Convolution Neural Network

Arun Chauhan

Computer Science and Engineering
Indian Institute of Information Technology Dharwad

What is Convolution?

f:Input

g: Kernel

(f * g)(t): Feature Map

Convolution on discrete data

1 D Convolution:

$$s(t) = (x * w)(t) = \sum_{a = -\infty} x(a)w(t - a)$$

2 D Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

Convolution is commutative:

$$S(i,j) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i-m, j-n)K(m,n)$$

Cross Corelation same as Convolution:

$$S(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Figure 9.1

Convolutions Over Volume

Multiple filters

One Layer of a Convolutional Network

Motivation

- Convolution leverages three important ideas that can help improve a machine learning system:
 - 1. Sparse interaction.
 - 2. Parameter sharing.
 - 3. Equivariant representations.
 - 4. Also, provides a means for working with inputs of variable size.

Key Idea

- Replace matrix multiplication in neural nets with convolution
- Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.

Three Operations

- Convolution: like matrix multiplication
 - Take an input, produce an output (hidden layer)
- "Deconvolution": like multiplication by transpose of a matrix
 - Used to back-propagate error from output to input
 - Reconstruction in autoencoder / RBM
- Weight gradient computation
 - Used to backpropagate error from output to weights
 - Accounts for the parameter sharing

Equivariance Vs Invariance

T(C(x)) = C(T(x))

T: Translation

C: Convolution

4	3	1	5
1	3	4	8
4	5	4	3
6	5	9	4

N
_/
\neg

4	8
6	9

Sparse Connectivity

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Figure 9.3

Growing Receptive Fields

Parameter Sharing

Convolution
shares the same
parameters
across all spatial
locations

Traditional
matrix
multiplication
does not share
any parameters

Edge Detection by Convolution

Figure 9.6

Efficiency of Convolution

Input size: 320 by 280

Kernel size: 2 by 1

Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	2*319*280 = 178,640
Float muls or adds	319*280*3 = 267,960	> 16e9	Same as convolution (267,960)

Convolutional Network Components

Max Pooling and Invariance to Translation

Cross-Channel Pooling and Invariance to Learned Transformations

Pooling with Downsampling

1	3	2	1		
2	9	1	1		
1	4	2	3	-	
5	6	1	2		

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

9	2
6	3

f=2

s=2

No parameters

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9
		2 9 1 3 8 3	2 9 1 1 3 2 8 3 5	2 9 1 1 1 3 2 3 8 3 5 1

9	

$$\left[\frac{n+2p-f}{s}+1\right]$$

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

9	9	

$$\left|\frac{n+2p-f}{s}+1\right|$$

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

9	9	5

$$\left| \frac{n+2p-f}{s} + 1 \right|$$

1	3	2	1	3
2	9	1	1	5
1	3	2	3	2
8	3	5	1	0
5	6	1	2	9

9	9	5
9	9	5
8	6	9

$$\left| \frac{n+2p-f}{s} + 1 \right|$$

Pooling layer: Average pooling

1	3	2	1	
2	9	1	1	
1	4	2	3	
5	6	1	2	

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

3.75	1.25
4	2

f=2 s=2 No parameters

Summary of pooling

Hyperparameters:

f: filter size

s:stride

Max or average pooling

$$\left[\frac{n_{H} - f}{s} + 1\right] X \left[\frac{n_{W} - f}{s} + 1\right] X n_{C}$$

Weak and Strong Priors

- A weak prior
 - A distribution with high entropy
 - e.g., Gaussian with high variance
 - Data can move parameters freely
- A strong prior
 - It has very low entropy
 - E.g., a Gaussian with low variance
 - Such a prior plays a more active role in determining where the parameters end up

Infinitely Strong Prior

- An infinitely strong prior places zero probability on some parameters
- It says that some parameter values are forbidden regardless of support from data
 - With an infinitely strong prior, irrespective of the data the prior cannot be changed

Convolution as infinitely strong prior

- Convolutional net is similar to a fully connected net but with an infinitely strong prior over its weights
 - It says that the weights for one hidden unit must be identical to the weights of its neighbor, but shifted in space
 - Prior also says that the weights must be zero, except for in the small spatially contiguous receptive field assigned to that hidden unit

Convolution with a kernel of width 3 s_3 is a hidden unit. It has 3 weights which are the same as for s_4

- Convolution introduces an infinitely strong prior probability distribution over the parameters of a layer
 - This prior says that the function the layer should learn contains only local interactions and is equivariant to translation

Pooling as an Infinitely strong prior

- The use of pooling is an infinitely strong prior that each unit should be invariant to small translations
- Maxpooling example:

Implementing as a prior

- Implementing a convolutional net as a fully connected net with an infinitely strong prior would be extremely computationally wasteful
- But thinking of a convolutional net as a fully connected net with an infinitely strong prior can give us insights into how convolutional nets work

Key Insight: Underfitting

- Convolution and pooling can cause under-fitting
 - Under-fitting happens when model has high bias
- Convolution and pooling are only useful when the assumptions made by the prior are reasonably accurate
- Pooling may be inappropriate in some cases
 - If the task relies on preserving spatial information
 - Using pooling on all features can increase training error

High Bias/Underfit can be countered by:

- 1. Add hidden layers
- Increase hidden units/layer
- 3. Decrease regular. parameter λ
- 4. Add features

When pooling may be inappropriate

- Some convolutional architectures are designed to use pooling on some channels but not on other channels
 - In order to get highly invariant features and features that will not under-fit when the translation invariance prior is incorrect
- When a task involves incorporating information from a distant location
 - In which case, prior imposed by convolution may be inappropriate

Comparing models with/without convolution

- Convolutional models have spatial relationships
- In benchmarks of statistical learning performance we should only compare convolutional models to other convolutional models – since they have knowledge of spatial relationships hard-coded
- Models without convolution will be able to learn even if we permuted all pixels in the image
- Permutation invariance: $f(x_1,x_2,x_3)=f(x_2,x_1,x_3)=f(x_3,x_1,x_2)$
- There are separate benchmarks for models that are permutation invariant

Variants of the Basic Convolution Function

Definition of 4-D kernel tensor

- Assume we have a 4-D kernel tensor ${\bf K}$ with element $K_{i,i,k,l}$ giving the connection strength between
 - a unit in channel i of the output and
 - a unit in channel j of the input,
 - with an offset of k rows and l columns between output and input units
- Assume our input consists of observed data ${\bf V}$ with element $V_{i,j,k}$ giving the value of the input unit
 - within channel i at row j and column k.
- Assume our output consists of Z with the same format as V.
- If Z is produced by convolving K across V without flipping K, then

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} K_{i,l,m,n}$$

Simple Convolutional Network Example[1]

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} K_{i,l,m,n}$$

$$l = 3$$

 $m, n = 3,3$

9	9	5	
9	9	5	
8	6	9	/

Convolution with a stride: Definition

- We may want to skip over some positions in the kernel to reduce computational cost
 - At the cost of not extracting fine features
- We can think of this as down-sampling the output of the full convolution function
- If we want to sample only every s pixels in each direction of output, then we can define a down-sampled convolution function c such that

$$Z_{i,j,k} = c(\mathbf{K}, \mathbf{V}, s)_{i,j,k} = \sum_{l,m,n} \left[V_{l,(j-1)\times s+m,(k-1)\times s+n} K_{i,l,m,n} \right]$$

 We refer to s as the stride. It is possible to define a different stride for each direction

Convolution with Stride

stride of 2

Convolution with a stride greater than one pixel is mathematically equivalent to convolution with a unit stride followed by down-sampling.

Two-step approach is computationally wasteful, because it discard many values that are discarded

(Goodfellow 2016)

Zero Padding Controls Size

Valid Convolution

- Kernel width, k: 6
- No pooling
- Shrink by (k-1) pixel at every layer

Same Convolution

With zero padding

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor = n$$

Figure 9.13

(Goodfellow 2016)

Kinds of Connectivity

Figure 9.14

Partial Connectivity Between Channels

- Modeling interactions between few channels allows fewer parameters to:
 - Reduce memory, increase statistical efficiency, reduce computation for forward/back-propagation.
 - It accomplishes these goals without reducing ng.of hidden units.

Figure 9.15

Tiled convolution

Figure 9.16

Backpropagation in CNN

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Forward Prop CNN:

Input X

F 11	F 12
F 21	F 22

Filter F

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Backpropagation in CNN

$$\frac{\partial \mathbf{0}}{\partial \mathbf{X}}$$
 & $\frac{\partial \mathbf{0}}{\partial \mathbf{F}}$ are local gradients

 $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Backpropagation in CNN

So let's find the gradients for X and F — $\partial L/\partial X$ and $\partial L/\partial F$

Finding ∂L/∂F:

This has two steps as we have done earlier.

- Find the local gradient $\partial O/\partial F$
- Find $\partial L/\partial F$ using chain rule

layer

$$O_{11} = X_{11}F_{11} + X_{12}F_{12} + X_{21}F_{21} + X_{22}F_{22}$$

Finding derivatives with respect to F_{11} , F_{12} , F_{21} and F_{22}

$$\frac{\partial O_{11}}{\partial F_{11}} = X_{11} \quad \frac{\partial O_{11}}{\partial F_{12}} = X_{12} \quad \frac{\partial O_{11}}{\partial F_{21}} = X_{21} \quad \frac{\partial O_{11}}{\partial F_{22}} = X_{22}$$

Similarly, we can find the local gradients for O_{12} , O_{21} and O_{22}

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

F 11	F 12
F 21	F 22

O ₁₁	O ₁₂
O ₂₁	O ₂₂

Finding ∂L/∂F:

$$\frac{\partial L}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_k} * \frac{\partial O_k}{\partial F_i}$$

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

F 11	F 12	
F 21	F 22	

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{11}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{11}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{11}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{11}}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{12}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{12}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{12}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{12}}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{21}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{21}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{21}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{21}}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * \frac{\partial O_{11}}{\partial F_{22}} + \frac{\partial L}{\partial O_{12}} * \frac{\partial O_{12}}{\partial F_{22}} + \frac{\partial L}{\partial O_{21}} * \frac{\partial O_{21}}{\partial F_{22}} + \frac{\partial L}{\partial O_{22}} * \frac{\partial O_{22}}{\partial F_{22}}$$

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * X_{12} + \frac{\partial L}{\partial O_{12}} * X_{13} + \frac{\partial L}{\partial O_{21}} * X_{22} + \frac{\partial L}{\partial O_{22}} * X_{23}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

Finding ∂L/∂F:

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

F 11	F 12	
F 21	F 22	

$$\frac{\partial L}{\partial F_{11}} = \frac{\partial L}{\partial O_{11}} * X_{11} + \frac{\partial L}{\partial O_{12}} * X_{12} + \frac{\partial L}{\partial O_{21}} * X_{21} + \frac{\partial L}{\partial O_{22}} * X_{22}$$

$$\frac{\partial L}{\partial F_{12}} = \frac{\partial L}{\partial O_{11}} * X_{12} + \frac{\partial L}{\partial O_{12}} * X_{13} + \frac{\partial L}{\partial O_{21}} * X_{22} + \frac{\partial L}{\partial O_{22}} * X_{23}$$

$$\frac{\partial L}{\partial F_{21}} = \frac{\partial L}{\partial O_{11}} * X_{21} + \frac{\partial L}{\partial O_{12}} * X_{22} + \frac{\partial L}{\partial O_{21}} * X_{31} + \frac{\partial L}{\partial O_{22}} * X_{32}$$

$$\frac{\partial L}{\partial F_{22}} = \frac{\partial L}{\partial O_{11}} * X_{22} + \frac{\partial L}{\partial O_{12}} * X_{23} + \frac{\partial L}{\partial O_{21}} * X_{32} + \frac{\partial L}{\partial O_{22}} * X_{33}$$

$$\begin{array}{c|c} \underline{\partial L} & \underline{\partial L} \\ \overline{\partial F_{11}} & \overline{\partial F_{12}} \\ \\ \underline{\partial L} & \underline{\partial L} \\ \overline{\partial F_{21}} & \overline{\partial F_{22}} \end{array}$$

$\frac{\partial L}{\partial O_{i,j}}$	$\frac{\partial L}{\partial O_{12}}$
$\frac{\partial L}{\partial O_{21}}$	$\frac{\partial L}{\partial O_{22}}$

$$\frac{\partial L}{\partial O}$$

Finding ∂L/∂X:

F ₁₁	F ₁₂
F 21	F 22

$$\frac{\partial L}{\partial X_{i}} = \sum_{k=1}^{M} \frac{\partial L}{\partial O_{k}} * \frac{\partial O_{k}}{\partial X_{i}}$$

 $\frac{\partial L}{\partial X} = \frac{\partial L}{\partial O} * F_{12} + \frac{\partial L}{\partial O} * F_{11}$

 $\frac{\partial L}{\partial X} = \frac{\partial L}{\partial Q_{11}} * F_{21} + \frac{\partial L}{\partial Q_{22}} * F_{11}$

$$\frac{\partial L}{\partial X_{11}} = \frac{\partial L}{\partial O_{11}} * F_{11}$$

$$X_{11} X_{12} X_{11}$$

$$X_{21} X_{22} X_{2}$$

$$X_{31} X_{32} X_{3}$$

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

Local Gradients: -

O ₁₁	O ₁₂
O ₂₁	O ₂₂

Differentiating with respect to X11, X2, X21 and X22

$$\frac{\partial O_{11}}{\partial X_{11}} = F_{11} \quad \frac{\partial O_{11}}{\partial X_{12}} = F_{12} \quad \frac{\partial O_{11}}{\partial X_{21}} = F_{21} \quad \frac{\partial O_{11}}{\partial X_{22}} = F_{22}$$

Similarly, we can find local gradients for O_{12} , O_{21} and O_{22}

$$\frac{\partial L}{\partial X_{23}} = \frac{\partial L}{\partial O_{12}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{12}$$

$$\frac{\partial L}{\partial X_{31}} = \frac{\partial L}{\partial O_{21}} * F_{21}$$

$$\frac{\partial L}{\partial X_{32}} = \frac{\partial L}{\partial O_{21}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{21}$$

$$\frac{\partial L}{\partial X_{33}} = \frac{\partial L}{\partial O_{22}} * F_{22}$$

$$\frac{\partial L}{\partial X_{aa}} =$$

$$\frac{\partial L}{\partial X_{22}} = \frac{\partial L}{\partial O_{11}} * F_{22} + \frac{\partial L}{\partial O_{12}} * F_{21} + \frac{\partial L}{\partial O_{21}} * F_{12} + \frac{\partial L}{\partial O_{22}} * F_{11}$$

 $\frac{\partial L}{\partial X} = \frac{\partial L}{\partial 0} * F_{12}$

$$F_{22} + \frac{\partial}{\partial x}$$

$$\frac{\partial L}{\partial O_{12}} + \frac{\partial L}{\partial O_{12}}$$

$$*F_{21} + \frac{6}{6}$$

$$F_{21} + \frac{\partial L}{\partial O_{21}} * F_{1}$$

$$F_{12} + \frac{\partial L}{\partial O_{22}}$$

$$\frac{\partial L}{\partial O_{22}} * F_{22}$$

Finding ∂L/∂X:

$$\frac{\partial L}{\partial X_{11}} = \frac{\partial L}{\partial O_{11}} * F_1$$

$$\frac{\partial L}{\partial X_{12}} = \frac{\partial L}{\partial O_{11}} * F_{12} + \frac{\partial L}{\partial O_{12}} * F_{11}$$

$$\frac{\partial L}{\partial X_{13}} = \frac{\partial L}{\partial O_{12}} * F_{12}$$

$$\frac{\partial L}{\partial X_{21}} = \frac{\partial L}{\partial O_{11}} * F_{21} + \frac{\partial L}{\partial O_{21}} * F_{11}$$

$\frac{\partial L}{\partial x} =$	$\frac{\partial L}{\partial x} * F_{22} +$	$\frac{\partial L}{\partial x} * F_{21} +$	$\frac{\partial L}{\partial O_{21}} * F_{12} +$	$\frac{\partial L}{\partial x} * F_{11}$
∂X_{22}	∂O_{11}	∂O_{12}	∂O_{21}	∂O_{22}

$$\frac{\partial L}{\partial X_{23}} = \frac{\partial L}{\partial O_{12}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{12}$$

$$\frac{\partial L}{\partial X_{31}} = \frac{\partial L}{\partial O_{21}} * F_{21}$$

$$\frac{\partial L}{\partial X_{32}} = \frac{\partial L}{\partial O_{21}} * F_{22} + \frac{\partial L}{\partial O_{22}} * F_{21}$$

$$\frac{\partial L}{\partial X_{33}} = \frac{\partial L}{\partial O_{22}} * F_{22}$$

F 11	F ₁₂
F 21	F 22

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

O ₁₁	O ₁₂
O ₂₁	O ₂₂

F 22	F 21	,
F 12	F 11	V
**	2.1	

F 22	F ₂₁
F 12	F 11

Filter F

$\frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
$\frac{\partial L}{\partial O_{21}}$	<u>∂L</u> ∂0 ₂₂

Loss Gradient $\frac{\partial L}{\partial \theta}$

$$\frac{\partial L}{\partial X_{11}} = F_{11} * \frac{\partial L}{\partial O_{11}}$$

F ₂₂	F ₂₁	
F ₁₂	$F_{11} \frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
	$\frac{\partial L}{\partial O_{21}}$	$\frac{\partial L}{\partial O_{22}}$

Finding ∂L/∂X:

F 22	F ₂₁
F 12	F 11

Filter F

$\frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
$\frac{\partial L}{\partial O_{21}}$	$\frac{\partial L}{\partial O_{22}}$

Loss Gradient $\frac{\partial L}{\partial \mathbf{0}}$

$$\frac{\partial L}{\partial X_{11}} = F_{11} * \frac{\partial L}{\partial O_{11}}$$

F ₂₂	F ₂₁	
F ₁₂	$F_{11} \frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$
	$\frac{\partial L}{\partial O_{21}}$	$\frac{\partial L}{\partial O_{22}}$

$\frac{\partial L}{\partial X_{11}}$	<u>∂L</u>	<u>∂L</u>				1		\ 	\
∂L	∂L	∂L	_ Full	F 22	F 21		$\frac{\partial L}{\partial O_{11}}$	$\frac{\partial L}{\partial O_{12}}$	
∂X_{21}	$\overline{\partial X}_{22}$	∂X_{23}	Convolution	F 12	F 11	,	<u>∂L</u>	<u>∂L</u>	
$\frac{\partial L}{\partial X_{31}}$	$\frac{\partial L}{\partial X_{32}}$	$\frac{\partial L}{\partial X_{33}}$	\		er F		∂ 0 ₂₁	∂0 ₂₂	_ /
	$\frac{\partial L}{\partial X}$			•			Loss Grad	lient $\frac{\partial L}{\partial 0}$	9

@pavisj

Summary: Backpropagation in CNN

Backpropagation in a Convolutional Layer of a CNN

Finding the gradients:

$$\frac{\partial L}{\partial F}$$
 = Convolution (Input X, Loss gradient $\frac{\partial L}{\partial O}$)

$$\frac{\partial L}{\partial X} = \text{Full} \left(\frac{180^{\circ} \text{ rotated}}{\text{Filter F}}, \frac{\text{Loss}}{\text{Gradient }} \frac{\partial L}{\partial 0} \right)$$

References

https://www.pyimagesearch.com/2014/06/09/get-deep-learning-bandwagon-get-perspective/

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Chapter 8 Deep Learning, Goodfellow et. al.