Question 1: (Use the Last page for rough work, perform all calculations, and write a neat and clean answer in the provided space. Tick in the table according to the option available for every question) [10*3=30] (CLO-1)

- A. The sum of $(123)_4+(456)_8$ will be equal to
 - a. $(320)_{10}$
 - b. $(1235)_3$
 - c. $(101001101)_2$
 - d. (149)₁₆
 - e. b and c both
- B. What will be the $(4A)_{16}$ $(321)_4$
 - a. $(11000)_2$
 - b. $(10100)_2$
 - c. $(10010)_2$
 - d. (10001)₂
 - e. $(11100)_2$
- C. Write the ASCII characters for the following binary sequence 11000001110110101000010 considering odd parity
 - a. ABC
 - b. ABZ
 - c. BAZ
 - d. AZB
 - e. BZA
- D. What will be the gray code for the binary sequence obtained after BCD addition of $(791)_{10} + (658)_{10}$
 - a. 0011111001101101
 - b. 0001111001101111
 - c. 0011110011011011
 - d. 0001111001101101
 - e. 0001111011101101
- E. For the signed numbers A=16, B=-29 and C=19 what will be D if D=A-B-C
 - a. 0011001
 - b. 0011010
 - c. 1011110
 - d. 0011010
 - e. 1001100
- F. For the following circuit having inputs A and B, what will be the output waveform of Y for the given inputs waveform A and B.

c.

- G. Simplify the Boolean expression F = (x'+y'+z)(x'+y+z)(x+y) and Identify its complement
 - a. (x+z)(x+y')
 - b. (x+z')(x+y')
 - c. (x+z')(x'+y)
 - d. (x+z)(x+y')
 - e. (x+z)(x+y')(y'+z)

H. The Boolean function y will be

- a. Y=(B+C)A'+B'+C
- b. Y=(B+C)A+B'C
- c. Y=(B+C)'A+B'C
- d. Y=(B+C)'A+B'+C
- I. The simplified Boolean expression of (A+B+C)(AB+C) to a minimum number of literals will be
 - a. AC+B
 - b. AB+BC
 - c. AB+C
 - d. A+BC
 - e. AB+A
- J. Digital Logic Families used for high-speed operations
 - a. CMOS
 - b. MOS
 - c. ECL
 - d. TTL

Question Sr. No	Option: a	Option: b	Option: c	Option: d	Option: e
A				✓	
В				✓	
C				✓	
D				✓	
E				✓	

F		✓	
G		√	
Н		√	
I		✓	
J		✓	

Question 2: (A neat and clean Circuit diagram is important. Cutting and overwriting can directly affect your marks.) [30] (CLO-1)

A. Explain the difference between Minterm and Maxterm

[2*2.5=5]

Minterm: The AND of N variables such that they equals to 1 is called minterm or standard product. There are 2^N possible minterms with N variables. Minterms are denoted by lower case m. Minterm is obtained from an AND term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1.

Maxterm: The OR of N variables such that the result is equal to 0 is called maxterm or standard sum. There are 2^N possible minterms with N variables. Maxterms are denoted by upper case M .Maxterm is obtained from an OR term of the n variables, with each variable being unprimed if the corresponding bit is a 0 and primed if a 1.

The complement of a minterm is equal to its corresponding maxterm

B. The truth table of the function X is shown below. Note: A term is MSB and C term is LSB. (Please ensure that you mention the name of every logic law you apply at each step. Failure to do so will result in a deduction of marks for the question).

[1*10=10]

ABC	X
000	1
001	1
010	1
011	1
100	1
101	0
110	0
111	0

Using Boolean Algebra's laws, show that the function **X** based on the truth table that it can be expressed as: $X = \overline{A} + \overline{B} + \overline{C}$.

X = A' + (B + C)'

X=A'+(B'.C') DEMORGAN'S LAW

Completing terms

X=A'(B+B')(C+C')+B'C'(A+A')

Because we know that (A+A`=1) Identity Law

X=(A`B+A`B`)(C+C`)+B`C`A+B`C`A`

Distributive Law

X = A`BC+A`BC`+A`B`C+A`B`C`+B`C`A+B`C`A``

Distributive Law

X = A`BC + A`BC` + A`B`C + A`B`C` + AB`C` + A`B`C`

Commutative Law

We know that in minterm if A = 1 and A' = 0 so,

Extra Detail (X=011+010+001+000+100+000)

 $X = m_3 + m_2 + m_1 + m_0 + m_4 + m_0$

 $X = m_3 + m_2 + m_1 + m_0 + m_4$

Theorem 1

 $X = m_0 + m_1 + m_2 + m_3 + m_4$

Logical Equivalence

 $X = \Sigma m(0,1,2,3,4)$

So,

$$X = A' + (B+C)' = A'B'C' + A'B'C + A'BC' + A'BC + AB'C'$$

- C. Based on the following logic equation: $Y = K\overline{L} + \overline{L}M + KM$
 - a) Draw the corresponding logic circuit by using the combination AND, OR, and INVERTER gates only [1*5=5]

b) Complete the following Truth Table based on Question 2C. Note: K term is MSB and L term is LSB. [1*10 =10]

K	L	M	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

 $Y = K\overline{L} + \overline{L}M + KM$

Y = KL'(M+M')+L'M(K+K')+KM(L+L')

Because we now that (A+A`=1) Identity Law

Y = KL'M+KL'M'+L'MK+L'MK'+KML+KML'

Distributive Law

Y=KML'+**KM**'L'+**KML**'+**K**'**ML**'+**KML**+**KML**'

Commutative Law according to question K is MSB and L is LSB

Now

Y= (110+100+110+010+111+110)

So,

 $Y = \Sigma m(2,4,6,7)$

Question 3: (A neat and clean Circuit diagram is important. Cutting and overwriting can directly affect your marks.) [1*10=10] (CLO-1)

Draw the circuit diagram of given Boolean expression:

$$\mathbf{Z} = \overline{\overline{BA} \oplus A\overline{C}} + \overline{B}\mathbf{C}$$

