

(B) BUNDESREP DEUTSCHLAND

Offenlegungssc DE 19744667 A 1

DEUTSCHES PATENTAMT

② Aktenzeichen:

197 44 667.1 Anmeldetag: 9. 10. 97

Offenlegungstag:

16. 4.98

Innere Priorität:

196 41 506.3

09.10:96

Anmelder:

Kabelwerk Lausitz GmbH, 02791 Niederoderwitz, DE

(14) Vertreter:

GRAMM, LINS & PARTNER, 38122 Braunschweig

② Erfinder:

Köster, Heinz-Dieter, 02785 Olbersdorf, DE; Arndt, Volker, 02791 Niederoderwitz, DE; Mohr, Frank, 02797 Kurort Oybin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Niederspannungsleitung für Kraftfahrzeuge
- Die Erfindung betrifft eine Niederspannungsleitung für die elektrische Verbindung elektrischer und elektronischer Bauteile in Kraftfahrzeugen, bestehend aus einem Leiter und aus einer ihn umschließenden Isolierhülle. Insbesondere zur Gewichtsreduzierung wird vorgeschlagen, daß der Leiter aus einem oder mehreren Al-Legierungsdrähten besteht, die im Nenndurchmesser von 0,12-0,70 mm eine Zugfestigkeit R_m von 120 bis 200 N/mm², eine 0,2-Grenze von mindestens 80 N/mm², eine Dehnung $A_{L=}$ $A_{L=00}$ von mindestens 12% und eine elektrische Leitfähigkeit (A_{20}) von > 34,5 m/Ohm mm² aufweisen, wobei die Legierung 0,4 bis 1,3 Masse-% Fe, 0,02 bis 0,20 Masse-% Mg, 0,10 bis 0,25 Masse-% Si, 0,007 bis 0,04 Masse-% Zn, 0,005 bis 0,012 Masse-% B, max. 0,01 Masse-% Cu, max. 0,01 Masse-% V, max. 0,005 Masse-% Mn und max. 0,02 Masse-Ti, Rest Aluminium einschl. höchstens 0,1 Masse-% sonstige Verunreinigungen enthält und deren ungelöster Fe-Anteil in Form kleinster Teilchen von < 5 µm vor-

1 chreibung

Die Erfindung betrifft eine Niederspannungsleitung für die elektrische Verbindung elektrischer und elektronischer Bauteile, in Kraftfahrzeugen, bestehend aus einem Leiter mit einer ihn umschließenden Isolierhülle.

Leiter derartiger Niederspannungsleitungen bestehen üblicherweise aus Kupfer. Im Bereich der Kraftfahrzeugtechnik sind bisher nur in Einzelfällen Aluminiumleitungen im Querschnittsbereich ≥ 16 mm² bekanntgeworden, Obwohl 10 in der Kraffahrzeugtechnik allgemein eine leichtere Bauweise zur Treibstoffeinsparung angestrebt wird, gelang es bisher nicht, bei den Niederspannungsleitungen für Kraftfahrzeuge den Werkstoff Kupfer durch einen spezifisch leichteren Werkstoff zu ersetzen. Mit den Austauschwerk- 15 stoffen ließen sich die kraftfahrzeugspezifischen Anforderungen hinsichtlich einer hohen Festigkeit bei möglichst hoher elektrischer Leitfähigkeit, einer hohen Kriech- und Korrosionsbeständigkeit, einer hohen Biege- und Wärmebeständigkeit sowie gleichbleibend geringer Übergangswider- 20 stände der Kontaktierung bei thermo-mechanischer und chemischer Belastung nicht erzielen.

Es ist zwar bekannt, das Al 99,5 E und verschiedene Legierungssysteme wie AlFeCo (Southwire-Legierung, USA), AlFe (Southwire-Legierung, USA) oder AlCuMgBe (Elektrokoppar, Schweden) sowie AlSi für Mikrodrähte, AlMgSi (Aldrey), AlFeSi, AlCuMg, AlFeCu, AlFeMg und AlFeMgCu für die verschiedenstene Einsatzgebiete, angefangen von Stromschienen über Kabel und elektrische Leitungen (z. B. Schweißleitungen, Wickeldrähte, Telefonleitungen, Freileitungen und Spezialleitungen für den Luftfahrtbereich) zu verwenden, dennoch ist keine der bisher bekannten Zusammensetzungen als Basiswerkstoff für entsprechende Leiterausbildungen in Niederspannungsleitungen für Kraftfahrzeuge geeignet.

Die Festigkeit von Al 99,5-E läßt sich im Prinzip nur durch Kaltverformung erhöhen. Dabei stehen die erreichbaren Dehnungswerte aber im Widerspruch zum Anwendungsfall. Nimmt man eine geringere elektrische Leitfähigkeit in Kauf, so läßt sich der verfügbare Festigkeitsbereich 40 nach oben durch Leitlegierungen beträchtlich erweitern. Jedoch sind diese Materialien zum Teil durch Beimengungen von Kupfer hinsichtlich ihrer Korrosionsbeständigkeit unzureichend, andere sind in nicht ausreichendem Maße bis 105°C dauerhaft wärmebeständig oder lassen sich nur in 45 aufwendiger Verfahrenstechnik fertigen bzw. verfügen aufgrund der Auswahl und Menge der eingesetzten Elemente nicht über eine ausreichende elektrische Leitfähigkeit und Kontaktsicherheit.

Dabei ist festzustellen, daß Legierungszusammensetzung 50 und Mikrostruktur entscheidend die mechanischen Eigenschaften und somit die Eigenschaftskombinationen Festigkeit/Dehnung, Kriechbeständigkeit, Übergangswiderstand im Kontaktbereich und Biegefestigkeit/Festigkeit beeinflussen. 55

In der Patentschrift DD 205 699 wird eine AlFeMgCu-Legierung vorgeschlagen, die zum Ziel der Erhöhung der elektrischen Leitfähigkeit einen qualitätsbestimmenden Anteil Kupfer aufweist. Diese Legierung wird hinsichtlich ihrer elektrischen Leitfähigkeit und mechanischen Kennwerte 60 einer AlFeMg-Legierung nach DD 208 392 gegenübergestellt.

Die Legierung nach DD 208 392 enthält 0,5 bis 0,9 Masse-% Fe und/oder gleich/kleiner 2,5 Masse-% Ni und/oder gleich/kleiner 2,5 Masse-% Co und/oder gleich/kleiner 2,5 Masse-% Cu und/oder gleich/kleiner 2,5 Masse-% Cer-Mischmetall und/oder gleich/kleiner 1,0 Masse-% Mg. Sie wird einer speziellen thermischen Behandlung unterzogen

und erreicht bester Zugfestigkeit von 172 N/mm² eine Bruchdehnung von 6% bzw. bei einer Zugfestigkeit von 165 N/mm² eine Bruchdehnung von 7%. Mit diesen Bruchdehnungswerten ist die Herstellung feindrähtiger Litzenleiten mit einem Nennquerschnitt bis 6 mm², die einer Biegewechselzahl >10 000 gerecht werden müssen, nicht möglich. Aus diesem Grunde haben sich derartig hergestellte Drähte in der Praxis für die Fertigung von Fahrzeugleitungen nicht eingeführt.

Die in DD 205 699 vorgeschlagene AlFeDu-Legierung zeigt demgegenüber verbesserte mechanische und elektrische Kennwerte, die einem Einsatz in Fahrzeugleitungen entgegenkommen, jedoch enthält die Legierung mehr als 0,03 Masse-% Cu, wodurch eine bedeutende Beeinträchtigung der Korrosionsbeständigkeit bewirkt wird.

In einer weiteren bekannten Legierung für Leiterdrähte nach DE-OS 27 01 314 werden als Verfestigungselemente unter Zielsetzung eines hohen elektrischen Leitwertes die Elemente Fe, Si und Cu eingesetzt. Auch in diesem Falle erweist sich der relativ hohe Cu-Gehalt und die damit einhergehende Korrosionsanfälligkeit als Hindernis für den Einsatz unter Kfz-spezifischen Bedingungen.

Das Streben nach erhöhter Festigkeit und Bruchdehnung für die Herstellung von Al-Freileitungsseilen wird gemäß DD 20 02 318 durch hohe Beimengungen von Fe bei geringem Si- und Mg-Gehalt deutlich. Die dabei erreichte Leitfähigkeit ca. 33,9 m/ Ω mm² wird den Erfordernissen nach geringen Spannungsabfällen in der Kfz-Elektrik nicht gerecht.

In der nach DD 150 965 mit 0,4 bis 1,2 Masse-% Fe und 0,6 bis 1,5 Masse-% Kobalt sowie einem Siliziumanteil von kleiner 0,05 Masse-% vorgeschlagenen Legierung handelt es sich um das Streben nach einem rekristallisationsträgen Gefüge, d. h. um eine Verschiebung des Festigkeitsabfalles zu höheren Temperaturen hin. Im voraussetzungsgemäßen Zustand liegt die Bruchdehnung dieser Legierung wieder deutlich unter den erforderlichen Werten von mindestens 12%

Unabhängig von den mechanischen Voraussetzungen bestimmen jedoch ganz wesentlich die Oxidschichten der Leitermaterialien die Größe der Kontaktwiderstände und damit den Spannungsabfall in elektrischen Verbindungen.

Während auf Kupfer dickere (einige µm) und relativ fest haftende Oxid- und Sulfidschichten die Stromleitung nicht oder nur geringfügig behindern, wird der Stromfluß bei Leitern aus Al-Materialien durch die Isoliereigenschaften der Al²O³-Schicht wesentlich beeinträchtigt. Da das Wachstum der Al-Oxidschichten bei hohen Temperaturen, hoher Feuchte und korrosiven Einwirkungen ansteigt, ist auch eine wesentliche Erhöhung der Übergangswiderstände an elektrischen Kontakten bei Kfz-spezifischen Belastungen zu verzeichnen.

Bekannt ist weiterhin, Leitdrähte nach an sich bekannter Weise im Ein- oder Mehrschichtverfahren oberflächenzubehandeln, z. B. in Form von Verkupfern, Vernickeln, Verzinnen oder Versilbern.

Der Erfindung liegt die Aufgabe zugrunde, eine gewichtsreduzierende Niederspannungsleitung für Kraftfahrzeuge zu entwickeln, die eine zuverlässige elektrische Verbindung der elektrischen und elektronischen Bauteile in Bordnetzverdrahtungssystemen gewährleistet.

Diese Aufgabe wird gemäß der Erfindung gelöst, daß der Leiter aus einem oder mehreren Al-Legierungsdrähten besteht, die im Nenndurchmesser von 0,10–0,70 mm eine Zugfestigkeit R_m von 120 bis 200 N/mm², eine 0,2 Streckgrenze von mindestens 80 n/mm² eine Dehnung A_{L 100} von mindestens 12% und eine elektrische Leitfähigkeit (γ₂₀) von >34,5 m/Ohm mm² aufweisen, wobei sich eine Legierung in der

- 0,4 bis 1,3 Masse-% Fe
- 0,10 bis 0,25 Masse-% Si
- 0.005 bis 0,012 Masse-% B
- 0,02 bis 0,20 Masse-% Mg
- 0,007 bis 0,04 Masse-% Zn
- max. 0,01 Masse-% Cu, max. 0,01 Masse-% V. max. 0,005 Masse-% Mn und max. 0,02 Masse-% Ti
- Rest Aluminium einschließlich höchstens 0,1 Mas- 10 se-% sonstiger Verunreinigungen und einem ungelösten Fe-Anteil in Form kleinster Teilchen als der geeigneten Leiterwerkstoff erwies.

Überraschenderweise wird hierbei durch die definierte 15 Zulegierung von Mg, B, Si und Zn in o.g. Konzentrationsbereichen eine mikrodisperse Verteilung des Eisens im Aluminium bewirkt, wodurch die geforderten mechanischen Eigenschaften des Drahtes bei hoher elektrischer Leitfähigkeit erreicht werden.

Dabei ist es zweckmäßig, wenn der Außenbereich der Legierungsdrähte mit einer geschlossenen metallischen, einoder mehrschichtigen Oberflächenbeschichtung versehen ist, die aus Zinn, Kupfer, Nickel, Silber oder deren Legierungen besteht und homogen und duktil ausgebildet ist.

Die Leiterkonstruktion ermöglicht im Zusammenwirken mit dem Leiterwerkstoff eine langzeitlich stabile elektrische und mechanische Verbindung mit konventionellen Kraftund formschlüssigen Anschlußmitteln unter Kfz-spezifischen Bedingungen. Dabei gewährleistet die erfindungsge- 30 mäße Leitung in Verbindung mit den kraftfahrzeugspezifischen Anschlußmitteln nach korrosiver Belastung mit Schadgas, feuchter Wärme und intermittierendem Salznebel (96 h) und thermischer Dauerbelastung von 105°C über 3000 h eine Erhöhung der Kontaktübergangswiderstände 35 vom maximal 20% und im Biege-Wechsel-Test > 10.000 Biegewechselzyklen bei -40°C.

Die erfindungsgemäß aufgebaute Niederspannungsleitung weist ein im Vergleich zu Leitungen mit leitwertgleichem Kupferquerschnitt ein um 30 bis 55% geringeres Ge- 40 wicht auf.

Die der Erfindung zugrundeliegende Aufgabe wird in einer Alternativ-Lösung mit den Merkmalen des Anspruchs 3 gelöst.

Erfindungsgemäß wird das Magnesium in der beschriebe- 45 nen Konzentration als Mischkristall mit Aluminium und anderen definierten Beimengungen im Gefüge eingesetzt, um damit eine dem Anwendungsfall entsprechende Kombination zwischen elektrischer Leitfähigkeit, Zugfestigkeit und Dehnung sowie Korrosions- und Kontaktsicherheit zu erhal- 50

Der Fe-Anteil bewirkt im Rahmen eines definierten Ausscheidungszustandes die Behinderung der Versetzungswanderung. Damit führt die Stabilisierung der Subkornstruktur zu einer verbesserten Wärmebeständigkeit der mechani- 55 Niederspannungsleitung für Straßenfahrzeuge und schen Eigenschaften und zu einer hohen Kriechbeständigkeit, was wiederum ausschlaggebend ist für ein gutes Langzeitverhalten der Kontaktierung.

Die Oberflächenbeschichtung dient zur Eliminierung der Aluminium-Oxidschicht und zum Schutz vor korrosiven 60 Einflüssen. Von entscheidender Bedeutung für die Qualität des Kfz-spezifischen Gebrauchswertverhaltens hinsichtlich dieser Oberflächenbeschichtung sind folgende Faktoren:

- Beständigkeit gegen Kfz-spezifische Beeinflussun- 65
- Gewährleistung der Duktilität der Oberfläche nach den Zieh- und Glühprozessen der Drahtherstellung aus

- eten Vormaterial auf Drähte bis zu einer Durchmesser von 0,10 mm;
- Unverletzlichkeit der Beschichtung bei Kontaktie rung der Leitung mit Kfz-typischen Verbindungsele menten (z. B. Crimpen);
- chemische und physikalische Langzeitbeständigke des Materialsystems AlFeMg-Legierung/Oberflächer. material.

Zur weiteren Stabilisierung des Zuverlässigkeitsverhal tens gegenüber klimatischen Einflüssen sowie auch zur wei teren Verbesserung der Biegbarkeit des Litzenleiters ist e vorteilhaft, wenn die den Leiter bildenden Legierungsdräht mit einem hydrophoben, einen Gleiteffekt aufweisender Film benetzt sind. Hierfür wird ein dem Fachmann an sicl bekanntes spezielles Öl verwendet.

Zur weiteren Optimierung der Leiterkonstruktion ist e zweckmäßig, wenn der Leiter im Leiternennquerschnittsbe reich bis etwa 6 mm² als Litzenleiter mit einer Schlaglänge von (13 ± 2) × Litzenleiterdurchmesser D aufgebaut ist. Da bei ist der Litzenleiter vorzugsweise konzentrisch aufge baut. Die so hergestellte Leiterkonstruktion wird in übliche Weise mit für die Kraftfahrzeugtechnik geeigneten Isolier materialien isoliert und kann sowohl als Einzelleitung al: auch in Bandform oder mehradrig verseilt und ummantel eingesetzt werden.

Die erfindungsgemäße Niederspannungsleitung läßt sich effektiv herstellen und verarbeiten und weist unter Zugrundelegung eines leitwertgleichen Kupferquerschnitts ein ca 50% niedrigeres Leitergewicht auf. Dabei ist zugleich eine um 10% höhere Strombelastbarkeit gegeben, da die für die Abführung der Stromwärme maßgebende Leiteroberfläche des Aluminiumleiters etwa 28% größer ist als die Oberfläche des Kupferleiters kleineren Durchmessers. Der Litzenleiter kann mit den auch für Kupferleitungen üblichen Anschlußelementen kontaktiert werden und gewährleistet in den gebräuchlichen Preßverbindungen einen dauerhaft guten Kontaktdruck und damit geringe Übergangswiderstände, da die Legierungsdrähte eine bis zu 10-fach höhere Kriechbeständigkeit aufweisen als Al 99,5-E (w). Diese Feststellungen gelten auch nach thermischer Alterung, feuchter Wärme, Hydrolyse- und Schadgasbeanspruchung sowie unter Beachtung der auch für Kupferleiter üblichen Schutzmaßnahmen gegen eine direkte Beaufschlagung durch Salznebel. Infolge des günstigen Festigkeits-Dehnungs-Verhältnisses der Legierungsdrähte und der auf den Leiterwerkstoff abgestimmten Verlitztechnik wird eine gute Beständigkeit der Leitung gegenüber Brüchen bei richtungswechselnder Biegebeanspruchung sowie Stoß- und Schwingungsfestigkeit auch bei niedrigen Temperaturen erreicht.

In der Zeichnung sind zwei als Beispiele dienende Ausführungsformen der Erfindung schematisch dargestellt. Es zeigen

Fig. 1 einen Querschnitt durch eine erfindungsgemäße

Fig. 2 eine abgewandelte Ausführungsform in einer Darstellung gemäß Fig. 1.

Dargestellt in Fig. 1 ist ein einen Nennquerschnitt von 1,5 mm² aufweisender Leiter mit einem Durchmesser D, der aus 19 Al-Legierungsdrähten 1 zu einem unilay-konzentrischen Verband mit einer Schlaglänge von 16 mm verseilt ist. Über die 19-drähtige Leiterkonstruktion ist eine Isolierhülle 2 aus abriebfestem, flammwidrigem, Kfz-medienbeständigem, weichem Polyvinylchlorid extrudiert.

Jeder Al-Legierungsdraht 1 mit einem Nenndurchmesser von 0,31 mm ist mit einer aus Nickel bestehenden Deckschicht 3 von 0,1 bis 1,5 µm Wanddicke versehen.

Der Legierungsdraht 1 weist vor dem Verlitzprozeß eine

6

Zugfestigkeit R_m volume bis 176 N/mm², eine Dehnung $A_{L=100}$ von 12–15% sowie eine spezifische elektrische Leitfähigkeit von ca. 35,7 m/ $\Omega \cdot \text{mm}^2$ auf.

Der mit einer Wanddicke von ca. 0,3 mm isolierte unilaykonzentrische und verdichtete Leiterverbund mit einem Außendurchmesser von 1,48 mm ermöglicht einen Leitungsdurchmesser von ca. 2,1 mm und befindet sich damit im Größtmaßbereich einer vergleichbaren Kupferleitung mit einem Nennquerschnitt von 1 mm².

Eine so hergestellte Leitung ermöglicht im Biege-Wechsel-Test bei -40°C mindestens 20.000 Biegezyklen. Nach Schadgas-/Feuchte-Wärme-Belastung liegt die Erhöhung des Übergangswiderstandes zwischen Leiter und verzinntem Kontaktelement bei nur 18% des zulässigen Wertes. Nach 96-h-Belastung mit intermittierendem Salznebel wird 15 ebenfalls nur eine Erhöhung des Übergangswiderstandes von max. 15% gegenüber dem zulässigen Höchstwert einer Verdoppelung erreicht.

Spannungsabfall und Leiterfestsitz über eine Beanspruchungsdauer von 3000 h bei 105°C verhalten sich analog 20 den Werten leitwertgleicher Kupferleiter.

Im Ergebnis ist eine derartige Leitung gegenüber einer leitwertgleichen Kupferleitung mit dünnwandiger Isolierhülle um ca. 36% gewichtsreduziert, besitzt eine ca. 1,1-fache Strombelastbarkeit und kann sehr komplex zur Verdrahtung fahrzeugelektrischer und elektronischer Geräte unter Nutzung bekannter Konfektionierungs- und Kontaktierungstechnik eingesetzt werden.

Fig. 2 zeigt eine vergleichbare Niederspannungsleitung mit einem einen Nennquerschnitt von 2,5 mm² aufweisenden Leiter mit dem Durchmesser D, der ebenfalls aus 19 Al-FeMg-Legierungsdrähten 1 zu einem unilay-konzentrischen Verband mit einer Schlaglänge von 24 mm verseilt ist. Über diese Leiterkonstruktion ist ebenfalls eine Isolierhülle 2 extrudiert. Jeder AlFeMg-Legierungsdraht 1 mit einem Nenndurchmesser 0,40 mm ist mit einer aus Nickel bestehenden Oberflächenbeschichtung 3 versehen und weist eine Zugfestigkeit R_m von 120 MPa, eine Dehnung $A_{L=100}$ von 14,5% und einen Leiterwiderstand von 12,2 m Ω/m auf.

Eine derartige Leitung ist gegenüber einer leitwertglei- 40 chen Kupferleitung mit dünnwandiger Isolierhülle um ca. 32% gewichtsreduziert, besitzt eine 1,13-fache Strombelastbarkeit und kann sehr komplex zur Verdrahtung fahrzeugelektrischer und elektronischer Geräte unter Nutzung bekannter Konfektionierungs- und Kontaktierungstechnik eingesetzt werden.

Patentansprüche

1. Niederspannungsleitung für die elektrische Verbin- 50 dung elektrischer und elektronischer Bauteile in Kraftfahrzeugen, bestehend aus einem Leiter und aus einer ihn umschließenden Isolierhülle, dadurch gekennzeichnet, daß der Leiter aus einem oder mehreren Al-Legierungsdrähten besteht, die im Nenndurchmesser 55 von 0,12-0,70 mm eine Zugfestigkeit R_m von 120 bis 200 N/mm², eine 0,2-Grenze von mindestens 80 N/mm^2 , eine Dehnung $A_{L=100}$ von mindestens 12% und eine elektrische Leitfähigkeit (γ_{20}) von > 34,5 m/Ohm mm² aufweisen, wobei die Legierung 60 0,4 bis 1,3 Masse-% Fe, 0,02 bis 0,20 Masse-% Mg, 0,10 bis 0,25 Masse-% Si, 0,007 bis 0,04 Masse-% Zn, 0,005 bis 0,012 Masse-% B, max. 0,01 Nasse-% Cu, max. 0,01 Masse-% V, max. 0,005 Masse-% Mn und max. 0,02 Masse-Ti, Rest Aluminium einschl. höch- 65 stens 0,1 Masse-% sonstige Verunreinigungen enthält und deren ungelöster Fe-Anteil in Form kleinster Teilchen von $< 5 \mu m$ vorliegt.

- 2. Nieder Jungsleitung nach Anspruch 1, dadurch gekennzeichnet, daß der Außenbereich der Legierungsdrähte mit einer geschlossenen metallischen, ein- oder mehrschichtigen Oberflächenbeschichtung versehen ist, die aus Zinn, Kupfer, Nickel, Silber oder deren Legierungen besteht und homogen und duktil ausgebildet ist
- Niederspannungsleitung f
 ür die elektrische Verbindung elektrischer und elektronischer Bauteile, bestehend aus einem Leiter mit einer ihn umschließenden Isolierhülle (2), dadurch gekennzeichnet, daß der Leiter der für Bordnetzverdrahtungssysteme der Kraftfahrzeugtechnik bestimmten Niederspannungsleitung, aus einem oder mehreren AlFeMg-Legierungsdrähten (1) besteht, die im Nenndurchmesserbereich von 0.10 bis 0,70 mm eine Zugfestigkeit (R_m) von etwa 115 bis 145 MPa, eine 0,2-Grenze von 50 bis 90 MPa, eine Dehnung (A_{L=100}) von etwa 10 bis 22% und eine elektrische Leitfähigkeit (γ_{20}) von > 34 m/ Ω mm² aufweisen und mit einer geschlossenen metallischen Oberflächenbeschichtung (3) versehen sind, wobei die Al-FeMg-Legierung etwa 0,50 bis 0,90% Fe und etwa 0,10 bis 0,20% Mg enthält und eine heterogene Aluminiummatrix aufweist, deren Fe-Anteil in Form kleinster Teilchen von < 5 µm vorliegt und das Subkorngefüge stabilisiert.
- 4. Niederspannungsleitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die den Leiter bildenden Legierungsdrähte (1) mit einem hydrophoben, einen Gleiteffekt aufweisenden Film benetzt sind.
- 5. Niederspannungsleitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Leiter im Leiternennquerschnittsbereich bis etwa 6 mm² als Litzenleiter mit einer Schlaglänge von (13 ± 2) × Litzenleiterdurchmesser (D) aufgebaut ist.
- Niederspannungsleitung nach Anspruch 5, dadurch gekennzeichnet, daß der Litzenleiter konzentrisch aufgebaut ist.
- 7. Niederspannungsleitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zum Zwecke einer Gewichts- und Durchmesserreduzierung die mehrdrähtigen Leiterkonstruktionen nach dem Verlitz- bzw. Verseilprozeß kreisförmig verdichtet sind.
- 8. Niederspannungsleitung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Isolierhülle (2) aus einem Thermoplast, Elastomer oder thermoplastischen Elastomer besteht, deren Wanddicke in Abhängigkeit von Leiterquerschnitt, spezifischer Belastung und Isolierwerkstoff mindestens 5% gegenüber international fixierten Normwerten reduziert ist.

Hierzu 2 Seite(n) Zeichnungen

DE 197 44 667 A1 H 01 B 1/0216. April 1998

Fig. 1

Nummer: Int. Cl.⁶: egungstag: DE 197 44 667 A1, H 01 B 1/02 16. April 1998

Fig. 2

AN: PAT 1998 934
TI: Low voltage cable for motor vehicles consists of conductor and insulating sleeve enclosing it: conductor consists of one or more aluminium alloy wires
PN: DE19744667-A1

PN: **DE19744667**-2 PD: 16.04.1998

AB: The low voltage cable for motor vehicles consists of a conductor and an insulating sleeve enclosing the conductor. The conductor consists of one or more aluminium alloy wires of dia. between 0.12 and 0.70 mm. and a strain resistance of 120 to 200 N/mm2, a 0.2 limit of at least 80 N/mm2 and extension AL=100 of at least 12 per cent and an electrical conductivity of greater than 34.5 m/Ohm.mm2. The alloy contains iron, magnesium, silicon, zinc, boron, copper, vanadium, manganese and titanium in defined proportions as well as aluminium, impurities of up to 0.1 wt. percent and undissolved iron components in the form of particles of less than 5 microns; Wt. reducing cable ensures reliable electrical connection of electrical and electronic components into vehicle electrical network.

PA: (KABE-) KABELWERK LAUSITZ GMBH; IN: ARNDT V; KOESTER H; MOHR F; FA: DE19744667-A1 16.04.1998;

CO: DE;

IC: H01B-001/02; H01B-007/04; H01B-007/28; MC: X12-D01A; X12-D03A2; X12-D03H; X22-X01B; DC: X12-X22

DC: X12; X22; FN: 1998231934.gif PR: DE1041506 09.10.1996; FP: 16.04.1998

18.05.1998

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

u	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
۵	FADED TEXT OR DRAWING
右	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox