Predicting Stroke Events with Physical Health Data

Group 22, Grant Zhou, Yile Chen, Tina Cao, Judy Zhu

Introduction

Interest

Stroke is the **2nd leading** cause of death globally, about 11% of total death

• Stroke prevention

Primary question:

 Whether a patient will have a stroke and the probability of having a stroke given measurements of a patient's health condition

Dataset

X: gender, age, average glucose level, hypertension, heart disease, ever married, work type, residence type, BMI (body mass index)

Y: stroke event (0 or 1)

Summary of Methods

Imputation for Missing Data + One-hot encoding

Using median for replacing n/a entries

Logistic Regression

With L1 norm for feature selection and model fitting

GridsearchCV

For model optimization

1 2 3 4

Oversampling

- **Highly unbalanced** dataset
- Before: 0 (95.1%) vs. 1 (4.9%)
- After: 0 (50%) vs. 1 (50%)

Decision Tree

with ID3, use entire feature set for classification

Other Noteworthy Techniques

 We isolated an "untouched" test dataset for testing the performance outside the scope of oversampling, which we suspect still involves overfitting issue

Overview of the Dataset

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
8	27419	Female	59.0	0	0	Yes	Private	Rural	76.15	NaN	Unknown	1
9	60491	Female	78.0	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1

- Detected N/A values for BMI and fixed with SimpleInputer with median
- Performed one-hot encoding on categorical features (multiple classes)

Visualization:

distribution of age, bmi, and avg glucose level in stoke & non-stroke group

Age

BMI

Glucose

Results: feature selection

- linear_model.LogisticRegression(max_iter=5000, C = 0.01, penalty = 'l1', solver = 'liblinear')
- Before: 19 features (after one-hot encoding)

The we select 3 features that have non-zero coefficients

'age', 'gender_Male', 'avg_glucose_level'

Results: logistic regression

Grid search CV:

parameters =0

clf.best_score_=0.779 clf.best_params_={'C': 1}

Accuracy with Best Parameters on Validation: 0.768

Optimized model on test dataset:

The accuracy is: 0.774 The recall is: 0.818 The precision is: 0.752 The AUC is: 0.774 ROC Curve for Classification 1.0 Frue Positive Rate (Positive label: 1) LogisticRegression (AUC = 0.85) 0.2 0.4 0.6 0.8 1.0 False Positive Rate (Positive label: 1)

Results: decision tree

Grid search CV:

```
'Max_depth': [1, 3, 5, 7],
'min_samples_split': [2,3,4,5],
'min_samples_leaf': [1,2,3,4]
```

```
clf.best_score_=0.858

clf.best_params_=
{'max_depth': 7,
'min_samples_leaf': 1,
'min_samples_split': 4}
```

Accuracy with Best Parameters on Validation: 0.867

Optimized model on test dataset:

```
The accuracy is: 0.861
The recall is: 0.928
The precision is: 0.819
The AUC is: 0.861
                      ROC Curve for Classification
   1.0
 Frue Positive Rate (Positive label: 1)
                                  DecisionTreeClassifier (AUC = 0.92)
    0.0
                    0.2
                               0.4
                                          0.6
         0.0
                                                                1.0
                     False Positive Rate (Positive label: 1)
```

Results: decision tree - importance score

Results: Majority Vote Prediction on Oversampled Dataset

Logistic Regression Result:

The accuracy is: 0.774 The recall is: 0.818

The precision is: 0.752

The AUC is: 0.85

Decision Tree Result:

The accuracy is: 0.861

The recall is: 0.928

The precision is: 0.819

The AUC is: 0.92

"Majority" Vote Prediction

The accuracy is: 0.813

The recall is: 0.773

The precision is: 0.839

Testing result on isolated test data set (highly unbalanced)

Results: Majority Vote Prediction on Highly Unbalanced Dataset

Logistic Regression Result:

The accuracy is: 0.733

The recall is: 0.773

The precision is: 0.129

The AUC is: 0.83

Decision Tree Result:

The accuracy is: 0.796

The recall is: 0.573

The precision is: 0.133

The AUC is: 0.72

"Majority" Vote Prediction

The accuracy is: 0.849

The recall is: 0.507

The precision is: 0.163

Implications

- We built models that has an high accuracy and precision on oversampled dataset and relatively satisfying performance on the "untouched" dataset.
- Identified features (age, bmi, avg glucose level) that are important in predicting stroke and provide certain information that can help design preventative measures.

Thanks

Questions?