ESE 524: Detection and Estimation Theory Recitation 6

Washington University in St. Louis

Outline

- Composite hypothesis testing
 - ► Signal detection under an unknown parameter
 - ► Signal detection under multiple unknown parameters

Useful Formulas

• Composite testing:

 Θ_0 and Θ_1 form a partition of the parameter space Θ :

$$\Theta_0 \cup \Theta_1 = \Theta, \ \Theta_0 \cap \Theta_1 = \emptyset$$

we wish to identify which of the following two hypotheses is true:

$$H_0: \theta \in \Theta_0$$
, null hypothesis

$$H_1: \theta \in \Theta_1$$
, alternative hypothesis

Generalized likelihood ratio test:

$$\Lambda_{\text{GLR}}(\boldsymbol{x}) = \frac{\max_{\theta \in \Theta_1} p(\boldsymbol{x}; \theta)}{\max_{\theta \in \Theta_0} p(\boldsymbol{x}; \theta)} > \gamma$$

Useful Formulas (Cont.)

Consider testing

$$H_0: h(\theta) = 0$$
 vs. $H_1: h(\theta) \neq 0$

• Wald test:

$$T_{\mathrm{W}}(\boldsymbol{x}) = \boldsymbol{h}(\hat{\boldsymbol{\theta}})^T \bigg[H(\hat{\boldsymbol{\theta}}) \cdot \mathrm{CRB}(\hat{\boldsymbol{\theta}}) \cdot H(\hat{\boldsymbol{\theta}})^T \bigg]^{-1} \boldsymbol{h}(\hat{\boldsymbol{\theta}}) > \lambda,$$

where $H(\theta) = \partial h(\theta)/\partial \theta^T$, $CRB(\theta) = \mathcal{I}(\theta)^{-1}$, and $\hat{\theta}$ is an unrestricted ML estimator of θ (under H_1). Then

$$T_{\rm W}(\boldsymbol{x}) \sim \chi_r^2$$
 under H_0

Useful Formulas (Cont.)

• Rao test:

$$T_{\text{R}}(\boldsymbol{x}) = \boldsymbol{s}(\tilde{\boldsymbol{\theta}})^{T} \text{CRB}(\tilde{\boldsymbol{\theta}}) \boldsymbol{s}(\tilde{\boldsymbol{\theta}}),$$

where $s(\theta)=\frac{\partial \log p(x;\theta)}{\partial \theta}$ and $\tilde{\theta}$ is the restricted estimate of θ (under H_0). Then

$$T_{\rm R}(\boldsymbol{x}) \sim \chi_r^2$$
 under H_0

Composite Hypothesis Examples

- In the first set of examples, we will explore various aspects of composite hypothesis testing.
- For mathematical simplicity, we will use very simple signals, namely sinusoidal signals.
- Our goal is to determine whether a signal is present in a time series or not.

Sinusoid Composite Hypothesis Examples

- $\bullet \ H_0: \boldsymbol{x}[n] = \boldsymbol{w}[n]$
- $H_1: \mathbf{x}[n] = A\cos(2\pi f_0(n n_0) + \phi) + \mathbf{w}[n]$
- We want to estimate the cases where:
 - ightharpoonup A is unknown
 - ightharpoonup A, ϕ are unknown
 - ightharpoonup A, ϕ , f_0 are unknown
 - ► All parameters unknown
- Section 7.6 in Kay's detection theory

Example 1: Unknown Amplitude

The generalized likelihood ratio test for the unknown amplitude is:

$$\frac{\exp(\frac{-1}{2\sigma^2}\sum_{n=0}^{N-1}(x[n]^2 - 2x[n]\hat{A}\cos(2\pi f_0(n-n_0) + \phi) + \hat{A}^2\cos(2\pi f_0(n-n_0) + \phi)^2))}{\exp(\frac{-1}{2\sigma^2}\sum_{n=0}^{N-1}x[n]^2)} \gtrapprox \lambda$$

• \hat{A} is the maximum likelihood estimate of A based on x:

$$\hat{A} = \underset{A}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n] \hat{A} \cos(2\pi f_0(n - n_0) + \phi) + \hat{A}^2 \cos(2\pi f_0(n - n_0) + \phi)^2))$$

• Take the derivative with respect to A:

$$\sum_{n=0}^{N-1} -2x[n]\cos[2\pi f_0(n-n_0) + \phi] + 2A\cos[2\pi f_0(n-n_0) + \phi]^2 = 0$$

• This means that $\hat{A} = \frac{\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0(n-n_0) + \phi)}{\sum_{n=0}^{N-1} \cos(2\pi f_0(n-n_0) + \phi)^2}$

Unknown Amplitude (Cont.)

Using the fact that

$$\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0(n-n_0) + \phi) = \hat{A} \sum_{n=0}^{N-1} \cos(2\pi f_0(n-n_0) + \phi)^2$$

we can rewrite the likelihood ratio:

$$-\sum_{n=0}^{N-1} -2\hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2 + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2 \underset{H_0}{\gtrless} \log \lambda'$$

$$\hat{A}^2 \gtrsim \frac{\lambda'}{\Sigma_{n=0}^{N-1} \cos(2\pi f_0(n-n_0) + \phi)^2}$$

• This means that our final test statistic is:

$$(\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0(n-n_0)+\phi))^2 \gtrsim \lambda'$$

Performance of Only Amplitude Detector

Figure 1: Block Diagram of Detector when Only amplitude is unknown

Figure 2: Performance of Detector when Only amplitude is unknown

Example 2: Amplitude and Phase Unknown

- When the amplitude and the phase are unknown, we have to reduce to the case where either A>0 or A<0, otherwise shifting the phase by π means we have two functions that can produce the same signal.
- Then we have to find \hat{A} and $\hat{\phi}$ from:

$$\underset{A,\phi}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n] \hat{A} \cos(2\pi f_0(n-n_0) + \phi) + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2))$$

• Now we have to set the gradient equal to (0,0):

$$\nabla \log(p(x; A, \phi)) = \begin{bmatrix} \sum_{n=0}^{N-1} -2x[n] \cos(2\pi f_0(n - n_0) + \phi) + 2A \cos(2\pi f_0(n - n_0) + \phi) \\ \sum_{n=0}^{N-1} 2x[n] A \sin(2\pi f_0(n - n_0) + \phi) - A^2 \sin(2\pi f_0(n - n_0) + \phi) \end{bmatrix}$$

Amplitude and Phase Unknown (Cont.)

• Using some trig identities we can approximate the solutions with :

$$\hat{A} = \sqrt{\left(\frac{2}{N}\sum_{n=0}^{N-1}x[n]\cos(2\pi f_0 n)\right)^2 + \left(\frac{2}{N}\sum_{n=0}^{N-1}x[n]\sin(2\pi f_0 n)\right)^2}$$

$$\hat{\phi} = \arctan\left(\frac{\frac{2}{N}\sum_{n=0}^{N-1}x[n]\cos(2\pi f_0 n)}{\frac{2}{N}\sum_{n=0}^{N-1}x[n]\sin(2\pi f_0 n)}\right)$$

Now the Likelihood ratio is:

$$-1/2\sigma^2 \sum_{n=0}^{N-1} -2\hat{A}^2 \cos(2\pi f_0(n-n_0) + \hat{\phi})^2 + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \hat{\phi})^2 \underset{H_0}{\gtrless} \log \lambda$$

• Using the substitution $\hat{\alpha_1} = \hat{A}\cos(\hat{\phi})$ and $\hat{\alpha_2} = -\hat{A}\sin(\hat{\phi})$ and some more trigonometry we can simplify this expression into:

$$\frac{N}{4\sigma^2}(\hat{\alpha}_1^2 + \hat{\alpha}_2^2) \underset{H_0}{\gtrless} \log \lambda$$

Amplitude and Phase Unknown (Cont.)

But it turns out that:

$$\hat{\alpha}_1^2 + \hat{\alpha}_2^2 = \frac{2^2}{N^2 \sigma^2} ((\Sigma_{n=0}^{N-1} x[n] \cos(2\pi f_0 n)^2 + (\Sigma_{n=0}^{N-1} x[n] \sin(2\pi f_0 n)^2)$$

• so the test becomes:

$$\frac{1}{N\sigma^2}((\Sigma_{n=0}^{N-1}x[n]\cos(2\pi f_0n)^2 + (\Sigma_{n=0}^{N-1}x[n]\sin(2\pi f_0n)^2) = \frac{I(f_0)}{\sigma^2} \underset{H_0}{\gtrless} \log \lambda$$

• This is either the sum of two correlators similar to the unknown amplitude case, or something called the periodogram, which estimates $|X(f)|^2$, where X(f) is the Fourier transform of x[n].

Performance of Amplitude and Phase Detector

Figure 3: Block Diagram of Detector when Amplitude and Phase are unknown

Figure 4: Performance of Detector when Amplitude and Phase are unknown

Example 3: Amplitude, Phase, and Frequency Unknown

 When the Amplitude, Phase, and Frequency are unknown we need to find the maximum of:

$$\underset{A,\phi}{\arg\max} \sum_{n=0}^{N-1} (x[n]^2 - x[n] \hat{A} \cos(2\pi f_0(n-n_0) + \phi) + \hat{A}^2 \cos(2\pi f_0(n-n_0) + \phi)^2))$$
 across three variables.

• to do this, define

$$I(f_0) = \frac{2}{N} ((\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0 n)^2 + (\sum_{n=0}^{N-1} x[n] \sin(2\pi f_0 n)^2)$$

as the periodogram of x[n] as a function of f_0 .

• To perform the maximization, note that if we know the best \hat{f}_0 we can compute \hat{A} and $\hat{\phi}$ the same way as above.

Amplitude, Phase, and Frequency Unknown (Cont.)

• Also, The likelihood under H_0 is not a function of any of the variables so:

$$\max_{A, f_0, \phi} p(x; A, f_0, \phi) = \frac{\max_{A, f_0, \phi} p(x; A, f_0, \phi)}{p(x; H_0)}$$

$$= \max_{f_0} \frac{p(x; \hat{A}, \hat{\phi}, f_0)}{p(x; H_0)}$$

$$= \max_{f_0} \log \frac{p(x; \hat{A}, \hat{\phi}, f_0)}{p(x; H_0)}$$

$$= \max_{f_0} \frac{I(f_0)}{\sigma_2}$$

Performance of Amplitude, Phase, and Frequency Detector

 So the likelihood ratio test becomes:

$$\max_{f_0} \frac{I(f_0)}{\sigma_2} \underset{H_0}{\gtrless} \log \lambda$$

- This is the same as finding the maximum of the FFT output in matlab and comparing it to your threshold.
- In general the performance gets worse as the frequency inreases.

Figure 5: Block Diagram of Detector when Amplitude, Phase, and Frequency are unknown

Example 4: Unknown Amplitude, Phase, Frequency, and Arrival Time

- The parameter n_0 is the delay of the signal, also called the "Arrival Time". Assume we have a "long" set of data.
- Estimating the arrival time is to try and find the exact time window $[n_0, n_0 + N 1]$ steps that the signal is active.
- First, we have to modify our \hat{A} and $\hat{\phi}$ expressions from the previous cases
- Let $\hat{\alpha}_1 = \frac{2}{N} \sum_{n=n_0}^{n_0+N-1} x[n] \cos(2\pi \hat{f}_0(n-n_0))$ and $\hat{\alpha}_2 = \frac{2}{N} \sum_{n=n_0}^{n_0+N-1} x[n] \sin(2\pi \hat{f}_0(n-n_0))$
- Then, given a frequency and arrival time:

$$\hat{A} = \sqrt{\hat{\alpha}_1^2 + \hat{\alpha}_2^2}$$
$$\hat{\phi} = \arctan(\frac{-\hat{\alpha}_1}{\hat{\alpha}_2})$$

• Our likelihood ratio is still the periodogram, but for a window $[n_0,n_0+N-1]$

Unknown Amplitude, Phase, Frequency, and Arrival Time (Cont.)

- If we know the arrival time, we can use the same maximum as in the three paramter case.
- So, starting at $n_0=0$ we have to perform a frequency analysis and find the maximum frequency. Then set $n_0=1$ and find the same thing. Plot this for every n_0 and find the maximum frequency. This is called the short time periodogram (or short time FFT).
- This can be computed with the spectogram in matlab, and is widely used.

Figure 7: Example of signal and its short time FFT

Conclusions

- The generalized likelihood ratio test is a combination of MLE and the NP test for simple hypotheses.
- As more parameters are unknown, our detection performance generally goes down.
- As more parameters are unknown our MLE is more complicated.