Kurseinheit 3:

Lösungsvorschläge zu den Einsendeaufgaben

Aufgabe 3.1

- (1) Wahr. Dies ist eine Folgerung aus dem Austauschlemma.
- (2) Falsch. Sei V ein \mathbb{R} -Vektorraum der Dimension 4, und sei v_1, v_2, v_3, v_4 eine Basis von V. Sei $U = \langle v_1, v_2, v_3 \rangle$. Dann gilt $\dim(U) = 3$, denn v_1, v_2, v_3 ist eine Basis von U.
- (3) Falsch. $_{\mathcal{C}}M_{\mathcal{B}}(f)$ ist eine 6×9 -Matrix.
- (4) Wahr, denn beide sind Q-Vektorräume der Dimension 4 und damit isomorph.
- (5) Falsch. Der Kern ist ein Unterraum von \mathbb{R}^3 , und $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ liegt nicht in \mathbb{R}^3 .
- (6) Wahr. Da f linear ist, gilt $f \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- (7) Wahr. Es ist U+W ein Unterraum von V, und es folgt $\dim(U+W) \leq 4$. Mit der Dimensionsformel für Summe und Durchschnitt gilt $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$. Wäre $U \cap W = \{0\}$, so wäre $\dim(U \cap W) = 0$, und dies würde die Ungleichung $3+3-0 \leq 4$ liefern, ein Widerspruch.
- (8) Falsch. Der Koordinatenvektor von A liegt in \mathbb{R}^2 .
- (9) Falsch. Der Rangsatz besagt, dass $\dim(M_{22}(\mathbb{R})) = \dim(\operatorname{Kern}(f)) + \dim(\operatorname{Bild}(f))$ ist, also in unserer Situation $4 = \dim(\operatorname{Kern}(f)) + \dim(\operatorname{Bild}(f))$. Wäre $\operatorname{Kern}(f) = \{0\}$, so würde dies $\dim(\operatorname{Bild}(f)) = 4$ implizieren. Dies ist aber ein Widerspruch, denn das Bild von f hat als Unterraum von \mathbb{R} maximal die Dimension 1.
- (10) Falsch. Der Rangsatz besagt, dass $\dim(\mathbb{R}) = \dim(\operatorname{Kern}(f)) + \dim(\operatorname{Bild}(f))$ ist, also in unserer Situation $1 = \dim(\operatorname{Kern}(f)) + \dim(\operatorname{Bild}(f))$. Wäre f surjektiv, so wäre $1 \ge \dim(\operatorname{Bild}(f)) = 4$, ein Widerspruch.

Aufgabe 3.2

1. Es sind

$$U_1 = \left\{ a \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle$$

und

$$U_2 = \left\{ a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mid a, b \in \mathbb{R} \right\} = \left\langle \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle.$$

Es folgt, dass U_1 und U_2 Unterräume von \mathbb{R}^3 sind.

2. Sei
$$x \in U_1 \cap U_2$$
. Dann gibt es $a, b, a', b' \in \mathbb{R}$ mit $x = \begin{pmatrix} 2a \\ a \\ b \end{pmatrix}$ und $x = \begin{pmatrix} a' \\ a' \\ b' \end{pmatrix}$. Es folgt $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2a - a' \\ a - a' \\ b - b' \end{pmatrix}$. Dies impliziert $a = a' = 2a$, also $a = a' = 0$ und $b = b'$. Somit ist x von der Form $x = \begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix}$, $b \in \mathbb{R}$. Umgekehrt gilt $\begin{pmatrix} 0 \\ 0 \\ b \end{pmatrix} \in U_1 \cap U_2$ für alle $b \in \mathbb{R}$, und es folgt $U_1 \cap U_2 = \left\langle \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle$. Dann ist $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ eine Basis von $U_1 \cap U_2$.

3. Wir gehen vor wie im Beweis der Dimensionsformel für Summen und Durchschnitte.

Die Vektoren $x=\begin{pmatrix}0\\0\\1\end{pmatrix}$ und $y=\begin{pmatrix}2\\1\\0\end{pmatrix}$ sind linear unabhängig, denn sie sind keine skalaren Vielfachen voneinander. Somit ist x,y eine Basis von U_1 . Analog ist $x,z=\begin{pmatrix}1\\1\\0\end{pmatrix}$ eine Basis von U_2 . Im Beweis der Dimensionsformel für Summen und Durchschnitte wurde gezeigt, dass x,y,z dann eine Basis von U_1+U_2 ist. Diese Basis

Durchschnifte wurde gezeigt, dass x, y, z dann eine Basis von $U_1 + U_2$ ist. Diese Basis enthält nach Konstruktion eine Basis von U_1 und eine Basis von U_2 .

Aufgabe 3.3

1. Da v_1, \ldots, v_r linear abhängig sind, gibt es $a_1, \ldots, a_r \in \mathbb{K}$, wobei mindestens ein $a_j \neq 0$ ist, sodass $\sum_{k=1}^r a_k v_k = 0$ ist. Mit den Regeln der Matrizenrechnung folgt dann

$$0 = A0 = A\left(\sum_{k=1}^{r} a_k v_k\right) = A(a_1 v_1 + \dots + a_r v_r)$$

= $a_1 A v_1 + \dots + a_r A v_r = \sum_{k=1}^{r} a_k A v_k.$

Da mindestens ein $a_j \neq 0$ ist, besagt dieses, dass Av_1, Av_2, \dots, Av_r linear abhängig sind.

2. Für alle $a_1, \ldots, a_r \in \mathbb{K}$ gilt wie oben

$$\sum_{k=1}^{r} a_k A v_k = A \left(\sum_{k=1}^{r} a_k v_k \right).$$

Seien nun $a_1, \ldots, a_k \in \mathbb{K}$ gegeben mit $\sum_{k=1}^n a_k A v_k = 0$. Dann ist $A\left(\sum_{k=1}^r a_k v_k\right) = 0$, also ist $\sum_{k=1}^r a_k v_k$ eine Lösung des homogenen linearen Gleichungssystems Ax = 0. Wegen $\operatorname{Rg}(A) = n$ hat dieses Gleichungssystem nur den Nullvektor als Lösung, es ist also $\sum_{k=1}^r a_k v_k = 0$. Da v_1, \ldots, v_r nach Voraussetzung linear unabhängig sind, folgt $a_1 = a_2 = \ldots = a_r = 0$. Damit ist gezeigt, dass Av_1, \ldots, Av_r linear unabhängig sind.

Lösungsvorschläge MG LE 3

Aufgabe 3.4

In allen hier betrachteten Beispielen sei $V = \mathbb{R}^2$.

- 1. Sei $f: V \to V$ definiert durch $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$. Offenbar gilt $f \neq \mathrm{id}_V$. Für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$ gilt $(f \circ f) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$, also $f \circ f = \mathrm{id}_V$, wie gefordert.
- 2. Sei $f: V \to V$ definiert durch $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$. Für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$ gilt $(f \circ f) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$, also $f \circ f = -\mathrm{id}_V$.
- 3. Sei $f: V \to V$ definiert durch $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$. Offenbar gilt $f \neq \mathrm{id}_V$. Für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$ gilt $(f \circ f) \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, also $f \circ f = f$.
- 4. Sei $f: V \to V$ definiert durch $f\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in V$. Dann gilt $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, also $\operatorname{Bild}(f) = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle$, denn die Bilder einer Basis von V sind ein Erzeugendensystem von $\operatorname{Bild}(f)$. Mit dem Rangsatz folgt $\dim(\operatorname{Bild}(f)) = \dim(\operatorname{Kern}(f)) = 1$. Es ist $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \operatorname{Kern}(f)$, also $\operatorname{Kern}(f) = \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\rangle = \operatorname{Bild}(f)$.
- 5. Sei $f = \mathrm{id}_V$. Dann ist f ein Isomorphismus, also $\mathrm{Bild}(f) = V$ und $\mathrm{Kern}(f) = \{0\}$. Es folgt $\mathrm{Kern}(f) \cap \mathrm{Bild}(f) = \{0\}$.

Aufgabe 3.5

1. Seien $\sum_{i=0}^{2} a_i T^i$ und $\sum_{i=0}^{2} b_i T^i$ in V. Dann gilt

$$f\left(\sum_{i=0}^{2} a_i T^i + \sum_{i=0}^{2} b_i T^i\right) = f\left(\sum_{i=0}^{2} (a_i + b_i) T^i\right)$$

$$= \begin{pmatrix} a_2 + b_2 \\ a_0 + b_0 \end{pmatrix}$$

$$= \begin{pmatrix} a_2 \\ a_0 \end{pmatrix} + \begin{pmatrix} b_2 \\ b_0 \end{pmatrix}$$

$$= f\left(\sum_{i=0}^{2} a_i T^i\right) + f\left(\sum_{i=0}^{2} b_i T^i\right)$$

Sei $\sum_{i=0}^{2} a_i T^i \in V$, und sei $a \in \mathbb{R}$. Dann gilt

$$f\left(a\sum_{i=0}^{2}a_{i}T^{i}\right) = f\left(\sum_{i=0}^{2}aa_{i}T^{i}\right) = \begin{pmatrix} aa_{2} \\ aa_{0} \end{pmatrix} = a\left(\begin{pmatrix} a_{2} \\ a_{0} \end{pmatrix}\right) = af\left(\sum_{i=0}^{2}a_{i}T^{i}\right).$$

Somit ist f linear.

- 2. Für alle $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ gilt $f(xT^2 + y) = \begin{pmatrix} x \\ y \end{pmatrix}$. Somit ist f surjektiv, das heißt, $\operatorname{Bild}(f) = \mathbb{R}^2$. Wir wählen als Basis von $\operatorname{Bild}(f)$ die Standardbasis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Der Vektorraum V hat die Dimension 3. Mit dem Rangsatz gilt $\dim(V) = \dim(\operatorname{Bild}(f)) + \dim(\operatorname{Kern}(f))$, also $\dim(\operatorname{Kern}(f)) = 1$. Es reicht also, ein Polynom $\neq 0$ anzugeben, das im Kern von f liegt. Sei p = T. Dann gilt $f(p) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Als Basis von $\operatorname{Kern}(f)$ wählen wir p = T.
- 3. In beiden Fällen wählen wir als \mathcal{B} und \mathcal{C} die Standardbasen $1, T, T^2$ und $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Es gilt

$$f(1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$f(T) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

$$f(T^2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Es folgt
$$_{\mathcal{C}}M_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
.

Lösungsvorschläge MG LE 3

Aufgabe 3.6

Sei $v \in \text{Bild}(g)$, also v = g(u) für ein $u \in V$. Dann gilt $f(g(u)) = (f \circ g)(u) = 0$, also f(v) = 0, und damit $v \in \text{Kern}(f)$. Es gilt also $\text{Bild}(g) \subseteq \text{Kern}(f)$, und es folgt, dass Bild(g) ein Unterraum von Kern(f) ist. Insbesondere gilt $\dim(\text{Bild}(g)) \leq \dim(\text{Kern}(f))$.

Mit dem Rangsatz gilt $\dim(\operatorname{Kern}(f)) = n - \dim(\operatorname{Bild}(f))$. Es folgt also

$$\dim(\operatorname{Bild}(g)) \le n - \dim(\operatorname{Bild}(f).$$

Wir addieren auf beiden Seiten der Ungleichung $\dim(\operatorname{Bild}(f))$ und erhalten die Behauptung.