Note Ti	G-S orthonormalization; Adjoints 100 27-01-2022
	Recall: If $\{x_1,, x_n\}$ is an orthonormal basis of V, then for any $v \in V$, $v = \sum \langle v, x_i \rangle x_i$.
	for any vev, v= 2 \ 17.17.20
	Birstly, $V = \sum_{n} \alpha_i x_i$, Since $\{x_1,, x_n\}$ is a basis.
	Kecall from last lecture:
	$if w = V - 2 \langle V_i x_i \rangle x_i,$
	then $\langle i\nu, \pi_i \rangle = 0$ $\forall i$, $\rightarrow : \{\pi_1, \dots, \pi_n\}$ is $: w = 0$ orthonormal $: v = \sum \langle v, \pi_i \rangle \pi_i$.
	: W=0 prthonormal
	component of v in direction xi
	Thus, we have written v as a sum of its components in the
	n orthonormal directions.
	Gram-Schmidt orthonormalization:
Theore	m: Let {x1,, xn3 be a set of hin indep vectors in an
	inner product space V. Then there exists a sequence of
	orthonormal vectors {y1,, yn} such that for every k-
	span { 21,, 26 } = span { y1,, yk }.
•	This means: (i) yi Ly; whenever i ≠ j, 1 ≤ i, j ≤ k.
	(ii) yill=1 ti.
	$(iii)\langle x_1,,x_k\rangle = \langle y_1,,y_k\rangle \forall 1 \leq k \leq n,$
	means: (21)
	means: $\langle \mathcal{X}_1 \rangle = \langle \mathcal{Y}_1 \rangle$ $\langle \mathcal{X}_1, \mathcal{X}_2 \rangle = \langle \mathcal{Y}_1, \mathcal{Y}_2 \rangle$ $\langle \mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_k \rangle = \langle \mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_k \rangle$
	$\{x_1, x_2, \dots, x_k\} = \langle y_1, y_2, \dots, y_k \rangle$
	$\langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle$
Pond	
11.20 B	By induction on n - $n=1$: Given $\{x_1\}$, define $y_1 = \frac{x_1}{\ x_1\ }$, so that $\ y_1\ = 1$
	lla ₁

	= <7.>
	Induction hypothesis: for k, J {y1,, yk} s.t.
	the regd conditions are satisfied
	Induction hypothesis: for k, J {y1,, yk} s.t. the regd conditions are salisfied. To prove the result for k+1:
W.	Hare: {y,, yk} s.t. y; ⊥y; ∀ 1≤i,j≤k,
	ilyill=1 &
qui de	$\langle x_1, \ldots, x_k \rangle = \langle y_1, \ldots, y_k \rangle$
gran I	Define $y_{k+1} = \chi_{k+1} - \langle \chi_{k+1}, y_1 \rangle y_1 + \langle \chi_{k+1}, y_2 \rangle y_2 + \cdots + \gamma_{k+1}$
પુર	~ ~ ~ fk) fk
W. Jan	8 444 (-3 114 11-1)
gr.	8' & yk+1 = \frac{fk+1}{ y'_{k+1} } \((=) \) yk+1 =1 \).
	xx2.
	Condition (i) is satisfied because
	JRHI E Span & YI,, YK, XKHI }
	= Span {21,, 2k, 2k, 1}.
	Mr.
42.	f. < y,, ykn > = < 21,, xk+1>
	- in py = < = 1, y) y 1.
$\langle x_2, y_1 \rangle$	
y2 = 22	- Py16 Span {x2, y,3 = span {x2, x,3.
X2	- Py11.
: Spom	[41,42} = span{x1,2}.

Moreover, $\langle \alpha_i \rangle = \text{Span} \left\{ \frac{2l_1}{1|\alpha_i|i|} \right\} = \text{Span} \left\{ y_i \right\}$

Ex.
$$V = \mathbb{R}^2$$
, $\mathcal{A}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathcal{A}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\mathcal{A}_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

(check that there are kin-indep).

($\mathcal{A}_1 = \frac{\mathcal{A}_1}{\|\mathbf{x}_1\|}$, $\|\mathbf{x}_1\|\| = 1$, $\mathbf{y}_1 = \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

($\mathcal{A}_2 = \frac{\mathcal{A}_2}{\|\mathbf{x}_1\|}$, $\|\mathbf{x}_1\|\| = 1$, $\mathbf{y}_1 = \mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

($\mathcal{A}_2 = \frac{\mathcal{A}_2}{\|\mathbf{x}_2\|} = \frac{\mathcal{A}_2}{\|\mathbf{x}_$

To	show that WNW = {0};	
	let vEWNW ¹ from above, v= w+w', wEW, w'EW	1
	from above, v= w+w, wEW, wEW	·
	· vEW:	
	· v EW+:	
	⇒ v=0. :. W∩W+= {0}.	D -
Corollary: Le	et W be a subspace of a f.d. i.p.s. V . Then $(W^{+})^{\perp} = W$.	
	Then $(W^{+}) = W$	
		t

