CSC 320 Assignment 4

Oliver Tonnesen V00885732

March 31, 2019

1

Let $M \in \operatorname{NP}, M \neq \emptyset, \Sigma^*$ be the language to which we wish to reduce L. $M \neq \emptyset, \Sigma^*$, so we know that both M and \overline{M} are nonempty. That is, there exists at least one string in M and one string in \overline{M} . Let $m_0 \in M$ and $m_1 \in \overline{M}$. We give a reduction $L \leq_P M$:

$$f: \Sigma^* \longrightarrow \Sigma^*$$

$$w \longmapsto \begin{cases} m_0, & \text{if } w \in L \\ m_1, & \text{if } w \notin L \end{cases}$$

Since $L \in P$, we know that there exists a polynomial time algorithm to decide whether or not a string is in L, and so our reduction does indeed run in polynomial time.

It is clear to see from the definition of f that $w \in L \iff f(w) \in M$, and so our reduction holds.

2

We know that 3-SAT is NP-complete, so we give the reduction 3-SAT \leq_P 4-SAT to prove that 4-SAT is NP-complete:

$$f: \Sigma^* \longrightarrow \Sigma^*$$

$$w \longmapsto f(w)$$

$$X = \{x_1, x_2, \dots, x_n\} \longmapsto X$$

$$C_i = \{a, b, c\} \longmapsto C'_i = \{a, b, c, c\}$$

Our reduction simply duplicates the third variable in every clause, and so runs in polynomial time.

If $w \in 3$ -SAT, then there exists a satisfying truth assignment for w. But f(w)

is simply w with redundant variables added to each clause, so any truth assignment satisfying w with automatically satisfy f(w), and vice versa. Thus $w \in$ 3-SAT $\iff f(w) \in 4$ -SAT.

3

We know that PARTITION is NP-complete, so we give the reduction PARTITION \leq_P THREE SHOPPING BAG PROBLEM (TSBP) to prove that TSBP is NP-complete:

$$f: \Sigma^* \longrightarrow \Sigma^*$$

$$w \longmapsto f(w)$$

$$f\left(\left\langle \{x_1, x_2, \dots, x_m\} \right\rangle \right) \longmapsto \left\langle \{x_1, x_2, \dots, x_m, y\}, \frac{s}{2} \right\rangle$$

where y has weight $\frac{s}{2}$ and s is the sum of the weights of $\{x_1, x_2, \dots, x_m\}$.

If $w \in \text{PARTITION}$, then x_1, x_2, \ldots, x_m can be partitioned into two subsets whose weight is exactly $\frac{s}{2}$. Since we added one element of weight $\frac{s}{2}$ to create f(w), then the contents of w can be split into two of the bags and the new item can be put in the third, and so $f(w) \in \text{TSBP}$. Conversely, if $f(w) \in \text{TSBP}$, then x_1, x_2, \ldots, x_m, y can be split into three bags holding at most $\frac{s}{2}$. The newest item weighs exactly $\frac{s}{2}$, and so the only choice is to place it into its own bag alone. Since the sum of the remaining elements (x_1, x_2, \ldots, x_m) is s, then it must be the case that they were split evenly among the remaining two bags, and so $w \in \text{PARTITION}$.

4

We know that CLIQUE is NP-complete, so we give the reduction CLIQUE \leq_P HALF-CLIQUE to prove that HALF-CLIQUE is NP-complete. Define the reduction f as follows:

Case
$$k = \frac{|V|}{2}$$
: $f(\langle G, k \rangle) = \langle G \rangle$

It is clear to see that, in this case, $\langle G, k \rangle \in \text{CLIQUE} \iff \langle G \rangle \in \text{HALF-CLIQUE}.$

Case
$$k > \frac{|V|}{2}$$
: $f(\langle G, k \rangle) = \langle (V \cup Y, E) \rangle$

where $Y = \{y_1, y_2, \dots, y_{2k-|V|}\}$ and $V \cap Y = \emptyset$. We add 2k - |V| "useless" vertices, so $|V \cup Y| = 2k$, and so $\langle G, k \rangle \in \text{CLIQUE} \iff \langle (V \cup Y, E) \rangle \in \text{HALF-CLIQUE}$ is again quite clear to see.

Case
$$k < \frac{|V|}{2}$$
: $f(\langle G, k \rangle) = \langle (V \cup Y, E \cup F) \rangle$

where $Y = \{y_1, y_2, \dots, y_{|V|-2k}\}$ and $V \cap Y = \emptyset$, and $F = \{\{v, y\} \mid v \in V, y \in Y\}$. In this case, we add |V| - 2k vertices, so $|V \cup Y| = 2|V| - 2k$. If $(V \cup Y, E \cup F) \in \text{HALF-CLIQUE}$, then $(V \cup Y, E \cup F)$ contains $K_{|V|-k}$ as a subgraph. Since we added |V| - 2k vertices to this subgraph to get G', then exactly (|V| - k) - (|V| - 2k) = k vertices came from G, and so G has K_k as a subgraph. Similarly, if $\langle G, k \rangle \in \text{CLIQUE}$, then G has K_k as a subgraph, and so adding |V| - 2k vertices connected to each vertex in V results in G' having $K_{k+(|V|-2k)} = K_{|V|-k}$ as a subgraph. In each case, our polynomial time reduction f guarantees that $\langle G, k \rangle \in \text{CLIQUE} \iff f\left(\langle G, k \rangle\right) \in \text{HALF-CLIQUE}$. CLIQUE is NP-complete, and so HALF-CLIQUE is NP-complete.