	Lecture Computing: * Tronsisto		Logic
MosFi	* RC +r	- oxide semi	conductor
NMOS	inve	effect toron when in 195 by Atolia A MOSFET	sister) 3-60 k Kaling
PMOS In the po	z p-dramm	el MOSPET	
NM05 9	Poly 5 (1) 111	Sol	CG (gote cepocitmee)
		Ve	resistance) s > Vthn => OX Ge < Vthn => OFF

Initial condition:

$$t=0$$
: $V_{x}(0) = a \cdot e^{b0} = a$
 $d \cdot V_{x}(t) = d \cdot (a \cdot e^{bt}) = ab \cdot e^{bt} = b \cdot V_{x}(t)$
 $d \cdot V_{x}(t) = d \cdot (a \cdot e^{bt}) = ab \cdot e^{bt} = b \cdot V_{x}(t)$
 $d \cdot V_{x}(t) = V_{x}(0) = e^{bt} = e^{bt}$

we guessed & chedred that xd(+) = xo ext + 20 i.e. sotifies (1) \$12) In (2) need to prove y (+) = xd (+) - i'c the solution Eether prove y(t) = 1 or y(t) - xd(t) = 0. $y(t) = y(t) \text{ from (2) } \frac{d}{dt}y(t) = \lambda y(t) \text{ } \frac{d}{dt}$ $\times d(t) \times d(t) = \lambda y(t) = \lambda y(t) \text{ } \frac{d}{dt}$ $\frac{d}{dt}\left(\frac{y(t)}{xd(t)}\right) = \frac{d}{dt}\left(\frac{y(t)}{x_0e^{\lambda t}}\right) = \frac{1}{x_0}\frac{d}{dt}\left(y(t)\cdot e^{\lambda t}\right) =$ xo (2+3(+) = 2+ + y(+) (-2)-e-2+)= $\frac{1}{X_0}\left(\lambda_3(t)e^{-\lambda t} - \lambda_3(t)e^{-\lambda t}\right)$ (constant => \frac{\times(+)}{\frac{1}{2}(+)} = t20 From (1) x(0) = X0 y(0) = Xo since y(+) is olso solution

