Interpolacja

Krystian Madej, 12.04.2024

1. Treść zadania

Dla funkcji $e^{-k\sin(mx)}$, k=m=3, wyznacz dla zagadnienia Lagrange'a i Hermite'a wielomian interpolujący w postaci Lagrange'a i Newtona, na przedziale

 $[a = -2\pi; b = \pi].$

Interpolację przeprowadź dla różnej liczby węzłów. Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa (zera wielomianu Czebyszewa). Oceń dokładność, z jaką wielomian przybliża zadaną funkcję. Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję. Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

2. Dane techniczne

Obliczenia zostały wykonane przy pomocy języka C++20 na systemie Windows 11, kompilacja 22631.3296, procesor 64-bitowy Intel Core i5-11400H 2.70GHz, kod kompilowany kompilatorem MSVC (wersja 19.39). Typ zmiennoprzecinkowy double (8-bajtowy).

3. Realizacja ćwiczenia

W celu wygenerowania węzłów zaimplementowano funkcje generujące:

- nodes::uniform (węzły równoodległe), korzystającą ze wzoru $x_i = a + \frac{b-a}{n-1}i$
- nodes::chebyshev (węzły czebyszewa), korzystającą ze wzoru $x_i=rac{a+b}{2}+rac{b-a}{2}\cos{(rac{2j-1}{2k}\pi)}$

Następnie zaimplementowano funkcję interpolation::_lagrange, wykonującą interpolację metodą Lagrange'a. Przyjmuje tablicę wartości funkcji interpolowanej i tablicę z odpowiadającymi im węzłami, a zwraca obiekt wywoływalny, odpowiadający wielomianowi interpolacyjnemu. Istnieje też funkcja interpolation::lagrange, która przyjmuje funkcję interpolowaną, funkcję generującą węzły,

ilość węzłów oraz przedział do interpolacji. Generuje ona dane na podstawie przekazanych argumentów, przekazując te dane do interpolation::_lagrange.

Analogicznie zaimplementowano metodę Newtona. Istnieją funkcje interpolation::newton i interpolation::_newton, realizujące przypadek ogólny, oraz interpolation::_newton_uniform i interpolation::newton_uniform, realizujące przypadek z równoodległymi węzłami.

Dodatkowo, jeżeli do funkcji interpolation::newton przekażemy nodes::uniform, tak naprawdę wywoła się interpolation::newton uniform.

Następnie zaimplementowano funkcję interpolation:: hermite, wykonującą interpolację metodą Hermite'a. Przyjmuje dwuwymiarową tablicę wartości funkcji interpolowanej i tablicę z odpowiadającymi im węzłami, a zwraca obiekt wywoływalny, odpowiadający wielomianowi interpolacyjnemu. W tablicy dwuwymiarowej wiersze odpowiadają kolejnym węzłom, natomiast kolumny kolejnym pochodnym (wiersz i-ty zawiera wartości $f(x_i), f'(x_1), f''(x_1), \dots, f^{(j)}(x_i)$). Istnieje też funkcja interpolation::hermite, która przyjmuje funkcję interpolowaną w postaci SymEngine::Expression, liczbę pochodnych do wykorzystania, funkcję generującą węzły, ilość węzłów oraz przedział do interpolacji. Generuje ona dane na podstawie przekazanych argumentów, przekazując te dane do interpolation:: hermite. Funkcja interpolation:: hermite korzysta z funkcji interpolation::precompute_hermite, przyjmującą dwuwymiarową tablicę wartości funkcji interpolowanej i tablicę z odpowiadającymi im węzłami, zwracającą krotkę zawierającą tablicę współczynników b_l , tablice krotności m_i oraz sumę $\sum_{i=0}^k m_i$.

Pochodne są obliczane iteracyjnie, metodą SymEngine::Expression::diff. Zgodnie z poleceniem ustnym obliczam tylko pochodną pierwszego stopnia.

Zaimplementowano też funkcje obliczające błędy interpolacji:

- error::abs przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów, zwracająca tablicę błędów bezwzględnych
- error::max w 2 wersjach: pierwsza, przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów i obliczająca wcześniej błąd bezwzględny, i druga, przyjmująca

tablicę błędów bezwzględnych, obie zwracają wartość maksymalną z tablicy błędów bezwzględnych

 error::sum_squared - w 2 wersjach: pierwsza, przyjmująca funkcję interpolowaną, wielomian interpolujący i tablicę węzłów i obliczająca wcześniej błąd bezwzględny, i druga, przyjmująca tablicę błędów bezwzględnych, obie zwracają sumę kwadratów błędów bezwzględnych

W funkcjach main prowadzone są obliczenia dla kolejnych ilości węzłów. Wartości funkcji interpolowanej, jak i interpolacji są zapisywane w plikach interpolation_results/result_<ilość węzłów>.txt Wartości błędów bezwzględnych w plikach interpolation_results/error_<ilość węzłów>.txt. Wartości maksymalne błędów bezwzględnych w pliku interpolation_results/max_abs.txt. Sumy kwadratów błędów bezwzględnych w pliku interpolation results/sum squared.txt

W folderze interpolation_images/ są zapisywane wykresy funkcji interpolowanej, interpolacji i wartości błędów.

Na koniec wykonano obliczenia dla liczby węzłów > 50 celem wyznaczenia najlepiej przybliżającego wielomianu.

4. Wyniki obliczeń i ich analiza

4.1 Dla 7 węzłów

Tabela 1. Błędy interpolacji dla 7 węzłów

Przybliżenia dla 7 węzłów nie są zbyt dokładne, niezależnie czy użyto węzłów równoodległych czy Czebyszewa. Z obydwu to jednak węzły Czebyszewa dają średnio lepszą interpolację. Interpolacja Hermite'a węzłami równoodległymi zdaje się doświadczać wczesnego efektu Runge'go, jednak nie jest on zbyt dotkliwy.

4.2 Dla 10 węzłów

Wykres 9. Interpolacja metodami Lagrange'a i Newtona dla 10 węzłów równoodległych

Wykres 10. Interpolacja metodami Lagrange'a i Newtona dla 10 węzłów Czebyszewa

Tabela 2. Błędy interpolacji dla 10 węzłów

Przybliżenia dla 10 węzłów poprawiły wyniki węzłów równoodległych, jednak te intepolacje są mocno wypłaszczone. Interpolacja węzłami Czebyszewa jest średno gorsza od tez z 7 węzłami. Można jednak zauważyć, że intepolacje węzłami Czebyszewa zbliżają się kształtem do funkcji interpolowanej.

4.3 Dla 15 węzłów

Wykres 17. Interpolacja metodami Lagrange'a i Newtona dla 15 węzłów równoodległych

Wykres 19. Interpolacja metodą Hermite'a dla 15 węzłów równoodległych

Wykres 21. Błędy interpolacji metodami Lagrange'a i Newtona dla 15 węzłów równoodległych

Wykres 23. Błędy interpolacji metodą Hermite'a dla 15 węzłów równoodległych

Wykres 18. Interpolacja metodami Lagrange'a i Newtona dla 15 węzłów Czebyszewa

Wykres 20. Interpolacja metodą Hermite'a dla 15 węzłów Czebyszewa

Wykres 22. Błędy interpolacji metôdami Lagrange'a i Newtona dla 15 węzłów Czebyszewa

Wykres 24. Błędy interpolacji metodą Hermite'a dla 15 węzłów Czebyszewa

	Rodzaj węzłów i metoda interpolacji					
	Węzły równoodległe			Węzły czebyszewa		
Rodzaj błędu	Lagrange	Newton	Hermite	Lagrange	Newton	Hermite
Max	61.56264693	61.56264693	46755.87612	11.62216453	11.62216453	11.28238065
Suma	70368.52869	70368.52869	26962466.47	36092.52506	36092.52506	17568.22481

Tabela 3. Błędy interpolacji dla 15 węzłów

Dla interpolacji 15 równoodległymi węzłami widać wyraźny efekt Runge'go. Zgodnie z przewidywaniami, nie występuje on dla węzłów Czebyszewa, które coraz lepiej przybliżają funkcję interpolowaną.

4.4 Dla 20 węzłów

Tabela 4. Błędy interpolacji dla 20 węzłów

Podobnie jak poprzednio, interpolacje węzłami równoodległymi mają efekt Runge'go. Co natomiast rzuca się w oczy to błędy (numeryczne) na końcu przedziału przy metodzie Hermite'a i węzłach Czebyszewa. Nie licząc ich interpolacja bardzo przypomina funkcję interpolowaną. Tak samo inne metody coraz lepiej przybliżają funkcję.

4.5 Dla 40 węzłów

Tabela 5. Błędy interpolacji dla 40 węzłów

Jak łatwo zauważyć, dla 40 węzłów interpolacji, żadna metoda oprócz Lagrange'a z węzłami Czebyszewa, nie może być użyta, ze względu na albo efekt Runge'go, albo błędy numeryczne.

4.6 Najlepiej przybliżający wielomian

Aby móc stwierdzić który wielomian jest najlepiej przybliżający, należy wziąć pod uwagę błąd maksymalny, jak i sumę średniokwadratową błędów.

	Rodzaj węzłów i metoda interpolacji					
	Równoodległe			Czebyszewa		
Ilość węzłów	Lagrange	Newton	Hermite	Lagrange	Newton	Hermite
2	19.08553683	19.08553683	39.24776298	12.41531759	12.41531759	113.5471425
3	19.98879867	19.98879867	24.61492034	20.03518876	20.03518876	20.01380179
4	19.08553683	19.08553683	29.0260187	19.97126997	19.97126997	20.64143568
5	20.03074165	20.03074165	20.29266626	19.2328215	19.2328215	31.28637154
6	19.15802581	19.15802581	105.845553	14.38624499	14.38624499	80.77905644
7	28.73691518	28.73691518	31.44664324	20.08612362	20.08612362	19.16952606
8	17.81230102	17.81230102	15.82839029	21.01870154	21.01870154	27.7939095
9	68.94595628	68.94595628	492.5958018	21.22752988	21.22752988	20.89210877
10	19.08553683	19.08553683	16.08352194	17.255195	17.255195	17.01339068
11	205.7951963	205.7951963	3187.587407	20.50312394	20.50312394	17.32202029
12	86.03989133	86.03989133	7620.16696	20.34923412	20.34923412	17.09701183
13	140.7548683	140.7548683	17315.99249	15.2197818	15.2197818	20.00396093
14	156.8362452	156.8362452	28883.79889	16.93187502	16.93187502	12.97746689
15	61.56264693	61.56264693	46755.87612	11.62216453	11.62216453	11.28238065
16	456.6743185	456.6743185	423763.6821	12.74981779	12.74981779	7.964421301
17	2758.782431	2758.782431	1364754.347	8.06657988	8.06657988	7.473872293
18	816.5221721	816.5221721	2848571.373	9.094332888	9.094332888	8.631265687
19	14350.15501	14350.15501	2342921.654	12.03413706	12.03413706	6.939107243
20	2415.05713	2415.05713	11789410.71	10.73354859	10.73354859	45.795387
30	725754.6101	725754.6101	2.99393E+11	6.16672713	6.16672713	6420873893
40	168865636	168865636	4.70045E+17	3.32989098	56.96148638	6.60414E+17
50	31611721302	31611721302	6.32E+25	1.485923087	172544.5431	3.20E+25

Tabela 6. Błędy maksymalne interpolacji

	Rodzaj węzłów i metoda interpolacji					
	Równoodległe			Czebyszewa		
Ilość węzłów	Lagrange	Newton	Hermite	Lagrange	Newton	Hermite
2	39748.87464	39748.87464	164947.1755	91020.2874	91020.2874	596322.7168
3	40527.01415	40527.01415	63131.73915	40635.10186	40635.10186	40442.53717
4	39748.87464	39748.87464	76910.38627	40224.78343	40224.78343	41642.367
5	40790.38788	40790.38788	41218.223	41071.14491	41071.14491	96723.80457
6	74118.14551	74118.14551	270567.0822	81264.58949	81264.58949	178502.3482
7	98059.24978	98059.24978	67537.84604	40514.76051	40514.76051	36252.88303
8	60924.11652	60924.11652	54355.38135	68109.87701	68109.87701	75872.39658
9	174425.4642	174425.4642	620202.836	57403.29196	57403.29196	55679.09049
10	39748.87464	39748.87464	32519.67438	48980.23103	48980.23103	55598.74929
11	293546.004	293546.004	2807696.143	45765.16344	45765.16344	45981.56712
12	127101.0214	127101.0214	5865536.509	43057.63298	43057.63298	36062.51287
13	154440.4638	154440.4638	11979256.97	49545.90261	49545.90261	34311.8203
14	169331.6467	169331.6467	18131086.69	32618.22705	32618.22705	20415.10189
15	70368.52869	70368.52869	26962466.47	36092.52506	36092.52506	17568.22481
16	408983.6536	408983.6536	223960320	27682.93583	27682.93583	18775.9268
17	2040122.846	2040122.846	666991978	32306.29193	32306.29193	20159.59781
18	591286.0575	591286.0575	1294693835	29212.61839	29212.61839	15723.66181
19	9051099.004	9051099.004	992640396.2	27411.81194	27411.81194	12622.40097
20	1497447.134	1497447.134	4709853330	33068.73962	33068.73962	14498.72064
30	256594375.2	256594375	7.20571E+13	10940.3703	10940.38335	4.68257E+11
40	41771568623	41771563221	1.9454E+19	6364.376133	11531.49728	3.98125E+19
50	5.97435E+12	5.97428E+12	1.93E+27	2575.154475	17105415.25	2.23E+27

Tabela 7. Suma błędów interpolacji

Jak widać w powyższych tabelach wszystkie metody interpolacji tracą na dokładności, im więcej mają węzłów interpolacyjnych. Wyjątkiem jest metoda Lagrange'a dla węzłów Czebyszewa. Zatem dla tej metody będą prowadzone dalsze obliczenia.

Obliczono błąd maksymalny jak i sumę błędów dla liczby węzłow od 100 do 341 włącznie. Błąd maksymalny osiągnął najmniejszą wartość dla 289 węzłów i wynosił $9.237055564881302 \cdot 10^{-14}$, natomiast najmniejsza suma błędów była dla 278 węzłów i wynosiła $7.193017015350023 \cdot 10^{-12}$. Dla większych ilości węzłów błędy zaczynały rosnąć.

5. Wnioski

Pomimo oczywistych zalet, jak np. równość pierwszych pochodnych na węzłach, intepolacja metodą Hermite'a nie pozwala na interpolowanie większą ilością węzłów. Powodem jest efekt Runge'go lub błędy numeryczne.

Błędy metody Lagrange'a z węzłami Czebyszewa dla większej ilości węzłów malały, podczas gdy dla innych metod rosły.