ECE286 Probability and Statistics

Michael Boyadjian March 28, 2020

Contents

1	Introduction to Statistics and Data Analysis		
	1.1	Definitions	3
	1.2	Set Theory	3
	1.3	Counting	3
2	Probability		
	2.1	Sample Spaces	5
	2.2	Events	5
	2.3	Relative Frequency	5
	2.4	Axioms of Probability	5
	2.5	Properties	6
	2.6	Conditional Probability	6
		2.6.1 Independent Events	6
		2.6.2 Product Rule and Multiplicative Rule	6
	2.7	Bayes' Rule	7
3	Random Variables and Probability Distributions		
	3.1	Concept of a Random Variable	8
	3.2	Discrete Probability Distributions	8
	3.3	Continuous Probability Distributions	8
	3.4	Joint Probability Distributions	9
		3.4.1 Discrete RVs	9
		3.4.2 Continuous RVs	9
		3.4.3 Marginal Distributions	10
4	Mathematical Expectation		
	4.1	Mean of a Random Variable	10
	4.2	Variance and Covariance of Random Variables	10
	4.3	Means and Variance of Linear Combinations of Random Variables	10
5	5 Discrete Probability Distributions		11
	5.1	Binomial Distribution	11
	5.2	Hypergeometric Distribution	11
	5.3	Negative Binomial and Geometric Distributions	11
	5.4		11
6	Continuous Probability Distributions		
	6.1	·	12
	6.2	Normal Distribution	12
	6.3	Gamma and Exponential Distribution	13

1 Introduction to Statistics and Data Analysis

1.1 Definitions

- **Probability:** Mathematical theory that models and analyses uncertainty based on 3 fundamental axioms.
- **Statistics:** Empirical; based on data and measurements; we infer characteristics of a phenomenon

1.2 Set Theory

A set is a set of objects (or elements) represented using capital letters A, B, C, S

- Universal Set: Set of all elements or objects of interest
- Empty Set: Set without any elements, denoted \varnothing
- Compliment of a Set: $A' = \{x | x \notin A\}$
- Union of Two Sets: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection of Two Sets: $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- Disjoint Sets: Also called mutually exclusive; A and B are disjoint iff $A \cap B = \emptyset$
- Subsets: Denoted $A \subset B$; A is a subset of B iff $x \in A \implies x \in B$

1.3 Counting

There are three different methods of counting

1. With Replacement, With Ordering

- Given n distinct objects pick one, note down its kind, and put it back
- \bullet Repeat k times
- Produces n^k possibilities
- ex. Number of 8-character passwords = 62^8

2. Without Replacement, With Ordering

- Same as previous, but no replacement
- Produces $\frac{n!}{(n-k)!}$ possibilities
- Describes number of **permutations**, denoted ${}_{n}P_{k}$
- ex. Number of 8-character passwords without repeating characters $=\frac{62!}{54!}$

3. Without Replacement, Without Ordering

- Ordering does not matter, two sequences with same objects count as the same
- Produces $\frac{n!}{k!(n-k)!}$ possibilities
- Describes number of **combinations**, denoted ${}_{n}C_{k}=\binom{n}{k}$
- ex. Number of ways to pick 5 good chips and 3 bad chips out of 90 good and 10 defective $=\binom{90}{5}\binom{10}{3}$

2 Probability

Probability theory rests on the notion of a random experiment. We don't know what the outcome will be until we actually run the experiment. There are three kinds of experiments:

- Designed
- Observational
- Retrospective

An experiment has a procedure and a measurement and always produces one outcome

2.1 Sample Spaces

The sample space describes the set of all possible outcomes (S). There are three different kinds of sample spaces

- Finite \rightarrow discrete
- Countably Infinite \rightarrow discrete
- Continuous

2.2 Events

An event is the set of outcomes we are interested in. This must be a subset of the sample space. The **event class** is the set of all subsets of the sample space. Probabilities will be assigned to the events in ε

2.3 Relative Frequency

We want to assign probabilities consistent with the idea of relative frequency, which is defined as

$$\lim_{n \to \infty} \frac{n_A}{n} = p_A$$

This is only useful to model the likelihood of events occurring, so probabilities are assigned using probability axioms

2.4 Axioms of Probability

- 1. For any event $A, P(A) \ge 0$
- 2. P(S) = 1
- 3. For any two events A and B such that $P(A \cap B) = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

2.5 Properties

- 1. P(A') = 1 P(A)
- 2. $P(A) \leq 1$
- 3. $P(\emptyset) = 0$
- 4. For any events A and B: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

2.6 Conditional Probability

Conditional probability describes the probability of some event B occurring given an event A has occurred. This is denoted as P(B|A), which is read as "the probability of B given A".

A conditional probability relative to a subspace A of S may also be calculated directly from the probabilities assigned to the elements of the original sample space S

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

2.6.1 Independent Events

Two events are said to be independent if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$

A and B are otherwise dependent

2.6.2 Product Rule and Multiplicative Rule

If in an experiment, both events A and B can occur, then

$$P(A \cap B) = P(A)P(B|A)$$

We can use this to find another expression for the independence of events. Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

This multiplicative rule can be extended to more than just two-event situations. If, in an experiment, the events $A_1, A_2, \dots A_k$ occur, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap A_2 \cap \cdots \cap A_{k-1})$$

If these events are independent, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2)P(A_3)\cdots P(A_k)$$

2.7 Bayes' Rule

Bayes' Rule tells us the following. If the events B_1 , B_2 , . . . , B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i=1,2,...,k, then for any event A in S such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

3 Random Variables and Probability Distributions

3.1 Concept of a Random Variable

A random variable is a function that associates a real number with each element in the sample space. This allows us to do math on a random experiment and map outcomes to the real line. We can classify a sample space of random variables in two ways:

- **Discrete Sample Space:** Contains a finite number of possibilities or an unending sequence with as many elements as there are whole numbers
- Continuous Sample Space: Contains an infinite number of possibilities equal to the number of points on a line segment

3.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability. The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass function**, or **probability distribution** of the discrete random variable X if, for each possible outcome x

- 1. $f(x) \ge 0$
- 2. $\sum_{x} f(x) = 1$
- 3. P(X = x) = f(x)

In cases where we want to determine the probability that the observed value X is less than or equal to some real x, we can use what is called the **cumulative distribution function**. F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
 for $-\infty < x < \infty$

3.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming exactly any of its values, so we are unable to give its probability distribution in tabular form. In dealing with continuous distributions, note the following:

$$P(a < x < b) = P(a < x < b) + P(x = b) = P(a < x < b)$$

This tells us that we do not need to include an endpoint of the interval if X is continuous. We can define a probability density function for a continuous random variable X. The function f(x) is a **probability density function** for the continuous random variable X, defined over the set of real numbers, if

1.
$$f(x) \geq 0$$
, for all $x \in R$

$$2. \int_{-\infty}^{\infty} f(x)dx = 1$$

3.
$$P(a < x < b) = \int_{a}^{b} f(x) dx$$

Similar to discrete distributions, we can also define a probability distribution function to determine the probability that the observed value X is less than or equal to some real x. The **cumulative** distribution function F(x) of a continuous random variable X with density f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 for $-\infty < x < \infty$

3.4 Joint Probability Distributions

3.4.1 Discrete RVs

If X and Y are two <u>discrete</u> random variables, the probability distribution for their simultaneous occurrence can be represented by f(x,y) for any pair of values (x,y) within the range of the random variables X and Y. It is customary to refer to this function as the **joint probability distribution** of X and Y.

f(x,y) is a **joint probability distribution** or **probability mass function** of the discrete random variables X and Y if

- 1. $f(x,y) \ge 0$ for all (x,y)
- 2. $\sum_{x} \sum_{y} f(x, y) = 1$
- 3. P(X = x, Y = y) = f(x, y)

For any region A in the xy plane, $P[(X,Y) \in A] = \sum \sum_{A} f(x,y)$

3.4.2 Continuous RVs

When X and Y are <u>continuous</u> random variables, the **joint density function** f(x, y) is a surface lying above the xy plane, and $P[(X, Y) \in A]$, where A is any region in the xy plane, is equal to the volume of the right cylinder bounded by the base A and the surface.

The function f(x,y) is a **joint density function** of the continuous random variables X and Y if

- 1. $f(x,y) \ge 0$ for all (x,y)
- $2. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$
- 3. $P[(X,Y) \in A] = \int \int_A f(x,y) dx dy$ for any region A in the xy plane

3.4.3 Marginal Distributions

Given the joint probability distribution f(x,y) of the discrete random variables X and Y, the probability distribution g(x) of X alone is obtained by summing f(x,y) over the values of Y. Similarly, the probability distribution h(y) of Y alone is obtained by summing f(x,y) over the values of X. We define g(x) and h(y) to be the **marginal distributions** of X and Y, respectively. When X and Y are continuous random variables, summations are replaced by integrals.

The marginal distributions ox X alone and Y alone are

$$g(x) = \sum_{y} f(x, y)$$
 and $h(y) = \sum_{x} f(x, y)$

$$g(x) = \int_{-\infty}^{\infty} f(x, y)$$
 and $h(y) = \int_{-\infty}^{\infty} f(x, y)$

for the discrete and continuous cases respectively

4 Mathematical Expectation

- 4.1 Mean of a Random Variable
- 4.2 Variance and Covariance of Random Variables
- 4.3 Means and Variance of Linear Combinations of Random Variables

- 5 Discrete Probability Distributions
- 5.1 Binomial Distribution
- 5.2 Hypergeometric Distribution
- 5.3 Negative Binomial and Geometric Distributions
- 5.4 Poisson Distribution

6 Continuous Probability Distributions

6.1 Uniform Distribution

The continuous uniform distribution is one of the simplest statistical distributions. It has a "flat" density function with uniform probability in an interval [A, B]. It is often referred to as a "rectangular distribution" as the density function forms a rectangle with base B - A and a constant height of $\frac{1}{B-A}$.

The density function of the continuous uniform random variable X on the interval [A, B] is

$$f(x; A, B) = \begin{cases} \frac{1}{B-A} &, & A \le x \le B \\ 0 &, & \text{elsewhere} \end{cases}$$

The mean and variance of the uniform distribution are given as follows:

$$\mu = \frac{A+B}{2}$$
 $\sigma^2 = \frac{(B-A)^2}{12}$

6.2 Normal Distribution

The normal distribution, often called the **Gaussian distribution**, is the most important distribution in statistics. Its graph is called the **normal curve** and appears as a bell shape and a continuous variable X having this distribution is called the **normal random variable**. Thus, the density of the normal random variable X, with mean μ and variance σ^2 , is given over all space as

$$n(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Some important properties of the normal distribution include the following:

- 1. The mode occurs at $x = \mu$
- 2. The curve is symmetric about a vertical axis through the mean μ
- 3. The curve has its points of inflection at $x = \mu \pm \sigma$; it is concave downward if $\mu \sigma < X < \mu + \sigma$ and is concave upward otherwise.
- 4. The normal curve approaches the horizontal axis asymptotically as we proceed in either direction away from the mean
- 5. The total area under the curve and above the horizontal axis is equal to 1

The mean and variance of the normal distribution are μ and σ^2 respectively. Now in order to calculate the probability of X assuming a value between x_1 and x_2 , we would have to integrate for the area under the curve. This could easily be done, however, using what is called the **standard** normal distribution

In a standard distribution of a random variable Z the mean is 0 and the variance is 1. We apply the following transformation to obtain the Z variable.

$$Z = \frac{X - \mu}{\sigma}$$

Using the values of Z we are thus able to use tables to compute the probabilities

$$P(x_1 \le X \le x_2) = \frac{1}{\sqrt{2\pi}\sigma} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx = \int_{z_1}^{z_2} n(z;0,1) dz = P(z_1 \le Z \le z_2)$$

6.3 Gamma and Exponential Distribution