

Detailed Course on Differential Equation for IIT JAM' 23 - II

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	2-21780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
5	9 Months	2-13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

Unacademy Unlock

20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	.2-23,100	₹ 18,480	₹ 4,620 (20%)
25	12 Months	2-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2-52,975	₹ 42,380	₹ 10,595 (20%)
Iconic	12 Months	2-30,780	₹ 24,624	₹ 6,156 (20%)
-	6 Months	₹-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code ____

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
П	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
Plus	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
200	12 Months	2.16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	_R-52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Legendre's linear differential equation:

differential equation linear form the

$$[a_0(a+bx)^2 \frac{d^2y}{dx^2} + a_1(a+bx) \frac{dy}{dx} + a_2y = X \dots (1)$$

For solution

We put $a + bx = e^z & z = log (a + bx)$

$$\frac{dz}{dx} = \frac{b}{a+bx}$$

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$$

$$\Rightarrow \frac{b}{a+bx} \frac{dy}{dz}$$

$$\frac{dx}{dx} = \frac{dz}{dz} \cdot \frac{dx}{dx}$$

$$\Rightarrow \frac{b}{a+bx} \frac{dy}{dz}$$

$$\Rightarrow (a+bx) \frac{dy}{dx} = bDy \text{ where } D = \frac{d}{dz}$$

Q.1. Solution $(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 0$.

(a)
$$y(x) = c_1(5 + 2x) + c_2(5 - 2x)$$

(b)
$$y(x) = c_1(5+2x)^{2+\sqrt{2}} + c_2(5+2x)^{2-\sqrt{2}}$$

(c)
$$y(x) = c_1(2 + \sqrt{2})x + c_2(2 - \sqrt{2}x)$$

(d) none of these

Q.2. The general solution

$$(1+2x)^2 y^- - 6(1+2x)y^+ + 16y = 8(1+2x)^2$$
.

- (a) $c_1 \cos \{\log(1 + x)\} + c_2 \sin \{\log(1 + x)\} + 2 \log (1 x)$
- 1x).sin{log(1 + x)}

(b)
$$\frac{c_1}{x} + \frac{c_2}{x^2} - \frac{\sin x}{x^2}$$

(c)
$$\{c_1 + c_2 \log(1 + 2x)\}(1 + 2x)^2 + (11 + 2x)^2 \{\log(1 + 2x)\}(1 + 2x)^2 + (11 + 2x)^2 \}$$

- 2x)
- (d) None of these

Q.3. General solution of

$$(1 + x^2)y^+ + (1 + x)y^+ + y = 4 \cos \{\log(1 + x)\}$$

(a)
$$\frac{c_1}{x} + \frac{c_2}{x^2} - \frac{\sin x}{x^2}$$

(b)
$$\cos\{\log(1 + x)\} + c_2\sin\{\log(1 + x)\} + 2 \log(1 - x)$$

$$1x$$
).sin{ $log(1 + x)$ }

(c)
$$\{c_1 + c_2 \log(1 + 2x)\}(1 + 2x)^2 + (11 + 2x)^2 \{\log(1 + 2x)\}(1 + 2x)^2 + (11 + 2x)^2 \}$$

Second Order Variable Coefficient Differential Equation

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$$

When One Part of CF is known

The given differential equation is of the forms

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R \qquad \dots (1)$$

Where P, Q, R are as function of x alone

Suppose y = u be a known integral of CF

$$y = u v$$

Then v can be found by solution of $\frac{d^2v}{dx^2} + \left(P + \frac{2}{u}\frac{du}{dx}\right)\frac{dv}{dx} = \frac{R}{u}$ equation

$$\frac{d^2v}{dx^2} + \left(P + \frac{2}{u}\frac{du}{dx}\right)\frac{dv}{dx} = \frac{R}{u}$$

TARGETED AUDIENCE

- O III-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo	
Save 25%	₹-12,252 ₹ 11,027	

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Rules for finding the one part of C.F

	Condition	An integral of CF
1	P+Qx=0	y = x
2	$2 + 2Px + Qx^2 = 0$	$y = x^2$
3	$m(m-1) + Pmx + Qx^2 = 0$	$y = x^m$
4	1 + P + Q = 0	$y = e^x$
5	1 - P + Q = 0	$y = e^{-x}$
6	$m^2 + mP + Q = 0$	$y = e^{mx}$

Q4. Given that y(x)=x is a solution of differential equation

$$(1+x^2)y''-2xy'+2y=0, x>0$$

Find second linearly independent solution

(a)
$$(x^2 - 1)$$

(b)
$$\frac{1}{x}$$

$$(c)e^x$$

(d)
$$e^{-x}$$

Q5. Let
$$y = e^x$$
 be a solution of $x \frac{d^2 y}{dx^2} - \frac{dy}{dx} + (1 - x)y = 0$.

Then the second linearly independent solution of this ordinary differential equation is

(a)
$$xe^{-2x} + \frac{1}{2}$$

(b)
$$\frac{1}{2} \left(x - \frac{1}{2} \right) e^{-x}$$

$$(c)\frac{1}{2}\left(x+\frac{1}{2}\right)e^{-2x}$$

(d)
$$xe^{-2x} - \frac{1}{2}$$

Q.6. If $y = x^2$ is a solution of the differential equation

$$y'' - \left(\frac{2}{x^2} + \frac{2}{x}\right)(xy' - y) = 0$$
, $0 < x < \infty$, then its general

solution is

(a)
$$\alpha x^2 \int x^{-2} e^x dx + \beta$$

(b)
$$\alpha x^{-2} \int x^2 e^x dx + \beta$$

(c)
$$\alpha x^2 \int x^2 e^x dx + \beta$$

(d) None of these

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£ 21,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	-2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥ 13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	₹ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

2 · Asked by Millan

Please help me with this doubt

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
200	12 Months	2.16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	_R-52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR