Problème. Une preuve de l'irrationalité de π .

Partie A. Préliminaires techniques.

- 1. <u>Un calcul de limite</u>. Soit un réel x. On souhaite prouver que $\frac{x^n}{n!} \xrightarrow[n \to +\infty]{} 0$.
 - (a) Prouver qu'il existe un entier naturel non nul n_0 tel que $\frac{|x|}{n_0} < 1$.
 - (b) Prouver pour tout n supérieur à n_0 l'inégalité

$$\left| \frac{x^n}{n!} \right| \le \left(\prod_{k=1}^{n_0 - 1} \frac{|x|}{k} \right) \cdot \left(\frac{|x|}{n_0} \right)^{n - n_0 + 1}.$$

- (c) Conclure.
- 2. Fonctions polynomiales à coefficients entiers.

Pour tout entier $n \in \mathbb{N}$, on note E_n l'ensemble des fonctions polynomiales de degré inférieur à n et à coefficients entiers.

Plus précisément, une fonction P appartient à E_n si

$$\exists (a_0, \dots, a_n) \in \mathbb{Z}^{n+1} \quad \forall x \in \mathbb{R} \quad P(x) = \sum_{k=0}^n a_k x^k.$$

Soit $n \in \mathbb{N}$.

(a) Démontrer que E_n est stable par combinaisons linéaires à scalaires entiers, c'est-à-dire :

$$\forall (P,Q) \in E_n^2 \quad \forall (\lambda,\mu) \in \mathbb{Z}^2 \quad \lambda P + \mu Q \in E_n.$$

(b) Soit $P \in E_n$ et $Q: x \mapsto xP_n(x)$. Justifier que $P \in E_{n+1}$ et $Q \in E_{n+1}$.

Partie B. Preuve de Cartwright.

Mary Cartwright a proposé cette preuve, simplifiant celle de Hermite, à un examen d'analyse à l'Université de Cambridge en 1945. Elle figure actuellement dans la feuille d'exercices numéro 4 du cours Analysis I de cette même université.

Pour $x \in \mathbb{R}$, on note

$$I_n(x) = \int_{-1}^{1} (1 - t^2)^n \cos(xt) dt$$
 et $J_n(x) = x^{2n+1} I_n(x)$.

- 3. Soit n > 2 et $x \in \mathbb{R}$.
 - (a) À l'aide d'une double intégration par parties, démontrer que :

$$x^{2}I_{n}(x) = 2n(2n-1)I_{n-1}(x) - 4n(n-1)I_{n-2}(x).$$

(b) En déduire que

$$J_n(x) = 2n(2n-1)J_{n-1}(x) - 4n(n-1)x^2J_{n-2}(x).$$

4. Démontrer que pour tout entier naturel n, il existe deux polynômes P_n et Q_n de degré inférieur à n et à coefficients entiers tels que

$$\forall x \in \mathbb{R} \quad J_n(x) = n! \big(P_n(x) \sin(x) + Q_n(x) \cos(x) \big)$$

- 5. Supposons que π est rationnel. Soient deux entiers a et b tels que $\frac{\pi}{2} = \frac{a}{b}$.
 - (a) Démontrer que $\frac{a^{2n+1}}{n!}I_n(\frac{\pi}{2}) \xrightarrow[n \to +\infty]{} 0.$
 - (b) Montrer que pour tout n, l'intégrale $I_n\left(\frac{\pi}{2}\right)$ est non nulle. Une interprétation en termes d'aire suffira, on disposera d'un argument rigoureux en fin d'année.
 - (c) Démontrer que pour tout $n \in \mathbb{N}$, $b^{2n+1}P_n\left(\frac{\pi}{2}\right)$ est un entier.
 - (d) Conclure, en examinant $J_n\left(\frac{\pi}{2}\right)$