

ECUACIONES DIFERENCIALES ORDINARIAS

REDUCCIÓN DE ORDEN, TEORIA DE SOLUCIONES, ECUACIÓN DE ABEL

Actividad de aprendizaje #9

Ejercicios de teoría de soluciones y ecuación de Abel

Desarrollo:

En cada uno de los siguientes ejercicios, verificar que el conjunto dado es un conjunto fundamental de soluciones de la ecuación proporcionada, y después encontrar la solución particular que satisface las condiciones iniciales dadas

$$1.y'' + 4y' = 0$$
; $\{y_1 = \cos 2x, y_2 = \sec 2x\}$, con $y(0) = 1, y'(0) = 4$

$$2.y''' - 2y'' + 5y' = 0; \{y_1 = 1, y_2 = e^x \cos 2x, y_3 = e^x \sin 2x\},$$

con
$$y(0) = 0$$
, $y'(0) = 1$, $y''(0) = -1$

Resolver las siguientes ecuaciones mediante la fórmula de Abel

3.
$$x^2y'' - xy' - 3y = 0$$
; $y_1 = 1/x$

4.
$$x^2y'' + 8xy' + 12y = 0$$
; $y_1 = x^{-3}$

Resolver las siguientes ecuaciones mediante la fórmula de Liouville

5.
$$xy'' + 2y' + xy = 0$$
"; $y_1 = \frac{senx}{x}$

6.
$$xy'' + (x-1)y'-y=0;$$
 $y_1 = e^{-x}$