Date: Esmund Lim AE Tutorial 4 19) VDI = NYT ln IDI - 1 102 $V_{p_2} = nV_T \ln \frac{T_{02}}{T_5}$ — (2) IOI VDI VOZ Voi = 0.6V IDI = 2.3MA Voz = 0.8V Ioz = 245 mA Voz-Vo1 = nVT la Is - nVT la (Is) = nVT ln (ID2 IS) Note: $ln\left(\frac{3}{2}\right) - ln\left(\frac{2}{3}\right)$ $\frac{\frac{1}{\sqrt{10^2 + \sqrt{10^2 + + \sqrt{10^2 +$ $= ln(\frac{3}{2},\frac{3}{2})$ = ln (9) = 0.04284169762 V 2 42.8 mV Sub nyT into 1 0.6 = 42.8 m V [ln (2.3 mA)] $\frac{14.00504726}{14.00504726} = \frac{2.3mA}{I_5}$: The empirical diode junction equation Vo = nVT la io = (42.8mV) ln (in 100A) - 1 io = Ise No = 1.902887408 x10-9 A = (1.900A) e To = 1.90 nA b) For In = 20mA () Vo = (42.8mV) & (20mA) Rs= 5.602 = 0.6920498469V ≈ 0.692V No 114005 For Io = 300mA Vo = (42.8mV) &n (300MA) = 0.8079543955V By iteration method (DC) ≈ 0.808V 0.7971 0.7941 0.7941 Vo apt (0.215A, 0.794V) To 0.232A 0.215A 0.215 A 0.215A Tobtained :. Vo = 0.794V

POP

Io = 0.215 A

egn (3)
Then sub

2)

$$V_{01} = nV_T \ln \left(\frac{I_{01}}{I_S}\right) - 0$$

$$V_{02} = n \sqrt{1 \ln \left(\frac{T_{02}}{T_s}\right)} - 2$$

VOI = 0.50V IOI = 250 MA

Voz = 0.70 V Ioz = 10 mA

$$V_{D2} - V_{O1} = nV_T \ln \left(\frac{I_{O2}}{I_S}\right) - nV_T \ln \left(\frac{I_{O1}}{I_S}\right)$$

$$= nV_T \ln \left(\frac{I_{O2}}{I_S}, \frac{I_{O3}}{I_{O1}}\right)$$

$$= nV_T \ln \left(\frac{I_{O2}}{I_{O1}}\right)$$

$$= \frac{V_{O2} - V_{O1}}{\ln \left(\frac{I_{O2}}{I_{O1}}\right)}$$

$$= \frac{0.7 - 0.5}{2n \left(\frac{10mA}{250MA}\right)}$$

$$= 0.0542 | 7006 | 4 V$$

$$\approx 54.2 \text{ mV}$$

 $gd = \frac{I_D}{nVT}$ (gradient of slope at Q-pt) $= \frac{9.16mA}{h}$

= 0.16900369

= 5.917030568 1

≈ 5.922 (AC Diode resistance)

Sub nVT into 1

0.5 = 54.2mV (In 250MA)
0.5
54.2mV = In 250MA
Is

Is = 250MA 0.5 54.2mV

= 24.70529422 × 10-9 A

= 24.70A

.. Empirical diode junction equation

AC Analysis

-> REMOVE DC component

DC Analysis

-> Remove the AC component

and just deal with DC component

 $V_{d} = \frac{r_{d}}{r_{d+R_{s}}} V_{s}$ $= \frac{5.92}{5.92 + 470} (0.1)$

= 1.243906539 X10-3 Vp-p

= 1.24 mVp-p

470.a	Load line equation	iteration method				
	$I_0 = \frac{\sqrt{s - v_0}}{R}$	Vo	0.7٧	0.695 V	0.695V	
5V T	1 Vo = 5-VD - (4)	ID	9.15mA	9.16 mA	9.16 mA	7
TARTIO SOLL		Q-pt (9.16mA, 0.695V)				

.. Vo = Vo + Va peakvalue of sinusoidal wave = (0.695+0.62msinwt) V

:. io = Io + id = (9.16m + 0.62 sinwt) A

()

Q-pt for D: Q-pt for D:
=
$$(0.9 \text{ mA} - \frac{10.75}{15 \text{ ka}}, 0.75 \text{V})$$
 = $(0.9 \text{ mA}, 0.75 \text{V})$
= $(0.183 \text{ mA}, 0.75 \text{V})$

$$Q-point\ for\ D.$$
 $Q-point\ for\ D_2$ (I_{D_1},V_{D_1}) (I_{O_2},V_{O_2}) $(0.617mA,0.75V)$ $(0A_1,-15-0.75V)$ $(0A_1,-15.75V)$

No.

Date:

Extra question

By Thevenin Theorem

$$V_{TH1} = \frac{R_2}{R_1 + R_2} V_1$$
 $R_{TH1} = R_1 / / R_2$ $V_{TH2} = \frac{R_3}{R_3 + R_4} V_2$ $R_{TH2} = R_3 / / R_4$

Empirical Diode Junction Equation

Load line equation

$$I_0 = V_{TH1} - V_{TH2} - 2V_0$$
 (2)
 $R_{TH1} + R_{TH2}$

and do iteration method to solve Q-point

Q-pt same for both

* what happen if VTHI is smaller than VTH2

-> question ended, current = 0