Tarea 4

Jose Antonio Lorencio Abril

Dado $p_0 \in S$, considera V un entorno normal de p_0 y sea $\varepsilon > 0$ suficientemente pequeño para que la clausura del disco geodésico $\overline{D\left(p_0,\varepsilon\right)} \subset V$, de modo que $D\left(p_0,\varepsilon\right) = \exp_{p_0}\left(\mathcal{D}\left(0,\varepsilon\right)\right)$ es también un entorno normal de p_0 y la circunferencia geodésica $S\left(p_0,\varepsilon\right) = \partial D\left(p_0,\varepsilon\right) = \exp_{p_0}\left(\mathcal{S}\left(0,\varepsilon\right)\right) \subset V$.

Dado p un punto de S tal que $p \notin D(p_0, \varepsilon)$, considera la función continua $r: S \to \mathbb{R}$ dada por r(x) = d(x, p). Sea $m \in S(p_0, \varepsilon)$ el punto de $S(p_0, \varepsilon)$ donde r(x) alcanza el mínimo sobre el compacto $S(p_0, \varepsilon)$; es decir, $r(m) = d(m, p) = \min_{x \in S(p_0, \varepsilon)} r(x)$. Entonces se cumple que

$$d(p_0, p) = d(p_0, m) + d(m, p)$$

PROOF Primero, comprobamos que $S(p_0,\varepsilon)$ es compacto, ya que es la imagen por una aplicación continua (de hecho un difeomorfismo, \exp_{p_0} , pues estamos dentro de un entorno normal) de $S(0,\varepsilon)$, que es compacto, pues es cerrado y acotado en un espacio homeomorfo a \mathbb{R}^2 . Así, el mínimo del enunciado se alcanza en $S(p_0,\varepsilon)$ y el punto m, efectivamente, existe y está contenido en $S(p_0,\varepsilon)$.

Pasamos ahora a la igualdad:

 \leq Obvio, por la desigualdad triangular, por ser d una distancia

$$d\left(p_{0},p\right)\leq d\left(p_{0},m\right)+d\left(m,p\right)$$

 $[\geq]$ Observemos que para cualquier $\alpha \in \Omega$ (p_0,p) con $\alpha:[0,b] \to S$ (puede tomarse 0 en el extremo izquierdo reparametrizando, si este es c, con el cambio $x \mapsto x - c$), existe un valor $a \in (0,b)$ tal que $\alpha(a) \in S(p_0,\varepsilon)$ y $\alpha(t) \in D(p_0,\varepsilon)$, $\forall t < a$.

Para ver que este punto existe, observamos que, en general si $\alpha \in \Omega$ (p_0, p) , dado $U \in \mathcal{E}(p_0)$, $\exists t_1/\alpha(t_1) \in U$ y, de igual forma, $\forall U' \in \mathcal{E}(p)$, $\exists t_2/\alpha(t_2) \in U'$.

Supongamos que existe una curva α sin tal punto a. Podemos entonces tomar $U = D\left(p_0, \varepsilon\right)$ y $U' = S \setminus \overline{D\left(p_0, \varepsilon\right)}$ (ya que estamos en el caso en el que $p \notin D\left(p_0, \varepsilon\right)$), de tal forma que ambos entornos comparten la frontera y son abiertos disjuntos, con $\alpha\left([0, b]\right) \subset U \cup U' = S \setminus S\left(p_0, \varepsilon\right)$, que no es conexo, pues lo hemos escrito como unión disjunta de dos abiertos no vacíos. Encontraríamos, entonces, t_1 y t_2 tales que

$$\alpha(t_1) \in U, \ \alpha(t_2) \in U'$$

pero esto no puede ser, puesto que entonces estaríamos uniendo mediante α dos puntos de dos conjuntos inconexos. Por tanto, suponer que puede existir una curva que no corte a $S(p_0, \varepsilon)$ nos lleva a una contradicción, y concluimos que existe tal punto a para cualquier $\alpha \in \Omega(p_0, p)$.

Una cuestión relativamente importante es que hemos dicho que a < b, cuando p podría estar en $S\left(p_0,\varepsilon\right)$ y ser a=b. Pero este caso no nos preocupa, ya que podemos usar el caso anterior de la demostración del lema original, cuando $q \in D\left(p_0,\varepsilon\right)$ y construir una sucesión $\{q_n\}_{n\in\mathbb{N}} \subset D\left(p_0,\varepsilon\right)$ con $q_n \overset{n\to\infty}{\to} p$ y obtenemos el resultado para ese caso, pudiendo excluirlo ahora.

Sean ahora $\alpha_1 = \alpha_{|[0,a]}$ y $\alpha_2 = \alpha_{|[a,b]}$, de donde obtenemos

$$L(\alpha) = L(\alpha_1) + L(\alpha_2) \ge d(p_0, \alpha(a)) + d(\alpha(a), p)$$

Ahora bien, dado $0 < \delta < \varepsilon$, se tiene que

$$S(p_0,\delta) \subset D(p_0,\varepsilon)$$

y dado $q_{\delta} \in S(p_0, \delta)$ se tiene que

$$q_{\delta} = \exp_{p_0}(w_{q_{\delta}}) = \gamma_{q_{\delta}}(1), \|w_{q_{\delta}}\| = \delta$$

y entonces, por el teorema 3.8,

$$d\left(p_{0},q_{\delta}\right)=L\left(\gamma_{q_{\delta}}\right)=\int_{0}^{1}\left\Vert \gamma_{q_{\delta}}^{\prime}\left(s\right)\right\Vert ds=\int_{0}^{1}\left\Vert w_{q_{\delta}}\right\Vert ds=\delta$$

y haciendo tender $\delta \to \varepsilon$ obtenemos que, dado $q_{\varepsilon} \in S\left(p_{0}\right)$ se tiene $d\left(p_{0},q_{\varepsilon}\right)=\varepsilon$. En concreto tenemos

$$d(p_0, \alpha(a)) = d(p_0, m) = \varepsilon$$

Por otro lado, tenemos

$$d\left(\alpha\left(a\right),p\right)=r\left(\alpha\left(a\right)\right)\overset{\alpha\left(a\right)\in S\left(p_{0},\varepsilon\right)}{\geq}\min_{x\in S\left(p_{0},\varepsilon\right)}r\left(x\right)=r\left(m\right)=d\left(m,p\right)$$

Por lo que

$$L\left(\alpha\right)=L\left(\alpha_{1}\right)+L\left(\alpha_{2}\right)\geq d\left(p_{0},\alpha\left(a\right)\right)+d\left(\alpha\left(a\right),p\right)=d\left(p_{0},m\right)+d\left(\alpha\left(a\right),p\right)\geq d\left(p_{0},m\right)+d\left(m,p\right)$$

Tomando ínfimos en $\alpha\in\Omega\left(p_{0},p\right)\neq\emptyset$ por ser S conexa, obtenemos

$$d\left(p_{0},p\right) \geq d\left(p_{0},m\right) + d\left(m,p\right)$$

y tenemos con esto ambos lados de la desigualdad.