Attila Cangi

PERSONAL INFORMATION

Birth place Rotthalmünster, Germany, 29.10.1982

and date

Nationality German

Languages German (native), English (full professional proficiency)

Affiliation Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf,

Untermarkt 20, 02826 Görlitz

Phone +49 3581 375 2352 Email a.cangi@hzdr.de

Web https://www.casus.science/research-areas/machine-learning-for-materials-design/

CURRENT POSITION

Head of Department, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Germany

SCIENTIFIC CAREER

2024 –	Helmholtz-Zentrum Dresden-Rossendorf, Germany	Head of Department
2020 –	Helmholtz-Zentrum Dresden-Rossendorf, Germany	Head of Department (acting), Staff Scientist (permanent)
2019 – 2020	Sandia National Laboratories, Albuquerque, USA	Staff Scientist (permanent)
2017 – 2019	Sandia National Laboratories, Albuquerque, USA	Staff Scientist (LTE)
2011 – 2017	Max Planck Institute of Microstructure Physics, Halle (Saale), Germany	Postdoctoral Researcher with E. K. U. Gross

EDUCATION

2006 – 2011	University of California, Irvine, USA	Ph.D., Chemistry with K. Burke
2005 – 2006	Rutgers, The State University of New Jersey, USA	M.Sc., Physics
2001 – 2005	University of Würzburg, Germany	Student, Physics

SUPERVISION AND MENTORING

2020 – 10 Students (B	3.Sc. and M.Sc.), 3 Ph.D.	Students, 11 Postdocs
-----------------------	---------------------------	-----------------------

2017 – 2020 2 Ph.D. Students, 2 Postdocs

2011 - 2015 1 Ph.D. Student

AWARDS AND HONORS

2023	R&D 100 Award, R&D World, USA
2018	SPOT Award, Sandia National Laboratories, USA
2017	SPOT Award, Sandia National Laboratories, USA

FUNDING AND PROGRAM MANAGEMENT

PROJECTS AS PRINCIPAL INVESTIGATOR

- 2021 2024 Co-Principal Investigator, Helmholtz Al, *Machine-Learning Based Synthetic Data Generation For Rapid Physics Modeling*, Helmholtz Association, Germany
- 2019 2020 Principal Investigator, Lab Directed Research and Development (Project ID 218454),

 Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths,

 Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed

 Metals, United States Department of Energy, USA
- 2017 2019 Principal Investigator, Lab Directed Research and Development (Project ID 200202), *Making Density Functionals Work for All Materials*, United States Department of Energy, USA

COLLABORATIVE PROJECTS

- 2019 2022 Lab Directed Research and Development (Project ID 218319), *Accelerating Multiscale Materials Modeling with Machine Learning*, United States Department of Energy, USA
- 2019 2022 Lab Directed Research and Development (Project ID 218456), *Improving Predictive Capability in Radiation, Electrical, and High Energy Density Science Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties*, United States Department of Energy, USA

SCIENCE MANAGEMENT AND INSTITUTIONAL RESPONSIBILITIES

2022 – Member of Working Group *Digitalization*, Helmholtz-Zentrum Dresden-Rossendorf, Germany
 2022 – Member of Working Group *Graduate student education*, Helmholtz-Zentrum Dresden-Rossendorf, Germany
 2021 – Permanent Member of Program Committee, Conference Series *Physics of Non-Ideal Plasmas* 2021 – Helmholtz Al Associate, Helmholtz Association, Germany
 2018 Coordinator of Summer Student Program, Center for Computing Research, Sandia National

ORGANIZATION OF SCIENTIFIC MEETINGS AND SCHOOLS

Laboratories, USA

2023	Accelerating improvements in Density Functional Theory, Swiss Federal Institute of Technology, Lausanne, Switzerland (Organization Committee Chair)
2022	Multiscale Modeling of Matter under Extreme Conditions, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany (Program Committee Chair, Local Organizing Committee Chair)
2022	Strongly Coupled Coulomb Systems, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany (Local Organizing Committee Chair, Program Committee Member)
2022	DFT Methods for Matter under Extreme Conditions, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany (Organization Committee Chair)
2019	Improving the Theory in Density Functional Theory, Swiss Federal Institute of Technology, Lausanne, Switzerland (Organization Committee Chair)
2018	Summer Student Program, Center for Computing Research, Sandia National Laboratories, Albuquerque, USA (Coordinator)

2017	Teaching the Theory in Density Functional Theory, Swiss Federal Institute of Technology, Lausanne, Switzerland (Organization Committee Chair)
2016	Putting the Theory Back in Density Functional Theory, Institute for Pure and Applied Mathematics, University of California, Los Angeles, USA (Organization Committee Member)
2013	Density Functional Theory: Learning from the Past, Looking to the Future, Magnus-Haus of the Deutsche Physikalische Gesellschaft, Berlin, Germany (Organization Committee Member)

INVITED TALKS

INVITED TA	ALKS
2025	Density Functional Theory and Artificial Intelligence Learning from Each Other, CECAM Workshop, Lausanne, Switzerland
2024	Progress in Ensemble Density Functional Theory: Opportunities and Challenges, Durham University, Durham, United Kingdom
2024	Machine Learning in Electronic-Structure Theory, Institute for Mathematical and Statistical Innovation (IMSI), University of Chicago, USA
2024	APS March Meeting, Focus Session: Big Datasets and Big Data in Physics, Minneapolis, USA
2023	WE-Heraeus Seminar and Max Born Symposium, Many-particles systems under extreme conditions, Görlitz, Germany
2023	Accelerating Improvements in Density Functional Theory, CECAM Workshop, Lausanne, Switzerland
2023	TDDFT School & Workshop: Excited states and dynamics, Rutgers University, Newark, USA
2023	High Energy Density Science Seminar Series, Lawrence Livermore National Laboratory, Livermore, USA
2023	Theoretical Chemistry Seminar, Dresden University of Technology, Germany
2023	Joint Theory Seminar of European XFEL, CFEL, and the University of Hamburg, Germany
2023	Research Seminar Many-Body Theory, Kiel University, Germany
2023	Institute Seminar, Institute of Theoretical Physics, University of Wroclaw, Poland
2022	NHR-Atomistic Simulation Symposium 2022, online, Germany
2022	Research Seminar Many-Body Theory, Kiel University, Germany
2022	Multiscale Modeling of Matter under Extreme Conditions, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, Görlitz, Germany
2022	Big Data Analytical Methods for Complex Systems, University of Wroclaw, Wroclaw, Poland
2022	International Conference Advanced Systems Research, University of Wroclaw, Wroclaw, Poland
2022	Helmholtz Al Conference 2022, Dresden, Germany
2021	CFEL-DESY Theory Seminar, Hamburg, Germany
2021	8 th International Symposium on Optics & its Applications, Rostock, Germany
2021	17th Conference on the Physics of Non-Ideal Plasmas, Dresden, Germany
2021	Supercomputing Frontiers Europe 2021, online
2019	Workshop on the Future of Uncertainty Quantification and Multiscale Modeling Across the Department of Energy, Sandia National Laboratories, Albuquerque, USA
2019	Machine Learning R&D Workshop Sandia National Laboratories, Albuquerque, USA
2019	Z Fundamental Science Workshop, Sandia National Laboratories, Albuquerque, USA
2019	10 th International Workshop on Warm Dense Matter, Travemünde, Germany

2019	Computational Modeling for High Energy Density Science and Complex Systems, City University of New York, Department of Physics, New York, USA
2019	Improving the Theory in Density Functional Theory, CECAM Workshop, EPFL Lausanne, Switzerland
2018	Electronic Structure at the Cutting Edge with ELK, MPI of Microstructure Physics, Halle, Germany
2017	Teaching the Theory in Density Functional Theory, CECAM School, EPFL Lausanne, Switzerland
2015	Theoretical Physics Seminar, University of Rostock, Germany
2013	Semiclassical Origins of Density Functionals, Institute for Pure and Applied Mathematics, University of California, Los Angeles, USA
2013	Graduate Student Seminar, Yale University, New Haven, USA

LIST OF PUBLICATIONS

PREPRINTS

- T. Gawne, Z. A. Moldabekov, O. S. Humphries, K. Appel, C. Bähtz, V. Bouffetier, E. Brambrink, A. Cangi, S. Göde, Z. Konôpková, M. Makita, M. Mishchenko, M. Nakatsutsumi, K. Ramakrishna, L. Randolph, S. Schwalbe, J. Vorberger, L. Wollenweber, U. Zastrau, T. Dornheim, T. R. Preston, *Ultrahigh Resolution X-ray Thomson Scattering Measurements of Electronic Structures*, arXiv:2403.02776 (2024).
- S. Nikolov, K. Ramakrishna, A. Rohskopf, M. Lokamani, J. Tranchida, J. Carpenter, **A. Cangi**, M. A. Wood, *Probing Iron in Earth's Core With Molecular-Spin Dynamics*, arXiv:2311.08737 (2023).
- D. R. Vemula, D. Konar, S. Satheesan, S. M. Kalidasu, **A. Cangi**, *A Scalable 5,6-Qubit Grover's Quantum Search Algorithm*, arXiv:2205.00117 (2022).
- D. Konar, E. Gelenbe, S. Bhandary, A. Das Sarma, A. Cangi, Random Quantum Neural Networks for Noisy Image Recognition, arXiv:2203.01764 (2022).

RESEARCH PAPERS IN PEER-REVIEWED INTERNATIONAL JOURNALS

- [57] H. Tahmasbi, K. Ramakrishna, M. Lokamani, **A. Cangi**, *Machine Learning-Driven Structure Prediction for Iron Hydrides*, Phys. Rev. Mater. 8, 033803 (2024).
- [56] V. Martinetto, K. Shah, **A. Cangi**, A. Pribram-Jones, *Inverting the Kohn-Sham equations with physics-informed machine learning*, Mach. Learn.: Sci. Technol. 5 015050 (2024).
- [55] T. J. Callow, E. Kraisler, **A. Cangi**, *Physics-enhanced neural networks for equation-of-state calculations*, Mach. Learn.: Sci. Technol. 4, 045055 (2023).
- [54] S. L. S. Balakrishnan, M. Lokamani, K. Ramakrishna, A. Cangi, D. Murali, M. Posselt, A. A. Sasikala Devi, A. Sharan, Ab-initio insights on the ultrafast strong-field dynamics of anatase TiO2, Phys. Rev. B 108, 195149 (2023).
- [53] K. Ramakrishna, M. Lokamani, A. Baczewski, J. Vorberger, A. Cangi, Impact of electronic correlations on high-pressure iron: insights from time-dependent density functional theory, Electron. Struct. 5, 045002 (2023).
- [52] L. Fiedler, N. A. Modine, K. D. Miller, **A. Cangi**, *Machine learning the electronic structure of matter across temperatures*, Phys. Rev. B 108, 125146 (2023).
- [51] S. Kumar, H. Tahmasbi, K. Ramakrishna, M. Lokamani, S. Nikolov, J. Tranchida, M. A. Wood, A. Cangi, Transferable Interatomic Potentials for Aluminum from Ambient Conditions to Warm Dense Matter, Phys. Rev. Research 5, 033162 (2023).

- [50] L. Fiedler, N. A. Modine, S. Schmerler, D. J. Vogel, G. A. Popoola, A. P. Thompson, S. Rajamanickam, A. Cangi, Predicting electronic structures at any length scale with machine learning, Npj Comput. Mater. 9, 115 (2023).
- [49] T. W. Hentschel, A. Kononov, A. Olmstead, **A. Cangi**, A. D. Baczewski, S. B. Hansen, *Improving dynamic collision frequencies: impacts on dynamic structure factors and stopping powers in warm dense matter*, Phys. Plasmas 30, 062703 (2023).
- [48] T. Dornheim, M. P. Böhme, D. Chapman, D. Kraus, T. R. Preston, Z. A. Moldabekov, N. Schlünzen, A. Cangi, T. Döppner, J. Vorberger, *Imaginary-time correlation function thermometry: A new, high-accuracy and model-free temperature analysis technique for x-ray Thomson scattering data*, Phys. Plasmas 30, 042707 (2023).
- [47] T. Dornheim, Z. A. Moldabekov, K. Ramakrishna, P. Tolias, A. D. Baczewski, D. Kraus, T. R. Preston, D. A. Chapman, M. P. Böhme, T. Döppner, F. Graziani, M. Bonitz, **A. Cangi**, J. Vorberger, *Electronic Density Response of Warm Dense Matter*, Phys. Plasmas 30, 032705 (2023).
- [46] K. Ramakrishna, M. Lokamani, A. Baczewski, J. Vorberger, **A. Cangi**, *Electrical Conductivity of Iron in Earth's Core from Microscopic Ohm's Law*, Phys. Rev. B 107, 115131 (2023).
- [45] Z. A. Moldabekov, M. Lokamani, J. Vorberger, **A. Cangi**, T. Dornheim, *Non-empirical mixing coefficient for hybrid XC functionals from analysis of the XC kernel*, J. Phys. Chem. Lett. 14, 1326 (2023).
- [44] Z. A. Moldabekov, M. Lokamani, J. Vorberger, **A. Cangi**, T. Dornheim, *Assessing the accuracy of hybrid exchange-correlation functionals for the density response of warm dense electrons*, J. Chem. Phys. 158, 094105 (2023).
- [43] D. Konar, A. Das Sarma, S. Bhandary, S. Bhattacharyya, **A. Cangi**, V. Aggarwal, *A shallow hybrid classical–quantum spiking feedforward neural network for noise-robust image classification*, Appl. Soft Comput. 136, 110099 (2023).
- [42] T. J. Callow, E. Kraisler, **A. Cangi**, *Improved calculations of mean ionization states with an average-atom model*, Phys. Rev. Res. 5, 013049 (2023).
- [41] K. Shah, P. Stiller, N. Hoffmann, **A. Cangi**, *Physics-Informed Neural Networks as Solvers for the Time-Dependent Schrödinger Equation*, NeurlPS Workshop Machine Learning and the Physical Sciences (2022).
- [40] L. Fiedler, N. Hoffmann, P. Mohammed, G. A. Popoola, T. Yovell, V. Oles, J. A. Ellis, S. Rajamanickam, **A. Cangi**, *Training-free hyperparameter optimization of neural networks for electronic structures in matter*, Mach. Learn.: Sci. Technol. 3, 045008 (2022).
- [39] L. Fiedler, Z. A. Moldabekov, X. Shao, K. Jiang, T. Dornheim, M. Pavanello, **A. Cangi**, *Accelerating Equilibration in First-Principles Molecular Dynamics with Orbital-Free Density Functional Theory*, Phys. Rev. Res. 4, 043033 (2022).
- [38] M. Schörner, B. B. L. Witte, A. D. Baczewski, A. Cangi, R. Redmer, An ab-initio study of shock-compressed copper, Phys. Rev. B 106, 054304 (2022).
- [37] T. J. Callow, D. Kotik, E. Kraisler, **A. Cangi**, *AtoMEC: an open-source average-atom Python code*, Proceedings of the 21st Python in Science Conference, 37 (2022).
- [36] T. Dornheim, P. Tolias, Z. A. Moldabekov, **A. Cangi**, J. Vorberger, *Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations*, J. Chem. Phys. 156, 244113 (2022).
- [35] T. J. Callow, E. Kraisler, S. B. Hansen, **A. Cangi**, First-principles derivation and properties of density-functional average-atom models, Phys. Rev. Res. 4, 023055 (2022).
- [34] L. Fiedler, K. Shah, M. Bussmann, **A. Cangi**, Deep Dive into Machine Learning Density Functional Theory for Materials Science and Chemistry, Phys. Rev. Mater. 6, 040301 (2022).
- [33] S. Nikolov, J. Tranchida, K. Ramakrishna, M. Lokamani, **A. Cangi**, M. A. Wood, *Dissociating the phononic, magnetic and electronic contributions to thermal conductivity: a computational study in alpha-iron*, J. Mater. Sci. 57, 10535 (2022).

- [32] Z. A. Moldabekov, T. Dornheim, G. Gregori, F. Graziani, M. Bonitz, **A. Cangi**, *Towards a Quantum Fluid Theory of Correlated Many-Fermion Systems from First Principles*, SciPost Phys. 12, 062 (2022).
- [31] Z. A. Moldabekov, T. Dornheim, J. Vorberger, **A. Cangi**, *Benchmarking Exchange-Correlation Functionals in the Spin-Polarized Inhomogeneous Electron Gas under Warm Dense Conditions*, Phys. Rev. B 105, 035134 (2022).
- [30] Z. A. Moldabekov, T. Dornheim, **A. Cangi**, *Thermal Signals from Collective Electronic Excitations in Inhomogeneous Warm Dense Matter*, Sci. Rep. 12, 1093 (2022).
- [29] Z. A. Moldabekov, Y. K. Aldakul, N. K. Bastykova, S. Sundar, **A. Cangi**, *Higher harmonics in complex plasmas with alternating screening*, Phys. Rev. Res. 3, 043187 (2021).
- [28] S. Nikolov, M. A. Wood, **A. Cangi**, J.-B. Maillet, M.-C. Marinica, A. P. Thompson, M. P. Desjarlais, J. Tranchida, *Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics*, Npj Comput. Mater. 7, 153 (2021).
- [27] Z. A. Moldabekov, T. Dornheim, M. Böhme, J. Vorberger, **A. Cangi**, *The Relevance of Electronic Perturbations in the Warm Dense Electron Gas*, J. Chem. Phys. 155, 124116 (2021).
- [26] J. A. Ellis, L. Fiedler, G. A. Popoola, N. A. Modine, J. A. Stephens, A. P. Thompson, A. Cangi, S. Rajamanickam, Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks, Phys. Rev. B 104, 035120 (2021).
- [25] T. Dornheim, Z. A. Moldabekov, **A. Cangi**, *A Machine-Learning Surrogate Model for ab initio Electronic Correlations at Extreme Conditions*, ICLR 2021 (2021).
- [24] K. Ramakrishna, **A. Cangi**, T. Dornheim, J. Vorberger, *First-principles modeling of plasmons in aluminum under ambient and extreme conditions*, Phys. Rev. B 103, 125118 (2021).
- [23] T. Dornheim, **A. Cangi**, K. Ramakrishna, M. P. Böhme, S. Tanaka, J. Vorberger, *Effective static approximation: A fast and reliable tool for warm dense matter theory*, Phys. Rev. Lett. 125, 235001 (2020).
- [22] T. Baldsiefen, **A. Cangi**, F. G. Eich, E. K. U. Gross, *Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas*, Phys. Rev. A 96, 062508 (2017).
- [21] T. Baldsiefen, **A. Cangi**, E. K. U. Gross, *Reduced-density-matrix-functional theory at finite temperature: Theoretical foundations*, Phys. Rev. A 92, 052514 (2015).
- [20] **A. Cangi**, A. Pribram-Jones, *Efficient formalism for warm dense matter simulations*, Phys. Rev. B 92, 161113(R) (2015).
- [19] P. Elliott, **A. Cangi**, S. Pittalis, E. K. U. Gross, K. Burke, *Almost exact exchange at almost no computational cost in electronic structure*, Phys. Rev. A 92, 022513 (2015).
- [18] R. F. Ribeiro, D. Lee, **A. Cangi**, P. Elliott, K. Burke, *Corrections to Thomas-Fermi Densities at Turning Points and Beyond*, Phys. Rev. Lett. 114, 050401 (2015).
- [17] H. Mirhosseini, **A. Cangi**, T. Baldsiefen, A. Sanna, C. R. Proetto, E. K. U. Gross, *Virial theorem and exact properties of density functionals for periodic systems*, Phys. Rev. B 89, 220102(R) (2014).
- [16] A. Cangi, E. K. U. Gross, K. Burke, Potential functionals versus density functionals, Phys. Rev. A 88, 062505 (2013).
- [15] **A. Cangi**, D. Lee, P. Elliott, K. Burke, E. K. U. Gross, *Electronic Structure via Potential Functional Approximations*, Phys. Rev. Lett. 106, 236404 (2011).
- [14] **A. Cangi**, D. Lee, P. Elliott, K. Burke, *Leading corrections to local approximations*, Phys. Rev. B 81, 235128 (2010).
- [13] P. Elliott, D. Lee, **A. Cangi**, K. Burke, *Semiclassical Origins of Density Functionals*, Phys. Rev. Lett. 100, 256406 (2008).

TECHNICAL REPORTS

- [12] M. Wood, S. Nikolov, A. Rohskopf, M. P. Desjarlais, A. Cangi, J. Tranchida, Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths, Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed Metals, Technical Report SAND2022-12792, United States Department of Energy (2022).
- [11] S. B. Hansen, A. D. Baczewski, T. Gomez, T. W. Hentschel, C. A. Jennings, A. Kononov, T. Nagayama, K. Adler, **A. Cangi**, K. Cochrane, B. Robinson, A. Schleife, *Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties*, Technical Report SAND2022-13455, United States Department of Energy (2022).
- [10] N. A. Modine, J. A. Stephens, L. P. Swiler, A. P. Thompson, J. D. Vogel, L. Fiedler, A. Cangi, S. Rajamanickam, *Accelerating Multiscale Materials Modeling with Machine Learning*, Technical Report SAND2022-12875, United States Department of Energy (2022).
- [9] J. A. Hubbard, M. A. Omana, D. S. Jensen, **A. Cangi**, T. J. Boyle, *Uranium Aerosol Dynamics: Chemical Kinetics, Primary Particle Formation, Coagulation and Condensation*, Technical Report SAND2019-13154, United States Department of Energy (2019).
- [8] A. Cangi, F. Sagredo, E. Decolvenaere, A. E. Mattsson, Semi-local Density Functional Approximations for Bulk, Surface, and Confinement Physics, Technical Report SAND2019-11805, United States Department of Energy (2019).
- [7] **A. Cangi**, An Exchange-Correlation Functional Capturing Bulk, Surface, and Confinement Physics, Technical Report SAND2018-7447, United States Department of Energy (2018).
- [6] Author list hidden by publisher, Technical Report SAND2017-13554, United States Department of Energy (2017).

EDITED SPECIAL ISSUES AND PROCEEDINGS

- [5] **A. Cangi**, J. Citrin, U. von Toussaint (Eds.), *Special issue: Machine learning methods in plasma physics*. Contrib. Plasma Phys. e202300060 (2023).
- [4] A. Cangi, M. L. Parks, Center for Computing Research Summer Proceedings 2018, The Center for Computing Research at Sandia National Laboratories, Technical Report SAND2019-5093R, United States Department of Energy (2019).

BOOK CHAPTERS

[3] L. Fiedler, K. Shah, **A. Cangi**, *Machine-Learning for Static and Dynamic Electronic Structure Theory*. In: Qu, C., Liu, H. (eds) Machine Learning in Molecular Sciences. Challenges and Advances in Computational Chemistry and Physics, vol 36. Springer, Cham (2023).

SOFTWARE PUBLICATIONS

- [2] T. J. Callow, D. Kotik, E. Tsvetoslavova Stankulova, N. Rahat, E. Kraisler, A. Cangi, atoMEC (2023).
- [1] **A. Cangi**, S. Rajamanickam, B. Brzoza, T. J. Callow, J. A. Ellis, O. Faruk, L. Fiedler, J. Fox, N. Hoffmann, K. D. Miller, D. Kotik, S. Kulkarni, N. Modine, P. Mohammed, V. Oles, G. A. Popoola, F. Pöschel, J. Romero, S. Schmerler, J. A. Stephens, H. Tahmasbi, A. P. Thompson, S. Verma, D. J. Vogel, *Materials Learning Algorithms (MALA)* (2023).