Алгебра отношений

Пусть даны два бинарных отношения, R_1 и R_2 . При матричном представлении этих операций на множестве X составляется квадратная матрица, элементы которой имеют значение по формуле:

б)

 $\mathbf{R_2}$

 $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3$

 X_4

0

0

0

1, если
$$(x_i; x_i) \in R$$
;

 $\mathbf{r_{ij}} =$

a)

0, если (x_i;x_j)∉R.

,				
\mathbf{R}_1	X ₁	\mathbf{X}_2	X ₃	X 4
X ₁	1	0	0	0
\mathbf{X}_2	0	0 1	0	1
	_	•	_	•

		U			$\mathbf{x_1}$	0	1	1
		1			\mathbf{X}_2			
		0			X ₃			
X 4	0	1	1	1			0	
	I							

Объединение двух бинарных отношений есть отношение $R=(R_1 \cup R_2)$, матрица которого формируется так: $\mathbf{r_{ij}} = \mathbf{r_{ij}}^{(1)} \vee \mathbf{r_{ij}}^{(2)}$, а именно

в) - пример объединения двух отношений:

<u>Перерсечение двух бинарных отношений</u> есть отношение $R=(R_1 \cap R_2)$, матрица которого формируется так: $\mathbf{r_{ij}} = \mathbf{r_{ij}}^{(1)} \cdot \mathbf{r_{ij}}^{(2)}$, а именно

$$0 \bullet 0 = 0$$
, $1 \bullet 0 = 0 \bullet 1 = 0$, $1 \bullet 1 = 1$

г) - пример пересечения двух отношений:

<u>Разность двух бинарных отношений</u> есть отношение $R=(R_1 \ R_2)$, матрица которого формируется по условию:

1, если
$$\mathbf{r_{ij}}^{(1)} \neq \mathbf{r_{ij}}^{(2)}$$
 и $\mathbf{r_{ij}}^{(1)} = 1$;

$$\mathbf{r}_{ij} =$$

$$\mathbf{0}$$
, если $\mathbf{r}_{ij}^{(1)} = \mathbf{r}_{ij}^{(2)}$ или $\mathbf{r}_{ij}^{(1)} = \mathbf{0}$.

д) - пример разности двух отношений:

Дополнение отношения может быть найдено в виде разности между отношением заданным на всех элементах множества и данным отношением $R=1\R$, матрица которого формируется в виде дополнения для каждого элемента матрицы данного отношения

0, если r_{ij}=1.

На рис. e) дан пример дополнения отношения R_1 .

e)

x ₁	\mathbf{X}_2	X ₃	$\mathbf{X_4}$
0	1	1	1
1	0	1	0
0	1	0	1
1	0	0	0
	x ₁ 0 1 0 1	0 1	$\begin{array}{c ccccc} x_1 & x_2 & x_3 \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline \end{array}$