Disciplina: 6876

Turma: 02

Lista 4: Subespaços Vetoriais

- 1. Verifique se os subconjuntos abaixo são subespaços vetoriais.
 - (a) $W = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 4z = 0\}$
 - (b) $W = \{(x, y, z, t) : x + y = 0 e z t = 0\}$
 - (c) $W = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
 - (d) O conjunto dos vetores em \mathbb{R}^5 que têm duas ou mais coordenadas nulas.
 - (e) O conjunto dos vetores em \mathbb{R}^n cujas coordenadas formam uma progressão aritmética.
- 2. Verifique em cada item se W é subespaço vetorial de matrizes.
 - (a) $W = \{ A \in M_n(\mathbb{R}) : A = A^T \}$
 - (b) $W = \{ A \in M_n(\mathbb{R}) : -A = A^T \}$
 - (c) $W = \{A \in M_n(\mathbb{R}) : \det A = 0\}$
 - (d) $W = \{A \in M_n(\mathbb{R}) : XA AX = 0\}$, onde X é uma matriz fixa.
 - (e) $W = \{A \in M_n(\mathbb{R}) : \operatorname{tr}(A) = a_{11} + a_{22} + \ldots + a_{nn} = 0\}$
 - (f) O conjunto das matrizes reais 2×3 nas quais alguma coluna é formada por elementos iguais.
- 3. Verifique em cada item se o subconjunto é subespaço vetorial de funções.
 - (a) $W = \{ f(x) \mid f(x) = f(-x) \}$
 - (b) $W = \{ f(x) \mid f(-x) = -f(x) \}$
 - (c) $W = \{f(x) \mid f \text{ \'e integrável em } [0,1] \text{ e } \int_0^1 f(x) \, dx = 0\}$
 - (d) $W = \{f(x) \mid f''(x) 2f'(x) + f(x) = 0\}$
- 4. Seja $l^{\infty} = \{(x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}\}$ o espaço vetorial das sequências de números reais. Verifique que $W = \{(x_n) : x_{n+2} 3x_n = x_{n+1} \text{ para todo } n \in \mathbb{N}\}$ é um subespaço vetorial de l^{∞} .
- 5. Seja $l^{(\infty)}$ o subconjunto formado pelas sequências (x_n) que têm apenas um número finito de termos diferentes de zero. Mostre que $l^{(\infty)}$ é um subespaço vetorial de l^{∞} .