1

The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)

J. Davy Kirkpatrick^a, Michael C. Cushing^b, Christopher R. Gelino^a, Roger L. Griffith^a, Michael F. Skrutskie^d, Kenneth A. Marsh^a, Edward L. Wright^c, Amanda K. Mainzer^b, Peter R. Eisenhardt^b, Ian S. McLean^c, Maggie A. Thompson^j, James M. Bauer^b, Dominic J. Benford^l, Carrie R. Bridge^k, Sean E. Lake^c, Sara M. Petty^c, S. Adam Stanford^m, Chao-Wei Tsai^a, Vanessa Bailey^t, Charles A. Beichman^a, John J. Bochanski^{g,u}, Adam J. Burgasser^h, Peter L. Capakⁿ, Kelle L. Cruzⁱ, Philip M. Hinz^t, Jeyhan S. Kartaltepe^o, Russell P. Knox^t, Swarnima Manohar^p, Daniel Masters^q, Maria Morales-Calderónⁿ, Lisa A. Prato^e, Timothy J. Rodigas^t, Mara Salvato^r, Steven D. Schurr^s, Nicholas Z. Scoville^p, Robert A. Simcoe^g, Karl R. Stapelfeldt^b, Daniel Stern^b, Nathan D. Stock^t, William D. Vacca^f

ABSTRACT

We present ground-based spectroscopic verification of six Y dwarfs (see also Cushing et al.), eighty-nine T dwarfs, eight L dwarfs, and one M dwarf identified by the Wide-field Infrared Survey Explorer (WISE). Eighty of these are cold brown dwarfs with spectral types $\geq T6$, six of which have been announced earlier in Mainzer et al. and Burgasser et al. We present color-color and color-type diagrams showing the locus of M, L, T, and Y dwarfs in WISE color space.

^aInfrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125; davy@ipac.caltech.edu

^bNASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109

^cDepartment of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547

^dDepartment of Astronomy, University of Virginia, Charlottesville, VA, 22904

^eLowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ, 86001

fSOFIA-USRA, NASA Ames Research Center, Moffett Field, CA 94035

^gMassachusetts Institute of Technology, 77 Massachusetts Avenue, Building 37, Cambridge, MA 02139

^hDepartment of Physics, University of California, San Diego, CA 92093

ⁱDepartment of Physics and Astronomy, Hunter College, New York, NY 10065

^jThe Potomac School, 1301 Potomac School Road, McLean, VA 22101

^kDivision of Physics, Mathematics, and Astronomy, MS 220-6, California Institute of Technology, Pasadena, CA 91125

 $^{^{\}rm l}$ Infrared Astrophysics Branch, NASA-Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771

^mUniversity of California, Davis, CA 95616

ⁿSpitzer Science Center, California Institute of Technology, Pasadena, CA 91125

^oNational Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719

^pCalifornia Institute of Technology, MC 104-24, Pasadena, CA 91125

^qUniversity of California, Riverside

^rMax-Planck-Institut für Plasmaphysik, Boltzmanstrasse 2, D-85741 Garching, Germany

⁸Planck Science Center, MS 220-6, California Institute of Technology, Pasadena, CA 91125

^tSteward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721

^uAstronomy and Astrophysics Department, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802

Near-infrared and, in a few cases, optical spectra are presented for these discoveries. Near-infrared classifications as late as early Y are presented and objects with peculiar spectra are discussed. Using these new discoveries, we are also able to extend the optical T dwarf classification scheme from T8 to T9. After deriving an absolute WISE 4.6 μ m (W2) magnitude vs. spectral type relation, we estimate spectrophotometric distances to our discoveries. We also use available astrometric measurements to provide preliminary trigonometric parallaxes to four our discoveries, which have types of L9 pec (red), T8, T9, and Y0; all of these lie within 10 pc of the Sun. The Y0 dwarf, WISE 1541-2250, is the closest at $2.8^{+1.3}_{-0.6}$ pc; if this 2.8 pc value persists after continued monitoring, WISE 1541-2250 will become the seventh closest stellar system to the Sun. Another ten objects, with types between T6 and >Y0, have spectrophotometric distance estimates also placing them within 10 pc. The closest of these, the T6 dwarf WISE 1506+7027, is believed to fall at a distance of ~ 4.9 pc. WISE multi-epoch positions supplemented with positional info primarily from Spitzer/IRAC allow us to calculate proper motions and tangential velocities for roughly one half of the new discoveries. This work represents the first step by WISE to complete a full-sky, volume-limited census of late-T and Y dwarfs. Using early results from this census, we present preliminary, lower limits to the space density of these objects and discuss constraints on both the functional form of the mass function and the low-mass limit of star formation.