Last homework assignments (solutions)

Dr. Holmes

December 9, 2024

1. Prove that $\lim_{x\to 3} 2x + 3 = 9$

Let $\epsilon > 0$ be chosen arbitrarily. [The original in the notes has a typo $\epsilon < 0!$]

Let δ be . . .

Let x be chosen arbitarily.

Assume
$$0 < |x - 3| < \delta$$

Goal:
$$|(2x+3)-9| < \epsilon$$

There is a gap in this development. We have to say what fills in the dots (what δ actually is). Notice that the choice of δ can depend on ϵ , but not on x.

What we generally do is first do some "scratch work" to figure out a δ that might work. We do this by figuring backward from the desired outcome $|f(x) - L| < \epsilon$ to the $0 < |x - a| < \delta$ which will work. Notice that this is a dangerous activity, because the proof has to go in the other direction.

The scratch work:

We want $|(2x+3)-9| < \epsilon$

This is equivalent to $|2x - 6| < \epsilon$

and so to $2|x-3| < \epsilon$

and so to $|x-3| < \frac{\epsilon}{2}$

So we take away from the scratch work the idea that $\delta = \frac{\epsilon}{2}$ and write **the official proof**:

Let $\epsilon > 0$ be chosen arbitrarily.

Let
$$\delta = \frac{\epsilon}{2}$$

Let x be chosen arbitarily.

Assume
$$0 < |x - 3| < \delta = \frac{\epsilon}{2}$$

Goal:
$$|(2x+3) - 6| < \epsilon$$

Since
$$0 < |x-3| < \delta = \frac{\epsilon}{2}$$
, we have $|x-3| < \frac{\epsilon}{2}$

Multiply both sides by 2 and we get $2|x-3| < \epsilon$

From this we have $|(2x+3)-9| = |2x-6| = 2|x-3| < \epsilon$

so we have $|(2x+3)-9| < \epsilon$, our goal.

2. Prove that $\lim_{x\to 2} 12 - 2x = 8$, from the definition of limit.

Let $\epsilon > 0$ be chosen arbitrarily.

Let δ be ...

Let x be chosen arbitarily.

Assume
$$0 < |x - 2| < \delta$$

Goal:
$$|(12 - 2x) - 8| < \epsilon$$

There is a gap in this development. We have to say what fills in the dots (what δ actually is). Notice that the choice of δ can depend on ϵ , but not on x.

What we generally do is first do some "scratch work" to figure out a δ that might work. We do this by figuring backward from the desired outcome $|f(x) - L| < \epsilon$ to the $0 < |x - a| < \delta$ which will work. Notice that this is a dangerous activity, because the proof has to go in the other direction.

The scratch work:

We want
$$|(12-2x)-8| < \epsilon$$

This is equivalent to $|4-2x|<\epsilon$

and so to $2|2-x|=2|x-2|<\epsilon$ [notice what happens here...we are not going to divide by -2!]

and so to
$$|x-2| < \frac{\epsilon}{2}$$

So we take away from the scratch work the idea that $\delta = \frac{\epsilon}{2}$

and write the official proof:

Let $\epsilon > 0$ be chosen arbitrarily.

Let
$$\delta = \frac{\epsilon}{2}$$

Let x be chosen arbitarily.

Assume
$$0 < |x-2| < \delta = \frac{\epsilon}{2}$$

Goal:
$$|(12 - 2x) - 8| < \epsilon$$

Since
$$0 < |x-2| < \delta = \frac{\epsilon}{2}$$
, we have $|2-x| = |x-2| < \frac{\epsilon}{2}$

Multiply both sides by 2 and we get $2|2-x| < \epsilon$

From this we have $|(12 - 2x) - 8| = |4 - 2x| = 2|2 - x| < \epsilon$

so we have $|(12-2x)-8|<\epsilon$, our goal.

3. Prove that $\lim_{x\to 4} x^2 = 16$

Choose an $\epsilon_0 > 0$ arbitrarily.

Let
$$\delta_0 = \dots$$

Choose x arbitrarily.

Assume that $0 < |x-4| < \delta_0$

Goal:
$$|x^2 - 16| < \epsilon_0$$

The next phase is scratch work to figure out what δ_0 should be. r We aim to make $|x^2 - 16| < \epsilon_0$.

$$|x^2-16|=|x+4||x-4|<\epsilon_0$$
 will be true if $|x-4|<\frac{\epsilon_0}{|x+4|}$

We cannot set $\delta_0 = \frac{\epsilon_0}{|x+4|}$, because this expression depends on x. What we need is $|x-3| < \frac{\epsilon_0}{???} < \frac{\epsilon_0}{|x+4|}$ where ???, whatever it is, does not depend on x. We need ??? to be greater than |x+4| (so that its reciprocal will be smaller). To get an upper bound on |x+4|, we impose an upper bound on x: the only way we have to do this is to make stipulations about δ_0 . If we impose $\delta_0 \leq 1$, then we get |x-4| < 1, which is equivalent to 3 < x < 5. We then get 7 < x + 4 < 9, and since x+4>7>0 we have |x+4|=x+4<9. 9 is the desired upper bound. So we get $|x-3|<\frac{\epsilon_0}{9}<\frac{\epsilon_0}{|x+4|}$ implies $|x^2-9|<\epsilon_0$ as long as we also stipulated |x-4|<1. So a workable value of δ_0 is $\min(1,\frac{\epsilon_0}{9})$.

Now we continue the proof, setting $\delta_0 = \min(1, \frac{\epsilon_0}{9})$.

Since $|x-4| < \delta_0$, we also have |x-4| < 1 and $|x-4| < \frac{\epsilon_0}{9}$. From this we deduce 7 < |x+4| = x+4 < 9 just as we did above in the scratch work. Now $|x^2-16| = |x+3||x-3| < 9|x-3| < 9\frac{\epsilon_0}{9} = \epsilon_0$.

[I don't actually recall why I used ϵ_0 and δ_0 in the original from which this is edited, but I didn't change it: variable names can be arbitrary!]

4. Read example 1 on page 75, then prove $\lim_{x\to 3} \frac{1}{x} = \frac{1}{3}$

Start the proof as usual.

Let $\epsilon > 0$ be chosen arbitrarily.

We do some scratch work to find δ : we want to make $\left|\frac{1}{x} - \frac{1}{3}\right| < \epsilon$ by making |x - 3| small enough.

 $|\frac{1}{x}-\frac{1}{3}|=|\frac{3-x}{3x}|=\frac{|x-3|}{|3x|}$ and this will be less than ϵ just in case $|x-3|<|3x|\epsilon$.

 δ cannot depend on x: but we can get a condition which works if we can place a lower bound on x.

Assume |x-3|<1, or equivalently 2< x<4, so we now want $|x-3|<3\cdot 2\cdot \epsilon<|3x|\epsilon$

so we set $\delta = \min(1, 6\epsilon)$.

Continue the proof. Let $\delta = \min(1, 6\epsilon)$.

Choose x arbitrarily.

Suppose that $0 < |x - 3| < \delta = \min(1, 6\epsilon)$.

It follows that |x-3| < 1 so 2 < x < 4.

Also $|x-2| < 6\epsilon$.

Now $\left|\frac{1}{x} - \frac{1}{3}\right| = \frac{|x-3|}{|3x|} = \frac{|x-3|}{3x} < \frac{|x-2|}{6}$ (because x > 2) $< \frac{6\epsilon}{6} = \epsilon$.

5. Prove the subtraction rule for limits from the definition directly (not from the addition rule and the constant multiple rule): if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} (f(x)-g(x)) = L-M$. This should look very much like the proof of the addition rule with slightly different manipulations of absolute values.

Goal: if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then

$$\lim_{x \to a} f(x) - g(x) = L - M.$$

The proof starts.

Assume $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$.

Choose $\epsilon_0 > 0$.

Let $\delta_0 = \dots$

Choose x arbitrarily.

Assume $0 < |x - a| < \delta_0$.

Goal: $|(f(x) + g(x)) - (L - M)| < \epsilon_0$

We pause for scratch work.

 $|(f(x)-g(x))-(L-M)|=|(f(x)-L)+(M-g(x))|\leq |f(x)-L|+|M-g(x)|=|f(x)-L|+|g(x)-M|.$ This will be less than ϵ_0 if we make $|f(x)-L|<\frac{\epsilon_0}{2}$ and $|g(x)-M|<\frac{\epsilon_0}{2}$ By limit assumptions, we can choose δ_1 so that if $0<|x-a|<\delta_1$, then $|f(x)-L|<\frac{\epsilon_0}{2}$ and choose δ_2 so that if $0<|x-a|<\delta_2$, then $|g(x)-M|<\frac{\epsilon_0}{2}$. The point is that the limit statements about f and g allow us to find δ 's corresponding to any value of ϵ , in this case a value half as large as the value being considered for the sum function. Let $\delta_0=\min(\delta_1,\delta_2)$. Continue the proof.

Since we have assumed $0 < |x - a| < \delta_0$, we also have $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$, so we have $|f(x) - L| < \frac{\epsilon_0}{2}$ and $|g(x) - M| < \frac{\epsilon_0}{2}$. Thus $|(f(x) - g(x)) - (L - M)| = |(f(x) - L) + (M - g(x))| \le |f(x) - L| + |M - g(x)| = |f(x) - L| + |g(x) - M| < \frac{\epsilon_0}{2} + \frac{\epsilon_0}{2} = \epsilon_0$.

6. Prove that |x||y| = |xy|. |x| is defined as x if $x \ge 0$ and -x otherwise. This is a straightforward argument by cases: make sure you write out everything you need to say.

Note that $x \le 0$ implies |x| = -x. If x < 0 this is true by the definition directly, and if x = 0 we have -x = 0 = |x|.

By trichotomy, either $x \ge 0$ or x < 0, and either $y \ge 0$ or y < 0. This gives four cases.

If $x \ge 0$ and y > 0 then |x||y| = xy, and further $xy \ge 0$, so xy = |xy| and we are done.

If $x \ge 0$ and y < 0, then |x||y| = x(-y) and further, $xy \le 0$, so x(-y) = -xy = |xy|.

If x < 0 and $y \ge 0$, then |x||y| = (-x)y and further, $xy \le 0$, so (-x)y = -xy = |xy|.

If x < 0 and y < 0 then |x||y| = (-x)(-y) = xy and xy > 0 so xy = |xy|.

7. (depends on Thursday's lecture) Write out the proof that any nonempty set of real numbers which is bounded below has a greatest lower bound, using the Completeness Axiom, which asserts that each nonempty set of real numbers which is bounded above has a least upper bound.

I'm not going to write out the full answer to this one. It will appear as a bonus question on the exam.

Hint: if A is a nonempty set of real numbers which is bounded below, what can you say about the set $-A = \{-x : x \in A\}$? Don't just say it, prove it. The point is to write out all the details of the straightforward manipulations of set notation and order which are involved. I believe I did something very similar in arguing in class and in the notes that it follows from the Well-Ordering Principle that any set of integers bounded above has a maximum: I believe this appears in the construction of the gcd. You can surely find this written out in a book or on the web...