BONSAI Climate Footprint Analyser

Valentin Starlinger¹, Bo Weidema², Jannick Schmidt², Albert Osei-Owusu², Fan Yang², Maik Budzinski², Quanliang Ye², Sofia Topcu Madsen², Rahul Nallithodi², Jesper Dalgaard Pøhler², Stefano Merciai¹, Miguel Astudillo¹, Joao Rodrigues¹, Bertram de Boer¹, Angelica Mendoza Beltran¹, José Mogollón³, Franco Donati³, Anniek Kortleve³, Glen Peters⁴, Benjamin Sanderson⁴

¹ 2.-0 LCA consultants, ² Aalborg University (lead), ³ CML, Leiden University, ⁴ CICERO, Oslo

Overview

- BONSAI and the BONSAI Climate Footprint Analyser
- Database workflow and structure
- Integration with Apache Airflow
- Where we are right now
- Our API
- The road ahead & how you can help!
- Questions and API demo

What's BONSAI?

Non-profit organization

- Goal is to tackle the challenge of
 - Incomplete
 - Lacking in detail
 - Out-of-date
 - Difficult to access

"product footprints"

- How?
 - Completely open source and open data
 - Automated data harvesting
 - Use of national and international statistic data that can be disaggregated using science based algorithms
 - Community involvement

BONSAI Climate Footprint Analyser

• Funded by KR foundation through 'getting the data right' project

- Project partners:
 - Aalborg University (lead)
 - CML, Leiden University
 - 2.-0 LCA consultants
 - CICERO, Oslo

Heavily inspired by the hybrid version of Exiobase

Goals

- Provide up-to-date climate footprint generator
- Minimize effort for continuous updates
- Enhance internal models:
 - Household consumption patterns, carbon flows in ecosystems, uncertainty handling, ...
- Make it accessible!

Database key stats

Based on the hybrid version of Exiobase (v4)

Our minimum goal for data coverage:

- > 55 countries
- ~ 2000 product flows

Database Workflow

- Webserver
 - React + Django
- DBServer
 - PostgreSQL

external API data

collect

stage

clean

stage

file server

raw

source

data

dbserver

clean

source

database

admin and log webserver

bulk

contribute

\operation,

element

contribute

\operation/

bulk

source

data

element

source

data

cluster

Collect and Clean Stage

 Input from external APIs and scraping websites

Data stored as it comes

- Bulk contribution:
 - E.g.: Higher detail national SUT
 - Requires code contribution

Clean Stage

Data transformed to relational form

Cleaning strategies applied

Database and .csv files

Load Stage

- Element contribution:
 - Highlight/edit erroneous data

Reads and harmonizes clean data

Build stage

• Transforms data

Clean data to IO system

Only interacts with main database

Build Stage

- Gap filling
- Decomposition of industries
- Parametrized production functions
- Modelling of sub-regional data

Calculate Stage

Generates footprint results

 Generates hotspot/contribution analysis

Results cached but not persistent

Integration with Apache Airflow

- Workflows can be stored under version control
- Allows to build a Directed Acyclic Graph (DAG)
- Manages task execution and load balancing
- Self-contained tasks for easier collaboration
- Airflow allows automatic scheduling of tasks
 - Triggers are automatic or manual

Only necessary parts of workflow are executed

Integration with Apache Airflow

Parallelization using Docker + Kubernetes

Each task can run on its own

Tasks are launched as docker containers

• Distributed over several worker nodes

Worker orchestration is done via a Kubernetes cluster

Where are we right now?

Our current API

Currently at: https://lca.aau.dk/api/docs/

- Available data:
 - Footprints for product/market flows
 - Production recipes for product flows
 - Market composition for market flows
 - Endpoints for available flows/countries/units

The Road Ahead & How You Can Help!

Contact us if you have data!

- We want to start open-sourcing our pipeline start of next year
 - Frontend + API
 - IPCC package
 - Parametrized Models

Questions + Live Demo

