Exploratory Factor Analysis

Tsung-Chi Cheng

Department of Statistics National Chengchi University Taipei 11605, Taiwan

E-mail: chengt@nccu.edu.tw

Assume that we have a set of observed or manifest variables,
 X = (x₁, x₂, ···, x_p), which are assumed to be linked to k unobserved latent variables or common factors
 F = (f₁, f₂, ···, f_k), where k < p, by a regression model of the form

$$\mathbf{x}_{1} = \lambda_{11}\mathbf{f}_{1} + \lambda_{12}\mathbf{f}_{2} + \lambda_{1k}\mathbf{f}_{k} + u_{1}$$
 $\mathbf{x}_{2} = \lambda_{21}\mathbf{f}_{1} + \lambda_{22}\mathbf{f}_{2} + \lambda_{2k}\mathbf{f}_{k} + u_{2}$
 \vdots
 $\mathbf{x}_{p} = \lambda_{p1}\mathbf{f}_{1} + \lambda_{p2}\mathbf{f}_{2} + \lambda_{pk}\mathbf{f}_{k} + u_{p}$

- The λ_j s are essentially the regression coefficients of the X-variables on the common factors,
 - in the context of factor analysis these regression coefficients are known as the factor loadings and show how each observed variable, x_i, depends on the common factors.

- The factor loadings are used in the interpretation of the factors
- Larger values relate a factor to the corresponding observed variables and from these we can often, but not always, infer a meaningful description of each factor

The regression equations above may be written more concisely as

$$X = \Lambda f + u$$

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_{11} & \cdots & \lambda_{1k} \\ \lambda_{21} & \cdots & \lambda_{2k} \\ \vdots & \vdots & \vdots \\ \lambda_{p1} & \cdots & \lambda_{pk} \end{pmatrix} \qquad \mathbf{F} = \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \\ \vdots \\ \mathbf{f}_k \end{pmatrix} \qquad \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_p \end{pmatrix}$$

- We assume that the random disturbance terms u_1, u_2, \dots, u_p are uncorrelated with each other and with the factors f_1, f_2, \dots, f_k .
- The elements of u are specific to each x; and hence are generally better known in this context as specific variates.

- The two assumptions imply that, given the values of the common factors, the manifest variables are independent
 - that is, the correlations of the observed variables arise from their relationships with the common factors.
- Because the factors are unobserved, we can fix their locations and scales arbitrarily and we shall assume they occur in standardised form with mean zero and standard deviation one.
- We will also assume, initially at least, that the factors are uncorrelated with one another, in which case the factor loadings are the *correlations* of the manifest variables and the factors.

• With these additional assumptions about the factors, the factor analysis model implies that the variance of variable x_i , σ_i^2 , is given by

$$\sigma_i^2 = \sum_{j=1}^k \lambda_{ij}^2 + \psi_i,$$

where ψ_i is the variance of u_i .

- Consequently, we see that the factor analysis model implies that the variance of each observed variable can be split into two parts
 - $\sum_{j=1}^{k} \lambda_{ij}^2$ is known as the *communality* of the variable and represents the variance shared with the other variables via the common factors.
 - ψ_i is called the *specific* or *unique* variance and relates to the variability in X_i not shared with other variables.

• In addition, the factor model leads to the following expression for the covariance of variables X_i and X_j

$$\sigma_{ij} = \sum_{\ell=1}^k \lambda_{i\ell} \lambda_{j\ell}$$

- We see that the covariances are not dependent on the specific variates in any way.
- It is the common factors only that aim to account for the relationships between the manifest variables.

 The results above show that the k-factor analysis model implies that the population covariance matrix, Σ, of the observed variables has the form

$$\Sigma = \Lambda \Lambda^T + \Psi$$

where $\Psi = diag(\Psi_i)$.

 In practise, Σ will be estimated by the sample covariance matrix S.

Estimating the parameters in the k-factor analysis model

- The estimation problem in factor analysis is essentially that of finding Λ (the estimated factor loading matrix) and Ψ (the diagonal matrix containing the estimated specific variances)
- Assuming the factor model outlined in Σ, reproduce as accurately as possible the sample covariance matrix, S

$$oldsymbol{S} pprox \hat{oldsymbol{\Lambda}} \hat{oldsymbol{\Lambda}}^{\mathcal{T}} + \hat{oldsymbol{\Psi}}$$

• Given an estimate of the factor loading matrix, $\hat{\Lambda}$, it is clearly sensible to estimate the specific variances as

$$\hat{\Psi}_{i} = s_{i}^{2} - \sum_{i=1}^{k} \hat{\lambda}_{ij}^{2}$$
 $i = 1, 2, \dots, p$

- The diagonal terms in S are estimated exactly.
- There are two main methods of estimation leading to what are known as principal factor analysis and maximum likelihood factor analysis, both of which are now briefly described.

Principal factor analysis I

• Principal factor analysis is an eigenvalue and eigenvector technique similar in many respects to principal components analysis but operating not directly on \boldsymbol{S} (or \boldsymbol{R}) but on what is known as the *reduced covariance matrix*, \boldsymbol{S}^* , defined as

$${m S}^* = {m S} - \hat{m \Psi}$$

where $\hat{\Psi}$ is a diagonal matrix containing estimates of the Ψ .

• The "ones" on the diagonal of \mathbf{S} have in \mathbf{S}^* been replaced by the estimated communalities, $\sum_{j=1}^k \hat{\lambda}_{ij}^2$, the parts of the variance of each observed variable that can be explained by the common factors.

Principal factor analysis II

- Unlike principal components analysis, factor analysis does not try to account for all the observed variance, only that shared through the common factors.
- Of more concern in factor analysis is accounting for the covariances or correlations between the manifest variables.
- To calculate S* (or with R replacing S, R*) we need values for the communalities.
- Clearly we cannot calculate them on the basis of factor loadings because these loadings still have to be estimated.
- To get around this seemingly "chicken and egg" situation, we need to find a sensible way of finding initial values for the communalities that does not depend on knowing the factor loadings.

Principal factor analysis III

- When the factor analysis is based on the correlation matrix of the manifest variables, two frequently used methods are:
 - Take the communality of a variable X_i as the square of the multiple correlation coefficient of X_i with the other observed variables.
 - Take the communality of X_i as the largest of the absolute values of the correlation coefficients between X_i and one of the other variables.
- Each of these possibilities will lead to higher values for the initial communality when X_i is highly correlated with at least some of the other manifest variables, which is essentially what is required.

Principal factor analysis IV

- Given the initial communality values, a principal components analysis is performed on S* and the first k eigenvectors used to provide the estimates of the loadings in the k-factor model.
- The estimation process can stop here or the loadings obtained at this stage can provide revised communality estimates calculated as $\sum_{j=1}^k \hat{\lambda}_{ij}^2$, where the $\hat{\lambda}_{ij}^2$ s are the loadings estimated in the previous step.
- The procedure is then repeated until some convergence criterion is satisfied.
- Difficulties can sometimes arise with this iterative approach if at any time a communality estimate exceeds the variance of the corresponding manifest variable, resulting in a negative estimate of the variable's specific variance.

Maximum likelihood factor analysis

- Maximum likelihood is regarded, by statisticians at least, as perhaps the most respectable method of estimating the parameters in the factor analysis.
- The essence of this approach is to assume that the data being analysed have a multivariate normal distribution. Under this assumption and assuming the factor analysis model holds, the likelihood function L can be shown to be $-\frac{1}{2}nF$ plus a function of the observations where F is given by

$$F = \ln |\mathbf{\Lambda}\mathbf{\Lambda}^T + \mathbf{\Psi}| + trace(\mathbf{S}|\mathbf{\Lambda}\mathbf{\Lambda}^T + \mathbf{\Psi}|^{-1}) - \ln |\mathbf{S}| - p$$

- The function F takes the value zero if $\Lambda\Lambda^T + \Psi$ is equal to S and values greater than zero otherwise.
- Estimates of the loadings and the specific variances are found by minimising *F* with respect to these parameters.
- A number of iterative numerical algorithms have been suggested in the literature.
- factanal() in R

