

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Taller de refuerzo: Par Diferencial, Parte 1

Para los problemas de este taller se debe asumir donde se requiera: Vdd=3V, VTH0,N = 0.6V, VTH0,P = -0.65V, μ nCox = 180 μ A/V2, μ pCox = 70 μ A/V2, λ n = 0.1 V-1(para L=0.5um), λ p=0.2 V-1 (para L=0.5um). Además, las unidades de W y L siempre se refieren a micrómetros (μ m).

1) En el circuito de la Figura 1 todos los transistores están operando en saturación, determínese una expresión para la ganancia en modo diferencial. Asuma $\lambda \neq 0$, $\gamma \neq 0$.

Figura 1

2) Para calcular el efecto de rizado en la fuente de alimentación Vdd se puede utilizar el modelo en pequeña señal, asumir Vdd como una señal de entrada y calcular la ganancia desde Vdd hasta Vout. Determine una expresión para esta ganancia en el circuito mostrado en la Figura 2. Considere el efecto de modulación de canal e ignore el efecto cuerpo.

Figura 2

3) Para los circuitos de la Figura 3, se tiene $I_1=I_o\cos\omega t+I_0$, y $I_2=-I_o\cos\omega t+I_0$. Bosqueje las formas de onda en los nodos X y Y y determine las tensiones pico-pico así como el nivel en modo común que presentan. Además, bosqueje la tensión en el nodo P como función del tiempo. En todos los casos tenga en cuenta que I_0 corresponde a un valor constante.

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Figura 3

4) Teniendo en cuenta la información y el circuito presentado en la Figura 4, determine el valor del resistor R1 y las relaciones W/L para cada transistor.

Figura 4

5) Recuerde que despreciando el efecto de modulación de canal para la estructura diferencial con transistores NMOS (Figura 5), se pueden generar las corrientes diferenciales Io1 e Io2. Estas corrientes son prácticamente independientes del circuito externo y sólo son funciones de la tensión de entrada diferencial V_{IN1} – V_{IN2} como sigue:

$$I_{o1} = \frac{I_{SS}}{2} \left(1 + x\sqrt{1 - 0.25x^2} \right), \quad I_{o2} = \frac{I_{SS}}{2} \left(1 - x\sqrt{1 - 0.25x^2} \right),$$

$$donde \ x = (V_{IN1} - V_{IN2})/V_{OVq}$$

 V_{OVq} Corresponde a la tensión de sobrecarga en equilibrio. Lo anterior sólo es válido mientras los transistores operen en región de saturación. Demuestre las relaciones presentadas anteriormente.

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

Figura 5

6) Utilice los parámetros de los dispositivos expuestos al inicio del taller para resolver este ejercicio (Figura 6) y tenga en cuenta que W/L = 125/2 para ambos transistores en el siguiente par diferencial. Para el estado de equilibrio calcúlese: a) la corriente Id que fluye a través de cada transistor y b) las tensiones en DC de cada salida. Además, determine el rango de entrada en modo común y la ganancia de tensión en pequeña señal.

Figura 6

Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones E3T FUNDAMENTOS DE CIRCUITOS ANALÓGICOS. Prof.: Javier Ardila

7) Encuentre para cada uno de los circuitos de la **Figura 7** la ganancia de tensión diferencial en pequeña señal.

8) Determine la ganancia de tensión diferencial en pequeña señal para el circuito de la Figura 8. Además, encuentre una expresión para el CMRR de este circuito.

Figura 8