Ackermann's Function

The Ackermann's function is defined by the following recurrence relation:

$$A(1,j) = 2^j \text{ for } j \ge 1$$

$$A(i,1) = A(i-1,2)$$
 for $i \ge 2$

$$\begin{array}{l} A(1,j) = 2^j \text{ for } j \geq 1 \\ A(i,1) = A(i-1,2) \text{ for } i \geq 2 \\ A(i,j) = A(i-1,A(i,j-1)) \text{ for } i,j \geq 2 \end{array}$$

Use the recurrence relation to fill up as many values as you can in the table below. Start with Row 1 and work your way up to larger values of i and j.

Ackermann Table					
i/j	1	2	3	4	
1	2^{1}	2^2	2^3	2^{4}	
2	2^2	2^{4}	2^{16}	2^{65536}	
3	2^{4}				

What pattern emerges in Row 2?

Each element becomes 2^X where X is the cell to its left. So from 2^2 we go to 2^{2^2} to $2^{2^{2^2}}$, etc.