ディープラーニングの仕組みを知ろう!

第1回 人工知能勉強会 数学編

Shion MORISHITA June 15, 2024

目次

```
はじめに
ニューラルネットワークの考え方
 ニューロン
 ニューロンの働きの数理的解釈
 ユニット
 ニューラルネットワーク
数学の基礎
 ニューラルネットワークのための数学
   数列と漸化式
   ∑ 記号
   ベクトル
   行列
```

はじめに

目的

- ニューラルネットワークの構造を数理的に理解する
- ニューラルネットワークや、その学習方法について理解するために必要な数学の 基礎を復習・理解する

ニューラルネットワークの考え方

ニューロン

ニューラルネットワークの考え方

ニューロン=神経細胞

互いに結びついてネットワークを構築することで、 さまざまな処理を行なっている

ニューラルネットワークの考え方

ニューロンの働きの数理的解釈

ニューロンの働きの数理的解釈

- 出力信号なし(y=0): $w_1x_1+w_2x_2+w_3x_3<\theta$
- 出力信号あり (y=1): $w_1x_1 + w_2x_2 + w_3x_3 \ge \theta$

発火の条件のグラフ表現

発火の式

● 単位ステップ関数

- 発火の式: $y = u(z) = u(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - $z=w_1x_1+w_2x_2+w_3x_3-\theta$ を、そのニューロンに対する重み付き入力という

ユニット

ニューラルネットワークの考え方

ユニット

● 簡略され抽象化されたニューロンを、生物学的なニューロンと区別してユニット (unit) とよぶ

活性化関数

- 発火の式(旧): $y = u(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - 単位ステップ関数 u に限定する必要はない
- 発火の式 (新): $y = a(w_1x_1 + w_2x_2 + w_3x_3 \theta)$
 - 関数 a を活性化関数 (activation function) という
 - この関数 a はモデル作成者がさまざまに定義可能

活性化関数の代表例

シグモイド関数 (Sigmoid function)

$$\sigma(z) \triangleq \frac{1}{1 + e^{-z}} \quad (e = 2.71828 \cdots)$$

「発火の有無」から「興奮度」へ

$$y = \sigma(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

「発火の有無」から「興奮度」へ

$$y = \sigma(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$

バイアス

$$y = a(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
$$y = a(w_1x_1 + w_2x_2 + w_3x_3 + b)$$

- \bullet $-\theta \longrightarrow +b$ に表記を変更
- すべて足し算に統一することで計算しやすくなる

ユニットのまとめ

重み付き入力:
$$z=w_1x_1+w_2x_2\cdots+w_nx_n+b$$

出力: $y = \sigma(z)$

ニューラルネットワークの考え方

ニューラルネットワーク(Neural Network; NN)

• ユニットをネットワーク状に結合したもの

ニューラルネットワークを用いた問題の具体例

例題

 4×3 画素からなる画像で読み取られた手書きの数字「0」「1」を識別するニューラルネットワークを作成せよ。ただし、学習データは 64 枚の画像とし、画素はモノクロ 2 階調とする。

「1」の画像の例

ニューラルネットワークを用いた問題の具体例

解答例

ニューラルネットワークの反応例

ニューラルネットワークの反応例

数学の基礎

数学の基礎

ニューラルネットワークのための数学

数列の意味

- 数列:数の列
 - 項:並べられたひとつひとつの数
 - 初項:1番目の項
 - 第 n 項:n 番目の項
 - 有限数列:有限個の項数を持つ数列
 - 末項:有限数列において、数列の最後の項
 - \bullet 一般項:数列の n 番目にある数で、通常 a_n などと表現する

ニューラルネットワークにおいて、ユニットの重み付き入力やその出力は数列と考えられる

 $oldsymbol{eta}_{l} = a_{j}^{l}$:l 層 j 番目のユニットの出力値

数列と漸化式

- ullet 漸化式:初項 a_1 と、隣り合う 2 つの項 a_n , a_{n+1} の関係式
- 連立漸化式:複数の数列がいくつかの関係式で結び付けられているもの
 - ニューラルネットワークにおいて、ユニットの入力と出力は連立漸化式で結ばれて いる

∑記号の意味

公式

(I)
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \dots + a_{n-1} + a_n$$

(II)
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

(III)
$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$
 (c:定数)

有向線分とベクトル

- 有向線分:向きを持つ線分
 - (始点の)位置
 - (線分の始点から終点への) 向き
 - (線分の) 大きさ
- ベクトル:有向線分から位置の属性を 抜いたもの
 - (線分の始点から終点への)向き
 - (線分の) 大きさ

ベクトルの成分表示

ベクトルの基本公式

ベクトル a の大きさ $\|a\|$

$$oldsymbol{a} = egin{bmatrix} a_1 \ dots \ a_n \end{bmatrix}$$
 のとき、 $\|oldsymbol{a}\| riangleq \sqrt{a_1^2 + \cdots + a_n^2} = \sqrt{\sum_{k=1}^n a_k^2} \geq 0.$

例
$$oldsymbol{a}=egin{bmatrix} -1 \ 2 \end{bmatrix}$$
 のとき、 $\|oldsymbol{a}\|=\sqrt{(-1)^2+2^2}=1+4=5.$

ベクトルの基本公式

ベクトルa,bの内積 $\langle a,b \rangle$

• ベクトルa, bのなす角を θ とすると、 $\langle a, b \rangle \triangleq ||a|| ||b|| \cos \theta$.

•
$$m{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \ m{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$
とすると、 $\langle m{a}, m{b} \rangle \triangleq a_1b_1 + a_2b_2 + \cdots + a_nb_n = \sum_{k=1}^n a_kb_k$.

例
$$a = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 のとき、 $\langle a, b \rangle = 2 \cdot 5 + 3 \cdot 1 = 13.$

ベクトルの基本公式

コーシー・シュワルツの不等式

ベクトルa,bに対して、

$$-\|\boldsymbol{a}\|\|\boldsymbol{b}\| \leq \langle \boldsymbol{a}, \boldsymbol{b} \rangle \leq \|\boldsymbol{a}\|\|\boldsymbol{b}\|$$

が成り立つ。

コラム:ベクトルがどう役に立つ?

ニューラルネットワークの出力 y

$$y = \sigma(\begin{array}{c} w_1 x_1 + \dots + w_n x_n \\ \end{array} + b) = \sigma\left(\begin{array}{c} \left\langle \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \right\rangle \\ + b \right) = \sigma(\begin{array}{c} \langle \boldsymbol{w}, \boldsymbol{x} \rangle \\ \end{array} + b).$$

行列とは

数を縦と横に矩形上に配列したもの

ベクトルも行列の一部

$$\begin{vmatrix} x \\ y \\ z \end{vmatrix}$$
 は 3 行 1 列の行列とみなせる

行列同士の演算

行列の和

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} a+p & b+q \\ c+r & d+s \end{bmatrix}$$

行列の積

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix}$$

$$\begin{array}{c|c} \textcircled{1} & \textcircled{a} & b \\ \hline \textcircled{2} & \overleftarrow{c} & d \end{array} \begin{bmatrix} p & q \\ r & s \end{bmatrix} = \begin{bmatrix} \textcircled{1} \cdot \textcircled{1} & \textcircled{1} \cdot \textcircled{2} \\ \textcircled{2} \cdot \textcircled{1} & \textcircled{2} \cdot \textcircled{2} \end{bmatrix} \\ = \begin{bmatrix} ap + br & aq + bs \\ cp + dr & cq + ds \end{bmatrix}$$

行列とベクトルの演算

数学の基礎

勾配降下法のための数学

微分の定義

関数 y = f(x) 対して<mark>導関数</mark> f'(x) は次のように定義される:

$$f'(x) \triangleq \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

% 「 $\lim_{\Delta x\to 0}(\Delta x$ の式)」は「数 Δx を限りなく 0 に近づけたとき、 $(\Delta x$ の式) の近づく値」を意味する

関数 f(x) の導関数 f'(x) を求めることを「関数 f(x) を微分する」という

導関数の意味

関数の微分公式(抜粋)

x を変数、c を定数とする。e は<mark>ネイピア数</mark>という定数で、 $e \simeq 2.71828 \dots$

$$\bullet \ \frac{\mathrm{d}(c)}{\mathrm{d}x} = 0$$

$$\bullet \ \frac{\mathrm{d}(x)}{\mathrm{d}x} = 1$$

$$\bullet \ \frac{\mathrm{d}(x^2)}{\mathrm{d}x} = 2x$$

$$\bullet \ \frac{\mathrm{d}(e^x)}{\mathrm{d}x} = e^x$$

$$\bullet \ \frac{\mathrm{d}(e^{-x})}{\mathrm{d}x} = -e^{-x}$$

微分の性質

- $\{f(x) + g(x)\}' = f'(x) + g'(x)$
- $\{cf(x)\}' = cf'(x)$ (c: 定数)

例

$$C = (2 - y)^2$$
 (y:変数) のとき、

$$\frac{dC}{dy} = \frac{d}{dy}C = \frac{d}{dy}(4 - 4y + y^2) = \frac{d(4)}{dy} - \frac{d(4y)}{dy} + \frac{d(y^2)}{dy} = 0 - 4 + 2y = -4 + 2y.$$

【重要】シグモイド関数 σ の微分公式

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
(z :変数)のとき、

$$\frac{\mathrm{d}\sigma(z)}{\mathrm{d}z} = \sigma(z)(1 - \sigma(z))$$

ポイント

- 導関数の値が欲しいときに、微分計算をせずに済む!
 - つまり、計算機でも微分の値を容易に計算できる!

【重要】関数の最小値の条件

関数 f(x) が x=a で最小値を取るとき、 $\dfrac{\mathrm{d}f(a)}{\mathrm{d}x}=0$

【重要】関数の最小値の条件

f'(a)=0 は関数 f(x) が x=a で最小値になるための必要条件である。

多変数関数

入力が2つ以上ある関数を多変数関数という。

偏微分

ある特定の変数について微分することを偏微分(partial derivative)という。

$$y = f(x)$$
 を x について微分する場合:

$$\bullet \ \frac{\mathrm{d}f(x)}{\mathrm{d}x}$$

$$z = f(x, y)$$
 を x について偏微分する場合:

$$\bullet \ \frac{\partial f(x,y)}{\partial x}$$

例
$$z = wx + b$$
 のとき、 $\frac{\partial z}{\partial x} = w$, $\frac{\partial z}{\partial w} = x$, $\frac{\partial z}{\partial b} = 1$

【重要】多変数関数の最小条件

関数
$$z=f(x,y)$$
 が最小になる必要条件は、 $\frac{\partial f}{\partial x}=0$ かつ $\frac{\partial f}{\partial y}=0$

ポイント

どの成分から見ても傾きが 0 なら、最小値の可能性あり!

関数の近似公式

1変数関数の場合

$$f(x + \Delta x) \simeq f(x) + f'(x)\Delta x$$

2変数関数の場合

$$f(x + \Delta x, y + \Delta y) \simeq f(x, y) + \frac{\partial f(x, y)}{\partial x} \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y$$

 $\times \Delta x$ や Δy は十分小さな数とする。

【重要】関数の近似公式 簡潔 ver.

$$\Delta z \triangleq f(x_1 + \Delta x_1, \ x_2 + \Delta x_2) - f(x_1, \ x_2)$$
 とすると、 $\Delta z \simeq rac{\partial z}{\partial x_1} \Delta x_1 + rac{\partial z}{\partial x_2} \Delta x_2.$ $abla z \triangleq egin{bmatrix} rac{\partial z}{\partial x_1} \Delta x_1 + rac{\partial z}{\partial x_2} \Delta x_2. \end{bmatrix}$ とすると、 $\Delta z \simeq \langle
abla z, \ \Delta x \rangle$.

ポイント

関数の値の変化 Δz は、偏微分を集めたベクトル ∇z と、小さい値を集めたベクトル Δx で表される。

数学の基礎

女子 ツ 本 か

誤差逆伝播法のための数学

合成関数

入れ子構造の関数 f(g(x)) を、関数 f と g の合成関数という。

1変数関数の連鎖律

1 変数関数 y=f(u) があり、その u が 1 変数関数 u=g(x) と表されるとき、合成関数 f(g(x)) の導関数は次のように求められる:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$$

1変数関数の連鎖律の例

$$y=u^2,\; u=2-x$$
 のとき、 y を x で微分すると、

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{d(u^2)}{du}\frac{d(2-x)}{dx} = 2u \cdot (-1) = -2u = -2(2-x) = -4 + 2x.$$

2変数関数の連鎖律

2 変数関数 z=f(u,v) があり、その u,v が 2 変数関数 $u=g_1(x,y),\ v=g_2(x,y)$ と表されるとき、

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

2変数関数の連鎖律の例

$$z = u^2 + v^2$$
, $u = ax + by$, $v = px + qy$ $(a, b, p, q$: 定数)のとき、
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x} = 2u \cdot a + 2v \cdot p = 2a(ax + by) + 2p(px + qy).$$