Macroeconomía: Tasas de inteés

Jorge Antonio Gómez García

November 30, 2022

Contents

1 Paridad de tasas de interés

Ejemplo: Un bono en dólares a 1 año paga una tasa de interés de 5% anual. Un bono similar en pesos paga una tasa de interés de 10% anual.

Suponga:

- $\bullet~E_0$: El tipo de cambio es 1 dólar = \$19.5 pesos
- E_1 : El tipo de cambio es 1 dólar = \$21 pesos

¿Qué activo debo adquirir? Note que un dólar hoy se convierte en 1.05 en un año.

Para transformar la tasa de retorno a pesos:

$$\frac{\$1.05 \times \$21 - \$19.5}{\$19.5} = 0.131$$

Así, el bono en dólares obtiene un mayor rendimiento.

1.1 Caso general

Sea:

- i_t : Tasa nominal del bono en pesos.
- i_t^* : Tasa nominal del bono en dólares.
- E_t : Tipo de cambio nominal en el tiempo t.

$$i_t$$
 VS. $\frac{(1+i_t^*) \times E_{t+1} - E_t}{E_t}$

$$1 + i_t$$
 VS. $(1 + i_t^*) \left(\frac{E_{t+1}}{E_t}\right)$

1

Dónde: $\frac{E_{t+1}}{E_t}$ es la tasa de depreciación.

a) Suponga:
$$1 + i_t > (1 + i_t^*) \left(\frac{E_{t+1}}{E_t}\right)$$

 \rightarrow Incentiva a demandar pesos. \rightarrow El peso se aprecia (encarece o fortalece). $(E_t \downarrow)$

$$\rightarrow \frac{E_{t+1}}{E_t} \uparrow$$
, dado $E_{t+1} \downarrow$

Debido a que hay condición de no arbitraje, $E_t \downarrow .$ \rightarrow

$$1 + i_t = (1 + i_t^*) \left(\frac{E_{t+1}}{E_t}\right)$$

b) Suponga:
$$1 + i_t < (1 + i_t^*) \left(\frac{E_{t+1}}{E_t}\right)$$

 \rightarrow Incentiva a demandar dólares. \rightarrow El dólar se aprecia (encarece o fortalece). El peso se "bebilita", $E_t \uparrow \rightarrow \frac{E_{t+1}}{E_t} \downarrow$, dado E_{t+1} .

Por condición de no arbitraje: $E_t \uparrow \text{tal que}$:

$$1 + i_t = (1 + i_t^*) \left(\frac{E_{t+1}}{E_t}\right) \tag{1}$$

(1) es la paridad de tasas de interés. Si E_{t+1} es "conocido" o "predeterminado", (1) se conoce como la paridad cubierta de las tasas de interés.

Si E_{t+1} no es conocido, agentes formulan una expectativa de E_{t+1}^e . En este caso, (1) se vuelve:

$$1 + i_t = (1 + i_t^*) \left(\frac{E_{t+1}^e}{E_t} \right) \tag{2}$$

(2) es la paridad descubierta de las tasas de interés.

 $\frac{E_{t+1}^e}{E_t}$ es la tasa de depreciación esperada.

¿Aproximación de (1)? De (1) se tiene:

$$i_{t} = \frac{(1+i_{t}^{*}) \times E_{t+1} - E_{t}}{E_{t}}$$

$$= \frac{E_{t+1}}{E_{t}} + i_{t}^{*} \frac{E_{t+1}}{E_{t}} + i_{t}^{*} - 1$$

$$= i_{t}^{*} + \frac{E_{t+1} - E_{t}}{E_{t}} + i_{t}^{*} \left(\frac{E_{t+1} - E_{t}}{E_{t}}\right)$$
Note que $\frac{E_{t+1} - E_{t}}{E_{t}} \approx 0$

$$\to i_{t} = i_{t}^{*} + \frac{E_{t+1} - E_{t}}{E_{t}}$$
(3)

(3) es la versión aproximada de (1).

1.2 Modelo de economía pequeña y abierta con dinero

¿Cómo funcionan los regímenes de tipo de cambio fijo y flexible?

Suponga:

• Función de utilidad de por vida:

$$U = \sum_{t=0}^{\infty} \beta^t \left[u_{(c_t)} + z \left(\frac{M_t}{P_t} \right) \right]$$
 (4)

Dónde: $u'_{(.)} > 0,\, u''_{(.)} < 0,\, z'_{(.)} > 0,\, z''_{(.)} < 0$

• Sea:

 $-\ B_t^P$: Bonos privados en moneda extranjera

 $-y_t$: Dotación

 $-\ P_t^*$: Precio del bien en el extranjero.

Suponga $P_t^* = 1$ $\forall t$

PPP absoluta se satisface.

$$P_t = E_t P_t^* \quad \forall t$$

$$\to P_t = E_t \tag{5}$$

Note que $P_t = 1 \ \forall t \to \pi_t^* = 0$.

Por la ecuación de Euler:

$$1 + i_t^* = (1+r)(1+\pi_t^*)$$

$$\to i_t^* = r^*$$
 (6)

 r^* es la tasa de interés real (exógena).