Cuerpos Rodando Sin Deslizar

En este experimento se observará la dinámica de objetos acelerados que ruedan sin deslizar por un plano inclinado.

Se verá el efecto del momento de inercia, la condición de rodar sin deslizar y la dependencia de la aceleración con el ángulo de inclinación del plano

- 1. Sensor de presión (impacto)
- 2. Sensor de paso (herradura)
- 3. Sistema de adquisición de datos DAC
 - 4. Calibrador
- 5. Objetos esféricos y cilíndricos con diferentes masas
 - 6. Nivel y escuadra digital
 - 7. Flexómetro
 - 8. Plano inclinado de madera
- 9. Soporte universal- varillas y piañas necesarias para armar el montaje

Toma de Datos

En esta parte se analizará la dependencia del momento de inercia con la aceleración de cada obieto.

Edite los valores de distancia, ángulo y los valores de k para los diferentes objetos.

Copiar y pegar los datos obtenidos con el software de medición en la columna correspondiente.

Distancia 0.075 m	A
Ángulo 6,60°	A

	Esfera Hueca		Hueca Esfera Sólida		Cilindro Metal		Cilindro Caucho		Esfera_Hueca
	Tiempo	а	Tiempo	а	Tiempo	а	Tiempo	а	1.3305
	(s)	(m/s^2)	(s)	(m/s^2)	(s)	(m/s^2)	(s)	(m/s^2)	
1	1,3305	0,085	1,2876	0,090	1,4511	0,071	1,3353	0,084	1,3411
2	1,3411	0,083	1,3134	0,087	1,4087	0,076	1,2864	0,091	1,2362
3	1,2362	0,098	1,2767	0,092	1,44	0,072	1,3661	0,080	1,1706
4	1,1706	0,109	1,5835	0,060	1,5046	0,066	1,3167	0,087	1,3007
5	1,3007	0,089	1,276	0,092	1,5091	0,066	1,3421	0,083	1,2451
6	1,2451	0,097	1,28	0,092	1,5235	0,065	1,3277	0,085	1,2953
7	1,2953	0,089	1,6601	0,054	1,475	0,069	1,4546	0,071	1,1865
8	1,1865	0,107	1,3074	0,088	1,4812	0,068	1,307	0,088	1,1817
9	1,1817	0,107	1,169	0,110	1,4568	0,071	1,3053	0,088	1,1695
10	1,1695	0,110	1,4335	0,073	1,4174	0,075	1,3127	0,087	
11									·
									•

Aceleración Teórica

Análisis Cualitativo

¿Por qué el ángulo de inclinación no debe ser tan grande? ¿Qué pasa si se supera el límite del ángulo en términos del factor de fricción estático y k (ver guía)? Porque si el angulo de inclinacion es muy grande no se cumple la relacion de la tangente del angulo menor a la 1+k/k, de tal manera que esta funcion siempre es creciente, no se cumpliria

Aumente el ángulo de inclinación a un valor de 30° y arroje los objetos sin tomar el tiempo. ¿Se sigue cumpliendo la elación entre el ángulo, k y el coeficiente de frición estático ?Comente lo que observa.

Calcule con las medidas de los objetos el factor k y la aceleración de cada objeto ¿Cuál debería tardar más tiempo y cuál menos tiempo en recorrer la misma distancia D? Realice una tabla de posiciones.

Tabla de posiciones:

1. 2. 3. 4.

Análisis Cuantitativo

Con los datos de la primera parte del procedimiento:

- Inserte un histograma. Haciendo doble clic sobre este, elija la configuración mostrada en la guía. Asegúrese de seleccionar los datos de aceleración para cada objeto.

 En la pestaña analizar, seleccione estadística y seleccione las aceleraciones de los 4 objetos. Anote el promedio y la desviación estándar de cada objeto

-Compare estos valores con los valores calculados teóricamente y obtenga un error porcentual. ¿Se encuentran los valores teóricos dentro del rango de incertidumbre do los experimentales? Aguimente sobre el origen de esta discrepancia. Realice una tabla de posiciones y comparela con la que encontró en el análisis cualitativo. Comente los resultados

Aceleraciones Promedio	Tabla de posiciones
Esfera Hueca: + cm/s ²	1.
Esfera Sólida: + cm/s²	2.
Cilindro Metal: + cm/s ²	3. 4.
Cilindro Caucho: + cm/e²	Discusión:

Conclusiones

