Chapter Five: Submanifolds

Lee, An Introduction to Smooth Manifolds

6.2 Immersion of an *n*-dimensional manifold into \mathbb{R}^{2n} . We assume that M is an embedded submanifold of \mathbb{R}^{2n+1} . We saw in Problem 5.6 that UM is an 2n-1 dimensional submanifold of $T\mathbb{R}^{2n+1}$. Since $\mathbb{R}P^{2n}$ has dimension 2n, Corollary 6.11 to Sard's theorem implies that the image of the UM unde G has measure 0. Since $U_{2n+1} = \{[v_0, ..., v_{2n}] \in \mathbb{R}P^{2n} : v_{2n} \neq 0\}$ is open, this means that there exists $[w] \in U_{2n+1}$ not contained in G(UM). Then w is a vector in \mathbb{R}^{2n+1} not contained in \mathbb{R}^{2n} such that $(p, w) \notin T_pM$ for any $p \in M$.

Let $F: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n}$ be the quotient map by w. Since F is linear, it is smooth and equal to its own differential under the canonical identification. We want to show that DF_p is injective for $p \in M$. Say otherwise that $DF_p(v) = 0$ for $v \in T_pM$. That implies that $v = \lambda w$, which implies that $(p, w) \in T_pM$, a contradiction. Therefore F is an immersion on M.

I don't see exactly where this fails if the boundary isn't empty. Does Problem 5.6 still hold? Otherwise, perhaps to issue is that the negative of w might be orthogonal to DF but not contained in UM.

6.3 Smooth lower approximation of a continuous function that vanishes on a closed set. Let f be a nonnegative smooth function such that $f^{-1}(0) = A$ (Theorem 2.29). Then $F = \frac{f}{f+1}$ is a function of the same type and F < 1. Let e be a smooth function such that $0 < e(x) < \delta(x)$ (Corollary 6.22). Then $\tilde{\delta} = F \cdot e$ is the desired function.

6.4 Smooth approximations to continuous functions.

(a) Take \tilde{d} as an Problem 6.3. Let \tilde{G} be a smooth \tilde{d} -close approximation to $F|_{M\setminus B}$ (Theorem 6.21) and define

$$\tilde{F}(x) = \begin{cases} \tilde{G}(x) & \text{if } x \in M \setminus B \\ F(x) & \text{if } x \in B \end{cases}$$
.

Clearly \tilde{F} is δ -close to F. To see that \tilde{F} is continuous, take $p \in \delta M$ and let (U, ϕ) be a smooth chart such that $p \in U$. Now on the one hand, by the continuity of F there is a neighborhood $B_{\epsilon_1}(p)$ such that $|F(q) - F(p)| < \epsilon$ for $q \in B_{\epsilon_1}(p) \cap B$. On the other hand, since $\tilde{d}(p) = 0$, there is a neighborhood $B_{\epsilon_2}(p)$ such that $|\tilde{G}(q) - F(q)| < \epsilon$ for $q \in B_{\epsilon_2}(p) \cap M \setminus B$. Let $B = B_{\epsilon_1}(p) \cap B_{\epsilon_2}(p)$. It is clear that $|\tilde{F}(q) - \tilde{F}(p)| < \epsilon$ for $q \in B$. This shows that \tilde{F} is continuous.

- (b) Taking \tilde{F} constructed here, the proof of Theorem 6.26 goes through unchanged, and clearly the homotopy is relative to B.
- **6.5** Tubular neighborhood of points with unique closest point. Let M be an embedded submanifold of \mathbb{R}^n and let $y \in \mathbb{R}^n \setminus M$. If $y \in N$ satisfies $d(y,x) = \min_{x' \in N} d(y,x')$, then for any curve $\gamma : I \to M$

such that $\gamma(0) = x$, $F(t) = ||y - \gamma(t)||^2$ must have a minimum at t = 0. Differentiating, this implies that $y - \gamma(t)$ is orthogonal to $\gamma'(t)$. Since γ was arbitrary, this implies that $y - \gamma(t)$ is orthogonal to T_xM .

Therefore, if $x \in M$ is a closest point to y, the $x - y \in N_x M$. Now, take some δ such that E gives a diffeomorphism between a neighborhood of x containing $\overline{B_\delta}(x) \subset \mathbb{R}^n$. By the slice chart condition, we can assume that δ is small enough that $S = \overline{B_\delta}(x) \cap M$ is closed in \mathbb{R}^n . Now consider $B_{\delta/2}(x)$. By the compactness of S, every element of $B_{\delta/2}(x)$ has a (not necessarily unique) closest element in S. But a closest element of S must be a closest element of M, since $y \in B_{\delta/2}(x)$ implies that $|y - x| < \delta/2$.

Further, we claim that for every $y \in B_{\delta/2}(x)$, there is exactly one such closest element. E restricts to a diffeomorphism between $E^{-1}(\overline{B_\delta}(x) \subset \mathbb{R}^n) \subseteq NM$ and $\overline{B_\delta}(x) \subset \mathbb{R}^n$. Now say there are two points x_1 and x_2 such that $y-x_1 \in N_{x_1}M$ and $y-x_2 \in N_{x_2}M$. Then since $||y-x_i|| < \delta$ $(i=1,2), (x_1,y-x_i) \in E^{-1}(\overline{B_\delta}(x) \subset \mathbb{R}^n)$ and $E(x_1,y-x_1) = E(x_2,y-x_2)$, a contradiction. Therefore the closest point is unique. This proves that for every $x \in M$, there is a radius ρ_x so that all point in $B_{\rho_x}(x)$ have a unique closest point in M.

Now, define $\rho': M \to \mathbb{R}_{>0}$ to be the supremum of all such $\rho(x)$. An argument like the one in the text shows that ρ' is continuous. Then $\{(x,y): y \in N_x M, ||y|| < \rho'(x)\}$ is the desired tubular neighborhood. It is clear from the above discussion of orthogonality that r(y) gives the unique closest point in this case.

6.6 Points exactly ϵ away from an embedded submanifold. Let $T \subset \mathbb{R}^n$ be the tubular neighborhood of M satisfying the conditions of the previous problem. Since M is compact, there is $\epsilon > 0$ such that if $d(y,M) < \epsilon$, $y \in T$. Let $N_{\epsilon}M = \{(x,y) \in NM : y \in N_x M, ||y|| \le \epsilon\}$ and $\delta N_{\epsilon}M = \{(x,y) \in NM : y \in N_x M, ||y|| = \epsilon\}$. Now F(x,v) = ||v|| is a smooth function on NM such that d is a regular value for all d > 0. Therefore, by Proposition 5.47, $\overline{N_{\epsilon}M}$ is a regular domain. By Proposition 5.46, its boundary is the topological boundary $\delta N_{\epsilon}M$, and by Theorem 5.11 this boundary is an embedded codimension-1 submanifold. Since E restricts to a diffeormorphism on a neighborhood of $\overline{N_{\epsilon}M}$ and $\overline{M_{\epsilon}} = E(\overline{N_{\epsilon}M})$ and $\delta M_{\epsilon} = E(\delta N_{\epsilon}M)$, this completes the proof.

6.8 ?

6.10 Preimage of tangent space under transverse map. By Theorem 6.30, W is an embedded submanifold of N. Given $p \in W$ and $v \in T_pW$, let $\gamma : I \to W$ be a curve such that $\gamma(0) = p$ and $\gamma'(0) = v$. Then $F \circ \gamma$ is a smooth curve in X such that $(F \circ \gamma)'(0) = DF_pv$. This proves that $D_pW \subseteq (DF_p)^{-1}(T_{F(p)}X)$. On the other hand, let A be a complementary subspace to T_pW in T_pN . Then by the definition of transversality, $T_{F(p)}N = T_{F(p)}X + dF_p(T_pW) + dF_p(A) = T_{F(p)}X + dF_p(A)$, so by dimension counting (Theorem 6.30), we must have that $dF_p(A) \cap T_{F(p)}X = 0$.

Now if X and X' are embedded submanifolds of M that intersect transversally, then $i: X \hookrightarrow M$ is transverse to X'. But $X \cap X' = i^{-1}(X')$, so by the above $(di_p)^{-1}(T_p(X')) = T_p(X \cap X')$, and on the other hand since $T_pX = (di_p)^{-1}(X)$, $T_pX \cap T_pX' = (di_p)^{-1}(T_p(X'))$. (This is basically a question of notation – the intersections are taken to mean intersections under the inclusion.)

6.12 Approximation $M \to \mathbb{R}^N$ by smooth immersions when M is compact. Let $n = \dim M$. By Theorem 6.18, for $N \ge 2n$ there is an immersion $G: M \to \mathbb{R}^N$. Since M is compact, G(M) is bounded, so |G(x)| < K for all $x \in M$ and some K. Now since dG_p is injective for all $p \in M$, for all $p \in M$ and any $\epsilon' > 0$, there exists $0 < \epsilon < \epsilon'$ such that $d(F + \epsilon G)_p$ is injective. Let $H_{\epsilon} = F + \epsilon G$. Then $|H_{\epsilon}(x) - F(x)| \le \epsilon K$.

6.14 Counterexample to Theorem 6.30 if transversality assumption removed. Let f be the smooth function $\mathbb{R}^{n-1} \to \mathbb{R}$ such that $f^{-1}(0) = A$, guaranteed by Theorem 2.29, and let $F : \mathbb{R}^n \to \mathbb{R}$ be the function F(x,y) = f(x) + y where $x \in \mathbb{R}^{n-1}$ and $y \in \mathbb{R}$. Then F is a smooth submersion, since $dF_p = (df_p, 1)$, so $F^{-1}(0)$ is a proper embedded hypersurface (Corollary 5.13). The contradiction here is that $S \cap S' = A$, S has condimension 1, S' has comdimension 1, but S can have any positive codimension.