CLAIM AMENDMENTS

1-30. (canceled)

6

the aperture.

1	31. (previously presented) A chamber liner apparatus for covering a portion of a cylindrical side
2	wall of a plasma chamber, comprising:
3	a cylindrical liner having cylindrical inner and outer surfaces;
4	wherein the liner includes an aperture extending between said inner and outer surfaces;
5	wherein the outer surface of the liner includes a recess contiguous with the aperture; and
6	wherein the recess does not extend through the liner to the inner surface of the liner.
1	32. (previously presented) Apparatus according to claim 31, wherein:
2	the aperture and the recess are each characterized by a respective circumferential width
3	dimension along the circumference of the liner; and
4	the recess has a circumferential width equal to or greater than the circumferential width of
5	the aperture.
1	33. (previously presented) Apparatus according to claim 31, wherein the recess extends from the
2	aperture to one end of the cylindrical liner.
1	34. (previously presented) Apparatus according to claim 31, wherein:
2	the recess extends from the aperture to one end of the cylindrical liner;
3	the aperture and the recess are each characterized by a respective circumferential width
4	dimension along the circumference of the liner; and
5	the recess has a circumferential width equal to or greater than the circumferential width of

1	35. (previously presented) Apparatus according to claim 31, wherein:
2	the cylindrical liner is characterized by a longitudinal axis;
3	the aperture has an axial height dimension parallel to said longitudinal axis and a
4	circumferential width dimension along the circumference of the liner; and
5	the circumferential width of the aperture is much larger than the axial height of the aperture.
1	36. (previously presented) Apparatus according to claim 31, further comprising:
2	an arcuate door having a radially inner surface dimensioned so as to permit the radially inner
3	surface of the door to move between a first position at which the radially inner surface of the door
4	covers the aperture and a second position at which the entire radially inner surface of the door is
5	within the recess.
1	37. (previously presented) Apparatus according to claim 31, wherein:
2	the cylindrical liner is characterized by first and second ends and a longitudinal axis;
3	the aperture has first and second opposite sides respectively facing the first and second ends
4	of the liner;
5	the recess includes first and second portions respectively adjacent to the first and second
6	sides of the aperture;
7	the radially outer surface of the first portion of the recess is beveled so that its radial distance
8	from the longitudinal axis of the liner decreases progressively from adjacent the aperture toward the
9	first end of the liner; and
0	the radially outer surface of the second portion of the recess is beveled so that its radial
1	distance from the longitudinal axis of the liner increases progressively from adjacent the aperture
2	toward the second end of the liner.
1	38. (previously presented) Apparatus according to claim 37, wherein:
2	the first portion of the recess has a minimum radial distance from the longitudinal axis of the
3	liner that is substantially less than the maximum radial distance of the second portion of the recess
4	from the longitudinal axis of the liner.

1	39. (previously presented) Apparatus according to claim 37, further comprising:
2	an arcuate door having a radially inner surface extending between a first end and a second
3	end of the door;
4	wherein the radially inner surface of the door adjacent the first end is beveled so as to be
5	congruent with the radially outer surface of the first portion of the recess; and
6	wherein the radially inner surface of the door adjacent the second end is beveled so as to be
7	congruent with the radially outer surface of the second portion of the recess.
1	40. (previously presented) A chamber liner apparatus for covering a portion of a cylindrical side
2	wall of a plasma chamber, comprising:
3	a cylindrical liner characterized by first and second ends, a longitudinal axis, a radially inner
4	surface, and a radially outer surface;
5	wherein the liner includes an aperture extending between the radially inner and outer surface
6	of the liner, the aperture having first and second opposite sides respectively facing the first and
7	second ends of the liner, and the liner having first and second portions respectively adjacent to the
8	first and second sides of the aperture;
9	wherein the radially outer surface of the first portion of the liner is beveled so that its radial
0	distance from the longitudinal axis of the liner decreases progressively from adjacent the aperture
1	toward the first end of the liner; and
2	the radially outer surface of the second portion of the liner is beveled so that its radial
3	distance from the longitudinal axis of the liner increases progressively from adjacent the aperture
4	toward the second end of the liner.
1	41. (currently amended) Apparatus according to claim 40, wherein:
2	the radially outer surface of the first portion of the liner has a minimum radial distance from
3	the longitudinal axis of the liner that is substantially less than the maximum radial distance of the of

1

4

the radially outer surface of the second portion of the liner from the longitudinal axis of the liner.

1	42. (previously presented) Apparatus according to claim 40, further comprising:
2	an arcuate door having a radially inner surface extending between a first end and a second
3	end;
4	wherein the first end of the radially inner surface of the door is beveled so as to be congruent
5	with the radially outer surface of the first portion of the liner; and
6	wherein the second end of the radially inner surface of the door is beveled so as to be
7	congruent with the radially outer surface of the second portion of the liner.
1	43. (currently amended) A slit valve door for a plasma chamber, comprising:
2	an arcuate door having a radially inner surface extending between a first end and a second
3	end of the door;
4	wherein the radially inner surface of the door adjacent the first end is beveled so that the
5	radially innermost portion of said radially inner surface is at adjacent the first end of the door; and
6	wherein the radially inner surface of the door adjacent the second end is beveled so that the
7	radially outermost portion of said radially inner surface is at adjacent the second end of the door.
1	44. (new) A slit valve door for a plasma chamber, comprising:
2	an arcuate door having a radially inner surface extending between a first end and a second
3	end of the door, wherein the first end and the second end are at opposite ends of the longitudinal axis
4	of the door;
5	wherein the radially inner surface of the door includes a first portion adjacent said first end
6	that is beveled so that said first portion of the inner surface includes the radially innermost portion of
7	said inner surface; and
8	wherein the radially inner surface of the door includes a second portion adjacent said second
9	end that is beveled so that said second portion of the inner surface includes the radially outermost
10	portion of said inner surface.
1	45. (new) Apparatus according to claim 31, wherein:
2	the cylindrical liner is characterized by a longitudinal axis;

the cylindrical liner is characterized by a longitudinal axis;

3	the cylindrical liner comprises first and second ends at opposite ends of the longitudinal axis
4	of the cylindrical liner;
5	the aperture has first and second opposite sides respectively facing the first and second ends
6	of the cylindrical liner; and
7	the recess includes first and second portions respectively contiguous with the first and second
8	sides of the aperture.
1	46. (new) Apparatus according to claim 31, wherein:
2	the cylindrical liner is characterized by a longitudinal axis;
3	the cylindrical liner comprises first and second ends at opposite ends of the longitudinal axis
4	of the cylindrical liner;
5	the aperture has first and second opposite sides respectively facing the first and second ends
6	of the cylindrical liner; and
7	the recess is contiguous with the entire first side of the aperture.
1	47. (new) Apparatus according to claim 46, wherein:
2	the recess extends from the first side of the aperture to the first end of the cylindrical liner.
1	48. (new) Apparatus according to claim 46, wherein:
2	the aperture and the recess are respectively characterized by a respective circumferential
3	width dimension along the circumference of the liner; and
4	the recess has a circumferential width equal to or greater than the circumferential width of
5	the aperture.