Coffee Talk #8

January 11, 2023

Ozgur Taylan Turan

Benign, Tempered or Catastrophic: A Taxonomy of Overfitting¹

¹N. Mallinar, J. B. Simon, A. Abedsoltan, P. Pandit, M. Belkin, and P. Nakkiran (July 13, 2022). Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting. arXiv: 2207.06569 [cs, stat]

Why this paper?

Discussion revolving around overfitting in one of the PR-Lab meetings.

Aim

- To create a taxonomy of overfitting for interpolating methods!
- To show *overfitting* does not necessarily a good or a bad thing!

Introduction-A

Classical statistical learning theory vs Double Descent

Double Descent and Benign overfitting

Introduction-B

Overfitting: fitting exactly to your training data. Interpolation \sim Overfitting (in Belkin's works!)

Problem Setting

- Interpolation := Zero Training Error
- $\hat{f}: \mathcal{X} \to \mathbb{R}$ from $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^n$
- $Var[y_i|x_i] > 0$ Non zero target noise!

- Generalization performance $\mathcal{R}(\hat{f}) := \mathbb{E}_{\mathcal{D}}[(\hat{f}(x) y)^2]$
- Bayes optimal solution:
 f* = arg min_f R(f) gives the risk R*

Problem Setting-Learning Procedures

Learning Procedure

- $A := \{A_n\}_n$ are potentially stochastic functions
- $A_n: \mathcal{D}_n \to \hat{f}$ are potentially stochastic functions
- Risk of a Learning Procdure:

$$R_n := \mathbb{E}_{\mathcal{A}_n, \mathcal{D}_n}[R(\mathcal{A}_n(\mathcal{D}_n))]$$

Benign	$\lim_{n \to \infty} R_n = R^*$
Tempered	$\lim_{n\to\infty}R_n\in(R^*,\infty)$
Catastrophic	$\lim_{n\to\infty}R_n=\infty$

Problem Setting-Learning Procedures

Overfitting-Kernel Regression-A

Neural Tangent Kernel (NTK)¹: infinite width and time limit NNs with converge to "Ridless" ($\lambda=0$) Kernel Ridge Regression for Least Squares problem! NTK opens up a path for understanding the generalization of NNs.

$$\hat{f}(x) = K(x, \mathbf{X})(K(\mathbf{X}, \mathbf{X}) + \delta \mathbf{I})^{-1}\mathbf{Y}$$

9 / 13

¹A. Jacot, F. Gabriel, and C. Hongler (Feb. 10, 2020). *Neural Tangent Kernel: Convergence and Generalization in Neural Networks.* arXiv: 1806.07572 [cs., math, stat]

Overfitting-Kernel Regression-B

• Exploiting $\mathbb{E}_{x'}[K(x,x')\phi_i(x')] = \lambda_i\phi_i(x)$ and $\mathbb{E}_x[\phi_i(x)\phi_j(x)] = \delta_{ij}$

After some math¹ R_n can be approximated by *Modewise Learnabilities*:

- ullet A positive Ridge parameter or slow eigendecay o **Benign Overfitting**
- Powerlaw decay of eigenvalues → Tempered Overfitting
- Any decay faster than power law → Catastrophic Overfitting

¹J. B. Simon, M. Dickens, D. Karkada, and M. R. DeWeese (Oct. 12, 2022). *The Eigenlearning Framework: A Conservation Law Perspective on Kernel Regression and Wide Neural Networks*. arXiv: 2110.03922 [cs, stat]

- Overfitting-Kernel Regression-B

 A positive Ridge parameter or slow eigendecay → Benign Overfitting
 - Powerlaw decay of eigenvalues → Tempered Overfitting
 - Any decay faster than power law → Catastrophic Overfitting

What do they do more?

- Computer vision examples showing tempered overfitting for interpolating ANNs.
- MLP on synthetic data: first benign, then tempered overfitting.

Conclusions

 Chill-out it! There is small chance that overfitting will hurt in modern applications of interpolating models?!

Benign	Tempered	Catastrophic
• Early-stopped DNNs	• Interpolating DNNs	• Gaussian KR
KR with ridge	• Laplace KR	 Critically-parameterized regression
• k -NN ($k \sim \log n$)	• ReLU NTKs	
 Nadaraya-Watson kernel smoothing with Hilbert kernel 	• k-NN (constant k)	
	Simplicial interpolation	

THANKS!