Math 323 HW22

Minh Bui

June 21, 2017

1. Prove that the integers is countable.

Proof. To prove that the set of integers is countable, we need to find an injection (or one-to-one relationship) that maps \mathbb{Z} to \mathbb{N} : $i: \mathbb{Z} \to \mathbb{N}$. Let

$$i(x) = \begin{cases} 2x+1 & \text{if } x \ge 0, \\ -2x & \text{if } x < 0. \end{cases}$$

We need to show that i(x) is an injection. Assume $x_1, x_2 \in \mathbb{Z}$ and $i(x_1) = i(x_2)$. We have 3 cases.

- 1. $2x_1 + 1 = 2x_2 + 1$ Assume that is the case. We have $2x_1 = 2x_2$ and $x_1 = x_2$.
- 2. $-2x_1 = -2x_2$ Assume that is the case. We have $x_1 = x_2$.
- 3. $2x_1 + 1 = -2x_2$ Assume BWOC that is the case. Then $x_1 \ge 0$ and $x_2 < 0$. From the equation, $x_1 = \frac{-2x_2 - 1}{2}$. But we know $x_1, x_2 \in \mathbb{Z}$ and $\frac{-2x_2 - 1}{2} \notin \mathbb{Z}$. So this case can't happen.

Thus, i(x) is an injection. And so the set of integers \mathbb{Z} is countable. \square

2. Let A and B be countable sets. Prove that $A \cup B$ is countable.

Proof. Let A and B be countable sets. This respectively means,

There is an injection $f: A \to \mathbb{N}$ There is an injection $g: B \to \mathbb{N}$

We define $i_3: A \cup U \to \mathbb{N}$

$$h(x) = \begin{cases} 2(f(x)) \text{ if } x \in A\\ 2(g(x)) + 1 \text{ if } x \in B \end{cases}$$

Want to show: There is a function $h:A\cup B\to \mathbb{N}$ such that h is an injection.

Assume $x_1, x_2 \in A \cup B$ and $h(x_1) = h(x_2)$. We have 3 cases to consider.

- 1. $x_1, x_2 \in A$. Assume that is the case. Then we have $2(f(x_1)) = 2(f(x_2))$. So then $f(x_1) = f(x_2)$. Since f is an injection, $x_1 = x_2$.
- 2. $x_1, x_2 \in B$. Assume that is the case. Then we have $2(g(x_1)) + 1 = 2(g(x_2)) + 1$. So then $g(x_1) = g(x_2)$. Since g is an injection, $x_1 = x_2$.
- 3. $x_1 \in A$ and $x_2 \in B$. Assume BWOC that is the case. Then we have $2(f(x_1)) = 2(g(x)) + 1$. Since $f: A \to \mathbb{N}$ and so is g, $2(f(x_1))$ and 2(g(x)) + 1 are in \mathbb{R} . So then $2(f(x_1))$ is even and 2(g(x)) + 1 is odd and they are equal. This is a contradition, this case cannot happen.

Thus, if A and B are countable sets, then $A \cup B$ is countable. \square

3. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be functions that are both continuous at 1. Prove that f+g is continuous at 1.

Proof. Let $f:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$ be functions that are both continuous at 1. So

$$\forall \epsilon > 0, \exists \delta_1 > 0 \text{ s.t } |x - 1| < \delta_1 \text{ implies } |f(x) - f(1)| < \epsilon$$

 $\forall \epsilon > 0, \exists \delta_2 > 0 \text{ s.t } |x - 1| < \delta_2 \text{ implies } |g(x) - g(1)| < \epsilon$

We want to show that $|f(x)+g(x)-f(1)-g(1)| < \epsilon$. Let $\epsilon > 0$. So $\frac{\epsilon}{2} > 0$. Assume there is $\delta_1 > 0$ so that $|x-1| < \delta_2$. Assume there is $\delta_2 > 0$ so that $|x-1| < \delta_2$. Since $|f(x)-f(1)| < \epsilon$, $|f(x)-f(1)| < \frac{\epsilon}{2}$. Same thing happens to |g(x)-g(1)|. Then consider

$$\begin{split} |f(x)-f(1)| &< \frac{\epsilon}{2} \text{ and } |g(x)-g(1)| < \frac{\epsilon}{2} \\ |f(x)-f(1)| + |g(x)-g(1)| &< \epsilon \\ |f(x)-f(1)+g(x)-g(1)| &\leq |f(x)-f(1)| + |g(x)-g(1)| < \epsilon \\ |f(x)+g(x)-f(1)-g(1)| &< \epsilon \end{split}$$