Point-Set Topology

DANIEL KIM

November 22, 2019

Contents

1	Topological Spaces	1
2	Connectedness	5
3	Compactness	5
Α	The Cantor Set: Everyone's Favorite Pathology	6

§1 Topological Spaces

Definition 1.1. A pair (X, τ) is a **topological space** if X is a set and τ is a collection of subsets $\mathcal{U} \subset X$ satisfying

- i) $\emptyset, X \in \tau$
- ii) If $U_1, \ldots, U_n \in \tau$ then $\bigcap_{k=1}^n U_k \in \tau$. (Closed under finite intersections)
- iii) If $\{\mathcal{U}_{\alpha}\} \subset \tau$, then $\bigcup_{\alpha} \mathcal{U}_{\alpha} \in \tau$. (Closed under arbitrary unions)

The distinction between arbitrary unions and finite intersections only matters when X is an infinite set (implying that τ is a collection of infinitely many subsets).

Definition 1.2. An element of τ is an **open set**. An element of X is a **point**. With respect to the topological space (X, τ) , τ is a **topology** on X.

Definition 1.3. With respect to the topological space (\mathbb{R}, τ) , define a set $S \subset \mathbb{R}$ to be **open** iff $\forall x \in S \ \exists \delta > 0$ s.t. $(x - \delta, x + \delta) \in S$. Then open sets can be in the form $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ (and any arbitrary unions or finite intersections of these open intervals will also be open). Therefore, τ consists of *unions of open intervals*, and is called the **standard topology** on \mathbb{R} .

Definition 1.4. With respect to topological spaces (X, τ_1) and (Y, τ_2) , $f: X \to Y$ is **continuous** iff \forall open sets $V \subset Y$, $f^{-1}(V)$ is an open subset of X.

Proposition 1.5

If $f: \mathbb{R} \to \mathbb{R}$ satisfies $f^{-1}((a,b))$ is open $\forall (a,b) \subset \mathbb{R}$, then f is continuous.

It is easy to see that the following collections of sets satisfy the definition of a topology for any set X.

Definition 1.6. The **trivial topology** (or indiscrete topology) is $\tau = \{\emptyset, X\}$, given any set X.

Definition 1.7. The **discrete topology** (or chaotic topology) is the collection of all subsets of X, i.e. $\tau = 2^X$.

Proposition 1.8

If a set X is given the discrete topology, then all functions $f:X\to T$ for any topological space T are continuous.

Proof. If X has the discrete topology, then every subset of X is open. Therefore, any preimage of any subset of T must be open.

Proposition 1.9

If a set Y is given the trivial topology, then all functions $f:X\to Y$ for any topological space X are continuous.

Proof. Since the topology of Y is $\{\emptyset, Y\}$, we have $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(Y) = X$, both of which are open subsets of X.

Definition 1.10. A set C in a topological space (X, τ) is **closed** iff $X \setminus C$ is open.

Recall Definition 1.3. Closed sets in the standard topology on \mathbb{R} consist of closed intervals $[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$ and any arbitrary unions or finite intersections of these closed intervals. In this space, \emptyset and \mathbb{R} are both open and closed. The *half-closed interval* $[0,1)=\{x\in\mathbb{R}:0\leq x<1\}$ is neither open nor closed. To prove this, suppose it was closed. Then its complement in \mathbb{R} , which is $(-\infty,0)\cup[1,\infty)$, must be open. But 1 cannot be surrounded by an interval which still lies in the set.

Theorem 1.11

An open set in \mathbb{R} in the standard topology is a countable union of disjoint open intervals.

Definition 1.12. The **interior** of a set $S \subset X$ is $S^0 = \bigcup_{\substack{\mathcal{U} \subseteq S \\ \text{is open}}} \mathcal{U}$, i.e. the union of all

open sets contained in S.

By definition of a topology, the interior must also be an open subset of S. In fact, the interior is the largest open set contained in S. It also follows that S is an open set iff $S = S^0$.

With respect to the standard topology on \mathbb{R} , $\mathbb{Q}^0 = \emptyset$, since there does not exist a non-empty open interval of \mathbb{R} which is a subset of \mathbb{Q} .

Proposition 1.13

 $\forall x \in X^0, x \in \mathcal{U} \subset X \text{ where } \mathcal{U} \text{ is open.}$

Proof. Follows directly from definition.

Proposition 1.14

 $(A \cap B)^0 = A^0 \cap B^0.$

Definition 1.15. The **exterior** of a set $S \subset X$ is $X \setminus S^0$, where S^0 is the interior of S.

Definition 1.16. The closure of a set $S \subset X$ is $\bigcap_{\substack{C \supseteq S, C \subseteq X \\ C \text{ closed}}} C = \overline{S}$.

The closure is the smallest closed set that contains S.

We have $S^0 \subseteq S \subseteq \overline{S}$, where $S^0 = S$ iff S is open, and $S = \overline{S}$ iff S is closed.

Proposition 1.17

 $\overline{A \cup B} = \overline{A} \cup \overline{B}.$

Definition 1.18. The **boundary** of a set $S \subset X$ is $\partial S = \overline{S} \cap \overline{X \setminus S}$.

Proposition 1.19

For any set $S \subset X$ where X is a topological space, $S \cup \partial S = \overline{S}$.

Proof. We have $S \cup \partial S = S \cup (\overline{S} \cap \overline{S^c}) = (S \cup \overline{S}) \cap (S \cup \overline{S^c})$. Note that

$$S \cup \overline{S} = S \cup \left(\bigcap_{\substack{C \supseteq S \\ C \text{ closed}}} C\right)$$

$$= \bigcap_{\substack{C \supseteq S \\ C \text{ closed}}} (S \cup C)$$

$$= \bigcap_{\substack{C \supseteq S \\ C \text{ closed}}} C$$

$$= \overline{S}.$$

We then wish to prove $S \cup \overline{S^c} = X$, where $S^c = X \setminus S$. Clearly $S \cup \overline{S^c} \subseteq X$. If $x \in X$, then if $x \in S$, we're done. Otherwise, $x \in X \setminus S$ i.e. $x \in S^c$. But clearly $S^c \subseteq \overline{S^c}$, so we're done. Hence, $S \cup \partial S = \overline{S} \cap X = \overline{S}$.

Definition 1.20. A **neighborhood** of x is any open set containing x.

Definition 1.21. x is a **limit point** of a set X if every neighborhood of x has nonempty intersection with $X \setminus \{x\}$.

This also suggests that a limit point x does not necessarily have to be in X.

Definition 1.22. If $x \in X$ is not a limit point of X, x is an **isolated point** of X.

Proposition 1.23

Let (X, τ) be a topological space. Then a set $S \subset X$ is open if and only if $\forall x \in S$, there exists a neighborhood of x which is entirely contained in S.

Proof. The right direction is easy: given that S is open, for any $x \in S$, take the neighborhood to be equal to S to prove existence.

Now consider the left direction: For any $x \in S$ with a neighborhood entirely contained in S, consider the union of all such neighborhoods, say S'. By closure under arbitrary unions, S' must be open. It suffices to prove that S = S'. Suppose $a \in S$. Since a is an element in its own neighborhood, it must be an element of the union of all neighborhoods, hence $a \in S'$. Thus $S \subseteq S'$.

Now suppose $a \in S'$. Then a must lie in some neighborhood entirely contained in S. Thus $a \in S$, so $S' \subseteq S$. It follows that S = S', and we're done. \Box

Proposition 1.24

If $x \notin X$ but x is a limit point of X then $x \in \partial X$.

Proof. We want to prove $x \in \overline{X} \cap \overline{X^c}$. Clearly, if $x \notin X$ then $x \in X^c \implies x \in \overline{X^c}$. Now, we want to prove $x \in \overline{X}$, i.e.

$$x \in \bigcap_{\substack{C \supseteq X \\ C \text{ closed}}} C.$$

For any closed set $C \supseteq X$, it suffices to prove $x \in C$. Suppose for the sake of contradiction that $x \notin C$. Then $x \in C^c$. As $C \supseteq X$, $C^c \subseteq X^c$. But C^c is an open neighborhood of x that has empty intersection with $X \setminus \{x\}$, contradicting that x is a limit point of X.

Proposition 1.25

$$\overline{X^c} = (X^0)^c.$$

Proof. We will prove the equivalent statement $\overline{X^c}^c = X^0$. By generalization of DeMorgan's Laws on Sets,

$$x \in \overline{X^c}^c \leftrightarrow x \in \left(\bigcap_{\substack{C \supseteq X^c \\ C \text{ closed}}} C\right)^c$$

$$\leftrightarrow x \in \bigcup_{\substack{C \supseteq X^c \\ C \text{ closed}}} C^c$$

$$\leftrightarrow x \in \bigcup_{\substack{C^c \subseteq X \\ C^c \text{ open}}} C^c$$

$$\leftrightarrow x \in X^0.$$

Theorem 1.26

A set is closed if and only if it contains all of its limit points.

Proof. Suppose a set $S \subset X$ is closed. Then $X \setminus S$ is open. By the previous proposition, $\forall x \in X \setminus S$, there exists a neighborhood of x entirely contained in $X \setminus S$. Then this neighborhood cannot contain any points in S. Since $x \in X \setminus S$, $S \setminus \{x\} = S$. Hence this neighborhood cannot intersect $S \setminus \{x\}$, so x is not a limit point of S. Then, all limit points of S must be in S.

Now suppose S contains all of its limit points. Then $\forall x \in S^c$, x is not a limit point of S, i.e. \exists open \mathcal{U} with $x \in \mathcal{U}$ such that $\mathcal{U} \cap (S \setminus \{x\}) = \emptyset$. By definition of x, $S \setminus \{x\} = S$, so $\mathcal{U} \cap S = \emptyset$. Then $\mathcal{U} \subseteq S^c$. Hence, for any $x \in S^c$, there exists a neighborhood of x contained in S^c , so S^c is open. Thus, S is closed.

§2 Connectedness

Definition 2.1. X is dense in Y if $\overline{X} \subset Y$.

For example, \mathbb{Q} is dense in \mathbb{R} .

Definition 2.2. A space is **separable** if it has a countable dense subset.

Definition 2.3. A set is **perfect** if it is closed and every point in it is a limit point.

For example, [0,1] is perfect.

Definition 2.4. Sets A, B are separated if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

Definition 2.5. A set E is **connected** if E cannot be written as $A \cup B$ where A, B are nonempty and separated.

Definition 2.6. A **path** is any continuous function $\phi : [0,1] \to X$ where X is any topological space.

Definition 2.7. A set is **pathwise connected** if $\forall x, y \in E, \exists$ a path $\phi : [0,1] \to E$ such that $\phi(0) = x, \phi(1) = y$.

Definition 2.8. A **region** is an open connected set.

Proposition 2.9

A region is pathwise-connected.

§3 Compactness

Definition 3.1. An open cover of a set K is a collection of open sets $\{\mathcal{U}_{\alpha}\}$ such that $K \subset \bigcup_{\alpha} \mathcal{U}_{\alpha}$.

Definition 3.2. A finite subcover $\{U_1, \ldots, U_n\}$ is a finite subcollection of an open cover such that $K \subset \bigcup_{i=1}^{n} U_i$.

Definition 3.3. A set $K \subset X$ where X is a topological space is **compact** if every open cover of K has a finite subcover.

§A The Cantor Set: Everyone's Favorite Pathology

Define the following sequence of sets as follows:

$$C_0 = [0, 1],$$

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1],$$

$$C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1],$$

$$\vdots$$

Essentially, we begin with $C_0 = [0, 1]$, divide it into three equal intervals $[0, \frac{1}{3}]$, $[\frac{1}{3}, \frac{2}{3}]$, and $[\frac{2}{3}, 1]$. Then we cut out the middle "third", leaving us with two remaining "blocks" $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$. Take the union of these to get $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Then, we repeat the process: divide each closed interval into thirds and take out the middle pieces, and so on.

Then, at some $n \in \mathbb{N} \cup \{0\}$, we have C_n to be the union of 2^n closed intervals, where each closed interval is $\frac{1}{3^n}$ long.

Definition A.1. The Cantor Set is
$$C = \bigcap_{n=0}^{\infty} C_n$$
.

The Cantor Set is a closed set with respect to the standard topology on \mathbb{R} , since its complement is the union of open sets. It is also an uncountable set, with no intervals as subsets.

An explicit formula is $C = \{x \in [0,1] : x = 0.t_1t_2\cdots t_n\cdots_3\}$ where $t_i \in \{0,2\}$.