Statistical Methods for RNA-Seq Data

Tina Shi

Advisor: Dr. Joshua Habiger

Oklahoma State University

July 3, 2019

Outline

- Introduction to RNA-Seq Data
- RNA-Seq Data Analysis
- Three Statistical Challenges
- Proposed New Method

RNA

Nucleobases: guanine(G), uracil(U), adenine(A), and cytosine(C).

Tina Shi Advisor: Dr. Joshua Habiger (Okla Statistical Methods for RNA-Seq Data

RNA-sequencing (RNA-Seq)

Rhizosphere

Microbiome

Microbiome includes bacteria, fungi, viruses, ...

Shoot Biomass

RNA-Seq data

Shoot biomass
$$x = (x_1, ..., x_9) = (7.58, ..., 10.53)$$

Operational taxonomic units (OTUs): grouped similar 16S rRNA sequences

OTU m	y _{m1}	y _{m2}		<i>y</i> _m 9
1	4230	3563		1954
2	3523	3222		1559
:	:	:	·	:
1592	0	2		0

8 / 35

Hypothesis Test

Assume $Y_{mn} \sim \text{Poisson}(\mu_{mn})$ and $\log(\mu_{mn}) = \alpha_m + \beta_m x_n$.

$$H_m: \mu_{m1} = \cdots = \mu_{m9} \text{ or } H_m: \beta_m = 0.$$

$$z_m = \frac{\hat{\beta}_m}{I_{\beta}^{-1/2}} \tag{1}$$

$$p_m = 2[1 - \Phi(|z_m|)] \tag{2}$$

p-value Method

Type I error (false positive or false discovery): H_m is rejected when it is true.

Reject H_m when $p_m \leq \alpha$.

$$\alpha M \to \infty$$
 as $M \to \infty$

- Suppose $\alpha = 0.05$, what if M = 100?
- What if M = 1500?

False Discovery Rate

	Non-rejected null	Rejected null	Total
True null	U	V	M_0
True non-null	T	5	$M-M_0$
Total	M-R	R	М

$$FDR = E\left(\frac{V}{R}|R \neq 0\right)$$

BH procedure (Benjamini and Hochberg, 1995): Reject j null hypotheses with smallest adjusted *p*-values:

$$j = \max\{m : \frac{M}{m}P_{(m)} \le \alpha\}.$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

BH Procedure Result

328 (\sim 20.6%) OTUs are discovered at $\alpha = 0.05$.

Local False Discovery Rate

$$p_0 = P(null)$$
 $f_0(z)$ density if null

$$p_1 = P(nonnull)$$
 $f_1(z)$ density if nonnull

Define the mixture density

$$f(z) = p_0 f_0(z) + p_1 f_1(z)$$
 (3)

Define the local false discovery rate (IFDR) (IFDR)(Efron, 2008)

$$IFDR(z) = P(null|Z = z) = \frac{p_0 f_0(z)}{f(z)}$$

IFDR procedure

Calculate IFDR

$$IFDR(z) = P(null|Z = z) = \frac{p_0 t_0(z)}{f(z)}$$

ullet Reject j null hypotheses with smallest IFDR:

$$j = \max\{m : \frac{\sum_{i=1}^{m} IFDR_{(i)}}{m} \le \alpha\}$$

IFDR Procedure Result

101 (\sim 6.3%) OTUs are discovered at $\alpha = 0.05$.

MLE: delta: -0.631 sigma: 1.572 p0: 0.925 CME: delta: -0.291 sigma: 1.787 p0: 1.021

Three Statistical Challenges

- Overdispersion
- Heterogeneous library sizes
- Heterogeneous total feature counts

Overdispersion

OTU	<i>y</i> _{m1}	y _{m2}		<i>y</i> _m 9
1	4230	3563		1954
2	3523	3222	• • •	1559
:	:	:	·	<u>:</u>
1592	0	2	• • •	0

$$\mu(Y_{mn}) < Var(Y_{mn})$$
: 1451 (91.1%) OTUs $\mu(Y_{mn}) = Var(Y_{mn})$: 10 (0.6%) OTUs $\mu(Y_{mn}) > Var(Y_{mn})$: 131 (8.2%) OTUs

Heterogeneous Library Sizes

OTU	<i>y</i> _{m1}	y _{m2}	• • •	<i>y</i> _m 9
1	4230	3563		1954
2	3523	3222		1559
:	:	:	٠.,	<u>:</u>
1592	0	2		0
Total	81839	67861	• • •	32073
$(y_{.n})$				

Range of the library sizes: (32073, 92383)

Standard deviation: 17898

Problem for Heterogeneous Library Sizes

Feature	Sample 1	Sample 2
1	10	20
2	100	200
<u>:</u>	<u>:</u>	:
N	103	206
Total $(y_{.n})$	2107	4214

Heterogenous Total Feature Counts

OTU	<i>y</i> _{m1}	y _{m2}	 <i>y</i> _m 9	Total
				$(y_{m.})$
1	4230	3563	 1954	33243
2	3523	3222	 1559	30809
:	:	:	 :	:
1592	0	2	 0	10

Range of the total feature counts: (10, 33243)

Standard deviation: 1663

Problem for Heterogeneous Total Feature Counts

$$Y_{mn} \sim \mathsf{Poisson}(\mu_{mn})$$
 and $\mathsf{log}(\mu_{mn}) = \alpha_m + \beta_m x_n$

OTU	\hat{eta}_{m}	<i>y_m</i> .	<i>ÎFDR</i> _m	Discovered
1	-1.09	11	0.29	×
2	0.19	911	0.003	\checkmark

BH procedure provides similar results (Habiger, Watts, and Anderson, 2017).

Proposed New Methods

- Address all the three statistical challenges:
 - Overdispersion
 - Heterogeneous library sizes
 - Heterogeneous total feature counts
- Control the FDR

Proposed Model

Assume $Y_{mn} \sim \mathsf{Poisson}(\mu_{mn})$ and

$$\log(\mu_{mn}) = \alpha_m + \beta_m x_n + d_n. \tag{4}$$

 $\alpha_{\it m}$: adjusts heterogeneous total feature counts effects

 β_m : quantifies the association between the mean counts and the trait values

 d_n : adjusts heterogeneous library sizes effects

◆ロ > ◆個 > ◆注 > ◆注 > ・注 ・ りへ ○

Proposed Model

$$Y_{mn} \sim \mathsf{Poisson}(\mu_{mn})$$
 and $\mathsf{log}(\mu_{mn}) = \alpha_m + \beta_m x_n + d_n$

• pmf notation: $p(\mathbf{y}_m | \alpha_m, \beta_m, \mathbf{d})$

Assume
$$P(\beta_m = \gamma_k) = \pi_k$$

Mixture probability mass function

$$p(\mathbf{y}_{m}|\alpha_{m}, \boldsymbol{\gamma}, \boldsymbol{d}, \boldsymbol{\pi}) = \pi_{0}p(\mathbf{y}_{m}|\alpha_{m}, \gamma_{0}, \boldsymbol{d}) + \dots$$
(5)
+ $\pi_{k}p(\mathbf{y}_{m}|\alpha_{m}, \gamma_{K}, \boldsymbol{d})$ (6)

$$\pi_k p(\mathbf{y}_m | \alpha_m, \gamma_K, \mathbf{d})$$
 (6)

Null Hypothesis

The m^{th} null hypothesis can be specified as H_m : $\beta_m = 0$.

Alternatively, the m^{th} empirical null hypothesis is H_m : $\beta_m = \hat{\gamma}_0$.

Oracle Procedure

Compute IFDR

$$IFDR_{m} = P(\beta_{m} = \gamma_{0} | \mathbf{y}_{m}; \alpha_{m}, \boldsymbol{\gamma}, \boldsymbol{\pi}, \boldsymbol{d}) \qquad (7)$$

$$= \frac{\pi_{0} p(\mathbf{y}_{m} | \alpha_{m}, \beta_{m} = \gamma_{0}, \boldsymbol{d})}{p(\mathbf{y}_{m} | \alpha_{m}, \boldsymbol{\gamma}, \boldsymbol{d}, \boldsymbol{\pi})}. \qquad (8)$$

Reject j null hypotheses with smallest IFDR:

$$j = \max\{m : \sum_{i=1}^{m} IFDR_{(i)} \le m\alpha\}$$

Parameter Estimation

Three ways to estimate $\alpha_m, \boldsymbol{\pi}, \boldsymbol{\gamma}, \boldsymbol{d}$:

- Plug in the MLEs of α_m, π, γ , and d, which are obtained by the EM algorithm.
- ② Condition on either library sizes $y_{.n}$ or total feature counts $y_{m.}$. Obtain the MLEs of the remaining parameters.
- **3** Condition on both library sizes y_n and total feature counts y_m . Obtain the MLEs of π and γ .

Analytical Assessment

- $Var(Y_{mn}) \geq E(Y_{mn})$
- For some $\beta_m \neq 0$, $IFDR_m = P(\beta_m = 0 | \boldsymbol{y}_m; \alpha_m, \boldsymbol{\pi}, \boldsymbol{\gamma}, \boldsymbol{d}) \rightarrow 1$ as $\boldsymbol{y}_m \rightarrow \infty$.
- FDR is controlled.

Aims for Simulation Study

- Empirical assessment of the three statistical challenges
- Comparison with other methods
- Robustness check

Simulation Procedure

Recall that $Y_{mn} \sim \mathsf{Poisson}(\mu_{mn})$ satisfying model

$$\log(\mu_{mn}) = \alpha_m + \beta_m x_n + d_n$$

with mixture density

$$p(\mathbf{y}_m|\alpha_{m.},\boldsymbol{\gamma},\boldsymbol{\pi},\boldsymbol{d}) = \sum_{k=0}^K \pi_k p(\mathbf{y}_m|\alpha_{m.},\beta_m = \gamma_k,\boldsymbol{d}).$$

- Simulate 10,000 or 1592 features

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

Methods for Comparison

Methods compared in literature:

edgeR, DESeq, NBPSeq, TSPM, baySeq, EBSeq, NOISeq, SAMSeq, ShrinkSeq, and two tests based on limma.

Methods that provide R packages:

QuasiSeq, PoissonSeq, BBSeq, BMDE, ShrinkBayes, and cIFDR.

Assessment Metrics

- the average FDR
- the average power
- the average discovered effect size

- Benjamini, Yoav and Yosef Hochberg (1995).

 "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing". In: Journal of the Royal Statistical Society. Series B (Methodological) 57.1, pp. 289–300.
- Efron, Bradley (2008). "Microarrays, Empirical Bayes and the Two-Groups Model". In: *Statist. Sci.* 23.1, pp. 1–22.
- Habiger, Joshua, David Watts, and Michael Anderson (2017). "Multiple Testing with Heterogeneous Multinomial Distributions". In: *Biometrics* 73.2, pp. 562–570.

z test statistic

Assume $Y_{mn} \sim \text{Poisson}(\mu_{mn})$ and $\log(\mu_{mn}) = \alpha_m + \beta_m x_n$.

$$z_m = \frac{\hat{\beta}_m}{I_{\beta}^{-1/2}} \tag{9}$$

The log likelihood of the Poisson log linear model is

$$I(\boldsymbol{\mu}, \mathbf{y}) = \sum (y_{mn} \log \mu_{mn} - \mu_{mn})$$
 (10)

The asymptotic variance of $\hat{\beta}$ is i_{β}^{-1} , where i_{β} is the negative matrix of second derivative of equation (10).

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

IFDR vs. FDR

Fig. 2. Relationship of Fdr(z) to fdr(z). Heavy curve plots numerator of Fdr, $p_0F_0(z)$, versus denominator F(z); fdr(z) is slope of tangent, Fdr slope of secant.

Negative Binomial Distribution

Hierarchical Poisson-gamma distribution Assume $Y|\mu \sim \text{Poisson}(\mu)$ and $\mu \sim \text{gamma}(\alpha, \beta)$.

$$P(Y = y) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} \frac{e^{-\lambda}\lambda^{y}}{y!} \lambda^{\alpha - 1} e^{-\lambda/\beta} d\lambda$$
 (11)

$$= \frac{1}{y!\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} \lambda^{y+\alpha-1} e^{-\lambda(1+\frac{1}{\beta})} d\lambda$$
 (12)

$$=\frac{1}{\Gamma(y+1)\Gamma(\alpha)\beta^{\alpha}}\Gamma(y+\alpha)(\frac{\beta}{\beta+1})^{y+\alpha} \qquad (13)$$

$$= {\alpha+y-1 \choose y} \left(\frac{1}{\beta+1}\right)^{\alpha} \left(1 - \frac{1}{\beta+1}\right)^{y} \tag{14}$$