

SDS 385: Stat Models for Big Data

Lecture 9: Sampling methods

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Sampling for matrix multiplication

- Goal: multiply two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$
- Used as an inner routine in many algorithms.
- Lets first try the vanilla algorithm for warmup.

The naive algorithm

9: Return AB

Algorithm 1 Vanilla three-look matrix multiplication algorithm.

```
Input: An m \times n matrix A and an n \times p matrix B

Output: The product AB

1: for i = 1 to m do

2: for j = 1 to p do

3: (AB)_{ij} = 0

4: for k = 1 to n do

5: (AB)_{ik} += A_{ij}B_{jk}

6: end for

7: end for

8: end for
```

The naive algorithm - complexity

- Step 1 has *m* loops
- Steo 2 has n loops
- Steo 3 has p loops
- Total *mnp* computation.
- When m = n = p it takes $O(n^3)$ time. Too much!

Alternatives

- Strassen algorithm (1969) takes $O(n^{2.81})$ time
- Coppersmith-Winograd algorithm (2010) takes $O(n^{2.375})$ time
 - Often used as a building block in other algorithms to prove theoretical time bounds.
 - However, unlike the Strassen algorithm, it is not used in practice because it only provides an advantage for matrices so large that they cannot be processed by modern hardware
- Stother's algorithm (2011) $O(n^{2.374})$
- Vassilevska William's algorithm (2011) $O(n^{2.3728642})$
 - Le Galls improvement (2014) $O(n^{2.3728639})$

Another much simpler approach—Sample

- Notation:
 - Let $A^i \in \mathbb{R}^m$ is the i^{th} column of A
 - $B_i^T \in R^p$ is the i^{th} row of B.
- Note that

$$(AB)_{ik} = \sum_{j} A_{ij} B_{jk} = A_i^T B^j$$

 Instead, we will consider a matrix multiplication as the sum of outer products, i.e.

$$AB = \sum_{i=1}^{n} A^{i} B_{i}^{T}$$

• Why?

Take one

- Forget about matrices, say you have *n* real numbers and you want to calculate the sum.
- If you sample *k* of these uniformly at random, you can approximate the sum by:

$$\sum_{i} x_{i} \approx \sum_{j=1}^{k} (n/k) x_{j*}$$

• $P(j^* = i) = 1/n \text{ for } i \in \{1, ..., n\}$

Take one

This works because:

$$E[\sum_{j=1}^{k} (n/k)x_{j*}] = \sum_{j=1}^{k} \frac{n}{k} \sum_{i=1}^{n} \frac{1}{n}x_{i} = \sum_{i=1}^{n} x_{i}$$

Variance is:

$$\operatorname{var}(\sum_{j=1}^{k} (n/k) x_{j*}) = \frac{n^{2}}{k} \qquad \underbrace{\left(\sum_{i} x_{i}^{2} / n - \bar{x}^{2}\right)}_{\text{variance of the numbers}}$$

- Note that the variance of this approximation increases if the numbers are very different from each other, i.e. the variance of the numbers you are summing is large
- Solution weighted sampling.

7

- Sample an element j with probability p_j
- p_i sums to one, but not necessarily uniform.
- So lets try:

$$\sum_{i} x_{i} \approx \frac{1}{k} \sum_{j=1}^{k} x_{j*} / p_{j*}$$

• The expectation is:

$$E\left[\frac{1}{k}\sum_{j=1}^{k}\frac{x_{j*}}{p_{j*}}\right] = \frac{1}{k}\sum_{j=1}^{k}\sum_{i=1}^{n}p_{i}\frac{x_{i}}{p_{i}} = \sum_{i=1}^{n}x_{i}$$

• The variance is:

$$\frac{1}{k} \left(\sum_{i} x_i^2 / p_i - n^2 \bar{x}^2 \right)$$

- Now if you choose $p_i = x_i^2 / ||x||_2^2$

$$\frac{1}{k} \left(\sum_{i} x_{i}^{2}/p_{i} - n^{2}\bar{x}^{2} \right) = \frac{1}{k} \left(\sum_{i} x_{i}^{2}/p_{i} - n^{2}\bar{x}^{2} \right)$$

• How do you minimize w.r.t p_i such that $\sum_i p_i = 1$?

Lagrange multipliers!

$$L(\pi,\lambda) = \frac{1}{k} \left(\sum_{i} x_i^2/p_i - n^2 \bar{x}^2 \right) + \lambda \left(\sum_{i} p_i - 1 \right)$$

• Differentiating w.r.t p_i and setting to zero gives:

$$\frac{x_i^2}{p_i^2} - \lambda = 0$$

$$p_i = \frac{|x_i|}{\sum_j |x_j|}$$

• The second line uses the fact that $\sum_i p_i = 1$ to solve for the λ

- So if all $x_i > 0$ then this choice of p_i gives variance 0!
- Can you explain this?
- But lets not stray from matrix multiplication

Matrix multiplication

Input: two matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times p}$

Output: two matrices C and R such that $AB \approx CR$

- For t = 1 : c, do
 - Pick $i_t \in \{1, ..., n\}$ with probability $P(i_t = k) = p_k$ with replacement.
 - Set column of C as $C^{(t)} = \frac{A^{(it)}}{\sqrt{cp_{i_t}}}$ Set row of R as $R_{(t)} = \frac{A_{(it)}}{\sqrt{cp_{i_t}}}$

Return C and R

Analogy to the sum

- For the sum we wanted to compute $\sum_{i} x_{i}$
- Here we want to compute $\sum_{i} A^{i} B_{i}^{T}$
- So the analog of x_i is the rank one outer product matrix $A^i B_i^T$
- Note that $||A^iB_i^T||_2^2 = ||A^i||_2^2 ||B_i^T||_2^2$
- Use $p_i := \frac{\|A^i\|_2 \|B_i\|_2}{\sum_i \|A^i\|_2 \|B_i\|_2}$

Initial results

- $\bullet \ E[(CR)_{ij}] = (AB)_{ij}$
- $var((CR)_{ij}) = \frac{1}{c} \left(\sum_{k=1}^{n} \frac{A_{ik}^{2} B_{kj}^{2}}{p_{k}} (AB)_{ij}^{2} \right)$
- Now the x_k's are the same as A_{ik}B_{kj}. Remember our formula for mean?
 - $\bullet \ \ \text{The mean of} \ \frac{1}{c} \sum_{j=1}^c \frac{x_{j^*}}{p_{j^*}} \ \text{was} \ \sum_{k=1}^n x_k$
 - Plug in $x_k = A_{ik}B_{kj}$ to get the mean as $\sum_k A_{ik}B_{kj}$
- How about variance?
 - Variance was: $\frac{1}{c} \left(\sum_{k} \frac{x_k^2}{p_k} (\sum_{k} x_k)^2 \right)$
 - Variance of $(CR)_{ij}$ is $\frac{1}{c} \left(\sum_{k} \frac{x_k^2}{p_k} (\sum_{k} x_k)^2 \right)$
 - Plug in $x_k = A_{ik}B_{kj}$ to get the right expression.

Error bounds

•
$$E[\|AB - CR\|_F^2] = \frac{1}{c} \left(\sum_{k=1}^n \frac{\|A^k\|^2 \|B_k\|^2}{p_k} - \|AB\|_F^2 \right)$$

• Why?

$$E\left[\|AB - CR\|_F^2\right] = \sum_{ij} E[(CR)_{ij} - (AB)_{ij}]^2$$

$$= \sum_{ij} var((CR)_{ij})$$

$$= \frac{1}{c} \sum_{ij} \left(\sum_{k=1}^n \frac{A_{ik}^2 B_{kj}^2}{p_k} - (AB)_{ij}^2 \right)$$

Exchange the two sums and get the answer.

Optimal weights

- The optimal $p_k = \frac{\|A^k\| \|B_k\|}{\sum_k \|A^k\| \|B_k\|}$
- Same Lagrange multiplier trick to see $p_k = |x_k|/\sum_i |x_i|$
- Plug in $x_k = ||A^k|| ||B_k||$
- Plug in to get

$$E[\|CR - AB\|_F^2] = \frac{1}{c} \left(\left(\sum_{k=1}^n \|A^k\| \|B_k\| \right)^2 - \|AB\|_F^2 \right)$$

Computation time

- Calculate p_k in O(n(m+p)) time.
- Computational saving from $mnp \rightarrow \max(mn, np)$
- What if I did a sub-optimal weighted sampling?
- Take $p_i = ||A_i||_F^2 / ||A||_F^2$
- Now the error becomes $\frac{1}{c}(\|A\|_F^2\|B\|_F^2 \|AB\|_F^2)$

Nearly linear time SVD

- Input: $A \in \mathbb{R}^{m \times n}$ and k > 0
- Goal: Find an orthogonal matrix H_k such that $\|A H_k H_k^T A\|_F^2 \le \|A A_k\|_F^2 + \text{small}$
- A_k is the rank k approximation of A.

Nearly linear time SVD

LINEARTIMESVD Algorithm

Input: $A \in \mathbb{R}^{m \times n}$, $c, k \in \mathbb{Z}^+$ s.t. $1 \le k \le c \le n$, $\{p_i\}_{i=1}^n$ s.t. $p_i \ge 0$ and $\sum_{i=1}^n p_i = 1$.

Output: $H_k \in \mathbb{R}^{m \times k}$ and $\sigma_t(C), t = 1, \dots, k$.

- For t = 1 to c,
 - Pick $i_t \in 1, \ldots, n$ with $\mathbf{Pr}[i_t = \alpha] = p_\alpha, \ \alpha = 1, \ldots, n$.
 - Set $C^{(t)} = A^{(i_t)} / \sqrt{cp_{i_t}}$.
- Compute C^TC and its singular value decomposition; say $C^TC = \sum_{t=1}^c \sigma_t^2(C) y^t y^{t^T}$.
- Compute $h^t = Cy^t/\sigma_t(C)$ for t = 1, ..., k.
- Return H_k , where $H_k^{(t)} = h^t$, and $\sigma_t(C), t = 1, \ldots, k$.

Constant time SVD

ConstantTimeSVD Algorithm

 $\begin{array}{ll} \textbf{Input:} & A \in \mathbb{R}^{m \times n}, \ c, w, k \in \mathbb{Z}^+ \ \text{s.t.} \ 1 \leq w \leq m, \ 1 \leq c \leq n, \ \text{and} \ 1 \leq k \leq \min(w, c), \ \text{and} \ \{p_i\}_{i=1}^n \\ \text{s.t.} & p_i \geq 0 \ \text{and} \ \sum_{i=1}^n p_i = 1. \end{array}$

Output: $\sigma_t(W), t = 1, ..., \ell$ and a "description" of $\tilde{H}_{\ell} \in \mathbb{R}^{m \times \ell}$.

- For t = 1 to c,
 - Pick $i_t \in 1, \ldots, n$ with $\Pr\left[i_t = \alpha\right] = p_\alpha, \ \alpha = 1, \ldots, n$ and save $\{(i_t, p_{j_t}) : t = 1, \ldots, c\}$.
 - Set $C^{(t)} = A^{(i_t)}/\sqrt{cp_{i_t}}$. (Note that C is not explicitly constructed in RAM.)
- For t = 1 to w,
 - Pick $j_t \in 1, \ldots, m$ with $\Pr[j_t = \alpha] = q_\alpha, \alpha = 1, \ldots, m$.
 - Set $W_{(t)} = C_{(j_t)} / \sqrt{wq_{j_t}}$.
- Compute W^TW and its singular value decomposition. Say $W^TW = \sum_{t=1}^c \sigma_t^2(W) z^t z^{t^T}$.
- If a ∥·∥_F bound is desired, set γ = ε/100k,
 Else if a ∥·∥₂ bound is desired, set γ = ε/100.
- Let $\ell = \min\{k, \max\{t : \sigma_t^2(W) \ge \gamma \|W\|_F^2\}\}.$
- Return singular values $\{\sigma_t(W)\}_{t=1}^{\ell}$ and their corresponding singular vectors $\{z^t\}_{t=1}^{\ell}$.

- ullet Three main parts $+\epsilon$
- Large scale optimization:
 - Gradient descent, Newton Raphson
 - Stochastic gradient descent, proximal methods, subgradients, dual coordinate ascent, etc.
 - Tong Zhang. "Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms"
 - different convergence properties of SGD for a variety of loss functions with regularization

- ullet Three main parts $+\epsilon$
- Large scale optimization:
 - Momentum methods:
 - SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another, which are common around local optima.
 - Momentum helps accelerate SGD in the correct direction by damping oscillation
 - It does this by adding a fraction of the update vector of the past time step to the current update vector:

- ullet Three main parts $+\epsilon$
- Large scale optimization:
 - Adaptive methods:
 - Tong Zhang. "Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms"
 - different convergence properties of SGD for a variety of loss functions with regularization

- ullet Three main parts $+\epsilon$
- Large scale optimization:
 - Adaptive methods:
 - Tong Zhang. "Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algorithms"
 - different convergence properties of SGD for a variety of loss functions with regularization
 - John Duchi, Elad Hazan, Yoram Singer. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." Journal of Machine Learning Research 2011
 - Adaptively learn learning rates for different coordinates slow learning rates for frequent features, and large ones for infrequent features
 - Unfortunately the squared gradients keep accumulating and eventually learning rate goes to zero.
 - Diederik, Kingma; Ba, Jimmy (2014), "Adam: a Method for Stochastic Optimization"
 - ADAM uses exponentially decaying average of past squared gradients, and also does bias correction by estimating moments.

- Large scale optimization:
 - Stochastic gradient descent
 - Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pages 315–323, 2013
 - Main point: Talks about dual coordinate ascent and shows how this leads to variance reduction

- Large scale optimization:
 - Stochastic gradient descent
 - Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pages 315–323, 2013
 - Main point: Talks about dual coordinate ascent and shows how this leads to variance reduction
 - Yu et al., Large Linear Classication when Data Cannot Fit In Memory", in KDD 2010)
 - Block updates by dividing data into chunks that fit into main memory.

- Nearest neighbor methods: locality sensitive hashing, random projections and Johnson-Lindenstrauss, tree structures
 - Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." ICML, 2009.
 - Random projection type hash functions to bring high dimensional data down to lower dimensional space while not affecting the dot products (which are important for a various number of tasks).

- Nearest neighbor methods: locality sensitive hashing, random projections and Johnson-Lindenstrauss, tree structures
 - Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." ICML, 2009.
 - Random projection type hash functions to bring high dimensional data down to lower dimensional space while not affecting the dot products (which are important for a various number of tasks).
 - Ping Li, Trevor Hastie, Kenneth Church. "Very sparse random projections",
 - Doing Johnson Lindenstrauss with very sparse projection matrices

- Nearest neighbor methods: locality sensitive hashing, random projections and Johnson-Lindenstrauss, tree structures
 - Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." ICML, 2009.
 - Random projection type hash functions to bring high dimensional data down to lower dimensional space while not affecting the dot products (which are important for a various number of tasks).
 - Ping Li, Trevor Hastie, Kenneth Church. "Very sparse random projections",
 - Doing Johnson Lindenstrauss with very sparse projection matrices
 - Ting Liu, Andrew W. Moore, Gray, Alexander, and K.Yang. "An investigation of practical approximate nearest neighbor algorithms." NIPS 2004:
 - Spill trees: clever double storage of data to aid faster search in metric trees

 Parallel methods and Divide and Conquer: better compression for parallel SGD. Divide and conquer methods for community detection in very large graphs. Bootstrap and subsampling- Bag of little bootstraps. Matrix multiplication.

- Parallel methods and Divide and Conquer: better compression for parallel SGD. Divide and conquer methods for community detection in very large graphs. Bootstrap and subsampling- Bag of little bootstraps. Matrix multiplication.
 - Bradley, Joseph, et al. "Parallel Coordinate Descent for L1-Regularized Loss Minimization." International Conference on Machine Learning (2011).
 - Shotgun. Shooting in parallel and the effect of correlations of the features on the final error

- Parallel methods and Divide and Conquer: better compression for parallel SGD. Divide and conquer methods for community detection in very large graphs. Bootstrap and subsampling- Bag of little bootstraps. Matrix multiplication.
 - Bradley, Joseph, et al. "Parallel Coordinate Descent for L1-Regularized Loss Minimization." International Conference on Machine Learning (2011).
 - Shotgun. Shooting in parallel and the effect of correlations of the features on the final error
 - Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright, Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent", NIPS 2011.
 - Asynchronous SGD without locks—use the sparsity in data

- Parallel methods and Divide and Conquer: better compression for parallel SGD. Divide and conquer methods for community detection in very large graphs. Bootstrap and subsampling- Bag of little bootstraps. Matrix multiplication.
 - Bradley, Joseph, et al. "Parallel Coordinate Descent for L1-Regularized Loss Minimization." International Conference on Machine Learning (2011).
 - Shotgun. Shooting in parallel and the effect of correlations of the features on the final error
 - Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright, Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent", NIPS 2011.
 - Asynchronous SGD without locks—use the sparsity in data
 - A. Kleiner, A. Talwalkar, P. Sarkar M. I. Jordan. "Bag of little bootstraps.", ICML/JRSSB 2012
 - Faster bootstrap algorithm, by doing resampling so that large datasets can be used in a more compact form

- $\bullet~$ The ϵ Semisupervised learning and Pagerank.
- Power method for eigenvectors
- Kernel PCA for nonlinear decision boundaries.

Acknowledgment

Drineas, Kannan and Mahoney's paper on matrix multiplication.