Smart Schedule Project Description

Samerah Al Daher Yasmine Sati Kawthar Abdallah Rein Ghattas Ali Yehya

01

Overview

Overview

SmartSchedule is a web-based platform designed to help students manage their courses more smoothly and effectively. The system automates the process of selecting courses for registration based on the student's academic status, preferences, and university course offerings. By integrating Flask (Python) as the backend and MySQL as the database, the platform provides a RESTful API that enables students to access course offerings, track their enrolled classes, and generate optimized schedules effortlessly.

O2Objectives

Objectives

1. Simplify Course Selection

2. Prevent Scheduling Conflicts

03. Accessibility

04. Smooth Database Integration 05. Future Scalability

03 Background

Background

Problem

Selecting courses is a crucial issue in each student's study plan since good management of courses surely ensures a smooth and comfortable learning process. However, managing course registration each semester can be stressful, complicated and timeconsuming for students. This issue is caused by the manual course searching, the complexity of different available sections, and the variety of choices for the plan.

Aim

This project aims to simplify the student course selection process by providing a structured and automated scheduling system with modern web applications and API-driven automation. With this system, students can focus on their education rather than their administrative tasks.

04

Literature Review

Number	Authors	Description	Advantages	Problems
[1]	Li and Womer (2009)	A hybrid MILP/CP Benders	Effective for complex planning and	Requires expertise in Benders
		Decomposition algorithm for	scheduling problems.	Decomposition
		scheduling multi- skilled personnel.		
[2]	Garrido and Onaindia (2010)	Al planning techniques for e- learning, integrating temporal and	Supports multi- criteria optimization and time/resource constraints	Practical implementation challenges not extensively
		resource constraints.		discussed
[3]	Ajanovski (2013)	A system for creating	Facilitates efficient	Limited information
		teacher and teaching schedules based on specific	teacher scheduling	on system functionalities
		requirements.		
[4]	Yang and Xie (2017)	A genetic algorithm- based approach for university course scheduling with	Efficiently generates high-quality scheduling solutions	May struggle with local optima.
		coevolution.		

Number	Authors	Description	Advantages	Problems
[5]	Hossain et al. (2019)	A simulated annealing multi-objective algorithm for university course timetabling.	Outperforms traditional genetic algorithms	Limited information on algorithm implementation
[6]	Tavakoli et al. (2020)	A three-stage heuristic algorithm for university course timetabling.	Improves course presentation rate	Requires further validation in other academic departments
[7]	Yu Chen et al. (2022)	A genetic algorithm for university class scheduling, aligning satisfaction with preferences.	Aligns satisfaction values with preferences	Limited information on algorithm implementation
[8]	Shaaban et al. (BAU FYP)	A web-based scheduling system using Next.js, Puppeteer, and DialogFlow for BAU students.	Automates course registration, prioritizes data security and user-friendliness	Scheduling algorithm may require further optimization for complex constraints.

Applications

University Students

Academic Advisors

The platform can be used by advisors to assist students in choosing courses and meeting academic milestones.

University Administrators

The platform can also assist administrators in overseeing course listings and enrollment statistics more efficiently.

Future Integration

The platform can be developed further to include features including academic advising chatbots, integration with learning management systems (LMS) in the university

06

Alternative Designs

Alternative Designs

Mobile Application **Desktop Application**

AI-Powered Scheduling Integration with Existing Systems

References

- [1] Li, H., & Womer, K. (2009). Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm. Journal of Scheduling, 12(3), 281-298. doi:10.1007/s10951-008-0079-3
- [2] Garrido, A., & Onaindia, E. (2010). On the application of planning and scheduling techniques to e-learning. In Proc. 23rd Int. Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA-AIE 2010) LNAI 6096 (pp. 244-253). Springer.
- [3] Reference: Ajanovski, V. V. (2013). Integration of a course enrolment and class timetable scheduling in a student information system. International Journal of Database Management Systems, 5(3), 85-95.
- [4] Yang, L., & Xie, C. (2017). Research on model of course scheduling system for ideological and political teaching in colleges and universities based on particle swarm optimization. Revista Facultad de Ingeniería, 32(17), 657-663.
- [5] Hossain, S. I., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019). Optimization of university course scheduling problem using particle swarm optimization with selective search. Expert Systems with Applications, 127, 9-24. doi:10.1016/j.eswa.2019.02.026
- [6] Tavakoli, M. M., Shirouyehzad, H., Lotfi, F. H., & Najafi, S. E. (2020). Proposing a novel heuristic algorithm for university course timetabling problem with the quality of courses rendered approach; a case study. Alexandria Engineering Journal, 59(5), 3355-3367. doi:10.1016/j.aej.2020.05.004
- [7] Chen, Y., Ghasemi, P., Bayanati, M., Ebrahimi, M., & Khalijian, S. (2022). A novel optimization approach for educational class scheduling with considering the students and teachers' preferences. Discrete Dynamics in Nature and Society, 2022, 5505631. doi:10.1155/2022/5505631
- [8] Beirut Arab University FYP Project (2023). Streamlining Course Scheduling: Revolutionizing Timetabling for BAU Students.