

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

Mathematical formulation of transport

Mass balance equation (1D-transport):

Net rate of change due to

local reactions

Rate of change in $A \cdot J$ in **space**

= **Net** rate of change due to **transport**

How do we determine the flux J?

I. Advection

- Occurs due to directional movement in space
- Affects solutes and solids
- Examples:
 - Substance dissolved in water + water flow
 - Increase in sediment column height due to sedimentation

Advective flux:

Water volume passing through A during Δt:

$$\Delta V = A \cdot \Delta x = A \cdot \nu \cdot \Delta t$$

Amount of substance passing through A during Δt:

$$\Delta N = C \cdot \Delta V$$

Flux:
$$J = \frac{\Delta N}{A \cdot \Delta t} = \frac{C \cdot \Delta V}{A \cdot \Delta t} = \frac{C \cdot A \cdot v \cdot \Delta t}{A \cdot \Delta t} = v \cdot C$$

GHENT UNIVERSITY

II.b Dispersion

Turbulent flow (Reynolds 1883)

Flow velocity profile

Differences in path-length

Dye spill

Advection but no dispersion

Advection and dispersion

II.b Dispersion

Flow velocity profile

Differences in path-length

Dispersive flux

Averaging over scales (temporal & spatial) much larger than the scale of eddies/pores:

Dispersion coefficient (m² s⁻¹):

II.c Bioturbation

Short time scales:

Random (Brownian-like) translocation of particles and water packets.

Averaged over sufficiently long time scales: diffusion-like process!

Bioturbation flux:

$$J_{bio} = -D_{bio} \cdot \frac{\partial C}{\partial x}$$

II. Diffusion-like processes

$$J_{diff} = -D \cdot \frac{\partial C}{\partial x}$$

$$\uparrow \qquad \qquad \uparrow$$

$$m^2 s^{-1} = m \cdot m s^{-1}$$

D = characteristic distance (m) \cdot characteristic velocity (m s⁻¹)

Brownian motion

Brownian motion
$$D = \frac{1}{2} \langle l \rangle \cdot \langle v \rangle$$
 average **distance** between collisions

average particle velocity

Dispersion coefficient $D_x = \alpha_L \cdot v_x$

n coefficient
$$D_{\mathcal{X}} = \alpha_L \cdot v_{\mathcal{X}}$$
 longitudinal **dispersivity**

bulk water **velocity**

Dispersion vs. diffusion vs. bioturbation

dispersion

 D_{disp}

Horizontal tidal mixing in estuaries:

• $\approx 10 - 100 \text{ m}^2 \text{ s}^{-1}$

Vertical mixing in oceans, lakes:

• $\approx 0.1 - 1 \text{ m}^2 \text{ s}^{-1}$

Porewater transport in aquifers:

• $\approx 10^{-6} - 10^{-5} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$

molecular diffusion

 D_{mol}

Dissolved gases and other solutes in water:

• $\approx 10^{-9} \text{ m}^2 \text{ s}^{-1}$ ($\approx 1 \text{ cm}^2 \text{ d}^{-1}$)

bioturbation

 D_{bio}

Particles in sediments and soils:

• $\approx 10^{-12} \text{ m}^2 \text{ s}^{-1}$ ($\approx 1 \text{ cm}^2 \text{ yr}^{-1}$)

Total transport flux (mol m⁻² s⁻¹):

$$J = J_{adv} + J_{diff} = v \cdot C - D \cdot \frac{\partial C}{\partial x}$$

Advection

Due to random movement

Diffusion-like ←

$$J_{adv} = v \cdot C \qquad J_{diff} = -D \cdot \frac{\partial C}{\partial x}$$

Bulk velocity (ms⁻¹)
$$D = D_{disp} + D_{mol} + D_{bio} \quad (m^2 s^{-1})$$

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

