$\Sigma(1690)$ Bumps

$$I(J^P) = 1(?^?)$$
 Status: **

OMITTED FROM SUMMARY TABLE

See the note preceding the $\Sigma(1670)$ Listings. Seen in production experiments only, mainly in $\Lambda\pi$.

Σ (1690) MASS (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
≈ 1690 OUR ESTIN	MATE					
1698 ± 20	70	$^{ m 1}$ GODDARD	79	HBC	+	π^+ p 10.3 GeV/ c
1707 ± 20	40	² GODDARD	79	HBC	+	π^+ p 10.3 GeV/ c
1698 ± 20	15	ADERHOLZ	69	HBC	+	π^+ p 8 GeV/ c
$1682\pm~2$	46	BLUMENFEL	D 69	HBC	+	$K_I^0 p$
1700 ± 20		MOTT	69	HBC	+	K^{-} p 5.5 GeV/c
1694 ± 24	60	³ PRIMER	68	HBC	+	$K^- p 4.6-5 \text{ GeV}/c$
$1700\pm~6$		⁴ SIMS	68	HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
1715 ± 12	30	COLLEY	67	HBC	+	K^-p 6 GeV/ c

Σ (1690) WIDTH (PRODUCTION EXPERIMENTS)

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	CHG	COMMENT
240± 60	70	¹ GODDARD 79	НВС	+	π^+ p 10.3 GeV/ c
130^{+100}_{-60}	40	² GODDARD 79) HBC	+	$\pi^+ p$ 10.3 GeV/ c
142 ± 40	15	ADERHOLZ 69	HBC	+	π^+ p 8 GeV/ c
$25\pm~10$	46	BLUMENFELD 69) HBC	+	$K_I^0 p$
$130\pm\ 25$		MOTT 69	HBC	+	K^{-} p 5.5 GeV/c
105 ± 35	60	³ PRIMER 68	B HBC	+	$K^- p 4.6-5 \text{ GeV}/c$
62 ± 14		⁴ SIMS 68	B HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
100± 35	30	COLLEY 67	' HBC	+	K^-p 6 GeV/ c

Σ (1690) DECAY MODES (PRODUCTION EXPERIMENTS)

	Mode
$\overline{\Gamma_1}$	$N\overline{K}$
Γ_2	$\Lambda\pi$
Γ_3	$\Sigma\pi$
Γ_4	$\Sigma(1385)\pi$
Γ ₅	$\Lambda\pi\pi(\operatorname{including}\Sigma(1385)\pi)$

Created: 5/30/2017 17:20

Σ (1690) BRANCHING RATIOS (PRODUCTION EXPERIMENTS)

$\Gamma(N\overline{K})/\Gamma(\Lambda\pi)$						Γ_1/Γ_2
VALUE	<u>EVTS</u>	DOCUMENT ID)	TECN	CHG	COMMENT
small		GODDARD	79	HBC	+	$\pi^+ p$ 10.2 GeV/ c
< 0.2		MOTT	69	HBC	+	K^-p 5.5 GeV/ c
0.4 ± 0.25	18	COLLEY	67	HBC	+	6/30 events
$\Gamma(oldsymbol{\Sigma}\pi)/\Gamma(oldsymbol{\Lambda}\pi)$						Γ_3/Γ_2
VALUE	<u>CL%</u>	DOCUMENT ID)	TECN	CHG	COMMENT
small		GODDARD	79	HBC	+	$\pi^+ p$ 10.2 GeV/ c
< 0.4	90	MOTT	69	HBC	+	K^-p 5.5 GeV/ c
0.3 ± 0.3		COLLEY	67	HBC	+	4/30 events
$\Gamma(\Sigma(1385)\pi)/\Gamma(N)$	1π)					Γ_4/Γ_2
VALUE		DOCUMENT ID)	TECN	CHG	COMMENT
< 0.5		MOTT	69	HBC	+	K^-p 5.5 GeV/ c
$\Gamma(\Lambda\pi\pi(including))$	$\Sigma(1385)\pi)$	$)/\Gamma(\Lambda\pi)$				Γ_5/Γ_2
VALUE	_	DOCUMENT ID)	TECN	<u>CHG</u>	COMMENT
2.0 ± 0.6		BLUMENFEL	D 69	HBC	+	31/15 events
0.5 ± 0.25		COLLEY	67	HBC	+	15/30 events
$\Gamma(\Sigma(1385)\pi)/\Gamma(\Lambda)$	$1\pi\pi$ (include	ling $\Sigma(1385)\pi$))			Γ_4/Γ_5
VALUE		DOCUMENT ID)	TECN	CHG	COMMENT
large		SIMS	68	HBC	_	$K^- N \rightarrow \Lambda \pi \pi$
small		COLLEY	67	HBC	+	K^-p 6 GeV/ c

Σ (1690) FOOTNOTES (PRODUCTION EXPERIMENTS)

Σ (1690) REFERENCES (PRODUCTION EXPERIMENTS)

GODDARD 79 AGUILAR 70B ADERHOLZ 69	PR D19 1350 PRL 25 58 NP B11 259	M.C. Goddard <i>et al.</i> M. Aguilar-Benitez <i>et al.</i> M. Aderholz <i>et al.</i> (AACH	(TNTO, BNL) IJ (BNL, SYRA) 3, BERL, CERN+) I
BLUMENFELD 69	PL 29B 58	B.J. Blumenfeld, G.R. Kalbfleisch	(BNL) I
MOTT 69	PR 177 1966	J. Mott <i>et al.</i>	(NWES, `ANL) I
Also	PRL 18 266	M. Derrick et al.	(ANL, NWES) I
PRIMER 68	PRL 20 610	M. Primer et al.	(SYRA, BNL) I
SIMS 68	PRL 21 1413	W.H. Sims et al. (FSU	J, TÚFTS, BRAN) I
COLLEY 67	PL 24B 489	D.C. Colley (BIRM, GLAS, LO	IC, MUNI, OXF+) I
Also PRIMER 68 SIMS 68	PRL 18 266 PRL 20 610 PRL 21 1413	M. Derrick <i>et al.</i> M. Primer <i>et al.</i> W.H. Sims <i>et al.</i> (FSI	(ANL, NWES) I (SYRA, BNL) I J, TUFTS, BRAN) I

Created: 5/30/2017 17:20

¹ From $\pi^+ p \to (\Lambda \pi^+) K^+$. J > 1/2 is not required by the data. ² From $\pi^+ p \to (\Lambda \pi^+) (K \pi)^+$. J > 1/2 is indicated, but large background precludes a definite conclusion. ³ See the $\Sigma(1670)$ Listings. AGUILAR-BENITEZ 70B with three times the data of PRIMER 68 find no evidence for the $\Sigma(1690)$.

⁴ This analysis, which is difficult and requires several assumptions and shows no unambiguous $\Sigma(1690)$ signal, suggests $J^P=5/2^+$. Such a state would lead all previously known Y^* trajectories.