

Clusters, Symbols and Cortical Topography

Lee Newman Thad Polk

Dept. of Psychology Dept. Electrical Engineering & Computer Science University of Michigan

> 26th Soar Workshop May 26, 2006 Ann Arbor, MI

agenda...

- motivation symbols with similarity
- 2 model self-organizing maps (SOMs)
- 3 demo task object categorization
- 4 wrap-up discussion

issue 1: sensory transduction

- the environment and the human sensory systems that capture it, are analog...
- Soar operates on discrete symbols
- Q: what might be learned from how the brain transduces information via senses?

issue 2: symbols with similarity

(b32 ^shape round ^color red)

- symbols "red" and "pink" have no inherent similarity

• similarity not currently possible in Soar, but well-established in human cognition

red apple

pink apple

agenda...

- motivation symbols with similarity
- 2 model self-organizing maps (SOMs)
- 3 demo task object categorization
- wrap-up discussion

possible mapping between cortex and Soar

attributes

• cortical areas (maps) correspond to attributes

values

 most active representation in a cortical area (winning cell) corresponds to attribute-value

overview: self-organizing maps (SOM)

general features of SOMs

- based on properties of cortical representations
- competitive learning algorithm (unsupervised)
- cells in a map represented by "codebook vector"
- learning by moving a cell's vector closer to an input

unique feature of SOMs

similarity via 2D location in cortical area

cortical map (SOM)

SOM learning algorithm (in a nutshell)

sensory stimulus

cortical map color attribute

.0

- 1. winning cell is value for the attribute
- 2. winner's codebook vector moved closer to input vector
- 3. neighbors' codebook vectors moved closer to input vector (by less)
- → with experience, regions of similarity develop.
- → nearby cells code for similar stimuli

SOMs can produce symbols with similarity

cortical map color attribute

red apple

pink apple

- generate unique symbols for "red" and "pink"
- and "red" and "pink" are similar (spatially proximal)

once have symbols, how preserve similarity?

- situation: SOMs can do sensory transduction, i.e. converting continuous valued inputs to symbols, with similarity.
- complication: most cortical areas are <u>not</u> directly connected to sensory inputs, but to other cortical areas.

Q: can extend SOMs to higher-order maps that receive symbolic inputs from other maps...while preserving similarity relations?

idea: encoding via 2D "cortical coordinates"

 x,y coordinate is a computational abstraction of the *pattern* of synaptic strength between a cell and all cells in an afferent map

temporal coincidence of firing strengthens connections, "fire together"

spatial location of winning cell

attribute-value

"large, vertically oriented"

X,

cell's receptive field in an afferent map

agenda...

- motivation symbols with similarity
- 2 model self-organizing maps (SOMs)
- 3 demo task object categorization
- wrap-up discussion

stimulus attributes (assumed continuous valued)

Visual Perception

```
color (hue, saturation, brightness) [0..1]
```

```
size (size<sub>x</sub>, size<sub>y</sub> size<sub>z</sub>) [feet]
```

Auditory Perception

```
sound (loudness, char. freq) [0..1,Hz]
```

attribute coding – independently motivated

```
examples:
```

```
dog shape: (roundness: 0.85, complexity: 0.15)
```

dog colors: (H/S/B: (0.1,0.6,0.6), (0,0,0.1), (0,0,1), (0,0,0.5))

model architecture

transduction example: color (h,s,b) to 2D-SOM

- 25 cells (5x5 map)
- After training

- winning cells serve as symbols for each color stimulus
- similarity encoded by spatial location (closer, more similar)

higher order example: visual association map

- initial map: random codevectors

- no pattern to winning cells

results: visual map learning

living

nonliving

Learned:

- super-category
- category
- most classes
- some exemplars

winning cells, within topography

agenda...

- motivation symbols with similarity
- **2 model** self-organizing maps (SOMs)
- 3 demo task object categorization
- wrap-up discussion

- clustering & similarity via neurallyinspired competitive learning
- sensory transduction creates symbols
- semantic networks at increasing levels of abstraction via cortical coordinates

^nuggets coal

- top-down effects: require additional extensions of SOM model (in progress)
- attentional modulation: allow relative weighting of attributes based on goals, context (in progress)
- practical considerations: viability of semantic network in Soar based on SOMs? training? exploitation of knowledge?

similarity: well established in human cognition

- behavioral performance
 - generalization, learning transfer
 - acoustic confusion in working memory tasks
 - similarity errors in speech production
- electrophysiological recordings
 - receptive fields: neurons tend have graded responses to similar stimuli
- Q: what might be learned from how information is represented in the brain?

- sensory cortex has topographic organization
 - neurons are spatially organized based on sensation;
 neighboring neurons encode similar information
 - **visual**: *retinotopic* (based on retina, visual field)

- auditory: tonotopic (based on auditory nerve, frequency)
- **somatosensory**: *somatotopic* (based on the human body)
- sensory-based topography gives way to topography at a higher level of abstraction
 - example: nearby cells in late-stage visual cortex (TE) of monkeys show graded response to similar visual objects

SOMs can produce symbols with similarity

transduce continues semapory inputs and provide similaritaturia topography

