

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicants : YAMADA et al.

Serial No. : 10/514,411

Filed: November 15, 2004

For : PHOTOSENSITIVE RESIN COMPOSITION FOR FORMING

A LASER ENGRAVABLE PRINTING ELEMENT

Art Unit: 1752

Examiner : Connie P. Johnson

DECLARATION UNDER 37 C.F.R. 1.132

I, Hiroshi Yamada, a Japanese citizen residing at 2-9-13 Koubaracho, Mishima-shi, Shizuoka-ken, Japan, declare and say:

In March 1989, I obtained a doctorate from Tokyo Institute of Technology.

In April 1989, I entered Asahi Kasei Kabushiki Kaisha. Since then, I have been engaged in research and development of resin compositions.

I am well familiar with the present case.

I read and understood the Office Action dated Janu-

ary 30, 2009 and references cited therein.

I have made observations on the disclosure of the document "Asahi Glass" (Asahi Glass Company's online catalog for SUNSPHERE series silica particles) and Cushner (U.S. Patent No. 5,798,202), with reference to U.S. Patent No. 5,281,467, U.S. Patent No. 5,771,431, Japanese patent Application Laid-Open Specification No. Hei 9-104167 and Japanese patent Application Laid-Open Specification No. Sho 55-051583. The observations are described in a paper attached hereto and marked "Exhibit 5", and the above-mentioned patent documents are attached hereto and marked "Exhibit 6", "Exhibit 7", "Exhibit 8" and "Exhibit 9", respectively..

From the observations of Exhibit 5 and Exhibits 6 to 9, it can be fairly concluded:

- (1) that, Asahi Glass only discloses a "coated printing paper" which is a paper having a resin coating on the surface thereof and has no description about "coating printed materials" mentioned at page 10, line 6 of the Office Action dated January 30, 2009 (Observation 1 of Exhibit 5 and Exhibits 6 to 9);
- (2) that, in Cushner and the present application, a laser engravable "printing element" is a cured resin composition used as a base material for a printing plate, and a "printing plate" is a resin plate which has a relief pattern formed thereon by laser engraving and which is used for

transferring an image to a substrate (such as a printing paper) (Observation 1 of Exhibit 5);

- (3) that, therefore, a "printing element" is neither a printed material nor a generic term used to express any printing material, such as a printing paper (Observation 1 of Exhibit 5);
- (4) that, Asahi Glass describes four specific utilities of SUNSPHERE silica particles as a resin filler, and all four utilities are applicable to a "filler for coating printing paper", namely a filler added to a resin composition for coating a paper (Observation 2 of Exhibit 5 and Exhibits 6 to 9);
- (5) that, however, none of the four specific utilities of SUNSPHERE silica particles as a resin filler are applicable to a reinforcing agent in a resin composition for forming a printing element (Observation 2 of Exhibit 5); and
- (6) that, therefore, Asahi Glass only discloses the use of silica particles in the coated printing paper and has no teaching or suggestion about the use of silica particles as a reinforcing agent in a resin composition for forming a laser engravable printing element (Conclusion of Exhibit 5).

The undersigned petitioner declares that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be

true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: April 8, 2009

Hirokhi Yamada

Hirshi Jamada

Observations on the disclosure of the document "Asahi Glass" (Asahi Glass Company's online catalog for SUNSPHERE series silica particles) and Cushner (U.S. Patent No. 5,798,202), with reference to U.S. Patent No. 5,281,467, U.S. Patent No. 5,771,431, Japanese patent Application Laid-Open Specification No. Hei 9-104167 and Japanese patent Application Laid-Open Specification No. Sho 55-051583

1. OBJECT OF THE OBSERVATION

In the Office Action dated January 30, 2009, the Examiner states that the use of specific silica particles of Asahi Glass (Asahi Glass Company's online catalog for SUN-SPHERE series silica particles) in the composition of Cushner (U.S. Patent No. 5,798,202) is obvious to a skilled person. Specifically, the Examiner states as follows.

"It would have been obvious to one of ordinary skill in the art to use the SUNSPHERE particles in the composition of Cushner because Asahi Glass teaches that the particles are conventionally used as a resin filler." (emphasis added) (see page 3, lines 5-7 of the Office Action)

"it is obvious that although the SUNSPHERE and SY-LOSPHERE particles have features associated with cosmetics, the <u>particles also have applications in coating printed materials</u>. <u>Laser engravable printing plates are printed materials</u>." (emphasis added) (see page 10, lines 4-7 of the Office Action)

As apparent from the above-quoted descriptions of the Office Action, the Examiner's reasons for rejection is based on contentions that (1) the description on the utility of SUNSPHERE silica particles as a resin filler teaches the use of silica particles as a reinforcing agent in a resin composition for forming a laser engravable printing element, and that '(2) Asahi Glass teaches the use of silica particles in a "printing material", including a laser engravable printing element.

According to Cushner, a reinforcing agent, such as silica, is used to improve laser engravability and mechanical properties, such as tensile strength, abrasion and tear resistance, hardness and toughness of the printing element (see col.5, lines 12-14 and 20-22 of Cushner). However, Asahi Glass has no teaching or suggestion about the above-mentioned improvements imparted by the addition of silica particles. Specifically, Asahi Glass only discloses the use of silica particles as a "filler for coated printing paper", namely the filler for a resin composition used for coating a paper. Further, the four specific utilities of a resin filler described in Asahi Glass are (1) surface smoothing, (2) improving fluidity, (3) anti-blocking, and as a (4) moisture absorbent; but none of the utilities (1) to (4) are applicable to a reinforcing agent in a resin composition for forming a printing element. Therefore, Asahi Glass has no teaching or

suggestion about the application of silica particles in a resin composition for forming a laser engravable printing element.

In order to substantiate this, observations on Asahi
Glass and Cushner are made with reference to the following
prior art documents which are attached hereto as Exhibit 6 to
Exhibit 9:

Exhibit 6: U.S. Patent No. 5,281,467;

Exhibit 7: U.S. Patent No. 5,771,431;

Exhibit 8: Japanese patent Application Laid-Open Specification No. Hei 9-104167 and a partial English translation thereof; and

Exhibit 9: Japanese patent Application Laid-Open Specification No. Sho 55-051583 and a partial English translation thereof.

2. OBSERVATIONS

Observation 1: Coated printing paper

SUNSPHERE of Asahi Glass is spherical microporous silica particles having the following utilities:

"SUNSPHERE is used for cosmetics, catalyst support, film, synthetic leather, and as a matting agent for paint. Moreover, as a filler for coated printing paper, it adds new unique expressive potential." (emphasis added) (see page 1 of Asahi Glass)

The above-quoted description of Asahi Glass teaches that

SUNSPHERE silica particles are suitable as a filler for a coated printing paper. The definition of a "coated printing paper" is apparent from the following descriptions found in Exhibit 6 to Exhibit 9 attached hereto.

"1. A method of using calcium carbonate-compounded silica to provide ink jet recording <u>paper</u> which comprises <u>cast coating</u> a pigment-containing coating composition and cationic <u>polymer</u> onto at least one surface of <u>paper</u>," (emphasis added) (see claim 1 of Exhibit 6)

"The conventional thermal transfer image-receiving sheet for such sublimation thermal transfer recording is generally produced through wet-coating of a plurality of resin layers on a base, such as common paper, synthetic paper, or suitable synthetic resin sheets," (emphasis added) (see col.2, lines 5-8 of Exhibit 7)

"[Claim 1] A paper for ink jet recordable, pressure sealable postcard which is a base paper characterized by the coating layers provided on the surface thereof, " (emphasis added) (see claim 1 of Exhibit 8)

"1. An ink jet recordable paper which is a base paper having a coating layer formed thereon, wherein the coating layer comprises a powdery non-colloidal silica and a polymeric binder." (emphasis added) (see claim 1 of Exhibit 9)

It is apparent from the above-quoted descriptions that a "coated printing paper" is a paper having a resin coating

formed on the surface thereof. Such a coating is provided for improving various properties of paper explained in Observation 2 below. Accordingly, "a filler for coated printing paper" is a filler for a resin coating formed on the paper. A "coated printing paper" having a filler-containing coating is illustratively shown in the following FIG. A.

FIG. A

In this connection, it should be noted that Asahi Glass has no description about "coating printed materials" mentioned at page 10, line 6 of the Office Action. Specifically, a printed material is a material having a printed image formed thereon, but a printing paper is simply a paper used for printing an image thereon.

Further, the printing paper is <u>not</u> a printing element. The terms "printing <u>element"</u> and "printing <u>plate"</u> are well-defined technical terms, and the definitions of these terms

are apparent from the following descriptions found in Cushner and the present specification.

"This invention relates to a process for making a single layer flexographic printing plate which comprises

- (a) reinforcing an elastomeric layer situated on top of a flexible support to produce a laser engravable flexographic printing element ...; and
- (b) <u>laser engraving the laser engravable element</u> of step (a) with at least one preselected pattern to produce a laser engraved flexographic <u>printing</u> <u>plate</u>" (emphasis added) (see col.1, lines 51-65 of Cushner).

"In the present invention, the term "laser engravable printing element" means a <u>cured resin material</u> which is used as a <u>base material of a printing</u> <u>plate</u>, namely a cured resin material on which a desired image will be formed by laser engraving." (emphasis added) (see page 21, line 21 to page 22, line 1 of the present specification).

As apparent from the above-quoted descriptions, in Cushner and the present application, a laser engravable printing element is a cured resin composition used as a base material for a printing plate, and a printing plate is a resin plate which has a relief pattern formed thereon by laser engraving and which is used for transferring an image to a substrate (such as a printing paper). The differences between the printing element, the printing plate and the coated printing paper are illustratively shown in the following FIG. B.

FIG. B

As apparent from the explanation above, a "printing element" is <u>neither</u> a printed material <u>nor</u> a generic term used to express any printing material, such as a printing paper. Therefore, Asahi Glass which only discloses the application of silica particles in the coated <u>printing paper</u> has no teaching or suggestion about the printing element or the printing plate.

Observation 2: Utility of silica particles as a resin filler

As explained above, Asahi Glass teaches the use of silica particles as a <u>resin filler</u> for a "coated printing paper" (see page 1 of Asahi Glass). In this connection, the following description is also found in Asahi Glass:

"- Resin Filler:

Used for <u>surface smoothing</u> and <u>improved fluidity</u>, <u>anti-blocking</u>, and as <u>moisture absorbent</u>." (emphasis added) (see page 7, left column of Asahi Glass)

The above-quoted description of Asahi Glass teaches that SUNSPHERE silica particles used as a resin filler have the following four specific utilities: (1) surface smoothing, (2) improving fluidity, (3) anti-blocking, and as a (4) moisture absorbent. As explained in detail below, all of the abovementioned utilities (1) to (4) are applicable to a "filler for coated printing paper", but are not applicable to a reinforcing agent in a resin composition for forming a printing element.

(1) Use of resin filler for surface smoothing

In the field of ink jet recording, for obtaining a clear and bright recorded image, there is a demand for papers having improved smoothness and gloss. For obtaining such a paper, Exhibit 6 describes a method in which a coating comprising silical particles and a cationic polymer is cast coated on at least one surface of a paper (see col.1, lines 36-37; col.2, lines 45-54; and claim 1 of Exhibit 6).

On the other hand, addition of silica particles to a resin composition for forming a printing element may result in <u>lowering</u> of the surface smoothness of the printing element. Specifically, the smoothness of the printing element may become lowered by the silica particles exposed at the surface of the printing element and by the pits formed by chipping off of the exposed silica particles (see page 50, lines 5-12 of the present specification).

As apparent from the explanation above, SUNSPHERE silica particles cannot be used for <u>surface smoothing</u> of the printing element of Cushner.

(2) Use of resin filler for improving fluidity

According to Asahi Glass, SUNSPHERE silica particles are capable of "freely rolling over" (see page 2, 1st paragraph of Asahi Glass) and, therefore, exhibit improved fluidity as compared to conventional silica particles. Utility of such

silica particles are apparent from the following description found in Exhibit 7.

In order to improve the fluidity of the powdery coating composition, a so-called fluidity improving agent, such as hydrophobic silica, may be added to the composition, if desired. (emphasis added) (see col.7, lines 21-24 of Exhibit 7).

The above-quoted descriptions of Exhibit 7 clearly teach that silica particles are conventional <u>fluidity improving</u>

<u>agent</u> for <u>powdery coating compositions</u>. The improved fluidity of a powdery coating composition is advantageous for uniformly applying the coating composition onto the surface of a paper.

On the other hand, in Cushner, the printing element is not made by applying a powdery resin composition onto a substrate. Specifically, Cushner uses a thermoplastic elastomer which fluidizes upon heating and, therefore, a thermoplastic resin composition in a molten state is advantageous for producing a printing element having uniform thickness by extrusion and calendering (see col.8, lines 7-11; and col.12, lines 30-34 and Example 1 of Cushner). When silica particles are added to a molten resin composition, the viscosity of the resin composition will be increased, thereby lowering the fluidity of the resin composition.

As apparent from the explanation above, the utility of silica particles for improving fluidity is limited to the use

in a <u>powdery</u> resin composition. Therefore, SUNSPHERE silica particles can<u>not</u> be used for improving fluidity of a resin composition for forming the printing element of Cushner.

(3) Use of resin filler for anti-blocking

"Blocking" is a sticking of papers resulting from an excess pressure applied to coated papers, for example, during the storage thereof. For preventing the occurrence of blocking, Exhibit 8 discloses an adhesive layer comprising a cationic resin and silica particles (see col.6, para. [0021] of Exhibit 8). For the easy understanding of the Examiner, the occurrence of blocking and the anti-blocking effect of silical particles are illustratively shown in the following FIG. C.

FIG. C

As shown in FIG. C above, the silica particles used as a resin filler decreases the area of contact between papers and,

therefore, exhibits an anti-blocking effect.

On the other hand, as explained in Observation 1 above, a laser engravable printing element is a cured resin composition and <u>not</u> a printing <u>paper</u>. Therefore, blocking is not a problem accompanying a printing element.

(4) Use of resin filler as a moisture absorbent

In the field of ink jet printing, for obtaining a high resolution image and achieving a high recording speed, it is important that the paper is capable of rapidly absorbing and retaining an ink applied thereto. Exhibit 9 discloses the use of silica particles as a moisture absorbent added to the coating formed on a paper. Specifically, Exhibit 9 discloses a paper having a coating layer which comprises a powdery non-colloidal silica and a polymeric binder (resin). The silica in the coating layer is highly hydrophilic and rapidly absorbs ink so that the ink is retained in the coating layer. This results in a large enhancement of the apparent ink drying speed of the recording paper (see claim 1; and page 444, column 6, lines 14-16 of Exhibit 9).

On the other hand, as explained in Observation 1 above, a laser engravable printing element is a cured resin composition and <u>not</u> a printing <u>paper</u>. Therefore, moisture absorption for improving the recording speed is not a problem accompanying a printing element.

3. CONCLUSION

From the item "2. OBSERVATION" above, it is apparent that Asahi Glass only discloses a "coated printing paper" which is a paper having a resin coating on the surface thereof and has no description about "coating printed materials" mentioned at page 10, line 6 of the Office Action dated January 30, 2009. Further, in Cushner and the present application, a laser engravable "printing element" is a cured resin composition used as a base material for a printing plate, and a "printing plate" is a resin plate which has a relief pattern formed thereon by laser engraving and which is used for transferring an image to a substrate (such as a printing paper). Therefore, a "printing element" is neither a printed material nor a generic term used to express any printing material, such as a printing paper.

In addition, Asahi Glass describes four specific utilities of SUNSPHERE silica particles as a resin filler, and all four utilities are applicable to a "filler for coating printing paper", namely a filler added to a resin composition for coating a paper. However, none of the four specific utilities of SUNSPHERE silica particles as a resin filler are applicable to a reinforcing agent in a resin composition for forming a printing element.

Therefore, it can be fairly concluded that Asahi Glass only discloses the use of silica particles in the coated

printing paper and has no teaching or suggestion about the use of silica particles as a reinforcing agent in a resin composition for forming a laser engravable printing element.

Japanese patent Application Laid-Open Specification

No. Hei 9-104167 and a partial English translation thereof

1. Page 2, column 1, Claims:

[Claims]

[Claim 1] A paper for ink jet recordable, pressure sealable postcard which is a base paper characterized by the coating layers provided on the surface thereof, wherein at least one surface of said base paper comprises an adhesive layer for a pressure sealable postcard as an outermost layer thereof and a cationic coating layer below said adhesives layer.

[Claim 2] The paper for ink jet recordable, pressure seal-able postcard according to claim 1, wherein one surface of said base paper comprises an adhesive layer for a pressure sealable postcard as an outermost layer thereof and a cationic coating layer below said adhesives layer; and wherein the opposite surface of said base paper comprises another cationic coating layer.

[Claim 3] The paper for ink jet recordable, pressure seal-able postcard according to claim 1, wherein one surface of said base paper comprises an adhesive layer for a pressure sealable postcard as an outermost layer thereof and a cationic coating layer below said adhesives layer; and wherein the opposite surface of said base paper comprises an ink jet

recording layer as an outermost layer thereof and another cationic coating layer below said ink jet recording layer.

[Claim 4] The paper for ink jet recordable, pressure sealable postcard according to any one of claims 1 to 3, wherein said cationic coating layer is a cationic resin layer made of epihalohydrin resin.

[Claim 5] The paper for ink jet recordable, pressure sealable postcard according to any one of claims 1 to 4, wherein said cationic resin layer made of epihalohydrin resin is formed using a coating liquid comprising at least one resin selected from the group consisting of a polyamide-epichlorohydrin resin, a polyamine-epichlorohydrin resin, and a polyamide-polyamine-epichlorohydrin resin.

[Claim 6] The paper for ink jet recordable, pressure sealable postcard according to any one of claims 1 to 3, wherein said adhesive layer consists essentially of an adhesive agent and a filler, said filler consisting essentially of silica having a specific surface area of from 10 to 100 $\rm m^2$ and an oil absorption value of not more than 100 $\rm ml/100$ g.

[Claim 7] The paper for ink jet recordable, pressure sealable postcard according to any one of claims 1 to 3, wherein said cationic coating layer is a cationic resin layer made of cationic dicyandiamide resin.

2. Page 4, column 6, paragraph [0021]:

[0021] The adhesive layer, which is the outermost layer of at least one surface of the base paper, can be formed using an adhesive agent which is not adherent under normal conditions, but becomes adherent when high pressure is applied thereto. Natural rubber latex, synthetic rubber (e.g., NBR or SBR) latex and acrylic latex can be used as a main component of the adhesive agent, and the natural rubber latex having excellent balance of various properties is especially preferred. A filler added to a pressure sensitive adhesive agent can be selected from conventional materials, such as kaolin, talc, calcium carbonate, silica, aluminum hydroxide, a plastic pigment, and grain-derived starch particles (such as wheat flour). The above-mentioned adhesive agent and a filler or grain derived starch particles are used in combination with a desired additive (such as an anti-aging agent or an UV absorber) to impart excellent properties to the paper by a conventional method. The produced paper is free from blocking during storage and exhibits excellent bonding strength. A pressure sealable postcard made from such a paper is detachable by applying an appropriate force to thereby read the confidential information written on the postcard, and the detached paper cannot be sealed by a conventional method.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-104167

(43)公開日 平成9年(1997)4月22日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
B41M	5/0 0			B41M	5/00	В	
B 4 2 D	15/02	501		B42D	15/02	501B	
D21H	27/00			D21H	5/00	В	

		審查請求	未請求 請求項の数7 FD (全 7 頁)
(21)出願番号	特顧平8-220723	(71)出顧人	000225049 特種製紙株式会社
(22)出願日	平成8年(1996)8月3日	(72)発明者	静岡県駿東郡長泉町本宿501番地 平澤 智樹
(31)優先權主張番号	特顧平7-219489		静岡県駿東郡長泉町本宿501番地 特種製
(32) 優先日	平7 (1995) 8月4日		紙株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	萩原 清次
			静岡県駿東郡長泉町本宿501番地 特種製
			紙株式会社内

(54) 【発明の名称】 インクジェット記録用圧着業書用紙

(57)【要約】

【目的】 用紙を保存中にブロッキングを起こさず、圧 着強度が良好で、圧着後適度の力で剥離でき親展情報を 読み取ることができ、通常の方法では再接着出来ない等 の圧着葉書用紙としての基本的な要求性能を満たし、か つインクジェット記録を行った場合に画像の耐水性が良 好な圧着葉書用紙。

【構成】 基紙の少なくとも一方の面の最外層を圧着葉 費用の接着剤層とし、かつ該接着剤層の下層にカチオン 性の塗工層を形成する。

【効果】 アニオン性のインクジェット記録用インクは 接着削層の下層に設けられたカチオン性の塗工層に浸透 することで固着され耐水性を発現する。

40

1

【特許請求の範囲】

【請求項1】 基紙の少なくとも一方の面の最外層が圧 着葉曹用の接着剤層であり、かつ該接着剤層の下層にカ チオン性の塗工層が形成されていることを特徴とするイ ンクジェット記録用圧着葉書用紙。

【請求項2】 基紙の一方の面の最外層が圧着葉費用の接着削層であり、かつ該接着削層の下層にカチオン性の 塗工層が形成され、他の面がカチオン性の塗工層である 請求項1記載のインクジェット記録用圧着葉費用紙。

【請求項3】 基紙の少なくとも一方の面の最外層が圧 10 着葉書用の接着剤層であり、かつ該接着剤層の下層にカチオン性の塗工層が形成され、他の面の最外層がインクジェット記録層であり、かつ該インクジェット記録層の下層にカチオン性の塗工層が形成されている請求項1記載のインクジェット記録用圧着葉書用紙。

【請求項4】 カチオン性の塗工層がエピハロヒドリン系のカチオン樹脂層である請求項1~3のいずれか1項に記載のインクジェット記録用圧着葉書用紙。

【請求項5】 エピハロヒドリン系のカチオン性樹脂層がポリアミドエピクロルヒドリン樹脂、ポリアミンエピ 20 クロルヒドリン樹脂、ポリアミンエピクロルヒドリン樹脂のいずれか1種類以上を含む塗工液で形成された請求項1~4のいずれか1項に記載のインクジェット記録用圧着葉費用紙。

【請求項6】 接着削層が接着剤と填料を主体として形成され、填料が比表面積10~100m²でかつ吸油量が100m1/100g以下のシリカを主体としたものである請求項1~3のいずれか1項に記載のインクジェット記録用圧着葉費用紙。

【請求項7】 カチオン性の塗工層がジシアンジアミド 30 系のカチオン樹脂層である請求項1~3のいずれか1項 に記載のインクジェット記録用圧着葉書用紙。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はアニオン性のインクを使用してインクジェット記録方式で情報を記録した後に、水滴などの影響により記録部分のインクがにじみ出ることのない等の優れた性能を有するインクジェット記録用 圧着葉費用紙に関するものである。

[0002]

【従来の技術】ノンインパクト記録法は記録時の騒音の発生が無いという利点から活発な開発が行われている。その中でも高速記録が可能でカラー化も容易なインクジェット記録法の技術的な進歩は著しい。インクジェット記録法はインクを色々な手段で無数の液滴として飛翔させ記録シートに付着させて記録を行うものである。またインクジェット記録用のインクには、印字ヘッドの保守の簡便さからアニオン性の直接染料若しくは酸性染料を使用する場合がほとんどである。

【0003】インクジェット記録用シートには種々の性 50

能が要求されるが、その中の一つに耐水性がある。具体的には文字や画像の記録部分のインクが水滴などの影響で溶出し、にじみ出ないことが要求され、これを解決するために記録層にカチオン性物質を併用し耐水性を付与する技術が多数提案されている。これらはいずれもアニオン性のインクジェット記録用インクをカチオン性物質により水に溶け難くするということを基本原理としている。

【0004】例えば、特開昭53-49113号にはポ リエチレンイミンを併用することが、特開昭55-53 591号には金属の水溶性塩を表面に付与することが、 特開昭56-84992号にはポリビニルピリジウムブ ロマイド、ポリエチレンイミンを併用することが、特開 昭59-20696号にはジメチルジアリルアンモニウ ムクロライドを併用することが、特開昭59-1981 86号にはポリエチレンイミン有機酸塩を併用すること が、特開昭60-11389号(特公平2-32152 号)には特定の塩基性オリゴマーを含有させることが、 特開昭60-260377号(特公平5-61109 号)にはカチオン性コロイダルシリカを含有させること が、特開昭60-49990号にはポリアルキレンポリ アミンジシアンジアミドアンモニウム塩縮合物を併用さ せることが、特開昭60-76386号には特定のポリ エチレンイミン第4級アンモニウム化合物を併用させる ことが、特開昭63-49478号(特公平7-452 57号)には特定の第4級アンモニウム塩型高分子電解 質を含有させることが、特開昭63-183873号 (特公平7-57553号) には特定のポリビニルアル コールと耐水化剤を含有させることが、特開昭63-2 74583号(特公平7-2429号)には特定のジア ルカノールアミノ変性アルキレングリコール誘導体を含 有させることが、特開平1-75281号(特公平6-92191号) にはアクリルアミドとジアリルジメチル アンモニウムクロライドと主要モノマーとするアクリル アミド・ジアリルジメチルアンモニウムクロライド共重 合体を含有させることが、特開平6-92012号には 2級アミンとエピハロヒドリンとを反応させて得られる カチオン性樹脂を含有させることがそれぞれ記載されて いる。

【0005】一方封書に代わる「圧着葉書」と呼ばれる ものが郵送コストの低減を目的に多方面で利用されつつ ある。この構成の一例に、基紙に圧力により接着可能な 再剥離型の感圧接着剤を塗布した用紙を用い、親展情報 を印字した後に2つ折り若しくは3つ折り等に折り畳ん で加圧ロール間に通して親展面同士を接着し、葉書大に 切断して葉書を製造する方法がある。受取人は葉書を受 け取った後に接着された親展面を剥離して親展情報を読 み取る。剥離した後は通常の方法では再接着できない工 夫をしており親展性を確保している。

【0006】この圧着葉費には種々の方法が提案されて

【0007】また特開平7-18232号には、支持体シートの少なくとも片面の一部に、ラテックスから成る感圧接着剤と、この感圧接着剤に対して非親和性を示す2種類以上の微粒子充填剤と、前記感圧接着剤と微粒子充填剤との両者に対して親和性を有する変性ポリビニルアルコールとからなる疑似接着剤の層を設けた情報担体用シートが提案されている。

【0008】これらの圧着葉書用紙は静電記録方式(電 20子写真方式)のプリンタを対象にして開発されたものであり、また現在実用化されているものはすべて静電記録方式のプリンタを使用して情報の出力を行っている。静電記録方式は記録ドラム表面に静電気を利用してトナーからなる文字や画像を形成し、これを記録用紙表面に転写後に加熱ロール間を通過させ、熱をかけてトナーに含まれる樹脂を溶融させ用紙に定着させる。加熱ロールはトナーのロールへの付着を防ぐためにその表面にシリコンオイルを連続的に供給する。

【0009】本発明者らは前述の静電記録方式に対応し 30 た実用化されている圧着葉書用基紙にアニオン性のインクを使用したインクジェット記録方式で記録を行い画像の耐水性を検討した。その結果、水の影響でインクのにじみを生じ、著しく耐水性が劣ることを見い出した。これは配達途中で雨に濡れる可能性の高い葉書では致命的な欠点となる。また印字後、圧着して再剥離すると印字部分が片側の紙面に転写して紙面を汚してしまい文字の判読を困難にしてしまうという別の問題点もあることが判った。

【0010】本発明者らはこれら欠点を解決する目的で 40 圧着葉書用基紙に使用する接着剤に前記した種々の耐水性を向上させる物質を添加しさらに検討を進めたが、添加する物質の種類によっては塗工液がゲル化してしまい塗工が不可能となったり、塗工可能なものであっても耐水性が劣ったり耐光性が劣ることを見いだした。

【0011】この原因はよく判らないが本発明者らは以下の理由によるものと推定した。通常のインクジェット 記録用紙はインクの保持性を良好とさせるために填料の 接着剤に対する比率を大きくしている。これに対し圧着 葉普用紙は接着力を発現させるために填料の接着剤に対 50

する比率を小さくせざるを得ず、そのため必然的にイン クの保持性は低下する。また通常耐水性を向上させたイ ンクジェット記録用紙はイオン性のない、例えばデンプ ンやポリビニルアルコール等の接着剤を使用している。 従ってこれらの接着剤と填料を主成分とする塗工液にカ チオン性物質を併用しても塗工液はゲル化しない。しか しこれら接着剤は高い圧力によっても接着する性質を持 っていないので圧着葉書用の接着剤としては使用できな い。現在実用化されている圧着葉書用の接着剤はすべて アニオン性のものを主体として使用しており、カチオン 性の耐水化剤と併用すると塗工液がゲル化してしまう。 【0012】本発明はこれらの問題点を解決することを 課題とするものである。具体的には圧着葉書用紙として の諸性能、即ち用紙を保存中にブロッキングを起こさ ず、圧着強度が良好で、圧着後適度の力で剥離でき親展 情報を読み取ることができ、通常の方法では再接着出来 ない等の圧着葉書用紙としての基本的な要求性能を満た し、かつインクジェット記録を行った場合に画像の耐水 性が良好で、好ましくは剥離した他の面への画像の転写 が無い圧着葉書用紙を得ることを課題とする。

[0013]

【課題を解決するための手段】本発明者らは発想を転換し従来に無い構成の用紙で検討を進めた。具体的には基紙の最外層に形成する圧着葉費用の接着剤層の下層にインクを固定する層を設ければ上記問題点が解決できるとの発想である。本発明者らはこの発想のもとで種々検討を進めた結果、カチオン性の塗工層を、最外層に形成する圧着葉費用の接着剤層の下塗り層に設けることで上記課題を解決できることを見い出し本発明を完成させたものである。

【0014】即ち本発明は基紙の少なくとも一方の面の 最外層が圧着葉書用の接着剤層であり、かつ該接着剤層 の下層にカチオン性の塗工層が形成されていることを特 徴とするインクジェット記録用圧着葉書用紙である。 【0015】かに本発明を詳細に説明する。本発明に使

【0015】次に本発明を詳細に説明する。本発明に使 用する基紙は、通常針葉樹晒クラフトパルプ(NBK P)、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒 サルファイトパルプ (NBSP) などの製紙用パルプ を、300~600m1C.S.F. に叩解し、これに クレー、カオリン、炭酸カルシウム、二酸化チタン等の フィラー、澱粉、PVA、ポリアクリルアマイドなどの 紙力増強剤、メラミン樹脂、尿素樹脂、ポリアミド・エ ピクロルヒドリン、ポリアクリルアミド等の湿潤紙力増 強削、ロジン系サイズ剤、アルキルケテンダイマー系サ イズ剤等のサイズ剤、蛍光増白剤、着色染顔料、定着剤 などを適宜添加し、円網抄紙機や長網抄紙機などの公知 の抄紙機を使用して常法に基づき、通常40~150g /m²で抄紙することで製造する。なお本発明の用紙 は、基紙抄紙途中でサイズプレス装置等で、サイズ剤、 紙力増強剤などを塗工することも適宜行うことができ

5

る。またその表面に平滑性を向上するための填料とバインダーからなる**塗工層を**設けることもできる。

【0016】本発明のカチオン性の墜工層とは、前述した種々のカチオン性物質を墜工した層を意味し、公知のカチオン性物質をいずれも使用できる。即ち、ポリエチレンイミン、金属の水溶性塩、ポリビニルピリジウムプロマイド、ジメチルジアリルアンモニウムクロライド、ポリエチレンイミン有機酸塩、カチオン性コロイダルシリカ、第4級アンモニウム塩型高分子電解質、ジアルカノールアミノ変性アルキレングリコール誘導体、アクリ 10ルアミド・ジアリルジメチルアンモニウムクロライド共重合体、2級アミンとエピハロヒドリンとを反応させて得られるカチオン性樹脂、ジシアンジアミド系カチオン樹脂等であり、これらの1種類以上を使用する。

【0017】本発明者らが検討した結果では、その中で もカチオン性のエピハロヒドリン系樹脂が、耐水性を発 現する効果に優れ、また耐光性にも優れるということを 見いだした。本発明で使用するカチオン性のエピハロヒ ドリン系樹脂としては、ポリアミン類及び/またはポリ アミド類とエピハロヒドリンを反応させて得られるカチ 20 オン性の樹脂が耐光性に優れるので好適に使用できる。 例えばポリアミン類としては、ジメチルアミン、ジエチ ルアミン、ジプロピルアミン、メチルエチルアミン、メ チルプロピルアミン、メチルブチルアミン、メチルオク チルアミン、メチルラウリルアミン、エチレンジアミ ン、ジェチレントリアミン、ポリエチレンイミン、ピペ リジン、ピロール、カルバゾール等の1種類以上を使用 し、ポリアミド類としては、ポリアルキレンポリアミン と二塩基性カルボン酸を脱水縮合させたポリアルキレン ポリアミドや、ポリアルキレンポリアミンと尿素を脱ア 30 ンモニア縮合させたポリアミドポリ尿素、Nービニルア ミド系モノマー、エチレンージメチルアミノプロピルア クリルアミド共重合体と塩酸を反応させた4級塩等の1 種類以上を使用し、エピハロヒドリンとしてはエピクロ ルヒドリン、エピプロモヒドリン、エピヨードヒドリン 等の1種類以上を使用し、公知手段を用いて重合してエ ピハロヒドリン系のカチオン樹脂を得る。

【0018】また、本発明者らが検討した結果では、カチオン性のジシアンジアミド系樹脂が耐水性を発現する効果に特に優れているということも見いだした。

【0019】このカチオン性の塗工層を形成する手段としては、抄紙機上の湿紙にサイズプレス装置、ゲートロールコーター、ビルブレードコーター等を使用して塗工する方法や、基紙を抄造後にエアーナイフコーター、グラビアコーター、ブレードコーター、ロールコーター、バーコーター等を使用して塗工する方法等を採用できる。塗工量は通常固形分で $0.1\sim10~g/m^2$ 、好ましくは $2\sim4~g/m^2$ である。塗工量が $0.1~g/m^2$ 未満であるとインクジェット記録用のインクの耐水性が不足し、 $10~g/m^2$ を超えると効果がそれ以上期待でき

ず、またコスト高となるので上記範囲が望ましい。 【0020】また、カチオン性の塗工層にはインクジェットプリンタでの印字または画像の発色性と解像度を良

マドノリンスとのロチェには国家の充当ほど肝家及を良くするために填料を併用することもできるが、特に比表面積の大きいシリカが好ましい。シリカを使用する場合は多量に入れると塗工液が凝集したり、インク耐水性に悪影響を及ぼすので固形重量部でカチオン物質100重量部に対して1~20重量部が好ましい。

【0021】基紙の少なくとも一方の面の最外層に形成 する圧着葉費用の接着剤層に使用する接着剤としては、 通常の状態で接着することがなく、高い圧力を加えるこ とで接着する性質を有するものであって、天然ゴム系、 NBR、SBR等の合成ゴムやアクリル系のラテックス を主体に使用できるが、なかでも相対的なパランスに優 れるので天然ゴム系のラテックスが好適である。感圧接 着剤に添加できる填料は、カオリン、タルク、炭酸カル シウム、シリカ、水酸化アルミニウム、プラスチックピ グメントや小麦粉等の穀物澱粉粒子等公知の材料の中か ら使用できる。これら接着剤と填料、穀物澱粉粒子等と 老化防止剤、紫外線吸収剤等の添加剤を適宜組み合わ せ、公知の方法で用紙を保存中にプロッキングを起こさ ず、圧着強度が良好で、圧着後適度の力で剥離でき親展 情報を読み取ることができ、通常の方法では再接着出来 ない性能を持たせる。

【0022】次に静電記録方式のプリンタについて詳し く説明する。従来の静電記録方式(電子写真方式)のプ リンタ用の圧着葉書用紙は多孔性で比表面積が大きく、 吸油量が多いシリカを填料として使用している。この圧 **着葉書用紙の接着削層にシリカを使用する理由はブロッ** キング防止の目的もあるが、他の理由はシリコンオイル を吸収させることにある。電子写真方式のプリンタの中 にはトナーの定着を高熱(約200℃)のヒートロール で行うヒートロール定着方式のプリンタがある。定着ロ ールであるヒートロールはプレプリントインキやトナー の付着を防止するためにシリコンオイルでクリーニング されているが、そのシリコンオイルがヒートロールから 圧着葉費用紙に転移した後に接着剤表面に残留すると接 着力が大幅に低下し、実用上問題がある。このため、電 子写真方式のプリンタ用圧着葉費用紙ではシリコンオイ 40 ルをシリカに吸収させるために多孔性で比表面積が大き く、吸油量が多いシリカを使用しているわけである。

【0023】しかしインクジェットプリンタではこのような工程は無いので、多孔性で比表面積が大きく、吸油量が多いシリカを使用する必要がない。仮にカチオン性の塗工層の上にこのようなシリカを併用した接着剤層を形成し、インクジェットプリンタで印字しても、圧着して剥がすと画像の転写が起きてしまう。この理由はよく判らないが、本発明者らは、このシリカが多孔性で比表面積が大きいためにインクを保持してしまい、圧着時に保持したインクを放出し易いためであると推定した。

50

【0024】本発明者らはこの欠点を解決するためにな お検討を進めた。具体的には種々の填料を接着剤と併用 し画像の転写性を検討した。その結果BET法で測定し た比表面積が10から100㎡/gで、かつ、JIS

K5101に準拠して測定した吸油量が100m1/ 100g以下のシリカを接着剤の填料として使用するこ とで上記問題点を解決できることを見い出した。さらに この場合、感圧接着剤の成膜性を妨害して接着剤層の透 気度を劇的に低下させることが可能となるため、水溶性 インクがカチオン性の塗工層まで到達する割合が増加し 10 インクの耐水性も向上することが判明した。またこのシ リカはプロッキング防止にも十分な性能を持っているこ とが判った。このシリカは性能のバランスを考慮すると 感圧接着剤100重量部に対して30~300重量部、 好ましくは50~150重量部の添加とすることが好ま しい。

【0025】接着剤の塗工はエアーナイフコーター、グ ラビアコーター、ブレードコーター、ロールコーター、 バーコーター等の公知の塗工方式が使用できる。塗工量 は固形分で1~8g/m²、好ましくは接着剤層が薄い 方がインクジェット記録用のインクの浸透通過性がよい ため、2~5g/m'とすることが好ましい。上記シリ カと共に副成分として用いることのできる填料は、カオ リン、タルク、炭酸カルシウム、水酸化アルミニウム、 プラスチックピグメント等が挙げられ、公知の材料の中 から適宜選択して使用できる。

【0026】圧着葉書用紙はプリンタで文字、画像等を 記録される前に、フォーム用の印刷機で紫外線硬化型の インクで印刷されフォームにされることもあるので、本 発明の圧着葉曹用紙で天然ゴム系の接着剤を使用する時 30 は、天然ゴムの劣化による接着力の低下を防ぐために、 紫外線吸収剤と老化防止剤を公知の材料の中から使用で きる。

【0027】次に本発明のインクジェット記録用圧着葉 書用紙の構成例を説明する。

- 1) 基紙の片面のみにカチオン性の塗工層を形成し、そ の上に圧着葉費用の接着剤層を形成する構成。
- 2) 基紙の両面にカチオン性の塗工層を形成し、その両 面に圧着葉費用の接着剤層を形成する構成。
- 3) 基紙の両面にカチオン性の塗工層を形成し、その片 40 方の面に圧着葉魯用の接着剤層を形成する構成。
- 4) 基紙の両面にカチオン性の塗工層を形成し、その片 方の面上に圧着葉書用の接着剤層を形成し、他の面には 填料とバインダーを主成分とするインクジェット記録に 適した層を形成する構成。

【0028】本発明のインクジェット記録用圧着葉費用 紙は以上述べたように製造され、インクジェット記録方 式で種々の情報が記録され、周知の葉書の形態に加工さ れ配送される。

【0029】インクジェット記録用のインクに使用され 50 坪量110g/m²の上質紙の両面に塩化アルミニウム

る染料は、例えば特開昭57-191084号公報、特 公平7-2429号公報等に記載されているアニオン性 の直接染料若しくは酸性染料が使用される。具体的には C. I (カラーインデックス、以下同じ) 1468 0, C. I 16255, C. I 16150, C. I 45100, C. I 45380, C. I 4541 0, C. I 45440, C. I, C. I 2350 0, C. I 29165, C. I 29160, C. I 25380, C. I 45160, C. I 4807 0、C. I 48015、C. I 17065のような 赤色の染料、C. I 16240、C. I29150、 C. I 46005, C. I 46045, C. I 4 · 8035、C. 1 48040のような橙色の染料、 C. I 10316, C. I 56205, C. I 1 8965, C. I 19140, C. I 22910, C. I13900, C. I, C. I 13920, C. I 25300, C. I 29020, C. I 290 25, C. I 49005, C. I 48055, C. I 41000のような黄色の染料、C. I 4402 5、C. I 34040、C. I 42000のような 緑色の染料、C. I 42090、C. I 4208 0, C. I 61125, C. I 50315, C. I 42660, C. I 15706, C. I 2441 0, C. I 24400, C. I 74180, C. I 42025, C. I 51005, C. I 4259 5、C. I 4 4 0 4 5 のような青色の染料、C. I 4 2535, C. I 42555, C. I 48020, C. I 45170、C. I 42510のような紫色 の染料、C. I 20470、C. I 50420、 C. I 26370, C. I27070, C. I 17 580, C. I 27700, C. I 35255, C. I 35435, C. I 35440, C. I 3 0235, C. I 27720, C. I 118250 ような黒色の染料が使用される。

【0030】インクジェット記録用インクは上記染料の 1種類以上と水及び水溶性のメチルアルコール、エチル アルコール、プロピルアルコール、ブチルアルコール、 ポリエチレングリコール、グリセリンなどの各種の有機 溶剤と、pH調整剤、防黴剤、防錆剤、粘度調整剤、表 面張力調整剤、湿潤剤、界面活性剤などの添加剤を適宜 混合して製造する。

【0031】用紙の最外層に形成された接着剤層表面に 付着したアニオン性のインクジェット記録用インクは接 着剤層内部に浸透し、接着剤層の下層に形成されたカチ オン性の塗工層に含まれるカチオン性物質の影響により 固着され耐水性を発現する。

[0032]

【実施例】

実施例1

を2g/m³ずつブレードコーターを使用して塗工し、 更にメチルメタクリレートグラフト共重合天然ゴムラテックス(商品名「FB-DO-3」、三井フラー(株) 製造)100重量部に対して、平均粒径1.8ミクロン、比表面積300m²で吸油量310m1/100g の合成シリカ(商品名「サイリシア350」、富士シリシア(株)製造)50重量部と、平均粒径17ミクロンの小麦澱粉を100重量部添加して調製した塗工液をエアーナイフコーターを使用して3g/m²ずつ両面に塗工した。

【0033】 実施例2

坪量110g/m⁴の上質紙の両面にポリアミド・エピクロルヒドリン樹脂(商品名「WS-500」、日本PMC(株)製造)を2g/m²ずつブレードコーターを使用して塗工し、更に実施例1と同一の接着剤を3g/m²ずつエアーナイフコーターを使用して両面に塗工した。

【0034】実施例3

実施例2における接着剤のシリカを平均粒径0.3ミクロン、比表面積50m²で吸油量90ml/100gの合成シリカ(商品名「アエロジル50」、日本アエロジル(株)製造)に変更した以外は、実施例2と同様に実施した。

【0035】 実施例4

坪量110g/m²の上質紙の両面にジシアンジアミド系カチオン樹脂(商品名「サンフィックス70」、三洋化成工業(株)製造)を2g/m²ずつブレードコーターを使用して塗工し、更に実施例3と同一の接着剤を3g/m²ずつエアーナイフコーターを使用して両面に塗

工した。

【0036】 <u>比較例1</u>

実施例 1 における塩化アルミニウムの塗工はせずに、実施例 1 と同じ接着剤を 3 g / m³ ずつエアーナイフコーター使用して両面に塗工した。

【0037】比較例2

実施例1の接着剤塗工液に、ポリアミド・エピクロルヒドリン樹脂(同上)をメチルメタクリレートグラフト共重合天然ゴムラテックス(同上)100重量部に対して105重量部添加して塗工液を調製した。

【0038】各実施例及び比較例の評価結果を表1に示す。なお記録面の耐水性、インク転写性、耐光性は次のようにして評価した。また、評価は5点法によった。最も優れているレベルを5点、最も劣るレベルを1点とし、3点以上が実用的に十分なレベルである。

- 1) 記録面の耐水性:インクジェットプリンタ(「MJ-500C」、エプソン(株)製造)を使用し、黒インクで文字、画像を記録後、1分間用紙を水中に浸漬してインクの水中への流れ出る状態を観察して評価した。
- 2) 画像転写性:上記記録後の用紙記録面を内側にして2つ折にし、シーラー(「ドライシーラー6860」、トッパン・ムーア(株)製造)でギャップ130ミクロンの条件で圧着し、ついで剥離して剥離面のインクの転写具合を観察して評価した。転写が殆ど起こらないレベルが5点である。
- 3) 耐光性:上記記録後の用紙記録面を直射日光で30 分間暴露し、用紙の変退色を観察して評価した。

[0039]

【表1】

表1 各実施例及び比較例の評価結果

	耐水性	転写性	耐光性	
実施例1	4	3	3	
実施例2	4	3	5	
実施例3	4	5	5	
奥施例4	5	5	4	
比較例 1	1	1	5	
比較例 2	塗工液がゲル化し、塗工不能			

【0040】表1より下記のことが判る。

- 1)実施例1~4のいずれも、耐水性、転写性、耐光性 共実用的に十分な性能を有している。
- 2) カチオン性の塗工層を設けるか否かの実施例1~4 30 と比較例1との対比で、カチオン性塗工層を設けると耐水性が格段に向上することが判る。
- 3) 実施例3から、カチオン性の塗工層にエピハロヒドリン系のカチオン樹脂層を使用すると耐光性が優れることが判る。なお実施例、比較例では示さなかったが他のカチオン性の材料と比較してもエピハロヒドリン系のカチオン樹脂の耐光性は優れていた。
- 4) エピハロヒドリン系のカチオン樹脂を接着剤塗工液 に添加した比較例2は、塗工液がゲル化し、塗工不能で 評価出来なかった。
- 5) 実施例3から、特定のシリカを使用することで画像の転写が非常に少ない用紙が得られることが判る。
- 6) 実施例4から、カチオン性の塗工層にジシアンジア

ミド系のカチオン樹脂層を使用すると耐水性が特に優れることが判る。

なお、評価結果では示さないが、各例に於いて、用紙を保存中にプロッキングを起こさず、圧着強度が良好で、 圧着後適度の力で剥離でき親展情報を読み取ることができ、通常の方法では再接着出来ないことは確認した。 【0041】

【発明の効果】以上説明したように本発明のインクジェット記録用圧着葉書用紙は製造され、圧着葉書用紙としての諸性能、即ち用紙を保存中にプロッキングを起こさず、圧着強度が良好で、圧着後適度の力で剥離でき親展情報を読み取ることができ、通常の方法では再接着出来ない等の圧着葉書用紙としての基本的な要求性能を満たし、かつインクジェット記録を行った場合に画像の耐水性が良好で、また接着剤層に特定の填料を使用することで剥離した他の面への画像の転写が非常に少ない等の優れた性能を有した圧着葉書用紙の製造が可能となった。

Japanese patent Application Laid-Open Specification No.

Sho 55-051583 and a partial English translation thereof

1. Page 443, column 1, Claims:

2. Claims

- 1. An ink jet recordable paper which is a base paper having a coating layer formed thereon, wherein the coating layer comprises powdery non-colloidal silica and a polymeric binder.
- 2. The ink jet recordable paper according to claim 1, wherein the particle size of said powdery non-colloidal silica is 0.1 to 10 $\mu m\,.$
- 3. The ink jet recordable paper according to claim 1 or 2, wherein said coating layer further comprises a starch.

2. Page 444, column 5, lines 8-16:

It is preferred that the powdery non-colloidal silica has a particle size of from 0.1 to 10 μm . Colloidal microparticulate silica is not preferred because it inhibits ink absorption.

Resins, such as polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride, a vinyl chloride-vinyl acetate copolymer,

vinyl acetate-maleic acid copolymer, polyacrylate, polymethacrylate and a styrene-butadiene copolymer, are used as the polymeric binder.

3. Page 444, column 6, lines 14-16:

The powdery non-colloidal silica in the coating layer is highly hydrophilic, and it absorbs rapidly and retains the ink in the coating layer, thereby enhancing the apparent ink drying speed of the recording paper.

19 日本国特許庁 (JP)

①特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭55-51583

⑤Int. Cl.³
 B 41 M 5/00
 B 41 J 3/04

識別記号

庁内整理番号 6609-2H 7339-2C 砂公開 昭和55年(1980)4月15日

発明の数 1 審査請求 未請求

(全 3 頁)

匈インクジェット記録用紙

顧 昭53-123511

顧 昭53(1978)10月9日

@発 明 者 市塚滑美

0)特

22出

東京都大田区中馬込1丁目3番

6号株式会社リコー内

⑪出 願 人 株式会社リコー

東京都大田区中馬込1丁目3番

6号

四代 理 人 弁理士 小松秀岳

明 細 曹

1. 発明の名称

インクグェット記録用紙

- 2 特許請求の範囲
 - 1. 搭紙上に、非膠質シリカ粉末、高分子結婚 剤を含む被製層を設けてなることを特徴とす るインクジェット記録用紙。
 - 2 非経質シリカ粉末の大きさが 0.1~10p である特許請求の範囲第 1 項記載のインクジェット記録用紙。
 - 3. 被 関 層 が で 人 粉 を 含 有 す る 特 許 請 求 の 範 囲 第 1 項 ま た は 第 2 項 記 載 の イ ン ク ジェッ ト 記 録 用 紙 。
- 3. 発明の詳細な説明

本発明は、インクの飲小液滴を噴射させて文 字、面像を形成するインクジェット記録方式に 用いられる配録用紙に関する。

インクジェット記録方式は通常事務所内で使 用されるので安全、衛生面から、インクは一般 に水性のものが用いられる。そして、高速毎込みを行なりため、紙上に付着したインクは急速に吸収される必要がある。特に複数のインクズットブロセスの場合は、同一点に偶突したインク商が衝突するので、さきに衝突したインク商は、のぎのインク商が到着する以前に紙面に吸収係をあっている必要があり、かつ液量も多い関係と、記録用紙の吸収能が大きいととが要求される。

(2)

特開 昭55-51583(2)

均…にひろがり円形の像になることが要求される。

しかも處度の高い鮮明な面像を得るためには インク中の発色剤を紙の表面に止めなければな ちない。しかしインクは噴射ノズルの詰りを防 止する意味で染料を使用しているため、染料を 紙表面に残し、水、料剤などのペピクルのみを 紙中に浸透させることは容易ではない。

(8)

ジェット配鉄用紙を提供するものである。

すなわち、本発明は、基紙上に非膠質シリカ 粉末、高分子結着剤を含む被覆層を散けてなる ことを特徴とするインクジェット記録用紙であ る。この場合、非膠質シリカ粉末の大きさはQ1 ~10』であることが窒ましい。また、被覆層に はでん粉を含有することもある。

非際質シリカ粉末は 0.1~10 m のものが好適で あるが、コロイド状の微細なシリカ粉末はイン ク吸収性を阻害し好ましくない。

高分子結婚剤としては、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、塩化ビニル・塩化ビニル・塩化ビニル・塩化ビニル・ウニルー酢酸ビニル共重合体、酢酸ビニルーマレイン酸共産合体、ポリアクリル酸エステル、ポリメタクリル酸エステル、ステレンーブタジェン共重合体などの樹脂が用いられる。

とれらの樹脂は、溶液または分散液として、 上記非曜質シリカ粉末1 重量部に対して 0.2~1.5 重量部(固型分) 程度が適当である。

でん物は米でん粉、トウモロコシでん粉、ス

早くなるが、インク摘のひろがりは反対にやや小さくなる。しかし、インクは紙中に深く入るため、表面の面像濃度(反射濃度)は大巾に低下し、光沢のない、沈んだ色調となる。優端な場合はインクが裏付けすることもある。

本発明は以上の点に鑑み、解像力が高く、鮮 明な画像が得られる高速費込みに適したインク

(4)

ターチ、小数でん粉をど用いることができ、0.1 ~5 # 程度のものがよい。そして高分子結構削! 重量部に対して 0.5 ~ 3 重量部程度が適当であるが、高分子結准剤の種類、配合機によっては、 このでん粉を用いなくてもよい。

上記の材料を適宜に組合せて、適当な分散装置を用い、水に分散させて弦布液とし、悲紙上に敬布し、熱風乾燥することにより被獲層を完成させる。被復層の付替量は 0.5~15 9/㎡ が適当である。

基紙として用いる印刷用紙は目的に応じて選択できるが、適度のサイジングを施しておいた 方が良い。

被優層中の非勝策シリカは親水性が強く、インクを急速に吸収して層内に保持して、記録用紙のインク見掛乾燥速度を大巾に高める。

高分子結着削は、結合削として作用するほか インクが紙面上機方向へひろがることを阻止し、 インクドット像の拡大を防止する。

でん物は水に対して適度の親和性があるので、

(5)

特別 昭55-51583(5)

インクの吸収とひろがりを調整する。

本発明によれば、各配合剂の上配作用により、 インクの浸透が防止でき、インクの発色剤(染 科等)が表面の被覆層に止まる結果、インク像 **機度は大巾に向上するとともに、色鯛も鮮明に** なる。また、インクの横へのひろがりが抑制さ れるとともににじみが防止でき、インクドット 像が規則的になるので、画像がきれいになると ともにインクドット密度を高くでき高解像カイ ンクジェット記録方式が可能となる。さらに、 インクが非常に早くシリカを主体とする被覆層 に吸収されるので高速書込みができる。

複数のインクを用いるカラープロセスでも、 インク吸収、見掛乾燥が早く、インク吸収能が 大きいので、高速谷込みが可能であり、カラー プロゼスで特に問題となる演色性もインクが探 く紙層に浸透しないで大巾に改善できる。

以下実施例について説明する。

契施例 1

水

800 mt

m

即 針 80 9 /m の上質紙に塗布し、実施例 i と同 様にして付着量78/2の記録用紙を得た。

この記録用紙に 40%(径)のインクジェットノ メルから水性黒インクを噴射させ記録した結果、 鮮明な 120μ(径) 前後のニジミのないほぼ円形の インクドットが得られた。

事施例1 および奥施例2 で得られた記録用紙 の特性を他の非盗工紙と比較した試験結果をつ ぎに示す。

紙の種類	インクの吸収時間(秒)	ドット径 (p)
实施例)	15	125
夹施例 2	25	120
上質紙	70	175
ケント紙	50	175
ナート紙	40	250
根被抄和紙	10	870以上

(注) インクの吸収時間…指拭によりインク落ち のなくなるまでの時間。

(9)

ドット径…長径で示す。

特許出願人 株式会社 リコー 代理人 弁理士 小 松 秀 匠

トウモロコシでん粉

非膠質シリカ(8~5)

100 %

をホモジナイザーを用いて分散させ、これにポ り酢酸ビニルエマルジョン(固形分 50%) 90% を加え、十分混合して塗布液とした。この塗布 液を坪景 60 8/㎡の上質紙に盆布し、熱風乾燥 器を用いて乾燥して、被覆層付着量約4.8/㎡の 記録用紙を得た。

この配録用紙に、 50x (径) のインクジェット ノメルから水性インクジェット用黒インクを噴 射させ、記録した結果、画像濃度が高い 125 μ (任) 前後のニジミのないほぼ円形のインクドッ ト像が得られた。

灾施例 2

1000 ml

非膠質シリカ(8~5#)

80 9

小 发 で ん 粉 (4~5×)

200 8

をホモジナイザーを用いて分散させ、これにポ リビニルアルコール(重合度 500) 200 9 を加 え、十分混合して敬布放とした。この途布被を