

가상 면접 사례로 배우는 대규모 시스템 설계 기초

개략적인 규모 추정

Back-of-the-envelop estimation

보편적으로 통용되는 성능 수치상에서 사고 실험(thought experiments)을 행하여 추정치를 계산하는 행위

- Senior Fellow Jeff Dean

2의 제곱수

데이터 볼륨 단위

2의 x 제곱	근사치	이름	축약형
10	1천(thousand)	1킬로바이트(Kilobyte)	1KB
20	1백만(million)	1메가바이트(Megabyte)	1MB
30	10억(billion)	1기가바이트(Gigabyte)	1GB
40	1조(trillion)	1테라바이트(Terabyte)	1TB
50	1000조(quadrillion)	1페타바이트(Petabyte)	1PB

응답지연 값

시스템에서 요청이 처리되는 데 걸리는 시간

=> 성능 추정 시, 각 단계의 응답 지연을 고려하는 것이 중요

Ex. 디스크 탐색(seek) - 10ms

하드 디스크(HDD)에서 원하는 데이터를 읽거나 쓰기 위해 데이터를 저장한 위치로 디스크 헤드가 움직이는 과정

100,000

RAM이 100,000배 빠름 (캐시 활용 필수)

가용성에 관계된 수치들

고가용성(high availability)

: 시스템이 오랜 시간 동안 지속적으로

중단 없이 운영될 수 있는 능력

가용률	하루당 장애시간	주당 장애시간	개월당 장애시간	연간 장애시간
99%	14.40분	1.68시간	7.31시간	3.65일
99.9%	1.44분	10.08분	43.83분	8.77시간
99.99%	8.64초	1.01분	4.38분	52.60분
99.999%	864.00밀리초	6.05초	26.30초	5.26분
99.9999%	86.40밀리초	604.80밀리초	2.63초	31.56초

SLA(Service Level Agreement)

: 서비스 제공자(service provider)가 보장하는 최소 성능 및 가용성 기준

QPS와 저장소 요구량 추정

초당 요청 수 (Queries Per Second, QPS)
시스템이 처리해야 할 부하

저장소 요구량 (Storage Estimation)

데이터 저장 용량을 추정하는 방법 (데이터 크기 * 기간)

개략적인 규모 추정을 할 때:

- 1. 2의 제곱수를 이용해 용량과 성능을 빠르게 추정
- 2. 응답 지연 값을 참고하여 성능 병목을 찾기
- 3. SLA와 가용성을 고려하여 다운타임을 최소화
- 4. QPS를 계산하여 서버 부하를 예측
- 5. 저장소 요구량을 계산하여 인프라를 설계

