Some special graphs

<u>Complete graphs</u>: The complete graph of order n, denoted by K_n is the simple graph that contains exactly one edge between each pair of distinct vertices.

So, in K_n , every vertex has degree n-1.

Theorem: The number of edges of K_n is $\frac{n(n-1)}{2}$.

Proof: Since the number of vertices of K_n is n and for all $v \in V(K_n)$,

deg(v) = n - 1, then by the first theorem of graph theory, we have

$$n(n-1) = 2q$$

Implies that $q = \frac{n(n-1)}{2}$.

<u>Cycles:</u> The cycle $C_{n,}$ $n \ge 3$ consists of n vertices v_1, v_2, \ldots, v_n and edges $v_1v_2, v_2v_3, v_3v_4, \ldots, v_{n-1}v_n, v_nv_1$. The number of edges of the cycle $C_{n,}$ $n \ge 3$, is n edges.

Theorem : $|E(C_n)| = n$.

Proof: The number of vertices of C_n is n and each vertex is of degree 2. Then by the first theorem of graph theory, theorem follows.

<u>Odd and Even cycles:</u> A cycle C_{n_n} $n \ge 3$ is called an odd cycle if its size is odd and is called even if its size is even.

Example: C_3 is an odd cycle while C_4 is an even cycle.

<u>Wheels</u>: We obtain the wheel W_n , when we add an additional vertex to the cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n , by new edges.

Theorem : $|E(W_n)| = 2n$

Proof: The number of vertices of W_n is n+1 and there are n each vertex is of degree 3 and one vertex is of degree n. Then by the first theorem of graph theory, 3n+1. $n=2q \Rightarrow q=2n$.

<u>n – Cube graphs:</u>

The n-dimensional hyper cubes or n-cubes, denoted by Q_n , is the graph has vertices representing the 2^n bit strings of length n. Two vertices are adjacent if and only if the bit strings that are represent differ in exactly one bit position.

For n=1, then Q_1 has 2^1 vertices, namely 0 and 1

For For n=2, then ${\cal Q}_2$ has 2^2 vertices, namely 00 , 01,11,01.

For For n=3, then Q_3 has 2^3 vertices, namely 000 , $001,\!011,\!101,\!111,\!110$, $100,\!010.$

Theorem : $|E(Q_n)| = n2^{n-1}$.

Proof: The number of vertices of Q_n is 2^n and each vertex is of degree n. Then by the first theorem of graph theory, we have

$$n2^n = 2q \Rightarrow q = n2^{n-1}.$$

Bipartite Graphs and Complete Bipartite Graphs

<u>Bipartite graph:</u> A simple graph G is bipartite if its vertex set V can be portioned into two disjoint subsets X and Y such that every edge joins a vertex of X and a vertex of Y.

Example: Let *G* be a graph with vertex set

$$V(G) = \{x_1, y_1, x_2, y_2, x_3, y_3, x_{4, y_4}, y_5\}.$$

We partition the vertex set of G into two subsets, say $X=\{x_1,x_2,x_3,x_4\}$ and $V_2=\{y_1,y_2,y_3,y_4,y_5\}$.

So, G is a bipartite graph.

G is not a bipartite graph

G:

G is a bipartite graph

Example: Determine whether the following graphs are bipartite, if so redraw them with their partitions.

Solution: (a) is bipartite graph

- (b) is not bipartite.
- (c) is bipartite

- (a) is not bipartite.
- (b) is not bipartite.
- (c) is bipartite.

Theorem: Let G be a nontrivial graph. If G is bipartite, then G contains no odd cyles.

Theorem:Let G be a nontrivial graph. If G contains no odd cycles, then G is bipartite .

Complete bipartite graph: The complete bipartite graph $K_{m,n}$ is the graph that has its vertex set portioned into, two subsets of m and n vertices, respectively. There is an edge between two vertices if and only if one vertex is in the first subset and the other vertex in the second subset.

Examples:

Theorem : $|E(K_{m,n})| = mn$.

Proof: The number of vertices of $K_{m,n}$ is m+n and there are m vertices each of degree n and there are n vertices each of degree m Then by the first theorem of graph theory, we have

$$mn + nm = 2q \Rightarrow q = mn$$
.

Regular Graphs: A graph G is regular if all its vertices have the same degrees.

Examples of regular graphs: K_n and \mathcal{C}_n are regular graphs.

<u>The Complement of a graph:</u> The complementary graph \bar{G} of a graph G has the same vertices as G and two vertices are adjacent in \bar{G} if and only they are not adjacent in G.

Example: Find the complement of the graph

Solution:

Example:

Find the complement of the graph C_{5} .

Solution:

So, $C_{5.}$ is self –complementary graph.

Example: Find $\overline{K_n}$.

Solution: The graph $\overline{K_n}$ has n vertices and no edges and it is called the trivial graph of order n

Theorem : Let |V(G)| = n. Then $|E(G)| + \left|E(\overline{G})\right| = |E(K_n)| = \frac{n(n-1)}{2}$

The graph $\overline{K_n}$ has n vertices and no edges and it is called the trivial graph of order n.

Example: Let G be a graph of order 10 and size 30 . Find the size of \bar{G} .

Solution: Since
$$|E(G)| + |E(\overline{G})| = \frac{n(n-1)}{2}$$
 Then

$$30 + \left| E\overline{(G)} \right| = \frac{10(10-1)}{2}$$

Or

$$\left| E\overline{(G)} \right| = 45 - 30$$

OR

$$\left| E\overline{(G)} \right| = 15$$

Example: Let G be a graph with 30 edges and \bar{G} with 15 edges. Find the number of vertices of G.

Solution: Since
$$|E(G)|+\left|E\overline{(G)}\right|=\frac{n(n-1)}{2}$$
 Then
$$30+15=\frac{n(n-1)}{2}$$

$$\Rightarrow 45 = \frac{n(n-1)}{2}$$

$$\Rightarrow n^2 - n - 90 = 0$$

$$\Rightarrow$$
 $n = 10$.

Theorem: Let G be a graph of order n and $v \in V(G)$ such that $\deg(v)_G(v) = k$. Then

$$deq_{\bar{c}}(v) = n - k - 1.$$

Example : Let G be a graph with vertex degree 4.3.3.2.2. Find the degrees of \overline{G} .

<u>The Union of two Simple graphs</u>: The union of two simple graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ is the simple graph with vertex set $V_1\cup V_2$ and edge set $E_1\cup E_2$. The union of G_1 and G_2 is denoted by $G_1\cup G_2$.

Examples:

G1

G 2:

 $G_1 \cup G_2$.

2.7 sub graphs

Sub graphs: A sub graph of a graph G = (V, E) is a graph H = (W, F), where W is a sub set of V and F is a sub set of E.

Examples:

Graph G.

 G_1 and G_2 are sub graphs of the graph G.

The simplest type of sub graphs of a graph is that obtained by deletion a vertex or an edge. If $v \in V(G)$ and $|V(G)| \ge 2$, then $G \setminus v$ denotes the sub graph with vertex set $V \setminus \{v\}$ and whose edge set are all those of G not incident at v.

Similarly if $e \in E(G)$, then $G \setminus e$ is the sub graph having vertex set V(G) and $edge\ set\ E(G) \setminus \{e\}$.

Exercises

- 1. Draw the following graphs: K_7 , C_7 , $K_{1,8}$, $K_{4,4}$, W_7 , Q_4 .
- 2. Determine which of the following graphs is bipartite

3. How many vertices and how many edges do these graphs have?

$$K_n$$
, C_n , W_n , $K_{m,n}$, Q_n .

- 4. How many sub graphs with at least one vertex does ${\it K}_{\it 2}$ have?
- 5. Draw all sub graphs of this graph

6. Find the union of the following two graphs

.