Data Science and Visualization (DSV, F23)

9. Association Rules

Hua Lu

https://luhua.ruc.dk; luhua@ruc.dk

PLIS, IMT, RUC

Recommendation in Amazon

Two types of recommendation

\$37.99 \Prime

- 90% buyers who bought A also bought B.
- Since you've bought A, you may also want B.

Agenda

- Problem definition
 - Support, confidence, lift, and association rule
 - Frequent itemsets
 - Steps for association rule mining
- Apriori principle, Apriori algorithm
- Deriving association rules from frequent itemsets

Market Basket Data

- Large set of *items*, i.e., things sold in a supermarket
- Large set of baskets, each a small subset of items, i.e., things that one customer buys in one transaction
- Transaction table T: market-basket data
 - Each record is a transaction, containing a set of items
 - Many-to-many mapping (association) between items and baskets
- What can we do with this type of data?
 - E.g., counting whether the combination {Milk, Bread} is *frequent* or not

TID	Items
1	{Milk, Bread, Beer, Diapers}
2	{Bread, Eggs}
3	{Bread, Diapers}
4	{Milk, Bread, Cola}
5	{Milk, Bread, Diapers}

Transaction table

What Is Association Rule Mining?

- Finding frequent patterns and associations (rules) among sets of items in a transaction table
- Motivation (market basket analysis):
 - How likely is that the customers buying *milk* are also buying *bread*?
 - Such rules help retailers making decisions
 - Plan the shelf space: placing milk close to bread, more convenient for the customers
 - Offer promotions/discounts for those products together

What Is an Association Rule?

- An association rule correlates (associates) the presence of one set of items with that of another set of items
- Examples
 - Rule form: Body ⇒ Head [support, confidence]
 - milk \Rightarrow bread [5%, 70%]
 - 5% of transactions buy both milk and bread
 - transactions that buy milk have 70% chance of buying also bread
- Applications: basket data analysis, catalog design
 - * ⇒ chocolate (How to boost the sales of chocolate)
 - Home Electronics \Rightarrow * (What other products should the store stock up?)

Interesting Rules

- A rule is said to be interesting (or valid) when:
 - Its items appear frequently in the transaction table (support)
 - It holds with a high probability (confidence)

Example: $milk \Rightarrow bread$

NB: X and Y are itemsets.

Find all the rules $X \Rightarrow Y$ with confidence and support above given thresholds

- support s, probability that a transaction contains X ∪ Y
- confidence c, conditional probability that a transaction having X also contains Y

Example (1)

- Find the support and confidence of the rule: {B,D} ⇒ {A}
- Support value of *sup*(ABD):
 - percentage of tuples with {A,B,D}= (3/4)*100% = 75%
- Confidence value of $conf(BD \Rightarrow A)$ $\frac{\text{number of transactions that contain } \{A, B, D\}}{\text{number of transactions that contain } \{B, D\}} = \frac{3}{3} = 100\%$

TID	items bought
100	$\{F,A,D,B\}$
200	$\{D,A,C,E,B\}$
300	$\{C,A,B,E\}$
400	$\{B,A,D\}$

$$prob(Y \mid X) = \frac{prob(X \cup Y)}{prob(X)}$$

$$conf(X \Rightarrow Y) = \frac{sup(X \cup Y)}{sup(X)} = \frac{frequency(X \cup Y)}{frequency(X)}$$

Example (2)

Find interesting rules

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Thresholds:

Min. support 50%

Min. confidence 50%

Frequent Itemset	Support
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

"
$$A \Rightarrow C$$
" is a valid rule because:

support = support(
$$\{A \cup C\}$$
) = 2/4 = 50%
confidence = support($\{A \cup C\}$)/support($\{A\}$) = 50%/75% = 66.6%

Lift of A Rule

```
    Lift(X ⇒ Y) = confidence(X ⇒ Y)/support(Y)
    = support(X ∪ Y)/ (support(X) * support(Y))
    = (frequency(X ∪ Y)*|T|) / (frequency(X)*frequency(Y))
```

- Lift(X \Rightarrow Y) refers to the increase in the ratio of sale of Y when X is sold
 - Lift = 1: No association between products X and Y.
 - Lift > 1: Products X and Y are more likely to be bought together.
 - Lift < 1: The two products are unlikely to be bought together.

Example of Lift

Transaction ID	Items Bought	Frequ	ent Itemset	Support
2000	A,B,C	{A}		75%
1000	A,C	{B}		50%
4000	A,D	{C}		50%
5000	B,E,F	{{A,C}}		50%

Rule $A \Rightarrow C$:

```
support = support(\{A \cup C\}) = 2/4 = 50%
confidence = support(\{A \cup C\})/support(\{A\}) = 50%/75% = 66.6%
lift = confidence(A \Rightarrow C)/support(C) = 66.6%/50% = 1.333
```

Lift's meaning: the likelihood of buying a A and C together is 1.33 times more than the likelihood of just buying the C.

A Real Application of Association Rules

Amazon's recommendation

\$37.99 \Prime

- 90% buyers who bought A also bought B.
- Since you've bought A, you may also want B.

Make recommendations based on rules of high support, confidence and lift.

Causality vs. Correlation

- Causality
 - From the very first day, humans are curious about why.
 - With big data, it may be very hard to see the exact reasons.
- Correlation
 - Instead, we can find interesting patterns or associations of different things from big data.
 - Probability instead of certainty (not totally random).
 - Association rule mining.
- NB: Association rules are empiricism! What they tell may not be the true cause and effect.

Steps of Association Rule Mining

- 1. Find the *frequent itemsets*
 - The sets of items that have minimum support
 - How to do this efficiently?

2. Use the frequent itemsets to generate association rules

Mining Frequent Itemsets

- Input: A set of transactions T, over a set of items I
- Output: All itemsets with items in I having
 - support ≥ minsup (support threshold)
- Problem parameters:
 - N = |T|: number of transactions
 - d = |I|: number of (distinct) items
 - w: max width of a transaction
 - Number of possible itemsets: M = 2^d
- Scale of the problem:
 - WalMart sells 100,000 items and can store billions of baskets.
 - The Web has billions of words and many billions of pages.

The Itemset Lattice

Agenda

- Problem definition
- Apriori principle, Apriori algorithm
- Deriving association rules from frequent itemsets

The Apriori Principle

- Main observations: $\forall X, Y: X \subseteq Y \Rightarrow s(X) \geq s(Y)$
 - If an itemset is frequent, so are its subsets
 - If an itemset is infrequent, so are its supersets
- The Apriori principle: A subset of a frequent itemset must also be a frequent itemset
 - E.g., if {AB} is a frequent itemset, both {A} and {B} must be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to *m* (*m*-itemset): Use frequent k-itemsets to explore (k+1)-itemsets

Illustration of Apriori Principle

Figure 6.3. An illustration of the *Apriori* principle. If $\{c, d, e\}$ is frequent, then all subsets of this itemset are frequent.

Illustration of Apriori Principle (cont.)

Level-wise Process of Apriori Principle

```
Level 4 (frequent quadruples): {....}

Level 3 (frequent triplets): {ABD}, {BDF}

Level 2 (frequent pairs): {AB}, {AD}, {BD}, {BF}, {DF}

Level 1 (frequent items): {A}, {B}, {D}, {F}
```

Remember:

All subsets of a frequent itemset must be frequent as well

Question: Can ADF be frequent?

NO: because AF is not frequent

The Apriori Algorithm

Advanced

- Notations
 - C_k: Candidate itemset of size k
 - *L_k*: Frequent itemset of size k
- Important steps in candidate generation
 - Prune Step: Any k-itemset that is not frequent cannot be a subset of a frequent (k+1)-itemset
 - Join Step: C_{k+1} is generated by joining L_k with itself

```
C_{l} = \{\{\text{item}_{1}\}, ..., \{\text{item}_{N}\}\};

for (k = 1; L_{k} != \emptyset; k++)

for each transaction t in transaction table T

increment the count of all candidates in C_{k} that are contained in t

L_{k} = \text{candidates in } C_{k} \text{ with min\_support } (\text{frequent})

C_{k+1} = \text{candidates generated from } L_{k};

return \bigcup_{k} L_{k};

Special self-join!
```

The Apriori Algorithm Example (1)

The Apriori Algorithm Example (2)

Trans. Table T

TID	Items
100	1 3 4
200	2 3 5
300	1235
400	2 5

The Apriori Algorithm Example (3)

Trans. Table T

TID	Items
100	134
200	2 3 5
300	1235
400	2 5

min_sup=2 (or 50%)

The Apriori Algorithm Example (4)

Trans. Table T

TID	Items
100	1 3 4
200	235
300	1235
400	25

min_sup=2 (or 50%)

The result of frequent itemsets

itemset	sup.
{1}	2
{2}	3
{3}	3
{5}	3

itemset	sup
{1 3}	2
{2 3}	2
{2 5}	3
{3 5}	2

$$L_1 \cup L_2 \cup L_3$$

Candidates Generation

Advanced

- Suppose the items in L_k are listed in an order
- Step 1: self-joining L_k to get C_{k+1} (In SQL)

```
INSERT INTO C_{k+1}

SELECT p.item_1, p.item_2, ..., p.item_k, q.item_k

FROM L_k p, L_k q

WHERE p.item_1=q.item_1, ..., p.item_{k-1}=q.item_{k-1}, p.item_k < q.item_k
```

• Step 2: pruning frequent itemsets in C_{k+1} for all *itemsets c in C_{k+1}* do for all *k-subsets s of c* do if (s is not in L_k) then delete c from C_{k+1}

The Previous Example

Trans. Table T

TID	Items
100	1 3 4
200	2 3 5
300	1235
400	2 5

min_sup=2 (or 50%)

We only need to match {2 3} with {2 5}

 C_3 itemset {2 3 5}

Advanced

Example of Candidates Generation

Advanced

- L_3 ={abc, abd, acd, ace, bcd}
- Self-joining: $L_3 \bowtie L_3$
 - abcd from abc and abd
 - acde from acd and ace
 - No need to match other pairs
- Pruning:
 - acde is removed because ade is not in L₃
- *C*₄={*abcd*}
 - Scanning transaction table T is still needed to get the frequencies for items in C_4 (to decide the correct L_4)

Agenda

- Problem definition
- Apriori principle, Apriori algorithm
- Deriving association rules from frequent itemsets

Generating Association Rules from Frequent Itemsets

- Assume that we have discovered the frequent itemsets and their support
- How do we generate association rules?
- Frequent itemsets:

- For each frequent itemset *l*, find all nonempty subsets *s*.
- For each s, generate rule $s \Rightarrow l$ -s, if $\sup(1)/\sup(s) \ge \min_\text{conf}$

Example:
$$l = \{2,3,5\}$$
, min_conf = 75%
 $\{2,3\} \Rightarrow \{5\}$ $2/2=100\% \sqrt{$
 $\{2,5\} \Rightarrow \{3\}$ $2/3=66.6\% X$
 $\{3,5\} \Rightarrow \{2\}$ $2/2=100\% \sqrt{$

do the rest as an exercise

Example in Jupyter Notebook

- Library mlxtend
 - To install the library: pip install mlxtend in Anaconda Prompt
 - from mlxtend.frequent_patterns import apriori: frequent itemsets
 - from mlxtend.frequent_patterns import association_rules: rules
- Real data
 - store_data.csv (in Moodle)
 - (7501, 20)
 - 7501 transactions, each having at most 20 items
- Lecture9_Apriori_mlxtend_storedata.ipynb

Performance Bottlenecks of Apriori

- Is Apriori fast enough?
- The core of the Apriori algorithm:
 - Use frequent k-itemsets to generate candidate frequent (k+1)-itemsets
 - Use full table scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of Apriori: candidate generation
 - Huge candidate sets:
 - A 10⁴-sized frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Multiple scans of database table:
 - Needs (n + 1) scans, n is the length of the longest pattern

Methods to Improve Apriori's Efficiency

- Transaction reduction
 - A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning
 - Any itemset that is potentially frequent in transaction table T must be frequent in at least one of the partitions of T.

Summary

- Association rule definition
 - Support, confidence, lift and association rule
 - Frequent itemsets
 - Steps for association rule mining
- Apriori algorithm
- Deriving association rules from frequent itemsets

Exercises

- 1. Refer to the transaection table to the right. Say sup(ab)=100
 - Determine the possible values of sup(a)
 - Conclusion: sup(a) 100
 - Hint: Is it possible that sup(a)=70? Why?
 - Determine the possible values of sup(abc)
 - Conclusion: sup(abc) 100
 - Hint: Is it possible that sup(abc)=120? Why?

Transaction table (1000 rows)

TID	Items
1	a,b,c
2	a,c
3	b,e,f

- Write a Jupyter Notebook to find the association rules from the Bread Basket dataset (in Moodle)
 - Use the template provided in Moodle (Lecture9_Exercise_BreadBasket_template.ipynb)

Choose either "≤" or "≥"

Readings and References

- Mandatory readings
 - Association Rule: https://www.geeksforgeeks.org/association-rule/?ref=lbp
 - Frequent Itemsets: https://www.geeksforgeeks.org/frequent-item-set-in-data-set-association-rule-mining/?ref=lbp
 - Apriori Algorithm: https://www.geeksforgeeks.org/apriori-algorithm/?ref=lbp
- Further readings
 - Documentation of mlxtend's frequent
 - http://rasbt.github.io/mlxtend/user_guide/frequent_patterns/apriori/
 - http://rasbt.github.io/mlxtend/user-guide/frequent-patterns/association-rules/
 - Tutorials
 - https://www.geeksforgeeks.org/implementing-apriori-algorithm-in-python/
 - https://www.kaggle.com/code/annettecatherinepaul/apriori-algorithm-association-rule-mining
 - https://towardsdatascience.com/understand-and-build-fp-growth-algorithm-in-python-d8b989bab342 (FP-Growth, advanced)

Even Further Readings

Advanced

- Readings (optional. Only if you're interested in theory)
 - Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques (3rd edition), Elsevier Science Ltd, 2011.
 - Chapters 6 and 7 in the textbook
 - Rakesh Agrawal, Ramakrishnan Srikant: Fast Algorithms for Mining Association Rules in Large Databases. VLDB 1994: 487-499
 - Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without Candidate Generation.
 SIGMOD 2000: 1-12
- Acknowledgment: Slides are from
 - Margaret H. Dunham (Data Mining: Introductory and Advanced Topics, Prentice Hall, 2002)
 - The HKP textbook
 - Man Lung Yiu and Panagiotis Karras