Assessment Schedule - 2010

Scholarship Mathematics with Calculus (93202)

Evidence Statement

	T	<u> </u>
ONE (a)	Using de Moivre's Theorem and trigonometric identities: $z^{19} + z^{14} + z^8 + z^3 = \left(\operatorname{cis} \frac{7\pi}{11}\right)^{19} + \left(\operatorname{cis} \frac{7\pi}{11}\right)^{14} + \left(\operatorname{cis} \frac{7\pi}{11}\right)^8 + \left(\operatorname{cis} \frac{7\pi}{11}\right)^3$ $= \operatorname{cis} \frac{133\pi}{11} + \operatorname{cis} \frac{98\pi}{11} + \operatorname{cis} \frac{56\pi}{11} + \operatorname{cis} \frac{21\pi}{11}$ $= \operatorname{cis} \left(12\pi + \frac{\pi}{11}\right) + \operatorname{cis} \left(8\pi + \frac{10\pi}{11}\right) + \operatorname{cis} \left(6\pi - \frac{10\pi}{11}\right) + \operatorname{cis} \left(2\pi - \frac{\pi}{11}\right)$ $= \operatorname{cis} \left(\frac{\pi}{11}\right) + \operatorname{cis} \left(\frac{10\pi}{11}\right) + \operatorname{cis} \left(\frac{10\pi}{11}\right) + \operatorname{cis} \left(-\frac{\pi}{11}\right)$ $= \operatorname{cis} \left(\frac{\pi}{11}\right) - \operatorname{cis} \left(\frac{\pi}{11}\right) - \operatorname{cis} \left(\frac{\pi}{11}\right) + \operatorname{cis} \left(-\frac{\pi}{11}\right)$ $= 0$	1 (maximum): calculator evaluates to zero. 1 use de Moivre's Theorem. 2 show, any way. 3 show using trig identities.
(b)	First, note that $y = \sin^2 x = 1 - \cos^2 x$, so $\cos^2 x = 1 - y$. Then $12y^3 - 13y^2 - 14y + 13 = 1 - y$ $12y^3 - 13y^2 - 13y + 12 = 0$	
	(y+1)(4y-3)(3y-4) = 0	1 factorise or find roots.
	So $y = -1, \frac{4}{3}, \frac{3}{4}$. Now since $\sin x = \sqrt{y}$, only $\sin x = \frac{\sqrt{3}}{2}$ is possible,	$2 \text{ only } \sin x = \frac{\sqrt{3}}{2}$
	yielding $x = \frac{\pi}{3} + 2n\pi, \frac{2\pi}{3} + 2n\pi$ for integer n , or	3 all solutions, any form.
	$x = n\pi + (-1)^n \frac{\pi}{3}$	TOTHI.
(c)	The equation further factorises and simplifies, with some effort, to $\frac{(z-1)(z+1)(z^2+z+1)(z^2+1)(z^2-z+1)(z^4-z^2+1)}{(z-1)^2(z+1)(z^2+z+1)(z^2+1)} = 0$ $\frac{(z^2-z+1)(z^4-z^2+1)}{z-1} = 0$	1 factorise and eliminate at least one denominator term. 2 fully factorised form.
	and the following answer can be reached from here, with a little more brute force (polar form is not required in the answer).	1 find all twelve
	Alternatively, the roots of the numerator are, in polar form, $cis \frac{k\pi}{6}$ for integers $0 \le k < 12$.	roots of numerator.
	We then rule out the roots of the denominator, which are $cis \frac{4m\pi}{6}$ and $cis \frac{3n\pi}{6}$ for integers m, n .	2 work to rule out denom roots.
	This leaves the six roots $\operatorname{cis} \frac{\pi}{6}, \operatorname{cis} \frac{2\pi}{6}, \operatorname{cis} \frac{5\pi}{6}, \operatorname{cis} \frac{7\pi}{6}, \operatorname{cis} \frac{10\pi}{6}, \operatorname{cis} \frac{11\pi}{6}$	3 these six roots, no others
	or $\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ and $\pm \frac{\sqrt{3}}{2} \pm \frac{1}{2}i$ (or $\pm \sqrt{\frac{1}{2} \pm \frac{\sqrt{3}}{2}}i$).	(any form).
	<u>I</u>	1

TWO (a)(i)	The points on the x-axis touching the inscribed circle are on the hyperbola $x^2 - y^2 = 2\alpha$ with $y = 0$ and so $x^2 = 2\alpha$. The circle has radius $\sqrt{2\alpha}$ and so has area	+1 area, any form.
	$A_{\rm inscribed} = 2\alpha\pi \approx 15.1690$. The points where the circumscribed circle touches the hyperbolae include $(\alpha,1)$. The radius r of the circumscribed circle is then given by	+1 ANY intersection: $(\pm 1, \pm \alpha)$ or $(\pm \alpha, \pm 1)$
	$r^{2} = x^{2} + y^{2}$ $= \alpha^{2} + 1$ $= (1 + 2\sqrt{2} + 2) + 1$ $= 4 + 2\sqrt{2}$ $A_{\text{circumscribed}} = (4 + 2\sqrt{2})\pi$ ≈ 21.4521	+1 area, any form
(ii)	We find (as above) that the x-coordinates of intersections are $\pm 1, \pm \alpha$. Hence we find that the area is	+1 ANY intersection (unless awarded above).
	$A = 8 \int_{1}^{\alpha} \frac{\alpha}{x} dx = 8\alpha \left[\ln x \right]_{1}^{\alpha} = 8\alpha \left(\ln \alpha - \ln 1 \right) = 8\alpha \ln \alpha = 8 \left(1 + \sqrt{2} \right) \ln \left(1 + \sqrt{2} \right)$ $= 16\alpha \ln \sqrt{\alpha} = 17.0226$	1 correct integral with limits.2 area, any form.
(b)	The first and second derivatives are $ \frac{dy}{dx} = \frac{1}{3}x^{-2/3}e^{-x^2} + x^{1/3}(-2x)e^{-x^2} $ $ = \frac{1}{3}e^{-x^2} \left(x^{-2/3} - 6x^{4/3}\right) $	
	$\frac{d^2 y}{dx^2} = \frac{1}{3} e^{-x^2} \left(-\frac{2}{3} x^{-5/3} - 8x^{1/3} \right) + \frac{1}{3} (-2x) e^{-x^2} \left(x^{-2/3} - 6x^{4/3} \right)$ $= \frac{1}{9} e^{-x^2} \left(-2x^{-5/3} - 24x^{1/3} - 6x^{1/3} + 36x^{7/3} \right)$ $= \frac{1}{9} e^{-x^2} x^{-5/3} \left(36x^4 - 30x^2 - 2 \right)$	1 correct form up to constant $= \left(4x^4 - \frac{10}{3}x^2 - \frac{2}{9}\right)$
	The second derivative is zero at: $x^2 = \frac{30 \pm \sqrt{900 + 288}}{72} = \frac{30 \pm \sqrt{1188}}{72} = \frac{5 \pm \sqrt{33}}{12}$ We take only the positive value, and then $x = \pm \sqrt{\frac{5 + \sqrt{33}}{12}} \approx \pm 0.9462$.	2 correct <u>REAL</u> roots of second derivative.
	Finally note that the function is defined at $x = 0$ although the first and second derivatives are not. At this point, the function's concavity also changes. We can check that the second derivative changes sign at these three points by evaluating d^2y	
	$\frac{d^2 y}{dx^2}$ at four points surrounding them: y''(1) = 0.1635 y''(0.5) = -1.9918 y''(-0.5) = 1.9918 y''(-1) = -0.1635	3 point of inflection at $x = 0$ AND testing all points.

	Scholarship Mathematics with Calculus (93202) 2010 — page 3 of 7	
THREE (a)(i)	(a)(i) Using the given equation and the definition of $r(\theta)$ we find	
	$A = \frac{1}{2} \int_{0}^{2\pi} r^2 \mathrm{d}\theta$	
	$= \frac{1}{2} \int_{0}^{2\pi} (a + b \sin(n\theta))^{2} d\theta$	
	$= \frac{1}{2} \int_{0}^{2\pi} \left(a^2 + 2ab \sin(n\theta) + b^2 \sin^2(n\theta) \right) d\theta$	
	$= \frac{1}{2} \int_{0}^{2\pi} \left(a^{2} + 2ab \sin(n\theta) + \frac{1}{2}b^{2} (1 - \cos(2n\theta)) \right) d\theta$	1 trig identity or otherwise
	$= \frac{1}{2} \left[a^2 \theta - \frac{2ab}{n} \cos(n\theta) + \frac{1}{2} b^2 \theta - \frac{b^2}{4n} \sin(2n\theta) \right]_0^{2\pi}$	integrate $\sin^2(n\theta)$.
	$= \frac{1}{2} \left[\left(2\pi a^2 - \frac{2ab}{n} \cos(2n\pi) + \pi b^2 - \frac{b^2}{4n} \sin(4n\pi) \right) - \left(-\frac{2ab}{n} \cos(0) - \frac{b^2}{4} \sin(0) \right) \right]$	
	$= \frac{1}{2} \left[2\pi a^2 - \frac{2ab}{n} + \pi b^2 - \left(-\frac{2ab}{n} \right) \right]$ $= \pi \left(a^2 + \frac{1}{2} b^2 \right)$	2 arrive at answer.
		3 without any minor error.
(ii)	Working with the area from a(i) and the given relationships:	
	$A = \left(\frac{H - h}{H}\right)^{2} \pi a_{0}^{2} + \frac{1}{2} \frac{h^{2}}{H^{2}} \left(\frac{H - h}{H}\right)^{2} \pi a_{0}^{2}$	+1 <i>A</i> in terms of <i>h</i> .
	$= \frac{\pi a_0^2}{H^4} \left(H^4 - 2H^3 h + \frac{3}{2} H^2 h^2 - H h^3 + \frac{1}{2} h^4 \right)$	
	$V = \int_{0}^{H} A \mathrm{d}h$	+1 correct definite integral with limits.
	$= \frac{\pi a_0^2}{H^4} \left[H^4 h - H^3 h^2 + \frac{1}{2} H^2 h^3 - \frac{1}{4} H h^4 + \frac{1}{10} h^5 \right]_0^H$	
	$= \frac{\pi a_0^2}{H^4} \left(H^5 - H^5 + \frac{1}{2}H^5 - \frac{1}{4}H^5 + \frac{1}{10}H^5 \right)$	
	$= \pi a_0^2 H \left(1 - 1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{10} \right)$ $= \frac{7}{20} \pi a_0^2 H$	
	The volume of a cone with the same base and height is $V_c = \frac{1}{3}\pi a_0^2 H$.	
	The ratio of these volumes is $V/V_c = (\frac{7}{20}\pi a_0^2 H) \div (\frac{1}{3}\pi a_0^2 H) = \frac{21}{20} = 1.05$, as required.	3 show 5% more.

(b)	We need $\Delta \ge 0$.	
	$\Delta = p^2 (\sqrt{3} \sin \alpha + \cos \alpha)^2 - 4p^2 \sin^2 \alpha \ge 0$	
	$3\sin^2\alpha + 2\sqrt{3}\sin\alpha\cos\alpha + \cos^2\alpha - 4\sin^2\alpha \ge 0$	
	$2\sqrt{3}\sin\alpha\cos\alpha + 2\cos^2\alpha - 1 \ge 0$	
	$\sqrt{3}\sin(2\alpha) + \cos(2\alpha) \ge 0$	+1 "show that"
		shown. +1 $\alpha = \frac{5\pi}{12}, \frac{11\pi}{12}$
	We find equality at $tan(2\alpha) = \frac{-1}{\sqrt{3}}$, so $\alpha = \frac{5\pi}{12}, \frac{11\pi}{12}$.	12 , 12
	Testing intervals, $\Delta \ge 0$ when $0 \le \alpha \le \frac{5\pi}{12}$ and $\frac{11\pi}{12} \le \alpha \le \pi$.	+1 both intervals, exact required.
	- 12 12	cxact required.
FOUR (a)	The parabolas $y = bx^2 - k$ and $y = (x - a)^2$ meet with the same slope: $2(x - a) = 2bx$, so	
(a)	$x = \frac{a}{1-b}$. Symmetry gives the other point of intersection of $y = bx^2 - k$ with	1 either point of
		intersection.
	$y = (x+a)^2$ at $x = \frac{a}{b-1}$.	
	$y = \left(\frac{a}{1-b} - a\right)^2 = \left(\frac{ab}{1-b}\right)^2 = \frac{a^2b^2}{(1-b)^2} \text{ and } y = b\left(\frac{a}{1-b}\right)^2 - k = \frac{a^2b}{(1-b)^2} - k$ $\frac{a^2b}{(1-b)^2} - k = \frac{a^2b^2}{(1-b)^2}$ $k = \frac{a^2b}{(1-b)^2} - \frac{a^2b^2}{(1-b)^2}$ $= \frac{a^2b}{(1-b)^2} (1-b)$ $= \frac{a^2b}{a^2b}$	
	$\frac{a^2b}{(1-b)^2} - k = \frac{a^2b^2}{(1-b)^2}$	
	$k = \frac{a^2b}{(1-b)^2} - \frac{a^2b^2}{(1-b)^2}$	
	$\begin{pmatrix} (1-b) & (1-b) \\ a^2b \end{pmatrix}$	
	$=\frac{ab}{(1-b)^2}(1-b)$	
	a^2b	
	$=\frac{1}{1-b}$	
	Alternatively, look for a repeated solution of $(x-a)^2 = bx^2 - k$; so discriminant is zero.	
	$(1-h)x^2 - 2ax + a^2 - k - 0$	1 discriminant set to
	$(-2a)^{2} + 4(a^{2} - k)(1 - b) = 0$	zero.
	$-4k(1-b) = 4a^2(1-b) - 4a$	
	$k = \frac{4a^2b}{4 - 4b} = \frac{a^2b}{1 - b} = \frac{a^2}{1 - b} - a^2$	2 correct answer <i>any</i>
	4-4b 1-b 1-b	form. 3 simplified form.

(b) Using completing the square twice, we find the radius of the circle (r):

$$(x+g)^2 + (y+f)^2 = g^2 + f^2 - c = r^2$$

and also note that the centre of the circle is (-g, -f).

The distance from the centre to the point (p,q) is

$$D = \sqrt{(p - (-g))^2 + (q - (-f))^2} = \sqrt{(p + g)^2 + (q + f)^2}.$$

Using the Pythagorean theorem on the triangle in the diagram, we find

$$\ell^{2} = (p+g)^{2} + (q+f)^{2} - g^{2} - f^{2} + c$$

$$= p^{2} + 2gp + g^{2} + q^{2} + 2fq + f^{2} - g^{2} - f^{2} + c$$

$$= p^{2} + 2gp + q^{2} + 2fq + c$$

$$\ell = \sqrt{p^{2} + 2gp + q^{2} + 2fq + c}$$

A diagram is required:

1 find centre of circle.

2 or otherwise show given.

+1 diagram with right triangle. +1 with ℓ and two other features *labelled*. (c)

The gradient of the tangent line to the curve $y^2 = 4ax$ is $\frac{dy}{dx} = \frac{2a}{y} = \frac{2a}{2\sqrt{ax}} = \sqrt{\frac{a}{x}}$

At a point $(x_0, 2\sqrt{ax_0})$ the tangent line is

$$y - 2\sqrt{ax_0} = \sqrt{\frac{a}{x_0}}(x - x_0)$$
$$y = \sqrt{\frac{a}{x_0}}x - \sqrt{\frac{a}{x_0}}x_0 + 2\sqrt{ax_0} = \sqrt{\frac{a}{x_0}}x + \sqrt{ax_0}$$

The equation for the related tangent line at $x_1 = x_0 + 2k$ is then

$$y = \sqrt{\frac{a}{x_0 + 2k}} x + \sqrt{a(x_0 + 2k)} \ .$$

Equating these, (and then dividing by \sqrt{a}) we find the following, and then cross-multiply and square both sides to eliminate roots:

$$\sqrt{\frac{a}{x_0}}x + \sqrt{ax_0} = \sqrt{\frac{a}{x_0 + 2k}}x + \sqrt{a(x_0 + 2k)} = y_P$$

$$(x + x_0)\sqrt{x_0 + 2k} = (x + x_0 + 2k)\sqrt{x_0}$$

$$(x + x_0)^2(x_0 + 2k) = x_0(x + x_0 + 2k)^2$$

$$x_0x^2 + 2kx^2 + 2x_0^2x + 4kx_0x + x_0^3 + 2kx_0^2 = 4k^2x_0 + 4kx_0x + x_0x^2 + 2x_0^2x + x_0^3$$

$$2kx^2 = 4k^2x_0 + 2kx_0^2$$

$$x^2 = 2kx_0 + x_0^2$$

$$x_P = \sqrt{x_0(2k + x_0)} = \sqrt{x_0x_1}$$

$$x_P^2 = x_0(2k + x_0)$$

$$x_0^2 + 2kx_0 - x_P^2 = 0$$

$$x_0 = \sqrt{k^2 + x_P^2} - k \text{ (choosing the positive root)}$$

The new curve is then $y_P = \sqrt{\frac{a}{x_0}} x_P + \sqrt{ax_0}$, which needs to be in terms of x_P only.

$$\begin{split} y_{\rm p} &= \sqrt{\frac{a}{\sqrt{k^2 + x_{\rm p}^2 - k}}} x_{\rm p} + \sqrt{a \left(\sqrt{k^2 + x_{\rm p}^2} - k\right)} \\ &= x_{\rm p} \sqrt{\frac{a \left(\sqrt{k^2 + x_{\rm p}^2} + k\right)}{x_{\rm p}^2}} + \sqrt{a \left(\sqrt{k^2 + x_{\rm p}^2} - k\right)} \\ &= \sqrt{a \left(\sqrt{k^2 + x_{\rm p}^2} + k\right)} + \sqrt{a \left(\sqrt{k^2 + x_{\rm p}^2} - k\right)} \\ y_{\rm p}^2 &= a \left(\sqrt{k^2 + x_{\rm p}^2} + k\right) + a \left(\sqrt{k^2 + x_{\rm p}^2} - k\right) + 2a \sqrt{\left(\sqrt{k^2 + x_{\rm p}^2} + k\right) \left(\sqrt{k^2 + x_{\rm p}^2} - k\right)} \\ &= 2a \sqrt{k^2 + x_{\rm p}^2} + 2a \sqrt{k^2 + x_{\rm p}^2} - k^2 \\ &= 2a \left(\sqrt{k^2 + x_{\rm p}^2} + x_{\rm p}\right) \end{split}$$

Now note that

$$4ax_{\rm p} < 2a\left(x_{\rm p} + \sqrt{x_{\rm p}^2 + k^2}\right) < 2a\left(x_{\rm p} + \sqrt{x_{\rm p}^2 + 2kx_{\rm p} + k^2}\right) = 2a(x_{\rm p} + x_{\rm p} + k) = 4ax_{\rm p} + 2ak \label{eq:axp}$$
 (when $x \ge 0$).

1 equation for tangent in y = form in terms of x_0 or x_1

2 expression with only x_P in any form.

3 show within bounds.

FIVE (a)	A person of age T will date above the age $L(T) = \frac{1}{2}T + 7$. Since the person they date also follows this rule, the upper range U can be found from $T = \frac{1}{2}U(T) + 7$, so $U(T) = 2T - 14$.	1 upper range.
	The width of the dateable range of a person of age T is then $U(T) - L(T) = \frac{3}{2}T - 21$.	2 width or range
(b)	The (relative) size of the dating pool for a person of age T is then $U(T)$	
	$D(T) = \int_{L(T)}^{C(T)} S(T) dt$ $= \int_{\frac{1}{2}T+7}^{2T-14} e^{-0.05t} dt$	1 formulate.
	$= \left[-20e^{-0.05t}\right]_{\frac{1}{2}T+7}^{2T-14}$	2 integrate correctly.
	$= -20e^{-0.1T+0.7} + 20e^{-0.025T-0.35}$ $= 20e^{\frac{-1}{20}(2T-14)} - 20e^{\frac{-1}{20}(\frac{1}{2}T+7)}$	3 correct (any form).
(c)	We look to find where $\frac{dD}{dT} = 0$:	
	$\frac{dD}{dT} = 2e^{-0.1T + 0.7} - 0.5e^{-0.025T - 0.35}$ $= 2e^{-0.025T - 0.35} \left(e^{-0.075T + 1.05} - 0.25 \right) = 0$ $e^{-0.075T + 1.05} = 0.25$	 1 find dD/dT 2 simplify or otherwise take logs.
	$-0.075T + 1.05 = \ln 0.25$ $-0.075T = \ln 0.25 - 1.05$ $T = 14 - \frac{\ln 0.25}{0.075} = 14 + \frac{40}{3} \ln 4 \approx 32.5$	3 correct age ANY FORM.
	The dating pool is largest for singles aged 32.5. This is the only age for which $\frac{dD}{dT} = 0$.	