

MACHINE LEARNING

LESSON 03:

Logistic Regression

CLASSIFICATION

- Examples:
 - Email: Spam vs Not Spam
 - Tumor: Malignant vs Benign
 - Online Transactions Fraud: Yes vs No
- •Binary (2-class) classification $\Rightarrow y \in \{0,1\}$
 - 0: negative class
 - 1: positive class

CLASSIFICATION

- h(x) should have a **threshold** at 0.5
 - if $h(x) \ge 0.5 \Rightarrow \text{predict that } y = 1$
 - if $h(x) < 0.5 \Rightarrow \text{predict that } y = 0$

HYPOTHESIS REPRESENTATION

- •We want $0 \le h(x) \le 1 \Rightarrow$ we add a function g
 - The hypothesis now becomes: $h(x) = g(\sum_{j=0}^{n} \theta_j x_j)$
 - Where $g(z) = \frac{1}{1+e^{-z}}$ (logistic/sigmoid function)

Interpretation of hypothesis output:

h(x)= estimated probability that y=1 given an input x

DECISION BOUNDARY

• Example:

$$\bullet h(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

• We predict y = 1 if $h(x) \ge 0.5$

$$\Rightarrow \theta_0 + \theta_1 x_1 + \theta_2 x_2 \geq 0$$

More complex boundary

$$h(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

COST FUNCTION

- Again from linear regression
 - Hypothesis: $h(x) = \sum_{j=0}^n \theta_j x_j$ where $x_0 = 1$
 - *Cost function: $J(\theta_0,\theta_1,\dots,\theta_n)=J(\theta)=\frac{1}{m}\sum_{i=1}^m \left(h\big(x^{(i)}\big)-y^{(i)}\big)^2$ where $y^{(i)}$ is either 0 or 1 and $0\leq h\big(x^{(i)}\big)\leq 1$

LOGISTIC REGRESSION COST FUNCTION

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} C(h(x^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} C^{(i)}$$

• where
$$C^{(i)} = -y^{(i)} \log \left(h(x^{(i)}) \right) - \left(1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}) \right)$$

$$- \Rightarrow C^{(i)} = \begin{cases} -\log(h(x^{(i)})) \text{ if } y = 1\\ -\log(1 - h(x^{(i)})) \text{ if } y = 0 \end{cases}$$

EXERCISE 3.1

- 1. Given the dataset 'data_3_1_1.csv', build a logistic regression model with the hypothesis $h(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$
- 2. Given the dataset 'data_3_1_2.csv', build two logistic regression models:
 - $h_1(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - $h_2(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$

Compare these two models. Which one is better?

MULTICLASS CLASSIFICATION

•Example:

- Emotion detection: Sad, Happy, Angry
- Animal image recognition: Dog, Cat, Mouse, Bird, Fish
- Weather forecast: Sunny, Cloudy, Rain, Snow

MULTICLASS CLASSIFICATION

EXERCISE 3.2

Given the dataset 'data_3_2.csv', build a multiclass (4-class) classification model to fit this data. You can choose your own hypothesis.