Problem Set 5

Zong-Hong, Cheng

October, 2021

Answer 1.

Suppose that x(p, w) is the maximizer of preference relation on B(p, w). Notice that for another w', we have $\frac{w'}{w}x(p, w) \succ \frac{w'}{w}y$ for all $y \in B(p, w)$. However, $\frac{w'}{w}y$ runs over B(p, w'), hence $\frac{w'}{w}x(p, w)$ is the maximizer of preference relation on B(p, w').

Answer 2.

There are two cases, one is $x_1^* = 0$ remains not changed when w changes, the other is growing along with w grows.

Suppose that $x_1(p,w)$ is not zero and w grows to w'. Then $(x_1(p,w) + \frac{w'-w}{p_1}, x_2(p,w)) \succ (y_1(p,w) + \frac{w'-w}{p_1}, y_2(p,w))$ for all $y = (y_1, y_2) \in B(p,w)$. It remains to show that $(x_1(p,w) + \frac{w'-w}{p_1}, x_2(p,w)) \succ z$ when $z = (z_1, z_2)$ with $z_1 < \frac{w'-w}{p_1}$. However, since $(x_1(p,w) \neq 0)$, if $z \gtrsim (x_1(p,w) + \frac{w'-w}{p_1}, x_2(p,w))$, then by strict convexity, we have

$$(\frac{x_1(p,w)}{2} + \frac{w'-w}{p_1}, x_2(p,w) + \frac{x_1(p,w)}{2} \frac{p_1}{p_2}),$$

which contradicts to our first part.

Answer 3.

a. When $p_1 = p_2$, $X(p, w) = \{(x_1, x_2) | x_1 + x_2 = \frac{w}{p} \}$. When $p_1 > p_2$, $X(p, w) = \{(0, \frac{w}{p_2})\}$. When $p_1 < p_2$, $X(p, w) = \{(\frac{w}{p_1}, 0)\}$.

b. Let $b^n \in X(p^n, w^n)^r$ and p^n, w^n, b^n are a convergent sequence with limit p, w, b respectively. Not hard to see that $pb \leq w$. Suppose that $b \notin X(p, w)$, then there exists $z \in X(p, w)$. By continuity, there exists some r > 0 such that for all $z' \in B_r(z)$, $b' \in B_r(b)$, we have $z' \succ b'$.

However, for n large enough, we have $b^n \in B_r(b)$ and $B_r(z) \cap B(p^n, w^n) \neq \emptyset$. Choose such n and pick $z' \in B_r(z) \cap B(p^n, w^n)$, we have $z' \succ b^n$, which is impossible.

Thus, $b \in X(p, w)$.

Answer 4.

a. Yes. define $(1,k) \succ y$ if $y = (y_1, y_2)$ and $y_1 \neq 1$. Moreover, $(1,k_1) \succ (1,k_2)$ if $k_1 > k_2$. Easy to see that the preference is acyclical.

b. No, suppose it is and consider two cases. 1. $p_1=2, p_2=1$: Not hard to calculate that $x_1=\frac{p_1w}{p_1^2+p_2^2}=\frac{2}{5}w$ and $x_2=\frac{1}{5}w$. Notice that $(\frac{1}{5}w,\frac{2}{5}w)$ is also a

feasible choice, so $(\frac{1}{5}w, \frac{2}{5}w) \prec (\frac{2}{5}w, \frac{1}{5}w)$.

2. $p_1 = 1, p_2 = 2$: Similarly, $(\frac{1}{5}w, \frac{2}{5}w) \succ (\frac{2}{5}w, \frac{1}{5}w)$. The result of these two cases contradicts to each other. Done!