Homological methods in Commutative Algebra

Swayam Chube

June 28, 2025

CONTENTS

1	Regular Sequences		
	1.1	Regular sequences and the Koszul complex	1
	1.2	Cohen-Macaulay Rings	7
	1.3	Base Change Theorems	8
	Regular Rings		
	2.1	Regular Rings	10
	2.2	Finite Free Resolutions	13
	2.3	Unique Factorization Domains	16

§1 REGULAR SEQUENCES

§§ Regular sequences and the Koszul complex

DEFINITION 1.1. Let A be a ring and M an A-module. An element $a \in A$ is said to be M-regular if a is a non zero-divisor on M. A sequence a_1, \ldots, a_n of elements of A is an M-sequence if

- (1) Each a_i is $M/(a_1,...,a_{i-1})M$ -regular.
- (2) $M \neq (a_1, ..., a_n)M$.

DEFINITION 1.2. Let *A* be a ring and $x_1, ..., x_n \in A$. We define a complex K_{\bullet} by setting $K_0 = A$, $K_p = 0$ for p > n or p < 0, and

$$K_p = \bigoplus_{1 \leq i < \dots < i_p \leq n} A e_{i_1} \wedge \dots \wedge e_{i_p}.$$

For $1 \le p \le n$, define $K_p \to K_{p-1}$ by

$$d\left(e_{i_1}\wedge\cdots\wedge e_{i_p}\right)=\sum_{i=1}^p(-1)^{r-1}x_{i_r}e_{i_1}\wedge\cdots\wedge\widehat{e}_{i_r}\wedge\cdots\wedge e_{i_p},$$

and extend linearly to K_p . This is known as the *Koszul complex*.

PROPOSITION 1.3. The Koszul complex is indeed a complex.

Proof. $d \circ d : K_1 \to K_{-1}$ is obviously the zero map. Now, let $p \ge 2$, we shall show that $(d \circ d)(e_{i_1} \land \cdots \land e_{i_p}) = 0$. Note that the above can be written as a linear combination of the basis elements of K_{p-2} . Consider the basis element $e_{i_1} \land \cdots \land \widehat{e}_{i_a} \land \cdots \land \widehat{e}_{i_b} \land \cdots \land e_{i_p}$. We shall show that its coefficient is 0.

Indeed, its coefficient is contributed by

$$e_{i_1} \wedge \cdots \wedge \widehat{e}_{i_a} \wedge \cdots \wedge e_{i_p}$$
 and $e_{i_1} \wedge \cdots \wedge \widehat{e}_{i_b} \wedge \cdots \wedge e_{i_p}$,

each of which has coefficient $(-1)^{a-1}x_{i_a}$ and $(-1)^{b-1}x_{i_b}$ respectively. The coefficient of our desired basis element in the differential of the first is $(-1)^{b-2}x_{i_b}$ and in the second is $(-1)^{a-1}x_{i_a}$. Thus, the coefficient of our desired basis element in the differential of $e_{i_1} \wedge \cdots \wedge e_{i_n}$ is

$$(-1)^{a-1}x_{i_a}(-1)^{b-2}x_{i_b} + (-1)^{b-1}x_{i_b}(-1)^{a-1}x_{i_a} = 0,$$

thereby completing the proof.

DEFINITION 1.4. Let C_{\bullet} and D_{\bullet} be complexes of A-modules. Define their *tensor product* $(C \otimes D)_{\bullet}$ by

$$(C \otimes D)_n = \bigoplus_{i+j=n} C_i \otimes_A D_j.$$

The boundary maps are given by $d:(C\otimes D)_n\to (C\otimes D)_{n-1}$

$$d(x \otimes y) = dx \otimes y + (-1)^i x \otimes dy$$
 $x \in C_i, y \in C_j$

PROPOSITION 1.5. There is an isomorphism of complexes $(C \otimes D)_{\bullet} \cong (D \otimes C)_{\bullet}$.

Proof. If $x \otimes y \in (C \otimes D)_n$ with $x \in C_i$ and $y \in D_j$, then send this element to $(-1)^{ij}y \otimes x \in (D \otimes C)_n$. It is not hard to check that this is indeed a chain map. That this is an isomorphism of chain complexes follows from the fact that for every n, $(C \otimes D)_n \to (D \otimes C)_n$ is an isomorphism.

PROPOSITION 1.6. Let $x_1, \ldots, x_n \in A$. Then $K_{\bullet}(x_1, \ldots, x_n) \cong K_{\bullet}(x_1) \otimes \cdots \otimes K_{\bullet}(x_n)$ as complexes.

Proof. We prove this by induction on n. The base case with n=1 is tautological. Suppose now that $n \ge 1$. We shall show that $K_{\bullet}(x_1, \dots, x_n) \otimes K_{\bullet}(x_{n+1}) \cong K_{\bullet}(x_1, \dots, x_{n+1})$. Write the complex $K_{\bullet}(x_{n+1})$ as

$$0 \longrightarrow Ae_{n+1} \xrightarrow{e_{n+1} \mapsto x_{n+1}} A \longrightarrow 0.$$

Then, $(K(x_1,\ldots,x_n)\otimes K(x_{n+1}))_p=\left(K_p(x_1,\ldots,x_n)\otimes A\right)\oplus \left(K_{p-1}(x_1,\ldots,x_n)\otimes Ae_{n+1}\right)$. There is a natural isomorphism

$$(K(x_1,\ldots,x_n)\otimes K(x_{n+1}))_p\longrightarrow K_p(x_1,\ldots,x_{n+1}),$$

which sends $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes 1$ to $e_{i_1} \wedge \cdots \wedge e_{i_p}$ in $K_p(x_1, \dots, x_n)$, and sends $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \otimes e_{n+1}$ to $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \wedge e_{n+1}$ in $K_p(x_1, \dots, x_{n+1})$.

It remains to check that the map defined above is indeed a chain map. Indeed, under the differential in the tensor complex, $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes 1$ maps to $d(e_{i_1} \wedge \cdots \wedge e_{i_p}) \otimes 1$, which maps to $e(e_{i_1} \wedge \cdots \wedge e_{i_p})$ under the aforementioned isomorphism. On the other hand, the starting element maps to $e_{i_1} \wedge \cdots \wedge e_{i_p}$ under the isomorphism first and then maps to $d(e_{i_1} \wedge \cdots \wedge e_{i_p})$ under the differential.

Next, if we begin with $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \otimes e_{n+1}$, then under the differential, it maps to

$$d(e_{i_1}\wedge\cdots\wedge e_{i_{p-1}})\otimes e_{n+1}+(-1)^{p-1}x_{n+1}e_{i_1}\wedge\cdots\wedge e_{i_{p-1}}\otimes 1,$$

which maps to

$$d(e_{i_1} \wedge \cdots \wedge e_{i_{p-1}}) \wedge e_{n+1} + (-1)^{p-1} x_{n+1} e_{i_1} \wedge \cdots \wedge e_{i_{p-1}}$$

under the isomorphism. On the other hand, the starting element maps to $e_{i_1} \wedge \cdots \wedge e_{i_{p-1}} \wedge e_{n+1}$ under the isomorphism, which maps to the above element under the differential. This completes the proof.

DEFINITION 1.7. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. For an A-module M, set

$$K_{\bullet}(\mathbf{x}, M) = K(\mathbf{x}) \otimes M$$
.

The homology groups of this complex are denoted by $H_p(\underline{\mathbf{x}}, M)$. Similarly, for a complex C_{\bullet} of A-modules, set $C_{\bullet}(\mathbf{x}) = C_{\bullet} \otimes K_{\bullet}(\mathbf{x})$.

PROPOSITION 1.8. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. Then

$$H_0(\underline{\mathbf{x}}, M) = M/(\underline{\mathbf{x}})M$$
 $H_n(\underline{\mathbf{x}}, M) \cong \{\xi \in M : x_1 \xi = \dots = x_n \xi = 0\}.$

Proof. The assertion about $H_0(\underline{\mathbf{x}}, M)$ is trivial. $H_n(\underline{\mathbf{x}}, M)$ is precisely the kernel of the map $K_n(\underline{\mathbf{x}}, M) \to K_{n-1}(\underline{\mathbf{x}}, M)$, which is given by

$$\xi e_1 \wedge \cdots \wedge e_n \longmapsto \sum_{i=1}^n (-1)^{i-1} x_i \xi e_1 \wedge \cdots \wedge \widehat{e}_i \wedge \cdots \wedge e_n,$$

where $\xi e_{i_1} \wedge \cdots \wedge e_{i_p} \in K_p(\underline{\mathbf{x}}, M)$ is shorthand for $e_{i_1} \wedge \cdots \wedge e_{i_p} \otimes \xi \in K_p(\underline{\mathbf{x}}, M)$.

The right hand side of the above equation is zero if and only if each $x_i\xi$ is zero, whence the conclusion follows.

THEOREM 1.9. Let C_{\bullet} be a complex of A-modules and $x \in A$. Then, there is a short exact sequence of complexes

$$0 \to C_{\bullet} \to C_{\bullet}(x) \to C'_{\bullet} \to 0$$

where $C'_{p+1} = C_p$ is the (upward) shift of the complex C_{\bullet} . The homology long exact sequence so obtained looks like

$$\cdots \to H_p(C_{\bullet}) \to H_p(C_{\bullet}(x)) \to H_{p-1}(C_{\bullet}) \xrightarrow{(-1)^{p-1}x} H_{p-1}(C_{\bullet}) \to \cdots$$

Further, we have $x \cdot H_p(C_{\bullet}(x)) = 0$ for all $p \in \mathbb{Z}$.

Proof. Denote the Koszul complex $K_{\bullet}(x)$ by

$$\cdots \to 0 \to Ae_1 \xrightarrow{e_1 \mapsto x} A \to 0.$$

Thus, we can identify $C_{\bullet}(x)$ with $C_p \oplus C_{p-1}$ with the boundary map as

$$d(\xi, \eta) = (d\xi + (-1)^{p-1}x\eta, d\eta) \in C_{p-1} \oplus C_{p-2}.$$

Hence, we have a short exact sequence

That the above commutes is straightforward. It remains to compute the boundary map from $H_{p-1}(C_{\bullet}) = H_p(C'_{\bullet})$ to $H_{p-1}(C_{\bullet})$.

Choose a cycle $\eta \in C_p' = C_{p-1}$, that is, $d\eta = 0$. This lifts to $(0,\eta) \in C_p \oplus C_{p-1}$, which maps to $((-1)^{p-1}x\eta,0) \in C_{p-1} \oplus C_{p-2}$, which again lifts to $(-1)^{p-1}x\eta$ in C_{p-1} , which is a cycle in C_{p-1} . Hence, the induced map on homologies is multiplication by $(-1)^{p-1}x$.

Finally, we must show that x annihilates $H_p(C_{\bullet}(x))$ for all p. Choose a cycle $(\xi, \eta) \in C_p \oplus C_{p-1}$, that is, $d\eta = 0$, and $d\xi = (-1)^p x\eta$. Hence,

$$C_{p+1} \ni d(0,(-1)^p \xi) = ((-1)^p x \xi,(-1)^p d\xi) = x \cdot (\xi,\eta).$$

Thus, x annihilates $[(\xi, \eta)] \in H_p(C_{\bullet}(x))$, whence annihilates all of $H_p(C_{\bullet}(x))$.

COROLLARY 1.10. Let $\underline{\mathbf{x}} = x_1, \dots, x_n$ be a sequence in A. Then $(\underline{\mathbf{x}})$ annihilates $H_p(\underline{\mathbf{x}}, M)$ for every $p \in \mathbb{Z}$.

Proof. It suffices to show that x_n annihilates $H_p(\underline{\mathbf{x}},M)$ since the Koszul complex is invariant under permutation of the sequence $\underline{\mathbf{x}}$. But this is obvious, since $K_{\bullet}(\underline{\mathbf{x}},M)$ is isomorphic to $K_{\bullet}(x_1,\ldots,x_{n-1},M)\otimes K_{\bullet}(x_n)$ due to the commutativity of tensor products of complexes. We are done by invoking the preceding theorem with $C_{\bullet} = K_{\bullet}(x_1,\ldots,x_{n-1},M)$ and $x = x_n$.

THEOREM 1.11. Let A be a ring, M an A-module, and x_1, \ldots, x_n an M-sequence. Then

$$H_p(\underline{\mathbf{x}}, M) = 0 \quad \forall p > 0, \qquad H_0(\underline{\mathbf{x}}, M) = M/(\underline{\mathbf{x}})M.$$

Proof. Induct on n. The base case with n=1 follows from the fact that $H_1(x_1,M)=(0:_Mx_1)=0$, since x_1 is M-regular. Now, suppose n>1. If p>1, then there is an exact sequence furnished by Theorem 1.9 by taking $C_{\bullet}=K_{\bullet}(x_1,\ldots,x_{n-1},M)$ and $x=x_n$:

$$0 = H_p(x_1, \dots, x_{n-1}, M) \longrightarrow H_p(x_1, \dots, x_n, M) \longrightarrow H_{p-1}(x_1, \dots, x_{n-1}, M) = 0,$$

whence $H_p(\underline{\mathbf{x}}, M) = 0$. It remains to establish that $H_1(\underline{\mathbf{x}}, M) = 0$. Set $M_i = M/(x_1, \dots, x_i)M$ with the convention that $M_0 = M$. The above long exact sequence again furnishes

$$0 = H_1(x_1, \ldots, x_{n-1}, M) \to H_1(\underline{\mathbf{x}}, M) \to H_0(x_1, \ldots, x_{n-1}, M) = M_{n-1} \xrightarrow{x_n} M_{n-1}.$$

But since x_n is a non zero-divisor on M_{n-1} , we see that $H_1(x, M) = 0$ as desired.

THEOREM 1.12. Suppose one of the following two conditions holds:

- (α) (A, m) is a Noetherian local ring, $x_1, \ldots, x_n \in m$, and M is a finite A-module.
- (β) A is an \mathbb{N} -graded ring, M is an \mathbb{N} -graded A-module, and x_1, \ldots, x_n are homogeneous elements of positive degree.

Then, if $H_1(x, M) = 0$ and $M \neq 0$, then x_1, \dots, x_n is an M-sequence.

Proof. Induction on n. If n=1, then $0=H_1(x_1,M)=(0:_Mx_1)$, whence x_1 is a non zero-divisor on M. Now suppose n>1. Again, we make use of the exact sequence associated with $K_{\bullet}(x_1,\ldots,x_{n-1},M)\otimes K_{\bullet}(x_n)$ to get

$$H_1(x_1,...,x_{n-1},M) \xrightarrow{-x_n} H_1(x_1,...,x_{n-1},M) \to H_1(x,M) = 0.$$

But since $H_i(x_1,...,x_{n-1},M)$ is a finite A-module in case (α) or a \mathbb{N} -graded module in case (β) , the above surjection implies, due to Nakayama, that $H_1(x_1,...,x_{n-1},M)=0$. The induction hypothesis then implies $x_1,...,x_{n-1}$ is an M-sequence.

Now, continuing the above long exact sequence, we get

$$0 = H_1(\underline{\mathbf{x}}, M) \longrightarrow H_0(x_1, \dots, x_{n-1}, M) = M_{n-1} \xrightarrow{x_n} M_{n-1},$$

where $M_{n-1} = M/(x_1,...,x_{n-1})M$. The above sequence implies x_n is M_{n-1} -regular, whence $x_1,...,x_n$ is an M-sequence, as desired.

THEOREM 1.13. Let A be a Noetherian ring, M a finite A-module, and I an ideal of A such that $M \neq IM$. For a given integer n > 0, the following conditions are equivalent:

- (1) $\operatorname{Ext}_A^i(N,M) = 0$ for all i < n and for any finite A-module N with $\operatorname{Supp}(N) \subseteq V(I)$.
- (2) $\operatorname{Ext}_A^i(A/I, M) = 0$ for all i < n.
- (3) $\operatorname{Ext}_A^i(N,M) = 0$ for all i < n and for some finite A-module N with $\operatorname{Supp}(N) = V(I)$.
- (4) There exists an M-sequence of length n contained in I.

Proof. $(1)\Rightarrow (2)\Rightarrow (3)$ is clear. $(3)\Rightarrow (4)$ First, we show that I contains an M-regular element. Suppose not, then due to prime avoidance, I must be contained in some associated prime $\mathfrak{p}\in \mathrm{Ass}_A(M)$. Thus, there is an injective map $A/\mathfrak{p}\hookrightarrow M$, which upon localizing at \mathfrak{p} , we see that $\mathrm{Hom}_{A_\mathfrak{p}}(\kappa(\mathfrak{p}),M_\mathfrak{p})\neq 0$. Now, $\mathfrak{p}\in V(I)=\mathrm{Supp}(N)$, whence $N_\mathfrak{p}\neq 0$, and hence, due to Nakayama's lemma, $N_\mathfrak{p}/\mathfrak{p}N_\mathfrak{p}\neq 0$ (since $N_\mathfrak{p}$ is a finite $A_\mathfrak{p}$ -module). Then, $N_\mathfrak{p}/\mathfrak{p}N_\mathfrak{p}$ is a non-zero $\kappa(\mathfrak{p})$ -vector space, and consequently, $\mathrm{Hom}_{A_\mathfrak{p}}(N_\mathfrak{p}/\mathfrak{p}N_\mathfrak{p},\kappa(\mathfrak{p}))\neq 0$ (choose a basis and project onto a coordinate). Now, we can form the composition

$$N_{\mathfrak{p}} \to N_{\mathfrak{p}}/\mathfrak{p}N_{\mathfrak{p}} \to \kappa(\mathfrak{p}) \hookrightarrow M_{\mathfrak{p}}.$$

The first two maps are surjections and hence, the composition is non-zero. It follows that $\operatorname{Hom}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}}, M_{\mathfrak{p}}) \neq 0$. Since N is finite over a Noetherian ring, we have

$$(\operatorname{Hom}_A(N,M))_{\mathfrak{p}} = \operatorname{Hom}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}},M_{\mathfrak{p}}) \neq 0,$$

whence $\operatorname{Ext}_A^0(N,M) = \operatorname{Hom}_A(N,M) \neq 0$, a contradiction to (3). Hence, I contains an M-regular element, say f. If n = 1, then we are already done. If n > 1, then set $M_1 = M/fM$ and consider the short exact sequence

$$0 \to M \xrightarrow{f} M \to M_1 \to 0.$$

The long exact sequence using $\operatorname{Ext}_A(N,-)$ gives

$$\cdots \to \operatorname{Ext}\nolimits_A^{i-1}(N,M) \xrightarrow{f} \operatorname{Ext}\nolimits_A^{i-1}(N,M) \to \operatorname{Ext}\nolimits_A^{i-1}(N,M_1) \to \operatorname{Ext}\nolimits_A^{i}(N,M) \to \cdots.$$

For $1 \le i < n$, this implies $\operatorname{Ext}_A^{i-1}(N, M_1) = 0$, and due to the induction hypothesis, there is an M_1 -sequence f_2, \ldots, f_n in I. Thus, f_1, \ldots, f_n is an M-sequence in I.

 $(4)\Rightarrow (1)$. Induction on n. We shall deal with the base case later. Suppose n>1. Let $\underline{\mathbf{x}}=x_1,\ldots,x_n$ be an M-sequence in I. Set $M_1=M/x_1M$ which fits into a short exact sequence $0\to M\xrightarrow{x_1}M\to M_1\to 0$. The sequence x_2,\ldots,x_n is an M_1 -sequence in I, whence due to the inductive hypothesis, $\mathrm{Ext}_A^i(N,M_1)=0$ for all i< n-1. The long exact sequence corresponding to $\mathrm{Ext}_A(N,-)$ gives us

$$0 = \operatorname{Ext}^{i-1}_{\Lambda}(N, M_1) \to \operatorname{Ext}^{i}_{\Lambda}(N, M) \xrightarrow{x_1} \operatorname{Ext}^{i}(N, M)$$

for all $0 \le i < n$, with the convention that $\operatorname{Ext}^{-1}(N, M_1) = 0$. But note that $\operatorname{Ext}^i_A(N, -)$ is annihilated by $\operatorname{Ann}_A(N)$. But since $\operatorname{Supp}(N) = V(\operatorname{Ann}_A(N)) \subseteq V(I)$, we conclude that $I \subseteq \sqrt{I} \subseteq \sqrt{\operatorname{Ann}_A(N)}$. In particular, a sufficiently large power of x_1 annihilates N, whence, annihilates $\operatorname{Ext}^i_A(N, M)$. But since multiplication by x_1 is injective, we must have that $\operatorname{Ext}^i_A(N, M) = 0$ for i < n, thereby completing the proof.

THEOREM 1.14. Let A be a Noetherian ring, I an ideal of A, and M a finite A-module such that $M \neq IM$. Then the length of any maximal M-sequence contained in I is the same, say n, and n is determined by

$$\operatorname{Ext}_A^i(A/I,M) = 0 \quad \forall \ i < n \quad \text{ and } \quad \operatorname{Ext}_A^n(A/I,M) \neq 0.$$

We write n = depth(I, M) and call n the I-depth of M.

Proof. Let $\underline{a} = a_1, ..., a_n$ be a maximal M-sequence in I. Suppose $\operatorname{Ext}_A^n(A/I, M) = 0$. Define $M_i = M/(a_1, ..., a_i)M$. Using the short exact sequence $0 \to M \xrightarrow{a_1} M \to M_1 \to 0$, we have an exact sequence

$$0=\operatorname{Ext}\nolimits_A^{n-1}(A/I,M)\to\operatorname{Ext}\nolimits_A^{n-1}(A/I,M_1)\to\operatorname{Ext}\nolimits_A^n(A/I,M)=0,$$

whence $\operatorname{Ext}_A^{n-1}(A/I,M_1)=0$; and since a_2,\dots,a_n is an M_1 -sequence, $\operatorname{Ext}_A^i(A/I,M_1)=0$ for i< n-1. Arguing similarly, we get that $\operatorname{Ext}_A^0(A/I,M_n)=0$. Due to the preceding theorem, I must contain an M_n -regular element, contradicting the maximality of $\underline{\mathbf{a}}$. Thus, $\operatorname{Ext}_A^n(A/I,M)\neq 0$ and $\operatorname{Ext}_A^i(A/I,M)=0$ for i< n.

On the other hand, if $\underline{\mathbf{b}} = b_1, \dots, b_m$ is a maximal M-sequence, then due to the above paragraph, $\operatorname{Ext}_A^m(A/I,M) \neq 0$ and $\operatorname{Ext}_A^i(A/I,M) = 0$ for i < m. In particular, this means that m = n.

Finally, suppose n satisfies the conditions given in the theorem. Then, due to the preceding theorem, there is an M-sequence $\underline{\mathbf{a}} = a_1, \dots, a_n$ in I. Further, since $\mathrm{Ext}_A^n(A/I, M) \neq 0$, this sequence must be maximal, else it could be extended and again, due to the preceding theorem $\mathrm{Ext}_A^n(A/I, M) = 0$. This completes the proof.

REMARK 1.15. The above theorem can be phrased more succinctly as

$$\operatorname{depth}(I, M) = \inf \left\{ i : \operatorname{Ext}_A^i(A/I, M) \neq 0 \right\}.$$

In particular, if (A, \mathfrak{m}, k) is a Noetherian local ring, then we write depth (\mathfrak{m}, M) as depth M and

$$\operatorname{depth} M = \inf \left\{ i : \operatorname{Ext}_A^i(k, M) \neq 0 \right\}.$$

THEOREM 1.16 (DEPTH SENSITIVITY OF KOSZUL COMPLEX). Let A be a Noetherian ring, $I = (y_1, ..., y_n)$ an ideal of A, and M a finite A-module such that $M \neq IM$. If

$$q = \sup\{i: H_i(y, M) \neq 0\},\$$

then depth(I, M) = n - q.

Proof. We shall argue by induction on $s = \operatorname{depth}(I, M)$. If s = 0, then every element of I is a zero-divisor on M, whence by prime avoidance, there is an associated prime $\mathfrak{p} \in \operatorname{Ass}_A(M)$ such that $I \subseteq \mathfrak{p}$. By definition, there is some $0 \neq \xi \in M$ such that $\mathfrak{p} = \operatorname{Ann}_A(\xi)$, and hence, $I\xi = 0$. Recall that $H_n(y,M) = (0:_M(y)) = (0:_M(I) \neq 0$, since it contains ξ . Thus, q = n.

Now, suppose s>0, then $H_n(\underline{y},M)=0$, since some element of I is a non zero-divisor on M. In particular, this means q< n. Let $\underline{x}=x_1,\ldots,x_s$ be a maximal M-sequence in I. There is a short exact sequence $0\to M\xrightarrow{x_1} M\to M_1\to 0$, where $M_1=M/x_1M$. Since every element in the Koszul comples $K_{\bullet}(\underline{y})$ is a free module, tensoring with the above short exact sequence will give a short exact sequence of complexes

$$0 \to K_{\bullet}(\underline{y},M) \xrightarrow{x_1} K_{\bullet}(\underline{y},M) \to K_{\bullet}(\underline{y},M_1) \to 0.$$

The associated long exact sequence looks like

$$H_i(\underline{y}, M) \xrightarrow{x_1} H_i(\underline{y}, M) \rightarrow H_i(\underline{y}, M_1) \rightarrow H_{i-1}(\underline{y}, M) \xrightarrow{x_1} H_{i-1}(\underline{y}, M)$$

for all i. Recall that I = (y) annihilates $H_i(y, M)$ for all i, and hence the image of the first map and the kernel of the last map in the above sequence is 0, therby giving us a short exact sequence

$$0 \to H_i(y, M) \to H_i(y, M_1) \to H_{i-1}(y, M) \to 0, \quad \forall i \in \mathbb{Z}.$$

Now, note that if $H_i(\underline{y}, M_1) = 0$, then $H_i(\underline{y}, M) = H_{i-1}(\underline{y}, M) = 0$. Hence, $H_{q+1}(\underline{y}, M_1) \neq 0$, but for i > q+1, $H_i(\underline{y}, M_1) = 0$. Now, depth $(I, M_1) = s-1$, since x_2, \dots, x_n is a maximal M_1 -sequence in I, for if not, then the original sequence \underline{x} could be extended to a larger M-sequence in I. By the induction hypothesis, we have q+1=n-(s-1), and thus, s=n-q.

REMARK 1.17. In other words, depth(I,M) is the number of successive zero terms from the left in the sequence

$$H_n(y, M), H_{n-1}(y, M), \dots, H_0(y, M) = M/IM \neq 0.$$

§§ Cohen-Macaulay Rings

THEOREM 1.18 (ISCHEBECK). Let (A, \mathfrak{m}) be a Noetherian local ring, M and N be non-zero finite A-modules, and suppose depth M = k and dim N = r. Then

$$\operatorname{Ext}_A^i(N, M) = 0$$
 for $i < k - r$.

Proof. We shall first prove the statement of the theorem when $N = A/\mathfrak{p}$. If dim N = r = 0, then $N = A/\mathfrak{m}$. Using Remark 1.15, we have that

$$k = \operatorname{depth} M = \inf \left\{ i : \operatorname{Ext}_A^i(N, M) \neq 0 \right\}.$$

Hence, for all i < k = k - r, we have that $\operatorname{Ext}_A^i(N, M) = 0$.

Suppose now that r > 0. Then $\mathfrak p$ is not maximal, so we can choose some $x \in \mathfrak m \setminus \mathfrak p$. This gives us a short exact sequence

$$0 \to N \xrightarrow{\cdot x} N \to N' \to 0$$
,

where $N' = N/xN = A/(\mathfrak{p}, x)$. Since $\dim N' < \dim N$, the induction hypothesis applies to N'. For each i < k - r, we obtain a long exact sequence

$$\operatorname{Ext}^i_A(N',M) \to \operatorname{Ext}^i_A(N,M) \xrightarrow{\cdot x} \operatorname{Ext}^i_A(N,M) \to \operatorname{Ext}^{i+1}_A(N',M) = 0.$$

The induction hypothesis implies $\operatorname{Ext}_A^{i+1}(N',M)=0$, whence due to Nakayama's lemma, $\operatorname{Ext}_A^i(N,M)=0$, as desired.

COROLLARY 1.19. Let (A, \mathfrak{m}) be a Noetherian local ring, M a finite A-module, and $\mathfrak{p} \in \mathrm{Ass}_A(M)$. Then $\dim A/\mathfrak{p} \ge \mathrm{depth}\,M$.

Proof. If $\dim A/\mathfrak{p} < \dim M$, then due to Theorem 1.18

$$\operatorname{Hom}_{A}(A/\mathfrak{p},M)=\operatorname{Ext}_{A}^{0}(A/\mathfrak{p},M)=0,$$

which is absurd, since $\mathfrak{p} \in \mathrm{Ass}_A(M)$.

DEFINITION 1.20. Let (A, \mathfrak{m}, k) be a Noetherian local ring, and M a finite A-module. We say that M is a *Cohen-Macaulay module* if $M \neq 0$ and depth $M = \dim M$, or if M = 0. If A is a Cohen-Macaulay module over itself, then it is said to be a Cohen-Macaulay (local) ring.

THEOREM 1.21. Let A be a Noetherian local ring, and M a finite A-module.

(1) If *M* is a CM-module, then for any $\mathfrak{p} \in \mathrm{Ass}_A(M)$ we have

$$\dim A/\mathfrak{p} = \dim M = \operatorname{depth} M$$
.

Hence M has no embedded associated primes.

(2) If $a_1, ..., a_r \in \mathfrak{m}$ is an M-sequence and we set $M' = M/(a_1, ..., a_r)$ then

M is a CM-module over $A \iff M'$ is a CM-module over A.

(3) If M is a CM-module over A, then $M_{\mathfrak{p}}$ is a CM-module over $A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Spec} A$, and if $M_{\mathfrak{p}} \neq 0$ then

$$\operatorname{depth}(\mathfrak{p},M) = \operatorname{depth}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}.$$

Proof. (1) We have

 $\dim M = \sup \{\dim A/\mathfrak{p} : \mathfrak{p} \in \operatorname{Ass}_A(M)\} \ge \inf \{\dim A/\mathfrak{p} : \mathfrak{p} \in \operatorname{Ass}_A(M)\} \ge \operatorname{depth} M.$

Since $\dim M = \operatorname{depth} M$, the conclusion follows.

- (2) This follows immediately from the fact that depth $M' = \operatorname{depth} M r$ and $\dim M' = \dim M r$.
- (3) It suffices to consider the case $\mathfrak{p} \in \operatorname{Supp}_A(M)$, that is, $\mathfrak{p} \supseteq \operatorname{Ann}_A(M)$. Since every M-regular sequence contained in \mathfrak{p} is an $M_{\mathfrak{p}}$ -regular sequence contained in $\mathfrak{p}A_{\mathfrak{p}}$, we have the obvious inequalities

$$\dim M_{\mathfrak{p}} \geqslant \operatorname{depth}_{A_{\mathfrak{p}}} M_{\mathfrak{p}} \geqslant \operatorname{depth}(\mathfrak{p}, M_{\mathfrak{p}}).$$

We shall show that $\dim M_{\mathfrak{p}} = \operatorname{depth}(\mathfrak{p}, M)$, whence all the desired conclusions would follow. The proof is by induction on $\operatorname{depth}(\mathfrak{p}, M)$. For the base case, we have $\operatorname{depth}(\mathfrak{p}, M) = 0$, which, due to prime avoidance, means that \mathfrak{p} is contained in an associated prime of M. Since M has no embedded associated primes, we must have that \mathfrak{p} is an associated prime. As a result, $\dim M_{\mathfrak{p}} = 0 = \operatorname{depth}(\mathfrak{p}, M)$.

Suppose now that depth(\mathfrak{p} , M) > 0; choose an M-regular element $a \in \mathfrak{p}$ and set M' = M/aM. Then

$$\operatorname{depth}(\mathfrak{p}, M') = \operatorname{depth}(\mathfrak{p}, M) - 1,$$

and M' is a CM-module over A due to (2). Further, note that $M'_{\mathfrak{p}} = M_{\mathfrak{p}}/aM_{\mathfrak{p}} \neq 0$ due to Nakayama's lemma. Thus, the induction hypothesis applies and using the fact that $a \in A_{\mathfrak{p}}$ is $M_{\mathfrak{p}}$ -regular, we have

$$\dim M_{\mathfrak{p}} - 1 = \dim M_{\mathfrak{p}} / a M_{\mathfrak{p}} = \dim M'_{\mathfrak{p}} = \operatorname{depth}(\mathfrak{p}, M') = \operatorname{depth}(\mathfrak{p}, M) - 1,$$

whence the desideratum follows.

§§ Base Change Theorems

LEMMA 1.22. Let A be a ring, M an A-module, and $n \ge 0$ an integer. Then

$$\operatorname{inj}\, \dim M \leqslant n \iff \operatorname{Ext}_A^{n+1}(A/I,M) = 0 \quad \text{for all ideals } I.$$

If A is Noetherian, then we can replace "for all ideals" by "for all prime ideals" in the above equivalence.

Proof. The forward direction is trivial by considering an injective resolution of length $\leq n$ and constructing the left derived functors of $\operatorname{Hom}_A(A/I, -)$.

We prove the converse. If n = 0, then $\operatorname{Ext}_A^1(A/I, M) = 0$, which is equivalent to Baer's criterion for injectivity. Thus M is injective, that is, inj $\dim M = 0 \le n$. Now, suppose n > 0. Consider an injective resolution of length n - 1 and let K be the cokernel of the last map. That is,

$$0 \to M \to E^0 \to E^1 \to \cdots \to E^{n-1} \to K_n \to 0,$$

where every E^i is injective. We claim that K is injective. To see this, break down the above exact sequence into short exact sequences of the form

$$0 \to K_0 \to E^0 \to K_1 \to 0$$
 $0 \to K_1 \to E^1 \to K_2 \to 0$,

and so on, with the convention that $K_0 = M$. The long exact sequence for $\operatorname{Ext}_A(A/I, -)$ on the first short exact sequence gives

$$0=\operatorname{Ext}\nolimits_A^n(A/I,E^0)\to\operatorname{Ext}\nolimits_A^n(A/I,K_1)\to\operatorname{Ext}\nolimits_A^{n+1}(A/I,K_0)=0,$$

whence $\operatorname{Ext}^n(A/I,K_1)=0$. Proceeding similarly with the other exact sequences, one can show that $\operatorname{Ext}^1_A(A/I,K_n)=0$, for every ideal I of A. Hence, K_n is injective, i.e., inj dim $M \le n$.

LEMMA 1.23. Let *A* be a ring, *M* and *N* two *A*-modules, and $x \in A$. Suppose that *x* is both *A*-regular and *M*-regular, and that xN = 0. Set B = A/xA and $\overline{M} = M/xM$. Then

- (1) $\operatorname{Hom}_A(N,M) = 0$ and $\operatorname{Ext}_A^{n+1}(N,M) \cong \operatorname{Ext}_B^n(N,\overline{M})$ for all $n \ge 0$.
- (2) $\operatorname{Ext}_A^n(M,N) \cong \operatorname{Ext}_B^n(\overline{M},N)$ for all $n \ge 0$.
- (3) $\operatorname{Tor}_n^A(M,N) \cong \operatorname{Tor}_n^B(\overline{M},N)$ for all $n \ge 0$.

Proof. (1) If $f: N \to M$ is A-linear, then for any $n \in N$, xf(n) = f(xn) = 0, and since x is M-regular, f(n) = 0. Thus f = 0, as desired. Now, set $T^n(N) = \operatorname{Ext}_A^{n+1}(N,M)$. Then, the collection $(T^n)_{n \ge 0}$ is a contravariant δ -functor from the category \mathfrak{Mod}_B to the category \mathfrak{Mod}_A . Further, the short exact sequence

$$0 \to M \xrightarrow{x} M \to \overline{M} \to 0$$

furnishes a long exact sequence

$$0 = \operatorname{Hom}_{A}(N, M) \to \operatorname{Hom}_{A}(N, \overline{M}) \xrightarrow{\delta} \operatorname{Ext}_{A}^{1}(N, M) \xrightarrow{x} \operatorname{Ext}_{A}^{1}(N, M) \to \cdots$$

Since x annihilates N, it must annihilate $\operatorname{Ext}_A^1(N,M)$, and so the above exact sequences reduces to

$$0 \to \operatorname{Hom}_A(N, \overline{M}) \xrightarrow{\delta} \operatorname{Ext}_A^1(N, M) \to 0.$$

Thus δ is a natural isomorphism between the functors T^0 and $\operatorname{Ext}_A^1(-,M)$. Now, it suffices to show that the collection $(T^n)_{n\geqslant 0}$ constitutes a universal δ -functor, whence it suffices to show that $T^n(P)=0$ for every projective B-module P and $n\geqslant 1$; since then it would be coeffaceable by projectives and due to a theorem of Grothendieck, it would be universal.

This is equivalent to showing that $\operatorname{Ext}_A^n(P,M)=0$ where P is a direct sum of copies of A/xA and $n \ge 2$. But note that $\operatorname{proj} \dim_A A/xA \le 1$, and hence $\operatorname{Ext}_A^n(A/xA,M)=0$ for all A-modules M and $n \ge 2$, as desired. This proves (1).

(2) We contend that $\operatorname{Tor}_n^A(M,B) = 0$ for all n > 0. Since proj $\dim_A B \le 1$, it immediately follows that $\operatorname{Tor}_n^A(M,B) = 0$ for n > 1. For n = 1, the short exact sequence

$$0 \to A \xrightarrow{x} A \to B \to 0$$

furnishes a long exact sequence

$$0 = \operatorname{Tor}_1^A(M, A) \to \operatorname{Tor}_1^A(M, B) \to M \xrightarrow{x} M \to \overline{M} \to 0.$$

Since x is M-regular, we have that $\operatorname{Tor}_1^A(M,A) = 0$.

Now, let $P_{\bullet} \to M \to 0$ be a free resolution of M. Because of the preceding paragraph, the sequence $P_{\bullet} \otimes_A B \to M \otimes_A B \to 0$ is exact, so that $P_{\bullet} \otimes B$ is a free resolution of the B-module $M \otimes B \cong \overline{M}$. From the Hom-Tensor adjunction, note that there are natural isomorphisms

$$\operatorname{Hom}_A(P_{\bullet},N) = \operatorname{Hom}_A(P_{\bullet},\operatorname{Hom}_B(B,N)) \cong \operatorname{Hom}_B(P_{\bullet} \otimes_A B,N).$$

Therefore,

$$\operatorname{Ext}\nolimits_A^n(M,N)=H^n\left(\operatorname{Hom}\nolimits_A(P_\bullet,N)\right)=H^n\left(\operatorname{Hom}\nolimits_B(P_\bullet\otimes_AB,N)\right)=\operatorname{Ext}\nolimits_R^n(\overline{M},N),$$

as desired.

(3) Continuing with the notation of (2), we have

$$\operatorname{Tor}_n^A(M,N) = H_n(P_{\bullet} \otimes_A N) = H_n((P_{\bullet} \otimes_A B) \otimes_B N) = \operatorname{Tor}_n^B(\overline{M},N),$$

thereby completing the proof.

§2 REGULAR RINGS

§§ Regular Rings

DEFINITION 2.1. Let (A, \mathfrak{m}, k) be a local ring and let M be a finite A-module. An exact sequence

$$\cdots \rightarrow L_i \xrightarrow{d_i} L_{i-1} \xrightarrow{d_{i-1}} \cdots \rightarrow L_1 \xrightarrow{d_1} L_0 \xrightarrow{\varepsilon} M \rightarrow 0$$

is called a *minimal* (free) resolution of M if

- each L_i is a finite free A-module
- $0 = \overline{d}_i : L_i \otimes_A k \to L_{i-1} \otimes_A k$, or equivalently $d_i L_i \subseteq \mathfrak{m} L_{i-1}$ for all $i \ge 1$, and
- $\overline{\varepsilon}: L_0 \otimes_A k \to M \otimes_A k$ is an isomorphism.

It is easy to see that a minimal free resolution exists for every finite module over a Noetherian local ring; at each stage simply take a minimal generating set of the kernel and continue.

LEMMA 2.2. Let (A, \mathfrak{m}, k) be a local ring, and M a finite A-module. Suppose L_{\bullet} is a minimal resolution of M; then

- (1) $\dim_k \operatorname{Tor}_i^A(M,k) = \operatorname{rank} L_i$ for all i.
- (2) $\operatorname{proj dim}_{A} M = \sup \{i : \operatorname{Tor}_{i}^{A}(M, k) \neq 0\} \leq \operatorname{proj dim}_{A} k$,
- (3) if $M \neq 0$ and proj $\dim_A M = r < \infty$, then for any finite A-module $N \neq 0$, we have $\operatorname{Ext}_A^r(M,N) \neq 0$.

Proof. (1) This follows immediately from the fact that $\overline{d}_i = 0$ for all $i \ge 1$.

(2) The second inequality is straightforward. For if proj $\dim_A k = \infty$, then there is nothing to prove. If proj $\dim_A k < \infty$, then take a projective resolution of this length and tensor with A to conclude. From (1) it immediately follows that proj $\dim_A M \leq \sup\{i\colon \operatorname{Tor}_i^A(M,k)\neq 0\}$, since this quantity is precisely the length of the minimal free resolution of M. If proj $\dim_A M = \infty$, then there is nothing to prove. If $\operatorname{proj} \dim_A M < \infty$, then take a projective resolution of M achieving this length and tensor with k whence it follows that $\sup\{i\colon \operatorname{Tor}_i^A(M,k)\neq 0\} \leq \operatorname{proj} \dim_A M$, as desired.

(3) Applying $\operatorname{Hom}_A(-,N)$ to the resolution $L_{\bullet} \to M$, we obtain a complex which ends with

$$\operatorname{Hom}_A(L_{r-1},N) \xrightarrow{d_r^*} \operatorname{Hom}_A(L_r,N) \to 0,$$

where $\operatorname{Ext}_A^r(M,N)$ is the cokernel of the above map. Since each L_i is free, we can write $\operatorname{Hom}_A(L_i,N)$ as a direct sum of some copies of N and we can express every boundary map $d_i:L_i\to L_{i-1}$ as a matrix with entries in \mathfrak{m} . It follows that d_i^* is given by the same matrix (with entries in \mathfrak{m}). Hence, the image of d_r^* is contained in $\operatorname{Hom}_A(L_r,N)$, which is properly contained in $\operatorname{Hom}_A(L_r,N)$ by Nakayama's lemma. This completes the proof.

REMARK 2.3. The above proof also shows that the minimal resolution is indeed the one that achieves the projective dimension of a module.

THEOREM 2.4 (AUSLANDER-BUCHSBAUM). Let A be a Noetherian local ring and $M \neq 0$ a finite A-module. If proj dim $_A M < \infty$, then

$$\operatorname{proj} \dim_A M + \operatorname{depth} M = \operatorname{depth} A$$
.

Proof. We shall induct on $h = \text{proj dim}_A M$. If h = 0, then M is a free module, and there is nothing to prove. If h = 1, then the minimal resolution looks like

$$0 \to A^m \xrightarrow{\varphi} A^n \to M \to 0$$

where φ is given by an $n \times m$ matrix with entries in \mathfrak{m} .

LEMMA 2.5. Let A be a ring and $n \ge 0$ an integer. Then the following are equivalent:

- (1) proj dim_A $M \le n$ for every A-module M,
- (2) proj dim_A $M \le n$ for every finite A-module M,
- (3) inj $\dim_A N \leq n$ for every *A*-module *N*, and
- (4) $\operatorname{Ext}_A^{n+1}(M,N) = 0$ for all A-modules M and N.

Proof. All implications are straightforward.

DEFINITION 2.6. The *global dimension* of a ring is defined as

gl dim $A = \sup \{ \text{proj dim } M : M \text{ is an } A\text{-module} \}.$

Due to Lemma 2.5, the above supremum can also be taken over all finite A-modules. Further, if (A, \mathfrak{m}, k) is a Noetherian local ring, due to Lemma 2.2 (2), we have

gl dim
$$A = \text{proj dim}_A k$$
.

Recall that the *embedding dimension* of a Noetherian local ring (A, \mathfrak{m}, k) is defined to be

emb dim
$$A = \dim_k \mathfrak{m}/\mathfrak{m}^2$$
.

THEOREM 2.7 (SERRE). Let (A, \mathfrak{m}, k) be a Noetherian local ring. Then the following are equivalent

(1) A is regular;

- (2) gl dim $A = \dim A$;
- (3) gl dim $A < \infty$.

Proof. (1) \Longrightarrow (2) Choose a regular system of parameters $x_1, ..., x_n \in \mathfrak{m}$, so that $n = \dim A$. Since $\underline{\mathbf{x}} = x_1, ..., x_n$ is an A-sequence, it follows from Theorem 1.11 that $K_{\bullet}(\underline{\mathbf{x}})$ is exact, whence it is a free resolution of k. Note further that the transition matrices in the Koszul complex have entries lying in \mathfrak{m} , whence the Koszul complex is a minimal free resolution of \mathfrak{m} . Thus,

gl dim
$$A = \text{proj dim}_A k = n = \text{dim} A$$
,

as desired.

(2) \Longrightarrow (3) is clear. We shall show that (3) \Longrightarrow (1). Let gl dim $A = r < \infty$, and set emb dim A = s. We shall show that A is regular by induction on s. If s = 0, then m = 0, and hence, A is a field, so it is regular.

Suppose now that s > 0. We claim that $\mathfrak{m} \notin \mathrm{Ass}_A(A)$. If not, then consider a minimal resolution of k,

$$0 \rightarrow L_r \rightarrow L_{r-1} \rightarrow \cdots \rightarrow L_0 \rightarrow k \rightarrow 0$$
,

where the maps are given by matrices with entries in \mathfrak{m} . Now, there is some $0 \neq a \in A$ such that $\mathfrak{m} = \operatorname{Ann}_A(a)$. It follows that the element $(a, a, ..., a) \in L_r$ lies in the kernel of the map $L_r \to L_{r-1}$, a contradiction.

Thus $\mathfrak{m} \notin \mathrm{Ass}_A(A)$. Choose

$$x \in \mathfrak{m} \setminus \left(\mathfrak{m}^2 \cup \bigcup_{\mathfrak{p} \in \mathrm{Ass}_A(A)} \mathfrak{p}\right).$$

using prime avoidance¹. Then x is A-regular, hence also \mathfrak{m} -regular. Setting B = A/xA, and using Lemma 1.23 (2), we have $\operatorname{Ext}_A^i(\mathfrak{m},N) = \operatorname{Ext}_B^i(\mathfrak{m}/x\mathfrak{m},N)$ for all B-modules N. Hence, $\operatorname{Ext}_B^{r+1}(\mathfrak{m}/x\mathfrak{m},N) = 0$ for every B-module N; that is, proj $\dim_B \mathfrak{m}/x\mathfrak{m} \leq r$.

Next, we show that the natural surjection $\mathfrak{m}/\mathfrak{x}\mathfrak{m} \to \mathfrak{m}/xA$ splits as A-modules (and hence as B-modules). First, choose a minimal generating set x, x_2, \ldots, x_s of \mathfrak{m} and set $\mathfrak{b} = (x_2, \ldots, x_s)$. Note that $\mathfrak{b} \cap xA \subseteq x\mathfrak{m}$. Indeed, if $y = a_2x_2 + \cdots + a_nx_n = ax \in \mathfrak{b} \cap xA$, then looking at the equality modulo \mathfrak{m} , we see that $a \in \mathfrak{m}$, whence $x \in \mathfrak{b} \cap x\mathfrak{m} \subseteq x\mathfrak{m}$. Now, consider the chain of natural maps

$$\frac{\mathfrak{m}}{xA} = \frac{\mathfrak{b} + xA}{xA} \xrightarrow{\sim} \frac{\mathfrak{b}}{\mathfrak{b} \cap xA} \xrightarrow{} \frac{\mathfrak{m}}{x\mathfrak{m}} \xrightarrow{} \frac{\mathfrak{m}}{xA}.$$

Their composition is the identity, and hence, the surjection $\mathfrak{m}/x\mathfrak{m} \to \mathfrak{m}/xA$ splits. In particularly, this means that

proj dim_B
$$\mathfrak{m}/xA \leq \operatorname{proj dim}_B \mathfrak{m}/x\mathfrak{m} \leq r$$
.

Because of the exact sequence $0 \to m/xA \to B \to k \to 0$, we see that gl dim $B = \text{proj dim}_B k \le r + 1$. Since emb dim B = r - 1, the induction hypothesis gives that B is a regular local ring. Now, since x is A-regular, dim $B = \dim A - 1$, and therefore,

emb dim
$$A = \text{emb dim } B + 1 = \text{dim } B + 1 = \text{dim } A$$
,

whence A is a regular local ring, as desired.

THEOREM 2.8 (SERRE). Let A be a regular local ring and \mathfrak{p} a prime ideal of A. Then $A_{\mathfrak{p}}$ is a regular local ring.

¹TODO: Add in the statement

Proof. If proj dim $_A k < \infty$, then localizing a finite projective resolution of k at \mathfrak{p} , we obtain the desired conclusion.

DEFINITION 2.9. A *regular ring* is a Noetherian ring such that the localization at every prime is a regular local ring.

§§ Finite Free Resolutions

LEMMA 2.10 (SCHANUEL). Let A be a ring and M an A-module. Suppose that

$$0 \to K \to P \to M \to 0$$
 and $0 \to K' \to P' \to M \to 0$

are exact sequences with P and P' projective. Then $K \oplus P' \cong K' \oplus P$.

Proof. Since P and P' are projective, there are maps

$$0 \longrightarrow K \longrightarrow P \xrightarrow{\alpha} M \longrightarrow 0$$

$$\downarrow \downarrow \uparrow_{\lambda'} \parallel$$

$$0 \longrightarrow K' \longrightarrow P' \xrightarrow{\alpha'} M \longrightarrow 0$$

 $\lambda: P \to P'$ and $\lambda': P' \to P$ making the square on the right commute. Adding in the summands P' and P to the respective rows, we obtain another commutative diagram

$$0 \longrightarrow K \oplus P' \longrightarrow P \oplus P' \xrightarrow{(\alpha,0)} M \longrightarrow 0$$

$$\emptyset \qquad \qquad \psi \downarrow \uparrow \psi \qquad \qquad \parallel$$

$$0 \longrightarrow K' \oplus P \longrightarrow P \oplus P' \xrightarrow{(0,\alpha')} M \longrightarrow 0$$

where $\varphi: P \oplus P' \to P \oplus P'$ is defined by

$$\varphi\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \mathbf{id}_P & -\lambda' \\ \lambda & \mathbf{id}_{P'} - \lambda \circ \lambda' \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix},$$

and

$$\psi\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \mathbf{id}_P - \lambda' \circ \lambda & \lambda' \\ -\lambda & \mathbf{id}_{P'} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}.$$

One can check that $\varphi \circ \psi = \psi \circ \varphi = \mathbf{id}_{P \oplus P'}$, so that φ and ψ are isomorphisms. There is a map $\theta \colon K \oplus P' \to K' \oplus P$ making the entire diagram above commute. Using the five-lemma or otherwise on this diagram, one concludes that θ is an isomorphism.

LEMMA 2.11 (GENERALIZED SCHANUEL). Let A be a ring and M an A-module. Suppose

$$0 \to P_n \to \cdots \to P_0 \to M \to 0$$
 and $0 \to Q_n \to \cdots \to Q_0 \to M \to 0$

are two exact sequences with P_i and Q_i projective for $0 \le i \le n-1$, then

$$P_0 \oplus Q_1 \oplus \cdots \cong Q_0 \oplus P_1 \oplus \cdots$$
.

Proof. Induct on n. The base case with n=0 is precisely Lemma 2.10. Let K denote the kernel of $P_0 \to M$ and K' the kernel of $Q_0 \to M$. Due to Lemma 2.10, $K \oplus Q_0 \cong K' \oplus P_0$. Add in the summands Q_0 and Q_0 to the respective resolutions as follows:

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_2 \longrightarrow P_1 \oplus Q_0 \longrightarrow K \oplus Q_0 \longrightarrow 0$$

$$\downarrow^{\wr}$$
 $0 \longrightarrow Q_n \longrightarrow \cdots \longrightarrow Q_2 \longrightarrow Q_1 \oplus P_0 \longrightarrow K' \oplus P_0 \longrightarrow 0.$

Using the inductive hypothesis, we have the desired isomorphism.

DEFINITION 2.12. A finite free resolution of an A-module M is an exact sequence

$$0 \rightarrow F_n \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$$

such that each F_i is a finite free A-module. If M admits a finite free resolution as above, we define its *Euler number* to be

$$\chi_A(M) = \sum_{i=0}^{\infty} (-1)^i \operatorname{rank}_A F_i.$$

Clearly, due to Lemma 2.11, $\chi(M)$ is independent of the chosen finite free resolution. Further, if M admits an FFR over A, then for any prime ideal $\mathfrak{p} \subseteq A$, $M_{\mathfrak{p}}$ admits an FFR over $A_{\mathfrak{p}}$ and $\chi_A(M) = \chi_{A_{\mathfrak{p}}}(M_{\mathfrak{p}})$.

PROPOSITION 2.13. Let (A, \mathfrak{m}) be a local ring such that for each finite subset $E \subseteq \mathfrak{m}$ there exists $0 \neq y \in A$ with yE = 0. Then the only A-modules having an FFR over A are the (finite rank) free modules.

Proof. Let $0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to M \to 0$ be an FFR of M, and set $N = \operatorname{coker}(F_n \to F_{n-1})$. Our first goal will be to show that N is a free module of finite rank. Clearly, N is a finite A-module. If it were not free, then it would admit a minimal free resolution of the form $0 \to L_1 \to L_0 \to N \to 0$, since it already admits a free resolution of length 1. Using Lemma 2.10, we have $L_1 \oplus F_{n-1} \cong L_0 \oplus F_n$, so that L_1 is a finite rank free module. Treating L_1 as a submodule of L_0 , we can write down a basis for L_1 in terms of a basis for L_0 with coefficients in $\mathfrak m$ since the resolution is minimal. Thus, there would exist $0 \neq y \in A$ annihilating all those coefficients, whence $yL_1 = 0$, a contradiction. Thus N must be a finite rank free A-module.

Coming back to the proof at hand, workin backwards from the given free resolution and replacing the map $F_n \to F_{n-1}$ by $\operatorname{coker}(F_n \to F_{n-1})$ at each stage, we reduce to the case $0 \to F_1 \to F_0 \to M \to 0$, which we have handled above. Hence, M is a finite rank free module over A. Conversely, it is clear that every finite rank free A-module has an FFR.

THEOREM 2.14. Let A be a ring. If an A-module M admits an FFR, then $\chi_A(M) \ge 0$.

Proof. Let $\mathfrak p$ be a minimal prime of A. Since $\chi_A(M)=\chi_{A_{\mathfrak p}}(M_{\mathfrak p})$, we can replace A by $A_{\mathfrak p}$ and M by $M_{\mathfrak p}$ and assume that $(A,\mathfrak m)$ is a local ring whose maximal ideal is equal to the nilradical. We claim that the hypothesis of Proposition 2.13 is satisfied. Indeed, let $x_1,\ldots,x_r\in\mathfrak m$. We shall induct on r to show that there exists $0\neq y\in A$ such that $yx_i=0$ for all $1\leq i\leq r$. If r=1, then the nilpotence of x_1 implies the existence of such a y. Suppose r>1, then using the inductive hypothesis, there exists $0\neq z\in A$ such that $zx_1=\cdots=zx_{r-1}=0$. Let $j\geqslant 1$ be the minimal integer such that $zx_r^j=0$, which exists since x_r is nilpotent. Choosing $y=zx_r^{j-1}\neq 0$, we have that $yx_i=0$ for $1\leq i\leq r$. As a consequence of Proposition 2.13, we see that M is finite free, so that $\chi_A(M)\geqslant 0$.

COROLLARY 2.15. Let A be a ring and suppose there is an injective A-linear map $A^m \hookrightarrow A^n$, then $m \le n$.

Proof. Let $M = \operatorname{coker}(A^m \hookrightarrow A^n)$. Then M has a finite free resolution and $\chi_A(M) = n - m \ge 0$ due to Theorem 2.14, thereby completing the proof.

THEOREM 2.16 (AUSLANDER-BUCHSBAUM). Let A be a Noetherian ring and M an A-module admitting an FFR. The following are equivalent:

- (1) $\operatorname{Ann}_A(M) \neq 0$.
- (2) $\chi_A(M) = 0$.
- (3) $Ann_A(M)$ contains an A-regular element.

Proof. (1) \Longrightarrow (2) Let $I = \operatorname{Ann}_A(M) \neq 0$ and set $J = \operatorname{Ann}_A(I)$. Suppose $\chi_A(M) > 0$. Choose any $\mathfrak{p} \in \operatorname{Ass}_A(A)$. Then $\chi_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) > 0$, and hence $M_{\mathfrak{p}} \neq 0$. Further, since $\mathfrak{p}A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}}(A_{\mathfrak{p}})$, it follows from Proposition 2.13 that $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module. Now note that $IA_{\mathfrak{p}} = \operatorname{Ann}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = 0$, so that $J \not\subseteq \mathfrak{p}$. Since this holds for every $\mathfrak{p} \in \operatorname{Ass}_A(A)$, it follows from Prime Avoidance that J must contain an A-regular element. But since $J \cdot I = 0$, we would have I = 0, a contradiction. Thus $\chi_A(M) = 0$.

(2) \Longrightarrow (3) If $\chi_A(M) = 0$, then as argued above, for every $\mathfrak{p} \in \mathrm{Ass}_A(A)$, $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module and $\chi_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) = 0$, whence $M_{\mathfrak{p}} = 0$. Since M is a finite A-module, this must imply that $\mathrm{Ann}_A(M) \not\subseteq \mathfrak{p}$ for every $\mathfrak{p} \in \mathrm{Ass}_A(A)$. This is equivalent to stating that $\mathrm{Ann}_A(M)$ contains an A-regular element.

$$(3) \Longrightarrow (1)$$
 is clear. This completes the proof.

DEFINITION 2.17. An *A*-module *M* is said to be *stably free* if there exist finite free *A*-modules *F* and F' such that $M \oplus F \cong F'$ as *A*-modules.

Clearly, every stably free module is projective and has an FFR, $0 \to F \to F' \to M \to 0$. Conversely, we also have:

LEMMA 2.18. A finite projective module having an FFR is stably free.

Proof. We shall induct on the length of the FFR. The base cases of length 0 and 1 are trivial. Suppose now that

$$0 \rightarrow F_n \rightarrow \cdots \rightarrow F_0 \rightarrow P \rightarrow 0$$

is a finite free resolution of a projective A-module M with $n \ge 2$. Let $K = \ker(F_0 \to P)$. Then $0 \to K \to F_0 \to P \to 0$ splits, so that K is a finite projective module admitting an FFR of length n-1. Using the inductive hypothesis, K is stably free, that is, there are finite free modules F and F' such that $K \oplus F \cong F'$. Hence,

$$P \oplus F' \cong P \oplus K \oplus F \cong F_0 \oplus F$$
,

so that *P* is also stably free.

LEMMA 2.19. Let A be a Noetherian ring. If every finite A-module admits an FFR, then A is a regular ring.

Proof. Let \mathfrak{p} be a prime ideal in A. According to the hypothesis, the A-module A/\mathfrak{p} admits an FFR. Localizing this resolution at \mathfrak{p} , one obtains an FFR of $\kappa(\mathfrak{p})$ over $A_{\mathfrak{p}}$, whence $A_{\mathfrak{p}}$ is a regular local ring. Thus A is a regular ring.

§§ Unique Factorization Domains

THEOREM 2.20. Let A be a Noetherian domain. Then A is a UFD if and only if every height 1 prime ideal in A is principal.

Proof. Suppose A is a UFD and $\mathfrak p$ a height 1 prime ideal in A. Choose any $0 \neq a \in \mathfrak p$ and factorize $a = \pi_1 \cdots \pi_n$ into irreducibles, which are the same things as primes in this case. Since $\mathfrak p$ is a prime ideal, there exists a $\pi_i \in \mathfrak p$. This gives a chain of prime ideals $(0) \subseteq (\pi_i) \subseteq \mathfrak p$. Since $\mathfrak p$ is height 1, it follows that $\mathfrak p = (\pi_i)$, i.e., is principal.

Conversely, suppose every height 1 prime ideal in A is principal. Every Noetherian domain is a factorization domain, therefore, it suffices to show that all irreducibles in A are prime. Let $0 \neq a \in A$ be an irreducible element and choose a prime ideal $\mathfrak p$ minimal among those containing the ideal (a). Due to the Hauptidealsatz, height $\mathfrak p=1$, so that $\mathfrak p=(b)$ for some $0\neq b\in A$, whence there exists $0\neq c\in A$ such that a=bc. Since A is irreducible, c must be a unit, and hence $(a)=\mathfrak p$, i.e., a is a prime element in A, thereby completing the proof.

THEOREM 2.21. Let A be a Noetherian domain, Γ a set of prime elements of A, and S the multiplicative set generated by Γ . If $S^{-1}A$ is a UFD, then so is A.

Proof.

LEMMA 2.22. Let A be an integral domain, and $\mathfrak a$ an ideal of A such that $\mathfrak a \oplus A^n \cong A^{n+1}$ for some $n \ge 0$. Then $\mathfrak a$ is a principal ideal.

Proof.