50.007 Machine Learning

Ensemble Models

Roy Ka-Wei Lee Assistant Professor, DAI/ISTD, SUTD

Outline

- Generalization
 - Underfitting and Overfitting
- Ensemble Classifiers
 - Bagging
 - Random Forest
 - Boosting
- Model Evaluation

Generalization

- Training data: {x_i, y_i}
 - Examples that we use to train our model
 - E.g. past records of days labelled with Roy goes/not go fishing
- Future/test data: {x_i, ŷ_i}
 - Examples that our model has not seen before
 - E.g. information about tomorrow to predict if Roy goes fishing
- Want to do well on future data not training data!
 - Not very useful to do well on training data; we already know the label
 - Easy to be perfect on training data
 - Doing well in training does not mean will do well on future data!

Find a way to classify the points

- Simple solution
- Unable to capture all salient pattern in data

- Complex solution
- "Try too hard" to work well with training data
- Fit noise into the model
- Pattern is one-off and may not appear again in future data

 Good solution, able to generalize well for future data

- Overfitting
 - Model is too complex (too flexible)
 - Fit noise in training data
 - Pattern is one-off and might not appear in future data
 - Model F overfits the data if:
 - We can find another model F'
 - Which makes more mistakes in training data: $E_{Train}(F') > E_{Train}(F)$
 - But less mistake in future data: E_{Test}(F) > E_{Test}(F')
- Underfitting
 - Model is too simple
 - Not powerful enough to capture the salient pattern
 - Can find another model F' with smaller $E_{Test}(F')$ and $E_{Train}(F')$

What Causes Overfitting?

- Noise in training data
- Insufficient data points in training data

Further Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

- Training errors: error on training (Σ e(t))
- Generalization errors: error on testing data (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: simply use training error
 - e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - Example: For a tree with 30 leaf nodes and 10 errors on training data (out of 1000 training data instances):
 - Training error = 10/1000 = 1%
 - Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$
 - Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

Training

S/N	Α	В	С	Label
1	0	0	0	+
2	0	0	1	+
3	0	1	0	+
4	0	1	1	-
5	1	0	0	+

S/N	Α	В	С	Label
6	0	0	0	+
7	0	1	1	+
8	1	1	0	+
9	1	0	1	-
10	1	0	0	+

Estimating Generalization Error

Optimistic: ?

Pessimistic: ?

Actual Generalization Error:?

Training

S/N	Α	В	С	Label	
1	0	0	0	+	
2	0	0	1	+	
3	0	1	0	+	X
4	0	1	1	-	✓
5	1	0	0	+	X

Testing

S/N	Α	В	С	Label	
6	0	0	0	+	✓
7	0	1	1	+	X
8	1	1	0	+	X
9	1	0	1	-	X
10	1	0	0	+	X

Estimating Generalization Error

Optimistic: ?

Pessimistic: ?

Actual Generalization Error:?

Training

S/N	Α	В	С	Label	
1	0	0	0	+	✓
2	0	0	1	+	✓
3	0	1	0	+	X
4	0	1	1	-	✓
5	1	0	0	+	X

Testing

S/N	Α	В	С	Label	
6	0	0	0	+	✓
7	0	1	1	+	X
8	1	1	0	+	X
9	1	0	1	-	X
10	1	0	0	+	X

Estimating Generalization Error

Optimistic: e'(t) = e(t) = 2 / 5 = 0.4

Pessimistic:
$$e'(t) = (e(t)+0.5) = (2 + 4 * 0.5)/5$$

= 0.8

Actual Generalization Error : e'(t) = 4 / 5 = 0.8

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

How to Address Overfitting

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions: E.g., Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

Post-Pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization improves after trimming, replace sub-tree by a leaf node
- Class label of leaf node is determined from majority class of instances in the sub-tree

Caveat: workable solution but still have some drawbacks...


```
For d in range(101,1,-1)

DT = DecisionTreeClassifier(depth=d)
DT.fit(training data)
Pred = DT.predict(validation data)
Acc = ComputeAcc(Pred)
if BestAcc < Acc:
    BestAcc = Acc
    BestDepth = d

DT = DecisionTreeClassifier(depth=BestDepth)
DT.fit(training data)
Pred = DT.predict(testing data)
Acc = ComputeAcc(Pred)</pre>
```


Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers
- Assumption:
 - Individual classifiers (voters) could be lousy (stupid), but the aggregate (electorate) can usually classify (decide) correctly.

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction (i.e., 13 out of the 25 classifiers misclassified):

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

Ensemble Methods

- How to generate an ensemble of classifiers?
 (list below is non exhaustive!)
 - Bagging
 - Boosting

- Bootstrap Aggregating (Bagging)
- Multiple models of same learning algorithm trained with subset of dataset randomly sampled (with replacement) from the training dataset
- Each sample has probability 1-(1 1/n)ⁿ of being selected
 - This value tends to be 0.63 for large n

- Randomly select data points into the bags (repetition allow)
 - Each bag has M data points, M<N

- Randomly select data points into the bags (repetition allow)
- Each bag has M data points, M<N

- Randomly select data points into the bags (repetition allow)
- Each bag has M data points, M<N

Voting (majority win)

Random Forest

- Train a lot of decision trees and use bagging
- Wisdom of the crowd!
 - Uncorrelated trees are preferred

Random Forest

- Train a lot of decision trees and use bagging
- Wisdom of the crowd!
 - Uncorrelated trees are preferred

Random Forest

Bootstrapping + Feature Randomness

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, sampling weights may change at the end of boosting round
 - Records that are wrongly classified will have their weights increased
 - Records that are correctly classified will have their weights decreased
 - Caveat: boosting show better predictive accuracy than bagging but also tends to over-fits the training data

Training Dataset (Size N)

Validation Dataset

Iteration 1

Iteration 1

Iteration 2

Iteration 1

Iteration 2

Iteration 3

- Initialize observation weights $w(x_i, y_i) = 1/n$, i=1,...,n
- Base classifiers: C_{I} , C_{2} , ..., C_{T}

- Initialize observation weights $w(x_i, y_i) = 1/n, i=1,...,n$
- Base classifiers: C_p , C_2 , ..., C_T
- For i=1 to T:
 - Fit a classifier $C_i(x)$ to training data
 - Compute error rate of $C_{i:}$

$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta(C_{i}(x_{j}) \neq y_{j})$$

- Initialize observation weights $w(x_i, y_i) = 1/n, i=1,...,n$
- Base classifiers: C_p , C_2 , ..., C_T
- For i=1 to T:
 - Fit a classifier $C_i(x)$ to training data
 - Compute error rate of $C_{i:}$

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

- Compute importance of classifier C_i :

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

When the error rate goes beyond 0.5, we assign the classifier a negative weight (i.e., we don't want them!)

- Initialize observation weights $w(x_i, y_i) = 1/n$, i=1,...,n
- Base classifiers: C_p , C_2 , ..., C_T
- For i=1 to T:
 - Fit a classifier $C_i(x)$ to training data
 - Compute error rate of $C_{i\cdot}$

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

- Compute importance of classifier C_i :

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Update the weights

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

- $\exp^{-\alpha}$ is always lesser than 1 when the data point is correctly classified, thus giving it a smaller weight
- \exp^{α} is bigger than 1 when it is misclassified, assigning this data point a greater weight

- Initialize observation weights $w(x_i, y_i) = 1/n$, i=1,...,n
- Base classifiers: C_p , C_2 , ..., C_T
- For i=1 to T:
 - Fit a classifier $C_i(x)$ to training data
 - Compute error rate of C_{i} .

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

- Compute importance of classifier C_i :

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Update the weights

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

• Final Classifier: $C * (x) = \arg \max_{y} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

C(i|j): Cost of misclassifying class j example as class i

	PREDICTED CLASS				
	C(i j) Class=Yes Class=N				
ACTUAL CLASS	Class=Yes	C(Yes Yes) TP	C(No Yes) FN		
	Class=No	C(Yes No)	C(No No)		
		FP	TN		

TP: True Positive FN: False Negative

TN: True Negative FP: False Positive

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
	-	60	250

Model M₂ PREDICTED CLASS

ACTUAL
CLASS + 250 45

- 5 200

Accuracy = ?

Accuracy = ?

Cost = ?

Cost = ?

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
ACTUAL CLASS	C(i j)	+	-
	+	-1	100
	-	1	0

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Cost =
$$150(-1) + 40(100) + 60(1) + 250(0)$$

= 3910

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	-	5	200

Precision, Recall & F1

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Precision (p) =
$$\frac{a}{a+c}$$
 $\frac{\text{TP}}{\text{TP} + \text{FP}}$

Recall (r) =
$$\frac{a}{a+b}$$
 $\frac{\text{TP}}{\text{TP + FN}}$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al.)
 - Geometric sampling (Provost et al,)
- Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for test
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Random subsampling
 - Repeated holdout

Train, Test and Validate

- Training Set: The actual dataset that we use to train the model (weights and biases in the case of Neural Network). The model sees and learns from this data.
- Validation Set: The sample of data used to provide an unbiased evaluation of a model fit on the training dataset while tuning model hyperparameters. The evaluation becomes more biased as skill on the validation dataset is incorporated into the model configuration.
- Testing Set: The sample of data used to provide an unbiased evaluation of a final model fit on the training dataset.

Cross Validation

- K-fold cross-validation
 - Create K-fold partition of the dataset.
 - Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.
 - Final predictor is average/majority vote over the K hold-out estimates.

Cross Validation

- Leave-one-out (LOO) cross-validation
 - Special case of K-fold with K=n partitions
 - Equivalently, train on n-1 samples and validate on only one sample per run for n runs

Random Subsampling

- Randomly subsample a fixed fraction α n (0< α <1) of the dataset for validation.
- Train the model with remaining data as training data.
- Repeat K times
- Compute the average metrics for the K hold-out estimates.

Summary

- Generalization
 - Underfitting and Overfitting
- Ensemble Classifiers
 - Bagging
 - Random Forest
 - Boosting
- Model Evaluation

