

(11)Publication number.

08-027522

(43)Date of publication of application: 30.01.1996

(51)Int CI

C21D 9/46 C22C 38/00 C22C 38/16

21 Application number . 06-165228

28 (71)Applicant :

SUMITOMO METAL IND LTD

22 Date of filing

18.07.1994

(72)Inventor

KATSU SHINICHIRO

·54) PRODUCTION OF STEEL SHEET FOR DIRECT ONE COATING PORCELAIN ENAMELING

(57)Abstract

PURPOSE: To produce a steel sheet for direct one coating porcelain enameling, hardly causing porcelain enameling defects, such as fishscale and blister.

CONSTITUTION: A continuously cast slab, which has a composition consisting of, by weight, 0.0025% C, 0.02% Si, 0.20-0.50% Mn, 0.010% P. 0.020% S, 0.0030% N, 0.0300-0.0600% O (oxygen), 0.0020-0.0080% B, 0.020-0.060% Cu, and the balance Fe with impurities and satisfying the inequality P(%): $10 \times [B(\%) = (11/14)N(\%)]$, is hot-rolled, cold-rolled, and then annealed at a temp, in the region between the recrystallization temp, and the Ac3 point. By this method, the steel sheet, hardly causing defects, such as fishscale and blister, excellent in adhesion of porcelain enamel, and suitable for use in the production of direct one coated porcelain enameled products, can be produced.

LEGAL STATUS

[Date of request for examination]

12.04.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-27522

(43)公開日 平成8年(1996)1月30日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

C 2 1 D 9/46 C 2 2 C 38/00 L

301 T

38/16

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)出願番号

(22)出願日

特願平6-165228

- 平成6年(1994)7月18日

(71)出顧人 000002118

住友金属工業株式会社

大阪府大阪市中央区北浜4丁目5番33号

(72)発明者 勝 信一郎

茨城県鹿島郡鹿島町大字光3番地住友金属

工業株式会社鹿島製鉄所内

(74)代理人 弁理士 穂上 照忠 (外1名)

(54) 【発明の名称】 直接一回掛けほうろう用鋼板の製造方法

(57) 【要約】

【目的】ほうろう欠陥 (爪飛、泡) の発生しにくい直接 ・回掛けほうろう用鋼板の製造方法の提供。

【構成】重量%で、C:0.0025%以下、Si:0.02%以 不純物である連続鋳造スラ 下、Mn:0.20~0.50%、P:0.010 %以下、S:0.020 延後、再結晶温度以上 Acg2 P(%) ≤10× {B(%) ~ (11/14) N(%)}・・・・(1)

【効果】爪飛や泡などの欠陥が生じにくく、ほうろう密 着性にも優れた直接 - 何掛けほうろう製品の製造に好適 %以下、N:0.0030%以下、O(酸素):0.0300~0.06 00%、B:0.0020~0.0080%およびCu:0.020~0.060 %を含み、更に、下記(1)式を満足し、残部がFeおよび 不純物である連続鋳造スラブを、熱間圧延および冷間圧 延後、再結晶温度以上 Ac3点以下の温度域で焼鈍する。

な鋼板を製造することができる

【特許請求の範囲】

【請永項1】重量%で、C:0.0025%以下、Si:0.02% 以下、Mn: 0.20~0.50%。P: 0.010%以下、S: 0.02 0 %以下、N:0.0030%以下、○ (酸素):0.0300~0. 0600%、B:0.0020~0.0080%およびCu: 0.020~0.06

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、泡、爪飛などのほうろ う欠陥の発生しにてい直接一回掛けほうろう用鋼板の製 造方法に関する。

[0002]

【従末の技術】連続鋳造により製造されるほうろう用鋼 板には、大別して、アルミニウム(AI)キルト鋼をベー スとし、爪飛を防止するための水素トラップサイトとし てチタン (Ti) の炭窒化物やほう素 (B) の窒化物を利 用するTi添加鋼やB添加鋼と、特公昭59-25008号公報に 示されるように、精錬段階での脱酸条件を適度にコント ロールすることにより鋼中に多量の酸素(())を含有さ せた高酸素鋼とがある。

【0003】Ti添加鋼やB添加鋼は優れた成形性を有し ているものの、直接一回掛けほうろう用鋼板として用い た場合、泡や黒点などの表面欠陥が発生しやすいので、 高酸素鋼が用いられる場合か多い。

【0004】高酸素鋼については、その使用が拡大する 中で改良発明も提案されている。例えば、特開昭59-22 9463号公報では、連続鋳造時の気泡の発生を防止するた め鋼中酸素量を制限するとともに、時効による成形性の 劣化を防止するためにニオブ (Nb) 、Bを添加したほう ろう用鋼板が開示されている。また、特開平5-5128号 公報には、ほうろう被覆の前処理工程で治具に接触した 部分に発生する点錆がほうろう焼成時に泡や黒点を形成 させるとして、りん (P) 、いおう (S) 、銅 ((ii) 、 ニッケル (Ni) の含有量を限定し、かつ相互に関連させ て規制したほうろう用冷延鋼板の製造方法が記載されて

【0005】ほうろう用高酸素鋼は、爪飛防止のために 鋼中に200ppm以上の酸素を含有させ、泡の発生防止のた め戻素(C)量を0.0030~0.0050重量%とするのが一般 的であり、前述した発明は時効による成形性の劣化や点 錆部における泡や黒点の形成という新たな問題点につい ての改善を行ったものである。しかし、大量生産される。 0%を含み、更に、下記(I)式を満足し、残部がFeおよ び不可避不純物である連続鋳造スラブを、熱間圧延およ ご治間圧延を施した後、再結晶温度以上 Acg点以下の温 度域で焼鈍することを特徴とする直接一回掛けほうろう 用鋼板の製造方法。

$P(\%) \le 10 < \{B(\%) - (11/14) \ N(\%) \} \cdot \cdot \cdot (1)$

範囲でも、極わずかではあるが爪飛や泡が発生する場合 かある。特に爪飛は、それが発生するまでに時間がかか るので十分に製品検査を行えない場合もあり、その発生 室がわずか 0.1%程度であったとしても、残りの99.9% の製品にも疑いがもたれるので、不良品の発生は許され

【0006】直接一回掛けほうろう被覆を行う場合、特 に、ほうろうの品質に及ぼす鋼板の影響が大きいので、 欠陥の発生率が極わずかであってもその対策は鋼板側。 て、すなわち鋼板の品質を改善することによって行い、 爪飛や泡などの欠陥の発生しにくい、すなわち、ほうろ う性に優れた鋼板を提供する必要がある。

[00007]

【発明が解決しようとする課題】本発明は、直接一回掛 けほうろう製品の製造に使用する鋼板であって、その量 産時に発生する爪飛や泡などの欠陥の発生しにくい、ほ うろう性に優れた鋼板の製造方法を提供することを課題 としてなれたものである。

[0008]

【課題を解決するための手段】上記の課題を解決するた め、本発明者は()(酸素)量やじ量以外の要因に着目 し、検討を重ねた。その結果、〇(酸素)量やC量以外 にPの含有量を低下させ、Bを添加し、かつP、Bおよ びN量が所定の条件を満たす場合、爪飛や泡が発生しに くいことを見出した。

【0009】本発明の要旨は、下記の直接。回掛けほう ろう用冷延鋼板にある。

【0.0.1.0】重量%次。C=0.0025%以下、Si:0.02% 以下、Mn:0,20~0,50%、P:0,010%以下、S:0.02 0 %以下、N:0.0030%以下、O(酸素):0.0300×0. (600%、B:0.0020~0.0080%および(u: 0.020~0.06 0%を含み、更に、下記(1)式を満足し、残部がFeおよ む 不可避不純物である連続鋳造スラフを、熱間圧延およ び冷間圧延を施した後、再結晶温度以上 Acg点以下の温 度域で焼鈍することを特徴とする直接一回掛けほうろう 用鋼板の製造方法。

[【]竹井】 いた、 ち紀門 知んに しょ 田瀬に 祝ったん

^{【0013】}手す、木発明力込に便用する赤材鋼(連続) 鋳造ステク に含有される各成分の作用効果とそれらば

^{...} 古一地成组,大人就并一九年一人,主他的物。... 5個主生の物化も問題となる。例は、その含有量を明 0025年以下上に、極力低でするのが好ました。

Const. To a set the result. 1.00

由もなべ、少ない方が望ましい。従って、その含有量 は、通常の製鋼工程で不可避的に含まれるレベルである 0.02%以下とした。

【0016】Mn:Mnは()(酸素)と結びついて、鋼中で MnO介在物として存在し、これが水素のトラップサイト になり爪飛を防止する。このMnの作用効果を発揮させる ためにはMnを0.20%以上含有させることが必要である。 が、一方、0.50%を超えて含有させると加工性が低下す る, 従って、Mnの含有量は0.20~0.50%とした。

【0017】P:Pは成形性をお化させる不純物である からその含有量は低いほどよく、0.010%以下とした。

【0018】S:Sも不可避的に含まれる不純物でその 含有量は低いほどよい。S含有量が高すぎるとCと同様 にほうろう焼成時に泡が発生しやすくなり、また、熱間 圧延中に赤熱脆化による割れが発生し、表面疵の原因に もなる。従って、Sの含有量はそのような悪影響の少な い 0.020%以下とした。

【0019】N:本発明方法で用いる素材鋼ではNも不 純物であり、0.0030%を超えて含有させると時効による 加工性の劣化が問題となる。従って、その含有量は0.00

 $P(\%) \le 10 < \{B(\%) - (11/14) N(\%) \} \cdot \cdot \cdot (1)$

図1は、表1に示す組成範囲のスラブを1200~1250年に 加熱後、 870~920 での仕上げ温度で熱間圧延し、 560 ~600 でで巻き取り後、酸洗および冷間圧延し、 800~ 820 ℃で連続焼鈍して得られた冷延鋼板について、表2 に示す条件でほうろう被覆を施し、ほうろう性能(爪飛 および泡の発生の有無)を評価した結果である。表2に おける条件⊕は、爪飛の発生を加速するための条件で、 前処理工程である硫酸酸洗時間と、Niフラッシュの処理 時間を通常の1/3 以下としてほうろう皮膜の密着性を低 下させ、さらに加湿雰囲気で焼成することにより、爪飛 の原因になる水素をより多く鯛中に侵入させることがで きる。条件②は、前処理(硫酸酸洗)時間を通常の3倍 とし、泡の原因と言われている前処理後のスペットをよ り多く生成させる条件である。なお、条件③は通常用い られている条件である。使って、同主は、供試材すって を①または②の条件でほうろう被覆処理し、爪飛の評価 は①の条件で処理したものについて、泡の評価は②の条 件で処理したものについて行った結果である。

【0024】四1の結果から、爪飛および泡の充生を防 止するには、Pの含有量を 0.010%以下とし、かつ、P (%) ≦10× {B (%) - (11/14) N (%) }の条件 30%以下とした。

【0020】()(酸素):()は酸化物系介在物を形成し て耐爪飛性を高める重要な成分であり、そのためには0. 0300%以上含有させることが必要である。一方、その含 有量が0.0600%を超えると酸化物系介在物が増えすぎ、 成形段階でこれらの介在物が起点となって割れが発生し たり、ほうろう被覆の前処理工程である硫酸酸洗時に鋼 中に侵入した水素が介在物のまわりでガス化して膨張。 し、鋼板の表面がふくれる、いわゆるフリレと称する欠 陥が発生する。従って、()(酸素)の含有量は0.0300~ 0.0600%とした。

【0021】B:Bは爪飛や泡の発生を防止する上で有 効な成分である。その効果を十分に発揮させるために は、0.0020%以上含有させることが必要であり、一方、 0.0080%を超えて含有させると加工性が劣化するので、 Bの含有量は0.0020~0.0080%とした。

【0022】さらに、前述のように、P、BおよびNの 含有量が下記(1)式を満たすことが必要である。

[0023]

されているのが認められることから、Pの低減やBの添 加はその抑制に効果があるものと考えられる。

【0026】(u:(uは、ほうろう被覆の前処理(硫酸酸 洗)後に鋼板の表面に微細な凹凸を形成させてほうろう 皮膜の密着性を向上させる重要な元素であり、その効果 を発揮させるためには 0.020%以上含有させることか必 要である。しかし、含有量が 0.060%を超えると、酸洗 中のエッチング速度が低下し、通常の酸洗条件ではかえ って鋼板表面に凹凸が形成されにくく、密着性が低下す る。従って、10の含有量は0.020~0.060%とした。

【0027】本発明方法は、上記の成分を有する連続鋳 造によって鋳込まれたスラブを、熱間圧延および冷間圧 延後、再結晶温度以下に焼鈍する直接一回掛けほうろう。 用鋼板の製造方法である。

【00:8】熱問圧延は通常行われている条件で行えば よいが、加熱温度は1100~1300℃、仕上げ温度は加工性 を確保するために 870~950 年、巻取り温度は 560年以 下とすることが好ましい。

【0029】冷間圧延も常法に準じて行えばよい。

【0030】焼鈍は、連続焼鈍、箱焼鈍のいずれであっ でもよい。また、スラブ段階でに量が高すきる場合は、

【0025】11、おおよびス写出記の条件を満たずこと が必要な理由は明らかにはないが、Oやごが規定条件内。 tion of the companies to pay the companies

> 相连都是一个一个一个工作。

鈍を行うのであわけ 2000以上、箱塊鏈および脱炭焼辣 による場合は 660で以上とすることが好ました

て鋳込んだスラブを、1180~1240年で加熱し、仕上げ温度 870~920 でで板厚 3.2mmまで熱間圧延した後 480~560 でで巻き取り、酸洗後、板厚 0.8mmに冷間圧延し、表3に示した条件で焼鈍した。

【0033】得られた冷延鋼板に前記表2に示した条件でほうろう被覆を施し、ほうろう性(爪飛、泡、およびほうろうの密着性)を評価した。なお、爪飛の評価は表2の条件①で被覆したものについて行い、ほうろう被覆後2週間経た後の試験片(100mm×200mm)について爪飛の有無を観察し、爪飛が発生しなかった場合は良好(後述の表4では○印で表示)とした。泡の評価は表2の条件②で被覆したものについて行い、試験片(100mm×200mm)の中で最も泡の密集している箇所の50mm×50mmの範囲における泡の発生数を数えて、4個以下の場合は良好(○印)、5個以上発生した場合を不良(字印)とした。また、密着性の評価は表2の条件③で被覆したものについ

て行い、指標としてPIE (Porcelain Enamel Institute)試験機(米国ほうろう規格に規定された方法に準拠)により得られた測定値を用い、80%以上であれば良好とした。

【0.0.3.4】評価結果を表4に示す。本発明例(供試材 $No..1\sim7$)では、厳しいほうろう性評価試験条件下にあっても、いずれも良好なほうろう性を示した。

【0035】しかし、比較例 No.8ではP、BおよびNの含有量が前記(D式を満たしていないため爪飛わよび泡が発生し、No.9ではさらにB含有量が少なく、爪飛が発生した。比較例 No.10~12はPの含有量が規定を超える場合で、泡の発生数が多く、No.10および12では爪飛も発生した。比較例の No.13ではCuの含有量が多すぎて密着性が低下し、No.14ではO(酸素)の含有量が少なく爪飛が発生した。

[0036]

【表 1 】

表 1

	化	学	組	成	(単位:重	量%、残部(tFeと不純な	b)
С	Si	Mn	Р	S	Cu	N	О	В
0.0015 ~0.0028	0.008 ~0.012	0. 23 ~0. 31	0.004 ~0.022	0.004 ~0.012	0.030 ~0.044	0.0011 ~0.0028	0.0331 ~0.0462	0.0016 ~0.0041

[0037]

【表2】

表 2

条件② 条件③ 13%HzSO4 13%HzSO4					
75°C × 15min 75°C × 5 min					
ℓ NiSO ₄ · 7H ₂ O 13g/ℓ 70°C×5 min					
日本フェロー1553B 膜厚 100μm (片面)					
830°C×2.5min 露点50°C					
1					

[0038]

[表3]

表 3

_			·					α s					
供試材 No.			1	'L	*	粗	成	(単位:]	重量%、残	部はFeと不	吨物)	焼鈍方式	焼鈍温度
		С	Si Mn	Mn	P	S	Cu	N	0	В	P.		(°C)
	1	0.0018	0.008	0. 32	0.007	0.012	0.033	0.0012	0.0471	0.0020	0.011	連続焼鈍	820
本	2	0.0016	0.006	0.36	0.007	0.007	0.025	0.0025	0.0466	0.0028	0.008	"	790
発	3	0.0022	0.005	0. 38	0.004	0.006	0.022	0.0024	0. 0458	0.0026	0.007	~	840
121.2	4	0.0014	0.012	0.27	0.006	0.015	0.024	0.0018	0. 0511	0.0029	0.015	-	815
明	5	0.0024	0.008	0.31	0.010	0.011	0.044	0.0018	0.0465	0. 0028	0.014	-	810
9 91	6	0.0013	0.006	0.33	0.007	0.007	0.031	0.0014	0.0302	0.0033	0.022	箱烧纯	720
	7	0.0011	0.008	0.32	0.008	0.005	0.028	0.0025	0. 0375	0.0032	0.012	~	690
	8	0.0018	0.008	0.25	0.008	0.013	0.033	0.0028	0.0462	0.0024	‡0 . 002	連続烧鈍	800
比	9	0.0021	0.012	0. 33	0.005	0.008	0.042	0. 0017	0.0561	*0.0016	*0.003	*	815
	10	0.0016	0.007	0. 30	* 0. 018	0. 015	0.050	0.0020	0.0436	0.0041	0. 025	~	810
钦	11	0.0017	0.008	0. 36	‡0.014	0.004	0. 045	0.0014	0.0442	0. 0027	0.016	箱烧纯	690
	12	0.0014	0.006	0. 24	*0.017	0. 012	0.032	0.0011	0. 0481	*0. 0017	*0.008	連続焼鈍	830
81	13	0.0016	0.007	0. 36	0.009	0.014	*0.072	0.0015	0.0496	0.0020	0.012	~	810
	14	0.0012	0.006	0. 38	0.006	0.007	0.044	0.0012	* 0. 0163	0. 0032	0.023	,	810

(注) 化学組成の欄の P^* は $10 \times \{B(\%) - (11/14) \ N(\%)\}$ を意味する。 * 印は本発明で定める範囲から外れることを表す。

[0039]

【表4】

麦 4

			衣 4			
供試材 No.		爪飛	泡	密 着 性 (%)		
本	1	0	0	99		
*	2	0	0	99		
発	3	0	0	100		
B EI	4	0	0	99		
明	5	0	0	100		
例	6	0	0	99		
	7	O	0	99		
-	8	>)	ν;	99		
比	, 9	×	0	99		
	10	*	×	100		
Ø	11	O	≺	100		
	12	×	×	99		
(FI)	13	0	0	45		
	• •			t an		

,個以上発生

[00:0]

【発明の効果】本発明方法によれば、爪帳や泡などの欠。 自己要要的1995年,1月1日 1日本東海北京**设**工程等。 1.00

こさる。この鋼板を用いたは、量産時に極またに発生す るほうろう気陥め発生を防止することが可能である。

market to a second

(%) - (11/14) N (%)) 量の影響を示す図であ

750

[[4]1]

