Algorithmen der Sequenzanalyse: verrauschte Motive

AlgSeq – 28/10/2024 Prof. M. Sammeth

Inexakte Vorkommnisse eines Musters

Motive mit einer Abweichung (im *oriC* von *Vibrio cholerae*):

 $atca \mbox{ATGATCAAC} g taagcttctaagc \mbox{ATGATCAAG} g t g ctcacacagtttatccacaac ctgagtgg atgacatcaagatagg t cgttg tatctccttcctctcg tactctcatg acca cggaaag \mbox{ATGATCAAG} agagg atgattcttgg ccatatcg caatgaatacttg t g t g cttccaattg acatcttcag cgccatattg cgctgg ccaagg t g acggag cgg g att acgaaag \mbox{CATGATCAT} g g ctgttgttctgtttatcttgttttg actgag acttg t t agacgg ttttcatcactg actag ccaaag ccttactctg ctgacatcg accgtaaat t g ataatgaatttacat g cttccg cg acgatttacct \mbox{CTTGATCAT} cg atccg at t acttcaattg t t attcattg t t acttaacctct atttttacg g aaga \mbox{ATGATCAAG} ctg ctg ct \mbox{CTTGATCAT} cg t t ccttaaccctct atttttacg g aaga \mbox{ATGATCAAG} ctg ctg \mbox{CTTGATCAT} cg t t ccttaaccctct atttttacg g aaga \mbox{ATGATCAAG} ctg \mbox{ctg ctg ctCTTGATCAT} cg t t ccttaaccctct atttttacg g aaga \mbox{ATGATCAAG} ctg \mbox{ctg ctg ctg ctCTTGATCAT} cg t t ccttaaccctct atttttacg g aaga \mbox{ATGATCAAG} ctg \mbox{ctg ctg ctg ctg ctCTTGATCAT} cg \mbox{cttc} \mbox{CTTGATCAT} \mbox{CTTGATCAT} \mbox{cttc} \mbox{CTTGATCAT} \mbox{cttc} \mbox{CTTGATCAT} \mbox$

ATGATCAAC und **CATGATCAT**

Acht (statt sechs) Vorkommnisse eines Nonameres!

$$p_f(N,k,t) \approx \frac{\binom{N-t(k-1)}{t}}{4^{(t-1)\,k}}$$

 $p_f(540, 9, 8) = 7.242252695405615e-22$

k	t	$p_f(540, 9, t)$
7	9	7.451517316341352e-16
8	7	1.6504527748087858e-14
9	6	1.543363450054106e-14
10	4	2.3042467465345107e-09
11	4	3.487107419497277e-11
12	3	7.671120627605887e-08

Mismatches und die Hamming Distanz

Vergleich zweier k-mere p und q

 $p_i \neq q_i \rightarrow \text{ein Mismatch}$

HAMMINGDISTANZ(p, q) := Anzahl aller Mismatches über alle k Positionen

HammingDistanz $(p, q) \le d$ höchstens d M

höchstens d Mismatches im Vergleich p mit q

Zählen_d(Text, Muster) := Anzahl der Vorkommnisse von Muster in Text mit höchstens d Mismatches.

Bsp.:

Zählen₁(AACAAGCATAAACATTAAAGAG, AAAAA) = 4, d.h. {AACAA, ATAAA,

Inexaktes Zählen und Häufige Wörter mit Mismatches

```
Algorithm: Z\ddot{a}HLEN(\textit{Text}, \textit{Muster}, d)
Z\ddot{a}hler \leftarrow 0
\textbf{for } i \leftarrow 0 \text{ bis } |\textit{Text}| - |\textit{Muster}| \textbf{ do}
| \textit{Wort} \leftarrow \textit{Text}(i, |\textit{Muster}|)
\textbf{if } HAMMINGDISTANZ(\textit{Wort}, \textit{Muster}) \leq d \textbf{ then}
| \textit{Z\"{a}hler} \leftarrow \textit{Z\"{a}hler} + 1
\textbf{return } \textit{Z\"{a}hler}
```

Häufige Wörter mit RC und Mismatches Problem: Finde das/die häufigsten *k*-mer(e) die (zusammen mit dem reversen Komplement und mit höchstens *d* Mismatches) in einer Zeichenkette vorkommen.

Eingabe: Ein String *Text*, ganze Zahlen *k* und *d*.

Ausgabe: Alle k-mere Muster, die ZÄHLEN $_d$ (Text, Muster) + ZÄHLEN $_d$ (Text, Muster) ihres reversen Komplements Muster' maximieren (über alle k-mere in Text).

Unmittelbare Nachbarn ($d \le 1$)

Unmittelbare Nachbarn := Zwei Zeichenketten p und q, die sich in höchstens einem Mismatch voneinander unterscheiden (HAMMINGDISTANZ $(p, q) \le 1$

```
Algorithm: UnmittelbareNachbarn(Muster)
```

```
Nachbarschaft \leftarrow \{Muster\}
```

for i = 1 to |Muster| do

 $Symbol \leftarrow i$ -tes Nukleotid von Muster

for jedes Nukleotid x unterschiedlich von Symbol do

 $Nachbar \leftarrow Muster \; \text{mit dem } i\text{-ten Nukleotid substituiert durch} \; x \\ Nachbarschaft \leftarrow Nachbarschaft \cup \{Nachbar\}$

return Nachbarschaft

Häufige Wörter mit RC und Unmittelbaren Nachbarn Problem:

Finde das/die häufigsten k-mere mit höchstens einem Mismatch

Transkriptionsfaktoren, z.B. für "Molekulare Uhren"

Gibt es ein "Uhr-Gen"?

Transkriptionsfaktoren und ihre Bindestellen

Transkriptionsfaktoren sind Proteine, die Bindestellen in der DNA erkennen und benachtbarte Gene an-/ab-schalten können.

- **mehrere Gene** (mit ähnlichen Funktionen) werden durch den/die gleiche(n) **Transkriptionsfaktor**(en) kontrolliert
- **Motiv** ("regulatorisches Motiv") der Bindestellen des **gleichen** Transkriptionsfaktors ist oft **inexakt**.

z. B. NF-*μ*B (Transkriptionsfaktor)

NF-µB kontroliert Gene der Immunantwort in der Fruchtfliege.

```
1 TCGGGGGTTTTtt
2 cCGGtGAcTTaC
3 aCGGGGATTTtC
4 TtGGGGACTTtt
5 TCGGGGATTTCC
6 TtGGGGACTTCC
7 TCGGGGATTCC
7 TCGGGGATTCC
9 TaGGGGACTCC
```


Motive von 10 Binstellen für NF-μB, inexaktes (nicht konserviertes) Motiv

TCGGGtATaaCC

Verstecken Spielen mit Motiven

(1) 15-mer Motiv AAAAAAAAGGGGGGG (exakt) implantiert in 10 Sequenzen:

(2) 15-mer Motiv AAAAAAAAGGGGGGG mit d=4 Mismatchen implantiert in 10 Sequenzen:

Problem Formulierung

(*k*,*d*)-Motiv :=

Sei *Dna* eine Menge von Strings und *d* ein Integer, dann ist ein *k*-mer ein (*k*,*d*)-Motiv, wenn es in jedem String aus *Dna* mit höchstens *d* Mismatches vorkommt.

Implantiertes Motiv Problem:

Finde alle (k,d)-Motive in einer Menge von Zeichenketten.

Input: Eine Menge von Zeichenketten Dna, Integer k und d.

Output: Alle (k,d)-Motive in *Dna*.

Implantiertes Motiv mit roher Gewalt lösen

hier betrachtete Instanz des Problems (NF-µB Bindemotive): Subtiles Motif Problem

Das 15-mer Motiv AAAAAAAGGGGGG wurde mit vier zufälligen Mutationen implantiert in zehn 600nt (=typische Länge von upstream regulatorischen Regionen) Sequenzen.

Brute Force (Rohe Gewalt) := Algorithmische Vorgehensweise, bei der alle (auch: exhaustive Suche) möglichen Lösungen geprüft werden, und dann die beste Lösung vorgeschlagen wird.

wie lautet ein "brute force" Ansatz für das *Implantiertes Motiv* Problem?

Implantiertes Motiv mit roher Gewalt lösen

ein "brute force" Ansatz für das *Implantiertes Motiv* Problem:

```
Algorithm: MOTIVEAUFZAEHLEN(Dna,k,d)

Patterns \leftarrow \emptyset

for jedes k-mer Muster in Dna do

for jedes k-mer Muster', das sich von Muster mit höchstens d

Unterschieden ("Mismatches") unterscheidet do

if Muster' in jeder Zeichenkette von Dna mit höchstens d

Mismatches vorkommt then

Patterns \leftarrow Patterns \cup \{Muster'\}
entferne alle Duplikate aus Patterns
return Patterns
```


paarweise Vergleiche zwischen Sequenzen helfen kaum (s.u.) → **zwei** Sprünge im Vergleich: *Muster* → *Muster* ′ → ZÄHLEN₂(*Muster* ′)

AgAAgAAAGGttGGG || || || || || cAAtAAAACGGGGCG