Universidade Federal de Ouro Preto Inteligência Artificial Exame especial

Prof.: Rodrigo Silva

Nome:

1. (1pt) Selecione a opção correta para cada célula da tabela. h(n) é o valor da função heurística do nó n. c(S,n) é o custo do caminho do nó/estado inicial S até o nó n.

Estratégia	Seleção da fronteira	Caminho Encontrado	Custo em Espaço
Busca em Largura			
Busca em Profundidade			
Guloso			
Menor Caminho Primeiro			
A^*			
Branch and Bound			

a) Menor h(n)

f) Último caminho adicionado

b) Menor c(S, n)

g)Menor número de arcos

c) Menor h(n) + c(S, n)

h)Indefinido

d) Primeiro caminho adicionado

i)Menor custo

e) Linear

j)Exponencial

- 2. (0.5 pt) Apresente o pseudocódigo de um algoritmo genérico de busca local.
- 3. Considere a seguinte base de conhecimento (KB):

```
bronchitis \gets influenza.
```

 $bronchitis \leftarrow smokes.$

 $coughing \leftarrow bronchitis.$

 $wheezing \leftarrow bronchitis.$

 $fever \leftarrow influenza.$

 $fever \leftarrow infection.$

 $sore_throat \leftarrow influenza.$

 $false \leftarrow smokes \land nonsmoker.$

assumables: smokes, nonsmoker, in fluenza, in fection.

- (a) (0.5 pt) Apresente as derivações geradas por abdução para obter todas as explicações para as observações $wheezing \land fever$,
- (b) (0.5pt) Das explicações obtidas acima, quais são explicações mínimas. Por quê?

4. Considere a base de dados abaixo:

$$\begin{array}{c|ccc} x_1 & x_2 & y \\ \hline 2 & 5 & 9 \\ 3 & 8 & 15 \\ 1 & 3 & 4 \\ \end{array}$$

- (a) (0.5pt) Escreva a expressão genérica de um modelo linear para as variáveis deste problema.
- (b) (0.5pt) Escreva a expressão da soma do erro quadrado médio em função do pesos do modelo para a base de dados apresentado.
- (c) (0.5pt) Dado o vetor de pesos $\mathbf{w} = [1, 2, 3]^t$. Qual a previsão do modelo para a entrada $\mathbf{x} = [1, 1]^t$? Qual o erro absoluto total deste modelo para a base de dados apresentada.

5. Considere a seguinte base de dados:

Example	Author	Thread	Length	$Where_read$	$User_action$
e_1	known	new	long	home	skips
e_2	unknown	new	short	work	reads
e_3	unknown	followup	long	work	skips
e_4	known	followup	long	home	skips
e_5	known	new	short	home	reads
e_6	known	followup	long	work	skips
e_7	unknown	followup	short	work	skips
e_8	unknown	new	short	work	reads
e_9	known	followup	long	home	skips
e_{10}	known	new	long	work	skips
e_{11}	unknown	followup	short	home	skips
e_{12}	known	new	long	work	skips
e_{13}	known	followup	short	home	reads
e_{14}	known	new	short	work	reads
e_{15}	known	new	short	home	reads
e_{16}	known	followup	short	work	reads
e_{17}	known	new	short	home	reads
e_{18}	unknown	new	short	work	reads
e_{19}	unknown	new	long	work	?
e_{20}	unknown	followup	short	home	?

- (a) (1 pt) Calcule o grau de impureza (I_G) médio do nó [Length = Long]. (Obs: $I_G(p) = 1 \sum_{i=1}^J p_i^2)$
- (b) (1 pt) Calcule o grau de impureza (I_G) médio do nó [Author = Unknown]. (Obs: $I_G(p) = 1 \sum_{i=1}^J p_i^2$)

- (c) (0.5) Qual dos dois nós é o melhor candidato para ser a raiz de uma árvore de decisão? Explique.
- 6. Sobre redes neurais, responda:
 - (a) (0.5) Como uma rede neural aprende?
 - (b) (0.5) Explique o algoritmo de descida do gradiente (Gradient Descent).
 - (c) (0.5) Para o que serve o algoritmo de back-propagation?
- 7. (1 pt) Derive a expressão fechada dos pesos de um modelo linear utilizando a técnica dos mínimos quadrados.
- 8. (1 pt) Derive as expressões do gradiente do erro quadrado, em relação aos parâmetros de uma rede neural de 3 camadas com um neurônio por camada.