Tutorial 5

October 22, 2020

Question 1

A discrete random variable N is uniformly distributed on $\{1, 2, 3, \dots, 10\}$.

Let X be the indicator of the event $\{N \leq 5\}$.

Let Y be the indicator of the event $\{N \text{ is even }\}.$

- (a) Are X and Y independent?
- (b) Find $\mathbf{E}((X+Y)^2)$.

Question 2

13 cards are drawn at random without replacement from an ordinary deck of playing cards. If X is the number of spades in these 13 cards, find the PMF of X. If, in addition, Y is the number of hearts in these 13 cards, find the probability $\mathbf{P}(X=2,Y=5)$. What is the joint PMF of X and Y?

Question 3

Consider the multinomial distribution:

- $m \ge 2$ categories
- $n \ge 1$ items chosen at random, with replacement
- $p_k = \mathbf{P}$ (Item of type k chosen), k = 1, ..., m
- X_k = Number of type k chosen, k = 1, ..., m
- (a) Compute $\mathbf{P}(X_1 = x_1, X_2 = x_2, ..., X_m = x_m)$.
- (b) Find the marginal distribution of X_k for each k. Are X_i and X_j independent?

Question 4

Let $(X_1, X_2, X_3) \sim \text{Multi}(n, p_1, p_2, p_3)$. Find the conditional distribution of X_1 given that $X_3 = x_3$. Intuitively, we expect that

$$X_1 | X_3 = x_3 \sim \text{Binomial}\left(n - x_3, \frac{p_1}{p_1 + p_2}\right)$$

1

Question 5

Suppose $X \sim \text{Bin}(N, p)$, where the number of trials, N, is also a random variable (but independent of the trials themselves). Then conditioned on the fact that N = n, the number of successes, X, would have distribution Bin(n, p). What can be said about the unconditional distribution of X, in particular the case when N is a Poisson random variable?

Question 6

Following the setup of the previous question, let Y = N - X represent the number of failures. It is implied that Y has distribution $Poisson(\lambda \cdot (1-p))$. Show that X and Y are independent. [Note that this is strongly due to the Poisson distribution of N, and does not happen otherwise (i.e. with deterministic N).]