My LATEX slide Subheading

Veen Zhou

June 11, 2020

Introduction-Background. ...

Introduction •o

Here is my definition...

Definition (01)

DFN

Example

EG

Example.

Method (1)

What we do.

Theorem (D.)

For all n, we have $n^2 = n \cdot n$.

Proof. With massive loss of generality, let n = 1. Then we have

$$1 = 1^2 = 1 \cdot 1 = 1$$

Therefore by overwhelming hope, it must always be true.

My Disscussion ...

Most algebra you need to be true is true.

Corollary

For all
$$n, m \in \mathbb{N}$$
, $(n + m)^2 = n^2 + m^2$.

• Bleach is mostly water.

- Bleach is mostly water.
- We are mostly water.

- Bleach is mostly water.
- We are mostly water.
- Therefore, we are bleach.

Now we pause for the big reveal...

- Bleach is mostly water.
- We are mostly water.
- Therefore, we are bleach.

Now we pause for the big reveal...

- I am clearly a master of logic.
- Masters of logic get Ph.D's.
- I have earned this.

- •
- •
- •

Finally! Some Math!

Here is some Math: $\int_1^{\alpha} \frac{x^2}{\sin x^2} dx$ and $\sum i^2$.

But you could make this Math big inline with 'displaystyle': $\int_1^{\alpha} \frac{x^2}{\sin x^2} dx$ and $\sum i^2$.

And even more Math:

$$\oint \vec{\nabla} \times \vec{F} \, dV = \sum_{n=1}^{\infty} \overline{p} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Questions?

