МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: «Изучение режимов адресации и формирования исполнительного адреса»

Студент гр. 1303	 Коренев Д.А.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lab2.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.

- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Выполнение работы.

1. Описание обнаруженных при первоначальной трансляции ошибок и их объяснение :

При первоначальной трансляции были обнаружены следующие ошибки:

- 1. LB2.ASM(53): error A2052: Improper operand type
- строка 53: mov mem3,[bx] Перемещение данных из памяти невозможны на языке ассемблер
 - 2. LB2.ASM(62): warning A4031: Operand types must match
- строка 62: mov cx,vec2[di] Некорректное использование операндов с разной размерностью. Размер регистра cx 2 байта, размер элемента массива 1 байт.
 - 3. LB2.ASM(67): warning A4031: Operand types must match
- строка 67: mov cx,matr[bx][di] Некорректное использование операндов с разной размерностью. Размер регистра сх 2 байта, размер элемента массива 1 байт.
 - 4. LB2.ASM(68): error A2055: Illegal register value
- строка 68: mov ax,matr[bx*4][di] Нельзя умножать двухбайтовые регистры.
 - 5. LB2.ASM(92): error A2046: Multiple base registers

строка 92: mov ax,matr[bp+bx] — Нельзя использовать больше одного базового регистра.

6. LB2.ASM(93): error A2047: Multiple index registers

строка 93: mov ax,matr[bp+di+si] — Нельзя использовать больше одного базового регистра.

7. LB2.ASM(101): error A2006: Phase error between passes строка 101: Main ENDP — Показывает, что в Main есть ошибки.

Ошибки были закомментированы. Программа снова была протранслирована и выполнена в пошаговом режиме под управлением отладчика.

Результаты выполнения программы под управлением отладчика представлены в Таблице 1.

Начальные значения регистров					
CS = 1A0A DS = 19F		5	ES = 19F5	SS = 1A05	
Адрес	Символический 16-ричный		16-ричный	Содержимое регистров и ячеек памяти	
команды	код коман	іды	код команды	До	После
0000	PUSH DS		1E	SP = 0018	SP = 0016
				Stack +0 0000 +2 0000 +4 0000 +6 0000	Stack +0 19F5 +2 0000 +4 0000 +6 0000
0001	SUB AX,	AX	2BC0	AX = 0000	AX = 0000
0003	PUSH AX		50	SP = 0016 Stack +0 19F5 +2 0000 +4 0000 +6 0000	SP = 0014 Stack +0 0000 +2 19F5 +4 0000 +6 0000
0004	MOV AX	,1A07	B8071A	AX = 0000	AX = 1A07
0007	MOV DS,	AX	8ED8	DS = 19F5	DS = 1A07
0009	MOV A	X,01F4	B8F401	AX = 1A07	AX = 01F4

000C	MOV CX,AX	8BC8	CX = 00B0	CX = 01F4
000E	MOV BL,24	B324	BX = 0000	BX = 0024
0010	MOV BH,CE	B7CE	BX = 0024	BX = CE24
0012	MOV [0002],FFCE	C7060200CE	DS:0002 = 00	DS:0002 = CE
		FF	DS:0003 = 00	DS:0003 = FF
0018	MOV BX,0006	BB0600	BX = CE24	BX = 0006
001B	MOV [0000],AX	A30000	DS:0000 = 00	DS:0000 = F4
			DS:0001 = 00	DS:0001 = 01
001E	MOV AL,[BX]	8A07	AX = 01F4	AX = 0126
0020	MOV AL,[BX+03]	8A4703	AX = 0126	AX = 0123
0023	MOV CX,[BX+03]	8B4F03	CX = 01F4	CX =0123
0026	MOV DI,0002	BF0200	DI = 0000	DI = 0002
0029	MOV AL,	8A850E00	AX = 0123	AX = 01BA
	[000E+DI]			
002D	MOV BX,0003	BB0300	BX = 0006	BX = 0003
0030	MOV AL,	8A811600	AX = 01BA	AX = 01F9
	[0016+BX+DI]			
0034	MOV AX,1A07	B8071A	AX = 01F9	AX = 1A07
0037	MOV ES,AX	83C0	ES = 19F5	ES = 1A07
0039	MOV AX,ES:[BX]	268B07	AX = 1A07	AX = 00FF
003C	MOV AX,0000	B80000	AX = 00FF	AX = 0000
003F	MOV ES,AX	8EC0	ES = 1A07	ES = 0000
0041	PUSH DS	1E	stack	stack
			+0 0000 +2 19F5 +4 0000 +6 0000	+0 1A07 +2 0000 +4 19F5 +6 0000
0042	POP ES	07	SP = 0012	SP = 0014
			ES = 0000	ES = 1A07
			stack	stack
			+0 1A07 +2 0000	+0 0000 +2 19F5

			+4 19F5	+4 0000
			+6 0000	+6 0000
0043	MOV CS,ES:[BX-	268B4FFF	CX = 1F23	CX = FFCE
	01]			
0047	XCHG AX,CX	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
0048	MOV DI,0002	BF0200	DI = 0002	DI = 0002
004B	MOV ES:	268901	DS:0005 = 00	DS:0005 = CE
	[BX+DI,AX		DS:0006 = 26	DS:0006 = FF
004E	MOV BP,SP	8BEC	BP = 0000	BP = 0014
0050	PUSH [0000]	FF360000	stack	stack
			+0 0000	+0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0054	PUSH [0002]	FF360200	stack	stack
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP,SP	8BEC	BP = 0014	BP = 0010
005A	MOV DX,[BP+02]	8B5602	DX = 0000	DX = 01F4
005D	RET Far 0002	CA0200	SP = 0010	SP = 0016
			CS = 1A0A	CS = 01F4
			stack	Stack
			+0 FFCE	+0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000
			. 0 151 5	

Вывод.

Изучены режимы адресации и формирование исполнительного адреса. В ходе работы был исправлен и пошагово отлажен исходных файл.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Hазвание файла: lb2.asm
EOL EQU '$'
ind EQU 2
n1 EQU 500
```

AStack SEGMENT STACK
DW 12 DUP(?)

n2 EQU -50

AStack ENDS

; Данные программы DATA SEGMENT

```
; Директивы описания данных mem1 DW 0 mem2 DW 0 mem3 DW 0 vec1 DB 38,37,36,35,31,32,33,34 vec2 DB 70,80,-70,-80,50,60,-50,-60 matr DB -2,-1,5,6,-8,-7,3,4,-4,-3,7,8,-6,-5,1,2 DATA ENDS
```

; Код программы CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack

```
; Головная процедура
Main PROC FAR
push DS
sub AX,AX
push AX
mov AX,DATA
mov DS,AX
```

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация mov ax,n1 mov cx,ax mov bl,EOL mov bh,n2

; Прямая адресация

```
mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1, ax
; Косвенная адресация
     mov al, [bx]
     mov mem3, [bx]
; Базированная адресация
     mov al, [bx]+3
     mov cx, 3[bx]
; Индексная адресация
     mov di, ind
     mov al, vec2[di]
     mov cx,vec2[di]
; Адресация с базированием и индексированием
     mov bx, 3
     mov al,matr[bx][di]
     mov cx,matr[bx][di]
     mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx, ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
;mov ax,matr[bp+bx]
;mov ax,matr[bp+di+si]
; Использование сегмента стека
     push mem1
     push mem2
     mov bp, sp
```

```
mov dx,[bp]+2
pop AX
pop AX
pop AX
ret
Main ENDP
CODE ENDS
END Main
```