

Mobility as a Service

Advanced Topics Modeling Future Mobility Systems
Final Presentation

Amara Aye (amara.aye@tum.de)
Joanna Soetanto (joanna.soetanto@tum.de)
Saicharan Kumar (saicharan.kumar@tum.de)

Munich, 28th January 2020

Agenda

- Introduction
- Literature Review
- Methodology
- Results
- Summary & Conclusion
- Lessons Learned / Reflection

Introduction

- "Mobility as a Service" (MaaS) as a new and innovative solution for urban passenger transport services
- MaaS offers more transportation access and convenience to the customers [1]

© UITP – International Association of Public Transport, 2019 [1]

Literature Review | Existing MaaS Provider

Whim Insights

- Whim users are more likely to ride public transportation than their counterparts in the Helsinki metropolitan area (63% vs 48%) [2].
- Whim users are multimodalists, using both bicycles and taxis to solve the first/last mile problem.
- Public transportation is the backbone of MaaS ecosystem.
- The MaaS platform seems to succeed in a mode-rich, densely populated urban environment with good connections via public transportation.

Literature Review | Shortest-Path Problem

- Static algorithms for single-source shortest-path^[3]
 Compute the shortest-path from a given vertex to all other vertices.
- Most common used of shortest-path algorithms

Dijkstra	Bellman-Ford	A *
Single source shortest-path	 Single source shortest-path 	 Single pair shortest-path
 Non-negative edge weight 	 Can be negative edge weight 	 Using heuristics

Methodology | Objectives

Research Question: How does the users' travel behavior change depending on the services provided by MaaS companies?

Route Optimization	Sensitivity Analysis
Modeling user's route choice with and without package selection	 Changing the price and service bundles
 Minimizing the costs Costs consist of monetary value of time and transportation fares Optimizing the user's utility 	Identify the changes in user's behaviour

Methodology | Problem Description

Methodology | Design of Experiment

- MaaS as combination between public transportation and e-scooter
- The model is tested for Berlin city
- Input data
 - Public transportation schedule & network from GTFS
 - E-scooter random location coordinates (allocated at top 20% main transfer stations)
 - Origin and destination of users
 - Weekly travel pattern of users
 - Walking distance is limited to 1 km, and e-scooter is limited to 5 km
 - Package service bundles

Methodology | Design of Experiment

Package Service Bundles

Pay-as-you-go

Weekly Package

Monthly Package

Pay the transport fare per usage

6 trips of public transport

20 min

Unlimited public transport

60 min + free unlocked

Public €2.9/trip E-scooter:

- unlock €1
- €0.3/min

Price €21/week

Over-usage:

- E-scooter €0.2/min
- Public €2.9/trip

Price €96/month

Over-usage:

E-scooter €0.2/min

Methodology | Assumptions

The network graph is directed and sparse

G = (V, A) in which |A| = O(|V|)

V is a set of nodes (origin, destination, public transport stations, e-scooters' position)

A is a set of directed arcs, represent all the available connections between nodes

The e-scooter has a direct graph for each possible connection

	Nodes	Edges
Public	3,079	14,352
E-scooter	615	200,711

- Euclidian distance for calculating the distance between each node
- Monetary value of time for each user group, based on average yearly income of Berlin in 2018^{[4] [5]}
- The trips are not incorporated with the time schedule of public transportation

Results | Travel Behavior - Worker 1

When PAYG or weekly package is selected (Travel Time: 34 mins):

When monthly package is selected (Travel Time: 31 mins):

Results | Travel Behavior - Family 2

When PAYG or weekly package is selected (Travel Time: 16 mins):

When monthly package is selected (Travel Time: 12 mins):

Results | Travel Behavior - Student 3

When PAYG or weekly package is selected (Travel Time: 16.8 mins):

When monthly package is selected (Travel Time: 14.7 mins):

Results | Before Changes

Weekly Package Cost : €34 Unlimited public transport

		Students		Workers			Family			
		1	2	3	1	2	3	1	2	3
	Week1									
PAYG	Week2									
(15)	Week3									
	Week4									
Weekly (1)	Week1									
	Week2									
	Week3									
	Week4									
Monthly (5)										

Weekly package bundle is not attractive compared to PAYG

Results | After Changes

Weekly Package Cost : €21 6 free public transport trips

		Students			Workers			Family		
		1	2	3	1	2	3	1	2	3
	Week1									
PAYG	Week2									
(16)	Week3									
	Week4									
Weekl y (4)	Week1									
	Week2									
	Week3									
	Week4									
Monthly (4)										

Family continues to select monthly package due to frequent travel behavior

Summary & Conclusion

- User travel behavior change depending on the package cost and allowances
 - Potential to shift user travel behavior towards more sustainable transport mode through MaaS
 - Package service bundles can be used as a mobility management tool to promote MaaS and attract more customers^[1]
- Possible further improvements :
 - Use time-dependant model
 - Add another transport mode, e.g. taxis
 - Broader scope (increase number of users, bigger area coverage)
 - Comparison with existing BVG packages
 - Use the road distance instead of Euclidian distance

Lessons Learned / Reflection

- Limited literature on MaaS from operational perspective
- Long computation time
 - We use Intel® Core™ i5-8250 CPU @ 1.60 GHz 1.80 GHz, RAM 8GB
 - Monthly package selection has the longest computation time, with average
 20 mins per user
- Pre-computing of sparse network
 - It took 16 hours to run the model, we used only 1 out of 4 cores. It could have been faster through higher cores usage

References

- [1] International Association of Public Transport. (2019). *Mobility as a Service Report April 2019.*
- [2] Ramboll. (2019). Whimpact: Insights from the world's first Mobility-as-a-Service (MaaS) system.
- [3] A. Madkour, F. Rehman, W. Aref, and A. Rahman. A Survey of Shortest-Path Algorithms, 2017.
- [4] (2019) 'Berliner liegen mit 42.525 Euro beim Gehalt auf Platz neun in Deutschland', *B.Z.*, 6 February. Retrieved from http://www.bz-berlin.de (Accessed: 22 January 2020).
- [5] (2019) 'Gehalt Werkstudent in Berlin', *Berufsstart*. Retrieved from https://www.berufsstart.de (Accessed: 22 January 2020).

Mathematical Model

$$\min \sum_{m \in M} \sum_{ij \in A^M} R_{ijm} [(v_u.t_{ijm}) + (c_m.t_{ijm}) + ul_m] + X * f_m$$

 R_{ijm}

Optimum route between node i and node j using transport mode m

Blnary Variable to check if public transport is used in the route or not

Constraints

At most one link is used to arrive at node j

$$\sum_{m \in M} \sum_{hj \in A^M} R_{hjm} \leq 1$$

 $\forall_{j \in V}$

At most one link is used to leave node j

$$\sum_{m \in M} \sum_{jk \in A^M} R_{jkm} \le 1$$

 $\forall_{j \in V}$

User must arrive and leave the node j (except origin & destination)

$$\sum_{m \in M} \sum_{hj \in \mathcal{A}^M} R_{hjm} - \sum_{m \in M} \sum_{jk \in \mathcal{A}^M} R_{jkm} = 0$$

 $\forall_{j \in V \setminus j}$

Constraint to check if public transport is used in the trip

Origin must have link with exactly one other node j

$$\sum_{m \in M} \sum_{i \in V} R_{ojm} - \sum_{m \in M} \sum_{i \in V} R_{jom} = 1$$

 $\sum_{ij \in A^M} R_{ijm} \le MX$

$$\sum_{ij \in A^M} R_{ijm} \geq M.(X-1)$$

Destination must have link with exactly one other node j

$$\sum_{m \in M} \sum_{j \in V} R_{jdm} - \sum_{m \in M} \sum_{j \in V} R_{djm} = 1$$

Binary constraint

$$R_{ijm} \in \{0, 1\}$$

M =

Public

Mathematical Model | Route Optimization with Weekly Package

$$\min z_w = \sum_{s \in S} \sum_{m \in M} \sum_{ij \in A^N} R_{sijmw} [(v, t_{ijm}) + ul_m] + c_m \cdot O_{mw} + PC$$

 R_{sijmw}

Optimum route between node i and node i using transport mode m for trip s in week

Over-usage of each transport mode m in week w O_{mw}

Constraints

At most one link is used to arrive at node i

$$\sum_{m \in M} \sum_{h: s \neq N} R_{shjmw} \leq 1$$

Viev, Vees, Vwew

At most one link is used to leave node i

$$\sum_{m \in M} \sum_{i: k \in AN} R_{sjkmw} \le 1$$

 $\forall_{i \in V}, \forall_{s \in S}, \forall_{w \in W}$

User must arrive and leave the node j (except origin & destination)

$$\sum_{m \in M} \sum_{hj \in A^N} R_{shjmw} - \sum_{m \in M} \sum_{jk \in A^N} R_{sjkmw} = 0$$

View, Vees, Vwew

Origin must have link with exactly one other node j

$$\sum_{m \in M} \sum_{i \in V} R_{sojmw} - \sum_{m \in M} \sum_{i \in V} R_{sjomw} = 1$$

 $\forall_{s \in S}, \forall_{w \in W}$

Over-usage of each transport mode $\sum_{n \in \mathbb{N}} \sum_{i = 1, N} R_{sijmw} \cdot t_{ijm} \leq e_m + O_{mw}$

Destination must have link with exactly one other node j

$$\sum_{m \in M} \sum_{i \in V} R_{sjdmw} - \sum_{m \in M} \sum_{i \in V} R_{sdjmw} = 1$$

 $\forall_{s \in S}, \forall_{w \in W}$

Binary constraint $R_{sijmw} \in \{0,1\}$ $O_{mw} \geq 0$

 $\forall_{m \in \{scooter, taxi\}}$ $\forall_{w \in W}$

 $\forall_{s \in S}, \forall_{m \in M}, \forall_{i, i \in A} N, \forall_{w \in W}$ $\forall_{m \in \{scooter, taxi\}}, \forall_{w \in W}$