Formal Proof of a Gathering Algorithm in the Pactole Framework

Mathis Bouverot-Dupuis

Boss: Pierre Courtieu (CNAM)

June - July 2022

Talk outline

Suzuki & Yamashita's Model

Weber Point Properties

Alignment

Gathering

Very simple (dumb) robots :

Points in \mathbb{R}^2 (can overlap)

- ightharpoonup Points in \mathbb{R}^2 (can overlap)
- Anonymous

- ightharpoonup Points in \mathbb{R}^2 (can overlap)
- Anonymous
- No direct communication

- ightharpoonup Points in \mathbb{R}^2 (can overlap)
- Anonymous
- No direct communication
- ► No common direction/scale

- Points in \mathbb{R}^2 (can overlap)
- Anonymous
- No direct communication
- ► No common direction/scale
- Strong multiplicity detection

- ightharpoonup Points in \mathbb{R}^2 (can overlap)
- Anonymous
- No direct communication
- ► No common direction/scale
- Strong multiplicity detection
- Same robogram

▶ Let X : multiset of points in \mathbb{R}^2

- ▶ Let X: multiset of points in \mathbb{R}^2
- Sum of distances to X :

$$D_X(p) := \sum_{x \in X} \|x - p\|$$

- ▶ Let X : multiset of points in \mathbb{R}^2
- Sum of distances to X :

$$D_X(p) := \sum_{x \in X} \|x - p\|$$

Set of weber points of X :

$$\{p \mid p \text{ minimizes } D_X\}$$

- ▶ Let X : multiset of points in \mathbb{R}^2
- Sum of distances to X :

$$D_X(p) := \sum_{x \in X} \|x - p\|$$

Set of weber points of X :

$$\{p \mid p \text{ minimizes } D_X\}$$

Similar to barycenter (sum of distances v.s. sum of distances squared).

	barycenter	weber point
exists		
unique		
computable		

	barycenter	weber point
exists	Yes	Yes
unique		
computable		

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable		

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

▶ Points not aligned.

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

- Points not aligned.
- Odd number of points.

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

- Points not aligned.
- Odd number of points.
- Otherwise : sometimes.

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

- Points not aligned.
- Odd number of points.
- Otherwise : sometimes.

How about computability ?

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

- Points not aligned.
- Odd number of points.
- Otherwise : sometimes.

How about computability?

► We don't care (toy example).

	barycenter	weber point
exists	Yes	Yes
unique	Yes	No
computable	Yes	No

When is the weber point unique?

- Points not aligned.
- Odd number of points.
- Otherwise : sometimes.

How about computability?

We don't care (toy example).

Why use the weber point?

Contraction Lemma

Let X, Y: multiset of points (cf. figure).

Contraction Lemma

- Let X, Y: multiset of points (cf. figure).
- ▶ Suppose $w \in WP(X)$.

Contraction Lemma

- Let X, Y: multiset of points (cf. figure).
- ▶ Suppose $w \in WP(X)$.
- ▶ Then $w \in WP(Y)$.

Alternate characterization of weber points :

► Recall $D_X(p) := \sum_{x \in X} ||x - p||$.

- \triangleright D_X is convex & differentiable (almost) everywhere.

- $\blacktriangleright \text{ Recall } D_X(p) := \sum_{x \in X} \|x p\|.$
- $ightharpoonup D_X$ is convex & differentiable (almost) everywhere.
- ▶ Minimizing $D_X \iff$ gradient of D_X is 0.

- $ightharpoonup \operatorname{Recall} D_X(p) := \sum_{x \in X} \|x p\|.$
- \triangleright D_X is convex & differentiable (almost) everywhere.
- ▶ Minimizing $D_X \iff$ gradient of D_X is 0.
- Gradient : $\nabla D_X(p) = \sum_{x \in X} \frac{p-x}{\|p-x\|}$

Goal: move robots to a common line, and make them stay on the line.

Goal : move robots to a common line, and make them stay on the line.

```
Coq Definition aligned : configuration → Prop.
```

Goal: move robots to a common line, and make them stay on the line.

```
Definition aligned : configuration → Prop.

Coq

Definition eventually_aligned (c:configuration)
(d:demon) (r:robogram) :=
Stream.eventually
(Stream.forever (Stream.instant aligned))
(execute r d c).
```

Goal: move robots to a common line, and make them stay on the line.

```
Coc
Definition aligned : configuration → Prop.
                                                           Coa
Definition eventually_aligned (c:configuration)
(d:demon) (r:robogram) :=
  Stream.eventually
    (Stream.forever (Stream.instant aligned))
    (execute r d c).
Theorem alignment_correct :=
  ∀ (c:configuration) (d:demon),
    (* Hypotheses on d *) →
    eventually aligned c d align robogram.
```

Robogram

Very simple robogram : move towards the weber point (in a straight line) until aligned.

Robogram

Very simple robogram : move towards the weber point (in a straight line) until aligned.

```
Definition align_robogram (obs:observation) : R2 :=

if aligned_dec obs
then origin
else weber_calc obs.
```

Robogram

Very simple robogram : move towards the weber point (in a straight line) until aligned.

```
Definition align_robogram (obs:observation) : R2 :=

if aligned_dec obs
then origin
else weber_calc obs.

Coq
Definition observation := multiset R2.
```

Suzuki & Yamashita's Model: several versions.

Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?

Suzuki & Yamashita's Model : several versions.

- Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?
- Rigid or flexible ?

Suzuki & Yamashita's Model : several versions.

- Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?
- Rigid or flexible ?

My proofs (alignment):

Suzuki & Yamashita's Model : several versions.

- Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?
- Rigid or flexible ?

My proofs (alignment):

► SSYNC & rigid.

Suzuki & Yamashita's Model : several versions.

- Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?
- Rigid or flexible ?

My proofs (alignment):

- SSYNC & rigid.
- SSYNC & flexible.

Suzuki & Yamashita's Model : several versions.

- Fully-synchronous (FSYNC), semi-synchronous (SSYNC) or asynchronous (ASYNC) ?
- Rigid or flexible ?

My proofs (alignment):

- SSYNC & rigid.
- SSYNC & flexible.
- ► ASYNC (first time in Pactole) & flexible.

How do we represent robots ?

How do we represent robots?

SSYNC : current position only.

How do we represent robots?

SSYNC : current position only.

► ASYNC : start, destination & current positions.

How do we represent robots?

SSYNC : current position only.

► ASYNC : start, destination & current positions.

```
Coq
Definition info := (location * location * ratio)%type.
```

How do we represent robots?

- SSYNC : current position only.
- ► ASYNC : start, destination & current positions.

```
Coq

Definition info := (location * location * ratio)%type.

Coq

Instance St : State info := { get_location := fun '(start, dest, r) ⇒
    straight_path start dest r }.
```

How do we represent robots?

- SSYNC : current position only.
- ASYNC : start, destination & current positions.

```
Definition info := (location * location * ratio)%type.

Coq

Instance St : State info := { get_location := fun '(start, dest, r) ⇒
    straight_path start dest r }.
```

How to update robots each round?

How do we represent robots?

- SSYNC : current position only.
- ► ASYNC : start, destination & current positions.

```
Definition info := (location * location * ratio)%type.

Coq

Instance St : State info := {
    get_location := fun '(start, dest, r) ⇒
    straight_path start dest r }.
```

How to update robots each round?

Activated robots :

```
new_start <- straight_path start dest ratio
new_dest <- robogram (obs_from_config config)
new_ratio <- 0</pre>
```

How do we represent robots?

- SSYNC : current position only.
- ASYNC : start, destination & current positions.

```
Definition info := (location * location * ratio)%type.

Coq

Instance St : State info := { get_location := fun '(start, dest, r) ⇒
    straight_path start dest r }.
```

How to update robots each round?

Activated robots :

```
new_start <- straight_path start dest ratio
new_dest <- robogram (obs_from_config config)
new_ratio <- 0</pre>
```

Other robots :

```
new_ratio <- ratio + demon_ratio</pre>
```

ASYNC model: rigid & flexible

How to define rigid & flexible demons in ASYNC?

ASYNC model: rigid & flexible

How to define rigid & flexible demons in ASYNC?

Rigid: no longer the default setting.

```
Definition rigid_da_prop (da:demonic_action) :=

∀ (c:configuration) (id:ident),
   da.(activate) id = true →
   get_location (c id) ≡ get_destination (c id).
```

ASYNC model: rigid & flexible

How to define rigid & flexible demons in ASYNC?

Rigid: no longer the default setting.

```
Definition rigid_da_prop (da:demonic_action) :=

∀ (c:configuration) (id:ident),

da.(activate) id = true →

get_location (c id) ≡ get_destination (c id).
```

Flexible:

```
Definition flex_da_prop (da:demonic_action) (\delta:R) := \forall (c:configuration) (id:ident), da.(activate) id = true \rightarrow get_location (c id) \equiv get_destination (c id) \forall \delta \leq dist (get_start (c id)) (get_location (c id)).
```

We define a measure that decreases each time a robot that isn't on the weber point is activated.

► Simple case : SSYNC & rigid.

We define a measure that decreases each time a robot that isn't on the weber point is activated.

- ► Simple case : SSYNC & rigid.
- ► Count how many robots have not arrived yet.

We define a measure that decreases each time a robot that isn't on the weber point is activated.

- Simple case : SSYNC & rigid.
- Count how many robots have not arrived yet.

```
Definition measure (c:configuration) :=
n - countA_occ _ _ (weber_calc c) c.
```

We define a measure that decreases each time a robot that isn't on the weber point is activated.

- ► Simple case : SSYNC & rigid.
- Count how many robots have not arrived yet.

```
Definition measure (c:configuration) :=
n - countA_occ _ _ (weber_calc c) c.

Lemma round_decreases_measure :
∀ (c:config) (da:demonic_action),
(* Hypotheses on da *) →
(∃ id, da.(activate) id = true ∧
get_location (c id) =/= weber_calc c) →
aligned (round gatherW da c).
```

Lifecycle of a robot in ASYNC flex:

Lifecycle of a robot in ASYNC flex:

Lifecycle of a robot in ASYNC flex:

Lifecycle of a robot in ASYNC flex :

We need one measure for each type of activation.

We need one measure for each type of activation.

measure₁: count how many robots are looping but not on the weber point.

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.
- measure₃: count how many robots are not looping on the weber point.

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.
- measure₃: count how many robots are not looping on the weber point.

The final measure is **measure**₁ + **measure**₂ + **measure**₃.

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.
- measure₃: count how many robots are not looping on the weber point.

The final measure is measure₁ + measure₂ + measure₃.

The proof is then a well-founded induction on the measure.

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.
- measure₃: count how many robots are not looping on the weber point.

The final measure is **measure**₁ + **measure**₂ + **measure**₃. The proof is then a well-founded induction on the measure.

```
Definition lt_config (c1 c2:configuration) := 0 \le \text{measure c1} \le \text{measure c2} - \text{min 1 } \delta.
```

We need one measure for each type of activation.

- measure₁: count how many robots are looping but not on the weber point.
- measure₂: count the total distance from the start of each robot to the weber point.
- measure₃: count how many robots are not looping on the weber point.

The final measure is $measure_1 + measure_2 + measure_3$. The proof is then a well-founded induction on the measure.

```
Definition lt_config (c1 c2:configuration) :=
0 ≤ measure c1 ≤ measure c2 - min 1 δ.

Coq
Lemma lt_config_wf : well_founded lt_config.
```

Gathering

Does the algorithm work for gathering ?

Does the algorithm work for gathering ?

▶ Problem when aligned : weber point is not unique.

Does the algorithm work for gathering ?

▶ Problem when aligned : weber point is not unique.

Switch to another algorithm once aligned ?

Does the algorithm work for gathering?

▶ Problem when aligned : weber point is not unique.

Switch to another algorithm once aligned ?

Does not work in ASYNC.

Does the algorithm work for gathering?

Problem when aligned : weber point is not unique.

Switch to another algorithm once aligned ?

Does not work in ASYNC.

For which initial configurations does the weber algorithm work?

Does the algorithm work for gathering?

Problem when aligned : weber point is not unique.

Switch to another algorithm once aligned ?

Does not work in ASYNC.

For which initial configurations does the weber algorithm work?

When the weber point is unique (initially).

Strong Contraction Lemma (Zohir Bouzid)

Let X, Y: multiset of points (cf. figure).

Strong Contraction Lemma (Zohir Bouzid)

- Let X, Y: multiset of points (cf. figure).
- ightharpoonup Suppose w is the unique weber point of X.

Strong Contraction Lemma (Zohir Bouzid)

- Let X, Y: multiset of points (cf. figure).
- Suppose w is the unique weber point of X.
- ▶ Then w is the **unique** weber point of Y.

► Formal proof in Coq of a simple algorithm to solve the gathering problem.

- ► Formal proof in Coq of a simple algorithm to solve the gathering problem.
- ► Formal proof in Coq of the properties of the weber point.

- ► Formal proof in Coq of a simple algorithm to solve the gathering problem.
- Formal proof in Coq of the properties of the weber point.
- Assumes the weber point is computable.

- ► Formal proof in Coq of a simple algorithm to solve the gathering problem.
- Formal proof in Coq of the properties of the weber point.
- Assumes the weber point is computable.
- Asynchronous and flexible setting.

- ► Formal proof in Coq of a simple algorithm to solve the gathering problem.
- Formal proof in Coq of the properties of the weber point.
- Assumes the weber point is computable.
- Asynchronous and flexible setting.
- Not universal: initial position must have a unique weber point.

- ► Formal proof in Coq of a simple algorithm to solve the gathering problem.
- Formal proof in Coq of the properties of the weber point.
- Assumes the weber point is computable.
- Asynchronous and flexible setting.
- Not universal: initial position must have a unique weber point.

Thank you!