Appln. No.: National Stage of PCT/JP2004/015762

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (original): A method for producing a capacitor comprising, as one electrode (anode),

an electric conductor having pores and having formed on the surface thereof a dielectric layer

and, as the other electrode (cathode), a semiconductor layer formed on the electric conductor by

energization in an electrolytic solution, the method comprising impregnating pores with a

semiconductor layer-forming precursor before energization to render the concentration of

semiconductor layer-forming precursor in pores higher than that of semiconductor layer-forming

precursor in the electrolytic solution.

2. (original): The method for producing a capacitor as claimed in claim 1, wherein the

electrolytic solution is an electrolytic solution not containing a semiconductor layer-forming

precursor.

3. (original): The method for producing a capacitor as claimed in claim 1, wherein the

electric conductor is at least one member selected from a metal, an inorganic semiconductor, an

organic semiconductor and carbon or a mixture thereof.

Appln. No.: National Stage of PCT/JP2004/015762

4. (original): The method for producing a capacitor as claimed in claim 1, wherein the

electric conductor is a laminated body having, as the surface layer, at least one member selected

from a metal, an inorganic semiconductor, an organic semiconductor and carbon, or a mixture

thereof.

5. (currently amended): The method for producing a capacitor as claimed in claim 3-or 4,

wherein the electric conductor is a metal or alloy mainly comprising at least one member

selected from tantalum, niobium and aluminum, or a niobium oxide.

6. (original): The method for producing a capacitor as claimed in claim 1, wherein the

electric conductor is tantalum having a CV value of 100,000 $\mu F \cdot V/g$ or more.

7. (original): The method for producing a capacitor as claimed in claim 1, wherein the

electric conductor is niobium having a CV value of 150,000 μF·V/g or more.

8. (currently amended): The method for producing a capacitor as claimed in claim 1 any

one of claims 1 or 3 to 7, wherein the electric conductor has a size of 5 mm³ or more.

in of more.

9. (currently amended): The method for producing a capacitor as claimed in claim lany

one of claims 1 or 3 to 8 above, wherein the electric conductor has a foil shape and the depth of

pore formed by etching is 200 µm or more.

Appln. No.: National Stage of PCT/JP2004/015762

10. (original): The method for producing a capacitor as claimed in claim 1, wherein the

dielectric layer mainly comprises at least one member selected from metal oxides such as Ta₂O₅,

Al₂O₃, TiO₂ and Nb₂O₅.

11. (currently amended): The method for producing a capacitor as claimed in claim 1-or

2, wherein the semiconductor layer-forming precursor is at least one member selected from an

aniline derivative (raw material of polyaniline), a phenol derivative (raw material of

polyoxyphenylene), a thiophenol derivative (raw material of polyphenylene sulfide), a thiophene

derivative (raw material of polythiophene), a furan derivative (raw material of polyfuran) and a

pyrrole derivative (raw material of polypyrrole or polymethylpyrrole).

12. (original): The method for producing a capacitor as claimed in claim 11, wherein the

semiconductor layer-forming precursor is pyrrole or 3,4-ethylenedioxythiophene.

13. (currently amended): The method for producing a capacitor as claimed in claim 1-or

2, wherein the semiconductor layer-forming precursor is a compound which is oxidized or

reduced by energization and becomes an inorganic semiconductor.

14. (original): The method for producing a capacitor as claimed in claim 1, wherein the

semiconductor layer is at least one member selected from an organic semiconductor layer and an

inorganic semiconductor layer.

15. (original): The method for producing a capacitor as claimed in claim 14, wherein the organic semiconductor is at least one member selected from an organic semiconductor comprising benzopyrroline tetramer and chloranil, an organic semiconductor mainly comprising tetrathiotetracene, an organic semiconductor mainly comprising tetracyano-quinodimethane, and an organic semiconductor mainly comprising an electrically conducting polymer obtained by doping a dopant into a polymer containing a repeating unit represented by the following formula (1) or (2):

$$\begin{bmatrix}
R^1 & R^2 \\
X & X \\
R^5
\end{bmatrix}$$
(1)
$$\begin{bmatrix}
R^1 & R^2 \\
X & R^5
\end{bmatrix}$$

wherein R^1 to R^4 each independently represents a hydrogen atom, an alkyl group having from 1 to 6 carbon atoms or an alkoxy group having from 1 to 6 carbon atoms, X represents an oxygen atom, a sulfur atom or a nitrogen atom, R^5 is present only when X is a nitrogen atom, and represents a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms, and each of the pairs of R^1 and R^2 , and R^3 and R^4 may combine with each other to form a cyclic structure.

16. (original): The method for producing a capacitor as claimed in claim 15, wherein the electrically conducting polymer containing a repeating unit represented by formula (1) is an

Appln. No.: National Stage of PCT/JP2004/015762

electrically conducting polymer containing a structure unit represented by the following formula

(3) as a repeating unit:

$$\begin{bmatrix}
R^6O & OR^7 \\
S &
\end{bmatrix}$$
(3)

wherein R⁶ and R⁷ each independently represents a hydrogen atom, a linear or branched, saturated or unsaturated alkyl group having from 1 to 6 carbon atoms, or a substituent for forming at least one 5-, 6- or 7-membered saturated hydrocarbon cyclic structure containing two oxygen atoms when the alkyl groups are combined with each other at an arbitrary position, and the cyclic structure includes a structure having a vinylene bond which may be substituted, and a phenylene structure which may be substituted.

17. (original): The method for producing a capacitor as claimed in claim 16, wherein the electrically conducting polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, poly-pyrrole, polymethylpyrrole, and substitution derivatives and copolymers thereof.

18. (original): The method for producing a capacitor as claimed in claim 17, wherein the electrically conducting polymer is poly(3,4-ethylenedioxythiophene).

Appln. No.: National Stage of PCT/JP2004/015762

19. (original): The method for producing a capacitor as claimed in claim 14, wherein the

inorganic semiconductor is at least one compound selected from molybdenum dioxide, tungsten

dioxide, lead dioxide and manganese dioxide.

20. (currently amended): The method for producing a capacitor as claimed in claim 14any

one of claims 14 to 19, wherein the electrical conductivity of the semiconductor is from 10⁻² to

10³ S/cm.

21. (currently amended): A capacitor produced by the production method claimed in

claim 1 any one of claims 1 to 20.

22. (original): The capacitor as claimed in claim 21, wherein the impregnation ratio of the

semiconductor is 90% or more.

23. (currently amended): An electronic circuit using the capacitor claimed in claim 21-or

22.

24. (currently amended): An electronic device using the capacitor claimed in claim 21-or

22.