- 一、單一選擇題 (每題 **6.5** 分,共 **78** 分)
 - 1. () 設 $\sqrt{7+\sqrt{43}}$,則 a 在哪兩個連續整數之間?
 - (A) 0 與 1 (B) 1 與 2 (C) 2 與 3
 - (D)3與4 (E)4與5。
 - 2. () 在 $(x^2+y)^{10}$ 展開式中 · $x^{14}y^3$ 項之係數為何 ?
 - (A) 0 (B) 45 (C) 120 (D) 180
 - (E)210。【臺中一中】
 - 3. () 設 $90^{\circ} < \theta < 180^{\circ} \le \sin \theta = \frac{4}{5}$,則下列哪一個選項是正確的?

$$(A)\cos\theta = \frac{3}{5}$$
 $(B)\cos 2\theta = -\frac{24}{25}$

$$(\mathsf{C})\cos(270^{\circ} - \theta) = -\frac{4}{5}$$

$$(D)\cos\frac{\theta}{2} = \frac{2}{\sqrt{5}}$$
 。【新竹女中】

- 4. () $f(x) \cdot g(x)$ 為兩非零多項式 · 請問下 列何者敘述正確 ? (A) $\deg(f(x) \times g(x)) = \deg f(x) + \deg g(x)$ (B) $\deg(f(x) \times g(x)) = \deg f(x) - \deg g(x)$ (C) $\deg(f(x) \times g(x)) = \deg f(x)$
 - $\deg f(x) \times \deg g(x) = \deg f(x) \times \deg g(x)$
 - $\times g(x) = \deg f(x) \div \deg g(x)$
 - (E)以上皆非。【苑裡高中】
- 5.()下列何者為多項式?

$$(A)\frac{1}{x}+4$$
 $(B)\sqrt{2}x+8$ $(C)\frac{13}{5x-4}$

- (D) $6\sqrt{x} + 2$ (E) |x+4| °
- 6. () 有一項數為偶數的等比數列,其首項為 5 , 奇數項和為 1705, 偶數項和為 3410, 則其項數為何? (A) 6 (B) 8 (C) 10 (D) 12 (E) 14。【北一女中】
- 7. () 設實數 $a \cdot b \cdot c$ 分別滿足 $\left(\frac{1}{2}\right)^a = \log_2 a \cdot \left(\frac{1}{2}\right)^b = \log_{\frac{1}{2}} b \cdot 2^c = \log_{\frac{1}{2}} c \cdot 則關於 a \cdot b$

- c 三數大小的敘述下列何者正確? (A) a < b < c (B) c < b < a (C) c < a < b (D) b < a < c 【嘉義女中】
- 8. () 用 0 · 1 · 2 · 3 · 4 · 5 排成一個數字不同 的三位數 · 請問可以排成幾個偶數?
 - (A)72個(B)52個(C)48個
 - (D)40個 (E)90個。【臺南一中】
- 9. () 下列選項中最小的數為 $(A)\sqrt{\frac{1}{3}}$

$$(B)\frac{3^{\sqrt{3}}}{9} (C)\sqrt[4]{\frac{1}{27}} (D)(\sqrt[3]{3^8})^{-0.25}$$

$$(E)\frac{1}{(\sqrt[6]{3})^2}$$
。【新竹高中】

- 10. () 已知 $f(x) = -x^2 + 4x + 1 \cdot 若 3 \le x \le 5$ 則f(x) 的最大值為何?
 - (A)2 (B)3 (C)4 (D)5°
- 11. () 坐標平面上 $^{\triangle}ABC$ 中, \overline{AB} = 12,且過 C 作一直線垂直 \overline{AB} 於 H, \overline{AH} = 4,若 0° < $\angle CAB < 90°$,則當 $\angle CAB$ 為下列多少度時, \overline{AB} · \overline{AC} 的內積值最大? (A) 15° (B) 30° (C) 45° (D) 60° (E) $\angle CAB$ 不論為多少度,其內積值相同
- 12. () 設m 為實數 · 若二次函數 $y = mx^2 + 10x$ + m + 6 的圖形在直線 y = 2 的上方 · 則 m 的範圍為何 ?

(A)
$$m > -2 + \sqrt{29}$$
 (B) $0 < m < -2 + \sqrt{29}$
(C) $-2 - \sqrt{29} < m < -2 + \sqrt{29}$

- (D) $m > -2 + \sqrt{29} \ \vec{\boxtimes} \ m < -2 \sqrt{29} \ \circ$
- 二、多重選擇題 (每題8分,共8分)
 - 1. () 設 a 為大於 1 的實數,考慮實數 f(x) = a^{x} 與 $g(x) = \log_{a} x$,試問下列哪些選項是正確的?

(A)
$$f(3) = 6 \cdot \exists g (36) = 6$$

(B) $\frac{f(238)}{f(219)} = \frac{f(38)}{f(19)}$ (C) $g(238) - g$

(219) = g(38) - g(19) (D)若 P

 $\cdot Q$ 為 y = g(x) 的圖形上兩相異點 \cdot 則 直線 PQ 之斜率必為正數 (E)若直線 y = 5x 與 y = f(x) 的圖形有兩個交點 \cdot 則 直線 $y = \frac{1}{5}x$ 與 y = g(x) 的圖形也有兩個交點 \cdot 【96.學測】

- 三、計算題 (每題7分,共14分)
 - 1. 已知 $a = \log 2 \cdot b = \log 11 \cdot$ 試用 $a \cdot b$ 表示 $\log_5 121$ °

解:

2. 某遊戲有 A·B 兩條主線·A·B 兩線關卡全破之後才能進入王關。其中 A線有 a·b·c·d·e 五個小關卡須依序完成·B線有 x·y·z 三個小關卡也須依序完成·但 A·B 的各小關卡之間沒有其他先後順序的限制。例如 a·b·x·y·c·z·d·e 是一種可行的過關順序。試問進入王關前有多少種可行的過關順序?

解: