ТМВ Домашнее задание №1

А-13б-19 Головин Антон

5 апреля 2022

Задание №1. Построить конечный автомат, распознающий язык.

1. $L = \{w \in \{a, b, c\}^* \mid |w|_c = 1\}$

2. $L = \{w \in \{a, b\}^* \mid |w|_a \le 2, |w|_b \ge 2\}$

Это задача на прямое произведение.

$$L_{11} = \{ w \in \{a, b\}^* \mid |w|_a \le 2 \}$$

 $L_{12} = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$

$$L = L_{11} \times L_{12} \Rightarrow$$

$$A_1 = \langle \sum_1, Q_1, S_1, T_1, \delta_1 \rangle \quad A_2 = \langle \sum_2, Q_2, S_2, T_2, \delta_2 \rangle$$

$$\sum = \{a,b\}$$

$$\begin{aligned} \mathbf{Q} &= \mathbf{Q}_1 \times Q_2 = \{q0p0, q0p1, q0p2, q1p0, q1p1, q1p2, q2p0, q2p1, q2p2\} \\ \mathbf{S} &= \langle S_1, S_2 \rangle = \langle q0, p0 \rangle \\ \mathbf{T} &= \mathbf{T}_1 \times T_2 = \langle q2p2, q1p2, q0p2 \rangle \end{aligned}$$

$$\delta(\langle q1, q2\rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c)\rangle$$

	a	b
$\langle q0, p0 \rangle$	$\langle q1, p0 \rangle$	$\langle q0, p1 \rangle$
$\langle q0, p1 \rangle$	$\langle q1, p1 \rangle$	$\langle q0, p2 \rangle$
$\langle q0, p2 \rangle$	$\langle q1, p2 \rangle$	$\langle q0, p2 \rangle$
$\langle q1, p0 \rangle$	$\langle q2, p0 \rangle$	$\langle q1, p0 \rangle$
$\langle q1, p1 \rangle$	$\langle q2, p1 \rangle$	$\langle q1, p2 \rangle$
$\langle q1, p2 \rangle$	$\langle q2, p2 \rangle$	$\langle q1, p2 \rangle$
$\langle q2, p0 \rangle$	-	$\langle q2, p1 \rangle$
$\langle q2, p1 \rangle$	-	$\langle q2, p2 \rangle$
$\langle q2, p2 \rangle$	-	$\langle q2, p2 \rangle$

3.
$$L_3 = \{w \in \{a, b\}^* \mid |w|_a \neq |w|_b\}$$

Конечный автомат нельзя построить, потому что требуется сравнивать количество символов \Rightarrow нерегулярный язык.

4.
$$L = \{w \in \{a, b\}^* \mid ww = www\}$$

Язык, допускающий пустое слово.

2 Задание №2. Построить конечный автомат, используя прямое произведение.

1.
$$L_1 = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \land |w|_b \ge 2 \}$$

$$L_{11} = \{ w \in \{a, b\}^* \mid |w|_a \ge 2 \}$$

 $L_{12} = \{ w \in \{a, b\}^* \mid |w|_b \ge 2 \}$

$$L_1 = L_{11} \times L_{12} \Rightarrow$$

$$A_1 = \langle \sum_1, Q_1, S_1, T_1, \delta_1 \rangle$$
 $A_2 = \langle \sum_2, Q_2, S_2, T_2, \delta_2 \rangle$

$$\sum = \{a, b\}$$

$$\begin{aligned} \mathbf{Q} &= \mathbf{Q}_1 \times Q_2 = \{q0p0, q0p1, q0p2, q1p0, q1p1, q1p2, q2p0, q2p1, q2p2\} \\ \mathbf{S} &= \langle S_1, S_2 \rangle = \langle q0, p0 \rangle \\ \mathbf{T} &= \mathbf{T}_1 \times T_2 = \langle q2p2, q1p2, q0p2 \rangle \end{aligned}$$

	a	b
$\langle q0, p0 \rangle$	$\langle q1, p0 \rangle$	$\langle q0, p1 \rangle$
$\langle q0, p1 \rangle$	$\langle q1, p1 \rangle$	$\langle q0, p2 \rangle$
$\langle q0, p2 \rangle$	$\langle q1, p2 \rangle$	$\langle q0, p2 \rangle$
$\langle q1, p0 \rangle$	$\langle q2, p0 \rangle$	$\langle q1, p1 \rangle$
$\langle q1, p1 \rangle$	$\langle q2, p1 \rangle$	$\langle q1, p2 \rangle$
$\langle q1, p2 \rangle$	$\langle q2, p2 \rangle$	$\langle q1, p2 \rangle$
$\langle q2, p0 \rangle$	$\langle q2, p0 \rangle$	$\langle q2, p1 \rangle$
$\langle q2, p1 \rangle$	$\langle q2, p1 \rangle$	$\langle q2, p2 \rangle$
(q2,p2)	(q2,p2)	(q2,p2)

2. $L_2 = \{w \in \{a, b\}^* \mid |w| \ge 3 \land |w|$ нечётное $\}$

$$L_{21} = \{ w \in \{a, b\}^* \mid |w| \ge 3 \}$$

 $L_{22} = \{w \in \{a, b\}^* \mid |w| \text{ нечётное}\}$

$$\begin{split} L_2 &= L_{21} \times L_{22} \Rightarrow \\ \mathbf{A}_1 &= \langle \sum_1, Q_1, S_1, T_1, \delta_1 \rangle \quad A_2 = \langle \sum_2, Q_2, S_2, T_2, \delta_2 \rangle \end{split}$$

$$\begin{split} \sum &= \{a,b\} \\ \mathbf{Q} &= \{\mathbf{q}0\mathbf{p}0,\,\mathbf{q}0\mathbf{p}1,\,\mathbf{q}1\mathbf{p}0,\,\mathbf{q}1\mathbf{p}1,\,\mathbf{q}2\mathbf{p}0,\,\mathbf{q}2\mathbf{p}1,\,\mathbf{q}3\mathbf{p}0,\,\mathbf{q}3\mathbf{p}1\} \\ \mathbf{S} &= \langle q0,p0\rangle \\ \mathbf{T} &= \langle q3,p1\rangle \end{split}$$

	a	b
$\langle q0, p0 \rangle$	$\langle q1, p1 \rangle$	$\langle q1, p1 \rangle$
$\langle q0, p1 \rangle$	$\langle q1, p0 \rangle$	$\langle q1, p0 \rangle$
$\langle q1, p0 \rangle$	$\langle q2, p1 \rangle$	$\langle q2, p1 \rangle$
$\langle q1, p1 \rangle$	$\langle q2, p0 \rangle$	$\langle q2, p0 \rangle$
$\langle q2, p0 \rangle$	$\langle q3, p1 \rangle$	$\langle q3, p1 \rangle$
$\langle q2, p1 \rangle$	$\langle q3, p0 \rangle$	$\langle q3, p0 \rangle$
$\langle q3, p0 \rangle$	$\langle q3p, 1 \rangle$	$\langle q3, p1 \rangle$
$\langle q3, p1 \rangle$	$\langle q3, p0 \rangle$	$\langle q3, p0 \rangle$

Упрощаем (для 2.5):

3. $L_3 = \{w \in \{a,b\}^* \mid |w|_a$ чётно $\wedge |w|_b$ кратно трём $\}$

 $L_{31} = \{w \in \{a,b\}^* \mid |w|_a$ чётно $\}$

 $L_{32} = \{w \in \{a,b\}^* \mid |w|_b$ кратно трём $\}$

$$\begin{split} L_3 &= L_{31} \times L_{32} \Rightarrow \\ \mathbf{A}_1 &= \langle \sum_1, Q_1, S_1, T_1, \delta_1 \rangle \quad A_2 = \langle \sum_2, Q_2, S_2, T_2, \delta_2 \rangle \end{split}$$

$$\begin{split} \sum &= \{a,b\} \\ \mathbf{Q} &= \{ \mathbf{q0p0},\, \mathbf{q0p1},\, \mathbf{q0p2},\, \mathbf{q1p0},\, \mathbf{q1p1},\, \mathbf{q1p2} \} \\ \mathbf{S} &= \langle q0,p0 \rangle \\ \mathbf{T} &= \langle q0,p0 \rangle \end{split}$$

	a	b
$\langle q0, p0 \rangle$	$\langle q1, p0 \rangle$	$\langle q0, p1 \rangle$
$\langle q0, p1 \rangle$	$\langle q1, p1 \rangle$	$\langle q0, p2 \rangle$
$\langle q0, p2 \rangle$	$\langle q1, p2 \rangle$	$\langle q0, p0 \rangle$
$\langle q1, p0 \rangle$	$\langle q0, p0 \rangle$	$\langle q1, p1 \rangle$
$\langle q1, p1 \rangle$	$\langle q0, p1 \rangle$	$\langle q1, p2 \rangle$
$\langle q1, p2 \rangle$	$\langle q0, p2 \rangle$	$\langle q1, p0 \rangle$

4.
$$L_4 = \overline{L_3}$$

Конечные вершины \longleftrightarrow начальные вершины

5. $L_5 = L_2 \setminus L_3 = L_2 \times L_4$

$$\sum = \{a,b\}$$

$$S = \langle q0, p0 \rangle$$

 ${\bf S} = \langle q0, p0 \rangle \\ {\bf T} = \{ {\bf q3p1}, \, {\bf q3p2}, \, {\bf q3p3}, \, {\bf q3p4}, \, {\bf q3p5} \}$

qp	a	b
00	14	11
01	15	12
02	13	10
03	12	14
04	10	15
05	11	13
10	24	21
11	25	22
12	23	20
13	22	24
14	20	25
15	21	23
20	34	31
21	35	32
22	33	30
23	32	34
24	30	35
25	31	33
30	44	41
31	45	42
32	43	40
33	42	44
34	30	45
35	41	43
40	34	51
41	35	32
42	33	30
43	32	34
44	30	35
45	31	33

3 Задание №3. Построить минимальный ДКА по регулярному выражению.

 $1. (ab + aba)^*a$

НКА с λ -переходами:

Q	a	b
q0	q2 q5 q9	-
q2 q5 q9	-	q3 q6
q3 q6	q2 q5 q7 q9	-
q2 q5 q7 q9	q2 q5 q9	q3 q6

МДКА:

2. a(a(ab)*b)*(ab)*

НКА с λ -переходами:

ДКА без λ -переходов:

МДКА:

3.
$$(a + (a + b)(a + b)b)^*$$

НКА без λ -переходов:

Q	a	b
q0	q0 q1	q1
q0 q1	q0 q1 q2	q1 q2
q0 q1 q2	q0 q1 q2	q0 q1 q2
q1	q2	q2
q1 q2	q2	q0 q2
q2	=	q0
q0 q2	q0 q1	q0 q1

МДКА:

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

НКА с λ -переходами:

ДКА без λ -переходов:

Q	a	b	c
0,1,3	-	2,5,6,7,8,11,13,14,17,18,19	4,5,6,7,8,11,13,14,17,18,19
2,5,6,7,8,11,13,14,17,18,19	9	15	6,7,8,11,12,13,14,17,18,19
4,5,6,7,8,11,13,14,17,18,19	9	15	6,7,8,11,12,13,14,17,18,19
9	-	8,10,11	-
15	6,7,8,11,12,13,14,17,18,19	-	-
6,7,8,11,12,13,14,17,18,19	9	15	6,7,8,11,12,13,14,17,18,19
8,10,11	9	-	6,7,8,11,12,13,14,17,18,19
6,7,8,11,12,13,14,17,18,19	9	15	6,7,8,11,12,13,14,17,18,19

Введём обозначения для простоты восприятия

	A	В	\mathbf{C}	D
Ì	{0,1,3}	${2,5,6,7,8,11,13,14,17,18,19}$	{4,5,6,7,8,11,13,14,17,18,19}	{9}

\mathbf{E}	F	G	H
{15	$\{6,7,8,11,12,13,14,17,18,19\}$	{8,10,11}	{6,7,8,11,12,13,14,17,18,19}

МДКА:

5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$

НКА без λ -переходов:

Не осилил такой большой граф

Задание №4. Определить является ли язык регулярным или нет.

1. $L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$

Язык регулярный, построен конечный автомат.

2.
$$L = \{uaav \mid u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \ge |v|_a\}$$

Для доказательства нерегулярности удобно использовать отрицание леммы о накачке. Возьмём (зафксируем) n.

Рассмотрим слово $w=b^naaa^n, \quad |w|=2n+2\geq n.$

Представим слово w в виде разбиения w=xyz, так что $|xy|\leq n,\,|y|>0.$ $x=a^i,\quad y=a^j,\quad i+j\leq n,\quad j>0,\quad z=a^{n-i-j}b^n$ Тогда слово $xy^0z=b^ib^{n-i-j}aaa^n=b^{n-j}aaa^n\notin L$

$$x = a^{i}, \quad y = a^{j}, \quad i + j \le n, \quad j > 0, \quad z = a^{n-i-j}b^{n}$$

Язык не является регулярным.

3.
$$L = \{a^k b^m a^n \mid k = n \lor m > 0\}$$

$$w = a^n b^n, |w| \ge n$$

$$w = xyz, |xy| \le n, |y| > 0$$

$$x = a^i, \quad y = a^j, \quad i+j \le n, \quad j > 0, \quad z = a^{n-i-j}b^n$$
 Тогда слово $xy^0z = a^i a^{n-i-j}b^n = a^{n-j}b^n \notin L$

Язык не является регулярным.

$$\begin{array}{l} 4.\ L=\{a^kb^ma^n\mid k=n\vee m>0\}\\\\ w=a^nba^n,w\geq n\\ w=xyz,\ |xy|\leq n,\ |y|>0\\ x=a^i,\ y=a^j,\ i+j\leq n,\ j>0,\ z=a^{n-i-j}ba^n\\ \text{Тогда слово}\quad xy^kz=a^ia^{jk}a^{n-i-j}ba^n=a^{n-j(k-1)}ba^n\notin L\quad\forall k>1 \end{array}$$

Язык не является регулярным.

5.
$$L = \{ucv \mid u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$$

$$w = (ab)^n c(ba)^n, w \geq n$$

$$w = xyz, \quad |xy| \leq n, \quad |y| > 0$$

$$x = \alpha_1 \alpha_2 ... \alpha_i, \quad y = \alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j}, \quad i+j \leq n, \quad j > 0, \quad z = \alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{2n} c(ba)^n$$
 Тогда слово $xy^k z = \alpha_1 ... \alpha_i (\alpha_{i+1} ... \alpha_{i+j})^k \alpha_{i+j+1} ... \alpha_{2n} c(ba)^n \notin L \quad \forall k > 0$

Язык не является регулярным.