

Themen der Vorlesung insgesamt....

- Endliche Automaten (DEA, NEA und NEA mit epsilon-Übergängen),
- · Kellerautomaten,
- · reguläre Ausdrücke,
- · Transformationen und Minimierung (NEA nach DEA,
- NEA/eps nach NEA,
- regulärer Ausdruck nach NEA/eps),
- · reguläre und nicht-reguläre Sprachen,
- · Grammatiken und kontextfreie Sprachen.

Ziel des Kurses

- Vermitteln von Grundkonzepten der Theoretischen Informatik.
- Studierenden beherrschen... / können...
 - die grundlegenden Begriffe, Konzepte und Methoden endlicher Automaten und Grammatiken und selbständig Automaten für bestimmte Problemstellungen entwickeln können.
 - die verschiedenen Transformationen,
 - Beweisen der Nicht-Regularität einer Sprache
 - den Zusammenhang zwischen Automaten und Grammatiken

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

AUTOMATENMINIMIERUNG

Automatenminimierung

Für eine Sprache L $\subset \Sigma^*$ kann es ggfs. mehrere Automaten geben, z.B. A_1 , A_2

$$mit L(A_1) = L(A_2)$$

A₁ und A₂ sind dann äquivalent:

 $A_1 \equiv A_2$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Automatenminimierung

Wann ist ein Automat A₁ besser als ein Automat A₂?

- ~ schwer zu beantworten
- leichter zu verstehen ?
- weniger Zustände → geeignetes Qualitätsmerkmal
 - ~ bei der Implementierung eventuell besser / Effizienz

University of Applied Sciences
HOCHSCHULE

Minimalautomat

 A heißt Minimalautomat für L mit L(A) = L, falls es keinen Automat A' gibt mit L(A') = L, der weniger Zustände als A hat.

Wie könnte man den Automaten A verbessern?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Minimalautomat

- Zwei "Verbesserungsansätze"
 - Entfernung von Zuständen, die von z₀ aus nicht erreichbar sind. (also: z₃)

University of Applied Sciences
HOCHSCHULE
FMDFN+LFFR

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

•4

Äquivalente Zustände

~ Von z₀ bzw. z₂ aus wird dieselbe Sprache akzeptiert.

z.B.
$$\omega = 0101$$

Damit können z_0 und z_2 zusammengelegt werden: mit L(A') = L(A)

A' ist Minimalautomat

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Zwischenzusammenfassung

- Automat: $A = (Z, \Sigma, \delta, z_0, E)$ $-\delta(z, a) = z' <=> z -> z' \text{ oder } z > z' \text{ oder } z ->_a z'$
- Konfiguration: $(z, \omega) \mid z \in Z \wedge \omega \in \Sigma^*$
- Übergangsrelation: (z, aω ') -> (z', ω') mit δ(z, a) = z'
 mehrfache Anwendung von -> : ->*
- Reguläre Sprache: Wird akzeptiert $-L(A) = \{\omega \in \Sigma^* \mid (\mathbf{z_0}, \omega) \rightarrow (\mathbf{z_e}, \mathbf{E}), \mathbf{z_e} \in E\}$
- äquivalente Automaten $A_1, A_2 : A_1 \equiv A_2 \quad L(A_1) = L(A_2)$
- Erreichbare Zustände:
 - $-\ [z]^* \subset Z\ z' \in [z]^*$: $(z,\,\omega)$ ->* $(z',\,\xi)$ für $\omega \in \Sigma^*$
 - Damit gilt: $z ∈ [z]^*$ für ω = ε

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

•5

Zwischenzusammenfassung

- Fehlerzustand z: [z]* ∩ E = Ø (kein "Weg" zum Endzustand)
- $L(A, z) = \{\omega \in \Sigma^* \mid (z, \omega) ->^* (z', \varepsilon), z' \in E\}$
 - A akzeptiert ω von Z aus
 - ~ als wenn z Startzustand wäre
- Minimalautomat (reduzierter Automat) A für L: L(A) = L und es gibt keinen Automaten A', der weniger Zustände als A hat
- Isomorphe Automaten A₁, A₂:
 - 2 Automaten A₁ = (Z₁, ∑₁, z₀₁, E₁) und A₂ = (Z₂, ∑₂, z₀₂, E₂) heißen isomorph, falls A₁, A₂ bis auf die Bezeichnung der Zustände "identisch" sind: Es gibt eine bijektive Funktion: f: Z₁ -> Z₂ mit f(z₀₁) = f(z₀₂), f(E₁) = E₂ z ->₂ z' <=> f(z) ->₂ f(z')

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Zwischenzusammenfassung

- Äquivalente Zustände:
 - z' und z sind äquivalent: z' \equiv z, falls L(A, z) = L(A, z') gilt. Damit wird von z bzw. z' aus dieselbe Sprache akzeptiert.
- · Äquivalenzklassen:
 - [z] = {z' ∈ Z | z' ≡ z} Menge der zu z äquivalenten Zustände (Äquivalenzrelation)
 - Es gilt: $z \in [z] \rightarrow s$. Algorithmus zur Minimierung

Beispiel

- $(z_0, 0101) \rightarrow (z_1, E)$
- $L(A) = {\omega 1 \mid \omega \in \Sigma^*}$ (reguläre Sprache)
- A, A' und A" sind äquivalent: $\mathsf{L}(\mathsf{A}) = \mathsf{L}(\mathsf{A}') = \mathsf{L}(\mathsf{A}'') = \{\omega 1 \mid \omega \in \Sigma^*\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

KONSTRUKTION VON MINIMALAUTOMATEN

@ Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

•7

Einführungsbeispiel

Beispiel 2

Konstruktion eines minimalen Automaten

Überflüssige Zustände entfernen

z₃ von z₀ nicht erreichbar, also überflüssig (-> Entfernen)

Äquivalente Zustände erkennen:

$$L(A, z0) = L(A, z2)$$
 also $z0 \equiv z2$

Äquivalente Zustände zusammenfassen

Es entstehen Automaten mit Zuständen, wobei jeder Zustand z eigentlich [z] repräsentiert:

isomorph zu obigem Automaten

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

2. Verfahren

	0	1		
z ₀ z ₁	z ₁ z ₂	Z ₂ Z ₃	markiei (z ₀ , z ₁)	rt markieren

HOCHSCHULE EMDEN-LEER noch nichts markiert

Alle Möglichkeiten bearbeitet, also (z₁, z₂) nicht markieren.

Ergebnis:						
		z _o	z_1	Z ₂	z ₃	
	\mathbf{z}_0	=				
	Z ₁	Х	=			
	Z ₂	Х	=	=		
•	Z ₃	Х	Х	Х	≡	

Vorgang wiederholen, bis alle Paare auf eine mögliche Nicht-Äquivalenz untersucht wurden.

Ergebnis: (z₁, z₂) ist nicht-nicht-äquivalent, also äquivalent.

Bildung der Äquivalenzklassen

$$[z_0] = \{z_0\},$$

 $[z_1] = \{z_1, z_2\} = [z_2],$

$$[\mathsf{z}_3] = \{\mathsf{z}_3\}$$

Algorithmus zur Minimierung eines DEA

Beispiel

$$\overline{A}$$
=(\overline{Z} , Σ , $\overline{\delta}$, $\overline{z_0}$, \overline{E})

$$\begin{array}{c}
0 \\
\hline
(z0) \\
\end{array}$$

$$\begin{array}{c}
1 \\
\end{array}$$

$$\begin{array}{c}
1 \\
\end{array}$$

$$\begin{array}{c}
\end{array}$$

$$\begin{array}{c}
0, 1 \\
\end{array}$$

$$\overline{Z} = \{[z_0], [z_{1,2}], [z_3]\} \quad \Sigma = \{0, 1\}$$

	0	1
[z ₀]	[z _{1,2}]	[z _{1,2}]
$[z_{1,2}]$	[z ₀]	[z ₃]
$[z_{3/E}]$	[z ₃]	[z ₃]

isomorph

Ein zu \overline{A} isomorpher Automat ist: $L(A) = L(\overline{A}) = L(A')$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

_

Übung

Konstruieren Sie den minimalen Automaten A!

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Algorithmus zur Bestimmung des minimalen Automaten

Algorithmus Not-Equivalent (NEQ)

Bei Eingabe $A = (Q, \Sigma, \delta, q_0, F)$:

- 1. Markiere alle Paare $\{p,q\}$ von Zuständen, von denen genau einer ein akzeptierender Zustand ist.
- 2. Solange es noch ein Paar $\{p,q\}$ von Zuständen p,q und ein Symbol $a \in \Sigma$ gibt, so dass das Paar $\{\delta(p,a),\delta(q,a)\}$ bereits markiert ist, markiere $\{p,q\}$.

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

24

Übung

 Konstruieren Sie den minimalen Automaten A' zum A

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Lösung zur vorherigen Aufgabe

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

2

Eine Klausuraufgabe

Minimieren Sie M

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Lösung

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

.

Yes we can...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de