机器学习

# 逻辑回归

# 课程目录

Course catalogue

- 1/逻辑回归原理
- 2/ 模型评价
- 3/ 不平衡集问题
- 4/解决多分类问题
- 5/ 非线性分类问题



- 学习逻辑回归原理
- 学习使用混淆矩阵、ROC、AUC
- **学习使用python解决不平衡集问题**
- **学习使用python解决多分类问题**
- 学习使用python解决非线性分类问题



# 逻辑回归: 名叫回归的分类算法

#### 【问题】

一位成年人,身高160厘米,体重45公斤,ta的性别应该是男还是女呢?,如果ta的身高180厘米,体重70公斤呢?为什么?

#### 【思考】

为什么逻辑回归的名字是回归,却可以用来解决分类问题?



### 算法原理

逻辑回归通过预测属于不同类别的概率,从而实现分类的目的。

粗略来说,逻辑回归就是在找一条直线,这条直线能够尽可能的将不同类别分开。在这条线的一侧,属于某个类别的概率大一些,相对应的,在线的另一侧,则属于另一个类别的概率大一些。

【问题】

绿色样本点是男生还是女生?

【思考】

线性回归模型可不可以用来预测概率?



# 算法原理

线性回归预测函数:

$$y = \mathbf{w}^T \mathbf{x} + b$$

期望的逻辑回归预测函数:

$$prob(y = 1) = \mathbf{w}^T \mathbf{x} + b$$

【思考】

逻辑回归预测函数的问题在哪里?有什么解决办法



## 算法原理

#### 期望的逻辑回归预测函数:

$$prob(y = 1) = \mathbf{w}^T \mathbf{x} + b$$

#### 【等式问题】

• 左侧值域 [0,1], 右侧值域(-∞,+∞)

#### 【解决思路】

- 1. 把左侧值域放大到 $(-\infty, +\infty)$
- 2. 把右侧值域缩小到[0,1]



第一种表达方式: 
$$h(x) = \sigma(t) = \frac{1}{1+e^{-t}}$$

其中:

$$t = \mathbf{w}^T \mathbf{x} + b$$

h(x)刻画的是属于"1"的概率

## 思路一:右侧值域缩小到[0,1]

期望的逻辑回归预测函数:

$$P(y=1|x) = \mathbf{w}^T x + b$$

令  $t = \mathbf{w}^T \mathbf{x} + b$ ,则可以通过Sigmoid函数将 t 转换为有限区间,如[0,1]区间,Sigmoid函数并非是某个特定的函数,而是具有S形的数学函数统称,记作 $\sigma(t)$ 

如果没有特殊说明,通常来说,sigmoid函数是指如下形式:

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

第二种表达方式:  $\log(odds) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$ 

其中:

$$odds = p/(1-p)$$

## 思路二:左侧值域放大到(-∞,+∞)

期望的逻辑回归预测函数:

$$P(y=1|x) = \mathbf{w}^T x + b$$

步骤一,将值域转化为 $[0,+\infty)$ :

$$odds = p/(1-p)$$

步骤二,将值域转化为 $(-\infty, +\infty)$ :  $\log(odds)$ 



## 代价函数

第一种"可能"的形式:

$$Cost(h(x), y) = \frac{1}{2}(h(x) - y)^2$$

第二种"可能"的形式:

$$Cost(h(x), y) = \begin{cases} 1 - h(x) & \text{if } y = 1 \\ h(x) & \text{if } y = 0 \end{cases}$$

第三种"可能"的形式:

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

【思考】第三种形式中,损失函数的图形怎样?



## 代价函数

第三种"可能"的形式:

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

情况1: y = 1 & h(x) = 1, Cost取值如何?

情况2: y = 1 & h(x) = 0, Cost取值如何?

情况3: y = 0 & h(x) = 1, Cost取值如何?

结论:如果模型预测错误,将导致很大的惩罚。

【问题】这种形式存在什么问题?



### 代价函数

第三种"可能"的形式:

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$

这种形式的代价函数,问题在于不方便求导,因此需要将代价函数合并。

合并后最终的逻辑回归代价函数:

$$Cost = -y \log(h(x)) - (1 - y)\log(1 - h(x))$$

【思考】y=0 和 y=1时,代价函数分别是怎样的?

|   | petal_l | petal_w | classes |
|---|---------|---------|---------|
| 0 | 1.4     | 0. 2    | 0       |
| 1 | 1.4     | 0. 2    | 0       |
| 2 | 1.3     | 0. 2    | 0       |

```
1 # 载入数据
  2 import pandas as pd
    df = pd. read_csv('datas/iris_partial.csv', index_col=0)
     # 划分自变量和因变量
 6 X = df.loc[:, df.columns != 'classes']
    y = df.loc[:, df.columns == 'classes']
     # 划分训练集和测试集
 10 from sklearn.model_selection import train_test_split
    X_tr, X_ts, y_tr, y_ts = train_test_split(X, y)
 12
 13 # 建立逻辑回归模型
 14 from sklearn.linear_model import LogisticRegression
 15 model = LogisticRegression()
    model. fit(X_tr,y_tr. values.ravel())
 17
    # 杳看预测结果
 19 model. predict(X_ts)
array([0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0,
      1, 0, 1], dtype=int64)
```

# Python解决方案

```
读取数据: pandas.read_csv()
Hold-out: sklearn.model_selection.train_test_split
Sklearn三板斧:
#建模
model = LogisticRegression()
#拟合
model.fit()
#预测
```

model.predict\_prob



#### 逻辑回归原理的直观理解





原始数据

横坐标为花瓣长度

纵坐标为花瓣宽度

颜色划分为花瓣类型

#### 线性变换

找到最优参数,对特征值组合 进行线性变换,得到线性组合 的"超平面"

#### Sigmoid变换

对"超平面"进行sigmoid变换,将"超平面"的阈值压缩到(0,1)之间

```
1 # 将数值型离散变量转换为哑变量
 2 # 只能转换一个特征
 3 from sklearn.preprocessing import OneHotEncoder
    oe = OneHotEncoder(sparse=False)
 5 oe. fit transform(df. var3. values. reshape(-1, 1))
array([[1., 0.],
      [1., 0.],
      [0., 1.],
      [0., 1.]])
 1 # 将字符型离散变量转换为序号,隐含序号信息
 2 # 一次只能转换一个特征
   from sklearn.preprocessing import LabelEncoder
 5 le = LabelEncoder()
 6 le.fit_transform(df.varl)
array([2, 2, 0, 1], dtype=int64)
 1 # 批量将字符离散变量转换为哑变量
 2 pd. get_dummies (df)
   var3 var1_初中 var1_大学 var1_小学 var2_x var2_y
```

### 离散变量处理

#### 离散变量转码的三种方式:

One-hot, Label-encoding, get\_dummies

One-hot: sklearn.preprocessing. OneHotEncoder

Label-encoding: sklearn.preprocessing. LabelEncoder

Get\_dummies: pandas.get\_dummies

| var1 | var2 | var3 |
|------|------|------|
| 小学   | X    | 0    |
| 小学   | X    | 0    |
| 初中   | у    | 1    |
| 大学   | у    | 1    |

# 课程目录

Course catalogue

- 1/逻辑回归原理
- 2/模型评价
- 3/ 不平衡集问题
- 4/解决多分类问题
- 5/ 非线性分类问题

|  |      |                 |   | 预测结果                          |                        |  |  |
|--|------|-----------------|---|-------------------------------|------------------------|--|--|
|  |      |                 |   | 反例 Negative                   | 正例 Positive            |  |  |
|  |      |                 |   | 0                             | 1                      |  |  |
|  | 车砂棒加 | 反例<br>Negatives | 0 | 真反例<br>True <b>N</b> egatives | 假正例<br>False Positives |  |  |
|  | 真实情况 | 正例<br>Positives | 1 | 假反例<br>False<br>Negatives     | 真正例<br>True Positives  |  |  |

True Positives(真正例):实际为P,预测也为P

True Negatives (真反例): 实际为N,预测也为N

False Positives(假正例):实际为N,预测为P

False Negatives (假反例): 实际为P,预测为N

TP+TN+FP+FN=样例总数

二分类中: 样本根据真实类别与预测类别组合分成四类

#### 混淆矩阵

TPR/recall/查全率: <u>TP</u>

FPR:  $\frac{FP}{N}$ 

PPV/Precision/查准率:  $\frac{TP}{TP+FF}$ 

 $ACC/准确率: \frac{TP+TN}{P+N}$ 

 $F_1 - score = \frac{2}{\frac{1}{recal} + \frac{1}{precision}}$ 

如果记不住,那就记住最关键的一句: "TPR大, FPR小,模型比较, F1-score"。

【思考】TPR、FPR、ACC可以作为评价指标吗?



## 混淆矩阵的直观理解

红线代表负类的分布曲线

蓝线代表正类的分布曲线

黄线代表模型划分标准,左侧为负右侧为正

#### 【问题】

TP、FP、TN、FN分别对应哪个区域?

TPR和FPR分别对应那部分比例?变化规律怎样?

右下四幅图形是在描述什么?



#### 逻辑回归的概率阈值选择

模型优化的目的是让TPR尽可能大,FPR尽可能小。 学习器产生的概率预测,和分类阈值进行比较,大于阈值 则分为正类,否则为反类。

我们可以通过调节概率阈值来改变TPR和FPR,但 TPR和FPR总是同向变化的,因此我们说:

"逻辑回归的概率阈值选择,就是在平衡TPR和 FPR之间的代价关系。"

为了直观的描述TPR和FPR的关系,由此引入ROC曲线(receiver operating characteristic curve ,受试者工作特征曲线)。



#### ROC曲线

以FPR为x轴,以TPR为y轴,当阈值变化时,画出TPR和FPR的变化关系,得到的曲线就是ROC曲线。

考虑以下几种情况下的ROC曲线形状:

- 1、模型在一定程度上能够分别不同类别
- 2、模型完全不能分别不同类别 (等价于随机猜测)
- 3、模型能够完全分别不同类别
- 4、模型经常猜错不同类别(不如随机猜测)
- 5、模型完全猜错了



#### ROC与AUC

AUC是ROC曲线下的面积,0≤AUC≤1,AUC越大, 说明模型预测能力越好。

- 1. 当模型预测结果和随机猜测没有区别时,ROC曲线为左下到右上的对角线,AUC=0.5
- 2. 当模型预测结果好于随机猜测时,ROC曲线为向左上凸起的曲线, 0.5<AUC ≤1
- 3. 当模型预测结果不如随机猜测时,ROC曲线为向右下凹陷的曲线,0 <AUC<0.5

推荐概率阈值为距离左上角最近的点所对应的阈值 , 即 $p = \arg max(TPR - FPR)$ 

【思考】怎样和一位局外人解释ROC和AUC?

# 模型评价

```
1 # 混淆矩阵
 2 from sklearn.metrics import confusion_matrix
  3 confusion_matrix(y, model. predict(X))
array([[47, 3],
       [ 0, 50]], dtype=int64)
  1 # ROC
 2 from sklearn.metrics import roc_curve, roc_auc_score
    fpr, tpr, prob = roc_curve(y, model. predict_proba(X)[:, 1])
 4 import matplotlib. pyplot as plt
 5 plt. figure (figsize=(3, 2))
 6 plt. plot (fpr, tpr)
    plt. show()
 8 print(roc_auc_score(y, model. predict_proba(X)[:,1]))
 1.00
 0.75
 0.50
 0.25
 0.00
          0.25 0.50 0.75 1.00
1.0
     from sklearn.metrics import fl_score
  2 fl_score(y, model.predict(X))
0.970873786407767
```

# 模型评价的python实现

```
#混淆矩阵
```

sklearn.metrics.confusion\_matrix

confusion\_matrix(y\_true,y\_hat)

#ROC SAUC SELECTION OF SECULIFIED TO SECULIF

sklearn.metrics.roc\_curve,roc\_auc\_score

roc\_curve(y\_true,y\_prob)

#F1-score

sklearn.metrics.f1\_score

f1\_score(y\_true,y\_hat)

# 课程目录

Course catalogue

- 1/逻辑回归原理
- 2/模型评价
- 3/ 不平衡集问题
- 4/解决多分类问题
- 5/ 非线性分类问题

|     |   | 预  | 测 |            |
|-----|---|----|---|------------|
|     |   | 0  | 1 |            |
| 4 C | 0 | 99 | 0 | FPR=0/99=0 |
| 实际  | 1 | 1  | 0 | TPR=0/1=0  |

### 什么是不平衡集

某个样本集共有100个样本集,有99个反例和1个正例,现在有一个逻辑回归分类器,不管喂给分类器什么数据,都会被预测为反例,那么模型的准确率ACC=99/100=99%。

【问题】你怎样评价这个分类器模型?

不平衡集广泛存在与现实应用中,比如:

信用卡欺诈分析中,欺诈客户往往占比很小。肿瘤诊断中,最终确诊为肿瘤的患者占比也很小。营销推广,被筛选为目标客户的,也应该占比较小。

这些案例有个共同点,那就是为了不放跑"坏人",我们愿意在一定程度上忍受错杀"好人"的风险。



## 不平衡集带来的问题

| 身高  | 女   | 男  | TPR       | FPR       | T-F              | t         | sigmoid   |
|-----|-----|----|-----------|-----------|------------------|-----------|-----------|
|     |     | カ  | IFK       | FFK       | 1 <sup>-</sup> F | -         |           |
| 160 | 33  |    | 1         | 1         | 0                | -2. 60604 | 0.068751  |
| 161 | 54  |    | 1         | 0.965517  | 0. 034483        | -2.60132  | 0.069053  |
| 162 | 80  |    | 1         | 0.909091  | 0.090909         | -2. 59661 | 0.069357  |
| 163 | 106 |    | 1         | 0.825496  | 0. 174504        | -2. 59189 | 0.069662  |
| 164 | 125 |    | 1         | 0.714734  | 0. 285266        | -2. 58717 | 0.069968  |
| 165 | 132 |    | 1         | 0.584117  | 0. 415883        | -2. 58246 | 0.070276  |
| 166 | 125 |    | 1         | 0.446186  | 0. 553814        | -2. 57774 | 0. 070585 |
| 167 | 106 |    | 1         | 0.315569  | 0. 684431        | -2. 57303 | 0. 070895 |
| 168 | 80  |    | 1         | 0. 204807 | 0. 795193        | -2. 56831 | 0.071206  |
| 169 | 54  | 1  | 1         | 0. 121212 | 0.878788         | -2. 56359 | 0. 071519 |
| 170 | 33  | 3  | 0. 985507 | 0.064786  | 0. 920721        | -2. 55888 | 0.071832  |
| 171 | 17  | 5  | 0.942029  | 0.030303  | 0. 911726        | -2. 55416 | 0.072147  |
| 172 | 8   | 8  | 0.869565  | 0.012539  | 0.857026         | -2. 54944 | 0.072464  |
| 173 | 3   | 10 | 0.753623  | 0.00418   | 0.749443         | -2. 54473 | 0.072781  |
| 174 | 1   | 12 | 0.608696  | 0.001045  | 0.607651         | -2. 54001 | 0.0731    |
| 175 |     | 13 | 0. 434783 | 0         | 0. 434783        | -2. 53529 | 0. 073421 |
| 176 |     | 12 | 0. 246377 | 0         | 0. 246377        | -2. 53058 | 0.073742  |
| 177 |     | 5  | 0.072464  | 0         | 0.072464         | -2. 52586 | 0.074065  |
|     |     |    |           |           |                  |           |           |

【思考】使用0.5作为概率阈值,会导致什么问题?

【思考】既然求TPR-FPR的最大值,为什么还需要sigmoid变换?

【思考】此时ROC曲线是什么样子的?



#### 加权混淆矩阵

### 不平衡集的ROC曲线与问题解决方案

#### 观察不平衡数据集及ROC,可以得到以下结论:

- 不平衡数据集的ROC曲线顶点偏离左上右下对角线
- 不平衡数据集的概率阈值不等于0.5

#### 由此得出不平衡集问题的以下几种解决方案:

- 换个对不平衡集更加鲁棒的算法,比如随机森林
- 人为增加某类样本,重新平衡样本标签的分布
- ROC选择"恰当"的概率阈值

#### 【思考】分别结合以下两种假设,思考什么叫"恰当"的阈值?

- 放跑一个负样本会引起地球毁灭
- 放跑一个正样本会引起地球毁灭



过采样(Oversampling)
对少数标签的样本进行重抽样
会增加样本数据
不会新增样本点



欠采样(undersampling) 对多数标签的样本进行重抽样 会减少样本数据 不会新增样本点



对少数标签的样本进行重抽样会增加样本数据

会新增样本点

```
1 # 读取数据,查看类标签偏斜程度
    import pandas as pd
    df = pd. read_csv('datas/creditcard.csv')
    sum(df.Class==1)/df.shape[0]
0.001727485630620034
  1 #数据预处理
 2 from sklearn.preprocessing import StandardScaler
    ss = StandardScaler()
    df['normal_amount'] = ss.fit_transform(df['Amount'].values.reshape(-1,1))
    df = df. drop(['Amount', 'Time'], axis=1)
 6 X = df.loc[:, df.columns != 'Class']
    y = df.loc[:, df.columns == 'Class']
    # 建立模型并预测
 10 from sklearn.linear_model import LogisticRegression
 11 | logr = LogisticRegression(class_weight='balanced').fit(X, y. values.ravel())
 12 | y_pred = logr.predict(X)
 13
 14 # 绘制混淆矩阵
 15 from sklearn.metrics import confusion matrix
 16 confusion matrix(y, y pred)
array([[277780,
                 6535],
                 453]], dtype=int64)
```

## 过采样的Python解决方案

#载入逻辑回归

from sklearn.linear\_model import LogisticRegression

#设置class\_weight参数调整标签权重

LogisticRegression(class\_weight='balanced')

#数据标准化 引指未免伤 加护

from sklearn.preprocessing import StandardScaler

| <br>身高 | 女   | <br>男 | TPR       | FPR       | T-F       | t                 | sigmoid   |
|--------|-----|-------|-----------|-----------|-----------|-------------------|-----------|
| 160    | 33  |       | 1         | 1         | 0         | -2.60604          | 0. 068751 |
| 161    | 54  |       | 1         | 0. 965517 | 0. 034483 | -2.60132          | 0.069053  |
| 162    | 80  |       | 1         | 0. 909091 | 0. 090909 | -2. 59661         | 0.069357  |
| 163    | 106 |       | 1         | 0.825496  | 0. 174504 | -2. 59189         | 0.069662  |
| 164    | 125 |       | 1         | 0.714734  | 0. 285266 | -2.58717          | 0.069968  |
| 165    | 132 |       | 1         | 0. 584117 | 0. 415883 | -2.58246          | 0.070276  |
| 166    | 125 |       | 1         | 0.446186  | 0.553814  | -2.57774          | 0.070585  |
| 167    | 106 |       | 1         | 0. 315569 | 0.684431  | -2.57303          | 0.070895  |
| 168    | 80  |       | 1         | 0. 204807 | 0. 795193 | -2. 56831         | 0.071206  |
| 169    | 54  | 1     | 1         | 0. 121212 | 0.878788  | -2 <b>.</b> 56359 | 0.071519  |
| 170    | 33  | 3     | 0. 985507 | 0.064786  | 0. 920721 | -2 <b>.</b> 55888 | 0.071832  |
| 171    | 17  | 5     | 0. 942029 | 0.030303  | 0.911726  | -2 <b>.</b> 55416 | 0.072147  |
| 172    | 8   | 8     | 0.869565  | 0. 012539 | 0.857026  | -2. 54944         | 0.072464  |
| 173    | 3   | 10    | 0.753623  | 0.00418   | 0.749443  | -2 <b>.</b> 54473 | 0.072781  |
| 174    | 1   | 12    | 0.608696  | 0.001045  | 0.607651  | -2.54001          | 0.0731    |
| 175    |     | 13    | 0. 434783 | 0         | 0. 434783 | -2.53529          | 0.073421  |
| 176    |     | 12    | 0. 246377 | 0         | 0. 246377 | -2 <b>.</b> 53058 | 0.073742  |
| 177    |     | 5     | 0. 072464 | 0         | 0.072464  | -2. 52586         | 0.074065  |

## ROC与概率阈值选择

观察不平衡集的sigmoid值,可以注意到sigmoid值发生了"偏移",在合理的身高区间内,sigmoid值变小。

此时如果继续使用0.5作为阈值,可以看到模型会将所有的样本均划分为"女",而没有"男"。因此需要对模型的概率阈值进行调整。

找到TPR-FPR最大值为0.920721,对应的sigmoid值为0.071832,因此概率阈值应当调整为0.071832,即 p(y=1|x)>0.071832时,即预测为1,否则为0。

```
1 # 读取数据,查看类标签偏斜程度
 2 import pandas as pd
 3 df = pd. read csv('datas/creditcard.csv')
 4 sum(df.Class==1)/df.shape[0]
0.001727485630620034
 1 # 数据预处理
 2 from sklearn.preprocessing import StandardScaler
    ss = StandardScaler()
 4 df['normal_amount'] = ss.fit_transform(df['Amount'].values.reshape(-1,1))
 5 df = df. drop(['Amount', 'Time'], axis=1)
 6 X = df.loc[:, df.columns != 'Class']
 7 y = df.loc[:, df.columns == 'Class']
 1 # 建立模型并预测
 2 from sklearn.linear_model import LogisticRegression
 3 | logr = LogisticRegression().fit(X, y. values.ravel())
    y_pred_prob = logr.predict_proba(X)[:,1]
 6 # 绘制ROC, 计算概率阈值
    from sklearn.metrics import roc_curve
 8 fpr, tpr, thresh = roc_curve(y, y_pred_prob)
 9 import numpy as np
 10 | idx = np. argmax(tpr-fpr)
 11 Thresh = thresh[idx]
13 # 使用概率阈值进行预测
 14 y_pred = (y_pred_prob>Thresh) *1
 15
 16 # 绘制混淆矩阵
    from sklearn.metrics import confusion_matrix
18 confusion_matrix(y,y_pred)
array([[277653,
                 6662].
                 443]], dtvpe=int64)
```

# 概率阈值选择的Python解决方案

```
# 预测概率
model = LogisticRegression().fit(X_tr,y_tr)
y_pred_prob = model.predict_proba(X_ts)
#使用ROC计算概率阈值
fpr,tpr,thresh = roc_curve(y_true,y_score)
idx = np.argmax(tpr-fpr)
Thresh = thresh[idx]
# 重新预测分类
y_pred = y_pred_prob > Thresh
```

# 课程目录

Course catalogue

- 1/逻辑回归原理
- 2/ 模型评价
- 3/ 不平衡集问题
- 4/解决多分类问题
- 5/ 非线性分类问题



### 多分类问题的解决方法

在二分类问题中,我们通过预测0,1的概率来实现类别的预测,同理,对一个类别数为k的多分类问题,如果能够预测到属于类k的概率,就可以解决多分类预测问题。

#### 多分类预测方法主要包括:

- 一对一 0v0 (One vs One)
- 一对余 OVR/OVA(One vs Rest / One vs All)
- Softmax

## OvO 与 OvR示意图





#### **OVR/OVA**

假定有某数据黄蓝黑三类,那么OVR计算如下:

- 1、将蓝黑视为一类,计算黄色概率  $h^{yellow}(x)$
- 2、将黄黑视为一类,计算蓝色概率  $h^{blue}(x)$
- 3、将黄蓝视为一类,计算黑色概率  $h^{black}(x)$
- 4、计算 $h(x) = [h^{yellow}(x), h^{yellow}(x), h^{yellow}(x)]$ 的最大值,作为该样本的预测分类

【思考】OVR方法会遇到什么问题?

# 解决多分类问题

|                                                                                                                                                                                                                                                                                                                                   | sepal_1                | ${\tt sepal\_w}$ | $\mathtt{petal}\_1$       | $\mathtt{petal\_w}$ | classes |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|---------------------------|---------------------|---------|--|--|
| 73                                                                                                                                                                                                                                                                                                                                | 6. 1                   | 2.8              | 4. 7                      | 1.2                 | 1. 0    |  |  |
| 18                                                                                                                                                                                                                                                                                                                                | 5. 7                   | 3.8              | 1.7                       | 0.3                 | 0.0     |  |  |
| 118                                                                                                                                                                                                                                                                                                                               | 7. 7                   | 2.6              | 6. 9                      | 2.3                 | 2.0     |  |  |
| # 读取数据 import pandas as pd df = pd.read_csv('datas/iris.csv',index_col=0) X = df.iloc[:,:4] y = df.iloc[:,:4]  # 建立OVR和SoftMax模型 from sklearn.linear_model import LogisticRegression model_ovr = LogisticRegression(multi_class='ovr').fit(X,y) model_sm = LogisticRegression(multi_class='multinomial', solver='lbfgs').fit(X,y) |                        |                  |                           |                     |         |  |  |
| 3 confusi                                                                                                                                                                                                                                                                                                                         | learn.metron_matrix(   | _                | confusion_<br>r.predict(X |                     |         |  |  |
| [ 0,                                                                                                                                                                                                                                                                                                                              | 1, 49]],<br>on_matrix( | dtype=int6       | 4) .predict(X)            | )                   |         |  |  |
| erray([[50,<br>[ 0.                                                                                                                                                                                                                                                                                                               | 0, 0],<br>47, 3],      |                  |                           |                     |         |  |  |

49]], dtype=int64)

## OVR与SoftMax的python实现

```
#OVR
model_ovr = LogisticRegression(multi_class='ovr')
model_ovr.fit(X_tr,y_tr)
# SoftMax
model_sm = LogisticRegression(multi_class='multinomial')
model_sm.fit(X_tr,y_tr)
#参数solver
solver: {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}
```

# 课程目录

Course catalogue

- 1/逻辑回归原理
- 2/ 模型评价
- 3/不平衡集问题
- 4/解决多分类问题
- 5/ 非线性分类问题



#### 非线性分类问题解决思路

对于逻辑回归而言,我们的目的是找到一条"直线",将不同类别尽可能分开。根据逻辑回归原理,我们知道,这条"直线"和特征值的线性组合有关。

【思考】如图所示的数据,该如何进行分类?

借鉴线性回归中,多项式回归的做法,如果增加n次项,则能够构建出这样一条"曲线分类边界"。和多项式一样,我们可以通过添加正则项来避免过拟合。

## 非线性分类问题

```
# 生成数据
2 from sklearn import datasets
  noisy_moons = datasets.make_moons(n_samples=1500, noise=.05)
  X = noisy_moons[0]
5 \mid y = noisy_moons[1]
1 # 数据可视化
2 import matplotlib. pyplot as plt
  plt. scatter(X[:, 0], X[:, 1], c=y, alpha=0.3)
  plt. show()
1 # 生成多项式数据
2 from sklearn.preprocessing import PolynomialFeatures
3 | X_poly = PolynomialFeatures(degree=9).fit_transform(X)
1 # 划分训练集和测试集
2 from sklearn.model_selection import train_test_split
3 | X_poly_tr, X_poly_ts, y_tr, y_ts = train_test_split(X_poly, y)
  # 建模并预测,设置正则化及正则化系数防止过拟合
  from sklearn.linear_model import LogisticRegression
  logr = LogisticRegression(penalty='12', C=1). fit(X_poly_tr, y_tr)
4 | y pred = logr. predict(X poly ts)
1 # 杳看混淆矩阵
  from sklearn.metrics import confusion_matrix
  confusion_matrix(y_ts, y_pred)
```

# 非线性分类的python解决方案

#生成多项式数据

sklearn.preprocessing.PolynomialFeatures

PolynomialFeatures(degree=9)

922

#添加正则项,设置正则项系数

LogisticRegression(penalty='l2',C=1)

#混淆矩阵

sklearn.metrics.confusion\_matrix

Confusion\_matrix(y\_true,y\_predict)