Рекуррентные нейронные сети для разметки последовательности

RNN теггинг

Математические методы анализа текстов осень 2019

Попов Артём Сергеевич

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

Задача разметки последовательности (sequence tagging)

Дано:

- ▶ D множество размеченных последовательностей (x, y)
- $x = \{x_1, ..., x_n\}$ последовательность входных объектов
- ▶ $y = \{y_1, ..., y_n\}$ последовательность выходных векторов
- $ightharpoonup x_i \in X, y_i \in Y$

Необходимо: по входной последовательности предсказывать элементы выходной последовательности

В задачах анализа текста:

- Входная последовательность последовательность слов, выходная — последовательность меток
- ightharpoonup Длина всех последовательностей (x, y) различна
- ▶ Последовательности можно привести к одной длине дополнив их специальным <PAD> токеном

- ► Правиловые подходы (rule-based)
- ▶ Обучение отдельного классификатора на признаках, зависящих от позиции элемента в последовательности
- ► Графические модели (HMM/CRF)
- ▶ Рекуррентные нейронные сети
- ▶ Свёрточные нейронные сети
- ▶ Трансформеры
- Комбинация подходов

Примеры задач разметки в NLP

- ▶ Разметка по частям речи (Part-of-speech tagging, POS)
- Распознавание именованных сущностей (Named Entity Recognition, NER)
- Разметка семантических ролей (Semantic Role Labeling, SRL)
- ► Выделение текстовых полей данных (Slot filling)
- Разметка библиографических данных

BIO-нотация

Для составных сущностей используется BIO-нотация:

- ▶ В (Begin) первое слово сущности
- ► I (Inside) слово внутри сущности
- ► О (Outsied) слово вне сущности

Пример входа и выхода (x, y):

Alex is going to Los Angeles
B-PER O O O B-I OC I-I OC

Модель рекуррентной нейронной сети (RNN)

Введение

 h_t — скрытое состояние в момент t

$$h_t = f(Vx_t + Wh_{t-1} + b)$$
$$\hat{y}_t = g(Uh_t + \hat{b})$$

Обучение сети — минимизация суммарных потерь:

$$\sum_{t=1}^{n} \mathcal{L}_{t}(y_{t}, \hat{y}_{t}) \to \min_{V, U, W, b, \hat{b}}$$

Сеть обучается с помощью алгоритма backpropagation 1

 $^{^{}f 1}$ Часто, вариацию алгоритма backpropagation для обучения RNN называют backpropagation through time

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} =$$

Детали обучения RNN: производные по U и W

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} =$$

Введение

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{dh_t}{dW}$$

$$\frac{dh_t}{dW} = \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{dh_{t-1}}{dW} =
= \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{dh_{t-2}}{dW} =
= \dots = \sum_{i=1}^{t} \left(\prod_{k=1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Градиент по
$$V$$
 считается аналогично градиенту по W

Детали обучения RNN: взрыв и затухание градиентов

Взрыв градиента:

Введение

$$\prod_{i=1}^t \frac{\partial h_i}{\partial h_{i-1}} \to \infty$$

Затухание градиента:

$$\prod_{i=k+1}^{r} \frac{\partial h_{i}}{\partial h_{i-1}} \to 0$$

$$\frac{\partial h_{i}}{\partial h_{i-1}} = diag\left(\frac{1}{\mathsf{ch}^{2}(z_{i})}\right) W$$

 $z_i = Vx_i + Wh_{i-1} + b$

если
$$f = \mathsf{tanh}$$

Популярные способы борьбы с взрывом/затуханием:

- Gradient clipping (против взрыва)
- ► Модели LSTM и GRU (против затухания)

Gradient clipping

Ограничение нормы градиентов:

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\begin{array}{l} \hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta} \\ \text{if } \|\hat{\mathbf{g}}\| \geq threshold \text{ then} \\ \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \\ \text{end if} \end{array}$$

Как выбрать порог? Например, брать среднюю норму градиента для весов по запускам без gradient clipping

LSTM сеть

Используем более сложную структуру ячейки:

LSTM ячейка

Обучается с помощью алгоритма Backpropagation

Почему решает проблему затухающих градиентов?

Обучается с помощью алгоритма Backpropagation

Почему решает проблему затухающих градиентов?

 C_t зависит от C_{t-1} линейно, т.е $rac{\partial C_t}{\partial C_{t-1}}=f_t$, при инициализации b_f большими числами, $f_tpprox 1$

Разные архитектуры рекуррентных сетей

Примеры задач:

one to many Генерация описания изображения many to one Классификация предложений many to many(1) Перевод с одного языка на другой many to many(2) Определение частей речи

Глубокие рекуррентные сети (deep RNN, layers stacking)

Выходы одной рекуррентной сети подаются на вход другой:

$$h_t^1, C_t^1 = LSTM(h_{t-1}^1, C_{t-1}^1, x_t)$$

$$h_t^2, C_t^2 = LSTM(h_{t-1}^2, C_{t-1}^2, h_t^1)$$

$$h_t^3, C_t^3 = LSTM(h_{t-1}^1, C_{t-1}^1, h_t^2)$$

$$y_t = g(Uh_t^2 + \hat{b})$$

Двунаправленные сети (bidirectional)

Конкатенация выходов двух сетей, одна идёт слева направо, другая справа налево:

$$\overrightarrow{h_t}, \overrightarrow{C_t} = \overrightarrow{LSTM}(\overrightarrow{h_{t-1}}, \overrightarrow{C_{t-1}}, x_t)
\overleftarrow{h_t}, \overleftarrow{C_t} = \overleftarrow{LSTM}(\overleftarrow{h_{t-1}}, \overleftarrow{C_{t-1}}, x_t)
y_t = g(U[\overrightarrow{h_t}, \overleftarrow{h_t}] + \hat{b})$$

На практике часто работают лучше чем однонаправленные!

Работа с словами не из словаря (OOV, out of vocabulary)

Добавление в словарь <UNK> токена

- ▶ Заменить часть редких слов на <UNK> токен при обучении
- ► На каждой итерации обучения с малой вероятностью заменять одно из слов на <UNK>

Использовать посимвольную RNN (charRNN)

- Вероятность встретить новый символ крайне мала...
- ► Во многих задачах charRNN работает не хуже wordRNN

Использовать посимвольную RNN для новых слов

- ► Если встречаем незнакомое слово, используем charRNN для его кодирования
- ► На каждой итерации обучения с малой вероятностью считаем одно из слов новым

```
import torch.nn as nn
class LSTMTagger(nn.Module):
   def __init__(self, embedding_dim, hidden_dim,
                 vocab_size, tagset_size):
        super(LSTMTagger, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim)
        self.hidden2tag = nn.Linear(hidden_dim,
            tagset_size)
```

Пример создания LSTM-теггера в Pytorch

```
class LSTMTagger(nn.Module):
   def forward(self, sentence):
        sentence_embeddings = self.word_embeddings(
            sentence)
        lstm_out, _ = self.lstm(
            sentence_embeddings
            .view(len(sentence), 1, -1))
        tag_scores = self.hidden2tag(
            lstm_out.view(len(sentence), -1))
        return tag_scores
```

- ► RNN Нейросетевая архитектура для работы с последовательностями
- ▶ Обучается с помощью алгоритма backpropagation
- ▶ В исходном виде RNN плохо обучается, необходимо использовать LSTM (или GRU) и gradient clipping
- С помощью разных архитектур сети можно решать разные задачи

Базовая модель теггинга

Вход модели:

▶ $x = x_1^n$, x_t — one-hot вектор t-го слова

Выход модели:

- $\hat{y} = \hat{y}_1^n$, $\hat{y}_t = p(y|x_1^n, t)$ распределение тегов t-го слова
- ▶ один тег префикс-тип (например, B-PER) или О

Базовая модель теггинга:

$$\begin{aligned} v_t &= \mathrm{Embedding}(t) \\ h_t, \, C_t &= \mathrm{LSTM}(h_{t-1}, \, C_{t-1}, v_t) \\ \hat{y}_t &= \mathrm{softmax}(Uh_t + \hat{b}) \\ \mathcal{L} &= \sum_{t=1}^n \mathcal{L}_t, \quad \mathcal{L}_t = -\sum_{v \in Y} [y = y_t] \log p(y = y_t | x_1^n, t) \end{aligned}$$

Базовая модель теггинга

Замечания о базовой модели

- ▶ Слова не приводятся к нижнему регистру
- ▶ Обычно используется bidirectional сеть
- ▶ Может быть несколько слоёв (но редко > 2)
- ▶ Эмбеддинги слов могут быть:
 - инициализированы предобученной моделью, заморожены во время обучения
 - инициализированы предобученной моделью, обучаются во время обучения
 - случайно инициализированы, обучаются во время обучения
- ► Dropout помогает при обучении

Facebook нашел нового финансового директора . Финансовым директором социальной сети Facebook назначен 39-летний Дэвид Эберсман (David Ebersman), сообщает The Wall Street Journal.

T1 ORG 0 8 Facebook
T2 ORG 83 91 Facebook
T3 PER 111 142 Дэвид Эберсман (David Ebersman)
T4 ORG 153 176 The Wall Street Journal

- ► Дополнительный CRF-слой
- ▶ Дополнительные представления слов
- ▶ Предобученные глубокие сети
- ▶ Разделение предсказания префиксов и типов
- ► Semi-supervised learning
- ► Multitask learning

Дополнительный CRF-слой

¹Lample et al (NAACL 2016). Neural Architectures for Named Entity Recognition

Детали обучения сети вместе с CRF

Выход biLSTM — вход для CRF.

Т.к. CRF обучается через градиентные методы, можем пробрасывать градиенты CRF в backpropgation алгоритме.

Algorithm 1 Bidirectional LSTM CRF model training procedure

1: **for** each epoch **do** for each batch do 3: 1) bidirectional LSTM-CRF model forward pass: 4: forward pass for forward state LSTM 5: forward pass for backward state LSTM 6: 2) CRF layer forward and backward pass 7: 3) bidirectional LSTM-CRF model backward pass: 8: backward pass for forward state LSTM 9: backward pass for backward state LSTM 10: 4) update parameters 11: end for 12: end for

Не все выходные последовательности соответствуют формату:

- ► B-PER I-LOC I-LOC O
- ► O I-LOC I-LOC O
- функционал CRF явно учитывает совместное положение выходных меток в отличие от RNN
- ▶ функционал CRF для последовательности не разбивается на пословные слагаемые

Таким образом, CRF — обучаемый пост-процессинг последовательности.

Улучшение от CRF в biLSTM¹

Результаты biLSTM + CRF превосходят остальные подходы

Table 2: Comparison of tagging performance on POS, chunking and NER tasks for various models.

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
Random	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
Senna	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

Добавление CRF помогает и в CNN, и в трансформерах...

¹Huang et al (2015); Bidirectional LSTM-CRF Models for Sequence Tagging.

Посимвольные представления слов

- ▶ Кодируем слово посимвольной LSTM
- Можно использовать только эти эмбеддинги
- ► Можно конкатенировать с «табличными» эмбеддингами слов
- ▶ Можно вместо LSTM использовать свёртку

Улучшение работы для слов с опечатками и ошибками.

Дополнительные представления: регистр и тип

¹Ghaddar et al (2018), Robust Lexical Features for Improved Neural Network Named-Entity Recognition

Как строились представления типа?

- 1. Используется корпус WiFiNE, содержащий для слов относящиеся к ним категории (например, для hilton /building/hotel, /building/restaurant, /person/actor)
- 2. Также корпус WiFine содержит предложения, в которых некоторым словам соответствуют необходимые сущности
- 3. По такому корпусу обучаются эмбеддинги (FastText) единое пространство для слов и сущностей слов
- 4. Представление типа для слова вектор расстояний от эмбеддинга слова до всех представлений сущностей

Это полезно. Для улучшения качества иногда можно использовать специальные корпуса или лингвистические ресурсы.

Посимвольное представление можно вытаскивать с учётом контекста. В модели 1 сеть предобучена как посимвольная языковая модель:

$$\mathcal{L} = \prod_{t=1}^n p(x_t|x_1^{t-1})$$

¹Akbik et al (COLING 2018), Contextual String Embeddings for Sequence Labeling

Глобальные контекстные посимвольные эмбеддинги

¹Akbik et al (NAACL 2019), Pooled Contextualized Embeddings for Named Entity Recognitio

Алгоритм получения глобальных контекстных эмбеддингов:

Algorithm 1 Compute pooled embedding

Input: sentence, memory

- 1: for word in sentence do
- 2: $emb_{context} \leftarrow$ embed(word) within sentence
- 3: add $emb_{context}$ to memory[word]
- 4: $emb_{pooled} \leftarrow pool(memory[word])$
- 5: $word.embedding \leftarrow concat(emb_{pooled}, emb_{context})$
- 6: end for

Разделение предсказания префикса и типа

В модели 1 предлагают разделять предсказание префиксов и типа сущности.

Также в модели используется три вида эмбеддингов:

- ▶ фонетические (charRNN по фонетической записи)
- предобученные пословные
- часть речи слова

Если типов сущностей много, может привести к улучшению.

RNN теггинг

¹Aguilar et al (NAACL 2018), Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks on Social Media

Semi-supervised обучение

Если есть дополнительные неразмеченные данные:

- 1. Обучаем теггер на размеченных последовательностях
- 2. Применяем теггер к неразмеченным последовательностям
- **3.** Скрывая часть слов в неразмеченной последовательности, делаем предсказания теггера похожими на полученные

$$\mathcal{L}_{semi} = \sum_{x_t \in x_{uns}} \sum_{j=1}^k D(p_{ heta}(y|x_t)|p_{ heta}^j(y|x_t))
ightarrow \min_{ heta}$$

 x_{uns} — неразмеченная последовательность k — число различных последовательностей со скрытием D — функция расстояния (например, KL) $p(y|x_t)$ — распределение полученное на шаге 2 $p^j(y|x_t)$ — распределение полученное после скрытия

Semi-supervised обучение

Learning on a Labeled Example

Learning on an Unlabeled Example

Inputs Seen by Auxiliary Prediction Modules

Auxiliary 1: They traveled to Auxiliary 2: They traveled to Washington Auxiliary 3: Washington by plane Auxiliary 4: by plane

¹Clark et al (2018); Semi-Supervised Sequence Modeling with Cross-View Training

Резюме RNN-теггинг

- ► biLSTM хороший подход для теггинга
- ▶ Добавление CRF слоя почти всегда улучшает качество
- ► Добавление дополнительных представлений почти всегда улучшает качество

Задача POS (Part of speech tagging)

Для каждого слова в предложении определить часть речи.

RNN теггинг

- Простая задача решается хорошо простыми моделями
- Вспомогательная задача

Зачем могут использоваться pos-теги:

- ▶ Снятие омонимии (мыло NOUN и мыло VERB)
- Дополнительный признак
- ▶ Выделение стоп-слов (предлоги и союзы стоп-слова)
- Группировка слов по важности (определение темы текста
 - существительные важнее глаголов)

Открытые модели POS

Подходят для русского языка:

- ▶ pymorphy2 не контекстный rule-based
- ▶ rnnmorph нейросетевой (biLSTM-CRF) + дополнительные грамматические признаки на входе
- ▶ UDPipe нейросетевой, есть предобученные модели для 50 языков (есть русский)

Подходят для других языков:

- ► nltk разные модели (rule-based, n-граммные, графические модели)
- ► StanfordPOSTagger графические модели, совместим с nltk, есть предобученные модели
- ▶ spacy нейросетевые модели, есть предобученные модели для 9 языков (русского пока нет)

Разметка POS

Есть несколько лингвистических концепций разметки pos-тегов:

- ► Universal POS tags (в UDPipe) (единый международный стандарт)
- ▶ OpenCorpora tags (в Pymorphy2) (например, различаются хороший (ADJF) и хорош (ADJS))

Некоторые библиотеки (например, лемматизаторы в nltk) принимают теги в определённом формате!

Задача NER (Named entity recognition)

- Для каждого слова в предложении определить является ли он частью какой-либо именованной сущностью
- ► Более сложная задача чем POS
- ▶ Может быть и вспомогательной, и конечной задачей
- ► Часто более важная задача Named Entity Linking (NEL) соотнести найденную сущность с сущностью из списка

Где используется NER:

- ▶ Диалоговые системы
- ▶ Дополнительный признак
- ▶ Поиск
- ▶ Деперсонализация данных
- ▶ Выделение сущностей в новостном потоке (выделить все упоминания Трампа в новостях)

Подходят для русского языка:

- ▶ pymorphy2 rule-based
- ▶ natasha rule-based и CRF
- deeppavlov RNN-CRF и BERT-based предобученные модели

Подходят для других языков:

▶ spacy — нейросетевые модели (свёрточные сети)