Nonlinear Modal Analysis for Contact Problems ICTAM MONTBEAL 2016

Yulin Shi Mathias Legrand

Structural Dynamics and Vibration Laboratory McGill University

March 10, 2016

What is a mode of a dynamic system?

Figure: Rotor dynamics under periodic excitation.

Figure: Tuning fork sympathy

Figure: Displacement trajectory indicates periodicity

Figure: Phase plane. The trajectory merges into a closed orbit

Modal analysis for linear systems

Figure: Linear mass-spring system

Figure: The amplitude field of standing waves in a shell

$$\begin{cases}
\ddot{u}_1 = -k_1 u_1 + k_2 (u_2 - u_1) \\
\ddot{u}_2 = -k_2 (u_2 - u_1)
\end{cases}$$
(1)

Given $k_1 = k_2 = 1$

$$\begin{pmatrix} \ddot{u}_1 \\ \ddot{u}_2 \end{pmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad (2)$$

Get analytical solutions by Laplace transform

$$(s^2I + K)u = 0 (3)$$

Solve the linear eigenvalue problem by plugging in $s=iw_n$, yielding the natural frequency where resonance happens

$$w_n = \sqrt{\operatorname{eig}(\mathbf{K})} = 0.618, 1.618$$
 (4)

Superposition principle of linear system

Figure: Amplitude - harmonic excitation frequency

Figure: Frequency response test rig based on superposition principle.

Superposition principle of linear systems

Smooth nonlinear system

Figure: Duffing oscillator due to hardening effect

$$\ddot{u} + \delta \dot{u} + (k + \epsilon u^2) u = f \cos(wt)$$
 (5)

$$w_n = \sqrt{\operatorname{eig}(k + \epsilon u^2)} = ? \tag{6}$$

The natural frequency CANNOT be calculated by solving the eigenvalue problem due to the nonlinearity.

Mode of nonlinear system

The steady state solution is calculated by $\underline{\text{time-stepping}}$ method e.g. Newmark scheme. ode45 in Matlab.

Figure: Closed orbit of $\ddot{u} + 0.2\dot{u} + u = f\cos(t)$ in phase plane

Figure: Closed orbit of $\ddot{u} + 0.2\dot{u} + u + u^3 = t\cos(t)$ in phase plane

Frequency response and bifurcations

Figure: At w = 2rad/s, there are two steady orbits.

The trajectories converge to two distinct periodic orbits.

Figure: Frequency response of $\ddot{u} + 0.2\dot{u} + u + u^3 = \cos(wt)$.

The harmonic balance method can be used for solving unstable solutions.

Harmonic balance method for nonlinear system

For example, for second-order nonlinear dynamic equation

$$f(\ddot{x}, x, t) = 0 \tag{7}$$

Approximate the periodic solution in the truncated Fourier series

$$x(t) \approx \sum_{i=-M}^{M} e^{iwt} \bar{x}_i = \phi(t) \bar{\mathbf{x}}$$
 (8)

Plug it into the system equaiton, and use <u>Galerkin method</u> to preserve the equilibrium of the equation in the truncated base space.

$$\mathbf{F}(\bar{\mathbf{x}}) = \int_0^T \phi^\top(t) f(\ddot{\phi}(t)\bar{\mathbf{x}}, \phi(t)\bar{\mathbf{x}}, t) = \mathbf{0}$$
 (9)

Time and differential term is not included in the nonlinear equation which can be solved by Newton iteration method.

$$\bar{\mathbf{x}} \leftarrow \bar{\mathbf{x}} - (\nabla \mathbf{F}(\bar{\mathbf{x}}))^{-1} F(\bar{\mathbf{x}})$$
 (10)

Contact condition

Figure: Contact problem of a mass-spring system. g_X is the initial gap. λ is the contact force

$$\ddot{u} + ku = \lambda(u) + f$$

$$\begin{cases} u - g_X \le 0 \\ \lambda \le 0 \\ (u - g_X)\lambda = 0 \end{cases}$$
(11)

Figure: The contact force as a non-differentiable function of the gap.

 $\nabla \lambda(u)$ does not exist at $u = g_X$. Newton method does not work!

Auxiliary surface and Semismooth Newton method

Figure: Semismooth surface $C(u-g_X,\lambda)=\lambda+\max\{0,c(u-g_X)-\lambda\}=0.$

Figure: The intersection (-) of the surface $\mathcal{C}(u-g_X,\lambda)$ and the plane z=0 is the non-differentiable function $\lambda(u)$.

Attributes	Smooth Newton method	Semismooth Newton method
Function $f(x)$	smooth	semi-smooth
Iteration	$\Delta x = -(\nabla f(x))^{-1} F(x)$	$\Delta x = -(\partial f(x))^{-1} f(x)$
Jacobian matrix	differential $\nabla f(x)$	sub-differential $\partial f(x)$
Convergence speed	Q-quadratic	Q-linear

Harmonic balance method for contact problem

The reformulated system equation of a contact problem

$$\begin{cases} \mathcal{R}(u,\lambda) = \ddot{u} + u - \lambda - \cos(wt) = 0\\ \mathcal{C}(u,\lambda) = \lambda + \max\{0, c(u - g_X) - \lambda\} = 0 \end{cases}$$
 (13)

Plugging in with the approximated solutions

$$\begin{cases} u(t) \approx \sum_{i=1}^{M} \phi_i(t) \bar{u}_i = \phi(t) \bar{\mathbf{u}} \\ \lambda(t) \approx \sum_{i=1}^{M} \phi_i(t) \bar{\lambda}_i = \phi(t) \bar{\lambda} \end{cases}$$
(14)

yields nonlinear equations w.r.t. $\bar{\mathbf{u}}$, $\bar{\lambda}$ and w

$$\begin{cases} \int_0^T \phi(t)^\top \mathcal{R}(\phi(t)\bar{\mathbf{u}}, \phi(t)\bar{\boldsymbol{\lambda}}) dt = 0\\ \int_0^T \phi(t)^\top \mathcal{C}(\phi(t)\bar{\mathbf{u}}, \phi(t)\bar{\boldsymbol{\lambda}}) dt = 0 \end{cases}$$
(15)

The second nonlinear equation is semismooth which can be solved by semismooth Newton method.

Compare of time-stepping method and harmonic balance method.

Figure: Compare of solutions of time-stepping method and HBM at w = 1 rad/s.

Figure: Energy-frequency solved by harmonic balance method with different number of harmonics.

$$\begin{cases} \ddot{u} + 0.2\dot{u} + u = \lambda + \cos(wt) \\ \mathcal{C}\{u - 2.5, \lambda\} = 0 \end{cases}$$
 (16)

Conclusion

- ▶ **Linear mode** can be solved by solving eigenvalue problem.
- Smooth nonlinear mode can be solved by time-stepping method and harmonic balance method.
- ► Contact system is non-differentiable. We used the auxiliary equation to reformulate it as an augmented semismooth system before applying the semismooth Newton method.
- The nonlinear mode of the reformulated contact system can be solved by the time-stepping method or the harmonic balance method.