Sex Prediction with Deep Learning

221AIG08 한지원

Introduction

- Goal
 - Designing a deep learning model to predict the sex of each subject, by using MRI scan images and demographic information.

Data

• Structure

• <u>Images</u>

Structural, resting state functional, and diffusion-weighted MRI, demographic information with sex.

Features

Extracted features, demographic information with sex.

Data

- Pre-processing
 - Merge the images with subjects' demographic information.
 - Split the features into predicator variables and response variable.
 - Define and apply the 3D image transform functions to the image data; Normalize3D, ToTensor3D.

```
# Data Transform
class ToTensor3D:
    def __call__(self, image):
        return torch.from_numpy(image).float()
class Normalize3D:
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std
    def __call__(self, tensor):
        for t, m, s in zip(tensor, self.mean, self.std):
            t.sub_(m).div_(s)
        return tensor
mean = [0.5] * len(modalities)
std = [0.5] * len(modalities)
from torchvision import transforms
transform = transforms.Compose([
    ToTensor3D().
    Normalize3D(mean, std)
1)
                                                                                                                                    Python
```

```
# Load Data (Train)
train_df = pd.read_csv(os.path.join(train_data_path, 'Subjects.csv'))
print(train df.head())
train_subjects = train_df['ID'].to_numpy()
train_data_dicts = []
for index, subject in enumerate(train_subjects):
    subject_dict = {}
    for modality in modalities:
        subject_dict[modality] = os.path.join(train_data_path, modality, f"{subject:03d}.nii.gz")
    for variable in additional_variables:
        subject_dict[variable] = train_df[variable].to_numpy()[index]
    train data dicts.append(subject dict)
# Convert the Format of Dictionary to Split the Dataset
train_data_df = pd.DataFrame(train_data_dicts)
train_data, val_data = train_test_split(train_data_df, test_size=0.2, random_state=42)
train_data_dicts, val_data_dicts = train_data.to_dict('records'), val_data.to_dict('records')
train_dataset = CustomDataset(train_data_dicts, modalities, additional_variables, transform=transform)
val dataset = CustomDataset(val data dicts, modalities, additional variables, transform=transform)
# Define Data Loader
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=torch.cuda.is_available())
val loader = DataLoader(val dataset, batch size=batch size, num workers=0, pin memory=torch.cuda.is available())
                                                                                                                                   Python
```

Model

- CNN-based Classification Model
 - [Input: Image & Subject Info] → [Output: Male/Female Possibilities]
 - Image Size: (#modalities, 79, 95, 79)
 - Subject Info: ID, Age

Model

```
# Hyper-Parameters Setting
criterion = torch.nn.CrossEntropyLoss()
batch_size = 4
max_epochs = 20
learning_rate = 1e-4
weight_decay = 1e-5
```

- CNN-based Classification Model
 - Setting Hyper-Parameters
 - Criterion: Cross Entropy Loss
 - Batch size, Epochs, Learning Rate, Weight Decay, Dropout

Result

• Model Comparison: Accuracy & Computing Time

Modalities	Best Accuracy	Time Consumption	Saturation Epoch
GM	0.878	26 min	8
WM+GM	0.900	40 min	7
MD+WM+GM	0.889	47 min	8
FA+MD+WM+GM	0.867	34 min	10
DMN+FA+MD+WM+GM	0.833	43 min	12

Result

Model Comparison: Best Accuracy & Computing Time

Modalities	Best Accuracy	Time Consumption	Saturation Epoch
GM	0.878	26 min	8
WM+GM	0.900	40 min	7
MD+WM+GM	0.889	47 min	8
FA+MD+WM+GM	0.867	34 min	10
DMN+FA+MD+WM+GM	0.833	43 min	12

Result

Comparison Metric: Loss & Accuracy

Sex Prediction

- Predicted Result
 - Predicted sex of first 10 subjects in the test data, after employing DL model.
 - Regardless of the number of modalities used in the models, the classification results remained consistent.
 - However, when using only the image data without age,
 the inference results differ from those obtained before.
 - When comparing the prediction results of the first 10 subjects, the image-only model predicted the 6th subject as male.

	Subject	Age	Predictions	
	Subject	Age	Tredictions	
	1	55	M	
	2	55	F	
	3	56	М	
	4	58	М	
	5	57	M	
	6	55	F	
	7	54	M	
	8	58	F	
	9	57	М	
	10	56	М	
(O. Famala 1. Mala)				

(0: Female, 1: Male)

Thank You