Mathématiques Générales 1

Devoir maison 2

Institut Villebon-Charpak

Année 2017 - 2018

On appelle polynôme trigonométrique une fonction $f: \mathbb{R} \to \mathbb{C}$ qui peut s'écrire pour tout $x \in \mathbb{R}$ sous la forme

$$f(x) = \sum_{k=-n}^{n} c_k e^{ikx} = c_{-n} e^{-inx} + c_{-n+1} e^{-(n-1)x} + \dots + c_{-1} e^{-ix} + c_0 + c_1 e^{ix} + \dots + c_n e^{inx}$$

pour $n \in \mathbb{N}$ (qui dépend de f) et des coefficients $c_k \in \mathbb{C}$ pour $-n \le k \le n$. Pour $k \in \mathbb{N}$ on note $q^k : \mathbb{R} \to \mathbb{C}$ la fonction définie par $q^k(x) = e^{ikx}$ pour $x \in \mathbb{R}$ (on remarque que q^0 est la fonction constante égale à 1). On peut donc réécrire l'égalité ci-dessus sous la forme

$$f = \sum_{k=-n}^{n} c_k . q^k$$

On notera $\mathbb{C}[q,q^{-1}]$ l'ensemble des polynômes trigonométriques :

$$\mathbb{C}[q,q^{-1}] = \left\{ f \in \mathcal{F}(\mathbb{R},\mathbb{C}), \exists n \in \mathbb{N}, \exists (c_{-n},c_{-n+1},\ldots,c_n) \in \mathbb{C}^{2n+1}, f = \sum_{k=-n}^{n} c_k \cdot q^k \right\}$$

et pour $n \in \mathbb{N}$ fixé, on note $\mathbb{C}_n[q,q^{-1}]$ l'ensemble des polynômes trigonométriques de degré $\leq n$:

$$\mathbb{C}_n[q, q^{-1}] = \left\{ f \in \mathcal{F}(\mathbb{R}, \mathbb{C}), \ \exists (c_{-n}, c_{-n+1}, \dots, c_n) \in \mathbb{C}^{2n+1}, f = \sum_{k=-n}^n c_k \cdot q^k \right\}$$

L'ensemble $\mathbb{C}_0[q,q^{-1}]$ correspond ainsi à l'espace des fonctions constantes. On définit également le sous-espace E_n de $\mathbb{C}_n[q,q^{-1}]$ défini par

$$E_n = \{ f \in \mathbb{C}[q, q^{-1}], \exists (c_{-n}, c_n) \in \mathbb{C}^2, f = c_{-n}q^{-n} + c_nq^n \}$$

1 Dimension et base exponentielle de $\mathbb{C}_n[q,q^{-1}]$

Dans cette partie, on fixe un entier $n \in \mathbb{N}$. On considère l'application

$$\varphi_n: \qquad \mathbb{C}^{2n+1} \longrightarrow \mathbb{C}_n[q, q^{-1}]$$

$$(c_{-n}, \dots, c_n) \longmapsto \sum_{k=-n}^n c_k . q^k$$

- 1. Justifier que φ_n est une application linéaire surjective. En déduire que E_n est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{C})$.
- 2. On souhaite montrer que φ_n est injective. On se donne donc dans cette question $(c_k)_{-n \le k \le n} = (c_{-n}, \dots, c_n) \in \ker \varphi_n$, et on considère le polynôme

$$P(X) = \sum_{k=-n}^{n} c_k X^{k+n} = \sum_{i=0}^{2n} c_{i-n} X^i \in \mathbb{C}_{2n}[X]$$

- (a) Montrer que pour $x \in \mathbb{R}$, on a $P(e^{ix}) = 0$.
- (b) En déduire que P=0. Conclure.
- 3. En déduire que

$$\dim \mathbb{C}_n[q, q^{-1}] = 2n + 1$$

et que la famille $\mathcal{E}_n = (q^k)_{-n \le k \le n} = (q^{-n}, \dots, q^n)$ est une base de $\mathbb{C}_n[q, q^{-1}]$.

4. Montrer que pour $1 \leq k \leq n$, la famille (q^{-k}, q^k) est une base de E_k , et

$$\mathbb{C}_n[q, q^{-1}] = \bigoplus_{k=0}^n E_k$$

5. Soit $f = \sum_{k=-n}^n c_k . q^k \in \mathbb{C}_n[q,q^{-1}]$ un polynôme trigonométrique. Montrer que pour tout $-n \le k \le n$

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt$$

Cette formule est connue sous le nom de formule d'inversion de Fourier.

2 Base trigonométrique

Pour $k \in \mathbb{N}$, on note $\cos_k : \mathbb{R} \to \mathbb{R}$ et $\sin_k : \mathbb{R} \to \mathbb{R}$ les fonctions définies pour $x \in \mathbb{R}$ par

$$\cos_k(x) = \cos(kx), \quad \sin_k(x) = \sin(kx)$$

On remarque que \cos_0 est la fonction constante égale à 1, et \sin_0 est la fonction nulle. Pour alléger les notations on écrira parfois $\cos = \cos_1$ et $\sin = \sin_1$.

- 1. Justifier que pour $k \leq n$, les fonctions \cos_k et \sin_k sont dans $E_k \subset \mathbb{C}_n[q,q^{-1}]$.
- 2. Montrer que la famille $\mathcal{T}_n = (\cos_0, \cos_1, \sin_1, \cos_2, \sin_2, \dots, \cos_n, \sin_n)$ est génératrice que $\mathbb{C}_n[q, q^{-1}]$. En déduire que c'est une base de $\mathbb{C}_n[q, q^{-1}]$.
- 3. Montrer que pour $1 \le k \le n$, la famille (\cos_k, \sin_k) est une base de E_k .

3 Parties paires et impaires

On fixe $n \in \mathbb{N}$. On note

$$\mathcal{P}_n = \left\{ f \in \mathbb{C}_n[q, q^{-1}], \, \forall x \in \mathbb{R}, f(x) = f(-x) \right\}$$

l'ensemble des polynômes trigonométriques de degré $\leq n$ pairs, et

$$\mathcal{I}_n = \left\{ f \in \mathbb{C}_n[q, q^{-1}], \, \forall x \in \mathbb{R}, f(x) = -f(-x) \right\}$$

l'ensemble des polynômes trigonométriques de degré $\leq n$ impairs.

1. Montrer que

$$\mathbb{C}_n[q,q^{-1}] = \mathcal{P}_n \oplus \mathcal{I}_n$$

Indication: Pour $f \in \mathbb{C}_n[q,q^{-1}]$, on pourra considérer les fonctions $x \mapsto \frac{f(x)+f(-x)}{2}$ et $x \mapsto \frac{f(x)-f(-x)}{2}$.

2. (a) Montrer que $(\cos_0, \cos_1, \dots \cos_n)$ est une famille libre de \mathcal{P}_n , et (\sin_1, \dots, \sin_n) est une famille libre de \mathcal{I}_n . En déduire que

$$\dim \mathcal{P}_n \ge n+1, \qquad \dim \mathcal{I}_n \ge n$$

(b) Conclure que

$$\dim \mathcal{P}_n = n+1, \qquad \dim \mathcal{I}_n = n$$

et que les familles $(\cos_0, \cos_1, \dots \cos_n)$ et (\sin_1, \dots, \sin_n) sont des bases de \mathcal{P}_n et \mathcal{I}_n respectivement.

- 3. On considère l'endomorphisme $s_n : \mathbb{C}_n[q, q^{-1}] \to \mathbb{C}_n[q, q^{-1}]$ défini pour $f \in \mathbb{C}_n[q, q^{-1}]$ et $x \in \mathbb{R}$ par $s_n(f)(x) = f(-x)$.
 - (a) Calculer $s_n^2 = s_n \circ s_n$. Trouver $P \in \mathbb{C}_2[X]$ tel que $P(s_n) = 0$. En déduire que s_n est diagonalisable.
 - (b) Déterminer les sous-espaces propres de s_n , et pour chacun, en donner une base.
 - (c) Ecrire la matrice de l'endomorphisme s_n dans les base \mathcal{E}_n et \mathcal{T}_n .

4 Opérateurs de dérivation et translation

On fixe $n \in \mathbb{N}$. On considère les endomorphismes $D_n : \mathbb{C}_n[q,q^{-1}] \to \mathbb{C}_n[q,q^{-1}]$ et $\sigma_n : \mathbb{C}_n[q,q^{-1}] \to \mathbb{C}_n[q,q^{-1}]$ définis pour $x \in \mathbb{R}$ par

$$D_n(f)(x) = f'(x), \qquad \sigma_n(f)(x) = f(x+1)$$

- 1. (a) Déterminer les valeurs propres de D_n et les espaces propres associés. En déduire que l'endomorphisme est diagonalisable D_n .
 - (b) Ecrire les matrices A et B de l'endomorphisme D_n dans les bases respective \mathcal{E}_n et \mathcal{T}_n . Quelle relation matricielle peut-on écrire entre ces deux matrices?
- 2. (a) Déterminer les valeurs propres de σ_n et les espaces propres associés. En déduire que l'endomorphisme est diagonalisable σ_n .
 - (b) Ecrire les matrices C et D de l'endomorphisme σ_n dans les bases respectives \mathcal{E}_n et \mathcal{T}_n . Quelle relation matricielle peut-on écrire entre ces deux matrices?
- 3. Vérifier que $D = e^B$ et $C = e^A$. Conclure que $\sigma_n = e^{D_n}$ et que pour tout polynôme trigonométrique $f \in \mathbb{C}_n[q, q^{-1}]$ et tout réel $x \in \mathbb{R}$, on a

$$\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x) = f(x+1)$$