Package 'STL2018'

May 22, 2020

• • • • • • • • • • • • • • • • • • • •
Type Package
Version 0.1.0
Date 2020-05-08
Title What the Package Does (Title Case)
Author Davis Berlind [aut, cre]
Maintainer Davis Berlind <davis.berlind@gmail.com></davis.berlind@gmail.com>
Description This package is an implementation of the methods described in Steorts, R.C., Tancredi, A., Liseo, B. Generalized Bayesian Record Linkage and Regression with Exact Error Propagation, PSD (2018). The methods implemented in this package enable the user to recreate the experiments described in this paper, and allow for further experimentation with joint record linkage and linear regression tasks.
License What license is it under?
Encoding UTF-8
LazyData true
Import BB, doParallel, foreach, magrittr, Matrix, mvnfast, parallel, pracma, tcltk
RoxygenNote 7.1.0
R topics documented: alpha_metropolis
beta_solve 4 data_tests 5 emp_dist 5 generate_alpha_prior 6 get_alpha_proposals 6
hitmiss

2 alpha_metropolis

alph	a_metropolis $Metropolis$ -Hastings update of distortion probability for ℓ th field.	
Index		18
	recursive_cluster	16
	recursiveRL	
	pyp_warnings	
	pyp_var	15
	pyp_solve	14
	pyp_optim	
	pyp_mean	13
	log_p_lambda	
	log_lm_cluster	11
	log_linkage_cluster	11
	log_joint_lm_cluster	10
	log_distortion_cluster	9
	lgratio	8
	lambda_prior_tests	8

Description

Implementation of the Metropolis-Hastings update step for the distortion probability α_{ℓ} . The default proposal distribution is a reflected random walk.

Usage

alpha_metropolis(current, linkage, field, thetas_1, a, b, proposal, drift)

Arguments

current	A float. The current value of α_{ℓ} in the Markov chain.
linkage	An integer vector. The cluster labels for each record.
field	A character vector. The values for the ℓ^{th} field of the records.
thetas_l	A matrix. The first column of thetas_l must contain all the possible values that the ℓ^{th} field can take (i.e. the unique values of field), and the second column must contain the corresponding frequencies of each value in the whole set of records.
a	A float. The α shape parameter of the beta prior for α_{ℓ} .
b	A float. The β shape parameter of the beta prior for α_{ℓ} .
proposal	A string. Specifies the proposal distribution to be used in generating a new value for α_ℓ . Currently only accepts "RRW" for reflected random walk.
drift	A float. A control parameter for tuning the variance of the proposal distribution. larger values will lead to less correlated proposals.

Value

The next value of α_ℓ in the Markov chain.

alpha_prior_tests 3

alpha_prior_tests

Tests for validity of alpha_pior *argument*.

Description

Both recursiveRL and regressionRL require an alpha_pior argument that encodes the beta prior on the distortion probabilites. alpha_prior_tests runs tests to make sure alpha_pior is a valid data structure.

Usage

```
alpha_prior_tests(key_vars, alpha_prior)
```

Arguments

key_vars A character vector. The names of the fields in the record data.

alpha_prior A list of lists. A list of beta distribution shape parameters representing the prior

for the distortion probabilities.

Value

Exception and error message if alpha_prior is invalid.

Details

alpha_pior must be a list of lists. Each list in alpha_pior must be named after an element of key_vars, and must contain two strictly positive numeric elements alpha and beta. Each element of alpha_pior can also include two additional parameters proposal and drift. proposal should be a string specifying the proposal distribution for each α_ℓ and drift should be a non-negative number specifying the variance of the proposal distribution. alpha_prior_tests runs tests to make sure alpha_prior is structured according to these standards.

See Also

alpha_metropolis for currently implemented values of proposal.

Other Prior Functions.: generate_alpha_prior()

Examples

4 beta_solve

```
proposal = "RRW", drift = 0.5))
```

alpha_prior_tests(key_vars, alpha_prior)

beta_optim

Optimization function for backsolving shape parameters for a beta prior.

Description

Optimization function for backsolving shape parameters for a beta prior.

Usage

```
beta_optim(par, mn, var)
```

Arguments

par Parameters to optimize over.

mn A float. The mean condition of the beta prior. Must be strictly positive.

var A float. The variance condition of the beta prior. Must be strictly positive.

Value

A vector of residuals.

beta_solve Solve for the shape parameters of beta distribution given mean and variance.

Description

beta_solve backsolves for α and β of a beta distribution given a mean and variance.

Usage

```
beta_solve(mn, var)
```

Arguments

mn A float. The mean condition of the beta prior. Must be strictly positive.

var A float. The variance condition of the beta prior. Must be strictly positive.

Value

```
A list. (\alpha, \beta)
```

Examples

```
beta_solve(mn = 2.6, var = 3.4)
```

data_tests 5

data_tests	Title

Description

Title

Usage

```
data_tests(data, key_vars)
```

Arguments

key_vars

emp_dist	Calculates empirical frequencies of each value in a collection of	
	records.	

Description

emp_dist takes a data.frame of records data and key_vars a vector of colmun names, then returns a list of data.frames (one for each key variable), each containing a column of values and a column of corresponding empirical frequencies.

Usage

```
emp_dist(data, key_vars)
```

Arguments

data A data.frame. The data containing the records.

key_vars A character vector. The names of the columns from data to use as key variables.

Value

A list of data.frames. Each list contains an index of values each key variable can take on and the corresponding empirical frequency.

6 get_alpha_proposals

generate_alpha_prior Generate prior for distortion probability α

Description

Given a vector of key variable names, generate_alpha_prior prompts the user to enter the parameters of the prior on the distortion probability. The list that generate_alpha_prior can then directly be used as the alpha_prior argument in either recursiveRL or regressionRL.

Usage

```
generate_alpha_prior(key_vars)
```

Arguments

key_vars

A character vector. The names of the fields in the record data.

Value

A formatted list encoding the prior for α

See Also

```
Other Prior Functions.: alpha_prior_tests()
```

Examples

```
key_vars <- c("fname_c1", "lname_c1", "by", "bm", "bd")
alpha_prior <- generate_alpha_prior(key_vars)</pre>
```

 ${\tt get_alpha_proposals}$

List the implemented proposal distributions for the distortion probability α .

Description

Returns a list of the proposal distributions that are currently implemented for generating new values of the distortion probability α in alpha_metropolis.

Usage

```
get_alpha_proposals(verbose = TRUE)
```

Arguments

verbose

A logical. If TRUE, the list of implemented proposal distributions will be printed

Value

A character vector of the implemented proposal distributions.

hitmiss 7

hitmiss	Likelihood for the \(\ell\) th field of the hit-and-miss model.
	· · · · · · · · · · · · · · · · · · ·

Description

hitmiss gives the likelihood of the ℓ^{th} field of a record taking the value v given that the true value for the field is v_true, the empirical frequency of v in all of the records is $\theta_{v,\ell}$, and the distortion probability for the ℓ^{th} field is α_{ℓ} .

Usage

```
hitmiss(v, v_true, theta, alpha)
```

Arguments

V	A string. The potential value for the ℓ^{th} field of the record that hitmiss calculates the likelihood for.
v_true	A string. The true value of the ℓ^{th} field of the record.
theta	A float. The empirical frequency of v in the set of records.
alpha	A float. The distortion probability for the ℓ^{th} field.

Value

The likelihood of v.

Details

This function is used in the Metropolis-Hastings update step for the linkage structure Λ .

Given that the true value for the ℓ^{th} field is v_true, the empirical frequency of v in all of the records is $\theta_{v,\ell}$, and the distortion probability for the ℓ^{th} field is α_{ℓ} , then the likelihood of v is given by

$$(1 - \alpha_{\ell})\delta(v, v_{true}) + \alpha_{\ell}\theta_{v,\ell},$$

where $\delta(v, v_{true}) = 1$ if $v = v_{true}$, and $\delta(v, v_{true}) = 0$ otherwise.

See Also

Other Cluster Likelihood Functions: log_distortion_cluster(), log_joint_lm_cluster(), log_linkage_cluster(), log_lm_cluster(), recursive_cluster()

8 Igratio

lambda_prior_tests

Tests for validity of lambda_pior argument.

Description

Both recursiveRL and regressionRL require an lambda_pior argument that encodes the prior on the linkage structure Λ . lambda_prior_tests runs tests to make sure lambda_pior is a valid data structure.

Usage

```
lambda_prior_tests(lambda_prior)
```

Arguments

lambda_prior

A list. A list containing the type of prior to use for the linkage structure and the corresponding parameters for the prior.

Value

Exception and error message if lambda_prior is invalid.

Details

lambda_prior must include an element named "prior" that contains a string specifying the prior to be used for the linkage structure. Currently the values 'uniform' and 'PYP' are supported. If 'prior' = 'PYP', then lambda_prior must also contain two numeric arguments 'nu' and 'sigma'. See pyp_mean and pyp_var for more detail.

Examples

lgratio

Calculate $\log \frac{\Gamma(a+b)}{\Gamma(a)}$.

Description

Calculate
$$\log \frac{\Gamma(a+b)}{\Gamma(a)}$$
.

Usage

```
lgratio(a, b)
```

log_distortion_cluster 9

Arguments

a, b A float. a > 0 and b > -a.

Value

$$\log \frac{\Gamma(a+b)}{\Gamma(a)}$$

See Also

Other PYP Functions: pyp_mean(), pyp_optim(), pyp_solve(), pyp_var(), pyp_warnings()

log_distortion_cluster

Joint cluster likelihood for the lth field.

Description

Given all the values for the ℓ^{th} field of the observed records in field, as well as the cluster membership for each record in linkage, log_alpha_cluster returns the joint log-likelihood of all the clusters for the ℓ^{th} field.

Usage

log_distortion_cluster(linkage, field, alpha_1, thetas_1)

Arguments

linkage An integer vector. The cluster labels for each record.

field A character vector. The values for the ℓ^{th} field of the records.

alpha_l A float. The distortion probability for the ℓ^{th} field.

thetas_1 A matrix. The first column of thetas_1 must contain all the possible values that

the ℓ^{th} field can take (i.e. the unique values of field), and the second column must contain the corresponding frequencies of each value in the whole set of

records.

Value

The joint cluster log-likelihood for the ℓ^{th} field.

Details

This function is used in the Metropolis-Hastings update step for the distortion probabilities α .

See Also

recursive_cluster for the actual recursion formula implemented for this function.

 $Other\ Cluster\ Likelihood\ Functions:\ hitmiss(), log_joint_lm_cluster(), log_linkage_cluster(), log_linkage_cl$

10 log_joint_lm_cluster

Usage

log_joint_lm_cluster(linkage, model_data, beta, sigma_y, sigma_x)

Arguments

linkage	An integer vector. The cluster labels for each record.
IIIIkage	All lifteger vector. The cluster labels for each record.
model_data	A data frame. The model frame of the regression. The first column must contain the outcome variable y and the remaining columns must contain the model covariates X .
beta	A numeric vector. The regression coefficients. Can also be a single float in the case of univariate regression.
sigma_data	A matrix. The variance-covariance matrix of the covariates. Must be symetric positive-definite. Can also be a strictly positive float in the case of univariate regression.
sigma_y	A float. The variance of the outcome variable y . Must be strictly positive.
sigma_x	A matrix. The variance-covariance matrix of the covariates. Must be symetric positive-definite. Can also be a strictly positive float in the case of univariate regression.

Value

The joint log-likelihood of (y, X).

Details

Let C_j be the cluster of records corresponding to the j^{th} true entity, then assuming that there are N_{pop} true entities represented in the records (i.e. there are N_{pop} unique elements of linkage), $\log_{joint_{m_cluster}}$

$$\sum_{j=1}^{N_{pop}} \log P\left([y,X]_{C_j} \mid \Lambda,\beta,\Sigma_{\widetilde{x}},\Sigma_{x|\widetilde{x}},\sigma^2_{y|\widetilde{x}}\right).$$

See Also

 $Other\ Cluster\ Likelihood\ Functions:\ hitmiss(), log_distortion_cluster(), log_linkage_cluster(), log_linkage_$

log_linkage_cluster 11

|--|

Description

Given a data.frame of records for a specific cluster, log_recursive_cluster loops over each key variable (each column of the cluster), calls recursive_cluster, and returns the sums of the log-likelihoods for each field.

Usage

```
log_linkage_cluster(cluster, thetas, alphas, key_vars)
```

Arguments

cluster A data.frame.	All of the records and	their values for	each key variable for a
-----------------------	------------------------	------------------	-------------------------

specific cluster.

thetas A list of matrices. Each matrix corresponds to a key variable and contains two

columns: 1) all of the values each key variable can take in the data, and 2) the

corresponding empirical frequency of each value.

alpha A data.frame. Contains a column key_vars with each of the key variables, and

a column alpha with the corresponding distortion probabilities.

Value

The joint log-likelihood of the provided cluster.

Details

This function is used in the Metropolis-Hastings update step for the linkage structure Λ .

See Also

recursive_cluster for the actual recursion formula implemented for this function.

Other Cluster Likelihood Functions: hitmiss(), log_distortion_cluster(), log_joint_lm_cluster(), log_lm_cluster(), recursive_cluster()

log_lm_cluster	Conditional regression log-likelihood for single cluster.

Usage

```
log_lm_cluster(cluster, B, Sigma)
```

Arguments

cluster	A data.fram. The model.frame of the regression corresponding to the records of a particular cluster. The first column must contain the outcome variable y and the remaining columns must contain the model covariates X .
В	A matrix. The first block component of the variance-covariance matrix.
Sigma	A matrix. The first block component of the variance-covariance matrix.

12 log_p_lambda

Value

The conditional log-likelihood of the given cluster.

Details

Let C_j be the cluster of records corresponding to the j^{th} true entity, then assuming that there are n records in C_j , and p covariates in X, $\log_{m} cluster$ calculates

$$\log P\left([y,X]_{C_j} \mid \beta, \Sigma_{\widetilde{x}}, \Sigma_{x \mid \widetilde{x}}, \sigma^2_{y \mid \widetilde{x}}\right) = \log N_{n(p+1)}\left(\mathbf{0}, \ (\mathbf{1}_n \mathbf{1}'_n) \otimes \mathbf{B} + \mathbf{I}_n \otimes \Sigma\right).$$

where $\mathbf{B} =$

$$\begin{array}{cccc} & & \beta' \Sigma_{\widetilde{x}} \beta & \beta' \Sigma_{\widetilde{x}} & | \\ & & \Sigma_{\widetilde{x}} \beta & \Sigma_{\widetilde{x}} & | \end{array}$$

and $\Sigma =$

$$\begin{array}{ccc} \sigma^2_{y|\widetilde{x}} & \mathbf{0} \\ \mathbf{0} & \Sigma_{x|\widetilde{x}}. \end{array}$$

See Also

Other Cluster Likelihood Functions: hitmiss(), log_distortion_cluster(), log_joint_lm_cluster(), log_linkage_cluster(), recursive_cluster()

log_p_lambda

Log prior probability of linkage struture

Description

 \log_p _lambda calculates $\log P(\lambda_{ij} \mid \lambda_{-(ij)})$ where λ_{ij} is the cluster label of the j^{th} record in the i^{th} database.

Usage

log_p_lambda(lambda, record, linkage, lambda_prior)

Arguments

lambda An integer. The cluster label corresponding to the record in the record row of

the data.

record An integer. The row corresponding to the current record being updated in the

data.

linkage An integer vector. The current cluster labels for each record.

lambda_prior A list. A list containing the type of prior to use for the linkage structure and the

corresponding parameters for the prior.

Value

$$\log P(\lambda_{ij} \mid \lambda_{-(ij)})$$

pyp_mean 13

pyp_mean

Calculate the mean of a Pittman-Yor process.

Description

Given N entities (in this case records), pyp_mean calculates the expected number of clusters for a Pittman-Yor process with parameters σ and ν ,

$$\frac{\nu}{\sigma} \left[\frac{(\nu + \sigma)_{N\uparrow}}{\nu_{N\uparrow}} - 1 \right]$$

where $x_{s\uparrow} = \frac{\Gamma(x+s)}{\Gamma(x)}$.

Usage

```
pyp_mean(nu, sigma, N)
```

Arguments

nu, sigma A float. PYP parameters such that $\sigma \in [0,1)$ and $\nu > -\sigma$ or $\sigma < 0$ and

 $\nu > m|\sigma|$ for some integer m.

N An integer. The number of records.

Value

Mean of PYP prior.

See Also

Other PYP Functions: lgratio(), pyp_optim(), pyp_solve(), pyp_var(), pyp_warnings()

pyp_optim

Optimization function for backsolving parameters of a PYP prior.

Description

Gives non-linear equations for ν and σ in terms of a known mean, variance, and N.

Usage

```
{\tt pyp\_optim(par, mn, var, N)}
```

Arguments

par Parameters to optimize over.

mn An integer. The mean condition of the PYP prior.

var A float. The variance condition of the PYP prior. Must be strictly positive.

N An integer. The number of records.

14 pyp_solve

Value

A vector of residuals.

See Also

```
Other PYP Functions: lgratio(), pyp_mean(), pyp_solve(), pyp_var(), pyp_warnings()
```

pyp_solve

Solve for parameters a PYP prior given a mean, variance, and N.

Description

pyp_solve finds the parameters ν and σ that give a PYP prior given the mean mn, variance var, for a given number of entities N.

Usage

```
pyp_solve(mn, var, N)
```

Arguments

mn An integer. The mean condition of the PYP prior.

var A float. The variance condition of the PYP prior. Must be strictly positive.

N An integer. The number of records.

Value

```
A list. (\sigma, \nu).
```

See Also

```
Other PYP Functions: lgratio(), pyp_mean(), pyp_optim(), pyp_var(), pyp_warnings()
```

Examples

```
pyp_solve(mn = 450, var = 500, N = 500)
```

pyp_var 15

pyp_var

Calculate the variance of a Pittman-Yor process.

Description

Given N entities (in this case records), pyp_var calculates the variance of the number of clusters for a Pittman-Yor process with parameters σ and ν ,

$$\frac{\nu(\nu+\sigma)}{\sigma^2} \frac{(\nu+2\sigma)_{N\uparrow}}{\nu_N \uparrow} - \left[\frac{\nu}{\sigma} \frac{(\nu+\sigma)_{N\uparrow}}{\nu_{N\uparrow}} \right]^2 - \frac{\nu}{\sigma} \frac{(\nu+\sigma)_{N\uparrow}}{\nu_{N\uparrow}}$$

where $x_{s\uparrow} = \frac{\Gamma(x+s)}{\Gamma(x)}$.

Usage

```
pyp_var(nu, sigma, N)
```

Arguments

nu, sigma A float. The PYP parameters such that $\sigma \in [0,1)$ and $\nu > -\sigma$ or $\sigma < 0$ and

 $\nu > m|\sigma|$ for some integer m.

N An integer. The number of records.

Value

Variance of PYP prior.

See Also

Other PYP Functions: lgratio(), pyp_mean(), pyp_optim(), pyp_solve(), pyp_warnings()

pyp_warnings

PYP function parameter tests.

Description

PYP function parameter tests.

Usage

```
pyp_warnings(nu, sigma, N)
```

Arguments

nu, sigma A float. PYP parameters such that $\sigma \in [0,1)$ and $\nu > -\sigma$ or $\sigma < 0$ and

 $\nu>m|\sigma|$ for some integer m.

N An integer. The number of records.

recursive_cluster

Value

Warning if broken parameters are provided.

See Also

```
Other PYP Functions: lgratio(), pyp_mean(), pyp_optim(), pyp_solve(), pyp_var()
```

recursiveRL

Title

Description

Title

Usage

```
recursiveRL(
  data,
  key_vars,
  sample_size,
  burnin = 0,
  thin = 1,
  n_chains = 1,
  progressbar = TRUE,
  alpha_init = NULL,
  alpha_prior,
  alpha_proposal = "RRW",
  alpha_drift = 0.05,
  lambda_init = NULL,
  lambda_prior
)
```

Arguments

lambda_prior

recursive_cluster

Cluster likelihood for the ℓ th field.

Description

Given the ℓ^{th} field of a cluster as a vector along with the empirical frequencies θ_ℓ and distortion probability, recursive_cluster uses a recursive formula to calculate the joint likelihood for the q^{th} cluster v_{C_q} .

Usage

```
recursive_cluster(cluster, thetas_1, alpha_1)
```

recursive_cluster 17

Arguments

cluster A vector. The vector of strings/factors for the ℓ^{th} field of the selected cluster.

thetas_l A matrix. The first column of thetas_l must be the possible values that cluster,

and the second column should contain the corresponding frequencies of each

value in the whole set of records.

alpha_1 A float. The distortion probability of the ℓ^{th} field.

Value

The joint likelihood of the ℓ^{th} field of a cluster.

Details

This function is used in the Metropolis-Hastings update step for the linkage structure Λ .

The recursive formula for $P(v_{C_q,\ell} \mid \alpha_\ell, \lambda)$ is given by

$$P(v_{C_q,\ell} \mid \alpha_\ell, \lambda) = \theta_{v_{ij\ell}},$$

if
$$v_{ij\ell} = v_{C_q,\ell}$$
, and

$$P(v_{C_q,\ell} \mid \alpha_\ell, \lambda) =$$

$$(1 - \alpha_{\ell}) \left[\prod_{(i',j') \in C_{q \setminus (ij)}} (1 - \alpha_{\ell}) \delta(v_{i'j'\ell}, v_{ij\ell}) + \alpha_{\ell} \theta_{v_{i'j'},\ell} \right] \theta_{v_{ij\ell}} + \alpha_{\ell} \theta_{v_{ij\ell}} P(V_{C_q \setminus (ij),\ell} \mid \alpha_{\ell}, \lambda)$$

otherwise.

See Also

Other Cluster Likelihood Functions: hitmiss(), log_distortion_cluster(), log_joint_lm_cluster(), log_linkage_cluster(), log_lm_cluster()

Index

```
alpha_metropolis, 2, 3, 6
alpha_prior_tests, 3, 6
beta_optim, 4
beta_solve, 4
data_tests, 5
emp_dist, 5
generate_alpha_prior, 3, 6
{\tt get\_alpha\_proposals}, 6
hitmiss, 7, 9–12, 17
lambda_prior_tests, 8
lgratio, 8, 13-16
log_distortion_cluster, 7, 9, 10-12, 17
log_joint_lm_cluster, 7, 9, 10, 11, 12, 17
log_linkage_cluster, 7, 9, 10, 11, 12, 17
log_lm_cluster, 7, 9-11, 11, 17
log_p_lambda, 12
pyp_mean, 8, 9, 13, 14–16
pyp_optim, 9, 13, 13, 14-16
pyp_solve, 9, 13, 14, 14, 15, 16
pyp_var, 8, 9, 13, 14, 15, 16
pyp_warnings, 9, 13–15, 15
recursive_cluster, 7, 9–12, 16
recursiveRL, 3, 6, 8, 16
regressionRL, 3, 6, 8
```