Multi-agent learning

Conditional Regret

Gerard Vreeswijk, Intelligent Systems Group, Computer Science Department, Faculty of Sciences, Utrecht University, The Netherlands.

Thursday 19th February, 2015

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col:

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ B & 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row:

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ B & 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row:

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ B & 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hy

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row:

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hyr

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hy

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row:

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hy

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hyro

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Better for row to play *R* in the three periods where he actually played *Y*?

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hy

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Better for row to play *R* in the three periods where he actually played *Y*?

Actual payoff Y: 3×0

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hy

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: *R B Y Y B R R Y R Y*

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Better for row to play *R* in the three periods where he actually played *Y*?

- Actual payoff Y: 3×0
- Hypothetical payoff $R: 3 \times 1$.

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ B & 0,0 & 0,1 & 1,0 \end{pmatrix}$$

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Better for row to play *R* in the three periods where he actually played *Y*?

- Actual payoff Y: 3×0
- Hypothetical payoff $R: 3 \times 1$.
- Average regret: (3-0)/10.

Shapley's game:

$$G = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} 1,0 & 0,0 & 0,1 \\ 0,1 & 1,0 & 0,0 \\ 0,0 & 0,1 & 1,0 \end{pmatrix}$$
Hyperson

Rounds: 1 2 3 4 5 6 7 8 9 10

Action col: R B Y Y B R R Y R Y

Action row: R R B B B Y Y R Y R

Payoff row: 1 0 0 0 1 0 0 0 0

Hyp. action row: RRBBBRRRRR

Hyp. payoff row: 1 0 0 0 1 1 1 0 1 0

Better for row to play *R* in the three periods where he actually played *Y*?

- Actual payoff Y: 3×0
- Hypothetical payoff $R: 3 \times 1$.
- Average regret: (3-0)/10.

The complete conditional regret matrix is:

$$\mathbf{R} = \begin{array}{ccc} R & Y & B \\ R = \begin{array}{cccc} R & 0.0 & 0.1 & 0.0 \\ 0.3 & 0.0 & 0.0 \\ -0.1 & 0.1 & 0.0 \end{array} \right)$$

Row: original actions;

column: alternative actions.

The conditional regret matrix at time t is

$$R^{t}(\omega) =_{Def} \begin{pmatrix} (u(1, y^{t}) - u(1, y^{t}))e_{1}^{t} & \dots & (u(k, y^{t}) - u(1, y^{t}))e_{1}^{t} \\ \vdots & \ddots & \vdots \\ (u(1, y^{t}) - u(k, y^{t}))e_{k}^{t} & \dots & (u(k, y^{t}) - u(k, y^{t}))e_{k}^{t} \end{pmatrix}$$

The conditional regret matrix at time t is

$$R^{t}(\omega) =_{Def} \begin{pmatrix} (u(1, y^{t}) - u(1, y^{t}))e_{1}^{t} & \dots & (u(k, y^{t}) - u(1, y^{t}))e_{1}^{t} \\ \vdots & \ddots & \vdots \\ (u(1, y^{t}) - u(k, y^{t}))e_{k}^{t} & \dots & (u(k, y^{t}) - u(k, y^{t}))e_{k}^{t} \end{pmatrix}$$

The player's conditional regrets through time t are given by the average of the R^{t} 's:

$$\bar{R}^t =_{Def} \frac{1}{t} \sum_{s=1}^t R^t.$$

The conditional regret matrix at time t is

$$R^{t}(\omega) =_{Def} \begin{pmatrix} (u(1, y^{t}) - u(1, y^{t}))e_{1}^{t} & \dots & (u(k, y^{t}) - u(1, y^{t}))e_{1}^{t} \\ \vdots & \ddots & \vdots \\ (u(1, y^{t}) - u(k, y^{t}))e_{k}^{t} & \dots & (u(k, y^{t}) - u(k, y^{t}))e_{k}^{t} \end{pmatrix}$$

The player's conditional regrets through time t are given by the average of the R^t 's:

$$\bar{R}^t =_{Def} \frac{1}{t} \sum_{s=1}^t R^t.$$

■ Both \bar{R}^t and \bar{R}^t have zeros on the diagonal.

The conditional regret matrix at time t is

$$R^{t}(\omega) =_{Def} \begin{pmatrix} (u(1, y^{t}) - u(1, y^{t}))e_{1}^{t} & \dots & (u(k, y^{t}) - u(1, y^{t}))e_{1}^{t} \\ \vdots & \ddots & \vdots \\ (u(1, y^{t}) - u(k, y^{t}))e_{k}^{t} & \dots & (u(k, y^{t}) - u(k, y^{t}))e_{k}^{t} \end{pmatrix}$$

The player's conditional regrets through time t are given by the average of the R^t 's:

$$\bar{R}^t =_{Def} \frac{1}{t} \sum_{s=1}^t R^t.$$

- Both \bar{R}^t and \bar{R}^t have zeros on the diagonal.
- The average conditional regret vector at time t, \bar{r}^t , is just the sum of the columns of \bar{R}^t .

Author: Gerard Vreeswijk. Slides last modified on February 19th, 2015 at 21:55

■ Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.

- Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.
- Actions of row player: $x \in X$. Actions of nature: $y \in Y$.

- Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.
- Actions of row player: $x \in X$. Actions of nature: $y \in Y$.
- Vector-valued payoffs for row player: $v(x,y) \in \mathbb{R}^m$.

- Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.
- Actions of row player: $x \in X$. Actions of nature: $y \in Y$.
- Vector-valued payoffs for row player: $v(x,y) \in \mathbb{R}^m$.
- \blacksquare Let V be the vector-valued payoff matrix for the row player.

- Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.
- Actions of row player: $x \in X$. Actions of nature: $y \in Y$.
- Vector-valued payoffs for row player: $v(x, y) \in \mathbb{R}^m$.
- \blacksquare Let V be the vector-valued payoff matrix for the row player.
- Consider a set of, for row, desirable payoffs $C \subseteq \mathbb{R}^m$.

- Blackwell's approachability theorem might be considered as the vector-valued form of the minmax-theorem.
- Actions of row player: $x \in X$. Actions of nature: $y \in Y$.
- Vector-valued payoffs for row player: $v(x, y) \in \mathbb{R}^m$.
- \blacksquare Let V be the vector-valued payoff matrix for the row player.
- Consider a set of, for row, desirable payoffs $C \subseteq \mathbb{R}^m$.
- If the row player has a strategy $\sigma: H \to \Delta(X)$ such that

$$\lim_{t\to\infty} d(\bar{v}^t, C) = 0 \quad \text{a.s.}$$

then C is said to be approachable.

Author: Gerard Vreeswijk. Slides last modified on February 19th, 2015 at 21:55

Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.

- Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.
- Let

$$\mathbf{W} =_{Def} \begin{pmatrix} \alpha \cdot u(x_1, y_1) & \dots & \alpha \cdot u(x_1, y_l) \\ \vdots & \ddots & \vdots \\ \alpha \cdot u(x_k, y_1) & \dots & \alpha \cdot u(x_k, y_l) \end{pmatrix}.$$

- Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.
- Let

$$\mathbf{W} =_{Def} \begin{pmatrix} \alpha \cdot u(x_1, y_1) & \dots & \alpha \cdot u(x_1, y_l) \\ \vdots & \ddots & \vdots \\ \alpha \cdot u(x_k, y_1) & \dots & \alpha \cdot u(x_k, y_l) \end{pmatrix}.$$

Suppose for some $q^N \in \Delta(Y)$ and some $\delta > 0$ we have $\mathbf{W}q^N \geq (\delta, \dots, \delta)$.

- Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.
- Let

$$\mathbf{W} =_{Def} \begin{pmatrix} \alpha \cdot u(x_1, y_1) & \dots & \alpha \cdot u(x_1, y_l) \\ \vdots & \ddots & \vdots \\ \alpha \cdot u(x_k, y_1) & \dots & \alpha \cdot u(x_k, y_l) \end{pmatrix}.$$

- Suppose for some $q^N \in \Delta(Y)$ and some $\delta > 0$ we have $\mathbf{W}q^N \geq (\delta, \dots, \delta)$.
- Then immediately (by def. of expectation): $E[v \cdot \alpha] \ge \delta$.

- Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.
- Let

$$\mathbf{W} =_{Def} \begin{pmatrix} \alpha \cdot u(x_1, y_1) & \dots & \alpha \cdot u(x_1, y_l) \\ \vdots & \ddots & \vdots \\ \alpha \cdot u(x_k, y_1) & \dots & \alpha \cdot u(x_k, y_l) \end{pmatrix}.$$

- Suppose for some $q^N \in \Delta(Y)$ and some $\delta > 0$ we have $\mathbf{W}q^N \geq (\delta, \dots, \delta)$.
- Then immediately (by def. of expectation): $E[v \cdot \alpha] \ge \delta$.
- By the strong law of large numbers for dependent r.v.'s

$$\lim_{t\to\infty} \bar{v}^t \cdot \alpha \geq \delta$$
 a.s

When a half-space c is unapproachable

- Let $\alpha \in \mathbb{R}^m$, $\alpha \neq 0$ and $C =_{Def} \{ v \in \mathbb{R}^m \mid \alpha \cdot v \leq 0 \}$.
- Let

$$\mathbf{W} =_{Def} \begin{pmatrix} \alpha \cdot u(x_1, y_1) & \dots & \alpha \cdot u(x_1, y_l) \\ \vdots & \ddots & \vdots \\ \alpha \cdot u(x_k, y_1) & \dots & \alpha \cdot u(x_k, y_l) \end{pmatrix}.$$

- Suppose for some $q^N \in \Delta(Y)$ and some $\delta > 0$ we have $\mathbf{W}q^N \geq (\delta, \dots, \delta)$.
- Then immediately (by def. of expectation): $E[v \cdot \alpha] \ge \delta$.
- By the strong law of large numbers for dependent r.v.'s

$$\lim_{t\to\infty} \bar{v}^t \cdot \alpha \geq \delta \text{ a.s.}$$

By definition of C we have $\lim_{t\to\infty} d(\bar{v}^t,C) \geq \delta$ a.s. Author: Gerard Vreeswijk. Slides last modified on February 19th, 2015 at 21:55 Multi-agent learning: Conditional Regret

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

■ Suppose there is no $q^N \in \Delta(Y)$ such that some $\delta > 0$ we have

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

■ Let $A =_{Def}$ the convex hull of **W**'s columns.

■ Suppose there is no $q^N \in \Delta(Y)$ such that some $\delta > 0$ we have

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

■ Let $A =_{Def}$ the convex hull of **W**'s columns.

By inequality (1), *A* does not meet the positive orthant.

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

- Let $A =_{Def}$ the convex hull of W's columns. By inequality (1), A does not meet the positive orthant.
- Let \mathbb{R}_{++}^m denote the strictly positive orthant. This set is also convex.

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

- Let $A =_{Def}$ the convex hull of W's columns. By inequality (1), A does not meet the positive orthant.
- Let \mathbb{R}_{++}^m denote the strictly positive orthant. This set is also convex.
- \blacksquare Also, A and \mathbb{R}^m_{++} are disjoint.

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

- Let $A =_{Def}$ the convex hull of W's columns. By inequality (1), A does not meet the positive orthant.
- Let \mathbb{R}_{++}^m denote the strictly positive orthant. This set is also convex.
- \blacksquare Also, A and \mathbb{R}_{++}^m are disjoint.
- From the separating hyperplane theorem it follows that there is a vector $q^* \in \mathbb{R}^m$ such that $q^* \mathbf{W} \leq 0$.

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

- Let $A =_{Def}$ the convex hull of W's columns. By inequality (1), A does not meet the positive orthant.
- Let \mathbb{R}_{++}^m denote the strictly positive orthant. This set is also convex.
- \blacksquare Also, A and \mathbb{R}_{++}^m are disjoint.
- From the separating hyperplane theorem it follows that there is a vector $q^* \in \mathbb{R}^m$ such that $q^* \mathbf{W} \leq 0$.
- Without loss of generality, $q^* \in \Delta^m$.

$$\mathbf{W}q^N \ge (\delta, \dots, \delta). \tag{1}$$

- Let $A =_{Def}$ the convex hull of W's columns. By inequality (1), A does not meet the positive orthant.
- Let \mathbb{R}_{++}^m denote the strictly positive orthant. This set is also convex.
- \blacksquare Also, A and \mathbb{R}_{++}^m are disjoint.
- From the separating hyperplane theorem it follows that there is a vector $q^* \in \mathbb{R}^m$ such that $q^* \mathbf{W} \leq 0$.
- Without loss of generality, $q^* \in \Delta^m$.
- Claim: q^* ensures that row player approaches C.

Author: Gerard Vreeswijk. Slides last modified on February 19th, 2015 at 21:55

Claim: q^* ensures that row player approaches C.

- \blacksquare Claim: q^* ensures that row player approaches C.
- Let v^1, v^2, \ldots be the payoffs that result when q^* is played by the row player.

- Claim: q^* ensures that row player approaches C.
- Let v^1, v^2, \ldots be the payoffs that result when q^* is played by the row player.
- The sequence of r.v.'s $w^1, w^2, \ldots = \alpha \cdot v^1, \alpha \cdot v^2, \ldots$ is bounded.

- \blacksquare Claim: q^* ensures that row player approaches C.
- Let v^1, v^2, \ldots be the payoffs that result when q^* is played by the row player.
- The sequence of r.v.'s $w^1, w^2, \ldots = \alpha \cdot v^1, \alpha \cdot v^2, \ldots$ is bounded.
- Because q^* **W** ≤ 0,

$$E[w^t \mid w^1, \dots, w^{t-1}] \le 0.$$

- \blacksquare Claim: q^* ensures that row player approaches C.
- Let v^1, v^2, \ldots be the payoffs that result when q^* is played by the row player.
- The sequence of r.v.'s $w^1, w^2, \ldots = \alpha \cdot v^1, \alpha \cdot v^2, \ldots$ is bounded.
- Because $q^* \mathbf{W} \le 0$, $E[w^t \mid w^1, ..., w^{t-1}] < 0.$

■ By the strong law of large numbers for dependent r.v.'s

$$\limsup_{t\to\infty} \bar{w}^t \leq 0$$
 a.s.

- \blacksquare Claim: q^* ensures that row player approaches C.
- Let v^1, v^2, \ldots be the payoffs that result when q^* is played by the row player.
- The sequence of r.v.'s $w^1, w^2, \ldots = \alpha \cdot v^1, \alpha \cdot v^2, \ldots$ is bounded.
- Because $q^* \mathbf{W} \le 0$, $E[w^t \mid w^1, ..., w^{t-1}] < 0.$

■ By the strong law of large numbers for dependent r.v.'s

$$\limsup_{t\to\infty} \bar{w}^t \leq 0 \quad \text{a.s.}$$

Therefore $\lim_{t\to\infty} d(\bar{v}^t, C) = 0$ a.s.

Tangent plane

Blackwell's theorem make use of the concept of tangent plane:

Theorem (Blackwell, 1956) Let G be a finite two-player game with payoffs in \mathbb{R}^m . A closed non-empty convex set C in \mathbb{R}^m is approachable by the row player if and only if every tangent half-space containing C is approachable.

■ If $\bar{v}^t \in C$ then play anything.

- If $\bar{v}^t \in C$ then play anything.
- If $\bar{v}^t \notin C$ then play a q on the rows

- If $\bar{v}^t \in C$ then play anything.
- If $\bar{v}^t \notin C$ then play a q on the rows such that the expected payoff next period lies in the half-space

- If $\bar{v}^t \in C$ then play anything.
- If $\bar{v}^t \notin C$ then play a q on the rows such that the expected payoff next period lies in the half-space orthogonal to $\bar{v}^t v^*$ containing C.

(Result left hanging in Ch. 2)

Author: Gerard Vreeswijk. Slides last modified on February 19^{th} , 2015 at 21:55

■ Let
$$X =_{Def} \{1, 2, ..., k\}$$
.

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

$$\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$$

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- $\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$
- Let \bar{r}^t be the average of the vector-valued payoffs r^1, \ldots, r^t .

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- $\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$
- Let \bar{r}^t be the average of the vector-valued payoffs r^1, \ldots, r^t .
- The goal is to let $\bar{r}^t \leq 0$ as t becomes large.

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- $\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$
- Let \bar{r}^t be the average of the vector-valued payoffs r^1, \ldots, r^t .
- The goal is to let $\bar{r}^t \leq 0$ as t becomes large.
- Hence, the goal is to approach the convex set $C = \mathbb{R}^k_-$.

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- $\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$
- Let \bar{r}^t be the average of the vector-valued payoffs r^1, \ldots, r^t .
- The goal is to let $\bar{r}^t \leq 0$ as t becomes large.
- \blacksquare Hence, the goal is to approach the convex set $C = \mathbb{R}^k_-$.
- Suppose $\bar{r}^t \notin C$. Then the closest point in C is \bar{r}_-^t .

- Let $X =_{Def} \{1, 2, ..., k\}$.
- Let

$$r(x,y) =_{Def} [u(1,y) - u(x,y), ..., u(k,y) - u(x,y)].$$

- $\blacksquare \text{ Let } r^t =_{Def} r(x_t, y_t).$
- Let \bar{r}^t be the average of the vector-valued payoffs r^1, \ldots, r^t .
- The goal is to let $\bar{r}^t \leq 0$ as t becomes large.
- Hence, the goal is to approach the convex set $C = \mathbb{R}^k_-$.
- Suppose $\bar{r}^t \notin C$. Then the closest point in C is \bar{r}_-^t .
- Blackwell: randomise play such that $E[r^{t+1}] \perp (\bar{r}^t \bar{r}_-^t)$, so $E[r^{t+1}] \perp \bar{r}_+^t$.

Let A be

$$\begin{pmatrix} u(1,y^{t+1}) - u(1,y^{t+1}) & u(2,y^{t+1}) - u(1,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(1,y^{t+1}) \\ u(1,y^{t+1}) - u(2,y^{t+1}) & u(2,y^{t+1}) - u(2,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(2,y^{t+1}) \\ & \vdots & & \vdots & \ddots & \vdots \\ u(1,y^{t+1}) - u(k,y^{t+1}) & u(2,y^{t+1}) - u(k,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(k,y^{t+1}) \end{pmatrix}$$

Let A be

$$\begin{pmatrix} u(1,y^{t+1}) - u(1,y^{t+1}) & u(2,y^{t+1}) - u(1,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(1,y^{t+1}) \\ u(1,y^{t+1}) - u(2,y^{t+1}) & u(2,y^{t+1}) - u(2,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(2,y^{t+1}) \\ \vdots & \vdots & \ddots & \vdots \\ u(1,y^{t+1}) - u(k,y^{t+1}) & u(2,y^{t+1}) - u(k,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(k,y^{t+1}) \end{pmatrix}$$

■ If q is played, $E[r^{t+1}]$ can be written as $q\mathbf{A}$.

Let A be

$$\begin{pmatrix} u(1,y^{t+1}) - u(1,y^{t+1}) & u(2,y^{t+1}) - u(1,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(1,y^{t+1}) \\ u(1,y^{t+1}) - u(2,y^{t+1}) & u(2,y^{t+1}) - u(2,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(2,y^{t+1}) \\ \vdots & \vdots & \ddots & \vdots \\ u(1,y^{t+1}) - u(k,y^{t+1}) & u(2,y^{t+1}) - u(k,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(k,y^{t+1}) \end{pmatrix}$$

- If q is played, $E[r^{t+1}]$ can be written as $q\mathbf{A}$.
- To apply Blackwell's theorem, we must ensure $q\mathbf{A} \perp \bar{r}_+^t$, i.e., $q\mathbf{A}\bar{r}_+^t = 0$.

Eliminating regret

Let A be

$$\begin{pmatrix} u(1,y^{t+1}) - u(1,y^{t+1}) & u(2,y^{t+1}) - u(1,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(1,y^{t+1}) \\ u(1,y^{t+1}) - u(2,y^{t+1}) & u(2,y^{t+1}) - u(2,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(2,y^{t+1}) \\ \vdots & \vdots & \ddots & \vdots \\ u(1,y^{t+1}) - u(k,y^{t+1}) & u(2,y^{t+1}) - u(k,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(k,y^{t+1}) \end{pmatrix}$$

- If q is played, $E[r^{t+1}]$ can be written as $q\mathbf{A}$.
- To apply Blackwell's theorem, we must ensure $q\mathbf{A} \perp \bar{r}_+^t$, i.e., $q\mathbf{A}\bar{r}_+^t = 0$.
- Since A is skew-symmetric ($\mathbf{A} = -\mathbf{A}^T$), we have

$$q\mathbf{A}q^T=0$$

Eliminating regret

Let A be

$$\begin{pmatrix} u(1,y^{t+1}) - u(1,y^{t+1}) & u(2,y^{t+1}) - u(1,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(1,y^{t+1}) \\ u(1,y^{t+1}) - u(2,y^{t+1}) & u(2,y^{t+1}) - u(2,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(2,y^{t+1}) \\ & \vdots & & \vdots & \ddots & \vdots \\ u(1,y^{t+1}) - u(k,y^{t+1}) & u(2,y^{t+1}) - u(k,y^{t+1}) & \dots & u(\mathsf{k},y^{t+1}) - u(k,y^{t+1}) \end{pmatrix}$$

- If q is played, $E[r^{t+1}]$ can be written as $q\mathbf{A}$.
- To apply Blackwell's theorem, we must ensure $q\mathbf{A} \perp \bar{r}_+^t$, i.e., $q\mathbf{A}\bar{r}_+^t = 0$.
- Since A is skew-symmetric ($\mathbf{A} = -\mathbf{A}^T$), we have

$$q\mathbf{A}q^T=0.$$

So take $q^T \sim \bar{r}_+^t$, i.e., take q^T proportional to \bar{r}_+^t .

■ The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.

- The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.
- So, the goal is to approach $C =_{Def} \{ \text{all } k \times k \text{-matrices with non-positive entries} \}.$

- The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.
- So, the goal is to approach $C =_{Def} \{ \text{all } k \times k \text{-matrices with non-positive entries} \}.$
- The closest point in C to $\overline{\mathbf{R}}^t$ is the matrix $\overline{\mathbf{R}}^t$.

- The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.
- So, the goal is to approach $C =_{Def} \{ \text{all } k \times k \text{-matrices with non-positive entries} \}.$
- The closest point in C to $\overline{\mathbf{R}}^t$ is the matrix $\overline{\mathbf{R}}^t$.
- Blackwell \rightarrow find a randomised play $q \in \Delta^k$ that makes the expected incremental conditional regret matrix orthogonal to $\overline{\mathbf{R}}^t \overline{\mathbf{R}}_{-}^t = \overline{\mathbf{R}}_{+}^t$.

- The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.
- So, the goal is to approach $C =_{Def} \{ \text{all } k \times k \text{-matrices with non-positive entries} \}.$
- The closest point in C to $\overline{\mathbf{R}}^t$ is the matrix $\overline{\mathbf{R}}^t$.
- Blackwell \rightarrow find a randomised play $q \in \Delta^k$ that makes the expected incremental conditional regret matrix orthogonal to $\overline{\mathbf{R}}^t \overline{\mathbf{R}}_-^t = \overline{\mathbf{R}}_+^t$.
- Write

$$\mathbf{P} =_{Def} \begin{pmatrix} u(1, y^{t+1}) \dots u(1, y^{t+1}) \\ \vdots & \ddots & \vdots \\ u(k, y^{t+1}) \dots u(k, y^{t+1}) \end{pmatrix}, \mathbf{A} =_{Def} \mathbf{P} - \mathbf{P}^{T}, \mathbf{Q} =_{Def} \begin{pmatrix} q_{1} \dots 0 \\ \vdots & \ddots & \vdots \\ 0 \dots & q_{k} \end{pmatrix}.$$

- The goal is to suppress $\overline{\mathbf{R}}^t$ as t becomes large: $\limsup_{t\to\infty} \overline{\mathbf{R}}^t \leq 0$.
- So, the goal is to approach $C =_{Def} \{ \text{all } k \times k \text{-matrices with non-positive entries} \}.$
- The closest point in C to $\overline{\mathbf{R}}^t$ is the matrix $\overline{\mathbf{R}}^t$.
- Blackwell \rightarrow find a randomised play $q \in \Delta^k$ that makes the expected incremental conditional regret matrix orthogonal to $\overline{\mathbf{R}}^t \overline{\mathbf{R}}_-^t = \overline{\mathbf{R}}_+^t$.
- Write

$$\mathbf{P} =_{Def} \begin{pmatrix} u(1, y^{t+1}) \dots u(1, y^{t+1}) \\ \vdots & \ddots & \vdots \\ u(k, y^{t+1}) \dots u(k, y^{t+1}) \end{pmatrix}, \mathbf{A} =_{Def} \mathbf{P} - \mathbf{P}^{T}, \mathbf{Q} =_{Def} \begin{pmatrix} q_{1} \dots 0 \\ \vdots & \ddots & \vdots \\ 0 \dots & q_{k} \end{pmatrix}.$$

Then the expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} - \mathbf{P}^T)$.

■ The expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} - \mathbf{P}^T)$.

Author: Gerard Vreeswijk. Slides last modified on February 19th, 2015 at 21:55

- The expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} \mathbf{P}^T)$.
- Blackwell's theorem tells us to choose **Q** such that

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+}=0.$$

Here, "·" is the dot-product of two matrices in $\mathbb{R}^k \times \mathbb{R}^k$, not their matrix product.

- The expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} \mathbf{P}^T)$.
- Blackwell's theorem tells us to choose **Q** such that

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+}=0.$$

Here, "·" is the dot-product of two matrices in $\mathbb{R}^k \times \mathbb{R}^k$, not their matrix product.

■ Since **Q** and **A** commute (check), we have

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+} = \mathbf{A}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = (\mathbf{P}-\mathbf{P}^{T})\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = \mathbf{P}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) - \mathbf{P}^{T}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}).$$

- The expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} \mathbf{P}^T)$.
- Blackwell's theorem tells us to choose **Q** such that

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+}=0.$$

Here, "·" is the dot-product of two matrices in $\mathbb{R}^k \times \mathbb{R}^k$, not their matrix product.

■ Since **Q** and **A** commute (check), we have

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+} = \mathbf{A}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = (\mathbf{P} - \mathbf{P}^{T})\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = \mathbf{P}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) - \mathbf{P}^{T}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}).$$

■ The problem boils down to ensure that, for every $1 \le j \le k$:

$$\sum_{h} q_{h}(\bar{r}_{hj})_{+} - q_{j} \sum_{h} (\bar{r}_{jh})_{+} = 0.$$
 (2)

- The expected incremental conditional regret matrix is $\mathbf{Q}\mathbf{A} = \mathbf{Q}(\mathbf{P} \mathbf{P}^T)$.
- Blackwell's theorem tells us to choose **Q** such that

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+}=0.$$

Here, "·" is the dot-product of two matrices in $\mathbb{R}^k \times \mathbb{R}^k$, not their matrix product.

■ Since **Q** and **A** commute (check), we have

$$(\mathbf{Q}\mathbf{A})\cdot\overline{\mathbf{R}}_{+} = \mathbf{A}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = (\mathbf{P} - \mathbf{P}^{T})\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) = \mathbf{P}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}) - \mathbf{P}^{T}\cdot(\mathbf{Q}\overline{\mathbf{R}}_{+}).$$

■ The problem boils down to ensure that, for every $1 \le j \le k$:

$$\sum_{h} q_{h}(\bar{r}_{hj})_{+} - q_{j} \sum_{h} (\bar{r}_{jh})_{+} = 0.$$
 (2)

 \blacksquare Every q satisfying this equation is called a left-invariant for $\overline{\mathbb{R}}_+$.

Every $k \times k$ non-negative matrix **M** with a zero diagonal possesses a left-invariant vector.

- Every $k \times k$ non-negative matrix **M** with a zero diagonal possesses a left-invariant vector.
- Define $\mathbf{N} =_{Def}$

$$\begin{pmatrix} -\sum_{j} m_{1j} & m_{12} & \dots & m_{1k} \\ m_{21} & -\sum_{j} m_{2j} & \dots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{k1} & \dots & m_{2k} - \sum_{j} m_{kj} \end{pmatrix}$$

- Every $k \times k$ non-negative matrix **M** with a zero diagonal possesses a left-invariant vector.
- Define $\mathbf{N} =_{Def}$

$$\begin{pmatrix} -\sum_{j} m_{1j} & m_{12} & \dots & m_{1k} \\ m_{21} & -\sum_{j} m_{2j} & \dots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{k1} & \dots & m_{2k} - \sum_{j} m_{kj} \end{pmatrix}$$

To solve (2) we need to find a q such that qN = 0, $q \ge 0$, |q| = 1.

- \blacksquare Every $k \times k$ non-negative matrix \blacksquare Let β be as least as large as the M with a zero diagonal possesses a left-invariant vector.
- Define $N =_{Def}$

$$\begin{pmatrix} -\sum_{j} m_{1j} & m_{12} & \dots & m_{1k} \\ m_{21} & -\sum_{j} m_{2j} & \dots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{k1} & \dots & m_{2k} - \sum_{j} m_{kj} \end{pmatrix}$$

To solve (2) we need to find a q such that q**N** = 0, $q \ge 0$, |q| = 1.

absolute value of the most negative of the diagonal elements in M. Then

$$\mathbf{I} + \frac{1}{\beta} \mathbf{N}$$

is non-negative and row stochastic.

Hence, it has at least one fixed point q^* .

- Every $k \times k$ non-negative matrix **M** with a zero diagonal possesses a left-invariant vector.
- Define $\mathbf{N} =_{Def}$

$$\begin{pmatrix} -\sum_{j} m_{1j} & m_{12} & \dots & m_{1k} \\ m_{21} & -\sum_{j} m_{2j} & \dots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{k1} & \dots & m_{2k} - \sum_{j} m_{kj} \end{pmatrix}$$

To solve (2) we need to find a q such that q**N** = 0, $q \ge 0$, |q| = 1.

Let β be as least as large as the absolute value of the most negative of the diagonal elements in **M**. Then

$$\mathbf{I} + \frac{1}{\beta}\mathbf{N}$$

is non-negative and row stochastic.

Hence, it has at least one fixed point q^* .

Any such q^* has the property that $q\mathbf{N} = 0$, so q^* is the desired left-invariant for \mathbf{M} .

Theorem (Foster and Vohra, 1999). Given a finite game G, if in each period a player plays a distribution q that satisfies

$$\sum_{h} q_{h}(\bar{r}_{hj})_{+} - q_{j} \sum_{h} (\bar{r}_{jh})_{+} = 0,$$

and \overline{R}^t is his conditional regret matrix through t then $\overline{R}^t \rightsquigarrow 0$ almost surely, independently of the behaviour of the opponents.

Theorem (Foster and Vohra, 1999). Given a finite game G, if in each period a player plays a distribution q that satisfies

$$\sum_{h} q_{h}(\bar{r}_{hj})_{+} - q_{j} \sum_{h} (\bar{r}_{jh})_{+} = 0,$$

and \overline{R}^t is his conditional regret matrix through t then $\overline{R}^t \rightsquigarrow 0$ almost surely, independently of the behaviour of the opponents.

Corollary. When every player uses the Foster-Vohra algorithm to suppress conditional regret, the empirical joint frequency of play converges almost surely to the set of correlated equilibria.

Example

In an earlier example, the conditional regret matrix after 10 rounds was:¹

$$\mathbf{R} = \begin{array}{ccc} R & Y & B \\ R = \begin{array}{cccc} R & 0.0 & 0.1 & 0.0 \\ 0.3 & 0.0 & 0.0 \\ -0.1 & 0.1 & 0.0 \end{array} \right)$$

So,

$$\mathbf{N} = \begin{pmatrix} R & Y & B \\ R & \begin{pmatrix} -0.1 & 0.1 & 0.0 \\ 0.3 & -0.3 & 0.0 \\ -0.1 & 0.1 & 0.0 \end{pmatrix}$$

We need to find a $q \ge 0$ such that $q\mathbf{N} = 0$, |q| = 1. If we set $\beta = 0.3$, then q is the fixed-point of

$$\mathbf{I} + \frac{1}{\beta} \mathbf{N} = \begin{pmatrix} R & Y & B \\ R & 2/3 & 1/3 & 0 \\ 1 & 0 & 0 \\ 0 & 1/3 & 2/3 \end{pmatrix}$$

with |q| = 1.

By the theory of Markov chains such a fixed point exists. In this case, it is

$$q^* = (1/3, 1/3, 1/3).$$

¹There is a typo in SLaiL, third row.

■ A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

where λ is a learning parameter

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

where λ is a learning parameter, and δ^t is an adaptation in the right direction.

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

where λ is a learning parameter, and δ^t is an adaptation in the right direction.

■ It turns out that the following works:

$$\delta_j^t =_{Def}$$

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

where λ is a learning parameter, and δ^t is an adaptation in the right direction.

■ It turns out that the following works:

$$\delta_j^t =_{Def} \sum_h q_h^t (\bar{r}_{hj}^t)_+ -$$

The expected positive regrets from playing q^t instead of j.

- A disadvantage of the Foster-Vohra algorithm is that every period a new system of linear equations must be solved.
- What we would like is a learning rule such as

$$q^{t+1} = q^t + \lambda \delta^t$$

where λ is a learning parameter, and δ^t is an adaptation in the right direction.

■ It turns out that the following works:

$$\delta_{j}^{t} =_{Def}$$
 $\sum_{h} q_{h}^{t}(\bar{r}_{hj}^{t})_{+}$
 $q_{j}^{t}\sum_{h}(\bar{r}_{jh}^{t})_{+}$
The expected positive
 f A normalisation that regrets from playing makes the δ_{i} sum to g instead of g .

 f instead of g .

Theorem. If, in a finite game G, a player uses incremental conditional regret matching with a sufficiently small learning parameter, his conditional regrets become non-positive almost surely, independently of the behaviour of the participants.

Theorem. If, in a finite game G, a player uses incremental conditional regret matching with a sufficiently small learning parameter, his conditional regrets become non-positive almost surely, independently of the behaviour of the participants.

Proof. Based on the standard iterative procedure for find an invariant distribution of a finite Markov chain.

Theorem. If, in a finite game *G*, a player uses incremental conditional regret matching with a sufficiently small learning parameter, his conditional regrets become non-positive almost surely, independently of the behaviour of the participants.

Proof. Based on the standard iterative procedure for find an invariant distribution of a finite Markov chain.

Corollary. If, in a finite game G, all players use incremental conditional regret matching with a sufficiently small learning parameter, the empirical joint frequency of play converges almost surely to the set of correlated equilibria.

Demo

Conditional regret matching with ϵ -experimentation

Conditional regret matching with ϵ -experimentation

Allow players to experiment ϵ % of the time.

Conditional regret matching with ϵ -experimentation

Allow players to experiment ϵ % of the time. Then the conditional regrets in experimenting can be used as a proxy for the conditional regrets over all periods.

Conditional regret matching with ϵ -experimentation

- Allow players to experiment ϵ % of the time. Then the conditional regrets in experimenting can be used as a proxy for the conditional regrets over all periods.
- In this way, δ^t can be made to depend solely on realised past payoffs.

Conditional regret matching with inertia

Conditional regret matching with ϵ -experimentation

- Allow players to experiment ϵ % of the time. Then the conditional regrets in experimenting can be used as a proxy for the conditional regrets over all periods.
- In this way, δ^t can be made to depend solely on realised past payoffs.

Conditional regret matching with inertia

■ Play the same action as in the previous period with a high probability. Otherwise, randomise play by q, where

 $q \sim$ the non-negative regrets of the last action.

Conditional regret matching with ϵ -experimentation

- Allow players to experiment ϵ % of the time. Then the conditional regrets in experimenting can be used as a proxy for the conditional regrets over all periods.
- In this way, δ^t can be made to depend solely on realised past payoffs.

Conditional regret matching with inertia

■ Play the same action as in the previous period with a high probability. Otherwise, randomise play by q, where

 $q \sim$ the non-negative regrets of the last action.

■ The effect is that change in behaviour over periods is discontinuous.

Conditional regret matching with ϵ -experimentation

- Allow players to experiment ϵ % of the time. Then the conditional regrets in experimenting can be used as a proxy for the conditional regrets over all periods.
- In this way, δ^t can be made to depend solely on realised past payoffs.

Conditional regret matching with inertia

■ Play the same action as in the previous period with a high probability. Otherwise, randomise play by q, where

 $q \sim$ the non-negative regrets of the last action.

- The effect is that change in behaviour over periods is discontinuous.
- All players need to use this method to eliminate conditional regret.