ABSTRACT OF THE DISCLOSURE

In correcting the sound field, the loudspeakers 6pt to 6_{WF} are sounded by the noise. The attenuation factors of the inter-band attenuators ATF_{11} to ATF_{ki} for adjusting gains of the band-pass filters BPF_{11} to BPF_{ki} to the frequency in respective channels are corrected based on detection results of the reproduced sounds of the loudspeakers 6FL to 6WF. Then, the attenuation factors of the channel-to-channel attenuators ATG1 to ATG5 are corrected based on the detection results of the reproduced sounds of the loudspeakers 6_{FL} to 6_{WF} . Then, the delay times of the delay circuits DLY1 to DLY5 are corrected based on the detection results of the reproduced sounds of the loudspeakers 6_{FL} to 6_{WF} . Then, the attenuation factor of the channel-to-channel attenuator ATGk is corrected based on the detection result of the reproduced sound of the loudspeaker 6_{NF} as the subwoofer, whereby the levels of the reproduced sounds reproduced by the loudspeakers 6_{FL} to 6_{WF} are adjusted to be made flat over the audio frequency band.

FTG.1:

- (1) sound source 1
- (2) signal processing circuit 2
- (3) noise generator 3
- (4) D/A converter 4_{FL}, 4_{FR}, 4_C, 4_{RL}, 4_{RR}, 4_{WF}, 10
- (5) amplifier 5_{EL} , 5_{ER} , 5_{C} , 5_{RL} , 5_{RR} , 5_{WE} , 9
- (6) A/D converter 10

FIG.2:

- (1) noise generator 3
- (2) attenuator ATF₁₁, ATF₁₂ to ATF₁₃, ATF_{k1}, ATF_{k2}, ATF_{k1}, ATG₁, ATG₂, ATG₃, ATG₄, ATG₅, ATG_k
- (3) delay circuit DLY_1 , DLY_2 , DLY_3 , DLY_4 , DLY_5 , DLY_k

FIG.3:

- (1) frequency characteristic correcting portion 11
- (2) channel-to-channel level correcting portion 12
- (3) phase characteristic correcting portion 13
- (4) flatness correcting portion 14
- (5) system controller MPU

FIG.4:

- middle/high frequency bandprocessing portion (except subwoofer) 15a
- (2) low frequency band processing portion (except subwoofer) 15b
- (3) subwoofer low frequency band processing portion (only subwoofer) 15c

(4) calculating portion 15d

FIG. 5:

- (1) logarithmic frequency (kHz)
- (2) gain (dB)
- (3) low frequency band
- (4) middle/high frequency band

FIG.6:

- (1) logarithmic frequency (kHz)
- (2) power (dB)
- (3) low frequency band
- (4) total power of loudspeakers 6_{EL} to 6_{WE}
- (5) power of loudspeakers 6FL to 6RR
- (6) power of a loudspeaker 6ws

FIG.7:

- (1) front left-side loudspeaker 6FL
- (2) center loudspeaker 6c
- (3) front right-side loudspeaker 6_{ER}
- (4) rear left-side loudspeaker 6RL
- (5) subwoofer 6wr
- (6) rear right-side loudspeaker 6RR

FIG. 8:

- (1) start
- (2) frequency characteristic correcting process (S10)
- (3) channel-to-channel level correcting process (S20)
- (4) phase characteristic correcting process (S30)

- (5) flatness correcting process (S40)
- (6) end

FIG.9:

- (1) start
- (2) initialize the attenuators (S100)
- (3) measure the sound field characteristic (S104)
- (4) set a target curve (S106)
- (5) calculate adjusted values Fn(x, J) (S110)
- (6) normalizing process (S120)
- (7) calculate the attenuation factors SFxj, adjust the attenuation factors of the inter-band attenuators (S126)
- (8) end

FIG.10

- (1) start
 - (2) initialize the attenuators (S200)
 - (3) measure the sound field characteristic (S204)
 - (4) Have processes of the channels 1 to 5 been completed x=5 ? (S208)
 - (5) set target data (S210)
 - (6) calculate adjusted values of the channel-to- channel attenuators (S212)
 - (7) adjust the channel-to-channel attenuators (S214)
 - (8) return

FIG. 11:

- (1) start
- (2) initialization (S300)
- (3) measure the sound field characteristic (S304)
- (4) Have processes of all channels been completed x=k ? (S308)
- (5) calculate delay times (S310)
- (6) calculate the average delay time (S316)
- (7) adjust the delay circuits (S318)
- (8) return

FIG.12:

- (1) start
- (2) set parameters (S400)
- (3) set target data (S402)
- (4) initialize the attenuator on the subwoofer channel (S404)
- (5) measure the sound field characteristic (middle/high frequency band of 5 channels) (\$406)
- (6) measure the sound field characteristic (low frequency band) (\$408)
- (7) measure the sound field characteristic (only subwoofer) (S410)
- (8) calculate the attenuator adjusted value on the subwoofer channel (S412)
- (9) adjust the attenuator on the subwoofer channel (S414)
- (10) return