Data MINING ASSIGNMENT

Importing the required Libariers

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score,roc_curve,classification_report,confusion_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from sklearn.cluster import KMeans
```

Import the dataset(BankMarketing.csv):

In [2]:

```
bank=pd.read_csv('bank_marketing.csv')
```

Reading top ten Records:

In [3]:

```
bank.head(10)
```

Out[3]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	_
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	
5	12.70	13.41	0.8874	5.183	3.091	
6	12.02	13.33	0.8503	5.350	2.810	
7	13.74	14.05	0.8744	5.482	3.114	
8	18.17	16.26	0.8637	6.271	3.512	
9	11.23	12.88	0.8511	5.140	2.795	
4						•

Check the dimension of data:

In [4]:

bank.shape

Out[4]:

(210, 7)

Check the Information about the data and the datatypes of each respective attributes:

In [5]:

```
bank.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
                                210 non-null float64
spending
                                210 non-null float64
advance_payments
probability_of_full_payment
                                210 non-null float64
current_balance
                                210 non-null float64
credit_limit
                                210 non-null float64
                                210 non-null float64
```

max_spent_in_single_shopping dtypes: float64(7) memory usage: 11.6 KB

min_payment_amt

Need to check description of the data

```
In [6]:
```

```
bank.describe()
```

210 non-null float64

Out[6]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit
count	210.000000	210.000000	210.000000	210.000000	210.000000
mean	14.847524	14.559286	0.870999	5.628533	3.258605
std	2.909699	1.305959	0.023629	0.443063	0.377714
min	10.590000	12.410000	0.808100	4.899000	2.630000
25%	12.270000	13.450000	0.856900	5.262250	2.944000
50%	14.355000	14.320000	0.873450	5.523500	3.237000
75%	17.305000	15.715000	0.887775	5.979750	3.561750
max	21.180000	17.250000	0.918300	6.675000	4.033000
4					>

Need to check Median of data

In [7]:

```
print("Data:",bank.median()) # Print the median values of the data.
```

Data: spending 14.35500
advance_payments 14.32000
probability_of_full_payment 0.87345
current_balance 5.52350
credit_limit 3.23700
min_payment_amt 3.59900
max_spent_in_single_shopping 5.22300

dtype: float64

Checking the Null Values

In [8]:

```
bank.isnull().sum()
```

Out[8]:

spending	0
advance_payments	0
<pre>probability_of_full_payment</pre>	0
current_balance	0
<pre>credit_limit</pre>	0
min_payment_amt	0
<pre>max_spent_in_single_shopping</pre>	0
dtvpe: int64	

utype. Into4

Checking the Duplicates Values

In [9]:

```
dupes =bank.duplicated()
sum(dupes)
```

Out[9]:

0

Checking the outliers through Box plot

In [10]:

```
bank.boxplot(figsize=(20,3))
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e70af35bc8>

Checking the distribution of the data

In [11]:

```
fig, axes = plt.subplots(nrows=7,ncols=2)
fig.set_size_inches(20, 18)
a = sns.distplot(bank['spending'] , ax=axes[0][0])
a.set title("spending Distribution",fontsize=15)
a = sns.boxplot(bank['spending'] , orient = "v" , ax=axes[0][1])
a.set_title("spending Distribution",fontsize=15)
a = sns.distplot(bank['advance_payments'] , ax=axes[1][0])
a.set_title("advance_payments Distribution",fontsize=15)
a = sns.boxplot(bank['advance_payments'] , orient = "v" , ax=axes[1][1])
a.set title("advance payments Distribution",fontsize=15)
a = sns.distplot(bank['probability_of_full_payment'] , ax=axes[2][0])
a.set_title("probability_of_full_payment Distribution",fontsize=15)
a = sns.boxplot(bank['probability_of_full_payment'] , orient = "v" , ax=axes[2][1])
a.set title("probability of full payment Distribution",fontsize=15)
a = sns.distplot(bank['current_balance'] , ax=axes[3][0])
a.set_title("current_balance Distribution",fontsize=15)
a = sns.boxplot(bank['current_balance'] , orient = "v" , ax=axes[3][1])
a.set title("current balance Distribution",fontsize=15)
a = sns.distplot(bank['credit_limit'] , ax=axes[4][0])
a.set_title("credit_limit Distribution", fontsize=15)
a = sns.boxplot(bank['credit_limit'] , orient = "v" , ax=axes[4][1])
a.set_title("credit_limit Distribution", fontsize=15)
a = sns.distplot(bank['min_payment_amt'] , ax=axes[5][0])
a.set title("min payment amt Distribution", fontsize=15)
a = sns.boxplot(bank['min_payment_amt'] , orient = "v" , ax=axes[5][1])
a.set_title("min_payment_amt",fontsize=15)
a = sns.distplot(bank['max spent in single shopping'] , ax=axes[6][0])
a.set_title("max_spent_in_single_shopping",fontsize=15)
a = sns.boxplot(bank['max_spent_in_single_shopping'] , orient = "v" , ax=axes[6][1])
a.set title("max spent in single shopping",fontsize=15)
plt.show()
```


In [12]:

need to draw pair plot

Bi- Variate Analysis:

Checking the correlation of variable

In [13]:

```
bank.corr(method='pearson')
```

Out[13]:

	spending	advance_payments	probability_of_full_payment	current_
spending	1.000000	0.994341	0.608288	С
advance_payments	0.994341	1.000000	0.529244	С
probability_of_full_payment	0.608288	0.529244	1.000000	С
current_balance	0.949985	0.972422	0.367915	1
credit_limit	0.970771	0.944829	0.761635	С
min_payment_amt	-0.229572	-0.217340	-0.331471	-С
max_spent_in_single_shopping	0.863693	0.890784	0.226825	С

Checking the heatmap:

In [14]:

```
plt.subplots(figsize=(12,10))
sns.heatmap(bank.corr(), annot=True) # plot the correlation coefficients as a heatmap
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e70b2b68c8>

1.1 Read the data and do exploratory data analysis. Describe the data briefly.

EDA

- Bank dataset has 210 rows and 7 columns. Dataset is fairly clean no . There is no missing and duplicate rows in the dataset
- But there are outlliers in probability_of_full_payment and min_payment_amt.
- · In the dataset most of the variables are not Normally distributed
- there are some variables which are high co-realted like Current balance and advance payment as well as Credit limit and Advance Payment

1.2 Do you think scaling is necessary for clustering in this case? Justify

Why Scaling is requied for Clustering

- The reason this importance is particularly high in cluster analysis is because groups are defined based on the distance between points in Mathematical space.
- Standardization helps to make the relative weight of each variable equal by converting each variable to a unitless measure or relative distance.
- In the given Case Study some variable are (in 1000s) like pending, current balance, max spent in single shopping.
- In the given Case Study some variable are (in 100s) like advance payments,min payment amt.
- So Some Variables are 10 times of other variables in the measurement scale .
- · Yes, We should do the scaling in the given Case Study

1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

Scaling the data

```
In [15]:
from sklearn.preprocessing import StandardScaler

In [16]:
X = StandardScaler()

In [17]:
scaled_bank = X.fit_transform(bank)
```

In [18]:

```
scaled_bank
```

Out[18]:

```
array([[ 1.75435461, 1.81196782, 0.17822987, ..., 1.33857863, -0.29880602, 2.3289982 ], [ 0.39358228, 0.25383997, 1.501773 , ..., 0.85823561, -0.24280501, -0.53858174], [ 1.41330028, 1.42819249, 0.50487353, ..., 1.317348 , -0.22147129, 1.50910692], ..., [ -0.2816364 , -0.30647202, 0.36488339, ..., -0.15287318, -1.3221578 , -0.83023461], [ 0.43836719, 0.33827054, 1.23027698, ..., 0.60081421, -0.95348449, 0.07123789], [ 0.24889256, 0.45340314, -0.77624835, ..., -0.07325831, -0.70681338, 0.96047321]])
```

In [19]:

scaled_bank = pd.DataFrame(scaled_bank, index=bank.index, columns=bank.columns)
scaled_bank.head()

Out[19]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	1.754355	1.811968	0.178230	2.367533	1.338579	_
1	0.393582	0.253840	1.501773	-0.600744	0.858236	
2	1.413300	1.428192	0.504874	1.401485	1.317348	
3	-1.384034	-1.227533	-2.591878	-0.793049	-1.639017	
4	1.082581	0.998364	1.196340	0.591544	1.155464	
4				_		

Performing Hierarchical Clustering with the Ward's linkage method and plot the dendrogram.

In [20]:

from scipy.cluster.hierarchy import dendrogram, linkage

In [21]:

HClust = linkage(scaled_bank, method = 'ward')

In [22]:

dend = dendrogram(HClust)

Identify the number of clusters based on the dendrogram

In [23]:

from scipy.cluster.hierarchy import fcluster

Mehtod1

```
In [24]:
```

```
clusters_1 = fcluster(HClust, 2, criterion='maxclust')
clusters_1
Out[24]:
1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1,
      2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1,
      1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1,
      1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1,
      2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
      2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2,
      2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
```

2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,

1, 2, 2, 1, 2, 2, 1, 2, 1, 2], dtype=int32)

Mehtod2

```
In [25]:
```

```
clusters 2 = fcluster(HClust, 22, criterion='distance')
clusters_2
Out[25]:
```

```
2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1,
     1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1,
     1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1,
     2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,
     2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2,
     2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1,
     2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2,
     1, 2, 2, 1, 2, 2, 1, 2, 1, 2], dtype=int32)
```

Checking both method produce same result

```
In [26]:
```

```
np.array equal(clusters 1,clusters 2)
```

Out[26]:

True

Adding the H Clusters column for Mapping

```
In [27]:
```

```
bank['H_clusters'] = clusters_1
```

Checking the bank dataset After Mapping the column

In [28]:

```
#ank = bank.drop('Clus_kmeans',axis=1)
bank.head()
```

Out[28]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	
4						•

Optimum Number of Hierarchical Clusters

- In the above Mentiond Dendogram visual representation, Y axis mesaure the distance.
- if we take the distance 22 on y axis it is cutting the 2 vertical lines . So number of clusters would be two

1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score.

Reading the top 5 records for checking the data

```
In [29]:
```

bank.head()

Out[29]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	
4						•

In [30]:

from sklearn.cluster import KMeans

Performing the K-Means clustering with 2 clusters.

```
In [31]:
k_means = KMeans(n_clusters = 2)
In [32]:
k_means.fit(scaled_bank)
Out[32]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
      n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto',
      random_state=None, tol=0.0001, verbose=0)
In [33]:
k_means.labels_
Out[33]:
1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,
      0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
      1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1,
      1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,
      1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
      0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
      0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
      1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1])
```

Calcuation of total within sum of squares for different k values

```
In [34]:

wss=[]
[]=wss
wss=[]
```

```
In [35]:
```

```
for i in range(1,11):
    KM = KMeans(n_clusters=i)
    KM.fit(scaled_bank)
    wss.append(KM.inertia_)
```

In [36]:

WSS

Out[36]:

```
[1470.0,
659.1717544870407,
430.65897315130053,
371.1846125351019,
327.3281094192773,
288.7694577022638,
262.3667820456648,
241.73766598079735,
224.69807821588125,
205.11670848885427]
```

In [37]:

```
plt.plot(range(1,11), wss)
```

Out[37]:

[<matplotlib.lines.Line2D at 0x1e70becf788>]

Determining the Optimum Number of K-Means clusters

- If you see total within sum of sqaure of values when k=1 (1470) and k=2(659) drop is significant.
- If we consider (k=3) there is not significant drop in total within sum of sqaure of values .
- So in this case k=2 would be optimal value in this case .That is also quite visible from the graph

In [38]:

```
k_means = KMeans(n_clusters = 2)
k_means.fit(scaled_bank)
labels = k_means.labels_
```

```
In [39]:
```

```
bank["Clus_kmeans"] = labels
bank.head(5)
```

Out[39]:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_
0	19.94	16.92	0.8752	6.675	3.763	
1	15.99	14.89	0.9064	5.363	3.582	
2	18.95	16.42	0.8829	6.248	3.755	
3	10.83	12.96	0.8099	5.278	2.641	
4	17.99	15.86	0.8992	5.890	3.694	
4						•

Applying the Silhouette Score

In [40]:

```
from sklearn.metrics import silhouette_samples, silhouette_score
```

In [41]:

```
silhouette_score(scaled_bank,labels)
```

Out[41]:

0.46577247686580914

Interpretation of Silhouette Score

- Average Silhouette Score of data is .46 and postive Number for 2 clusters .
- If We opt 3 clusters Average Silhouette Score of date id go down from .46 to .40 .SO We should stick to 2 Clusters.
- We can say two is the optimum number of clusters in given case study.

1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

Cluster Frequency

In [42]:

```
bank.Clus_kmeans.value_counts().sort_index()
```

Out[42]:

0 1331 77

Name: Clus_kmeans, dtype: int64

Cluster Profiles

In [43]:

```
clust_profile=bank
clust_profile=clust_profile.groupby('Clus_kmeans').mean()
clust_profile['freq']=bank.Clus_kmeans.value_counts().sort_index()
clust_profile
```

Out[43]:

spending advance_payments probability_of_full_payment current_balance credit

Clus_kmeans

1 18.158571 16.054805 0.883817 6.127429	0 12.930602	13.693459	0.863577	5.339699	3.0
	1 18.158571	16.054805	0.883817	6.127429	3.6

Promotional Strategies for different clusters.

- There are 2 kind of Customer Segmentation in the given dataset.
- · Customer Pertaining to First Cluster, who do the more shopping and do the single payment.
- · Customer Pertaining to Second Cluster, Who do the shopping by paying Minimum amount.
- There are 36.6 percent of customer belong to first cluster and 63.3 percent of customer belong to Second Cluster.
- Bank should bring offer of discount on Advance Payment to attract the customer of first cluster.
- Bank Should bring the scheme of increasing the Credit Limit of customer pertaining to 2nd cluster.

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it.

Import the dataset:

```
In [44]:
```

```
insur=pd.read_csv('insurance.csv')
```

Reading top ten Records:

In [45]:

insur.head(10)

Out[45]:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	D
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	
1	36	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	
3	36	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	
5	45	JZI	Airlines	Yes	15.75	Online	8	45.00	Bronze Plan	
6	61	CWT	Travel Agency	No	35.64	Online	30	59.40	Customised Plan	
7	36	EPX	Travel Agency	No	0.00	Online	16	80.00	Cancellation Plan	
8	36	EPX	Travel Agency	No	0.00	Online	19	14.00	Cancellation Plan	
9	36	EPX	Travel Agency	No	0.00	Online	42	43.00	Cancellation Plan	
4										•

Check the dimension of data:

In [46]:

insur.shape

Out[46]:

(3000, 10)

Check the Information about the data and the datatypes of each respective attributes:

In [47]:

```
insur.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):
                3000 non-null int64
Age
Agency_Code
               3000 non-null object
Type
               3000 non-null object
               3000 non-null object
Claimed
Commision
                3000 non-null float64
Channel
               3000 non-null object
               3000 non-null int64
Duration
Sales
               3000 non-null float64
Destination
               3000 non-null object
               3000 non-null object
dtypes: float64(2), int64(2), object(6)
memory usage: 234.5+ KB
```

Need to check description of the data

In [48]:

```
insur.describe()
```

Out[48]:

	Age	Commision	Duration	Sales
count	3000.000000	3000.000000	3000.000000	3000.000000
mean	38.091000	14.529203	70.001333	60.249913
std	10.463518	25.481455	134.053313	70.733954
min	8.000000	0.000000	-1.000000	0.000000
25%	32.000000	0.000000	11.000000	20.000000
50%	36.000000	4.630000	26.500000	33.000000
75%	42.000000	17.235000	63.000000	69.000000
max	84.000000	210.210000	4580.000000	539.000000

Need to check Median of data

In [49]:

```
insur.median()
```

Out[49]:

Age 36.00 Commision 4.63 Duration 26.50 Sales 33.00 dtype: float64

Checking the Null Values

```
In [50]:
```

```
insur.isnull().sum().sum()
```

Out[50]:

0

Checking the Duplicates Values

```
In [51]:
```

```
dupes=insur.duplicated()
sum(dupes)
```

Out[51]:

139

Checking the outliers through Box plot

In [52]:

```
insur.boxplot(figsize=(20,3))
```

Out[52]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e70bf52fc8>

Checking the distribution of the data

In [53]:

```
fig, axes = plt.subplots(nrows=4,ncols=2)
fig.set_size_inches(20, 18)
a = sns.distplot(insur['Age'] , ax=axes[0][0])
a.set_title("Age Distribution",fontsize=15)
a = sns.boxplot(insur['Age'] , orient = "v" , ax=axes[0][1])
a.set_title("Age Distribution", fontsize=15)
a = sns.distplot(insur['Commision'] , ax=axes[1][0])
a.set_title("Commission Distribution",fontsize=15)
a = sns.boxplot(insur['Commission'] , orient = "v" , ax=axes[1][1])
a.set_title("Commission Distribution",fontsize=15)
a = sns.distplot(insur['Duration'] , ax=axes[2][0])
a.set_title("Duration",fontsize=15)
a = sns.boxplot(insur['Duration'] , orient = "v" , ax=axes[2][1])
a.set_title("Duration", fontsize=15)
a = sns.distplot(insur['Sales'] , ax=axes[3][0])
a.set_title("Sales",fontsize=15)
a = sns.boxplot(insur['Sales'] , orient = "v" , ax=axes[3][1])
a.set_title("Sales",fontsize=15)
plt.show()
```


Bi- Variate Analysis:

Checking the correlation of variable

```
In [54]:
```

```
insur.corr(method='pearson')
```

Out[54]:

	Age	Commision	Duration	Sales
Age	1.000000	0.067717	0.030425	0.039455
Commision	0.067717	1.000000	0.471389	0.766505
Duration	0.030425	0.471389	1.000000	0.558930
Sales	0.039455	0.766505	0.558930	1.000000

Checking the heatmap:

In [55]:

```
plt.subplots(figsize=(12,10))
sns.heatmap(insur.corr(), annot=True)
```

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e70e3516c8>

2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it.

EDA of Insurance DataSet

- There are 3000 rows and 10 columns in the Insurance DataSet
- · There are 158 duplicates in the dataset
- · There are no null values in the dataset
- · There are outliers in some variables in Age, Commision, Duration, Sales.
- Data is not normally distributed in the variables in Commision, Duration, Sales etc.
- Some Variables in the dataset are inter related like Sales and Commission, Sales and Duration.

2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Removing the unwanted Column for preparing the Model

```
In [56]:
```

```
insur=insur.drop(['Agency_Code', 'Product Name'],axis=1)
```

Checking the data after removing the column

In [57]:

```
insur.head()
```

Out[57]:

	Age	Туре	Claimed	Commision	Channel	Duration	Sales	Destination
0	48	Airlines	No	0.70	Online	7	2.51	ASIA
1	36	Travel Agency	No	0.00	Online	34	20.00	ASIA
2	39	Travel Agency	No	5.94	Online	3	9.90	Americas
3	36	Travel Agency	No	0.00	Online	4	26.00	ASIA
4	33	Airlines	No	6.30	Online	53	18.00	ASIA

Proportion of observations in Target classes

In [58]:

```
insur['Claimed'].value_counts(normalize=True)
```

Out[58]:

No 0.692 Yes 0.308

Name: Claimed, dtype: float64

Removing the duplicat values

```
In [59]:
```

```
insur=insur.drop_duplicates()
```

Crosscheck All the duplicates has been removed properly

```
In [60]:
```

```
dupes=insur.duplicated()
sum(dupes)
```

Out[60]:

0

Dimension of the data after removing the duplicates

```
In [61]:
```

```
insur.shape

Out[61]:
(2842, 8)
```

Datatypes of final dataset

```
In [62]:
```

```
insur.info()
<class 'pandas.core.frame.DataFrame'>
```

```
Int64Index: 2842 entries, 0 to 2999
Data columns (total 8 columns):
Age
               2842 non-null int64
               2842 non-null object
Type
Claimed
               2842 non-null object
               2842 non-null float64
Commision
Channel
               2842 non-null object
               2842 non-null int64
Duration
               2842 non-null float64
Sales
               2842 non-null object
Destination
dtypes: float64(2), int64(2), object(4)
memory usage: 199.8+ KB
```

Dealing with outliers

In [63]:

```
#def treat_outlier(col):
    # sorted(col)
    # Q1,Q3=np.percentile(col,[25,75])
    # IQR=Q3-Q1
    #Lower_range= Q1-(1.5 * IQR)
    # upper_range= Q3+(1.5 * IQR)
    # return lower_range, upper_range
```

In [64]:

```
#for feature in insur[['Age','Commission','Duration','Sales']]:
    # lr,ur=treat_outlier(insur[feature])
    # insur[feature]=np.where(insur[feature]>ur,ur,insur[feature])
# insur[feature]=np.where(insur[feature]<lr,lr,insur[feature])</pre>
```

In [65]:

```
plt.figure(figsize=(15,10))
insur[['Age','Commission','Duration','Sales']].boxplot()
```

Out[65]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e70bf18d48>

Converting the Object type variables into Categorical variables

In [66]:

```
for feature in insur.columns:
    if insur[feature].dtype == 'object':
        print('\n')
        print('feature:',feature)
        print(pd.Categorical(insur[feature].unique()))
        print(pd.Categorical(insur[feature].unique()).codes)
        insur[feature] = pd.Categorical(insur[feature]).codes
```

```
feature: Type
[Airlines, Travel Agency]
Categories (2, object): [Airlines, Travel Agency]
[0 1]

feature: Claimed
[No, Yes]
Categories (2, object): [No, Yes]
[0 1]

feature: Channel
[Online, Offline]
Categories (2, object): [Offline, Online]
[1 0]

feature: Destination
[ASIA, Americas, EUROPE]
Categories (3, object): [ASIA, Americas, EUROPE]
[0 1 2]
```

Checking the data after Converting the Object type variables into Categorical variables

In [67]:

```
insur.head(10)
```

Out[67]:

	Age	Type	Claimed	Commision	Channel	Duration	Sales	Destination
0	48	0	0	0.70	1	7	2.51	0
1	36	1	0	0.00	1	34	20.00	0
2	39	1	0	5.94	1	3	9.90	1
3	36	1	0	0.00	1	4	26.00	0
4	33	0	0	6.30	1	53	18.00	0
5	45	0	1	15.75	1	8	45.00	0
6	61	1	0	35.64	1	30	59.40	1
7	36	1	0	0.00	1	16	80.00	0
8	36	1	0	0.00	1	19	14.00	0
9	36	1	0	0.00	1	42	43.00	0

In [68]:

```
insur['Claimed'].value_counts(normalize=True)
```

Out[68]:

0 0.6783951 0.321605

Name: Claimed, dtype: float64

Extracting the target column into separate vectors for training set and test set

```
In [69]:
```

```
X = insur.drop(['Claimed'], axis=1)
y =insur.pop('Claimed')
X.head()
```

Out[69]:

	Age	Type	Commision	Channel	Duration	Sales	Destination
0	48	0	0.70	1	7	2.51	0
1	36	1	0.00	1	34	20.00	0
2	39	1	5.94	1	3	9.90	1
3	36	1	0.00	1	4	26.00	0
4	33	0	6.30	1	53	18.00	0

Splitting data into training and test set

In [70]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, train_labels, test_labels = train_test_split(X, y, test_size=.30, random_s
```

Checking the dimensions of the training and test data

In [71]:

```
print('X_train',X_train.shape)
print('X_test',X_test.shape)
print('train_labels',train_labels.shape)
print('test_labels',test_labels.shape)

X_train (1989, 7)
X_test (853, 7)
train_labels (1989,)
test_labels (853,)
```

Building a Decision Tree Classifier

In [72]:

```
param_grid = {
    'criterion': ['gini'],
    'max_depth': [25,50,100],
    'min_samples_leaf': [25,50,100],
    'min_samples_split': [200,250,300,400],
}
dtcl = DecisionTreeClassifier()
grid_search = GridSearchCV(estimator = dtcl, param_grid = param_grid, cv = 10)
```

Fitting the Best parameters

```
In [73]:
```

Generating Tree

In [74]:

```
train_char_label = ['no', 'yes']
tree_regularized = open('tree_regularized.dot','w')
dot_data = tree.export_graphviz(best_grid, out_file= tree_regularized , feature_names = lis
tree_regularized.close()
dot_data
```

Variable Importance

In [75]:

Predicting on Training and Test dataset

```
In [76]:
```

```
ytrain_predict = best_grid.predict(X_train)
ytest_predict = best_grid.predict(X_test)
```

Getting the Predicted Classes and Probs

In [77]:

```
ytest_predict
ytest_predict_prob=best_grid.predict_proba(X_test)
ytest_predict_prob
pd.DataFrame(ytest_predict_prob).head()
```

Out[77]:

	0	1
0	0.403670	0.596330
1	0.462121	0.537879
2	0.172619	0.827381
3	0.462121	0.537879
4	0 915385	0 084615

Model Evaluation(CART)

AUC and ROC for the training data(CART)

In [78]:

```
# predict probabilities
probs = best_grid.predict_proba(X_train)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
cart_train_auc = roc_auc_score(train_labels, probs)
print('AUC: %.3f' % cart_train_auc)
# calculate roc curve
cart_train_fpr, cart_train_tpr, cart_train_thresholds = roc_curve(train_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(cart_train_fpr, cart_train_tpr)
```

AUC: 0.809

Out[78]:

[<matplotlib.lines.Line2D at 0x1e70e5fa688>]

AUC and ROC for the test data(CART)

In [79]:

```
# predict probabilities
probs = best_grid.predict_proba(X_test)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
cart_test_auc = roc_auc_score(test_labels, probs)
print('AUC: %.3f' % cart_test_auc)
# calculate roc curve
cart_test_fpr, cart_test_tpr, cart_testthresholds = roc_curve(test_labels, probs)
plt.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
plt.plot(cart_test_fpr, cart_test_tpr)
```

AUC: 0.757

Out[79]:

[<matplotlib.lines.Line2D at 0x1e70e6587c8>]

Confusion Matrix for the training data(CART)

```
In [80]:
```

```
confusion_matrix(train_labels, ytrain_predict)
```

Out[80]:

Train Data Accuracy(CART)

In [81]:

```
cart_train_acc=best_grid.score(X_train,train_labels)
cart_train_acc
```

Out[81]:

0.7697335344394168

Classification Report of Training Data(CART)

In [82]:

```
print(classification_report(train_labels, ytrain_predict))
```

	precision	recall	f1-score	support
0	0.81	0.87	0.84	1350
1	0.67	0.57	0.61	639
accuracy			0.77	1989
macro avg	0.74	0.72	0.72	1989
weighted avg	0.76	0.77	0.76	1989

In [83]:

```
cart_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(cart_metrics).transpose()
#df
cart_train_precision=round(df.loc["1"][0],2)
cart_train_recall=round(df.loc["1"][1],2)
cart_train_f1=round(df.loc["1"][2],2)
print ('cart_train_precision ',cart_train_precision)
print ('cart_train_recall ',cart_train_recall)
print ('cart_train_f1 ',cart_train_f1)
```

```
cart_train_precision 0.67
cart_train_recall 0.57
cart_train_f1 0.61
```

Confusion Matrix for Test data(CART)

```
In [84]:
```

```
confusion_matrix(test_labels, ytest_predict)
Out[84]:
```

```
array([[488, 90],
[127, 148]], dtype=int64)
```

Test Data Accuracy(CART)

```
In [85]:
```

```
cart_test_acc=best_grid.score(X_test,test_labels)
cart_test_acc
```

Out[85]:

0.7456037514654161

Classification Report of Test Data(CART)

In [86]:

```
print(classification_report(test_labels, ytest_predict))
```

	precision	recall	f1-score	support
0	0.79	0.84	0.82	578
1	0.62	0.54	0.58	275
accuracy			0.75	853
macro avg	0.71	0.69	0.70	853
weighted avg	0.74	0.75	0.74	853

CART MODEL METRICS

In [87]:

```
cart_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(cart_metrics).transpose()
df
cart_test_precision=round(df.loc["1"][0],2)
cart_test_recall=round(df.loc["1"][1],2)
cart_test_f1=round(df.loc["1"][2],2)
print ('cart_train_precision ',cart_test_precision)
print ('cart_train_recall ',cart_test_recall)
print ('cart_train_f1 ',cart_test_f1)
```

```
cart_train_precision 0.62
cart_train_recall 0.54
cart_train_f1 0.58
```

Cart model Conclusion

In [88]:

```
index=['Accuracy', 'AUC', 'Recall','Precision','F1 Score']
data = pd.DataFrame({'CART Train':[cart_train_acc,cart_train_auc,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_train_recall,cart_trai
```

Out[88]:

	CART ITAIII	CART Test
Accuracy	0.77	0.75
AUC	0.81	0.76
Recall	0.57	0.54
Precision	0.67	0.62
F1 Score	0.61	0.58

CART Train CART Toet

Cart Model Comments

- Training and Test set results are almost similar, and with the overall measures high, the model is a good model.
- Type, Sales and Commision are key variables to predict the Insurance

Building the Random Forest Model

grid_search.fit(X_train, train_labels)

Grid Search for finding out the optimal values for the hyper parameters

```
In [89]:
```

```
param_grid = {
    'max_depth': [25,50,60],
    'max_features': [2,4,6],
    'min_samples_leaf': [100,150],
    'min_samples_split': [250,300,400],
    'n_estimators': [25,50,75]
}
rfcl = RandomForestClassifier()
grid_search = GridSearchCV(estimator = rfcl, param_grid = param_grid, cv = 5)
```

In [90]:

ne,

oob score=False,

```
random_state=None, verbose=0,
warm_start=False),
iid='warn', n_jobs=None,
param_grid={'max_depth': [25, 50, 60], 'max_features': [2, 4,
51.
```

```
In [91]:
grid_search.best_params_
Out[91]:
{'max_depth': 50,
 'max_features': 4,
 'min_samples_leaf': 100,
 'min_samples_split': 300,
 'n_estimators': 75}
In [92]:
best grid = grid search.best estimator
In [93]:
best grid
Out[93]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                       max_depth=50, max_features=4, max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=100, min_samples_split=300,
                       min_weight_fraction_leaf=0.0, n_estimators=75,
                       n_jobs=None, oob_score=False, random_state=None,
                       verbose=0, warm start=False)
```

Predicting the Training and Testing data(RF Model)

```
In [94]:

ytrain_predict = best_grid.predict(X_train)
ytest_predict = best_grid.predict(X_test)
```

Performance Evaluation on Training data(RF Model)

Confusion Matrix of Training Data(RF Model)

Accuracy Score of Training Data(RF Model)

In [96]:

```
rf_train_acc=best_grid.score(X_train,train_labels)
rf_train_acc
```

Out[96]:

0.7566616390145802

Classification Report of Training Data(RF Model)

In [97]:

```
print(classification_report(train_labels,ytrain_predict))
```

	precision	recall	f1-score	support
0	0.76	0.94	0.84	1350
1	0.74	0.38	0.50	639
accuracy			0.76	1989
macro avg	0.75	0.66	0.67	1989
weighted avg	0.75	0.76	0.73	1989

In [98]:

```
rf_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(rf_metrics).transpose()
rf_train_precision=round(df.loc["1"][1],2)
rf_train_recall=round(df.loc["1"][2],2)
rf_train_f1=round(df.loc["1"][0],2)
print ('rf_train_precision ',rf_train_precision)
print ('rf_train_recall ',rf_train_recall)
print ('rf_train_f1 ',rf_train_f1)
```

```
rf_train_precision 0.38
rf_train_recall 0.5
rf_train_f1 0.74
```

AUC and ROC of Training Data(RF MODEL)

In [99]:

```
rf_train_fpr, rf_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(X_train)[:,1])
plt.plot(rf_train_fpr,rf_train_tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_train_auc=roc_auc_score(train_labels,best_grid.predict(X_train))
print('Area under Curve is', rf_train_auc)
```

Area under Curve is 0.6567240479916536

Performance Evaluation on Test data(RF Model)

Confusion Matrix Test Data(RF Model)

```
In [100]:
```

```
confusion_matrix(test_labels,ytest_predict)
Out[100]:
```

```
array([[526, 52],
[176, 99]], dtype=int64)
```

Test Data Accuracy(RF Model)

```
In [101]:
```

```
rf_test_acc=best_grid.score(X_test,test_labels)
rf_test_acc
```

Out[101]:

0.7327080890973037

Classification Report of Test Data(RF Model)

In [102]:

```
print(classification_report(test_labels,ytest_predict))
```

	precision	recall	f1-score	support
0	0.75	0.91	0.82	578
1	0.66	0.36	0.46	275
accuracy			0.73	853
macro avg	0.70	0.64	0.64	853
weighted avg	0.72	0.73	0.71	853

In [103]:

```
rf_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(rf_metrics).transpose()
rf_test_precision=round(df.loc["1"][1],2)
rf_test_recall=round(df.loc["1"][2],2)
rf_test_f1=round(df.loc["1"][0],2)
print ('rf_test_precision ',rf_test_precision)
print ('rf_test_recall ',rf_test_recall)
print ('rf_test_f1 ',rf_test_f1)
```

```
rf_test_precision 0.36
rf_test_recall 0.46
rf_test_f1 0.66
```

AUC and ROC for the Test data(RF MODEL)

In [104]:

```
rf_test_fpr, rf_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(X_test)[:,1])
plt.plot(rf_test_fpr,rf_test_tpr,color='green')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
rf_test_auc=roc_auc_score(test_labels,best_grid.predict(X_test))
print('Area under Curve is', rf_test_auc)
```

Area under Curve is 0.6350173010380622

Variable Importance(RF Model)

In [105]:

```
print (pd.DataFrame(best_grid.feature_importances_, columns = ["Imp"], index = X_train.colu
```

Tmp
Type 0.338684
Sales 0.291961
Commision 0.274631
Duration 0.076046
Age 0.011198
Destination 0.007481
Channel 0.000000

RF Model Conclusion

In [106]:

```
index=['Accuracy', 'AUC', 'Recall','Precision','F1 Score']
data = pd.DataFrame({'Random Forest Train':[rf_train_acc,rf_train_auc,rf_train_recall,rf_train_acc,rf_test_auc,rf_test_recall,rf_test_round(data,2)
```

Out[106]:

	Random Forest Train	Random Forest Test
Accuracy	0.76	0.73
AUC	0.66	0.64
Recall	0.50	0.46
Precision	0.38	0.36
F1 Score	0.74	0.66

RF Model Comments

- Training and Test set results are almost similar, and with the overall Moderate results.
- Accuracy Score is good But AUC Matrics is Moderate
- Recall Matrics is Average while Precision is slightly lower side
- Type, Sales and Commission are key variables to predict the Insurance

Building the Neural Network Model

Grid Search for finding out the optimal values for the hyper parameters

```
In [107]:
```

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'hidden_layer_sizes': [100,200,300,500],
    'max_iter': [5000,2500,7000,6000],
    'solver': ['sgd','adam'],
    'tol': [0.01],
}

nncl = MLPClassifier()
grid_search = GridSearchCV(estimator = nncl, param_grid = param_grid, cv = 10)
```

```
In [108]:
```

```
grid_search.fit(X_train, train_labels)
grid_search.best_params_
```

```
Out[108]:
```

```
{'hidden_layer_sizes': 200, 'max_iter': 5000, 'solver': 'sgd', 'tol': 0.01}
```

```
In [109]:
```

```
grid_search.best_params_
Out[109]:
{'hidden_layer_sizes': 200, 'max_iter': 5000, 'solver': 'sgd', 'tol': 0.01}
```

Further Optimization

In [110]:

```
from sklearn.model_selection import GridSearchCV

param_grid = {
    'hidden_layer_sizes': [500,600,700],
    'max_iter': [6000],
    'solver': ['adam'],
    'tol': [0.01],
}

nncl = MLPClassifier()
grid_search = GridSearchCV(estimator = nncl, param_grid = param_grid, cv = 10)
```

In [111]:

Predicting the Training and Testing data(ANN Model)

```
In [113]:
```

```
ytrain_predict = best_grid.predict(X_train)
ytest_predict = best_grid.predict(X_test)
```

learning_rate_init=0.001, max_iter=6000, momentum=0.9,
n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
random_state=None, shuffle=True, solver='adam', tol=0.01,
validation fraction=0.1, verbose=False, warm start=False)

Performance Evaluation on Training data(ANN Model)

Confusion Matrix of Train Data(ANN Model)

In [114]:

Accuracy Score of Training data(ANN Model)

In [115]:

```
nn_train_acc=best_grid.score(X_train,train_labels)
nn_train_acc
```

Out[115]:

0.7501256913021619

Classification Report of Training Data(ANN Model)

In [116]:

```
print(classification_report(train_labels,ytrain_predict))
    precision recall f1-score support
```

0.74	0.97	0.84	1350
0.82	0.28	0.42	639
		0.75	1989
0.78	0.63	0.63	1989
0.77	0.75	0.71	1989
	0.82 0.78	0.820.280.780.63	0.82 0.28 0.42 0.75 0.78 0.63 0.63

In [117]:

```
nn_metrics=classification_report(train_labels, ytrain_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn_train_precision=round(df.loc["1"][1],2)
nn_train_recall=round(df.loc["1"][2],2)
nn_train_f1=round(df.loc["1"][0],2)
print ('nn_train_precision ',nn_train_precision)
print ('nn_train_recall ',nn_train_recall)
print ('nn_train_f1 ',nn_train_f1)
```

```
nn_train_precision 0.28
nn_train_recall 0.42
nn_train_f1 0.82
```

AUC and ROC for the training data(ANN Model)

In [118]:

```
nn_train_fpr, nn_train_tpr,_=roc_curve(train_labels,best_grid.predict_proba(X_train)[:,1])
plt.plot(nn_train_fpr,nn_train_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_train_auc=roc_auc_score(train_labels,best_grid.predict(X_train))
print('Area under Curve is', nn_train_auc)
```

Area under Curve is 0.6275952008346375

Model Evaluation on Test data (ANN Model)

Confusion of Test data(ANN Model)

```
In [119]:
```

Accuracy Score of Test data(ANN Model)

```
In [120]:
```

```
nn_test_acc=best_grid.score(X_test,test_labels)
nn_test_acc
```

Out[120]:

0.7432590855803048

Classification Report of Test Data(ANN Model)

In [121]:

```
print(classification_report(test_labels,ytest_predict))
                            recall f1-score
              precision
                                                support
           0
                    0.74
                              0.96
                                         0.83
                                                     578
           1
                    0.77
                              0.29
                                         0.42
                                                     275
                                         0.74
                                                    853
    accuracy
   macro avg
                    0.75
                              0.62
                                         0.63
                                                     853
weighted avg
                              0.74
                                         0.70
                    0.75
                                                     853
```

In [122]:

```
nn_metrics=classification_report(test_labels, ytest_predict,output_dict=True)
df=pd.DataFrame(nn_metrics).transpose()
nn_test_precision=round(df.loc["1"][1],2)
nn_test_recall=round(df.loc["1"][2],2)
nn_test_f1=round(df.loc["1"][0],2)
print ('nn_test_precision ',nn_test_precision)
print ('nn_test_recall ',nn_test_recall)
print ('nn_test_f1 ',nn_test_f1)
```

```
nn_test_precision 0.29
nn_test_recall 0.42
nn_test_f1 0.77
```

AUC and ROC for the Test data(ANN Model)

In [123]:

```
nn_test_fpr, nn_test_tpr,_=roc_curve(test_labels,best_grid.predict_proba(X_test)[:,1])
plt.plot(nn_test_fpr,nn_test_tpr,color='black')
plt.plot([0, 1], [0, 1], linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
nn_test_auc=roc_auc_score(test_labels,best_grid.predict(X_test))
print('Area under Curve is', nn_test_auc)
```

Area under Curve is 0.624693299779805

In [124]:

```
best_grid.score
```

Out[124]:

ANN Model Conclusion

In [125]:

Out[125]:

	Neural Network Train	Neural Network Test
Accuracy	0.75	0.74
AUC	0.63	0.62
Recall	0.42	0.42
Precision	0.28	0.29
F1 Score	0.82	0.77

ANN Model Comments

- Training and Test set results are almost similar, and with the overall Moderate results.
- · Accuracy Score is good But AUC Matrics is Moderate
- · Recall Matrics is Average while Precision is slightly lower side
- Type, Sales and Commision are key variables to predict the Insurance

2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model

In [126]:

```
index=['Accuracy', 'AUC', 'Recall','Precision','F1 Score']
data = pd.DataFrame({'CART Train':[cart_train_acc,cart_train_auc,cart_train_recall,cart_train_'CART Test':[cart_test_acc,cart_test_auc,cart_test_recall,cart_test_precision,cart_'Random Forest Train':[rf_train_acc,rf_train_auc,rf_train_recall,rf_train_precision, 'Random Forest Test':[rf_test_acc,rf_test_auc,rf_test_recall,rf_test_precision,rf_t 'Neural Network Train':[nn_train_acc,nn_train_auc,nn_train_recall,nn_train_precision_'Neural Network Test':[nn_test_acc,nn_test_auc,nn_test_recall,nn_test_precision,nn_round(data,2)
```

Out[126]:

	CART Train	CART Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Accuracy	0.77	0.75	0.76	0.73	0.75	0.74
AUC	0.81	0.76	0.66	0.64	0.63	0.62
Recall	0.57	0.54	0.50	0.46	0.42	0.42
Precision	0.67	0.62	0.38	0.36	0.28	0.29
F1 Score	0.61	0.58	0.74	0.66	0.82	0.77

ROC Curve for the 3 models on the Training data

In [127]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_train_fpr, cart_train_tpr,color='red',label="CART")
plt.plot(rf_train_fpr,rf_train_tpr,color='green',label="RF")
plt.plot(nn_train_fpr,nn_train_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.), loc='best')
```

Out[127]:

<matplotlib.legend.Legend at 0x1e70b6f0408>

ROC Curve for the 3 models on the Test data

In [128]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_test_fpr, cart_test_tpr,color='red',label="CART")
plt.plot(rf_test_fpr,rf_test_tpr,color='green',label="RF")
plt.plot(nn_test_fpr,nn_test_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[128]:

<matplotlib.legend.Legend at 0x1e70b2cbb48>

Cart, RF, ANN Model Comments

- There is accuracy is same in all three Models(Cart,RF,ANN)
- In the Cart Model Training and Test set results are almost similar, and with the overall measures high, the model is a good model.
- · As Per the Cart Model, Type, Sales and Commision are key variables to predict the Insurance
- In the RF and ANN Model, Training and Test set results are almost similar, and with the overall Moderate results.
- In the RF and ANN Model, Accuracy Score is good But AUC Matrics is Moderate
- In the RF and ANN Model Recall Matrics is Average while Precision is slightly lower side
- As per the RF ModelType, Sales and Commission are key variables to predict the Insurance

2.4 Final Model: Compare all the model and write an inference which model is best/optimized.

In [129]:

```
index=['Accuracy', 'AUC', 'Recall','Precision','F1 Score']
data = pd.DataFrame({'CART Train':[cart_train_acc,cart_train_auc,cart_train_recall,cart_train_'cart_test_acc,cart_test_auc,cart_test_recall,cart_test_precision,cart_'Random Forest Train':[rf_train_acc,rf_train_auc,rf_train_recall,rf_train_precision, 'Random Forest Test':[rf_test_acc,rf_test_auc,rf_test_recall,rf_test_precision,rf_t 'Neural Network Train':[nn_train_acc,nn_train_auc,nn_train_recall,nn_train_precision_'Neural Network Test':[nn_test_acc,nn_test_auc,nn_test_recall,nn_test_precision,nn_round(data,2)
```

Out[129]:

	CART Train	CART Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Accuracy	0.77	0.75	0.76	0.73	0.75	0.74
AUC	0.81	0.76	0.66	0.64	0.63	0.62
Recall	0.57	0.54	0.50	0.46	0.42	0.42
Precision	0.67	0.62	0.38	0.36	0.28	0.29
F1 Score	0.61	0.58	0.74	0.66	0.82	0.77

ROC Curve for the 3 models on the Training data

In [130]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_train_fpr, cart_train_tpr,color='red',label="CART")
plt.plot(rf_train_fpr,rf_train_tpr,color='green',label="RF")
plt.plot(nn_train_fpr,nn_train_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.), loc='best')
```

Out[130]:

<matplotlib.legend.Legend at 0x1e70e6fab48>

ROC Curve for the 3 models on the Test data

In [131]:

```
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(cart_test_fpr, cart_test_tpr,color='red',label="CART")
plt.plot(rf_test_fpr,rf_test_tpr,color='green',label="RF")
plt.plot(nn_test_fpr,nn_test_tpr,color='black',label="NN")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC')
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower right')
```

Out[131]:

<matplotlib.legend.Legend at 0x1e70b66b688>

Cart, RF, ANN Model Comparison

- There is accuracy is same in all three Models(Cart,RF,ANN)
- AUC Score is better in Cart Model as compare to the RF and ANN.
- Recall and Precision is better in Cart Model as compare to the RF and ANN.
- If We compare the F1 score (take Recall and Precision into account) RF and ANN Model having edge over Cart Model.

2.5 Inference: Basis on these predictions, what are the business insights and recommendations

Business Insights and Recommendations.

- There are 2 variables Type(Airlines, Traval Agency) and Sales play the the key role as deciding Factor
- if Person is travelling through air and Ticket Price(Sales) is greater than 53 then 74 % probablity is that they
 will claim the insurance
- if Person is travelling through air and Ticket Price(Sales) is less than 4.5 then 65% people will not claim the amount

• 83 % people will not claim insurace,If Ticket is booked through traval agency and (Ticket Price) Sales is less thant 83.5

In []:			