Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

38.5 Points

Technische Fakultät

Example solution for Series #3

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer		10 Points
a) The conjunction is associative.	\bigotimes true) false
b) A formula is a tautology if it is true for an interpretation.	\bigcirc true	\bigotimes false
c) Iff is an abbreviation for two implications.	\bigotimes true) false
d) For proving a claim about all objects of a kind, it suffices to take three examples and to prove the claim for them.) true	⊠ false
e) true is the right-neutral element of \rightarrow .	\bigotimes true) false
f) $\varphi \leftrightarrow \psi \equiv (\neg \varphi \lor \psi) \land (\varphi \lor \neg \psi)$	\bigotimes true) false
g) $(p \to q) \land (p \to \neg q)$ is a contradiction.	\bigcirc true	\bigotimes false
h) $p \wedge p$ is a tautology.	\bigcirc true	\bigotimes false
i) $\varphi_1 \equiv \varphi_2 \text{ implies } \varphi_1 \leftrightarrow \varphi_2.$	⊗ true) false
j) For $M=\{0,1\}$, consider $f,g:\mathbb{N}\to M$ with $f(n)=0$ iff $g(n)=0$ for all $n\in\mathbb{N}$. Then $f(n)=1$ iff $g(n)=1$.	⊗ true) false
Exercise 2 Give the following definitions and notations:		4 Points
a) Logically equivalence of $\varphi, \psi \in \Phi$. b) Substitution c) Expressive power of Φ . d) Explain the notion <i>same formula up to logical equivalence</i> .		(1P) (1P) (1P)
Solution:		

Exercise 3

- a) Two formula $\varphi_1, \varphi_2 \in \Phi$ are called logically equivalent $(\varphi_1 \equiv \varphi_2)$ iff $\hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2)$ for all interpretations β .
- b) A partial function $\sigma:\Phi\to\Phi$ which is the identity on all undefined formulae, is called a substituti-
- c) The expressive power of Φ is the set of all formula φ such there does not exist a $\psi \in \Phi$ with $\psi \equiv \varphi$.
- d) φ is the same formula as ψ up to logical equivalence if $\varphi \equiv \psi$ holds.

a) Prove that 1) \neg is idempotent. 2) \rightarrow is not commutative. (8.5P)b) Prove $\varphi \to \text{false} \equiv \neg \varphi$. (4P) c) Prove that $\varphi \to \varphi$ is a tautology.

Return till: November 11th, 2019, 12:00 pm Winter Semester 2019/20

(19P)

d) Prove whether Φ_T for $T = \{\neg, \leftrightarrow\}$ has the same expressive power as Φ .

Solution:

a) For proving that \neg is idempotent, we have to prove $\neg \neg \varphi \equiv \varphi$ for all $\varphi \in \Phi$. By definition, we have to prove $\hat{\beta}(\varphi) = \hat{\beta}(\neg \neg \varphi)$ for all interpretations β and all formula $\varphi \in \Phi$. (0.5P) Let $\varphi \in \Phi$ and β an interpretation.

By definition we have that $\hat{\beta}(\neg \neg \varphi) = \text{true iff } \hat{\beta}(\neg \varphi) = \text{false.}$ (0.5P)

Again by definition we have $\hat{\beta}(\neg \varphi) = false \text{ iff } \hat{\beta}(\varphi) = \text{true.}$ (0.5P)

Thus, all over we have $\beta(\neg \neg \varphi) = \text{true}$ iff $\beta(\varphi) = \text{true}$. (0.5P)

Since $|\mathcal{T}| = 2$, we have $\hat{\beta}(\varphi) = \hat{\beta}(\neg \neg \varphi)$. (0.5P)

b) For proving that \to is not commutative, we have to prove $\varphi \to \psi \not\equiv \psi \to \varphi$ for some $\varphi, \psi \in \Phi$ and an interpretation β .

Thus, we have to find appropriate $\varphi, \psi \in \Phi$ and an interpretation β with $\hat{\beta}(\varphi \to \psi) \neq \hat{\beta}(\psi \to \varphi)$.

Set $\varphi = p$, $\psi = q$ for $p, q \in A$, and define β by $\beta(p) = 0$ and $\beta(q) = 1$. (1P) By definition we get

$$\hat{\beta}(\varphi \to \psi) = \text{false}$$

iff $\hat{\beta}(\varphi) = \text{true}$ and $\hat{\beta}(\psi) = \text{false}$
iff $\hat{\beta}(p) = \text{true}$ and $\hat{\beta}(q) = \text{false}$
iff $\beta(p) = \text{true}$ and $\beta(q) = \text{false}$
iff $0 = 1$ and $0 = 1$.

(2.5P) This implies $\hat{\beta}(\varphi \to \psi) = \text{true}$. (0.5P) On the other hand we have

$$\hat{\beta}(\psi \to \varphi) = \text{false}$$

iff $\hat{\beta}(\psi) = \text{true}$ and $\hat{\beta}(\varphi) = \text{false}$
iff $\hat{\beta}(q) = \text{true}$ and $\hat{\beta}(p) = \text{false}$
iff $\beta(q) = \text{true}$ and $\beta(p) = \text{false}$
iff $1 = 1$ and $0 = 0$.

(2.5P) This implies $\hat{\beta}(\psi \to \varphi) = \text{false.}$ (0.5P) By $\hat{\beta}(\varphi \to \psi) \neq \hat{\beta}(\psi \to \varphi)$ we have proven that \to is not commutative.

c) For proving that $\varphi \to \text{false} \equiv \not \varphi$ we have to prove $\hat{\beta}(\varphi \to \text{false}) = \hat{\beta}(\neg \varphi)$ for all interpretations β . (0.5P) Let β be an interpretation.

Then we get by definition

$$\hat{\beta}(\varphi \to \text{false}) = \text{false}$$

iff $\hat{\beta}(\varphi) = \text{true}$ and $\hat{\beta}(\text{false}) = \text{false}$
iff $\hat{\beta}(\varphi) = \text{true}$
iff $\hat{\beta}(\neg \varphi) = \text{false}$.

(2.5P) By $\mathcal{T} = \{\text{true}, \text{false}\}\$, we get $\hat{\beta}(\varphi \to \text{false}) = \hat{\beta}(\neg \varphi)$.

- d) For proving that $\varphi \to \varphi$ is a tautology we have to prove that $\hat{\beta}(\varphi \to \varphi) = \text{true for all interpretations}$
 - Let β be an interpretation. (0.5P)

Example solution for Series #3 Winter Semester 2019/20

By definition we have

$$\hat{\beta}(\varphi \to \varphi) = \mathrm{false}$$

 $\mathrm{iff} \; \hat{\beta}(\varphi) = \mathrm{true} \; \mathrm{and} \; \hat{\beta}(\varphi) = \mathrm{false} \, .$

Since each formula is either true or false,

(0.5P)(0.5P)

we know that the right-hand side of the equivalence is false.

(0.5P)

Consequently we have $\beta(\varphi \to \varphi) = \text{true}$.

(0.5P)

e) We will prove that Φ_T for $T = \{\leftrightarrow, \neg\}$ has not the same expressive power as Φ by proving that $p \land q$ is not expressible just by \leftrightarrow and \neg for atoms $p, q \in A$.

Notice first that $p \wedge q$ is only true any interpretation β if $\beta(p) = 1 = \beta(q)$.

(0.5P)

We will prove by induction in Φ_T that each $\varphi \in \Phi_T$ having exactly two atoms, has always exactly two interpretations such that φ is true. The induction base is given by $\varphi = p \leftrightarrow q$ since this is the *smallest* formula in Φ_T having two

atoms. By definition we get that φ is true under the interpretations

- $\beta_1(p) = 1 = \beta_1(q)$ and
- $\beta_2(p) = 0 = \beta_2(q)$

and false otherwise.

(1P)

This proves the claim for the basis.

(0.5P)

For the induction hypothesis assume that the claim holds for all formula of length $\leq n$ for an abitrary but fixed $n \in \mathbb{N}$.

For the induction step we have to prove the claim for $\varphi = \neg \psi$ and $\varphi = \psi \leftrightarrow \chi$. (0.5P)

Consider firstly $\varphi = \neg \psi$. (0.5P)

By the induction hypothesis ψ has exactly two interpretations evaluating ψ to true. (0.5P)

Choose β_1, β_2 as these interpretations. (0.5P)

Since φ has exactly two atoms, ψ has exactly two atoms.

(0.5P)Consequently there exists all over four interpretations for ψ . (0.5P)

Denote the remaining two valuations by β_3 and β_4 . (0.5P)

Thus we get

- $\beta_1(\varphi) = \beta_1(\neg \psi) = 0$
- $\beta_2(\varphi) = \beta_2(\neg \psi) = 0$
- $\beta_3(\varphi) = \beta_3(\neg \psi) = 1$
- $\beta_4(\varphi) = \beta_4(\neg \psi) = 1$

(2P) (0.5P)

This proves that there exists exactly two valuations evaluating φ to true.

(0.5P)

Consider now $\varphi = \psi_1 \leftrightarrow \psi_2$. By the induction hypothesis ψ_1, ψ_2 have each exactly two interpretations evaluating them to true.

(0.5P)

- $\beta_1(\psi_1) = \beta_2(\psi_1) = 1$ and $\beta_3(\psi_1) = \beta_4(\psi_1) = 0$
- $\beta'_1(\psi_2) = \beta'_2(\psi_2) = 1$ and $\beta'_3(\psi_2) = \beta'_4(\psi_2) = 0$

Again there exists overall four interpretations.

(0.5P)

Define $\gamma_1, \ldots, \gamma_4$ by

$$\begin{split} \gamma_1(\psi_1) &= \beta_1(\psi_1) = 1 \text{ and } \gamma_1(\psi_2) = \beta_1'(\psi_2) = 1, \\ \gamma_2(\psi_1) &= \beta_2(\psi_1) = 1 \text{ and } \gamma_2(\psi_2) = \beta_3'(\psi_2) = 0, \\ \gamma_3(\psi_1) &= \beta_3(\psi_1) = 0 \text{ and } \gamma_3(\psi_2) = \beta_2'(\psi_2) = 1, \\ \gamma_4(\psi_1) &= \beta_4(\psi_1) = 0 \text{ and } \gamma_4(\psi_2) = \beta_4'(\psi_2) = 0. \end{split}$$

Example solution for Series #3 Winter Semester 2019/20

By definition we get

$$\gamma_1(\varphi) = 1 = \gamma_4(\varphi) \quad \text{and} \gamma_2(\varphi) = 0 = \gamma_3(\varphi).$$

(1P)

This proves that we have exactly two interpretations that evaluate φ to true.

(0.5P)

Thus we proved that each formula in Φ_T has exactly two interpretations evaluating the formula to true.

For expressing $p \land q$ we need amongst the four possible interpretations exactly one evaluating to true and this is not possible. \Box

Winter Semester 2019/20 Example solution for Series #3