

Hacettepe University Department of Electrical and Electronics Engineering

ELE 489: Fundamentals of Machine Learning

HW-1 Report

Kıvanç Ateş

2210357113

To gain insight about the data, I used some functions. I observed first 5 column of data with using "df.head()".

	alcohol	malic_acid	ash	${\tt alcalinity_of_ash}$	magnesium	total_phenols	flavanoids	${\tt nonflavanoid_phenols}$	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	class
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0	0.0
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0	0.0
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0	0.0
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0	0.0
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0	0.0

Figure 1

I observed the dimensions about the data as (178,14) with using "df.shape". The shape (178,14) means that my data set has 178 samples in the dataset and this dataset includes 13 features and 1 class label. To generate statistic information about data set I used "df.describe()" function.

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline	class
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058090	0.957449	2.611685	746.893258	1.938202
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318286	0.228572	0.709990	314.907474	0.775035
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280000	0.480000	1.270000	278.000000	1.000000
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220000	0.782500	1.937500	500.500000	1.000000
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690000	0.965000	2.780000	673.500000	2.000000
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200000	1.120000	3.170000	985.000000	3.000000
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000000	1.710000	4.000000	1680.000000	3.000000

Figure 2

I use KDE plotting for each feature to check class overlap and visualize the features. It helps us understand the distribution and density of each class according to the given feature. If the curves overlap each other too much, we can say that there is overlap for this feature. In other words, this feature should not be preferred in distinguishing classes. I also tried to observe whether the inferences I made from the KDE drawings were correct by using boxplots. If the boxplots do not overlap each other, this feature is suitable for classification.

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

When we examine the Overlap status of the features, we see that the features that will give the most accurate results in class determination are Alcohol Distribution, Total Phenols Distribution, Flavonoids Distribution. The features that may give us incorrect results in determining the class are Ash Distribution, Alkalinity of Ash Distribution, Hue Distribution. We should not select features that contain overlap when determining the class.

As seen in Figure 29, the dataset does not contain missing data.

alcohol	0
malic_acid	0
ash	0
alcalinity_of_ash	0
magnesium	0
total_phenols	0
flavanoids	0
nonflavanoid_phenols	0
proanthocyanins	0
color_intensity	0
hue	0
od280/od315_of_diluted_wines	0
proline	0
class	0
dtype: int64	

Figure 29

I separated the data so that the features in the "x" variable and the class in the "y" variable. And I separated these variables as "X_train", "X_test", "y_train", "y_test". I

observed the dimension of "X_train" as (142, 13), "X_test" as (36, 13), "y_train" as (142,), "y_test" as (36,).

For k-NN Standardization is usually better than Normalization. Therefore, I used Standardization. Standardization makes the mean 0 and standard deviation 1, which prevents large-scale features from dominating small-scale ones.

I tested the k-NN algorithm using different k and different distance finding methods. I first did what was requested using Euclidean Distance.

K=1 → Accuracy: 0.9167
K=3 → Accuracy: 0.9444
K=5 → Accuracy: 0.9722
K=7 → Accuracy: 1.0000
K=9 → Accuracy: 1.0000
K=11 → Accuracy: 1.0000
K=13 → Accuracy: 1.0000

Figure 30

Accuracy is shown in Figure 30 for different "K" values. When I increase the "K", I observe the accuracy goes to one. So, we can say that when we increase the "K" value, accuracy increases. Accuracy plot with respect to "K" is shown in Figure 31.

Figure 31

When value of "K" becomes 7, accuracy stays at 1. Confusion Matrix plots are shown below for different "K" values.

Figure 32

When we examine the Confusion Matrices, it is observed that all the predictions made from K = 7 onwards overlap with the real classes. In other words, all the test data we process are classified correctly.

Precision Reports are shown below.

		K=	1				K=	7	
	precision		f1-score	support		precision	recall	f1-score	support
Class 1	0.88	1.00	0.93	14	Class 1	1.00	1.00	1.00	14
Class 2	1.00	0.81	0.90	16	Class 2	1.00	1.00	1.00	16
Class 3	0.86	1.00	0.92	6	Class 3	1.00	1.00	1.00	6
61433 3	0.00	1.00	0.52	· ·					
accuracy			0.92	36	accuracy			1.00	36
macro avg	0.91	0.94	0.92	36	macro avg	1.00	1.00	1.00	36
weighted avg	0.93	0.92	0.92	36	weighted avg	1.00	1.00	1.00	36
		K=	3				K=	9	
	precision		f1-score	support		precision		f1-score	support
	p. cc2525			зарро. с					
Class 1	0.93	1.00	0.97	14	Class 1	1.00	1.00	1.00	14
Class 2	1.00	0.88	0.93	16	Class 2	1.00	1.00	1.00	16
Class 3	0.86	1.00	0.92	6	Class 3	1.00	1.00	1.00	6
accuracy			0.94	36	accuracy			1.00	36
macro avg	0.93	0.96	0.94	36	macro avg	1.00	1.00	1.00	36
weighted avg	0.95	0.94	0.94	36	weighted avg	1.00	1.00	1.00	36
					manginess and		2		
		K=	_					11	
	precision		5 f1-score	support		precision		11 f1-score	support
Class 1	precision		_	support	Class 1	precision			support
Class 1 Class 2		recall	f1-score		Class 1 Class 2	•	recall	f1-score	
	1.00	recall	f1-score	14		1.00	recall	f1-score	14
Class 2 Class 3	1.00	1.00 0.94	f1-score 1.00 0.97 0.92	14 16 6	Class 2 Class 3	1.00	recall 1.00 1.00	f1-score 1.00 1.00 1.00	14 16 6
Class 2 Class 3 accuracy	1.00 1.00 0.86	1.00 0.94 1.00	f1-score 1.00 0.97 0.92 0.97	14 16 6	Class 2 Class 3 accuracy	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00	14 16 6
Class 2 Class 3 accuracy macro avg	1.00 1.00 0.86	1.00 0.94 1.00	f1-score 1.00 0.97 0.92 0.97 0.96	14 16 6 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy	1.00 1.00 0.86	1.00 0.94 1.00	f1-score 1.00 0.97 0.92 0.97	14 16 6	Class 2 Class 3 accuracy	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00	14 16 6
Class 2 Class 3 accuracy macro avg	1.00 1.00 0.86	1.00 0.94 1.00 0.98 0.98	f1-score 1.00 0.97 0.92 0.97 0.96 0.97	14 16 6 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg	1.00 1.00 0.86 0.95 0.98	1.00 0.94 1.00 0.98 0.97	f1-score 1.00 0.97 0.92 0.97 0.96 0.97	14 16 6 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg	1.00 1.00 0.86	1.00 0.94 1.00 0.98 0.97	f1-score 1.00 0.97 0.92 0.97 0.96 0.97	14 16 6 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg	1.00 1.00 0.86 0.95 0.98	1.00 0.94 1.00 0.98 0.97	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 l f1-score	14 16 6 36 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg weighted avg	1.00 1.00 0.86 0.95 0.98	necall 1.00 0.94 1.00 0.98 0.97	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 1 f1-score 0 1.00	14 16 6 36 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg weighted avg	1.00 1.00 0.86 0.95 0.98 precision	recall 1.00 0.94 1.00 0.98 0.97 recal 1.0	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 1 f1-score 0 1.06	14 16 6 36 36 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg weighted avg Class 2 Class 2 Class 5	1.00 1.00 0.86 0.95 0.98 precision 1.00 1.00	recall 1.00 0.94 1.00 0.98 0.97 recal 1.0	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 1 f1-score 0 1.06 0 1.06	14 16 6 36 36 36 36 36 36 36	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg weighted avg Class 2 Class 3 accuracy	1.00 1.00 0.86 0.95 0.98 precision 1.00 2.1.00	recall 1.00 0.94 1.00 0.98 0.97 recal 1.0	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 1 f1-score 0 1.00 0 1.00 1.00	14 16 6 36 36 36 36 36 4 9 14 16 9 6	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36
Class 2 Class 3 accuracy macro avg weighted avg Class 2 Class 2 Class 5	1.00 1.00 0.86 0.95 0.98 precision 1.00 1.00 1.00	recall 1.00 0.94 1.00 0.98 0.97 recal 1.0 1.0	f1-score 1.00 0.97 0.92 0.97 0.96 0.97 K=13 1 f1-score 0 1.00 0 1.00 0 1.00	14 16 6 36 36 36 36 36 4 9 14 16 6 9 6 36 36 36 36 36 36 36 36 36 36 36 36 3	Class 2 Class 3 accuracy macro avg	1.00 1.00 1.00	1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	14 16 6 36 36

As we found in the previous results, it can be observed from the "precision" and "recall" columns that when K = 7, all class predictions are correct. For all class predictions are correct, "precision" and "recall" columns values should equal to 1 for all classes.

Secondly, I used the Manhattan Distance method. As in the Euclidean Distance method, in this method, all test data are classified correctly at only K=7. For all other K values, accuracy is different from 1. If Manhattan Distance is to be used for the kNN algorithm, it would be best to choose K as 7 so that all predictions are correct. We can observe this from the Accuracy vs "K" graph, Confusion matrices and Precision Reports.

K=1 → Accuracy: 0.9444
K=3 → Accuracy: 0.9722
K=5 → Accuracy: 0.9722
K=7 → Accuracy: 1.0000
K=9 → Accuracy: 0.9722
K=11 → Accuracy: 0.9722
K=13 → Accuracy: 0.9722

Figure 33

Figure 34

Figure 35

		K=	1						
	precision	recal1	f1-score	support					
Class 1	0.93	1.00	0.97	14					
Class 2	1.00	0.88	0.93	16					
Class 3	0.86	1.00	0.92	6					
accuracy			0.94	36					
macro avg	0.93	0.96	0.94	36			K=	_	
weighted avg	0.95	0.94	0.94	36		precision	recall	f1-score	support
		K=	3		Class 1	0.93	1.00	0.97	14
	precision	recall	f1-score	support	Class 2	1.00	0.94	0.97	16
					Class 3	1.00	1.00	1.00	6
Class 1	1.00	1.00	1.00	14		2100		2100	
Class 2	1.00	0.94	0.97	16	accuracy			0.97	36
Class 3	0.86	1.00	0.92	6	macro avg	0.98	0.98	0.98	36
					weighted avg	0.97	0.97	0.97	36
accuracy			0.97	36	weighted avg	0.57	0.57	0.57	30
macro avg	0.95	0.98	0.96	36					
weighted avg	0.98	0.97	0.97	36				11	
		K=	5			precision	recall	f1-score	support
	precision	recall	f1-score	support	Class 1	0.93	1.00	0.97	14
					Class 2	1.00	0.94	0.97	16
Class 1	1.00	1.00	1.00	14	Class 3	1.00	1.00	1.00	6
Class 2	1.00	0.94	0.97	16	21433	2.00	2.00	2.00	
Class 3	0.86	1.00	0.92	6	accuracy			0.97	36
				2.0	macro avg	0.98	0.98	0.98	36
accuracy	0.05	0.00	0.97 0.96	36 36	weighted avg	0.97	0.97	0.97	36
macro avg	0.95 0.98	0.98 0.97	0.95	36 36	weighted avg	0.57	0.57	0.57	30
weighted avg	0.98	0.97	0.97	36				43	
		K=	7					13	
	precision		f1-score	support		precision	recall	f1-score	support
					Class 1	0.93	1.00	0.97	14
Class 1	1.00	1.00	1.00	14	Class 2	1.00	0.94	0.97	16
Class 2	1.00	1.00	1.00	16	Class 3	1.00	1.00	1.00	6
Class 3	1.00	1.00	1.00	6	C1033 3	2.00	1.00	2.00	
accuracy			1.00	36	accuracy			0.97	36
macro avg	1.00	1.00	1.00	36	macro avg	0.98	0.98	0.98	36
weighted avg	1.00	1.00	1.00	36	weighted avg	0.97	0.97	0.97	36

Figure 36

Lastly, I used the Chebyshev Distance method. When Chebyshev Distance is used for the kNN algorithm, it is seen that accuracy for the tested k values is never 1. If Chebyshev Distance is to be used, k = 1,3,5,9 values will give more accurate results than other values.

K=1 → Accuracy: 0.9444
K=3 → Accuracy: 0.9444
K=5 → Accuracy: 0.9444
K=7 → Accuracy: 0.9167
K=9 → Accuracy: 0.9444
K=11 → Accuracy: 0.9167
K=13 → Accuracy: 0.9167

Figure 37

Figure 38

Figure 39

		K=	1						
	precision	recall	f1-score	support					
Class 1	1.00	1.00	1.00	14					
Class 2	1.00	0.88	0.93	16					
Class 3	0.75	1.00	0.86	6					
accuracy			0.94	36					
macro avg	0.92	0.96	0.93	36					
weighted avg	0.96	0.94	0.95	36			K=		
		K=	3			precision	recall	f1-score	support
	precision	recall	f1-score	support	Class 1	0.93	1.00	0.97	14
					Class 2	1.00	0.88	0.93	16
Class 1	1.00	1.00	1.00	14	Class 3	0.86	1.00	0.92	6
Class 2	1.00	0.88	0.93	16	(1033)	0.00	1.00	0.52	0
Class 3	0.75	1.00	0.86	6	accuracy			0.94	36
					macro avg	0.93	0.96	0.94	36
accuracy			0.94	36	weighted avg	0.95	0.94	0.94	36
macro avg	0.92	0.96	0.93	36	weighted avg	0.95	0.94	0.94	36
weighted avg	0.96	0.94	0.95	36			V-	11	
		K=	5			precision		f1-score	support
	precision		_	support		precision	recuir	11-30010	3uppor c
	precision	1 00011	11 30010	Suppor C	Class 1	0.93	1.00	0.97	14
Class 1	0.93	1.00	0.97	14	Class 2	1.00	0.81	0.90	16
Class 2	1.00	0.88	0.93	16	Class 3	0.75	1.00	0.86	6
Class 3	0.86	1.00	0.92	6	Class 5	0.73	1.00	0.00	0
					accuracy			0.92	36
accuracy			0.94	36	macro avg	0.89	0.94	0.91	36
macro avg	0.93	0.96	0.94	36	weighted avg	0.93	0.92	0.92	36
weighted avg	0.95	0.94	0.94	36	weighted dvg	0.55	0.52	0.52	20
		K=	7				K=	13	
	precision		f1-score	support		precision	recall	f1-score	support
Class 1	0.93	1.00	0.97	14	Class 1	0.93	1.00	0.97	14
Class 2	1.00	0.81	0.90	16	Class 2	1.00	0.81	0.90	16
Class 3	0.75	1.00	0.86	6	Class 3	0.75	1.00	0.86	6
accuracy			0.92	36	accuracy			0.92	36
macro avg	0.89	0.94	0.91	36	macro avg	0.89	0.94	0.91	36
_									
weighted avg	0.93	0.92	0.92	36	weighted avg	0.93	0.92	0.92	36

Figure 40

When Chebyshev Distance, Manhattan Distance and Euclidean Distance methods are compared, it is seen that Euclidean Distance is the most suitable method for this data set. In other methods, the accuracy is 1 for the tested k values and the values close to 1 are limited. In the Euclidean Distance method, accuracy is always 1 after a certain k value. A 1 for accuracy indicates that all predictions are classified correctly.

As a result, I evaluated a data set of 178 samples given in this assignment. I evaluated the features of the data according to the overlap formation status. I separated 20 percent of our samples as test data and tested the kNN method for different distance finding methods and different k values. I found the most suitable distance finding method as Euclidean Distance and I found that choosing k as 7 should be the most suitable choice for this method. It is important for the speed of the algorithm that k is not chosen as a very high value.

GitHub link is given below.

https://github.com/kivancates/kNN-algorithm-ele489