СОДЕРЖАНИЕ:

Введение	2
1. Используемые термины и сокращения	4
2. Назначение	4
3. Технические характеристики	5
4. Условия эксплуатации контроллера	12
5. Устройство контроллера ОВЕН ПЛК150	
6. Установка CoDeSys, инсталляция Target-файлов	16
7. Создание проекта. Выбор контроллера.	
Примеры и запуск программ	18
8. Установка связи с контроллером	22
9. Меры безопасности	26
10. Монтаж	27
10.1. Монтаж контроллера	
10.2. Монтаж внешних связей	27
11. Техническое обслуживание	31
12. Маркировка и упаковка	31
13. Правила транспортирования и хранения	32
14. Комплектность	32
15. Гарантийные обязательства	
Приложение А. Габаритные размеры ОВЕН ПЛК150	
Приложение Б. Схемы подключения к ОВЕН ПЛК150	36
Приложение В. Перечень электронных документов, необходимых	
для начала работы с контролером ОВЕН ПЛК150	42
Приложение Г. Перечень вспомогательных согласующих устройств	
для отладки и эксплуатации ПЛК	44
Лист регистрации изменений	
, bo. vo. bada vo	

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием контроллера программируемого логического ОВЕН ПЛК150 (далее по тексту также именуемого «контроллер ПЛК150», или «контроллер», или «ПЛК150»).

Руководство по эксплуатации распространяется на контроллер, выпущенный в соответствии с ТУ 4252-002-46526536-2007.

Контроллер имеет сертификат об утверждении типа средств измерений и сертификат соответствия ГОСТ Р.

Контроллер ПЛК150 выпускается в различных модификациях, отличающихся типом **УСТАНОВЛЕННЫХ В НЕГО ДИСКРЕТНЫХ ВЫХОДНЫХ ЭЛЕМЕНТОВ. НАПРЯЖЕНИЕМ ПИТАНИЯ И РАЗЛИЧНЫМИ** лицензионными ограничениями размера памяти ввода-вывода программы ПЛК.

Условное обозначение контроллера:

Напряжение питания:

- 220 номинальное напряжение питания 220 В переменного тока;
- 24 номинальное напряжение питания 24 В постоянного тока.

Тип встроенных аналоговых выходных элементов:

- И цифроаналоговый преобразователь "параметр ток 4...20 мА"
- У цифроаналоговый преобразователь "параметр напряжение 0...10 В"
- **A** цифроаналоговый преобразователь "параметр ток 4...20 мА или напряжение 0...10 В"

Размер лицензионного ограничения на область памяти ввода-вывода:

- L искусственное ограничение в 360 байт¹
- М без ограничения

Примеры условного обозначения контроллера при заказе:

ПЛК150-24.И-L – контроллер с номинальным напряжением питания 24 В постоянного тока, оснащенный встроенными цифроаналоговыми преобразователями "параметр – ток 4...20 мА" и имеющий лицензионное ограничение на размер области ввода-вывода в 360 байт.

ПЛК150-220.А-М – контроллер с номинальным напряжением питания 220 В переменного тока, оснащенный встроенными цифроаналоговыми преобразователями "параметр – ток 4...20 мА или напряжение 0...10 В" и не имеющий лицензионного ограничения на размер области ввода-вывода.

¹ Ограничение распространяется только на область памяти ввода/вывода, количество внутренних переменных программы ПЛК ограничивается только количеством свободной памяти. Подробнее смотрив файле "Выбор типа лицензии ОВЕН ПЛК" на компакт-диске, входящем в комплект поставки.

1. ИСПОЛЬЗУЕМЫЕ ТЕРМИНЫ И СОКРАЩЕНИЯ

ПЛК – программируемый логический контроллер

CoDeSys – специализированная среда программирования логических контроллеров. Торговая марка компании 3S-Software.

Modbus – открытый протокол обмена по сети RS-485. Разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

Modbus-TCP – версия протокола Modbus, адаптированная к работе в сети TCP/IP. DCON – открытый протокол обмена по сети RS-485. Разработан компанией Advantech, применяется в модулях ввода/вывода Adam, модулях компании IPC DAS и некоторых других.

Retain-переменные – переменные пользовательской программы, значение которых сохраняется при выключении питания контроллера.

Target-файл – файл или набор файлов, поставляемых производителем, содержащие информацию о ресурсах контроллера, количестве входов и выходов, интерфейсах и т.д. Инсталлируются в систему CoDeSys для сообщения ей данной информации.

2. НАЗНАЧЕНИЕ

Программируемый логический контроллер OBEH ПЛК150 предназначен для создания систем автоматизированного управления технологическим оборудованием в энергетике, на ж/дтранспорте, в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Логика работы ПЛК150 определяется потребителем в процессе программирования контроллера. Программирование осуществляется с помощью системы программирования ${\bf CoDeSys~2.3.8.1~u~crapme^1}$.

¹ Описание программирования контроллера и описание работы со средой программирования на русском языке находятся на компакт-диске, входящем в комплект поставки, см. Приложение Г.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики, характеристики входных сигналов и характеристики встроенных выходных элементов контроллера ПЛК150 приведены в таблицах 1, 2, 3, 4.

Таблица 1 Основные технические характеристики контроллера ПЛК150

Параметр	Значение			
0	Общие сведения			
Конструктивное исполнение	Унифицированный корпус для крепления на DIN-рейку (ширина 35 мм), длина 105 мм (6U), шаг клемм 7,5 мм			
Степень защиты корпуса	IP20			
Напряжение питания: ПЛК150-24 ПЛК150-220	1829 В постоянного тока (номинальное напряжение 24 В) 90264 В переменного тока (номинальное			
П	напряжение 220 В) частотой 4763 Гц			
Потребляемая мощность	6 Вт			
Индикация передней панели	1 индикатор питания 6 индикаторов состояний дискретных входов 4 индикатора состояний выходов 1 индикатор наличия связи с CoDeSys 1 индикатор работы программы пользователя			
Ресурсы				
Центральный процессор	32-х разрядный RISC-процессор 200 МГц на базе ядра ARM9			
Объем оперативной памяти	8 MB			

Параметр	Значение	
Объем энергонезависимой памяти хранения	4 MB*	
ядра CoDeSys программ и архивов		
Размер Retain-памяти	4 κB**	
Время выполнения цикла ПЛК	Минимальное 250 мкс (нефиксированное),	
	типовое от 1 мс	
Дискретны	ые входы	
Количество дискретных входов	6	
Гальваническая изоляция дискретных входов	есть, групповая	
Электрическая прочность изоляции дискрет-		
ных входов	1,5 κB	
Максимальная частота сигнала, подаваемого	1 кГц при программной обработке	
на дискретный вход	10 кГц при применении аппаратного	
	счетчика и обработчика энкодера	
Дискретні	ые выходы	
Количество дискретных выходов	4 э/м реле	
Характеристики дискретных выходов	Ток коммутации до 2 А дри напряжении не	
	более 220 В 50 Гц и соѕ ^Ψ > 0,4	
Гальваническая изоляция дискретных выходов	есть, индивидуальная	
Электрическая прочность изоляции дискрет-		
ных выходов	1,5 кВ	
Аналоговые входы		
Количество аналоговых входов	4	
Типы поддерживаемых унифицированных	Напряжение 01 B, 010 B, -50+50 мВ	
входных сигналов	Ток 05 мА, 0(4)20 мА	
	Сопротивление 05 кОм	

Параметр	Значение	
Типы поддерживаемых датчиков	Термосопротивления: ТСМ50М, ТСП50П, ТСМ100М, ТСП100П, ТСН100Н, ТСМ500М, ТСП500П, ТСН500Н, ТСП1000П, ТСН1000Н	
	Термопары:	
	ТХК (L), ТЖК (J), ТНН (N), ТХА (K), ТПП (S), ТПП (R), ТПР (B), ТВР (A-1), ТВР (A-2)	
Разрядность встроенного АЦП	16 бит	
Внутреннее сопротивление аналогового входа:		
в режиме измерения тока	50 Ом	
в режиме измерения напряжения 010 В	около 10 кОм	
Время опроса одного аналогового входа	0,5 c	
Предел основной приведенной погрешности		
измерения аналоговыми входами	0,5 %	
Гальваническая изоляция аналоговых входов	отсутствует	
Аналоговые выходы		
Количество аналоговых выходов	2	
Разрядность ЦАП	10 бит	
Тип выходного сигнала:		
ПЛК150-И	Ток 420 мА	
ПЛК150-У	Напряжение 010 В	
ПЛК150-А	Ток 420 мА или напряжение 010 В	

Параметр	Значение	
Питание аналоговых выходов	встроенное, общее на все выходы	
Гальваническая изоляция аналоговых выходов	есть, групповая	
Электрическая прочность изоляции аналоговых		
выходов	1,5 кВ	
Ma.da	<u></u>	
Интерфейсы связи		
Интерфейсы	Ethernet 100 Base-T	
	RS-232	
	RS-485	
Скорость обмена по интерфейсам RS	от 4800 до 115200 bps	
Протоколы	OBEH	
	ModBus-RTU, ModBus-ASCII	
	DCON	
	ModBus-TCP	
	GateWay (протокол CoDeSys)	
Программирование		
Среда программирования	CoDeSys 2.3.8.1 (и старше)	
Интерфейс для программирования и		
отладки	RS-232 или Ethernet	

^{*} Для хранения файлов и архивов используется Flash-память, специализированная файловая система. Доступный для пользователя объем составляет 3 Мбайта.

^{**} Настраивается пользователем, максимальный объем составляет 16 Кбайт.

Характеристики дискретных входных сигналов

Таблица 2

Модификация контроллера	Сигнал, подаваемый на дискретный вход	Комментарий
ПЛК150-24	2917 В* – логическое значение 1 50 В* – логическое значение 0	Вход срабатывает при протекающем через него токе величиной не менее 3 мА
ПЛК150-220	С помощью сухого контакта или ключа, коммутирующего общую клемму дискретных входов и клемму конкретного входа	Суммарное сопротивление контакта и линии подключения должно быть не более 100 Ом
*Напряжение относительно минусовой клеммы питания		

Таблица 3 Характеристики встроенных аналоговых выходных элементов

ларактеристики встроенных аналоговых выходных элементов		
Обозначение при заказе	Наименование	Характеристики
И	Цифроаналоговый преобразователь "параметр – ток 420 мА"	Сопротивление нагрузки от 0 до 900 Ом
У	Цифроаналоговый преобразователь "параметр – напряжение 010 В"	Сопротивление нагрузки от 2 кОм
А	Цифроаналоговый преобразователь "параметр – ток 420 мА или напряжение 010 В"	Сопротивление нагрузки от 150 до 900 Ом для токового сигнала и свыше 10 кОм для сигнала напряжения

Таблица 4 Типы датчиков и унифицированных сигналов, подключаемых к аналоговым входам

Наименование	Диапазон измерений
Термопреобразователи сопротивления (по	ГОСТ 6651- 94)
TCM (Cu 50) W ₁₀₀ = 1,4260	−50 °C+200 °C
TCM (50M) $W_{100} = 1,4280$	−190 °C+200 °C
ТСП (Pt 50) W ₁₀₀ = 1,3850	−200 °C+750 °C
ТСП (50П) W ₁₀₀ =1,3910	−200 °C+750 °C
TCM (Cu 100) W ₁₀₀ =1,4260	−50 °C+200 °C
TCM (100M) W ₁₀₀ = 1,4280	−190 °C+200 °C
ТСП (Pt 100) W ₁₀₀ =1,3850	−200 °C+750 °C
ТСП (100П) W ₁₀₀ =1,3910	−200 °C+750 °C
TCH (100H) W ₁₀₀ =1,6170	−60 °C+180 °C
TCM (Cu 500) W ₁₀₀ =1,4260	−50 °C+200 °C
TCM (500M) W ₁₀₀ = 1,4280	−190 °C+200 °C
ТСП (Pt 500) W ₁₀₀ =1,3850	200 °C+750 °C
ТСП (500П) W ₁₀₀ =1,3910	−200 °C+750 °C
TCH (500H) W ₁₀₀ =1,6170	−60 °C+180 °C
TCM (Cu 1000) W ₁₀₀ = 1,4260	−50 °C+200 °C
TCM (1000M) W ₁₀₀ =1,4280	−190 °C+200 °C
ТСП (Pt 1000) W ₁₀₀ =1,3850	−200 °C+750 °C
ТСП (1000П) W ₁₀₀ =1,3910	−200 °C+750 °C
TCH (1000H) W ₁₀₀ = 1,6170	−60 °C+180 °C

Наименование	Диапазон измерений	
Термопары (по ГОСТ Р 8.585-2001)		
TXK (L)	−200 °C+800 °C	
ТЖК (J)	−200 °C+1200 °C	
THH (N)	−200 °C+1300 °C	
TXA (K)	−200 °C+1300 °C	
ΤΠΠ (S)	0 °C+1600 °C	
TΠΠ (R)	0 °C+1600 °C	
TBP (A-1)	0 °C+2500 °C	
TBP (A-2)	0 °C+1800 °C	
TBP (A-3)	0 °C+1600 °C	
TMK (T)	−200 °C+400 °C	
Унифицированные сигналы постоянного напряжения и тока (по ГОСТ 26.011-8		
05,0 мА	0100%	
020,0 мА	0100%	
4,020,0 мА	0100%	
-50,0+50,0 мB	0100%	
01,0 B	0100%	
010,0B	0100%	
Датчики сопротивления		
0 5000 Ом	0100%	

4. УСЛОВИЯ ЭКСПЛУАТАЦИИ

Контроллер ОВЕН ПЛК150 эксплуатируется при следующих условиях:

- закрытые взрывобезопасные помещения или шкафы электрооборудования без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 °C до +70 °C¹;
- верхний предел относительной влажности воздуха 80 % при 25 °С и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям при эксплуатации ПЛК150 соответствует группе исполнения В4 по ГОСТ 12997-84.

По устойчивости к механическим воздействиям при эксплуатации ПЛК150 соответствует группе исполнения N2 по ГОСТ 12997.

Габаритные размеры контроллера приведены в Приложении А.

5. УСТРОЙСТВО ОВЕН ПЛК 150

Контроллер ОВЕН ПЛК150 выпускается в корпусе, предназначенном для крепления на DIN-рейке 35 мм. Подключение всех внешних связей осуществляется через разъемные соединения, расположенные на верхней, нижней и передней (лицевой) сторонах контроллера. Открытие корпуса для подключения внешних связей не требуется.

¹При длительной эксплуатации контроллера притемпературе окружающего воздуха свыше +50°C и ниже +1°C встроенный аккумулятор аварийного питания быстро изнашивается и уменьшает свой заряд. По этой причине возможно снижение времени работы от аккумулятора аварийного питания и уменьшение времени работы часов реального времени.

Схематический внешний вид контроллера показан на рис.1.

На верхней стороне расположены разъемы интерфейсов Ethernet и RS-485.

На лицевой панели расположен порт Debug RS-232, предназначенный для связи со средой программирования, загрузки программы и отладки. Подключение к этому порту осуществляется кабелем, входящим в комплект поставки. Также порт Debug RS-232 может быть использован для подключения Hayes – совместимых модемов (в том числе GSM), а также устройств, работающих по протоколам Modbus, OBEH и DCON.

По обеим боковым сторонам контроллера расположены клеммы для подключения датчиков и исполнительных механизмов. Схемы подключения приведены в Приложении Б.

Любой дискретный вход ПЛК150 может работать в режиме аппаратного счетчика или триггера (частота до 10 кГц при скважности 50%), к двумдискретным входам можно подключить энкодер (частота импульсов до 10 кГц). Частота обработки аппаратных счетчиков и обработчиков энкодера не зависит от времени выполнения цикла ПЛК.

Рис. 1. Внешний вид ПЛК150

Более подробно сведения о настройке аппаратных счетчиков и работы с энкодером изложены в документе "PLC_Configuration_OWEN.pdf", который находится на диске, входящем в комплект поставки контроллера.

На переднюю панель контроллера выведена светодиодная индикация о состоянии дискретных входов и выходов, о наличии питания и о наличии связи со средой программирования CoDeSys.

Также на передней панели имеются две кнопки: кнопка "Старт/Стоп", предназначенная для запуска и остановки программы в контроллере и скрытая кнопка "Сброс", предназначенная для перезагрузки контроллера. Нажать кнопку "Сброс" возможно только тонким заостренным предметом.

Кнопка "Старт/Стоп" может быть использована как дополнительный дискретный выход. В корпусе контроллера расположен маломощный звуковой излучатель, управляемый изпользовательской программы как дополнительный дискретный выход. Звуковой излучатель может быть использован для функций аварийной или иной сигнализации или при отладке программы. Частота звукового сигнала излучателя фиксированная и не подлежит изменению.

Контроллер ПЛК150 оснащен встроенными часами реального времени, имеющими собственный аккумуляторный источник питания. Энергии полностью заряженного аккумулятора хватает на непрерывную работу часов реального времени в течение 6 месяцев (при температуре 15–35°C). В случае износа аккумулятора, не полной его зарядки, а также при работе при более низких или более высоких температурах время работы часов реального времени может сократиться.

Аккумулятор, используемый для питания часов реального времени, дополнительно используется как источник аварийного питания микропроцессора контроллера. При случайном отключении основного питания контроллер переходит на аварийное питание

и сохраняет промежуточные результаты вычислений и работоспособность интерфейсов Ethernet в течение 10 минут¹. Светодиодная индикация и выходные элементы контроллера при этом не запитываются и не функционируют. При включении основного питания во время работы на аварийном питании контроллер сразу приступает к выполнению пользовательской программы, не тратя времени на загрузку ядра **CoDeSys** и сохраняя все промежуточные результаты вычислений. После 10 мин. работы на аварийном питании контроллер записывает Retain-переменные в энергонезависимую память и отключается. Часы реального времени остаются в рабочем состоянии. После включения основного питания контроллер загружается и запускает программу пользователя (если программа записана во Flash-память контроллера). Время работы от аварийного источника питания может быть автоматически скорректировано самим контроллером в зависимости от степени зарядки аккумулятора и температуры окружающей среды².

Для полной зарядки аккумулятора требуется не менее пяти часов бесперебойной подачи основного питания.

Во время загрузки контроллера его выходы переводятся в заранее заданное «безопасное состояние», в которых находятся до полной загрузки контроллера и запуска пользовательской программы.

Примечание. «Безопасное состояние» – это состояние выходов контроллера, при котором подключенные к ним исполнительные механизмы находятся в состоянии, наиболее безопасном для объекта управления, не приводящим к его поломке. Значение «безопасного состояния» выходов задается при конфигурировании области ввода-вывода в PLC-Configuration.

¹См. сноску на стр. 12

² Если Вам при отладке не требуется, чтобы контроллер работал 10 мин отаккумулятора, то при выключенном основном питании нажмите кнопку "Сброс". Работа от аккумулятора и его разрядка прекратится.

6. УСТАНОВКА CODESYS, ИНСТАЛЛЯЦИЯ TARGET-ФАЙЛОВ

6.1. Для установки среды программирования **CoDeSys 2.3** следует запустить программу-инсталлятор (файл **Setup.exe** на компакт-диске, входящем в комплект поставки). Обратите внимание: при выборе языка работы программы русский язык отсутствует в списке, поэтому рекомендуется выбрать английский язык.

Бесплатные обновления версий программы **CoDeSys** доступны на сайтах **www.codesys.ru** и **www.3s-software.com** и **www.owen.ru**.

6.2. После инсталляции среды CoDeSys следует выполнить инсталляцию Target-файлов. В Target-файлах содержится информация о ресурсах программируемых контроллеров, с которыми работает CoDeSys. Target-файл поставляется производителем контроллера.

ВНИМАНИЕ! Имя Target-файла может не полностью совпадать с названием контроллера. В названии контроллера применяются русские и английские буквы, а в названии Target-файла только английские. Например, для контроллера ПЛК150-220.И-L необходимо устанавливать Target-файл PLC150.I-L, а для ПЛК150-220.У-М файл PLC150.U-M.

Инсталляция Target-файлов производится при помощи утилиты **InstallTarget**, устанавливающейся вместе со средой программирования.

Порядок инсталляции Target-файлов:

1) В открывшемся при запуске утилиты InstallTarget окне (рис. 2) – нажать кнопку Open и указать путь доступа к инсталлируемому Target-файлу (имеющему расширение *.tnf, Target Information File). Тarget-файлы контроллеров ОВЕН ПЛК150 находятся на компакт-диске, поставляемом с контроллером, в папке «Target» или могут быть скачаны с сайта www.owen.ru.При скачивании с сайта папку с Target-файлами надо разархивировать и сохранить на жестком диске ПК.

- 2) После открытия требуемого файла в области «Possible Targets» окна отобразится папка «Owen».
- 3) Открыв папку «Owen» и выделив находящуюся там строку, нажать кнопку **Install**. В области «Installed Targets» окна отобразится список инсталлированных Target-файлов.

Рис. 2. Окно «InstallTarget» утилиты InstallTarget

7. Создание проекта. Выбор контроллера. Примеры и запуск программ

- **7.1.** Для создания нового проекта необходимо в среде CoDeSys вызвать команду меню **File** | **New** или воспользоваться одноименной кнопкой на панели инструментов.
- **7.2.** После создания проекта нужно выбрать Target-файл, соответствующий названию контроллера. Target-файл предварительно должен быть инсталлирован (см. п. 6.2). Окно выбора Target-файла представлено на рис. 3.

Рис. 3. Окно выбора Target-файла

- **7.3.** Затем откроется окно настроек Target-файлов. Как правило, настройки установлены производителем и не требуют изменения (кроме изменения объема Retail-памяти).
- **7.4.** После подтверждения настроек Target-файла необходимо создать основной POU (главную программу проекта). Окно этого диалога представлено на рис. 4. Главная программа всегда должна иметь тип **Program** и имя **PLC_PRG**. Поэтому в данном диалоге необходимо выбрать только язык программирования (Language of the POU).

Рис. 4. Окно создания основного POU

7.5. В зависимости от выбранного языка программирования откроется окно, в котором необходимо создать программу, исполняемую на контроллере. Простейшей программой на языке ST являляется символ «;». Такой программы достаточно для проверки связи с контроллером. Примеры программ на языках FBD, LD и ST приведены на рис. 5.

Рис. 5. Примеры программ на языках FBD (a), LD (б) и ST (в)

При написании любого из примеров программ, представленных на рис. 5, будет вызван ассистент ввода (рис. 6) для описания переменной **a**.

Примеры создания более сложных программ представлены в электронном виде на диске, входящем в комплект поставки, в директории "Документация / Первые шаги в CoDeSys".

7.6. Для загрузки программы в контроллер установите связь с контроллером, вызвав команду меню **Online** | **Login**. Более подробное описание параметров установки

Рис. 6. Ассистент ввода для объявления переменной

связи см. п. 8. Запустите выполнение загруженной программы, вызвав команду меню **Online | Run** или нажатием кнопки "Старт/Стоп" на передней панели контроллера.

7.7. Если требуется, чтобы программа осталась в памяти контроллера после перезагрузки, то ее необходимо записать во внутреннюю Flash-память контроллера, вызвав команду меню **Online | Create boot project**. После этого программа будет автоматически запускаться на контроллере при перезагрузке и при включении питания.

ВНИМАНИЕ! Ресурс встроенной Flash-памяти контроллера ограничен (около 50 тыс. записей), поэтому не рекомендуется при отладке программы каждый раз записывать ее во Flash-память.

ВНИМАНИЕ! При создании программы возможна ситуация, когда из-за разного рода ошибок цикл ПЛК будет больше допустимого значения (о задании максимального времени цикла см. документ PLC-Configuration). Это приведет к перезагрузке контроллера. Если такая программа ошибочно была записана во Flash-память контроллера, то после перезагрузки она запустится автоматически, что, в свою очередь, приведет к повторной перезагрузке. Аналогичная ситуация возникает при некорректно прошедшей записи безошибочной программы. Чтобы прекратить циклическую загрузку программы и последующую перезагрузку контроллера необходимо, удерживая нажатой кнопку "Старт/Стоп" на передней панели контроллера нажать кнопку "Сброс". При такой комбинации кнопок программа не будет автоматически запущена, это даст возможность подключиться к контроллеру и загрузить в него корректно работающую программу.

7.8. Перечень электронных документов, необходимых для начала работы в среде CoDeSys 2.3, представлен в Приложении В.

8. УСТАНОВКА СВЯЗИ С КОНТРОЛЛЕРОМ

8.1. Установка связи с контроллером возможна по интерфейсам **Ethernet**, **Debug RS-232** или через **последовательный модем** (подключенный к порту Debug RS-232). Более подробно о кабелях для подключения контроллера к ПК см. в п. 10.

Настройка канала соединения с контроллером производится в окне «Communication parameters», вызываемом командой меню **Online | Communication parameters** в среде CoDeSys (рис. 3).

Нажать кнопку **New** в этом окне. Откроется окно «Communication parameters: New Channel». В этом окне задать имя нового соединения (например, Owen) и выбрать из перечня интерфейс соединения: **Tcp/lp (Level 2)** для связи по интерфейсу Ethernet, **Serial (RS232)** для связи через порт Debug RS-232 напрямую или **Serial (Modem)** для связи через последовательный модем.

8.2. При выборе соединения **Serial (RS232)** в настройках параметров следует задать COM-порт (параметр Port), по которому ПЛК подключается к компьютеру и изменить скорость соединения (параметр Baudrate) на 115200 бит/с и настройку бит четности (параметр Parity) на "No".

Для изменения параметра следует дважды щелкнуть левой кнопкой мыши по имеющемуся значению параметра, и, листая список доступных значений стрелками на клавиатуре, выбрать новое значение. Для сохранения нового значения – нажать кнопку **Enter** на клавиатуре.

8.3. Для соединения ПЛК с компьютером через последовательный модем необходимо сначала изменить конфигурацию ПЛК для работы с модемом. Для изменения конфигурации связь с контроллером должна быть установлена через интерфейс Debug RS-232 напрямую (см. п. 8.2) или по интерфейсу Ethernet.

Рис. 7. Настройка коммуникационных параметров для соединения с ПЛК

В большинстве случаев при подключении нового модема необходимо изменить его настройки, для этого надо считать из памяти ПЛК файл "modem.cfg" и сохранить его на жестком диске компьютера. Для этого нужно дать команду Online | Login, устанавливающую связь с контроллером, затем дать команду Online | Read file from PLC, ввести имя файла "modem.cfg", выбрать директорию для сохранения и нажать Enter. Далее с помощью текстового редактора изменить настройки модема на требуемые и сохранить файл. Формат файла "modem.cfg" можно найти в документе "Описание файла "modem.cfg" на компакт-диске, входящем в комплект поставки. Чтобы записать отредактированный файл "modem.cfg" в ПЛК необходимо сначала стереть из памяти ПЛК старый файл "modem.cfg" (перезапись не поддерживается), подав команду filedelete через PLC Browser, а затем подать команду Online | Write file to PLC, выбрать файл "modem.cfg" и нажать Enter.

Чтобы сконфигурировать контроллер для работы с последовательным модемом в режиме прямого соединения необходимо подать команду **SetModemCfg** с параметром 1 через PLC-Browser (1 – означает подключение к порту Debug RS-232 модема в режиме прямого соединения).

Затем, обесточив ПЛК к нему необходимо подключить последовательный модем через порт Debug RS-232 специальным модемным кабелем, не входящим в комплект поставки ПЛК150 ("Модемный кабель ПЛК1XX" можно заказать отдельно). В кабеле есть двухпозиционный переключатель, для работы в среде Codesys переключатель необходимо установить в положение "ON".

Необходимо включить питание ПЛК150. В среде Codesys в окне «Communication parameters» необходимо выбрать новый тип соединения **Serial (Modem)** (см. п. 8.1). В настройках параметров следует задать COM-порт (параметр Port), по которому подключен последовательный модем к компьютеру, скорость соединения (параметр Boudrate) такую же как в подключенном модеме и номер телефона для дозвона на ПЛК150 (параметр Dial).

8.4. Для установки соединения по интерфейсу Ethernet контроллер и компьютер должны находится в одной IP-подсети.

Возможны два варианта: изменение имеющегося IP-адреса контроллера в соответствии с настройками сети пользователя или задание компьютеру дополнительного IP-адреса, входящего в подсеть контроллера.

Изменение IP-адреса контроллера возможно при помощи команды SetIP, подаваемой через PLC-Browser. При этом связь с контроллером должна быть установлена через интерфейс Debug RS-232.

Примечание. Подробнее о работе PLC-Browser изложено в комплекте документации на компакт-диске, входящем в комплект поставки ПЛК150.

Задание дополнительного IP-адреса компьютеру делается в свойствах протокола TCP/IP в настройках сетевого окружения Windows. При изготовлении устанавливается IP-адрес контроллера **10.0.6.10**. Поэтому необходимо присвоить компьютеру дополнительный IP-адрес в подсети 10.0.6, отличный от адреса 10.0.6.10. Маску подсети задать равной 255.255.0.0.

При настройке соединения Tcp/lp (Level 2) в параметре Address необходимо задать IP-адрес контроллера, дважды щелкнув левой кнопкой мыши по значению адреса, и ввести новое значение с клавиатуры. Для сохранения нового значения нажать кнопку **Enter** на клавиатуре.

8.5. После настройки соединения подать команду меню **Online** | **Login**, устанавливающую связь с контроллером. При этом флаг перед строкой меню **Simulation Mode** должен быть снят. Для установки связи необходимо, чтобы была создана программа пользователя.

ВНИМАНИЕ! При смене интерфейса соединения необходимо произвести перезагрузку контроллера, нажав кнопку "Сброс" на лицевой панели.

9. МЕРЫ БЕЗОПАСНОСТИ

- **9.1.** По способу защиты от поражения электрическим током контроллер ОВЕН ПЛК150 соответствует классу 0 по ГОСТ 12.2.007.0-75.
- **9.2.** При эксплуатации, техническом обслуживании и поверке необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- **9.3.** Открытые контакты клеммника контроллера при эксплуатации находятся под напряжением величиной до 250 В, опасным для человеческой жизни. Любые подключения к контроллеру и работы по его техническому обслуживанию производятся только при отключенном питании контроллера и подключенных исполнительных механизмов.
- **9.4.** Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы контроллера. Запрещается использование контроллера при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.
- **9.5.** Подключение, регулировка и техобслуживание контроллера ОВЕН ПЛК150 должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

10. МОНТАЖ

10.1. Монтаж контроллера

Подготовить место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов.

Укрепить контроллер на DIN-рейку защелкой вниз. При размещении контроллера следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни. Доступ внутрь таких шкафов разрешен только квалифицированным специалистам.

10.2. Монтаж внешних связей

10.2.1. Питание контроллера ПЛК150-220 следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение контроллера от сети. Питание каких-либо устройств от сетевых контактов контроллера запрещается.

Питание контроллера ПЛК150-24В следует осуществлять от распределенной питающей сети 24 В или от локального блока питания подходящей мощности, установленного совместно с контроллером в шкафу электрооборудования. При питании от распределенной сети 24 В требуется устанавливать перед контроллером сетевой фильтр, подавляющий помехи, например, ОВЕН БСФ.

10.2.2. Подключение интерфейса RS-485 выполняется по двухпроводной схеме. Подключение производить при отключенном напряжении питания всех устройств сети RS-485. Длина линии связи должна быть не более 1000 метров. Подключение следует осуществлять витой парой проводов, соблюдая полярность. Провод А подключается к выводу А контроллера, аналогично соединяются выводы В. Подключение производить при отключенном питании всех устройств в линии RS-485.

- **10.2.3.** Подключить интерфейс Ethernet 8-ми жильным кабелем «витая пара» категории 5. На кабель установить оконечные разъемы без экрана. Ответную часть кабеля подключить к Ethernet-концентратору, к сетевой плате компьютера или к иному оборудованию. При подключении к концентратору используется обычный (прямой) кабель, при подключении к сетевой плате или к иному оборудованию используется кабель Up-Link (кабель с перекрестным монтажом первой и второй пар).
- 10.2.4. Подключение кабеля программирования, входящего в комплект поставки, осуществляется через порт Debug RS-232, в гнездо, расположенное на лицевой панели контроллера. Ответную часть кабеля вставить в COM-порт компьютера. В случае необходимости подключения к порту Debug RS-232 иных устройств, имеющих выходной интерфейс RS-232, необходимо самостоятельно изготовить кабель подключения по схеме, приведенной в Приложении Б.

Внимание! Подключение кабеля программирования осуществляется при отключенном питании ПЛК и персонального компьютера.

Если данное условие по каким-либо причинам не может быть выполнено, то необходимо отключить питание хотя бы одного из этих устройств.

Если же отключение питания ПЛК и компьютера невозможно, то рекомендуется следующий порядок подключения кабеля:

- в первую очередь кабель подключается к ПЛК с помощью разъема на передней панели;
- затем кабель необходимо подключить к COM-порту компьютера; предварительно для выравнивания электрических потенциалов ПЛК и компьютера следует коснуться металлической частью разъема кабеля металлического корпуса COM-порта компьютера.

Невыполнение этих требований может привести к повреждению СОМ-порта компьютера.

- 10.2.5. Подключение последовательного модема к контроллеру осуществляется через порт Debug RS-232 "Модемным кабелем ПЛК1XX" (не входит в комплект поставки, заказывается отдельно). На модемном кабеле необходимо установить переключатель в положение "ON", если ПЛК будет использоваться для работы по протоколу Gateway (со средой Codesys, Codesys Gateway OPC Server и др.). Если протокол Gateway не будет использоваться, то переключатель необходимо перевести в положение "OFF". Схема распайки "Модемного кабеля ПЛК1XX" приведена в Приложении Б.
- **10.2.6.** Подключение источников сигналов к аналоговым и дискретным входам, а также подключение исполнительных механизмов к аналоговым и дискретным выходам осуществляются по схемам, приведенным в Приложении Б.

ВНИМАНИЕ! Все подключения осуществлять, предварительно отключив питание контроллера и подсоединяемые датчики и исполнительные механизмы.

Для обеспечения надежности электрических соединений рекомендуется использовать многожильные медные кабели, сечением не более 1,5 мм², концы которых перед подключением следует зачистить и облудить или обжать в наконечники. Зачистку кабелей необходимо выполнять с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т.е. чтобы оголенные участки провода не выступали за ее пределы.

Подключение датчиков к аналоговым входам, а также подключение исполнительных механизмов к аналоговым выходам необходимо осуществлять к соответствующим парам клемм несмотря на то, что общие клеммы электрически объединены внутри контроллера. Подключение датчика или исполнительного механизма к "чужой" общей клемме не выведет контроллер из строя, но ухудшит его точностные характеристики.

ВНИМАНИЕ! Подключаемые к ПЛК150 датчики с унифицированным сигналом напряжения 0...10 В должны иметь встроенный ограничитель выходного тока, позволяющий получить максимальное значение тока не более 15 мА. Следует иметь в виду, что в технических характеристиках датчиков максимальное значение выходного тока может не указываться, но косвенно о значении тока можно судить по значению нагрузочного сопротивления датчика, которое должно составлять не менее 700 Ом.

Подключение датчиков к дискретным входам осуществляется относительно любой общей клеммы дискретных входов, а для ПЛК150-24.X-X также может быть осуществлено относительно плюсовой клеммы питания.

11. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При выполнении работ по техническому обслуживанию контроллера соблюдать меры безопасности, изложенные в разделе 9.

Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
- проверку качества крепления контроллера на DIN-рейке;
- проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

12. МАРКИРОВКА И УПАКОВКА

При изготовлении на контроллер наносятся:

- наименование контроллера;
- знак соответствия требованиям нормативно-технической документации;
- наименование предприятия-изготовителя;
- год изготовления;
- диапазон напряжения питания и потребляемая мощность;
- штрих-код.

Контроллер упаковывается в тару из гофрированного картона.

13. ПРАВИЛАТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

Контроллер должен транспортироваться в упаковке при температуре от минус 25 °C до + 80 °C и относительной влажности воздуха не более 95 % (при 35 °C).

Транспортирование допускается всеми видами закрытого транспорта.

Транспортирование на самолетах должно производиться в отапливаемых герметичных отсеках.

Условия хранения ПЛК150 в транспортной таре на складе потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. Воздух помещения не должен содержать агрессивных паров и газов.

14. КОМПЛЕКТНОСТЬ

Контроллер ОВЕН ПЛК150	– 1 шт.
Паспорт и руководство по эксплуатации	– 1 шт.
Компакт-диск с программным обеспечением	– 1 шт.
Кабель программирования	– 1 шт.
Гарантийный талон	– 1 шт.
- apa	

15. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 15.1. Изготовитель гарантирует соответствие панели оператора требованиям ТУ при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
 - 15.2. Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 15.3. В случае выхода панели из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.
- 15.4. В случае необходимости гарантийного и постгарантийного ремонта продукции пользователь может выбрать один из следующих вариантов:
 - лично доставить приборы в центральный офис компании:

Москва: 2-я ул. Энтузиастов, д. 5, корп. 5.

Телефон для справок: (495) 221-60-64 (многоканальный).

• отправить приборы на завод изготовитель по почте:

301830, Тульская обл., г. Богородицк, проезд Заводской, стр. 2 «Б». Телефон для справок: (495) 221-60-64 (многоканальный).

- обратиться в любой из региональных сервисных центров.
- Все сервисные центры имеют одинаковый статус и осуществляют ремонт любой продукции торговой марки OBEH на одинаковых условиях.
- -Пользователь может обращаться в любой сервисный центр по своему выбору, независимо от места приобретения продукции торговой марки ОВЕН.

- -Вопросы по режиму работы и условиям технического обслуживания пользователь может задать по телефону или электронной почте любого РСЦ.
- -Замечания и пожелания к качеству услуг, предоставляемых РСЦ компании ОВЕН, необходимо направлять в Центральный Сервисный Центр компании ОВЕН по e-mail: rem@owen.ru или по факсу: (495) 728-41-45.

Пользователь может ознакомиться с правилами отправки приборов в ремонт и посмотреть актуальный список региональных сервисных центров на нашем сайте: www.owen.ru в разделе «Поддержка».

ВНИМАНИЕ!

- 1. Гарантийный талон не действителен без даты продажи и штампа продавца.
- 2. Крепежные элементы, компакт-диск с программным обеспечением и данное руководство вкладывать в коробку не нужно.

Приложение A Габаритные размеры ОВЕН ПЛК150

входов Схема подключения питания, и выходов к ПЛК150-24.X-X Рис. Б1.

Примечания.

1. Клеммы 1,8 и 13 электрически объединены внутри контролпера, подключение датчиков к дискретным входам может осуществляться относительно любой из этих клемм.

2. Нагрузочное сопротивление аналогового выхода (R) составпяет до 900 Ом при выходном сигнале "ток 4...20 мА" и более 2 кОм при выходном сигнале "напряжение 0...10 В". Подключение внешнего блока питания для аналоговых выходов не требуется, блок питания встроен в контроллер. Ф

входов Рис. Б2. Схема подключения питания, и выходов к ПЛК150-220.X-Х

Нагрузка на контакты каждого реле до 2A 220 B (cos ф >0.4)

Примечания.

- 1. Клеммы 1 и 8 электрически объединены внутри контролпера, подключение датчиков к дискретным входам может осуществляться относительно любой из этих клемм.
- 2. Нагрузочное сопротивление аналогового выхода (R) составпяет до 900 Ом при выходном сигнале "ток 4...20 мА" и более 2 кОм привыходном сигнале "напряжение0...10В". Подключение внешнегоблока питания для аналоговых выходов не требуется, блокпитания встроен в контроллер.

Рис. БЗ. Схема кабеля программирования, входящего в комплект поставки

Рис. Б4. Схема "Модемный кабель ПЛК1ХХ"

Примечание. Переключательустанавливает режим работы через порт Debug RS-232:

- -в положении "ON" ПЛК работает по протоколу Gateway (со средой Codesys);
- вположении "OFF" ПЛК не работает по протоколу Gateway.

Рис. Б5. Схема кабеля для подключения к порту Debug RS-232

Примечание. Кабель программирования, входящий в комплект, предназначен для подключения к компьютеруинеможетбыть использован для подключения к порту Debug RS-232 иных устройств. Длина кабеля не должна превышать 3 метра.

Рис. Б6. Схема подключения к ПЛК150 дискретных датчиков с полупроводниковым выходным каскадом

Приложение В

Перечень электронных документов, необходимых для начала работы с контроллером ОВЕН ПЛК

Имя файла	Пака на диске	Описание документа
·	из комплекта	
	поставки	
CoDeSys_V23_RU.pdf	Документация	Руководство пользователя. Програм- мирование в среде CoDeSys 2.3, (документация от 3S Software)
CoDeSys_Visu_V23_RU.pdf	Документация	Дополнение к руководству пользователя. Визуализация в среде CoDeSys 2.3
PLC_Configuration_OWEN.pdf	Документация	Руководство пользователя. Конфигурирование периферийного оборудования (портов ввода/вывода и сетевых интерфейсов) в окне PLC_Configuration
PLC_Browser_OWEN.pdf	Документация	Руководство пользователя. Настройка и мониторинг ОВЕН ПЛК в окне PLC_Browser
First_OWEN_PLC_Programming.pdf First Steps with CoDeSys RU.pdf	Документация/ Первые шаги в CoDeSys	Примеры. Создание программ на языках FBD, LD и создание визуализации в CoDeSys.

Имя файла	Пака на диске	Описание документа
	из комплекта	
	поставки	
файлы с расширением «avi»	Видео-	Видео-инструкции, иллюстрирующие
	инструкции	работу с контроллером, установу связи,
		написание программы, работы в окнах
		PLC_Configuration и PLC_Browser
Описание меню, панелей	Рекомендации	Краткое описание. Работа в системе
инструментов, закладок.doc	и примеры	программирования CoDeSys, описание
		меню, окон, кнопок и панелей
		инструментов.
Настройка использования	Рекомендации	Руководство по настройке корректного
русского языка в CoDeSys.doc	и примеры	отображения символов кириллицы в
		среде программирования CoDeSys 2.3
Применение ОВЕН ПЛК в	Рекомендации	Руководство по настройке
системах удаленной	и примеры	удаленного соединения с ПЛК1ХХ
диспетчеризации. doc		с примерами

На диске из комплекта поставки содержится еще целый ряд документов, примеров и программ, необходимых для работы. Для более легкой навигации по диску необходимо запустить файл «Index.htm» из корневого каталога диска.

Приложение Г

Перечень вспомогательных согласующих устройств для отладки и эксплуатации ПЛК

Наименование	Назначение
Эмулятор ЭДИ-6	Имитации при помощи механических переключателей срабатывания датчиков, подключенных к 6 дискретным входам модификаций ПЛК150-24 и ПЛК150-220
Модуль ПДИ5-4	Для подключения к 4 дискретным входам модификаций ПЛК150-24 и ПЛК150-220 управляющих сигналов с уровнем ТТЛ (05 В)

Примечание. Технические характеристики и схемы подключений модулей и эмулятора приведены в соответствующих руководствах по эксплуатации. Они доступны на сайте **www.owen.ru** и на компакт-диске, входящем в комплект поставки ПЛК.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ измене-	Номера листов (стр.)			Всего листов	Дата	Подпись	
ния	измен.	заменен.	новых	аннулир.	(стр.)	внесения	
1	2	3	4	5	6	7	8