Traitement des Images Numériques

Morphologie 2019-2020

Squelette - compression

$$S(X) = \bigcup_{n} S_{n}(X)$$

$$S_n = E_n(X) \setminus O(E_n(X))$$

$$S_0 = E_0(X) \setminus O(E_0(X)) = X \setminus O(X)$$
$$S_1 = E_1(X) \setminus O(E_1(X))$$

$$S_n = E_n(X) \setminus O(E_n(X))$$

Erodé ultime

$$EU(X) = \bigcup_{n} E_{B_{n}}(X) \setminus R[E_{B_{n+1}}(X), E_{B_{n}}(X)]$$

- R[X,Y] désigne les composantes connexes de Y qui ont une intersection non vide avec X
- Ce sont les maxima locaux de la fonction distance interne à X

Exemple

Segmentation

- Érodé ultime Squelette du complémentaire
- Erodé ultime dilatation avec pondération
 - squelette du complémentaire
- Erodé ultime du premier atteint squelette du complémentaire

Exemple

La transformée en distance

- Calcul de la distance minimale entre un point d'une forme et le fond
- Utilisation de la distance « City block »
- Par érosions successives par un pavé 3x3

$$I^{0}(i,j) = I(i,j)$$

$$I^{m}(i,j) = I^{m-1}(i,j) + E_{m}(I)$$

$$I^{m}(i,j) = I(i,j) + \min_{(k,l) \in B} \left\{ I^{m-1}(k,l) \right\}$$

La transformée en distance

$$I^{0}(i,j) = I(i,j)$$

 $I^{m}(i,j) = I^{m-1}(i,j) + E_{m}(I)$

$I^0(i,j) = I(i,j)$	
$I^{m}(i,j) = I(i,j) + \min_{(k,l) \in B} \left\{ I^{m-1}(k,l) \right\}$	}

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	0	0	0
0	1	1	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	2	2	2	2	2	2	1	0
0	1	1	2	3	3	3	2	1	0
0	0	1	2	3	4	3	2	1	0
0	0	1	2	3	3	3	2	1	0
0	0	1	2	3	2	2	2	1	0
0	1	1	2	2	2	1	1	1	0
0	0	1	1	1	1	1	0	0	0
0	1	1	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Pour les images à niveaux de gris

- Passage du domaine ensembliste au domaine fonctionnel
- Image à niveaux de gris et élément structurant binaire ou fonctionnel
- Correspondance entre opérateurs

$$\cup \rightarrow \sup$$

$$\cap \rightarrow \inf$$

$$\subset \rightarrow \leq$$

Elément structurant binaire

- Pour une image I(i,j) deux transformées
- Érosion d'élément structurant B de support S

$$E_B(I)(i,j) = \min_{(k,l)\in S} I(i-k,j-l)$$

Dilatation

$$D_B(I)(i, j) = \max_{(k,l) \in S} I(i-k, j-l)$$

exemple

124	150	120	250	250
120	100	90	252	240
30	28	30	240	245
32	25	35	225	230

érosion

100	90	90	90	240
28	28	28	30	240
25	25	25	30	225
25	25	25	30	225

dilatation

150	150	252	252	252
150	150	252	252	252
120	120	252	252	252
32	32	240	245	245

Ouverture et fermeture

- Même définition que pour les images binaires
- Le lissage est effectué sur les niveaux de gris et non sur les formes
- Le chapeau haut de forme : différence entre l'image et son ouverture
- Filtres
- Granulométries

exemple

ouverture

124	150	120	250	250
120	100	90	252	240
30	28	30	240	245
32	25	35	225	230

100	100	90	240	240
100	100	90	240	240
28	28	30	240	240
25	25	30	225	225

fermeture

150	150	150	252	252
120	120	120	252	252
32	32	32	240	245
32	32	32	240	245

exemple

érosion

dilatation

ouverture

fermeture

124	150	120	250	250
120	100	90	252	240
30	28	30	240	245
32	25	35	225	230

100	90	90	90	240
28	28	28	30	240
25	25	25	30	225
25	25	25	30	225

150	150	252	252	252
150	150	252	252	252
120	120	252	252	252
32	32	240	245	245

100	100	90	240	240
100	100	90	240	240
28	28	30	240	240
25	25	30	225	225

150	150	150	252	252
120	120	120	252	252
32	32	32	240	245
32	32	32	240	245

Gradient morphologique

• Le gradient morphologique est la différence entre le dilaté et l'érodé

$$g(x) = D_B f(x) - E_B f(x)$$

$$g(x) = \lim_{\lambda \to 0} \frac{D_{B_{\lambda}} f(x) - E_{B_{\lambda}} f(x)}{2\lambda}$$

Erosion et dilatation

Rehaussement de contraste

 Rendre plus clair ce qui est clair, plus foncé ce qui est foncé

$$g(x) = \begin{cases} \underline{f}(x) & si & \underline{f}(x) \le f(x) \le \underline{f}(x) + \alpha.\Delta f(x) \\ \underline{f}(x) & si & \underline{f}(x) + \alpha.\Delta f(x) \le f(x) \le \underline{f}(x) - \beta.\Delta f(x) \\ \underline{f}(x) & si & \underline{f}(x) - \beta.\Delta f(x) \le f(x) \le \underline{f}(x) \end{cases}$$

et

$$\Delta f(x) = \overline{f}(x) - \underline{f}(x)$$

- Ouverture ou érosion pour \underline{f}
- Fermeture ou dilatation pour f

