# DATA STORAGE TECHNOLOGIES & NETWORKS (CS C446, CS F446 & IS C446)

LECTURE 21- STORAGE

## RAID – RAID 6 or RAID PQ

- All the RAID schemes (1 to 5) are targeted at correcting a single self-identifying failures
  - What about multiple disk failures?
  - What about a read error while attempting to correct a disk failure (by reading all the other disks in an array)?
    - Typical "uncorrectable bit error" rate: 1 in 10<sup>14</sup> as advertised by disk manufacturers
      - □ i.e. about 1 in 25 billion sectors
    - Typical errors occur at write time or due to magnetic decay.

## RAID 6 (P+ Q dual redundancy)



(g) RAID 6 (dual redundancy)

- Block inter leaved P+Q redundancy scheme organization
  - Stores extra redundant information to guard against multiple disk failures
  - Instead of parity, error correction codes such as Reed –
    Solomon codes are used
  - Can handle 2 disk failures
  - Store D data blocks and 2 parity blocks in a stripe Block interleaved Distributed Parity Storage



### NESTED RAID

- RAID 0 + 1 [also known as RAID 01 or RAID 0/1]
  - Striped sets in a mirrored set [mirrored stripe]
  - Require even number of disks [min # disks =4]
  - If one drive fails, the entire stripe is faulted. Rebuild by copying entire stripe from each healthy disk to its corresponding failed
  - Causes increased and unnecessary disk I/O load on the surviving disks and makes the RAID set more vulnerable to a second disk failure.



- RAID 1 + 0 [also known as RAID 10 or RAID 1/0]
  - Mirrored sets in a striped set [called striped mirror]
  - Require even number of disks [min # disks =4]
  - Performs well for workloads that use small, random write intensive I/O
  - Applications
    - High transaction rate Online Transaction Processing (OLTP)
    - Large messaging installations
    - Database applications that require high I/O rate, random access and high availability

- RAID 5 + 1
  - Mirrored striped set with distributed parity

|        |       | MIN.  | STORAGE             |             |                      |                             | WRITE  |
|--------|-------|-------|---------------------|-------------|----------------------|-----------------------------|--------|
| RAID   | TYPE  | DISKS | <b>EFFICIENCY %</b> | COST        | READ PERFORMANCE     | WRITE PERFORMANCE           | PENALT |
|        |       |       |                     |             | VERY GOOD FOR BOTH   |                             |        |
|        |       |       |                     |             | RANDOM AND           |                             |        |
| RAID 0 |       | 2     | 100                 | LOW         | SEQUENTIAL READ      | VERY GOOD                   | NO     |
|        |       |       |                     |             |                      | GOOD. SLOWER THAN SINGLE    |        |
|        |       |       |                     |             | GOOD. BETTER THAN A  | DISK, AS EVERY WRITE MUST   | MODER  |
| RAID   | 1     | ,     | Ε0                  | HIGH        | SINGLE DISK          | BE COMMITTED TO ALL DISKS   | ATE    |
| KAID   | 1     | 2     | 50                  | підп        | SINGLE DISK          | BE CONTINITIED TO ALL DISKS | AIE    |
|        |       |       | (N-1)*100/N         |             | GOOD FOR RANDOM      | POOR TO FAIR FOR SMALL      |        |
|        |       |       | WHERE N=NUMBER      |             | READS AND VERY GOOD  | RANDOM WRITES. GOOD FOR     |        |
| RAID 3 |       | 3     | OF DISKS            | MODERATE    | FOR SEQUENTIAL READS | LARGE, SEQUENTIAL WRITES    | HIGH   |
|        |       |       |                     |             |                      | POOR TO FAIR FOR SMALL      |        |
|        |       |       | (N-1)*100/N         |             | VERY GOOD FOR RANDOM | RANDOM WRITES. FAIR TO      |        |
|        |       |       | WHERE N=NUMBER      |             | READS. GOOD FOR      | GOOD FOR SEQUENTIAL         |        |
| RAID   | 4     | 3     | OF DISKS            | MODERATE    | SEQUENTIAL WRITES    | WRITES                      | HIGH   |
|        |       |       |                     |             |                      | FAIR FOR RANDOM WRITES.     |        |
|        |       |       | (N-1)*100/N         |             | VERY GOOD FOR RANDOM | SLOWER DUE TO PARITY        |        |
|        |       |       | WHERE N=NUMBER      |             | READS. GOOD FOR      | OVERHEAD. FAIR TO GOOD      |        |
| RAID   | 5     | 3     | OF DISKS            | MODERATE    | SEQUENTIAL READS     | FOR SEQUENTIAL WRITES       | HIGH   |
|        |       |       | (N-2)*100/N         | MODERATE    | VERY GOOD FOR RANDOM |                             |        |
|        |       |       | WHERE N=NUMBER      |             | READS. GOOD FOR      | GOOD FOR SMALL. RANDOM      | VERY   |
| RAID 6 |       | 4     | OF DISKS            | THAN RAID 5 | SEQUENTIAL READS     | WRITES (HAS WRITE PENALTY)  |        |
|        | 1+0 & |       |                     |             |                      | ,                           | MODER  |
| 0+1    |       | 4     | 50                  | HIGH        | VERY GOOD            | GOOD                        | ATE    |

## Hot Spares

- Spare HDD in RAID array
  - Temporarily replaces a failed HDD of a RAID set
  - Data reconstructed [from parity if parity RAID is used or from mirror if mirroring is used] on to the hot spare
- When a new HDD replaces the old HDD
  - New HDD gets data from hot spare
  - Hot spare returns to idle state ready to replace the next failed HDD
- Hot spare can be automatic or user initiated

## Energy Efficiency in RAID

#### In RAID - 1

- Policies to dispatch a read request to disks at the RAID 1 controller to obtain high-performance
  - Send all read requests to a single primary replica
  - random selection
  - round-robin
  - shortest-seek first and shortest-queue first
  - selecting the replica with the shortest request queue on disk drive and having ties broken by random selection

- Energy efficient strategies (eRAID, EERAID)
- Better model: send all requests to one group such as primary dispatch
  - other group should always be idle.
  - This may result in spending more energy for the intensive I/O workloads because the aggregate access time for all requests is substantially stretched

- Design features of eRAID and EERAID
  - even small increases in the request interval length of inactive disks can result in significant energy savings
  - make sure the performance is not compromised after applying new schemes