Exercise Solutions for EEE 113

Communications - Basics of Communication Systems

 ${\it Nile Jocson < novoseiversia@gmail.com}{>}$

November 14, 2024

1

1.1 Suppose we sample a signal at frequency F_s . If we collect 9.1 kilo-samples in 4.7 seconds, what is F_s in Hz (samples/second)? Please provide your answer in at least 5 significant figures.

— Needed:	
$\Box F_s = ?$	Sampling frequency.
— Given:	
$\square S = 9.1$ kilo-samples	Amount of samples.
$\Box t = 4.7 \text{ seconds}$	Amount of time.
$\Rightarrow F_s = \frac{9.1 \text{ kilo-samples}}{4.7 \text{ seconds}}$	$F_s = rac{S}{t}$
$\Rightarrow F_s = 1936.1 \text{ Hz}$	Final answer.

1.2 Compact discs record two channels (left and right) of music at a sampling frequency of $F_s = 44.1$ kHz for each channel. If each sample is encoded with 16 bits, and one byte is 8 bits, how many bytes are required to store 51.2 seconds of music?

— Needed:	
$\square B_T = ?$	Total amount of bytes needed.
— Given:	
$\Box c = 2$ channels	Amount of channels.
$\Box F_s = 44.1 \text{ kHz/channel}$	Sampling frequency.
$\Box b_s = 16 \text{ bits/sample}$	Amount of bits in a sample.
$\Box b_B = 8 \text{ bits/byte}$	Amount of bits in a byte.
$\Box t = 51.2 \text{ seconds}$	Amount of time.
— Let:	
\square F_T	Total sampling frequency.
$\square S_T$	Total amount of samples.
$\square b_T$	Total amount of bits.
$\Rightarrow F_T = 44.1 \text{ kHz/channel} \cdot 2 \text{ channels}$	Note that we need two channels.
$\Rightarrow F_T = 88.2 \text{ kHz}$	
$\Rightarrow S_T = 88.2 \text{ kHz} \cdot 51.2 \text{ seconds}$	$S_T = F_T t$
$\Rightarrow S_T = 4.51584 \times 10^6 \text{ samples}$	
$\Rightarrow b_T = 4.51584 \times 10^6 \text{ samples} \cdot 16 \text{ bits/sample}$	$b_T = S_T b_s$
$\Rightarrow b_T = 72.25344 \times 10^6 \text{ bits}$	
$\Rightarrow B_T = \frac{72.25344 \times 10^6 \text{ bits}}{8 \text{ bits/byte}}$	$B_T = \frac{b_T}{b_B}$
$\Rightarrow B_T = 9.03168 \times 10^6 \text{ bytes}$	Final answer.

1.3 Consider a system that uses 8-bit ASCII codes to encode letters. How long (in microseconds) will it take to transmit the bit sequence encoding "Hello-World!" if we use a bit time of 4 samples per bit, and transmit samples at a rate of 1 MHz?

— Needed:	
$\Box t = ?$	Amount of time needed.
— Given:	
$\Box b_c = 8 \text{ bits/character}$	Amount of bits per character.
$\Box c = 12$ characters	Amount of characters in the string.
$\Box b_t = 4 \text{ samples/bit}$	Bit time.
$\Box F_{Tx} = 1 \text{ MHz}$	Transmission frequency.
— Let:	
$\Box \ b_T$	Total amount of bits.
$\square S_T$	Total amount of samples.
$\Rightarrow b_T = 12 \text{ characters} \cdot 8 \text{ bits/character}$	$b_T = cb_c$
$\Rightarrow b = 96 \text{ bits}$	
$\Rightarrow S_T = 96 \text{ bits} \cdot 4 \text{ samples/bit}$	$S_T = b_T b_t$
$\Rightarrow S_T = 384 \text{ samples}$	
$\Rightarrow t = \frac{384 \text{ samples}}{1 \text{ MHz}}$	$t = rac{S_T}{F_{Tx}}$
$\Rightarrow t = 384 \text{ microseconds}$	Final answer.
	=

1.4 The process of converting a discrete-time continuous-valued signal into a digital signal by expressing each sample as a finite number of digits is called (a); (b) is the difference between sampled analog signal and digitized signal; (c) refers to the difference between the minimum and maximum value of the discrete-time signal; (d) is the assignment of a unique binary number to each quantization level.

\Rightarrow a: quantization	Final answer.
\Rightarrow b: quantization error	
\Rightarrow c: dynamic range	
\Rightarrow d: coding	
	•

1.5 An analog waveform is described as

$$x(t) = 2u(t) - 5u(t-1) + 3u(t-2) + 3u(t-3) - 2u(t-4) - u(t-5)$$

where u(t) is the continuous-time unit step function. If the quantization level is 0.02, determine the minimum number of bits needed to represent the full range of the analog signal x(t).

— Needed:	
$\Box b_m = ?$	Minimum amount of bits needed.
— Given:	
$\square Q = 0.02$	Quantization step size.
$\square M = 3$	Maximum value of the waveform.
$\square m = -5$	Minimum value of the waveform.
— Let:	
$\square R$	Dynamic range.
$\Box L$	Amount of quantization levels.
$\Rightarrow R = 3 - (-5)$	R = M - m
$\Rightarrow R = 8$	
$\Rightarrow L = \frac{8}{0.02}$	$L = \frac{R}{Q}$
$\Rightarrow L = 400 \text{ levels}$	·
$\Rightarrow b_m = \lceil \log_2 400 \text{ levels} \rceil$	$B_m = \lceil \log_2 L \rceil$
$\Rightarrow b_m = \lceil 8.64385618977 \rceil$	
$\Rightarrow b_m = 9 \text{ bits}$	Final answer.
	•