Bank Customers Churn Classification

BY

- Rahaf Alqahtani
- Dimah Albunayyih

Contants

01 Introdction

Clients are the basis for continuing work and increasing profit for any organization, so care must be taken to dealing with their problems earlier before they may leave that organization.

02

Workflow

Dataset

Customer: 15634602 Surname: Hargrave Credit Score: 619 Geography: France

Gender: Female

Age: 42 Tenure: 2

Balance: 0.00

NamOfProducts: 1

HasCrCard: 1

IsActiveMember: 1

Estimated Salary: 101348.88

Exited: 1

04 Problems

Chart shows the Imbalanced data

05 Tools

- Python, Jupyter notebook
- NumPy, Pandas
- o Matplotlib, Seaborn
- o Sklearn

EDA

Number of females and males who will close their account

Number of the clients in selected countries

As shown clients that are located in Germany are the most churned.

Modeling.

Pair Plot

Baseline

model	Recall	precision
LR	0.048	0.313
KNN	0.101	0.295
CART	0.5097	0.486
RF	0.463	0.769

Experiments

	Class wait	Random Oversampling	Tune + Random Oversampli ng	+ Feature importance	Tune after Feature importance +Random Oversampli ng	+ Smote	Stacking	XGBClassifi er
Recall	0.480	0.511	0.434	0.364	0.474	0.703	0.355	0.290
precision	0.541	0.512	0.717	0.672	0.594	0.409	0.739	0.844

Best Model

	Tune after Feature importance + Random Oversampling	Testing
Recall	0.703	0.690
Precision	0.409	0.390

Conclusion

- In this project we built a model that predict how likely a customer is going to churn.
- Our model can predict if the customer is going to churn by 70%
- Our model can predict if the customer is going to continue by 39%

