Zongqi Shen

Fudan University, Shanghai

Email: zqshen18@fudan.edu.cn | Homepage: physshen.com | Phone: (+86) 17721298365

Education Background

Department of Physics, Fudan University

Sep.2018-Present

Bachelor of Science in Physics

- Overall GPA: 3.75/4, Rank: 5% in the department of physics
- On track for honor degree in the Major
- Core and Graduate Courses (with grades): Advanced QM(A), Solid State Physics(A), Statistical Physics(A), Methods of Mathematical Physics(A), Scattering Physics(A), Superconductivity and Low Temperature Physics(A)
- Standard Tests: TOEFL 104 (Reading 28+ Listening 26 + Speaking 23 + Writing 27)

Research Interests

Emergent phenomena in strongly correlated electron systems including topology, superconductivity and magnetism

- Design, craft and control materials on the atomic level via tear-and-stack technique or epitaxial growth
- Correlated electrons in moiré graphene and transition metal dichalcogenides (TMDC) materials
- High Tc superconductors and complex oxides
- Theory: First-principle calculation of electronic structures

Publications

- 1. Jiahui Qian, **Zongqi Shen**, Xinyuan Wei, Wei Li, "**Z**₂ **nontrivial topology of rare-earth binary oxide superconductor LaO**", *arXiv*:2108.10063, accepted by *Physical Review B* as *Letter*
- 2. Lijie Wang, Huanyi Xue, Guanqun Zhang, **Zongqi Shen**, Gang Mu, Shiwei Wu, Zhenghua An, Yan Chen and Wei Li, "Two-dimensional superconductivity at heterostructure of Mott insulating titanium sesquioxide and polar semiconductor", arXiv: 2106.06948, under review in Nature Materials
- 3. Huanyi Xue*, Lijie Wang*, **Zongqi Shen***, Guanqun Zhang, Gang Mu, Wei Peng, Xinyuan Wei, Shiwei Wu, Zhenghua An, Yan Chen and Wei Li, "**Time-reversal and rotational symmetries breaking in a spinel superconductor**", *in preparation*

Research Experience

Scanning tunneling microscopy(STM) study of moiré graphene and TMDC materials

Aug. 2021-Present
Supervisor: Prof. Michael F. Crommie, UC Berkeley

- Mastered STM/S to image the electronic structure of materials and took charge of an Omicron LT-STM machine.
- Constructed a continuum model to simulate the LDOS of twisted bilayer graphene aligned with hBN.
- Characterized twisted bilayer graphene and transition metal dichalcogenides (TMDC) devices (TaSe₂, NbSe₂, TaTe₂, etc.) grown by MBE. Studied the evolution of electronic structures with back gate.
- Imaged the Mott insulating behavior of monolayer 1T-TaSe₂ with 'flower pattern' orbital texture.
- Proved the existence of localized spins by observing Kondo resonance peak in the STS spectra of 1T/1H-TaSe₂.
- Discovered exotic $\sqrt{19} \times \sqrt{19}$ charge density wave in monolayer 1T-TaTe₂ in collaboration with LBNL group.
- Currently working on the nontrivial topology in twisted mono-bilayer graphene and potential Tc enhancement in NbSe₂/SrTiO₃.

Ab-initio study of rare-earth oxide superconductors with nontrivial topology

May. 2021-Aug. 2021

Supervisor: Prof. Wei Li, Fudan University

- Learned and mastered first-principle calculation of electronic structures and phonon spectrum using VASP.
- Developed python codes to study the nontrivial topology of rare-earth oxide superconductor LaO and found non-zero Z₂ invariant together with topologically protected surface states.
- Analyzed the energy splitting of La orbitals in oxygen octahedron crystal fields with group theory and identified the origin of band inversion as the 5d→4f orbital transition.

Unconventional superconductivity in oxide heterostructures

Apr.2020-Aug.2021

Supervisor: Prof. Wei Li, Fudan University

- Grew and optimized single crystal oxide thin films Ti₂O₃/GaN layer-by-layer with pulsed-laser deposition.
- Helped to identify the Bose metallic state in Ti₂O₃/GaN with temperature-independent resistance in a wide range associated with vanishing Hall resistance.
- Analyzed the pairing symmetry in LiTi₂O₄ with group theory and helped to explain the coexistence of ferromagnetism and superconductivity.
- Fitted STS data of LiTi₂O₄ with the calculated LDOS spectrum of triplet-pairing superconductors using Green's function method.
- Proposed a topological origin of the two-fold symmetry in transverse resistance of LiTi₂O₄, providing a new explanation for similar results reported in *Nature* 547, 432–435 (2017).

Theoretical study of Majorana zero modes in topological superconductors

May.2019-Apr.2020

Supervisor: Prof. Wei Li, Fudan University

- Learned lattice Green's function method to study the transport properties of topological superconductors.
- Constructed a lattice model of metal-superconductor junctions and developed python codes to simulate Andreev reflection spectrum.
- Studied the finite-size effects of the zero-bias conductance peak in topological superconductors and found that only quasi-one-dimensional materials can exhibit quantized conductance at 2e²/h

CVD growth of 2D materials and device fabrication

Nov.2018-May.2019

Supervisor: Prof. Faxian Xiu, Fudan University

- Synthesized high quality Bi₂SeO₂ sample using chemical vapor deposition (CVD) method.
- Peeled off single-layered graphene for heterostructure fabrication.
- Helped to establish a platform for stacking layers of 2D materials controlled by LabView.

Honors & Awards

•	Excellent Student Award from Fudan University	Sept.2021
•	Selected for National Top Talent Undergraduate Training Program	May.2021
•	National Scholarship (1/115 in the Department of Physics)	Dec.2020
•	Xiyuan Scholar (UROP funding at Fudan)	May.2020
•	First Prize in Chinese College Physics Competition (ranked No.1 in First Prize winners)	Oct.2019
•	Excellent Student Award of Fudan University	Sept.2019

Skills

Laboratory:

- Material Growth: PLD and CVD growth of thin films
- Micro- and Nano-fabrication skills: Electron Beam Lithography, Wire Bonding
- Characterization skills: STM/STS, AFM, Cryogenic Transport Measurements, MPMS, X-Ray Diffraction, Raman Spectroscopy

Theory:

- Programming: Python, C, Mathematica
- Simulation: *ab-initio*(VASP), transport properties(Kwant), STS spectrum