Analiza algorytmów. Lista 6

Piotr Berezowski, 236749 18 czerwca 2020

1 Zadanie 14

1.1 Opis zadania

Układając odpowiednie równanie rekurencyjne i wykorzystując funkcje tworzące dla danego n wyznacz liczbę wywołań linii 6 w poniższym algorytmie. Zweryfikuj odpowiedź eksperymentalnie.

```
1: f(\text{int } n)

1 int s = 0;
2 if n == 0 then
3 \lfloor \text{ return } 1 \rfloor
4 else
5 \lfloor \text{ for } int \ i = 0; i < n; i + + \text{ do } \rfloor
6 \lfloor s + = f(i); \rceil
7 \lfloor \text{ return } s \rfloor
```

1.2 Rozwiązanie

Niech F_n oznacza liczbę wywołań lini 6 dla n. Dla n=0 linia 6 nie wykona się ani razu, więc $F_0=0$.

W momencie kiedy n>0 linia 6 wykonuje się rekurencyjnie dla kolejnych i< n:

$$F_n = \sum_{i=0}^{n-1} (F_i + 1) = n + \sum_{i=0}^{n-1} F_n, \text{ dla } n > 0$$

Zapiszmy różnicę F_{n+1} i F_n :

$$F_{n+1} - F_n = n + 1 + \sum_{i=0}^{n} F_i - n - \sum_{i=0}^{n-1} F_i$$

$$F_{n+1} = 1 + 2F_n$$

Wyznaczmy teraz funkcję tworzącą F(z) ciągu F_n :

$$F(z) = \sum_{n\geqslant 0} F_n z^n = F_0 + \sum_{n\geqslant 1} F_n z^n = \sum_{n\geqslant 0} F_{n+1} z^{n+1} = z \sum_{n\geqslant 0} (1+2F_n) z^n = 2z \sum_{n\geqslant 0} F_n z^n + z \sum_{n\geqslant 0} z^n = 2z F(z) + z \sum_{n\geqslant 0} z^n = 2z F(z) + \frac{z}{1-z}$$

$$F(z)(1-2z) = \frac{z}{1-z}$$

$$F(z) = \frac{z}{(1-z)(1-2z)} = \frac{1}{1-2z} - \frac{1}{1-z} = \sum_{n \ge 0} 2^n z^n - \sum_{n \ge 0} z^n = \sum_{n \ge 0} (2^n - 1)z^n$$

Ostatecznie:

$$[z^n]F(z) = F_n = 2^n - 1$$

Wyniki dla kolejnych n:

\mathbf{n}	F_n	Wynik eksperymentalny
0	0	0
1	1	1
2	3	3
3	7	7
4	15	15
5	31	31
6	63	63
7	127	127
8	255	255
9	511	511
10	1023	1023
11	2047	2047
12	4095	4095
13	8191	8191
14	16383	16383
15	32767	32767
16	65535	65535
17	131071	131071
18	262143	262143
19	524287	524287
20	1048575	1048575
21	2097151	2097151
22	4194303	4194303
23	8388607	8388607
24	16777215	16777215
25	33554431	33554431
26	67108863	67108863
27	134217727	134217727
28	268435455	268435455
29	536870911	536870911
30	1073741823	1073741823

2 Zadanie 15

2.1 Opis zadania

Algorytm otrzymuje na wejściu tablicę długości $n \ge 0$. Jeśli $n \ge 2$ dla każdego $k \in \{1,2,3,...,n\}$ algorytm z prawdopodobieństwem 1/2 wywołuje się rekurencyjnie na pewnej losowej "podtablicy" długości k. Wykorzystując funkcje tworzące wyznacz średnią liczbę wywołań algorytmu dla danego n i przedstaw swoje wyliczenia. Zweryfikuj odpowiedź eksperymentalnie.

2.2 Rozwiązanie