1. For the following exercises you are given $\frac{df}{dx}$. Can you come up with some function f(x) such that its derivative is the given $\frac{df}{dx}$

(a)
$$\frac{df}{dx} = x^3 + x + 1$$

(b)
$$\frac{df}{dx} = \sin x$$

(c)
$$\frac{df}{dx} = e^{x+2} + \frac{x}{2}$$

2. Find the most general antiderivative.

(a)
$$f(x) = 0$$

(d)
$$y(\theta) = \cos(\theta) - \sin(\theta)$$

(b)
$$f(x) = 3x^3 + 2x^2 + x + 1$$

(e)
$$f(x) = 5e^x - 3\cosh x$$

(c)
$$h(y) = 17e^{-2y} + 123\sec^2 x$$

(f)
$$g(t) = \sin t + 2\sinh t$$

3. Find a function f which satisfies the given conditions.

(a)
$$f''(x) = 6x + 12x^2$$

(b)
$$f''(x) = 2e^t + 3\sin t$$
 with $f(0) = f(\pi) = 0$

Parts (c) and (d) are more difficult that usual, and are certainly more difficult than questions to come on the final exam.

(c)
$$f'(x) = f(x)$$
 with $f(0) = 1$
[hint: Try to re-write this equation in terms of the function $g(x) = e^{-x}f(x)$]

(d)
$$f''(x) = f(x)$$
 with $f(0) = 2$ and $f'(0) = 0$

$$\begin{bmatrix} Try \ writing \ g(x) = e^x f(x) \ and \ show \ that \ g \ satisfies \ the \ equation \end{bmatrix}$$

$$g''(x) = 2g'(x)$$

Then write an equation in terms of the function $h(x) = e^{-2x}g'(x)$