例 7.4: 在平炉上改进方法增加钢产量。在同一座炉上分别用两种方法交替炼钢, 各 10 炉, 钢 得率如下:

设两个样本相互独立,分别来自正态分布 $\mathbb{N}(\mu_1, \sigma_1^2)$, $\mathbb{N}(\mu_2, \sigma_2^2)$, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均未知(假设 $\sigma_1 = \sigma_2^2$),问是否有理由认为新方法提高了钢产率 ($\alpha = 0.05$)?

$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$$

计算得 $\chi^2 = \frac{(26-1)\times 9200}{5000} = 46$
查表得 $\chi_{0.02}^2(25) = 44.314$
 $\chi^2 > \chi_{0.01}^2(25)$

拒绝接受 H₀, 可以推断波动较以往有显著变化。

例 7.8: 生产的某型号电池, 其寿命服从方差 $\sigma^2 = 5000$ 的正态分布. 随机取 26 个电池, 测出样本方差为 $s^2 = 9200$, 问能否推断波动较以往显著变化 ($\alpha = 0.02$)?

$$H_0: \sigma_1^2 \le \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$$

计算得
$$S_1 = 3.32, S_2 = 2.22$$
 $F = \frac{S_1^2}{S_2^2} = 1.50$

$$F < F_{0.05}(9,9)$$

样本没有落入拒绝域,故不能拒绝 H_0 ,没有理由这样认为

例 7.8: 生产的某型号电池, 其寿命服从方差 $\sigma^2 = 5000$ 的正态分布. 随机取 26 个电池, 测出样本方差为 $s^2 = 9200$, 问能否推断波动较以往显著变化 ($\alpha = 0.02$)?

以老方法减去新方法得到新得一组数据

$$H_0: \mu \ge 0, H_1: \mu < 0$$

计算得
$$\overline{X} = -3.2$$
, $S^2 = 5.8$, $t = \frac{-3.2}{\sqrt{\frac{5.8}{10}}} = -4.21$

查表得 -
$$t_{0.05}(9) = -1.833$$

$$t < t_{0.05}(9)$$

落入拒绝域,拒绝 H_0 ,故新方法产量增加在统计意义上显著