1

OPAMP Compensation

Kuntal Kokate * ee18btech11028@iith.ac.in

1. The op amp in the circuit of Fig. 1.1 has an open-loop gain of 10^5 and a single-pole rolloff with $\omega_{3dB} = 10$ rad/s.

Fig. 1.1

Parameters	Value
C_f	$0.01\mu\mathrm{F}$
R_s	$100k\Omega$
R_f	$100k\Omega$
P_{11}	10 rad/sec

TABLE 1

(a)Sketch a Bode plot for the loop gain. (b) Find the frequency at which |GH|=1, and find the corresponding phase margin. (c)Find the closed-loop transfer function, including its zero and poles. Sketch a pole-zero plot. Sketch the magnitude of the transfer function versus frequency, and label the important parameters on your sketch. (d) Find the unit step response of the system.

2. Sketch a Bode plot for the loop gain. **Solution:** Op-amp in our question has an open

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

loop gain characterised by a single pole P_{11} from table 1 i.e.

$$G(s) = \frac{10^5}{1 + \frac{s}{P_{11}}} \tag{2.1}$$

Also, feedback gain from Fig. 2.2,

Fig. 2.2: Feedback loop

$$H(s) = \frac{V_f}{V_o} = \frac{\frac{1}{sC_f}}{R_f + \frac{1}{sC_f}} = \frac{1}{1 + \frac{s}{P_{21}}}$$
(2.2)

where,

$$P_{21} = \frac{1}{R_f C_f} = 1000 \tag{2.3}$$

The loop gain is,

$$GH(s) = \frac{10^5}{\left(1 + \frac{s}{10}\right)\left(1 + \frac{s}{1000}\right)} \tag{2.4}$$

Corresponding plots are in Fig. 2.3 and Fig. 2.4.

3. Find the frequency at which |GH| = 1, and find the corresponding phase margin.

Solution: Value of ω for unity magnitude can be obtained from Fig. 2.3 which is approximately 3×10^4 . More precise value can be obtained by solving for ω in,

$$\frac{10^5}{\sqrt{1 + \frac{w_1^2}{P_1^2}}} \sqrt{1 + \frac{w_1^2}{P_2^2}} = 1 \tag{3.1}$$

Thus,

$$\omega_1 = 3.15 \times 10^4 rad/s$$
 (3.2)

Fig. 2.3: Magnitude plot

Fig. 2.4: Phase plot

The phase margin visibly from the Fig. 2.4 is very small.

$$PM = 180^{\circ} - \tan^{-1}(\frac{\omega_1}{10}) - \tan^{-1}(\frac{\omega_1}{1000}) = 1.84^{\circ}$$
(3.3)

4. Find the closed-loop transfer function, including its zero and poles. Sketch a pole-zero plot. Sketch the magnitude of the transfer function versus frequency, and label the important parameters on your sketch.

Solution:

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$
 (4.1)

(4.2)

From (2.2) and (2.1) we have,

$$\implies T(s) = \frac{10^6(s+1000)}{s^2+1010s+10^4+10^9} \quad (4.3)$$

(4.4)

Zeros of closed loop transfer function,

$$Z_1 = -1000 \tag{4.5}$$

Similarly for poles,

$$s^2 + 1010s + 10^4 + 10^9 = 0 (4.6)$$

$$\implies P_1, P_2 = -505 \pm j31618.9$$
 (4.7)

Fig. 4.5: Pole zero plot

Fig. 4.6: Closed loop bode plot

Poles are at $\omega_0 = 3.16 \times 10^4$

5. Closed loop unit step response.

Solution:

Fig. 5.7: Unit step response

From (4.4) Unit step response is,

$$Y_{\gamma}(s) = \frac{T(s)}{s} \tag{5.1}$$

We can calculate the steady state output voltage using Final value theorem,

$$\lim_{t \to \infty} V_o(t) = \lim_{s \to 0} s Y_{\gamma}(s) \approx 1$$
 (5.2)

which is analogous to plot in fig. 5.7.

6. The following python code plots Fig. 2.3, Fig. 2.4, Fig. 4.5, Fig. 4.6 and Fig. 5.7.

codes/ee18btech11028/ee18btech11028_2.py

7. Simulate the circuit in Ngspice.

Solution: Following readme provides instructions about the simulation

The following netlist simulates the closed loop unit step response for circuit in fig. 1.1

codes/ee18btech11028/spice/step_response. net

which is plotted using python code in,

codes/ee18btech11028/spice/step.py

As can be noticed in fig. 7.8 there is very minute difference in amplitude of the initial response of the circuit due to non-ideal nature of the circuit components. But rest of the response is identical including the steady state output voltage of 1.

8. Circuit level schematic of op-amp used for simulation, is in fig. 8.9 Since we need a

Fig. 7.8: spice simulation step response

Fig. 8.9

single pole op-amp having $\omega_{3db} = 10rad/s$ $(f_{p1} = \frac{10}{2\pi}Hz)$, we choose a R_{p1} appropriately and calculate the value of C_{p1} according to our single pole roll off frequency.

$$R_{p1} = 1000\Omega$$
 (8.1)

$$C_{p1} = \frac{1}{2\pi f_{p1} R_{p1}} \tag{8.2}$$

The values corresponding to the components used for op-amp are given in table 8.

Parameters	Value
R_{IN}	$100M\Omega$
R_{p1}	1000Ω
C_{p1}	100μF
G_1	100k
R_{out}	10Ω

TABLE 8