# CS 4072 - Topics in CS Process Mining

Lecture # 13

April 05, 2022

Spring 2022

**FAST - NUCES, CFD Campus** 

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

## Today's Topics

- Dependency Graph
- Causal Nets

#### Heuristic Mining: two main phases



### Dependency Graph



## Intuition: Causality relations in footprints

|   | а            | b             | С            | d             | e             | f             | g          |
|---|--------------|---------------|--------------|---------------|---------------|---------------|------------|
| а | #            | $\rightarrow$ | #            | #             | #             | #             | #          |
| b | $\leftarrow$ | #             | $\bigcirc$   | $\rightarrow$ | #             | $\leftarrow$  | #          |
| C | #            | $\leftarrow$  | #            | $\square$     | $\rightarrow$ | #             | #          |
| d | #            | $\leftarrow$  |              | #             | $\rightarrow$ | #             | #          |
| e | #            | #             | $\leftarrow$ | $\leftarrow$  | #             | $\rightarrow$ | $\bigcirc$ |
| f | #            | $\bigcirc$    | #            | #             | $\leftarrow$  | #             | #          |
| g | #            | #             | #            | #             | $\leftarrow$  | #             | #          |

## Intuition: Causality relations in Petri net



|   | а            | b                 | С             | d             | e             | f             | g                 |
|---|--------------|-------------------|---------------|---------------|---------------|---------------|-------------------|
| а | #            | $\rightarrow$     | #             | #             | #             | #             | #                 |
| b | $\leftarrow$ | #                 | $\rightarrow$ | $\rightarrow$ | #             | $\leftarrow$  | #                 |
| C | #            | $\leftarrow$      | #             |               | $\rightarrow$ | #             | #                 |
| d | #            | $\leftarrow$      |               | #             | $\rightarrow$ | #             | #                 |
| e | #            | #                 | $\leftarrow$  | $\leftarrow$  | #             | $\rightarrow$ | $\longrightarrow$ |
| f | #            | $\longrightarrow$ | #             | #             | $\leftarrow$  | #             | #                 |
| g | #            | #                 | #             | #             | $\leftarrow$  | #             | #                 |

## Dependency Graph based on Petri net



## Dependency Graph based on Petri net: another example

|   | а            | b             | С             | d             | e             | f             |
|---|--------------|---------------|---------------|---------------|---------------|---------------|
| а | #            | $\rightarrow$ | #             | #             | $\rightarrow$ | #             |
| b | $\leftarrow$ | #             | $\rightarrow$ | $\leftarrow$  |               | $\rightarrow$ |
| c | #            | $\leftarrow$  | #             | $\rightarrow$ |               | #             |
| d | #            | $\rightarrow$ | $\leftarrow$  | #             |               | #             |
| e | $\leftarrow$ |               |               |               | #             | $\rightarrow$ |
| f | #            | $\leftarrow$  | #             | #             | $\leftarrow$  | #             |



## Causal Nets (C-nets)



### Why C-nets?

- Output of many mining techniques, e.g., heuristic miner.
- ► Fits well with mainstream languages (e.g., BPMN and UML activity diagrams)
- ▶ Able to model XOR, AND, and OR, no silent steps or duplicate activities needed.
- Avoiding non-sound models.

#### Semantics: Loose interpretation



Provides replay semantics rather than execution semantics, e.g., the moment of choice is not fixed.

#### C-nets: formal definition

**Definition 3.8** (Causal net) A *Causal net* (C-net) is a tuple  $C = (A, a_i, a_o, D, I, O)$  where:

- $A \subseteq \mathscr{A}$  is a finite set of *activities*;
- $a_i \in A$  is the start activity;
- $a_o \in A$  is the *end activity*;
- $D \subseteq A \times A$  is the dependency relation,
- $AS = \{X \subseteq \mathscr{P}(A) \mid X = \{\emptyset\} \lor \emptyset \notin X\};^2$

 $<sup>^{2}\</sup>mathscr{P}(A) = \{A' \mid A' \subseteq A\}$  is the powerset of A. Hence, elements of AS are sets of sets of activities.

#### C-nets: formal definition

- $I \in A \to AS$  defines the set of possible input bindings per activity; and
- $O \in A \to AS$  defines the set of possible *output bindings* per activity,

#### such that

- $D = \{(a_1, a_2) \in A \times A \mid a_1 \in \bigcup_{as \in I(a_2)} as\};$   $D = \{(a_1, a_2) \in A \times A \mid a_2 \in \bigcup_{as \in O(a_1)} as\};$
- $\{a_i\} = \{a \in A \mid I(a) = \{\emptyset\}\};$
- $\{a_o\} = \{a \in A \mid O(a) = \{\emptyset\}\}\$ ; and
- all activities in the graph (A, D) are on a path from  $a_i$  to  $a_o$ .

## Example



$$A = \{a, b, c, d, e, f, g, h, z\}$$

 $a = a_i$  is the unique start activity

 $z = a_o$  is the unique end activity

D = 
$$\{(a,b),(a,c),(a,d),(b,e),...,(g,z),(h,z)\}$$

I (a) = 
$$\{\emptyset\}$$
  
O(a) =  $\{\{b, d\}, \{c, d\}\}$ 

Any element of AS is a set of sets of activities, e.g.,  $\{\{b, d\}, \{c, d\}\} \in AS$ 

### **Activity Binding**

- An *activity binding* is a tuple  $(a, as^1, as^0)$  denoting the occurrence of activity **a** with input binding  $as^1$  and output binding  $as^0$ .
- ► For example, (e,{b,d},{f}) denotes the occurrence of activity e while being preceded by b and d, and succeeded by f.

**Definition 3.9** (Binding) Let  $C = (A, a_i, a_o, D, I, O)$  be a C-net.  $B = \{(a, as^I, as^O) \in A \times \mathcal{P}(A) \times \mathcal{P}(A) \mid as^I \in I(a) \land as^O \in O(a)\}$  is the set of activity bindings. A binding sequence  $\sigma$  is a sequence of activity bindings, i.e.,  $\sigma \in B^*$ .

### Example



request

$$A = \{a, b, c, d, e, f, g, h, z\}$$

 $a = a_i$  is the unique start activity

 $z = a_0$  is the unique end activity

$$D = \{(a,b),(a,c),(a,d),(b,e),...,(g,z),(h,z)\}$$

I (a) = 
$$\{\emptyset\}$$
  
O(a) =  $\{\{b, d\}, \{c, d\}\}$ 

Any element of AS is a set of sets of activities, e.g.,  $\{\{b, d\}, \{c, d\}\} \in AS$ 

A possible binding sequence for this C-net is:  $((a,\emptyset,\{b,d\}), (b,\{a\},\{e\}), (d,\{a\},\{e\}), (e,\{b,d\},\{g\}), (g,\{e\},\{z\}), (z,\{g\},\emptyset))$ .

#### **Another Example**



A possible binding sequence for this C-net is:  $((a, \emptyset, \{b, d\}), (d, \{a\}, \{e\}), (b, \{a\}, \{e\}), (e, \{b, d\}, \emptyset))$  the scenario in which a flight and a hotel are booked

$$A = \{a, b, c, d, e\}$$

 $a(start booking) = a_i$  is the unique start activity

e(complete booking) =  $a_0$  is the unique end activity

$$D = \{(a,b),(a,c),(a,d),(b,e),...\}$$

$$O(a) = I(e) = \{\{b\}, \{c\}, \{b,d\}, \{c,d\}, \{b,c,d\}\},\$$
 $I(a) = O(e) = \{\emptyset\},\$ 
 $I(b) = I(c) = I(d) = \{\{a\}\},\$  and
 $O(b) = O(c) = O(d) = \{\{e\}\}$ 

### Initial state: Only activity a can occur



## Assume activity a occurs with an output binding enabling b and d



## Activity **b** occurs, removes obligation (a,b) and creates obligation (b,e)



20

## Activity **d** occurs, removes obligation (a,d) and creates obligation (d,e)



## Activity **e** occurs, removes obligation (b,e) and (d,e) and creates obligation (e,g)



22

## Activity **g** occurs, removes obligation (e,g) and creates obligation (g,z)



## Activity **z** occurs, removes obligation (g,z) while leaving no other obligations



#### Rules of execution

- Start with the start activity of the C-net.
- End with the end activity of the C-net.
- ► The start and end activities **cannot** also happen in-between start and end.
- Obligations are like tokens (need to be there in order to be consumed).
- At the end, there should be no remaining obligations.

## **Example Binding**



## How many bindings are possible?



## Six bindings



## Valid Binding Sequences



- Start with start activity without any obligations and end with end activity without any remaining obligations.
  - Input bindings remove existing obligations and output bindings create obligations.

## Relating C-nets to WF-nets



### Relating C-nets to WF-nets



WF-net may not be sound

Process Mining | Spring 2022

3

## Homework: how may valid binding sequences?



#### **ProM**



Download ProM 6.11 from https://www.promtools.org/doku.php

## Reading Material

► Chapter 3 & 7: Aalst