WHAT IS CLAIMED IS:

10

20

25

- A method of embedding a watermark in digital data, comprising:
- (a) performing a Discrete Fourier Transform (DFT) on the digital data;
- (b) computing a magnitude domain of the Discrete Fourier Transform;
- (c) embedding the watermark into selected frequency bands of the computed magnitude domain of the Discrete Fourier Transform, thereby creating a watermarked magnitude domain; and
 - (d) performing an inverse Discrete Fourier Transform on the watermarked magnitude domain to reconstruct the digital data with the embedded watermark.
 - The method of claim 1, further comprising extracting a Y component of a Y, U(Cb), V(Cr) digital data stream representing color components of digital video as the digital data.
- 15 3. The method of claim 1, wherein the selected frequency bands comprise one or more middle frequency bands.
 - The method of claim 3, wherein the middle frequency bands comprise a band of circular rings of the magnitude domain.
 - 5. The method of claim 1, further comprising scaling the digital data to a standard size before computing the magnitude domain.
 - 6. An apparatus for embedding a watermark in digital data, comprising:
 - (a) means for performing a Discrete Fourier Transform (DFT) on the digital data;
 - (b) means for computing a magnitude domain of the Discrete Fourier Transform;
 - (c) means for embedding the watermark into selected frequency bands of the computed magnitude domain of the Discrete Fourier Transform, thereby creating a watermarked magnitude domain; and

- (d) means for performing an inverse Discrete Fourier Transform on the watermarked magnitude domain to reconstruct the digital data with the embedded watermark.
- The apparatus of claim 6, further comprising means for extracting a Y
 component of a Y, U(Cb), V(Cr) digital data stream representing color components of
 digital video as the digital data.
- The apparatus of claim 6, wherein the selected frequency bands comprise
 one or more middle frequency bands.
 - The apparatus of claim 8, wherein the middle frequency bands comprise a band of circular rings of the magnitude domain.
- 15 10. The apparatus of claim 6, further comprising means for scaling the digital data to a standard size before computing the magnitude domain.
 - 11. A method of detecting a watermark in digital data, comprising:
 - (a) performing a Discrete Fourier Transform (DFT) on the digital data;
 - (b) computing a magnitude domain of the Discrete Fourier Transform; and
 - (c) extracting the watermark from selected frequency bands of the computed magnitude domain of the Discrete Fourier Transform.
- The method of claim 11, further comprising extracting a Y component of a
 Y, U(Cb), V(Cr) digital data stream representing color components of digital video as the digital data.
 - The method of claim 11, wherein the selected frequency bands comprise one or more middle frequency bands.

20

- The method of claim 13, wherein the middle frequency bands comprise a band of circular rings of the magnitude domain.
- The method of claim 11, further comprising scaling the digital data to a
 standard size before computing the magnitude domain.
 - 16. An apparatus for detecting a watermark in digital data, comprising:
 - (a) means for performing a Discrete Fourier Transform (DFT) on the digital data;
 - (b) means for computing a magnitude domain of the Discrete Fourier Transform;
- 10 and
 - (c) means for extracting the watermark from selected frequency bands of the computed magnitude domain of the Discrete Fourier Transform.
 - 17. The apparatus of claim 16, further comprising means for extracting a Y component of a Y, U(Cb), V(Cr) digital data stream representing color components of digital video as the digital data.
 - 18. The apparatus of claim 16, wherein the selected frequency bands comprise one or more middle frequency bands.

20

- The apparatus of claim 18, wherein the middle frequency bands comprise a band of circular rings of the magnitude domain.
- The apparatus of claim 16, further comprising means for scaling the digital
 data to a standard size before computing the magnitude domain.