Lezione 12 - 27/10/2022

Definzione - Spazio vettoriale

Prodotto righe per colonne tra matrici

Proposizone

Osservazione

Proposizione

Esempi di gruppi

Domanda

Definizione - Sottogruppo

Proposizione

Sottogruppi di Z

Omomorfismo

Definzione - Spazio vettoriale

Uno spazio vettoriale su $\mathbb K$ (campo) è un **insieme non vuoto** V dotato di un'**operazione binaria** + rispetto alla quale V è un **gruppo abeliano** e di un'applicazione

$$\mathbb{K} \times V \to V$$
$$(\alpha, v) \mapsto \alpha v$$

tale che

$$(lpha + eta)v = lpha v + eta v \qquad \qquad orall lpha, eta \in \mathbb{K}, \ orall v \in V \ lpha(v_1 + v_2) = lpha v_1 + lpha v_2 \qquad \qquad orall lpha \in \mathbb{K}, \ orall v \in V \ orall v = v \qquad \qquad orall v \in V$$

Nomenclatura

- ullet Gli elementi di V si chiamano **vettori**
- Gli elementi di $\mathbb K$ si chiamano **scalari**

Esempi

1. Sia $\mathbb K$ un campo e $V=\mathbb K^n=\{(x_1,...,x_n):x_i\in\mathbb K\}$ Prendiamo come esempio $\mathbb R^2=\{(x,y):x,y\in\mathbb R\}$

$$(x_1,...,x_n)+(y_1,...,y_n)=(x_1+y_1,...,x_n+y_n) \ lpha(x_1,...,x_n)=(lpha x_1,...,lpha x_n)$$

Esempio pratico

$$4(2,1,6) + 5(-1,2,\frac{1}{4}) + \frac{3}{2}(0,1,3) =$$

$$= (8,4,24) + (-5,10,\frac{5}{4}) + (0,-\frac{3}{2},-\frac{9}{2}) = (3,\frac{25}{2},\frac{83}{4})$$

2. <u>Definzione</u>: Una matrice a m righe e n colonne a **coefficienti nel campo** $\mathbb K$ è una tabella di elementi di $\mathbb K$ del tipo

Lezione 12 - 27/10/2022 1

$$egin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \ a_{21} & a_{22} & ... & a_{2n} \ dots & & & & \ \vdots & & & \ a_{ij} & & & \ a_{mn} \end{pmatrix}$$

Chiamiamo $M_{mn}(\mathbb{K})$ tale insieme.

Diciamo che una matrice è **quadrata** se m=n

Notazione:

Se $A \in M_{mn}(\mathbb{K})$ denoto con

- $(A)_{ij}$ l'elemento di posto (i,j)
- ullet A^i l'i-esima colonna
- A_i la j-esima riga

Esempio

$$A = egin{pmatrix} 1 & 2 & 3 \ 3 & 5 & 6 \end{pmatrix} \ (A)_{11} = 1 & (A)_{12} = 2 & (A)_{13} = 3 \ (A)_{21} = 4 & (A)_{22} = 5 & (A)_{23} = 6 \ A^1 = egin{pmatrix} 1 \ 4 \end{pmatrix} & A^2 = egin{pmatrix} 2 \ 5 \end{pmatrix} & A^3 = egin{pmatrix} 3 \ 6 \end{pmatrix} \ A_1 = egin{pmatrix} 1 & 2 & 3 \end{pmatrix} & A_1 = egin{pmatrix} 4 & 5 & 6 \end{pmatrix}$$

 $M_{mn}(\mathbb{K})$ è uno **spazio vettoriale** rispetto a

$$(A+B)_{ij}=(A)_{ij}+(B)_{ij} \qquad 1\leq i\leq m \ 1\leq j\leq n \ lpha\in\mathbb{K} \quad (lpha A)_{ij}=lpha (A)_{ij} \qquad 1\leq i\leq m \ 1\leq j\leq n$$

N.B.:

- se $m=n=1,\ M_{11}(\mathbb{K})=\mathbb{K}$, dunque ogni campo è uno **spazio vettoriale su se stesso**;
- se $m=1,\ M_{1n}(\mathbb{K})=\mathbb{K}^n$, chiamati **vettori riga**;
- se $n=1,\ M_{m1}(\mathbb{K}) \leftrightarrow \mathbb{K}^m$, chiamati **vettori colonna**.

3. Vettori geometrici

Consideriamo lo spazio **bidimensionale della geometria euclidea** e fissiamo un punto o. Chiamiamo **vettore** un segmento orientato \overrightarrow{AB} . Definiamo una struttura di **spazio vettoriale su** $\mathbb R$ sull'insieme ν_0 dei vettori applicati in o.

$$\nu_0 = \{\overrightarrow{OA}: a \in \mathbb{E}^3\}$$

•
$$\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$$

•
$$0 \cdot \overrightarrow{OA} = \overrightarrow{OO}$$

 $\alpha \cdot \overrightarrow{OO} = \overrightarrow{OO}$

 \circ Se lpha>0

$$\overrightarrow{OB} = \alpha \cdot \overrightarrow{OA}$$

 \circ Se lpha < 0

$$\overrightarrow{OB} = \alpha \cdot \overrightarrow{OA}$$

Si definiscono poi i **vettori liberi** come lo spazio di vettori applicati modulo la **relazione di equivalenza** che identifica due vettori applicati se esiste una **traslazione** che manda uno all'altro

le operazioni di ν_0 passano al quoziente.

Prodotto righe per colonne tra matrici

Per comodità scrivo M_{mn} invece di $M_{mn}(\mathbb{K})$.

$$M_{ms} imes M_{sn} o M_{mn} \ (AB)_{ij} = \sum_{k=1}^s (A)_{ik}\cdot (B)_{ki}, \quad 1\leq i\leq m, \ 1\leq j\leq n$$

Esempio:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 0 & 1 & 4 & -1 \\ 2 & 3 & 0 & 4 \\ 3 & 6 & -1 & -1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 \cdot 0 + 2 \cdot 2 + 3 \cdot 3 & 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 6 & 1 \cdot 4 + 2 \cdot 0 + 3 \cdot (-1) & 1 \cdot (-1) + 2 \cdot 4 + 3 \cdot (-1) \\ 4 \cdot 0 + 5 \cdot 2 + 6 \cdot 3 & 4 \cdot 1 + 5 \cdot 3 + 6 \cdot 6 & 4 \cdot 4 + 5 \cdot 0 + 6 \cdot (-1) & 4 \cdot (-1) + 5 \cdot 4 + 6 \cdot (-1) \end{pmatrix} =$$

$$= \begin{pmatrix} 13 & 25 & 1 & 4 \\ 28 & 55 & 10 & 10 \end{pmatrix}$$

Proposizone

Se $A \in M_{ms}, \; B \in M_{st}, \; C \in M_{tn}$

$$(AB)C = A(BC)$$

Osservazione

Nel caso delle matrici quadrate M_n , il prodotto righe per colonne è un'operazione binaria associativa per la proprietà precedente che, per elemento neutro ha la **matrice identità**

$$I_n = egin{pmatrix} 1 & 0 & ... & 0 \ 0 & 1 & ... & 0 \ dots & dots & dots & dots \ 0 & ... & 1 & 0 \ 0 & ... & 0 & 1 \end{pmatrix}$$

 $(I_n)_{ij} = \delta_{ij}$ dove δ_{ij} è detta la **delta di Krnoecker** ed è definita come segue

$$\delta_{ij} = egin{cases} 1 & ext{se } i = j \ 0 & ext{se } i
eq j \end{cases}$$

ovvero vale 1 solamente nella **diagonale** e tutto il resto è 0.

Proposizione

 $M_n(\mathbb{K})$ è un anello con unità.

N.B.: se $n \geq 2$, $M_n(\mathbb{K})$ non è commutativo

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} & \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} & = & \begin{pmatrix} -2 & 8 \\ -3 & 18 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} & = & \begin{pmatrix} 6 & 8 \\ 8 & 10 \end{pmatrix}$$

Esempi di gruppi

1.
$$(\mathbb{Z}, +), (\mathbb{Z}_n, +)$$

2.
$$(\nu,+),\ \nu$$
 spazio vettoriale $(\nu=\mathbb{R},\ \mathbb{Q})$

3. S_n

4. \mathbb{U}_n elementi invertibili in \mathbb{Z}_n

5. $(\mathbb{K}\setminus\{0\},\cdot)$

Domanda

Abbiamo visto che M_n sono **un anello**; possiamo chiederci se $M_n\setminus\{0\}$ è un **gruppo** rispetto il **prodotto righe per colonne**. Questo è vero se per ogni $A\in M_n,\ A\neq 0\ \exists B\in M_n$ tale che

$$AB = BA = I_n$$
 (*)

Questo in generale è falso. Dimostreremo che esiste una funzione detta determinante

$$\det: M_n(\mathbb{K}) o \mathbb{K}$$

tale che

$$A$$
è invertibile $\iff \det A \neq 0$

cioè vale (*). Quindi $\{A \in M_n(\mathbb{K}) : \det A \neq 0\}$ è un gruppo **infinito** (se \mathbb{K} è infinito) **non abeliano** se $n \geq 2$. Esempio:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Definizione - Sottogruppo

Sia G un gruppo. Diciamo che $\emptyset \neq H \subseteq G$ è un sottogruppo di G (notazione: $H \leq G$) se H è un gruppo rispetto all'operazione indotta da G.

Osservazione: $H \leq G$ se e solo se

1.
$$\forall h_1, h_2 \in H$$
 $h_1 \cdot h_2 \in H$

2. $e \in H$

3.
$$\forall h \in H, \ h^{-1} \in H$$

Proposizione

$$H \leq G \Longleftrightarrow ab^{-1} \in H, \quad orall a,b \in H \ (*)$$

con questa scrittura sono state compattate le tre proprietà sopra.

Nota: in notazione additiva:

$$ab^{-1} \in H$$
 diventa $a - b \in H$

Dimostrazione: Supponiamo che valgano 1. 2. e 3. e vediamo che vale (*).

Dati $a,b\in H$, per la proprietà 3. si ha $b^{-1}\in H$ e per la 1. $ab^{-1}\in H$, quindi vale (*).

Supponiamo che valga (*), dobbiamo dimostrare 1. 2. e 3.

Prendiamo in (*) a = b

$$ab^{-1} = aa^{-1} = e \in H$$

quindi vale 2. Prendiamo in (*) $a=e,\ b=h$. Abbiamo

$$e\cdot h^{-1}=h^{-1}\in H$$

quindi vale 3. Infine prendiamo in (*) $a=h_1,\ b=h_2^{-1}$

$$ab^{-1} = h_1(h_2^{-1})^{-1} = h_1 \cdot h_2 \in H$$

quindi vale 1.

Esempio: il centro di un gruppo. Sia G un gruppo. Definiamo

$$Z(G) = \{x \in G : xy = yx \ \forall y \in G\}$$

osserviamo che G è **abeliano** se e solo se Z(G)=G (tutti gli elmenti in G commutano). In generale si ha $Z(G)\leq G$.

Verifichiamolo usando la proposizione precedente: $x,y\in Z(G)\Rightarrow xy^{-1}\in Z(G)$

• Ipotesi:

$$egin{aligned} xg &= gx & orall g \in G \ yg &= gy & orall g \in G \end{aligned}$$

• Tesi: $xy^{-1}g=gxy^{-1} \quad \forall g \in G$ yg=gy può essere riscritta come

$$y^{-1}ygy^{-1}=y^{-1}gyy^{-1}$$
 moltiplico y^{-1} a sx e dx $gy^{-1}=y^{-1}g\left(1\right)$

Da cui si ricava

$$xy^{-1}g = x(y^{-1}g) \stackrel{(1)}{=} x(gy^{-1}) = (xg)y^{-1} \stackrel{(2)}{=} (gx)y^{-1} = gxy^{-1}$$

Esempio: Q: unità dei quaternioni

$$Q = \{\pm 1, \pm i, \pm j, \pm k\}$$

Le regole moltiplicative seguono dal seguente disegno:

•
$$i^2 = j^2 = k^2 = -1$$

•
$$ij = k$$
 $jk = i$ $ki = j$

•
$$ji = -k$$
 $kj = -i$ $ik = -j$

I **sottogruppi generati** sono i seguenti:

Sottogruppi di Z

Proposizione: i sottogruppi di \mathbb{Z} sono tutti e soli del tipo $n\mathbb{Z}, n \in \mathbb{N}$.

<u>Dimostrazione</u>: vediamo prima di tutto che $n\mathbb{Z}$ è un sottogruppo. Per la proposizione dobbiamo vedere che se $x,y\in n\mathbb{Z}$, allora $x-y\in n\mathbb{Z}$ (ricordiamo che \mathbb{Z} non + un gruppo rispetto alla moltiplicazione, quindi usiamo la notazione additiva).

Ma $x,y\in n\mathbb{Z}$ significa $x=na,\ y=nb$, per cui

$$x-y=na-nb=n(a-b)\in n\mathbb{Z}$$

Viceversa, sia $H \leq \mathbb{Z}$; se $H = \{0\}$ allora $H = n\mathbb{Z}$ con n = 0. Quindi possiamo supporre che esista $h \in H, n \neq 0$; poiché $H \leq \mathbb{Z}$, se $h \in H$, anche $-h \in H$, quindi posso supporre h > 0. Sia

$$\emptyset \neq H' = \{h \in H: h > 0\}$$

Quindi esiste $\overline{h}=\min H'$.

Dico che $H=\overline{h}\mathbb{Z}$. È chiaro che $\overline{h}\mathbb{Z}\subseteq H$, perchè $\overline{h}\in H$ e quindi tutti i multipli di \overline{h} appartengono ad H ($H\leq \mathbb{Z}$).

Viceversa, prendo $x \in H$ e scrivo

$$x = q\overline{h} + r$$
 $0 \le r < h$

quindi $r=x-q\overline{h}$ e sappiamo che $x\in H$ per ipotesi. Dunque $r\in H$, ma \overline{h} è il **minimo intero positivo** che appartiene ad H, quindi r=0 e quindi

$$x=q\overline{h}\in\overline{h}\mathbb{Z}$$

come volevamo.

Omomorfismo

Siano $G_1,\ G_2$ gruppi. Un **omomorfismo** tra G_1 e G_2 è un'applicazione

$$f:G_1 o G_2$$

tale che $f(gg')=f(g)f(g'),\ \forall g,g'\in G_1.$

Un isomorfismo

$$f:G_1 o G_2$$

Lezione 12 - 27/10/2022 7

è un omomorfismo biunivoco.

Esempio:

$$f:(\mathbb{R},+) o(\mathbb{R}_{>0},\cdot) \ x\mapsto e^x$$

è un **isomorfismo** in quanto

$$f(x+y) = f(x)f(y) \ e^{x+y} = e^x e^y$$

La biunivocità segue dal grafico dell'esponenziale

