0302301 - STATISTICS FOR DATA ANALYSIS

<u>UNIT</u>	MODULE	WEIGHTAGE
1.	STATISTICS: OVERVIEW	20%
2.	MEASURE OF DISPERSION	20%
3.	CORRELATION AND REGRESSION	20%
4.	FUNDAMENTALS OF PROBABILITY	20%
5.	STATISTICAL ANALYSIS USING R PROGRAMMING	20%

0302301 - STATISTICS FOR DATA ANALYSIS

Text Book: **Business statistics** by Padmalochan hazarika

Related Programming Tool: R

UNIT - 2 Measures of Dispersion

- Quartile
- Range
- Quartile Deviation
 - Coefficient of Q.D.
 - Advantage and Disadvantage of Q.D.
- Mean Deviation
 - Coefficient of M.D.
 - ☐ Advantage and Disadvantage of M.D.
- Standard Deviation
 - Coefficient of S.D.
 - Advantage and Disadvantage of S.D.
- ☐ Relationships among Q.D., M.D., S.D.

- The range of a distribution is the difference between the largest and smallest observation of that distribution.
- If L denotes the largest observation and S denotes the smallest observation of a distribution then the range R of the distribution will be

$$R = L - S$$

• If the marks obtained by six students are 24, 12, 16, 11, 40 and 42, find the range of these marks.

SOLUTION

$$L = 42, S = 11$$

Range R = L - S

Determine range for the following distribution.

Weight (k.g.)	40	47	56	62	70
No. of students	4	7	11	3	1

- L = 70 kg, S = 40 kg,
- Range R = L S
 - = 70 40 (kg)
 - = 30 kg

 The following distribution is a distribution of height. Determine range for the following distribution.

Height (c.m.)	120-129	130-139	140-149	150-159
No. of person	10	17	23	8

Range R = (Upper limit of 150-159) - (Lower limit of 120-129)

= 159 - 120

= 39 cm

- Advantage
 - It is easy to understand and calculate range.
- Disadvantage
 - Depends on only the two extreme values of data.
 - May arrive at wrong conclusion.
 - Can't obtain range of a distribution with either one or both first and last class interval being open.

- The three quantities of a distribution in ascending order which divide the distribution into four equal parts are called **quartiles** the distribution.
- Denoted by Q1, Q2, Q3.
- Q1: first quartile / lower quartile (25%)
- Q2: second quartile / median (50%)
- Q3: third quartile / upper quartile (75%)

For ungrouped frequency:

```
In case of ungrouped frequency distributions, the quartiles are determined by using the following formula: Q_i = \text{value of } \frac{i (N+1)}{4} \text{ th term, } i = 1, 2, 3; or, Q_i = \text{value of } \frac{iN}{4} \text{ th term, } i = 1, 2, 3 .... 5.13

Here N = \text{Total frequency.}
```

For grouped frequency:

```
The formulae for determining the three quartiles in case of grouped frequency distributions are as follows:

Q_i = L + \frac{iN}{4} - f_c
Q_i = L + \frac{iN}{f} \times I, i = 1, 2, 3
Moderic Moderi
```

Example 28. Determine quartiles from the following distribution:

Weight (lbs) x : 4 5 6 8 11 13 14 No. of children (f) : 2 4 5 7 3 2

Solution:

Table 5.15: Table for determining quartiles

	and the second second second second	
x	ſ	f_{ϵ}
4	2	. 2
5 '	4	6
6	5	11
8	7	18
11	3	21
13	2	23
14	1	24
,	N = 24	

$$Q_1 = \text{Value of } \frac{N+1}{4} \text{ th observation } i.e., \frac{24+1}{4} \text{ th or } 6.25 \text{ th observation}$$

= Value of 6th item + 0.25 (value of 7th item - value of 6th item)
=
$$5 + 0.25 (6 - 5) = 5.25$$

Thus $Q_1 = 5.25$ lbs.

$$Q_2$$
 = Value of $\frac{2(N+1)}{4}$ th item = Value of $\frac{2(24+1)}{4}$ th item

= Value of 12.5th item

$$Q_2$$
 = Value of 12th item + 0.5 (Value of 13th item – value of 12th item)
= 8 + 0.5 (8 - 8) = 8

hus $O_{\rm s} = 8$ lbs

$$Q_3$$
 = Value of $\frac{3(N+1)}{4}$ th item = Value of $\frac{3(24+1)}{4}$ th item

= Value of 18.75th item.

$$Q_3$$
 = Value of 18th item + 0.75 (value of 19th item - value of 18th item)
= 8 + 0.75 (11 - 8) = 8 + 0.75 × 3 = 8 + 2.25 = 10.25

Thus $Q_1 = 10.25$ lbs.

Example 27. Determine the quartiles for the following distribution :

Class interval: 30-40

Class interval: 40-50
Frequency: 8

Table	5.14:	Table	for	determining	quartiles

Class interval	Frequency (f)	Cumulative frequency (f _c)
10 – 15	4	4
15 - 20	12	16-
20 - 25	.16	. 32
25 - 30	22	54
30 - 40	10	64
40 - 50	8	72
50 - 60	6	78
60 – 70	4	82
	N = 82	

$$Q_1$$
 = Value of $\frac{N+1}{4}$ th observation
= Value of $\frac{82+1}{4}$ th observation = Value of 20.75th observation

We see from the above cumulative frequency table that the 20.75th observation is included

Now,
$$Q_1 = L + \frac{\frac{N}{4} - f_c}{f} \times I$$
 [Putting $i = 1$ in formula 5.13]

Here
$$L = 20$$
, $N = 82$, $f = 16$ and $f_c = 16$.

$$\therefore Q_1 = 20 + \frac{20.5 - 16}{16} \times 5 = 20 + \frac{22.5}{16} = 20 + 1.41 = 21.41$$

 Q_2 = Value of $\frac{2(N+1)}{4}$ th observation = Value of $\frac{2\times83}{4}$ th observation value of 41.5th observation. This observation lies in the class 25 - 30.

Now,
$$Q_2 = L + \frac{2N}{4!} - \frac{f_c}{f} \times I$$

Here $L = 25$, $N = 82$, $f = 22$, $f = 32$, $I = 5$

$$\therefore Q_2 = 25 + \frac{41 - 32}{22} \times 5 = 25 + \frac{45}{22} = 25 + 2.05 = 27.05.$$

 Q_3 = Value of $\frac{3(N+1)}{4}$ th i.e. $\frac{3 \times 83}{4}$ th or 62.25th observation. This observation is included

$$\therefore Q_3 = L + \frac{\frac{3N}{4} - f_c}{f} \times I = 30 + \frac{61.5 - 54}{10} \times 10 = 30 + 7.5 = 37.5.$$

- The interquartile range of a distribution is the difference between the third quartile Q3 and first quartile Q1 of the distribution.
- Half the interquartile range of a distribution is called quartile deviation (Q.D.) of the distribution.
- Interquartile range = Q3 Q1
- Quartile Deviation: Q3 Q1 / 2
- Coefficient of Quartile Deviation: (Q3 Q1 / 2) / (Q3 + Q1 / 2)
 - Q3 Q1 / Q3 + Q1

i.e.,

Ungrouped freq.

Example 4. The following is the distribution of wages of some workers. Determine quartile lation and coefficient of quartile deviation.

mon and coefficient of quartile deviation.

Wages (in ₹): 20 32 61 75 82

No. of workers: 2 4 7 5 4

Solution: To determine quartiles the distribution must be in a definite order. The given distribution is in ascending order.

Table 6.1: Table for determining Q. D. and Coeff. of Q. D.

Wages (in \overline{x}) (x)	No. of Workers (f)	Frequencies (f.)
20	2	2
32	4).	6
61	7)	13
75	- 5	18
82	4	22
95	2.	24
	N = 24	

$$Q_1 = \text{Value of } \frac{N+1}{4} \text{ th term}$$

Q. = ₹39.25.

= Value of
$$\frac{24+1}{4}$$
 th term = value of $6\frac{1}{4}$ th term

= Value of 6th term +
$$\frac{1}{4}$$
 (value of 7th term – value of 6th term)
= $32 + \frac{1}{4}$ (61 – 32) = $32 + \frac{1}{4} \times 29 = 32 + 7.25 = 39.25$

(N.B. The place of the $6\frac{1}{4}$ th term will be at the place which is at a distance of $\frac{1}{4}$ th of the distance between the 6th and the 7th terms. It is to be noted that a quartile of a distribution may not be a value of that distribution. The values of the various terms are obtained by adopting the same procedure as in the determination of median *i.e.*, by observing the cumulative frequency table.)

$$Q_3 = \text{Value of } \frac{3(N+1)}{4} \text{ th term}$$

$$= \text{Value of } \frac{3(24+1)}{4} \text{ th term} = \text{Value of } 18\frac{3}{4} \text{ th term}$$

$$= 18 \text{ th term} + \frac{3}{4} \text{ (value of } 18 \text{ th term} - \text{value of } 19 \text{th term})$$

i.e.,
$$Q_3 = \frac{80.25}{80.25}$$

Ouartile deviation $(Q. D.) = \frac{Q_3 - Q_1}{2} = \frac{80.25 - 39.25}{2} = \frac{41}{2} = 20.50$

Coeff. of (Q. D.) =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{80.25 - 39.25}{80.25 + 39.25} = \frac{41}{119.50} = 0.34 \text{ (approx.)}$$

= $75 + \frac{3}{4}(82 - 75) = 75 + \frac{3}{4} \times 7 = 75 + 5.25 = 80.25$

Grouped freq.

	Example 5. D	eterm	ine O. D. and	Coeff. of O.	D. for the follo	wing distribut	ion :
/	Weight (kg.) No. of boys		30—34	35—39	40—44 26	45—49 10	50-54
	Solution:	:	5	11	20		8

Weight (kg.)	No. of boys (f)	Cumulative frequency (f
30—34	5	5.
-555 _35_39 58-5	11	16
40-44	26	42
45—49	10	52
50—54	8	60
	N = 60	

Q. D. =
$$\frac{Q_3 - Q_1}{2} = \frac{47 - 40.05}{2}$$
 kg
= 3.48 kg (approx.)
Q. D. = 3.48 kg (approx.)

Q. D. =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{47 - 40.05}{47 + 40.05} = \frac{6.95}{87.05} = 0.08$$
.

 Q_1 = Value of $\frac{N}{4}$ th term = Value of $\frac{60}{4}$ th *i.e.*, 15 th term.

Clearly the 15th term is in the class 35-39.

 $Q_1 = L + \frac{\frac{N}{4} - f_c}{f} \times I$ Now.

Here,
$$L = 35.5, \frac{N}{4} = 15, f = 11, f_c = 5, I = 5$$

$$Q_1 = 35.5 + \frac{15 - 5}{11} \times 5$$

$$= 35.5 + \frac{50}{11} = 35.5 + 4.55 = 40.05$$

i.e., Value of $Q_1 = 40.05 \text{ kg}$.

Now,

$$Q_1$$
 = Value of $\frac{3N}{4}$ th term = Value of $\frac{3 \times 60}{4}$ th *i.e.*, 45th term. Clearly the 45 th term included in the class 45 – 49.
Now,
$$Q_3 = L + \frac{3N}{4} - f_c \times I$$

Here $L = 45.5, \frac{3N}{4} = 45, f = 1, f_c = 42, I = 5$

$$Q_3 = 45.5 + \frac{45 - 42}{10} \times 5$$

$$= 45.5 + 1.5 = 47$$
i.e.,

Advantage:

- While only two values of a distribution are involved in the determination of range, 50% of the values of a distribution are involved in the determination of Q.D. Thus, as a measure of dispersion Q.D. is superior to range.
- Q.D. is not affected by the extreme values since the lowest 25% observations and the highest 25% observations are not taken into account while calculating the Q.D. of a distribution.
- Q.D. is the only measure which can be used to determine the variation of distribution involving open-end class interval.

Disadvantage:

- Q.D. is based on only 50% of the observations of a distribution. Thus
 it disregards half of the total observations.
- It is not amenable for further mathematical treatment.

Mean Deviation

- The arithmetic mean of the absolute deviations of the observations of a distribution from its mean, median or mode is known as mean deviation.
- If a variable x takes n values $x_1, x_2, ..., x_n$, then

M.D. =
$$|x_1 - A| + |x_2 - A| + \dots + |x_n - A| / n$$

Or

$$M.D. = \sum |x - A| / n = \sum |d| / n$$

• If the frequencies of $x_1, x_2, ..., x_n$ are $f_1, f_2, ..., f_n$ respectively then,

M.D. =
$$f_1 | \mathbf{x}_1 - \mathbf{A} | + f_2 | \mathbf{x}_2 - \mathbf{A} | + \dots + f_n | \mathbf{x}_n - \mathbf{A} | / \mathbf{n}$$

Or

$$M.D. = \sum f |x - A| / n = \sum f |d| / n$$

Mean Deviation

• Coefficient of mean deviation = **M.D. / The avg, from which M.D. is taken**

- Thus,
- Coefficient of mean deviation from mean = M.D. from mean / Mean
- Coefficient of mean deviation from median = M.D. from median / Median
- Coefficient of mean deviation from median = M.D. from mode / Mode

Mean Deviation - Ungrouped Frequency

Example 7.	For the following distribution	determine mean	deviation (M	l. D.) from mean
and its coefficient.				

l its coeffic	cient.			1272	
x:	10	11	12	13	1
у:	3	12	18	12	
	1 = 0				

Solution: First of all we form the following table.

Table 6.4: Computations for M.D. from mean

x	f	fx	$ d = x - \bar{x} $	f d
10	3	30	2	6
11	12	132	1	12
12	18	216	0	0
13	12	156	1	12
14	3	42	2	6
	N = 48	$\Sigma fx = 576$		$\Sigma f d = 36$

A.M.
$$(\overline{x}) = \frac{\sum fx}{N} = \frac{576}{48} = 12$$

(Usually mean implies arithmetic mean.)

Now, M. D. from mean =
$$\frac{\sum f |d|}{N} = \frac{36}{48} = 0.75$$

Again, coeff. of M. D. from mean =
$$\frac{\text{M. D. from mean}}{\text{Mean}} = \frac{0.75}{12} = 0.062$$

Mean Deviation - Grouped Frequency

Frequency: 4 6 8 5

1able 0.5: (Calculations	for M.D.	from A.M.
--------------	--------------	----------	-----------

Class interval	Mid-value x	f	fx	d = x - 9.2	f d
0-4	2	4	8	7.2	28.8
4-8	6	6	36	3.2	19.2
8-12	10	8	80	0.8	6.4
12-16	14 .	5	70	4.8	24.0
16–20	18	2	· 36	8.8	17.6
		N = 25	$\Sigma fx = 230$	·	$ \Sigma f d = 96.0$

Arithmetic mean
$$(\bar{x}) = \frac{\Sigma f x}{N} = \frac{230}{25} = 9.2$$

Mean deviation from mean (M.D.
$$\bar{x}$$
) = $\frac{\sum f |d|}{N} = \frac{96}{25} = 3.84$

Coefficient of mean deviation = $\frac{M.D._{\overline{x}}}{\overline{x}} = \frac{3.84}{9.2} = 0.42$.

Mean Deviation

Advantage:

- It is based on all the observations.
- It is less affected by extreme values in comparison to standard deviation.
- Since deviations are taken from average (mean, median and mode), therefore mean deviation is considered to be a good measure for comparing the variability among two or more distributions.

Mean Deviation

Disadvantage:

- In mean deviation, actual signs of deviations are discarded by taking absolute values of the deviations.
- Mean deviation from mode is not considered to be a good measure of dispersion.
- One cannot determine mean deviation for a grouped frequency distribution containing open-end class interval.

- The positive square root of the arithmetic mean of the square of the deviations of the values of a variable from its arithmetic mean is called standard deviation of that variable.
- The symbol for S.D.: " **♂** "
- If variable x takes n values $x_1, x_2, ..., x_n$ and if x bar be the arithmetic mean of these values, then

$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$$

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}, \overline{x} = \frac{\sum x}{n}$$

In case of the frequency distribution,

• Coefficient of S.D. = $\mathbf{\sigma}/\mathbf{xbar}$ where $\mathbf{\sigma}$ = S.D. and X bar - Arithmetic mean

Example 9. The following data represent the number of cars entering a gas station between 10 a.m. and 11 a.m. in a city for repairs during the last 8 days of a month.

7, 8, 6, 8, 9, 7, 5, 6.

Cglculate the standard deviation for these data.

Solution: Clearly the above data relate to a sample and as such the formula for sample standard deviation should be applied.

Here

$$\bar{x} = \frac{7+8+6+8+9+7+5+6}{8}$$

$$= \frac{56}{8} = 7$$

Since both the observations and their mean are integers, hence we may easily estimate standard eviation for these data by using the following definitional formula:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}.$$

Let us first of all calculate the values of $(x - \overline{x})^2$.

Table 6.6: Calculations for S. D.

x	\bar{x}	$(x-\overline{x})^2$	
7	7	0	
8	7	1	
6	7	1 .	
8	7	1	
9	7	4	
7	. 7	0	
5	7	4	
6	7	1	
		$\Sigma (x - \overline{x})^2 = 12$	

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

$$= \sqrt{\frac{12}{8 - 1}} = \sqrt{\frac{12}{7}} = 1.71$$

Example 10. The following frequency distribution gives the height (in inches) of 100 students Standard Deviation lected at random from a college having 3000 students.

Class interval: No. of students:

Calculate standard deviation.

Solution: We shall use the following formula for calculating standard deviation:

$$s = \sqrt{\frac{N \sum fx^2 - (\sum fx)^2}{N (N-1)}}$$

In order to calculate Σfx and Σfx^2 we form the following table:

Table 6.7: Calculations for S. D.

Class interval	Mid-value x	Frequency f	fx	fx²
60—62	61	5	305	18605
62—64	63	18	1134	71442
6466	65	42	2730	177450
66—68	67	20	1340	89780
68—70	69	8	552	38088
70—72	71	7	497	35287
Total		$N = \Sigma f = 100$	$\Sigma fx = 6558$	$\Sigma fx^2 = 430652$

Now standard deviation
$$s = \sqrt{\frac{N \sum fx^2 - (\sum fx)^2}{N (N-1)}} = \sqrt{\frac{100 \times 430652 - (6558)^2}{100 \times 99}}$$

= $\sqrt{\frac{43065200 - 43007364}{9900}} = \sqrt{\frac{57836}{9900}} = \sqrt{5.842} = 2.42.$

Advantage:

- Considered to be best measure among all the measures.
- It is based on all the observations.
- Based on sampling and correlation analysis.
- Formula of S.D. is used for further mathematical treatment.
- Widely used technique of dispersion.

Disadvantage:

- Difficult to calculate.
- More affected by extreme values.

Relationships among Q.D., M.D., S.D.

- Q.D. = $\frac{4}{3}$ M.D. = $\frac{2}{3}$ S.D.
- 6 Q.D. = 5 M.D. = 4 S.D.

THANK

YOU...