Titanic Passanger Survival Data

```
In [2]: import pandas as pd
        import numpy as np
In [3]: train = pd.read csv("input/train.csv")
        test = pd.read csv("input/test.csv")
In [4]: train.isnull().sum()
       print("Train Shape:",train.shape)
        test.isnull().sum()
       print("Test Shape:", test.shape)
       Train Shape: (891, 12)
       Test Shape: (418, 11)
In [5]: train.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 891 entries, 0 to 890
       Data columns (total 12 columns):
       PassengerId 891 non-null int64
       Survived 891 non-null int64
       Pclass
                    891 non-null int64
       Name
                    891 non-null object
       Sex
                    891 non-null object
                    714 non-null float64
       Age
                    891 non-null int64
       SibSp
       Parch
                    891 non-null int64
                  891 non-null object
       Ticket
       Fare
                    891 non-null float64
       Cabin
                     204 non-null object
       Embarked 889 non-null object
       dtypes: float64(2), int64(5), object(5)
       memory usage: 83.6+ KB
In [6]: test.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 418 entries, 0 to 417
       Data columns (total 11 columns):
       PassengerId 418 non-null int64
       Pclass 418 non-null int64
Name 418 non-null object
Sex 418 non-null object
                    332 non-null float64
       Age
                    418 non-null int64
       SibSp
                    418 non-null int64
       Parch
       Ticket
                    418 non-null object
                    417 non-null float64
       Fare
                     91 non-null object
       Embarked 418 non-null object
       dtypes: float64(2), int64(4), object(5)
       memory usage: 36.0+ KB
```

Data Dictionary

- Survived: 0 = No, 1 = Yes
- pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd
- sibsp: # of siblings / spouses aboard the Titanic

- parch: # of parents / children aboard the Titanic
- ticket: Ticket number
- cabin: Cabin number
- embarked: Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Total rows and columns

We can see that there are 891 rows and 12 columns in our training dataset.

In [7]: train.head(10)

tr	rain.head(1	0)										
	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	C

		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
C	ount	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
n	nean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

test.describe() In [9]:

Out[9]:

Out[8]:

	PassengerId	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75 %	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

```
In [10]: train.isnull().sum()
```

Out[10]:

PassengerId 0 Survived 0 Pclass 0 Name 0 Sex 0 Age 177 0 SibSp Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

In [11]: test.isnull().sum() test["Survived"] = "" test.head()

Out[11]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S	

2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Data Visualization using Matplotlib and Seaborn packages.

```
In [12]: import matplotlib.pyplot as plt # Plot the graphes
%matplotlib inline
import seaborn as sns
sns.set() # setting seaborn default for plots
```

Bar Chart for Categorical Features

- Pclass
- Sex
- SibSp (# of siblings and spouse)
- Parch (# of parents and children)
- Embarked
- Cabin

```
In [13]: def bar chart(feature):
           survived = train[train['Survived']==1][feature].value counts()
            dead = train[train['Survived']==0][feature].value counts()
            df = pd.DataFrame([survived, dead])
            df.index = ['Survived', 'Dead']
             df.plot(kind='bar', stacked=True, figsize=(10,5))
In [14]: bar_chart('Sex')
        print("Survived :\n",train[train['Survived']==1]['Sex'].value counts())
        print("Dead:\n", train[train['Survived']==0]['Sex'].value counts())
        Survived:
         female 233
        male 109
        Name: Sex, dtype: int64
        Dead:
                  468
         male
        female
        Name: Sex, dtype: int64
```


The Chart confirms **Women more likely survivied than Men**.

```
bar chart('Pclass')
In [15]:
         print("Survived :\n",train[train['Survived']==1]['Pclass'].value counts())
         print("Dead:\n",train[train['Survived']==0]['Pclass'].value_counts())
         Survived:
          1
               136
         3
              119
               87
         Name: Pclass, dtype: int64
         Dead:
          3
               372
               97
               80
         Name: Pclass, dtype: int64
         500
         400
         300
         200
         100
           0
                                                                     Dead
```

The Chart confirms **1st class** more likely survivied than **other classes**. The Chart confirms **3rd class** more likely dead than **other classes**

```
In [16]: bar_chart('SibSp')
  print("Survived :\n",train[train['Survived']==1]['SibSp'].value_counts())
```

0 398 1 97 4 15 2 15 3 12

Name: SibSp, dtype: int64

The Chart confirms a **person aboarded with more than 2 siblings or spouse** more likely survived. The Chart confirms a **person aboarded without siblings or spouse** more likely dead

```
bar chart('Parch')
In [17]:
         print("Survived :\n", train[train['Survived']==1]['Parch'].value counts())
         print("Dead:\n",train[train['Survived']==0]['Parch'].value counts())
         Survived:
          0
               233
         1
               65
               40
         2
         3
               3
               1
        Name: Parch, dtype: int64
         Dead:
         0
               445
               53
         1
         2
               40
         5
               4
         4
                4
                2
         3
         6
                1
         Name: Parch, dtype: int64
```


The Chart confirms a **person aboarded with more than 2 parents or children more likely survived.**The Chart confirms a **person aboarded alone more likely dead**

```
bar chart('Embarked')
In [18]:
         print("Survived :\n", train[train['Survived']==1]['Embarked'].value counts())
         print("Dead:\n",train[train['Survived']==0]['Embarked'].value counts())
         Survived:
               217
          S
         С
               93
               30
         Name: Embarked, dtype: int64
         Dead:
          S
               427
               75
         С
         Q
               47
         Name: Embarked, dtype: int64
                                                                                       С
         500
                                                                                       Q
         400
         300
         200
         100
           0
                                                                      Dead
```

The Chart confirms a **person aboarded from C** slightly more likely survived.

The Chart confirms a **person aboarded from Q** more likely dead.

The Chart confirms a **person aboarded from S** more likely dead.

Feature engineering is the process of using domain knowledge of the data to create features (**feature vectors**) that make machine learning algorithms work.

feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis.

In [19]:	train.head()
----------	--------------

Out[19]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [21]: train.head(10)

[21]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	C
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William	male	35.0	0	0	373450	8.0500	NaN	S

```
Henry
                                            Moran,
          5
                               0
                                                     male NaN
                                                                    0
                                                                               330877
                                                                                        8.4583
                                                                                                             Q
                                                                                                NaN
                                         Mr. James
                                         McCarthy,
                      7
                               0
                                                                                                             S
          6
                                      1
                                                           54.0
                                                                    0
                                                                          0
                                                                                17463 51.8625
                                                                                                 E46
                                              Mr.
                                                     male
                                         Timothy J
                                           Palsson,
                                           Master.
                      8
                                                                                                             S
          7
                               0
                                      3
                                                            2.0
                                                                    3
                                                                          1
                                                                               349909 21.0750
                                                     male
                                                                                                NaN
                                             Gosta
                                           Leonard
                                          Johnson,
                                         Mrs. Oscar
          8
                      9
                                      3
                                                                                                             S
                                                   female 27.0
                                                                               347742 11.1333
                                                                                                NaN
                                         (Elisabeth
                                         Vilhelmina
                                             Berg)
                                           Nasser,
                                              Mrs.
          9
                     10
                                      2
                                                                                                             C
                               1
                                          Nicholas female 14.0
                                                                    1
                                                                               237736 30.0708
                                                                                                NaN
                                            (Adele
                                           Achem)
          train test data = [train, test] # combine dataset
In [22]:
          for dataset in train test data:
              dataset['Title'] = dataset['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
In [23]:
          train['Title'].value counts()
                        517
          Mr
Out[23]:
          Miss
                        182
                        125
          Mrs
          Master
                         40
          Dr
                          7
          Rev
                          6
                          2
          Mlle
                          2
          Col
         Major
                          2
          Lady
                          1
          Sir
                          1
                          1
          Mme
          Ms
                          1
          Don
                          1
                          1
          Countess
                          1
          Capt
          Jonkheer
                          1
          Name: Title, dtype: int64
In [24]: test['Title'].value_counts()
                     240
Out[24]:
          Miss
                      78
          Mrs
                      72
                      21
          Master
          Rev
                       2
          Col
                        2
```

Dr

Ms

1

Dona 1 Name: Title, dtype: int64

Title Map

Mr: 0 Miss: 1 Mrs: 2 Others: 3

In [26]: dataset.head()

Out[26]:		Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived	Titl
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q		
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S		
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q		
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S		
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S		

In [27]: test.head()

Out[27]:

•		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived	Titl
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q		
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S		
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q		
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S		
	4	896	3	Hirvonen, Mrs.	female	22.0	1	1	3101298	12.2875	NaN	S		

```
In [28]: bar_chart('Title')
```



```
In [29]: # delete unnecessary feature from dataset
    train.drop('Name', axis=1, inplace=True)
    test.drop('Name', axis=1, inplace=True)
```

In [30]: train.head()

Out[30]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
	0	1	0	3	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0
	1	2	1	1	female	38.0	1	0	PC 17599	71.2833	C85	С	2
	2	3	1	3	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
	3	4	1	1	female	35.0	1	0	113803	53.1000	C123	S	2
	4	5	0	3	male	35.0	0	0	373450	8.0500	NaN	S	0

```
In [32]: bar_chart('Sex')
```


In [33]: test.head()

out[33]:		PassengerId	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived	Title
	0	892	3	0	34.5	0	0	330911	7.8292	NaN	Q		0
	1	893	3	1	47.0	1	0	363272	7.0000	NaN	S		2
	2	894	2	0	62.0	0	0	240276	9.6875	NaN	Q		0
	3	895	3	0	27.0	0	0	315154	8.6625	NaN	S		0
	4	896	3	1	22.0	1	1	3101298	12.2875	NaN	S		2

In [34]: train["Age"].fillna(train.groupby("Title")["Age"].transform("median"), inplace= True)
 test["Age"].fillna(test.groupby('Title')['Age'].transform("median"), inplace= True)

In [35]: train.head(30)
#train.groupby("Title")["Age"].transform("median")

Out[35]:		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
	0	1	0	3	0	22.0	1	0	A/5 21171	7.2500	NaN	S	0
	1	2	1	1	1	38.0	1	0	PC 17599	71.2833	C85	С	2
	2	3	1	3	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
	3	4	1	1	1	35.0	1	0	113803	53.1000	C123	S	2
	4	5	0	3	0	35.0	0	0	373450	8.0500	NaN	S	0
	5	6	0	3	0	30.0	0	0	330877	8.4583	NaN	Q	0
	6	7	0	1	0	54.0	0	0	17463	51.8625	E46	S	0
	7	8	0	3	0	2.0	3	1	349909	21.0750	NaN	S	3
	8	9	1	3	1	27.0	0	2	347742	11.1333	NaN	S	2
	9	10	1	2	1	14.0	1	0	237736	30.0708	NaN	C	2
	10	11	1	3	1	4.0	1	1	PP 9549	16.7000	G6	S	1
	11	12	1	1	1	58.0	0	0	113783	26.5500	C103	S	1

12	13	0	3	0	20.0	0	0	A/5. 2151	8.0500	NaN	S	0
13	14	0	3	0	39.0	1	5	347082	31.2750	NaN	S	0
14	15	0	3	1	14.0	0	0	350406	7.8542	NaN	S	1
15	16	1	2	1	55.0	0	0	248706	16.0000	NaN	S	2
16	17	0	3	0	2.0	4	1	382652	29.1250	NaN	Q	3
17	18	1	2	0	30.0	0	0	244373	13.0000	NaN	S	0
18	19	0	3	1	31.0	1	0	345763	18.0000	NaN	S	2
19	20	1	3	1	35.0	0	0	2649	7.2250	NaN	С	2
20	21	0	2	0	35.0	0	0	239865	26.0000	NaN	S	0
21	22	1	2	0	34.0	0	0	248698	13.0000	D56	S	0
22	23	1	3	1	15.0	0	0	330923	8.0292	NaN	Q	1
23	24	1	1	0	28.0	0	0	113788	35.5000	A6	S	0
24	25	0	3	1	8.0	3	1	349909	21.0750	NaN	S	1
25	26	1	3	1	38.0	1	5	347077	31.3875	NaN	S	2
26	27	0	3	0	30.0	0	0	2631	7.2250	NaN	С	0
27	28	0	1	0	19.0	3	2	19950	263.0000	C23 C25 C27	S	0
28	29	1	3	1	21.0	0	0	330959	7.8792	NaN	Q	1
29	30	0	3	0	30.0	0	0	349216	7.8958	NaN	S	0

```
In [36]: facet = sns.FacetGrid(train, hue="Survived",aspect=4)
    facet.map(sns.kdeplot,'Age',shade= True)
    facet.set(xlim=(0, train['Age'].max()))
    facet.add_legend()
    plt.show()

facet = sns.FacetGrid(train, hue="Survived",aspect=4)
    facet.map(sns.kdeplot,'Age',shade= True)
    facet.set(xlim=(0, train['Age'].max()))
    facet.add_legend()
    plt.xlim(10,50)
```


Out[36]: (10, 50)

Those who were 20 to 30 years old were more dead and more survived.

```
In [37]: train.info()
test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId 891 non-null int64
             891 non-null int64
Survived
Pclass
             891 non-null int64
Sex
            891 non-null int64
             891 non-null float64
Age
SibSp
             891 non-null int64
            891 non-null int64
Parch
Ticket
            891 non-null object
             891 non-null float64
Fare
Cabin
             204 non-null object
Embarked
            889 non-null object
Title
             891 non-null int64
dtypes: float64(2), int64(7), object(3)
memory usage: 83.6+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):
PassengerId 418 non-null int64
Pclass
            418 non-null int64
             418 non-null int64
Sex
Age
             418 non-null float64
SibSp
             418 non-null int64
Parch
             418 non-null int64
Ticket
             418 non-null object
Fare
             417 non-null float64
Cabin
             91 non-null object
Embarked
            418 non-null object
Survived
             418 non-null object
Title
              418 non-null int64
dtypes: float64(2), int64(6), object(4)
memory usage: 39.3+ KB
```

Binning

Binning/Converting Numerical Age to Categorical Variable

feature vector map:

child: 0young: 1

• adult: 2

• senior: 4

mid-age: 3

In [38]: train.head()

Out[38]:		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
Out[38]:	0	1	0	3	0	22.0	1	0	A/5 21171	7.2500	NaN	S	0
	1	2	1	1	1	38.0	1	0	PC 17599	71.2833	C85	С	2
	2	3	1	3	1	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
	3	4	1	1	1	35.0	1	0	113803	53.1000	C123	S	2
	4	5	0	3	0	35.0	0	0	373450	8.0500	NaN	S	0

```
In [40]: train.head()
  bar_chart('Age')
```



```
In [41]: Pclass1 = train[train['Pclass'] == 1]['Embarked'].value_counts()
Pclass2 = train[train['Pclass'] == 2]['Embarked'].value_counts()
Pclass3 = train[train['Pclass'] == 3]['Embarked'].value_counts()
df = pd.DataFrame([Pclass1, Pclass2, Pclass3])
df.index = ['1st Class', '2nd Class', '3rd Class']
df.plot(kind = 'bar', stacked = True, figsize=(10,5))
plt.show()
print("Pclass1:\n", Pclass1)
print("Pclass2:\n", Pclass2)
print("Pclass3:\n", Pclass3)
```



```
Pclass1:
 S
      127
      85
       2
Name: Embarked, dtype: int64
Pclass2:
 S
      164
      17
С
       3
Name: Embarked, dtype: int64
Pclass3:
 S
      353
      72
Q
С
      66
Name: Embarked, dtype: int64
```

more than 50 % of 1st class are from S embark. more than 50 % of 2st class are from S embark. more than 50 % of 3st class are from S embark.

fill out missing embark with S embark

5

0

```
In [42]:
          for dataset in train test data:
               dataset['Embarked'] = dataset['Embarked'].fillna('S')
          train.head()
In [43]:
Out[43]:
             PassengerId
                         Survived Pclass Sex Age
                                                   SibSp Parch
                                                                          Ticket
                                                                                    Fare
                                                                                         Cabin Embarked Title
          0
                                0
                                       3
                                                                                                       S
                                                                                                             0
                      1
                                           0
                                               1.0
                                                              0
                                                                       A/5 21171
                                                                                  7.2500
                                                                                           NaN
                                                              0
                                                                        PC 17599
                                                                                 71.2833
                                                                                           C85
                                                                                                       C
                                                                                                             2
                                               3.0
                                                                       STON/O2.
          2
                                                                                                       S
                      3
                                       3
                                               1.0
                                                       0
                                                              0
                                                                                  7.9250
                                                                                           NaN
                                                                                                             1
                                                                        3101282
```

```
In [44]: embarked_mapping = {'S':0,'C':1,'Q':2}
for dataset in train_test_data:
```

0

0

113803

373450

53.1000

8.0500

C123

NaN

1

0

3

2.0

2.0

2

0

S

dataset['Embarked'] = dataset['Embarked'].map(embarked mapping)

```
In [45]: # train["Fare"].fillna(train.groupby("Pclass")["Fare"])
# train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace = Tr
# test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace = True
# train.head(50)

# fill missing Fare with median fare for each Pclass
train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace=True)
test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace=True)
train.head(50)
```

Out[45]:		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
	0	1	0	3	0	1.0	1	0	A/5 21171	7.2500	NaN	0	0
	1	2	1	1	1	3.0	1	0	PC 17599	71.2833	C85	1	2
	2	3	1	3	1	1.0	0	0	STON/O2. 3101282	7.9250	NaN	0	1
	3	4	1	1	1	2.0	1	0	113803	53.1000	C123	0	2
	4	5	0	3	0	2.0	0	0	373450	8.0500	NaN	0	0
	5	6	0	3	0	2.0	0	0	330877	8.4583	NaN	2	0
	6	7	0	1	0	3.0	0	0	17463	51.8625	E46	0	0
	7	8	0	3	0	0.0	3	1	349909	21.0750	NaN	0	3
	8	9	1	3	1	2.0	0	2	347742	11.1333	NaN	0	2
	9	10	1	2	1	0.0	1	0	237736	30.0708	NaN	1	2
	10	11	1	3	1	0.0	1	1	PP 9549	16.7000	G6	0	1
	11	12	1	1	1	3.0	0	0	113783	26.5500	C103	0	1
	12	13	0	3	0	1.0	0	0	A/5. 2151	8.0500	NaN	0	0
	13	14	0	3	0	3.0	1	5	347082	31.2750	NaN	0	0
	14	15	0	3	1	0.0	0	0	350406	7.8542	NaN	0	1
	15	16	1	2	1	3.0	0	0	248706	16.0000	NaN	0	2
	16	17	0	3	0	0.0	4	1	382652	29.1250	NaN	2	3
	17	18	1	2	0	2.0	0	0	244373	13.0000	NaN	0	0
	18	19	0	3	1	2.0	1	0	345763	18.0000	NaN	0	2
	19	20	1	3	1	2.0	0	0	2649	7.2250	NaN	1	2
	20	21	0	2	0	2.0	0	0	239865	26.0000	NaN	0	0
	21	22	1	2	0	2.0	0	0	248698	13.0000	D56	0	0
	22	23	1	3	1	0.0	0	0	330923	8.0292	NaN	2	1
	23	24	1	1	0	2.0	0	0	113788	35.5000	A6	0	0
	24	25	0	3	1	0.0	3	1	349909	21.0750	NaN	0	1
	25	26	1	3	1	3.0	1	5	347077	31.3875	NaN	0	2
	26	27	0	3	0	2.0	0	0	2631	7.2250	NaN	1	0
	27	28	0	1	0	1.0	3	2	19950	263.0000	C23 C25 C27	0	0

28	29	1	3	1	1.0	0	0	330959	7.8792	NaN	2	1
29	30	0	3	0	2.0	0	0	349216	7.8958	NaN	0	0
30	31	0	1	0	3.0	0	0	PC 17601	27.7208	NaN	1	3
31	32	1	1	1	2.0	1	0	PC 17569	146.5208	B78	1	2
32	33	1	3	1	1.0	0	0	335677	7.7500	NaN	2	1
33	34	0	2	0	4.0	0	0	C.A. 24579	10.5000	NaN	0	0
34	35	0	1	0	2.0	1	0	PC 17604	82.1708	NaN	1	0
35	36	0	1	0	3.0	1	0	113789	52.0000	NaN	0	0
36	37	1	3	0	2.0	0	0	2677	7.2292	NaN	1	0
37	38	0	3	0	1.0	0	0	A./5. 2152	8.0500	NaN	0	0
38	39	0	3	1	1.0	2	0	345764	18.0000	NaN	0	1
39	40	1	3	1	0.0	1	0	2651	11.2417	NaN	1	1
40	41	0	3	1	3.0	1	0	7546	9.4750	NaN	0	2
41	42	0	2	1	2.0	1	0	11668	21.0000	NaN	0	2
42	43	0	3	0	2.0	0	0	349253	7.8958	NaN	1	0
43	44	1	2	1	0.0	1	2	SC/Paris 2123	41.5792	NaN	1	1
44	45	1	3	1	1.0	0	0	330958	7.8792	NaN	2	1
45	46	0	3	0	2.0	0	0	S.C./A.4. 23567	8.0500	NaN	0	0
46	47	0	3	0	2.0	1	0	370371	15.5000	NaN	2	0
47	48	1	3	1	1.0	0	0	14311	7.7500	NaN	2	1
48	49	0	3	0	2.0	2	0	2662	21.6792	NaN	1	0
49	50	0	3	1	1.0	1	0	349237	17.8000	NaN	0	2

```
In [46]: facet = sns.FacetGrid(train, hue="Survived",aspect=4 )
  facet.map(sns.kdeplot, 'Fare', shade = True)
  facet.set(xlim = (0, train['Fare'].max()))
  facet.add_legend()
  plt.show()
```



```
In [47]: facet = sns.FacetGrid(train, hue="Survived", aspect=4)
    facet.map(sns.kdeplot,'Fare', shade= True)
    facet.set(xlim=(0, train['Fare'].max()))
    facet.add_legend()
    plt.xlim(0, 20)
```

Out[47]:


```
In [48]: for dataset in train_test_data:
    dataset.loc[dataset['Fare'] <= 17, 'Fare'] = 0,
    dataset.loc[(dataset['Fare'] > 17) & (dataset['Fare'] <= 30), 'Fare'] = 1,
    dataset.loc[(dataset['Fare'] > 30) & (dataset['Fare'] <= 100), 'Fare'] = 2,
    dataset.loc[dataset['Fare'] >= 100, 'Fare'] = 3
```

In [49]: train.head()

Out[49]:		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Title
	0	1	0	3	0	1.0	1	0	A/5 21171	0.0	NaN	0	0
	1	2	1	1	1	3.0	1	0	PC 17599	2.0	C85	1	2
	2	3	1	3	1	1.0	0	0	STON/O2. 3101282	0.0	NaN	0	1
	3	4	1	1	1	2.0	1	0	113803	2.0	C123	0	2
	4	5	0	3	0	2.0	0	0	373450	0.0	NaN	0	0

```
In [50]: train.Cabin.value_counts()
```

```
B96 B98
Out[50]:
          G6
                               4
          C23 C25 C27
          E101
                               3
          C22 C26
                               3
                               3
          D
          F2
                               3
          F33
                               3
          B57 B59 B63 B66
                               2
                               2
         E24
         B20
                               2
                               2
          B22
          D17
                               2
                               2
          C92
          E33
                               2
          E67
                               2
          C52
                               2
          F4
                               2
          В5
                               2
          B49
                               2
                               2
          C65
                               2
          D36
          C93
                               2
          C78
                               2
                               2
          E25
          B28
                               2
                               2
          D33
          D20
                               2
          D35
                               2
                               2
          B18
```

```
C62 C64
                      1
B102
                      1
E46
                      1
В69
                      1
E68
                      1
C50
                      1
C106
                      1
D28
                      1
E50
                      1
                      1
D46
B19
                      1
C47
                      1
A24
                      1
C70
                      1
E36
                      1
C86
                      1
                      1
A34
C111
                      1
A32
                      1
D15
                      1
B101
                      1
Α6
                      1
B41
В94
                      1
B50
                      1
E17
                      1
C104
                      1
D56
                      1
В78
                      1
C95
```

Name: Cabin, Length: 147, dtype: int64

```
In [51]: for dataset in train_test_data:
            dataset['Cabin'] = dataset['Cabin'].str[:1]
```

```
Pclass1 = train[train['Pclass']==1]['Cabin'].value counts()
In [52]:
         Pclass2 = train[train['Pclass']==2]['Cabin'].value counts()
         Pclass3 = train[train['Pclass']==3]['Cabin'].value counts()
         df = pd.DataFrame([Pclass1, Pclass2, Pclass3])
         df.index = ['1st class', '2nd class', '3rd class']
         df.plot(kind='bar', stacked=True, figsize=(10,5))
```

<matplotlib.axes._subplots.AxesSubplot at 0x2085f6b8748> Out[52]:


```
In [53]:
         for dataset in train test data:
              dataset['Cabin'] = dataset['Cabin'].map(cabin mapping)
         # fill missing Fare with median fare for each Pclass
In [54]:
          train["Cabin"].fillna(train.groupby("Pclass")["Cabin"].transform("median"), inplace=True
         test["Cabin"].fillna(test.groupby("Pclass")["Cabin"].transform("median"), inplace=True)
         family Size
         train["FamilySize"] = train["SibSp"] + train["Parch"] + 1
In [55]:
          test["FamilySize"] = test["SibSp"] + test["Parch"] + 1
         facet = sns.FacetGrid(train, hue="Survived",aspect=4)
In [56]:
          facet.map(sns.kdeplot, 'FamilySize', shade= True)
         facet.set(xlim=(0, train['FamilySize'].max()))
         facet.add legend()
         plt.xlim(0)
         (0, 11.0)
Out[56]:
         1.2
         1.0
         0.8
         0.6
         0.4
         0.2
         0.0
                                                     FamilySize
         family mapping = {1: 0, 2: 0.4, 3: 0.8, 4: 1.2, 5: 1.6, 6: 2, 7: 2.4, 8: 2.8, 9: 3.2, 10
In [57]:
         for dataset in train test data:
              dataset['FamilySize'] = dataset['FamilySize'].map(family mapping)
In [58]:
         train.head()
Out[58]:
            PassengerId Survived Pclass Sex Age
                                                SibSp
                                                     Parch
                                                               Ticket Fare
                                                                         Cabin Embarked
                                                                                          Title FamilySize
                                                                 A/5
         0
                     1
                             0
                                    3
                                        0
                                                          0
                                                                       0.0
                                                                             2.0
                                                                                        0
                                                                                             0
                                            1.0
                                                                                                      0.4
                                                               21171
                                        1
                                            3.0
                                                             PC 17599
                                                                             8.0
                                                                                             2
                                                                                                      0.4
                                                            STON/O2.
         2
                     3
                                    3
                                        1
                                            1.0
                                                   0
                                                                       0.0
                                                                             2.0
                                                                                        0
                                                                                             1
                                                                                                      0.0
                                                             3101282
         3
                                            2.0
                                                              113803
                                                                       2.0
                                                                             0.8
                                                                                                      0.4
                     5
                             0
         4
                                    3
                                        0
                                            2.0
                                                    0
                                                              373450
                                                                       0.0
                                                                             2.0
                                                                                        0
                                                                                             0
                                                                                                      0.0
         features drop = ['Ticket', 'SibSp', 'Parch']
In [59]:
         train = train.drop(features drop, axis = 1)
         test = test.drop(features_drop,axis=1)
          train = train.drop(['PassengerId'], axis=1)
         train data = train.drop('Survived', axis = 1)
In [60]:
         target = train['Survived']
          train data.shape, target.shape
         ((891, 8), (891,))
Out[60]:
```

cabin mapping = {"A": 0, "B": 0.4, "C": 0.8, "D": 1.2, "E": 1.6, "F": 2, "G": 2.4, "T":

```
Out[61]:
           Pclass Sex Age Fare Cabin Embarked Title FamilySize
         0
               3
                    0
                       1.0
                            0.0
                                  2.0
                                             0
                                                  0
                                                          0.4
         1
                            2.0
                                             1
                    1
                       3.0
                                  8.0
                                                          0.4
         2
                                             0
               3
                    1
                            0.0
                                  2.0
                                                  1
                                                          0.0
                       1.0
               1
                       2.0
                            2.0
                                  8.0
                                                          0.4
                    1
                                             0
                                                  0
                                                          0.0
               3
                    0
                       2.0
                            0.0
                                  2.0
                       2.0
                            0.0
                                  2.0
                                                          0.0
               1
                    0
                       3.0
                            2.0
                                  1.6
                                             0
                                                  0
                                                          0.0
                    0
                       0.0
                            1.0
                                  2.0
                                                          1.6
                                                  2
         8
               3
                       2.0
                            0.0
                                  2.0
                                             0
                                                          8.0
                    1
                    1
                       0.0
                            2.0
                                  1.8
                                                          0.4
In [62]: # Importing Classifier Modules
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.tree import DecisionTreeClassifier,ExtraTreeClassifier
         from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier,BaggingClassifi
         from sklearn.naive bayes import GaussianNB
         from sklearn.svm import SVC
         import numpy as np
In [63]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 9 columns):
         Survived 891 non-null int64
         Pclass
                      891 non-null int64
                      891 non-null int64
         Sex
                      891 non-null float64
         Age
                       891 non-null float64
         Fare
         Cabin
                      891 non-null float64
         Embarked
                      891 non-null int64
         Title
                       891 non-null int64
         FamilySize
                     891 non-null float64
         dtypes: float64(4), int64(5)
         memory usage: 62.7 KB
In [64]: from sklearn.model selection import KFold
         from sklearn.model selection import cross val score
         k fold = KFold(n splits=10, shuffle=True, random state=0)
         clf = KNeighborsClassifier(n neighbors = 13)
In [65]:
         scoring = 'accuracy'
         score = cross val score(clf, train data, target, cv=k fold, n jobs=1, scoring=scoring)
         print(score)
         [0.82222222 0.76404494 0.80898876 0.83146067 0.87640449 0.82022472
          0.85393258 0.79775281 0.84269663 0.84269663]
         \#learning\ rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]
In [66]:
         clf = [KNeighborsClassifier(n neighbors = 13), DecisionTreeClassifier(),
                RandomForestClassifier(n estimators=13), GaussianNB(), SVC(), ExtraTreeClassifier(),
               GradientBoostingClassifier(n estimators=10, learning rate=1, max features=3, max de
```

train data.head(10)

In [61]:

```
def model fit():
           scoring = 'accuracy'
            for i in range(len(clf)):
                score = cross val score(clf[i], train data, target, cv=k fold, n jobs=1, scoring
                print("Score of Model", i, ":", round(np.mean(score)*100,2))
             round(np.mean(score)*100,2)
             print("Score of :\n",score)
        model fit()
       Score of Model 0 : 82.6
        Score of Model 1: 79.8
       Score of Model 2 : 80.92
        Score of Model 3: 78.78
       Score of Model 4: 83.5
        Score of Model 5 : 80.02
        Score of Model 6: 81.25
       Score of Model 7: 81.03
       Score of Model 8: 80.7
In []: clf1 = SVC()
        clf1.fit(train data, target)
        test
        test data = test.drop(['Survived', 'PassengerId'], axis=1)
        prediction = clf1.predict(test data)
        # test data
In [ ]: | test_data['Survived'] = prediction
        submission = pd.DataFrame(test['PassengerId'], test data['Survived'])
        submission.to csv("Submission.csv")
In [ ]:
```