BAB III

METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Data penelitian yang pertama adalah foto bak dump truk sebagai dataset yang diambil pada tanggal 27 Februari 2024 di perusahaan PT. Nugraha Karoseri untuk mendapatkan dataset foto gambar bak truk yang baru dan normal. Data penelitian kedua yang diambil adalah data foto bak truk yang telah rusak di sekitar jalan raya yang dijumpai saat perjalanan ke kampus maupun kemanapun. Sehingga data yang diperoleh adalah data asli hasil pengambilan secara manual untuk melakukan penelitian.

3.2 Bahan dan Alat Penelitian

Data citra yang akan diolah dalam penelitian ini didapatkan dari melakukan foto secara mandiri di pabrik PT. Nugraha Karoseri dan di sekitar jalan raya yang dilalui untuk mendapatkan dataset terkait. Dataset ini akan menjadi bagian penting dalam penelitian, berperan sebagai bahan dasar untuk melatih dan menguji model yang akan dikembangkan.

Selain dataset citra, bahan yang digunakan dalam penelitian ini juga mencakup referensi dari penelitian-penelitian terdahulu yang terkait dengan computer vision dan deteksi objek. Referensi tersebut akan menjadi landasan teoritis yang mendukung pemahaman mengenai pendekatan, teknik, dan metodologi yang digunakan dalam penelitian terkait. Melalui penelitian-penelitian sebelumnya, akan diperoleh wawasan yang penting untuk dikembangkan lebih lanjut dalam konteks pendeteksian kerusakan cat pada bak dump truk menggunakan teknologi Convolutional Neural Network (CNN).

Secara umum alat yang akan digunakan dalam penelitian ini terdiri dari 2 (dua), bagian yaitu:

1. Perangkat Keras (Hardware)

a. Processor : AMD Ryzen 3 4300U CPU @ 2.40GHz

b. Memori RAM : 12 GB

c. Arsitektur : 64-bit operating system

d. Perangkat : Mouse dan Keyboard Standard

2. Perangkat Lunak (Software)

a. Sistem Operasi : Windows

b. Pengolahan Data : Jupyter Notebook

c. Framework : Tensorflow, Keras, dan Flask

d. Bahasa Pemrograman: Python 3.10

3.3 Diagram Metodologi Penelitian

Berikut ini merupakan flowchart yang menggambarkan alur kegiatan penelitian yang dijalankan, sebagaimana yang diperlihatkan pada gambar 3.1 berikut.

Gambar 3. 1 Diagram Metodologi Penelitian

3.4 Data Penelitian

Jenis data yang digunakan pada penelitian ini merupakan jenis data primer, yang terdiri dari data citra bak truk normal, goresan, retak, dan kusam.

Gambar 3. 2 Dataset Citra Dump Truk

3.5 Variabel Penelitian

Adapun variabel yang digunakan dalam penelitian ini terdiri dari 4 jenis data variabel penelitian, di antaranya sebagai berikut:

Data Citra	Label	Nama Label
	0	Bak normal
V 80/9 U	1	Bak tergores

Tabel 1 Pelabelan Gambar

3.6 Preprocessing Data

Sebelum citra dari sisi dump truk dijalani proses klasifikasi serta ekstraksi fitur, persiapan awal yang harus dilakukan adalah *preprocessing data* pada data citra. Tujuan utama dari tahapan ini adalah untuk mempersiapkan citra foto sisi dump truk agar dapat masuk ke tahap berikutnya, yakni tahap ekstraksi fitur dengan lebih baik (N. A. Mohammed et al., 2022). Proses *preprocessing data* yang digunakan pada penelitian ini adalah augmentasi data citra.

Augmentasi citra adalah melakukan proses untuk mengubah data dengan variasi yang baru seperti melakukan *rescale*, merotasi gambar, mengurangi *mean*, dan lain sebagainya. Dengan acuan utama dimana ukuran citra yang digunakan dalam penelitian ini akan di set menjadi ukuran 150 x 150 piksel. Jika terdapat citra dengan ukuran yang tidak sesuai, maka citra tersebut akan diubah ukurannya untuk disesuaikan dengan ukuran yang ditetapkan. Tujuan dari augmentasi ini adalah untuk memastikan bahwa model yang akan digunakan dapat bekerja dengan optimal, sehingga hasil yang diperoleh menjadi lebih baik dan sesuai dengan harapan penelitian. Dengan ukuran yang konsisten dan telah diatur ulang, proses pelatihan model dapat dilakukan dengan lebih efektif (Oza et al., 2022).

3.7 Feature Extraction

Setelah dilakukan proses *data preprocessing* selanjutnya adalah melakukan feature extraction, feature extraction akan digunakan untuk membedakan setiap warna

pada dataset, jika pada dataset citra terdapat warna yang berbeda dari yang lainnya maka akan diubah menjadi RGB (*Red*, *Green*, *Blue*), sehingga warna disetiap citra pada dataset memiliki komposisi channel warna yang sama yaitu berada di channel 3 (A. Mohammed & Sajjanhar, 2017). Sehingga dari proses *feature extraction* tersebut didapatkan komposisi layer yaitu 150 x 150 x 3, yang dimana ukuran 150 x 150 merupakan input layer dan ukuran 3 merupakan jumlah channel dari warna yang dimasukan.

3.8 Proses Rancangan CNN

Langkah selanjutnya melibatkan pembuatan arsitektur model *Convolutional Neural Network* (CNN) dari data yang telah disiapkan. Pada tahap ini, lapisan masukan memiliki ukuran 150 x 150 piksel dengan 3 kanal warna (*Red, Green, Blue*), sehingga komposisi dari lapisan masukan adalah 150 x 150 x 3. Citra akan mengalami proses *feature learning*, dimulai dengan 13 lapisan konvolusi yang masing-masing menggunakan jumlah kernel yang berbeda, diikuti oleh 5 *pooling layer*.

Setelah melewati tahap *feature learning*, citra akan masuk ke dalam *flatten layer*. Tujuan dari lapisan ini adalah untuk mengubah hasil pemrosesan yang terdapat di bagian lapisan pengompresan dari tahap *feature learning* menjadi vektor. Setelah melalui *flatten layer*, citra akan memasuki tahap kedua dari proses *convolutional neural network*, yaitu tahap klasifikasi atau pengujian model.

3.9 Rancangan Pengujian Model

Pada tahap perancangan pengujian model ini, evaluasi dilakukan terhadap model yang akan digunakan dalam penelitian ini, yaitu menggunakan algoritma *Convolutional Neural Network* (CNN) untuk analisis citra dump truk. Dataset yang digunakan terdiri dari citra-citra yang berkaitan dengan kondisi kerusakan pada bak dump truk. Dataset ini akan dibagi menjadi dua bagian, di mana 80% dari dataset akan digunakan sebagai data latih (training), sementara 20% sisanya akan digunakan sebagai data uji (testing). Tujuan dari pengujian model ini adalah untuk mengevaluasi kinerja model yang digunakan dengan menampilkan hasil akurasi dan tingkat loss akurasi. Hasil dari pengujian ini akan direpresentasikan dalam bentuk tabel *confusion matrix* yang akan menjadi metode evaluasi model yang digunakan dalam penelitian. Pada tabel 2 berikut adalah rancangan pengujian model CNN yang akan dilakukan terhadap citracitra bak dump truk terkait kondisi kerusakan.

	Normal	Tergores	Retak	Kusam
Normal	P _(NN)	P _(TN)	P _(RN)	P _(KN)
Tergores	P _(NT)	P _(TT)	P _(RT)	P _(KT)
Retak	P _(NR)	P _(TR)	P _(RR)	P _(KR)
Kusam	P _(NK)	P _(TK)	P _(RK)	P _(KK)

Tabel 2 Rancangan Pengujian Model

Setelah didapatkan hasil prediksi kelas untuk kelompok kerusakan bak dump truk, maka selanjutnya dapat melakukan perhitungan untuk mendapatkan hasil akurasi dengan menggunakan rumus berikut:

$$Accuracy = \left(\frac{TP + TN}{TP + TN + FP + FN}\right) \times 100\%$$

Keterangan:

- TP = True Positive
- TN = True Negative
- FP = False Positive
- FN = False Negative