

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD					Pl	ESE	L		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2013

WYBRANE:

••••••	(środowisko)
••••••	(kompilator)
(1	program użytkowy)

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1 1P-132

Zadanie 1. Liczba binarna (8 pkt)

Kod uzupełnień do jedności to jeden ze sposobów maszynowego zapisu liczb całkowitych, tradycyjnie oznaczany skrótem U1.

Zapis liczb całkowitych dodatnich w kodzie U1 uzyskuje się poprzez zapisanie liczby w kodzie binarnym oraz dodanie na początek zapisu tak zwanego bitu znaku, dla liczb nieujemnych równego zawsze **0**.

Przykład dla liczby dziesiętnej 9:

$$9_{10} = 1001_2$$
 $9_{10} = 01001_{U1}$
bit znaku

Zapis w kodzie U1 liczb ujemnych uzyskuje się, negując każdy bit reprezentacji binarnej liczby oraz dodając na początek zapisu bit znaku, dla liczb ujemnych równy 1.

Przykład dla liczby dziesiętnej (-9):

$$9_{10} = 1001_{2}$$
negacja 1001=0110
$$-9_{10} = 10110_{U1}$$
bit znaku

Podsumowując:

w zapisie dziesiętnym	w U1
9	01001
_9	10110

Liczba 0_{10} reprezentowana jest przez $00_{\,\mathrm{U1}}$.

Wykonaj następujące polecenia:

a) Uzupełnij tabelę, zapisując liczby dziesiętne w kodzie U1.

w zapisie dziesiętnym	w U1
46	
-46	

Miejsce na obliczenia

b) Uzupełnij tabelę, zamieniając liczby binarne zapisane w kodzie U1 na liczby zapisane w systemie dziesiętnym.

w U1	w zapisie dziesiętnym
0100111	
1001101	

Miejsce na obliczenia

c) Dla podanej poniżej specyfikacji zapisz (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania) algorytm, który oblicza wartość liczby zapisanej w kodzie U1.

Specyfikacja algorytmu

Dane:

d – długość zapisu U1, d > 1 bin[1..d] – tablica, której elementami są pojedyncze bity zapisu U1, z czego bin[1] to bit znaku

Wynik:

x – wartość liczby zapisanej w tablicy bin[1..d]

Przykład: Dla d = 5 i bin[1...5] = [10110] wynikiem jest x = -9.

Algorytm:

Wypełnia	Nr zadania	1a	1b	1c
	Maks. liczba pkt	1	2	5
egzaminator	Uzyskana liczba nkt			

Zadanie 2. Analiza algorytmu (6 pkt)

Zadanie unieważnione

Zadanie 3. Test (6 pkt)

Zaznacz znakiem X w odpowiedniej kolumnie P lub F, która odpowiedź jest prawdziwa (P), a która – fałszywa (F). W każdym pytaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

a) Usługa zamieniająca adres domenowy (np. cke.edu.pl) na adres IP to

	P	F
DNS.		
HTTP.		
TCP.		
DHCP.		

b) Dla x będących liczbami całkowitymi dodatnimi, funkcja określona wzorem

$$t(x) = \begin{cases} 1 & \text{dla } x = 1 \\ x * t(x-1) & \text{dla } x > 1 \end{cases}$$

	P	F
jest przykładem funkcji rekurencyjnej.		
dla $x = 3$ przyjmuje wartość $t(x) = 9$.		
dla liczby całkowitej dodatniej x przyjmuje wartość x!.		
w rozwinięciu zawiera $x-1$ operatorów mnożenia "*".		

c) Liczba BA₍₁₆₎ jest równa liczbie

	P	F
2728		
186 ₁₀		
22324		
101010102		

d) Licencja adware

	P	F
umożliwia korzystanie z aplikacji po uiszczeniu opłaty.		
zawiera żądanie zgody na wyświetlanie reklamy zwykle w postaci		
banerów.		
nie gwarantuje dostępu do kodu źródłowego aplikacji.		
dotyczy wyłącznie oprogramowania systemowego.		

e) Routery w sieciach komputerowych

	P	F
realizują połączenia międzysieciowe.		
usytuowane są na styku sieci LAN z internetem lub pomiędzy sieciami LAN.		
wymagają stosowania tej samej klasy adresów IP przed i za routerem.		
kierują pakiety danych do odpowiednich podsieci.		

- f) Przeanalizuj działanie poniższego algorytmu dla n = 3.
 - 1. $s \leftarrow 1; p \leftarrow 1$
 - 2. dla $k \leftarrow 1..n$ wykonuj
 - 3. $s \leftarrow s + p$
 - 4. dla $i \leftarrow 1..k$ wykonuj
 - 5. $p \leftarrow p * k$

	P	F
Podczas wykonywania algorytmu <i>k</i> dwukrotnie przyjmuje wartość 3.		
Podczas wykonywania algorytmu <i>i</i> dwukrotnie przyjmuje wartość 2.		
Po wykonaniu powyższego algorytmu $s = 7$.		
Po wykonaniu powyższego algorytmu $p = 108$.		

Wypełnia egzaminator	Nr zadania	3a	3b	3c	3d	3e	3f
	Maksymalna liczba pkt.	1	1	1	1	1	1
	Uzyskana liczba pkt.						

BRUDNOPIS