

3-Lema-Bombeo-para-lenguajes-reg...

PruebaAlien

Modelos de Computación

3º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación Universidad de Granada

Cuanto más difícil sea el examen, más vas a disfrutar celebrándolo.

Uber

Usando el lema de Bombeo

Voy a demostrar aplicando el lema del Bombeo que este lenguaje no es regular:

Dado el lenguaje: $L = \{u \in \{0, 1\}^* : u = u^{-1}\}$

Entonces basándome en este lenguaje, $\forall n \in \mathbb{N}$; existe una palabra $z \in L$, con $|z| \ge n$, tal que para toda descomposición z = uvw, se verifica:

- $|uv| \leq n$
- $|v| \geq 1$

Entonces $\exists i \in \mathbb{N}$, tal que $uv^iw \notin L$

Dicho de otro modo: $u \in L$

$$u = 0110 = u^{-1} = 0110$$

Siendo un palíndromo.

Para ello hacemos la demostración con el lema del bombeo:

Suponemos que es un lenguaje regular, entonces satisface el lema del Bombeo.

 $\exists n \in \mathbb{N}$ tal que para $\forall z \in L, \ |z| \geq n$ donde $z = 0^n 1^n 1^n 0^n$ de longitud

$$|z| = |0^n 1^n 1^n 0^n| = 4n > n$$
 verifica que $z = 0^n 1^n 1^n 0^n$

Aplicamos la primera condición que tiene que cumplir para satisfacer el lema de bombeo:

$$|uv| \leq n$$

Entonces se cumple la primera condición: $u = 0^k$; $v = 0^l$; $w = 0^{n-k-l}1^n1^n0^n$

Aplicamos la segunda condición a cumplir para que satisfaga el lema de bombeo:

 $|v| \ge 1$; entonces $v = 0^l \operatorname{con} l \ge 1$ también se cumple.

Aplicamos la tercera condición a cumplir y ultima para que satisfaga la ley del bombeo.

$$(\forall i \geq 0) \ uv^i w \in L;$$

$$uv^0w=0^k0^{n-k-l}1^n1^n0^n=0^{n-l}1^n1^n0^n$$
, siendo $l\geq 1$

Llegamos a la conclusión de que $\mathbf{0}^{n-l} \neq \mathbf{0}^n$, de tal forma que

$$u = 0^{n-l}1^n1^n0^n \neq u^{-1} = 0^n1^n1^n0^{n-l}$$

Entonces llegamos a la conclusión de que no es un palíndromo, puesto que en ${\bf u}$ tiene menos ceros a la izquierda, mientras que en ${\bf u}^{-1}$ tiene menos ceros a la derecha, con lo cual no coinciden.

Como no satisface la tercera condición de la ley de bombeo, esto demuestra que no es un lenguaje regular.

