Лекция 11. ПРИЗНАКИ СХОДИМОСТИ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ

- 1. Признаки сравнения несобственных интегралов.
- 2. Абсолютная сходимость.
- 3. Признаки Дирихле и Абеля.

1. Признаки сравнения несобственных интегралов.

Будем рассматривать случай несобственного интеграла от функций, определенных на полуинтервале [a;b) и интегрируемых по Риману на любом отрезке $[a;\eta],\ a \le \eta < b$ (несобственный интеграл 1-го или 2-го рода)

Лемма 1. Если функция f(x) неотрицательна на интервале [a;b), то для сходимости несобственного интеграла $\int_a^b f(x) dx$ необходимо и достаточно, чтобы множество всех интегралов $\int_a^\eta f(x) dx$, $\eta \in [a;b)$, было ограничено сверху, т.е. чтобы существовала такая постоянная c>0, что для всех $\eta \in [a;b)$ выполнялось неравенство

$$\int_{a}^{\eta} f(x) dx \le c$$

Без доказательства.

Теорема 1 (признак сравнения). Пусть на промежутке [a;b) определены две неотрицательные функции f(x) и g(x), интегрируемые на каждом конечном отрезке $[a;\eta]$, $a \le \eta < b$, причем $\forall x \in [a;b)$ справедливо $0 \le f(x) \le g(x)$. Тогда

1) из сходимости интеграла $\int\limits_a^b g(x)dx$ следует сходимость интеграла $\int\limits_a^b f(x)dx$,

2) из расходимости интеграла $\int_a^b f(x)dx$ следует расходимость интеграла $\int_a^b g(x)dx$.

▶ Для любого $\eta \in [a;b)$ имеем $\int_a^b f(x)dx \le \int_a^b g(x)dx$.

Случай 1. Если интеграл $\int_{a}^{b} g(x)dx$ сходится, то согласно лемме 1 интегралы $\int_{a}^{\eta} g(x)dx$, $\eta \in [a;b)$, ограничены сверху. Значит, и интегралы $\int_{a}^{\eta} f(x)dx$ также ограничены сверху. По лемме 1 интеграл $\int_{a}^{b} f(x)dx$ сходится.

Случай 2. Если интеграл $\int_{a}^{b} f(x)dx$ расходится, то в силу доказанного 1) интеграл $\int_{a}^{b} g(x)dx$ не может сходится. Если бы он сходился, то и интеграл $\int_{a}^{b} f(x)dx$ также сходился бы. Значит, интеграл $\int_{a}^{b} g(x)dx$ расходится. \blacktriangleleft

Следствие 1 (предельный признак сравнения). Пусть на промежутке [a;b) определены две неотрицательные функции f(x) и g(x), интегрируемые на каждом конечном отрезке $[a;\eta]$, $a \le \eta < b$, причем $\forall x \in [a;b)$ $g(x) \ne 0$, и существует конечный предел

$$\lim_{x\to b}\frac{f(x)}{g(x)}=A>0.$$

Тогда 1) если интеграл $\int\limits_a^b g(x)dx$ сходится и $0 \le A < +\infty$, то интеграл $\int\limits_a^b f(x)dx$ сходится,

- 2) если интеграл $\int\limits_a^b g(x)dx$ расходится и $0 < A \le +\infty$, то интеграл $\int\limits_a^b f(x)dx$ расходится,
 - 3) если $\lim_{x\to b} \frac{f(x)}{g(x)} = 1$, то интегралы $\int_a^b g(x)dx$ и $\int_a^b f(x)dx$ схо-

дятся или расходятся одновременно.

Без доказательства.

Примеры. Исследовать на сходимость интегралы

1)
$$\int_{0}^{1} \frac{dx}{\ln x}$$
, 2) $\int_{1}^{+\infty} \frac{dx}{\sqrt{x^3 + 1}}$.

Решение. 1. Сравним интеграл $\int_0^1 \frac{dx}{\ln x}$ с расходящимся ин-

тегралом $\int_{0}^{1} \frac{dx}{x-1}$. Поскольку $\ln x = \ln(1+(x-1)) \sim x-1$ при $x \to 1$,

то имеем

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\ln(1 + (x - 1))}{x - 1} = 1.$$

Значит, интеграл $\int_{0}^{1} \frac{dx}{\ln x}$ расходится.

2. Сравним данный интеграл со сходящимся интегралом

$$\int\limits_{1}^{+\infty} \frac{dx}{x^{\frac{3}{2}}}.$$
 Поскольку

$$\frac{1}{\sqrt{x^3+1}} < \frac{1}{\sqrt{x^3}} = \frac{1}{\frac{3}{x^2}}, \ \forall x \in [1;+\infty)$$

то из сходимости интеграла $\int_{1}^{+\infty} \frac{dx}{x^{\frac{3}{2}}}$ согласно признаку сравнения следует, что интеграл $\int_{1}^{+\infty} \frac{dx}{\sqrt{x^3+1}}$ сходится.

2. Абсолютная сходимость.

Определение 1. Несобственный интеграл $\int_a^b f(x)dx$ называется *абсолютно сходящимся* интегралом, если сходится интеграл $\int_a^b |f(x)|dx$.

Теорема 2 (критерий Коши абсолютной сходимости интеграла). Несобственный интеграл $\int_a^b f(x) dx$ абсолютно сходится тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое η , что для всех η_1 и η_2 , удовлетворяющих условию $\eta < \eta_1 < b$, $\eta < \eta_2 < b$, выполняется неравенство $\left| \int_{\eta_1}^{\eta_2} |f(x)| dx \right| < \varepsilon$.

Без доказательства.

Теорема 3. Если несобственный интеграл $\int_{a}^{b} f(x)dx$ абсолютно сходится, то он сходится.

▶ Если несобственный интеграл $\int_{a}^{b} f(x) dx$ абсолютно сходится, то по теореме 2 для любого $\varepsilon > 0$ существует такое η , что для всех η_1 и η_2 , удовлетворяющих условию $\eta < \eta_1 < b$, $\eta < \eta_2 < b$, выполняется неравенство $\left| \int_{\eta_1}^{\eta_2} |f(x)| dx \right| < \varepsilon$.

Тогда

$$\left| \int_{\eta_1}^{\eta_2} f(x) dx \right| < \left| \int_{\eta_1}^{\eta_2} |f(x)| dx \right| < \varepsilon.$$

В силу критерия Коши для сходимости интеграла, интеграл $\int\limits_{a}^{b}f(x)dx$ сходится. \blacktriangleleft

Замечание. Обратное верно не всегда.

Пример. Исследовать на сходимость интегралы 1) $\int_{1}^{+\infty} \frac{\sin x dx}{x}$,

$$2) \int_{1}^{+\infty} \frac{|\sin x| dx}{x} \, .$$

Решение. 1. Имеем

$$\int_{1}^{+\infty} \frac{\sin x dx}{x} = -\int_{1}^{+\infty} \frac{d(\cos x)}{x} = -\frac{\cos x}{x} \Big|_{1}^{\infty} + \int_{1}^{+\infty} \cos x d\left(\frac{1}{x}\right) =$$

$$= \cos 1 - \int_{1}^{+\infty} \frac{\cos x}{x^{2}} dx.$$

Поскольку $\left|\frac{\cos x}{x^2}\right| \le \frac{1}{x^2}$ и интеграл $\int_{1}^{+\infty} \frac{dx}{x^2}$ сходится, то интеграл $\int_{1}^{+\infty} \frac{\cos x}{x^2} dx$ абсолютно сходится. Следовательно, интеграл

$$\int_{1}^{+\infty} \frac{\sin x dx}{x}$$
 сходится.

2. Из неравенства

$$\left|\sin x\right| \ge \sin^2 x = \frac{1 - \cos 2x}{2}$$

следует, что для любого $\eta > 1$ выполняется неравенство

$$\int_{1}^{\eta} \frac{|\sin x| dx}{x} \ge \frac{1}{2} \int_{1}^{\eta} \frac{dx}{x} - \frac{1}{2} \int_{1}^{\eta} \frac{\cos 2x dx}{x}.$$

Интеграл $\int_{1}^{+\infty} \frac{dx}{x}$ расходится.

Интеграл
$$\int_{1}^{+\infty} \frac{\cos 2x dx}{x}$$
 еходится, поскольку

$$\int_{1}^{+\infty} \frac{\cos 2x dx}{x} = \frac{1}{2} \int_{1}^{+\infty} \frac{d(\sin 2x)}{x} = \frac{1}{2} \frac{\sin 2x}{x} \Big|_{1}^{\infty} + \frac{1}{2} \int_{1}^{+\infty} \frac{\sin 2x}{x^{2}} dx =$$

$$= -\frac{1}{2} \sin 2x + \frac{1}{2} \int_{1}^{+\infty} \frac{\sin 2x}{x^{2}} dx$$

и интеграл $\int_{1}^{+\infty} \frac{\sin 2x}{x^2} dx$ сходится, поскольку $\left| \frac{\sin 2x}{x^2} \right| \le \frac{1}{x^2}$ и инте-

грал $\int_{1}^{+\infty} \frac{dx}{x^2}$ сходящийся, $\alpha = 2 > 1$.

Значит, интеграл $\int_{1}^{+\infty} \frac{|\sin x| dx}{x}$ расходится.

3. Признаки Дирихле и Абеля.

Теорема 4 (признак Дирихле). Пусть на полуоси $x \ge a$ 1) функция f(x) непрерывна и имеет ограниченную первообразную,

g(x) непрерывно дифференцируема и

$$\lim_{x\to+\infty}g(x)=0.$$

Тогда интеграл $\int\limits_{a}^{+\infty}f(x)g(x)dx$ сходится.

Пример. Исследовать на сходимость интеграл $\int_{1}^{+\infty} \frac{\sin x dx}{x^p}$ p > 1.

Решение. Функция $f(x) = \sin x$ имеет ограниченную первообразную $F(x) = -\cos x$, а функция $g(x) = \frac{1}{x^p}$, p > 1, убывает при $x \to +\infty$, т.е. $\lim_{x \to +\infty} \frac{1}{x^p} = 0$. Согласно признаку Дирихле интеграл $\int_{1}^{+\infty} \frac{\sin x dx}{x^p}$ сходится.

Теорема 5 (признак Абеля). Пусть на полуоси $x \ge a$

1)функция f(x) непрерывна и интеграл $\int_{a}^{+\infty} f(x)dx$ сходится,

2)функция g(x) непрерывно дифференцируема, ограничена и монотонна.

Тогда интеграл $\int_{-\infty}^{+\infty} f(x)g(x)dx$ сходится.

Пример. Исследовать на сходимость интеграл $\int\limits_{1}^{+\infty} \frac{\sin x \arctan x dx}{x^p} \,, \ p > 1 \,.$

Решение. Интеграл $\int_{1}^{+\infty} \frac{\sin x dx}{x^p}$, p>1, сходится, а функция $g(x)=\arctan x$ ограничена и монотонна. В силу признака Абеля интеграл

$$\int_{1}^{\infty} \frac{\sin x \arctan x dx}{x^{p}}$$

сходится.

Вопросы для самоконтроля

- 1. Сформулируйте и докажите признак сравнения для неотрицательных функций.
- 2. Сформулируйте предельный признак сравнения для неотрицательных функций.
- 3. Какой несобственный интеграл называется абсолютно сходящимся?
- 4. Сформулируйте признаки Дирихле и Абеля сходимости несобственных интегралов.