embedding
$$X_1, ..., X_m$$
. X_m . X

(9) According to the masks, set the masked part of e_t to $-\infty$, so that part is neglected after calculating α_t because of the softmax function. Consequently, the laster part of sentence or the padding won't interfere with the current generating process.

(h) BLEU = 18.35 > 18

- (i) dot product attention $e_{t,i} = S_t^T h_i$ v.s. multiplicative attention $e_{t,i} = S_t^T W h_i$.

 dot product: pro: easier to calculate \Rightarrow same complexity, but dot product can be highly parablelized

 St and hi need to be identically shaped @ gradient vanishing

 Con: Not utilizing so much information (i.e. S_t , and h_{i2} are not directly connected)
 - (ii). additive attention $e_{t,\bar{\imath}} = V^{T} tomh(W.h_{\bar{\imath}} + W_{z}S_{t})$ v.s. multiplicative attention $e_{t,\bar{\imath}} = S_{t}^{T} W h_{\bar{\imath}}$. additive attention: pro: less parameters, better alignment ability

con: more complicated calculation

- 2. (a) Considering there are plenty of morphemes in Chinese characters, adding a 1D

 Convolutional layer helps to connect these charaters. For example, combining adjacent "#" Pik"

 to get "##" so that the information of words are carefully extracted.
 - (b) i. NMT failed to use the plural from of "culprit", because "books" might be used to refer to a single person or a group, which is not clearly indicated in the sentence.
 - Ui. NMT repeated itself and neglected half of the original sentence.

 Maybe add hidden layer size to fix it.
 - iii. NMT left out an important part of the sentence.

Maybe add vocab size so that rarely used words are considered as well.

IV. NMT failed to generate an ancient-style sentence.

Maybe add some ancient Chinese sentences to the training dataset.

(c) (i) BLEU score for
$$C_1$$
: $p_1 = \frac{4}{9}$, $p_2 = \frac{3}{8}$, $BP = \exp(1 - \frac{11}{9})$

BLEU = $\exp(1 - \frac{11}{9}) \times \exp(0.5 \times \frac{4}{9} + 0.5 \times \frac{3}{8}) = 1.206$

BLEU score for C_2 : $P_1 = 1$, $P_2 = \frac{3}{5}$, $BP = 1$

BLEU = $\exp(1 - \frac{6}{5}) \times \exp(0.5 \times 1 + 0.5 \times \frac{3}{5}) = 2.326$

BLEU, < BLEUz, but I think C, is better than Cz

(ii)
$$p_1 = \frac{4}{9}$$
, $p_2 = \frac{3}{8}$. $BP = 1$. $BLEU_1 = exp(\frac{2}{9} + \frac{3}{16}) = 1.506$
 $p_1 = \frac{1}{2}$, $p_2 = \frac{1}{5}$. $BP = 1$. $BLEU_2 = exp(\frac{1}{4} + \frac{1}{10}) = 1.419$

BLEU, >BLEU2 and I do think C1 is better than C2.

- (iii) () can't recognize synonyms
 - 2) can't recognize correct sentence structures if they aren't identical to the only given reference
 - 3) can't evaluate its grammar correctness thoroughly
- (iv) advantage: automatic evaluation (fast, steady)

 disadvantage: requires a comprehensive reference database

 can't recognize complicated grammar structure.