

Ferienkurs Experimentalphysik 3

Wintersemester 2014/2015 Thomas Maier, Alexander Wolf

Probeklausur

Aufgabe 1: Lichtleiter

Ein Lichtleiter mit dem Brechungsindex $n_G = 1,3$ sei hufeisenförmig gebogen (siehe Skizze). Wie muss das Verhältnis der beiden Krümmungsradien $\frac{g}{h}$ mindestens sein, damit alle senkrecht eingekoppelten Lichtstrahlen den Lichtleiter vollständig durchlaufen?

Aufgabe 2: Mikroskop

Ein Mikroskop besteht aus einem Objektiv mit einer Brennweite von $f_1 = 5$ mm und einem Okular mit einer Brennweite von $f_2 = 20$ mm. Die Bildweite des Objektivs soll $b_1 = 150$ mm, die des Okulars $b_2 = -260$ mm betragen. Der Durchmesser des Objektivs sei D = 2mm.

- a) Skizzieren Sie den Strahlengang des Mikroskops mit Bild und Zwischenbild.
- b) Wie groß ist der Abstand L zwischen Objektiv und Okular?
- c) Geben Sie die Vergrößerung der beiden Linsen und des gesamten Mikroskops an.

d) Wie groß sind die kleinsten Strukturen, die von diesen Mikroskop bei Verwendung von Licht der Wellenlänge $\lambda = 550$ nm noch aufgelöst werden können?

Aufgabe 3: Dünnschichtinterferenz

Sie bestrahlen eine dünne Schicht mit Brechungsindex $n_S = 1, 4$, die auf einer Glasplatte mit Brechungsindex $n_G = 1, 5$ aufgetragen ist, mit monochromatischem Licht. Das Licht der Wellenlänge $\lambda = 500$ nm fällt hierbei unter einem Winkel von $\alpha = 45^{\circ}$ auf die Oberfläche.

- a) Skizzieren Sie den Strahlengang, wenn das Licht an beiden Grenzflächen reflektiert wird.
- b) Für welche Schichtdicken d sehen Sie für das reflektierte Licht konstruktive Interferenz?

Aufgabe 4: Lasermessungen

Sie benutzen einen monochromatischen Laser der Wellenlänge $\lambda = 500$ nm um diverse Parameter verschiedener Messaufbauten zu bestimmen:

- a) Zunächst bestrahlen Sie die Kathode einer Photoelektrode aus unbekanntem Material, sodass Photoeffekt auftritt. Sie regeln die anliegende Spannung und erkennen, dass ab einer Gegenspannung von $U_B = 1,28$ V kein Strom mehr fließt. Welche Austrittsarbeit besitzt das Material?
- b) Als nächstes bestrahlen Sie einen Doppelspalt. Auf dem l=2 m entfernten Schirm erkennen Sie ein Interferenzmuster. Sie bestimmen den Abstand zwischen den zwei Interferenzminima erster Ordnung ($m=\pm 1$) zu $x_I=4$ cm und den Abstand zwischen den zwei Beugungsminima erster Ordnung zu $x_B=20$ cm. Wie groß sind Spaltbreite und Abstand der Spalte?
- c) Zuletzt bestrahlen Sie einen doppelbrechenden Kristall der Dicke d=1mm (optische Achse parallel zur Einfallsebene). Vor und hinter den Kristall schalten Sie zwei Polarisationsfilter (45° zur optischen Achse gedreht) in gleicher Ausrichtung. Um welchen Wert unterscheiden sich ordentlicher und außerordentlicher Brechungsindex, wenn Sie hinter dem Kristall keine Intensität messen können?

Aufgabe 5: Roter Riese

Unsere Sonne besitzt einen Radius von $6,96 \cdot 10^5$ km und eine Oberflächentemperatur von 5800 K.

- a) Wie groß wäre der Radius eines roten Riese mit einer Oberflächentemperatur von 1200 K, wenn Sie davon ausgehen, dass er die selbe Strahlungsleistung wie die Sonne besitzt?
- b) Wie lässt sich die Temperatur eines Sternes experimentell ermitteln?