cisco live!

Network Designs for the Modern Data Center

Lukas Krattiger, Distinguished Engineer

@CCIE21921 BRKDCN-2099

Cisco Webex App

Questions?

Use Cisco Webex App to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install the Webex App or go directly to the Webex space
- 4 Enter messages/questions in the Webex space

Webex spaces will be moderated by the speaker until June 17, 2022.

https://ciscolive.ciscoevents.com/ciscolivebot/#BRKDCN-2099

Abstract

Have you ever asked yourself what "Clos" is or where that Leaf/Spine thing comes from? If yes, this is the right session for you. We are going to cover Fat-Tree, Clos and Leaf/Spine designs and expand beyond just the Spine layer. We will spend some time on the Super-Spine and even Super-Spine fabrics. How you can cost effectively use 100G/400G and where fixed vs. modular Switches make sense.

Introduction

- A brief Overview on Leaf and Spine Topologies
- Some terms and Nomenclature
- Design and Sizing considerations
- The 3-Stage and 5-Stage Clos
 - Or how we build beyond the Leaf and Spine Topology
 - Super-Spine and Spine Planes
- How does this fit into your DataCenter

Companion Sessions - Week at a Glance

Agenda

- Introduction
- Paradigm and Fundamentals
- Design Evolution
- Conclusion

Paradigm and Fundamentals

A Leaf and Spine Topology

- A Leaf and Spine Topology
- Variations or Names of the same:
 - Fat Tree
 - Folded Clos
 - 3 Stage Clos
 - 2 Tier Network

- A Leaf and Spine Topology
 - 3 Stages
 - 2 Tiers

- A Leaf and Spine Topology
 - 3 Stages
 - 2 Tiers

- A Scale Out Architecture
 - More Leaf = More Ports
 - More Spine = More Bandwidth

- N+1 Redundancy
- Redundancy increases by Building out the Topology
- On Spine failure
 - 4 Spine = 25% impact
 - 8 Spine = 12.5% impact

- Modern Application Needs
 - Every (1) North to South Connection, requires eight (8)
 Fast to West
 - User Access the Frontend (Web)
 - Frontend connects to App, DB, Storage etc.

- Optimized for East to West
 - Consistent Latency from Leaf to Leaf
 - Wide ECMP
- Flexibility for North to South
 - External Connectivity at Leaf or Spine layer

- Bandwidth Requirements
- Oversubscription

It Depends

BRKDCN-2099

How Many Spines do I need?

Oversubscription and Maximum Redundancy as the Criteria

Host Attachment Requirements

- 48 Server per Rack
- 2x 25Gbps NIC per Server
- 1x NIC per Switch

How Many Spines do I need?

Oversubscription and Maximum Redundancy as the Criteria

Host Attachment Requirements

- 48 Server per Rack
- 2x 25Gbps NIC per Server
- 1x NIC per Switch

Resulting Uplink Requirements

- 48x 25Gbps per Leaf
- 1.2Tbps Uplink from Leaf to Spine
- 12x 100Gbps towards Spine

How Many Spines do I need?

Oversubscription and Maximum Redundancy as the Criteria

Host Attachment Requirements

- 48 Server per Rack
- 2x 25Gbps NIC per Server
- 1x NIC per Switch

Resulting Uplink Requirements

- 48x 25Gbps per Leaf
- 1.2Tbps Uplink from Leaf to Spine
- 12x 100Gbps towards Spine

Fabric Size – 12 Spine, 1:1 Oversubscription Oversubscription and Maximum Redundancy as the Criteria

Modular vs. Fixed for Single Fabric (2 Tier) Fabric Size - 12 Spine, 1:1 Oversubscription

Let's Do some Math	
Spine	
8 Slot Modular Chassis	Fixed Spine
36x 100Gbps Port per Linecard	64x 400Gbs
Total: 288 Spine Ports	Total: 256 Spine Ports
Leaf	
288 Spine Ports = 288 Leaf Switch	256 Spine Ports = 256 Leaf Switch
48x 25Gbps Host Ports Per Leaf	48x 25Gbps Host Ports Per Leaf
Total: 13'828 Host Ports	Total: 12'288 Host Ports
Fabric Bandwidth	
1:1 Oversubscription	1:1 Oversubscription
1.2Tbps Uplink * 288 Leaf	1.2Tbps Uplink * 256 Leaf
Total: 345.6Tbps	Total: 307.2Tbps

PRO More Leaf More Ports More Bandwidth

PRO Less Latency Less Power All Single ASIC

Replacing the Chassis Size (8 Slot to 16 Slot Chassis)

Is Scale Finite !?!?!?

Fabric Size – 12 Spine, 1:1 Oversubscription Oversubscription and Maximum Redundancy as the Criteria

Let's Do some Math	
Spine	
8 Slot Modular Chassis	16 Slot Modular
36x 100Gbps Port per Linecard	36x 100Gbps Port per Linecard
Total: 288 Spine Ports	Total: 576 Spine Ports
Leaf	
288 Spine Ports = 288 Leaf Switch	576 Spine Ports = 576 Leaf Switch
48x 25Gbps Host Ports Per Leaf	48x 25Gbps Host Ports Per Leaf
Total: 13'828 Host Ports	Total: 27'648 Host Ports
Fabric Bandwidth	
1:1 Oversubscription	1:1 Oversubscription
1.2Tbps Uplink * 288 Leaf	1.2Tbps Uplink * 576 Leaf
Total: 345.6Tbps	Total: 691.2Tbps

Doubling the Host Port Scale

Replacing the Spine Port Speed (100Gbps to 400Gbps)

Is Scale Finite !?!?!?

Fabric Size – 12 Spine, 1:1 Oversubscription Oversubscription and Maximum Redundancy as the Criteria

Let's Do some Math	
Spine	
8 Slot Modular Chassis	8 Slot Modular Chassis
36x 100Gbps Port per Linecard	36x 400Gbps Port per Linecard
Total: 288 Spine Ports	Total: 1152 Spine Ports
Leaf	
288 Spine Ports = 288 Leaf Switch	1152 Spine Ports = 1152 Leaf Switch
48x 25Gbps Host Ports Per Leaf	48x 25Gbps Host Ports Per Leaf
Total: 13'828 Host Ports	Total: 55'296 Host Ports
Fabric Bandwidth	
1:1 Oversubscription	1:1 Oversubscription
1.2Tbps Uplink * 288 Leaf	1.2Tbps Uplink * 1152 Leaf
Total: 345.6Tbps	<u>Total: 1'382.4Tbps</u>

Quadrupling the Host Port Scale (Breakout 4x 100Gbps at Spine)

Scale is very Linear in 2 Tier Networks

More Spine Ports Results in More ... Fabric Bandwidth, Leaf Count, Host Ports

Attributes to Scale

8 Slot Modular 36x 100Gbps 1:1 Oversubscription 13'828 Host Ports

Scale-Up to Fill Chassis

16 Slot Modular 36x 100Gbps 1:1 Oversubscription 27'648 Host Ports

Scale-Up to Bigger Chassis

8 Slot Modular 36x 400Gbps 1:1 Oversubscription 55'296 Host Ports

Scale-Up to Faster Linecards

Oversubscription Ratio doesn't influence Host Port scale

Points To Think About

- How to Scale 2 Tier Networks
- Every Spine scaling involves Scale-Up
 - Initial Chassis Build Out (4)
 - · Add Linecards (up to 4)
 - Increase Chassis Size (4 > 8)
 - Add more Linecards (up to 8)
 - Increase Chassis Size (8 > 16)
 - Add more Linecards (up to 16)
 - Increase Chassis Speed (4)
 - · Add Faster Linecards (up to 4)
 - Increase Chassis Size (4 > 8)
 - Add more Linecards (up to 8)
 - Increase Chassis Size (8 > 16)
 - Add more Linecards (up to 16)

What Else to Think About?

- What is my Failure Domain?
- What is my Change Domain?
- What is my Overall Scale?
- What is my Fabric Solution Scale?
- What is my Fabric SLA?
- What is my Maximum Downtime?

What did I really Build – Untangling the Details 2 Tier / 5 Stage Network with Modular Spine

What you think you Built

2 Tier Leaf and Spine Network (3 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

Leaf: Fixed Switch (single ASIC)

What you really Built

2 Tier Leaf and Spine Network (5 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

What did I really Build – Untangling the Details 2 Tier / 5 Stage Network with Modular Spine

What you think you Built

2 Tier Leaf and Spine Network (3 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

Leaf: Fixed Switch (single ASIC)

What you really Built

2 Tier Leaf and Spine Network (5 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

Forwarding Behavior

2 Tier / 5 Stage Network with Modular Spine

- Fixed Leaf represents 1 Stage
- Modular Spine represents 3 Stages

What you really Built

2 Tier Leaf and Spine Network (5 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

Latency Behavior

2 Tier / 5 Stage Network with Modular Spine

What you really Built

2 Tier Leaf and Spine Network (5 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

- Generally, all Modular Switches operate in Store-and-Forward (SnF)
 - Packet Size dependent Latency
- Without Speed Change, Leaf operates in Cut-Through
 - Packet Size independent Latency
- Normalized, difference in Latency from Spine (Modular) to Leaf (Fixed) is 3:1

Intra-Chassis Behavior

2 Tier / 5 Stage Network with Modular Spine

What you really Built

2 Tier Leaf and Spine Network (5 Stage) Spine: Modular Chassis (4 Slot, 8, Slot, 16 Slot)

- Within Leaf Tier and Between Leaf and Spine Tier
 - Full Behavior / Protocol Control
 - Layer-3 ECMP Load Balancing
 - Standards-based Routing Protocols
 - BFD for Fast Failure Detection
 - Minimal Exposure for Brownout
- Within Spine Tier
 - Intra-Chassis Load Balancing
 - Intra-Chassis Protocol
 - Intra-Chassis Failure Detection
 - Fully Redundant Components

The Elephant in the Room

Design Evolution

The Journey to Build Better and Further

3 Tier Leaf-Spine-SuperSpine

2 Tier Leaf Spine (5 Stages)

(11 Stages)

(5 Stages)

The Status Quo Discussed at Length

- A perfectly valid way
- Tends to have "Finite Scale"
 - Maximum Chassis capacity
 - Maximum Speed per Port
- Many Locations of Redundancy
 - Redundant Chassis Components
- Condensed Link and Bandwidth Presence
 - · Aggregated within a Chassis

2 Tier Leaf Spine (5 Stages)

- Use Modular Chassis at Spine
- · Use More Density on Linecards
- Use Higher Bandwidth per Port

The Journey to Build Better and Further

2 Tier Leaf Spine

Let's Move Forward

3 Tier Leaf-Spine-SuperSpine (11 Stages)

- · Scale-Out; Introduce a 3rd Tier
- · Interconnect multiple 2 Tier "PODs"
- Use Modular or Fixed Spine & SuperSpine
- · Use High Port Density
- Use High Bandwidth per Port

(5 Stages)

To Infinity and the Beyond

Nothing New Let's Not Stop Here

- Avoiding Scale-Up with another Tier
- Distributed Link and Bandwidth Presence
 - Disaggregated across Tiers
- Increases the "Finite Scale"
 - No Dependency on Chassis capacity or Speed per Port
- Many Locations of Redundancy
 - Redundant Chassis Components
- Allows for Cost Optimization

3 Tier Leaf-Spine-SuperSpine (11 Stages)

- Scale-Out; Introduce a 3rd Tier
- Interconnect multiple 2 Tier "PODs"
- Use Modular or Fixed Spine & SuperSpine
- · Use High Port Density
- Use High Bandwidth per Port

The Journey to Build Better and Further

2 Tier Leaf Spine (5 Stages)

3 Tier Leaf-Spine-SuperSpine

Let's Move Forward

3 Tier Leaf-Fabric-Spine (5 Stages)

· To Infinity and the Beyond

What we learned from the Cloud Titans Building Scalable DataCenter Networks

#1

#2

#3

#4

Simplicity is Key Simple Design Principals

Scale as you Go Scale is Never Finite Fail but Fail Fast Reduce Brown-Out Exposure Redundant and Repeatable
Risk is Never an Option

How the Cloud Titans Build

- Increasing Scale-Out in all Tiers
- Reduce to the Max
 - Simple Design Principles
- Increases the "Finite Scale"
 - Scale as You Go
- Disaggregated Redundancy
- Flexible Link and Bandwidth Distribution
- Further Possibility for Cost Optimization

3 Tier Leaf-Fabric-Spine (5 Stages)

To Infinity and the Beyond

Step #1 - Don't Build Fabric for Maximum Leaf

- Fixed Switch at the Fabric (Tier #2)
 - Depending on Oversubscription Ratio, reserve Ports
 - 1:1 Oversubscription
 - Reserve 50% from Tier #2 to Tier #3
- Common Fixed Spine Options
 - 64x 100Gbps (6.4Tbps Single ASIC)
 - 32x 400Gbps (12.8Tbps Single ASIC)
 - 64x 400Gbps (25.6Tbps Single ASIC)

Step #1 - Don't Build Fabric for Maximum Leaf

- Fixed Switch at the Fabric (Tier #2)
 - Depending on Oversubscription Ratio, reserve Ports
 - 1:1 Oversubscription
 - Reserve 50% from Tier #2 to Tier #3
- Common Fixed Spine Options
 - 64x 100Gbps (6.4Tbps Single ASIC)
 - 32x 400Gbps (12.8Tbps Single ASIC)
 - 64x 400Gbps (25.6Tbps Single ASIC)

Tier #2: Nexus 9364C-GX2B - 64x Ports 400Gbps

50% Uplink to 3rd Tier (32x 400Gbps) 50% Downlink for Leaf (128x 100Gbps)

Breakout: 32x 400Gbps = 128x 100Gbps

Step #2 - Repeat for Host Port Scale (Scale Out)

- · Increasing Fabrics at need
 - of Host Port
 - of Oversubscription between Tier #2 and #3
- Result Defines Tier #2 to Tier #3 Uplinks
 - and respectively Tier #3 Requirements

Step #3 - Designing Tier #3

- Introducing Tier #3 Planes
 - · Blue, Green, Yellow, Red
- Rule: Tier #2 Blue only connects to Tier#3 Blue

Step #3 - Designing Tier #3

- Inter-Fabric Decision is made at Leaf Layer
 - Deterministic Path from Tier #2 to Tier #3
- Rule: Once entered a Plane, you stay in the Plane

Step #3 - Designing Tier #3 (Single Link)

Tier #3: Nexus 9316-GX - 16x Ports 400Gbps

4x 1x 400Gbps = 1.6Tbps inter-Fabric Bandwidth

Step #3 – Designing Tier #3 (Single Link)

Step #3 – Designing Tier #3 (Multi-Link)

- Or increase Bandwidth to 6.4Tbps
 - Multiple Links (4) between Tier #2 and Tier #3

Tier #3: Nexus 9316-GX - 16x Ports 400Gbps

4x 4x 400Gbps = 6.4Tbps inter-Fabric Bandwidth

Step #3 – Designing Tier #3 (Multi-Link)

- Or increase Bandwidth to 12.8Tbps
 - Multiple Links (8) between Tier #2 and Tier #3

Tier #3: Nexus 9332-GX - 32x Ports 400Gbps

4x 8x 400Gbps = 12.8Tbps inter-Fabric Bandwidth

Step #4 - Increasing the Tier #3 Planes

Tier #3: Nexus 9316-GX (4 per Plane) - 16x Ports 400Gbps

4x 4x 400Gbps = 6.4Tbps inter-Fabric Bandwidth

Step #4 - Increasing the Tier #3 Planes

The Journey to Build Better and Further

2 Tier Leaf Spine (5 Stages)

- Use of Modular Spine
- 4-, 8- or 16-Slot Chassis
- 36x 100Gbps (or 36x 400Gbps) Linecard
- 100Gbps Uplink between Leaf and Spine
 - 144 Leaf (6'912 Host Ports)
 - 288 Leaf (13'824 Host Ports)
 - 576 Leaf (27'648 Host Ports)
 - 1152 Leaf (55'296 Host Ports

3 Tier Leaf-Spine-SuperSpine (11 Stages)

- Use of Modular Spine and SuperSpine
- 16-Slot Chassis
- 36x 100Gbps Linecard
- 100G Uplink Between Leaf, Spine and SuperSpine
 - 512 Leaf (24'576 Host Ports)

3 Tier Leaf-Fabric-Spine (5 Stages)

- Use of Fixed Fabric and Spine
- 16x to 64x 400Gbps per Fabric (Tier #2)
- 16x to 64x 400Gbps per Spine (Tier #3)
- 100Gbps Uplink between Leaf and Spine
- 400Gbps Uplink between Tier #2 and Tier #3
 - 1 Fabric, 128 Leaf (6'144 Host Ports)
 - 4 Fabric, 128 Leaf (24' 576 Host Ports)
 - 16 Fabric, 128 Leaf (98'304 Host Ports)
 - 128 Fabric, 128 Leaf (786'432 Host Ports)

Conclusion

We can scale from Small to Very Large - Don't be shy starting with a Small Setup; we can Evolve!

Key Takeaway #1

Bigger is not Always Better; Using Fixed-Form factor Switches is a Modern Practice

Key Takeaway #2

More Switches != Higher Cost

Key Takeaway #3

BRKDCN-2099

Technical Session Surveys

- Attendees who fill out a minimum of four session surveys and the overall event survey will get Cisco Live branded socks!
- Attendees will also earn 100 points in the Cisco Live Game for every survey completed.
- These points help you get on the leaderboard and increase your chances of winning daily and grand prizes.

Cisco Learning and Certifications

From technology training and team development to Cisco certifications and learning plans, let us help you empower your business and career. www.cisco.com/go/certs

(CLCs) are prepaid training vouchers redeemed directly with Cisco.

Learn

Train

Certify

Cisco U.

IT learning hub that guides teams and learners toward their goals

Cisco Digital Learning

Subscription-based product, technology. and certification training

Cisco Modeling Labs

Network simulation platform for design, testing, and troubleshooting

Cisco Learning Network

Resource community portal for certifications and learning

Cisco Training Bootcamps

Intensive team & individual automation and technology training programs

Cisco Learning Partner Program

Authorized training partners supporting Cisco technology and career certifications

Cisco Instructor-led and Virtual Instructor-led training

Accelerated curriculum of product, technology, and certification courses

Cisco Certifications and **Specialist Certifications**

Award-winning certification program empowers students and IT Professionals to advance their technical careers

Cisco Guided Study Groups

180-day certification prep program with learning and support

Cisco Continuina **Education Program**

Recertification training options for Cisco certified individuals

Here at the event? Visit us at The Learning and Certifications lounge at the World of Solutions

Continue your education

- Visit the Cisco Showcase for related demos
- Book your one-on-one Meet the Engineer meeting
- Attend the interactive education with DevNet, Capture the Flag, and Walk-in Labs
- Visit the On-Demand Library for more sessions at www.CiscoLive.com/on-demand

Thank you

cisco live!

