Club U MFRONT:

Modèle de couplage Fluage-Endommagement-Réaction Alcali Granulat (RAG) du béton

François Hamon
Farid Benboudjema
Inès Djouadi

EDF R&D

Introduction

Contexte

- Projet ARISTHYD : Analyse du **RI**sque Sismique et Thermomécanique des ouvrages de l'**HYD**raulique
 - Surveillance accrue des ouvrages hydrauliques

Objectifs

- Proposé un modèle simple d'utilisation couplant Fluage-Endommagement-RAG
- •Challenger MFront sur des lois de complexité variable : couplage fort entre différents mécanismes
- •Monter en compétence sur la RAG
- •Utiliser des modèles déjà présents dans Code_Aster sous AQ

Stage

Inès Djouadi

- Ecole Paris 6 Université Pierre et Marie Curie (UPMC)
- Co-Encadrer avec F.Benboudjema du ENS-Cachan
- Durée de 6 mois

Outils

MFRONT

Sommaire

- 1 Amélioration du modèle de fluage
 - 1-1 Définition du fluage
 - 1-2 Développements
 - 1-3 Validation
- 2 Couplage Endommagement Fluage RAG
 - 2-1 Définition de la RAG
 - 2-2 Modèles
 - 2-2 Validations
- 3 Application industrielle
 - 2-1 Présentation du barrage
 - 2-2 Calcul hydrique
 - 2-2 Calcul mécanique

Définition

Le Fluage : Déformation différé sous chargement constant

Modélisé par:

Modèle de Burger

Définition

Le hypothèses à l'origine du fluage

$$\underline{\underline{\varepsilon}}^f$$

Modèle de Burger

$$\varepsilon^f = \varepsilon^{fs} I + \varepsilon^{fd}$$

Fluage sphérique ε

Fluage déviatorique $\underline{\varepsilon}^{fd}$

$$\varepsilon^s = hf(\sigma^s)$$

Glissement des CSH

$$\underline{\underline{\varepsilon}}^d = hf(\underline{\underline{\sigma}}^d)$$

h : humidité σ: Contrainte

(s : sphérique, d : déviatorique)

<u>I</u>: Tenseur identité

7 à 8 fichiers en Fortran sous ASTER

Développements

Modèle Burger sous Mfront

Beaucoup plus simple et lisible (50 lignes)

```
@InitLocalVariables{
                                                                                                              Initialisation
--using-namespace-tfel::material::lame;
--lambda-=-computeLambda(young,nu);
- mu- =- computeMu(young, nu);
@TangentOperator{
-using namespace tfel::material::lame;
- if((smt==ELASTIC)||(smt==SECANTOPERATOR)){
--- computeElasticStiffness<N,Type>::exe(Dt,lambda,mu);
--}-else-if(smt==CONSISTENTTANGENTOPERATOR){
                                                                                                                Calcul de l'opérateur tangent
   -computeElasticStiffness<N,Type>::exe(Hooke,lambda,mu);
 --- getPartialJacobianInvert(Je);
} else {
   return false:
@ComputeStress{
                                                                                                              Calcul de la contrainte
····siq·=-lambda*trace(eel)*Stensor::Id()+2*mu*eel;
····real·stresP=trace(siq)/3.;
   Stensor stresD=sig-stresP*Stensor::Id();
        emax=sqrt(((ESPHI+dESPHI)*Stensor::Id()+(EDEVI+dEDEVI))|((ESPHI+dESPHI)*Stensor::Id()+(EDEVI+dEDEVI)))
    fESPHR=dESPHR-((SECH/SECHini*stresP-KRS*(ESPHR+dESPHR))/NRS)*dt;
    fEDEVR=dEDEVR-(SECH/SECHini*stresD-KRD*(EDEVR+dEDEVR))/NRD*dt;
   fESPHI=dESPHI-(SECH/SECHini*stresP/(NIS*eexp))*dt;
                                                                                                                Calcul des évolutions des
   fEDEVI=dEDEVI-(SECH/SECHini*stresD/(NID*eexp))*dt;
                                                                                                                variables internes
    fEdess=dEdess-(1./NFD)*Vsech/SECHini*sig;
   fEdess=dEdess-0.*Vsech/SECHini*sig;
   .feel=deel-(deto-dEDEVR-dEDEVI-dEdess-(dESPHR+dESPHI)*Stensor::Id());
                                                                                                               Mise à jour d'une variable
@UpdateAuxiliaryStateVariables{
 • EF=EF+dEDEVR+dEDEVI+(dESPHR+dESPHI)*Stensor::Id();
                                                                                                               auxiliaire
```

Développements

Influence de l'âge du béton

➤ Introduction du temps comme variable axillaire

```
@UpdateAuxiliaryStateVariables{
  t0 = t0+dt;
}
```

➤ Modification et simplification de deux équations

Sous Aster cette étape nécessite de changer plusieurs fichiers, la méthode de résolution et la matrice tangente

Mfront : calcul de la Jacobienne numérique

Influence de la température

- > Introduction de la température moyenne : $T_m = \frac{(T+dT)}{2}$
- ➤ Modification des valeurs des paramètre matériaux avec une loi Ahrénius
- Rapide (une demie journée pour un stagiaire)

Sous ASTER (3 jours

Validation

Essais de fluage propre pour des dates de chargement différent (28 ou 90 jours) et des températures différentes (T =20°C ou T=40°C)

Résultats concordants avec plusieurs essais expérimentaux

Loi appelé BurgerAgeing sous MFRONT

Sommaire

- 1 Amélioration du modèle de fluage
 - 1-1 Définition du fluage
 - 1-2 Développements
 - 1-3 Validation
- 2 Couplage Endommagement Fluage RAG
 - 2-1 Définition de la RAG
 - 2-2 Modèles
 - 2-2 Validations
- 3 Application industrielle
 - 2-1 Présentation du barrage
 - 2-2 Calcul hydrique
 - 2-2 Calcul mécanique

Définition

Qu'est ce que la Réaction Alcali-Granulat (RAG)?

réaction interne physico-chimique ⇒ endommagement

 $Ions\ alcalins\ solubles + silice\ réactive + eau => GEL$

compression

- Fissuration pate-granulat et au niveau de la matrice cimentaire
- Microfissuration à l'interface béton-armature

Création de gel et contraintes internes.

- → Création de gel et contraintes internes.
- --- Création de contraintes par gradient de déformation.

Gels de silice exposés sur la façade d'un barrage.

Modèles

RAG

- Essai de gonflement libre
- Essai de gonflement empêché

Déformation isotrope:

$$\varepsilon_r(t) \approx \Phi_r < A(t) - A_0 >_+$$

A : Avancement de la réaction (Compris entre 0 et 1)

 Φ_r : Volume de granulats réactifs

 A_0 : Seuil d'activation

Comparaison du modèle avec les essais de Larive*

Evolution de la réaction:

$$\frac{\partial A(t)}{\partial t} = f(T, S_l, S_{l0}, E_a, \tau_L, \tau_c)$$

S₁: le degrés de saturation
T : la température
S₁₀: le seuil de référence
E_a :l'énergie d'activation

 τ_L et τ_c : paramètres matériaux

*Larive, C. (1997). Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'alcali-réaction et de ses effets mécaniques. *Thèse de doctorat de l'Ecole Nationale des Ponts et Chaussées*.

Modèles

Fluage BurgerAgeing

Endommagement

L'endommagement $D = \frac{\tilde{S}(\vec{n})}{S(\vec{n})}$

- ➤ Modèle elasto-endommageable
- ➤ Dissymétrie traction/compression
- ➤ Ne prend pas en compte la refermeture de

fissures

 \triangleright Critère en déformation : $\varepsilon_{\acute{e}q} = \sqrt{\left\langle \underline{\varepsilon} \right\rangle_{+}^{2}}$

Réponse contrainte-déformation du modèle de Mazars pour une sollicitation 1D.

Modèles

Fluage - Endommagement

Modèles

Fluage – Endommagement -RAG

- Lister l'ensemble des paramètres matériaux des modèles
- Fusionner les définitions des variables internes / auxiliaires
- Fusionner les sections « integrator » de Mazars et BurgerAgeing
- > Remplacer la contrainte par la contrainte effective dans les équation de BurgerAgeing

$$\tilde{\underline{\sigma}} = \frac{\underline{\underline{\sigma}}}{1-D}$$

 \triangleright Introduire le paramètre de couplage β dans la définition de la déformation équivalente

$$arepsilon_{\acute{e}q} = \sqrt{\left\langle arepsilon_{e} \right
angle_{+}^{2} + eta \left\langle arepsilon_{f} \right
angle_{+}^{2}}$$

Calculer la déformation liée à la RAG et la retranchée à la déformation totale

$$\varepsilon_r(t) \approx \Phi_r < A(t) - A_0 >_+$$

Rapide (une journée pour un stagiaire)

Couplage Fort

Sous ASTER (??jours)

Sous ASTER (chaînage) **CONT**

Validations

Couplage Fluage-Endommagement

- Essai de Capinterie : Fluage en traction
- Essai de Briffault : Essai de traction à l'anneau
- Essai thermomécanique non homogène
- Essais de Roll : Essais de fluage propre pour différentes charges

Comparaison des déformations entre simulation et points expérimentaux

6 niveaux de charge étudié: 0.2Fc, 0.35Fc, 0.5Fc et 0.6Fc. (Fc la résistance en compression du béton)

• Résultats proches des essais expérimentaux

RAG

Validations

Essais de gonflement à température et humidité constante

Essais de gonflement à température et humidité variables

Sommaire

- 1 Amélioration du modèle de fluage
 - 1-1 Définition du fluage
 - 1-2 Développements
 - 1-3 Validation
- 2 Couplage Endommagement Fluage RAG
 - 2-1 Définition de la RAG
 - 2-2 Modèles
 - 2-2 Validations
- 3 Application industrielle
 - 2-1 Présentation du barrage
 - 2-2 Calcul hydrique
 - 2-2 Calcul mécanique

Présentation

Etude de la pile 4

- 3 piles rivière
- 1 pile « usine » rive gauche
- 1 pile rive droite, la pile 4

Calcul Hydrique

Conditions aux limites

- ➤ Température : 20°C
- > Degré de saturation initiale : 0,85
- _0,45 dans les zones proches de l'eau, 0,3 en superstructure

Le calcul se fait sur 81 ans (de 1951 à 2032)

48.0000

Calcul Hydrique

Résultats Dernier instant (2032)

76.0000

104.000

132.000

160.000

Calcul Mécanique

Conditions aux limites

Blocage du radier

Vue en élévation Vue en plan

Conditions de blocage

Calcul Mécanique

Résultats Comparaison des résultats avec un modèle de référence (sans RAG et sans eau)

des conditions aux limites non physiques

Calcul Mécanique

Résultats

Comparaison des résultats avec un modèle de référence (sans RAG sans RAG et sans eau)

Répartition des déformation presque identique entre les deux modèles

Conclusions & Perspectives

Conclusions

- Amélioration du modèle de fluage (Effet de l'âge et de la température)
 - Résultats proches des essais expérimentaux
- Possibilité d'un Couplage Fort Fluage-Endommagement-RAG
 - Chaque modèle est validé sur des essais en laboratoire

Perspectives

- Valider le Couplage Fluage-Endommagement-RAG
- Amélioration du Modèle
 - Introduction d'un endommagement local lié à la RAG
 - Introduction d'un critère de non localité
- Amélioration du modèle d'endommagement (trop simple)
 - Prise en compte de la refermeture de fissures
 - Prise en compte des déformations résiduelles

Questions

