Stat 291 - Recitation 9

Orçun Oltulu

 $24 \ / \ 12 \ / \ 2021$

Basic Plotting:

Exercise 1:

Create following vectors;

```
set.seed(291)
vec1 <- floor(runif(15, 10, 20))
vec2 <- floor(vec1 + runif(15, -5, 5))</pre>
```

Part A.

Plot vec1 vs vec2 without any specific option.

```
plot(vec1,vec2)
```


Part B.

Add a title and change axes labels.

Part C.

Add one horizontal line and one vertical line which intersect at (14,16).

Part D.

Now, change the point character, character expansion and color.

```
plot(vec1, vec2,
    main = "Coolest Scatter Plot",
    xlab = "first vector",
    ylab = "second vector",
    col = c(1:length(vec1)),
    cex = 3,
    pch = "*")
abline(h = 16, v = 14)
```


Part E.

Now, zoom in to the bottom right rectangular area i.e. only plot that one and wright "Bottom-Right" somewhere in the plot.

```
plot(vec1, vec2,
    main = "Coolest Scatter Plot",
    xlab = "first vector",
    ylab = "second vector",
    col = c(1:length(vec1)),
    cex = 3,
    pch = "*",
    xlim = c(14,max(vec1)),
    ylim = c(min(vec2),16))
text(x = 18, y = 10, labels = "Bottom-Right")
```


Exercise 2:

Assume X1 and X2 are prices for certain stocks. Create following vectors;

```
set.seed(291)
x1 <- sample(50:100, size = 12)
x2 <- sample(40:90, size = 12)</pre>
```

Part A.

Plot x1.

plot(x1)

Plot x2. plot(x2)

Part B.

Use par() function to combine these two plots in the same window.

```
par(mfrow = c(1,2))
plot(x1)
plot(x2)
```


Part C.

Keep par() function, obtain line plots and add x labels and titles to each plot. Assign line types, line widths and colors for each plot.

Part D.

Now, plot X1 and X2 in a same plot.

Stock Prices

Part E.

Add a legend to bottom left for these two lines.

Stock Prices

Summary Statistics:

Exercise 3:

Please load 'ISLR' package and from that package load 'Auto' data set.

library(ISLR)
data(Auto)

Part A.

Use str() and summary() functions for 'Auto' dataset.

str(Auto)

```
'data.frame':
                   392 obs. of 9 variables:
##
   $ mpg
                  : num
                        18 15 18 16 17 15 14 14 14 15 ...
                        888888888...
   $ cylinders
                  : num
   $ displacement: num
                        307 350 318 304 302 429 454 440 455 390 ...
   $ horsepower
                        130 165 150 150 140 198 220 215 225 190 ...
##
                   num
    $ weight
                  : num
                        3504 3693 3436 3433 3449 ...
   $ acceleration: num
                        12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
```

```
70 70 70 70 70 70 70 70 70 70 ...
##
    $ year
                   : num
                           1 1 1 1 1 1 1 1 1 1 . . .
##
    $ origin
                   : num
    $ name
                   : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161
##
summary(Auto)
##
                        cylinders
                                        displacement
                                                                              weight
         mpg
                                                          horsepower
##
    Min.
            : 9.00
                     Min.
                             :3.000
                                       Min.
                                               : 68.0
                                                        Min.
                                                                : 46.0
                                                                          Min.
                                                                                 :1613
##
    1st Qu.:17.00
                     1st Qu.:4.000
                                       1st Qu.:105.0
                                                        1st Qu.: 75.0
                                                                          1st Qu.:2225
    Median :22.75
                     Median :4.000
                                                        Median: 93.5
##
                                       Median :151.0
                                                                          Median:2804
##
    Mean
            :23.45
                             :5.472
                                              :194.4
                                                        Mean
                                                                :104.5
                                                                                 :2978
                     Mean
                                       Mean
                                                                          Mean
                     3rd Qu.:8.000
##
    3rd Qu.:29.00
                                       3rd Qu.:275.8
                                                        3rd Qu.:126.0
                                                                          3rd Qu.:3615
##
    Max.
            :46.60
                             :8.000
                                               :455.0
                                                                :230.0
                                                                                 :5140
                     Max.
                                       Max.
                                                        Max.
                                                                          Max.
##
##
     acceleration
                                           origin
                           year
                                                                          name
##
    Min.
            : 8.00
                     Min.
                             :70.00
                                       Min.
                                              :1.000
                                                        amc matador
                                                                               5
                     1st Qu.:73.00
                                       1st Qu.:1.000
                                                                               5
##
    1st Qu.:13.78
                                                        ford pinto
##
    Median :15.50
                     Median :76.00
                                       Median :1.000
                                                        toyota corolla
                                                                               5
##
    Mean
            :15.54
                     Mean
                             :75.98
                                       Mean
                                               :1.577
                                                        amc gremlin
                                                                               4
    3rd Qu.:17.02
                     3rd Qu.:79.00
                                       3rd Qu.:2.000
                                                        amc hornet
                                                                               4
##
##
            :24.80
                             :82.00
                                               :3.000
                                                        chevrolet chevette:
    Max.
                     Max.
                                       Max.
                                                                               4
##
                                                        (Other)
                                                                            :365
```

Part B.

Read data description from help menu and according to this document convert some of the numeric variables to factors. Then, use summary() function again and spot the difference.

summary(Auto)

```
##
                     cylinders
                                 displacement
                                                                        weight
         mpg
                                                    horsepower
##
    Min.
           : 9.00
                     3:
                          4
                                Min.
                                        : 68.0
                                                         : 46.0
                                                                   Min.
                                                                           :1613
                                                  Min.
    1st Qu.:17.00
                     4:199
                                                  1st Qu.: 75.0
##
                                1st Qu.:105.0
                                                                   1st Qu.:2225
##
    Median :22.75
                     5:
                          3
                                Median :151.0
                                                  Median: 93.5
                                                                   Median:2804
##
    Mean
            :23.45
                     6:83
                                Mean
                                        :194.4
                                                  Mean
                                                         :104.5
                                                                   Mean
                                                                           :2978
                                                                   3rd Qu.:3615
##
    3rd Qu.:29.00
                     8:103
                                3rd Qu.:275.8
                                                  3rd Qu.:126.0
##
            :46.60
                                        :455.0
                                                         :230.0
    Max.
                                Max.
                                                  Max.
                                                                   Max.
                                                                           :5140
##
##
     acceleration
                                            origin
                           year
                                                                         name
##
    Min.
            : 8.00
                     Min.
                             :70.00
                                       American:245
                                                       amc matador
                                                                              5
##
    1st Qu.:13.78
                     1st Qu.:73.00
                                       European: 68
                                                       ford pinto
                                                                              5
##
    Median :15.50
                     Median :76.00
                                       Japanese: 79
                                                       toyota corolla
```

```
:15.54
                            :75.98
##
   Mean
                     Mean
                                                      amc gremlin
##
    3rd Qu.:17.02
                     3rd Qu.:79.00
                                                      amc hornet
                                                                            4
           :24.80
                            :82.00
                                                      chevrolet chevette:
##
    Max.
                     Max.
##
                                                      (Other)
                                                                         :365
```

Part C.

Find mean of 'mpg'.

```
mean(Auto$mpg)
```

```
## [1] 23.44592
```

Part D.

Obtain median 'mpg', remember you have written your median function previous week, you can also use your own function.

median(Auto\$mpg)

```
## [1] 22.75
```

Part E.

Find variance and standard deviation for 'mpg'

```
var(Auto$mpg);sd(Auto$mpg)
```

```
## [1] 60.91814
## [1] 7.805007
```

Part F.

Find quartiles; Q1 and Q3 for 'mpg'. Obtain IQR.

```
Q1 <- as.numeric(quantile(Auto$mpg,0.25))
Q3 <- as.numeric(quantile(Auto$mpg,0.75))

iqr <- IQR(Auto$mpg)

print(c(Q1 = Q1, Q3 = Q3, IQR = iqr))

## Q1 Q3 IQR
```

Part G.

17 29

12

Find 5^{th} , 35^{th} and 95^{th} percentiles of 'mpg'.

```
quantile(Auto$mpg, c(0.05, 0.35, 0.95))
    5% 35% 95%
##
##
    13 19 37
Part H.
Create a correlation and covariance matrix for all numeric variables in Auto data set.
Hint: First you have to subset only numeric variables, then use cor() and cov() function.
numeric variables <- names(Auto)[sapply(Auto, is.numeric)]</pre>
numeric_Auto <- Auto[,numeric_variables]</pre>
head(numeric Auto)
##
     mpg displacement horsepower weight acceleration year
## 1
      18
                   307
                               130
                                     3504
                                                   12.0
                                                          70
## 2
      15
                                                   11.5
                   350
                              165
                                     3693
                                                          70
## 3
      18
                              150
                                                   11.0
                                                          70
                   318
                                     3436
## 4
      16
                   304
                              150
                                     3433
                                                   12.0
                                                          70
## 5
      17
                   302
                              140
                                     3449
                                                   10.5
                                                          70
## 6
      15
                   429
                              198
                                     4341
                                                   10.0
                                                          70
cor(numeric_Auto)
##
                        mpg displacement horsepower
                                                          weight acceleration
## mpg
                  1.0000000
                              -0.8051269 -0.7784268 -0.8322442
                                                                     0.4233285
## displacement -0.8051269
                                1.0000000 0.8972570 0.9329944
                                                                    -0.5438005
## horsepower
                 -0.7784268
                                0.8972570
                                                       0.8645377
                                                                    -0.6891955
                                           1.0000000
## weight
                                           0.8645377
                                                       1.0000000
                 -0.8322442
                               0.9329944
                                                                    -0.4168392
## acceleration 0.4233285
                              -0.5438005 -0.6891955 -0.4168392
                                                                     1.0000000
## year
                  0.5805410
                              -0.3698552 -0.4163615 -0.3091199
                                                                     0.2903161
##
                       year
## mpg
                  0.5805410
## displacement -0.3698552
## horsepower
                 -0.4163615
## weight
                 -0.3091199
## acceleration 0.2903161
## year
                  1.0000000
cov(numeric Auto)
##
                          mpg displacement
                                             horsepower
                                                              weight acceleration
## mpg
                    60.918142
                                  -657.5852
                                             -233.85793
                                                         -5517.4407
                                                                          9.115514
## displacement
                                 10950.3676
                                             3614.03374
                                                          82929.1001
                 -657.585207
                                                                       -156.994435
```

3614.0337

1481.56939

28265.6202

82929.1001 28265.62023 721484.7090 -976.815253

-73.186967

horsepower

weight

-233.857926

-5517.440704

```
9.115514
                                -156.9944
                                                                       7.611331
## acceleration
                                             -73.18697
                                                         -976.8153
                   16.691477
                                -142.5721
                                             -59.03643
                                                         -967.2285
                                                                       2.950462
## year
##
                       year
## mpg
                  16.691477
## displacement -142.572133
## horsepower
                 -59.036432
## weight
                -967.228457
## acceleration
                   2.950462
## year
                  13.569915
```

Part I.

Obtain frequencies of 'cylinders' and 'origin' variables.

table(Auto\$cylinders)

```
##
              5
                      8
##
     3
                  6
     4 199
##
             3 83 103
table(Auto$origin)
##
## American European Japanese
##
        245
                   68
                             79
```

Part J.

Find proportion of observations that fall into each category for both 'cylinders' and 'origin'.

table(Auto\$cylinders) / nrow(Auto)

```
##
## 3 4 5 6 8
## 0.010204082 0.507653061 0.007653061 0.211734694 0.262755102
table(Auto$origin) / nrow(Auto)
```

```
##
## American European Japanese
## 0.6250000 0.1734694 0.2015306
```

Part K.

Create a contingency table for 'cylinders' VS 'origin' and make comments on it. table(Auto\$cylinders, Auto\$origin)

##

##		${\tt American}$	European	Japanese
##	3	0	0	4
##	4	69	61	69
##	5	0	3	0
##	6	73	4	6
##	8	103	0	0