Theory of Computation '23 Problem Set 3

Notations. Let $\Sigma = \{a, b\}$. For $w \in \Sigma^*$, let |w| denote the length of w. Let $\#_a(w)$ denote the number of a's in w and let $\#_b(w)$ denote the number of b's in w.

Problem 1. Show that regular languages are closed under the **repeat** operation, where **repeat** operation on a language L is given by

$$\mathbf{repeat}(L) = \{\ell_1 \ell_1 \ell_2 \ell_2 \dots \ell_k \ell_k \mid \ell_1 \ell_2 \dots \ell_k \in L\}$$

Problem 2. If A is any language, let $A_{\frac{1}{2}}$ denote the set of all first halves of strings in A so that

$$A_{\frac{1}{2}-}=\{x\mid \text{for some }y,\, |x|=|y| \text{ and } xy\in A\}$$

Show that if A is regular, then so is $A_{\frac{1}{2}-}$.

Problem 3. For every string $x \in \{0,1\}^+$ consider the number

$$0.x = x[1] \cdot \frac{1}{2} + x[2] \cdot \frac{1}{2^2} + \dots + x[|x|] \cdot \frac{1}{2^{|x|}}$$

where |x| is the length of x. For a real number $\theta \in [0,1]$ let

$$L_{\theta} = \{x : 0.x \le \theta\}$$

Prove that L_{θ} is regular if and only if θ is rational.

Problem 4 Prove or disprove that the following languages are regular.

- a) Twice = $\{w \in \{a, b\}^* | \#_a(w) = 2\#_b(w)\}$
- b) NEQ = $\{0^i 1^j | i \neq j\}$ [This is a slightly hard problem.]

Problem 5 Consider the language $L = \{w \in \Sigma^* | \text{ 2nd letter from the end is } a\}.$

- a) Draw an NFA for L.
- b) Using the ideas of subset construction draw a DFA for L.
- c) Using the DFA minimization idea discussed in class, check whether the DFA thus constructed is minimal or not. If it not a minimal DFA then draw the correspoding minimal DFA for it.

d) Let $L_k = \{w \in \Sigma^* | k \text{th letter from the end is } a \}$. Prove using pigeon hole principle (or by any other method) that any DFA accepting L_k must have $\Omega(k)$ states.

Problem 6 Let L be a regular language. One of the following languages is regular and the other is not. Give a proof and provide a counterexample, respectively.

- a) $\{w \in \{a,b\}^\star | \exists n \geq 0, \exists x \in L, x = w^n\}$
- b) $\{w \in \{a, b\}^* | \exists n \ge 0, \exists x \in L, w = x^n\}$