Lab 2: Linear Regression

An Island Never Cries

Alice Chang

There is a strong positive linear relationship between the magnitude of an earthquake and the number of stations that detect the earthquake. In general, as the magnitude of the earthquake increases, the number of reporting stations increases as wel There is a strong positive linear relationship between the magnitude of an earthquake and the number of stations that detect the earthquake. In general, as the magnitude of the earthquake increases, the number of reporting stations increases as well.

Exercise 2

```
mean(quakes$stations)
```

[1] 33.418

The slope would be zero. It follows that the intercept would be 33.418, the mean of Y, since $\hat{B}_0 = \overline{y} - \hat{B}_1 \overline{x} + \# \# \# \text{Exercise } 3$

```
m1 <- lm(stations ~ mag, data = quakes)
ggplot(quakes, aes(mag, stations)) + geom_point(alpha = 0.1) + geom_abline(intercept = m1$coef[1], slopers</pre>
```


summary(m1)

```
##
## Call:
## lm(formula = stations ~ mag, data = quakes)
##
## Residuals:
       Min
##
                1Q
                   Median
                                3Q
                                       Max
   -48.871
           -7.102
                    -0.474
                             6.783
                                    50.244
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -180.4243
                             4.1899
                                      -43.06
                                               <2e-16 ***
                 46.2822
                                       51.23
                                               <2e-16 ***
## mag
                             0.9034
##
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 11.5 on 998 degrees of freedom
## Multiple R-squared: 0.7245, Adjusted R-squared: 0.7242
## F-statistic: 2625 on 1 and 998 DF, p-value: < 2.2e-16
```

The slope is 46.2822 and the intercept is -180.4243. The model predicts that as the magnitude of an earthquake increases by one unit on the Richter Magnitude scale, the number of stations that detect the earthquake will increase by approaximately 46.2822. The model also predicts that if the magnitude of an earthquake on the Richter Magnitude scale is 0, the number of stations that can detect it will be -180.4243. That is to say, no stations will detect an earthquake or event that registers as zero on the Richter scale.

```
r <- cor(quakes$stations, quakes$mag)</pre>
y_diff <- quakes$stations - mean(quakes$stations)</pre>
y_diff_squared <- (y_diff)^2</pre>
std_dev_y <- sqrt(sum(y_diff_squared/999))</pre>
std_dev_y
## [1] 21.90039
x_diff <- quakes$mag - mean(quakes$mag)</pre>
x diff squared <- (x diff)^2
std_dev_x <- sqrt(sum(x_diff_squared/999))</pre>
std_dev_x
## [1] 0.402773
slope <- r*(std_dev_y/std_dev_x)</pre>
slope
## [1] 46.28221
Using the equation
                                            \hat{\beta}_1 = r * (s_u/s_x)
```

, I calculated a slope of 46.28221 between the magnitude of the earthquakes and the number of reporting stations. This corresponds with the slope computed by the fitted linear model.

Exercise 5

```
summary(m1)$coef[[2]]+ qt(1-(0.05/2), 998) * summary(m1)$coef[[4]]
## [1] 48.05498
summary(m1)$coef[[2]] - qt(1-(0.05/2), 998) * summary(m1)$coef[[4]]
## [1] 44.50944
confint(m1,'mag', level = 0.95)
## 2.5 % 97.5 %
## mag 44.50944 48.05498
```

We are 95% confident that the true slope between the magnitude of the earthquakes and the number of stations that detect them lies between 44.50944 and 48.05498.

Exercise 6

```
predict(m1, data.frame(mag = 7.0))
##     1
## 143.5511
```

I predict that around 144 (143.5511) stations would be able to detect an earthquake with a magnitude of 7.0.

Exercise 7

Question 1 - Data description Question 2 - Inference Question 3 - Inference Question 4 - Inference Question 5 - Inference Question 6 - Prediction

SIMULATION

```
dat <- seq(from = 4.0, to = 6.0, by = 0.1)
sim_dat <- sample(dat, size = 1000, replace = TRUE)
sim_dat</pre>
```

```
[1] 5.6 4.6 4.1 4.0 4.3 5.3 4.0 6.0 4.8 4.3 4.3 5.2 5.9 5.4 6.0 4.4 4.5
##
     [18] 4.0 5.2 4.5 5.3 5.0 4.7 5.4 4.3 4.7 4.2 5.0 4.1 4.8 5.1 5.7 5.2 5.0
##
##
     [35] 5.1 4.5 4.6 4.3 5.1 5.0 5.3 5.9 4.1 6.0 5.0 4.1 5.1 4.0 4.6 5.8 4.0
##
     [52] 5.4 5.9 5.2 5.2 4.4 4.0 4.6 4.9 4.6 4.5 5.3 4.8 4.5 4.0 4.5 5.2 5.0
     [69] 5.4 4.4 4.1 5.5 5.2 4.7 5.5 5.0 4.6 5.5 4.9 4.5 4.9 4.6 4.2 4.5 5.0
##
##
     [86] 4.9 5.8 5.5 5.4 5.6 5.7 5.6 5.0 5.2 5.3 5.7 5.6 5.8 4.7 5.4 5.8 4.2
##
    [103] 5.3 5.1 4.2 4.4 4.9 5.0 5.0 5.4 5.1 4.1 4.4 5.4 5.2 4.8 5.3 4.3 4.7
##
    [120] 4.8 5.9 5.1 5.0 4.7 5.0 5.5 5.2 4.4 4.8 4.0 5.2 4.1 4.3 4.1 5.4 4.0
##
    [137] 4.4 5.8 4.1 4.4 4.5 4.4 5.4 5.9 5.1 4.9 4.3 5.8 4.5 4.3 4.8 5.1 5.3
##
    [154] 4.0 5.9 5.8 4.8 5.9 6.0 4.0 4.8 4.3 5.1 5.9 4.2 5.1 4.2 4.0 4.8 5.7
##
    [171] 5.6 4.3 5.3 4.2 4.0 4.2 5.7 5.2 5.7 5.6 4.8 5.8 5.0 5.7 5.3 5.5 4.2
     [188] \ \ 4.4 \ \ 5.1 \ \ 5.9 \ \ 4.4 \ \ 5.8 \ \ 4.9 \ \ 6.0 \ \ 5.9 \ \ 5.8 \ \ 5.3 \ \ 5.5 \ \ 5.2 \ \ 4.9 \ \ 4.2 \ \ 6.0 \ \ 4.5 \ \ 4.5 
##
##
    [205] 5.9 5.1 5.3 5.3 6.0 4.8 5.4 4.4 5.2 5.3 5.1 4.4 4.9 4.1 4.0 5.9 5.8
##
    [222] 4.6 5.5 5.2 4.4 5.0 5.9 5.8 4.0 4.6 5.1 6.0 4.7 4.3 5.6 4.3 4.2 5.3
##
    [239] 5.9 4.6 5.1 4.2 4.2 4.3 4.9 4.7 5.0 4.1 4.0 5.5 4.8 4.9 5.9 4.4 5.0
    [256] 5.3 4.5 5.3 5.2 4.1 4.1 4.8 5.0 5.7 5.9 5.2 5.3 5.7 5.9 5.2 4.2 4.4
##
    [273] 4.2 4.0 4.9 4.7 5.9 4.6 5.9 4.9 5.0 4.0 5.6 5.3 4.4 5.2 5.3 5.0 5.6
##
    [290] 5.9 5.7 5.7 4.2 4.2 5.9 5.4 4.5 4.8 5.2 5.1 4.4 5.1 5.2 4.9 5.6 5.9
##
    [307] 5.3 4.1 5.8 4.4 4.2 5.8 4.2 4.2 4.3 4.1 5.9 4.9 4.9 4.1 5.4 4.7 4.2
##
    [324] 4.4 4.0 5.9 5.7 4.3 5.4 5.7 4.7 4.0 6.0 5.7 4.0 5.5 5.6 5.5 4.3 4.5
##
    [341] 4.9 5.2 4.4 5.7 5.2 5.5 5.1 4.9 4.4 5.6 5.7 4.8 5.4 4.1 4.4 4.8 5.9
##
    [358] 4.5 4.7 4.4 4.5 4.9 5.1 5.7 4.0 5.6 4.5 5.7 5.3 4.1 5.5 5.5 4.1 5.4
    [375] 5.9 4.8 4.2 4.1 4.8 5.8 5.4 4.8 5.3 4.4 5.4 4.5 4.1 5.3 4.9 4.6 5.6
    [392] 4.3 5.3 5.6 4.5 5.9 4.9 4.3 4.6 5.8 5.1 5.4 5.5 4.9 4.5 5.7 5.7 5.0
##
##
    [409] 5.7 5.7 4.9 4.2 4.8 5.0 5.4 5.0 5.8 5.4 4.0 4.5 4.8 5.6 4.0 4.5 4.9
##
    [426] 5.7 5.3 6.0 6.0 4.8 5.1 4.4 5.4 4.5 5.9 5.9 6.0 4.0 4.8 4.1 4.2 4.3
    [443] \ 5.9 \ 6.0 \ 5.8 \ 4.2 \ 4.6 \ 5.4 \ 5.1 \ 5.2 \ 5.1 \ 5.6 \ 4.8 \ 4.2 \ 5.7 \ 5.6 \ 4.3 \ 6.0 \ 5.3
##
##
    [460] 5.1 4.5 5.2 5.4 5.2 5.8 5.6 5.5 4.6 5.0 6.0 4.2 4.0 4.0 5.5 5.9 4.9
    [477] 4.4 5.4 4.1 4.7 5.3 4.4 4.1 5.5 5.4 4.2 4.5 5.2 4.9 4.1 4.9 5.5 4.9
##
##
    [494] 4.2 5.0 5.8 5.8 4.3 5.5 5.7 4.2 5.8 6.0 4.9 5.8 4.2 4.1 5.7 4.0 4.9
##
    [511] 4.4 5.9 5.0 5.0 5.4 5.1 6.0 5.3 5.0 4.9 4.1 4.5 5.0 5.4 4.8 5.1 5.0
##
    [528] 4.9 5.4 5.7 5.8 4.9 4.8 5.9 4.3 5.1 4.3 4.2 5.4 4.6 4.4 4.0 4.8 4.1
##
    [545] 5.3 5.0 4.1 4.6 4.9 5.9 5.8 5.3 4.9 5.0 5.3 4.3 5.9 4.3 4.7 4.5 4.1
    [562] 4.9 5.8 4.5 5.8 5.4 6.0 4.2 5.7 5.5 5.7 4.2 5.6 4.4 5.2 5.0 6.0 5.6
    [579] 5.7 4.7 6.0 4.5 5.7 4.5 4.7 5.2 5.0 5.4 5.1 4.8 6.0 5.7 5.0 4.9 4.6
##
##
    [596] 5.3 4.3 5.0 5.0 5.5 5.3 4.0 4.2 5.3 4.4 5.4 5.5 4.2 5.4 4.6 4.5 6.0
    [613] 4.6 4.0 4.5 5.3 5.6 5.2 5.1 5.9 5.2 5.5 4.0 4.8 4.6 4.6 5.0 5.8 4.9
##
    [630] 4.5 5.9 4.9 6.0 5.8 4.4 4.2 5.7 5.0 4.6 6.0 5.9 4.8 5.8 4.1 4.5 5.1
    [647] \ \ 4.8 \ \ 4.8 \ \ 5.7 \ \ 5.3 \ \ 5.7 \ \ 4.5 \ \ 4.1 \ \ 5.2 \ \ 4.5 \ \ 5.9 \ \ 4.2 \ \ 4.4 \ \ 4.7 \ \ 4.7 \ \ 5.9 \ \ 5.4 \ \ 4.8
##
##
    [664] 4.8 5.6 4.1 5.3 6.0 4.4 5.9 5.1 4.0 5.2 5.1 4.9 5.7 5.5 5.8 5.4 5.3
##
    [681] 5.1 5.7 4.4 4.7 6.0 5.0 5.5 4.9 5.2 5.2 5.3 4.6 4.2 5.5 5.5 5.8 4.6
    [698] 5.1 4.8 5.7 4.7 4.2 5.4 4.6 4.3 5.0 5.5 5.6 4.5 4.6 5.0 5.0 6.0 5.0
##
    [715] 5.0 5.4 5.2 4.9 4.3 5.7 4.0 4.8 4.5 4.6 5.6 5.4 6.0 4.1 5.3 4.3 5.1
    [732] \ 4.5 \ 5.0 \ 5.3 \ 4.8 \ 4.2 \ 5.5 \ 4.3 \ 4.0 \ 5.0 \ 4.1 \ 5.6 \ 5.5 \ 4.6 \ 5.8 \ 5.4 \ 5.7 \ 5.2
##
##
    [749] 4.2 5.2 5.6 5.8 5.3 4.7 4.5 5.6 4.3 4.2 4.6 5.9 4.8 4.8 5.3 5.4 5.5
    [766] 5.9 4.5 5.7 5.3 4.4 4.0 5.8 4.2 5.2 4.9 5.1 5.3 4.5 5.7 5.0 5.9 4.9
```

```
[783] \ \ 5.2 \ \ 5.7 \ \ 4.1 \ \ 4.6 \ \ 4.5 \ \ 4.3 \ \ 5.7 \ \ 6.0 \ \ 5.4 \ \ 4.7 \ \ 4.7 \ \ 5.3 \ \ 4.9 \ \ 6.0 \ \ 5.6 \ \ 4.6 \ \ 5.7
##
    [800] 5.4 4.1 5.7 5.6 4.0 5.2 4.6 5.6 5.1 4.0 5.6 4.2 4.4 4.0 5.6 5.6 5.2
    [817] 5.0 4.0 4.2 4.3 5.9 5.0 4.6 6.0 5.0 5.1 4.6 4.8 5.8 4.8 4.0 4.5 4.4
    [834] \ \ 4.6 \ \ 4.4 \ \ 4.1 \ \ 4.7 \ \ 4.2 \ \ 4.5 \ \ 4.0 \ \ 4.2 \ \ 5.7 \ \ 4.4 \ \ 5.3 \ \ 5.2 \ \ 5.5 \ \ 4.0 \ \ 4.7 \ \ 5.7 \ \ 5.7
##
    [851] 5.3 4.7 4.9 5.9 5.4 5.1 4.6 4.8 4.6 4.6 5.8 5.6 4.5 5.0 6.0 5.4 4.9
    [868] 4.4 5.5 4.6 4.1 6.0 4.4 4.3 4.5 4.4 5.4 5.5 5.3 4.4 4.2 5.6 4.2 5.4
##
    [885] 4.4 4.8 4.0 5.5 5.7 4.9 4.7 4.4 6.0 4.8 5.6 5.8 4.0 5.7 4.1 5.9 5.8
    [902] 5.1 5.4 4.1 4.5 4.9 5.6 5.5 5.5 4.0 4.3 5.2 5.0 4.2 5.7 4.9 4.0 5.7
##
    [919] 5.8 4.2 5.8 4.3 4.9 5.9 6.0 4.8 4.7 4.9 6.0 5.4 5.1 5.7 5.1 5.5 5.0
    [936] 5.7 4.7 5.8 5.8 4.5 5.2 4.5 5.2 4.8 4.7 5.7 4.3 5.0 4.2 5.7 4.4 5.8
##
    [953] 5.4 4.4 6.0 5.2 4.7 4.2 4.2 4.1 4.5 5.4 4.4 5.3 4.9 4.2 5.8 5.3 5.5
    [970] 5.6 5.1 4.4 5.8 4.3 5.5 4.1 5.3 4.1 4.1 5.4 4.7 5.5 5.2 5.7 5.2 5.2
##
    [987] 5.3 4.2 4.2 5.3 5.7 4.7 5.1 4.9 4.9 5.2 5.2 4.7 5.7 4.1
```

```
f_hat <- function(x) {-180.4243 + 46.2822*x}
y_hat <- f_hat(sim_dat)
y_hat</pre>
```

```
[1] 78.75602 32.47382 9.33272 4.70450 18.58916 64.87136 4.70450
##
##
      [8] 97.26890 41.73026 18.58916 18.58916 60.24314 92.64068 69.49958
##
     [15] 97.26890 23.21738 27.84560 4.70450 60.24314 27.84560 64.87136
     [22] 50.98670 37.10204 69.49958 18.58916 37.10204 13.96094 50.98670
##
##
     [29]
         9.33272 41.73026 55.61492 83.38424 60.24314 50.98670 55.61492
     [36] 27.84560 32.47382 18.58916 55.61492 50.98670 64.87136 92.64068
##
##
     [43] 9.33272 97.26890 50.98670 9.33272 55.61492 4.70450 32.47382
##
     [50] 88.01246 4.70450 69.49958 92.64068 60.24314 60.24314 23.21738
##
         4.70450 32.47382 46.35848 32.47382 27.84560 64.87136 41.73026
##
     [64] 27.84560 4.70450 27.84560 60.24314 50.98670 69.49958 23.21738
     [71] 9.33272 74.12780 60.24314 37.10204 74.12780 50.98670 32.47382
##
##
     [78] 74.12780 46.35848 27.84560 46.35848 32.47382 13.96094 27.84560
     [85] 50.98670 46.35848 88.01246 74.12780 69.49958 78.75602 83.38424
##
##
     [92] 78.75602 50.98670 60.24314 64.87136 83.38424 78.75602 88.01246
     [99] 37.10204 69.49958 88.01246 13.96094 64.87136 55.61492 13.96094
##
    [106] 23.21738 46.35848 50.98670 50.98670 69.49958 55.61492 9.33272
    [113] 23.21738 69.49958 60.24314 41.73026 64.87136 18.58916 37.10204
##
   [120] 41.73026 92.64068 55.61492 50.98670 37.10204 50.98670 74.12780
##
    [127] 60.24314 23.21738 41.73026 4.70450 60.24314 9.33272 18.58916
##
   [134] 9.33272 69.49958 4.70450 23.21738 88.01246 9.33272 23.21738
   [141] 27.84560 23.21738 69.49958 92.64068 55.61492 46.35848 18.58916
##
   [148] 88.01246 27.84560 18.58916 41.73026 55.61492 64.87136 4.70450
##
   [155] 92.64068 88.01246 41.73026 92.64068 97.26890 4.70450 41.73026
   [162] 18.58916 55.61492 92.64068 13.96094 55.61492 13.96094 4.70450
##
   [169] 41.73026 83.38424 78.75602 18.58916 64.87136 13.96094 4.70450
   [176] 13.96094 83.38424 60.24314 83.38424 78.75602 41.73026 88.01246
##
    [183] 50.98670 83.38424 64.87136 74.12780 13.96094 23.21738 55.61492
   [190] 92.64068 23.21738 88.01246 46.35848 97.26890 92.64068 88.01246
##
   [197] 64.87136 74.12780 60.24314 46.35848 13.96094 97.26890 27.84560
   [204] 27.84560 92.64068 55.61492 64.87136 64.87136 97.26890 41.73026
##
   [211] 69.49958 23.21738 60.24314 64.87136 55.61492 23.21738 46.35848
##
   [218] 9.33272 4.70450 92.64068 88.01246 32.47382 74.12780 60.24314
  [225] 23.21738 50.98670 92.64068 88.01246 4.70450 32.47382 55.61492
## [232] 97.26890 37.10204 18.58916 78.75602 18.58916 13.96094 64.87136
```

```
[239] 92.64068 32.47382 55.61492 13.96094 13.96094 18.58916 46.35848
##
    [246] 37.10204 50.98670 9.33272 4.70450 74.12780 41.73026 46.35848
##
    [253] 92.64068 23.21738 50.98670 64.87136 27.84560 64.87136 60.24314
          9.33272 9.33272 41.73026 50.98670 83.38424 92.64068 60.24314
##
##
    [267] 64.87136 83.38424 92.64068 60.24314 13.96094 23.21738 13.96094
    [274] 4.70450 46.35848 37.10204 92.64068 32.47382 92.64068 46.35848
##
    [281] 50.98670 4.70450 78.75602 64.87136 23.21738 60.24314 64.87136
    [288] 50.98670 78.75602 92.64068 83.38424 83.38424 13.96094 13.96094
##
##
    [295] 92.64068 69.49958 27.84560 41.73026 60.24314 55.61492 23.21738
    [302] 55.61492 60.24314 46.35848 78.75602 92.64068 64.87136 9.33272
##
    [309] 88.01246 23.21738 13.96094 88.01246 13.96094 13.96094 18.58916
         9.33272 92.64068 46.35848 46.35848 9.33272 69.49958 37.10204
##
    [316]
##
    [323] 13.96094 23.21738 4.70450 92.64068 83.38424 18.58916 69.49958
    [330] 83.38424 37.10204 4.70450 97.26890 83.38424 4.70450 74.12780
##
    [337] 78.75602 74.12780 18.58916 27.84560 46.35848 60.24314 23.21738
##
##
    [344] 83.38424 60.24314 74.12780 55.61492 46.35848 23.21738 78.75602
    [351] 83.38424 41.73026 69.49958 9.33272 23.21738 41.73026 92.64068
##
##
    [358] 27.84560 37.10204 23.21738 27.84560 46.35848 55.61492 83.38424
    [365] 4.70450 78.75602 27.84560 83.38424 64.87136 9.33272 74.12780
##
##
    [372] 74.12780 9.33272 69.49958 92.64068 41.73026 13.96094 9.33272
##
    [379] 41.73026 88.01246 69.49958 41.73026 64.87136 23.21738 69.49958
    [386] 27.84560 9.33272 64.87136 46.35848 32.47382 78.75602 18.58916
    [393] 64.87136 78.75602 27.84560 92.64068 46.35848 18.58916 32.47382
##
    [400] 88.01246 55.61492 69.49958 74.12780 46.35848 27.84560 83.38424
##
    [407] 83.38424 50.98670 83.38424 83.38424 46.35848 13.96094 41.73026
##
    [414] 50.98670 69.49958 50.98670 88.01246 69.49958 4.70450 27.84560
##
    [421] 41.73026 78.75602 4.70450 27.84560 46.35848 83.38424 64.87136
    [428] 97.26890 97.26890 41.73026 55.61492 23.21738 69.49958 27.84560
    [435] 92.64068 92.64068 97.26890 4.70450 41.73026 9.33272 13.96094
    [442] 18.58916 92.64068 97.26890 88.01246 13.96094 32.47382 69.49958
##
    [449] 55.61492 60.24314 55.61492 78.75602 41.73026 13.96094 83.38424
##
    [456] 78.75602 18.58916 97.26890 64.87136 55.61492 27.84560 60.24314
    [463] 69.49958 60.24314 88.01246 78.75602 74.12780 32.47382 50.98670
##
    [470] 97.26890 13.96094 4.70450 4.70450 74.12780 92.64068 46.35848
##
    [477] 23.21738 69.49958 9.33272 37.10204 64.87136 23.21738 9.33272
##
    [484] 74.12780 69.49958 13.96094 27.84560 60.24314 46.35848 9.33272
##
##
    [491] 46.35848 74.12780 46.35848 13.96094 50.98670 88.01246 88.01246
##
    [498] 18.58916 74.12780 83.38424 13.96094 88.01246 97.26890 46.35848
    [505] 88.01246 13.96094 9.33272 83.38424 4.70450 46.35848 23.21738
##
    [512] 92.64068 50.98670 50.98670 69.49958 55.61492 97.26890 64.87136
##
    [519] 50.98670 46.35848 9.33272 27.84560 50.98670 69.49958 41.73026
    [526] 55.61492 50.98670 46.35848 69.49958 83.38424 88.01246 46.35848
##
##
    [533] 41.73026 92.64068 18.58916 55.61492 18.58916 13.96094 69.49958
    [540] 32.47382 23.21738 4.70450 41.73026 9.33272 64.87136 50.98670
##
    [547] 9.33272 32.47382 46.35848 92.64068 88.01246 64.87136 46.35848
    [554] 50.98670 64.87136 18.58916 92.64068 18.58916 37.10204 27.84560
##
          9.33272 46.35848 88.01246 27.84560 88.01246 69.49958 97.26890
##
    [561]
    [568] 13.96094 83.38424 74.12780 83.38424 13.96094 78.75602 23.21738
##
    [575] 60.24314 50.98670 97.26890 78.75602 83.38424 37.10204 97.26890
    [582] 27.84560 83.38424 27.84560 37.10204 60.24314 50.98670 69.49958
##
    [589] 55.61492 41.73026 97.26890 83.38424 50.98670 46.35848 32.47382
##
    [596] 64.87136 18.58916 50.98670 50.98670 74.12780 64.87136 4.70450
##
##
    [603] 13.96094 64.87136 23.21738 69.49958 74.12780 13.96094 69.49958
    [610] 32.47382 27.84560 97.26890 32.47382 4.70450 27.84560 64.87136
```

```
[617] 78.75602 60.24314 55.61492 92.64068 60.24314 74.12780 4.70450
    [624] 41.73026 32.47382 32.47382 50.98670 88.01246 46.35848 27.84560
##
    [631] 92.64068 46.35848 97.26890 88.01246 23.21738 13.96094 83.38424
##
    [638] 50.98670 32.47382 97.26890 92.64068 41.73026 88.01246 9.33272
##
##
    [645] 27.84560 55.61492 41.73026 41.73026 83.38424 64.87136 83.38424
    [652] 27.84560 9.33272 60.24314 27.84560 92.64068 13.96094 23.21738
##
    [659] 37.10204 37.10204 92.64068 69.49958 41.73026 41.73026 78.75602
         9.33272 64.87136 97.26890 23.21738 92.64068 55.61492 4.70450
##
##
    [673] 60.24314 55.61492 46.35848 83.38424 74.12780 88.01246 69.49958
    [680] 64.87136 55.61492 83.38424 23.21738 37.10204 97.26890 50.98670
##
    [687] 74.12780 46.35848 60.24314 60.24314 64.87136 32.47382 13.96094
    [694] 74.12780 74.12780 88.01246 32.47382 55.61492 41.73026 83.38424
##
##
    [701] 37.10204 13.96094 69.49958 32.47382 18.58916 50.98670 74.12780
    [708] 78.75602 27.84560 32.47382 50.98670 50.98670 97.26890 50.98670
##
    [715] 50.98670 69.49958 60.24314 46.35848 18.58916 83.38424 4.70450
##
##
    [722] 41.73026 27.84560 32.47382 78.75602 69.49958 97.26890 9.33272
    [729] 64.87136 18.58916 55.61492 27.84560 50.98670 64.87136 41.73026
##
##
    [736] 13.96094 74.12780 18.58916 4.70450 50.98670 9.33272 78.75602
    [743] 74.12780 32.47382 88.01246 69.49958 83.38424 60.24314 13.96094
##
##
    [750] 60.24314 78.75602 88.01246 64.87136 37.10204 27.84560 78.75602
##
    [757] 18.58916 13.96094 32.47382 92.64068 41.73026 41.73026 64.87136
    [764] 69.49958 74.12780 92.64068 27.84560 83.38424 64.87136 23.21738
          4.70450 88.01246 13.96094 60.24314 46.35848 55.61492 64.87136
##
    [771]
    [778] 27.84560 83.38424 50.98670 92.64068 46.35848 60.24314 83.38424
##
         9.33272 32.47382 27.84560 18.58916 83.38424 97.26890 69.49958
##
    [792] 37.10204 37.10204 64.87136 46.35848 97.26890 78.75602 32.47382
##
    [799] 83.38424 69.49958 9.33272 83.38424 78.75602 4.70450 60.24314
    [806] 32.47382 78.75602 55.61492 4.70450 78.75602 13.96094 23.21738
         4.70450 78.75602 78.75602 60.24314 50.98670 4.70450 13.96094
##
    [820] 18.58916 92.64068 50.98670 32.47382 97.26890 50.98670 55.61492
##
    [827] 32.47382 41.73026 88.01246 41.73026 4.70450 27.84560 23.21738
##
    [834] 32.47382 23.21738 9.33272 37.10204 13.96094 27.84560 4.70450
    [841] 13.96094 83.38424 23.21738 64.87136 60.24314 74.12780 4.70450
##
    [848] 37.10204 83.38424 83.38424 64.87136 37.10204 46.35848 92.64068
##
##
    [855] 69.49958 55.61492 32.47382 41.73026 32.47382 32.47382 88.01246
    [862] 78.75602 27.84560 50.98670 97.26890 69.49958 46.35848 23.21738
##
##
    [869] 74.12780 32.47382 9.33272 97.26890 23.21738 18.58916 27.84560
##
    [876] 23.21738 69.49958 74.12780 64.87136 23.21738 13.96094 78.75602
    [883] 13.96094 69.49958 23.21738 41.73026 4.70450 74.12780 83.38424
##
    [890] 46.35848 37.10204 23.21738 97.26890 41.73026 78.75602 88.01246
##
          4.70450 83.38424 9.33272 92.64068 88.01246 55.61492 69.49958
##
    [904] 9.33272 27.84560 46.35848 78.75602 74.12780 74.12780 4.70450
    [911] 18.58916 60.24314 50.98670 13.96094 83.38424 46.35848 4.70450
##
    [918] 83.38424 88.01246 13.96094 88.01246 18.58916 46.35848 92.64068
##
    [925] 97.26890 41.73026 37.10204 46.35848 97.26890 69.49958 55.61492
    [932] 83.38424 55.61492 74.12780 50.98670 83.38424 37.10204 88.01246
##
    [939] 88.01246 27.84560 60.24314 27.84560 60.24314 41.73026 37.10204
##
    [946] 83.38424 18.58916 50.98670 13.96094 83.38424 23.21738 88.01246
##
    [953] 69.49958 23.21738 97.26890 60.24314 37.10204 13.96094 13.96094
##
    [960]
          9.33272 27.84560 69.49958 23.21738 64.87136 46.35848 13.96094
    [967] 88.01246 64.87136 74.12780 78.75602 55.61492 23.21738 88.01246
##
##
    [974] 18.58916 74.12780 9.33272 64.87136 9.33272 9.33272 69.49958
##
    [981] 37.10204 74.12780 60.24314 83.38424 60.24314 60.24314 64.87136
    [988] 13.96094 13.96094 64.87136 83.38424 37.10204 55.61492 46.35848
```

```
res <- m1$res
y_pop <- res + y_hat
y_pop</pre>
```

2 3 5 6 ## 78.0257349 33.5128614 -17.1668915 14.3717625 24.8846436 72.1668436 ## 7 8 9 10 11 12 ## 5.9742149 89.0514993 39.6281960 18.9999803 8.3717593 43.7692971 ## 17 13 14 15 16 18 88.4232793 56.2821793 89.3717410 15.6282003 13.5766620 ## -2.1411218## 19 20 22 23 50.0257393 ## 22.6281993 54.0257382 49.0257414 31.8846393 54.3975160 ## 25 26 27 28 29 30 6.0895485 -0.5129029 69.7435306 6.4870982 35.5128593 ## 47.3975236 ## 31 32 33 34 35 36 44.1410771 76.2821760 60.5128549 56.2821836 37.7692982 22.2564203 ## ## 37 38 39 40 41 ## 21.6281982 3.1153171 63.2821825 38.7692993 61.7692960 92.1668371 ## 43 44 45 46 47 9.1153193 104.6797203 45.5128571 -3.0257861 51.7692982 -0.5129007 ## ## 49 50 52 53 54 51 ## 34.8846403 105.3975117 3.7435414 79.7950636 86.1668371 54.6539603 ## 55 56 57 58 59 60 ## 62.2821814 30.9999793 -6.1411218 38.7693036 46.1410793 25.8846403 ## 61 62 63 64 65 66 ## 25.7435360 67.5386225 51.7435328 27.3717571 -1.6540061 15.7435360 ## 71 67 68 69 70 72 ## 63.9104025 44.9999728 68.6539582 40.0895474 15.6282036 76.2821782 ## 73 74 75 76 77 78 ## 55.6539603 51.8588706 85.9103993 47.3975203 34.1410825 69.2821782 79 ## 80 82 83 84 81 22.9742096 31.6281982 19.4870971 24.2564203 ## 47.3975214 51.1153106 ## 85 86 87 88 89 ## 57.2821836 42.7693003 82.9103960 72.2821782 71.5386214 102.1668403 ## 91 92 93 94 95 96 63.6539560 54.7435306 60.2821814 96.6797236 ## 88.7692917 71.9104014 ## 97 98 99 100 101 102 26.4870917 ## 71.9103982 81.7692906 65.3975160 90.6797225 6.4870971 ## 103 104 105 106 107 108 ## 57.7692960 40.5128560 10.4870971 24.2564214 48.1410793 40.5128571 ## 109 111 112 110 113 34.5128636 43.6024253 53.5128528 55.7692982 66.7692949 ## 9.3717614 ## 115 116 117 118 119 40.7693014 58.0257393 52.7693014 66.9999696 -4.5129040 47.3717549 ## ## 121 122 123 124 125 126 ## 78.9103949 48.0257403 40.8846360 32.2564182 45.7692993 61.5128517 127 128 132 ## 129 130 131 67.2821814 41.2306528 58.9999749 54.3975182 ## 5.1153203 19.3717614 ## 133 134 135 136 137 ## 11.7435382 6.8588771 64.9104003 -20.3975640 35.6024317 69.5386171

##	139	140	141	142	143	144
##	-6.0257861	26.2564214	38.3717571	32.5128636		103.4232793
##	145	146	147	148	149	150
##	64.6539614	42.3975214	17.3717593	83.6539539	25.9742096	32.8846436
##	151	152	153	154	155	156
##	64.3459853	61.8330977	70.2821803	10.7435414	71.5386160	89.9103960
##	157	158	159	160	161	162
##	41.7693014	93.0515003	81.9103939	2.2306571	51.3975225	10.8588749
##	163	164	165	166	167	168
##	53.1410771	92.1668371	7.2306549	41.6281928	33.2048863	12.8331096
##	169	170	171	172	173	174
##	45.6281960	82.5386182	84.1668403	27.1153171	66.5386225	18.6282025
##	175	176	177	178	179	180
##	5.3717625	20.5766653	82.3975128	54.3975182	94.0515025	73.2821771
##	181	182	183	184	185	186
##	60.8846382	94.4232803	44.7692993	84.4232814	69.5386225	89.7692939
##	187	188	189	190	191	192
##	6.3717603	30.8588739	47.1410771	89.1668371	29.3459896	85.9103960
##	193	194	195	196	197	198
##	25.8846371		101.1668371	97.0515014	59.3975171	60.2821782
##	199	200	201	202	203	204
##	72.6539603	60.1153106		104.5643836	25.7435360	35.9999782
##	205	206	207	208	209	210
##	83.7950582	50.0257403	70.6281906	51.0257382	92.1668360	38.7693014
##	211	212	213	214	215	216
##	74.3975160	17.6282003	69.9104025	80.3717485	59.0257403	25.6282003
##	217	218	219	220	221	222
##	49.3975214	17.8588771	10.4870993	92.6797214	80.9103960	38.9999771
##	223	224	225	226	227	228
##	75.7692939	68.2821814	21.3717582	56.6281939	96.6797214	82.1668382
##	229	230	231	232	233	234
##	8.7177728	24.4870928		102.6797203	29.8846393	3.2306539
##	235	236	237	238	239	240
##	65.9103982	25.8846436	10.7435393	76.8846328	82.5386160	31.7435349
##	241	242	243	244	245	246
##	60.7692982		-34.9104504	28.8588749	47.3717528	32.6281971
##	247	248	249	250	251	252
##	58.3975203	-9.7693440	0.8331096	72.1668414	30.6281960	44.5128582
##	253	254	255	256	257	258
##	84.0257317	14.8588739	46.7692993		29.3717571	
##	259	260	261	262	263	
##	69.2821814	5.9742139	25.7177717		37.7692993	
##	265	266	267	268	269	270
##	94.6797214	50.8846339	48.3975171		97.1668371	
##	271	272	273	274	275	276
##	5.7435393	11.8588739	16.6282025		66.9742053	
##	277	278	279	280	281	282
	100.6539528	29.8846403	83.7950582			2.7435414
##	283	284	285	286	287	288
##	63.2821771	70.1668436	20.9999793		66.9104014	
##	289	290	291	292	293	294
##	76.9103982	91.6539528			12.4870971	
##	295	296	297		299	300
##	98.6539528		29.0895463			46.1410771
	11.0000020	00.0120020		55.5251 100	5555250	

##	301	302	303	304	305	306
##	21.9999793	53.8846349	53.1410760	28.8846371	81.1668403	84.5386160
##	307	308	309	310	311	312
##	74.5386225	-17.0257861	91.5386171	7.4870949	35.6024339	89.3975117
##	313	314	315	316	317	318
##	26.4613285	7.1153182	26.2306539	0.1153193	96.3079425	34.4870896
##	319	320	321	322	323	324
##	43.5128582	-11.0257861	55.7692949	45.8588706	13.7435393	13.9999793
##	325	326	327	328	329	330
##	13.3459939	80.4232793	79.4232814	6.1153171	52.0257371	73.5128496
##	331	332	333	334	335	336
##	14.2306496	-12.1411218	85.0514993	60.3975128	7.0895517	60.2821782
##	337	338	339	340	341	342
##	76.9103982	72.6281885	6.7435382	7.7435360	46.3975214	31.5128549
##	343	344	345	346	347	348
##	8.3717582	76.7950603	55.6539603	66.5386203	34.1410771	30.5128582
##	349	350	351	352	353	354
##	1.2306528	56.2821771	65.9103971	22.3717539	77.1668425	3.2048874
##	355	356	357	358	359	360
##	7.1153160	39.7435328	86.0257317	35.7177674	25.6281971	5.1153160
##	361	362	363	364	365	366
##	27.8846414	63.6539636	53.1153085	83.7950603	-2.5129007	68.2821771
##	367	368	369	370	371	372
##	20.2306517	69.5386182	71.9104014	19.9999825	67.5128517	109.6281885
##	373	374	375	376	377	378
##	14.7177717	67.8846317	90.4232793	81.3459853	4.7435393	10.7177717
##	379	380	381	382	383	384
##	40.2564171	108.8846274	81.8846317	44.5128593	38.8846328	21.2306528
##	385	386	387	388	389	390
##	62.8846317	35.2306517	9.3717614	76.0257382	55.6539636	22.1153139
##	391	392	393	394	395	396
##	81.1668403	3.8588749	62.6539593	78.7950614	26.4870939	99.6797214
##	397	398	399	400	401	402
##	70.4870896	-2.3975672	61.0895453	116.1410696	42.5128560	73.0257371
##	403	404	405	406	407	408
##	72.5386203	41.8588685	34.6281993	80.7950603	87.7950603	41.8846360
##	409	410	411	412	413	414
##	86.1668393	90.4232814				47.3975203
##	415		417	418	419	420
##	61.2821793			86.2821793		
##	421	422	423	424	425	
##	50.1410803		17.3717625		53.2564160	
##	427	428	429	430	431	
##	71.7692960			50.7693014		8.1153160 438
##	433 81.7950636	434 19.1153149	435	436 88.0515003	437	
## ##	439	19.1155149		442		444
			441	10.4870960	443	
## ##	42.8846382 445	2.2306560 446	447	448	449	450
	100.3975117					
##	451	452	453	104.8846317 454	455	
##	48.0257403			13.3717603		
##	45.0237403		459	460	461	462
##		84.4232782				
πĦ	10.1400002	07.7202102	02.0111400	02.1710111	10.0201930	100.2004120

##	463	464	465	466	467	468
##	81.2564106	52.0257393	83.3975117	72.5386193	71.9103993	15.7435349
##	469	470	471	472	473	474
##	49.7692993	99.1668360	7.8588760	10.4870993	-1.8846797	63.1410728
##	475	476	477	478	479	480
##	83.7950582	40.8846371	18.7177685	60.0257371	-5.5129018	26.8846393
##	481	482	483	484	485	486
##	55.0257382	23.8846425	17.6282036	66.7692939	73.1668425	32.7177706
##	487	488	489	490	491	492
##	45.6281993	61.9104025	42.9999739	-3.1411229	35.5128582	62.3975149
##	493	494	495	496	497	498
##	51.3975214	22.9999814	56.6539625	84.8846274	83.7950593	-3.1411251
##	499	500	501	502	503	504
##	83.1668414	77.6539549	13.6024339		103.4232782	47.1410793
##	505	506	507	508	509	510
##	83.5386171	18.9999814		111.1668393	27.8588782	47.9999739
##	511	512	513	514	515	516
##	20.1153160		43.8846360	50.5128571	74.1668425	46.5128560
##	517	518	519	520	521	522
##	85.7950571	71.2821803	47.7692993	53.2564160	15.7435403	40.5128625
##	523	524	525	526	527	528
##	43.8846360	57.6539582	48.6024274	44.7692982	62.5128571	60.7435317
##	529	530	531	532	533	534
##	74.2821793	81.2821760	86.8846274	52.8846371	53.0257436	84.1668371
##	535	536	537	538	539	540
##	10.8588749	54.5128560	14.4870960	19.9999814	86.9999685	33.9999771
##	541	542	543	544	545	546
##	35.0895474	5.7435414	35.8846382	2.4870982	43.1410749	36.5128571
##	547	548	549	550	551	552
##	19.8331085	33.9999771	25.3717528	91.0515003	93.4232803	61.1410749
##	553	554	555	556	557	558
##	32.2564160	49.8846360	50.1410749	21.6282014	94.6797214	43.9484431
##	559	560	561	562	563	564
##	32.6281971	24.9999782	11.9742139	26.2564160	66.6539539	40.9742096
##	565	566	567	568	569	570
##	95.0515014	78.5386214	87.4232782	20.7177706	78.5386182	74.3717463
##	571	572	573	574	575	576
##	110.1410706	7.2306549	79.9103982	0.2306528	63.0257393	41.1410782
##	577	578	579		581	582
##	106.7950571	74.9103982	97.1410706	35.4870917	97.5386149	27.2564203
##	583	584	585	586	587	588
##	82.7692917	9.7435360	24.6281971	69.5128549	41.5128571	71.2821793
##	589	590	591	592	593	594
##	50.1410771	35.1153117	98.6797203	79.1668393	43.8846360	51.6281949
##	595	596	597	598	599	600
##	38.1410825	65.3975171	7.2306539	63.2821836	45.8846360	69.0257360
##	601	602	603	604	605	606
##	93.6281906	-9.7693429	15.4870971	41.5128539	38.8331053	58.3975160
##	607	608	609	610	611	612
##	68.9103993	5.6024339	70.7692949	26.9999771	22.6281993	90.5386149
##	613	614	615	616	617	618
##	23.3717560	8.7435414	26.2306517	79.1410749	79.3975139	53.6281917
##	619	620	621	622	623	624
##	65.0257403	99.4232793	56.1410760	61.0257360	25.8331096	57.1153117

	205	202	607	200	200	200
##	625	626	627	628	629	630
##	24.1153139		54.8846360	97.0515014	40.7435317	43.1153149
##	631	632	633	634	635	636
##	96.6797214	60.6281949	94.0514993	86.1668382	22.6282003	64.2048863
##	637	638	639	640	641	642
##	94.6797236	35.9999728	46.5128614	95.7950571	78.1668371	41.8846382
##	643	644	645	646	647	648
##	69.0257328	14.2306560	31.3717571	63.8846349	53.2564171	35.5128593
##	649	650	651	652	653	654
##	91.6281863		101.8846285	29.1153149	24.5766663	64.0257393
	655			658	659	660
##		656	657			
##	19.7435360	87.1668371	37.3459917	12.7435371	38.2564182	46.1410814
##	661	662	663	664	665	666
##	93.9103949	71.1410739	72.6024274	31.7435328	85.7950614	18.0895506
##	667	668	669	670	671	672
##	59.1410749	104.0514993	21.4870949	100.4232793	58.2821825	3.3459939
##	673	674	675	676	677	678
##	51.7692971	59.7692982	-0.5129104	81.6539549	82.6539571	83.2821749
##	679	680	681	682	683	684
##	49.3975160	68.5128539	50.7435296	87.1668393	23.7435371	35.5128603
##	685	686	687	688	689	690
##	91.0514993	64.0257414	78.7950625	47.3975214	73.2564128	60.9104025
##	691	692	693	694	695	696
##	66.2821803	39.2306506	9.9999814	82.2821782	79.9103993	80.7950593
##	697	698	699	700	701	702
##	46.4870928	61.9104036	24.9999749	83.3975128	44.1410814	44.7177706
##	703	704	705	706	707	708
##	77.2564106	14.6281982	14.9999803	42.1410782	52.6539571	94.1410717
##	709	710	711	712	713	714
##	40.6281993	29.8846403	50.8846360	81.2306463	96.9103939	17.3717517
##	715	716	717	718	719	720
##	31.5128571	64.2821793	67.5128549	49.3975214	38.4870960	85.0515025
##	721	722	723	724	725	726
##	0.6024360	54.0257436	24.4870939	31.4870928	66.9103982	69.2821793
##	727	728	729	730	731	732
##	106.5643836	11.4870982	50.7692960	15.3717593	61.5128560	22.7435360
##	733	734	735	736	737	738
##	60.2821836	64.9104014	31.8846382	20.8588760	63.2821782	24.2564225
##	739	740	741		743	744
	-14.7693429			83.5128506	63.6539571	31.3717560
##	745	746			749	750
	102.0257328		80.1668393			
##	751	752	753		755	756
				32.7435339	33.9999782	
##	84.7950614	92.1410696				
##	757	758	759		761	762
##	24.0895485	35.0895496		103.3079425	40.1410803	
##	763	764	765	766	767	768
##	65.5386225	83.8846317	80.2564096	93.7950582	34.5128625	86.1668393
##	769	770	771	772	773	774
##	51.7692960	28.5128636	10.0895517	99.3079436	16.3717603	62.6539603
##	775	776	777		779	780
##	63.6539636	56.2821825	58.6539593	19.2564203	81.4232814	58.2821836
##	781	782	783	784	785	786
##	89.7950582	41.2564160	57.2564128	86.7950603	7.7177717	29.3717560

##	787	788	789	790	791	792
##	31.9742096	30.6024328	84.5386182	123.2821728	76.1668425	17.7435339
##	793	794	795	796	797	798
##	43.7693025	76.1668436	50.1410793	88.4232782	88.5386193	41.6281982
##	799	800	801	802	803	804
##	83.7950603	86.9104003	-5.6540072	92.5386182	63.9103982	11.4870993
##	805	806	807	808	809	810
##	67.3975182	45.1410825	110.3975139	45.5128560	4.1153203	78.2821771
##	811	812	813	814	815	816
##	24.4870971	11.9742106	-4.1411218	71.1668403	98.2821771	69.5386236
##	817	818	819	820	821	822
##	62.1410782	-7.0257851	11.4870971	20.2564225	96.2821739	53.8846360
##	823	824	825	826	827	828
##	46.1410825	98.6797203	44.7692993	62.9104036	5.7435349	43.5128593
##	829	830	831	832	833	834
##	98.7950593	30.2564171	18.7435414	33.5128625	27.2564214	39.7693036
##	835	836	837	838	839	840
##	28.8846425	16.9999825	28.9999760	16.2306549	16.2306517	-5.2822272
##	841	842	843	844	845	846
##	10.2306549	99.1668393	8.2306528	60.6281906	65.2821814	80.7950625
##	847	848	849	850	851	852
##	22.9742149	36.2564182	86.3975128	108.7692917	71.5386225	40.9999760
##	853	854	855	856	857	858
##	45.1153106	98.9103949	74.6539582	61.9104036	44.3717560	47.3975225
##	859	860	861	862	863	864
##	30.8846403	30.8846403	97.3079436	92.6539560	45.5128625	50.0257414
##	865	866	867	868	869	870
##	91.5386149	58.7692949	47.3975214	38.2564214	68.7435253	67.2048820
##	871	872	873	874	875	876
##	15.3717614	101.4232782	12.8588739	17.3717593	38.1410836	24.6282003
##	877	878	879	880	881	882
##	78.5386214	76.2821782	54.1410749	27.9999793	17.9999814	76.7950614
##	883	884	885	886	887	888
##	-6.0257872	70.5386214	26.9742106	43.8846382	7.2306571	45.1410728
##	889	890	891	892	893	894
##	84.3975128	47.8588685	23.3717549	30.2564214	93.1410674	48.1410803
##	895	896	897	898	899	900
##	85.4232825		32.3459939			120.9361636
##	901	902	903	904		906
##	87.1668382		70.1410739			69.3975214
##	907	908	909	910		
##	98.7950614		76.5386203			
##	913	914	915	916		
##	63.7692993		101.0257339		18.7435414	
## ##	919 97.3079436	920	921 104.1410696	922	923 54.7693003	
			927	928	929	
##	925 108.6539517	926	12.7435339		100.1668360	
## ##	931	932	933	934	935	
	55.7692982	92.4232814			93.2306463	
## ##	937	92.4232814	939	940		942
##	52.3975236		86.0515014		56.6539603	
##	943	99.7092900	945	946		
##					26.6282014	
##	31.1092911	00.2300465	22.3111349	12.51035/1	20.0202014	43.0000014

```
949
                        950
                                     951
                                                  952
                                                              953
                                                                           954
##
                81.2821760
##
    -7.1411240
                             27.3717582
                                         91.8846274
                                                       75.6539582
                                                                   34.8846425
##
           955
                        956
                                     957
                                                  958
                                                              959
                                                                           960
   115.5643836
                73.6539603
                             26.9999760
                                          17.6024339
                                                       17.1153182
                                                                   27.2306560
##
##
           961
                        962
                                     963
                                                  964
                                                              965
                                                                           966
                             24.6282003
##
    21.9999782
                69.7692949
                                          78.5386225
                                                       37.8588685
                                                                    30.6282025
##
           967
                        968
                                     969
                                                  970
                                                              971
                                                                           972
                                                                    36.9742106
##
    86.2821749
                70.9104014
                             57.3975149
                                          54.2564085
                                                       46.3975193
##
           973
                        974
                                     975
                                                  976
                                                              977
                                                                           978
                                          27.3717614
##
    73.9103960
                  7.2306539
                             54.7692939
                                                       88.6539593
                                                                     3.1153193
##
           979
                        980
                                     981
                                                  982
                                                              983
                                                                           984
##
     1.7435403
                43.1410739
                             53.1153128
                                          58.0257360
                                                       62.8846339
                                                                    86.7950603
##
           985
                        986
                                                 988
                                                              989
                                     987
                                                                           990
##
    49.3975182
                62.2821814
                             55.6281906
                                          -0.7693451
                                                       21.2564236
                                                                    60.7692960
##
           991
                        992
                                     993
                                                 994
                                                              995
                                                                           996
##
    82.7950603
                45.5128603
                             74.2564139
                                          58.6539636
                                                       42.3975214
                                                                   59.0257393
##
           997
                        998
                                     999
                                                 1000
    58.1410760 43.2564182
                             69.5386182
                                          31.0637820
res_squared = (m1$res)^2
sum(res_squared)
```

[1] 131999.6

sum(res_squared)/998

[1] 132.2641

 $\hat{\sigma}^2 = RSS/n - 2$

 $\hat{\sigma}^2 = 131999.6/998$

 $\hat{\sigma}^2 = 132.2641$

Exercise 12

=

ggplot(quakes, aes(sim_dat, y_pop)) + geom_point(alpha = 0.1) + geom_jitter()


```
m2 = lm(y_pop ~ sim_dat, data = quakes)
summary(m2)
```

```
##
## Call:
## lm(formula = y_pop ~ sim_dat, data = quakes)
##
## Residuals:
##
       Min
                1Q
                    Median
                                3Q
                                        Max
   -49.032
                   -0.388
##
           -7.101
                             6.754
                                    50.084
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -179.4188
                             3.0548
                                      -58.73
                                               <2e-16 ***
## sim_dat
                 46.0809
                             0.6071
                                       75.90
                                               <2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 11.5 on 998 degrees of freedom
## Multiple R-squared: 0.8523, Adjusted R-squared: 0.8522
## F-statistic: 5761 on 1 and 998 DF, p-value: < 2.2e-16
```

As with the original data, there is a strong, positive, and linear relationship between the magnitude of an earthquake and number of stations detecting it in the simulated data. However, the intercept is higher, and the slope is a little bit lower, suggesting that for every unit increase in the magnitude of an earthquake on the Richter scale, the number of stations that detect it increases by 45.6. To increase my model, I might find an intercept that lies around the mean of -180.4243 and -177.0066 and a slope that lies between mean of 45.6 (the slope of the simulated data) and the original slope of 46.2822. #### PROBLEM SET 2: #### Exercise 1

1) H_0

: While holding all other predictors constant, the amount of spending on TV advertising has no effect on sales.

The model suggests that the relationship between the amount of spending on TV advertising and sales is statistically significant, allowing us to reject the null hypthesis (p < 0.0001). Spending an additional \$1000 on TV advertising leads to an increase in sales by approximately 46 units.

2) H_0

: While holding all other predictors constant, the amount of spending on radio advertising has no effect on sales.

The model also suggests that relationship between the amount of spending on radio advertising and sales is statistically significant, allowing us to reject the null hypothesis (p < 0.0001). Spending an additional \$1000 on radio advertising leads to an increases in sales by approximately 189 units.

 H_0

: While holding all other predictors constant, the amount of spending on newspaper advertising has no effect on sales.

While the model reports that spending an additional \$1000 on newspaper advertising may lead to a decrease in sales by one unit, this relationship is not statistically significant (p = 0.8599).

When there is no spending on either TV, radio, or newspaper advertising the model makes the statistically significant prediction that the mean value of sales would be 2.939 units (p < 0.0001).

Exercise 4

- a) Despite the fact that the true relationship is linear, I would expect the training RSS of the cubic regression to be lower because its greater flexibility gives it the capacity to fit greater variance in the training data.
- b) In this case, the greater flexibility cubic regression model will overfit the training data whereas the greater bias of the linear regression model is mediated by the true linear relationship. Consequently I would expect the test RSS of the linear regression to be lower.
- c) As in a), I would expect the training RSS of the cubic regression to be lower because its greater flexibility allows it to encompass the greater variance in training data regardless of the true relationship between X and Y.
- d) There is not enough information to tell because we do not know the linearity of the true relationship between X and Y. If the true relationship is closer to linear, the linear regression model would be a better fit with a lower test RSS. However, if the relationship is extremely non-linear then it is possible that the greater flexibility of the cubic regression model wll be a better fit and yield a lower RSS. ##### Exercise 5
- 1. If we are given the form of the ith fitted value as:

$$\hat{y} = x_i \hat{B}$$

where:

$$\hat{B} = (\sum_{i=1}^{n} x_i y_i) / (\sum_{i'=1}^{n} x_{i'}^2)$$

2. Then, after substitution:

$$\hat{y} = (x_i \sum_{i=1}^{n} x_{i'} y_{i'}) / (\sum_{i''=1}^{n} x_{i''}^2)$$

3. We were also given that:

$$\hat{y} = \sum_{i'=1}^{n} a_{i'} y_{i'}$$

So:

$$\hat{y} = \sum_{i'=1}^{n} a_{i'} y_{i'} = \left(x_i \sum_{i=1}^{n} x_{i'} y_{i'} \right) / \left(\sum_{i''=1}^{n} x_{i''}^2 \right)$$

=

$$a_{i'}y_{i'} = x_i x_{i'} y_{i'} / \sum_{i''=1}^n x_{i''}^2$$

=

$$a_i = x_i x_{i'} / \sum_{i''=1}^n x_{i''}^2$$

ADDITIONAL EXERCISES

Exercise 1

- 1) Variance:
- a) We know that k-nearest regression is defined as:

$$[\hat{f}(x) = \frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i]$$

b) To find the variance:

$$Var(\hat{f}(x)) = Var \frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i$$

=

$$Var(\hat{f}(x)) = \frac{1}{k^2} Var(\sum_{x_i \in \mathcal{N}(x)} y_i)$$

=

$$Var(\hat{f}(x)) = \frac{1}{k^2} \sum_{x_i \in \mathcal{N}(x)} Var(y_i)$$

=

$$Var(\hat{f}(x)) = \frac{1}{k^2} \sum_{x_i \in \mathcal{N}(x)} (\sigma^2)$$

=

$$Var(\hat{f}(x)) = \frac{1}{k^2}k(\sigma^2)$$

=

$$Var(\hat{f}(x)) = \frac{k}{k^2}(\sigma^2)$$

=

$$Var(\hat{f}(x)) = \frac{\sigma^2}{k}$$

- 2) Bias
- a) We know that k-nearest regression is defined as:

$$[\hat{f}(x) = \frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i]$$

b) To find bias:

$$Bias(\hat{f}(x)) = E[f(x)] - E[\hat{f}(x)]$$

$$= Bias(\hat{f}(x)) = E[f(x)] - E[\frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i]$$

$$= Bias(\hat{f}(x))^2 = (E[f(x)] - E[\frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i])^2$$

$$= Bias(\hat{f}(x))^2 = (f(x) - (\frac{1}{k} \sum_{x_i \in \mathcal{N}(x)} y_i))^2$$

c) Decomposition of MSE:

$$MSE = Var(f(x)) + Bias(\hat{f}(x))^{2} + Var(\hat{f}x)$$

$$= MSE = Var(f(x)) + (f(x) - (\frac{1}{k} \sum_{x_{i} \in \mathcal{N}(x)} y_{i}))^{2} + \frac{\sigma^{2}}{k}$$

$$= MSE = \sigma^{2} + (f(x) - (\frac{1}{k} \sum_{x_{i} \in \mathcal{N}(x)} y_{i}))^{2} + \frac{\sigma^{2}}{k}$$

```
library(tidyverse)
x \leftarrow c(1:3, 5:12)
y \leftarrow c(-7.1, -7.1, .5, -3.6, -2, -1.7, -4, -.2, -1.2, -1.2, -3.5)
y mean = mean(y)
std_dev <- function(y) {(sum(y-y_mean)^2)/11}</pre>
std_dev <- std_dev(y)</pre>
my_fun <- function(k, x, y) {</pre>
  f_k <- rep(NA, length(k))</pre>
  for (i in 1:length(k)) {
    f_k[i] <- std_dev/k[i]</pre>
  }
  f_k
y_sum <- sum(y)</pre>
my_fun_2 <- function(k, x, y) {</pre>
  m_k <- rep(NA, length(k))</pre>
  for (i in 1:length(k)) {
```

```
m_k[i] <- std_dev + (std_dev/k[i]) + (y_sum/k[i])^2</pre>
 }
 m_k
}
my_fun_3 <- function(k, x, y) {</pre>
 b_k <- rep(NA, length(k))</pre>
 for (i in 1:length(k)) {
    b_k[i] \leftarrow (y_sum/k[i])^2
 }
 b_k
}
k <- 1:10
f_k \leftarrow my_fun(k, x, y)
m_k <- my_fun_2(k,x,y)</pre>
k <- 1:10
b_k \leftarrow my_fun_3(k, x, y)
df <- tibble(k = k, f_k = f_k)</pre>
ggplot(df, aes(x = k, y = f_k)) + geom_line (col = "tomato") +
  theme_bw() +
ylab("variability")
```


ylab("variability")

Exercise 7

Exercise 7

Exercise 7

Exercise 7

Exercise 7