Probabilistic PCA and Variational autoencoders

Preliminary: Matrix factorization view

- Matrix factorization: $X \approx WZ + b1$
 - Data matrix: $X = [x_1; x_2; ...; x_N] \in \mathbb{R}^{d \times N}$
 - Weight matrix: $W = [w_1; w_2; ...; w_d] \in \mathbb{R}^{d \times d'}$
 - Code matrix: $Z = [z_1; z_2; ...; z_N] \in \mathbb{R}^{d' \times N}$
 - Bias vector: $b = \mathbb{E}[x] \in \mathbb{R}^d$
 - 1 = [1, ..., 1]

Preliminary: Matrix factorization view

- Principal componen analysis: $X \approx WZ + b1$
 - The code vectors have a zero mean and a diagonal covariance.
 - $\mathbb{E}[z] = 0$ and $\mathbb{C}[z] = \mathbb{E}[z] = 0$ and $\mathbb{E}[z] = \mathbb{E}[z] = 0$
 - ullet Eigendecomposition of the (scaled) covariance of X
 - $\operatorname{Cov}(X) = (X b1)(X b1)^{\top} \approx (WZ)(WZ)^{\top} = W(ZZ^{\top})W^{\top} = W\operatorname{Cov}(z)W^{\top}$
- It is tricky to extend principal component analysis under this perspective.

- Instead of the data matrix, consider each data vector separately
 - $X \approx WZ + b1 \iff x_n \approx Wz_n + b, \forall n = 1, ..., N$
- x_n is a (approximate) linear transformation of z_n by W and b.
- Instead of approximation, can we say it's noisy?
 - $x = Wz + b + \epsilon$
- Any observation x is noisy linear transformation of z.

- Any observation x is noisy linear transformation of z: $x = Wz + b + \epsilon$
- Where does z come from?
 - Recall: the code vectors have a zero mean and a diagonal covariance.
 - Assume z is a sample from a standard Normal distribution: $z \sim \mathcal{N}(0, 1^{d'})$
- Where does ϵ come from?
 - Zero-mean, scaled identity covariance: $\epsilon \sim \mathcal{N}(0,\sigma^2)$

- A probabilistic graphical model of principal component analysis
 - Unobserved: $z \sim \mathcal{N}(0, 1^{d'})$
 - Observed: $x \mid z \sim \mathcal{N}(Wz + b, \sigma^2 I)$
 - Parameters: W and b
- Joint probability p(x, z) = p(x | z)p(z)
- . Marginal probability $p(x) = \int_{\mathbb{R}^{d'}} p(x \mid z) p(z) dz$
- Posterior probability p(z | x) = p(x | z)p(z) / p(x)

Recap: Normal distributions

- Marginals and conditionals of Gaussians are Gaussians.
- Any Gaussian distribution is fully characterized by its mean and (co)variance.

- A probabilistic graphical model of principal component analysis
 - Unobserved: $z \sim \mathcal{N}(0, 1^{d'})$
 - Observed: $x \mid z \sim \mathcal{N}(Wz + b, \sigma^2 I)$
- Marginal distribution: derive them from $x = Wz + b + \epsilon$
 - $\mathbb{E}[x] = W\mathbb{E}[z] + b + \mathbb{E}[\epsilon] = b$
 - $Cov[x] = \mathbb{E}[(x \mathbb{E}[x])(x \mathbb{E}[x])^{\mathsf{T}}] = \mathbb{E}[(Wz + \epsilon)(Wz + \epsilon)^{\mathsf{T}}] = WW^{\mathsf{T}} + \sigma^2 I$

Probabilistic view: in the limit of no noise, it's all the same thing...

- When $\sigma^2 = 0$,
 - $\mathbb{E}[x] = W\mathbb{E}[z] + b + \mathbb{E}[\epsilon] = b$
 - $Cov[x] = WW^{T} + \sigma^{2}I = WW^{T}$
- W can be found by the eigendecomposition of the covariance of x.

Probabilistic view: learning by maximum log-likelihood

Log-likelihood:

$$\sum_{n=1}^{N} \log p(x^n) = -\frac{1}{2} \sum_{n=1}^{N} (x^n - b)^{\mathsf{T}} (WW^{\mathsf{T}} + \sigma^2 I)^{-1} (x^n - b) - \frac{1}{2} \log \left| WW^{\mathsf{T}} + \sigma^2 I \right| - d' \log 2\pi$$

- ullet Maximize the log-likelihood w.r.t. W and b using gradient descent
 - The optimal $b = \frac{1}{N} \sum_{n=1}^{N} x^n$
 - The derivative of the log-determinant: $\frac{\partial \log \left| WW^{\top} + \sigma^2 I \right|}{\partial W} = 2 \text{Tr} \left[(WW^{\top} + \sigma^2 I)^{-1} W \right]$
- You can also solve it exactly and get an analytical solution: left for your own exercise!

- A probabilistic graphical model of principal component analysis
 - Unobserved: $z \sim \mathcal{N}(0, 1^{d'})$
 - Observed: $x \mid z \sim \mathcal{N}(Wz + b, \sigma^2 I)$
- Joint distribution
 - Simply stack x and z and for a Gaussian distribution
 - Because their mean and covariance do not depend on each other.
 - $\mathbb{E}[[x;z]]=[b;0]$, $\Sigma_{xx}=\mathrm{Cov}[x]=WW^{\top}+\sigma^2I$ and $\Sigma_{zz}=\mathrm{Cov}[z]=I$
 - $\bullet \ \ \Sigma_{xz} = \mathbb{E}[(x \mathbb{E}[x])(z \mathbb{E}[z])^{\mathsf{T}}] = \mathbb{E}[(Wz + b \epsilon b)z^{\mathsf{T}}] = W\mathbb{E}[zz^{\mathsf{T}}] \mathbb{E}[\epsilon z^{\mathsf{T}}] = W\mathbb{E}[zz^{\mathsf{T}}] = W\mathbb{E}[zz^{\mathsf{T}}]$
 - $\Sigma_{zx} = W^{\top}$

Probabilistic view: posterior inference

- A probabilistic graphical model of principal component analysis
 - Unobserved: $z \sim \mathcal{N}(0, 1^{d'})$
 - Observed: $x \mid z \sim \mathcal{N}(Wz + b, \sigma^2 I)$
- Posterior distribution
 - $\mathbb{E}[z \mid x] = 0 + \sum_{z,x} \sum_{x,x}^{-1} (x b) = W^{\mathsf{T}} (WW^{\mathsf{T}} + \sigma^2 I)^{-1} (x b)$
 - $Cov[z | x] = \Sigma_{zz} \Sigma_{zx} \Sigma_{xx}^{-1} \Sigma_{zx} = I W^{\mathsf{T}} (WW^{\mathsf{T}} + \sigma^2 I)^{-1} W$
 - The covariance of $z \mid x$ does not depend on x.

Probabilistic view: in the limit of no noise, it's pseudo inverse.

- When $\sigma^2 = 0$,
 - $\mathbb{E}[z \mid x] = W^{\mathsf{T}}(WW^{\mathsf{T}} + \sigma^2 I)^{-1}(x b) = W^{\mathsf{T}}(WW^{\mathsf{T}})^{-1}(x b)$
 - $Cov[z|x] = I W^{T}(WW^{T} + \sigma^{2}I)^{-1}W = I$

Nonlinear principal component analysisGoing beyond linear transformation

- Generalizing PCA
 - From $x = Wz + b + \epsilon$ to $x = f(z) + \epsilon$.
- In general, [x; z] is not Gaussian jointly anymore
 - because the mean and covariance of x may be tied.
 - . The marginal $p(x) = \int p(x|z)p(z)dz$ may not be Gaussian.
 - The posterior $p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)\mathrm{d}z}$ may not be Gaussian.

Nonlinear principal component analysis Going beyond linear transformation

- Nonlinear principal component analysis can be more powerful than PCA
 - From $x = Wz + b + \epsilon$ to $x = f(z) + \epsilon$.
- The marginal is a mixture of (infinitely many) Gaussians: $p(x) = \int p(x|z)p(z)dz$
 - For every z, there is a Gaussian $p(x \mid z)$ defined on the input space.
 - This Gaussian p(x | z) is weighted by p(z).
 - But, it's still constrained, because f is shared by all the Gaussian components.

Variational inference: using an approximate posterior distribution

- Given f in $x = f(z) + \epsilon$, what is $\mathbb{E}_{z|x;f}[F(z)]$?
 - Intractable in general, because $p(z \mid s)$ is intractable in general.
- What if we use a tractable proxy $q(z \mid x)$ to the exact posterior $p(z \mid x)$?
 - q(z|x) is a distribution we know how to easily use with a set of parameters
 - Gaussian, Laplace, etc.
 - q(z|x) should be similar to p(z|x): low $\mathrm{KL}(q\|p) = -\int q(z|x) \log p(z|x) \mathrm{d}z + \mathcal{H}(q)$

Variational lower bound

- q(z|x) should be similar to p(z|x): low $\mathrm{KL}(q||p) = -\int q(z|x)\log p(z|x)\mathrm{d}z + \mathcal{H}(q)$
- Variational lowerbound

1.
$$KL(q||p) = -\mathbb{E}_q[\log p(x|z)] + KL(q(z|x)||p(z)) + \log p(x)$$

2.
$$\log p(x) \ge \mathbb{E}_q[\log p(x|z)] - KL(q(z|x)||p(z))$$

Variational lowerbound: Expectation-Maximization algorithm

- Expectation step: find q that minimize KL(q||p)
 - $KL(q||p) = -\mathbb{E}_q[\log p(x|z)] + KL(q(z|x)||p(z)) + \log p(x)$
 - Equivalent to $\min_{q} \mathbb{E}_{q}[\log p(x|z)] + \text{KL}(q(z|x)||p(z))$
 - Because $\log p(x)$ is not dependent on q.
 - Goals:
 - Find a distribution over z that can easily recover the corresponding x.
 - Ensure that z likely under q is also likely under the prior p(z).

Variational lowerbound: Expectation-Maximization algorithm

- Maximization step: find f that maximizes $\log p(x)$ (or $\sum_{n=1}^N \log p(x^n)$ with N>1)
 - Instead of $\log p(x)$, maximize its lowerbound given q:
 - A classical technique in optimization
 - $\log p(x) \ge \mathbb{E}_q[\log p(x|z)] KL(q(z|x)||p(z))$
 - $\max_{f} \mathbb{E}_{q}[\log p(x|z)]$, since q and p(z) are fixed.
 - The goal: find f that makes x likely given z from the approximate posterior q.

Variational lowerbound: Expectation-Maximization algorithm

- Expectation-maximization algorithm
 - Expectation step: $\min_{q} \mathbb{E}_{q}[\log p(x \mid z)] + \mathrm{KL}(q(z \mid x) || p(z))$
 - . Maximization step: $\max_{f} \mathbb{E}_{q}[\log p(x \mid z)]$
- Solving them all together
 - $\min_{f,q^1,...,q^N} \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{z \sim q(z|x^n)} \left[-\log p(x|z) \right] + \mathsf{KL}(q(z|x^n)||p(z))$
 - Simultaneously infer the posterior distribution $q(z | x^n)$ of each data point and estimate f

Variational lowerbound: Amortized inference

• As N grows, this approach becomes pretty much impossible:

•
$$\min_{f,q^1,...,q^N} \frac{1}{N} \sum_{n=1}^N \mathbb{E}_{z \sim q(z|x^n)} \left[-\log p(x^n|z) \right] + \text{KL}(q(z|x^n)||p(z))$$

- There are N approximate posterior distributions to be estimated.
- Each approximate posterior distribution requires solving

$$\min_{q^n} \mathbb{E}_{z \sim q(z|x^n)} \left[-\log p(x^n \mid z) \right] + \mathsf{KL}(q(z \mid x^n) || p(z))$$

Variational lowerbound: Amortized inference

Each approximate posterior distribution requires solving

$$\min_{q^n} \mathbb{E}_{z \sim q(z|x^n)} \left[-\log p(x^n|z) \right] + \mathsf{KL}(q(z|x^n)||p(z))$$

• Instead, we train a $\frac{1}{2}$ neural $\frac{1}{2}$ to solve this optimization problem

$$\min_{g} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim q(z|g(x^n))} \left[-\log p(x^n|z) \right] + \mathsf{KL}(q(z|g(x^n))||p(z))$$

• Amortize the cost of per-example optimization in the future by spending a lot of time training *g* in advance.

Variational lowerbound maximization with amortized inference

• The final objective function:

•
$$\min_{f,g} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim q(z|g(x^n))} \left[-\log p(x^n|f(z)) \right] + \mathsf{KL}(q(z|g(x^n))||p(z))$$

• But, how do we compute the gradient of the lower bound w.r.t. g?

Reparametrization trick

Detour: the law of the unconscious statistician

- Let X be a continuous random variable with its density p(X).
- We want to compute $\mathbb{E}[g(X)]$, but we don't know the density of g(X).
- The law of the unconscious statistician tells us that

$$\cdot \mathbb{E}[g(X)] = \int p(X)g(X)dX$$

• That is, we can compute the expectation of g(X) under the density of X.

Reparametrization trick

Detour: Gaussian reparametrization

- The law of the unconscious statistician: $\mathbb{E}[g(X)] = \int p(X)g(X)dX$
- Let $X = \mu + \sigma \odot \epsilon$, where $\epsilon \sim \mathcal{N}(0, I^d)$
 - $\mathbb{E}_{X \sim \mathcal{N}(\mu, \mathsf{diag}(\sigma))}[g(X)] = \mathbb{E}_{\epsilon \sim \mathbb{N}(0, I^d)}[g(\mu + \sigma \odot \epsilon)]$
- Then, we can backpropagate through the sampling procedure:
 - $\quad \nabla_{\mu} \mathbb{E}_{X \sim \mathcal{N}(\mu, \operatorname{diag}(\sigma^{2})}[g(X)] = \nabla_{\mu} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)}[g(\mu + \sigma \odot \epsilon)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I)}[\nabla_{\tilde{X}} g(\tilde{X}) \nabla_{\mu} \tilde{X}]$

Reparametrization trick

Detour: General reparametrization

- The law of the unconscious statistician: $\mathbb{E}[g(X)] = \int p(X)g(X)dX$
- Let $X = A(\theta, \epsilon)$, where ϵ is independent of θ and A is differentiable w.r.t. θ :
 - $\mathbb{E}_{X}[g(X)] = \mathbb{E}_{\epsilon}[g(A(\theta, \epsilon))]$
- Then, we can backpropagate through the sampling procedure:
 - $\bullet \quad \nabla_{\mu} \mathbb{E}_{X}[g(X)] = \nabla_{\mu} \mathbb{E}_{\epsilon}[g(A(\theta, \epsilon))] = \mathbb{E}_{\epsilon}[\nabla_{\tilde{X}}g(\tilde{X}) \nabla_{\theta}\tilde{X}]$

Variational autoencoder

Variational lowerbound maximization with amortized inference and reparametrization

• With a reparametrizable distribution as q (e.g., Gaussian):

$$\min_{f,g} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\epsilon} \left[-\log p(x^n | f(A(g(x^n), \epsilon))) \right] + \mathsf{KL}(q(z | g(x^n)) || p(z))$$

- It is a regularized autoencoder with noisy bottleneck.
- We compute the gradient of the loss function w.r.t. g with backpropagation.
- We often refer to this as a variational autoencoder.

Variational autoencoder with discrete *z* What if reparameterization is not possible?

The original objective function without reparametrization:

•
$$\min_{f,g} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim q(z|g(x^n))} \left[-\log p(x^n|f(z)) \right] + \text{KL}(q(z|g(x^n))||p(z))$$

The gradient of the expectation is problematic:

$$\quad \nabla_g \mathbb{E}_{z \sim q(z|g(x))} \left[-\log p(x|f(z)) \right] = -\int \nabla_g q(z|g(x)) \log p(x|f(z)) \mathrm{d}z$$

. The log-derivative trick: $(\log f)' = \frac{f'}{f} \iff f' = f(\log f)'$

Variational autoencoder with discrete z

What if reparameterization is not possible?

The gradient of the expectation with the log-derivative trick

$$- \int \nabla_g q(z \mid g(x)) \log p(x \mid f(z)) dz = - \int q(z \mid g(x)) \log p(x \mid f(z)) \nabla_g \log q(z \mid g(x)) dz$$

Recall the definition of the expectation:

$$-\int q(z\,|\,g(x))\log p(x\,|\,f(z))\,\nabla_g\log q(z\,|\,g(x))\mathrm{d}z = -\operatorname{\mathbb{E}}_{z\sim q(z\,|\,g(x))}\left[\log p(x\,|\,f(z))\,\nabla_g\log q(z\,|\,g(x))\right]$$

• We use sample-based approximation:

$$-\mathbb{E}_{z \sim q(z|g(x))} \left[\log p(x|f(z)) \nabla_g \log q(z|g(x)) \right] = -\frac{1}{M} \sum_{m=1}^{M} \log p(x|f(z^m)) \nabla_g \log q(z^m|g(x))$$

Variational autoencoder with discrete z

What if reparameterization is not possible?

• The original objective function without reparametrization:

•
$$\min_{f,g} \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim q(z|g(x^n))} \left[-\log p(x^n|f(z)) \right] + \text{KL}(q(z|g(x^n))||p(z))$$

REINFORCE estimator:

•
$$\nabla_g \mathbb{E}_{z \sim q(z|g(x))} \left[-\log p(x|f(z)) \right] \approx -\frac{1}{M} \log p(x|f(z^n)) \nabla_g \log q(z^n|g(x))$$

• It's always a good idea to use a continuous, reparametrizable latent variables.

What dof and g do? Interpreting the variational autoencoder

- **Decoding**: f tells us a set of likely observations p(x | f(z)) given a latent configuration z.
- **Encoding**: g tells us which set of latent configurations q(z | g(x)) have likely resulted in the observation x.

Detour: KL Divergence

 Kullback-Leibler (KL) divergence is perhaps the most widely used (asymmetric) divergence between two distributions in machine learning

•
$$KL(q||p) = \int_{z} q(z) \log \frac{q(z)}{p(z)} dz \ge 0$$

• KL divergence is 0, when q = p.

Detour: KL Divergence

- KL divergence can be rewritten as $\mathrm{KL}(q\|p) = -\mathbb{E}_{z\sim q}\left[\log p(z)\right] \mathcal{H}(q)$
 - 1st term: the log-probability of z, which is likely under q, under p.
 - 2nd term: the entropy of q
- The lower KL divergence implies that
 - 1st term: any z likely under q must be likely under p, but z likely under p is not necessarily likely under q.
 - 2nd term: the support of q must be as large as possible.

KL Divergence from q to p: KL(q||p)

- $-\mathbb{E}_{z\sim q}\left[\log p(z)\right]$: any z likely under q must be likely under p, but not vice versa.
 - q chooses z likely under the prior among those that may have generated x,
 - because we do not care about z unlikely under the prior.
- $-\mathcal{H}(q)$: the support of q must be as large as possible.
 - q must find the largest set of z that would have generated x,
 - because we do not want to leave any z likely under the prior hanging in the air.

KL Divergence from q to p: KL(q||p)

Regularized autoencoders

Autoencoding + Regularization

- The variational lower bound can be understood as the sum of
 - The (negative) reconstruction error: $\mathbb{E}_{z \sim q(z|x)}[\log p(x|z)]$
 - The regularization term: KL(q(z|x)||p(z))
- In other words, it's autoencoding + regularization

$$\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim z \mid x^{n}} [\log p(x^{n} \mid z)] - \frac{1}{N} \sum_{n=1}^{N} \mathsf{KL}(q(z \mid x^{n}) || p(z))$$

Regularized autoencoders

VAE Regularization

VAE Regularization

$$\frac{1}{N} \sum_{n=1}^{N} \text{KL}(q(z \mid x^n) || p(z)) = -\frac{1}{N} \sum_{n=1}^{N} \int_{z} q(z \mid x^n) \log p(z) + \frac{1}{N} \sum_{n=1}^{N} \int_{z} q(z \mid x^n) \log q(z \mid x^n)$$

The first term can be rewritten as

1.
$$\frac{1}{N} \sum_{n=1}^{N} \int_{z} q(z \mid x^{n}) \log p(z) = \int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \right) \log p(z)$$

Regularized autoencoders VAE Regularization

VAE Regularization

$$\frac{1}{N} \sum_{n=1}^{N} \text{KL}(q(z \mid x^n) || p(z)) = -\int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^n) \right) \log p(z) + \frac{1}{N} \sum_{n=1}^{N} \int_{z} q(z \mid x^n) \log q(z \mid x^n)$$

Bounding the second term

1.
$$\int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \right) \log \left(\sum_{n'=1}^{N} \frac{1}{N} q(z \mid x^{n'}) \right) = \int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \right) \log \left(\sum_{n'=1}^{N} q(z \mid x^{n'}) \right) - \log N$$

2.
$$\int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \right) \log \left(\sum_{n'=1}^{N} q(z \mid x^{n'}) \right) - \log N \ge \int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \log q(z \mid x^{n}) \right) - \log N$$

3.
$$\int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^{n}) \log q(z \mid x^{n}) \right) - \log N = \frac{1}{N} \sum_{n=1}^{N} \int_{z} q(z \mid x^{n}) \log q(z \mid x^{n}) - \log N$$

Regularized autoencoders

VAE Regularization

VAE Regularization

$$\frac{1}{N} \sum_{n=1}^{N} \mathsf{KL}(q(z \mid x^n) || p(z)) \leq - \int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^n) \right) \log p(z) + \int_{z} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^n) \right) \log \left(\sum_{n=1}^{N} q($$

$$\frac{1}{N} \sum_{n=1}^{N} \text{KL}(q(z \mid x^n) || p(z)) \le \text{KL}\left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^n) || p(z)\right)$$

- It minimizes the lowerbound to the KL from the aggregate posterior to the prior distribution.
 - Can we instead directly minimize the latter?

Energy-based generative adversarial networks

Start from a Boltzmann/Gibbs distribution

$$\log p(x) = -E(x;\theta) - \log \int \exp(-E(x';\theta)) dx'$$

Maximum likelihood learning with SGD

$$\nabla_{\theta} \log p(x) = -\nabla_{\theta} E(x; \theta) + \int \frac{e^{-E(x'; \theta)} \nabla_{\theta} E(x'; \theta)}{\int e^{-E(x''; \theta)} \mathrm{d}x''} \mathrm{d}x' = -\nabla_{\theta} E(x; \theta) + \mathbb{E}_{x' \sim p(x')} \left[\nabla_{\theta} E(x'; \theta) \right]$$

 Learning minimizes the difference between the energy gradient under the data distribution and model distribution.

Energy-based generative adversarial networks

- Maximum likelihood learning with SGD
 - $\nabla_{\theta} \log p(x) = -\nabla_{\theta} E(x; \theta) + \mathbb{E}_{x' \sim p(x')} \left[\nabla_{\theta} E(x'; \theta) \right]$
 - The 2nd term (negative phase) is often intractable to compute exactly:
 - Thus, MC approximation: $\mathbb{E}_{x'\sim p(x')}\left[\nabla_{\theta}E(x';\theta)\right] \approx \frac{1}{M}\sum_{m=1}^{M}\nabla_{\theta}E(x^m;\theta)$
 - But, sampling is also very difficult: I've wasted two years of my life on it.

Energy-based generative adversarial networks

- The purpose of sampling is to find (negative) samples with low energy.
- Instead, can directly generate negative samples by learning a generator?
 - $\min_{g} \mathbb{E}_{z \sim \mathcal{N}(0, I^{d'})}[E(g(z); \theta)]$, where $g: \mathbb{R}^{d'} \to \mathcal{X}$
 - . Using SGD & MC: $\frac{1}{M} \sum_{m=1}^{M} \nabla_g E(g(z^m); \theta)$

Energy-based generative adversarial networks

- Energy-based generative adversarial networks
- Saddle-point optimization
 - Find a point that is minimum along some directions and is maximum along some other directions
 - A game between the energy function (discriminator) and the generator.

$$\max_{\theta} \min_{g} \frac{1}{|B|} \sum_{x \in B} - E(x; \theta) + \frac{1}{M} \sum_{m=1}^{M} \left[E(g(z^m); \theta) \right]$$

Energy-based generative adversarial networks

- Energy-based generative adversarial networks
- · Near the equilibrium,
 - The generator distribution $p_g(x)$ matches the Boltzmann distribution $p(x;\theta)$, where

•
$$p_g(x) = \int p(z) \mathcal{N}(x; g(z), \epsilon^2 I) dz$$

$$p(x;\theta) = \exp(-E(x;\theta)) / \int \exp(-E(x';\theta)) dx'$$

• The Boltzmann distribution $p(x; \theta)$ matches the target distribution $p^*(x)$

Wasserstein Autoencoders

Replace KL divergence with the energy-based GAN

Regularized autoencoders: autoencoding + distribution matching

$$\cdot \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{z \sim z \mid x^n} [\log p(x^n \mid z)] - \text{Div} \left(\sum_{n=1}^{N} \frac{1}{N} q(z \mid x^n) \middle\| p(z) \right)$$

- Wassertein autoencoder uses the GAN instead of KL divergence.
 - Stochastic objective function:

•
$$\max_{f,\theta} \min_{g} \frac{1}{N} \sum_{n=1}^{N} \frac{1}{B} \sum_{b=1}^{B} \log p(x^{n} | z^{n,b}; f) - \frac{1}{M} \sum_{m=1}^{M} E(z^{m}; \theta) + \frac{1}{NB} \sum_{m=1}^{M} \sum_{b=1}^{B} \left[E(z^{n,b}; \theta) \right]$$

• $z^{n,b} \sim q(z \mid x^n)$ and $z^m \sim p(z)$

Wasserstein Autoencoders

• Tolstikhin et al. [2017]

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regularizer penalizing discrepancy between P_Z and distribution induced by the encoder Q. VAE forces Q(Z|X=x) to match P_Z for all the different input examples x drawn from P_X . This is illustrated on picture (a), where every single red ball is forced to match P_Z depicted as the white shape. Red balls start intersecting, which leads to problems with reconstruction. In contrast, WAE forces the continuous mixture $Q_Z := \int Q(Z|X)dP_X$ to match P_Z , as depicted with the green ball in picture (b). As a result latent codes of different examples get a chance to stay far away from each other, promoting a better reconstruction.

Bonus: Normalizing flows

Change of variables

- Instead of regularization, impose a set of constraints on f (the decoder):
 - f is a bijective, differentiable function: the encoder is then f^{-1} .
 - It is efficient to compute the Jacobian of f^{-1} .
- We can compute the probability density of x exactly by a change of variable:

$$p(x) = p(z = f^{-1}(x)) \left| \frac{\partial f^{-1}}{\partial x} \right|$$

Bonus: Normalizing flows

Exact learning and inference

Learning:
$$\max_{f} \frac{1}{N} \sum_{n=1}^{N} \log p(z = f^{-1}(x^n)) + \log \left| \frac{\partial f^{-1}}{\partial x^n} \right|$$

- Inference
 - Posterior inference: $z = f^{-1}(x)$
 - Sampling: f(z), where $z \sim \mathcal{N}(0, 1^d)$
- Limitations
 - The choice of f is non-trivial.
 - It cannot assign 0 probability to any configuration.