

Deep Reinforcement Learning

Monte-Carlo methods

Julien Vitay

Professur für Künstliche Intelligenz - Fakultät für Informatik

https://tu-chemnitz.de/informatik/KI/edu/deeprl

Principle of Monte-Carlo (MC) methods

• The value of each state is defined as the mathematical expectation of the return obtained after that state and thereafter following the policy π :

$$V^\pi(s) = \mathbb{E}_{
ho_\pi}(R_t|s_t=s) = \mathbb{E}_{
ho_\pi}(\sum_{k=0}^\infty \gamma^k r_{t+k+1}|s_t=s)$$

• Monte-Carlo methods (MC) approximate this mathematical expectation by sampling M trajectories τ_i starting from s and computing the sampling average of the obtained returns:

$$V^\pi(s) = \mathbb{E}_{
ho_\pi}(R_t|s_t=s) pprox rac{1}{M} \sum_{i=1}^M R(au_i)$$

- If you have enough trajectories, the sampling average is an unbiased estimator of the value function.
- The advantage of Monte-Carlo methods is that they require only **experience**, not the complete dynamics p(s'|s,a) and r(s,a,s').

Monte-Carlo policy evaluation

• The idea of MC policy evaluation is to repeatedly sample **episodes** starting from each possible state s_0 and maintain a **running average** of the obtained returns for each state:

• while True:

- 1. Start from an initial state s_0 .
- 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$au=(s_o,a_o,r_1,s_1,a_1,\ldots,s_T)$$

- 3. Compute the return $R_t = \sum_{k=0}^\infty \gamma^k r_{t+k+1}$ for all encountered states s_0, s_1, \dots, s_T
- 4. Update the estimated state value $V(s_t)$ of all encountered states using the obtained return:

$$V(s_t) \leftarrow V(s_t) + lpha \left(R_t - V(s_t)
ight)$$

Monte-Carlo policy evaluation of action values

- The same method can be used to estimate Q-values.
- while True:
 - 1. Start from an initial state s_0 .
 - 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$au=(s_o,a_o,r_1,s_1,a_1,\ldots,s_T)$$

- 3. Compute the return $R_t=\sum_{k=0}^\infty \gamma^k r_{t+k+1}$ for all encountered state-action pairs $(s_0,a_0),(s_1,a_1),\ldots,(s_{T-1},a_{T-1}).$
- 4. Update the estimated action value $Q(s_t, a_t)$ of all encountered state-action pairs using the obtained return:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(R_t - Q(s_t, a_t)\right)$$

• There are much more values to estimate (one per state-action pair), but the policy will be easier to derive.

Monte-Carlo policy improvement

• After each episode, the state or action values of the visited (s, a) pairs have changed, so the current policy might not be optimal anymore.

• As in DP, the policy can then be improved in a greedy manner:

$$egin{aligned} \pi'(s) &= ext{argmax}_a Q(s, a) \ &= ext{argmax}_a \sum_{s' \in \mathcal{S}} p(s'|s, a) \left[r(s, a, s') + \gamma \, V(s')
ight] \end{aligned}$$

• Estimating the Q-values allows to act greedily, while estimating the V-values still requires the dynamics p(s'|s,a) and r(s,a,s').

Monte-Carlo control

- Monte-Carlo control alternates between MC policy evaluation and policy improvement until the optimal policy is found: generalized policy iteration (GPI).
- while True:
 - 1. Select an initial state s_0 .
 - 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$au=(s_o,a_o,r_1,s_1,a_1,\ldots,s_T)$$

- 3. Compute the return $R_t = \sum_{k=0}^\infty \gamma^k r_{t+k+1}$ of all encountered state-action pairs.
- 4. Update the estimated action value $Q_k(s_t,a_t)$ of all encountered state-action pairs:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(R_t - Q(s_t, a_t)\right)$$

5. For each state s_t in the episode, **improve** the policy:

$$\pi(s_t, a) = egin{cases} 1 ext{ if } a = rgmax \, Q(s_t, a) \ 0 ext{ otherwise.} \end{cases}$$

How to generate the episodes?

Source: http://ai.berkeley.edu/lecture_slides.html

- The problem with MC control is that we need a policy to generate the sample episodes, but it is that policy that we want to learn.
- We have the same exploration/exploitation problem as in bandits:
 - If I trust my estimates too much (**exploitation**), I may miss more interesting solutions by keeping generating the same episodes.
 - If I act randomly (exploration), I will find more interesting solutions, but I won't keep doing them.

Exploration/Exploitation dilemma

- Exploitation is using the current estimated values to select the greedy action:
 - The estimated values represent how good we think an action is, so we have to use this value to update the policy.
- Exploration is executing non-greedy actions to try to reduce our uncertainty about the true values:
 - The values are only estimates: they may be wrong so we can not trust them completely.
- If you only **exploit** your estimates, you may miss interesting solutions.
- If you only **explore**, you do not use what you know: you act randomly and do not obtain as much reward as you could.
- → You can't exploit all the time; you can't explore all the time.
- \rightarrow You can never stop exploring; but you can reduce it if your performance is good enough.
- An easy solution to ensure exploration is to assume **exploring starts**, where every state-action pair has a non-zero probability to be selected as the start of an episode.

Stochastic policies

• Exploration can be ensured by forcing the learned policy to be stochastic, aka ϵ -soft.

• ϵ -Greedy action selection randomly selects nongreedy actions with a small probability ϵ :

$$\pi(s,a) = egin{cases} 1 - \epsilon & ext{if } a = rgmax \, Q(s,a) \ rac{\epsilon}{|\mathcal{A}|-1} & ext{otherwise}. \end{cases}$$

• Softmax action selection uses a Gibbs (or Boltzmann) distribution to represent the probability of choosing the action a in state s:

$$\pi(s,a) = rac{\exp Q(s,a)/ au}{\sum_b \exp Q(s,b)/ au}$$

ullet ϵ -greedy choses non-greedy actions randomly, while softmax favors the best alternatives.

- In **on-policy** control methods, the learned policy has to be ϵ -soft, which means all actions have a probability of at least $\frac{\epsilon}{|\mathcal{A}|}$ to be visited. ϵ -greedy and softmax policies meet this criteria.
- Each sample episode is generated using this policy, which ensures exploration, while the control method still converges towards the optimal ϵ -policy.
- while True:
 - 1. Generate an episode $au=(s_0,a_0,r_1,\ldots,s_T)$ using the current **stochastic** policy π .
 - 2. For each state-action pair (s_t, a_t) in the episode, update the estimated Q-value:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(R_t - Q(s_t, a_t)\right)$$

3. For each state s_t in the episode, improve the policy (e.g. ϵ -greedy):

$$\pi(s_t, a) = egin{cases} 1 - \epsilon ext{ if } a = rgmax \, Q(s, a) \ rac{\epsilon}{|\mathcal{A}(s_t) - 1|} ext{ otherwise.} \end{cases}$$

- Another option to ensure exploration is to generate the sample episodes using a policy b(s,a) different from the current policy $\pi(s,a)$ of the agent.
- The **behavior policy** b(s,a) used to generate the episodes is only required to select at least occasionally the same actions as the **learned policy** $\pi(s,a)$ (coverage assumption).

$$\pi(s,a)>0\Rightarrow b(s,a)>0$$

- An ϵ -greedy behavior policy over the Q-values is often enough, while a deterministic (greedy) policy can be learned.
- The behavior policy could also come from **expert knowledge**, i.e. known episodes from the MDP generaed by somebody else.

Applications of RL: process control

Source: https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

- 40% reduction of energy consumption when using deep RL to control the cooling of Google's datacenters.
- The RL algorithm learned passively from the **behavior policy** (expert decisions) what the optimal policy should be.

- But are we mathematically allowed to do this?
- We search for the optimal policy that maximizes in expectation the return of each **trajectory** (episode) possible under the learned policy π :

$$\mathcal{J}(\pi) = \mathbb{E}_{ au \sim
ho_\pi}[R(au)]$$

- ρ_{π} denotes the probability distribution of trajectories achievable using the policy π .
- ullet If we generate the trajectories from the behavior policy b(s,a), we end up maximizing something else:

$$\mathcal{J}'(\pi) = \mathbb{E}_{ au \sim
ho_b}[R(au)]$$

• The policy that maximizes $\mathcal{J}'(\pi)$ is **not** the optimal policy of the MDP.

- If you try to estimate a parameter of a random distribution π using samples of another distribution b, the sample average will have a strong **bias**.
- ullet We need to **correct** the samples from b in order to be able to estimate the parameters of π correctly:
 - importance sampling (IS).

• We want to estimate the expected return of the trajectories generated by the policy π :

$$\mathcal{J}(\pi) = \mathbb{E}_{ au \sim
ho_\pi}[R(au)]$$

We start by using the definition of the mathematical expectation:

$$\mathcal{J}(\pi) = \int_{ au}
ho_{\pi}(au) \, R(au) \, d au$$

• The expectation is the integral over all possible trajectories of their return $R(\tau)$, weighted by the likelihood $\rho_{\pi}(\tau)$ that a trajectory τ is generated by the policy π .

ullet The trick is to introduce the behavior policy b in what we want to estimate:

$$\mathcal{J}(\pi) = \int_{ au} rac{
ho_b(au)}{
ho_b(au)} \,
ho_\pi(au) \, R(au) \, d au$$

- $ho_b(au)$ is the likelihood that a trajectory au is generated by the behavior policy b.
- We shuffle a bit the terms:

$$\mathcal{J}(\pi) = \int_{ au}
ho_b(au) \, rac{
ho_\pi(au)}{
ho_b(au)} \, R(au) \, d au$$

and notice that it has the form of an expectation over trajectories generated by b:

$$\mathcal{J}(\pi) = \mathbb{E}_{ au\sim
ho_b}[rac{
ho_\pi(au)}{
ho_b(au)}\,R(au)]$$

• This means that we can sample trajectories from b, but we need to **correct** the observed return by the **importance sampling weight** $\frac{\rho_{\pi}(\tau)}{\rho_b(\tau)}$.

ullet The importance sampling weight corrects the mismatch between π and b.

- If the two distributions are the same (on-policy), the IS weight is 1, no need to correct the return.
- ullet If a sample is likely under b but not under π , we should not care about its return: $rac{
 ho_\pi(au)}{
 ho_b(au)} << 1$
- If a sample is likely under π but not much under b, we increase its importance in estimating the return: $rac{
 ho_\pi(au)}{
 ho_b(au)}>>1$
- The sampling average of the corrected samples will be closer from the true estimate (unbiased).

• Great, but how do we compute these probability distributions $ho_\pi(au)$ and $ho_b(au)$ for a trajectory au?

- A trajectory au is a sequence of state-action transitions $(s_0, a_0, s_1, a_1, \ldots, s_T)$ whose probability depends on:
 - the probability of choosing an action a_t in state s_t : the **policy** $\pi(s,a)$.
 - the probability of arriving in the state s_{t+1} from the state s_t with the action a_t : the **transition** probability $p(s_{t+1}|s_t,a_t)$.

• The **likelihood** of a trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_T)$ under a policy π depends on the policy and the transition probabilities (Markov property):

$$ho_{\pi}(au) = p_{\pi}(s_0, a_0, s_1, a_1, \ldots, s_T) = p(s_0) \prod_{t=0}^{T-1} \pi_{ heta}(s_t, a_t) \, p(s_{t+1} | s_t, a_t)$$

- $p(s_0)$ is the probability of starting an episode in s_0 , we do not have control over it.
- What is interesting is that the transition probabilities disappear when calculating the importance sampling weight:

$$ho_{0:T-1} = rac{
ho_{\pi}(au)}{
ho_b(au)} = rac{p_0(s_0) \prod_{t=0}^{T-1} \pi(s_t, a_t) p(s_{t+1}|s_t, a_t)}{p_0(s_0) \prod_{t=0}^{T} b(s_t, a_t) p(s_{t+1}|s_t, a_t)} = rac{\prod_{t=0}^{T-1} \pi(s_t, a_t)}{\prod_{t=0}^{T} b(s_t, a_t)} = \prod_{t=0}^{T-1} rac{\pi(s_t, a_t)}{b(s_t, a_t)}$$

• The importance sampling weight is simply the product over the length of the episode of the ratio between $\pi(s_t, a_t)$ and $b(s_t, a_t)$.

- In **off-policy MC control**, we generate episodes using the behavior policy b and update **greedily** the learned policy π .
- For the state s_t , the obtained returns just need to be weighted by the relative probability of occurrence of the **rest of the episode** following the policies π and b:

$$ho_{t:T-1} = \prod_{k=t}^{T-1} rac{\pi(s_k, a_k)}{b(s_k, a_k)}$$

• This gives us the updates:

$$V(s_t) = V(s_t) + \alpha \,
ho_{t:T-1} \left(R_t - V(s_t) \right)$$

and:

$$Q(s_t, a_t) = Q(s_t, a_t) + lpha \,
ho_{t:T-1} \left(R_t - Q(s_t, a_t)
ight)$$

• Unlikely episodes under π are barely used for learning, likely ones are used a lot.

- while True:
 - 1. Generate an episode $au = (s_0, a_0, r_1, \ldots, s_T)$ using the **behavior** policy b.
 - 2. For each state-action pair (s_t, a_t) in the episode, update the estimated Q-value:

$$ho_{t:T-1} = \prod_{k=t}^{T-1} rac{\pi(s_k, a_k)}{b(s_k, a_k)}$$

$$Q(s_t, a_t) = Q(s_t, a_t) + lpha \,
ho_{t:T-1} \left(R_t - Q(s_t, a_t)
ight)$$

3. For each state s_t in the episode, update the **learned** deterministic policy (greedy):

$$\pi(s_t, a) = egin{cases} 1 ext{ if } a = rgmax\, Q(s_t, a) \ 0 ext{ otherwise.} \end{cases}$$

ullet **Problem 1:** if the learned policy is greedy, the IS weight becomes quickly 0 for a non-greedy action a_t :

$$\pi(s_t, a_t) = 0 o
ho_{0:T-1} = \prod_{k=0}^{T-1} rac{\pi(s_k, a_k)}{b(s_k, a_k)} = 0$$

Off-policy MC control only learns from the last greedy actions, what is slow at the beginning.

Solution: π and b should not be very different. Usually π is greedy and b is a softmax (or ϵ -greedy) over it.

• Problem 2: if the learned policy is stochastic, the IS weights can quickly vanish to 0 or explode to infinity:

$$ho_{t:T-1} = \prod_{k=t}^{T-1} rac{\pi(s_k, a_k)}{b(s_k, a_k)}$$

If $\frac{\pi(s_k, a_k)}{b(s_k, a_k)}$ is smaller than 1, the products go to 0. If it is bigger than 1, it grows to infinity.

Solution: one can normalize the IS weight between different episodes (see Sutton and Barto) or **clip** it (e.g. restrict it to [0.9, 1.1], see PPO later in this course).

Initialize, for all $s \in \mathcal{S}$, $a \in \mathcal{A}(s)$: $Q(s,a) \leftarrow \text{arbitrary}$ $N(s,a) \leftarrow 0 \qquad ; \text{Numerator and}$ $D(s,a) \leftarrow 0 \qquad ; \text{Denominator of } Q(s,a)$ $\pi \leftarrow \text{an arbitrary deterministic policy}$

Repeat forever:

(a) Select a policy π' and use it to generate an episode:

$$s_0, a_0, r_1, s_1, a_1, r_2, \ldots, s_{T-1}, a_{T-1}, r_T, s_T$$

- (b) $\tau \leftarrow$ latest time at which $a_{\tau} \neq \pi(s_{\tau})$
- (c) For each pair s, a appearing in the episode after τ :

 $t \leftarrow \text{the time of first occurrence (after } \tau) \text{ of } s, a$

$$w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k, a_k)}$$

$$N(s, a) \leftarrow N(s, a) + wR_t$$

$$D(s, a) \leftarrow D(s, a) + w$$

$$Q(s, a) \leftarrow \frac{N(s, a)}{D(s, a)}$$

(d) For each $s \in \mathcal{S}$:

$$\pi(s) \leftarrow \arg\max_a Q(s, a)$$

Advantages of off-policy methods

- The main advantage of **off-policy** strategies is that you can learn from other's actions, you don't have to rely on your initially wrong policies to discover the solution by chance.
- Example: learning to play chess by studying thousands/millions of plays by chess masters.
- In a given state, only a subset of the possible actions are actually executed by experts: the others may be too obviously wrong.
- The exploration is then guided by this expert knowledge, not randomly among all possible actions.
- Off-policy methods greatly reduce the number of transitions needed to learn a policy: very stupid actions are not even considered, but the estimation policy learns an optimal strategy from the "classical" moves.
- Drawback: if a good move is not explored by the behavior policy, the learned policy will never try it.

Properties of Monte-Carlo methods

- Monte-Carlo evaluation estimates value functions via sampling of entire episodes.
- Monte-Carlo control (evaluation-improvement) is a generalized policy iteration method.
- MC for action values is **model-free**: you do not need to know p(s'|s,a) to learn the optimal policy, you just sample transitions (trial and error).
- MC only applies to episodic tasks: as you learn at the end of an episode, it is not possible to learn continuing tasks.
- MC suffers from the **exploration-exploitation** problem:
 - on-policy MC learns a stochastic policy (ϵ -greedy, softmax) to ensure exploration.
 - off-policy MC learns a greedy policy, but explores via a behavior policy (importance sampling).
- Monte-Carlo methods have:
 - a small bias: with enough sampled episodes, the estimated values converge to the true values.
 - a huge variance: the slightest change of the policy can completely change the episode and its return.
 You will need a lot of samples to form correct estimates: sample complexity.