Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 5 / 3 / 2

Выполнила: студентка 102 группы Парахина К. С.

> Преподаватели: Цыбров Е. Г Гуляев Д. А.

Содержание

Постановка задачи	2
Математическое обоснование Оценка общей погрешности	3 3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл) Текст Маке-файла:	6
Отладка программы, тестирование функций	7
Программа на Си и на Ассемблере	8
Анализ допущенных ошибок	9
Список цитируемой литературы	10

Постановка задачи

- Требуется реализовать программу, которая численными методами вычисляет площадь фигуры, ограниченной тремя кривыми заданными в виде формул: $f_1(x) = 0.35x^2 0.95x + 2.7$, $f_2(x) = 3x + 1$, $f_3(x) = \frac{1}{x+2}$.
- Для нахождения вершин криволинейного треугольника реализован метод Ньютона (метод касательных) нахождения корня функции на заданном отрезке.
- Для вычисления площади криволинейного треугольника реализованы численный метод интегрирования через формулу трапеций.
- Начальные точки для применения метода нахождения корней были вычислены аналитически.

Математическое обоснование

Нахождение точки пересечения функций реализуется с помощью метода касательных (Ньютона). То есть целью метода является нахождение точки, в которой y(x) = g(x) или y(x) - g(x) = 0. На каждой итерации метода проверяется условие остановки у(x) - $\mathrm{g}(\mathrm{x}) < arepsilon$. Если условие не выполнено, то вычисляется новое приближение, где знаменатель - разность производных: $x=x-\frac{y(x)-g(x)}{y_p(x)-g_p(x)}$ Вычисление определенного интеграла реализовано с помощью метода трапеций. Сначала задаётся начальное число интервалов разбиения п = 100000, затем в цикле вычисляются два приближения интеграла - s_1 (для $\,$ интервалов) и $\,s_2$ (для 2n интервалов) по формуле трапеций: площадь каждой трапеции вычисляется как полусумма значений функции на концах отрезка, умноженная на длину отрезка $h = \frac{x^2 - x^1}{n}$. Разница между s_1 и s_2 служит оценкой погрешности если она больше заданной точности ε , число интервалов удваивается, и процесс повторяется. Математически это соответствует составной квадратурной формуле трапеций: интеграл от x_1 до x_2 функции f(x) приближается суммой площадей трапеций $(f(x_i) + f(x_{i+1})) * \frac{h}{2}, x_i = x_1 + i * h$. Метод обеспечивает второй порядок точности $O(h^2)$, так как ошибка на каждом отрезке пропорциональна h^3 , а общее число отрезков пропорционально $\frac{1}{h}$.

Для вычисления площади достаточно из интеграла функции $f_1(x)$ на отрезке $[A_x;B_x]$ вычесть интегралы функций $f_3(x)$ и $f_2(x)$ на отрезках $[A_x;C_x]$ и $[C_x;B_x]$ соответственно, где A - точка пересечения $f_1(x)$ и $f_3(x)$, B - точка пересечения $f_1(x)$ и $f_2(x)$, C - точка пересечения $f_2(x)$ и $f_3(x)$. Эту формулу можно использовать, так как по графику аналитически можно понять, что интеграл функции $f_1(x)$ на отрезке $[A_x;B_x]$ превосходит сумму интегралов функций $f_2(x)$ и $f_3(x)$ на соответствующих отрезках [1]. $S = \int_{A_x}^{B_x} f_1(x) - \int_{A_x}^{C_x} f_3(x) - \int_{C_x}^{B_x} f_2(x)$ Для нахождения значения ε_2 - абсолютной погрешности при вычислении

$$S = \int_{A_x}^{B_x} f_1(x) - \int_{A_x}^{C_x} f_3(x) - \int_{C_x}^{B_x} f_2(x)$$

определенного интеграла с помощью формулы трапеций использовалась известная формула оценки погрешности [1]: $\varepsilon_2 = \frac{f''(\xi)}{12} h^2(b-a),$

Оценка общей погрешности

Пусть с помощью описанных выше методом мы получили оценку I^{\prime} для интеграла на отрезке [a';b'], где $a'=a+arepsilon_1,\ b'=b+arepsilon_1$, и пусть I - действительное значение интеграла на отрезке [a;b]. Тогда из разложения в ряд Тейлора:

$$I' = I + f(a)\varepsilon_1 + f(b)\varepsilon_1 + o(\varepsilon_1)$$
$$I' - I \approx f(a)\varepsilon_1 + f(b)\varepsilon_1$$

Итоговая точность вычисления разности интегралов составит:

$$\varepsilon_3 = (f(A_x) + 2f(C_x) + f(B_x))\varepsilon_1$$

Разобьём требуемую точность ε пополам между ε_3 и ε_2 . Тогда итоговые оценки для ε_1 и ε_2 будут такими:

•
$$\varepsilon_1 = \frac{\varepsilon}{2}$$

•
$$\varepsilon_2 = \frac{\varepsilon}{2(f(A_x) + 2f(C_x) + f(B_x))}$$

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

В результате работы программы были получены следующие координаты точек пересечения: (таблица 1) и площадь полученной фигуры.

Кривые	x	y
1 и 2	0.448075	2.344225
2 и 3	-0.152873	5.590869
1 и 3	-1.821137	0.541381

Таблица 1: Координаты точек пересечения

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из следующих файлов

- task6.c обрабатывает аргументы командной строки, содержит функцию, находящую точку пересечения двух графиков а также функцию, считающую определенный интеграл функции на заданном отрезке.
- functions.asm содержит функции, вычисляющие значения данных графиков в заданной точке, а также значения их первых производных.

Сборка программы (Маке-файл)

Рис. 3: Графическое представление структуры программы

Зависимость между модулями программы полностью соотносится с графическим представлением её структуры (рис. 3).

Текст Make-файла:

```
all: program

program: task6.o functions.o
gcc -m32 -no-pie task6.o functions.o -o program -lm
task6.o: task6.c
gcc -m32 -g -Wall -c task6.c -o task6.o
functions.o: functions.asm
nasm -f elf32 functions.asm -o functions.o
clean:
rm -f *.o program
```

Отладка программы, тестирование функций

Для тестирования функций и отладки программы использовались опции командной строки –test-root (-R) и –test-integral (-I).

Функции гоот и integral были протестированы на следующих примерах: $y_1(x) = 2x$, $y_2(x) = 2 - x$, $y_3(x) = \frac{1}{2-x}$, производные соответствующих функций - $y1_p(x) = 2$, $y2_p(x) = -1$, $y3_p(x) = \frac{1}{(2-x)^2}$. Для каждого из тестов подбирался соответсвующий отрезок для поиска корня: [0.6; 1.4], [0; 0.5], [0.5; 1.5]. Полученные результаты полностью совпали с вычисленными аналитически. Тестирование показало, что обе функции работают корректно.

Функции	Отрезок	Прав. вывод	Вывод	Абс. ош.	Отн. ош.
$y_1(x) = 2x, \ y_2 = 2 - x$	[0.6; 1.4]	0.667	0.667	0.0	0.0
$y_2 = 2 - x, \ y_3(x) = \frac{1}{2-x}$	[0; 0.5]	1.000	1.000	0.0	0.0
$y_1 = 2x, \ y_3 = \frac{1}{2-x}$	[0.5; 1.5]	0.293	0.293	0.0	0.0

Таблица 2: Результаты тестирования функции root

Функция	Отрезок	Прав. вывод	Вывод	Абс. ош.	Отн. ош.
$y_1(x) = 2x$	[0.293; 0.667]	0.359	0.359	0.0	0.0
$y_2 = 2 - x$	[0.667; 1.000]	0.388	0.388	0.0	0.0
$y_3 = \frac{1}{2-x}$	[0.293; 1.000]	0.535	0.535	0.0	0.0

Таблица 3: Результаты тестирования функции integral

Программа на Си и на Ассемблере

Исходные тексты программы имеются в архиве, который приложен к этому отчету.

Анализ допущенных ошибок

Была допущена ошибка в написании функций на ассемблере - segmentation fault. Оказалось, что в каждой функции был неправильный порядок строк "рор ebp" и "mov esp, ebp". После перемены мест строк ошибка пропала.

Также было допущено несколько ошибок в выборе переменных, которые было легко заметить и исправить с помощью тестирования программы.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 — Москва: Наука, 1985.