Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет	ИТР	
Кафедра	ПИн	

ЛАБОРАТОРНАЯ РАБОТА №5

l lo	Цифровая обработка информации					
Тема	РАСПОЗНАВАНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ					
_						
	Руководитель					
	Белякова А.С.					
	(фамилия, инициалы)					
	(подпись) (дата)					
	Студент <u>ПИН - 121</u> (группа)					
	Ермилов М.В. (фамилия, инициалы)					
	(подпись) (дата)					

Лабораторная работа №5

Цель работы: изучить и освоить алгоритмы вычисления логических и геометрических признаков бинарных и полутоновых изображений. Выделение контура кровеносных сосудов.

Ход работы:

1. Исходный код Python:

```
import numpy as np
import cv2
import matplotlib.pyplot as plt
```

Функция для создания круглой маски

 $def\ create_circular_mask (image_shape):$

height, width = image_shape[:2]

center = (width // 2, height // 2)

radius = min(center[o], center[1]) - 10 # Радиус круга с небольшим отступом от краев

mask = np.zeros((height, width), dtype=np.uint8) cv2.circle(mask, center, radius, 255, -1) # Заполняем круг белым цветом return mask

Функция для применения маски к изображению def apply_mask(image, mask): return cv2.bitwise_and(image, image, mask=mask)

Функция для подсчета длины и количества толстых капилляров (предположим, что она определена) def count_thick_capillaries(image, min_perimeter):

Пример реализации функции

contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

thick_capillaries = [cnt for cnt in contours if cv2.arcLength(cnt, True) > min_perimeter]

capillary_length = sum(cv2.arcLength(cnt, True) for cnt in thick_capillaries)

capillary_count = len(thick_capillaries)

return capillary_length, capillary_count, thick_capillaries

Загрузка и предварительная обработка изображения (предположим, что изображение уже загружено) image = cv2.imread('IDRiD_10.jpg') image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Создаем круглую маску circular_mask = create_circular_mask(image_gray.shape)

Применяем маску к сегментированному изображению segmented_with_mask = apply_mask(segmented_by_histogram_image, circular_mask)

Подсчет длины и количества толстых капилляров на изображении с маской min_perimeter = 50 # Пример значения минимального периметра

					МИВУ 09.03.04 - 10.005			
Изм.	Лист	№ докум.	Подпись	Дата				
Разра	іб.	Ермилов М.В.			вычисление	Лит.	Лист	Листов
Прове	ep.	Белякова А.С.					2	3
Реценз.					ПРИЗНАКОВ	МИ ВлГУ ПИН-121		
Н. Контр.					ИЗОБРАЖЕНИЙ			
Утве	рд.							

capillary_length, capillary_count, thick_capillaries = count_thick_capillaries(segmented_with_mask, min_perimeter)

Создаем изображение для отображения выделенных капилляров с учетом маски image_with_capillaries_masked = image.copy() cv2.drawContours(image_with_capillaries_masked, thick_capillaries, -1, (0, 255, 0), 2)

Отображение результатов

plt.figure(figsize=(10, 8))

Изображение с выделенными капиллярами и маской plt.subplot(1, 2, 1) plt.imshow(cv2.cvtColor(image_with_capillaries_masked, cv2.COLOR_BGR2RGB)) plt.title('Толстые капилляры с маской')

Сегментированное изображение plt.subplot(1, 2, 2) plt.imshow(segmented_with_mask, cmap='gray') plt.title('Сегментация с маской') plt.axis('off')

plt.tight_layout()
plt.show()

plt.axis('off')

Вывод в консоль

print(f'Общая длина толстых капилляров: {capillary_length:.2f} пикселей') print(f'Количество толстых капилляров: {capillary_count}')

Общая длина толстых капилляров: 81045.94 пикселей Количество толстых капилляров: 242

Рисунок 1 – результат обработки фото

Вывод: в ходе лабораторной работы было изучены различные признаки объектов на изображении, используемые для распознавания кровеносных сосудов.

Изм.	Лист	№ докум.	Подпись	Дата