Lecture 6: Concentration via Optimal Transport

Tianpei Xie

Jan. 24th., 2023

Contents

1	Opt	imal Transport Basis	2
	1.1	Optimal Transport Problem and its Dual Problem	2
	1.2	Wasserstein Distance	2
	1.3	Dual Formulation of Wasserstein Distance	2
2	The	e Transportation Method	2
	2.1	Concentration via Transportation Cost Inequality	2
	2.2	Tensorization for Transportation Cost	3
	2.3	Bounded Difference Inequality via Transportation Methods	3
	2.4	Conditional Transportation Inequality	3
	2.5	Convex Distance Inequality via Conditional Transportation Cost	3
	2.6	Talagrand's Gaussian Transportation Inequality	3
	2.7	Transportation Cost Inequalities for Markov Chains	3

1 Optimal Transport Basis

- 1.1 Optimal Transport Problem and its Dual Problem
- 1.2 Wasserstein Distance
- 1.3 Dual Formulation of Wasserstein Distance
- 2 The Transportation Method
- 2.1 Concentration via Transportation Cost Inequality
 - Remark (Equivalence of Transportation Cost Inequality and Sub-Gaussian) [Boucheron et al., 2013] Let X be a real-valued integrable random variable. Let ϕ be a convex and continuously differentiable function on a (possibly unbounded) interval [0,b) and assume that $\phi(0) = \phi'(0) = 0$. Define, for every $x \geq 0$, the Legendre transform $\phi^*(x) = \sup_{\lambda \in (0,b)} (\lambda x \phi(\lambda))$, and let, for every $t \geq 0$, $\phi^{*-1}(t) = \inf\{x \geq 0 : \phi^*(x) > t\}$, i.e. the the generalized inverse of ϕ^* . Then the following two statements are equivalent:
 - 1. for every $\lambda \in (0, b)$,

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \phi(\lambda)$$

where $\psi_X(\lambda) := \log \mathbb{E}_Q\left[e^{\lambda X}\right]$ is the logarithm of moment generating function;

2. for any probability measure P absolutely continuous with respect to Q such that $\mathbb{KL}(P \parallel Q) < \infty$,

$$\mathbb{E}_{P}[X] - \mathbb{E}_{Q}[X] \le \phi^{*-1}(\mathbb{KL}(P \parallel Q)). \tag{1}$$

In particular, given $\nu > 0$, X follows a **sub-Gaussian distribution**, i.e.

$$\psi_{X-\mathbb{E}[X]}(\lambda) \le \frac{\nu\lambda^2}{2}$$

for every $\lambda > 0$ if and only if for any probability measure P absolutely continuous with respect to Q and such that $\mathbb{KL}(P \parallel Q) < \infty$,

$$\mathbb{E}_{P}[X] - \mathbb{E}_{Q}[X] \le \sqrt{2\nu \mathbb{KL}(P \parallel Q)}. \tag{2}$$

• Definition (d-Transportation Cost Inequality) [Wainwright, 2019] Let (\mathcal{X}, d) be a metric space with metric d, and $(\mathcal{X}, \mathcal{B})$ be a measurable space, where \mathcal{B} is the Borel σ -algebra induced by metric d, the probability measure \mathbb{P} is said to satisfy a d-transportation cost inequality with parameter $\nu > 0$ if

$$\mathbb{E}_{\mathbb{Q}}[X] - \mathbb{E}_{\mathbb{P}}[X] \le \sqrt{2\nu \mathbb{KL}(\mathbb{Q} \parallel \mathbb{P})}$$
(3)

for all probability measure $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{B} .

• Theorem 2.1 (Isoperimetric Inequality via Transportation Cost) [Wainwright, 2019] Consider a metric measure space $(\mathcal{X}, \mathcal{B}, \mathbb{P})$ with metric d, and suppose that \mathbb{P} satisfies the d-transportation cost inequality

$$\mathbb{E}_{\mathbb{Q}}\left[X\right] - \mathbb{E}_{\mathbb{P}}\left[X\right] \le \sqrt{2\nu\mathbb{KL}\left(\mathbb{Q} \parallel \mathbb{P}\right)}$$

for all probability measure $\mathbb{Q} \ll \mathbb{P}$ on \mathcal{B} . Then its **concentration function** satisfies the bound

$$\alpha_{\mathbb{P},(\mathcal{X},d)}(t) \le 2 \exp\left(-\frac{t^2}{2\nu}\right)$$
 (4)

Moreover, for any $Z \sim \mathbb{P}$ and any L-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$, we have the **concentration inequality**

$$\mathbb{P}\left\{ |f(Z) - \mathbb{E}\left[f(Z)\right]| \ge t \right\} \le 2 \exp\left(-\frac{t^2}{2\nu L^2}\right). \tag{5}$$

- 2.2 Tensorization for Transportation Cost
- 2.3 Bounded Difference Inequality via Transportation Methods
- 2.4 Conditional Transportation Inequality
- 2.5 Convex Distance Inequality via Conditional Transportation Cost
- 2.6 Talagrand's Gaussian Transportation Inequality
- 2.7 Transportation Cost Inequalities for Markov Chains

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.

Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press, 2019.