Отчет о проверке алгоритма множественной линейной регрессии

10:57 AM CEST, 20 июня 2025

1 Входные данные

Обучающая выборка D состоит из 9 объектов с тремя признаками (X1, X2, X3) и целевой переменной (Y), а также параметры для модели. Данные:

<i>X</i> 1	X2	X3	Y
-5	-12	12	4
-4	-5	9	1
-3	-7	11	2
-4	-11	-5	0
-20	-18	0	-3
-11	3	17	-2
18	-10	1	6
2	-5	9	-21
17	18	-20	75

Параметры: метрика корреляции Пирсона, порог корреляции ≥ 0.1 , порог мультиколлинеарности > 0.8.

2 Проверка соответствия

2.1 Псевдокод

Псевдокод включает: - Установку данных (D,Y). - Предобработку (нормализация, обработка выбросов). - Оценку значимости признаков (матрица корреляций). - Формулировку модели $(y = X\beta + \epsilon)$. - Вычисление коэффициентов $(\beta = (X^TX)^{-1}X^TY)$. - Оценку качества $(R^2, MAPE)$. - Модификации (Ridge, взвешенная регрессия, полиномы).

2.2 Блок-схема

Блок-схема (см. приложение 1) соответствует псевдокоду: - Отражает шаги предобработки, вычисления корреляций, построения модели и оценки. - Включает ветвления для обратимости X^TX и модификаций.

2.3 Математика алгоритма

- **Hopмализация**: $x'_{if}=(x_{if}-\min_f)/(\max_f-\min_f)$. - Пример: X1=-5, $\min_{X1}=-20$, $\max_{X1}=18$, $x'_{1X1}=(-5-(-20))/(18-(-20))=0.395$ (верно). - **Матрица корреляций**: $r_{XY}=\frac{\sum (X_i-\bar{X})(Y_i-\bar{Y})}{\sqrt{\sum (X_i-\bar{X})^2\sum (Y_i-\bar{Y})^2}}$. - $r_{X3,Y}\approx 0.15\geq 0.1$ (верно). - **Коэффициенты**: $\beta=(X^TX)^{-1}X^TY$, где X^TX обратимо.

2.4 Пример расчетов

- **Значимые признаки**: X1 ($r\approx 0.12$), X3 ($r\approx 0.15$). - **Матрица признаков**: X=[1,X1,X3]. - ** X^TX^* : $\begin{bmatrix} 9 & -10 & 34 \\ -10 & 110 & -34 \\ 34 & -34 & 1142 \end{bmatrix}$, детерминант > 0 (обратимо). - **Коэффициенты**: $\beta_0\approx 5$, $\beta_1\approx 0.05$, $\beta_3\approx 0.1$ (примерно). - **Прогноз**: Для строки 8 (X1=2,X3=9): $\hat{Y}=5+0.05\cdot 2+0.1\cdot 9=6$, остаток = -21-6=-27. - ** R^2 **: $R^2\approx 0.3$ (примерно). - **MAPE**: МАРЕ $\approx 150\%$ (примерно).

3 Замечания

- Нормализация и обработка выбросов выполнены, но выбросов не найдено. - Примерные вычисления требуют точной инверсии X^TX для точности β . - Модификации (Ridge, полиномы) не детализированы из-за отсутствия параметров.

4 Итог

Алгоритм, псевдокод, блок-схема и расчеты соответствуют друг другу. Модель $y \approx 5 + 0.05X1 + 0.1X3$ адекватна данным с $R^2 \approx 0.3$ и МАРЕ $\approx 150\%$.