#### INTRODUCTION TO MACHINE LEARNING

#### SUPPORT VECTOR MACHINE

The slides are from **Raymond J. Mooney** (ML Research Group @ Univ. of Texas)

Mingon Kang, Ph.D.

Department of Computer Science @ UNLV

# Linear Separators

Binary classification can be viewed as the task of separating classes in feature space:



Discriminant function:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

w: weight vector, normal to the line

b: bias

#### Linear classifiers: Which Hyperplane?

- Lots of possible choices for a, b, c.
- A Support Vector Machine (SVM) finds an optimal\* solution.
  - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
  - One intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary: ax + by - c = 0



# Support Vector Machine (SVM)

- SVMs maximize the margin around the separating hyperplane.
  - A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, the support vectors.
- Solving SVMs is a quadratic programming problem



### Maximum Margin: Formalization

- □ w: decision hyperplane normal vector
- $\square \mathbf{x}_i$ : data point i
- $\square$  y<sub>i</sub>: class of data point i (+1 or -1)
- $\Box$  Classifier is:  $f(\mathbf{x}_i) = sign(\mathbf{w}^T\mathbf{x}_i + b)$
- □ Functional margin of  $\mathbf{x}_i$  is:  $\mathbf{y}_i$  ( $\mathbf{w}^T\mathbf{x}_i + \mathbf{b}$ )
- The functional margin of a dataset is twice the minimum functional margin for any point
  - The factor of 2 comes from measuring the whole width of the margin
- Problem: we can increase this margin simply by scaling w, b....

## Geometric Margin

Distance from example to the separator is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

- Examples closest to the hyperplane are support vectors.
- $\square$  Margin  $\rho$  of the separator is the width of separation between support vectors of classes.



#### Linear SVM Mathematically

#### The linearly separable case

Assume that the functional margin of each data item is at least 1, then the following two constraints follow for a training set  $\{(\mathbf{x}_i, y_i)\}$ 

$$\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \ge 1 \quad \text{if } y_i = 1$$
$$\mathbf{w}^{\mathbf{T}}\mathbf{x_i} + b \le -1 \quad \text{if } y_i = -1$$

- For support vectors, the inequality becomes an equality
- □ Then, since each example's distance from the hyperplane is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

The functional margin is:

$$r = \frac{2}{\|\mathbf{w}\|}$$

#### Linear Support Vector Machine (SVM)

Hyperplane

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b} = \mathbf{0}$$

□ Extra scale constraint:

$$\min_{i=1,...,n} | \mathbf{w}^{\mathsf{T}} \mathbf{x}_i + \mathbf{b} | = 1$$

This implies:

$$\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{a} - \mathbf{x}_{b}) = 2$$
$$\boldsymbol{\rho} = \|\mathbf{x}_{a} - \mathbf{x}_{b}\|_{2} = 2/\|\mathbf{w}\|_{2}$$



#### Worked example: Geometric margin



#### Worked example: Functional margin



- Let's minimize w given that  $y_i(w^Tx_i + b) \ge 1$
- □ Constraint has = at SVs; w = (a, 2a) for some a
- a+2a+b=-1 2a+6a+b=1
- So, a = 2/5 and b = -11/5Optimal hyperplane is: w = (2/5, 4/5) and b = -11/5
- Margin ρ is 2/|w|=  $2/\sqrt{(4/25+16/25)}$ =  $2/(2\sqrt{5/5}) = \sqrt{5}$

# Linear SVMs Mathematically (cont.)

Then we can formulate the quadratic optimization problem:

A better formulation (min  $\|\mathbf{w}\| = \max 1/\|\mathbf{w}\|$ ):

Find w and b such that 
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text{ is minimized;}$$
 and for all  $\{(\mathbf{x_i}, y_i)\}: y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1$ 

#### Solving the Optimization Problem

```
Find w and b such that \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} is minimized; and for all \{(\mathbf{x_i}, y_i)\}: y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1
```

- This is now optimizing a quadratic function subject to linear constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a dual problem where a Lagrange multiplier  $\alpha_i$  is associated with every constraint in the primary problem:

Find 
$$\alpha_1...\alpha_N$$
 such that 
$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \text{ is maximized and}$$
(1)  $\sum \alpha_i y_i = 0$ 
(2)  $\alpha_i \ge 0$  for all  $\alpha_i$ 

# The Optimization Problem Solution

The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$
  $b = y_k - \mathbf{w^T} \mathbf{x_k}$  for any  $\mathbf{x_k}$  such that  $\alpha_k \neq 0$ 

- $\square$  Each non-zero  $\alpha_i$  indicates that corresponding  $\mathbf{x_i}$  is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an inner product between the test point x and the support vectors x;
  - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x<sub>i</sub><sup>T</sup>x<sub>i</sub> between all pairs of training points.

# Soft Margin Classification

- If the training data is not linearly separable, slack variables  $\xi_i$  can be added to allow misclassification of difficult or noisy examples.
- □ Allow some errors
  - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)



# Soft Margin Classification Mathematically

The old formulation:

Find **w** and *b* such that 
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$
 is minimized and for all  $\{(\mathbf{x_i}, y_i)\}$  
$$y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1$$

The new formulation incorporating slack variables:

```
Find w and b such that  \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \xi_{i}  is minimized and for all \{(\mathbf{x_{i}}, y_{i})\}  y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x_{i}} + b) \ge 1 - \xi_{i}  and \xi_{i} \ge 0 for all i
```

- Parameter C can be viewed as a way to control overfitting
  - A regularization term

#### Soft Margin Classification — Solution

The dual problem for soft margin classification:

Find  $\alpha_1...\alpha_N$  such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \text{ is maximized and}$$

$$(1) \quad \sum \alpha_i y_i = 0$$

$$(2) \quad 0 \le \alpha_i \le C \text{ for all } \alpha_i$$

- Neither slack variables  $\xi_i$  nor their Lagrange multipliers appear in the dual problem!
- Again,  $x_i$  with non-zero  $\alpha_i$  will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x_i}$$

$$b = y_k (1 - \xi_k) - \mathbf{w^T} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_{k'}$$

w is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

#### Classification with SVMs

- Given a new point x, we can score its projection onto the hyperplane normal:
  - □ l.e., compute score:  $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \Sigma \alpha_i \mathbf{y}_i \mathbf{x}_i^{\mathsf{T}}\mathbf{x} + b$ 
    - Decide class based on whether < or > 0



Score > t: yes

Score < -t: no

Else: don't know



## Linear SVMs: Summary

- The classifier is a separating hyperplane.
- The most "important" training points are the support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points  $\mathbf{x}_i$  are support vectors with non-zero Lagrangian multipliers  $\alpha_i$ .
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

Find  $\alpha_1...\alpha_N$  such that

$$\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$$
 is maximized and

- (1)  $\sum \alpha_i y_i = 0$
- (2)  $0 \le \alpha_i \le C$  for all  $\alpha_i$

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x_i}^{\mathsf{T}} \mathbf{x} + b$$

#### Non-linear SVMs

Datasets that are linearly separable (with some noise) work out great:



But what are we going to do if the dataset is just too hard?



□ How about ... mapping data to a higher-dimensional space:



### Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



# Non-linear SVMs: Feature spaces



Image by MIT OpenCourseWare.

#### The "Kernel Trick"

- The linear classifier relies on an inner product between vectors  $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_i$
- If every datapoint is mapped into high-dimensional space via some transformation  $\Phi\colon \mathbf{x} \to \phi(\mathbf{x})$ , the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_i) = \phi(\mathbf{x}_i)^{\mathsf{T}}\phi(\mathbf{x}_i)$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors 
$$\mathbf{x} = [x_1 \ x_2]$$
; let  $K(\mathbf{x_i, x_i}) = (1 + \mathbf{x_i^T x_i})^2$ .  
Need to show that  $K(\mathbf{x_i, x_i}) = \phi(\mathbf{x_i})^T \phi(\mathbf{x_i})$ :

$$K(\mathbf{x_{i}}, \mathbf{x_{i}}) = (1 + \mathbf{x_{i}}^{\mathsf{T}} \mathbf{x_{i}})^{2} = 1 + x_{i1}^{2} x_{i1}^{2} + 2 x_{i1} x_{i1} x_{i2} x_{i2}^{2} + x_{i2}^{2} x_{i2}^{2} + 2 x_{i1} x_{i1} + 2 x_{i2} x_{i2}^{2} = 1 + x_{i1}^{2} x_{i1}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i2}^{2} x_{i2}^{2} = 1 + x_{i1}^{2} x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{i2}^{2} = 1 + x_{i1}^{2} x_{i1}^{2} + 2 x_{i1}^{2} x_{i2}^{2} = 1 + x_{i1}^{2} x_{i1}^{2} + 2 x_{i1}^{2} x_{i2}^{2} + 2 x_{i1}^{2} x_{$$

= 
$$\phi(\mathbf{x_i})^{\mathsf{T}}\phi(\mathbf{x_i})$$
 where  $\phi(\mathbf{x}) = [1 \ x_1^2 \sqrt{2} \ x_1 x_2 \ x_2^2 \sqrt{2} x_1 \sqrt{2} x_2]$ 

#### Kernels

- Why use kernels?
  - Make non-separable problem separable.
  - Map data into better representational space
- Common kernels
  - Linear
  - □ Polynomial  $K(x,z) = (1+x^Tz)^d$ 
    - Gives feature conjunctions
  - Radial basis function (infinite dimensional space)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma^2}$$