Creating and Accessing Pandas DataFrames								
Course Code: CPE 031	Program: Computer Engineering							
Course Title: Visualization and Data Analysis	Date Performed: 10-08-2024							
Section: CpE21 S4	Date Submitted: 10-08-2024							
Name: BONIFACIO, NYKO ADREIN L.	Instructor: Prof. Sayo							

Intended Learning Outcomes (ILO):

By the end of this laboratory session, learners will be able to

 Construct and manipulate Pandas DataFrames from various data structures (such as lists, dictionaries, and NumPy arrays) while demonstrating an understanding of DataFrame attributes and methods. This includes loading the dataset, creating DataFrames with appropriate column labels and accessing data from rows and columns.

Instructions:

- Loading your dataset: Refer back to your chosen dataset from the PRELIM period.
 Whether you downloaded it or stored it in your Google Drive, you are required to load
 it into the <u>Google Colab</u>. Watch this <u>video</u> to learn more about how to read CSV files in
 Google Colab.(Take a screenshot to document successful execution.)
- 2. Creating a dataframe from your CSV file: Once you have successfully loaded your dataset, you need to create a dataframe from your uploaded CSV file.(Take a screenshot to document successful execution.)
- 3. Creating a dataframe from a dictionary of lists: Manually create a dictionary where each value is composed of a list from your original dataset, then load it into a dataframe, before printing it. You are required to provide at least five (5) observations in your list. (Take a screenshot to document successful execution.)
- 4. Creating a dataframe from a list of dictionaries: Manually create a list of dictionaries from your original dataset, then pass it into a dataframe, before printing it. You are required to provide at least five (5) observations in your list. (Take a screenshot to document successful execution.)
- 5. Selecting dataframe columns: Execute a method that would allow you to select a single and multiple dataframe columns. (Take a screenshot to document successful execution.)
- **6. Selecting dataframe rows:**Execute a method that would allow you to select a single and multiple dataframe rows using panda indexing and python indexing.

Output:

1.

```
[20] import pandas as pd

path = "/content/ComputerData.csv"
df = pd.read_csv(path)
```

2.

v Os	0	df.hea	ad()								
	∑ *	Co	mputer II	Brand	Model	Processor	RAM (GB)	Storage (GB)	Graphics Card	Price (\$)	
		0	1	Dell	XPS 13	Intel i7	16	512	Intel Iris Xe	1200	11.
		1	2	. HP	Pavilion 15	AMD Ryzen 5	8	256	AMD Radeon	800	
		2		Apple	MacBook Pro	Apple M1	16	1024	Apple Integrated	2400	
		3	4	Lenovo	ThinkPad X1	Intel i9	32	512	NVIDIA GTX 1650	1800	
		4	5	Asus	ZenBook 14	Intel i5	16	512	NVIDIA MX250	1000	

3.

4.

```
data_list = [
                 a_list = [
{'Computer ID': 1, 'Brand': 'Dell', 'Model': 'XPS 13', 'Price ($)': 1200},
{'Computer ID': 2, 'Brand': 'HP', 'Model': 'Pavilion 15', 'Price ($)': 800},
{'Computer ID': 3, 'Brand': 'Apple', 'Model': 'MacBook Pro', 'Price ($)': 2400},
{'Computer ID': 4, 'Brand': 'Lenovo', 'Model': 'ThinkPad X1', 'Price ($)': 1800},
{'Computer ID': 5, 'Brand': 'Asus', 'Model': 'ZenBook 14', 'Price ($)': 1000}
         df_from_list = pd.DataFrame(data_list)
         df_from_list
₹
                                                               Model Price ($)
                 Computer ID Brand
                                            Dell
                                                                     XPS 13
                                                                                                              Ш
                                                              Pavilion 15
                                                                                                              1
                                            Apple
                                                          MacBook Pro
                                                                                               2400
           3
                                     4 Lenovo
                                                            ThinkPad X1
                                                                                               1800
                                                             ZenBook 14
                                               Asus
                                                                                               1000
```

5.

6.

