AppAttack

Finding Name: Insecure Token Exposure via Client-Side Storage and HTTP Headers

Name	Team	Role	Project	Quality Assurance	Is this a re-tested Finding?
Filipe Oliveira	OnTrack	Pen-Tester	AppAttack	Darryl Ooi	No

Was this Finding Successful?			
Yes			

Finding Description

Upon successful login to the OnTrack platform, the application issues a persistent authentication token that is sent in every subsequent API request via HTTP headers. This token provides full user session access without needing credentials again. The application is served over unencrypted HTTP meaning this token is transmitted in plaintext and can be intercepted using tools such as Wireshark on the same network.

Risk Rating

Impact: Significant Likelihood: High

Impact values							
Very Minor Minor		Significant	Major	Severe			
Risk that holds	Risk that holds	Risk that holds	Risk that holds	Risk that holds			
little to no impact.	minor form of	enough impact to	major impact to be	severe impact and			
Will not cause	impact, but not	be somewhat of a	of threat. Will	is a threat. Will			
damage and regular	significant enough	threat. Will cause	cause damage that	cause critical			
activity can	to be of threat. Can	damage that can	will impede regular	damage that can			
continue.	cause some damage	impede regular	activity and will	cease activity to be			
	but not enough to	activity but will be	not be able to run	run.			
	impede regular	able to run	normally.				
activity.		normally.					

Likelihood							
Rare	Unlikely	Moderate	High	Certain			
Event may occur	Event could occur	Event may occur	Event occurs at	Event is occurring			
and/or if it did, it	occasionally and/or	and/or happens.	times and/or	now and/or			
happens in specific	could happen (at		probably happens a	happens			
circumstances.	some point)		lot.	frequently.			

Business Impact

If an attacker gains access to a user's authentication token, they can fully impersonate the victim without needing a password. This could lead to exposure of academic records, assignment submissions and may allow unauthorised access to admin modifications. If this occurred on a live, production grade system over an open or shared network, it could result in unauthorised access to student information, data privacy violations and erosion of trust in the system's security.

Affected Assets

- Ontrack web application
- API endpoints using Authentication tokens
- Student session tokens.

Evidence

Step 1: Launch Wireshark and Select network interface

Open Wireshark and select the interface labeled" any" to monitor all the network traffic.

Step 2: begin capturing packets

Click the blue fin under the top left File menu to begin live packet capture.

Step 3: Navigate to the OnTrack Web Application

Step 4: Login with student credentials

Login with student_1 and password you can also do anything on ontrack, like clicking on a subject.

Step 5: Apply HTTP display filter

Type http in the filter bar at the top

Step 6: Locate and inspect a Request Packet.

Click on any packet and find the Hypertext protocol subheading and click expand, if it is a packet that has been sent after your login it will contain cookie session data and the authentication token for the login Aswell as the username

Step 8 (optional): Setup proxy to burp

Go to settings in your browser and turn the proxy and input the proxy ip and port

Turn on intercept and go ontrack.

Then once you load into OnTrack there should be information that allows each section of ontrack to load before you then "forward" it to the server. As you can see below once i logged in i can see the packets being sent to the server and me, with all the information with auth token and cookies.

Remediation Advice

- Enforce HTTPS (TLS) to encrypt all network communication and prevent sniffing.
- Avoid sending long lived tokens in headers over unsecured connections.
- Move to only HTTPonly secure cookies to store tokens where java script cannot access them.
- Implement token expiration and refresh mechanisms.

References

OWASP Session Management Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Wireshark Official Website (Download & Docs) https://www.wireshark.org/

Burp Suite Repeater Documentation

https://portswigger.net/burp/documentation/desktop/tools/repeater

Okta Developer Blog – Why You Should Always Use HTTPS

https://developer.okta.com/blog/2019/08/22/why-you-should-always-use-https

OWASP Cheat Sheet Series Main Page (Optional for extra references) https://cheatsheetseries.owasp.org/

<u>Contact Details</u> Filipe Oliveira <u>s222478779@deakin.edu.au</u>

Pentest Leader Feedback. Good work!