Hausaufgaben zum 31. Mai 2015

Mathematik für Studierende der Informatik II (Analysis und Lineare Algebra)

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Jennifer Hartmann 6706472 fwuy089@studium.uni-hamburg.de 31. Mai 2015

Aufgabe 1

(a)

Untersuchen Sie die Menge

$$M = \left\{ \frac{n+1}{m} : n, m \in \mathbb{N} \right\}$$

auf Beschränktheit nach oben und unten und bestimmen Sie gegebenenfalls Supremum und Infimum.

1. Fall: n = m = 1

n=m=1 2. Fall: $n \to +\infty$; m=1 $\frac{1+1}{1} = \frac{2}{1} = 2$ $\frac{n+1}{1} \to \frac{\infty}{1} \to +\infty$

3. Fall: $n=1, m\to +\infty$ 4. Fall: $n=m\to +\infty$ $\frac{1+1}{m}=\frac{2}{m}\to 0$ $\frac{n+1}{m}\to \infty$

Somit ergibt sich, dass die Folge nach unten durch 0 beschränkt ist, wohingegen sie nach oben unbeschränkt ist.

Supremum: $+\infty^{-}$

Infimum: 0

(b)

Untersuchen Sie die Folge (a_n) mit

$$a_n = \frac{1}{3} - \frac{1}{2n}$$

und bestimmen Sie gegebenenfalls den Grenzwert.

Da $\frac{1}{3}$ konstant ist, ist die Folge allein von $\frac{1}{2n}$ abhängig.

$$\begin{cases} n = 1 : \frac{1}{2n} = \frac{1}{2} \\ n \to +\infty : \frac{1}{2n} \to 0 \end{cases}$$

Somit sind die Beschränkungen der Folge

$$\begin{cases} n = 1 : \frac{1}{3} - \frac{1}{2} = -\frac{1}{6} \\ n \to +\infty : \frac{1}{2n} \to \frac{1}{3} \end{cases}$$

2

und der Grenzwert ist dementsprechend $\frac{1}{3}$.

Aufgabe 2

Untersuchen Sie das Konvergenzverhalten der Folge (a_n) mit

$$a_n = \left(2 + \frac{1}{n}\right)^n$$

und bestimmen Sie gegebenenfalls den Grenzwert.

Es ist offensichtlich, dass $\frac{1}{n}$ gegen 0 geht, je größer n wird. Somit nähert sich der Ausdruck in der Klammer 2^+ an. Da $2^+ > 2$ gilt $a_n > 2^n$. 2^n ist nach oben nicht beschränkt, somit geht auch a_n gegen $+\infty^-$ als Grenzwert. Als Infimum wird 3 festgestellt, da $n \geq 1 \Rightarrow (2 + \frac{1}{n})^n = (2 + \frac{1}{1})^1 = (2 + 1)^1 = 3^1 = 3$. Die Folge ist streng monoton steigend, begründet ebenfalls durch $2^+ > 2 \Rightarrow \forall n | a_n > 2^n$ und dadurch, dass 2^n streng monoton steigend ist.

Aufgabe 3

Untersuchen Sie das Konvergenzverhalten der Folgen (a_n) und (b_n) mit

$$a_n = \frac{3n^2 - 3n}{2n^2 - 1}$$
 und $b_n = \frac{3n^2 - 3n}{2n^3 - 1}$

und bestimmen Sie gegebenenfalls den Grenzwert.

Aufgabe 4

Es sei (a_n) eine konvergente Folge reeller Zahlen mit $\lim_{n\to\infty}a_n=2$. Bestimmen Sie den Grenzwert der Folge (b_n) mit

$$b_n = (a_n^2 - 2)^2 - 3.$$

Aufgabe 5

(a)

Sei (a_n) eine beschränkte Folge. Für jedes $n \in \mathbb{N}$ sei $b_n = \sup\{a_m : m \ge n\}$. Zeigen Sie, dass (b_n) konvergiert.

Hinweis: Ist die Folge (b_n) monoton? Ist sie beschränkt?

(b)

Zeigen Sie, dass jede Cauchy-Folge reeller Zahlen konvergiert.

Hinweis: Benutzen Sie (a), um einen Kandidaten für den Grenzwert der Cauchy-Folge zu finden.

3