

stop following 14 views

views

Actions ▼

Worksheet 2 Problem 2

2. Show that if $X \sim Geom(p)$ then P(X = n + k | X > n) = P(X = k) for $n, k \ge 1$.

Using Bayes' Formula, we write that $P(X=n+k|X>n)=\frac{P(X=n+k\bigcap X>n)}{P(X>n)}$. Observe that the event X=n+k is contained inside the event X>n. Therefore, $P(X=n+k\bigcap X>n)=P(X=n+k)$, and thus $\frac{P(X=n+k\bigcap X>n)}{P(X>n)}=\frac{P(X=n+k)}{P(X>n)}$. By the definition of the geometric distribution, $P(X=n+k)=(1-p)^{(n+k)-1}p$, or more easily written for reducing later, $(1-p)^n(1-p)^{k-1}p$.

In the denominator, the probability P(X>n) (which is the same as $P(X\geq n+1)$) can be rewritten as $(1-p)^np+(1-p)^{n+1}p+\cdots$, or $\sum_{i=n+1}^{\infty}(1-p)^{i-1}p=p\sum_{i=n+1}^{\infty}(1-p)^{i-1}$. We can change the index of the summation by saying that some new index i'=i-(n+1) (and, inside the summation, i=i'+(n+1)), making the summation $p\sum_{i'=0}^{\infty}(1-p)^{(i'+n+1)-1}$. The purpose of this is to change the index to 0 while still preserving the value of the summation. Then, the exponent can be rewritten: $p\sum_{i'=0}^{\infty}(1-p)^{i'+n}=p\sum_{i'=0}^{\infty}(1-p)^{i'}(1-p)^n$. Additionally, the term $(1-p)^n$, unrelated to i', can be brought outside of the summation: $p(1-p)^n\sum_{i'=0}^{\infty}(1-p)^{i'}$. Because $0\leq p\leq 1$ (and thus $0\leq 1-p\leq 1$), it turns out that $\sum_{i'=0}^{\infty}(1-p)^{i'}$ is the geometric series that sums to $\frac{1}{1-(1-p)}=\frac{1}{p}$. Therefore, $p(1-p)^n\sum_{i'=0}^{\infty}(1-p)^{i'}=p(1-p)^n\frac{1}{p}=(1-p)^n$. We now know that $P(X>n)=(1-p)^n$.

Returning to the original fraction, $\frac{(1-p)^n(1-p)^{k-1}p}{(1-p)^n}=(1-p)^{k-1}p$, which, by the definition of the geometric distribution, is P(x=k).

hw2

Edit good note 0

Updated 5 years ago by Charles Hwang

followup discussions for lingering questions and comments

Start a new followup discussion

Compose a new followup discussion