Домашнее задание №1 Регулярные языки и конечные автоматы

Содержание

1	Задание №1. Построить конечный автомат, распознающий язык.	3
2	Задание №2. Построить конечный автомат, используя прямое про- изведение.	4
3	Задание №3. Построить минимальный ДКА по регулярному выражению.	12
4	Задание №4. Определить является ли язык регулярным или нет.	18

1 Задание №1. Построить конечный автомат, распознающий язык.

1. $L=\{w\in\{a,b,c\}*\mid |w|_c=1\}$ Данный язык включает все слова из букв $\{a,b,c\}$, но содержащие только одну букву c.

2. $L = \{w \in \{a,b\} * \mid |w|_a \le 2, |w|_b \ge 2\}$ В данном случае может быть 1 или 2 буквы а и любое количество букв b, начиная с двух

- 3. $L = \{w \in \{a,b\} * \mid |w|_a \neq |w|_b\}$ Для данного задания построить автомат нельзя, т.к. для распознавания этого языка требуется запоминать количество символов.
- 4. $L = \{w \in \{a,b\} * \mid ww = www\}$ В данном задании язык может состоять только из пустых символов.

2 Задание №2. Построить конечный автомат, используя прямое произведение.

1. $L_1 = \{w \in \{a, b\} \mid |w|_a \ge 2 \land |w|_b \ge 2\}$ Построим автомат: $L_{11} = \{w \in \{a, b\} \mid |w|_a \ge 2\}$

Построим автомат: $L_{12} = \{w \in \{a, b\} \mid |w|_b \ge 2\}$

Для первого автомата:

$$A_1 = \{w \in \{a, b\}^* \mid |w|_a \ge 2\} \ \Sigma_A = \{a, b\} \ Q_A = \{1, 2, 3\} \ s_A = \{1\} \ T_A = \{3\}$$

Для второго автомата:

$$B_1 = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$$

$$\Sigma_B = \{a, b\} \ Q_B = \{1, 2, 3\} \ s_B = \{1\} \ T_B = \{3\}$$

Имеем:

$$L_1 = A_1 \times B_1$$

$$\Sigma = \Sigma_A \cup \Sigma_B = \{a, b\}$$

$$Q = Q_A \times Q_B = \{11, 12, 13, 21, 22, 23, 31, 32, 33\}$$

$$s = \langle s_1, s_2 \rangle = \{11\}$$

$$T = T_A \times T_B = \{33\}$$

Построим таблицу состояний:

A	B	a	b
1	1	21	12
1	2	22	13
1	3	23	13
2	1	31	22
2	2	32	23
2	3	33	23
3	1	31	32
3	2	32	33
3	3	33	33

Тогда имеем автомат:

2. $L_2 = \{w \in \{a,b\} * \mid |w| \ge 3 \land |w|$ нечётное $\}$ Построим автомат:

Построим автомат:

Для первого автомата:

$$A_{2} = \{w \in \{a, b\}^{*} \mid |w| \ge 3\}$$

$$\Sigma_{A} = \{a, b\}$$

$$Q_{A} = \{1, 2, 3, 4\}$$

$$s_{A} = \{1\}$$

$$T_{A} = \{4\}$$

Для второго автомата:

$$B_2 = \{w \in \{a, b\}^* \mid |w| \text{ нечетное}\}$$

 $\Sigma_B = \{a, b\}$
 $Q_B = \{1, 2\}$
 $s_B = \{1\}$
 $T_B = \{2\}$

Тогда имеем:

$$L_2 = A_2 \times B_2$$

$$\Sigma = \{a, b\}$$

$$Q = \{11, 12, 21, 22, 31, 32, 41, 42\}$$

$$s = \{11\}$$

$$T = \{42\}$$

Построим таблицу состояний:

A	B	a	b
1	1	22	22
1	2	21	21
2	1	32	32
2	2	31	31
3	1	42	42
3	2	41	41
4	1	42	42
4	2	41	41

Тогда имеем автомат:

3. $L_3 = \{ w \in \{a,b\}^* | |\mathbf{w}|_a$ чётно $\wedge |w|_b$ кратно трём $\}$ Построим автомат:

Построим автомат:

Для первого ав-

томата:

$$A_3 = \{w \in \{a,b\}^* \mid |w|_a$$
 четное $\}$ $\Sigma_A = \{a,b\}$ $Q_A = \{1,2\}$ $s_A = \{1\}$ $T_A = \{1\}$

Для второго автомата:

$$B_3 = \{w \in \{a,b\}^* \mid |w|_b$$
 кратно трем $\}$ $\Sigma_B = \{a,b\}$ $Q_B = \{1,2,3\}$ $s_B = \{1\}$ $T_B = \{1\}$ Имеем: $L_3 = A_3 \times B_3$ $\Sigma_3 = \{a,b\}$ $Q_3 = \{11,12,13,21,22,23\}$ $S_3 = \{11\}$ $S_3 = \{11\}$

Построим таблицу состояний:

A	B	a	b
1	1	21	12
1	2	22	13
1	3	23	11
2	1	11	22
2	2	12	23
2	3	13	21

Тогда имеем автомат:

4. $L_4 = \overline{L_3}$ Данный язык будет распознаяаться автоматом:

$$\bar{L}_3 = \{\Sigma_3, Q_3, s_3, Q_3 \setminus T_3, \delta_3\}$$

 $T_4 = Q_3 \setminus T_3 = \{12, 13, 21, 22, 23\}$

5.
$$L_5 = L_2 \setminus L_3$$

 $L_5 = L_2 \setminus L_3 = L_2 \cap \bar{L_3} = L_2 \times \bar{L_3}$
Автомат L_2 можно успростить:

Введем для автомата $\bar{L_3}$ новую нумерацию состояний:

Построим таблицу состояний:

L_2	\bar{L}_3	a	b
$egin{array}{c} L_2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ $	1	24	22
1	2	25	23
1	3	26	21
1	4	21	25
1	5	22 23	26 24
1	6	23	24
2	1	34	32
2	2	35	33
2	3	34 35 36 31 32	32 33 31 35 36
2	4	31	35
2	5	32	36
2	6	33	34
3	1	44 45	42
3	2	45	43
3	3	46	41
3	4	41	45
3	5	42	46
3	6	42 43	44
4	1	34	32
4	2	35	33
4	3	36	31
4	4	31 32	35
4 4 4 4 4	$egin{array}{c} L_3 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 5 \\ 6 \\ 1 \\ 2 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$	32	36
4	6	33	34

Получим автомат:

После упрощения получим:

3 Задание №3. Построить минимальный ДКА по регулярному выражению.

1. $(ab + aba)^*a$ Сначала составим недетерминированный автомат:

Теперь его необходимо преобразовать в детерминированный. Будем использтвать алгоритм Томпсона для построения эквивалентного ДКА:

Q	a	b
1	234	-
234	-	15
15	1234	-
1234	234	15

Тогда имеем детерминированный (и минимальный) автомат:

2. $a(a(ab)^*b)^*(ab)^*$ HKA:

Используем алгоритм Томпсона для построения эквивалентного ДКА:

Q	a	b
1	2	-
2	35	_
35	4	2
4	_	3
3	4	2

Минимизируем автомат, определив пары различимых состояний:

	1	2	3	35	4
1		+	+	+	+
2	+		+	+	+
3	+	+			+
35	+	+			+
4	+	+	+	+	

Различимые состояния: $\{1,2,3,335,4\}$

Перестроим автомат, теперь он будет минимальным:

3.
$$(a + (a + b)(a + b)b)^*$$

HKA:

Используем алгоритм Томпсона для построения эквивалентного ДКА:

Q	a	b
1	12	2
12	123	23
2	3	3
123	123	123
23	3	13
3	-	1
13	12	12

Минимизируем автомат, определив пары различимых состояний:

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

ДКА:

	1	12	13	123	2	23	3
1					+	+	+
12					+	+	+
13					+	+	+
123					+	+	+
2	+	+	+	+			+
23	+	+	+	+			+
3	+	+	+	+	+	+	

Минимизируем автомат, определив пары различимых состояний:

	1	2	3	4	5	6	7
1		+	+	+	+	+	+
2	+		+	+		+	
3	+	+		+	+	+	+
4	+	+	+		+	+	+
5	+		+	+		+	
6	+	+	+	+	+		+
7	+		+	+		+	

Различимые состояния: $\{1, 257, 3, 4, 5, 6\}$ Перестроим автомат, теперь он будет минимальным:

5. $(a+b)^+(aa+abab+bb+baba)(a+b)^+$ HKA:

4 Задание №4. Определить является ли язык регулярным или нет.

1. $L = \{(aab)^n b (aba)^m : n0, m0\}$ Т.к. по этому языку можно составить ДКА, он является регулярным:

2. $L = \{uaav : u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b|v|_a\}$

Используем лемму о разрастании. Фиксируем $\forall n \in N$, далее рассмотрим слово $\omega = b^n a a a^n$, $|\omega| = 2n + 2 \ge n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \ne 0$, $|xy| \le n$:

$$x = b^k, \ y = b^l, \ z = b^{n-k-l}aaa^n,$$

где
$$1 \le k + l \le n \ \land \ l > 0$$

Иных удовлетворяющих данным условиям разбиений нет.

Для любого из таких разбиений слово $xy^0z \notin L. =>$ лемма не выполняется, а значит, L не является регулярным языком.

3. $L = \{a^m w : w \in \{a, b\}^*, 1|w|_b m\}$

Используем лемму о разрастании. Фиксируем $\forall n \in N$, далее рассмотрим слово $\omega = a^n b^n$, $|\omega| = 2nn$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x = a^l, \ y = a^m, \ z = a^{n-l-m}b^n,$$

где
$$l+kn \wedge m \neq 0$$

Иных удовлетворяющих данным условиям разбиенний нет. Выполним накачку:

$$xy^iz = a^l(a^m)^ia^{n-l-m}b^n = a^{n-mi}b^n \notin L, i0 \in N$$

Видим, что лемма не выполняется, а значит, L не является регулярным языком.

4. $L = \{a^k b^m a^n : k = n \lor m > 0\}$

Используем лемму о разрастании. Фиксируем $\forall n \in N$, далее рассмотрим слово $\omega = a^n b a^n$, $|\omega| = 2n + 1n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0$, $|xy| \leq n$:

$$x = a^k, \ y = a^m, \ z = a^{n-k-m}ba^n,$$

где
$$k + mn \wedge m \neq 0$$

Иных удовлетворяющих данным условиям разбиенний нет. Выполним накачку:

$$xy^{i}z = a^{k}(a^{m})^{i}a^{n-k-m}ba^{n} = a^{n+m(i-1)}ba^{n} \notin L, i2 \in N$$

Получили противоречие => лемма не выполняется, а значит, L не является регулярным языком.

5. $L = \{ucv : u \in \{a, b\}^*, v \in \{a, b\}^*, u \neq v^R\}$

Используем лемму о разрастании. Фиксируем $\forall n \in N$, далее рассмотрим слово $\omega = (ab)^n c (ab)^n = \alpha_1 \alpha_2 ... \alpha_{4n+1}, \ |\omega| = 4n+1n$. Теперь рассмотрим все разбиения этого слова $\omega = xyz$ такие, что $|y| \neq 0, \ |xy| \leq n$:

$$x=lpha_1lpha_2...lpha_k,\ y=lpha_{k+1}...lpha_{k+m},\ z=lpha_{k+m+1}...lpha_{4n+1}c(ab)^n,$$
 где $k+mn\ \land\ m\neq 0$

Иных удовлетворяющих данным условиям разбиенний нет. Выполним накачку:

$$xy^{i}z = (\alpha_{1}\alpha_{2}...\alpha_{k})(\alpha_{k+1}...\alpha_{k+m})^{i}(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^{n})$$

При i=2 имеем:

$$xy^2z = (\alpha_1\alpha_2...\alpha_k)(\alpha_{k+1}...\alpha_{k+m})^2(\alpha_{k+m+1}...\alpha_{4n+1}c(ab)^n) \notin L$$

Видим, что лемма не выполняется, а значит, L не является регулярным языком.