UMCS Nanophotonics Winter 2019/2020

Instructor Information:

Instructor: Dr Nicholas Sedlmayr

Office: 306

Email: sedlmayr@umcs.pl

Course Web Page: See this page.

Course Content: The topics of this course will be:

- Part I:
 - Introduction to light's interaction with matter
 - Derivation of Wave Equation in matter from Maxwell's equations
 - Dielectric properties of insulators, semiconductors and metals (bulk)
 - Light interaction with nanostructures and microstructures (compared with λ)
- Part II:
 - Photonic Crystals
 - Electromagnetic effects in periodic media
 - Light localization, photonic crystal fibers
- Part III:
 - Metal optics (plasmonics) and nanophotonics
 - Light interaction with 0, 1, and 2 dimensional metallic nanostructures Guiding and focusing light to nanoscale
 - Transmission through subwavelength apertures
- Part IV: Metamaterials

Grading: The course grade will be based on participation in the classes and a final oral exam.

Objectives: To have an overview of the different advances in nanophotonics and their applications.

Prerequisites: Basic electromagnetism (Maxwell's equations), calculus.

The following points may be examined:

• Part I:

- Derivation of Wave Equation in matter from Maxwell's equations
- Refractive index and Snell's law
- Dielectric properties (absorption and reflection)
- Absorption in insulators and semiconductors
- Relative permittivity for bulk metals
- Physical process of the interaction of light with nanostructures and microstructures (compared with λ)

• Part II:

- Photonic Crystals: Definition and eigenvalue equation
- Superprism, superlens, and negative refraction effects
- Light localization, photonic crystal fibers advantages and disadvantages

• Part III:

- Metal optics (plasmonics) and nanophotonics advantages and disadvantages
- Transmission through subwavelength apertures
- Dispersion relation for bulk plasmon
- Dispersion relation for surface plasmon