Appendix to POPLMark Reloaded: Mechanizing Proofs by Logical Relations

ANDREAS ABEL

Department of Computer Science and Engineering, Gothenburg University, Sweden

GUILLAUME ALLAIS

iCIS, Radboud University, Nijmegen, Netherlands

ALIYA HAMEER and BRIGITTE PIENTKA

School of Computer Science, McGill University, Canada

ALBERTO MOMIGLIANO

Department of Computer Science, University of Milan, Italy

STEVEN SCHÄFER and KATHRIN STARK

Saarland Informatics Campus, Saarland University, Germany

A Appendix

A.1 Basic Properties of Typed Reductions

Lemma A.1 (Reductions preserve Typing). *If* $\Gamma \vdash M \longrightarrow N : A$ *then* $\Gamma \vdash M : A$ *and* $\Gamma \vdash N : A$.

Proof. By induction on the given derivation.

Lemma A.2 (Weakening and Exchange for Typing and Typed Substitutions).

- If Γ , y:A, x: $A' \vdash M : B$ then Γ , x:A', y: $A \vdash M : B$.
- If $\Gamma \vdash M : B$ then $\Gamma, x:A \vdash M : B$.
- If $\Gamma' \vdash \sigma : \Gamma$ then $\Gamma', x:A \vdash \sigma : \Gamma$.

Proof. By induction on the given derivation; the second property relies on the first. \Box

Corollary A.1 (Weakening of Renamings). If $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma', x:A \leq_{\rho} \Gamma$.

Lemma A.3 (Anti-Renaming of Typing). *If* $\Gamma' \vdash [\rho]M : A$ *and* $\Gamma' \leq_{\rho} \Gamma$ *then* $\Gamma \vdash M : A$.

Proof. By induction on the given typing derivation taking into account equational properties of substitutions. \Box

Lemma A.4 (Weakening and Exchange of Typed Reductions).

- If $\Gamma \vdash M \longrightarrow N : B \text{ then } \Gamma, x:A \vdash M \longrightarrow N : B$.
- If Γ , y:A, $x:A' \vdash M \longrightarrow N : B$ then Γ , x:A', $y:A \vdash M \longrightarrow N : B$.

Proof. By mutual induction on the first derivation.

2 A. Abel et. al.

Lemma A.5 (Substitution Property of Typed Reductions). *If* Γ , $x:A \vdash M \longrightarrow M': B$ *and* $\Gamma \vdash N: A$ *then* $\Gamma \vdash [N/x]M \longrightarrow [N/x]M': B$.

Proof. By induction on the first derivation, using the usual properties of composition of substitutions as well as weakening and exchange. \Box

Lemma A.6 (Properties of Multi-Step Reductions).

- 1. If $\Gamma \vdash M_1 \longrightarrow^* M_2 : B \text{ and } \Gamma \vdash M_2 \longrightarrow^* M_3 : B \text{ then } \Gamma \vdash M_1 \longrightarrow^* M_3 : B$.
- 2. If $\Gamma \vdash M \longrightarrow^* M' : A \Rightarrow B$ and $\Gamma \vdash N : A$ then $\Gamma \vdash M N \longrightarrow^* M' N : B$.
- 3. If $\Gamma \vdash M : A \Rightarrow B$ and $\Gamma \vdash N \longrightarrow^* N' : A$ then $\Gamma \vdash M N \longrightarrow^* M N' : B$.
- 4. If $\Gamma, x:A \vdash M \longrightarrow^* M' : B$ then $\Gamma \vdash \lambda x:A.M \longrightarrow^* \lambda x:A.M' : A \Rightarrow B$.
- 5. If $\Gamma, x:A \vdash M : B$ and $\Gamma \vdash N \longrightarrow N' : A$ then $\Gamma \vdash [N/x]M \longrightarrow^* [N'/x]M : B$.

Proof. Properties 1, 2, 3, and 4 are proven by induction on the given multi-step relation. Property 5 is proven by induction on Γ , $x:A \vdash M : B$ using weakening and exchange (Lemma A.4).

Lemma A.7 (Simultaneous Substitution and Renaming).

1. If
$$\Gamma' \vdash \sigma : \Gamma$$
 and $\Gamma \vdash M \longrightarrow N : A$ then $\Gamma' \vdash [\sigma]M \longrightarrow [\sigma]N : A$.

2. If
$$\Gamma \vdash M \longrightarrow N : B \text{ and } \Gamma' \leq_{\rho} \Gamma$$
, then $\Gamma' \vdash [\rho]M \longrightarrow [\rho]N : B$.

A.2 Challenge 1a: Properties of sn

Lemma A.8 (Multi-step Strong Normalization). *If* $\Gamma \vdash M \longrightarrow^* M' : A$ *and* $\Gamma \vdash M : A \in \mathsf{sn}$ *then* $\Gamma \vdash M' : A \in \mathsf{sn}$.

Proof. Induction on $\Gamma \vdash M \longrightarrow^* M' : A$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow M' : A}{\Gamma \vdash M \longrightarrow^* M' : A} \text{M-Refl}$$

 $\Gamma \vdash M' : A \in \mathsf{sn}$

by using $\Gamma \vdash M : A \in \mathsf{sn}$

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow N : A \qquad \Gamma \vdash N \longrightarrow^* M' : A}{\Gamma \vdash M \longrightarrow^* M' : A}$$
 M-Trans

 $\Gamma \vdash M : A \in \mathsf{sn}$

by assumption

 $\Gamma \vdash N : A \in \mathsf{sn}$

by using $\Gamma \vdash M : A \in \mathsf{sn}$

 $\Gamma \vdash M' : A \in \mathsf{sn}$

by IH

Lemma A.9 (Properties of strongly normalizing terms).

- 1. For all variables $x : A \in \Gamma$, $\Gamma \vdash x : A \in \mathsf{sn}$.
- 2. *If* $\Gamma \vdash [N/x]M : B \in \text{sn } and \ \Gamma \vdash N : A \text{ then } \Gamma, x:A \vdash M : B \in \text{sn.}$
- 3. If Γ , $x:A \vdash M : B \in \text{sn } then \ \Gamma \vdash \lambda x:A.M : A \Rightarrow B \in \text{sn.}$
- 4. *If* $\Gamma \vdash M \ N : B \in \operatorname{sn} \ then \ \Gamma \vdash M : A \Rightarrow B \in \operatorname{sn} \ and \ \Gamma \vdash N : A \in \operatorname{sn}$.

Proof. In all the proofs below we silently exploit type uniqueness and do not track explicitly the reasoning about well-typed terms.

1. For all variables $x : A \in \Gamma$, $\Gamma \vdash x : A \in \mathsf{sn}$.

 $\forall M'. \ \Gamma \vdash x \longrightarrow M' : A \Longrightarrow \Gamma \vdash M' : A \in \mathsf{sn}$

since $\Gamma \vdash x \longrightarrow M'$ is impossible

 $\Gamma \vdash x : A$

since $x : A \in \Gamma$

3

 $\Gamma \vdash x : A \in \mathsf{sn}$

2. If $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$ and $\Gamma \vdash N : A$ then $\Gamma, x : A \vdash M : B \in \mathsf{sn}$.

Induction on $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$.

Assume Γ , $x:A \vdash M \longrightarrow M':B$

 $\Gamma \vdash [N/x]M \longrightarrow [N/x]M' : B$

by Lemma A.5

 $\Gamma \vdash [N/x]M' : B \in \mathsf{sn}$

by using $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$

 Γ , $x:A \vdash M' : B \in \mathsf{sn}$

 Γ , $x:A \vdash M : B \in \mathsf{sn}$

since Γ , $x:A \vdash M \longrightarrow M':B$ was arbitrary.

3. If Γ , $x:A \vdash M : B \in \text{sn then } \Gamma \vdash \lambda x:A.M : A \Rightarrow B \in \text{sn.}$

Induction on Γ , $x:A \vdash M : B \in \mathsf{sn}$.

Assume $\Gamma \vdash \lambda x : A . M \longrightarrow Q : A \Rightarrow B$

 $\Gamma, x:A \vdash M \longrightarrow M': B \text{ and } Q = \lambda x:A.M'$

by reduction rule for λ .

 Γ , $x:A \vdash M' : B \in \mathsf{sn}$

by assumption Γ , $x:A \vdash M : B \in \mathsf{sn}$

 $\Gamma \vdash \lambda x : A . M' : A \Rightarrow B \in \mathsf{sn}$

by IH

 $\Gamma \vdash Q : A \Rightarrow B \in \mathsf{sn}$

since $Q = \lambda x : A.M'$ since $\Gamma \vdash \lambda x.M \longrightarrow Q : A \Rightarrow B$ was arbitrary

 $\Gamma \vdash \lambda x.M : A \Rightarrow B \in \mathsf{sn}$

4. If $\Gamma \vdash M \ N : B \in \mathsf{sn}$ then $\Gamma \vdash M : A \Rightarrow B \in \mathsf{sn}$ and $\Gamma \vdash N : A \in \mathsf{sn}$.

We prove first: If $\Gamma \vdash M \ N : B \in \mathsf{sn}$ then $\Gamma \vdash M : A \Rightarrow B \in \mathsf{sn}$. Proving $\Gamma \vdash M \ N : B \in \mathsf{sn}$ implies also $\Gamma \vdash N : A \in \mathsf{sn}$ is similar.

By induction on $\Gamma \vdash M \ N : B \in \mathsf{sn}$.

Assume $\Gamma \vdash M \longrightarrow M' : A \Rightarrow B$

 $\Gamma \vdash M N \longrightarrow M' N : B$

by reduction rule for application

 $\Gamma \vdash M' \ N : B \in \mathsf{sn}$

by assumption $\Gamma \vdash M \ N : B \in \mathsf{sn}$

 $\Gamma \vdash M' : A \Rightarrow B \in \mathsf{sn}$

by IH

 $\Gamma \vdash M : A \Rightarrow B \in \mathsf{sn}$

since $\Gamma \vdash M \longrightarrow M' : A \Rightarrow B$ was arbitrary

Lemma A.10 (Weak head expansion). *If* $\Gamma \vdash N : A \in \text{sn } and \ \Gamma \vdash [N/x]M : B \in \text{sn } then$ $\Gamma \vdash (\lambda x : A.M) \ N : B \in \mathsf{sn}.$

Proof. Proof by induction — either $\Gamma \vdash N : A \in \operatorname{sn}$ is getting smaller or $\Gamma \vdash [N/x]M : B \in \operatorname{sn}$ is getting smaller.

Assume $\Gamma \vdash (\lambda x : A.M) \ N \longrightarrow P : B$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash \lambda x : A.M : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A.M) \ N \longrightarrow [N/x]M : B}$$
 and $Q = [N/x]M$

 $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$

by assumption

$$\mathbf{Case} \ \ \mathscr{D} = \frac{ \frac{\Gamma, x : A \vdash M \longrightarrow M' : B}{\Gamma \vdash \lambda x : A . M \longrightarrow \lambda x : A . M' : A \Rightarrow B} \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A . M) \ N \longrightarrow (\lambda x : A . M') \ N : B} \quad \text{and} \ \ Q = (\lambda x : A . M') \ N$$

 $\Gamma \vdash [N/x]M \longrightarrow [N/x]M' : B$

by Lemma A.5

 $\Gamma \vdash [N/x]M' : B \in \mathsf{sn}$

using $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$

 $\Gamma \vdash N : A \in \mathsf{sn}$

by assumption

 $\Gamma \vdash (\lambda x : A . M') \ N : B \in \mathsf{sn}$

by IH (since $\Gamma \vdash [N/x]M' : B \in \text{sn is smaller}$)

$$\mathbf{Case} \ \mathscr{D} = \frac{\Gamma \vdash \lambda x : A . M : A \Rightarrow B \quad \Gamma \vdash N \longrightarrow N' : A}{\Gamma \vdash (\lambda x : A . M) \ N \longrightarrow (\lambda x : A . M) \ N' : B}$$

 $\Gamma \vdash \lambda x : A : A \Rightarrow B$

by assumption

 Γ , x: $A \vdash M : B$

by inversion on typing

 $\Gamma \vdash [N/x]M \longrightarrow^* [N'/x]M : B$

by Lemma A.6 (5) using $\Gamma \vdash N \longrightarrow N' : A$

 $\Gamma \vdash [N'/x]M : B \in \mathsf{sn}$

Lemma A.8 using Γ ⊢ [N/x]M : $B \in \text{sn}$

using $\Gamma \vdash N : A \in \mathsf{sn}$

 $\Gamma \vdash N' : A \in \mathsf{sn}$ $\Gamma \vdash (\lambda x : A.M) \ N' : B \in \mathsf{sn}$

by IH (since $\Gamma \vdash N' : A \in \text{sn is smaller}$)

Lemma A.11 (Closure properties of neutral terms).

- 1. *If* $\Gamma \vdash R : A$ ne *and* $\Gamma \vdash R \longrightarrow R' : A$, *then* $\Gamma \vdash R' : A$ ne.
- 2. *If* $\Gamma \vdash R : A \Rightarrow B$ ne, $\Gamma \vdash R : A \Rightarrow B \in \text{sn}$, and $\Gamma \vdash N : A \in \text{sn}$ then $\Gamma \vdash R N : B \in \text{sn}$.

Proof.

1. If
$$\Gamma \vdash R : A$$
 ne and $\Gamma \vdash R \longrightarrow R' : A$, then $\Gamma \vdash R' : A$ ne.

By induction on $\Gamma \vdash R : A$ ne.

Case
$$\mathscr{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A \text{ ne}}$$

Contradiction with the assumption $\Gamma \vdash R \longrightarrow R' : A$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash R'' : A \Rightarrow B \text{ ne} \qquad \Gamma \vdash N : A}{\Gamma \vdash R'' N : B \text{ ne}}$$

by assumption

We proceed by cases on $\Gamma \vdash R \longrightarrow R' : A$.

$$\textbf{Sub-case} \ \ \mathscr{D} = \frac{\Gamma \vdash \lambda x : A . M : A \Rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A . M) \ N \longrightarrow [N/x]M : B}$$

Contradiction with the assumption $\Gamma \vdash R : A$ ne.

Sub-case
$$\mathscr{D} = \frac{\Gamma \vdash R'' \longrightarrow P : A \Rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash R'' \ N \longrightarrow P \ N : B}$$

$$R'' \longrightarrow P : A \Rightarrow B$$

 $\Gamma \vdash P : A \Rightarrow B$ ne

 $\Gamma \vdash P N : B \text{ ne}$

by definition of neutral terms

by assumption

by IH

$$\textbf{Sub-case} \ \, \mathscr{D} = \frac{\Gamma \vdash R'' : A \Rightarrow B \qquad \Gamma \vdash N \longrightarrow N' : B}{\Gamma \vdash R'' N \longrightarrow R'' N' : B}$$

$$\Gamma \vdash R'' : A \Rightarrow B \text{ ne}$$

 $\Gamma \vdash R'' N' : B \text{ ne}$

by assumption by definition of neutral terms

2. If
$$\Gamma \vdash R : A \Rightarrow B$$
 ne, $\Gamma \vdash R : A \Rightarrow B \in \text{sn}$, and $\Gamma \vdash N : A \in \text{sn}$ then $\Gamma \vdash R N : B \in \text{sn}$.

By simultaneous induction on $\Gamma \vdash R : A \Rightarrow B \in \mathsf{sn}, \Gamma \vdash N : A \in \mathsf{sn}$.

Assume $\Gamma \vdash R \ N \longrightarrow Q : B$

Case
$$\mathscr{D} = \frac{\Gamma \vdash \lambda x : A . M : A \Rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A . M) \ N \longrightarrow [N/x]M : B}$$

Contradiction with the assumption $\Gamma \vdash R : A \Rightarrow B$ ne.

Case
$$\mathscr{D} = \frac{\Gamma \vdash R \longrightarrow R' : A \Rightarrow B \qquad \Gamma \vdash N : A}{\Gamma \vdash R N \longrightarrow R' N : B}$$

 $\Gamma \vdash R' : A \Rightarrow B \in \mathsf{sn}$

by using $\Gamma \vdash R : A \Rightarrow B \in \mathsf{sn}$

 $\Gamma \vdash R : A \Rightarrow B$ ne

by assumption

 $\Gamma \vdash R \longrightarrow R' : A \Rightarrow B$

by assumption

 $\Gamma \vdash R \longrightarrow R : A \Rightarrow B$ $\Gamma \vdash R' : A \Rightarrow B \text{ ne}$

by Property (1)

 $\Gamma \vdash R' \ N : B \in \mathsf{sn}$

by IH (since $\Gamma \vdash R' : A \Rightarrow B \in \text{sn is smaller}$)

Case
$$\mathscr{D} = \frac{\Gamma \vdash R : A \Rightarrow B \qquad \Gamma \vdash N \longrightarrow N' : A}{\Gamma \vdash R N \longrightarrow R N' : B}$$

 $\Gamma \vdash N' : A \in \mathsf{sn}$

by using $\Gamma \vdash N : A \in \mathsf{sn}$

 $\Gamma \vdash R N' : B \in \mathsf{sn}$

by IH (since $\Gamma \vdash N' : A \in \text{sn is smaller}$)

Lemma A.12 (Confluence of sn). *If* $\Gamma \vdash M \longrightarrow_{sn} N : A$ *and* $\Gamma \vdash M \longrightarrow N' : A$ *then either* N = N' *or there* $\exists Q \text{ s.t. } \Gamma \vdash N' \longrightarrow_{sn} Q : A$ *and* $\Gamma \vdash N \longrightarrow^* Q : A$.

Proof. By induction on $\Gamma \vdash M \longrightarrow_{sn} N : A$.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{sn} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : M) \ N \longrightarrow_{\mathsf{sn}} [N/x] M : B} \qquad \frac{\Gamma \vdash \lambda x : A : M : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A : M) \ N \longrightarrow [N/x] M : B}$$

$$[N/x]M:B=[N/x]M:B$$

by reflexivity

$$\mathbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{sn} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : M) \ N \longrightarrow_{\mathsf{sn}} [N/x] M : B} \qquad \frac{\Gamma, x : A \vdash M \longrightarrow M' : B}{\Gamma \vdash \lambda x : A : M \longrightarrow \lambda x : A : M' : A \Rightarrow B} \quad \Gamma \vdash N : A}{\Gamma \vdash (\lambda x : A : M) \ N \longrightarrow (\lambda x : A : M') \ N : B}$$

WE SHOW: $\exists Q \text{ s.t. } \Gamma \vdash (\lambda x : A.M') \ N \longrightarrow_{\mathsf{sn}} Q : B \text{ and } \Gamma \vdash [N/x]M \longrightarrow^* Q : B$ Let Q = [N/x]M'.

$$\Gamma \vdash (\lambda x : A . M') \ N \longrightarrow_{\mathsf{sn}} [N/x] M' : B$$

$$\Gamma \vdash [N/x] M \longrightarrow [N/x] M' : B$$

 $\Gamma \vdash [N/x]M \longrightarrow^* [N/x]M' : B$

by def. of \longrightarrow_{sn} by Lemma A.5

by M-TRANS

Case
$$\mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{sn} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (A \cap A) \mid X \mid A \mid A}$$

$$\textbf{Case} \ \, \mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{sn} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : M) \, N \longrightarrow_{\mathsf{sn}} [N/x] M : B} \qquad \frac{\Gamma \vdash N \longrightarrow N' : A \quad \Gamma \vdash \lambda x : A : M : A \Rightarrow B}{\Gamma \vdash (\lambda x : A : M) \, N \longrightarrow (\lambda x : A : M) \, N' : B}$$

WE SHOW: $\exists Q \text{ s.t. } \Gamma \vdash (\lambda x : A : M) \ N' \longrightarrow_{sn} Q : B \text{ and } \Gamma \vdash [N/x]M \longrightarrow^* Q : B$

Let Q = [N'/x]M.

$$\Gamma \vdash (\lambda x : A.M) \ N' \longrightarrow_{\mathsf{sn}} [N'/x]M : B$$

 $\Gamma \vdash [N/x]M \longrightarrow^* [N'/x]M : B$

by def. of \longrightarrow_{sn}

by Lemma A.6 (5)

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M_1 : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash M \, N \longrightarrow_{\mathsf{sn}} M_1 \, N : B} \qquad \frac{\Gamma \vdash M \longrightarrow M_2 : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash M \, N \longrightarrow M_2 \, N : B}$$

Either $M_2 = M_1$ or $\exists P$ s.t. $\Gamma \vdash M_2 \longrightarrow_{sn} P : A \Rightarrow B$ and $\Gamma \vdash M_1 \longrightarrow^* P : A \Rightarrow B$ by IH

Sub-case $M_2 = M_1$

$$M_1 N = M_2 N$$
 trivial

Sub-case $\exists P \text{ s.t. } \Gamma \vdash M_2 \longrightarrow_{\mathsf{sn}} P : A \Rightarrow B \text{ and } \Gamma \vdash M_1 \longrightarrow^* P : A \Rightarrow B$

WE SHOW: $\exists Q \text{ s.t. } \Gamma \vdash M_2 N \longrightarrow_{\mathsf{sn}} Q : B \text{ and } \Gamma \vdash M_1 N \longrightarrow^* Q : B$

Let Q = P N

$$\Gamma \vdash M_2 N \longrightarrow_{\mathsf{sn}} P N : B$$

$$\Gamma \vdash M_1 N \longrightarrow^* P N : B$$

using def. of \longrightarrow_{sn} and $\Gamma \vdash M_2 \longrightarrow_{sn} P : A \Rightarrow B$

by Lemma A.6 (2)

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash M \, N \longrightarrow_{\mathsf{sn}} M' \, N : B} \qquad \frac{\Gamma \vdash N \longrightarrow N' : A \quad \Gamma \vdash M : A \Rightarrow B}{\Gamma \vdash M \, N \longrightarrow M \, N' : B}$$

WE SHOW: $\exists Q \text{ s.t. } \Gamma \vdash M N' \longrightarrow_{\mathsf{sn}} Q : B \text{ and } \Gamma \vdash M' N \longrightarrow^* Q : B$

Let Q = M' N'

$$\Gamma \vdash M N' \longrightarrow_{\mathsf{sn}} M' N' : B$$

by $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B$

 $\Gamma \vdash N \longrightarrow^* N' : A$ $\Gamma \vdash M' N \longrightarrow^* M' N' : B$

by M-Trans by Lemma A.6 (3)

7

Lemma A.13 (Backward closure of sn).

- 1. If $\Gamma \vdash N : A \in \operatorname{sn}$, $\Gamma \vdash M : A \Rightarrow B \in \operatorname{sn}$, $\Gamma \vdash M \longrightarrow_{\operatorname{sn}} M' : A \Rightarrow B$ and $\Gamma \vdash M' N : B \in \operatorname{sn}$, *then* $\Gamma \vdash M \ N : B \in \mathsf{sn}$.
- 2. If $\Gamma \vdash M \longrightarrow_{sn} M' : A \ and \ \Gamma \vdash M' : A \in sn \ then \ \Gamma \vdash M : A \in sn.$

Proof.

1. If $\Gamma \vdash N : A \in \mathsf{sn}$, $\Gamma \vdash M : A \Rightarrow B \in \mathsf{sn}$, $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B$ and $\Gamma \vdash M' N : B \in \mathsf{sn}$, then $\Gamma \vdash M \ N : B \in \mathsf{sn}$.

By induction on $\Gamma \vdash N : A \in \mathsf{sn}$ and $\Gamma \vdash M : A \Rightarrow B \in \mathsf{sn}$.

Assume $\Gamma \vdash M N \longrightarrow Q : B$.

Case
$$\mathscr{D} = \frac{}{\Gamma \vdash (\lambda x : A.M) \ N \longrightarrow [N/x]M : B}$$

Contradiction with $\Gamma \vdash (\lambda x:A.M) \longrightarrow_{sn} M': A \Rightarrow B$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow M'' : A \Rightarrow B}{\Gamma \vdash MN \longrightarrow M''N : B}$$

 $\Gamma \vdash M \longrightarrow M'' : A \Rightarrow B$

by assumption

 $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B$

by assumption

 $\Gamma \vdash M' = M''$ or $\exists P \text{ s.t. } \Gamma \vdash M'' \longrightarrow_{\mathsf{sn}} P : A \Rightarrow B \text{ and } \Gamma \vdash M' \longrightarrow^* P : A \Rightarrow B$ by Conf.

Sub-case $\Gamma \vdash M' = M''$

Lemma A.12

 $\Gamma \vdash M' \ N : B \in \mathsf{sn}$

 $\Gamma \vdash M'' \ N : B \in \mathsf{sn}$

by assumption

since M' = M''

Sub-case $\exists P \text{ s.t. } \Gamma \vdash M'' \longrightarrow_{\mathsf{sn}} P : A \Rightarrow B \text{ and } \Gamma \vdash M' \longrightarrow^* P : A \Rightarrow B$

 $\Gamma \vdash M' N \longrightarrow^* P N : A \Rightarrow B$ $\Gamma \vdash M' \ N : B \in \mathsf{sn}$ $\Gamma \vdash P \ N : B \in \mathsf{sn}$

by Lemma A.6 (2)

by assumption by Lemma A.8

 $\Gamma \vdash M'' \longrightarrow_{\mathsf{sn}} P : A \Rightarrow B$

by assumption

 $\Gamma \vdash M \longrightarrow M'' : A \Rightarrow B$

by assumption

 $\Gamma \vdash M'' : A \Rightarrow B \in \mathsf{sn}$

using $\Gamma \vdash M : A \Rightarrow B \in \text{sn and } \Gamma \vdash M \longrightarrow M'' : A \Rightarrow B$

 $\Gamma \vdash M'' \ N : B \in \mathsf{sn}$

by IH (since $\Gamma \vdash M'' : A \Rightarrow B \in \text{sn is smaller}$)

17:15

8

A. Abel et. al.

Case
$$\mathscr{D} = \frac{\Gamma \vdash N \longrightarrow N' : A}{\Gamma \vdash MN \longrightarrow MN' : B}$$

 $\begin{array}{lll} \Gamma \vdash N \longrightarrow N' : A & \text{by assumption} \\ \Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B & \text{by assumption} \\ \Gamma \vdash M : A \in \mathsf{sn} & \text{by assumption} \\ \Gamma \vdash M' \ N : B \in \mathsf{sn} & \text{by assumption} \\ \Gamma \vdash M' \ N' : B \in \mathsf{sn} & \text{as } M' \ N \longrightarrow M' \ N' \\ \Gamma \vdash N' : A \in \mathsf{sn} & \text{using } \Gamma \vdash N : A \in \mathsf{sn} \text{ and } \Gamma \vdash N \longrightarrow N' : A \\ \Gamma \vdash M \ N' : B \in \mathsf{sn} & \text{by IH (since } \Gamma \vdash N' : A \in \mathsf{sn} \text{ is smaller)} \end{array}$

2. If $\Gamma \vdash M \longrightarrow_{sn} M' : A$ and $\Gamma \vdash M' : A \in sn$ then $\Gamma \vdash M : A \in sn$.

By induction on $\Gamma \vdash M \longrightarrow_{sn} M' : A$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{sn} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : M) \ N \longrightarrow_{\mathsf{sn}} [N/x]M : B}$$

 $\Gamma \vdash [N/x]M : B \in \mathsf{sn}$ by assumption $\Gamma \vdash N : A \in \mathsf{sn}$ by assumption $\Gamma \vdash (\lambda x : A.M) \ N : B \in \mathsf{sn}$ by Lemma A.9 (A.10)

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A \Rightarrow B \quad \Gamma \vdash N : A}{\Gamma \vdash M N \longrightarrow_{\mathsf{sn}} M' N : B}$$

 $\begin{array}{lll} \Gamma \vdash M' \ N : B \in \mathsf{sn} & \mathsf{by \ assumption} \\ \Gamma \vdash M' : A \Rightarrow B \in \mathsf{sn} & \mathsf{by \ Lemma \ A.9 \ (4)} \\ \Gamma \vdash M : A \Rightarrow B \in \mathsf{sn} & \mathsf{by \ IH} \\ \Gamma \vdash N : A \in \mathsf{sn} & \mathsf{by \ Lemma \ A.9 \ (4)} \\ \Gamma \vdash M \ N : B \in \mathsf{sn} & \mathsf{by \ Property \ (1)} \\ \end{array}$

A.3 Soundness

Lemma A.14. *If* $\Gamma \vdash M : A \in SNe then \Gamma \vdash M : A$ ne.

Proof. By induction on $\Gamma \vdash M : A \in \mathsf{SNe}$.

Case
$$\mathscr{D} = \frac{x:A \in \Gamma}{\Gamma \vdash x:A \in \mathsf{SNe}}$$

 $\Gamma \vdash x : A \text{ ne}$ by definition

Case
$$\mathscr{D} = \frac{\Gamma \vdash R : A \Rightarrow B \in \mathsf{SNe} \qquad \Gamma \vdash M : A \in \mathsf{SN}}{\Gamma \vdash R M : B \in \mathsf{SNe}}$$

 $\Gamma \vdash R : A \Rightarrow B \in \mathsf{SNe}$ by assumption $\Gamma \vdash R : A \Rightarrow B \text{ ne}$ by IH $\Gamma \vdash R M : B \text{ ne}$ by definition of neutral terms

9

Theorem A.1 (Soundness of SN).

- 1. *If* $\Gamma \vdash M : A \in SN$ *then* $\Gamma \vdash M : A \in sn$.
- 2. *If* $\Gamma \vdash M : A \in SNe then \Gamma \vdash M : A \in sn.$
- 3. If $\Gamma \vdash M \longrightarrow_{SN} M' : A$ then $\Gamma \vdash M \longrightarrow_{sn} M' : A$.

Proof. By mutual structural induction on the given derivations using the closure properties.

1. If $\Gamma \vdash M : A \in \mathsf{SN}$ then $\Gamma \vdash M : A \in \mathsf{sn}$.

Induction on $\Gamma \vdash M : A \in SN$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash R : A \in \mathsf{SNe}}{\Gamma \vdash R : A \in \mathsf{SN}}$$

$$\Gamma \vdash R : A \in \mathsf{sn}$$
 by IH (2)

Case
$$\mathscr{D} = \frac{\Gamma, x:A \vdash M: B \in \mathsf{SN}}{\Gamma \vdash \lambda x:A.M: A \Rightarrow B \in \mathsf{SN}}$$

$$\Gamma$$
, $x:A \vdash M:B \in \mathsf{sn}$ by IH (1)

$$\Gamma \vdash \lambda x : A.M : A \Rightarrow B \in \mathsf{sn}$$
 by Lemma A.9 (3)

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A \qquad \Gamma \vdash M' : A \in \mathsf{SN}}{\Gamma \vdash M : A \in \mathsf{SN}}$$

$$\Gamma \vdash M' : A \in \mathsf{sn}$$
 by IH (1)

$$\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A$$
 by IH (3)

$$\Gamma \vdash M : A \in \text{sn}$$
 by Backwards Closure (Lemma A.13 (2))

2. If $\Gamma \vdash M : A \in \mathsf{SNe}$ then $\Gamma \vdash M : A \in \mathsf{sn}$.

Induction on $\Gamma \vdash M : A \in \mathsf{SNe}$.

Case
$$\mathscr{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A \in \mathsf{SNe}}$$

$$\Gamma \vdash x : A \in \operatorname{sn}$$
 by Lemma A.9 (1)

Case
$$\mathscr{D} = \frac{\Gamma \vdash R : A \Rightarrow B \in \mathsf{SNe}}{\Gamma \vdash R M : B \in \mathsf{SNe}}$$

$$\Gamma \vdash R : A \Rightarrow B \in \mathsf{sn}$$
 by IH (2)

$$\Gamma \vdash M : A \in \mathsf{sn}$$
 by IH (1)

$$\Gamma \vdash R : A \Rightarrow B \text{ ne}$$
 by Lemma A.14

$$\Gamma \vdash RM : B \in \mathsf{sn}$$
 by Lemma A.11 (2)

3. If
$$\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A$$
 then $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A$.

Induction on
$$\Gamma \vdash M \longrightarrow_{SN} M' : A$$

Case
$$\mathscr{D} = \frac{\Gamma \vdash N : A \in \mathsf{SN} \quad \Gamma, x : A \vdash M : B}{\Gamma \vdash (\lambda x : M) \ N \longrightarrow_{\mathsf{SN}} [N/x]M : B}$$

$$\begin{array}{ll} \Gamma \vdash N : A \in \mathsf{sn} & \mathsf{by} \ \mathsf{IH} \ (1) \\ \Gamma \vdash (\lambda x.M) \ N \longrightarrow_{\mathsf{sn}} [N/x]M : B & \mathsf{by} \ \mathsf{def.} \ \mathsf{of} \longrightarrow_{\mathsf{sn}} \end{array}$$

Case
$$\mathscr{D} = \frac{\Gamma \vdash R \longrightarrow_{\mathsf{SN}} R' : A \Rightarrow B \quad \Gamma \vdash M : A}{\Gamma \vdash RM \longrightarrow_{\mathsf{SN}} R'M : B}$$

$$\Gamma \vdash R \longrightarrow_{\mathsf{sn}} R' : A \Rightarrow B$$
 by IH(3)
$$\Gamma \vdash RM \longrightarrow_{\mathsf{sn}} R'M : B$$
 by def. of $\longrightarrow_{\mathsf{sn}}$

A.3.1 Properties of the inductive definition of SN

Lemma A.15 (SN and SNe characterize well-typed terms).

- 1. If $\Gamma \vdash M : A \in SN$ then $\Gamma \vdash M : A$.
- 2. *If* $\Gamma \vdash M : A \in SNe then \Gamma \vdash M : A$.
- 3. If $\Gamma \vdash M \longrightarrow_{SN} M' : A$ then $\Gamma \vdash M : A$ and $\Gamma \vdash M' : A$.

Proof. By induction on the definition of SN, SNe, and \longrightarrow_{SN} .

Lemma A.16 (Renaming).

- 1. If $\Gamma \vdash M : A \in SN$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma' \vdash [\rho]M : A \in SN$
- 2. If $\Gamma \vdash M : A \in SNe$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma' \vdash [\rho]M : A \in SNe$
- 3. If $\Gamma \vdash M \longrightarrow_{SN} N : A \text{ and } \Gamma' \leq_{\rho} \Gamma \text{ then } \Gamma' \vdash [\rho]M \longrightarrow_{SN} [\rho]N : A.$

Proof. By induction on the first derivation.

Case:
$$\mathscr{D} = \frac{\Gamma \vdash R : A \in \mathsf{SNe}}{\Gamma \vdash R : A \in \mathsf{SN}}$$

$$\Gamma' \vdash [\rho]R : A \in \mathsf{SNe}$$
 by IH (2) $\Gamma' \vdash [\rho]R : A \in \mathsf{SN}$ by def. of SN

Case:
$$\mathscr{D} = \frac{\Gamma, x: A \vdash M : B \in \mathsf{SN}}{\Gamma \vdash \lambda x: A.M : A \Rightarrow B \in \mathsf{SN}}$$

$$\Gamma', x:A \leq_{\rho, x/x} \Gamma, x:A$$
 by def. of \leq_{ρ} by IH (1)

$$\Gamma', x:A \vdash [\rho, x/x]M : B \in \mathsf{SN}$$
 by def. of SN by def. of SN

$$\Gamma' \vdash \lambda x:A.[\rho, x/x]M : A \Rightarrow B \in \mathsf{SN}$$
 by subst. def.

Case:
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A \qquad \Gamma \vdash M' : A \in \mathsf{SN}}{\Gamma \vdash M : A \in \mathsf{SN}}$$

$$\begin{array}{ll} \Gamma' \vdash [\rho] M \longrightarrow_{\textstyle \mathsf{SN}} [\rho] M' : A & \text{by IH (3)} \\ \Gamma' \vdash [\rho] M' : A \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma' \vdash [\rho] M : A \in \mathsf{SN} & \text{by def. of SN} \end{array}$$

Appendix to POPLMark Reloaded

Case:
$$\mathscr{D} = \frac{x:A \in \Gamma}{\Gamma \vdash x:A \in \mathsf{SNe}}$$

$$\begin{array}{ll} \Gamma' \leq_{\rho} \Gamma & \text{by assumption} \\ \Gamma' \vdash [\rho]x : A & \text{by Renaming of Typing (Lemma A.1)} \\ \Gamma' \vdash [\rho]x : A \in \mathsf{SNe} & \text{by def. of SNe} \end{array}$$

Case:
$$\mathscr{D} = \frac{\Gamma \vdash R : A \Rightarrow B \in \mathsf{SNe} \qquad \Gamma \vdash M : A \in \mathsf{SN}}{\Gamma \vdash RM : A \Rightarrow B \in \mathsf{SNe}}$$

$$\begin{split} \Gamma' \vdash [\rho]R : A \Rightarrow B \in \mathsf{SNe} & \text{by IH (2)} \\ \Gamma' \vdash [\rho]M : A \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma' \vdash [\rho]R \ [\rho]M : A \Rightarrow B \in \mathsf{SNe} & \text{by def. of SNe} \\ \Gamma' \vdash [\rho](RM) : B \in \mathsf{SNe} & \text{by subst. def.} \end{split}$$

Case:
$$\mathscr{D} = \frac{\Gamma, x:A \vdash M:B \qquad \Gamma \vdash N:A \in \mathsf{SN}}{\Gamma \vdash (\lambda x:A.M) \ N \longrightarrow_{\mathsf{SN}} [N/x]M:B}$$

$$\begin{array}{lll} \Gamma' \vdash [\rho]N : A \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma' \leq_{\rho} \Gamma & \text{by assumption} \\ \Gamma', x : A \leq_{\rho} \Gamma & \text{by Weakening of Renaming (Lemma A.1)} \\ \Gamma', x : A \leq_{\rho, x/x} \Gamma, x : A & \text{by def. of well-typed subst.} \\ \Gamma', x : A \vdash [\rho, x/x]M : B & \text{by Weakening Lemma A.2} \\ \Gamma' \vdash (\lambda x : A . [\rho, x/x]M) \ [\rho]N \longrightarrow_{\mathsf{SN}} [\rho, [\rho]N/x]M : B & \text{by def. of } \longrightarrow_{\mathsf{SN}} \\ \Gamma' \vdash [\rho]((\lambda x : AM) \ N) \longrightarrow_{\mathsf{SN}} [\rho]([N/x]M) : B & \text{by def. of subst.} \\ \end{array}$$

Case:
$$\mathscr{D} = \frac{\Gamma \vdash R \longrightarrow_{\mathsf{SN}} R' : A \Rightarrow B \quad \Gamma \vdash M : A}{\Gamma \vdash RM \longrightarrow_{\mathsf{SN}} R'M : B}$$

$$\begin{array}{lll} \Gamma' \vdash [\rho]R \longrightarrow_{\mathsf{SN}} [\rho]R' : A \Rightarrow B & \text{by IH}(3) \\ \Gamma' \vdash [\rho]M : A & \text{by Weakening of Typing (Lemma A.2)} \\ \Gamma \vdash [\rho]R [\rho]M \longrightarrow_{\mathsf{SN}} [\rho]R' [\rho]M : B & \text{by def. of } \longrightarrow_{\mathsf{SN}} \\ \Gamma \vdash [\rho](R M) \longrightarrow_{\mathsf{SN}} [\rho](R' M) : B & \text{by def. of subst.} \end{array}$$

Lemma A.17 (Anti-Renaming).

- 1. If $\Gamma' \vdash [\rho]M : A \in SN$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma \vdash M : A \in SN$
- 2. If $\Gamma' \vdash [\rho]M : A \in SNe$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma \vdash M : A \in SNe$
- 3. If $\Gamma' \vdash [\rho]M \longrightarrow_{SN} N' : A$ and $\Gamma' \leq_{\rho} \Gamma$ then there exists N s.t. $\Gamma \vdash M \longrightarrow_{SN} N : A$ and $[\rho]N = N'$.

Proof. By induction on the first derivation. We exploit the fact that ρ is a renaming substitution and take into account equational properties of substitutions when considering different cases. We only show a few cases.

Case
$$\mathscr{D} = \frac{\Gamma', x:A \vdash [\rho, x/x]M : B \in \mathsf{SN}}{\Gamma' \vdash \lambda x:A.[\rho, x/x]M : A \Rightarrow B \in \mathsf{SN}} \text{ using } [\rho](\lambda x:A.M) = \lambda x:A.[\rho, x/x]M.$$

 Γ' , $x:A \leq_{\rho,x/x} \Gamma$, x:Aby Weakening (Lemma A.1) and well-typed substitution rule Γ , $x:A \vdash M : B \in \mathsf{SN}$ by IH (1) $\Gamma \vdash \lambda x : A : A \Rightarrow B \in \mathsf{SN}$ by def. of SN

Case $\mathscr{D} = \frac{y_i : A_1 \in \Gamma'}{\Gamma' \vdash [\rho] x_i : A_i \in \mathsf{SNe}}$ using $[\rho] x_i = y_i$

where $\rho = y_1/x_1, \dots, y_n/x_n$ and $\Gamma = x_1:A_1, \dots, x_n:A_n$ and $\Gamma' = y_1:A_1, \dots, y_n:A_n$

 $\Gamma \vdash x_i : A_i$ since $x_i:A_i \in \Gamma$

$$\textbf{Case} \ \mathscr{D} = \frac{\Gamma' \vdash [\rho] M \longrightarrow_{\mathsf{SN}} N' : A \qquad \Gamma' \vdash N' : A \in \mathsf{SN}}{\Gamma' \vdash [\rho] M : A \in \mathsf{SN}} \ \text{using} \ [\rho] M = M'$$

 $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} N : A \text{ and } [\rho]N = N'$ by IH (3) $\Gamma' \vdash [\rho]N : A \in \mathsf{SN}$ using assumption $\Gamma' \vdash N' : A \in SN$ and $[\rho]N = N'$ $\Gamma \vdash N : A \in \mathsf{SN}$ by IH (1) $\Gamma \vdash M : A \in \mathsf{SN}$ by def. of \longrightarrow_{SN}

 $\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma' \vdash [\rho]R : A \Rightarrow B \in \mathsf{SNe} \quad \Gamma' \vdash [\rho]M : A \in \mathsf{SN}}{\Gamma' \vdash [\rho](RM) : B \in \mathsf{SNe}} \ \ \mathsf{using} \ [\rho](RM) = [\rho]R \ [\rho]M$

 $\Gamma \vdash R : A \Rightarrow B \in \mathsf{SNe}$ by IH(2) $\Gamma \vdash M : A \in \mathsf{SN}$ by IH(1) $\Gamma \vdash RM : B \in \mathsf{SNe}$ by def. of SNe

Case $\mathscr{D} = \frac{\Gamma' \vdash [\rho]N : A \in \mathsf{SN} \quad \Gamma', x : A \vdash [\rho, x/x]M : B}{\Gamma' \vdash [\rho]((\lambda x : A . M) N) \longrightarrow_{\mathsf{SN}} [\rho, [\rho]N/x]M : B}$

using $[\rho]((\lambda x:A.M)N) = (\lambda x:A.[\rho,x/x]M)[\rho]N$ and $[[\rho]N/x]([\rho,x/x]M) = [\rho,[\rho]N/x]M = [\rho]([N/x]M)$

 $\Gamma \vdash N : A \in \mathsf{SN}$ by IH(1)

 Γ , $x:A \vdash M:B$ by Anti-Renaming for Typing (Lemma A.3) $\Gamma \vdash (\lambda x : A.M) \ N \longrightarrow_{\mathsf{SN}} [N/x]M : B$ by def. of \longrightarrow_{SN}

Case $\mathscr{D} = \frac{\Gamma' \vdash [\rho]R \longrightarrow_{\mathsf{SN}} R' : A \Rightarrow B \quad \Gamma' \vdash [\rho]M : A}{\Gamma' \vdash [\rho](RM) \longrightarrow_{\mathsf{SN}} R'[\rho]M} \text{ using } [\rho](RM) = [\rho]R \ [\rho]M$

by Anti-Renaming for Typing (Lemma A.3) $\Gamma \vdash M : A$

 $\Gamma \vdash R \longrightarrow_{\mathsf{SN}} R_0 : A \Rightarrow B \text{ and } [\rho]R_0 = R'$ by IH(3)

 $\Gamma \vdash R M \longrightarrow_{\mathsf{SN}} R_0 M : B$ by def. of \longrightarrow_{SN} $[\rho](R_0 M) = [\rho]R_0 [\rho]M = R' [\rho]M$ by previous lines and subst. properties

13

Lemma A.18 (Extensionality of SN). *If* $x:A \in \Gamma$ *and* $\Gamma \vdash M$ $x:B \in SN$ *then* $\Gamma \vdash M:A \Rightarrow B \in SN$.

Proof. By induction on SN.

Case:
$$\mathscr{D} = \frac{\Gamma \vdash M \ x : B \in \mathsf{SNe}}{\Gamma \vdash M \ x : B \in \mathsf{SN}}$$

$$\Gamma \vdash M : A \Rightarrow B \in \mathsf{SNe}$$

 $\Gamma \vdash M : A \Rightarrow B \in \mathsf{SN}$

by def. of SNe

Case:
$$\mathscr{D} = \frac{\Gamma \vdash M \ x \longrightarrow_{\mathsf{SN}} Q : B}{\Gamma \vdash M \ x : B \in \mathsf{SN}}$$

Sub-case: $\Gamma \vdash (\lambda y : A.M') \ x \longrightarrow_{SN} [x/y]M' : B$

 $\Gamma \vdash [x/y]M' : B \in \mathsf{SN}$ by assumption $\Gamma, y:A \vdash M' : B \in \mathsf{SN}$ by Anti-Renaming Property (Lemma A.17) $\Gamma \vdash \lambda y:A.M' : A \Rightarrow B \in \mathsf{SN}$ by def. of SN

Sub-case: $\Gamma \vdash M x \longrightarrow_{SN} M' x : B \text{ and } Q = M' x$

A.3.2 Reducibility Candidates

Theorem A.2.

- 1. $CR1: If \Gamma \vdash M \in \mathcal{R}_C \ then \ \Gamma \vdash M : C \in SN$.
- 2. CR2: If $\Gamma \vdash M \longrightarrow_{SN} M' : C$ and $\Gamma \vdash M' \in \mathscr{R}_C$ then $\Gamma \vdash M \in \mathscr{R}_C$.
- 3. *CR3:* If $\Gamma \vdash M : C \in SNe$ then $\Gamma \vdash M \in \mathcal{R}_C$.

Proof. We prove these three properties simultaneously, each by induction on the structure of *C*.

CR 1. If
$$\Gamma \vdash M \in \mathcal{R}_C$$
 then $\Gamma \vdash M : C \in SN$.

By induction on the structure of C.

A. Abel et. al.

Case $C = i$
$\Gamma \vdash M \in \mathscr{R}_{i}$
$\Gamma \vdash M : i \in SN$

by assumption by def. of sem. interpretation for i

Case $C = A \Rightarrow B$ Γ , $x:A \vdash x:A \in \mathsf{SNe}$ Γ . $x:A \vdash x \in \mathscr{R}_A$ $\Gamma, x:A \leq_{\mathsf{wk}} \Gamma$ $\Gamma, x:A \vdash [\mathsf{wk}]M \ x \in \mathscr{R}_B$ Γ , $x:A \vdash [wk]M \ x : B \in SN$

 Γ , $x:A \vdash [wk]M : A \Rightarrow B \in SN$

 $\Gamma \vdash M : A \Rightarrow B \in \mathsf{SN}$

by def. of SNe by IH (3) by def. of context extensions by def. of Γ , $x:A \vdash M \in \mathcal{R}_{A \Rightarrow B}$

by IH (CR 1) by Extensionality Lemma A.18

by Anti-Renaming Lemma A.17

CR 2. If $\Gamma \vdash M \longrightarrow_{SN} M' : C$ and $\Gamma \vdash M' \in \mathscr{R}_C$ then $\Gamma \vdash M \in \mathscr{R}_C$

By induction on the structure of *C*.

Case: C = i. $\Gamma \vdash M' : i \in \mathsf{SN}$ $\Gamma \vdash M : i \in SN$ $\Gamma \vdash M \in \mathscr{R}_{\mathsf{i}}$

since $\Gamma \vdash M' \in \mathcal{R}_i$ by closure rule for SN

by definition of semantic typing

Case: $C = A \Rightarrow B$.

Assume $\Gamma' \leq_{\rho} \Gamma$, $\Gamma' \vdash N \in \mathcal{R}_A$ $\Gamma' \vdash M'[\rho] \ N \in \mathscr{R}_B$ $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A \Rightarrow B$ $\Gamma' \vdash [\rho] M \xrightarrow{\longrightarrow}_{\mathsf{SN}} [\rho] M' : A \Rightarrow B$ $\Gamma' \vdash [\rho] M N \xrightarrow{\longrightarrow}_{\mathsf{SN}} [\rho] M' N : B$ $\Gamma \vdash [\rho]M \ N \in \mathscr{R}_B$

by assumption $\Gamma \vdash M' \in \mathcal{R}_{A \Rightarrow B}$ by assumption

> by Renaming Lemma A.16 by \longrightarrow_{SN}

by IH (CR2) since $\Gamma' \vdash N \in \mathcal{R}_A$ was arbitrary

CR 3. If $\Gamma \vdash M : C \in \mathsf{SNe}$ then $\Gamma \vdash M \in \mathscr{R}_C$.

By induction on the structure of *C*.

Case: C = i. $\Gamma \vdash M : C \in \mathsf{SNe}$ $\Gamma \vdash M : C \in \mathsf{SN}$ $\Gamma \vdash M \in \mathscr{R}_{\mathsf{i}}$

 $\Gamma \vdash M \in \mathscr{R}_{A \Rightarrow B}$

by assumption by def. of SN by def. of semantic typing

Case: $C = A \Rightarrow B$.

Assume $\Gamma' \leq_{\rho} \Gamma$ and $\Gamma' \vdash N \in \mathcal{R}_A$ $\Gamma' \vdash N : A \in \mathsf{SN}$ $\Gamma \vdash M : A \Rightarrow B \in \mathsf{SNe}$ $\Gamma' \vdash [\rho]M : A \Rightarrow B \in \mathsf{SNe}$

by assumption by Renaming Lemma A.16

 $\Gamma' \vdash [\rho]M \ N : B \in \mathsf{SNe}$

by def. of SNe

by IH (CR 1)

 $\Gamma' \vdash [\rho]M \ N \in \mathscr{R}_B$ $\Gamma \vdash M \in \mathscr{R}_{A \Rightarrow B}$

since $\Gamma' \vdash N \in \mathcal{R}_A$ was arbitrary

15

by IH (CR 3)

A.4 Proving strong normalization

Lemma A.19 (Fundamental lemma). *If* $\Gamma \vdash M : A$ *and* $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ *then* $\Gamma' \vdash [\sigma]M \in \mathscr{R}_{A}$. *Proof.* By induction on $\Gamma \vdash M : A$.

Case
$$\mathscr{D} = \frac{\Gamma(x) = A}{\Gamma \vdash x : A}$$

 $\Gamma' \vdash \sigma \in \mathscr{R}_\Gamma$ $\Gamma' \vdash [\sigma] x \in \mathscr{R}_A$

by assumption by definition of $[\sigma]x$ and $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B}$$

 $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ by assumption $\Gamma' \vdash [\sigma]M \in \mathscr{R}_{A \to B}$ by IH by IH $\Gamma' \vdash [\sigma] N \in \mathscr{R}_A$ $\Gamma' \vdash [\sigma]M [\sigma]N \in \mathscr{R}_B$ by $\Gamma' \vdash [\sigma]M \in \mathscr{R}_{A \to B}$ $\Gamma' \vdash [\sigma](MN) \in \mathscr{R}_B$ by subst. definition

Case
$$\mathscr{D} = \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B}$$

 $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ by assumption

Assume $\Gamma'' \leq_{\rho} \Gamma'$ and $\Gamma'' \vdash N : A$

 $\Gamma'' \vdash [\rho] \sigma \in \mathscr{R}_{\Gamma}$ by weakening $\Gamma'' \vdash ([\rho]\sigma, N/x) \in \mathscr{R}_{\Gamma,x:A}$ by definition of semantic substitutions $\Gamma'' \vdash [[\rho]\sigma, N/x]M \in \mathscr{R}_B$

 $\Gamma'' \vdash (\lambda x.[[\rho]\sigma, x/x]M) N \longrightarrow_{\mathsf{SN}} [[\rho]\sigma, N/x]M$ by reduction \longrightarrow_{SN}

 $(\lambda x.[[\rho]\sigma,x/x]M) = [[\rho]\sigma](\lambda x.M)$ by subst. def

 $\Gamma'' \vdash ([[\rho]\sigma]\lambda x.M) \ N \in \mathcal{R}_B$ by CR 2

 $\Gamma' \vdash [\sigma](\lambda x.M) \in \mathscr{R}_{A \Rightarrow B}$ since $\Gamma'' \leq_{\rho} \Gamma'$ and $\Gamma'' \vdash N : A$ was arbitrary

Corollary A.2. *If* $\Gamma \vdash M : A$ *then* $\Gamma \vdash M : A \in SN$.

Proof. Using the fundamental lemma with the identity substitution $\Gamma \vdash id \in \mathcal{R}_{\Gamma}$, we obtain $\Gamma \vdash M \in \mathcal{R}_A$. By CR1, we know $\Gamma \vdash M \in \mathsf{SN}$.

A.5 Extension with disjoint sums

A.5.1 Soundness of the inductive definition

Lemma A.20 (Properties of Multi-Step Reductions).

A. Abel et. al.

$$\begin{split} &\frac{\Gamma \vdash M \longrightarrow N : A}{\Gamma \vdash \operatorname{inl} M \longrightarrow \operatorname{inl} N : A + B} \text{ E-Inl.} \qquad \frac{\Gamma \vdash M \longrightarrow N : B}{\Gamma \vdash \operatorname{inr} M \longrightarrow \operatorname{inr} N : A + B} \text{ E-Inr.} \\ &\frac{\Gamma \vdash M \longrightarrow M' : A + B}{\Gamma \vdash \operatorname{inr} M \longrightarrow \operatorname{inr} N : A + B} \text{ E-Inr.} \\ &\frac{\Gamma \vdash M \longrightarrow M' : A + B}{\Gamma \vdash \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \operatorname{case} M' \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 : C}{\Gamma \vdash \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 : C} \overset{\Gamma \vdash M : A + B}{\Gamma \vdash \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 : C} \overset{\Gamma \vdash M : A + B}{\Gamma \vdash \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \operatorname{case} M \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 : C} \overset{\Gamma \vdash M : A + B}{\Gamma \vdash \operatorname{case} (\operatorname{inl} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \underbrace{(M \mid X \mid N_1 \mid \operatorname{inr} y \Rightarrow N_2 \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{inl} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \underbrace{(M \mid X \mid N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{inr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \underbrace{(M \mid X \mid N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{inr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \underbrace{(M \mid X \mid N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow \underbrace{(M \mid X \mid N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{cinr} M) \operatorname{of inl} x \Rightarrow N_1 \mid \operatorname{case} \mid C)}_{\Gamma \vdash \operatorname{case} (\operatorname{case} \cap M)}_{\Gamma \vdash \operatorname{case} (\operatorname{case} \cap M)}_{\Gamma$$

Fig. 1. Type-Directed Reduction, Extended with Disjoint Sums

$$\begin{split} & \text{Head reduction}: \boxed{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} N : A} \\ & \frac{\Gamma \vdash M : A \in \mathsf{sn} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{sn}}{\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x] N_1 : C} \\ & \frac{\Gamma \vdash M : A \in \mathsf{sn} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{sn}}{\Gamma \vdash \mathsf{case} \, (\mathsf{inr} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/y] N_2 : C} \\ & \frac{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} \, M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C} \end{aligned}$$

Fig. 2. Head Reduction, Extended with Disjoint Sums

- 1. If $\Gamma, x:A \vdash M : B$ and $\Gamma \vdash N \longrightarrow N' : A$ then $\Gamma \vdash [N/x]M \longrightarrow^* [N'/x]M : B$.
- 2. If $\Gamma \vdash M \longrightarrow^* M' : A$ then $\Gamma \vdash \operatorname{inl} M \longrightarrow^* \operatorname{inl} M' : A + B$.
- 3. If $\Gamma \vdash M \longrightarrow^* M' : B$ then $\Gamma \vdash \operatorname{inr} M \longrightarrow^* \operatorname{inr} M' : A + B$.
- 4. If $\Gamma \vdash M \longrightarrow^* M' : A + B$ then $\Gamma \vdash caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 \longrightarrow^* caseM'$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 : C$.
- 5. If $\Gamma, x:A \vdash N_1 \longrightarrow^* N_1' : C$ then $\Gamma \vdash caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 \longrightarrow^* caseM$ of $inlx \Rightarrow N_1' \mid inry \Rightarrow N_2 : C$.
- 6. If $\Gamma, y:B \vdash N_2 \longrightarrow^* N_2' : C$ then $\Gamma \vdash caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 \longrightarrow^* caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2' : C$.

Proof. (1) adds new cases to Lemma A.6 (5). The rest of the properties are proven by induction on the multi-step relation. \Box

Lemma A.21 (Properties of strongly normalizing terms).

1. *If* $\Gamma \vdash M : A \in \text{sn } then \ \Gamma \vdash inl M : A + B \in \text{sn.}$

- 2. *If* $\Gamma \vdash M : B \in \operatorname{sn} then \Gamma \vdash inr M : A + B \in \operatorname{sn}$.
- 3. If $\Gamma \vdash caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 : C \in sn$, then $\Gamma \vdash M : A + B \in sn$ and $\Gamma, x:A \vdash N_1 : C \in sn$ and $\Gamma, y:B \vdash N_2 : C \in sn$.

Proof.

1. If $\Gamma \vdash M : A \in \mathsf{sn}$ then $\Gamma \vdash \mathsf{inl} M : A + B \in \mathsf{sn}$.

Induction on $\Gamma \vdash M : A \in \mathsf{sn}$.

Assume $\Gamma \vdash \mathsf{inl}\, M \longrightarrow Q : A + B$.

 $\Gamma \vdash M \longrightarrow M' : A \text{ and } Q = \text{inl } M'$

 $\Gamma \vdash M' : A \in \mathsf{sn}$

 $\Gamma \vdash \mathsf{inl}\, M' : A + B \in \mathsf{sn}$

 $\Gamma \vdash \mathsf{inl}\, M : A + B \in \mathsf{sn}$

by inversion on the only applicable red. rule

by assumption $\Gamma \vdash M : A \in \mathsf{sn}$

by IH

since $\Gamma \vdash \text{inl } M \longrightarrow Q : A + B \text{ was arbitrary}$

2. If $\Gamma \vdash M : B \in \mathsf{sn}$ then $\Gamma \vdash \mathsf{inr} M : A + B \in \mathsf{sn}$.

Similar to above.

3. If $\Gamma \vdash \mathsf{case}\, M$ of $\mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2 : C \in \mathsf{sn}$, then $\Gamma \vdash M : A + B \in \mathsf{sn}$ and $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn}$ and $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$.

Induction on $\Gamma \vdash \mathsf{case} M$ of $\mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{sn}$. We show that if $\Gamma \vdash \mathsf{case} M$ of $\mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{sn}$ then $\Gamma \vdash M : A + B \in \mathsf{sn}$; the other two proofs are similar.

Assume $\Gamma \vdash M \longrightarrow M' : A + B$.

 $\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ by rule E-CASE

 $\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{sn}$

by assumption

 $\Gamma \vdash \mathsf{case} M' \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{sn}$

by definition of sn

 $\Gamma \vdash M' : A + B \in \mathsf{sn}$

by IH

 $\Gamma \vdash M : A + B \in \mathsf{sn}$

since $\Gamma \vdash M \longrightarrow M' : A + B$ was arbitrary

Lemma A.22 (Weak head expansion).

- 1. If $\Gamma \vdash M : A \in \text{sn } and \ \Gamma \vdash [M/x]N_1 : C \in \text{sn } and \ \Gamma, y : B \vdash N_2 : C \in \text{sn } then \ \Gamma \vdash case(inl M) of inl x \Rightarrow N_1 \mid inry \Rightarrow N_2 \in \text{sn.}$
- 2. If $\Gamma \vdash M : B \in \operatorname{sn} \ and \ \Gamma, x:A \vdash N_1 : C \in \operatorname{sn} \ and \ \Gamma \vdash [M/y]N_2 : C \in \operatorname{sn} \ then \ \Gamma \vdash case(inr M) \ of \ inl x \Rightarrow N_1 \mid inr y \Rightarrow N_2 \in \operatorname{sn}$.

Proof.

1. If $\Gamma \vdash M : A \in \mathsf{sn}$ and $\Gamma \vdash [M/x]N_1 : C \in \mathsf{sn}$ and $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$, then $\Gamma \vdash \mathsf{case} \mathsf{inl} M \mathsf{of} \mathsf{inl} x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$.

Proof by induction — either $\Gamma \vdash M : A \in \operatorname{sn}$ is getting smaller or $\Gamma, x : A \vdash N_1 : C \in \operatorname{sn}$ is

A. Abel et. al.

getting smaller or Γ , $y : B \vdash N_2 : C \in \text{sn is getting smaller}$.

Assume $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow P : B$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow [M/x]N_1 : C} \text{ and } P = [M/x]N_1$$

$$\Gamma \vdash [M/x]N_1 : C \in \mathsf{sn}$$
 by assumption

$$\frac{\Gamma \vdash M \longrightarrow M' : A}{\Gamma \vdash \mathsf{inl}\ M \longrightarrow \mathsf{inl}\ M' : A + B} \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C$$

Case $\mathscr{D} = -$

 $\Gamma \vdash \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, \mathsf{inl} \, M' \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ and $Q = \operatorname{caseinl} M'$ of $\operatorname{inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2$

 $\Gamma \vdash M' : A \in \mathsf{sn}$ using $\Gamma \vdash M : A \in \mathsf{sn}$

 $\Gamma \vdash [M/x]N_1 \longrightarrow^* [M'/x]N_1 : C$ by Lemma A.20 (1) using $\Gamma \vdash M \longrightarrow M' : A$

 $\Gamma \vdash [M'/x]N_1 : C \in \mathsf{sn}$ by Lemma A.8 using Γ ⊢ [M/x] N_1 : C ∈ sn

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ by IH (since $\Gamma \vdash M' : A \in \text{sn is smaller}$)

$$\Gamma$$
, $x:A \vdash N_1 \longrightarrow N'_1 : C$

 $\Gamma \vdash \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ and $Q = \operatorname{case} \inf M \text{ of } \inf x \Rightarrow N'_1 \mid \operatorname{inr} y \Rightarrow N_2$

 $\Gamma \vdash [M/x]N_1 \longrightarrow [M/x]N_1' : C$

by Lemma A.5

 $\Gamma \vdash [M/x]N_1' : C \in \mathsf{sn}$

using $\Gamma \vdash [M/x]N_1 : C \in \mathsf{sn}$

 $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1' \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn} \text{ by IH (since } \Gamma \vdash [M/x]N_1' : C \in \mathsf{sn} \text{ is smaller)}$

$$\Gamma, y:B \vdash N_2 \longrightarrow N_2':C$$

 $\frac{\Gamma, y : B \vdash N_2 \longrightarrow N_2' : C}{\Gamma \vdash \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2' : C}$ Case $\mathscr{D} =$ and $Q = \operatorname{case} \inf M \text{ of } \inf x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2'$

 $\Gamma, y : B \vdash N_2' : C \in \mathsf{sn}$ using Γ , $y : B \vdash N_2 : C \in \mathsf{sn}$

 $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2' : C \in \mathsf{sn}$ by IH (since $\Gamma \vdash N_2' : C \in \mathsf{sn}$ is smaller)

2. If $\Gamma \vdash M : B \in \mathsf{sn}$ and $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn}$ and $\Gamma \vdash [M/y]N_2 : C \in \mathsf{sn}$, then $\Gamma \vdash$ case inr M of inl $x \Rightarrow N_1 \mid \text{inr } y \Rightarrow N_2 : C \in \text{sn.}$

Similar to above.

Lemma A.23 (Closure properties of neutral terms).

- 1. If $\Gamma \vdash R : A$ ne and $\Gamma \vdash R \longrightarrow R' : A$, then $\Gamma \vdash R' : A$ ne.
- 2. If $\Gamma \vdash M : A + B \in \operatorname{sn}$, $\Gamma \vdash M : A + B$ ne, $\Gamma, x : A \vdash N_1 : C \in \operatorname{sn}$, and $\Gamma, y : B \vdash N_2 : C \in \operatorname{sn}$, then $\Gamma \vdash caseM$ of $inlx \Rightarrow N_1 \mid inry \Rightarrow N_2 \in sn$.

Proof.

1. If
$$\Gamma \vdash R : A$$
 ne and $\Gamma \vdash R \longrightarrow R' : A$, then $\Gamma \vdash R' : A$ ne.

By induction on $\Gamma \vdash R : A$ ne. We highlight the case for disjoint sums.

$$\textbf{Case} \ \frac{\Gamma \vdash R'': A + B \ \mathsf{ne} \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} \, R'' \ \mathsf{of} \ \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \ \mathsf{ne}}$$

 $\Gamma \vdash R'' : A + B$ ne by assumption

We proceed by cases on $\Gamma \vdash R \longrightarrow R' : A$.

$$\textbf{Sub-case} \ \frac{\Gamma \vdash R'' \longrightarrow P : A + B \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case} R'' \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \mid \mathsf{inr} \ y \Rightarrow N_2 \longrightarrow \mathsf{case} P \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \mid \mathsf{inr} \ y \Rightarrow N_2 : C} \ \mathsf{E-CASE}$$

$$\Gamma \vdash R'' \longrightarrow P : A + B$$

by assumption

$$\Gamma \vdash P : A + B$$
 ne

by IH

 $\Gamma \vdash \mathsf{case} P \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \, \mathsf{ne}$

by definition of neutral terms

Sub-case
$$\frac{\Gamma \vdash R'' : A + B \qquad \Gamma, x : A \vdash N_1 \longrightarrow N_1' : C \qquad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case}\,R'' \,\mathsf{of} \,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow \mathsf{case}\,R'' \,\mathsf{of} \,\mathsf{inl}\,x \Rightarrow N_1' \mid \mathsf{inr}\,y \Rightarrow N_2 : C} \,\mathsf{E\text{-}CASE\text{-}L}$$

 $\Gamma \vdash \mathsf{case}\,R'' \,\mathsf{of} \,\mathsf{inl}\,x \Rightarrow N_1' \mid \mathsf{inr}\,y \Rightarrow N_2 : C \,\mathsf{ne}$

by definition of neutral terms

$$\textbf{Sub-case} \ \frac{\Gamma \vdash R'': A+B \qquad \Gamma, x: A \vdash N_1: C \qquad \Gamma, y: B \vdash N_2 \longrightarrow N_2': C}{\Gamma \vdash \mathsf{case} R'' \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \ | \ \mathsf{inr} \ y \Rightarrow N_2 \longrightarrow \mathsf{case} \ R'' \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \ | \ \mathsf{inr} \ y \Rightarrow N_2': C} \ \mathsf{E-CASE-R}$$

 $\Gamma \vdash \mathsf{case} R'' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2' : C \text{ ne}$

by definition of neutral terms

$$\textbf{Sub-case} \ \frac{\Gamma \vdash M : A \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow [M/x] N_1 : C} \, \mathsf{E-CASE-INL}$$

Contradiction with the assumption $\Gamma \vdash R'' : A + B$ ne.

Sub-case
$$\frac{\Gamma \vdash M : B \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow [M/y]N_2 : C}\,\mathsf{E\text{-}CASE\text{-}INR}$$

Contradiction with the assumption $\Gamma \vdash R'' : A + B$ ne.

2. If
$$\Gamma \vdash R : A + B \in \mathsf{sn}$$
, $\Gamma \vdash R : A + B$ ne, $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn}$, and $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$, then $\Gamma \vdash \mathsf{case} M$ of $\mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \in \mathsf{sn}$.

By simultaneous induction on $\Gamma \vdash R : A + B \in \mathsf{sn}$, $\Gamma, x:A \vdash N_1 : C \in \mathsf{sn}$, and $\Gamma, y:B \vdash N_2 : C \in \mathsf{sn}$.

Assume $\Gamma \vdash \mathsf{case} R \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow Q : C$.

Case
$$\frac{\Gamma \vdash R \longrightarrow R' : A + B \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case}\,R\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow \mathsf{case}\,R'\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 : C}\,\mathsf{E\text{-}CASE}$$

 $\Gamma \vdash R : A + B \in \mathsf{sn}$

by assumption by definition of sn

 $\Gamma \vdash R' : A + B \in \mathsf{sn}$

by assumption

 $\Gamma \vdash R : A + B$ ne

 $\Gamma \vdash R' : A + B$ ne

by (1)

 $\Gamma \vdash \mathsf{case} R' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \in \mathsf{sn}$ by IH (since $\Gamma \vdash R' : A + B \in \mathsf{sn}$ is smaller)

$$\textbf{Case} \ \frac{\Gamma \vdash R : A + B \qquad \Gamma, x : A \vdash N_1 \longrightarrow N_1' : C \qquad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} R \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, R \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C} \, \mathsf{E\text{-}CASE\text{-}L}$$

 Γ , x: $A \vdash N_1 : C \in \mathsf{sn}$

by assumption

 Γ , $x:A \vdash N_1' : C \in \mathsf{sn}$

by definition of sn

 $\Gamma \vdash \mathsf{case} R \text{ of inl } x \Rightarrow N_1' \mid \mathsf{inr} y \Rightarrow N_2 \in \mathsf{sn}$ by IH (since $\Gamma, x:A \vdash N_1' : C \in \mathsf{sn}$ is smaller)

$$\textbf{Case} \ \frac{\Gamma \vdash R : A + B \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : B \vdash N_2 \longrightarrow N_2' : C}{\Gamma \vdash \mathsf{case}\, R \, \mathsf{of} \, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2 \longrightarrow \mathsf{case}\, R \, \mathsf{of} \, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2' : C} \, \mathsf{E\text{-}CASE\text{-}R}$$

Similar to above.

Case
$$\frac{\Gamma \vdash M : A \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case}\,(\mathsf{inl}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow [M/x]N_1 : C}\,\mathsf{E\text{-}CASE\text{-}INL}$$

Contradiction with the assumption $\Gamma \vdash R : A + B$ ne.

$$\textbf{Case} \ \frac{\Gamma \vdash M : B \qquad \Gamma, x : A \vdash N_1 : C \qquad \Gamma, y : b \vdash N_2 : C}{\Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow [M/y]N_2 : C} \,\mathsf{E\text{-}CASE\text{-}INR}$$

Contradiction with the assumption $\Gamma \vdash R : A + B$ ne.

Lemma A.24 (Confluence of sn). If $\Gamma \vdash M \longrightarrow_{sn} N : A$ and $\Gamma \vdash M \longrightarrow N' : A$ then either N = N' or there $\exists Q \text{ s.t. } \Gamma \vdash N' \longrightarrow_{\mathsf{sn}} Q : A \text{ and } \Gamma \vdash N \longrightarrow^{*} Q : A.$

Proof. By induction on $\Gamma \vdash M \longrightarrow_{sn} N : A$. We highlight the cases for disjoint sums.

$$\begin{array}{c} \Gamma \vdash M : A \in \operatorname{sn} \quad \Gamma, x : A \vdash N_1 : C \in \operatorname{sn} \quad \Gamma, y : B \vdash N_2 : C \in \operatorname{sn} \\ \mathbf{Case} \ \mathscr{D} = \overline{\Gamma} \vdash \operatorname{case} \left(\operatorname{inl} M \right) \operatorname{of} \ \operatorname{inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow_{\operatorname{sn}} [M/x] N_1 : C \\ \overline{\Gamma} \vdash M : A \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C \\ \overline{\Gamma} \vdash \operatorname{case} \left(\operatorname{inl} M \right) \operatorname{of} \ \operatorname{inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \longrightarrow [M/x] N_1 : C \end{array}$$

$$[M/x]N_1: C = [M/x]N_1: C$$

by reflexivity

$$\begin{array}{ccc} \Gamma \vdash M : B \in \mathsf{sn} & \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} & \Gamma, y : B \vdash N_2 : C \in \mathsf{sn} \\ \mathbf{Case} & \mathscr{D} = \overline{\Gamma} \vdash \mathsf{case} \, (\mathsf{inr} \, M) \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x] N_2 : C \\ \end{array}$$

$$\frac{\Gamma \vdash M : B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow [M/x]N_2 : C}$$

 $[M/x]N_2: C = [M/x]N_2: C$

by reflexivity

$$\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C$$

Case $\mathscr{D} = \overline{\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C}$

$$\Gamma \vdash M \longrightarrow M'' : A + B$$

 $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow \mathsf{case} M'' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C$

 $\Gamma \vdash M' = M'' : A + B \text{ or } \exists M''' . \Gamma \vdash M' \longrightarrow_{\mathsf{sn}} M''' : A + B \text{ and } \Gamma \vdash M'' \longrightarrow^* M''' : A + B \text{ by}$

Subcase M' = M''.

case M' of $inl x \Rightarrow N_1 \mid inr y \Rightarrow N_2 = case M''$ of $inl x \Rightarrow N_1 \mid inr y \Rightarrow N_2$ by reflexivity

Subcase $\Gamma \vdash M' \longrightarrow_{sn} M''' : A + B \text{ and } \Gamma \vdash M'' \longrightarrow^* M''' : A + B.$

 $\Gamma \vdash \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M''' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ by

 $\Gamma \vdash \mathsf{case} M'' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow^* \mathsf{case} M''' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C$ by Lemma A.20 (4)

$$\Gamma \vdash M \longrightarrow_{sn} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C$$

 $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C$ $\mathbf{Case} \ \mathscr{D} = \overline{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C }$

$$\Gamma.x:A\vdash N_1\longrightarrow N_1':C$$

 $\frac{\Gamma, x: A \vdash N_1 \longrightarrow N_1': C}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2: C}$

 $\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ by

 $\Gamma \vdash \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow^* \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C$ by E-CASE-L

$$\Gamma \vdash M \longrightarrow_{cn} M' : A + B \quad \Gamma_{c} x : A \vdash N_{1} : C \quad \Gamma_{c} y : B \vdash N_{2} : C$$

 $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C$ $\mathbf{Case} \ \mathscr{D} = \overline{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C$

$$\Gamma, y: B \vdash N_2 \longrightarrow N'_2: C$$

 $\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C$

Similar to above.

$$\begin{array}{ccc} \Gamma \vdash M : A \in \mathsf{sn} & \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} & \Gamma, y : B \vdash N_2 : C \in \mathsf{sn} \\ \mathbf{Case} & \mathscr{D} = \overline{\Gamma \vdash \mathsf{case} \left(\mathsf{inl} \ M\right)} \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \mid \mathsf{inr} \ y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \overline{[M/x]N_1 : C} \end{array}$$

A. Abel et. al.

$$\frac{\Gamma \vdash M \longrightarrow M' : A}{\Gamma \vdash \mathsf{inl}\, M \longrightarrow \mathsf{inl}\, M' : A + B}$$

 $\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, (\mathsf{inl} \, M') \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C$

 $\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M') \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M'/x] N_1 : C$ by definition $\Gamma \vdash [M/x]N_1 \longrightarrow^* [M'/x]N_1 : C$ by Lemma A.20 (5)

 $\Gamma \vdash M : A \in \mathsf{sn} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$ Case $\mathscr{D} = \overline{\Gamma \vdash \mathsf{case}(\mathsf{inl}\,M)} \,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x]N_1 : C$

$$\Gamma, x : A \vdash N_1 \longrightarrow N'_1 : C$$

 $\Gamma \vdash \mathsf{case}(\mathsf{inl}\,M)\,\mathsf{of}\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow \mathsf{case}\,(\mathsf{inl}\,M)\,\mathsf{of}\,\mathsf{inl}\,x \Rightarrow N_1' \mid \mathsf{inr}\,y \Rightarrow N_2 : C$

 $\Gamma \vdash \mathsf{case}(\mathsf{inl}\, M) \,\mathsf{of} \,\mathsf{inl}\, x \Rightarrow N_1' \mid \mathsf{inr}\, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x]N_1' : C$ by definition $\Gamma \vdash [M/x]N_1 \longrightarrow^* [M/x]N_1' : C$ by Lemma A.5

 $\Gamma \vdash M : B \in \operatorname{sn} \quad \Gamma, x : A \vdash N_1 : C \in \operatorname{sn} \quad \Gamma, y : B \vdash N_2 : C \in \operatorname{sn}$ Case $\mathscr{D} = \Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/y]N_2 : C$

$$\Gamma, y: B \vdash N_2 \longrightarrow N_2': C$$

 $\frac{\Gamma, y: B \vdash N_2 \longrightarrow N_2': C}{\Gamma \vdash \mathsf{case}(\mathsf{inr}\, M)\,\mathsf{of}\, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2 \longrightarrow \mathsf{case}(\mathsf{inr}\, M)\,\mathsf{of}\, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2': C}$

Similar to above.

 $\Gamma \vdash M : A \in \mathsf{sn} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \quad \Gamma, y : \underline{B} \vdash N_2 : C \in \mathsf{sn}$ Case $\mathscr{D} = \Gamma \vdash \mathsf{case}(\mathsf{inl}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x]N_1 : C$

$$\Gamma. v : B \vdash N_2 \longrightarrow N'_2 : C$$

 $\frac{\Gamma, y: B \vdash N_2 \longrightarrow N_2': C}{\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2': C}$

 $\Gamma \vdash \mathsf{case}(\mathsf{inl}\, M)\,\mathsf{of}\,\,\mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2' \longrightarrow_{\mathsf{sn}} [M/x]N_1 : C$ by definition $\Gamma \vdash [M/x]N_1 \longrightarrow^* [M/x]N_1 : C$ by definition

 $\Gamma \vdash M : B \in \operatorname{sn} \quad \Gamma, x : A \vdash N_1 : C \in \operatorname{sn} \quad \Gamma, y : B \vdash N_2 : C \in \operatorname{sn}$ Case $\mathscr{D} = \Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/y]N_2 : C$

$$\Gamma, x : A \vdash N_1 \longrightarrow N'_1 : C$$

 $\frac{\Gamma, x : A \vdash N_1 \longrightarrow N_1' : C}{\Gamma \vdash \mathsf{case} \mathsf{inr} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} \mathsf{inr} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C}$

Similar to above.

Lemma A.25 (Backward closure of sn).

1. If $\Gamma \vdash M : A + B \in \mathsf{sn}$, $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn}$, $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$, $\Gamma \vdash M \longrightarrow^* M' : A + B$, and $\Gamma \vdash \mathsf{case} M'$ of $\mathsf{inl} x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \in \mathsf{sn}$, then $\Gamma \vdash \mathsf{case} M$ of $\mathsf{inl} x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow \mathsf{num} M$

2. If $\Gamma \vdash M \longrightarrow_{sn} M' : A \text{ and } \Gamma \vdash M' : A \in sn \text{ then } \Gamma \vdash M : A \in sn.$

Proof.

1. If $\Gamma \vdash M : A + B \in \mathsf{sn}$, $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn}$, $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$, $\Gamma \vdash M \longrightarrow^* M' : A + B$, and $\Gamma \vdash \mathsf{case} M' \text{ of } \mathsf{inl} x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \in \mathsf{sn}, \text{ then } \Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \in \mathsf{sn}.$

By induction on Γ , $x : A \vdash N_1 : C \in \text{sn and } \Gamma$, $y : B \vdash N_2 : C \in \text{sn and } \Gamma \vdash M : A + B \in \text{sn.}$

Assume $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow Q : C$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M \longrightarrow M'' : A + B}{\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M'' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C}$$

 $\Gamma \vdash M \longrightarrow M'' : A + B$ by assumption

 $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B$ by assumption

 $\Gamma \vdash M' = M''$ or $\exists P$ s.t. $\Gamma \vdash M'' \longrightarrow_{sn} P : A \Rightarrow B$ and $\Gamma \vdash M' \longrightarrow^* P : A \Rightarrow B$ by Conf. Lemma A.24

Sub-case $\Gamma \vdash M' = M''$

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ by assumption $\Gamma \vdash \mathsf{case} M'' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ since M' = M''

Sub-case $\exists P \text{ s.t. } \Gamma \vdash M'' \longrightarrow_{\mathsf{sn}} P : A \Rightarrow B \text{ and } \Gamma \vdash M' \longrightarrow^* P : A \Rightarrow B$

 $\Gamma \vdash \mathsf{case} M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow^* \mathsf{case} P \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : A + B$ by Lemma A.20 (4)

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ by assumption

 $\Gamma \vdash \mathsf{case} P \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn} \text{ by Lemma A.8 using } \Gamma \vdash M' \longrightarrow^* P : A \Rightarrow B$

 $\Gamma \vdash M'' \longrightarrow_{\mathsf{sn}} P : A + B$ $\Gamma \vdash M \longrightarrow M'' : A + B$ by assumption

by assumption

 $\Gamma \vdash M'' : A + B \in \mathsf{sn}$ using $\Gamma \vdash M : A \Rightarrow +B \in \mathsf{sn} \text{ and } \Gamma \vdash M \longrightarrow M'' : A+B$

 $\Gamma \vdash \mathsf{case} M'' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn by IH} \text{ (since } \Gamma \vdash M'' : A + B \in \mathsf{sn is smaller)}$

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma, x : A \vdash N_1 \longrightarrow N_1' : C}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2 : C}$$

 $\Gamma, x : A \vdash N_1 \longrightarrow N'_1 : C$ by assumption

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 \longrightarrow \mathsf{case} M' \text{ of inl } x \Rightarrow N_1' \mid \mathsf{inr} y \Rightarrow N_2 \text{ by E-CASE-L}$

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ by assumption

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1' \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$ by definition of sn

 $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B$ by assumption

 $\Gamma \vdash M : A + B \in \mathsf{sn}$ by assumption

using $\Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \text{ and } \Gamma, x : A \vdash N_1 \longrightarrow N_1' : C$ $\Gamma, x : A \vdash N_1' : C \in \mathsf{sn}$

 $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1' \mid \mathsf{inr} y \Rightarrow N_2 : B \in \mathsf{sn by IH} \text{ (since } \Gamma, x : A \vdash N_1' : C \in \mathsf{sn is smaller)}$

Case
$$\mathscr{D} = \frac{\Gamma, y : B \vdash N_2 \longrightarrow N_2' : C}{\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2' : C}$$

A. Abel et. al.

Similar to above.

Case
$$\mathscr{D} = \frac{}{\Gamma \vdash \mathsf{case} \, \mathsf{inl} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow [M/x] N_1 : C}$$

Contradiction with $\Gamma \vdash \operatorname{inl} M \longrightarrow_{\operatorname{sn}} M' : A + B$.

Case
$$\mathscr{D} = \frac{}{\Gamma \vdash \mathsf{case} \, \mathsf{inr} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow [M/y] N_2 : C}$$

Contradiction with $\Gamma \vdash \operatorname{inr} M \longrightarrow_{\operatorname{sn}} M' : A + B$.

2. If
$$\Gamma \vdash M \longrightarrow_{sn} M' : A$$
 and $\Gamma \vdash M' : A \in sn$ then $\Gamma \vdash M : A \in sn$.

By induction on $\Gamma \vdash M \longrightarrow_{sn} M'$: A. We highlight the cases for disjoint sums.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma, x: A \vdash N_1: C \in \mathsf{sn} \quad \Gamma, y: B \vdash N_2: C \in \mathsf{sn} \quad \Gamma \vdash M: A \in \mathsf{sn}}{\Gamma \vdash \mathsf{case} \ \mathsf{inl} \ M \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow N_1 \mid \mathsf{inr} \ y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x] N_1: C}$$

$$\Gamma \vdash [M/x]N_1 : C \in \mathsf{sn}$$

by assumption

$$\Gamma \vdash \mathsf{case}(\mathsf{inl}\, M)\,\mathsf{of}\, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2 : C \in \mathsf{sn}$$

by Lemma A.21 (1)

$$\textbf{Case} \ \, \mathscr{D} = \frac{\Gamma, x : A \vdash N_1 : C \in \mathsf{sn} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{sn} \quad \Gamma \vdash M : B \in \mathsf{sn}}{\Gamma \vdash \mathsf{case} \, \mathsf{inr} \, M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} [M/x] N_2 : C}$$

$$\Gamma \vdash [M/x]N_2 : C \in \mathsf{sn}$$

by assumption

$$\Gamma \vdash (\mathsf{caseinr} \, M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2) : C \in \mathsf{sn}$$

by Lemma A.21 (2)

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \longrightarrow_{\mathsf{sn}} \Gamma \vdash \mathsf{case} M' \, \mathsf{of} \, \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C}$$

 $\Gamma \vdash \mathsf{case} M' \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \in \mathsf{sn}$

by assumption

 $\Gamma \vdash M' : A + B \in \mathsf{sn}$

by Lemma A.21 (3)

 $\Gamma \vdash M : A + B \in \mathsf{sn}$

by IH

 Γ , $x : A \vdash N_1 : C \in \mathsf{sn}$

by Lemma A.21 (3)

 $\Gamma, y : B \vdash N_2 : C \in \mathsf{sn}$

by Lemma A.21 (3)

 $\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{sn}$

by Property (1)

Lemma A.26. *If* $\Gamma \vdash M : A \in SNe then \Gamma \vdash M : A$ ne.

Proof. By induction on $\Gamma \vdash M : A \in \mathsf{SNe}$. We highlight the cases for disjoint sums.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A + B \in \mathsf{SNe} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{SNe}}$$

 $\Gamma \vdash M : A + B \in \mathsf{SNe}$

by assumption

 $\Gamma \vdash M : A + B$ ne

by IH

 $\Gamma \vdash \mathsf{case} M \text{ of inl } x \Rightarrow N_1 \mid \mathsf{inr} y \Rightarrow N_2 : C \text{ ne}$

by definition of neutral terms

Theorem. [Soundness of SN]

- 1. If $\Gamma \vdash M : A \in \mathsf{SN}$ then $\Gamma \vdash M : A \in \mathsf{sn}$.
- 2. If $\Gamma \vdash M : A \in \mathsf{SNe}$ then $\Gamma \vdash M : A \in \mathsf{sn}$.
- 3. If $\Gamma \vdash M \longrightarrow_{SN} M' : A$ then $\Gamma \vdash M \longrightarrow_{sn} M' : A$.

Proof. By mutual structural induction on the given derivations using the closure properties. We highlight the cases for disjoint sums.

1. If
$$\Gamma \vdash M : A \in \mathsf{SN}$$
 then $\Gamma \vdash M : A \in \mathsf{sn}$.

Induction on $\Gamma \vdash M : A \in SN$.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \in \mathsf{SN}}{\Gamma \vdash \mathsf{inl}\ M : A + B \in \mathsf{SN}}$$

$$\Gamma \vdash M : A \in \mathsf{sn}$$
 by IH (1)
$$\Gamma \vdash \mathsf{inl}\ M : A + B \in \mathsf{sn}$$
 by Lemma A.21 (1)

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : B \in \mathsf{SN}}{\Gamma \vdash \mathsf{inr} \, M : A + B \in \mathsf{SN}}$$

Similar to above.

2. If $\Gamma \vdash M : A \in \mathsf{SNe}$ then $\Gamma \vdash M : A \in \mathsf{sn}$.

Induction on $\Gamma \vdash M : A \in \mathsf{SNe}$.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M : A + B \in \mathsf{SNe} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{SNe}}$$

$$\begin{array}{lll} \Gamma \vdash M : A + B \in \operatorname{sn} & \operatorname{by} \operatorname{IH} \ (2) \\ \Gamma, x : A \vdash N_1 : C \in \operatorname{sn} & \operatorname{by} \operatorname{IH} \ (1) \\ \Gamma, y : B \vdash N_2 : C \in \operatorname{sn} & \operatorname{by} \operatorname{IH} \ (1) \\ \Gamma \vdash M : A + B \operatorname{ne} & \operatorname{by} \operatorname{Lemma} \ A.26 \\ \Gamma \vdash \operatorname{case} M \operatorname{of} \operatorname{inl} x \Rightarrow N_1 \mid \operatorname{inr} y \Rightarrow N_2 \in \operatorname{sn} & \operatorname{by} \operatorname{Lemma} \ A.23 \ (2) \end{array}$$

3. If
$$\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A$$
 then $\Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A$.

Induction on $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A$

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \in \mathsf{SN} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} [M/x] N_1 : C}$$

$\Gamma \vdash M : A \in sn$	by IH (1)
$\Gamma, x:A \vdash N_1:C \in sn$	by IH (1)
$\Gamma, y:B \vdash N_2:C \in sn$	by IH (1)
$\Gamma \vdash case(inl M) of inl x \Rightarrow N_1 \mid inr y \Rightarrow N_2 \longrightarrow_{sn} [M/x]N_1 : C$	by def. of \longrightarrow_{sn}

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : B \in \mathsf{SN} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} (\mathsf{inr} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} [M/y] N_2 : C}$$

Similar to above.

$$\begin{aligned} \mathbf{Case} \ \ \mathscr{D} = & \frac{\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C} \\ \Gamma \vdash M \longrightarrow_{\mathsf{sn}} M' : A + B & \mathsf{by} \ \mathsf{IH} \ (3) \\ \Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{sn}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \, \mathsf{by} \, \mathsf{def.} \, \mathsf{of} \\ \longrightarrow_{\mathsf{sn}} & \Box \end{aligned}$$

A.5.2 Properties of the inductive definition of SN

Lemma A.27 (SN and SNe characterize well-typed terms).

- 1. *If* $\Gamma \vdash M : A \in SN$ *then* $\Gamma \vdash M : A$.
- 2. *If* $\Gamma \vdash M : A \in SNe then \Gamma \vdash M : A$.
- 3. If $\Gamma \vdash M \longrightarrow_{SN} M' : A$ then $\Gamma \vdash M : A$ and $\Gamma \vdash M' : A$.

Proof. By induction on the definition of SN, SNe, and \longrightarrow_{SN} .

Lemma A.28 (Renaming).

- 1. If $\Gamma \vdash M : A \in SN$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma' \vdash [\rho]M : A \in SN$
- 2. If $\Gamma \vdash M : A \in SNe$ and $\Gamma' \stackrel{-r}{\leq_{\rho}} \Gamma$ then $\Gamma' \vdash [\rho]M : A \in SNe$
- 3. If $\Gamma \vdash M \longrightarrow_{SN} N : A \text{ and } \Gamma' \leq_{\rho} \Gamma \text{ then } \Gamma' \vdash [\rho]M \longrightarrow_{SN} [\rho]N : A$.

Proof. By induction on the first derivation.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \in \mathsf{SN}}{\Gamma \vdash \mathsf{inl}\ M : A + B \in \mathsf{SN}}$$

$$\Gamma' \vdash [\rho]M : A \in SN$$
 by IH (1) $\Gamma' \vdash [\rho](\operatorname{inl} M) \in SN$ by def. of SN and subst.

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : B \in \mathsf{SN}}{\Gamma \vdash \mathsf{inr} \, M : A + B \in \mathsf{SN}}$$

Similar to above.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M : A + B \in \mathsf{SNe} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C \in \mathsf{SNe}}$$

$$\begin{array}{lll} \Gamma' \vdash [\rho]M: A+B \in \mathsf{SNe} & \text{by IH (2)} \\ \Gamma', x: A \leq_{\rho, x/x} \Gamma, x: A & \text{by def. of } \leq_{\rho} \\ \Gamma', x: A \vdash [\rho, x/x]N_1: C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', y: B \leq_{\rho, y/y} \Gamma, y: B & \text{by def. of } \leq_{\rho} \\ \Gamma', y: B \vdash [\rho, y/y]N_2: C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma' \vdash [\rho](\mathsf{case}\,M\,\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2) \in \mathsf{SNe} & \text{by def. of SNe and subst.} \end{array}$$

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M : A \in \mathsf{SN} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case} \, (\mathsf{inl} \, M) \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} [M/x] N_1 : C}$$

$$\begin{array}{lll} \Gamma' \vdash [\rho]M : A \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', x : A \leq_{\rho, x/x} \Gamma, x : A & \text{by def. of } \leq_{\rho} \\ \Gamma', x : A \vdash [\rho, x/x] N_1 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', y : B \leq_{\rho, y/y} \Gamma, y : B & \text{by def. of } \leq_{\rho} \\ \Gamma', y : B \vdash [\rho, y/y] N_2 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma' \vdash \mathsf{case}([\rho](\mathsf{inl}\,M)) \, \mathsf{of} \, \mathsf{inl}\, x \Rightarrow [\rho, x/x] N_1 \mid \mathsf{inr}\, y \Rightarrow [\rho, y/y] N_2 \longrightarrow_{\mathsf{SN}} [\rho, [\rho]M/x] N_1 : C \, \mathsf{by} \\ \mathsf{def. of} \longrightarrow_{\mathsf{SN}} \\ \Gamma' \vdash [\rho](\mathsf{case}(\mathsf{inl}\,M) \, \mathsf{of} \, \mathsf{inl}\, x \Rightarrow N_1 \mid \mathsf{inr}\, y \Rightarrow N_2) \longrightarrow_{\mathsf{SN}} [\rho]([M/x] N_1) : C \, \, \mathsf{by def. of subst.} \end{array}$$

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : A \in \mathsf{SN} \quad \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash N_2 : C \in \mathsf{SN}}{\Gamma \vdash \mathsf{case}(\mathsf{inr}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} [M/y]N_2 : C}$$

Similar to above.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M \longrightarrow_{\textstyle \mathsf{SN}} M' : A + B \quad \Gamma, x : A \vdash N_1 : C \quad \Gamma, y : B \vdash N_2 : C}{\Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\textstyle \mathsf{SN}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 : C}$$

$$\Gamma' \vdash [\rho] M \longrightarrow_{\mathsf{SN}} \rho[M'] : A + B \qquad \qquad \text{by IH (3)}$$

$$\Gamma' \vdash \mathsf{case} [\rho] M \text{ of } \mathsf{inl} \, x \Rightarrow [\rho, x/x] N_1 \mid \mathsf{inr} \, y \Rightarrow [\rho, y/y] N_2 \longrightarrow_{\mathsf{SN}} \mathsf{case} [\rho] M' \text{ of } \mathsf{inl} \, x \Rightarrow [\rho, x/x] N_1 \mid \mathsf{inr} \, y \Rightarrow [\rho, y/y] N_2 \qquad \qquad \mathsf{by } \mathsf{def. of} \longrightarrow_{\mathsf{SN}} \Gamma' \vdash [\rho] (\mathsf{case} \, M \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2) \longrightarrow_{\mathsf{SN}} [\rho] (\mathsf{case} \, M' \text{ of } \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2)$$
 by def. of subst.

Lemma A.29 (Anti-Renaming).

- 1. If $\Gamma' \vdash [\rho]M : A \in SN$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma \vdash M : A \in SN$
- 2. If $\Gamma' \vdash [\rho]M : A \in SNe$ and $\Gamma' \leq_{\rho} \Gamma$ then $\Gamma \vdash M : A \in SNe$
- 3. If $\Gamma' \vdash [\rho]M \longrightarrow_{SN} N' : A$ and $\Gamma' \leq_{\rho} \Gamma$ then there exists N s.t. $\Gamma \vdash M \longrightarrow_{SN} N : A$ and $[\rho]N = N'$.

Proof. By induction on the first derivation.

Case
$$\mathscr{D} = \frac{\Gamma \vdash [\rho]M : A \in \mathsf{SN}}{\Gamma \vdash [\rho](\mathsf{inl}\,M) : A + B \in \mathsf{SN}}$$

$$\Gamma \vdash M : A \in \mathsf{SN}$$
 by IH (1)
$$\Gamma \vdash \mathsf{inl}\ M \in \mathsf{SN}$$
 by def. of SN

Case
$$\mathscr{D} = \frac{\Gamma \vdash [\rho]M : B \in \mathsf{SN}}{\Gamma \vdash [\rho](\mathsf{inr}\,M) : A + B \in \mathsf{SN}}$$

Similar to above.

27

load_app

17:15

28

Case
$$\mathscr{D} = \frac{\Gamma \vdash [\rho]M : A + B \in \mathsf{SNe} \quad \Gamma, x : A \vdash [\rho, x/x]N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash [\rho, y/y]N_2 : C \in \mathsf{SN}}{\Gamma \vdash [\rho](\mathsf{case}\,M\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2) : C \in \mathsf{SNe}}$$

$$\begin{array}{lll} \Gamma \vdash M : A + B \in \mathsf{SNe} & \text{by IH (2)} \\ \Gamma', x : A \leq_{\rho, x/x} \Gamma, x : A & \text{by def. of } \leq_{\rho} \\ \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', y : B \leq_{\rho, y/y} \Gamma, y : B & \text{by def. of } \leq_{\rho} \\ \Gamma, y : B \vdash N_2 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma \vdash \mathsf{case} M \, \mathsf{of inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \in \mathsf{SNe} & \mathsf{by def. of SNe} \end{array}$$

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash [\rho]M : A \in \mathsf{SN} \quad \Gamma, x : A \vdash [\rho, x/x]N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash [\rho, y/y]N_2 : C \in \mathsf{SN}}{\Gamma \vdash [\rho](\mathsf{case}\,(\mathsf{inl}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2) \longrightarrow_{\mathsf{SN}} [\rho, [\rho]M/x]N_1 : C}$$

$$\begin{array}{lll} \Gamma \vdash M : A \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', x : A \leq_{\rho, x/x} \Gamma, x : A & \text{by def. of } \leq_{\rho} \\ \Gamma, x : A \vdash N_1 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma', y : B \leq_{\rho, y/y} \Gamma, y : B & \text{by def. of } \leq_{\rho} \\ \Gamma, y : B \vdash N_2 : C \in \mathsf{SN} & \text{by IH (1)} \\ \Gamma \vdash \mathsf{case}(\mathsf{inl}\,M) \, \mathsf{of} \, \mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2 \longrightarrow_{\mathsf{SN}} [M/x]N_1 : C & \mathsf{by def. of} \longrightarrow_{\mathsf{SN}} \\ \end{array}$$

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash [\rho]M : A \in \mathsf{SN} \quad \Gamma, x : A \vdash [\rho, x/x]N_1 : C \in \mathsf{SN} \quad \Gamma, y : B \vdash [\rho, y/y]N_2 : C \in \mathsf{SN}}{\Gamma \vdash [\rho](\mathsf{case}\,(\mathsf{inr}\,M)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow N_1 \mid \mathsf{inr}\,y \Rightarrow N_2) \longrightarrow_{\mathsf{SN}} [\rho, [\rho]M/y]N_2 : C}$$

Similar to above.

$$\textbf{Case} \ \, \mathscr{D} = \frac{\Gamma \vdash [\rho] M \longrightarrow_{\textstyle \mathsf{SN}} M' : A + B}{\Gamma \vdash [\rho] (\mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2) \longrightarrow_{\textstyle \mathsf{SN}} \mathsf{case} M' \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2' : C} \\ \mathsf{and} \ \, N_1' = [\rho, x/x] N_1, \, N_2' = [\rho, y/y] N_2 \\ [\rho] (\mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2) = \mathsf{case} [\rho] M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1' \mid \mathsf{inr} \, y \Rightarrow N_2' \quad \text{by def. of} \\ \mathsf{subst.} \ \, \Gamma \vdash M \longrightarrow_{\textstyle \mathsf{SN}} M_0 : A + B \, \mathsf{and} \, [\rho] M_0 = M' \quad \mathsf{by IH} \, (3) \\ \Gamma \vdash \mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \longrightarrow_{\textstyle \mathsf{SN}} \mathsf{case} M_0 \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow N_1 \mid \mathsf{inr} \, y \Rightarrow N_2 \quad \mathsf{by def. of} \\ \longrightarrow_{\textstyle \mathsf{SN}} \mathsf{SN}$$

A.5.3 Reducibility Candidates

Theorem.

- 1. CR1: If $\Gamma \vdash M \in \mathcal{R}_C$ then $\Gamma \vdash M : C \in SN$.
- 2. CR2: If $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : C$ and $\Gamma \vdash M' \in \mathscr{R}_C$ then $\Gamma \vdash M \in \mathscr{R}_C$.
- 3. CR3: If $\Gamma \vdash M : C \in \mathsf{SNe}$ then $\Gamma \vdash M \in \mathcal{R}_C$.

Proof. Mutually, by induction on the structure of types C. We highlight the case for disjoint sums.

CR 1. If $\Gamma \vdash M \in \mathcal{R}_C$ then $\Gamma \vdash M : C \in SN$.

17:15

Case C = A + B $\Gamma \vdash M \in \mathcal{R}_{A+B}$

by assumption

We consider different subcases and prove by an inner induction on the closure defining \mathcal{R}_{A+B} that $\Gamma \vdash M : A+B \in \mathsf{SN}$.

Subcase $\Gamma \vdash M \in \{ \text{inl } N \mid \Gamma \vdash N \in \mathcal{R}_A \}$

 $M = \operatorname{inl} N$ and $\Gamma \vdash N \in \mathscr{R}_A$

 $\Gamma \vdash \mathsf{inl}\, N : A + B \in \mathsf{SN}$

by assumption by IH (CR 1)

 $\Gamma \vdash N : A \in \mathsf{SN}$

by definition of SN

Subcase $\Gamma \vdash M \in \{ \operatorname{inr} N \mid \Gamma \vdash N \in \mathcal{R}_B \}$

Similar to the case above.

Subcase $\Gamma \vdash M : A + B \in \mathsf{SNe}$

 $\Gamma \vdash M : A + B \in \mathsf{SN}$

by definition of SN

Subcase $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A + B \text{ and } \Gamma \vdash M' \in \mathscr{R}_{A+B}$

 $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A + B \text{ and } \Gamma \vdash M' \in \mathscr{R}_{A+B}$

by assumption

 $\Gamma \vdash M' : A + B \in \mathsf{SN}$

by inner IH

 $\Gamma \vdash M : A + B \in \mathsf{SN}$

by definition of SN

CR 2. If $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : C$ and $\Gamma \vdash M' \in \mathscr{R}_C$ then $\Gamma \vdash M \in \mathscr{R}_C$.

Case C = A + B

 $\Gamma \vdash M \longrightarrow_{\mathsf{SN}} M' : A + B \text{ and } \Gamma \vdash M' \in \mathscr{R}_{A+B}$

by assumption

by definition of \mathcal{R}_{A+B}

 $\Gamma \vdash M \in \mathscr{R}_{A+B}$

CR 3. If $\Gamma \vdash M : C \in \mathsf{SNe}$ then $\Gamma \vdash M \in \mathscr{R}_C$.

Case C = A + B

 $\Gamma \vdash M : A + B \in \mathsf{SNe}$

 $\Gamma \vdash M \in \mathscr{R}_{A+B}$

by assumption

by definition of \mathcal{R}_{A+B}

A.5.4 Proving strong normalization

Lemma. [Fundamental lemma] If $\Gamma \vdash M : C$ and $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ then $\Gamma' \vdash [\sigma]M \in \mathscr{R}_{C}$.

Proof. By induction on $\Gamma \vdash M : C$. We highlight the cases involving disjoint sums.

Case $\mathscr{D} = \frac{\Gamma \vdash M : A}{\Gamma \vdash \inf M : A + B}$

29

A. Abel et. al.

$$\begin{array}{ll} \Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma} & \text{by assumption} \\ \Gamma' \vdash [\sigma]M \in \mathscr{R}_{A} & \text{by IH} \\ \Gamma' \vdash \text{inl } [\sigma]M \in \mathscr{R}_{A+B} & \text{by definition of } \mathscr{R}_{A+B} \\ \Gamma' \vdash [\sigma] \text{inl } M \in \mathscr{R}_{A+B} & \text{by subst. definition} \end{array}$$

Case
$$\mathscr{D} = \frac{\Gamma \vdash M : B}{\Gamma \vdash \operatorname{inr} M : A + B}$$

Similar to the case above.

$$\textbf{Case} \ \ \mathscr{D} = \frac{\Gamma \vdash M : A + B \qquad \Gamma, x : A \vdash M_1 : C \qquad \Gamma, y : B \vdash M_2 : C}{\Gamma \vdash \mathsf{case} M \ \mathsf{of} \ \mathsf{inl} \ x \Rightarrow M_1 \mid \mathsf{inr} \ y \Rightarrow M_2 : C}$$

$$\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$$
 by assumption $\Gamma' \vdash [\sigma]M \in \mathscr{R}_{A+B}$ by IH

We consider different subcases and prove by an inner induction on the closure defining \mathscr{R}_{A+B} that $\Gamma' \vdash [\sigma](\mathsf{case}\,M\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow M_1 \mid \mathsf{inr}\,y \Rightarrow M_2) \in \mathscr{R}_C$.

Subcase $\Gamma' \vdash [\sigma]M \in \{ \text{inl } N \mid \Gamma' \vdash N \in \mathscr{R}_A \}$ $[\sigma]M = \text{inl } N \text{ for some } \Gamma' \vdash N \in \mathscr{R}_A$ by assumption $\Gamma' \vdash N : A \in \mathsf{SN}$ by CR 1 by definition $\Gamma' \vdash \mathsf{inl}\, N : A + B \in \mathsf{SN}$ $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ by assumption $\Gamma' \vdash [\sigma, N/x] \in \mathscr{R}_{\Gamma,x:A}$ by definition $\Gamma' \vdash [\sigma, N/x]M_1 \in \mathscr{R}_C$ by IH $\Gamma', x:A \vdash x \in \mathscr{R}_A$ by definition $\Gamma', x:A \vdash [\sigma, x/x] \in \mathcal{R}_{\Gamma,x:A}$ by definition $\Gamma', x:A \vdash [\sigma, x/x]M_1 \in \mathscr{R}_C$ by IH $\Gamma', x:A \vdash [\sigma, x/x]M_1 : C \in \mathsf{SN}$ by CR 1 Γ' , y: $B \vdash y \in \mathscr{R}_B$ by definition $\Gamma', y:B \vdash [\sigma, y/y] \in \mathscr{R}_{\Gamma, y:B}$ by definition $\Gamma', y:B \vdash [\sigma, y/y]M_2 \in \mathscr{R}_C$ by IH $\Gamma', y:B \vdash [\sigma, y/y]M_2 : C \in \mathsf{SN}$ by CR 1 $\Gamma' \vdash \mathsf{case}(\mathsf{inl}\,N)\,\mathsf{of}\,\,\mathsf{inl}\,x \Rightarrow [\sigma,x/x]M_1 \mid \mathsf{inr}\,y \Rightarrow [\sigma,y/y]M_2 \longrightarrow_{\mathsf{SN}} [\sigma,N/x]M_1 : C$ by case (inl N) of inl $x \Rightarrow [\sigma, x/x]M_1 \mid \text{inr } y \Rightarrow [\sigma, y/y]M_2$ $= [\sigma](\mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow M_1 \, | \, \mathsf{inr} \, y \Rightarrow M_2)$ by subst. definition and $[\sigma]M = \text{inl } N$ $\Gamma' \vdash [\sigma](\mathsf{case} M \, \mathsf{of} \, \mathsf{inl} \, x \Rightarrow M_1 \mid \mathsf{inr} \, y \Rightarrow M_2) \in \mathscr{R}_C$ by CR 2

Subcase $\Gamma' \vdash [\sigma]M \in \{ \text{inr } N \mid \Gamma' \vdash N \in \mathcal{R}_B \}$ Similar to the case above.

Subcase $\Gamma' \vdash [\sigma]M : A + B \in SNe$.

 $\Gamma' \vdash \sigma \in \mathscr{R}_{\Gamma}$ by assumption Γ' , $x:A \vdash x \in \mathscr{R}_A$ by definition

31

$\Gamma', y:B \vdash y \in \mathscr{R}_B$	by definition
$\Gamma', x:A \vdash [\sigma, x/x] \in \mathscr{R}_{\Gamma, x:A}$	by definition
$\Gamma', y:B \vdash [\sigma, y/y] \in \mathscr{R}_{\Gamma, y:B}$	by definition
$\Gamma', x:A \vdash [\sigma, x/x]M_1 \in \mathscr{R}_C$	by IH
$\Gamma', y:B \vdash [\sigma, y/y]M_2 \in \mathscr{R}_C$	by IH
$\Gamma', x:A \vdash [\sigma, x/x]M_1 : C \in SN$	by CR 1
$\Gamma', y:B \vdash [\sigma, y/y]M_2 : C \in SN$	by CR 1
$\Gamma' \vdash case[\sigma] M \text{ of } inl x \Rightarrow [\sigma, x/x] M_1 \mid inr y \Rightarrow [\sigma, y/y] M_2 : C \in SNe$	by definition of SNe
$\Gamma' \vdash [\sigma](case M of inl x \Rightarrow M_1 \mid inr y \Rightarrow M_2) : C \in SNe$	by substitution def.
$\Gamma' \vdash [\sigma](case M of inl x \Rightarrow M_1 \mid inr y \Rightarrow M_2) \in \mathscr{R}_C$	by CR 3
Subcase $\Gamma' \vdash [\sigma]M \longrightarrow_{SN} M' : A + B \text{ and } \Gamma' \vdash M' \in \mathscr{R}_{A+B}$	
$\Gamma' \vdash [\sigma]M \longrightarrow_{SN} M' : A + B \text{ and } \Gamma' \vdash M' \in \mathscr{R}_{A+B}$	by assumption
$\Gamma' \vdash case M' \text{ of inl } x \Rightarrow [\sigma, x/x] M_1 \mid inr y \Rightarrow [\sigma, y/y] M_2 \in \mathscr{R}_C$	by inner IH
$\Gamma' \vdash case[\sigma] M of inl x \Rightarrow [\sigma, x/x] M_1 \mid inr y \Rightarrow [\sigma, y/y] M_2$	
$\longrightarrow_{SN} case M' of inl x \Rightarrow [\sigma, x/x] M_1 \mid inr y \Rightarrow [\sigma, y/y] M_2 : C$	$by \longrightarrow_{SN}$
$\Gamma' \vdash [\sigma](case M of inl x \Rightarrow M_1 \mid inr y \Rightarrow M_2) \in \mathscr{R}_C$	by CR 2

ZU064-05-FPR load_app 5 November 2019 17:15