AE 737: Mechanics of Damage Tolerance

Lecture 7 - Fracture Toughness

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

8 February 2022

1

schedule

- 8 Feb Fracture Toughness
- 10 Feb Fracture Toughness, HW3 Due, HW 2 Self-grade due
- 15 Feb Residual Strength
- 17 Feb Residual Strength, HW4 Due, HW 3 Self-grade due

outline

- fracture toughness
- plain strain
- plain stress

fracture toughness

3

fracture toughness

- The critical load at which a cracked specimen fails produces a critical stress intensity factor
- The "critical stress intensity factor" is known as K_c
- For Mode I, this is called K_{Ic}
- The critical stress intensity factor is also known as fracture toughness

$$K_{IC} = \sigma_c \sqrt{\pi a} \beta$$

 Note: "Fracture Toughness" can also refer to G_{lc}, which is analogous to K_{lc}, but not the same

4

fracture toughness

- Fracture toughness is a material property, but it is only well-defined in certain conditions
- Brittle materials
- Plane strain (smaller plastic zone)
- In these cases ASTM E399-12 is used.

fracture toughness

6

unstable cracks

- Stable crack growth means the crack extends only with increased load
- Unstable crack growth means the crack will continue to extend indefinitely under the same load
- For a perfectly brittle material, there is no stable crack growth, as soon as a critical load is reached, the crack will extend indefinitely

stable cracks

- For an elastic-plastic material, once the load is large enough to extend the crack, it will extend slightly
- The load must be continually increased until a critical value causes unstable crack growth

8

fracture toughness

- During an experiment, we will record the crack length and applied load (P_i, a_i) each time we increase the load
- We can calculate a unique stress intensity factor K_{li} at each of these points
- These are then used to create a "K-curve", plotting K_I
 vs. a

K-curve

10

K-curve

- Materials will generally not be as flat as the perfectly brittle example
- Plane strain conditions and brittle materials will tend towards a "flat" K-curve
- K_{Ic} for brittle/plane strain is very well defined
- K_c for plane stress can refer to two things
- Either the maximum K_c during a test, or tangent point on K_R-curve (R-curve)

- In composites, and adhesives, some work is needed to ensure stable crack growth
- The Double-Cantilever Beam (DCB) experiment to find G_{IC} illustrates this

$$C = \frac{\delta}{P}$$

$$C = \frac{2a^3}{3EI}$$

$$G = \frac{P^2}{2b} \frac{dC}{da}$$

$$G = \frac{P^2a^2}{bEI}$$

. .

example

• For crack growth to be stable we need

$$\frac{dG}{da} \leq 0$$

• Under fixed-load conditions, we find

$$\frac{dG}{da} = \frac{2P^2a}{bEI}$$

 This is always positive, and thus results in unstable crack growth

- Under fixed-displacement conditions, we substitute for P
- We find

$$\frac{dG}{da} = -\frac{9\delta^2 EI}{ba^3}$$

 Which is always stable, so for DCB tests, displacement control is generally used

14

plane strain, brittle

plane strain, brittle

- For relatively brittle materials, we don't need to worry about the R-curve
- Specimens are made according to these specifications

$$a \ge 2.5 \left(\frac{K_{IC}}{\sigma_{YS}}\right)^{2}$$
$$b \ge 2.5 \left(\frac{K_{IC}}{\sigma_{YS}}\right)^{2}$$
$$W \ge 5 \left(\frac{K_{IC}}{\sigma_{YS}}\right)^{2}$$

15

ASTM E399

- 1. Select specimen size
- Select specimen type (Compact Tension or Single Edge Notched Bend)

Nors 4—lategral or unschible kaife odges for clip age annahment to the crack mouth may be used (see Figs. 3 and 4).

Nors 5—For statem rooks and failings crack configuration see Fig. 5.

Nors 6—1.6 µm = 63 µin. 32 µm = 125 µin.

Fig. 6.4.1 Compact C(f) Specimen—Standard Proportions and Tolerances.

17

ASTM E399

Note 1-Surface finishes in μm.

Note 2-A surfaces shall be perpendicular and parallel as applicable within 0.001 W TIR.

Note 3—Crack starter notch shall be perpendicular to specimen surfaces within 2°.

Note 4-Integral or attachable knife edges for clip gage attachment may be used (see Figs. 3 and 4)

Note 5—For starter notch and fatigue crack configuration see Fig. 5.

Note 6—1.6 μm = 63 μin., 3.2 μm = 125 μin.

FIG. A3.1 Bend SE(B) Specimen—Standard Proportions and Tolerances

18

ASTM E399

19

ASTM E399

Machine specimen

Fatigue crack specimen Kf < 0.6KIC

This is to ensure that the plastic zone size during fatigue is smaller than the plastic zone size during testing

If K_{lc} has not yet been determined, you may have to guess the first time

ASTM E399

Mount specimen, attach gage

Load rate should ensure "static" load conditions. (30 - 150 ksi $\sqrt{\text{in.}}$ /min.)

Determine the "provisional" value of K_{Ic} (known as K_Q)

21

ASTM E399

ASTM E399

- If the load-displacement curve is like the first figure, with some non-linearity, we let PQ be the point of intersection between the load-displacement curve and a line whose slope is 5% lower than the slope in the elastic region
- "Pop-in" occurs when there is stable crack extension before the plasticity begins. We let P_Q be the point where stable crack extension begins.

23

ASTM E399

• For a perfectly linear material, $P_Q = P_{max}$

$$K_Q = rac{P_Q}{BW^{1/2}} f\left(rac{a}{W}
ight)$$
 Compact Tension $K_Q = rac{P_Q}{BW^{3/2}} g\left(rac{a}{W}
ight)$ SENB

Ensure that your specimen is still valid

$$\begin{aligned} &a \geq 2.5 \left(\frac{K_Q}{\sigma_{YS}}\right)^2 \\ &b \geq 2.5 \left(\frac{K_Q}{\sigma_{YS}}\right)^2 \\ &W \geq 5 \left(\frac{K_Q}{\sigma_{YS}}\right)^2 \end{aligned}$$

25

ASTM E399

• For stable crack extension, check the P_{max}

$$\frac{P_{max}}{P_O} \le 1.10$$

Check for symmetric crack front, a₁, a₂, and a₃ must be within 5% of a. a_s must be within 10% of a.

$$\frac{a_1+a_2+a_3}{3}=a$$

 Load-displacement should have an initial slope between 0.7 and 1.5

plane stress, ductile

R-curve

- For materials with some plasticity, the K_R Curve, or R Curve, is very important
- Sometimes called a "resistance curve" it is generally dependent on
 - Thickness
 - Temperature
 - Strain rate

R-curve

- When done correctly, K_R curves are not dependent on initial crack size or the specimen type used
- ASTM E561 describes a general procedure

28

ASTM E561

- Compact Tension (CT or C(T)) specimens may be used for plane stress K_R curves
- The other specimen which is permitted is a middle-cracked tension specimen (M(T))
- M(T) specimens are preferred in many cases due to a more uniform stress distribution (particularly important for anisotropic materials)

Figure 1: An image showing how long cracks are allowed to be relative to the center hole in middle-cracked tension specimens

minimum sample dimensions

Table of Minimum M(T) Specimen Geometry for Given Conditions							
K_{Rmax}/σ_{YS}		Width		2 <i>a</i> _o		Length ^A	
√m	√in.	m	in.	m	in.	m	in.
0.08	0.5	0.076	3.0	0.025	1.0	0.229	9
0.16	1.0	0.152	6.0	0.051	2.0	0.457	18
0.24	1.5	0.305	12.0	0.102	4.0	0.914	36
0.32	2.0	0.508	20.0	0.170	6.7	0.762	30
0.48	3.0	1.219	48.0	0.406	16.0	1.829	72

Figure 3: A table of minimum recommended specimen dimensions for middle-cracked tension specimens.

minimum sample dimensions

Table of Minimum C(T) Specimen Width W for Given Conditions, m (in.)							
K _{Rma}	$\sqrt{\sigma_{YS}}$		M	aximum a _p	W		
√m	$\sqrt{\text{in}}$.	0.4	0.5	0.6	0.7	8.0	
0.10	0.6	0.02	0.03	0.03	0.04	0.06	
		(8.0)	(1.0)	(1.3)	(1.7)	(2.5)	
0.20	1.3	0.08	0.10	0.13	0.17	0.25	
		(3.3)	(4.0)	(5.0)	(6.7)	(10.0)	
0.30	1.9	0.19	0.23	0.29	0.38	0.57	
		(7.5)	(9.0)	(11.3)	(15.0)	(22.6)	
0.40	2.5	0.34	0.40	0.51	0.67	1.01	
		(13.3)	(15.9)	(19.9)	(26.5)	(39.8)	
0.50	3.1	0.53	0.64	0.80	1.06	1.59	
		(20.9)	(25.1)	(31.3)	(41.8)	(62.7)	

Figure 4: A table of minimum recommended specimen dimensions for compact tension specimens.

effective crack length

- ASTM E561 describes three ways to obtain the effective crack length during testing
 - 1. Measure the crack length visually and calculate r_p
 - Measure crack length using "unloading compliance" and adding plastic zone size
 - Measure the effective crack size directly using "secant compliance"

32

secant compliance

34

secant compliance M(T)

 Using the slope data from our load-displacement curve, we can calculate the effective crack length using

$$\begin{split} EB\left(\frac{\Delta\nu}{\Delta P}\right) &= \frac{2Y}{W}\sqrt{\frac{\pi a/W}{\sin(\pi a/W)}}\\ &\left[\frac{2W}{\pi Y}\cosh^{-1}\left(\frac{\cosh(\pi Y/W)}{\cos(\pi a/W)}\right) - \frac{1+\nu}{\sqrt{1+\left(\frac{\sin(\pi a/W)}{\sinh(\pi Y/W)}\right)^2}} + \nu\right] \end{split}$$

secant compliance M(T)

- This equation is difficult to solve directly for a (for M(T) specimens)
- Instead it is generally solved iteratively
- The following equations are used to give a good initial guess to use in iterations

36

secant compliance M(T)

$$X = 1 - \exp\left[\frac{-\sqrt{[EB(\Delta v/\Delta P)]^2 - (2Y/W)^2}}{2.141}\right]$$

$$\frac{2a}{W} = 1.2235X - 0.699032X^2 + 3.25584X^3 - 6.65042X^4 + 5.54X^5 - 1.66989X^6$$

secant compliance M(T)

In the above equations, the following are the definitions of parameters used

E = Young's Modulus $\Delta v/\Delta P =$ specimen compliance B = specimen thickness

W = specimen thicknes W = specimen width

Y = half span

a = effective crack length

 $\nu = Poisson's ratio$

38

secant compliance C(T)

• For C(T) specimens, we use the following equations

$$EB\frac{\Delta v}{\Delta P} = A_0 + A_1 \left(\frac{a}{W}\right) + A_2 \left(\frac{a}{W}\right)^2 + A_3 \left(\frac{a}{W}\right)^3 + A_4 \left(\frac{a}{W}\right)^4$$

 The coefficients will differ based on where the displacement is measured from

secant compliance C(T)

40

secant compliance C(T)

loc	A_0	A_1	A_2	A_3	A_4
V_0	120.7	-1065.3	4098.0	-6688.0	4450.5
V_1	103.8	-930.4	3610.0	-5930.5	3979.0

41

secant compliance C(T)

loc	<i>C</i> ₀	C_1	C ₂	C ₃	C ₄	C ₅
V_0	1.0010	-4.6695	18.460	-236.82	1214.90	-2143.6
V_1	1.0008	-4.4473	15.400	-180.55	870.92	-1411.3

42

secant compliance C(T)

• Where the initial guess for a is provided by

$$\frac{a}{W} = C_0 + C_1 U + C_2 U^2 + C_3 U^3 + C_4 U^4 + C_5 U^5$$

• and *U* is given by

$$U = \frac{1}{1 + \sqrt{EB\frac{\Delta v}{\Delta P}}}$$

buckling

 If the test is stopped and re-started frequently (to measure crack length by hand or to use the compliance method of crack measurement) buckling can interfere with results

44

buckling

buckling

- If buckling is shown to be present in the test, supports can be used to prevent buckling
- These supports can introduce friction
- They should be well-lubricated for accurate test results

46

net section stress

- One final consideration when dealing with plane stress fracture mechanics is the net section stress
- For the test to be valid, failure must occur due to fracture, not general static failure
- Static failure will occur when $\sigma_N = \sigma_{YS}$

generate KR curve

- Once the effective crack length and Kle has been determined for the test, we can generate the KR curve
- The KR curve is quite simply a plot of Kle vs. a for the test performed (i.e. with varying stress and increasing crack length)

48

initial crack length

- When the test is performed correctly, the KR curve is not a function of the initial crack length
- For this reason, we often plot Kle vs. Δa, to subtract the initial crack length
- We can superpose constant-stress K-curves on this graph, the curve which intersects at a tangent point creates the most "standard" definition for KC

example

50

example

