Sprawdzić, że

$$j \lrcorner F = "e \cdot E + e(v \times B)".$$

Przykład 1. Niech $X = \dot{x}(t) \frac{\partial}{\partial x} + \dot{p}(t) \frac{\partial}{\partial p}$, $\omega = dx \wedge dp \in \Lambda^2(M)$,

$$\Lambda^0 M \ni H = \frac{p^2}{2m} + \frac{1}{2}kx^2.$$

 $Niech\ M$ - rozmaitość, $\dim M = 2$. $Co\ oznacza\ napis$

$$x \cdot \omega = dH$$
?

$$\left\langle dx, x(t) \frac{\partial}{\partial x} + p(t) \frac{\partial}{\partial p} \right\rangle dp - \left\langle dp, \dot{x}(t) \frac{\partial}{\partial x} + \dot{p}(t) \frac{\partial}{\partial p} \right\rangle dx = dH,$$

a teraz coś takiego:

$$x(t)dp - p(t)dx = \frac{p^2}{m}dp + kx^2dx.$$

To wypluje na wyjściu równania ruchu

$$\frac{dx}{dt} = \frac{p}{m}, \quad \dot{p}(t) = -kx$$
$$m\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -kx.$$

0.1 Rozmaitość z brzegiem

Obserwacja:

(rys 5-1) Niech $I = [0, 1[\subset \mathbb{R}, \text{ (metryka } d(x,y) = |x-y|) \text{ czy } I \text{ jest otwarty w } \mathbb{R}? \text{ } chyba \text{ } nie.$ Niech $I = [0, 1[\subset [0, 2], \text{ czy } I \text{ jest otwarty w } [0, 2]? \text{ } chyba \text{ } tak.$

$$B(0,1) = \{x \in [0,2], d(0,x) < 1\} = [0,1].$$

Definicja 1.

$$\mathbb{R}_{+}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, x^{m}), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R}, \quad x^{m} \ge 0 \right\},$$

$$\mathbb{R}_{0}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, 0), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R} \right\}.$$

Niech M - rozmaitość, jeżeli atlas rozmaitości M składa się z takich map φ_{α} , że

$$\varphi_{\alpha}(\mathcal{O}) \subset \mathbb{R}_{+}^{m},$$

 $(\mathcal{O} - otwarty\ w\ M)$, $gdzie\ \varphi_{\alpha}(\mathcal{O}) - otwarte\ w\ \mathbb{R}^m_+$, to M nazywamy rozmaitością z brzegiem. Jeżeli $p \in M$ i $\varphi_{\alpha}(p) \in \mathbb{R}^m_0$, to mówimy, że p należy do brzegu M. (brzeg rozmaitości M oznaczamy przez ∂M)

Pytanie 1. Co to jest różniczkowalność φ^{-1} , jeżeli dziedzina $\varphi^{-1} \in \mathbb{R}^m_+$, który nie jest otwarty w \mathbb{R}^m ? Mówimy wówczas tak:

Definicja 2. Niech $U \subset \tilde{U}$, \tilde{U} - otwarty $w \mathbb{R}^m$, U - otwarty $w \mathbb{R}^m_+$. φ jest klasy \mathcal{C}^r na U, jeżeli istnieje $\tilde{\varphi}$ klasy \mathcal{C}^r na \tilde{U} i $\tilde{\varphi}|_U = \varphi$.

(rys 5-3)

Pytanie 2. Czym jest ∂S , jeżeli S - okrąg?

Odp. $\partial S = \{\phi\}.$

Jeszcze takie uzasadnienie: (rys 5-4)

sześcian $\overset{\partial}{\to}$ boki sześcianu $\overset{\partial}{\to}$ rogi sześcianu,

kula
$$\xrightarrow{\partial}$$
 sfera $\xrightarrow{\partial}$ $\{\phi\}$.

Obserwacja:

Zbiór ∂M wraz z mapami $\varphi_{\alpha}|_{\partial M}$ i otoczeniami obciętymi do $\mathcal{O}|_{\partial M}$ jest rozmaitością o wymiarze m-1, jeżeli dim M=m.

Definicja 3. Niech $p \in \partial M$, $\langle f_1, \ldots, f_{m-1} \rangle$ - baza $T_p \partial M$, wybierzmy orientację na M (rys 5-5). Niech σ - krzywa na M taka, że

$$\varphi_{\alpha}\sigma = (0, \dots, 0, t) \in \mathbb{R}^m_+,$$

niech $\overline{n} = [\sigma]$. Mówimy, że orientacja ∂M jest zgodna z orientacją M, jeżeli orientacją $\langle \overline{n}, f_1, \dots, f_{m-1} \rangle$ jest zgodna z orientacją M.

(rys 5-6) Niech M - rozmaitość, $U\subset M$, dim $M=n,\ \omega\in\Lambda^kM,\ \varphi_1:U_1\to T$ - parametryzacja T oraz $\varphi_2:U_2\to T$ - parametryzacja T. Z własności funkcji φ_1 i φ_2 wiemy, że

$$\exists h : \mathbb{R}^n \supset U_2 \to U_1 \subset \mathbb{R}^n \implies \varphi_2 = \varphi_1 \circ h.$$

Wówczas

$$\int_T \omega = \int_{U_1} \varphi_1^\star \omega = \int_{U_2} h^\star \left(\varphi_1^\star \omega \right) \overset{?}{\underset{(\Delta)}{=}} \int_{U_2} (\varphi_1 \circ h)^\star \omega = \int_{U_2} \varphi_2^\star \omega.$$

 (Δ) - (rys 5-7)

$$\langle (kL)^{\star}\omega, v \rangle = \langle \omega, (kL)_{\star}v \rangle = \langle k^{\star}\omega, L_{\star}v \rangle = \langle L^{\star}k^{\star}\omega, v \rangle ,$$

ale jeżeli $v = [\sigma(t)], v = \frac{d}{dt}\overline{\sigma}$ to

$$(kL)_{\star}v = \frac{d}{dt} \left(k \left(L \left(\overline{\sigma}(t) \right) \right) \right) = k'(L' \cdot \sigma'(t)) = k_{\star}L_{\star}v.$$

Wniosek: całka z formy po rozmaitości nie zależy od wyboru parametryzacji

0.2 Lemat Poincare

Mieliśmy $\omega = \frac{ydx}{x^2 + y^2} - \frac{xdy}{x^2 + y^2}$, wiemy, że $d\omega = 0$. **Pytanie:** czy istnieje η taka, że $\omega = d\eta$? Wówczas wiemy, że $d\omega = d(d\eta) = 0$.

Obserwacja:

$$\eta = arctg \frac{x}{y}, \quad d\eta = \frac{1}{1 + (\frac{x}{y})^2} \frac{1}{y} dx - \frac{1}{1 + (\frac{x}{y})^2} \frac{x}{y^2} dy = \omega$$