PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS DISCRETAS

Teoría de Números

Una Pequeña Introducción

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	Enteros y Naturales	2
	1.1. Divisibilidad	3
2.	Combinatoria	5
	2.1. Definición	6

Capítulo 1

Enteros y Naturales

1.1. Divisibilidad

Definición Formal

Dados dos números cualquiera $a, b \in \mathbb{Z}$. Decimos que la proposición "b" divide a "a" b|a es verdad si y solo si $\exists q \in \mathbb{Z}, \ a = bq$.

Definición Alterna

Veamos que lo que de verdad nos estan preguntando si es que $\frac{a}{b} \in \mathbb{Z}$.

Ya que de ser así eso quiere decir que podemos escribir a a como a=bq. Y con esto logramos ver que $\frac{bq}{b}=q$ y habiamos dicho que $q\in\mathbb{Z}$.

Por lo tanto podemos resumir esto en que: "a divide a b si y solo si es que $\frac{a}{b}$ continua estando en los enteros"

$$b|a \iff \frac{a}{b} \in \mathbb{Z}$$

Ideas Imporantes

- Si b|a y $b \neq 0$ entonces q es único.
- Si $b|a \text{ y } a \neq 0 \text{ entonces } |b| \leq |a|$.

Demostración:

Supongamos entonces que b divide a a y que $a \neq 0$, por lo tanto la frase a = bq nos da mucha información, pues obliga a que b y q no sean ninguno 0, entonces tenemos que a = bq donde $b \neq 0$ y $q \neq 0$.

Luego ya que no son 0, tenemos que $|q| \ge 1$ y $|b| \ge 1$, ya que sabemos como funcionan los números enteros tenemos que sin importar cuanto valgan q y b se cumple que $|b||q| \ge |b|$ esto es lo mismo que $|bq| \ge |b|$ y sabemos que a = bq, por lo tanto tenemos que $|a| \ge |b|$.

Esto es lo mismo que $|b| \le |a|$

Propiedades de Divisilibidad

■ *b*|*b*

Demostración:

Basta con ver que si a = b entonces b = bq, por lo tanto q = 1. Y listo, $1 \in \mathbb{Z}$.

■ *b*|0

Demostración:

Basta con ver que si a=0 entonces 0=bq, por lo tanto q=0. Y listo, $0\in\mathbb{Z}$.

■ 1|a y también -1|a

Demostración:

Basta con ver que si $b=\pm 1$ entonces $a=\pm q$, por lo tanto $q=\pm a$. Y listo, $\pm a\in \mathbb{Z}$.

 \bullet 0|a si y solo a=0

Demostración:

Basta con ver que tenemos a = 0q, esto es lo mismo que a = 0.

• b|1 si y solo si b=1 ó b=-1

Demostración:

Sabemos que a=1=bq, esto nos obliga a que $b=\frac{1}{q}$, ahora tenemos que recordar que $b,q\in\mathbb{Z}$, por lo tanto q=1 o bien q=-1 que es lo mismo que decir que b=1 ó b=-1.

• $b|a \ y \ a|b \ \text{si} \ y \ \text{solo} \ \text{si} \ a = \pm b$

Demostración:

Sabemos que $a=bq_1$, y $b=aq_2$ por lo tanto podemos sustituir, $a=(aq_2)q_1$ por lo tanto $1=(q_1)(q_2)$, que es lo mismo que $\frac{1}{q_2}=q_1$ ahora que para q_1 siga en los \mathbb{Z} , $q_2=\pm 1$ por lo tanto $q_1=\pm \frac{1}{1}=\pm 1$ por lo tanto tenemos que $a=bq_1$ que es lo mismo que decir que $a=\pm b$.

Capítulo 2

Combinatoria

2.1. Definición

Una relación R entre dos conjuntos A y B es ante todo otro conjunto, una relación binaria es aquella que es en el fondo un conjunto de pares ordenados (x,y) donde x es un elemento de A, y así mismo y es un elemento de B.

Este nuevo conjunto R nos muestra como es que esta relacionados algunos (o todos) elementos de A con otros elementos de B.

Definiciones Formales

Una Relación $R: A \to B$ es un subconjunto de $A \times B$.

Solemos escribir la proposición $(x,y) \in R$ como xRy para que se vea más bonito.

Solemos escribir la proposición $(x, y) \notin R$ como $x \not R y$ para que se vea más bonito.