

Vandana M L

Department of Computer Science and Engineering

Circular Singly Linked List

Vandana M L

Department of Computer Science and Engineering

Circular Linked List

Circular linked list is a linked list where all nodes are connected to form a circle.

- Circular Singly Linked List
- Circular Doubly Linked List

With additional head node Without additional head node

Circular Linked List Operations

- Insert at front
- Insert at end
- Insert at a position
- Ordered insertion

- Delete front node
- Delete end node
- Delete a node from position
- Delete a node with a given value

- Display list
- Concatenate two list
- reverse a list

Circular Linked List: Applications

- Useful for implementation of queue, eliminates the need to maintain two pointers as in case of queue implementation using arrays
- Circular linked lists are useful for applications to repeatedly go around the list like playing video and sound files in "looping" mode
- Advanced data structures like Fibonacci Heap Implementation
- > Plays a key role in linked implementation of graphs

Circular Singly Linked List

- It supports traversing from the end of the list to the beginning by making the last node point back to the head of the list
- A Tail pointer is often used instead of a Head pointer

Circular Singly Linked List Node Definition

```
PESUNIVERSITY
```

```
#include <iostream>
using namespace std;
struct Node{
 int data;
 struct Node* next;
typedef struct node csll node;
```

Circular Singly Linked List Operations

Insertion at the beginning

Insert at the front of linked list

Create a node

If the list is empty

- make the tail pointer point towards the new node Else
- Change the new node link field to point to the first node
- Change the last node link to point to the new node

Circular Singly Linked List Operations

PESUNIVERSITY

Insertion into an empty list

Circular Singly Linked List Operations

Insert to head of a Circular Linked List

New->next = Cur; New->next = Tail->next;

Prev->next = New; ____ Tail->next = New;

Circular Singly Linked List Operations

Insert to the end of a Circular Linked List

Prev->next = New; ____ Tail->next = New;

Tail = New;

Circular Singly Linked List Operations

Insert to the middle of Circular Linked List

New->next = Cur;

Prev->next = New;

Circular Singly Linked List Operations

Delete a node from a single-node Circular Linked List

```
Tail = NULL;
free( Cur);
```


Circular Singly Linked List Operations

Delete the head node from a Circular Linked List

```
Prev->next = Cur->next;  // same as: Tail->next = Cur->next
free(cur);
```


Circular Singly Linked List Operations

Delete a middle node Cur from a Circular Linked List

Prev->next = Cur->next;

Free(Cur);

Lecture Summary

Circular Singly Linked List operations

Apply the concepts to implement following operations for a singly linked list

- insert a node after a given node(pointer)
- > Insert a node after a node with a given value

Multiple-Choice-Questions(MCQ's)

1. In a CSLL, which is the correct condition for traversal starting from head?

- a) while (temp != NULL)
- b) while (temp->next != NULL)
- c) do { ... } while (temp != head)
- d) while (temp->next != head->next)

Multiple-Choice-Questions(MCQ's)

1. In a CSLL, which is the correct condition for traversal starting from head?

- a) while (temp != NULL)
- b) while (temp->next != NULL)
- c) do { ... } while (temp != head)
- d) while (temp->next != head->next)

Multiple-Choice-Questions(MCQ's)

2. Which of the following is true about the head pointer in a CSLL?

- a) head always points to the last node.
- b) head points to the first node, but last->next = head.
- c) head->next = NULL.
- d) head cannot be NULL in any case.

Multiple-Choice-Questions(MCQ's)

2. Which of the following is true about the head pointer in a CSLL?

- a) head always points to the last node.
- b) head points to the first node, but last->next = head.
- c) head->next = NULL.
- d) head cannot be NULL in any case.

Multiple-Choice-Questions(MCQ's)

3. To insert a node at the beginning of a CSLL, which of the following sequences is correct?

- a) Add new node, set new->next = head, find last node, set last->next = new, then update head = new.
- b) Set new->next = head, update head = new, done.
- c) Set new->next = head->next, update head to new.
- d) Set head->next = new, then new->next = head.

Multiple-Choice-Questions(MCQ's)

3. To insert a node at the beginning of a CSLL, which of the following sequences is correct?

- a) Add new node, set new->next = head, find last node, set last->next = new, then update head = new.
- b) Set new->next = head, update head = new, done.
- c) Set new->next = head->next, update head to new.
- d) Set head->next = new, then new->next = head.

Multiple-Choice-Questions(MCQ's)

4. For inserting a node at the end of a CSLL, which step is mandatory?

- a) Update last->next = new and new->next = NULL.
- b) Find last node (whose next = head), set new->next = head, and update last->next = new.
- c) Set head = new if last node exists.
- d) No need to link to head, as list is circular by default.

Multiple-Choice-Questions(MCQ's)

4. For inserting a node at the end of a CSLL, which step is mandatory?

- a) Update last->next = new and new->next = NULL.
- b) Find last node (whose next = head), set new->next = head, and update last->next = new.
- c) Set head = new if last node exists.
- d) No need to link to head, as list is circular by default.

Multiple-Choice-Questions(MCQ's)

5. If a CSLL contains only one node and we delete it, what must happen?

- a) head = NULL.
- b) head->next = head.
- c) head->next = NULL.
- d) Nothing, list remains unchanged.

Multiple-Choice-Questions(MCQ's)

5. If a CSLL contains only one node and we delete it, what must happen?

- a) head = NULL.
- b) head->next = head.
- c) head->next = NULL.
- d) Nothing, list remains unchanged.

THANK YOU

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu