Lógica

Lógica Proposicional Aula 03 – Classificação de Fórmulas

Profa. Helena Caseli helenacaseli@ufscar.br

Semântica dos conectivos lógicos

Tabela-verdade

	р	q	¬р	¬q	рлд	p v q	$p \rightarrow q$	$p \leftrightarrow q$
	V	V	F	F	V	V	V	V
	V	F	F	V	F	V	F	F
I ₃	F	V	V	F	F	V	V	F
I ₄	F	F	V	V	F	F	V	V

- Verdadeira
 - Uma fórmula α é **verdadeira** na interpretação I se tem valor-verdade **V** na interpretação I
 - Exemplo: Considerando a interpretação I dos átomos abaixo

р	q	r
V	F	V

- O valor-verdade da fórmula α : p \wedge q \vee r é \vee
- Portanto, p ∧ q ∨ r é verdadeira na interpretação I

Classificação de fórmulas

Falsa

- Uma fórmula α é **falsa** na interpretação I se tem valor-verdade **F** na interpretação I
- Exemplo: Considerando a interpretação I dos átomos abaixo

р	q	r
V	F	V

- O valor-verdade da fórmula α : p \wedge q \wedge r é F
- Portanto, p ∧ q ∧ r é falsa na interpretação I

- Satisfazível (ou consistente)
 - Uma fórmula α é **satisfazível** (ou consistente) se existe <u>pelo menos uma</u> interpretação I tal que I[α] = **V**
 - Exemplo: as possíveis interpretações para a fórmula α : $(p \lor q) \to (p \land q)$ são

	р	q	p ∨ q	p ^ q	$(b \land d) \rightarrow (b \lor d)$
l ₁	V	V	V	V	V
I ₂	V	F	V	F	F
I ₃	F	V	V	F	F
I ₄	F	F	F	F	V

- Satisfazível (ou consistente)
 - Uma fórmula α é **satisfazível** (ou consistente) se existe <u>pelo menos uma</u> interpretação I tal que $I[\alpha] = V$
 - Exemplo: como existe pelo menos uma interpretação I
 (I₁ e I₄) onde I[α] = V, a fórmula α: (p ∨ q) → (p ∧ q) é
 satisfazível

	р	q	p ∨ q	p ∧ q	$(b \land d) \rightarrow (b \lor d)$
I ₁	V	V	V	V	V
I ₂	V	F	V	F	F
I ₃	F	V	V	F	F
I ₄	F	F	F	F	V

- Inválida (falsificável)
 - Uma fórmula α é **inválida** (ou falsificável) se existe pelo menos uma interpretação I tal que $I[\alpha] = F$
 - Exemplo: como existe pelo menos uma interpretação
 I (I₂ e I₃) onde I[α] = F, a fórmula α: (p ∨ q) → (p ∧ q)
 é inválida

	р	q	p ∨ q	p ^ q	$(b \land d) \rightarrow (b \lor d)$
	V	V	V	V	V
I ₂	V	F	V	F	F
I ₃	F	V	V	F	F
I ₄	F	F	F	F	V

- Tautologia (ou válida)
 - Uma fórmula α é tautologia (ou válida) se for **verdadeira** em <u>todas</u> as interpretações possíveis
 - Exemplo: como a fórmula (p ∨ ¬p) é verdadeira em todas as interpretações possíveis, ela é uma tautologia

	р	¬р	р∨¬р
I 1	V	F	V
I 2	F	V	V

- Contradição (insatisfazível ou inconsistente)
 - Uma fórmula α é contradição (ou insatisfazível ou inconsistente) se for falsa em todas as interpretações possíveis
 - Exemplo: como a fórmula (p ∧ ¬p) é falsa em todas as interpretações possíveis, ela é uma contradição

	р	¬р	$p \wedge \neg p$
I 1	V	F	F
I 2	F	V	F

- Contingente (ou contingência)
 - Uma fórmula que não é nem tautologia nem contradição
- Tautologia X Contradição
 - Uma fórmula α é uma tautologia se e somente se $\neg \alpha$ é uma contradição

- Satisfazibilidade de um conjunto de fórmulas
 - Um conjunto de fórmulas C = $\{\alpha_1, \alpha_2, \alpha_3, \dots \alpha_n\}$ é satisfazível se <u>existe uma</u> interpretação I tal que $I[\alpha_1] = I[\alpha_2] = I[\alpha_3] = \dots = I[\alpha_n] = V$
 - Exemplo: o conjunto C = {p, p ∨ q, (p ∨ q) → (p ∧ q)} é satisfazível, pois I_1 que torna as 3 fórmulas V

	р	q	$p \vee q$	$p \wedge q$	$(b \land d) \rightarrow (b \lor d)$
I ₁	V	V	V	V	V
I ₂	V	F	V	F	F
I ₃	F	V	V	F	F
I ₄	F	F	F	F	V

Princípio da substituição

- Se α for uma fórmula tendo β como subfórmula, o valor de α não muda se β for substituída por uma expressão que tenha os mesmos valores-verdade que β
- Se α for uma tautologia, α permanece uma tautologia independente da interpretação de β ser V ou F