UNJU. – FACULTAD DE INGENIERÍA Álgebra y Geometría Analítica

TRABAJO PRÁCTICO Nº 12

ESPACIOS VECTORIALES

Resolución de los ejercicios 3b)

3.- Encontrar las coordenadas del vector v con respecto a las bases indicadas

b)
$$v = (1, 3, -2)$$

i) $[B_1] = \{(0, 1, 0), (0, 1, 1), (1, 0, 1)\}$

Para encontrar las coordenadas de un vector v respecto de otra base, debemos escribir la combinación lineal de los vectores de la base e igualarla al vector v, obtener el sistema de ecuaciones, y resolverlo para encontrar los valores de los escalares, quienes resultan ser las coordenadas que buscamos:

$$(1\ , \ 3\ , \ -2) = \alpha_1(0\ , \ 1\ , \ 0) + \alpha_2(0\ , \ 1\ , \ 1) + \alpha_3(1\ , \ 0\ , \ 1)$$

$$(1\ , \ 3\ , \ -2) = (\alpha_3\ , \ \alpha_1 + \alpha_2\ , \ \alpha_2 + \alpha_3)$$

$$\begin{cases} \alpha_3 = 1 \\ \alpha_1 + \alpha_2 = 3 \\ \alpha_2 + \alpha_3 = -2 \end{cases}$$

Si resolvemos el sistema obtenemos: $\alpha_1 = 6$; $\alpha_2 = -3$; $\alpha_3 = 1$; que son las coordenadas de ν respecto de $[B_1]$.

 \Rightarrow Se puede expresar $v_{(BI)} = (6, -3, 1)$

ii)
$$[B_2] = \{(1, 1, 0), (2, 0, -1), (-5, 2, 3)\}$$

Se procede de la misma forma, obteniendo:

 $\alpha_1 = -9$; $\alpha_2 = 20$; $\alpha_3 = 6$, son las coordenadas de v respecto de [B₂].

 \Rightarrow Se puede expresar $v_{[B2]} = (-9, 20, 6)$

iii) La base canónica correspondiente.

Respecto de la base canónica las coordenadas son las mismas:

Para v = (1, 3, -2): $\alpha_1 = 1$; $\alpha_2 = 3$; $\alpha_3 = -2$, son las coordenadas de v respecto de la base canónica.