Linear, Multiple, and Logistic Regressions

CMPUT 328

Nilanjan Ray

Computing Science, University of Alberta, Canada

Linear regression with PyTorch

- We will start with a linear regression "model"
- Next, we need to understand "loss" function for regression task
- Next, we will estimate the model by minimizing the loss function
- We will use PyTorch

Supervised machine learning: the tabular view

Linear prediction: formal setup

$$y^p = \mathbf{x}\mathbf{\theta} + b$$

Linear prediction function:
$$y^p = \mathbf{x}\mathbf{0} + b$$
 or, $y^p = \sum_{j=1}^m \theta_j x_j + b$

vector equation form

scalar equation form

A training set consists of (\mathbf{x}, y) pairs: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Linear prediction on the training data point *i*: $y_i^p = \mathbf{x}_i \mathbf{\theta} + b$ or, $y_i^p = \sum_{i=1}^m \theta_i x_{i,j} + b$

$$y_i^p = \mathbf{x}_i \mathbf{\theta} + b$$

$$y_i^p = \sum_{j=1}^m \theta_j x_{i,j} +$$

Loss or cost function (on training data):
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i \mathbf{\theta} + b - y_i)^2$$

Linear regression: A toy example

Let's take a toy example:

$\mathbf{x_1}$	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

This equation
$$y_i^p = \sum_{j=1}^m \theta_j x_{i,j} + b$$

can be written for the toy training set as

$$y_1^p = \theta_1(1) + \theta_2(2) + b$$

$$y_2^p = \theta_1(3) + \theta_2(-4) + b$$

$$y_3^p = \theta_1(6) + \theta_2(2) + b$$

$$y_4^p = \theta_1(-3) + \theta_2(5) + b$$

$$y_5^p = \theta_1(7) + \theta_2(-3) + b$$

We also have ground truth responses:

$$y_1 = -1$$
, $y_2 = 7$, $y_3 = 3$, $y_4 = -4$, $y_5 = 5$

So, the loss is
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 = \frac{1}{2} [(y_1^p + 1)^2 + (y_2^p - 7)^2 + (y_3^p - 3)^2 + (y_4^p + 4)^2 + (y_5^p - 5)^2]$$
$$= \frac{1}{2} [(\theta_1 + 2\theta_2 + b + 1)^2 + (3\theta_1 - 4\theta_2 + b - 7)^2 + (6\theta_1 + 2\theta_2 + b - 3)^2 + (-3\theta_1 + 5\theta_2 + b + 4)^2 + (7\theta_1 - 3\theta_2 + b - 5)^2]$$

Learning a linear model

For the convenience of math, let us change our linear model a bit:

$$y_i^p = \sum_{j=1}^m \theta_j (x_{i,j} - \bar{x}_j) + b$$
 where $\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}$

Subtracting independent variable mean is called "data centering"

And a slightly modified loss function:

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

 γ is a hyper parameter

Data fidelity

Regularization

Why do we need regularization?

Minimization of linear regression loss function

Regularized loss function:
$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

Taking partial derivative using chain rule:
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{n} (y_i^p - y_i) \frac{\partial y_i^p}{\partial b} = \sum_{i=1}^{n} (y_i^p - y_i) \quad \text{because,} \quad \frac{\partial y_i^p}{\partial b} = 1$$

Using
$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}$$
 and $y_i^p = \sum_{j=1}^m \theta_j (x_{i,j} - \bar{x}_j) + b$ we get: $\frac{\partial L}{\partial b} = nb - \sum_{i=1}^n y_i$

At the minimum of
$$L$$
, $\frac{\partial L}{\partial b} = 0$ So, $b = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}$

Linear regression: A toy example...continued

Let's take a toy example:

x ₁	X ₂	У
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

$$b = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y} = \frac{1}{5} (-1 + 7 + 3 - 4 + 5) = 2$$

$$\bar{x}_1 = \frac{1}{n} \sum_{i=1}^{n} x_{i,1} = \frac{1}{5} (1+3+6-3+7) = 2.8$$

$$\bar{x}_2 = \frac{1}{n} \sum_{i=1}^{n} x_{i,2} = \frac{1}{5} (2 - 4 + 2 + 5 - 3) = 0.4$$

So, using centered data, the prediction equation becomes:

$$y_i^p = \sum_{j=1}^m \theta_j(x_{i,j} - \bar{x}_j) + b = \theta_1(x_{i,1} - 2.8) + \theta_2(x_{i,2} - 0.4) + 2$$

So, the loss is

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 = \frac{1}{2} [(y_1^p + 1)^2 + (y_2^p - 7)^2 + (y_3^p - 3)^2 + (y_4^p + 4)^2 + (y_5^p - 5)^2]$$

$$= \frac{1}{2} [(\theta_1(1 - 2.8) + \theta_2(2 - 0.4) + 2 + 1)^2 + (\theta_1(3 - 2.8) + \theta_2(-4 - 0.4) + 2 - 7)^2$$

$$+ (\theta_1(6 - 2.8) + \theta_2(2 - 0.4) + 2 - 3)^2 + (\theta_1(-3 - 2.8) + \theta_2(5 - 0.4) + 2 + 4)^2 + (\theta_1(7 - 2.8) + \theta_2(-3 - 0.4) + 8^2 - 5)^2]$$

Minimization of linear regression loss function...

Regularized loss function:

$$L = \frac{1}{2} \sum_{i=1}^{n} (y_i^p - y_i)^2 + \frac{\gamma}{2} \sum_{j=1}^{m} \theta_j^2$$

Taking partial derivative of *L* using chain rule:

$$\frac{\partial L}{\partial \theta_i} = \sum_{i=1}^{n} (y_i^p - y_i) \frac{\partial y_i^p}{\partial \theta_i} + \gamma \theta_i$$

$$y_i^p = \sum_{k=1}^m \theta_k(x_{i,k} - \bar{x}_k) + b,$$
 $b = \bar{y}$ and $\frac{\partial y_i^p}{\partial \theta_i} = x_{i,j} - \bar{x}_j$

$$b=ar{y}$$
 and

$$\frac{\partial y_i^p}{\partial \theta_j} = x_{i,j} - \bar{x}_j$$

We get:
$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^n \left(\sum_{k=1}^m \theta_k (x_{i,k} - \bar{x}_k) + \bar{y} - y_i \right) (x_{i,j} - \bar{x}_j) + \gamma \theta_j$$

Linear regression: A toy example...continued

Let's take a toy example:

X ₁	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

Note: For this toy problem, I assumed $\gamma = 0$ for convenience

$$\begin{split} \frac{\partial L}{\partial \theta_j} &= \sum_{i=1}^n \left(\sum_{k=1}^m \theta_k (x_{i,k} - \bar{x}_k) + \bar{y} - y_i \right) \left(x_{i,j} - \bar{x}_j \right) + \gamma \theta_j \\ \frac{\partial L}{\partial \theta_1} \\ &= (\theta_1 (1 - 2.8) + \theta_2 (2 - 0.4) + 2 + 1) (1 - 2.8) \\ &+ (\theta_1 (3 - 2.8) + \theta_2 (-4 - 0.4) + 2 - 7) (3 - 2.8) \\ &+ (\theta_1 (6 - 2.8) + \theta_2 (2 - 0.4) + 2 - 3) (6 - 2.8) \\ &+ (\theta_1 (-3 - 2.8) + \theta_2 (5 - 0.4) + 2 + 4) (-3 - 2.8) \\ &+ (\theta_1 (7 - 2.8) + \theta_2 (-3 - 0.4) + 2 - 5) (7 - 2.8) \\ &= (64.8) \theta_1 - (39.6) \theta_2 - 57 \end{split}$$

$$\frac{\partial L}{\partial \theta_2} \\ &= (\theta_1 (1 - 2.8) + \theta_2 (2 - 0.4) + 2 + 1) (2 - 0.4) \\ &+ (\theta_1 (3 - 2.8) + \theta_2 (-4 - 0.4) + 2 - 7) (-4 - 0.4) \\ &+ (\theta_1 (6 - 2.8) + \theta_2 (2 - 0.4) + 2 - 3) (2 - 0.4) \\ &+ (\theta_1 (-3 - 2.8) + \theta_2 (5 - 0.4) + 2 + 4) (5 - 0.4) \\ &+ (\theta_1 (7 - 2.8) + \theta_2 (-3 - 0.4) + 2 - 5) (-3 - 0.4) \\ &= (-39.6) \theta_1 + (57.2) \theta_2 + 63 \end{split}$$

Minimization of linear regression loss function...

$$\frac{\partial L}{\partial \theta_j} = \sum_{i=1}^n \left(\sum_{k=1}^m \theta_k (x_{i,k} - \bar{x}_k) + \bar{y} - y_i \right) \left(x_{i,j} - \bar{x}_j \right) + \gamma \theta_j$$
simplification

Gradient of L with resp. to θ :

$$\nabla_{\boldsymbol{\theta}} L = \left[\sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})^T (\mathbf{x}_i - \bar{\mathbf{x}}) \right] \boldsymbol{\theta} + \gamma \boldsymbol{\theta} - \sum_{i=1}^{n} (y_i - \bar{y}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

where
$$\mathbf{x}_i = [x_{i,1} \quad \dots \quad x_{i,m}], \quad \bar{\mathbf{x}} = [\bar{x}_1 \quad \dots \quad \bar{x}_m] \quad \text{and} \quad \mathbf{\theta} = [\theta_1 \quad \dots \quad \theta_m]^T$$

More simplified form: $\nabla_{\boldsymbol{\theta}} L = (X^T X + \gamma I)\boldsymbol{\theta} - X^T \mathbf{y}$

where matrix
$$X$$
 is defined as: $X = \begin{bmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \overline{\mathbf{x}} \end{bmatrix}$ and vector \mathbf{y} is defined as: $\mathbf{y} = \begin{bmatrix} y_1 - \overline{y} \\ \vdots \\ y_n - \overline{y} \end{bmatrix}$

and I is an identity matrix of size m-by-m

Equating gradient of L to zero vector and solving for θ gives us:

$$\mathbf{\theta} = (X^T X + \gamma I)^{-1} X^T \mathbf{y}$$

Quick review: Gradient of a function

Consider a function of two variables as an example:

$$f(x,y) = -(\cos^2 x + \cos^2 y)^2$$

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 4(\cos^2(x) + \cos^2(y))\cos(x)\sin(x) \\ 4(\cos^2(x) + \cos^2(y))\cos(y)\sin(y) \end{bmatrix}$$

Note 1: *f* is a function of two variables, so gradient (partial derivatives collected as a vector) of *f* is a two-dimensional vector

Note 2: Gradient (vector) of f points toward the steepest ascent for f

Note 3: At a (local) minimum of *f* its gradient becomes a zero vector

Gradient in our toy example...

Toy example:

X ₁	X ₂	у
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

Note: For this toy problem, I assumed $\gamma = 0$ for convenience

$$\frac{\partial L}{\partial \theta_1} = (64.8)\theta_1 - (39.6)\theta_2 - 57$$

$$\frac{\partial L}{\partial \theta_2} = (-39.6)\theta_1 + (57.2)\theta_2 + 63$$

So, gradient is

$$\nabla L_{\mathbf{\theta}} = \begin{bmatrix} (64.8)\theta_1 - (39.6)\theta_2 - 57 \\ (-39.6)\theta_1 + (57.2)\theta_2 + 63 \end{bmatrix}$$

Equating gradient (vector) to 0 (vector) and solving, we get:

$$\mathbf{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 0.3580 \\ -0.8535 \end{bmatrix}$$

Equivalently, using direct formula...

Let's take a toy example:

x ₁	X ₂	У
1	2	-1
3	-4	7
6	2	3
-3	5	-4
7	-3	5
4	3	?

$$X = \begin{bmatrix} \mathbf{x}_1 - \bar{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \bar{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} 1 - 2.8 & 2 - 0.4 \\ 3 - 2.8 & -4 - 0.4 \\ 6 - 2.8 & 2 - 0.4 \\ -3 - 2.8 & 5 - 0.4 \\ 7 - 2.8 & -3 - 0.4 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{bmatrix} = \begin{bmatrix} -1 - 2 \\ 7 - 2 \\ 3 - 2 \\ -4 - 2 \\ 5 - 2 \end{bmatrix}$$

$$\mathbf{\theta} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} 0.3580 \\ -0.8535 \end{bmatrix}$$

So, finally the prediction for the test data point

$$? = \sum_{j=1}^{m} \theta_j (x_j - \bar{x}_j) + b = 0.3580(4 - 2.8) - 0.8535(3 - 0.4) + 2 = 0.2105$$

MNIST Dataset

Classify images into digits

Each image is 28x28

10 labels

55,000 training images

5,000 validation images

10,000 test images.

Linear regression on MNIST dataset

Small 28 pixels-by-28 pixels images of hand written digits

The visual recognition problem definition: to recognize the digit from an image

Our very first line of attack would be to use linear regression.

Feature dimension, m = 28 * 28 = 784

Let's look at our PyTorch implementations: Called direct method because we will use math formula to find $\boldsymbol{\theta}$ and b.

<i>X</i> ₁	<i>X</i> ₂	•••	X ₇₈₄	у
0.1	0.3		0.0	0
0.2	0.1		0.5	1
•••				
0.0	0.98		0.8	9
0.5	0.25		0.36	?
0.1	0.95		0.1	?

Linear regression

[28x28]
Array of real numbers
(784 numbers in total)

Mean vector of training images

Mean of training labels (digits)

See notebook: MNIST_Linear_Regression_Direct.ipynb

1 number, indicating digit

<i>x</i> ₁	<i>X</i> ₂	 X ₇₈₄	у
0.1	0.3	 0.0	0
0.2	0.1	 0.5	1
0.0	0.98	 0.8	9
0.5	0.25	 0.36	?
0.1	0.95	 0.1	?

Pixel values (feature)

Digit

Multiple or Vector Linear Regression

numbers total)

images

10 numbers, indicating class scores

Pixel values (feature)

vector

*X*₇₈₄ **y**₁₀ 0.5 0 0.98 ... 0.8 0.25 ... 0.36 Ø.35 ... 0.1

Digit: 1-hot vector

Multiple Linear Regression: PyTorch **Implementation**

See notebook: MNIST_Multiple_Linear_Regression_Direct.ipynb

Prediction model: $\mathbf{y}^p = (\mathbf{x} - \overline{\mathbf{x}})W + \overline{\mathbf{y}}$

Regularized loss function:
$$L = \frac{1}{2} \sum_{i=1}^{n} ||\mathbf{y}_i^p - \mathbf{y}_i||^2 + \frac{\gamma}{2} ||W||^2$$

Gradient of loss function:

$$\nabla_W L = (X^T X + \gamma I)W - X^T Y$$

where matrix X is defined as: $X = \begin{bmatrix} \mathbf{x}_1 - \overline{\mathbf{x}} \\ \vdots \\ \mathbf{x}_n - \overline{\mathbf{y}} \end{bmatrix}$

$$X = \begin{bmatrix} \mathbf{x}_1 - \mathbf{x} \\ \vdots \\ \mathbf{x}_n - \bar{\mathbf{x}} \end{bmatrix}$$

and matrix
$$Y$$
 is defined as: $Y = \begin{bmatrix} \mathbf{y}_1 - \overline{\mathbf{y}} \\ \vdots \\ \mathbf{y}_n - \overline{\mathbf{y}} \end{bmatrix}$

and I is an identity matrix of size 784-by-784

https://en.wikipedia.org/wiki/Matrix calculus

This derivation requires matrix-vector differentiation

Equating gradient of *L* to zero matrix and solving for W gives us:

$$W = (X^T X + \gamma I)^{-1} X^T Y$$

We will "minimally" modify our linear regression scripts into multiple linear regression implementations!

What happened to our learning algorithm?

Step 1: Create training image set (example set):

Repeat steps 2, 3 and 4

- Step 2: Show these examples to the machine learner
- Step 3: Measure mistakes made by the machine learner
- Step 4: Tune parameters of the machine learner to minimize its mistakes

Can we apply this learning algorithm to linear or multiple linear regression using PyTorch?

Iterate:

```
(Load Data): Get a training data batch (also called mini batch)
```

(Predict): Apply linear model to training feature vector and compute predictions

(Compute loss): Measure discrepancy between predictions and ground truths

(Optimize): Ask PyTorch to reduce loss value by tuning the parameters θ (or W), and b

(Diagnostics): Check if loss is decreasing

See notebook: MNIST Linear Regression.ipynb, MNIST Multiple Linear Regression.ipynb

What are the pros and cons of this optimization-based method over the direct formula-based method?

Gradient descent optimization

Start at an initial guess for the optimization variable: \mathbf{x}_0

Iterate until gradient magnitude becomes too small: $\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$

Gradient descent algorithm

 α is called the step-length.

Gradient descent creates a zig-zag path leading to a local minimum of f

Picture source: Wikipedia

Gradient descent visualization

Find x such that f(x) is minimized: $f(x) = \sin(x) + x + x * \sin(x)$ $\nabla f(x) = \cos(x) + 1 + \sin(x) + x * \cos(x)$ $\mathbf{x}_0 = ???$ $\mathbf{x}^{t+1} = \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$

PyTorch optimizer uses GD

Let's try our own gradient descent for multiple linear regression

Gradient of loss function for multiple linear regression: $\nabla_W L = (X^T X + \gamma I)W - X^T Y$

$$\nabla_W L = (X^T X + \gamma I)W - X^T Y$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{n} (y_i^p - y_i)$$

Exercise: write GD for MNIST multiple linear regression

Look at MNIST Multiple Linear Regression.ipynb

Logistic Regression

Can we modify scores from multiple regression function to output probabilities?

What is a suitable loss function for classification?

Logistic Regression

Would it not be nice if we can predict class probabilities instead of scores?

[28x28]
Array of real numbers
(784 numbers total)

prediction function For logistic regression

10 numbers, indicating class probabilities

Pixel values (leature) Digit. 1-not vector						
					\	
			Y			
<i>X</i> ₁	<i>x</i> ₂		<i>X</i> ₇₈₄	y ₁		y ₁₀
0.1	0.3		0.0	0		1
0.2	0.1		0.5	1		0
0.0	0.98		0.8	0		1
0.5	0.25		0.36	?		?
0.4	راب.95 95.		0.1	?		?

Dival values (feature) Digit: 1-hot vector

Logistic regression: from multiple linear regression

regression:

Scores from multiple linear
$$\mathbf{s}_i = (\mathbf{x}_i - \overline{\mathbf{x}})W + \overline{\mathbf{y}}$$
 or $\mathbf{s}_{i,k} = (\mathbf{x}_i - \overline{\mathbf{x}})W_{:,k} + \overline{\mathbf{y}}_k$ regression:

Score for k^{th} class, k = 0,...,9

Predicted probability for kth class:

$$y_{i,k}^p = \frac{\exp(s_{i,k})}{\sum_{c=0}^9 \exp(s_{i,c})}$$

"Softmax" function

Logistic regression: loss function

Cross entropy loss:
$$loss(\mathbf{y}^p, \mathbf{y}) = -\sum_{k=0}^{9} \mathbf{y}_k \log(\mathbf{y}_k^p)$$

Why this loss function? What does it mean? Why not use Euclidean loss as in MLR?

Do we have a direct formula to compute parameters like MLR?