Types of Locks

Shared/Exclusive Locks

 Problem: Simple locks don't not allow two readers of a DB element X at the same time.

Multiple readers not a problem.

Shared lock sl_i(X)

Exclusive lock xI_i(X)

	S	X
S	yes	no
X	$_{ m no}$	$_{ m no}$

Exercise

```
r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(A); w2(B); w3(C);
```

Ta	To	To
T1 xl(A); r1(A)	<u>T2</u>	<u>T3</u>
	xl(B); r2(B)	
		xI(C); r3(C)
sl(B) denied	ol(C) denied	
	sl(C) denied	
		sl(D); r3(D); u(D)
		w3(C); u(C)
	sl(C); r2(C);	
	w2(B); u(B); u(C)
sl(B); r1(B);		
w1(A); u(A); u(B)		

Upgrading Locks

 Instead of taking an exclusive lock immediately, a transaction can take a shared lock on X, read X, and then upgrade the lock to exclusive so that it can write X.

T_1	T_2
$sl_1(A); \ r_1(A);$	
	$sl_2(A); \ r_2(A);$
	$sl_2(B); \ r_2(B);$
$sl_1(B); \ r_1(B);$	
$xl_1(B)$ Denied	
, ,	$u_2(A); \ u_2(B)$
$xl_1(B); \ w_1(B);$	_
$u_1(A); \ u_2(B);$	
······································	

Upgrading Locks allows more concurrent operation:

Had T1 asked for an exclusive lock on B before reading B, the request would have been denied, because T2 already has a shared lock on B.

Exercise

r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(A); w2(B); w3(C);

<u>T1</u>	T2	T3
sl(A); r1(A)		
	sl(B); r2(B)	
		sl(C); r3(C)
sl(B); r1(B)		
	sl(C); r2(C)	
		sl(D); r3(D)
xl(A); w1(A);		
u(A); u(B)		
	xl(B); w2(B);	
	u(B); u(C)	
		xl(C);w3(C);
		u(C); u(D)

Possibility for Deadlocks

Example:T1 and T2 each reads X and later writes X.

Problem: when we allow upgrades, it is easy to get into a deadlock situation.

Solution: Update Locks

- Update lock ul_i(X).
 - Only an update lock (not shared lock) can be upgraded to exclusive lock (if there are no shared locks anymore).
 - A transaction that will read and later on write some element A, asks initially for an update lock on A, and then asks for an exclusive lock on A.
 Such a transaction doesn't ask for a shared lock on A.
- Legal schedules:
 - read action permitted when there is either a shared or update lock.
 - An update lock can be granted while there is a shared lock, but the scheduler will not grant a shared lock when there is an update lock.
- 2PL condition: No transaction may have an sl(X), ul(X) or xl(X) after a u(Y).

	\mathbf{S}	X	U
S	yes	no	yes
\mathbf{X}	$_{ m no}$	no	no
U	$_{ m no}$	no	$_{ m no}$

Example

<u>T1</u>	T2	T3
sl(A); r(A)		
	ul(A); r(A)	
		sl(A) Denied
	xl(A) Denied	
u(A)	1/4). /4)	
	xl(A); w(A)	
	u(A)	
		sl(A); r(A)
		u(A)

(No) Deadlock Example

 T_1 and T_2 each read X and later write X.

T_1	T_2		_	eadlock when
$sl_1(X)$				ising sl and xl locks only.
- ($sl_2(X)$			locks of ity.
$xl_1(X)$ Denied	- (
- 、	$xl_2(X)$	Denied		Fine when using
	- (update locks.
T.		TT.		
T_1		T_2		
$ul_1(X); \ r_1(X);$				
		$ul_2(X)$ De	$_{ m enied}$	
$xl_1(X); w_1(X);$	$u_1(X);$			
		$ul_2(X); r_1$	$_{2}(X);$	

 $xl_2(X); w_2(X); u_2(X);$

Benefits of Upgrade Locks

