Universidade do Minho Departamento de Matemática Lic. em Ciências da Computação

2º Trabalho de Grupo de Análise - 5 Mai

Nome: Brojerta de Revolução Número:

Nome: ______ Número:_____

1. Determine, ou justifique que não existem, os extremos locais da função $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ definida por

$$f(x,y) = \ln(y) - x^2y - y.$$

2. Determine os extremos da função $f:\mathbb{R}^2\to\mathbb{R}$, definida por $f(x,y)=x^2+y^2$, vinculada à condição:

$$x^2 - 2x + y^2 = 0.$$

[1] Pontos eníticos

 $\begin{cases} \frac{\partial f}{\partial x}(x,y)=0 & |x=0| \\ \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \end{cases}$ $\begin{cases} \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \\ \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \end{cases}$ $\begin{cases} \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \\ \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \end{cases}$ $\begin{cases} \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \\ \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \end{cases}$ $\begin{cases} \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \\ \frac{\partial f}{\partial y}(x,y)=0 & |y=0| \end{cases}$

$$(0,1)$$

$$y=1$$

$$Hom f(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial y \partial x}(x,y) \\ \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial y \partial x}(x,y) \end{bmatrix} = \begin{bmatrix} -2y & -2x \\ -2x & -\frac{1}{2}y \end{bmatrix}$$

Hen
$$f(0,1) = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$$

Os valores próprios da matriz hessiana de f em (0,1) sad negativos, logo $f(0,1) = ln(1) - o^2 1 - 1 = -1$ e maximo loral.

[2] Para f(n,y) = x2+y2 e g(n,y) = x2-2n+y2, pelo metodo dos

multiplicadores de Loignonge teur-se
$$\left(\nabla f(x,y) = \lambda \nabla g(x,y)\right) \left(2x,2y\right) = \lambda \left(2x-2y^2y\right) \left(2x-2\lambda^2y\right) \left(2x-2\lambda^2y\right)$$

$$\left(2x-2\lambda^2y\right) = \lambda^2 - 2\lambda^2 + y^2 = 0$$

$$\left(2x-2\lambda^2y\right) = \lambda^2 - 2\lambda^2 + y^2 = 0$$

$$\left(2x-2\lambda^2y\right) = \lambda^2 - 2\lambda^2 + y^2 = 0$$

$$\left(2x-2\lambda^2y\right) = \lambda^2 - 2\lambda^2 + y^2 = 0$$

(a)
$$\left(\frac{1}{g(1-\lambda)}=0\right)$$
 (b) $\left(\frac{2\lambda-2u-2}{\lambda-1}\right)$ on $\left(\frac{1}{g-2}\right)$ (c) $\left(\frac{1}{g-2}\right)$ (c) $\left(\frac{1}{g-2}\right)$ (c) $\left(\frac{1}{g-2}\right)$ (c) $\left(\frac{1}{g-2}\right)$

$$y=0$$
 $(0,0);(2,0)$ and $y=0$ $y=0$ $y=0$

 $\begin{cases} Pg(u,y) = \vec{0} \\ (z) = \vec{0} \end{cases} = \begin{cases} 2x - 2 = 0 \\ 2y = 0 \end{cases} \begin{cases} y = 0 \\ 1 - 2 + 0 = 0 \end{cases}$ (mor hat points singulars) Portos singulares Sendo $k = [(x,y) \in \mathbb{R}^2: x^2 - 2x + y^2 = 0]$ um any be fechado a limitado, entro la term máximo o term mínimo, donde $\int_{K} term maximo o term máximo de fi condicionado por <math>g(x,y) = 0$.

Il f(0,0) = 0 az matamo de fi condicionado f(0,0) = 0.

f(2,0)=4 ez máximo de f conditionado por g(n,y)=0.