

Data Structures & Algorithms
Design- SS ZG519
Lecture - 3

Dr. Padma Murali

Lecture 3 Topics

- Stack & Queue;
- Analysis of Algorithms -- space and time complexity

- Slides source: 2008 Pearson Education, Inc.
 Publishing as Pearson Addison-Wesley
- Lecture notes


```
sum = 0;
{
for (k=1; k<=n; k++)
    for (j=1; j<=k; j++)
        sum++;
}
What is the running time for this code?</pre>
```


Number of executions

k	1	2	3	 n
j	1	1,2	1,2,3	 1,2,. n
#	1	2	3	 n
runs				11

runs = 1 + 2 + 3 + 4 ... + n =
$$\sum_{j=1}^{n} j$$

$$\sum_{j=1}^{n} j = n(n+1)/2 = n^{2}$$

$$\sum_{j=1}^{n} T(n) = c1 + c2(n+1) + c3(n^{2} + 1) + c4(n^{2}) = Order of n^{2}$$

What is the running time for the following codes?

```
a) sum1 = 0;
for (k=1; k<=n; k*=2)
for (j=1; j<=n; j++)
sum1++;
```


Number of executions

k	1	2	4		n
j	1,2,n	1,2,n	1,2n		1,2,. n
# runs	n	n	n	•••	log n

N x log N

runs =
$$(1 + ..N) \log n = \sum_{j=1}^{\log n} n$$

$$\sum_{j=1}^{\log n} n = n \log n$$

$$j=1$$

T(n) = Order of n log n.

Number of executions

k	1	2	4		n
j	1	1,2	1,2,3,4		1,2,. n
# runs	1	2	4	•••	log n

$$= 1 + 2^{1} + 2^{2} + 2^{3} + 2^{4} + \dots + 2^{\log n}$$

$$\sum_{j=1}^{\log n} 2^j = 2n-1$$

$$T(n) = Order of n.$$

Growth Rate

The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of the input grows.

- Linear Growth T(n) = n
- Quadratic Growth $T(n) = n^2$
- Exponential Growth $T(n) = 2^n$
- Logarithmic Growth $T(n) = n \log n$

Types of Analysis

Not all inputs of a given size take the same time to run.

- Best case
- Worst case
- Average case

Types of Analysis

- The best case running time of an algorithm is the function defined by the minimum number of steps taken on any instance of size n.
- The worst case running time of an algorithm is the function defined by the maximum number of steps taken on any instance of size n.
- The average-case running time of an algorithm is the function defined by an average number of steps taken on any instance of size n.

Types of Analysis

Worst case (e.g. numbers reversely ordered)

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case (e.g., numbers already ordered)

Input is the one for which the algorithm runs the fastest

Average case (general case)

- Provides a prediction about the running time
- Assumes that the input is random

Asymptotic Notations

A way to describe behavior of functions in the limit

- How we indicate running times of algorithms
- Describe the running time of an algorithm as n grows to ∞

O notation: asymptotic "less than": f(n) "≤" g(n)

 Ω notation: asymptotic "greater than": $f(n) \stackrel{*}{=} g(n)$

 Θ notation: asymptotic "equality": f(n) "=" g(n)

Asymptotic Notations - Examples

For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or f(n) is O(g(n)). Determine which relationship is correct.

-
$$f(n) = log n^2$$
; $g(n) = log n + 5$

$$f(n) = \Theta(g(n))$$

-
$$f(n) = n$$
; $g(n) = log n^2$

$$f(n) = \Omega(q(n))$$

-
$$f(n) = log log n; g(n) = log n$$

$$f(n) = O(q(n))$$

-
$$f(n) = n$$
; $g(n) = log^2 n$

$$f(n) = \Omega(g(n))$$

Asymptotic notations

O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

Intuitively: O(g(n)) = the set of functions with a smaller or same order of growth as g(n)

g(n) is an *asymptotic upper bound* for f(n).

Examples


```
3n + 2 = O(n); 3n + 2 <= 4n for all n >= 2

3n + 3 = O(n); 3n + 3 <= 4n for all n >= 3

100n + 6 = O(n); 100n + 6 <= 101n for all n >= 6
```

Examples

$$3n + 2 = O(n)$$
; $3n + 2 <= 4n$ for all $n >= 2$
 $3n + 3 = O(n)$; $3n + 3 <= 4n$ for all $n >= 3$
 $100n + 6 = O(n)$; $100n + 6 <= 101n$ for all $n >= 6$

$$10 n^{2} + 4n + 2 = O(n^{2})$$

$$10 n^{2} + 4n + 2 < = 11 n^{2} \text{ for } n >= 5$$

Asymptotic notations (cont.)

Ω -notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

• Intuitively: $\Omega(g(n))$ = the set of functions with a larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

$$3n + 2 = ?$$
 $3n + 2 >= 3n \text{ for all } n >= 1$

$$3n + 3 = ?$$
 $3n + 3 >= 3n \text{ for all } n >= 1$

$$100n + 6 = ?$$
 $100n + 6 >= 100n \text{ for all } n >= 1$

Asymptotic notations (cont.)

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotically tight bound* for f(n).

Asymptotic Notations

A way to describe behavior of functions in the limit

- How we indicate running times of algorithms
- Describe the running time of an algorithm as n grows to ∞

O notation: asymptotic "less than": f(n) "≤" g(n)

 Ω notation: asymptotic "greater than": $f(n) \stackrel{*}{=} g(n)$

 Θ notation: asymptotic "equality": f(n) "=" g(n)

Analysis of algorithms

- Issues:
 - correctness
 - time efficiency
 - space efficiency
 - optimality

- Approaches:
 - theoretical analysis
 - empirical analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>

 <u>Basic operation</u>: the Operation that contributes most towards the running time of the algorithm

innovate achieve lead

Input size and basic operation examples

Problem	Input size measure	Basic operation		
Searching for key in a list of <i>n</i> items	Number of list's items, i.e. <i>n</i>	Key comparison		
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers		
Checking primality of a given integer n	n'size = number of digits (in binary representation)	Division		
Typical graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge		

Empirical analysis of time efficiency

Select a specific (typical) sample of inputs

 Use physical unit of time (e.g., milliseconds) or

Count actual number of basic operation's executions

Analyze the empirical data

Best-case, average-case, worst-case

For some algorithms efficiency depends on form of input:

- Worst case: $C_{worst}(n)$ maximum over inputs of size n
- Best case: $C_{best}(n)$ minimum over inputs of size n
- Average case: $C_{avg}(n)$ "average" over inputs of size n
 - Number of times the basic operation will be executed on typical input
 - NOT the average of worst and best case
 - Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

Exact formula

e.g.,
$$C(n) = n(n-1)/2$$

Formula indicating order of growth with specific multiplicative constant

e.g.,
$$C(n) \approx 0.5 n^2$$

 Formula indicating order of growth with unknown multiplicative constant

e.g.,
$$C(n) \approx cn^2$$

Order of growth

 Most important: Order of growth within a constant multiple as n→∞

Example:

- How much faster will algorithm run on computer that is twice as fast?
- How much longer does it take to solve problem of double input size?

Values of some important functions as $n \rightarrow \infty$

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
10	3.3	10^{1}	$3.3 \cdot 10^{1}$	10^{2}	10^{3}	10^{3}	$3.6 \cdot 10^6$
10^{2}	6.6	10^{2}	$6.6 \cdot 10^2$	10^{4}	10^{6}	$1.3 \cdot 10^{30}$	$9.3 \cdot 10^{157}$
10^{3}	10	10^{3}	$1.0 \cdot 10^4$	10^{6}	109		
10^{4}	13	10^{4}	$1.3 \cdot 10^5$	10^{8}	10^{12}		
10^{5}	17	10^{5}	$1.7 \cdot 10^6$	10^{10}	10^{15}		
10^{6}	20	10^{6}	$2.0 \cdot 10^7$	10^{12}	10^{18}		

Table 2.1 Values (some approximate) of several functions important for analysis of algorithms

Asymptotic order of growth

A way of comparing functions that ignores constant factors and small input sizes

- O(g(n)): class of functions f(n) that grow <u>no faster</u> than g(n)
- $\Theta(g(n))$: class of functions f(n) that grow <u>at same rate</u> as g(n)
- $\Omega(g(n))$: class of functions f(n) that grow at least as f(n) as f(n)

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

SS ZG519 Data Structures & Algorithms Design Aug. 23rd, 2014

Big-theta

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Stacks

• A stack is a restricted linear list in which all additions and deletions are made at one end, the top. (LIFO)

Operations on stacks

• **Stack** ----

stack (stackName)

Push ----

push (stackName, dataItem)

• Pop ----

pop (stackName, dataItem)

• Empty---

empty (stackName)

Operations on stacks

Stack ADT

Stack ADT

Definition A list of data items that can only be accessed at one end,

called the *top* of the stack.

Operations stack: Creates an empty stack.

push: Inserts an element at the top.

pop: Deletes the top element.

empty: Checks the status of the stack.

Stack implementation

• Stack ADTs can be implemented using either an array or a linked list.

Stacks: Singly Linked List implementation

Nodes (data, pointer) connected in a chain by links

 the head or the tail of the list could serve as the top of the stack

Stacks

- A stack is a container of objects that are inserted and removed according to the last-infirst-out (LIFO) principle.
- Objects can be inserted at any time, but only the last (the most-recently inserted) object can be removed.
- Inserting an item is known as "pushing" onto the stack. "Popping" off the stack is synonymous with removing an item.

innovate achieve lead

Stacks

A coin dispenser as an analogy:

Stacks: An Array Implementation

- Create a stack using an array by specifying a maximum size N for our stack.
- The stack consists of an N-element array S and an integer variable t, the index of the top element in array S.

Array indices start at 0, so we initialize t to -1

Stacks: An Array Implementation

Pseudo code

```
Algorithm size()
return t+1
Algorithm isEmpty()
return (t<0)
Algorithm top()
if isEmpty() then
   return Error
return S[t]
```

```
Algorithm push (o)
if size() == N then
   return Error
t = t + 1
S[t]=0
Algorithm pop()
 if isEmpty() then
   return Error
 t = t - 1
return S[t+1]
```


SS ZG519 Data Structures & Algorithms Design Aug. 23rd, 2014

Stacks: An Array Implementation

The array implementation is simple and efficient (methods performed in O(1)).

Disadvantage

There is an upper bound, *N*, on the size of the stack.

The arbitrary value *N* may be too small for a given application OR a waste of memory.

Queues

• A queue is a linear list in which data can only be inserted at one end, called the *rear*, and deleted from the other end, called the *front*.(*FIFO*).

A queue of people

A computer queue

Operations on queues

- Queue
- Enqueue
- Dequeue
- Empty

queue (queueName)

enqueue (queueName, dataItem)

dequeue (queueName, dataItem)

empty (queueName)

Operations on queues

Queue ADT

Queue ADT

Definition A list of data items in which an item can be deleted from one

end, called the *front* of the queue and an item can be

inserted at the other end, called the rear of the queue.

Operations queue: Creates an empty queue.

enqueue: Inserts an element at the rear.

dequeue: Deletes an element from the front.

empty: Checks the status of the queue.

Queue implementation

 A queue ADT can be implemented using either an array or a linked list

Queues: Linked List Implementation

Dequeue - advance head reference

innovate achieve lead

Queues

- A queue differs from a stack in that its insertion and removal routines follows the first-in-first-out (FIFO) principle.
- Elements may be inserted at any time, but only the element which has been in the queue the longest may be removed.
- Elements are inserted at the rear (enqueued) and removed from the front (dequeued)

innovate achieve lead

Queues

- The queue supports three fundamental methods:
 - New():ADT Creates an empty queue
 - Enqueue(S:ADT, o:element):ADT Inserts object o at the rear of the queue
 - Dequeue(S:ADT):ADT Removes the object from the front of the queue; an error occurs if the queue is empty
 - Front(S:ADT):element Returns, but does not remove,
 the front element; an error occurs if the queue is empty

Queues: An Array Implementation

- Create a queue using an array in a circular fashion
- A maximum size N is specified.
- The queue consists of an N-element array Q and two integer variables:
 - -f, index of the front element (head for dequeue)
 - r, index of the element after the rear one (tail for enqueue)
 - Initially, f=r=0 and the queue is empty if f=r

Queues

Disadvantage

Repeatedly enqueue and dequeue a single element N times.

Finally, f=r=N.

No more elements can be added to the queue,
 though there is space in the queue.

Solution

Let f and r wraparound the end of queue.

Queues: An Array Implementation

"wrapped around" configuration

 Each time r or f is incremented, compute this increment as (r+1)modN or (f+1)modN

Queues: An Array Implementation

Pseudo code

```
Algorithm size()
return (N-f+r) mod N

Algorithm isEmpty()
return (f=r)

Algorithm front()
if isEmpty() then
return Error
return Q[f]
```

```
Algorithm dequeue()
if isEmpty() then
   return Error
Q[f]=null
f = (f+1) \mod N
Algorithm enqueue (o)
if size = N - 1 then
   return Error
O[r] = 0
r = (r + 1) \mod N
```

Establishing order of growth using the definition

Definition: f(n) is in O(g(n)) if order of growth of $f(n) \le$ order of growth of g(n) (within constant multiple), i.e., there exist positive constant c and non-negative integer n_0 such that

$$f(n) \le c g(n)$$
 for every $n \ge n_0$

Examples:

• $10n \text{ is } O(n^2)$

• 5n+20 is O(n)

Some properties of asymptotic order of growth

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n))$ iff $g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

Note similarity with $a \le b$

• If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$

Establishing order of growth using limits

$$\lim T(n)/g(n) =$$

order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of $\mathcal{T}(n) =$ order of growth of g(n)

order of growth of T(n) > order of growth of g(n)

Examples:

- 10n
- vs.
- n²

- n(n+1)/2
- VS.

n²

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example: log n vs. n

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

Example: 2" vs. n!