Álgebra Linear e Geometria Analítica

Agrupamento IV: Mestrado Integrado em Eng. ^a Eletrónica e Telecomunicações | Mestrado Integrado em Eng. ^a de Computadores e Telemática | Licenciatura em Eng. ^a Informática

15 de Janeiro de 2020 Duração: 2h30

Exame Final

Justifique devidamente todas as suas respostas.

1. Considere o sistema de equações lineares nas incógnitas $x, y \in z$

$$\begin{cases} y + 2z = 1 \\ x + y + 3z = 0 \\ x + z = -1 \end{cases}$$

- (a) Construa a matriz ampliada do sistema e determine uma matriz escalonada equivalente por linhas à matriz ampliada do sistema.
- (b) Determine o conjunto de soluções do sistema.

2. Considere A e B, matrizes 4×4 tais que det(A) = 3 e

$$B = \left[\begin{array}{rrrr} 0 & -1 & 0 & 0 \\ -1 & 1 & 1 & 2 \\ 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & -1 \end{array} \right].$$

- (a) Calcule det(B).
- (b) Justifique que B é invertível.
- (c) Calcule $\det(2A^TB^{-1})$.

3. Considere a base $S = (X_1, X_2, X_3)$ de \mathbb{R}^3 , com $X_1 = (1, 0, 1)$; $X_2 = (1, 1, 1)$; $X_3 = (0, 1, 1)$ e a base $\mathcal{T} = (Y_1, Y_2, Y_3)$ de \mathbb{R}^3 definida por $Y_1 = (1, 0, 0)$; $Y_2 = (1, 1, 0)$; $Y_3 = (0, -1, 1)$.

- (a) Determine a matriz de mudança de base de S para T.
- (b) Usando a matriz de mudança de base obtida, represente o vetor $Z=-X_1-X_2+2X_3$ como combinação linear dos vetores da base \mathcal{T} .

Caso não tenha resolvido a alínea anterior, use a matriz A da Questão 4.

4. Considere a matriz

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & -1 & 1 \end{array} \right]$$

sendo $\lambda = 1$ um dos seus valores próprios.

- (a) Determine o conjunto de todos os vetores próprios associados ao valor próprio $\lambda = 1$.
- (b) Indique o subespaço próprio associado ao valor próprio $\lambda = 1$.
- (c) Diga, justificando, se a matriz A é diagonalizável. Em caso afirmativo obtenha uma matriz diagonalizante para A.

- 5. Considere a matriz $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ e a transformação linear $\phi : \mathbb{R}^4 \to \mathbb{R}^2$ dada por $\phi(X) = CX$ para todo o $X \in \mathbb{R}^4$.
 - (a) Determine a imagem de ϕ , im (ϕ) , e uma sua base.
 - (b) ϕ é sobrejetiva? Justifique.
 - (c) ϕ é injetiva? Justifique.
 - (d) Encontre a matriz G representativa da transformação ϕ relativamente às bases $\mathcal{S} = ((1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1))$ de \mathbb{R}^4 e $\mathcal{T} = ((1, 1), (0, 1))$ de \mathbb{R}^2 .
- 6. Considere a quádrica de equação $x^2+2x=2y^2+4y+z^2$ Determine uma sua equação reduzida e classifique-a.

Questão	1	2	3	4	5	6
Cotação	3	3	3	4	5	2