УДК: 521.182.

ИСПОЛЬЗОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ФОРМЕ ЭНКЕ ДЛЯ ИССЛЕДОВАНИЯ ДВИЖЕНИЯ МАЛЫХ ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ

© 2013 Д.А. Заусаев

Самарский государственный технический университет

Рассмотрено численное интегрирование дифференциальные уравнения движения малых тел Солнечной системы в форме Энке. Для короткопериодических комет и астероидов групп Аполлона и Атона проведено сопоставление результатов численного интегрирования уравнений движения в стандартной форме и форме Энке. Показано, что уравнения Энке предпочтительнее использовать для небесных тел, имеющих тесные сближения с возмущающими телами, а также при использовании методов численного интегрирования низкого порядка.

Астероиды, дифференциальные уравнения, уравнения движения, численное интегрирование, метод Энке.

Введение

В связи с возросшим объёмом информации об элементах орбит малых принадлежащих Солнечной системе, в настоящее время возрос проблеме интерес астероидной К опасности. Наибольшую опасность для Земли наряду с короткопериодическими кометами представляют астероиды групп Аполлона, Амура И Атона. Разработка численных теорий движения малых тел Солнечной системы является составных ОДНИМ этапов решении проблемы, связанной астероидной опасностью. Проверка различных математических моделей, описывающих движения малых тел Солнечной системы, и их сопоставление выбирать наиболее позволяет приемлемый вариант ДЛЯ каждого конкретного случая. В настоящее время в связи с развитием средств и методов наблюдения (радиолокационных, лазерных, космических и др.) больших планет и малых тел Солнечной системы значительно увеличилась определения координат этих объектов. Следовательно, предъявляются более высокие требования математической модели, с помощью которой описывается движение

небесных объектов. Учёт лишь взаимодействий, гравитационных который стандартных В заложен уравнениях движения задачи п тел, оказывается недостаточным, что приводит к более сложной форме дифференциальных уравнений движения.

Следует отметить, что наряду с учётом действующих сил на точность полученных результатов существенное значение оказывает метод решения дифференциальных уравнений. Например, одна и та же классическая задача п тел описывается различными дифференциальными уравнениями зависимости от применяемого метода решения. В методе Коуэлла уравнения прямоугольных движения В интегрируются координатах непосредственно. В методе Энке координаты не получаются вместо непосредственно, этого a интегрирование даёт разности между действительными координатами координатами в оскулирующей орбите, положением, котором T.e. тем В находилось бы тело, если бы оно продолжало двигаться по коническому соответствующему сечению, координатам и компонентам скорости в определённый момент времени, называемой эпохой оскуляции.

Целью данной работы является получение модифицированных дифференциальных уравнений Энке с учётом гравитационных и релятивистских эффектов для описания движения возмущаемого тела и численное интегрирование этих уравнений для исследования эволюции орбит короткопериодических комет и астероидов групп Аполлона, Амура и Атона.

Дифференциальные уравнения движения в форме Энке

Пусть x_0 y_0 , z_0 гелиоцентрические координаты возмущаемого тела массой cдвижущегося действием под притяжения Солнца. Тогда дифференциальные уравнения движения этого тела запишутся в виде:

$$\ddot{x}_0 = -k^2 (1+m) \frac{x_0}{r_0^3},$$

$$\ddot{y}_0 = -k^2 (1+m) \frac{y_0}{r_0^3},$$
(1)

$$\ddot{z}_0 = -k^2 (1+m) \frac{z_0}{r_0^3},$$

гле

$$r_0 = \sqrt{x_0^2 + y_0^2 + z_0^2}. (2)$$

Пусть ξ , η , ζ — приращения координат x_0 , y_0 , z_0 , создаваемые притяжениями со стороны планет и релятивистскими эффектами, обусловленными Солнцем. Тогда координаты x, y, z возмущаемого тела, движущегося под действием притяжения Солнца и планет, с учётом релятивистских эффектов запишутся соотношениями:

$$x = x_0 + \xi,$$

$$y = y_0 + \eta,$$

$$z = z_0 + \zeta$$
(3)

и уравнения движения примут вид [1]:

$$\frac{d^{2}x}{dt^{2}} = -k^{2}(1+m)\frac{x}{r^{3}} + \sum_{i} k^{2} m_{i} \left(\frac{x_{i}-x}{\Delta_{i}^{3}} - \frac{x_{i}}{r_{i}^{3}}\right) + \frac{k^{2}}{c^{2}} \left[(4-2\alpha)\frac{k^{2}}{r^{4}}x - (1+\alpha)\frac{\dot{x}^{2}}{r^{3}}x + (4-2\alpha)\frac{(x\dot{x})^{2}}{r^{5}}x + (4-2\alpha)\frac{(x\dot{x})}{r^{3}}\dot{x} \right]$$
(4)

с аналогичными уравнениями переменных y и z, где m, x, y, z – масса и гелиоцентрические координаты возмущаемого тела; m_i , x_i , y_i , z_i – массы и гелиоцентрические координаты больших планет; r, Δ_i , r_i – расстояния, вычисляемые ПО формулам: $r^2 = x^2 + v^2 + z^2$ $\Delta^{2} = (x_{i} - x)^{2} + (y_{i} - y)^{2} + (z_{i} - z)^{2}$ $r_i^2 = x_i^2 + y_i^2 + z_i^2$; \dot{x} , \dot{y} , компоненты скорости возмущаемого тела; k – постоянная Гаусса, cскорость света; α параметр, характеризующий выбор системы координат. Случай $\alpha = 1$ соответствует координатам, стандартным $\alpha = 0$ – гармоническим координатам.

Вычитая из уравнений (4) уравнения (1), получим уравнения для координат ξ , η , ζ в следующем виде:

$$\ddot{x} - \ddot{x}_{0} = \ddot{\xi} = k^{2} (1 + m) (\frac{x_{0}}{r_{0}^{3}} - \frac{x}{r^{3}}) +$$

$$+ \sum_{i} k^{2} m_{i} \left(\frac{x_{i} - x}{\Delta_{i}^{3}} - \frac{x_{i}}{r_{i}^{3}} \right) +$$

$$+ \frac{k^{2}}{c^{2}} \left[(4 - 2\alpha) \frac{k^{2}}{r^{4}} x - (1 + \alpha) \frac{\dot{x}^{2}}{r^{3}} x +$$

$$+ 3\alpha \frac{(x\dot{x})^{2}}{r^{5}} x + (4 - 2\alpha) \frac{(x\dot{x})}{r^{3}} \dot{x} \right]$$
(5)

и аналогичные уравнения для $\stackrel{\cdot \cdot \cdot}{\eta}$, $\stackrel{\cdot \cdot \cdot}{\zeta}$.

Банк данных координат больших планет, Луны и Солнца

Из уравнений (1) - (5) следует, что движение небесных тел описывается системой дифференциальных уравнений второго порядка. При учёте возмущений от 9 больших планет и Луны данная система дифференциальных уравнений второго порядка сводится к системе 66ти уравнений первого порядка. Решение системы можно существенно упростить, известны координаты если возмущающих тел на любой момент времени. Тогда система уравнений сводится к 6-ти уравнениям первого порядка. Создание данных координат И компонентов скоростей больших планет, Луны и Солнца позволяет упростить систему дифференциальных уравнений движения возмущаемого тела.

В настоящее время одной из наиболее точных численных теорий движения больших планет является численная теория DE405 [2,3]. На её основе создан банк данных DE405, представляющий собой данные на внешнем носителе. состояшие ИЗ последовательности групп коэффициентов Чебышева, с помощью которых вычисляются координаты и скорости больших планет, Луны и Солнца на любой момент времени с 1660 по 2200 гг. Каждая группа охватывает интервал времени в 32 дня. Подобная форма хранения коэффициентов полиномов Чебышева с тридцатидвухдневным интервалом времени была использована в более ранней работе [4] при создании банка эфемерид больших планет (Меркурий-Нептун) и Луны. В то время существовали трудности, связанные с объёмом внешней памяти, поэтому увеличение временного интервала до 32 приводило усложнению К алгоритма вычисления координат и скоростей Меркурия и Луны.

Вследствие этого, использование банка данных DE405 в программе численного интегрирования уравнений небесных тел оказалось движения неудобным, поскольку для вычисления координат и скоростей для Меркурия и Луны применяются различные алгоритмы сравнению вычислениями координат и скоростей планет. Кроме других того. коэффициенты полинома Чебышева в DE405 приведены для барицентра системы "Земля + Луна", что затрудняет нахождение сближений возмущаемого тела с Землей или Луной в отдельности.

В качестве алгоритма численного интегрирования уравнений движения был выбран метод Эверхарта 27-го что метод порядка [5]. Известно, Эверхарта показал себя как самый эффективный ПО точности быстродействию в эксперименте исследованию алгоритмов и программ численного прогнозирования движения небесных тел, проведённом в СССР в 1986 году.

В программе предусматривалось использование банка данных координат и компонентов скоростей для возмущающих тел, и необходимо поэтому было модифицировать. Вследствие того, что в процессе интегрирования требуется информация о координатах и скоростях на значительном количестве подшагов, требовалось оперативно получать их, затрачивая при этом минимальное время. Отсюда возникла необходимость в создании банка данных координат больших планет на интервале времени с 1660 по 2200 гг., где координаты планет внутри промежутка вычисляются единым алгоритмом на любой момент времени с заданной точностью. Кроме того, следовало получить координаты и компоненты скоростей для Земли и Луны отдельно.

Для устранения вышеуказанных трудностей проведено было исследование точности вычисления координат планет и Луны с помощью полиномов Чебышева в зависимости от величины интервала интерполяции и полинома. Результаты степени исследования показали, что наиболее оптимальным интервалом вычисления координат и скоростей с помощью коэффициентов Чебышева для всех планет, Луны и Солнца является десятидневный интервал при максимальной степени полинома равной также десяти.

Создание банка данных коэффициентов полиномов Чебышева проводилось на основе банка данных DE405. Предварительно был создан банк данных координат и компонентов скоростей Земли, Луны, Солнца и всех планет с шагом 10 дней на интервале времени с 1660 ПО 2200 гг. с использованием банка данных DE405. Затем для каждого десяти дневного интервала находились коэффициенты полинома Чебышева [6]. образом, на интервале времени с 1660 по 2200 гг. был создан банк данных на жёстком диске, представляющий собой последовательность коэффициентов разложений координат и скоростей больших планет, Луны и Солниа ряды ПО полиномам Чебышева. В каждой группе коэффициенты объединены разложений, соответствующие одному десяти дневному интервалу. Хронологически **упорядоченная** последовательность ЭТИХ групп

записана на жёстком диске в двоичном формате в виде файла прямого доступа.

Координаты И компоненты скоростей всех планет, Луны и Солнца на интервале времени с 1660 по 2200 гг. были вычислены и сопоставлены с помощью полученных коэффициентов Чебышева и данных DE405. Результаты сопоставления показали, что величины максимальных отклонений от данных DE405 в прямоугольных координатах и исследуемом скоростях на всём времени на 2-3 порядка интервале наблюдений. меньше ошибок Наибольшие отклонения имеются в координатах и скоростях Меркурия и Луны. Однако, учитывая их малую сравнению ПО c другими планетами, можно заключить, что учёт возмущений объектов ОТ этих существенно не повлияет на результаты численного интегрирования уравнений движения небесных тел.

Численное интегрирование модифицированных уравнений Энке, описывающих движение малых тел Солнечной системы

Созданный банк ланных ДЛЯ получения координат больших планет и Луны на интервале времени с 1660 по 2200 гг. позволил модифицировать алгоритм программу метода Эверхарта. Совместное интегрирование 66-ти дифференциальных системы уравнений первого порядка свелось к решению 6-ти системы дифференциальных уравнений первого порядка, описывающих движение возмущаемого тела.

Начальными данными использовании стандартной программы численного интегрирования уравнений движения методом Эверхарта являются координаты и скорости возмущающих Результатом тел. численного интегрирования являются координаты и скорости возмущаемого тела. модифицированном варианте результатом численного интегрирования являются

коэффициентов последовательности полиномов Чебышева возмущаемого Получение результатов тела. интегрирования численного форме возмущаемого тела последовательности коэффициентов Чебышева облалает полиномов сравнению преимуществом ПО стандартным выводом результатов в виде координат и скоростей, так как позволяет получать всю необходимую информацию об эфемеридах на любой момент времени. Это особенно важно планировании проведении И наблюдений.

Основное требование к методу численного интегрирования уравнений движения малых тел Солнечной системы (наряду с устойчивостью) обладать метол должен высокой степенью точности. Известно, что метод Эверхарта облалает сильной устойчивостью [5,8].Увеличение точности онжом добиться двумя путями: либо повышением порядка метода, либо уменьшением интегрирования. Точность результатов вычислений зависит также от учёта возмущающих сил и от действия применяемого метода интегрирования.

При численном интегрировании на каждом шаге уравнений Энке решаются дифференциальные уравнения (1) и (5). При этом для задачи двух тел, описываемой уравнениями (1), точное решение находится путём вычисления элементов орбит известным координатам и скоростям в шага. В конце шага начале орбит элементам вычисляются координаты и скорости возмущаемого использованием приведённых в [7]. Решая уравнения (1), можно выбирать достаточно большой шаг интегрирования, однако величина ограничивается шага решением уравнений (5). Координаты астероида или кометы на шаге получаются путём сложения значений ξ , η , ζ

значениями координат x_0 , y_0 , z_0 в конце шага интегрирования.

определения области Для применимости данного алгоритма исследовалась эволюшия орбит короткопериодических 10 комет астероидов, принадлежащих к группам Аполлона и Атона. Начальные данные элементов орбит комет и астероидов взяты из каталогов [9,10], причём все 10 комет взяты из начала списка каталога, в то время как 10 астероидов находятся в конце списка каталога. Выбор комет, имеющих минимальные порядковые номера, обусловлен тем, что эти кометы имеют достаточно точные элементы орбит. Выбор астероидов связан с распределением ИХ минимальных расстояний с Землей. Следует отметить, что элементы орбит астероидов в каталоге расположены порядке возрастания минимальных ИХ расстояний с Землей.

Для численного интегрирования уравнений (4) использовался метод Эверхарта 27-го порядка с постоянным интегрирования. Численно интегрировались уравнения в форме Энке (1), (5), а также решались уравнения (4). Шаг и порядок в методе Эверхарта при решении уравнений (1), (5) и (4) выбирался таким образом, результаты численного интегрирования на конце отрезка интегрирования совпадали с требуемой точностью.

Данные численного интегрирования уравнений Энке, сопоставлены с данными каталогов получены путём [9,10]которые совместного интегрирования. Следует совместном отметить, что при интегрировании уравнений движения рассматриваемых объектов решались уравнения, которые использовались при создании DE405. В табл. 1 приведены элементы орбит 5-ти комет, полученные в результате интегрирования первым и вторым способами (обозначены соответственно

- сов. интегр. и мет. Энке); ΔS - абсолютное значение величин разности орбитальных элементов, полученных первым и вторым методами.

Как видно ИЗ табл. максимальные расхождения в элементах кометных орбит для 5-ти комет в обоих методах на конце интервала интегрирования незначительны. При **УГЛОВЫХ** элементах ЭТОМ максимальное расхождение наблюдается в средней аномалии у комет P/Encke и D/Biela - 0.0030 и 0.0043 градуса, соответственно, что составляет около 11 и 15 угловых секунд. Отличия в остальных элементах превышают точности оптических наблюдений. Так как оба незначительные метола лают расхождения в элементах орбит, то это позволяет считать, что уравнения (1), (5) и (4) можно использовать для исследования эволюции орбит короткопериодических комет на интервале времени около 200 лет.

сравнению c короткопериодическими кометами, астероиды групп Аполлона, Амура и представляют наибольшую Атона потенциальную опасность для Земли в случае столкновения с ней. В настоящее время, по данным сайта smallbodies.ru, выявлено около 900 астероидов групп Аполлона и Атона, проходящих от Земли на геоцентрическом расстоянии менее 0.01 а.е. в течение периода с 1800 по 2204 гг. Исследование эволюции орбит астероидов, сближающихся с большими планетами, представляет собой сложную задачу из-за проблем **устойчивости**.

В табл. 2 приведены элементы орбит 5-ти астероидов, принадлежащих к группам Аполлона и Атона. Каждый

рассматриваемых астероидов интервале времени с 1800-2200 гг. сближается с Землёй на расстоянии менее 0.01 а.е. У трёх из этих астероидов – это Aten / 2001 CP36, Apollo / 2001 BF10, Aten / 2002 VX91 расхождение c совместным интегрированием элементов орбит на интервала интегрирования достигая значительное, В средней аномалии 0,14, 6,83 и 0,54 градуса, соответственно. Основная причина этих расхождений связана с орбитальной устойчивостью. Существенное нарушение орбитальной устойчивости происходит при тесных сближениях c астероида большими планетами. Например, причиной вышеуказанных расхождений В элементах астероида Apollo / 2001 BF10 является его сближение с Землёй в 2085 г. на расстояние 0.009788 а.е. [9]. Тестовые расчёты показали, что изменение начальных данных большой полуоси у астероида Aten / 2002 VX91 $\Delta a = 10^{-7} a.e.$ приводит величину расхождению средней аномалии в конце интервала интегрирования почти на 60 градусов. Вследствие того, что орбита астероида Aten / 2002 VX91 лежит вблизи плоскости эклиптики, а большая полуось близка к большой полуоси Земли, возмущающее действие Земли существенное постоянно оказывает влияние на движение этого астероида, орбитальной являясь причиной неустойчивости. У других астероидов в табл. 2 отклонения в элементах орбит, вычисленных двумя методами, можно считать приемлемыми, так как эти отклонения значительно меньше отклонений, вычисленных каждым из методов c начальными данными, имытка на различные моменты оскуляции.

Таблица 1. Оскулирующие элементы орбит короткопериодических комет

T = 2190 12 26

P/Halley	M	а	е	ω	Ω	i
Сов.			_			-
Интегр.	273.2761	17.745133	0.967199	115.3018	62. 6713	161.6867
Мет. Энке	273.2790	17.745040	0.967199	115.3018	62. 6714	161.6867
ΔS	0.0029	0.000093	0	0	0.0001	0
P/Encke	M	а	е	ω	Ω	i
Сов. Интегр.	232.9695	2.211109	0.851064	191.5234	330.9684	9.6482
Мет. Энке	232.9665	2.211110	0.851064	191.5234	330.9684	9.6482
ΔS	0.0030	0.000001	0	0	0	0
D/Biela	M	а	е	ω	Ω	i
Сов. Интегр.	113.4167	3.521668	0.764597	323.0907	143.3537	13.8526
Мет. Энке	113.4124	3.521675	0.764598	323.0896	143.3548	13.8519
ΔS	0.0043	0.000007	0.000001	0.0011	0.0011	0.0007
P/Faye	M	а	е	ω	Ω	i
Сов. Интегр.	292.0967	3.798059	0.592634	217.8278	176.4265	6.2071
Мет. Энке	292.0967	3.798059	0.592634	217.8279	176.4265	6.2071
ΔS	0	0	0	0.0001	0	0
D/Brorsen	M	а	е	ω	Ω	i
Сов. Интегр.	189.9286	3.080769	0.862202	73.1468	39.9301	6.7641
Мет. Энке	189.9282	3.080765	0.862202	73.1433	39.9336	6.7643
ΔS	0.0004	0.000004	0	0.0035	0.0035	0.0002

Как уже отмечалось, повышение точности численного интегрирования можно достичь двумя путями: путём увеличения порядка метода уменьшением шага интегрирования. При численном интегрировании уравнений (4) величина интегрирования зависит от порядка метода. Для интегрирования уравнений движения короткопериодических комет при использовании метода Эверхарта 27-го порядка и для астероидов групп Аполлона и Атона при совместном интегрировании использовался переменный шаг. Для уравнений Энке при исследовании эволюции орбит короткопериодических комет максимальная длина шага интегрирования равнялась 0.5 дня, а для астероидов групп Аполлона и Атона -

0.25 дня. При этом затраты машинного времени на исследование эволюции орбиты одного объекта на интервале времени с 2006 по 2190 гг. сократилось почти на порядок в связи с использованием банка данных координат больших планет.

Важным c точки зрения является практического вычисления ответ на вопрос, в каких случаях лучше использовать дифференциальные уравнения (1) и (5), а в каких случаях уравнения (4). Анализируя классические уравнения Энке, следует отметить, что имеют место два случая, уравнений когда вместо Коуэлла следует решать уравнения Энке: а) случай тесных сближений; б) при использовании метода численного интегрирования низкого порядка.

Таблица 2. Оскулирующие элементы орбит астероидов групп Аполлона и Атона $T = 2190\ 12\ 26$

Aten/2001 CP36	M	а	е	ω	Ω	i
Сов. Интегр.	294.6851	0.714290	0.407943	355.0110	329.0142	10.3659
Мет. Энке	294.5422	0.714294	0.407915	355.0071	329.0143	10.3672
ΔS	0.1429	0.000004	0.000028	0.0039	0.0001	0.0013
Apollo / 2001 BF10	M	а	е	ω	Ω	i
Сов. Интегр.	307.8254	1.601057	0.437917	136.7574	33.7891	1.4297
Мет. Энке	300.9952	1.609232	0.439981	137.7591	33.3185	1.4494
ΔS	6.8302	0.008175	0.002064	1.0017	0.4706	0.0197
Aten / 2002 VX91	M	а	е	ω	Ω	i
Сов. Интегр.	252.6824	0.986436	0.201223	83.3291	210.9324	2.4900
Мет. Энке	253.2195	0.986498	0.201175	83.1782	210.9058	2.4954
ΔS	0.5378	0.000062	0.000048	0.1509	0.0266	0.0054
Apollo / 2004 BN41	M	а	е	ω	Ω	i
Сов. Интегр.	316.4616	2.046776	0.511493	151.1058	326.8218	0.3602
Мет. Энке	316.4636	2.046775	0.511493	151.1061	326.8216	0.3602
ΔS	0.0020	0.000001	0	0.0003	0.0002	0
Apollo / 2005 WM3	М	а	е	ω	Ω	i
Сов. Интегр.	95.3909	2.675825	0.618286	197.8569	235.7882	1.3833
Мет. Энке	95.3915	2.675825	0.618286	197.8569	235.7883	1.3833
ΔS	0.0016	0	0	0	0.0001	0

сближения В случае тесного небесного тела с большой планетой к уравнениям Коуэлла следует применять регуляризацию, например, с помощью преобразований Кустанхейма Штифеля [11], в то время как для уравнений Энке нет необходимости в применении данных преобразований. Это свойство отмечается Эверхартом [5]. Данное заключение основано на что правые дифференциальных уравнений (5) малы, уравнения (1) имеют точное аналитическое решение.

При использовании многошаговых методов численного интегрирования следует использовать методы низкого порядка, так как с увеличением порядка область абсолютной устойчивости быстро сокращается [12]. В этом случае предпочтение следует уравнениям отдавать сравнению с уравнениями Коуэлла, так обладают лучшей они устойчивостью, а полученные решения - более высокой степенью точности.

В случае применения одношаговых численного методов интегрирования методы низкого порядка эффективны ДЛЯ задач, в которых требованием основным является требование устойчивости, а не точности. В этом случае также следует предпочтение уравнениям отлавать Энке по сравнению с уравнениями Коуэлла.

При использовании методов численного интегрирования уравнений движения небесных тел более высокого порядка (выше 15-го) предпочтительнее использовать уравнения в форме Коуэлла, так как полученное решение имеет большую точность по сравнению с решениями уравнений в форме Энке.

В заключение следует отметить, что исследование эволюции орбит малых тел Солнечной системы, не имеющих тесных сближений с возмущающими планетами, можно

проводить на интервале 400 лет (1800 – 2200 гг.) путём решения уравнений (4) методом Эверхарта 27-го порядка с использованием банка данных координат больших планет. Для небесных тел, проходящих через сферы действия больших планет, следует использовать уравнения в форме Энке. Метод Энке с использованием низкого порядка эффективен также для задач, не требующих высокой точности. обладающих высокой степенью устойчивости.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект РНП 2.534.2011).

Библиографический список

- 1. *Брумберг В.А.* Релятивистская небесная механика. М.: Наука, 1972. 382 с.
- 2. Newhall X.X., Standish E.M., Williams Jr. and J.G. DE 102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries //Astron.Astrophys. 1983. № 125. P.150-167.
- 3. Standish E.M.. JPL Planetary and Lunar Ephemerides, DE405/LE405 // Jet Prop Lab Technical Report. IOM 312.F-048. 1998. P.1-7.
- 4. Bretagnon P., "Théorie du mouvement de l'ensemble des planètes. Solution VSOP82" (PDF 1.23MB), Astronomy & Astrophysics 114 (1982) P. 278–288.
- 5. Everhart . E. Implist single methods for integrating orbits // Celestial Mechanics, 1974, v.10, P.35-55.
- 6. *Монтенбург* О., Пфлегер Т. Астрономия на персональном компьютере (+CD) СПб: Питер, 2002. 320 с.
- Заусаев А.Ф.. Заусаев II.A.Численное интегрирование уравнений движения малых тел Солнечной системы c использованием оскулирующих элементов больших планет//

- Математическое моделирование и краевые задачи. Труды шестой Всероссийской научной конференции с международным участием. Часть 3. Самара: 2009, СамГТУ. С. 125-130.
- 8. Заусаев А.Ф., Заусаев А.А, Применение модифицированного метода Эверхарта для решения задач небесной механики // Математическое моделирование. Т. 20. № 11. М.: 2008. С. 109–114.
- 9. Заусаев А.Ф., Заусаев А.А. Каталог орбитальной эволюции короткопериодических комет с 1800

- по 2204 гг. М.: Машиностроение 1, 2007. 410 с.
- 10. Заусаев А.Ф., Абрамов В.В., Денисов С.С. Каталог орбитальной эволюции астероидов, сближающихся с Землей с 1800 по 2204 гг. М.: Машиностроение 1, 2007. 608 с.
- 11. *Штифель Е.*, *Шейфеле Г.* Линейная и регулярная небесная механика. М.: Наука, 1975. 304 с.
- 12. Современные численные методы решения обыкновенных дифференциальных уравнений. Под ред. Дж. Холла, Дж. Уатта. М.: Мир. 1979. 312 с.

USE OF DIFFERENTIAL EQUATIONS IN THE FORM OF ENCKE FOR THE STUDY OF MOTION SMALL SOLAR SYSTEM BODIES

© 2013 D.A. Zausaev Samara State Technical University

The numerical integration of differential equations of motion of small bodies in the solar system is considered in the form of Encke . For short-period comets and asteroids Apollo and Aten, a comparison of the results of numerical integration of the equations of motion in standard form and shape of the Encke is conducted. In this article has shown that the equations of Enke is preferable to use for celestial bodies, with close rapprochement with perturbing planets, as well as the use of methods of numerical integration of the low order.

Asteroids, differential equations, equations of motion, numerical integration, Encke's method.

Информация об авторах:

Заусаев Дмитрий Анатольевич, аспирант, кафедра «Прикладная математика и информатика», Самарский государственный технический университет. Е-mail: zadmitriy@gmail.com. Область научных интересов: численные методы, небесная механика.

Zausaev Dmitriy Anatolyevich, postgraduate student, «Applied Mathematics and Informaties» department, Samara State Technical University. E-mail: zadmitriy@gmail.com. Area of research: Numerical methods, Celestial Mechanics.