Multicategorical Meta-Theorem and Completeness of Restricted Algebraic Deduction Systems

David Forsman

November 16, 2024 PSSL109 Leiden University

Outline

Introduction

Context Structures and Structure Categories

Universal Algebra in Categorical Logic

Using logic to automatically generalize results from **Set** to different settings.

Using logic to automatically generalize results from **Set** to different settings.

 Eckmann-Hilton argument from sets to symmetric monoidal categories:

Using logic to automatically generalize results from **Set** to different settings.

 Eckmann-Hilton argument from sets to symmetric monoidal categories:

(X, m, e), (X, m', e') unital magmas, m commutes with m'

Using logic to automatically generalize results from **Set** to different settings.

 Eckmann-Hilton argument from sets to symmetric monoidal categories:

```
(X, m, e), (X, m', e') unital magmas, m commutes with m' \Rightarrow (X, m, e) = (X, m', e') is a commutative monoid.
```

Using logic to automatically generalize results from **Set** to different settings.

- Eckmann-Hilton argument from sets to symmetric monoidal categories:
 - (X, m, e), (X, m', e') unital magmas, m commutes with $m' \Rightarrow (X, m, e) = (X, m', e')$ is a commutative monoid.
- Coherence for (commutative) monoids (X, m, e):

Using logic to automatically generalize results from **Set** to different settings.

- Eckmann-Hilton argument from sets to symmetric monoidal categories:
 - (X, m, e), (X, m', e') unital magmas, m commutes with $m' \Rightarrow (X, m, e) = (X, m', e')$ is a commutative monoid.
- Coherence for (commutative) monoids (X, m, e):
 All formal morphisms Xⁿ → X constructed using the (symmetric) monoidal and (commutative) monoid structure yield a unique morphism.

Using logic to automatically generalize results from **Set** to different settings.

- Eckmann-Hilton argument from sets to symmetric monoidal categories:
 - (X, m, e), (X, m', e') unital magmas, m commutes with $m' \Rightarrow (X, m, e) = (X, m', e')$ is a commutative monoid.
- Coherence for (commutative) monoids (X, m, e):
 All formal morphisms Xⁿ → X constructed using the (symmetric) monoidal and (commutative) monoid structure yield a unique morphism.

0

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k, n \in \mathbb{N},$$

from commutative semirings in sets to commutative semirings in symmetric diagonal multicategories.

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{Set} \phi \Leftrightarrow E \vdash_R \phi \Rightarrow E \vDash_C \phi.$$

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{\mathbf{Set}} \phi \Leftrightarrow E \vdash_{R} \phi \Rightarrow E \vDash_{C} \phi.$$

 Context structure R: A relation that allows context judgements xyRyx, xyRxxyyx,...

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{\mathbf{Set}} \phi \Leftrightarrow E \vdash_{R} \phi \Rightarrow E \vDash_{C} \phi.$$

- Context structure R: A relation that allows context judgements xyRyx, xyRxxyyx,...
- R-Theory E contains equations the context structure R allows:

$$+(x,y) \approx_{xy} +(y,x), x \approx_{xy} y, \dots$$

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{\mathbf{Set}} \phi \Leftrightarrow E \vdash_{R} \phi \Rightarrow E \vDash_{C} \phi.$$

- Context structure R: A relation that allows context judgements xyRyx, xyRxxyyx,...
- R-Theory E contains equations the context structure R allows:

$$+(x,y) \approx_{xy} +(y,x), x \approx_{xy} y, \dots$$

• Structure category Δ_R : A category of function acting on the multicategory C. Context judgments determine functions in Δ_R :

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{\mathbf{Set}} \phi \Leftrightarrow E \vdash_{R} \phi \Rightarrow E \vDash_{C} \phi.$$

- Context structure R: A relation that allows context judgements xyRyx, xyRxxyyx,...
- **R-Theory** *E* contains equations the context structure *R* allows:

$$+(x,y)\approx_{xy}+(y,x), x\approx_{xy}y,\ldots$$

- Structure category Δ_R : A category of function acting on the multicategory C. Context judgments determine functions in Δ_R :
 - $xyRyx \leftrightarrow (2,1)$: [2] \rightarrow [2]

Theorem

Let σ be an R-signature with an R-theory $E \cup \{\phi\}$. Assume that R is either a balanced modelable or the cartesian context structure. Then for any Δ_R -multicategory C,

$$E \vDash_{Set} \phi \Leftrightarrow E \vdash_R \phi \Rightarrow E \vDash_C \phi.$$

- Context structure R: A relation that allows context judgements $xyRyx, xyRxxyyx, \dots$
- R-Theory E contains equations the context structure R allows:

$$+(x,y)\approx_{xy}+(y,x), x\approx_{xy}y,\ldots$$

- Structure category Δ_R : A category of function acting on the multicategory C. Context judgments determine functions in Δ_R :
 - $xyRyx \leftrightarrow (2,1)$: [2] \rightarrow [2]
 - $xyzRxyxx \leftrightarrow (1,2,1,1): [4] \rightarrow [3].$

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

- cRc for $c \in Context(V)$
- **2** $cRv \Rightarrow Var(v) \subseteq Var(c)$

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

- cRc for $c \in Context(V)$
- **2** $cRv \Rightarrow Var(v) \subseteq Var(c)$

 $cRv_1 \cdots v_n \text{ and }$ $v_1 Rw_1, \dots, v_n Rw_n$ $\Rightarrow cRw_1 \cdots w_n$

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

- cRc for $c \in Context(V)$
- **2** $cRv \Rightarrow Var(v) \subseteq Var(c)$

- $cRv_1 \cdots v_n \text{ and }$ $v_1 Rw_1, \dots, v_n Rw_n$ $\Rightarrow cRw_1 \cdots w_n$
- or and $dRs(c) \Rightarrow dRs(v)$ for any $s: Var(c) \rightarrow V^*$

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

- cRc for $c \in Context(V)$
- $cRv \Rightarrow Var(v) \subseteq Var(c)$

- $cRv_1 \cdots v_n \text{ and } v_1 Rw_1, \dots, v_n Rw_n \\ \Rightarrow cRw_1 \cdots w_n$
- cRv and $dRs(c) \Rightarrow dRs(v)$ for any $s: Var(c) \rightarrow V^*$

A context structure *R* on *V* is called **modelable** if:

$$cRw_1 \cdots w_n \Rightarrow cRv_1 \cdots v_n$$
 for some $v_iRw_i, i \leq n$.

Definition (Context Structure)

Let V be an infinite set. A relation $R \subset \text{Context}(V) \times V^*$, from the contexts of V to the finite words V^* of V, is called a **context structure** if:

- cRc for $c \in Context(V)$
- $cRv \Rightarrow Var(v) \subseteq Var(c)$

- $cRv_1 \cdots v_n \text{ and } v_1 Rw_1, \dots, v_n Rw_n \\ \Rightarrow cRw_1 \cdots w_n$
- cRv and $dRs(c) \Rightarrow dRs(v)$ for any $s: Var(c) \rightarrow V^*$

A context structure *R* on *V* is called **modelable** if:

$$cRw_1 \cdots w_n \Rightarrow cRv_1 \cdots v_n$$
 for some $v_iRw_i, i \leq n$.

There are exactly 8 different modelable context structures!

Structure Category A

Context judgments $c_1 \cdots c_n Rv_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

Context judgments $c_1 \cdots c_n R v_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

We attain a subcategory of **FinOrd** of finite ordinals and functions.

Definition (Structure Category)

Context judgments $c_1 \cdots c_n Rv_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

We attain a subcategory of **FinOrd** of finite ordinals and functions.

Definition (Structure Category)

A **structure category** \triangle is a wide subcategory of **FinOrd** satisfying:

Context judgments $c_1 \cdots c_n Rv_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

We attain a subcategory of **FinOrd** of finite ordinals and functions.

Definition (Structure Category)

A structure category Δ is a wide subcategory of **FinOrd** satisfying:

• Δ is closed under **coproducts of morphisms**: If $f, g \in \Delta$, then $f + g \in \Delta$.

Context judgments $c_1 \cdots c_n R v_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

We attain a subcategory of **FinOrd** of finite ordinals and functions.

Definition (Structure Category)

A structure category Δ is a wide subcategory of **FinOrd** satisfying:

- Δ is closed under **coproducts of morphisms**: If $f, g \in \Delta$, then $f + g \in \Delta$.
- Δ is closed under **similarity transformations**: for any function $\theta: [m] \to [n]$ in Δ , the components of the similarity natural transformation $\theta': +_m \circ \theta^* \Rightarrow +_n$: **FinOrd**ⁿ \to **FinOrd** are in Δ :

Context judgments $c_1 \cdots c_n R v_1 \cdots v_m$ determine functions $f: [m] \rightarrow [n]$:

$$v_i = c_{f(i)}, \text{ for } i \leq m$$

We attain a subcategory of **FinOrd** of finite ordinals and functions.

Definition (Structure Category)

A structure category Δ is a wide subcategory of **FinOrd** satisfying:

- Δ is closed under **coproducts of morphisms**: If $f, g \in \Delta$, then $f + g \in \Delta$.
- Δ is closed under **similarity transformations**: for any function $\theta: [m] \to [n]$ in Δ , the components of the similarity natural transformation $\theta': +_m \circ \theta^* \Rightarrow +_n$: **FinOrd**ⁿ \to **FinOrd** are in Δ :

$$\theta'_{k_1,\dots,k_n} \colon [L_m] \to [K_n], L_{i-1} + x \mapsto K_{\theta(i)-1} + x, \text{ for } x \in [k_{\theta(i)}]$$

$$L_i = k_{\theta(1)} + \cdots + k_{\theta(i)}$$
 and $K_j = k_1 + \cdots + k_j$

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- \bullet 1 \in I,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- 1 ∈ *I*,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Constructing Structure Categories:

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- 1 ∈ *I*,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Constructing Structure Categories:

• Δ^I : Consists of functions $f:[m] \to [n], |f^{-1}\{i\}| \in I$ for $i \in [n]$.

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- 1 ∈ *I*,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Constructing Structure Categories:

- Δ^I : Consists of functions $f:[m] \to [n], |f^{-1}\{i\}| \in I$ for $i \in [n]$.
- Δ_I : Generated by the functions $[n] \to [1]$ for $n \in I$.

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- 1 ∈ *I*,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Constructing Structure Categories:

- Δ^I : Consists of functions $f:[m] \to [n], |f^{-1}\{i\}| \in I$ for $i \in [n]$.
- Δ_I : Generated by the functions $[n] \to [1]$ for $n \in I$.
- Ψ^I : Surjections $g: [m] \to [n]$ in Δ^I where $j \mapsto \max g^{-1}(j)$ is increasing, $\Psi_I \subset \Delta^I$ with min.

Structure Monoid *I* and Constructing Structure Categories

Definition

A **structure monoid** $I \subset \mathbb{N}$ is a subset satisfying:

- 1 ∈ *I*,
- If $k, a_1, ..., a_k \in I$, then $a_1 + \cdots + a_k \in I$.

Constructing Structure Categories:

- Δ^I : Consists of functions $f:[m] \to [n], |f^{-1}\{i\}| \in I$ for $i \in [n]$.
- Δ_I : Generated by the functions $[n] \to [1]$ for $n \in I$.
- Ψ^I : Surjections $g: [m] \to [n]$ in Δ^I where $j \mapsto \max g^{-1}(j)$ is increasing, $\Psi_I \subset \Delta^I$ with min.

 $\Delta_J \subset \Delta \subset \Delta^J$ for any structure category Δ , J the set of cardinalities of the fibers of functions in Δ .

- $\Delta_{\{1\}}$: identities
- $\Delta^{\{1\}}$: bijections
- ullet $\Delta_{\{0,1\}}$: strictly increasing
- $\Delta^{\{0,1\}}$: injections

- $\Delta_{\{1\}}$: identities
- Δ^{1}: bijections
- ullet $\Delta_{\{0,1\}}$: strictly increasing
- $\Delta^{\{0,1\}}$: injections

- $\Psi_{\mathbb{N}_1}$: left surjections
- $\Psi^{\mathbb{N}_1}$: right surjections
- $\Delta^{\mathbb{N}_1}$: surjections
- ullet $\Delta_{\mathbb{N}}=\Delta^{\mathbb{N}}$: all functions

- $\Delta_{\{1\}}$: identities
- Δ^{1}: bijections
- $\Delta_{\{0,1\}}$: strictly increasing
- $\Delta^{\{0,1\}}$: injections

- $\bullet \ \Psi_{\mathbb{N}_1} \colon \text{left surjections}$
- $\Psi^{\mathbb{N}_1}$: right surjections
- $\Delta^{\mathbb{N}_1}$: surjections
- ullet $\Delta_{\mathbb{N}}=\Delta^{\mathbb{N}}$: all functions

These are all the modelable structure categories.

- $\Delta_{\{1\}}$: identities
- $\Delta^{\{1\}}$: bijections
- $\Delta_{\{0,1\}}$: strictly increasing
- $\Delta^{\{0,1\}}$: injections

- $\Psi_{\mathbb{N}_1}$: left surjections
- ullet $\Psi^{\mathbb{N}_1}$: right surjections
- $\Delta^{\mathbb{N}_1}$: surjections
- ullet $\Delta_{\mathbb{N}}=\Delta^{\mathbb{N}}$: all functions

These are all the modelable structure categories.

Structure monoids $I_N = \{1, n \mid n \geq N\}$ for $N \in \mathbb{N}$ induce infinitely many structure categories Δ^I .

• **R-Signature** σ : An R-signature σ is a tuple $(S, F \to S^* \times S, V \to S)$ with a context structure R on V.

- **R-Signature** σ : An R-signature σ is a tuple $(S, F \to S^* \times S, V \to S)$ with a context structure R on V.
- **Typed Set of Terms:** The typed set $Term \rightarrow S$ of σ -terms t_1, \ldots :

$$x, c, (x + c) + (y + z), -(x) + z, \dots$$

- **R-Signature** σ : An R-signature σ is a tuple $(S, F \to S^* \times S, V \to S)$ with a context structure R on V.
- Typed Set of Terms: The typed set $Term \rightarrow S$ of σ -terms t_1, \ldots :

$$x, c, (x + c) + (y + z), -(x) + z, \dots$$

R-Theory: A set E of R-equations is called an R-theory.

$$x + y \approx_{xy} y + x$$

$$f(x + y) \approx_{xyz} (f(x) + f(y)) + z$$

We say that E R-deduces ϕ , $E \vdash_R \phi$, if ϕ belongs to the equivalence relation and R-substitution closure of E:

- **R-Signature** σ : An R-signature σ is a tuple $(S, F \to S^* \times S, V \to S)$ with a context structure R on V.
- **Typed Set of Terms:** The typed set $Term \rightarrow S$ of σ -terms t_1, \ldots :

$$x, c, (x + c) + (y + z), -(x) + z, \dots$$

R-Theory: A set E of R-equations is called an R-theory.

$$x + y \approx_{xy} y + x$$

$$f(x + y) \approx_{xyz} (f(x) + f(y)) + z$$

We say that E R-deduces ϕ , $E \vdash_R \phi$, if ϕ belongs to the equivalence relation and R-substitution closure of E:

$$E \vdash_R t_1 \approx_{\nu_1 \cdots \nu_n} t_2 \Rightarrow E \vdash_R s_1(t_1) \approx_w s_2(t_2)$$

for type-preserving $s_1, s_2 \colon \text{Var}(v) \to \textit{Term}$, where $wRw_1 \cdots w_n$ and $E \vdash_R s_1(v_i) \approx_{w_i} s_2(v_i)$ for $i \leq n$.

$$\bullet (x+y) + z \approx_{xyz} x + (y+z)$$

$$(x+y)+z\approx_{xyz}x+(y+z)$$

• $xy \approx_{xy} yx$

$$(x+y) + z \approx_{xyz} x + (y+z)$$

- $xy \approx_{xy} yx$
- $x \approx_{xy} y$

$$(x+y) + z \approx_{xyz} x + (y+z)$$

- $xy \approx_{xy} yx$
- $x \approx_{xy} y$
- $xyz \approx_{xyz} zy$

$$\bullet (x+y) + z \approx_{xyz} x + (y+z)$$

•
$$r(x + y) \approx_{rxy} rx + ry$$

- $xy \approx_{xy} yx$
- $x \approx_{xy} y$
- $xyz \approx_{xyz} zy$

$$(x+y) + z \approx_{xyz} x + (y+z)$$

•
$$xy \approx_{xy} yx$$

•
$$x \approx_{xy} y$$

•
$$xyz \approx_{xyz} zy$$

•
$$r(x + y) \approx_{rxy} rx + ry$$

$$(x+y)r \approx_{xyr} xr + yr$$

$$(x+y) + z \approx_{XVZ} x + (y+z)$$

- $xy \approx_{xy} yx$
- $x \approx_{xy} y$
- $xyz \approx_{xyz} zy$

•
$$r(x + y) \approx_{rxy} rx + ry$$

$$(x+y)r \approx_{xyr} xr + yr$$

•
$$r(x + y) \approx_{rxy} rx + yr$$

$$(x+y) + z \approx_{XVZ} x + (y+z)$$

- $xy \approx_{xy} yx$
- $x \approx_{xy} y$
- $xyz \approx_{xyz} zy$

•
$$r(x + y) \approx_{rxy} rx + ry$$

•
$$(x + y)r \approx_{xyr} xr + yr$$

•
$$r(x + y) \approx_{rxy} rx + yr$$

•
$$x + (-(x)) \approx_x e$$

Definition (Δ -Multicategory)

Definition (Δ –Multicategory)

A multicategory C consists of:

A class of objects S,

$\overline{\text{Definition } (\Delta - \text{Multicategory})}$

A **multicategory** *C* consists of:

- A class of objects S,
- Hom-sets C(a,b) for $a \in S^*$ and $b \in S$,

Definition (Δ –Multicategory)

A multicategory C consists of:

- A class of objects S,
- Hom-sets C(a,b) for $a \in S^*$ and $b \in S$,
- Identity morphisms $id_a \in C(a, a)$ for each $a \in S$,
- A composition operation

$$\circ \colon C(b_1\cdots b_n,c)\times C(a^1,b_1)\times \cdots \times C(a^n,b_n)\to C(a^1\cdots a^n,c).$$

Definition (Δ –Multicategory)

A multicategory C consists of:

- A class of objects S,
- Hom-sets C(a,b) for $a \in S^*$ and $b \in S$,
- Identity morphisms $id_a \in C(a, a)$ for each $a \in S$,
- A composition operation

$$\circ \colon C(b_1\cdots b_n,c)\times C(a^1,b_1)\times \cdots \times C(a^n,b_n)\to C(a^1\cdots a^n,c).$$

These components must satisfy associativity and unitality.

Definition (Δ -Multicategory)

A multicategory C consists of:

- A class of objects S,
- Hom-sets C(a, b) for $a \in S^*$ and $b \in S$,
- Identity morphisms $id_a \in C(a, a)$ for each $a \in S$,
- A composition operation

$$\circ \colon \textit{C}(\textit{b}_1 \cdots \textit{b}_n, \textit{c}) \times \textit{C}(\textit{a}^1, \textit{b}_1) \times \cdots \times \textit{C}(\textit{a}^n, \textit{b}_n) \rightarrow \textit{C}(\textit{a}^1 \cdots \textit{a}^n, \textit{c}).$$

These components must satisfy associativity and unitality.

Let Δ be a structure category. Then C is called a Δ -multicategory if, for each morphism $\theta \colon [m] \to [n]$ in Δ , there exists an action map:

$$heta^*_{a_1\cdots a_n,b}\colon \mathit{C}(a_{ heta(1)}\cdots a_{ heta(m)},b) o \mathit{C}(a_1\cdots a_n,b),$$

which respects the Δ -structure and satisfies the Δ -multicategory action axioms.

In a Δ -multicategory C, the following action axioms must hold:

In a Δ -multicategory C, the following action axioms must hold:

Identity Action:

$$(\mathsf{id}_{[n]})_{a,b}^* = \mathsf{id}_{\mathit{C}(a,b)}.$$

In a Δ -multicategory C, the following action axioms must hold:

Identity Action:

$$(\mathsf{id}_{[n]})_{a,b}^* = \mathsf{id}_{C(a,b)}.$$

• Action Compatibility:

$$(\tau \circ \sigma)_{a,b}^* = \tau_{a,b}^* \circ \sigma_{a_{\tau(1)}\cdots a_{\tau(m)},b}^*.$$

In a Δ -multicategory C, the following action axioms must hold:

Identity Action:

$$(\mathsf{id}_{[n]})_{a,b}^* = \mathsf{id}_{C(a,b)}.$$

• Action Compatibility:

$$(\tau \circ \sigma)_{a,b}^* = \tau_{a,b}^* \circ \sigma_{a_{\tau(1)}\cdots a_{\tau(m)},b}^*.$$

Composition with Action 1:

$$g \circ (\sigma_1^* f_1, \ldots, \sigma_n^* f_n) = (\sigma_1 + \cdots + \sigma_n)_{a,c}^* (g \circ (f_1, \ldots, f_n)).$$

In a Δ -multicategory C, the following action axioms must hold:

Identity Action:

$$(\mathsf{id}_{[n]})_{a,b}^* = \mathsf{id}_{C(a,b)}.$$

• Action Compatibility:

$$(\tau \circ \sigma)_{a,b}^* = \tau_{a,b}^* \circ \sigma_{a_{\tau(1)}\cdots a_{\tau(m)},b}^*.$$

Composition with Action 1:

$$g \circ (\sigma_1^* f_1, \ldots, \sigma_n^* f_n) = (\sigma_1 + \cdots + \sigma_n)_{a,c}^* (g \circ (f_1, \ldots, f_n)).$$

Composition with Action 2:

$$\tau_{b,c}^*(g) \circ (f_1,\ldots,f_n) = (\tau'_{k_1,\ldots,k_n})_{a,c}^* (g \circ (f_{\tau(1)},\ldots,f_{\tau(m)})),$$

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

• Objects m(s) in C for each $s \in S$.

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

- Objects m(s) in C for each $s \in S$.
- Multimorphisms m(f): $m(a_1) \cdots m(a_n) \rightarrow m(b)$, f: $a_1 \cdots a_n \rightarrow b \in F$.

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

- Objects m(s) in C for each $s \in S$.
- Multimorphisms $m(f): m(a_1) \cdots m(a_n) \to m(b)$, $f: a_1 \cdots a_n \rightarrow b \in F$.

For vRw, $m_{v,w}^*$: $C(m_w, b) \rightarrow C(m_v, b)$.

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

- Objects m(s) in C for each $s \in S$.
- Multimorphisms $m(f): m(a_1) \cdots m(a_n) \to m(b)$, $f: a_1 \cdots a_n \rightarrow b \in F$.

For vRw, $m_{v,w}^*$: $C(m_w,b) \rightarrow C(m_v,b)$.

For t: s and vRt, we define $m_v(t): m_v \to m(s)$:

Definition (σ -model)

 $\sigma = (S, F)$ an R-signature for a modelable R, C a Δ -multicategory. A σ -model m in C consists of:

- Objects m(s) in C for each $s \in S$.
- Multimorphisms m(f): $m(a_1) \cdots m(a_n) \rightarrow m(b)$, $f: a_1 \cdots a_n \rightarrow b \in F$.

For vRw, $m_{v,w}^*$: $C(m_w,b) \rightarrow C(m_v,b)$. For t: s and vRt, we define $m_v(t): m_v \to m(s)$:

$$m_{v}(t) = \begin{cases} m_{v,()}^{*}(m(c)), & \text{if } t = c \text{ is a constant} \\ m_{v,v_{i}}^{*}(id), & \text{if } t = v_{i} \\ m_{v,w_{1}\cdots w_{n}}^{*}(m(f)(m_{w_{1}}(t_{1}),\ldots,m_{w_{n}}(t_{n}))), & \text{if } t = f(t_{1},\ldots,t_{n}). \end{cases}$$

A model m in a Δ -multicategory C satisfies an equation $t_1 \approx_{V} t_2$ if:

$$m_{\nu}(t_1)=m_{\nu}(t_2).$$

A model m in a Δ -multicategory C satisfies an equation $t_1 \approx_{V} t_2$ if:

$$m_{\nu}(t_1)=m_{\nu}(t_2).$$

We write $E \vDash_C t_1 \approx_v t_2$ to denote **Semantic entailment**, every model in C satisfying all equations in E also satisfies $t_1 \approx_v t_2$.

A model m in a Δ -multicategory C satisfies an equation $t_1 \approx_{V} t_2$ if:

$$m_v(t_1)=m_v(t_2).$$

We write $E \vDash_C t_1 \approx_{\nu} t_2$ to denote **Semantic entailment**, every model in *C* satisfying all equations in *E* also satisfies $t_1 \approx_{\nu} t_2$.

Soundness and Completeness Theorem:

A **model** m in a Δ -multicategory C **satisfies** an equation $t_1 \approx_{\nu} t_2$ if:

$$m_v(t_1)=m_v(t_2).$$

We write $E \models_C t_1 \approx_V t_2$ to denote **Semantic entailment**, every model in C satisfying all equations in E also satisfies $t_1 \approx_{V} t_2$.

Soundness and Completeness Theorem: For an *R*-theory $E \cup \{t_1 \approx_{V} t_2\}$ with modelable R:

• Soundness: $E \vdash_B t_1 \approx_{V} t_2 \Rightarrow E \vDash_C t_1 \approx t_2$ for all Δ_{B} -multicategories C.

A **model** m in a Δ -multicategory C satisfies an equation $t_1 \approx_{\nu} t_2$ if:

$$m_{\nu}(t_1)=m_{\nu}(t_2).$$

We write $E \models_C t_1 \approx_V t_2$ to denote **Semantic entailment**, every model in C satisfying all equations in E also satisfies $t_1 \approx_{V} t_2$.

Soundness and Completeness Theorem: For an *R*-theory $E \cup \{t_1 \approx_{V} t_2\}$ with modelable R:

- Soundness: $E \vdash_R t_1 \approx_{V} t_2 \Rightarrow E \vDash_C t_1 \approx t_2$ for all Δ_{B} -multicategories C.
- **Set-Completeness:** If *R* balanced or cartesian, $E \models_{\mathbf{Sot}} t_1 \approx_{\mathsf{V}} t_2 \Rightarrow E \vdash_{\mathsf{R}} t_1 \approx_{\mathsf{V}} t_2$

 Bijection between context structures R ←→ structure categories Δ.

- Bijection between context structures R ←→ structure categories △.
- A Δ_R -multicategory provides a **semantic universe** for usual equational reasoning for modelable R.

- Bijection between context structures R ←→ structure categories △.
- A Δ_R -multicategory provides a **semantic universe** for usual equational reasoning for modelable R.
- Multicategorical Meta-Theorem: Transfers properties from the cartesian multicategory of sets to Δ-multicategories for six different Δ.

- Bijection between context structures R ←→ structure categories △.
- A Δ_R -multicategory provides a **semantic universe** for usual equational reasoning for modelable R.
- Multicategorical Meta-Theorem: Transfers properties from the cartesian multicategory of sets to Δ-multicategories for six different Δ.
- Two-dimensional generalization: Potential to generalize equational results (equations of 2-cells) from Cat to any 2, Δ_R-multicategory C for modelable balanced or cartesian R.

Acknowledgment and References

Thank you!

This research was supported by funding from the Fonds de la Recherche Scientifique (FNRS).

David Forsman.

On the multicategorical meta-theorem and the completeness of restricted algebraic deduction systems, 2024.

 $\sigma = (S, F)$ an R-signature with modelable and balanced $R, E \cup \{\phi\}$ an R-theory. Balanced E-model m witnesses completeness $m \models \phi$ if and only if $E \vdash_R \phi$:

 $\sigma = (S, F)$ an R-signature with modelable and balanced $R, E \cup \{\phi\}$ an R-theory. Balanced E-model m witnesses completeness $m \models \phi$ if and only if $E \vdash_R \phi$:

• $n(s) = \{(v, t) \mid t \colon s, R_v \subset R_t\}$ for $s \in S$.

 $\sigma = (S, F)$ an R-signature with modelable and balanced $R, E \cup \{\phi\}$ an R-theory. Balanced E-model m witnesses completeness $m \models \phi$ if and only if $E \vdash_R \phi$:

- $n(s) = \{(v, t) \mid t : s, R_v \subset R_t\} \text{ for } s \in S.$
- $n(f)((v_1, t_1), \dots, (v_n, t_n)) = (v_1 \cdots v_n, f(t_1, \dots, t_n))$ for $f: a_1 \cdots a_n \to b \in F$.

 $\sigma = (S, F)$ an R-signature with modelable and balanced $R, E \cup \{\phi\}$ an R-theory. Balanced E-model m witnesses completeness $m \models \phi$ if and only if $E \vdash_R \phi$:

- $n(s) = \{(v, t) \mid t : s, R_v \subset R_t\}$ for $s \in S$.
- $n(f)((v_1, t_1), \dots, (v_n, t_n)) = (v_1 \cdots v_n, f(t_1, \dots, t_n))$ for $f: a_1 \cdots a_n \to b \in F$.
- Congruence \sim on n: $(v,t) \sim (v',t')$ if

t, t' typed the same, $R_t = R_{t'}$ and $E \vdash_R t_1 \approx_{\nu} t_2$ for all $\nu \in R_t$

 $\sigma = (S, F)$ an R-signature with modelable and balanced $R, E \cup \{\phi\}$ an *R*-theory. Balanced *E*-model *m* witnesses completeness $m \models \phi$ if and only if $E \vdash_{B} \phi$:

- $n(s) = \{(v, t) \mid t : s, R_v \subset R_t\} \text{ for } s \in S.$
- $n(f)((v_1, t_1), \dots, (v_n, t_n)) = (v_1 \cdots v_n, f(t_1, \dots, t_n))$ for $f: a_1 \cdots a_n \rightarrow b \in F$.
- Congruence \sim on n: $(v, t) \sim (v', t')$ if

t, t' typed the same, $R_t = R_{t'}$ and $E \vdash_R t_1 \approx_{v} t_2$ for all $v \in R_t$

• $m = n/\sim$.

