Parameter Optimization & Larger Precision for (T)FHE

Agenda

Introduction	04
FHE Parameter Optimization	07
WoP-PBS	09
Conclusion	11

Introduction

FHE

too much noise 😥 ⇒ incorrect decryption

FHE

FHE

Plain Atomic Pattern

Symbolic Rewriting

Easy to transform a computation graph into a graph of atomic patterns

Recurrent Pattern

Enable simple analysis

 $\underset{\approx}{\sim} 2^{40}$ possible parameters

Graph of CJP AP

Graph of CJP AP

1 Parameter set for the whole graph

Graph of CJP AP

FHE Parameter Optimization

Overview

Overview: Goals

Security

Using the lattice estimator

Correctness

Noise Model to track the noise along the computation

Efficiency

Cost Model as a surrogate of the execution time

Overview: Problem

FHE Parameter Optimization

GBA Atomic Pattern

Encoding

GBA Atomic Pattern

[GBA21] A. Guimaraes, E. Borin, D. Aranha. Revisiting the functional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems

≈ 2⁵²

possible parameters

FHE Parameter Optimization

CJP vs GBA

Context-aware comparison

Efficient alternative to TFHE PBS above 5 bits

Allows bigger precision (up to 21 bits)

Large precision are very costly

Efficient alternative to TFHE PBS above 5 bits

Allows bigger precision (up to 21 bits)

Large precision are very costly

Efficient alternative to TFHE PBS above 5 bits

Allows bigger precision (up to 21 bits)

Large precision are very costly

WoP-PBS

Overview

Encoding

1 message κ ciphertexts

New WoP-PBS

WoP-PBS

Comparisons

This work Atomic Pattern

 ${\overset{>}{\sim}} \, 2^{64}$ possible parameters

Efficient alternative to TFHE PBS above 5 bits

Allows bigger precision (up to 21 bits)

Large precision are very costly

CJP vs GBA vs this work

---- CJP21

→ GBA21: 2 blocks

---▼--- GBA21: 3 blocks

---- this work: 1 block

---- this work: 2 blocks

this work: 4 blocks

Efficient alternative to GBA-PBS above 10 bits

Allows bigger precision (up to 24 bits)

Large precision are less costly

 $Cost(21 \ bits) \approx 2.7 \cdot Cost(5 \ bits)$ $\approx 2.12 \cdot Cost(5 \ bits)$

Conclusion

Other results

Other results

Large Integers

CRT, radix, hybrid encoding

Failure Probability

AP and graph level

PBS Insertion

In Dot Product

WoP-PBS Analysis

LMP, this work

KS Position

CJP, CGGI, KS-free

Several KSK/BSK

CJP

Conclusion

Future Work

Future Work

Better Cost Model

In the paper: algorithmic complexities

Better Noise Model

In the paper: from [CLOT21]

Multi Parameter Set

In the paper: only one parameter set

Graph Comparison

Real use cases

Thank you.

Contact and Links

Bibliography

[CGGI20] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène. TFHE: Fast Fully Homomorphic Encryption over the Torus. Journal of Cryptology 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In CSCML 202

[CLOT21] I. Chillotti, D. Ligier, J-B Orfila, and S. Tap. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for the. In ASIACRYPT 2021

[GBA21] A. Guimaraes, E. Borin, D. Aranha. Revisiting the functional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign evaluation using fhew/tfhe bootstrapping. Cryptology ePrint Archive, Report 2021/1337