Isomorphism Spectra and Uniform Computable Categoricity

Joey Lakerdas-Gayle

University of Waterloo

AMS Fall 2025 Central Meeting Special Session on Computability October 19, 2025

Computable categoricity

Definition

A computable structure \mathcal{A} is X-computably categorical for a set $X\subseteq\mathbb{N}$ if for every computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism from \mathcal{A} to \mathcal{B} .

Definition (Fokina, Kalimullin, R. Miller, 2010)

The categoricity spectrum of a computable structure \mathcal{A} is $\operatorname{CatSpec}(\mathcal{A}) = \{\deg_{\mathcal{T}}(X) : \mathcal{A} \text{ is } X\text{-computably categorical}\}.$

Definition (Fokina, Kalimullin, R. Miller, 2010)

If CatSpec(A) has a least element, **d**, then **d** is the *degree of categoricity* of A.

Computable categoricity

Definition

A computable structure \mathcal{A} is X-computably categorical for a set $X\subseteq\mathbb{N}$ if for every computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism from \mathcal{A} to \mathcal{B} .

Definition (Fokina, Kalimullin, R. Miller, 2010)

The categoricity spectrum of a computable structure \mathcal{A} is $\operatorname{CatSpec}(\mathcal{A}) = \{\deg_{\mathcal{T}}(X) : \mathcal{A} \text{ is } X\text{-computably categorical}\}.$

Definition (Fokina, Kalimullin, R. Miller, 2010)

If CatSpec(A) has a least element, **d**, then **d** is the *degree of categoricity* of A.

E.g., $(\mathbb{Q}, <)$ is computably categorical,

Computable categoricity

Definition

A computable structure \mathcal{A} is X-computably categorical for a set $X\subseteq\mathbb{N}$ if for every computable copy \mathcal{B} of \mathcal{A} , there is an X-computable isomorphism from \mathcal{A} to \mathcal{B} .

Definition (Fokina, Kalimullin, R. Miller, 2010)

The categoricity spectrum of a computable structure \mathcal{A} is $\operatorname{CatSpec}(\mathcal{A}) = \{\deg_{\mathcal{T}}(X) : \mathcal{A} \text{ is } X\text{-computably categorical}\}.$

Definition (Fokina, Kalimullin, R. Miller, 2010)

If CatSpec(A) has a least element, **d**, then **d** is the *degree of categoricity* of A.

E.g., $(\mathbb{Q}, <)$ is computably categorical, $\operatorname{degCat}(\omega, <) = \mathbf{0}'$.

Definition

The *isomorphism spectrum* of a pair of computable structures \mathcal{A} and \mathcal{B} is $\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{\mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ \mathbf{d} \geq_{\mathcal{T}} f\}$.

Definition

The *isomorphism spectrum* of a pair of computable structures \mathcal{A} and \mathcal{B} is $\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{\mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ \mathbf{d} \geq_{\mathcal{T}} f\}$.

 $CatSpec(\mathcal{A}) = \bigcap \{ IsoSpec(\mathcal{B}, \mathcal{C}) : \mathcal{B} \cong \mathcal{C} \cong \mathcal{A} \text{ are computable} \}.$

Definition

The *isomorphism spectrum* of a pair of computable structures \mathcal{A} and \mathcal{B} is $\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{\mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ \mathbf{d} \geq_{\mathcal{T}} f\}$.

 $CatSpec(\mathcal{A}) = \bigcap \{ IsoSpec(\mathcal{B}, \mathcal{C}) : \mathcal{B} \cong \mathcal{C} \cong \mathcal{A} \text{ are computable} \}.$

Definition (Fokina, Kalimullin, R. Miller, 2010)

If $\operatorname{degCat}(\mathcal{A}) = \mathbf{d}$ and there are computable copies $\mathcal{B} \cong \mathcal{C} \cong \mathcal{A}$ such that $\operatorname{CatSpec}(\mathcal{A}) = \operatorname{IsoSpec}(\mathcal{B}, \mathcal{C})$, then \mathbf{d} is the *strong* degree of categoricity of \mathcal{A} .

Definition

The *isomorphism spectrum* of a pair of computable structures \mathcal{A} and \mathcal{B} is $\operatorname{IsoSpec}(\mathcal{A},\mathcal{B}) = \{\mathbf{d} : (\exists f : \mathcal{A} \cong \mathcal{B}) \ \mathbf{d} \geq_{\mathcal{T}} f\}$.

 $CatSpec(\mathcal{A}) = \bigcap \{ IsoSpec(\mathcal{B}, \mathcal{C}) : \mathcal{B} \cong \mathcal{C} \cong \mathcal{A} \text{ are computable} \}.$

Definition (Fokina, Kalimullin, R. Miller, 2010)

If $\operatorname{degCat}(\mathcal{A}) = \mathbf{d}$ and there are computable copies $\mathcal{B} \cong \mathcal{C} \cong \mathcal{A}$ such that $\operatorname{CatSpec}(\mathcal{A}) = \operatorname{IsoSpec}(\mathcal{B}, \mathcal{C})$, then \mathbf{d} is the *strong* degree of categoricity of \mathcal{A} .

Question (Fokina, Kalimullin, R. Miller, 2010)

Is every degree of categoricity a strong degree of categoricity?

Degrees of categoricity

Theorem (Bazhenov-Kalimullin-Yamaleev 2020)

If \mathcal{M} has degree of categoricity \mathbf{d} and there is a finite family $\{\mathcal{A}_i, \mathcal{B}_i : i < k\}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < k} IsoSpec(\mathcal{A}_i, \mathcal{B}_i)$$

then the direct product $\mathcal{M} \times \mathcal{M} \times \cdots \times \mathcal{M}$ (k times) is a computable structure with strong degree of categoricity \mathbf{d} .

Degrees of categoricity

Theorem (Bazhenov-Kalimullin-Yamaleev 2020)

If \mathcal{M} has degree of categoricity \mathbf{d} and there is a finite family $\{\mathcal{A}_i, \mathcal{B}_i : i < k\}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < k} IsoSpec(\mathcal{A}_i, \mathcal{B}_i)$$

then the direct product $\mathcal{M} \times \mathcal{M} \times \cdots \times \mathcal{M}$ (k times) is a computable structure with strong degree of categoricity \mathbf{d} .

So if $\mathbf{d} = \deg \operatorname{Cat}(\mathcal{M})$ is not a strong degree of categoricity, then there is no such finite family. That is, \mathcal{M} has infinite spectral dimension.

Degrees of categoricity

Theorem (Bazhenov-Kalimullin-Yamaleev 2020)

If \mathcal{M} has degree of categoricity \mathbf{d} and there is a finite family $\{\mathcal{A}_i, \mathcal{B}_i : i < k\}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < k} IsoSpec(\mathcal{A}_i, \mathcal{B}_i)$$

then the direct product $\mathcal{M} \times \mathcal{M} \times \cdots \times \mathcal{M}$ (k times) is a computable structure with strong degree of categoricity \mathbf{d} .

So if $\mathbf{d} = \operatorname{degCat}(\mathcal{M})$ is not a strong degree of categoricity, then there is no such finite family. That is, \mathcal{M} has infinite spectral dimension.

A structure of Turetsky (2020) has infinite spectral dimension and a degree of categoricity.

Infinite spectral dimension

Suppose $\deg \operatorname{Cat}(\mathcal{M}) = \mathbf{d}$ and there is a computable sequence $(\mathcal{A}_i, \mathcal{B}_i)_{i < \omega}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < \omega} IsoSpec(\mathcal{A}_i, \mathcal{B}_i).$$

Does the infinite direct product $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \times \dots$ have strong degree of categoricity **d**?

Infinite spectral dimension

Suppose $\deg \operatorname{Cat}(\mathcal{M}) = \mathbf{d}$ and there is a computable sequence $(\mathcal{A}_i, \mathcal{B}_i)_{i < \omega}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < \omega} IsoSpec(\mathcal{A}_i, \mathcal{B}_i).$$

Does the infinite direct product $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \times \dots$ have strong degree of categoricity **d**?

No. E.g. (ω, S) is computably categorical, but $(\omega, S) \times (\omega, S) \times (\omega, S) \times (\omega, S) \times \text{has strong degree of categoricity } \mathbf{0}'.$

Infinite spectral dimension

Suppose $\deg \operatorname{Cat}(\mathcal{M}) = \mathbf{d}$ and there is a computable sequence $(\mathcal{A}_i, \mathcal{B}_i)_{i < \omega}$ of computable copies of \mathcal{M} such that

$$CatSpec(\mathcal{M}) = \bigcap_{i < \omega} IsoSpec(\mathcal{A}_i, \mathcal{B}_i).$$

Does the infinite direct product $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \times \dots$ have strong degree of categoricity **d**?

No. E.g. (ω, S) is computably categorical, but $(\omega, S) \times (\omega, S) \times (\omega, S) \times (\omega, S) \times \text{has strong degree of categoricity } \mathbf{0}'.$

Observation

If \mathcal{M} is "uniformly **d**-computably categorical", then $\mathcal{M} \times \mathcal{M} \times \mathcal{M} \times \dots$ is **d**-computably categorical.

E.g.,
$$(\mathbb{Q}, <) \times (\mathbb{Q}, <) \times (\mathbb{Q}, <) \times \dots$$
 is computably categorical.

Unions of isomorphism spectra

The class of isomorphism spectra is closed under computable union:

Proposition (L.)

If $(A_i, \mathcal{B}_i)_{i < \omega}$ is a uniformly computable sequence of computable copies of structures, then there are computable structures \mathcal{M} and \mathcal{N} such that $IsoSpec(\mathcal{M}, \mathcal{N}) = \bigcup_{i < \omega} IsoSpec(A_i, \mathcal{B}_i)$.

Unions of isomorphism spectra

The class of isomorphism spectra is closed under computable union:

Proposition (L.)

If $(A_i, \mathcal{B}_i)_{i < \omega}$ is a uniformly computable sequence of computable copies of structures, then there are computable structures \mathcal{M} and \mathcal{N} such that $IsoSpec(\mathcal{M}, \mathcal{N}) = \bigcup_{i < \omega} IsoSpec(A_i, \mathcal{B}_i)$.

 \mathcal{M} and \mathcal{N} are obtained by "gluing together" the copies $(\mathcal{A}_i, \mathcal{B}_i)_{i < \omega}$ in a particular way.

Unions of isomorphism spectra

The class of isomorphism spectra is closed under computable union:

Proposition (L.)

If $(A_i, \mathcal{B}_i)_{i < \omega}$ is a uniformly computable sequence of computable copies of structures, then there are computable structures \mathcal{M} and \mathcal{N} such that $IsoSpec(\mathcal{M}, \mathcal{N}) = \bigcup_{i < \omega} IsoSpec(A_i, \mathcal{B}_i)$.

 \mathcal{M} and \mathcal{N} are obtained by "gluing together" the copies $(\mathcal{A}_i, \mathcal{B}_i)_{i < \omega}$ in a particular way.

Observation

If $(A_i, \mathcal{B}_i)_{i < \omega}$ are "uniformly **d**-computably categorical", then \mathcal{M} is **d**-computably categorical.

Definition (Ventsov '92; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is (strongly) uniformly computably categorical (u.c.c.) if there is a Turing functional Ψ such that if \mathcal{B} is a computable copy of \mathcal{A} , then $\Psi^{D(\mathcal{B})}: \mathcal{A} \cong \mathcal{B}$.

Definition (Kudinov '96; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is weakly uniformly computably categorical (w.u.c.c.) if there is a Turing functional Γ such that whenever $\varphi_e = D(\mathcal{B})$ and $\mathcal{B} \cong \mathcal{A}$, then $\Phi_{\Gamma(e)} : \mathcal{A} \cong \mathcal{B}$.

Definition (Ventsov '92; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is (strongly) uniformly computably categorical (u.c.c.) if there is a Turing functional Ψ such that if \mathcal{B} is a computable copy of \mathcal{A} , then $\Psi^{D(\mathcal{B})}: \mathcal{A} \cong \mathcal{B}$.

Definition (Kudinov '96; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is weakly uniformly computably categorical (w.u.c.c.) if there is a Turing functional Γ such that whenever $\varphi_e = D(\mathcal{B})$ and $\mathcal{B} \cong \mathcal{A}$, then $\Phi_{\Gamma(e)} : \mathcal{A} \cong \mathcal{B}$.

u.c.c. ⇒ w.u.c.c.

Definition (Ventsov '92; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is (strongly) uniformly computably categorical (u.c.c.) if there is a Turing functional Ψ such that if \mathcal{B} is a computable copy of \mathcal{A} , then $\Psi^{D(\mathcal{B})}: \mathcal{A} \cong \mathcal{B}$.

Definition (Kudinov '96; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is weakly uniformly computably categorical (w.u.c.c.) if there is a Turing functional Γ such that whenever $\varphi_e = D(\mathcal{B})$ and $\mathcal{B} \cong \mathcal{A}$, then $\Phi_{\Gamma(e)} : \mathcal{A} \cong \mathcal{B}$.

- $u.c.c. \Rightarrow w.u.c.c.$
- A structure of Kudinov (1997) is w.u.c.c. but not u.c.c.

Definition (Ventsov '92; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is (strongly) uniformly computably categorical (u.c.c.) if there is a Turing functional Ψ such that if \mathcal{B} is a computable copy of \mathcal{A} , then $\Psi^{D(\mathcal{B})}: \mathcal{A} \cong \mathcal{B}$.

Definition (Kudinov '96; Downey-Hirschfeldt-Khoussainov '03)

A computable structure \mathcal{A} is weakly uniformly computably categorical (w.u.c.c.) if there is a Turing functional Γ such that whenever $\varphi_e = D(\mathcal{B})$ and $\mathcal{B} \cong \mathcal{A}$, then $\Phi_{\Gamma(e)} : \mathcal{A} \cong \mathcal{B}$.

- $u.c.c. \Rightarrow w.u.c.c.$
- A structure of Kudinov (1997) is w.u.c.c. but not u.c.c.
- If \mathcal{M} is w.u.c.c., then $\mathcal{M} \times \mathcal{M} \times ...$ is computably categorical.

 (ω, S) is computably categorical, but not u.c.c. or w.u.c.c.

 (ω, S) is computably categorical, but not u.c.c. or w.u.c.c.

Definition (R. Miller, 2017)

A countable structure \mathcal{A} is X-uniformly $\Delta_{1+\alpha}$ -computably categorical if there is a Turing functional Ψ such that if $\mathcal{B} \cong \mathcal{C} \cong \mathcal{A}$, then $\Psi^{X \oplus \mathcal{B}^{(\alpha)} \oplus \mathcal{C}^{(\alpha)}} : \mathcal{B} \cong \mathcal{C}$.

 (ω, S) is computably categorical, but not u.c.c. or w.u.c.c.

Definition (R. Miller, 2017)

A countable structure \mathcal{A} is X-uniformly $\Delta_{1+\alpha}$ -computably categorical if there is a Turing functional Ψ such that if $\mathcal{B} \cong \mathcal{C} \cong \mathcal{A}$, then $\Psi^{X \oplus \mathcal{B}^{(\alpha)} \oplus \mathcal{C}^{(\alpha)}} : \mathcal{B} \cong \mathcal{C}$.

Definition (L.)

A computable structure \mathcal{A} is weakly X-uniformly Y-computably categorical (w.X.u.Y.c.c.) if there is a Turing functional Γ such that whenever $\varphi_e = D(\mathcal{B})$ and $\mathcal{B} \cong \mathcal{A}$, then $\Phi_{\Gamma^X(e)}^Y : \mathcal{A} \cong \mathcal{B}$.

Weakly uniform computable categoricity

Examples:

• $(\mathbb{Q}, <)$ is $w.\emptyset.u.\emptyset.c.c.$ (so, w.X.u.Y.c.c. for all $X, Y \subseteq \mathbb{N}$).

Weakly uniform computable categoricity

Examples:

- $(\mathbb{Q}, <)$ is $w.\emptyset.u.\emptyset.c.c.$ (so, w.X.u.Y.c.c. for all $X, Y \subseteq \mathbb{N}$).
- $(\omega, <)$ is w.X.u.Y.c.c. if and only if $Y \ge \emptyset'$.

Weakly uniform computable categoricity

Examples:

- $(\mathbb{Q}, <)$ is $w.\emptyset.u.\emptyset.c.c.$ (so, w.X.u.Y.c.c. for all $X, Y \subseteq \mathbb{N}$).
- $(\omega, <)$ is w.X.u.Y.c.c. if and only if $Y \ge \emptyset'$.
- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$, but it is $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$

If
$$f:(\omega,S)\cong\mathcal{M}_e=(\omega,\widetilde{S})$$
, then $f(n)=\widetilde{S}^n(\min(\mathcal{M}_e))$.

For which X and Y is (ω, S) w.X.u.Y.c.c.?

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

Observation

1. If (ω, S) is $w.\emptyset.u.Z.c.c.$, then $Z \ge_T \emptyset'$.

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

Observation

- 1. If (ω, S) is $w.\emptyset.u.Z.c.c.$, then $Z \geq_T \emptyset'$.
- 2. If A is w.X.u.Y.c.c., then A is $w.\emptyset.u.(X \oplus Y).c.c.$

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- $w.\emptyset'.u.\emptyset.c.c.$ and $w.\emptyset.u.\emptyset'.c.c.$
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

Observation

- 1. If (ω, S) is $w.\emptyset.u.Z.c.c.$, then $Z \geq_T \emptyset'$.
- 2. If A is w.X.u.Y.c.c., then A is $w.\emptyset.u.(X \oplus Y).c.c.$
 - If (ω, S) is w.X.u.Y.c.c., then $X \oplus Y \geq_T \emptyset'$.

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- *w*.∅′.*u*.∅.*c*.*c*. and *w*.∅.*u*.∅′.*c*.*c*.
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

Observation

- 1. If (ω, S) is $w.\emptyset.u.Z.c.c.$, then $Z \geq_T \emptyset'$.
- 2. If A is w.X.u.Y.c.c., then A is $w.\emptyset.u.(X \oplus Y).c.c.$
 - If (ω, S) is w.X.u.Y.c.c., then X ⊕ Y ≥_T Ø'.
 Q: Is this sufficient?

For which X and Y is (ω, S) w.X.u.Y.c.c.?

- (ω, S) is not $w.\emptyset.u.\emptyset.c.c.$
- *w*.∅′.*u*.∅.*c*.*c*. and *w*.∅.*u*.∅′.*c*.*c*.
- If $X \ge_T \emptyset'$ or $Y \ge_T \emptyset'$, then (ω, S) is w.X.u.Y.c.c.Q: Is this necessary?

Observation

- 1. If (ω, S) is $w.\emptyset.u.Z.c.c.$, then $Z \geq_T \emptyset'$.
- 2. If A is w.X.u.Y.c.c., then A is $w.\emptyset.u.(X \oplus Y).c.c.$
 - If (ω, S) is w.X.u.Y.c.c., then X ⊕ Y ≥_T Ø'.
 Q: Is this sufficient?

Answer: No (to both questions).

$$X \oplus Y \geq_{\mathcal{T}} \emptyset'$$
 is not sufficient

Proposition (L.)

There is a pair of disjoint c.e. sets X, Y such that $X \oplus Y \equiv_T \emptyset'$ but (ω, S) is not w.X.u.Y.c.c.

$$X \oplus Y \geq_{\mathcal{T}} \emptyset'$$
 is not sufficient

There is a pair of disjoint c.e. sets X, Y such that $X \oplus Y \equiv_{\mathcal{T}} \emptyset'$ but (ω, S) is not w.X.u.Y.c.c.

Proof idea.

Finite injury priority construction:

• Build c.e. sets $X \sqcup Y = \emptyset'$ (so that $X \oplus Y \geq_T \emptyset'$)

$$X \oplus Y \geq_T \emptyset'$$
 is not sufficient

There is a pair of disjoint c.e. sets X,Y such that $X \oplus Y \equiv_{\mathcal{T}} \emptyset'$ but (ω,S) is not w.X.u.Y.c.c.

Proof idea.

Finite injury priority construction:

- Build c.e. sets $X \sqcup Y = \emptyset'$ (so that $X \oplus Y \geq_{\mathcal{T}} \emptyset'$)
- Build copies $\mathcal{M}_{e_j} \cong (\omega, S)$ such that $\Phi_{\Phi_j^X(e_j)}^Y(0) \neq \min(\mathcal{M}_{e_j})$ for each j

$X \oplus Y \geq_{\mathcal{T}} \emptyset'$ is not sufficient

Proposition (L.)

There is a pair of disjoint c.e. sets X, Y such that $X \oplus Y \equiv_{\mathcal{T}} \emptyset'$ but (ω, S) is not w.X.u.Y.c.c.

Proof idea.

Finite injury priority construction:

- Build c.e. sets $X \sqcup Y = \emptyset'$ (so that $X \oplus Y \geq_{\mathcal{T}} \emptyset'$)
- Build copies $\mathcal{M}_{e_j} \cong (\omega, S)$ such that $\Phi_{\Phi_j^X(e_j)}^Y(0) \neq \min(\mathcal{M}_{e_j})$ for each j

Corollary

 $w.(A \oplus B).u.Y.c.c. \not\Rightarrow w.A.u.(B \oplus Y).c.c.$

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

There is a Σ_2^0 set $X \not\geq_T \emptyset'$ and a c.e. set $Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

There is a Σ_2^0 set $X \not\geq_T \emptyset'$ and a c.e. set $Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.

The proof is a priority construction on a tree of strategies:

$$X \ge_T \emptyset'$$
 or $Y \ge_T \emptyset'$ is not necessary

There is a Σ_2^0 set $X \not\geq_T \emptyset'$ and a c.e. set $Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.

The proof is a priority construction on a tree of strategies:

 $R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

 $N_e^X: \Phi_e^X \neq C$ for some c.e. set C $N_e^Y: \Phi_e^Y \neq D$ for some c.e. set D

• To satisfy R_e , watch $D(\mathcal{M}_e)$ and enumerate into X or Y when the guess for $\min(\mathcal{M}_e)$ changes.

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

- To satisfy R_e, watch D(M_e) and enumerate into X or Y when the guess for min(M_e) changes.
- **Problem:** We might restrict initial segments of X and Y such that we cannot satisfy R_e .

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

- To satisfy R_e, watch D(M_e) and enumerate into X or Y when the guess for min(M_e) changes.
- **Problem:** We might restrict initial segments of X and Y such that we cannot satisfy R_e .
- (Partial) solution: Build the tree dynamically so that we can "prioritize" R_e if it cannot enumerate into X.

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

- To satisfy R_e , watch $D(\mathcal{M}_e)$ and enumerate into X or Y when the guess for $\min(\mathcal{M}_e)$ changes.
- **Problem:** We might restrict initial segments of X and Y such that we cannot satisfy R_e .
- (Partial) solution: Build the tree dynamically so that we can "prioritize" R_e if it cannot enumerate into X.
- **New problem:** Different parts of the tree are ordered differently and may enumerate into *X* and *Y* "incorrectly".

$$X \geq_T \emptyset'$$
 or $Y \geq_T \emptyset'$ is not necessary

$$R_e: \mathcal{M}_e \cong (\omega, S) \Rightarrow \Phi^Y_{\Psi^X(e)} = \min(\mathcal{M}_e)$$

- To satisfy R_e , watch $D(\mathcal{M}_e)$ and enumerate into X or Y when the guess for $\min(\mathcal{M}_e)$ changes.
- **Problem:** We might restrict initial segments of X and Y such that we cannot satisfy R_e .
- (Partial) solution: Build the tree dynamically so that we can "prioritize" R_e if it cannot enumerate into X.
- **New problem:** Different parts of the tree are ordered differently and may enumerate into *X* and *Y* "incorrectly".
- (Partial) solution: Allow elements to be removed from the approximation of X. Hence, X is Σ₂. The asymmetry of R_e allows Y to remain c.e.

Questions

Question

Are there $X, Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.?

Questions

Question

Are there $X, Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.?

Question

Which sets of pairs of degrees have the form

$$\{(\mathbf{c},\mathbf{d}): \mathcal{A} \text{ is } w.\mathbf{c}.u.\mathbf{d}.c.c.\}$$

for some computable structure A? Which pairs are minimums of these sets?

Questions

Question

Are there $X, Y <_T \emptyset'$ such that (ω, S) is w.X.u.Y.c.c.?

Question

Which sets of pairs of degrees have the form

$$\{(\mathbf{c},\mathbf{d}): \mathcal{A} \text{ is } w.\mathbf{c}.u.\mathbf{d}.c.c.\}$$

for some computable structure A? Which pairs are minimums of these sets?

Question

What can be said about the relationship between weak uniform computable categoricity and strong uniform/relative computable categoricity?

Thank you!

N. Bazhenov, I. Kalimullin, and M. Yamaleev. Strong degrees of categoricity and weak density. *Lobachevskii Journal of Mathematics*, 41(9):1630–1639, 2020.

R. Downey, D. Hirschfeldt, and B. Khoussainov. Uniformity in computable structure theory. *Algebra and Logic*, 42:318–332, 2003.

E. Fokina, I. Kalimullin, and R. Miller. Degrees of categoricity of computable structures. *Archive for Mathematical Logic*, 49(1):51–67, 2010.

O. V. Kudinov. An autostable 1-decidable model without a computable scott family of ∃-formulas. *Algebra Logika*, 35(4):458–467, 1996.

J. Lakerdas-Gayle. Isomorphism spectra and computably composite structures. 2025. URL: https://arxiv.org/abs/2501.16586.

R. Miller. Revisiting uniform computable categoricity: For the sixtieth birthday of prof. Rod Downey. *Computability and Complexity. Lecture Notes in Computer Science*, 10010:26–36, 2017.

D. Turetsky. Coding in the automorphism group of a computably categorical structure. *Journal of Mathematical Logic*, 20(03), 2020.

Yu. G. Ventsov. Effective choice for relations and reducibilities in classes of constructive and positive models. *Algebra Logika*, 31(2):101–118, 1992.