UFPA

 $Grafos\ Directionados\ (Digrafos)$

Definição

O **Fechamento Transitivo** de um dígrafo D é um dígrafo D^* com os mesmos vértices de D. No entanto, existe um arco de a para b em D^* se e somente se existir um caminho de a para b.

Definição

O **Fechamento Transitivo** de um dígrafo D é um dígrafo D^* com os mesmos vértices de D. No entanto, existe um arco de a para b em D^* se e somente se existir um caminho de a para b.

Ou seja, se existe um arco do vértice a para o vértice b e um arco de b para c em D, então existe um arco de a para c em D^* .

Definição

O **Fechamento Transitivo** de um dígrafo D é um dígrafo D^* com os mesmos vértices de D. No entanto, existe um arco de a para b em D^* se e somente se existir um caminho de a para b.

Ou seja, se existe um arco do vértice a para o vértice b e um arco de b para c em D, então existe um arco de a para c em D^* .

Qual o fechamento transitivo do seguinte dígrafo ?

Definição

O **Fechamento Transitivo** de um dígrafo D é um dígrafo D^* com os mesmos vértices de D. No entanto, existe um arco de a para b em D^* se e somente se existir um caminho de a para b.

Ou seja, se existe um arco do vértice a para o vértice b e um arco de b para c em D, então existe um arco de a para c em D^* .

Qual o fechamento transitivo do seguinte dígrafo ?

1. Fecho transitivo com matrizes Booleanas

Matriz Booleana

Matriz com entradas binárias (0 ou 1)

$$G = \left(egin{array}{cccccc} 0 & 0 & 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \end{array}
ight)$$

Produto de Matrizes Booleana

- Dada duas matrizes $(n \times n)$ A e B, encontrar C = A * B.
- No produto de *matrizes convencionais* as operações são: * e +
- No produto de *matrizes booleanas* temos: ∧ e ∨
- Produto de Matrizes Booleanas C = A * B: $c_{ij} = \bigvee_{k=1}^{m} (a_{ik} \wedge b_{kj})$

Produto de Matrizes Booleana

- Dada duas matrizes $(n \times n)$ $A \in B$, encontrar C = A * B.
- No produto de matrizes convencionais as operações são: * e +
- No produto de matrizes booleanas temos: ∧ e ∨
- Produto de Matrizes Booleanas C = A * B: $c_{ij} = \bigvee_{k=1}^{m} (a_{ik} \wedge b_{kj})$

- Se A é uma matriz de adjacências de um dígrafo, podemos ter C = A * A, ou seja, A^2
- Os arcos em A^2 correspondem a arcos de tamanho 2 em A.
- Os arcos em A^3 correspondem a arcos de tamanho 3 em A.
- . . .

Produto de duas Matrizes $n \times n$, ou seja, C = A * B

Seja *n* o número de vértices, *i* linha da matriz A, *j* coluna da matriz B.

```
para i=0 até i< n faça
\begin{array}{c|c} \mathbf{para}\ j=0\ \mathbf{ate}\ j< n\ \mathbf{faça}\\ \mathbf{para}\ l=0,\ C[i][j]=0\ \mathbf{ate}\ l< n\ \mathbf{faça}\\ \mathbf{C}[i][j]+=A[i][l]*[l][j]\\ \mathbf{fim}\\ \mathbf{fim} \end{array}
```

Multiplicação de Matrizes Booleanas A × A

Seja *n* o número de vértices, *i* linha da matriz A, *j* coluna da matriz B.

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Por que não calcular $A^{n+1}, A^{n+2}, A^{n+3}, \dots$?

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Por que não calcular $A^{n+1}, A^{n+2}, A^{n+3}, \dots$?

Princípio da casas de pombo !!!

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Por que não calcular $A^{n+1}, A^{n+2}, A^{n+3}, \dots$?

Princípio da casas de pombo !!!

Qual o custo computacional?

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Por que não calcular $A^{n+1}, A^{n+2}, A^{n+3}, \dots$?

Princípio da casas de pombo !!!

Qual o custo computacional ?

n multiplicações de matrizes booleanas n^3 cada multiplicação

Total: $O(n^4)$

Fecho Transitivo

Seja n o número de vértices, o fecho transitivo de um dígrafo pode ser calculado através da multiplicação de matrizes de adjacência A (i.e. A*A*...), adicionando-se laços e calculando caminhos de A^n no máximo.

O **fecho transitivo** é dado por: $R = A \lor A^2 \lor ... \lor A^n$

Por que não calcular $A^{n+1}, A^{n+2}, A^{n+3}, \dots$?

Princípio da casas de pombo !!!

Qual o custo computacional ?

n multiplicações de matrizes booleanas n^3 cada multiplicação

Total: $O(n^4)$

É possível melhorar este custo computacional?

Exercício

Dada as seguintes matrizes booleanas, encontre o fecho transitivo de cada uma destas matrizes;

$$G_1 = \left(egin{array}{cccc} 1 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 \end{array}
ight)$$
 $G_2 = \left(egin{array}{cccc} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \end{array}
ight)$

2. O Algoritmo de Warshall (ideia)

- Seja um grafo G = (V, E) com n vértices, o algo. calcula o fechamento transitivo de uma relação.
- Seja um caminho a_1, a_2, \ldots, a_n em G, um vértice interior (Vi) a qualquer vértice $\neq a_1$ e a_n .
- O algoritmo inicia pela matriz booleanda $M_0 = A$ e calcula n matrizes booleanas M_1, M_2, \ldots, M_n .
- Para $0 \le k \le n$. $M_k[i,j] = 1$ sse existir um caminho em G entre a_i e a_j com $Vi \in \{a_1, a_2, a_3, \dots, a_k\}$
- $M_n = M_{R^*}$ pois a entrada (i,j) da matriz M_{R^*} será um 1 somente se existir um caminho de v_i para v_j , com todos os vértices interiores no conjunto $\{v_1, \ldots, v_n\}$.

Em outras palavras...

Seja um conjunto de vértices $\{a_1, a_2, a_3, \dots, a_n\}$, existe um caminho entre dois vétices vértices a_i e a_j sse existir:

Uma aresta de a_i para a_j

- \lor um caminho de a_i para a_j através de um vértice a_1
- \lor um caminho de a_i para a_j através de um vértice a_1 e/ou a_2
- $\lor ... \lor$ um caminho de a_i para a_j através qualquer um dos outros vértices

Exemplo: Seja o seguinte grafo onde: $a_1 = a$, $a_2 = b$, $a_3 = c$ e $a_4 = d$.

$$M_0 = A = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 M_1 - caminho onde o vértice interno é $a_1=a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

 M_1 - caminho onde o vértice interno é $a_1=a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 M_2 - caminhos onde os vértices internos são $a_1 = a$ e/ou $a_2 = b$.

 M_1 - caminho onde o vértice interno é $a_1=a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 M_2 - caminhos onde os vértices internos são $a_1=a$ e/ou $a_2=b$. Como não existe $M_2=M_1$.

 M_1 - caminho onde o vértice interno é $a_1=a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 M_2 - caminhos onde os vértices internos são $a_1=a$ e/ou $a_2=b$. Como não existe $M_2=M_1$.

 M_3 - caminhos onde os vértices internos são $a_1=a, a_2=b$ e/ou $a_3=c$.

 M_1 - caminho onde o vértice interno é $a_1=a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

 M_2 - caminhos onde os vértices internos são $a_1 = a$ e/ou $a_2 = b$. Como não existe $M_2 = M_1$.

 M_3 - caminhos onde os vértices internos são $a_1=a, a_2=b$ e/ou $a_3=c$.

$$M_3 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right)$$

$$M_4 = \left(egin{array}{cccc} 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 1 \end{array}
ight)$$

 M_1 - caminho onde o vértice interno é $a_1 = a$. Obs: Todos os caminhos de tamanho 1 podem ser utilizados.

$$M_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

 M_2 - caminhos onde os vértices internos são $a_1 = a$ e/ou $a_2 = b$. Como não existe $M_2 = M_1$.

 M_3 - caminhos onde os vértices internos são $a_1=a, a_2=b$ e/ou $a_3 = c$.

$$M_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} \qquad M_4 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$M_4 = \left(\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{array}\right)$$

 M_4 =Fecha. T.-caminhos VI = $a_1 = a$, $a_2 = b$, $a_3 = c$, e/ou $a_4 = d$

- O algoritmo calcula o M_{R^*} computando $M_0 = A, M_1, \dots, M_n = M_{R^*}$
- Supondo que M_{k-1} foi calculado, pode-se calcular M_k . Existe um caminho de a_i para a_j com $Vi \in \{a_1, a_2, a_3, \dots, a_k\}$ sse:

- O algoritmo calcula o M_{R^*} computando $M_0 = A, M_1, \dots, M_n = M_{R^*}$
- Supondo que M_{k-1} foi calculado, pode-se calcular M_k . Existe um caminho de a_i para a_j com $Vi \in \{a_1, a_2, a_3, \dots, a_k\}$ sse:

$$Todo\ Vi \in \{a_1,a_2,a_3,\ldots,a_{k-1}\}\$$
Assim, se $M_{k-1}[i,j]=1$, então $M_k[i,j]=M_{k-1}[i,j]=1$ **OU** $a_k \in Vi$ Existe um caminho $a_i \to a_k$ com $Vi \in \{a_1,a_2,a_3,\ldots,a_{k-1}\}$. Então: $M_{k-1}[i,k]=1$

- O algoritmo calcula o M_{R^*} computando $M_0 = A, M_1, \dots, M_n = M_{R^*}$
- Supondo que M_{k-1} foi calculado, pode-se calcular M_k . Existe um caminho de a_i para a_j com $Vi \in \{a_1, a_2, a_3, \dots, a_k\}$ sse:

Todo
$$Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$$
 Assim, se $M_{k-1}[i,j] = 1$, então $M_k[i,j] = M_{k-1}[i,j] = 1$ **OU** $a_k \in Vi$ Existe um caminho $a_i \to a_k$ com $Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$. Então: $M_{k-1}[i,k] = 1$ **E** existe um caminho de $a_k \to a_j$ com $Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$. Então: $M_{k-1}[k,j] = 1$.

- O algoritmo calcula o M_{R^*} computando $M_0 = A, M_1, \dots, M_n = M_{R^*}$
- Supondo que M_{k-1} foi calculado, pode-se calcular M_k . Existe um caminho de a_i para a_j com $Vi \in \{a_1, a_2, a_3, \dots, a_k\}$ sse:

Todo
$$Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$$
 Assim, se $M_{k-1}[i,j] = 1$, então $M_k[i,j] = M_{k-1}[i,j] = 1$ **OU** $a_k \in Vi$ Existe um caminho $a_i \to a_k$ com $Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$. Então: $M_{k-1}[i,k] = 1$ **E** existe um caminho de $a_k \to a_j$ com $Vi \in \{a_1, a_2, a_3, \dots, a_{k-1}\}$. Então: $M_{k-1}[k,j] = 1$. $M_k[i,j] = M_{k-1}[i,j] \lor (M_{k-1}[i,k] \land M_{k-1}[k,j])$

Exemplo:

$$G = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Exercicio 1:

$$G = \left(egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{array}
ight)$$

Exercicio 2:

$$G = \left(egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \end{array}
ight)$$

O Algoritmo de Warshall (Fechamento Transitivo)

Qual o custo computacional?

O Algoritmo de Warshall (Fechamento Transitivo)

Qual o custo computacional?

 $O(n^3)$

É possível melhorar este custo computacional ?

Referências

- LEISERSON, Charles E.; STEIN, C.; RIVEST, Ronald L., CORMEN, Thomas H. Algoritmos: Teoria e Prática, 1^a.ed. Campus, 2002 (caps. 22 a 26);
- GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação. 5a. Edição. LTC Editora, 2004. 616p. ISBN-10: 8521614225. ISBN-13: 978-8521614227.
- ROSEN, Kenneth H. Matemática Discreta e suas Aplicações. Tradução da 6a. edição em inglês, McGrawHill, 2009, ISBN 978-85-77260-36-2
- GROSS, Jonthan L., YELLEN, Jay. Graph Theory and Its Applications, Second Edition, Chapman and Hall/CRC, 2005.
- SEDGEWICK, Robert. Algorithms in Java, Part 5: Graph Algorithms, 3rd Edition, Addison-Wesley Professional, 2003;