MI Engenharia de Materiais MI Engenharia de Polímeros MI Engenharia de Telecomunicações e Informática

Luis Rebouta rebouta@fisica.uminho.pt

Programa sucinto

- 1. Análise dimensional e cálculo vetorial
- 2. Cinemática da partícula material
- 3. Dinâmica da partícula material
- 4. Trabalho de uma força e conservação da energia mecânica
- 5. Momento e colisões
- 6. Movimento oscilatório
- 7. Movimento ondulatório

Avaliação

Avaliação por Testes - dois testes, individuais (28 de Abril e 2 de Junho)

— Aprovação com nota média ≥ 9.5 valores.

A classificação final será dada pela média das classificações obtidas nos testes:

$$CF = (T1 + T2)/2$$

Para poder fazer o 2º teste é necessário ter uma nota mínima de 7,5 valores no 1º teste. Nota mínima do 2º teste para aprovação - 7,5 valores.

Quem tiver uma CF inferior a 9,5 valores terá de fazer um exame sobre toda a matéria.

Horário de atendimento: 3ª feira – 16h às 18h

A Relação entre a Física e as outras ciências

Física

Ciência da matéria e da energia

Estuda os movimento de partículas e ondas, interações entre partículas, átomos e núcleos: estuda o movimento de um eletrão que gira em torno do átomo, a queda de uma gota de água ou a formação de uma estrela ...

A Física pode ser considerada a "ciência mais fundamental" porque os seus princípios constituem muitas vezes a base onde assentam as outras ciências.

Na vida de todos os dias

engenheiros e músicos arquitetos e médicos químicos e geólogos biólogos e astrónomos

falam em transferências de calor, circulação de fluidos, corrente elétrica, magnetismo, tensão, evaporação, luz, transmissão de informação, etc.

Porque é que um helicóptero tem dois rotores?

Porque é que o som "dobra as esquinas", enquanto a luz viaja em linha recta?

Porque é que som de um oboé é diferente do de uma flauta?

O cobre é um bom condutor eléctrico, mas a madeira não. Porquê?

Porque é que uma disquete se estraga com o calor?

Sistemas de unidades

Grandezas e unidades fundamentais do Sistema Internacional (SI)

Grandeza Física	Unidade	Abreviatura	
comprimento	metro	m	
massa	quilograma	kg	
tempo	segundo	S	
Intensidade de corrente eléctrica	Ampére	A	
temperatura	Kelvin	K	
intensidade luminosa	candela	cd	
quantidade de substância	mole	mol	

Um sistema de unidades deve ser <u>"coerente"</u>, o que significa que uma unidade derivada se deve obter à custa das fundamentais por simples produto ou quociente, sem que apareçam fatores numéricos.

Algumas unidades SI derivadas com nomes especiais

Grandeza	Unidade	Expressão em termos de outras unidades	Expressão em termos das unidades fundamentais
Frequência	Hertz (Hz)		s ⁻¹
Força	Newton (N)		m.kg.s ⁻²
Pressão	Pascal (Pa)	N/m ²	m ⁻¹ .kg.s ⁻²
Trabalho	Joule (J)	N.m	$m^2.kg.s^{-2}$
Potência	Watt (W)	J/s	m^2 .kg.s ⁻³

Prefixos SI e as suas abreviaturas

Prefixo	Abreviatura	Factor	Prefixo	Abreviatura	Factor
deca-	da	101	deci-	d	10-1
hecto-	h	102	centi-	c	10-2
quilo-	k	103	mili-	m	10-3
mega-	M	106	micro-	μ	10-6
giga-	G	109	nano-	n	10-9
tera-	T	1012	pico-	p	10-12
peta-	Р	10 ¹⁵	femto-	f	10-15
exa-	Е	1018	atto-	a	10-18

Cap. I – Introdução Matemática

Trigonometria

h = comp. da hipotenusa

c = comp. do lado oposto ao ângulo θ

a = comp. do lado adjacente ao ângulo θ

Funções Trigonométricas

$$tg\theta = \frac{c}{a}$$

$$\cos\theta = \frac{a}{h}$$

$$sen\theta = \frac{c}{h}$$

Funções Inversas:

$$\operatorname{arctg} \frac{c}{a} = \theta$$

$$\operatorname{arccos} \frac{a}{h} = \theta$$

$$\operatorname{arcsen} \frac{c}{h} = \theta$$

Introdução

Triângulos e trigonometria

• Triângulos retângulos

Teorema de Pitágoras:

Num triângulo retângulo o quadrado da hipotenusa é igual á soma do quadrado dos catetos:

$$c^2 = a^2 + b^2$$

• Outros triângulos

$$\frac{a}{sen\alpha} = \frac{b}{sen\beta} = \frac{c}{sen\gamma}$$

$$c^2 = a^2 + b^2 + 2 a b \cos \theta$$

Cálculo Vetorial

Representação gráfica de vetores

Características de um vetor:

- > módulo
- > direção
- > sentido

Um vetor pode ser representado graficamente por um segmento de reta orientado, que tem a mesma <u>direção</u> e <u>sentido</u> que o vetor considerado e cujo comprimento é proporcional ao <u>módulo</u> do mesmo.

Notação: F ou ||F||

F representa o vetor (módulo, direção e sentido)

Componentes de um vetor

Qualquer vetor, \vec{v} , pode ser considerado como o resultado da soma de dois ou mais vetores. Os vetores que somados dão origem ao vetor \vec{v} são chamados de vetores componentes de \vec{v} .

$$\vec{v} = \vec{a} + \vec{b}$$

vetores componentes

As componentes mais frequentemente usadas são as componentes ortogonais. Neste caso o vetor é expresso como o resultado da soma de dois ou três vetores mutuamente perpendiculares.

Vetores unitários

Qualquer vetor, \vec{F} , pode ser escrito como:

$$\vec{F} = F \hat{u}$$

módulo do vetor \vec{F}

 $\hat{u} = \frac{\vec{F}}{\left| \vec{F} \right|}$

vetor unitário com a mesma direção de \vec{F}

Definindo três vetores unitários $\hat{i}, \hat{j} e \hat{k}$ paralelos aos eixos cartesianos x, y e z, respetivamente, podemos escrever:

$$\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k}$$

onde F_x , F_y e F_z são os módulos dos vetores componentes de F_z , segundo os eixos x, y e z.

<u>2D</u>

A duas dimensões um vetor fica perfeitamente caracterizado por um **módulo e um ângulo** com um dos eixos de referência.

$$\vec{P} = \vec{P}_x + \vec{P}_y$$

$$P_x = P \cdot \cos \theta$$

$$P_y = P \cdot \sin \theta$$

$$\vec{P} = P_x \hat{i} + P_y \hat{j}$$

$$P = \sqrt{P_x^2 + P_y^2}$$

Adição e subtração gráfica de vetores

adição

subtração

$$\vec{A} + \vec{B} = \vec{C}$$

$$\vec{A} - \vec{B} = \vec{C}$$

Soma de vetores a partir dos vetores componentes

Suponhamos que o vector **D** é a resultante da soma dos vetores **A**, **B** e **C**:

$$\vec{D} = \vec{A} + \vec{B} + \vec{C}$$

Se substituirmos cada vetor pelas suas componentes, obteremos as seguintes equações:

$$\vec{A} = A_{x}\hat{i} + A_{y}\hat{j} + A_{z}\hat{k}$$

$$\vec{B} = B_{x}\hat{i} + B_{y}\hat{j} + B_{z}\hat{k}$$

$$\vec{C} = C_{x}\hat{i} + C_{y}\hat{j} + C_{z}\hat{k}$$

$$D_{x} = A_{x} + B_{x} + C_{x}$$

$$D_{y} = A_{y} + B_{y} + C_{y}$$

$$D_{z} = A_{z} + B_{z} + C_{z}$$

Utilização dos pontos cardeais para orientação na superfície da Terra

Introdução

1. Considere um vetor com um comprimento igual a 23 e que faz um ângulo de 37º com o eixo x. Calcule as suas componentes.

2. Um carro desloca-se 20 km para Norte e depois 35 km na direção N 60° Oeste. Determine o módulo e direção do deslocamento resultante.

$$A_x = 20 \cos 90^\circ = 0 \text{ km}$$
 $A_y = 20 \sin 90^\circ = 20 \text{ km}$
 $B_x = -35 \sin 60^\circ = -30,31 \text{ km}$ $B_y = 35 \cos 60^\circ = 17,5 \text{ km}$

$$\vec{R} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} = (0 - 30,31)\hat{i} + (20 + 17,5)\hat{j}$$

$$R = \sqrt{30,31^2 + 37,5^2} = 48,2 \text{ km}$$
 $\beta = \arctan \frac{30,31}{37.5} = 38,9^{\circ}$

$$R = 48,2 \text{ km}; N38,9^{\circ}O$$

Introdução

3. Determine a resultante de duas forças:

 $F_1 = 800 \text{ N}$ que faz um ângulo de 47 ° com o eixo x

 $F_2 = 600 \text{ N}$ que faz um ângulo de 140 ° com o eixo x

$$F_{1x} = 800 \cos 47$$
 ° = 545,6 N

$$F_{1y} = 800 \text{ sen } 47 \text{ }^{\circ} = 585,1 \text{ N}$$

$$F_{2x} = 600 \cos 140^{\circ} = -459,6 \text{ N}$$

$$F_{2y} = 600 \text{ sen } 140 \text{ o} = 385,7 \text{ N}$$

$$\vec{F}_R = (F_{1x} + F_{2x})\hat{i} + (F_{1y} + F_{2y})\hat{j} = (545, 6 - 459, 6)\hat{i} + (585, 1 + 385, 7)\hat{j} = 86\hat{i} + 970, 8\hat{j} \quad (N)$$

$$F_R = \sqrt{86^2 + 970.8^2} = 974.6 N$$

$$\beta = \arctan \frac{970.8}{86} = 84.9^{\circ}$$

<u>3D</u>

A três dimensões, a caracterização de um vetor necessita já de dois ângulos, para além do módulo.

$$\vec{F} = \vec{F}_x + \vec{F}_y + \vec{F}_z$$

$$\left| \vec{F} \right| = \sqrt{\left| \vec{F}_x \right|^2 + \left| \vec{F}_y \right|^2 + \left| \vec{F}_z \right|^2}$$

$$\left| \vec{F}_{x} \right| = \left| \vec{F} \right| . sen \theta . \cos \phi$$

$$\left| \vec{F}_{y} \right| = \left| \vec{F} \right| . sen \theta . sen \phi$$

$$\left| \vec{F}_z \right| = \left| \vec{F} \right| \cdot \cos \theta$$

Introdução

Cosenos diretores

$$\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k}$$

$$F_x = F \cos \theta_x$$

$$F_y = F \cos \theta_y$$

$$F_z = F \cos \theta_z$$

Multiplicação de um vetor por um escalar

$$\vec{A} = a\vec{F}$$

O vetor A tem:

Módulo:
$$\left| \vec{A} \right| = a \left| \vec{F} \right|$$

Direcção de \vec{F}

Sentido de F ou -F, dependendo do escalar \underline{a} ser positivo ou negativo.

Produtos escalar e vetorial

Produto escalar ou interno

$$\vec{A} \cdot \vec{B} = \vec{A} | \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$$

$$0 \le \theta \le \pi$$

Define-se produto escalar ou interno de dois vetores A e B como a quantidade escalar obtida efetuando o produto da grandeza de um vetor pela projeção do outro sobre o primeira.

Propriedades do produto escalar

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

$$m(\vec{A} \cdot \vec{B}) = (m\vec{A}) \cdot \vec{B} = \vec{A} \cdot (m\vec{B})$$

$$\begin{cases} \vec{A} \neq \vec{0}; \vec{B} \neq \vec{0} \\ \vec{A} \cdot \vec{B} = 0 \end{cases} \Rightarrow \vec{A} \perp \vec{B}$$

Produto escalar de vetores unitários

$$\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$$

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0$$

$$\hat{j} \cdot \hat{i} = \hat{k} \cdot \hat{j} = \hat{k} \cdot \hat{j} = 0$$

$$\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \cdot (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$$
$$= A_x B_x + A_y B_y + A_z B_z$$

4. Calcule o produto escalar dos vetores **A** e **B**.

A= 23; ângulo de 37° com o eixo dos xx

B= 14; ângulo de -35° com o eixo dos xx

$$\vec{A} \cdot \vec{B} = AB\cos\theta = 23x14x\cos72^{\circ} \cong 100$$

$$A_x = 23 \cos 37^\circ = 18,4$$

 $A_y = 23 \sin 37^\circ = 13,8$
 $B_x = 14\cos (-35^\circ) = 11,5$
 $B_y = 14 \sin (-35^\circ) = -8,0$

$$b_y = 14 \sin 35^\circ = 8.0$$

$$b_y = 14 \sin 35^\circ = 8.0$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y = 18,4x11,5+13,8x(-8) \approx 100$$

Introdução

Produto vetorial ou externo

$$\vec{C} = \vec{A} \times \vec{B} = \vec{A} \wedge \vec{B}$$

direcção: perpendicular ao plano que contém os dois vetores.

sentido: dado pela regra da mão direita

módulo: $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| . sen \theta$

Propriedades do produto vetorial

$$\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

$$\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

$$m(\vec{A} \times \vec{B}) = (m\vec{A}) \times \vec{B} = \vec{A} \times (m\vec{B})$$

$$\begin{cases} \vec{A} \neq \vec{0}; \vec{B} \neq \vec{0} \\ \vec{A} \times \vec{B} = 0 \end{cases} \Rightarrow \vec{A} / / \vec{B}$$

Produto vetorial de vetores unitários

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$$

$$\hat{i} \times \hat{j} = \hat{k}$$
 $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$ $\hat{j} \times \hat{i} = -\hat{k}$ $\hat{k} \times \hat{j} = -\hat{i}$ $\hat{i} \times \hat{k} = -\hat{j}$

$$\hat{k} \times \hat{i} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{j}$$

$$\vec{A} \times \vec{B} = \begin{pmatrix} A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \end{pmatrix} \times \begin{pmatrix} B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \end{pmatrix}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} \hat{i} - \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} \hat{j} + \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix} \hat{k} = \begin{vmatrix} A_y & A_z \\ B_x & B_z \end{vmatrix}$$

$$= (A_y B_z - A_z B_y)\hat{i} - (A_x B_z - A_z B_x)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

5. Um caminhante deslocou-se 25 km para Sudeste (S45°E) da sua base. No 2° dia caminhou 40 km na direção N30°E. Determine:

- a) as componentes dos deslocamentos do caminhante
- b) as componentes do deslocamento total do caminhante
- c) determine o módulo e direção do deslocamento resultante.

a)
$$A_x = 25 \cos (-45^\circ) = 17.7 \text{ km}$$

 $A_y = 25 \sin (-45^\circ) = -17.7 \text{ km}$
 $B_x = 40 \cos 60^\circ = 20.0 \text{ km}$
 $B_y = 40 \sin 60^\circ = 34.6 \text{ km}$

b)
$$\vec{R} = \vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$$

$$R_x = 17.7 + 20 = 37.7 \text{ km}$$
 $R_y = -17.7 + 34.6 = 16.9 \text{ km}$

$$\vec{R} = 37,7\hat{i} + 16,9\hat{j}$$
 (km)

c)
$$R = \sqrt{R_x^2 + R_y^2} = 41.3 \text{ km}$$
 $\theta = \arctan \frac{R_y}{R_x} = \arctan \frac{16.9}{37.7} = 24.1^\circ$