TRAITEMENT DE DONNEES GNSS (Globale Navigation Satellite Système)

Comparaison entre le Post Proces Kinematic (PPK) avec le Precis Point Posionning (PPP)

RATOLONANDRASANA Safidy, Géophysicien

Introduction:

Le terme GNSS Géolocalisation et Navigation par un Système de Satellites regroupe l'ensemble des matériels et des installations permettant le positionnement par satellites.

Il s'agit d'un ensemble de composants reposant sur une ou plusieurs constellations de satellites artificiels permettant de fournir à un utilisateur par l'intermédiaire d'un récepteur sa position 3D, sa vitesse.

Généralement par abus de langage, nous utilisions le terme générique GPS pour Global Positionning System pour décrire les différents équipements de géo positionnement. Toutefois, ce terme est en réalité le nom d'un ensemble de 24 satellites américains placés en orbite à 2000 km d'altitude.

Cette constellation de satellites qui était la première dans l'histoire a donc laissé son nom à la technologie de géo positionnement.

Pour que la précision soit augmentée et utilisable dans les travaux agricoles, la topographie, le guidage d'engins ou dans bien d'autres domaines d'application .Il nécessite des corrections.

Les récepteurs GPS vont devoir intégrer des données supplémentaires dans leurs calculs de positionnement afin de corriger les différentes erreurs liées à cette technologie.

Les données de corrections sont obtenues à partir de récepteurs GPS fixes (station de référence) placés sur des positions dont les coordonnées sont parfaitement connues. Il est ainsi possible de quantifier les différentes erreurs et de les corriger pour pouvoir ensuite les partager avec d'autres récepteurs.

Parmi les techniques de correction, on distingue notamment le PPP (Precise Point Positioning) ne nécessitant qu'une seul récepteurs et les positionnements relative post traité PPK (Post Processing Kinematic) ou en temps reel RTK (Real Time Kinematic) nécessitant au moins deux récepteurs.

Une donnée d'observation GNSS de 60 min d'un point de forage situé dans l'Ouest de Madagascar est utilisé pour comparés les résultats issue de ces différents technique.

I- Post Proces Kinematic ou cinématique post traité (PPK)

Cette technique consiste à enregistrer les données brutes provenant des systèmes de satellite comme GPS, GLONASS et Galileo puits réalisé le traitement ultérieurement.

Il nécessite les mesures de deux récepteurs placés sur une ligne de base. Les données collectées par la station de référence (station de base), dont les coordonnées sont connues, et par le récepteur (mobile), pour lequel les coordonnées sont inconnues, sont traitées ensemble afin d'obtenir la valeur des composantes de la ligne de base. Les coordonnées du récepteur peuvent ensuite être calculées (*HofmannWellenhof et al.*, 2008).

Figure 5: Positionnement relative

L'utilisation de cette technique implique l'utilisation de doubles différences. Cette méthode se compose de deux étapes : la réalisation de simples différences et la formation de doubles différences.

L'équation d'observations de code et de phase est représentée respectivement par les modèles mathématiques suivantes :

$$\begin{split} P_{A,k}^{i}(t) &= D_{A}^{i} + T_{A}^{i} + I_{A,k}^{i} + M_{A,k,p}^{i} + c\left(\Delta t^{i}(t_{e}) - \Delta t_{A}(t)\right) + \varepsilon_{A,k,p}^{i} \\ \phi_{A,k}^{i}(t) &= D_{A}^{i} + T_{A}^{i} - I_{A,k}^{i} + M_{A,k,p}^{i} + c\left(\Delta t^{i}(t_{e}) - \Delta t_{A}(t)\right) + \varepsilon_{A,k,\phi}^{i} + \lambda_{k} N_{A,k}^{i} \end{split}$$

 $\phi_{A,k}^i(t)$: Observation de Phase

 $P_{A,k}^i(t)$: Observation de Code

 $\mathcal{D}_{AB}^{i}: Distance$ géométrique récepteur-satellite

C : Délais troposphérique

 $I_{A,k}^i$: Délais ionosphérique

 $M_{A,k,p}^{i}$: Erreur due au multi trajet

 $\Delta t^i(t_e)$: Décalage horloge satellite au temps GPS

 $\Delta t_A(t)$: Décalage horloge récepteur A au temps GPS

 N_A^i : Ambiguïté entière entre satellite et récepteur

 λ_k : Longueur d'onde du signale

c : La vitesse de la lumière

 $\varepsilon_{A,k}^i$: Erreur résiduelle

Une simple différence, $\phi_{AB}^i(t)$, est la difference de deux mesure de phases, $\phi_A^i(t)$ et $\phi_B^i(t)$, faites simultanement au temps t par deux recepteurs A et B suivant le même satellite i

$$\phi_{AB,k}^i(t) = D_{AB}^i + T_{AB}^i - I_{AB,k}^i + M_{AB,k,p}^i + c\left(\Delta t^i(t_e) - \Delta t^i(t_e)\right) + c\left(\Delta t_B(t) - \Delta t_A(t)\right) + \varepsilon_{AB,\phi}^i + \lambda_k N_{AB}^i$$

$$O\dot{u} *_{AB}^{i} = *_{A}^{i} - *_{B}^{i}$$

Dans les simples différences, **les erreurs d'horloge des satellites** se suppriment si les mesures sont réalisées simultanément. Les **erreurs troposphériques et ionosphériques** sont également réduites si les deux récepteurs sont placés sur une courte ligne de base, c'est-à-dire les deux récepteurs se trouvent dans les mêmes conditions.

$$T_{AB}^i = 0 \text{ si } T_A^i = T_B^i$$

$$I_{AB,k}^i=0 \text{ si } I_{A,k}^i=I_{B,k}^i$$

C'est la raison pour la quel il faut que la distance des récepteurs Base et Mobile soit inferieur 50 km pour que les conditions de l'atmosphère soit plus ou moins égale au-dessus des deux récepteurs.

Par contre, Les **erreurs d'horloge des récepteurs, multi trajet et le bruit des deux récepteurs** sont toujours présentes dans les simples différences (*Garcia et al.*, 2005).

Une double différence, $\phi_{AB}^{ij}(t)$, est la différence de deux simples différences, $\phi_{AB,k}^{i}(t)$ et $\phi_{AB,k}^{j}(t)$, simultanées au temps t entre deux satellites, i et j, et deux récepteurs, A et B (Humphreys et al., 2016).

$$\phi_{AB,k}^{ij}(t) = D_{AB}^{ij} + T_{AB}^{ij} - I_{AB,k}^{ij} + M_{AB,k,p}^{ij} + c(\Delta t_B(t) - \Delta t_A(t)) - c(\Delta t_B(t) + \Delta t_A(t)) + \varepsilon_{AB,\phi}^{ij} + \lambda_k N_{AB}^{ij} + \lambda_k N_{$$

$$\phi_{AB,k}^{ij}(t) = D_{AB}^{ij} + T_{AB}^{ij} - I_{AB,k}^{ij} + M_{AB,k,p}^{ij} + \varepsilon_{AB,\phi}^{i} + \lambda_k N_{AB}^{ij}$$

$$O\dot{u} *_{AB}^{ij} = *_{A}^{ij} - *_{B}^{ij}$$

Grâce à la formation des doubles différences, les erreurs d'horloge des récepteurs sont supprimées, si les mesures sont faites simultanément.

Les termes qui représente l'erreur troposphérique T_{AB}^{ij} et ionosphérique $I_{AB,k}^{ij}$ sont fortement réduits voir négligeable si les deux récepteur base et mobile ne sont pas trop éloignés (inférieur à 50 km).

Dans le cas d'une ligne de base longue, Il est aussi possible d'estimer l'effet ionosphérique et de modélisé l'effet troposphérique en utilisant des récepteur multifréquence.

L'erreur multi trajet $M_{AB,k,p}^{ij}$ peut être évité ou éliminé en mettant les récepteurs sur des zones dégagées.

En négligeant le bruit de mesure $\varepsilon_{AB,\phi}^i$ on a :

$$\phi_{AB,k}^{ij}(t) = D_{AB}^{ij} + \lambda_k N_{AB}^{ij}$$

La résolution de cette équation peut se faire par estimation de moindre carrée qui nous donnera au finale la coordonnée du récepteur B et les valeurs entières des ambiguïtés N :

Observable=Modèle + erreur ;

Notre observable sont ici les $\phi_{AB,k}^{ij}(t)$ et le Modèle la fonction $f(D_{AB}^{ij} + \lambda_k N_{AB}^{ij})$

Notons :
$$\phi_{AB,k}^{ij}(t) = b$$
 , $f(D_{AB}^{ij} + \lambda_k N_{AB}^{ij}) = Ax$, et v l'erreur

Sous forme matricielle, b= Ax + v

Selon la théorie de moindre carré, pour estimer x il faut que v = b-Ax soit minimale

soit :
$$\frac{\partial(v)}{\partial A^T}v = 0$$

D'où la solution:

$$x = (A^T.A)^{-1}.A^T.b$$

Notons que pour résoudre l'équation, il faut que le nombre de donnée d et supérieur au nombre de paramètre p. (Basics of the GPS Technique: Observation Equations, Geoffrey Blewitt)

Soit,

$$d \ge p$$
 avec $d = q(r - 1)(s - 1)$ et $p = 3 + (r - 1)(s - 1)$

r : Nombre de récepteurs

s: Nombre de Satellites

q: Nombre d'observation

I-1 Ligne de base longue

Pour une ligne de base longue, les termes d'erreur atmosphérique et ionosphérique ne s'annulent pas dans les opérations de simple et double différences. Cependant, il possible de les déterminés aves d'autre outilles.

I-1-1 Délais troposphérique

Un signale électromagnétique transverse la troposphère plus lentement que la normale. Ceci est dû à l'indice de réfraction non négligeable de la troposphère. Le délai troposphère se traduits comme suit :

$$\partial_{trop} = \int (n(s) - 1) ds$$

Le délai troposphérique peut être divisé en deux parties:

- Un partie hydrostatique qui suit la loi du gaz parfaits connue sous le nom "dry delay"
- Une partie non-hydrostatique ou "wet delay" cause par les vapeurs d'eau présente dans la troposphère (Hopfield, 1969).

La partie « dry delay » est responsable d'une retard de 230 cm à l'altitude orthometrique 0 et la partie « wet dry » est responsable de 40 cm de retard sur la direction zénithale (Leick, 2004)

Hopfield en 1969 à démontrer que le délai troposphérique peut être approximé pour une angle d'altitude, données par:

$$\partial_{trop}(E) = m_{wet}(E)Z_{wet} + m_{dry}(E)Z_{dry}$$

Les délais zénithal Z peut être modélisé selon la méthode de Saastamoinen en 1973 décrite par Davis et al.(1985).

$$Z_{dry} = \frac{0.002277p}{1 - 0.00266\cos(2\emptyset) - 0.0028*10^{-3}h}$$

$$Z_{wet} = (\frac{1255}{T} + 0.05) \frac{0.002277e}{1 - 0.00266\cos(2\emptyset) - 0.0028 * 10^{-3}h}$$

 Z_{wet} : Wet delay Z_{dry} : Dry delay

 m_{wet} : Wet mapping function m_{dry} : Dry mapping function p: Pression atmosphérique

e: Pression de la vapeur d'eau

T : TempératureØ : Latitudeh : Altitude

Des levés météorologiques sont donc pour ce type de modèle. SI ces données ne sont pas disponibles, on peut utiliser des modèles globales comme le modèle Globale de Température et de Pression ou GPT (Bohn et al, 2007).

Concernant les fonctions, il y a plusieurs fonctions qui détermine le délai zénithale en fonction de l'élévation du satellite parmi eux, le Niell Mapping Function (NMF) Niell,1996, plus récemment, le Vienna Mapping Functions 1 (VMF1) ou le Global Mapping Function (GMF). On s'intéresse plutôt à la fonction GMF qui est une fonction harmonique sphérique dérivé de la fonction VMF1.

La fonction mapping GMF nécessite seulement, les coordonnées de la station et le jour de mesure pour déduire le résultat, le rendant adéquat pour les corrections en temps réels.

La fonction mapping pour le wet delay et dray delay est représenté par :

$$m(E, a, b, c) = \frac{1 + \frac{a}{1 + \frac{b}{1 + c}}}{\sin E + \frac{a}{\sin E + \frac{b}{\sin E + c}}}$$

E est l'Angle d'élévation du satellite

a,b et c sont des paramètre fonction de la coordonnée et le jour de l'année dont les valeur est donné par :

$$\vartheta(\emptyset, D) = \vartheta_0(\emptyset) - \Delta \vartheta(\emptyset) cos \frac{2\pi(D - Dmin)}{365}$$

D est le jour de l'année. Au premier janvier D=0

Dmin=28 pour les latitudes partie nord et 211 pour les latitudes partie sud.

 $\vartheta_0(\emptyset)$: Variation moyenne

 $\vartheta_0(\emptyset)$: Variation saisonnée

Les valeurs de $\vartheta_0(\emptyset)$ et $\vartheta_0(\emptyset)$ est derminer par des tables interpolable prédéfinie ou par des harmonique sphérique.

I-1-1 Délai ionosphérique

L'ionosphère est une zone de l'atmosphère chargé de particule ionisé et qui affecte les signale qui y travers. L'éjection de masse et des rayons ultraviolets émit par le soleil ionise cette partie de l'atmosphère et par conséquent réfracte les signale, provoquant un rallongement du parcours de ce dernier.

L'équation pseudo-range de code P et de phase Ø en terme de erreur ionosphérique peut être écrit comme (Bassiri and Hajj, 1993; Hoque and Jakowski, 2006)

$$P^i = D^i_A + I^i_{A,k}$$

$$\emptyset^i = D_A^i - I_{A,k}^i$$

$$P^{i} = D_{A}^{i} + \frac{p_{i}}{f_{i}^{2}} + \frac{q}{f_{i}^{3}} + \frac{t}{f_{i}^{4}} + d_{i}^{b(longeur)}$$

$$\emptyset^{i} = D_{A}^{i} - \frac{p_{i}}{f_{i}^{2}} - \frac{q}{2f_{i}^{3}} - \frac{t}{3f_{i}^{4}} - d_{i}^{b(longeur)}$$

Avec:

$$p_i = 40.3 * TEC_i$$

$$q = 2.2566 * 10^{12} \int n_e B cos\theta \ ds$$

$$t = 2437 \int n_e^2 \, ds + 4.74 * 10^{22} \int n_e B^2 (1 + \cos^2 \theta) ds$$

Où:

i : fréquence du signale

 D_A^i : Distance géométrique satellite-récepteur

 n_e : Concentration d'électrons

B: Vecteur champ Magnétique

TEC: Total Electron Content

 $d_i^{b(longeur)}$: Excès de trajet du signal

 θ : Angle entre le trajet du signal et vecteur champ magnétique B

 $\frac{1}{f^2}$: Effet ionosphérique de 1^{er} ordre

 $\frac{1}{f_i^3}$: Effet ionosphérique de 2nd ordre

 $\frac{1}{f^3}$: Effet ionosphérique de 3^{em} ordre

La majeure partie des retards ionosphérique est causé par le terme de premier ordre. Cependant, durant les activités solaires intenses, les deux derniers termes aura aussi un impact sur la précision de la mesure.

Figure 6 : Le cycle de l'activité solaire de 2002 à aujourd'hui

L'activité solaire suit un cycle de onze ans, 2013 étant un maximum de ce cycle. Cette année est donc synonyme de perturbations ionosphériques fortes, il faut considérer tous les termes de l'équation d'où l'importance d'avoir un réseau de stations GNSS permanentes dense pour bien modéliser cette erreur.

Durant les périodes d'activité calme, on ne considère que le premier terme. Ce dernier peut être éliminé par la combinaison linéaire des équations d'observation issue de deux fréquences.

$$\phi^{i} = D_{A}^{i} - \frac{p_{i}}{f_{i}^{2}}$$

$$\phi^{1}f_{1}^{2} - \phi^{2}f_{2}^{2} = D_{A}^{i}(f_{1}^{2} - f_{2}^{2})$$

$$\frac{\phi^{1}f_{1}^{2} - \phi^{2}f_{2}^{2}}{(f_{1}^{2} - f_{2}^{2})} = D_{A}^{i}$$

I-1 Traitement de données dans AUSPOS

AUSPOS est un service de traitement en ligne de données GNSS crée par l'institut de géoscience d'Australie. Il offre des solutions en position relative utilisant les observations par double fréquences. Les réseaux de stations de référence d'IGS (International GNSS Service), reparties dans le monde distribuent leurs données d'observation tous les jours pendant tout l'année et depuis 1980 sont les stations de référence.

Ces données sont accessibles gratuitement à l'adresse https://cddis.nasa.gov/archive/gnss/products.

Figure 2 : Traitement par multiple ligne de base

Tableau 1 : Station de référence autour de Madagascar

			Altitude	Altitude orthométrique		
Name	Latitude	Longitude	Elipsoidique h	(Geoid EGM08)	Région	
ABPO	-19,018304	47,229214	1552,96	1553,75	Ambohipanompo, Madagascar	
HARB	-25,8869601	27,7072476	1558,082	1532,771	Krugersdorp, Afrique du Sud	
IISC	-13,0211712	77,5703827	843,698	929,619	Bangalore, Inde	
KERG	-49,3514674	70,2555232	73,014	32,748	Kerguelen	
MAL2	-2,99605277	40,1941467	-20,916	9,499	Malindi, Kenia	
MAYG	-12,782052	45,2581556	-16,577	4,014	Dzaoudzi, Mayotte	
NKLG	-0,35390943	9,67212831	31,497	21,511	Libreville, Gabon	
SEYG	-4,67873081	55,530633	-37,609	3,393	La Misere, Seychelles	
SUTH	-32,3802076	20,8104656	1799,761	1763,221	Sutherland , Afrique du sud	
WIND	-22,5749172	17,0894352	1734,66	1702,894	windhoek, namibie	

Le tableau suivant résume les traitements appliqué par le système d'AUSPOS :

Source d'erreur	Résolution		
Résolution des ambiguïtés	Double différence L1 et L2		
Ionosphère	Double différence L1 et L2		
Calibration centre de phase	IGS14 model absolue de centre de phase		
	Global Mapping Function ou GMF, Global		
Troposphère	Temperature Pression ou GPT		
	•		
Centre de phase des satellites	IGS14 model de variation de centre de phase		
Centre de phase des satellites Centre de masse des satellites	· ·		
'	IGS14 model de variation de centre de phase		

Après traitement, ci-dessous les erreurs RMS liée aux positions du point de mesure et des stations de référence.

Station	Longitude(East) (m)	Latitude(North) (m)	Ellipsoidal Height(Up) (m)
CDB1	0.559	0.080	0.557 *
ABPO	0.019	0.014	0.029
HARB	0.019	0.013	0.030
IISC	0.021	0.016	0.030
KERG	0.020	0.015	0.030
MAL2	0.020	0.013	0.029
MAYG	0.037	0.019	0.074
NKLG	0.022	0.016	0.031
SEYG	0.018	0.013	0.030
SUTH	0.019	0.013	0.030
WIND	0.021	0.013	0.030

L'incertitude obtenue pour le point de mesure CDB1 est de l'ordre de **0.559 m sur la latitude**, **0.08 m sur la longitude et 0.557 m sur l'altitude**. Cette incertitude relativement élevés s'explique par la durée d'observation relativement courte et des lignes de base longues. Avec une observation plus longue le résultat serait plus précis.

I-2 Traitement sur le logiciel Spectra Precision Office de Trimble

Le principe est le même que précèdent, la seul différence et qu'on réalise les calculs dans le logiciel SPO et qu'on utilise une seule station de référence au lieu de plusieurs.

La station de référence disponible la plus proche du point de mesure est à 200 km environ. La station ABPO situé à Ambohipanompo, Arivonimamo.

Figure 3 : Ligne de base ABPO-CDB1

Les données d'observation de la station de référence ABPO sont téléchargeable sur Internet sur le site d'IGS. Ces données observation permettent de réaliser les doubles différences pour résoudre les ambigüités de phase, éliminé les erreurs d'horloge.

Source d'erreur	Résolution		
Résolution des ambiguïtés	Double différence L1 et L2		
Horloge satellite et récepteur	Simple et Double différence L1 et L2		
Ionosphère, Troposphérique	Estimations (Récepteur multifréquence)		
Trajectoires des satellites	IGS		

Des précisions de l'ordre de **0,021 m sur l'horizontale et 0,085 m** sur la verticale sont données par le logiciel.

II- Méthode GNSS, technique PPP

Développé dans les années 2000, il définit une méthode de positionnement GNSS qui consiste à corriger de manière précise les orbites et les horloges des satellites puis introduire les differentes modèle pour corriger les erreurs due l'atmosphere, la rotation et l'orientation de la terre,

Contrairement à la méthode cinématique, cette méthode ne nécessite qu'un seul récepteur.

Figure 6: Méthode de levé GNSS avec la technique PPP

L'équation d'observation et le même que celle vue précédemment :

$$\begin{split} P_{A,k}^{i}(t) &= D_{A}^{i} + T_{A}^{i} + I_{A,k}^{i} + M_{A,k,p}^{i} + c\left(\Delta t^{i}(t_{e}) - \Delta t_{A}(t)\right) + \varepsilon_{A,k,p}^{i} \qquad (1) \\ \phi_{A,k}^{i}(t) &= D_{A}^{i} + T_{A}^{i} - I_{A,k}^{i} + M_{A,k,p}^{i} + c\left(\Delta t^{i}(t_{e}) - \Delta t_{A}(t)\right) + \varepsilon_{A,k,\phi}^{i} + \lambda_{k} N_{A,k}^{i} \qquad (2) \end{split}$$

La grande différence avec le positionnement relatif est la manière dont sont traitées les erreurs liées aux horloges satellites et récepteurs :

- Au lieu de faire des différences d'observations entre les récepteurs pour éliminer les termes d'horloges venant des satellites, le PPP utilise des modèles précis de ces horloges satellites. Ces modèles d'horloges sont obtenus à partir d'un réseau mondial de stations GPS bien réparties d' IGS (International GNSS Service).
- De même, au lieu d'éliminer les termes d'erreurs d'horloges récepteurs par différenciation d'observations sur deux satellites, le PPP estime ce terme d'erreur dans la solution obtenue par moindres carrés pour estimer les coordonnées.
 - Quant au retard atmosphérique :
- SI le récepteur est multifréquence, l'erreur ionosphérique peut être estimée.

- Enfin, comme en relatif, le PPP intègre aussi les meilleurs modèles disponibles de toutes les erreurs GPS dont l'erreur troposphérique.

II-1 Traitement sur SCRS-PP

SCRS-PP est une ressource de traitement en ligne de données GNSS utilisant le technique PPP, qui a été mise en place par la Ressources Naturelles du Canada. La procédure de traitement est décrite selon l'image suivant :

Figure 7: Traitement de donnée GNSS, technique PPP

Source d'erreur	Résolution		
Horloge des Satellites	IGS horloge des satellites		
Horloge récepteur	Estimation par moindre carrée		
Ionosphère	Double différence L1 et L2		
Troposphère	estimation par fonction GMF		
Centre de phase des satellites	IGS14 model de variation de centre de phase		
Centre de masse des satellites	IGS14 model de variation de centre de phase		
Trajectoires des satellites	IGS		
Orientation de la terre	IGS		

L'incertitude inscrit sur le rapport de traitement envoyer par la CSRC-PP décrit une incertitude de l'ordre de 0.035 m sur la latitude, 0.136 sur la longitude et 0.098 sur l'altitude.

III- Comparaison des résultats

Le résultat des différents traitements traitement se résume comme suit :

		Position relative				PPP	
		Logiciel	I SPO AUSPOS		os	CSRC-PP	
		DD	Incertitude	DD	Incertitude	DD	Incertitude
Coordonnées ITRF14	Lat	-17,72147977	0,021	-17,7214792	0,559	-17,7214794	0,035
	Long	45,09873014	0,021	45,0987296	0,08	45,0987311	0,136
	Altitude	289,305	0,085	289,373	0,557	289,332	0,098

On remarque notamment que malgré les incertitudes et qui sont en même temps différents, les résultats sont identiques à cm près. L'Ecartype entre les latitudes est égale à 0.0000003 ° et de 0.0000007 pour les longitudes.

Pour l'attitude l'écartype est 0.034 m soit 3.4 cm.

VI- Conclusion

Bref, pour le positionnement relative, les données brutes ont été traités sur AUSPOS avec plusieurs ligne de base et en utilisant le logiciel SPO avec une seul ligne de base. Pour la technique PPP, on a eu recours à l'outille CSRC-PP de la ressource naturel du canada.

Avec des ecartype relativement faible sur les résultats issus des différentes techniques de positionnement (relative ou PPP), on peut dire qu'on a obtenu les mêmes résultats.