小练习:利用遗传算法(Genetic Algorithm)求解旅行商问题(Traveling Salesman Problem)

旅行商问题

Traveling Salesman Problem

- 选定任意一点作为起始点,每次可以选择任意点访问,访问所有的地点有且仅有一次,最后回到起始点
- 假设有n个城市,通过枚举法一共有 $n \cdot (n-1) \cdot (n-2) \dots \cdot 1 = n!$ 中可 行解 (huge searching space)
- 尝试设计一种遗传算法快速求解

遗传算法思路

类比自然选择,"物竞天择"

- 将任意可行解编码成一段固定长度的数组(Chromosome)—染色体
- 三大步骤的类比:
 - 杂交(Crossover)—染色体片 段交换
 - · 突变(Mutation)—基因突变
 - 选择(Selection)—自然选择

算法流程图

旅行商问题编码; 目标函数; 编码操作

Formulate TSP solution; Define Objective/Fitness Function; Actions

可行解编码为染色体:

- 用长度为n的数组表示,但其实是无头无尾的loop。所以,每个解有多种不同的表达
- 多种表达: [1, 4, 6, 7, 3, 2, 5] ==[3, 2, 5, 1, 4, 6, 7]

目标函数/适应性函数: 总旅行距离 (越短越好)

$$D = d_{[1,5]} + \dots + d_{[3,2]} + d_{[2,1]} = \sum_{i=1}^{n} d_{i,i+1} + d_{n,1}$$

定义编码动作(所有繁殖,突变用四种动作组合完成)

- 剪切(split)
- 旋转(rotate)
- 交换 (permute)
- 连接(connect)两个方向/两种情况
- 重组(Re-construct)分解为两个集

$$[1, 4, 6, 7, 3, 2, 5] ==> [6, 7, 2] + [1, 4, 3, 5]$$

关文 Crossover

- Step 1. 选定剪切点,每个染色体分成两小段染色体片段
 - *p*₁: [2,5,1,4,6,7,3]
 - *p*₁₁: [5,1,4]
 - *p*₁₂: [6,7,3,2]
 - p_2 : [1,5,4,3,6,7,2]根据 p_1 剪切,得到两个部分分割:
 - p_{21} : [3,6,7,2] or p_{21}^{-1} : [2,7,6,3]
 - p_{22} : [1,5,4] or p_{22}^{-1} : [5,1,4]
- Step 2. 确定断点(break point)
 - 假定断点为最后一项指向第一项: $n \to 1$
 - 策略1: 随机选定断点
 - 策略2: 距离最长的点为断点
- Step 3. 四种可能交换方式(考虑染色体可以两个方向拼接)
 - $c_1 = p_{11} + p_{22}$; $c_2 = p_{11} + p_{22}^{-1}$
 - $c_2 = p_{21} + p_{22}^{-1}$; $c_1 = p_{11} + p_{22}^{-1}$
- 共四种交换方式+原来两种情况=6种解作为下一代
- 还有很多细节省略(例如:如何选定父母,如何选定切点,设置合理的突变率等等)

Step 3(拼接)

突变与选择

Mutation & Selection

突变(Mutation):在数组中随机选择两个突变点位,交换两个点位

• 策略1: 交换两个在数组上相邻的点位

• 策略2: 交换两个距离上相邻的点位

• 策略3: 自我杂交(改变拼接方向)

选择(Selection):从这一代产生的所有样本,选择保留到下一代的样本

• 原则1: 保留最优样本(得分高的一些样本)

• 原则2: 保留多样性(足够多的不同样本)

• 限制条件:有限算力

• 综合抉择(Tradeoff),选定选择策略

突变 (策略1, 2)

自我杂交(策略3):剪切+交换方向

选择:淘汰旅行总距离太高的样本

实例展示 Case Study

- 260 个数据点在 60×100 的棋盘上
- 目标距离函数: (L1/ Manhattan Distance)
- 从随机数列开始

一个2倍以内近似解 (根据最小生成树 Minimum Spanning Tree得到)

> 找到的最优解的 最"高"理论下限

一次训练可视化结果

10次计算的得到不同的最终参数曲线

一个最终解旅行路径(总距离=1192)

实践总结 Summary

• 经验总结:

- 一直保留群体中的最优解
- 根据经验制定杂交与突变的方案,力求增大"有益进化"的概率
- 通过解决小实例(toy sample),可以帮助思考
- 使用近似解作为算法起始解可以大大增快过程,增强结果
- 写Code(implementation)简单,重要的是如何将可行性高的改进镶嵌如遗传算法中
- 使用多线程(Multiprocessing)利用多个CPU可以同时得到不同的结果
- Python中基因操作前使用copy.deepcopy防止在变量指向并改变parent的list数组内容
- 遗传算法的不足与优点:
 - 本质使用搜索算法,但是搜索方向较为随机,是靠选择过程筛选结果
 - 相比现在的ML/AI方法,没有让计算机掌握经验(改变问题还要从"零"开始)
 - 不好的设计容易卡在局部解(Converge to local optimal solution)
 - 好的算法很依赖编程者正确的理解问题,否则效率会很低
 - 可能主要的好处是通用性,几乎所有问题的解都可以编成固定格式的"染色体"编码

类比: 棋类算法中的搜索树/决策树(*不严谨,选择空间不同)

繁殖/突变 vs. 棋类的下一步可能走法

视频资料&参考资料

Video Material & Reference

视频中用到的数据与代码资源Github分享链接》

- https://github.com/thefriedbee/video-source-code
- 视频中用到的最小生成树近似解: https://www.geeksforgeeks.org/travelling-salesman-problem-set-2-approximate-using-mst/

其他一些可能的算法& 相关参考:

- 利用聚类(Clustering)例子: https://www.math.cmu.edu/~af1p/Teaching/OR2/Projects/P12/2010FinalProject.pdf
- 蚁群算法; 一个不错的Bili视频: https://www.bilibili.com/video/BV1vp4y1p78R
- 退火算法(Simulated Annealing); 百科: <u>https://en.wikipedia.org/wiki/Simulated_annealing</u>

参考资料

- https://en.wikipedia.org/wiki/Genetic_algorithm
- https://www.quora.com/What-does-it-mean-that-AlphaGo-relied-on-Monte-Carlo-tree-search
- https://en.wikipedia.org/wiki/Minimum_spanning_tree

插图资料

- https://ib.bioninja.com.au/standard-level/topic-3-genetics/33-meiosis/crossing-over.html

221 277 324 22 227 229 233 236 278 9 90 20607 221 273 224 229 232 233 236 278 9 80 184 185 186 190 193 197 202 197 215 218 219 200 2004 205 169 179 182 183 179

利用遗传算法(Genetic Algorithm)求解 旅行商问题(Traveling Salesman Problem)

