Software Foundations of Security and Privacy (15-316, spring 2017) Lecture 12: Information Flow (2)

Jean Yang jyang2@andrew.cmu.edu

Last Class

- Motivation for why we need more than access control.
- Process-based decentralized information flow control.
- How we can make reference monitors for information flow, even though it's not a safety property.

Recall DIFC

Model for controlling information flow in systems with *mutual distrust* and *decentralized authority*. Sensitive data is *labelled* and can be *declassified* in a decentralized way.

Problems with Dynamic DIFC

- Non-trivial runtime overheads.
- Required to be conservative, because can only make reference monitors for safety properties.
- Conservative requires us to have all these trusted declassifications all over the place.

What We Want

- Fine-grained information flow analysis that gives us non-interference.
- As little run-time overhead as possible.
- A way to get some static guarantees before we run our programs.

Jif (Java Information Flow) gives us all of this!

Part One: High-Level Introduction to Language-Level Information Flow Control

Information Flow in Java with Jif

[Myers]

- Jif augments Java types with labels that are statically checked*.
 - int {Alice:Bob} x;
 - Object {L} o;
- Subtyping with the ⊆ lattice order determines how differently-labeled values should be combined.
- Type inference allows programmers to omit types.

^{*} Over the years, there has been work to insert additional dynamic checks.

Hello Labels, My Old Friend

- Confidentiality constraints: who may read it?
 - {Alice: Bob, Eve} label means that Alice owns this data, and Bob and Eve are permitted to read it
 - {Alice: Charles; Bob: Charles} label means that Alice and Bob own this data but only Charles can read it
- Integrity constraints: who may write it?
 - {Alice ? Bob} label means that Alice owns this data, and Bob is permitted to change it

Labels and Flow

```
int {Alice:Bob} x;
int {Alice:Bob, Charles} y;
x = y; // Okay, because policy on x is stronger
y = x; // Bad, because policy on y is weaker
```

- Each owner can specify an independent policy.
- Code running with owner authority can declassify data by adding more permissions.
- When a value is read from a slot, it acquires the slot's label.

What About Combining Values?

```
int {Alice:Bob} x;
int {Alice:Bob, Charles} y;
int {??} z;
z = x + y;
```

Q: What label does z need in order for this flow to be allowed?

A: What label does z need in order for this flow to be allowed?

Label Lattice

Challenge: Implicit Flows

[Zdancewic]

Challenge: Implicit Flows

[Zdancewic]

Challenge: Implicit Flows

[Zdancewic]

```
{Alice:; Bob:}
                                       int{Alice:} a;
            {Bob:}
{Alice:
                                       int{Bob:} b;
                       PC label
                                       if (a > 0) then {
           {}\cup{Alice:}={Alice:}
                                          Effects inside function
                                          can leak information
                                          about program counter
                        Formal Foundations of Softw
```


Part Two: Formalizing the Security Lattice

Security Lattice

Slide from Matt Fredrikson.

A security lattice is a five-tuple $(SC, \leq, \sqcup, \sqcap, \bot)$ where:

- SC is a set of security classes
- \leq is a partial order on SC
- $s_1 \sqcup s_2$ is the *least upper bound of* s_1 and $s_2, s_{1,2} \leq s_1 \sqcup s_2$, and $\forall s \in SC. s_{1,2} \leq s \Rightarrow s_1 \sqcup s_2 \leq s$
- $s_1 \sqcap s_2$ is the *least upper bound of* s_1 and $s_2, s_1 \sqcap s_2 \le s_{1,2}$, and $\forall s \in SC. s_{1,2} \le s \Rightarrow s \le s_1 \sqcap s_2$
- ⊥ is the least element of SC

A Simple Lattice for Secrecy

Slide from Matt Fredrikson.

Policy: no high-security flows to low-variables.

- H is "high" and L is "low"
- $L \leq H$, $\neg (H \leq L)$, and L is \bot

The partial order ≤ means "can flow to."

Secrecy and Integrity

Slide from Matt Fredrikson.

Policy: no high flows to low, no trusted flows to untrusted

- H is "high," L is "low," U is "untrusted," and T is "trusted"
- $T \leq U, \neg(U \leq T)$

Part Three: A Type System for Information Flow

A Simple Imperative Language

Slide from Matt Fredrikson.

Arithmetic expressions

$$a \in AExp ::= n \in \mathbb{Z} \mid x \in \mathbf{Var}$$

$$\mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \times a_2$$

Boolean expressions

$$b \in BExp ::= \mathbf{T} \mid \mathbf{F} \mid \neg b \mid b_1 \land b_2 \mid a_1 = a_2 \mid a_1 \le a_2$$

Commands

$$c \in Com$$
 ::= skip | $x := a \mid c_1; c_2$
| if b then c_1 else c_2
| while b do c

Expression Evaluation

Slide from Matt Fredrikson.

States are mappings σ : Var $\mapsto \mathbb{Z}$

Expression evaluation happens with the *big-step* relation $\langle \sigma, a \rangle \Downarrow n$

$$\overline{\langle \sigma, n \rangle \Downarrow n} \qquad \overline{\langle \sigma, x \rangle \Downarrow \sigma(x)}$$

$$\overline{\langle \sigma, a_1 \rangle \Downarrow n_1} \qquad \overline{\langle \sigma, a_2 \rangle \Downarrow n_2} \qquad n = n_1 \mathbf{op} n_2$$

$$\overline{\langle \sigma, a_1 \mathbf{op} a_2 \rangle \Downarrow n}$$

Command Evaluation

Slide from Matt Fredrikson.

Big-step relation $\langle \sigma_1, c \rangle \Downarrow \sigma_2$

$$\frac{\langle \sigma, a \rangle \Downarrow n}{\langle \sigma, x \coloneqq a \rangle \Downarrow \sigma[x \mapsto n]}$$

$$\frac{\langle \sigma_1, c \rangle \Downarrow \sigma_2}{\langle \sigma, \mathbf{skip}; c \rangle \Downarrow \sigma_2}$$

$$\frac{\langle \sigma_1, c_1 \rangle \Downarrow \sigma_1' \quad \langle \sigma_1', c_2 \rangle \Downarrow \sigma_2}{\langle \sigma, c_1; c_2 \rangle \Downarrow \sigma_2}$$

$$\frac{\langle \sigma, b \rangle \Downarrow \mathbf{T} \quad \langle \sigma, c_1 \rangle \Downarrow \sigma_2}{\langle \sigma, \mathbf{if} \ b \ \mathbf{then} \ c_1 \mathbf{else} \ c_2 \rangle \Downarrow \sigma_2}$$

$$\frac{\langle \sigma, b \rangle \Downarrow \mathbf{F} \quad \langle \sigma, c_2 \rangle \Downarrow \sigma_2}{\langle \sigma, \mathbf{if} \ b \ \mathbf{then} \ c_1 \mathbf{else} \ c_2 \rangle \Downarrow \sigma_2}$$

$$\frac{\langle \sigma, b \rangle \Downarrow \mathbf{F}}{\langle \sigma, \mathbf{while} \ b \ \mathbf{do} \ c \rangle \Downarrow \sigma}$$

$$\frac{\langle \sigma, b \rangle \Downarrow \mathbf{T} \quad \langle \sigma_1, c \rangle \Downarrow \sigma_1' \quad \langle \sigma_1', while \ b \ do \ c \rangle \Downarrow \sigma_2}{\langle \sigma_1, \mathbf{while} \ b \ \mathbf{do} \ c \rangle \Downarrow \sigma_2}$$

Type Environment Γ

Slide from Matt Fredrikson.

Let $L = (SC, \leq, \sqcup, \sqcap, \perp)$ be a security lattice. A type environment $\Gamma: \mathbf{Var} \mapsto SC$ for a program c maps each variable in c to a label.

Additionally, Γ contains an additional mapping for the program counter label **pc**.

- $\Gamma \vdash e : \ell$ means expression e has label ℓ under Γ
- $\Gamma \vdash c$ means c is well-typed under Γ
- Environment $(\Gamma, x :: \ell)$ gives x type ℓ , preserves rest of Γ

Goal: Noninterference

Slide from Matt Fredrikson.

State Equivalence

Abbreviated as

$$\sigma_1 \approx_{\ell} \sigma_2$$

Two states σ_1, σ_2 are ℓ -equivalent to an observer of class $\ell \in SC$ under Γ , written $\sigma_1 \approx_{\ell,\Gamma} \sigma_2$ if and only if $\forall x \in \mathbf{Var}. \Gamma(x) \leq \ell \Rightarrow \sigma_1(x) = \sigma_2(x)$

Noninterference

A program c satisfies noninterference at class ℓ under Γ if ℓ -equivalent initial states lead to ℓ -equivalent final states:

$$\forall \sigma_1, \sigma_2, \sigma_{2 \approx_{\ell}} \sigma_2 \land \langle \sigma_1, c \rangle \Downarrow \sigma_1' \land \langle \sigma_2, c \rangle \Downarrow \sigma_2' \Rightarrow \sigma_1' \approx_{\ell} \sigma_2'$$

Initial states are state equivalent

Final states are state equivalent

Typing Rules: Expressions

Slide from Matt Fredrikson.

$$\begin{array}{cccc} \text{Var } \overline{\Gamma \vdash x : \Gamma(x)} & \text{Int } \overline{\Gamma \vdash n : \bot} & \text{True } \overline{\Gamma \vdash T : \bot} & \text{False } \overline{\Gamma \vdash F : \bot} \\ \\ \text{Bin } \overline{\frac{\Gamma \vdash a_1 : \ell_1}{\Gamma \vdash a_1 op \ a_2 : \ell_1 \sqcup \ell_2}} & \\ \end{array}$$

Example
$$5 \le 6 + x$$
, $\Gamma = x :: H$
$$\frac{\overline{\Gamma \vdash 5:L} \text{Int}}{\Gamma \vdash 5:L} \text{Int}$$
$$\frac{\overline{\Gamma \vdash 6:L} \text{Int}}{\Gamma \vdash 6+x : H} \text{Bin}$$

$$\Gamma \vdash 5 \le 6 + x : H$$
Bin

Typing Rules: Commands

Slide from Matt Fredrikson.

Skip
$$\frac{}{\Gamma \vdash \mathbf{skip}}$$

Asgn
$$\frac{\Gamma \vdash a : \ell \quad \ell \sqcup \Gamma(\mathbf{pc}) \leq \Gamma(x)}{\Gamma \vdash x := a}$$

Comp
$$\frac{\Gamma \vdash c_1 \quad \Gamma \vdash c_2}{\Gamma \vdash c_1; c_2}$$

Comp
$$\frac{\Gamma \vdash c_1 \quad \Gamma \vdash c_2}{\Gamma \vdash c_1; c_2}$$
 While $\frac{\Gamma \vdash b : \ell \quad \ell' = \Gamma(\mathbf{pc}) \sqcup \ell \quad \Gamma, \mathbf{pc} :: \ell' \vdash c}{\Gamma \vdash \mathbf{while} \ b \ \mathbf{do} \ c}$

If
$$\frac{\Gamma \vdash b : \ell \quad \ell' = \Gamma(pc) \sqcup \ell \quad \Gamma, \mathbf{pc} :: \ell' \vdash c_1 \quad \Gamma, \mathbf{pc} :: \ell' \vdash c_2}{\Gamma \vdash \mathbf{if} \ b \ \mathbf{then} \ c_1 \mathbf{else} \ c_2}$$

Command Typing Example

Slide from Matt Fredrikson.

$$\Gamma = p :: H, g :: L, o :: L, pc :: L$$

$$Int \frac{1}{\Gamma \vdash 1 : L} \quad L \sqcup H \leq \Gamma(o)$$

$$If \frac{\Gamma \vdash p = g : H}{\Gamma \vdash p = g : H} \quad H = \Gamma(pc) \sqcup H \quad Asgn \frac{\Gamma \vdash 1 : L}{\Gamma \vdash p = g : H} \quad \Gamma \vdash p = g \text{ then } o := 1 \text{ else } o := 2$$

Command Typing Rules

Command Typing Example

Slide from Matt Fredrikson.

$$\Gamma = p :: H, g :: L, o :: L, pc :: L$$

$$Int \frac{1}{\Gamma \vdash 1 :: L} \quad L \sqcup H \leq \Gamma(o)$$

$$If \frac{\Gamma \vdash p = g :: H \vdash p = g}{\Gamma \vdash if p = g \text{ then } o := 1 \text{ else } o := 2}$$

- Doesn't work.
- Guard raises the pc label and Asgn propagates it.
- What about if p = g then o := 1 else o := 1?

Part Three: Proving Soundness

Soundness

[Volpano, Smith, Irvine '96]

Slide from Matt Fredrikson.

The type system is sound if whenever conditions 1-3 hold for program c and type environment Γ , then c has noninterference (i.e., the final states $\sigma_1' \approx_\ell \sigma_2'$ for any starting states $\sigma_1 \approx_\ell \sigma_2$).

- 1. $\Gamma \vdash c$
- *2.* $\langle \sigma_1, c \rangle \Downarrow \sigma'_1, \langle \sigma_2, c \rangle \Downarrow \sigma'_2$
- $3. \ \sigma_1 \approx_{\ell} \sigma_2$

Two Key Lemmas

Slide from Matt Fredrikson.

Lemma (Simple Security). Expressions never read variables above their typed class: if $\Gamma \vdash e: \ell$, then for every variable x appearing in e, $\Gamma(x) \leq \ell$.

Lemma (Confinement). Commands never write to variables below \mathbf{pc} 's typed class: if $\Gamma \vdash c$, then for every variable x assigned in c, $\Gamma(\mathbf{pc}) \leq \Gamma(x)$.

Proof: Simple Security

Slide from Matt Fredrikson.

Lemma (Simple Security). If $\Gamma \vdash e: \ell$, then for every variable x appearing in e, $\Gamma(x) \leq \ell$.

Proof by induction on the structure of e:

- Base cases n, T, and F are trivial.
- Base case x: we have $\Gamma \vdash x$: ℓ . By Var, $\Gamma(x) = \ell$, so $\Gamma(x) \le \ell$.
- Case e_1 op e_2 : by Bin, we have $\Gamma \vdash e_1$: ℓ_1 and $\Gamma \vdash e_2$: ℓ_2 . By induction, we have $\forall x \in e_1$. $\Gamma(x) \leq \ell_1$ and $\forall x \in e_2$. $\Gamma(x) \leq \ell_2$. Then $\Gamma(x) \leq \ell_1 \sqcup \ell_2 = \ell$ for all $e = e_1$ op e_2 . \square

Proof: Confinement

Slide from Matt Fredrikson.

Lemma (Confinement). if $\Gamma \vdash c$, then for every variable x assigned in c, $\Gamma(\mathbf{pc}) \leq \Gamma(x)$.

Proof by induction on the structure of c:

- Base case skip is trivial.
- Base case x := a: we have $\Gamma \vdash a : \ell$. By Asgn, $\ell \sqcup \Gamma(\mathbf{pc}) \leq \Gamma(x)$, so $\Gamma(\mathbf{pc}) \leq \Gamma(x)$.
- Case c_1 ; c_2 follows directly by induction.
- Case while b do c: suppose $\Gamma \vdash b$: ℓ . By While, we have that Γ , \mathbf{pc} :: $(\ell \sqcup \Gamma(\mathbf{pc})) \vdash c$. By induction, we have that $\forall x \in c$. $\ell \sqcup \Gamma(\mathbf{pc}) \leq \Gamma(x)$. By \leq -transitivity, $\forall x \in c$. $\Gamma(\mathbf{pc}) \leq \Gamma(x)$.
- The case for if is similar to while. □

Proof Sketch: Soundness

Slide from Matt Fredrikson.

Theorem (Soundness). The type system is sound if whenever conditions 1-3 hold for program c and type environment Γ , then c has noninterference (i.e., the final states $\sigma'_1 \approx_{\ell} \sigma'_2$ for any starting states $\sigma_1 \approx_{\ell} \sigma_2$).

- 1. $\Gamma \vdash c$
- 2. $\langle \sigma_1, c \rangle \Downarrow \sigma'_1, \langle \sigma_2, c \rangle \Downarrow \sigma'_2$
- 3. $\sigma_1 \approx_{\ell} \sigma_2$

Proof by induction on the derivation of $\langle \sigma_1, c \rangle \Downarrow \sigma_1'$:

- Use Simple Security to argue about identical evaluation.
- Use Confinement to argue about ℓ-equivalent updates.

Example: while

Theorem (Soundness). Want following conditions:

- 1. $\Gamma \vdash c$
- 2. $\langle \sigma_1, c \rangle \Downarrow \sigma'_1, \langle \sigma_2, c \rangle \Downarrow \sigma'_2$
- 3. $\sigma_1 \approx_{\ell} \sigma_2$

Suppose $\langle \sigma_1, \mathbf{while} \ b \ \mathbf{do} \ c \rangle \Downarrow \sigma'_1$ and typing ends with:

$$\begin{array}{c|c} \Gamma \vdash h \cdot \ell & \ell_\circ = \Gamma(\mathbf{pc}) \sqcup \ell_1 & \Gamma, \mathbf{pc} :: \ell_2 \vdash c \\ \hline \langle \sigma_{1,2}, b \rangle \Downarrow \mathbf{T} & \text{ile } b \text{ do } c \\ \hline \langle \sigma_{1,2}', \mathbf{c} \rangle \Downarrow \sigma_{1,2}'' & \text{ow memory} : \\ \hline \bullet & \text{By Sim} & \hline \langle \sigma_{1,2}, \mathbf{while } b \text{ do } c \rangle \Downarrow \sigma_{1,2}' & \text{for all } x \text{ in } b. \\ \hline \bullet & \text{By (3)}, & \hline \langle \sigma_{1,2}, \mathbf{while } b \text{ do } c \rangle \Downarrow \sigma_{1,2}' & \text{so } \langle \sigma_1, b \rangle \Downarrow v \text{ and } \langle \sigma_2, b \rangle \Downarrow v \\ \hline \bullet & \text{If } v = \mathbf{F}, \ \forall \quad \sigma_1 = \sigma_1' \text{ and } \sigma_2 = \sigma_2'. \text{ Invoke (3)}. \\ \hline \bullet & \text{If } v = \mathbf{T}, \text{ then } \sigma_1'' \approx_\ell \sigma_2'' \text{ by induction. Then } \sigma_1' \approx_\ell \sigma_2' \text{ also by induction.} \end{array}$$

Example: while

Theorem (Soundness). Want following conditions:

- 1. $\Gamma \vdash c$
- *2.* $\langle \sigma_1, c \rangle \Downarrow \sigma'_1, \langle \sigma_2, c \rangle \Downarrow \sigma'_2$
- $3. \quad \sigma_1 \approx_{\ell} \sigma_2$

Suppose $\langle \sigma_1$, while b do $c \rangle \Downarrow \sigma'_1$ and typing ends with:

$$\text{While } \frac{\Gamma \vdash b : \ell_1 \quad \ell_2 = \Gamma(\mathbf{pc}) \sqcup \ell_1 \quad \Gamma, \mathbf{pc} :: \ell_2 \vdash c}{\Gamma \vdash \mathbf{while} \ b \ \mathbf{do} \ c}$$

Case $l_2 > \ell$ (condition cannot flow into low memory):

- By Confinement, $\ell_1 \leq \Gamma(x)$ for all x assigned in c.
- For x assigned in c, $\neg(\Gamma(x) \le \ell)$.
- For every x in c where $\Gamma(x) \le \ell$, $\sigma_{1,2}(x) = \sigma'_{1,2}(x)$.
- By (3), we have $\sigma_1 \approx_{\ell} \sigma_2'$. \square

Discussion Questions

- What kinds of guarantees can languagebased information flow provide?
- What are the tradeoffs of static information flow analysis?
- This work came before the Flume work. Why did people become interested in coarser-grained information flow?