# Current Measurement using

From Dr.G.V.Prasanna Anjaneyulu



- ·Current measured in amperes or millian peres
- ·Measurement device inserted in spries with load
- ·Current is turned into voltage, which is sampled by ADC
- ·Two types of measurements wasive



### Invasive Non-Invasive ·Uses Hall-E# ensor Uses low-value resistor ·Measure magnetic field Measures voltage drop ·No con circuit voltage Affects circuit voltage wirect connection possible Requires direct connection ·Simple passive design ·Complex active design

#### **ACS712**





## Fully Integrated, Hall Effect-Based Linear Current Sensor with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor

#### **Selection Guide**

| Part Number       | T <sub>A</sub><br>(°C) | Optimized Range op | Sensitivity, Sens<br>(Typ) (mV/A) |
|-------------------|------------------------|--------------------|-----------------------------------|
| ACS712ELCTR-05B-T | -40 to 85              | ±5                 | 185                               |
| ACS712ELCTR-20A-T | 40 to 85               | ±20                | 100                               |
| ACS712ELCTR-30A-T | to 85                  | ±30                | 66                                |

<sup>\*</sup>Contact Apegro for additional packing options.



#### Features and Benefits

Low-noise analog signal path

- Device bandwidth is set via the new FILTER pin
- 5 µs output rise time in response to step input current
- 80 kHz bandwidth
- Total output error 1.5% at TA = 25°C
- 1.2 m $\Omega$  internal conductor resistance
- 2.1 kVRMS minimum isolation voltage from pins 1-4 to pins 5-8
- 5.0 V, single supply operation
- 66 to 185 mV/A autput sensitivity
- Output voltage proportional to AC or DC currents

Extremely stable output offset voltage

Nearly zero magnetic hysteresis

#### Contd....





#### Contd....







#### Contd...



#### Contd....



| Terminal | 1 I io | 4 Ta | ы  | • |
|----------|--------|------|----|---|
| rermina  |        | LIA  | OI | е |

|   |         | (((((((((((((((((((((((((((((((((((( |                                                      |  |
|---|---------|--------------------------------------|------------------------------------------------------|--|
|   | Number  | Mame                                 | Description                                          |  |
|   | 1 and 2 | P+                                   | Terminals for current being sensed; fused internally |  |
|   | 3 and 4 | IP-                                  | Terminals for current being sensed; fused internally |  |
|   | (( 5)50 | GND                                  | Signal ground terminal                               |  |
|   | 6       | FILTER                               | Terminal for external capacitor that sets bandwidth  |  |
| ٥ | 7       | VIOUT                                | Analog output signal                                 |  |
|   | 8       | VCC                                  | Device power supply terminal                         |  |

GND



#### Contd...



# ACS712 Hall Effect Serisor

- ·Hall effect linear current
- •Low-resistance 1.2 million current conductor
- ·Works with DC AC current
- Powered by 5VDC
- ·Three Different models: 5A, 20A and 30A







**Current Measurement by Dr.GVP** 





**Current Measurement by Dr.GVP** 





#### Theoretical circuit



```
//Measurement of current with ACS712-30A by ARDUINO
const int currentPin = A0;
int sensitivity = 66; // it for 30A Sensor //for 5A Sensor sensitivity =18$
int adcValue= 0;
int offsetVoltage = 2500;
double adcVoltage = 0;
double currentValue = 0;
void setup()
  Serial.begin(9600);
  delay(1000);
void loop()
  adcValue = analogRead(currentPin)
  adcVoltage = (adcValue /
  currentValue = (ad) Woltage - offsetVoltage) / sensitivity);
  Serial.print("Sensor Value = " );
  Serial .arint (adcValue);
  delay (2000)
```

Serial.println(currentValue, 3); delay(1000); **Current Measurement by Dr.GVP** 

Serial.print("\t Voltage(mV) = ");

Serial.print(adcVoltage,3);

Serial.print("\t Current = ");

delay(1000);

#### Results



#### **Results at Serial Monitor**

| sl.no | Senson | Voltage [mV] | Current [A] |
|-------|--------|--------------|-------------|
|       |        |              |             |
|       |        |              |             |
|       |        |              |             |
|       |        |              |             |

hank you!