SOLUTION ASSIGNMENT-06 6C & 6A PART-01

PROBLEMS

Problem 1

11101

01100

10010

01010

01001

Problem 5

If we divide 10011 into 1010101010 0000, we get 1011011100, with a remainder of R=0100. Note that, G=10011 is CRC-4-ITU standard.

Problem 14

a), b) See figure below.

- c)
- Forwarding table in E determines that the datagram should be routed to interface 192.168.3.002.
- The adapter in E creates and Ethernet packet with Ethernet destination address 88-88-88-88-88.
- Router 2 receives the packet and extracts the datagram. The forwarding table in this router indicates that the datagram is to be routed to 198.162.2.002.
- Router 2 then sends the Ethernet packet with the destination address of 33-33-33-33-33-33 and source address of 55-55-55-55-55 via its interface with IP address of 198.162.2.003.
- 5. The process continues until the packet has reached Host B.
- d) ARP in E must now determine the MAC address of 198.162.3.002. Host E sends out an ARP query packet within a broadcast Ethernet frame. Router 2 receives the query packet and sends to Host E an ARP response packet. This ARP response packet is carried by an Ethernet frame with Ethernet destination address 77-77-77-77-77.

Problem 22

i) from A to switch: Source MAC address: 00-00-00-00-00

Destination MAC address: 55-55-55-55-55

Source IP: 111.111.111.001 Destination IP: 133.333.333.003

ii) from switch to right router: Source MAC address: 00-00-00-00-00

Destination MAC address: 55-55-55-55-55

Source IP: 111.111.111.001 Destination IP: 133.333.333.003

iii) from right router to F: Source MAC address: 88-88-88-88-88-88

Destination MAC address: 99-99-99-99-99

Source IP: 111.111.111.001 Destination IP: 133.333.333.003

Problem 26

Action	Switch Table State	Link(s) packet is forwarded to	Explanation
B sends a frame to E	Switch learns interface corresponding to MAC address of B	A, C, D, E, and F	Since switch table is empty, so switch does not know the interface corresponding to MAC address of E
E replies with a frame to B	Switch learns interface corresponding to MAC address of E	В	Since switch already knows interface corresponding to MAC address of B
A sends a frame to B	Switch learns the interface corresponding to MAC address of A	В	Since switch already knows the interface corresponding to MAC address of B
B replies with a frame to A	Switch table state remains the same as before	A	Since switch already knows the interface corresponding to MAC address of A

PART-02

Concept:

If the polynomial is of order n then the number bits generated by CRC generator is n + 1.

Data:

```
Message = m_4m_3m_2m_1m_0 = 11000
CRC polynomial =X^3+X+1
```

Explanation:

CRC polynomial =
$$1.X^3 + 0.X^2 + 1.X + 1.X^0 \equiv 1011$$

Message bits will be 11000 000

Calculation:

Hence 100 will be appended to message bits $(m_4m_3m_2m_1m_0 = 11000)$.