Wissenschaftliches Rechnen

Aufgabenblatt 1 (Theorie)

wr@isg.cs.uni-magdeburg.de

SoSe 2023

Allgemeine Hinweise:

- Die Aufgaben sind von jeder/m Studierenden einzeln zu bearbeiten und abzugeben (Plagiate werden entsprechend der Studienordnung geahndet).
- Bei allen Aufgaben muss ein nachvollziehbarer und vollständiger Lösungsweg angegeben werden.
- Empfehlenswert ist die Verwendung von LaTeX. Eingescannte handschriftliche (gut lesbare!) Lösungen oder die Verwendung anderer Textsatzsysteme sind auch möglich.
- Bitte reichen Sie Ihre Lösungen in Form eines einzelnen PDF-Dokuments (max. 2MB) über Ihr git repository ein.

Aufgabe 1: Lineare Gleichungssysteme (5 Punkte)

Aufgabe 1.1: Gauss-Elimination mit Pivoting (4 Punkte)

Erläutern Sie anhand des folgenden 2×2 Gleichungssystems die Notwendigkeit von Pivoting:

$$0.00025 x_1 + 2.32 x_2 = 1.387 (1a)$$

$$10.126 x_1 + 1.257 x_2 = 0.586. (1b)$$

Berechnen Sie dazu die Lösung des Gleichungssystems im Gleitkommazahl-Format $\mathbb{G}(10,2,5)$ (die Abbildung $G:\mathbb{R}\mapsto\mathbb{G}(10,2,5)$ soll entsprechend der üblichen arithmetischen Regeln für das Runden erfolgen) sowohl mit als auch ohne Pivoting und bestimmen Sie jeweils den relativen Fehler für x_1 und x_2 bzgl. der exakten Lösung dargestellt im Gleitkommazahl-Format.

Aufgabe 1.2: Lösung von linearen Gleichungssystemen (1 Punkt)

Vergleichen Sie Gauß-Elimination und die Verwendung der Cholesky-Zerlegung zur Lösung von linearen Gleichungssystemen. Geben Sie mindestens zwei Unterschiede an. Ist eines der Verfahren zu bevorzugen? Erläutern Sie Ihre Antwort.

Aufgabe 2: Ausgleichsrechnung (5 Punkte)

Aufgabe 2.1: Normalengleichung (2 Punkte)

Zeigen Sie, dass die Matrix A^TA in der Normalengleichung die Vorraussetzungen für die Cholesky-Zerlegung erfüllt.

Aufgabe 2.2: Eindeutigkeit der Lösung von linearen Gleichungssysteme (1 Punkt)

Sei Ax = b ein eindeutig lösbares Gleichungssystem mit $A \in \mathbb{R}^{n \times n}$ und $b, x \in \mathbb{R}^n$. Zeigen sie, dass die Lösung der Normalengleichung in diesem Fall der Lösung des Gleichungssystems entspricht.

Aufgabe 2.3: Abstand von Geraden im Raum (2 Punkte)

Gegeben seien zwei Geraden in \mathbb{R}^3 :

$$g_1: x = b_1 + t r_1 = \begin{pmatrix} 1.0 \\ 0.5 \\ 2.0 \end{pmatrix} + t \begin{pmatrix} 0.4 \\ -0.2 \\ 1.1 \end{pmatrix}, \quad t \in \mathbb{R}$$
 (2a)

$$g_2: x = b_2 + s r_2 = \begin{pmatrix} -0.2\\0.7\\1.3 \end{pmatrix} + s \begin{pmatrix} -0.35\\1.5\\-0.7 \end{pmatrix}, s \in \mathbb{R}.$$
 (2b)

Stellen Sie mit Hilfe der Ausgleichsrechnung ein lineares Gleichungssystem auf, mit welchem Sie für zwei beliebige Geraden die zwei Punkte auf den Geraden bestimmen können, für welcher ihr Abstand $d(g_1(t),g_2(s))=\|g_1(t)-g_2(s)\|$ am geringsten ist. Berechnen Sie anschließend die Punkte und den Abstand für die gegebenen Geraden.