Lecture 8: Emerging issues showcasing ongoing research

Analysis of imbalanced binary traits

Instructors: Joelle Mbatchou and Loic Yengo

Summer Institute in Statistical Genetics 2023

Binary traits with case-control imbalance

- Many conditions/diseases occur in a minor proportion of the population (i.e. low prevalence).
 - Celiac disease (CC ratio $\sim 1:180$)
 - Psoriasis (CC ratio $\sim 1:180$)
 - Rheumatoid arthritis (CC ratio $\sim 1:80$)
- There are much fewer cases than controls
 - \rightarrow unbalanced data

High imbalance - Limitations in GWAS

Case-control imablance can cause major challenges for GWAS:

- Analyzing them as quantitative can lead to substantial inflation
 - Linear model don't capture mean-variance relationship of binary data

Linear :
$$E(Y_i) = \mu_i$$
, $Var(Y_i) = \sigma^2$ vs.
Logistic : $E(Y_i) = \mu_i$, $Var(Y_i) = \mu_i(1 - \mu_i)$

Example using LMM on asthma phenotype

High imbalance - Limitations in GWAS

Case-control imablance can cause major challenges for GWAS:

- Using logistic models is better but can still get inflated type 1 error
 - Asymptotic assumptions can become invalid with high case-control imbalance
- With sample structure, logistic mixed models can be computationally burdensome to run

Overcoming limitations: SAIGE

- ➤ Zhou et al. (2018) proposed SAIGE which used **efficient computational strategies** (e.g. pre-conditioned conjugate gradient, compact storage of genotypes) to fit logistic mixed models
- ► In addition, they introduce Saddlepoint Approximation (SPA) as a way to obtain more accurate p-values under high case-control imablance
 - SPA approximates the null distribution by using all of the higher order moments, i.e. $E(X^k)$, instead of traditional approaches which only look at first two moments

Overcoming limitations: SAIGE

Challenges with SAIGE

- ➤ Still highly intensive when 1,000's of phenotypes have to be analyzed such as in large scale biobanks
- ▶ Effect sizes from SPA can be quite inflated for rare variants

REGENIE extension for binary traits

- Switch linear ridge regression model to logistic ridge model
 - Remains computationally efficient due to the two-level approach in Step 1 to reduce number of predictors (e.g. 500K to 2,500)
- ► To accommodate for case-control imbalance when performing association tests, REGENIE uses Firth penalization:

$$\tilde{\ell}(\beta) = \ell(\beta) + 0.5 \log |I(\beta)|$$

- ► This has been shown to be effective at addressing issues with quasi/complete separation (e.g. no minor alleles in cases)
 - ► An approximate implementation has been derived in REGENIE to make it faster (60x) while still remaining accurate

Computational Timing

Table 2 | Computational performance of REGENIE-Firth, REGENIE-SPA and SAIGE when analyzing 50 binary traits with UK Biobank data

Method	Step	Benchmark			
		CPU time (h)	Elapsed time (h)	Memory usage (GB)	
REGENIE	1	1,590	117	11.8	
REGENIE- LOOCV	1	777	108	19.5	
REGENIE-Firth	2	115,492	8,237	7.7	•
REGENIE-SPA	2	79,363	5,090	9.1	
SAIGE	1	275,070	21,428	48.7	
SAIGE	2	239,865	173,992	2.1	L

>4x faster (>350x for Step 1!)

Effect Sizes Estimation

Future directions

- Using more flexible models which don't assume same prior for variant effects to gain power (e.g. spike and slab prior)
- ► Generalize to other phenotypic measurements
 - ► Count data (e.g. number of occurences of a specific outcome)
 - ► Time-to-Event data (e.g. time until disease occurrence)