

NHỮNG CÂU NÓI CUỐI CÙNG HUYỀN THOẠI CỦA ARCHIMEDES

PHAM TRIỀU DƯƠNG

"Xin đừng xáo trộn những vòng tròn của tôi" Mỳ μου τοὺς κύκλους τάραττε (tiếng Hy lạp) Noli turbare circulos meos (Tiếng La tinh) Khi chúng ta còn nhỏ, chắc hẳn ai cũng đều nghe tới chuyện, có một ông già thời cổ đại nào đó, ông ta ngồi trên bờ biển, đang vẽ một cái hình gì đó trên cát thì một người lính cưỡi ngựa đi qua và vô tình đâm chiếc giáo làm ông già ngã xuống, ông ấy chỉ kịp thốt lên "ôi, làm ơn đừng làm hỏng những hình vẽ của tôi".

Câu chuyện này làm chúng ta mê say tới mức, lúc còn thơ ấu, cứ mỗi lần bạn và tôi đi nghỉ hè ở biển, chúng ta đều cố thử ngồi trên cát trắng và vẽ những hình tam giác, hình tròn và đợi những ngọn sóng ập tới xoá đi nhanh chóng những ký hoạ tạo ra trong những hình dung đẹp đẽ mơ hồ của chúng ta về một môn học gọi là Toán.

Rồi tới khi học Vật lý, chúng ta lại được biết tới một ông già nào đó khác ở một xứ nọ, ông đang ngồi ngâm mình trong bồn tắm thì bỗng vùng dậy chạy ra đường và kêu lên: Eureka! Tất cả các bạn bè của chúng ta đều yêu mến câu chuyện đó, và đều hay thốt lên một cách hồn nhiên "Eureka!" khi muốn nói đến một khám phá bất chợt, giống như khi giải ra được một bài toán khó vào chiều tối thứ Sáu.

Các câu chuyện trên đều về một người, đó là Archimedes xứ Syracuse (287 - 212). Về cái chết của ông, Wikipedia có viết ngắn gọn như sau: "Archimedes chết trong đợt vây hãm thành Syracuse, ở đó ông bị một người lính La Mã giết mặc dù có mệnh lệnh phải bảo toàn tính mạng cho Archimedes." Vào lúc đó, Archimedes, nổi tiếng với trí tuệ kiến thức uyên thâm về hình học và cơ học, đã làm cho tướng quân La Mã là Marcus Claudius Marcellus phải nể phục. Marcellus biết rằng mình đã phải nhọc nhằn như thế nào trong việc chinh phục thành Syracuse cũng do các cỗ máy cơ học tinh xảo mà Archimedes chế tạo đã giúp dân thành chống cự được lính La Mã thiện chiến. Người La Mã nổi tiếng với tính tàn ác lạnh lùng, nhưng cũng là những người đề cao danh dự chiến trường. Vì quá hâm mộ tài năng đột xuất của Archimedes, tướng quân Marcellus ra lệnh phải giữ mạng sống cho nhà toán học - đối với Marcellus, cứu được Archimedes cũng đáng được vinh

quang như hạ được thành luỹ của Syracuse bằng gươm kiếm.

Tuy nhiên, một người lính được cử đến để yêu cầu Archimedes nộp mình làm tù binh cho quân La Mã đã làm hỏng kế hoạch tỷ mỷ mà Marcellus nghĩ ra. Anh ta thô lỗ đạp cửa đột nhập vào nhà của Archimedes, đúng lúc nhà toán học đang trầm ngâm mải mê vẽ những hình vẽ phức tạp. Người lính tuốt kiếm ra và hỏi Archimedes tên ông là gì. Archimedes vì đang mải miết với công việc, không nhận thấy ai đang chỉ kiếm về mình, đã nói với người lính "Xin làm ơn đừng có làm xáo trộn những hình vẽ của tôi, anh bạn ơi!". Ông còn hét lên "Ai đưa giúp cho tôi một trong những cái máy của tôi nào!" Người lính La Mã, vì quá sợ hãi, theo bản năng tự vệ bèn đâm thẳng kiếm vào ông già yếu ớt, và cũng trong giây phút ấy, đã hạ gục nhà toán học vĩ đại.

Nhưng vì sao lại có câu chuyện về Archimedes bị đâm chết khi ngồi trên bãi cát nhỉ? Phần lớn các tài liệu đều đồng ý, ông đang ngồi tại nhà riêng và đang vẽ những hình hình học thì bị người lính đột nhập tới đâm ông bằng kiếm. Lúc đó Archimedes đang sử dụng một công cụ là bảng vẽ abax, một dụng cụ để vẽ bằng bụi cát. Vì vậy mới có dị bản trên về bãi cát như tôi và các bạn đã từng nghe khi còn nhỏ.

Ân hận với hành động bất cẩn của quân lính, Marcellus đã xin lỗi họ hàng của Archimedes và cho đặt trên mộ của ông một biểu tượng mô tả một hình cầu đặt trong một hình trụ, và mãi 137 năm sau, một nhà chính trị gia La Mã là Cicero mới tìm thấy ngôi mộ này của nhà toán học. Người La Mã cổ đại nói chung không quan tâm tới toán học, và hành động dọn dẹp ngôi mộ cho phong quang của Cicero có lẽ là đóng góp đáng ghi nhớ nhất của bất kỳ người La Mã nào đối với lịch sử phát triển của toán học.

Hình 2. Biểu tượng về hình cầu và hình trụ như thế này đã được khắc trên mộ của Archimedes.

Sự thiên tài và đầu óc luôn muốn tò mò khám phá tri thức của Archimedes tiếp tục truyền cảm hứng tới nhiều nhà tư tưởng khác rất lâu sau khi ông qua đời, từ Galileo cho tới Issac Newton. Chúng ta có thể nhắc tới Sophie Germain, một nữ toán học người Pháp sinh năm 1776. Vào năm 13 tuổi, cô đã được đọc câu chuyện về cái chết của Archimedes. Sophie cho rằng bất kỳ môn học nào mà có thể thu hút một người tập trung say mê như vậy, đều đáng để nghiên cứu, và cô quyết định tự học toán - đặc biệt là môn lý thuyết số. Cha mẹ cô đã lo lắng rất nhiều về sở thích toán học của con gái mình khi cô còn là một cô bé, và vào thời cô sống, việc phụ nữ trở thành một nhà toán học là điều không bình thường, vì vậy họ đã tịch thu tất cả các cây

nến của cô và dỡ bỏ moi thiết bi sưởi ấm trong phòng cô. Cô đáp lại bằng cách bí mật thắp nến rồi ngồi vào bàn, quấn chăn kín người. Cha mẹ cô cuối cùng đã mủi lòng một cách thật thông thái và quyết định tài trợ cho việc học hành của cô. Sophie, sau khi tìm thấy một sinh viên sắp rời Paris tên là Antoine-August Le Blanc, đã bí mật thế chỗ anh ta, sử dụng tên của anh ta để gửi và nhận tài liệu từ Ecole Polytechnic khi đó mới mở, vì trường chỉ nhận sinh viên nam tới học. Joseph-Louis Lagrange, lúc đó là người hướng dẫn của Sophie, đã rất ngạc nhiên khi sinh viên này có thể tiến bộ rất nhiều từ một học sinh tệ hại trở thành người có bài tập giải hàng tuần (tất nhiên là được gửi qua đường bưu điện) là tốt nhất trong lớp. Lagrange yêu cầu được gặp "anh" sinh viên Le Blanc và ngạc nhiên khi biết rằng "Anh" ta hoá ra là một quý "Cô"! Sophie đã trở thành một trong những nhà lý thuyết số xuất chúng nhất trong thời đại của cô.

Hình 3. Sophie Germain (1776 – 1831) – Nhà toán học, vật lý học và Triết học gia người Pháp.

Chắc các bạn đọc đến đây đã yêu thích hơn chiếc bàn học ngăn nắp của mình được rọi chiếu bởi ánh sáng thoáng đãng rồi chứ?
Tham khảo dựa trên các nguồn internet:

- [1] https://math.nyu.edu/~crorres/ Archimedes/contents.html
- [2] https://en.wikipedia.org/w/index.php?title=Archimedes&oldid=1146936468

DẠY TOÁN, VIỆC ĐẦU TIÊN LÀ DẠY TOÁN!

THƯ HIỆN¹

Với những ai quan tâm kỳ thi Bài giảng và bài viết về Toán học mang tên Hoàng Tụy, không chỉ là xem các thí sinh thuyết trình bài giảng, mà hơn thế, được nghe các thầy giám khảo chia sẻ quan điểm về dạy toán.

Theo nhận định của nhiều người theo dối, điều lôi cuốn người xem nhất ở vòng chung khảo kỳ thi Bài giảng và bài viết về Toán học, mang tên Hoàng Tụy, là phần nhận xét của các thành viên hội đồng giám khảo. Nội dung các nhận xét này không chỉ đơn giản chỉ là những lời khen chê. Quan trọng hơn, đó là những chia sẻ về quan điểm dạy toán từ những giáo sư toán có sự am hiểu sâu sắc về toán phổ thông, thậm chí nhiều người trong đó đóng vai trò chủ chốt trong việc việc tham gia biên soạn chương trình phổ thông 2018 như GS Đỗ Đức Thái, GS Phùng Hồ Hải.

Dạy toán ứng dụng không dễ

Bài thuyết trình *Lý thuyết đồ thị và một số cấu trúc đáng chú ý* của tác giả Hà Trung (Trường THPT chuyên Lê Hồng Phong, Nam Định) nhận được sự quan tâm đặc biệt của hội đồng giám khảo. Đây là chuyên đề (không bắt buộc) sẽ được dạy cho học sinh lớp 11 của chương trình phổ thông 2018 (bắt đầu được triển khai từ năm học 2023 – 2024). Nhưng theo tác giả Hà Trung, lý do ông chọn chuyên đề này bởi nó có nhiều kiến thức thú vị, có nhiều ứng dụng trong cuộc

sống (ví dụ bản đồ mạng lưới bay của hàng không, mạng tương tác gene).

Theo GS Phùng Hồ Hải thì việc tác giả "gói" ba nội dung (sơ lược về lý thuyết đồ thị; đồ thị lưỡng phân; đồ thị cây, rừng) trong một chuyên đề là hơi ôm đồm. Hơn nữa, đối tượng mà người dạy là hướng đến học sinh giỏi toán, thì không cần thiết phải mất quá nhiều thời gian vòng vo về những ứng dụng mà nên đi thẳng sâu vào bản chất nội dung.

GS Ngô Việt Trung cho rằng, tác giả cần lựa chọn bài toán phù hợp với kiến thức đồ thị để giảng dạy. Không nên nhắc tới những vấn đề chỉ mang tính minh họa. Bài toán về chủ đề đồ thị thì mình phải áp dụng kiến thức đồ thị để giải quyết vấn đề. Chẳng hạn như nói về mạng thì kiến thức đồ thị đóng vai trò quan trọng. Ví dụ ChatGPT chắc chắn là phải dùng đồ thị để xác định những gì gắn với nhau.

Còn theo GS Đỗ Đức Thái, điều khiến cho đồ thị quan trọng hơn đối với toán học và đối với cuộc sống bây giờ là những thuật toán để từ đó giúp chúng ta tìm được câu trả lời. Chẳng hạn, người ta có thể mô tả ở chu

¹ Tòa soạn Hà Nội, Báo Thanh Niên.

trình O le thì có cái này, hoặc ở đồ thị lưỡng phân thì sẽ có cái thứ như thế này... Trong khi cái quan trọng phải là có thuật toán để tìm những cái đấy thế nào. Và thuật toán đó phải mô phỏng được, phải lập trình được để thành ra những cái chạy được trên máy tính. "Có lẽ đến một lúc nào đó chúng ta nên dạy học sinh những cái như thế. Còn cứ gieo vào đầu học sinh, nhất là học sinh giỏi toán, rằng dùng cái này suy ra những cái trừu tượng này..., thì mãi cũng sẽ chẳng đi đến đâu. Cho nên tôi nghĩ nên chọn những bài toán, vẫn là toán hoàn toàn, vẫn khó như thường, nhưng cho phép người ta lập trình được, gắn vào một thuật toán nào đó coding được nó", GS Thái gợi ý.

Dạy cho tử tế toán!

Với phần trình bày của tác giả Nguyễn Thế Minh (Trường Trung học Vinschool Imperia, Hải Phòng), chủ đề *Tích hợp tư duy công dân số trong bài giảng môn Toán*, GS Đỗ Đức Thái cho rằng, bài giảng phù hợp với xu hướng tích hợp mà Chương trình phổ thông 2018 muốn thúc đẩy. Thông qua kiến thức về toán, người dạy muốn mang đến cho người học những gợi mở ứng dụng trong lĩnh vực tin học, đó là ưu điểm của bài giảng.

GS. Đỗ Đức Thái, Đại học Sư phạm Hà Nội.

Tuy nhiên, cũng từ bài giảng này, GS Thái đã cảnh báo về nguy cơ dạy học xa rời cái cốt lõi, dạy toán, mà nhiều giáo viên có thể mắc phải vì say sưa với cái gọi là "tích hợp". Cái mà

những người biên soạn Chương trình phổ thông 2018 môn toán quan tâm là thầy cô giáo dạy toán cho học sinh, chứ không phải ra sức tô vẽ cho các bài dạy để bài học trông cho có vẻ hấp dẫn, nhưng lại không đọng lại được trong trí não người học kiến thức toán. "Dạy toán, việc đầu tiên là dạy toán! Dạy cho tử tế toán! Rồi muốn làm việc gì thì làm sau. Học sinh học môn toán thì trước hết các em phải được học toán", GS Thái khẳng định.

Phải tuân thủ những chuẩn mực

Với phần trình bày của tác giả Nguyễn Thụy Việt Anh (Trường Liên cấp Hội nhập Quốc tế Ischool, Quảng Trị), về *Hình có trực đối xứng*, GS Đỗ Đức Thái cảnh báo, người giáo viên luôn cần xác định một bài học cụ thể thuộc dạng nào trong lý thuyết dạy học. Trong trường sư phạm, giáo sinh được dạy cách xác định dạng bài điển hình trong lý thuyết dạy học. Bởi mỗi dạng bài điển hình sẽ có một nguyên tắc dạy học mà người dạy phải bám theo nguyên tắc đó, giống như đi đường thì phải đi bên phải.

"Dạy toán có những chuẩn mực về mặt sự phạm. Đây là bài học về dạy khái niệm mới, định nghĩa mới. Ở bài này, GV dạy một khái niệm rất khó với học sinh, đó là hình có trục đối xứng, hay nói cách khác, đối xứng trục mà lại không được phép định nghĩa phép đối xứng trục (vì lên đến lớp 10 học sinh mới được học kiến thức này ở chuyên đề). Nguyên tắc dạy bài học khái niệm mới, định nghĩa mới, bao gồm nhiều bước, trong đó bước cuối cùng là làm nổi bật lên được là chốt lại, neo lại trong đầu học sinh khái niệm mới đó là cái gì", GS Thái phát biểu.

Học toán để làm gì?

Ngay từ bài giảng đạt giải cao nhất (giải nhì, không có giải nhất) trong phần *Tìm hiểu về môn Toán trong "Chương trình giáo dục phổ thông mới" thông qua một chủ đề cụ thể*, các thí sinh và người theo dõi cuộc thi cũng được nhận những chia sẻ thấu đáo về quan

DIỄN ĐÀN DẠY VÀ HỌC TOÁN

điểm dạy toán của những người tham gia biên soạn chương trình môn toán. Đây là bài giảng Giải bài toán tập hợp bằng phương pháp "ô ăn quan", của nhóm tác giả Ngô Quốc Trung, Nguyễn Thị Hiền (Trường Liên cấp Hermann Gmeiner Vinh, Nghệ An). Phần đầu bài giảng, các tác giả dùng phương pháp ô ăn quan để giải các bài toán ở tiểu học (thường được gọi là bài toán giả thiết tạm). "Tôi thấy phần đó rất thú vị, rất sáng tạo. Nó cho học sinh thấy một cơ chế mà thoát ra khỏi bản chất giải phương trình. Tôi hoàn toàn cho điểm 10 ở phần đó", GS Thái nhận xét.

Nhưng với phần thứ hai, các tác giả dùng phương pháp này với nội dung tổ hợp ở lớp 10, thì các tác giả không thuyết phục được ban giám khảo. "Nói cho cùng, học toán là học cách nghĩ, cách suy luận, cách khám phá ra một cái gì đó. Từ nó dẫn người ta đến tư duy, đến những thuật toán chung, để khái quát nó lên, giải quyết những mô hình trong cuộc sống mà nó tương tự như thế. Việc dùng một phương pháp thiên về mô tả cho nội dung tổ hợp ở lớp 10 của các tác giả vừa khiến cho bài giảng cầu kỳ, vừa không phù hợp. Học sinh lớp 10, 15 - 16 tuổi rồi, không phải lúc nào cũng cầm nắm sở mó với mô tả được. Một lúc nào đó, anh phải chuyển từ cụ thể lên đến hình ảnh, rồi lên đến biểu tượng hoá chứ.", GS Thái chia sẻ.

Cuối tháng Ba vừa qua, trong trong khuôn khổ sự kiện "Toán học cho mọi người", vòng chung khảo kỳ thi Bài giảng và bài viết về Toán học, mang tên Hoàng Tụy, lần thứ hai, đã được diễn ra. Trước đó, hội đồng giám khảo đã tiến hành chấm các hồ sơ dự thi ở vòng sơ khảo, lựa chọn được 8 hồ sơ tốt nhất để tranh tài tại vòng chung khảo. Tại vòng chung khảo (diễn ra ở hội trường Hoàng Tụy, Viện Toán học Việt Nam), đại diện nhóm tác giả hoặc các tác giả đã thuyết trình các bài giảng và bài viết trước

hội đồng giám khảo, trước sự theo dối (trực tiếp và trực tuyến) của những người quan tâm tới kỳ thi. Theo hội đồng giám khảo, chất lượng hồ sơ dự thi năm nay cao hơn hẳn năm trước, vì thế mà phần trình bày của 8 thí sinh được lựa chọn thuyết trình trong vòng chung khảo ít nhiều đều tạo sự thú vị cho người theo dối.

Trọng tâm nội dung của kỳ thi lần thứ hai là Tìm hiểu về môn Toán trong "Chương trình giáo dục phổ thông mới" thông qua một chủ đề cụ thể. Bên cạnh đó là một số nội dung truyền thống như: Tìm hiểu về Toán sơ cấp, lịch sử Toán học và Toán học trong cuộc sống.

Hội đồng giám khảo năm nay gồm GS Ngô Việt Trung, Chủ tịch Hội Toán học Việt Nam, nguyên Viện trưởng Viện Toán học; GS Đỗ Đức Thái, Trường ĐH Sư phạm Hà Nội; GS Phùng Hồ Hải, Phó chủ tịch Hội Toán học Việt Nam, nguyên Viện trưởng Viện Toán học; GS Hà Huy Khoái, nguyên Viện trưởng Viện Toán học; TS Trần Nam Dũng, Phó hiệu trưởng Trường Phổ thông Năng khiếu, ĐH Quốc gia TP.HCM; PGS Phó Đức Tài, Trưởng Khoa Toán-Cơ-Tin học, Trường ĐH Khoa học Tự nhiên, ĐH Quốc gia Hà Nội.

Kết quả chung cuộc như sau:

Nội dung "Tìm hiểu về môn Toán trong "Chương trình giáo dục phổ thông mới" thông qua một chủ đề cụ thể":

- Giải nhì (không có giải nhất): Bài giảng "Giải bài toán tập hợp bằng phương pháp "ô ăn quan" của nhóm tác giả Ngô Quốc Trung, Nguyễn Thị Hiền, Trường Liên cấp Hermann Gmeiner Vinh, Nghệ An.
- Giải ba: Bài viết "Một cách thiết kế dạy học Toán theo hướng gắn liền với thực tiễn", tác giả Phạm Đức Quang, Trường ĐH Sư phạm Hà Nôi 2.

• Giải khuyến khích: Bài giảng "Hình có trục đối xứng", tác giả Nguyễn Thụy Việt Anh, Trường Liên cấp Hội nhập Quốc tế Ischool, Quảng Trị; Bài giảng "Tích hợp tư duy công dân số trong bài giảng môn Toán", tác giả Nguyễn Thế Minh, Trường Trung học Vinschool Imperia, Hải Phòng.

Các nội dung khác:

 Giải nhất: Bài giảng "Bổ đề hai đoạn thẳng và một số ứng dụng", tác giả Nguyễn Hữu Tầm, Trường THPT chuyên Lê Quý Đôn, Bình Định.

- Giải nhì: Bài giảng "Mập mờ công thức Euler", tác giả Nguyễn Quang Minh, Biên Hoà, Đồng Nai.
- Giải ba: Bài giảng "Lý thuyết đồ thị và một số cấu trúc đáng chú ý", tác giả Hà Trung, Trường THPT chuyên Lê Hồng Phong, Nam Định.
- Giải khuyến khích: Bài giảng "Nét đẹp của phương pháp đếm dưới góc nhìn của số Fibonacci", tác giả Nguyễn Tuấn Anh, Trường PTTH chuyên Nguyễn Quang Diêu, Đồng Tháp.