الوحدة التعليمية: الدارات الكهربائية في التيار المستمر الوضعية التعليمية: ثنائي المساري وثنائي زينر

نشاط: انجز التركيبين التاليين ثم سجل ملاحظاتك.

ملاحظات:

في التركيب 1 المصباح يشتعل في التركيب 2 المصباح لا يشتعل

1- ثنائي المساري (Diode):

ثنائي المساري او الصمام الثنائي هو عنصر الكتروني له خاصية الناقل في اتجاه معين وعازل في الاتجاه المعاكس.

- التكوين:

يصنع ثنائي المساري من التحام قطعتين صغيرتين من مادة سيليسيوم (Si) أو الجيرمانيوم (Ge) (مواد شبه ناقلة) مشبعتين بطريقتين مختلفتين واحدة سلبيا و الأخرى إيجابا

N شبه ناقل سالب P شبه ناقل موجب

الرمز العام لثنائي المساري:

anode : A (مصعد) cathode : K

ملاحظة : عمليا يشار الى القطب cathode بدائرة

دراسة خاصية الثنائي المساري:

من أجل الحصول عل منحنى يميز عمل ثنائي المساري ننجز التركيبن التاليين:

في التركيب المباشر القطب الموجب للمولد مربوط مع القطب (anode(P) في التركيب العكسي القطب (catkod(N) في التركيب العكسي القطب الموجب للمولد مربوط مع القطب

رسم المنحنى

تفسير خاصية ثنائي المساري:

$U_{ m D}>0$ التركيب المباشر

من اجل $U_D < V_0$ الثنائي المساري غير ممرر (مسدود) من اجل $U_D > V_0$ الثنائي المساري ممرر للتيار حسب المعادلة

 $U_D = V_0 + r_d.I$

مقاومة الثنائي $r_{
m d}$

I : التيار المار في الثنائي

توتر العتبة للثنائي $oldsymbol{\mathsf{V}}_0$

اذا کان شبه الناقل من السلیسیوم $V_0=0.7V$

اذا كان شبه الناقل من الجرمانيوم $V_0=0.3V$ الثنائي الذي لديه عتبة V_0 يسمى ثنائي حقيقي

مستقيم الحمولة:

بتطبيق قانون كيرشوف في دارة التركيب المباشر نحصل على:

$$E - V_D - R.I = 0 \Rightarrow I = \frac{E}{R} - \frac{V_D}{R}$$

 $(I=0,\ V_D=E), (I=\frac{E}{R},\ V_D=0)$: لرسم مستقيم الحمولة يجب تعيين نقطتين هما Q . Q نقطع منحنى الميزة المباشرة مع مستقيم الحمولة يسمى نقطة التشغيل

 $\frac{1}{2}$ - التركيب العكسي $\frac{1}{2}$

يكون التيار I معدوما، أي الثنائي غير ممرر (مسدود)

الثنائي المساري المثالى:

يملك الثنائي المثالي الخصائص التالية:

- في التركيب المباشر يكون التوتر

بين طرفيه معدوما، فهو يكافئ قاطعة مغلوقة.

- في التركيب العكسى يكون التيار

المار فيه معدوما، فهو يكافئ قاطعة مفتوحة.

R_1 I_1 I_D

التطبيق 01:

الثنائية المستعملة في التركيب التالي مثالية. E=10v, $R_1=100\Omega$, $R_2=1K\Omega$: يعطى: أحسب مختلف التيارات في الدارة

الحل:

بما ان الثنائي مثالي فان $\mathbf{U}_D=0$ أي يكافئ قاطعة مغلوقة

وبما ان $R_2 = 0$ وبما التفرع مع الثنائي فان $U_{R2} = 0$ (قصر المقاومة)

$$I_2 = \frac{U_{R2}}{U_R} = 0$$

$$I_1 = I_D = \frac{\mathbf{E}}{R_1} = \frac{10}{100} = 0.1A$$

II- ثنائى زينر (diode ziner): انجز التركيب التالي ثم قم بزيادة قيمة توتر المولد وسجل ملاحظتك

الملاحظة: نلاحظ عدم اشتعال المصباح الا بعد ان يجتاز التوتر قيمة معينة عند تصعيد التوتر

تعريف ثنائي زينر: هو عنصر الكتروني يماثل الثنائي المساري في الاتجاه المباشر لكن في الاتجاه العكسي يتحمل توتر عكسى يفوق بقليل توتر زينر Vz (توتر العكسى)

الرمز العام لثنائي الزينر:

دراسة خاصية ثنائى الزينر:

منحنى عمل ثنائي الزينر في الاستقطاب المباشر والعكسي - في الاستقطاب المباشر 0>0: الثنائي زينر يكافئ الثنائي العادي معادلته $U_{\rm D}=V_0+r_z$.

 $\frac{1}{2} \cdot U_{D} = 0$ في الاستقطاب الغير المباشر

يصبح الثنائي زينر ممررا عندما يجتاز التوتر العكسي (توتر زينر). وتصبح ميزته خطية ومعادلتها هي: $\mathbf{U}_{\mathbf{D}} = V_Z + r_Z . I_Z$

التصميم المكافئ في الاستقطاب العكسي:

ليكن التركيب الموضح بالشكل التالي: $V_Z=5v$: الثنائي زينر مثالي حيث: $V_Z=5v$ و الثنائي زينر مثالي E=10v , $R_1=100\Omega$, $R_2=1K\Omega$ و R_2 المار في المقاومة R_2 أحسب التيار R_2 المار في الثنائية R_2 أحسب التيار R_2 المار في الثنائية R_2

: I_2 : I_3 : I_4 : I_4 : I_4 : I_5 : I_5 : I_5 : I_5 : I_7 : I_8 : $I_$

: I_Z حساب التيار I_Z $E=U_{R1}+U_{R2}$ $E=R_1.I_1+R_2.I_2$ $I_1=(E-R_2.I_2)/R_1=[10-(1000\times0.005)]/100=50mA$

اذا بستعمال قانون العقد نجد $Iz=I_1-I_2=50-5=45mA$

