Math 104C Homework #1

Due on Apr 10 by 11:59 PM

Topics: (04/02 - 04/09) Evaluation of polynomials, Floating point arithmetic, Cubic splines

Video: How to submit homework on Gradescope or copy and paste (https://youtu.be/quBWbQ5opT0)

Comment on submission and quiz coverage:

- Problems that **may** not be covered before the deadline: None
- If some problems are not covered before the deadline, they will be excluded from HW grading and the up-coming quiz. But they, only the excluded ones, can be asked for the next quiz.
- You can check whether these problems are covered by briefly skimming through the notes.

I. For presentation

- 1. (Exploration) Answer the following.
 - (a) (Computation) Write a code for a polynomial evaluation. (You should really try your own code.) Use it to evaluate $P(x) = 1 + x + \cdots + x^{50}$ at x = 1.00001. Find the error of the computation by comparing with the equivalent expression $Q(x) = (x^{51} 1)/(x 1)$.
 - (b) Convert the repeating binary number $0.1\overline{000111}_{(2)}$ to (i) a base 10 fraction (*Hint: Use the same trick as in middle school for converting a repeated decimal fraction to a rational number.*) and (ii) to a base 16 fraction.
- 2. (Exploration) Determine the double-precision floating point number fl(20.1) and find its machine number representation.
- 3. (Exploration) (a) Come up with a different expression that computes $y = x \sin x$ without suffering from loss of significance. (*Hint: Use Taylor polynomial of an appropriate degree for* $\sin(x)$ *and use a similar idea to nested multiplication*) (b) Write and test a subroutine that accepts a machine numbers x (i.e., powers of 2) and returns the value $y = x \sin x$ using the devised formula. (c) Explain why you believe that does not involve severe loss of significance.
- 4. (Exploration) Prove the following. Let f'' be continuous in [a, b] and let $a = t_0 < t_1 < \cdots < t_n = b$. If S is the natural cubic spline interpolating f at the knots t_i for $0 \le i \le n$, then

$$\int_{a}^{b} \left[S''(x) \right]^{2} dx \le \int_{a}^{b} \left[f''(x) \right]^{2} dx.$$

(Hint: Let $g \equiv f - S$ and examine $\int_a^b (f'')^2 dx$. If you come across the quantity $\int_a^b S''g''dx$, consider using integration by parts. Natural spline conditions and $S''' \equiv (const)$ will be used.)

II. Not for presentation

The following problems are for your own study, but not for presentation. They have been already discussed during lectures.

- 5. (Formation) Answer the following.
 - (a) Give the number of multiplications and additions when Horner's algorithm evaluate a polynomial of degree $d \in \mathbb{N}$.
 - (b) Give the definition of the machine epsilon.
 - (c) We cannot carry out computations with smaller number than machine epsilon. (True/False)
 - (d) Give the machine epsilon of IEEE 754 double precision. How is it determined?
 - (e) Give the smallest number that can be represented by IEEE 754 double precision. How is it determined? How is it determined?
 - (f) 11.3-11-0.3 can be nonzero on the computer if IEEE Floating Point system is used. (True/False)
 - (g) Give a situation where significant digits can be lost. And discuss whether it can be avoided or it can never be avoided.

End of homework