Leichtgewichtige Reporting-Architektur, inspiriert von CQRS

Simon Kerler

Lead Software Engineer

Agenda

- 1. Wer bin ich?
- 2. Einführung in die Domäne
- 3. Kurzer Abriss zu CQRS
- 4. Iterative Umsetzung der Architektur
- 5. Re-Cap
- 6. Erweiterungsmöglichkeiten
- 7. Fazit

Wer bin ich?

Simon Kerler

- M. Sc. Informatik
- > 7+ Jahre Erfahrung in Software-Entwicklung
 - Großkonzern, Startups, Freelance
- Jetzt: Jungheinrich Digital Solutions (JDS)
- Position: Lead Software Engineer
- Fachlicher Fokus u. a. auf
 - Software-Architektur
 - Domain Driven Design
 - Refactoring
 - Performance Optimierung

www.simonkerler.de

github.com/namelessvoid

linkedin.com/in/simon-kerler

simon.kerler@jungheinrich.de simon_kerler@web.de

Jungheinrich Flottenmanagement System

- Jungheinrich: Flurförderfahrzeuge (Gabelstapler) + Intralogistik + Dienstleistung
- JDS: Digitale Lösungen z. B. das Flottenmanagement System

Flottenmanagement System:

- Web- / Cloud-Anwendung
- Holistische Sicht der Kund:innen auf ihre Flotte
- Aktive und passive Features
- Wichtig für heute: Rechnungs-Domäne

Flottenmanagement System: Rechnungs-Domäne

Kunde erhält Transparenz über Kosten und Rechnungen:

- Rechnungsverwaltung
- Rechnungsübersicht
- Fahrzeugkosten
- Warenhauskosten
- Filter-Optionen für analytischen Drill-Down
- Festlegen von Budgets zur Kostenkontrolle

Flottenmanagement System: Rechnungs-Domäne

Tech Stack:

- Frontend: React
- Backend: Spring MVC mit Spring Boot
- Persistenz: Spring Data JPA + Hibernate
- Datenbank: MySQL (historische Gründe)
- Hosting: AWS Fargate

High-Level Architektur

Datenstrukturen

Invoice

- invoiceNumber: String
- currency: Currency
- channel: Channel
- invoiceItems: List<InvoiceItem>

•••

InvoiceItem

- invoiceNumber: String
- itemNumber: String
- netValue: BigDecimal
- equipmentId: String

•••

EquipmentCost

- invoiceNumber: String
- invoiceItemNumber: String
- equipmentId: String
- locationId: String
- currency: Currency
- amount: BigDecimal
- rentalAmount: BigDecimal
- serviceAmount: BigDecimal

•••

Herausforderungen: Performance

On-the-Fly Transformation

- Normalisiertes Modell anreichern ⇒ Mehrere Joins
- ► Kostenkategorisierung nicht trivial ⇒ Wird in Java vorgenommen
- ▶ Deshalb Aggregationen + Filter auch in Java ⇒ Laden unnötiger Items
- ⇒ Langsam (zweistelliger Sekundenbereich)

Optimierungsversuche

- Datenbank Indizes
- Lazy-Loading
- Code Optimierung
- ⇒In Summe nicht ausreichend

Herausforderungen: Architektur

Keine eindeutigen Zuständigkeiten

- ► Transformation über mehrere Ebenen verteilt (Domain bis Controller)
- Einzelschritte und Gesamtlogik nicht klar erkennbar
- Gerade bei Support-Anfragen schwer erklärbar

⇒ Nicht nachvollziehbare Business-Logik

Eine operative und eine analytische Domäne

Rechnungs-Domäne

"Operative" Domäne

- Einsehen von Rechnungen aus der Buchhaltung
- Manuelle Verwaltung von Dritt-Rechnungen

Synchronisation ?

Fahrzeug-Kosten-Domäne

Analytische Reporting Domäne

- Transparenz der Kosten pro Fahrzeug
- Analyse der Kosten pro Standort
- Filteroptionen für analytischen Drill-Down

Eine operative und eine analytische Domäne

Rechnungs-Domäne

"Operative" Domäne

- Einsehen von Rechnungen aus der Buchhaltung
- Manuelle Verwaltung von Dritt-Rechnungen

CQRS !!!!einself

Fahrzeug-Kosten-Domäne

"Analytische" / "Reporting" Domäne

- Transparenz der Kosten pro Fahrzeug
- Analyse der Kosten pro Standort
- Filteroptionen für analytischen Drill-Down

Command Query Responsibility Segregation

Was die Meisten denken, was es ist

M Medium

CQRS Design Pattern in Microservices ...

Martin Fowler CORS

AWS Documentation

CQRS pattern - AWS Prescriptive G...

⇒ GeeksforGeeks

CORS - Command Ouerv Responsibility S...

© CodeOpinion

CORS & Event Sourcing Code Walk-Through - Code...

Code Project
Code Project

⇒ GeeksforGeeks

CQRS - Command Query Responsibility Segr...

CloudopianCQRS pattern – Cloudopian

Medium Revitalizing Transaction-Heavy Systems by ...

& Kindson The Genius
Understanding the Architecture of Eve...

Ergebnis einer Google Bilder Suche "cqrs diagram"

Command Query Responsibility Segregation

Was die Meisten denken, was es ist

Command Query Responsibility Segregation

Was die meisten denken, was es ist

Alle Vor- und Nachteile eines verteilten Systems

- Zwei Deployables
- Entkopplung
- Ausfallsicherheit
- Skalierbarkeit
- Observability
- Maintenance
- Infrastruktur
- ⇒ Komplex und teuer

Command Query Responsibility Segregation Was es eigentlich ist

"The rationale is that [...], having the **same conceptual model for commands and queries** leads to a more complex model that **does neither well**."

"[...] split [...] conceptual model into separate models for update and display, which it refers to as Command and Query respectively [...]"

"[...] models, **probably** running in different logical processes, **perhaps** on separate hardware."

Quelle: https://martinfowler.com/bliki/CQRS.html Hervorhebungen von mir

Unser Lösungsansatz

Leichtgewichtige, iterative Adaption

1. Iteration Separate Commands and Queries

Separate Commands and Queries

Separate Commands and Queries

Zwischenergebnis:

- Klare Trennung der Verantwortlichkeiten
- Sauberer Ausgangspunkt für weitere Iterationen
- ► Keinerlei Änderung der Business Logik

2. Iteration Cost Model Schreiben

Cost Model Schreiben

Invoice

- invoiceNumber: String
- currency: Currency
- channel: Channel
- invoiceItems: List<InvoiceItem>

• • •

InvoiceItem

- invoiceNumber: String
- itemNumber: String
- netValue: BigDecimal
- equipmentId: String

•••

EquipmentCost

- invoiceNumber: String
- invoiceItemNumber: String
- equipmentId: String
- locationId: String
- currency: Currency
- amount: BigDecimal
- rentalAmount: BigDecimal
- serviceAmount: BigDecimal

•••

Cost Model Schreiben

Cost Model Schreiben

```
@Component
public class CreateInvoiceCommandHandler {
  @Autowired
  private final ApplicationEventPublisher eventPublisher;
  @Transactional
  public void handle(CreateInvoiceCommand command) {
    var invoice = invoiceFrom(command);
    invoiceRepository.save(invoice);
    var event = new InvoiceCreatedEvent(invoice);
    eventPublisher.publishEvent(event);
```

Cost Model Schreiben

CommandHandler verwaltet Transaktion:

- Sollte der Listener eine Exception werfen, wird das Command zurückgerollt
- Benötigt, um Invoices und Equipment Cost in Sync zu halten
- Als Konsequenz: ApplicationEventListener muss synchron ausgeführt werden

Cost Model Schreiben

Event enthält Invoice Referenz:

- Einfachste Lösung
- Alternativen
 - Rechnungsnummer / ID
 - Relevante Felder
- Prinzipiell Design- und Kapselungsentscheidung

Cost Model Schreiben

```
@Component
public class EquipmentCostInvoiceCreatedEventListener {
  @EventListener
  public void listen(InvoiceCreatedEvent event) {
    var equipmentCost = fromInvoice(event.invoice);
    equipmentCostRepository.save(equipmentCost);
```

Cost Model Schreiben

Zwischenergebnis:

- Änderungen nur auf Schreib-Seite
 - Konzentration auf Korrektheit des Modells
 - Konzentration auf Korrektheit der Technik (z. B. Transaktionen)
- Lese-Seite unbeeinflusst
 - Weder Code- noch Test-Änderungen notwendig

Cost Model Lesen

Cost Model Lesen

Cost Model Lesen

Cost Model Lesen

Vorgehen:

- Erstellen zusätzlicher Endpunkte + QueryHandler, die aus dem Cost Model lesen
- Anlegen von Regressionstests auf Endpunktebene
 - Jest-basiert (Node)
 - ► Ruft beide Endpunkte auf und erwartet das exakt gleiche Ergebnis
- Initialisierung des Equipment Cost Models: Für jede Rechnung ein InvoiceCreatedEvent absetzen
- Frontend-Feature Toggle für Product Owner
- Performance-Evaluierung via k6

Cost Model Lesen

Zwischenergebnis:

- Performance-Vorteil kommt zum Tragen
- Fokus auf Umstellung der Lese-Seite
- ► Aber: Komplexe Filter-Optionen erlauben weitere Optimierung

Denormalisierung

Denormalisierung

```
EquipmentCostQuery
filters: {
 timeSpan: {
    start: '2022-01-01',
                                                                             Equipment
    end: '2023-01-01'
 },
                                                              Joins
 locations: [...],
 segments: [...],
 tags: [...]
                                                Equipment Cost
                                                                              Location
},
sort: {
  field: "location.city",
  order: "asc"
                                                                                Tags
```

4. Iteration

Denormalisierung

EquipmentCost

- invoiceNumber
- invoiceItemNumber
- currency
- amount
- rentalAmount
- serviceCost

...

- locationCity
- locationStreet
- equipmentSegment
- equipmentManufacturer
- equipmentYearOfConstruction

• • •

Vorteil: Performance Gewinn Herausforderung: Daten aktuell halten

4. Iteration

Denormalisierung

Transaktions-Scope Race Conditions? Optimistic locking!

Re-Cap

Was wir bis hier haben

- Getrennte Read- und Write-Models
 - Read-Model optimiert für OLAP-Anforderungen*
- ApplicationEvent und in-process Kommunikation
 - ► Kein zusätzliches Deployment, keine zusätzliche Infrastruktur, ...
 - Transaktionsgarantie durch synchrone Events und optimistic Locking
- Guter Ausgangspunkt für Erweiterungen
- ⇒ Performance im Griff
- ⇒ Architektur / Business Logik im Griff
- ⇒ Leichtgewichtig und flexibel erweiterbar

* Online Analytical Processing

Erweiterungsmöglichkeiten

Vier Beispiele

2. Beispiel: Trennen Lesen + Schreiben in zwei Deployables

Wenn die CPU das Bottleneck ist:

ApplicationEvents mit Queue und Listener mit z. B. @SqsListener ersetzen

Verfügbare Controller und Handler Beans über Spring Profile steuern

3. Beispiel: Datenlöschung

Kaskadierendes Löschen:

Über Events lösbar, selbst wenn Business Events nicht aus Quellsystem kommen

Business-Logik bleibt im Modell: z. B. bei abweichenden Anforderungen

4. Beispiel: Data Sharing / Events für externe Systeme

Anforderung: Kosten mit Drittsystemen teilen

Fazit

- Gedanklich einen Schritt zurück machen:
 - Neubetrachtung der Domäne mit etwas Abstand kann erhellend sein
- Mit kleinen Schritten voran:
 - **Iteratives Vorgehen** immer empfehlenswert
- Nimm nur das mit, was du brauchst:
 - CQRS ist nicht gleichbedeutend mit einem verteilten System
- "Langweilig" ist cool:
 - Etablierte Features können große Probleme lösen

Vielen Dank an mein Team!

Vielen Dank für eure Aufmerksamkeit!

Fragen und Antworten

Gerne jetzt, später oder über meine Kontaktdaten

