CMOS References and Regulators: Homework

Chamarthy Madhan Sai Krishna 2023102030

August 28, 2025

Contents

1	Lec	ture 1																								1
	1.1	Question	1 .																							
	1.2	Question	2 .																							2
	1.3	Question	3 .																							2
	1.4	Question	4 .																							2
2	Lec	ture 2																								2
	2.1	Question	1.																							2
	2.2	Question	2 .																							4
3	Lec	ture 3																								6
	3.1	Question	1.																							6
	3.2	Question																								
	3.3	Question																								
4	Lecture 4													6												
	4.1	Question	1.																							6
	4.2	Question																								
	4.3	Question																								
5	Lec	ture 5																								8
	5.1	Question	1.																							8
	5.2	Question	2 .																							8
6	Lec	ture 6																								8
	6.1	Question	1.																							8
	6.2	Question																								
7	Lec	ture 7																								10
	7.1	Question	1.																							10
	7.2	Question																								
	7.3	Question																								10

1 Lecture 1

1.1 Question 1

Do the 'DC Analysis' for the following circuits. Plot V vs I & write expression for the slope. Prove that its a resistance.

Answer:

Left graph shows the I - V characteristics of the device. Clearly, $I \propto V$. The right graph shows the expression for the slope.

Plot for (a) : Using a Voltage source Plot for (b) : Using a Current source

Figure 1: Lecture 1 - Question 1 - (a) and (b)

Figure 2: Testbench for (a) and (b)

1.2 Question 2

Design a capacitance amplifier using controlled sources. Answer:

1.3 Question 3

Design a capacitance amplifier using controlled sources.

Answer:

1.4 Question 4

Sweep V vs I for (i) k > 1 (ii) 0 < k < 1 (iii) K < 0 Prove R_{eff} in each case is $\frac{R}{1-k}$. Answer:

2 Lecture 2

2.1 Question 1

find the effective output resistance at V_{out} i.e., $R_{out} = ?$ Answer:

Figure 3: Plot for (a)

Figure 4: Plot for (b)

Figure 5: Lecture 1 - Question 2, 3, 4

Figure 6: Lecture 2 - Question 1

Figure 7: Testbench

When we nullify the V1, the vccs vanish and the effective output resistance at vout node is $R_{out} = r_{ds_1} || r_{ds_2}$. Proved this using the plot with values.

2.2 Question 2

Plot V_{out} vs time in Cadence. Prove Theory.

Answer:

Copy this from the notes

Proved this using theory and from the simulations by finding the output voltage after 1 time constant.

Figure 8: Lecture 2 - Question 2

Figure 9: Question 2 Testbench

Figure 10: Part (a)

Figure 11: Part (b)

3 Lecture 3

3.1 Question 1

Plot V_{out} vs time and I_{out} vs time

- •
- •
- •

3.2 Question 2

Plot V_{out} vs time (a) D = 10% (b) D = 90% (i) T = 0.1RC (ii) T = 10RC where $D = \frac{T_{ON}}{T}$

3.3 Question 3

Draw Bode plot for $H(s)=\frac{(s-z_1)(s+z_2)}{(s+P_1)(s+P_2)(s+P_3)}$ where (i) $z_2<< p_1<< p_2<< p_3<< z_1$ (ii) $p_3<< p_2<< p_1<< z_2$

4 Lecture 4

4.1 Question 1

Design a non-inverting schimdt trigger using opamp based circuits.

4.2 Question 2

Find the expression for Closed loop Unity gain bandwidth.

4.3 Question 3

In cadence, Plot V_o vs V_{in} (Sweep V_{in} from $-V_{ss}$ to V_{DD}) for non-inverting amplifier using Opamp and VCVS for both positive and -ve feedback.

Figure 12: Lecture 3 - Question 1

Figure 13: Lecture 3 - Question 2

Figure 14: Lecture 3 - Question 3

Figure 15: Lecture 4 - Question 1

Figure 16: Lecture 4 - Question 2,3

5 Lecture 5

5.1 Question 1

In Cadence, Bode Plot for

- 1. A = 100, check V_x (offset) [DC]
- 2. A = 1000, check V_x (offset) [DC]
- 3. UGB = 1MHz, Gain = 1000, Design G_m , R_{out} , R_1 , R_2 , C, V_{Ref} = 0.6V, V_{out} = 1.2V

5.2 Question 2

In cadence, AC analysis. Bode Plot for $\frac{V_{out}}{V_{in}}$

- 1. $G_{m_1}=G_{m_2}=10\mu F$, $R_1=R_2=10M\Omega$, $C_1=10fF, C_2=2fF$
- 2. add $C_{effective}$ at C_1 and get phase margin = 45°

6 Lecture 6

6.1 Question 1

Draw Bode plot for miller compensated circuit.

 $G_{m_1} = G_{m_2} = 10 \mu S$, $R_1 = R_2 = 10 M\Omega$, $C_1 = 10 f F$, $C_2 = 2 f F$

Find Phase Margin, Unity Gain Bandwidth and DC Gain. (Theory + Cadence) (AC analysis/STB)

6.2 Question 2

Simulate in cadence.

Figure 17: Lecture 5 - Question 1

Figure 18: Lecture 5 - Question 2 - circuit

Figure 19: Lecture 5 - Question 2 - Question

Figure 20: Lecture 6 - Question 1

Figure 21: Lecture 6 - Question 2

7 Lecture 7

7.1 Question 1

TSMC 18 lib, Simulate all the resistors -40° to 125° (SS, TT, FF) TSMC 18 lib, Simulate all the resistors -40° to 125° (SS, TT, FF)

Resistor	Temperature Coefficient	Type	Process Spread	Linearity	Area
R1	Value	TypeA	Spread1	Linear1	Area1
R2	Value	TypeB	Spread2	Linear2	Area2
R3	Value	TypeC	Spread3	Linear3	Area3

Table 1: Resistor characteristics under different conditions

7.2 Question 2

Repeate Question 1 with a capacitor.

7.3 Question 3

 $V_{PTAT}, V_{CTAT}, V_{Ref}$ $I_{PTAT}, I_{CTAT}, I_{Ref}$ $R_{PTAT}, R_{CTAT}, R_{Ref}$ All P and C for 9 values.

Figure 22: Lecture 7 - Question 1,2,3

Capacitor	Temperature Coefficient	Type	Process Spread	Linearity	Area
C1	Value	TypeA	Spread1	Linear1	Area1
C2	Value	TypeB	Spread2	Linear2	Area2
C3	Value	TypeC	Spread3	Linear3	Area3

Table 2: Resistor characteristics under different conditions