Problems 3

-

D het EER be a measurable set such that m(E) =0. Then 8how that E'is dense in R.

Sel:-

Hint: if I is an open interval in Pr, Then m [I] > 0.

Lef I be my open interval.

TO Show: EnI + 6.

Suppos $E^{C}_{1}I=\emptyset$ $\Rightarrow E_{2}I.$ $\Rightarrow m(E) > m(I) > 0$ $\Rightarrow m(E) > 0$ $\Rightarrow m(E) > 0$

i EnIfø.
i E's dense in R.

E Let $\varphi: \mathbb{R} \to \mathbb{R}$ be a simple funtion defined by $\varphi = \int_{k=1}^{\infty} a_k x_{A_k}$, where $A_k = \{x \in \mathbb{R} \mid \varphi(x) = a_k \}$

Proove that & is measurable if and only if Aks one messurable. 50: 1= : Assur pira medsurable funtson. To show: Each Az is measurable. Akar mesualle. -: A = { x = B | P(x) >, a } \ Sa = B | P(x) > a } 4: Assum all Ax sets one measurable. To show! & is a mediable fution, To Show! For each & GIR, $\left\{ \alpha \in |R| \mid \varphi(\alpha) > \alpha^2 \right\}$ is measure. {xER} pass >x} = UAk is meanable. P= I a XAL p(a) { a, a, . , a, s}

- (3) Consider the segment $f_0: \mathbb{R} \to \mathbb{R}$, $f_n = n \mathcal{K}_{[0, \frac{1}{n}]}$
 - (i) Does {fn} Conveye pointwise a.e. on R? (ii) Does {fn} Conneger emiformly a.e on R?
- Solin Given $f_n = n \times [0, \frac{1}{n}]$ $\forall n \geq 1$.
 - $f_n(n) = \begin{cases} n & \text{if } x \in [0, \frac{1}{n}] \\ 0 & \text{otherwise.} \end{cases}$
 - (i) Suppose $\alpha \in (1, \infty)$, $f_n(\alpha) = 0 + n > 1$ $f_n(\alpha) \to 0 \quad \text{as } n \to \infty$ $\forall \alpha \in (1, \infty).$

Suppose $2 \in (-\infty, 0)$, $f_n(x) = 0$, $\forall n \ge 1$.

Thus
$$f_n(x) \rightarrow 0$$
, as $n\rightarrow\infty$, $f \propto E(-\infty,0) \cup (1,\infty)$.

In fact, $f_n \rightarrow 0$ consistently

on $(-\infty,0) \cup (1,\infty)$.

At $x=1$: $f_n(1)=1$, $f_n(1)=0$ $\forall n>2$

i. $f_n(1)\rightarrow 0$ as $n\rightarrow\infty$

Thus $f_n(1)\rightarrow 0$ as $n\rightarrow\infty$

Thus $f_n(1)=1$, $f_n(1)=0$ $\forall n>2$

i. $f_n(1)\rightarrow 0$ as $n\rightarrow\infty$

At $x=0$: $f_n(0)=n$ $\forall n\geq 1$.

i. $\{f_n(0)\}$ is not Consequent

 $f_n(0)=n$ $\forall n\geq 1$.

i. $\{f_n(0)\}$ is not Consequent at $x=0$, as $x\rightarrow\infty$.

For $0:$

whome $n_o \in \mathbb{N}$ such that $\frac{1}{n_o} < \infty$. $\Rightarrow \quad \chi \notin \left[\begin{smallmatrix} o \\ -1 \end{smallmatrix} \right] \quad \left[\begin{smallmatrix} n_o \\ -1 \end{smallmatrix} \right$

i- fn(x)-00 as n-200 for 2 C (0,11). Thu fn -> o pointwise on R1803. =) In - o pointwise abnorf everywhere.

Let NEN, and Consider, (1) For $\pi \in \left(\frac{1}{N}, 1\right)$, χ for all n > N, $f_n(x) = 0$ (i (= = 1) i6 x e (1,1) yes a \$ [0,1]) This fra -so as n-so HRE (N-1). :. $f_n \rightarrow o$ uniforty on $(-\infty, o) ((1, \infty) ((1, 1))$

 $E^{c} = \left[\begin{array}{c} 6 \\ 1 \\ N \end{array} \right]$ $m\left(E^{c} \right) = \frac{1}{N}$

& fr-30 mifontyon E.

Thus we varified the Littlewood 2001 principle. (Egorov's thu).