# Combinatoire et dénombrement

\*\*\*

# 1. Raisonnement par récurrence



Peano 1858/1932

# Axiome de récurrence

Soit  $P_n$  une proposition relative à l'entier n et  $n_0$  un entier.

- Initialisation : si la proposition  $P_{n_0}$  est vraie,
- Hérédité : et si la véracité de la proposition  $P_k$  avec  $k \ge n_0$  implique que la propriété  $P_{k+1}$  soit vraie alors pour tout entier naturel  $n \ge n_0$  la proposition  $P_n$  est vraie.

#### Remarques.

- La proposition  $P_n$  peut se traduire par une égalité, une inégalité, une affirmation ...
- Les conditions d'initialisation et d'hérédité sont **indispensables** (voir contre-exemples en exercices).
- La condition d'hérédité est une **implication**, on *suppose* que  $P_k$  est *vraie* PUIS on montre que  $P_{k+1}$  l'est également.

# Mini-exercices.

| 1. | Soit la suite $(u_n)$ définie par $u_0 = 3$ et pour tout entier naturel $n$ par $u_{n+1} = 3u_n - 2$ . Démontrons, par récurrence, que pour tout entier naturel $n$ , |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $u_n = 2 \times 3^n + 1.$                                                                                                                                             |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |
|    |                                                                                                                                                                       |

| 2. | Démontrer par récurrence que pour tout entier naturel non nul : |
|----|-----------------------------------------------------------------|
|    | $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$                          |
|    | i=1 $2$                                                         |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |
|    |                                                                 |

2

CHAPITRE 1. COMBINATOIRE ET DÉNOMBREMENT

| 3. | Soit a un réel strictement positif.                                                       |
|----|-------------------------------------------------------------------------------------------|
|    | Démontrons que : $\forall n \in \mathbb{N}, (1+a)^n \ge 1 + na$ (Inégalité de Bernoulli). |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |
|    |                                                                                           |

Remarque. Cette inégalité nous sera très utile dans le prochain chapitre.

# 2. Principe additif, multiplicatif

Soit m et n deux entiers naturels. E et F ont respectivement n et m éléments. Soit k un entier naturel.

# 2.1 Principe additif et multiplicatif

Propriété 1. — Principe additif —

Si E et F sont **disjoints** alors le nombre d'éléments de  $E \cup F$  est ..........

```
Exemple : soit E = \{a; b\} et F = \{1; 2; 3\}.
E et F sont disjoints, n = \ldots et m = \ldots donc E \cup F est composée de \ldots éléments.
On a E \cup F = \{\ldots; \ldots; \ldots; \ldots\}.
```

**Définition 1.** Un couple de deux éléments a et b de E est la donnée de ces deux éléments dans un ordre particulier. On le note (a;b). De la même façon, un triplet de trois éléments de E est la donnée de ces trois éléments dans un ordre particulier. On le note (a;b;c).

**Définition 2.** Le **produit cartésien** de E et F noté  $E \times F$  est l'ensemble des couples (e; f) tels que  $e \in E$  et  $f \in F$ .

Propriété 2. Principe multiplicatif :  $E \times F$  est composé de . . . éléments.

## 2.2 Dénombrement des k-uplets

**Définition 3.** Un k-uplet de E est une liste ordonnée  $(e_1; e_2; \ldots; e_k)$  de k éléments de E. On note  $E^k$  l'ensemble des k-uplets de E.

**Exemple :** un code de carte bancaire est un .......... de  $E = {\ldots; \ldots; \ldots; \ldots}$ .

Propriété 3. Soit E un ensemble de n éléments. Le nombre de k-uplets de E est ...........

**Exemple:** soit  $E = \{a; b\}$ . Puisque n = 2, le nombre de 3-uplets est .....:



# 2.3 Nombre de parties d'un ensemble

**Définition 4.** Une partie de E est un ensemble d'éléments de E.

Propriété 4. Le nombre de parties de E est  $2^n$ .

## **Démonstration**

Soit  $E=(e_1\,;\,e_2\,;\,\ldots\,;\,e_n)$ . On associe à chaque partie P de E un unique n-uplet de l'ensemble  $[0\,;\,1]$  de la manière suivante : pour tout entier i entre 1 et n, on note 1 si  $e_i$  est dans P et 0, sinon, et réciproquement (code binaire). Par exemple, on associe à  $\{e_1\,,\,e_3\}$  le n-uplet  $\{1\,,0\,,1\,,0\,,\ldots\,,0\}$  :  $\{e_1\,,\,e_3\} \mapsto \{1\,,0\,,1\,,0\,,\ldots\,,0\}$ . Ainsi, le nombre de parties de E est égal au nombre de n-uplets de l'ensemble  $\{0\,;\,1\}$ , c'est-à-dire  $2^n$ .

# 3. Dénombrement des k-uplets d'éléments distincts

Soit k et n deux entiers naturels tels que  $1 \le k \le n$  et E un ensemble à n éléments.

# 3.1 Nombre de k-uplets d'éléments distincts

Définition 5. On appelle k-uplet d'éléments distincts de E un k-uplet de E pour lequel tous ses éléments sont distincts.

**Exemple :** soit  $E = \{a \; ; \; b \; ; \; c \; ; \; d\}.$ 

(a;b;c) est un 3-uplet d'éléments distincts de E.

En revanche ...... n'en est pas un car l'élément b est répété.

Propriété 5. Le nombre de k-uplets d'éléments distincts de E est égal à :

$$n(n-1)(n-2)\dots(n-k+1)$$



Exemple: lors d'une course de 100 m disputée par 9 athlètes, il y a ...... podiums possibles.

#### 3.2 Factorielle d'une entier naturel

**Définition 6.** Soit n un entier naturel non nul. On appelle factorielle n, noté n!, le produit de tous les entiers naturels entre 1 et n. Ainsi :

$$n! = 1 \times 2 \times 3 \times 4 \times \dots \times n$$

**Exemples :**  $5! = \dots \text{ et } (n+1)! = \dots$ 

Propriété 6. Le nombre de k-uplets d'éléments distincts de E est égal à



| Démonstration |  |
|---------------|--|
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |
|               |  |

# 3.3 Nombre de permutations

**Définition 7.** Une *permutation* d'un ensemble E a n éléments est un n-uplet d'éléments *distincts* de E.

Propriété 7. Le *nombre de permutations* de *E* est ...... soit ......

**Exemple :** le classement des 20 équipes du championnat de football de ligue 1 est une permutation de l'ensemble des 20 équipes.

# 4. Combinaisons

Soit k et n deux entiers naturels tels que  $0 \le k \le n$  et E un ensemble à n éléments.

#### 4.1 Nombre de combinaisons

**Définition 8.** Une *combinaison* de k éléments de E est une partie de E à k éléments. On note  $\binom{n}{k}$  le nombre de combinaisons de k éléments de E.

**Exemples.** Soit  $E = \{a; b; c; d\}$  on a donc  $n = \dots$ 

- Les combinaisons formées d'un élément de E sont  $\{\ldots\}$ ,  $\{\ldots\}$ ,  $\{\ldots\}$  et  $\{\ldots\}$  : il y en a  $\ldots$  donc  $\left(\ldots\right) = 4$ .
- Les combinaisons formées de deux éléments de E sont  $\{\ldots;\ldots\}, \{\ldots;\ldots\}, \{\ldots;\ldots\}, \{\ldots;\ldots\}, \{\ldots;\ldots\}$  et  $\{\ldots;\ldots\}$  et  $\{\ldots$

Propriété 8. Soit  $0 \le k \le n$ . On a  $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$ .

#### Démonstration

 $\binom{n}{k}$  est le nombre de combinaisons de k éléments parmi n de E.

Il y a n(n-1)(n-2)...(n-k+1) k – uplets d'éléments distincts deux à deux distincts de E. Pour obtenir un k – uplet d'éléments deux à deux distincts de E, il suffit d'abord de choisir une combinaison de k éléments de E puis de les ordonner.

Ainsi 
$$n(n-1)\dots(n-k+1)=\binom{n}{k}\times k!$$
 d'où le résultat.

En particulier:

$$\binom{n}{0} = 1, \quad \binom{n}{1} = n, \quad \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{n} = 1$$

Exemple. Soit 
$$\binom{5}{3} = \frac{\dots}{\dots} = 10.$$

**Propriété 9.** Soit 
$$0 \le k \le n$$
. On a  $\binom{n}{k} = \binom{n}{n-k}$ .

### **Démonstration**

Dénombrer les parties à k éléments revient à dénombrer les parties à n-k éléments qui en sont les complémentaires.

**Exemple.** Soit 
$$\binom{5}{3} = \binom{5}{2}$$
.

Mini-exercice. Une urne contient quatre boules blanches numérotées de 1 à 4, trois boules vertes numérotées de 1 à 3 et deux boules noires numérotées de 1 à 2. On tire simultanément trois boules de cette urne.

| 1. | Combien y a-t-il de tirages possibles?                                 |
|----|------------------------------------------------------------------------|
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
| 2. | Combien y a-t-il de tirages contenant trois boules de la même couleur? |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
| 3. | Combien y a-t-il de tirages au moins une boule noire?                  |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
|    |                                                                        |
| 4. | Combien y a-t-il de tirages contenant un seul numéro impair?           |
|    |                                                                        |

Propriété 10. Soit n un entier naturel alors  $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ .

# Démonstration

Par définition, pour tout entier k tel que  $0 \le k \le n$ ,  $\binom{n}{k}$  est le nombre de combinaisons de E. Autrement dit,  $\binom{n}{k}$  est le nombre de parties de E composée de k éléments. Ainsi d'après le principe additif,  $\sum_{k=0}^{n} \binom{n}{k}$  est égal au nombre de parties de E (les parties de E an éléments). Or il y a  $2^n$  parties de E. Par conséquent,  $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ .

# 5. Triangle de Pascal

#### 5.1 Relation de Pascal

Propriété 11. — Formule de Pascal — Pour tout entier naturel  $n \ge 2$  et tout entier naturel k tel que  $1 \le k \le n-1$ , on a :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

#### Démonstration

Soit E un ensemble à n éléments et k un entier naturel tel que  $1 \le k \le n-1$ .

- $\binom{n}{k}$  est le nombre de parties à k éléments de E. Soit a un élément de E.
  - $\bullet\,$  Soit a un élément de E. Parmi toutes les partie à k éléments de E, il y en a de deux sortes :
    - celles qui contiennent l'élément a. Dénombrer ces parties revient à déterminer le nombre de combinaisons de k-1 éléments d'un ensemble à n-1 éléments. Leur nombre est  $\binom{n-1}{k-1}$ .
    - celles qui ne contiennent pas l'élément a. Dénombrer ces parties revient à déterminer le nombre de combinaisons de k éléments d'un ensemble à n-1 éléments. Leur nombre est  $\binom{n-1}{k}$ .
  - D'après le principe additif on a donc :

# 5.2 Le triangle de Pascal

La relation de Pascal permet de calculer de façon algorithmique les coefficients  $\binom{n}{k}$ .

Néanmoins, on peut aussi calculer les  $\binom{n}{k}$  à l'aide du tableau ci-dessous appelé  $triangle\ de\ Pascal$ :

**Exemple.** Compléter la ligne du tableau pour n = 7.

**Remarque.** Pour tous réels a et b et pour tout entier naturel  $n \ge 1$ ,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

La formule ainsi obtenue est appelée formule du binôme de Newton et les  $\binom{n}{k}$  sont appelés coefficients binomiaux.

| Mini-exercice.                                                                                    |
|---------------------------------------------------------------------------------------------------|
| Démontrer, à l'aide de la formule précédente, que pour tout entier naturel $n \in \mathbb{N}^*$ , |
| $(3+\sqrt{7})^n + (3-\sqrt{7})^n \in \mathbb{N}.$                                                 |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
| ••••••                                                                                            |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |