STA 674

Regression Analysis And Design Of Experiments

Measuring Association between Two Variables – Lecture 5

STA 674, RADOE:

Measuring Association between Two Variables

- Interpretation of Correlation
 - Last time magnitude
 - This time cautions (warnings?)

• The correlation, $R_{X,Y} = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{(n-1)s_X s_Y}$, always lies between -1 and 1, inclusive.

3

Measuring Association between Two Variables

• Caution #1: Recall that correlation is a measure of the strength of linear association: $R_{X,Y}$ is *not* an appropriate measure of the strength of association if the relationship between X and Y is *not linear*.

• From the exercise:

Moral: Plot your data!

 $R_{X,Y} = -.05$

 $R_{X,Y} = -.23$

 $R_{X,Y} = .89$

- Caution #2: Correlation does not imply causation: There are many reasons that two variables may be strongly correlated. The fact that $R_{X,Y}$ is close to -1 or 1 does not mean that changes in X cause changes in Y or vice versa.
- Examples:
 - Temperatures in Lexington and Johannesburg will have a strong negative correlation over one year.
 - Total daily ice cream sales in the U.S. are highly correlated with the number of drowning deaths.
 - As the number of pirates has decreased, there has been an increase in the number of cell phone towers. Therefore, pirates were destroying the cell phone towers.
- Moral: Use your brain!

- Caution #3: When analyzing grouped data, correlations within individual groups may be obscured or even reversed when looking at data aggregated over all groups (Simpson's paradox).
- Example:

X	Y
0.3	1.8
0.7	2.3
0.7	2.2
0.9	2.6
1	2.2
1.3	0.0
1.7	1.3
1.7	1
1.9	1.5
2	1.4

$$R = -0.65$$

- Caution #3: When analyzing grouped data, correlations within individual groups may be obscured or even reversed when looking at data aggregated over all groups (Simpson's paradox).
- Example:

	Y	X
	1.8	0.3
R = 0.79	2.3	0.7
	2.2	0.7
	2.6	0.9
	2.2	1
	0.8	1.3
R = 0.90	1.3	1.7
	1	1.7
	1.5	1.9
	1.4	2

STA 674, RADOE:

Measuring Association between Two Variables

- Correlation
 - What next? Fitting Simple Linear Regression Models