第十章 图的矩阵表示

定理 10.1 n 阶无向连通图 G 的关联矩阵的秩 r(M(G)) = n - 1.

定理 10.2 n 阶无向连通图 G 的基本关联矩阵的秩 $r(M_f(G)) = n - 1$.

推论 1 设 n 阶无向图 G 有 p 个连通分支,则 $r(M(G)) = r(M_f(G)) = n - p$,其中 $M_f(G)$ 是从 M(G) 的每个对角块中删除任意一行而得到的矩阵.

推论 2 G 是连通图当且仅当 $r(M(G)) = r(M_f(G)) = n - 1$.

定理 10.3 设 $M_f(G)$ 是 n 阶连通图 G 一个基本关联矩阵. M_f' 是 $M_f(G)$ 中任意 n-1 列组成的方阵,则 M_f' 中各列所对应的边集 $\{e_{i_1},e_{i_2},\cdots,e_{i_{n-1}}\}$ 的导出子图 $G[\{e_{i_1},e_{i_2},\cdots,e_{i_{n-1}}\}]$ 是 G 的生成树当且仅当 M_f' 的行列式 $[M_f']\neq 0$.

定理 **10.4** 设 A 是 n 阶有向标定图 D 的邻接矩阵,A 的 $l(l \geq 2)$ 次幂 $A^l = A^{l-1} \cdot A$ 中元素 $a_{ij}^{(l)}$ 为 v_i 到 v_j 长度的 l 的通路数, $\sum_i \sum_j a_{ij}^{(l)}$ 为 D 中长度为 l 的通路总数,则 $\sum_i a_{ii}^{(l)}$ 为 D 中长度为 l 的回路总数。

推论 设 A 是 n 阶有向标定图 D 的邻接矩阵, B_r 中元素 $b_{ij}^{(r)}$ 为 v_i 到 v_j 长度小于等于 r 的通路数, $\sum\limits_{i}\sum\limits_{j}b_{ij}^{(r)}$ 为 D 中长度小于等于 r 的通路总数,而 $\sum\limits_{i}b_{ii}^{(r)}$ 为 D 中长度小于等于 r 的回路数.

定理 **10.5** 设 G 是 n 阶无向简单图, $V = \{v_1, v_2, \cdots, v_n\}$, A 是 G 的相邻矩阵, A^k 中元素 $a_{ij}^{(k)} \left(=a_{ji}^{(k)}\right) (i \neq j)$ 为 G 中 v_i 到 v_j (v_j 到 v_i)长度为 k 的通路数. 而 $a_{ii}^{(k)}$ 为 v_i 到 v_j 长度为 k 的回路数.

推论 1 在 A^2 中, $a_{ii}^{(2)} = d(v_i)$.

推论 2 若 G 是连通图,对于 $i\neq j,v_i,v_j$ 之间的矩离 $d(v_i,v_j)$ 为使 A^k 中元素 $a_{ij}^{(k)}\neq 0$ 的最小正整数 k.