LECTURE 8

Visualization I

Visualizing distributions and KDEs

Data Science, Fall 2023 @ Knowledge Stream

Sana Jabbar

Goals for this Lecture

Lecture 9

Reviewing and concluding regex Understand the theories behind effective visualizations and start to generate plots

of our own

- The necessary "pre-thinking" before creating a plot
- Python libraries for visualizing data

Agenda

Lecture 9

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Regex Review and regex Functions

Lecture 9

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Review: regex

Operation	Order	Example	Matches	Doesn't match		
concatenation (consecutive chars)	3	AABAAB	AABAAB	every other string		
or,	4 AA BAAB		AA BAAB	every other string		
* (zero or more)	2	AB*A	AA ABBBBBBA	AB ABABA		
group	1	A(A B)AAB	AAAAB ABAAB	every other string		
(parenthesis)		(AB)*A	A ABABABABA	AA ABBA		
The regex order of operations. Grouping is evaluated fir						

Operation	Example	Matches	Doesn't match	
any character (except newline)	.U.U.U.	CUMULUS JUGULUM	SUCCUBUS TUMULTUOUS	
character class	[A-Za-z][a-z]*	word Capitalized	camelCase 4illegal	
repeated exactly a times: {a}	j[aeiou]{3}hn	jaoehn jooohn	jhn jaeiouhn	
repeated from a to b times: {a,b}	j[ou]{1,2}hn	john juohn	jhn jooohn	
at least one	jo+hn	john joooooohn	jhn jjohn	

Review: regex

Operation	Example	Matches	Doesn't match
beginning of line	^ark	ark two ark o ark	dark
end of line	ark\$	dark ark o ark	ark two
escape character	cow\.com	COW.COM	COWSCOM

Extraction

re.findall(pattern, text)

Return a list of all matches to pattern.

```
text = "My social security number is 123-45-
6789 bro, or actually maybe it's 321-45-
6789.";
```

```
pattern = r''[0-9]{3}-[0-9]{2}-[0-9]{4}''
re.findall(pattern, text)
```

```
['123-45-6789', '321-45-6789']
```

A **match** is a substring that matches the provided regex.

Extraction

```
re.findall(pattern, text)
```

Return a list of all matches to **pattern**.

```
text = "My social security number is 123-45-
6789 bro, or actually maybe it's 321-45-
6789.";
pattern = r"[0-9]{3}-[0-9]{2}-[0-9]{4}"
re.findall(pattern, text)
```

```
['123-45-6789', '321-45-6789']
```

A **match** is a substring that matches the provided regex.

ser.str.findall(pattern)

Returns a Series of lists

```
df["SSN"].str.findall(pattern)
```

	SSN
0	987-65-4321
1	forty
2	123-45-6789 bro or 321-45-6789
3	999-99-9999

```
0 [987-65-4321]
1 []
2 [123-45-6789, 321-45-6789]
3 [999-99-9999]
```

Name: SSN, dtype: object

Extraction with Capture Groups

ser.str.extract(pattern)

Returns a DataFrame of each capture group's **first** match in the string

```
pattern_cg = r"([0-9]{3})-([0-9]{2})-([0-9]{4})"
df["SSN"].str.extract(pattern_cg)
```


Extraction with Capture Groups

ser.str.extract(pattern)

Returns a DataFrame of each capture group's **first** match in the string

```
pattern_cg = r"([0-9]{3})-([0-9]{2})-([0-9]{4})"
df["SSN"].str.extract(pattern_cg)
```

					SSN			
0	987-65-4321 forty							
1								
2	123-45-6789 bro or 321-45-6789 999-99-9999							
3								
			0	1	2			
		0	987	65	4321			
		1	NaN	NaN	NaN			
		2	123	45	6789			
		3	000	99	0000			

ser.str.extractall(pattern)

Returns a multi-indexed DataFrame of **all** matches for each capture group

```
df["SSN"].str.extractall(pattern_cg)
```


Substitution

```
re.sub(pattern, repl, text)
```

Returns text with all instances of **pattern** replaced by **rep1**.

```
text = '<div><tdvalign="top">Moo</div>'
pattern = r"<[^>]+>"
re.sub(pattern, '', text) # returns Moo
```

Moo

How it works:

- **pattern** matches HTML tags
- Then, sub/replace HTML tags with repl=' ' (i.e., empty string)

Substitution

```
re.sub(pattern, repl, text)
```

Returns text with all instances of **pattern** replaced by **rep1**.

```
text = '<div>Moo</div>'
pattern = r"<[^>]+>"
re.sub(pattern, '', text) # returns Moo
```

Moo

How it works:

- pattern matches HTML tags
- Then, sub/replace HTML tags with repl='' (i.e., empty string)

```
ser.str.replace(pattern, repl,
regex=True)
Returns Series with all instances of the
pattern in Series ser replaced by repl.
 df["Html"].str.replace(pattern, '')
                       Html
    <div>Moo</div>
     <a href="http://ds100.org">Link</a>
                <b>Bold text</b>
               Moo
              Link
        Bold text
   Name: Html, dtype: object
```

String Function Summary

Base Python	re	pandas str
<pre>s.lower() s.upper()</pre>		<pre>ser.str.lower() ser.str.upper()</pre>
s.replace()	re.sub(…)	ser.str.replace()
s.split()	re.split()	ser.str.split()
s[1:4]		ser.str[1:4]
	re.findall()	<pre>ser.str.findall() ser.str.extractall() ser.str.extract()</pre>
'ab' in s	re.search()	ser.str.contains()
len(s)		ser.str.len()
s.strip()		<pre>ser.str.strip()</pre>

Goals of Visualization

Lecture 8, Spring 2024

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Where are we?

(Part I: Processing Data)

16

(Part II: Visualizing and Reporting Data)

Visualizations in BS (and in Data Science, so far)

You worked with many types of visualizations throughout.

Line plot

Scatter plot

Histogram

What did these achieve?

- Provide a high-level overview of a complex dataset.
- Communicated trends to viewers.

Goals of Data Visualization

Goal 1: To **help your own understanding** of your data/results.

- Key part of exploratory data analysis.
- Summarize trends visually before in-depth analysis.
- Lightweight, iterative and flexible.

Goal 2: To communicate results/conclusions to others.

- Highly editorial and selective.
- Be thoughtful and careful!
- Fine-tuned to achieve a communications goal.
- Considerations: clarity, accessibility, and necessary context.

What do these goals imply?

Visualizations aren't a matter of making "pretty" pictures.

We need to do a lot of thinking about what stylistic choices communicate ideas most effectively.

Goals of Data Visualization

What do these goals imply?

Visualizations aren't a matter of making "pretty" pictures.

We need to do a lot of thinking about what stylistic choices communicate ideas most effectively.

First half of visualization topics in Data Science: Choosing the "right" plot for

- Introducing plots for different variable types
- Generating these plots through code

Second half of visualization topics in Data Science: Stylizing plots appropriately

- Smoothing and transforming visual data
- Providing context through labeling and color

Visualizing Distributions

Lecture 9

- Regex
 - Regex review and regex functions
- Visualization
 - Goals of visualization
 - Visualizing distributions
 - Kernel density estimation

Distributions

A distribution describes...

- The set of values that a variable can possibly take.
- The frequency with which each value occurs for a **single** variable

Example: Distribution of students across discussion sections in Data Science.

- The list of discussion sections (09-12 pm, 02-05 pm, etc.)
- The number of students enrolled in each section

In other words: How is the variable distributed across all of its possible values?

This means that percentages **should sum to 100%** (if using proportions) and counts should **sum to the total number of datapoints** (if using raw counts).

Let's see some examples.

While about half of teens post their accomplishments on social media, few discuss their religious or political beliefs

% of U.S. teens who say they ever post about their ___ on social media

Note: Respondents were allowed to select multiple options. Respondents who did not give an answer are not shown. Source: Survey conducted March 7-April 10, 2018. "Teens' Social Media Habits and Experiences"

Does this chart show a distribution?

No.

- The chart does show percents of individuals in different categories!
- But, this is not a distribution because individuals can be in more than one category (see the fine print).

PEW RESEARCH CENTER

SHARE OF AMERICAN ADULTS IN EACH INCOME TIER Upper 19% Middle 52%

29%

Lower

Does this chart show a distribution?

Yes!

- This chart shows the distribution of the qualitative ordinal variable "income tier."
- Each individual is in exactly one category.
- The values we see are the proportions of individuals in that category.
- Everyone is represented, as the total percentage is 100%.

Variable Types Should Inform Plot Choice

Different plots are more or less suited for displaying particular types of variables.

First step of visualization: Identify the variables being visualized. Then, select a plot type accordingly.

Bar Plots: Distributions of Qualitative Variables

Bar plots are the most common way of displaying the **distribution** of a **qualitative** variable.

*Sometimes quantitative discrete data too, if there are few unique values.

- For example, the proportion of adults in the upper, middle, and lower classes.
- Lengths encode values.
 - Widths encode nothing!
 - Color could indicate a sub-category (but not necessarily).

World Bank Dataset

We will be using the wb dataset about world countries for most of our work today.

	Continent	Country	Primary completion rate: Male: % of relevant age group: 2015	Primary completion rate: Female: % of relevant age group: 2015	Lower secondary completion rate: Male: % of relevant age group: 2015	Lower secondary completion rate: Female: % of relevant age group: 2015	Youth literacy rate: Male: % of ages 15-24: 2005- 14	Youth literacy rate: Female: % of ages 15-24: 2005-14	Adult literacy rate: Male: % ages 15 and older: 2005- 14	Adult literacy rate: Female: % ages 15 and older: 2005- 14	
0	Africa	Algeria	106.0	105.0	68.0	85.0	96.0	92.0	83.0	68.0	
1	Africa	Angola	NaN	NaN	NaN	NaN	79.0	67.0	82.0	60.0	
2	Africa	Benin	83.0	73.0	50.0	37.0	55.0	31.0	41.0	18.0	
3	Africa	Botswana	98.0	101.0	86.0	87.0	96.0	99.0	87.0	89.0	
5	Africa	Burundi	58.0	66.0	35.0	30.0	90.0	88.0	89.0	85.0	

Generating Bar Plots: Matplotlib

We will mainly use two libraries for generating plots: Matplotlib and Seaborn.

Most Matplotlib plotting functions follow the same structure: We pass in a sequence (list, array, or Series) of values to be plotted on the x-axis, and a second sequence of values to be plotted on the y-axis.

```
import matplotlib.pyplot as plt
plt.plotting_function(x_values, y_values)
Matplotlib is typically
given the alias plt
```

To add labels and a title:

```
plt.xlabel("x axis label")
plt.ylabel("y axis label")
plt.title("Title of the plot");
```

Generating Bar Plots: Matplotlib

```
To create a bar plot in Matplotlib: plt.bar( )
continents = wb["Continent"].value counts()
 plt.bar(continents.index, continents.values);
               x values
                                   y values
```


Generating Bar Plots: pandas Native Plotting

To create a bar plot in native pandas: .plot(kind='bar')

```
Africa 47
Europe 43
Asia 34
N. America 18
Oceania 13
S. America 11
Name: Continent, dtype: int64
```

wb["Continent"].value_counts().plot(kind='bar')

Generating Bar Plots: Seaborn

Seaborn plotting functions use a different structure: Pass in an entire **DataFrame**, then specify what column(s) to plot.

```
Seaborn is typically given the alias sns import seaborn as sns sns.plotting_function(data=df, x="x_col", y="y_col")
```

To add labels and a title, use the same syntax as before:

```
plt.xlabel("x axis label")
plt.ylabel("y axis label")
plt.title("Title of the plot");
```

Generating Bar Plots: Seaborn

To create a bar plot in Seaborn: sns.countplot()

countplot operates at a
higher level of abstraction!

You give it the entire **DataFrame** and it does the counting for you.

```
import seaborn as sns
sns.countplot(data=wb, x="Continent");
```

Distributions of Quantitative Variables

Earlier, we said that bar plots are appropriate for distributions of qualitative variables.

Why only qualitative? Why not quantitative as well?

For example: The distribution of gross national income per capita.

A bar plot will create a separate bar for each unique value. This leads to too many bars for continuous data!

Distributions of Quantitative Variables

To visualize the distribution of a continuous quantitative variable:

Box plots and Violin Plots

Box plots and violin plots display distributions using information about quartiles.

- In a box plot, the width of the box encodes no meaning.
- In a violin plot, the width of the "violin" indicates the density of datapoints at each value.

sns.boxplot(data=df, y="y_variable");

sns.violinplot(data=df, y ="y_variable");

Box Plots

sns.boxplot(data=wb, y="Gross domestic product: % growth : 2016")

Violin Plots

Violin plots are similar to box plots, but also show smoothed density curves.

- The "width" of our "box" now has meaning!
- The three quartiles and "whiskers" are still present – look closely.

Side-by-side Box and Violin Plots

What if we wanted to incorporate a *qualitative* variable as well? For example, compare the distribution of a quantitative continuous variable *across* different qualitative categories.

sns.boxplot(data=wb, x="Continent", y="Gross domestic product: % growth : 2016");

Continent: qualitative nominal

Quartiles

For a quantitative variable:

- First or lower quartile: 25th percentile.
- Second quartile: 50th percentile (median).
- Third or upper quartile: 75th percentile.

The interval [first quartile, third quartile] contains the "middle 50%" of the data.

Interquartile range (IQR) measures spread.

IQR = third quartile – first quartile.

The length of this region is the IQR

LECTURE 8

Visualization

Start Working on Notebooks