UE : Mécanique des Fluides

Mécanique des Fluides

Y.Gueguei

Outils mathématiques

Rotationnel Divergence

Vocabulaire

Viscosité Fluide Fluide parfait Compressibilit

Point de vue

Dábis

Mécanique des Fluides Eléments d'introduction

Yann GUEGUEN

yann.gueguen@univ-rennes1.fr

Université de Rennes

18 janvier 2023

Mécanique des Fluides

Y.Gueguei

Outils mathématique

Gradient Rotationnel Divergence

Vocabulair

Fluide
Fluide parfait
Compressibilite

Point de vue

Déb

- 1 Outils mathématiques
 - Gradient
 - Rotationnel
 - Divergence
- 2 Vocabulaire
 - Viscosité
 - Fluide
 - Fluide parfait
 - Compressibilité
 - Ecoulement
- 3 Point de vue
- 4 Débit

Outils mathématiques

Mécanique des Fluides

Y.Guegue

Outils mathématiques

Gradient Rotationnel Divergence

Vocabulair

Viscosité
Fluide
Fluide parfait
Compressibilit
Ecoulement

Point de vue

Déb

Quelques outils mathématiques nous seront utiles pour la mécanique des fluides :

- Le gradient d'une fonction scalaire;
- Le gradient d'un champ vectoriel;
- Le rotationnel d'un champ vectoriel;
- La divergence d'un champ vectoriel.

Outils mathématiques Gradient

Mécanique des Fluides

Y.Gueguei

mathématiq Gradient Rotationnel Divergence

Vocabulaire

Viscosité Fluide Fluide parfait Compressibilité Ecoulement

Point de vue

Déb

Considérons un champ scalaire quelconque, c'est à dire une fonction scalaire exprimée dans un référentiel orthonormé direct, comme la pression (p(x,y,z)) ou la température (T(x,y,z)). Son gradient est défini comme :

$$g \vec{r} a d\left(p(x, y, z)\right) = \left(egin{array}{c} \dfrac{\partial p(x, y, z)}{\partial x} \\ \dfrac{\partial p(x, y, z)}{\partial y} \\ \dfrac{\partial p(x, y, z)}{\partial z} \end{array}
ight) \vec{e}_z \vec{e}_z \vec{e}_z \vec{e}_z \vec{e}_z$$

C'est un champ vectoriel représentant la variation de la fonction suivant les 3 directions de l'espace.

Outils mathématiques Gradient

Mécanique des Fluides

Y.Gueguen

Outils mathématique

Rotationne

Vocabulaire

Fluide Fluide parfait Compressibilit

Point de vue

Débi

Exemple, en 2D du gradient d'une fonction : le champ vectoriel "pointe" vers les hautes valeurs.

Outils mathématiques Rotationnel

Mécanique des Fluides

Y.Guegue

mathématique Gradient Rotationnel

Vocabulair

Viscosité
Fluide
Fluide parfait
Compressibilité
Ecoulement

Point de vue

Déb

Considérons un champ de vecteur (la vitesse d'un fluide par exemple) $\vec{v}(x,y,z)$. Le rotationnel d'un champ vectoriel se note :

$$\vec{rot}(\vec{v}) = \vec{\nabla} \wedge \vec{v}(x, y, z)$$

où:

$$\vec{\nabla} = \vec{e}_x \times \frac{\partial}{\partial x} + \vec{e}_y \times \frac{\partial}{\partial y} + \vec{e}_z \times \frac{\partial}{\partial z}$$

 $\vec{\nabla}$ est équivalent à $g\vec{rad}$, mais on préfère écrire $\vec{\nabla}$ quand on ne met rien "derrière".

Il quantifie la rotation local d'un champ vectoriel, sous forme de vecteurs, donc la direction est l'axe de rotation, et la norme est l'intensité.

Outils mathématiques Rotationnel

Mécanique des Fluides

Y.Gueguer

Outils mathématique Gradient

Rotationnel Divergence

Vocabulaire

Fluide Fluide parfait Compressibilite

Point de vue

Débi

Expression du rotationnel et exemple :

Outils mathématiques Rotationnel

Mécanique des Fluides

Y.Guegue

Outils mathématiques

Rotationnel

Vocabulair

Viscosité

Fluide Fluide parfait Compressibili

Point de vu

Débi:

Bon à savoir...

Si :

$$\vec{v}(x, y, z) = v_x(x) \vec{e}_x + v_y(y) \vec{e}_y + v_z(z) \vec{e}_z$$

Alors :
$$\vec{rot}(\vec{v}) = \vec{0}$$
.

Outils mathématiques Divergence

Mécanique des Fluides

Y.Gueguen

Outils mathématiques Gradient

Divergence

Vocabulaire

Fluide Fluide parfait Compressibilit

Point de vue

Déb

La divergence d'un champ vectoriel quantifie si le flux de ce champ converge (div < 0) vers un point ou diverge (div > 0) depuis ce point :

$$div(\vec{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Mécanique des Fluides

Y.Gueguer

Outils mathématique

Gradient Rotationnel Divergence

Vocabulair

Fluide Fluide parfait Compressibilit

Point de vue

)ébit

Viscosité?

Plaque inférieure fixe, plaque supérieure à force constante. Un fluide est prisonnier entre les plaques. $\Delta \vec{v}$ la différence de vitesse entre le bas et le haut du fluide.

S: surface des plaques bleues encadrant un fluide.

$$\sigma = rac{||ec{F}||}{S}$$
 , $\dot{\gamma} = rac{||\Delta ec{v}||}{\Delta L}$

Viscosité

$$\eta = rac{\sigma}{\dot{\gamma}}$$
 Pa.s

Opposition à la création d'un gradient de vitesse.

Vocabulaire

Mécanique des Fluides

Y.Gueguer

Outils mathématique Gradient

Rotationnel Divergence

Vocabulair

Fluide Fluide parfait

Ecoulement Point do vue

Point de vue

Fluide?

On appelle fluide un système déformable sans forme propre.

$$au > \mathrm{qq}$$
 jours

 $au \sim$ temps pour changer de forme, t_O durée d'observation. Nombre de Deborah :

$$N_D = \frac{\tau}{t_O}$$

Fluide

 $N_D << 1 \rightarrow t_O >> \tau$

Tous les fluides ne sont pas des liquides.

Vocabulaire Fluide parfait

Mécanique des Fluides

Y.Guegue

Outils

Gradient

Rotationnel Divergence

Vocabulair

V ISCOSITE

Fluide parfait Compressibilit

Débi:

Fluide parfait?

$$\sigma=rac{||ec{F}||}{S}$$
, $\dot{\gamma}=rac{||\Deltaec{v}||}{\Delta L}$
$$\eta=rac{\sigma}{\dot{\gamma}} \ {
m Pa.s}$$

Fluide parfait

$$\eta=0\to\sigma=0$$

Aucune force/contrainte tangentielle ne peut lui être appliquée.

Mécanique des Fluides

Y.Guegue

Outils mathématique

Gradient Rotationnel Divergence

Vocabulaire

Viscosité Fluide Fluide parfait Compressibilité

Ecoulement
Point de vue

Débit

Liquide et gaz?

Compressibilité=Variation de volume à T° constante :

$$X_T = -\frac{1}{p} \times \frac{V' - V}{V}$$

Liquide : $X_T \sim 0$

(eau : $X_T < 10^{-9} \text{ Pa}^{-1}$, V varie de 0.004% par bar)

Gaz : X_T non négligeable (air : $X_T \sim 10^{-5} \ {\rm Pa^{-1}}, \ V$ varie de 1% par $0.01 \ {\rm bar}$)

Vocabulaire Ecoulement

Mécanique des Fluides

Y.Guegue

Outils mathématiqu Gradient Rotationnel Divergence

Vocabulair

Fluide Fluide parfait Compressibilit

Point de vue

Déb

Ligne de courant : trajectoire suivie par une particule, ligne tangente au vecteur vitesse.

Tube de courant : ensemble de lignes de courant.

Vocabulaire Ecoulement

Mécanique des Fluides

Y.Gueguer

Outils mathématique

Rotationnel Divergence

Vocabulair

Fluide Fluide parfait

Ecoulement
Point de vue

Débi

Type d'écoulements

Laminaire

Les lignes de courant sont parallèles.

Turbulent

Les lignes de courant sont aléatoires, chaotiques. Formation de tourbillons.

Mécanique des Fluides

Y.Guegue

Outils mathématiq Gradient Rotationnel Divergence

Vocabulaire Viscosité Fluide Fluide parfait Compressibilité Ecoulement

Point de vue

MMC?

La mécanique des fluides fait partie de la Mécanique des Milieux Continus (MMC).

■ Particule fluide : Volume minimal de fluide représentatif des propriétés du fluide. ≠ une molécule (plutôt une dizaine de milliards de molécules...)

Point de vue?

En MMC, on peut traiter un problème avec 2 points de vue. Celui d'Euler et celui de Lagrange (= le point de vue "habituel").

Mécanique des Fluides

Y.Gueguer

Outils mathématiqu Gradient Rotationnel Divergence

Vocabulair

Fluide Fluide parfait Compressibilite

Point de vue

Débi

Point de vue?

Faisons l'analogie entre des particules de fluides et des voitures :

Euler

Euler surveille une portion de la route avec un radar fixe.

Lagrange

Lagrange suit les voitures via leurs GPS.

Mécanique des Fluides

Y.Gueguei

Outils mathématique Gradient

Vocabulaire

Viscosité Fluide Fluide parfait Compressibilit Ecoulement

Point de vue

Débi

Lagrange

 \blacksquare Avantage : $\vec{a} = \frac{\partial \vec{v}}{\partial t}$

 Inconvénient majeur : Les contours du système ne sont rapidement plus identifiables!

Mécanique des Fluides

Y.Gueguei

Outils mathématiqu Gradient Rotationnel

Vocabulaire

Viscosité Fluide Fluide parfait Compressibili

Point de vue

Débi

Euler

- Avantage : Les contours du système sont fixes.
- Inconvénient : $\vec{a} \neq \frac{\vec{v}(t_1) \vec{v}(t_0)}{t_1 t_0}$ Les vitesses $\vec{v}(t_0)$ et $\vec{v}(t_1)$ ne sont pas celles d'une même particule !

Débit

Mécanique des Fluides

Y.Gueguer

Outils mathématique

Rotationnel Divergence

Vocabulaire

Fluide Fluide parfait Compressibilit

Point de vue

Débit

Le débit est le flux de fluide à travers une surface.

Le flux est donnée par $\vec{v}.\vec{n}~dS$. C'est le volume traversant la surface dS par unité de temps.

Débit

Mécanique des Fluides

Y.Guegue

Outils
mathématique
Gradient
Rotationnel
Divergence

Viscosité Fluide Fluide parfait Compressibilité Ecoulement

Point de vue

Débit volumique à travers dS: c'est le flux, $q_V = \vec{v}.\vec{n} \ dS$ Débit volumique à travers S:

$$q_V = \int_S \vec{v}(x, y, z) . \vec{n}(x, y, z) \ dS$$

Cas simple : si la vitesse est la même partout sur la surface, et la surface plane :

$$q_V = \vec{v}.\vec{n} S$$

Le sens de \vec{n} est un choix, qui définit le signe du débit (débit entrant ou sortant).