Machine Learning para Inteligencia Artificial

Modelos Lineales: Regresión Logística

Universidad ORT Uruguay

28 de Mayo, 2025

Definiciones preliminares

Logits

- \blacksquare Si un evento tiene probabilidad p, su odds ratio es p/(1-p).
- Su logit o log-odds es logit(p) = ln[odds] = ln [p/(1-p)].

La función sigmoidea

logit : $(0,1) \to \mathbb{R}$ es invertible y su inversa es la función sigmoidea:

$$egin{aligned} \sigma: \mathbb{R} &
ightarrow (0,1) \ \sigma(z) &= \mathsf{logit}^{-1}(z) = rac{1}{1 + \mathsf{exp}(-z)} \end{aligned}$$

Es una forma muy utilizada de parametrizar probabilidades.

Logits y función sigmoidea

Regresión logística: caso univariado (binario)

- A pesar del nombre regresión es un algoritmo de clasificación.
- Consiste en aprender la probabilidad condicional $p = \text{Prob}\{y = 1 \mid x\}$.
- Es un modelo lineal en los logits:

$$\mathsf{logit}(p) = b + wx = [1, x] \left[egin{array}{c} b \\ w \end{array}
ight] = oldsymbol{x}^ op oldsymbol{ heta}, \qquad oldsymbol{ heta} = \left[egin{array}{c} b \\ w \end{array}
ight] \in \mathbb{R}^2$$

De forma equivalente:

$$\mathsf{Prob}\{y = 1 \mid x\} = \sigma\left(\boldsymbol{x}^{\top}\boldsymbol{\theta}\right)$$

Clasificador: Por defecto h(x) = 1 si y solo si $Prob\{y = 1 \mid x\} \ge 1/2$.

Función de pérdida

La función de pérdida es la Binary Cross-Entropy (BCE):

$$\mathsf{BCE}\left(\widehat{p},y\right) = \mathsf{Loss}\left(\widehat{p},y\right) = -\Big[y\ln\left\{\widehat{p}\right\} + (1-y)\ln\left\{1-\widehat{p}\right\}\Big]$$

■ Motivación: máxima verosimilitud

Binary Cross Entropy Cost = Neg Log Likelihood

$$\mathsf{Cost}_{\mathcal{T}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \mathsf{BCE}\left(\widehat{p}_{i}, y_{i}\right)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \left[y_{i} \ln \left\{\widehat{p}_{i}\right\} + (1 - y_{i}) \ln \left\{1 - \widehat{p}_{i}\right\} \right]$$

$$= -\frac{1}{N} \sum_{y_{i}=1} \ln \left\{\widehat{p}_{i}\right\} - \frac{1}{N} \sum_{y_{i}=0} \ln \left\{1 - \widehat{p}_{i}\right\}$$

$$\mathsf{Cost}_{\mathcal{T}}(oldsymbol{ heta}) = oldsymbol{E} \left\{ \underbrace{- \mathsf{In} \left[\, \mathsf{Prob}(y = y_i \mid oldsymbol{x}_i)
ight]}_{\mathsf{Neg \ Log \ Likelihood}}
ight\}$$

Ejemplo: predicción del sexo

Etiqueta

Sexo 0: Femenino, 1: Masculino

Atributos

- Altura (cm)
- Mano (cm)
- Peso (kg)

Sexo	Altura	Mano	Peso
F	164.0	19.7	56.9
M	177.8	22.5	74.7

Ejemplo: proporción en función de Altura

Ejemplo: aproximamos la proporción con una sigmoide

Ejemplo: función de pérdida y sigmoide

Regresión logística: entrenamiento

■ Queremos encontrar el $\theta = [b, w]^{\top}$ que **minimiza** el riesgo empírico:

$$\widehat{oldsymbol{ heta}} = \mathop{\mathsf{arg\,min}}_{oldsymbol{ heta}} \Big\{ \, \mathsf{Cost}_{\mathcal{T}}(oldsymbol{ heta}) \Big\}$$

- A diferencia con Regresión Lineal, no hay fórmula para $\widehat{\theta}$.
- Debe calcularse numéricamente con algún algoritmo de optimización.
- En sklearn disponemos de los siguientes métodos de optimización:

lbfgs, liblinear, newton-cg, newton-cholesky, sag, saga

Regresión logística: caso multivariado (binario)

- **Espacio de atributos**: $\mathcal{X} \subset \mathbb{R}^D$
- Ahora el modelo es

$$\widehat{p} = \sigma\left(\mathbf{x}^{\top}\mathbf{\theta}\right) = \frac{1}{1 + e^{-\mathbf{x}^{\top}\mathbf{\theta}}}$$

en donde los vectores ${m x}$ y ${m heta}$ están dados por

$$oldsymbol{x} = egin{bmatrix} 1 \ x^{(1)} \ dots \ x^{(D)} \end{bmatrix} \qquad oldsymbol{ heta} = egin{bmatrix} b \ w_1 \ dots \ w_D \end{bmatrix}$$

Regresión logística: caso multivariado (binario)

■ El producto matricial representa

$$\operatorname{logit}(\widehat{p}) = egin{bmatrix} 1 & x^{(1)} & \dots & x^{(D)} \end{bmatrix} egin{bmatrix} b \ w_1 \ dots \ w_D \end{bmatrix} = b + \sum_{j=1}^D w_j x^{(j)}$$

Considerando la matriz de diseño y el vector de etiquetas (o targets):

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^{\top} \\ \mathbf{x}_2^{\top} \\ \vdots \\ \mathbf{x}_N^{\top} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_1^{(D)} \\ 1 & x_2^{(1)} & \cdots & x_2^{(D)} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_N^{(1)} & \cdots & x_N^{(D)} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_N \end{bmatrix}$$

lacksquare La función de pérdida compara $\widehat{m{p}} = \sigma\left(m{X}m{ heta}
ight)$ con $m{y}$ al igual que antes.

Ejemplo: predicción del Sexo (2D)

id	Peso (g)	PH	Fruta
0	139	3.9	0 (manzana)
1	130	3.0	1 (naranja)
2	170	3.7	0 (manzana)
3	140	3.6	0 (manzana)
4	135	3.1	1 (naranja)
5	150	3.5	0 (manzana)
6	145	2.9	1 (naranja)
7	160	3.2	1 (naranja)
8	155	3.8	0 (manzana)
9	147	3.0	0 (manzana)
10	140	3.3	1 (naranja)
11	160	3.5	1 (naranja)

La **frontera de decisión** es la curva $\mathbf{x}^{\top} \boldsymbol{\theta} = 0$ (o de forma equivalente $\widehat{p} = 1/2$)

Regresión logística: funciones base

El sesgo inductivo es

$$\mathcal{H} = \left\{ h_{\theta} : \mathbf{x} \mapsto \sigma \left(b + w_1 h_1(\mathbf{x}) + w_2 h_2(\mathbf{x}) + \dots + w_K h_K(\mathbf{x}) \right) \right\}$$

- Casos particulares son:
 - Regresión polinomial: cuando $h_i(x)$ son productos de potencias $x^{(i)}$
 - Regresión trigonométrica: cuando $h_j(x)$ son funciones trigonométricas
- La relación entre logit (\hat{p}) y los coeficientes $\theta = (b, w)$ sigue siendo lineal
- Mismo procedimiento al caso multivariado considerando la matriz de diseño:

$$oldsymbol{\mathcal{X}} = \left[egin{array}{cccc} 1 & h_1\left(oldsymbol{x}_1
ight) & \cdots & h_K\left(oldsymbol{x}_1
ight) \ dots & dots & dots & dots \ 1 & h_1\left(oldsymbol{x}_N
ight) & \cdots & h_K\left(oldsymbol{x}_N
ight) \end{array}
ight]$$

Bibliografía

■ An introduction to statistical learning with applications in Python. Cap 4.2.

■ Machine Learning - A First Course for Engineers and Scientists. Capítulo 3.2.