National University of Computer and Emerging Sciences, Lahore Campus

NAL C	INIVE	Course Name:	Computer Architecture	Course Code:	EE204
MATION	CRSIT.	Program:	BS (Computer Science)	Semester:	Fall2018
SINGE ENGE	3 6	Duration:	3 hours	Total Marks:	70
ESEM	THE	Paper Date:	31-12-2018	Weight	45
MERGIN	138	Exam Type:	Final	Page(s):	7

Student : Name:	Roll No	Section:
Instruction: 1. Attempt all questions in the provided be attached.	space. You can use rough sheets	but it should not
2. If you think some information is missi	ng, write assumption and solve a	ccordingly.
Question 1 [10 marks] (Multiple correct options	can be selected in each questi	on)
1. A decoder having 64 outputs will have in	puts.	
A. 4		
B. 6		
C. 8		
D. 64		
2. A single cycle machine has separate instruction	and data memory in order to av	/oid
A. Branch Hazard		
B. Data Hazard		
C. Structural Hazard		
D. Memory Hazard3. The total number of bits needed for a cache is a	function of	
A. Data bits, Tag bits and index bits	runction of	
B. Data bits, Block size, and valid bit		
C. Tag bits, index bits and Data Block size		
D. Data bits, Tag bits, and valid bit		
4. What are the side effects of increasing the block	size to a much larger value	
A. Use of spatial locality principle decrease	es	
B. The number of blocks in cache decrease	s	
C. Cost of cache miss increases		
D. All of the above		
5. In a write-back policy, the updated data is writte	n to	
A. Cache only		
B. Cache and main memory simultaneously	,	
C. Memory only		
D. Cache and Buffer		
6. Suppose 10% of the instructions are stores and v		
CPI without cache misses was 1.0, What will be	the CPI if we spend 100 extra	cycles on every
write to the memory?		
Answer: CPI of $1.0 + 100 \times 10 \% = 11$		vora simultanaavalv
7. The type of hazard that occurs when executing is are called structurual hazards	nsuluctions cannot access hardy	ware simultaneously
8. Cause register in case of exception records	cause of the exception	
	cause of the exception_	

9. If we have compiler that can produce code by rearranging instructions and inserting NOPs, we don't need underlying hazard detection and forwarding hardware. True/False?

10. In virtual memory, size of the physical address is always greater than the virtual address because more space can be accessed through main memory and the disk collectively. True/False?

Question 2

Part a: [1 + 1 + 1 + 1 marks]

Consider the following code snippet's execution on a 5-stage pipelined processor with hazard detection and forwarding fully implemented.

Instruction 1: Or R1,R1,R3
Instruction 2: Lw R2, 20(R2)
Instruction 3: Lw R3, 0(R1)
Instruction 4: sw R2,40(R1)
Instruction 5: Add R4,R5,t4
Instruction 6: Add R4,R5,R5
Instruction 7: Add R4,R6,R6

Suppose the execution of the code starts in the first clock cycle.

1. Is the following condition true in 5th clock cycle?

MEM/WB.RegisterRd = ID/EX.RegisterRs True/False

Reason: R1=R1

2. Is the following condition true in 5th clock cycle?

MEM/WB.RegisterRd = ID/EX.RegisterRt True/False

Reason: R1 !=R3

Is the following condition true in 6th clock cycle?

MEM/WB.RegisterRd = ID/EX.RegisterRs True/False

Reason: R2 != R1

Is the following condition true in 6th clock cycle?

MEM/WB.RegisterRd = ID/EX.RegisterRt True/False

Reason: R2 = R2

Part b: [2+2 marks]

Consider the following facts for the page table and answer the questions below.

- a) Each page table entry consists of a physical page number, 1 valid bit, 1 dirty bit
- b) Virtual addresses are 32 bits Physical addresses are 26 bits The page size is 8 Kbytes
- 1. How many pages a process can have? 2^19 pages

2. What is the size of the page table? $2^19 * 15$ bits

Part c: [5 marks]

Considering two code sequences that require the following instruction counts

	Code Sequence 1	Code Sequence 2
Load Instructions Count	5	4
Branch Instructions Count	2	2
ALU Instructions Count	10	15

Following details are provided for the processor

- 1. Full forwarding and hazard detection unit is implemented
- 2. Branch decision hardware is implemented in the decode stage and the forwarding unit has been modified for forwarding data from earlier instructions to the decode stage
- 3. Branch prediction hardware always predicts the branch as taken. Penalty for misprediction is 1 clock cycle. Branch prediction accuracy is 80%
- 4. All load instructions are immediately followed by the ALU instructions that use the loaded data Example: $lw\ R1,\ 0(R2)$

add R2, R1, R3

Compute average CPI (including stalls) for Code sequence 1 and 2. Show all steps of the calculations.

```
CPI for load instructions = 2
CPI for branch instructions = 2 * 20% + 1 * 80% = 1.2
CPI for ALU instructions = 1
```

```
For code Sequence 1: CPI = 2*5 + 1.2*2 + 1*10 = 22.4/17 = 1.32
For code Sequence 1: CPI = 2*4 + 1.2*2 + 1*15 = 25.4/21 = 1.20
```

Question 3 [8+11+8]

Code	Instructions
FOR: ld R1,100(R6) ld R2,200(R6) add R5,R2,R1 ld R4,0(R5) addi R6,R6,4 and R4,R5,R4 st R4,0(R5) beq R6,R7, FOR	 We have 5-stage MIPS pipelined processor where Memory and Branch instructions use all 5 stages however ALU instructions use 4 stages: no cycle in memory and 1 cycle in all other 4 stages. Branch instructions consumes 1 cycle in each stage. Memory type instructions take 2 cycles in memory and 1 cycle in all other stages. Instructions can be completed out of order. Instructions are fetched and decoded in order however execution, memory and writeback can be out of order. An instruction will only enter the execution stage if it does not cause a ReadAfterWrite, WriteAfterRead or WriteAfterWrite hazard. There is only one unit in each stage so only one instruction can enter a stage at a time, and in case multiple instructions are ready, the oldest one will go first. Full Forwarding is implemented There is no register renaming

a. Fill in the following table pointing for each instruction, the pipeline stages activated in each clock cycle. For example instruction 1 is fetched in 1st cycle, decoded in 2nd as shown below

Cycle Inst	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0
(1)	F	D																												
(2)																														
(3)																														
(4)																														
(5)																														
(6)																														
(7)																														
(8)																														

b.	Unroll the loop for level 2 (two iterations only), add stalls and then reschedule to remove as many
	stalls as possible. For this part ignore structural hazards. You have to consider only data and control
	hazards.

Code after loop unrolling	Code with added stalls	Optimized schedule of
		instruction

- **c.** Consider the given program (used in part a) to be executed on 2-issue superscalar processor with following specification.
 - o There are two generic arithmetic execution units
 - o Memory type instructions take 2 cycles in memory and arithmetic instruction does not use memory stage.
 - o Full Forwarding is implemented
 - o In case of false dependencies, write back should be in order. No need to wait in decode stage

Show single iteration of the given code

Cycle No.	IF	ID EX M			ME	M	w	В	
1									
2									

a. Fill in the following table pointing for each instruction, the picture cycle. For example instruction 1 is fetched in 1st cycle, decod

Cycle	1	2	3	4	5	6	7	8	9	0	1	2.		1 3	1 4	1 5	6	7	8
(1)	F	D	e	m	M	W					-	Contraction of the Contraction o	1						
(2)		F	143	e	-		And a second property of	N					- Comments						
(3)			F	D	-		-	<u>e</u>	W			O PATERIO			-				
(4)	-			F	D	-	-	-	e	m	m	W		-				1	
(5)					F	D	e	-	-	N								notice and an	
(6)	1					F	D	-	-	1	_	e	W	- Waller 2011 20				-	1
(7)	1						F	D	e	1	1	-	-	Netter Control	1	W	1		
(8)	1					-		F	D	e		-	-	- HOLEN	COLUMN TO SERVICE			+	-

Unroll the loop for level 2 (two iterations only), add stalls and then reschedule to remove as many stalls as possible. For this part ignore structural hazards. You have to consider only data and control hazards.

Code after loop unrolling	Code with added stalls	Optimized schedule of
		instruction
[Ad-1 Ad-1	1d-1 1d-1 00 00 00 00 00 00 00 00 00 00 00 00 00	1d-1 1d-1 1d-2 1d-2 1d-2 add-1 1d-1 add-2 add-2 add-1
St-1 600 Rd-2 Rd-2 Rd-2 Add-2 Add-2 And-2	and 2 St = 1 Id = 2 Id = 2 Odd = 2 Id	and-1 St-1 addi- and-2 beg- >st-2
St-2 oddi R6, R6, 8 >beg. R6, R7, Fox 2 marks for This column.	and 2 and 2 st-2 addi begy 4 marks for This column	5 marks for this column
mis column	7/8 stalls	

- e. Consider the given program (used in part a) to be executed on 2-issue superscalar processor wit following specification.

 - There are two generic arithmetic execution units Memory type instructions take 2 cycles in memory and arithmetic instruction does not memory stage.

 - In case of false dependencies, write back should be in order. No need to wait in decode 0

Cycle No.	n	F	I	D	E	4	ME	M	WB		
CANADA VIOLENCE DE LA CONTRACTOR DE LA C		2									
1 2	3	4		2				-			
	5	6	3	4		2					
	5	6	3	4		-	1	2			
	5	6	3	4		-	1	2			
	7	6	5	4	3	-	-	-	1	2	
		8	7	6	4	5	-	_	3		
		0	7	6		-	4	-	5		
		Ma Sila	7	6		9-80	4	1	-		
			7	8	6	_			4		
				- 0		0			6		
					7	8	7	8	8		
							7	0	1 1 1 1 1 1 1 1 1		
									7		
										1	
									DE BELL		
				ACCEPT							
				200			WEST STATE		1000		
					No. of the last		Property leaves				
				ALL HE WAY							
Barrier Co.		BE CONTRACTOR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0 = 3 2 1 3	1318298	1	E PERSONAL PROPERTY.		

Q4: Consider a memory sub-system—with 16-bit word-size and addresses—that has two levels of cache (L1 and L2). L1 is a direct-mapped cache with 16 bytes block size and cache capacity of 4 KB. L2 is an 8-way set associative cache with 256 bytes block size and cache capacity of 32 KB. (20 marks)

	e of tag, index, and offset	Number of t	ag bits	4 bits				
fields for the L1 ca	che (3 marks)	Number of i	ndex bits	8 bits				
		Number of o	offset	4 bits (3 + 1)				
		(word + byte	e) bits					
b. Calculate the siz	e of tag, index, and offset	Number of t	ag bits	4 bits				
fields for the L2 ca		Number of i	_	4 bits				
		Number of c	offset	8 bits (7 + 1)				
		(word + byte						
a A test application	n attempts to read the	` •						
* *	address (16-bit addresses).	Memory	Generated	Events (L1-Hit, L1-Miss,				
	vents that might take place	Address		e-Miss, and Mem)				
•	s. Possible events include	(to read						
	2-Hit, L2-Miss, and Mem	from)						
(for memory read).		0x1562	I 1-Micc I	22-Miss, Mem				
				·				
	blocks are only transferred nemory levels. For eviction	0x1588	L1-Miss, I	<mark>∠2-Hıt</mark>				
	ecently Used (LRU)	0x1581	L1-Hit					
approach is used by	y L1 and L2 caches. The	0x1562	L1-Miss, L2-Hit					
caches are initially	empty.	0x4562	L1-Miss, L2-Miss, Mem					
	s (see below) generate the	0x45BC	L1-Miss, I	_2-Hit				
•	ee below). Use this	0x4562	L1-Miss, I	<mark>_2-Hit</mark>				
information to fin (the table in the right-box.	0x1562	L1-Miss, I					
Cases	Generated Events	0x45BC	L1-Hit					
L1 Hit	L1-Hit							
L2-Hit	L1-Miss, L2-Hit	0x45B2	L1-Hit					
Memory Access	L1-Miss, L2-Miss, Mem	A D A A TO TO	C 1:4 4	M. D. M. D. L.				
Assume that the:	ia 2 CHz	AMAT = Tim	ne for a hit +	Miss Rate x Miss Penalty				
Clock rate	time is 1 cycle,	ANAAT - III	tTime Mi	ssRate ₁ x (MissPenalty ₁)				
	2 1							
	time is 10 cycles,	$MissPenalty_1 = HitTime_2 + MissRate_2 \times (MissPenatly_2)$						
L1 hit rate	ccess time is 100 cycles,	Since the clock rate is 2 Charalest avaletime is 0.5 as						
L1 iii rate L2 hit rate		Since the clock rate is 2 Ghz, clock cycle time is 0.5 ns.						
L2 int rate	15 / U / 0.	$AMAT_1 = 5 \text{ ns} + 0.4 \text{ (MissPenalty_1)}$						
	e memory access time? (4	MissPenalty ₁ = $5 \text{ ns} + .3(50 \text{ns}) = 20 \text{ ns}$						
marks)		$\Lambda M \Lambda T = 5n$	$a \perp A (20nc)$	- $9.5 ng$				
		$AMAT_1 = 5ns$	5 F.4 (ZUIIS)	- 0. <i>J</i> 118				