પ્રશ્ન 1(અ) [3 ગુણ]

વ્યાખ્યા આપો. : ૧) બ્રાંચ ૨) જંક્શન ૩) મેશ

ઉत्तर:

- બ્રાંચ: બ્રાંય એટલે એક અથવા વધારે સર્કિટ તત્વો જે નેટવર્કના બે નોડ્સ વચ્ચે જોડાયેલા હોય.
- જંક્શન: જંક્શન (અથવા નોડ) એટલે એવું બિંદુ જ્યાં બે અથવા વધારે સર્કિટ તત્વો એકબીજા સાથે જોડાયેલા હોય.
- મેશ: મેશ એટલે નેટવર્કમાં એક બંધ પથ જેમાં અન્ય કોઈ બંધ પથ તેની અંદર ન હોય.

મેમરી ટ્રીક: "BJM: Branches Join at junctions to Make meshes"

પ્રશ્ન 1(બ) [4 ગુણ]

જરુરી સર્કિટ સાથે વોલ્ટેજ અને કરંટ ડિવિઝન નો નિયમ લખો.

ઉत्तर:

વોલ્ટેજ ડિવિઝન નિયમ: સિરીઝ સર્કિટમાં, કોઈપણ ઘટક પરનો વોલ્ટેજ તેના રેઝિસ્ટન્સના પ્રમાણમાં હોય છે.

- **ਮ੍ਰ**ਕ: V₁ = VS × (R₁/(R₁+R₂))
- ઉપયોગ: સિરીઝ ઘટકો પરના વ્યક્તિગત વોલ્ટેજ ડ્રોપ્સ શોધવા માટે વપરાય છે

કરંટ ડિવિઝન નિયમ: પેરેલલ સર્કિટમાં, કોઈપણ શાખામાંથી પસાર થતો કરંટ તેના રેઝિસ્ટન્સના વ્યસ્ત પ્રમાણમાં હોય છે.

- ধুর: I₁ = IS × (R₂/(R₁+R₂))
- મુખ્ય સિદ્ધાંત: કરંટ ઓછા રેઝિસ્ટન્સનો માર્ગ પસંદ કરે છે

મેમરી ટ્રીક: "VoSe CuPa: Voltage divides in Series, Current divides in Parallel"

પ્રશ્ન 1(ક) [7 ગુણ]

Fig. (૧) માં બતાવેલ નેટવર્ક માટે ગ્રાફ અને ટ્રી દોરો. ગ્રાફ પર લિંક કરંટ બતાવો. સાથે ટ્રી માટે ટાઇ-સેટ સેક્યુલ લખો.

ઉत्तर:

નેટવર્કનો ગ્રાફ:

નેટવર્કનું ટ્રી (બોલ્ડ એજ સાથે બતાવેલ):

લિંક કરંટ (બાકીની શાખાઓ પર બતાવેલ જે ટ્રીનો ભાગ નથી):

• લિંક 1: શાખા 2 (BD)

• લિંક 2: શાખા 6 (BC)

• લિંક 3: શાખા 7 (AD)

• લિંક 4: શાખા 5 (CD)

ટાઇ-સેટ સેડ્યુલ:

લિંક/ટ્રી શાખા	શાખા 1 (AB)	શાખા 3 (AC)	શાખા 4 (CD)	શાખા 2 (BD)	શાખા 6 (BC)	શાખા 7 (AD)	શાખા 5 (CD)
લિંક 1 (BD)	1	0	0	1	0	0	0
લિંક 2 (BC)	1	1	0	0	1	0	0
લિંક 3 (AD)	0	0	1	0	0	1	0
લિંક 4 (CD)	0	0	1	0	0	0	1

મેમરી ટ્રીક: "TGLT: Trees Generate Link-current Tie-sets"

પ્રશ્ન 1(ક) OR [7 ગુણ]

Fig. (૧) માં બતાવેલ નેટવર્ક માટે ગ્રાફ અને ટ્રી દોરો. ટ્રી પર બ્રાંચ વોલ્ટેજ બતાવો. સાથે ટ્રી માટે કટ-સેટ સેક્યુલ લખો.

ઉत्तर:

નેટવર્કનો ગ્રાફ:

નેટવર્કનું ટ્રી (બોલ્ડ એજ સાથે બતાવેલ અને બ્રાંચ વોલ્ટેજ સાથે):

કટ-સેટ સેક્યુલ:

કટ-સેટ/ શાખા	શાખા 1 (AB)	શાખા 3 (AC)	શાખા 4 (CD)	શાખા 2 (BD)	શાખા 6 (BC)	શાખા 7 (AD)	શાખા 5 (CD)
કટ-સેટ 1 (AB)	1	0	0	-1	-1	0	0
કટ-સેટ 2 (AC)	0	1	0	0	1	-1	0
કટ-સેટ 3 (CD)	0	0	1	1	0	1	1

મેમરી ટ્રીક: "CGVS: Cut-sets Generate Voltage Sources"

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યા આપો: ૧) એક્ટિવ અને પેસિવ નેટ્વર્ક ૨) યુનિલેટરલ અને બાઇ-લેટરલ નેટવર્ક.

ઉत्तर:

- એક્ટિવ નેટવર્ક: એવું નેટવર્ક જેમાં એક કે વધારે EMF સ્રોત (વોલ્ટેજ/કરંટ સ્રોત) હોય જે સર્કિટને ઊર્જા પૂરી પાડે છે.
- **પેસિવ નેટવર્ક**: એવું નેટવર્ક જેમાં માત્ર પેસિવ તત્વો જેવા કે રેઝિસ્ટર, કેપેસિટર અને ઇન્ડક્ટર હોય, કોઈ ઊર્જા સ્રોત ન હોય.

- **યુનિલેટરલ નેટવર્ક**: એવું નેટવર્ક જેમાં ઇનપુટ અને આઉટપુટ ટર્મિનલ્સ બદલવાથી તેની પ્રોપર્ટી અને પરફોર્મન્સ બદલાય છે.
- **બાઇલેટરલ નેટવર્ક**: એવું નેટવર્ક જેમાં ઇનપુટ અને આઉટપુટ ટર્મિનલ્સ બદલવાથી તેની પ્રોપર્ટી અને પરફોર્મન્સ સમાન રહે છે.

आङ्गति:

મેમરી ટ્રીક: "APUB: Active Provides energy, Unilateral Blocks reversal"

પ્રશ્ન 2(બ) [4 ગુણ]

Z પેરામિટર માટે સમીકરણ લખો અને Z11, Z12, Z21, Z22 એ સમીકરણો પરથી તારવો.

ઉत्तर:

Z-પેરામિટર્સ બે-પોર્ટ નેટવર્કમાં પોર્ટ વોલ્ટેજ અને કરંટ વચ્ચેનો સંબંધ વ્યાખ્યાયિત કરે છે:

સમીકરણો:

- $V_1 = Z_{11}|_1 + Z_{12}|_2$
- $V_2 = Z_{21}I_1 + Z_{22}I_2$

વારણ:

- **Z**₁₁ = **V**₁/**I**₁ (**I**₂ = 0 સાથે): આઉટપુટ પોર્ટ ઓપન-સર્કિટ હોય ત્યારે ઇનપુટ ઇમ્પીડન્સ
- **Z**₁₂ = **V**₁/**I**₂ (I₁ = 0 સાથે): ઇનપુટ પોર્ટ ઓપન-સર્કિટ હોય ત્યારે રિવર્સ ટ્રાન્સફર ઇમ્પીડન્સ
- **Z₂₁ = V₂/I₁** (I₂ = 0 સાથે): આઉટપુટ પોર્ટ ઓપન-સર્કિટ હોય ત્યારે ફોરવર્ડ ટ્રાન્સફર ઇમ્પીડન્સ
- **Z₂₂ = V₂/I₂** (I₁ = 0 સાથે): ઇનપુટ પોર્ટ ઓપન-સર્કિટ હોય ત્યારે આઉટપુટ ઇમ્પીડન્સ

મેમરી ટ્રીક: "Z Impedance: Open circuit gives correct Parameters"

પ્રશ્ન 2(ક) [7 ગુણ]

સ્ટાન્ડર્ડ T નેટવર્ક માટે કેરક્ટરિસ્ટિક ઇમ્પિડન્સ (ZOT) નુ સમીકરણ તારવો.

ઉત્તર:

સ્ટાન્ડર્ડ T-નેટવર્ક માટે:

તારણના પગલાં:

- 1. સિમેટ્રિક T-નેટવર્ક માટે, Z₁ = Z₂
- 2. મેચ્ડ કન્ડિશન હેઠળ, ઇનપુટ ઇમ્પિડન્સ કેરેક્ટરિસ્ટિક ઇમ્પિડન્સ બરાબર હોય
- 3. $Z_{0t} = Z_1 + (Z_1 \times Z_3)/(Z_1 + Z_3)$
- 4. બેલેન્સ્ક T-નેટવર્ક જ્યાં $Z_1 = Z_2 = Z/2$ અને $Z_3 = Z$ માટે:
- 5. $Z_{ot} = Z/2 + (Z/2 \times Z)/(Z/2 + Z)$
- 6. $Z_{0t} = Z/2 + (Z^2/2)/(Z + Z/2)$
- 7. $Z_{0t} = Z/2 + (Z^2/2)/(3Z/2)$
- 8. $Z_{0t} = Z/2 + Z^2/3Z$
- 9. $Z_{0t} = Z/2 + Z/3$
- 10. $Z_{0t} = (3Z + 2Z)/6$
- 11. $Z_{0t} = \sqrt{(Z_1(Z_1 + 2Z_3))}$

અંતિમ સમીકરણ: $Z_{0t} = \sqrt{(Z_1(Z_1 + 2Z_3))}$

મેમરી ટ્રીક: "TO Impedance: Two arms Over middle branch"

પ્રશ્ન 2(અ) OR [3 ગુણ]

વ્યાખ્યા આપો. ૧) ડ્રાઇવીંગ પોઇંટ ઇમ્પીડન્સ ૨) ટ્રાન્સફર ઇમ્પીડન્સ

ઉत्तर:

- **ડ્રાઇવિંગ પોઇંટ ઇમ્પીડન્સ**: જ્યારે અન્ય બધા સ્વતંત્ર સ્રોત શૂન્ય પર સેટ હોય ત્યારે સમાન પોર્ટ/ટર્મિનલના જોડા પર વોલ્ટેજ અને કરંટનો ગુણોત્તર.
- ટ્રાન્સફર ઇમ્પીડન્સ: જ્યારે અન્ય બધા સ્વતંત્ર સ્રોત શૂન્ય પર સેટ હોય ત્યારે એક પોર્ટ પર વોલ્ટેજ અને બીજા પોર્ટ પર કરંટનો ગુણોત્તર.

आङ्गति:

ઇમ્પીડન્સના ડ્રાઇવિંગ પોઇંટ: Vˌ/lˌ અથવા Vᢩ/l₂ ટ્રાન્સફર: Vૃ/lˌ અથવા Vˌ/l₂

મેમરી ટ્રીક: "DTSS: Driving at Terminal Same, Transfer at Separate"

પ્રશ્ન 2(બ) OR [4 ગુણ]

કિર્યોફનો વોલ્ટેજ લો ઉદાહરણ સાથે સમજાવો.

ઉત્તર:

કિર્ચોફનો વોલ્ટેજ લો (KVL): સર્કિટમાં કોઈપણ બંધ લૂપની આસપાસના તમામ વોલ્ટેજનો અલજેબ્રાઇક સરવાળો શૂન્ય હોય છે.

ગણિતમાં: ∑V = 0 (બંધ લૂપ આસપાસ)

સર્કિટ ઉદાહરણ:

જો I = 1A, તો:

- $V_1 = 1A \times 2\Omega = 2V$
- $V_2 = 1A \times 3\Omega = 3V$
- $V_3 = 1A \times 5\Omega = 5V$

KVL લાગુ કરતાં: 10V - 2V - 3V - 5V = 0 ✓

મેમરી ટ્રીક: "VACZ: Voltages Around Closed loop are Zero"

પ્રશ્ન 2(ક) OR [7 ગુણ]

∏ નેટવર્ક માથી T નેટવર્ક મા બદલવાના સમીકણ તારવો.

ઉત્તર:

π નેટવર્કને T નેટવર્કમાં રૂપાંતરણ:

રૂપાંતરણ સમીકરણો:

- 1. $Za = (Ya \times Yc) / Y\Delta$
- 2. $Zb = (Yb \times Yc) / Y\Delta$
- 3. $Zc = (Ya \times Yb) / Y\Delta$

જ્યાં Y∆ = Ya + Yb + Yc

વારણ:

- 1. π-નેટવર્કના Υ-પેરામિટર્સથી શરૂઆત કરો
- 2. શાખા એડમિટન્સના સંદર્ભમાં Y-પેરામિટર્સને વ્યક્ત કરો
- 3. મેટ્રિક્સ ઇન્વર્ઝનનો ઉપયોગ કરીને Z-પેરામિટર્સમાં રૂપાંતરિત કરો
- 4. Z-પેરામિટર્સના સંદર્ભમાં T-નેટવર્ક ઇમ્પિડન્સને વ્યક્ત કરો
- 5. સરળ બનાવીને ઉપરના રૂપાંતરણ સૂત્રો મેળવો

ਮੇਮਣੀ ਟ੍ਰੀਡ: "PIE to TEA: Product over sum for opposite branch"

પ્રશ્ન 3(અ) [3 ગુણ]

કિર્યોફનો કરંટ લો ઉદાહરણ સાથે સમજાવો.

ઉत्तर:

કિર્ચોફનો કરંટ લો (KCL): કોઈપણ નોડમાં પ્રવેશતા અને છોડતા તમામ કરંટનો અલજેબ્રાઇક સરવાળો શૂન્ય હોવો જોઈએ.

ગણિતમાં: ∑l = 0 (કોઈપણ નોડ પર)

સર્કિટ ઉદાહરણ:

નોડ B પર KCL લાગુ કરતાં:

- પ્રવેશતા કરંટ: I₁ + I₂ = 5A + 2A = 7A
- છોડતા કરંટ: I₃ + I₄ = 3A + 4A = 7A
- तेथी: I₁ + I₂ I₃ I₄ = 5 + 2 3 4 = 0 ✓

મેમરી ટ્રીક: "CuNoZ: Currents at Node are Zero"

પ્રશ્ન 3(બ) [4 ગુણ]

જરુરી સમીકરણો સાથે મેશ એનાલિસિસ સમજાવો.

ઉत्तर:

મેશ એનાલિસિસ: એક સર્કિટ એનાલિસિસ તકનીક જે મલ્ટિપલ લૂપ્સ વાળી સર્કિટને ઉકેલવા માટે મેશ કરંટ્સનો ઉપયોગ કરે છે.

પગલાં:

- 1. સર્કિટમાં બધા મેશ (બંધ લૂપ) ઓળખો
- 2. દરેક મેશને મેશ કરંટ સોંપો
- 3. દરેક મેશ પર KVL લાગુ કરો
- 4. પરિણામી સમીકરણ સિસ્ટમને ઉકેલો

ઉદાહરણ સર્કિટ:

સમીકરણો:

- મેરા 1: $V_1 = I_1R_1 + I_1R_2 I_2R_2$
- મેરા 2: V₂ = I₂R₂ + I₂R₃ I₁R₂

ਮੇਮરੀ ਟ੍ਰੀs: "MILK: Mesh Is Loop with KVL"

પ્રશ્ન 3(ક) [7 ગુણ]

થીવીનીન નો થીયરમ લખો અને સમજાવો.

ઉत्तर:

થીવીનીનનો સિદ્ધાંત: કોઈપણ લીનીયર નેટવર્ક જેમાં વોલ્ટેજ અને કરંટ સ્રોત હોય તેને એક વોલ્ટેજ સ્રોત (VTH) અને એક રેઝિસ્ટન્સ (RTH) સીરીઝમાં ધરાવતા તુલ્ય સર્કિટ દ્વારા બદલી શકાય છે.

થીવીનીન સમકક્ષ શોધવાના પગલાં:

- 1. જે ટર્મિનલ માટે સમકક્ષ શોધવાની છે તેમાંથી લોડ દૂર કરો
- 2. આ ટર્મિનલ્સ વચ્ચે ઓપન-સર્કિટ વોલ્ટેજ (VOC) ગણો (= VTH)
- 3. તમામ સ્રોતોને તેમના આંતરિક રેઝિસ્ટન્સ દ્વારા બદલીને સર્કિટમાં પાછા જોતા રેઝિસ્ટન્સ ગણો (= RTH)
- 4. થીવીનીન સમકક્ષ VTH અને RTH સીરીઝમાં ધરાવે છે

ઉદાહરણ ઍપ્લિકેશન:

- લોડ RL સાથે મૂળ જટિલ સર્કિટ
- RL દૂર કરો અને VOC = VTH શોધો
- સ્રોતોને નિષ્ક્રિય કરો અને RTH શોધો
- સરળીકૃત થીવીનીન સમકક્ષ સાથે RL ફરીથી જોડો

મેમરી ટ્રીક: "TORV: Thevenin's Open-circuit Resistance and Voltage"

પ્રશ્ન 3(અ) OR [3 ગુણ]

રેસિપ્રોસિટી થીયરમ લખો અને સમજાવો.

ઉत्तर:

રેસિપ્રોસિટી સિદ્ધાંત: એક લીનિયર, બાઇલેટરલ નેટવર્કમાં, જો એક શાખામાં વોલ્ટેજ સ્રોત બીજી શાખામાં કરંટ ઉત્પન્ન કરે છે, તો તે જ વોલ્ટેજ સ્રોત, જો બીજી શાખામાં મૂકવામાં આવે, તો તે પ્રથમ શાખામાં સમાન કરંટ ઉત્પન્ન કરશે.

ગણિતમાં: જો શાખા 1માં વોલ્ટેજ V₁ શાખા 2માં કરંટ I₂ ઉત્પન્ન કરે છે, તો શાખા 2માં વોલ્ટેજ V₁ શાખા 1માં કરંટ I₂ ઉત્પન્ન કરશે.

મર્યાદાઓ: ફક્ત નીચેના લક્ષણો ધરાવતા નેટવર્ક માટે લાગુ પડે છે:

- લીનિયર તત્વો
- બાઇલેટરલ તત્વો (ડાયોડ, ટ્રાન્ઝિસ્ટર નહીં)
- એક સ્વતંત્ર સ્રોત

મેમરી ટ્રીક: "RESWAP: REciprocity SWAPs Position with identical results"

પ્રશ્ન 3(બ) OR [4 ગુણ]

જરુરી સમિકરણો સાથે નોડલ એનાલિસિસ સમજાવો.

ઉत्तर:

નોડલ એનાલિસિસ: એક સર્કિટ એનાલિસિસ તકનીક જે સર્કિટ ઉકેલવા માટે નોડ વોલ્ટેજનો ઉપયોગ કરે છે.

પગલાં:

- 1. રેફરન્સ નોડ (ગ્રાઉન્ડ) પસંદ કરો
- 2. બાકીના નોડ્સને વોલ્ટેજ વેરિયેબલ સોંપો
- 3. દરેક નોન-રેફરન્સ નોડ પર KCL લાગુ કરો

4. પરિણામી સમીકરણ સિસ્ટમને ઉકેલો

ઉદાહરણ સર્કિટ:

સમીકરણો:

- \dashv is 1: $I_1 = V_1G_1 + (V_1 V_2)G_3$
- $+iis 2: I_2 = V_2G_2 + (V_2-V_1)G_3$

મેમરી ટ્રીક: "NKCV: Nodal uses KCL with Voltage variables"

પ્રશ્ન 3(ક) OR [7 ગુણ]

મેક્સિમમ પાવર ટ્રાન્સફર થીચરમ લખો અને સમજાવો.

ઉत्तर:

મહત્તમ પાવર ટ્રાન્સફર સિદ્ધાંત: એક સ્રોત સાથે જોડાયેલ લોડ મહત્તમ પાવર ત્યારે મેળવશે જ્યારે તેનો રેઝિસ્ટન્સ સ્રોતના આંતરિક રેઝિસ્ટન્સ બરાબર હોય.

प्रभाधाः

- 1. સર્કિટમાં કરંટ: I = VS/(RS + RL)
- 2. લોડમાં પહોંચતો પાવર: P = I²RL = (VS²RL)/(RS + RL)²
- 3. મહત્તમ પાવર માટે, dP/dRL = 0
- 4. Gsedi: (VS2(RS + RL)2 VS2RL·2(RS + RL))/(RS + RL)4 = 0
- 5. સરળ કરતાં: (RS + RL)² = 2RL(RS + RL)
- 6. વધુ સરળ કરતાં: RS + RL = 2RL
- 7. તેથી: RS = RL

भक्तम पावर: Pmax = VS²/(4RS)

મેમરી ટ્રીક: "MaRLRS: Maximum power when load Resistance equals Source Resistance"

પ્રશ્ન 4(અ) [3 ગુણ]

શા માટે સિરિઝ રેઝોનંસ સર્કિટ વોલ્ટેજ એમ્પ્લિફાયર અને પેરેલલ રેઝોનંસ સર્કિટ કરંટ એમ્પ્લિફાયર તરીકે વર્તે છે?

ઉत्तर:

સિરીઝ રેઝોનન્સ વોલ્ટેજ એમ્પ્લિફાયર તરીકે:

- રેઝોનન્સ પર, સિરીઝ સર્કિટ ઇમ્પીડન્સ ન્યૂનતમ (માત્ર R) હોય છે
- L અથવા C પરનો વોલ્ટેજ સ્રોત વોલ્ટેજ કરતાં ઘણો વધારે હોઈ શકે
- વોલ્ટેજ મેગ્નિફિકેશન ફેક્ટર = Q = XL/R = 1/R√(L/C)
- L અથવા C પરનો વોલ્ટેજ = Q × સ્રોત વોલ્ટેજ

પેરેલલ રેઝોનન્સ કરંટ એમ્પ્લિફાયર તરીકે:

- રેઝોનન્સ પર, પેરેલલ સર્કિટ ઇમ્પીડન્સ મહત્તમ હોય છે
- L અથવા C માંથી પસાર થતો કરંટ સ્રોત કરંટ કરતાં ઘણો વધારે હોઈ શકે
- કરંટ મેગ્નિફિકેશન ફેક્ટર = Q = R/XL = R√(C/L)
- L અથવા C માંથી પસાર થતો કરંટ = Q × સ્રોત કરંટ

કોષ્ટક:

સર્કિટ પ્રકાર	રેઝોનન્સ પર ઇમ્પીડન્સ	એમ્પ્લિફિકેશન
સિરીઝ	न्यूनतभ (भात्र R)	વોલ્ટેજ (VL અથવા VC = Q×VS)
પેરેલલ	ਮહत्तम (R²/r)	કરંટ (IL અથવા IC = Q×IS)

મેમરી ટ્રીક: "SeVoPa: Series Voltage, Parallel current amplification"

પ્રશ્ન 4(બ) [4 ગુણ]

કોઇલ ના Q નુ સમીકરણ તારવો.

ઉत्तर:

કોઇલનો Q-ફેક્ટર:

વારણ:

1. Q-ફેક્ટર વ્યાખ્યાયિત: Q = સ્ટોર થયેલી ઊર્જા / પ્રતિ સાયકલ વેડફાયેલી ઊર્જા

- 2. ઇન્ડક્ટરમાં સંગ્રહિત ઊર્જા = (1/2)Ll²
- 3. રેઝિસ્ટરમાં વેડફાયેલી પાવર = I²R
- 4. પ્રતિ સાયકલ વેડફાયેલી ઊર્જા = પાવર × સમય અવધિ = I²R × (1/f)
- 5. તેથી: Q = ((1/2)Ll²) / (l²R × (1/f))
- 6. સરળ કરતાં: Q = 2π × (1/2)Ll² × f / (l²R)
- 7. $Q = 2\pi f \times L / R = \omega L / R$

અંતિમ સમીકરણ: $Q = \omega L / R = 2\pi f L / R = XL / R$

મેમરી ટ્રીક: "QualityEDR: Quality equals Energy stored Divided by energy lost per Radian"

પ્રશ્ન 4(ક) [7 ગુણ]

સિરિઝ R-L-C સર્કિટ માટે સિરિઝ રેઝોનંસ ફ્રિક્વંસી નુ સમીકરણ તારવો.

ઉत्तर:

સિરીઝ R-L-C સર્કિટ:

વારણ:

- 1. સિરીઝ RLC સર્કિટની ઇમ્પીડન્સ: Z = R + j(XL XC)
- 2. જ્યાં: XL = ωL અને XC = 1/ωC
- 3. રેઝોનન્સ પર, XL = XC (ઇન્ડક્ટિવ અને કેપેસિટિવ રિએક્ટન્સ સમાન હોય છે)
- 4. તેથી: ωL = 1/ωC
- 5. ω માટે ઉકેલતાં: ω² = 1/LC
- 6. રેઝોનન્ટ ફ્રિક્વન્સી: ω₀ = 1/√(LC)
- 7. ફ્રિક્વન્સી f ના સંદર્ભમાં: f₀ = 1/(2π√(LC))

રેઝોનન્સ પર લક્ષણો:

- ઇમ્પીડન્સ ન્યૂનતમ (સંપૂર્ણ રેઝિસ્ટિવ: Z = R)
- પાવર ફેક્ટર એકમ (સર્કિટ રેઝિસ્ટિવ લાગે છે)
- L અને C પરના વોલ્ટેજ સમાન અને વિપરીત હોય છે

મેમરી ટ્રીક: "RES: Reactances Equal at Series resonance"

પ્રશ્ન 4(અ) OR [3 ગુણ]

કપલ્ડ સર્કિટ શુ છે? સેલ્ફ ઇંડક્ટંસ અને મ્યુચ્યુઅલ ઇંદક્ટંસ ની વ્યાખ્યા આપો.

ઉत्तर:

કપલ્ડ સર્કિટ્સ: બે અથવા વધુ સર્કિટ્સ જે મેગ્નેટિક રીતે જોડાયેલી હોય, જેથી તેમની પરસ્પર મેગ્નેટિક ફીલ્ડ દ્વારા ઊર્જા એકમાંથી બીજામાં ટ્રાન્સફર થઈ શકે.

સેલ્ફ-ઇન્ડક્ટન્સ (L): એક સર્કિટનો ગુણધર્મ જેના દ્વારા કરંટમાં ફેરફારથી તે જ સર્કિટમાં સેલ્ફ-ઇન્ડ્યુસ્ડ EMF ઉત્પન્ન થાય છે. L = Φ/I (મેગ્નેટિક ફ્લક્સનો તેને ઉત્પન્ન કરતા કરંટ સાથેનો ગુણોત્તર)

મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M): એક સર્કિટનો ગુણધર્મ જેના દ્વારા એક સર્કિટમાં કરેટમાં ફેરફારથી બીજી સર્કિટમાં EMF ઇન્ક્યુસ કરે છે. $M = \Phi_{21}/I_1$ (સર્કિટ 1 માં કરેટને કારણે સર્કિટ 2 માં ફલક્સનો ગુણોત્તર)

મેમરી ટ્રીક: "SiMu: Self in Mine, Mutual in Yours"

પ્રશ્ન 4(બ) OR [4 ગુણ]

કો-એફિસિઅંટ ઓફ કપલિંગ(K) નુ સમીકરણ તારવો.

ઉત્તર:

કપલિંગનો ગુણાંક (k):

વારણ:

- 1. બે કોઇલ્સ વચ્ચેનો મ્યુચ્યુઅલ ઇન્ડક્ટન્સ (M) આના પર આધારિત છે:
 - o કોઇલ્સનો સેલ્ફ-ઇન્ડક્ટન્સ (L₁ અને L₂)
 - ૦ ભૌતિક ગોઠવણ (નજીકતા અને દિશા)
- 2. મહત્તમ શક્ય મ્યુચ્યુઅલ ઇન્ડક્ટન્સ: $M_{m_{ax}} = \sqrt{(L_1 L_2)}$
- 3. કપલિંગનો ગુણાંક વ્યાખ્યાયિત: k = M/M_{max}
- 4. તેથી: k = M/√(L₁L₂)

લક્ષણો:

- k ની રેન્જ 0 (કોઈ કપલિંગ નહીં) થી 1 (પૂર્ણ કપલિંગ) સુધી
- k ભૂમિતિ, દિશાનિર્દેશન અને માધ્યમ પર આધારિત છે
- સામાન્ય ટ્રાન્સફોર્મર: k = 0.95 થી 0.99
- એર-કોર કોઇલ્સ: k = 0.01 થી 0.5

મેમરી ટ્રીક: "KMutual: K Measures Mutual linkage proportion"

પ્રશ્ન 4(ક) OR [7 ગુણ]

સિરિઝા RLC સર્કિટ મા R=30Ω, L=0.5H, અને C=5μF છે. (૧) સિરિઝ રેઝોનંસ ફ્રિલક્વંસિ (૨) Q ફેક્ટર (૩)BW ની ગણતરી કરો.

ઉत्तर:

આપેલ:

રેઝિસ્ટન્સ, R = 30Ω

- ઇन्ડક્ટન્સ, L = 0.5H
- કેપેસિટન્સ, C = 5µF = 5×10⁻⁶F

ગણતરી:

(૧) સિરીઝ રેઝોનન્સ ફ્રિક્વન્સી:

- $f_0 = 1/(2\pi\sqrt{(LC)})$
- $f_0 = 1/(2\pi\sqrt{(0.5 \times 5 \times 10^{-6})})$
- $f_0 = 1/(2\pi\sqrt{(2.5\times10^{-6})})$
- $f_0 = 1/(2\pi \times 1.58 \times 10^{-3})$
- $f_0 = 1/(9.9 \times 10^{-3})$
- $f_0 = 100.76 \text{ Hz}$
- $f_0 \approx 100 \text{ Hz}$

(૨) Q ફેક્ટર:

- $Q = (1/R)\sqrt{(L/C)}$
- $Q = (1/30)\sqrt{(0.5/(5\times10^{-6}))}$
- $Q = (1/30)\sqrt{(100,000)}$
- $Q = (1/30) \times 316.23$
- Q = 10.54

(3) બેન્ડવિડ્થ (BW):

- BW = f_0/Q
- BW = 100.76/10.54
- BW = 9.56 Hz

કોષ્ટક:

પેરામીટર	સૂત્ર	મૂલ્ય
રેઝોનન્ટ ફ્રિક્વન્સી (f₀)	1/(2π√(LC))	100 Hz
ક્વોલિટી ફેક્ટર (Q)	(1/R)√(L/C)	10.54
બેન્કવિડ્થ (BW)	f ₀ /Q	9.56 Hz

મેમરી ટ્રીક: "RQB: Resonance Quality determines Bandwidth"

પ્રશ્ન 5(અ) [3 ગુણ]

એટેન્યુટર નુ વર્ગીકરણ કરો.

ઉત્તર:

એટેન્યુએટર્સ: રેઝિસ્ટર્સનું નેટવર્ક જે વિકૃતિ વિના સિગ્નલ લેવલને ઘટાડવા (એટેન્યુએટ) માટે ડિઝાઇન કરવામાં આવે છે.

એટેન્યુએટર્સના પ્રકાર:

કોન્ફિગરેશન આધારિત:

• **T-પ્રકાર**: ત્રણ રેઝિસ્ટર T-આકારની કોન્ફિગરેશન

• **π-પ્રકાર**: ત્રણ રેઝિસ્ટર π-આકારની કોન્ફિગરેશન

• **બ્રિજ્ડ-T**: T-પ્રકાર સાથે એક રેઝિસ્ટર આરપાર જોડાય

• લેટિસ: યાર રેઝિસ્ટર્સ સાથે બેલેન્સ્ડ કોન્ફિગરેશન

સિમેટી આધારિત:

• સિમેટ્રિકલ: સમાન ઈનપુટ અને આઉટપુટ ઇમ્પીડન્સ

• અસિમેટ્રિકલ: અલગ ઈનપુટ અને આઉટપુટ ઇમ્પીડન્સ

ਮੇਮਰੀ ਟ੍ਰੀਡ: "ATP Fixed: Attenuator Types include Pad, Tee, Lattice"

પ્રશ્ન 5(બ) [4 ગુણ]

એટેન્યુએશન અને નેપર વચ્ચેનો સંબંધ તારવો.

ઉत्तर:

એટેન્યુએશન અને નેપર વચ્ચેનો સંબંધ:

- **એટેન્યુએશન (**α): ઇનપુટ વોલ્ટેજ (અથવા કરંટ)નો આઉટપુટ વોલ્ટેજ (અથવા કરંટ) સાથેનો ગુણોત્તર, વિવિધ એકમોમાં વ્યક્ત.
- નેપર (Np): ગુણોત્તરનો નેચરલ લોગેરિધમિક એકમ, મુખ્યત્વે ટ્રાન્સમિશન લાઇન થિયરીમાં વપરાય છે.

વારણ:

- 1. વોલ્ટેજ ગુણોત્તર V₁/V₂ માટે:
 - ૦ નેપરમાં એટેન્યુએશન = ln(V₁/V₂)
 - o ડેસિબલમાં એટેન્યુએશન = 20log₁₀(V₁/V₂)
- 2. પાવર ગુણોત્તર P₁/P₂ માટે:
 - o નેપરમાં એટેન્યુએશન = (1/2)ln(P₁/P₂)
 - o ડેસિબલમાં એટેન્યુએશન = 10log₁₀(P₁/P₂)
- 3. dB અને નેપર વચ્ચેનો સંબંધ:
 - o 1 ਜੇਪਦ = 8.686 dB

o 1 dB = 0.115 ਜੇਪਦ

કોષ્ટક:

એકમ	વોલ્ટેજ ગુણોત્તર	પાવર ગુણોત્તર
નેપર (Np)	$ln(V_1/V_2)$	$(1/2)\ln(P_1/P_2)$
ડેસિબલ (dB)	20log ₁₀ (V ₁ /V ₂)	10log ₁₀ (P ₁ /P ₂)

મેમરી ટ્રીક: "NED: Neper Equals Decibel divided by 8.686"

પ્રશ્ન 5(ક) [7 ગુણ]

સિમેટ્રિકલ T એટેન્યુએટર માટે R1 અને R2 ના સમીકરણો તારવો.

ઉत्तर:

સિમેટ્રિકલ T એટેન્યુએટર:

વારણ:

- 1. કેરેક્ટરિસ્ટિક ઇમ્પીડન્સ Z₀ સાથેના સિમેટ્રિકલ T-એટેન્યુએટર માટે:
 - o ઇનપુટ અને આઉટપુટ ઇમ્પીડન્સ બંને Z₀ બરાબર હોવા જોઈએ
 - \circ એટેન્યુએશન રેશિયો N = $V_1/V_2 = I_2/I_1$
- 2. સર્કિટ એનાલિસિસથી:
 - $O Z_0 = R_1 + (R_2(R_1))/(R_2 + R_1)$
 - \circ N = (R₁ + R₂ + R₁)/R₂ = (2R₁+R₂)/R₂
- 3. R₁ અને R₂ માટે ઉકેલ:
 - \circ R₁ = Z₀(N-1)/(N+1)
 - \circ R₂ = 2Z₀N/(N²-1)
- 4. dB (α) માં એટેન્યુએશન માટે:
 - \circ N = 10^(α /20)
 - \circ R₁ = Z₀·tanh(α /2)

 \circ R₂ = Z₀/sinh(α)

અંતિમ સમીકરણો:

- $R_1 = Z_0(N-1)/(N+1)$
- $R_2 = 2Z_0N/(N^2-1)$

મેમરી ટ્રીક: "TSR: T-attenuator Symmetry Requires equal R1 values"

પ્રશ્ન 5(અ) OR [3 ગુણ]

સિમેટ્રિકલ બિ્રજ T અને સિમેટ્રિકલ લેટિસ એટેન્યુએટર ની સર્કિટ દોરો.

ઉत्तर:

સિમેટ્રિકલ બ્રિજ-T એટેન્યુએટર:

સિમેટ્રિકલ લેટિસ એટેન્યુએટર:

લક્ષણો:

- 1. **બ્રિજ-T**: T અને π એટેન્યુએટર્સની વિશેષતાઓ સંયોજિત કરે છે, ઉચ્ચ-ફ્રિક્વન્સી એપ્લિકેશન માટે યોગ્ય
- 2. **લેટિસ**: ઉત્તમ ફેઝ અને ફ્રિક્વન્સી રિસ્પોન્સ સાથેની બેલેન્સ્ડ કોન્ફિગરેશન, સામાન્ય રીતે બેલેન્સ્ડ લાઇન્સમાં વપરાય છે

મેમરી ટ્રીક: "BL-BA: Bridge Ladder, Balanced Attenuators"

પ્રશ્ન 5(બ) OR [4 ગુણ]

ફ્રિક્વંસી ને આદ્યારે ફિલ્ટર નુ વર્ગીકરણ કરો અને સાથે પાસ બેંડ અને સ્ટોપ બેંડ દર્શાવતા ફ્રિક્વંસી રિસ્પોંસ દોરો.

ઉत्तर:

ફિક્વન્સી આદ્યારિત ફિલ્ટરનું વર્ગીકરણ:

ફ્રિક્વન્સી રિસ્પોન્સ:

1. **લો પાસ ફિલ્ટર**: કટઓફ નીચેની ફ્રિક્વન્સી પસાર કરે, ઉપરની એટેન્યુએટ કરે

2. **હાઇ પાસ ફિલ્ટર**: કટઓફ ઉપરની ફ્રિક્વન્સી પસાર કરે, નીચેની એટેન્યુએટ કરે

3. **બેન્ડ પાસ ફિલ્ટર**: ચોક્કસ બેન્ડની અંદરની ફ્રિક્વન્સી પસાર કરે

4. બેન્ડ સ્ટોપ ફિલ્ટર: યોક્કસ બેન્ડની અંદરની ફિક્યન્સી રિજેક્ટ કરે

મેમરી ટ્રીક: "LHBBA: Low High Band-pass Band-stop All-pass"

પ્રશ્ન 5(ક) OR [7 ગુણ]

Constant-k લો પાસ ફિલ્ટર ના T સેક્શન અને ∏ સેક્શન દોરો અને કટ ઓફ ફિક્વંસીનુ સમીકરણ તારવો.

ઉत्तर:

T-સેક્શન Constant-K લો પાસ ફિલ્ટર:

π-સેક્શન Constant-K લો પાસ ફિલ્ટર:

કટઓફ ફ્રિક્વન્સીનું તારણ:

- 1. Constant-K ફિલ્ટર માટે:

 - o Z₁ = jωL (સિરીઝ ઇમ્પીડન્સ)
 - o Z₂ = 1/jωC (શન્ટ ઇમ્પીડન્સ)
- 2. તેથી:
 - \circ R₀² = Z₁ × Z₂ = j ω L × 1/j ω C = L/C
 - $\circ \quad R_0 = \sqrt{(L/C)}$
- 3. પાસ બેન્ડ કન્ડિશન:
 - \circ -1 < Z₁/4Z₂ < 0
 - \circ -1 < $j\omega L/(4 \times 1/j\omega C)$ < 0
 - \circ -1 < - ω^2 LC/4 < 0
- 4. કટઓફ ફ્રિક્વન્સી પર:
 - $\circ \ \omega^2 LC/4 = 1$
 - \circ $\omega c^2 = 4/LC$
 - \circ $\omega c = 2/\sqrt{(LC)}$
 - fc = ω c/2 π = 1/ π $\sqrt{(LC)}$

અંતિમ સમીકરણ:

• કટઓફ ફ્રિક્વન્સી fc = 1/π√(LC)

મેમરી ટ્રીક: "KCLP: Konstant-k Cutoff in Low Pass depends on L and C product"