เอกสารประกอบการสอน วิชา 30230159

ตัวแปรเชิงซ้อนเบื้องต้น

Introduction to Complex Variables

โดย

บุญยงค์ ศรีพลแผ้ว

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยบูรพา

คำนำ

เอกสารประกอบการสอนวิชา 30230159 ตัวแปรเชิงซ้อนเบื้องต้น (Introduction to Complex Variables) มีวัตถุประสงค์จัดทำขึ้นเพื่อประกอบการเรียน เพื่อให้ผู้เรียนได้รู้จักกับ จำนวนเชิงซ้อน การหาอนุพันธ์ และการหาปริพันธ์ของฟังก์ชันค่าจำนวนเชิงซ้อน ทฤษฎีบทของโค ซี สูตรปริพันธ์ของโคชี อนุกรมเทย์เลอร์และอนุกรมของโลรองต์ ส่วนตกค้างและการส่งคงรูป เนื้อหาในเล่มแบ่งออกเป็น 7 บท ได้แก่ จำนวนเชิงซ้อน ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน ฟังก์ชันพื้นฐานเชิงซ้อน การหาปริพันธ์ของฟังก์ชันเชิงซ้อน ลำดับและอนุกรม จุดเอกฐานและ ทฤษฎีส่วนตกค้าง และการส่งคงรูป โดยในแต่ละบทจะมีแบบฝึกหัดท้ายของแต่ละบท

ขอขอบคุณท่านเจ้าของหนังสือทุกท่านที่ข้าพเจ้าได้นำมาอ้างอิง หวังว่าเอกสาร ประกอบการสอนเล่มนี้ คงเป็นประโยชน์ต่อผู้ใช้บ้างพอสมควร หากท่านที่นำไปใช้แล้วพบ ข้อบกพร่องหรือข้อที่ควรปรับปรุงและแก้ไข ผู้เขียนขอน้อมรับและยินดีรับข้อเสนอแนะดังกล่าว และขอขอบคุณในความอนุเคราะห์นั้น ณ โอกาสนี้ด้วย

บุญยงค์ ศรีพลแผ้ว

1 กรกฎาคม พ.ศ.2563

ประมวลรายวิชา

รหัสวิชา 30230159

ชื่อวิชา ตัวแปรเชิงซ้อนเบื้องต้น (Introduction to Complex Variables)

จำนวนหน่วยกิต 3(3-0-6)

ระดับการศึกษา ปริญญาตรี

อาจารย์ผู้สอน อ.บุญยงค์ ศรีพลแผ้ว

1. คำอธิบายรายวิชา

จำนวนเชิงซ้อน ฟังก์ชันของตัวแปรเชิงซ้อน การหาอนุพันธ์ ฟังก์ชันโฮโลมอร์ฟิก การหาปริพันธ์ ทฤษฎีบทของโคชี สูตรปริพันธ์ของโคชี อนุกรมเทย์เลอร์และอนุกรมโลรองต์ ส่วนตกค้าง การส่งคงรูปและการ ประยุกต์

- 2. วัตถุประสงค์เชิงพฤติกรรมของวิชา เมื่อสิ้นสุดการเรียนการสอน นิสิตสามารถ
 - 2.1 รู้จักจำนวนเชิงซ้อน การดำเนินการต่างๆ หารากของจำนวนเชิงซ้อนได้
 - 2.2 รู้จักฟังก์ชันของตัวแปรเชิงซ้อน ฟังก์ชันโฮโลมอร์ฟิก หาปริพันธ์ของตัวแปรเชิงซ้อนได้
 - 2.3 รู้จักลำดับและอนุกรม หาอนุกรมกำลังของตัวแปรเชิงซ้อนได้
 - 2.4 การหาส่วนตกค้าง
 - 2.5 เข้าใจการส่งคงรูป

3. กิจกรรมการเรียนการสอน

- 3.1 บรรยาย
- 3.2 สอบย่อย
- 3.3 แบบฝึกหัด

4. สื่อการสอน

- 4.1 เอกสารประกอบการสอน
- 4.2 ไอแพดและคอมพิวเตอร์

5. วิธีการประเมินผล

สอบกลางภาค 40%

สอบปลายภาค 40%

คะแนนเก็บ 20%

6. หัวข้อเนื้อหาวิชา (Course outline)

สัปดาห์ที่	วันอังคารที่	หัวข้อเนื้อหาวิชา (ระบุหัวข้อใหญ่และย่อย)
1	7 ก.ค. 63	บทที่ 1 จำนวนเชิงซ้อน
		 การดำเนินการเบื้องต้นของจำนวนเชิงซ้อน
		– คุณสมบัติทางพีชคณิต
		 ความสัมพันธ์ระหว่างจำนวนเชิงซ้อนกับระบบพิกัดฉาก
		– ค่าสัมบูรณ์และสังยุค
2	14 ก.ค. 63	 – จำนวนเชิงซ้อนในระบบพิกัดเชิงชั้ว
		รากของจำนวนเชิงซ้อน
3	21 ก.ค. 63	บทที่ 2 ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน
		— ลิมิตและความต่อเนื่อง
4	4 ส.ค. 63	— อนุพันธ์
		สมการโคชี รีมันน์
		— ฟังก์ชันโฮโลมอร์ฟิก
5	11 ส.ค. 63	บทที่ 3 ฟังก์ชันพื้นฐานเชิงซ้อน
		 ฟังก์ชันเลขชี้กำลัง
		ฟังก์ชันลอการิทึม
6	18 ส.ค. 63	ฟังก์ชันตรีโกณมิติ
		— ฟังก์ชันไฮเพอร์โบลิก
		 ฟังก์ชันตรีโกณมิติผกผัน
7	25 ส.ค. 63	บทที่ 4 การหาค่าปริพันธ์เชิงซ้อน
		— ปริพันธ์จำกัดเขต
		 ปริพันธ์ตามเส้นในระนาบเชิงซ้อน
		— เส้นโค้งปิดเชิงเดียว

สัปดาห์ที่	วันอังคารที่	หัวข้อเนื้อหาวิชา (ระบุหัวข้อใหญ่และย่อย)
8	1 ก.ย. 63	— ทฤษฎีบทของการปริพันธ์
		— สูตรปริพันธ์โคชี
9	8 ก.ย. 63	สอบกลางภาค
10	15 ก.ย. 63	บทที่ 5 ลำดับและอนุกรมของจำนวนเชิงซ้อน
		— การลู่เข้าของลำดับและอนุกรม
		— อนุกรมกำลัง
11	22 ก.ย 63	— อนุกรมเทย์เลอร์
12	29 ก.ย. 63	— อนุกรมโลรองต์
13	6 ต.ค. 63	บทที่ 6 ทฤษฎีบทส่วนตกค้าง
		— จุดเอกฐาน
14	13 ต.ค. 63	— ส่วนตกค้าง
15	20 ต.ค. 63	— ทฤษฎีบทส่วนตกค้าง
16	27 ต.ค. 63	บทที่ 7 การส่ง
		$-$ การส่งเซตของจุดไปยังระนาบ $oldsymbol{w}$
		— การส่งคงรูป
		 การส่งแบบเศษส่วนเชิงเส้น
17	3 พ.ย 63	สอบปลายภาค

7. หนังสืออ่านประกอบ

- 7.1 ธนิต มาลากร, **ฟังก์ชันเชิงซ้อนและการประยุกต์ สำหรับนักคณิตศาสตร์ นักวิทยาศาสตร์ และ** วิศวกร, พิมพ์ครั้งที่ 1 สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ, 2556
- 7.2 James Brown and Ruel V.Churchill, **Complex variables and application**, McGraw Hill Book Company

สารบัญ

		หน้า
บทที่ 1	จำนวนเชิงซ้อน	1
บทที่ 2	ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน	17
บทที่ 3	ฟังก์ชันพื้นฐานเชิงซ้อน	34
บทที่ 4	การหาค่าปริพันธ์ของฟังก์ชันเชิงซ้อน	49
บทที่ 5	ลำดับและอนุกรมของจำนวนเชิงซ้อน	67
บทที่ 6	ทฤษฎีส่วนตกค้าง	86
บทที่ 7	การส่ง	100
บรรณานุกรม	110	

แผนการสอนในวันอังคารที่ 7 กรกฎาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 1 จำนวนเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1 การดำเนินการเบื้องต้นของจำนวนเชิงซ้อน
- 2 คุณสมบัติทางพีชคณิต
- 3 ความสัมพันธ์ระหว่างจำนวนเชิงซ้อนกับระบบพิกัดฉาก
- 4 ค่าสัมบูรณ์และสังยุค

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักจำนวนเชิงซ้อน การดำเนินการเบื้องต้นของจำนวนเชิงซ้อน
- 2. ให้ผู้เรียนรู้จักค่าสัมบูรณ์และสังยุคของจำนวนเชิงซ้อน

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 1

จำนวนเชิงซ้อน

จำนวนเชิงซ้อนมีจุดเริ่มต้นมาจากการที่สมการพีชคณิตไม่เชิงเส้นบางสมการ ไม่สามารถหาผลเฉลยที่ เป็นจำนวนจริงได้ ตัวอย่างเช่น $x^2+2=0$ สมการนี้ไม่มีผลเฉลยที่เป็นจำนวนจริง นักคณิตศาสตร์จึงสร้าง สัญลักษณ์ใช้แทนด้วย i ซึ่งเมื่อนำมายกกำลังสองจะมีค่าเป็น -1 ซึ่งใช้แทนปริมาณ $\sqrt{-1}$ ซึ่งสามารถนำมาใช้ แก้ปัญหาในการหาผลเฉลยของระบบสมการพีชคณิตได้อย่างดีและเป็นต้นกำเนิดของการศึกษาและงานวิจัย ทางด้าน การวิเคราะห์เชิงซ้อน (Complex analysis)

จำนวนเชิงซ้อนเป็นจำนวนที่เขียนในรูป z=(x,y) หรือ z=x+iy โดยที่ x และ y เป็นจำนวน จริง เราเรียก x ว่า ส่วนจริง (Real part) ซึ่งใช้สัญลักษณ์ว่า x0 และเรียก y2 ว่า ส่วนจินตภาพ (Imaginary part) ซึ่งใช้สัญลักษณ์ว่า x1 เกา

นิยามคุณสมบัติทางพีชคณิตของจำนวนเชิงซ้อน

ให้
$$z_1 = x_1 + y_1 i$$
 และ $z_2 = x_2 + y_2 i$ เป็นจำนวนเชิงซ้อนใด ๆ

การเท่ากันของจำนวนเชิงซ้อน

เรานิยามการเท่ากันของจำนวนเชิงซ้อน $z_1=z_2$ ก็ต่อเมื่อ $x_1=x_2$ และ $y_1=y_2$

ตัวอย่าง 1.1 ให้
$$x-2+yi=2+3i$$
 จงหา x และ y

วิธีทำ
$$x-2=2$$

และ
$$y=3$$

$$\therefore x = 4$$
 และ $y = 3$

การบวกของจำนวนเชิงซ้อน

เรานิยามการบวกของจำนวนเชิงซ้อน $z_1+z_2=(x_1+x_2)+(y_1+y_2)i$

ตัวอย่าง 1.2
$$(2+3i)+(4-5i)$$

วิธีทำ
$$(2+3i)+(4-5i) = (2+4)+(3-5)i$$

$$=6-2i$$

การลบกันของจำนวนเชิงซ้อน

เรานิยามการลบของจำนวนเชิงซ้อน $z_1 - z_2 = (x_1 - x_2) + (y_1 - y_2)i$

ตัวอย่าง 1.3 (3+6i)-(2-4i)

วิธีทำ
$$(3+6i)-(2-4i) = (3-2)+(6-(-4))i$$

$$= 1+10i$$

การคูณของจำนวนเชิงซ้อน

เรานิยามการคูณของจำนวนเชิงซ้อนโดยคิดจาก $i=\sqrt{-1}$ และ $i^2=-1$

$$z_1 z_2 = (x_1 + y_1 i)(x_2 + y_2 i)$$

$$= x_1 x_2 + x_1 y_2 i + x_2 y_1 i - y_1 y_2$$

$$= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$$

ตัวอย่าง 1.4 (2+3i)(4+5i)

วิธีทำ
$$(2+3i)(4+5i) = (2)(4) - (3)(5) + ((2)(5) + (4)(3))i$$

= $-7 + 22i$

ค่าของ i^n

พิจารณาจากค่า

$$i^{1} = i$$
 $i^{5} = i$ $i^{9} = i$
 $i^{2} = -1$ $i^{6} = -1$ $i^{10} = -1$
 $i^{3} = -i$ $i^{7} = -i$ $i^{11} = -i$
 $i^{4} = 1$ $i^{8} = 1$ $i^{12} = 1$

สังเกตว่า ค่า $i^k=i^r$ โดย r เป็นเศษเหลือจากการหาร k ด้วย 4 ซึ่งมีค่าเป็น i,-1,-i และ 1

เช่น
$$i^{25}=i^1=i$$
 และ $i^{-32}=rac{1}{i^{32}}=rac{1}{i^0}=1$

สังยุคของจำนวนเชิงซ้อน

ถ้า z=x+yi แล้ว เรานิยามสังยุค (Conjugate) โดยใช้สัญลักษณ์ \overline{z} โดยที่ x-yi

ตัวอย่าง 1.5 กำหนดให้ z=2+3i จงหา \overline{z}

วิธีทำ ดังนั้น $\overline{z} = 2 - 3i$

เราสามารถพิสูจน์ได้ว่า $z\overline{z} = x^2 + y^2$ ซึ่งเป็นจำนวนจริงบวก ดังนี้

$$\overline{z}\overline{z} = (x+iy)(x-iy)$$
$$= x^2 + y^2 + (xy - yx)i$$
$$= x^2 + y^2$$

ซึ่งจะเป็นแนวทางในการนิยามการหารของจำนวนเชิงซ้อน

การหารของจำนวนเชิงซ้อน

เราสามารถนิยามการหารของจำนวนเชิงซ้อน $\frac{z_1}{z_2}$ โดยที่ $z_2 \neq 0$ ให้อยู่ในรูปของจำนวนเชิงซ้อน โดย ใช้สังยุคของ z_2 คูณทั้งเศษส่วน เพื่อให้ส่วนกลายเป็นจำนวนจริง ดังต่อไปนี้

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{\overline{z}_2}{\overline{z}_2} = \frac{x_1 x_2 + y_1 y_2 + i(y_1 x_2 - x_1 y_2)}{x_2^2 + y_2^2}$$
$$= \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{i(y_1 x_2 - x_1 y_2)}{x_2^2 + y_2^2}$$

ตัวอย่าง 1.6 จงคำนวณค่าของ $\frac{2+3i}{4+5i}$

วิธีทำ
$$\frac{2+3i}{4+5i} = \frac{2+3i}{4+5i} \cdot \frac{4-5i}{4-5i}$$

$$= \frac{8+12i-10i-15i^2}{16+25}$$

$$= \frac{23+2i}{41} = \frac{23}{41} + \frac{2}{41}i$$

ความสัมพันธ์ของจำนวนเชิงซ้อนกับระบบพิกัดฉาก

ในการพิจารณาระบบจำนวนจริงนั้นเรานิยามแทน จำนวนจริง $_{x}$ ด้วยจุดบนเส้นจำนวนจริง ดังรูป

ในกรณีของจำนวนเชิงซ้อนก็เช่นกันเรานิยาม แทนจำนวนเชิงซ้อน z=x+yi ด้วยจุด $\left(x,y\right)$ ใน ระนาบ xy โดยจะเรียกแกน $_x$ ในแนวนอนว่าแกนจริง (Real axis) และแกน y ในแนวตั้งว่าแกนจินตภาพ (Imaginary axis) และเรียกระนาบ xy ดังกล่าวว่าระนาบเชิงซ้อน (Complex plane) ดังรูป

นอกจากนี้ เรายังสามารถมอง (x,y) = x + yi ในฐานะเวกเตอร์ในระนาบ 2 มิติของจำนวนจริงได้

จากนิยาม การบวกและลบของจำนวนเชิงซ้อนเราจะสามารถมองเปรียบเสมือนการบวกและการลบ ของเวกเตอร์ในระนาบ 2 มิติได้ ดังนั้น จึงเป็นเรื่องปกติที่เราจะนิยามขนาดของจำนวนเชิงซ้อนในทำนอง เดียวกันกับขนาดของเวกเตอร์ ดังนี้

ขนาดของจำนวนเชิงซ้อน (Modulus)

ถ้า z=x+yi เป็นจำนวนเชิงซ้อนใด ๆ เรานิยามขนาดของ z ในรูปสัญลักษณ์ |z| เป็นค่า $\sqrt{x^2+y^2}$ ซึ่งเท่ากับของขนาดในเชิงเวกเตอร์ โดยเปรียบเทียบเป็นระยะทางจากจุด 0 ไปยังจุด z และพิจารณา

$$\begin{aligned} |z_1 - z_2| &= |(x_1 - x_2) + (y_1 - y_2)i| \\ &= \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \end{aligned}$$

เป็นระยะทางระหว่างจุด 2 จุดใดๆ

ถ้า $_z$ และ $_w$ เป็นจุดเชิงซ้อน 2 จุด เราสามารถเปรียบเทียบภาพการบวกของเวกเตอร์ z+w ได้ดังรูป

เรามอง |z|,|w|,|z+w| เป็นความยาวด้านของรูปสามเหลี่ยม โดยกฎของสามเหลี่ยมใด ๆ ความยาวด้านใด ๆ จะน้อยกว่าผลบวกของด้านประกอบ

ดังนั้น เราจะได้ $|z+w| \leq |z| + |w|$ เราเรียกอสมการนี้ว่า อสมการสามเหลี่ยม (triangle inequality)

จากอสมการสามเหลี่ยมจะได้ว่า

$$|z| = |z + w - w| \le |z + w| + |-w|$$
$$= |z + w| + |w|$$

ดังนั้น
$$|z|-|w| \le |z+w|$$

ในทำนองเดียวกัน จะได้ว่า

$$|w| - |z| \le |z + w|$$

ดังนั้น
$$-|z+w| \le |z| - |w| \le |z+w|$$

เพราะฉะนั้น

$$|z+w| \ge ||z|-|w||$$

นอกจากนั้นเรายังสามารถแสดงได้ไม่ยากว่า

$$|z \cdot w| = |z||w|$$
 และ $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$ ถ้า $w \neq 0$

ตัวอย่าง 1.7 จงหาค่าขอบเขตบนของ $\left|3z^2-4z+1\right|$ เมื่อ $\left|z\right|=2$

วิธีทำ
$$\left| 3z^2 - 4z + 1 \right| \le \left| 3z^2 \right| + \left| -4z \right| + \left| 1 \right|$$

$$= 3 \left| z \right|^2 + 4 \left| z \right| + 1$$

$$= 3(2)^2 + 4(2) + 1$$

$$= 21$$

ตัวอย่าง 1.8 จงหาค่าขอบเขตล่างของ $\left|z^2-1\right|$ เมื่อ $\left|z\right|=2$

จากทั้งสองตัวอย่าง จะได้ค่าขอบเขตบนของ $\left| \frac{3z^2-4z+1}{z^2-1} \right|$ เมื่อ $\left| z \right| = 2$

ดังนี้
$$\left| \frac{3z^2 - 4z + 1}{z^2 - 1} \right| \le \frac{21}{3} = 7$$

คุณสมบัติอื่นๆ ที่ควรทราบเกี่ยบกับสังยุค มีดังนี้

1)
$$\overline{z+w} = \overline{z} + \overline{w}$$
 และ $\overline{z-w} = \overline{z} - \overline{w}$

2)
$$\overline{zw} = \overline{z} \overline{w}$$
 และ ถ้า $w \neq 0$ แล้ว $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$

3)
$$\overline{\overline{z}} = z$$

$$4) \quad z \cdot \overline{z} = \left| z \right|^2$$

5) Re
$$z = \frac{1}{2}(z + \overline{z})$$
 และ Im $z = \frac{1}{2i}(z - \overline{z})$

เนื่องจากคุณสมบัติ ข้อ 1) ถึง 4) ง่ายต่อการพิสูจน์เราจะให้ผู้อ่านที่สนใจลองไปพิสูจน์เอง ในที่นี้ เราจะแสดง พิสูจน์คุณสมบัติข้อ 5) เท่านั้น

จาก
$$z=x+yi$$
 จะได้ $\overline{z}=x-yi$ ดังนั้น $z+\overline{z}=2x=2\operatorname{Re} z$ จึงสรุปว่า $\operatorname{Re} z=\frac{z+\overline{z}}{2}$

ในทำนองเดียวกันเราสามารถแสดงว่า ${
m Im}\,z=rac{z-\overline{z}}{2i}$

แผนการสอนในวันอังคารที่ 14 กรกฎาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 1 จำนวนเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. จำนวนเชิงซ้อนในระบบพิกัดเชิงขั้ว
- 2. รากของจำนวนเชิงซ้อน

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักจำนวนเชิงซ้อนในระบบพิกัดเชิงขั้ว
- 2. ให้ผู้เรียนสามารถหารากของจำนวนเชิงซ้อนได้

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

พิกัดฉากและพิกัดเชิงขั้ว

จากรูปแบบ z=x+iy ที่ผ่านมาเราสามารถเปรียบเทียบเวกเตอร์ (x,y) ในระนาบ x-y ซึ่งอยู่ใน ระบบพิกัดฉาก แต่อย่างไรก็ตามการระบุตำแหน่งในระนาบสองมิติสามารถบอกได้โดยขนาด r ที่เป็นระยะ จากจุด 0 ถึงจุด z และ θ เป็นมุมที่เวกเตอร์ทำกับแกนจริงทางบวกโดยวัดทวนเข็มนาฬิกา ระบบดังกล่าว เรียกว่า ระบบพิกัดเชิงขั้ว (r,θ)

การแปลงระหว่างระบบพิกัดทั้ง 2 รูปแบบ

ให้ z=(x,y) เป็นระบบพิกัดฉากของจำนวนเชิงซ้อนการแปลงจากระบบพิกัดฉากมาระบบเชิงขั้ว สามารถทำได้โดยความสัมพันธ์

$$r = \sqrt{x^2 + y^2}$$

$$\tan \theta = \frac{y}{x}$$

โดยพิจารณาค่ามุมจากตำแหน่งจตุภาคที่เวกเตอร์ $_z$ อยู่ แต่ถ้าให้ (r,θ) เป็นระบบพิกัดเชิงขั้วของ จำนวนเชิงซ้อน การแปลงจากระบบพิกัดเชิงขั้วมาระบบพิกัดฉากทำได้โดย

$$\cos\theta = \frac{x}{r}$$

ดังนั้น
$$x = r \cos \theta$$

ในทำนองเดียวกัน $y = r \sin \theta$

จากการแปลงดังกล่าว จะเห็นได้ว่า จาก

$$z = r\cos\theta + ir\sin\theta$$

$$= r(\cos\theta + i\sin\theta)$$

จากสูตรของออยเลอร์ (Euler's formula) $e^{i heta} = \cos heta + i \sin heta$ จะได้ว่า

$$r(\cos\theta + i\sin\theta) = re^{i\theta}$$

ดังนั้น จำนวนเชิงซ้อน z ที่เขียนในรูปแบบของพิกัดเชิงขั้ว อยู่ในรูปฟังก์ชันยกกำลังได้ เช่น $z=5(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$ สามารถเขียนในรูป $z=5e^{i\frac{\pi}{2}}$ ได้

เราเรียกค่า $_r$ ดังกล่าวว่า มอดูลัส (Modulus) และ θ เรียกว่า ค่าอาร์กิวเมนต์ (Argument) ใช้แทน ด้วยสัญลักษณ์ $\arg z$ แต่จะเห็นว่า $\theta+2k\pi,\,k\in\mathbb{Z}$ ก็เป็นค่าอาร์กิวเมนต์ ของ $_z$ เพื่อที่จะให้กล่าวถึงค่า อาร์กิวเมนต์ชุดเดียวกันเราจะต้องกำหนดช่วงมุมที่แสดงการหมุนเทียบ 1 รอบ เท่านั้น เช่น ถ้าระบุว่า $0\leq\theta\leq 2\pi$ เราจะได้ค่ามุมเพียงมุมเดียว แต่ถ้าระบุค่ามุมเป็นช่วงระหว่าง $_{-\pi}$ ถึง $_\pi$ เราจะเรียกค่ามุม ดังกล่าวว่าค่ามุขสำคัญของอาร์กิวเมนต์ (Principal argument) ใช้สัญลักษณ์ แทนด้วย $\arg z \leq \pi$

ตัวอย่างการแปลงระบบ

ตัวอย่าง 1.9 จงแปลงรูปแบบเชิงขั้ว $z=10e^{i\frac{\pi}{4}}$ ให้อยู่ในรูประบบพิกัดฉาก

วิธีทำ
$$z = 10e^{i\frac{\pi}{4}}$$

$$= 10(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$$

$$= 10(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})$$

$$= 5\sqrt{2} + 5\sqrt{2}i$$

ตัวอย่าง 1.10 จงแปลง z=-1-i ให้อยู่ในรูปแบบเชิงขั้ว

1) อาร์กิวเมนต์อยู่ในช่วง 0 ถึง $\,2\pi\,$

วิธีทำ

$$r = \sqrt{x^2 + y^2}$$

$$=\sqrt{(-1)^2+(-1)^2}=\sqrt{2}$$

และ
$$\tan \theta = \frac{y}{x} = \frac{-1}{-1} = 1$$

$$\therefore \theta = 5 \frac{\pi}{4}$$
 อยู่ในจตุภาคที่ 3 ที่อยู่ในช่วง 0 ถึง 2π

ดังนั้น
$$z = \sqrt{2}e^{i5\frac{\pi}{4}}$$

2) อาร์กิวเมนต์เป็นค่ามุขสำคัญ

วิธีทำ จะได้ว่า *r* มีค่าเท่าเดิม

แต่
$$\theta = \frac{-3\pi}{4}$$
 อยู่ในจตุภาคที่ 3 ที่อยู่ในช่วง $-\pi$ ถึง π

ดังนั้น
$$z = \sqrt{2}e^{-3\frac{\pi}{4}i}$$

ตัวอย่าง 1.11 จงแปลง $z=1-\sqrt{3}i$ ให้อยู่ในรูปเชิงขั้ว โดยใช้ค่ามุขสำคัญของอาร์กิวเมนต์

วิธีทำ
$$r = \sqrt{1^2 + (\sqrt{3})^2}$$

= 2 และ
$$\tan\theta=\frac{-\sqrt{3}}{1}=-\sqrt{3}$$

$$\theta=-\frac{\pi}{3} \,$$
 อยู่ในจตุภาคที่ 4 และ $-\pi<\theta\leq\pi$

ดังนั้น $z = 2e^{-\frac{\pi}{3}i}$

เราสามารถสังเกตได้ว่ารูปแบบเชิงขั้วจะช่วยทำให้เราคูณหรือหารหรือยกกำลังจำนวนเชิงซ้อนได้ง่าย ขึ้น

ตัวอย่าง 1.12 จงหาค่าของ $(2+2\sqrt{3}i)^4(1-\sqrt{3}i)^{10}$

วิธีทำ
$$(2+2\sqrt{3}i)^4(1-\sqrt{3}i)^{10} = (4e^{i\frac{\pi}{3}})^4(2e^{-\frac{\pi}{3}i})^{10}$$

$$= 4^4e^{\frac{4\pi}{3}i}2^{10}e^{-\frac{10\pi}{3}i}$$

$$= 2^{18}e^{-\frac{6\pi}{3}i} = 2^{18}e^{-2\pi i}$$

$$= 2^{18}$$

การหารากที่ n ของจำนวนเชิงซ้อน

นอกจากรูปแบบเชิงขั้วของจำนวนเชิงซ้อนจะทำให้สะดวกมากขึ้นในการคูณการหารและการยกกำลัง แล้ว รูปแบบเชิงขั้วยังมีความสะดวกในการหารากที่ n กำหนดให้ w ได้ดังนี้

$$\Im \cap \qquad z^n = w = re^{i(\theta + 2k\pi)}$$

จะได้รากที่
$$n$$
 ของ w คือ $z=r^{rac{1}{n}}e^{i\left(rac{ heta+2k\pi}{n}
ight)}$

โดยที่ รากที่ n ของ w จะมีค่า n รากที่แตกต่างกันตามค่า $k=0,1,2,\dots,n-1$ นอกจากนั้น ค่า k อื่น ๆ จะให้ค่าที่ซ้ำเดิม

ตัวอย่าง 1.13 จงหารากที่ 3 ของ 1

วิธีทำ
$$z^{3} = 1 = 1e^{i0}$$
ดังนั้น $z = 1^{\frac{1}{3}}e^{i\left(\frac{0+2k\pi}{3}\right)}$ โดยที่ $k = 0,1,2$

$$k = 0 \; ; \qquad z = 1e^{i0} = 1$$

$$k = 1 \; ; \qquad z = 1e^{i\frac{2\pi}{3}}$$

$$= \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$$

$$= \frac{-1}{2} + \frac{\sqrt{3}}{2}i$$

$$k = 2 \; ; \qquad z = 1e^{i\frac{4\pi}{3}}$$

 $=\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$

 $=\frac{-1}{2}+\frac{\sqrt{3}}{2}i$

แบบฝึกหัดประจำบทที่ 1

1. จงหาค่า x และ y ที่สอดคล้องกับสมการ

$$1.1)3x + 2yi - xi + 5y = 7 + 5i$$

1.2)
$$x^2 + y^2i + 2x - 4yi = 3 - 4i$$

- 2. จงหาค่าของ $i^{10} + 2i^{20} + 3i^{31} + 4i^{-37}$
- 3. จงหาค่าในรูป a+bi ของ

$$3.1)(\sqrt{2}-i)-(1-i)(1-\sqrt{2}i)$$

3.2)
$$\frac{\overline{2+i^3}}{3-4i}$$

- 4. จงหาขอบเขตบนของ $\left| \frac{3z^2 + 6z + 1}{z^3 1} \right|$ เมื่อ |z| = 2
- 5. จงแสดงว่า $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
- 6. จงแปลงรูปแบบพิกัดฉากต่อไปนี้ให้อยู่ในรูปเชิงขั้วในรูปค่ามุขสำคัญของอาร์กิวเมนต์

6.1)
$$\frac{\sqrt{3}}{2} - \frac{i}{2}$$

6.2)
$$-1-\sqrt{3}i$$

6.3)
$$(1+\sqrt{3}i)^4$$

- 7. จงหารากที่ 4 ทั้งหมดของ 2
- 8. จงใช้วิธีการหารากที่ n ของจำนวนเชิงซ้อนเพื่อหาค่า z ทั้งหมดที่สอดคล้อง $z^3 + 3z = 3z^2 + 2$

แผนการสอนในวันอังคารที่ 21 กรกฎาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 2 ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563 เนื้อหาสาระ

1. ลิมิตและความต่อเนื่อง

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักลิมิตและความต่อเนื่อง

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 2

ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน

เราได้ศึกษาพื้นฐานของระบบจำนวนเชิงซ้อนในบทที่ผ่านมา ในบทนี้เรามุ่งศึกษาเกี่ยวกับฟังก์ชัน เชิงซ้อนและคุณสมบัติที่สำคัญ ได้แก่ ลิมิตและการหาอนุพันธ์เชิงซ้อน และนำเสนอนิยามของฟังก์ชันโฮโลมอร์ ฟิก (Holomorphic) และทฤษฎีบทที่เกี่ยวข้อง

ถ้า f(z) เป็นฟังก์ชันนิยามบนเซตเปิด Ω เราเรียก Ω ว่าโดเมนของฟังก์ชัน f โดยใช้สัญลักษณ์ $f:\Omega \to \mathbb{C}$ เนื่องจาก ค่าฟังก์ชัน f(z) เป็นสมาชิกของ \mathbb{C} จะได้ว่า

$$f(z) = f(x+iy)$$
$$= u(x, y) + iv(x, y)$$

โดยที่ u,v เป็นฟังก์ชันค่าจริงขึ้นอยู่กับ x,y

เนื่องจาก z สามารถเขียนรูปแบบพิกัดเชิงขั้ว $re^{i\theta}$ ดังนั้น f(z) สามารถเขียนในรูป

$$f(z) = f(re^{i\theta})$$
$$= u(r,\theta) + iv(r,\theta)$$

โดยที่ u,v เป็นฟังก์ชันค่าจริงที่ขึ้นอยู่กับ r, heta

ตัวอย่าง 2.1 จงเขียน $f(z) = z^2 + 3$ ให้อยู่ในรูป u + iv

วิธีทำ
$$z = x + iy$$

$$f(x+yi) = (x+iy)^{2} + 3$$
$$= x^{2} - y^{2} + 2xyi + 3$$
$$= x^{2} - y^{2} + 3 + 2xyi$$

ดังนั้น
$$u(x, y) = x^2 - y^2 + 3$$
 และ $v(x, y) = 2xy$

ตัวอย่าง 2.2 จงเขียน $f(z) = z^5$ ให้อยู่ในรูป u + iv

วิธีทำ จะเห็นว่ามีการยกกำลังของ z ที่มีค่ามาก รูปแบบที่เหมาะสมคือรูปแบบเชิงขั้ว

$$z = re^{i\theta}$$

$$f(re^{i\theta}) = (re^{i\theta})^5 = r^5 e^{i5\theta}$$

$$= r^5 \cos 5\theta + ir^5 \sin 5\theta$$

ดังนั้น $u(r,\theta) = r^5 \cos 5\theta$ และ $v(r,\theta) = r^5 \sin 5\theta$

กราฟของฟังก์ชันเชิงซ้อน

เมื่อพิจารณาฟังก์ชันค่าจริง นั่นคือ $f:S\subseteq\mathbb{R}\to\mathbb{R}$ เราสามารถวาดเป็นกราฟในระนาบ xy ซึ่งทำ ให้พิจารณาคุณสมบัติของ f ได้สะดวกขึ้นทั้งในแง่ลิมิต ความต่อเนื่อง หรือการมีอนุพันธ์ อย่างไรก็ตามใน กรณีของฟังก์ชันเชิงซ้อน เราไม่สามารถนำคู่อันดับ (z,f(z)) มาวาดกราฟในระนาบเดียวกันได้ เนื่องจาก โดเมนมี 2 มิติและเรนจ์อีก 2 มิติ เราจึงนิยมวาดรูปภายใต้การส่งโดยให้โดเมนอยู่ภายใต้ระนาบ 2 มิติ และเรนจ์อยู่ในอีกระนาบ 2 มิติ

ตัวอย่าง 2.3 ให้ $\Omega = \left\{z \mid |z| \leq 1 \right\}$ จงหาภาพของเรนจ์จาก Ω ภายใต้การส่งของฟังก์ชัน f(z) = z + 1 + i

เริ่มจากวาดรูปโดเมน Ω พิจารณา z=x+iy จากเงื่อนไข $|z| \leq 1$ จะได้อสมการ $x^2+y^2 \leq 1$ ซึ่งจะได้รูปวงกลมดังรูป พิจารณาการส่ง x+yi+1+i=(x+1)+(y+1)i แสดงว่า x เลื่อนไปทางขวา 1 หน่วย และ y เลื่อนไปด้านบน 1 หน่วย ดังนั้น ภาพของเรนจ์ภายใต้การส่งคือ

ตัวอย่าง 2.4 ให้ $\Omega = \left\{ \left. z \mid \left| z \right| < 1, x > 0, y > 0 \right. \right\}$ จงหาภาพของเรนจ์จาก Ω ภายใต้การส่งของฟังก์ชัน $f(z) = z^3$

วิธีทำ

เริ่มจากการวาดรูปของโดเมน Ω พิจารณา $z=re^{i heta}$ จากเงื่อนไข |z|<1 , x>0 และ y>0 จะได้อสมการ

0 < r < 1 และ $0 < heta < rac{\pi}{2}$ ซึ่งจะได้รูปส่วนของวงกลมดังรูป

พิจารณาการส่งจากโดเมน $re^{i heta}$

ดังนั้น
$$f(z) = r^3 e^{i3\theta}$$

โดยที่ $0 < r^3 < 1$ และ $0 < 3\theta < \frac{3\pi}{2}$

ดังนั้น ภาพของเรนจ์ภายใต้การส่งคือ

ลิมิตของฟังก์ชันเชิงซ้อน

ถ้าเรากล่าวถึงลิมิตตามนิยามจะมีลักษณะคล้ายกับนิยามลิมิตของฟังก์ชันค่าจริง ดังนี้

บทนิยาม 2.5 ให้ f(z) เป็นฟังก์ชันเชิงซ้อนที่นิยามโดเมน D รอบจุด z_0 แล้ว f จะถูกกล่าวว่ามีค่าเข้า ใกล้ค่า ลิมิต $w_0\in\mathbb{C}$ ขณะที่ $z\in D-\{z_0\}$ เข้าใกล้ z_0 ก็ต่อเมื่อ ทุก ๆ ค่า $\varepsilon>0$ สามารถหาค่า $\delta>0$ ซึ่ง $|f(z)-w_0|<\varepsilon$ เมื่อ $0<|z-z_0|<\delta$ โดยจะใช้สัญลักษณ์แทนด้วย $\lim_{z\to z_0}f(z)=w_0$

แต่อย่างไรก็ตามนิยามลิมิตจะไม่ได้บอกวิธีการคำนวณหาลิมิตจึงจำเป็นต้องอาศัยทฤษฎีของลิมิตใน การคำนวณในการคำนวณหาลิมิตของฟังก์ชัน ดังต่อไปนี้

ทฤษฎีบทของลิมิต

ทฤษฎีบท 2.6 สมมติให้ $\lim_{z \to z_0} f(z) = w_1$ และ $\lim_{z \to z_0} g(z) = w_2$ แล้วจะได้ว่า

$$\lim_{z \to z_0} [f(z) \pm g(z)] = w_1 \pm w_2$$

$$\lim_{z \to z_0} f(z) \cdot g(z) = w_1 \cdot w_2$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_1}{w_2} \text{ if } w_2 \neq 0$$

ตัวอย่าง 2.7 จงหาค่าของ $\lim_{z \to 2i} \frac{z}{z^4 + 2}$

วิธีทำ

$$\lim_{z \to 2i} \frac{z}{z^4 + 2} = \frac{\lim_{z \to 2i} z}{\lim_{z \to 2i} z^4 + \lim_{z \to 2i} 2}$$
$$= \frac{2i}{(2i)^4 + 2} = \frac{2i}{16 + 2} = \frac{i}{9}$$

ในบางกรณีของการหาลิมิตของฟังก์ชันอาจจะพบว่า เมื่อแทนค่าลิมิตแล้วจะพบกรณี $\frac{0}{0}$ ซึ่งแนวทางการแก้ปัญหาจะใช้วิธีการแยกตัวประกอบคล้ายกับจำนวนจริง

ตัวอย่าง 2.8 จงหาค่า $\lim_{z \to i} \frac{3z - 3i}{z^2 + 1}$

$$\lim_{z \to i} \frac{3z - 3i}{z^2 + 1} = \lim_{z \to i} \frac{3(z - i)}{(z - i)(z + i)}$$
$$= \lim_{z \to i} \frac{3}{(z + i)}$$
$$= \frac{3}{2i} = \frac{-3i}{2}$$

ตัวอย่าง 2.9 จงหาค่า
$$\lim_{z \to 3i} \frac{z^2 - 5iz - 6}{2z - 6i}$$

$$\lim_{z \to 3i} \frac{z^2 - 5iz - 6}{2z - 6i} = \lim_{z \to 3i} \frac{(z - 3i)(z - 2i)}{2(z - 3i)}$$

$$= \lim_{z \to 3i} \frac{(z - 2i)}{2}$$

$$= \frac{3i - 2i}{2} = \frac{i}{2}$$

ในกรณี $\lim_{z \to z_0} f(z)$ หาค่าไม่ได้ของจำนวนเชิงซ้อน จะมีแนวคิดแบบเดียวกันกับแคลคูลัสในสองมิติ นั่นคือ ถ้าสามารถหาเส้นโค้งสองเส้นที่ผ่านจุด z_0 และค่าลิมิตของฟังก์ชันบนเส้นโค้งแต่ละเส้นมีค่าไม่เท่ากัน จะสรุปได้ว่า $\lim_{z \to z_0} f(z)$ หาค่าไม่ได้ รูปต่อไปนี้ แสดงถึงการเข้าถึงจุด (0,0) ซึ่งสามารถเข้าตามเส้นโค้งที่ ต่างกันได้

ตัวอย่าง 2.10 ให้ $f(z)=rac{\overline{z}}{z}$ จงแสดงว่า $\lim_{z o 0}f(z)$ หาค่าไม่ได้

วิธีทำ พิจารณา
$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{x - iy}{x + iy}$$
 บน $x = 0$
$$= \lim_{z \to 0} \frac{0 - iy}{0 + iy}$$

$$= \lim_{z \to 0} -1 = -1$$

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{x - iy}{x + iy}$$
 บนแกน x บน $y = 0$
$$= \lim_{z \to 0} \frac{x - i0}{x + i0}$$

ดังนั้น $\lim_{z\to 0} f(z) \neq \lim_{z\to 0} f(z)$ จึงสรุปได้ว่า $\lim_{z\to 0} f(z)$ หาค่าไม่ได้ งนั้น $\lim_{z\to 0} f(z)$ หาค่าไม่ได้

=1

เพื่อที่จะอธิบายค่าของลิมิตของฟังก์ชันที่ลู่เข้าสู่ค่าอนันต์ได้เราจำเป็นต้องขยายระนาบเชิงซ้อนเพื่อ รวมจุดที่ ∞ เรียกว่าระนาบเชิงซ้อนที่ถูกขยาย แทนสัญลักษณ์ \mathbb{C}_{∞}

เพื่อที่จะเข้าใจจุดใกล้ค่าอนันต์ในระนาบเชิงซ้อนที่ถูกขยายได้ชัดเจนขึ้น เราจะสร้างฟังก์ชันที่ส่งจาก จุดในระนาบเชิงซ้อนไปยังทรงกลมสามมิติ โดยอาศัยการลากเส้นตรงจากจุดในระนาบเชิงซ้อนดังกล่าวเชื่อม กับจุดบนสุด (N) ของทรงกลม โดยจุด P ที่ตัดผ่านทรงกลมดังกล่าวเป็นค่าของฟังก์ชันดังรูป

เราเรียกตำแหน่ง N ดังกล่าวว่าจุดขั้วเหนือ จากภาพจะเห็นได้ว่า เมื่อ z อยู่ห่างจากจุดกำเนิดมาก ขึ้นหรือ |z| มีค่ามากตำแหน่งของ P จะเข้าใกล้ตำแหน่ง N มากขึ้นเรื่อย ๆ เราจึงกำหนดให้จุดที่อนันต์ ∞ คือ

ตำแหน่งจุดขั้วเหนือของทรงกลมดังกล่าว ดังนั้น เมื่อ z เข้าใกล้ ∞ ค่าของ |z| จะมีค่ามากซึ่งทำให้ $\frac{1}{|z|}$ ลู่ เข้าสู่ 0 ซึ่งส่งผลให้ $\frac{1}{z}$ ลู่เข้าสู่ 0 เช่นกัน

ทฤษฎีบทต่อไปนี้ใช้ในการพิสูจน์ค่าของลิมิตที่เกี่ยวข้องกับค่า \infty

ทฤษฎีบท 2.11

$$\lim_{z \to z_0} f(z) = \infty$$
 ก็ต่อเมื่อ $\lim_{z \to z_0} \frac{1}{f(z)} = 0$

ตัวอย่าง 2.12

1) จงหา
$$\lim_{z\to 2} \frac{2z+3i}{z-2}$$

วิธีทำ เนื่องจาก
$$\lim_{z \to 2} \frac{z-2}{2z+3i} = \frac{2-2}{2(2)+3i}$$
 $= \frac{0}{4+3i} = 0$

ดังนั้น
$$\lim_{z\to 2} \frac{2z+3i}{z-2} = \infty$$

2) จงหา
$$\lim_{z\to\infty} \frac{3z^2+5z+i}{2iz^2+z-1}$$

วิธีทำ
$$\lim_{z \to \infty} \frac{3z^2 + 5z + i}{2iz^2 + z - 1} = \lim_{z \to \infty} \frac{3 + \frac{5}{z} + \frac{i}{z^2}}{2i + \frac{1}{z} - \frac{1}{z^2}}$$
$$= \frac{3}{2i} = \frac{-3}{2}i$$

3) จงหา
$$\lim_{z \to \infty} \frac{3z^2 + 2i}{5z^5 + 1}$$

วิธีทำ
$$\lim_{z \to \infty} \frac{3z^2 + 2i}{5z^5 + 1} = \lim_{z \to \infty} \frac{\frac{3}{z^2} + \frac{2i}{z^5}}{5 + \frac{1}{z^5}}$$
$$= \frac{0}{5} = 0$$

4) จงหา
$$\lim_{z \to \infty} \frac{6z^5 + i}{7z^2 + 3i}$$

วิธีทำ พิจารณา
$$\lim_{z\to\infty} \frac{7z^2+3i}{6z^5+i} = \lim_{z\to\infty} \frac{\frac{7}{z^3}+\frac{3i}{z^5}}{6+\frac{i}{z^5}}$$
 $= \frac{0}{6} = 0$

ดังนั้น
$$\lim_{z \to \infty} \frac{6z^5 + i}{7z^2 + 3i} = \infty$$

แผนการสอนในวันอังคารที่ 4 สิงหาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 2 ลิมิตและอนุพันธ์ของฟังก์ชันเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563 เนื้อหาสาระ

- 1. อนุพันธ์
- 2. สมการโคชี รีมันน์
- 3. ฟังก์ชันโฮโลมอร์ฟิก

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักลิมิตและความต่อเนื่อง
- 2. ให้ผู้เรียนรู้จักอนุพันธ์ สมการโคชี รีมันน์ และสามารถหาอนุพันธ์ได้
- 3. ให้ผู้เรียนรู้จักฟังก์ชันโฮโลมอร์ฟิก

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

อนุพันธ์ของฟังก์ชันเชิงซ้อน

นิยามของค่าอนุพันธ์

บทนิยาม 2.13 ให้ f เป็นฟังก์ชันในโดเมนที่ครอบคลุมระยะทางหนึ่งจากจุด z_0 แล้วค่าอนุพันธ์ของ f รอบ จุด z_0 คือค่าของลิมิต

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 ซึ่งแทนด้วยสัญลักษณ์ $f'(z_0)$

หรือ สามารถเขียนใหม่ได้เป็น

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$
 เมื่อลิมิตหาค่าได้

ตัวอย่าง 2.14 ให้ $f(z) = z^2 + z + 1$ จงหา f'(z)

วิธีทำ
$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

$$= \lim_{h \to 0} \frac{(z+h)^2 + z + h + 1 - z^2 - z - 1}{h}$$

$$= \lim_{h \to 0} \frac{2zh + h^2 + h}{h}$$

$$= \lim_{h \to 0} (2z + h + 1)$$

$$= 2z + 1$$

เราเรียกฟังก์ชันเชิงซ้อนที่สามารถหาค่าอนุพันธ์ได้ที่จุด $z\in\mathbb{C}$ ได้ว่าฟังก์ชันโฮโลมอร์ฟิก (Holomorphic function) หรือฟังก์ชันวิเคราะห์ (Analytic function)ที่จุด z และฟังก์ชันเชิงซ้อนที่สามารถ หาค่าอนุพันธ์ได้ทุกจุดใน $\mathbb C$ เราเรียกว่า ฟังก์ชันทั่ว (Entire function)

สมการโคชี-รีมันน์ (Cauchy - Riemann equations)

จากที่เคยได้อธิบายว่าทุก z=x+iy สามารถเขียนในรูป f(z)=u(x,y)+iv(x,y) ในหัวข้อนี้จะ ศึกษาสมการที่เรียกว่าสมการโคชี-รีมันน์ (Cauchy – Riemann equation) เพื่อใช้ในการตรวจสอบว่าฟังก์ชัน เชิงซ้อนที่กำหนดให้สามารถหาอนพันธ์ได้หรือไม่

สมการโคชี-รีมันน์ของฟังก์ชัน f(z) = u(x,y) + iv(x,y) คือ ชุดของความสัมพันธ์ของสมการ อนุพันธ์ย่อย ดังนี้

$$u_x = v_y$$
 และ $u_y = -v_x$

ซึ่งตั้งชื่อให้เกียรติแก่ A.L.Cauchy และ G.F.B.Riemann

ทฤษฎีบท 2.15 ถ้า f(z)=u(x,y)+iv(x,y) หาอนุพันธ์ได้ที่ $z_0=x_0+iy_0$ แล้ว u และ v สอดคล้อง กับสมการโคชี-รีมันน์ที่จุด z_0

ตัวอย่าง 2.16 จงตรวจสอบว่า $f(z) = \overline{z}$ สามารถหาอนุพันธ์ได้หรือไม่ที่จุดใด

วิธีทำ
$$f(z)=\overline{z}=x-iy$$

$$u(x,y)=x \qquad v(x,y)=-y$$

$$u_x=1 \qquad v_y=-1$$

 $\therefore u_{x} \neq v_{y}$ ทุกจุด $z \in \mathbb{C}$

 $\therefore f$ ไม่สอดคล้องสมการโคชี - รีมันน์ ทุกจุด $z\in\mathbb{C}$

 $\therefore f$ ไม่สามารถหาค่าอนุพันธ์ได้ทุกจุด

ทฤษฎีบท 2.17 ถ้า f(z) = u(x,y) + iv(x,y) โดยที่ u และ v สามารถหาอนุพันธ์ย่อยอันดับหนึ่งได้ที่จุด z_0 และ $u_x u_y$, v_x , v_y หาค่าได้และต่อเนื่องที่จุด z_0 และสอดคล้องสมการโคชี – รีมันน์ที่จุด z_0

แล้ว $f'(z_0)$ หาค่าได้ และ

$$f'(z_0) = u_x(z_0) + iv_x(z_0) = v_y(z_0) - iu_y(z_0)$$

ตัวอย่าง 2.18 ให้ $f(z) = (3x^2 + 2x - 3y^2 + 1) + i(6xy + 2y)$ จงหาตรวจสอบว่า f สามารถหาอนุพันธ์ ได้หรือไม่

วิธีทำ
$$u(x,y) = 3x^2 + 2x - 3y^2 + 1 \qquad v(x,y) = 6xy + 2y$$

$$u_x = 6x + 2 \qquad \qquad v_y = 6x + 2$$

$$\therefore u_x = v_y$$

$$u_y = -6y \qquad \qquad v_x = 6y$$

$$\therefore u_y = -v_y$$

ดังนั้น f สอดคล้องสมการโคชี - รีมันน์ และ u_x u_y , v_x , v_y หาค่าได้และต่อเนื่องบนทุกจุด $z\in\mathbb{C}$ สรุปได้ว่า f หาอนุพันธ์ได้ทุกจุดใน \mathbb{C} และ $f'(z)=u_x(z)+iv_x(z)$

$$=6x+2+i6y$$

แต่อย่างไรก็ตาม จากที่เคยอธิบายเราสามารถเขียนฟังก์ชันในรูปแบบเชิงขั้ว ดังนี้

$$f(z) = f(re^{i\theta}) = u(r,\theta) + iv(r,\theta)$$

ดังนั้น เราจึงมีสมการโคซี – รีมันน์ในรูปแบบเชิงขั้ว ดังนี้

$$ru_r = v_\theta$$
 $u_\theta = -rv_r$

ทฤษฎีบท 2.19 ถ้า $f(z) = u(r,\theta) + iv(r,\theta)$ โดยที่ u และ v สามารถหาอนุพันธ์อันดับหนึ่งได้ที่จุด z_0 โดยที่ $u_r, v_r, u_\theta, v_\theta$ หาค่าได้และต่อเนื่องที่จุด z_0 และ f สอดคล้องกับสมการโคชี - รีมันน์ที่จุด z_0 แล้ว f'(z) หาค่าได้และ

$$f'(z) = e^{-i\theta}(u_r + iv_r)$$

ตัวอย่าง 2.20 ให้ $f(z) = r^3 \cos(3\theta) + 2 + i(r^3 \sin(3\theta) + 1)$ จงตรวจสอบว่า f สามารถหาค่าอนุพันธ์ได้ หรือไม่

วิธีทำ
$$u=r^3\cos(3\theta)+2 \qquad v=r^3\sin(3\theta)+1$$

$$u_r=3r^2\cos(3\theta) \qquad v_\theta=3r^3\cos(3\theta)$$

$$\therefore ru_r=v_\theta$$

$$u_\theta=-3r^3\sin(3\theta) \qquad v_r=3r^2\sin(3\theta)$$

$$\therefore u_\theta=-rv_r$$

ดังนั้น f สอดคล้องสมการโคชี - รีมันน์ และ $u_r,v_r,u_\theta,v_\theta$ หาค่าได้และต่อเนื่อง ที่ทุกจุด $z\in\mathbb{C}$ เพราะฉะนั้น f สามารถหาอนุพันธ์ได้ ที่ทุกจุด $z\in\mathbb{C}$ และ

$$f'(z) = e^{-i\theta} (u_r + iv_r)$$
$$= e^{-i\theta} (3r^2 \cos(3\theta) + i3r^2 \sin(3\theta))$$
$$= 3z^2$$

ในบางกรณี เราสามารถใช้คุณสมบัติของสมการโคชี–รีมันน์ในการพิสูจน์คุณสมบัติของฟังก์ชัน เชิงซ้อนได้ดังต่อไปนี้

ตัวอย่าง 2.21 ถ้า f และ \overline{f} เป็นฟังก์ชันโฮโลมอร์ฟิกบนโดเมน Ω แล้วจงแสดงว่า

f เป็นฟังก์ชันคงที่บน Ω

วิธีทำ
$$f(z) = u(x, y) + iv(x, y) \qquad \overline{f}(z) = u(x, y) - iv(x, y)$$

จากการที่ f สอดคล้องสมการโคชี-รีมันน์

จะได้ว่า
$$u_x = v_y$$
 (1)

$$u_{y} = -v_{x} \tag{2}$$

และจากการที่ \overline{f} สอดคล้องสมการโคชี-รีมันน์

จะได้ว่า
$$u_x = -v_y$$
 (3)

$$u_{y} = v_{x} \tag{4}$$

จากสมการที่ (1) และ (3) จะได้ว่า

$$v_y = u_x = -v_y$$

$$2v_y = 0$$

ดังนั้น

 $v_y = 0$ และจะได้ $u_x = 0$ ด้วย

จากสมการที่ (2) และ (4) จะได้ว่า

$$-v_x = u_y = v_x$$

$$2v_x = 0$$

ดังนั้น

 $v_{_{\scriptscriptstyle X}}=0$ และจะได้ $u_{_{\scriptscriptstyle Y}}=0$ ด้วย

$$\therefore u_x = u_y = v_x = v_y = 0$$

ดังนั้นสรุปได้ว่า f เป็นฟังก์ชันค่าคงที่

แบบฝึกหัดประจำบทที่ 2

- 1. จงหาภาพภายใต้การส่งของฟังก์ชันต่อไปนี้
 - 1.1) f(z) = z + 5 2i โดยที่ |z| < 2
 - 1.2) $f(z) = 2z^3 + i$ โดยที่ $|z| \le 1$ และ $\operatorname{Re} z \ge 0$ และ $\operatorname{Im} z \ge 0$
 - 1.3) $f(z) = \frac{1}{z}$ โดยที่ $0 < |z| \le 1$
- 2. จงหาลิมิตต่อไปนี้

2.1)
$$\lim_{z \to 3i} \frac{z^2 + 9}{z^2 - 8iz - 15}$$

2.2)
$$\lim_{z \to 0} \frac{2x^3y}{x^6 + iy^2}$$

2.3)
$$\lim_{z \to i} \frac{z^2 + 1}{z^4 - 1}$$

2.4)
$$\lim_{z \to -i} \frac{z + 2 - 2i}{z^2 + zi}$$

2.5)
$$\lim_{z \to \infty} \frac{z^2 + 5z + 1}{2z^2 + 6z + 5}$$

2.6)
$$\lim_{z \to \infty} \frac{6z^3 + 7}{z^2 + 1}$$

3. จงใช้ทฤษฎีบทของโคชี-รีมันน์เพื่อแสดงว่าฟังก์ชันต่อไปนี้เป็นโฮโลมอร์ฟิกหรือไม่ ที่จุดใดบ้าง ถ้ามีค่า อนุพันธ์ จงหา f'(z) ด้วย

3.1)
$$f(z) = z \operatorname{Re} z$$

3.2)
$$f(z) = 2y - ix$$

3.3)
$$f(z) = (3x^2 + 2x - 3y^2 - 1) + i(6xy + 2y)$$

3.4)
$$f(z) = e^{x^2 - y^2} (\cos(2xy) + i\sin(2xy))$$

4. จงพิสูจน์ข้อความต่อไปนี้

- 4.1) ถ้า f เป็นฟังก์ชันโฮโลมอร์ฟิกบนโดเมน Ω และ |f| เป็นฟังก์ชันค่าคงที่บน Ω แล้ว f เป็น ฟังก์ชันค่าคงที่บน Ω ด้วย
 - 4.2) ถ้า f และ |f| เป็นฟังก์ชันโฮโลมอร์ฟิกบนโดเมน Ω แล้ว f เป็นฟังก์ชันค่าคงที่บน Ω
- 4.3) ถ้า f เป็นฟังก์ชันโฮโลมอร์ฟิกบนโดเมน Ω ซึ่ง $\mathrm{Re}\, f = \mathrm{Im}\, f$ แล้ว f เป็นฟังก์ชัน ค่าคงที่บน Ω

แผนการสอนในวันอังคารที่ 11 สิงหาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 3 ฟังก์ชันพื้นฐานเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. ฟังก์ชันเลขชี้กำลัง
- 2. ฟังก์ชันลอการิทึม

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักฟังก์ชันเลขชี้กำลัง
- 2. ให้ผู้เรียนรู้จักฟังก์ชันลอการิทึม

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 3

ฟังก์ชันพื้นฐานเชิงซ้อน

ฟังก์ชันเลขชี้กำลัง

บทนิยาม 3.1 ฟังก์ชันเลขชี้กำลัง(exponential function) ใช้สัญลักษณ์แทนด้วย e^z โดยที่ z=x+iy จะ สามารถนิยามได้ดังนี้

$$e^{z} = e^{x+iy} = e^{x} \cdot e^{iy}$$
$$= e^{x} (\cos y + i \sin y)$$

ตัวอย่าง 3.2 จงหาค่าของ $e^{3+2\pi i}$

วิธีทำ $e^{3+2\pi i}=e^3e^{i2\pi}$ $=e^3(\cos 2\pi+i\sin 2\pi)$ $=e^3(1+0i)$ $=e^3$

คุณสมบัติของ e^z

กำหนดให้ $z, w \in \mathbb{C}$

$$1) e^{z+w} = e^z \cdot e^w$$

$$2) e^{z-w} = \frac{e^z}{e^w}$$

$$3) \quad e^{z+2\pi i} = e^z$$

4)
$$|e^z| = e^x = e^{\text{Re } z} \neq 0$$

5)
$$e^z \neq 0$$

6) ฟังก์ชัน
$$e^z$$
 เป็นฟังก์ชันทั่ว

ในที่นี้เราจะทำการพิสูจน์เฉพาะข้อ 3) และข้อ 6)

พิสูจน์ 3)
$$e^{z+2\pi i} = e^z(\cos 2\pi + i\sin 2\pi)$$

$$= e^z(1+0i)$$

$$= e^z$$

จะได้ว่า e^z เป็นฟังก์ชันคาบซึ่ง จะส่งผลให้ e^z ไม่ใช่ฟังก์ชัน 1-1

พิสูจน์ 6)
$$e^z = e^x \cos y + ie^x \sin y$$

จะได้ว่า $u = e^x \cos y$ และ $v = e^x \sin y$

$$u_x = e^x \cos y \qquad v_y = e^x \cos y$$

ดังนั้น $u_x = v_y$

$$u_{y} = -e^{x} \sin y \qquad v_{x} = e^{x} \sin y$$

ดังนั้น $u_{v} = -v_{x}$

ดังนั้น e^z สอดคล้องสมการโคชี - รีมันน์ และ $u_x\,u_y\,,v_x\,,v_y\,$ หาค่าได้และต่อเนื่องบนทุกจุด $z\in\mathbb{C}$ สรุปได้ว่า e^z เป็นฟังก์ชันทั่ว และ

$$\frac{d}{dz}e^{z} = u_{x} + iv_{x}$$

$$= e^{x} \cos y + ie^{x} \sin y$$

$$= e^{z}$$

ภาพภายใต้การส่งของ e^z

ค่าของฟังก์ชัน $e^z=e^xe^{iy}$ สามารถมองเป็นรูปเชิงขั้วที่มีขนาดคือ e^x และมุมของค่าฟังก์ชัน คือ y ตัวอย่าง 3.3 ให้ $S=\left\{z=x+yi\,|\,0\leq x\leq 1, \frac{-\pi}{2}\leq y\leq \frac{\pi}{2}\right\}$ เป็นโดเมน จงพิจารณาภาพของเรนจ์ภายใต้ การส่งของฟังก์ชัน e^z

ให้
$$z = x + iy \in S$$

$$e^z = e^x e^{iy}$$

$$0 \le x \le 1$$
, $1 \le e^x \le e$

แปลว่าขนาดของ e^z มีตั้งแต่ 1 ถึง e และ $\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$

และมุมหมุนตั้งแต่ $\frac{-\pi}{2}$ ถึง $\frac{\pi}{2}$

ดังนั้น ภาพภายใต้การส่งของ e^z จะอยู่ในรูปแบบเชิงขั้ว ดังภาพด้านล่าง

เนื่องจากฟังก์ชัน e^z ไม่ใช่ฟังก์ชัน 1-1 ดังนั้น เพื่อจะนิยามฟังก์ชันอินเวอร์สเราจึงจำเป็นต้องจำกัด โดเมนของ e^z เพื่อที่จะส่งค่าไปยังค่าเรนจ์ไปทั่วถึงจำนวนเชิงซ้อนทั้งหมดโดยไม่ให้ค่าซ้ำกัน

ถ้าเรากำหนด $-\infty < x < \infty$ จะได้ค่าขนาดของจำนวนในเรนจ์เป็น $0 < e^x < \infty$ ดังนั้น เพื่อที่จะให้ ค่าฟังก์ชันครบโดยที่ไม่ซ้ำกัน เราจึงจำเป็นให้ $-\infty < x < \infty$ และ y เป็นค่ามุมที่หมุนครบรอบแค่หนึ่งรอบ เท่านั้น ตัวอย่างเช่น

 $\Omega = \left\{z = x + iy \mid -\infty < x < \infty$ และ $0 < y \le 2\pi
ight\}$ จะมองเป็นภาพภายใต้การส่ง ดังนี้

จะเห็นได้ว่าแกนของเรนจ์ที่มุม y=0 จะทับกับแกนของเรนจ์ที่มุม $y=2\pi$ จะเป็นแกนที่เป็น ปัญหาในการนิยามฟังก์ชันอินเวอร์สของ e^z เพราะจะทำให้ฟังก์ชันอินเวอร์สไม่ต่อเนื่อง

ดังนั้น ในการนิยามฟังก์ชันอินเวอร์ส เราจำเป็นต้องตัดแกนโดยตัดแกน x ทางบวกรวมจุด 0 ออก และเราเรียกแทนแกนดังกล่าวว่า ส่วนตัดกิ่ง (Branch cut)

ฟังก์ชันลอการิทึมเชิงซ้อน

จากแนวคิดด้านบน จะเห็นได้ว่าเรนจ์ของ e^z อยู่ในรูปเชิงขั้วโดย กำหนดให้ r>0 และ มุม θ เป็น มุมที่ครบหนึ่งรอบและตัดแกนหรือส่วนตัดกิ่งที่มุมบรรจบกัน

ตัวอย่างการนิยามฟังก์ชันลอการิทึมให้ $w=re^{i heta}$ โดยที่ r>0 และ $0< heta<2\pi$ (โดยตัดแกน x

ทางบวกรวมจุด 0) นิยามดังนี้

$$w = e^z \Leftrightarrow z = \log w$$

ดังนั้น
$$z = \log(re^{i\theta})$$

$$= \ln r + i\theta$$

รูปภาพแสดงการตัดแกน x ทางบวกรวมจุด 0

ซึ่งกำหนดโดเมนของ \log ทำได้หลายรูปแบบตามการกำหนดมุมและส่วนตัดกิ่ง เช่น

โดยกำหนดมุมเป็น $\dfrac{\pi}{4} < \theta < \dfrac{9\pi}{4}$

ถ้ากำหนดมุมของโดเมนของ \log ให้มีค่าเป็น $-\pi < \theta < \pi$ (ค่ามุขสำคัญ) เราจะเรียกส่วนตัดกิ่งว่า ส่วนตัดกิ่งมุขสำคัญ (Principal branch cut) และแทนสัญลักษณ์ค่าฟังก์ชันเป็น \log โดยเรียกว่าค่ามุข สำคัญของลอการิทึม (Principal logarithm)

ตัวอย่าง 3.4

1) จงหาค่า $z \in \mathbb{C}$ ทั้งหมดที่ทำให้ $e^z = -1 - i$

วิธีทำ เราต้องแปลง -1-i ให้อยู่ในรูปเชิงขั้วก่อน

$$r = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

$$\tan \theta = \frac{-1}{-1} = 1$$

$$\theta = \frac{5\pi}{4}$$
 ในจตุภาคที่ 3

ดังนั้น
$$z=\ln\sqrt{2}+i\bigg(rac{5\pi}{4}\bigg)+2n\pi i$$
 โดยที่ $n\in\mathbb{Z}$

2) จงหาค่า $\log \left(-1 - i \right)$ โดยที่มีการกำหนด $0 < |z| < \infty$ และ $0 < \arg z < 2\pi$

วิธีทำ จากข้อที่ 1 จะได้มุมเป็น

$$\theta = \frac{5\pi}{4}$$
 ในจตุภาคที่ 3

ดังนั้น
$$\log(-1-i) = \ln\sqrt{2} + \frac{5\pi}{4}i$$

3) จงหาค่า Log(-1-i)

วิธีทำ จากข้อที่ 1 จะได้ว่ามุมจะถูกปรับในช่วง $-\pi < \arg z < \pi$ ดังนี้

$$\theta = -\frac{3\pi}{4}$$
 ในจตุภาคที่ 3

ดังนั้น
$$\operatorname{Log}(-1-i) = \ln \sqrt{2} - \frac{3\pi}{4}i$$

คุณสมบัติของ log

ให้
$$z, z_1, z_2 \in \mathbb{C}$$

1.
$$\log(z_1 z_2) = \log z_1 + \log z_2$$

$$2. \log\left(\frac{z_1}{z_2}\right) = \log z_1 - \log z_2$$

$$3. \log(z^n) = n\log(z)$$

4.
$$e^{\log z} = z$$
 และ $\log e^z = z$

5. $w=z^c$ โดย c เป็นจำนวนเชิงซ้อนนิยามดังต่อไปนี้

จากคุณสมบัติของ log เราสามารถกล่าวถึงการยกกำลังของจำนวนเชิงซ้อนด้วยจำนวนเชิงซ้อนดังนี้

$$w = e^{\log(z^c)}$$

$$= e^{c \log(z)}$$

ถ้าเราพิจารณา \log เป็นค่ามุขสำคัญของลอการิทึม \log เราจะเรียกการยกกำลังของจำนวน เชิงซ้อนดังกล่าวเป็นค่ามุขสำคัญของการยกกำลังของจำนวนเชิงซ้อน

ตัวอย่าง 3.5 จงหาค่ามุขสำคัญของ $\left(-1-i\right)^{3i}$

วิธีทำ
$$(-1-i)^{3i} = e^{3i \log(-1-i)}$$

หาค่าของ $\operatorname{Log}(-1-i)$ แปลงค่า -1-i ในรูปเชิงขั้วก่อน

$$r = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

$$\tan \theta = \frac{-1}{-1} = 1$$

ดังนั้น
$$\theta = \frac{-3\pi}{4}$$
 ในช่วง $(-\pi,\pi)$

สรุปได้ว่า
$$\left(-1-i
ight)^{3i}=e^{3i\left(\ln\sqrt{2}-rac{3\pi i}{4}
ight)}$$

ทฤษฎีบท 3.6 ฟังก์ชัน $\log(z)$ เป็นฟังก์ชันโฮโลมอร์ฟิกบนบริเวณ $0<|z|<\infty$ และ $-\pi<{\rm Arg}\,z<\pi$ และ

$$\frac{d}{dz} \operatorname{Log} z = \frac{1}{z}$$

พิสูจน์ จาก $\operatorname{Log} z = \ln r + i\theta$

$$u(r,\theta) = \ln r \qquad v(r,\theta) = \theta$$

$$u_r = \frac{1}{r} \qquad v_{\theta} = 1$$

$$\therefore ru_r = v_{\theta}$$

$$u_{\theta} = 0 \qquad v_r = 0$$

$$\therefore u_{\theta} = -rv_r$$

ดังนั้น $\log z$ สอดคล้องสมการโคซี - รีมันน์ และ $u_r, v_r, u_\theta, v_\theta$ หาค่าได้และต่อเนื่อง ที่ทุกจุด $z \in \mathbb{C}$ จึงสรุปได้ว่า $\log z$ หาอนุพันธ์ได้ในโดเมน ดังกล่าว และ

$$\frac{d}{dz} \operatorname{Log} z = e^{-i\theta} \left(u_r + iv_r \right)$$
$$= e^{-i\theta} \left(\frac{1}{r} + 0i \right) = \frac{1}{z}$$

แผนการสอนในวันอังคารที่ 18 สิงหาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 3 ฟังก์ชันพื้นฐานเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. ฟังก์ชันตรีโกณมิติ
- 2. ฟังก์ชันไฮเพอร์โบลิก
- 3. ฟังก์ชันตรีโกณมิติผกผัน

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักฟังก์ชันตรีโกณมิติ
- 2. ให้ผู้เรียนรู้จักฟังก์ชันไฮเพอร์โบลิก
- 3. ให้ผู้เรียนรู้จักฟังก์ชันตรีโกณมิติผกผัน

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

ฟังก์ชันตรีโกณมิติเชิงซ้อน

บทนิยาม 3.7 ให้ $z\in\mathbb{C}$ เรานิยาม $\sin z$ และ $\cos z$ ในรูปของฟังก์ชันเลขชี้กำลัง ดังนี้

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$
 และ $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

จากบทนิยามของทั้งสองฟังก์ชัน เห็นได้ชัดว่าฟังก์ชันทั้งสอง สามารถหาอนุพันธ์ได้ ดังนี้

$$\frac{d}{dz}\sin z = \frac{1}{2i} \left(\frac{d}{dz} e^{iz} - \frac{d}{dz} e^{-iz} \right)$$
$$= \frac{1}{2i} \left(e^{iz} \left(i \right) - e^{-iz} \left(-i \right) \right)$$
$$= \frac{e^{iz} + e^{-iz}}{2i} = \cos z$$

ในทำนองเดียวกัน $\frac{d}{dz}\cos z = -\sin z$

นอกจากนั้นฟังก์ชัน $\sin z$ เป็นฟังก์ชันคาบ เนื่องจาก

$$\sin(z+2\pi) = \frac{e^{i(z+2\pi)} - e^{-i(z+2\pi)}}{2i}$$

$$= \frac{e^{iz+2\pi i} - e^{-iz-2\pi i}}{2i}$$

$$= \frac{e^{iz} - e^{-iz}}{2i}$$

$$= \sin(z)$$

ในทำนองเดียวกัน $\cos z$ เป็นฟังก์ชันคาบที่มีคาบ 2π

นอกจากนี้ ยังมีคุณสมบัติอื่นๆที่สามารถพิสูจน์ได้จากนิยามดังต่อไปนี้

1.
$$\sin\left(z + \frac{\pi}{2}\right) = \cos z, \sin\left(z - \frac{\pi}{2}\right) = -\cos z$$

2.
$$\sin(-z) = -\sin z$$
, $\cos(-z) = \cos z$

3.
$$2\sin z_1 \cos z_2 = \sin(z_1 + z_2) + \sin(z_1 - z_2)$$

4.
$$\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$$

5.
$$\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$$

6.
$$\sin^2 z + \cos^2 z = 1$$

7.
$$\sin 2z = 2\sin z \cos z$$

8.
$$\cos 2z = \cos^2 z - \sin^2 z$$

ฟังก์ชันไฮเพอร์โบลิกตรีโกณมิติ

บทนิยาม 3.8 ในที่นี้เราจะนิยามฟังก์ชันไฮเพอร์โบลิกในรูปของฟังก์ชันเลขชี้กำลัง ดังนี้

$$\sinh z = \frac{e^z - e^{-z}}{2}$$
 และ $\cosh z = \frac{e^z + e^{-z}}{2}$

ซึ่งเห็นได้ชัดจากนิยามว่าฟังก์ชันดังกล่าวสามารถหาอนุพันธ์ได้ดังนี้

$$\frac{d}{dz}\cosh z = \frac{d}{dz} \left(\frac{e^z + e^{-z}}{2} \right)$$
$$= \frac{e^z + e^{-z} (-1)}{2}$$
$$= \frac{e^z - e^{-z}}{2}$$
$$= \sinh z$$

ในทำนองเดียวกัน $\frac{d}{dz} \sinh z = \cosh z$

นอกจากนั้นยังมีคุณสมบัติของฟังก์ชัน $\sin z$ และ $\cos z$ ที่เขียนอยู่ในรูปของฟังก์ชันตรีโกณมิติและไฮเพอร์ โบลิก ดังนี้

ทฤษฎีบท 3.9 ให้ z = x + iy จะได้ว่า

- 1) $\sin z = \sin x \cosh y + i \cos x \sinh y$
- 2) $\cos z = \cos x \cosh y i \sin x \sinh y$

พิสูจน์

$$\sin x \cosh y + i \cos x \sinh y = \frac{e^{ix} - e^{-ix}}{2i} \frac{e^{y} + e^{-y}}{2} + i \frac{e^{ix} + e^{-ix}}{2} \frac{e^{y} - e^{-y}}{2}$$

$$= \frac{1}{4i} \Big[\Big(e^{ix+y} - e^{-ix+y} - e^{-ix+y} + e^{ix-y} \Big) - \Big(e^{ix+y} + e^{-ix+y} - e^{ix-y} - e^{-ix-y} \Big) \Big]$$

$$= \frac{1}{4i} \Big[2e^{ix-y} - 2e^{-ix+y} \Big]$$

$$= \frac{1}{2i} \Big(e^{i(x+iy)} - e^{-i(x+iy)} \Big)$$

$$= \sin z$$

ในทำนองเดียวกันเราสามารถพิสูจน์ 2) ได้เช่นกัน

นอกจากนั้นยังมีคุณสมบัติของฟังก์ชันไฮเพอร์โบลิกตรีโกณมิติอีกหลายข้อ เช่น

 $1) \quad \sinh(-z) = -\sinh(z)$

$$\cosh(-z) = \cosh(z)$$

- $2) \cosh^2 z \sinh^2 z = 1$
- 3) $\sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2$ $\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$
- 4) กำหนดให้ z = x + iy

 $\sinh z = \sinh x \cos y + i \cosh x \sin y$

 $\cosh z = \cosh x \cos y + i \sinh x \sin y$

ฟังก์ชันตรีโกณมิติผกผัน

ในส่วนนี้เราจะหาพจน์ทั่วไปของฟังก์ชันตรีโกณมิติผกผันจากบทนิยามของฟังก์ชันตรีโกณมิติและลอง หาค่าทั้งหมดที่สอดคล้องกับค่าฟังก์ชันตรีโกณมิติผกผันพร้อมทั้งหาอนุพันธ์ของฟังก์ชันตรีโกณมิติผกผัน ดังกล่าว

บทนิยาม 3.10 ให้ $w = \sin^{-1} z$ ก็ต่อเมื่อ $\sin w = z$

จากนิยาม
$$\frac{e^{iw}-e^{-iw}}{2i}=\sin w=z$$
 , $e^{iw}-\frac{1}{e^{iw}}=2iz$

ดังนั้น
$$\left(e^{iw}\right)^2 - 1 = 2ize^{iw}$$

$$\left(e^{iw}\right)^2 - 2ize^{iw} - 1 = 0$$

จากหลักการแก้สมการกำลังสองจะได้

$$e^{iw} = \frac{2iz \pm \sqrt{-4z^2 + 4}}{2}$$

$$e^{iw} = iz \pm i\sqrt{z^2 - 1}$$

$$\therefore iw = \log\left(iz \pm i\sqrt{z^2 - 1}\right)$$

ดังนั้น
$$\sin^{-1} z = w = -i \log \left(iz \pm i\sqrt{z^2 - 1}\right)$$

ในทำนองเดียวกัน เราสามารถแสดงได้ว่า

$$\cos^{-1} z = -i \log \left(z \pm i \sqrt{1 - z^2} \right)$$
 และ $\tan^{-1} z = \frac{i}{2} \log \frac{i + z}{i - z}$

ตัวอย่าง 3.11 จงหาค่าทั้งหมดของ $\sin^{-1}\left(-i
ight)$

วิธีทำ
$$\sin^{-1}\left(-i\right) = -i\log\left(1+i\sqrt{-2}\right)$$

$$= -i\log\left(1\pm\sqrt{2}\right)$$

$$= \begin{cases} -i\Big[\ln\left(1+\sqrt{2}\right)+i2n\pi\Big] \\ -i\Big[\ln\left(\sqrt{2}-1\right)+i\left(2n+1\right)\pi\Big] \end{cases}$$
 โดยที่ $n\in\mathbb{Z}$

เราสามารถหาค่าอนุพันธ์ของ $\sin^{-1}z$ ได้ดังนี้

$$\frac{d}{dz}\sin^{-1}z = -i\left[\frac{1}{iz + \sqrt{1 - z^2}}\left(i + \frac{1}{2}\frac{(-2z)}{\sqrt{1 - z^2}}\right)\right]$$
$$= -i\left[\frac{1}{iz + \sqrt{1 - z^2}}\left(\frac{i\sqrt{1 - z^2} - z}{\sqrt{1 - z^2}}\right)\right]$$
$$= \frac{1}{\sqrt{1 - z^2}}$$
 Lide $z \neq \pm 1$

และสามารถทำในทำนองเดียวกันได้ว่า

$$\frac{d}{dz}\cos^{-1}z = \frac{-1}{\sqrt{1-z^2}}$$
 เมื่อ $z \neq \pm 1$ และ $\frac{d}{dz}\tan^{-1}z = \frac{-1}{1+z^2}$ เมื่อ $z \neq \pm i$

แบบฝึกหัดประจำบทที่ 3

1. จงหาค่า
$$\log(1+\sqrt{3}i)$$
 โดยที่ $0<\left|z\right|<\infty$ และ $\frac{\pi}{2}<\arg z<\frac{5\pi}{2}$

- 2. จงพิสูจน์ข้อความต่อไปนี้โดยใช้นิยาม
 - 2.1) $\cos(z_1 z_2) = \cos z_1 \cos z_2 + \sin z_1 \sin z_2$
 - 2.2) $\cosh^2 z \sinh^2 z = 1$
 - 2.3) ให้ z = x + iy จงแสดงว่า $\cosh z = \cosh z \cos y + i \sinh x \sin y$
- 3. ให้ $w=\cos^{-1}z$ จงพิสูจน์ว่า $w=-i\log\left(z\pm i\sqrt{1-z^2}\right)$ และจงหาค่าทั้งหมดของ $\cos^{-1}\left(-i\right)$

แผนการสอนในวันอังคารที่ 25 สิงหาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 4 การหาค่าปริพันธ์เชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. ปริพันธ์จำกัดเขต
- 2. ปริพันธ์ตามเส้นในระนาบเชิงซ้อน
- 3. เส้นโค้งปิดเชิงเดียว

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักปริพันธ์จำกัดเขต
- 2. ให้ผู้เรียนรู้จักการหาค่าปริพันธ์ตามเส้นในระนาบเชิงซ้อน
- 3. ให้ผู้เรียนรู้จักเส้นโค้งปิดเชิงเดียว

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 4

การหาค่าปริพันธ์เชิงซ้อน

ในการหาปริพันธ์ของฟังก์ชันเชิงซ้อนนั้น จะเกิดขึ้นตามเส้นโค้งในระนาบซึ่งจะแตกต่างจากในกรณี ฟังก์ชันค่าจริง เราจึงเริ่มต้นโดยการนิยามเส้นโค้งและคุณสมบัติของเส้นโค้งที่เหมาะสมในระนาบก่อน

เส้นโค้ง

แนวคิดเส้นโค้งในสองมิติในระนาบเชิงซ้อนจะถูกแทนในลักษณะตัวแทนอิงพารามิเตอร์ โดยขึ้นอยู่กับ ตัวแปร t ในจำนวนจริงซึ่งเขียนในรูป

$$\gamma(t) = \gamma_1(t) + i \gamma_2(t)$$
 โดย γ_1, γ_2 เป็นฟังก์ชันค่าจริงและ t อยู่ในช่วงจำกัด

ตัวอย่างของเส้นโค้ง

ส่วนของเส้นตรง

ตัวอย่างสมการพารามิเตอร์ที่แทนส่วนของเส้นตรงจาก x_1+y_1i ไปยัง x_2+y_2i ได้แก่

$$\gamma(t) = x_1 + y_1 i + t(x_2 + y_2 i - x_1 - y_1 i)$$
 โดยที่ $0 \le t \le 1$

ตัวอย่าง 4.1 จงหาสมการของส่วนของเส้นตรงจาก 2+i ไปยัง 3+4i

วิธีทำ
$$\gamma(t) = 2 + i + t(3 + 4i - 2 - i), 0 \le t \le 1$$

$$\therefore \gamma(t) = 2 + t + (1 + 3t)i, \ 0 \le t \le 1$$

วงกลม

สมการพารามิเตอร์ที่แทนวงกลมรัศมี R จุดศูนย์กลางที่ a+bi ในทิศทางทวนเข็มนาฬิกา สามารถ เขียนในรูป $\gamma(t)=a+bi+\mathrm{Re}^{it}$ โดยที่ $0\leq t\leq 2\pi$

ตัวอย่าง 3.2 จงหาสมการพารามิเตอร์ของวงกลมที่มีรัศมี 5 หน่วยและมีจุดศูนย์กลางที่ 1+i ในทิศทางทวน เข็มนาฬิกา

วิธีทำ
$$\gamma(t) = 1 + i + 5e^{it}, 0 \le t \le 2\pi$$

สมการที่มีอยู่แล้วในความสัมพันธ์ของ x, y

เราสามารถที่จะสร้างสมการพารามิเตอร์โดยกำหนดตัวแปรต้นให้ตัวแปร t

ตัวอย่าง 3.3 จงหาสมการพารามิเตอร์ของกราฟเส้นโค้งจากจุด 0 ไปยัง 1+i โดยสอดคล้อง $y=x^3$

วิธีทำ ให้
$$x = t$$

ดังนั้น
$$y = t^3$$

$$\therefore \gamma(t) = t + t^3 i$$
 โดยที่ $0 \le t \le 1$

ข้อสมมติฐานของเส้นโค้งที่เหมาะสมเชิงวิเคราะห์

จากหัวข้อที่ผ่านมาเราจะเห็นตัวอย่างการแทนเส้นโค้งด้วยตัวแทนพารามิเตอร์ ซึ่งจริงๆแล้วสามารถ สร้างได้หลายลักษณะ เพื่อความสะดวกในการวิเคราะห์ปัญหาต่อไปเราควรกำหนดสมมติฐานของเส้นโค้งที่ เหมาะสมซึ่งรายละเอียดในนิยามดังนี้

บทนิยาม 3.4 เราเรียก $\gamma:[a,b]\to\mathbb{C}$ ว่าเส้นโค้งปิด (Closed curve) ถ้า $\gamma(a)=\gamma(b)$ โดยเราจะพิจารณา เฉพาะเส้นโค้งปิดเชิงเดียว (Simple closed curve) คือไม่มีจุดอื่นในเส้นโค้งที่ซ้อนทับกันยกเว้นจุดเริ่มต้นและ จุดสุดท้าย

ทิศทางของเส้นโค้งปิด

เรากำหนดให้ทิศทางทวนเข็มนาฬิกาเป็นทิศทางบวกและทิศทางตามเข็มนาฬิกาเป็นทิศทางลบ

เส้นโค้งเรียบ

 $\gamma:[a,b] o \mathbb{C}$ จะถูกเรียกว่าเส้นโค้งเรียบ (Smooth curve) ถ้า $\gamma(t)$ สอดคล้องกับเงื่อนไข ต่อไปนี้

- 1) $\gamma(t)$ เป็นเส้นโค้งที่ไม่มีการซ้อนทับกัน
- 2) $\gamma(t)$ สามารถหาค่าอนุพันธ์ได้ นั่นคือ $\gamma'(t) = \gamma_1'(t) + \gamma_2'(t)i$ โดย $\gamma'(t) \neq 0$ ทุกค่า t

ข้อสังเกต เราสามารถสังเกตได้จากรูปของเส้นโค้งได้ง่ายว่าเส้นโค้งเรียบจะต้องไม่มีมุมหรือบัพแหลม

ตัวอย่างเส้นโค้งที่ไม่ใช่เส้นโค้งเรียบ

การหาปริพันธ์ตามเส้น

ให้ $\gamma\!:\![a,b]\!\to\!\mathbb{C}$ เป็นเส้นโค้งเรียบใดๆและ $f\!:\!\Omega\!\to\!\mathbb{C}$ โดยที่ $\gamma\!:\!(a,b)\!\subset\!\Omega$ ให้ $z=\gamma(t)$

$$dz = \gamma'(t)dt$$
 โดยที่ $\gamma'(t) = \gamma_1'(t) + i\gamma_2'(t)$

ดังนั้น เรานิยามการอินทิเกรตของ f บน γ โดยใช้สัญลักษณ์ $\int\limits_{z} f(z)dz$ ดังนี้

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

ตัวอย่าง 3.4 ให้
$$\gamma(t)=t+it^2, 0 \le t \le 1$$
 และนิยาม $f\left(z\right)=\overline{z}^2$ จงหา $\int\limits_{\gamma}f\left(z\right)dz$

วิธีทำ
$$z = \gamma(t) = t + it^2$$

$$dz = \gamma'(t) dt = (1 + 2ti) dt$$

$$\int_{\gamma} f(z)dz = \int_{0}^{1} (t - it^{2})(1 + 2ti)dt$$

$$= \int_{0}^{1} (t^{2} + 3t^{4} - 2it^{5})dt$$

$$= \left[\frac{t^{3}}{3} + \frac{3t^{5}}{5} - \frac{2it^{6}}{6}\right]_{0}^{1}$$

$$= \frac{1}{3} + \frac{3}{5} - \frac{i}{3} = \frac{14}{15} - \frac{i}{3}$$

ความยาวเส้นโค้ง

ให้
$$\gamma\!:\![a,b]\! o\!\mathbb{C}$$
 โดยที่ $\gamma(t)\!=\!\gamma_{\!\scriptscriptstyle 1}(t)\!+\!i\gamma_{\!\scriptscriptstyle 2}(t)$

จะได้ว่า ความยาวของเส้นโค้งจาก $\gamma(a)$ ไปยัง $\gamma(b)$ สามารถหาได้จาก

$$L(\gamma) = \int_{a}^{b} \sqrt{\left(\gamma_{1}'(t)\right)^{2} + \left(\gamma_{2}'(t)\right)^{2}} dt$$

การประมาณค่าขอบเขตบนของขนาดของปริพันธ์

ในการวิเคราะห์ปัญหาบางอย่างไม่มีความจำเป็นต้องคำนวณหาค่าปริพันธ์ของฟังก์ชัน หากแต่ ต้องการประมาณค่าขอบเขตบนของขนาดของค่าปริพันธ์เท่านั้น

ทฤษฎีบท 3.5 ให้ f(z) เป็นฟังก์ชันที่มีความต่อเนื่องบนเส้นโค้ง γ และถ้ามีจำนวนจริงบวก M ที่ทำให้ $|f(z)| \leq M$ ทุกค่า z บน γ แล้ว

$$\left|\int\limits_{\gamma}f\left(z
ight)dz\right|\leq ML(\gamma)$$
 โดยที่ $L(\gamma)$ คือ ความยาวของเส้นโค้ง γ

พิสูจน์
$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{a}^{b} f(z(t)) z'(t) dt \right|$$

$$\leq \int_{a}^{b} \left| f(z(t)) \right| \left| z'(t) \right| dt$$

$$\leq M \int_{a}^{b} \left| z'(t) \right| dt$$

$$= ML$$

ดังนั้น
$$\left| \int_{\gamma} f(z) dz \right| \leq ML$$

ตัวอย่าง 3.6 จงคำนวณค่าขอบเขตบนของ $\left|\int_{\gamma} \frac{z+2}{z^2+10} dz\right|$ โดยที่ γ เขียนในรูปตัวแทนอิงพารามิเตอร์ที่ ยอมรับได้เป็น $\gamma(t)=2e^{it}$ เมื่อ $-\pi \le t \le \pi$

วิธีทำ จะเห็นว่า γ คือ วงกลมที่มีรัศมียาว 2 หน่วย ดังนั้น $L(\gamma)$ = 4π

$$|z+2| \le |z|+2=4$$

 $|z^2+10| \ge 10-|z|^2=6$

ดังนั้น
$$\left| \int_{\gamma} \frac{z+2}{z^2++10} dz \right| \leq \frac{4}{6} 4\pi$$

$$= \frac{8\pi}{3}$$

แผนการสอนในวันอังคารที่ 1 กันยายน พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 4 การหาค่าปริพันธ์เชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. ทฤษฎีบทของการปริพันธ์
- 2. สูตรปริพันธ์โคชี

วัตถุประสงค์

3. ให้ผู้เรียนรู้จักทฤษฎีบทของการปริพันธ์ และสูตรปริพันธ์โคชี

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บริเวณเชื่อมโยงเชิงเดียว

บทนิยาม 3.7 เราจะเรียก $D\subseteq\mathbb{C}$ ว่าเป็นบริเวณเชื่อมโยงเชิงเดียว (Simply connected domain) ถ้าให้ γ เป็นเส้นโค้งปิดเชิงเดียวใด ๆ ใน D แล้วบริเวณภายในของ γ ต้องอยู่ภายใน D

ตัวอย่างของบริเวณเชื่อมโยงเชิงเดียว

ตัวอย่างบริเวณที่ไม่ใช่บริเวณเชื่อมโยงเชิงเดียว

ต่อไปนี้จะเป็นทฤษฎีบทของกรีนซึ่งจะนำมาใช้ในการพิสูจน์ทฤษฎีบทของโคชี (Cauchy's Theorem)

ทฤษฎีบทของกรีน (Green's theorem)

กำหนดให้ V=(P,Q) เป็นเวกเตอร์ฟิลด์ที่นิยามบนโดเมนเชื่อมโยงเชิงเดียว D โดยที่ V สามารถ หาอนุพันธ์ที่มีความต่อเนื่องได้ ให้ γ เป็นเส้นโค้งปิดเชิงเดียวใน D ซึ่งมีทิศทางบวก และให้บริเวณภายใน γ คือ R แล้ว

$$\iint_{Y} \left(P dx + Q dy \right) = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

ทฤษฎีบทของโคชี (Cauchy Theorem)

ทฤษฎีบท 3.8 ให้ D เป็นบริเวณเชื่อมโยงเชิงเดียว และ γ เป็นเส้นโค้งปิดเชิงเดียวใน D ถ้า f เป็น ฟังก์ชันโฮโลมอร์ฟิกบน D แล้ว $\int f(z)dz=0$

พิสูจน์ ให้
$$f(z) = u(x, y) + iv(x, y)$$

เนื่องจาก f เป็นฟังก์ชันโฮโลมอร์ฟิกบน D ดังนั้น f สอดคล้องสมการโคชี-รีมันน์

$$\begin{split} u_x &= v_y, \qquad u_y = -v_x \\ &\int_{\gamma} f\left(z\right) dz = \int_{\gamma} \left(u + iv\right) d\left(x + iy\right) \\ &= \int_{\gamma} \left(u \, dx + iu \, dy + iv \, dx - v \, dy\right) \\ &= \int_{\gamma} \left(u \, dx - v \, dy\right) + i \int_{\gamma} \left(v \, dx + u \, dy\right) \\ &= \iint_{R} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) dx \, dy + i \iint_{R} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) dx \, dy \quad (\text{จากทฤษฎีบทของกรีน}) \\ &= \iint_{R} \left(-\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}\right) dx \, dy + i \iint_{R} \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y}\right) dx \, dy \quad (\text{จากสมการโคชี - รีมันน์}) \\ &= 0 \end{split}$$

โดยที่ R เป็นบริเวณภายในที่ล้อมรอบด้วย γ

ในกรณีที่หาปริพันธ์ของ f บน γ ที่เป็นเส้นโค้งปิดเชิงเดียว เราใช้สัญลักษณ์การหาปริพันธ์เป็น $\oint_{\gamma} f(z) dz$ เพื่อบ่งบอกความเป็นเส้นโค้งปิดของ γ

ตัวอย่าง 3.9 ให้
$$\gamma(t)=e^{it}, 0\leq t\leq 2\pi$$
 จงหา $\oint_{\gamma} \left(z^2+4z+5\right)dz$

วิธิทำ เนื่องจาก z^2+4z+5 เป็นฟังก์ชันทั่ว จากทฤษฎีบทของโคซี จะได้ว่า

$$\oint_{\gamma} \left(z^2 + 4z + 5 \right) dz = 0$$

ตัวอย่าง 3.10 ให้ $\gamma(t) = e^{it}, 0 \le t \le 2\pi$ จงหา $\oint_{\gamma} \frac{1}{z-5} dz$

วิธีทำ เนื่องจาก $R = \{z \mid |z| < 1\}$ เป็นบริเวณภายใน γ และ $\frac{1}{z-5}$ เป็นฟังก์ชันโฮโลมอร์ฟิกบน R จากทฤษฎีบทของโคชี จะได้ว่า $\oint \frac{1}{z-5} dz = 0$

ความเป็นอิสระของการเลือกเส้นโค้งปิดในการอินทิเกรต

ทฤษฎีบท 3.11 ให้ D เป็นบริเวณเชื่อมโยงเดียว ถ้า z_1 และ z_2 เป็นจุดใน D และ f เป็นฟังก์ชันที่โฮ โลมอร์ฟิกบน D จะได้ว่าสำหรับทุก ๆ เส้นโค้ง γ ที่เชื่อม z_1 และ z_2 ใน D ค่า $\int\limits_{z}^{z} f(z) dz$ จะมีค่าเท่ากัน

พิสูจน์ ให้ γ_1 และ γ_2 เป็นเส้นโค้งที่มีจุดเริ่มต้นเป็น z_1 และจุดปลายเป็น z_2 จะได้ $\gamma_1 + (-\gamma_2)$ เป็นเส้นโค้ง ปิดเชิงเดียวในโดเมน D ดังนั้นตามทฤษฎีบทของโคชี

$$\int_{\gamma_1+(-\gamma_2)} f(z)dz = 0$$

$$\int_{\gamma_1} f(z)dz + \int_{-\gamma_2} f(z)dz = 0$$

$$\int_{\gamma_1} f(z)dz - \int_{\gamma_2} f(z)dz = 0$$
ดังนั้น
$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

ทฤษฎีบท 3.12 บริเวณเชื่อมโยงคู่ (แผ่นวงแหวน)

ให้ R เป็นบริเวณภายในวงแหวนที่ถูกล้อมรอบด้วยเส้นโค้งปิดเชิงเดียว γ_1 และ γ_2 ที่มีทิศทาง เดียวกัน และ f เป็นฟังก์ชันโฮโลมอร์ฟิกบน R จะได้ว่า

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$

พิสูจน์

ให้ C เป็นเส้นโค้ง $\gamma_1-L_1-\gamma_2+L_1$ ซึ่งปิดล้อมพื้นที่ภายใน R โดยทฤษฎีบทของโคชีจะได้ว่า $\int\limits_C f(z)dz=0$

ดังนั้น
$$\int_{\gamma_1} f(z)dz - \int_{L_1} f(z)dz - \int_{\gamma_2} f(z)dz + \int_{L_1} f(z)dz = 0$$

$$\therefore \int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

ทฤษฎีบท 3.13 บริเวณเชื่อมโยงหลายเชิง

ให้ f เป็นฟังก์ชันโฮโลมอร์ฟิกบนบริเวณที่ล้อมรอบด้วยเส้นโค้ง $\gamma,\gamma_1,\gamma_2,\dots$ และ γ_n ซึ่งมีทิศทาง เดียวกันดังรูป จะได้ว่า

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \dots + \int_{\gamma_n} f(z)dz$$

พิสูจน์ สามารถพิสูจน์ได้ในทำนองเดียวกับทฤษฎีบทที่ผ่านมา

ตัวอย่าง 3.14 ให้ $\gamma(t) = e^{it}$ โดยที่ $0 \le t \le 2\pi$ จงหาค่า $\oint_{\gamma} \frac{1}{z} dz$

วิธีทำ จะเห็นได้ว่าในตัวอย่างนี้จะใช้ทฤษฎีบทของโคชีไม่ได้ เพราะ $\frac{1}{z}$ ไม่โฮโลมอร์ฟิกที่จุด z=0

เราสามารถทำการหาปริพันธ์ได้โดยตรงดังนี้

$$z = e^{it}$$

$$dz = ie^{it}dt$$

$$\oint_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{it}} ie^{it} dt$$

$$= 2\pi i$$

จากตัวอย่างดังกล่าว เราจะเห็นได้ว่าถ้าเราเปลี่ยนฟังก์ชันที่หาปริพันธ์ได้เป็น $\frac{\cos z}{z}$ จะเกิดความ ยุ่งยากในการหาปริพันธ์โดยตรงเกิดขึ้น ซึ่งสามารถแก้ปัญหาได้โดยทฤษฎีบทถัดไป

สูตรการหาปริพันธ์ของโคชี (Cauchy's integral Formula)

ทฤษฎีบท 3.15 ให้ D เป็นบริเวณเชื่อมโยงเชิงเดียว และให้ γ เป็นเส้นโค้งปิดที่มีทิศทางทวนเข็มนาฬิกา ใน D

กำหนดให้ $f(z) = \frac{g(z)}{z - z_0}$ โดยที่ g(z) เป็นฟังก์ชันโฮโลมอร์ฟิกบนบริเวณภายใน γ และ z_0 เป็น

จุดภายใน γ แล้ว $\int\limits_{\gamma} \dfrac{g\left(z\right)}{z-z_{0}}dz=2\pi ig\left(z_{0}\right)$

ตัวอย่าง 3.16 ให้ $\gamma(t)=2i+2e^{it}$ โดยที่ $0\leq t<2\pi$ จงหา $\oint\limits_{\gamma} rac{\cos z}{z^2+1}dz$

วิธีทำ

จากสูตรการหาปริพันธ์ ของโคซีโดยที่ $g(z)=rac{\cos z}{z+i}$ และ $z_0=i$ จะได้ว่า

$$\oint_{\gamma} \frac{\cos z}{z^2 + 1} dz = \oint_{\gamma} \frac{\cos z}{(z - i)(z + i)} dz$$

$$= 2\pi i \frac{\cos(i)}{i + i}$$

$$= 2\pi i \frac{\cos(i)}{2i}$$

$$= \pi \cos(i)$$

ตัวอย่าง 3.17 ให้ $\gamma(t)=3e^{it}$ โดยที่ $0\leq t<2\pi$ จงหา $\oint_{\gamma} rac{1}{(z-1)(z-2)}dz$

วิธีทำ

จะเห็นได้จากรูปว่าเส้นโค้ง γ ล้อมรอบ จุดภายในที่ทำให้ส่วนเป็นศูนย์สองจุด คือ จุด 1 และ 2 ทำการสร้าง เส้นโค้ง γ_1 ที่ล้อมรอบเฉพาะจุด 1 และ เส้นโค้ง γ_2 ที่ล้อมรอบเฉพาะจุด 2 โดยทฤษฎีบท 3.13 จะได้ว่า

$$\oint_{\gamma} \frac{1}{(z-1)(z-2)} dz = \oint_{\gamma_1} \frac{1}{(z-1)(z-2)} dz + \oint_{\gamma_2} \frac{1}{(z-1)(z-2)} dz$$

$$= \frac{2\pi i}{1-2} + \frac{2\pi i}{2-1} \text{ (โดยสูตรการหาปริพันธ์ของโคซี)}$$

$$= -2\pi i + 2\pi i = 0$$

ตัวอย่าง 3.18 ให้ $\gamma(t)=3e^{it}$ โดยที่ $0\leq t<2\pi$ จงหา $\oint_{\gamma} \frac{4z^2+i}{(z-i)(z-2)}dz$

$$\oint_{\gamma} \frac{4z^2 + i}{(z - i)(z - 2)} dz = \oint_{\gamma_1} \frac{4z^2 + i}{(z - i)(z - 2)} dz + \oint_{\gamma_2} \frac{4z^2 + i}{(z - i)(z - 2)} dz$$

$$= 2\pi i \left(\frac{4(i)^2 + i}{i - 2} \right) + 2\pi i \left(\frac{4(2)^2 + i}{2 - i} \right)$$

$$= 2\pi i \left(\frac{-4 + i}{-2 + i} \right) + 2\pi i \left(\frac{16 + i}{2 - i} \right) = \frac{40\pi \left(-1 + 2i \right)}{\sqrt{5}}$$

สูตรการหาปริพันธ์ของโคชีทั่วไป (Generalized Cauchy's integral formula)

ทฤษฎีบท 3.19 ให้ D เป็นบริเวณเชื่อมโยงเชิงเดียวและ ให้ γ เป็นเส้นโค้งปิดที่มีทิศทางทวนเข็มนาฬิกาใน D กำหนดให้ $f(z) = \left(\frac{g(z)}{\left(z-z_0\right)^{n+1}}\right)$ โดยที่ g(z) เป็นฟังก์ชันโฮโลมอร์ฟิกบนบริเวณภายใน γ และ z_0 เป็นจุดภายใน γ แล้ว

$$\int_{\gamma} \frac{g(z)}{(z-z_0)^{n+1}} dz = 2\pi i \frac{g^{(n)}(z_0)}{n!}$$

ตัวอย่าง 3.20 ให้ $\gamma(t)=e^{it}$ โดยที่ $0\leq t\leq 2\pi$ จงหาค่า $\int\limits_{\gamma} rac{1}{z^3}dz$

วิธีทำ พิจารณา g(z)=1, $z_0=0$ และ n=2

$$g'(z) = 0$$

$$\therefore g''(z) = 0$$

จากสูตรทั่วไปของการหาปริพันธ์ของโคชี

ดังนั้น
$$\int_{\gamma} \frac{1}{z^3} dz = \frac{2\pi i g''(0)}{2!} = 0$$

ตัวอย่าง 3.21 ให้
$$\gamma(t) = e^{it}$$
 โดยที่ $0 \le t \le 2\pi$ จงหาค่า $\int\limits_{\gamma} \frac{z^3 + 2z + 1}{\left(z - 1\right)^3} dz$

วิธีทำ พิจารณา
$$g\left(z\right)=z^3+2z+1$$
, $z_0=1$ และ $n=2$

$$g'(z) = 3z^2 + 2$$

$$\therefore g''(z) = 6z$$

จากสูตรทั่วไปของการหาปริพันธ์ของโคชี

ดังนั้น

$$\int_{\gamma} \frac{z^3 + 2z + 1}{(z - 1)^3} dz = \frac{2\pi i g''(1)}{2!}$$
$$= \frac{2\pi i 6(1)}{2!} = 6\pi i$$

ตัวอย่าง 3.22 ให้ $\gamma(t) = 5 + e^{it}$ โดยที่ $0 \le t \le 2\pi$ จงหา $\int_{\gamma} \frac{\cos z}{(z-1)(z-5)^2} dz$

วิธีทำ พิจารณา
$$g(z) = \frac{\cos z}{z-1}$$
, $z_0 = 5$ และ $n=1$

$$g'(z) = \frac{(z-1)(-\sin z) - \cos z}{(z-1)^2}$$

$$\therefore g'(5) = \frac{-4\sin(5) - \cos(5)}{16}$$

ด้งนั้น
$$\int_{\gamma} \frac{\cos z}{(z-1)\big(z-5\big)^2} dz = \frac{2\pi i g''(5)}{1!}$$
$$= 2\pi i \left(\frac{-4\sin(5) - \cos(5)}{16}\right)$$
$$= -\pi i \left(\frac{4\sin(5) + \cos(5)}{8}\right)$$

แบบฝึกหัดประจำบทที่ 4

- 1. จงหาสมการตัวแทนพารามิเตอร์แทนส่วนของเส้นตรงจากจุด 2+3i ไปยัง -1-5i
- 2. จงหาสมการตัวแทนพารามิเตอร์แทนส่วนของวงกลมรัศมี 5 หน่วยที่มีจุดศูนย์กลางอยู่ที่ 1 โดยเริ่มจากจุด 6 ไปยัง 1+5i
- 3. ให้ γ เป็นส่วนของเส้นโค้ง $y=x^3$ จากจุด $\left(0,0\right)$ ไปยัง $\left(2,8\right)$ และ $f\left(z\right)=\overline{z}$ จงหา $\int\limits_{\gamma}f\left(z\right)dz$
- 4. ให้ γ เป็นส่วนของวงกลมรัศมี 10 หน่วยที่มีจุดศูนย์กลางที่ 0 โดยเริ่มจากจุด 10i ไปยัง -10 และ

$$f(z) = \frac{z^3 - 3z - 5}{z^3 + 5}$$
 จงหาขอบเขตบนของ $\left| \int_{\gamma} f(z) dz \right|$

- 5. ให้ $\gamma(t)=3e^{it}$ โดยที่ $0\leq t\leq 2\pi$ จงหาค่าของ $\oint_{\gamma} \frac{7z^2+3i}{z(z+i)(z-2)}dz$
- 6. ให้ $\gamma(t) = \pi + e^{it}$ โดยที่ $0 \le t \le 2\pi$ จงหาค่าของ $\oint_{\gamma} \frac{4\cos(z) + 5z + 1}{\left(z 7\right)^5} dz$
- 7. ให้ $\gamma(t) = 5 + e^{it}$ โดยที่ $0 \le t \le 2\pi$ จงหาค่าของ $\oint_{\gamma} \frac{\sin z}{\left(z-2\right)\left(z-5\right)^2} dz$

แผนการสอนในวันอังคารที่ 15 กันยายน พ.ศ. 2563 เวลา 13.00-16.00 น.
บทที่ 5 ลำดับและอนุกรมของจำนวนเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

- 1. การลู่เข้าของลำดับและอนุกรม
- 2. อนุกรมกำลัง

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักการลู่เข้าของลำดับและอนุกรม
- 2. ให้ผู้เรียนรู้จักอนุกรมกำลังและการลู่เข้าลู่ออกของอนุกรมกำลัง

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 5

ลำดับและอนุกรมของจำนวนเชิงซ้อน

ลำดับของจำนวนเชิงซ้อน ลำดับของจำนวนเชิงซ้อน (Sequence) คือ การเรียงกันของจำนวนเชิงซ้อน ตามลำดับ z_1, z_2, z_3, \ldots โดยเขียนในพจน์ทั่วไปเป็น $\{z_n\}$

ตัวอย่าง 5.1
$$\frac{i}{2}$$
, $\left(\frac{i}{2}\right)^2$, $\left(\frac{i}{2}\right)^3$,... สามารถเขียนเป็นพจน์ทั่วไปเป็น $\left\{\left(\frac{i}{2}\right)^n\right\}$

การลู่เข้าของลำดับ

สำหรับนิยามทางคณิตศาสตร์ของลิมิต มีดังนี้

บทนิยาม 5.1 ลำดับของจำนวนเชิงซ้อน $\left\{z_n\right\}_{n\in\mathbb{N}}$ ถูกกล่าวว่าลู่เข้าสู่ z_0 ถ้าทุก ๆ ค่า $\varepsilon>0$ ใด ๆ จะ สามารถหา $n_0\in\mathbb{N}$ ซึ่ง $\left|z_n-z_0\right|<\varepsilon$ เมื่อ $n>n_0$ โดยใช้สัญลักษณ์แทนด้วย $\lim_{n\to\infty}z_n=z_0$

เราจะเรียกลำดับที่หาค่าลิมิตได้ว่าลำดับลู่เข้า (Convergent sequence) และลำดับที่ไม่สามารถหา ค่าลิมิตได้ว่าลำดับลู่ออก (Divergent sequence)

ตัวอย่าง 5.2 พิจารณาการลู่เข้าหรือลู่ออกของ $\left\{\frac{1}{n^3}+i\right\}$

$$\lim_{n\to\infty} \left(\frac{1}{n^3} + i\right) = 0 + i$$

$$\therefore \left\{ \frac{1}{n^3} + i \right\} \ \, \text{ลู่เข้า}$$

ทฤษฎีบท 5.3 ให้ $z_n = x_n + iy_n$ และ z = x + iy

$$\lim_{n\to\infty} z_n = z$$
 ก็ต่อเมื่อ $\lim_{n\to\infty} x_n = x$ และ $\lim_{n\to\infty} y_n = y$

ตัวอย่าง 5.4 ให้
$$z_n=rac{n^2+i}{2n^2+1}$$
 พิจารณาว่า z_n ลู่เข้าหรือไม่

$$z_n = \frac{n^2 + i}{2n^2 + 1}$$
$$= \frac{n^2}{2n^2 + 1} + \frac{1}{2n^2 + 1}i$$

เนื่องจาก
$$\lim_{n\to\infty}\frac{n^2}{2n^2+1}=\frac{1}{2}$$
 และ $\lim_{n\to\infty}\frac{1}{2n^2+1}=0$

$$\therefore \lim_{n\to\infty} z_n = \frac{1}{2} + 0i = \frac{1}{2}$$

ดังนั้น z_n ลู่เข้า

อนุกรมของจำนวนเชิงซ้อน

พิจารณา z_1,z_2,z_3,\ldots เป็นลำดับของจำนวนเชิงซ้อน ให้ $S_n=z_1+z_2+\ldots+z_n$ เราเรียก S_n ว่า ลำดับของผลบวกย่อย

ให้ $z_1+z_2+z_3+\cdots=\sum_{n=1}^\infty z_n$ เป็นอนุกรมอนันต์ ถ้า $\lim_{n\to\infty}S_n=S$ แล้วจะกล่าวว่า $\sum_{n=1}^\infty z_n$ ลู่เข้าและ มีผลบวกเท่ากับ S หรือเขียนแทนด้วย $\sum_{n=1}^\infty z_n=S$ แต่ถ้าอนุกรมไม่มีสมบัติลู่เข้า เราจะเรียกว่าอนุกรมลู่ออก

ตัวอย่าง 5.5 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \frac{3i}{(n+1)(n+2)}$

วิธีทำ
$$S_n = 3i \left(\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n+1)(n+2)} \right)$$

$$= 3i \left(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1} - \frac{1}{n+2} \right)$$

$$= 3i \left(\frac{1}{2} - \frac{1}{n+2} \right)$$

ดังนั้น
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} 3i \left(\frac{1}{2} - \frac{1}{n+2}\right)$$

$$= 3i \left(\frac{1}{2}\right) = \frac{3i}{2}$$
 ดังนั้น $\sum_{n=1}^{\infty} \frac{3i}{(n+1)(n+2)}$ สู่เข้า

อนุกรมเรขาคณิต

อนุกรมเรขาคณิตของจำนวนเชิงซ้อนนิยามเหมือนกับอนุกรมเรขาคณิตของจำนวนจริง ในรูป $a+ar+ar^2+\ldots=\sum_{n=0}^\infty ar^n\ \, \text{โดย}\ \, a\neq 0\ \, \text{และ}\ \, r\ \, \text{เป็นค่าคงที่เชิงซ้อนซึ่ง จะลู่เข้าสู่}\ \, \frac{a}{1-r}\ \, \text{เมื่อ}\ \, \big|r\big|<1\ \, \text{และ}$ ลู่ออกเมื่อ $\big|r\big|\geq 1$

ตัวอย่าง 5.7 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \frac{3i}{\left(1+2i\right)^n}$

จะเห็นได้ว่า
$$r=\left(rac{1}{1+2i}
ight)$$

$$|r|=rac{1}{|1+2i|}=rac{1}{\sqrt{1^2+2^2}}=rac{1}{\sqrt{5}}<1$$
 ดังนั้น $\sum_{n=1}^{\infty}rac{3i}{\left(1+2i
ight)^n}$ ลู่เข้า

การทดสอบการลู่เข้าหรือลู่ออกของอนุกรม

ทฤษฎีบทการลู่ออก

ทฤษฎีบท 5.8 พิจารณา
$$\sum_{n=1}^{\infty} a_n$$
 ถ้า $\lim_{n\to\infty} a_n \neq 0$ แล้ว $\sum_{n=1}^{\infty} a_n$ ลู่ออก

ตัวอย่าง 5.9 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \frac{5+ni}{2n+1}$

วิธีทำ
$$\lim_{n\to\infty} \frac{5+ni}{2n+1} = \lim_{n\to\infty} \frac{\frac{5}{n}+i}{2+\frac{1}{n}}$$
$$= \frac{i}{2} \neq 0$$

โดยทฤษฎีบทการลู่ออก จะได้ว่า $\sum_{n=1}^{\infty} rac{5+ni}{2n+1}$ ลู่ออก

อนุกรมลู่เข้าแบบสัมบูรณ์

ทฤษฎีบท 5.10 ถ้า $\sum_{n=1}^\infty |a_n|$ ลู่เข้าแล้ว $\sum_{n=1}^\infty a_n$ ลู่เข้า และเราจะกล่าวว่า $\sum_{n=1}^\infty a_n$ ลู่เข้าอย่างสัมบูรณ์ซึ่ง เราจะ ประยุกต์ใช้กับการทดสอบเปรียบเทียบ

ทฤษฎีบทการทดสอบการเปรียบเทียบ

ทฤษฎีบท 5.11 พิจารณาอนุกรมเชิงซ้อน $\sum\limits_{n=1}^{\infty} z_n$ ถ้า $\sum\limits_{n=1}^{\infty} A_n$ เป็นอนุกรมของจำนวนจริงที่ลู่เข้าและมี

 $N\in\mathbb{N}$ ซึ่ง $|z_n|\leq A_n$ สำหรับทุก $n\geq N$ แล้วจะได้ว่า $\sum_{n=1}^\infty z_n$ ลู่เข้าอย่างสัมบูรณ์

ตัวอย่าง 5.12 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \frac{i \sin n}{n^3 + 1}$

วิธีทำ
$$\left| \frac{i \sin n}{n^3 + 1} \right| \le \frac{1}{n^3 + 1} < \frac{1}{n^3}$$

เนื่องจาก $\sum_{n=1}^{\infty}\frac{1}{n^3}$ ลู่เข้าเพราะเป็นอนุกรม p ที่ p=3>1 โดยการทดสอบเปรียบเทียบ จึงได้ว่า $\sum_{n=1}^{\infty}\frac{i\sin n}{n^3+1}$ ลู่เข้า

ทฤษฎีบทการทดสอบแบบอัตราส่วน

ทฤษฎีบท 5.13 ให้ $\sum_{n=1}^{\infty} a_n$ เป็นอนุกรมเชิงซ้อนโดยที่ $a_n \neq 0$ ทุกค่า n และให้

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

แล้วอนุกรม $\sum_{n=1}^{\infty} a_n$ จะเป็น

- 1) อนุกรมลู่เข้าอย่างสัมบูรณ์ ถ้า $ho\!<\!1$
- 2) อนุกรมลู่ออก ถ้า $\rho > 1$
- 3) ไม่สามารถสรุปได้ ถ้า $\,
 ho = 1\,$

ทฤษฎีบทการทดสอบแบบรากที่ ก

ทฤษฎีบท 5.14 ให้ $\sum_{n=1}^{\infty} a_n$ เป็นอนุกรมเชิงซ้อนโดยที่

$$\rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

แล้วอนุกรม $\sum\limits_{n=1}^{\infty}a_{n}$ จะเป็น

- 1) อนุกรมลู่เข้าแบบสัมบูรณ์ ถ้า $\,
 ho\!<\!1\,$
- 2) อนุกรมลู่ออก ถ้า $ho\!>\!1$
- 3) ไม่สามารถสรุปได้ ถ้า $\,
 ho = 1\,$

ตัวอย่าง 5.15 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \frac{\left(5i+1\right)^n}{\left(2n+1\right)!}$

วิธีทำ
$$a_n = \frac{\left(5i+1\right)^n}{\left(2n+1\right)!}$$
 $a_{n+1} = \frac{\left(5i+1\right)^{n+1}}{\left(2n+3\right)!}$
$$\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \left|\frac{\left(5i+1\right)^{n+1}}{\left(2n+3\right)!} \cdot \frac{\left(2n+1\right)!}{\left(5i+1\right)^n}\right|$$

$$= \lim_{n\to\infty} \left|\frac{5i+1}{\left(2n+3\right)\left(2n+2\right)}\right|$$

$$= 0 < 1$$

โดยการทดสอบอัตราส่วน จะได้ว่า

$$\therefore \sum_{n=1}^{\infty} \frac{\left(5i+1\right)^n}{\left(2n+1\right)!}$$
 สู่เข้า

ตัวอย่าง 5.16 พิจารณาการลู่เข้าหรือลู่ออกของ $\sum_{n=1}^{\infty} \left(\frac{2i}{n+2}\right)^n$

= 0 < 1

วิธีทำ
$$\lim_{n \to \infty} \left| \left(\frac{2i}{n+2} \right)^n \right|^{\frac{1}{n}} = \lim_{n \to \infty} \left| \frac{2i}{n+2} \right|$$

โดยการทดสอบรากที่ n จะได้ว่า

$$\therefore \sum_{n=1}^{\infty} \left(\frac{2i}{n+2}\right)^n$$
 ลู่เข้า

อนุกรมกำลัง

อนุกรมกำลังเป็นอนุกรมที่อยู่ในรูปของ $a_0+a_1\big(z-z_0\big)+a_2\big(z-z_0\big)^2+\ldots=\sum_{n=0}^\infty a_n\big(z-z_0\big)^n$ เรียกว่า อนุกรมกำลังของ $\big(z-z_0\big)$ โดย z เป็นตัวแปร และ a_n เป็นสัมประสิทธิ์ และ z_0 เป็นจุดศูนย์กลาง ของอนุกรม

ตัวอย่างเช่น
$$\sum_{n=1}^{\infty} rac{\left(z-2i
ight)^n}{3n}$$

มี
$$a_n = \frac{1}{3n}$$
 เป็นสัมประสิทธิ์

และ 2i เป็นจุดศูนย์กลางของอนุกรม

ทฤษฎีบท 5.17 การลู่เข้าของอนุกรมกำลัง $\sum_{n=0}^{\infty} a_n \left(z-z_0\right)^n$

1) ถ้าอนุกรมกำลังลู่เข้าที่จุด z_1 เมื่อ $z_1 \neq z_0$ แล้วจะได้ว่า สำหรับทุก z ที่ใกล้ z_0 กว่า z_1 อนุกรมจะลู่เข้าที่ จุด z ด้วย นั่นคือ ถ้า z ที่สอดคล้อง $|z-z_0| < |z_1-z_0|$ แล้ว $\sum_{n=0}^{\infty} a_n \left(z-z_0\right)^n$ จะลู่เข้า

2) ถ้าอนุกรมกำลังลู่ออกที่จุด z_2 เมื่อ $z_2 \neq z_0$ แล้วจะได้ว่า สำหรับทุก z ที่ไกล z_0 กว่า z_2 อนุกรมจะลู่ ออกที่จุด z ด้วย นั่นคือ ถ้า z ที่สอดคล้อง $|z-z_0|>|z_2-z_0|$ แล้ว $\sum_{n=0}^\infty a_n \big(z-z_0\big)^n$ จะลู่ออก

รัศมีการลู่เข้าของอนุกรมกำลัง

ให้ R เป็นรัศมีของวงกลม $|z-z_0|=R$ เราจะเรียก R ว่ารัศมีการลู่เข้า ถ้า

- 1) อนุกรมกำลังลู่เข้าสำหรับทุก z ที่ $|z-z_0| < R$
- 2) อนุกรมกำลังลู่ออกสำหรับทุก z ที่ $|z-z_0| > R$

ทฤษฎีบท 5.18 พิจารณา
$$\sum_{n=0}^{\infty}a_n\left(z-z_0
ight)^n$$
 สมมติ $\lim_{n o\infty}\left|rac{a_{n+1}}{a_n}
ight|=L$ จะได้ว่า

- 1) ถ้า $L\!=\!0$ แล้ว $R\!=\!\infty$ นั่นคือ อนุกรมกำลังลู่เข้าทุกจุดใน $\mathbb C$
- 2) ถ้า $L \neq 0 (L > 0)$ แล้ว $R = \frac{1}{L}$
- 3) ถ้า $L=\infty$ แล้ว R=0 ดังนั้น อนุกรมจะลู่เข้าเฉพาะที่จุดศูนย์กลาง

ทฤษฎีบท 5.19 พิจารณา
$$\sum_{n=0}^{\infty}a_n\left(z-z_0\right)^n$$
 สมมติ $\lim_{n o\infty}\sqrt[n]{|a_n|}=L$ จะได้ว่า

- 1) ถ้า $L\!=\!0$ แล้ว $R\!=\!\infty$ นั่นคือ อนุกรมกำลังลู่เข้าทุกจุดใน $\mathbb C$
- 2) ถ้า $L \neq 0 (L > 0)$ แล้ว $R = \frac{1}{L}$
- 3) ถ้า $L\!=\!\infty$ แล้ว $R\!=\!0$ ดังนั้น อนุกรมจะลู่เข้าเฉพาะที่จุดศูนย์กลาง

ตัวอย่าง 5.20 จงหารัศมีการลู่เข้าและบริเวณการลู่เข้าของอนุกรม $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$

วิธีทำ
$$a_n = \frac{(2n)!}{\left(n!\right)^2}$$
 $a_{n+1} = \frac{(2n+2)!}{\left((n+1)!\right)^2}$

ดังนั้น $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{(2n)!}{\left(n!\right)^2} \cdot \frac{\left((n+1)!\right)^2}{(2n+2)!} \right|$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^2}{(2n+2)(2n+1)} \right|$$

$$= \frac{1}{4}$$

จะได้ว่าบริเวณการลู่เข้า คือ $|z-3i|<rac{1}{4}$

ตัวอย่าง 5.21 จงหารัศมีการลู่เข้าและบริเวณการลู่เข้าของอนุกรม $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+3}\right)^n \left(z+2i\right)^n$

วิธีทำ
$$a_n = \left(\frac{6n+1}{2n+3}\right)^n$$
ดังนั้น $R = \frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{\left|a_n\right|}}$

$$= \frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{\left|\frac{6n+1}{2n+3}\right|}}$$

$$= \frac{1}{2}$$

จะได้ว่า $|z+2i|<\frac{1}{3}$ เป็นบริเวณการลู่เข้า

แผนการสอนในวันอังคารที่ 22 กันยายน พ.ศ. 2563 เวลา 13.00-16.00 น.
บทที่ 5 ลำดับและอนุกรมของจำนวนเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

1. อนุกรมเทย์เลอร์

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักอนุกรมเทย์เลอร์

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

อนุกรมเทย์เลอร์

เราสามารถเขียนฟังก์ชัน f ที่สามารถหาอนุพันธ์ได้ ในรูปของอนุกรมกำลังได้ตามทฤษฎีบทต่อไปนี้ **ทฤษฎีบท 5.22** ให้ f(z) เป็นฟังก์ชันโฮโลมอร์ฟิกในบริเวณ $\{z\,|\,|z-z_0|< r_0\}$ จะได้ว่า

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

นั่นคือ อนุกรมกำลังดังกล่าวลู่เข้าสู่ $f\left(z
ight)$ เมื่อ $\left|z-z_{0}
ight|< r_{0}$ เราเรียกอนุกรมนี้ว่า **อนุกรมเทย์เลอร์**

ถ้า $z_0 = 0$ แล้วอนุกรมนี้คือ $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)z^n}{n!}$ โดยที่ $|z| < r_0$ เรียกว่า อนุกรมแมคลอริน

ตัวอย่าง 5.23 จงกระจาย $f(z)\!=\!e^z$ เป็นอนุกรมแมคลอริน

วิธีทำ
$$f(z) = e^z$$
, $f(0) = 1$

$$f^{(n)}(z) = e^z$$
, $f^{(n)}(0) = e^0 = 1$

ดังนั้น
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

เนื่องจาก e^z เป็นฟังก์ชันที่ $R=\infty$

มือนุกรมเทย์เลอร์ของฟังก์ชันที่เป็นฟังก์ชันพื้นฐานที่ควรทราบดังนี้

$$e^{z-a} = 1 + \frac{(z-a)^1}{1!} + \frac{(z-a)^2}{2!} + \dots + \frac{(z-a)^n}{n!} + \dots$$

$$\sin(z-a) = (z-a) - \frac{(z-a)^3}{3!} + \frac{(z-a)^5}{5!} - \frac{(z-a)^7}{7!} + \cdots$$

$$\cos(z-a) = 1 - \frac{(z-a)^2}{2!} + \frac{(z-a)^4}{4!} - \frac{(z-a)^6}{6!} + \cdots$$

โดยที่ $R=\infty$ สำหรับทุกอนุกรม

ตัวอย่าง 5.24 จงกระจายอนุกรมเทย์เลอร์ $f(z) = e^z$ รอบจุด 3

วิธีทำ
$$e^z=e^{z-3+3}$$

$$=e^3e^{z-3}$$

$$=e^3\left(1+\left(z-3\right)+\frac{\left(z-3\right)^2}{2!}+\frac{\left(z-3\right)^3}{3!}+\cdots\right)$$

$$=e^3+e^3\left(z-3\right)+\frac{e^3}{2!}\left(z-3\right)^2+\cdots$$

ตัวอย่าง 5.25 จงกระจายอนุกรมเทย์เลอร์ของ $\cos z$ รอบจุด π

วิธีทำ
$$\cos z = -\cos(z-\pi)$$

$$= -\left(1 - \frac{(z-\pi)^2}{2!} + \frac{(z-\pi)^4}{4!} - \cdots\right)$$

$$= -1 + \frac{(z-\pi)^2}{2!} - \frac{(z-\pi)^4}{4!} + \cdots$$

ตัวอย่าง 5.26 จงกระจายอนุกรมเทย์เลอร์ของ $\cos z$ รอบจุด $\frac{\pi}{2}$

วิธีทำ
$$\cos z = -\sin\left(z - \frac{\pi}{2}\right)$$

$$= -\left[\left(z - \frac{\pi}{2}\right) - \frac{\left(z - \frac{\pi}{2}\right)^3}{3!} + \frac{\left(z - \frac{\pi}{2}\right)^5}{5!} - \cdots\right]$$

$$= -\left(z - \frac{\pi}{2}\right) + \frac{\left(z - \frac{\pi}{2}\right)^3}{3!} - \frac{\left(z - \frac{\pi}{2}\right)^5}{5!} + \cdots$$

จากการลู่เข้าของอนุกรมเรขาคณิต ซึ่ง |r| < 1

$$a+ar++ar^2+\ldots=\frac{a}{1-r}$$

ถ้า |z-a| < 1 จะได้ว่า

$$1+(z-a)+(z-a)^2+(z-a)^3+\cdots=rac{1}{1-(z-a)}$$

ແລະ $1-(z-a)+(z-a)^2-(z-a)^3+\cdots=rac{1}{1+(z-a)}$

ตัวอย่าง 5.27 จงกระจายอนุกรมเทย์เลอร์ของ $f(z) = \frac{2}{1-z}$ รอบจุด 0

วิธีทำ
$$\frac{2}{1-z}$$
 $=2\bigg(\frac{1}{1-z}\bigg)$ $=2\bigg(1+z+z^2+z^3+\cdots\bigg)$ โดยที่ $|z|<1$

ดังนั้น รัศมีการลู่เข้าคือ 1

ตัวอย่าง 5.28 จงกระจายอนุกรมเทย์เลอร์ของ $f(z) = \frac{1}{z}$ รอบจุด 2

วิธีทำ
$$\frac{1}{z} = \frac{1}{2 + (z - 2)}$$

$$= \frac{1}{2} \left(\frac{1}{2 + (z - 2)} \right)$$

$$= \frac{1}{2} \left[1 - \frac{1}{2^2} (z - 2) + \frac{1}{2^3} (z - 2)^3 - \frac{1}{2^4} (z - 2)^3 + \cdots \right]$$

$$= \frac{1}{2} - \frac{1}{2^2} (z - 2) + \frac{1}{2^3} (z - 2)^3 - \frac{1}{2^4} (z - 2)^3 + \cdots$$
 โดยที่ $\left| \frac{z - 2}{2} \right| < 1$

 $\therefore |z-2| < 2$

ดังนั้น รัศมีการลู่เข้าคือ 2

ตัวอย่าง 5.29 จงกระจายอนุกรมเทย์เลอร์ของ $f(z) = \frac{z}{(z-1)(z+2)}$ รอบจุด 0

วิธีทำ จากการแยกเศษส่วนย่อย

$$\frac{z}{(z-1)(z+2)} = \frac{1}{3(z-1)} + \frac{2}{3} \frac{1}{z+2}$$

$$= \frac{-1}{3(1-z)} + \frac{1}{3} \frac{1}{1+\frac{z}{2}}$$

$$= \frac{-1}{3} (1+z+z^2+z^3+\cdots) + \frac{1}{3} \left(1-\frac{z}{2}+\frac{z^2}{4}-\frac{z^3}{8}+\cdots\right)$$

ตัวอย่าง 5.30 จงกระจายอนุกรมเทย์เลอร์ของ $f\left(z\right) = \frac{3i}{z+1}$ รอบจุด 4-2i

วิธีทำ
$$\frac{3i}{z+1} = \frac{3i}{5-2i + (z-4+2i)}$$

$$= \frac{3i}{5-2i} \left(\frac{1}{1 + \left(\frac{z-4+2i}{5-2i}\right)} \right)$$

$$= \frac{3i}{5-2i} \left(1 - \frac{z - \left(4-2i\right)}{5-2i} + \left(\frac{z - \left(4-2i\right)}{5-2i}\right)^2 - \left(\frac{z - \left(4-2i\right)}{5-2i}\right)^3 + \cdots \right)$$

โดยที่
$$\left| \frac{z - (4 - 2i)}{5 - 2i} \right| < 1$$

$$\therefore |z - (4 - 2i)| < |5 - 2i| = \sqrt{29}$$

ดังนั้น รัศมีการลู่เข้าคือ $\sqrt{29}$

ในกรณีที่เราพิจารณาบริเวณใกล้ ๆ จุดที่หาอนุพันธ์ไม่ได้ เราจะนิยามการกระจายอนุกรมกำลังที่มีส่วน ของเลขชี้กำลังติดลบดังหัวข้อต่อไปนี้ แผนการสอนในวันอังคารที่ 29 กันยายน พ.ศ. 2563 เวลา 13.00-16.00 น.
บทที่ 5 ลำดับและอนุกรมของจำนวนเชิงซ้อน ภาคเรียนที่ 1 ปีการศึกษา 2563

1. อนุกรมโลรองต์

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักอนุกรมโลรองต์

กิจกรรมการเรียนการสอน

- 3. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 4. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 3. ไอแพด
- 4. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

อนุกรมโลรองต์ (Laurent series)

ทฤษฎีบท 5.31 ถ้า f(z) เป็นฟังก์ชันโฮโลมอร์ฟิกในวงแหวนซึ่งมี γ_1 และ γ_2 เป็นขอบ ซึ่งเป็นวงกลมที่มีจุด ศูนย์กลางที่ z_0 รัศมี r_1 และ r_2 ตามลำดับ โดยที่ $r_2 < r_1$ และทิศทางบวก

สำหรับแต่ละ z ในวงแหวน อนุกรมโลรองต์ของ f(z)

เขียนในรูป
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

โดยที่
$$r_2 < |z - z_0| < r_1$$

) ເມື່ອ
$$a_n = \frac{1}{2\pi i} \oint_{\gamma_1} \frac{f(z)}{(z-z_0)^{n+1}} dz$$
, $n = 0, 1, 2, \dots$

และ
$$b_n = \frac{1}{2\pi i} \oint_{\gamma_2} (z - z_0)^{n+1} f(z) dz$$
, $n = 1, 2, 3, \dots$

ตัวอย่าง 5.32 จงหาอนุกรมโลรองต์ $f(z) = \frac{\sin z}{\left(z - \pi\right)^4}$ รอบจุด π

วิธีทำ $\sin z = -\sin(z - \pi)$

$$=-(z-\pi)+\frac{(z-\pi)^3}{3!}-\frac{(z-\pi)^5}{5!}+\cdots$$

$$\therefore \frac{\sin z}{(z-\pi)^4} = -\frac{1}{(z-\pi)^3} + \frac{1}{3!(z-\pi)} - \frac{(z-\pi)}{5!} + \frac{(z-\pi)^3}{7!} + \cdots$$

ตัวอย่าง 5.33 จงหาอนุกรมโลรองต์ ของ $\frac{1}{z(z-1)}$ รอบจุด 1 ในบริเวณต่อไปนี้

1) บริเวณ 0 < |z-1| < 1

วิธีทำ
$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= \frac{1}{z-1} - \frac{1}{1+z-1} \quad (\because |z-1| < 1)$$

$$= \frac{1}{z-1} - 1 + (z-1) - (z-1)^2 + (z-1)^3 + \cdots$$

2) บริเวณ $1 < |z-1| < \infty$

วิธีทำ
$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= \frac{1}{z-1} - \left(\frac{1}{1+z-1}\right)$$

$$= \frac{1}{z-1} - \frac{1}{z-1} \left(\frac{1}{1+\frac{1}{z-1}}\right) \qquad \left(\because \left|\frac{1}{z-1}\right| < 1\right)$$

$$= \frac{1}{z-1} - \frac{1}{z-1} \left(1 - \frac{1}{z-1} + \frac{1}{\left(z-1\right)^2} - \frac{1}{\left(z-1\right)^3} + \cdots\right)$$

$$= \frac{1}{z-1} - \frac{1}{z-1} + \frac{1}{\left(z-1\right)^2} - \frac{1}{\left(z-1\right)^3} + \cdots$$

$$= \frac{1}{\left(z-1\right)^2} - \frac{1}{\left(z-1\right)^3} + \frac{1}{\left(z-1\right)^4} + \cdots$$

ตัวอย่าง 5.34 จงหาอนุกรมโลรองต์ของ $f(z) = \frac{1}{(z+1)(z-3)}$ รอบจุด 0 ในบริเวณต่อไปนี้

1) บริเวณ 1 < |z| < 3

วิธีทำ
$$\frac{1}{(z+1)(z-3)} = \frac{1}{4} \left(\frac{1}{z-3} - \frac{1}{z+1} \right)$$

$$= \frac{1}{4} \left(-\frac{1}{3} \frac{1}{1-\frac{z}{3}} - \frac{1}{z} \frac{1}{1+\frac{1}{z}} \right) \qquad \left(\because \left| \frac{z}{3} \right| < 1, \left| \frac{1}{z} \right| < 1 \right)$$

$$= \frac{1}{4} \left(\frac{-1}{3} \left(1 + \frac{z}{3} + \left(\frac{z}{3} \right)^2 + \cdots \right) - \frac{1}{z} \left(1 - \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right) \right)$$

2) บริเวณ $3 < |z| < \infty$

วิธีทำ
$$\frac{1}{(z+1)(z-3)} = \frac{1}{9} \left(\frac{1}{z-3} - \frac{1}{z+1} \right)$$

$$= \frac{1}{4} \left(\frac{1}{z} \frac{1}{1-\frac{3}{z}} - \frac{1}{z} \frac{1}{1+\frac{1}{z}} \right) \qquad \left(\because \left| \frac{3}{z} \right| < 1, \ \left| \frac{1}{z} \right| < 1 \right)$$

$$= \frac{1}{4} \left(\frac{1}{z} \left(1 + \frac{3}{z} + \left(\frac{3}{z} \right)^2 + \left(\frac{3}{z} \right)^3 + \cdots \right) + \frac{1}{z} \left(1 - \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \right) \right)$$

แบบฝึกหัดประจำบทที่ 5

1. จงพิจารณาการลู่เข้าหรือการลู่ออกของอนุกรมต่อไปนี้

$$1.1) \quad \sum_{n=1}^{\infty} \frac{2i+1}{n(n+1)}$$

1.2)
$$\sum_{n=1}^{\infty} 5 \left(\frac{3i+1}{2i} \right)^n$$

1.3)
$$\sum_{n=1}^{\infty} \frac{2n^2 + i}{3n + 1}$$

1.4)
$$\sum_{n=1}^{\infty} \frac{3i+1}{5^n+3^n}$$

$$1.5) \quad \sum_{n=1}^{\infty} \frac{2i\cos(n)}{n^5 + 1}$$

1.6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!(3i+1)^n}{n!}$$

$$1.7) \quad \sum_{n=1}^{\infty} \frac{e^{ni}}{\left(n+5\right)^n}$$

2. จงหารัศมีการลู่เข้าของ
$$\sum_{n=1}^{\infty} \frac{\left(n!\right)^2}{\left(2n+1\right)!} \left(z-3i\right)^n$$

3. จงกระจายอนุกรมเทย์เลอร์ของ $\sin z$ รอบจุด $-\pi$

4. จงกระจายอนุกรมเทย์เลอร์ของ
$$\frac{1}{\left(z+1
ight)\left(z-2
ight)}$$
 รอบจุด 1

5. จงกระจายอนุกรมโลรองต์รอบจุด
$$\frac{\pi}{2}$$
 ของ $\frac{\sin z}{\left(z-\frac{\pi}{2}\right)^3}$

6. จงกระจายอนุกรมโลรองต์รอบจุด 1 ของ
$$\frac{z}{(z+1)(z+3)}$$
 ในบริเวณต่อไปนี้

6.1)
$$2 < |z-1| < 4$$

6.2)
$$4 < |z-1|$$

แผนการสอนในวันอังคารที่ 6 ตุลาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 6 ทฤษฎีบทส่วนตกค้าง ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

1. จุดเอกฐาน

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักจุดเอกฐานและจุดขั้ว

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 6

ทฤษฎีบทส่วนตกค้าง

จากทฤษฎีบทปริพันธ์ของโคชีจะได้ว่า ถ้าฟังก์ชัน f(z) เป็นโฮโลมอร์ฟิกที่ทุกจุดภายในเส้นโค้งปิด เชิงเดียว γ จะได้ว่า $\int_{\gamma} f(z) dz = 0$ แต่ถ้าฟังก์ชันไม่เป็นฟังก์ชันโฮโลมอร์ฟิกที่บางจุดและไม่สอดคล้องกับ สูตรปริพันธ์ของโคชี เราจะหาค่าปริพันธ์โดยใช้ทฤษฎีบทส่วนตกค้างแทน

จุดค่าศูนย์ของฟังก์ชัน (Zero of function)

เราจะเรียกจุด z_0 ว่าจุดค่าศูนย์ของฟังก์ชัน f(z) ถ้า $f(z_0)=0$ ซึ่ง f สามารถเขียนในรูปแบบ $f(z)=(z-z_0)^m\,h(z)$ โดยที่ $h(z_0)\in\mathbb{C}\setminus\{0\}$ โดยเราจะเรียกว่า z_0 เป็นจุดค่าศูนย์อันดับที่ m ของ f ตัวอย่าง 6.1 จงแสดงว่า z=0 เป็นจุดค่าศูนย์อันดับที่ 1 ของ $f(z)=\sin z$ วิธีทำ เราสามารถกระจายอนุกรมแมคคลอรินของ $\sin z$ ดังนี้

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots$$
$$= z \left(1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \cdots \right)$$

ดังนั้น z=0 เป็นจุดค่าศูนย์ดีกรี 1 ของ $\sin z$

เราสามารถพิสูจน์ในทำนองเดียวกันว่า $z=k\pi$ โดยที่ $k\in\mathbb{Z}$ เป็นจุดค่าศูนย์อันดับ 1 ของ $\sin z$

ตัวอย่าง 6.2 จงแสดงว่า z=0 เป็นจุดค่าศูนย์ของ $f\left(z\right)=z^{2}\left(1-e^{z}\right)$ ที่มีอันดับ 3

วิธีทำ
$$f(z) = z^2 \left(1 - e^z\right)$$

$$= z^2 \left(1 - \left(1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots\right)\right)$$

$$= z^2 \left(-z - \frac{z^2}{2!} - \frac{z^3}{3!} - \cdots\right)$$

$$= z^3 \left(-1 - \frac{z}{2!} - \frac{z^2}{3!} - \cdots\right)$$

ดังนั้น z=0 เป็นจุดค่าศูนย์อันดับที่ 3 ของ $f\left(z\right)$

จุดเอกฐาน (Singular point)

ถ้า f ไม่เป็นฟังก์ชันโฮโลมอร์ฟิกที่จุด z_0 แต่ f ยังคงเป็นฟังก์ชันโฮโลมอร์ฟิกในบริเวณย่าน ใกล้เคียงจุด z_0 เราจะเรียกจุด z_0 ว่า จุดเอกฐาน

เราจะใช้รูปแบบอนุกรมโลรองต์รอบจุด $z_{\scriptscriptstyle 0}$ เป็นตัวจำแนกประเภทของจุดเอกฐาน โดย

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

โดยเรียก $\sum_{n=0}^{\infty}a_n\left(z-z_0\right)^n$ ว่า ส่วนวิเคราะห์ และ $\sum_{n=1}^{\infty}rac{b_n}{\left(z-z_0
ight)^n}$ ส่วนหลัก

1. จุดเอกฐานที่ขจัดได้ (Removable singularity)

 z_0 เป็นจุดเอกฐานที่ขจัดได้ เมื่อไม่มีส่วนหลักของการกระจายอนุกรมโลรองต์รอบจุด z_0

ตัวอย่าง 6.3 จงแสดงว่า 0 เป็นจุดเอกฐานที่ขจัดได้ของ $\frac{\sin z}{z}$

วิธีทำ $\frac{\sin z}{z} = \frac{1}{z} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots \right)$

$$=1-\frac{z^2}{3!}+\frac{z}{5!}-\frac{z^6}{7!}+\cdots$$

ดังนั้น 0 เป็นจุดเอกฐานที่ขจัดได้ของ $\frac{\sin z}{z}$ เนื่องจากอนุกรมโลรองต์รอบจุด 0 ไม่มีส่วนหลัก

ตัวอย่าง 6.4 จงแสดงว่า 0 เป็นจุดเอกฐานแบบขจัดได้ของ $\frac{1-\cos z}{z^2}$

วิธีทำ $\frac{1-\cos z}{z^2} = \frac{1}{z^2} \left(1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \cdots \right) \right)$ $= \frac{1}{z^2} \left(\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \cdots \right)$ $= \left(\frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \cdots \right)$

ดังนั้น 0 เป็นจุดเอกฐานที่ขจัดได้ของ $\frac{1-\cos z}{z^2}$ เนื่องจากอนุกรมโลรองต์รอบจุด 0 ไม่มีส่วนหลัก

2. จุดเอกฐานแบบขั้ว (Pole)

 z_{0} เป็นจุดเอกฐานแบบขั้วก็ต่อเมื่อส่วนหลักของอนุกรมโลรองต์รอบจุด z_{0} มีจำนวนพจน์จำกัด

นั่นคือ

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^k \frac{b_n}{(z - z_0)^n}$$
$$= \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_k}{(z - z_0)^k}$$

โดยเราจะเรียกว่า z_0 เป็นจุดเอกฐานแบบขั้วอันดับที่ k และถ้า k=1 เราจะเรียก z_0 ว่าจุดขั้วเชิงเดียว (Simple pole)

ตัวอย่าง 6.5 จงแสดงว่า 0 เป็นจุดเอกฐานแบบขั้วอันดับที่ 4 ของ $\frac{\sin z}{z^5}$

วิธีทำ
$$\frac{\sin z}{z^5} = \frac{1}{z^5} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots \right)$$
$$= \frac{1}{z^4} - \frac{1}{3!z^2} + \frac{1}{5!} - \frac{z^2}{7!} + \cdots$$

ดังนั้น 0 เป็นจุดเอกฐานแบบขั้วอันดับที่ 4

แต่ในบางกรณี การกระจายอนุกรมโลรองต์ของฟังก์ชันรอบจุด z_0 เป็นเรื่องยุ่งยากเช่น $f\left(z\right) = \frac{z}{\left(\sin z\right)^2}$ เราจึงมีวิธีการมองชนิดของจุดเอกฐานโดยพิจารณาอันดับของจุดค่าศูนย์ดังนี้

ในกรณีที่ $f(z) = \frac{P(z)}{Q(z)}$ โดยมี z_0 เป็นจุดค่าศูนย์อันดับ n ของ Q(z)

- ullet ถ้า z_0 ไม่เป็นจุดค่าศูนย์ของ P(z) จะได้ว่า z_0 เป็นจุดขั้วที่มีอันดับ n ของ f
- ullet ถ้า z_0 เป็นจุดค่าศูนย์อันดับที่ m ของ P(z)

กรณี $m \ge n$

จะได้ว่า z_0 เป็นจุดเอกฐานขจัดได้ของ f(z)

กรณี m < n

จะได้ว่า z_0 เป็นจุดขั้วที่มีอันดับเป็น n-m ของ $f\left(z\right)$

ตัวอย่าง 6.6 จงแสดงว่า 0 เป็นจุดขั้วเชิงเดียวของ $\frac{z}{\left(\sin z\right)^2}$

วิธีทำ 0 เป็นค่าศูนย์อันดับ 1 ของ z และ 0 เป็นค่าศูนย์อันดับที่ 2 ของ $\left(\sin z\right)^2$

ดังนั้น 0 เป็นจุดขั้วอันดับ 1 ของ $\frac{z}{\left(\sin z\right)^2}$

ในทำนองเดียวกัน เราสามารถแสดงว่า $k\pi$ โดยที่ $k \neq 0$ เป็นจุดขั้วอันดับ 2 ของ $\frac{z}{\left(\sin z\right)^2}$

ตัวอย่าง 6.7 จงแสดงว่า 0 เป็นจุดเอกฐานที่ขจัดได้ ของ $\frac{\sin z}{1-e^z}$

วิธีทำ 0 เป็นค่าศูนย์อันดับ 1 ของ $\sin z$ และ 0 เป็นค่าศูนย์อันดับหนึ่ง ของ $1\!-\!e^z$

ดังนั้น 0 เป็นจุดเอกฐานที่ขจัดได้ของ $rac{\sin z}{1-e^z}$

3. จุดเอกฐานหลัก (Essential singularity)

 z_0 เป็นจุดเอกฐานหลักก็ต่อเมื่อส่วนหลักของอนุกรมโลรองต์รอบจุด z_0 มีจำนวนพจน์เป็นอนันต์ นั่นคือ

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_1}{(z - z_0)^2} + \cdots$$

เมื่อทุก ๆ $N\in\mathbb{N}$ จะมี n>N ซึ่ง $b_{\scriptscriptstyle n}
eq 0$

ตัวอย่าง 6.8 จงแสดงว่า 0 เป็นจุดเอกฐานหลักของ $e^{rac{1}{z}}$

วิธีทำ
$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots$$

ดังนั้น 0 เป็นจุดเอกฐานหลักของ $e^{rac{1}{z}}$

ตัวอย่าง 6.9 จงแสดงว่า 1 เป็นจุดเอกฐานหลักของ $\cos\!\left(\frac{1}{z-1}\right)$

วิธีทำ
$$\cos\left(\frac{1}{z-1}\right) = 1 - \frac{1}{2!} \frac{1}{\left(z-1\right)^2} + \frac{1}{4!\left(z-1\right)^4} - \cdots$$

ดังนั้น 1 เป็นจุดเอกฐานหลักของ $\cos\!\left(rac{1}{z\!-\!1}
ight)$

แผนการสอนในวันอังคารที่ 13 ตุลาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 6 ทฤษฎีบทส่วนตกค้าง ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

1. ส่วนตกค้าง

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักส่วนตกค้างและการหาส่วนตกค้าง และทฤษฎีบทส่วนตกค้าง

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

ส่วนตกค้างและทฤษฎีบทส่วนตกค้าง

บทนิยาม 6.10 ถ้า z_0 เป็นจุดเอกฐานของ f(z) แล้ว เรานิยามส่วนตกค้างของ f ที่จุด z_0 ให้เป็น สัมประสิทธิ์ของพจน์ $\frac{1}{z-z_0}$ ของอนุกรมโลรองต์รอบจุด z_0 และเขียนแทนด้วย $\mathrm{Res}(f,z_0)$

ตัวอย่าง 6.11 จงหา $\operatorname{Res}(f,0)$ เมื่อ $f(z) = ze^{\frac{1}{z}}$

วิธีทำ
$$ze^{\frac{1}{z}}=z\left(1+\frac{1}{z}+\frac{1}{2!z^2}+\frac{1}{3!z^3}+\cdots\right)$$

$$=z+1+\frac{1}{2!z}+\frac{1}{3!z^2}+\cdots$$
จะได้ว่า $\operatorname{Res}\left(ze^{\frac{1}{z}},0\right)=\frac{1}{2!}=\frac{1}{2}$

ทฤษฎีบทส่วนตกค้าง (Residue Theorem)

ทฤษฎีบท 6.12 ให้ γ เป็นเส้นโค้งปิดเชิงเดียวซึ่งมีทิศทางบวก ให้ f(z) เป็นฟังก์ชันโฮโลมอร์ฟิกที่ทุกจุด ภายใน γ ยกเว้นจุด z_1, z_2, \ldots, z_n ที่เป็นจุดเอกฐานของ f จะได้ว่า $\oint\limits_{z} f(z) dz = 2\pi i \sum_{k=1}^n \mathrm{Res}(f, z_k)$

ตัวอย่าง 6.13 ให้ $\gamma(t)=e^{it}$ โดยที่ $0 \le t < 2\pi$ จงหาค่าของ $\oint_{\gamma} \frac{\sin z}{z^4} dz$ โดยใช้ทฤษฎีบทส่วนตกค้าง

วิธีทำ

จุดเอกฐานที่อยู่ภายในเส้นโค้ง γ คือ 0

$$f(z) = \frac{\sin z}{z^4} = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} + \cdots$$

$$\therefore \operatorname{Res}(f,0) = -\frac{1}{3!}$$

โดยทฤษฎีบทส่วนตกค้างจะได้ว่า

$$\oint_{\gamma} \frac{\sin z}{z^4} dz = 2\pi i \operatorname{Res}(f,0)$$
$$= 2\pi i \left(\frac{-1}{3!}\right)$$

$$=\frac{-\pi i}{3}$$

ตัวอย่าง 6.14 ให้ $\gamma(t) = e^{it}$ โดยที่ $0 \le t < 2\pi$ จงหาค่าของ $\oint_{\gamma} \frac{e^{\frac{1}{z}}}{1-z} dz$

วิธีทำ

ดังนั้น $\oint_{z} \frac{e^{\frac{1}{z}}}{1-z} dz = 2\pi i \operatorname{Res}(f,0) = 2\pi i e$

จุดเอกฐานที่อยู่ภายในเส้นโค้ง γ คือ 0

$$\operatorname{grn} e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

และ
$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \cdots$$

จากการเลือกพจน์ในผลคูณเป็น $\frac{1}{z}$

จะได้
$$\operatorname{Res}(f,0) = 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots = e$$

แผนการสอนในวันอังคารที่ 20 ตุลาคม พ.ศ. 2563 เวลา 13.00-16.00 น. บทที่ 6 ทฤษฎีบทส่วนตกค้าง ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

1. ทฤษฎีบทส่วนตกค้าง

วัตถุประสงค์

1. ให้ผู้เรียนรู้จักทฤษฎีบทส่วนตกค้าง

กิจกรรมการเรียนการสอน

- 3. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 4. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 5. ไอแพด
- 6. คอมพิวเตอร์

การวัดผลและประเมินผล

- 2. สังเกตจากการตอบคำถามระหว่างเรียน
- 3. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

การหาส่วนตกค้างของจุดขั้วเชิงเดียว

 z_0 เป็นจุดขั้วเชิงเดียวจะได้ว่า

$$f(z) = \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + \cdots$$

$$(z-z_0) f(z) = b_1 + a_0(z-z_0) + a_1(z-z_0)^2 + \cdots$$

ดังนั้น
$$\operatorname{Res} \left(f, z_0 \right) = b_1 = \lim_{z \to z_0} \left(z - z_0 \right) f \left(z \right)$$

ตัวอย่าง 6.15 ให้ $\gamma(t) = e^{it}$ โดยที่ $0 \le t < 2\pi$ จงหาค่า $\oint_{\gamma} \frac{1}{\sin z} dz$

วิธีทำ

0 เป็นจุดขั้วอันดับ 1 ของ
$$\frac{1}{\sin z}$$

$$\therefore \operatorname{Res}(f,0) = \lim_{z \to 0} (z - 0) \frac{1}{\sin z}$$
$$= \lim_{z \to 0} \frac{z}{\sin z}$$

$$=1$$

ดังนั้น
$$\oint_{\gamma} \frac{1}{\sin z} dz = 2\pi i \operatorname{Res}(f,0)$$

$$= 2\pi i (1)$$

 $=2\pi i$

ตัวอย่าง 6.16 ให้ γ เป็นเส้นโค้งปิดดังรูป จงหาค่า $\oint\limits_{\gamma} rac{1}{z^4-1} dz$

วิธีทำ จะเห็นว่า $\frac{1}{z^4-1}$ มีจุดเอกฐานที่ 1,-1,i,-i แต่มีจุด 1,i ที่อยู่ภายใน γ

$$\operatorname{Res}(f,1) = \lim_{z \to 1} (z-1) \frac{1}{z^4 - 1}$$
$$= \lim_{z \to 1} \frac{1}{(z+1)(z^2 + 1)}$$
$$= \frac{1}{4}$$

นละ
$$\operatorname{Res}(f,i) = \lim_{z \to i} (z-i) \frac{1}{z^4 - 1}$$

$$= \lim_{z \to 1} \frac{1}{(z+i)(z^2 - 1)}$$

$$= \frac{-1}{4i} = \frac{i}{4}$$

ดังนั้น
$$\oint_{\gamma} \frac{1}{z^4 - 1} dz = 2\pi i \left(\frac{1}{4} + \frac{i}{4}\right)$$

ในกรณี z_0 เป็นจุดขั้วอันดับที่ $n,\,n\!\geq\!2$ เราสามารถหา $\mathrm{Res}ig(f,z_0ig)$ ได้ดังนี้

$$\operatorname{Res}(f, z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left[(z - z_0)^n f(z) \right]$$

ตัวอย่าง 6.17 ให้ $\gamma(t) = e^{it}$ โดยที่ $0 \le t \le 2\pi$ จงหาค่า $\oint_{\mathcal{X}} \frac{e^z}{\sin^2 z} dz$

วิธีทำ จะเห็นว่าจุดเอกฐานภายใน γ คือ 0 ซึ่งเป็นจุดขั้วอันดับที่ 2

$$\begin{split} & \text{Res}(f,0) = \frac{1}{(2-1)!} \lim_{z \to 0} \frac{d}{dz} (z^2 f(z)) \\ & = \lim_{z \to 0} \frac{d}{dz} \frac{z^2 e^z}{\sin^2 z} \\ & = \lim_{z \to 0} \frac{\sin^2 z (z^2 e^z + 2z e^z) - (z^2 e^z \sin z \cos z)}{\sin^4 z} \end{split}$$

= 1

จะได้ว่า
$$\oint_{\gamma} \frac{e^z}{\sin^2 z} dz = 2\pi i \operatorname{Res}(f,0) = 2\pi i$$

แบบฝึกหัดประจำบทที่ 6

- 1. จงหาค่าส่วนตกค้างของฟังก์ชันที่กำหนดให้ที่แต่ละจุดเอกฐานของฟังก์ชันนั้น ๆ
- $1.1 \frac{\sin z}{z^2}$
- $1.2 \; \frac{1}{1-\cos z}$
- 1.3 $\frac{e^z 1}{z^3}$
- 2. จงหาค่าปริพันธ์โดยใช้ทฤษฎีบทส่วนตกค้าง
- 2.1 $\int_{\gamma} \frac{z^2 z + 1}{(z 1)(z + 3)(z 4)} dz \quad |z| = 10$
- 2.2 $\oint_{\gamma} \frac{1}{z^3(z+4)} dz$ เมื่อ $\gamma:|z+2|=3$

แผนการสอนในวันอังคารที่ 27 ตุลาคม พ.ศ. 2563 เวลา 13.00-16.00 น.

บทที่ 7 การส่ง ภาคเรียนที่ 1 ปีการศึกษา 2563

เนื้อหาสาระ

- 1. การส่งเซตของจุดไปยังระนาบ w
- 2. การส่งคงรูป
- 3. การส่งแบบเศษส่วนเชิงเส้น

วัตถุประสงค์

- 1. ให้ผู้เรียนรู้จักการส่งเซตของจุดไปยังระนาบ w
- 2. ให้ผู้เรียนรู้จักการส่งคงรูป
- 3. ให้ผู้เรียนรู้จักการส่งแบบเศษส่วนเชิงเส้น

กิจกรรมการเรียนการสอน

- 1. ผู้สอนอธิบายเกี่ยวกับเนื้อหาสาระ
- 2. ถาม ตอบเกี่ยวกับเนื้อหาสาระ โดยการสอบถามทั้งห้อง และสุ่มรายบุคคล

อุปกรณ์การสอน

- 1. ไอแพด
- 2. คอมพิวเตอร์

การวัดผลและประเมินผล

- 1. สังเกตจากการตอบคำถามระหว่างเรียน
- 2. ประเมินผลจากกิจกรรมย่อยในห้องเรียน

บทที่ 7

การส่ง (Mapping)

การส่งเชิงซ้อน (Complex Map)

การส่งเชิงซ้อนเป็นการส่งที่เป็นการสมนัยระหว่างจุดสองจุดบนระนาบเชิงซ้อนโดยจุด z ในระนาบ เชิงซ้อน z จะสมนัยกับจุด $w=f\left(z\right)$ เพียงจุดเดียวในระนาบเชิงซ้อน w

บทนิยาม 7.1 เราเรียกการส่งเชิงซ้อนว่า การส่งคงรูป (Conformal Map) ถ้าการส่งยังคงสภาพของขนาดของ มุมในบริเวณเล็ก ๆ หลังจากการส่ง

จากภาพ f เป็นการส่งคงรูป ก็ต่อเมื่อ

lpha=lpha' ทุก ๆ คู่ของเส้นโค้งเรียบที่มีทิศทาง ที่ตัดกันที่จุด z_0 ทฤษฎีบท 7.2 ฟังก์ชันโฮโลมอร์ฟิก f เป็นการส่งคงรูปที่จุด z_0 ก็ต่อเมื่อ $f'(z_0) \neq 0$ บทนิยาม 7.3 การส่งเศษส่วนเชิงเส้น (Linear fractional map) คือ การส่งที่นิยามโดย

$$f(z) = \frac{az+b}{cz+d}$$

โดยที่ $z\in\mathbb{C}\setminus\left\{-rac{d}{c}
ight\}$ และ a,b,c,d เป็นค่าคงที่เชิงซ้อนที่ ad-bc
eq 0

เนื่องจาก
$$f'(z) = \frac{ad-bc}{\left(cz+d\right)^2} \in \mathbb{C}\setminus\{0\}$$
 สำหรับทุก $z\in\mathbb{C}\setminus\left\{-\frac{d}{c}\right\}$

ดังนั้น f เป็นการส่งคงรูปยกเว้น $z=-rac{d}{c}$

การส่งพื้นฐาน (Elementary mapping)

1. การเลื่อน (Translation)

f(z) = z + b โดย b เป็นค่าคงที่เชิงซ้อน

2. การหมุน (Rotation)

$$f(z) = e^{i\alpha}z$$

3.การขยายขนาด (Magnification)

$$f(z) = pz$$

4.ฟังก์ชันส่วนกลับ (Inverse)

$$f(z) = \frac{1}{z}$$

$$\frac{1}{z}$$

ซึ่งมีสมบัติเกี่ยวกับวงกลมและเส้นตรงคือ

- ถ้าเส้นตรงหรือวงกลม ผ่านจุดกำเนิดแล้วภาพการส่งของฟังก์ชันส่วนกลับจะเป็น เส้นตรง
- ถ้าเส้นตรงหรือวงกลม ไม่ผ่านจุดกำเนิดแล้วภาพการส่งของฟังก์ชันส่วนกลับจะเป็นวงกลม

ทฤษฎีบท ทุก ๆ การส่งเศษส่วนเชิงเส้นสามารถเขียนอยู่ในรูปคอมโพสิทของลำดับจำนวนจำกัดฟังก์ชัน ของการหมุน, การเลื่อน, การขยายขนาด หรือ ฟังก์ชันส่วนกลับ

ตัวอย่าง จงหาการส่งเศษส่วนเชิงเส้นที่ส่งรูปสี่เหลี่ยมผืนผ้าที่มีจุดมุมเป็น $z_1=0, z_2=\frac{1}{2}, z_3=i$ และ $z_4=\frac{1}{2}+i$ ไปทั่วถึง $w_1=i, w_2=2i, w_3=i-2$ และ $w_4=2i-2$

วิธีทำ

ดังนั้น
$$f(z)=f_3\circ f_2\circ f_1(z)$$
 $=2iz+i$

ตัวอย่าง จงหาการส่งแบบเศษส่วนเชิงเส้นที่ส่งจาก $\{z \mid |z| \leq 1\}$ ไปทั่วถึง $\{w \mid R(w) \geq 0\}$

วิธีทำ

ดังนั้น
$$f(z) = f_3 \circ f_2 \circ f_1(z)$$

$$= \frac{1}{2} \left(\frac{1+z}{1-z} \right)$$

ทฤษฎีบท การส่งแบบเศษส่วนเชิงเส้นที่ส่งจุด $z_1 \to w_1, z_2 \to w_2$ และ $z_3 \to w_3$ สามารถพิจารณาได้จาก

$$\frac{(z-z_1)}{(z-z_2)} \frac{(z_3-z_2)}{(z_3-z_1)} = \frac{(w-w_1)}{(w-w_2)} \frac{(w_3-w_2)}{(w_3-w_1)}$$

ตัวอย่าง จงหาฟังก์ชันเศษส่วนเชิงเส้นที่ส่งจุด $z_1=1,\ z_2=0$ และ $z_3=-1$ ไปยังจุด $w_1=0,\ w_2=i$ และ $w_3=-i$ ตามลำดับ

วิธีทำ
$$\frac{\left(w-0\right)}{\left(w-i\right)} \frac{\left(-i-i\right)}{\left(-i-0\right)} = \frac{\left(z-1\right)}{\left(z-0\right)} \frac{\left(-1-0\right)}{\left(-1-1\right)}$$

$$\frac{2iw}{i\left(w-i\right)} = \frac{-z+1}{-2z}$$

แก้สมการหา w ในรูปของ z จะได้

$$w = \frac{-i(z-1)}{3z+1}$$

ตัวอย่าง จงหาฟังก์ชันเศษส่วนเชิงเส้นที่ส่งจุด $z_1=1,\ z_2=0$ และ $z_3=-1$ ไปยังจุด $w_1=i,\ w_2=\infty$ และ $w_3=1$ ตามลำดับ

วิธีทำ
$$\frac{\left(w-i\right)}{\left(w-w_2\right)} \frac{\left(1-w_2\right)}{\left(1-i\right)} = \frac{\left(z-1\right)}{\left(z-0\right)} \frac{\left(-1-0\right)}{\left(-1-1\right)}$$

$$\frac{\left(w-i\right)}{\left(\frac{w}{w_2}-1\right)} \frac{\left(\frac{1}{w_2}-1\right)}{\left(1-i\right)} = \left(\frac{-z+1}{-2z}\right)$$

$$\frac{\left(w-i\right)\left(0-1\right)}{\left(0-1\right)} = \left(\frac{-z+1}{-2z}\right)$$

แก้สมการหา w ในรูปของ z ได้ว่า

$$w = \frac{\left(1+i\right)z + \left(i-1\right)}{2z}$$

แบบฝึกหัดปนระจำบทที่ 7

- 1. จงหาการส่งแบบเศษส่วนเชิงเส้นที่ส่ง $\{z \mid |z| \leq 1\}$ ไปทั่วถึง $\{w \mid \operatorname{Im} w \geq 0\}$
- 2. จงหาฟังก์ชันเศษส่วนเชิงเส้นที่ส่งจุด z_1, z_2, z_3 ไปยัง w_1, w_2, w_3 ดังต่อไปนี้

2.1)
$$z_1 = -i, z_2 = 0, z_3 = i$$

$$w_1 = -1, w_2 = i, w_3 = 1$$

2.2)
$$z_1 = \infty, z_2 = 1, z_3 = 0$$

$$w_1 = 0, w_2 = i, w_3 = \infty$$

บรรณานุกรม

- 1. ธนิต มาลากร, **ฟังก์ชันเชิงซ้อนและการประยุกต์ สำหรับนักคณิตศาสตร์ นักวิทยาศาสตร์ และ** ว**ิศวกร**, พิมพ์ครั้งที่ 1 สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ, 2556
- 2. James Brown and Ruel V.Churchill, **Complex variables and application**, McGraw Hill Book Company