AMENDMENTS

- 1. (Currently Amended) A compound of general formula A-(Y-ONO₂)_s (I) and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof, wherein
 - s is an integer equal to 1 or 2;

A is selected from the following β -adrenergic blockers residues of formula (II):

$$\begin{array}{c|c} Z & & \\ \downarrow & & Z_1 \\ O & & \downarrow \\ N & & \\ N & & \\ R_2 & & \\ \end{array}$$
(II)

wherein

 R_1 is selected from the group consisting of:

$$\begin{array}{c|c} CH_3 \\ H_3C \\ \end{array} \begin{array}{c} O \\ CH_{\overline{2}} \\ \end{array} \\ \end{array} \begin{array}{c} O \\ CH_{\overline{2}} \\ \end{array} \begin{array}{c} CH_{\overline{2}} \\ \end{array} \\ \end{array} \begin{array}{c} CH_{\overline{2}} \\ \end{array} \begin{array}{c} CH_{\overline$$

$$\begin{array}{c|c} & & & & \\ & &$$

$$\begin{array}{c} CH_{\overline{2}} \\ \\ (Hg) \\ (Hg) \\ (Hh) \\ \\ CCH_{3} \\ \\ (Hi) \\ \\ (Hh) \\ (Hh) \\ (Hh) \\ \\ (Hh) \\$$

 R_2 is selected from the group consisting of: $-CH(CH_3)_2$, $-C(CH_3)_3$ or

$$\begin{array}{c|c} O & CH_{2} & O & CH_{2} \\ \hline O & OH & CH_{2} \\ \hline O & CH_{2} \\ \hline O & CH_{2} \\ \hline \end{array};$$
(IIIa) (IIIb)

when the radical R_4 has chosen from the formulae (IIa), (IIc), (IId), (IIg), (IIh), (IIi), (IIIh), (IIIh),

when the radical R₁ has chosen from the formulae (IIe), (IIf) or (IIn), R₂ is - C(CH₃)₃;

when R₁ is the radical (IIb), R₂ is (IIIa);

when R₁ is the radical (IIL), R₂ is (IIIb);

Z is H or is a group capable of binding Y selected from the group consisting of:

-C(O)-, -C(O)O- or

wherein R' and R" are the same or different, and are H or straight or branched C₁-C₄-alkyl;

 Z_1 is H or a -C(O)- group capable of binding Y;

with the proviso that when s of formula (I) is 1, Z or Z₁ is H;

Y is a bivalent radical having the following meaning:

a)

 straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, -ONO₂ or T, wherein T is -OC(O)(C₁-C₁₀alkyl)-ONO₂, -O(C₁-C₁₀alkyl)-ONO₂;

[[b)]]

- cycloalkylene with 5 to 7 carbon atoms into cycloalkylene ring, the ring being optionally substituted with side chains T₄, wherein T₄ is straight or branched alkyl with from 1 to 10 carbon atoms;

[[c)]]

b)

$$-(Y^{1})_{n} \xrightarrow{\overset{5}{(COOH)_{n4}}} (CH_{2})_{\overline{n1}}$$

$$(IV)$$

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1, R^3 and R^4 are independently selected from H or CH_3 ,

 Y^1 is $-CH_2$ - or $-(CH_2)_{na}$ -CH=CH- wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH;

d)

$$\begin{array}{c|c}
 & R^{6} & R^{5} \\
\hline
 & (C^{A})_{n6}^{----} (C^{B})_{n7} & (X_{1}) & (CH_{2})_{n1} \\
\hline
 & R^{6'} & R^{5'} \\
\end{array}$$

wherein:

n1 n1 is an integer from 1 to 20

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH;

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵, R⁶ and R⁶ are independently selected from the group consisting of: H,

CH₃, OH, NH₂, NHCOCH₃, COOH, CH₂SH and C(CH₃)₂SH;

when the bond between the CA and CB carbons is a double bond R5 and R6 or

R⁶' and R⁵' are absent;

when Y is selected from the bivalent radicals mentioned under e)-d) b), the – ONO_2 group is linked to the – $(CH_2)_{n1}$ - group;

[[e)]]

<u>c)</u>

(VII)

wherein

 X_2 is O or S,

n10a, n10 and n12 are integer independently selected from 0 to 20,

n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or nitrooxy group;

R^{11a} is CH₃ or nitrooxy group;

f)

wherein:

n8 is an integer from 0 to 10;

n9 is an integer from 1 to 10;

 R^9 , R^{10} , R^8 , R^7 are the same or different, and are H or straight or branched C_4 - C_4 alkyl;

wherein the ONO2-group is linked to

wherein n9 is as defined above;

Y²-is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur,

and is selected from the group consisting of:

and wherein (Y-ONO₂)_s bonds with Z and/or Z1 of formula (II).

- 2. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 1 wherein s is 2 and Z and Z_1 are -C(O)-.
- (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 2 wherein Y is a straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, -ONO₂ or T, wherein T is -OC(O)(C₁-C₁₀alkyl)-ONO₂, -O(C₁-C₁₀alkyl)-ONO₂.
- 4. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 3 wherein Y is a straight or branched C₁-C₁₀ alkylene.
- (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 2 wherein Y is

$$-(Y^{1})_{n} = (COOH)_{n4}$$

$$(OR^{4})_{n5} = (CH_{2})_{n1}$$

$$(OR^{4})_{n2}$$

$$(IV)$$

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R³ and R⁴ are independently selected from H or CH₃;

 Y^1 is $-CH_2-$ or $-CH_2)_{na}-CH=CH-$ wherein na is an integer from 0 to 20; X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

- 6. (Withdrawn/Original) A compound and the enantiomers, diastereolsomers and pharmaceutically acceptable salts thereof according to claim 5 wherein n2, n3, n4, n5 are equal to 0, n1 is 1, n is an integer from 0 to 10, Y¹ is CH₂.
- (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 5 wherein n, n2, n5 are 1,

n3 and n4 are equal to 0, and

n1 is an integer from 1 to 10,

 Y^1 is $-(CH_2)_{na}$ -CH=CH- wherein na is 0,

 X_1 is -WC(O)— wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$,

 R^4 is CH_3 and the group (OR^4) is bound to the phenyl ring through the $[C]_3$.

 (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 2 wherein Y is

(VI)
$$-(CH_{2})_{n\overline{10a}}CH-X_{2}-[(CH_{2})_{n\overline{10}}CH-X_{2}]_{\overline{n11}}(CH_{2})_{\overline{n12}}CH-X_{2}]_{\overline{n11}}$$

$$R^{11a}$$

$$R^{11a}$$

(VII)

 X_2 is O or S,

n10a, n10and n12 are integers independently selected from 0 to 20;

n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

R^{11a} is CH₃ or a nitrooxy group.

 (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 8 wherein Y is

wherein

 X_2 is O or S,

n10a is an integer from 0 to 10

n11 are 0,

n12 is an integer from 1 to 10,

R¹¹ is H or a nitrooxy group;

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ - group.

 (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 2 wherein Y is

$$\begin{array}{c|c}
 & R^{6} & R^{5} \\
 & (C^{A})_{\overline{n6}} & (C^{B})_{\overline{n7}} & (X_{1}) & (CH_{2})_{\overline{n1}} \\
 & R^{6'} & R^{5'} & (V)
\end{array}$$

n1 is an integer from 1 to 20;

 X_1 is -WC(O)- or a -C(O)W-, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵, R⁵, R⁶ and R⁶ are independently selected from the group consisting of: H, CH₃, OH, NH₂, NHCOCH₃, COOH, CH₂SH and C(CH₃)₂SH;

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or $R^{6'}$ and $R^{5'}$ are absent.

11. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 10 wherein n1 is an integer from 1 to 10,

n6 and n7 are 1;

 X_1 is -WC(O)— wherein W is sulfur;

R⁵. R^{5'} and R^{6'} are H.

R⁶ is NHCOCH₃;

with the proviso that the $-\text{ONO}_2$ group is bound to the $-(\text{CH}_2)_{n1}-$ group.

12. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 1 wherein s is equal to 1

A is selected from the following β -adrenergic blockers residues of formula (II):

$$Z$$
 Q
 Z_1
 Q
 N
 R_2
 (II)

 R_1 is selected from the group consisting of:

$$H_{3}C \xrightarrow{CH_{3}} \xrightarrow{CH_{2}} \xrightarrow{CH_{2$$

$$CH_{3}(CH_{2})_{2}$$

$$(III)$$

$$CH_{2}$$

$$(IIIL)$$

$$CH_{3}$$

$$(IIIL)$$

$$CH_{3}$$

$$(IIIL)$$

$$CH_{3}$$

$$(IIII)$$

$$(IIII)$$

$$(IIII)$$

 R_2 is selected from the group consisting of: $-CH(CH_3)_2$, $-C(CH_3)_3$ or

when the radical R_1 has chosen from the formulae (IIa), (IIc), (IId), (IIg), (IIh), (IIi), (IIm), R_2 is $-CH(CH_3)_2$;

when the radical R_1 has chosen from the formulae (IIe), (IIf) or (IIn), R_2 is $-C(CH_3)_3$;

when R_1 is the radical (IIL), R_2 is (IIIb);

Z is a group capable of binding Y selected from the group consisting of:

wherein R' and R" are the same or different, and are H or straight or branched C_1 - C_4 alkyl;

Z₁ is H and

Y is a bivalent radical having the following meanings:

c)

$$\begin{array}{c|c} & 5 & (COOH)_{n4} \\ & & 4 \\ & & 4 \\ \hline & & (X_1)_{n5} \\ & & (CH_2)_{n1} \\ & & & (CH_2)_{n1} \\ & & & & (IV) \\ \end{array}$$

wherein:

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1,

R³ and R⁴ are independently selected from H or CH₃,

 Y^1 is $-CH_2$ - or $-(CH_2)_{na}$ -CH=CH- wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH;

e)

 X_2 is O or S, n10a is 0 or 1, n11 is 0 or 1, n10 and n12 is 1 or 2, R^{11} is H, CH₃ or nitrooxy group;

R^{11a} is CH₃ or nitrooxy group;

f)

$$\begin{array}{c|c}
R^9 & R^8 \\
\hline
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\$$

wherein:

n8 is an integer from 0 to 10;

n9 is an integer from 1 to 10;

 R^9 , R^{10} , R^8 , R^7 are the same or different, and are H or straight or branched C_1 - C_4 alkyl;

wherein the -ONO2 group is linked to

wherein n9 is as defined above;

Y² is an heterocyclic saturated, unsaturated or aromatic 5 or 6 members ring, containing one or more heteroatoms selected from nitrogen, oxygen, sulfur, and is selected from the group consisting of:

(Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 12 wherein Z is –C(O)-.

14. (Withdrawn/Original) A compound and enantiomers and diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 13 wherein Y is

$$\begin{array}{c|c}
5 & (COOH)_{n4} \\
4 & (X_1)_{n5} & (CH_2)_{n1} \\
\hline
-(Y^1)_n & 2 & (OR^4)_{n2} \\
(OR^3)_{n3} & (IV)
\end{array}$$

wherein

n is an integer from 0 to 20, and n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from one another, equal to 0 or 1:

R³ and R⁴ are independently selected from H or CH₃;

 Y^1 is $-CH_2$ - or $-(CH_2)_{na}$ -CH=CH- wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

15. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 14 wherein n2, n3, n4, n5 are equal to 0,

n1 is 1,

n is an integer from 0 to 10,

 Y^1 is CH_2 .

16. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 14 wherein n, n2, n5 are 1,

n3 and n4 are equal to 0,

n1 is an integer from 1 to 10,

Y¹ is -(CH₂)_{na}-CH=CH- wherein na is 0,

 X_1 is -WC(O)- wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$,

R⁴ is CH₃ and the (OR⁴) group is bound to the phenyl ring through the [C] 3.

17. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 13 wherein Y is

wherein

 X_2 is O or S,

n10a and n11 are 0,

n12 is 1,

R¹¹ is H;

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ - group.

- 18. (Withdrawn/Original) A compound and the enantiomers, diastereolsomers and pharmaceutically acceptable salts thereof according to claim 12 wherein Z is –C(O)O–.
- 19. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 18 wherein Y is

$$\begin{array}{c|c}
 & 5 & (COOH)_{n4} \\
 & 4 & (X_1)_{n5} & (CH_2)_{n1} \\
 & & (OR^4)_{n2} & (OR^3)_{n3} & (IV) \\
 & & & (IV) & (OR^3)_{n3} & (IV) & (I$$

n is an integer from 0 to 20, and n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from one another, equal to 0 or 1;

R³ and R⁴ are independently selected from H or CH₃;

 Y^1 is $-CH_2$ or $-(CH_2)_{na}$ -CH -CH wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

20. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 19 wherein n2, n3, n4, n5 are equal to 0,

n1 is 1.

n is an integer from 0 to 10,

Y¹ is CH₂.

21. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 18 wherein Y is

wherein

 X_2 is O or S,

n10a and n11 are 0,
n12 is 1,
R¹¹ is H;
wherein the $-\text{ONO}_2$ group is bound to the $-(\text{CH}_2)_{\,\text{n12}}$ – group.

22. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 wherein Z is

23. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 22 wherein Y is

$$-(Y^{1})_{n} = (COOH)_{n4} + (CH_{2})_{n1} + (CH_{2})_{n2} +$$

wherein
n is an integer from 0 to 20,
n1 is an integer from 1 to 20;
n2, n3, n4 and n5 are equal to 0;
Y¹ is -CH₂-;

24. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 23 wherein n is 0 and n1 is 1.

25. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 12 and 22 wherein Y is

wherein

 X_2 is O or S,

n10a and n11 are 0,

n12 is 1,

R¹¹ is H:

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ group.

- 26. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 1 wherein s is 1, Z is H and Z_1 are -C(O)–.
- 27. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 26 wherein Y is a straight or branched C₁- C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of halogen atoms, hydroxy, –ONO₂ or T, wherein T is –OC(O)(C₁- C₁₀alkyl)-ONO₂, –O(C₁-C₁₀alkyl)-ONO₂.
- 28. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 27 wherein Y is a straight or branched C₁-C₁₀ alkylene.

29. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 26 wherein Y is

$$-(Y^{1})_{n} = (CH_{2})_{n} + (CH_$$

wherein

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R³ and R⁴ are independently selected from H or CH₃;

 Y^1 is $-CH_2$ - or $-(CH_2)_{na}$ -CH=CH- wherein na is an integer from 0 to 20; X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

30. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 29 wherein n2, n3, n4, n5 are equal to 0, n1 is 1,

n is an integer from 0 to 10,

 Y^1 is CH_2 .

31. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 29 wherein n, n2, n5 are 1,

n3 and n4 are equal to 0,

n1 is an integer from 1 to 10,

 Y^1 is $-(CH_2)_{na}$ -CH=CH- wherein na is 0,

 X_1 is -WC(O)— wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$,

R⁴ is CH₃ and the group (OR⁴) is bound to the phenyl ring through the [C] 3.

32. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 26 wherein Y is

wherein

 X_2 is O or S,

n10a, n10 and n12 are integers independently selected from 0 to 20; n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

 R^{11a} is CH_3 or a nitrooxy group.

33. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 32 wherein Y is

$$-CH - (CH2)n10a X2 - [CH - (CH2)n10 X2]n11 - CH - (CH2)n12 - R11 R11 (VI)$$

 X_2 is O or S, n10a is 0 or 1, n11 is 0 or 1, n10 and n12 are 1 or 2, R¹¹ is H or nitrooxy; wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ – group.

34. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 26 wherein Y is

wherein:

n1 is an integer from 1 to 20;

 X_1 is -WC(O)- or a -C(O)W-, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵ and R⁵ R⁶ and R⁶ are independently selected from the group consisting of: H, CH₃, OH, NH₂, NHCOCH₃, COOH, CH₂SH and C(CH₃)₂SH;

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or R^6 and R^5 are absent.

35. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 34 wherein n1 is an integer from 1 to 10,

n6 and n7 are 1;

X₁ is -WC(O)- wherein W is sulfur;

R⁵, R^{5'} and R^{6'} are H,

R⁶ is NHCOCH₃;

with the proviso that the -ONO₂ group is bound to the - $(CH_2)_{n1}$ -.

- 36. (Canceled).
- 37. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim and 36 wherein s is 2 and Z and Z₁ are –C(O)–.
- 38. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 37 wherein Y is a straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of: halogen atoms, hydroxy, –ONO₂ or T, wherein T is –OC(O)(C₁-C₁₀alkyl)-ONO₂, –O(C₁-C₁₀alkyl)-ONO₂.
- 39. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 38 wherein Y is a straight or branched C₃-C₆ alkylene.
- 40. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 37 wherein Y is

$$\begin{array}{c|c}
 & 5 & (COOH)_{n4} \\
 & 4 & (X_1)_{\overline{n5}} & (CH_2)_{\overline{n1}} \\
 & -(Y^1)_n & 2 & (OR^4)_{n2} \\
 & (OR^3)_{\overline{n3}} & (OR^4)_{n2} & (OR^4)_{n2} & (OR^4)_{n3} & (OR^4)_{n4} & (OR^4)$$

(IV)

- 25 -

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R³ and R⁴ are independently selected from H or CH₃;

 Y^1 is $-CH_2$ - or $-(CH_2)_{pa}$ --CH=-CH- wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

41. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 40 wherein n2, n3, n4, n5 are equal to 0,

n1 is 1,

n is an integer from 0 to 10,

Y¹ is CH₂.

42. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 40 wherein n, n2, n5 are 1,

n3 and n4 are equal to 0, and

n1 is an integer from 1 to 10,

 Y^1 is $-(CH_2)_{na}$ -CH=CH- wherein na is 0,

 X_1 is -WC(O)– wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$.

R⁴ is CH₃ and the group (OR⁴) is bound to the phenyl ring through the [C]₃.

43. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 37 wherein Y is

 X_2 is O or S,

n10a, n10 and n12 are integers independently selected from 0 to 20;

n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

 R^{11a} is CH_3 or a nitrooxy group.

44. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 43 wherein Y is

$$-CH - (CH_2)_{\overline{n10a}} X_2 - [CH - (CH_2)_{\overline{n10}} X_2]_{\overline{n11}} CH - (CH_2)_{\overline{n12}}$$

$$R^{11} \qquad R^{11} \qquad R^{11}$$
(VI)

wherein

 X_2 is O or S,

n10a is an integer from 0 to 10

n11 are 0,

n12 is an integer from 1 to 10,

R¹¹ is H or a nitrooxy group;

wherein the $-\text{ONO}_2$ group is bound to the $-(\text{CH}_2)_{\text{n12}}-$ group.

45. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 37 wherein Y is

wherein:

n1 is an integer from 1 to 20;

 X_1 is -WC(O)- or a -C(O)W-, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

 $\mbox{R}^{\mbox{\tiny 5}},\,\mbox{R}^{\mbox{\tiny 6}}$ and $\mbox{R}^{\mbox{\tiny 6}}$ are independently selected from the group consisting of: H,

 $CH_3,\,OH,\,NH_2,\,NHCOCH_3,\,COOH,\,CH_2SH\,\,and\,\,C(CH_3)_2SH;$

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or R^6 and $R^{5'}$ are absent.

46. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 45 wherein n1 is an integer from 1 to 10,

n6 and n7 are 1;

 X_1 is -WC(O)– wherein W is sulfur;

R⁵, R^{5'} and R^{6'} are H,

R⁶ is NHCOCH₃;

with the proviso that the $-ONO_2$ group is bound to the $-(CH_2)_{n1}$ - group.

- 47. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 36 wherein s is 1, Z is H and Z_1 are -C(O)–.
- 48. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 47 wherein Y is a straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of halogen atoms, hydroxy, –ONO₂ or T, wherein T is –OC(O)(C₁-C₁₀alkyl)-ONO₂, –O(C₁-C₁₀alkyl)-ONO₂.
- 49. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 48 wherein Y is a straight or branched C₁-CO₁₀ alkylene.
- 50. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 47 wherein Y is

$$-(Y^{1})_{n} \xrightarrow{\stackrel{5}{\underset{-2}{(COOH)_{n4}}{(CH_{2})_{n1}}}} (CH_{2})_{n1}$$

$$-(Y^{1})_{n} \xrightarrow{\stackrel{2}{\underset{-2}{(CR^{3})_{n3}}}} (IV)$$

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R^3 and R^4 are independently selected from H or CH_3 ;

 Y^1 is $-CH_2-$ or $-(CH_2)_{na}-CH=CH-$ wherein na is an integer from 0 to 20; X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

- 51. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 50 wherein n2, n3, n4, n5 are equal to 0, n1 is 1, n is an integer from 0 to 10, Y¹ is CH₂.
- 52. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 50 wherein n, n2, n5 are 1, n3 and n4 are equal to 0, n1 is an integer from 1 to 10, Y¹ is -(CH₂)_{na}-CH=CH- wherein na is 0, X₁ is -WC(O)- wherein W is oxygen and X₁ is bound to the phenyl ring through the [C]₄,

53. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 47 wherein

R⁴ is CH₃ and the group (OR⁴) is bound to the phenyl ring through the [C]₃.

Y is

 X_2 is O or S,

n10a, n10 and n12 are integers independently selected from 0 to 20;

n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

 R^{11a} is CH_3 or a nitrooxy group.

54. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 53 wherein Y is

$$-CH - (CH_2)_{\overline{n10a}} X_2 - [CH - (CH_2)_{\overline{n10}} X_2]_{\overline{n11}} - CH - (CH_2)_{\overline{n12}}$$

$$R^{11} - R^{11} - R^{11}$$

$$(VI)$$

wherein

 X_2 is O or S,

n10a and n11 are 0,

n12 is 1,

R¹¹ is H:

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ group.

55. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 47 wherein Y is

(V)

- 31 -

n1 is an integer from 1 to 20;

 X_1 is -WC(O)- or a -C(O)W-, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵ and R^{5'} R⁵ and R^{6'} are independently selected from the group consisting of: H, CH₃, OH, NH₂, NHCOCH₃, COOH, CH₂SH and C(CH₃)₂SH;

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or R^6 and $R^{5'}$ are absent.

56. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 55 wherein n1 is an integer from 1 to 10,

n6 and n7 are 1;

 X_1 is -WC(O)— wherein W is sulfur;

R⁵, R⁵ and R⁶ are H,

R⁶ is NHCOCH₃;

with the proviso that the $-ONO_2$ group is bound to the $-(CH_2)_{n1}$ -.

- 57. (Canceled).
- 58. (Currently Amended) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim [[57]] 1 wherein Y is a straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of halogen atoms, hydroxy, -ONO₂ or T, wherein T is -OC(O)(C₁-C₁₀alkyl)-ONO₂, -O(C₁-C₁₀alkyl)-ONO₂.

- 59. (Previously Presented) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 58 wherein Y is a straight or branched C₃-C₆ alkylene.
- 60. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 57 wherein Y is

$$-(Y^{1})_{n} \xrightarrow{\begin{array}{c} 5 \\ (COOH)_{n4} \\ 4 \\ (OR^{4})_{n5} \end{array}} (CH_{2})_{n1}$$

$$-(Y^{1})_{n} \xrightarrow{\begin{array}{c} 2 \\ (OR^{3})_{n3} \end{array}} (IV)$$

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R^3 and R^4 are independently selected from H or CH_3 ;

Y¹ is -CH₂- or -(CH₂)_{na}-CH=CH- wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

61. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 60 wherein n2, n3, n4, n5 are equal to 0,

n1 is 1,

n is an integer from 0 to 10,

Y¹ is CH₂.

62. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 60 wherein

n, n2, n5 are 1, n3 and n4 are equal to 0,

n1 is an integer from 1 to 10,

 Y^1 is $-(CH_2)_{na}$ -CH=CH- wherein na is 0,

 X_1 is -WC(O)— wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$,

R⁴ is CH₃ and the group (OR⁴) is bound to the phenyl ring through the [C]₃.

63. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 57 wherein Y is

wherein

 X_2 is O or S,

n10a, n10 and n12 are integers independently selected from 0 to 20;

n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

 R^{11a} is CH_3 or a nitrooxy group.

64. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 63 wherein Y is

 X_2 is O or S,

n10a and n11 are 0,

n12 is 1,

R¹¹ is H;

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ — group.

65. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 57 wherein Y is

$$\begin{array}{c|c}
 & R^{6} & R^{6} \\
\hline
 & (C^{A})_{\overline{n6}} & (C^{B})_{\overline{n7}} & (X_{1}) & (CH_{2})_{\overline{n1}} \\
\hline
 & R^{6} & R^{5} & (V)
\end{array}$$

wherein:

n1 is an integer from 1 to 20;

 X_1 is -WC(O)- or a -C(O)W-, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵ and R^{5'} R⁶ and R^{6'} are independently selected from the group consisting of: H, CH₃, OH, NH₂, NHCOCH₃, COOH, CH₂SH and C(CH₃)₂SH;

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or R^6 and $R^{5'}$ are absent.

66. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 65 wherein n1 is an integer from 1 to 10, n6 and n7 are 1;
X₁ is –WC(O)– wherein W is sulfur;
R⁵, R^{5'} and R^{6'} are H,
R⁶ is NHCOCH₃;
with the proviso that the –ONO₂ group is bound to the –(CH₂)_{n1}–.

- 67. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 36 wherein s is 1, Z_1 is H and Z C(O)O-.
- 68. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 67 wherein Y is a straight or branched C₁-C₂₀ alkylene being optionally substituted with one or more of the substituents selected from the group consisting of halogen atoms, hydroxy, –ONO₂ or T, wherein T is –OC(O)(C₁-C₁₀alkyl)-ONO₂, –O(C₁-C₁₀alkyl)-ONO₂.
- 69. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 68 wherein Y is a straight or branched C₃-C₆ alkylene.
- 70. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 67 wherein Y is

$$-(Y^{1})_{n} \xrightarrow{5} (COOH)_{n4}$$

$$-(Y^{1})_{n} \xrightarrow{2} (OR^{4})_{n2}$$

$$(IV)$$

n is an integer from 0 to 20,

n1 is an integer from 1 to 20;

n2, n3, n4 and n5 are integers equal or different from each other, equal to 0 or 1; R^3 and R^4 are independently selected from H or CH_3 ;

 Y^1 is $-CH_2$ or $-(CH_2)_{na}$ -CH=CH wherein na is an integer from 0 to 20;

 X_1 is -WC(O)- or -C(O)W-, wherein W is oxygen, sulfur or NH.

71. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 70 wherein n2, n3, n4, n5 are equal to 0,

n1 is 1,

n is an integer from 0 to 10,

Y¹ is CH₂.

72. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 70 wherein n, n2, n5 are 1, n3 and n4 are equal to 0,

n1 is an integer from 1 to 10,

 Y^1 is $-(CH_2)_{na}$ -CH=CH- wherein na is 0,

 X_1 is -WC(O)- wherein W is oxygen and X_1 is bound to the phenyl ring through the $[C]_4$,

R⁴ is CH₃ and the group (OR⁴) is bound to the phenyl ring through the [C]₃.

73. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 67 wherein Y is

wherein

 X_2 is O or S,

n10a, n10 and n12 are integers independently selected from 0 to 20; n11 is an integer from 0 to 6;

R¹¹ is H, CH₃ or a nitrooxy group;

R^{11a} is CH₃ or a nitrooxy group.

74. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 73 wherein Y is

wherein

 X_2 is O or S, n10a is 0 or 1, n11 is 0 or 1,

n12 is 1 or 2.

R¹¹ is H:

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ — group.

75. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 67 wherein Y is

$$\begin{array}{c|c}
R^{6} & R^{5} \\
\hline
(CA)_{\overline{n6}} & (CB)_{\overline{n7}} & (X_{1}) & (CH_{2})_{\overline{n1}} \\
R^{6'} & R^{5'}
\end{array}$$
(V)

wherein:

n1 is an integer from 1 to 20;

 X_1 is -WC(O)— or a -C(O)W—, wherein W is oxygen, sulfur or NH.

n6 is an integer from 1 to 20,

n7 is an integer from 0 to 20,

R⁵ and R^{5'} R⁶ and R^{6'} are independently selected from the group consisting of: H,

 CH_3 , OH, NH_2 , $NHCOCH_3$, COOH, CH_2SH and $C(CH_3)_2SH$;

when the bond between the C^A and C^B carbons is a double bond R^5 and R^6 or R^6 and $R^{5'}$ are absent.

76. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 75 wherein n1 is an integer from 1 to 10,

n6 and n7 are 1;

 X_1 is -WC(O)— wherein W is sulfur;

R⁵, R^{5'} and R^{6'} are H,

R⁶ is NHCOCH₃;

with the proviso that the $-ONO_2$ group is bound to the $-(CH_2)_{n1}$ -.

77. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claims 36 wherein s is 1, Z₁ is H and Z is

78. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 77 wherein Y is

$$-(Y^{1})_{n} = (CH_{2})_{n1} + (CH_{2})_{n1} + (CH_{2})_{n1} + (CH_{2})_{n1} + (CH_{2})_{n2} + (CH_{2})_{n3} + (CH_{2})_{n3}$$

wherein

n is an integer from 0 to 20, n1 is an integer from 1 to 20; n2, n3, n4 and n5 are equal to 0; Y¹ is -CH₂-;

79. (Withdrawn/Original) A compound and the enantiomers; diastereoisomers and pharmaceutically acceptable salts thereof according to claim 78 wherein n is 0 and n1 is 1.

80. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to claim 77 wherein Y is

wherein

 X_2 is O or S,

n10a and n11 are 0,

n12 is 1,

R¹¹ is H:

wherein the $-ONO_2$ group is bound to the $-(CH_2)_{n12}$ — group.

81. (Currently Amended) Compounds and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to any <u>one</u> of claims 36 and 57 to 67 1, 58 or 59 wherein the compounds are:

82. (Withdrawn/Original) Compounds and the enantiomers, diastereolsomers and pharmaceutically acceptable salts thereof according to any of claims 12 to 17 wherein the compounds are:

83. (Withdrawn/Original) Compounds and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to any of claims 36 and 67 to 76 wherein the compounds are:

84. (Withdrawn/Original) Compounds and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to any of claims 36 to 46 wherein the compounds are:

85. (Withdrawn/Original) Compounds and the enantiomers, diastereolsomers and pharmaceutically acceptable salts thereof according to any of claims 2 to 11 wherein the compounds are:

TECH/717852.1

$$ONO_2$$
 ONO_2
 ONO_2

86. (Withdrawn/Original) Compounds and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to any of claims 36 and 47 to 55 wherein the compounds are:

87. (Withdrawn/Original) Compounds and the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof according to any of claims 26 to 35 wherein the compounds are:

- 88. (Currently Amended) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 47 claim 1, that is 4-(Nitrooxymethyl)benzoic acid 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy) ethyl]amino]-2-propanoate.
- 89. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 57, that is 4-(Nitrooxymethyl)benzoic acid 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy)ethyl][(4nitrooxymethyl)benzoyl]amino-2-propanoate.
- 90. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 47, that is 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy)ethyl][(4-nitrooxymethyl)-benzoyl]amino]-2-propanol.
- 91. (Currently Amended) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to any one of claims 36 and 47 1, 58

- or 59, that is 6-(nitrooxy)hexanoic acid 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy) ethyl]amino]-2-propanol hydrochloride.
- 92. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 47, that is 6-(nitrooxy)hexanoic acid 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy)ethyl]-[(6-nitrooxyhexano-yl]amino]-2-propanol.
- 93. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 47, that is 1-(9H-carbazol-4yloxy)-3-[[2-(2-methoxyphenoxy)ethyl][(6-nitrooxyhexanoyl)amino]-2-propanol.
- 94. (Withdrawn/Original) A compound and the enantiomers, diastereoisomers and pharmaceutically acceptable salts according to claims 36 and 47, that is 1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy)ethyl][(3-nitrooxypropanoyl)amino]-2-propanol.
- 95. (Withdrawn/Original) A compound of formula (I) and/or the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof as defined in any of claims 1 to 94 for use as medicament.
- 96. (Withdrawn/Original) Use of a compound of formula (I) and/or the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof as defined in any of claims 1 to 94 for preparing a drug that can be employed in the treatment or prophylaxis of hypertension, cardiovascular and vascular diseases.
- 97. (Withdrawn/Original) Use of a compound of formula (I) and/or the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof as defined in any of claims 1 to 94 for preparing a drug that can be employed in the treatment of glaucoma and elevated intraocular pressure.

98. (Withdrawn/Original) A pharmaceutical composition comprising a compound of formula (I) and/or the enantiomers, diastereoisomers and pharmaceutically acceptable salts thereof as defined in any of claims 1 to 94 and at least pharmaceutical acceptable carrier.