Heapsort

Reviews: Tree

- Tree
 - Rooted tree
 - parent, child, sibling, ancestor
- Binary tree
 - Left child, right child
- Some concepts
 - Height: # of edges on a longest simple path from node to a leaf

Heap Definition

- A heap is
 - An <u>essentially complete binary</u> tree which satisfies <u>heap</u> <u>property</u>.
- Binary tree
- Essentially complete binary tree
- Heap property
 - max-heap
 - The value (key) of each node in the heap is greater than or equal to the values (keys) of its children, if any.
 - min-heap
 - The value (key) of each node in the heap is less than or equal to the values (keys) of its children, if any.

An essentially complete binary tree

Some important properties of heaps

- Given a node *A[i]*
 - It's parent is A[i/2], if i>1.
 - It's left child is A[2*i], if 2*i <= n.
 - It's right child is A[2*i+1], if 2*i+1 <= n.
- The height of a heap containing n nodes is $\lfloor \lg n \rfloor$
- There are at most $\left\lceil \frac{n}{2^{h+1}} \right\rceil$ nodes with height h

Heapify

- Assume that the left and right subtrees of A[i] are already max-heaps
- A[i] may be less than its children a violation
- Goal: Make the subtree rooted at index i a max-heap
- Application
 - $\;\; Call \; heapify(i)$ when the value of A[i] is decreased

Heapify

```
\begin{aligned} \text{Max-Heapify} & (A,i,n) \\ l \leftarrow \text{Left}(i) \\ r \leftarrow \text{Right}(i) \\ \text{if } l \leq n \text{ and } A[l] > A[i] \\ \text{then } largest \leftarrow l \\ \text{else } largest \leftarrow i \\ \text{if } r \leq n \text{ and } A[r] > A[largest] \\ \text{then } largest \leftarrow r \\ \text{if } largest \neq i \\ \text{then } \text{exchange } A[i] \leftrightarrow A[largest] \\ \text{Max-Heapify} & (A, largest, n) \end{aligned}
```


<u>buildHeap</u>

 $\begin{aligned} \text{Build-Max-Heap}(A, n) \\ \textbf{for} \ i \leftarrow \lfloor n/2 \rfloor \ \textbf{downto} \ 1 \\ \textbf{do} \ \text{Max-Heapify}(A, i, n) \end{aligned}$

- What's the idea here?
- Proof

Example

- i starts off as 5.
- · MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1, 4.

Correctness

Correctness

Loop invariant: At start of every iteration of **for** loop, each node i + 1, i + 2, ..., n is root of a max-heap.

Initialization: By Exercise 6.1-7, we know that each node $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n is a leaf, which is the root of a trivial max-heap. Since $i = \lfloor n/2 \rfloor$ before the first iteration of the **for** loop, the invariant is initially true.

Maintenance: Children of node i are indexed higher than i, so by the loop invariant, they are both roots of max-heaps. Correctly assuming that $i+1, i+2, \ldots, n$ are all roots of max-heaps, MAX-HEAPIFY makes node i a max-heap root. Decrementing i reestablishes the loop invariant at each iteration.

Termination: When i = 0, the loop terminates. By the loop invariant, each node, notably node 1, is the root of a max-heap.

Analaysis

- O(n) calls to MAX-HEAPIFY
- Each takes O(log n)

Total time: O(n log n), not tight!

Analaysis

- The cost of heapify(i) for a node at height h is O(h)
- Number of nodes at height h is $\left[\frac{n}{2^{h+1}}\right]$
- The total cost is bounded by

$$\left|\sum_{h=0}^{\lfloor \log n\rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O(n \sum_{h=0}^{\lfloor \log n\rfloor} \frac{h}{2^h}) = O(n)$$

$$\sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O(n) \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^{h}}) = O(n)$$

$$\sum_{h=0}^{\infty} \frac{h}{2^{h}} = \sum_{h=0}^{\infty} h(\frac{1}{2})^{h} = \frac{\frac{1}{2}}{(1-\frac{1}{2})^{2}} = 2$$

Heapsort Algorithm

- build a max-heap from the array
- starting from root, place maximum element into the correct place in array by swapping it with the element in the last position in the array
- •"discard" the last node (knowing that it is in its correct place) by decreasing the heap size
- call MAX-HEAPIFY on new root
- repeat the "discarding" process until only one node remains

Heapsort Algorithm

```
HEAPSORT(A, n)
BUILD-MAX-HEAP(A, n)
for i \leftarrow n downto 2
do exchange A[1] \leftrightarrow A[i]
MAX-HEAPIFY(A, 1, i - 1)
```


Analysis

- BUILD-MAX-HEAP: O(n)

- For loop: n-1 times Exchange elements: O(1) MAX-HEAPFY" O(log n)

Total time: O(n log n)

Application: Priority Queues

Priority queue: a data structure for maintaining a set S of elements, each with an associated value called a key.

Applications: job scheduling, event-driven simulations

Operations of Priority Queues

- Insert(S, x)
 - Insert element x into S
- Maximum(S)
 - Return the element with the largest key
- Extract-Max(L)
 - Remove and return the largest element
- Increase-Key(S, x, k)
 - ullet Increase the value of element x's key to the new value k

Finding the maximum element

• It's the root

```
HEAP-MAXIMUM(A) return A[1]
```

Time: $\Theta(1)$

Extracting maximum element

- Make sure heap is not empty
- Make a copy of the maximum element
- Make the last node in the tree the new root
- re-heapify the heap, with one fewer node
- Return the copy of the maximum element

```
HEAP-EXTRACT-MAX(A, n)

if n < 1

then error "heap underflow"

max \leftarrow A[1]

A[1] \leftarrow A[n]

MAX-HEAPIFY(A, 1, n - 1) \triangleright remakes heap

return max
```

Time: constant time assignments plus time for MAX-HEAPIGY: $O(\log n)$

Increasing key value

- make sure $k \ge x$'s current key
- Update x's key value to k
- Traverse tree upward comparing x to its parent and swapping keys if necessary, until x's key is smaller than its parent's key

```
HEAP-INCREASE-KEY (A, i, key)

if key < A[i]

then error "new key is smaller than current key"

A[i] \leftarrow key

while i > 1 and A[PARENT(i)] < A[i]

do exchange A[i] \leftrightarrow A[PARENT(i)]

i \leftarrow PARENT(i)
```

Time: $O(\log n)$ as upward path has length $O(\log n)$

Inserting into heap

- Insert a new node in the last position of tree with key -∞
- Increase the -∞ key to k using the HEAP-INCREASE-KEY procedure

```
MAX-HEAP-INSERT (A, key, n)

A[n+1] \leftarrow -\infty

HEAP-INCREASE-KEY (A, n+1, key)
```

Time: constant time assignments plus time for HEAP-INCREASE-KEY $O(\log n)$