

HOME CONTESTS GYM PROBLEMSET GROUPS RATING API CANADA CUP 🛣 SECTIONS

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

A. Toy Cars

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Little Susie, thanks to her older brother, likes to play with cars. Today she decided to set up a tournament between them. The process of a tournament is described in the next paragraph.

There are n toy cars. Each pair collides. The result of a collision can be one of the following: no car turned over, one car turned over, both cars turned over. A car is good if it turned over in no collision. The results of the collisions are determined by an $n \times n$ matrix A: there is a number on the intersection of the i-th row and j-th column that describes the result of the collision of the i-th and the j-th car:

- - 1: if this pair of cars never collided. 1 occurs only on the main diagonal of the matrix.
- 0: if no car turned over during the collision.
- 1: if only the i-th car turned over during the collision.
- 2: if only the *j*-th car turned over during the collision.
- 3: if both cars turned over during the collision.

Susie wants to find all the good cars. She quickly determined which cars are good. Can you cope with the task?

Input

The first line contains integer n ($1 \le n \le 100$) — the number of cars.

Each of the next n lines contains n space-separated integers that determine matrix A.

It is guaranteed that on the main diagonal there are $\,$ - $\,$ 1, and $\,$ - $\,$ 1 doesn't appear anywhere else in the matrix.

It is guaranteed that the input is correct, that is, if $A_{ij}=1$, then $A_{ji}=2$, if $A_{ij}=3$, then $A_{ji}=3$, and if $A_{ij}=0$, then $A_{ji}=0$.

Output

Print the number of good cars and in the next line print their space-separated indices in the increasing order.

Examples

input
3
-100
0-11
-1 0 0 0 -1 1 0 2 -1
output
2
13

input	
4	
-1 3 3 3	
3 -1 3 3	
3 3 -1 3	
-1 3 3 3 3 -1 3 3 3 3 -1 3 3 3 3 -1	
output	
0	

Codeforces Round #303 (Div. 2)

Finished

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you - solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

×

×

→ Contest materials

- Announcement
- Tutorial

Codeforces (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Nov/30/2016 19:20:30^{UTC+8} (c4).

Desktop version, switch to mobile version.