Group Members: Stephen Kuo, Derek Mui

Homework 1

1) In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

Answer:

(a) f(n) = n - 100 and g(n) = n - 200

Both are O(n), so $f = \Theta(g)$

(b) $f(n) = n^{1/2}$ and $g(n) = n^{2/3}$

Since they're both power s of n, compare the powers. $\frac{1}{2} < \frac{2}{3}$ so f = O(g)

- (c) $f(n) = 100n + \log n$ and $g(n) = n + (\log n)^2$ They are both O(n) so $f = \Theta(g)$
- (d) $f(n) = n \log n$ and $g(n) = 10n \log 10n$ They are both $O(\log n)$ so $f = \Theta(g)$
- (e) $f(n) = \log 2n$ and $g(n) = \log 3n$ They are both $O(\log n)$ so $f = \Theta(g)$
- (f) $f(n) = 10 \log n$ and $g(n) = \log (n^2)$ Both are $O(\log n)$ so $f = \Theta(g)$
- (g) $f(n) = n^{1.01}$ and $g(n) = nlog^2 n$ If both sides are divided by n we then need to compare $n^{0.01}$ and $log^2 n$. Ultimately, the power function wins, so $f = \Omega(q)$
- Ultimately, the power function wins, so $f = \Omega(g)$ (h) $f(n) = \frac{n^2}{logn}$ and $g(n) = n(\log n)^2$ Divide both sides by $\frac{n}{logn}$ and we will only need to compare n and $(logn)^3$. The result is $f = \Omega(g)$
- (i) $f(n) = n^0.1$ and $g(n) = (\log n)^{10}$ Similar to problems g and h, $f = \Omega(g)$
- (j) $f(n)=(logn)^{logn}$ and $g(n)=\frac{n}{logn}$ The function $f(n)=n^{loglogn}$, thus $f=\Omega(g)$
- (k) $f(n) = \sqrt{n}$ and $g(n) = (\log n)^3$ Again, $f = \Omega(g)$
- (l) $f(n) = n^{1/2}$ and $g(n) = 5^{\log_2 n}$ $g(n) = n^{\log_2 5} \approx n^{2.32}$ thus, f = O(g)
- (m) $f(n) = n2^2$ and $g(n) = 3^n$ Here, f = O(g)
- (n) $f(n) = 2^n$ and $g(n) = 2^{n+1}$ Here, $f = \Theta(g)$
- (o) f(n) = n! and $g(n) = 2^n$ It seems that $n! > \sqrt{2\pi n(\frac{n}{e})^n}$. Thus, f = O(g)
- (p) $f(n) = (\log n)^{\log n}$ and $g(n) = 2^{(\log_2 n)^2}$ The function $f(n) = n^{\log \log n}$ and the function $g(n) = (2^{\log_2 n})^{\log_2 n} = (2^{\log_2 n})^{\log_2 n}$

$$n^{\log_2 n}.$$
 Thus, $f=O(g)$ (q) $f(n)=\sum\limits_{i=1}^n i^k$ and $g(n)=n^{k+1}$

- 2) Show that, if c is a positive real number, then $g(n)=1+c+c^2+\ldots+c^n$ is:
 - (a) $\Theta(1)$ if c < 1
 - (b) $\Theta(1)$ if c=1
 - (c) $\Theta(1)$ if c > 1

Answer:

If c = 1, $g(n) = 1 + 1 + ... + 1 = n + 1 = \Theta(n)$. Otherwise:

$$g(n) = \frac{c^{n+1}-1}{c-1} = \frac{1-c^{n+1}}{1-c}$$

If c < 1, then $1 - c < 1 - c^{n+1} < 1$. So, $1 < g(n) < \frac{1}{1-c}$. Thus, $g(n) = \Theta(1)$

If
$$c > 1$$
, then $c^{n+1} > c^{n+1} - 1 > c^n$. So, $\frac{c^n}{1-c} < g(n) < \frac{c}{1-c} * c^n$. Thus, $g(n) = \Theta(c^n)$

3) Determine the number of paths of length 2 in a complete graph of n nodes. Give your answer in Big-O notation as a function of n.

Answer: