Worked solution

Let Y,Z be the roll of each die and X=Y+Z be their sum, for which we build a table.

٧	1	2	3	4	5	6
1	2	3/	3 + 5 6 7 8 9	S	(7
2	3/	4	5	6	7	8
2	1	5	6	7	8	9
3	Š	6	7	8	9	10
+	6	1	8	9	10	H.
5	٦		9	10	11	12
6	14	8	,			``_

So for example, to find P(X=4), count the number of 4's in the table, each of which has probability $\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$, because the dire are independent.

So
$$P(x=4) = \frac{3}{36} = \frac{1}{12}$$
.

To complete the probability function

For the cumulative distribution, see next slide.

Exampercise

Compute the mean for

a roll of one die

$$\mu = E(x) = 1.P(x=1) + 2.P(x=2) + 3.P(x=3) + 4.P(x=4) + 5.P(x=5) + 6.P(x=6)$$

$$= \frac{1}{6} + \frac{2}{6} + \frac{2}{6} + \frac{4}{6} + \frac{2}{6} + \frac{2}{6} = \frac{21}{6} = 3\frac{1}{2}$$

a roll of two dice

$$\mu = E(x) = 2.P(x=2) + 3.P(x=3) + 4.P(x=4) + ... + 12.P(x=12)$$

$$= \frac{1}{36}(2.1 + 3.2 + 4.3 + 5.4 + 6.5 + 7.6 + 8.5 + 9.4 + 10.3 + 11.2 + 12.1)$$

$$= \frac{252}{36} = 7, \text{ perhas not surpnsingly!}$$

Solutions

One die.
$$E(X)=3\frac{1}{2}$$
, already computed.
 $E(X^2)=1^2.P(X=1)+2^2.P(X=2)+...+6^2.P(X=6)=\frac{1}{6}(1+2+3+4+5+6^2)=91/6$
Variance $6^2=E(X^2)-E(X^2)=\frac{91}{6}-(\frac{7}{2})^2=\frac{35}{12}$
So the standard deviation $6=\sqrt{35/12}\simeq 1.71$ (3 sf)
Two die. Same idea, $E(X)=7$ chready computed.
 $E(X^2)=2^2.P(X=2)+3^2.P(X=3)+...+12^2.P(X=12)$
 $=\frac{1}{36}(2^2.1+3^2.2+...+12^2.1)$
Can you fell in the details? — Exercise