

Acompanhamento Pet-BCC

Matéria: Circuitos Digitais

Assuntos: Bases numéricas, conversão, operações e complemento de 2.

1) Bases numéricas

a) Decimais

No sistema decimal que estamos sempre utilizando, cada um dos dígitos, de 0 a 9, representa uma certa quantidade. Como se sabe, os símbolos utilizados não nos limita a representar dez quantidades diferentes, pois usamos vários dígitos posicionados adequadamente formando um número para indicar a magnitude (módulo) da quantidade.

Base 10	0	1	2	3	4	5	6	7	8	9

b) Binária

O sistema binário é outra forma de representar quantidades, sendo ele menos complicado que o sistema decimal, pois utiliza apenas dois símbolos.

Base 10	0	1	2	3	4	5	6	7	8	9
Base 2	0	1	10	11	100	101	110	111	1000	1001

c) Hexadecimal

Outra forma de representação é o sistema hexadecimal, que utiliza 16 símbolos para representação, no qual é utilizado principalmente como uma forma compacta de apresentar ou escrever números binários.

Base 10	Base 2	Base 16
0	00000	0
1	00001	1
2	00010	2
3	00011	3
4	00100	4
5	00101	5
6	00110	6
7	00111	7
8	01000	8
9	01001	9
10	01010	А
11	01011	В
12	01100	С
13	01101	D
14	01110	E
15	01111	F

d) Octal

Como o sistema hexadecimal, o sistema octal tenta proporcionar uma forma conveniente de expressar números binários.

Base 10	Base 2	Base 16	Base 8
0	00000	0	0
1	00001	1	1
2	00010	2	2
3	00011	3	3
4	00100	4	4
5	00101	5	5
6	00110	6	6
7	00111	7	7
8	01000	8	10
9	01001	9	11
10	01010	А	12
11	01011	В	13
12	01100	С	14
13	01101	D	15
14	01110	E	16
15	01111	F	17

2) Conversão

Podemos realizar uma conversão entre as bases de dois modos, pelo somatório de potências e pelo produtório de parcelas.

a) Somatório de Potências

Dado um valor (v) em uma base y , para convertemos ele para uma base x, teremos que representar o valor v na base y em um somatório de parcelas e depois realizar a conversão dos valores.

Exemplos:

• $(1030)_7 = (x)_4$

Para termos como referência, iremos utilizar a seguinte tabela:

Base 7	0	1	2	3	4	5	6	10
Base 4	0	1	2	3	10	11	12	13

Primeiramente iremos representar o valor 1030 em um somatório de parcelas na base 7:

$$(1030)_7 = (1 * 10 ³ + 3 * 10)_7$$

Após representarmos o valor em somatórias iremos converter os valores de acordo com a tabela que estamos utilizando como referência:

$$(1 * 10^3 + 3 * 10)_7 = (1 * 13^3 + 3 * 13)$$

Depois da conversão iremos realizar as operações, lembrando que as operações devem ser realizadas na base que queremos, nesse caso na base 4.

$$(1 * 13^3 + 3 * 13) = (1 * 11113 + 111) = (11113 + 111) = (11230)_4$$

• $(132)_4 = (x)_5$

Base 4	0	1	2	3	10	11	12	13
Base 5	0	1	2	3	4	10	11	12

$$(132)_4 = (1 * 10^2 + 3* 10 + 2)_4$$

$$(1 * 10^2 + 3* 10 + 2)_4 = (1 * 4^2 + 3*4 + 2)_5$$

$$(1 * 4^2 + 3*4 + 2)_5 = (1 * 31 + 22 + 2)_5$$

$$(1 * 31 + 22 + 2)_5 = (110)_5$$

• $(AB43)_{16} = (x)_2$

$$(AB43)_{16} = (A*10^3 + B*10^2 + 4*10 + 3)_{16}$$

$$(A*10^3 + B*10^2 + 4*10 + 3)_{16} = (1010*10000^3 + 1011*10000^2 + (100)*10000 + 11)_2$$

b) Produtório de parcelas

No produtório de parcelas, quando temos um valor (v) que está na base x e queremos passar o valor v para a base y, devemos ver qual o valor de y na base x, por exemplo 5 na base 2 é 101. Depois realizamos as operações de divisão utilizando a base x.

Exemplos:

• $(1030)_7 = (x)_4$

Para termos como referência, iremos utilizar a seguinte tabela:

Base 7	0	1	2	3	4	5	6	10
Base 4	0	1	2	3	10	11	12	13

Primeiramente vemos que 4 na base 7 é igual a 4, após sabermos o valor de 4 na base 7 iremos dividir 1030 por 4 na base 7 e assim sucessivamente até o quociente ter o valor 0:

Após a realização das operações, iremos pegar os valores dos restos no sentido da última operação até a primeira, assim temos:

• $(132)_4 = (x)_5$

3) Operações

Nas operações de adição, multiplicação e divisão temos a necessidade de entender como realizar a contagem em uma base x, pois utilizando a contagem e como o auxílio da tabela da base x, podendo ser comparada com a de decimal caso necessário.

Pensando nas operações decimais, pode-se concluir que quando uma casa está faltando 1 unidade para "estourar", quando realizar a soma de uma unidade a essa casa temo o "vai um" (carry) para a próxima casa.

Como por exemplo, quando estamos na base 3, se você somar 2 + 1, temos um "vai um", tendo como resultado 10, no caso da base 4, se você somar 3 + 1, temos um "vai um", tendo como resultado 10, e assim por diante.

A seguir veremos exemplos desta contagem para as operações de adição, multiplicação e divisão na base binária.

a) Adição (11 + 01)

b) Multiplicação (101 x 111)

c) Divisão(110 / 11)

4) Complemento de 2

Em alguns casos temos a necessidade de representar um número decimal com um sinal em uma base binária, dessa forma temos que o dígito mais significativo (o mais à esquerda) acaba representando o sinal do número, sendo 0 para valores positivos e 1 para valores negativos.

Quando temos um valor x na base binária positivo e desejamos ver o seu valor só que negativo necessitamos realizar o complemento de 2, que basicamente você irá trocar o dígito 1 pelo 0 e o dígito 0 pelo 1, e no fim somar 1.

Exemplos:

Realizar a negação do valor 5 em binário

Temos que sete em binário é 0101, primeiro iremos trocar os dígitos resultando em 1010, depois iremos somar 1, resultando em 1011. Assim, temos que -5 em binário pode ser representado como 1011.

• Realizar a negação do valor -5 em binário

Como vimos anteriormente -5 em binário é igual a 1011, porém quando realizarmos a negação do valor -5 teremos que obter o valor 5, assim primeiramente iremos inverter os dígitos resultando em 0100 e depois somar 1, resultando em 0101.

Seguindo esse raciocínio, podemos agora realizar operações de subtração na base binária, para isso iremos negar o segundo valor (complemento de 2) e realizar uma soma binária, sempre utilizando a quantidade de bits que nos foi dada.

Exemplo:

Primeiramente iremos realizar o complemento de 2 no 0010, assim invertendo os seus dígitos temos 1101 e realizando uma soma com o valor 1 temos como resultado 1110. Após isso, iremos realizar a soma, 0100 + 1110 = 0010. Para esse caso o 5 bit que teria o valor 1 é desconsiderado da operação, pois estamos utilizando apenas 4 bits.

Neste caso iremos negar 0100, invertendo os sinais e somando 1 temos como resultado 1100. Depois dessa operação, iremos realizar a soma 1110 + 1100 = 1010. Para sabermos qual é o valor negado 1010, podemos fazer complemento de 2 que resultará em 0110, demonstrando que é o valor 6 negado.

Nesse caso quando negamos 1110, teremos 0010 que quando somado com 0100 resultará em 0110. Podemos ver assim, um caso simples em que apenas encontramos o valor positivo do segundo termo.

Existem alguns casos em que teremos falha de representação, que podem ser vistas quando o resultado das operações não fazem sentido, como por exemplo quando somarmos dois negativos e resultar em um positivo, ou quando somarmos dois positivos e resultar em um negativo. Isso acontece, pois não temos uma quantidade suficiente de bits para representar esse resultado, gerando uma falha.

Exercicios

- 1. Realize as seguintes conversões utilizado o método de somatório de potências e o de produtório de parcelas :
 - a. $(1024)_6 = (x)_4$
 - b. $(14756)8 = (x)_{16}$
 - c. $(101011)_2 = (x)_3$
 - d. (145786)9 = (x)8
 - e. $(210465)_7 = (x)_2$
 - f. (427B)₁₆=(x)₈
 - g. $(41173)8=(x)_2$
 - h. $(427B)_{16}=(x)_2$
- 2. Realize as seguintes operações na base correspondente (Não temos representação de sinal):
 - a. (21432 + 14321)₅
 - b. $(AC12 + B12)_{16}$
 - c. $(11101 + 1001)_2$
 - d. (AB45/A2)₁₆
 - e. (1101 * 101)2
 - f. (2131 * 23)4
 - g. (1754/65)8
 - h. (10011/11)₂
 - i. (42325/34)6
- 3. Realize as seguinte operações (Com representação de sinal): , caso ocorra uma falha de representação diga a causa:
 - a. (10011 0100)₂
 - b. (01 0110)₂
 - c. (10000 001)₂
 - d. (0111 0011)₂
 - e. (1010 0101)₂
 - f. (0100 0110)₂
 - g. (0110 1010)₂
 - h. (1101 011)₂