TATA69 Föreläsningar

Adnan Avdagic Linköpings Universitet forelasningar@avdagic.net

 $29~\mathrm{april}~2017$

Innehåll

2	För	läsning 2 I
	2.1	Gränsvärden för flervarre
		2.1.1 Definition
		2.1.2 Oändlighet i envarre och flervarre
		2.1.3 Definition
		2.1.4 3-variabler mot origo V
	2.2	Rymdpolära koordinater VI
		2.2.1 Cylindriska koordinater VII
3	För	läsning 3 VIII
	3.1	Partiella derivator
		3.1.1 Definition
		3.1.2 Andraderivator
		3.1.3 Sats
	3.2	Differentierbarhet
		3.2.1 Definition
		3.2.2 Sats
		3.2.3 Linjär avbildning
4	För	läsning 4 XIII
	4.1	Kedjeregeln
		4.1.1 Linjärt variabelbyte
		4.1.2 Byte till polära koordinater
5	För	läsning 5 XVII
	5.1	Gradienter
		5.1.1 Definition
		5.1.2 Hur tolkar man gradienter i 2D & 3D? XVII
	5.2	Nivåytor i 3D
		5.2.1 Definition

2 Föreläsning 2

2.1 Gränsvärden för flervarre

Exempel 1

$$f(x,y) = \frac{\sin(x^4 + y^2)}{x^4 + y^2}, \text{ ej definierad i origo}$$
 (2.1)

Vad händer då (x,y) närmar sig (0,0)?

$$\lim_{x,y\to 0,0} \frac{\sin(x^4+y^2)}{x^4+y^2}$$

//sätt
$$t = x^4 + y^2$$
, $t \to 0$ då $(x, y) \to (0, 0)//$ då fås $\lim_{t\to 0} \frac{\sin t}{t} = 1$, (standard gränsvärde)

Exempel 2

$$f(x,y) = \frac{x^3 + xy}{x^2 + y^2}$$
, ej definierad i origo (2.2)

Gå mot origo via x-axeln (där y = 0)

$$f(x,0) = \frac{x^3 + 0 * x}{x^2 + 0^2} = \frac{x^3}{x^2} = x \to 0 \text{ då } x \to 0$$

Gå mot origo via y-axeln (där x = 0)

$$f(0,y) = \frac{0^3 + 0 * y}{0^2 + y^2} = \frac{0}{y^2} = 0 \to 0 \text{ då } y \to 0$$

Gå mot origo längs y = x

$$f(x,x) = \frac{x^3 + x * x}{x^2 + x^2} = \frac{x+1}{2} \to \frac{1}{2} \text{ då } x \to 0$$

Olika värden från olika riktningar

Innanför varje liten cirkel kring origo har f
 värden nära 0 och nära $\frac{1}{2}$. Vi säger därför att gränsvärde ej existerar. Se 1

Figur 1: Graf i 2D

2.1.1 Definition

Funktionen \bar{f} av typ $\mathbb{R}^n \to \mathbb{R}^m$ har gränsvärdet $\bar{b} \in \mathbb{R}^m$ då $\bar{x} \to \bar{a} \in \mathbb{R}^n$ om $\forall \epsilon > 0 \quad \exists \delta > 0$ så att $|\bar{f}(x) - \bar{b}| < \epsilon$ om $0 < |\bar{x} - \bar{a}| < \delta$ och $\bar{x} \in D_f$. Skrivs

$$\lim_{\bar{x}\to \bar{a}} \bar{f}(\bar{x}) = \bar{b}$$

Exempel 3

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
, ej definierad i origo (2.3)

$$0 \le |f(x,y)| = \frac{|x^3|}{x^2 + y^2} = |x| \frac{x^2}{x^2 + y^2} \le |x| \to 0 \text{ då } (x,y) \to (0,0)$$
$$\Rightarrow f(x,y) \to (0,0) \text{ då } (x,y) \to (0,0)$$

Vanliga räkneregler för gränsvärden (summa, produkt, instängning) gäller också för flervarregränsvärden Undersökning/beräkning av gränsvärden

- \bullet Om test av värden längs olika riktningar eller olika kurvor ger olika resultat så saknas gränsvärde, se (2.2)
- Sådana test kan <u>INTE</u> visa att gränsvärde existerar, andra metoder behövs, som (2.1) eller (2.3), eller polära koordinater

Figur 2: Graf för polära koordinater

$$x = \rho \cos(\varphi)$$

$$y = \rho \sin(\varphi)$$

$$\rho = \sqrt{x^2 + y^2}, \ \rho > 0$$

$$\tan \varphi = \frac{y}{x}, \ 0 \le \varphi \le 2\pi$$

Viktigt för gränsvärden: $(x,y) \to (0,0) \iff \rho \to 0$

Exempel (2.2) med polära koordinater

$$\lim_{(x,y)\to 0} \frac{x^3 + xy}{x^2 + y^2} \stackrel{\text{pol.koord}}{=} \lim_{\rho \to 0} \frac{\rho^3 \cos^3(\varphi) + \rho^2 \cos(\varphi) \sin(\varphi)}{\rho^2} =$$

$$= \lim_{\rho \to 0} (\rho \cos^3(\varphi) + \cos(\varphi) \sin(\varphi)) \Rightarrow \text{gränsvärde existerar ej}$$
vinkelberoende

Exempel (2.3) med polära koordinater

$$\lim_{(x,y)\to(0,0)}\frac{x^3}{x^2+y^2}\stackrel{\mathrm{pol.koord}}{=}\lim_{\rho\to0}\frac{\rho^3\cos^3(\varphi)}{\rho^2}=\lim_{\rho\to0}\overbrace{\rho}^{\to0}\underbrace{\cos^3(\varphi)}_{\text{begränsad}}=0$$

2.1.2 Oändlighet i envarre och flervarre

Envarre

x kan gå mot $\pm \infty$

Flervarre

bara en ∞ nämligen $|\bar{x}| \to \infty$

2D polära

$$|\bar{x}| \to \infty \iff \rho \to \infty$$

2.1.3 Definition

$$\bar{f}(\bar{x}) \to \bar{b} \text{ då } |\bar{x}| \to \infty \text{ om } \forall \epsilon > 0 \quad \exists \omega \text{ så att } |\bar{f}(\bar{x}) - \bar{b}| < \epsilon \text{ om } |\bar{x}| > \omega$$

Exempel 4

$$\lim_{(x,y)\to\infty} \frac{y}{x^2 + y^2} \stackrel{\text{pol.koord}}{=} \lim_{\rho\to\infty} \frac{\rho \sin(\varphi)}{\rho^2} = \lim_{\rho\to\infty} \underbrace{\frac{1}{\rho}}_{\text{Begränsad}} \underbrace{\sin(\varphi)}_{\text{Begränsad}} = 0 \qquad (2.4)$$

 $\underline{\rm OBS!}$ 2-variabelfunktioner som uttryckta i polärakoordinater inte beror på φ har rotationssymmetriska grafer kring z-axeln

Figur 3: Exempel på rotationssymmetri

$$z = \sqrt{x^2 + y^2} = \rho$$

2.1.4 3-variabler mot origo

Exempel 5

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2 + y^2 + 2z^2} = ???$$

$$0 \le \left| \frac{xyz}{x^2 + y^2 + 2z^2} \right| = \frac{|x||y||z|}{x^2 + y^2 + 2z^2} \le \frac{|x||y||z|}{x^2 + y^2 + z^2} \le \frac{|x| \le \sqrt{x^2 + y^2 + z^2}}{|y| \le \sqrt{x^2 + y^2 + z^2}}$$

$$|y| \le \sqrt{x^2 + y^2 + z^2}$$

$$|z| \le \sqrt{x^2 + y^2 + z^2}$$

$$\leq \frac{\sqrt{x^2 + y^2 + z^2}}{x^2 + y^2 + z^2} = \sqrt{x^2 + y^2 + z^2} \to 0 \text{ då } (x, y, z) \to (0, 0, 0)$$

$$\Rightarrow \lim_{(x, y, z) \to (0, 0, 0)} \frac{xyz}{x^2 + y^2 + 2z^2} = 0$$

2.2 Rymdpolära koordinater

Figur 4: Rymdpolära koordinater

$$\begin{cases} x = r\sin(\theta)\cos(\varphi) \\ y = r\sin(\theta)\sin(\varphi) \\ z = r\cos(\theta) \end{cases}$$
$$r = \sqrt{x^2 + y^2 + z^2}, r > 0$$
$$0 \le \theta \le \pi$$
$$r\sin(\theta) = \rho$$

För gränsvärden där $(x,y,z) \to (0,0,0) \iff r \to 0$

Exempel (2.5) med rymdpolära koordinater

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+2z^2} \xrightarrow{\text{rymdpol.koord}} = \lim_{r\to 0} \frac{r^3\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}{r^2+r^2\cos^2(\theta)} = \lim_{r\to 0} \frac{\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}{1+\cos^2(\theta)}$$

$$= \lim_{r\to 0} \frac{r}{r} \underbrace{\sin^2(\theta)\cos(\theta)\sin(\varphi)\cos(\varphi)}_{\text{begränsad, nämnare}} \ge 1 \text{ ingen risk för } /0$$

2.2.1 Cylindriska koordinater

Polära koordinater i (x,y) och vanliga i z

$$\begin{cases} x = r\cos(\varphi) \\ y = r\sin(\varphi) \\ z = z \end{cases}$$

3 Föreläsning 3

3.1 Partiella derivator

Exempel 1

$$f(x,y) = x^2y + x\sin(y) \tag{3.1}$$

Hur förändras f om bara x varieras? Vi vill derivera f m.a.p x och hålla y konstant. Skrivs:

$$\underbrace{f_x'(x,y) = \frac{\partial f}{\partial x}(x,y)}_{\text{båda skrivsätten används}} = 2xy + \sin(y)$$

Motsvarande då bara y varieras

$$f'_y(x,y) = \frac{\partial f}{\partial y}(x,y) = x^2 + x\cos(y)$$

3.1.1 Definition

Partiella derivatan av f(x,y) m.a.p x i punkten (x,y) är

$$f'_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Om gränsvärde existerar!

Motsvarande för y:

$$f'_y(x,y) = \lim_{k \to 0} \frac{f(x,y+k) - f(x,y)}{k}$$

Figur 5: Grafisk visning av hur f ändras i x- & y-riktningen

Exempel 2 3 variabler

$$f(x, y, z) = x^{3}y^{2}z + z^{2}e^{y} \Rightarrow$$

$$\Rightarrow \begin{cases} f'_{x}(x, y, z) = 3x^{2}y^{2}z \\ f'_{y}(x, y, z) = 2x^{3}yz + z^{2}e^{y} \\ f'_{z}(x, y, z) = x^{3}y^{2} + 2ze^{y} \end{cases}$$

3.1.2 Andraderivator

$$f_{xx}'' = \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$
$$f_{xy}'' = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

Exempel (3.1) andra derivator

$$f_{xx}'' = 2y$$

$$f_{xy}'' = 2x + \cos(y)$$

$$f_{yx}'' = 2x + \cos(y)$$
 } lika, ingen slump
$$f_{yy}'' = -x\sin(y)$$

Skriv $f \in C^r$ om f:s alla r:te-derivator är kontinuerlig.

3.1.3 Sats

$$f \in C^2 \Rightarrow f_{xy}^{\prime\prime} = f_{yx}^{\prime\prime}$$

motsvarande för ≥ 3 varianter

f(x,y) har 4 andraderivator varav 3 olika f(x,y,z) har 9 andraderivator varav 6 olika

Exempel 3 Bestäm alla f(x, y, z) som uppfyller

$$f'_{x} = p(x, y, z) = 3x^{2}yz \quad (1)$$

$$f'_{y} = q(x, y, z) = x^{3}z + 2ye^{z} \quad (2)$$

$$f'_{z} = r(x, y, z) = x^{3}y + y^{2}e^{z} \quad (3)$$

$$(3.2)$$

Systematisk lösning

$$(1) \Rightarrow f(x,y,z) = x^{3}yz + \underbrace{g(y,z)}_{\text{2-variabel}f}$$

$$\underbrace{\frac{\text{Derivera detta m.a.p }y}{\text{podtycklig}}}_{\text{2-variabel}f}$$

$$\Rightarrow x^{3}z + g'_{y}(y,z) = x^{3}z + 2ye^{z} \Rightarrow g'_{y}(y,z) = 2ye^{z} \Rightarrow g'_{y}(y,z) = 2ye^{z} \Rightarrow f(x,y,z) = y^{2}e^{z} + \underbrace{h(z)}_{\text{envarre }f}$$

$$\Rightarrow f(x,y,z) = x^{3}yz + y^{2}e^{z} + h(z)$$

$$\underbrace{\frac{\text{Derivera detta m.a.p }z}{\text{podtycklig}}}_{\text{envarre }f}$$

$$\Rightarrow f(x,y,z) = x^{3}yz + y^{2}e^{z} + h(z)$$

$$\Rightarrow x^{3}y + y^{2}e^{z} + h'(z) = x^{3}y + y^{2}e^{z} \Rightarrow f'(z) = 0 \Rightarrow h(z) = C \Rightarrow 0$$

 \Rightarrow Svar: $f(x,y,z)=x^3yz+y^2e^z+C$,
C är en godtycklig konstant Man kan visa att systemet (1) - (3) är lösbart

$$\iff p'_y = q'_x$$

$$p'_z = r'_x$$

$$q'_z = r'_y$$

Exempel 4

$$f'_x = xy$$

$$f'_y = x^2$$
 olösbart ty
$$f''_{xy} = x \neq f''_{yx} = 2x$$

3.2 Differentierbarhet

Envarre

Om
$$f_a' = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 \exists (dvs f deriverbar i a) så finns talet $f_a' = A$ sådant att $\frac{f(a+h) - f(a)}{h} - A = \frac{1}{h}(f(a+h) - f(a) - Ah) = \rho(h) \to 0$

Vi vet att $f \in C^1 \Rightarrow f$ deriverbar $\Rightarrow f$ kontinuerlig

Flervarre

3.2.1 Definition

f(x,y) är differentierbar i (a,b) om \exists tal A,B så att

$$\frac{1}{\sqrt{h^2+k^2}}(f(a+h,b+k)-f(a,b)-Ah-Bk) = \rho(h,k) \to 0 \text{ då } (h,k) \to (0,0)$$

så deriverbar = differentierbar för envarre För ≥ 2 variabler gäller

3.2.2 Sats

$$f \in C^1 \overset{(1)}{\Rightarrow} f \text{ differentierbar} \left\{ \begin{array}{l} \overset{(2)}{\Rightarrow} f \text{ partiellt deriverbar} \overset{(4)}{\Rightarrow} f \text{ kontinuerlig} \\ \overset{(3)}{\Rightarrow} f \text{ kontinuerlig} \overset{(5)}{\Rightarrow} f \text{ partiellt deriverbar} \end{array} \right.$$

Förklaring av pilar

- $1. \, s.56-57 \, i \, boken$
- $2. \ f_x'(a,b) = \lim_{h \to 0} \frac{f(a+h,b) f(a,b)}{h} \stackrel{f \text{ diff.bar med } k=0}{=} \\ \lim_{h \to 0} \frac{Ah + B*0 + \sqrt{h^2 + 0^2} \, \rho(h,0)}{h} = \lim_{h \to 0} A + \underbrace{\frac{\sqrt{h^2}}{h}}_{\pm \text{ 1 begränsad}} \underbrace{\frac{\rho(h,0)}{h}}_{\to 0} = A \quad \exists$

3.
$$f(a+h,b+k) = f(a,b) + \underbrace{Ah}_{\to 0} + \underbrace{Bk}_{\to 0} + \underbrace{\sqrt{h^2 + k^2}}_{\to 0} \underbrace{\rho(h,k)}_{\to 0} \to f(a,b)$$
 då $(h,k) \to (0,0) \Rightarrow f$ kontinuerlig

- 4. Motexempel finns i boken s.51
- 5. Motexempel f(x,y) = |x| i (0,0), kontinuerlig men $f'_x(x,y)$

3.2.3 Linjär avbildning

Den linjära avbildningen $df_{(a,b)}$ av typ $\mathbb{R}^2 \to \mathbb{R}$, som definieras av $df_{(a,b)}(h,k) = Ah + Bk = f_x'(a,b)h + f_y'(a,b)k$, kallas <u>differentialen</u> av f i (a,b) ofta skrivs variablerna h = dx & k = dy så $df_{(a,b)}(dx,dy) = f_x'(a,b)dx + f_y'(a,b)dy$ eller kort $df = f_x'dx + f_y'dy$

Exempel (3.1) omskrivet

$$f(x,y) = x^2y + x\sin(y) \Rightarrow df = (2xy + \sin(y))dx + (x^2 + x\cos(y))dy$$

Feluppskattning med df

Om
$$\overline{\Delta x} = (\Delta x_1, ..., \Delta x_n) \in \mathbb{R}^n$$
 och f är differentierbar fås $f(\overline{x} + \overline{\Delta x}) - f(\overline{x}) = f'_{x_1} \Delta x_1 + ... + f'_{x_n} \Delta x_n + \underbrace{\rho(\Delta x_1, ..., \Delta x_n) \sqrt{(\Delta x_1)^2 + ... + (\Delta x_n)^2}}_{\text{Restterm}} \approx df(\overline{\Delta x})$

Exempel 5

Bestäm rörelse
energin och uppskatta felet för massan $m=1.0\pm0.1{\rm kg}$ med hastighete
n $v=4.0\pm0.2{\rm m\,s^{-1}}.$

Formel för rörelseenergi: $E = \frac{mv^2}{2}$ J

Utan fel: $E = \frac{1*1.4^2}{2} = 8.0$ J

Fel:

$$\begin{split} \Delta E &= E(m + \Delta m, v + \Delta v) - E(m, v) \approx dE(\Delta m, \Delta v) = \\ &= \frac{\partial E}{\partial m} \Delta m + \frac{\partial E}{\partial v} \Delta v = \underbrace{\frac{v^2}{2}}_{\frac{4^2}{2}} \Delta m + \underbrace{mv}_{1*4} \Delta v = 8\Delta m + 4\Delta v \end{split}$$

 \Rightarrow maxfel $\leq 8|\Delta m| + 4|\Delta v| = 8*0.1 + 4*0.2 = 1.6J \Rightarrow E = 8.0 \pm 1.6J$

4 Föreläsning 4

4.1 Kedjeregeln

Envarre

Exempel

$$\frac{d}{dx}e^{x^2} = e^{x^2}2x$$

Allmänt

$$f(g(x)) = \underbrace{f'(g(x))}_{\text{yttre}} \underbrace{g'(x)}_{\text{inre}}$$

Generalisering till flervarre

$$\underbrace{f(g(x))}_{\text{envarre}} \Rightarrow \left\{ \begin{array}{c} \stackrel{(1)}{\Rightarrow} f(g(\bar{x})) \\ \stackrel{(2)}{\Rightarrow} f(\bar{g}(x)) \end{array} \right\} \stackrel{(3)}{\Rightarrow} f(\bar{g}(\bar{x})) \Rightarrow \bar{f}(\bar{g}(\bar{x}))$$

Förklaring av pilar

1. Exempel 1

$$\frac{\partial}{\partial x}e^{x^2y} = e^{x^2y} * \underbrace{2xy}_{\text{inre m.a.p } x}$$

$$\frac{\partial}{\partial y}e^{x^2y} = e^{x^2y} * \underbrace{x^2}_{\text{inre m.a.p } y}$$

Allmänt

$$\left\{ \begin{array}{l} \frac{\partial}{\partial x} f(g(x,y)) = f'(g(x,y)) g'_x(x,y) \\ \frac{\partial}{\partial y} f(g(x,y)) = f'(g(x,y)) g'_y(x,y) \end{array} \right.$$

Motsvarande för > 3 variabler

Exempel 2

Visa att $xh'_x - 2yh'_y = 0 \quad \forall \ 2$ variabel funktioner h(x,y) på formen $h(x,y) = f(x^2y)$ där f är en envariabelfunktion. Lösn:

$$xh'_x - 2yh'_y = xf'(x^2y)2xy - 2yf'(x^2y)x^2 = 0 \quad \forall f$$

2.

$$\frac{d}{dx}(f(\bar{g}(x))) = \frac{d}{dx}(f(g_1(x), g_2(x))) \stackrel{\text{def av } \frac{d}{dx}}{=} \frac{d}{dx}$$

$$= \lim_{l \to 0} \frac{f(g_1(x+l), g_2(x+l)) - f(g_1(x), g_2(x))}{l} \stackrel{\text{def av } \frac{d}{dx}}{=} \frac{d}{dx}$$

$$= \lim_{l \to 0} \frac{f'_s(s,t)h + f'_t(s,t)k + \sqrt{h^2 + k^2} \rho(h,k)}{l} = \frac{1}{l} \frac{f'_s(s,t)h + f'_t(s,t)k + \sqrt{h^2 + k^2} \rho(h,k)}{l} = \frac{1}{l} \frac{h = g_1(x+l) - g_1(x) \to 0}{l} \stackrel{\text{då } l \to 0}{=} 0 \text{ om } g_1 \text{ är kontinuerlig}} / \frac{1}{l} = \frac{1}{l} \frac{f'_s(s,t) \frac{\partial f'_s(s,t)}{\partial f'_s(s,t)} + f'_t(s,t) \frac{\partial f'_s(s,t)}{\partial g_2(x+l) - g_2(x)}}{l} + \frac{f'_s(s,t) \frac{\partial f'_s(s,t)}{\partial g_2(x+l) - g_2(x)}}{l} + \frac{f'_s(s,t) \frac{\partial f'_s(s,t)}{\partial g_2(x)}}{l} + \frac{f'_s($$

3. Fås av 1 & 2

$$\frac{\partial}{\partial x} f(\overbrace{g_1(x,y)}^s, \overbrace{g_2(x,y)}^t) = f_s' s_x' + f_t' t_x'$$

$$\frac{\partial}{\partial y} f(g_1(x,y), g_2(x,y)) = f_s' s_y' + f_t' t_y'$$

Matrisform

$$\underbrace{\begin{pmatrix} f_x' & f_y' \end{pmatrix}}_{\text{derivator av } f(x,y)} = \underbrace{\begin{pmatrix} f_s' & f_t' \end{pmatrix}}_{\text{derivator av } f(s,t)} \begin{pmatrix} s_x' & s_y' \\ t_x' & t_y' \end{pmatrix}$$

Motsvarande för ≥ 3 variabler

Exempel Lös den partiella differentialekvationen

$$f_x' - f_y' = y - x (4.1)$$

med bivillkoret

$$f(x,0) = x^2 \tag{4.2}$$

Ledning: inför nya variabler $\begin{cases} s = x + y \\ t = xy \end{cases}$

Kedjeregeln
$$\begin{cases} f_s's_x' + f_t't_x' = f_s' \times 1 + f_t'y \\ f_s's_y' + f_t't_y' = f_s' \times 1 + f_t'x \end{cases}$$
sätt in i (4.1)

$$\Rightarrow (f'_s + f'_t y) - (f'_s + f'_t x) = y - x \Rightarrow f'_t \times (y - x) = y - x, \text{ ska g\"{a}lla alla } (x, y)$$

$$\Rightarrow f'_t = 1 \Rightarrow f_t = t + \underbrace{g(s)}_{godtycklig} \Rightarrow \underbrace{f(x, y) = xy + g(x, y)}_{godtycklig} \text{ [alla l\"{o}sningar på (4.1)]}$$

Bivillkoret (4.2) ger oss $f(x,0)=x\times 0+g(x)=x^2\Rightarrow g(x+0)=x^2\Rightarrow$ Lösnignen blir $f(x,y)=xy+(x+y)^2$

4.1.1 Linjärt variabelbyte

$$\left\{ \begin{array}{l} s = ax + by \\ t = cx + dy \end{array} \right. \Rightarrow \left(\begin{matrix} s \\ t \end{matrix} \right) = \left(\begin{matrix} a & b \\ c & d \end{matrix} \right) \left(\begin{matrix} x \\ y \end{matrix} \right)$$

$$X_{\mathbf{f}} \qquad T^{-1} \qquad X_{\underline{\mathbf{e}}}$$

Matris för kedjeregeln

$$\begin{pmatrix} s'_x & s'_y \\ t'_x & t'_y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1} !$$

4.1.2 Byte till polära koordinater

 $\begin{cases} x = \rho \cos(\varphi) \\ t = \rho \sin(\varphi) \end{cases}$ Enklast med ρ & φ derivator i vänsterled i kedjeregeln

$$\begin{cases} f'_{\rho} = f'_x x'_{\rho} + f'_y y'_{\rho} = f'_x \cos(\varphi) + f'_y \sin(\varphi) \\ f'_{\varphi} = f'_x x'_{\varphi} + f'_y y'_{\varphi} = f'_x (-\rho \sin(\varphi)) + f'_y \rho \cos(\varphi) \end{cases}$$

Matrisform

$$\begin{pmatrix} f_{\rho}' & f_{\varphi}' \end{pmatrix} = \begin{pmatrix} f_{x}' & f_{y}' \end{pmatrix} \begin{pmatrix} x_{\rho}' & x_{\varphi}' \\ y_{\rho}' & y_{\varphi}' \end{pmatrix} = \begin{pmatrix} f_{x}' & f_{y}' \end{pmatrix} \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\rho\sin(\varphi) & \rho\cos(\varphi) \end{pmatrix}$$

Exempel Bestäm alla f(x,y) som uppfyller

$$xf_{xy}'' - yf_{yy}'' - f_y' = 0 (4.3)$$

Ledning: inför
$$\begin{cases} u = x \\ v = xy \end{cases}$$

Översätt ekvationen till u & v. Kedjeregeln

$$\begin{cases} f'_x = f'_u u'_x + f'_v v'_x = f'_u + y f'_v \\ f'_y = f'_u u'_y + f'_v v'_y = x f'_v \end{cases}$$

Operator skrivsätt

$$\left\{ \begin{array}{l} \frac{\partial}{\partial x} = \frac{\partial}{\partial u} + y \frac{\partial}{\partial v} \\ \frac{\partial}{\partial y} = x \frac{\partial}{\partial v} \end{array} \right. \left. \left(\begin{array}{l} ()'_x = ()'_u + ()'_v \\ ()'_y = x ()'_v \end{array} \right.$$

$$f_{yy}^{"}=(f_y^{\prime})_y^{\prime}=(xf_v^{\prime})_y^{\prime}=x(f_v^{\prime})_y^{\prime}=x\times x(f_v^{\prime})_v^{\prime}=x^2f_{vv}^{"}$$

$$f''_{xy} = (f'_x)'_y = (f'_u + yf'_v)'_y = (f'_u)'_y + f'_v + y(f'_v)'_y = xf''_{uv} + f'_v + yxf''_{vv}$$

Sätt in i $(4.2) \Rightarrow$

$$x(xf''_{uv} + f'_v + yxf''_{vv}) - y(x^2f''_{vv}) - xf'_v = 0$$

$$x^2f''_{uv} + xf'_v + yx^2f''_{vv} - yx^2f''_{vv} - xf'_v = 0$$

$$\Rightarrow x^2 f_{uv}'' = 0, \quad \forall (x, y) \Rightarrow f_{uv}'' = 0 \iff (f_u')_v'$$

$$f_{uv} = 0, \quad \forall (x, y) \rightarrow f_{uv} = 0 \quad (f_u)_v$$

 $\Rightarrow f'_u = g(u)$, godtycklig funktion $g(u)$

$$\Rightarrow f = G(u) + h(v)$$
, godtycklig funktion $h(v)$

Svar: f(x,y) = G(x) + h(xy), g = G' g&h godtyckliga funktioner

5 Föreläsning 5

5.1 Gradienter

5.1.1 Definition

Gradienten av f(x,y) är vektorn $\nabla f = \text{grad } f = (f'_x,f'_y)$ För g(x,y,z) är $\nabla g = (g'_x,g'_y,g'_z)$ och motsvarande för ≥ 4 variabler

<u>Hessianen</u> av f(x,y) resp g(x,y,z) är <u>matrisen</u>

$$Hf = \begin{pmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{pmatrix}$$

$$\text{resp } Hg = \begin{pmatrix} g''_{xx} & g''_{xy} & g''_{xz} \\ g''_{yx} & g''_{yy} & g''_{yz} \\ g''_{zx} & g''_{zy} & g''_{zz} \end{pmatrix}$$

symmetriska om $f,g\in C^2$, mer om H i samband med max/min-problem.

5.1.2 Hur tolkar man gradienter i 2D & 3D?

Kurvor i 2D

Tangenter och normaler (allmänt)

Tangentvektor $\bar{T} = (v_1, v_2)$

Normalvektor $\bar{T} = k(v_2, -v_1)$ ty ger

$$\bar{T} \bullet \bar{N} = v_1 k v_2 - v_2 k v_1 = 0 \Rightarrow \text{ortogonala}$$

Ekvivalent för tangentlinje i (x, y) är på tangenten \iff

$$\underbrace{(x-a,y-b)}_{\text{Parallell med }\bar{T}} \bullet \bar{N} = 0 \iff v_2x - v_1y = \underbrace{v_2a - v_1b}_{Konstant}$$

Parameter
form
$$\left\{ \begin{array}{l} x=a+tv_2 \\ y=b+tv_2 \end{array} \right. , \, t \in \mathbb{R} \text{ parameter}$$

Ekvation för normallinjen: (x, y) är på normalen \iff

$$\underbrace{(x-a,y-b)}_{\text{Parallell med }\bar{N}} \times (v_1,v_2) = 0 \iff v_1x+v_2y = \underbrace{v_1a+v_2b}_{Konstant}$$

Parameter form
$$\begin{cases} x = a + tv_1 \\ y = b - tv_2 \end{cases}, t \in \mathbb{R}$$

1. Kurvor på parameterform

 $\mathbf{E}\mathbf{x}$

$$\begin{cases} x = 1 - t \\ y = 2 + t \end{cases} \iff (x, y) = (1, 2) + t(-1, 1) \quad \text{[rät linje]}$$

 $\mathbf{E}\mathbf{x}$

$$\bar{r}(t) = \Big(x(t), y(t)\Big) = \Big(\cos t, \sin t\Big) \quad \text{[enhetscirkeln]}$$

Två punkter på kurvan $\bar{r}(t)$ & $\bar{r}(t + \Delta t)$

Låt
$$\Delta t \to 0 \Rightarrow \bar{T}(t) = r'(t) = \lim_{\Delta t \to 0} \frac{\bar{r}(t + \Delta t) - \bar{r}}{\Delta t} = \left(x'(t), y'(t)\right)$$

= ger tangentvektorn till kurvan, exempelvis har enhetscirkeln

$$\bar{T}(t) = (x'(t), y'(t)) = (-\sin t, \cos t)$$

2. Nivåkurvor f(x,y) = C

Om f(x,y) = C parametriseras med t som $\Big(x(t),y(t)\Big)$ ger kedjeregeln

$$0 = \frac{d}{dt} \underbrace{f\left(x(t), y(t)\right)}^{\text{konstant} = C} = f'_x x'(t) + f'_y y'(t) = \underbrace{\left(f'_x, f'_y\right)}_{\nabla f} \bullet \underbrace{\left(x'(t), y'(t)\right)}_{\bar{T}}$$

 $\Rightarrow \nabla f$ är normalvektor till nivåkurvan

 $\mathbf{E}\mathbf{x}$

Enhetscirkeln
$$\left[f(x,y)=x^2+y^2=1\right]$$
 har $\nabla f=\left(2x,2y\right)=2\Big(x,y\Big)$

3. Grafer

y = h(x) kan föras på

- parameter form: t = x ger $\left(x, y\right) = \left(t, h(t)\right)$ $\Rightarrow \bar{T} = \left(x', y'\right) = \left(t, h(t)\right)$
- nivåkurveform: sätt f(x,y) = y h(x) = 0 $\Rightarrow \bar{N} = \nabla f = \left(f_x', f_y'\right) = \left(-h'(x), 1\right)$

5.2 Nivåytor i 3D

$$g(x, y, z) = C$$

Med kedjeregeln visas på liknande sätt som för nivåkurvor att

$$\nabla g = \left(g_x', g_y', g_z'\right)$$
är \bar{N} till nivåytan

$\mathbf{E}\mathbf{x}$

Enhetssfären $g(x,y,z)=x^2+y^2+z^2=1$ har $\bar{N}=\nabla g=(2x,2y,2z)$ I punkten $P:\left(\frac{2}{3},\frac{1}{3},\frac{2}{3}\right)$ är $\bar{N}=\left(2\times\frac{2}{3},2\times\frac{1}{3},2\times\frac{2}{3}\right)$ och tangentplanet i P är $\left(x-\frac{2}{3},y-\frac{1}{3},z-\frac{2}{3}\right)=\bar{N}=0\iff 2x+y+2z=3$

En graf z=f(x,y) kan skrivas som nivåytan g(x,y,z)=f(x,y)-z=0 $\Rightarrow \bar{N}$ är $\nabla g=(g_x',g_y',g_z')=(f_x',f_y',-1)$

 $\mathbf{E}\mathbf{x}$

$$z = f(x, y) = x^{2} + y^{2}$$
$$f'_{x} = 2x$$
$$f'_{y} = 2y$$

har i punkten (1, 2, 5)

$$\bar{N} = (f_x'(1,2), f_y'(1,2), -1) = (2,4,-1)$$

5.2.1 Definition

Riktningsderivatan av f(x,y) i punkten (a,b) och riktning $\bar{v}=(v_1,v_2)$ där $|\bar{v}|=\sqrt{v_1^2+v_2^2}=1$ är

$$f'_{\bar{v}}(a,b) = \lim_{t \to 0} \frac{f(a+tv_1, b+tv_2) - f(a,b)}{t}$$

Mäter hur fändras i $\bar{v}{:}\mathrm{s}$ riktning

 $\left(|\bar{v}|>1 \text{ behövs för att } f'_{\bar{v}} \text{ inte ska bero på } \bar{v}\text{:s längd}\right)$ Partiella derivator är specialfall t.ex. $\bar{v}=\bar{e_1}=(1,0)$ ger $f'_{\bar{v}}=f'_x$ Motsvarande gäller för ≥ 3 variabler

5.2.2 Sats

f differentierbar
$$\Rightarrow f'_{\bar{v}} = \nabla f \bullet \bar{v}$$

 $\mathbf{E}\mathbf{x}$

$$\bar{v} = (1,0) \Rightarrow f'_{\bar{v}} = (f'_x, f'_y) \bullet (1,0) = f'_x$$

 $\mathbf{E}\mathbf{x}$

$$f(x,y,z) = xy^2z^3 \Rightarrow \nabla f = (f'_x, f'_y, f'_z) = (y^2z^3, 2xyz^3, 3xy^2z^2)$$

I punkten (a,b,c)=(2,-1,1) och i riktningen $\bar{v}=\frac{1}{\sqrt{5}}(1,0,2)$ från punkten är

$$f'_{\bar{v}}(2,-1,1) = \nabla f(a,b,c) \bullet \bar{v} = (1,-4,6) \bullet \frac{1}{\sqrt{5}}(1,0,2) = \frac{1 \times 1 - 4 \times 0 + 6 \times 2}{\sqrt{5}} = \frac{13}{\sqrt{5}}$$

5.2.3 Allmänt

$$f'_{\bar{v}} = \nabla f \bullet \bar{v} = |\nabla f| \underbrace{|\bar{v}|}_{=1} \cos \alpha$$

Maximal då $\alpha=0$, dvs då \bar{v} väljs åt samma håll som $\nabla f\Rightarrow$

 ∇f pekar i den riktning f växer snabbast i

 $f_{\bar{v}}'=0$ då \bar{v} är en tangent till nivåkurvan/ytan

Appendix $Adnan\ Avdagic$

6 Appendix

Figurer

1	Graf i 2D
2	Graf för polära koordinater III
3	Exempel på rotationssymmetri V
	Rymdpolära koordinater VI
5	Grafisk visning av hur f ändras i x- & v-riktningen VII

Tabeller