All solutions will be my own and I will not consult actside resources. I understand that doing otherwise would be unfavor to my classimates and a violation of the U's honor code.

1) Scratch work: $\left|\frac{3n+1}{n-2} - 3\right| = \left|\frac{(3n+1)(n)}{n-2} - \frac{3(n-2)}{n-2}\right|$ $\left|\frac{3n+1}{n-2} - \frac{3n+6}{n-2}\right| = \left|\frac{7}{n-2}\right| = \frac{7}{n-2} = \frac{7}$

Proof: Take $N = \frac{7}{\epsilon} + 2$. Then for any $\epsilon > 0$, $\left| \frac{3n+1}{n-2} - 3 \right| < \epsilon \implies \left| \frac{21}{\epsilon} + 7 \right| < \epsilon$ $\Rightarrow \left| \frac{21+7\epsilon}{7} \right| < \epsilon$

This holds $\forall n > N$, thus by definition of convergence, $\lim_{n \to 2} \frac{3nt1}{n-2} = 3$

2) Suppose FSOC that {antbn} = c + atb {antbn} = {atb: aean, be bn}. By the properties of limits we can split this up to get

lim {antby} = luman + limbn. luman = a & lumbn=b.

Thus Inn Ean thon 3 = ath & C. This is a contradiction & lim Ean thon 3 = ath.

3) If an is a Cauchy sequence, then by Lefmition, for any E>O IN such that lan-am | < E for all n, m> N. Then for an we have $|a_n^2 - a_m^2| = |a_n^2| + |-a_m^2| = |a_n^2| + |a_m^2| = a_n^2 + a_m^2.$ Take $\varepsilon = a_n - a_m$ then because a_n is Cauchy, we have: $|a_n^2 - a_m^2| \leq \varepsilon$ This holds & n, m = an , thus by definition of a Cauchy sequence, and is Cauchy if an is Cauchy of 4) True. By them, since an is convergent, it is bounded. By Balzano-Weirstrass Thm, an must have a convergent subsequence since it's bounded. Then we can take Ean3 = cos(2Th). It's easy to see that this sequence converges to 1. We can take $\{b_n\} = \cos(\frac{2\pi n}{4}) = \cos(\frac{\pi n}{2})$. Thus by construction, I Ean? with the desired properties.