Université de Tlemcen Faculté des Sciences Département d'Informatique L3

Probabilités-Statistique Série TD 5 Fonction caractéristique .

10 décembre 2021

Exercice $\underline{1}$: Donner la fonction caractéristique de X.

- 1. Si X suit la loi de Bernouilli de paramètre $p \in (0,1)$.
- 2. Si X suit la loi Binomiale de paramètres (n, p).
- 3. Si X suit la loi de Poisson de paramètre $\lambda > 0$.

Exercice 2 : On effectue n essais d'une expérience, les succès étant indépendants, de probabilité $p = \frac{\lambda}{n}$ (donc très petite). On note X_n le nombre total de succès.

- 1. Déterminer la loi et la fonction caractéristique ϕ_{X_n} de la variable aléatoire X_n .
- 2. Montrer que pour tout $t \in \mathbf{R}$, on a $\phi_{X_n}(t) \longrightarrow \phi(t)$ quand $n \longrightarrow +\infty$, où $\phi(t)$ est la fonction caractéristique d'une loi que l'on précisera.

Exercice 3: Donner la fonction caractéristique de X.

- 1. Si X suit la loi exponentielle de paramètre $\lambda > 0$.
- 2. Si Y suit la loi exponentielle symétrique de paramètre $\lambda > 0$, i.e. de densité $f_Y(y) = \frac{\lambda}{2} e^{-\lambda |y|}$.

Exercice 4 (supplémentaire) : Soit X une variable aléatoire de loi $\mathcal{N}(0, \sigma^2)$ et $\phi(t)$ sa fonction caractéristique.

- 1. Montrer que $\phi'(t) = -t\sigma^2\phi(t)$ pour tout $t \in \mathbf{R}$
- 2. En déduire $\phi(t)$ pour tout $t \in \mathbf{R}$.