

Faster R-CNN

Why Faster R-CNN? - Introduction

- 1. "Fast R-CNN achieves near real-time rates using very deep networks, when ignoring the time spent on region proposals."
- 2. "Selective Search(SS) is an order of magnitude slower, at 2s per image in a CPU implementation."
- -> Exactly Real-time analysis is impossible
- 3. "We introduce novel *Region Proposal Networks(RPNs)* that share convolutional layers with state-of-art object detection networks."
- -> "The marginal cost for proposals is small(10ms per image)"; Real-time analysis is possible

Architecture

- Input Images : Height x Width X Depth(RGB)
- 이전 R-CNN에서는 SS를 통해 나온 수천 개의 Region을 Alexnet으로 분류.
- 또한 3개의 모델(Feature를 뽑아내는 CNN, 어떤 Class인지 알아내는 Classifier, Bounding Boxes 예측하는 Regression model)을 각각 학습해야 했음.
- Fast R-CNN에서는 중복되는 연산을 하나의 CNN으로 해결.
- 즉, 이미지를 가장 먼저 받아서 Feature를 뽑아내는 역할을 CNN에서 처리하기 때문에 Base Network라고 함.

Architecture

We construct RPNs by adding two additional conv layer:

1. Region Proposal Networks(RPNs): Deep Convolution Network

"They(RPNs) can be trained end-to-end specifically for the task for generating detection proposals."

2. Fast R-CNN Detector: Use Proposed Regions that suggested by RPNs and Classify Object

Faster R-CNN안에는 2개의 모듈이 존재하지만, 전체적으로는 하나의 object detection network라고 볼 수 있음.

Region Proposal Networks

- 1. "At each Sliding-Window location, we simultaneously predict k region"
- 2. N*N(보통 3 X 3) spatial window를 슬라이드 시킴. 각 지점에서 한번에 여러 개의 Region Proposals을 예측하게 됨. Region Proposals 개수를 k 로 나타내며 이것을 Anchor라고 부름
- 3. "We use 3 scales and 3 aspect ratios, yielding k=9 anchors at each sliding position."
- 4. "An important property of our approach is that it is translation invariant, both in terms of the anchors and the functions that compute proposals relative to the anchors"

The fully-connected layers are shared across all spatial locations.

Cls layer: 1X1 filter with 1 stride and 0 padding을 9*2(=18)개 적용하여 14X14X9X2의 이웃풋을 얻는다. 여기서 filter의 개수는, anchor box의 개수(9개) * score의 개수(2개: object / non-object) 로 결정된다.

reg layer: 1X1 filter with 1 stride and 0 padding을 9*4(=36)개 적용하여 14X14X9X4의 아웃풋을 얻는다. 여기서 filter의 개수는, anchor box의 개수(9개)

Classifier of Background and Foreground

- Classifier를 학습시키기 위한 training data는 바로 위의 RPN으로 부터 얻은 anchors 와 ground-truth boxes (실제 사람이 집접 박 스 처리한 데이터)
- 모든 anchors를 foreground 이냐 또는 background이냐로 분류 를 해야함
- 각각의 anchor마다 foreground인지 아니면 background인지 구별하는 값을 p* 값이라고 했을 때 구체적인 공식은 다음과 같음

$$p^* = egin{cases} 1 & ext{if } IoU > 0.7 \ -1 & ext{if } IoU < 0.3 \ 0 & ext{if otherwise} \end{cases}$$

$$IoU = \frac{\text{anchor } \cap \text{ ground-truth box}}{\text{anchor } \cup \text{ ground-truth box}}$$

Bounding Box Regression

- Bounding box regression에는 4개의 좌표값을 사용함. t라는 값 자체가 4 개의 좌표값을 갖고 있는 하나의 벡터라고 보면 되며 다음과 같은 엘러먼트 값을 갖고 있음

$$t_x = (x - x_a)/w_a$$

 $t_y = (y - y_a)/h_a$
 $t_w = \log(w/w_a)$
 $t_h = \log(h/h_a)$

- ground-truth vector t 에는 위와 유사하게 다음과 같은 값을 갖고 있습 니다.

$$t_x^* = (x^* - x_a)/w_a$$

 $t_y^* = (y^* - y_a)/h_a$
 $t_w^* = \log(w^*/w_a)$
 $t_h^* = \log(h^*/h_a)$

- t_x, t_y : 박스의 center coordinates
- ullet t_w, t_h : 박스의 width, height
- x, y, w, h: predicted box
- x_a, y_a, w_a, h_a : anchor box
- x^*, y^*, w^*, h^* : ground-truth box

Region of Interest Pooling

- RPN이후, 서로 다른 크기의 Proposed Regions값을 Output으로 받게 되나 이 들의 크기는 제 각각임.
- 따라서 이때 ROI기법을 쓰게 되면 서로 다른 크기의 Feature map 을 동일한 크기로 변환됨.
- ROI구현하기 위해서는 2개의 Input이 필요함
 - 1. Deep Convoltions 그리고 Max pooling Layers통해 나 온 Feature map
 - 2. N * 4 Matrix -> N은 ROI의 개수, 4는 Region의 위치를

나타내는 좌표

Region of Interest Pooling

- 로직은 다음과 같음.
 - 1. 각각의 Region Proposal을 동일한 크기의 Section으로 나눔(Section의 크기는 ROI Pooling의 Output크기가 동일함)
 - 2. 각각의 Section에서 가장 큰값을 찾음(a.k.a Max Pooling)
 - 3. 각각의 찾은 Max값을 Output으로 뱉음(a.k.a Max Pooling)

Loss Function

i = anchor index in minibatch

Coordinates of the predicted bounding box for anchor i

Predicted probability of being an object for anchor i

N_{cls} = Number of anchors in minibatch (~ 256) N_{req} = Number of anchor locations (~ 2400)

In practice λ = 10, so that both terms are roughly equally balanced

True box coordinates

How to Train?

- 1. train_rpn(M0) → M1 # Train an RPN initialized from M0, get M1
- 2. generate_proposals(M1) → P1 # Generate training proposals P1 using RPN M1
- 3. train_fast_rcnn(M0, P1) → M2 # Train Fast R-CNN M2 on P1 initialized from M0
- 4. train_rpn_frozen_conv(M2) → M3 # Train RPN M3 from M2 without changing conv layers
- 5. generate_proposals(M3) → P2
- 6. train_fast_rcnn_frozen_conv(M3, P2) → M4 # Conv layers are shared with RPN M3
- 7. return add_rpn_layers(M4, M3.RPN) # Add M3's RPN layers to Fast R-CNN M4

- 1. 프리트레인 된 M0을 (VGG) -> M1으로 바뀜
- 2. M1을 통해 ROI로 뽑음 그게 P1
- 3. M0랑 P1만 사용해서 Fast RCNN으로 학습 시킴
- 4. M2를 가져와서 다시 RPN을 학습 시킴 그 결과 가 M3
- 5. M3에서 Proposal을 뽑아냄. 그게 P2
- 6. M3와 P2를 이용해서 Faster RCNN을 돌림. 최 종 결과 M4

Result

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds
(Speedup)	1x	25x	250x
mAP (VOC 2007)	66.0	66.9	69.9

Table 5: **Timing** (ms) on a K40 GPU, except SS proposal is evaluated in a CPU. "Region-wise" includes NMS, pooling, fully-connected, and softmax layers. See our released code for the profiling of running time.

model	system	conv	proposal	region-wise	total	rate
VGG	SS + Fast R-CNN	146	1510	174	1830	0.5 fps
VGG	RPN + Fast R-CNN	141	10	47	198	5 fps
ZF	RPN + Fast R-CNN	31	3	25	59	17 fps

Result

Table 1: the learned average proposal size for each anchor using the ZF net (numbers for s = 600).

anchor	128 ² , 2:1	$128^2, 1:1$	$ 128^2, 1:2 $	256^2 , 2:1	256 ² , 1:1	256^2 , 1:2	512 ² , 2:1	512 ² , 1:1	512 ² , 1:2	650
proposal	188×111	113×114	70×92	416×229	261×284	174×332	768×437	499×501	355×715	

Table 8: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different settings of anchors**. The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using 3 scales and 3 aspect ratios (69.9%) is the same as that in Table 3.

settings	anchor scales	aspect ratios	mAP (%)
1	128^{2}	1:1	65.8
1 scale, 1 ratio	256^{2}	1:1	66.7
1 scale, 3 ratios	128^{2}	{2:1, 1:1, 1:2}	68.8
1 scale, 5 fatios	256^{2}	{2:1, 1:1, 1:2}	67.9
	$\{128^2, 256^2, 512^2\}$		69.8
3 scales, 3 ratios	$\{128^2, 256^2, 512^2\}$	{2:1, 1:1, 1:2}	69.9

Table 9: Detection results of Faster R-CNN on PAS-CAL VOC 2007 test set using **different values of** λ in Equation (1). The network is VGG-16. The training data is VOC 2007 trainval. The default setting of using $\lambda = 10$ (69.9%) is the same as that in Table 3.

λ	0.1	1	10,	100
mAP (%)	67.2	68.9	69.9	69.1

Unit 01 | Feature Engineering

Result

Table 2: Detection results on PASCAL VOC 2007 test set (trained on VOC 2007 trainval). The detectors are Fast R-CNN with ZF, but using various proposal methods for training and testing.

train-time region proposals		test-time region proposals			
method	# boxes	method	# proposals	mAP (%)	
SS	2000	SS	2000	58.7	
EB	2000	EB	2000	58.6	
RPN+ZF, shared	2000	RPN+ZF, shared	300	59.9	
ablation experiments for	ollow below				
RPN+ZF, unshared	2000	RPN+ZF, unshared	300	58.7	
SS	2000	RPN+ZF	100	55.1	
SS	2000	RPN+ZF	300	56.8	
SS	2000	RPN+ZF	1000	56.3	
SS	2000	RPN+ZF (no NMS)	6000	55.2	
SS	2000	RPN+ZF (no cls)	100	44.6	
SS	2000	RPN+ZF (no cls)	300	51.4	
SS	2000	RPN+ZF (no cls)	1000	55.8	
SS	2000	RPN+ZF (no reg)	300	52.1	
SS	2000	RPN+ZF (no reg)	1000	51.3	
SS	2000	RPN+VGG	300	59.2	
				E 50.000	

Unit 01 | Feature Engineering

Result

Table 3: Detection results on **PASCAL VOC 2007 test set**. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07+12": union set of VOC 2007 trainval and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. †: this number was reported in [2]; using the repository provided by this paper, this result is higher (68.1).

method	# proposals	data	mAP (%)
SS	2000	07	66.9 [†]
SS	2000	07+12	70.0
RPN+VGG, unshared	300	07	68.5
RPN+VGG, shared	300	07	69.9
RPN+VGG, shared	300	07+12	73.2
RPN+VGG, shared	300	COCO+07+12	78.8

Table 4: Detection results on PASCAL VOC 2012 test set. The detector is Fast R-CNN and VGG-16. Training data: "07": VOC 2007 trainval, "07++12": union set of VOC 2007 trainval+test and VOC 2012 trainval. For RPN, the train-time proposals for Fast R-CNN are 2000. †: http://host.robots.ox.ac.uk:8080/anonymous/HZJTQA.html. ‡: http://host.robots.ox.ac.uk:8080/anonymous/XEDH10.html.

method	# proposals	data	mAP (%)
SS	2000	12	65.7
SS	2000	07++12	68.4
RPN+VGG, shared [†]	300	12	67.0
RPN+VGG, shared [‡]	300	07++12	70.4
RPN+VGG, shared§	300	COCO+07++12	75.9

Q&A

들어주셔서 감사합니다.