Problema n° 825

Aymé, J.L. (2017): Comunicación personal

- 1. Sea ABC un triángulo
- 2. (I) el incírculo of ABC
- 3. D el punto de contacto de (I) con BC
- 4. N, P los puntos medios de AC, AB
- 5. X el punto de intersección de la perpendicular a AI en I con NP
- 6. Hc el ortocentro del triángulo IAB.

Demostrar: El simétrico de I respecto a X pertenece a DHc

Solution proposée par Philippe Fondanaiche

On désigne :

- par D,E et F les points de contact du cercle inscrit (I) avec les côtés BC,AC et AB du triangle ABC,
- par Y le point symétrique du point I par rapport à X
- par J le point d'intersection de la droite DI avec la droite NP.

On considère le repère Dxy avec les droites (BC) et (DI) comme axes des abscisses er des ordonnées. Sans perte de généralité on pose DI = 1.

Soient les angles $\angle BIX = \beta$ et $\angle XIC = \gamma$ avec $\gamma \ge \beta$.

On déduit BD = $tan(\beta) = u$, DC = $tan(\gamma) = v$ et $\angle BAI = \beta + \gamma - 90^{\circ}$.

On détermine successivement les coordonnées des points Y et H_c en fonction des paramètres u et v afin de démontrer que les pentes des droites DH_c et DY sont identiques.

Coordonnées de Y

On a AB = BF + FA avec BF = BD = u et FA =
$$-\tan(\beta + \gamma) = \frac{u+v}{uv-1}$$
. D'où AB = $\frac{v(1+u^2)}{uv-1}$.

L'ordonnée de A est donc égale à AB. $\sin(180^{\circ}-2\beta) = 2$ AB. $\tan(\beta)\cos^{2}(\beta) = \frac{2uv}{uv-1}$.

D'où l'ordonnée de
$$J: y_j = \frac{uv}{uv-1}$$
 et $J = \frac{uv}{uv-1} - 1 = \frac{1}{uv-1}$.

Par ailleurs
$$\angle IXJ = \gamma - \beta$$
. D'où l'abscisse de X: $x_x = HJ/tan(\angle IXJ) = \frac{(uv+1)}{(uv-1)(v-u)}$.

Les coordonnées $\boldsymbol{x}_y \ \text{ et } \boldsymbol{y}_y \ \text{ de } \boldsymbol{Y}$ sont telles que :

$$x_y = \frac{2(uv+1)}{(uv-1)(v-u)} \ (car \ x_y = 2 \ x_x) \ et \ y_y = \frac{uv+1}{uv-1} (car \ y_y + \ 1 = 2 \ y_j = ordonn\'ee \ de \ A)$$

La pente de la droite DE est alors égale à $\frac{v-u}{2}$

Coordonnées de H_c

On a les relations d'angles
$$\angle$$
 FBH_c = 180°- $(\beta + \gamma)$ et \angle CBH_c = \angle IXJ = $\gamma - \beta$

D'où l'abscisse de
$$H_c$$
: $x_H = BH_c$. $cos(\gamma - \beta) + u = BF.cos(\gamma - \beta)/cos(\beta + \gamma) + u = \frac{2u}{uv - 1}$

et l'ordonnée de
$$H_c$$
: $y_H = BH_c.\sin(\gamma - \beta) = BF.\sin(\gamma - \beta)/\cos(\beta + \gamma) = \frac{u(v-u)}{uv-1}$

La pente de la droite DH_c est alors aussi égale à $\frac{v-u}{2}$. Cqfd