Graphische Datenverarbeitung Visualisierungstechniken

Visualisierungstechniken

Visualisierung:

Daten.

Visualisierung bedeutet sichtbar machen, darstellen. Die CG beschränkt sich dabei jedoch nicht auf die Abbildung real existierender Objekte sondern beschäftigt sich auch mit der Darstellung von Information und wissenschaftlich-technischen

Strömungsvisualisierung

Beispiele für Strömungsvisualisierungs-Resultate. Der verwendete Datensatz ist eine Simulation des Hurrikan Isabel. (Bilder von: Technische Universität Wien, Institut für Computergraphik und Algorithmen)

Visualisierungstechniken

Visualisierung:

Visualisierung bedeutet sichtbar machen, darstellen. Die CG beschränkt sich dabei jedoch nicht auf die Abbildung real existierender Objekte sondern beschäftigt sich auch mit der Darstellung von Information und wissenschaftlich-technischen Daten.

Visualisierung geometrischer Modelle

- Visualisierung ohne Berücksichtigung von Licht
- Visualisierung mit Berücksichtigung von Licht
 - lokale Verfahren
 - globale Verfahren

Visualisierung ohne Berücksichtigung von Licht

Wie berechnet man den Farbverlauf innerhalb einer Linie oder eines Dreiecks, wenn jedem Punkt eine andere Farbe

zugeordnet wurde?

Lineare Interpolation:

Interpolationsverfahren für Linien

Bilineare Interpolation:

Interpolationsverfahren für Flächen

Lineare Farbinterpolation

Verhältnis der "Farbanteile" von F(0) und F(1)

$$F(t) = (1 - t) \cdot F(0)$$

$$F(t) = (1-t) \cdot \begin{pmatrix} R(0) \\ G(0) \\ B(0) \end{pmatrix}$$

Lineare Farbinterpolation

Bilineare Farbinterpolation für Dreiecke

1. Schritt: Rasterisierung des Dreiecks

Bilineare Farbinterpolation für Dreiecke

2. Schritt: Farbwerte der Pixel zwischen den Vertices interpolieren

Interpolation zwischen V_1 und V_2 :

- Zunächst muss die Strecke zwischen den beiden Vertices normiert werden.
- Der Parameter t₁ steht für die normierte Strecke und geht von 0 bis 1.
- Danach erfolgt eine lineare Farbinterpolation abhängig von t₁

Bilineare Farbinterpolation für Dreiecke

Farbwerte der Pixel zwischen den Vertices wurden linear interpoliert

3. Schritt:

Lineare
Interpolation der
Pixelwerte entlang
der einzelnen
Rasterzeilen

Ergebnis einer bilinearen Farbinterpolation

Rendering

Rendern:

- Rendern bedeutet: Visualisieren einer beleuchteten Szene.
- Dabei spielen die Beleuchtungsverhältnisse und die Materialien, die auf die Beleuchtung reagieren eine wichtige Rolle.

Renderer:

Hard- oder Software, die die Visualisierung der Szene übernimmt.

Faktoren, die das Aussehen eines Objektes bestimmen:

- Position und Orientierung des Betrachters relativ zum beleuchteten Objekt
- Position, Orientierung und Typ der Lichtquelle
- Oberflächenmaterial des Objektes

Abbildung entnommen von: http://forums.cgsociety.org/sh owthread.php?t=233460 Zuletzt besucht: 2006-01-22.

Faktoren, die das Aussehen eines Objektes bestimmen:

Beschaffenheit der Objektoberfläche & Verfahren zum Rendern des Objektes

Gerichtete Lichtquelle

- Entsprechen einer unendlich weit entfernten Lichtquelle
- parallel einfallende Strahlen.

Punktlichtquelle

- Ein lokalisierter Punkt strahlt das Licht aus.
- unterschiedliche Winkel auf eine ebene Fläche

Spotlichtquelle

- Nur um einen bestimmten Winkel um eine angegebene Richtung wird Licht ausgestrahlt.
- je weiter von der Richtung weg desto schwächer wird das Licht

Phong'sches Reflexionsmodell

- Nach: Bui-Tuong Phong, "Illumination for Computer Generated Pictures", in Communications of the ACM, 1975
- Lichtquelle wird als Punktlichtquelle angenommen
- Die in Richtung des Betrachters abgegebene Lichtintensität ergibt sich aus der Summe der drei Komponenten:
 - Diffuse Reflexion
 - Ambiente Beleuchtung
 - Spiegelnde Reflexion

Diffuse Reflexion

- Sehr matte Oberflächen sind perfekt diffus reflektierend.
- Diese Oberflächen haben unabhängig von der Position des Betrachters die gleiche Farbe und Helligkeit.
- Farbe der diffusen Reflexion ist Materialabhängig.

SpiegeInde Reflexion

Im Gegensatz zum diffus reflektierenden Licht hat spiegelnd reflektierendes Licht nicht die Farbe der Oberfläche sondern die des Lichtes.

Beispiel: Ein grünes Objekt wird mit weißen Licht bestrahlt.

- Das diffus reflektierte Licht ist grün.
- Das spiegelnd reflektierte Licht ist weiß.

Ambiente Materialbeleuchtung

- Die Ambiente Beleuchtung soll das Umgebungslicht simulieren.
- Sie ist nur von der Materialfarbe und der eingestellten Lichtintensität abhängig.

Licht aus der Umgebung

- Oberflächen, die parallel zum einfallenden Licht liegen, haben keine diffuse Reflexion ...
- ... und erst recht keine spiegelnde Reflexion.
- D.h. sie müssten schwarz dargestellt werden.
- Realistisch ist aber, dass diese Flächen vom abgestrahlten Licht der Umgebung beleuchtet werden also auch sichtbar sind.

Simulation dieses Effektes durch Anwendung eines Umgebungslichts:

Der Ambienten Materialbeleuchtung

Quelle: https://de.wikipedia.org/wiki/Phong-Beleuchtungsmodell

Ohne Normalen keine Beleuchtungsberechnung!

1. Variante: Flächennormalen

Berechnung mittels Kreuzprodukt (rechte-Hand-Regel)

Auf welcher Stelle der Fläche "sitzt" diese Flächennormale im Dreieck?

Flat Shading

Verfahren:

- Für jede Fläche gibt es nur eine Normale.
- Dadurch erhält jede Fläche (Facette) eine einheitliche Beleuchtung*).
- D.h. jede Fläche besitzt **nur eine Farbe**.

Nachteil:

 Da die meisten Objektoberflächen gekrümmt sind, ist die Qualität der Ergebnisse meist schlecht.

Vorteil:

- sehr einfache und sehr schnelle Beleuchtungsberechnung!
- *) Beleuchtung wird meist mit dem Phong'schen Beleuchtungsmodell berechnet.

Verbesserung der Beleuchtungssimulation beginnt bei den Normalen!

2. Variante: **Eckennormalen**

Eckennormalen stehen senkrecht auf der Tangentialebene ...

... und **NICHT** wie die Flächennormale senkrecht auf der Fläche!

Eckennormalen berechnet man durch die Interpolation der Flächennormalen der benachbarten Flächen.

Gouraud Shading

- Beleuchtungsberechnung *) wird für jeden Eckpunkt durchgeführt.
- D.h. pro Dreieck werden drei unterschiedliche Farben (Helligkeiten) berechnet.
- Die Farben der Pixel innerhalb des Dreiecks werden durch bilineare Interpolation berechnet.
- Dadurch entsteht eine optische Glättung ohne Änderungen an der Geometrie vornehmen zu müssen.
- Optische Glättung bewirkt ein "kaschieren" der Kanten, die nicht zur Kontur gehören!

^{*)} Beleuchtung wird meist mit dem Phong'schen Beleuchtungsmodell berechnet.

Flat Shading versus Gouraud Shading

Ergebnis ist abhängig von den berechneten Normalen:

Links: Flächennormalen

Rechts:

Eckpunktnormalen

Grenzen des Gouraud Shading Verfahrens

Lichtquelle bestrahlt nur die Mitte eines Dreiecks:

- Lichtberechnung wird nur an den Eckpunkten berechnet.
- Dadurch kann für das Dreieck kein Glanzlicht berechnet werden.
- Außer man macht folgendes ...

Glanzlichter mit Gouraud Shading berechnen:

- Beleuchtungsberechnung wird für jeden einzelnen Pixel durchgeführt.
- Das bedeutet: Für jeden darzustellenden Pixel muss eine Normale berechnet werden!
- Die Normalen der Pixel werden auf Basis der Ecknormalen ermittelt oder durch eine Art Textur (Normal Map).
- Dadurch können Glanzlichter ohne zusätzliche Unterteilung (Tessilierung) des Gitters berechnet werden.

Vorteil: Glanzlichter & gutes visuelles Ergebnis

Nachteil: Normale für jeden Pixel interpolieren kostet viel Rechenzeit

Vergleich der Verfahren

Flat-, Gouraund- und Phong-Shading

Von: www-2.cs.cmu.edu/~ph/nyit/

Vergleich der Verfahren

Aus: Watt A., Policarpo F.: The Computer Image, Addison-Wesley 1998

Nicht berechnet werden kann mit den hier vorgestellten Shading Verfahren:

- Schattenwurf,
- transparente Oberflächen,
- sowie spiegelnde Oberflächen

...das können nur globale Verfahren

Verfahren zum Rendering

Lokale Verfahren:

- Berücksichtigt bei der Berechnung des von der Objektoberfläche reflektierten Lichts nur das von der definierten Lichtquelle einfallende Licht (primäre Lichtquellen).
- Die Beleuchtung der Objekte wird nicht beeinflusst durch:
 - Spiegelung,
 Lichtreflexionen von andern Objekten,
 - und Schattenwurf

Verfahren zum Rendering

Globale Verfahren:

- Objekte der Szene beeinflussen sich gegenseitig.
- In die Beleuchtungsberechnung gehen neben den <u>primären</u> Lichtquellen auch die <u>sekundären</u> mit ein.
- D.h. in der Beleuchtungsberechnung werden berücksichtigt:
 - Spiegelung,
 - Schattenwurf und
 - Lichtreflexion anderer Objekte.

Was sind primäre und was sind

Verfahren zum Rendering

Lokale Verfahren

- Wenig rechenaufwendig schnelle Berechnung
- Beispiele: Flat Shading Gouraud Shading
 Phong Shading

Globale Verfahren

- Sehr rechenaufwendig
- Beispiele: Rekursives Ray Tracing Radiosity

Diffuse Ray Tracing

Radiosity

Globales Verfahren: Ray Tracing

Idee beim Ray Tracing:

Um die Beleuchtung eines Objekts zu ermitteln, verfolgt man den Weg "aller" Lichtstrahlen innerhalb der Szene

> Watt A., Policarpo F. The Computer Image Addison-Wesley 1998

Verfolgung der Lichtstrahlen:

Forward Ray Tracing:

- Von der Lichtquelle ausgehend werden die Lichtstrahlen bis ins "Auge des Betrachters" (COP = Center of Projection) verfolgt.
- Zu aufwändig: da die meisten Strahlen das COP nicht erreichen.

> Also: Erstmal gucken, was beim Betrachter überhaupt ankommt ;-)

Statt der Lichtstrahlen werden die Sehstrahlen verfolgt:

Backward Ray Tracing

- Backward Ray Tracing wird allgemein als Ray Tracing bezeichnet!
- Nur für die Stellen, die der Betrachter tatsächlich sieht wird eine Beleuchtungsberechnung durchgeführt:
- Statt Lichtstrahlen verfolgt man "Sehstrahlen"; im Prinzip eine Rückwärtsverfolgung der Lichtstrahlen
- Also vom Auge des Betrachters (COP) werden durch die Projektionsebene hin zum Objekt "Sehstrahlen" verschickt.

Prinzip: Backward Ray Tracing

Die Verdeckungsberechnung erfolgt also nebenbei, ganz "automatisch"

Bisher beeinflussen sich die Objekte noch nicht gegenseitig.

Ray Tracing Prinzip

Wenn der getroffene Schnittpunkt nur diffus reflektierend ist, wird die Sehstrahlverfolgung (nach dem Schattentest & der Beleuchtungsberechnung) abgebrochen.

Was passiert aber wenn...

- ... der getroffener Punkt auf einer spiegelnd reflektierenden Oberfläche liegt ...
- ... oder die Oberfläche transparent ist?

Ray Tracing Prinzip

GDV: Visualisierungstechniken

Beleuchtungsberechung beim Ray Tracing

Farbe des Pixels setzt sich zusammen aus:

- ambienten Umgebungslicht (globaler Wert)
- diffuser Reflektion (Primärstrahl)
- spiegelnder Reflektionen
- Transmissionen

Sekundärstrahlen

Anmerkung: Material ist meist nicht nur spiegelnd oder nur diffus reflektierend!

Nicht berücksichtigt werden:

 Diffuse indirekte Beleuchtung die von benachbarten Objekten ausgeht!

Einschränkungen des Ray Tracing Verfahrens

- Keine "weichen "Schatten
- Keine indirekte diffuse Beleuchtung der Objekte durch andere Objekte der Szene
- Keine "Caustics"

Images courtesy of Henrik Wann Jensen University of California San Diego

Caustics

Erweiterung des Ray-Tracing Verfahrens zur Berechnung von Caustics und diffuser Reflexion:

"Photon Mapping" (H. W. Jensen)

Ergebnisse der Masterarbeit von Tobias Geis (an der FHD)

Diffuse Beleuchtung und Caustic-Berechnung werden durch die Verwendung von "Photonen" ins Ray-Tracing integriert

Photon Map

Ergebnisse der Masterarbeit von Tobias Geis (an der FHD)

Zur "Integration" wurden 500 000 Photonen verwendet

Ergebnisse der Masterarbeit von Tobias Geis (an der FHD)

Nach der Optimierung der Photonmap (500 000 Photonen):

Ergebnisse der Masterarbeit von Tobias Geis (an der FHD)

.... einer von zwei Preisträgern des Fachbereichspreis im WS 04/05

Raytracing + Photon Mapping (Caustics)

Caustic Map

Welche Methoden nutzte man bisher zur Echtzeitberechnung von Spiegelungen?

Cubic Environment Map

- Umgebung wird auf einen Würfel abgebildet (Environment Map).
- Spiegelnde Reflexion wird anhand des "Texel" (=Texturpixel) ermittelt auf den der Reflexionsvektor zeigt.
- Was ist der Reflexionsvektor?

Alle Bilder aus [2]

Cubic Environment Map

Cubic Environment Map um verschiedene Objekte

Alle Bilder aus [2]

Cubic Environment Map

Alle Bilder aus [2]

Sphere Mapping

- Environment Map ist im Regelfall eine Photographie aufgenommen mit extrem niedriger Brennweite.
- Man nennt sie auch "Light Probe" (siehe Abbildung)

Prof. Dr. Elke Hergenröther

Sphere Mapping

Verschiedene Sphere Maps (Light Probes):

Beachte: Sphere Maps sind Blickpunkt abhängig!

Cubic und Sphere Mapping im Vergleich

