# Alignment, Clocking, and Macro Patterns of Episodes in the Life Course

Tim Riffe, Angelo Lorenti, Erik Vickstrom, Marcus Ebeling,

Andrés Castro

17 Dec. 2019

Sequence analysis for *pathways-to-event* questions can be tricky (Yaoyue Hu presentation, 2017) .

Sequence analysis for *pathways-to-event* questions can be tricky (Yaoyue Hu presentation, 2017) .



Idea: Realign sequences on transitions.

Markov matrix expression for average episode count (Dudel & Myrskylä, 2017-).

Markov matrix expression for average episode count (Dudel & Myrskylä, 2017-).

. • Question: Are bespoke algebraic derivations necessary?

▶ Do disability episodes get shorter or longer with age? And over time?

- ▶ Do disability episodes get shorter or longer with age? And over time?
- ► What is the distribution of other state episode durations before cancer?

- ▶ Do disability episodes get shorter or longer with age? And over time?
- ➤ What is the distribution of other state episode durations before cancer?
- How much of an expectancy is composed of short vs long episodes?

- ▶ Do disability episodes get shorter or longer with age? And over time?
- ► What is the distribution of other state episode durations before cancer?
- ► How much of an expectancy is composed of short vs long episodes?
- ► How do parity-specific birth interval distributions vary by completed fertility or in response to birth outcomes?

Problem

Tools for answering such questions are scattered.

#### **Problem**

Tools for answering such questions are scattered.

#### Corollary

Questions are posed less often, and new pattern discovery less frequent.

#### \_ .

Solution

We develop a framework (or grammar) of data operations to flexibly derive aggregate patterns.

#### Solution

We develop a framework (or grammar) of data operations to flexibly derive aggregate patterns.

#### **Approach**

**Clocks** are within and between episode time operations.

**Alignment** is a time structuring operation.

Approach

#### **Clocks**

Within episodes of state **s**, count time steps or episode order up or down, or total episode duration conditional on time of episode entry, exit, or neither.

### Approach

#### **Alignment**

left, right, center, etc. on the first, last, longest, shortest,  $n^{th}$ ,  $n^{th}$  from last episode of state **s**.

#### Requisites

#### Trajectory data

A set of either observed or simulated time series of discrete time steps consisting in categories.

#### Requisites

#### Trajectory data

A set of either observed or simulated time series of discrete time steps consisting in categories.

All examples here based on individual multistate (categorical) trajectories in uniform annual time steps

#### Illustrations

# 10 lives simulated from Dudel & Myrskylä (2017)



Illustration: Age structured prevalence.

### Identity clock in employment state



# Illustration: Age structured prevalence.



# Illustration: Clocks: Duration (unconditional)



# Illustration: Clocks: Duration conditioned on entry



#### Illustration: Clocks: Duration conditioned on exit



#### Illustration: Clocks: Order Ascending



# Illustration: Clocks: Order Descending



# Illustration: Clocks: Steps Ascending



# Illustration: Clocks: Steps Descending



#### Illustration: Alignment: Age = Birth alignment



#### Illustration: Alignment: Death



# Illustration: Alignment: Entry to first retirement



# Illustration: Alignment: Exit from first employment



# Illustration: Alignment: Exit from longest employment



# Illustration: Alignment: Centered on longest inactivity



Aggregation

#### Macro patterns

Combine clocks and alignment to aggregate (e.g. means, quantiles)

Application 1: Health

► Italian SILC data

# Application 1: Health

- ► Italian SILC data
- ► Ages 20-80

- ► Italian SILC data
- ► Ages 20-80
- ► Income quintiles

- ► Italian SILC data
- ► Ages 20-80
- ► Income quintiles
- ► Multistate model of disability

- ► Italian SILC data
- ► Ages 20-80
- ► Income quintiles
- ▶ Multistate model of disability
- ► Simulate discrete life trajectories



### Inequality in disability spell duration



## Inequality in end-of-life disability levels and dispersion



## How many times have people been disabled?



► Colombian DHS data, all waves

- ► Colombian DHS data, all waves
- ► Birth and union histories

- ► Colombian DHS data, all waves
- ► Birth and union histories
- ► Completed fertility >= 2

- ► Colombian DHS data, all waves
- ► Birth and union histories
- ► Completed fertility >= 2
- ► Explore birth intervals

- ▶ Colombian DHS data, all waves
- ► Birth and union histories
- ► Completed fertility >= 2
- ► Explore birth intervals
- ► Combine clocks and alignment

#### Conditional mean time to second birth



## Does a first boy imply a faster next boy?



### Does a first girl imply a faster next girl?



► Help pose and answer questions

- ► Help pose and answer questions
- ► Measures translate to natural language

- ► Help pose and answer questions
- ► Measures translate to natural language
- ► R package Spells in beta version

- ► Help pose and answer questions
- ► Measures translate to natural language
- ► R package Spells in beta version
- ► Grammar still in development

- ► Help pose and answer questions
- ► Measures translate to natural language
- ► R package Spells in beta version
- ► Grammar still in development
- ► Searching for diverse applications

- ► Help pose and answer questions
- ► Measures translate to natural language
- ► R package Spells in beta version
- ► Grammar still in development
- ► Searching for diverse applications

- ► Help pose and answer questions
- ► Measures translate to natural language
- ► R package Spells in beta version
- ► Grammar still in development
- ► Searching for diverse applications

