Final Report

Nicholas Allen, Surya Maddali, Jake Adams

Introduction:

In recent decades, cell phones have become a ubiquitous and essential commodity worldwide. The concept of making calls at the touch of a button revolutionized telecommunications and continues to set the industry standard. As cell phone technology advances, a persistent question arises: What determines the pricing of cell phones? Factors such as storage capacity, camera quality, and battery life are likely contributors.

The goal of this project is to investigate how specific features influence cell phone pricing. Understanding these influences can provide valuable insights for manufacturers about which features are most important to consumers, and it can help users make informed purchasing decisions based on functionality.

Machine learning offers a powerful approach to tackle this question, providing insights into purchasing patterns and enabling predictions of future phone prices based on their features. By leveraging machine learning, we aim to identify which features have the greatest impact on pricing today.

In this report, we will use a neural network to predict cell phone prices. Our model will be trained on two high-dimensional data sets, allowing us to analyze the relationship between various phone features and their prices comprehensively.

Illustration:

Figure 1: Elephant

Background and Related Works:

We reviewed an article from IEEE Xplore titled "Classification of Mobile Phone Price Dataset Using Machine Learning Algorithms" by N. Hu. This article focused on predicting mobile phone prices using a dataset from Kaggle. Unlike our project, which aims to predict phone prices as a continuous variable, their approach classified phone prices into four categories: "low cost" to "very high cost."

In their study, the authors used several models, including decision trees and Support Vector Machines (SVMs), to predict the price category of mobile phones. The dataset included features such as battery power and clock speed as predictors. Their most accurate model was the SVM, achieving an impressive accuracy of 94.8%.

Reference: N. Hu, "Classification of Mobile Phone Price Dataset Using Machine Learning Algorithms," 2022 3rd International Conference on Pattern Recognition and Machine Learning (PRML), Chengdu, China, 2022, pp. 438-443, doi: 10.1109/PRML56267.2022.9882236.

Keywords: Support vector machines, Machine learning algorithms, Random access memory, Machine learning, Feature extraction, Mobile handsets, Batteries, Computer science, Machine

learning, Classification, Price prediction.

Loading in the data sets though the readxl package

Data Processing:

```
Warning: package 'glmnet' was built under R version 4.3.2
Loading required package: Matrix
Warning: package 'Matrix' was built under R version 4.3.2
Loaded glmnet 4.1-8
Warning: package 'tidyr' was built under R version 4.3.3
Warning: package 'readr' was built under R version 4.3.3
Warning: package 'purrr' was built under R version 4.3.3
Warning: package 'dplyr' was built under R version 4.3.3
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v dplyr 1.1.4
                    v readr
                                 2.1.5
v forcats 1.0.0 v stringr
v ggplot2 3.4.3 v tibble
                                 1.5.1
                                 3.2.1
v lubridate 1.9.2 v tidyr 1.3.1
v purrr
          1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x tidyr::expand() masks Matrix::expand()
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
x tidyr::pack() masks Matrix::pack()
x tidyr::unpack() masks Matrix::unpack()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

Warning: package 'corrplot' was built under R version 4.3.3

corrplot 0.92 loaded

First Dataset

The first data set looked like this before processing.

```
# A tibble: 6 x 11
 model
          price rating sim
                                              battery display camera card os
                              processor ram
  <chr>
           <chr> <dbl> <chr> <chr>
                                        <chr> <chr>
                                                      <chr>
                                                               <chr> <chr> <chr>
1 OnePlus~ 54,~
                    89 Dual~ Snapdrag~ 12 G~ 5000 m~ 6.7 in~ 50 MP~ Memo~ Andr~
2 OnePlus~ 19,~
                    81 Dual~ Snapdrag~ 6 GB~ 5000 m~ 6.59 i~ 64 MP~ Memo~ Andr~
3 Samsung~ 16,~
                    75 Dual~ Exynos 1~ 4 GB~ 5000 m~ 6.6 in~ 50 MP~ Memo~ Andr~
                    81 Dual~ Snapdrag~ 6 GB~ 5000 m~ 6.55 i~ 50 MP~ Memo~ Andr~
4 Motorol~ 14,~
5 Realme ~ 24,~
                   82 Dual~ Dimensit~ 6 GB~ 5000 m~ 6.7 in~ 108 M~ Memo~ Andr~
                   80 Dual~ Snapdrag~ 6 GB~ 5000 m~ 6.6 in~ 50 MP~ Memo~ Andr~
6 Samsung~ 16,~
```

It is a tabular data set on some mobile phones. Some examples of columns in the data set are mobile which represents the name of the phone and the price of the phone.

To start off we took out the model column because it represented the names of the phones which will not impact the price. Since majority of phones use the same sim cards, we took out the sim column.

```
# A tibble: 6 x 9
 price
         rating processor
                                         ram
                                               battery display camera card os
  <chr>
           <dbl> <chr>
                                                                      <chr> <chr>
                                         <chr> <chr>
                                                       <chr>
                                                                <chr>
1 54,999
             89 Snapdragon 8 Gen2, Oc~ 12 G~ 5000 m~ 6.7 in~ 50 MP~ Memo~ Andr~
             81 Snapdragon 695, Octa ~ 6 GB~ 5000 m~ 6.59 i~ 64 MP~ Memo~ Andr~
2 19,989
3 16,499
             75 Exynos 1330, Octa Cor~ 4 GB~ 5000 m~ 6.6 in~ 50 MP~ Memo~ Andr~
             81 Snapdragon 695, Octa~ 6 GB~ 5000 m~ 6.55 i~ 50 MP~ Memo~ Andr~
4 14,999
5 24,999
             82 Dimensity 1080, Octa ~ 6 GB~ 5000 m~ 6.7 in~ 108 M~ Memo~ Andr~
6 16,999
             80 Snapdragon 750G, Oct~ 6 GB~ 5000 m~ 6.6 in~ 50 MP~ Memo~ Andr~
```

Cleaning battery column

We extracted the battery life of each phone in mAH and made the column numeric

```
Warning: There was 1 warning in `mutate()`.
i In argument: `battery = .Primitive("as.double")(battery)`.
Caused by warning:
! NAs introduced by coercion
```

```
# A tibble: 6 x 9
```

```
rating processor
  price
                                           battery mAh display camera card os
                                     ram
           <dbl> <chr>
  <chr>>
                                     <chr>
                                                 <dbl> <chr>
                                                                <chr> <chr> <chr>
1 54,999
             89 Snapdragon 8 Gen2~ 12G~
                                                 5000 6.7 in~ 50 MP~ Memo~ Andr~
                                                 5000 6.59 i~ 64 MP~ Memo~ Andr~
2 19,989
             81 Snapdragon 695, 0~ 6 GB~
3 16,499
              75 Exynos 1330, Octa~ 4 GB~
                                                 5000 6.6 in~ 50 MP~ Memo~ Andr~
4 14,999
             81 Snapdragon 695, ~ 6 GB~
                                                 5000 6.55 i~ 50 MP~ Memo~ Andr~
5 24,999
             82 Dimensity 1080, 0~ 6 GB~
                                                 5000 6.7 in~ 108 M~ Memo~ Andr~
                                                 5000 6.6 in~ 50 MP~ Memo~ Andr~
6 16,999
             80 Snapdragon 750G, ~ 6 GB~
```

Cleaning processor variable

We extracted the power of the processor in GHz. We then made the column numeric

A tibble: 6 x 9 price rating `processor GHz)` ram battery_mAh display camera card os <chr> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> 1 54,999 89 3.2 12 GB ~ 5000 6.7 in~ 50 MP~ Memo~ Andr~ 2 19,989 5000 6.59 i~ 64 MP~ Memo~ Andr~ 81 2.2 6 GB R~ 3 16,499 2.4 4 GB R~ 5000 6.6 in~ 50 MP~ Memo~ Andr~ 75 4 14,999 81 2.2 6 GB R~ 5000 6.55 i~ 50 MP~ Memo~ Andr~ 5 24,999 82 2.6 6 GB R~ 5000 6.7 in~ 108 M~ Memo~ Andr~ 6 16,999 80 2.2 6 GB R~ 5000 6.6 in~ 50 MP~ Memo~ Andr~

Cleaning os column

We noticed that because the data was unclean, some of the values that should be in the os column were in the card column. We put these value in the os column and removed the card column after. We also made the os column a factor.

#	A tibble: 6 x 8								
	price	rating	`processor	GHz)`	ram			battery_mAh display camera os	
	<chr></chr>	<dbl></dbl>		<dbl></dbl>	<ch:< td=""><td>r></td><td></td><td><dbl> <chr> <chr> <fct></fct></chr></chr></dbl></td></ch:<>	r>		<dbl> <chr> <chr> <fct></fct></chr></chr></dbl>	
1	54,999	89		3.2	12 GI	B RAM	2~	5000 6.7 in~ 50 MP~ Andr~	
2	19,989	81		2.2	6 GB	RAM,	12~	5000 6.59 i~ 64MP~ Andr~	
3	16,499	75		2.4	4 GB	RAM,	64~	5000 6.6 in~ 50 MP~ Andr~	
4	14,999	81		2.2	6 GB	RAM,	12~	5000 6.55 i~ 50 MP~ Andr~	
5	24,999	82		2.6	6 GB	RAM,	12~	5000 6.7 in~ 108 M~ Andr~	
6	16,999	80		2.2	6 GB	RAM,	12~	5000 6.6 in~ 50 MP~ Andr~	

Cleaning camera column

We extracted the amount of mega pixels in the front camera of each phone. We made this column numeric

A tibble: 6 x 8 price rating `processor GHz)` ram battery_mAh display f_camera_MP os <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <fct> 1 54,999 89 3.2 12 GB R~ 5000 6.7 in~ 16 Andr~ 2 19,989 81 2.2 6 GB RA~ 5000 6.59 i~ 16 Andr~ 3 16,499 75 2.4 4 GB RA~ 5000 6.6 in~ 13 Andr~ 2.2 6 GB RA~ 4 14,999 81 5000 6.55 i~ 16 Andr~ 5 24,999 82 2.6 6 GB RA~ 5000 6.7 in~ 16 Andr~ 6 16,999 2.2 6 GB RA~ 80 5000 6.6 in~ 8 Andr~

Cleaning ram column

We extracted the ram of the phones in GB and made it a factor because phones only have a few preset values for their ram

A tibble: 6 x 8

	price	rating	`processor	GHz)`	ram	battery_mAh display	f_camera_MP os
	<chr></chr>	<dbl></dbl>		<dbl></dbl>	<fct></fct>	<dbl> <chr></chr></dbl>	<dbl> <fct></fct></dbl>
1	54,999	89		3.2	12 GB	5000 6.7 inche~	16 Andr~
2	19,989	81		2.2	6 GB	5000 6.59 inch~	16 Andr~
3	16,499	75		2.4	4 GB	5000 6.6 inche~	13 Andr~
4	14,999	81		2.2	6 GB	5000 6.55 inch~	16 Andr~
5	24,999	82		2.6	6 GB	5000 6.7 inche~	16 Andr~
6	16,999	80		2.2	6 GB	5000 6.6 inche~	8 Andr~

Cleaning Display column

We extracted the display size and the Hz of the display and turned that into two new columns. We made these new columns numeric and removed the original

A tibble: 6 x 9

	price	rating	`processor	GHz)`	ram	${\tt battery_mAh}$	f_camera_MF	os	${\tt displaySize}$
	<chr></chr>	<dbl></dbl>		<dbl></dbl>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<dbl></dbl>
1	54,9~	89		3.2	12 GB	5000	16	Andr~	6.7
2	19,9~	81		2.2	6 GB	5000	16	Andr~	6.59
3	16,4~	75		2.4	4 GB	5000	13	Andr~	6.6
4	14,9~	81		2.2	6 GB	5000	16	Andr~	6.55
5	24,9~	82		2.6	6 GB	5000	16	Andr~	6.7
6	16,9~	80		2.2	6 GB	5000	8	Andr~	6.6
		_							

i 1 more variable: displayHz <dbl>

Cleaning Price column

We converted the value in rupees to dollars to make it easier to understand for our audience

A tibble: 6 x 9

	price	rating	`processor GHz)`	ram	battery_mAh	f_	_camera_MP	os	displaySize
	<dbl></dbl>	<dbl></dbl>	<db< td=""><td>1></td><td><fct></fct></td><td><dbl></dbl></td><td></td><td><dbl></dbl></td><td><fct></fct></td><td><dbl></dbl></td></db<>	1>	<fct></fct>	<dbl></dbl>		<dbl></dbl>	<fct></fct>	<dbl></dbl>
1	659.	89	3	.2	12 GB	5000		16	Andro~	6.7
2	240.	81	2	.2	6 GB	5000		16	Andro~	6.59

3	198.	75	2.4 4 GB	5000	13	Andro~	6.6
4	180.	81	2.2 6 GB	5000	16	Andro~	6.55
5	300.	82	2.6 6 GB	5000	16	Andro~	6.7
6	204.	80	2.2 6 GB	5000	8	Andro~	6.6
#	i 1 more	variable:	displayHz <dbl></dbl>				

General Analysis

After Cleaning:

```
# A tibble: 6 x 9
 price rating `processor GHz)` ram
                                      battery_mAh f_camera_MP os
                                                                      displaySize
  <dbl> <dbl>
                          <dbl> <fct>
                                             <dbl>
                                                         <dbl> <fct>
                                                                            <dbl>
1 659.
                            3.2 12 GB
                                             5000
                                                           16 Andro~
                                                                             6.7
            89
2 240.
            81
                            2.2 6 GB
                                             5000
                                                           16 Andro~
                                                                             6.59
3 198.
            75
                            2.4 4 GB
                                             5000
                                                           13 Andro~
                                                                             6.6
4 180.
            81
                            2.2 6 GB
                                             5000
                                                           16 Andro~
                                                                             6.55
5 300.
            82
                            2.6 6 GB
                                             5000
                                                           16 Andro~
                                                                             6.7
                                                            8 Andro~
                                                                             6.6
6 204.
            80
                            2.2 6 GB
                                             5000
# i 1 more variable: displayHz <dbl>
```

price	rating	processor GHz)	ram
Min. : 88.71	Min. :62.00	Min. :1.600	8 GB :231
1st Qu.: 191.81	1st Qu.:78.00	1st Qu.:2.200	6 GB :144
Median : 275.73	Median :82.00	Median :2.400	4 GB : 81
Mean : 345.50	Mean :81.37	Mean :2.526	12 GB : 38
3rd Qu.: 395.62	3rd Qu.:85.00	3rd Qu.:2.900	16 GB : 7
Max. :2877.34	Max. :89.00	Max. :3.220	3 GB : 3
			(Other): 2

battery_mAh	f_camera_MP	os	displaySize	
Min. : 3095	Min. : 1.00	Android v12 :255	Min. :5.900	
1st Qu.: 4600	1st Qu.:13.00	Android v11 :150	1st Qu.:6.500	
Median : 5000	Median :16.00	Android v13 : 68	Median :6.600	
Mean : 4934	Mean :18.16	Android v10 : 17	Mean :6.593	
3rd Qu.: 5000	3rd Qu.:20.00	Android v10.0: 4	3rd Qu.:6.670	
Max. :22000	Max. :60.00	iOS v15 : 3	Max. :6.950	
		(Other) : 9		

displayHz
Min. : 90.0
1st Qu.: 90.0
Median :120.0

Mean :110.5 3rd Qu.:120.0 Max. :240.0

Second Dataset

The first dataset looked like this before processing

#	A tibble: 6 x 12							
	Brands	Models	Colors	${\tt Memory}$	${\tt Storage}$	${\tt Camera}$	Rating	`Selling Price`
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	SAMSUNG	GALAXY M31S	Mirage Black	8 GB	128 GB	Yes	4.3	19330
2	Nokia	3.2	Steel	2 GB	16 GB	Yes	3.8	10199
3	realme	C2	${\tt Diamond\ Black}$	2 GB	<na></na>	Yes	4.4	6999
4	${\tt Infinix}$	Note 5	Ice Blue	4 GB	64 GB	Yes	4.2	12999
5	Apple	iPhone 11	Black	4GB	64 GB	Yes	4.6	49900
6	GIONEE	L800	Black	8 MB	16 MB	Yes	4	2199
#	# i 4 more variables: `Original Price` <dbl>, Mobile <chr>, Discount <dbl>,</dbl></chr></dbl>							
#	discount percentage dbl>							

It is also a tabular data set with information on mobile phones. This data set differs from the first because it has less columns that are useful for predicting price but it has more rows.

Cleaning P2

To start we removed unneeded columns. These were models, Camera, selling price, mobile, discount, and discount percentage. We then make all the column names lowercase. We then made all the data in the colors and brands columns lowercase. We then removed the underscore from the original_price column name. We then converted the price to dollars. We them made the memory, brands, and storage columns factors.

A tibble: 6 x 5 brands memory storage rating original_price <fct> <fct> <fct> <dbl> <dbl> 1 samsung 8 GB 128 GB 252. 4.3 2 nokia 2 GB 16 GB 3.8 122. 3 infinix 4 GB 64 GB 4.2 156. 4 apple 4GB 599. 64 GB 4.6 5 gionee 4 26.4 8 MB 16 MB 6 apple 3 GB 64 GB 4.6 575.

General Analysis

After cleaning:

```
# A tibble: 6 x 5
 brands memory storage rating original_price
 <fct>
                            <dbl>
          <fct>
                  <fct>
                                            <dbl>
1 samsung 8 GB
                  128 GB
                              4.3
                                            252.
2 nokia
          2 GB
                  16 GB
                              3.8
                                            122.
3 infinix 4 GB
                  64 GB
                              4.2
                                            156.
4 apple
          4GB
                  64 GB
                                            599.
                              4.6
5 gionee
          8 MB
                  16 MB
                                             26.4
6 apple
          3 GB
                  64 GB
                              4.6
                                            575.
```

brands	memory	storage	rating	original_price
samsung:685	4 GB :711	64 GB :757	Min. :2.300	Min. : 12.0
apple :319	3 GB :479	128 GB :720	1st Qu.:4.100	1st Qu.: 124.7
realme :281	6 GB :444	32 GB :545	Median :4.300	Median : 195.6
oppo :251	2 GB :376	16 GB :312	Mean :4.241	Mean : 319.9

xiaomi :191 8 GB :326 256 GB :216 3rd Qu.:4.400 3rd Qu.: 360.0 1 GB :193 8 GB :133 :5.000 :2280.0 nokia :184 Max. Max. (Other):214 (Other):986 (Other):368

Architecture

To predict phone prices, we employed several models: linear regression, Lasso and Ridge regression, stepwise regression, and neural networks. Each model was fitted to both datasets, and their accuracy was evaluated using the root mean squared error (RMSE).

Baseline Model

Our baseline model was a simple linear regression, which will be discussed in more detail in the next section.

Intermediate Models

1. Stepwise Regression Models: We used both forward and backward stepwise regression. Forward stepwise regression began with a null model, adding predictors one by one, while

backward stepwise regression started with a full model, removing predictors sequentially. These approaches helped in identifying significant variables incrementally.

2. Lasso and Ridge Regression Models: These models introduced regularization to address multicollinearity and overfitting. Using the glmnet library, we implemented Lasso (L1 regularization) to select important features by shrinking coefficients to zero and Ridge (L2 regularization) to penalize large coefficients, thereby improving model generalization.

Final Model

Our final model was a neural network consisting of three hidden layers. The architecture included:

- 16 nodes in the first layer,
- 32 nodes in the second layer,
- 16 nodes in the third layer.

We used the Adam optimizer (optim_adam) with a learning rate of 0.02. This model was trained on each dataset to capture complex, non-linear relationships between phone features and their prices.

By comparing the RMSE of these models, we assessed their performance and determined the best approach for predicting phone prices. Baseline Model

Model Creation

Introductory Model

To start with our introductory model, we have decided on a multi-linear regression model. This will set a foundation for the more complex models all predicting price. Fit Two Linear Regression Models:

Summary of Models:

```
Call:
lm(formula = price ~ ., data = df)

Residuals:
    Min    1Q    Median    3Q    Max
-228.09   -55.93   -14.42    40.95    665.74
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                  -5.080e+02 3.026e+02 -1.679 0.093801 .
(Intercept)
                   1.754e+01 1.923e+00
rating
                                         9.121 < 2e-16 ***
`processor GHz)`
                                         8.855 < 2e-16 ***
                   1.423e+02 1.607e+01
ram16 GB
                  4.169e+01 4.240e+01
                                         0.983 0.326042
ram18 GB
                  3.340e+02 7.465e+01 4.474 9.58e-06 ***
ram3 GB
                  7.775e+01 7.126e+01 1.091 0.275799
ram4 GB
                 -5.905e+01 2.889e+01 -2.044 0.041487 *
ram6 GB
                 -1.195e+02 2.246e+01 -5.320 1.59e-07 ***
ram8 GB
                 -9.567e+01 1.894e+01 -5.052 6.22e-07 ***
battery_mAh
                  -4.114e-04 5.388e-03 -0.076 0.939174
f_camera_MP
                  -2.566e+00 5.697e-01 -4.505 8.34e-06 ***
osAndroid v10.0
                   2.238e+01
                             5.705e+01
                                         0.392 0.695058
osAndroid v11
                  -8.211e+01 2.645e+01 -3.104 0.002020 **
osAndroid v12
                  -6.965e+01 2.570e+01 -2.710 0.006966 **
osAndroid v13
                             2.830e+01 -2.070 0.039017 *
                  -5.858e+01
osEMUI v12
                  -8.082e+01 1.050e+02 -0.770 0.441879
osHarmony v2.0
                  -1.405e+02 1.058e+02 -1.328 0.184904
osHarmonyOS
                   8.734e+01 1.074e+02
                                         0.813 0.416422
osHarmonyOS v2.0
                  -1.582e+01 1.046e+02 -0.151 0.879849
osHongmeng OS v3.0 2.303e+03 1.064e+02 21.642 < 2e-16 ***
osHongmeng OS v4.0 6.622e+02 1.049e+02
                                         6.311 6.29e-10 ***
osiOS v15
                   1.266e+03 6.576e+01 19.258 < 2e-16 ***
                   9.982e+02 6.767e+01 14.750 < 2e-16 ***
osiOS v15.0
                  -1.389e+02 3.901e+01 -3.562 0.000405 ***
displaySize
displayHz
                   1.487e+00 3.293e-01
                                         4.517 7.89e-06 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 101.1 on 481 degrees of freedom Multiple R-squared: 0.8629, Adjusted R-squared: 0.856 F-statistic: 126.1 on 24 and 481 DF, p-value: < 2.2e-16

Call:

lm(formula = original_price ~ ., data = df2)

Residuals:

Min 1Q Median 3Q Max -639.24 -77.98 -8.29 46.11 1462.30

Coefficients: (1 not defined because of singularities)

·	Estimato	Std. Error	+ 172]110	$D_{r}(> +)$	
(Intercept)	1488.684			< 2e-16 **	k*
brandsasus	-491.833			< 2e-16 **	
brandsgionee	-517.992			< 2e-16 **	
brandsgoogle pixel	-2.467			0.944121	-
brandshtc	-281.096			< 2e-16 **	* *
brandsinfinix	-582.695			< 2e-16 **	
brandsiqoo	-604.930			7.12e-15 **	
brandslenovo	-504.803			< 2e-16 **	
brandslg	-398.468			< 2e-16 **	
brandsmotorola	-468.750			< 2e-16 **	
brandsnokia	-482.104		-20.241		
brandsoppo	-552.058		-27.498		
brandspoco	-606.829			< 2e-16 **	
brandsrealme	-612.254		-31.341		
brandssamsung	-426.849			< 2e-16 **	
brandsvivo	-566.371	23.302	-24.305	< 2e-16 **	*
brandsxiaomi	-563.306	20.867	-26.995	< 2e-16 **	*
memory1.5 GB	-7.670	34.218	-0.224	0.822665	
memory10 MB	-15.231	141.636	-0.108	0.914373	
memory100 MB	-61.859	288.988	-0.214	0.830520	
memory12 GB	469.002	37.802	12.407	< 2e-16 **	*
memory128 MB	-18.251	196.796	-0.093	0.926115	
memory153 MB	-1309.630	183.502	-7.137	1.21e-12 **	*
memory16 GB	731.421	172.211	4.247	2.23e-05 **	*
memory16 MB	-9.389	113.022	-0.083	0.933801	
memory2 GB	-4.512	20.620	-0.219	0.826795	
memory2 MB	-1.560	157.219	-0.010	0.992083	
memory3 GB	64.776	22.653	2.859	0.004275 **	<
memory30 MB	49.614	213.551	0.232	0.816301	
memory32 MB	3.628	116.866	0.031	0.975234	
memory4 GB	143.757	25.813	5.569	2.80e-08 **	*
memory4 MB	5.756	120.911	0.048	0.962037	
memory46 MB	-11.058	167.606	-0.066	0.947403	
memory4GB	259.285	27.958	9.274	< 2e-16 **	*
memory512 MB	-11.839	46.844	-0.253	0.800492	
memory6 GB	203.957	27.609	7.387	1.96e-13 **	*
memory64 MB	8.718	165.345	0.053	0.957955	
memory768 MB	-22.954	80.677	-0.285	0.776034	
memory8 GB	271.173	29.204	9.285	< 2e-16 **	*
memory8 MB	13.266	126.205	0.105	0.916295	

```
storage10 MB
                                           214.648
                                                   -5.646 1.81e-08 ***
                             -1211.900
storage100 MB
                             -1301.445
                                           246.001
                                                    -5.290 1.31e-07 ***
storage128 GB
                                           70.270 -16.125 < 2e-16 ***
                             -1133.096
storage128 MB
                                                    -6.635 3.88e-11 ***
                             -1238.420
                                           186.657
storage129 GB
                             -1180.067
                                           120.111
                                                    -9.825 < 2e-16 ***
storage130 GB
                                                    -8.458
                             -1168.477
                                           138.156
                                                           < 2e-16 ***
storage140 MB
                             -1172.078
                                           189.277
                                                    -6.192 6.78e-10 ***
storage153 MB
                                                NA
                                                        NA
                                                                 NA
                                           73.034 -15.889
                                                           < 2e-16 ***
storage16 GB
                             -1160.439
storage16 MB
                             -1227.396
                                           146.969
                                                   -8.351
                                                            < 2e-16 ***
storage2 MB
                             -1299.064
                                           125.149 -10.380
                                                            < 2e-16 ***
storage256 GB
                                           70.121 -12.722
                                                            < 2e-16 ***
                              -892.080
storage256 MB
                             -1144.196
                                                   -7.371 2.22e-13 ***
                                           155.237
storage32 GB
                             -1158.027
                                           71.743 -16.141 < 2e-16 ***
storage4 GB
                             -1196.870
                                           85.441 -14.008
                                                            < 2e-16 ***
storage4 MB
                             -1260.412
                                                    -8.742 < 2e-16 ***
                                           144.187
storage512 GB
                              -392.645
                                           73.653
                                                    -5.331 1.05e-07 ***
storage512 MB
                             -1224.462
                                           147.505
                                                    -8.301 < 2e-16 ***
storage64 GB
                             -1176.786
                                           70.468 -16.700 < 2e-16 ***
storage64 MB
                             -1225.131
                                           170.344
                                                   -7.192 8.13e-13 ***
                                           76.455 -15.522 < 2e-16 ***
storage8 GB
                             -1186.759
storage8 MB
                             -1265.865
                                           183.724
                                                    -6.890 6.85e-12 ***
storageExpandable Upto 16 GB -1285.055
                                           149.474
                                                    -8.597
                                                           < 2e-16 ***
storageExpandable Upto 32 GB -1208.655
                                                   -8.861
                                                           < 2e-16 ***
                                           136.399
rating
                                64.971
                                            17.707
                                                     3.669 0.000248 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 167.4 on 2833 degrees of freedom Multiple R-squared: 0.7616, Adjusted R-squared: 0.7563 F-statistic: 143.6 on 63 and 2833 DF, p-value: < 2.2e-16

Initial Thoughts:

We would expect to see price increase as the newer specs for phones are released and are put onto the market. Thus, we would expect things like memory, storage, ram, and other specs to be significant predictors for both of our data sets. As we can see this is the true.

One noteworthy observation we noticed in both models in the high level of Adjusted R-Squared (.85 and .75). This can indicate over fitting, or it can indicator an accurate model.

Here are some example interpretations for the first model:

Intercept: When all other predictor variables are zero, the estimated price of the product is approximately -\$5.080e+02.

Rating: For every one-unit increase in the rating, the price is estimated to increase by approximately \$1.754e+01, holding all other variables constant.

Processor(GHz): For every one-unit increase in the processor GHz, the price is estimated to increase by approximately \$1.423e+02, holding all other variables constant.

Battery(mAH): For every one-unit increase in battery mAh, the price is estimated to decrease by approximately \$4.114e-04, holding all other variables constant.

Camera(MP): For every one-unit increase in front camera megapixels, the price is estimated to decrease by approximately \$2.566, holding all other variables constant.

Operating System: Devices with Android v10.0: On average, devices with Android v10.0 have prices that are \$22.38 higher than the reference category, holding all other variables constant. Display size: For every one-unit increase in display size, the price is estimated to decrease by approximately \$1.389e+02, holding all other variables constant.

Display Hz: For every one-unit increase in display size, the price is estimated to decrease by approximately \$1.487, holding all other variables constant.

For the second model,

Operating System: Phones of the brands ASUS, Gionee, Google Pixel, HTC, Infinix, IQOO, Lenovo, LG, Motorola, Nokia, OPPO, POCO, Realme, Samsung, Vivo, and Xiaomi have an estimated price change of -491.83, -517.99, -2.47, -281.1, -582.7, -604.93, -504.80, -398.47, -468.75, -482.1, -552.06, -606.83, -612.25, -426.85, -566.37, and -563.31 respectively in dollars compared to the reference category holding all other variables constant.

Memory: Phones with RAM memory capacity of 1.5GB, 10MB, 100 MB, 12GB, 128MB, 153MB, 16GB, 16 MB, 2GB, 2MB, 3GB, 30MB, 32MB, 4GB, 46MB, 4G, 512MB, 6GB, 64MB, 768MB, 8GB, and 8MB have an estimated price change of -7.67,-15.23,-61.86, 469.00, -18.25, -1309.63, 731.42, -9.39, -4.51, -1.56, 64.78, 49.61, 3.63, 143.76, 5.76, -11.06, 259.28, -11.84, 203.96, 8.72, -22.95, 271.17, and 13.27 respectively in dollars compared to the reference category holding all other variables constant.

Rating: For every one-unit increase in rating, the price is estimated to increase by approximately \$119.62, holding all other variables constant.

======

- [1] 98.61083
- [1] 165.5091
- [1] 345.4993

[1] 319.8801

As you see, we have a RMSE of 98.6 and 165.5 for both data sets respectively. On average, this means our model is off by about \$98.6 and \$165.5. Since the average price of the phones is around \$345.50 and \$319.88.

The RMSE variation is likely caused by the heavy right-skewness in the price variable of more expensive phones. More expensive prices leads to an exponential decay of more expensive components in a thinner market; thus, leading to an exponentially distributed price vector column.

Boxplot of Price Variable(Df1)

Boxplot of Continuous Variable(DF2)

Intermediate Model

Lasso and Ridge:

print(lasso1rmse)

[1] 175.9317

print(ridge1rmse)

[1] 176.8483

print(lasso2rmse)

[1] 286.821

print(ridge2rmse)

[1] 285.7789

Interpretation:

For our lasso and ridge models we can see a clear disparity in quantitative metrics compared to our baseline model. As of now, we hypothesize this is being cause an high degree of factor

in the data set. This trend will likely continue to step wise regression as it also a feature selection model.

Stepwise:

```
Start: AIC=5653.61
price ~ 1
```

		Df	Sum of Sq	RSS	AIC
+	os	12	20405396	15476192	5252.1
+	`processor GHz)`	1	14201208	21680381	5400.7
+	rating	1	10260354	25621234	5485.2
+	ram	6	8080244	27801345	5536.5
+	displayHz	1	6707698	29173891	5550.9
+	battery_mAh	1	677355	35204234	5646.0
+	f_camera_MP	1	570140	35311449	5647.5
<r< td=""><td>none></td><td></td><td></td><td>35881589</td><td>5653.6</td></r<>	none>			35881589	5653.6
+	displaySize	1	5945	35875644	5655.5

Step: AIC=5252.11
price ~ os

	Df	Sum of Sq	RSS	AIC
+ rating	1	7422062	8054130	4923.6
+ `processor GHz)`	1	7269263	8206930	4933.1
+ ram	6	6360285	9115908	4996.3
+ displayHz	1	4136106	11340086	5096.8
+ f_camera_MP	1	746681	14729511	5229.1
+ displaySize	1	63509	15412684	5252.0
<none></none>			15476192	5252.1
+ battery_mAh	1	59302	15416890	5252.2

Step: AIC=4923.63
price ~ os + rating

		Df	Sum of Sq	RSS	AIC
+	`processor GHz)`	1	1646077	6408053	4809.9
+	ram	6	1586293	6467838	4824.6
+	displayHz	1	561247	7492883	4889.1
+	f_camera_MP	1	338351	7715779	4903.9
<none></none>				8054130	4923.6
+	battery_mAh	1	5888	8048242	4925.3
+	displaySize	1	4518	8049613	4925.3

```
price ~ os + rating + `processor GHz)`
              Df Sum of Sq
                              RSS
                                     AIC
                   979346 5428708 4738.0
+ ram
+ displayHz
              1
                   240046 6168008 4792.6
+ f_camera_MP 1
                   225907 6182146 4793.8
                          6408053 4809.9
<none>
                   19254 6388799 4810.4
+ displaySize 1
                 16034 6392019 4810.7
+ battery_mAh 1
Step: AIC=4738.02
price ~ os + rating + `processor GHz)` + ram
              Df Sum of Sq
                              RSS
                                     AIC
+ f_camera_MP
             1
                   249163 5179544 4716.2
+ displayHz
              1
                   155134 5273574 4725.4
+ displaySize 1
                   51875 5376833 4735.2
<none>
                          5428708 4738.0
+ battery_mAh 1
                      319 5428389 4740.0
Step: AIC=4716.25
price ~ os + rating + `processor GHz)` + ram + f_camera_MP
              Df Sum of Sq
                              RSS
                                     AIC
                   125900 5053644 4705.8
+ displayHz
              1
+ displaySize 1
                 50356 5129189 4713.3
                          5179544 4716.2
<none>
+ battery_mAh 1
                     872 5178672 4718.2
Step: AIC=4705.8
price ~ os + rating + `processor GHz)` + ram + f_camera_MP +
    displayHz
              Df Sum of Sq
                              RSS
                                     AIC
                   133193 4920452 4694.3
+ displaySize 1
<none>
                          5053644 4705.8
+ battery_mAh 1
                   3476 5050168 4707.4
Step: AIC=4694.28
price ~ os + rating + `processor GHz)` + ram + f_camera_MP +
    displayHz + displaySize
```

Step: AIC=4809.94

Df Sum of Sq RSS AIC <none> 4920452 4694.3
+ battery_mAh 1 59.627 4920392 4696.3

Start: AIC=33757.1
original_price ~ 1

Df Sum of Sq RSS AIC + storage 24 178005343 154834932 31588 + brands 16 152690410 180149866 32011 + memory 23 136380092 196460183 32276 + rating 1 67635920 265204355 33101 <none> 332840275 33757

Step: AIC=31588.01
original_price ~ storage

Df Sum of Sq RSS AIC + brands 16 66089397 88745535 30008 + memory 22 27970150 126864782 31055 + rating 1 7926316 146908616 31438 <none> 154834932 31588

Step: AIC=30007.58
original_price ~ storage + brands

Df Sum of Sq RSS AIC + memory 22 9010140 79735395 29741 + rating 1 602183 88143352 29990 <none> 88745535 30008

Step: AIC=29741.43
original_price ~ storage + brands + memory

Df Sum of Sq RSS AIC + rating 1 377153 79358242 29730 <none> 79735395 29741

Step: AIC=29729.7
original_price ~ storage + brands + memory + rating

Start: AIC=4696.28

```
price ~ rating + `processor GHz)` + ram + battery_mAh + f_camera_MP +
    os + displaySize + displayHz
                  Df Sum of Sq
                                   RSS
                                          AIC
- battery mAh
                   1
                           60 4920452 4694.3
                               4920392 4696.3
<none>
- displaySize
                   1 129776 5050168 4707.4
                   1 207604 5127996 4715.2
- f_camera_MP
- displayHz
                  1 208756 5129148 4715.3
- `processor GHz)` 1 802116 5722508 4770.7
                   6 946025 5866417 4773.3
- ram
                        850993 5771385 4775.0
rating
                  1
                  12 13374882 18295274 5336.8
- os
Step: AIC=4694.28
price ~ rating + `processor GHz)` + ram + f_camera_MP + os +
    displaySize + displayHz
                                   RSS
                                          AIC
                  Df Sum of Sq
<none>
                               4920452 4694.3
- displaySize
                  1
                        133193 5053644 4705.8
                  1 207549 5128001 4713.2
- f camera MP
- displayHz
                  1 208737 5129189 4713.3
- `processor GHz)` 1
                       810063 5730514 4769.4
- ram
                   6
                       960551 5881003 4772.5
                        852479 5772930 4773.1
rating
                  1
                  12 13530876 18451328 5339.1
- os
Start: AIC=29729.7
original_price ~ brands + memory + storage + rating
         Df Sum of Sq
                           RSS
                                 AIC
<none>
                       79358242 29730
- rating
         1
               377153 79735395 29741
- memory 22
              8785110 88143352 29990
- storage 23 28630931 107989173 30576
- brands 16 44457006 123815248 30986
print(forward1rmse)
```

[1] 98.61142

print(backward1rmse)

[1] 98.61142

print(forward2rmse)

[1] 165.5091

print(backward2rmse)

[1] 165.5091

Interpretation:

Our previous hypothesis about feature selection models was not correct. Since step wise regression is a form of linear regression, it seems the algorithm was able to select the proper predictor variables.

As for why step wise regression was able to overcome the high dimensionality withinin the factor columns, this was likely caused by the co linearity in the data sets. Step wise regression is a much more aggressive form of feature selection in the context of our data set(high dimensions with a lot of co linearity), thus leading to step wise performing much better.

Final Model

Neural Network:

Interpreting Normalized RMSE:

[1] 32.99268

[1] 60.96164

Normalizing our price column leads to a different interpretation of our neural network's RMSE. On average, our first data set's model is off by about 10%. This means price can be off between +- \$34.66. The best performing model by far. For our second data set, the normalized rmse is .221. This means on average, the second data set's model is off by 22.1%. Thus, price can be off by between +- \$68.01. Another good model in relation to the others!

Quantitative results

As stated before, we judged the models by assessing the root mean squared error for each. We chose this method because we are working with regression models. We did not use any form of cross validation because we were running into errors. Because both data sets include factors columns with a lot of levels, the testing data was giving the models levels that were not included in the training data.

	Model	${\tt Dataset}$	RMSE
1	Linear	1	98.61082651
2	Lasso	1	175.93171027
3	Ridge	1	176.84829449
4	Forwards	1	98.61142401
5	Backwards	1	98.61142401
6	<pre>NNetwork(normalized)</pre>	1	0.09549276
7	Linear	2	165.50905987
8	Lasso	2	286.82097098
9	Ridge	2	285.77890022
10	Forwards	2	165.50905987
11	Backwards	2	165.50905987
12	NNetwork(normalized)	2	0.19057651

Qualitative results

These are the normalized price predictions for the phone 13, motog stylus, and the google pixel.

[1] 0.09226518 0.09226518 0.09226518

These are the normalized price predictions for the iphone 15, samsung s24 ultra, and vivo v18.

[1] 0.4618720 0.7441466 0.1582263

Discussion

The development of our predictive model faced numerous unexpected challenges and obstacles imposed by the data itself. However, as a team, we successfully navigated these issues to create a robust final model for predicting phone prices.

Model Performance

Our baseline model, a simple linear regression, performed the best among the introductory-intermediate models. Feature selection approaches such as Lasso and Ridge regression did not effectively lower the average error. This inefficacy was likely due to the high dimensionality of our data set, which posed significant challenges during training. For instance, cross-validation was impractical because the test data contained many column factors absent in the training data.

Final Model Performance

We were pleasantly surprised by the performance of our final model. Initially, a basic neural network did not effectively predict phone prices. However, after normalizing the data to improve gradient descent computations, our final models achieved an accuracy within 10 to 15 percent. This marked a significant improvement over the other models. The normalization likely enhanced gradient descent computations, which were previously saturated and inaccurate from high dimensionality, thereby reducing the error margin during training.

Insights and Observations

One of the most interesting findings was the lack of improvement with feature selection models. Contrary to our expectations, feature selection was ineffective in this high-dimensional dataset. We initially believed that the numerous factors would make feature selection the most effective approach; however, it proved to be the opposite. The high-dimensionality led to feature selection being completely ineffective. The only effective feature selection approach was stepwise due to its agression nature. Less agression feature selection models such as Lasso and Ridge regression with a less sensitive lambda parameter led to a poor performing model. This is an important insight to keep in mind.

Conclusion

Despite the initial hurdles, our final model demonstrated that normalizing data significantly enhances predictive accuracy, particularly in high-dimensional datasets. While traditional feature selection methods were not effective, our neural network model, once properly adjusted, provided valuable insights and robust predictions. This journey underscored the importance of data preprocessing and the adaptability required in machine learning projects.

So what are the most effective predictors then in this context? Unfortunately, since neural networks don't directly apply coefficients to a predictory variable (weights and biases aren't

linear), we don't get direct answers; however, in the context of the introductory and intermediate models, we can see that RAM, memory, screen display, and similar specs were the primary predictors likely due to production cost.

Ethical Considerations

There are clear limitations to the model. For one, the first data set used in the creation of these models is smaller with about 500 rows, which can limit how effective models can be in terms of efficiency and accuracy. For the second data set, there are only four predictor variables for the price after cleaning the data set, which can also limit the extent of how efficient a model can be because it is not considering all aspects that may contribute to the price of a phone. As stated earlier, cross validation was not possible to perform on this group of data, so we were not able to fully test the accuracy of the models as well as detect any possible over fitting.

Appendix

Loading in data:

```
library(glmnet)
library(readxl)
library(tidyverse)
library(corrplot)
library(torch)
library(luz)
library(dplyr)
library(prom)
library(purrr)
library(caret)
library(tibble)
df <- read_excel('smartphones_-_smartphones.xlsx')
df2 <- read_csv('Sales.csv')</pre>
```

```
Rows: 3114 Columns: 12
-- Column specification -------
Delimiter: ","
chr (7): Brands, Models, Colors, Memory, Storage, Camera, Mobile
```

```
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
Cleaning First Data set:
df <- df %>% drop_na() %>% select(!model) %>% select(!sim)
df <- df %>%
  mutate(battery = gsub(pattern = "mAh Battery|with|(?:[0-9]){1,3}W|Fast Charging", replacem
Warning: There was 1 warning in `mutate()`.
i In argument: `battery = .Primitive("as.double")(battery)`.
Caused by warning:
! NAs introduced by coercion
df$processor <- str_extract(df$processor, "\\d+\\.?\\d*\\s*GHz|\\d+\\s*GHz")</pre>
df$processor <- gsub("GHz", "", df$processor)</pre>
df <- df %>% drop_na() %>% mutate_at('processor', as.numeric) %>%rename('processor GHz)'='pro
head(df)
# A tibble: 6 x 9
  price
        rating `processor GHz)` ram
                                           battery_mAh display camera card os
           <dbl>
                            <dbl> <chr>
                                                 <dbl> <chr>
  <chr>
                                                               <chr> <chr> <chr>
1 54,999
             89
                              3.2 12 GB ~
                                                 5000 6.7 in~ 50 MP~ Memo~ Andr~
2 19,989
                             2.2 6 GB R~
                                                 5000 6.59 i~ 64 MP~ Memo~ Andr~
             81
3 16,499
            75
                             2.4 4 GB R~
                                                 5000 6.6 in~ 50 MP~ Memo~ Andr~
4 14,999
             81
                             2.2 6 GB R~
                                                 5000 6.55 i~ 50 MP~ Memo~ Andr~
             82
                             2.6 6 GB R~
                                                 5000 6.7 in~ 108 M~ Memo~ Andr~
5 24,999
                             2.2 6 GB R~
                                                 5000 6.6 in~ 50 MP~ Memo~ Andr~
6 16,999
             80
for (i in 1:nrow(df)){
  if (df[i,9] == 'No FM Radio'){
    df[i,9] <- df[i,8]</pre>
  else if (df[i,9] == 'Bluetooth'){
    df[i,9] <- df[i,8]</pre>
  }
}
```

dbl (5): Rating, Selling Price, Original Price, Discount, discount percentage

i Use `spec()` to retrieve the full column specification for this data.

```
df <- df %>% select(!card) %>% mutate_at('os', as.factor)

df$camera <- str_extract(df$camera, '[0-9]{1,2}MP Front Camera')

df$camera <- str_extract(df$camera, '[0-9]{1,2}')

df <- df %>% mutate_at('camera', as.numeric) %>% rename('f_camera_MP'='camera') %>% drop_na(

df$ram <- str_extract(df$ram, '[0-9]{1,2}GB')

df <- df %>% mutate_at('ram', as.factor)

df <- df %>% mutate(displaySize = as.numeric(str_extract(df$display, "\b\\d+\\\b")))

df <- df %>% mutate(displayHz = as.numeric(str_extract(df$display, "\b\\d+(?=\\s*Hz)")))

df <- df %>% select(!display)

df <- df %>%
 mutate(price = gsub(",", "", price))

df$price <- sub("\", "", df$price)

df$price <- as.numeric(df$price)

df <- df %>%
 mutate(price = round(price / 83.41, digits = 2)) %>% rename('price'='price') %>% drop_na()
```

Cleaning second Data set:

```
df2 <- df2 %>% drop_na()

df2 <- df2[,-c(2,3,6,8,10,11,12)]

names(df2) <- tolower(names(df2))

df2$brands <- tolower(df2$brands)

df2<- rename(df2, original_price = "original price")

df2 <- df2 %>% mutate(original_price = df2$original_price * 0.012)

df2$memory <- as.factor(df2$memory)

df2$storage <- as.factor(df2$storage)

df2$brands <- as.factor(df2$brands)</pre>
```

First two linear regression models

```
lm1 <- lm(price ~ ., data = df)
lm2 <- lm(original_price ~ ., data = df2)

summary1 <- summary(lm1)
summary2 <- summary(lm2)

print(summary1)</pre>
```

Call:

lm(formula = price ~ ., data = df)

Residuals:

Min 1Q Median 3Q Max -228.09 -55.93 -14.42 40.95 665.74

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -5.080e+02 3.026e+02 -1.679 0.093801 . rating 1.754e+01 1.923e+00 9.121 < 2e-16 *** `processor GHz)` 1.423e+02 1.607e+01 8.855 < 2e-16 *** ram16 GB 4.169e+01 4.240e+01 0.983 0.326042 ram18 GB 3.340e+02 7.465e+01 4.474 9.58e-06 *** ram3 GB 7.775e+01 7.126e+01 1.091 0.275799 ram4 GB -5.905e+01 2.889e+01 -2.044 0.041487 * ram6 GB -1.195e+02 2.246e+01 -5.320 1.59e-07 *** ram8 GB -9.567e+01 1.894e+01 -5.052 6.22e-07 *** battery_mAh -4.114e-04 5.388e-03 -0.076 0.939174 f_camera_MP -2.566e+00 5.697e-01 -4.505 8.34e-06 *** osAndroid v10.0 2.238e+01 5.705e+01 0.392 0.695058 osAndroid v11 -8.211e+01 2.645e+01 -3.104 0.002020 ** -6.965e+01 2.570e+01 -2.710 0.006966 ** osAndroid v12 osAndroid v13 2.830e+01 -2.070 0.039017 * -5.858e+01 osEMUI v12 -8.082e+01 1.050e+02 -0.770 0.441879 osHarmony v2.0 -1.405e+02 1.058e+02 -1.328 0.184904 osHarmonyOS 8.734e+01 1.074e+02 0.813 0.416422 osHarmonyOS v2.0 -1.582e+01 1.046e+02 -0.151 0.879849 osHongmeng OS v3.0 2.303e+03 1.064e+02 21.642 < 2e-16 *** osHongmeng OS v4.0 6.622e+02 1.049e+02 6.311 6.29e-10 *** osiOS v15 1.266e+03 6.576e+01 19.258 < 2e-16 *** osiOS v15.0 9.982e+02 6.767e+01 14.750 < 2e-16 *** displaySize -1.389e+02 3.901e+01 -3.562 0.000405 ***

```
displayHz 1.487e+00 3.293e-01 4.517 7.89e-06 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 101.1 on 481 degrees of freedom Multiple R-squared: 0.8629, Adjusted R-squared: 0.856 F-statistic: 126.1 on 24 and 481 DF, p-value: < 2.2e-16

print(summary2)

Call:

lm(formula = original_price ~ ., data = df2)

Residuals:

Min 1Q Median 3Q Max -639.24 -77.98 -8.29 46.11 1462.30

Coefficients: (1 not defined because of singularities)

Estimate	Std. Error	t value	Pr(> t)
1488.684	109.378	13.610	< 2e-16 ***
-491.833	24.253	-20.279	< 2e-16 ***
-517.992	25.129	-20.613	< 2e-16 ***
-2.467	35.188	-0.070	0.944121
-281.096	29.623	-9.489	< 2e-16 ***
-582.695	21.739	-26.804	< 2e-16 ***
-604.930	77.309	-7.825	7.12e-15 ***
-504.803	24.749	-20.397	< 2e-16 ***
-398.468	25.380	-15.700	< 2e-16 ***
-468.750	24.288	-19.300	< 2e-16 ***
-482.104	23.818	-20.241	< 2e-16 ***
-552.058	20.076	-27.498	< 2e-16 ***
-606.829	26.194	-23.167	< 2e-16 ***
-612.254	19.535	-31.341	< 2e-16 ***
-426.849	18.813	-22.689	< 2e-16 ***
-566.371	23.302	-24.305	< 2e-16 ***
-563.306	20.867	-26.995	< 2e-16 ***
-7.670	34.218	-0.224	0.822665
-15.231	141.636	-0.108	0.914373
-61.859	288.988	-0.214	0.830520
469.002	37.802	12.407	< 2e-16 ***
-18.251	196.796	-0.093	0.926115
	1488.684 -491.833 -517.992 -2.467 -281.096 -582.695 -604.930 -504.803 -398.468 -468.750 -482.104 -552.058 -606.829 -612.254 -426.849 -566.371 -563.306 -7.670 -15.231 -61.859 469.002	1488.684 109.378 -491.833 24.253 -517.992 25.129 -2.467 35.188 -281.096 29.623 -582.695 21.739 -604.930 77.309 -504.803 24.749 -398.468 25.380 -468.750 24.288 -482.104 23.818 -552.058 20.076 -606.829 26.194 -612.254 19.535 -426.849 18.813 -563.306 20.867 -7.670 34.218 -15.231 141.636 -61.859 288.988 469.002 37.802	-491.833 24.253 -20.279 -517.992 25.129 -20.613 -2.467 35.188 -0.070 -281.096 29.623 -9.489 -582.695 21.739 -26.804 -604.930 77.309 -7.825 -504.803 24.749 -20.397 -398.468 25.380 -15.700 -468.750 24.288 -19.300 -482.104 23.818 -20.241 -552.058 20.076 -27.498 -606.829 26.194 -23.167 -612.254 19.535 -31.341 -426.849 18.813 -22.689 -563.306 20.867 -26.995 -7.670 34.218 -0.224 -15.231 141.636 -0.108 -61.859 288.988 -0.214 469.002 37.802 12.407

memory153 MB				-1309.630	183.5	502	-7.137	1.21e-12	***
memory16 GB				731.421	172.2			2.23e-05	
memory16 MB				-9.389	113.0	022	-0.083	0.933801	
memory2 GB				-4.512	20.6	320	-0.219	0.826795	
memory2 MB				-1.560	157.2	219	-0.010	0.992083	
memory3 GB				64.776	22.6	353	2.859	0.004275	**
memory30 MB				49.614	213.5	551	0.232	0.816301	
memory32 MB				3.628	116.8	366	0.031	0.975234	
memory4 GB				143.757	25.8	313	5.569	2.80e-08	***
memory4 MB				5.756	120.9	911	0.048	0.962037	
memory46 MB				-11.058	167.6	306	-0.066	0.947403	
memory4GB				259.285	27.9	958	9.274	< 2e-16	***
memory512 MB				-11.839	46.8	344	-0.253	0.800492	
memory6 GB				203.957	27.6	609	7.387	1.96e-13	***
memory64 MB				8.718	165.3	345	0.053	0.957955	
memory768 MB				-22.954	80.6	677	-0.285	0.776034	
memory8 GB				271.173	29.2	204	9.285	< 2e-16	***
memory8 MB				13.266	126.2	205	0.105	0.916295	
storage10 MB				-1211.900	214.6	648	-5.646	1.81e-08	***
storage100 MB				-1301.445	246.0	001	-5.290	1.31e-07	***
storage128 GB				-1133.096	70.2	270	-16.125	< 2e-16	***
storage128 MB				-1238.420	186.6	657	-6.635	3.88e-11	***
storage129 GB				-1180.067	120.1	111	-9.825	< 2e-16	***
storage130 GB				-1168.477	138.1	156	-8.458	< 2e-16	***
storage140 MB				-1172.078	189.2	277	-6.192	6.78e-10	***
storage153 MB				NA		NA	NA	NA	
storage16 GB				-1160.439	73.0	034	-15.889	< 2e-16	***
storage16 MB				-1227.396	146.9	969	-8.351	< 2e-16	***
storage2 MB				-1299.064	125.1	149	-10.380	< 2e-16	***
storage256 GB				-892.080	70.1	121	-12.722	< 2e-16	***
storage256 MB				-1144.196	155.2	237	-7.371	2.22e-13	***
storage32 GB				-1158.027	71.7	743	-16.141	< 2e-16	***
storage4 GB				-1196.870	85.4	441	-14.008	< 2e-16	***
storage4 MB				-1260.412	144.1	187	-8.742	< 2e-16	***
storage512 GB				-392.645	73.6	653	-5.331	1.05e-07	***
storage512 MB				-1224.462	147.5	505	-8.301	< 2e-16	***
storage64 GB				-1176.786			-16.700	< 2e-16	***
storage64 MB				-1225.131	170.3	344	-7.192	8.13e-13	***
storage8 GB				-1186.759				< 2e-16	
storage8 MB				-1265.865	183.7			6.85e-12	
storageExpandable	_				149.4	174		< 2e-16	
storageExpandable	Upto	32	GB		136.3			< 2e-16	
rating				64.971	17.7	707	3.669	0.000248	***

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 167.4 on 2833 degrees of freedom
Multiple R-squared: 0.7616, Adjusted R-squared: 0.7563
F-statistic: 143.6 on 63 and 2833 DF, p-value: < 2.2e-16
linear1rmse <- rmse(df$price, lm1$fitted.values)</pre>
print(linear1rmse)
[1] 98.61083
linear2rmse <- rmse(df2$original_price, lm2$fitted.values)</pre>
print(linear2rmse)
[1] 165.5091
print(mean(df$price))
[1] 345.4993
print(mean(df2$original_price))
[1] 319.8801
{\bf Histograms:}
```

histogram(df\$price, main = "Boxplot of Price Variable(Df1)")

Boxplot of Price Variable(Df1)

histogram(df2\$original_price, main = "Boxplot of Continuous Variable(DF2)")

Boxplot of Continuous Variable(DF2)

Lasso and Ridge:

```
x1 <- data.matrix(df %>% select(!price))
y1 <- df$price
x2 <- data.matrix(df2 %>% select(!original_price))
y2 <- df2$original_price
lasso1 <- cv.glmnet(x1, y1, alpha = 1)
ridge1 <- cv.glmnet(x1, y1, alpha = 0)
lasso2 \leftarrow cv.glmnet(x2, y2, alpha = 1)
ridge2 <- cv.glmnet(x2, y2, alpha = 0)</pre>
lasso1rmse <- rmse(y1, predict(lasso1, x1))</pre>
ridge1rmse <- rmse(y1, predict(ridge1, x1))</pre>
lasso2rmse <- rmse(y2, predict(lasso2, x2))</pre>
ridge2rmse <- rmse(y2, predict(ridge2, x2))</pre>
Stepwise:
null_model1 <- lm(price ~ 1, df)</pre>
forward1 <- step(null_model1, direction = 'forward', scope = formula(lm1))</pre>
Start: AIC=5653.61
price ~ 1
                    Df Sum of Sq
                                        RSS
                                               AIC
                    12 20405396 15476192 5252.1
+ `processor GHz)` 1 14201208 21680381 5400.7
```

```
+ rating
                  1 10260354 25621234 5485.2
+ ram
                  6 8080244 27801345 5536.5
                 1 6707698 29173891 5550.9
+ displayHz
                 1 677355 35204234 5646.0
+ battery_mAh
+ f_camera_MP
                  1 570140 35311449 5647.5
<none>
                              35881589 5653.6
+ displaySize
                  1
                         5945 35875644 5655.5
Step: AIC=5252.11
```

```
Df Sum of Sq RSS AIC
+ rating 1 7422062 8054130 4923.6
+ `processor GHz)` 1 7269263 8206930 4933.1
+ ram 6 6360285 9115908 4996.3
```

price ~ os

Step: AIC=4923.63
price ~ os + rating

```
Df Sum of Sq
                                  RSS
                                         AIC
                   1 1646077 6408053 4809.9
+ `processor GHz)`
                     1586293 6467838 4824.6
+ ram
                   6
                     561247 7492883 4889.1
+ displayHz
                   1
                   1 338351 7715779 4903.9
+ f_camera_MP
<none>
                               8054130 4923.6
+ battery_mAh
                   1
                        5888 8048242 4925.3
+ displaySize
                   1
                       4518 8049613 4925.3
```

Step: AIC=4809.94
price ~ os + rating + `processor GHz)`

Df Sum of Sq RSS AIC 979346 5428708 4738.0 + ram + displayHz 240046 6168008 4792.6 1 + f_camera_MP 1 225907 6182146 4793.8 <none> 6408053 4809.9 19254 6388799 4810.4 + displaySize 1 + battery_mAh 1 16034 6392019 4810.7

Step: AIC=4738.02
price ~ os + rating + `processor GHz)` + ram

Df Sum of Sq RSS AIC + f_camera_MP 1 249163 5179544 4716.2 + displayHz 1 155134 5273574 4725.4 + displaySize 1 51875 5376833 4735.2 <none> 5428708 4738.0 + battery_mAh 1 319 5428389 4740.0

Step: AIC=4716.25
price ~ os + rating + `processor GHz)` + ram + f_camera_MP

Df Sum of Sq RSS AIC

```
+ displayHz 1 125900 5053644 4705.8
+ displaySize 1 50356 5129189 4713.3
<none>
                          5179544 4716.2
+ battery_mAh 1
                      872 5178672 4718.2
Step: AIC=4705.8
price ~ os + rating + `processor GHz)` + ram + f_camera_MP +
    displayHz
             Df Sum of Sq
                              RSS
                                     AIC
                 133193 4920452 4694.3
+ displaySize 1
<none>
                          5053644 4705.8
+ battery_mAh 1 3476 5050168 4707.4
Step: AIC=4694.28
price ~ os + rating + `processor GHz)` + ram + f_camera_MP +
    displayHz + displaySize
             Df Sum of Sq
                              RSS
                                     AIC
<none>
                          4920452 4694.3
                   59.627 4920392 4696.3
+ battery_mAh 1
null_model2 <- lm(original_price ~ 1, df2)</pre>
forward2 <- step(null_model2, direction = 'forward', scope = formula(lm2))</pre>
Start: AIC=33757.1
original_price ~ 1
         Df Sum of Sq
                            RSS
                                  AIC
+ storage 24 178005343 154834932 31588
+ brands 16 152690410 180149866 32011
+ memory 23 136380092 196460183 32276
+ rating 1 67635920 265204355 33101
<none>
                      332840275 33757
Step: AIC=31588.01
original_price ~ storage
        Df Sum of Sq
                           RSS
                                 AIC
+ brands 16 66089397 88745535 30008
+ memory 22 27970150 126864782 31055
+ rating 1 7926316 146908616 31438
```

```
<none>
```

Step: AIC=30007.58 original_price ~ storage + brands Df Sum of Sq RSS AIC + memory 22 9010140 79735395 29741 + rating 1 602183 88143352 29990 <none> 88745535 30008 Step: AIC=29741.43 original_price ~ storage + brands + memory Df Sum of Sq RSS AIC 377153 79358242 29730 + rating 1 <none> 79735395 29741 Step: AIC=29729.7 original_price ~ storage + brands + memory + rating backward1 <- step(lm1, direction = 'backward')</pre> Start: AIC=4696.28 price ~ rating + `processor GHz)` + ram + battery_mAh + f_camera_MP + os + displaySize + displayHz Df Sum of Sq RSS AIC 60 4920452 4694.3 battery_mAh 1 <none> 4920392 4696.3 1 129776 5050168 4707.4 - displaySize - f_camera_MP 1 207604 5127996 4715.2 - displayHz 1 208756 5129148 4715.3 - `processor GHz)` 1 802116 5722508 4770.7 - ram 6 946025 5866417 4773.3 - rating 1 850993 5771385 4775.0 12 13374882 18295274 5336.8 - os Step: AIC=4694.28 price ~ rating + `processor GHz)` + ram + f_camera_MP + os + displaySize + displayHz

RSS

AIC

Df Sum of Sq

```
4920452 4694.3
<none>
                 1 133193 5053644 4705.8
1 207549 5128001 4713.2
- displaySize
- f_camera_MP
            1 208737 5129189 4713.3
- displayHz
- `processor GHz)` 1 810063 5730514 4769.4
               6 960551 5881003 4772.5
- ram
                1 852479 5772930 4773.1
rating
- os
                   12 13530876 18451328 5339.1
backward2 <- step(lm2, direction = 'backward')</pre>
Start: AIC=29729.7
original_price ~ brands + memory + storage + rating
         Df Sum of Sq
                            RSS AIC
<none>
                        79358242 29730
- rating 1 377153 79735395 29741
- memory 22 8785110 88143352 29990
- storage 23 28630931 107989173 30576
- brands 16 44457006 123815248 30986
forward1rmse <- rmse(df$price, predict(forward1))</pre>
backward1rmse <- rmse(df$price, predict(backward1))</pre>
forward2rmse <- rmse(df2$original_price, predict(forward2))</pre>
backward2rmse <- rmse(df2$original_price, predict(backward2))</pre>
```

Normalization Function:

```
normalize <- function(x) {
   (x - min(x)) / (max(x) - min(x))
}

df_normalized <- df %>%
  mutate(price = normalize(price))

df2_normalized <- df2 %>%
  mutate(original_price = normalize(original_price))
```

Setting up NNetwork:

```
nn_model <- nn_module(</pre>
  initialize = function(p, q1, q2, q3){
    self$hidden1 <- nn_linear(p,q1)</pre>
    self$hidden2 <- nn_linear(q1,q2)</pre>
    self$hidden3 <- nn_linear(q2,q3)</pre>
    self$output <- nn_linear(q3,1)</pre>
    self$activation <- nn_relu()</pre>
  },
  forward = function(x){
    x %>%
      self$hidden1() %>% self$activation() %>%
      self$hidden2() %>% self$activation() %>%
      self$hidden3() %>% self$activation() %>%
      self$output()
  }
)
```

Fitting Neural Network

```
M1 <- model.matrix(price ~ 0 + . , data = df_normalized)
nn1 <- nn_model %>%
    setup(loss = nn_mse_loss(),
        optimizer = optim_adam,
        metrics = list(luz_metric_accuracy())) %>%
    set_hparams(p = ncol(M1), q1 = 16, q2 = 32, q3 = 16) %>%
    set_opt_hparams(lr = 0.05) %>%
    fit(data = list(
        model.matrix(price ~ 0 + ., data = df_normalized), df_normalized %>% select(price) %
    ),
        epochs = 50, verbose = F)
```

nnrmse1 <- rmse(df_normalized\$price, predict(nn1, model.matrix(price ~ 0 + ., data = df_normalized\$price)</pre>

```
M2 <- model.matrix(normalize(original_price) ~ 0 + . , data = df2)
nn2 <- nn_model %>%
    setup(loss = nn_mse_loss(),
        optimizer = optim_adam,
        metrics = list(luz_metric_accuracy())) %>%
    set_hparams(p = ncol(M2), q1 = 16, q2 = 32, q3 = 16) %>%
```

```
set_opt_hparams(lr = 0.05) %>%
fit(data = list(
    model.matrix(original_price ~ 0 + ., data = df2_normalized), df2_normalized %>% selection),
    epochs = 50, verbose = F)
```

```
nnrmse2 <- rmse(df2_normalized$original_price, predict(nn2, model.matrix(original_price ~ 0)</pre>
```

Interpreting Normalized RMSE:

```
price_diff1<- nnrmse1 * mean(df$price)
price_diff2<- nnrmse2 * mean(df2$original_price)
print(price_diff1)</pre>
```

[1] 33.02168

```
print(price_diff2)
```

[1] 69.87643

Summary Table:

```
summary_table <- data.frame(Model = c('Linear', 'Lasso', 'Ridge', 'Forwards', 'Backwards', 'I
summary_table</pre>
```

```
Model Dataset
                                        RMSE
1
                Linear
                              1 98.61082651
2
                  Lasso
                              1 175.93171027
3
                              1 184.19313708
                  Ridge
4
               Forwards
                              1 98.61142401
5
              Backwards
                              1 98.61142401
6 NNetwork(normalized)
                                0.09557668
7
                Linear
                             2 165.50905987
8
                             2 288.31973494
                 Lasso
9
                 Ridge
                              2 285.77890022
10
                              2 165.50905987
              Forwards
              Backwards
                              2 165.50905987
11
12 NNetwork(normalized)
                              2 0.21844566
```

Qualitative results:

[1] 0.08807585 0.08807585 0.08807585

```
iphone15 <- c('apple', '6 GB', '128 GB', 4.6, 799)
samsung_s24 <- c('samsung', '12 GB', '256 GB', 4.5, 1400)
vivoy18 <- c('vivo', '8 GB', '256 GB', 4.0, 107.87)

df_ex2 <- rbind(df2, iphone15, samsung_s24, vivoy18)
df_ex2$rating <- as.numeric(df_ex2$rating)
df_ex2$original_price <- as.numeric(df_ex2$original_price)

df_ex2_n <- df_ex2 %>% mutate(original_price = normalize(original_price))

p_ex2 <- predict(nn2, newdata = model.matrix(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n)) %>% as.numeric(original_price ~ 0 + ., data = df_ex2_n))
```

```
p_ex2[2898:2900]
```

[1] 0.4227524 0.6710729 0.1546329