Particle spectrograph

Wave operator and propagator

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2^+}^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	${\mathcal R}_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\mathcal{A}_0^{\sharp 1}$
9 ^{#1} †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}$ †	$-i\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
۹ ″ ¹ †	0	0	0	t_2

SO(3) irreps	Fundamental fields	Multiplicitie
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_1^{\sharp 1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta}$ - 2 $ik \sigma_{2+}^{\#1\alpha\beta}$ ==	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{ \delta} -$	
	$6 i k^{X} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{X} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{X} \sigma^{\delta\epsilon} \delta = 0$	

	${\mathcal R}_{1}^{\sharp 1}{}_{lphaeta}$	${\mathcal R}_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	${\mathcal H}_{1^-lpha}^{\sharp 1}$	$\mathcal{A}_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}a$
$\mathcal{A}_{1}^{\sharp 1}\! +\! ^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1 + t_2}{3}	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\mathcal{R}_1^{\sharp 1}\! \uparrow^lpha$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{l}kt_1$	0	0	0

	3 12							_	θ H	4 ,	$\frac{c_2}{t_2}$ 4 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0	Quadratic (free) action S ==	<u>k</u>	·	~ . ~
$\mathscr{R}_{1}^{\sharp 1}\! \uparrow^{lpha}$	0	0	0	$k^2 r_5 - \frac{t}{2}$	$\frac{1}{2}$ $\frac{t_1}{\sqrt{2}}$	0	ikt_1	ree) ($^{1}\mathcal{A}^{lpha_{1}}$		
$\mathcal{A}_{1}^{\#2}\dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0	tic (f	$\iiint \int \int$		
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0	uadra ::	JJJJ		
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{\imath}kt_1$	0	0	0	Qua S ==	,		
	$\sigma_{1^{+}lphaeta}^{\sharp1}$		$\sigma_{1^{+}lphaeta}^{\#2}$		τ.	#1 L ⁺ αβ		$\sigma_{1^- lpha}^{\# 1}$	$\sigma_{1-lpha}^{\#2}$	$ au_{1}^{\#1}$ α	τ ₁ - α
$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{1}{(1+k^2)(3)}$	$\sqrt{2} (t_1 - 2t_2)$ $t_1 t_2 + 2k^2 r_5 (t_1 + t_2)$	(1-	$+k^2$) (3 t_1 t_2		$_{5}(t_{1}+t_{2})$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1+k^2)(3t_1t_2 + 2k^2r_5(t_1))}$	$\frac{1}{(1+k^2)^2}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$		$(3t_1t_2+2k^2r_5(t_1+t_2))$ $(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))$		0	0	0	0	
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i\sqrt{2} k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1))}$	$\left -\frac{i k (1+t_2)}{(1+k^2)^2} \right $	$6k^2r_5+t_1+4t_2$) $3t_1t_2+2k^2r_5(t_1-t_2)$	+t ₂)) (1+	$k^2 (6 k^2)^2 (3 t_1 t_2)^2$	$\frac{c_5 + t_1 + c_2}{2 + 2k^2}$	4 t ₂) r ₅ (t ₁ +t ₂)	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0		0			0		0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1+2k^2t_1}$
$\sigma_1^{\#2} \dagger^{lpha}$	0		0			0		$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0		0			0		0	0	0	0
$\tau_1^{\#2} + ^{\alpha}$	0		0			0		$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 r_5 + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$

	$\mathcal{A}_{2}^{\#1}{}_{lphaeta}$	$f_{2+\alpha\beta}^{\#1}$	$\mathcal{A}_{2}^{\sharp 1}{}_{lphaeta_{2}}$
$\mathcal{A}_{2}^{\sharp 1}$ † lphaeta	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\mathcal{A}_{2}^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

 $12r_5\partial^{\theta}\mathcal{R}^{\alpha\prime}_{\alpha}\partial_{\kappa}\mathcal{R}^{\prime}_{\prime}))[t,x,y,z]dzdydxdt$

 $6r_5\partial_i\mathcal{A}_{\theta}^{k}\partial^{\theta}\mathcal{A}^{\alpha\prime}_{a}-6r_5\partial_{\theta}\mathcal{A}_{ik}^{\phantom{ik}}\partial^{\theta}\mathcal{A}^{\alpha\prime}_{a}-6r_5\partial_{\alpha}\mathcal{A}^{\alpha\prime\theta}$

 $2 \mathcal{A}_{\alpha\theta_{l}} ((t_{1}-2t_{2}) \mathcal{A}^{\alpha\prime\theta} + 2(2t_{1}-t_{2}) \partial^{\theta} f^{\alpha\prime}) +$

 $4t_1\partial_\theta f_{\alpha_1}\partial^\theta f^{\alpha_1} + t_2\,\partial_\theta f_{\alpha_1}\partial^\theta f^{\alpha_1} + 2\,t_1\,\partial_\theta f_{1\alpha}\,\partial^\theta f^{\alpha_1} -$

 $t_2 \, \partial_\alpha f_{\theta_i} \, \partial^\theta f^{\alpha \prime} + 2 \, t_1 \, \partial_{\scriptscriptstyle i} f_{\alpha \theta} \, \partial^\theta f^{\alpha \prime} - t_2 \, \partial_{\scriptscriptstyle i} f_{\alpha \theta} \, \partial^\theta f^{\alpha \prime} +$

Massive and massless spectra

Massive particle			
Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$		
Polarisations:	3		
Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$		
Spin:	1		
Parity:	Even		

Unitarity conditions

 $r_5 > 0 \&\& (t_1 < 0 \&\& (t_2 < 0 || t_2 > -t_1)) || (t_1 > 0 \&\& -t_1 < t_2 < 0)$