

## Criptomoeda

**Projeto Final BC17** 

#### **Equipe de Engenheiros de Dados**



Aldreks Albuquerque



Carlos Bahia



**Jalvo Alef** 



Marco Aurélio Menezes

#### Índice

- Escopo do Projeto
- Dados Brutos
- Introdução ao Tema
- Tecnologias
- WorkFlow
- Ambiente Cloud
- ETL
- Insights / Data Studio
- Análise de Custo
- Requisitos Desejáveis

Escopo do Projeto

#### Tecnologias

**Google Cloud Platform** 

**Python** 

**Pandas** 

PySpark

**SparkSQL** 

**Data Studio** 

**Big Query** 

**SQL e NoSQL** 



16 Requisitos técnicos obrigatórios



+ 6 Requisitos técnicos desejáveis

**Dados brutos** 

#### **Dataset original**

10 colunas x 2,5 milhões de linhas x 200 MB

|   | ticker | TokenName   | Date         | Open | High | Low  | Close | Volume     | Market<br>Cap |
|---|--------|-------------|--------------|------|------|------|-------|------------|---------------|
| 1 | AVA    | Travala.com | Apr 30, 2022 | 1.28 | 1.28 | 1.14 |       | 8157497.0  | 58101831.0    |
| 2 | AVA    | AVA         | Apr 29, 2022 | 1.2  | 1.43 | 1.2  | 1.28  | 26864987.0 | 65578069.0    |
| 3 | AVA    | Travala.com | Apr 28, 2022 | 1.2  | 1.21 | 1.17 | 1.2   | 4166128.0  | 61461049.0    |
| 4 |        | Travala.com | Apr 27, 2022 | 1.17 | 1.21 |      | 1.2   | 3792108.0  | 61046830.0    |
| 5 | AVA    | Travala.com | Apr 26, 2022 | 1.26 | 1.27 | 1.15 | 1.17  | 5080377.0  | 59743409.0    |

#### Dataset Complementar



"TRONPAD": "TRONPAD"}, {"VITEVITE": "VITE"}, {"HYCONHYC": "HYCON"}, {"USDKUSD "},{"PAXEXPAXEX":"PAXEX"},{"STRAKSSTAK":"STRAKS"},{"XDNAXDNA":"XDNA"},{"H RKRMRK": "RMRK"}, {"XMONXMON": "XMON"}, {"NFTXNFTX": "NFTX"}, {"WHALEWHALE": "WH EDOSE": "DOSE"}, {"DOGAM\u00cdDOGA": "DOGAMI"}, {"UMI": "UMI"}, {"BTC": "Bitcoin tn"},{"HT":"Huobi Token"},{"BSV":"Bitcoin SV"},{"GRT":"The Graph"},{"XEC" 2"},{"ROSE":"Oasis Network"},{"TFUEL":"Theta Fuel"},{"IOTX":"IoTeX"},{"LD a Token"},{"NU":"NuCypher"},{"REN":"Ren"},{"MX":"MX TOKEN"},{"XNO":"Nano" BNB"},{"FRAX":"Frax"},{"HBTC":"Huobi BTC"},{"BTTOLD":"BitTorrent"},{"DFI" nic"},{"FX":"Function X"},{"STEEM":"Steem"},{"REP":"Augur"},{"METIS":"Met FAST Brown to French Date, Open, High, Low, Close, Adj Close, Volume 2013-04-29,54254.000000,55336.000000,54254.000000,54887.000000,54887.0000 2013-04-30,54888.000000,55910.000000,54585.000000,55910.000000,55910.0000 2013-05-02,55919.000000,55919.000000,55104.000000,55322.000000,55322.0000 Date, Open, High, Low, Close, Adj Close, Volume 2013-04-29,9200.559570,9258.889648,9195.589844,9245.219727,9245.219727,28 2013-04-30,9240.259766,9276.879883,9205.620117,9276.879883,9276.879883,37 2013-05-01,9248.450195,9248.450195,9169.780273,9175.780273,9175.780273,35

Introdução ao Tema

O que é Criptomoeda?

Como funciona a Criptomoeda?

O que é "blockchain"?

**Tecnologias** 

#### Tecnologias utilizadas







WorkFlow

#### Fluxograma do Processo de ETL



**Ambiente Cloud** 

#### ETL



#### **Cloud Storage**











#### Comparativo

| Tecno              | lo | g١ | а | s |
|--------------------|----|----|---|---|
| Telephone services |    | ο. |   |   |

GCP

Tipagem

| PostgreSQL      | MySQL              |  |  |
|-----------------|--------------------|--|--|
| ≈ 30 s   810 MB | ≈ 30 s   2 GB      |  |  |
| Otimizada       | Precisa de ajustes |  |  |

200 MB e 2,5 Mi de linhas

ETL

#### Instalação de bibliotecas no JupyterLab GCP

```
1 ## Instalação da Biblioteca Gerenciador de Arquivos do GCP
2 !pip install gcsfs
```

```
1 ## Instalação da Biblioteca para uso do MongoDB Atlas
```

```
2 !pip install pymongo[srv]
```

```
1 ## Instalação da Biblioteca pySpark
```

```
2 !pip install pyspark
```

```
1 ## Instalação da Biblioteca parquet
```

2 !pip install pyarrow

#### Carregamento das bibliotecas no JupyterLab GCP

```
1 # Carregamento biblioteca Pandas
 2 import pandas as pd
 4 # Carregamento biblioteca Mongo
 5 import pymongo
 6 from pymongo import MongoClient
 8 #Uso em Parquet
 9 import pyarrow
10
11 # Carregamento biblioteca GCP
12 import gcsfs #acessar GCP
13 from google.cloud import storage
14 import os
15
16 # Carregamento biblioteca (tratamento de arquivos)
17 from bson.json_util import dumps, loads
18 import csv
19
```

#### Conexão com GCP e preparação para importação do DataSet

```
1 #CONFIGURAÇÃO DA CHAVE DE SEGURANÇA DO GCP (ACESSO)
 2 serviceAccount = 'central-point-349020-90861ebe3455.json'
 3 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = serviceAccount
 5 #Cria conexão com bucket GCP
 6 client = storage.Client()
 8 #Define pasta bucket para normalização do Dataset (Cloud Storage/GCP)
 9 folder bucket = client.get bucket('criptomoeda')
11 #Define arquivo a ser extraído do bucket/GCP
12 folder bucket.blob('Tratada SparkValorMercadoMaiorZero.csv')
14 #Cria Path do local de origem do arquivo a ser extraído do Bucket/GCP (gsutil URI)
15 path_tratados = 'gs://criptomoeda/Tratados/Tratada_SparkValorMercadoMaiorZero.csv'
```

Importação base de dados , traduz os rótulos das colunas de inglês para PT-BR e cria Dataframe em arquivo PARQUET

```
2 # Preparando tradução dos rótulos das colunas do dataset de inglês para Pt-BR via Pandas
3 Rotulo Ingles = (['ticker', 'TokenName', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume',
4 Rotulo PortBR - (['Cod Empresa', 'Empresa', 'Dt Negociacao', 'Abertura', 'Max', 'Min', 'Fe
                    'Volume Negociado', 'Valor Mercado Empresa'])
7 # Importa base CSV do Bucket/GCP e cria Dataframe em Pandas
8 print(">>> Carregar Base CSV.")
9 df pandas = pd.read csv(path CSV bucket, sep=',', usecols = Rotulo Ingles)
1 # Aplica a atualização da tradução dos rótulos das colunas
2 df_pandas.columns = Rotulo_PortBR
4 # Cria cópia do DF para normalização futura
5 df pd = df pandas.copy()
7 #Converte DF Pandas em arquivo Parquet
8 print(">>> Salva DF Pandas em Parquet.")
9 df pd.to parquet('df.parquet')
1 print(">>> Carrega Base Parquet para DF.")
 df pd = pd.read parquet('df.parquet')
4 print(">>> Base Parquet carregada com sucesso.")
```

#### Leitura e análise dos dados (início e fim)

```
1 HT Verifica a qtde de Colunas e linhas (tamanho da base de dados)
2 df_pd.shape

(1249976, 10)

1 H Ordena o DataFrame por Data e demais colunas abaixo
2 df_pd.sort_values(by-['Dt_Negociacao', 'Cod_Empresa', 'Empresa', 'Volume_Negociado'], implace-True)
```

1 ## Checa os primeiros registros
2 df\_pd.head(10)

|   | Cod_Empresa | Empresa   | Dt_Negociacao | Abertura     | Max          | Min          | Fechamento   | Volume_Negociado    | Valor_Mercado_Empresa  |
|---|-------------|-----------|---------------|--------------|--------------|--------------|--------------|---------------------|------------------------|
| 0 | ANC         | Anoncoin  | 2013-12-27    | 5.21000000   | 5.39000000   | 4.64000000   | 4.81000000   | 16,203.00000000     | 2,975,246.00000000     |
| 1 | BTC         | Bitcoin   | 2013-12-27    | 763.28000000 | 777.51000000 | 713.60000000 | 735.07000000 | 46,862,700.00000000 | 8,955,395,000.00000000 |
| 2 | DMD         | Diamond   | 2013-12-27    | 2.29000000   | 2.50000000   | 1.49000000   | 1.75000000   | 8,360.00000000      | 341,344.000000000      |
| 3 | DOGE        | Dogecoin  | 2013-12-27    | 0.00060300   | 0.00062820   | 0.00049690   | 0.00052190   | 477,422.00000000    | 8,016,604.00000000     |
| 4 | LTC         | Litecoin  | 2013-12-27    | 24.81000000  | 25.27000000  | 22.26000000  | 23.27000000  | 31,112,200.00000000 | 586,088,060.00000000   |
| 5 | TRC         | Terracoin | 2013-12-27    | 0.50380000   | 0.52510000   | 0.45000000   | 0.47780000   | 31,077.00000000     | 2,268,590.00000000     |

#### Checa e exclui duplicidade de registros

```
1 # Verifica total de linhas duplicadas
 2 df pd.duplicated().sum()
0
 1 # Exclui registros duplicados
 2 df pd = df pd.drop duplicates()
 4 ## Verifica tamanho da base de dados após dropagem
 5 df_pd.shape
(1249976, 10)
```

#### Análise da estrutura do DataFrame

```
1 # Obtém informações detalhadas da estrutura do DF como:
2 # tipos de dados por campo, e qtos possuem dados NÃO NULOS, qtde de linhas e de colunas
3 df_pd.info()
4
5 # insight da análise: "Dt_Negociacao deve ser convertida de Object para DateTime"
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1249976 entries, 0 to 1249975
Data columns (total 10 columns):
    Column
                           Non-Null Count
                                            Dtype
    Cod Empresa
                          1235941 non-null
                                            object
    Empresa
                         1147140 non-null object
    Dt Negociacao
                           1249976 non-null
                                            object
    Abertura
                           1249976 non-null float64
                          1249976 non-null float64
    Max
    Min
                          1249976 non-null float64
    Fechamento
                           1249976 non-null float64
    Volume Negociado
                           1249976 non-null float64
    Valor Mercado Empresa 1249976 non-null float64
    Ano
                          1249976 non-null int64
dtypes: float64(6), int64(1), object(3)
memory usage: 104.9+ MB
```

### Tratamento da coluna Data

```
1 #Altera a ordem da coluna Dt_Negociacao
2 list_columns = list(df_pd.columns)
3 list_columns.remove('Dt_Negociacao')
4 new_list_columns = ['Dt_Negociacao'] + list_columns
5
6 #Refaz o DF na ordem correta de colunas
7 df_pd = df_pd.reindex(new_list_columns, axis=1)
```

```
1 # Visualiza DF atualizado
2 df pd.head()
```

|   | Dt_Negociacao | Cod_Empresa | Empresa  | Abertura     | Max          | Min          | Fechamento   |
|---|---------------|-------------|----------|--------------|--------------|--------------|--------------|
| 0 | 2013-12-27    | ANC         | Anoncoin | 5.21000000   | 5.39000000   | 4.64000000   | 4.81000000   |
| 1 | 2013-12-27    | втс         | Bitcoin  | 763.28000000 | 777.51000000 | 713.60000000 | 735.07000000 |
| 2 | 2013-12-27    | DMD         | Diamond  | 2.29000000   | 2.50000000   | 1.49000000   | 1.75000000   |
| 3 | 2013-12-27    | DOGE        | Dogecoin | 0.00060300   | 0.00062820   | 0.00049690   | 0.00052190   |

## Estatística de campos de valor

|       | Abertura    | Min         | Max         | Fechamento  | Volume_Negociado   | Valor_Mercado_Empresa |
|-------|-------------|-------------|-------------|-------------|--------------------|-----------------------|
| count | 187,280.000 | 187,280.000 | 187,280.000 | 187,280.000 | 187,280.000        | 187,280.000           |
| mean  | 24.478      | 23.881      | 25.204      | 24.482      | 108,612,499.007    | 412,507,469.112       |
| std   | 421.795     | 411.507     | 440.743     | 421.759     | 1,238,108,753.815  | 6,288,329,620.598     |
| min   | 0.000       | 0.000       | 0.000       | 0.000       | 1.000              | 1,039.000             |
| 25%   | 0.005       | 0.004       | 0.005       | 0.005       | 10,663.000         | 1,162,226.500         |
| 50%   | 0.029       | 0.027       | 0.031       | 0.028       | 179,460.500        | 5,682,177.500         |
| 75%   | 0.185       | 0.172       | 0.197       | 0.185       | 1,600,123.250      | 22,069,310.000        |
| max   | 13,017.120  | 12,233.260  | 40,826.500  | 13,016.230  | 53,509,130,000.000 | 231,462,110,000.000   |

### Spark / SparkSQL

#### Conexão da Session

#### Criação do Schema

#### Cria DataFrame

## Cria arquivo Parquet

```
1 # SPARK - CRIA Arquivo Parquet
2
3 # Converter um DataFrame Pandas, num DataFrame Spark
4 spark.conf.set("spark.sql.execution.arrow.enabled", "true")
5 df_spark = spark.createDataFrame(df_spark)
6
7 # Salvo DF Spark em Parquet
8 df_spark.write.parquet(path_parquet)
9
```

```
1 # SPARK - Carrega arquivo Parquet em DataFrame Spark
2 df_spark = spark.read.parquet(path_parquet)
```

## Comparativo entre arquivo CSV e Parquet

(databricks.com)

| Formato | Espaço<br>utilizado | Tempo<br>de<br>execução | Escaneado |
|---------|---------------------|-------------------------|-----------|
| CSV     | 1 TB                | 236 seg                 | 1.15 TB   |
| Parquet | 130 GB              | 6.78 seg                | 2.51 GB   |

| RESUMO DO DESEMPENHO PA        | RQUET |
|--------------------------------|-------|
| Redução do Espaço              | 87%   |
| Velocidade (vezes mais rápido) | 34    |

## Visualização DataFrame Spark

| Cod_Empresa | Empresa Dt        | _Negociacao | Abertura | Max      | Min      | Fechamento V | olume_Negociado Va | lor_Mercado_Empresa  A |
|-------------|-------------------|-------------|----------|----------|----------|--------------|--------------------|------------------------|
| RSR         | Reserve Rights    | 2021-01-04  | 0.03263  | 0.03521  | 0.02686  | 0.03066      | 2.31849744E8       | 2.86691712E8 26        |
| RUFF        | Ruff              | 2021-01-04  | 0.005884 | 0.00857  | 0.005709 | 0.007571     | 3069577.0          | 7423676.0 20           |
| RUNE        | THORChain         | 2021-01-04  | 1.48     | 1.59     | 1.31     | 1.59         | 4.1093944E7        | 2.51942752E8 20        |
| SAFE        | Safe              | 2021-01-04  | 0.2123   | 0.2379   | 0.1805   |              | 102844.0           | 4484890.0 20           |
| SALTSALT    | nul1              | 2021-01-04  | 0.3795   | 0.4356   | 0.3708   | 0.4356       | 152177.0           | 3.4262344E7 20         |
| SAN         | Santiment Network | 2021-01-04  | 0.09095  | 0.09384  | 0.08313  | 0.08369      | 39297.0            | 5293463.0 20           |
| SAND        | The Sandbox       | 2021-01-04  | 0.04102  | 0.04242  | 0.03696  | 0.04049      | 7083381.0          | 2.5178244E7 20         |
| SAPP        | Sapphire          | 2021-01-04  | 0.0693   | 0.07074  | 0.05985  | 0.067        | 118050.0           | 3.1080598E7 20         |
| SBD         | Steem Dollars     | 2021-01-04  | 2.84     | 2.91     | 2.54     | 2.71         | 3398754.0          | 1.6045217E7 20         |
| sc          | Siacoin           | 2021-01-04  | 0.004796 | 0.004853 | .003945  | 0.004396     | 3.7314148E7        | 1.98966784E8 20        |
| scc         | StakeCubeCoin     | 2021-01-04  | 0.5368   | 0.5945   | 0.477    | 0.5917       | 20535.0            | 4765194.0 20           |
| SCP         | ScPrime           | 2021-01-04  | 0.1278   | 0.1304   | 0.09174  | 0.09928      | 8524.0             | 3147831.0 20           |
| SCR         | Scorum Coins      | 2021-01-04  | 0.007771 | 0.0131   | .005407  | 0.007096     | 2841.0             | 207659.0 20            |
| SCRT        | Secret            | 2021-01-04  | 0.5577   | 0.6214   | 0.3629   | 0.6148       | 809616.0           | 3.4674248E7 20         |
| SENSOSENSO  | null              | 2021-01-04  | 0.3018   | 0.3037   | 0.2962   | 0.3011       | 967257.0           | 3686039.0 20           |

### Algumas análises

```
# Verificando o maior Volume Negociado
df_spark.select(F.max("Volume_Negociado").alias("Maior_Volume_Negociado_US$")).show()
|Maior_Volume_Negociado_US$|
      3.50967955E11
4-----
# Verificando o maior Valor Mercado Empresa
df_spark.select(F.max("Valor_Mercado_Empresa").alias("Maior_Valor_Mercado_Empresa_US$")).show()
Maior Valor Mercado Empresa US$
       6.5313069E13
# Verificando o menor Volumes Negociado
df spark.select(F.min("Volume Negociado").alias("Menor Volume Negociado US$")).show()
.....
|Menor Volume Negociado US$|
```

## Algumas análises

```
# Lista registros com valor de Abertura <= Zero (0)
df spark.select( F.col('Cod Empresa'), F.col('Empresa'), round(F.col('Abertura'),5), round(F.col('Fechamento'
    .where(F.col('Abertura') <= 0) \
    .orderBy( F.col('Abertura').desc()).show(20)
# Agrupa informações, conta e Ordena descrescente
df spark.groupBy( F.col("Empresa") ).count().orderBy(F.col("Empresa").desc()).show(10);
# SPARK (SELECT, DISTINCT, ORDERBY, ASC, DESC, F.COL) SELECIONANDO VALORES DISTINTOS ORDENADOS ALFABETICAMENTE
df spark.select( 'Empresa', 'Valor Mercado Empresa').distinct().orderBy(F.col('Valor Mercado Empresa').asc()).
# Algumas Análises sobre o Min e Max
df spark.select( F.col('Cod Empresa'), F.col('Empresa'), F.col('Abertura'), F.col('Max'), \
        F.col('Min'), F.col('Fechamento'), F.col('Volume Negociado'), F.col('Valor Mercado Empresa') ) \
    .orderBy(F.col('Min'), F.col('Max')).show(5)
|Cod Empresa|Empresa|Abertura| Max| Min|Fechamento|Volume Negociado|Valor Mercado Empresa|
       SPORE | Spore | 2.7E-11|3.3E-11|2.5E-11|
                                                2.9E-11
                                                                   3310.0
                                                                                      1042488.0
       SPORE | Spore | 3.2E-11 | 3.2E-11 | 2.7E-11 |
                                                2.7E-11
                                                                   1765.0
                                                                                       967044.0
       SPORE | Spore | 2.9E-11|3.1E-11|2.9E-11|
                                                3.1E-11
                                                                   3281.0
                                                                                      1097600.0
       SPORE | Spore | 3.1E-11 | 3.2E-11 | 3.0E-11 |
                                                3.2E-11
                                                                   2249.0
                                                                                      1126016.0
       SPORE | Spore | 3.2E-11 | 3.3E-11 | 3.0E-11 |
                                                 3.1E-11
                                                                   2551.0
                                                                                      1087170.0
only showing top 5 rows
```

## Selecionando colunas e filtrando registros

```
# Seleciona período de data negociação e codigo empresa específicas com condicional (WHERE)
df spark.select( F.col("Dt Negociacao"), F.col("Cod Empresa"), F.col("Empresa"), \
               F.col("Volume Negociado"), F.col("Valor Mercado Empresa") ) \
      .where( ((F.col("Dt_Negociacao") >= '2022-01-01') & (F.col("Dt_Negociacao") <= '2022-05-31'</pre>
             (F.col("Cod Empresa") < 'BBB') ) \</pre>
      .orderBy(F.col('Dt Negociacao').desc()).show(10)
[Stage 49:>
                                                                 (0+4)/4
Dt Negociacao|Cod Empresa| Empresa|Volume Negociado|Valor Mercado Empresa|
   2022-05-01
                    AAVE
                                Aave
                                                 2.1493816E8
                                                                     2.00780134E9
   2022-05-01
                     ADD
                                  Add.xyz
                                                        2.0
                                                                        829701.0
   2022-05-01
                     ABT
                                   Arcblock
                                                   967788.0
                                                                     1.3024856E7
                                Acala Token
   2022-05-01
                     ACA
                                                1.5200707E7
                                                                     3.59167968E8
   2022-05-01
                 ACENTACE
                                       null|
                                                   1318497.0
                                                                        5906972.0
   2022-05-01
                     ACK
                                AcknoLedger
                                                    14140.0
                                                                        959150.0
                     ACM AC Milan Fan Token
   2022-05-01
                                                 1.8003992E7
                                                                     1.8066448E7
   2022-05-01
                     ACT
                                     Achain
                                                   783204.0
                                                                        5079028.0
   2022-05-01
                     ADA
                           Cardano
                                                 9.2844826E8
                                                                   2.66761544E10
   2022-05-01
                  ADAPAD
                                  ADAPad
                                                   142999.0
                                                                        3519057.0
only showing top 10 rows
```

## Algumas Seleções e filtros

```
#Identifica o início de possíveis datas nulas para posterior dropagem
df spark.select(F.col('Dt Negociacao'), F.col('Cod Empresa'), F.col('Empresa'), F.col('Abertura'), \
               F.col('Fechamento'), F.col('Volume Negociado'), F.col('Valor Mercado Empresa'), F.col('Ano')) \
               .orderBy(F.col('Dt Negociacao'), F.col('Empresa')).show(5)
[Stage 59:======>
                                                                  (1+3)/4
|Dt_Negociacao|Cod_Empresa| Empresa|Abertura|Fechamento|Volume_Negociado|Valor_Mercado_Empresa| Ano|
    2013-12-27
                      XRP
                             null | 0.02443
                                              0.02708
                                                              148422.0
                                                                               2.11674064E8 2013
   2013-12-27
                      ANC Anoncoin
                                      5.21
                                                 4.81
                                                               16203.0
                                                                                  2975246.0 2013
                                                                                8.9553951E9 2013
   2013-12-27
                      BTC Bitcoin 763.28
                                               735.07
                                                             4.68627E7
                      DMD Diamond
   2013-12-27
                                      2.29
                                                 1.75
                                                               8360.0
                                                                                   341344.0 2013
    2013-12-27
                     DOGE Dogecoin 6.03E-4
                                             5.219E-4
                                                             477422.0
                                                                                  8016604.0 2013
only showing top 5 rows
#Conta registros NULL nas colunas especificadas
qtde = df spark.filter(F.col('Dt Negociacao').isNull() | F.col('Abertura').isNull()).count()
print(qtde)
```

## Upload do DataFrame tratado

#### Média, Máximo, Mínimo

```
8.3-SPARK_SQL (GROUPBY, AGG, ORDERBY, SUM, MEAN, MAX, ROUND)
# MOSTRAR ALGUNS ÍNDICES DOS DADOS: Abertura, Fechamento, Min, Max, Volume Negociado, Valor Mercado Empresa
df_SparkSql.groupBy(F.col('Empresa')).agg( round(F.mean('Abertura'),3), round(F.mean('Fechamento'),3), round(F.mean('Min'),3), round(F.mean('Max'),3), \
                                                                          F.max('Volume Negociado'), \
                                                                           F.max('Valor Mercado Empresa'), \
                                                                           ).orderBy(F.col('Empresa')).show(10)
                                                               (133 + 4) / 200]
        Empresa|round(avg(Abertura), 3)|round(avg(Fechamento), 3)|round(avg(Min), 3)|round(avg(Max), 3)|max(Volume Negociado)|max(Valor Mercado Empresa)
           null
                                244.255
                                                           244.56
                                                                             228.029
                                                                                               269.795
                                                                                                                3.6955177E10
                                                                                                                                           1.3085347E11
                                  0.023
                                                                                                                1.21326822E9
          Chain
                                                            0.023
                                                                              0.021
                                                                                                 0.025
                                                                                                                                           2.38228432E8
           Coin
                                  0.131
                                                            0.131
                                                                              0.119
                                                                                                 0.143
                                                                                                                   5574248.0
                                                                                                                                            3.2283772€7
       Datalink
                                                            0.443
                                  0.443
                                                                              0.413
                                                                                                  0.48
                                                                                                                3.17522176E8
                                                                                                                                            7.6608136E7
  Exchange Token
                                  0.301
                                                            0.3021
                                                                              0.294
                                                                                                 0.306
                                                                                                                   1628974.0
                                                                                                                                             1340704.0
      Fan Token
                                  4.989
                                                            4.986
                                                                              4.661
                                                                                                 5.438
                                                                                                                1.02298336E8
                                                                                                                                            2.374796E7
        Finance
                                  0.357
                                                            0.354
                                                                              0.335
                                                                                                 0.379
                                                                                                                 4.2214396E7
                                                                                                                                           3.52402848E8
         Gaming
                                    0.0
                                                                                                                 6.9875024E7
                                                              0.0
                                                                                0.0
                                                                                                   0.0
                                                                                                                                            9.6041594E8
                                  0.014
                                                                                                                 3.5096768E7
                                                                                                                                            1.026628E8
          Group
                                                            0.014
                                                                              0.012
                                                                                                 0.016
           Lend
                                  0.338
                                                            0.334
                                                                              0.311
                                                                                                 0.403
                                                                                                                   5893220.0
                                                                                                                                            1.3906682E7
only showing top 10 rows
```

## Trabalhando com View

```
## Criando uma VIEW do DataSet Tratado para processamento de análises mais rápido
df = (spark
     .read
     .format("csv")
     .option("header", "true")
     .option("inferschema", "true")
     .option("delimiter", ",")
     .load(path tratados)
     .createOrReplaceTempView("VIEW_Spark_Tratada"))
# VIEW - Filtra registros por período de Data Negociação e ordena por Data + Cod Empresa
spark.sql('''SELECT Ano, Cod Empresa, Volume Negociado, Valor Mercado Empresa
        FROM VIEW Spark Tratada
        WHERE Dt Negociacao >= "2020-01-01" AND Dt Negociacao <= "2020-01-31"
        ORDER BY Dt_Negociacao ASC, Cod_Empresa DESC''').show(5)
[Stage 79:========>
                                                             (3+1)/4
 Ano Cod Empresa Volume Negociado Valor Mercado Empresa
2020
            zscl
                 5457.0
                                           282529.0
                    1.0396732E7 | 1.10582024E8
2020
            ZRX
2020
            ZPT
                           30.0
                                           599484.0
                                         14756.0
2020
            ZNT
                        12066.0
2020
            ZIL
                      4366624.0
                                        4.4445668E7
only showing top 5 rows
```

## Exportação para MongoDB Atlas (cloud)

```
#Cria Conexão com o Servidor MongoDb Atlas
print('Conecção Servidor MongoDb Atlas.')
myurl = "mongodb+srv://soulcode:alb2c3@cluster-proj-final.uj7gz.mongodb.net/db criptomoeda.Criptomoeda Sp
client = MongoClient(myurl)
#STATUS DO SERVIDOR CLIENT
print('Status do servidor Client do MongoDb Atlas.')
print(client.stats)
#Conectando com o Banco de Dados
print('Conecta ao banco de dados.')
db = client.db criptomoeda
# converte de pyspark df para pandas df
print('Converte DF de pySpark para DF Pandas.')
df pd tratado = df SparkSql.toPandas()
#Converte Dt Negociacao em string
df pd tratado['Dt Negociacao'] = df pd tratado['Dt Negociacao'].astype('datetime64[ns]')
df pd tratado['Dt Negociacao'] = df pd tratado['Dt Negociacao'].dt.strftime('%Y-%m-%d')
#Converte de DF para Dicionário
print('Converte DF para Dict.')
data dict = df pd tratado.to dict(orient='records')
#Insere coleção (json) no MongoDB
print('Cria coleção no banco MongoDB.')
db.Criptomoeda_SparkSQL_Tratada.insert_many(data_dict)
print('\n>>> Dados inseridos com sucesso no banco MongoDB Atlas.')
```

#### Base tratada - Exportada para o MongoDB Atlas



## BigQuery / SQL



## 08

**Insights / Datastudio** 



#### Insights













#### Rentabilidade



#### Volatilidade



#### **Vantagens**

Diversificação Segurança Descentralização Alta liquidez Volatilidade

#### **Desvantagens**

Baixa aceitação
Falta de regulamentação
Mercado novo
Volatilidade

# 09

**Análise de Custo** 

## Estimativa

| Tecnologia     | Valores                    |  |  |  |
|----------------|----------------------------|--|--|--|
| SQL Cloud      | USD 270.46                 |  |  |  |
| BigQuery       | USD 0.00                   |  |  |  |
| Bucket Storage | USD 0.20 / GB              |  |  |  |
| MongoDB        | BRL 0.06 / h               |  |  |  |
| JupyterLab     | USD 202.09                 |  |  |  |
|                | Estimativa Mensal: USD 516 |  |  |  |

## 10

Requisitos Desejáveis

## Requisito Desejável 3

## Plotagem Pandas

```
1 #MODELO 3
2 #Monta Serie com as duas colunas, para plotar evolução de empresas por ano
3 serie_ano_empresa_count - df_pd[ ["Ano", "Empresa"] ].groupby(['Ano', 'Empresa'])['Empresa'].count()
4 serie_ano_empresa_count = serie_ano_empresa_count.rename('count')
5 df_ano_empresa_count = serie_ano_empresa_count.to_frame().reset_index()
6 groupby_empresa_count = df_ano_empresa_count[["Ano", "Empresa"]].groupby(['Ano'])['Ano']
7 serie_empresa_count = groupby_empresa_count.count().rename('Qtde_Empresas')
8 df_empresa_count = serie_empresa_count.to_frame()
9 #GRAFICO
10 df_empresa_count.plot.bar(title='ANÁLISE DO CRESCIMENTO DE EMPRESAS DE CRIPTOMOEDA DE 2013 À 2022/Abr', \
figsize=(11,4), xlabel='Ano', ylabel='Qtde_Empresas', color='blue')
```

<AxesSubplot:title={'center':'ANÁLISE DO CRESCIMENTO DE EMPRESAS DE CRIPTOMOEDA DE 2013 À 2022/Abr'}, xlabel='/</pre>



## Requisito Desejável 3

## Plotagem Pandas

```
1 # MODELO 1

2 #Monta Serie com as duas columas, para plotar Valor_Mercado_Empresa por ano (X 1.000.000)

3 df_Valor_Mercado_Empresa - df_pd[ ["Ano", "Valor_Mercado_Empresa"] ].groupby('Ano')['Valor_Mercado_Empresa'].mean()

4 df_Valor_Mercado_Empresa_by_milion = df_Valor_Mercado_Empresa/(10**6)

5

6 # GRÁFICO

7 df_Valor_Mercado_Empresa_by_milion.plot.bar( title-'ANÁLISE TOTAL VALOR_MERCADO_DAS_EMPRESAS_DE_CRIPTOMOEDA_DE_2013 Å 2022/Abr', \

6 figsize=(11,5), xlabel='Ano', ylabel='Valor_Mercado_Empresa_(x 1 mi)', color='blue')
```

<AxesSubplot:title={'center':'ANÁLISE TOTAL VALOR MERCADO DAS EMPRESAS DE CRIPTOMOEDA DE 2013 À 2022/Abr'}, xlabel='Ano', ylabel='Valo</pre>



## Requisito Desejável 5

Foi realizado o referido item e disponibilizado na pasta ETL do bucket/GCP, e no Classroom.

## Obrigado!

