Обучение с подкреплением #2: Dynamic Programming

Policy Iteration, Value Iteration

Павел Темирчев

@cydoroga

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий

 $p(s_{t+1}|s_t,a_t)$ - динамика переходов в среде (марковская)

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий

 $p(s_{t+1}|s_t,a_t)$ - динамика переходов в среде (марковская)

r(s,a) - награда за действие a в состоянии s

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий

 $p(s_{t+1}|s_t,a_t)$ - динамика переходов в среде (марковская)

r(s,a) - награда за действие a в состоянии s

 $\pi(a|s)$ - политика агента

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий $p(s_{t+1}|s_t,a_t)$ - динамика переходов в среде (марковская) r(s,a) - награда за действие a в состоянии s $\pi(a|s)$ - политика агента $p(au|\pi) = p(s_0) \prod_{t=0}^{T} \pi(a_t|s_t) p(s_{t+1}|a_t,s_t)$ - политика агента где $au = (s_0, a_0, s_1, a_1, \dots, s_T, a_T)$ - траектория агента

 $s\sim\mathcal{S}$; $a\sim\mathcal{A}$ - пространства состояний \ действий

 $p(s_{t+1}|s_t,a_t)$ - динамика переходов в среде (марковская)

r(s,a) - награда за действие a в состоянии s

 $\pi(a|s)$ - политика агента

$$p(au|\pi)=p(s_0)\prod_{t=0}^T\pi(a_t|s_t)p(s_{t+1}|a_t,s_t)$$
 - политика агента
где $au=(s_0,a_0,s_1,a_1,\ldots,s_T,a_T)$ - траектория агента

$$R_t = r(s_t, a_t) + \gamma r(s_{t+1}, a_{t+1}) + \gamma^2 r(s_{t+2}, a_{t+2}) + \ldots$$
 - reward to go

$$R_t = \sum_{ au=t}^{\infty} \gamma^{ au-t} r(s_{t+ au}, a_{t+ au})$$

Насколько хороша политика π , если начать в состоянии s?

$$V^{\pi}(s) = \mathbb{E}_{ au \sim \pi} \left[R_t | s_t = s
ight]$$

Насколько хороша политика π , если начать в состоянии s?

Насколько хороша политика π , если начать в состоянии s?

Насколько хороша политика π , если начать в состоянии s?

Насколько хороша политика π , если начать в состоянии s?

А что если в s "принудительно" выбрать действие a, а только затем идти по политике π ?

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim \pi} \left[R_t | s_t = s, a_t = a
ight]$$

Насколько хороша политика π , если начать в состоянии s?

$$V^{\pi}(s) = \mathbb{E}_{ au \sim \pi} \left[R_t | s_t = s
ight]$$
 терминальное Состояние

А что если в s "принудительно" выбрать действие a, а только затем идти по политике π ?

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim \pi}\left[R_t | s_t = s, a_t = a
ight]$$

V-функция ценности:

Насколько хороша политика π , если начать в состоянии s?

$$V^{\pi}(s) = \mathbb{E}_{ au \sim \pi} \left[R_t | s_t = s
ight]$$
 терминальное Состояние

А что если в s "принудительно" выбрать действие a, а только затем идти по политике π ?

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim \pi}\left[R_t | s_t = s, a_t = a
ight]$$

V-функция ценности:

Насколько хороша политика π , если начать в состоянии s?

$$V^{\pi}(s) = \mathbb{E}_{ au \sim \pi} \left[R_t | s_t = s
ight]$$
 терминальное Политика $\forall s$: — состояние

А что если в s "принудительно" выбрать действие a, а только затем идти по политике π ?

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim \pi}\left[R_t | s_t = s, a_t = a
ight]$$

V-функция ценности:

$oxed{\gamma^4}$	γ^3	γ^2	γ	1
s_0	s_1	s_2	s_3	s_4

Насколько хороша политика π , если начать в состоянии s?

А что если в s "принудительно" выбрать действие a, а только затем идти по политике π ?

$$Q^{\pi}(s,a) = \mathbb{E}_{ au \sim \pi}\left[R_t | s_t = s, a_t = a
ight]$$

В сложных средах считать неудобно!

V-функция ценности:

$\boxed{\gamma^4}$	γ^3	γ^2	γ	1
s_0	s_1	s_2	s_3	s_4

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma r(s_{t+1}, a_{t+1}) + \gamma^2 r(s_{t+2}, a_{t+2}) + \dots$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma \left(r(s_{t+1}, a_{t+1}) + \gamma r(s_{t+2}, a_{t+2}) + \ldots
ight)$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

$$V^{\pi}(s) = \mathbb{E}\left[R_t | s_t = s
ight]$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

$$V^{\pi}(s) = \mathbb{E}\left[r(s_t, a_t) + \gamma R_{t+1} | s_t = s
ight]$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(s' \mid s, a)} \mathbb{E}[R_{t+1} | s_{t+1} = s']
ight]$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(s'|s, a)} V^{\pi}(s')
ight]$$

Переформулирование *сложной* задачи в виде рекурсивной последовательности более *простых* задач.

Получим рекурсивное соотношение для кумулятивной награды R_t :

$$R_t = r(s_t, a_t) + \gamma R_{t+1}$$

Для V-функции:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(s'|s, a)} V^{\pi}(s')
ight]$$

$$Q^{\pi}(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot|s,a)} \mathbb{E}_{a' \sim \pi(\cdot|s')} Q^{\pi}(s',a')$$

Если в среде состояния никогда не повторяются, граф этого MDP будет деревом

Если в среде состояния никогда не повторяются, граф этого MDP будет деревом

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(s' \mid s, a)} V^{\pi}(s')
ight]$$

Уравнения Беллмана говорят, как посчитать ценность "задом наперед"

Связь Q и V функций

Выражение V через Q:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} Q^{\pi}(s,a)$$

Выражение Q через V:

$$Q^{\pi}(s,a) = r(s,a) + \mathbb{E}_{s' \sim p(\cdot|s,a)} V^{\pi}(s')$$

Как СЛАУ:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(s'|s, a)} V^{\pi}(s')
ight]$$

Как СЛАУ:

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^{\pi}(s')$$

Как СЛАУ:

$$V^\pi(s) = u(s) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^\pi(s')$$

Как СЛАУ:

$$V^\pi(s) = u(s) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^\pi(s')$$

Относительно V все линейно

$$V = U + \gamma PV$$

Как СЛАУ:

$$V^\pi(s) = u(s) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^\pi(s')$$

Относительно V все линейно

$$V = U + \gamma PV$$

$$(I - \gamma P)V = U$$

Как СЛАУ:

$$V^\pi(s) = u(s) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^\pi(s')$$

Относительно V все линейно

$$V = U + \gamma PV$$

$$(I - \gamma P)V = U$$

$$V = (I - \gamma P)^{-1}U$$

Как СЛАУ:

$$V^\pi(s) = u(s) + \gamma \mathbb{E}_{s' \sim p(s'|s)} V^\pi(s')$$

Относительно V все линейно

$$V = U + \gamma PV$$

$$(I - \gamma P)V = U$$

$$V = (I - \gamma P)^{-1}U$$

Дороговато будет!

Без учета $|\mathcal{A}|$ - уже $O(|\mathcal{S}|^3)$

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

Будет ли алгоритм сходиться?

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

Методом простой итерации:

$$V^{new} = F\left(V^{old}
ight)$$

$$F(V)_s = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} V_s
ight]$$

$$||F(V) - F(W)||_{\infty} =$$

$$= ||\gamma P(V-W)||_{\infty} \le$$

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} = ||F(V) - F(W)||_{\infty} = ||F(V) - F(W$$

$$= ||\gamma P(V - W)||_{\infty} \le \gamma ||P||_{\infty} ||V - W||_{\infty}$$

По норме-бесконечность:

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} =$$

$$= ||\gamma P(V-W)||_{\infty} \le \gamma ||P||_{\infty} ||V-W||_{\infty}$$

$$||P||_{\infty} = \max_{x:||x||_{\infty}=1} ||Px||_{\infty} =$$

По норме-бесконечность:

$$||F(V)-F(W)||_{\infty}=||U+\gamma PV-U-\gamma PW||_{\infty}=$$

$$= ||\gamma P(V-W)||_{\infty} \le \gamma ||P||_{\infty} ||V-W||_{\infty}$$

$$||P||_{\infty} = \max_{x:||x||_{\infty}=1} ||Px||_{\infty} = \max_{x:||x||_{\infty}=1} \max_i |\sum_j P_{ij}x_j|$$

По норме-бесконечность:

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} = ||F(V) - F(W)||_{\infty} = ||F(V) - F(W$$

$$= ||\gamma P(V-W)||_{\infty} \le \gamma ||P||_{\infty} ||V-W||_{\infty}$$

$$||P||_{\infty} = \max_{x:||x||_{\infty}=1} ||Px||_{\infty} = \max_{x:||x||_{\infty}=1} \max_i |\sum_j P_{ij}x_j|$$

По норме-бесконечность:

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} = ||F(V) - F(W)||_{\infty} = ||F(V) - F(W$$

$$= ||\gamma P(V - W)||_{\infty} \le \gamma ||P||_{\infty} ||V - W||_{\infty}$$

$$||P||_{\infty}=\max_{x:||x||_{\infty}=1}||Px||_{\infty}=\max_{x:||x||_{\infty}=1}\max_{i}|\sum_{j}P_{ij}x_{j}|$$
 $=\max_{i}|\sum_{j}P_{ij}|=1$ $x_{j}=\operatorname{sign}(P_{ij})$

По норме-бесконечность:

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} = ||F(V) - F(W)||_{\infty} = ||F(V) - F(W$$

$$= ||\gamma P(V-W)||_{\infty} \le \gamma ||P||_{\infty} ||V-W||_{\infty}$$

$$egin{align} ||P||_\infty &= \max_{x:||x||_\infty=1} ||Px||_\infty = \max_{x:||x||_\infty=1} \max_i |\sum_j P_{ij}x_j| \ &= \max_i |\sum_j P_{ij}| = 1 \ &x_j = \mathrm{sign}(P_{ij}) \end{gathered}$$

ЧТД:
$$||F(V) - F(W)||_{\infty} < ||V - W||_{\infty}$$

Алгоритм Policy Evaluation

- ullet инициализируем V(s) $\forall s$
- повторять:
 - $lacksquare \Delta = 0$
 - для всех s:

$$egin{aligned} &\circ v = V(s) \ &\circ V(s) = \mathbb{E}_{a \sim \pi(\cdot | s)} \left[r(s, a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s, a)} V(s')
ight] \ &\circ \Delta = \max \left(\Delta, |v - V(s)|
ight) \end{aligned}$$

ullet пока $\Delta > \epsilon$

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

$$V^*(s) = \max_{\pi} (\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^{\pi}(s')
ight])$$

$$V^*(s) = \max_{\pi_0,\pi_1,\dots}(\mathbb{E}_a\left[r(s,a) + \gamma \mathbb{E}_{s'} V^{\pi_1,\dots}(s')
ight])$$

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1,\dots} V^{\pi_1,\dots}(s')
ight]
ight)$$

$$\mathbb{E}_{a \sim \pi(\cdot|s)} y(s,a) o \max_{\pi}$$

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

$$egin{cases} \sum_i \pi_i y(s,a_i)
ightarrow \max_{\pi} \ \pi_i \geq 0 \ \sum_i \pi_i = 1 \end{cases}$$

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

$$egin{cases} \sum_i \pi_i y(s,a_i) o \max_{\pi} \ \pi_i \geq 0 \ \sum_i \pi_i = 1 \end{cases}$$
 Задача ЛП

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

$$egin{cases} \sum_i \pi_i y(s,a_i) o \max_\pi \ & \pi_i \geq 0 \ & ext{Задача } oldsymbol{\mathsf{\Pi}} \ & \sum_i \pi_i = 1 \end{cases}$$

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

Относительно π_0 решается задача вида:

$$egin{cases} \sum_i \pi_i y(s,a_i) o \max_{\pi} \ \pi_i \geq 0 \ \sum_i \pi_i = 1 \end{cases}$$
 Задача ЛП

Среди оптимальных политик всегда есть детерминированная (жадная)

V-функция для оптимальной политики:

$$V^*(s) = \max_{\pi_0} \left(\mathbb{E}_a \left[r(s,a) + \gamma \mathbb{E}_{s'} \max_{\pi_1, \dots} V^{\pi_1, \dots}(s')
ight]
ight)$$

Относительно π_0 решается задача вида:

$$egin{cases} \sum_i \pi_i y(s,a_i) o \max_{\pi} \ \pi_i \geq 0 \ \sum_i \pi_i = 1 \end{cases}$$
 Задача ЛП

Оптимальное уравнение Беллмана:

$$V^*(s) = \max_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')
ight])$$

Среди оптимальных политик всегда есть детерминированная (жадная)

Оптимальное уравнение Беллмана для V-функции:

$$V^*(s) = \max_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')
ight])$$

Оптимальное уравнение Беллмана для V-функции:

$$V^*(s) = \max_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')
ight])$$

Оптимальное уравнение Беллмана для Q-функции:

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q^*(s',a')$$

Оптимальное уравнение Беллмана для V-функции:

$$V^*(s) = \max_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')
ight])$$

Оптимальное уравнение Беллмана для Q-функции:

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q^*(s',a')$$

Выражение V^* через Q^* :

$$V^*(s) = \max_a Q^*(s, a)$$

Оптимальное уравнение Беллмана для V-функции:

$$V^*(s) = \max_a \left[r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')
ight])$$

Оптимальное уравнение Беллмана для Q-функции:

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} \max_{a'} Q^*(s',a')$$

Выражение V^* через Q^* :

$$V^*(s) = \max_a Q^*(s,a)$$

Выражение Q^* через V^* :

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{s'} V^*(s')$$

Опр.
$$\pi' \geq \pi$$
 если

$$V^{\pi'}(s) \geq V^{\pi}(s) \quad orall s$$

Опр. $\pi' \geq \pi$ если

$$V^{\pi'}(s) \geq V^{\pi}(s) \;\;\; orall s$$

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^\pi(s,a) > V^\pi(s)$$

Опр. $\pi' \geq \pi$ если

$$V^{\pi'}(s) \geq V^{\pi}(s) \;\;\; orall s$$

Наша стратегия обновления политики:

- ullet пусть $\exists s$ такой, что: $\exists a: Q^\pi(s,a) > V^\pi(s)$
- ullet тогда $\pi'(s):=a$, а во всех $ilde{s}
 eq s$ положим $\pi'(ilde{s})=\pi(ilde{s})$

Опр. $\pi' \geq \pi$ если

$$V^{\pi'}(s) \geq V^{\pi}(s) \;\;\; orall s$$

Наша стратегия обновления политики:

- ullet пусть $\exists s$ такой, что: $\exists a: Q^\pi(s,a) > V^\pi(s)$
- ullet тогда $\pi'(s):=a$, а во всех $ilde{s}
 eq s$ положим $\pi'(ilde{s})=\pi(ilde{s})$

В таком случае, $\pi' \geq \pi$ проверим

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^\pi(s,a) > V^\pi(s)$$

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^\pi(s,a) > V^\pi(s)$$

$$V^\pi(s) \leq Q^\pi(s,\pi'(s))$$

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^{\pi}(s,a) > V^{\pi}(s)$$

$$egin{aligned} V^\pi(s) & \leq Q^\pi(s,\pi'(s)) \ & = r(s,\pi'(s)) + \mathbb{E}_{s'}V^\pi(s') \leq \end{aligned}$$

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^\pi(s,a) > V^\pi(s)$$

$$egin{aligned} V^{\pi}(s) & \leq Q^{\pi}(s,\pi'(s)) \ & = r(s,\pi'(s)) + \mathbb{E}_{s'}V^{\pi}(s') \leq \ & \leq r(s,\pi'(s)) + \mathbb{E}_{s'}Q^{\pi}(s',\pi'(s')) \leq \end{aligned}$$

Наша стратегия обновления политики:

ullet пусть $\exists s$ такой, что:

$$\exists a: Q^{\pi}(s,a) > V^{\pi}(s)$$

$$V^\pi(s) \leq Q^\pi(s,\pi'(s))$$
 $= r(s,\pi'(s)) + \mathbb{E}_{s'}V^\pi(s') \leq$ ЧТД $\leq r(s,\pi'(s)) + \mathbb{E}_{s'}Q^\pi(s',\pi'(s')) \leq$ $< \dots < V^{\pi'}$

Алгоритм Policy Iteration

- ullet инициализируем $V(s), \; \pi(s) \; \; orall s$
- ullet оценить V для политики π методом PE
- stop = True
- для всех *s*:
 - $lacksquare a = \pi(s)$
 - $lacksquare \pi(s) = rg \max_a [r(s,a) + \mathbb{E}_{s'}V(s')]$
 - lacktriangle если $a
 eq \pi(s)$:
 - \circ stop = False
- если не stop

Алгоритм Value Iteration

- ullet инициализируем V(s) $\forall s$
- повторять:
 - $lacksquare \Delta = 0$
 - для всех s:

$$egin{aligned} \circ \ v &= V(s) \ \circ \ V(s) &= \max_a \left[r(s,a) + \gamma \mathbb{E}_{s' \sim p(\cdot | s,a)} V(s')
ight] \end{aligned}$$

$$|\circ| \Delta = \max\left(\Delta, |v-V(s)|\right)$$

ullet пока $\Delta > \epsilon$

Пример Value Iteration

дружественная рыбка + 1

вражеский кот - 1