AAKRITI UPADHYAY

aakritiupadhyay26@gmail.com Portfolio: https://aakupadhyay.github.io/

EDUCATION

2018 – 23 Ph.D., Department of Computer Science, University at Albany, State University of New York

<u>Research Interests</u>: Robotics (Motion Planning), Applied Mathematics, Computational Geometry, and Machine Learning.

2016 – 18 M.Sc., Department of Computer Science, University at Albany, State University of New York

Master's Project: Investigating Heterogeneous Planning Spaces.

2011 – 15 B.E., Department of Computer Science and Engineering, University Visvesvaraya College of Engineering (UVCE), Bangalore University.

TECHNICAL SKILLS

<u>Programming languages</u>: C/C++, Python, Unix/Shell, Java, Latex.

Motion Planning Library: OMPL (Open Motion Planning Library), PPL (Parasol Planning Library).

Operating systems: Linux (Ubuntu, Debian, OpenSUSE), Windows, Mac OS.

<u>Software skills</u>: ROS (Robotics Operating System), MATLAB, Gazebo, RViz, Docker, Google Dialogflow, NVIDIA CUDA, Tkiz, GitHub, CMake, VSCode, PyCharm, JetBrain (IntelliJ, CLion).

PROFESSIONAL EXPERIENCE

Nov 2023 Postdoctoral Fellow, Department of Computer Science, Colorado School of Mines.

– June My research focuses on developing a complete motion planner that utilizes the topology of robot's configuration space to prove infeasible motion plans for manipulator robots.

2017-23 Research Assistant, Department of Computer Science, University at Albany, State University of New York, NY, USA.

I worked for the Robotics Algorithms and Computable Systems (RACS) lab. My responsibilities included:

- 1. Design and development of motion planning algorithms via integrating topology-based mapping or machine learning techniques.
- 2. Manuscript preparation for submission to conferences or journals (ref. to publications).
- ${\it 3.} \quad {\it Mentor undergraduate/master students on capstone project work.}$

I mentored an undergraduate student for the University at Albany Summer Research Program (UASRP) project. The project aims to design an algorithm to classify graspable and non-graspable areas of a teacup for a manipulator robot hand.

Programming languages: C++, Unix/shell script, XML, and Python.

Summer Technology Intern, Living Resources Corporation (LRC), Albany, NY, USA.

2020

I gained experience working on a home assistant robot and developed software to help serve people with intellectual and developmental disabilities. I worked on the development, deployment, training and testing of robot's emotion detection, speech analysis and autonomous driving skills.

Technologies used: JavaScript, REST API, and GitHub/GitLab.

Summer 2019

Summer Research Intern, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

I worked in the Department of Computer Science and Mathematics Division (CSMD) for the Discrete Computing Sciences (DCS) group and developed algorithms with application in time-series graphs, semantic mapping, and combinatorial integer optimization.

Programming languages: Python, CUDA C/C++, and PyCUDA.

Spring 2018

Web Technology Intern, Association for the Cooperative Advancement of Science and Education (ACASE), Saratoga Spring, NY, USA.

I developed an online application on the WordPress platform for teachers to help improve evaluation and assessment skills for high school-level education.

2015-16

Software Engineer, NetCracker Technology, Bengaluru, KA, India.

I have worked as a Back-End developer and was involved in the product development for NetCracker's Integration and Mediation Interface used in customer services.

Technologies used: Java, JavaScript, PL/SQL, Regex, JSON/ XML, JIRA, and CI/CD pipelines.

PUBLICATIONS

Aakriti Upadhyay, "Near-Optimal Motion Planning Algorithms Via A Topological and Geometric Perspective" (2023). Computer Science Theses & Dissertations, State University of New York at Albany.

Aakriti Upadhyay, and Chinwe Ekenna. "A New Tool to Study the Binding Behavior of Intrinsically Disordered Proteins." *International Journal of Molecular Sciences (IJMS)*. MDPI, 2023; 24(14):11785.

Aakriti Upadhyay, Mukulika Ghosh, and Chinwe Ekenna. "Minimal Path Violation Problem with Application to Fault Tolerant Motion Planning of Manipulators." 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023.

^{*}Please refer to my portfolio for other publications.