REPRESENTAÇÃO DA IMAGEM DIGITAL

Representação da imagem

Uma imagem é uma função de intensidade luminosa bidimensional f(x,y) que combina uma fonte de iluminação e a reflexão ou absorção de energia a partir desta fonte pelos elementos da cena sendo adquirida.

$$f(x,y) = i(x,y) \cdot r(x,y)$$

Representação da imagem

- A iluminação pode originar de uma fonte de energia eletromagnética ou de outras fontes como ultrassom;
- Dependendo da natureza da fonte, a energia da iluminação é refletida do, ou transmitida através do objeto.

Exemplos de aquisição de imagens

Espectro visível

Infra-vermelho

Exemplos de aquisição de imagens

Raio gama

Raio X

Ondas eletromagnéticas

 Ondas eletromagnéticas podem ser visualizadas como ondas senoidais que se propagam com o comprimento de onda λ

FIGURE 2.11 Graphical representation of one wavelength.

Ondas eletromagnéticas

- □ A Luz e o espectro eletromagnético
- 1666 Experimento de Sir Isaac Newton

Espectro Eletromagnético

Espectro Eletromagnético

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Luz

- Luz é um tipo particular de radiação eletromagnética que pode ser percebida pelo olho humano.
 - Violeta
 - Azul
 - Verde
 - Amarelo
 - Laranja
 - Vermelho

Luz

- Luz sem cor
 - luz monocromática ou acromática
 - Único atributo da luz monocromática é sua intensidade
 - Intensidade/Nível de cinza
- Outras medidas básicas de luz cromática
 - Radiância (energia emitida)
 - Luminância (energia percebida)
 - Brilho: noção acromática de intensidade

Aquisição da imagem: Sensores

□ A energia que entra é transformada em uma voltagem pela combinação da energia elétrica de entrada e o material do sensor (responsável por detectar um particular tipo de energia)

Energy

Único sensor

- A voltagem de saída é proporcional a luz que entra;
- O uso do filtro melhora

 a seletividade do sensor
 (por exemplo, enfatizar
 um banda do espectro)

Faixa de sensores

- A faixa de sensores é
 utilizada em aplicações
 médicas e industriais para
 obter slices de objetos 3D;
 - A saída do sensor deve ser processada por algoritmos de reconstrução com o objetivo de transformar os dados obtidos em imagens seccionais (slices) significativas.
 - Ex: CT, MRI, PET (Positron Emission Tomography)

Energy

Filter-

Array de sensores

- Sensor típico é o CCD (Charge Coupled Device);
 - A resposta de cada sensor à proporcional à integral da energia de luz projetada na superfície do sensor (reduz ruído);
 - Largamente utilizado en câmaras digitais

Energy

Filter -

Geração de uma imagem digital

Amostragem: matriz de pixels

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Um modelo simples para a formação da imagem

□ Uma imagem pode ser definida como uma função de intensidade luminosa 2D, f(x,y)

 $f(x,y) = r(x,y) \cdot i(x,y)$ $0 < i(x,y) < \infty \text{ e } 0 < r(x,y) < 1$ $0 < f(x,y) < \infty$ $0 \le y \le N$ $0 \le x \le M$ $Lmin \le f(x,y) \le Lmax$

Por quê digitalizar uma imagem?

N Company of the comp

M

Da teoria dos números: entre dois pontos existem infinitos pontos

$$0 \le y < N$$

$$0 \le x < M$$

Neste caso uma imagem teria infinitos pontos

$$Lmin \le f(x,y) \le Lmax$$

e cada ponto da imagem teria um de muitos infinitos valores

INFINITOS NROS DE BITS

ESTA REPRESENTAÇÃO NAO É
POSSIVEL EM QUALQUER
COMPUTADOR DIGITAL

O que é desejável?

 Uma imagem ser representada na forma de uma matriz 2D;

 Cada elemento da matriz deve assumir valores finitos

O que é digitalização?

- Representação da imagem por uma matriz
- amostragem
- Cada elemento da matriz representado por um elemento de um conjunto finito de valores discretos
 - quantização

Representação da imagem

- Portanto, a digitalização envolve dois processos:
 - Amostragem
 - consiste em discretizar o domínio da imagem nas direções x
 e y, gerando uma matriz de MxN amostras;
 - Quantização
 - consiste em escolher o número L de níveis de cinza (em imagens monocromáticas) permitidos para cada imagem, ($L = 2^k$).

Amostragem

 Na prática o método de amostragem é determinado pelo tipo de sensor usado para gerar a imagem;

M

a b c d

24 bits = Paleta de 2^{24} cores

4 bits = Paleta de 16 cores

2 níveis

4 níveis

256 níveis

Procedimento

- Analisar as amostras de cores na imagem
- Definir um conjunto de níveis de quantização
- Associar cada amostra a um nível
- Gerar nova imagem

Digitalização da imagem

 Cada elemento da matriz de amostras f(x,y) é denominado como pixel (picture element),

$$0 < x < M-1 e 0 < y < N-1$$

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,M-1) \\ f(1,0) & f(1,1) & & \vdots \\ \vdots & & & & \\ f(N-1,0) & \cdots & \cdots & f(N-1,M-1) \end{bmatrix}$$

Digitalização da imagem

- O espaço necessário para armazenar uma imagem é dados por:
 - \square $M \times N \times k$ bits ou $N^2 \times k$ bits para matrizes quadradas

TABLE 2.1 Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3(L = 8)	4(L=16)	5(L = 32)	6(L = 64)	7(L = 128)	8(L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

Exemplos na literatura

NON-INVASIVE DIFFERENTIAL DIAGNOSIS OF DENTAL PERIAPICAL LESIONS IN CONE-BEAM CT

Arturo Flores¹, Steven Rysavy¹, Reyes Enciso², and Kazunori Okada¹

Each 0.2mm axial slice is a 512×512 image with a 12 bit intensity range (4,096 grayscale). An ROI of 100 cubic vox-

mas approved of the momentum review

Digitalização da imagem

NOTA:

- O tamanho de uma imagem não diz tudo sobre a sua resolução;
- A qualidade de uma imagem 1024x1024 pixels não pode ser avaliada sem conhecer a dimensão espacial capturada na imagem.

Digitalização da imagem

- Resolução espacial
 - Intuitivamente, é uma medida do menor detalhe discernível em uma imagem;
- A resolução espacial pode ser medida por:
 - pares de linhas por unidade de distância (100/mm largura da linha = 0.02 mm);
 - pontos (pixels) por unidade de distância dpi (usada em industria publicitária e de impressão).
- Exemplos:
 - □ jornal 75 dpi,
 - □ revista 133 dpi,
 - □ livros 2400 dpi

Efeitos da amostragem

Tamanho da imagem original 2.96 x 2.25 polegadas

> 1250 dpi 3692 x 2812

dei = p x 444/2.96
? dpi
444 x 337
px = dpi.px

300 dpi ? pixels

888x 675

296.300=888

72 dpi 213x162

Resolução Espacial

(a) Menor Resolução

27 pixels no diâmetro da cratera.

(b) Maior Resolução

 55 pixels no diâmetro da cratera.

Resolução Espacial

(a) Menor Resolução

 27 pixels no diâmetro da cratera.

(b) Maior Resolução

 55 pixels no diâmetro da cratera.

Se a cratera tiver 550 Km de diâmetro: a) 20 Km/pixel; b) 10 Km/pixel É possível medir as características em b) com maior precisão.

Digitalização da imagem

- □ Resolução de intensidade
 - refere-se à menor alteração discernível nos níveis de intensidade;
 - em geral o número de níveis de intensidades é representado por um inteiro, potência de 2.
 - o número mais comum de bits é 8 ou 16 bits (256 ou 65536 níveis de intensidade)

Efeitos da quantização

