1)
$$g(t) = \pi - t$$
 sur $J_0, \pi J$ et $g(0) = 0$

for me peut pas faire par translation car fct° impaire et intervalle doit être de longueur 21T

g non continue mais continue par morceauxe (on leve le stylo un nb fini de fois sur sa feuille) Non continue en les 2kt vie R E Z.

g est C1 par morceause car dérivable partout souf en le no fini de pto de discontinuité sur la feuille.

2)
$$o_{m}(g) = ?$$
 $\forall m > 0$
 $b_{m}(g) = ?$ $\forall n > 0$

Soit n7 1

$$b_{n}(9) = \frac{2}{2\pi} \int_{0}^{2\pi} g(t) \sin(nt) dt$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} g(t) \sin(nt) dt$$

Ice
$$b_{m}(9) = \frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin(mt) dt$$

(cont [-17, 17] set de l: 211)

 $l \mapsto g(t) \sin(mt)$ Paire car g impaire [at] this sin left impaire.

Annot,

 $b_{m}(9) = \frac{1}{\pi} \times 2 \int_{-\pi}^{\pi} g(t) \sin(mt) dt$
 $= \frac{2}{\pi} \int_{0}^{\pi} (\pi - t) \sin(mt) dt$
 $= \frac{2}{\pi} \int_{0}^{\pi} (\pi - t) \sin(mt) dt$

(on $g(t) = \pi - t$ sur J_{0} ; πJ_{0})

IPP:

 $u(t) = \pi - t$ $u'(t) = -1$
 $u'(t) = -$

c) calcular (
$$C_{n}(g) = 2$$
)
$$\frac{1}{2\pi} \int_{0}^{2\pi} g(t) e^{-int} dt$$

d'après le cours,

$$c_0(g) = a_0(g)$$

si $n > 0$, $c_n(g) = \frac{1}{2}(a_n(g) - ib_n(g))$ for p ,

Di $n < 0$, $c_n(g) = \frac{1}{2}(a_n(g) + ib_n(g))$

$$C_0(g) = a_0(g) = 0$$

$$C_{n}(q) = \frac{1}{2} (a_{n}(q) - ib_{n}(q))$$

= $\frac{1}{2} (0 - i \times \frac{Z}{n})$

$$c_{n}(g) = \frac{1}{2} \left(a_{-n}(g) + ib_{-n}(g) \right)$$

= $\frac{1}{2} \times \left(0 + i \times \frac{Z}{-n} \right)$

CCl:
$$c_0(g) = 0$$

 $\forall n \neq 0$, $c_n(g) = -i$

4) Dirichlet non continue (car g non continue, C1 par morceaux)

$$= \frac{g(t^+) + g(t^-)}{2} \quad \text{ fi g non continue en } t$$
avec cv de la série $g(t)$ si g continue en t .

manvaix échelle, g(2tt+

Si $t \neq 2h\pi$, $h \in \mathbb{Z}$, g continue en t $g(0^{-1}-u)$ $g(x^{-1}-u)$ Si $t = 2h\pi$, $k \in \mathbb{Z}$, g non continue en t $g(t^{-1})+g(t^{-1})$

3 En résumé, pour
$$t \in \mathbb{R}$$

2 $\sum_{k=1}^{+\infty} \frac{\sin(nt)}{n} = \begin{cases} 0 & \text{si} \quad t = 2 \text{ let avec } k \in \mathbb{Z} \\ g(t) & \text{si} \quad t \neq 2 \text{ let avec } k \in \mathbb{Z} \end{cases}$

aloro
$$2\sum_{n=1}^{+\infty} sin\left(\frac{n2l\pi}{n}\right) = 0$$

$$sin\left(\frac{2nh\pi}{n}\right) = 0$$

$$2 \stackrel{+\infty}{\geq} \frac{\text{pin}(n \times 1)}{n} = g(1) \text{ car } 1 \neq 2RTT$$

$$\frac{t}{2} \frac{\sin(h)}{n} = \frac{g(1)}{2} \quad \text{our } j_0; \exists t = 1 \\
= \frac{\pi - 1}{2} \quad \text{de } g(1) = \pi - 1$$