HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Nurse

ONE LOVE. ONE FUTURE.

Nurse

• Schedule working timetable for a nurse in N consecutive days 1, ..., N. This is divided into series of consecutive working days (call working period)

Constraints:

- Only 1 day off between 2 working period
- A working period has length in segment [K1, K2]
- Input: *N*, *K*1, *K*2
- Output: Number of valid ways to schedule
- Example: Input: 6 2 3

Output: 4 Explain: 110111 111011

110110 011011

Nurse

- Idea to solve #1: Brute-force
 - A timetable can be considered as a binary sequence with length N
 - List all binary sequence and check if they are valid or not
 - Complexity: $O(n \ 2^n)$ (checking costs O(n))
 - Applying Branch and Bound technique: after the first bit 1 must be K1 bit 1, if there are K2 bit 1 then the next bit must be 0 to separate 2 working periods

- Idea to solve #2: dynamic programming
 - Consider the problem: Scheduling for day i depends on the earlier days
 - Observe 2 cases: day i working and off
 - Consider 2 arrays S₀[N] and S₁[N]
 - S₀[i]: number of ways to schedule i days that day i off
 - S₁[i]: number of ways to schedule i days that day i work
 - Recursive formula:

- Base cases: $S_0[1] = S_1[K1] = S_0[0] = 1$;
- return: $S_0[n] + S_1[n]$
- Complexity: O(n(K2-K1))

THANK YOU!