CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 19 GIUGNO 2025

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola, gruppo di appartenenza.

Non è necessario consegnare la traccia.

Esercizio 1. Quale connettivo proposizionale tra \wedge , \vee , \rightarrow va sostituito a \star in modo che la forma proposizionale $(p \text{ XOR } q) \longleftrightarrow \neg((p \to q) \land (p \star (\neg q)))$ sia una tautologia?

Esercizio 2. Sia $T = \{n \in \mathbb{Z} \mid -6 \le n \le 6\}$. Tra i sottoinsiemi di T che contengono solo numeri primi, determinare il numero di quelli di cardinalità 7 e di quelli di cardinalità 4. Determinare poi, tra i sottoinsiemi di T a cui non appartengono numeri primi, il numero di quelli di cardinalità 7 e di quelli di cardinalità 4.

Esercizio 3. Per ogni numero intero n si consideri l'applicazione f_n : $[a]_n \in \mathbb{Z}_n \mapsto [30a]_n \in \mathbb{Z}_n$.

- (i) Determinare l'unico n in $\{85, 86, 87, 88, 89\}$ tale che f_n sia biettiva.
- (ii) Per tale n, si determini $(f_n)^{-1}$.
- (iii) Calcolare $\vec{f}_{40}(\mathbb{Z}_{40})$, $\vec{f}_{40}(\varnothing)$, $\vec{f}_{40}(\varnothing)$, $\vec{f}_{40}(\mathbb{Z}_{40})$, $\vec{f}_{40}(\{[20]_{40}\})$, $\vec{f}_{40}(\{[2]_{40}\})$.

Esercizio 4. Per ogni $a \in \mathbb{N}$, sia s_a la somma delle cifre di a nella sua rappresentazione in base 10. Sia τ la relazione d'ordine definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \tau b \iff (a = b \lor s_a \text{ è un divisore proprio di } s_b).$$

- (i) Determinare in (\mathbb{N}, τ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (ii) Sempre in (\mathbb{N}, τ) , determinare l'insieme dei minoranti di $\{21, 22\}$; stabilire se esiste inf $\{21, 22\}$.
- (iii) (\mathbb{N}, τ) non è un reticolo; perché?

Sia $M = \{13, 15, 22, 31, 66, 5106, 10001, 24288\}.$

- (iv) Disegnare un diagramma di Hasse di (M, τ) .
- (v) Individuare in (M, τ) una catena massimale (cioè un elemento massimale in (C, \subseteq) dove C è l'insieme delle parti X di M tali che (X, τ) sia totalmente ordinato).
- (vi) Stabilire se (M,τ) è o meno un reticolo e, nel caso, se è distributivo e se è complementato.
- (vii) Determinare $a \in M$ tale che $(M \setminus \{a\}, \tau)$ sia un reticolo. Questo reticolo è distributivo? È complementato?

Esercizio 5. In $S = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ di considerino le operazioni binarie $+ e \cdot$ definite da: $\forall a, b, c, d, e, f \in \mathbb{Z}$ (a, b, c) + (d, e, f) = (a + d, b + e, c + f) \land $(a, b, c) \cdot (d, e, f) = (ad, ae + bf, cf).$

Dando per noto che $(S, +, \cdot)$ è un anello unitario,

- (i) si determinino lo zero 0_S e l'unità 1_S di questo anello;
- (ii) si determinino, ove possibile, l'opposto e l'inverso di (1, 2, -1).
- (iii) Data la definizione di divisore dello zero in un anello, decidere se entrambi, uno o nessuno degli elementi (1, 2, -1) e (1, 1, 0) è divisore dello zero in $(S, +, \cdot)$.

Solo per studenti immatricolati prima dell'a.a. 2024/25

Esercizio 6. Sia ρ la relazione binaria in \mathbb{Z} definita da: $\forall a, b \in \mathbb{Z} (a + b - 1 \text{ è pari})$.

- (i) Dare la definizione di grafo (semplice) e verificare che (\mathbb{Z}, ρ) è un grafo;
- (ii) Determinare un sottoinsieme X di Z tale che |X| = 5 e (X, σ) sia un albero, dove σ è la relazione indotta da ρ su X.

Esercizio 7. Per ogni $m \in \mathbb{Z}$ sia $f_m := \overline{5m}x^4 + \overline{3}x^2 + \overline{15}x + \overline{1} + \overline{m} \in \mathbb{Z}_7[x]$. Stabilire:

- (i) per quali interi m f_m è monico;
- (ii) per quali interi m f_m è invertibile in $\mathbb{Z}_7[x]$;
- (iii) per quali interi m f_m è un divisore dello zero in $\mathbb{Z}_7[x]$;
- (iv) per quali interi $m f_m$ è, in $\mathbb{Z}_7[x]$, divisibile per $x + \bar{1}$.