## Redes Auto-Organizáveis: Mapas de Kohonen

Gustavo Scaloni Vendramini Guilherme José Henrique Sean Carlisto de Alvarenga Vinícius Fernandes de Jesus

10 de setembro de 2013

#### Resumo

Este artigo apresenta uma implementação de um modelo de rede neural auto-organizável conhecida como mapas auto-organizáveis de Kohonen ou redes SOM (do inglês Self-Organizing Maps).

## 1 Introdução

### 2 Redes SOM

### 2.1 Treinamento

A rede SOM utiliza um algoritmo de aprendizado competitivo e não-supervisionado. para o aprendizado da rede. Um padrão de entrada é apresentado a rede, um neurônio vencem e inicia a atualização dos pesos do neurônio vencedor e de seus vizinhos (até um raio de vizinhança). Isto repete para cada nova entrada e a taxa de aprendizado e o raio de vizinhança são decrementados durante o processo.[Braga]

Atualização dos pesos do neurônio vencedor e de seus vizinhos:

$$w_{ji}(t+1) = \left\{ \begin{array}{ll} w_{ji}(t) + \eta(t)(x_i - w_{ji}(t)) & \quad \text{se j} \in \Lambda(t) \\ w_{ji}(t) & \quad \text{caso contrário} \end{array} \right.$$

Onde  $w_{ji}$  é o peso entre os neurônios i e j<br/>,  $\eta(t)$  é a taxa de aprendizado e  $\Lambda$  é a vizinhança.

```
Inicializar pesos e parâmetros;
2:
3:
       para todo padrão de treinamento faça
4:
          Definir neurônio vencedor;
          Atualizar os pesos deste neurônio e de seus vizinhos;
5:
6:
          se o número do ciclo for múltiplo de N então
7:
             Então reduzir a taxa de aprendizado;
8:
          fim-se
9:
       fim-para
10: até que mapa de características não mudar
```

3 MÉTODOS 2

# 3 Métodos

### 4 Resultados

A rede neural auto-organizável implementada nesse trabalho, utilizou o algoritmo Mapa de Kohonen, desenvolvido por Teuvo Kohonen em 1982 [1]. A implementação deste trabalho pode ser vista em https://github.com/QSF/ia-kohonen.

Para os resultados práticos, a rede foi treinada com um conjunto de 1728 exemplos de dados reais, fornecidos pelo site UCI Machine Learning  $Repository^1$ , variando valores da taxa de aprendizado, pesos iniciais, raio da vizinhança e quantidade de neurônios na rede. O conjunto de exemplos escolhido foi o Car  $Evaluation^2$ , onde dados os atributos preço de compra do veículo, custo da manutenção, quantidade de portas do veículo, número de passageiros, tamanho do bagageiro e segurança estimada do veículo, avalia se o veículo é aceitável, inaceitável, bom ou muito bom.

Uma vez que o algoritmo Mapa de Kohonen organiza ou agrupa dimensionalmente os dados, o conjunto de exemplos foi adaptado, apresentando somente três dimensões (preço de compra do veículo, custo da manutenção e segurança estimada do veículo). O primeiro e segundo atributo aceitos os valores low, med, high e vhigh, enquanto que o útilo aceita os valores low, med, high.

Com o conjunto de dados coletados, algumas entradas foram testadas para verificar a modificação final da rede. Esses testes serão exibidos a seguir, sendo dividido pela quantidade de neurônios na camada de saída (16, 20, 25 e 36 neurônios).

#### 4.1 16 neurônios

Nos conjuntos de teste apresentados por essa seção, a rede possuia 16 neurônios na camada de saída, sendo que sua topologia é da forma de uma grade 4x4.

Para realizar os testes na rede mencionada, foi variado o valor da taxa de aprendizagem e dos pesos inicias, com raio fixo em 0.

Quatro testes foram executados, onde a configuração da rede para cada caso é ilustrada em 1.

| a 1. comparações da 1000 com 10 1.caromos na |                      |               |  |  |  |
|----------------------------------------------|----------------------|---------------|--|--|--|
| Teste                                        | Taxa de Aprendizagem | Pesos Inicias |  |  |  |
| 1                                            | 0.1                  | todos 1       |  |  |  |
| 2                                            | 0.1                  | Random        |  |  |  |
| 3                                            | 0.3                  | todos 1       |  |  |  |
| 4                                            | 0.3                  | Random        |  |  |  |

Tabela 1: Configurações da Rede com 16 Neurônios na Saída

As figuras 1, 2, 3 e 4 representam a rede após a execução dos testes 1, 2, 3 e 4; respectivamente.

#### 4.2 20 neurônios

Nesta seção, a rede possuia 20 neurônios na camada de saída, sendo uma grade 4x5.

<sup>&</sup>lt;sup>1</sup>http://archive.ics.uci.edu/ml/

<sup>&</sup>lt;sup>2</sup>http://archive.ics.uci.edu/ml/datasets/Car+Evaluation



Figura 1: 16 Neurônios - Teste 1

Para realizar os testes na rede mencionada, novamente foi variado o valor da taxa de aprendizagem e dos pesos inicias, mas com raio fixo em 1.

Também foram executados quatro testes que tem sua configuração ilustrada na tabela 2.

| Tabela 2: | Configur | ações d | da Rec | le com  | 20 N  | eurônios | na Saída |
|-----------|----------|---------|--------|---------|-------|----------|----------|
| rabeia 4. | Comigui  | acces   | ua nec | те сопт | 20 IN | euromos  | na paida |

|       | 0 3                  |               |
|-------|----------------------|---------------|
| Teste | Taxa de Aprendizagem | Pesos Inicias |
| 1     | 0.5                  | todos 1       |
| 2     | 0.5                  | Random        |
| 3     | 0.75                 | todos 1       |
| 4     | 0.75                 | Random        |

Os testes 1, 2, 3 e 4 são representados pelas imagens 5, 6, 7 e 8; respectivamente.

#### 4.3 25 neurônios

Os gráficos a seguir mostram a plotação dos pontos após a execução do algoritmo para alguns valores de parâmetros e para uma rede com 25 neurônios. Apesar de não se poder afirmar se o algoritmo convergiu, vemos que aumentando o raio de vizinhança, o algoritmo consegue "especializar" melhor o conjunto. O efeito da taxa de aprendizado está sobre a velocidade na qual o algoritmo irá convergir. Ela geralmente é dada empiricamente, assim como os pesos iniciais, que segundo



Figura 2: 16 Neurônios - Teste 2

 $[1],\ {\rm se}$  forem inicializados com valores iguais, faz o algoritmo convergir mais rapidamente.

### 4.4 36 neurônios

Os gráficos a seguir mostram a plotação dos pontos após a execução do algoritmo para alguns valores de parâmetros e para uma rede com 36 neurônios.



Figura 3: 16 Neurônios - Teste 3



Figura 4: 16 Neurônios - Teste 4



Figura 5: 20 Neurônios - Teste 1



Figura 6: 20 Neurônios - Teste 2



Figura 7: 20 Neurônios - Teste 3



Figura 8: 20 Neurônios - Teste  $4\,$ 



Figura 9: Taxa de aprendizado: 0.8662815917277779; Raio: 1; Pesos iniciais: A



Figura 10: Taxa de aprendizado: 0.8662815917277779; Raio: 2; Pesos iniciais: A



Figura 11: Taxa de aprendizado: 0.5980629675758204; Raio: 1; Pesos iniciais: B



Figura 12: Taxa de aprendizado: 0.5980629675758204; Raio: 2; Pesos iniciais: B



Figura 13: Taxa de aprendizado: 0.2625656059885696; Raio: 1; Pesos iniciais: D



Figura 14: Taxa de aprendizado: 0.2625656059885696; Raio: 2; Pesos iniciais: D



Figura 15: Taxa de aprendizado: 0.5517820314689292; Raio: 1; Pesos iniciais: E



Figura 16: Taxa de aprendizado: 0.5517820314689292; Raio: 2; Pesos iniciais: E

5 CONCLUSÃO 13

## 5 Conclusão

## Referências

 $[1]\ {\it Teuvo}\ {\it Kohonen}.\ {\it Self-Organizing\ Maps}.$  Springer, 2000.