

TUM. Al: Genistat Solar Challenge

Project: Solar Opposites

How do we maximize the utility of solar resources?

Team-x: Fritz, Paul, Tianyi, Margarita TUM School of Engineering Munich, 30. April 2023

Content

- Motivation
- Problem Set
- Solution
- Technical Implementation
- Business Model
- Further Improvement
- Prototype Presentation

1. Motivation

With global warming accelerating, energy crisis is at risk and needs to be addressed!

Iceberg (Source: National Geographic Society)

Solar Panel on the roof (Source: AE Solar)

2. Problem Set

How do we maximize the utility of solar resources?

✓ Evaluate and prioritize the suitability of houses for installing solar panels

Affecting Factors:

- Geographic Location
- Panel Efficiency
- Roof Size

Power Energy Map (Source: Github-tum.ai-solar)

3. Solution

User-friendly Interaction:

An interface that enables address input for power calculation

Map Visualization:

Reference for suggestions regarding solar infrastructure investment

4. Technical Implementation

The 'Solar Opposites' Project:

5. Business Model

6. Further Improvement

Azure hosting	Host the back-end in database	(1)
Germany-wide dataset	Extend from Bremen to germany for energy generation calculation	(1)
Al models implementation	i.e. Roof generation (Image segmentation: U-net, Res-Net etc)	(1)

Prototype Presentation