Linear Classifiers

Notes based on EECS 498-007 / 598-005 Deep Learning for Computer Vision At University of Michigan

Previously: Image Recognition

Input: image

Al Magic Box

Output: Assign image to one of a fixed set of categories

cat bird deer dog truck

Previously: Challenges of Recognition

Viewpoints

Variation within class

Background blending

Illumination

Deformation

Occlusion

Previously: Data-driven approach, k-NN

Today: Linear Classifiers

Notes based on EECS 498-007 / 598-005 Deep Learning for Computer Vision At University of Michigan

Recall CIFAR10

airplane automobile bird cat deer dog frog horse ship truck

50,000 training images Each image is **32x32x3**

10,000 test images.

Parametric Approach

Image

Array of **32x32x3** numbers (3072 numbers total)

or weights

Image

Array of **32x32x3** numbers (3072 numbers total)

parameters

or weights

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

parameters or weights

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

or weights

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

Example for 2x2 image, 3 classes (cat / dog / ship)

Example for 2x2 image, 3 classes (cat / dog / ship)

Linear Classifier: Algebraic Viewpoint

Linear Classifier: Predictions are Linear

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Linear Classifier: Predictions are Linear

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$f(x, W) = Wx + b$$

Interpreting a Linear Classifier

Algebraic Viewpoint

$$f(x, W) = Wx + b$$

Interpreting a Linear Classifier

airplane automobile bird cat deer dog frog horse ship truck

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

plane

Interpreting a Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data

Example: horse template has two heads!

cat

bird

plane

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x, W) = Wx + b$$

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall: Perceptron couldn't learn XOR

X	У	XOR(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

So Far: Defined a linear score function

f(x, W) = Wx + b

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

Given a W, we can compute class scores for an image x.

But how can we actually choose a good W?

We need to choose good weights, $oldsymbol{W}$

3.42

4.64

2.65

5.1

2.64

5.55

-4.34

-1.5

-4.79

6.14

-3.45	-0.51
-8.87	6.04
0.09	5.31
2.9	-4.22
4.48	-4.19
8.02	3.58
3.78	4.49
1.06	-4.37
-0.36	-2.09
-0.72	-2.93
	-8.87 0.09 2.9 4.48 8.02 3.78 1.06 -0.36

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- Find a W that minimizes the loss function (optimization)

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: objective function; cost function)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

Loss for the dataset is average of perexample losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) (x_i is image, y_i is label), let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

dog

5.1

4.9

2.5

ship

-1.7

2.0

-3.1

Given an example (x_i, y_i) (x_i is image, y_i is label),

let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

dog

ship

Loss

3.2

5.1

-1.7

2.9

1.3

2.2

4.9

2.5

2.0

-3.1

Given an example (x_i, y_i) (x_i is image, y_i is label),

let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+ \max(0, -1.7 - 3.2 + 1)$

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

2.2

2.5

-3.1

cat

dog

ship

Loss

3.2

5.1

-1.7

2.9

1.3

4.9

2.0

Given an example (x_i, y_i) (x_i is image, y_i is label),

let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 1.3 - 4.9 + 1)$

 $+ \max(0, 2.0 - 4.9 + 1)$

 $= \max(0, -2.6) + \max(0, -1.9)$

= 0 + 0

= 0

cat

dog

3.2

5.1

1.3

2.2

2.5

4.9

-3.1

ship

Loss

-1.7

29

0

2.0

12.9

Given an example (x_i, y_i) (x_i is image, y_i is label),

let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+ \max(0, 2.5 - (-3.1) + 1)$

= max(0, 6.3) + max(0, 6.6)

= 6.3 + 6.6

= 12.9

cat

3.2

1.3

2.2

dog

5.1

4.9

2.5

ship

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) (x_i is image, y_i is label),

let $s = f(x_i, W)$ be scores,

then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over the dataset is:

$$L = (2.9 + 0.0 + 12.9) / 3$$

= 5.27

Problem: Linear Classifiers aren't that powerful

Original space

Visual Viewpoint

One template per class: Can't recognize different modes of a class

One solution: Feature Transforms

Original space

Nonlinear classifier in original space!

Feature transform

Image Features: Color Histogram

Ignores texture, spatial positions

Image Features: Histogram of Oriented Gradients (HoG)

- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Weak edges

Strong diagonal edges

Edges in all directions

Captures texture and position, robust to small image changes

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

Lowe, "Object recognition from local scale-invariant features", ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Bag of Words (Data-Driven)

Image Features

Image Features

Image Features vs Neural Networks

(**Before**) Linear score function: s = Wx

(Now) 2-layer Neural Network: $s = W_2 \max(0, W_1 x)$

or 3-layer Neural Network:

 $s = W_3 \max(0, W_2 \max(0, W_1 x))$

(**Before**) Linear score function: s = Wx

(Now) 2-layer Neural Network: $s = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: s = Wx

(Now) 2-layer Neural Network: $s = W_2 \max(0, W_1 x)$

Element (i, j) of W₁ gives the effect on h_i from x_j

Element (i, j) of W₂ gives the effect on s_i from h_i

(**Before**) Linear score function: s = Wx

(Now) 2-layer Neural Network: $s = W_2 \max(0, W_1 x)$

Element (i, j) of W₁ gives the effect on h_i from x_i

All elements of x affect all elements of h

Fully-connected neural network
Also "Multi-Layer Perceptron" (MLP)

Element (i, j) of W₂ gives the effect on s_i from h_j

All elements of h affect all elements of s

Linear classifier: One template per class

(**Before**) Linear score function:

Neural net: first layer is bank of templates; Second layer recombines templates

(**Before**) Linear score function:

Can use different templates to cover multiple modes of a class!

(**Before**) Linear score function:

"Distributed representation": Most templates not interpretable!

(**Before**) Linear score function:

Deep Neural Networks

Depth = number of layers

 $s = W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 x)))))$

Activation Functions

2-layer Neural Network

The function ReLU(z) = max(0, z) is called "Rectified Linear Unit"

$$s = W_2 \max(0, W_1 x)$$

This is called the **activation function** of the neural network

Q: What happens if we build a neural network with no activation function?

$$s = W_2 W_1 x$$

$$W_3 = W_2 W_1 \qquad \qquad s = W_3 x$$

A: We end up with a linear classifier!

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

max(0, x)

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural Net in <20 lines!

```
from tensorflow import keras
    from tensorflow.keras import layers
                                                                                     output layer
                                                                 input layer
    num_classes = 10
                                       Initialize network
                                                                          hidden layer
    input_shape = (28, 28, 1)
                                       and load data
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    model = keras.Sequential(
             keras.Input(shape=input shape),
10
                                                                        Define layers size and depth.
             layers.Flatten(),
11
                                                                       Use relu and softmax activation.
             layers.Dense(128, activation='relu'),
12
             layers.Dense(num_classes, activation="softmax"),
13
14
                               Select loss and gradient optimizer methods
15
    model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
16
    model.fit(x_train, y_train, batch_size=128, epochs=10, validation_split=0.1)
```

Select batch size, epochs and data split, then train (fit)

Our brains are made of Neurons

Our brains are made of Neurons

Biological Neurons: Complex connectivity patterns

https://www.scientificamerican.com/article/scientists-surprised-to-find-no-two-neurons-are-genetically-alike/

Neurons in a neural network:
Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

https://www.scientificamerican.com/article/scientists-surprised-to-find-no-two-neurons-are-genetically-alike/

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", ICCV 2019

Be very careful with brain analogies!

Biological Neurons: Complex connectivity patterns

https://www.scientificamerican.com/article/scientists-surprised-to-find-no-two-neurons-aregenetically-alike/

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex nonlinear dynamical system

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Space Warping Points not linearly separable in original space

x1

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

h2

Linear classifier in feature space gives nonlinear classifier in original space Feature transform: h = ReLU(Wx)h1 -10

Summary

Feature transform + Linear classifer allows nonlinear decision boundaries

Neural Networks as learnable feature transforms

Summary

From linear classifers to fully-connected networks

$$f = W_2 \max(0, W_1 x)$$

Linear classifier: One template per class

Neural networks: Many reusable templates

Summary

From linear classifers to fully-connected networks

$$f = W_2 \max(0, W_1 x)$$

Neural networks loosely inspired by biological neurons but be careful with analogies

