

- ★ Super Low Gate Charge
- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

The XR10G10S is the high performance complementary N-ch and P-ch MOSFETs with high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR10G10S meet the RoHS and Green Product requirement 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID		
100V	70mΩ	10.0A		
-100V	180mΩ	-5.0A		

SOP8 Pin Configuration

Absolute Maximum Ratings

	Rating		ting		
Symbol	Parameter	N-Channel	P-Channel	Units	
V _{DS}	Drain-Source Voltage	100	-100	V	
V_{GS}	Gate-Source Voltage	±20	±20	V	
ID@T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	10.0	-5.0	Α	
ID@TA=70°C	Continuous Drain Current, V _{GS} @ 10V ¹	6.0	-3.5	Α	
I _{DM}	Pulsed Drain Current ²	25	-9.5	Α	
EAS	Single Pulse Avalanche Energy ³	22.5	35.3	mJ	
I _{AS}	Avalanche Current	22.6	-26.6	Α	
PD@TA=25°C	Total Power Dissipation ⁴	2.5	2.5	W	
T _{STG}	Storage Temperature Range	-55 to 150	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	-55 to 150	°C	

Thermal Data

Symbol Parameter		Тур.	Max.	Unit
R _{θJA}	R _{0JA} Thermal Resistance Junction-Ambient ¹		85	°C/W
Rejc	Thermal Resistance Junction-Case ¹		62.5	°C/W

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static Characteristics				-	•	ı	ı	
Drain-Source Breakdown Vo	oltage	V (BR)DSS V _{GS} = 0V, I _D = 250μA		100	-	-	V	
Gate-body Leakage current		Igss	V _{DS} = 0V, V _{GS} = ±20V	-	-	±100	nA	
Zero Gate Voltage Drain	TJ=25°C			-	-	1	μА	
Current	T _J =100°C	I _{DSS}	V _{DS} =100V, V _{GS} = 0V	-	-	100		
Gate-Threshold Voltage		V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250μA	1.2	-	2.5	V	
	4		V _{GS} = 10V, I _D = 5A	-	70	90		
Drain-Source on-Resistance	5 4	R _{DS(on)}	V _{GS} = 4.5V, I _D = 3A	-	75	105	mΩ	
Forward Transconductance ⁴		G fs	V _{DS} =5V , I _D =5A	-	12	-	S	
Dynamic Characteristic	s ⁵			-1				
Input Capacitance		Ciss	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz	-	1220	-	pF	
Output Capacitance		Coss		-	53	-		
Reverse Transfer Capacitance		Crss		-	42	-		
Gate Resistance		R _g	f=1MHz	-	1.3	-	Ω	
Switching Characteristi	CS ⁵	1						
Total Gate Charge		Qg	V _{GS} = 10V, V _{DS} = 50V, I _D =5A	-	20.6	-	nC	
Gate-Source Charge		Q _{gs}		-	4	-		
Gate-Drain Charge		Q _{gd}		-	3.7	-		
Turn-On Delay Time		t _{d(on)}		-	4.7	-		
Rise Time		t r	- V _{GS} =10V, V _{DD} =50V,	-	21	-	ns	
Turn-Off Delay Time		t _{d(off)}	$R_G = 3\Omega$, $I_D = 5A$	-	20	-		
Fall Time		tf	-	-	16	-	_	
Drain-Source Body Dio	de Charactei	ristics		ı	1	l	l	
Diode Forward Voltage ⁴		V _{SD}	I _S = 1A, V _{GS} = 0V	-	_	1.2	V	
Continuous Source Current	T _C =25°C	Is	-	_	_	10	Α	

Notes:

- 1. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH,I_{AS}=8A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

P-Channel Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-100			V	
D	Static Prain Source On Registeres ²	V _{GS} =-10V , I _D =-3A		180	220	0	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V_{GS} =-4.5 V , I_D =-2 A		210	255	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.2		-2.5	V	
less	Drain Source Leekage Current	V _{DS} =-80V , V _{GS} =0V , T _J =25°C			-1		
IDSS	Drain-Source Leakage Current	V _{DS} =-80V , V _{GS} =0V , T _J =85°C			-30	uA	
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
Rg	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz			13		Ω	
Qg	Total Gate Charge (-10V)			19			
Qgs	Gate-Source Charge	V _{DS} =-50V , V _{GS} =-10V , I _D =-2A		3.4		nC	
Q _{gd}	Gate-Drain Charge			2.9			
T _{d(on)}	Turn-On Delay Time			9			
Tr	Rise Time	V_{DD} =-30 V , V_{GS} =-10 V , R_{G} =3.3 Ω ,		6			
T _{d(off)}	Turn-Off Delay Time	I _D =-1A		39		ns	
T _f	Fall Time			33			
C _{iss}	Input Capacitance			1228			
Coss	Output Capacitance	V _{DS} =-30V , V _{GS} =0V , f=1MHz		41		pF	
Crss	Reverse Transfer Capacitance			29			

Diode Characteristics

Symbol	Symbol Parameter Conditions		Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-5.0	А
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1.2	V

Note

- 1. The data tested by surface mounted on a 1 inch $^2\,\text{FR-4}$ board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\,\leq\,$ 300us , duty cycle $\,\leq\,$ 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.5mH, I_{AS} =-14A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

N-Channel Typical Characteristics

P-Channel Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized $V_{GS(th)}$ vs T_J

Fig.2 On-Resistance vs G-S Voltage

Fig.6 Normalized R_{DSON} vs T_J

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.11 Unclamped Inductive Waveform

SOP-8 Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	D(BSC)	0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	