Disciplina: Teoria da Computação Professor: Maicon Rafael Zatelli

Exercícios 6

- 1. Prove que o conjunto dos números inteiros $\mathbb Z$ é contável.
- 2. Prove que o conjunto de partes dos números naturais \mathbb{N} é incontável, ou seja, $|\mathbb{N}| < 2^{|\mathbb{N}|}$.
- 3. Prove que as linguagens abaixo são indecidíveis:
 - (a) $X_{TM} = \{ (M, X) \mid M \text{ \'e uma M\'aquina de Turing e } M \text{ aceita a linguagem regular } X \}$
 - (b) $NE_{TM} = \{ (M) \mid M \text{ \'e uma M\'aquina de Turing e } L(M) \neq \emptyset \}$
 - (c) $Rot_{TM} = \{ (M) \mid M \text{ \'e uma M\'aquina de Turing e } w \in L(M) \text{ se e somente se } rotaciona_1(w) \in L(M) \}$ onde, $rotaciona_1(w)$ retorna a rotação circular de w em uma posição para a direita
 - Exemplo: a rotação circular da palavra abcde em uma posição para a direita resulta em eabcd. Caso uma nova rotação seja feita, então a palavra resultante é deabc.
 - (d) $Rev_{MT} = \{ (M) \mid M$ é uma Máquina de Turing e $w \in L(M)$ se e somente se $w^R \in L(M) \}$

Para facilitar, você pode considerar que as linguagens abaixo já foram provadas indecidíveis.

- $E_{TM} = \{ (M) \mid M \text{ \'e uma M\'aquina de Turing e } L(M) = \emptyset \}$
- $A_{TM} = \{ (M, w) \mid M \text{ \'e uma M\'aquina de Turing que aceita } w \}$
- $Halt_{TM} = \{ (M, w) \mid M \text{ \'e uma M\'aquina de Turing que para com a entrada } w \}$
- $EQ_{TM} = \{ (M1, M2) \mid M1 \text{ e } M2 \text{ são Máquinas de Turing e } L(M1) = L(M2) \}$