MA2202S Homework 3

As this homework concerns Abelian groups, additive notation will be used throughout. All subgroups are automatically normal.

1

Cauchy's Theorem (finite Abelian groups). Let A be a finite Abelian group of order n. Suppose $p \in \mathbb{N}$ is a prime such that $p \mid n$, then there exists an $v \in A$, $v \neq 0$ such that $p \cdot v = 0$.

Proof. Case of |A|=1 is vacuous. Case where |A|=2 is trivial. Suppose result holds for all groups of size less than n, let A be a Abelian group of order n and let $p\in\mathbb{N}$ be a prime such that $p\mid n$. Let the prime factorisation of n be

$$n=p^eq_1q_2\cdots q_r$$

where q_1, q_2, \dots, q_r are possibly repeated primes of which none are equal to p.

Since we are in the case that |A| > 1, take $a \in A \setminus \{0\}$. If the order of a is a multiple of p, then let $\operatorname{ord}(a) = pq'$. By setting $x = q' \cdot a$, we have $p \cdot x = p \cdot (q' \cdot a) = 0$.

In the other case where $p \nmid \operatorname{ord}(a)$, $\operatorname{ord}(a) = \overline{q} \mid q_1q_2\cdots q_r$. We generate the cyclic subgroup of a, denoted $\langle a \rangle$. This subgroup is non-trivial as $a \neq 0$, then the quotient group $A/\langle a \rangle$ has size n/\overline{q} . Denote that as $p^e \hat{q}$, where $p^e \hat{q} \overline{q} = n$. Since $p^e \hat{q} < n$, use induction hypothesis to find $x + \langle a \rangle \in A/\langle a \rangle$ such that $p \cdot (x + \langle a \rangle) = 0 + \langle a \rangle$ and $x + \langle a \rangle \neq 0 + \langle a \rangle$ or equivalently $x \notin a$.

Then $p \cdot x + \langle a \rangle = p \cdot (x + \langle a \rangle) = 0 + \langle a \rangle$, which shows that $px \in \langle a \rangle$. Let $px = b \in \langle a \rangle$ and $l = \operatorname{ord}(b) \mid \overline{q}$, so in particular $\gcd(p, l) = 1$. Let $c, d \in \mathbb{Z}$ such that cp + dl = 1, then

$$px = b$$

$$= (cp + dl)b$$

$$= cpb + dlb$$

$$= pcb$$

$$p(x - cb) = 0$$

Now $x \neq cb$, because $cb \in \langle a \rangle$ but $x \notin \langle a \rangle$. Setting v = x - cb completes the proof.

(i)

We proceed via induction on the order of A. Base case when n=1 is vacuously true. Suppose result holds for all finite Abelian groups of order less than n.

Let A have order n and fix a prime divisor p_i of n. Let $p = p_i$ and $e = e_i$.

Set $B = \{ a \in A : p^e \cdot a = 0 \}.$

Claim 0. B is a subgroup of A.

Suppose $b_1,b_2\in B$, then $p^eb_1+p^eb_2=p^e\left(b_1+b_2\right)=0$, so $b_1+b_2\in B$. We are done because B is finite.

Observation 1 (Characterising property). If $p^{e+k} \cdot a = 0$ for some $k \in \mathbb{N}, a \in A$, then $a \in B$.

As $\operatorname{ord}(a) \mid p^{e+k}$, $\operatorname{ord}(a)$ is a power of p, but $\operatorname{ord} a \mid n$ which entails that the power is at most e, hence $p^e \cdot a = 0$.

Claim 2. $B \neq \{0\}$ and $p \mid |B|$.

By Cauchy's theorem, there exist an element of $a \in A$ with order p, so $a \in B$ and B is not trivial. Additionally, by theorem of Lagrange, $\operatorname{ord}(a) = p \mid |B|$.

Claim 3. For any $j \neq i$, $p_i \nmid |B|$.

Suppose on the contrary that $p_j \mid |B|$, by Cauchy theorem there exists $b \in B$, $b \neq 0$ such that $p_j \cdot b = 0$. Then we have $\operatorname{ord}(b) \mid p_j$ which implies that $p_j \mid p$ which is absurd.

Now from claim 0, B is a subgroup of A so |B| divides $n=p_1^{e_1}\cdots p_r^{e_r}$. By 2 and 3, $|B|=p^{e'}$ where $1\leq e'\leq e$ Finally, we claim that e'=e, which will complete the proof.

Suppose on the contrary that e' < e, then we consider the quotient A/B, which has order $p^{e'-e}\prod_{j\neq i}p_j^{e_j} < n$. By Cauchy theorem, there exists $v+B\in A/B$ such that $v\notin B$ and $p\cdot (v+B)=0+B$. Then $p\cdot v\in B$, so by definition of B, there exists $d\in \mathbb{Z}$ such that $p^d\cdot (pv)=0$ in A, which implies that $p^{d+1}\cdot v=0$, shows that $v\in B$, a contradiction. \square

(ii)

Suppose we have a subgroup $C\subseteq A$ such that $|C|=p_i^{e_i}$, let B_i be B as defined above for p_i . It suffices to show that $C\subseteq B_i$ since both subgroups are of the same size. Let $x\in C$, then $p_i^{e_i}\cdot x=0$ implying that $\operatorname{ord}(x)\mid p_i^{e_i}$ which shows $x\in B_i$ by observation 1.

(iii)

Consider the internal sum $B_1+B_2+\cdots+B_r$. For any i, consider any $v\in B_i\cap\sum_{j\neq i}B_i$. Then there exists $b_i\in B_i$ for all $i\neq j$ such that

$$v = b_1 + \dots + b_{i-1} + b_{i+1} + \dots + b_r$$

letting $\hat{p}=\frac{n}{p_i^{e_i}}$, we see that \hat{p} kills RHS, so $\hat{p}v=0$ which means that $\operatorname{ord}(v)\mid \hat{p}$. We also have $v\in B_i$ and by characterising property $\operatorname{ord}(v)\mid p_i^{e_i}$. As $\gcd(p_i^{e_i},\hat{p})=1$, $\operatorname{ord}(v)=1$, so v=0 and the sum is direct.

Given a direct sum, we see that

$$B_1+B_2+\cdots+B_r\simeq B_1\oplus B_2\oplus\cdots\oplus B_r.$$

The RHS has size $p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}=n$, so the LHS also has the same size. Then as

$$B_1 + B_2 + \dots + B_r \subseteq A$$

and |A| = n, this cardinality argument shows that equality in fact holds.

(iv)

By Lagrange theorem, $p_1^{f_1}\mid n=p_1^{e_1}\cdots p_r^{e_r}$, which implies that $f_1\leq e_1$. Let $c\in C$ be arbitrary, then $p_1^{f_1}\cdot c=0$ which means $c\in B_1$, hence $C\subseteq B_1$.

(v)

Only one because Sylow p_i -subgroups are unique by (ii).

2

Listing out the invariant factors

- $3 \mid 3 \cdot 3 \cdot 5 \cdot 5$,
- $3 | 3 | 3 \cdot 5 \cdot 5$,
- $3 \mid 3 \cdot 5 \mid 3 \cdot 5$,
- $5 \mid 3 \cdot 3 \cdot 3 \cdot 5$,
- $3 \cdot 5 \mid 3 \cdot 3 \cdot 5$,
- $3 \cdot 3 \cdot 3 \cdot 5 \cdot 5$.

Which gives the following isomorphism classes

$$\mu_{3} \oplus \mu_{225}$$

$$\mu_{3} \oplus \mu_{3} \oplus \mu_{75}$$

$$\mu_{3} \oplus \mu_{15} \oplus \mu_{15}$$

$$\mu_{5} \oplus \mu_{135}$$

$$\mu_{15} \oplus \mu_{45}$$

$$\mu_{675}$$

Let A,B be two distinct groups from the list above, let d_A,d_B be the largest invariant factor for A,B respectively. As each invariant factor divides the next, we know that elements in A have order at most d_A , of which one has order exactly d_A , similarly for B. Without loss of generality assume $d_A < d_B$, then it is impossible for A to have an element of order d_B , which shows a structural difference between A and B.