Contents

§ 1	Measures	2
	§1.1 Algebras and Sigma-Algebras	2
	§1.2 Measures	
	§1.3 Outer Measures	2
	§1.4 Lebesgue Measure	2
	§1.5 Completeness and Regularity	2
	§1.6 Dynkin Classes	2
§2	Functions and Integrals	3
	§2.1 Measurable Functions	3
	§2.1.1 Question 1	3
	§2.1.2 Question 2	3
	§2.1.3 Question 3	3
	\$2.1.4 Ouestion 4	3

- **§1** Measures
- **§1.1** Algebras and Sigma-Algebras
- **§1.2** Measures
- **§1.3** Outer Measures
- **§1.4** Lebesgue Measure
- **§1.5** Completeness and Regularity
- **§1.6 Dynkin Classes**

§2 Functions and Integrals

§2.1 Measurable Functions

§2.1.1 Question 1

Observe that all this question wants us to prove is that

$$\chi_{\limsup A_n} = \limsup \chi_{A_n}$$

This is easy and simply follows from the definition.

§2.1.2 Question 2

Let Y be a subset of $\mathbb R$ which is not Borel measurable. Then χ_Y cannot be Borel measurable (See Example 2.1.2 (b) in the book). Observe that Y cannot be countable for otherwise we could write Y as union of its singleton members of Y and hence Y would be Borel set. Thus, Y is uncountable. Now, consider the set of functions $J := \left\{ \chi_{\{y\}} : y \in Y \right\}$. It is easy to see that $\chi_Y = \sup \left\{ \chi_{\{y\}} : y \in Y \right\}$. Clearly, J is set of Borel measurable functions whose supremum is not Borel measurable.

§2.1.3 Question 3

Let $f:\mathbb{R}\to\mathbb{R}$ be a function which is differentiable everywhere. Consider the sequence of function $\{f_n\}_{n\in\mathbb{N}}$ which is given by $f_n(x)=\frac{f(x+\frac{1}{n})-f(x)}{1/n}$ for every $x\in\mathbb{R}$. Clearly, $f_n\to f$ pointwise on \mathbb{R} and each f_n is measurable. Since limit of Borel measurable functions is measurable, we have that f is Borel measurable.

§2.1.4 Question 4