey_4+f

^{*}Complicated topic; I'll discuss later

Examples

Is this a positive affine transformation?

$$\begin{array}{c|cccc}
C & D & & C & D \\
C & -2, -2 & -5, & 0 \\
D & 0, -5 & -3, -3
\end{array}$$
\rightarrow add 5 to every payoff \rightarrow \begin{array}{c|cccc}
C & D \\
3, 3 & 0, 5 \\
D & 5, 0 & 1, 1 \end{array}

Is this?

1	C	D	I				C	D
C	3, 3	0, 4	→	change 4 to 5	\rightarrow	C	3, 3	0, 5
D	4, 0	1, 1		change + to 3		D	5, 0	1, 1

Several different kinds of games

Classified by their payoff matrices

Common-payoff Games

Common-payoff game:

> For every action profile, all agents have the same payoff

	C	D
A	w, w	<i>x</i> , <i>x</i>
В	у, у	<i>z</i> , <i>z</i>

- Also called a **pure coordination** game or a **team game**
 - Need to coordinate on an action that is maximally beneficial to all

Which Side of the Road?

- > 2 people driving toward each other in a country with no traffic rules
- > Each driver independently decides whether to stay on the left or the right
- Need to coordinate your action with the action of the other driver

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

Updated 9/1/16

A Brief Digression

- **Mechanism design**: design the rules and payoffs to give the agents an incentive to choose a desired outcome
- E.g., the law says what side of the road to drive on
 - > Sweden, September 3, 1967:

	Left	Right
Left	2, 2	0, 0
Right	0, 0	1, 1

	Left	Right
Left	1, 1	0, 0
Right	0, 0	2, 2

Zero-sum Games

These games are purely competitive

Constant-sum game:

- > For every action profile, the sum of the payoffs is the same, i.e.,
- \triangleright there is a constant c such for every action profile $\mathbf{a} = (a_1, ..., a_n)$,

•
$$u_1(\mathbf{a}) + \ldots + u_n(\mathbf{a}) = c$$

- Every constant-sum game is equivalent to a game in which c = 0
 - \triangleright Positive affine transformation: subtract c/n from every payoff

Thus constant-sum games are usually called **zero-sum** games

Examples

Matching Pennies

- > Two agents, each has a penny
- > Each independently chooses to display Heads or Tails

• Otherwise agent 2 gets both pennies

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Rock, Paper, Scissors

Each agent independently chooses to display a symbol for rock, paper, or scissors

Rock Paper Scissors

Rock	Paper	Scissors
0, 0	-1, 1	1, -1
1, -1	0, 0	-1, 1
-1, 1	1, -1	0, 0

Examples

Soccer penalty kicks

- > A kicker and a goalie
- Kicker can kick left or right
- Goalie can jump to left or right
- Kicker scores if he/she kicks to one side and goalie jumps to the other

	Left	Right
Left	1, 0	0, 1
Right	0, 1	1, 0

- Let's ignore whether the goalie can predict the kick from the kicker's motions
- Positive affine transformation into Matching Pennies

Nonzero-Sum Games

• A game is **nonconstant-sum** (usually called **nonzero-sum**) if there are action profiles **a** and **b** such that

•
$$u_1(\mathbf{a}) + \ldots + u_n(\mathbf{a}) \neq u_1(\mathbf{b}) + \ldots + u_n(\mathbf{b})$$

> e.g., the Prisoner's Dilemma

	C	D
C	3, 3	0, 5
D	5, 0	1, 1

Nonzero-Sum Games

Battle of the Sexes

- > Two agents need to coordinate their actions, have different preferences
- **Example:**
 - Two nations must act together to deal with an international crisis, and they prefer different solutions

Why	it's	called	Battle	of th	ne S	Sexes
4 4 TT A	16 5	Carroa	Dance	OI U		

- Original scenario (1957): where to go for the evening?
- > Alice prefers ballet, Bob prefers boxing match
- > If they can't coordinate, neither will enjoy themselves

	A	В
A	2, 1	0, 0
В	0, 0	1, 2

Bob:

	Ballet	Boxing
allet	2, 1	0, 0
oxing	0, 0	1, 2

Ba Bo

Alice:

Symmetric Games

- **Symmetric** game: every agent has the same actions and payoffs
 - ➤ If we interchange any pair of agents, the payoff matrix stays the same
- 2x2 symmetric game
 - \triangleright For every action profile (a_1, a_2) ,
 - $u_1(a_1, a_2) = u_2(a_2, a_1)$
- In the payoff matrix of a symmetric game, we only need to display u_1
 - ➤ If you want to know *i*'s payoff, interchange agents *i* and 1

Which Side of the Road

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

	а	b
a	w, w	<i>x</i> , <i>y</i>
b	<i>y</i> , <i>x</i>	Z, Z

	а	b
a	w	x
b	У	Z

Strategies in Normal-Form Games

- **Pure strategy**: select a single action and play it
 - Each row or column of a payoff matrix represents both an action and a pure strategy
- b_2 b_1 x_2, y_2 x_1, y_1 a_1 a_2 x_3, y_3
- **Mixed strategy**: randomize over the set of available actions according to some probability distribution
 - $ightharpoonup s_i(a_i)$ = probability that action a_i will be played in mixed strategy s_i
- s_i 's **support**: {actions that have probability > 0 in s_i }
 - > A pure strategy is a mixed strategy whose support is a single action
 - > But I'll often use "mixed strategy" to mean one that isn't pure
- A strategy s_i is **fully mixed** if its support is A_i
 - > all of agent i's actions have nonzero probability
- **Strategy profile**: an *n*-tuple of strategies $\mathbf{s} = (s_1, ..., s_n)$
 - \triangleright s_i is agent i's strategy

Some Comments

- The normal-form game representation is very restricted
 - No such thing as a conditional strategy (e.g., cross the bay if the temperature is above 70)
 - > No temperature or anything else to observe
- Only two kinds of strategies:
 - > Pure strategy: a single action
 - Mixed strategy: probability distribution over pure strategies
- Much more complicated games can be mapped into normal-form games
 - > Pure strategy: a complete description of what you'll do in *every* situation you might ever encounter
- Examples in Chapter 4

D3, 3 0, 5D5, 0

Expected Utility

- A payoff matrix only shows the payoffs for pure-strategy profiles
- For mixed strategies, use expected utility
- Utility of a strategy profile $\mathbf{s} = (s_1, ..., s_n)$
 - > Sum, over all action profiles $\mathbf{a} = (a_1, ..., a_n)$,
 - utility of **a** × probability of **a**
 - $\triangleright u_i(\mathbf{s}) = \sum_{\mathbf{a} \in \mathbf{A}} u_i(\mathbf{a}) \Pr[\mathbf{a} \mid \mathbf{s}]$
- Important assumption: each mixed strategy is independent of the other agents' strategies
 - $ightharpoonup \Pr[(a_1, ..., a_n) | \mathbf{s}] = \Pr[a_1 | s_1] \Pr[a_2 | s_2] ... \Pr[a_n | s_n] = \prod_{i=1}^n \Pr(a_i | s_i)$

SO

 $\nu u_i(\mathbf{s}) = \sum_{(a_1, ..., a_n)} u_i(a_1, ..., a_n) \prod_{i=1}^n \Pr(a_i \mid s_i)$

Summary

- Basic concepts:
 - > normal form, pure strategies, mixed strategies, expected utility
- How utilities relate to rational preferences (not in the book)
- Some classifications of games based on their payoffs
 - Zero-sum
 - Rock-paper-scissors, Matching Pennies
 - Non-zero-sum
 - Chocolate Dilemma, Prisoner's Dilemma, Which Side of the Road, Battle of the Sexes
 - Common-payoff
 - Which Side of the Road
 - Symmetric
 - all of the above except Battle of the Sexes