

(Sheet 1_Of 66)

Binding Domain Spacer Splice Site Delivered Therapeutic Gene

Figure 1B-C

ngaraga natan

ļ.

Figure 4A-B

Figure 4C

Figure 5

To the first that the first the

Figure 6

(Sheet 9 Of 66)
Figure 7

(8)

Exon 1 of βHCG6

TGGAGATGTTCCAG-GGCGCTGATGATGTTGTT

Alst coding nucleotide of DT-A

GTGATGGAAAACTTTTCTTCGTACCACGGGACTA AACCTGGTTATGTAGATTCCATTCAAAAA-3

A8 singit

Cis-spliced products

LA LA CONTRACTOR LA CONTRACTOR

F1 F2 F3 = Normal cis-splicing (277bp)

Exon skipping (110bp)

Trans-splicied products

= 1st event, 196bp. Trans-splicing between 5' ss of target & 3' ss of PTM.

DT-A[E3] = 2nd event, 161bp. Trans-splicing between 3' ss of target & 5' ss of PTM.

Figure 8B

31304B -A (Sheet || Of 66)

(shut 13 of 66) FIG. 10 A

3'lac-1R 1GG 161 CAAAAA TA ^ô 1789-3174, 3' LacZ HCG-EX2R 3'LacZ 00 上口に Model Constructs Act Model Constructs HCG Ex2 31ac-1F HOG-INIR BAEII . Park (567-919 = 352 bp) **BHCG6** intron 1 . 8 HCG -EAP PTMS CG1 TTA CAD ASTACKA GRANCE TORDITA CAG COC ---PP Bond Bape HCG-INIF Stac-1R ВР (HCG intron 1) 80 1-1788 5' LacZ 5' lacZ pc3.1PTM2 :-6646 man 11 ca 47c 20A OVT OAT OCC OVC 6 5'lac-1F Ko F pe3.1 Lac. TI Target 1:

Restoration of β-Gal activity by SMaR1 (Spliceosome Mediated RNA Trans-splicing)

Figure 10B

31304 B-A (Shut 14 of 66)

FIGURE 11A

Shut 16 of 66)

Figure 11B

FIGURE IIC

FIGURE 12 A

31304-B-A (Shut 18 of 66)

(1). Nucleotide sequences of the cis-spliced product (285 bp):

BioLac-TR1

GGCTTTCGCTACCTGGAGAGCGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTG

(2) Nucleotide sequences of the trans-spliced product (195 bp)

Biolac-TR1

GGCTTTCGCTACCTGGAGAGACGCCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGG

Splice Junction

CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAG/GGGCTGCTGCTGCTGCTGCT

HCGR2

GAGCATGGGCGGGACATGGGCATCCAAGGAGCCACTTCGGCCACGGTGCCG

Figure 12B

31304-B-A (Shut 19 of 66)

CFTR Pre-therapeutic molecule (PTM or bullet")

CFTR mini-gene target - Construction

Figure 14

31304 B-A (Shut 21 of 66) CCTAGCGITTAA ... TGCCACTCCCAC

500 b.p.

DNA sequence

linear

Positions of Restriction Endonucleases ites (unique sites underlined) Sauge 7 Hae III Sau96 I Bunding domin Ban II SCA_I <u>Nobe I</u> Dra I <u>ara</u> Intron 9 BD Sac II CCATCGCAAATTTGCCCCGGTGGGTAGTAATAATCCACTAATAGGGGGCTTGTAATAATATTGCAACGAGCTCATGATTG ٥ 44 68 15 72 15 Kon I Pat I Exon 10 CFTR + His tag of STOP TOSTACTOTTOPPPPPPPPPCTOCAGAGACTTCTAATGATGATGATTATGGGAGAACTGGAGGGTAAAAT ACCATOS ACANANANA ACCACOTO TO A ACTO ACCATO ACTANTACCO TO TO TO ACCATO A 82 102 **X** Dde X F508 TANGCACAGTGGAAGAATITCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTTG ATTCOTOTCACCTTCTTAAAGTAAGACAAGAGTCAAAAAGGACCTAATTACGGACCGTGGTAATTTCTTTTATAGTAGAAAG 240 **190** Seh_ï 3T09 His GIGITITCCTATGATGAATATAGATACAGAAGCOTCATCAAGCATGCCAACTAGAAGAGCATCATCATCATCATCATCATTAG 320 ۰ 282 Sec M Bon II Sau3A Z Hac III Pat I Don I TIL Call ₽ Not Z ECOR Y ECOR I <u>Bang</u> igon I Dra 3 Eccoccoccaciona racina de la company de la c COCCGGCGGTGACACGACCTATAGACGTCTTAAGGTGGTGTGACCTGATCACCTAGGCTTCAACCATGGTTTGAATTCAA 321 CF28372 339 399 349 384 **☐** 323 366 373 390 373 Present in PTM 3' UT 378 11 Segret ton tol Sau3A I Don I TANACCECTÉNICASCCTCGACTOTOCCTTCTAGTIPCCAGCCATCTOTTGTTTGCCCCCTCCCCGGGCCTTCCCTGACC のシュフ 410 410 CTCGAAGGTGCCACTCCCAC 500 GACCTTCCACGGTGAGGGTG Restriction Endonucleases site usage Acc I ECOR I I oby Sau96 I I AGA Ecoa V Mhe I Sca I Hao II Apal I E som Eng I Hao III II sva Pfim I Spin I BossH I HinC II Pot I Spl I HinD III Bean II 1 Pvu I Bbo I Hing 2 31304-A-B (Sheet 22 of 66

EXPERIMENT 12

Repair of an exogenously supplied CFTR target molecule carrying an F508 deletion in exon 10.

Figure 16 31304-A-B Shut 23 of 66) 09-18-98 12:42PM TO Baker&Botts

EXPERIMENT 3

Repair of endogenous CFTR transcripts by exon 10 invasion using a double splicing PTM

Double Splicing PTM

Figure 17-31304 B-A Shut 24 of 66

39 % SE 27 My

(39 go 90 Amy

Repaired LacZ mRNA

Figure 20

Shut 27 of 66

3,88

Important Structural Elements of DSPTM-7: (Double splicing PTM with all the necessary splice elements i.e. has both 3′ and 5′ functional splice sites and the binding domain≰)

(1) 3' BD (120 BP): GATICACTIGCTCCAATTATCATCCTAAGCAGAGTGTATATTCTTATTTGTAAAGATTCTATTAACTCATTTGATTC **AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC**

(2) Spacer sequences (24 bp): AACATTATTATAACGTTGCTCGAA

(3) Branch point, pyrimidine tract and acceptor splice site: TACTAAC T GGTACC TCTTTTTTTTTTT GATATC CTGCAG LEGICES LacZ mini **EcoRV** PPT Xpn -ВР

5.88 LacZ mini

(4) 5' donor site and 2nd spacer sequence:

CTAAGATCCACCGG

(5) 5' BD (260 BP): TCAAAAAGTTTTCACATAATTTCTTACCTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTGGAA AAAAACCCTCTGAATTCTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATTATTAACTCA **Асассаатватитттстттаатветвсствесатаатсствваааастватаасасаатваааттст** TTATCAAATCACGC

rigure 2

Shut 29 of 66

Double Trans-splicing Produces Full-length Protein

Figure 24

20 for 18 Just

Beta-gal Activity (Units/mg protein)

(33 go ce mys

23 go EE amp

34 of 66

25 go 25 turb

Figure 29

Target

Repaired full length CFTR mRNA

Figure 30

23 po 78 July

A<u>CGAGCT</u>TGCTCATGATGATGATGGG<u>C</u>GA<u>GTTA</u>GA<u>ACCAAGT</u>GA<u>A</u>GG<u>C</u>AA<u>G</u>ATCAA<u>A</u>CA<u>TTCC</u>G <u>CTTCG&CGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCCTGTCAGTTGGAGGAAG</u> G<u>CCGC</u>AT<u>CAGC</u>TT<u>T</u>TG<u>CAGC</u>CA<u>A</u>TT<u>CAGTT</u>GGAT<u>C</u>ATGCC<u>CGGT</u>ACCAT<u>C</u>AA<u>GGAGAACATA</u>AT

MCU in exon 10 of PTM

88 of 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

Figure 31

99 lo 8E 2MYP

Figure 32

☐ = MCU in PTM exon 10

99 to be myp

Figure 33

99 to of my

20 Jo 14 my

MCU in exon 10 of PTM

88 of 192 (46%) bases in PTM exon 10 are not complementary to

<u>CTTCGGCGTCAGTT</u>ACGACGAGTACCGCTA<u>TCGCTCG</u>GTGAT<u>T</u>AAGGCCTGTCAGTTGGAGGAG GCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTACCATCAAGGAGAACATAAT its binding domain.

Figure 35

Target

↑Cis

ABCDEFGHI

Figure 36

Target Exon 10820 Target EX31011 84 CAACTAGAAGAGGACAT CT CCAAGTTTG

33 Jo Et 2mld

Cis-spliced product

[Primers CF1 + CF111]

Figure 37 A

Figure 37B

u

Figure 37C

Shut 46 of 66

99 to the myp

Figure 38B

 \mathfrak{m}

20 pt 2mp

Figure 40

99 for 05 myp

 ω

Shut 51 of 66

b-gal activity (unitalmg protein)

30

20

20

Figure 406

(1

THE THE THE THE THE THE THE

The light first than it was in

Sheet 54 of 66

Figure 4KB

Exons 1-10 ATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG GGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT TTGATTTATAAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG GCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAATGATTGAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGAG AATGTAACAGCCTTCTGGGAGGGGGATTTGGGGAATTATTTGAGAAAGCAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT AGAAAGAGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGA<u>CGAGCT</u>T<u>GC</u>T<u>C</u>ATGATGAT<u>C</u>ATGGG<u>C</u>GA<u>G</u> $\underline{\mathbf{T}}\mathbf{1}\underline{\mathbf{A}}\mathbf{G}\mathbf{1}\underline{\mathbf{A}}\underline{\mathbf{C}}\mathbf{A}\underline{\mathbf{A}}\underline{\mathbf{G}}\mathbf{1}\underline{\mathbf{C}}\mathbf{A}\underline{\mathbf{A}}\underline{\mathbf{C}}\mathbf{1}\underline{\mathbf{T}}\underline{\mathbf{C}}\mathbf{G}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\mathbf{1}\underline{\mathbf{T}}\underline{\mathbf{T}}\mathbf{T}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{A}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{A}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{A}}\underline{\mathbf{T}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{C}}\underline{\mathbf{T}}\underline{\mathbf{T}}\underline{\mathbf{C}}\underline{$ CCAT<u>C</u>AAGGAGAACAT<u>A</u>AT<u>C</u>TT<u>C</u>GGCGT<u>CAGTTACGACGAGTACCGC</u>TA<u>TCGCTCG</u>GT<u>G</u>AT<u>T</u>AA<u>G</u>GC<u>C</u>TG<u>TCAGTTG</u>GA **G**GAG

Trans-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTG

GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGT

GCTTAATTTTTACCCTCTGAATTCTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAAACCCATCATT

ATTAACTCATTATCAAATCACGCT

Figure 42

Sheet 57 of .66

153 bp PTM24 Binding Domain:

Nhe I

GCTAGC- NATIVA GACGAAGCCGCCCTCACGCTCAGGATTCACTTGCCTCCAATTATCATCCTAAGCAGAAGTATAA 153 bp BD underlined

TICTIATITIGIAAAGATICTATIAACICATITIGATICAAAATAITITAAAATACTICCIGTITICACCTACTGCTATGC

AC-CCGCGG

Figure 43A

Trans-splicing domain

Exons 10-24

ACTTCACTTCTAATGATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCT GTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATTTTTATGGGACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAATTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT CTGATGAGCCTTTAGAGAGAGGCTGTCCTTAGTACCAGATTCTGAGCAGGGGAGAGGCGATACTGCCTCGCATCAGCGT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAA<u>CAGCATC</u>CACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTTTTGTGCTAATTTGGTGCTTAGTAATTTTTCTGGCAGAGGTGGCTGCTTCTTTGGTTGTGCTGTGGCTCCTTGGAA ACACTCCTCTTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT ATTTGACTTCATCCAGTTGTTATTAATTGTGATTGGAGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATAGAAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAAGGAGAAGGAAGATTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACCAAGTCAACCATACAAGAATGGCCAACTCTCGAAAGTTATGATTATTGAGAATTCACACGTGAAGAAGAAGATG ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TCAGCTTTTTTGAGACTACTGAACACTGAAGGAGAAATCCAGATCGATGGTGTCTTGGGATTCAATAACTTTGCAAC TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTGGATGGGGGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG **AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA**

TGCTCTGAAAGAGAGAGAGAAGAAGAGGTGCAAGATACAAGGCTTCATCATCATCATCATCATTAG

Histidine tag

Stop

Figure 43B

Figure 44 A

Figure 44 B

Forman and and or Eigare 44C

CTCCGAAAGTTTCCTTTTATGGCGAGGCGGCGGCGGCGGCGGCCCC<u>IATAAA</u>AGCGAAGCGCGCGGCGGCG CITITAAAAAGAAACITTAIGAGAAAAAITIICCGGGAACATTATTATAAACGTTGCTCGAATACTAACTGGTAC BAGTCGCTGCGTGCCTTCGCCCCGTGCDAACCTCCGCCTCAACTTATTAGAA

Chicken β-actin Promoter Nucleotide changes are shown in blue
Boxed = CAT box, TATA box
Boxed + Arrow = Transcription Start
Oval = Downstream elements
Bold = Binding domain
Italicized = Spacer+PPT+BP+AG dinucleotide

Sequence not included in construct
CGCCGCCTCGCGCCCCCGGCTCTGACTGACCGCGTTACTCCCCACAGGTGAG
CGGCGGGACGGCCCTTCTCCCTCCGGGCTGTAATTAGCGCTTTGATTAATGACGGCT
IGTTTCTTTTCTGTGGCTGCGAAAGCCTTGAGGGCTCCGGGAAGAATTCGTAA

CTCTTCTTTTTTTTGATATCCTGCAG

F13 + F2 = 235 + 106 = 341 bp F13 + F4 = 235 + 315 = 550 bpExon 1 Intron 1(partial) 277 CBA promoter Extent of promoter in original construct Extent of promoter in above construct 525 CMV enhancer

Chicken Beta Actin Promoter (including exon 1 and part of intron 1)

Figure 44D

igure 45

Excise TSD and part of exon 16 with

XhoI and PflMI and ligate in a PCR product that:

- 1) eliminates the TSD and splice acceptor site
 - 2) inserts EcoRV adjacent to exon 16
- 3) restores the coding for exon 16

300-

200-

FVIII activity (mU/m

100 100

Figure 46

Sheet 65 of 66)

26 and a C-terminal FLAG tag. BGH = bovine growth hormone 3' UTR; Binding domain = Detailed structure of a mouse factor VIII PTM containing normal sequences for exons 16-125 bp.

REFERENCE FOR DESIGN OF FLAG TAG

Brann T, Kayda D, Lyons RM, Shirley P, Roy S, Kaleko M, Smith T. Adenoviral vector-mediated expression of physiologic levels of human factor VIII in nonhuman primates.

Hum Gene Ther 1999 Dec 10;10(18):2999-3011

Genetic Therapy, Inc., a Novartis Company, Gaithersburg, MD 20878, USA. Epitope-tagged B domain-deleted human factor VIII cDNA (flagged FVIII) was evaluated in nonhuman primates.

Figure 47A

FLAG = C-terminal tag to be used to detect repaired factor VIII protein.

Figure 47B