John Teague

M 365C - Real Analysis

Fall 2021

Conte	nts	ii
The R	eal and Complex Number Systems	
1.1	Ordered Sets	
1.2	Fields	:
1.3	Euclidean Geometry	(
Basic '	Topology	,
2.1	Compactness	Ć
	Heine-Borel	10
	Other Notions of Compactness	1
2.2	Perfect Sets	1
	Connected Sets	1
Series		15
3.1	Sequences	13
	Subsequences	14
	Upper and Lower Limits	14
3.2	Series	1,5
3.3	The Number e	16
	Absolute Convergence	17
	Addition and Multiplication of Series	1'
3.4	Multiplication of Series	1'

The Real and Complex Number Systems

Theorem 1.1. Some baloney proofs for 0 = 1.

Proof. Let a = b. Then

$$a^{2} = ab$$

$$a^{2} - b^{2} = ab - b^{2}$$

$$(a - b)(a + b) = (a - b)b$$

$$a + b = b$$

$$b + b = b$$

$$2b = b$$

$$2 = 1$$

$$1 = 0$$

Proof. Consider the series $S = 1 - 1 + 1 - 1 + \dots$ So

$$S = (1-1) + (1-1) + \dots$$

 $S = 0 + 0 + \dots$
 $S = 0$.

But also,

$$S = 1 + (-1 + 1) + (-1 + 1) + \dots$$

 $S = 1 + 0 + 0 + \dots$
 $S = 1$.

Therefore, S = 0 = 1.

1.1 Ordered Sets

 $\mathbb Q$ is an ordered field, or a field that is also an ordered set. It also has "holes".

Theorem 1.2. There is no rational number x such that $x^2 = 2$.

Proof. By contradiction, suppose $x \in \mathbb{Q}$ and $x^2 = 2$. Then $x^2 = \frac{m}{n}$ with $m, n \in \mathbb{Z}$ and $n \neq 0$. We may assume that it is not the case that both m and N are even (prove this as an exercise). So,

$$\left(\frac{m}{n}\right)^2 = 2$$

$$\frac{m^2}{n^2} = 2$$

$$m^2 = 2n^2,$$

and m^2 is even.

Lemma 1.3. If m^2 is even, then m is even

Proof. By contrapositive, we show that if m is odd, then m^2 is odd. Assuming m is odd, that is m = 2n + 1 for an integer n. So, $m^2 = (2n + 1)^2 = 4n^2 + 4n + 1 = 2(2n^2 + 2n) + 1$, and m^2 is odd. Therefore, if m^2 is even, then m is even.

By our lemma, m is also even. So, m=2k for $k\in\mathbb{Z}$. Therefore,

$$(2k)^2 = 2n^2$$
$$4k^2 = 2n^2$$
$$2k^2 = n^2.$$

and by the same logic, n^2 and n is even. But this is a contradiction, as it was said that at least one of m and n are not even. Therefore, there is no rational number x such that $x^2 = 2$.

So what? Consider $A = \{x \in \mathbb{Q}^+ \mid x^2 < 2\}$ and $B = \{x \in \mathbb{Q}^+ \mid x^2 > 2\}$. Then $\mathbb{Q}^+ = A \cup B$. Also, for all $a \in A$ and $b \in B$, a < b. Observe that if $x \in \mathbb{Q}^+$, then $y = x - \frac{x^2 - 2}{x + 2} = \frac{2x + 2}{x + 2} \in \mathbb{Q}^+$. Is y in A or B?

$$y^{2} = \frac{4x^{2} + 8x + 4}{x^{2} + 4x + 4}$$
$$y^{2} - 2 = \frac{2x^{2} - 4}{(x+2)^{2}} = \frac{2(x^{2} - 2)}{(x+2)^{2}}$$

Therefore, $x \in A \implies y \in A$ and $x \in B \implies y \in B$. Also, $x \in A \implies y > x$, and $x \in B \implies y < x$. That is, A is bounded above, but it has no *least upper bound*, and that is a problem in analysis. Real numbers will "fill" the holes in \mathbb{Q} to fix this problem.

Ordered Sets. An order on a set S is a relation, denoted <, such that

- (1) If $x \in S$, $y \in S$, then exactly one of the following is true: x < y, x = y, and y < x.
- (2) If $x, y, z \in S$ with x < y and y < z, then x < z.

Note, y > x means x < y, and $x \le y$ means x < y or x = y. An ordered set is an ordered pair (S, <).

- (1) \mathbb{Z} with the usual order: m < n if $n m \in \mathbb{Z}^+$.
- (2) \mathbb{Q} with the usual order: $\frac{p}{q} < \frac{p'}{q'}$ if $\frac{p'}{q'} \frac{p}{q} \in \mathbb{Q}^+$.

Bounded above. Suppose S is an ordered set and $E \subseteq S$ nonempty. If $\beta \in S$ such that $x \leq \beta$ for all $x \in E$, then β is an *upper bound* for E, and E is called *bounded above*.

Similarly, we can define *lower bound* and *bounded below*.

Least Upper Bound. With S an ordered set and $E \subseteq S$, assume E is bounded above. Suppose there exists some $\alpha \in S$ such that α is an upper bound and if $\gamma < \alpha$ then γ is not an upper bound. Then α is called the *least upper bound* of E or the *supremum* of E, denoted $\alpha = \sup E$.

Similarly, if E is bounded below, then a lower bound $\beta \in S$ such that for all $\gamma > \beta$, γ is not a lower bound, then β is called the *greatest lower bound* of E, denoted $\beta = \inf E$.

From out example, $A \subseteq \mathbb{Q}^+$ has no least upper bound in \mathbb{Q}^+ . However, some subsets of \mathbb{Q} do have least upper bounds, for example sup $\{x \in \mathbb{Q} \mid x \leq 2\} = 2$.

1.2. Fields 3

In summary, if $C = \{x \in \mathbb{Q} \mid x^2 < 2\}$, C has no least upper bound in \mathbb{Q} .

Least Upper Bound Property. Let S be an ordered set. S has the *least upper bound property* if every non-empty subset $E \subseteq S$ which is bounded above has a least upper bound. So $\sup E$ exists in S.

A non-example is \mathbb{Q} , in light of our set C.

Theorem 1.4. Suppose S has the least upper bound property. Then S also has the *greatest lower bound* property: for any $B \subseteq S$ non-empty and bounded below, B has a greatest lower bound in S.

Proof. Let L be the set of all lower bounds of B in S. We show that $\alpha = \sup L$ exists and $\alpha = \inf B$. Since B is bounded below, L is non-empty. Also L is bounded above: let x be an element of B, then for $y \in L$, y is a lower bound for B, and so $y \leq x$. By the LUB property, L has a least upper bound, call it $\alpha = \sup L$.

Now we show that α is also the greatest lower bound for B. So,

- (1) We first show that α is a lower bound. So, if $x \in B$, then x is an upper bound for L, and $\alpha \leq x$. Hence, α is a lower bound for B.
- (2) Let $\gamma > \alpha$. Since α is an upper bound for L, $\gamma \notin L$, and γ is not a lower bound for B.

Hence, $\alpha = \inf B$.

1.2 Fields

 ${\it Field.}$ A ${\it field}$ is a set ${\it F}$ with two binary operations, called addition and multiplication, which satisfy the following axioms:

- (1) (F, +) is an abelian group with identity 0 and $x^{-1} = -x$ for $x \in (F, +)$.
- (2) $(F\setminus\{0\},\cdot)$ is an abelian group with identity 1 and $x^{-1}=\frac{1}{x}$ for $x\in(F\setminus\{0\},\cdot)$.
- (3) Distributivity: For all $x, y, z \in F$, x(y+z) = xy + xz.

Some examples of fields include:

- (1) Q.
- (2) $\mathbb{F}_2 = \{0, 1\}.$

Proposition 1.5. The addition axioms imply:

- (1) If x + y = x + z, then y = z.
- (2) If x + y = x, then y = 0.
- (3) If x + y = 0, then y = -x.
- (4) -(-x) = x.

Proof.

(1)

$$\begin{aligned} x+y &= x+z \\ -x+(x+y) &= -x+(x+z) \\ (-x+x)+y &= (-x+x)+z \\ 0+y &= 0+z \\ y &= z. \end{aligned}$$

(2)

$$x + y = x$$
$$x + y = x + 0$$
$$y = 0.$$

(3)

$$x + y = 0$$

$$x + y = x + (-x)$$

$$y = -x.$$

(4) (-x) + x = 0, so x = -(-x).

Proposition 1.6.

(1) $0 \cdot x = 0$.

(2) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$.

(3) (-x)y = -(xy) = x(-y).

(4) (-x)(-y) = xy.

Ordered Field. An ordered field is a field F with an order relation < such that

(1) x + y < x + z if y < z.

(2) xy > 0 if x > 0 and y > 0.

Proposition 1.7. In an ordered field F,

(1) x > 0 then -x < 0, x < 0 then -x > 0.

(2) x > 0 and y < z then xy < xz.

(3) x < 0 and y < z then xy > xz.

(4) If $x \neq 0$ then $x^2 > 0$. In particular, $1 = 1^1 > 0$.

(5) If 0 < x < y then $0 < \frac{1}{y} < \frac{1}{x}$.

Theorem 1.8. There exists an ordered field \mathbb{R} which has the least upper bound property. Moreover, \mathbb{R} contains \mathbb{Q} as an ordered subfield. \mathbb{R} is the real numbers, and is unique up to field automorphisms.

Theorem 1.9. \mathbb{R} has:

- (1) The Archimedean property: if $x, y \in \mathbb{R}$ with x > 0, there exists some $N \in \mathbb{Z}^+$ such that nx > y.
- (2) \mathbb{Q} is dense in \mathbb{R} : if $x, y \in R$ and x < y, then there exists $z \in \mathbb{Q}$ such that x < z < y.

1.2. Fields 5

Proof.

(1) Let $x, y \in \mathbb{R}$ with x > 0. Suppose for contradiction that for all $n \in \mathbb{Z}^+$ such that $nx \leq y$. Let $E = \{nx \in \mathbb{R} \mid n \in \mathbb{Z}^+\}$. E is then non-empty and bounded above by y. Since \mathbb{R} has the LUB property, E has a least upper bound $\alpha = \sup E$. Consider $\alpha - x < \alpha$, so $\alpha - x$ is not an upper bound. Thus for some $mx \in E$ with $m \in \mathbb{Z}^+$, $mx > \alpha - x$, and therefore

$$\alpha < mx + x = (m+1)x \in E$$
.

But this is a contradiction, because α was said to be an upper bound for E.

Theorem 1.10. There exists a unique positive $x \in \mathbb{R}$ such that $x^2 = 2$.

Proof.

Lemma. If $x, y \in \mathbb{R}^+$ and $x^2 < y^2$, then x < y.

Proof. Suppose x, y > 0 and $x^2 < y^2$. Then (x - y)(x + y) < 0, so either x - y < 0 or x + y < 0. x + y > 0 because x, y > 0, so x - y < 0, and x < y.

To show existence, let $E = \{y \in \mathbb{R} \mid y^2 \le 2\}$. E is non-empty (e.g $1^2 < 2$), and E is bounded above by our lemma, so let $\alpha = \sup A$. We show that $\alpha^2 = 2$. Suppose $\alpha^2 \ne 2$. Then (i.) $\alpha^2 < 2$ or (ii.) $\alpha^2 > 2$.

(i.) $\alpha^2 < 2$. Let 0 < h < 1. Consider $\alpha + h$. Then

$$(\alpha + h)^2 - \alpha^2 = \alpha^2 + 2\alpha h + h^2 - \alpha^2$$
$$= 2\alpha h = h^2 > 2\alpha h.$$

Note, $h^2 < h$, and

$$(\alpha + h)^2 - \alpha^2 = 2\alpha h + h^2 < 2\alpha h + h = (2\alpha + 1)h.$$

In particular, $(\alpha + h)^2 < \alpha^2 + (2\alpha + 1)h$. Arrange for $\alpha^2 + (2\alpha + 1)h = 2$, and solve for $h = \frac{2-\alpha^2}{2\alpha+1}$. This will be true for $\alpha > 1$, so we need to show this. For this h, we have that $(\alpha + h)^2 < \alpha^2 + \frac{(2\alpha + 1)(2-\alpha^2)}{2\alpha+1} = 2$. So, $\alpha + h \in E$. But $\alpha + h > \alpha$, so α is not an upper bound. This is a contradiction, and $\alpha^2 \nleq 2$.

(ii.) $\alpha^2 > 2$. Again, let h > 0 and consider $\alpha - h$. We want to find a small enough h so that $(\alpha - h)^2 > 2$. This will contradict that α is the least upper bound because by the lemma, $(\alpha - h)$ is an upper bound for E. So,

$$\alpha^2 - (\alpha - h)^2 = \alpha^2 - (\alpha^2 - 2\alpha h + h^2)$$
$$= 2\alpha h - h^2 < 2\alpha h,$$

amd $(\alpha - h)^2 > \alpha^2 - 2\alpha h$. Choose h to make $\alpha^2 - 2\alpha h = 2$: so $h = \frac{2-\alpha^2}{-2\alpha} = \frac{\alpha^2-2}{2\alpha}$. Note, h > 0. Then $(\alpha - h)^2 > \alpha^2 - 2\alpha h = \alpha^2 - 2\alpha(\frac{\alpha^2-2}{2\alpha})$. By the lemma, $\alpha - h$ is then an upper bound for E, but $\alpha - h < \alpha$, contradicting that $\alpha = \sup E$, and $\alpha^2 \not> 2$.

Therefore, $\alpha^2 \not< 2$ and $\alpha^2 \not> 2$, and $\alpha^2 = 2$.

For uniqueness, suppose $\alpha^2 = \beta^2 = 2$ with $\alpha, \beta < 0$ and $\alpha \neq \beta$. WLOG, $\alpha < \beta$. Then $\alpha^2 < \beta^2$, but this is a contradiction. Therefore, $\alpha = \beta$.

Theorem 1.11. In general, for $x \in \mathbb{R}^+$, $n \in \mathbb{Z}^+$, there exists a unique $\alpha \in \mathbb{R}^+$ such that $\alpha^n = x$, denoted $\alpha = x^{\frac{1}{n}}$.

Proof. Find in Rudin. \Box

1.3 Euclidean Geometry

I literally do not care enough to write this down again.

Basic Topology

Metric Space. A metric space is a set X together with a function $d: X \times X \to \mathbb{R}$ called the metric with

- (1) d(x,y) > 0 if $x \neq y$, and d(x,x) = 0.
- (2) d(x,y) = d(y,x).
- (3) $d(x,y) \le d(x,z) + d(z,x)$.

Neighborhood and Limit Point. Let (X,d) be a metric space. For $p \in X$ and $E \subset X$, an r-neighborhood of p is $N_r(p) = \{x \in X \mid d(x,p) < r\}$. p is a limit point of E if for all r > 0, $N_r(p) \cap E$ contains a point other than p.

For $X = \mathbb{R}$, the ordinary metric is given by d(x,y) = |x-y|. Additionally, if E = [0,1), the limit points for E are [0,1]. If $E = [0,1) \cup \{3\}$, the limit points are once again [0,1]. Here, $3 \in E$ is called an *isolated point*, that is, it is not a limit point.

Closed and Perfect. E is closed if every limit point of E is in E. E is perfect if it is closed and every point of E is a limit point of E.

Clearly, E = [0, 1) is not closed, as $1 \notin E$. Also, E = [0, 1] is definitely closed. The set $\{1\}$ is closed, but 1 is not a limit point, and so it is not perfect. Also, $[0, 1] \cap 3$ is closed but not perfect, and in general, perfect sets are closed sets with no isolated points. [0, 1] by itself is perfect.

Interior and Open. p is in the *interior* of E if for some r > 0, $N_r(p) \subset E$. E is open if every point of E is an interior point of E.

For E = [0, 1], p = 1/2 is an interior point for r = 1/2, that is $N_{1/2}(1/2) = (0, 1) \subset [0, 1]$. Additionally, \mathbb{R} is open, (0, 1) is open, [0, 1] is not open, etc.

Bounded. E is bounded if there is some $M \in \mathbb{R}^+$ and $q \in X$ such that d(x,q) < M for all $x \in E$.

Dense. E is dense in X if every point of X is either a limit point of E or a point of E (or both).

Naturally, $E = \mathbb{R} - \{0\}$ is dense in \mathbb{R} . Also, more interestingly, \mathbb{Q} is dense in \mathbb{R} .

Theorem 2.1. For any metric space (X, d), $N_r(p)$ is open.

Proof. Let $q \in N_r(p)$. We want to show that q is an interior point. That is, there exists some h > 0 such that $N_h(q) \subset N_r(p)$. Note, d(p,q) < r. Choose $0 < h \le r - d$. So, we check if this holds. Let $x \in N_h(q)$.

Then

$$d(p,x) \le d(p,q) + d(q,x)$$

$$< d + h \le d + (r - d)$$

$$= d + r - d$$

$$= r$$

by the triangle inequality. This shows that $x \in N_r(p)$, and $N_h(q) \subset N_r(p)$.

Theorem 2.2. If p is a limit point of E, then any neighborhood of p contains infinitely many points of E.

Closure. Two operations we can define on a metric space (X,d) is the closure, $\overline{E} := E \cap E'$ where E' is the set of limit points of E, and the interior, E^0 is the set of all interior points of E. Note, $\overline{E} \supset E$ and $E^0 \subset E$.

Theorem 2.3.

- (1) \overline{E} is closed.
- (2) $E = \overline{E}$ if and only if E is closed.
- (3) $\overline{E} \subset F$ for every closed set F that contains E.
- (4) E^0 is open.
- (5) $E = E^0$ if and only if E is open.
- (6) $G \subset E^0$ for every open set G such that $G \subset E$.

Proof.

(1) We must show that \overline{E} contains all limit point of \overline{E} . Note, \overline{E} contains all limit points of E by definition. That is, can \overline{E} have a limit point which is not a limit point of E. No, but let's prove this. Let p be a limit point of \overline{E} . If we show p is also a limit point of E, then we're done. Let r>0, then $N_r(p)$ contains a point $q\in \overline{E}$ with $q\neq p$. Either $q\in E$ or q is a limit point of E. Assume the latter. Then d(p,q)< r, so choose h so that h< r-d(p,q). Additionally, choose h< d(p,q). Since q is a limit point of E, there is a point $x\in N_h(q)\cap E$. Check that $x\neq p$. Since d(x,q)< h, $d(p,q)\leq d(p,x)+d(x,q)$, and so

$$d(p, x) \ge d(p, q) - d(x, q)$$

$$\ge d(p, q) - h$$

$$> 0.$$

So, $x \neq p$. This shows that p is a limit point of E, and that limit point of \overline{E} are contained in the limit points of E. Hence, \overline{E} is closed.

As an exercise, prove (4), (5), (6) in this order: (6), (4), (5).

Theorem 2.4. A set $E \subset X$ is open if and only if its complement E^c is closed.

Proof. Observe, $p \in E^0$ if and only if $p \notin \overline{E^c}$. In other words, $E^0 = (\overline{E^c})^c$. So,

$$E \text{ is open} \iff E = E^0 \iff E = \left(\overline{E^c}\right)^c \iff E^c = \left(\left(\overline{E^c}\right)^c\right)^c = \overline{E^c} \iff E^c \text{ closed}.$$

Theorem 2.5.

2.1. Compactness 9

- (1) The union of any family of open sets is open.
- (2) The intersection of any family of closed sets is closed.
- (3) The intersection of finitely many open sets is open.
- (4) The union of finitely many closed sets is closed.

Proof.

- (1) For $\{G_{\alpha}\}_{{\alpha}\in A}$ open sets, let $p\in\bigcup_{{\alpha}\in A}G_{\alpha}$ be an interior point. Since p is in the union, $p\in G_{\beta}$ for some $\beta\in A$. By Homework 4 2.9c, $G_{\beta}=(\bigcup G_{\alpha})^{\circ}$. So, p is an interior point, and $\bigcup_{{\alpha}\in A}$ is open.
- (2) For $\{F_{\alpha}\}_{{\alpha}\in A}$. This follows from (1) and the lemma: $\left(\bigcap_{{\alpha}\in A}F_{\alpha}\right)^c=\bigcup_{{\alpha}\in A}F_{\alpha}^c$. Since each F_{α} is closed, F_{α}^c is open. So, $\bigcup_{{\alpha}\in A}F_{\alpha}^c$ is open, and its complement is closed.
- (3) Let $p \in \bigcap_{i=1}^n G_i$. Thus, for each $i \in \{1, \dots, n\}$, $p \in G_i$ which is open. So, there exists some $r_i > 0$ with $N_{r_i}(p) \subset G_i$. Thus, $\bigcap_{i=1}^n N_{r_i}(p) = N_r(p) \subset \bigcap_{i=1}^n G_i$ where $r = \min\{r_1, \dots, r_n\} > 0$.
- (4) Follows from (3) and the set theory lemma using the same proof as (2).

Metric Subspace. Let (X,d) be a metric space. Let $Y \subset X$. Recall that Y becomes a metric space by restricting d to $Y \times Y$. Let $E \subset Y$. Then

- (1) E is open relative to X: for each $p \in E$, there is an r > 0 so that all $q \in X$ with d(p,q) < r, denoted $N_r^X(p)$, are in E.
- (2) E is open relative to Y: for each $p \in E$, there is another r > 0 so that all $q \in Y$ with d(p,q) < r, denoted $N_r^Y(p)$, are in E.

Note, $N_r^Y(p) = N_r^X(p) \cap Y$.

Theorem 2.6. For $E \subset Y$, E is open relative to Y if and only if $E = G \cap Y$ for some open set $G \subset X$.

2.1 Compactness

Let (X, d) be a metric space with $E \subset X$.

Open Cover. An open cover of E is a collection $\{G_{\alpha}\}_{{\alpha}\in A}$ of open subsets of X such that $E\subset\bigcup\alpha\in AG_{\alpha}$.

Compact Subsets. A subset $K \subset X$ is compact if any open cover $\{G_{\alpha}\}_{\alpha \in A}$ of K has a finite subcover $\{G_{\alpha_1}, \ldots, G_{\alpha_n}\}$ where $\alpha_i \in A$. That is, $K \subset \bigcup_{i=1}^n G_i$.

For $X = \mathbb{R}$ and E = (0,1]. Is E compact? Note, $(0,1] \subset (-1,\frac{1}{2}) \cup (\frac{1}{3},2)$ is a finite open cover. However, this does not prove E is compact; we need to consider all covers to show compactness. In fact, in this case, E is not compact. Consider the collection of open subsets $\{(\frac{1}{n},2)\}_{n\in\mathbb{Z}^+}$. Then $E \subset \bigcup_{n\in\mathbb{Z}^+} (\frac{1}{n},2) = (0,2)$, and so this is an open cover, but it has no finite subcover.

Any singleton set $\{x\}$ is a compact subset of \mathbb{R} . To prove this, suppose $\{G_{\alpha}\}_{{\alpha}\in A}$ is an open cover of $\{x\}$. Since $x\in\bigcup_{{\alpha}\in A}G_{\alpha}$, it must be that $x\in G_{\beta}$ for some $\beta\in A$. So, the set $\{G_{\beta}\}$ is a finite subcover.

Theorem 2.7. Compact subsets of a metric space are closed.

Proof. Let K be a compact subset of the metric space (X,d). Lets show the complement of K is open. Let $p \in K^c$, that is some $p \in X$ such that $p \notin K$. Observe, $\{N_{r_q}(q)\}_{q \in K}$ is an open cover of K for $q \in K$. Because K is compact, there is a finite subcover $\{N_{r_{q_1}}(q_1), \ldots, N_{r_{q_m}}(q_m)\}$. Then $K \subset \bigcup_{i=1}^m N_{r_{q_i}}(q_i)$. Therefore, $N_{r_{q_i}}(p) \cap N_{r_{q_i}}(q) = \emptyset$. So, $\bigcap_{i=1}^n N_{r_{q_i}}(p)$ is disjoint from $K \subset \bigcup_{i=1}^m N_{r_{q_i}}(q_i)$ for $r = \min\{r_{q_1}, \ldots, r_{q_m}\}$. This shows that p is an interior point of K^c , hence K^c is open and K is closed.

Proposition 2.8.

- (1) Show that if E is compact, then E is bounded.
- (2) Show that $E = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}^+\}$ is a compact subset of \mathbb{R} .

Proof.

- (1) Let $p \in X$. Then $\bigcup_{n=1}^{\infty} N_n(p) = X$. So in particular, $\{N_n(p)\}_{n \in \mathbb{Z}^+}$ is an open cover of E. Therefore, since E is compact, there is a finite subcover of this cover $\{N_{n_1}(p), \ldots, N_{n_m}(p)\}$. So for $M = \max\{n_1, \ldots, n_m\}$, we have $E \subset N_M(p)$, so E is bounded.
- (2) Let $\{G_{\alpha}\}_{\alpha \in A}$ be an open cover of E. Let G_{α_0} be an open set from the cover that contains 0. Let r > 0 be such that $N_r(0) \subset G_{\alpha_0}$. Then $\frac{1}{n} \in N_r(0)$, and so $\frac{1}{a} < r$. This is true for all but finitely many $n \in \mathbb{Z}^+$. So, G_{α} contains 0 and all but finitely many points from E. For some $M \in \mathbb{Z}^+$ and n > M, then $\frac{1}{n} < \frac{1}{m} < r$. Pick a G_{α_i} containing $\frac{1}{i}$ for each $i = 1, \ldots, M$. Therefore, $\{G_{\alpha_0}, \ldots, G_{\alpha_m}\}$ is a finite subcover.

Heine-Borel

k-Cell. A k-Cell is given by

$$[a_1, b_1] \times \cdots \times [a_k, b_k] = \{(x_1, \dots, x_k) \in \mathbb{R}^k \mid x_i \in [a_i, b_i] \text{ for all } i\}.$$

Theorem 2.9. Every k-cell in \mathbb{R}^k is compact.

Proof. We proceed inductively. Let k=1. Then we show that [a,b] is a compact subset of \mathbb{R} . Let $\{G_{\alpha}\}_{\alpha\in A}$ be an open cover of [a,b]. Assume for contradiction that there are no finitely many of G_{α} that cover [a,b]. Let $c=\frac{a+b}{2}$. Then $[a,b]=[a,c]\cup[c,b]$. It must be the case that no finitely many of the G_{α} cover [a,c] or no finitely many cover [c,b]; call this I_1 . Note, the length of I_1 is given by $\frac{b-a}{2}$. We continue subdividing inductively. This gives us a sequence of nested closed intervals $I_1 \supset I_2 \supset I_3 \supset \ldots$ such that I_n has length $\frac{b-a}{2n+1}$, and no finitely many of the G_{α} cover I_n .

As a brief lemma, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Denote $I_n = [a_n, b_n]$. Let $x = \sup\{a_n\}_{n \in \mathbb{Z}^+}$. Then $a \in \bigcap_{n=1}^{\infty} I_n \neq \emptyset$, as $a_n \leq x$ for all n and $x \leq b_n$ for all n since for a fixed n, $b_n \geq a_k$ for all k. This proves the lemma.

Hence, $x \in G_{\beta}$ for some $\beta \in A$. Since G_{β} is open, $N_r(x) \subset G_{\beta}$. Choose M such that $\frac{b-a}{2^{M+1}} < r$. Then since $x \in I_m$ and the length of $I_m = \frac{b-a}{2^{M+1}}$, and $I_m \subset N_r(x) \subset G_{\beta}$. This contradicts that I_m can not be covered by finitely many G_{α} . Therefore, [a,b] is compact.

Theorem 2.10. In any metric space (X, d): if $K \subset X$ is compact, $F \subset X$ is closed, and $K \subset K$, then F is compact.

Proof. Let $\{G_{\alpha}\}_{{\alpha}\in A}$ be an open cover of F. To cover K, take $\{G_{\alpha}\}_{{\alpha}\in A}\cup \{F^c\}$. This is open since F^c is open. Since K is compact, there is some finitely many $\{G_{\alpha_1},\ldots,G_{\alpha_m}\}\cup \{F^c\}$. So, $\{G_{\alpha_1},\ldots,G_{\alpha_m}\}$ has to cover F. This shows that F is compact.

Theorem 2.11 (Heine-Borel). In the metric space R^k , a subset E is compact if and only if E is closed and bounded (this is *not* true in a general metric space).

Proof. If E is compact, then it is closed and bounded. Otherwise, suppose E is closed and bounded. If E is bounded, then E is contained in a k-cell. By Theorem 2.40, that k-cell is compact, so E is a closed subset of a compact set, hence is compact by Theorem 2.35.

2.2. Perfect Sets

Other Notions of Compactness

Proposition 2.12. Let E be a subset of a metric space (X,d). Then E is compact if and only if every infinite subset $S \subset E$ has a limit point in E (this is called *limit point compact*).

Proof. See Rudin for the case $X = \mathbb{R}^k$.

2.2 Perfect Sets

Perfect. A subset P in a metric space (X,d), P is perfect if P is closed and every point in P is a limit point of P. For example, [a,b] is perfect.

Theorem 2.13. Let $K_1 \supset K_1 \supset ...$ be a "decreasing" sequence of non-empty compact subsets of a metric space. Then

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$$

Proof. Suppose for contradiction that $\bigcap K_n = \emptyset$. Then $\bigcup K_n^c = X$. So, $\{K_n\}$ are an open cover of X, thus this covers every subset of X, including K_1 . Since K_1 is compact, it has a finite subcover $\{K_{n_1}^c, \ldots, K_{n_m}^c\}$. Take $N = \max\{n_1, \ldots, n_m\}$. Then $\bigcap_{i=1}^m K_{n_i}^c = K_N^c$, so K_N^c covers K_1 . So, $K_1^C \supset K_N$, and $K_N \subset K_1 \cap K_1^c = \emptyset$, a contradiction that K_N is nonempty. Therefore, $\bigcap_{n \in \mathbb{Z}^+} K_n \neq \emptyset$.

Theorem 2.14. Let $P \subset \mathbb{R}^k$ be a non-empty perfect set. Then P is uncountable.

Proof. P has limit points, so P is infinite. Assume for contradiction that P is countable. Then x_1, x_2, \ldots are all points in P. Note, for closed neighborhoods, $\overline{N_r(p)} = \{x \in \mathbb{R}^k \mid d(p,x) \leq r\}$. Clearly, these are also bounded, hence compact. Choose $y_1 \neq x_1$ with $y_1 \in P$ and $r_1 > 0$ such that $\overline{y_1} \not\ni x_1$, denote $V = N_{r_1}(y_1)$. Since y_1 is a limit point of P, there is a $y_2 \in E$ inside a small neighborhood of y_1 . Choose $r_2 > 0$ such that $\overline{N_r(y_2)} \not\ni y_2$. Let $V_2 = N_{r_2}(y_2)$. Then $y \in P$ such that $\overline{V_n} \subset V_{n-1}$ and $x_n \notin \overline{V_m}$. So, we have a decreasing sequence of compact subsets of \mathbb{R}^k with $x_n, x_{n-1}, \ldots \notin \overline{V_n}$. Take $K_n = \overline{V_n} \cap P$. Then $K_n \ni yN$, hence is nonempty. K_n is also compact because it has a closed subset of a compact set. Hence $K_1 \supset K_2 \supset \ldots$ Applying our lemma, $\cap K_n \neq \emptyset$, and $\bigcap K_n \ni p$. Also, $p \in P$, but $p \not= x_n$ for all $x \in \mathbb{Z}^+$ because $p \in \overline{V_n}$. So, p is not in the list, and the list does not contain all of P. Hence, P is uncountable.

Corollary 2.15. [a, b] is uncountable and \mathbb{R} is uncountable. The cantor set is uncountable.

Connected Sets

Separated. For (X, d) a metric space, $A, B \subset X$ are separated if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.

A=[0,1] and B=[2,3] are separated. A=(0,1) and B=(1,2) are also separated because $[0,1]\cap(1,2)=\emptyset$ and $(0,1)\cap[1,2]=\emptyset$. If A=(0,1) and B=[1,2], A and B are not separated, as $\overline{a}\cap B\ni 1$.

Disconnected and Connected. A subset $E \subset X$ is disconnected if $E = A \cap B$ for A, B nonempty and separated. E is connected if it is not disconnected.

 $(0,1) \cup (1,2)$ is disconnected.

Theorem 2.16. A subset $E \subset \mathbb{R}$ is connected if and only if it satisfies the following property: if $x, y \in E$ with x < z < y, then $z \in E$. That is, E is convex.

Series and Sequences

3.1 Sequences

Converging Sequence. A sequence (p_n) in a metric space (X,d) converges if there exists a $p \in X$ such that for every $\epsilon > 0$, there exists $N \in \mathbb{Z}^+$ such that for all $n \geq N$, $d(p_n,p) < \epsilon$. This is commonly denoted $p_n \to p$ or $\lim_{n \to \infty} p_n = p$.

Bounded. (p_n) is bounded if $\{p_n \mid n \in \mathbb{Z}^+\}$ is bounded.

- (1) $p_n = \frac{1}{n}$. Then $\lim_{n \to \infty} p_n = 0$. To verify, let $\epsilon > 0$. Then choose $N > \frac{1}{\epsilon}$. So, $\frac{1}{N} < \epsilon$. Then if $n \ge N$, we have that $p n = \frac{1}{n} \le \frac{1}{N} < \epsilon$, and so $d(p_n, p) = \left|\frac{1}{n} 0\right| = \frac{1}{n} < \epsilon$. This shows that p n converges to 0.
- (2) $p_n = n$ does not converge. Let $p \in \mathbb{R}$. Choose $\epsilon = \frac{1}{2}$ and let $N \in \mathbb{Z}^+$. Choose $n \geq N$ and $n \geq \frac{1}{2}$. Then $d(p_n, p) = |n p| = n p \geq (p + \frac{1}{2}) p = \frac{1}{2} = \epsilon$. Thus, p_n does not converge to p, and since p was arbitrary, p_n does not converge.

Theorem 3.1. If (p_n) converges, then (p_n) is bounded. Also, if $E \subseteq X$ and $p \in X$ is a limit point of E, then there is a sequence (p_n) of points in E that converge to p.

Proof. Suppose $p_n \to p$. Choose $\epsilon = 1$. Since $p_n \to p$, there is some $N \in \mathbb{Z}^+$ such that for all $n \geq N$, $d(p_n, p) < 1$. Take x = p and $M = \max\{1, d(p, p_1), \dots, d(p, p_{N-1})\} + 1$. Then $d(p, p_n) < m$ for all n.

For the second statement, recall that since p is a limit point of E, for all $\epsilon > 0$, $|N_{\epsilon}(p) \cap E|$ is infinite. Choose $\epsilon = 1$. Let p_1 be any point in $N_1(p)$. Next, choose $\epsilon = \frac{1}{2}$ and let $p - 2 \in N_{1/2}(p)$, and so on. In general, let p_n be any of the infinitely many points in $N_{1/2}(p) \cap E$. So, we have a sequence p_n , and we show that $p_n \to p$. So, let $\epsilon > 0$. Then choose $N > \frac{1}{\epsilon}$. So, if $n \ge N$, we have that $d(p_n, p) < \frac{1}{n} \le \frac{1}{N} < \epsilon$, and we're done.

Theorem 3.2. Let $(s_n), (t_n)$ be sequences with $s_n \to s$ and $t_n \to s$. Then for some scalar c,

- (1) $s_n + t_n \rightarrow s + t$.
- (2) $cs_n \to cs$.
- (3) $c+s_n \to c+s$.
- (4) $s_n t_n \to sn$.
- (5) $\frac{1}{s_n} \to \frac{1}{s}$ if s_n and s are not 0.

Proof. Let $\epsilon > 0$. Since $s_n \to s$, there is $N_1 \in \mathbb{Z}^+$ such that for all $n \ge N_1$, $|s_n - s| < \frac{\epsilon}{2}$. Similarly, since $t_n \to t$, there is $N_2 \in \mathbb{Z}^+$ such that for all $n \ge N_2$, $|t_n - t| < \frac{\epsilon}{2}$. Choose $N = \max\{N_1, N_2\}$. Then for $n \ge N$,

$$d(s_n + t_n) = |s_n + t_n - (s+t)| = |(s_n - s) + (t_n - t)|$$

$$\leq |s_n - s| + |t_n - t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

The rest of these proofs are in Rudin.

Theorem 3.3. Let (x_n) be a sequence in \mathbb{R}^k . Write $x_n = (x_{n,1}, \dots, x_{n,k})$ Then $x_n \to x = (x_1, \dots, x_k)$ if and only if $\lim_{n\to\infty} x_{n,i} = x_i$ for all $i = 1, \dots, k$.

Let $(x_n), (y_n)$ be sequences in \mathbb{R}^k and (β_n) a sequence in \mathbb{R} . Suppose $x_n \to x$, $y_n \to y$, and $\beta_n \to \beta$. Then $\lim_{n\to\infty}(x_n+y_n)=x+y$, $\lim_{n\to\infty}(x_ny_n)=xy$, and $\lim_{n\to\infty}\beta_nx_n=\beta x$.

Subsequences

Subsequence. Let (p_n) be a sequence in a metric space XS. let $n_1, n_2, \dots \in \mathbb{Z}^+$ be a sequence of positive integers that is increasing, that is $n_1 < n_2 < \dots$, then the sequence p_{n_1}, p_{n_2}, \dots is called a *subsequence*, denoted by $(p_{n_k})_{k=1}^{\infty}$ or (p_{n_k}) . Formally, thinking of a sequence as a function $f: \mathbb{Z}^+ \to X$, then a subsequence is some $f \circ g: \mathbb{Z}^+ \to X$ given by right composition with $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ with $k \mapsto n_k$ such that g(k+1) > g(k) with $k \mapsto n_k \mapsto p_{n_k}$ for all k.

Subsequential Limit. Subsequential limits are the limits of convergent subsequences.

Proposition 3.4. $p_n \to p$ if and only if every subsequence (p_{n_k}) of (p_n) converges to p.

Theorem 3.5.

- (1) Let (p_n) be a sequence in a compact metric space X. Then there is a subsequence (p_{n_k}) that converges to a point of X.
- (2) If (p_n) is a sequence in \mathbb{R}^k which is bounded, then there is a sequence (p_{n_k}) that converges to a point of \mathbb{R}^k .

Proof. Clearly, $(a) \implies (b)$ by Heine-Borel.

- (1) To show (a), let $E = \{p_n \mid n \in \mathbb{Z}^+\}$ (the "range" of p_n). We consider the following cases:
 - 1. E is finite. Then some $p \in E$ shows up infinitely many times for $n_1 < n_2 < \ldots$, and so $(p_{n_k})_{k=1}^{\infty} = \{p\}$. So, this converges to p.
 - 2. E is infinite. By a theorem from chapter 2, E has a limit point $p \in X$. Then for all $\epsilon > 0$, $N_{\epsilon}(p) \cap E$ is infinite. Thus, there exists an n_1 such that $d(p, n_1) < 1$, an n_2 such that $d(p, n_2) < \frac{1}{2}$ with $n_2 > n_1$, and so on. Inductively, we find $n_1 < n_2 < \ldots$ with $d(p_{n_k}, p) < \frac{1}{k}$. This sequence $(p_{n_k})_{k=1}^{\infty}$ converges to p.

Upper and Lower Limits

We're gonna work in \mathbb{R} now.

Diverging Sequence. If (s_n) is a sequence in \mathbb{R} with $s_n \to +\infty$, what does this mean? For every $M \in \mathbb{R}$, there is some $N \in \mathbb{Z}^+$ such that for all $n \geq N$, $s_n \geq M$. Similarly, if $s_n \to -\infty$, for all $M \in \mathbb{R}$, there exists $N \in \mathbb{Z}$ such that for all $n \geq N$, $s_n \leq M$.

Extended Reals. To make the notion of $+\infty$, $-\infty$ more formal, we denote $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ as an ordered set. If $E \subset \mathbb{R}$ is not bounded, then $\sup E = +\infty$. Similarly for $E \subset \mathbb{R}$ not being bounded below.

3.2. Series 15

Upper and Lower Limits. Let (s_n) be a sequence in \mathbb{R} . Let

$$E = \{x \in \overline{\mathbb{R}} \mid x \text{ is a subsequential limit of } (s_n)\}$$

and E be nonempty. Then $\limsup_{n\to\infty} s_n = \sup E \in \overline{\mathbb{R}} = S^*$ and $\liminf_{n\to\infty} = \inf E = S_*$. In fact, $S^k = S_k \in E$.

Recall, (p_n) in X a metric space is Cauchy if for all $\epsilon > 0$, there exists $N \in \mathbb{Z}^+$ such that for all $n, m \geq N$, $d(p_n, p_m) < \epsilon$. Alternatively, the same holds if and only if diam $E_n \xrightarrow{N \to \infty} 0$ with $E_n = \{p_n \mid n \geq N\}$.

Theorem 3.6. (1) In X, any convergent sequence is Cauchy.

- (2) If X is compact, every Cauchy sequence converges.
- (3) In \mathbb{R}^k , every Cauchy sequence converges (hence $(b) \implies (c)$).

Proof. For (b): let X be compact and (p_n) be Cauchy. So, diam $E_n \to 0$. Thus, $E_1 \supset E_2 \supset \ldots$ For each N_1 , $\overline{E_N}$ is closed, hence is compact. Also, diam $\overline{E} = \dim E$ by 3.10(a). Thus, $\overline{E_1} \supset \overline{E_2} \supset \ldots$ is a sequence of compact nested sets with diam $E_n \to 0$, thus by 3.10(b), $\bigcap_{N=1}^{\infty} \overline{E_n} = \{p\}$. We show (p_n) converges to p. let $\epsilon > 0$, then there exists $N_0 \in \mathbb{Z}^+$ such that for all $N \geq N_0$, diam $\overline{E_n} < \epsilon$. Then for all $n \geq N_0$, $p_n \in E_{N_0}$, $p \in \overline{E_{N_0}}$. Therefore, $d(p_n, p) < \epsilon$.

Complete. A metric space X is called *complete* if every Cauchy sequence converges. In particular, compact spaces are complete, \mathbb{R}^k is complete, and any space which is proper is complete.

3.2 Series

Series. Let $(a_n)_{n=1}^{\infty}$ be a sequence in \mathbb{R} or \mathbb{C} . For completeness of notation, $\sum_{k=p}^{q} a_k = a_p + \cdots + a_q$. For $n \in \mathbb{Z}^+$, let $s_n = \sum_{i=1}^{n} a_i$ be called the *n*-th partial sum. Then $(s_n)_{n=1}^{\infty}$ is a new sequence, so $\sum_{n=1}^{\infty} a_n = (s_n)$. A series is just this sequence of partial sums, or $\sum a_n$. So, $\sum a_n = L$ converges if and only if (s_n) converges to L, and $\sum a_n$ diverges if and only if (s_n) diverges.

Theorem 3.7. $\sum a_n$ converges if and only if for all $\epsilon > 0$, there exists $N \in \mathbb{Z}^+$ such that $|\sum_{k=n}^m a_k| < \epsilon$ for all $m \ge n \ge N$.

Corollary 3.8. If $\sum a_n$ converges, then $a_n \to 0$, but the converse is not true.

Theorem 3.9 (Monotone Convergence Theorem). If $a_n > 0$ for all n, then $\sum a_n$ converges if and only if (s_n) is bounded.

Theorem 3.10 (Direct Comparison Test). (1) If $|a_n| \le c_n$ for all $n \ge N_0$ for some constant N_0 , and if $\sum c_n$ converges, then $\sum a_n$ converges.

(2) As the contrapositive, if $a_n \ge d_n \ge 0$ for all $n \ge N_0$ and $\sum d_n$ diverges, then $\sum a_n$ diverges.

Proof. Assume $\sum a_n$ converges. let $\epsilon > 0$. Since $\sum a_n$ converges, there is some $N \in \mathbb{Z}^+$ such that for all $m \geq n \geq N$, $|\sum_{k=n}^m c_k| < \epsilon$. WLOG, take $N \geq N_0$. So,

$$\left| \sum_{k=n}^{m} a_k \right| \le \sum_{k=n}^{m} |a_k| \le \sum_{k=n}^{m} c_k < \epsilon.$$

Thus, $\sum a_n$ converges by Theorem 3.22. Thus, (b) holds as the contrapositive.

Theorem 3.11. If $|x| \le 1$, then $\sum_{n=p}^{\infty} x^n = \frac{1}{1-x}$ diverges if $x \ge 1$.

Proof. $s_n = \sum_{k=0}^n x^k = \frac{1-x^{n-p}}{1-x}$, then use the fact that (x^n) converges (to 0) if |x| < 1, (to 1) if x = 1, and diverges otherwise.

Theorem 3.12. Suppose $a_1 \ge a_2 \ge \dots$ Then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.

Proof. Since all terms ar positive, it suffices to consider boundedness of the sequence of partial sums $s_n = a_1 + a_2 + \cdots + a_n$ and $t_k = a_1 + 2a_2 + \cdots + 2^k a_{2^k}$. If $n \leq 2^k$, then

$$s_n \le a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^k} + \dots + a_{s^{n+1}-1})$$

$$\le a_1 + 2a_2 + 4a_1 + \dots + 2^k a_{2^k} = t_k.$$

Therefore, $\sum s^k a_{2^k}$ converges implies $\sum a_n$ converges, and the converse holds as well.

Theorem 3.13. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof. If p < 0, then $\frac{1}{n^p} \not\to 0$, hence it diverges (duh). Assume $p \ge 0$. Then $\frac{1}{1^p} \ge \frac{1}{2^p} \ge \frac{1}{3^p} \ge \cdots \ge 0$. Now, apply 3.27: $\sum \frac{1}{n^p}$ converges if and only if $\sum 2^k \frac{1}{2^{kp}} = \sum \left(\frac{1}{2^{p-1}}\right)^k$, a geometric series with $x = \frac{1}{2^{p-1}}$. This converges if and only if $\frac{1}{2^{p-1}} < 1$, which is true if and only if p > 1.

Similarly, $\sum \frac{1}{n(\log n)^2}$, $\sum \frac{1}{n \log n \log \log n}$, and so on converges.

3.3 The Number e

The Number e. $e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$ If $n \ge 2$, then $\frac{1}{n!} = \frac{1}{n(n-1)(n-2)\dots 1} \le \frac{1}{(n-1)^2}$, so this series converges by the comparison test.

Theorem 3.14. e is irrational.

Proof. For $s_n = \sum_{k=0}^n \frac{1}{k!}$, the error is given by

$$e - s_n = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots$$

$$= \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+3)(n+2)} + \dots \right)$$

$$\leq \frac{1}{(n+1)!} \underbrace{\left(1 + \frac{1}{n+2} + \frac{1}{(n+2)^2} + \dots \right)}_{\text{Geometric series with } x = \frac{1}{n+2}}$$

$$= \frac{1}{(n+1)!} \left(\frac{n+2}{n+1} \right) = \frac{1}{n!n}.$$

Suppose e is rational, that is $e = \frac{p}{q}$ for $p, q \in \mathbb{Z}^+$. Take $0 < e - s_q < \frac{1}{q!q}$. Then $0 < \underbrace{p(q-1)!}_{\mathbb{Z}} + \underbrace{s_q q!}_{\mathbb{Z}} < \frac{1}{q}$,

but this is a contradiction (this method of arguing irrationality is very common, and called Diophantine approximation).

Theorem 3.15 (Root Test). Given $\sum a_n$, let $\alpha = \limsup_{n \to \infty} \sqrt{|a_n|}$. Then

- (1) If $\alpha > 1$, a_n diverges.
- (2) If $\alpha < 1$, a_n converges.
- (3) If $\alpha = 1$, we have no information.

Theorem 3.16 (Ratio Test). $\sum a_n$ converges if $\limsup_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ and diverges if $\left|\frac{a_{n+1}}{a_n}\right| \ge 1$ for $n \ge n_0$ for some n_0 a fixed index.

Absolute Convergence

Absolute Convergence. $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.

As a non-example, $\sum \frac{(-1)^n}{n}$ does not converge absolutely.

Theorem 3.17. If $\sum |a_n|$ converges, $\sum a_n$ converges.

Proof. We use the Cauchy criterion. Let $\epsilon > 0$. We want N such that for all $m \ge n \ge N$, $|\sum_{k=n}^m |a_k| \le \sum_{k=n}^m |a_k| < \epsilon$. So, $\sum a_n$ converges.

Addition and Multiplication of Series

Theorem 3.18. If $\sum a_n = \alpha$ and $\sum b_n = \beta$, then $\sum (a_n + b_n) = \alpha + \beta$.

Proof. $\sum a_n = \alpha$ means that $A_n \to \alpha$ where $A_n = \sum_{k=1}^n a_k$, and $\sum b_n = \beta$ means that $B - n \to \beta$ where $B_n = \sum_{k=1}^n a_k$. Observe that the *n*-th partial sum for $\sum (a_n + b_n)$ is

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} + \sum_{k=1}^{n} b_k = \alpha + \beta = A_n + B_n.$$

3.4 Multiplication of Series