Bayes Factor Functions

Saptati Datta, Rachael Shudde, Valen E. Johnson

Texas A&M University, College Station, TX

October 15, 2023

Outline

- Practical issues with Bayes factors
- Bayes factors based on test statistics (BFBOTS)
- Non-local Alternative Prior Densities (NAPs)
- Bayes factor functions (BFFs)
- Examples

Practical issues with Bayes factors

• Defining null and alternative models is difficult in high-dimensional settings.

Site	Results for the		
Site	following blood groups		
	0	Α	B or AB
Pylorus and antrum	104	140	52
Body and fundus	116	117	52
Cardia	28	39	11
Extensive	28	12	8

White and Eisenberg's classification of cancer patients.

Practical issues

Bayes factors based on test statistics (BFBOTS)[Proposed by V.E. Johnson(2005)]

- Suppose X is a standard test statistic (i.e., z, t, χ^2 , F).
 - Under H₀, distribution, distribution of test statistic is known. No prior densities are needed.
 - Under H₁, distribution of X depends on scalar non-centrality parameter. Only prior on scalar needed.
 - Avoids high-dimensional integration.
 - Avoids high-dimensional prior specification.

BFBOTS do not reflect effect sizes

- BFBOTS do not reflect effect sizes.
- Bayes Factors expressed as functions of effect sizes already proposed(V.E. Johnson, S. Pramanik, R.Shudde, PNAS 2023).

- BFBOTS do not reflect effect sizes.
- Bayes Factors expressed as functions of effect sizes already proposed(V.E. Johnson, S. Pramanik, R.Shudde, PNAS 2023).
- **Aim of this project:** To account for the variability of the effect sizes through another hyper-parameter

Non-local priors

- Define alternative priors so that they assign negligible mass to parameters consistent with the null hypothesis
- ullet For normal mean, the prior on μ has a prior density defined as follows

$$\pi_{NM}(\mu \,|\, r, \tau^2) = \frac{(\mu^2)^r}{(2\tau^2)^{r+\frac{1}{2}}\Gamma\Big(r+\frac{1}{2}\Big)} \exp\Big(-\frac{\mu^2}{2\tau^2}\Big), \quad \mu \in \mathbf{R}, \quad \tau, \, r > 0$$

. :_

is a normal moment (NM) prior density,

- $\pi_{NM}(0 \mid \tau^2) = 0$
- Modes are at $\pm \sqrt{2r}\tau$

Example: \overline{JZS} and NM priors for normal mean

Z test

Theorem. Assume the distributions of a random variable z under the null and alternative hypotheses are described by

$$H_0: z \sim N(0,1),$$

 $H_1: z \mid \lambda \sim N(\lambda,1), \qquad \lambda \mid \tau^2 \sim NM(r,\tau^2).$

Then the Bayes factor in favor of the alternative hypothesis is

$$BF_{10}(z|\tau^2) = \frac{1}{(1+\tau^2)^{r+\frac{1}{2}}} {}_{1}F_{1}\left(r+\frac{1}{2},\frac{1}{2};\frac{\tau^2z^2}{2(1+\tau^2)}\right)$$
(1)

T test

Theorem Assume the distributions of a random variable t_{ν} under the null and alternative hypotheses are described by

$$H_0: t \sim T_{\nu}(0),$$

 $H_1: t \mid \lambda \sim T_{\nu}(\lambda), \qquad \lambda \mid \tau^2 \sim NM(r, \tau^2).$

$$BF_{10}(t \mid \tau^{2}, r)$$

$$= \frac{1}{(1+\tau^{2})^{r+\frac{1}{2}}} {}_{2}F_{1}\left(\frac{\nu+1}{2}, r + \frac{1}{2}, \frac{1}{2}, \frac{\tau^{2}t^{2}}{(t^{2}+\nu)(\tau^{2}+1)}\right)$$

$$+ \frac{t\tau}{\sqrt{t^{2}+\nu}(\tau^{2}+1)^{r+1}} \frac{\Gamma(\frac{\nu}{2}+1)}{\Gamma(\frac{\nu+1}{2})} \frac{\Gamma(r+1)}{\Gamma(r+\frac{1}{2})} {}_{2}F_{1}\left(\frac{\nu}{2}+1, r+1, \frac{3}{2}, \frac{t^{2}\tau^{2}}{(t^{2}+\nu)(1+\tau^{2})}\right)$$
(2)

χ^2 test

Theorem Assume the distributions of a random variable h under the null and alternative hypotheses are described by

$$H_0: h \sim \chi_k^2(0),$$

 $H_1: h \mid \lambda \sim \chi_k^2(\lambda), \qquad \lambda \mid \tau^2 \sim G\left(\frac{k}{2} + r, \frac{1}{2\tau^2}\right).$

Then the Bayes factor in favor of the alternative hypothesis is

$$BF_{10}(h \mid \tau^2) = \frac{1}{(1+\tau^2)^{k/2+r}} {}_1F_1\left(\frac{k}{2} + r, \frac{k}{2}; \frac{\tau^2 h}{2(1+\tau^2)}\right)$$
(3)

F test

Theorem Assume the distributions of a random variable f under the null and alternative hypotheses are described by

$$H_0: f \sim F_{k,m}(0),$$

$$H_1: f \mid \lambda \sim F_{k,m}(\lambda), \quad \lambda \mid \tau^2 \sim G\left(\frac{k}{2} + r, \frac{1}{2\tau^2}\right).$$

Then the Bayes factor in favor of the alternative hypothesis is

$$BF_{10}(f \mid \tau^2) = \frac{1}{(1+\tau^2)^{\frac{k}{2}+r}} {}_2F_1(k/2+r, \frac{k+m}{2}, k/2; \frac{kf\tau^2}{(1+\tau^2)(m+kf)})$$
 (4)

where $v = m(\tau^2 + 1)$.

Rates of Convergence

- **Z-test:**Suppose that the following hold:
 - (i) $z \sim N(\gamma \sqrt{n}, 1)$ when H_1 is true,
 - (ii) $\tau^2 = \beta n$ for $\beta > 0$.

Then $BF_{01}(z\,|\,\tau^2,r)=O_p(\exp(-cn))$ for some c>0 when H_1 applies, and $BF_{10}(z\,|\,\tau^2,r)=O_p(n^{r+\frac{1}{2}})$ when H_0 is true.

Rates of Convergence

- **Z-test:**Suppose that the following hold:
 - (i) $z \sim N(\gamma \sqrt{n}, 1)$ when H_1 is true,
 - (ii) $\tau^2 = \beta n$ for $\beta > 0$.

Then $BF_{01}(z\,|\,\tau^2,r)=O_p(\exp(-cn))$ for some c>0 when H_1 applies, and $BF_{10}(z\,|\,\tau^2,r)=O_p(n^{r+\frac{1}{2}})$ when H_0 is true.

- χ^2 **test:**Suppose the following hold:
 - (i) $h \sim \chi_k^2(\gamma n)$ for some $\gamma > 0$ when the alternative hypothesis is true, and
 - (ii) $\tau^2 = \beta n$ for some $\beta > 0$.

Then $BF_{01}(h\mid \tau^2,r)=O_p[\exp(-cn)]$ for some c>0 when the alternative hypothesis is true and $BF_{10}(h\mid \tau^2,r)=O_p(n^{-r-\frac{k}{2}})$ when the null hypothesis is true.

ullet Assume r is known for a single study.

- \bullet Assume r is known for a single study.
- Express the mode of the non-centrality parameter as a function of the standardized effect-size, say $\psi(\omega,r)$.

$$\psi(\omega, r) = \underset{\lambda}{\operatorname{arg max}} \ \pi(\lambda \mid \tau_{\omega, r}^2), \tag{5}$$

- \bullet Assume r is known for a single study.
- ullet Express the mode of the non-centrality parameter as a function of the standardized effect-size, say $\psi(\omega,r)$.

$$\psi(\omega, r) = \underset{\lambda}{\arg\max} \ \pi(\lambda \mid \tau_{\omega, r}^2), \tag{5}$$

• Choose the value of τ^2 that makes the prior modes equal to $\psi(\omega,r)$.

Choice of r: Variability around effect sizes, Replicated studies

• Assume the prior on r is proportional to a Cauchy density truncated in the interval $(1, \infty)$ (denoted by $C_{1+}(r)$).

Choice of r: Variability around effect sizes, Replicated studies

- Assume the prior on r is proportional to a Cauchy density truncated in the interval $(1,\infty)$ (denoted by $C_{1+}(r)$).
- r can be estimated in several ways. Here, we propose the marginal maximum a posteriori (MMAP) estimate r_{ω}^* defined by

$$r_{\omega}^* = \underset{r \ge 1}{\arg \max} \left[\prod_{s=1}^{S} m_1(x_s \,|\, r, \tau_{\omega, r}^2) \right] \pi_N(r),$$
 (6)

where $m_1(x_s \mid r, \tau_{\omega,r}^2)$ represents the marginal density of the test statistic x_s , $s = 1, \ldots, S$ given ω and r.

Choice of r: Variability around effect sizes, Replicated studies

- Assume the prior on r is proportional to a Cauchy density truncated in the interval $(1,\infty)$ (denoted by $C_{1+}(r)$).
- r can be estimated in several ways. Here, we propose the marginal maximum a posteriori (MMAP) estimate r_{ω}^* defined by

$$r_{\omega}^* = \underset{r \ge 1}{\operatorname{arg\,max}} \left[\prod_{s=1}^{S} m_1(x_s \,|\, r, \tau_{\omega, r}^2) \right] \pi_N(r),$$
 (6)

where $m_1(x_s\,|\,r,\tau_{\omega,r}^2)$ represents the marginal density of the test statistic x_s , $s=1,\ldots,S$ given ω and r.

• $r_{\omega}^* = 1$ for a single replication.

Problem: Two variables:

• X: Conscientousness, Y: Persistence

Problem: Two variables:

- X: Conscientousness, Y: Persistence
- $(X,Y) \sim N_2(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho)$ [Assumption not required for computing BFFs]

Problem: Two variables:

- X: Conscientousness, Y: Persistence
- $(X,Y) \sim N_2(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho)$ [Assumption not required for computing BFFs]
- Hypothesis: $H_0: \omega(\text{or }\rho)=0$ against $H_1: \omega(\text{or }\rho)\geq 0, \, \omega$: Standardized effect size

Problem: Two variables:

- X: Conscientousness, Y: Persistence
- $(X,Y) \sim N_2(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho)$ [Assumption not required for computing BFFs]
- Hypothesis: $H_0:\omega(\text{or }\rho)=0$ against $H_1:\omega(\text{or }\rho)\geq 0,\,\omega$: Standardized effect size

Notations:

• Total number of replications = 20

Problem: Two variables:

- X: Conscientousness, Y: Persistence
- $(X,Y) \sim N_2(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho)$ [Assumption not required for computing BFFs]
- Hypothesis: $H_0:\omega(\text{or }\rho)=0$ against $H_1:\omega(\text{or }\rho)\geq 0,\,\omega$: Standardized effect size

Notations:

- Total number of replications = 20
- Denote $r_i=$ Sample correlation coefficient and $n_i=$ Sample size for the i-th replication, i = 1,2,...20.

Problem: Two variables:

- X: Conscientousness, Y: Persistence
- $(X,Y) \sim N_2(\mu_x,\mu_y,\sigma_x^2,\sigma_y^2,\rho)$ [Assumption not required for computing BFFs]
- Hypothesis: $H_0:\omega(\text{or }\rho)=0$ against $H_1:\omega(\text{or }\rho)\geq 0,\,\omega$: Standardized effect size

Notations:

- Total number of replications = 20
- Denote $r_i = \mathsf{Sample}$ correlation coefficient and $n_i = \mathsf{Sample}$ size for the i-th replication, i = 1,2,...20.
- $t_i = \frac{1}{2}\log\left(\frac{1+r_i}{1-r_i}\right)$ = Fisher's transformation of r_i .

• If ρ_i denotes the population correlation coefficient for the i-th study, $t_i \sim N\Big(\frac{1}{2}\log\big(\frac{1+\rho_i}{1-\rho_i}\big),\frac{1}{n_i-3}\Big).$

- If ρ_i denotes the population correlation coefficient for the i-th study, $t_i \sim N\left(\frac{1}{2}\log\left(\frac{1+\rho_i}{1-\rho_i}\right), \frac{1}{n_i-3}\right)$.
- Define $z_i = \sqrt{n_i 3}t_i$. Therefore, $z_i \sim N(\lambda_i, 1)$, where $\lambda_i = \frac{\sqrt{n_i 3}}{2}\log\left(\frac{1 + \rho_i}{1 \rho_i}\right)$ is the non-centrality parameter.

- If ρ_i denotes the population correlation coefficient for the i-th study, $t_i \sim N\left(\frac{1}{2}\log\left(\frac{1+\rho_i}{1-\rho_i}\right), \frac{1}{n_i-3}\right)$.
- Define $z_i = \sqrt{n_i 3}t_i$. Therefore, $z_i \sim N(\lambda_i, 1)$, where $\lambda_i = \frac{\sqrt{n_i 3}}{2}\log\left(\frac{1 + \rho_i}{1 \rho_i}\right)$ is the non-centrality parameter.
- $oldsymbol{
 ho}$ = Population correlation coefficient across all studies.

- If ρ_i denotes the population correlation coefficient for the i-th study, $t_i \sim N\left(\frac{1}{2}\log\left(\frac{1+\rho_i}{1-\rho_i}\right), \frac{1}{n_i-3}\right)$.
- Define $z_i = \sqrt{n_i 3}t_i$. Therefore, $z_i \sim N(\lambda_i, 1)$, where $\lambda_i = \frac{\sqrt{n_i 3}}{2}\log\left(\frac{1 + \rho_i}{1 \rho_i}\right)$ is the non-centrality parameter.
- $oldsymbol{
 ho}$ = Population correlation coefficient across all studies.
- ullet $\omega=rac{1}{2}\log\left(rac{1+
 ho}{1ho}
 ight)=$ Standardized effect size

Example(Continued): Prior and Choices of hyper-parameters

 $\bullet \ \ \text{Given} \ \ \omega, \ \lambda_i {}^{iid}_{\sim} \pi^+_{NM}(\mu \,|\, r, \tau^2_{r,\omega,i}), \ \tau^2_{r,\omega,i} = \frac{(n_i-3)\omega^2}{2r}$

Example(Continued): Prior and Choices of hyper-parameters

- $\bullet \ \ \text{Given} \ \omega \text{, } \lambda_i \mathop{\sim}\limits^{iid} \pi_{NM}^+(\mu \,|\, r, \tau_{r,\omega,i}^2) \text{, } \tau_{r,\omega,i}^2 = \frac{(n_i-3)\omega^2}{2r}$
- ullet MAP estimate of $r=r_\omega^*$, assuming a half Cauchy prior on r.

Example(Continued): Prior and Choices of hyper-parameters

- $\bullet \ \ \text{Given} \ \omega \text{, } \lambda_i \mathop{\sim}\limits^{iid} \pi_{NM}^+(\mu \,|\, r, \tau_{r,\omega,i}^2) \text{, } \tau_{r,\omega,i}^2 = \frac{(n_i-3)\omega^2}{2r}$
- MAP estimate of $r=r_{\omega}^*$, assuming a half Cauchy prior on r.
- The Bayes factors based on the 20 replications of the experiment, given r and ω , can be expressed as the product of Bayes factors from the individual experiments. Applying Theorem 2.5,

$$BF_{10}(z \mid \omega, r) = \prod_{i=1}^{20} BF_{10}(z_i \mid \tau_{\omega, r, i}^2, r).$$
 (7)

Combined BFF and Individual BFF of replication studies

• Very strong evidence in favour of the null hypothesis

- Very strong evidence in favour of the null hypothesis
- ullet $\log(BF_{10})$ centered on effect sizes greater than ho=0.20 were less than -32.

- Very strong evidence in favour of the null hypothesis
- $\log(BF_{10})$ centered on effect sizes greater than $\rho=0.20$ were less than -32.
- For these data, $r_\omega^*=1$ for $\omega\in(0,0.082)\cup(0.150,\infty)$ and did not exceed 1.172 in the interval (0.082,0.150).

- Very strong evidence in favour of the null hypothesis
- $\log(BF_{10})$ centered on effect sizes greater than $\rho=0.20$ were less than -32.
- For these data, $r_\omega^*=1$ for $\omega\in(0,0.082)\cup(0.150,\infty)$ and did not exceed 1.172 in the interval (0.082,0.150).
- This is due to the fact that the null is favoured in this study.

BFF for varying r

Standard choice of r

When there is no prior information about the dispersion of the non-centrality parameter across several replications, choose r=1.

Figure: BFF for various values of r

Comparison with other standard methods

Competing method(Ly, Verhagen, Wagenmakers, 2016)

Assuming a Bivariate normal model, for the i-th replication:

- $\rho_i \sim \text{Stretched-beta}(1/\kappa, 1/\kappa)$.
- $\pi(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2) \propto \frac{1}{\sigma_x \sigma_y}$

Comparison with other standard methods

Competing method(Ly, Verhagen, Wagenmakers, 2016)

Assuming a Bivariate normal model, for the i-th replication:

- $\rho_i \sim \text{Stretched-beta}(1/\kappa, 1/\kappa)$.
- $\pi(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2) \propto \frac{1}{\sigma_x \sigma_y}$

Mode of Comparison:

ullet Obtain the maximum Bayes Factor(max BF_{10}) for each study by maximizing with respect to κ

Comparison with other standard methods

Competing method(Ly, Verhagen, Wagenmakers, 2016)

Assuming a Bivariate normal model, for the i-th replication:

- $\rho_i \sim \text{Stretched-beta}(1/\kappa, 1/\kappa)$.
- $\pi(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2) \propto \frac{1}{\sigma_x \sigma_y}$

Mode of Comparison:

- ullet Obtain the maximum Bayes Factor(max BF_{10}) for each study by maximizing with respect to κ
- We obtain the maximum BF using Bayes Factor function for each study(using r=1).

Comparison of maximum BFs

Comparison of maximum BFs

Figure: Unrestricted ω and κ

Some drawbacks of the fully parametric model

Assumes normality whereas the underlying distribution of the data is not normal.

Example:Stroop test

- A test for the difference of means between two populations
- A frequentist t test is done
- ullet Impose a $NM(au^2,r)$ prior on the non-centrality parameter of the t-test statistic under the alternative
- Standardized effect size(ω) = $\frac{(\mu_1 \mu_2)}{\sigma}$
- $\tau^2 = \frac{n_1 n_2 \omega^2}{2r(n_1 + n_2)}, r = r_\omega^*$
- Replications = 36

Combined and Individual BFFs

• Overwhelming support in favour of the alternative

- Overwhelming support in favour of the alternative
- $\log({\sf BFF}) = 774$ at $\omega = 0.9$

- Overwhelming support in favour of the alternative
- log(BFF) = 774 at $\omega = 0.9$
- $r_{\omega}^* = 12$.

BFF for varying r

Figure: Bayes factor functions for various values of r

Choice of r

 Overcomes computational complexities of Bayes factors by defining Bayes factors from classical test statistics and using standardized effect sizes to define alternative hypotheses

- Overcomes computational complexities of Bayes factors by defining Bayes factors from classical test statistics and using standardized effect sizes to define alternative hypotheses
- Reflects effect sizes by expressing Bayes factors as functions of effect sizes

- Overcomes computational complexities of Bayes factors by defining Bayes factors from classical test statistics and using standardized effect sizes to define alternative hypotheses
- Reflects effect sizes by expressing Bayes factors as functions of effect sizes
- Accounts for dispersion of the effect sizes and draws sensible conclusion under replicated design

- Overcomes computational complexities of Bayes factors by defining Bayes factors from classical test statistics and using standardized effect sizes to define alternative hypotheses
- Reflects effect sizes by expressing Bayes factors as functions of effect sizes
- Accounts for dispersion of the effect sizes and draws sensible conclusion under replicated design
- Enhances interpretation of Bayes factors by centering the modes of the alternative prior density on values determined by standardized effect size and hence overcoming the subjectivity of the priors

References

- Valen E. Johnson and Sandipan Pramanik and Rachael Shudde, Bayes factor functions for reporting outcomes of hypothesis tests, PNAS 2023
- Valen E. Johnson, Bayes Factors Based on Test Statistics, JRSS B, 2005
- Alexander Ly, Josine Verhagen, Eric-Jan Wagenmakers, Harold Jeffreys's default Bayes factor hypothesis tests: Explanation, extension, and application in psychology, Journal of Mathematical Psychology, 2016

