Slides of Discrete Mathematics based on Susanna Epp's Textbook

Moses A. Boudourides¹

Visiting Associate Professor of Computer Science Haverford College

1 Moses.Boudourides@cs.haverford.edu

Chapter 10

Graphs and Trees

December 3, 6, 8, & 10, 2021

Name	Past Partners
Ana	Dan, Flo
Bev	Cai, Flo, Hal
Cai	Bev, Flo
Dan	Ana, Ed
Ed	Dan, Hal
Flo	Cai, Bev, Ana
Gia	Hal
Hal	Gia, Ed, Bev, Ira
Ira	Hal

Definition

A graph G consists of two finite sets: a nonempty set V(G) of vertices and a set E(G) of edges, where each edge is associated with a set consisting of either one or two vertices called its endpoints. The correspondence from edges to endpoints is called the edge-endpoint function.

An edge with just one endpoint is called a **loop**, and two or more distinct edges with the same set of endpoints are said to be **parallel**. An edge is said to **connect** its endpoints; two vertices that are connected by an edge are called **adjacent**; and a vertex that is an endpoint of a loop is said to be **adjacent to itself**.

An edge is said to be **incident on** each of its endpoints, and two edges incident on the same endpoint are called **adjacent.** A vertex on which no edges are incident is called **isolated**.

• Definition

A directed graph, or digraph, consists of two finite sets: a nonempty set V(G) of vertices and a set D(G) of directed edges, where each is associated with an ordered pair of vertices called its **endpoints.** If edge e is associated with the pair (v, w) of vertices, then e is said to be the (**directed**) **edge** from v to w.

Definition and Notation

A **simple graph** is a graph that does not have any loops or parallel edges. In a simple graph, an edge with endpoints v and w is denoted $\{v, w\}$.

Definition

Let n be a positive integer. A **complete graph on n vertices**, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices.

Definition

Let m and n be positive integers. A complete bipartite graph on (m, n) vertices, denoted $K_{m,n}$, is a simple graph with distinct vertices v_1, v_2, \ldots, v_m and w_1, w_2, \ldots, w_n that satisfies the following properties: For all $i, k = 1, 2, \ldots, m$ and for all $j, l = 1, 2, \ldots, n$,

- 1. There is an edge from each vertex v_i to each vertex w_j .
- 2. There is no edge from any vertex v_i to any other vertex v_k .
- 3. There is no edge from any vertex w_j to any other vertex w_l .

Definition

A graph H is said to be a **subgraph** of a graph G if, and only if, every vertex in H is also a vertex in G, every edge in H is also an edge in G, and every edge in H has the same endpoints as it has in G.

There are 11 subgraphs of G, which can be grouped according to those that do not have any edges, those that have one edge, those that have two edges, and those that have three edges. The 11 subgraphs are shown in Figure 10.1.4.

Definition

Let G be a graph and v a vertex of G. The **degree of** v, denoted deg(v), equals the number of edges that are incident on v, with an edge that is a loop counted twice. The **total degree of** G is the sum of the degrees of all the vertices of G.

Theorem 10.1.1 The Handshake Theorem

If G is any graph, then the sum of the degrees of all the vertices of G equals twice the number of edges of G. Specifically, if the vertices of G are v_1, v_2, \ldots, v_n , where n is a nonnegative integer, then

the total degree of
$$G = \deg(v_1) + \deg(v_2) + \cdots + \deg(v_n)$$

= $2 \cdot$ (the number of edges of G).

Corollary 10.1.2

The total degree of a graph is even.

Proposition 10.1.3

In any graph there are an even number of vertices of odd degree.