Stationary and steady state	MM/1 Infinity /FIFO problems	Introduction to small Samples	Uniform Distribution	Problems on Functions of Random variable	SLO-2 Prob	
Classification of states of a Markov Chain	M/M/1 Infinity /FIFO problems	Introduction to small samples	Applications of Geometric Distribution problems on Memory less property	Functions of Random variables	SLO-1 Func	\$.7
Problem on Classification of a Markov Chain	M/M/1 Infinity /FIFO problems	Applications of Difference of Means	Introduction MGF Mean, Variance of Geometric distribution	Problems on MGF	SLO-2 Probl	5
Problems on Classification of a Markov Chain	LS LQ WS.WQ	Problems on difference of Means	Fit a Poisson Distribution	Moment Generating Function	SLO-1 Mom	5
Irreducible, Non irreducible, a penod, Persistent, Non null Persistent	Introduction to M/M/1 Infinity/FIFO	Difference of Means	Applications of Poisson Distribution	Problems on Expectation and Variance	SLO-2 Probl	
Classification of States of a Markov Chain	Introduction to Queueing Theory and Applications. Kendall, notation	Large sample test-	MGF , Mean , Variance of Poisson distribution	Expectation and Variance	SLO-1 Expe	Ş
Problem solving using futional sheet 13	Problem solving using tutorial sheet 10	sing tutorial sheet 7	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 1	SLO-2 Probl	2
Initial Probability distribution problems Using Markov Chain	Problems on Chi-square test Independent- Attributes with standard distributions	Two Sample proportions	Introduction to Poisson Distribution	pdf and cdf applications	1	
Initial Probability distribution problems Using Markov Chain	Problems on Chi-square test Independent- Attributes	Student - t test Single Proportion	Fit a Binomial distribution	Continuous Random variables	SLO-1 Conti	<u>د</u>
Chapman-kolmogorov theorem definition	Problems on Chi square test -Goodness of fit	Large samples test	Applications of Binomial distribution	Probability mass function, cdf	SLO-2 Proba	-
One step Transition Probability N step transition Probability	Chi square test -Goodness of fit	Level of significance Critical region	MGF, Mean, Variance of Binomial distribution	Discrete and continuous Random variables	SLO-1 Discr	S-2
Past and Future - Step and State	Problems on F-test	One tailed test, two tailed test	Introduction to Binomial distribution	Conditional probability, Multiplication theorem	SLO-2 Condition	-
Markov Process and Introduction of a Markov Chain	Introduction to F-lest	Sampling distribution, Null Hypothesis, Alternate Hypothesis	Discrete Probability distribution	Probability Basic concepts and Axioms	SLO-1 Proba	<u>د</u>
12	12	12	12	12	n (hour)	Duration (hour)
. M H	M H - - - - -	3 85 80	illables and Queuing meory.	Sowing and analyzing the problems in random variables and Queunig meory	Outs fundion	5
	Ξ	85	using Markov chain rule	Sching and analysing the probability in uncertain situations using Markov chain rule		בו ה היי
. M L . H	M H	85	חכ	Solving Queuing problems using Kendall's notation	_	CL04:
. H W .	M H	3 85 80	irge and Small samples	Decision Models using sampling techniques in Large and Small samples	_	CLO-3:
- H - 1 M -	-	\dashv	Identifying Distribution and solving the problems in Discrete and Continuous Distribution	istribution and solving the problems i		CLO-2:
N	H	85	ndom variables	Solving problems on Discrete and Continuous Random variables	_	CLO-1:
Ethics Individual Communic Project Mg Life Long B PSO - 1	Engineerir Problem A Design & I Analysis, I Modern To Society &	Level of Ti	At the end of this course, learners will be able to:		Course Learning Outcomes (CLO):	Course
cation pt. & F	Develo Designool Us Cultur	Profici	n engineering problems.	Interpret random variables and Queuing theory in engineering problems.	Interpret ran	CLK-6:
inan	opmo n, Re age	ienc	ations using Monrovians	To construct chain of decisions from the past situations using Monrovians	To construct	CLR-5:
_	ent	loon	applications	To interpret the decision using Markov queueing applications	To interpret	CLR4:
	arch	n) 6)	To Assess the appropriate model and apply and soling any realistic problem situation to determine the probability	e appropriate model and apply and s	To Assess ti	CLR-3:
0 9 10 11 12 13 14	- V	pretical distributions	Gain the knowledge and acquire the application of distribution to find the probability using Theoretical distributions	Gain the knowledge and acquire the application of distril	Gain the kno	CLR-2:
Outcomes (PLO)	3	Learning	rightee	alliation prohability using random variables	Anniv and ex	CLR-1
			this page is to		Course I earning Rationale (CLR)	OLITAR
		Data Book / Codes/Standards Nil		tment Mathematics	Course Offering Department	ourse (
	Nii	Progressive Courses	Co-requisite Nil	18MAB102T	quisite 18M	Pre-requisite Courses
ω _Γ	Basic Sciences	Course Category	PROBABILITY AND QUEUEING THEORY	204T Course Name	18MAE204T	Code
4		, -		_	_	COLLEGE

S-12		9	2	. 7	5		လူ	နို
SLO-2	SLO-1	SL0-2	SL0-1	SLO-2	SLO-1	SLC-2	SL0-1	SLO-1 SLO-2
Applications of random variables in engineering	Problem solving using futonal sheet 3	Problems practice using chebychevs inequality	Applications of theby thevs inequality using distribution	Applications of chebychevs inequality	Formula and application of Tchebycheffs inequality	Introduction to treoretical distribution	Tohebycheffs inequality	Problem solving using lutorial sheet 2"
Applications of distribution to find the probability using Theoretical distributions	Problem solving using tutorial sheet 6	Practical applications of Normal distribution Problems of paired - t test	Applications of Normal distribution problems	Introduction to Normal distribution	Applications of Expenential distribution problems	Introduction . MGF Mean Variance of Exponential distribution	Applications of Uniform Distribution croblems	Problem solving using tutorial sheet 5
Applications of solving any realistic problem situation to determine the problebility	Problem solving using tutorial sheet 9	Problems of paired - t test.	Applications of paired - t test	Problems on difference of mean-small samples	Problems on difference of mean-small samples	Problems on single mean -small samples	Problems on single mean -small samples	Problem solving using tutorial sheet 8
Applications of Queueing decision models	Problem solving using tutorial sheet 12	Problems on Model (MMV1) : (K/FIFO)	Problems on Model (MMV1) : (K/FIFO)	Problems on Model (MM/1) : (K/FIFO)	Problems on Model (MMV1): (K/FIFO)	Effective arrival rate	Cepecity. Charactenstics of the Model (MMM/1) . (KFFIFO)	Problem solving using tutorial sheet 11 Single Server kinds with Finite System
Queueing decision models decisions from the past situations using Monrovians	Problem solving using tutorial sheet 15	Using Markovchains	Problems on Ergodiany Problems on Ergodia and Non Ergodia	Chain	Chain Chain Eroblems on Froodicity using Markov	Problems on Stationary and steady state Problems on Ergodicity using Markov	using Markov Chain	Problem solving using tutorial sheet 14

	רבאבו ס	2 2	7 19437	0.010	Ferdi	2511				Leaming Assessment		Resources	Learning			
Total	Create	Evaluate	Analyze	Apply	Understand	Remember	rever or marking	DIOUIL'S		sment		 Gross, D and Hai 	2 SC Ginta VKI	1 Veeraraian T. Fro		
100% 100% 100% 100%	10 70	20%		40%		40%		40 %	Theory	CLA-1 (10%				m.C.M. Fundament	Canoor Fundament	bability Statistics
							Practice	(10%)				als of Queuing theo	als of Mathematical	and Random Proce		
		30 %		40%		30%	Theory	OLA-	Conti			S.C. Gupta, V.K.Kapoor, Fundamentals of Mathematical Statistics. <i>9</i> ° ed Sultan Ohar Gross, D and Ham.C.M. Fundamentals of Queuing theory. John Wiley and Sons, 1985	Statistics 9 ed	Veeraraian T. Frobability Statistics and Random Processes. Tata Mc Graw Hill 1st Reprint 2004		
							Practice	CLA - 2 (15%)	Continuous Learning Assessment (50% weightage	nous Learning Asse		S.C. Gupta, V.K.Kapoor, Fundamentals of Mathematical Statistics. 9" ed Sultan Chand & Sons. 1999 Gross, D and Ham.C.M. Fundamentals of Queuing theory. John Wiley and Sons. 1985				
	1	30 %		40%		30%	Theory	CLA-	essment (but/a weig			Ċı	_	4.		
							Practice	CLA - 3 (15%)	ntage)			n.A.O., Probability	prentice Hall of India, New Delhi, 1984	edi K.S. Probability a		
		30 %		40%		30 %	Theory	CLA-4				Statistics and Queue	w Delhi, 1984	and Statistics with re		
0%	100 %					,	Practice	CLA -4 (10%)#				Allen A.O. Probability Statistics and Queueing theory, Academic Press		liability. Queueing a		
	30%		40% 30%			30%			Final Examination			nic Press		Trivedi K.S. Probability and Statistics with reliability. Queueing and Computer Science Applications		
100%	-	,					Practice		Final Examination (50% weightage)					ce Applications.		

= CL4 - 4 can be from any combination of these. Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

2 Dr Sncharan Snnwasan Wijdro Technologies snicharanms@gmail.com	1 Mr. V. Maheshwaran, CTS, Chennai, maheshwarani@yahoo.com	Experts from Industry	Course Designers
 Dr. Nanjundan, Bangalore University, nanzundan@gmail.com 	1 Dr. K. C. Sivakumar IIT. Madras, koskumar@itim.ac.in	Experts from Higher Technical Institutions	
2. Dr. V Srinwasan SRMIST	1. Dr. A. Govindarajan, SRMIST	Internal Experts	

2