OPERATING SUMMARY

9

MARKHAM

LIBRARY CT.Y

CABORATORY & RESPECTE LIBRARY MINISTRY OF THE ENVIRONMENT

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

Ministry of the Environment

135 St. Clair Avenue West

Toronto 195, Ontario

We are pleased to present you with the 1972 operating summary for the water pollution control plant serving your community.

This summary contains data on the performance of the plant as well as relevant financial information. Of particular interest is the review of the year's activities in which significant items of these data are discussed in some detail by the operations engineer and his staff who, by their day-to-day involvement with the operation, are thoroughly familiar with the plant.

We appreciate your continuing interest in protecting the environment through the efficient operation of this wastewater treatment facility.

D.S. Caverly,

Assistant Deputy Minister.

D.A. McTavish, P. Eng.,

Director,

Project Operations Branch.

MINISTRY OF THE ENVIRONMENT

MINISTER Honourable James A.C. Auld

DEPUTY MINISTER E. Biggs

ASSISTANT DEPUTY MINISTER D. S. Caverly

EXECUTIVE DIRECTOR K. H. Sharpe

PROJECT OPERATIONS BRANCH

DIRECTOR D. A. McTavish

ASSISTANT DIRECTOR C.W. Perry

REGIONAL SUPERVISOR P.J. Osmond

OPERATIONS ENGINEER
A. Clark

135 St. Clair Avenue West Toronto 195

MARKHAM

WATER POLLUTION CONTROL PLANT

operated for

THE TOWN OF MARKHAM

by the

MINISTRY OF THE ENVIRONMENT

1972 ANNUAL OPERATING SUMMARY

CONTENTS

Title Page		٠	•	•	•	•	•	•	٠	٠	1
Flow Diagram	٠	•	٠	•	r .	•	•	٠	٠	٠	4
Design Data	٠	•	•	•	•	•	•	•	•	∑• ;	5
'72 Review	•	•		•	•	•		•	•	•	6
Project Costs	٠	•	•	•	•	•	•	٠		•	8
Process Data										-	11

DESIGN DATA

PROJECT NO. 2-0040-59

TREATMENT Activated Sludge

DESIGN FLOW 0.67 mgd

DESIGN POPULATION 8,000

BOD - Raw Sewage 215 mg/1 - Removal 95%

SS - Raw Sewage 220 mg/1 - Removal 95%

PUMPING STATION

Type: Fairbanks-Morse Size: Two 350 gpm @ 40' tdh

PRIMARY TREATMENT

Comminution

Type: C.P. Barminutor

Size: One 18"

Grit Removal

Type: Aerated

Size: One 13' x 6' x 8.1' swd

(4,240 gal) Retention: 9.2 min

Primary Sedimentation

Type: Jeffrey

Size: Two 42' x 12' x 7' 9" (avg)

(48,800 gal) Retention: 1.76 hours

Loading: Surface, 660 gal/ft²/day

Weir, 27,800 gal/ft/day

SECONDARY TREATMENT

Aeration Tanks

Type: Diffused air, two pass Size: One 51'x22'x15' plus one 51'x28'x15' (38, 250 cu. ft. or 239, 000 gallons

Air Supply

Type: Sutorbilt and Aerzen

Size: One 700 scfm @ 5 psi (standby)

One 1075 scfm

Diffusers

- 72 spargers (17" centre)

Secondary Sedimentation

Type: Jeffrey

Size: Two 42' x 12' x 10.5' (avg)

(66,000 gal)

Retention: 2.38 hours

Loading: Surface, 660 gal/ft²/day Weir, 4,750 gal/ft/day

CHLORINATION

Type: W & T

Size: One 70 lb/day

Chlorine Contact Chamber

Size: 20' x 11.38' x 8.5' swd (12,080 gal)

Retention: 26 min

OUTFALL

 to Exhibition Creek (tributary of Rouge River)

SLUDGE HANDLING

Digestion System - Single-stage

Type: Mixed by recirculation

Size: One 45' dia x 20' swd (34, 240 cu ft

or 220,000 gal)

Loading: 0.67 lb/cu ft/ mo

Sludge Drying Beds

Size: Four 90' x 20' (7, 200 sq ft)

72 Review

GENERAL

The Markham sewage treatment plant with the design capacity of .67 million gallons per day consists of an on-site pumping station, an aerated grit tank, 2 primary sedimentation tanks, 2 aeration tanks, 2 final sedimentation tanks, a chlorine contact chamber, and a single stage digester. Over the past few years phosphorus removal facilities and tube settlers were added to the plant in an attempt to increase the capacity to 1.0 mgd. These however did not prove too successful. The phosphorus removal process was not effective as the primary tanks which are designed for .67 million gallons per day were too small for the flows to the plant which averaged 1.0 million gallons per day. As a result the lime floc would not precipitate in the tanks but was carried over to the aeration section and/or bypassed with the primary effluent when the rate of flow to the plant exceeded .67 million gallons per day.

The tube settlers were not too successful either again because of the hydraulic overload. The use of chemicals other than lime are being considered in a continued attempt to up grade the capacity.

EXPENDITURES

The total operating cost for the year was \$45,923.00, \$2,342 more than the 1971 operating cost. Payroll costs were 47 percent of the total budget, sundry cost which includes sludge haulage costs were 23 percent of the total budget and power costs were 13 percent of the total budget.

PLANT FLOWS AND CHLORINATION

The average daily flow to the plant was 1.0 million gallons, an increase of 0.23 million gallons from 1971. The maximum daily flow to the plant was 2.0 million gallons while the maximum rate of flow to the plant was well in excess of 2.0 million gallons per day.

Flows greater than the hydraulic design capacity of the plant of 0.8 million gallons per day received primary treatment and chlorination only. Bypassing occurred quite regularly.

The final effluent including the flow bypassed after primary treatment was chlorinated throughout the year. A total of 15,950 pounds of chlorine with an average dosage of 4.1 milligrams per litre was used to maintain a 0.5 milligram per litre residual in the effluent.

PLANT EFFICIENCY

The influent BOD and suspended solids averaged 162 milligrams per litre and 175 milligrams per litre respectively. The effluent BOD and suspended solids averaged 38 milligrams per litre and 39 milligrams per litre respectively. These figures represent a reduction of 76 percent BOD and 78 percent suspended solids. A percentage reduction in both cases dropped somewhat compared to the 1971 reductions of 81 percent BOD and 87 percent suspended solids. Increased flows and lower influent BOD and suspended solids strengths are the cause of this reduction.

Phosphorus removal was very poor due to the hydraulic overload of the plant. At the end of the year alum was being considered rather than lime for reducing the phosphorus content at the plant.

SLUDGE DIGESTION AND DISPOSAL

A total of 2.39 million gallons of raw sludge containing 3.6 percent total solids was pumped to the digester. Approximately 1.43 million gallons of digested sludge containing 2.8 percent total solids were removed for disposal on land.

CONCLUSIONS

With the hydraulic overloading that the plant experienced the final effluent did not meet the Ministry's BOD and suspended solids standards of 15 milligrams per litre. The phosphorus removal process was ineffective as were the tube settlers in the final clarifiers, both due to hydraulic overloading. The treatment process is considered to be totally unacceptable however owing to the advent at the Central York-Pickering sewage collection and treatment system, there are no plans to enlarge the plant. Reportedly further development in the area serviced by this plant is being curtailed until the area system is available, however in observing the rate at which homes are being built in the area, it is obvious that the situation at the treatment plant will deteriorate even further.

PROJECT COSTS

2-0040-59 NET CAPITAL COST	\$608,711.07
DEDUCT - Portion financed by	
Long Term Debt to MOE	\$ <u>608, 711.07</u>
Debt Retirement Balance at Credit (Sinking Fund) December 31, 1972	\$ <u>199, 261.18</u>
Net Operating Debt Retirement Reserve Interest Charged	\$ 46,079.14 5,205.00 1,970.96 34,135.89
TOTAL	\$ <u>87, 390. 99</u>
RESERVE ACCOUNT	
Balance @ January 1, 1972	\$ 37, 477.71
Deposited by Municipality	1, 970. 96
Interest Earned	2, 415.13
	\$ 41,863.80

Less Expenditures

\$ <u>41,863.80</u>

Balance @ December 31, 1972

$DD \cap$	IECT	COST	rc
PKU	IFE	(11)	

2-0224-67 NET CAPITAL COST

\$305, 789.81

DEDUCT - Portion financed by

CMHC (Final)

(202, 047.88)

MUNICIPAL ADVANCES

(104, 100.11)

Long Term Debt to MOE

\$ (358.18)

Debt Retirement Balance at Credit (Sinking Fund) December 31, 1972

Net Operating Debt Retirement Reserve Interest Charged

\$ (27.14)

TOTAL

\$ (<u>27.14</u>)

RESERVE ACCOUNT

Balance @ January 1, 1972

Deposited by Municipality

Interest Earned

Less Expenditures

Balance @ December 31, 1972

PROJECT COSTS

2-0279-70 NET CAPITAL COST

\$183, 357. 19

DEDUCT - Portion financed by

MUNICIPAL ADVANCES

(183, 385.96)

Long Term Debt to MOE

\$ (28.77)

Debt Retirement Balance at Credit (Sinking Fund) December 31, 1972

Net Operating Debt Retirement Reserve Interest Charged

TOTAL

RESERVE ACCOUNT

Balance @ January 1, 1972

Deposited by Municipality

Interest Earned

Less Expenditures

Balance @ December 31, 1972

1972 COSTS OPERATING COSTS 47 % PAYROLL FUEL 3 % P POWER 13% CHEMICALS 5 % TOTAL ANNUAL COST GENERAL SUPPLIES 1 % EQUIPMENT 1 % NET OPERATING 53% REPAIRS & MAINTENANCE 6 % DEBT RETIREMENT 6% SUNDRY 23 % 2 % WATER RESERVE <1 % 39 % TRAVEL 1 % INTEREST YEARLY OPERATING COSTS SEWAGE TREATED TREATMENT COSTS TOTAL YEAR \$ per million gal & per Ib BOD in million gallons OPERATING COSTS 1968 204.18 \$21,533.20 \$105.46 12 cents 216.9 29,098.52 134.16 1969 9 cents 1970 249.0 36, 428.20 146.29 9 cents 280.0 43,581.22 156.00 4 cents 1971 366. * 45, 923.08 125.00 11 cents 1972

^{*} Estimated

MONTHLY OPERATING COSTS

монтн	TOTAL EXPENDITURE	REGULAR PAYROLL	CASUAL PAYROLL	FUEL	POWER	CHEMICALS	GENERAL SUPPLIES	EQUIPMENT	REPAIRS and	SUNDRY*	WATER	TRAVEL
JAN	2362.90	1568.36		289.61	504.93							
FEB	3853.43	1626.36		106.80-	536.13		12.03	33.60	224.52	1266.89		47.10
MAR	3868.18	1565.32			456.03	556.5 0	29.50		158.90	1067.58		34.35
APR	3631.41	1596.98		288.36	465.45		158.51			975.70	37.11	109.30
MAY	3317.77	1674.02			506.15	278.25	95.19		161.21	569.50		33.45
JUNE	4109.61	2303.67		134.92	475.11		83.43		60.17	1028.31		24.00
JULY	2889.02	38.50			418.76	372.00			803.43	1142.58	89.75	24.00
AUG	2554.10	1520.06			478.65	177.00	72.21		282.44	(2.06)	25.80
SEPT	4078.46	1556.04		139, 20	477.60		79.52			1800.00		26.10
ост	3505.89	2004.35			493.46	177.00	12.50	7 6. 65		741.93		
NOV	2177.84	77.97			482.90	177.00				1407.36	26.91	5.70
DEC	9574, 47	6016.08		389.29	488, 52	482.63	190.80	207.40	910.50	765.75		123,50
TOTAL	45923.08	21547.71		1348.18	5783.69	2220.38	733.69	317.65	2601.17	10763.54	153.77	453.30

Brackets indicate credit.

^{*} Sundry includes sludge havinge costs of \$10,035.00

FLOWS

DESIGN CAPACITY _____

PLANT PERFORMANCE

I	FLOWS			BIOCHEA	NCAL OXYG	MAND	SUSPENDED SOLIDS				PHOSPHORUS		
	TOTAL FLOW	AVERAGE	MAXIMUM	INFLUENT	INFLUENT EFFLUENT REDUCTION			INFLUENT	EFFLUENT	RED	JCTION	INFLUENT	EFFLUENT
MONTH	million gallons	DAY mil. gal	DAY mgd	mg/l	mg/l	%	10 ³ pounds	mg/l	mg/l	%	10 ³ pounds	mg/L P	mg/l P
ИДС	26.6	. 85	1.15	175	37	79	37	182	30	84	41	9, 9	5.1
FEB	23.8	. 83	1.00	180	55	69	30	160	57	64	24	12.0	8.2
MAR	24.7	. 80	1.56	160	60	63	24	240	75	69	41	8.5	5.0
APR	43. (est)	1.44	2.00	70	70	0	0	140	55	61	37	6.4	3.5
MAY	30.3	. 97	1.90	160	33	79	38	163	43	74	36	11.1	6.5
JUNE	23.1	.77	1.00	300	50	83	58	100	60	40	9	11.0	7.6
JULY	-	-	-	210	42	80	-	205	20	90	-	12.0	7.6
AUG	-	-	-	170	39	77	-	175	30	83	-	12.0	8.3
SEPT	-	-	-	130	10	92	-	210	10	95	g - ,	13.0	9.0
ост	=	-	-	135	14	90	-	150	10	93	-	10.8	7.5
NOV	28. (est)	. 96	1.14	125	33	74	27	140	38	73	29	10.9	6.3
DEC	31.4	1.01	1.32	135	47	65	28	240	65	73	55	7.9	5,5
TOTAL	-	-	-	-	-	-	-	-	-	-	-	-	
AVG.	-	1.00	2.00	162	38	76	35	175	39	7 8	34	10.6	6.7
No. of Sample		-	-	21	20	_	_	21	21			21	21

BIOCHEMICAL OXYGEN DEMAND

SUSPENDED SOLIDS

PHOSPHORUS

PLANT INFLUENT -----

DIGESTION

RAW SLUDGE DIGESTED SLUDGE -

1977 1978

RAW SLUDGE TO DIGESTER DIGESTED SLUDGE REMOVED

TREATMENT DATA

	GRIT	CHLORIN	ATION	PRIMARY	PRIMARY EFFLUENT AERATION		SLUDGE DIGESTION and DISPOSAL									
монтн	QUANTITY REMOVED cubic feet	Cl ₂ USED IO ³ pounds	AVG. DOSE mg/l	BOD mg/l	SUSPENDED SOLIDS mg/l	MLSS CONC mg/l	F/M day-1	AIR 1000 ft ³ 1b 800	QUANTITY		GE VOL. SOLIDS %	DIGESTER QUANTITY 5 10 gallons	TOTAL SOLIDS	VOL.	SUPER- NATANT T. S. %	AMOUNT HAULED cubic yards
JAN	65	1.14	4.3	140	125	1800	. 22	2.5	2.33	3.1	70	1.66	2.3	52		1043
FEB	95	1.19	5.0	160	125	2100	. 21	4.1	2.01	2.7	79	1.32	2.0	51		780
MAR	50	1.25	5.1	140	230	2100	.18	2.2	2.09	6.0	59	1.28	2.4	49		761
APR	105	1.38	3.2	60	150	2100	.08	4.9	1.59	5.3	44	. 74	4.1	38		438
MAY	70	1.36	4.5	140	200	1700	. 22	2.4	1.96	2.5	73	1.34	2.9	59		795
JUNE	57	1,23	5,3	120	240	2100	.16	1.6	1.75	2.4	68	1.48	2.7	55		878
JULY	105	1.24	-	145	130	1400	.27	2.5	1.89	3.1	70	1.24	4.2	44		736
AUG	82	1.20	-	145	140	1300	.31	2.2	1.80	3.5	65	1.16	2.7	48		689
SEPT	80	1.21	-	95	110	1500	.17	3.1	1.94	3.4	77	. 96	2.9	37		569
ост	120	1.33	_	150	200	2700	. 15	1.8	2.40	3.4	69	1.06	2.4	55		627
NOV	75	1.12	3.9	140	205	1200	:32	1.9	2.10	3.7	64	1.16	3.1	53		687
DEC	100	1.30	4.1	125	200	600	. 53	2.4	2.03	4.0	60	. 88	2.8	52		522
TOTAL	1004	14.95	-	_	-	-	-	-	23.89	-		14.28	-	-	-	8525
AVG.	2.7	1.25	4.1	130	171	1700	. 24	2.4	1.99	3.6	67	1.19	2.8	49		710

Aeration flow estimated as 0.66 IMGD.

LABORATORY LIBRARY
96936000119297

Date Due

4		Teal William	
		77.7	
		C CLEV	-
11.	- Ali	E. 1886	
	· Pint	1903	E 1 225
		7	
		AND DE LA	
The state of			

LABORATORY & RESEARCH LIBRARY MINISTRY OF THE ENVIRONMENT