

Programowe modelowanie struktur blokowych systemów rozmytych

Autor: Łukasz Zieliński Politechnika Koszalińska, Programowanie Komputerów i Sieci Promotor: dr inż. Marek Popławski

Plan prezentacji

- Cel pracy
- Środowisko i użyte narzędzia
- Zastosowania logiki rozmytej
- Zalety stosowania logiki rozmytej
- Fuzzy Control Language
- Aplikacja jako IDE
- Aplikacja jako biblioteka do sterowania rozmytego
- Podsumowanie

Cel pracy

System ułatwiający

- Projektowanie
- Testowanie
- Zastosowanie logiki rozmytej

Pytania

- Logika rozmyta wokół nas
- Czy jest w ogóle potrzebna?

Środowisko

Jako aplikacja :

- Serwer aplikacji JEE
- •JRE 1.8
- Przeglądarka internetowa

Jako biblioteka

•JRE 1.8

Narzędzia

- JDK 1.8
- JQuery 1.11.2
- Chart.js, ACE editor
- HTML5, JavaScript
- Wildfly 8.0
- Fuzzy Control Language

- Bazy danych FSQL
- Rozpoznawanie obrazów i kształtów
- Zastosowanie w systemach medycznych
- Przetwarzanie obrazów FIP
- Zarządzanie pakietami w sieci FLR
- Zastosowania w ekonomii
- Systemy wspomagania ABS

Zalety logiki rozmytej

- Stabilność małe różnice na wej. generują małe różnice na wyj.
- Łatwość wyrażenie wiedzy w języku naturalnym
- Interpolacja możliwość obliczenia wyj. dla danych wej. spoza zakresu początkowo przewidzianego

- Jest to język implementacji logiki rozmytej
- Został ustandaryzowany przez IEC 61131-7
- Jest językiem dziedzinowym
- Stanowi sformalizowany sposób reprezentacji systemów rozmytych

System rozmyty

Zmienne wejściowe

Zmienna temperatura

TERM zimno := (-50, 1) (0, 1) (10, 0); TERM cieplo := (0, 0) (15, 1) (20, 0); TERM goraco := (10, 0) (20, 1) (50, 1);

Zmienne opisane są przez termy zmiennych. Termy posiadają funkcje przynależności

Blok rozmywania

Blok przetwarza termy zmiennych wejściowych i wylicza wartość funkcji aktywacji danej reguły. Proces ten zwany jest agregacją

Wyliczanie wartości aktywacji odbywa się za pomocą funkcji obliczanej na każdym z termów zmiennej (najczęściej funkcja min). Dla temperatury 17 stopni otrzymujemy wartości aktywacji poszczególnych termów:

zimno na poziomie 0 cieplo na poziomie 0.6 I goraco na poziomie 0.7 zimno

cieplo goraco

Zmienne wyjściowe

Zmienna wilgotnosc opisana singletonami:

TERM brak := 0; TERM slabe := 30; TERM silne := 60;

TERM maksimum := 100;

Blok wnioskowania

Blok wnioskowania zawiera reguły. Przykładowe reguły:

RULE 1: IF temperatura is cieplo THEN zraszanie IS silne;

RULE 2: IF temperatura is goraco THEN zraszanie IS maksimum;

Reguła składa się z przesłanki i konkluzji

Zadaniem bloku wnioskowania jest zakumulowanie funkcji przynależności zagregowanych reguł. Funkcje te wylicza się z pomocą funkcji aktywacji (w tym

przypadku min)

Dla temperatury 17 st.
Otrzymujemy dwa singletony ^{0,6}
zmiennej zraszanie: 0,5

silne:= 0,6

maksimum:= 0,7

Funkcje te następnie są akumulowane w jedną funkcję za pomocą funkcji akumulacji max)

Blok wyostrzania

Blok wyostrzania otrzymuje na wejściu wyliczone funkcje przynależności dla każdej zmiennej. Za pomocą odpowiedniej metody oblicza wartość zmiennej

Jest wiele metod obliczania wartości. Jedną z nich jest metoda środka ciężkości.

Ten sam system w FCL

Rozbudowany o kilka zmiennych i reguł

Nieliniowość

Po dodaniu jeszcze jednej reguly: RULE 2: IF temperatura is zimno THEN zraszanie IS slabe;

Otrzymujemy następującą funkcję zraszanie (temperatura)

- Projektowanie kodu
- Testowanie aplikacji
- Projektowanie własnych testów

- Podpięcie pod dowolną aplikację
- Łatwość obsługi
- Przenośność

- Cel pracy został osiągnięty
- Ciekawa zabawa
- Możliwe zastosowania

- Is there a need for fuzzy logic? [Lotfi A. Zadeh]
- Systemy rozmyte i ich zastosowania [Krzysztof Rykaczewski]
- Modelowanie rozmyte [Grzegorz Głowaty, praca magisterska napisana pod kierunkiem A. Łachwy, 2003].
- Metody i techniki sztucznej inteligencji [Leszek Rutkowski, Wydawnictwo Naukowe PWN, 2005.]