## CSE 6220 / CX 4220 – Introduction to High-Performance Computing

Report 3 - SUMMA SpGEMM and APSP Jiahao Chen

# Implementation of 2D SUMMA SpGEMM

We implement sparse matrix-matrix multiplication  $C = A \times B$  using a 2D SUMMA (Scalable Universal Matrix Multiplication Algorithm) approach, parallelized with MPI. Each processor holds a sub-block of the sparse input matrices A and B, stored as lists of triplets  $((i,j), \mathrm{val})$  representing nonzero entries.

### **Algorithm Steps**

- 1. **Broadcast Phase (SUMMA-style):** For each step  $k \in [0, \sqrt{P} 1]$ :
  - Processors in row k broadcast their local block of A to all processors in their row communicator.
  - Simultaneously, processors in column *k* broadcast their local block of *B* to all processors in their column communicator.
- 2. **Efficient Local Multiplication:** Each processor multiplies the received submatrices using a hash-based kernel:
  - Construct a hash map from rows of  $B_k$  to their corresponding (col, val) pairs.
  - For each nonzero  $A_{ik}$ , look up matching rows  $B_{kj}$  to compute and accumulate  $C_{ij}$ .
  - Results are accumulated in a local map to form a sparse representation of the local block of C.

#### **Runtime Analsysis**

- In a given row, the process with column coordinate k acts as the root and broadcasts its local A and B blocks. The broadcast cost per iteration is typically expressed as:  $O(\alpha + m\beta)$ , where m is the message size in bytes,  $\alpha$  represents latency, and  $\beta$  is the inverse bandwidth. Consider that we have  $\sqrt{p}$  nodes on a row or column, the total broadcast cost is  $O(\sqrt{p}(\alpha + \beta m))$ .
- The computation cost is  $O(\sqrt{p}(d_A \times d_B))$ , where  $d_A$  and  $d_B$  are average non-zero value in one block. In a sparse scenario,  $d_A$  and  $d_B$  will be much smaller than the full block sizes, so the computation cost is often dominated by the cost of matching the nonzeros and the broadcasting.

# 2. APSP using (min, +) Matrix Multiplication (5 pts)

The APSP algorithm computes all-pairs shortest paths by repeatedly squaring the weighted adjacency matrix using the SpGEMM routine.

Let D be the weighted adjacency matrix of a graph, where  $D_{ij}$  is the weight of the edge from i to j, or  $\infty$  if no edge exists. The  $(\min, +)$  semiring replaces standard arithmetic:

- "Multiplication" becomes addition:  $a \cdot b \rightarrow a + b$
- "Addition" becomes minimization:  $a + b \rightarrow \min(a, b)$

Why this work? Repetead Min-Plus Multiplication Compute  $D^2, D^4, D^8, \ldots$  in the min-plus semiring. After each squaring, the matrix's (i, j) entry represents the shortest path distance from i to j using up to that many edges.

For instance, after one min-plus multiplication,

$$D^{2}(i,j) = \min_{k} (D(i,k) + D(k,j)),$$

which gives the shortest path with at most two hops. Doubling the exponent at each step eventually covers the maximum path length needed:

$$D^{(2^h)}(i,j)$$
 with  $2^h \ge n-1$ .

**Final Result** After  $O(\log n)$  such multiplications, the final matrix will contain the shortest path distances between every pair of vertices (assuming there are no negative cycles).

## Algorithm

- 1. Initialize *D* with edge weights (and zeros on the diagonal).
- 2. Compute powers of D using  $(\min, +)$  multiplication:

$$D^{(2)} = D \otimes D, \quad D^{(4)} = D^{(2)} \otimes D^{(2)}, \dots$$

where  $\otimes$  denotes matrix multiplication in the  $(\min, +)$  semiring.

3. After at most  $\lceil \log_2(n) \rceil$  steps for *n* nodes, *D* converges to the shortest path matrix.

### Performance/scalabiltiy graphs

As we can see from the figure, for a large data set, the complexity is proportional to  $\sqrt{p}$ . The efficiency for the SpGEMM is approximately 1, while for APSP it is larger than 1, because of early termination (convergence).



Figure 1: Performace test. Blue points (SpGEMM). Orange points (APSP). SpGEMM is tested on the provided GL7d14.dat dataset. APSP is tested on G12.dat .



Figure 2: Efficiency E=T(p)/T(1). Blue points (SpGEMM). Orange points (APSP). SpGEMM is tested on the provided GL7d14.dat dataset. APSP is tested on G12.dat .



Figure 3: Speedup T(p)/T(1). Blue points (SpGEMM). Orange points (APSP). SpGEMM is tested on the provided GL7d14.dat dataset. APSP is tested on G12.dat .