

**10 OCTOBER 2024** 

### **ASE 367K: FLIGHT DYNAMICS**

TTH 09:30-11:00 CMA 2.306

**JOHN-PAUL CLARKE** 

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

#### **Topics for Today**

- Topic(s):
  - Rigid Body Equations of Motion
  - Aerodynamic Damping



### RIGID BODY EQUATIONS OF MOTION

Copyrighted by Robert Stengel and used with permission: <a href="http://www.stengel.mycpanel.princeton.edu/MAE331.html">http://www.stengel.mycpanel.princeton.edu/MAE331.html</a>

**JOHN-PAUL CLARKE** 

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

**Translational Position** 

$$\mathbf{r}_{I} = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

 $\mathbf{r}_I = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  • Rate of change of Translational Position

 Angular Position

 Translational Velocity

$$\mathbf{v}_{B} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]_{B}$$

 Angular Velocity

$$\mathbf{w}_{B} = \left[ \begin{array}{c} p \\ q \\ r \end{array} \right]_{B}$$

#### **The Rotation Matrix**

## The three-angle rotation matrix is the product of 3 single-angle rotation matrices:

$$\mathbf{H}_{I}^{B}(\phi,\theta,\psi) = \mathbf{H}_{2}^{B}(\phi)\mathbf{H}_{1}^{2}(\theta)\mathbf{H}_{I}^{1}(\psi)$$

$$\dot{\mathbf{r}}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{v}_{B}(t)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

| ) |   | $\cos\theta\cos\psi$                             | $\cos\theta\sin\psi$                             | $-\sin\theta$        |  |
|---|---|--------------------------------------------------|--------------------------------------------------|----------------------|--|
| = | = | $-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi$ | $\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi$  | $\sin\phi\cos\theta$ |  |
|   |   | $\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi$  | $-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi$ | $\cos\phi\cos\theta$ |  |

**Translational Position** 

$$\mathbf{r}_{I} = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

 $\mathbf{r}_{I} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  • Rate of change of Translational Position

$$\dot{\mathbf{r}}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{v}_{B}(t)$$

 Angular Position

$$\mathbf{\Theta}_{I} = \left[ \begin{array}{c} \phi \\ \theta \\ \psi \end{array} \right]$$

Rate of change of Angular Position

 Translational **Velocity** 

$$\mathbf{v}_{B} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]_{A}$$

 Angular Velocity

$$\mathbf{\omega}_{B} = \left[ \begin{array}{c} p \\ q \\ r \end{array} \right]_{B}$$

## Relationship Between Euler-Angle Rates and Body-Axis Rates

- $\dot{\psi}$  is measured in the Inertial Frame
- $\dot{\theta}$  is measured in Intermediate Frame #1
- $\dot{\phi}$  is measured in Intermediate Frame #2
- · ... which is

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \mathbf{I}_{3} \begin{bmatrix} \dot{\phi} \\ 0 \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \begin{bmatrix} 0 \\ \dot{\theta} \\ 0 \end{bmatrix} + \mathbf{H}_{2}^{B} \mathbf{H}_{1}^{2} \begin{bmatrix} 0 \\ 0 \\ \dot{\psi} \end{bmatrix}$$

| р<br>q | = | 1<br>0 | $0 \cos \phi$ | $-\sin\theta$<br>$\sin\phi\cos\theta$ | $\left[ egin{array}{c} \dot{\phi} \\ \dot{	heta} \end{array}  ight]$ | $=\mathbf{L}_{I}^{B}\dot{\mathbf{\Theta}}$ | 7 Ortha | Non |
|--------|---|--------|---------------|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------|---------|-----|
| r      |   | 0      |               | $\cos\phi\cos\theta$                  | _                                                                    |                                            | Ŋ       |     |

#### Inverse transformation $[(.)^{-1} \neq (.)^{T}]$

$$\begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} = \begin{bmatrix} 1 & \sin\phi \tan\theta & \cos\phi \tan\theta \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi \sec\theta & \cos\phi \sec\theta \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \mathbf{L}_{B}^{I} \mathbf{\omega}_{B}$$



**Translational Position** 

$$\mathbf{r}_{I} = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

 $\mathbf{r}_I = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  • Rate of change of Translational Position

$$\dot{\mathbf{r}}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{v}_{B}(t)$$

 Angular Position

$$oldsymbol{\Theta}_I = \left[ egin{array}{c} \phi & \phi & \phi \\ \theta & \phi & \phi \end{array} 
ight]$$

Rate of change of **Angular Position** 

$$\dot{\boldsymbol{\Theta}}_{I}(t) = \mathbf{L}_{B}^{I}(t)\boldsymbol{\omega}_{B}(t)$$

 Translational Velocity

$$\mathbf{v}_{B} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]$$

Rate of change of Translational Velocity

 Angular Velocity

$$\mathbf{w}_{B} = \left[ \begin{array}{c} p \\ q \\ r \end{array} \right]_{B}$$



## **Point-Mass Dynamics**

Inertial rate of change of translational position

$$\dot{\mathbf{r}}_I = \mathbf{v}_I = \mathbf{H}_B^I \mathbf{v}_B$$

$$\mathbf{v}_B = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]$$

Body-axis rate of change of translational velocity

Identical to angular-momentum transformation



**Translational Position** 

$$\mathbf{r}_{I} = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

 $\mathbf{r}_I = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  • Rate of change of Translational Position

$$\dot{\mathbf{r}}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{v}_{B}(t)$$

 Angular Position

$$\mathbf{\Theta}_{I} = \left[ egin{array}{c} \phi & \phi & \phi \\ \theta & \phi & \phi \end{array} \right]$$

Rate of change of **Angular Position** 

$$\dot{\boldsymbol{\Theta}}_{I}(t) = \mathbf{L}_{B}^{I}(t)\boldsymbol{\omega}_{B}(t)$$

 Translational Velocity

$$\mathbf{v}_{B} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]$$

 $\mathbf{v}_{B} = \begin{bmatrix} u \\ v \end{bmatrix}$  • Rate of change of Translational Velocity

$$\dot{\mathbf{v}}_{B}(t) = \frac{1}{m(t)} \mathbf{F}_{B}(t) + \mathbf{H}_{I}^{B}(t) \mathbf{g}_{I} - \tilde{\boldsymbol{\omega}}_{B}(t) \mathbf{v}_{B}(t)$$

 Angular Velocity

$$\mathbf{w}_{B} = \left[ \begin{array}{c} p \\ q \\ r \end{array} \right]_{B}$$

 $\omega_B = \begin{bmatrix} p \\ q \end{bmatrix}$  • Rate of change of Angular Velocity

## Rate of Change of Body-Referenced Angular Rate due to External Moment

In the body frame of reference, the angular momentum change is

$$\begin{aligned} \dot{\mathbf{h}}_{B} &= \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} + \dot{\mathbf{H}}_{I}^{B} \mathbf{h}_{I} = \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \boldsymbol{\omega}_{B} \times h_{B} \\ &= \mathbf{H}_{I}^{B} \dot{\mathbf{h}}_{I} - \tilde{\boldsymbol{\omega}}_{B} h_{B} = \mathbf{H}_{I}^{B} \mathbf{M}_{I} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \\ &= \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \end{aligned}$$

For constant body-axis inertia matrix

$$\dot{\mathbf{h}}_{B} = \mathbb{I}_{B}\dot{\mathbf{\omega}}_{B} = \mathbf{M}_{B} - \tilde{\mathbf{\omega}}_{B}\mathbb{I}_{B}\mathbf{\omega}_{B}$$

Consequently, the differential equation for angular rate of change is

$$\dot{\boldsymbol{\omega}}_{B} = \mathbb{I}_{B}^{-1} \left( \mathbf{M}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbb{I}_{B} \boldsymbol{\omega}_{B} \right)$$

**Translational Position** 

$$\mathbf{r}_{I} = \left[ \begin{array}{c} x \\ y \\ z \end{array} \right]$$

 $\mathbf{r}_I = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$  • Rate of change of Translational Position

$$\dot{\mathbf{r}}_{I}(t) = \mathbf{H}_{B}^{I}(t)\mathbf{v}_{B}(t)$$

 Angular Position

$$oldsymbol{\Theta}_I = \left[ egin{array}{c} \phi & \phi & \phi \\ \theta & \phi & \phi \end{array} 
ight]$$

Rate of change of **Angular Position** 

$$\dot{\boldsymbol{\Theta}}_{I}(t) = \mathbf{L}_{B}^{I}(t)\boldsymbol{\omega}_{B}(t)$$

 Translational Velocity

$$\mathbf{v}_{B} = \left[ \begin{array}{c} u \\ v \\ w \end{array} \right]$$

Rate of change of **Translational Velocity** 

$$\dot{\mathbf{v}}_{B}(t) = \frac{1}{m(t)} \mathbf{F}_{B}(t) + \mathbf{H}_{I}^{B}(t) \mathbf{g}_{I} - \tilde{\boldsymbol{\omega}}_{B}(t) \mathbf{v}_{B}(t)$$

 Angular Velocity

$$\mathbf{\omega}_{B} = \left[ \begin{array}{c} p \\ q \\ r \end{array} \right]_{B}$$

Rate of change of Angular Velocity

$$\dot{\boldsymbol{\omega}}_{B}(t) = \mathbb{I}_{B}^{-1}(t) \left[ \mathbf{M}_{B}(t) - \tilde{\boldsymbol{\omega}}_{B}(t) \mathbb{I}_{B}(t) \boldsymbol{\omega}_{B}(t) \right]$$



### **Aircraft Characteristics Expressed in Body Frame** of Reference

**Aerodynamic** and thrust force

$$\mathbf{F}_{B} = \begin{bmatrix} X_{aero} + X_{thrust} \\ Y_{aero} + Y_{thrust} \\ Z_{aero} + Z_{thrust} \end{bmatrix}_{B} = \begin{bmatrix} C_{X_{aero}} + C_{X_{thrust}} \\ C_{Y_{aero}} + C_{Y_{thrust}} \\ C_{Z_{aero}} + C_{Z_{thrust}} \end{bmatrix}_{B} \frac{1}{2} \rho V^{2} S = \begin{bmatrix} C_{X} \\ C_{Y} \\ C_{Z} \end{bmatrix}_{B} \overline{q} S$$

Aerodynamic and thrust moment 
$$\mathbf{M}_{B} = \begin{bmatrix} L_{aero} + L_{thrust} \\ M_{aero} + M_{thrust} \\ N_{aero} + N_{thrust} \end{bmatrix}_{B} = \begin{bmatrix} \left(C_{l_{aero}} + C_{l_{thrust}}\right) \mathbf{b} \\ \left(C_{m_{aero}} + C_{m_{thrust}}\right) \mathbf{c} \\ \left(C_{n_{aero}} + C_{n_{thrust}}\right) \mathbf{b} \end{bmatrix}_{B} \frac{1}{2} \rho V^{2} S = \begin{bmatrix} C_{l} \mathbf{b} \\ C_{m} \mathbf{c} \\ C_{n} \mathbf{b} \end{bmatrix}_{B} \mathbf{q} S$$

Inertia matrix

## Rigid-Body Equations of Motion: Position

#### **Rate of change of Translational Position**

$$\dot{x}_{I} = (\cos\theta\cos\psi)u + (-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi)v + (\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)w$$

$$\dot{y}_{I} = (\cos\theta\sin\psi)u + (\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi)v + (-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi)w$$

$$\dot{z}_{I} = (-\sin\theta)u + (\sin\phi\cos\theta)v + (\cos\phi\cos\theta)w$$

#### **Rate of change of Angular Position**



$$\dot{\phi} = p + (q\sin\phi + r\cos\phi)\tan\theta$$

$$\dot{\theta} = q\cos\phi - r\sin\phi$$

$$\dot{\psi} = (q\sin\phi + r\cos\phi)\sec\theta$$

Rate of change of Translational Velocity  $\dot{u} = X/m - g \sin \theta + rv - qw$   $\dot{v} = Y/m + g \sin \phi \cos \theta - ru + pw$   $\dot{w} = Z/m + g \cos \phi \cos \theta + qu - pv$ Rate of change of Angular Velocity

Rate of change of Angular Velocity

$$\dot{u} = X / m - g \sin \theta + rv - qw$$

$$\dot{v} = Y / m + g \sin \phi \cos \theta - ru + pw$$

$$\dot{w} = Z / m + g \cos \phi \cos \theta + qu - pv$$

$$\dot{p} = \left( \mathbb{I}_{zz}L + \mathbb{I}_{xz}N - \left\{ \mathbb{I}_{xz} \left( \mathbb{I}_{yy} - \mathbb{I}_{xx} - \mathbb{I}_{zz} \right) p + \left[ \mathbb{I}_{xz}^{2} + \mathbb{I}_{zz} \left( \mathbb{I}_{zz} - \mathbb{I}_{yy} \right) \right] r \right\} q \right) / \left( \mathbb{I}_{xx}\mathbb{I}_{zz} - \mathbb{I}_{xz}^{2} \right)$$

$$\dot{q} = \left[ M - \left( \mathbb{I}_{xx} - \mathbb{I}_{zz} \right) pr - \mathbb{I}_{xz} \left( p^{2} - r^{2} \right) \right] / \mathbb{I}_{yy}$$

$$\dot{r} = \left( \mathbb{I}_{xz}L + \mathbb{I}_{xx}N - \left\{ I_{xz} \left( \mathbb{I}_{yy} - \mathbb{I}_{xx} - \mathbb{I}_{zz} \right) r + \left[ \mathbb{I}_{xz}^{2} + \mathbb{I}_{xx} \left( \mathbb{I}_{xx} - \mathbb{I}_{yy} \right) \right] p \right\} q \right) / \left( \mathbb{I}_{xx}\mathbb{I}_{zz} - \mathbb{I}_{xz}^{2} \right)$$

Mirror symmetry,  $I_{xz} \neq 0$ 



#### **AERODYNAMIC DAMPING**

Copyrighted by Robert Stengel and used with permission: <a href="http://www.stengel.mycpanel.princeton.edu/MAE331.html">http://www.stengel.mycpanel.princeton.edu/MAE331.html</a>

**JOHN-PAUL CLARKE** 

Ernest Cockrell, Jr. Memorial Chair in Engineering, The University of Texas at Austin

### Pitching Moment due to Pitch Rate



## **Angle of Attack Distribution Due to Pitch Rate**



Aircraft pitching at a constant rate, q rad/s, produces a normal velocity distribution along x

$$\Delta w = -q\Delta x$$

Corresponding angle of attack distribution

$$\Delta \alpha = \frac{\Delta w}{V} = \frac{-q\Delta x}{V}$$

Angle of attack perturbation at tail center of pressure

$$\Delta lpha_{ht} = rac{q l_{ht}}{V}$$

 $\Delta \alpha_{ht} = \frac{q l_{ht}}{V}$   $l_{ht} = horizontal \ tail \ distance \ from \ c.m.$ 

# Horizontal Tail Lift Due to Pitch Rate



Incremental tail lift due to pitch rate, referenced to tail area,  $S_{ht}$ 

$$\Delta L_{ht} = \left(\Delta C_{L_{ht}}\right)_{ht} \frac{1}{2} \rho V^2 S_{ht}$$

Incremental tail lift coefficient due to pitch rate, referenced to wing area, S

$$\left(\Delta C_{L_{ht}}\right)_{aircraft} = \left(\Delta C_{L_{ht}}\right)_{ht} \left(\frac{S_{ht}}{S}\right) = \left[\left(\frac{\partial C_{L_{ht}}}{\partial \alpha}\right)_{aircraft} \Delta \alpha\right] = \left(\frac{\partial C_{L_{ht}}}{\partial \alpha}\right)_{aircraft} \left(\frac{q l_{ht}}{V}\right)$$

Lift coefficient sensitivity to pitch rate referenced to wing area

$$C_{L_{q_{ht}}} \equiv \frac{\partial \left(\Delta C_{L_{ht}}\right)_{aircraft}}{\partial q} = \left(\frac{\partial C_{L_{ht}}}{\partial \alpha}\right)_{aircraft} \left(\frac{l_{ht}}{V}\right)$$



# Moment Coefficient Sensitivity to Pitch Rate of the Horizontal Tail

#### Differential pitch moment due to pitch rate

$$\frac{\partial \Delta M_{ht}}{\partial q} = C_{m_{qht}} \frac{1}{2} \rho V^2 S \overline{c} = -C_{L_{qht}} \left( \frac{l_{ht}}{V} \right) \frac{1}{2} \rho V^2 S \overline{c}$$

$$= -\left[ \left( \frac{\partial C_{L_{ht}}}{\partial \alpha} \right)_{aircraft} \left( \frac{l_{ht}}{V} \right) \right] \left( \frac{l_{ht}}{\overline{c}} \right) \frac{1}{2} \rho V^2 S \overline{c}$$

#### Coefficient derivative with respect to pitch rate

$$C_{m_{q_{ht}}} = -\frac{\partial C_{L_{ht}}}{\partial \alpha} \left(\frac{l_{ht}}{V}\right) \left(\frac{l_{ht}}{\overline{c}}\right) = -\frac{\partial C_{L_{ht}}}{\partial \alpha} \left(\frac{l_{ht}}{\overline{c}}\right)^2 \left(\frac{\overline{c}}{V}\right)$$

#### **Pitch-Rate Derivative Definitions**

 Pitch-rate derivatives are often expressed in terms of a normalized pitch rate

$$\hat{q} \triangleq \frac{q\overline{c}}{2V}$$

$$C_{m_{\hat{q}}} = \frac{\partial C_{m}}{\partial \hat{q}} = \frac{\partial C_{m}}{\partial (q\overline{c}/2V)} = \left(\frac{2V}{\overline{c}}\right)C_{m_{q}}$$

Pitching moment sensitivity to pitch rate

$$C_{m_q} = \frac{\partial C_m}{\partial q} = \left(\frac{\overline{c}}{2V}\right) C_{m_{\hat{q}}}$$

$$\frac{\partial M}{\partial q} = C_{m_q} \left( \rho V^2 / 2 \right) S \overline{c} = C_{m_{\hat{q}}} \left( \frac{\overline{c}}{2V} \right) \left( \frac{\rho V^2}{2} \right) S \overline{c} = C_{m_{\hat{q}}} \left( \frac{\rho V S \overline{c}^2}{4} \right)$$

## **Roll Damping Due to Roll Rate**

$$C_{l_p} \left( \frac{\rho V^2}{2} \right) Sb = C_{l_{\hat{p}}} \left( \frac{b}{2V} \right) \left( \frac{\rho V^2}{2} \right) Sb$$
< 0 for stability 
$$= C_{l_{\hat{p}}} \left( \frac{\rho V}{4} \right) Sb^2$$

$$\hat{p} = \frac{pb}{2V}$$

- Vertical tail, horizontal tail, and wing are principal contributors
- Roll damping of wing with taper

$$\left(C_{l_{\hat{p}}}\right)_{Wing} = \frac{\partial \left(\Delta C_{l}\right)_{Wing}}{\partial \hat{p}} = -\frac{C_{L_{\alpha}}}{12} \left(\frac{1+3\lambda}{1+\lambda}\right)$$

For thin triangular wing

 $\left(C_{l_{\hat{p}}}\right)_{Wing} = -\frac{\pi AR}{32}$ 







# Roll Damping Due to Roll Rate



#### **Tapered vertical tail**

$$\left(C_{l_{\hat{p}}}\right)_{vt} = \frac{\partial \left(\Delta C_{l}\right)_{vt}}{\partial \hat{p}} = -\frac{C_{Y_{\beta_{vt}}}}{12} \left(\frac{S_{vt}}{S}\right) \left(\frac{1+3\lambda}{1+\lambda}\right)$$

#### **Tapered horizontal tail**

$$\left(C_{l_{\hat{p}}}\right)_{ht} = \frac{\partial \left(\Delta C_{l}\right)_{ht}}{\partial \hat{p}} = -\frac{C_{L_{\alpha_{ht}}}}{12} \left(\frac{S_{ht}}{S}\right) \left(\frac{1+3\lambda}{1+\lambda}\right)$$

pb/2V describes helix angle for a steady roll



### Yaw Damping Due to Yaw Rate

$$C_{n_r} \left(\frac{\rho V^2}{2}\right) Sb = C_{n_{\hat{r}}} \left(\frac{b}{2V}\right) \left(\frac{\rho V^2}{2}\right) Sb$$

$$= C_{n_{\hat{r}}} \left(\frac{\rho V}{4}\right) Sb^2$$
< 0 for stability

#### Normalized yaw rate

$$\hat{r} = \frac{rb}{2V}$$



## **Yaw Damping Due** to Yaw Rate



#### Vertical tail contribution

$$\Delta (C_n)_{Vertical\ Tail} = - (C_{n_\beta})_{Vertical\ Tail} \binom{rl_{vt}}{V} = - (C_{n_\beta})_{Vertical\ Tail} \left(\frac{l_{vt}}{b}\right) \left(\frac{b}{V}\right) r$$

$$\left( C_{n_{\hat{r}}} \right)_{vt} = \frac{\partial \Delta(C_n)_{Vertical\ Tail}}{\partial \left( rb / 2V \right)} = \frac{\partial \Delta(C_n)_{Vertical\ Tail}}{\partial \hat{r}} = -2 \left( C_{n_{\beta}} \right)_{Vertical\ Tail} \left( \frac{l_{vt}}{b} \right)$$

#### Wing contribution

$$\left(C_{n_{\hat{r}}}\right)_{Wing} = k_0 C_L^2 + k_1 C_{D_{Parasite, Wing}}$$

 $k_0$  and  $k_1$  are functions of aspect ratio and sweep angle



**Yaw Moment** 

NACA-TR-1098, 1952 NACA-TR-1052, 1951

Yaw Rate

