ECM405 - Sistemas de Controle

Projeto de Controladores

01. Considere o sistema de retroação unitária da Figura 1.

Figura 1

O sistema sem compensação possui margem de fase de aproximadamente 33° e sua resposta em freqüência em malha aberta é mostrada na Tabela 1.

Tabela 1

ω	$ig G(j\omega) ig $	$ig G ig(j \omega ig) ig _{dB}$	$\angle G(j\omega)$
0.4000	46 6366	24.4242	04.7746
0.1000 0.1065	16.6366 15.6106	24.4213 23.8684	-94.7716 -95.0835
0.1296	12.8203	22.1580	-96.1817
0.1577	10.5238	20.4435	-97.5158
0.1918	8.6327	18.7229	-99.1356
0.2333	7.0743	16.9936	-101.1005
0.2838	5.7885	15.2513	-103.4807
0.3452	4.7261	13.4900	-106.3584
0.4200	3.8464	11.7011	-109.8277
0.5109	3.1161	9.8722	-113.9930
0.6214	2.5079	7.9861	-118.9645
0.7560	1.9998	6.0196	-124.8490
0.9196	1.5744	3.9421	-131.7347
1.0000	1.4142	3.0103	-135.0000
1.1186	1.2184	1.7156	-139.6688
1.3608	0.9222	-0.7036	-148.6297
1.6553	0.6791	-3.3611	-158.5021
2.0136	0.4843	-6.2978	-169.0645
2.4495	0.3333	-9.5424	-180.0000
2.9797	0.2212	-13.1054	-190.9355
3.6247	0.1416	-16.9764	-201.4979
4.4092	0.0878	-21.1266	-211.3703
5.3636	0.0530	-25.5151	-220.3312
6.5246	0.0313	-30.0963	-228.2653
7.9369	0.0181	-34.8264	-235.1510
9.6549	0.0104	-39.6676	-241.0355
10.0000	0.0094	-40.5446	-241.9908

Projeto de Controladores no Domínio da Frequência

Deseja-se projetar um controlador em atraso de fase, com base na resposta em freqüência listada na Tabela 1, que promova uma margem de fase de 50° ao sistema em malha fechada. Assumese que o ganho DC atende às especificações da resposta temporal em baixas freqüências.

- a) Determine a condição relativa à fase do sistema sem compensação em malha aberta que deve ser satisfeita pela frequência de projeto $\omega_{\rm l}$. Indique na Tabela 1 a linha correspondente a esta fregüência.
- **b)** Projete o controlador de atraso de fase, dado por $G_c(s) = \frac{1 + s/\omega_0}{1 + s/\omega_p}$.
- **02.** Repita o projeto utilizando um compensador avanço-atraso que promova a mesma margem de fase anterior, com tempo de assentamento ao redor de 5 segundos.