Supplementary Material for Multiscale Computational Framework to Investigate Integrin Mechanosensing and Cell Adhesion

Andre R. Montes, Gabriela Gutierrez, Adrian Buganza Tepole, Mohammad R.K. Mofrad

Author's note: The parameters used for the simulations are listed in the following tables for reference. The code for the molecular dynamics (MD) simulations and whole-cell finite element (FE) simulations are available on Github.

- https://github.com/dredremontes/pull_integrinMD
- https://github.com/dredremontes/wholeCellFE

The supplementary material contains:

- Finite Element (Whole-cell) Model Equations
- Table S1: Energy Minimization Parameters
- Table S2: NVT Parameters
- Table S3: NPT Parameters
- Table S4: Steered MD Parameters
- Table S5: Force Distribution Analysis Parameters
- Table S6: Whole-cell model parameters
- Fig. S1: Energy Minimization and NVT RMSD
- Fig. S2: NPT RMSD, Pressure, and Temperature
- Movie S1: 1nm/ns extension of $\alpha_5\beta_1$ -FN
- Movie S2: 10nm/ns extension of $\alpha_5\beta_1$ -FN
- Movie S3: 1nm/ns Force Distribution Analysis
- Movie S4: 10nm/ns Force Distribution Analysis
- Movie S5: All Whole-cell simulations

The movies are in separate .mp4 files.

Finite Element (Whole-cell) Model Equations

The triangular mesh is handled through the object SurfTrack part of the ElTopo library https://github.com/tysonbrochu/eltopo. Two SurfTrack objects are created, one for the cell mesh and one for the substrate mesh. The SurfTrack contains the nodal coordinates which we denote \mathbf{x}_t , the connectivity tri_mesh, and an additional connectivity which for every node stores the one ring, i.e. the nodes adjacent to a given node, which we refer to as node_onering. There is also a flag for nodes on the boundary of the surface. We modified the original library to also store nodal velocities, accelerations, and previous value of the strain. These vectors are named \mathbf{v}_t , \mathbf{a}_t , \mathbf{e}_t . For the cell mesh we also define one more vector field associated with the nodes, \mathbf{u}_i , that contains the displacement vector of an integrin-ligand bond with respect to its stress-free state. Lastly, for the cell mesh we also store a scalar field C with the local integrin-bound fraction as described in the main text.

The integration is done explicitly with the midpoint rule. Given the current value of positions, velocities and accelerations, the midpoint velocity is calculated as

$$\mathbf{V}_{t+0.5\Delta t} = \mathbf{V}_t + \frac{\Delta t}{2} \mathbf{A}_t. \tag{1}$$

Then the updated positions are computed as

$$\mathbf{X}_{t+\Delta t} = \mathbf{X}_t + \Delta t \mathbf{V}_{t+0.5\Delta t} \,. \tag{2}$$

Given the updated positions, the forces at the nodes are computed with the weak form. As described in the main text, the residual of internal forces is

$$\mathbf{R} = \int_{\Omega} \sigma : \delta \mathbf{d} \tag{3}$$

as described also in the main text. Computation of eq. (3) is done with standard linear triangular finite element interpolation. The residual is calculated independently for the cell and substrate meshes. Additionally, as noted in the main text, the cell has two components of the stress, a passive and an active component, whereas the substrate only has a passive component. The code is in an updated Lagrangian framework, whereby the strain at the previous time step \mathbf{e}_t gets updated based on the updated nodal coordinates $\mathbf{x}_{t+\Delta t}$ by updating the right Cauchy Green deformation

$$\mathbf{b}_{t+\Delta t} = \Delta \mathbf{F} \mathbf{b}_t \Delta \mathbf{F}^{\top}, \tag{4}$$

where $\Delta \mathbf{F}$ denotes the deformation gradient from the incremental deformation \mathbf{x}_t to $\mathbf{x}_{t+\Delta t}$. The resultant force acting at a particular node of the cell mesh is

$$\mathbf{F}_{cell} = \mathbf{F}_i + \mathbf{F}_d + \mathbf{F}_{\kappa} + \mathbf{F}_{ac} + \mathbf{F}_A - \mathbf{R}, \qquad (5)$$

where \mathbf{F}_i is the force due to focal adhesions, i.e. integrin-ligand bonds, \mathbf{F}_d is a viscous drag, \mathbf{F}_{κ} is a curvature regularization, F_{ac} is a random fluctuation at the cell boundary from actin polymerization, and F_A is an area penalty to counteract cell contractility. The force of integrin-ligand bonds is defined in the main text

$$\mathbf{F}_i = C \rho_{i_{max}} A k_{int} \mathbf{u_i} \,. \tag{6}$$

The viscous drag is

$$\mathbf{F}_d = -d\mathbf{u}\,,\tag{7}$$

where $\mathbf{u} = \mathbf{x}_{t+\Delta t} - \mathbf{x}$ is the displacement of the node and $d = 0.001 \,\mathrm{pN} \,\mathrm{s}/\mu\mathrm{m}$ is a small drag coefficient. The curvature force is calculated only for nodes on the boundary. Discrete curvature κ is approximated based on twice the turning angle along the boundary curve divided by the length of the curve. Given the curvature, the force is

$$\mathbf{F}_{\kappa} = -k_{\kappa} \kappa \mathbf{n} \,, \tag{8}$$

where **n** is the outward unit normal at the boundary and $k_{\kappa} = 20 \text{pN}/\mu\text{m}$ is a small bending stiffness to prevent buckling and ruffling of the boundary. The actin polymerization fluctuation is also only at the boundary

$$\mathbf{F}_{ac} = f_{ac}(l_b/2)\mathbf{n}\,,\tag{9}$$

with f_{ac} a random variable within the distribution $\mathcal{U}(0,20)[pN/\mu m]$ of actin polymerization force per unit length, and l_b the length of the two boundary edges incident to a boundary node. Finally, the area constraint is also only applied at the boundary nodes and it is

$$\mathbf{F}_A = -p_A (A_{tot} - A_0)(l_b/2)\mathbf{n}, \qquad (10)$$

where A_{tot} is the entire area of the cell, A_0 is an attractor for the area, and the length of the curve associated with the node is l_b as before, just as the normal is also associated with the node and it is the outward unit normal as before. The strength of this constraint is imposed with the pressure parameter $p_A = 1 \text{pN}/\mu\text{m}$. In reality the effects of the regularization terms is small but allows to keep the simulation stable and correspond to physically meaningful phenomena.

For the substrate the only contributions are

$$\mathbf{F}_{subs} = -\mathbf{F}_i + \mathbf{F}_d - \mathbf{R} \,. \tag{11}$$

Note that the force from the integrin-ligand bonds acts in the opposite direction on the substrate compared to the cell. Given the force in either the cell or the substrate, the acceleration is updated by

$$\mathbf{a}_{t+\Delta t} = \mathbf{M}^{-1}(\mathbf{F} - D\mathbf{M}\mathbf{v}_{t+0.5\Delta t}) \tag{12}$$

with \mathbf{M} a diagonal mass matrix and the damping D. Lastly, the velocities are updated

$$\mathbf{v}_{t+\Delta t} = \mathbf{v}_{t+0.5\Delta t} + \frac{\Delta t}{2} \mathbf{a}_{t+\Delta t} \,. \tag{13}$$

One additional set of updates in the model is the change of the displacement of the integrinligand pair \mathbf{u}_i as the cell and substrate deform. From the cell deformation, the update is

$$\mathbf{u}_i \leftarrow \mathbf{u}_i + \mathbf{u}_{cell}$$
, (14)

where $\mathbf{u}_{cell} = \mathbf{x}_{t+\Delta t} - \mathbf{x}_t$ is nothing but the corresponding displacement of the node on the cell. However, for the substrate, the process is slightly more involved. Since the \mathbf{u}_i is associated with the nodes of the cell mesh, we first get the triangle in the substrate mesh this corresponds to and do the update we do

$$\mathbf{u}_i \leftarrow \mathbf{u}_i - \mathbf{u}_{subs} \,, \tag{15}$$

where \mathbf{u}_{subs} is the interpolated displacement of the substrate at the correct location of the node from the cell mesh. Because when forms break and new bonds form they are not assumed to be

pre-strained, there is some dissipation associated with this drift in the reference configuration of the integrin-ligand bond stretch, captured by

$$\mathbf{u}_i \leftarrow \mathbf{u}_i (C_t - \Delta t K_{off} C_t) / C \tag{16}$$

which reduces the stretch in the integrin proportional to the number of broken bonds with respect to the previous integrin-ligand bond fraction C_t . If $C_t - \Delta t K_{off} C_t \leq 0$ then the stretch of the integrin-ligand bonds is set to **0**.

Table S1: Energy Minimization Parameters

Parameter	Setting		
Algorithm	Gradient descent		
Energy tolerance	$10~\mathrm{kJ/mol/nm}$		
Energy step size	$0.005\mathrm{nm}$		
Number of steps	15000		
Neighbor list update frequency	1 step		
Cutoff scheme	Verlet		
Method to determine neighbor list	Grid		
Short range force cut-off for neighbor list	$1.4\mathrm{nm}$		
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)		
Short-range electrostatic cut-off	$1.4\mathrm{nm}$		
Short-range Van der Waals cut-off	$1.4\mathrm{nm}$		

Table S2: NVT Simulation Parameters

Parameter	Setting		
Time step	2fs		
Number of steps (Time)	5000000 (10ns)		
Integrator	Leapfrog algorithm		
Constraint Algorithm	LINear Constraint Solver (LINCS)		
Constraints	H-bonds constrained		
Cutoff scheme	Verlet (Buffered neighbor searching)		
Short-range electrostatic cutoff	1.0nm		
Short-range van der Waals cutoff	$1.0\mathrm{nm}$		
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)		
Interpolation order	Cubic		
Grid spacing for fast Fourier Transform	$0.16\mathrm{nm}$		
Temperature coupling	V-rescale (modified Berendsen themostat)		
Reference temperature	310K		
Temperature time constant	$0.1 \mathrm{ps}$		
Temperature coupled groups	Protein and non-protein		
Pressure coupling	Off		
Dispersion correction	long range dispersion corrections for energy and pressure		
Velocity generation	On		
Temperature for velocity generation	$310\mathrm{K}$		

Table S3: NPT Simulation Parameters

Parameter	Setting		
Time step	2fs		
Number of steps (Time)	5000000 (10ns)		
Integrator	Leapfrog algorithm		
Constraint Algorithm	LINear Constraint Solver (LINCS)		
Constraints	H-bonds constrained		
Cutoff scheme	Verlet (Buffered neighbor searching)		
Short-range electrostatic cutoff	$1.0\mathrm{nm}$		
Short-range van der Waals cutoff	$1.0\mathrm{nm}$		
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)		
Interpolation order	Cubic		
Grid spacing for fast Fourier Transform	0.16nm		
Temperature coupling	V-rescale (modified Berendsen themostat)		
Reference temperature	310K		
Temperature time constant	$0.1 \mathrm{ps}$		
Temperature coupled groups	Protein and non-protein		
Pressure coupling	Isotropic Parrinello-Rahman		
Pressure time constant	1.0ps		
Reference pressure	1.0bar		
Compressibility	4.5e-5 bar-1		
Dispersion correction	long range dispersion corrections for energy and pressure		
Velocity generation	Off		

Table S4: Steered Molecular Dynamics Parameters

Parameter	Setting		
Time step	2fs		
Number of steps (Time) for 1nm/ns	12500000 (25ns)		
Number of steps (Time) for 10nm/ns	1500000 (3ns)		
Integrator	Leapfrog algorithm		
Constraint Algorithm	LINear Constraint Solver (LINCS)		
Constraints	H-bonds constrained		
Cutoff scheme	Verlet (Buffered neighbor searching)		
Short-range neighbor list cutoff	1.4nm		
Short-range electrostatic cutoff	1.4nm		
Short-range van der Waals cutoff	1.4nm		
Electrostatics	Fast smooth Particle-Mesh Ewald (SPME)		
Interpolation order	Cubic		
Grid spacing for fast Fourier Transform	$0.12\mathrm{nm}$		
Temperature coupling	Nosé-Hoover		
Reference temperature	310K		
Temperature time constant	1.0ps		
Temperature coupled groups	Protein and non-protein		
Pressure coupling	Off		
Dispersion correction	long range dispersion corrections for energy and pressure		
Velocity generation	Off		
Harmonic potential	Umbrella		
Force constant	50 kJ/mol-nm^2		
Pull direction	y-direction (vertical)		
Pull rate for 1nm/ns	0.001 nm/ps = 1 nm/ns		
Pull rate for 10nm/ns	0.010 nm/ps = 10 nm/ns		

Table S5: Force Distribution Analysis Parameter Settings

Parameter	Setting	
Pairwise forces	Summed	
Pairwise groups	Protein	
Residue based calculation	Punctual Stress	
Pairwise force type	Coulombic interactions only	

Table S6: Whole-cell Model Parameter Settings

Parameter	Variable	Setting
Substrate modulus	mu_s	1 MPa
Cell modulus	mu_c	1 kPa
Max $\alpha_5\beta_1$ -FN concentration	$ ho_{i,max}$	$100 \mu { m m}^{-2}$
Time step	δt	0.0005s
	K_a	$0.004 \ s^{-1}$
Catch alin hand namenatana	K_b	$10s^{-1}$
Catch-slip bond parameters	F_a	15pN
	F_b	15pN

Figure S1: A) Energy minimization and B) root-mean-square deviation (RMSD) during 1ns NVT simulation of $\alpha_5\beta_1$ -FN

Figure S2: A) RMSD, B) Pressure, and C) Temperature of $\alpha_5\beta_1$ -FN after 10ns NPT simulation indicative of an equilibrated system