

Junção PN

Junção PN

Junção PN

Recombinação elétron-lacuna

Recombinação elétron-lacuna

Recombinação elétron-lacuna

Duas formas:

Símbolo

Polarização do Diodo

Polarização Reversa

Polarização Direta

Polarização Direta

Diodos polarizados!

Análise Quantitativa

 $V_D > 0 V$

 I_D

$$I_D = I_S \left(e^{qV_D/KT} - 1 \right)$$

K → Constante de Boltzmann

$$K = 1.38 \times 10^{-23} \text{ J/K}$$

 $q = 1.602 \times 10^{-19} \text{ C}$

Análise Quantitativa

 $V_D < 0 V$

Exemplos reais

Influência da Temperatura

$$I_D = I_S (e^{qV_D/KT} - 1)$$

(V)

Influência da Temperatura

Aproximação:

$$I_D = I_S e^{qV_D/KT}$$

$$I_D = I_S e^{V_D/K_B T}$$

$$K_B = K/q$$

40

30

20

50

(V) 60

Circuito equivalente do Diodo I

Circuito equivalente do Diodo I

Resistência do Diodo

Resistência do Diodo

$$\frac{1}{r_d} = \frac{dI_{\rm D}}{dV_{\rm D}} = \frac{d[I_{\rm S}e^{qV_{\rm D}/kT}]}{dV_{\rm D}} = \frac{qI_{\rm S}e^{qV_{\rm D}/kT}}{kT} = \frac{qI_{\rm D}}{kT}$$

Resistência do Diodo

$$\frac{1}{r_d} = \frac{dI_{\rm D}}{dV_{\rm D}} = \frac{d[I_{\rm S}e^{qV_{\rm D}/kT}]}{dV_{\rm D}} = \frac{qI_{\rm S}e^{qV_{\rm D}/kT}}{kT} = \frac{qI_{\rm D}}{kT}$$

Circuito equivalente do Diodo II

Circuito equivalente do Diodo III

Circuito equivalente do Diodo III

Diodo IDEAL

Circuitos equivalentes do Diodo

Modelo	Condições	Circuito equivalente	Curva característica (polarização direta)
Modelo linear por partes		→	Id Vd
Modelo Simplificado	R _{circuito} >> r _{av} Onde, r _{av} = resistência interna CA média		Id A
Modelo Ideal	$R_{circuito} >> r_{av}$ $E_{circuito} >> V_{T}$ Onde, $V_{T} = tensão de limiar$	—	Id _A

Ponto de Operação (Q) do Diodo

 $Q \rightarrow Quiescente = "Repouso"$

$$V_D = ?$$
 $I_D = ?$

$$E = V_D + I_D R$$

Modelo NÃO aproximado

Q → Quiescente = "Repouso"

$$E = V_D + I_D R$$

$$I_D = I_S \left(e^{V_D/K_B T} - 1 \right)$$

Ponto de Operação (Q) do Diodo

Ponto de Operação (Q) do Diodo (Modelos Aproximados)

Aprox. I

$$E = 0.7 + I_D(R + R_D)$$

Aprox. II

$$E = 0.7 + I_D R$$

Aprox. III

$$E = I_D R$$

Diodos - Exemplo

Solução

Solução

$$V_o = 12 \text{ V} - 0.3 \text{ V} = 11.7 \text{ V}$$

Folha de Dados

A -	• BV 125 V (MIN) @ 100 μA (BAY73)		
	ABSOLUTE MAX	XIMUM RATINGS (Note 1)		
- 1	Temperature	es		
в —	Storage Te Maximum Lead Temp	-65°C to +200°C +175°C +260°C		
	Power Dissip	oation (Note 2)		
c +		Total Power Dissipation at 25°C / ver Derating Factor (from 25°C)	Ambient	500 mW 3.33 mW/°C
	Maximum V WIV	oltage and Currents Working Inverse Voltage	BAY73	100 V
_ [Io	Average Rectified Current		200 mA
D-	I _F	Continuous Forward Current		500 mA
	if	Peak Repetitive Forward Cur	rrent	600 mA
	if (surge)			
		Pulse Width = 1 s		1.0 A
		Pulse Width = 1 us		4.0 A

ELECTRICAL CHARACTERISTICS (25°C Ambient Temperature unless otherwise noted)

- 1	SYMBOL	CHARACTERISTIC	BAY73		UNITS	TEST CONDITIONS
	SIMBOL	CHARACIERISTIC	MIN	MAX	UNIIS	TEST CONDITIONS
E-	-V _F	Forward Voltage	0.85	1.00	V	$I_{\rm F} = 200 \text{mA}$
	9 1		0.81	0.94	V	$I_{\rm F} = 100 \text{mA}$
			0.78	0.88	v	$I_F = 50 \text{ mA}$
			0.69	0.80	V	$I_F = 10 \text{ mA}$
	1 1		0.67	0.75	V	$I_F = 5.0 \text{ mA}$
+			0.60	0.68	V	$I_F = 1.0 \text{mA}$
					V	$I_F = 0.1 \text{ mA}$
+	I _R	- Reverse Current		500	nA	V _R = 20 V, T _A = 125°C
				5.0	nA	$V_R = 100 \text{ V}$
				1.0	μA	$V_R = 100 \text{ V}, T_A = 125^{\circ}\text{C}$
					nA	$V_R = 180 \text{ V}$
					μA	$V_R = 180 \text{ V}, T_A = 100 ^{\circ}\text{C}$
	BV	Breakdown Voltage	125		V	$I_R = 100 \mu A$
+		Capacitance	-	8.0	pF	$V_R = 0$, $f = 1.0 \text{ MHz}$
1	-t _n -	Reverse Recovery Time		3.0	μs	$I_F = 10 \text{ mA}, V_R = 35 \text{ V}$
						$R_L = 1.0 \text{ to } 100 \text{ k}\Omega$ $C_L = 10 \text{ pF, JAN } 256$

(b)

Ponte retificadora:

Utilizado no circuito de retificação em fontes de tensão

Diodos Especiais - LED

Recombinação elétron-lacuna

 $h = 6,62606957 \times 10^{-34} \text{ m}^2 \text{ kg} / \text{ s}$

LEDs

LED RGB

Tipo anodo comum

LEDs

LEDs - SMD

SMD – Surface Mounted Device

Espectro de emissão

$$v = \frac{c}{\lambda}$$

Espectro de emissão solar

$$\nu = \frac{c}{\lambda}$$

LED - Polarização

Diodos Especiais - Fotodetectores

Reversamente Polarizados

Recombinação elétron-lacuna

Incidência de Luz

 $h = 6,62606957 \times 10^{-34} \text{ m}^2 \text{ kg} / \text{s}$

Diodos Especiais - Fotodetectores

Diodos Especiais – Chave óptica

Aplicação

Diodos Especiais – SSD

Display de Sete Segmentos

Diodos Especiais – SSD

Display de Sete Segmentos

Diodos Especiais - Diodo túnel

Resistência negativa

Aplicações:

- Circuitos de alta frequência
- Osciladores de relaxação

Outros Diodos

Ex.: Diac

Perguntas

- Defina recombinação elétron-buraco.
- O que é região de depleção?
- O que é corrente de saturação reversa?
- O diodo conduz quando polarizado reversamente?
- Quais são os modelos do diodo?
- O que é ponto de operação do diodo?
- Qual a função que relaciona I_d x V_d?

Determinar I₁, I₂ e I_D

Calcule v_o

O circuito se comporta com uma *Porta Lógica*. De que tipo?

Calcule v_o

Calcule v_o

Calcule v_o para as seguintes situações:

- $V_{in} = 8V$
- $V_{in} = 3,3V$
- $V_{in} = 1,5V$

Exercícios recomendados

Cap 1 R. Boylestad – Dispositivos eletrônicos e teoria de circuitos 4ª. Edição

1, 2, 5, 9, 11, 12, 13, 14, 15, 18, 20, 27, 56