A note on the cone $L_p(\mathcal{M})^+$

Anna Jenčová

February 26, 2024

Lemma 1. Let $\varphi \in \mathcal{M}_*^+$ be faithful. For any $0 , <math>h_{\varphi}^{\frac{1}{2p}} \mathcal{M}^+ h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_p(\mathcal{M})^+$, in the (quasi)-norm $\|\cdot\|_p$.

Proof. By [?, Lemma 1.1], $\mathcal{M}h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_{2p}(\mathcal{M})$ for any $0 . Let <math>y \in L_p(\mathcal{M})^+$, then $y^{\frac{1}{2}} \in L_{2p}(\mathcal{M})$, hence there is a sequence $a_n \in \mathcal{M}$ such that $||a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}||_{2p} \to 0$. Then also

$$\|h_{\varphi}^{\frac{1}{2p}}a_n^* - y^{\frac{1}{2}}\|_p = \|(a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}})^*\|_p = \|a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}\|_p \to 0$$

and

$$\|h_{\varphi}^{\frac{1}{2p}}a_{n}^{*}a_{n}h_{\varphi}^{\frac{1}{2p}}-y\|_{p}=\|(h_{\varphi}^{\frac{1}{2p}}a_{n}^{*}-y^{\frac{1}{2}})a_{n}h_{\varphi}^{\frac{1}{2p}}+y^{\frac{1}{2}}(a_{n}h_{\varphi}^{\frac{1}{2p}}-y^{\frac{1}{2}})\|_{p}$$

Since $\|\cdot\|_p$ is a (quasi)-norm, the above expression goes to 0 by Hölder.