CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cs3102

Charlottesville has one barber. This barber cuts everyone's hair, except for those people who cut their own hair. Who cuts the barber's hair?

Russell's Paradox

- Sets can contain other sets
- Maybe a set can contain itself?

$$-S = \{T | T \notin T\}$$

• Is $S \in S$?

HW1

- Due Monday (2/4)
- Programming portion:
 - Write Java code for deciders
 - Use those deciders to produce the sets of strings they compute
- Written portion:
 - Proofs
 - Sets and functions (next time)

Interested in a BACS Major?

- Information session tonight
 - 5-6pm
 - Rice 130
- Application deadline:
 - Monday, February 18, 9:00am
- http://bit.ly/apply-bacs-s19

Set Operations

- $S \subset T$
 - S is a proper subset of T
 - Everything in S is also in T, and there's at least one thing in T missing from S
 - $|\{x|x \text{ is a real number such that } x^2 = 4\}| \subset \mathbb{Z}$
 - Ø ⊂ T for any set T except for Ø
 - $S \subset T \rightarrow |S| \leq |T| \text{ (why?)}$
 - \subset in Latex
- 2^{S}
 - Powerset of S
 - The set of all subsets of S
 - $2^{\{0,1\}} = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}\$
 - $|2^S| = 2^{|S|}$ when S is finite
 - Complicated when infinite

Set Operations Cont.

- S^c or \bar{S}
 - Complement of S
 - Everything in the "Universe" U that's not in S
 - For languages, the Universe is all strings over a given alphabet
 - What is $\{x | x \text{ is prime}\}^c$?
 - $|\bar{S}| = |U| |S|$
- $S \cup T$
 - S union T
 - Everything that's in S or T (inclusive)
 - $\{00,01\} \cup \{00,11\} = \{00,01,11\}$
 - $|S \cup T| \le |S| + |T|$
 - \cup in Latex

Set Operations Cont.

- $S \cap T$
 - S intersect T
 - Everything that's in both of S and T
 - $\{00,01\} \cap \{00,11\} = \{00\}$
 - $|S \cap T| = |S| + |T| |S \cup T|$
 - \cap in Latex
- S-T
 - S minus T
 - Everying in S that's not in T
 - $S T = S \cap \overline{T}$
- $S \times T$
 - − S cross product T
 - Ordered pairs of something from S with something from T
 - $\{a,b\} \times \{a,c\} = \{(a,a),(a,c),(b,a),(b,c)\}$
 - $|S \times T| = |S| \cdot |T|$
 - \times in Latex

Functions

- Denoted $f: S \to T$
 - $-s \in S, f(s) \in T$
 - -S is the domain of f
 - -T is the co-domain of f
 - Everything in S "maps to" exactly one thing in T
- Partial: Some things from S don't map to anything

Properties of Functions

- $f:D\to C$
- One-to-one (1-1), Injective:
 - Every element in the codomain is mapped to by at most one element in the domain
 - Nothing has 2 incoming arrows
 - $\forall x, y \in D, x \neq y \rightarrow f(x) \neq f(y)$
- Onto, Surjective:
 - Every element in the codomain is mapped to by at least one element in the domain
 - Everything in Codomain has at least 1 incoming arrow
 - $\quad \forall y \in C, \exists x \in D, f(x) = y$
- 1-1 Correspondence, Bijective:
 - Both injective and surjective
 - Every element in the codomain pairs with exactly one element in the domain
 - Everything in the domain has one outgoing arrow, everything in codomain has one incoming arrow

Functions and Set Cardinalities

- Consider sets S and T and function $f: S \to T$
- If f is 1-1, then $|S| \le |T|$
 - Everything in T has at most one incoming arrow, but some may have none
- If f is onto, then $|S| \ge |T|$
 - Everything in T has at lease one incoming arrow, but some may have multiple
- If f is bijective, then |S| = |T|
 - Everything in T has exactly one incoming arrow, and everything in S has exactly on outgoing arrow
 - -s and f(s) are "monogamously paired"

Pigeonhole Principle

- If |S| > |T| then $f: S \to T$ cannot be 1-1
 - S is a set of pigeons
 - T is a set of holes
 - There must be at least one hole shared by at

least two pigeons

Set Cardinalities

How can I show that two sets are the same size?

How Can I show that two sets are different sizes?

What if the sets are infinite?

Hilbert's Hotel

Conclusion: $|\mathbb{N}| = |\mathbb{Z}_+|$

There are an infinite number of rooms, each room is occupied.

A new guest arrives, is there space?

As a Bijection

$$f: \mathbb{N} \leftrightarrow \mathbb{Z}_+$$

$$f(x) = x + 1$$

Hilbert's Hotel

Conclusion: $|\mathbb{N}| = |\{x \in \mathbb{N} | x \text{ is even}\}|$

There are an infinite number of rooms, each room is occupied.

An infinite number of new guest arrive is there space?

• • •

As a Bijection

$$f: \mathbb{N} \leftrightarrow \{x \in \mathbb{N} | x \text{ is even}\}$$

$$f(x) = 2x$$

A Similar Bijection

$$f: \mathbb{Z} \leftrightarrow \mathbb{N}$$

Positive values (and 0) are people already in the rooms Negative values are the people who just arrived

$$f(x) = \begin{cases} 2x \text{ if } x \ge 0\\ 2|x| + 1 \text{ otherwise} \end{cases}$$

Hilbert's Hotel

There are an infinite number of rooms, each room is occupied.

An infinite number of infinitely-sized families arrive is there space?

Dovetailing

Hilbert's Hotel

Conclusion: $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$

There are an infinite number of rooms, each room is occupied.

An infinite number of infinitely-sized families arrive is there space?

Dovetailing

 \mathbb{N}

Countability

- As set is countable if:
 - It is finite
 - It has a bijection with the natural numbers
 - (countably infinite)
- Notation
 - $|\mathbb{N}| = \aleph_0$
 - Aleph-naught
- Is the set of all strings over alphabet $\{a,b\}$ countable?
 - What about other alphabets?

The set of all strings is countable

```
1 string
Length 0
Length 1
                                             4 strings
Length 2
                                                                 8 strings
         aaa^7 aab^8 aba^9 abb^{10} baa^{11} bab^{12} bba^{13} bbb
Length 3
         aaaa aaab aaba aabb abaa abab abba abbb ...
Length 4
                                                                32 strings
         aaaaa aaaab aaaba aaabb ...
Length 5
```

Important: A countable union of countable sets is countable 24

Some more countable things

- Any language ever!
- Number of possible Java Programs
- The empty set
- The number of words in the English language
- Number of possible novels