17/05/2011	16/05/2016	HBJMINERALSPTYLTD	0	11.2	4

nan	nan	nan
nan	nan	nan
Kalgoorlie	2901.0	mqv
Kalgoorlie	2973.0	0
nan	nan	nan

07/02/2011	06/02/2021	AVOCARESOURCESPTY LTD	50000	28	10
0	0	0	0	0	0

0	0	
ening-> S over N low anglethrusts	North-south regional shortening- > south over north thrusts	
open upright Foldsreversethrustsalong fold limbs	E-W shortening-> upright NNW trending, gently SE olunging folds.	
zones along NNW structures low angle thrusts	Oblique-sinistral wrench faulting reverse shear zones	ESE-WNWandNE
0	Dextral-reverse reactivation	

Cognac West	11	8
Highlight	ISA025 1m a 91.3 VtAU Ltrom 141m	0
Remy	78	6
Highlight	5A032 1m @ 0.87 AL trom 48m	0
Cognac Central	21	13
Highlight	JSA015, 1m @ 1.04 q/t Au from 45m	0
Le Mans North	50	10
Highlight	SA002 1m @ 0.80 AU trom 76m	0
Martell	50	3
0	0	0

JSA001-040	JSA001-010, JSA032-040	Au
JSA032-037	JSA032-037	Cu, Cr, Ni, I
JSR1256-1341	JSR1256-1299, JSR1330-1338	Au
JSR1259, 1264, 1268, 1270, 1275, 1280, 1290, 1291	JSR1259, 1264, 1268, 1270, 1275,1280, 1290,1291	Cu, N
JSA041-055	JSA048-055	Au

DHD696, TD2848	DHD696	Au
OHD729-734, 738- 740, 772-779, 782- 800	DHD732-734, DHD740, OHD772-779, DHD782-788, DHD800	Au
JSRC001-026	JSRC011-26	Au
JSR1342-1599	JSR1392-1599	Au, Cu, Pb, Zn, N
JSR1600-1667	JSR1600-1603, JSR1634-1667	Au
JSD001	JSD001	Au, As, Cu, N
0	0	0

	Au, As, Sb
-018	Al, As, Co, Cr, Cu, Fe, Mg, Mn, Ni, S, 7
2081	Au, Ag, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Na, Nb, Nb, Na, Nb, Nb, Nb, Nb, Nb, Nb, Nb, Nb, Nb, Nb
	0

E15/1427	11	ER001-011	u267361	Nb.Rb.sb.Sn.1a
E15/1427	12	ER012-023	u267362	0
E15/1427	5	ER024-028	u269898	Ta
TOTAL	28	0	0	0

leporting	nan I	
er:	nan	
lumbers:	E 15/01427	
perator(s):	Coleman Resources Pty Ltd	
Гуре:	Annual	
Title:	Junction South Project E15/1427 Annual Report for the Period 2 N	
7	nan	
eriod:	2 March 2016 to 1 March 2017	
pr:	Bruce MCQUITTY	
ed By:	Bruce MCQUITTY	
Date:	1 May 2017	
eets:	1:250,000 Map Sheet	
EMOOLTHA)	3234(COWAN)	
nmodity:	COBALT, COPPER, GOLD, LITHIUM, NICKEL,	
Drilled:	nan	

nan

mber:

vey Reg No:	nan
/s:	Ag, Au, As, B, Ba, Be, Cd, Co, Cu, Cr, Cs, Li, Mn, Nb, Ni, Pb, Pd,
în	nan
act	nan
on:	The Juntion South Project, comprising exploration licence E15/1427, is located
eral Field (Coolgardie District 15), Western Australia.	nan
from Widgiemooltha or the private St Ives Spur Road	nan
akeLefroy causeway.	nan
gy:	Junction South is located within the Archaean Kambalda Domain of the Kalgo
n extension of the Kambalda Anticline that is bounded to	nan
the Bluebush ultramafic sequence. The Archaean	nan
lated to that of the Kambalda nickel mining area	nan
ike orientation and has been interpreted as a major D1	nan
est compression to create the NW-axially orientated	nan
E15/1427 contains a sequence of mafic and ultramafic	nan
ve the Republican Thrust. North of the Republican Thrust	nan
mentary rocks assigned to the Black Flag Beds.	nan
one:	Past exploration reports were reviewed and information for 756 historical dril
historical geological maps, soil geochemistry plans and	nan
ll exploration targets for nickel, gold, copper and cobalt.	nan
dum, detailing the exploration potential of the Project.	nan
the tenement and a total of 28 surface samples were	nan
analysed.	nan
ts:	The review of historical work has highlighted several compelling, rela
t, the Croser-Moet nickel-cobalt prospect and the Remy	nan
s or conceptual targets requiring another phase of target	nan
work.	nan
tite float were disappointing, with a maximum value of	nan
temy prospect area confirmed elevated levels of Au, As,	nan
w sedimentary rocks, consistent with historical drilling	nan
nis region.	nan
sion:	The Junction South project area contains several gold, nickel, cobalt, and copp
vork.	nan
f 4m @ 4.69g/t Au and 4m @ 4.57g/t Au, is the highest	nan
target.	Analysis of historical drilling reveals the potential for mineralised stru

E15/1427	Coleman Resources Pty Ltd	Junction South	20	2/03/2016	1/03/2021	\$20,000
0	0	0	0	0	0	0

02/03/2016	01/03/2021	COLEMANRESOURCESPTYLTD	20000	39.2	14
0	0	0	0	0.0	0

province. WA Department of Geology, UWA, unpublished PhD Thesis.	nan
94, Evaluation of the Gold Potential of the Widgiemooltha District. WMC Internal Report K/3623. Unpublished company	nan
report.	nan
and Loftus-Hill, G.D., 1981, The geology of the Kambalda nickel field, Western Australia: Economic Geology, v. 76, p.	nan
1373 - 1416.	nan
Griffin, T.J., 1989, Widgiemooltha 1:250,000 Geological Series Explanatory Notes.	nan
1988, Geology of the Widgiemooltha Area and Exploration Progress to February, 1988. WMC Internal Report K/3099.	nan
Unpublished company report.	nan
4, Nickel mineralisation in Western Australia: Western Australia Geological Survey, Mineral Resources Bulletin 14, 271p.	nan
Bluebush C77/1998 Annual Technical Report for the period 1 January to 31 December 2014. Mincor Resources internal	nan
and WA DMP technical report.	nan
Griffin, T.J, Witt, W.K., Ahmat, A.L., Hunter, W.M., and McGoldrick, P.J., 1990, Geology of the Archaean Kalgoorlie	nan
Terrain. GSWA Record 1990/12.	nan
1977, Tectno-stratigraphy of late Archean greenstone terranes in the southern Eastern Goldfields, Western Australia	nan
Precambrian Research, v. 83, p. 11-42.	nan
holeitic and high MG mafic/ultramafic sills in the Eastern Goldfields Province, Western Australia: Implications for tectonic	nan
setting: Australian Journal of Earth Sciences, v. 42, p. 407 - 422	nan
10.References	Page 14 of 16

E 15/1365	29/07/2013	\$10,000.00	\$6,169.00	28/07/2016
E 15/1366	30/07/2013	\$10,000.00	\$6,292.00	29/07/2016
E 15/1418	17/12/2015	\$20,000.00	\$6,773.00	16/12/2016
E 15/1456	9/07/2015	\$10,000.00	\$2,719.00	8/07/2016
M15/130	4/02/1985	\$10,000.00	\$3,827.00	3/02/2017
M15/49	15/02/1984	\$26,000.00	\$26,658.00	14/02/2017
M15/63	4/01/1984	\$10,600.00	\$14,222.00	3/01/2017
ML15/131	1/01/1967	\$12,000.00	\$14,356.00	31/12/2016

ML15/140	1/01/1967	\$12,100.00	\$12,418.00	31/12/2016
ML15/494	1/01/1976	\$12,000.00	\$8,650.00	31/12/2016
ML15/495	1/01/1976	\$12,100.00	\$7,711.00	31/12/2016
ML15/498	1/01/1976	\$12,100.00	\$12,563.00	31/12/2016
ML15/499	1/01/1976	\$12,100.00	\$13,590.00	31/12/2016
ML15/500	1/01/1976	\$12,100.00	\$14,459.00	31/12/2016
ML15/501	1/01/1976	\$12,100.00	\$13,496.00	31/12/2016
ML15/502	1/01/1976	\$12,100.00	\$16,476.00	31/12/2016
ML 15/504	1/01/1976	\$12,000.00	\$18,571.00	31/12/2016
ML15/506	1/01/1976	\$10,000.00	\$17,790.00	31/12/2016
ML15/507	1/01/1976	\$12,100.00	\$12,769.00	31/12/2016
ML15/508	1/01/1976	\$12,000.00	\$12,930.00	31/12/2016
ML15/509	1/01/1976	\$12,000.00	\$12,262.00	31/12/2016
ML15/510	1/01/1976	\$12,100.00	\$12,605.00	31/12/2016
ML15/511	1/01/1976	\$12,000.00	\$12,262.00	31/12/2016
ML15/512	1/01/1976	\$12,000.00	\$12,263.00	31/12/2016
ML15/513	1/01/1976	\$12,100.00	\$13,745.00	31/12/2016
ML 15/514	1/01/1976	\$12,000.00	\$12,479.00	31/12/2016
ML15/515	1/01/1976	\$12,000.00	\$12,273.00	31/12/2016
ML15/516	1/01/1976	\$12,000.00	\$12,638.00	31/12/2016
ML15/517	1/01/1976	\$12,000.00	\$7,268.00	31/12/2016
ML15/518	1/01/1976	\$12,000.00	\$8,266.00	31/12/2016
ML15/519	1/01/1976	\$12,000.00	\$7,262.00	31/12/2016
ML15/520	1/01/1976	\$12,000.00	\$8,051.00	31/12/2016
ML15/521	1/01/1976	\$12,000.00	\$12,241.00	31/12/2016
ML15/522	1/01/1977	\$12,000.00	\$12,263.00	31/12/2016
ML15/523	1/01/1976	\$11,100.00	\$6,596.00	31/12/2016
ML15/524	1/01/1976	\$12,000.00	\$12,264.00	31/12/2016
ML15/525	1/01/1976	\$12,000.00	\$12,263.00	31/12/2016
ML15/526	1/01/1976	\$11,900.00	\$9,180.00	31/12/2016
ML15/527	1/01/1976	\$12,100.00	\$9,328.00	31/12/2016
ML15/528	1/01/1976	\$12,000.00	\$8,266.00	31/12/2016
ML15/529	1/01/1976	\$11,700.00	\$7,036.00	31/12/2016
ML15/530	1/01/1976	\$11,700.00	\$9,027.00	31/12/2016
ML15/531	1/01/1976	\$12,000.00	\$8,264.00	31/12/2016

ML15/532	1/01/1976	\$11,800.00	\$7,099.00	31/12/2016
ML15/533	1/01/1976	\$11,700.00	\$7,019.00	31/12/2016
ML15/534	1/01/1976	\$11,900.00	\$7,167.00	31/12/2016
ML15/535	1/01/1976	\$11,700.00	\$7,055.00	31/12/2016
P15/5767	18/07/2013	\$5,080.00	\$5,490.00	17/07/2016
TOTALS	0	\$578,280	\$514,371	0

E15/1365	29/07/2013	28/07/2018	MINCORRESOURCESNL	10000	2.8	1
E15/1366	30/07/2013	29/07/2018	MINCORRESOURCESNL	10000	2.8	1
M15/49	05/02/1984	14/02/2026	MINCORRESOURCESNL	26000	2.59	0
M15/63	13/12/1983	03/01/2026	MINCORRESOURCESNL	10600	1.05	0
M15/130	06/01/1985	03/02/2027	MINCORRESOURCESNL	10000	0.29	0
ML 15/131	12/01/1967	31/12/2029	GOLDFIELDSMINEMANAGEMENTPIY LTD	12000	1.2	0
ML15/140	12/01/1967	31/12/2029	GOLDEIELDSMINEMANAGEMENTPIY LTD	12100	1.2	0
ML15/494	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/495	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/498	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/499	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/500	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/501	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/502	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/504	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/506	01/01/1976	31/12/2017	MINCORRESOURCESNL	10000	0.83	0
ML15/507	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/508	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/509	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/510	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/511	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/512	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/513	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/514	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/515	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/516	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/517	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/518	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0

ML15/519	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/520	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/521	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/522	01/01/1977	31/12/2018	MINCORRESOURCESNL	12000	1.2	0
ML15/523	01/01/1976	31/12/2017	MINCORRESOURCESNL	11100	1.11	0
ML15/524	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/525	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/526	01/01/1976	31/12/2017	MINCORRESOURCESNL	11900	1.19	0
ML15/527	01/01/1976	31/12/2017	MINCORRESOURCESNL	12100	1.2	0
ML15/528	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/529	01/01/1976	31/12/2017	MINCORRESOURCESNL	11700	1.17	0
ML15/530	01/01/1976	31/12/2017	MINCORRESOURCESNL	11700	1.17	0
ML15/531	01/01/1976	31/12/2017	MINCORRESOURCESNL	12000	1.2	0
ML15/532	01/01/1976	31/12/2017	MINCORRESOURCESNL	11800	1.17	0
ML15/533	01/01/1976	31/12/2017	MINCORRESOURCESNL	11700	1.17	0
ML15/534	01/01/1976	31/12/2017	MINCORRESOURCESNL	11900	1.18	0
ML15/535	01/01/1976	31/12/2017	MINCORRESOURCESNL	11700	1.17	0
P15/5767	18/07/2013	17/07/2017	MINCORRESOURCESNL	5080	1.27	0
E 15/1456	09/07/2015	08/07/2020	MINCORRESOURCESNL	10000	2.8	1
E 15/1418	17/12/2015	16/12/2020	MINCORRESOURCESNL	20000	47.6	17
0	0	0	0	0	0.0	0

Ag	0.01	Cu	0.20	Na	0.01%	Sr	0.20
AI	0.01%	Fe	0.01%	Nb	0.10	Та	0.05
As	0.20	Ga	0.05	Ni	0.20	Те	0.05
Ва	10.0	Ge	0.05	Р	10.0	Th	0.01
Ве	0.05	Hf	0.10	Pb	0.50	Ti	0.005%
Bi	0.01	In	0.005	Rb	0.10	TI	0.02
Ca	0.01%	K	0.01%	Re	0.002	0	0.10
Cd	0.02	La	0.50	S	0.01%	٧	1.00
Се	0.01	Ξ	0.20	Sb	0.05	W	0.10
Со	0.10	Mg	0.01%	Sc	0.10	Υ	0.10
Cr	1.00	Mn	5.00	Se	1.00	Zn	2.00
Cs	0.05	Мо	0.05	Sn	0.20	Zr	0.50
Dy	0.05	Gd	0.05	Nd	0.10	Tb	0.01

Er	0.03	Но	0.01	Pr	0.03	Tm	0.01
Eu	0.03	Lu	0.01	Sm	0.03	Yb	0.03

nan
From m
73
87.7
387.7
477
555
559
1238
1249.7
1451
AS malgus

nan	nan	nan	nan	nan
2000.0	2000.0	0.0	1.0	1.032
2000.5	2000.0	0.0	1.0	1.04
2001.0	2001.0	0.0	1.0	1.048
nan	nan	nan	nan	nan
2001.5	2001.0	0.0	1.0	1.056
2002.0	2002.0	0.0	1.0	1.065
2002.5	2002.0	0.0	1.0	1.073
2003.0	2003.0	0.0	1.0	1.081
2003.5	2003.0	0.0	1.0	1.089
2004.0	2004.0	0.0	1.0	1.097
2004.5	2004.0	0.0	1.0	1.105
2005.0	2005.0	0.0	1.0	1.16
2005.5	2005.0	0.0	1.0	1.158
2006.0	2006.0	0.0	1.0	1.155
2006.5	2006.0	0.0	1.0	1.152
2007.0	2007.0	0.0	1.0	1.15
2007.5	2007.0	0.0	1.0	1.147

2008.0	2008.0	0.0	1.0	1.145
2008.5	2008.0	0.0	1.0	1.142
nan	nan	nan	nan	nan
2009.0	2009.0	0.0	1.0	1.14
2009.5	2009.0	0.0	1.0	1.137
2010.0	2010.0	0.0	1.0	1.033
2010.5	2010.0	0.0	1.0	1.029
2011.0	2011.0	0.0	1.0	1.025
2011.5	2011.0	0.0	1.0	1.021
2012.0	2012.0	0.0	1.0	1.017
2012.5	2012.0	0.0	1.0	1.014
2013.0	2013.0	0.0	1.0	1.01
2013.5	2013.0	0.0	1.0	1.006
2014.0	2014.0	0.0	1.0	1.002
2014.5	2014.0	0.0	1.0	0.999
2015.0	2015.0	0.0	1.0	0.995
2015.5	2015.0	0.0	1.0	0.991
0.0	0.0	0.0	0.0	0.0

08/09/2011	07/09/2021	AVOCARESOURCESPTY LTD	50000	44.8	16
0	0	0	0	0.0	0

0	nan	
0	nan	
0	0	
tening-> S over N low anglethrusts	North-south regional shortening- > south over north thrusts	
open upright folds reverse thrusts along fold limbs	E-W shortening-> uprightNNW trending, gently SE plunging folds.	
zones along NNW structures low angle thrusts	Oblique-sinistral wrench faulting reverse shear zones	ESE-WNWandN
0	Dextral-reverse reactivation	
nan	nan	

15/6009	Hall Creek Dam	6/09/201 6	5/09/202 0	0	1.17	Newmont Exploration Pty Ltd (100%)
P26/4158	Hall CreekDam	4/10/2016	3/10/2020	0	1.96	NewmontExplorationPty Ltd(1o0%)
P26/4159	HallCreekDam	4/10/2016	3/10/2020	0	1.93	NewmontExplorationPtyLtd(1o0%)

P26/4160	HallCreekDam	4/10/2016	3/10/2020	0	1.92	NewmontExplorationPtyLtd ■ 1o0%)
P26/4161	HallCreekDam	4/10/2016	3/10/2020	0	1.93	NewmontExplorationPty Ltd(1o0%)
P26/4162	HallCreekDam	4/10/2016	3/10/2020	0	1.96	NewmontExplorationPtyLtd(1o0%)
P26/4163	HallCreekDam	4/10/2016	3/10/2020	0	1.94	NewmontExplorationPtyLtd ■ 1o0%)
P 26/4164	Hall CreekDam	4/10/2016	3/10/2020	0	1.52	NewmontExplorationPty Ltd(1o0%)
P26/4165	Hall CreekDam	4/10/2016	3/10/2020	0	1.65	NewmontExplorationPtyLtd(1o0%)
E 15/1508	HallCreekDam	19/12/2016	18/12/2021	4	5.88	NewmontExplorationPtyLtd ■ 1o0%)
0	0	0	0	0	0.0	0

rending linear structures	Syn-volcanic extensional faults including the nickel
and ENE thrust faulting	Terminates greenstone volcanism.
al core complexes and domes.	Formation of granite-cored domes Prepares the EYC f
Reactivation of D3 structures	Onset of the most endowed period of gold mir
and ENE thrust faulting	All events up to and including D4a involve block movements up and down to NE or SW w
shearing and (ESE) thrusting	Significant change in regional stress field: obliquity with pre-existing architecture. New network of stress
faulting mostly brittle structures.	Establishment of a regionally consistent NE-SW oriented shortening vector. In Kambalda
ning and horizontal extension	0
0	0

G50-22-001E	541761	376210	-339	-15.0	214	308.9
G50-22-002E	541761	376210	-339	6.0	214	342.05
G50-22-003E	541761	376210	-346	20.0	216	263.7
G50-22-004E	541761	376210	-346	13.0	216	306.0
G50-22-005E	541761	376210	-339	25.5	216	218.9

0	0.0	0.0	0.0	nan
0	0.0	0.0	0.0	0.0
0	0.0	nan	nan	nan
G50-22-005E	135.33	138.99	3.66	13.92
0	0.0	0.0	nan	0.0
0	0.0	0.0	nan	0.0
nan	0.0	0.0	nan	0.0
G50-22-003E	162.33	162.62	0.29	10.1
0	0.0	0.0	0.0	0.0

0	0.0	nan	0.0	0.0
nan	0.0	0.0	nan	0.0
G50-22-004E	193.6	193.87	0.27	1.21
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	nan
nan	0.0	0.0	nan	0.0
0	0.0	0.0	0.0	0.0

0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
0	nan	nan	0.0	0.0
G50-22-002E	249.97	250.97	1.0	4.04
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	0.0	nan
G50-22-002E	312.5	316.3	3.8	3.63
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	0.0	nan	nan
G50-22-002E	319.75	323.27	3.52	4.76
0	0.0	nan	nan	0.0
0	0.0	nan	nan	0.0
nan	0.0	nan	nan	nan
G50-22-003E	140.97	142.0	1.03	7.59
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	0.0	0.0	nan
G50-22-003E	226.55	229.0	2.45	2.69
0	0.0	nan	0.0	0.0
0	0.0	nan	0.0	0.0
nan	0.0	nan	nan	nan
G50-22-003E	262.7	263.7	1.0	3.48
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	0.0	nan

G50-22-004E	92.3	94.2	1.9	2.52
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	0.0	nan
G50-22-004E	99.0	100.0	1.0	8.52
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	0.0	0.0	nan
G50-22-004E	250.85	261.47	10.62	2.96
0	0.0	0.0	0.0	nan
0	0.0	nan	0.0	nan
nan	0.0	0.0	0.0	nan
G50-22-004E	288.0	291.8	3.8	2.32
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	0.0	nan	nan
G50-22-005E	3.0	6.0	3.0	2.56
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	nan	nan
G50-22-005E	41.0	42.0	1.0	4.14
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	0.0	0.0
G50-22-005E	76.0	77.0	1.0	4.48
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	nan	0.0	nan
G50-22-005E	194.5	196.0	1.5	10.73
0	0.0	0.0	0.0	0.0
0	0.0	0.0	0.0	0.0
nan	0.0	0.0	0.0	0.0
G50-22-005E	216.04	218.9	2.86	2.58
0	0.0	0.0	0.0	nan
0	0.0	0.0	0.0	nan

nan	0.0	0.0	nan	nan
0	0.0	0.0	0.0	0.0

Combined Reporting Number?	nan
Tenement Numbers:	ML 15/327 and M15/1628
Tenement Operator	Karora Resources Pty Ltd
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)
Report Type:	Co-Funded Drilling Final Report
Report Title:	Co-Funded Drilling - Final Report Beta Hunt Southern
Offset Extension, June 2021	nan
Report Period:	nan
Author:	JohnStockfeld
Date of report:	25 June 2021
1:250 000 map sheet:	SH51-14WIDGIEMOOLTHA
1:100 000 map sheet:	3235LAKELEFROY
Geodetic Datum:	KNO- mine grid (GDA94 Regional)
Project Zone:	51
Target Commodity:	Nickel (Ni)
Keywords:	Beta Hunt, nickel
Prospects drilled:	Beta Hunt southern offset, the Gamma zone.
List of Assays:	Au, Ni, FeO, MgO, As, Cu, S, Co

Office Studies	nan	nan
Literature search	0	0
Database compilation	0	0
Computer modelling	0	0
Reprocessing of data	0	0
Generalresearch	0	0
Reportpreparation	Co-Funded Drilling Final Report, Beta Hunt southern offset extension, June 2021.pdf	pdf
Data review	0	0
Resource Modelling	0	0
Airborne Exploration Surveys	nan	nan
Aeromagnetics	0	0
Radiometrics	0	0

Electromagnetics	0	0
Gravity	0	0
Digital terrain modelling	0	0
Other (specify)	0	0
Remote Sensing	nan	nan
Aerial photography	0	0
LANDSAT	0	0
SPOT	0	0
MSS	0	0
Radar	0	0
Other (specify)	0	0
Ground Exploration Surveys	nan	nan
Geological mapping	nan	nan
Regional	0	0
Reconnaissance	0	0
Prospect	0	0
Underground	0	0
Costean	0	0
Ground geophysics	nan	nan
Radiometrics	0	0
Magnetics	0	0
Gravity	0	0
Digital terrain modelling	0	0
Electromagnetics	0	0
SP/AP/EP	0	0
IP	0	0
AMT	0	0
0	0	0

Complex resistivity	
Seismic reflection	
Well logging	
Geophysical interpretation	
Other (specify)	
Geochemical Surveying	

Drill sample
Stream sediment
Soil
Rock chip (in pit)
Laterite
Water
Biochemistry
Isotope
Whole rock
Mineral analysis
Other (specify)
Drilling
Diamond
Reverse circulation
Rotaryairblast
Air core
Auger
Groundwater drilling
All drilling
Geological Drill Log Codes

ANumber
0
49989,49990,52840,53250
63922
97604,98301,104141

AC	33	1705
TOTAL	33	1705

AIIE15/1471	AC	E15/1471	116	7107
TOTAL	0	0	116	7107
Graticulesrelinguished	AC	E15/1471	33	1705
0	0	0	0	0

Stlves	KD81720	84	92	0.23	1.84
Stlves	KD81721	84	88	0.44	1.76
Stlves	KD81734	82	88	0.38	2.28
Stlves	KD81739	40	48	0.22	1.76
Stlves	KD81740	78	84	0.24	1.44
Stlves	KD81741	82	91	0.91	8.19
Stlves	KD81748	86	90	0.34	1.36
Stlves	KD81750	84	92	1.91	15.28
0	0	0	0	0.0	0.0

E 15/1471	13/01/2016	12/01/2026	SIGM	258,167	67	16
TOTALS	0	0	0	0	67	16

E 15/1471	13/01/2016	12/01/2026	STIVESGOLDMININGCOMPANYPIY LIMITED	0	44.8	16
0	0	0	0	0	0.0	0

rending linear structures	Syn-volcanic extensional faults including the nickel
and ENE thrust faulting	Terminates greenstone volcanism.
al core complexes and domes.	Formation of granite-cored domes. Prepares the EYC f
Reactivation of D3 structures	Onset of the most endowed period of gold mir
and ENE thrust faulting	All events up to and including D4a involve block movements up and down to NE or SW w
shearing and (ESE) thrusting	Significant change in regional stress field: obliquity with pre-existing architecture. New network of stress
faulting mostly brittle structures.	Establishment of a regionally consistent NE-SW oriented shortening vector. In Kambalda
ning and horizontal extension	0
0	0

HE001	375031	6544718	293	-72	135	288.0
HE002	374914	6544801	293	-78	235	244.0
HE003	374831	6544742	293	-74	224	244.0
0	0	0	0	0	0	0.0

0.0	0.0	0.0	0.0	nan
-----	-----	-----	-----	-----

0.0	0.0	0.0	0.0	0.0	
nan	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	nan	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	5.8	0.0	
0.0	0.0	0.0	nan	0.0	
0.0	0.0	0.0	nan	0.0	
0.0	0.0	0.0	2.0	0.0	
0.0	0.0	nan	nan	0.0	
0.0	0.0	0.0	0.0	0.0	

0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	nan	nan	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	nan	
0.0	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	
0.0	nan	0.0	0.0	0.0	
0.0	0.0	nan	nan	0.0	
0.0	0.0	0.0	0.0	0.0	

Combined Reporting Number	nan	
Tenement Numbers:	ML 15/327, M15/1516 and M15/1531	
Tenement Operator	Karora Resources Pty Ltd	
Tenement Holder:	St Ives Gold Mining Company (Gold Fields)	
Report Type:	Co-Funded Drilling Final Report	
Report Title:	Co-Funded Drilling - Final Report Testing the Hunt East	
Concept, March 2022	nan	
Report Period	nan	
Author:	John Stockfeld	

Date of report:	31 March 2022	
1:250 000 map sheet	SH51-14WIDGIEMOOLTHA	
1:100 000 map sheet	3235LAKELEFROY	
Geodetic Datum:	KNO-mine grid (GDA94 Regional)	
Project Zone:	51	
Target Commodity:	Nickel (Ni)	
Keywords:	Beta Hunt, nickel	
Prospects drilled:	Hunt East	
List of Assays	Au, Ni, Fe, Mg, As, Cu, S, Cc	

Office Studies	nan	nan
Literature search	0	0
Database compilation	0	0
Computer modelling	0	0
Reprocessing of data	0	0
General research	0	0
Reportpreparation	Co-Funded Drilling Final Report, Testing the Hunt East concept, March 2022.pdf	pdf
Data review	0	0
Resource Modelling	0	0
Airborne Exploration Surveys	nan	nan
Aeromagnetics	0	0
Radiometrics	0	0
Electromagnetics	0	0
Gravity	0	0
Digital terrain modelling	0	0
Other (specify)	0	0
Remote Sensing	nan	nan
Aerial photography	0	0
LANDSAT	0	0
SPOT	0	0
MSS	0	0
Radar	0	0
Other (specify)	0	0
Ground Exploration Surveys	nan	nan
Geological mapping	nan	nan

Regional	0	0
Reconnaissance	0	0
Prospect	0	0
Underground	0	0
Costean	0	0
Ground geophysics	nan	nan
Radiometrics	0	0
Magnetics	0	0
Gravity	0	0
Digital terrain modelling	0	0
Electromagnetics	0	0
SP/AP/EP	0	0
IP	0	0
AMT	0	0
0	0	0

Complexresistivity
Seismic reflection
Well logging
Geophysical interpretation
Other (specify)
Geochemical Surveying
Drill sample
Stream sediment
Soil
Rock chip (in pit)
Laterite
Water
Biochemistry
Isotope
Whole rock
Mineral analysis
Other (specify)
Drilling
Diamond

Reverse circulation		
Rotaryairblast		
Air core		
Auger		
Groundwater drilling		
All drilling		
Geological Drill Log Codes		

ANumber
027201
029855
033021
035280
43335
46800
51953
54172
65747
97166
0
0
0

AC	365	20862.0
RC	16	2870.0
DD	9	3510.3
TOTAL	390	27242.3

AIIE15/1447	AC	E15/1447	398	22522.0
0	RC	0	28	5290.0
0	DD	0	9	3510.3
TOTAL	0	0	435	31322.3
Graticulesrelinguished	AC	E15/1447	365	20862.0
0	RC	0	16	2870.0

0	DD	0	0	3510.3
0	0	0	0	0.0

LefroyWest	KD81294	32.0	34.0	0.44	14.96
LefroyWest	KD81318	80.0	6.0	0.92	5.54
LefroyWest	KD81533	84.0	4.0	2.7	10.78
LefroyWest	KD81533	94.0	8.0	1.95	15.6
Lefroy West	SAL1519	78.0	6.0	2.05	12.3
Lefroy West	SAL1764	95.0	10.0	3.24	32.4
Lefroy West	SAL1777	78.0	0.0	1.45	10.15
Lefroy West	SAL1791	129.7	5.3	1.4	7.42
0	0	0.0	0.0	0.0	0.0

LefroyWest	KD81318	80.0	6.0	0.92	5.54
Lefroy West	KD81533	84.0	4.0	2.7	10.78
LefroyWest	KD81533	94.0	8.0	1.95	15.6
LefroyWest	KD81534	80.0	18.0	0.17	3.13
Lefroy West	KD81785	16.0	8.0	0.41	3.26
Lefroy West	KD81790	82.0	9.0	0.33	2.97
Lefroy West	SAL1319	0.0	2.0	1.98	3.96
Lefroy West	SAL1486	90.0	4.0	0.57	2.26
Lefroy West	SAL1519	78.0	6.0	2.05	12.32
Lefroy West	SAL1763	78.0	12.0	0.23	2.81
Lefroy West	SAL1764	95.0	10.0	3.24	32.4
Lefroy West	SAL1777	78.0	0.0	1.45	10.15
Lefroy West	SAL1777	106.0	11.0	2.25	2.25
Lefroy West	SAL1789	197.0	0.0	2.28	2.28
Lefroy West	SAL1791	129.7	5.3	1.4	7.42
0	0	0.0	0.0	0.0	0.0

E 15/1447	30/05/2016	01/08/2026	HogansResources	60,000	139	49
TOTALS	0	0	0	0	139	49

E15/1447 02/08/2016 01/08/2026 HOGANSRESOURCESPTYLTD 58000 81.2

0	0 0		0	0			0	0.0	C	
M15/1557 14/12/2004 23/12/2025 LUNNONMETALSLIMITED						12200	1.21	0		
JAN21	DD001	386339.	89 6528	8864.254	333.128	575.1	-60	270	M15/15	56
IAND1E	D002	386204.8	392 5529	9258.631	333.263	606.8	-60	270	M15/15	77
JANZIL	0002	00020								i

nan	nan	nan	nan	nan	nan	nan	nan	0	nan
JAN22DD004	1529.1	298.3	-70.7	331.0	MGA94_51	386540.0	6528810.0	10/03/2022	16/05/2022
0	0.0	0.0	0.0	0.0	0	0.0	0.0	0	0

Geologicallogging	0	1,529.1 (end of hole)
Structurallogging	~132	1,529.1
Corephotography	0	1,529.1
MagneticSusceptibility	31	1,529
ChemStrat&XRD	52.75	1,529
Geochemistry (nickel)	1141	1,529
Geochemistry (gold)	97	1,133
pXRF	47	1,150
DHEM	285	565

0.0	314.8	314.8	Medium grained to dolerite
314.8	350.0	35.2	0
350.0	453.5	103.5	atchy.variolitic(?)basalt
453.5	472.3	18.8	Mediumaraineddoleritewith clastsofsedimentfrom468to472.3m
472.3	516.9	44.6	Sediment
516.9	577.8	60.9	d basalt, massive
577.8	622.7	44.9	Sediment /- basalt
622.7	686.0	63.3	d basalt - variolitic
686.0	696.8	10.8	Medium grained dolerite
696.8	759.0	62.2	massive/-variolitic
759.0	828.3	69.3	Bladedmedium rained(Dolerite?)

828.3	870.8	42.5	Mediun
870.8	886.2	15.4	ultramafic(textureless
886.2	889.15	2.95	Fine grained massive
389.15	927.4	38.25	0
927.4	984.2	51.0	ultramafic(textureless
984.2	1024.9	46.5	Basalt
1024.9	1030.3	5.4	Sediment /- basalt
1030.3	1063.8	33.5	0
1063.8	1069.5	5.7	ntermediate
1069.5	1089.0	19.5	Homogenous green medium grained dolerite(?). Fine green amphibole needles with qtz- olagioclaseinterstices
1089.0	1094.9	5.9	Intermediate intrusive
1094.9	1108.5	13.6	Basalt
1108.5	1114.41	5.91	0
114.41	1132.3	17.89	0
1132.3	1141.75	9.45	Tntermediatei intrusive
141.75	1219.8	78.05	dominant ultramafic
1219.8	1222.5	2.7	0
1222.5	1529.1	297.5	Talc-magnesite ultramafic

0.0	97.0	Low	615.4	615.5	High	982.4	982.5	VeryHigh
97.0	107.0	Weak	615.5	622.0	Mod-High	982.5	984.2	High
107.0	137.0	Low	622.0	646.0	Weak-Mod	984.2	1016.9	Weak
137.0	142.0	Weak	646.0	650.0	Moderate	1016.9	1030.3	High
142.0	218.0	Low	650.0	652.4	Mod-High	1030.3	1030.6	VeryHigh
218.0	224.0	Weak	652.4	653.25	High	1030.6	1032.1	High
224.0	238.5	Low	653.25	663.0	Mod-High	1032.1	1032.3	VeryHigh
238.5	247.0	Weak-Mod	663.0	717.5	Weak-Mod	1032.3	1036.7	Mod-High
247.0	317.0	Weak	717.5	717.65	High	1036.7	1038.7	High
317.0	320.0	Weak-Mod	717.65	719.0	High	1038.7	1039.1	VeryHigh
320.0	401.0	Weak	719.0	719.4	VeryHigh	1039.1	1043.9	High
401.0	419.0	Weak-Mod	719.4	720.6	High	1043.9	1089.0	Weak
419.0	445.0	Weak	720.6	729.0	Weak	1089.0	1093.0	Moderate
445.0	456.0	Moderate	729.0	747.0	Weak-Mod	1093.0	1141.75	Weak-Mod
456.0	470.0	Weak	747.0	766.0	Weak	1141.75	1142.4	Mod-High
470.0	481.0	Weak-Mod	766.0	768.1	Moderate	1142.4	1163.1	Weak-Mod

481.0	523.0	Weak	768.1	768.35	Mod-High	1163.1	1168.2	High
523.0	524.0	Weak-Mod	768.35	770.7	Moderate	1168.2	1168.7	VeryHigh
524.0	531.0	Weak	770.7	823.0	Weak	1168.7	1169.6	High
531.0	540.0	Weak-Mod	823.0	928.0	LOW	1169.6	1228.45	Weak
540.0	555.4	Weak	928.0	930.0	Weak-Mod	1228.45	1228.8	High
555.4	557.5	Weak-Mod	930.0	957.9	Weak	1228.8	1278.85	Weak
557.5	558.1	Moderate	957.9	966.0	Mod-High	1278.85	1294.0	Low
558.1	565.65	Weak-Mod	966.0	974.1	Moderate	1294.0	1370.0	Weak
565.65	580.0	Weak	974.1	978.4	High	1370.0	1381.0	Moderate
580.0	591.0	Mod-High	978.4	978.85	Weak	1381.0	1466.0	Weak
591.0	604.0	Weak-Mod	978.85	982.4	High	1466.0	1520.0	Low
604.0	615.4	Mod-High	0.0	0.0	0	0.0	0.0	0

Weak	and/orfoliationzones
Weak- Mod	- partitioned zones of foliation to weak shearing ± veining
Moderate	0
Mod- High	shear zones with associated veining and minor hydraulic breccia development
High	- Strong penetrative shearing, often altered with biotite ± albite, with associated veining and hydraulic orecciadevelopment
Very High	narrow fault / mylonite zones of maximum displacement

622.0	Unknown	JanEast Thrust	Strain taken up by the low strength Kapai Slate
663.0	781,0591	JanEast Thrust	Intra-DCBshear
720.6	Unknown	Unknown	Intra-DCB shear
984.2	601,0631	JanMain Fault	SignificantoffsetofVictoryDoleriteagainst LunnonBasalt
1043.9	671, 0601	JanMain Fault	Structuralrepetitionof LunnonBasaltagainstLunnonBasalt
1169.6	Unknown	Unknown	Intra-ultramaficshearpossiblyrelatedtotheintermediate ntrusiveemplacedcontactwithLunnonBasa

502.0	508.8	1.6	164	0.19	631	3.6	149	KapaiSlate
604.25	618.2	3.0	254	0.27	1436	3.7	159	KapaiSlateJanEastThrust
1027.45*	1032.3	1.1	149	0.02	332	6.3	44	InterflowsedimentinLunnonBasaltJanMain Fault

nan	0	nan	0	nan	0
nan	0	nan	0	nan	0
Ag	0.05-500ppm	Hf	0.05-2000ppm	Sb	0.05ppm-1%

Al	50ppm-15%	In	0.01-2000ppm	Sc	0.1-5000ppm
As	0.5ppm-1% K 20ppm-10%		Se	0.5ppm-1%	
Ва	0.1-5000ppm	La	0.01-5000ppm	Sn	0.1-2000ppm
Ве	0.05-2000ppm	Li	0.1-5000ppm	Sr	0.05ppm-1%
0	nan	nan	nan	nan	nan
Bi	0.01ppm-1%	Mg	20ppm-40%	Ta	0.01-2000ppm
ca	50ppm-40%	Mn	1ppm-5%	Te	0.2-2000ppm
Cd	0.02-2000ppm	Мо	0.1ppm-1%	Th	0.01-5000ppm
Ce	0.01ppm-1%	Na	20ppm-10%	Ti	5ppm-2%
Co	0.1ppm-2%	Nb	0.05-2000ppm	TI	0.02-2000ppm
cr	1ppm-2%	Ni	0.5ppm-2%	J	0.01ppm-1%
Cs	0.05-2000ppm	0	50ppm-5%	0	1ppm-2%
Cu	0.5ppm-2%	Pb	0.5ppm-1%	W	0.1-2000ppm
Fe	100ppm-50%	Rb	0.05-2000ppm	0	0.05-2000ppm
Ga	0.05-2000ppm	Re	0.002-2000ppm	Zn	1ppm-2%
Ge	0.1-2000ppm	S	500ppm-10%	Zr	0.1-2000ppm

114.0	114.0	114.0	114.0	114.0	114.0	114.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0
114.0	80.0	94.0	99.0	83.0	109.0	114.0
85.0	0.005	4.3	0.2	19.0	76.0	7524.0
5609.0	11.16	41.4	191.0	280.0	2693.0	224902.0
2809.061	1.738947	26.56667	46.95	161.0	862.886	75873.63
2719.0	0.61	29.45	45.75	166.0	693.0	59021.5
5524.0	11.155	37.1	190.8	261.0	2617.0	217378.0
1872.25	1.895	15.375	37.4	72.75	913.5	73952.5
1519.236	2.652829	10.30819	39.3527	66.58191	674.2355	53856.7
86.35	0.005	4.345	0.215	19.15	79.0	7733.25
197.75	0.01	6.675	0.575	30.25	150.5	16636.0
844.5	0.05	10.25	2.85	56.5	193.5	24310.0
1647.75	0.1875	18.925	19.775	125.5	295.5	35271.25
3520.0	2.0825	34.3	57.175	198.25	1209.0	109223.8

5252.0	6.555	39.3	92.4	258.0	1952.0	160044.0
5457.25	9.375	40.15	150.4	268.0	2380.5	206551.3
5608.55	11.04	41.37	189.935	279.1	2692.25	224373.2

0 -472.3	ParingaBasalt	LowerParingaE
472.3-516.9	KapaiSlate	Interflowsedimenttowardthebas
516.9 - 577.8	ParingaBasalt	UpperParingaBasalt/De
577.8 -622.7	KapaiSlate	<apaislateandassociatedsig< td=""></apaislateandassociatedsig<>
from approximately 604.0 to622.0m	0	nan
622.7-759	DevonConsolsBasalt	DevonConsolsBasalt±AthenaBas
759 -828.3	DevonConsolsBasalt doleriticmember)	PlotsasAthenaBasaltbutlikelyahighTiend mem
828.3-870.8	DeyonConsolsBasalt	DevonConsolsBasalt±/
870.8 - 984.2	VictoryDolerite	Ultramafic(non-m
fromapproximately974.1 to984.2m	0	nan
984.2-1141.75	LunnonBasalt	LunnonBasalt±Intrusives
red contactwithultramafic from1132.3 to 1142.4m	0	nan
141.75-1529.1	KambaldaKomatite	Ultramafics (ma

Reporting	nan
2021	nan
per:	nan
Numbers:	M15/01557
perator(s):	LUNGAN A
Type:	Co-Funded Drilling
Title:	Co-Funded Drilling Report, Kenilworth Magnetic Anor
Period:	16March2022to16May2022
or:	Catherine NEWMAN, Callum SCOTT, Aaron WE
ed By:	CatherineNEWMAN
Date:	28September2022
neets:	1:250,000 MapSheet
IEMOOLTHA)	3235(LAKELEFROY)
mmodity:	GOLD,NICKEL
Drilled:	Kennilworth

nan

ımber:

ırvey Reg No:	nan
ys:	Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, G
sc,Se,Sn,Sr,Ta,Te,Ih,Ii,I,U,V,W,Y■	nan
	nan
ract	nan
ion:	TheKambaldaNickelProjectislocated19kmsouth-southeastofthetownship
uth side of Lake Lefroy, Kambalda, Western Australia.	nan
pgy:	The Kambalda Nickel Project is located within the Kambalda Domain, a subset
dominated by the Kalgoorlie Group volcanic rocks.	nan
Done:	One diamond drillhole was completed as part of the EIS agreement to inve
ent M15/1557 to a total depth of 1529.1m. Geochemical	nan
nalytical techniques for gold targets and 33 multi-element	nan
r Ni, Cu, Cr, Zn, Pb, Ag and 27 other elements. Semi-	nan
were taken from 47m to 1150m. Selected samples were	nan
digest with ICP-MS finish for stratigraphic fingerprinting.	nan
werecollectedat1mintervalsdownthelengthofthedrill	nan
tic (DHTEM) survey was also conducted.	nan
ılts:	No shallow level magnetic differentiated dolerite was intercepted during drilling
n 200 m of surface. The nickeliferous ultramafic-basalt	nan
1,150 m below surface, was not reached during drilling	nan
ccurring at depths of more than 1,500 m. Multi-element	nan
c unit show that the potential nickel prospectivity of the	nan
ere found from any sediments, intrusives and areas of	nan
edwithgoldpathfinderelementsseveralzoneswarrant	nan
pm gold. The lithologies encountered broadly follow the	nan
st include Paringa Basalt, Kapai Slate, Devon Consols	nan
sent. Geochemical identification of Lunnon Basalt higher	nan
os one of the most important results.	nan
ısion:	The Kenilworth magnetic anomaly is most likely the result of a shallow leve
drillhole. The nickel fertility data and ultramafic facies	nan
exist at depths greater than that drilled. In addition, no	nan
an-East Cooee Corridor which remains undetected and	nan

nan

plored.

SMT428	252.0	260.0	FPQFO	Quartzdominant,felsicporphyry
SMT428	260.0	263.0	МВАНО	Basalt-Amphiboledominant
SMT428	263.0	267.5	FPQFO	Quartzdominant,felsicporphyry
SMT428	267.5	398.5	МВАНО	Basalt-Amphiboledominant
SMT428	398.5	428.2	NAVI	Navirun-Nocorerecovery
SMT428	428.2	494.8	МВАНО	Basalt-Amphiboledominant

Combined Reporting	nan	nan
C185/2010	nan	nan
Number:	nan	nan
Tenement Numbers:	ML15/00487	nan
Tenement Operator(s):	CHERISHMETALSPTYLTD	nan
Report Type:	Co-Funded Drilling	nan
Report Title:	CO-FUNDED GOVERNMENT INDUSTRY DRILLING PROGRAM 2021-22 (R23)	nan
Report Period:	1 January 2022 to 19 October 2022	nan
Author:	Allan STEPHENS	nan
Submitted By:	Allan STEPHENS	nan
Report Date:	24 October 2022	nan
Map Sheets:	1:250,000MapSheet	1:100,000MapShee
SH51-14(WIDGIEMOOLTHA)	3234 (COWAN)	nan
SH51-14 (WIDGIEMOOLTHA)	3235(LAKELEFROY)	nan
Target Commodity:	COBALT, COPPER, NICKEL	nan
Prospects Drilled:	1	nan
PoWNumber:	nan	nan
Geophysical Survey Reg No: N/A	nan	nan
Assays:	N/A - No Assays completed	nan

0	nan	0
0	nan	0
Diamond DrillHoles	1.0	495

ML15/487 31/12/2999 31/12/2038 CHERISHMETALSPTYLTD 12100 1.2	ML15/487	31/12/2999	31/12/2038	CHERISHMETALSPTYLTD	12100	1.2	0
--	----------	------------	------------	---------------------	-------	-----	---

P26/4019	2	174	grab samples	Yes
----------	---	-----	--------------	-----

0	0	0	nan
0	nan	0	nan
Yoda	Grab	1	Peak61ppbAu
TenementRecon	Grab	2	No significant results

P26/4019	28/05/2015	27/05/2023	NORTHERNSTAR(HBJ)PTYLTD	0	1.32	0
0	0	0	0	0	0.0	0

The Neptune-Revenge area has had a long history of gold exploration and production.	nan		
· 1984: Discovery of Revenge - Magnetic anomaly within favourable stratigraphy	nan		
· 1994: Resource definition of supergene ore bodies Mars, Agamemnon, and Minotaur	nan		
· 1999: Discovery of Belleisle	nan		
covery of the Neptune palaeochannel deposit, including A5 and Redback. Mining has been undertaken into fresh rock	nan		
lodes.			
6. Previous Exploration	Page 11 of 17 F		

Combined Reporting	nan	nan
Number:	nan	nan
Tenement Numbers:	M 15/1658	nan
Tenement Operator(s):	ST IVES GOLD MINE	nan
Report Type:	Co-Funded Drilling	nan
Report Title:	Round252022-2023C0-fundedDrillingProgram	nan
Report Period:	1 June 2022 to 31 May 2023	nan
Author:	Jonathon FRANKLIN	nan
Submitted By:	Jonathon FRANKLIN	nan
Report Date:	29 May 2023	nan
Map Sheets:	1:250,000 MapSheet	1:100,000MapSh
SH51-14(WIDGIEMOOLTHA)	3235 (LAKE LEFROY)	nan
Target Commodity:	GOLD	nan
Prospects Drilled:	Neptune-Revenge Stratigraphy	nan
PoW Number:	ID93883	nan
Geophysical Survey Reg No:	nan	nan
Assays:	AuAlCaCrFeK MgMnNaSSi Ti PBaCeClBrCsDy Er EuGaGeGdHf HoLaLu Nb	nan

Pr RbSmSnTaTb ThTm U VW Y Yb Zr	nan	nan
---------------------------------	-----	-----

M15/1658	14/12/2004	23/12/2025	STIVESGOLDMININGCOMPANYPIY LIMITED	11100	1.1	0
0	0	0	0	0	0.0	0