Tutorial: Relations and functions

Aim

The aim of this tutorial is for students to be able to work confidently with functions and relations.

Questions

- 1. If $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$, and the relation R from A to B is $R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$:
- b) Determine the matrix of the relation.
- c) Draw the arrow diagram.
- 2. Consider A=1,2,3,4,6. Let R be the relation "x divides y (x|y) if and only if there exists an integer z such that $x \times z = y$ ". That is, x is a factor of y.
- a) Write R as a set of ordered pairs.
- b) Draw the directed graph of R.
- 3. For the following relations, identify which are equivalence relations. Recall $\mathbb Z$ is all integers, $\mathbb Q$ is rational numbers, and $\mathbb N$ is non-negative integers.
- a) $R : \{(a,b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}, a+b \text{ is even}\}$
- b) $S: \{(a,b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}, a+b \text{ is odd}\}$
- c) $T: \{(a,b) \mid a \in \mathbb{Q} \setminus 0, b \in \mathbb{Q} \setminus 0, a \times b > 0\}$
- d) $U : \{(a,b) \mid a \in \mathbb{N}, b \in \mathbb{N}, |a-b| \le 2\}$
- 4. Which of the following is a valid partition on the set $S = \{a, b, c, d\}$?
- a) $\{\{b,c\},\{c,d\},\{a\}\}$
- b) $\{\{b,d\},\{a,c\},\emptyset\}$
- c) $\{\{b,d\},\{a,c\}\}$
- d) $\{\{b,d\},\{c\}\}$
- 5. For each of the diagrams in figure Question 5, Digraphs; determine whether it depicts a function from $A = \{a, b, c\}$ to $B = \{x, y, z\}$. Give your reasons.

Figure 1: Question 5, Digraphs

- 6. Identify whether the following are partial or total functions. Give reasons why. \mathbb{N} is the set of natural numbers, the non-negative integers.
- a) $f: \mathbb{N} \to \mathbb{N}, f(x) = x/2$
- b) $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, g(x,y) = x + y$
- c) $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, h(x,y) = x 2y$
- 7. Find the inverse functions of the following functions, if they exist. Note \mathbb{R} is the set of all real numbers.
- a) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x + 2$
- b) $g: \mathbb{R} \to \mathbb{R}, g(x) = x^2 25$
- c) $h: \mathbb{R} \to \mathbb{R}, h(x) = |x|$
- 8. A function $f: \{1, 2, 3, 4, 5\} \to \{0, 1, 2, 3, 4\}$ is defined as f(n) is the remainder of 3n/5.
- a) Draw the arrow diagram.
- b) Is f an injection, surjection or both?
- 9. Consider the following function definitions:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = 4x - 3$$
$$g: \mathbb{R} \to \mathbb{R}, g(x) = x^2 + 1$$
$$h: \mathbb{R} \to \mathbb{R}, h(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

where \mathbb{R} is the set of all real numbers. Determine:

- a) $f \circ f$
- b) $f \circ g$
- c) $h \circ f$
- 10. Let A be the set of all finite non-null strings of characters.

Let upper: $A \to A$ be a function that convert all lower case letters to upper case, leaving all other characters unchanged. The function lower: $A \to A$, converts all upper case letters to lower case.

- a) Evaluate upper ("Computer Logic Essentials").
- b) Evaluate upper o lower("Computer Logic Essentials").