SEMICONDUCTOR LASER

Patent number:

JP10004237

Publication date:

1998-01-06

Inventor:

WADA MITSUGI

Applicant:

FUJI PHOTO FILM CO LTD

Classification:

- international:

H01S3/18

- european:

Application number: JP19960155691 19960617

Priority number(s):

Abstract of JP10004237

PROBLEM TO BE SOLVED: To improve the reliability of a semiconductor laser under high output oscillation in a strain quantum well semiconductor laser 0.90-1.1&mu m. SOLUTION: An n-Inx4 Ga1-x4 As1-y4 Py4 clad layer 3, an Inx3 Ga1-x As1-y Py light guide layer 4, an Inx2 Ga1-x2 As1-y Py tension strain barrier layer 5, an Inx1 Ga1-x As1-y Py compression strain active layer 6, an lnx2 Ga1-x As1-y Py tension strain barrier layer 7, an p-lnx3 Ga1-x3 As1-y3 Py3 light guide layer 8, an p-lnx4 Ga1-x4 As1-y4 Py4 clad layer 9 and an p-GaAs contact layer 10 are successively grown on an n-GaAs substrate 2. In such a constitution, the barrier layers 5, 7 have the tension strain of the strain amount compensating the compression strain of the active layer 6. Furthermore, the clad layer 3, 9 and the light guide layers 4, 8 are composed to be lattice-matched with the substrate 2.

THIS PAGE BLANK (USPTO)

(<u>2</u>2) (19) 日本国体群庁 (1 b)

公報 (A) 盐 那特

(11) 格許出顧公開番号

特開平10-4237

(43)公园日 平成10年(1998) 1月6日

4 E 審査調: 株財水 関水項の数2 OL (全

(21) 出國番号	特剧平8 —155691	(71) 出国人 00005201	000005201
			富士写真フイルム株式会社
(22) 州(間日	平成8年(1996)6月17日		神奈川吳南足楠市中紹210番地
		(72) 発明绪	女田 女
			神奈川県足柄上郡開成町宮台798番地 富
			士写真フイルム株式会社内
		(74)代理人 井理士	井理士 梅田 征史 (外1名)
			•
			•

半事杯フーカ (54) [発明の名称]

(57) [要約]

【課題】 .0.90-1.1μm 帯の函量子井戸半導体レーザに 【解决手段】 n-GaAs基板2上に、n-Inx4Ga1-x4As1-y4 する強量の引張り強を有する。なお、クラッド層3、9 7、p-Inx3Gal-x3Asl-y3Py3光導故層 8、p-Inx4Gal-x4A 成長させる。障壁層5、7は、活性層6の圧縮歪を補償 および光導波磨4、8は基板2に格子整合する組成であ Py4 クラッド層3、Inx3Gal-x3Asl-yPy光導放層4、In x2Gal-x2Asi-yPy 引張り歪暲監層 5、Inx1Gal-x1Asl-yP s1-y4^py4 クラッド暦9、p-GaAsコンタクト暦10を頃次 y 压缩歪活性语 6、 lnx2Gal-x2Asl-yPy引張り歪障壁層 おいて、高出力発振下における信頼性を向上させる。

特許請求の範囲

請求項1】 III-V族化合物半導体であるGaAs基板上 に少なくとも第一クラッド層、第一光導故層、第一障壁 **蜀、活性層、第二障壁層、第二光導液層および第二クラ** ッド層を順次積層させて形成する111-V族系半導体レー

前配第一および第二クラッド層と前配第一および第二光 **前配活性層が前記GaAs基板に対して圧縮性強を生じる組** 導波層とが前記GaAs基板に格子整合する組成からなり、 成からなり、

ずにおいた、

技術表示箇所

3/18

H01S

广内整理番号

被例記号

3/18

H01S (51) Int Cl.

前配第一および第二障壁櫓、前配活性層の前配圧縮性盃 を補償するため引張り歪を生じる組成からなり、

前配第一光導波層と第一障壁層、および第二光導波層と 第二陣壁層の∨岐組成比が同一であることを特徴とする III-V 核系半導体ワーザ。 【請求項2】 前記活性層の組成をInxlGal-xiAs(0≦xi ≦I)とし、前配第一および第二歪障壁層をInx2Gal-x2As I-yPv(0.00≤x2≤0.23, 0.04≤y≤0.50)とし、前配第一 および第二光導液層を1nx3Gal-x3As1-yPy(x2<x3≦0.2 5) とすることを特徴とする請求項1配載の111-V族系

[発明の詳細な説明]

計資符フーカ

[0001]

るものであり、特にIII-V族系半導体レーザの組成に関 [発明の属する技術分野] 本発明は半導体レーザに関す するものである。

[0002]

【採来の技術】従来、0.98μm帯の半導体レーザとして x3Ga1-x3As1-y3Py3光導故層、p-InGaPクラッド階、p-Ga lppl. Phys. Lett., 62(1993)1644に開示されているような n-GaAs基板にn-InGaP クラッド層、Inx3Gal-x3As1-y3P y3 光導液層、GaAsI-y2Py2引張り歪障壁層、InxIGal-x1 **タsキャップ圏を積層してなる半導体レーザが提案されて** As圧縮歪盘子井戸層、GaAs1-y2Py2引張り歪障壁層、In

[0000]

「発明が解決しようとする課題」しかし上述の構造では 有機金属気相成長(MOCVD)法における結晶成長に の逆の成長過程において、Vは水素化物ガス (PH3、AsH 悠を不安定にしてしまうため、各層間の界面を高品質で 安定に再現性良くつくることができず、また、界面の上 おいて、光導液層から引張り登障壁磨、あるいはそれら 3) の切換時にP とAsの急激な置換が生じ結晶表面の状 に成長する結晶の品質を落としてしまうという欠点があ

で、禹出力発版下においても信頼性の高い0.9-1.1μm 帯の査量子井戸型のIII-V族系半導体レーザを提供する [0004] 本発明は上配事情に鑑みてなされたもの

ことを目的とするものである。 [0000]

層、活性層、第二障壁層、第二光導液層および第二クラ および第二光導液層とが前配GaAs基板に格子整合する組 成からなり、前記活性層が前配GaAs基板に対して圧縮性 前配活性層の前配圧縮性査を補償するため引張り盈を生 じる組成からなり、前記第一光導波層と第一障壁層、お よび第二光導液層と第二陣監層のV族組成比が同一であ 【瞑題を解決するための手段】本発明の111-V 族系半導 体レーザは、III-V 族化合物半導体であるGaAs基板上に げにおいて、前記第一および第二クラッド層と前記第一 ッド届を順次積層させて形成するIII-V族采半導体レー 少なくとも第一クラッド層、第一光導液層、第一体壁 **蚕を生じる組成からなり、前記第一および第二障壁層** ることを特徴とするものである。

二垂降鹽層をInx2Gal-x2Asl-yPy (0.00≦x2≦0.23, 0.0 1≤y≤0.50)とし、前配第一および第二光導放置をInx36 【0006】前配半導体レーガにおいて、前配括性圏の 祖成をInxlGal-xlAs(0≤x1≤1)とし、前配第一および第 a1-x3As1-yPy(x2<x3≦0.25)とすることが好ましい。 [0000]

引張り歪障監局により圧縮性歪活性層の歪が補償される 【発明の効果】本発明の111-V 族系半導体レーザでは、 ため信頼性の向上が期待できる。

[0008]また、光導液層と引張り至障壁層とのV族 組成比を同一としていることにより、MOCVD法での 成長の際、光導波層と引張り歪障鹽層間でV族水葉化物 ガスの切換の必要がないために、界面での成長中断時間 **ザ棒造を作成することができ、また、界面および界面の** 上に成長する結晶の品質を向上させることができ、結果 を短縮することができ、界面に欠陥を発生させずにレー として素子の信頼性を向上することができる。

【0009】一般に、半導体レーザ作製時の半導体各層 ギャップ(一点類線)を示す。例えば、光導故職および クラッド層はGaAs基板に格子整合する組成比、すなわち そのとり得る範囲は成長温度に依存するミンピリティギ 同一であり、111 核組成比がx2<x3であることから、図 の組成を決定するためには図2に示すような組成図 (II I-V族半導体混晶:コロナ出版)が用いられる。図2に ナップトの脳保で定められる。 本発明の半導体ワーガに おいては、光導液層と引張り歪障壁層とのV族組成比が 2から明らかなように引張り盃降監層のパンドギャップ 発光効率および発掘関値電流の温度依存性を小さくする 等格子定数線 (破線) 各成長温度におけるミシビリティ は、組成図に合わせて、導パンドギャップ線(実線)、 苺格子定数線0.0%で示される破線上の組成比をとり、 が光導液層のパンドギャップより高いものとなるため、

[発明の実施の形態] 以下に本発明の実施の形態を図面 を用いて説明する。

[0011]図1は、本発明の一実施の形態を示すもの

3

ဆ

である。III 族原料となる有機金属として、トリメチル

≦y4≦1)、ln_{x3}Ga_{1-x3}As_{1-y}Py光導波層 4 (x2≦x3≦0.2 0 ℃で成長する際のミシビリティギャップを考慮して定 長させる。なお、組成の範囲は図2の組成図を用い、70 1-y4P_{y4} クラッド層 9、p-GaAsコンタクト層10を順次成 層 6 (0≦x1≦1)、In_{x2}Ga_{l−x2}As_{l−y}P_y引張り歪障壁層 5 (x2≦x3≦0.25) 、In_{XI}Ga_{1-XI}As圧縮歪盘子井戸活性 5、0.04≦y≦0.50)、In_x2Ga1-x2As1-yPy引張り歪障壁層 に、n-In_{x4}Ga_{1-X4}As_{1-Y4}P_{Y4}クラッド層3(0≦x4≦1, 0 PH3 を用いるMOCVD装置によりn-GaAs 基板2上 1)を用い、V族原科となる水素化物ガスとしてAsH3, ガリウム(TMG)およびトリメチャインジウム(TM 7、Inx3Ga1-x3As1-yPy光導液層8、p-Inx4Ga1-x4As

料となるAsH3、PH3 のV族原料を切り換える必要がない り 歪障壁層 5、 7の歪量は、活性層 6 を挟む 2層で量子 GaAs基板2に格子整合する組成とする。量子井戸活性層 同じであるから、MOCVD成長においてそれぞれの原 際、光導波層と引張り歪障壁層でV族のAs、P の組成が 長中に転位等の欠陥を発生させない厚みに設定し、引張 6の歪を補償する引張り歪阵壁層5、7の厚みは結晶成 ために、安定に各ヘテロ界面を形成することが可能とな 井戸活性層6の圧縮歪を補償するように設定する。この 【0012】クラッド層3、9および光導波層4、8は

ぞれに金属館極1、11を形成して半導体レーザを完成す 【0013】その後に基板2とコンタクト層10とのそれ

構造の形成のみ記載しているが、これらの構成に通常の 【0014】上記実施の形態では、単純なダブルヘテロ

> レーザや光集積回路の作製にも用いることが可能であ 折率導政機構付き半導体レーザ、回折格子付きの半導体 フォトリングラフィーやエッチングによる加工を行い屈

MQWであってもよい。 造を示したが、SQWの代わりに量子井戸を複数とする で、光導波層組成が一定のSQW-SCHと呼ばれる構 【0015】上記実施の形態では特に量子井戸が単一

での制御が可能である。

するInGaP あるいはAlGaAsでしよい。なお、成長法とし て、固体あるいはガスを原料とする分子線エピタキシャ 【0017】また、クラッド層の組成はGaAsに格子整合

めている。

n-GaAs基板

Inx2Gal-x2Asl-yPy 引張り歪障壁層

700 t

B00 t

In_xGa_{1-x}As_{1-y}P_y

xlGa_{l-xl}As活性層により、900nm <λ<1100nmの範囲ま 【0016】また、発板する波長帯に関しては、前記In

ル成長法を用いてもよい。 |図面の簡単な説明|

【符号の説明】・ 【図1】本発明の半導体レーザ繋子断面概略図

n 密紙塔

n-In_{x4}Ga_{1-x4}As_{1-y4}P_{y4} クラッド層 In_x3Ga_{1-x}3As_{1-y}P_y 光導夜層

lnxlGal-xlAsl-yPy 压縮蚕量子井戸活性層

lnx2Ga1-x2As1-yPy 引張り歪障壁層

Inx3Ga1-x3As1-yPy 光導波層

p-In_{x4}Ca_{1-x4}As_{1-y4}P_{y4} クラッド層

p-GaAs コンタクト層

p间电極

【図1】本発明の半導体レーザ素子断面概略図 【符号の説明】 【図 2 】半導体原料の組成図 補正内容】 【補正方法】追加 【補正対象項目名】図面の簡単な説明 「手続補正1] 手続補正書】 図面の簡単な説明】 補正対象容類名】明細容 提出日]平成8年8月20日 n侧電極

Inx3Gal-x3As1-yPy 光導波層 In_{x2}Ga_{l-x2}As_{1-y}P_y 引張り歪障壁層 InxiGal-xlAs1-yPy 圧縮歪量子井戸活性層 In_{x2}Ga_{1-x2}As_{1-y}P_y 引張り歪障壁層 In_{x3}Ga_{1-x}3As_{1-y}P_y 光導液層 n-In_{x4}Ga_{l-x4}As_{l-y4}P_{y4} クラッド層 n−GaAs基板

p侧霉極

p-GaAs コンタクト層

p-Inx4Ga1-x4As1-y4Py4 クラッド層

£

特朗平10-4237