Computação Distribuída

Funcionamento do BitTorrent

Vladimir Rocha (Vladi)

CMCC - Universidade Federal do ABC

Disclaimer

 Estes slides foram baseados no tutorial do professor Sukumar Gosh http://www.cs.uiowa.edu/~ghosh/bittorrent.ppt

Com permissão do autor

O problema

- A distribuição de um conteúdo estático grande, a partir de um emissor (fonte), para um grande número de usuários, tão rápido quanto possível
- Usar somente a largura de banda de upload do emissor é muito caro e as vezes inviável
- · Soluções?

Ideia de solução

- Utilizar a capacidade de upload dos que baixam (que fazem download)
- Criar oportunidades para intercambiar os dados entre os que baixam

Sistema BitTorrent

Sistema BitTorrent

O sistema BitTorrent para distribuição de arquivos consiste em:

- Um arquivo estático de metadados (torrent file) do conteúdo a ser compartilhado.
- Um servidor WWW para publicar os arquivos torrent
- Um tracker
- Um peer que contém e publica o conteúdo (i.e.,original seed).
 - Ele poderá sair da rede se o conteúdo estiver disponível entre os outros peers (leechers & seeders) do sistema
- Um navegador WWW para encontrar o arquivo torrent
- Uma aplicação que permita gerenciar os arquivos torrent e baixar o conteúdo na rede BitTorrent

Arquivo Torrent

<?xml version="1.0" encoding="UTF-8"?>
<tor:TORRENT</pre>

 Usado para encontrar o conteúdo (via tracker) e verificar a integridade

```
xmlns:tor=http://azureus.sf.net
/files
xmlns:xsi="http://www.w3.org/XM
LSchema>
```

</PIECES>
</INFO>
</tor:TORRENT>

Inclui hashes das peças Conteúdo particionado em peças com os hash calculados

<ANNOUNCE_URL>http://torrent.opera.com:6969/ann
ounce</ANNOUNCE_URL>

Outras infos: tamanho das peças, nome do arquivo, URL do tracker, etc.

Tracker

- Utilizado para encontrar outros peers interessados no mesmo torrent (a partir de aqui, conteúdo e torrent terão o mesmo significado)
- Armazena as informações de contato do peers
- Utiliza o protocolo HTTP para comunicar-se com os peers
- É contatado quando o peer começa, atualiza, para ou baixa completamente o conteúdo
 - Anúncios são realizados a intervalos regulares pelos peers
 - O tracker possui um timeout para remover os peers que saíram
- Ponto único de falhas (Single Point of Failure SPoF)
 - Alvo de ações judiciais (tracker do pirate bay foi eliminado)

Protocolo para download

- Os peers se comunicam utilizando o protocolo BitTorrent acima do TCP
- Os peers interessados no mesmo torrent formam uma rede overlay independente denominada swarm
- Uma vez que o peer baixa o conteúdo completo pode manter-se como seed (altruistic) ou sair da rede (selfish)

BitTorrent em LA (2016)

Upstream		Downstream		Aggregate	
BitTorrent	30.03%	YouTube	28.48%	YouTube	25.91%
YouTube	9.30%	HTTP - OTHER	11.66%	HTTP - OTHER	11.12%
HTTP - OTHER	7.59%	SSL - OTHER	9.76%	BitTorrent	10.06%
Facebook	6.72%	Netflix	8.31%	SSL - OTHER	9.28%
SSL - OTHER	6.19%	BitTorrent	6.96%	Netflix	7.45%
Ares	5.27%	Facebook	5.10%	Facebook	5.32%
Skype	2.53%	MPEG - OTHER	2.28%	MPEG - OTHER	2.10%
Netflix	1.97%	RTMP	1.79%	RTMP	1.66%
Dropbox	1.16%	Google Market	1.69%	Google Market	1.52%
MPEG - OTHER	0.92%	Flash Video	1.60%	Flash Video	1.46%
	71.69%		77.63%		75.87%

Table 3 - Top 10 Peak Period Applications - Latin America, Fixed Access

BitTorrent no mundo

Upstream

2011: 52% (poucas plataformas de streaming)

2015: 27% (Netflix)

2018: 32% (Netflix, HBO, Amazon, Disney)

2022: 10% (... + TikTok)

O custo envolvido em assinar todas as plataformas aumentou o uso do BitTorrent, mas diminuiu novamente – mudança comportamento.

 $\frac{https://entretenimento.uol.com.br/noticias/redacao/2019/02/09/streaming-netflix.htm}{https://torrentfreak.com/bittorrent-is-still-the-king-of-upstream-internet-traffic-but-for-how-long-220304/}$

Estratégias do BitTorrent

- Tentar que a taxa de download de cada peer seja proporcional a sua taxa de upload
 - · Ajuda a evitar os free-riders
- Usar um método eficiente para a distribuição do arquivo (Tit-for-Tat)

Estratégias do BitTorrent

Dilema do Prisioneiro Houve um assassinato Prisioneiro A e B em celas separadas (i.e. não sabe o que o outro falará). Policiais não sabem quem é o culpável (ou ambos)

	Prisioneiro "B" nega	Prisioneiro "B" delata
Prisioneiro "A" nega	Ambos são condenados a 6 meses	"A" é condenado a 10 anos; "B" sai livre
Prisioneiro "A" delata	"A" sai livre; "B" é condenado a 10 anos	Ambos são condenados a 5 anos

O que você faria?

O "insight" genial, como usar isso no BitTorrent?

Tit for Tat

- A melhor estratégia para o dilema do prisioneiro iterativo.
 Basicamente o agente:
 - · a menos que seja provocado, coopera
 - · se provocado, retalia
 - perdoa (esquece) rapidamente
 - · sabe que terá várias chances de encontrar-se novamente com outros

por isso o "iterativo"

https://cs.stanford.edu/people/eroberts/courses/soco/projects/1998-99/game-theory/axelrod.html

Publicação do conteúdo

- Divide o conteúdo em peças, calcula os hashes para cada uma, e cria o arquivo torrent com os metadados
- Registra o torrent no tracker
- Inicia o aplicativo BitTorrent atuando como um seed
- Publica o arquivo torrent em um servidor Web

Estratégias do BitTorrent

- O conteúdo é dividido em peças (256KB-2MB)
- Cada peça é dividida em blocos (16KB)

Join no swarm

- O peer encontra o arquivo de metadados torrent no servidor WWW
- O tracker lhe devolve uma lista com os peers que estão em um swarm (50 peers aleatórios)
 - Corresponde ao Neighbor Set (vizinhos)
- Note que o tracker é um componente (servidor) centralizado mas não está envolvido na transferência do conteúdo

Peers Vizinhos (Neighbors)

- Cada peer possui um neighbor set
 - Inicialmente obtido do tracker
 - Com tamanho máximo de 80
- Cada peer abre uma conexão TCP com os vizinhos
 - Se quantidade de vizinhos < 20, pede ao tracker mais peers
 - Inicialmente abre 40 conexões
 - As outras 40 serão conexões advindas de outros peers

Mensagens do protocolo BitTorrent

- Handshake
- Bitfield
- · Keep_alive
- Interested / Not interested
- Unchoke / Choke
- Request
- Piece
- · Have / Cancel

Informação da Peça (Bitfield)

 Após estabelecer a conexão, os peers realizam o shake hands e compartilham as peças que possuem através do BITFIELD

Conexões do peer

- Para evitar o custo do handshake na abertura de uma conexão, o peer mantém a conexão aberta o máximo possível
- A mensagem KEEP_ALIVE é enviada cada 2 minutos

Informação da peça

- Após o intercâmbio de bitfield, ambos peers conhecem quais peças o outro possui
 - Peer A está interessado INTERESTED no peer B se A não tem peças de B
 - · Peer A está NOT INTERESTED no peer B se A já tem as peças de B
- Quando um peer adquire uma nova peça, avisará a todos seus vizinhos enviando a mensagem HAVE

- Uma das ideias mais poderosas do BitTorrent é assegurar que os peers cooperem, eliminando os free-riders
- Para isso, cada peer p sempre fará o unchoke de um número fixo de peers.
 - Unchoke é o permisso temporal de upload
 - Choke é a recusa temporal de upload
- Mas a gual deles realizar o unchoke?
- O peer p fará o unchoke (upload) aos quatro leechers dos quais p baixou exitosamente peças
 - A decisão de choke/unchoke é realizada cada 10 segundos
 - Baseada na taxa de download avaliada nos últimos 30 segundos

Na visão de um peer p

- Passo 1: ordenar todos os peers interessados (INTERESTED) que fizeram o upload de ao menos 1 bloco nos últimos 30 segs.
 - Elimine os peers snubbed, i.e., que não enviaram nada durante os 30 segs.

Na visão de um peer p

- Passo 2: os três peers mais rápidos serão unchoked por p.
 - Esses peers são denominados de Regular Unchoked (RU) peers
 - Envia a mensagem UNCHOKED para os RUs
- Passo 3: escolha aleatoriamente um peer que não está em RU para ser o peer optimistic unchoked (OU)
 - 3a: se o OU está interessado, envie a mensagem UNCHOKED

Na visão de um peer p

- Passo 2: os três peers mais rápidos serão unchoked por p.
 - Esses peers são denominados de Regular Unchoked (RU) peers
 - Envia a mensagem UNCHOKED para os RUs
- Passo 3: escolha aleatoriamente um peer que n\u00e3o est\u00e1 em RU para ser o peer optimistic unchoked (OU)
 - 3a: se o OU está interessado, envie a mensagem UNCHOKED

Para quê?

Mecanismo de Choking

- O Optimistic Unchoking permite:
 - Encontrar peers potencialmente mais rápidos
 - Permitir aos peers que iniciaram (portanto com poucas peças) obter peças

Estratégias de seleção da peça

- Um unchocked peer A envia uma mensagem REQUEST ao peer B por uma peça
- O peer B envia uma mensagem PIECE com o bloco/peça como payload
- Quando o peer A receber a peça, envia:
 - uma mensagem HAVE a todos os peers vizinhos
 - uma mensagem CANCEL a todos os peers vizinhos

Tudo bem, mas qual peça o peer A deveria requisitar?

Estratégias de seleção da peça

- Random first
 - No começo o peer precisa de qualquer peça completa
 - Usado quanto tiver menos de 4 peças completas
 - Importante para ter algo a ser usado no Tit-for-Tat
- Strict priority
 - Outros blocos da mesma peça e do mesmo peer (reuso do canal TCP)
 - Ou seja, permite obter a peça completa o mais rápido possível
- Rarest first (muito importante)
 - Obter peças menos replicadas, deixando as mais comuns para depois
- Endgame mode
 - Broadcast por todos os blocos restantes
 - Usado no final do download do conteúdo

Estratégias de seleção da peça: rarest-first

Na visão de um peer p

- Conhece quais peças seus vizinhos possuem
 - Via as mensagens HAVE e BITFIELD
- Pode calcular a disponibilidade de cada peça
 - Quantas vezes a peça está replicada nos vizinhos
- Assuma a peça m com menor disponibilidade
 - Essa peça m será a rarest-piece
- Ao pedir a peça m, prolonga-se a vida do conteúdo, reduzindo o risco que a peça vire extinta

Overhead do protocolo muito baixo (< 2%)

Understanding BitTorrent: An Experimental Perspective [Legout et al., INRIA-TR-2006]

Algoritmo de choke consegue reciprocidade no envio/recebimento de dados

Seja P um nó potencial a enviar uma peça e N o total de nós no swarm.
 Ter mais nós no swarm aumenta a chance de um nó P ter a quem enviar

O tempo para adquirir os primeiros blocos é subestimado

Flash crowds

Disponibilidade do peer no estado seed (i.e., uptime em modo altruísta)

- □ 17%~9200 têm uptime > 1 h
- □ 3.1%~1600 têm uptime > 10 h
- □ 0.34% ~183 têm uptime > 100 h
 - 1 seeder com ~

Trackers e servers

Qual é a capacidade e infraestrutura de um tracker?

http://www.living-torrent.com/2018/12/top-torrent-tracker-hits-record_18.html

Top Torrent Tracker Hits Record Breaking 30 Million Peers

📤 amine belotmani 🛗 December 18, 2018

"At this moment we have a tendency to square measure hosting the huntsman on 3 medium-sized dedicated servers ..."

"Across the 3 servers this adds up to spill 2 billion connections per day..."

Trackers e servers

Qual é a capacidade e infraestrutura de um tracker?

Meta (anteriormente Facebook), apresentou em 2022 a modificação do protocolo **BitTorrent** para compartilhamento de arquivos entre seus servidores multimídia.

A ideia foi ter vários trackers, cada um responsável por um conjunto de peers, controlando exatamente o que cada peer deve baixar, quando baixar e de quem baixar.

A comunicação entre Tracker e Peer é realizada via RPC.

O sistema atende aproximadamente 10 milhões de clientes concorrentes e transfere 1 exabyte de informação por dia. Cada Tracker gerencia aproximadamente 100 mil peers.

1 exabyte = 1 milhão de terabytes.

Conceitos adquiridos

- BitTorrent tracker, seeder e leecher.
- SPoF Single Point of Failure.
- Estratégia Tit-for-Tat.
- Estratégia Rarest-first.