Test 4

Exercice 1

On définit l'application q sur $\mathbb{R}_2[X]$ par :

$$\forall P \in \mathbb{R}_2[X], \ q(P) = P'(1)^2 - P'(0)^2.$$

- 1. Montrer que q est une forme quadratique et déterminer la forme polaire φ associée ainsi que sa matrice dans la base canonique.
- 2. Déterminer le noyau de *q* et son cône isotrope. Est-ce que ce sont des espaces vectoriels ?
- 3. La forme quadratique *q* est-elle non dégénérée ? Définie ? Positive ou négative ?
- 4. Déterminer une base de $\{X^2\}^{\perp}$.
- 5. Déterminer $\{1\}^{\perp}$.

Exercice 2

Soit E un espace vectoriel réel de dimension $n \ge 2$ et f une forme linéaire non nulle sur E. Pour $x \in E$, on pose $q(x) = f(x)^2$.

- 1. Montrer que q est une forme quadratique sur E.
- 2. Déterminer C(q), le cône isotrope de q.
- 3. Déterminer $\ker q$. En déduire le rang de q.

Exercice 3

Soit E un espace vectoriel (pouvant être de dimension infinie) et $\varphi, \varphi_1, \cdots, \varphi_n$ des formes linéaires sur E.

1. Montrer que si $\varphi \in \text{Vect}(\varphi_1, \dots, \varphi_n)$, alors

$$\bigcap_{i=1}^n \ker \varphi_i \subset \ker \varphi.$$

2. Réciproquement, supposons que $\bigcap_{i=1}^n \ker \varphi_i \subset \ker \varphi$. On pose $F = \bigcap_{i=1}^n \ker \varphi_i$. Montrer que E/F est de dimension finie.

- 3. Montrer que les formes linéaires φ_i et φ se factorisent sur E/F (on les notera $\overline{\varphi}_i$ et $\overline{\varphi}$ sur E/F).
- 4. Montrer que les $\overline{\varphi}_i$ engendrent $(E/F)^*$, et en déduire que $\varphi \in \text{Vect}(\varphi_1, \cdots, \varphi_n)$.
- 5. Avec le même type d'argument, montrer que $\varphi_1, \dots, \varphi_n$ sont linéairement indépendants si et seulement si l'application $(\varphi_1, \dots, \varphi_n) : E \to \mathbb{K}^n$ est surjective.

Problème: Formes quadratiques équivalentes

Soit E un espace vectoriel réel de dimension $n \ge 1$. Si q et q' sont deux formes quadratiques sur E, on dit que q est équivalente à q' s'il existe un automorphisme f de E tel que $q = q' \circ f$, c'est-à-dire pour tout $x \in E$, q(x) = q'(f(x)).

- 1. Montrer que la relation ainsi définie sur les formes quadratiques est une relation d'équivalence.
- 2. Montrer que pour tout $x, y \in E$, $\varphi(x, y) = \varphi'(f(x), f(y))$, où φ et φ' sont les formes polaires respectives de q et q'.
- 3. Montrer que si (e_1, \ldots, e_n) est une base q-orthogonale de E, alors $(f(e_1), \ldots, f(e_n))$ est une base q'-orthogonale de E.
- 4. Montrer que C(q') = f(C(q)).
- 5. Montrer que $\ker q' = f(\ker q)$.
- 6. En déduire que q et q' ont même rang.
- 7. Montrer que q et q' ont même signature.

Dans la suite, $E = \mathbb{R}^2$. On désigne par q l'application définie sur E par q(x,y) = xy. Notons $B = (e_1, e_2)$ la base canonique de E.

- 1. Justifier que q est une forme quadratique sur E.
- 2. Déterminer la signature de q.
- 3. Montrer que $B' = (e'_1, e'_2)$, où $e'_1 = (1, 1)$ et $e'_2 = (1, -1)$, est une base de E.
- 4. Calculer la matrice de q dans la base B'.
- 5. Soit q' une forme quadratique sur E de signature (1,1). Montrer qu'il existe une base $B_1 = (\varepsilon_1, \varepsilon_2)$ de E dans laquelle la matrice de q' est donnée par

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

6. Montrer que q et q' sont équivalentes.

On revient au cas général où E est un espace vectoriel de dimension $n \geq 1$.

1. Montrer que si q et q' ont même signature, alors elles sont équivalentes.