Domande Rappresentazioni Interno - 2015/16

Colloqui

Non vengono scritte le domande sugli esercizi del compitino, che ci sono state

- Rappresentazioni irriducibili di SU (2)
- $\bullet\,$ Quali rappresentazioni irriducibili di S^1 si possono estendere a rappresentazione irriducibili di SU (2) ?
- ullet è vero che tutte le rappresentazioni irriducibili di un sottogruppo H di G si possono estendere a rappresentazioni di G?
- Se in $\rho \otimes \sigma$ (con ρ e σ irriducibili) ho una sottorappresentazione di grado 1, cosa posso dire?
- Omomorfismo tra SU (2) e SO (3) (mostrare che è surgettivo e che ha Ker $=\pm id$)
- Dimostra Schur 2 per rappresentazioni complesse e dai un controesempio a Schur 2 sui reali.
- Quali sono le rappresentazioni reali irriducibili di S^1 ?
- Quali delle rappresentazioni di U (2) troviamo con la stessa costruzione con cui abbiamo trovato quelle di SU (2)? (Facendole agire sulle potenze simmetriche di \mathbb{C}^2) [Non sono tutte, ma quali tra queste si trovano]
- (**Gruppo di Eisenstein**) Matrici invertibili 2×2 a coefficienti in \mathbb{F}_p triangolari superiori tali che $a_{22} = 1$ (ovvero le affinità di \mathbb{F}_p)

 Trovarne le classi di coniugio (e cardinalità) e le rappresentazioni irriducibili su \mathbb{C}
- G finito con ρ irriducibile e fedele. Allora Z(G) è ciclico
- Sia V_m una rappresentazione irriducibile di SU (2). Come si scompone in irriducibili V_m^* ?
- Cosa può accadere ad una rappresentazione complessa irriducibile dopo che la realifico?
- Quali delle V_m (sempre per SU (2)) sono reali? Ovvero trova una forma bilineare su queste e dì se è simmetrica o alternante. (Viene diviso in base ai casi m pari / dispari)
- Prendi un'azione di G su X e la corrispondente rappresentazione per permutazione V. Dimostra che se l'azione di G su $X \times X$ è doppiamente transitiva allora la rappresentazione ortogonale al sottospazio generato da $e_1 + e_2 + \ldots + e_n$ è irriducibile
- Dando per buono che le uniche algebre di divisione finito dimensionali su \mathbb{R} sono $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternioni) dimostra che se ρ è quaternionica (ovvero ammette una forma quadratica alternante) allora gli endomorfismi di rappresentazioni della sua realificata sono isomorfi a \mathbb{H}
- Discussione libera su realificazione, complessificazione
- Quali rappresentazioni irriducibili di SU (2) sono complessificate di rappresentazione reali irriducibili?
- È sempre vero che dim Hom $(\sigma, \rho) = \dim \operatorname{Hom}(\rho, \sigma)$? (Si intende per ogni gruppo qualunque, per ogni due rappresentazioni) (Hint: No, bisogna considerare delle rappresentazioni di \mathbb{Z}^2)
- Le matrici diagonali dentro U (2) sono un sottogruppo isomorfo a $S^1 \times S^1$. Quali caratteri di rappresentazioni di $S^1 \times S^1$ si possono ottenere restringendo una rappresentazione di U (2)? (In particolare si possono ottenere $\lambda + \mu$, $\lambda \mu$, $\lambda^2 + \mu^2$ dove λ , μ sono i due autovalori che compaiono nella diagonalizzata di una matrice di U (2)
- Parla dell'ortogonalità dei caratteri.

- Integrazione invariante su SU (2) con formula esplicita in generale ed in particolare su S^1
- Dimostrare che le rappresentazioni di U (2) ottenute come nel secondo esercizio del compitino sono tutte le irriducibili
- (In realtà poi ha cambiato domanda) Perché $\frac{1}{2}$ non può comparire nella tavola dei caratteri di gruppi finiti?
- Come sono le potenze esterne delle irriducibili di SU (2)?
- Considera la rappresentazione di SO (2) (oppure SU (2), chi ha avuto la domanda non se lo ricorda) definita da: $A \mapsto \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$ a valori nelle matrici 3×3 . Si chiede di scomporla in irriducibili
- Tra tutte le rappresentazioni di A_n ne esiste una di grado minimo (tolta la banale). Sia deg (n) tale numero naturale. Mostrare allora che al variare di $n \in \mathbb{N}$, deg (n) non è limitata.
- Se ho $\phi: G \to G'$ morfismo di gruppi, quando posso sollevarlo ad un morfismo da $H \rtimes G \to H \rtimes G'$? Usando il fatto che il gruppo dell'esercizio numero tre era $\mathbb{Z}_2 \rtimes (\mathbb{Z}_3 \times \mathbb{Z}_3)$ e che S_3 è $\mathbb{Z}_2 \rtimes \mathbb{Z}_3$, cerca di sollevare le rappresentazioni di S_3 e vedi quante distinte ne vengolo (vengono tutte e quattro le non banali)
- Come classificheresti le rappresentazioni di SU (3)?
- Decomporre le potenze alternanti delle rappresentazioni irriducibili di SU (2)
- Tavola dei caratteri di A_5