Computación Bioinspirada

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe

- Es una población de agentes que alternan períodos de automejora (mediante búsqueda local) con periodos de cooperación y competición (mediante selección).
- Significado: Unidad de imitación, análoga a un gen pero en el contexto de la "evolución cultural"

• El Término fue introducido por Richard Dawkins en el libro "The Selfish Gene" ("El Gen Egoista") (University Press, 1976)

- Un algoritmo memético es una combinación es:
 - Una búsqueda global basada en poblaciones
 - Una heurística de búsqueda local (realizada por cada individuo)
- En la literatura, aparecen como sinónimos:
 - Algoritmos Genéticos Híbridos
 - Buscadores Locales Genéticos
 - Algoritmos Genéticos Lamarckianos
 - Algoritmos Genéticos Baldwinianos
 - Algoritmos Meméticos

Inicialización de la población

- Puede ser:
 - Aleatoria
 - Predeterminada
 - Aplicando alguna heurística

- Cada individuo realiza una búsqueda local
 - Analogía con Evolución Cultural
 Aprendizaje
- •Puede ser:
 - Hasta encontrar un óptimo local
 - Hasta lograr una mejora determinada
 - Equivalente a la mutación en un Algoritmo Genético
 - Diferencia: la exploración local es guiada

Inicializar Población Pop **ESQUEMA DE UN ALGORITMOS MEMÉTICOS** Optimizar Pop Evaluar Pop Mientras "no Criterio parada" hacer Seleccionar Padres de Pop Recombinar Padres Optimizar Pop Evaluar Pop

Devolver mejor sol. de Pop

- Para optimizar la población inicial podemos considerar el siguiente mecanismo:
 - Generar un número M de soluciones mayor a N (N tamaño de la población) de las M soluciones selecionamos N soluciones.
- Como algoritmo de búsqueda local podemos utilizar una variantes del método de búsqueda local hill-climbing (búsqueda por escalada) llamada Escala de primera opción con un número H de vecinos.

Búsqueda por escalada

 Es un algoritmo voraz, que no mantiene un árbol de búsqueda, sino sólo la representación del estado actual y el valor de su función objetivo

 No se mira más allá de los vecinos inmediatos del estado actual

• Escoge el vecino que tiene un mejor valor de la función objetivo .

Búsqueda por escalada

- Finaliza cuando alcanza un "extremo" (máximo o mínimo, depende del planteamiento)
- Obviamente no garantizan encontrar la solución óptima, la búsqueda se puede quedar atascada:
 - en un máximo o mínimo local
 - en una meseta, en una terraza
 - en una cresta
- Pero es capaz de encontrar soluciones rápidamente

Búsqueda por escalada

- Escalada estocástica: escoge aleatoriamente entre todos los sucesores con mejor valoración que el estado actual
- Escalada de primera opción: generan aleatoriamente sucesores, escogiendo el primero con mejor valoración que el estado actual
- Escalada con reinicio aleatorio: se repite varias veces la búsqueda, partiendo cada vez de un estado inicial distinto, generado aleatoriamente:
 - "si no te sale a la primera, inténtalo otra vez"
 - si la probabilidad de éxito de una búsqueda individual es p, entonces el número esperado de reinicios es 1/p.

Práctica 04 (0 a 20)

• Implementar un Algoritmo Memético para resolver el siguiente TSP:

	Α	В	C	D	Е	F	G	Н	_	J
Α	0	12	3	23	1	5	23	56	12	11
В	12	0	9	18	3	41	45	5	41	27
С	3	9	0	89	56	21	12	48	14	29
D	23	18	89	0	87	46	75	17	50	42
Е	1	3	56	87	0	55	22	86	14	33
F	5	41	21	46	55	0	21	76	54	81
G	23	45	12	75	22	21	0	11	57	48
Н	56	5	48	17	86	76	11	0	63	24
- 1	12	41	14	50	14	54	57	63	0	9
J	11	27	29	42	33	81	48	24	9	0

Práctica 04 (0 a 20)

- Utilizar codifición de permutación.
- Utilizar cruzamiento PBX.
- Utilizar como búsqueda local búsqueda por escalada de primera opción (Todos los agentes hijos la realizan – en vez de la mutación – mutaciones constantes).
- Optimizar la población inicial con M >= 3N.
- Mostrar los valores de aptitud, los padres e hijos generados (y después de usar búsqueda local) con H >= 5,
- Cualquier lenguaje de programación.

GRACIAS

Dr. Edward Hinojosa Cárdenas ehinojosa@unsa.edu.pe