In []:

AIM: Create a classification model to predict whether price range of mobile based on certain specifications

In []:

DESCRIPTION: An entrepreneur has started his own mobile company. He wants to give tough fight to big companies like Apple, Samsung etc.

He does not know how to estimate price of mobiles his company creates. In this competitive mobile phone market, one cannot simply assume things. To solve this problem, he collects sales data of mobile phones of various companies.

He wants to find out some relation between features of a mobile phone (e.g., RAM, Internal Memory etc) and its selling price. But he is not so good at Machine Learning. So, he needs your help to solve this problem.

In this problem you do not have to predict actual price but a price range indicating how high

In []:

SOURCE CODE:

In []:

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.metrics import accuracy_score,confusion_matrix import warnings warnings.filterwarnings('ignore'

In [4]:

df=pd.read_csv('D:\mobile_price_range_data.csv')
df.head()

Out[4]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ram	sc_h	sc_w	talk_time
)	842	0	2.2	0	1	0	7	0.6	188	2	 20	756	2549	9	7	19
- 1	1021	1	0.5	1	0	1	53	0.7	136	3	 905	1988	2631	17	3	7
!	563	1	0.5	1	2	1	41	0.9	145	5	 1263	1716	2603	11	2	9
3	615	1	2.5	0	0	0	10	0.8	131	6	 1216	1786	2769	16	8	11
ļ	1821	1	1.2	0	13	1	44	0.6	141	2	 1208	1212	1411	8	2	15

rows × 21 columns

In [5]:

df.shape

Out[5]:

(2000, 21)

```
In [6]:
```

```
df.dtypes
```

Out[6]:

battery_power int64 int64 clock_speed float64 dual_sim int64 int64 four_g int64 int_memory int64 m_dep float64 mobile_wt int64 int64 n_cores int64 рс px_height int64 px_width int64 ram int64 sc h int64 int64 SC W talk_time int64 three_g int64 int64 touch_screen wifi int64 int64 price_range dtype: object

In [7]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):
```

Column Non-Null Count Dtype 0 battery_power 2000 non-null int64 1 2000 non-null int64 2 clock_speed 2000 non-null float64 3 dual_sim 2000 non-null int64 4 2000 non-null int64 5 four_g 2000 non-null int64 int_memory 2000 non-null 6 int64 2000 non-null float64 m_dep 8 mobile_wt 2000 non-null int64 n_cores 2000 non-null int64 10 рс 2000 non-null int64 px_height 2000 non-null 11 int64 px_width 2000 non-null int64 12 2000 non-null int64 13 ram sc_h 2000 non-null int64 14 15 2000 non-null int64 SC W 2000 non-null 16 talk_time int64 2000 non-null int64 17 three_g touch_screen 2000 non-null 18 int64 2000 non-null 19 wifi int64 20 price_range 2000 non-null int64 dtypes: float64(2), int64(19) memory usage: 328.2 KB

In [8]:

df.describe()

Out[8]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_heigl
count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000	 2000.00000
mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046500	0.501750	140.249000	4.520500	 645.10800
std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145715	0.288416	35.399655	2.287837	 443.78081
min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000000	0.100000	80.000000	1.000000	 0.00000
25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000000	0.200000	109.000000	3.000000	 282.75000
50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000000	0.500000	141.000000	4.000000	 564.00000
75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000000	0.800000	170.000000	7.000000	 947.25000
max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000000	1.000000	200.000000	8.000000	 1960.00000

8 rows × 21 columns

4

In [9]:

```
df.isnull().sum()
```

Out[9]:

0 battery_power 0 clock_speed 0 ${\tt dual_sim}$ 0 four_g 0 int_memory m_dep mobile_wt n_cores 0 рc px_height 0 0 px_width ram 0 0 sc_h 0 SC_W talk_time 0 three_g 0 0 touch_screen wifi 0 0 price_range dtype: int64

In [11]:

import missingno as msno
msno.bar(df)
plt.show()


```
In [12]:
```

```
df.var()
```

Out[12]:

1.930884e+05 battery_power 2.501001e-01 blue clock_speed 6.658629e-01 dual_sim 2.500348e-01 1.884813e+01 four_g 2.496626e-01 int_memory 3.292670e+02 m_dep 8.318353e-02 mobile_wt 1.253136e+03 n_cores 5.234197e+00 рc 3.677592e+01 px_height 1.969414e+05 1.867964e+05 px_width ram 1.176644e+06 1.775143e+01 sc_h 1.897820e+01 SC_W talk_time 2.985481e+01 three_g 1.817086e-01 touch_screen 2.501161e-01 wifi 2.500760e-01 1.250625e+00 price_range dtype: float64

In [13]:

```
df['price_range'].unique()
```

Out[13]:

array([1, 2, 3, 0], dtype=int64)

In [14]:

```
sns.pointplot(y='ram',x='price_range',data=df)
```

Out[14]:

<AxesSubplot:xlabel='price_range', ylabel='ram'>

In [15]:

sns.pointplot(x='price_range',y='battery_power',data=df)

Out[15]:

<AxesSubplot:xlabel='price_range', ylabel='battery_power'>

In [16]:

sns.boxplot(x='price_range',y='battery_power',data=df)

Out[16]:

<AxesSubplot:xlabel='price_range', ylabel='battery_power'>


```
In [17]:
```

```
sns.pointplot(x='price_range',y='int_memory',data=df)
```

Out[17]:

<AxesSubplot:xlabel='price_range', ylabel='int_memory'>

In [18]:

```
col = df.columns
col
```

Out[18]:

In [22]:

```
categorical_col = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'price_range']
```

In [23]:

```
for i in categorical_col:
    sns.countplot(df[i])
    plt.xlabel(i)
    plt.show()
```


In [24]:

```
for i in df.drop(df[categorical_col],axis=1):
    fig = plt.figure(figsize=(9,8))
    plt.hist(df[i],color='purple',bins=10)
       plt.xlabel(i)
       plt.show()
       0
                0.5
                                              1.0
                                                                            1.5
                                                                                                          2.0
                                                                                                                                        2.5
                                                                                                                                                                      3.0
                                                                                    clock_speed
   700
   600
   500
In [25]:
corr=df.corr()
fig = plt.figure(figsize=(15,12))
r = sns.heatmap(corr, cmap='BrBG')
r.set_title("Correlation")
```

Out[25]:

Text(0.5, 1.0, 'Correlation')

In [26]:

```
sns.stripplot(x="touch_screen",y="ram", hue="price_range",data=df, dodge=True,jitter=True, alpha=.25, zorder=1)
```

Out[26]:

<AxesSubplot:xlabel='touch_screen', ylabel='ram'>

In [27]:

```
f, ax = plt.subplots(figsize=(10,10))
ax=sns.swarmplot(x="four_g", y="ram", hue="price_range", palette="Dark2", data=df)
ax=sns.set(style="darkgrid")
```


In [29]:

```
g = sns.FacetGrid(df, col="dual_sim", hue="price_range", palette="Set1", height=5)
g = (g.map(sns.distplot, "ram").add_legend())
```


In [30]:

```
x=df.drop('price_range',axis=1)
y=df['price_range']
```

In [31]:

```
scale=StandardScaler()
scaled=scale.fit_transform(x)
```

In [33]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif=pd.DataFrame()
vif['vif']=[variance_inflation_factor(scaled,i)for i in range(scaled.shape[1])]
vif['features']=x.columns
vif
```

Out[33]:

	vif	features
0	1.009945	battery_power
1	1.011342	blue
2	1.006025	clock_speed
3	1.011555	dual_sim
4	1.718987	fc
5	1.528509	four_g
6	1.009274	int_memory
7	1.006385	m_dep
8	1.004548	mobile_wt
9	1.008442	n_cores
10	1.720785	рс
11	1.369052	px_height
12	1.362399	px_width
13	1.008331	ram
14	1.356109	sc_h
15	1.353648	sc_w
16	1.010502	talk_time
17	1.527367	three_g
18	1.006278	touch_screen
19	1.009100	wifi

In [35]:

```
labels = ["3G-supported", 'Not supported']
values = df['three_g'].value_counts().values
fig1, ax1 = plt.subplots()
colors = ['red', 'blue']
ax1.pie(values, labels=labels, autopct='%1.1f%%',shadow=True,startangle=90,colors=colors)
plt.show()
```


In [39]:

```
labels = ["4G-supportedd", 'Not supported']
values = df['four_g'].value_counts().values
fig1, ax1 = plt.subplots()
color = ['orange', 'lightskyblue']
ax1.pie(values, labels=labels, autopct='%1.1f%%',shadow=True,startangle=90,colors=colors)
plt.show()
```


In [40]:

```
plt.figure(figsize=(10,6))
df['fc'].hist(alpha=0.5,color='blue',label='Front camera')
df['pc'].hist(alpha=0.5,color='red',label='primary camera')
plt.legend()
plt.xlabel('MegaPixels')
```

Out[40]:

Text(0.5, 0, 'MegaPixels')

In [41]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_state=123,stratify=y)
```

In [48]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
lr = LogisticRegression(penalty='l2',C=0.1)
lr.fit(x_train,y_train)

y_test_pred = lr.predict(x_test)
y_train_pred = lr.predict(x_train)

lr_acc=accuracy_score(y_test_pred,y_test)

print("Train Set Accuracy:"+str(accuracy_score(y_train_pred,y_train)*100))
print("Test Set Accuracy:"+str(accuracy_score(y_test_pred,y_test)*100))
print("\nconfusion Matrix:\n%s"%confusion_matrix(y_test_pred,y_test))
print("\nClassification Report:\n%s"%classification_report(y_test_pred,y_test))
```

Train Set Accuracy:64.2666666666667

Test Set Accuracy:63.0

Confusion Matrix: [[97 24 0 0] [27 66 35 1] [1 30 57 29] [0 5 33 95]]

Classification Report:

	precision	recall	f1-score	support
0	0.78	0.80	0.79	121
1	0.53	0.51	0.52	129
2	0.46	0.49	0.47	117
3	0.76	0.71	0.74	133
accuracy			0.63	500
macro avg	0.63	0.63	0.63	500
weighted avg	0.63	0.63	0.63	500

```
In [50]:
```

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=8)
knn.fit(x_train,y_train)
y_test_pred1 = knn.predict(x_test)
y_train_pred1=knn.predict(x_train)
knn_acc=accuracy_score(y_test_pred1,y_test)
rnn_acc=accuracy_score(y_test_predl,y_test)
print("Train Set Accuracy:"+str(accuracy_score(y_train_predl,y_train)*100))
print("Test Set Accuracy:"+str(accuracy_score(y_test_predl,y_test)*100))
print("nConfusion Matrix:\n%s"%confusion_matrix(y_test_predl,y_test))
print("\nClassification Report:\n%s"%classification_report(y_test_pred1,y_test))
Train Set Accuracy:95.13333333333334
Test Set Accuracy:89.8
Confusion Matrix:
```

[[124 15 0 0] [1 104 12 0] [0 6 110 14] [0 0 3 111]]

Classification Report:

	precision	recall	f1-score	support
0	0.99	0.89	0.94	139
1	0.83	0.89	0.86	117
2	0.88	0.85	0.86	130
3	0.89	0.97	0.93	114
accuracy			0.90	500
macro avg	0.90	0.90	0.90	500
weighted avg	0.90	0.90	0.90	500

In [51]:

```
from sklearn.svm import SVC
svc = SVC()
svc.fit(x_train, y_train)
y_test_pred2 = svc.predict(x_test)
y_train_pred2=svc.predict(x_train)
y_train_predz_svc.predztc(\_train_svc_array)
svc_acc=accuracy_score(y_test_pred2,y_test)
print("Train Set Accuracy:"+str(accuracy_score(y_train_pred2,y_train)*100))
print("Test Set Accuracy:"+str(accuracy_score(y_test_pred2,y_test)*100))
print("\nConfusion Matrix:\n%s"%confusion_matrix(y_test_pred2,y_test))
print("\nClassification Report:\n%s"%classification_report(y_test_pred2,y_test))
```

Train Set Accuracy:94.93333333333334 Test Set Accuracy:94.0

```
Confusion Matrix:
[[124 8 0 0]
[ 1 114 9 0]
 [ 0 3 112 5]
[ 0 0 4 120]]
```

Classification Report:

	precision	recall	t1-score	support
0	0.99	0.94	0.96	132
1	0.91	0.92	0.92	124
2	0.90	0.93	0.91	120
3	0.96	0.97	0.96	124
accuracy			0.94	500
macro avg	0.94	0.94	0.94	500
weighted avg	0.94	0.94	0.94	500

```
In [52]:
```

```
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)
y_test_pred3 = dtc.predict(x_test)
y_train_pred3=dtc.predict(x_train)
print("Train Set Accuracy:"+str(accuracy_score(y_train_pred3,y_train)*100))
print("Test Set Accuracy:"+str(accuracy_score(y_test_pred3,y_test)*100))
print("\nConfusion Matrix:\n%s"%confusion_matrix(y_test_pred3,y_test))
print("\nClassification Report:\n%s"%classification_report(y_test_pred3,y_test))
Train Set Accuracy:100.0
Test Set Accuracy:82.0
Confusion Matrix:
[[109 13 0 0]
 [ 15 98 19
                 1]
    1 14 92 13]
 [ 0
        0 14 111]]
Classification Report:
                               recall f1-score
                precision
                                                  support
            0
                     0.87
                                 0.89
                                            0.88
                                                         122
                                 0.74
                     0.78
                                            0.76
            1
                                                         133
                                 0.77
            2
                     0.74
                                            0.75
                                                         120
            3
                     0.89
                                 0.89
                                            0.89
                                                         125
    accuracy
                                            0.82
                                                         500
   macro avg
                     0.82
                                 0.82
                                            0.82
                                                         500
weighted avg
                     0.82
                                 0.82
                                            0.82
                                                         500
In [54]:
grid_params = {
    'criterion' : ['gini', 'entropy'],
    'max_depth' : [3, 5, 7 , 10],
    'min_samples_split' : range(2, 10, 1),
    'state | range(2, 10, 1)
     'min_samples_leaf' : range(2, 10, 1)
grid_search = GridSearchCV(dtc, grid_params, cv = 5, n_jobs = -1,verbose = 1)
grid_search.fit(x_train, y_train)
Fitting 5 folds for each of 512 candidates, totalling 2560 fits
Out[54]:
\label{lem:continuous} GridSearchCV(cv=5,\ estimator=DecisionTreeClassifier(),\ n\_jobs=-1,
              verbose=1)
In [56]:
grid search.best params
Out[56]:
{'criterion': 'gini',
  'max_depth': 7,
 'min_samples_leaf': 8,
 'min_samples_split': 3}
In [57]:
dtc = grid_search.best_estimator_
In [58]:
y_predi=dtc.predict(x_test)
In [59]:
```

```
dtc_train_acc = accuracy_score(y_train, dtc.predict(x_train))
dtc_test_acc = accuracy_score(y_test, y_predi)
print(f"Trainig Accuracy of SVC Model is{dtc_train_acc}")
print(f"Test Accuracy of SVC Model is{dtc_test_acc}")
```

```
In [63]:
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import GridSearchCV
ada = AdaBoostClassifier(base_estimator = dtc)
parameters = {
          'n_estimators' : [50, 70, 90, 120, 180, 200],
'learning_rate' : [0.001, 0.01, 0.1, 1, 10],
'algorithm' : ['SAMME', 'SAMME.R']
grid_search = GridSearchCV(ada, parameters, n_jobs = -1, cv = 5, verbose = 1)
grid_search.fit(x_train, y_train)
Fitting 5 folds for each of 60 candidates, totalling 300 fits
Out[63]:
GridSearchCV(cv=5,
                                   estimator = AdaBoostClassifier (base\_estimator = DecisionTreeClassifier (max\_depth = 7, and base\_estimator = 1, and base\_est
                                                                                                                                                                                                                      min samples leaf=8.
                                                                                                                                                                                                                      min_samples_split=3)),
                                  n_jobs=-1,
                                   param_grid={'algorithm': ['SAMME', 'SAMME.R'],
                                                                    'learning_rate': [0.001, 0.01, 0.1, 1, 10],
'n_estimators': [50, 70, 90, 120, 180, 200]},
                                   verbose=1)
In [64]:
grid_search.best_params_
Out[64]:
{'algorithm': 'SAMME', 'learning_rate': 1, 'n_estimators': 200}
In [65]:
grid_search.best_score_
Out[65]:
0.922
In [66]:
ad = grid_search.best_estimator_
ad.fit(x_train,y_train)
AdaBoostClassifier(algorithm='SAMME',
                                                   base_estimator=DecisionTreeClassifier(max_depth=7,
                                                                                                                                                         min_samples_leaf=8,
                                                                                                                                                         min_samples_split=3),
                                                   learning_rate=1, n_estimators=200)
In [67]:
y_pred = ad.predict(x_test)
In [68]:
ada_train_acc = accuracy_score(y_train, ad.predict(x_train))
ada_test_acc = accuracy_score(y_test, y_pred)
print(f"Trainig Accuracy of Random Forest Model is{ada_train_acc}")
print(f"Test Accuracy of random Forest Model is{ada_test_acc}")
```

Trainig Accuracy of Random Forest Model is1.0 Test Accuracy of random Forest Model is0.92

```
In [70]:
from sklearn.ensemble import GradientBoostingClassifier
gbc = GradientBoostingClassifier()
gbc.fit(x_train, y_train)
y_test_pred6 = gbc.predict(x_test)
y_train_pred6=gbc.predict(x_train)
{\tt gbc\_acc=accuracy\_score(y\_test\_pred6,y\_test)}
print("Train Set Accuracy:"+str(accuracy_score(y_train_pred6,y_train)*100))
print("Train Set Accuracy:"+str(accuracy_score(y_test_pred6,y_test)*100))
print("\nConfusion Matrix:\n%s"%confusion_matrix(y_test_pred6,y_test))
print("\nClassification Report:\n%s"%classification_report(y_test_pred6,y_test))
Train Set Accuracy:100.0
Train Set Accuracy:90.8
Confusion Matrix:
[[121 8 0 0]
   4 108 10 0]
        9 111 11]
     0
    0
         0 4 11411
Classification Report:
                                  recall f1-score
                 precision
                                                         support
              0
                        0.97
                                     0.94
                                                  0.95
                                                                129
                        0.86
                                     0.89
                                                  0.87
                                                                122
             1
              2
                        0.89
                                     0.85
                                                  0.87
                                                                131
              3
                        0.91
                                     0.97
                                                  0.94
                                                                118
     accuracy
                                                  a 91
                                                                500
    macro avg
                        0.91
                                     0.91
                                                  0.91
                                                                500
weighted avg
                        0.91
                                     0.91
                                                  0.91
                                                                500
In [76]:
from xgboost import XGBClassifier
xgb = XGBClassifier(booster = 'gbtree' , learning_rate = 0.1 , max_depth = 5, n_estimators = 10,gamma=5)
xgb.fit(x_train, y_train)
y_test_pred7 = xgb.predict(x_test)
y_train_pred7=xgb.predict(x_train)
xgb_acc= accuracy_score(y_test_pred7,y_test)
print("Train Set Accuracy:"+str(accuracy_score(y_train_pred7,y_train)*100))
print("Test Set Accuracy:"+str(accuracy_score(y_test_pred7,y_test)*100))
print("\nConfusion Matrix:\n%s"%confusion_matrix(y_test_pred7,y_test))
print("\nClassification report:\n%s"%classification_report(y_test_pred7,y_test))
[16:02:52] WARNING: C:\Windows\Temp\abs_557yfx6311\croots\recipe\xgboost-split_1659548953302\work\src\learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed from 'merror' to
'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
Train Set Accuracy:93.0666666666666
Test Set Accuracy:84.6
Confusion Matrix:
[[118 15 0 0]
 [ 7 101 21 0]
[ 0 9 95 16]
         0 9 109]]
 [ 0
Classification report:
                  precision
                                  recall f1-score
                                                           support
              0
                        0.94
                                     0.89
                                                  0.91
                                                                133
                        0.81
                                     0.78
                                                  0.80
                                                                129
              1
              2
                        0.76
                                     0.79
                                                  0.78
                                                                120
              3
                        0.87
                                     0.92
                                                  0.90
                                                                118
     accuracy
                                                  0.85
                                                                500
                        0.85
                                     0.85
                                                  0.85
                                                                500
    macro avg
                        0.85
                                                  0.85
weighted avg
                                     0.85
                                                                500
```

```
In [80]:
```

```
models = pd.DataFrame({
   'Model' : ['Logistic Regression', 'KNN', 'SVC', 'Decision Tree Classifier', 'Ada Boost Classifier', 'Gradient Boosting Classifier', 'Score' : [lr_acc, knn_acc, svc_acc, dtc_test_acc, ada_test_acc, gbc_acc, xgb_acc]
})
models.sort_values(by = 'Score', ascending = False)
```

Out[80]:

	Model	Score
2	SVC	0.940
4	Ada Boost Classifier	0.920
5	Gradient Boosting Classifier	0.908
1	KNN	0.898
6	XgBoost	0.846
3	Decision Tree Classifier	0.836
0	Logistic Regression	0.630

In [86]:

```
colors = ["purple", "green", "orange", "magenta", "blue", "black"]
sns.set_style("whitegrid")
plt.figure(figsize=(16,8))
plt.ylabel("Accuracy %")
plt.xlabel("Algorithms")
sns.barplot(x=models['Model'],y=models['Score'], palette=colors)
plt.show()
```


In []:

CONCLUSION: we successfully Created a classification model to predict whether price range of mobile based on certain specifications