STAT 480 Statistical Computing Applications

Unit 3. Linear Regression

Lecture 1. Simple Linear Regression

Department of Statistics, Iowa State University Spring 2019

Linear Regression

 Linear Regression is an old topic, dating back to Gauss in 1795, and later published in this famous book:

- The goal is to present some different perspectives on linear regression that are (hopefully) new.
- We'll start by reviewing the basics.

Univariate Regression

- Suppose that we have observations $(y_1, y_2, ..., y_n)$, and we want to model these as a linear function of $(x_1, x_2, ..., x_n)$.
- The univariate linear regression model is

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, i = 1, 2, \dots, n,$$

where β_0 and β_1 are two unknown constants that represent the intercept and slope, and ε is the error term.

- The β 's are also known as coefficients or parameters.
- Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the model coefficients, the response variable can be predicted using

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x.$$

Assumptions

Formal assumptions:

- 1. The relationship between the response *y* and the regressors is linear, at least approximately.
- 2. $E(\epsilon_i) = 0$ for all i.
- 3. The errors all have the same variance: $Var(\epsilon_i) = \sigma^2$ for all i.
- 4. The errors are independent of each other.
- 5. ϵ_i is normally distributed for all i.

Estimation of the Parameters by Least Squares

- Let $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the prediction for y based on x_i .
- Let $e_i = y_i \hat{y}_i$ be the *i*th residual.
- We define the residual sum of squares (RSS) as

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$
.

• The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x},$$

where $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ are the sample means.

Linear Regression for the Cars Data

Consider R built-in cars data and the questions we might ask:

- Is there a relationship between the speed of cars and the distances taken to stop?
- How strong is the relationship between the speed of cars and the distances taken to stop?
- How accurately can we predict the distances that a car is taken to stop?
- Is the relationship linear?

Example: Cars Data

The least squares fit for the regression for speed and distance. In this case, a linear fit captures the essence of the relationship.

Accuracy of the Coefficient Estimates

• The standard error of an estimator replects how it varies under repeated sampling. Let $\sigma^2 = \text{Var}(\varepsilon)$.

$$SE(\hat{\beta}_1) = \frac{\sigma}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

$$SE(\hat{\beta}_0) = \sigma\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

- These standard errors can be used to compute confidence intervals.
- A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter. It has the form

$$\hat{\beta}_j \pm 2 \times SE(\hat{\beta}_j).$$

Confidence Intervals

There is approximately a 95% chance that the interval

$$[\hat{\beta}_1 - 2 \times SE(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \times SE(\hat{\beta}_1)]$$

will contain the true value of β_1 (under a scenario where we got repeated samples like the present sample).

• For the cars data, the 95% confidence interval for β_1 is [3.10, 4.76].

Hypothesis Testing

 Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between x and y versus the *alternative hypothesis*:

 H_A : There is some relationship between x and y.

Mathematically, this corresponds to testing

$$H_0: \beta_1 = 0 \ v.s. \ H_A: \beta_1 \neq 0,$$

since if $\beta_1=0$ then the model reduces to $Y=\beta_0+\varepsilon$, and x is not associated with y.

Hypothesis Testing (Cont.)

• To test the null hypothesis, we compute a t-statistics, given by

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}.$$

- This will have a t-distribution with n-2 degress of freedom, assuming $\beta_1=0$.
- Using statistical software, it is easy to compute the probability of observing any value equal to |t| or larger. We call this probability the p-value.

	Coefficient	Std. Error	t-statistic	p–value
Intercept	-17.5791	6.7584	-2.601	0.0123
speed	3.9324	0.4155	9.464	1.49×10^{-12}

Assess the Overall Accuracy of the Model

• R^2 or fraction of variance explained is

$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

where $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the *total sum of squares*.

• It can be shown that in the simple linear regression setting that $R^2 = r^2$, where r is the correlation between x and y.

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

R^2	0.6511	
F-statistic	89.57	

Model Adequacy Checking

- We should consider the validity of the assumptions mentioned before.
- Violations of the assumptions may yield an unstable model in the sense that a different sample could lead to a totally different model with opposite conclusions.
- Graphical analysis of residuals (original or scaled) is a very effective way to investigate the adequacy of the fit.
 - Normal probability plot of residuals
 - Plot of residuals against the fitted values
 - Plot of residuals against each regressor variable
 - Plot of residuals in time series (if time series data were collected)

Model Adequacy Checking

