

SECTION B

- Sodium stearate or potassium stearate (a) (i) 11.
 - Calcium stearate / Magnesium stearate. (ii)
 - Ca2+ and Mg2+ions Accept names. (b) (i)
 - $\operatorname{Ca}_{(\operatorname{ad})}^{2+1} \operatorname{Na}_{2}^{Y}(\operatorname{ad}) \to \operatorname{Ca}_{2}^{Y} \operatorname{Na}_{(\operatorname{ad})}^{+1} \operatorname{Na}_{(\operatorname{a$ (ii) Soap (Soap)
 - (c) (i)
- Sodium Carbonate Agerrari ammonia, permetti, calcium hydroxide

 Na₂CO₃(aq) + Ca²⁺ → 2Na⁺ + CaCO₃(s) or Cacq +2St → CaSt₂(s)

 Mg cq) +2st(cq) → Mgs(c) (ii)
 - Soap contains two parts, the polar end and non-polar end, when soap is added to (d) water, the polar part dissolves in water while the non-polar floats on the water surface. When the greasy fabric is put into a soap solution, the non- polar of soap enters the grease. In the process, the grease is broken into small particles and carried off into the olution.
 - Contains Calcium for teeth and bone development. Present lead programs. It waste soap. (e) (i)
 - -formelion of Scum, -formation of fur in Kottler;
- Ammonia is manufactured through direct combination of nitrogen and hydrogen. 12. (a) The two gases are made to react at a temperature of 450°C to 500°C and a pressure of 250 atmosphere in the presence of iron as a catalyst.

- Dissolve the copper (II) sulphate in water and divide the resultant solution into 2. (c) To the first portion add aqueous ammonia drop wise until in excess, a blue precipitate which dissolves to form deep blue solution confirms the presence of copper (II) ions. To the second portion add nitric acid followed by barium nitrate, a white precipitate confirms the presence of the sulphate ions.
- The heat change when one mole of H+ ions react with 1 mole of OH- ions to form 13. (a) I mole of water.
 - On Graph paper (b)

© WAKISSHA_2

Page 3 of 4

(c)

14.

(b)

 $2\text{Fe}_{(s)}^{+3\text{Cl}}_{2(g)} \rightarrow 2\text{FeCl}_{3(s)}$

END

