WT 2020/2021

Technical University of Munich Department of Informatics Dr. Tobias Neckel Paul Cristian Sârbu Sebastian Wolf Hayden Liu Weng

Lab Course Scientific Computing

Worksheet 2

distributed: Tue., 24.11.2020

due: Sun., 06.12.2020, midnight (submission on the Moodle page) oral examination: Tue., 08.12.2020 (exact time slots announced on the Moodle page)

We examine the following ordinary differential equation describing the dynamics of the population of a certain species:

$$\dot{p} = \left(1 - \frac{p}{10}\right) \cdot p \tag{1}$$

with initial condition

$$p(0) = 1. (2)$$

The analytical solution is given by

$$p(t) = \frac{10}{1 + 9e^{-t}}.$$

We use this rather simple equation with a known exact solution to examine the properties of different numerical methods.

- a) Use matlab to plot the function p(t) in a graph.
- b) Consider a general initial value problem

$$\dot{y} = f(y), \quad y(0) = y_0.$$

Implement the following explicit numerical methods

- 1) explicit Euler method,
- 2) method of Heun,
- 3) Runge-Kutta method (fourth order)

as a matlab function depending on the right hand side $f(y)^1$, the initial value y_0 , the timestep size δt and the end time t_{end} . The output of the function shall be a vector containing all computed approximate values for y.

- c) For each of the three methods implemented, compute approximate solutions p_k for equation (1) with initial conditions (2), end time $t_{end} = 5$. We want to investigate the behavior of the approximate solutions for different time step sizes $\delta t = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$.
 - i) For each of the three methods, create a separate figure. Each figure contains the four computed solutions for the four different timesteps δt . Add also the analytical solution for reference in each figure.
 - ii) For each case, compute the approximation error

$$E = \sqrt{\frac{\delta t}{t_{end}} \sum_{k} (p_k - p_{k,exact})^2},$$

where p_k denotes the approximation, $p_{exact,k}$ the exact solution at $t = \delta t \cdot k$. Write down the errors in the tables below.

- iii) For each of the three methods, determine the factor by which the error E is reduced if the step size δt is halved. Write down the results in the tables below.
- iv) In general, we do not know the exact solution of an equation we have to solve numerically (otherwise, we would not have to use a numerical method, in fact). To anyhow guess the accuracy of a method, we can use the difference between our best approximation (the one with the smallest time step δt) and the other approximations:

$$\tilde{E} = \sqrt{\frac{\delta t}{t_{end}} \sum_{k} (p_k - p_{k,best})^2},$$

¹Use a MATLAB Function Handle as argument.

where p_k denotes the approximation with time step δt and $p_{best,k}$ the best approximation at $t = \delta t \cdot k$.

Compute \tilde{E} for all time steps and methods used. Write down the results in the tables below and compare them to the exact error E.

explicit Euler method $(q=1)$						
δt	1	0.5	0.75	0.125		
error	0.7783	0.3827	0 - 1898	0.09 45		
error red.	0,4917	0.4960	0.4978	_		
error app.	0.6868	0.2888	0.0954	0		

method of Heun $(q=2)$						
δt	1	0,5	0,25	0,125		
error	0.7749	0.0717	0.0189	0.0049		
error red.	0.7609	0.7633	0.7585			
error app.	0.2701	0.0668	0.0140	0		

Erstellt mit einer Testversion von PDF Annotator - www.PDFAnnotator.de

Runge-Kutta method $(q = 4)$						
δt	1	0,5	0,75	0, 125		
error	0.0079	5.2749×40-4	3 4554×255	2.2331 _{×10} -6		
error red.	0.0662	0-0661	0.0646	1		
error app.	0.0 079	5. 2024×104	3.2313×105			

Questions:

- Q1 By which factor is the error reduced for each halfing of δt if you apply a
 - 1) first order $(O(\delta t))$,
 - 2) second order $(O(\delta t^2))$,
 - 3) third order $(O(\delta t^3))$,
 - 4) fourth order $(O(\delta t^4))$

method.

- Q2 For which integer q can you conclude that the error of the
 - 1) explicit Euler method,
 - 2) method of Heun,
 - 3) Runge-Kutta method (fourth order)

behaves like $O(\delta t^q)$?

- Q3 Is a higher order method always more accurate than a lower order method (for the same stepsize δt)?
- Q4 Assume you have to compute the solution up to a certain prescribed accuracy limit and that you see that you can do with less time steps if you use the Runge-Kutta-method than if you use Euler or the method of Heun. Can you conclude in this case that the Runge-Kutta method is the most efficient one of the three alternatives?