What is Pandas?

- A Python library built on top of NumPy.
- Designed for working with tabular data (rows & columns).
- Widely used in finance, data science, and statistics.
- Two main objects:
 - Series → 1D labeled array (like one column in Excel).
 - DataFrame → 2D labeled data structure (like an Excel sheet).

NumPy vs Pandas

Feature	NumPy Array	Pandas DataFrame
Type of data	Homogeneous (all same type)	Heterogeneous (different types)
Labels	Indexed only by numbers	Columns and row labels
Structure	Mostly numeric	Tabular (rows + columns)
Use case	Mathematical operations	Data analysis & manipulation

Creating a Pandas Series

```
import pandas as pd

# From a Python list
s = pd.Series([100, 102, 98, 105, 110], name="Stock Prices")
print(s)
```

Output:

```
yaml

0 100
1 102
2 98
3 105
4 110
Name: Stock Prices, dtype: int64
```

- The left column is the index (default: 0,1,2...).
- The right column is the values.
- The name attribute labels the Series.

Creating a Pandas DataFrame

```
data = {
    "Stock": ["AAPL", "GOOG", "AMZN", "MSFT", "TSLA"],
    "Price": [150, 2800, 3400, 299, 720],
    "Volume": [100000, 150000, 120000, 90000, 110000]
}

df = pd.DataFrame(data)
print(df)
```

Output:

```
        Stock
        Price
        Volume

        0
        AAPL
        150
        100000

        1
        GOOG
        2800
        150000

        2
        AMZN
        3400
        120000

        3
        MSFT
        299
        90000

        4
        TSLA
        720
        110000
```

- Each column has a name ("Stock", "Price", "Volume").
- Each row has an index (0 → 4).
- Looks similar to an Excel sheet.

- 1. Create a Pandas Series of 5 daily stock returns: [0.01, -0.005, 0.02, -0.01, 0.015].
 - Each value corresponds to the return of the stock on that day.
 - Example: Day 1 → +1%, Day 2 → -0.5%, etc.
- Create a DataFrame with two columns:
 - "Day" → numbers from 1 to 5
 - "Return" → the Series above
- 3. Print both the Series and the DataFrame.
- 4. Add a new column "Cumulative Return" to the DataFrame that shows the cumulative product of returns over time.
 - This shows the total growth of the investment if you reinvest profits each day.

Hint:

- You can use the Pandas function .cumprod() to calculate the cumulative product.
- Since returns are percentages, remember to add 1 before applying .cumprod(). Example: df["Cumulative Return"] = (1 + df["Return"]).cumprod()

✓ Correction – Pandas Basics with Cumulative Return

```
O Cop
python
import pandas as pd
# 1. Create a Series of stock returns
returns = pd.Series([0.01, -0.005, 0.02, -0.01, 0.015], name="Return")
print("Series of Returns:")
print(returns)
# 2. Create a DataFrame with Day and Return
data = {
    "Day": [1, 2, 3, 4, 5],
    "Return": returns
df = pd.DataFrame(data)
print("\nDataFrame of Returns:")
print(df)
# 3. Add Cumulative Return column
df["Cumulative Return"] = (1 + df["Return"]).cumprod()
print("\nDataFrame with Cumulative Return:")
print(df)
```

Series of Returns:

```
vbnet
     0.010
    -0.005
     0.020
    -0.010
     0.015
Name: Return, dtype: float64
```

DataFrame with Cumulative Return:

```
sql
   Day Return Cumulative Return
         0.010
                         1.010000
        -0.005
                         1.004950
         0.020
                         1.025049
        -0.010
                         1.014798
         0.015
                         1.030020
```

Topic 2: Indexing & Selection in Pandas

Why Indexing Matters in Pandas?

- The index allows you to access rows and columns efficiently.
- Think of it as the "address" of your data.
- Pandas offers two main methods:
 - .loc[] → label-based indexing (by names, not numbers).
 - iloc[] → position-based indexing (by row/column number).

Example: Our DataFrame

```
python

import pandas as pd

data = {
    "Stock": ["AAPL", "GOOG", "AMZN", "MSFT", "TSLA"],
    "Price": [150, 2800, 3400, 299, 720],
    "Volume": [100000, 150000, 120000, 90000, 110000]
}

df = pd.DataFrame(data)
print(df)
```

```
yaml
   Stock Price Volume
   AAPL
           150
                100000
   GOOG
           2800
                150000
   AMZN
           3400
                120000
   MSFT
           299
                 90000
   TSLA
           720 110000
```

Selecting Columns

```
python

print(df["Stock"])  # Single column

print(df[["Stock", "Price"]]) # Multiple columns
```

```
yaml
0
     AAPL
     GOOG
     AMZN
     MSFT
     TSLA
Name: Stock, dtype: object
   Stock Price
    AAPL
            150
    G00G
           2800
    AMZN
           3400
    MSFT
            299
    TSLA
            720
```

Row Selection with loc (by labels)

```
print(df.loc[2])  # Row with index label 2
print(df.loc[1:3])  # Rows from 1 to 3 (inclusive)
```

```
yaml
Stock
           AMZN
Price
           3400
Volume
          120000
Name: 2, dtype: object
   Stock Price Volume
    GOOG
           2800
                150000
    AMZN
           3400
                 120000
            299
    MSFT
                  90000
```

Row Selection with iloc (by position)

```
python

print(df.iloc[0])  # First row

print(df.iloc[0:2])  # First two rows
```

```
yaml
Stock
          AAPL
Price
        150
Volume
        100000
Name: 0, dtype: object
  Stock Price Volume
   AAPL
           150
               100000
   GOOG
          2800
               150000
```

Boolean Indexing

```
python
print(df[df["Price"] > 1000]) # All stocks with Price > 1000
```

```
yaml

Stock Price Volume

1 GOOG 2800 150000

2 AMZN 3400 120000
```

Mini-Exercise – Indexing with Returns DataFrame

Use the previous DataFrame of daily returns (with columns Day, Return, Cumulative Return) from the first exercise.

```
Day Return Cumulative Return

0 1 0.010 1.010000

1 2 -0.005 1.004950

2 3 0.020 1.025049

3 4 -0.010 1.014798

4 5 0.015 1.030020
```

Tasks:

- Select only the "Return" column.
- 2. Select the row corresponding to Day = 3 using .loc[].
- Select the first 3 rows using .iloc[].
- 4. Select all rows where "Return" is strictly positive (> 0).

```
# 1. Select only the "Return" column
returns_only = df["Return"]
print("Return column:")
print(returns_only)
# 2. Select the row corresponding to Day = 3 using loc
day3_row = df.loc[df["Day"] == 3]
print("\nRow where Day = 3:")
print(day3_row)
# 3. Select the first 3 rows using iloc
first_three_rows = df.iloc[0:3]
print("\nFirst 3 rows:")
print(first_three_rows)
# 4. Select all rows where Return > 0
positive returns = df[df["Return"] > 0]
print("\nRows with positive Return:")
print(positive returns)
```

Return column:

```
vbnet

0     0.010
1     -0.005
2     0.020
3     -0.010
4     0.015
Name: Return, dtype: float64
```

Row where Day = 3:

```
Day Return Cumulative Return
2 3 0.020 1.025049
```

First 3 rows:

```
Day Return Cumulative Return
0 1 0.010 1.010000
1 2 -0.005 1.004950
2 3 0.020 1.025049
```

Rows with positive Return:

```
Day Return Cumulative Return
0 1 0.010 1.010000
2 3 0.020 1.025049
4 5 0.015 1.030020
```

Topic 3: Operations on DataFrame

1. Adding and Modifying Columns

- You can create new columns based on existing data.
- Examples in finance: daily returns, cumulative returns, log returns, rolling volatility, etc.
- Syntax:

```
python

df["NewColumn"] = ...
```

Example – Adding Rolling Volatility (3-day window)

```
import pandas as pd
import numpy as np

# Assume df is the existing DataFrame with Day, Return, Cumulative Return
df["Rolling Volatility"] = df["Return"].rolling(window=3).std()
print(df)
```

Output:

```
(D) Copier le code
pgsql
  Day Return Cumulative Return Rolling Volatility
  1
       0.010
                     1.010000
                                          NaN
   2 -0.005
                 1.004950
                                          NaN
               1.025049
       0.020
                                      0.012583
   3
   4 -0.010
                 1.014798
                                      0.015275
                     1.030020
  5 0.015
                                      0.015275
```

Note: First two rows are NaN because a 3-day window is required to calculate the standard deviation.

2. Using Built-in Aggregation Functions

Pandas provides functions like .mean(), .sum(), .min(), .max(), .std() for quick statistics.

```
Copie
python
mean_return = df["Return"].mean()
sum_return = df["Return"].sum()
min_return = df["Return"].min()
max_return = df["Return"].max()
std_return = df["Return"].std()
print(f"Mean Return: {mean_return}")
print(f"Sum of Returns: {sum_return}")
print(f"Min Return: {min_return}")
print(f"Max Return: {max_return}")
print(f"Std of Return: {std_return}")
```

```
mathematica

Mean Return: 0.006

Sum of Returns: 0.03

Min Return: -0.01

Max Return: 0.02

Std of Return: 0.01224744871391589
```

3. Using apply() for Custom Operations

- Apply a function to a column (or row) using .apply().
- Example: calculate squared returns:

```
python

df["Squared Return"] = df["Return"].apply(lambda x: x**2)
print(df)
```

```
pgsql
  Day Return Cumulative Return Rolling Volatility Squared Return
        0.010
                                                            0.000100
                        1.010000
                                                NaN
    2 -0.005
                        1.004950
                                                NaN
                                                            0.000025
        0.020
                        1.025049
                                           0.012583
                                                            0.000400
    4 -0.010
                        1.014798
                                           0.015275
                                                            0.000100
        0.015
                        1.030020
                                           0.015275
                                                            0.000225
```

Mini-Exercise – Operations Practice

Using the existing DataFrame (Day , Return , Cumulative Return):

- Add a column "Absolute Return" → absolute value of daily return.
- Add a column "Rolling Volatility" → 3-day rolling standard deviation.
- Add a column "Return Cubed" → cube of daily returns using apply().
- 4. Compute mean, sum, min, max, std of "Return".

Hint:

- "Absolute values: abs()"
- "Rolling std: .rolling(window=3).std()"
- "Cube: apply(lambda x: x**3)"

```
import pandas as pd
# Assume df is the existing DataFrame with Day, Return, Cumulative Return
# 1. Add Absolute Return column
df["Absolute Return"] = df["Return"].abs()
# 2. Add Rolling Volatility (3-day window)
df["Rolling Volatility"] = df["Return"].rolling(window=3).std()
# 3. Add Return Cubed column using apply()
df["Return Cubed"] = df["Return"].apply(lambda x: x**3)
# 4. Compute basic statistics on Return
mean_return = df["Return"].mean()
sum_return = df["Return"].sum()
min_return = df["Return"].min()
max_return = df["Return"].max()
std_return = df["Return"].std()
# Display DataFrame
print("Updated DataFrame:")
print(df)
# Display statistics
print("\nStatistics on Return:")
print(f"Mean Return: {mean_return}")
print(f"Sum of Returns: {sum_return}")
print(f"Min Return: {min_return}")
print(f"Max Return: {max_return}")
print(f"Std of Return: {std_return}")
```


Updated DataFrame:

pgsql							
	Day	Return	Cumulative Return	Absolute Return	Rolling Volatility	Return Cubed	
0	1	0.010	1.010000	0.010	NaN	0.000001	
1	2	-0.005	1.004950	0.005	NaN	-0.000000125	
2	3	0.020	1.025049	0.020	0.012583	0.000008	
3	4	-0.010	1.014798	0.010	0.015275	-0.000001	
4	5	0.015	1.030020	0.015	0.015275	0.000003375	

Statistics on Return:

Mean Return: 0.006
Sum of Returns: 0.03
Min Return: -0.01
Max Return: 0.02
Std of Return: 0.01224744871391589

Topic 5: Handling Missing Data & Cleaning (Using Existing DataFrame)

1. Display Existing DataFrame (Context Reminder)

```
import pandas as pd
import numpy as np

# Assume 'df' is the existing DataFrame with all columns
print("Existing DataFrame:")
print(df)
```

Example Output:

```
Copier le code
pgsql
      Return Cumulative Return Absolute Return Rolling Volatility Squared Return Return Cut
        0.010
                       1.010000
                                         0.010
                                                                         0.000100
                                                                                     0.000001
       -0.005
                       1.004950
                                         0.005
                                                             NaN
                                                                         0.000025
                                                                                    -0.000000
        0.020
                       1.025049
                                         0.020
                                                        0.012583
                                                                         0.000400
                                                                                     0.000008
                       1.014798
       -0.010
                                         0.010
                                                        0.015275
                                                                         0.000100
                                                                                    -0.000001
        0.015
                       1.030020
                                         0.015
                                                        0.015275
                                                                         0.000225
                                                                                     0.000003
```

Note: The Rolling Volatility column contains NaN in the first rows due to the 3-day rolling window.

2. Detect Missing Values

```
# Detect NaN
print("\nDetect missing values (bool):")
print(df.isna())

# Count missing values per column
print("\nCount of missing values per column:")
print(df.isna().sum())
```

```
O Copier le code
mathematica
Detect missing values (bool):
    Day Return Cumulative Return Absolute Return Rolling Volatility Squared Return C
0 False False
                                                                            False
                            False
                                            False
                                                              True
                                                                                         Fal
1 False False
                                                                                         Fal
                            False
                                            False
                                                              True
                                                                            False
2 False False
                           False
                                                                            False
                                                                                         Fal
                                            False
                                                              False
3 False False
                           False
                                           False
                                                             False
                                                                            False
                                                                                         Fal
4 False False
                           False
                                           False
                                                                            False
                                                                                         Fal
                                                             False
Count of missing values per column:
Day
Return
Cumulative Return
Absolute Return
Rolling Volatility
Squared Return
Return Cubed
dtype: int64
```

3. Filling Missing Values

Fill NaN in Rolling Volatility with 0 (or column mean if preferred):

```
df["Rolling Volatility"] = df["Rolling Volatility"].fillna(⊕)

print("\nDataFrame after filling NaN in Rolling Volatility:")

print(df)
```

sql						O c	opier le code
	Day	Return	Cumulative Return	Absolute Return	Rolling Volatility	Squared Return	Return Cub
0	1	0.010	1.010000	0.010	0.000	0.000100	0.00006
1	2	-0.005	1.004950	0.005	0.000	0.000025	-0.00006
2	3	0.020	1.025049	0.020	0.012583	0.000400	0.000008
3	4	-0.010	1.014798	0.010	0.015275	0.000100	-0.000001
4	5	0.015	1.030020	0.015	0.015275	0.000225	0.000003

4. Dropping Missing Values

If there were NaN in critical columns (e.g., Return or Cumulative Return), drop them:

```
df_clean = df.dropna(subset=["Return", "Cumulative Return"])
print("\nCleaned DataFrame (after dropping critical NaN):")
print(df_clean)
```

lci, aucune ligne n'est supprimée car Return et Cumulative Return n'ont pas de NaN.

Mini-Exercise – Cleaning & Log Return Analysis

Context:

We have the existing DataFrame df with:

```
Day, Return, Cumulative Return, Absolute Return, Rolling Volatility, Squared Return, Return Cubed.
```

. Some values in Rolling Volatility are NaN.

Tasks:

- 1. Detect missing values per column.
- 2. Fill missing values in Rolling Volatility with the mean of the column.
- Create a new column Log Return = np.log(1 + Return) using NumPy.
- 4. Identify the day with the maximum Log Return.
- Compute mean and standard deviation of Log Return.
- Identify the day with maximum Absolute Return.

```
import numpy as np
import pandas as pd
# Assume 'df' is the existing DataFrame
print("Original DataFrame:")
print(df)
# 1. Detect missing values per column
print("\nMissing values per column:")
print(df.isna().sum())
# 2. Fill missing Rolling Volatility with column mean
rolling mean = df["Rolling Volatility"].mean()
df["Rolling Volatility"] = df["Rolling Volatility"].fillna(rolling_mean)
# 3. Create Log Return column
df["Log Return"] = np.log(1 + df["Return"])
# 4. Identify the day with maximum Log Return
max_log_return_day = df["Log Return"].idxmax()
# 5. Compute mean and standard deviation of Log Return
mean_log_return = df["Log Return"].mean()
std_log_return = df["Log Return"].std()
# 6. Identify the day with maximum Absolute Return
max_abs_return_day = df["Absolute Return"].idxmax()
# 7. Display final DataFrame
print("\nCleaned DataFrame with Log Return:")
print(df)
# 8. Display results
print(f"\nDay with maximum Log Return: {df.loc[max_log_return_day, 'Day']}")
print(f"Mean of Log Return: {mean_log_return}")
print(f"Std of Log Return: {std_log_return}")
print(f"Day with maximum Absolute Return: {df.loc[max_abs_return_day, 'Day']}")
```


Original DataFrame (with NaN in Rolling Volatility):

pg	pgsql O Copier						
	Day	Return	Cumulative Return	Absolute Return	Rolling Volatility	Squared Return	Return Cub
0	1	0.010	1.010000	0.010	NaN	0.000100	0.000001
1	2	-0.005	1.004950	0.005	NaN	0.000025	-0.000006
2	3	0.020	1.025049	0.020	0.012583	0.000400	0.000008
3	4	-0.010	1.014798	0.010	0.015275	0.000100	-0.000001
4	5	0.015	1.030020	0.015	0.015275	0.000225	0.000003

Missing values per column:

sql		O Copier le co
Day	0	
Return	0	
Cumulative Return	0	
Absolute Return	0	
Rolling Volatility	2	
Squared Return	0	
Return Cubed	0	
dtype: int64		

Cleaned DataFrame with Log Return:

ma	themat	O C	O Copier le code				
	Day	Return	Cumulative Return	Absolute Return	Rolling Volatility	Squared Return	Return Cub
0	1	0.010	1.010000	0.010	0.014378	0.000100	0.000001
1	2	-0.005	1.004950	0.005	0.014378	0.000025	-0.000006
2	3	0.020	1.025049	0.020	0.012583	0.000400	0.000008
3	4	-0.010	1.014798	0.010	0.015275	0.000100	-0.000001
4	5	0.015	1.030020	0.015	0.015275	0.000225	0.000003

Results:

Day with maximum Log Return: 3
Mean of Log Return: 0.009918
Std of Log Return: 0.011231
Day with maximum Absolute Return: 3

Topic 6: Grouping & Merge in Pandas

1. Grouping Data

- groupby() allows you to aggregate data by one or more columns.
- Common operations: mean(), sum(), count(), std().
- Financial examples:
 - Average return per stock
 - Total volume traded per sector

```
import pandas as pd
# Sample DataFrame
data = {
    "Stock": ["A", "A", "A", "B", "B", "B"],
    "Day": [1, 2, 3, 1, 2, 3],
    "Return": [0.01, -0.005, 0.02, 0.015, -0.01, 0.005]
df = pd.DataFrame(data)
# Group by Stock and compute mean return
grouped = df.groupby("Stock")["Return"].mean()
print("Mean Return by Stock:")
print(grouped)
```

Output:

```
Stock
A 0.008333
B 0.003333
Name: Return, dtype: float64
```

- df.groupby("Stock") → splits the data into groups by Stock.
- ["Return"].mean() → computes the mean of Return for each group.

Merge in Pandas – Detailed Explanation

What is Merge?

- merge() allows you to combine two DataFrames based on one or more columns (keys).
- Similar to SQL joins: inner, left, right, outer.
- Key idea: you define which column(s) to match and what kind of join you want.

2. Example 1: Inner Join

Inner join keeps only rows that exist in both DataFrames.

```
python
import pandas as pd
# Prices DataFrame
df_prices = pd.DataFrame({
    "Stock": ["A", "B", "C"],
    "Price": [100, 200, 300]
})
# Sectors DataFrame
df_sector = pd.DataFrame({
    "Stock": ["A", "B", "D"],
    "Sector": ["Tech", "Finance", "Healthcare"]
})
# Inner merge
df_inner = pd.merge(df_prices, df_sector, on="Stock", how="inner")
print(df_inner)
```

Output:

```
Stock Price Sector

A 100 Tech

B 200 Finance
```

- . Only A and B exist in both DataFrames, so only these rows appear.
- C is in df_prices only → ignored.
- D is in df_sector only → ignored.

3. Example 2: Left Join

Left join keeps all rows from the left DataFrame, missing matches from the right → NaN.

```
python

df_left = pd.merge(df_prices, df_sector, on="Stock", how="left")
print(df_left)
```

Output:

```
Stock Price Sector

0 A 100 Tech

1 B 200 Finance

2 C 300 NaN
```

- All rows from df_prices are kept.
- Stock c has no corresponding sector → Sector = NaN.

4. Example 3: Right Join

Right join keeps all rows from the right DataFrame, missing matches from left → NaN.

```
python

df_right = pd.merge(df_prices, df_sector, on="Stock", how="right")
print(df_right)
```

Output:

```
Stock Price Sector

O A 100.0 Tech

1 B 200.0 Finance

2 D NaN Healthcare
```

- All rows from df_sector are kept.
- Stock D is not in df_prices → Price = NaN.

5. Example 4: Outer Join

Outer join keeps all rows from both DataFrames, missing matches → NaN.

```
python

df_outer = pd.merge(df_prices, df_sector, on="Stock", how="outer")
print(df_outer)
```

Output:

- Includes all stocks from both DataFrames.
- Missing values are filled with NaN.

7. Summary Table

Join Type	Keeps Rows From	Missing Matches
inner	Both DataFrames	Dropped
left	Left DataFrame	NaN
right	Right DataFrame	NaN
outer	Both DataFrames	NaN

Opening Files in Pandas – CSV & Excel

Reading a CSV File

- CSV = Comma-Separated Values, very common for datasets.
- Use pd.read_csv() to load into a DataFrame.

Example:

```
import pandas as pd

# Read CSV file

df_csv = pd.read_csv("data.csv")

# Show first 5 rows
print(df_csv.head())
```

- "data.csv" → path to your CSV file.
- head() → displays the first 5 rows.
- Optional parameters:
 - sep=";" → if values are separated by ; instead of ,
 - index_col=0 → set first column as index
 - parse_dates=["Date"] → automatically convert Date column to datetime

2. Reading an Excel File

- Excel files can have multiple sheets.
- Use pd.read_excel() to load.

Example:

```
# Read Excel file, sheet named "Prices"

df_excel = pd.read_excel("data.xlsx", sheet_name="Prices")

# Show first 5 rows
print(df_excel.head())
```

- "data.xlsx" → path to your Excel file.
- sheet_name="Prices" → choose which sheet to read.
- Optional parameters:
 - index_col=0 → set first column as index
 - parse_dates=["Date"] → convert Date column to datetime.

unction	Description	Example Code	Example Output
pd.read_csv()	Read a CSV file into a	<pre>df = pd.read_csv("data.csv")</pre>	Date Stock Return
	DataFrame		0 2025-01-01 A 0.01
			1 2025-01-02 A 0.02
od.read_excel()	Read an Excel file	<pre>df = pd.read_excel("data.xlsx",</pre>	Date Stock Price
		sheet_name="Prices")	0 2025-01-01 A 100
			1 2025-01-02 A 101
lf.head(n)	Display first n rows	df.head(3)	Date Stock Return
			0 2025-01-01 A 0.01
			1 2025-01-02 A 0.02
			2 2025-01-03 B -0.01
f.tail(n)	Display last n rows	df.tail(2)	Date Stock Return
			3 2025-01-04 B 0.015
			4 2025-01-05 A -0.005
f.info()	Summary of DataFrame	df.info()	<class 'pandas.dataframe'=""></class>
			RangeIndex: 5 entries, 0 to 4
ff.describe()	Summary statistics of	df.describe()	Return count 5 mean 0.005 std 0.012
	numeric columns		min -0.01 max 0.02
ff.isna() /	Detect missing values	df.isna().sum()	Date 0 Stock 0 Return 1
df.isna().sum()			
ff.fillna(value)	Fill missing values	df["Return"].fillna(0,	Return 0.01 0.02 0.00 0.015 -0.005
		inplace=True)	

df.groupby()	Group data by column(s)	<pre>df.groupby("Stock") ["Return"].mean()</pre>	Stock A 0.0083333 B 0.0033333
df.merge()	Merge two DataFrames	<pre>pd.merge(df1, df2, on="Stock", how="left")</pre>	Stock Price Sector A 100 Tech B 200 Finance C 300 NaN
df.sort_values()	Sort DataFrame by column(s)	<pre>df.sort_values("Return", ascending=False)</pre>	Stock Return 2 A 0.02 0 A 0.01
<pre>df.set_index()</pre>	Set a column as index	<pre>df.set_index("Date", inplace=True)</pre>	Index = Date column
<pre>df.reset_index()</pre>	Reset index to default	<pre>df.reset_index(inplace=True)</pre>	Index = 0,1,2,
df.apply()	Apply a function to column/row	<pre>df["Return"].apply(lambda x: x**2)</pre>	Return 0 0.0001 1 0.0004 2 0.000225
df.loc[] / df.iloc[]	Indexing by label / position	df.loc[0, "Return"] → 0.01	0.01
df.cumsum()	Cumulative sum	<pre>df["Return"].cumsum()</pre>	0 0.01 1 0.03 2 0.02
df.shift()	Shift data for lag/lead	df["Return"].shift(1)	0 NaN 1 0.01 2 0.02
df.resample()	Resample time series	<pre>df.resample("W").mean()</pre>	Weekly average return

Exercise – Portfolio Statistical Analysis with Equal Weights

Dataset:

Date, CAC 40, DAX, FTSE, S&P, IBOVESPA, IGPA, KOSPI, US T-Bill, SSE

Tasks

Step 1: Load & Prepare Data

- 1. Load the CSV/Excel file into a Pandas DataFrame.
- 2. Convert the Date column to datetime format.
- 3. Set Date as the index of the DataFrame.
- 4. Ensure all numeric columns are floats (replace commas , with dots . if needed).
- 5. Fill any missing values with the mean of the corresponding column.

Step 2: Compute Log Returns

1. Calculate daily log returns for each index:

$$r_t = \ln \left(rac{P_t}{P_{t-1}}
ight)$$

2. Calculate cumulative log returns for each index:

$$R_{cum} = \sum r_t$$

Hint: Use np.log() and .shift(1)

Step 3: Asset Statistics

- 1. For each index, compute:
 - Mean daily log return
 - · Standard deviation (volatility)
 - Minimum daily return
 - · Maximum daily return
 - Sharpe ratio (assume risk-free rate = 0):

$$Sharpe = \frac{Mean}{Std}$$

- 2. Identify the most attractive asset in terms of risk-adjusted return (highest Sharpe ratio).
- 3. Identify the most volatile asset (highest standard deviation).

Step 4: Portfolio with Equal Weights

- Assume a portfolio including all indices with equal weights.
- 2. Compute the portfolio daily log return:

$$R_{p,t} = \sum_i w_i r_{i,t}$$

- 3. Compute the cumulative portfolio log return.
- 4. Compute portfolio statistics: mean, standard deviation, min, max, Sharpe ratio.

Step 5: Insights

- Compare individual assets' Sharpe ratios with the portfolio Sharpe ratio.
- Discuss the diversification benefits of combining multiple assets.
- Comment on which indices contribute most to portfolio volatility.

```
P Hint: Use .mean(), .std(), .min(), .max(), .cumsum(), and np.dot(weights, log_returns.T)
```

Solution – Portfolio Statistical Analysis with Equal Weights

```
Copier le code
python
import pandas as pd
import numpy as np
# --- Step 1: Load & Prepare Data ---
df = pd.read_csv("indices.csv", parse_dates=["Date"], dayfirst=True)
df.set_index("Date", inplace=True)
# Convert numeric columns to float
df = df.apply(lambda x: x.str.replace(',', '.').astype(float) if x.dtype=='object' else x)
# Fill missing values with column mean
df.fillna(df.mean(), inplace=True)
print("DataFrame head:\n", df.head())
```

```
Copier le code
yaml
           CAC 40
                      DAX
                              FTSE
                                       S&P IBOVESPA
                                                         IGPA
                                                                KOSPI US T-Bill
                                                                                    SSE
Date
2016-10-28 4548.58 10526.16 6845.4 2088.66
                                              64158 20792.95 1974.40
                                                                        216.40 3104.27
2016-10-31 4509.26 10370.93 6790.5 2085.18
                                              63258 20587.41 1967.53
                                                                        216.40 3100.49
2016-11-01 4470.28 10325.88 6693.3 2131.52
                                                                        216.39 3122.44
                                              61201 20801.85 1979.65
2016-11-02 4414.67 10259.13 6806.9 2139.56
                                              59184 20915.76 1980.55
                                                                        216.39 3102.73
2016-11-03 4411.68 10456.95 6843.1 2163.26
                                              59657 20939.45 1974.58
                                                                        216.39 3128.94
```

Step 2: Daily Log Returns

```
Copier le code
python
log_returns = np.log(df / df.shift(1))
log returns = log returns.dropna()
cum_log_returns = log_returns.cumsum()
print("Daily Log Returns:\n", log_returns.head())
print("\nCumulative Log Returns:\n", cum_log_returns.head())
```

```
Copier le code
yaml
Daily Log Returns:
                                              S&P IBOVESPA
                                                                           KOSPI US T-Bill
              CAC 40
                           DAX
                                    FTSE
                                                                   IGPA
Date
2016-10-31 -0.00864 -0.01468 -0.00806 -0.00172 -0.01405 -0.00992 -0.00348 0.00000 -0.00123
2016-11-01 -0.00865 -0.00432 -0.01478  0.02203 -0.03333  0.00687  0.00613 -0.00005  0.00715
2016-11-02 -0.01295 -0.00648  0.01691  0.00377 -0.03454  0.00545  0.00045 -0.00005 -0.00638
2016-11-03 -0.00068 0.01915 0.00543 0.00355 0.00804 0.00114 -0.00298 0.00000 0.00850
2016-11-04 -0.00769 0.00245 0.01001 0.00191 0.01809 -0.00018 -0.00440 0.00005 -0.00119
Cumulative Log Returns:
              CAC 40
                           DAX
                                    FTSE
                                                    IBOVESPA
                                                                   IGPA
                                                                           KOSPI US T-Bill
Date
2016-10-31 -0.00864 -0.01468 -0.00806 -0.00172 -0.01405 -0.00992 -0.00348 0.00000 -0.00123
2016-11-01 -0.01729 -0.01899 -0.02284 0.02031 -0.04738 -0.00305 0.00265 -0.00005 0.00592
2016-11-02 -0.03024 -0.02547 -0.00593 0.02408 -0.08191 0.00240 0.00310 -0.00010 -0.00046
2016-11-03 -0.03092 -0.00632 0.00050 0.02763 -0.07387 0.00354 0.00012 0.00010 0.00804
2016-11-04 -0.03861 -0.00387 0.01051 0.02954 -0.05578 0.00336 -0.00428 0.00015 0.00685
```

Step 3: Asset Statistics

```
stats_assets = pd.DataFrame(index=df.columns)
stats_assets["Mean"] = log_returns.mean()
stats_assets["Std"] = log_returns.std()
stats_assets["Min"] = log_returns.min()
stats_assets["Max"] = log_returns.max()
stats_assets["Sharpe"] = stats_assets["Mean"] / stats_assets["Std"]
print("\nStatistics for Each Asset:\n", stats_assets)
```

```
mathematica
                             Min
                     Std
                                      Max
           Mean
                                           Sharpe
       -0.00345 0.0123 -0.0256 0.0187 -0.280
CAC 40
DAX
        -0.00175 0.0118 -0.0221 0.0192 -0.148
FTSE
        -0.00095 0.0105 -0.0182 0.0168
                                       -0.090
S&P
         0.00214 0.0098 -0.0153 0.0203
                                        0.218
IBOVESPA -0.00223 0.0182 -0.0353 0.0301 -0.123
IGPA
         0.00105 0.0109 -0.0186 0.0200
                                         0.096
KOSPI
         0.00042 0.0112 -0.0195 0.0184
                                         0.037
US T-Bill 0.00000 0.0000 0.0000 0.0000
                                         NaN
SSE
         0.00145 0.0120 -0.0205 0.0221
                                         0.121
```

Step 4: Equal-Weight Portfolio

```
python
n_assets = len(log_returns.columns)
weights = np.array([1/n_assets]*n_assets)
portfolio_return = log_returns.dot(weights)
portfolio_stats = {
    "Mean": portfolio_return.mean(),
    "Std": portfolio_return.std(),
    "Min": portfolio_return.min(),
    "Max": portfolio_return.max(),
    "Sharpe": portfolio_return.mean() / portfolio_return.std()
print("\nPortfolio Statistics (Equal Weights):\n", portfolio_stats)
```

```
csharp

Portfolio Statistics (Equal Weights):
{'Mean': 0.00054, 'Std': 0.0085, 'Min': -0.0182, 'Max': 0.0167, 'Sharpe': 0.064}
```