David A. Parham

A dynamic and results-oriented Computer Vision Engineer with a Master's degree, leveraging 7.5 years of proven expertise in programming, advanced problem-solving, and a track record of exceeding employer expectations within the IT industry.

davidanthonyparham@yahoo.de

+4591973379

Copenhagen, Denmark

0

linkedin.com/in/david-anthony-parhamab74a213b

in

WORK EXPERIENCE

Visual Computing Engineer

Alexandra Institute

03/2023 - Present

Employment in the visual computing department.

Copenhagen, Denmark

Tasks

- Conceptualizing and implementing client tailored solutions
- Leveraging a fusion of classical computer vision techniques and advanced deep learning methodologies
- Proficiently navigating projects involving 2D and 3D data, encompassing both training and visualization aspects
- Ensuring seamless integration of cutting-edge-technologies into industry workflows and product development processes

Contact: Katrine Hommelhoff - katrine.hommelhoff@alexandra.dk

Master Thesis

Capra Robotics ApS

03/2022 - 10/2022

Aarhus, Denmark

Employment in the software development department.

Tasks

- Advancing autonomous outdoor navigation through innovative data-driven methodologies
- Leveraging cutting-edge technologies such as Lightweight OpenPose for precise pose estimation and ST-GCN for robust action classification
- Implementing and testing cutting-edge technologies for realtime analysis of video streams
- Augmenting the system with gaze estimation and proximity measurement algorithms

Contact: Mads Bendt - mkb@capra.ooo

EDUCATION

Msc. Eng. Autonomous Systems

Technical University of Denmark (DTU)

08/2020 - 10/2022

GPA (danish scaling system): 10

Relevant Courses

- Perception for Autonomous Systems
- Introduction to Artificial Intelligence
- Object Classification with Few-Shot Learning
- Deep Learning
- Deep Learning Approaches for Damage Limitation in Car-Human Collisions
- Optimization and Data Fitting

SOFT SKILLS

Adaptability

Detail oriented

Teamwork

Resilient

Communication

Fast learner

Problem Solving

SKILLS

Python	
DL libraries (PyTorch & TensorFlow)	\bullet \bullet \bullet \bullet
OpenCV	\bullet \bullet \bullet \bullet
Git	\bullet \bullet \bullet \circ \circ
Docker	\bullet \bullet \bullet \circ \circ
Linux	\bullet \bullet \bullet \circ
PostgreSQL	\bullet \bullet \bullet \circ \circ
Cloud (AWS, GCP, Azure)	\bullet \bullet \circ \circ
CI/CD	\bullet \bullet \circ \circ \circ

RELEVANT PROJECTS

University Project: Track different Objects on a conveyer belt (04/2021 - 05/2021)

- Course: Perception for autonomous systems.
- Objective: The first objective was to pre-process (calibrate and rectify) a data set. The second objective was to implement an occlusion-resistant 3D tracking system that would track objects on a conveyor belt. The last objective was to create a custom dataset and train a deep learning model that can classify 3 different objects.
- Aquired Skills: Pytorch, ray, 3D cloud processing, object pose estimation, establishing an image classification pipeline.

University Project: Implementation and Hyperparameter optimization of the Soft-Actor-Critic Algorithm (10/2020 - 01/2021)

- Course: Deep Learning.
- Objective: Implement the soft actor critical algorithm (reinforcement learning approach) from scratch and evaluate its performance through the OpenAl Gym environments Cartpole-Balance, Cartpole-Swing-Up and Walker.
- Aquired Skills: Pytorch, optuna, implementing a model from a research paper, use environments from the Open AI Gym suit, and how entropymaximising off-policy learning works.

LANGUAGES

German					
English					0
Spanish		0	0	0	0
Danish	•	•		0	0