On Convolution of Graph Signals And Deep Learning on Graph Domains

Candidate: Jean-Charles Vialatte Advisors: Vincent Gripon, Mathias Herberts

Supervisor: Gilles Coppin

Jury: Pierre Borgnat*, Matthias Löwe*, Paulo Goncalves, Juliette Mattioli

*: examiners

December 13th 2018

Outline

- Motivation and problem statement
- 2 Literature overview
- Convolution of graph signals
- 4 Deep learning on graph domains
- Experiments
- 6 Conclusion

Outline

- Motivation and problem statement
- 2 Literature overview
- Convolution of graph signals
- Deep learning on graph domains
- Experiments
- Conclusion

Definitions: Signals and Graphs

Definitions: Signals and Graphs

Graph:

Signal:

$$\left(\begin{array}{cccccc} 0 & a & 0 & d & e \\ a & 0 & 0 & b & 0 \\ 0 & 0 & 0 & c & 0 \\ d & b & c & 0 & 0 \\ e & 0 & 0 & 0 & 0 \end{array}\right)$$

A: adjacency matrix

Definitions: Signals and Graphs

Graph:

$$\left(\begin{array}{cccccc} 0 & a & 0 & d & e \\ a & 0 & 0 & b & 0 \\ 0 & 0 & 0 & c & 0 \\ d & b & c & 0 & 0 \\ e & 0 & 0 & 0 & 0 \end{array}\right)$$

 $A\colon\operatorname{adjacency}\,\operatorname{matrix}$

Examples of signals

Euclidean domains

Non-Euclidean domains

Examples of signals

Most domains can be represented with a graph:

Euclidean domains

Non-Euclidean domains

Deep learning performances

On Euclidean domains:

A key factor: convolution

Defined on Euclidean domains:

Connectivity pattern: MLP vs CNN

Dense layer

fully connected no tied weights ex: 81 different weights here

Connectivity pattern: MLP vs CNN

Dense layer

fully connected no tied weights ex: 81 different weights here

Convolutional layer

locally connected with weight sharing ex: 3 different weights here

Problem: How to extend convolutions?

convolution

Problem: How to extend convolutions?

Euclidean structure

convolution

Non-Euclidean structure

7

Supervised vs semi-supervised application

Let X be a dataset. We classify its rows. Two different kind of graph structures:

Supervised classification of graph-structured data

Semisupervised classification of nodes

Outline

- Motivation and problem statement
- 2 Literature overview
- 3 Convolution of graph signals
- Deep learning on graph domains
- Experiments
- 6 Conclusion

Spectral approaches

Convolutions are defined in the graph spectral domain.

Figure: Example of signals of the Laplacian eigenbasis

Using the GFT, convolution amount to a pointwise multiplication in the spectral domain.

$$X \otimes \Theta = U^T(UX.U\Theta)$$

Spectral approaches

$$X \otimes \Theta = U^T(UX.U\Theta)$$

Pros

- Elegant and fast under some approximations
- Can be used off the shelf: no need to specify any weight sharing

Cons

- Introduce isotropic symmetries
- Do not match Euclidean convolutions on grid graphs

Figure: Example of translation defined as convolution with a dirac (courtesy of Pasdeloup, B.)

Vertex-domain approaches

Convolutions are defined as a sum over a neighborhood, usually a sum of dot products (cf references in thesis manuscript).

$$(X \otimes \Theta)(v_i) = \sum_{j \in \mathcal{N}_{v_i}} \theta_{ij} X(v_j)$$

Vertex-domain approaches

$$(X \otimes \Theta)(v_i) = \sum_{j \in \mathcal{N}_{v_i}} \theta_{ij} X(v_j)$$

Pros

- Match Euclidean convolutions on grid graphs
- Locally connected

Cons

• Weight sharing is not always explicit

A few important references

 \bullet Bruna et al., 2013: spectral filters with $\mathcal{O}(1)$ weights, K smoother matrix used to interpolate more weights.

$$g_{\theta}(X) = U^{T}(UX.K\theta)$$

• Defferard et al., 2016: filters based on Chebychev polynomials $(T_i)_i$.

$$g_{\theta}(L) = \sum_{i=0}^{k} \theta_i T_i(\widetilde{L})$$

• Kipf et al., 2016: application to semi-supervised settings.

$$Y = \widetilde{A}X\Theta$$

• Velickovic et al., 2017: introduction of attention coefficients $(A_k)_k$.

$$Y = \prod_{k=1}^{K} A_k X \Theta_k$$

Du et al., 2017: convolution from the GSP field (Sandryhaila et al., 2013).

$$Y = \sum_{k=1}^{K} \widetilde{A}^k X \Theta_k$$

Outline

- Motivation and problem statement
- 2 Literature overview
- 3 Convolution of graph signals
- Deep learning on graph domains
- Experiments
- 6 Conclusion

Recall: Euclidean convolution

Definition

Convolution on $\mathcal{S}(\mathbb{Z}^2)$

The (discrete) convolution s_1*s_2 is a binary operation in $\mathcal{S}(\mathbb{Z}^2)$ defined as:

$$\forall (a,b) \in \mathbb{Z}^2, (s_1 * s_2)[a,b] = \sum_i \sum_j s_1[i,j] \ s_2[a-i,b-j]$$

A convolution operator f is a function parameterized by a signal $w \in \mathcal{S}(\mathbb{Z}^2)$ s.t. :

- f = . * w (right operator)
- f = w * (left operator)

Some notable properties:

- Linearity
- Locality and weight sharing
- Commutativity (optional)
- Equivariance to translations (i.e. commutes with them)

Characterization by translational equivariance

Theorem

Characterization of convolution operators on $\mathcal{S}(\mathbb{Z}^2)$

A linear transformation f is equivariant to translations \Leftrightarrow it is a convolution operator.

Convolution of signals with graph domains

Can use the Euclidean convolution

How to extend the convolution here?

A few notions of representation theory

A group is a set (defined by some properties) which can act on other sets.

Let Γ be a group, $g \in \Gamma$, and V be a set. Example of group actions:

- $L_g:\Gamma \to \Gamma$ (auto-action)
- $g(.):V \to V$ (action on V)

Group convolution

Definition

Group convolution

Let a group Γ , the group convolution between two signals s_1 and $s_2 \in \mathcal{S}(\Gamma)$ is defined as:

$$\forall h \in \Gamma, (s_1 *_{!} s_2)[h] = \sum_{g \in \Gamma} s_1[g] \ s_2[g^{-1}h]$$

provided at least one of the signals has finite support if $\boldsymbol{\Gamma}$ is not finite.

Theorem

Characterization of group convolution operators

Let a group Γ , let $f \in \mathcal{L}(\mathcal{S}(\Gamma))$,

- **1** If is a group convolution right operator $\Leftrightarrow f$ is equivariant to left multiplications,
- $oldsymbol{0}$ f is a group convolution left operator $\Leftrightarrow f$ is equivariant to right multiplications,
- lacktriangledown f is a group convolution commutative operator $\Leftrightarrow f$ is equivariant to multiplications.

Goal: convolution on the vertex set

Let a graph $G = \langle V, E \rangle$ s.t. $E \subset V^2$.

Starting point: bijective map φ between a group Γ and G (or a subgraph).

Convolution on the vertex set from group convolutions

(Goal: convolution on the vertex set)

 φ : bijective map

$$\mathcal{S}(\Gamma) \stackrel{\varphi^{-1}}{\longleftarrow} \mathcal{S}(V)
\widetilde{f} \downarrow \qquad \qquad \downarrow_{f=\varphi \circ \widetilde{f} \circ \varphi^{-1}}
\mathcal{S}(\Gamma) \xrightarrow{\varphi} \mathcal{S}(V)$$

Equivariance theorem to operators of the form $\varphi \circ L_g \circ \varphi^{-1}$ holds. But not necessarily to actions of Γ on V (i.e. of the form g(.)).

Needed condition: equivariant map

(Goal: equivariance theorem holds)

Condition: φ is a bijective equivariant map

Denote $g_v = \varphi^{-1}(v)$.

$$g_{u} \xrightarrow{L_{g_{v}}} g_{v}g_{u}$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

$$u \xrightarrow{g_{v}(\cdot)} \varphi(g_{v}g_{u})$$

We need
$$g_v(.) = \varphi \circ L_{g_v} \circ \varphi^{-1}$$
 i.e. $\forall u \in V, g_v(u) = \varphi(g_v g_u)$.

φ -convolution

 φ : bijective equivariant map i.e. $g_v(u) = \varphi(g_vg_u)$.

Definition

φ -convolution

 $\forall s_1, s_2 \in \mathcal{S}(V)$:

$$s_1 *_{\varphi} s_2 = \sum_{v \in V} s_1[v] g_v(s_2) \tag{1}$$

$$= \sum_{g \in \Gamma} s_1[\varphi(g)] g(s_2) \tag{2}$$

Theorem

Characterization of φ -convolution right operators

f is a φ -convolution right operator $\Leftrightarrow f$ is equivariant to Γ

Mixed domain formulation

Let Γ be an abelian group. No need to exhibit φ in this case:

Definition

Mixed domain convolution

 $\forall r \in \mathcal{S}(\Gamma) \text{ and } \forall s \in \mathcal{S}(V)$:

$$r *_{\mathsf{M}} s = \sum_{g \in \Gamma} r[g] \ g(s) \in \mathcal{S}(V)$$

Equivariance theorem holds:

Corollary

f is a M-convolution left operator $\Leftrightarrow f$ is equivariant to Γ

(Converse sense still requires bijectivity between Γ and V).

Inclusion and role of the edge set

Edge constrained (EC)

- $g(\mathbf{a}) \in \{c, d\}$
- $g({\color{red}a})\notin\{b,e\}$

Locality Preserving (LP)

Cayley graphs

(Goal: description of EC and LP convolutions)

Definition

Cayley graph and subgraph

Let a group Γ and one of its generating set $\mathcal U$. The *Cayley graph* generated by $\mathcal U$, is the digraph $\vec G=\langle V,E\rangle$ such that $V=\Gamma$ and E is such that, either:

- $\forall a, b \in \Gamma, a \to b \Leftrightarrow \exists g \in \mathcal{U}, ga = b$ (left Cayley graph)
- $\bullet \ \, \forall a,b \in \Gamma, a \to b \Leftrightarrow \exists g \in \mathcal{U}, ag = b \quad \textit{(right Cayley graph)}$
- both points above (abelian Cayley graph)

A Cayley subgraph is a subgraph that is isomorph to a Cayley graph.

Figure: An edge of a Cayley graph

Characterization of EC and LP convolutions

Theorem

Characterization by Cayley subgraphs

Let a graph $G = \langle V, E \rangle$, then:

- **1** its left Cayley subgraphs characterize its EC φ -convolutions,
- ② its right Cayley subgraphs characterize its LP φ -convolutions,
- its abelian Cayley subgraphs characterize its EC and LP M-convolutions.

Corollary

Properties of convolutions that are both EC and LP

- **1** If a φ -convolution of group Γ is EC and LP then Γ is abelian;
- an M-convolution is EC if, and only if, it is also LP.

Other results in the manuscript

- Description with smaller kernels
- The weight sharing is preserved
- More detailed results depending on laterality of operator and equivariance
- Analysis of limitations due to algebraic structure of the Cayley subgraphs
- Above theorems hold for groupoids of partial transformation under mild conditions
- They also hold for groupoids based on paths under restrictive conditions

Outline

- 1 Motivation and problem statement
- 2 Literature overview
- 3 Convolution of graph signals
- Deep learning on graph domains
- Experiments
- Conclusion

Propagational representation of a layer

Definition

Edge-constrained layer

Connections (dotted lines) are constrained by edges (red lines) in a local receptive field.

Propagational representation of a layer

Definition

Edge-constrained layer

Connections (dotted lines) are constrained by edges (red lines) in a local receptive field.

Theorem

Characterization by local receptive fields (LRF)

There is a graph for which a layer is EC \Leftrightarrow its LRF are intertwined.

Connectivity matrix W_1

(Goal: generalized layer representation)

$$\mathbf{y} = h(W \cdot \mathbf{x} + b)$$

$$\begin{pmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ w_{21} & w_{22} & w_{23} & w_{24} \\ w_{31} & w_{32} & w_{33} & w_{34} \\ w_{41} & w_{42} & w_{43} & w_{44} \\ w_{51} & w_{52} & w_{53} & w_{14} \end{pmatrix}$$

Scheme tensor S

(Goal: generalized layer representation)

$$\begin{split} W &= \Theta \cdot S \\ \mathbf{y} &= h(\Theta \cdot S \cdot \mathbf{x} + b) \end{split}$$

$$W_{45} = \sum_{k=1}^{3} \Theta_k S_{45k}$$

Neural contraction

$$\begin{split} \widehat{\Theta SX}[j,q,b] &= \sum_{k=1}^{\omega} \sum_{p=1}^{P} \sum_{i=1}^{n} \Theta[k,p,q] \, S[k,i,j] \, X[i,p,b] \\ g(X) &= \widehat{\Theta SX} \text{ where } \begin{cases} W_{pq}^{\ ij} = \Theta_{pq}^{\ k} S_k^{\ ij} \\ g(X)_{jq}^{\ b} = W_{jq}^{\ ip} X_{ip}^{\ b} \end{cases} \end{split}$$

index	size	description
$\overline{}$	n	input neuron
j	m	output neuron
p	N	input channel
q	M	feature map
k	ω	kernel weight
b	B	batch instance

Table: indices

tensor	shape
Θ	$\omega \times N \times M$
S	$\omega \times n \times m$
X	$n \times N \times B$
ΘS	$n \times m \times N \times M$
SX	$\omega \times m \times N \times B$
ΘX	$\omega \times n \times M \times B$
$\widehat{\Theta SX}$	$m \times M \times B$

Table: shapes

Properties

This formulation is:

- Linear
- Associative
- Commutative
- Generic (next slide)

It is explainable as a convolution of graph signals when:

- in supervised application
- Either 0 or 1 weight per connection (s_{ij} are one-hot vectors)

In other cases it can be seen as a linear combination of convolutions.

Genericity of ternary representation

Given adequate specification of the weight sharing scheme S, we can obtain, e.g.:

- a dense layer
- a partially connected layer
- a convolutional layer
- a graph convolutional layer (GCN, Kipf et al.)
- a graph attention layer (GAT, Velickovic et al.)
- a topology-adaptive graph convolution layer (TAGCN, Du et al.)
- a mixture model convolutional layer (MOnet, Monti et al.)
- a generalized convolution under sparse priors
- any partial connectivity pattern, sparse or not

Discussion

The propagation logic is in the scheme S. For example, it can be either:

- given
- randomized

- learned
- inferred

Outline

- Motivation and problem statement
- 2 Literature overview
- 3 Convolution of graph signals
- Deep learning on graph domains
- Experiments
- 6 Conclusion

Outline

Experiments:

- ullet Study of influence of symmetries using S
- ullet Learning S when masked by an adjacency matrix and its powers
- ullet Monte Carlo simulations with random realizations of S
- ullet Learning S in semi-supervised applications
- ullet Inferring S from translations

Datasets

Influence of symmetries

$$Y=h(\widehat{{\color{red}\Theta SX}})$$

Influence of symmetries: results on MNIST

Learning both S and Θ on MNIST and scrambled MNIST

$$Y = h(\widehat{\Theta SX})$$

Ordering	Conv5x5	A^1	A^2	A^3	A^4	A^5	A^6
no prior	/	1.24%	1.02%	0.93%	0.90%	0.93%	1.00%
prior	0.87%	1.21%	0.91%	0.91%	0.87%	0.80%	0.74%

Table: Grid graphs on MNIST

Learning both \overline{S} and Θ on MNIST and scrambled MNIST

$$Y = h(\widehat{\Theta SX})$$

Ordering	Conv5x5	A^1	A^2	A^3	A^4	A^5	A^6
no prior	/	1.24%	1.02%	0.93%	0.90%	0.93%	1.00%
prior	0.87%	1.21%	0.91%	0.91%	0.87%	0.80%	0.74%

Table: Grid graphs on MNIST

MLP	Conv5x5	Thresholded ($p=3\%$)	k-NN ($k = 25$)
1.44%	1.39%	1.06%	0.96%

Table: Covariance graphs on Scrambled MNIST

Experiments on text categorization

$$Y = h(\widehat{\Theta SX})$$

Figure: Diagram of the MCNet architecture used

MNB	FC2500	FC2500-500	ChebNet32	FC500	MCNet
68.51	64.64	65.76	68.26	71.46 (72.25)	70.74 (72.62)

Table: Accuracies (in %) on 20NEWS, given as mean (max)

Benchmarks on citation networks

$$Y = h(\widehat{\Theta SX})$$

Comparison of

- Graph Convolution Network (GCN),
- Graph Attention Network (GAT),
- Topology Adaptive GCN (TAGCN).

With our models:

- Addition of graph dropout to GCN (GCN*),
- Graph Contraction Network (GCT).

Dataset	MLP	GCN	GAT	TAGCN	GCN*	GCT
Cora	58.8 ± 0.9	81.8 ± 0.9	83.3 ± 0.6	82.9 ± 0.7	83.4 ± 0.7	83.3 ± 0.7
Citeseer	56.7 ± 1.1	72.2 ± 0.6	72.1 ± 0.6	71.7 ± 0.7	72.5 ± 0.8	72.7 ± 0.5
Pubmed	72.6 ± 0.9	79.0 ± 0.5	78.3 ± 0.7	78.9 ± 0.5	78.2 ± 0.7	79.2 ± 0.4

Table: Mean accuracy (in %) and standard deviation after 100 run

 $Step\ 0: infer\ a\ graph$

Step 0: infer a graph

Step 1: infer translations

Step 2: design convolution weight-sharing

Step 2: design convolution weight-sharing

Step 3: design data-augmentation

Step 4: design graph subsampling and convolution weight-sharing

Architecture

We used a variant of deep residual networks (ResNet). We swap operations (data augmentation, convolutions, subsampling) with their counterparts.

Results on CIFAR-10, scrambled CIFAR-10 and PINES fMRI

$$Y = h(\widehat{\Theta SX})$$

Support	MLP	CNN	Grid Graph		Covariance Graph
Support	IVILE	CIVIV	$ChebNet^c$	Proposed	Proposed
Full Data Augmentation	78.62% ^{a,b}	93.80%	85.13%	93.94%	92.57%
Data Augmentation w/o Flips		92.73%	84.41%	92.94%	91.29%
Graph Data Augmentation		$92.10\%^d$		92.81%	$91.07\%^a$
None	69.62%	87.78%		88.83%	85.88% ^a

 $^{^{}a}\,$ No priors about the structure

Table: CIFAR-10 and scrambled CIFAR-10

^b Lin et al., 2015

^c Defferard et al., 2016

^d Data augmentation done with covariance graph

Results on CIFAR-10, scrambled CIFAR-10 and PINES fMRI

$$Y = h(\widehat{\Theta SX})$$

Support	MLP	CNN	Grid Graph		Covariance Graph
Support	IVILE	CIVIV	$ChebNet^c$	Proposed	Proposed
Full Data Augmentation	78.62% ^{a,b}	93.80%	85.13%	93.94%	92.57%
Data Augmentation w/o Flips		92.73%	84.41%	92.94%	91.29%
Graph Data Augmentation		$92.10\%^d$		92.81%	$91.07\%^a$
None	69.62%	87.78%		88.83%	85.88% ^a

 $^{^{}a}\,$ No priors about the structure

Table: CIFAR-10 and scrambled CIFAR-10

Support		None	Neighborh	ood Graph
Method	MLP	CNN (1x1 kernels)	$ChebNet^c$	Proposed
Accuracy	82.62%	84.30%	82.80%	85.08%

Table: PINES fMRI

^b Lin et al., 2015

 $^{^{}c}$ Defferard et al., 2016

^d Data augmentation done with covariance graph

Outline

- Motivation and problem statement
- 2 Literature overview
- 3 Convolution of graph signals
- Deep learning on graph domains
- Experiments
- 6 Conclusion

Summary

We studied convolutions of graph signals and used them to build and understand extensions of CNN on graph domains.

Convolution of graph signals:

- ullet Algebraic description of convolution of graph signals arphi- and M-convolutions,
- Constructed as the class of linear operator that are equivariant to actions of a group.
- Strong characterization results for graphs with Cayley subgraphs.
- Extension with groupoids.

Deep learning on graphs:

- Novel representation based on weight sharing: the neural contraction
- Monte-Carlo Neural Networks (MCNN)
- Graph Contraction Networks (GCT)
- Graph dropout (GCN*)
- Translation-Convolutional Neural Network (TCNN)

Final words

Perspectives:

- In the literature of this domain: semi-supervised >> supervised.
- Both tasks can be abstracted to a more general case.

$$Y=h(\widehat{\Theta SX})$$

 There can be more than one tensor rank which relations can be represented by a graph.

$$Y = h(g(X, A_1, A_2, ..., A_r))$$

- Extended range of applications for deep learning architecture.
- ullet Thinking in AI might be about creating connections (captured by S) and not about updating weights.

Thank you for your attention!

Contributions

- Generalizing the convolution operator to extend CNNs to irregular domains, Jean-Charles Vialatte, Vincent Grippon, Grégoire Mercier, arXiv preprint 2016.
- Neighborhood-preserving translations on graphs, Nicolas Grelier, Bastien Pasdeloup, Jean-Charles Vialatte, Vincent Gripon, IEEE GlobalSIP 2016.
- Learning local receptive fields and their weight sharing scheme on graphs, Jean-Charles Vialatte, Vincent Gripon, Gilles Coppin, IEE GlobalSIP 2017.
- A study of deep learning robustness against computation failures, Jean-Charles Vialatte, François Leduc-Primeau, ACTA 2017.
- Convolutional neural networks on irregular domains through approximate translations on inferred graphs, Bastien Pasdeloup, Vincent Gripon, Jean-Charles Vialatte, Dominique Pastor, arXiv preprint 2017.
- Translations on graphs with neighborhood preservation, Bastien Pasdeloup, Vincent Gripon, Nicolas Grelier, Jean-Charles Vialatte, Dominique Pastor, arXiv preprint 2017.
- Matching CNNs without Priors about data, Carlos-Eduardo Rosar Kos Lassance, Jean-Charles Vialatte, Vincent Gripon, IEEE DSW 2018.
- On convolution of graph signals and deep learning on graph domains, Jean-Charles Vialatte, thesis, unpublished.
- Convolution of graph signals, Jean-Charles Vialatte, Vincent Gripon, Gilles Coppin, unpublished.
- Graph contraction networks, Graph dropout, Monte-Carlo Networks, Jean-Charles Vialatte, Vincent Gripon, Gilles Coppin, unpublished.