

Monitoring Report CARBON OFFSET UNIT (CoU) PROJECT

Title: 1.2 MW Vetamamidi Mini Hydel Power Project at AP Tribal Power Company Limited by Energy Advisory Services

Version 1.0
Date 27/10/2023

First CoU Issuance Period: 07 years, 0 months
Date: 01/01/2016 to 31/12/2022

1

Monitoring Report (MR) CARBON OFFSET UNIT (CoU) PROJECT

Monitoring Report				
Title of the project activity	1.2 MW Vetamamidi Mini Hydel Power Project at AP Tribal Power Company Limited by Energy Advisory Services			
UCR Project Registration Number	344			
Version	1.0			
Completion date of the MR	27/10/2023			
Monitoring period number and duration of this monitoring period	Monitoring Period Number: 01 Duration of this monitoring Period: (first and last days included (01/01/2016 to 31/12/2022)			
Project participants	Project Proponent: AP Tribal Power Company Limited, 4th Floor, DSS Bhavan, Masab Tank Hyderabad - 28			
	Aggregator: Energy Advisory Services Pvt. Ltd. Bangalore, Karnataka. Email: manoj@easpl.co.in			
Host Party	INDIA			
Applied methodologies and standardized baselines	CDM UNFCCC Methodology AMS-I.D.: Grid connected renewable electricity generation version-18 & UCR Standard for Emission Factor			
Sectoral scopes	01 Energy industries (Renewable/Non-Renewable Sources)			
Estimated amount of GHG emission reductions for				
this monitoring period in the registered PCN	2016: 2,330 CoUs (2,330 tCO2eq)			
	2017: 1,579 CoUs (1,579 tCO2eq)			
	2018: 3,560 CoUs (3,560 tCO2eq)			
	2019: 3,404 CoUs (3,404 tCO2eq)			
	2020: 1,928 CoUs (1,928 tCO2eq)			
	2021: 3,621 CoUs (3,621 tCO2eq)			
	2022: 4241 CoUs (4241 tCO2eq)			
Total:	20,663 CoUs (20,663 tCO2eq)			

SECTION A. Description of project activity

A.1. Purpose and general description of project activity >>

a) Purpose of the project activity and the measures taken for GHG emission reductions >>

The proposed project titled under UCR is "1.2 MW Vetamamidi Mini Hydel Power Project by M/s AP Tribal Power Company Limited", which is a hydroelectric power project located in Vetamamidi Village, Addateegala Mandal, Rampachodavaram Division, Alluri Seetharamraju District, Andhra Pradesh – 533428 (India). The project is an operational activity with continuous reduction of GHG, currently being applied under "Universal Carbon Registry" (UCR).

This in turn will lead to reduction of greenhouse gas (GHG) emissions by an estimated 16,425 Tonnes of CO2e/year during the crediting period of January 2016 to December 2022.

b) Brief description of the installed technology and equipment>>

The project activity aims to harness kinetic energy of water (renewable source) from Yeleru river to generate electricity. The project is promoted by M/s AP Tribal Power Company Limited (herein after called as project proponent 'PP'). The proposed project activity is the installation and operation of small-scale hydel power project comprising of 1 unit of 1.2 MW (1200 kW) hydro turbine and generator, along with step-up transformer, transmission line up to sub-station located at Addateegala.

As the nature of the hydro project, no fossil fuel is involved for power generation in the project activity, the electricity produced by the project is directly contributing to climate change mitigation by reducing the anthropogenic emissions of greenhouse gases into the atmosphere by displacing an equivalent amount of power at the grid, which would otherwise have been generated from fossil fuel-based power plants which are connected to the Indian grid system.

The salient features of the technology of the hydro-turbines are:

Sr. No.	Parameter	Value
1	Make of Turbine	Boving Fouress
2	Type	Vertical Full Kaplan
3	Rated Capacity	1288.9 kW (1.29 MW)
4	Year of Manufacturing	2008
5	Serial Number	VFK-244-01
6	Rated Speed	1000 rpm

c) Relevant dates for the project activity (e.g. construction, commissioning, continued operation periods, etc.)>>

UCR Project ID or Date of Authorization:	
Start Date of Crediting Period:	01/01/2016
Project Commissioned:	15/04/2011

d) Total GHG emission reductions achieved or net anthropogenic GHG removals by sinks achieved in this monitoring period>>

The total GHG emission reductions achieved in this monitoring period is as follows:

Summary of the Project Activity and ERs Generated for the Monitoring Period			
Start date of this Monitoring Period 01/01/2016			
Carbon credits claimed up to	31/12/2022		
Total ERs generated (tCO2eq)	20,663 tCO2eq		
Leakage	NIL		

e) Baseline Scenario>>

The baseline scenario identified at the PCN stage of the project activity is:

As per the approved consolidated methodology AMS-I.D. Version 18, if the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following: "The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise, been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

Schematic diagram showing the baseline scenario:

Figure 1- Baseline scenario

A.2. Location of project activity>>

Country: INDIA

Village: VETAMAMIDI Tehsil: ADDATEEGALA

District: ALLURI SEETARAM RAJU

State: ANDHRA PRADESH

Pin code 533428 Coordinates 17⁰28'40"N

81°59'20"E

Figure 2- Project location with co-ordinates

A.3. Parties and project participants >>

Party (Host)	Participants
INDIA	Project Proponent: AP Tribal Power Company Limited, 4th Floor, DSS Bhavan, Masab Tank Hyderabad - 28
	Aggregator: Energy Advisory Services Pvt. Ltd. Bangalore, Karnataka. Email: manoj@easpl.co.in

A.4. References to methodologies and standardized baselines >>

SECTORAL SCOPE	01, Energy industries (Renewable/Non-renewable sources)
TYPE	I – Renewable Energy Projects
CATEGORY	AMS. I.D. (Title: "Grid connected renewable electricity generation",
	version 18)

A.5. Crediting period of project activity >>

Start date of the crediting period: 01/01/2016

Length of the crediting period corresponding to this monitoring period: 07 years 0 months

01/01/2016 to 31/12/2022 (Both dates are inclusive)

A.6. Contact information of responsible persons/entities >>

Name : Nikhil Vedprakash Contact No : +91 7303201778 E-Mail : nikhil@easpl.co.in

SECTION B. Implementation of project activity

B.1. Description of implemented registered project activity >>

a) Provide information on the implementation status of the project activity during this monitoring period in accordance with UCR PCN>>

The project consists of a single hydro turbine having an installed capacity of 1.2 MW (1200 kW) which was commissioned on 15/04/2011. The project is located at Vetamamidi Village, Addateegala Mandal, Rampachodavaram Division, Alluri Seetharamraju District, Andhra Pradesh – 533428 (India). M/s AP Tribal Power Company Limited is the owner of this project. The project generates clean energy by utilizing the kinetic energy of flowing water from Yeleru River.

b) For the description of the installed technology(ies), technical process and equipment, include diagrams, where appropriate>>

The project activity involves a single vertical Kaplan turbine (1200 kW) with internal electrical lines connecting the project activity with a local 33/11 kV electrical grid. The generators generate power at 3.3 kV, which can further be stepped up to 33 kV. The project activity operates at a frequency of 50 Hz and a voltage of 3.3 kV $\pm 10\%$. The average life of the generator is around 35to 40 years as per the equipment supplier specification. The other salient features of the technology are:

Table 1 -The other salient features of the technology are:

Particular Particular	Value
Turbine	
Make	Boving Fouress Limited
Type	Vertical Full Kaplan Turbine
Rated capacity	1,288.9 kW
Serial number	VFK-244-01
Induction motor	
Make	CG Crompton Greaves
Rated capacity	1,200 kW
Serial number	2075789
Full load efficiency	95.50
Gear box	
Make	Triveni Engineering & Industries Limited
Rated power	1.420 kW
Input /output speed	360/1000 rpm

There was no harm identified form the project and hence no mitigations measures are applicable.

Rational: as per 'Central Pollution Control Board (Ministry of Environment & Forests, Govt. of India)', final document on revised classification of Industrial Sectors under Red, Orange, Green and White Categories (07/03/2016), it has been declared that hydro project activity falls under the "White category". White Category projects/industries do not require any Environmental Clearance such as 'Consent to Operate' from PCB as such project does not lead to any negative environmental impacts. Additionally, as per Indian Regulation, Environmental and Social Impact Assessment is not required for hydro Projects.

The Government of India has stipulated the following indicators for sustainable development in the interim approval guidelines for such projects which are contributing to GHG mitigations. The Ministry of Environment, Forests & Climate Change, has stipulated economic, social, environmental, and technological well-being as the four indicators of sustainable development. It has been envisaged that the project shall contribute to sustainable development using the following ways:

Social well-being: The project would help in generating direct and indirect employment benefits accruing out of ancillary units for project equipment's and hydro turbines and for maintenance during the operation of the project activity. It will lead to the development of infrastructure around the project area in terms of improved road network etc. and will also directly contribute to the development of renewable infrastructure in the region.

Economic well-being: The project is a clean technology investment decision based on carbon revenue support, which signifies the flow of clean energy investments into the host country. The project activity requires temporary and permanent, skilled and semi-skilled manpower at the project location; this will create additional employment opportunities in the region. The generated electricity will be displacing an equivalent amount of electricity that otherwise would have been generated by fossil fuel sources, thereby reducing grid emission. In addition, improvement in infrastructure will provide new opportunities for industries and economic activities to be set up in the area. Apart from getting better employment opportunities, the local people will get better prices for their land, thereby resulting in overall economic development.

Technological well-being: The project activity employs state of art technology hydro turbines which has high power generation potential. The successful operation of project activity would lead to the promotion of this technology and would further push R&D efforts by technology providers to develop more efficient and better machinery in the future. Hence, the project leads to technological well-being. P

Environmental well-being: The project activity will generate power using zero emissions hydro-based power generation facility which helps to reduce GHG emissions and specific pollutants like SO_x, NO_x, and SPM associated with the conventional thermal power generation facilities. The project utilizes the kinetic energy of flowing water for generating electricity which is a clean source of energy. The project activity will not generate any air pollution, water pollution, or solid waste to the environment which otherwise would have been generated through fossil fuels. Thus, the project causes no negative impact on the surrounding environment contributing to environmental well-being.

The project activity contributes to the following SDGs;

Table 2: Contribution to the SDGs

- The project activity has generated 15,00 MWh of clean energy per year, which with increased share will increase the affordability of energy at a cheaper rate to the end user.
- The project activity utilizes wind energy (renewal resource) to generate power. The project activity will increase the share of renewable resource-based electricity in global mix of energy consumption.

- The project activity generates additional employment for skilled and unskilled workers. The project is situated in a remote area and it will provide employment opportunities to unskilled people from nearby villages.
- Training on various aspects including safety, operational issues, and developing skill sets will also be provided to employees.
- This project will achieve full and productive employment and decent work for all women and men, including for young people and persons with disabilities, and equal pay for work of equal value.

- This wind power project meets the SDG 13 goal by saving fossil fuel and producing clean energy.
- This project has avoided 13,500 tons of CO₂ per year emissions during this monitoring period.
- In a greenfield project, electricity delivered to the grid by the project would reduce the dependence on fossil fuel-based generation units and as there are no associated emissions with this project it contributes to the reduction of greenhouse gases (GHG) emissions.

B.3. Baseline Emissions>>

The baseline scenario identified at the MR stage of the project activity is:

In the absence of the project activity, the equivalent amount of electricity would have been imported from the grid (which is connected to the unified Indian Grid system (NEWNE Grid)), which is carbon intensive due to being predominantly sourced from fossil fuel-based power plants. Hence, the baseline scenario of the project activity is the grid-based electricity system, which is also the pre-project scenario.

Schematic diagram showing the baseline and project scenario:

Baseline Scenario: Electricity would be produced by more GHG intensive means like coal, oil and gas.

Figure 3- Baseline scenario

Project Scenario: Use of renewable energy technologies for electricity generation, displacing the non-renewable sources

Figure 4- Project scenario

Thus, this project activity was a voluntary investment which replaced equivalent amount of electricity from grid connected power plants. The project proponent was not bound to incur this investment as it was not mandatory by national and sectoral policies. Thus, the continued operation of the project activity would continue to replace thermal energy from non-renewable fuel (coal/oil/gas) and fight the impacts of climate change. The Project Proponent hopes that carbon revenues from 2019-2022 accumulated because of carbon credits generated will help repay the loans and in the continued maintenance of this project activity

B.4. De-bundling>>

This project activity is not a de-bundled component of a larger project activity.

SECTION C. Application of methodologies and standardized baselines

C.1. References to methodologies and standardized baselines >>

SECTORAL SCOPE	01, Energy industries (Renewable/Non-renewable sources)
TYPE	I – Renewable Energy Projects
CATEGORY	AMS. I.D. (Title: "Grid connected renewable electricity generation", version 18)

C.2. Applicability of methodologies and standardized baselines >>

The project activity involves the generation of grid-connected electricity from the construction and operation of a new hydro power-based power project. The project activity has an installed capacity of 1.2 MW which will qualify for a small-scale project activity under Type-I of the small-scale methodology. The project status is corresponding to the methodology AMS-I.D., version 18, and the applicability of the methodology is discussed below:

Applicability Criterion	Project Case
 This methodology comprises renewable energy generation units, such as photovoltaic, hydro, tidal/wave, wind, geothermal and renewable biomass: (a) Supplying electricity to a national or a regional grid; or (b) Supplying electricity to an identified consumer facility via national/regional grid through a contractual arrangement such as wheeling. 	The project activity is a Renewable Energy Project i.e. micro hydro power. The project sells energy to the national grid; hence it falls under applicability criteria option 1(a) Hence the project activity meets the given applicability criterion.
 2. This methodology is applicable to project activities that: (a) Install a Greenfield plant; (b) Involve a capacity addition in (an) existing plant(s); (c) Involve a retrofit of (an) existing plant(s); (d) Involve a rehabilitation of (an) existing plant(s)/unit(s); or (e) Involve a replacement of (an) existing plant(s). 	The option (a) of applicability criteria 2 is applicable as project is a Greenfield plant /Unit. Hence the project activity meets the given applicability criterion.
 3. Hydro power plants with reservoirs that satisfy at least one of the following conditions are eligible to apply this methodology: (a) The project activity is implemented in existing reservoir, with no change in the volume of the reservoir; or (b) The project activity is implemented in existing reservoir, where the volume of the reservoir(s) is increased and the power density as per definitions given in the project emissions section, is greater than 4 W/m². (c) The project activity results in new reservoirs and the power density of the power plant, as per 	This Small-Scale Hydro Project is implemented on an irrigation channel of an existing reservoir with no change in the volume of the reservoir. Thus, criteria 3(a) is applicable.

definitions given in the project emissions section, is greater than 4W/m2. 4. If the new unit has both renewable and non-The proposed project is 1.2 MW Micro renewable components (e.g., a wind/diesel unit), Hydro Power Project, i.e., only component the eligibility limit of 15 MW for a small-scale is renewable power project below 15MW, CDM project activity applies only to the thus this criterion is not applicable to this renewable component. If the new unit co-fires project activity. fossil fuel, the capacity of the entire unit shall not exceed the limit of 15 MW. 5. Combined heat and power (co-generation) systems The project is Micro Hydro Power Project are not eligible under this category. and thus, this criterion is not applicable to this project activity. 6. In the case of project activities that involve the The proposed project is a greenfield 1.2MW Micro-Hydro Power Project, and it capacity addition of renewable energy generation units at an existing renewable power generation does not involve capacity addition to an existing power plant. Thus, this criterion is facility, the added capacity of the units added by the project should be lower than 15 MW and not applicable to this project activity. should be physically distinct from the existing units. 7. In the case of retrofit, rehabilitation or replacement, The proposed project is a greenfield to qualify as a small-scale project, the total output 1.2MW Micro Hydro Power Project, i.e., no of the retrofitted, rehabilitated or replacement retrofit, rehabilitation or replacement was power plant/unit shall not exceed the limit of 15 done to any existing power plant. Thus, this criterion is not applicable to this project MW. activity. 8. In the case of landfill gas, waste gas, wastewater The proposed project is a greenfield treatment and agro-industries projects, recovered 1.2MW Micro Hydro Power Project hence, methane emissions are eligible under a relevant this criterion is not applicable to this project Type III category. If the recovered methane is used activity. for electricity generation for supply to a grid, then the baseline for the electricity component shall be in accordance with procedure prescribed under this methodology. If the recovered methane is used for heat generation or cogeneration other applicable Type-I methodologies such as "AMS- I.C.: Thermal energy production with or without

electricity" shall be explored.

shall apply.

9. In case biomass is sourced from dedicated

plantations, the applicability criteria in the tool

"Project emissions from cultivation of biomass"

No biomass is involved, the project is only

a Micro Hydro Power Project and thus this criterion is not applicable to this project

activity.

C.3 Applicability of double counting emission reductions >>

The project was not applied under any other GHG mechanism. Hence project will not cause double accounting of carbon credits (i.e., COUs), due to the following reasons:

- Project is uniquely identifiable based on its location coordinates,
- Project has a dedicated commissioning certificate and connection point,
- Project is associated with energy meters which are dedicated to the consumption point for the project developer.

C.4. Project boundary, sources and greenhouse gases (GHGs)>>

As per applicable methodology AMS-I.D. Version 18, "The spatial extent of the project boundary includes the project power plant and all power plants connected physically to the electricity system that the project power plant is connected to."

Thus, the project boundary includes the water inlet channel, hydropower plant and the metering cubicle at the evacuation point of the local grid system.

Summary of gases and sources included in the project boundary, and justification explanation where gases and sources are not included

	Source	GHG	Included?	Justification/Explanation
Baseline		CO_2	Included	Major source of emission
	Emissions from grid connected power	CH4	Excluded	Negligible source of emission
	plants using non- renewable energy	NO_2	Excluded	Minor source of emissions
	sources as fuel	Others	Excluded	No other GHG emissions were emitted from the project
Project	Emissions from on- site electricity use	CO_2	Excluded	Project activity does not emit CO2
Activity		CH4	Excluded	Project activity does not emit CH4
		NO_2	Excluded	Project activity does not emit NO2
		Others	Excluded	Project activity does not emit any other GHG gases

C.5. Establishment and description of baseline scenario (UCR Protocol) >>

As per the approved consolidated methodology AMS-I.D. Version 18, if the project activity is the installation of a new grid-connected renewable power plant/unit, the baseline scenario is the following:

"The baseline scenario is that the electricity delivered to the grid by the project activity would have otherwise been generated by the operation of grid-connected power plants and by the addition of new generation sources into the grid".

The project activity involves setting up a new hydropower plant to harness the kinetic energy of flowing water. In the absence of the project activity, the equivalent amount of power would have been supplied by the Indian grid, which is fed mainly by fossil fuel-fired plants. Hence, the baseline for the project activity is the equivalent amount of power produced at the Indian grid.

A "grid emission factor" refers to a CO2 emission factor (tCO2/MWh) that will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO2/MWh for the 2013 - 2020 years as a fairly conservative estimate for Indian projects not previously verified under any GHG program. Also, for the vintage 2021-2022, the combined margin emission factor calculated from the CEA database in India results in higher emissions than the default value. Hence, the same emission factor has been considered to calculate the emission reduction under a conservative approach.

C.5.1 Net GHG Emission Reductions and Removals >>

```
Thus, ERy = BEy - PEy - LEy
```

Where: ERy = Emission reductions in year y (tCO_2/y)

BEy = Baseline Emissions in year y (t CO₂/y)

PEy = Project emissions in year y (tCO_2/y)

LEy = Leakage emissions in year y (tCO_2/y)

Baseline Emissions

Baseline emissions include only CO₂ emissions from electricity generation in power plants that are displaced due to the project activity. The methodology assumes that all project electricity generation above baseline levels would have been generated by existing grid-connected power plants and the addition of new grid-connected power plants.

The baseline emissions are to be calculated as follows:

$$BEy = EG_{PJ}, y \times EF_{grid}, y$$

BEy = Baseline emissions in year y (t CO₂)

 EG_{PJ} , y = Quantity of net electricity generation that is produced and fed into the grid as a result of the implementation of the CDM project activity in year y (MWh)

 EF_{grid} , y = UCR recommended emission factor of 0.9 tCO₂/MWh has been considered. (Reference: General Project Eligibility Criteria and Guidance, UCR Standard, page 4)

• Baseline Emissions Calculation

Sr No	Year	EG _{PJ} ,y (MWh)	EF_{grid},y	BEy
1	2016	2,588.88	0.9	2,330
2	2017	1,421.11	0.9	1,579
3	2018	3,955.55	0.9	3,560
4	2019	3,782.22	0.9	3,404
5	2020	2,142.22	0.9	1,928
6	2021	4,023.33	0.9	3,621
7	2022	4,712.22	0.9	4,241
	tCO ₂ for the peri	od January 2016 to De	cember 2022	20,663

• Project Emissions Calculation

As per Paragraph 39 of AMS-I.D. version-18, only emissions associated with fossil fuel combustion, emissions from the operation of geothermal power plants due to the release of non-condensable gases, and emissions from a water reservoir of hydro should be accounted for the project emission. Since the project activity is a hydroelectric power project, project emission for renewable energy plants is nil.

Thus, PE = 0

• Leakage Emission Calculation

As per paragraph 42 of AMS-I.D. version-18, 'If the energy generating equipment is transferred from another activity, leakage is to be considered.' In the project activity, there is no transfer of energy generating equipment and therefore the leakage from the project activity is considered zero.

Hence, LE = 0

• Net Emission

The actual emission reduction achieved during the first CoU period shall be submitted as a part of the first monitoring and verification. However, for the purpose of an ex-ante estimation, the following calculation has been submitted:

Hence,

Net GHG emission reduction, = $20,663-0-0 = 20,663 \text{ tCO}_2$ (i.e., 20,663 CoUs)

C.6. Prior History>>

The project was not applied under any other GHG mechanism. Hence the project will not cause double accounting of carbon credits (i.e., CoUs).

C.7. Monitoring period number and duration>>

First Issuance Period: 7 years, 0 months -01/01/2016 to 31/12/2022

C.8. Changes to start date of crediting period >>

There is no change in start date of crediting period.

C.9. Permanent changes from PCN monitoring plan, applied methodology or applied standardized baseline >>

Not applicable.

C.10. Monitoring plan>>

Data and Parameters available (ex-post values):

Parameter	EG_{PJ} , y
Data unit	MWh
Description	Quantity of net electricity generation that is produced and fed into the grid because of the implementation of this project activity in year y.
Source of data Value(s) applied	Monthly Electricity Logbook maintained at each Power Plant
Procedures	The Net electricity generation by the hydro power plant is recorded at the sub-station. At the end of every month Electricity generation report is generated based on the total monthly electricity exported to the grid or consumed by the nearby local community.
Monitoring frequency	Monthly
Purpose of data	To calculate the baseline emission

Parameter	EF_{grid},y
Data and Parameters available at	UCR recommended emission factor
validation (ex-ante values)	
Data unit	tCO ₂ /MWh
Description	A "grid emission factor" refers to a CO2 emission factor (tCO2/MWh) which will be associated with each unit of electricity provided by an electricity system. The UCR recommends an emission factor of 0.9 tCO2/MWh for the 2013 - 2021 years as a conservative estimate for Indian projects not previously verified under any GHG program. Hence, the same emission factor has been considered to calculate the emission reduction under conservative approach.
Source of data	https://cea.nic.in/wp- content/uploads/baseline/2023/01/Approved_report_emissi on2021_22.pdf and UCR Document
Value applied	0.9

Measurement methods and	-
procedures	
Monitoring frequency	Ex-ante fixed parameter
Purpose of Data	For the calculation of Emission Factor of the grid
Additional Comment	The combined margin emission factor as per CEA database
	(current version 18, Year 2022) results into higher emission
	factor.
	Hence for 2022 vintage UCR default emission factor remains
	conservative.

Data/Parameter	Date of commissioning of the units
Data unit	Date
Description	Actual date of commissioning of the project unit
Source of data Value(s) applied	Commissioning report issued by State grid transmission corporation or State electricity board
Measurement methods and procedures	The construction processes are maintained from its initiation to completion dates for the biogas unit. Thus, the start date of each of the unit installed is recorded in the monitoring report.
Monitoring frequency	As and when commissioned and fixed and recorded in the monitoring report
Purpose of data	To estimate baseline emissions