Allocation de tâches

À des machines avec critère égalitarien

Introduction

Centre de données traitant des tâches

Problème fondamental de l'ordonnancement, problème NP-difficile

Machines, tâches, types, compatibilité

Critère égalitarien

Notations et Définitions:

 MCoeff: La matrice des coefficients de compatibilité entre les types

$MCoeff = M\alpha_{i,j}, (i,j) \in types$

• Évaluation de coût

$$makespan = \max_{mach \in LM} \sum_{i \in mach} p_i$$

$$coutMax = \max_{mach \in LM} \sum_{i,j \in mach} p_i \times \alpha_{i,j}$$

$$Max(4+2*0.5+1, 2+4*0.5+1*0.5)$$

LPT (Longest Processing Time)

ListeTache triée en ordre décroissant selon la taille des tâches

Alloue LT[0] sur la machine la moins chargée

O(NbM*NbT)

1 seul type

Juxtaposed

- Lorsqu'il n'y a que deux types
- Séparer les tâches de type 1 et type 2
- Allouer les tâches de type 1 à un nombre de machines i compris entre 1 et m, type 2 à m-i
- Fait appel à un algorithme ALLOC
- Complexité: O(m * ALLOC)

Lower-Bound

$$LB = \max(p_{max}, \frac{\sum_{i=1,n} p_i}{m})$$

$$LB \le MakespanOpt \le 2 * LB$$

$$LB_{type} = \max(p_{max}, \max_{t \in types} \frac{\sum_{task_de_type_t} p_{task}}{m})$$

$$LB_{type} < CoutMaxOpt < 2 * LB * max_{MCoeff}$$

Bin-packing

- Schéma d'approximation
- Chercher à minimiser le makespan t des machines(bins).
- Recherche dichotomique entre l'intervalle, epsilon
- Séparer et arrondir
- Construire une matrice pour obtenir le nombre minimum de bins nécessaires de taille t
- 3 cas
- Complexité: O(n^k) entrées, le calcul de chaque entrée est O(n^k) -> O(n^{2k})

Bin-packing

Exemple: 2 * 60 3 * 40

nb 60 nb 40	0	1	2	3
0	1	1 : 40	1: 40	1: 40 40 2: 40
1	1 : 60	1 : 60 40	1: 40 40 2: 60	1: 40 40 2: 60 40
2	1: 60 2: 60	1: 60 40 2: 60	1: 60 40 2: 60 40	1: 60 40 2: 60 40 3: 40

(nb60, nb40)
(1,0)
(0,1)
(0, 2)
(1 , 1)

PTAS

Polynomial-Time Approximation Scheme

Alloue optimalement les k plus grandes tâches

O(NbMk)

Alloue les tâches restantes à l'aide d'un autre algorithme

LPT_typed

Inspiré de LPT

Prend en compte les types

1 allé test

Choisi la meilleure machine et l'alloue

O(NbTaches² x NbMachines)

Greedy_cluster

Regroupement par cluster

Allocation par cluster trié

Limite $t \rightarrow passage machine suivante$

Recherche dichotomique du meilleur t

O(Ntypes x NbT²)

Variante tâches restantes : with_lpt_typed

Order-type

- Établir un ordre de type
- Manière 1:Optimal. Tester toutes les permutations de types, et choisir celle qui minimise le produit des coefficients partagés par les types côte à côte.
- Manière 2: Glouton. Choisir le type suivant qui partage le coefficient le plus faible avec le type précédent.

Figure 8 – type non compatibles : allocation optimale. L'ordre des types est (bleu, gris, violet) de façon à ce que bleu et violet (pire compatibilité) ne se mêlent pas sur une machine

Comparaison des algorithmes de regroupement des types pour plus de 2 types

Max cost VS nbTasks

> 10 machines maxT=10

Comparaison des algorithmes pour plus de 2 types

Max cost VS nbTasks (3 machines)

Comparaison des algorithmes pour plus de 2 types

Max cost
VS
nbTasks
Random types

Comparaison des algorithmes pour plus de 2 types

Time(s) VS nbTypes

Conclusion

Heuristiques

Allocation optimal, coût supérieur

Critère utilitarien