White light separated into component colours

Rainbows

Pass light through glass prism

Double rainbow

White light separated into component colours

- **→** | R
 - Rainbows
- Pass light through glass prism
- White light separated

Sunlight

Observe resulting spectrum

The Spectrum

Fraunhofer

Discontinuous spectrum

Discontinuous spectrum

Discrete black bands

Light absorbed by hydrogen

The Spectrum

Other lines?

Other lines?

Absorption of light by an unknown element

Helium

The Electromagnetic Spectrum

Different spectroscopic techniques use different frequencies of light

Light is a small portion of spectrum

The Electromagnetic Spectrum

Structure of the Atom

- 1 Plum pudding model
- Rutherford's planetary model

Structure of the Atom

- 1 Plum pudding model
- Rutherford's planetary model
- Bohr's model

Bohr's Model

Electrons

- Restricted to specific energy levels
 - → Energy is quantized
 - Energy is not continuous
 - Very small quanta of energy

- 2 Can move from one energy level to another
 - Jump to higher energy level
- Absorb energy
 - Drop to lower energy level
- Release energy
- → Electromagnetic radiation / light
- Frequency proportional to energy change
- \Rightarrow de Broglie equation: E = hv

Allowed Energy Levels for Absorption

Energy levels = ladder rungs

Energy added matches gap to next rung

Elemental Analysis

- 1 Using electrons
 - Absorption spectroscopy

Allowed Energy Levels for Emission

Energy levels = ladder rungs

Energy released matches gap to next rung

Elemental Analysis

- Using electrons
 - Absorption spectroscopy
 - Emission spectroscopy

ibre Analysis

Elemental Analysis

Using electrons

Absorption spectroscopy

What light is absorbed?

Excited state Ground state

Elemental Analysis

1 Using electrons

Emission spectroscopy

→ What light is emitted?

Excited state Ground state

Multiple energy levels

Multiple emissions or absorptions

Multiple lines in spectra

Pattern is **characteristic** for each element

Flame test for Metals

Metal salt added to flame

Characteristic colour produced

Energy of flame excites electrons

- Drop back to ground state
- → Emit light

Sodium (orange)