Frühjahr 2014 Thema 3 Aufgabe 2

mks

14. Mai 2025

Es seien $f, g : \mathbb{C} \setminus \{i\} \to \mathbb{C}$ holomorph, f habe in i einen Pol und für alle $n \in \mathbb{N}$ gelte

$$f\left(i+\frac{1}{n}\right) = g\left(i+\frac{1}{n}\right).$$

Zeigen Sie: Entweder f = g oder es gibt eine Folge $(z_n) \subset \mathbb{C} \setminus \{i\}$ mit

$$\lim_{n \to \infty} z_n = i = \lim_{n \to \infty} g(z_n).$$

Hinweis: Untersuchen Sie den Tp der Singularität von g im Punkt i.

Lösung:

Angenommen, die Singularität von g in i ist wesentlich. Dann sagt der Satz von Casorati-Weierstraß, dass es für jedes $a \in \mathbb{C}$ eine Folge $z_n \in \mathbb{C} \setminus \{i\}$ gibt mit $\lim_{n \to \infty} z_n = i$ und $\lim_{n \to \infty} g(z_n) = a$. Wir wählen a = i, so haben wir eine Folge $(z_n)_{n \in \mathbb{N}}$ mit $\lim_{n \to \infty} z_n = i = \lim_{n \to \infty} g(z_n)$.

Ist die Singularität von g bei i nicht wesentlich, so ist auch die Singularität von f-g bei i nicht wesentlich, da f holomorph ist. Somit existiert ein $m \in \mathbb{N}$ derart, dass $h : \mathbb{C} \setminus \{i\} \to \mathbb{C}$, $h(z) = (z-i)^m (f(z) - g(z))$ eine hebbare Singularität bei i besitzt.

Sei $\tilde{h}:\mathbb{C}\to\mathbb{C}$ die ganze Fortsetzung von h. Dann gilt $\tilde{h}(i+\frac{1}{n})=0$ für alle $n\in\mathbb{N}$. Wegen $\lim_{n\to\infty}(i+\frac{1}{n})=i$ ist i ein Häufungspunkt von $K:=\{z\in\mathbb{C}\mid \tilde{h}(z)=0\}$. Der Idenditätssatz sagt dann, dass $\tilde{h}(z)=0$ für alle $z\in\mathbb{C}$. Damit folgt $0=\tilde{h}(z)=(z-i)^m(f(z)-g(z))$. Da $(z-i)^m\neq 0$ auf $\mathbb{C}\setminus\{i\}$ muss dort also f=g gelten.