FUNDAMENTALS OF LEARNING AND INFORMATION PROCESSING

SESSION 12: STATISTICAL MACHINE LEARNING (II)

Gang Li

Deakin University, Australia

2021-08-07

Table of Content

PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

PAC Learning

The Statistical Learning Framework
PAC Learnability
General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample
Uniform Convergence
Agnostic Learning Finite Hypothesis Classes

Quiz

PAC Learning

The Statistical Learning Framework
PAC Learnability
General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

PAC Learning

The Statistical Learning Framework

PAC Learning

The Statistical Learning Framework

PAC Learnability
General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

The learner's task is to:

Input: training data $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$

Output: prediction rule $h: \mathcal{X} \to \mathcal{Y}$

Measure The error of a prediction rule $h: \mathcal{X} \to \mathcal{Y}$ can be defined as:

Generalization risk $L_{(\mathcal{D},f)}(h) \stackrel{def}{=} P_{x \sim \mathcal{D}}[h(x) \neq f(x)] \stackrel{def}{=} \mathcal{D}(\{x : h(x) \neq f(x)\})$ Empirical risk $L_S(h) \stackrel{def}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$

The Statistical Learning Framework

PAC Learning

The Statistical Learning Framework

PAC Learnability
General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

The learner's task is to:

Input: training data $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$

Output: prediction rule $h: \mathcal{X} \to \mathcal{Y}$

Measure The error of a prediction rule $h: \mathcal{X} \to \mathcal{Y}$ can be defined as:

Generalization risk $L_{(\mathcal{D},f)}(h) \stackrel{def}{=} P_{x \sim \mathcal{D}}[h(x) \neq f(x)] \stackrel{def}{=} \mathcal{D}(\{x : h(x) \neq f(x)\})$ Empirical risk $L_S(h) \stackrel{def}{=} \frac{|\{i \in [m] : h(x_i) \neq y_i\}|}{m}$

ERM comes up with a predictor h that minimizes $L_S(h)$

 $ERM_{\mathscr{Y}^{\mathscr{X}}}(S) \in \underset{h \in \mathscr{Y}^{\mathscr{X}}}{\operatorname{argmin}} L_{S}(h)$

ERM with Inductive Bias comes up with any $h \in \mathcal{H}$ that minimizes $L_S(h)$

 $ERM_{\mathscr{H}}(S) \in \underset{h \in \mathscr{H}}{\operatorname{argmin}} L_{S}(h)$

Can only be Approximately correct

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

For any training data S with m i.i.d. examples, we should not hope find an h s.t. $L_{(\mathcal{D},f)}(h)=0$

Proof.

- For every $\epsilon \in (0,1)$ take $\mathcal{X} = \{x_1, x_2\}$ and $\mathcal{D}(\{x_1\}) = 1 \epsilon$, $\mathcal{D}(\{x_2\}) = \epsilon$
- The probability not to see x_2 at all among m i.i.d. examples in S is $(1-\epsilon)^m \approx e^{-\epsilon m}$
- So if $\epsilon \ll \frac{1}{m}$ we are likely not to see x_2 at all, but then we can not know its label.

Can only be Approximately correct

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

For any training data S with m i.i.d. examples, we should not hope find an h s.t. $L_{(\mathcal{D},f)}(h)=0$

Proof.

- For every $\epsilon \in (0,1)$ take $\mathcal{X} = \{x_1, x_2\}$ and $\mathcal{D}(\{x_1\}) = 1 \epsilon$, $\mathcal{D}(\{x_2\}) = \epsilon$
- The probability not to see x_2 at all among m i.i.d. examples in S is $(1-\epsilon)^m \approx e^{-\epsilon m}$
- So if $\epsilon \ll \frac{1}{m}$ we are likely not to see x_2 at all, but then we can not know its label.

Relaxation.

■ We would be happy with $L_{(\mathcal{D},f)}(h) < \epsilon$, where ϵ is the user-specified accuracy parameter.

Can only be *Probably* correct

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

For any training data S with m i.i.d. examples, no algorithm can guarantee $L_{(\mathcal{D},f)}(h) \leq \epsilon$

Proof.

Recall that the input to the learner is a set of randomly generated examples, there is always a (very small) chance to see the same example again and again.

Can only be *Probably* correct

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

For any training data S with m i.i.d. examples, no algorithm can guarantee $L_{(\mathcal{D},f)}(h) \leq \epsilon$

Proof.

Recall that the input to the learner is a set of randomly generated examples, there is always a (very small) chance to see the same example again and again.

Relaxation.

- We would allow the algorithm to fail with probability δ , where $\delta \in (0,1)$ is the user-specified confidence parameter
- Here, the probability is over the random choice of examples

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \epsilon$.

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \epsilon$.

Key Points.

It is a distribution free model, i.e. no particular assumption about \mathscr{D}

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\varepsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\varepsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \varepsilon$.

Key Points.

- It is a distribution free model, i.e. no particular assumption about \mathcal{D}
- Training and test samples are drawn according to the same \mathcal{D} (otherwise transfer learning)

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H} , \mathcal{D} and f, then when we run the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathcal{D},f)}(h) \leq \epsilon$.

Key Points.

- It is a distribution free model, i.e. no particular assumption about \mathcal{D}
- Training and test samples are drawn according to the same \mathcal{D} (otherwise transfer learning)
- It deals with the question of learnability for \mathcal{H} , not a particular concept, namely the "target labelling function" f.

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\varepsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\varepsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \varepsilon$.

Steps.

■ The learner does not know \mathcal{D} and f

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , and for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathcal{H} , \mathcal{D} and f, then when we run the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathcal{D},f)}(h) \leq \epsilon$.

Steps.

- The learner does not know \mathcal{D} and f
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \epsilon$.

Steps.

- The learner does not know \mathcal{D} and f
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ
- The learner can ask for training data S containing $m_{\mathcal{H}}(\epsilon, \delta)$ examples
 - the number of examples can depend on ϵ and δ , but not on depend \mathcal{D} and f

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is PAC learnable if there exists a function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over \mathscr{X} , and for every labelling function $f: \mathscr{X} \to \{0,1\}$, if the realizable assumption holds with respect to \mathscr{H} , \mathscr{D} and f, then when we run the algorithm on $m \geq m_{\mathscr{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathscr{D} and labelled by f, the algorithm returns a hypothesis h such that, with probability of at least $(1-\delta)$, $L_{(\mathscr{D},f)}(h) \leq \epsilon$.

Steps.

- The learner does not know \mathcal{D} and f
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ
- The learner can ask for training data S containing $m_{\mathcal{H}}(\epsilon, \delta)$ examples
 - the number of examples can depend on ϵ and δ , but not on depend \mathcal{D} and f
- The learner should output a hypothesis h, s.t. with probability of at least (1δ) it holds that $L_{(\mathcal{D},f)}(h) \leq \epsilon$.
 - ♦ the learner should be **P**robably (with probability at least (1 δ)) **A**pproximately (up to accuracy ε) **C**orrect

Sample Complexity

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

The function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ determines the sample complexity of learning \mathcal{H} , namely, $m_{\mathcal{H}}(\epsilon,\delta)$ represents how many examples are required to guarantee a PAC solution:

- It is a function of the *accuracy* parameter ϵ and the *confidence* parameter δ
- It also depends on the properties of the hypothesis class \mathcal{H} .
 - ♦ If \mathcal{H} is PAC learnable, there are many functions $m_{\mathcal{H}}$ that satisfy the requirements given in the PAC learnability definition.
 - ◆ We define the sample complexity to be the "*minimal function*"

Sample Complexity

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

The function $m_{\mathcal{H}}:(0,1)^2\to\mathcal{N}$ determines the sample complexity of learning \mathcal{H} , namely, $m_{\mathcal{H}}(\epsilon,\delta)$ represents how many examples are required to guarantee a PAC solution:

- It is a function of the *accuracy* parameter ϵ and the *confidence* parameter δ
- It also depends on the properties of the hypothesis class \mathcal{H} .
 - If \mathcal{H} is PAC learnable, there are many functions $m_{\mathcal{H}}$ that satisfy the requirements given in the PAC learnability definition.
 - ◆ We define the sample complexity to be the "minimal function"

Every finite hypothesis class \mathcal{H} is PAC learnable with the sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{\log(|\mathcal{H}|/\delta)}{\epsilon} \rceil = \lceil \frac{1}{\epsilon} [\log(|\mathcal{H}|) + \log(\frac{1}{\delta})] \rceil$$

Is there a learner?

PAC Learning

The Statistical Learning Framework

PAC Learnability

General PAC Learning Model
Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis
Classes

Quiz

In many scenarios, there is no perfect learner:

General PAC Learning Model

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

PAC learning model can be generalized in two aspects:

General PAC Learning Model

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

PAC learning model can be generalized in two aspects:

Relaxing the Realizability Assumption

■ We assume that labels are generated by some $f \in \mathcal{H}$, this assumption may be too strong.

General PAC Learning Model

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

PAC learning model can be generalized in two aspects:

Relaxing the Realizability Assumption

■ We assume that labels are generated by some $f \in \mathcal{H}$, this assumption may be too strong.

Learning beyond Binary Classification

- Many learning tasks involve multiple class classification
- or even prediction of a real valued number.

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Classes

Quiz

Relaxing the Realizability Assumption:

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Relaxing the Realizability Assumption:

Intuition.

Relax the realizability assumption by replacing the "target labelling function" f with a more flexible notion, a data-labels generating distribution.

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Relaxing the Realizability Assumption:

Intuition.

- Relax the realizability assumption by replacing the "*target labelling function*" *f* with a more flexible notion, a data-labels generating distribution.
 - In PAC model, \mathscr{D} is a distribution over \mathscr{X}

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Relaxing the Realizability Assumption:

Intuition.

- Relax the realizability assumption by replacing the "*target labelling function*" *f* with a more flexible notion, a data-labels generating distribution.
 - In PAC model, \mathscr{D} is a distribution over \mathscr{X}
 - In this aspect, \mathcal{D} is a distribution over $Z = \mathcal{X} \times \mathcal{Y}$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Relaxing the Realizability Assumption:

Intuition.

- Relax the realizability assumption by replacing the "target labelling function" f with a more flexible notion, a data-labels generating distribution.
 - In PAC model, \mathscr{D} is a distribution over \mathscr{X}
 - In this aspect, \mathcal{D} is a distribution over $Z = \mathcal{X} \times \mathcal{Y}$
- The *Generalization risk* is then defined as:

$$L_{\mathcal{D}}(h) \stackrel{def}{=} P_{Z \sim \mathcal{D}}[h(x) \neq y] \stackrel{def}{=} \mathcal{D}(\{x : h(x) \neq y\})$$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Relaxing the Realizability Assumption:

Intuition.

- Relax the realizability assumption by replacing the "target labelling function" f with a more flexible notion, a data-labels generating distribution.
 - In PAC model, \mathscr{D} is a distribution over \mathscr{X}
 - In this aspect, \mathcal{D} is a distribution over $Z = \mathcal{X} \times \mathcal{Y}$
- The *Generalization risk* is then defined as:

$$L_{\mathcal{D}}(h) \stackrel{def}{=} P_{Z \sim \mathcal{D}}[h(x) \neq y] \stackrel{def}{=} \mathcal{D}(\{x : h(x) \neq y\})$$

■ The notation of "approximately correct" is now defined as:

$$L_{\mathscr{D}}(h) \leq \min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*) + \varepsilon$$

General PAC Learning — Beyond Binary Classification

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis
Classes

Quiz

Scope of Learning Problems.

General PAC Learning — Beyond Binary Classification

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Scope of Learning Problems.

Muticlass categorization \mathscr{Y} is a finite set representing $|\mathscr{Y}|$ different classes.

■ For example, the degree could be $\mathcal{Y} = \{Bachelor, Honours, Masters, PhD\}$

General PAC Learning — Beyond Binary Classification

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Scope of Learning Problems.

Muticlass categorization \mathscr{Y} is a finite set representing $|\mathscr{Y}|$ different classes.

■ For example, the degree could be $\mathcal{Y} = \{Bachelor, Honours, Masters, PhD\}$

Regression $\mathcal{Y} = \mathcal{R}$

■ For example, one wishes to predict the marks of a student based on the resources access pattern.

General PAC Learning — Loss Functions

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

 $\blacksquare \quad \text{Let } \mathbf{Z} = \mathcal{X} \times \mathcal{Y}$

General PAC Learning — Loss Functions

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

- $\blacksquare \quad \text{Let } \mathbf{Z} = \mathcal{X} \times \mathcal{Y}$
- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in Z$, how good is h on (x, y)?

General PAC Learning — Loss Functions

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

$$\blacksquare \quad \text{Let } \mathbf{Z} = \mathcal{X} \times \mathcal{Y}$$

- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in \mathbb{Z}$, how good is h on (x, y)?
- Loss Function:

$$l: \mathcal{H} \times \mathbf{Z} \to \mathcal{R}_{+}$$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

$$\blacksquare \quad \text{Let } Z = \mathcal{X} \times \mathcal{Y}$$

- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in \mathbb{Z}$, how good is h on (x, y)?
- Loss Function:

$$l: \mathcal{H} \times \mathbf{Z} \to \mathcal{R}_{+}$$

0-1 loss
$$l(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

$$\blacksquare \quad \text{Let } Z = \mathcal{X} \times \mathcal{Y}$$

- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in \mathbb{Z}$, how good is h on (x, y)?
- Loss Function:

$$l: \mathcal{H} \times Z \to \mathcal{R}_+$$

0-1 loss
$$l(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$$

Squared loss $l(h,(x,y)) = (h(x) - y)^2$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

$$\blacksquare \quad \text{Let } Z = \mathcal{X} \times \mathcal{Y}$$

- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in \mathbb{Z}$, how good is h on (x, y)?
- Loss Function:

$$l: \mathcal{H} \times Z \to \mathcal{R}_+$$

0-1 loss
$$l(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$$
Squared loss $l(h,(x,y)) = (h(x) - y)^2$
Absolute-value loss $l(h,(x,y)) = |h(x) - y|$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability
PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

 $\blacksquare \quad \text{Let } Z = \mathcal{X} \times \mathcal{Y}$

- Given hypothesis $h \in \mathcal{H}$, and an example $(x, y) \in \mathbb{Z}$, how good is h on (x, y)?
- Loss Function:

$$l: \mathcal{H} \times Z \to \mathcal{R}_+$$

0-1 loss
$$l(h,(x,y)) = \begin{cases} 1 & \text{if } h(x) \neq y \\ 0 & \text{if } h(x) = y \end{cases}$$
Squared loss $l(h,(x,y)) = (h(x) - y)^2$
Absolute-value loss $l(h,(x,y)) = |h(x) - y|$
Cost-sensitive loss $l(h,(x,y)) = C_{h(x),y}$, where C is $|\mathscr{Y}| \times |\mathscr{Y}|$ matrix.

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ such that, with probability of at least $(1 - \delta)$: $\min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ such that, with probability of at least $(1 - \delta)$: $\min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \text{ where } L_{\mathcal{D}}(h) \stackrel{def}{=} E_{z \sim \mathcal{D}}[l(h, z)]$$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ such that, with probability of at least $(1 - \delta)$: $\min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \text{ where } L_{\mathcal{D}}(h) \stackrel{def}{=} E_{z \sim \mathcal{D}}[l(h, z)]$$

- Learner knows \mathcal{H} , Z and l
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ such that, with probability of at least $(1 - \delta)$: $\min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \text{ where } L_{\mathcal{D}}(h) \stackrel{def}{=} E_{z \sim \mathcal{D}}[l(h, z)]$$

- Learner knows \mathcal{H} , Z and l
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ
- The learner can decide on training set size m based on ϵ and δ .

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathscr{D} over Z, when running the algorithm on $m \geq m_{\mathscr{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathscr{D} , the algorithm returns a hypothesis $h \in \mathscr{H}$ such that, with probability of at least $(1-\delta)$: $\min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*) + \epsilon$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \text{ where } L_{\mathcal{D}}(h) \stackrel{def}{=} E_{z \sim \mathcal{D}}[l(h, z)]$$

- Learner knows \mathcal{H} , Z and l
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ
- The learner can decide on training set size m based on ϵ and δ .
- The learner does not know \mathcal{D} but can sample $S \sim \mathcal{D}^m$

PAC Learning

The Statistical Learning Framework PAC Learnability

General PAC Learning Model

Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $l: \mathcal{H} \times Z \to \mathcal{R}_+$, if there exists a function $m_{\mathcal{H}}: (0,1)^2 \to \mathcal{N}$ and a learning algorithm with the following property:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h \in \mathcal{H}$ such that, with probability of at least $(1-\delta)$: $\min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$

$$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h), \text{ where } L_{\mathcal{D}}(h) \stackrel{def}{=} E_{z \sim \mathcal{D}}[l(h, z)]$$

- Learner knows \mathcal{H} , Z and l
- The learner receives the *accuracy* parameter ϵ and the *confidence* parameter δ
- The learner can decide on training set size m based on ϵ and δ .
- The learner does not know \mathcal{D} but can sample $S \sim \mathcal{D}^m$
- Using S the learner outputs some hypothesis $h \in \mathcal{H}$, with probability of at least $(1-\delta)$ it holds that $L_{\mathcal{D}}(h) \leq \min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$.

PAC versus Agnostic PAC Learning

PAC Learning

The Statistical Learning Framework
PAC Learnability
General PAC Learning Model
Agnostic PAC Learnability

PAC versus Agnostic PAC Learning

Agnostic Learning Finite Hypothesis Classes

Quiz

Table 1: Comparison of PAC and Agnostic PAC

	PAC	Agnostic PAC
Distribution	${\mathscr D}$ over ${\mathscr X}$	\mathscr{D} over $\mathscr{X} \times \mathscr{Y}$
Truth	$f\in \mathscr{H}$	not in class or does not exist
Risk	$L_{(\mathcal{D},f)}(h) = \mathcal{D}(\{x : h(x) \neq f(x)\})$	$L_{\mathcal{D}}(h) = \mathcal{D}(\{x : h(x) \neq y\})$
Training set	$(x_1,\dots,x_m)\sim \mathcal{D}^m, \ \forall i,\ y_i=f(x_i)$	$((x_1,y_1),\cdots,(x_m,y_m))\sim \mathcal{D}^m$
Goal	$L_{(\mathcal{D},f)}(h) \leq \epsilon$	$L_{\mathscr{D}}(h) \leq \min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*) + \epsilon$

 \mathscr{X} : Domain \mathscr{Y} : Range \mathscr{H} : Hypothesis Class

L: Loss function ϵ : accuracy parameter m: sample size

Agnostic Learning Finite Hypothesis

Representative Sample
Uniform Convergence
Agnostic Learning Finite Hypothesis
Classes

Quiz

Agnostic Learning Finite Hypothesis Classes

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence Agnostic Learning Finite Hypothesis Classes

Quiz

A training set S is called ϵ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , if

 $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence
Agnostic Learning Finite Hypothesis

Quiz

A training set S is called ϵ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , if

$$\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$$

Intuition.

The hope is that an h that minimizes the empirical risk with respect to the sample S is a risk minimizer, or has risk close to the minimum, with respect to the true data probability distribution \mathcal{D} .

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence
Agnostic Learning Finite Hypothesis
Classes

Quiz

A training set S is called ϵ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , if

 $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$

Intuition.

- The hope is that an h that minimizes the empirical risk with respect to the sample S is a risk minimizer, or has risk close to the minimum, with respect to the true data probability distribution \mathcal{D} .
- This concept ensures that: uniformly over *all hypotheses* in the hypothesis class \mathcal{H} , the empirical risk will be *close to the true* risk.

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence Agnostic Learning Finite Hypothesis

Quiz

Assume that a training set S is $\frac{\epsilon}{2}$ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , then, any output of $ERM_{\mathcal{H}}(S)$, namely any $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

$$L_{\mathscr{D}}(h_S) \leq \min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*) + \epsilon$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence
Agnostic Learning Finite Hypothesis

Quiz

Assume that a training set S is $\frac{\epsilon}{2}$ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , then, any output of $ERM_{\mathcal{H}}(S)$, namely any $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

$$L_{\mathcal{D}}(h_S) \leq \min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$$

Proof.

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence Agnostic Learning Finite Hypothesis

Quiz

Assume that a training set S is $\frac{\epsilon}{2}$ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , then, any output of $ERM_{\mathcal{H}}(S)$, namely any $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

$$L_{\mathcal{D}}(h_S) \leq \min_{h^* \in \mathcal{H}} L_{\mathcal{D}}(h^*) + \epsilon$$

- $L_{\mathscr{D}}(h_S) \leq L_S(h_S) + \frac{\epsilon}{2}$
- $L_S(h^*) \leq L_{\mathscr{D}}(h^*) + \frac{\tilde{\epsilon}}{2}$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis Classes

Quiz

Assume that a training set S is $\frac{\epsilon}{2}$ -representative w.r.t. domain Z, hypothesis class \mathcal{H} , loss function l and distribution \mathcal{D} , then, any output of $ERM_{\mathcal{H}}(S)$, namely any $h_S \in \operatorname{argmin}_{h \in \mathcal{H}} L_S(h)$

$$L_{\mathscr{D}}(h_S) \leq \min_{h^* \in \mathscr{H}} L_{\mathscr{D}}(h^*) + \epsilon$$

Proof.

$$L_{\mathscr{D}}(h_S) \le L_S(h_S) + \frac{\epsilon}{2}$$

$$L_S(h^*) \leq L_{\mathscr{D}}(h^*) + \frac{\overline{\epsilon}}{2}$$

■ Combine them together, we have

$$L_{\mathcal{D}}(h_S) \leq L_S(h_S) + \frac{\epsilon}{2}$$

$$\leq L_S(h^*) + \frac{\epsilon}{2}$$

$$\leq L_{\mathcal{D}}(h^*) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= L_{\mathcal{D}}(h^*) + \epsilon$$

Uniform Convergence

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis

Uniform Convergence

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

If a class \mathcal{H} has the *uniform convergence property* with the sample complexity $m_{\mathcal{H}}^{UC}$, then \mathcal{H} is *agnostically PAC learnable* with the sample complexity

Furthermore, $ERM_{\mathscr{H}}$ paradigm is a successful agnostic PAC learner for \mathscr{H} .

Uniform Convergence

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

A hypothesis class \mathcal{H} has the uniform convergence property if there exists a function $m_{\mathcal{H}}^{UC}:(0,1)^2\to\mathcal{N}$, such that for every $\epsilon,\delta\in(0,1)$, and every distribution \mathcal{D} , we have: if S is a sample with $m\geq m_{\mathcal{H}}^{UC}(\epsilon,\delta)$ examples drawn i.i.d. according to \mathcal{D} , then with probability of at least $(1-\delta)$, S is ϵ -representative.

If a class \mathcal{H} has the *uniform convergence property* with the sample complexity $m_{\mathcal{H}}^{UC}$, then \mathcal{H} is *agnostically PAC learnable* with the sample complexity

Furthermore, $ERM_{\mathcal{H}}$ paradigm is a successful agnostic PAC learner for \mathcal{H} .

 $m_{\mathcal{H}}^{UC}$ measures the minimal sample complexity of obtaining the uniform convergence.

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

PAC Learning

Agnostic Learning Finite Hypothesis

Representative Sample

Quiz

Agnostic Learning Finite Hypothesis

Uniform Convergence

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

Proof. It suffices to show that \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

Proof. It suffices to show that \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil$$

1. To show uniform convergence, we need: $\mathcal{D}^m(\{S: \exists h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| > \epsilon\}) < \delta$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

Proof. It suffices to show that \mathcal{H} has the uniform convergence property with

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil$$

- 1. To show uniform convergence, we need: $\mathcal{D}^m(\{S: \exists h \in \mathcal{H}, |L_S(h) L_{\mathcal{D}}(h)| > \epsilon\}) < \delta$
- 2. From the union bound, we have:

$$\mathcal{D}^{m}(\{S: \exists h \in \mathcal{H}, |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\})$$

$$= \mathcal{D}^{m}(\bigcup_{h \in \mathcal{H}} \{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\})$$

$$\leq \sum_{h \in \mathcal{H}} \mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\})$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis
Classes

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

3.
$$L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[l(h,z)]$$
 and $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h,z_i)$, let $\theta_i = l(h,z_i)$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis Classes

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

- 3. $L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[l(h,z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^m l(h,z_i)$, let $\theta_i = l(h,z_i)$
- 4. For all i, $E[\theta_i] = L_{\mathcal{D}}(h)$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample

Uniform Convergence

Agnostic Learning Finite Hypothesis Classes

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

- 3. $L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[l(h,z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h,z_i)$, let $\theta_i = l(h,z_i)$
- 4. For all $i, E[\theta_i] = L_{\mathcal{D}}(h)$
- 5. From Hoeffding's inequality:

$$\mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \le 2e^{-2m\epsilon^{2}}$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

Proof.

3.
$$L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[l(h,z)]$$
 and $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h,z_i)$, let $\theta_i = l(h,z_i)$

4. For all
$$i$$
, $E[\theta_i] = L_{\mathcal{D}}(h)$

5. From Hoeffding's inequality:

$$\mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq 2e^{-2m\epsilon^{2}}$$

6. We have:

$$\mathcal{D}^m(\{S:\exists h\in\mathcal{H},|L_S(h)-L_{\mathcal{D}}(h)|>\epsilon\})\leq \sum_{h\in\mathcal{H}}\mathcal{D}^m(\{S:|L_S(h)-L_{\mathcal{D}}(h)|>\epsilon\})\leq 2|\mathcal{H}|e^{-2m\epsilon^2}$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Assume \mathcal{H} is finite and the range of the loss function is [0,1], then \mathcal{H} is agnostic PAC learnable using the $ERM_{\mathcal{H}}$ algorithm with sample complexity:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2\log(2|\mathcal{H}|/\delta)}{\epsilon^2} \rceil = \lceil \frac{2}{\epsilon^2} \lceil \log(2|\mathcal{H}|) + \log(\frac{1}{\delta}) \rceil \rceil$$

Proof.

- 3. $L_{\mathcal{D}}(h) = E_{z \sim \mathcal{D}}[l(h,z)]$ and $L_S(h) = \frac{1}{m} \sum_{i=1}^{m} l(h,z_i)$, let $\theta_i = l(h,z_i)$
- 4. For all i, $E[\theta_i] = L_{\mathcal{D}}(h)$
- 5. From Hoeffding's inequality:

$$\mathcal{D}^{m}(\{S: |L_{S}(h) - L_{\mathcal{D}}(h)| > \epsilon\}) \leq 2e^{-2m\epsilon^{2}}$$

6. We have:

$$\mathcal{D}^{m}(\{S:\exists h\in\mathcal{H},|L_{S}(h)-L_{\mathcal{D}}(h)|>\epsilon\})\leq \sum_{h\in\mathcal{H}}\mathcal{D}^{m}(\{S:|L_{S}(h)-L_{\mathcal{D}}(h)|>\epsilon\})\leq 2|\mathcal{H}|e^{-2m\epsilon^{2}}$$

7. So if $m \ge \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2}$, we have the right hand side is at most δ as required.

PAC Learning

Agnostic Learning Finite Hypothesis
Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

Suppose \mathcal{H} is parametrized by d numbers.

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis
Classes

- Suppose \mathcal{H} is parametrized by d numbers.
- \blacksquare Suppose we are happy with a representation of each number using b bits

PAC Learning

Agnostic Learning Finite Hypothesis
Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

- Suppose \mathcal{H} is parametrized by d numbers.
- \blacksquare Suppose we are happy with a representation of each number using b bits
- Then $|\mathcal{H}| \le 2^{db}$, and so

$$m_{\mathcal{H}}(\epsilon, \delta) \le \lceil \frac{2db + 2\log(2/\delta)}{\epsilon^2} \rceil$$

PAC Learning

Agnostic Learning Finite Hypothesis Classes

Representative Sample Uniform Convergence

Agnostic Learning Finite Hypothesis

Quiz

- lacksquare Suppose \mathcal{H} is parametrized by d numbers.
- Suppose we are happy with a representation of each number using *b* bits
- Then $|\mathcal{H}| \le 2^{db}$, and so

$$m_{\mathcal{H}}(\epsilon, \delta) \leq \lceil \frac{2db + 2\log(2/\delta)}{\epsilon^2} \rceil$$

■ While not very elegant, it is a great tool for upper bounding *sample complexity*.

Agnostic Learning Finite Hypothesis Classes

Quiz

PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

Theoretical analysis:

1. If the range of the loss function is [a,b], then the sample complexity satisfies:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \leq \lceil \frac{2\log 2|\mathcal{H}/\delta|(b-a)^2}{\epsilon^2} \rceil.$$

PAC Learning

Agnostic Learning Finite Hypothesis

Quiz

Theoretical analysis:

1. If the range of the loss function is [a,b], then the sample complexity satisfies:

$$m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta) \leq \lceil \frac{2\log 2|\mathcal{H}/\delta|(b-a)^2}{\epsilon^2} \rceil.$$

2. Given any probability distribution \mathscr{D} over $\mathscr{X} \times \{0,1\}$, the *Bayes Optimal Predictor* is defined as: $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ where $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ Show that for every probability distribution } 0 \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = \{1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] \geq \frac{1}{2} \text{ otherwise} \}$ of $f_{\mathscr{D}}(x) = 1 \text{ if } P[y=1|x] = 1 \text{ if } P[y=1|x] = 1 \text{ if } P[y=1|x] =$

Questions?

PAC Learning

Agnostic Learning Finite Hypothesis

Contact Information

Associate Professor GANG LI School of Information Technology Deakin University Geelong, Victoria 3216, Australia

GANGLI@TULIP.ORG.AU

OPEN RESOURCES OF TULIP-LAB

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING