Problem 8): This **MAC** is *not* secure due to the high probability of collisions. To see this, consider any two messages $m, m^{\star} \in \mathcal{M}$ such that $m = \{m_1, m_2, \dots, m_k, \dots, m_l\}$, $m^{\star} = \{m_1^{\star}, m_2^{\star}, \dots, m_k^{\star}, \dots, m_l^{\star}\}$, $m_i = m_j^{\star}$, $m_j = m_i^{\star}$, and $m_k = m_k^{\star}$ for all other k < l. Then, clearly we have

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots F_k(m_i) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

which, by the the of **XOR**, is equivalent to

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots F_k(m_i) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

Applying our definitions for m and m^* from above, we clearly see that

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots \oplus F_k(m_j) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

= $F_k(m_1^*) \oplus F_k(m_2^*) \oplus \cdots \oplus F_k(m_i^*) \oplus \cdots \oplus F_k(m_i^*) \oplus \cdots \oplus F_k(m_l^*) = t^*$

thereby showing collisions for this hash function.