# TITLE

Subtitle

by

Name

# Copyright © 2021 Name All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise without written permission from the publisher. It is illegal to copy this book, post it to a website, or distribute it by any other means without permission. First edition, 2021

ISBN XYZ

Published by TBD

# Contents

| 1 | My  | Notel | oook        |  |  |  |  |  |  |  |  |  | 1 |
|---|-----|-------|-------------|--|--|--|--|--|--|--|--|--|---|
|   | 1.1 | Start | importing   |  |  |  |  |  |  |  |  |  | 1 |
|   |     |       | Some theory |  |  |  |  |  |  |  |  |  | 1 |

## Chapter 1

# My Notebook

#### 1.1 Start importing

```
using Plots
using Makie
using CairoMakie
using Distributions
using DataFrames
```

#### 1.1.1 Some theory

The Wasserstein Distance for 1D distributions can be obtained by:

$$\int_0^1 |C_{\alpha}^{-1}(r) - C_{\beta}^{-1}(r)|^p dr$$

Where  $C_{\alpha}^{-1}$  is the quantile function for the distribution  $\alpha$  (the inverse of the Cumulative Distribution Function).

```
1 μ(x) = pdf(Normal(0,2),x)
2 println("Myplot")
3 Plots.plot(μ)
```

#### Any["Myplot\n"]

```
<sup>1</sup> Makie.lines(-10:0.1:10, μ.(-10:0.1:10))
```



```
function example(μ)
for i in 1:10
println(μ(i))
end
end
example(μ)
```

```
Any["0.17603266338214976\n", "0.12098536225957168\n", "0.06475879783295\n", "7.991870553452737e-6\n", "7.433597573671488e-7\n"]
```

```
1 rand(10)
```

#### 1 µ;

#### Figure Figure2

### 1 DataFrame(x=rand(10),y=rand(10))

|    | l.        |           |
|----|-----------|-----------|
|    | X         | У         |
|    | Float64   | Float64   |
| 1  | 0.0326174 | 0.589007  |
| 2  | 0.368715  | 0.690396  |
| 3  | 0.366451  | 0.803439  |
| 4  | 0.212434  | 0.581906  |
| 5  | 0.140433  | 0.678201  |
| 6  | 0.329857  | 0.50792   |
| 7  | 0.828484  | 0.0507595 |
| 8  | 0.480084  | 0.021381  |
| 9  | 0.784926  | 0.504361  |
| 10 | 0.43102   | 0.316321  |
| 10 | 0.40102   | 0.010021  |