Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Examen - 20 de diciembre de 2017.

Ejercicio 1.

 ${\bf a}.$ Definir la función φ de Euler.

Ver notas teóricas.

b. Enunciar y demostrar el Teorema de Euler.

Ver notas teóricas.

c. i) Probar que 127 es primo.

Solución: Como $127 < 13^2$ alcanza con probar que 127 no es divisible por los primos 2, 3, 5, 7 y 11. Veamos eso: $127 = 63 \cdot 2 + 1$, $127 = 42 \cdot 3 + 1$, $127 = 25 \cdot 5 + 2$, $127 = 18 \cdot 1$ y $127 = 11 \cdot 11 + 6$.

ii) Hallar $0 \le x < 127$ tal que $x \equiv 3^{502}$ (mód 127).

Solución: Como $\operatorname{mcd}(3,127) = 1$ podemos aplicar el Teorema de Euler. Como 127 es primo sabemos que $\varphi(127) = 126$ y $502 = 126 \cdot 3 + 124 \equiv -2 \pmod{126}$. Por lo tanto $3^{502} \equiv 3^{-2} \pmod{127} \equiv 9^{-1} \pmod{127}$. Utilizando el Algoritmo extendido de Euclides vemos que $1 = 9 \cdot (-14) + 127 \cdot 1$ de donde deducimos que

$$3^{504} \equiv 9^{-1} \pmod{127} \equiv -14 \pmod{127} \equiv 113 \pmod{127}$$
.

d. Hallar $0 \le x < 363$ tal que $x \equiv 12^{332}$ (mód 363).

Solución: En este caso no podemos aplicar el Teorema de Euler ya que mcd(12, 363) = 3. Pero podemos aplicar el teorema chino del resto de la siguiente manera:

$$x \equiv 12^{332} \pmod{363} \Leftrightarrow \begin{cases} x \equiv 12^{332} \pmod{3} \\ x \equiv 12^{332} \pmod{11^2} \end{cases}$$

Claramente $12^{332} \equiv 0 \pmod{3}$, por lo que falta reducir la otra congruencia. Sabemos que $\varphi(11^2) = 11 \cdot 10 = 110$ y $\operatorname{mcd}(12,11^2) = 1$, aplicando el Teorema de Euler vemos que $12^{332} \equiv 12 \equiv 12^2 \pmod{11^2} \equiv 144 \pmod{11^2} \equiv 23 \pmod{11^2}$. Tenemos que resolver entonces:

$$\left\{ \begin{array}{ll} x \equiv & 0 \pmod{3} \\ x \equiv & 23 \pmod{11^2} \end{array} \right.,$$

que tiene solución $23 + 11^2$. Por lo tanto $x = 23 + 11^2 = 144$.

Ejercicio 2.

- **a.** Sea G un grupo abeliano y $x, y \in G$ tales que o(x) = ab, con $a, b \in \mathbb{Z}^+$.
 - i) Probar que $o(x^a) = b$. **Solución:** Alcanza con probar que $(x^a)^b = e$ y que si $(x^a)^c = e$ entonces b|c. Veamos la primer afirmación: $(x^a)^b = x^{ab} = e$ ya que o(x) = ab. Si $(x^a)^c = e$ entonces $x^{ac} = e$ y ab|ac de donde concluimos que b|c.
 - ii) Probar que si x e y tienen órdenes coprimos entonces o(xy) = o(x)o(y). Solución: Ver notas teóricas: Lema 4.1.7
- b. Sea G el grupo de invertibles módulo 157, G = U(157).
 - i) Sabiendo que en G, o(16) = 13 y que $2^{12} \equiv 14 \pmod{157}$, hallar el orden de 2 en G. **Solución:** o(2^4) = $13 \Rightarrow \frac{\text{o}(2)}{\text{mcd}(\text{o}(2),4)} = 13 \Rightarrow \text{o}(2) = 13 \text{ mcd}(\text{o}(2),4)$. Y como $\text{mcd}(\text{o}(2),4) \in \{1,2,4\}$ tenemos que o(2) $\in \{13,26,52\}$. Por letra $2^{12} \equiv 14 \pmod{157} \Rightarrow 2^{13} \equiv 28 \pmod{157} \Rightarrow \text{o}(2) \neq 13$. También $2^{26} = (2^{13})^2 \equiv (28)^2 \pmod{157} \equiv 156 \pmod{157} \Rightarrow \text{o}(2) \neq 26$ y por lo tanto o(2) = 52.
 - ii) Sabiendo que $2^{46} \equiv 27 \pmod{157}$ hallar el orden de 3 en G. Solución $o(3^3) = o(27) = o(2^{46}) = \frac{o(2)}{\operatorname{mcd}(o(2), 46)} = \frac{52}{\operatorname{mcd}(52, 46)} = 26$, y como

$$o(3^3) = \frac{o(3)}{\text{mcd}(o(3), 3)} \text{ tenemos que } o(3) = 26 \text{ mcd}(o(3), 3)$$

Si $\operatorname{mcd}(o(3),3) = 1$ tendríamos que o(3) = 26; calculamos entonces 3^{26} : $3^{26} = 3^{24}3^2 = (3^3)^89 \equiv (2^{46})^89 \equiv 2^{368}9 \equiv (2^{52})^72^49 \equiv (1)^716(9) \equiv 144 \pmod{157} \neq 1$ por lo que $o(3) \neq 26$ y entonces o(3) = 78.

iii) Hallar una raíz primitiva módulo 157.

Solución: Por la parte a(ii), al ser G abeliano, podemos buscar x e y con mcd(o(x), o(y)) = 1 y o(x) $o(y) = 156 = \varphi(157)$. En ese caso tomando g = xy tendríamos (por a(ii)) que o(g) = o(x) o(y) = 156, y entonces g sería raíz primitiva módulo 157 Como $o(2) = 52 = 13 \times 4$ y $o(3) = 78 = 2 \times 39$, por la parte a(i) tenemos que $o(2^{13}) = 4$ y $o(3^2) = 39$ y como mcd(4, 39) = 1 y $4 \times 39 = 156$ tomamos $x = 2^{13} \equiv 28$ e $y = 3^2 = 9$. Entonces $y = xy = 28 \times 9 \equiv 95 \pmod{157}$ es r.p. módulo 157

iv) ¿Cuántos homomorfismos $f: U(314) \to \mathbb{Z}_{15}$ hay?

Solución: Como 314 = 2(157) y 157 es primo, sabemos que existe g raíz primitiva módulo 314; es decir $U(314) = \langle g \rangle$ (y o(g) = 156.)

Por lo tanto, los homomorfismo $F: U(314) \to \mathbb{Z}_{15}$ quedan determinados por F(g) = k tal que $o(k) \mid o(g)$ (y luego $F(g^n) = F(g)^n (= nk)$).

Es decir, que hay tantos homomorfismos como posibles $k \in \mathbb{Z}_{15}$ con $o(k) \mid 156$. Como (por Lagrange) $o(k) \mid |\mathbb{Z}_{15}| = 15$ buscamos los $k \in \mathbb{Z}_{15}$ tales que $o(k) \mid \operatorname{mcd}(156, 15) = 3$. Los únicos k son $k = \overline{0}$ (de orden 1) y $k = \overline{5}$ o $k = \overline{10}$ (ambos de orden 3). Entonces hay 3 homomorfismos.

Ejercicio 3.

a. Hallar todos los a, b enteros positivos tales que a + b = 87 y mcd(a, b) + mcm(a, b) = 633. Solución: Sea d = mcd(a, b), como d|a y d|b entonces $d|87 = 3 \cdot 29$. Por otro lado, como d|mcm(a, b) entonces d|633 y d|mcd(87, 633) = 3. Concluimos que $d \in \{1, 3\}$. También sabemos que $mcm(a, b) \cdot mcd(a, b) = |ab|$ y como buscamos a y b positivos tenemos que

$$ab + d^2 = d633.$$

Si d=1: tenemos $ab=632=2^379$ y a+b=87. Como d=1 entonces a y b son coprimos y vemos que las únicas opciones en este caso son (a,b)=(8,79) y (a,b)=(79,8). Si d=3: tenemos $ab+9=3\cdot 633$ y $ab=3(633-3)=3^2(211-1)=2\cdot 3^3\cdot 5\cdot 7$. Viendo las opciones posibles deducimos que las soluciones que nos sirven son (a,b)=(45,42), (a,b)=(42,45).

b. Enunciar y demostrar el Lema de Euclides. Ver notas teóricas.

Las soluciones entonces son

c. Hallar todos los a, b enteros tales que $ab + 3a = \frac{4b^2}{\text{mcd}(a,b)} + 9b$. Solución: Definimos d = mcd(a,b) y escribimos $a = d \cdot a^*, b = d \cdot b^*$, donde sabemos que $\text{mcd}(a^*,b^*) = 1$. Por lo tanto $d^2a^*b^* + 3da^* = 4d(b^*)^2 + 9db^*$, eliminando una d obtenemos

$$da^*b^* + 3a^* = 4(b^*)^2 + 9b^*.$$

Claramente b^* divide a el lado derecho de esa ecuación, por lo tanto $b^*|da^*b^*+3a^*$ y $b^*|3a^*$. Como a^* y b^* son coprimos entonces por el Lema de Euclides deducimos que $b^*|3$, por lo que $b^* \in \{1,3\}$.

Si $b^* = 1$: entonces $a^*(d+3) = 13$ por lo que $a^* = 1$ o $a^* = 13$, ya que 13 es primo. Si $a^* = 1$ entonces d = 10, de donde obtenemos la solución (a, b) = (10, 10). Si $a^* = 13$ entonces d + 3 = 1, que no puede pasar.

Si $b^*=3$ entonces $a^*(d+1)=21$. Como antes $a^*=1$, $a^*=3$, $a^*=7$ o $a^*=21$. Si $a^*=1$ entonces d=20 y obtenemos la solución (a,b)=(20,60). No puede pasar $a^*=3$ ya que tiene que ser coprimo con b^* . Si $a^*=7$ entonces d=2 y obtenemos la solución (a,b)=(14,6). No puede pasar $a^*=21$ ya que tiene que ser coprimo con b^* .