

SUPER-X – DATA WAREHOUSING

Group 6: Procurement

14th February 2018

- | REQUIREMENT ANALYSIS
- ANALYSIS OF DATA SOURCES
- | CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- BUSINESS RECOMMENDATIONS

- REQUIREMENT ANALYSIS
- | ANALYSIS OF DATA SOURCES
- | CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- | BUSINESS RECOMMENDATIONS

REQUIREMENT ANALYSIS

OLTP SCHEMA

KPIs

Questions	Business Requirement	Importance	HIgh level Entities	Measures
	What is the average quantity bought for each material and			Quantity
Q1	material type per month and year?	Medium	Material, Material Type, Month, Year	bought
	What is the total quantity bought for each material and material			Quantity
Q2	type per month and year?	High	Material, Material Type, Month, Year	bought
	What is the highest and lowest price per material per month and			
Q3	year?	Medium	Material, Month, Year	Price
				Price *
Q4	What is the total order value per month and year?	High	Month, Year	Quantity
	What is the total order value per supplier and supplier category		Supplier, Supplier Category, Month,	Price *
Q5	per month and year	High	Year	Quantity
Q6	What is the total quantity ordered per country?	Low	Country	Quantity
	What is the order volume per supplier and supplier category per		Supplier, Supplier Category, Month,	
Q7	month and year?	High	Year	Quantity
	What is the number of suppliers per material and supplier		Supplier, Supplier Category, Material,	
Q8	category per month and year?	HIgh	Month, Year	
	What is the order volume per supplier and country per month		Supplier, Supplier Category, Country,	
Q9	and year?	Medium	Month, Year	Quantity
	What is the order value per supplier and country per month and		Supplier, Supplier Category, Country,	Price *
Q10	year?	Medium	Month, Year	Quantity

- I REQUIREMENT ANALYSIS
- ANALYSIS OF DATA SOURCES
- | CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- | BUSINESS RECOMMENDATIONS

DATA PROFILING

Types of data profiles used:

- Candidate Key Profiles
- Column Length Distribution Profiles
- Column Null Ratio Profiles
- Column Pattern Profiles
- Column Statistics Profiles
- Column Value Distribution Profiles
- Functional Dependency Profiles

DATA CLEANSING: PROBLEM

Example: Supplier table

Combined field for the whole address:

Category "smal":

	zipcode 🔻	city	▼ region	country
Emmapark 597 I	5326	NH Maas aan de Ijssel	Limburg	Netherlands
Am Alten Schafstall 85b	70119	Ost Fabianland	Hamburg	Deutschland
Rotonda Costa 2	41981	Sesto Elga	Varese	Italy
Meckhofer Feld 18	14490	Jarosburg	Bremen	Deutschland
498 Rutherford Row	M10-5I8	Tremblaymouth	Manitoba	Canada
191 Leannon Ville	U3R3R6	East Savanna	Ontario	Canada
Glorieta Gabriela Cardenas 85	99566	Almería	Región de Murcia	Spain
Vriesplantsoen 888	6760-QK	Oud Annesluus	Limburg	Netherlands
990 Patsy View	89563-9582	Lake Samson	North Dakota	USA
97 Quai de la Harpe	94423	Neuilly-sur-Seine	Basse-Normandie	France

DATA CLEANSING: SOLUTION

```
■INSERT INTO [DataMart_NewSuperX].[dbo].[DimPurchaseOrder]

SELECT DISTINCT purchase_order_id, [state] = purchase_orders.state,
[supplier_name] = suppliers.name,
[supplier_category] = CASE WHEN category='smal' THEN 'small' ELSE category END,
[supplier_country] = CASE WHEN right(address, CHARINDEX(' ', REVERSE(address))-1)='U.S.A.' THEN 'USA'
WHEN right(address, CHARINDEX(' ', REVERSE(address))-1)='Deutschland' THEN 'Germany'
WHEN right(address, CHARINDEX(' ', REVERSE(address))-1)='Kingdom' THEN 'United Kingdom'
ELSE right(address, CHARINDEX(' ', REVERSE(address))-1) END,
[employee_name] = concat(employees.firstname, ' ', employees.lastname),
[effective_date] = cast(NewSuperX.dbo.purchase_orders.timestamp as date),
[current_flag] = 1
    FROM NewSuperX.dbo.purchase_order_items
    join NewSuperX.dbo.purchase_order items.purchase_order_id = purchase_orders.id
    join NewSuperX.dbo.employees ON purchase_orders.employee_id = employees.id
    join NewSuperX.dbo.suppliers ON purchase_orders.supplier_id = suppliers.id;
go
```


- I REQUIREMENT ANALYSIS
- ANALYSIS OF DATA SOURCES
- CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- | BUSINESS RECOMMENDATIONS

CONCEPTUAL DESIGN

MER diagram:

LOGICAL DESIGN

STAR schema:

- I REQUIREMENT ANALYSIS
- ANALYSIS OF DATA SOURCES
- | CONCEPTUAL DESIGN
- PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- BUSINESS RECOMMENDATIONS

ETL PROCESS

ETL PROCESS

```
/* data imported into SOL SERVER*/
USE DataMart NewSuperX;
-- Dim Time
CREATE TABLE DimTime (
time id int NOT NULL CONSTRAINT [pkDimTime] PRIMARY KEY,
calendarDate Date NOT NULL.
davID int NOT NULL.
month nvarchar (50) NOT NULL.
quarterID int NOT NULL,
vearID int NOT NULL,
vearmonth nvarchar (7) NOT NULL.
vearOuarterID nvarchar(7) NOT NULL.
effective date Date NOT NULL.
current flag bit NOT NULL
-- Dim Material
CREATE TABLE DimMaterial (
material id int NOT NULL CONSTRAINT [pkDimMaterial] PRIMARY KEY,
name nvarchar(50) NOT NULL.
type nvarchar(50) NOT NULL,
effective date Date NOT NULL,
current flag bit NOT NULL
);
-- Dim Purchase Order
CREATE TABLE DimPurchaseOrder (
purchase order id int NOT NULL CONSTRAINT [pkDimPurchaseOrder] PRIMARY KEY, so
state nvarchar (50) NOT NULL.
supplier name nvarchar (50) NOT NULL,
supplier category nvarchar (50) NOT NULL,
supplier country nvarchar (50) NOT NULL,
employee name nvarchar (50) NOT NULL,
effective date Date NOT NULL,
current flag bit NOT NULL
);
-- Fact table Purchase Order Items
CREATE TABLE FactPurchaseOrderItems (
```

```
purchase_order_item_id int NOT NULL, --PK
          time_id int, -- PK, FK1
material id int, -- PK, FK2
           purchase_order_id int, -- PK, FK3
            quantity int,
           price in euro money
          total politem costs euro money

CONSTRAINT [pkFactPurchaseOrderItems] PRIMARY KEY (purchase order item id, time id, material id, purchase order id)
   -- FE constraints
  ALTER TABLE dbo.FactPurchaseOrderItems
 ADD CONSTRAINT fkFactToDimTime FOREIGN KEY (time id) REFERENCES dbo.DimTime (time id);
 ALTER TABLE dbo.FactPurchaseOrderItems
ADD CONSTRAINT fkFactToDimMaterial FOREIGN KEY (material id) REFERENCES dbo.DimMaterial (material id);
   ALTER TABLE dbo.FactPurchaseOrderItems
  ADD CONSTRAINT REPARTODING PURCHASEORDE FOREIGN KEY (purchase order id) REFERENCES dbo.DimPurchaseOrder (purchase_order id);
  INSERT INTO [DataMart_NewSuperX].[dbo].[DimTime]
SELECT distinct [time_id] = concat(YEAR(timestamp), MONTH(timestamp), DAY(timestamp))]
     [calendarDate] = cast(timestamp as date).
    [dayID] = DAY(timestamp),
[month] = DATENAME(month, timestamp),
   [quarterID] = DATEPART (quarter, timestamp),
   [yearID] = YEAR(timestamp),
   [yearmonth] = concat(YEAR(timestamp),'-', MONTH(timestamp)),
[yearCouarterID] = concat(YEAR(timestamp),'-', DATEPART(quarter, timestamp)),
 [effective_date] = contac(timestamp as date),
[current flaq] = 1
   from NewSuperX.dbo.purchase_order_items;
  INSERT INTO [DataMart_NewSuperX].[dbo].[DimMaterial]
  SELECT DISTINCT material_id, name, type,

[effective date] = cast(NewSuperX.dbo.materials.timestamp as date),
   [current_flag] = :
      FROM NewSuperX.dbo.purchase order items
     join NewSuperX.dbo.materials ON purchase_order_items.material id = materials.id;
   INSERT INTO [DataMart_NewSuperX].[dbo].[DimPurchaseOrder]
   SELECT DISTINCT purchase order id, [state] = purchase orders.state,
 SELECT UNTINOT purchase order [14, [state] = purchase orders.state, [state] = supplier, name = supplier, nam
  [sployen_name] = onacat(sployen_firstname, ', sployen_lastname), [sfective_date] = cast(MesduperX.dbo.purchase_orders.timestamp as date), [current_flag] = i
      FROM NewSuperX.dbo.purchase order items
      join NewSuperX.dbo.purchase orders ON purchase order items.purchase order id = purchase orders.id
join NewSuperX.dbo.employees ON purchase_orders.employee_id = employees.id
      join NewSuperX.dbc.suppliers ON purchase_orders.supplier_id = suppliers.id;
   CREATE OR ALTER VIEW cleaned po items
  as with notnullcurrencies (purchase order id, nnourrency)
as (SELECT distinct purchase order id, currency as nnourrency from NewSuperX.dbo.purchase order items where currency is not null)
        SELECT [purchase order item id] = id.
     SELECT [purchase coder_item_id] = id,
[tims_id] = concat(TEAR(itestamp), MONTH(timestamp), DAY(timestamp)),
material_id_[purchase_coder_id] = purchase_coder_items.purchase_coder_id_id_quantity,
case when purchase_coder_id_id_ = purchase_coder_items.purchase_coder_id_id_quantity,
case when purchase_coder_items.currency; mull them nonrency else purchase_coder_items.currency end as currency
FROM NewSuperX.dbo_purchase_coder_items
join_notmallourrencies on notmallourencies.purchase_coder_id = purchase_coder_items.purchase_coder_id)
   INSERT INTO [DataMart NewSuperX].[dbo].[FactPurchaseOrderItems]
   SELECT c.purchase_order_item_id, c.time_id, c.material_id, c.purchase_order_id, c.quantity,
SELECT c.purchase_orase_
[price in euro] = 
OASE WHEN c.currency='CAD' THEN price*0.64
WHEN c.currency='INS' THEN price*0.64
WHEN c.currency='FAN' THEN price*0.54
    MHEN G.GUETENCY" [39] THEN price*1.12

Inchalpp.kem_costs_even_0 = .cquantity*CASE WHEN c.currency*CAD' THEN price*0.65

WHEN c.currency*EXD' THEN price*0.61

WHEN C.currency*EXD' THEN price*0.35
      WHEN c.currency='GBP' THEN price*1.10
  join [NewSuperX].[dbo].[purchase_order_items] on purchase_order_items.id = c.purchase_order_item_id;
```


IMPLEMENTED CUBE

VISUALIZATION

Advantages:

- + Userfriendly Interface
- + Vivid visualizations
- + In-Memory Architecture
- + Quick Insights

General Overview

Cost-Quantity Overview

Suppliers per Material

Quantity per Country

Suppliers Dashboard

5.325.612

y Filter

Supplier Category Filter

SUPER-X

Top Suppliers Overview

Purchase Quantity

6.298

- | REQUIREMENT ANALYSIS
- | ANALYSIS OF DATA SOURCES
- I CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- PROCESS INTELLIGENCE
- BUSINESS RECOMMENDATIONS

Frequency of tasks over the whole period (2010-2014):

Findings:

- Inefficiency
- Repetition

Mean duration of tasks over the whole period (2010-2014):

Findings:

- Waiting times
- Time consuming tasks

- | REQUIREMENT ANALYSIS
- ANALYSIS OF DATA SOURCES
- | CONCEPTUAL DESIGN
- | PROOF-OF-CONCEPT
- | PROCESS INTELLIGENCE
- **BUSINESS RECOMMENDATIONS**

BUSINESS RECOMMENDATION

Adjust OLTP:

- Create integrity and business rules (constraints)
- Improve database design

Use anlytical insights:

Track your material price

Use process insights:

Improve pain-points (e. g. bottlenecks)

Thank you for your attention!

BACK UP