- 1. 在实数集 R 上定义二元运算*为: a*b=a+b+ab, 试判断下列论断是否正确? 为什么?
 - (1) <R, *>是一个代数系统。
 - (2) <R, *>是一个半群。
 - (3) <R, *>是一个独异点。
- 2. 设<A, *>是半群,对A中任意元a和b,若a*b=b*a,则必有a=b,证明:
 - (1) 对 A 中每个元 a, 有 a*a=a。
 - (2) 对 A 中任意元 a 和 b, 有 a*b*a=a。
 - (3) 对 A 中任意元 a、b 和 c, 有 a*b*c=a*c。
- 3. 设 Z 是整数集合,在 Z 上定义二元运算*为: x*y=x+y-2,那么 Z 和*是否构成群?为什么?
- 4. 设<G, *>是群, 请证明 x 和 $^{x^{-1}}$ 的阶数相同。
- 5. 设<G,*>是一群,令 $R = \{ < a, b > | a < b \in G \}$,存在 $g \in G$ 使 $b = g * a * g^{-1} \}$,证明 R 是 G 上的等价关系。
- 6. 设<G, *>是群,对任一a∈G,令H={y|y*a=a*y,y∈G},试证明<H,*>是<G,*>的子群。
- 7. 假设+6 是模 6 加法, Z_6 ={[0],[1],[2],[3],[4],[5]},则< Z_6 ,+6>是一个群。试写出< Z_6 ,+6>中所有的生成元和所有的子群,以及 3 阶子群关于[3]的左陪集。

- 1. (1)由 a*b=a+b+ab∈R 知,运算*是封闭的,所以<R,*>是一个代数系统。
 - (2)对任意的 a、b、c∈R,有

$$(a*b)*c=(a+b+ab)*c=a+b+ab+c+(a+b+ab)c=a+b+c+ab+ac+bc+abc$$
 $a*(b*c)=a*(b+c+bc)=a+b+c+bc+a(b+c+bc)=a+b+c+ab+ac+bc+abc$ 所以运算*满足结合率,故是一个半群。

- (3)对任意的 $a \in \mathbb{R}$,a * 0 = a = 0 * a,0 是关于运算*的幺元,所以 $< \mathbb{R}$,* > 是一个独异点。
- 2. (1)由(a*a)*a=a*(a*a), 所以 a*a=a。
 - (2)由 a*(a*b*a)=(a*a)*(b*a)=a*b*(a*a)=(a*b*a)*a,所以有 a*b*a=a。
 - (3)由(a*c)*(a*b*c)=(a*c*a)*(b*c)=a*(b*c)=(a*b)*c=(a*b)*(c*a*c)=(a*b*c)*(a*c),所以有 a*b*c=a*c。
- 3. 由 x*y=x+y-2 可知,运算*是封闭的。

又(x*y)*z=(x+y-2)*z=x+y+z-4, x*(y*z)=x*(y+z-2)=x+y+z-4, 即有(x*y)*z=x*(y*z), 运算*满足结合率。

因为x*2=x+2-2=x=2*x,所以2是关于运算*的幺元。

对任意 $x \in Z$,令 y=4-x,则 x*y=x+y-2=2=y*x,所以 Z 中的每个元素均有逆元。 综上可知,Z 和*是否构成群。

4. 假设 x 与 x⁻¹ 互为逆元。

若 x=e,则显然 $x 与 <math>x^{-1}$ 都是 1 阶元。

若 $x \neq e$,令 x 与 x^{-1} 互为逆元,且 x 是 n 阶元, x^{-1} 为 m 阶元, $n \neq m$,即 $x^m = e$,(x^{-1}) $^n = e$ 。已知 $x*x^{-1} = e = x^m = x*x^{m-1}$,所以 $x^{-1} = x^{m-1}$,

同理, x*x⁻¹=e=(x⁻¹)ⁿ=(x⁻¹)*(x⁻¹)ⁿ⁻¹,所以 x=(x⁻¹)ⁿ⁻¹

进而 x*x(-1)=(x-1)n-1*xm-1

$$=x^{-1}*x^{-1}*...*x^{-1}*x^{*x}*...*x$$
 $n-1 \uparrow m-1 \uparrow$

因为 $n\neq m$,所以 $x*x^{-1}\neq e$,和 x 与 x^{-1} 互为逆元矛盾,

所以 n=m,即 $x 与 x^{-1}$ 的阶数相同。

5. 对任意 $x \in G$,因为 $x = e^*x^*e^{-1}$,所以 xRx,故 R 是自反的。

对任意 x 、 $y \in G$,若 $x \in R$ y ,由 R 的定义知,存在 $g \in G$ 使 $y = g^* x * g^{-1}$, $x = g^{-1} * y * (g^{-1})^{-1}$,因为<G ,*>是一群, $g \in G$,于是 $g^{-1} \in G$,所以 $y \in R$,故 R 是对称的。

对任意 $x \setminus y \setminus z \in G$, 若 $x R y \perp y R z$, 由 R 的定义知, 存在 $g_1 \setminus g_2 \in G$ 使 $y = g_1 *$

 $x*g_1^{-1}$, $z=g_2*y*g_2^{-1}$, 于是 $z=g_2*y*g_2^{-1}=g_2*(g_1*x*g_1^{-1})*g_2^{-1}=(g_2*g_1)*$ $x*((g_2*g_1)^{-1}$, 因为<G,*>是一群, g_1 、 g_2 ∈ G,于是 g_2*g_1 ∈ G,所以z Rx,故 R 是传递的。

综上可得, R是G上的等价关系。

6. 证明一:

对于任意的 x, $y \in H$, 以及任意的 $a \in G$,

有
$$(x*y)*a=x*y*a=x*(y*a)=x*a*y=a*x*y=a*(x*y)$$

所以, $x*y \in H$, *关于 H 是封闭的。

因为 $H = \{y \mid y*a = a*y, y \in G\}$,有 $H \subseteq G$ 。又因为<G,*>是群,所以*在H中可满足结合性。

又因为 $e^*a=a^*e$,所以 $e \in H$,即存在幺元。

对任意的 $x \in H$, 在 G 上有 $x*x^{-1}=x^{-1}*x=e$, 所以

$$a * x^{-1} = (x^{-1} * x) * (a * x^{-1}) = x^{-1} * (x * a) * x^{-1} = x^{-1} * a * x * x^{-1} = x^{-1} * a$$

所以,有 $a*x^{-1} = x^{-1}*a$ 。即 $x^{-1} \in H$ 。

综上所述, <H,*>是<G,*>的子群

证明二:

由 y*a=a*y, 可对等式两端同时左乘 y-1 和右乘 y-1, 得到 a*y-1=y-1*a

故 x*y-1*a=x*a*y-1=a*x*y-1

即 x*y-1 ∈ H, 所以, 〈H, *〉是〈G, *〉的子群。

7. 生成元有: [1], [5]。

子群有: $<\{[0]\}, +_6>$, $<\{[0], [3]\}, +_6>$, $<\{[0], [2], [4]\}, +_6>$ 和<Z₆, $+_6>$ 。

3 阶子群是<{[0], [2], [4]}, +6>, 它关于[3]的左陪集是{[1], [3], [5]}。