

INTERPRETACIÓN DEL PCA

Alan Reyes-Figueroa Aprendizaje Estadístico

(AULA 06) 24.ENERO.2024

Ejemplo: (Datos de atletistmo *deport.csv*) Recordemos los datos de deportes

country	100m	200m	400m	800m	1500m	5km	10km	marath
argentin	10.39	20.81	46.84	1.81	3.70	14.04	29.36	137.72
australi	10.31	20.06	44.84	1.74	3.57	13.28	27.66	128.30
austria	10.44	20.81	46.82	1.79	3.60	13.26	27.72	135.90
belgium	10.34	20.68	45.04	1.73	3.60	13.22	27.45	129.95
bermuda	10.28	20.58	45.91	1.80	3.75	14.68	30.55	146.62

Vimos que los datos relativamente siguen una distribución cercana a una normal multivariada.

Para ese conjunto de datos, obtuvimos las siguientes componentes principales

C1	C2	С3	C4	C5	C6	C 7	C8
0.318	0.567	0.332	0.128	0.263	0.594	0.136	0.106
0.337	0.462	0.361	-0.259	-0.154	-0.656	-0.113	-0.096
0.356	0.248	-0.560	0.652	-0.218	-0.157	-0.003	Ο.
0.369	0.012	-0.532	-0.480	0.540	0.015	-0.238	-0.038
0.373	-0.140	-0.153	-0.405	-0.488	0.158	0.610	0.139
0.364	-0.312	0.190	0.03	-0.254	0.141	-0.591	0.547
0.367	-0.307	0.182	0.08	-0.133	0.219	-0.177	-0.797
0.342	-0.439	0.263	0.300	0.498	-0.315	0.399	0.158

Por ejemplo R hace una simplificación, y usualmente descarta aquellos coeficientes cercanos a cero.

C1	C2	С3	C4	C5	C6	C 7	C8
0.318	0.567	0.332	0.128	0.263	0.594	0.136	0.106
0.337	0.462	0.361	-0.259	-0.154	-0.656	-0.113	
0.356	0.248	-0.560	0.652	-0.218	-0.157		
0.369		-0.532	-0.480	0.540		-0.238	
0.373	-0.140	-0.153	-0.405	-0.488	0.158	0.610	0.139
0.364	-0.312	0.190		-0.254	0.141	-0.591	0.547
0.367	-0.307	0.182		-0.133	0.219	-0.177	-0.797
0.342	-0.439	0.263	0.300	0.498	-0.315	0.399	0.158

En ocasiones, es posible hacer una interpretación de los signos en las componentes principales.

Clasificamos los coeficientes de cada componente principal de acuerdo a sus signos: +, - \acute{o} o. Por ejemplo, la primer componente principal C_1 es

$$C_1 = \big(0.318, 0.337, 0.356, 0.369, 0.373, 0.364, 0.367, 0.342\big)$$

esto significa que

$$C_1 = 0.318x_1 + 0.337x_2 + 0.356x_3 + 0.369x_4 + 0.373x_5 + 0.364x_6 + 0.367x_7 + 0.342x_8, \\$$

Como C_1 tiene la signatura (+, +, +, +, +, +, +, +, +), podemos interpretar esta componente como un promedio ponderado de las 8 variables que conforman nuestros datos.

Esto es: la primer componente C_1 es el tiempo promedio de desempeño en las pruebas de atletismo.

Consideremos ahora la segunda componente principal C2

$$C_2 = (0.567, 0.462, 0.248, 0.012, -0.14, -0.312, -0.307, -0.439),$$

o bien

$$C_2 = 0.567x_1 + 0.462x_2 + 0.248x_3 + 0.01x_4 - 0.14x_5 - 0.312x_6 - 0.307x_7 - 0.439x_8, \\$$

con la signatura (+,+,+,0,-,-,-). Esta componente puede interpretarse como un contraste entre las primeras tres variables (100m, 200m, 400m) y las últimas cuatro (1500m, 5km, 10km, maratón).

Esta componente separa los grupos en función de la diferencia de desempeño entre las pruebas de velocidad y de resistencia.

Finalmente, la tercer componente principal es

$$C_3 = \big(-0.332, -0.361, 0.56, 0.532, 0.153, -0.19, -0.182, -0.263\big),$$

con signatura (-, -, +, +, +, -, -, -). Esta componente puede interpretarse como un contraste entre las variables x_3, x_4, x_5 (400m, 800m, 1500m) y el resto de variables.

De alguna manera, esta componente separa los grupos en función de su desempeño en las pruebas de medio fondo.

El resto de componentes se interpretan igual

	C1	C2	C3	C4	C5	C6	C 7	C8
V1	0.318	0.567	0.332	0.128	0.263	0.594	0.136	0.106
V2	0.337	0.462	0.361	-0.259	-0.154	-0.656	-0.113	
٧3	0.356	0.248	-0.560	0.652	-0.218	-0.157		
V4	0.369		-0.532	-0.480	0.540		-0.238	
V5	0.373	-0.140	-0.153	-0.405	-0.488	0.158	0.610	0.139
V6	0.364	-0.312	0.190		-0.254	0.141	-0.591	0.547
V 7	0.367	-0.307	0.182		-0.133	0.219	-0.177	-0.797
V8	0.342	-0.439	0.263	0.300	0.498	-0.315	0.399	0.158

Esta información se resume en el biplot.

o. No centrar los datos

En PCA, es mandatorio centrar los datos. Esto tiene varios motivos:

- Queremos proyectar a un subespacio de menor dimensión (subespacio vectorial, de modo que debe contener al origen).
- La definición de covarianza implica centrar los datos, pues

$$Cov(X) = \mathbb{E}[(X - \mu)^T(X - \mu)].$$

 Podríamos pensar en proyectar hacia un subespacio afín (que no pasa por el origen). En ese caso, en lugar de obtener la dirección principal, el PCA va a devolver el vector que apunta al centroide de la distribución.

1. Escala de los datos

Algo que hay que tener en cuenta a la hora de hacer PCA es que la escala de los datos puede influenciar o sesgar el resultado.

Por ejemplo, en los datos de meteo-users.csv

	Temp.	Rel.Humidity	W.Speed	Index.I	Rain.Prec	Rain.Prob	Users
2013-11	14.747	66.516	2.001	1.314	1	0.033	656292
2013-12	14.418	57.069	1.885	1.708	2	0.033	580750
2014-01	12.669	51.606	1.910	1.794	10	0.066	664949
2014-02	16.324	40.144	1.875	1.272	5	0.033	691331
2014-03	17.748	42.042	2.286	1.794	6	0.066	746663
2014-04	18.659	42.776	2.153	2.161	14	0.133	643804

Al hacer PCA de los datos crudos (sin escalar), se obtiene

Ahora, dividiendo "Users" entre 10⁶, se obtiene

Haciendo PCA con los datos estandarizados, obtenemos más coherencia.

3. No normalidad

PCA asume normalidad de los datos. Como ya indicamos, PCA basa su análisis en estudiar la covarianza Cov(X), de modo que sólo es capaz de detectar estructuras lineales subyacentes.

Esto no quiere decir que está prohibido usar PCA con datos no normales. Sin embargo, se debe ser cuidadoso en su uso en estos casos: a medida que los datos se alejan de una normal multivariada, el PCA es cada vez menos informativo.

4. Datos no cuantitativos

No tiene sentido aplicar PCA a datos no cuantiativos.

Ejemplos

- Imágenes de rostros,
- Trazas de dígitos,
- MNIST (dígitos),
- Estilografía,
- Índices de probreza,
- Genética de poblaciones,
- ...