

Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions

Gediminas Adomavicius

Alexander Tuzhilin

Member-IEEE

Member - IEEE

Published in IEEE, 2005

2025 HoonUi Lee

Contents

- What is Recommendation System?
- Category of Recommendation
 - Content-based Approach
 - Collaborative Approach
 - Hybrid Approach
- Extending Capabilities of Recommendation System

What is a Recommendation System?

- How to predict and suggest items that users will like
 - In daily life, there are many types of items to recommend
 - Movie, Shopping item, Book, ...

- Influenced by concepts from various academic fields
 - Approximation, Forecasting theory, Information retrieval, ...
- Focus on recommendation problems rely on rating structure after mid-1990s
 - How to estimate unseen item ratings for a user?
 - Recommend item with the highest estimated rating

Estimating Unseen Utility

- Utility, the usefulness of an item for a user
 - Defined through a utility function
 - Usually represented by a ratings
 - Utility is shaped by how the function is defined
 - Scroll depth, Purchased, Shared, ...

Category of Recommendation

- By the source of information used for recommendation
 - Content-based Approach
 - Using inherent features of users and items
 - Collaborative Approach
 - Using user-item interactions from other users
 - "collaborative"
 - Hybrid Approach
 - Combine collaborative & content-based methods

- Selecting items to recommend using the profile
- Computing similarity score between user and item profile
 - Recommend items with high scores
 - Similarity-based utility

Profile Construction

Item's profile

Text-based features

(Year of release, Genre, Director, ...)

Image features

(Image embedding, Object, Style, ...) Video features

(Keyframe's Embedding, Object, ...)

Audio features

(Embedding, Lyric, Metadata, ...)

Profile Construction

User's profile

Text Description Example

- Constructing the profile using item's text descriptions
 - \Box Item profile *Content*(*s*)
 - Represented by the weight of each keyword in item
 - Computing each keyword's weight with TF-IDF
 - High frequency within the item, low frequency across items
 - ☐ User Profile ContentBasedProfile(c)
 - Profile construction using only user-selected items
 - 1. Averaging items' keyword weight
 - 2. Strengthen or weaken specific keyword weights by online updating

$$egin{aligned} u(c,s) &= \cos(ec{w}_c,ec{w}_s) = rac{ec{w}_c \cdot ec{w}_s}{||ec{w}_c||_2 imes ||ec{w}_s||_2} \ &= rac{\sum_{i=1}^K w_{i,c} w_{i,s}}{\sqrt{\sum_{i=1}^K w_{i,c}^2} \sqrt{\sum_{i=1}^K w_{i,s}^2}}, \end{aligned}$$

 $\overrightarrow{w_c}, \overrightarrow{w_s}$: user, item's profile vector

K: the number of keywords

Similarity Score Between Profiles

- Using cosine similarity between user and item keyword weight vectors
 - Recommending items with high similarity
- Heuristic utility function based on similarity score
 - Assumption that users prefer items with similar profiles

Model-based Approach

Bayesian classifier (e.g.)

$$P(C_i|k_{1,j}\&\ldots\&k_{n,j}) \implies P(C_i)\prod_x P(k_{x,j}|C_i)$$

 C_i : Relevant / Irrelevant class (Supposed)

 $k_{n,j}$: jth item's n'th keyword

- Estimating the "Relevant" probability of an item to a user given its keywords
 - Based on keyword frequency in items the user liked
 - Utility as probability

Heuristic-based vs. Model-based

Heuristic-based (Using similarity)

- Recommendation criteria defined by human intuition and knowledge
- Used for output validation rather than guiding the recommendation criteria

Model-based

- Recommendation criteria are learned from data-driven rules
 - Discovering rules that which conditions an item is likely to be recommended
- non-heuristic

Limitations of Content-based

Limited Content Analysis

- Non-uniqueness of items with the same feature vector
 - Need for richer embeddings or additional discriminative information

Overspecialization

- Trivial recommendation, Diversity needed
 - Need randomness, avoiding duplicates

New user problem

Cold-start problem from few user ratings

same keyword: sport, baseball, <u>korea</u> series, ...

Not distinguished

Which items to recommend?

Collaborative Methods

- Based on User-Item interactions
 - How did other users rate the items?
 - ☐ How were other items rated by users?

Memory-based Approach

Find similar users with rating

- User similarity based on co-rated items
 - similarity used as heuristic artifact
 - pearson correlation coefficient & cosine similarity

$$sim(x,y) = rac{\sum\limits_{s \in S_{xy}} (r_{x,s} - ar{r}_x)(r_{y,s} - ar{r}_y)}{\sqrt{\sum\limits_{s \in S_{xy}} (r_{x,s} - ar{r}_x)^2 \sum\limits_{s \in S_{xy}} (r_{y,s} - ar{r}_y)^2}}$$

pearson correlation coefficient

$$sim(x,y) = \cos(\vec{x},\vec{y}) = \frac{\vec{x} \cdot \vec{y}}{||\vec{x}||_2 \times ||\vec{y}||_2} = \frac{\sum\limits_{s \in S_{xy}} r_{x,s} r_{y,s}}{\sqrt{\sum\limits_{s \in S_{xy}} r_{x,s}^2} \sqrt{\sum\limits_{s \in S_{xy}} r_{y,s}^2}}$$
 cosine similarity

Aggregating ratings from similar users

- Various aggregation functions can be used
 - Simple average (a), Weighted by similarity (b), Adjusted for user bias (c)
- Estimated rating obtained through aggregation

$$\begin{split} \text{(a) } r_{c,s} &= \frac{1}{N} \sum_{c' \in \hat{C}} r_{c',s}, \\ \text{(b) } r_{c,s} &= k \sum_{c' \in \hat{C}} sim(c,c') \times r_{c',s}, \\ \text{(c) } r_{c,s} &= \bar{r}_c + k \sum_{c' \in \hat{C}} sim(c,c') \times (r_{c',s} - \bar{r}_{c'}) \end{split}$$

Some examples of aggregation function

Item-based Approach

- * Recommend based on item similarity, not user similarity
 - ☐ Item similarity based on co-rating users
 - Similar ratings from other users → high similarity
- Why the item-based is better?
 - Large and dynamic user base
 - Frequent model recalculation
 - Sparsity robustness
 - More rating data available for items than for users

$$sim(i,j) = rac{\sum_{u \in U_{ij}} (r_{u,i} - ar{r}_i) (r_{u,j} - ar{r}_j)}{\sqrt{\sum_{u \in U_{ij}} (r_{u,i} - ar{r}_i)^2}} \sqrt{\sum_{u \in U_{ij}} (r_{u,j} - ar{r}_j)^2}$$

pearson correlation coefficient

$$sim(i,j) = rac{\sum_{u \in U_{ij}} r_{u,i} r_{u,j}}{\sqrt{\sum_{u \in U_{ij}} r_{u,i}^2} \sqrt{\sum_{u \in U_{ij}} r_{u,j}^2}}$$

cosine similarity

Criterion based on rating patterns of other users

Estimate this probability

$$r_{c,s} = E(r_{c,s}) = \sum_{i=0}^n i imes egin{equation} \Pr(r_{c,s} = i | r_{c,s'}, s' \in S_c) \end{gathered}$$

- ☐ User's past ratings used as features to identify similar users
- Clustering model
 - Classifying the user into a cluster and use that cluster's rating distribution
- Bayesian network
 - Estimate probabilities from past ratings via other users' distributions

Limitations of Collaborative Approach

New user problem

- Lack of user-provided ratings to learn preferences
 - Fast preference discovery strategy, Content-based information needed

New item problem

Cold-start issue for unrated items

Sparsity

Users with niche preferences and niche items

" Anyone likes this kind of movie?"

Hybrid Approach

- Combining results from separately implemented CB and CF
 - Linear combination of ratings
 - Voting
 - Choices based on quality metric
 - High confidence, Better aligned with the user's past ratings

- Single unifying recommendation model
 - Rule-based classifier with user, item features
 - Statistical model with user, item parameters

Hybrid Approach

Adding Content to Collaborative

- Using profile for calculating user similarity
- Content-based rating imputation
 - Other model's output / Filterbot

Adding Collaborative to Content

- Dimensionality reduction on the set of profiles
 - Discovering hidden patterns in user profile space

Knowledge-based Recommendation System

Recommendation using domain knowledge

- Constraint-based filtering with external knowledge
 - Preference for child-friendly content
 - Rated-R = not suitable for watching with children
 - Animations are generally family-friendly

- Ontology-based recommendation expansion
 - Assuming the user is interested in "machine learning

```
Movie.rated == Rated-R -> except

Movie.genre == 'Animation' -> score++
```


Extending Capabilities of Recommender Systems

Integration of contextual information

Utilizing contextual factors such as time, location, and companions

Multi-criteria rating

- When ratings involve multiple aspects
 - e.g., hotel rated by location, service, cleanliness, breakfast, etc.
- Using Pareto optimal solutions, consecutive optimizing, ...

9.0/10
8.8/10
8.4/10
8.8/10
8.8/10

Nonintrusiveness

- Less intrusive collection of user's explicit feedback
- Strategic incorporation of implicit feedback

Commonly Used Metrics

Coverage

- Coverage of the item space in prediction
- Limited scope reduces recommendation diversity
 - Popularity bias in recommendation

Accuracy

- Statistical: Deviation between predicted and true ratings
 - ► RMSE, MAE
- Decision-support: Usefulness of recommendations in real decision-making
 - Precision, Recall, F1 score

Limitations of Conventional Metrics

- Training on positive sample, Evaluation with positive sample
 - ☐ Biased observed ratings toward user preferences
 - Sparse feedback on not prefer
 - Is this model truly intelligent?

- Measuring "Usefulness", "Quality"
 - ☐ Is it always a good thing to recommend only items the user is certain to like?
 - ☐ Is a model that simply recommends popular items necessarily a good one?

CAU

Conclusion

- Recommendation is how to predict and suggest items that users will like
 - Estimate utility
- Content-based Approach
 - ☐ Using profiles based on the intrinsic features of the User and Item
- Collaborative Approach
 - Using interactions with items from other users
- The combination of the two approaches can also be considered
- We've also looked at some of the Expansion Capabilities

Contents

- Neighborhood Method
- Latent Factor Model
- Factorization meets Neighborhood
- Experiment

Collaborative Approach

Recommendation Based on User-Item interactions

- No use of explicit user profiles
 - No need for domain knowledge for profiles
 - No data collection required for profile construction
- □ Able to discover patterns not explainable by user/item attributes alone

Neighborhood method

- Focus on computing relationships between items or users
 - In item-based filtering...
 - Recommending items most similar to those rated by the user
 - Similarity based on co-rating users
 - Effective for detecting local relationships
 - Relies on a few important neighbor
 - Ignore most of the users' ratings
 - Fails to capture weak signals in most ratings
 - A signal of 3 out of 5

Why are Weak Signals Important?

- Weak signals as valid indicators of user preference
 - Some users rarely express strong reactions
 - Frequent moderate ratings (e.g., 3 or 4 stars)
 - Mild positive feedback, such as 'not bad'
 - Identifying latent interests not strongly expressed
 - ☐ Low diversity when recommending based only on top-rated items
 - ► To expand the user's preference space

Latent factor model (SVD)

Embedding User and Item into latent factor space

- ☐ Automatically discover hidden characteristics in user-item interactions
 - · Comedy vs. Drama, Action scene ratio
 - Bizarreness, Tension, Peacefulness
 - Latent factors that may not be interpretable by humans
- ☐ Effective in estimating the overall structure from most or all items
 - Weak in detecting strong relationships among a small number of closely related items

IronMan 1 IronMan 2

They can be similar factor but not "highlighted"

Singular Value Decomposition

Approximate the entire given user-item matrix to $R \approx U \Sigma V^T$

Singular Value Decomposition

Latent factors are derived from the overall user-item interaction matrix

And each user and item representation is derived from the factors learned through overall user-item interactions

→ Collaborative Approach!

Factorization Meets the Neighborhood

- Each method captures different levels of structure from the data
 - Neighborhood models capture local, explicit similarity
 - Between a small set of neighbors
 - Latent factor models uncover the hidden structure
 - From the entire user-item rating matrix
- A model that combines both can leverage their strengths and improve accuracy
 - Integrated model

About Implicit Feedback

- Explicit feedback and Implicit feedback
 - Explicit feedback includes ratings and like/dislike buttons
 - Implicit feedback includes purchase history, search logs, and click behavior
 - This paper uses rated/not rated as a form of feedback

- The importance of integrate various forms of user input
 - ☐ Leverage both explicit and implicit feedback
 - ☐ Fallback to implicit signals when explicit data is sparse

Overview of upcoming discussion

- Enhancing Neighborhood and Latent Factor models
 - With implicit feedback
- Propose an integrated model combining both approaches
- Empirical evaluation and performance comparison

Preliminary

Baseline Estimates for Rating Prediction

- Accounts for user and item bias on ratings
 - Some users tend to give higher(lower) ratings
 - Some items tend to receive higher(lower) ratings

$$b_{ui} = \mu + b_u + b_i$$

ullet Baseline estimate b_{ui} about unseen rating r_{ui}

- \Box Overall average rating μ
- \Box b_u and b_i : deviation from global mean

$$\min_{b_*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mu - b_u - b_i)^2 + \lambda_1 (\sum_u b_u^2 + \sum_i b_i^2)$$

Preliminary: Neighborhood models

- Focusing on Item-based approach
 - Recommend items similar to those already rated by the user

- Advantages of Item-based over User-based approach
 - Better scalability and accuracy
 - Fewer items than users
 - Item features and similarities are more stable
 - ☐ More interpretable predictions
 - Users are more familiar with their previously liked items
 - Other similar users are less relatable

Item-based approach

Measuring Item-to-Item Similarity

- Similarity based on user rating patterns
 - Pearson correlation coefficient
 - Cosine similarity

$$s_{ij} \stackrel{\text{def}}{=} \frac{n_{ij}}{n_{ij} + \lambda_2} \rho_{ij}$$

 n_{ij} : co-rating users on item i, j

- \Box Similarity score s_{ij}
- ☐ Require sufficient number of co-raters

$$sim(i,j) = rac{\sum_{u \in U_{ij}} (r_{u,i} - ar{r}_i) (r_{u,j} - ar{r}_j)}{\sqrt{\sum_{u \in U_{ij}} (r_{u,i} - ar{r}_i)^2}} \sqrt{\sum_{u \in U_{ij}} (r_{u,j} - ar{r}_j)^2}$$

pearson correlation coefficient

$$\lambda_2 = 100$$
 $n_{ij} = 200$
 $n_{ij} = 10$
 $\frac{200}{200 + 100} \cdot \rho_{ij}$
 $\frac{10}{10 + 100} \cdot \rho_{ij}$

Correlation-based Neighborhood

***** Estimate unseen rating r_{ui} with correlation (CorNgbr)

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in S^k(i;u)} s_{ij} (r_{uj} - b_{uj})}{\sum_{j \in S^k(i;u)} s_{ij}}$$

 $S^k(i;u)$: Top-k items rated by user u that are most similar to the target item i

- \Box $r_{uj} b_{uj}$: How different is it from the usual ratings
 - Emphasizing the influence of items that user truly liked
- Weighted average using Pearson similarity

Limitations of CorNgbr

Independent analysis of item-item relationships

- No modeling of joint effects among neighbor items
 - Between neighbor items or among all items rated by the user

No mechanism that relies solely on the baseline

- No similar items to item i among those the user has rated
- Low similarities still affect the prediction
 - Similarities are forced to sum to 1

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in S^k(i;u)} \theta^u_{ij} (r_{uj} - b_{uj})$$

 $S^k(i; u)$: Top-k items rated by user u that are most similar to the target item i

 θ_{ij}^{u} : Contribution of item j to the prediction of item i (user-specific)

- \diamond Representing how much each neighbor j contributes to the prediction of target i
 - Previous methods force interpolation using all neighbors similarity
 - ☐ If two items are unrelated, the weight naturally becomes small
 - Fallback to baseline prediction if needed
 - Learned using the matrix of all neighbors $S^k(i; u)$

"Interpolation" to "offset"

Global weight neighborhood model

$$\hat{r}_{ui} = \mu + b_u + b_i + \sum_{j \in R(u)} (r_{uj} - b_{uj}) w_{ij}$$

R(u): Set of all items that user has rated

- ☐ Learn a global weight wij shared across all users
 - w_{ij} represents how much item j helps predict item i
 - Interpreted as an offset coefficient determining how much $r_{uj} b_{uj}$ contributes to the prediction
 - $residual \times weight \Rightarrow offset$

No need for compatibility between b_{ui} and b_{uj}

 $lue{}$ b_{ui} can be extended to a richer representation

Using Implicit Feedback

User's opinion is reflected even in missing ratings

Meaningful item-to-item weights are unusable without explicit ratings

$$\hat{r}_{ui} = \mu + b_u + b_i + \sum_{j \in R(u)} (r_{uj} - b_{uj}) w_{ij} + \sum_{j \in N(u)} c_{ij}$$

R(u): Set of all items that user has rated

N(u): Set of all items that user has not rated (but implicit interaction occurred)

Offset for implicit signal

- Adjusting item i's contribution using only implicit feedback
 - e.g., viewed or clicked item j

Final prediction rule

Regularization term

Adjust about rating count

$$\min_{b_*, w_*, c_*} \sum_{(u,i) \in \mathcal{K}} \left(r_{ui} - \mu - b_u - b_i - \boxed{\mathbf{N}^k(i;u)}^{-\frac{1}{2}} \sum_{j \in \mathbf{N}^k(i;u)} c_{ij} - \boxed{\mathbf{R}^k(i;u)}^{-\frac{1}{2}} \sum_{j \in \mathbf{R}^k(i;u)} (r_{uj} - b_{uj}) w_{ij} \right)^2 + \lambda_4 \left(b_u^2 + b_i^2 + \sum_{j \in \mathbf{R}^k(i;u)} w_{ij}^2 + \sum_{j \in \mathbf{N}^k(i;u)} c_{ij}^2 \right)$$
Pruning item-item relations

Adjusting for rating count difference between users

- Apply inverse square root of rating count
- Mitigates overemphasis due to rating volume differences

Pruning unlikely item-item relations

 \Box Ignore item i's neighbors if user hasn't rated items similar to item i

All parameters are optimized via gradient descent

While find item i's top-K neighbors...

- $lue{}$ Performance improves proportionally with larger k
 - Trade-off exists with increased running time
- ☐ Significant performance drop without implicit feedback

Preliminary: Latent Factor Models

Predict ratings by discovering latent factors between users and items

☐ Apply SVD to the user-item rating matrix

$$\hat{r}_{ui} = b_{ui} + p_u^T q_i$$

- lacktriangle Represent each user and item as vectors p_u and q_i
- Estimate preference via dot product of vectors

Regularized SVD

Many missing values in the user-item matrix

- Traditional SVD requires a fully filled matrix
- Imputing missing values causes distortion and increases computation

$$\min_{p_*,q_*,b_*} \sum_{(u,i) \in \mathcal{K}} (r_{ui} - \mu - b_u - b_i - p_u^T q_i)^2 + \lambda_3 (\|p_u\|^2 + \|q_i\|^2 + b_u^2 + b_i^2)$$

Optimization to minimize error over observed ratings

- Under a factorized SVD structure
- $lue{}$ Learn p_u and q_i based on observed rating pairs

NSVD model (Paterek's idea)

- Learn a separate vector p_u for each user
 - Overfitting occurs when user ratings are sparse

$$b_{ui} + q_i^T \left(\sum_{j \in \mathrm{R}(u)} x_j\right) / \sqrt{|\mathrm{R}(u)|}$$

- Approach without learning user vectors directly
 - ☐ Replace with average of rated item vectors
 - Represent the user based on items they rated

Asymmetric-SVD

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(|\mathrm{R}(u)|^{-rac{1}{2}} \sum_{j \in \mathrm{R}(u)} (r_{uj} - b_{uj}) x_j \ + |\mathrm{N}(u)|^{-rac{1}{2}} \sum_{j \in \mathrm{N}(u)} y_j
ight)$$

 x_i, y_i : latent factor vector for item j

Apply Paterek's idea

- \Box User vector p_u is explained by items and the ratings given to them
- Include parameters for implicit feedback
 - Even without explicit ratings, implicit interactions are reflected in training

Benefits of Asymmetric-SVD

Reduced number of parameters

- Users are much more numerous than items
- Replace user parameters with item parameters to reduce complexity

New users

- New users can be recommended items without model update when feedback is provided
- New items require model update -> Asymmetric!

Benefits of Asymmetric-SVD

Improved interpretability of recommendations

- SVD-based models are black-box models
 - Abstraction of users into intermediate user factors
- ☐ Asymmetric-SVD does not apply user-side abstraction
 - Can identify the contribution of a user's ratings to the prediction

Efficient integration of implicit feedback

- Using Implicit & explicit feedback with optimal weights without mixing them
- Flexibly adjusted based on the type of feedback provided more frequently

$$\hat{r}_{ui} = b_{ui} + q_i^T \left(p_u + \left| \mathrm{N}(u) \right|^{-\frac{1}{2}} \sum_{j \in \mathrm{N}(u)} y_j
ight)$$

Adds only parameters for implicit feedback to the original Regularized SVD

- Loses the advantages introduced in Asymmetric-SVD
 - However, it performs well
 - ☐ A model that demonstrates the importance of implicit feedback

Integrated model

Combine SVD++ & Neighborhood model

- Baseline tier + Factor tier + Neighborhood tier
 - Describes general tendencies of users and items without interactions
 - Analyzes user-item interactions in more detail
 - Refines predicted ratings based on item's neighbors

Evaluation through a top-k recommender

Did the RMSE reduction lead to better user experience?

- Trained to minimize the error between true and predicted ratings
- Does this error reduction actually improve recommendation quality?

Validated through top-K recommendation experiment

- A movie i rated 5 by user u
- How high does it rank among 1000 random movies?
 - ► 1001-item ranking task
 - Best case: movie i ranks first among 1001 (0% position)

$$ext{RMSE} = \sqrt{rac{1}{|\mathcal{T}|}\sum_{(u,i)\in\mathcal{T}} \left(\hat{r}_{ui} - r_{ui}
ight)^2}$$

Experiment

- Y-axis represents the cumulative proportion of all experiments
 - Y% of cases where the 5-star item i is ranked within the top X%

Experiment

- Zoomed-in version of the x-axis within 2%
 - ► The integrated model significantly outperforms the others

Conclusion

- Neighborhood Method captures local relationships
 - Recommended using a few similar neighbors
- Latent factor model captures overall user-item interactions
- Integrate two models strengthens with implicit feedback
 - Use both explicit feedback and implicated feedback

Contents

- New Metric for Top-N Recommendation
 - Precision & Recall
- Long-Tail in Rating Distribution
- PureSVD
- Experiment

Is the "RMSE" suitable?

- The fundamental goal is not "predicted ratings" but "top-N recommendation"
 - Existing methods evaluated based on the error between actual and predicted ratings
 - The goal is not to present predicted ratings directly to users
 - Recommendation of top-N items

- Proposed to properly evaluate top-N recommendation performance
 - □ Evaluate the performance of models trained with RMSE using this new metric
 - By showing that these models perform poorly
 - Showing error metrics do not accurately reflect top-N recommendation performance

New Metric for Top-N Recommendation

Precision & Recall

Metric based on the number of "hits"
 where test item i is included in the Top-N

$$recall(N) = \frac{\#hits}{|T|}$$

The number of successful cases among all test cases

$$\operatorname{precision}(N) = \frac{\# \operatorname{hits}}{N \cdot |T|} = \frac{\operatorname{recall}(N)}{N}$$

☐ The proportion of test items among all "recommended" items

Long-Tail in Rating Distribution

Popular items vs long-tail

- ☐ The majority of ratings are concentrated on a small number of popular items
 - 33% of all user ratings were concentrated on the top 1.7% of items
 - These items are referred to as the short-head
 - The remaining less-rated items are called the long-tail

Figure 1: Rating distribution for Netflix (solid line) and Movielens (dashed line). Items are ordered according to popularity (most popular at the bottom).

Why should we consider long-tail?

- Recommending popular items is trivial
 - In the case of non-personalized models
 - Recommending mainly popular items can still be considered a good model
 - ► This does not bring significant benefit to users or content providers

- Evaluate the accuracy of recommendation algorithms on non-trivial items
 - Splitting the test set T into two parts
 - $ightharpoonup T_{head}$: short-head items
 - ► *T_{long}*: long-tail items

PureSVD

- No Necessity of "exact" rating prediction for Top-N
 - Here, flexibility is allowed
 - Missing values in the user-item rating matrix are set to 0
 - RMSE-based models claimed that this distorts the values
 - This flexibility allows the use of traditional SVD

Propose the PureSVD model

- Using traditional SVD
- Using only the rating matrix and item information
 - Like Asymmetric-SVD

How to derive

Replace user factors vector

- - Suppose $\mathbf{P} = \mathbf{U} \cdot \mathbf{\Sigma}$, every row of P is user factors vector p_u
- $oldsymbol{\square}$ Predict rating in the form of $\hat{r}_{ui} = \mathbf{r}_u \cdot \mathbf{Q} \cdot {\mathbf{q}_i}^{\mathrm{T}}$

How to derive

Dataset	Users	Items	Ratings	Density
Movielens	6,040	3,883	1M	4.26%
Netflix	480,189	17,770	100M	1.18%

Table 1: Statistical properties of Movielens and Netflix.

- Evaluation results on MovieLens and Netflix data
 - Netflix data is much larger and sparser
- Experiments conducted on both full and long-tail test sets for each dataset
 - Recall and precision presented with respect to the number of recommended items N
 - N ranges from 1 to 20

Experiment - Model

- Non-personalized algorithms
 - MovieAvg
 - Top-N recommendation of the highest average rating
 - TopPop
 - Top-N recommendation of the most rated items
- RMSE-oriented
 - CorNgbr
 - AsySVD (with 200 factors)
 - SVD++ (with 200 factors)

- non-RMSE-oriented
 - NNCosNgbr
 - Using cosine similarity instead of Pearson correlation in CorNgbr
 + Removing normalization to accumulate similarity scores
 - PureSVD
 - Model proposed in the paper
 - Two options presented:
 one with 50 factors, another with larger factors

- ☐ AsySVD's recall is about 0.28 at N=10
 - 28% chance of putting an appealing movie in the top-10
 - Not much better than TopPop, a non-personalized algorithm
- → Motivates the need for a long-tail test set

 Non-RMSE-oriented algorithms performed best in terms of recall

Movielens Dataset – precision-recall

Non-RMSE-oriented algorithms also performed best in terms of precision

Figure 3: Movielens: (a) recall-at-N and (b) precision-versus-recall on long-tail (94% of items).

- ☐ The ranking of the algorithms normalized somewhat
- With only long-tail data, the larger-factor PureSVD performed better
 - Rich latent-factor representation helped in the long-tail

Netflix Dataset - All items

Figure 4: Netflix: (a) recall-at-N and (b) precision-versus-recall on all items.

- □ TopPop dominates CorNgbr in performance a strange result
 - Again, need to compare in the long-tail

Figure 5: Netflix: (a) recall-at-N and (b) precision-versus-recall on long-tail (98% of items).

- Among non-RMSE-oriented algorithms, PureSVD performs best
 - Another non-RMSE method, NNCosNgbr, shows lower performance
- □ CorNgbr improves in long-tail cases, while others drop in performance
 - because it effectively captures strong similarities among unpopular items

Advantages of PureSVD

PureSVD performs best regardless of whether popular items are included or not

- Simple implementation without any hyperparameters that require manual tuning
 - ☐ Computation is easy using off-the-shelf optimized SVD packages
- Users can be represented as combinations of item characteristics
 - Interpretability (or Explainability)
 - Easy to handle new users or new rating data from existing users

Conclusion

- Existing metrics do not properly reflect top-N recommended performance
 - Evaluated based on the error between actual and predicted ratings
- Long-tail distribution exists in the rating data
 - In order to prevent trivial recommendations,
 it is necessary to evaluate the recommendation model considering this

- Propose PureSVD
 - Use traditional SVD with an approach that does not focus on accurate rating figures