Lecture 2: Data Frame, Matrix, List

Abhijit Dasgupta September 19, 2016

Preamble

Practice makes perfect

- Start using RSeek
- Other resources on website http://www.araastat.com/BIOF339_PracticalR
- · Beg, Borrow, Steal code that you need
 - R is open-source, so is meant to be shared

R coding conventions

```
# This is a comment, which doesn't get evaluated
1:3 # This is also a comment
## [1] 1 2 3
# Multi-line code
x < -c(1, 2,
      3, 4, 5, 6,
X
```

[1] 1 2 3 4 5 6 7

Google has a style guide for how to write R code

R packages

R packages live on CRAN and its mirrors. To install an R package:

```
install.packages('dplyr', repos='http://cran.r-project.org')
```

or

knitr::include_graphics('lecture2_img/install_package.png')

R Packages

To use a package, or rather, use the functions from the package, you have to load it into R

library(dplyr)

We'll talk about packages later in the semester.

We will concentrate now on what is known as **Base R**, that is, the functions that are available when R is installed

Loading data

We will usually load CSV files, since they are the easiest for R. The typical suggestion if you have Excel data is to save the sheet as a CSV and then import it into R.

You can also load Excel files directly using either the readxl or rio packages

The structure of data sets

Tables

- Data is typically in a rectangular format
 - spreadsheet, database table
 - CSV (comma-separated values) or TSV (tab-separated values) files
- Characteristic
 - Rows are observations
 - Columns are variables
 - Each column has the same number of observations

Tidy data is a particularly amenable format for data analysis.

Lower back pain symptoms dataset on Kaggle.com

Breast Cancer Proteome dataset on Kaggle.com

•		m + 5	₹			Data:	set_spine					Q~ Sear	ch Sheet		1
m	e Insert	Page Layout	Formulas Data	Review	View									<u> </u>	¥
	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	
el	vic incidence	Pelvic tilt	Lumbar lordosis angle	Sacral slope	Pelvic radius	Degree spondylolisthesis	Pelvic slope	Direct tilt	Thoracic slope	Cervical tilt	Sacrum angle	Scoliosis slope	Class attribute		
	63.0278175	22.55258597	39.60911701	40.4752315	98.6729168	-0.254399986	0.74450346	12.5661	14.5386	15.30468	-28.658501	43.5123	Abnormal		
	39.05695098	10.06099147	25.01537822	28.9959595	114.405425	4.564258645	0.41518568	12.8874	17.5323	16.78486	-25.530607	16.1102	Abnormal		
	68.83202098	22.21848205	50.09219357	46.6135389	105.985136	-3.530317314	0.47488916	26.8343	17.4861	16.65897	-29.031888	19.2221	Abnormal		
	69.29700807	24.65287791	44.31123813	44.6441302	101.868495	11.21152344	0.36934526	23.5603	12.7074	11.42447	-30.470246	18.8329	Abnormal		
	49.71285934	9.652074879	28.317406	40.0607845	108.168725	7.918500615	0.54336047	35.494	15.9546	8.87237	-16.378376	24.9171	Abnormal		
	40.25019968	13.92190658	25.1249496	26.3282931	130.327871	2.230651729	0.78999286	29.323	12.0036	10.40462	-1.512209	9.6548	Abnormal		
	53.43292815	15.86433612	37.16593387	37.568592	120.567523	5.988550702	0.19891957	13.8514	10.7146	11.37832	-20.510434	25.9477	Abnormal		
	45.36675362	10.75561143	29.03834896	34.6111422	117.270068	-10.67587083	0.13197256	28.8165	7.7676	7.60961	-25.111459	26.3543	Abnormal		
	43.79019026	13.5337531	42.69081398	30.2564372	125.002893	13.28901817	0.19040763	22.7085	11.4234	10.59188	-20.020075	40.0276	Abnormal		
	36.68635286	5.010884121	41.9487509	31.6754687	84.2414152	0.664437117	0.36770014	26.2011	8.738	14.91416	-1.702097	21.432	Abnormal		
	49.70660953	13.04097405	31.33450009	36.6656355	108.648265	-7.825985755	0.6880095	31.3502	16.5097	15.17645	-0.502127	18.3437	Abnormal		
	31.23238734	17.71581923	15.5	13.5165681	120.055399	0.499751446	0.60834276	21.4356	9.2589	14.76412	-21.724559	36.4449	Abnormal		
	48.91555137	19.96455616	40.26379358	28.9509952	119.321358	8.028894629	0.13947817	32.7916	7.2049	8.61882	-1.215542	27.3713	Abnormal		
	53.5721702	20.46082824	33.1	33.111342	110.966698	7.044802938	0.08193099	15.058	12.8127	12.00109	-1.734117		Abnormal		
	57.30022656	24.1888846	46.99999999	33.111342	116.806587	5.766946943	0.41672151	16.5158	18.6222	8.51898	-33.441303	13.2498	Abnormal		
_		12.53799164	36.098763	31.7809151	124.115836	5.415825143	0.66404088	9.5021	19.1756	7.25707	-32.893911		Abnormal		
	63.83498162		54.55243367	43.4724746		-0.622526643	0.56067537	10.769	16.8116	11.41344	2.676002		Abnormal		
_	31.27601184	3.14466948	32.56299592	28.1313424	129.011418	3.623020073	0.53448124	31.1641	18.6089	8,4402	4.482424		Abnormal		
		13.44474904	31		123.159251	1.429185758	0.30658054		17.9575	14.75417	-14.252676		Abnormal		
-	41.72996308	12.25407408	30.12258646	29.475889	116.585706	-1.244402488	0.46852593		12.4637	14.1961	-20.392538		Abnormal		
-		14.17795853	37.8325467	29.7448813	134.461016		0.28044621		16.8965	10.32658	-4.986668		Abnormal		
_		21.06233245	42.19999999	33.8571101	125.212716	2.432561437	0.17524457		14.2195	14.14196	3.780394		Abnormal		
		24.41380271	53.99999999	38.6598083	106.42433		0.66638801		17.6891	7.63771	-14.183602		Abnormal		
		13.06959759	30.29832059		117.98083		0.56745008		9.1019	7.70987	-19.37903		Abnormal		
	36.12568347	22.75875277	29		115.577116	-3.237562489	0.12647371		15.7438	11.5561	-18.108941		Abnormal		
		26.65048856	35.32974693			1.571204816			13.57	16.12951	-17.630363		Abnormal		
		10.75945357	33.32974093		125.203296	-10.09310817	0.39197114	9.871	8.6406	15.78046	-19.650163		Abnormal		
	43.58096394	16.5088837	46.99999999		109.271634	8.992815727	0.59417569		17.97	10.79356	-25.180777		Abnormal		
		21.93114655	26.78591597	22.619865	111.07292		0.52789144		10.2244	11.71324	-23.160777		Abnormal		
	66.87921138		49.27859673		113.477018	-2.005891748	0.52789144		8.2495	7.58784	-3.963385		Abnormal		
		15.40221253	42.52893886		112.192804	10.86956554	0.67898709	7.1103	7.2481	9.94785	-17.379206		Abnormal		
-															
_		11.07904664 17.44383762	32.13655345 27.78057555	35.3112134 27.492837	98.7745463 117.980325	6.386831648 5.569619587	0.06487251 0.81674803	14.2826 27.5218	7.4515 13.8357	7.30184 13.54721	-24.360827 -2.925586		Abnormal Abnormal		
		12.98644139	39.99999999		124.914118	2.703008052	0.81594148		7.5284	9.28229	-2.817753		Abnormal		
	59.59554032		46.56025198		119.330354	1.474285836	0.47708798	8.6051	8.3058	8.537	-0.029028		Abnormal		
	31.48421834	7.82622134	24.28481815	23.657997	113.833145	4.393080498	0.71315341	9.7107	8.1003	11.85555	-26.650369	12.6599	Abnormal		

```
data_spine <- read.csv('lecture2_data/Dataset_spine.csv')</pre>
```

head(data_spine)

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
             63.02782
                                               39.60912
## 1
                       22.552586
                                                            40.47523
## 2
            39.05695
                       10.060991
                                              25.01538
                                                            28.99596
## 3
            68.83202
                       22.218482
                                              50.09219
                                                            46.61354
## 4
            69.29701
                       24.652878
                                              44.31124
                                                           44.64413
## 5
                                              28.31741
            49.71286
                       9.652075
                                                            40.06078
## 6
                                                            26.32829
            40.25020
                       13.921907
                                              25.12495
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 1
         98.67292
                                  -0.254400
                                              0.7445035
                                                             12.5661
## 2
                                              0.4151857
        114.40543
                                  4.564259
                                                             12.8874
## 3
        105.98514
                                  -3.530317
                                              0.4748892
                                                             26.8343
## 4
        101.86850
                                  11.211523
                                              0.3693453
                                                             23.5603
## 5
                                                             35.4940
        108.16872
                                  7.918501
                                               0.5433605
                                                             29.32304/52
## 6
                                               0.7899929
        130.32787
                                   2.230652
```

- Assumes that the first row has variable names
- · Replaces spaces with .
- Keeps numeric and character variables together

View(data_spine) ## It looks like a matrix

knitr::include_graphics('lecture2_img/View.png')

16/52

str(data_spine) ## Structure of a dataset

```
'data.frame': 310 obs. of 13 variables:
   $ Pelvic.incidence
                            : num 63 39.1 68.8 69.3 49.7 ...
   $ Pelvic.tilt
                            : num 22.55 10.06 22.22 24.65 9.65 ...
   $ Lumbar.lordosis.angle
                            : num 39.6 25 50.1 44.3 28.3 ...
   $ Sacral.slope
                            : num 40.5 29 46.6 44.6 40.1 ...
   $ Pelvic.radius
                            : num 98.7 114.4 106 101.9 108.2 ...
   $ Degree.spondylolisthesis: num -0.254 4.564 -3.53 11.212 7.919 ...
   $ Pelvic.slope
##
                            : num 0.745 0.415 0.475 0.369 0.543 ...
   $ Direct.tilt
                            : num 12.6 12.9 26.8 23.6 35.5 ...
##
   $ Thoracic.slope
                            : num 14.5 17.5 17.5 12.7 16 ...
   $ Cervical.tilt
                            : num 15.3 16.78 16.66 11.42 8.87 ...
   $ Sacrum.angle
                            : num -28.7 -25.5 -29 -30.5 -16.4 ...
   $ Scoliosis.slope
                            : num 43.5 16.1 19.2 18.8 24.9 ...
   $ Class.attribute
                            : Factor w/ 2 levels "Abnormal", "Normal": 1 1
```

So this is a data.frame object with 310 observations and 13 variables, of which one is a factor and the rest are numeric

Dataframes

Dataframes are the primary mode of storing datasets in R

They were revolutionary in that they kept heterogeneous data together

They share properties of both a matrix and a list

```
class(data_spine)
```

```
## [1] "data.frame"
```

Technically, a data.frame is a list of vectors (or objects, generally) of the same length

Matrices

A matrix is a rectangular array of data of the same type

```
matrix(0, nrow=2, ncol=4)
##
        [,1] [,2] [,3] [,4]
## [1,]
## [2,]
matrix(letters, nrow=2)
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
##
   [1,] "a" "c" "e" "g" "i" "k" "m" "o" "q" "s"
   [2,] "b" "d" "f" "h" "j" "l" "n" "p" "r" "t"
                                                                     11711
matrix(letters, nrow=2, byrow=T)
                                                                  19/52
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
##
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put columns together

```
cbind(c(1,2,3,4), c(10,20,30,40)) ## Column bind
```

```
## [,1] [,2]
## [1,] 1 10
## [2,] 2 20
## [3,] 3 30
## [4,] 4 40
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put rows together

```
example_matrix <- rbind(c(1,2,3,4), c(10,20,30,40)) ## Row bind example_matrix
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

Extracting elements

```
example_matrix
       [,1] [,2] [,3] [,4]
## [1,] 1 2 3
## [2,] 10 20 30 40
example_matrix[1,] ## Extracts 1st row
## [1] 1 2 3 4
example_matrix[,2:3] ## extracts 2nd & 3rd columns
##
       [,1] [,2]
## [1,] 2 3
## [2,] 20 30
```

Matrix properties

```
example_matrix
       [,1] [,2] [,3] [,4]
## [1,]
## [2,] 10 20 30
nrow(example_matrix) ## Number of rows
## [1] 2
ncol(example_matrix) ## Number of columns
## [1] 4
dim(example_matrix) ## shortcut for above
```

Matrix arithmetic

```
example_matrix
##
       [,1] [,2] [,3] [,4]
## [1,]
                 3
## [2,]
       10 20 30
example_matrix + 5 ## Add 5 to each element
       [,1] [,2] [,3] [,4]
##
## [1,]
## [2,]
       15 25 35
example_matrix * 2 ## Multiply each element by 2
```

```
example_matrix
##
       [,1] [,2] [,3] [,4]
## [1,]
                3
## [2,]
      10 20 30
example_matrix2 <- rbind(3:6, 9:12)</pre>
example_matrix2
##
       [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
```

example_matrix + example_matrix2

```
example_matrix
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

example_matrix2

```
## [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
```

example_matrix * example_matrix2 ## Not matrix multiplication, but element-w

```
## [,1] [,2] [,3] [,4]
## [1,] 3 8 15 24
## [2,] 90 200 330 480
```

```
rbind(example_matrix, example_matrix2)
```

```
## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 10 20 30 40

## [3,] 3 4 5 6

## [4,] 9 10 11 12
```

cbind(example_matrix, example_matrix2)

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 2 3 4 3 4 5 6
## [2,] 10 20 30 40 9 10 11 12
```

[,1] [,2]

50 110

500 1100

##

[1,]

```
dim(example_matrix2)
## [1] 2 4
t(example_matrix2) ## Transpose of a matrix
##
       [,1] [,2]
## [1,]
## [2,] 4 10
## [3,] 5 11
## [4,] 6 12
example_matrix %*% t(example_matrix2) ## Matrix multiplication
```

Lists

Lists are collections of arbitrary objects in R

```
example_list <- list(c('Andy','Brian','Harry'),</pre>
                        c(12, 16, 16),
                        c(TRUE, TRUE, FALSE),
                       matrix(1, nrow=2, ncol=3))
example_list
## [[1]]
   [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
##
   [[3]]
   [1] TRUE TRUE FALSE
##
## [[4]]
                                                                      29/52
```

Extracting elements from lists

```
example_list[[3]]
## [1] TRUE TRUE FALSE
example_list[1:2]
## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
```

Extracting elements from lists

```
example_list[[4]]
       [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
class(example_list[[4]])
## [1] "matrix"
example_list[[4]][1,]
## [1] 1 1 1
```

Named lists

[1] "Harry"

```
example_named_list <- list('Names' = c('Andy','Brian','Harry'),</pre>
                       "YearsOfEducation" = c(12, 16, 16),
                       "Married" = c(TRUE, TRUE, FALSE),
                       'something' = matrix(1, nrow=2, ncol=3))
example_named_list[['Names']]
## [1] "Andy" "Brian" "Harry"
example_named_list$Names
## [1] "Andy" "Brian" "Harry"
example_named_list$Names[3]
```

Back to a Data Frame

A data.frame object is a **named list** where each element is of the same length

You can use both *matrix* and *list* functions to operate on data.frame objects!!

Data Frames

head(data_spine)

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
## 1
             63.02782
                        22.552586
                                               39.60912
                                                            40.47523
## 2
             39.05695
                                               25.01538
                        10.060991
                                                            28.99596
## 3
             68.83202
                                               50.09219
                        22.218482
                                                            46.61354
## 4
                                                            44.64413
             69.29701
                        24.652878
                                               44.31124
## 5
                       9.652075
                                               28.31741
                                                            40.06078
             49.71286
## 6
             40.25020
                        13.921907
                                               25.12495
                                                            26.32829
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 1
          98.67292
                                               0.7445035
                                  -0.254400
                                                             12.5661
## 2
        114.40543
                                   4.564259
                                               0.4151857
                                                             12.8874
## 3
        105.98514
                                  -3.530317
                                              0.4748892
                                                             26.8343
## 4
        101.86850
                                  11.211523
                                               0.3693453
                                                             23.5603
## 5
                                                             35.4940
        108.16872
                                   7.918501
                                               0.5433605
## 6
         130.32787
                                   2.230652
                                               0.7899929
                                                             29.3230
     Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
##
## 1
            14.5386
                         15.30468
                                    -28.658501
                                                       43.5123
                                                                   34/52
## 2
            17.5323
                         16.78486
                                    -25.530607
                                                       16.1102
```

Data Frames

```
dim(data_spine)

## [1] 310 13

nrow(data_spine)

## [1] 310

data_spine_small <- data_spine[1:4,] ## Matrix operation</pre>
```

Data Frames

```
data_spine_small[,2] ## Matrix extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[[2]] ## List extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

```
data_spine_small[['Pelvic.tilt']] ## Named list extraction
## [1] 22.55259 10.06099 22.21848 24.65288
data_spine_small[,'Pelvic.tilt'] ## Data frame named column extraction
## [1] 22.55259 10.06099 22.21848 24.65288
data_spine_small$Pelvic.tilt ## Dollar sign extraction
## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

My preference is for

- data frame named column extraction data_spine_small[,'Pelvic.tilt'],
- 2. named list extraction data_spine_small[['Pelvic.tilt']]
- 3. Dollar-based extraction data_spine_small\$Pelvic.tilt

Data Frames

3

4

22.21848

24.65288

0.4748892

0.3693453

```
names(data_spine_small)
    [1] "Pelvic.incidence"
                                   "Pelvic.tilt"
    [3] "Lumbar.lordosis.angle"
                                   "Sacral.slope"
   [5] "Pelvic.radius"
                                   "Degree.spondylolisthesis"
##
                                   "Direct.tilt"
   [7] "Pelvic.slope"
    [9] "Thoracic.slope"
                                   "Cervical.tilt"
   [11] "Sacrum.angle"
                                   "Scoliosis.slope"
   [13] "Class.attribute"
data_spine_small[,c('Pelvic.tilt', 'Pelvic.slope','Class.attribute')]
     Pelvic.tilt Pelvic.slope Class.attribute
##
## 1
        22.55259
                    0.7445035
                                     Abnormal
                                     Abnormal
## 2
       10.06099
                 0.4151857
```

Abnormal

Abnormal

Filtering data frames

Boolean operators

Operator	Meaning
	Or
&	And
!	Not

Filtering data frames

data_spine[data_spine\$Pelvic.tilt > 20,]

##		Pelvic.incidence	Pelvic.tilt	Lumbar.lordosis.angle	Sacral.slope
##	1	63.02782	22.55259	39.60912	40.47523
##	3	68.83202	22.21848	50.09219	46.61354
##	4	69.29701	24.65288	44.31124	44.64413
##	14	53.57217	20.46083	33.10000	33.11134
##	15	57.30023	24.18888	47.00000	33.11134
##	17	63.83498	20.36251	54.55243	43.47247
##	22	54.91944	21.06233	42.20000	33.85711
##	23	63.07361	24.41380	54.00000	38.65981
##	25	36.12568	22.75875	29.00000	13.36693
##	26	54.12492	26.65049	35.32975	27.47443
##	29	44.55101	21.93115	26.78592	22.61986
##	30	66.87921	24.89200	49.27860	41.98721
##	35	59.59554	31.99824	46.56025	27.59730
##	39	55.84329	28.84745	47.69054	26.99584
##	44	66.28539	26.32784	47.50000	39.95 45/5 2
##	46	50.91244	23.01517	47.00000	27.89727

Filtering data frames

data_spine[data_spine\$Pelvic.tilt > 20 & data_spine\$Pelvic.slope > 0.85,]

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
## 26
               54.12492
                           26.65049
                                                  35.32975
                                                               27.47443
## 76
               70.22145
                           39.82272
                                                  68.11840
                                                               30.39873
## 84
               81.10410
                           24.79417
                                                  77.88702
                                                               56.30993
  99
##
               77.65512
                           22.43295
                                                  93.89278
                                                               55.22217
## 106
               65.00796
                                                               37.40536
                           27.60261
                                                  50.94752
## 112
               84.99896
                           29.61010
                                                  83.35219
                                                               55.38886
               90.51396
## 129
                           28.27250
                                                  69.81394
                                                               62.24146
## 179
               80.65432
                                                               54.30994
                           26.34438
                                                  60.89812
## 231
               65.61180
                                                               42.47388
                           23.13792
                                                  62.58218
## 303
               54.60032
                           21.48897
                                                  29.36022
                                                               33.11134
       Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 26
            121.4470
                                                                14.6686
                                     1.571205
                                                  0.9286879
## 76
            148.5256
                                   145.378143
                                                  0.9466106
                                                                10.3840
## 84
            151.8399
                                    65.214616
                                                  0.9720056
                                                                10.5715
## 99
                                                  0.9249029
            123.0557
                                    61.211187
                                                                14.950/32
## 106
            116.5811
                                     7.015978
                                                  0.8673241
                                                                12.1292
```

Filtering data frames and selecting variables

Class.attribute	Direct.tilt		##
Abnormal	14.6686	26	##
Abnormal	10.3840	76	##
Abnormal	10.5715	84	##
Abnormal	14.9502	99	##
Abnormal	12.1292	106	##
Abnormal	7.0551	112	##
Abnormal	13.5739	129	##
Abnormal	20.0845	179	##
Normal	30.0422	231	##
Normal	30.8554	303	##

Adding a variable

```
data_spine_small[,'bad.angle'] <- c('No','Yes','No','No')
data_spine_small</pre>
```

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
                                            39.60912
## 1
            63.02782
                       22.55259
                                                        40.47523
## 2
            39.05695
                      10.06099
                                           25.01538
                                                        28.99596
## 3
                      22.21848
                                            50.09219 46.61354
            68.83202
## 4
            69.29701
                      24.65288
                                          44.31124
                                                        44.64413
    Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 1
         98.67292
                               -0.254400
                                          0.7445035
                                                         12.5661
## 2
                                          0.4151857 12.8874
        114.40543
                                4.564259
## 3
        105.98514
                               -3.530317
                                          0.4748892
                                                         26.8343
## 4
        101.86850
                               11.211523
                                           0.3693453
                                                         23.5603
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
##
## 1
           14.5386
                      15.30468
                                  -28.65850
                                                   43.5123
## 2
           17.5323
                   16.78486
                                 -25.53061
                                                   16.1102
## 3
           17.4861
                   16.65897
                                 -29.03189
                                                   19.2221
## 4
           12.7074
                       11.42447
                                  -30.47025
                                                   18.8329
                                                               44/52
    Class.attribute bad.angle
```

Removing a variable

```
data_spine_small[, -c(13,14)]

data_spine_small[,-c('Class.attribute', 'bad.angle')]

## The next two commands change the original data set

data_spine_small[c('Class.attribute','bad.angle')] <- NULL

data_spine_small[['bad.angle']] <- NULL</pre>
```

Creating derived variables

Creating derived variables

For deriving multiple variables into a data frame

head(mtcars)

```
##
                    mpg cyl disp hp drat
                                            wt qsec vs am gear carb
                    21.0
## Mazda RX4
                             160 110 3.90 2.620 16.46
## Mazda RX4 Wag
                    21.0
                             160 110 3.90 2.875 17.02 0
## Datsun 710
                    22.8
                                  93 3.85 2.320 18.61
                              108
## Hornet 4 Drive
                    21.4 6
                             258 110 3.08 3.215 19.44
## Hornet Sportabout 18.7
                              360 175 3.15 3.440 17.02
## Valiant
                              225 105 2.76 3.460 20.22 1 0
                    18.1
```

For deriving multiple variables into a data frame

For deriving multiple variables into a data frame

```
str(mtcars)
```

```
## 'data.frame': 32 obs. of 13 variables:
   $ mpg
            : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
   $ cyl
           : num 6646868446 ...
   $ disp
                   160 160 108 258 360 ...
   $ hp
                  110 110 93 110 175 105 245 62 95 123 ...
##
   $ drat
                  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##
   $ wt
            : num 2.62 2.88 2.32 3.21 3.44 ...
   $ qsec
                  16.5 17 18.6 19.4 17 ...
   $ VS
                  0 0 1 1 0 1 0 1 1 1 ...
   $ am
            : num 1 1 1 0 0 0 0 0 0 0 ...
   $ gear
            : num 4 4 4 3 3 3 3 4 4 4 ...
   $ carb
          : num 4 4 1 1 2 1 4 2 2 4 ...
   $ kmpg : num 33.6 33.6 36.5 34.2 29.9 ...
   $ low.mpg: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 1 ....
```

Adding new data to a data frame

You can concatenate two data frames using rbind as long as the variable names and orders are the same

```
new_data = rbind(data_spine[1:4,], data_spine[c(8,22),])
new_data
```

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
                          22.55259
## 1
              63.02782
                                                 39.60912
                                                              40,47523
## 2
              39.05695
                          10.06099
                                                 25.01538
                                                              28.99596
## 3
              68.83202
                                                 50.09219
                                                              46.61354
                          22.21848
## 4
                                                              44.64413
              69.29701
                          24.65288
                                                 44.31124
## 8
                                                 29.03835
                                                              34.61114
              45.36675
                         10.75561
## 22
              54.91944
                          21.06233
                                                              33.85711
                                                 42.20000
      Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 1
           98.67292
                                    -0.254400
                                                 0.7445035
                                                               12.5661
## 2
          114.40543
                                    4.564259
                                                 0.4151857
                                                               12.8874
## 3
          105.98514
                                    -3.530317
                                                 0.4748892
                                                               26.8343
## 4
          101.86850
                                    11.211523
                                                 0.3693453
                                                               23.5603/52
## 8
          117,27007
                                   -10.675871
                                                 0.1319726
                                                               28.8165
```

Adding new data to a data frame

You can add columns of a new data frame to an existing data frame using cbind as long as the columns have no common names

```
Pelvic.slope Class.attribute Sex Race
##
## 1
                      Abnormal
       0.7445035
## 2
      0.4151857
                     Abnormal F
                                  В
## 3
                     Abnormal M
    0.4748892
                                  As
## 4 0.3693453
                    Abnormal
                                    В
```