```
In [126]: # Dependencies and Setup
          import pandas as pd
          # File to Load (Remember to change the path if needed.)
          school_data_to_load = "Resources/schools_complete.csv"
          student data to load = "Resources/students complete.csv"
          # Read the School Data and Student Data and store into a Pandas DataFram
          school_data_df = pd.read_csv(school_data_to_load)
          student data df = pd.read csv(student data to load)
          # Cleaning Student Names and Replacing Substrings in a Python String
          # Add each prefix and suffix to remove to a list.
          prefixes_suffixes = ["Dr. ", "Mr. ", "Ms. ", "Mrs. ", "Miss ", " MD", " D
          DS", " DVM", " PhD"]
          # Iterate through the words in the "prefixes suffixes" list and replace
           them with an empty space, "".
          for word in prefixes suffixes:
              student data df["student name"] = student data df["student name"].st
          r.replace(word,"")
          # Check names.
          student data df.head(10)
```

Out[126]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score
0	0	Paul Bradley	М	9th	Huang High School	66	79
1	1	Victor Smith	М	12th	Huang High School	94	61
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60
3	3	Richard Scott	М	12th	Huang High School	67	58
4	4	Bonnie Ray	F	9th	Huang High School	97	84
5	5	Bryan Miranda	М	9th	Huang High School	94	94
6	6	Sheena Carter	F	11th	Huang High School	82	80
7	7	Nicole Baker	F	12th	Huang High School	96	69
8	8	Michael Roth	М	10th	Huang High School	95	87
9	9	Matthew Greene	М	10th	Huang High School	96	84

Deliverable 1: Replace the reading and math scores.

Replace the 9th grade reading and math scores at Thomas High School with NaN.

```
In [127]: # Install numpy using conda install numpy or pip install numpy.
          # Step 1. Import numpy as np.
          import numpy as np
In [128]: # Step 2. Use the loc method on the student data df to select all the re
          ading scores from the 9th grade
          #at Thomas High School and replace them with NaN.
          student_data_df.loc[(student_data_df["school_name"] == "Thomas High Scho
          ol")
                              & (student_data_df["grade"] == "9th"),["reading_scor
          e"]] = np.nan
In [129]: # Step 3. Refactor the code in Step 2 to replace the math scores with N
          student_data_df.loc[(student_data_df["school_name"] == "Thomas High Scho
          ol")
                              & (student data df["grade"] == "9th"),["math score"
          ]] = np.nan
In [130]: # Step 4. Check the student data for NaN's.
```

student_data_df.tail(10)

Out[130]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score
39160	39160	Katie Weaver	F	11th	Thomas High School	89.0	86.0
39161	39161	April Reyes	F	10th	Thomas High School	70.0	84.0
39162	39162	Derek Weeks	М	12th	Thomas High School	94.0	77.0
39163	39163	John Reese	М	11th	Thomas High School	90.0	75.0
39164	39164	Joseph Anthony	М	9th	Thomas High School	NaN	NaN
39165	39165	Donna Howard	F	12th	Thomas High School	99.0	90.0
39166	39166	Dawn Bell	F	10th	Thomas High School	95.0	70.0
39167	39167	Rebecca Tanner	F	9th	Thomas High School	NaN	NaN
39168	39168	Desiree Kidd	F	10th	Thomas High School	99.0	90.0
39169	39169	Carolyn Jackson	F	11th	Thomas High School	95.0	75.0

Deliverable 2: Repeat the school district analysis

District Summary

```
In [131]: # Combine the data into a single dataset
    school_data_complete_df = pd.merge(student_data_df, school_data_df, how=
    "left", on=["school_name", "school_name"])
    school_data_complete_df.head()
```

Out[131]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	t
C	0	Paul Bradley	М	9th	Huang High School	66.0	79.0	0	Dis
1	1	Victor Smith	М	12th	Huang High School	94.0	61.0	0	Dis
2	. 2	Kevin Rodriguez	М	12th	Huang High School	90.0	60.0	0	Dis
3	3	Richard Scott	М	12th	Huang High School	67.0	58.0	0	Dis
4	4	Bonnie Ray	F	9th	Huang High School	97.0	84.0	0	Dis

```
In [132]: # Calculate the Totals (Schools and Students)
    school_count = len(school_data_complete_df["school_name"].unique())
    student_count = school_data_complete_df["Student ID"].count()

# Calculate the Total Budget
    total_budget = school_data_df["budget"].sum()
```

```
In [134]: # Step 1. Get the number of students that are in ninth grade at Thomas H
          igh School.
          # These students have no grades.
          ninth_graders_at_THS = school_data_complete_df.loc[(school_data_complete
          df["school name"] == "Thomas High School")
                                      & (school data complete df["grade"] == "9th"
          ), "Student ID" ].count()
          print(ninth graders at THS)
          # Get the total student count
          student count = school data complete df["Student ID"].count()
          # Step 2. Subtract the number of students that are in ninth grade at
          # Thomas High School from the total student count to get the new total s
          tudent count.
          new total student count = student count - ninth graders at THS
          print(new total student count)
          461
          38709
In [135]:
         # Calculate the passing rates using the "clean student data".
          passing math count = school data complete df[(school data complete df["m
          ath score"] >= 70)].count()["student name"]
          passing reading count = school data complete df[(school data complete df
          ["reading score"] >= 70)].count()["student name"]
In [136]:
          # Step 3. Calculate the passing percentages with the new total student c
          ount.
          passing math percentage = passing math count / new total student count *
          print(passing math percentage)
```

passing reading percentage = passing reading count / new total student c

74.76039164018704 85.6596657108166

print(passing reading percentage)

ount * 100

Out[137]: 64.85571830840374

```
In [138]: # Create a DataFrame
          district summary df = pd.DataFrame(
                    [{"Total Schools": school_count,
                     "Total Students": student_count,
                    "Total Budget": total_budget,
                    "Average Math Score": average math score,
                    "Average Reading Score": average reading score,
                    "% Passing Math": passing math percentage,
                   "% Passing Reading": passing reading percentage,
                  "% Overall Passing": overall passing percentage}])
          # Format the "Total Students" to have the comma for a thousands separato
          r.
          district_summary_df["Total Students"] = district_summary_df["Total Stude
          nts"].map("{:,}".format)
          # Format the "Total Budget" to have the comma for a thousands separator,
          a decimal separator and a "$".
          district summary df["Total Budget"] = district summary df["Total Budget"
          ].map("${:,.2f}".format)
          # Format the columns.
          district_summary_df["Average Math Score"] = district_summary_df["Average
          Math Score"].map("{:.1f}".format)
          district summary df["Average Reading Score"] = district summary df["Aver
          age Reading Score"].map("{:.1f}".format)
          district summary df["% Passing Math"] = district_summary_df["% Passing M
          ath"].map("{:.1f}".format)
          district_summary_df["% Passing Reading"] = district summary df["% Passin
          g Reading"].map("{:.1f}".format)
          district summary df["% Overall Passing"] = district summary df["% Overal
          l Passing"].map("{:.1f}".format)
          # Display the data frame
          district summary df
```

Out[138]:

	Total Schools	Total Students	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing	
_) 15	39,170	\$24,649,428.00	78.9	81.9	74.8	85.7	64.9	

School Summary

```
In [139]: # Determine the School Type
          per school types = school data df.set index(["school name"])["type"]
          # Calculate the total student count.
          per school counts = school data complete df["school name"].value counts
          ()
          # Calculate the total school budget and per capita spending
          per school budget = school data complete df.groupby(["school name"]).mea
          n()["budget"]
          # Calculate the per capita spending.
          per school capita = per school budget / per school counts
          # Calculate the average test scores.
          per school math = school data complete df.groupby(["school name"]).mean
          ()["math_score"]
          per school reading = school data complete df.groupby(["school name"]).me
          an()["reading score"]
          # Calculate the passing scores by creating a filtered DataFrame.
          per school passing math = school data complete df[(school data complete
          df["math score"] >= 70)]
          per school passing reading = school data complete df[(school data comple
          te df["reading score"] >= 70)]
          # Calculate the number of students passing math and passing reading by s
          chool.
          per school passing math = per school passing math.groupby(["school name"
          ]).count()["student name"]
          per school passing reading = per school passing reading.groupby(["school
          _name"]).count()["student name"]
          # Calculate the percentage of passing math and reading scores per school
          per school passing math = per school passing math / per school counts *
          100
          per school passing reading = per school passing reading / per school cou
          nts * 100
          # Calculate the students who passed both reading and math.
          per passing math reading = school data complete df[(school data complete
          df["reading score"] >= 70)
                                                          & (school data complete d
          f["math score"] >= 70)]
          # Calculate the number of students passing math and passing reading by s
          per passing math reading = per passing math reading.groupby(["school nam
          e"]).count()["student name"]
          # Calculate the percentage of passing math and reading scores per school
          per_overall_passing_percentage = per_passing_math_reading / per_school_c
          ounts * 100
```

```
In [140]: # Create the DataFrame
    per_school_summary_df = pd.DataFrame({
        "School Type": per_school_types,
        "Total Students": per_school_counts,
        "Total School Budget": per_school_budget,
        "Per Student Budget": per_school_capita,
        "Average Math Score": per_school_math,
        "Average Reading Score": per_school_reading,
        "% Passing Math": per_school_passing_math,
        "% Passing Reading": per_school_passing_reading,
        "% Overall Passing": per_overall_passing_percentage})

# per_school_summary_df.head()
```

```
In [141]: # Format the Total School Budget and the Per Student Budget
    per_school_summary_df["Total School Budget"] = per_school_summary_df["To
    tal School Budget"].map("${:,.2f}".format)
    per_school_summary_df["Per Student Budget"] = per_school_summary_df["Per
    Student Budget"].map("${:,.2f}".format)

# Display the data frame
    per_school_summary_df
```

Out[141]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.350937	83.896082	66.911315	69.663609
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611111

```
In [142]: # Step 5. Get the number of 10th-12th graders from Thomas High School
           (THS).
          THS 10 11 12 = school data complete df.loc[(school data complete df["sch
          ool name"] == "Thomas High School")
                                       & (school data complete df["grade"] != "9th"
          ), "student name"].count()
          THS 10 11 12
Out[142]: 1174
In [143]: # Step 6. Get all the students passing math from THS
          THS passing math = school data complete df.loc[(school data complete df[
          "school name"] == "Thomas High School")
                                       & (school_data_complete_df["math_score"] >=
          70), "student name"].count()
          THS passing math
Out[143]: 1094
In [144]: # Step 7. Get all the students passing reading from THS
          THS passing reading = school_data_complete_df.loc[(school_data_complete_
          df["school name"] == "Thomas High School")
                                       & (school data complete df["reading score"]
          >= 70), "student_name"].count()
          THS passing reading
Out[144]: 1139
In [145]: # Step 8. Get all the students passing math and reading from THS
          THS passing math reading = school data complete df.loc[(school data comp
          lete df["school name"] == "Thomas High School")
                              & (school data complete df["reading score"] >= 70)
                               & (school data complete df["math score"] >= 70), "stu
          dent name"].count()
          THS passing math reading
Out[145]: 1064
In [146]: # Step 9. Calculate the percentage of 10th-12th grade students passing m
          ath from Thomas High School.
          THS passing math percentage = THS passing math / THS 10 11 12 * 100
          THS passing math percentage
Out[146]: 93.18568994889267
In [147]: # Step 10. Calculate the percentage of 10th-12th grade students passing
           reading from Thomas High School.
          THS passing reading percentage = THS passing reading / THS 10 11 12 * 10
          THS passing reading percentage
```

Out[147]: 97.01873935264055

Out[148]: 90.63032367972743

- In [150]: # Step 13. Replace the passing reading percentage for Thomas High School
 in the per_school_summary_df.
 per_school_summary_df.loc[["Thomas High School"],["% Passing Reading"]]
 = THS_passing_reading_percentage

In [152]: per_school_summary_df

Out[152]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.350937	83.896082	93.185690	97.018739
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611111

High and Low Performing Schools

```
In [153]: # Sort and show top five schools.
    top_schools = per_school_summary_df.sort_values(["% Overall Passing"],as
    cending = False)
    top_schools.head(5)
```

Out[153]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	(
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828	ξ
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.350937	83.896082	93.185690	97.018739	ξ
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965	ξ
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641	ξ
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946	ξ

Out[154]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432

Math and Reading Scores by Grade

```
In [155]: # Create a Series of scores by grade levels using conditionals.
          ninth graders = school data complete df[(school data complete df["grade"
          ] == "9th")]
          tenth_graders = school_data_complete_df[(school_data_complete_df["grade"
          ] == "10th")]
          eleventh graders = school data complete df[(school data complete df["gra
          de"] == "11th")]
          twelfth graders = school data complete df[(school data complete df["grad
          e"] == "12th")]
          # Group each school Series by the school name for the average math scor
          ninth grade math scores = ninth graders.groupby(["school name"]).mean()[
          "math score"]
          tenth grade math scores = tenth graders.groupby(["school name"]).mean()[
          "math score"]
          eleventh grade math scores = eleventh graders.groupby(["school name"]).m
          ean()["math score"]
          twelfth grade math scores = twelfth graders.groupby(["school name"]).mea
          n()["math score"]
          # Group each school Series by the school name for the average reading sc
          ore.
          ninth grade reading scores = ninth graders.groupby(["school name"]).mean
          ()["reading score"]
          tenth_grade_reading_scores = tenth_graders.groupby(["school_name"]).mean
          ()["reading score"]
          eleventh grade reading scores = eleventh graders.groupby(["school name"
          ]).mean()["reading score"]
          twelfth grade reading scores = twelfth graders.groupby(["school name"]).
          mean()["reading score"]
In [156]: # Combine each Series for average math scores by school into single data
          frame.
          math_scores_by_grade = pd.DataFrame({
                          "9th": ninth grade math scores,
                         "10th": tenth grade math scores,
                         "11th": eleventh grade math scores,
                         "12th": twelfth grade math scores})
In [157]: # Combine each Series for average reading scores by school into single d
          ata frame.
          reading scores by grade = pd.DataFrame({
                        "9th": ninth grade reading scores,
                        "10th": tenth grade reading scores,
```

"11th": eleventh_grade_reading_scores,
"12th": twelfth grade reading scores})

```
# Format each grade column.
In [158]:
          math scores by grade["9th"] = math scores by grade["9th"].map("{:.1f}".f
          ormat)
          math_scores_by_grade["10th"] = math_scores_by_grade["10th"].map("{:.1f}"
          .format)
          math scores by grade["11th"] = math scores by grade["11th"].map("{:.1f}"
          .format)
          math scores by grade["12th"] = math scores by grade["12th"].map("{:.1f}"
          .format)
          reading scores by grade["9th"] = reading scores by grade["9th"].map("
          {:,.1f}".format)
          reading scores by grade["10th"] = reading scores by grade["10th"].map("
          {:,.1f}".format)
          reading_scores_by_grade["11th"] = reading_scores_by_grade["11th"].map("
          {:,.1f}".format)
          reading scores by grade["12th"] = reading scores by grade["12th"].map("
          {:,.1f}".format)
```

```
In [159]: # Remove the index.
math_scores_by_grade.index.name = None

# Display the data frame
math_scores_by_grade
```

Out[159]:

	9th	10th	11th	12th
Bailey High School	77.1	77.0	77.5	76.5
Cabrera High School	83.1	83.2	82.8	83.3
Figueroa High School	76.4	76.5	76.9	77.2
Ford High School	77.4	77.7	76.9	76.2
Griffin High School	82.0	84.2	83.8	83.4
Hernandez High School	77.4	77.3	77.1	77.2
Holden High School	83.8	83.4	85.0	82.9
Huang High School	77.0	75.9	76.4	77.2
Johnson High School	77.2	76.7	77.5	76.9
Pena High School	83.6	83.4	84.3	84.1
Rodriguez High School	76.9	76.6	76.4	77.7
Shelton High School	83.4	82.9	83.4	83.8
Thomas High School	nan	83.1	83.5	83.5
Wilson High School	83.1	83.7	83.2	83.0
Wright High School	83.3	84.0	83.8	83.6

```
In [160]: ## Remove the index.
    reading_scores_by_grade.index.name = None

# Display the data frame
    reading_scores_by_grade
```

Out[160]:

	9th	10th	11th	12th
Bailey High School	81.3	80.9	80.9	80.9
Cabrera High School	83.7	84.3	83.8	84.3
Figueroa High School	81.2	81.4	80.6	81.4
Ford High School	80.6	81.3	80.4	80.7
Griffin High School	83.4	83.7	84.3	84.0
Hernandez High School	80.9	80.7	81.4	80.9
Holden High School	83.7	83.3	83.8	84.7
Huang High School	81.3	81.5	81.4	80.3
Johnson High School	81.3	80.8	80.6	81.2
Pena High School	83.8	83.6	84.3	84.6
Rodriguez High School	81.0	80.6	80.9	80.4
Shelton High School	84.1	83.4	84.4	82.8
Thomas High School	nan	84.3	83.6	83.8
Wilson High School	83.9	84.0	83.8	84.3
Wright High School	83.8	83.8	84.2	84.1

Scores by School Spending

```
In [161]: per school capita.describe()
Out[161]: count
                    15.000000
          mean
                   620.066667
                    28.544368
          std
          min
                   578.000000
          25%
                   591.500000
          50%
                   628.000000
          75%
                   641.500000
          max
                   655.000000
          dtype: float64
In [162]: # Establish the spending bins and group names.
          spending_bins = [0, 585, 630, 645, 675]
          group_names = ["<$584", "$585-629", "$630-644", "$645-675"]
```

```
In [163]: # Categorize spending based on the bins.
    per_school_summary_df["Spending Ranges (Per Student)"] = pd.cut(per_scho
    ol_capita, spending_bins, labels = group_names)
```

```
In [166]: # Format the DataFrame
    spending_summary_df["Average Math Score"] = spending_summary_df["Average
    Math Score"].map("{:.1f}".format)
    spending_summary_df["Average Reading Score"] = spending_summary_df["Average Reading Score"].map("{:.1f}".format)
    spending_summary_df["% Passing Math"] = spending_summary_df["% Passing Math"].map("{:.0f}".format)
    spending_summary_df["% Passing Reading"] = spending_summary_df["% Passing Reading"].map("{:.0f}".format)
    spending_summary_df["% Overall Passing"] = spending_summary_df["% Overall Passing"].map("{:.0f}".format)
```

Out[166]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
Spending Ranges (Per Student)					
<\$584	83.5	83.9	93	97	90
\$585-629	81.9	83.2	87	93	81
\$630-644	78.5	81.6	73	84	63
\$645-675	77.0	81.0	66	81	54

Scores by School Size

```
In [167]: # Establish the bins.
size_bins = [0, 1000, 2000, 5000]
group_names = ["Small (<1000)", "Medium (1000-2000)", "Large (2000-500
0)"]

# Categorize spending based on the bins.
per_school_summary_df["School_Size"] = pd.cut(per_school_summary_df["Tot al_Students"], size_bins, labels = group_names)</pre>
```

In [168]: # Calculate averages for the desired columns.
 size_math_scores = per_school_summary_df.groupby(["School Size"]).mean()
 ["Average Math Score"]
 size_reading_scores = per_school_summary_df.groupby(["School Size"]).mea
 n()["Average Reading Score"]
 size_passing_math = per_school_summary_df.groupby(["School Size"]).mean
 ()["% Passing Math"]
 size_passing_reading = per_school_summary_df.groupby(["School Size"]).me
 an()["% Passing Reading"]
 size_overall_passing = per_school_summary_df.groupby(["School Size"]).me
 an()["% Overall Passing"]

```
In [170]: # Format the DataFrame
    size_summary_df["Average Math Score"] = size_summary_df["Average Math Score"].map("{:.1f}".format)
    size_summary_df["Average Reading Score"] = size_summary_df["Average Reading Score"].map("{:.1f}".format)
    size_summary_df["% Passing Math"] = size_summary_df["% Passing Math"].ma
    p("{:.0f}".format)
    size_summary_df["% Passing Reading"] = size_summary_df["% Passing Readin
    g"].map("{:.0f}".format)
    size_summary_df["% Overall Passing"] = size_summary_df["% Overall Passin
    g"].map("{:.0f}".format)
```

Out[170]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Size					
Small (<1000)	83.8	83.9	94	96	90
Medium (1000- 2000)	83.4	83.9	94	97	91
Large (2000- 5000)	77.7	81.3	70	83	58

Scores by School Type

```
# Calculate averages for the desired columns.
In [171]:
          type math scores = per school summary df.groupby(["School Type"]).mean()
          ["Average Math Score"]
          type reading scores = per school summary df.groupby(["School Type"]).mea
          n()["Average Reading Score"]
          type passing_math = per_school_summary_df.groupby(["School Type"]).mean
          ()["% Passing Math"]
          type passing reading = per school summary df.groupby(["School Type"]).me
          an()["% Passing Reading"]
          type overall passing = per_school summary df.groupby(["School Type"]).me
          an()["% Overall Passing"]
In [172]: # Assemble into DataFrame.
          type summary df = pd.DataFrame({
                     "Average Math Score" : type_math_scores,
                    "Average Reading Score": type reading scores,
                    "% Passing Math": type passing math,
                     "% Passing Reading": type passing reading,
                    "% Overall Passing": type overall passing})
In [173]: | # Format the DataFrame
          type_summary_df["Average Math Score"] = type_summary_df["Average Math Sc
          ore"].map("{:.1f}".format)
          type summary df["Average Reading Score"] = type summary df["Average Read
          ing Score"].map("{:.1f}".format)
          type summary df["% Passing Math"] = type summary df["% Passing Math"].ma
          p("{:.0f}".format)
          type summary df["% Passing Reading"] = type summary df["% Passing Readin
          g"].map("{:.0f}".format)
          type summary df["% Overall Passing"] = type summary df["% Overall Passin
          g"].map("{:.0f}".format)
          type_summary_df
```

Out[173]:

School Type	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
District	77.0	81.0	67	81	54