Analysis of a Complex Kind Week 1

Lecture 5: Topology in the Plane

Petra Bonfert-Taylor

Sets in the Complex Plane

- Circles and disks: center $z_0 = x_0 + iy_0$, radius r.
 - $B_r(z_0) = \{z \in \mathbb{C} : z \text{ has distance less than } r \text{ from } z_0\}$ disk of radius r, centered at z_0 .
 - $K_r(z_0) = \{z \in \mathbb{C} : z \text{ has distance } r \text{ from } z_0\}$ circle of radius r, centered at z_0 .
- How do we measure distance?

•
$$d = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

= $|(x - x_0) + i(y - y_0)|$
= $|z - z_0|$.

• So $B_r(z_0) = \{z \in \mathbb{C} : |z - z_0| < r\}$ and $K_r(z_0) = \{z \in \mathbb{C} : |z - z_0| = r\}$.

Interior Points and Boundary Points

Definition

Let $E \subset \mathbb{C}$. A point z_0 is an *interior point of* E if there is some r > 0 such that $B_r(z_0) \subset E$.

Definition

Let $E \subset \mathbb{C}$. A point b is a boundary point of E if every disk around b contains a point in E and a point not in E.

The *boundary* of the set $E \subset \mathbb{C}$, ∂E , is the set of all boundary points of E.

Open and Closed Sets

Definition

A set $U \subset \mathbb{C}$ is *open* if every one of its points is an interior point.

A set $A \subset \mathbb{C}$ is *closed* if it contains all of its boundary points.

Examples:

- $\{z \in \mathbb{C} : |z z_0| < r\}$ and $\{z \in \mathbb{C} : |z z_0| > r\}$ are open.
- \bullet \mathbb{C} and \emptyset are open.
- $\{z \in \mathbb{C} : |z z_0| \le r\}$ and $\{z \in \mathbb{C} : |z z_0| = r\}$ are closed.
- \bullet \mathbb{C} and \emptyset are closed.
- $\{z \in \mathbb{C} : |z z_0| < r\} \cup \{z \in \mathbb{C} : |z z_0| = r \text{ and } Im(z z_0) > 0\}$ is neither open nor closed.

Closure and Interior of a Set

Definition

Let E be a set in \mathbb{C} .

The *closure* of E is the set E together with all of its boundary points: $\overline{E} = E \cup \partial E$.

The *interior* of E, E is the set of all interior points of E.

Examples:

- $\overline{B_r(z_0)} = B_r(z_0) \cup K_r(z_0) = \{z \in \mathbb{C} : |z z_0| \le r\}.$
- $\bullet \ \overline{K_r(z_0)} = K_r(z_0).$
- $\overline{B_r(z_0) \setminus \{z_0\}} = \{z \in \mathbb{C} : |z z_0| \le r\}.$
- With $E = \{z \in \mathbb{C} : |z z_0| \le r\}, \stackrel{\circ}{E} = B_r(z_0).$
- With $E = K_r(z_0)$, $\stackrel{\circ}{E} = \emptyset$.

Connectedness

Intuitively: A set is connected if it is "in one piece". How do we make this precise?

Definition

Two sets X, Y in $\mathbb C$ are *separated* if there are disjoint open set U, V so that $X \subset U$ and $Y \subset V$. A set W in $\mathbb C$ is *connected* if it is impossible to find two separated non-empty sets whose union equals W.

Example:

$$X = [0,1)$$
 and $Y = (1,2]$

are separated: For example, choose $U = B_1(0)$ and $V = B_1(2)$. Thus

$$\textit{X} \cup \textit{Y} = [0,2] \setminus \{1\}$$

is not connected. It is hard to check whether a set is connected!!!

Connectedness for Open Sets in C

For open sets, there is a much easier criterion to check whether or not a set is connected:

Theorem

Let G be an open set in \mathbb{C} . Then G is connected if and only if any two points in G can be joined in G by successive line segments.

Bounded Sets

Definition

A set A in \mathbb{C} is *bounded* if there exists a number R > 0 such that $A \subset B_R(0)$. If no such R exists then A is called *unbounded*.

The Point at Infinity

• In \mathbb{R} , there are two directions that give rise to $\pm \infty$.

$$1, 2, 3, 4, 5, \ldots \to \infty$$
; $-1, -2, -3, -4, -5, \ldots \to -\infty$.

• In \mathbb{C} , there is only one ∞ which can be attained in many directions.

$$\left. \begin{array}{l} 1,\,2,\,3,\,\dots \\ -1,\,-2,\,-3,\,\dots \\ i,\,2i,\,3i,\,\dots \\ 1,\,2i,\,-3,\,-4i,\,5,\,6i,\,-7,\,\dots \end{array} \right\} \longrightarrow \infty$$