

WHAT IS CLAIMED IS:

1. An optical modulator comprising:
a p- or n-type semiconductor layer that is
5 provided at an upper part of an optical waveguide path;
and
a plurality of modulating electrodes that are
provided at intervals on the semiconductor layer in an
extension area of the optical waveguide path,
10 the semiconductor layer having first regions
located immediately under the modulating electrodes,
and second regions located between the first regions,
and
the second regions having separators that
15 electrically separate the first regions from one
another.
2. The optical modulator as claimed in claim 1,
wherein the separators have a higher resistivity than
20 the first regions.
3. The optical modulator as claimed in claim 2,
wherein the separators are formed from i-type
semiconductors.
25
4. The optical modulator as claimed in claim 2,
wherein the separators are doped with at least one
element selected from the group consisting of oxygen,
nitrogen, boron, iron, chromium, and ruthenium.
30
5. The optical modulator as claimed in claim 1,
wherein the separators have the opposite conductivity
type to the first regions.
- 35 6. The optical modulator as claimed in claim 1,
wherein the separators are depletion regions in the
semiconductor layer.

7. The optical modulator as claimed in claim 6,
further comprising

5 electrodes for applying bias voltage to the
second regions,

wherein the depletion regions are formed by
virtue of the bias voltage applied by the electrodes.

8. The optical modulator as claimed in claim 6,
10 further comprising

reverse conductivity semiconductor layers that
are formed on the second regions and have the opposite
conductivity type to the second regions,

15 wherein the depletion regions are formed by pn
junctions between the second regions and the reverse
conductivity semiconductor layers.

9. The optical modulator as claimed in claim 1,
wherein at least one of the optical waveguide path and
20 the semiconductor layer is formed from a compound
semiconductor.

10. The optical modulator as claimed in claim 9,
wherein the compound semiconductor contains at least
25 one element selected from the group consisting of
gallium, arsenic, antimony, aluminum, indium,
phosphorus, nitrogen, zinc, cadmium, selenium, and
sulfur.

30 11. The optical modulator as claimed in claim 1,
wherein at least one of the optical waveguide path and
the semiconductor layer is formed from a silicon-based
semiconductor.

35 12. The optical modulator as claimed in claim
11, wherein the silicon-based semiconductor contains at
least one element selected from the group consisting of

silicon, germanium, and carbon.

13. A method of manufacturing an optical modulator that has a plurality of modulating electrodes
5 provided at intervals on a semiconductor layer in an extension area of an optical waveguide path,

the method comprising the step of
forming separators in second regions situated
between first regions on which the plurality of
10 modulating electrodes are located, the separators
electrically separating the first regions from one
another.

14. The method as claimed in claim 13, wherein
15 the separators have a higher resistivity than the first regions.

15. The method as claimed in claim 14, wherein
the separators are formed from i-type semiconductors.

20
16. The method as claimed in claim 14, wherein
the second regions in which the separators are to be
formed are doped with at least one element selected
from the group consisting of oxygen, nitrogen, boron,
25 iron, chromium, and ruthenium.

17. The method as claimed in claim 13, wherein
the separators have the opposite conductivity type to
the first regions.

30
18. A method of manufacturing an optical modulator that has a plurality of modulating electrodes
provided at intervals on first regions in an extension area of an optical waveguide path,
35 the method comprising the step of
forming second regions between the first regions
on which the plurality of modulating electrodes are

formed, the second regions having the opposite conductivity type to the first regions.

19. A method of manufacturing an optical
5 modulator that has a plurality of modulating electrodes provided at intervals on a semiconductor layer in an extension area of an optical waveguide path,
the method comprising the step of forming bias electrodes in regions between first
10 regions in the semiconductor layer on which the plurality of modulating electrodes are formed, the bias electrodes applying bias voltage.

20. The method as claimed in claim 13, wherein
15 at least one of the optical waveguide path and the semiconductor layer is formed from a compound semiconductor.

21. The method as claimed in claim 20, wherein
20 the compound semiconductor contains at least one element selected from the group consisting of gallium, arsenic, antimony, aluminum, indium, phosphorus, nitrogen, zinc, cadmium, selenium, and sulfur.

25 22. The method as claimed in claim 13, wherein at least one of the optical waveguide path and the semiconductor layer is formed from a silicon-based semiconductor.

30 23. The method as claimed in claim 22, wherein the silicon-based semiconductor contains at least one element selected from the group consisting of silicon, germanium, and carbon.