MA2287: Complex Analysis Exam Notes

Robert Davidson

${\bf Contents}$

1	Que	estion 1:
	1.1	Sketch the region in the complex plane determined by the inequality
	1.2	Determine all solutions to roots of unity
	1.3	Determine and sketch the image under the mapping
		Find z where the function is 0
	1.5	Calculate principal value Log(z)
	1.6	Prove the following
2	Que	estion 2:
	2.1	Determine image of the line
	2.2	State and Use Cauchy-Riemann Equations
	2.3	Show that
	2.4	Find Mobius Transformation

Prelims

Completing a Square

Question 1:

1

Definition

Given a quadratic expression $x^2 + bx$, we can complete the square by following these steps:

$$x^{2} + bx = \left(x^{2} + bx + \left(\frac{b}{2}\right)^{2}\right) - \left(\frac{b}{2}\right)^{2}$$
 Add and subtract this term:

Determine the term to complete the square:

$$x^{2} + bx = \left(x^{2} + bx + \left(\frac{b}{2}\right)^{2}\right) - \left(\frac{b}{2}\right)^{2}$$

$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)^{2}$$
$$x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2}$$

Rewrite as a perfect square: Thus the expression becomes

1.1 Sketch the region in the complex plane determined by the inequality

• |z-4| > 3|z+4|2023 Q1(a)

• $\{z \in \mathbb{C} : |2z - 1| < 2|2z - i|\}$ 2022 Q1(a), 2021 Q1(d), 2017 Q1(a), 2016 Q1(a)

1.2 Determine all solutions to roots of unity

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2023 Q1(b),

• $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$ 2022 Q1(b), 2018 Q1(b)

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2021 Q1(c)

• $z^3 = 1 + i$, let $n \in \mathbb{N}$ and $w \neq 1$ be an n-th root of unity. Prove $1 + w + w^2 + \ldots + w^{n-1} = 0$ 2016 Q1(c)

1.3 Determine and sketch the image under the mapping

• $w = e^z$, $\{z \in \mathbb{C} : \pi/4 \le \text{Im}(z) \le \pi/2\}$ 2023 Q1(c), 2021 Q1(a), 2017 Q1(d)

• $w = \text{Log}(z), \{z : |z| > 1, 0 \le \text{Arg}(z) \le \pi/2\}$ 2022 Q1(d), 2018 Q1(d), 2016 Q1(d)

1.4 Find z where the function is 0

•
$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 2022 Q1(d)

1.5 Calculate principal value Log(z)

• $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z) $2022~\mathrm{Q1(c)},~2018~\mathrm{Q1(c)},~2017~\mathrm{Q1(c)}$

1.6 Prove the following

• Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then \overline{w} is also a zero of p(z) 2021 Q1(b), 2018 Q1(a), 2016 Q1(b)

• Define the complex exponential function e^z and prove Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

3

Example 2023 Q1(a)

$$\begin{array}{l} \textbf{Given} \ |z-4| > 3|z+4| \\ \textbf{Write} \ z = x+iy \end{array}$$

$$\begin{aligned} |x+iy-4| &> 3|x+iy+4| \\ |(x-4)+iy| &> 3|(x+4)+iy| \\ \sqrt{(x-4)^2+y^2} &> 3\sqrt{(x+4)^2+y^2} \end{aligned}$$

Square both sides

$$(x-4)^2+y^2>9((x+4)^2+y^2) \\ (x^2-8x+16+y^2)>9x^2+72x+144+9y^2 \\ x^2-8x+16+y^2-9x^2-72x-144-9y^2>0 \\ -8x^2-80x-8y^2-128>0 \\ x^2+10x+y^2-16<0$$
 Moving all terms to one side Simplify

Focus on x and complete the square

$$x^{2} + bx = x^{2} + 10x \Rightarrow \left(\frac{b}{2}\right)^{2} = \left(\frac{10}{2}\right)^{2} = (5)^{2} = 25$$

2 Question 2:

2.1 Determine image of the line

- $f(z) = \frac{1}{z}$ $\{z \in \mathbb{C} : \text{Re}(z) = 2\}$ 2023 Q2(a), 2021 Q2(b)
- $f(z) = \frac{1}{z}$ $\{z \in \mathbb{C} : \text{Re}(z) = 1\}$ 2022 Q2(a), 2018 Q2(a), 2017 Q2(a)

2.2 State and Use Cauchy-Riemann Equations

- State CRE, and use to prove $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C} \setminus \{0\}$ 2023 Q2(a)
- State CRE, and use to prove $f(z)=z^2$ is holomoprhic on $\mathbb C$ 2022 Q2(b)
- State CRE. Let f = u + iv be holomoprhic on $\Omega \subset \mathbb{C}$. Prove ∇u and ∇v are perpendicular of equal length 2016 Q2(b)

2.3 Show that

- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at $x \in \mathbb{R}$ then f'(x) is real.
- Define that is meant for a function g to be harmonic. If f = u + iv is holomorphic on $\Omega \subset \mathbb{C}$, prove that v(x, y) is a harmonic function, and that ∇u and ∇v are perpendicular of equal length. 2022 Q2(c), 2018 Q2(b)
- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at 0 then the function f'(0) is real.
- Let f(z) = u + iv be holomorphic on an open subset Ω of the complex plane and let h(u, v) be a harmonic function of u and v on $f(\Omega)$. Prove that g(x, y) = h(u(x, y), v(x, y)) is harmonic on Ω (You may assume $\nabla u, \nabla v$ are equal length and perpendicular)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = z^2$ is holomorphic and find its derivative there. Hence prove that the product uv is harmonic where f = u + iv 2018 Q2(c)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C}\setminus 0$ and find its derivative there (State any theorems used)
- Let h(u,v) be a harmonic function of u,v on $f(\Omega)$ (See 2016 Q2(b)). Prove that g(x,y)=h(u(x,y),v(x,y)) is harmonic on Ω

2.4 Find Mobius Transformation

- $T(z): (-1,1,\infty) \mapsto (-1,-i,1)$ 2023 Q2(d)
- $T(z):(2,1,-1)\mapsto (1,0,\infty)$ 2022 Q2(d)
- $T(z):(-i,-1,1)\mapsto (1,0,\infty)$ and find the inverse Mobius Transformation 2021 Q2(d)
- $T(z): (-i, -1, i) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2018 Q2(d), 2017 Q2(d)
- $T(z): (-1, \frac{1}{2}, 2) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2016 Q2(d)