• 技术与方法 •

NIPT 与 NIPT-plus 在产前筛查中的应用价值比较分析

张亮亮 卓召振 黄盛文 任凌雁 牟静 匡颖△

(贵州省人民医院医学遗传科产前诊断中心,贵州贵阳 550002)

摘要 目的 探讨无创产前筛查(NIPT)与扩展性无创产前筛查(NIPT-plus)在贵州省胎儿染色体异常筛查中的临床应用价值比较。方法 选取 2024 年到贵州省人民医院医学遗传科接受 NIPT-plus 的 10 740 例孕妇和同期接受 NIPT 的 2 841 例孕妇。对筛查结果为高风险的孕妇,通过核型分析,染色体微阵列检测技术(CMA)或低深度全基因组拷贝数变异测序技术(CNV-seq)进一步明确诊断。比较 2 种筛查方法的检出率、阳性预测值(PPV)等。结果 10 740 例接受 NIPT-plus 的孕妇中,筛查出 21—三体综合征(T21)、18—三体综合征(T18)、13—三体综合征(T13)、罕见染色体异常(RCAs)、性染色体异常(SCAs)、拷贝数变异(CNVs)182 例,其中 152 例行产前诊断,明确阳性 72 例。NIPT-plus 对 T21、T13、T13、T13、T13、T13、T13、T13 T13 T14 T15 T1

关键词:无创产前筛查;扩展性无创产前筛查;胎儿染色体异常

中图分类号: R741, 5 文献标识码: B 文章编号: 1000-744X(2025)06-0942-03

孕妇外周血中胎儿游离 DNA(cffDNA)的发现推 动了无创产前检测(NIPT)的发展。该技术通过高通 量测序及生物信息学分析母体外周血 cffDNA,评估 胎儿染色体非整倍体风险,因其无创性、高准确性及 广泛孕周适用性,已成为产前筛查的核心手段[1-2]。 NIPT 主要针对 21-三体综合征(T21)、18-三体综合征 (T18)、13-三体综合征(T13),同时可辅助识别性染色 体异常(SCAs)及特定拷贝数变异(CNVs)[3]。依据 国家卫生计生委办公厅《关于规范有序开展孕妇外周 血胎儿游离 DNA 产前筛查与诊断工作的通知》(国卫 办妇幼发〔2016〕45号),针对目标疾病(T13、T18、 T21)外的其他高风险发现,产前诊断机构需通过补 充报告形式告知受检者,并提供遗传咨询及确诊建 议[4]。相较于 NIPT, NIPT-plus 通过增加测序深度、 优化胎儿游离 DNA 富集技术及改进生物信息学算 法,显著提升了检测可靠性。其检测范围不仅涵盖 T21、T18、T13 三种常见染色体非整倍体异常,还可 识别 RCAs、SCAs、CNVs 等多种罕见染色体变异,从 而实现对更广泛染色体异常的精准筛查[5]。我省自 2016年将 NIPT 纳入产前筛查体系,并于 2020年全 面推广 NIPT-plus。然而,关于两种技术在本省人群 中的筛查效能差异目前仍缺乏系统性研究证据。本

研究基于贵州省多中心队列,通过分析孕妇外周血样本的检测数据,比较 NIPT-plus 与 NIPT 对胎儿染色体异常的检出率、PPV等,综合评价两种技术的临床应用价值,为优化本省产前筛查策略提供依据。

1 资料与方法

1.1 一般资料 选取 2024 年在贵州省人民医院医 学遗传科进行 NIPT 或 NIPT-plus 的 13 581 例孕 妇为研究对象,标本来自贵阳市、铜仁市、六盘水市 等贵州省7个市州21个医疗机构。10740例孕妇进 行 NIPT-plus 检测,年龄 18~38 岁,平均(26.32± 4. 43)岁;2 841 例孕妇进行 NIPT 检测,年龄 18~ 41岁,平均年龄(30,12±4,36)岁。纳入标准:(1) 年龄≥18岁;(2)血清学筛查显示胎儿染色体非整 倍体风险介于高风险切割值与 1/1 000 之间的孕 妇;(3)有介入性产前诊断禁忌证者;(4)孕20+6周 以上错过血清学筛查最佳时间。有下列情形的孕 妇进行检测时,在告知相关风险及充分知情同意后 可纳入受检人群:(1)早、中孕期产前筛查高风险;(2) 预产期年龄≥35岁;(3)重度肥胖(体质量指数≥40); (4)通过体外受精一胚胎移植方式受孕;(5)有染色体 异常胎儿分娩史,但除外夫妇染色体异常的情形;(6) 双胎及多胎妊娠;(7)医师认为可能影响结果准确性 的其他情形。排除标准:(1)孕周<12+0周;夫妇一 方有明确染色体异常;(2)1年内接受过异体输血、移 植手术、异体细胞治疗等;(3)胎儿超声检查提示有结

基金项目:贵州省遗传病诊断与发病机制研究科技创新 人才团队(黔科合平台人才[2020]5011)

[△]通信作者,E-mail:2082686700@gg.com

构异常须进行产前诊断;(4)有基因遗传病家族史或提示胎儿罹患基因病高风险;(5)孕期合并恶性肿瘤。

1.2 方法

- 1. 2. 1 NIPT (1)标本采集及游离 DNA 提取:使用 StreckCell-Free DNA BCT 采血管采集 8~10 mL 受 检孕妇外周静脉血,低温离心机 3 800 r/min 离心 10 min,取上清液。应用磁珠法提取、纯化胎儿游离 DNA。(2)文库制备:游离 DNA 经过末端修复、补平、接头连接、缺口修复、纯化等步骤制备样本 DNA 文库。(3)测序与生物信息学分析:采用 NextSeq 550AR 高通量测序平台(Illumina,美国)对构建的 DNA 文库进行测序分析。通过生物信息学方法,系统比对和分析了各染色体序列的差异性,进而实现对胎儿染色体非整倍体异常的检测。基于测序数据的统计学分析,采用 Z 值评分体系进行风险评估。当 |Z|>3 时,判定为染色体非整倍体阳性;当 Z 值介于一3至3之间时,则判定为染色体非整倍体低风险。
- 1. 2. 2 NIPT-plus 样本采集、DNA 提取、文库构建和测序过程与 NIPT 相同, NIPT-plus 测序量为 NIPT 的 5 倍,每个样本唯一比对序列数据量大于 10 M,Z 值截断值判断与 NIPT 相同。
- 1.2.3 羊膜腔穿刺 NIPT-Plus 与 NIPT 提示高风险的孕妇充分告知并建议行羊膜腔穿刺术,在超声引导下,抽取 $25\sim30~\text{mL}$ 羊水,进行核型分析、CMA或 CNV-seq。
- 1.2.4 染色体核型分析 羊水细胞经培养、制片后进行人工分析。每个标本分析 30 个染色体核型。核型描述参照人类细胞遗传学国际命名体制(ISCN 2020)。
- 1.2.5 CNV-seq 使用 DNA 提取试剂盒分离羊水基因组,并进行文库构建,通过 NextSeq CN500 测序平台(Illumina,美国)检测,将所测序列与人类基因组参考序列 hg19 版本比对分析。
- 1.26 CMA 使用 DNA 提取试剂盒分离羊水基因组,通过单核苷酸多态性微阵列检测平台检测(Affymetrix,美国),运用 ChAS 软件进行数据分析。按照 ACMG 最新指南,对 CNV 进行解读判定和分级。
- 1.3 观察指标 PPV=确诊人数/高风险人数;检 出率=确诊人数/总人数。
- **1.4** 统计学方法 采用 SPSS19.0 软件进行数据分析,计数资料表示为 n(%),采用 χ^2 检验;以 P < 0.05 为差异有统计学意义。

2 结 果

2.1 NIPT-plus、NIPT 筛查及产前诊断结果 NIPT-plus:10 740 例受检孕妇中,高风险 182 例, 其中 152 例行产前诊断(T21 25 例、T18 15 例、T13 15 例、RCAs 32 例、SCAs 46 例、CNVs 19 例),诊断 阳性 72 例(T21 21 例、T18 7 例、T13 4 例、RCAs 7 例、SCAs 24 例和 CNVs 9 例)。NIPT: 2 841 例受 检孕妇中,高风险 44 例,其中 34 例行产前诊断 (T21 5 例、T18 5 例、T13 3 例、RCAs 5 例、SCAs 13 例、CNVs 3 例),诊断阳性 13 例(T21 4 例、T18 2 例、T13 0 例、RCAs 1 例、SCAs 5 例、CNVs 1 例)。NIPT-plus 与 NIPT 总检出率和各项检出之间无统计学差异(P>0. 05),复合 PPV 和各项 PPV 之间无统计学差异(P>0. 05)。见表 1、2。

表 1 NIPT与 NIPT-plus 检出率结果比较 [n(%)]

项目	NIPT	NIPT-Plus	χ^2	P
	(N=2841)	(N=10740)		
T21	4(0.14)	21(0, 20)	0. 37	0. 543
T18	2(0.07)	7(0.07)	0.10	0.750
T13	0(0.00)	4(0.04)		0. 317
RCAs	1(0.04)	7(0.07)	0.34	0.560
SCAs	5(0.18)	24(0.22)	0. 24	0.624
CNVs	1(0.04)	9(0.08)	0.72	0.396
合计	13(0.46)	72(0.67)	1.66	0. 197

表 2 NIPT与 NIPT-plus PPV(%)结果比较[n(%)]

项目	NIPT(N=34)	NIPT-Plus($N=152$)	χ^2	P
21-三体	80.00(4/5)	84. 00(21/25)	0.050	0. 823
18-三体	40.00(2/5)	46. 67(7/15)	0.068	0.795
13-三体	0.00(0/3)	26. 67(4/15)	1.036	0.309
RCAs	20.00(1/5)	21. 88(7/32)	0.066	0.798
SCAs	38. 46(5/13)	52. 17(24/46)	0.759	0. 384
CNVs	33. 33(1/3)	47. 37(9/19)	0. 203	0.652
总计	38. 24(13/34)	45. 39(72/152)	0. 935	0. 334

3 讨论

PPV 是筛查试验中一项重要的指标,它反映筛 查技术的诊断效益,因此在临床应用中具有重要指导 意义。在本研究中,我们发现 NIPT 对 T21、T18、T13 的 PPV 为 80.00%、40.00%和 0.00%,这与 Y. Chen 等研究[6] 基本一致,但稍低于王东梅等[7]、赵干业 等^[8] 学者的报道, NIPT 对 T13 的 PPV 为 0, 00%, 这 可能与 T13 的低检出率有关。本研究发现 NIPTplus 对 T21、T18、T13、RCAs、SCAs、CNVs 的 PPV 高 于孙小红等[9]的研究发现,但远低于肖苑玲等[10]报 道,这可能与实验平台、研究人群基数、生物信息学分 析方法、以及研究对象的地域性等相关。本研究发现 NIPT-plus 与 NIPT 复合 PPV 分别为 45. 39%和 38. 24%, 差异无统计学意义(P > 0.05)。进一步细 分, NIPT-plus 和 NIPT 对 T21、T18、T13、RCAs、 SCAs、CNVs 的 PPV 比较差异均无统计学意义(P> 0.05)。这与乔英娇等[11]、曹旭等[12]学者的研究一 致。多项研究表明, NIPT-plus 与 NIPT 在染色体异 常的 PPV 上无显著统计学差异,主要与以下因素相 关:首先,两者对 T21、T18、T13 的检测效能接近, NIPT的 PPV 分别为 73. 33%~90. 24%、50. 00%~

82. 14%、14. 29%~50. 00%,NIPT-plus 为 93. 33%~ 100%、80.00%~83.33%、0.00%~100.00%,差异 无统计学意义 $(P>0.05)^{[11,13-14]}$,表明两者技术成熟 度在传统染色体三体非整倍体异常的检测上已接近。 其次,由于基础发病率较低,NIPT-plus对SCAs、 CNVs 等的 PPV 较低, SCAs 为 17. 14%~38. 46%, CNVs 为 0.00%~33.33%[11,13,15], 因此 PPV 未较 NIPT有显著提升。此外, NIPT-plus 对微小片段的 检测稳定性不足,算法模型优化欠缺,加之部分研究 样本量较小,削弱了统计学效力。NIPT-plus 虽能覆 盖更多染色体异常,但其临床实用性受限于阳性结果 的低预测价值和后续侵入性诊断风险使其假阳性率 达 7. 64%[14,16]。因此,即使扩展检测范围,整体 PPV 的提升仍受限于技术瓶颈和临床权衡综上,未来需通 过优化测序技术、扩大样本量及改进算法模型提升 NIPT-plus 的可靠性。

曹旭等[12]通过一项纳入 56 160 例样本的多中 心队列研究证实, NIPT-plus 与 NIPT 在总体检出 率方面存在统计学显著差异(P<0.01),但是该研 究同时指出两种检测技术对特定染色体异常(T13、 T21 和 SCAs、RCA)的检出率差异未达统计学显著 性(P>0.05)。本研究发现 NIPT-plus 的总体检出 率和各项检出率均高于 NIPT,但是无统计学差异 (P>0,05),这种与前期大规模研究结果的差异可 能源于以下关键因素:首先,本研究样本量(n=13 581)较曹旭等研究减少75%,可能导致统计效力不 足;其次,本研究纳入的人群主要位于西南地区,民 族构成及地域分布存在明显差异,这可能影响染色 体异常的自然发生率;再者,不同研究者所使用的 测序平台,生信分析方法等可能存在差异。未来需 通过增加样本量,综合考虑孕周、年龄、种族等因 素,以更精确评估检测方法的临床效能差异。

基于贵州省现行医疗服务定价体系,NIPT与NIPT-plus呈现出显著的成本差异。当前NIPT-plus的检测费用普遍比NIPT高500~1000元,且两者均未被纳入基本医疗保险支付范畴。从卫生经济学视角分析,两者具有相似的筛查价值,但是NIPT价格更低,具有更高的性价比。两者的应用提升了对胎儿染色体异常的检出能力,在产前筛查中发挥着重要作用。临床应综合考量胎儿医学指征、区域卫生资源配置效率等,建立分层筛查路径,这对优化NIPT-plus及NIPT在我省胎儿染色体异常筛查中的临床应用具有一定的参考价值。

利益冲突说明/Conflict of Interests

所有作者声明不存在利益冲突。

伦理批准及知情同意/Ethics Approval and Patient Consent 本研究通过贵州省人民医院伦理委员会批准(伦审 2022-05 号),患者及家属均已知情同意。

参考文献

- [1] Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos [J]. Nat Med, 2009, 15(5):577-583.
- [2] Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076):485-487.
- [3] 杜含笑,卢大儒. 单基因遗传病无创产前检测的研究与展望[J]. 临床检验杂志,2018,36(11):805-808.
- [4] 国卫办妇幼发[2016]45 号. 国家卫生计生委办公厅关于规范有序开展孕妇外周血胎儿游离 DNA 产前筛查与诊断工作的通知[EB/OL]. (2016-10-27)[2025-05-16]. https://www.nhc.gov.cn/wjw/c100175/201611/84020257c9944790ba644c276cc71455. shtml.
- [5] 孙小红,冯暄,刘芙蓉,等.扩展性无创产前检测在胎儿 染色体异常中的临床应用效果分析[J]. 生殖医学杂志,2023,32(3):339-343.
- [6] Chen Y, Yu Q, Mao X, et al. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features [J]. Hum Genomics, 2019, 13(1):60.
- [7] 王东梅,杨洁霞,彭海山,等.40 628 例无创产前胎儿 21、18、13 号染色体筛查结果的分析[J].中华医学遗 传学杂志,2021,38(11):1045-1050.
- [8] 赵干业,代鹏,郜珊珊,等.无创产前检测在 14 279 例 单胎染色体异常筛查中的应用[J].中华医学遗传学杂志,2021,38(7):702-704.
- [9] 孙小红,冯暄,刘芙蓉,等.扩展性无创产前检测在胎儿 染色体异常中的临床应用效果分析[J]. 生殖医学杂志,2023,32(3):339.
- [10] 肖苑玲,李萌,郑桂云,等. NIPT-plus 在产前筛查中的应用价值分析[J]. 解放军医学杂志,2023,48(3):292.
- [11] 乔英娇,戴立华. NIPT与 NIPT-plus 在产前筛查中的应用效能比较[J]. 中国优生与遗传杂志,2023,31(7):1470.
- [12] 曹旭,王璇,程小勇,等.扩展性无创产前基因检测的临床筛查价值分析[J]. 蚌埠医学院学报,2024,49 (10):1313-1317.
- [13] 王洁,袁路,帖梦雪,等.扩展性无创产前检测在胎儿染色体异常筛查中的应用价值[J].中国民康医学,2023,35(23):142-144.
- [14] 石凤蕊,王瑞,吴秋华,等. 陕西地区两种无创产前筛查系统阳性结果的重复性比较分析[J]. 中国妇幼健康研究,2024,35(5):42-46.
- [15] 洪淑蓉,谭美华,韦华,等. NIPT 在拷贝数变异筛查中的阳性预测值分析[J]. 中国优生与遗传杂志, 2023,31(4):804-810.
- [16] Korostelev S, Totchiev G, Kanivets I, et al. Association of non-invasive prenatal testing and chromosomal microarray analysis for prenatal diagnostics[J]. Gynecological Endocrinology the Official Journal of the International Society of Gynecological Endocrinology, 2014, 30(S1):13-16.

(收稿日期:2025-02-13)