SUBCANONICAL COORDINATE RINGS ARE GORENSTEIN

V. HINICH AND V. SCHECHTMAN

To our teacher Evgeny Solomonovich Golod, with gratitude

In all examples we consider, [the coordinate ring of X] is a Gorenstein ring; this property is one of the most powerful general tools we have in studying X and its deformations. It seems to us that this point is not adequatly appreciated.

A. Corti, M. Reid, Weighted Grassmanians.

1. Introduction

Let $i: X \hookrightarrow \mathbb{P} = \mathbb{P}(V)$ be a smooth connected projective variety embedded into a projective space (we are working over a fixed ground field k). Set $\mathcal{O}_X(1) = i^*\mathcal{O}_{\mathbb{P}}(1)$ and consider the coordinate algebra

$$A = \bigoplus_{n=0}^{\infty} H^0(X, \mathcal{O}_X(n)).$$

By construction A is identified with a quotient algebra A = S/I where $S = Sym(V^*) = k[x_0, \dots, x_{n-1}]$. The Koszul homology algebra is defined as

$$H(A) = \bigoplus_{p=0}^{n} Tor_{p}^{S}(A, k).$$

This is a (bi)graded commutative k-algebra, finite dimensional as a k-vector space.

In an inspiring paper [GKR] Gorodentsev, Khoroshkin and Rudakov prove (among others) the following elegant result. Denote by K_X the canonical class of X.

- 1.1. **Theorem** ((see [GKR], Sect. 2)). Suppose that
 - (a) there exists a natural N such that $K_X = \mathcal{O}_X(-N)$;
 - (b) $H^i(X, \mathcal{O}_X(n)) = 0$ for all $n \in \mathbb{Z}$ and $0 < i < d := \dim X$.

Then H(A) is Frobenius.

Here *Frobenius* means that there exists a nondegenerate bilinear pairing $\langle , \rangle : H(A) \times H(A) \longrightarrow k$, suitably compatible with the gradings, such that $\langle ab, c \rangle = \langle a, bc \rangle$.

The proof in *op. cit.* is very nice; it uses the "sphericity" of certain spectral sequence.

In this note we would like to look at this result from a slightly different perspective. Our point of departure is a fundamental result by Avramov and Golod, [AG]:

1.2. **Theorem.** H(A) is Frobenius if and only if A is Gorenstein.

In fact, Avramov and Golod work in the local situation; the passage to our graded context presents no difficulties. Indeed, according to op. cit., H(A) is Frobenius iff the localisation of A at 0 is Gorenstein; however, A is smooth outside this ideal, so this is equivalent to A being Gorenstein.

So our question reduces to the Gorenstein property of A.

Let us say, following [GKR], that $X \subset \mathbb{P}$ is *subcanonical* if the condition (a) of Theorem 1.1 is satisfied. In the present note we prove the following

1.3. **Theorem.** Assume $\operatorname{char}(k) = 0$. If $X \subset \mathbb{P}$ is subcanonical then A is Gorenstein and has rational singularities.

We establish this using certain $Key\ Lemma$ from [H] (see Proposition 2.1) giving a sufficient condition for a singularity being Gorenstein and rational. The proof of this lemma uses Grauert-Riemenschneider theorem, and hence the characteristic zero assumption. (On the contrary, although Gorodentsev et al. assume $k=\mathbb{C}$, their proof of 1.1 works over an arbitrary field).

1.4. Corollary. If $X \subset \mathbb{P}$ is subcanonical then H(A) is Frobenius.

So, the condition (b) of Theorem 1.1 is superfluous if char k=0.

The main objects of study in *op cit*. are *highest weight orbits* of a semisimple algebraic group G. For such X the authors of [GKR] prove that (b) follows from (a).

In this case we prove that subcanonicity is equivalent to the Gorenstein property of A:

- 1.5. **Theorem.** Let $X \subset \mathbb{P}(V)$ be the projectivisation of the highest weight orbit in an irreducible finite dimensional representation V of a semisimple group G. This embedding is subcanonical if and only if the corresponding coordinate ring A is Gorenstein (so, iff H(A) is Frobenius).
- 1.6. **Acknowledgement.** This note was written during a visit of the first author to the *Institut de Mathématiques de Toulouse*. He thanks this Institute for the hospitality.

2. Proof of Theorem 1.3

We keep the notation of the Introduction. The affine variety $Z := \operatorname{Spec}(A)$ is the cone over X; therefore it is nonsingular outside 0. It has a very nice desingularization Y which is the total space of the vector bundle $\mathbb{E} = \mathcal{O}_X(-1)$. Let

$$(1) p: Y = \operatorname{Spec}(Sym_{\mathcal{O}_X}(\mathbb{E}^*)) \longrightarrow X$$

be the projection.

The embedding $\mathcal{O}_{\mathbb{P}(V)}(1) \longrightarrow V$ defines an embedding $Y \longrightarrow X \times V$; the projection to the second factor has image $Z \subset \operatorname{Spec}(Sym\ V^*) = V$ and the map

$$\pi: Y \longrightarrow Z$$

is a desingularization.

Recall the following

2.1. **Proposition** (see [H]). Let $\pi: Y \longrightarrow Z$ be a proper birational map with Y smooth and Z normal. Let ω_Y be the sheaf of higher differentials on Y. Assume there exists a morphism $\phi: \mathcal{O}_Y \to \omega_Y$ such that $\pi_*\phi: \pi_*\mathcal{O}_Y \to \pi_*\omega_Y$ is an isomorphism. Then Z is Gorenstein and has rational singularities.

We wish to apply this to our desingularization $\pi: Y \to Z$. Note that $Z = \operatorname{Spec}(A)$ is normal.

The short exact sequence of vector bundles on Y

$$0 \longrightarrow p^* \mathbb{E} \longrightarrow T_Y \longrightarrow p^* T_X \longrightarrow 0$$

yields an isomorphism

(4)
$$\omega_Y = p^*(\omega_X \otimes \mathbb{E}^*).$$

We wish to calculate the global sections of ω_Y . First of all, we have

$$(5) p_*\omega_Y = p_*p^*(\omega_X \otimes \mathbb{E}^*) = \omega_X \otimes \mathbb{E}^* \otimes Sym_{\mathcal{O}_X} \mathbb{E}^* = \bigoplus_{n>1} \omega_X \otimes \mathcal{O}_X(n)$$

since p is an affine morphism.

2.2. **Proof of Theorem 1.3.** Let $\omega_X = \mathcal{O}_X(-N)$. One has an obvious map

$$\mathcal{O}_X = \omega_X \otimes \mathcal{O}_X(N) \longrightarrow \bigoplus_{n \ge 1} \omega_X \otimes \mathcal{O}_X(n) = p_* \omega_Y$$

which gives by adjunction a map $\phi: \mathcal{O}_Y \longrightarrow \omega_Y$.

We will check now that ϕ induces an isomorphism of the global sections. Applying to ϕ the direct image functor p_* we get a morphism

(6)
$$p_*(\phi): \bigoplus_{n\geq 0} \mathcal{O}_X(n) \longrightarrow \bigoplus_{n\geq 1} \omega_X \otimes \mathcal{O}_X(n)$$

which is obviously a map of $p_*(\mathcal{O}_Y)$ -modules. By definition it carries $1 \in p_*(\mathcal{O}_Y)$ to a generator of $\omega_X(N) = \mathcal{O}_X$, so the map $p_*(\phi)$ carries isomorphically the summand $\mathcal{O}_X(n)$ of the left-hand side to the summand $\omega_X \otimes \mathcal{O}_X(N+n)$ of the right-hand side. For n < N one has on the right-hand side

$$\Gamma(X, \omega_X \otimes \mathcal{O}_X(n)) = \Gamma(X, \mathcal{O}_X(n-N)) = 0,$$

so $p_*(\phi)$ induces an isomorphism of the global sections.

3. Homogeneous case

Let now G be a semisimple Lie group, V a simple finite dimensional highest weight G-module, $v \in V$ be a highest weight vector. Let P be the stabilizer of $\mathbb{C}v$ in $\mathbb{P}(V)$. This is a parabolic subgroup of G. A G-equivariant embedding $i:X:=G/P\longrightarrow \mathbb{P}(V)$ is induced.

The closure Z of Gv is a cone in V. We have $Z = \operatorname{Spec}(A)$ where A is the homogeneous coordinate ring of X = G/P with respect to i.

In this case the converse of the theorem 1.3 is valid. One has

3.1. **Theorem.** The space Z is Gorenstein iff $\omega_X = \mathcal{O}_X(-N)$ for some N.

Note that the conclusion of the Theorem is not true for an arbitrary (nonhomogeneous) X (for example it follows easily from the results of Mukai [M] that a generic curve of genus 7 embedded canonically in \mathbb{P}^6 has a Gorenstein coordinate ring).

Proof. The dualizing complex of Z can be calculated as

(7)
$$\omega_Z = R \operatorname{Hom}_{SV^*}(A, SV^*)[\dim V - \dim Z]$$

(the shift is chosen so that ω_Z is concentrated in degree 0 when A is Cohen-Macaulay).

Its cohomology keeps the grading of SV^* and A; therefore, if A is Gorenstein so that ω_Z is an invertible A-module, it has to be isomorphic to A.

Choose an isomorphism $\theta: A \longrightarrow \omega_Z$.

We now apply the Duality isomorphism, see [Ha], VII.3.4, to the proper morphism $\pi: Y \to Z$. It gives, in particular, an isomorphism

(8)
$$\operatorname{Hom}_{D(Y)}(F, \pi^! G)) \xrightarrow{\sim} \operatorname{Hom}_{D(Z)}(R\pi_* F, G)$$

for any $F \in D_{qc}^{-}(Y), \ G \in D_{c}^{+}(Z).$

We apply this to $F = \mathcal{O}_Y$ and $G = \omega_Z$. By a general result of Kempf [K] Z has rational singularities, so $R\Gamma(Y, \mathcal{O}_Y) = \Gamma(Y, \mathcal{O}_Y) = A$. Moreover, $\pi^!(\omega_Z) = \omega_Y$. Thus, Duality isomorphism gives us

(9)
$$\operatorname{Hom}_{D(Y)}(\mathcal{O}_Y, \omega_Y)) \xrightarrow{\sim} \operatorname{Hom}_{D(Z)}(\mathcal{O}_Z, \omega_Z).$$

We see that the map $\theta: A \to \omega_Z$ is adjoint to a map $\theta_Y: \mathcal{O}_Y \to \omega_Y$ which in turn can be rewritten as a morphism

(10)
$$\theta_X: \mathcal{O}_X \to p_*(\omega_Y) = \bigoplus_{n \ge 1} \omega_X(n).$$

We intend to prove now that each direct component $\theta_{X,n}: \mathcal{O}_X \to \omega_X(n)$ is either isomorphism or vanishes. This will immediately imply the theorem.

Note that the formula (7) shows that the group G naturally acts on ω_Z . We claim that $\theta: A \to \omega_Z$ is necessarily G-equivariant.

In fact, the G-action on A-module ω_Z is compatible with G-action on A:

$$g(ax) = g(a)g(x), g \in G, a \in A, x \in \omega_Z.$$

Another G-module structure on ω_Z compatible with the G-action on A is given by θ . These two actions define two group homomorphisms

$$\rho_1, \rho_2: G \longrightarrow \operatorname{Aut}_{\mathbb{C}}(\omega_Z).$$

The "difference" between the two defined by the formula

$$\rho_{12}: g \mapsto \rho_1(g^{-1}) \circ \rho_2(g)$$

gives rise to a crossed homomorphism $\rho_{12}: G \to \operatorname{Aut}_A(\omega_Z) = \mathbb{C}^*$. Since the action of G on \mathbb{C}^* is trivial and G is semisimple, ρ_{12} is trivial, which means that θ is G-equivariant.

Let us show that the maps θ_Y and θ_X obtained from θ via Duality isomorphism, are also G-equivariant.

Choose $g \in G$ and let $g_X : X \to X$, $g_Y : Y \to Y$, $g_Z : Z \to Z$ denote the corresponding automorphisms of the varieties.

An action of $g \in G$ on \mathcal{O}_Z and ω_Z are expressed as isomorphisms $g_Z^*(\mathcal{O}_Z) \to \mathcal{O}_Z$ and $g_Z^*(\omega_Z) \to \omega_Z$. Since θ is equivariant, it gives rise to a commutative diagram

(11)
$$g_{Z}^{*}(\mathcal{O}_{Z}) \xrightarrow{g_{Z}^{*}\theta} g_{Z}^{*}(\omega_{Z})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Z} \xrightarrow{\theta} \omega_{Z}$$

The map θ_Y can be described as the composition

$$\mathcal{O}_Y \longrightarrow \pi^! R \pi_*(\mathcal{O}_Y) = \pi^! \mathcal{O}_Z \longrightarrow \pi^! \omega_Z,$$

so that it suffuces to check that the first morphism is G-equivariant. The latter can be expressed as the commutativity of the diagram

$$(12) g_Y^*(\mathcal{O}_Y) \longrightarrow g_Y^*(\pi^! R \pi_*(\mathcal{O}_Y))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_Y \longrightarrow \pi^! R \pi_*(\mathcal{O}_Y)$$

for each $g \in G$, and this follows from the relations

$$g_Y^* \pi^! = \pi^! g_Z^*, \quad g_Z^* R \pi_* = R \pi_* g_Y^*.$$

All this proves that θ_Y is G-equivariant; the similar fact for θ_X is even more transparent.

We have already understood that the components $\theta_{X,n}$ of the map $\theta_X: \mathcal{O}_X \longrightarrow \bigoplus \omega_X(n)$ are G-equivariant. This implies that the map of fibers at $1P \in G/P$ is P-equivariant. The fibers are one-dimensional representations of P; any P-morphism is either zero or an isomorphism. This proves the theorem.

References

- [AG] L. Avramov, E. Golod, The homology algebra the Koszul complex of a local Gorenstein ring, *Mat. Zametki* **9** (1971), 53–58.
- [GKR] A. Gorodentsev, A. Khoroshkin, A. Rudakov, On syzygies of highest weight orbits, *Amer. Math. Soc. Transl.*, Ser. 2, **221**, Providence RI, 2007, pp. 79–120.
- [Ha] R. Hartshorne, Residues and Duality, Lecture Notes in Math., 20, 1966.
- [H] V. Hinich, On the singularities of nilpotent orbits, Israel J. Math. 73 (1991), 297–308.
- [K] G. Kempf, On the collapsing of homogeneous bundles, Inv. Math. 37 (1976), 229–239.
- [M] S. Mukai, Curves and symmetric spaces. I, Amer. J. Math. 117 (1995), 1627–1644.

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel

E-mail address: hinich@math.haifa.ac.il

Institut de Mathématiques, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

E-mail address: schechtman@math.ups-tlse.fr