Displacement Sensors

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Lecture - Outline

- Inductive Sensors
 - Measuring Inductance
- Capacitive Sensors
 - Measuring Capacitance

Inductance

Inductance

$$L = N \frac{d \phi}{dI}$$

With constant permeability

$$L = N \frac{\Phi}{I}$$

Reluctance of coil is R:

$$L = N \frac{\Phi}{I} = N \frac{NI}{R} \cdot \frac{1}{I} = \frac{N^2}{R}$$

• If I_c is coil length and I_a is length of air, Reluctance:

$$\frac{1}{R} = \frac{1}{R_a} + \frac{1}{R_c} = \frac{\mu_o \pi r_a^2}{l_a} + \frac{\mu \pi r_c^2}{l_c}$$

Variable Inductance Transducer

$$L = \frac{N^2}{R}$$

- Relative permeability:
 - Steel = 30000
 - Ferrite=2500

(Note: Weber/Ampere=Henry)

$$\mu_o = 4 \pi 10^{-7} H/m$$

$$\frac{1}{R} = \frac{1}{R_a} + \frac{1}{R_c} = \frac{\mu_o \pi r_a^2}{l_a} + \frac{\mu \pi r_c^2}{l_c}$$

$$L \approx \frac{N^2 \pi r^2 \mu}{l_c}$$

Measuring Inductance using simple V-I

$$I(s) = \frac{V(s)}{R + Ls}$$

$$Ls = \frac{V(s)}{I(s)} - R$$

$$L \omega = \frac{|V(j \omega)|}{|I(j \omega)|} - R$$

Differential Inductance Sensor – bridge measurement

$$Z_1 = L + \Delta L$$
 , $Z_4 = L - \Delta L$

$$V_o(s) = \frac{V_i}{2} - \frac{V_i}{2Ls} (L + \Delta L)s$$

Linear Variable Differential Transformer (LVDT)

$$\frac{V_{out}}{V_{in}} \approx k x$$

Capacitive transducers

Capacitor

$$C = \epsilon \frac{A}{l}$$

Microphone

$$\frac{dC}{dl} = \epsilon \frac{A}{-l^2} = \frac{-C}{l}$$

$$\frac{\Delta C}{C} = \frac{-\Delta l}{l}$$

Capacitance measurement

- Simple V-I measurement
- Bridge measurement
- Oscillator measurement
- Charge transfer or switched capacitor measurement

Relaxation Oscillator for capacitance measurement

Capacitive grid sensor

End of Lecture