Analysis and Visualization of the Decisions of Autonomous Agents Acting in Uncertain Environments

Candidate: Giovanni Bagolin

Supervisor: Prof. Alessandro Farinelli

Co-Supervisor: Dott. Giulio Mazzi

Co-Supervisor: Dott. Alberto Castellini

1 — Motivation

Autonomous Self-Driving car

Courtesy of Google

Autonomous Mobile Vacuum

Courtesy of Rumba

Autonomous warehouse

Courtesy of Amazon

Robotics manipulator arms

Courtesy of ICE-Lab

What about safety?

The full plan is not available

- Analysis of the decisions of POMCP
 - Anomaly detection
 - Compact plan representation

- Analysis of the decisions of POMCP
 - Anomaly detection
 - Compact plan representation
- Web Application

- Analysis of the decisions of POMCP
 - Anomaly detection
 - Compact plan representation
- Web Application
- Empirical Evaluation on two different problems domain
 - Velocity Regulation
 - Tiger

- Analysis of the decisions of POMCP
 - Anomaly detection
 - Compact plan representation
- Web Application
- Empirical Evaluation on two different problems domain
 - Velocity Regulation
 - Tiger
- Comparison with state of the art algorithms
 - Anomaly detection: Isolation Forest, XPOMCP
 - Compact plan representation: XPOMCP, Logistic Regression, DNN.

Problem domain

Problem Domains

Velocity regulation:

Explainable POMCP (XPOMCP)

XPOMCP

XPOMCP

6 Web Application

— Conclusions

Comparison between XPOMCP, LR, and DNN.

Conclusions

- Comparison between XPOMCP, LR, and DNN.
- Anomaly detection: XPOMCP, IF

Conclusions

- Comparison between XPOMCP, LR, and DNN.
- Anomaly detection: XPOMCP, IF
- Publication:
 - Authors: Giulio Mazzi, Giovanni Bagolin, Alberto Castellini, Alessandro Farinelli
 - Workshop: Autonomous Robots and Multi Robot Systems (2021)

Conclusions

- Comparison between XPOMCP, LR, and DNN.
- Anomaly detection: XPOMCP, IF
- Publication:
 - Authors: Giulio Mazzi, Giovanni Bagolin, Alberto Castellini, Alessandro Farinelli
 - Workshop: Autonomous Robots and Multi Robot Systems (2021)
- Future Work: Autonomous Rule Generation

8 — Thanks!

Approximation results on Velocity Regulation using **XPOMCP**:

• r_1 : select action **fast** when:

Free variable, detailed specified in the synthesis process

• r_2 : select action **medium** when:

$$easy \ge \mathbf{y_1} \lor$$

$$difficult \ge \mathbf{y_2} \lor$$

$$easy \ge \mathbf{y_3} \land intermediate \ge \mathbf{y_4}$$

• r_3 : select action **slow** when:

$$\begin{aligned} easy &\leq \mathbf{z_1} \lor \\ difficult &\geq \mathbf{z_2} \lor \\ easy &\leq \mathbf{z_3} \land intermediate \leq \mathbf{z_4} \end{aligned}$$

30

Comparison of Approximation results on Velocity Regulation among XPOMCP, Logistic Regression, Deep Neural Network:

XPOMCP	LR	DNN
Accuracy action "slow": 99%	Accuracy model for segment 0: 72%	Accuracy model for segment 0: 75%
Accuracy action "medium": 95%	Accuracy model for segment 1: 62%	Accuracy model for segment 1: 80%
Accuracy action "fast": 92%	Accuracy model for segment 2: 79%	Accuracy model for segment 2: 92%
	Accuracy model for segment 3: 89%	Accuracy model for segment 3: 98%

Accuracy: ration between the number of equal prediction, and total number of steps

Anomaly Detection on Tiger using **XPOMCP**:

RewardRange	Threshold	F1-score	Accuracy	time (s)
85	0.061	$0.979 \ (\pm \ 0.081)$	$0.999 \ (\pm \ 0.0001)$	$14.30 \ (\pm \ 0.50)$
65	0.064	$0.999 (\pm 0.002)$	$0.999 (\pm 0.0001)$	$14.75 \ (\pm \ 0.80)$
40	0.045	$0.980~(\pm~0.072)$	$0.987 \ (\pm \ 0.049)$	$12.78 \ (\pm \ 0.83)$

Anomaly Detection on Tiger using **Isolation Forest**:

W	Threshold	F1-score	Accuracy	time (s)
85	0.01	$0.020~(\pm~0.033)$	$0.990 \ (\pm \ 0.001)$	$0.72 \ (\pm \ 0.013)$
65	0.03	$0.771 \ (\pm \ 0.044)$	$0.988 \ (\pm \ 0.001)$	$0.71~(\pm~0.010)$
40	0.5	$0.437\ (\pm\ 0.035)$	$0.585~(\pm~0.026)$	$0.64\ (\pm\ 0.037)$