Deworming as HIV Prevention for Young Women: Evidence from Zimbabwe

Jon Denton-Schneider (Clark)

January 26, 2023

Job market paper: Shows that colonial-era labor policies in Mozambique shape the country's HIV epidemic today

- ▶ <u>Internal border</u>: Divided southern Mozambique into 2 labor regimes
- ► HIV prevalence: Much lower just on one side of border

Job market paper: Shows that colonial-era labor policies in Mozambique shape the country's HIV epidemic today

- ▶ Internal border: Divided southern Mozambique into 2 labor regimes
- ► HIV prevalence: Much lower just on one side of border

Explanation: Work affects marriage prospects

- Major HIV risk factor: Women having older male partners
- → <u>Historical narratives</u>: Differences in labor regimes led to differences in marriage on each side of border, especially in age gaps

Job market paper: Shows that colonial-era labor policies in Mozambique shape the country's HIV epidemic today

- ▶ <u>Internal border</u>: Divided southern Mozambique into 2 labor regimes
- ▶ HIV prevalence: Much lower just on one side of border

Explanation: Work affects marriage prospects

- ▶ Major HIV risk factor: Women having older male partners
- → <u>Historical narratives</u>: Differences in labor regimes led to differences in marriage on each side of border, especially in age gaps
- Colonial-era and present-day data: Partner age gaps much lower on side with lower HIV prevalence

Job market paper: Shows that colonial-era labor policies in Mozambique shape the country's HIV epidemic today

- ▶ <u>Internal border</u>: Divided southern Mozambique into 2 labor regimes
- ► HIV prevalence: Much lower just on one side of border

Explanation: Work affects marriage prospects

- ▶ Major HIV risk factor: Women having older male partners
- → <u>Historical narratives</u>: Differences in labor regimes led to differences in marriage on each side of border, especially in age gaps
- ✓ Colonial-era and present-day data: Partner age gaps much lower on side with lower HIV prevalence

Are we prisoners of the past? Or can we reduce major HIV risk factor with historical / cultural roots (i.e., partner age gaps)?

HIV status

Marriage market matching (partner age gap)

HIV status

Marriage market matching (partner age gap)

1

Adult human capital (health and education)

HIV status

Marriage market matching (partner age gap)

Adult human capital (health and education)

Childhood health (very cheap and effective interventions!)

HIV status

1

Marriage market matching (partner age gap)

1

Adult human capital (health and education)

1

Childhood health (very cheap and effective interventions!)

Can cheap improvements in girls' health (e.g., deworming) reduce their chances of contracting HIV as young women?

Roadmap

- 1 Childhood Health and HIV in Zimbabwe
 - ► Theory and evidence: Worms (schistosomiasis) → HIV
- Nationwide Deworming in Schools (2012-17)
 - Rapid morbidity decline in high-schisto schools
- 3 Compare: Pre- vs post-deworming in high- vs low-schisto
 - ► High-schisto: Young women's HIV ↓ 44% (2.7 p.p.) more
 - ► Channels: ↑ attendance, ↓ age gap and no. of partners

Roadmap

- 1 Childhood Health and HIV in Zimbabwe
 - ► Theory and evidence: Worms (schistosomiasis) → HIV
- 2 Nationwide Deworming in Schools (2012-17)
 - ► Rapid morbidity decline in high-schisto schools
- 3 Compare: Pre- vs post-deworming in high- vs low-schisto
 - ► High-schisto: Young women's HIV ↓ 44% (2.7 p.p.) more
 - ► Channels: ↑ attendance, ↓ age gap and no. of partners

Nationwide Helminthiasis Prevalence Survey (2010-11)

Prevalence Category	S. haematobium	S. Mansoni	Hookworm	A. lumbricoides	T. trichiura
Overall prevalence (95%CI)n	18.0 (17.38-18.71) 13037	7.2 (6.74–7.77) 12249	3.2 (2.91-3.54) 12252	2.5 (2.20-2.76)	0.1 (0.07-2.12)
By gender					
Males	20.8 (19.80-21.80) 6417	7.5 (8.82–8.16) 6040	3.4 (3.00-3.90) 6042	2.4 (2.06-2.85)	0.2 (0.1-0.34)
Females	15.4 (14.52-16.27) 6620	6.9 (6.31-7.59) 6209	3.0 (2.62-3.48) 6210	2.5 (2.12-2.92)	0.01 (0.02-0.16)
Rural based Province					
Manicaland	12.8 (11.33-14.30) 2006	14.3 (12.79–15.93) 1978	2.9 (2.19-3.72) 1978*	1.9 (1.32-2.37) *	0.4 (0.17-0.80)*
Mashonaland East	28.1 (25.72-30.54) 1379	6.4 (5.11-7.88) 1268	1.0 (0.55-1.75) 1269	17.8 (15.74-20.03)	0.2 (0.02-0.57)
Mashonaland Central	26.1 (23.46-28.90) 1034	20.4 (18.00-23.04) 1018	0.6 (0.68-0.22) 1018	1.0 (0.47-1.80)	0.4 (0.11-1.00)
Mashonaland West	22.6 (20.35-20.05) 1259	1.1 (0.56-1.79) 1237	1.6 (0.99-2.48) 1238	1.1 (0.56-1.79)	0.0
Masvingo	27.6 (25.68-29.59) 2054	13.9 (13.40-15.48) 1995	6.0 (5.00-7.10) 1995	0.1 (0.01-0.36)	0.1 (0.01-0.36)
Matabeleland North	3.3 (2.29-4.57) 1032	0.5 (0.17-1.20) 967	14.1 (11.93-16.41) 967	(0.0)*	0.0
Matabeleland South	8.7 (6.95-10.65) 946	0.2 (0.03-0.82) 881	(0.0)** 881	(0.0)*	0.0
Midlands	30.5 (27.76-33.42) 1048	0.3 (0.07-0.97) 896	2.7 (1.72-3.96) 896	0.2 (0.03-0.80)	0.0
Urban Based (metropolitar	Provinces				
Harare	9.6 (7.97-11.46) 1154	0.3 (0.06-0.89) 979	1.5 (0.86-2.51) 980	0.5 (0.17-1.29)	0.0
Bulawayo	3.2 (2.09-4.56) 856	0.6 (0.20-1.43) 815	0.1 (0.00-0.68) 815	0.4 (0.08-1.07)	0.0
Chitungwiza	4.8 (2.60-8.12) 269	0.5 (0.01-2.56) 215	1.4 (0.29-4.02) 215	1.9 (0.51-4.69)	0.0

^{* =} For each province, the number of participants screened for hookworms, A. lumbricoides and T. trichiura was the same.
** = The prevalence of parasite species was 0%, 95%Cl could therefore not be calculated.

doi:10.1371/journal.pntd.0003014.t002

Source: Midzi et al. (2014)

Findings: By far, schistosomiasis most common infection Rural

Rates of Heavy Schistosome Infection

Prevalence Category	S. Haematobium infection intensity		y <i>S. mansoni</i> in	S. mansoni infection intensity		
	Light	Heavy	Light	Moderate	Heavy	
Overall prevalence	12.4 (13037)*	5.6	3.6 (12062)*	1.4	0.3	
By Gender						
Males	13.9 (6417)	6.8	3.6 (5951)	1.4	0.3	
Females	11.0 (6620)	4.4	3.6 (6111)	1.4	0.3	
Rural Provinces						
Manicaland	8.6 (2006)	4.2	8.8 (1939)	0.4	0.3	
Mashonaland East	19.0 (1378)	9.1	3.7 (1257)	0.8	0.3	
Mashonaland Central	18.2 (1034)	7.9	8.9 (1016)	4.5	1.3	
Mashonaland West	16.1 (1259)	6.4	0.3 (1197)	0.0	0.1	
Masvingo	18.4 (2054)	9.2	5.0 (1916)	1.9	0.6	
Matabeleland North	2.8 (1032)	0.5	0.2 (965)	0.0	0.3	
Matabeleland South	6.1 (946)	2.5	0.2 (871)	0.0	0.1	
Midlands	20.8 (1048)	9.7	0.1 (892)	0.0	0.0	
Urban Provinces						
Harare	6.8 (1155)	2.9	1.2 (979)	0.0	0.0	
Bulawayo	2.8 (856)	0.5	0.6 (815)	0.0	0.0	
Chitungwiza [™]	3.7 (267)	0.4	0.9 (215)	0.0	0.0	

Source: Midzi et al. (2014)

Heavy infection: Causes most morbidity \rightarrow *S. haematobium* (urogenital schisto) matters most

Disease: Inflammatory response to worm eggs getting trapped in nearby tissues \rightarrow "anaemia, growth stunting, impaired cognition, ... organ-specific effects such as ... urogenital inflammation and scarring" (Colley et al., 2014, p. 2253)

Disease: Inflammatory response to worm eggs getting trapped in nearby tissues \rightarrow "anaemia, growth stunting, impaired cognition, ... organ-specific effects such as ... urogenital inflammation and scarring" (Colley et al., 2014, p. 2253)

Disease: Inflammatory response to worm eggs getting trapped in nearby tissues \rightarrow "anaemia, growth stunting, impaired cognition, ... organ-specific effects such as ... urogenital inflammation and scarring" (Colley et al., 2014, p. 2253)

Disease: Inflammatory response to worm eggs getting trapped in nearby tissues → "anaemia, growth stunting, impaired cognition, ... organ-specific effects such as ... urogenital inflammation and scarring" (Colley et al., 2014, p. 2253)

Novel: Linking childhood health to HIV via learning / attendance

Evidence: Urogenital Schistosomiasis \rightarrow HIV (I)

Legend

No data

127-72 No. 2012

127-72

Heavy *S. haematobium* Infection: Students, 2010 *Source*: Midzi et al. (2014)

HIV Prevalence: Ages 15-49, 2005 and 2010 Source: DHS data

Comparison: Clear visual correlation

Evidence: Urogenital Schistosomiasis \rightarrow HIV (II)

Notes: Plots show HIV prevalence within heavy schistosome infection ranges by sex in 2005 and 2010 for ages 15 to 34 (circles) and 35 to 54 (triangles). Ranges are taken from Midzi et al. (2014). Dashed lines denote fitted quadratic trends, bars denote confidence intervals, and shape sizes reflect the number of respondents in each group.

✓ **Pattern:** These data are consistent with schisto exacerbating HIV transmission cycle driven by age-disparate relationships ▶ Explanation

Roadmap

- 1 Childhood Health and HIV in Zimbabwe
 - ightharpoonup Theory and evidence: Worms (schistosomiasis) ightarrow HIV
- Nationwide Deworming in Schools (2012-17)
 - ▶ Rapid morbidity decline in high-schisto schools
- 3 Compare: Pre- vs post-deworming in high- vs low-schisto
 - ► High-schisto: Young women's HIV ↓ 44% (2.7 p.p.) more
 - ► Channels: ↑ attendance, ↓ age gap and no. of partners

Nationwide School-Based Deworming Program

Source: WHO (2012)

Wedza, 17 Sept. 2012 - In line with the new global momentum towards the control, elimination and eradication of neglected tropical diseases (NTDs), Zimbabwe launched a mass drug administration against schistosomiasis (bilharzia) and soil transmitted helminthes (intestinal worms) at a function held at Wedza High School.

The mass drug administration is the final phase of a process which started with a national prevalence survey in 2010, and the development of the master plan that began in 2011 and completed in 2012.

The National Prevalence Survey of 2010 showed that Mashonaland East Province, under which Wedza district falls was one of the highly affected. The mass drug administration will therefore target people, mainly under the age of 15, and will be delivered through the country's network of schools and health facilities in the high burden districts. The mass drug administration was made possible by WHO which donated to the Ministry of Health and Child Welfare Praziquantel (PZQ) used in the treatment of bilharzia, and Albendazole (ALB) for intestinal worms. A total of 2 583 000 PZQ tablets (600mg), and 2 450 200 ALB tablets (400mg) were donated. These drugs are expected to cover 3 794 638 people mainly under the age of 15 in the high hurden districts.

End of 2012 school year: Mass deworming began in schools

→ Targeted high-burden districts, "mainly under the age of 15"

Nationwide School-Based Deworming Program

Source: WHO (2012)

Wedza, 17 Sept. 2012 – In line with the new global momentum towards the control, elimination and eradication of neglected tropical diseases (NTDs), Zimbabwe launched a mass drug administration against schistosomiasis (bilharzia) and soil transmitted helminthes (intestinal worms) at a function held at Wedza High School.

The mass drug administration is the final phase of a process which started with a national prevalence survey in 2010, and the development of the master plan that began in 2011 and completed in 2012.

The National Prevalence Survey of 2010 showed that Mashonaland East Province, under which Wedza district falls was one of the highly affected. The mass drug administration will therefore target people, mainly under the age of 15, and will be delivered through the country's network of schools and health facilities in the high burden districts. The mass drug administration was made possible by WHO which donated to the Ministry of Health and Child Welfare Praziquantel (PZQ) used in the treatment of bilharzia, and Albendazole (ALB) for intestinal worms. A total of 2 583 000 PZQ tablets (600mg), and 2 450 200 ALB tablets (400mg) were donated. These drugs are expected to cover 3 794 638 people mainly under the age of 15 in the high burden districts.

End of 2012 school year: Mass deworming began in schools

→ Planned to treat 3.8 million students (est. 5.2 million under age 15)

Rapid Reductions in Schisto Morbidity

 ${\bf 2012\text{-}17:}\ \ 6\ \ \text{years of mass drug administration (MDA) in schools}$ ${\bf Tracked\ prevalence\ in\ sentinel\ sites\ (mostly\ high-schisto\ areas)}$

Rapid Reductions in Schisto Morbidity

Source: Mduluza et al. (2020)

2012-17: 6 years of mass drug administration (MDA) in schools

 \rightarrow Almost all of morbidity reduction occurred in first round (2012)

Roadmap

- Childhood Health and HIV in Zimbabwe
 - ► Theory and evidence: Worms (schistosomiasis) → HIV
- Nationwide Deworming in Schools (2012-17)
 - ► Rapid morbidity decline in high-schisto schools
- 3 Compare: Pre- vs post-deworming in high- vs low-schisto
 - ► High-schisto: Young women's HIV ↓ 44% (2.7 p.p.) more
 - ► Channels: ↑ attendance, ↓ age gap and no. of partners

Ideal setup for determining causality: Randomized control trial

- ► <u>Randomization</u>: Groups are balanced on all dimensions → control group is ideal counterfactual for treatment group
- ▶ Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ► <u>Randomization</u>: Groups are balanced on all dimensions → control group is ideal counterfactual for treatment group
- ▶ Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ► <u>Randomization</u>: Groups are balanced on all dimensions → control group is ideal counterfactual for treatment group
- ► Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ► <u>Randomization</u>: Groups are balanced on all dimensions → control group is ideal counterfactual for treatment group
- ► Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ► <u>Randomization</u>: Groups are balanced on all dimensions → control group is ideal counterfactual for treatment group
- Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ightharpoonup Randomization: Groups are balanced on all dimensions ightharpoonup control group is ideal counterfactual for treatment group
- ▶ Real world: Rare to have policy implemented randomly

Ideal setup for determining causality: Randomized control trial

- ightharpoonup Randomization: Groups are balanced on all dimensions ightharpoonup control group is ideal counterfactual for treatment group
- ▶ Real world: Rare to have policy implemented randomly

Defining "Treatment" and "Control" Groups

Prevalence category	Districts (IUs)	Comments and intervention strategies
≥10%	Murehwa, Shamva, Mwenezi, Shurugwi, Chikomba, Mutoko, UMF, Hwedza, Mazowe, Mt. Darwin, Zvimba, Chivi, Insiza, Mberengwa (n = 14)	Morbidity is highest, highest transmitting districts. Highest priority requiring uninterrupted intensified PCT with annual geographic coverage of 100% per district. Complementary strategies urgently required. The goal is to control morbidity (reduce prevalence of heavy infection by any schistosome to <5%) in the first 5 years and prevent transmission.
≥5% but <10%	Buhera, Chimanimani, Makoni, Mutare, Mudzi, Seke, Guruve, Muzarabani, Chegutu, Kariba, Kadoma, Chiredzi, Gutu, Masvingo, Zaka, Gwanda, Chirumhanzu, Zvishavane (n = 18)	Morbidity is high. High transmitting districts requiring MDA regularly according to WHO strategies with geographic coverage of 75–100% per district. Complementary strategies are required. The goal is to control morbidity by reducing the prevalence of heavy infection by any schistosome species in the first 5 years to ~5% and prevent transmission.
≥1% but <5%	Mutasa, Nyanga, Goromonzi, Marondera, Rushinga, Makonde, Karoyi, Bikita, Hwange, Lupane, Gokwe North, Glenview/Mufakose, Highfields/Glen Norah, Maribereign/Warren Park, Mabvuku/Tafara, Chitungwiza-Zengeza, Mbare/Hatfield, Khami (n = 17)	Morbidity is moderate though unjustifiable. Moderate transmitting districts. Regular MDA according to WHO guidelines based on prevalence. In addition, identification of transmission fool for intensified PCT is recommended. Complementary strategies are required. The goal is to eliminate schistosomiasis as a public health problem.
<1%	Chipinge, Binga, Beitbridge, Chitungwiza-Seke (n = 4)	Morbidity is low. Low transmitting districts. PCT to be implemented according to WHO guidelines. In addition, monitoring and surveillance of schistosomaisis transmitting foci for intensified PCT is recommended. Complementary strategies are required. The goal is to interrupt transmission.
0%	Bubi, Nkayi, Tsholotsho, Umguza, Bulilima, Matobo, Magwe, Umzingwane, Gokwe South, Reigate, Imbizo, Mzilikazi, Sizinda, North Central (n = 15)	Detailed surveillance should be done to identify any transmitting foci for intensified PCT. Complementary strategies are required. The goal is to interrupt schistosomiasis.

Source: Midzi et al. (2014)

All districts treated simultaneously: "High schisto" vs "low schisto"

→ Treatment guidelines based on heavy infection rates

Defining "Treatment" and "Control" Groups

Prevalence category	Districts (IUs)	Comments and intervention strategies
≥10%	Murehwa, Shamva, Mwenezi, Shurugwi, Chikomba, Mutoko, UMP, Hwedza, Mazowe, Mt. Darwin, Zvimba, Chivi, Insiza, Mberengwa (n = 14)	Morbidity is highest, highest transmitting districts. Highest priority requiring uninterrupted intensified PCT with annual geographic coverage of 100% per district. Complementary strategies urgently required. The goal is to control morbidity (reduce prevalence of heavy infection by any schistosome to <5%) in the first 5 years and prevent transmission.
≥5% but <10%	Buhera, Chimanimani, Makoni, Mutare, Mudzi, Seke, Guruve, Muzarabani, Chegutu, Kariba, Kadoma, Chiredzi, Gutu, Masvingo, Zaka, Gwanda, Chirumhanzu, Zvishavane (n = 18)	Morbidity is high. High transmitting districts requiring MDA regularly according to WHO strategies with geographic coverage of 75–100% per district. Complementary strategies are required. The goal is to control morbidity by reducing the prevalence of heavy infection by any schistosome species in the first 5 years to ~5% and prevent transmission.
≥1% but <5%	Mutasa, Nyanga, Goromonzi, Marondera, Rushinga, Makonde, Karoyi, Bikita, Hwange, Lupane, Gokwe North, Glenview/Mufakose, Highfields/Glen Norah, Maribereign/Warren Fark, Mabvuku/Tafara, Chitungwiza-Zengeza, Mbare/Hatfield, Khami (n = 17)	Morbidity is moderate though unjustifiable. Moderate transmitting districts. Regular MDA according to WHO guidelines based on prevalence. In addition, Identification of transmission foot for intensified PCT is recommended. Complementary strategies are required. The goal is to eliminate schistosomiasis as a public health problem.
<1%	Chipinge, Binga, Beitbridge, Chitungwiza-Seke (n = 4)	Morbidity is low. Low transmitting districts. PCT to be implemented according to WHO guidelines. In addition, monitoring and surveillance of schistosomaisis transmitting foci for intensified PCT is recommended. Complementary strategies are required. The goal is to interrupt transmission.
0%	Bubi, Nkayi, Tsholotsho, Umguza, Bulilima, Matobo, Magwe, Umzingwane, Gokwe South, Reigate, Imbizo, Mzilikazi, Sizinda, North Central (n = 15)	Detailed surveillance should be done to identify any transmitting foci for intensified PCT. Complementary strategies are required. The goal is to interrupt schistosomiasis.

Source: Midzi et al. (2014)

All districts treated simultaneously: "High schisto" vs "low schisto"

→ Treatment guidelines based on heavy infection rates

Defining "Treatment" and "Control" Groups

Prevalence category	Districts (IUs)	Comments and intervention strategies
≥10%	Murehwa, Shamva, Mwenezi, Shurugwi, Chikomba, Mutoko, UMP, Hwedza, Mazowe, Mt. Darwin, Zvimba, Chivi, Insiza, Mberengwa (n = 14)	Morbidity is highest, highest transmitting districts. Highest priority requiring uninterrupted intensified PCT with annual geographic coverage of 100% per district. Complementary strategies urgently required. The goal is to control morbidity (reduce prevalence of heavy infection by any schistosome to <5%) in the first 5 years and prevent transmission.
≥5% but <10%	Buhera, Chimaninani, Makoni, Mutare, Mudzi, Seke, Guruve, Muzarabani, Chegutu, Kariba, Kadoma, Chiredzi, Gutu, Masvingo, Zaka, Gwanda, Chirumhanzu, Zvishavane (n = 18)	Morbidity is high. High transmitting districts requiring MDA regularly according to WHO strategies with geographic coverage of 75–100% per district. Complementary strategies are required. The goal is to control morbidity by reducing the prevalence of heavy infection by any schistosome species in the first 5 years to <5% and prevent transmission.
≥1% but <5%	Mutasa, Nyanga, Gorromonzi, Marondera, Rushinga, Makonde, Karoyi, Bikta, Hwange, Lupane, Gokwe North, Glerview/Mufakose, Highfields/Glen Norah, Marbereign/Warren Park, Mabouku/Tafara, Chitungwiza-Zengeza, Mbare/Hatfield, Khami (n = 17)	Morbidity is moderate though unjustifiable. Moderate transmitting districts. Regular MDA according to WHO guidelines based on prevalence. In addition, identification of transmission foot for intensified PCT is recommended. Complementary strategies are required. The goal is to eliminate schistosomiasi as a public health problem.
<1%	Chipinge, Binga, Beitbridge, Chitungwiza-Seke (n = 4)	Morbidity is low. Low transmitting districts. PCT to be implemented according to WHO guidelines. In addition, monitoring and surveillance of schistosomaisis transmitting foci for intensified PCT is recommended. Complementary strategies are required. The goal is to interrupt transmission.
0%	Bubi, Nkayi, Tsholotsho, Umguza, Bulilima, Matobo, Magwe, Umzingwane, Gokwe South, Reigate, Imbizo, Mzilikazi, Sizinda, North Central (n = 15)	Detailed surveillance should be done to identify any transmitting foci for intensified PCT. Complementary strategies are required. The goal is to interrupt schistosomiasis.

Source: Midzi et al. (2014)

All districts treated simultaneously: "High schisto" vs "low schisto"

 \rightarrow "High" \geq 5% heavy infection (N = 43), "low" < 5% (N = 28)

Empirical Strategy: Diff-in-Diff

Compare: High- vs low-schisto areas, before vs after deworming

Empirical Strategy: Diff-in-Diff

Compare: High- vs low-schisto areas, before vs after deworming

Age-specific focus: Ages 12-17 in 2012 \rightarrow ages 15-20 in 2015

▶ 17 is last age at which most boys and girls were in school

Empirical Strategy: Diff-in-Diff

Compare: High- vs low-schisto areas, before vs after deworming

Age-specific focus: Ages 12-17 in 2012 \rightarrow ages 15-20 in 2015

▶ 17 is last age at which most boys and girls were in school

Robustness and credibility

- Upper end of age range may have migrated, schisto more prevalent in rural areas → check for same effects among rural women ages 15-18
- Ages 18-21 in 2012 (ages 21-24 in 2015) similar but "mostly unexposed" to deworming \rightarrow use women ages 21-24 as placebo test

		Po	ositive HIV	/ Blood To	est	
	Ages 15-20		Women 15-18		Ages 21-24	
	Women (1)	Men (2)	All (3)	Rural (4)	Women (5)	Men (6)
2005 × High	-0.001	0.037	0.007	-0.007	-0.045	0.007
2015 × High	(0.019) -0.029	(0.022) 0.041	(0.022) -0.036	(0.022) -0.040	(0.027) -0.009	(0.034) 0.005
Ü	(0.017)	(0.031)	(0.020)	(0.027)	(0.037)	(0.035)
Observations	4,309	4,126	3,011	2,499	2,435	1,559
Districts Pre-Deworming Mean (High=1)	71 0.064	71 0.027	71 0.050	54 0.041	71 0.151	70 0.066

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 1: Young women's HIV ↓ 45% (2.9 p.p.) more

		Po	ositive HI\	/ Blood To	est	
	Ages 15-20		Women 15-18		Ages 21-24	
	Women (1)	Men (2)	All (3)	Rural (4)	Women (5)	Men (6)
2005 × High	-0.001	0.037	0.007	-0.007	-0.045	0.007
2015 × High	(0.019) -0.029	(0.022) 0.041	(0.022) -0.036	(0.022) -0.040	(0.027) -0.009	(0.034) 0.005
Ü	(0.017)	(0.031)	(0.020)	(0.027)	(0.037)	(0.035)
Observations	4,309	4,126	3,011	2,499	2,435	1,559
Districts	71	71	71	54	71	70
Pre-Deworming Mean (High=1)	0.064	0.027	0.050	0.041	0.151	0.066

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 2: No evidence of HIV effect for young men

		Positive HIV Blood Test							
	Ages 15-20		Women 15-18		Ages 21-24				
	Women (1)	Men (2)	All (3)	Rural (4)	Women (5)	Men (6)			
2005 × High	-0.001	0.037	0.007	-0.007	-0.045	0.007			
2015 × High	(0.019) -0.029	(0.022) 0.041	(0.022) -0.036	(0.022) -0.040	(0.027) -0.009	(0.034) 0.005			
	(0.017)	(0.031)	(0.020)	(0.027)	(0.037)	(0.035)			
Observations Districts Pre-Deworming Mean (High=1)	4,309 71 0.064	4,126 71 0.027	3,011 71 0.050	2,499 54 0.041	2,435 71 0.151	1,559 70 0.066			

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Columns 3-4: Robust to women 15-18, rural restrictions

	Positive HIV Blood Test							
	Ages 15-20		Women 15-18		Ages 21-24			
	Women (1)	Men (2)	All (3)	Rural (4)	Women (5)	Men (6)		
2005 × High	-0.001	0.037	0.007	-0.007	-0.045	0.007		
$2015 \times High$	(0.019) -0.029	(0.022) 0.041	(0.022) -0.036	(0.022) -0.040	(0.027) -0.009	(0.034) 0.005		
-	(0.017)	(0.031)	(0.020)	(0.027)	(0.037)	(0.035)		
Observations	4,309	4,126	3,011	2,499	2,435	1,559		
Districts	71	71	71	54	71	70		
Pre-Deworming Mean (High=1)	0.064	0.027	0.050	0.041	0.151	0.066		

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Columns 5-6: No effects detected in placebo tests

	Ane	Anemic		Attending School				
	Women	Men	Women 13-18	Men	Rural Women			
	15-20	15-20		13-18	13-18	15-18		
	(1)	(2)	(3)	(4)	(5)	(6)		
2005 × High	-0.013	0.007	-0.020	-0.004	-0.025	-0.022		
	(0.041)	(0.032)	(0.037)	(0.030)	(0.041)	(0.059)		
2015 × High	0.022	-0.035	0.068	0.004	0.072	0.074		
C	(0.049)	(0.035)	(0.038)	(0.037)	(0.044)	(0.063)		
Observations	4,521	4,368	6,261	6,606	5,310	3,060		
Districts	71	71	71	71	54	54		
Pre-Deworming Mean (High=1)	0.290	0.102	0.669	0.718	0.679	0.514		

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Columns 1-2: Some evidence of an anemia effect for men

	Anemic			Attendin	g School	
	Women	Men 15-20	Women 13-18	Men	Rural Women	
	15-20			13-18	13-18	15-18
	(1)	(2)	(3)	(4)	(5)	(6)
2005 × High	-0.013	0.007	-0.020	-0.004	-0.025	-0.022
	(0.041)	(0.032)	(0.037)	(0.030)	(0.041)	(0.059)
2015 × High	0.022	-0.035	0.068	0.004	0.072	0.074
	(0.049)	(0.035)	(0.038)	(0.037)	(0.044)	(0.063)
Observations	4,521	4,368	6,261	6,606	5,310	3,060
Districts	71	71	71	71	54	54
Pre-Deworming Mean (High=1)	0.290	0.102	0.669	0.718	0.679	0.514

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 3: Young women's attendance \(\gamma \) 10\% (6.8 p.p.) more

	Anemic		Attending School				
	Women	Men	Women	Men	Rural Women		
	15-20	15-20	13-18	13-18	13-18	15-18	
	(1)	(2)	(3)	(4)	(5)	(6)	
$2005 \times High$	-0.013	0.007	-0.020	-0.004	-0.025	-0.022	
	(0.041)	(0.032)	(0.037)	(0.030)	(0.041)	(0.059)	
2015 × High	0.022	-0.035	0.068	0.004	0.072	0.074	
-	(0.049)	(0.035)	(0.038)	(0.037)	(0.044)	(0.063)	
Observations	4,521	4,368	6,261	6,606	5,310	3,060	
Districts	71	71	71	71	54	54	
Pre-Deworming Mean (High=1)	0.290	0.102	0.669	0.718	0.679	0.514	

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 4: No school effect for young men (as in Baird et al., 2016)

	Anemic		Attending School				
	Women	Men 15-20	Women 13-18	n Men	Rural Women		
	15-20			13-18	13-18	15-18	
	(1)	(2)	(3)	(4)	(5)	(6)	
2005 × High	-0.013	0.007	-0.020	-0.004	-0.025	-0.022	
	(0.041)	(0.032)	(0.037)	(0.030)	(0.041)	(0.059)	
2015 × High	0.022	-0.035	0.068	0.004	0.072	0.074	
	(0.049)	(0.035)	(0.038)	(0.037)	(0.044)	(0.063)	
Observations	4,521	4,368	6,261	6,606	5,310	3,060	
Districts	71	71	71	71	54	54	
Pre-Deworming Mean (High=1)	0.290	0.102	0.669	0.718	0.679	0.514	

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Columns 5-6: Robust to women 15-18, rural restrictions

	Know Reduces Risk		Partner	Age Gap	>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
$2005 \times High$	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
<u> </u>	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
2015 × High	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
${\sf Pre\text{-}Deworming\ Mean\ (High=1)}$	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 1: No effect on knowing monogamy reduces risk

	Know Reduces Risk		Partner	Age Gap	>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
2005 × High	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
3	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
$2015 \times High$	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
Pre-Deworming Mean (High=1)	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 2: Knowing condoms reduce risk \uparrow 13% (9.0 p.p.) more

	Know Reduces Risk		Partner	Age Gap	>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
$2005 \times High$	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
Ü	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
2015 × High	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
${\sf Pre\text{-}Deworming\ Mean\ (High=1)}$	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 3: Age gap above 75 pctile \downarrow 84% (22.1 p.p.) more

	Know Reduces Risk		Partner	Age Gap	>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
2005 × High	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
3	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
$2015 \times High$	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
Pre-Deworming Mean (High=1)	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 4: Age gap in 50-75 pctile ↑ 49% (19.4 p.p.) more

	Know Reduces Risk		Partner Age Gap		>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
2005 × High	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
G	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
2015 × High	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
${\sf Pre\text{-}Deworming\ Mean\ (High=1)}$	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 5: Having 2+ partners in lifetime ↓ 25% (2.7 p.p.) more

	Know Reduces Risk		Partner Age Gap		>2 Sex	Condom
	1 Partner	Condom	≥9 Years	5-8 Years	Partners	Last Sex
	(1)	(2)	(3)	(4)	(5)	(6)
2005 × High	-0.031	0.004	-0.061	-0.002	-0.008	-0.012
<u> </u>	(0.035)	(0.052)	(0.098)	(0.092)	(0.021)	(0.047)
2015 × High	0.011	0.090	-0.221	0.194	-0.027	-0.042
	(0.042)	(0.041)	(0.083)	(0.113)	(0.024)	(0.044)
Observations	4,679	4,677	1,308	1,308	4,861	1,778
Districts	71	71	70	70	71	70
Pre-Deworming Mean (High=1)	0.814	0.717	0.265	0.400	0.077	0.091

Notes: Estimates and bootstrapped standard errors (in parentheses) are obtained using the procedure developed by de Chaisemartin and D'Haultfœuille (2020). Observations are clustered by district. High equals 1 if a district had high or the highest pre-deworming rates of heavy schistosome infection, and 0 otherwise. Regressions control for age, age squared, altitude, and a quadratic in latitude and longitude.

Column 6: Surprise! Condom use ↓ more, but not significant

Summary: Revisiting Hypotheses

Novel: Linking childhood health to HIV via learning / attendance and its effects on marriage market matching

Conclusion

Childhood health: Improving it for girls lowers their chances of contracting HIV as young women, most likely by increasing their human capital, which changes their marriage market matches

Conclusion

Childhood health: Improving it for girls lowers their chances of contracting HIV as young women, most likely by increasing their human capital, which changes their marriage market matches

② Cost-effectiveness: Very cheap to improve childhood health → potentially very cheap to avert (very expensive) HIV infections for high-risk group

Conclusion

Childhood health: Improving it for girls lowers their chances of contracting HIV as young women, most likely by increasing their human capital, which changes their marriage market matches

2 Cost-effectiveness: Very cheap to improve childhood health \rightarrow potentially very cheap to avert (very expensive) HIV infections for high-risk group

Marriage markets: Helps us understand role of childhood health (as part of human capital), especially in non-Western context Roadmap

4 Appendix Slides

Appendix: Helminths More Common in Rural Areas

Source: Midzi et al. (2014)

