```
import numpy as np
import pandas as pd
df=pd.read_csv("sample_data/dataset.csv")
df.head()
```

|   | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects | Perc<br>in Co<br>Archit |
|---|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------|
| 0 | 69                                                   | 63                             | 78                                          | 87                                       | 94                                       | 94                                          |                         |
| 1 | 78                                                   | 62                             | 73                                          | 60                                       | 71                                       | 70                                          |                         |
| 2 | 71                                                   | 86                             | 91                                          | 87                                       | 61                                       | 81                                          |                         |
| 3 | 76                                                   | 87                             | 60                                          | 84                                       | 89                                       | 73                                          |                         |
| 4 | 92                                                   | 62                             | 90                                          | 67                                       | 71                                       | 89                                          |                         |

5 rows × 39 columns



#data preprocessing

#checking null values

df.isna()

|                                                 | Acedamic<br>percentage<br>in<br>Operating<br>Systems |       | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects | P<br>in<br>Arc |
|-------------------------------------------------|------------------------------------------------------|-------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|----------------|
|                                                 | 0                                                    | False | False                          | False                                       | False                                    | False                                    | False                                       |                |
|                                                 | 1                                                    | False | False                          | False                                       | False                                    | False                                    | False                                       |                |
|                                                 | 2                                                    | False | False                          | False                                       | False                                    | False                                    | False                                       |                |
|                                                 | 3                                                    | False | False                          | False                                       | False                                    | False                                    | False                                       |                |
|                                                 | 4                                                    | False | False                          | False                                       | False                                    | False                                    | False                                       |                |
| <pre>df=df.dropna() df.isna().sum().sum()</pre> |                                                      |       |                                |                                             |                                          |                                          |                                             |                |
| (                                               | ə<br>                                                |       |                                |                                             |                                          |                                          |                                             |                |

df.duplicated()
df.drop\_duplicates()

|   | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects | P<br>in<br>Arc |
|---|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|----------------|
| 0 | 69                                                   | 63                             | 78                                          | 87                                       | 94                                       | 94                                          |                |
| 1 | 78                                                   | 62                             | 73                                          | 60                                       | 71                                       | 70                                          |                |

df.dtypes

| Acedamic percentage in Operating Systems | int64  |
|------------------------------------------|--------|
| percentage in Algorithms                 | int64  |
| Percentage in Programming Concepts       | int64  |
| Percentage in Software Engineering       | int64  |
| Percentage in Computer Networks          | int64  |
| Percentage in Electronics Subjects       | int64  |
| Percentage in Computer Architecture      | int64  |
| Percentage in Mathematics                | int64  |
| Percentage in Communication skills       | int64  |
| Hours working per day                    | int64  |
| Logical quotient rating                  | int64  |
| hackathons                               | int64  |
| coding skills rating                     | int64  |
| public speaking points                   | int64  |
| can work long time before system?        | object |
| self-learning capability?                | object |
| Extra-courses did                        | object |
| certifications                           | object |
| workshops                                | object |
| talenttests taken?                       | object |
| olympiads                                | object |
| reading and writing skills               | object |
| memory capability score                  | object |
| Interested subjects                      | object |
| interested career area                   | object |
| Job/Higher Studies?                      | object |
| Type of company want to settle in?       | object |
| Taken inputs from seniors or elders      | object |
| interested in games                      | object |
| Interested Type of Books                 | object |
| Salary Range Expected                    | object |
| In a Realtionship?                       | object |
| Gentle or Tuff behaviour?                | object |
| Management or Technical                  | object |
| Salary/work                              | object |
| hard/smart worker                        | object |
| worked in teams ever?                    | object |
| Introvert                                | object |
| Suggested Job Role                       | object |
| dtype: object                            | _      |
|                                          |        |

df['can work long time before system?']

9 yes1 yes

```
2
                                   yes
              3
                                      no
              4
                                      no
              4280
                                     no
             4281
                                  yes
             4282
                                    no
             4283
                                     no
             4284
                                   yes
             Name: can work long time before system?, Length: 4285, dtype: object
df['can work long time before system?']=df['can work long time before system?'].astype('can work long time before system?').astype('can work long time before system).astype('can work long time before system).astype('can work long time before 
df['can work long time before system?']=df['can work long time before system?'].cat.codes
df['can work long time before system?']
              0
                                   1
             1
                                   1
              2
                                   1
              3
                                   0
              4
                                   0
                                 . .
             4280
                                   0
             4281
                                   1
             4282
                                   0
             4283
                                   0
              4284
              Name: can work long time before system?, Length: 4285, dtype: int8
for col in df.select_dtypes(include=['object']).columns:
           df[col] = df[col].astype('category')
           df[col] = df[col].cat.codes
df.dtypes
              Acedamic percentage in Operating Systems
                                                                                                                                     int64
              percentage in Algorithms
                                                                                                                                     int64
              Percentage in Programming Concepts
                                                                                                                                     int64
              Percentage in Software Engineering
                                                                                                                                     int64
              Percentage in Computer Networks
                                                                                                                                     int64
              Percentage in Electronics Subjects
                                                                                                                                     int64
              Percentage in Computer Architecture
                                                                                                                                     int64
              Percentage in Mathematics
                                                                                                                                     int64
              Percentage in Communication skills
                                                                                                                                     int64
              Hours working per day
                                                                                                                                     int64
              Logical quotient rating
                                                                                                                                     int64
              hackathons
                                                                                                                                     int64
              coding skills rating
                                                                                                                                     int64
              public speaking points
                                                                                                                                     int64
              can work long time before system?
                                                                                                                                        int8
              self-learning capability?
                                                                                                                                        int8
              Extra-courses did
                                                                                                                                        int8
              certifications
                                                                                                                                        int8
```

int8

int8

int8

int8

int8

int8

workshops

olympiads

talenttests taken?

Interested subjects

reading and writing skills

memory capability score

| interested career area              | int8 |
|-------------------------------------|------|
| Job/Higher Studies?                 | int8 |
| Type of company want to settle in?  | int8 |
| Taken inputs from seniors or elders | int8 |
| interested in games                 | int8 |
| Interested Type of Books            | int8 |
| Salary Range Expected               | int8 |
| <pre>In a Realtionship?</pre>       | int8 |
| Gentle or Tuff behaviour?           | int8 |
| Management or Technical             | int8 |
| Salary/work                         | int8 |
| hard/smart worker                   | int8 |
| worked in teams ever?               | int8 |
| Introvert                           | int8 |
| Suggested Job Role                  | int8 |
| dtype: object                       |      |

# Studing dataset: Descriptive Analysis

df.describe()

|       | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects |
|-------|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|
| count | 4285.000000                                          | 4285.000000                    | 4285.000000                                 | 4285.000000                              | 4285.000000                              | 4285.000000                                 |
| mean  | 76.824504                                            | 76.890782                      | 77.028705                                   | 77.070478                                | 77.151459                                | 76.930222                                   |
| std   | 10.024829                                            | 10.092972                      | 10.210363                                   | 10.142135                                | 10.025024                                | 10.187781                                   |
| min   | 60.000000                                            | 60.000000                      | 60.000000                                   | 60.000000                                | 60.000000                                | 60.000000                                   |
| 25%   | 68.000000                                            | 68.000000                      | 68.000000                                   | 68.000000                                | 69.000000                                | 68.000000                                   |
| 50%   | 77.000000                                            | 77.000000                      | 77.000000                                   | 77.000000                                | 77.000000                                | 77.000000                                   |
| 75%   | 85.000000                                            | 86.000000                      | 86.000000                                   | 86.000000                                | 86.000000                                | 86.000000                                   |
| max   | 94.000000                                            | 94.000000                      | 94.000000                                   | 94.000000                                | 94.000000                                | 94.000000                                   |

8 rows × 39 columns



left = df.groupby('Suggested Job Role')
left.mean()

|                       | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects |
|-----------------------|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|
| Suggested<br>Job Role |                                                      |                                |                                             |                                          |                                          |                                             |
| 0                     | 75.837607                                            | 77.965812                      | 76.709402                                   | 75.222222                                | 76.452991                                | 76.538462                                   |
| 1                     | 77.365079                                            | 78.873016                      | 76.476190                                   | 78.150794                                | 75.865079                                | 77.285714                                   |
| 2                     | 76.068182                                            | 77.537879                      | 76.568182                                   | 76.833333                                | 77.462121                                | 76.469697                                   |
| 3                     | 76.091603                                            | 76.824427                      | 77.351145                                   | 76.427481                                | 76.916031                                | 76.961832                                   |
| 4                     | 75.834646                                            | 75.488189                      | 78.307087                                   | 76.078740                                | 76.496063                                | 77.653543                                   |
| 5                     | 76.045872                                            | 78.394495                      | 77.807339                                   | 79.302752                                | 75.853211                                | 77.504587                                   |
| 6                     | 78.480000                                            | 75.080000                      | 78.112000                                   | 77.960000                                | 74.960000                                | 76.592000                                   |
| 7                     | 75.404762                                            | 77.119048                      | 75.039683                                   | 77.206349                                | 78.023810                                | 78.079365                                   |
| 8                     | 82.000000                                            | 66.000000                      | 81.000000                                   | 88.000000                                | 86.000000                                | 66.000000                                   |
| 9                     | 77.558333                                            | 77.983333                      | 76.866667                                   | 77.291667                                | 76.650000                                | 76.425000                                   |
| 10                    | 77.273438                                            | 75.765625                      | 77.070312                                   | 77.515625                                | 76.250000                                | 76.578125                                   |
| 11                    | 76.980769                                            | 76.750000                      | 76.567308                                   | 77.625000                                | 77.663462                                | 77.701923                                   |
| 12                    | 77.443478                                            | 77.121739                      | 79.200000                                   | 77.704348                                | 76.408696                                | 75.904348                                   |
| 13                    | 76.268293                                            | 76.934959                      | 77.016260                                   | 76.276423                                | 76.934959                                | 78.650407                                   |
| 14                    | 78.585366                                            | 76.731707                      | 76.170732                                   | 76.601626                                | 76.869919                                | 77.292683                                   |
| 15                    | 76.308943                                            | 76.943089                      | 77.154472                                   | 77.560976                                | 77.756098                                | 77.333333                                   |
| 16                    | 76.816568                                            | 77.325444                      | 76.940828                                   | 76.745562                                | 77.124260                                | 76.769231                                   |
| 17                    | 76.579832                                            | 76.647059                      | 77.142857                                   | 76.399160                                | 77.941176                                | 77.075630                                   |
| 18                    | 78.157895                                            | 76.745614                      | 75.929825                                   | 76.263158                                | 76.701754                                | 74.517544                                   |
| 19                    | 75.654135                                            | 77.000000                      | 74.909774                                   | 76.323308                                | 78.172932                                | 76.240602                                   |
| 20                    | 77.363636                                            | 76.784091                      | 77.102273                                   | 78.511364                                | 77.272727                                | 77.306818                                   |
| 21                    | 76.360656                                            | 75.983607                      | 75.606557                                   | 76.270492                                | 77.975410                                | 77.762295                                   |
| 22                    | 75.451923                                            | 76.663462                      | 78.567308                                   | 76.625000                                | 76.826923                                | 77.067308                                   |
| 23                    | 76.379845                                            | 77.240310                      | 77.178295                                   | 77.844961                                | 78.209302                                | 76.139535                                   |
| 24                    | 76.767241                                            | 76.543103                      | 76.836207                                   | 77.241379                                | 77.250000                                | 77.689655                                   |
| 25                    | 78.606557                                            | 76.081967                      | 78.024590                                   | 76.245902                                | 78.614754                                | 77.278689                                   |
| 26                    | 75.800000                                            | 77.043478                      | 77.556522                                   | 77.278261                                | 77.173913                                | 76.339130                                   |
| 27                    | 76.566176                                            | 76.948529                      | 77.235294                                   | 77.404412                                | 76.720588                                | 76.183824                                   |
| 28                    | 77.592000                                            | 76.128000                      | 78.536000                                   | 76.416000                                | 77.768000                                | 77.168000<br>6/17                           |

| 29 | 76.893443 | 77.688525 | 76.475410 | 76.934426 | 77.303279 | 76.860656 |
|----|-----------|-----------|-----------|-----------|-----------|-----------|
| 30 | 76.212963 | 77.203704 | 77.759259 | 77.435185 | 78.768519 | 78.222222 |
| 31 | 76.008475 | 76.271186 | 75.779661 | 76.245763 | 76.567797 | 75.805085 |
| 32 | 78.716535 | 77.464567 | 75.866142 | 78.527559 | 77.370079 | 76.023622 |
| 33 | 77.224806 | 77.023256 | 78.062016 | 76.868217 | 76.596899 | 76.720930 |
| 34 | 77.421429 | 76.357143 | 77.385714 | 78.157143 | 77.400000 | 77.750000 |



```
المنتق ومناع ومناق والمنتق وال
```

```
المراق ال
```

```
data = df.iloc[:,:-1].values
label = df.iloc[:,-1]
```

```
#Label Encoding: COnverting To Numeric values
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()

for i in range(14,38):
    data[:,i] = labelencoder.fit_transform(data[:,i])

#Normalizing the data
from sklearn.preprocessing import Normalizer
data1=data[:,:14]
normalized_data = Normalizer().fit_transform(data1)

data2=data[:,14:]
df1 = np.append(normalized_data,data2,axis=1)

#Combining into a dataset
df2=df.iloc[:,:-1]
dataset = pd.DataFrame(df1,columns=df2.columns)
dataset
```

| urs<br>ing<br>day | ••• | interested<br>in games | Interested<br>Type of<br>Books | Salary<br>Range<br>Expected | In a<br>Realtionship? | Gentle or<br>Tuff<br>behaviour? | Management<br>or<br>Technical | Sal |
|-------------------|-----|------------------------|--------------------------------|-----------------------------|-----------------------|---------------------------------|-------------------------------|-----|
| 186               |     | 0.0                    | 21.0                           | 1.0                         | 0.0                   | 1.0                             | 0.0                           |     |
| 843               |     | 1.0                    | 5.0                            | 1.0                         | 1.0                   | 0.0                             | 1.0                           |     |
| 706               |     | 1.0                    | 29.0                           | 0.0                         | 0.0                   | 1.0                             | 0.0                           |     |
| 213               |     | 0.0                    | 23.0                           | 0.0                         | 1.0                   | 0.0                             | 0.0                           |     |
| 268               |     | 1.0                    | 7.0                            | 1.0                         | 0.0                   | 1.0                             | 0.0                           |     |
|                   |     |                        |                                |                             |                       |                                 |                               |     |
| 244               |     | 1.0                    | 0.0                            | 0.0                         | 1.0                   | 1.0                             | 1.0                           |     |
| 895               |     | 1.0                    | 16.0                           | 0.0                         | 1.0                   | 0.0                             | 0.0                           |     |
| 738               |     | 0.0                    | 20.0                           | 0.0                         | 1.0                   | 0.0                             | 0.0                           |     |
| 152               |     | 1.0                    | 27.0                           | 1.0                         | 0.0                   | 0.0                             | 1.0                           |     |
| 421               |     | 0.0                    | 1.0                            | 0.0                         | 1.0                   | 1.0                             | 0.0                           |     |

```
# For label
label = df.iloc[:,-1]
original=label.unique()
```

```
Tanet-Tanet. Aataes
label2 = labelencoder.fit_transform(label)
y=pd.DataFrame(label2,columns=["Suggested Job Role"])
numeric=y["Suggested Job Role"].unique()
Y = pd.DataFrame({'Suggested Job Role':original, 'Associated Number':numeric})
Υ
```

|   | Suggested Job Role | Associated Number |  |
|---|--------------------|-------------------|--|
| 0 | 7                  | 7                 |  |
| 1 | 19                 | 19                |  |
| 2 | 29                 | 29                |  |
| 3 | 2                  | 2                 |  |
| 4 | 26                 | 26                |  |
| 5 | 1                  | 1                 |  |
| 6 | 4                  | 4                 |  |

dataset = pd.read\_csv("sample\_data/dataset.csv")
print(np.shape(dataset))
dataset.head()

(20000, 39)

|   | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects | Perc<br>in Co<br>Archit |
|---|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------|
| 0 | 69                                                   | 63                             | 78                                          | 87                                       | 94                                       | 94                                          |                         |
| 1 | 78                                                   | 62                             | 73                                          | 60                                       | 71                                       | 70                                          |                         |
| 2 | 71                                                   | 86                             | 91                                          | 87                                       | 61                                       | 81                                          |                         |
| 3 | 76                                                   | 87                             | 60                                          | 84                                       | 89                                       | 73                                          |                         |
| 4 | 92                                                   | 62                             | 90                                          | 67                                       | 71                                       | 89                                          |                         |

5 rows × 39 columns



data = dataset.iloc[:,:-1].values

data = dataset.iloc[:,:-1].values
label = dataset.iloc[:,-1].values
len(data[0])

38

04

dataset.iloc[:,14:38]

|          | can work long time before system? | self-<br>learning<br>capability? | Extra-<br>courses<br>did | certifications          | workshops            | talenttests<br>taken? | olymį |
|----------|-----------------------------------|----------------------------------|--------------------------|-------------------------|----------------------|-----------------------|-------|
| 0        | yes                               | yes                              | yes                      | shell<br>programming    | cloud<br>computing   | no                    |       |
| 1        | yes                               | no                               | yes                      | machine learning        | database<br>security | no                    |       |
| 2        | yes                               | no                               | yes                      | app development         | web<br>technologies  | no                    |       |
| 3        | no                                | yes                              | no                       | python                  | data science         | yes                   |       |
| 4        | no                                | no                               | no                       | app development         | cloud<br>computing   | no                    |       |
|          |                                   |                                  |                          |                         |                      |                       |       |
| 19995    | yes                               | no                               | no                       | app development         | cloud<br>computing   | yes                   |       |
| 19996    | yes                               | no                               | no                       | full stack              | game<br>development  | no                    |       |
| 19997    | yes                               | yes                              | yes                      | information<br>security | database<br>security | yes                   |       |
| 19998    | no                                | no                               | no                       | full stack              | cloud<br>computing   | no                    |       |
| 19999    | yes                               | yes                              | yes                      | app development         | database<br>security | no                    |       |
| 20000 ro | ws × 24 co                        | lumns                            |                          |                         |                      |                       |       |



dataset.iloc[:,:14]

|                  | Acedamic<br>percentage<br>in<br>Operating<br>Systems                           | percentage<br>in<br>Algorithms                                | Percentage<br>in<br>Programming<br>Concepts                      | Percentage<br>in Software<br>Engineering                                    | Percentage<br>in<br>Computer<br>Networks                | Percentage<br>in<br>Electronics<br>Subjects | i<br>Ar |
|------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|---------|
|                  | <b>0</b> 69                                                                    | 63                                                            | 78                                                               | 87                                                                          | 94                                                      | 94                                          |         |
|                  | <b>1</b> 78                                                                    | 62                                                            | 73                                                               | 60                                                                          | 71                                                      | 70                                          |         |
|                  | <b>2</b> 71                                                                    | 86                                                            | 91                                                               | 87                                                                          | 61                                                      | 81                                          |         |
|                  | <b>3</b> 76                                                                    | 87                                                            | 60                                                               | 84                                                                          | 89                                                      | 73                                          |         |
|                  | 4 92                                                                           | 62                                                            | 90                                                               | 67                                                                          | 71                                                      | 89                                          |         |
|                  |                                                                                |                                                               |                                                                  |                                                                             |                                                         |                                             |         |
| from sk]         | learn.preprocessi                                                              | ing import La                                                 | abelEncoder, (                                                   | OneHotEncoder                                                               |                                                         |                                             |         |
|                  | <b>9996</b> 80                                                                 | 69                                                            | 83                                                               | 8/                                                                          | 82                                                      | 66                                          |         |
| labelend         | coder = LabelEnco                                                              | oder()                                                        |                                                                  |                                                                             |                                                         |                                             |         |
|                  | 2000                                                                           | 07                                                            | 04                                                               | 00                                                                          | 00                                                      | 7.4                                         |         |
| data<br>data[:5] | ray([[69, 63, 78]<br>0, 1, 0, 0]<br>[78, 62, 73]<br>2, 0, 0, 2<br>[71, 86, 91] | , 87, 94, 94, 4, 4, 0, 8, 60, 71, 70, 1, 7, 0, 1, 87, 61, 81, | _                                                                | 9, 4, 0, 4,<br>, 0, 1, 0, 0,<br>12, 7, 1, 2,<br>1, 1, 0, 1,<br>11, 1, 4, 1, | 0, 1, 0],<br>3, 1, 0, 1,<br>0, 0, 0, 1],<br>3, 1, 0, 1, | 5,<br>0,                                    |         |
|                  | [76, 87, 60]<br>1, 0, 1, 0]<br>[92, 62, 90]                                    | , 84, 89, 73<br>, 7, 5, 0, 7<br>, 67, 71, 89<br>, 0, 5, 0, 9  | , 62, 88, 69,<br>, 0, 0, 23, 0<br>, 73, 71, 73,<br>, 0, 1, 7, 1, | 7, 1, 1, 2,<br>, 1, 0, 0, 1,<br>4, 5, 4, 6,                                 | 5, 0, 1, 0,<br>1, 1, 1],<br>3, 0, 0, 0,                 | 6, 1,                                       |         |
| from sk]         | learn.preprocess                                                               | ing import No                                                 | ormalizer                                                        |                                                                             |                                                         |                                             |         |
| data1=da         | ata[:,:14]                                                                     |                                                               |                                                                  |                                                                             |                                                         |                                             |         |
|                  | zed_data = Normai<br>ormalized_data.sk                                         | -                                                             | transform(data                                                   | a1)                                                                         |                                                         |                                             |         |
| (26              | 0000 <b>,</b> 14)                                                              |                                                               |                                                                  |                                                                             |                                                         |                                             |         |
| data2=da         | ata[:,14:]                                                                     |                                                               |                                                                  |                                                                             |                                                         |                                             |         |

df1 = np.append(normalized\_data,data2,axis=1)

data2.shape

(20000, 24)

```
df1.shape
```

(20000, 38)

## #adding headers

```
X1 = pd.DataFrame(df1,columns=['Acedamic percentage in Operating Systems', 'percentage in
       'Percentage in Programming Concepts',
       'Percentage in Software Engineering', 'Percentage in Computer Networks',
       'Percentage in Electronics Subjects',
       'Percentage in Computer Architecture', 'Percentage in Mathematics',
       'Percentage in Communication skills', 'Hours working per day',
       'Logical quotient rating', 'hackathons', 'coding skills rating',
       'public speaking points', 'can work long time before system?',
       'self-learning capability?', 'Extra-courses did', 'certifications',
       'workshops', 'talenttests taken?', 'olympiads',
       'reading and writing skills', 'memory capability score',
       'Interested subjects', 'interested career area ', 'Job/Higher Studies?',
       'Type of company want to settle in?',
       'Taken inputs from seniors or elders', 'interested in games',
       'Interested Type of Books', 'Salary Range Expected',
       'In a Realtionship?', 'Gentle or Tuff behaviour?',
       'Management or Technical', 'Salary/work', 'hard/smart worker',
       'worked in teams ever?', 'Introvert'])
```

#### X1.head()

|   | Acedamic<br>percentage<br>in<br>Operating<br>Systems | percentage<br>in<br>Algorithms | Percentage<br>in<br>Programming<br>Concepts | Percentage<br>in Software<br>Engineering | Percentage<br>in<br>Computer<br>Networks | Percentage<br>in<br>Electronics<br>Subjects | Perc<br>in Co<br>Archit |
|---|------------------------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------|
| 0 | 0.28509                                              | 0.260299                       | 0.322276                                    | 0.359461                                 | 0.388383                                 | 0.388383                                    | 0.                      |
| 1 | 0.34998                                              | 0.278189                       | 0.327545                                    | 0.269215                                 | 0.318571                                 | 0.314085                                    | 0.                      |
| 2 | 0.295012                                             | 0.357339                       | 0.378115                                    | 0.361494                                 | 0.253461                                 | 0.336563                                    | 0.                      |
| 3 | 0.328025                                             | 0.375503                       | 0.258967                                    | 0.362554                                 | 0.384135                                 | 0.315077                                    |                         |
| 4 | 0.397157                                             | 0.267649                       | 0.388523                                    | 0.289234                                 | 0.306502                                 | 0.384206                                    | 0.                      |

5 rows × 38 columns



label = labelencoder.fit\_transform(label)
print(len(label))

20000

y=pd.DataFrame(label,columns=["Suggested Job Role"])
y.head()

|   | Suggested | Job Role | 1 |
|---|-----------|----------|---|
| 0 |           | 7        |   |
| 1 |           | 18       |   |
| 2 |           | 18       |   |
| 3 |           | 28       |   |
| 4 |           | 2        |   |

### **Decision Tree Classifier**

```
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.metrics import accuracy_score
X_train,X_test,y_train,y_test=train_test_split(X1,y,test_size=0.2,random_state=10)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)
from sklearn.metrics import confusion_matrix,accuracy_score
y_pred = clf.predict(X_test)
y_pred
     array([29, 29, 6, ..., 2, 3, 28])
cm = confusion_matrix(y_test,y_pred)
accuracy = accuracy_score(y_test,y_pred)
print("confusion matrics=",cm)
print(" ")
print("accuracy=",accuracy*100)
     confusion matrics= [[2 9 0 ... 5 2 4]
      [3 4 1 ... 1 5 4]
      [3 2 3 ... 2 3 4]
      [5 4 4 ... 3 1 5]
      [3 4 1 ... 7 5 5]
```

```
[3 6 2 ... 4 1 2]]
accuracy= 2.65
```

# **Decision Tree with Entropy**

```
clf_entropy = tree.DecisionTreeClassifier(criterion = "entropy", random_state = 10)
clf entropy.fit(X train, y train)
     DecisionTreeClassifier(criterion='entropy', random_state=10)
entropy y pred=clf entropy.predict(X test)
cm_entopy = confusion_matrix(y_test,entropy_y_pred)
entropy_accuracy = accuracy_score(y_test,entropy_y_pred)
print("confusion matrics=",cm_entopy)
print(" ")
print("accuracy=",entropy_accuracy*100)
     confusion matrics= [[1 3 7 ... 3 2 2]
      [2 4 3 ... 3 2 4]
      [1 2 4 ... 0 3 1]
      [1 6 3 ... 0 5 2]
      [3 2 4 ... 2 2 4]
      [5 1 6 ... 6 6 4]]
     accuracy= 2.7
```

### **SVM Classifier**

```
from sklearn import svm

clf = svm.SVC()
clf.fit(X_train, y_train)
    /usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversi
    y = column_or_ld(y, warn=True)
    SVC()

*

svm_y_pred = clf.predict(X_test)

svm_cm = confusion_matrix(y_test,svm_y_pred)
svm_accuracy = accuracy_score(y_test,svm_y_pred)
print("confusion matrics=",svm_cm)
```

```
print(" ")
print("accuracy=",svm_accuracy*100)
     confusion matrics= [[0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]
      [000...000]
      [000...000]
      [0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]]
     accuracy= 5.60000000000000005
XGBoost
X train, X test, y train, y test=train test split(X1, y, test size=0.3, random state=10)
X_train.shape
     (14000, 38)
X_train=pd.to_numeric(X_train.values.flatten())
X_train=X_train.reshape((14000,38))
from xgboost import XGBClassifier
model = XGBClassifier()
model.fit(X_train, y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/ label.py:98: DataConve
       y = column_or_1d(y, warn=True)
     /usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_label.py:133: DataConv
       y = column or 1d(y, warn=True)
     XGBClassifier(objective='multi:softprob')
xgb y pred = clf.predict(X test)
xgb_cm = confusion_matrix(y_test,xgb_y_pred)
xgb_accuracy = accuracy_score(y_test,xgb_y_pred)
print("confusion matrics=",xgb_cm)
print(" ")
print("accuracy=",xgb_accuracy*100)
     confusion matrics= [[0 0 0 ... 0 0 0]
      [0\ 0\ 0\ \dots\ 0\ 0\ 0]
      [0 0 0 ... 0 0 0]
      . . .
      [0 0 0 ... 0 0 0]
      [0 0 0 ... 0 0 0]
```

[0 0 0 ... 0 0 0]]

accuracy= 5.75

Colab paid products - Cancel contracts here

✓ 0s completed at 3:41 PM

×