

"十三五"江苏省高等学校重点教材工业和信息化部"十四五"规划教材

电力电子技术 · Power Electronics

第10章 驱动电路

■ 驱动电路作用:

• 将控制电路输出的PWM脉冲放大到足以驱动开关管—开关功率放大作用

■ 优良的驱动电路:

- 改善开关管的开关特性
- 减小开关损耗
- 提高整机效率和器件可靠性(即尽量快开、快关)

闭环电源系统图

10.1 MOSFET驱动

10.2 共地驱动

10.3 浮地驱动

10.4 隔离驱动

10.5 IGBT驱动

MOSFET驱动

- 驱动电压 \bar{n}_{dri} :幅值足够高,低于栅源极击穿电压,一般选择12V
- 栅极电阻 R_g : 用来限制栅极初始充电电流和放电电流,起到阻尼 u_{gs} 振荡(寄生参数导致)的作用; R_g 阻值要求较小,以达到快速开通和关断,一般取几欧姆到几十欧姆
- $\frac{min W 并接电阻}{R_p}$: MOSFET栅极不允许开路或悬浮,避免因静电感应造成误导通,其大小一般选为10k
- 棚源极并接稳压管:限制ugs最高电压,击穿电压选择稍低于开关管允许的栅极最大电压

MOSFET驱动电路图

MOSFET驱动

- lacksquare 驱动为高电平时,通过 $R_{
 m g}$ 给 $C_{
 m iss}$ 充电, $u_{
 m gs}$ 从零开始呈指数上升到驱动电压,驱动初始电流为 $U_{
 m dri}/R_{
 m g}$,并呈指数下降到零
- 驱动为低电平时, C_{iss} 通过 R_g 放电, u_{gs} 从驱动电压呈指数下降到零,驱动电流从 U_{dri}/R_g 呈指数下降到零
- 驱动电压源仅在开通和关断瞬间提供一个充放电电流,稳态时为零,故

東南大學電氣工程學院

南京 四牌楼2号 http://ee.seu.edu.cn

- 10.1 MOSFET驱动
- 10.2 共地驱动
- 10.3 浮地驱动
- 10.4 隔离驱动
- 10.5 IGBT驱动

基本共地驱动电路

- 当控制电路与MOSFET的源极共地时,驱动电路常采用互补式驱动电路
- NPN 型和PNP 型两晶体管以图腾柱连接(射极跟随)
- 驱动信号高电平时, Q_{T1} 导通, Q_{T2} 截止, U_{CC} 通过 R_{g} 给 C_{iss} 充电;
- 驱动信号低电平时, Q_{T2} 导通, Q_{T1} 截止, C_{iss} 经由 R_{g} 放电
- U_{pulse} 幅值不能高于 U_{CC} ,一般设计与 U_{CC} 相等

基本的共地驱动电路

(a) 驱动信号 U_{pulse} 为高电平($U_{\text{pul_m}}$) (b) 驱动信号 U_{pulse} 为低电平(0)

共地驱动电路各工作模态的等效电路

加速关断驱动电路

- 为加速关断,可在 R_g 上并联一个电阻 R_{g_off} 和二极管 D_{off} 组成的支路
- C_{iss} 放电回路的电阻为 R_g 和 R_{g_off} 的并联,有利于提高放电速度,当将 R_{g_off} 短路,放电更快
- \blacksquare 进一步加快关断,加入二极管 D_{on} 和PNP型晶体管 Q_{off}
- $lacksymbol{\blacksquare}$ 驱动高电平时, Q_{Tl} 导通, U_{CC} 通过 R_{g} 和 D_{on} 给 C_{iss} 充电
- 驱动低电平时, Q_{T2} 导通, Q_{off} 导通, C_{iss} 电荷直接通过 Q_{off} 释放到零,放电

速度更快

加速关断的图腾柱驱动电路

驱动管均为NPN型晶体管

图腾柱

 u_{pulse}

 $U_{
m CC}$ ۹

 Q_{T1}

其他共地驱动电路

驱动管均为N型MOSFET

上下驱动管分别为N型和P型MOSFET

 $u_{\rm dri}$

 $R_{\rm g}$

上下驱动管分别为P型和N型MOSFET

- 10.1 MOSFET驱动
- 10.2 共地驱动
- 10.3 浮地驱动
- 10.4 隔离驱动
- 10.5 IGBT驱动

一、了解浮地隔离的概念

- 控制参考地与驱动信号参考地(e极)不同—浮地驱动;
- 控制参考地与驱动信号参考地(e极)同地—共地驱动;

- 驱动信号与开关管源极不共地
- 电平移位电路用于将驱动信号进行电平移位
- Q_{T1} 和 Q_{T2} 构成图腾柱
- C_B为图腾柱的供电电容
- D_B 为 C_B 提供充电通路
- U_{CC}为控制电路的供电电压

浮地驱动电路

当驱动信号U_{pulse}高电平时:

- Q_{T1} 和 Q_{T2} 的基极电压为高电平, Q_{T1} 导通
- 电容 C_B 通过 R_g 给开关管S输入电容充电
- 开关管S导通

单管浮地驱动电路

当驱动信号U_{pulse}低电平时:

- Q_{T1} 和 Q_{T2} 基极电压低电平, Q_{T2} 导通
- 开关管S的输入电容经由Rg放电
- 当 u_{ds} 小于门槛电压 U_{TH} , S 截止, D_{FW} 导通
- \blacksquare S 源极电压为零, U_{CC} 通过二极管 D_B 给电容 C_B 充电

 U_{pulse} 为低电平时浮地驱动等效电路

東南大學電氣工程學院

CB被充电时浮地驱动等效电路

单管浮地驱动电路

- 电容 C_B 下端电位在 U_{in} 和0之间跳变
- \blacksquare 当开关管S导通、 D_{FW} 截止时,电容 C_{B} 下端电位将从0上举到 U_{in}
- 二极管 D_B 和电容 C_B 构成自举电路,为此称 D_B 为自举二极管, C_B 为自举电容
- \blacksquare 二极管 D_{B} 承受的反向电压为 U_{in} ,工作在开关频率,需要选用快恢复二极管

Upulse为高电平时浮地驱动等效电路

東南大學電氣工程學院

CR被充电时浮地驱动等效电路

桥臂浮地驱动电路

- 桥式电路:下管为共地驱动,上管需要浮地驱动
- 上管采用浮地驱动: Q_{T1} 和 Q_{T2} 构成图腾柱, D_{B} 为自举二极管, C_{B} 为自举电容, U_{CC} 为驱动电压
- 下管采用共地驱动: Q_{T3} 和 Q_{T4} 构成图腾柱
- 控制信号通过电平移位电路,得到与上管源极和 *U*_{CC}共地的驱动信号
- IR公司IR2110驱动芯片只需外接一只自举二极管 和自举电容即可,可直接实现桥臂浮地驱动

桥臂驱动电路图

- 10.1 MOSFET驱动
- 10.2 共地驱动
- 10.3 浮地驱动
- 10.4 隔离驱动
- 10.5 IGBT驱动

隔离驱动电路

- 在隔离型变换器中,控制电路有时与输出电压共地,其驱动需要电气隔离
- 电气隔离可采用光耦和变压器来实现
- 由于光耦存在一定的延时,适用于开关频率较低的场合
- 变压器的延时几乎可以忽略,适用于开关频率较高的场合

适用于单管的隔离驱动电路

- Q_{T1} 和 Q_{T2} 构成图腾柱, T_{r} 是隔离变压器
- R_c用来阻尼电容与变压器漏感和寄生电感引起的振荡;
- C_1 是隔直电容, C_2 是驱动电压幅值恢复电容
- *D*₁是驱动电压幅值恢复二极管
- R_p用来避免断电后开关管因静电感应导致栅极过压击穿

适用于单管的隔离型驱动电路图

适用于单管的隔离驱动电路

- 驱动电压所含直流分量,加在隔直电容 C_1 上
- 电容上电压即为驱动电压直流分量U_{cl}=U_{cc}T_{on}/T_s
- lacksquare 变压器原边电压是一个交流电压,正向幅值为 $U_{\rm cc}$ - $U_{\rm c1}$,负向幅值为 $U_{\rm c1}$

适用于单管的隔离型驱动电路图

主要波形

适用于单管的隔离驱动电路

- lacksquare 变压器原边电压为交流电压,正向幅值为 U_{cc} - U_{cl} ,负向幅值为 U_{cl}
- 驱动低电平时, Q_{T2} 导通, u_{gs} 为0, $U_{\text{C2}} = U_{\text{c1}}$
- 驱动高电平时, $Q_{\rm T1}$ 导通, $u_{\rm gs}$ 为 $U_{\rm cc}$ - $U_{\rm c1}$ + $U_{\rm C2}$
- 稳态时 U_{C2} 等于 U_{C1} ,所以 u_{gs} 高压平即为 U_{cc}

主要波形

适用于桥臂的隔离驱动电路

- $U_{\text{pulse}1}$ 高时, $u_{\text{dri}1}$ 高; $U_{\text{pulse}2}$ 高时, $u_{\text{dri}2}$ 高
- $U_{\mathrm{Tp}} = u_{\mathrm{dri1}} u_{\mathrm{dri2}}$,幅值为Ucc的交流方波电压
- 副边两驱动相位相反,幅值为Ucc的交流方波电压,避免直通
- 开关管驱动信号脉宽相等且相差半个开关周期

适用于桥臂的隔离型驱动电路图

東南大學電氣工程學院

主要波形

南京 四牌楼2号 http://ee.seu.edu.cn

- 10.1 MOSFET驱动
- 10.2 共地驱动
- 10.3 浮地驱动
- 10.4 隔离驱动
- 10.5 IGBT驱动

IGBT驱动电路

- IGBT为MOSFET驱动双极性晶体管
- IGBT驱动特性与MOSFET类似
- 供电电压为正负电压, $U_{\text{CC}}=15\text{V}$, $U_{\text{EE}}=-10\text{V}$, IGBT 关断时,负电压驱动,以防止误导通
- 驱动信号采用光耦隔离后,存在反逻辑

IGBT驱动电路

■ IGBT驱动特殊要求

- $I_c < I_{CM}$ (产生擎住效应的临界电流) or 关断时避免 du_{ce}/dt 过大,进入晶闸管状态而形成擎住效应
- 实现:检测 u_{ce} 防止 i_{c} 过大导致 u_{ce} 过高,通过控制 u_{ge} ,控制 u_{ce} 从而保护IGBT
- 驱动图腾柱的供电采用正负电压供电,Ucc=15V。是, $U_{EE}=-10V$,加速IGBT关断和防止误导通 U_{pulse}

基本的IGBT驱动电路

IGBT驱动电路

- 过流保护原理: IGBT导通时, D_1 也导通, 如果A点电位 (i_c 过高, u_{ce} 增加) 超过上限, 比较器输出高电平, 与驱动信号相与后, 产生过流保护信号, 关闭驱动
- D_1 在IGBT关断时承受的电压与IGBT相当,故其额定电压应该与IGBT一致,且应

选用快恢复二极管 U_{CC} U_{CC}

基本的IGBT驱动电路

 $U_{\mathrm{EE}} \downarrow C_{\mathrm{EE}}$

