Inżynieria Uczenia Maszynowego - projekt (etap 2)

Tomasz Owienko

Anna Schäfer

10.01.2024

1 Temat projektu

Temat projektu przekazany przez Klienta:

Może bylibyśmy w stanie wygenerować playlistę, która spodoba się kilku wybranym osobom jednocześnie? Coraz więcej osób używa Pozytywki podczas różnego rodzaju imprez i taka funkcjonalność byłaby hitem!

2 Modele

Model bazowy

Model bazowy został zaimplementowany jako prosty algorytm losujący utwory z historii odtwarzania poszczególnych użytkowników biorących udział w tworzeniu playlisty. Jest to podejście referencyjne, które posłuży do porównania z modelem zaawansowanym.

Model zaawansowany

Rozwiązanie opiera się na generowaniu rekomendacji dla pojedynczych użytkowników za pomocą modelu LightFM, a następnie łączeniu ich w docelową playlistę. Do playlisty wybierane jest N utworów, które osiągnęły najwyższą średnią rangę w rekomendacjach poszczególnych użytkowników.

Selekcja/ocena istotności atrybutów

Proces selekcji atrybutów został opisany w dokumentacji etapu pierwszego projektu. Ostatecznie wykorzystano następujące zestawy danych i atrybuty:

• users.jsonl

Zdecydowano się na wykorzystanie jedynie informacji o id użytkownika

• sessions.jsonl

Nie odrzucono wstępnie żadnych atrybutów.

• tracks.jsonl

Odrzucono (na potrzeby modelowania) jedynie atrybut name - ponieważ pozostałe atrybuty nie są wykorzystywane w sposób bezpośredni, a jedynie służą do wygenerowania reprezentacji utworu w przestrzeni embeddingów, zdecydowano się nie odrzucać żadnego z nich.

Zamodelowano interakcje jako niejawne:

- action==like $\Rightarrow 1$
- action!=like $\Rightarrow 0$.

Ponadto, ustandaryzowano wszystkie atrybuty numeryczne utworów.

Analityczne kryterium sukcesu

Wyznaczanie rekomendacji dla pojedynczego użytkownika - pole pod krzywą ROC powyżej 0,6 przy szacowaniu oceny dla utworów ze zbioru testowego (kryterium bezpośrednio związane z modelem).

Wyznaczanie rekomendacji dla wielu (n) użytkowników - model zaawansowany lepszy niż model bazowy. Jakość wyników mierzona będzie jako stopień klasteryzacji reprezentacji utworów wchodzących w skład playlisty. Stopień klasteryzacji określony będzie jako średnia odległość reprezentacji utworów od środka klastra w przestrzeni embeddingów modelu LightFM - jest ona generowana podczas trenowania modelu. Rekomendacje lepszego modelu powinny cechować się lepszą klasteryzacją, zatem średnia odległość powinna być niższa. Stopień klasteryzacji można potraktować jako minimalizowaną zmienną celu.

Strojenie hiperparametrów

Model trenowanie modelu wymaga podania hiperparametrów:

- learning_rate
- item_alpha mnożnik współczynnika kary przy znajdowaniu embeddingów
- no_components rozmiar wektora reprezentującego utwór w przestrzeni embeddingów

Przetestowano około 550 kombinacji hiperparametrów dobieranych metodą losową z przedziałów:

- learning_rate $<< 10^{-5}, 10^{-0.7}>$
- item_alpha $<< 10^{-6}, 10^1 >$
- no_components \in < 50, 80 >.

Wyniki oceniono pod kątem wpływu na pole pod krzywą ROC i stosunek średniej odległości od środka klastra poleconych utworów w modelu bazowym do tej samej miary w modelu zaawansowanym. Przy ocenianiu klasteryzacji uśredniano wyniki z 400 wygenerowanych playlist długości 20 dla losowej liczby użytkowników z przedziału < 2,10 >. Przyjęto czas trenowania jako epochs=10. Zbiór danych podzielono na trenujący i testowy w stosunku 80/20 wybierając losowe interakcje między użytkownikami a utworami, ustalono ziarno losowe modelu na np.random.RandomState(12345678).

Rysunek 1: Wpływ hiperparametrów na jakość modelu

Zebrano też uśrednione wyniki z 20 najlepszych kombinacji hiperparametrów dla miary ROC AUC i relatywnej jakości klasteryzacji:

	mean	std
learning_rate	0.032449	0.026287
$item_alpha$	0.000542	0.000971
$no_components$	41.700000	20.110484
auc_test	0.934851	0.000019
$clustering_fm$	0.551869	0.169077
$clustering_base$	0.901284	0.213714
$percent_better$	12.154267	6.700171

Tabela 1: Średnie wartości hiperparametrów i miar jakości dla 20 najlepszych ROC AUC.

	mean	std
learning_rate	0.003744	0.002433
$item_alpha$	0.014971	0.030164
$no_components$	60.800000	12.812823
auc_test	0.896905	0.065242
$clustering_fm$	0.044391	0.019299
$clustering_base$	0.640589	0.191492
$percent_better$	30.769928	0.482600

Tabela 2: Średnie wartości hiperparametrów i miar jakości dla 20 najlepszych wartości relatywnej jakości klasteryzacji.

Widać, że (dla 10 epok) model nie wymaga bardzo precyzyjnego strojenia hiperparametrów i szybko osiąga granice swoich możliwości - ROC AUC na zbiorze treningowym ok. 0.94 i model zaawansowany lepszy od bazowego o ok. 31%. Bardzo wyraźny wpływ na wyniki osiągane przez model ma rozmiar wektora w przestrzeni embeddingów - na ogół większy wektor wiąże się z lepszymi wynikami, ale także z dłuższym trenowaniem modelu. Ponadto, większe wartości powodują nieco większą szansę na osiągnięcie słabszego wyniku - potencjalne przeuczenie. Optymalna wartość parametru learning_rate znajduje się w okolicach 0.03 - dla mniejszych wartości wyniki na ogół są nieco gorsze, a dla większych (zbliżających się do 0.1) model traci zdolność generalizacji - ROC AUC osiąga wartość bliską 0.5, czyli de facto zaczyna rekomendować losowe utwory. Wpływ hiperparametru item_alpha na wyniki modelu w rozpatrywanym przypadku jest pomijalny - nie widać wyraźnego trendu

W związku z powyższym, przyjęto następujące wartości hiperparametrów do wykorzystania:

- learning_rate=0.034
- item_alpha=1e-3
- no_components=60

3 Ocena modeli

Wytrenowano model z powyższym zestawem parametrów. Osiągnięte rezultaty:

	Wartość
auc_test	0.940865
precision_at_10_test	0.253360
recall_test	0.099282
$reciprocal_rank_test$	0.381226
$clustering_fm$	0.451450
clustering_base	0.644901
$percent_better$	29.996940

Osiągnięte wyniki są wystarczające do spełnienia analitycznego kryterium sukcesu - wartość ROC AUC znacznie przewyższa założone 0.6, a klasteryzacja rekomendacji w modelu zaawansowanym jest istotnie lepsza od klasteryzacji w modelu bazowym.

Eksperymenty

Zbadano wpływ rozmiaru plalylisty na stopień klasteryzacji wyników:

Rysunek 2: Średnia klasteryzacja rekomendacji w zależności od długości playlisty

Średnia odległość od środka klastra rośnie wraz z liczbą użytkowników, co jest zgodne z oczekiwaniami. Proporcje między stopniem klasteryzacji w modelu bazowym i zaawansowanym są zachowane.

4 Mikroserwis

Zaimplementowano mikroserwis udostępniający REST API pozwalające na generowanie rekomendacji za pomocą modeli. Mikroserwis zaimplementowany został za pomocą frameworku FastAPI i może być uruchomiony w kontenerze Dockera.

Uruchomienie

Do uruchomienia mikroserwisu wymagane jest zainstalowanie narzędzia Docker, SDK Javy, oraz zależności:

```
cd src
poetry shell
pip install lightfm==1.17 --no-use-pep517
poetry install
```

Trenowanie modelu

Przed uruchomieniem mikroserwisu należy wytrenować i zserializować modele. W tym celu należy umieścić dane w katalogu data/v4, a następnie wywołać polecenia:

```
cd src
python3 create_models.py
```

Modele zostaną zserializowane przez bibliotekę pickle i zapisane w katalogu serialized.

Uruchomienie serwisu

```
docker build -t ium . docker run -p 8081:8081 -v {PWD}:/predictions ium
```

Generowanie rekomendacji

Mikroserwis obsługuje zapytania HTTP typu POST zawierające w sobie listę identyfikatorów użytkowników, dla których wygenerowana ma zostać playlista. Odpowiedzią na zapytanie jest lista utworów, w której każdy element zwiera identyfikator utworu, jego nazwę, oraz nazwę wykonawcy. Szczegółowe informacje na temat schematu zapytań, odpowiedzi, etc. dostępne są po uruchomieniu mikroserwisu pod adresem localhost:8081/doc.

Na potrzeby umożliwienia realizacji eksperymentu A/B przyjęto założenie, że w każdym zapytaniu można wyróżnić użytkownika, który uruchamia proces generowania playlisty - może to być na przykład użytkownik obecnie zalogowany w aplikacji. Wybór modelu w eksperymencie A/B odywa się na podstawie wartości modulo 2 hasha identyfikatora użytkownika uruchamiającego generowanie playlisty.

Dostępne endpointy:

- POST /predict generuje rekomendacje z bazowego lub zaawansowanego modelu na rzecz testu A/B.
- POST /predict/base predykcja za pomocą modelu bazowego
- POST /predict/advanced predykcja za pomocą modelu zaawansowanego

Wszystkie rekomendacje wraz z dostarczonym wejściem i metadanymi będą zapisywane w wolumenie Dockera pod /predictions/predictions.jsonl.

Działanie

curl -X 'POST' \

Przykład uruchomienia modelu poza mikroserwisem dostępny jest w notatniku example.ipynb. Generowanie predykcji (przebiega tak samo dla każdego z endpointów):

```
'http://localhost:8081/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "user_id": 123,
  "other_users": [
    124, 125, 126, 127, 128
  ],
  "playlist_length": 20
   odpowiedź mikroserwisu:
Г
  {
    "id": "2iUmqdfGZcHIhS3b9E9EWq",
    "name": "Everybody Talks",
    "artist": "Neon Trees"
  },
  {
    "id": "5FPnjikbwlDMULCCCa6ZCJ",
    "name": "Daughters",
    "artist": "John Mayer"
  }.
    "id": "3bXhtg6H8l0MWaLZttQF6F",
    "name": "Sunday Morning - Acoustic",
    "artist": "Maroon 5"
 },
  {
    "id": "OHRshWRNAwQBROvxXqG3i9",
    "name": "Skinny Love",
    "artist": "Birdy"
 },
<...>
]
   wpis w logu aplikacji (kolejno: eksperyment A/B, model zaawansowany, model bazowy):
DEBUG:
          | 2024-01-19 21:46:22 | Model base/[ADVANCED] 20 songs
INFO:
          172.17.0.1:60866 - "POST /predict HTTP/1.1" 200 OK
          | 2024-01-19 21:47:03 | Model ADVANCED
DEBUG:
                                                           20 songs
```

INFO: 172.17.0.1:41046 - "POST /predict/advanced HTTP/1.1" 200 OK

DEBUG: | 2024-01-19 21:48:47 | Model BASE 20 songs

INFO: 172.17.0.1:52470 - "POST /predict/base HTTP/1.1" 200 OK

wygenerowany wpis w historii (predictions.jsonl):

```
{"user_id": 123, "other_users": [124, 125, 126, 127, 128], "playlist":
["2iUmqdfGZcHIhS3b9E9EWq", "5FPnjikbwlDMULCCCa6ZCJ", "3bXhtg6H8l0MWaLZttQF6F",
"0HRshWRNAwQBR0vxXqG3i9", "3UH4JIDuP83866Y43bbo4k", "5rwdhliMmoOaAQO8vUOAOZ",
"77Y57qRJBvkGCUw9qs0qMg", "2Xs64pHlU29DTVMjWKyblt", "7MRn6wgGOReDRNYV5wJeGX",
"1Kvbih7Ebm4bkPinpSottk", "6C88rHxXBlpcgtBY3HAF0E", "13HVjjWUZFaWilh2QUJKsP",
"0RZyUsKfiC7MtiGKatCtGc", "5pbajJXEPdcoXQPXoAVR1t", "4gs07VlJST4bdxGbBsXVue",
"3PSMcb1gU5A8DveqU2K4z2", "5WSdMcWTKRdN1QYVJHJWxz", "0tuyEYTaqLxE41yGHSsXjy",
"2WwzQJt4hG7YC6x16ZTYFM", "562oeuAN5GH85iE7FQVKSB"], "timestamp":
"2024-01-20 00:17:41.901890", "elapsed_time": 0.15295624732971191,
"model": "advanced", "is_ab": true}
```