## Carte 4 filtres passe-bas



**Pierre Molinaro** 

10 juillet 2022

# A

## Filtre Sallen-Key

### Filtre Sallen-Key

Le filtre choisi est un filtre passe-bas de type Sallen-Key dont le gain statique est 1.



Le filtre choisi est un filtre passe-bas de type Sallen-Key dont le gain statique est 1. Il est conduit par un suiveur.

C'est un filtre d'ordre 2 dont la fréquence de coupure est :

$$f_C = \frac{1}{2 \cdot \pi \cdot \sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_2}}$$

### Principe de la réglage de la fréquence de coupure

Les résistances R1x et R2X sont optionnelles, montées sur support : on peut donc choisir leur présence et leur valeur.

Deux straps, en l'absence de R1X et de R2X, qui permettent d'atteindre directement 4 fréquences de coupure.



Pour atteindre une fréquence de coupure donnée, on a les possibilités suivantes :

- mettre une résistance R1x, strap R1L ouvert, strap R2L ouvert ;
- mettre une résistance R1x, strap R1L ouvert, strap R2L fermé ;
- mettre une résistance R1x, strap R1L fermé, strap R2L ouvert ;
- mettre une résistance R1x, strap R1L fermé, strap R2L fermé ;
- mettre une résistance R2x, strap R1L ouvert, strap R2L ouvert ;
- mettre une résistance R2x, strap R1L ouvert, strap R2L fermé;
- mettre une résistance R2x, strap R1L fermé, strap R2L ouvert ;
- mettre une résistance R2x, strap R1L fermé, strap R2L fermé ;
- mettre une résistance R1x et R2X, strap R1L ouvert, strap R2L ouvert ;
- mettre une résistance R1x et R2X, strap R1L ouvert, strap R2L fermé ;
- mettre une résistance R1x et R2X, strap R1L fermé, strap R2L ouvert ;
- mettre une résistance R1x et R2X, strap R1L fermé, strap R2L fermé.

### Fréquences de coupures en fonction des straps (1/2)



| Strap R1L | Strap R2L | Fréquence de coupure |
|-----------|-----------|----------------------|
| OFF       | OFF       | 392 Hz               |
| ON        | OFF       | 787 Hz               |
| OFF       | ON        | 1 993Hz              |
| ON        | ON        | 4 003 Hz             |

### Fréquences de coupures en fonction des straps (2/2)

Le code C++ codes-c++/calcul-resistances-pour-2-frequences.cpp calcule les meilleures valeurs de résistances pour atteindre deux fréquences. Elles y sont spécifiées par des constantes :

```
static const double FREQUENCE_CIBLE_BASSE = 400.0;
static const double FREQUENCE_CIBLE_HAUTE = 4000.0;
```

Les valeurs de résistances sont choisies parmi les résistances de la série E24, entre 1 k $\Omega$  et 100 k $\Omega$ .

L'exécution dure quelques secondes et affiche les 10 meilleurs choix, par ordre décroissant :

| * | '<br>Écart | F0    | F1     | F2     | F3     | R1H   | R1L   | R2H   | <sup>*</sup><br>  R2L |
|---|------------|-------|--------|--------|--------|-------|-------|-------|-----------------------|
| 1 | 0.000400   | 392.0 | 787.3  | 1993.0 | 4002.6 | 91000 | 30000 | 82000 | 3300                  |
| ĺ | 0.000400   | 392.0 | 819.5  | 1911.5 | 3996.1 | 91000 | 27000 | 82000 | 3600                  |
| ĺ | 0.000401   | 392.0 | 1768.9 | 885.3  | 3994.7 | 91000 | 4700  | 82000 | 20000                 |
| 1 | 0.000401   | 392.0 | 2551.5 | 615.4  | 4005.3 | 91000 | 2200  | 82000 | 56000                 |
| 1 | 0.000404   | 392.0 | 715.7  | 2195.6 | 4008.6 | 91000 | 39000 | 82000 | 2700                  |
| 1 | 0.000404   | 392.0 | 615.8  | 2540.5 | 3990.9 | 91000 | 62000 | 82000 | 2000                  |
| 1 | 0.000405   | 392.0 | 1013.7 | 1550.4 | 4009.4 | 91000 | 16000 | 82000 | 5600                  |
| 1 | 0.000407   | 392.0 | 1701.7 | 924.0  | 4010.8 | 91000 | 5100  | 82000 | 18000                 |
| 1 | 0.000409   | 392.0 | 1845.5 | 852.3  | 4012.5 | 91000 | 4300  | 82000 | 22000                 |
| 1 | 0.000411   | 392.0 | 964.7  | 1620.0 | 3986.5 | 91000 | 18000 | 82000 | 5100                  |
| * | ·          |       |        |        |        |       |       |       | >                     |

# Choix de R1x et R2x pour atteindre une fréquence donnée

Le code C++ codes-c++/calcul-pontage-pour-une-frequence-donnee.cpp calcule les meilleures valeurs des résistances R1X et R2X, associées à la présence ou à l'absence des straps, pour atteindre une fréquence donnée.

La fréquence recherchée est spécifiée par une constante :

```
static const double FREQUENCE_CIBLE = 550.0 ;
```

Le nombre des meilleurs résultats qui sont affichés :

```
static const int NOMBRE_RESULTATS = 5 ;
```

Enfin, on indique si on veut effectuer le calcul incluant ou en excluant la prise en compte de la présence simultanée de R1X et R2X :

```
static const bool CALCULER_POUR_R1X_ET_R2X = false ;
```

L'exécution dure moins d'une seconde et affiche les meilleurs choix, par ordre décroissant (une valeur 0 pour R1X ou R2X signifie que la résistance est en fait absente) :

| : | *            |       |           |           |        | :     |
|---|--------------|-------|-----------|-----------|--------|-------|
| : | Écart  <br>* | Fc    | Strap R1L | Strap R2L | R1x    | R2x   |
|   | 0.797%       | 554.4 | off       | off       | 91000  | 0     |
|   | 0.797%       | 554.4 | off       | off       | 0      | 82000 |
|   | 1.497%       | 541.8 | off       | off off   | 100000 | 0     |
|   | 1.727%       | 540.5 | off       | off off   | 0      | 91000 |
|   | 3.122%       | 567.2 | off       | off       | 0      | 75000 |
|   | *            |       |           |           |        | :     |

# Meilleur choix de R1x et R2x pour atteindre plusieurs fréquences données (1/3)

Le code C++ codes-c++/calcul-pontage-pour-plusieurs-frequences.cpp calcule les meilleures valeurs des résistances R1X et R2X, associées à la présence ou à l'absence des straps, pour atteindre les fréquences 400 Hz, 450 Hz, 500 Hz, ... 950 Hz, 100 Hz, 1500 Hz, 2000 Hz, ..., 4000 Hz. Pour chaque fréquence, seul le meilleur choix est affiché.

On indique si on veut effectuer le calcul incluant ou en excluant la prise en compte de la présence simultanée de R1X et R2X :

static const bool CALCULER\_POUR\_R1X\_ET\_R2X = false ;

Suite page suivante...

# Meilleur choix de R1x et R2x pour atteindre plusieurs fréquences données (2/3)

...suite de la page précédente

L'exécution dure moins d'une seconde et affiche le meilleur choix pour chaque fréquence (une valeur 0 pour R1X ou R2X signifie que la résistance est en fait absente) :

| *              |              |       | 0 4       |           |        | *       |
|----------------|--------------|-------|-----------|-----------|--------|---------|
| F Cible  <br>* | Écart   F    | réel  | Strap R1L | Strap R2L | R1x    | R2x     |
| 400 Hz   0     | .645%   402  | .6 Hz | off       | off       | 0      | 1500000 |
| 450 Hz   0     | .535%   447  | .6 Hz | off       | off       | 0      | 270000  |
| 500 Hz   0     | .623%   496  | .9 Hz | off       | off       | 150000 | 0       |
| 550 Hz   0     | .797%   554  | .4 Hz | off       | off       | 91000  | 0       |
| 600 Hz   0     | .095%   599  | .4 Hz | off       | off       | 68000  | 0       |
| 650 Hz   0     | .086%   649  | .4 Hz | off       | off       | 0      | 47000   |
| 700 Hz   1     | .141%   692  | .0 Hz | off       | off       | 43000  | 0       |
| 750 Hz   0     | .991%   757  | .4 Hz | off       | off       | 0      | 30000   |
| 800 Hz   0     | .029%   800  | .2 Hz | on        | off       | 680000 | 0       |
| 850 Hz   0     | .211%   848  | .2 Hz | on        | off       | 0      | 510000  |
| 900 Hz   0     | .121%   898  | .9 Hz | on        | off       | 0      | 270000  |
| 950 Hz   0     | .019%   949  | .8 Hz | on        | off       | 0      | 180000  |
| 1000 Hz   0    | .314%   996  | .9 Hz | off       | off       | 0      | 15000   |
| 1500 Hz   0    | .890%   1486 | .7 Hz | off       | off       | 6800   | 0       |
| 2000 Hz   0    | .013%   1999 | .7 Hz | off       | on        | 0      | 470000  |
| 2500 Hz   0    | .150%   2496 | .3 Hz | off       | on        | 160000 | 0       |
| 3000 Hz   0    | .593%   2982 | .2 Hz | off       | off       | 1600   | 0       |
| 3500 Hz   0    | .094%   3503 | .3 Hz | on        | off       | 1200   | 0       |
| 4000 Hz   0    | .065%   4002 | .6 Hz | on        | on        | 0      | 0       |
| *              |              |       |           |           |        | *       |
|                |              |       |           |           |        | C '1-   |

Ce tableau a été construit avec CALCULER\_POUR\_R1X\_ET\_R2X égal à **false**, ce qui signifie que les solutions ne comportent pas à la fois R1x et R2x.

Suite page suivante...

# Meilleur choix de R1x et R2x pour atteindre plusieurs fréquences données (3/3)

...suite de la page précédente

L'exécution dure moins d'une seconde et affiche le meilleur choix pour chaque fréquence (une valeur 0 pour R1X ou R2X signifie que la résistance est en fait absente) :

| F Cib | le | Écart  | F réel    | Strap R1L | Strap R2L | R1x    | R2x     |
|-------|----|--------|-----------|-----------|-----------|--------|---------|
| 400   | Hz | 0.645% | 402.6 Hz  | off       | off       | 0      | 1500000 |
| 450   | Hz | 0.006% | 450.0 Hz  | off       | off       | 390000 | 1200000 |
| 500   | Hz | 0.010% | 500.1 Hz  | off       | off       | 300000 | 330000  |
| 550   | Hz | 0.047% | 550.3 Hz  | off       | off       | 120000 | 680000  |
| 600   | Hz | 0.043% | 600.3 Hz  | off       | off       | 390000 | 91000   |
| 650   | Hz | 0.020% | 650.1 Hz  | off       | off       | 82000  | 270000  |
| 700   | Hz | 0.032% | 700.2 Hz  | off       | off       | 560000 | 47000   |
| 750   | Hz | 0.006% | 750.0 Hz  | off       | off       | 43000  | 470000  |
| 800   | Hz | 0.029% | 800.2 Hz  | on        | off       | 680000 | 0       |
| 850   | Hz | 0.002% | 850.0 Hz  | on        | off       | 560000 | 680000  |
| 900   | Hz | 0.002% | 900.0 Hz  | off       | off       | 24000  | 820000  |
| 950   | Hz | 0.005% | 949.9 Hz  | off       | off       | 47000  | 82000   |
| 1000  | Hz | 0.000% | 1000.0 Hz | on        | off       | 47000  | 910000  |
| 1500  | Hz | 0.002% | 1500.0 Hz | off       | off       | 8200   | 390000  |
| 2000  | Hz | 0.001% | 2000.0 Hz | off       | off       | 4300   | 470000  |
| 2500  | Hz | 0.003% | 2499.9 Hz | off       | on        | 200000 | 39000   |
| 3000  | Hz | 0.005% | 3000.2 Hz | on        | off       | 39000  | 10000   |
| 3500  | Hz | 0.014% | 3500.5 Hz | off       | off       | 1800   | 150000  |
| 4000  | Hz | 0.002% | 4000.1 Hz | on        | off       | 1200   | 270000  |

Ce tableau a été construit avec CALCULER\_POUR\_R1X\_ET\_R2X égal à **true**, ce qui signifie que les solutions peuvent comporter à la fois R1x et R2x.

### Peut-on atteindre toute fréquence ? (1/2)

Question subsidiaire : peut-on atteindre n'importe quelle fréquence entre 400 Hz et 4 000 Hz par le jeu des straps et des résistances R1x et R2x que l'on ajoute ? C'est la question à laquelle répond le code codes-c++/calcul-meilleurs-pontages-pour-gamme-frequences.cpp. Le code calcule pour chaque fréquence entre 400 Hz et 4000 Hz, par pas de 1 Hz, le meilleur choix de straps et de résistances R1x et R2X. Puis il classe ces résultats par écart décroissant, et retient les plus mauvais scores.

Si on examine le cas où l'on ne rajoute qu'une seule résistance (R1x ou R2x):

|         |        |           | ajoute qu'un |           | •     | ,       |
|---------|--------|-----------|--------------|-----------|-------|---------|
| *       |        |           |              |           |       | *       |
| F Cible | Écart  | F réel    | Strap R1L    | Strap R2L | R1x   | R2x     |
| 400 Hz  | 1.941% | 407.8 Hz  | off          | off       | 0     | 1000000 |
| 3933 Hz | 1.770% | 4002.6 Hz | on           | on        | 0     | 0       |
| 3932 Hz | 1.745% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3934 Hz | 1.744% | 4002.6 Hz | on           | on        | 0     | 0       |
| 3931 Hz | 1.720% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3935 Hz | 1.718% | 4002.6 Hz | on           | on        | 0     | 0       |
| 774 Hz  | 1.715% | 787.3 Hz  | on           | off       | 0     | 0       |
| 773 Hz  | 1.696% | 759.9 Hz  | off          | off       | 33000 | 0       |
| 3930 Hz | 1.695% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3936 Hz | 1.693% | 4002.6 Hz | on           | on        | 0     | 0       |
| 401 Hz  | 1.687% | 407.8 Hz  | off          | off       | 0     | 1000000 |
| 3929 Hz | 1.670% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3937 Hz | 1.667% | 4002.6 Hz | on           | on        | 0     | 0       |
| 3928 Hz | 1.645% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3938 Hz | 1.641% | 4002.6 Hz | on           | on        | 0     | 0       |
| 3927 Hz | 1.620% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3939 Hz | 1.615% | 4002.6 Hz | on           | on        | 0     | 0       |
| 3926 Hz | 1.595% | 3863.4 Hz | off          | on        | 33000 | 0       |
| 3940 Hz | 1.589% | 4002.6 Hz | on           | on        | 0     | 0       |
| 775 Hz  | 1.584% | 787.3 Hz  | on           | off       | 0     | 0       |
| *       |        |           |              |           |       | *       |

Ce tableau a été construit avec CALCULER\_POUR\_R1X\_ET\_R2X égal à **false**, ce qui signifie que les solutions ne comportent pas à la fois R1x et R2x.

### Peut-on atteindre toute fréquence ? (2/2)

...suite de la page précédente

Si on autorise la présence des deux résistances R1x et R2x :

| F Cible   Écart<br> | F réel       | Strap R1L | Strap R2L | R1x     | R2x     |
|---------------------|--------------|-----------|-----------|---------|---------|
| 400 Hz   1.941%     | 5   407.8 Hz | off       | off       | 0       | 1000000 |
| 401 Hz   1.687%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 402 Hz   1.434%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 403 Hz   1.182%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 404 Hz   0.932%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 405 Hz   0.682%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 406 Hz   0.434%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 421 Hz   0.287%     | 419.8 Hz     | off       | off       | 620000  | 6       |
| 416 Hz   0.214%     | 6   415.1 Hz | off       | off       | 750000  | 6       |
| 412 Hz   0.208%     | 5   411.1 Hz | off       | off       | 910000  | 6       |
| 414 Hz   0.196%     | 6   413.2 Hz | off       | off       | 820000  | 6       |
| 424 Hz   0.196%     | 424.8 Hz     | off       | off       | 0       | 470000  |
| 407 Hz   0.188%     | 6   407.8 Hz | off       | off       | 0       | 1000000 |
| 419 Hz   0.174%     | 5   419.7 Hz | off       | off       | 0       | 560000  |
| 589 Hz   0.153%     | 5   588.1 Hz | off       | off       | 270000  | 120000  |
| 559 Hz   0.150%     | 5   559.8 Hz | off       | off       | 430000  | 120000  |
| 706 Hz   0.141%     | 705.0 Hz     | off       | off       | 510000  | 47000   |
| 418 Hz   0.140%     | 6   417.4 Hz | off       | off       | 680000  | 6       |
| 410 Hz   0.133%     | 6   409.5 Hz | off off   | off       | 1000000 | 6       |
| 530 Hz   0.122%     | 5   529.4 Hz | off       | off       | 360000  | 180000  |

Ce tableau a été construit avec CALCULER\_POUR\_R1X\_ET\_R2X égal à **true**, ce qui signifie que les solutions peuvent comporter à la fois R1x et R2x.

## B

### Réalisation de la carte

### Carte envisagée

La carte contient 4 voies identiques.

Elle est alimentée en +18V:

https://www.tme.eu/fr/details/gs06e-5p1j/blocs-dalimentation-a-prise/mean-well/



### **Connectique BNC**

Connecteur angulaire, 50  $\Omega$ .

https://www.tme.eu/fr/details/bnc-123/connecteurs-bnc/

https://www.tme.eu/fr/details/b6252h5npp3g50/ connecteurs-bnc/amphenol-communications-solutions/ b6252h5-npp3g-50/





### **Condensateurs 1%**

Condensateur céramique 4,7 nF 1%, boitier 2,0 mm \* 1,2 mm.

https://www.tme.eu/fr/details/0805n472f500ct/condensateurs-mlcc-smd-0805/walsin/



### Circuit imprimé



# 

## Simulations Spice

### Le montage simulé



La simulation est réalisée avec un TL074 alimenté en ± 15V.

Les valeurs choisies sont : R1 = 120 k $\Omega$ , R2 = 68 k $\Omega$ , C1 = C2 = 4,7 nF.

La fréquence de coupure théorique est 374 Hz, on effectue un balayage entre 100 Hz et 1 kHz.

#### Modèle du TL074

```
* TL074 OPERATIONAL AMPLIFIER "MACROMODEL"
                                                          6 0 11 12 282.8E-6
                                                    GA
                                                    GCM 0 6 10 99 8.942E-9
SUBCIRCUIT
* CREATED USING PARTS RELEASE 4.01 ON 06/16/89 AT
                                                    ISS 3 10 DC 195.0E-6
                                                    HLIM 90 0 VLIM 1K
13:08
* (REV N/A)
                                                    J1 11 2 10 JX
              SUPPLY VOLTAGE: +/-15V
* CONNECTIONS:
              NON-INVERTING INPUT
                                                    J2 12 1 10 JX
               INVERTING INPUT
                                                    R2 6 9 100.0E3
                  POSITIVE POWER SUPPLY
                                                    RD1 4 11 3.536E3
                  NEGATIVE POWER SUPPLY
                                                         4 12 3.536E3
                                                    RD2
                                                         8 5 150
                   | OUTPUT
                                                    R01
                                                    RO2 7 99 150
.SUBCKT TL074
               1 2 3 4 5
                                                         3 4 2.143E3
                                                    RP
                                                    RSS 10 99 1.026E6
                                                         9 0 DC 0
 C1 11 12 3.498E-12
                                                    VB
 C2 6 7 15.00E-12
                                                    VC 3 53 DC 2.200
 DC 5 53 DX
                                                    VE 54 4 DC 2.200
                                                    VLIM 7 8 DC 0
 DE 54 5 DX
 DLP 90 91 DX
                                                    VLP 91 0 DC 25
 DLN 92 90 DX
                                                    VLN 0 92 DC 25
 DP 4 3 DX
                                                   .MODEL DX D(IS=800.0E-18)
 EGND 99 0 POLY(2) (3,0) (4,0) 0 .5 .5
                                                   .MODEL JX PJF(IS=15.00E-12 BETA=270.1E-6 VTO=-1)
  FB
        7 99 POLY(5) VB VC VE VLP VLN 0 4.715E6
                                                   .ENDS
-5E6 5E6 5E6 -5E6
```

### Code de la simulation

```
* Alimentations de l'AOP
Vcc+ 5 0 DC 15
Vcc- 6 0 DC -15
XOP 3 4 5 6 4 TL074
R1 1 2 120k
R2 2 3 68k
C1 2 4 4.7n
C2 3 0 4.7n
* Sur l'entrée, une source sinusoïdale
VIN 1 0 AC 1
.control
ac dec 100 100 1000
plot vdb(4)
plot vp(4)
.endc
.end
```

### Gain en dB



Cette courbe est le gain en dB entre 100 Hz et 1 kHz. Le gain de -6 dB est atteint pour 360 Hz environ.

### Phase en degré



Cette courbe est la phase en degrés entre 100 Hz et 1 kHz. La phase de -90° est atteint pour 375 Hz environ.