11장

11.2 분산이 같은 세 정규모집단으로부터 확률표본을 다음과 같이 추출하였다.

	모집단1	모집단2	모집단3
	3.1	1.1	5.4
	4.3	0.2	3.6
	2.2	2.0	4.0
			3.0
$\overline{Y_{i+}}$	9.6	3.3	16
$\overline{}n_i$	3	3	4
$\overline{y_i}$	3.2	1.1	4

(1) CT와 TSS를 구하여라.

$$\begin{split} Y_{++} &= \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij} = 28.9 \\ \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}^2 &= 105.31 \\ CT &= Y_{++}^2/m = 28.9^2/10 = 83.521 \\ TSS &= \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} Y_{ij}^2 - CT \end{split}$$

= 105.31 - 83.521 = 21.789

(2) SSTR과 MSTR을 구하여라.

$$SSTR = \sum_{i=1}^{k} n_i (\overline{Y_i} - \overline{Y})^2 = \sum_{i=1}^{k} n_i \overline{Y_i}^2 - CT = \sum_{i=1}^{k} Y_{i+}^2 / n_i - CT$$

$$= \frac{9.6^2}{3} + \frac{3.3^2}{3} + \frac{16^2}{4} - 83.521 = 98.35 - 83.521 = 14.829$$

$$MSTR = \frac{SSTR}{k-1} = \frac{14.829}{2} = 7.4145$$

(3) SSE와 MSE를 구하여라.

$$SSE = TSS - SSTR = \sum_{i=1}^{k} \sum_{j=1}^{n} Y_{ij}^{2} - \sum_{i=1}^{k} n_{i} \overline{Y}_{i}^{2} = 21.789 - 14.829 = 6.96$$

$$MSE = \frac{SSE}{m-k} = \frac{6.96}{7} = 0.9943$$

(4) 분산분석표를 작성하여 세 모집단의 평균이 같은지 5%유의수준에서 검정하여라.

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	2	14.829	7.4145	7.457
오차	7	6.96	0.9943	
전체	9	21.789		

가설: H_0 :세 모집단 평균이 모두 같다.

검정통계치: F=7.457

기각역 $F \ge F_{0.05,2,7} = 4.74$

결론: F=7.457 > 4.74 이므로 5% 유의수준에서 귀무가설을 기각할 수 있다. 최소한 한 모집단 평균이 다르다고 할 수 있다.

(5) 모집단 3의 평균에 대한 95% 신뢰구간을 구하여라.

$$\overline{X} \pm t_{0.025,3} \frac{s}{\sqrt{n}} = 4 \pm 3.182 \frac{1.0198}{\sqrt{4}}$$
 (2.377,5.623)

(6) Fisher의 LSD 방법을 이용하여 세 모집단 평균에 대해 5% 유의수준으로 다중비교하여라.

$$\left| \stackrel{-}{y}_i - \stackrel{-}{y}_j \right| > t_{\alpha/2,m-k} \sqrt{MSE} \, \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$
 이면 H_0 기각 $t_{0.025,7} = 2.365, \quad MSE = 0.9943$

종류	평균	종류	평균	차	$t_{\alpha/2,m-k}\sqrt{M\!S\!E}\sqrt{\frac{1}{n_i}\!+\!\frac{1}{n_j}}$	LSD
1	3.2	2	1.1	2.1	1.924	0
I	3.2	3	4	-0.8	1.802	×
2	1.1	3	4	-2.9	1.802	0

모집단 1과 모집단 2, 그리고 모집단 2와 모집단 3은 차이가 있다고 할수 있고, 모집단 1과 모집단 3은 차이가 없다. 즉 모집단 2가 모집단 1과 모집단 3과 차이가 있다고 볼 수 있다.

11.4 다음 분산분석표에서 부분정보가 주어졌을 때 나머지 부분을 채우고 처리 효과가 있는지를 5%유의수준에서 검정하여라. (1)

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	2	14	7	3.00
오차	12	28	2.333	
전체	14	42		

기각역: $F \geq F_{0.05,2,12} = 3.89$

결론: 귀무가설을 기각할 수 없다. 그러므로 처리 효과가 있다고 할 수 없다.

(2)

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	5	35	7	2
오차	10	35	3.5	
전체	15	70		

기각역: $F \ge F_{0.05,5,10} = 3.33$

결론: 귀무가설을 기각할 수 없다. 그러므로 처리 효과가 있다고 할 수 없다.

(3)

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	3	30	10	5
오차	7	14	2	
전체	10	44		

기각역: $F \ge F_{0.05,3,7} = 4.35$

결론: 귀무가설을 기각할 수 있다. 그러므로 처리 효과가 있다고 할 수 있다. (4) (5) 세 가지 다이어트 방법에 따라 체중 감소량(kg)에 차이가 있는지를 알아보기 위해 12명의 사람을 3그룹으로 4명씩 무자위로 배치한 후시험을 진행하였다. 12명의 체중 감소량 합이 60이고 ⑤=175, ⑤=470이라고 한다.

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	2	350	175	13.125
오차	9	120	13.333	
전체	11	470		

가설 H_0 : 세가지 다이어트 방법의 체중 감소량에 차이가 없다.

기각역: $F \geq F_{0.05,2.9} = 4.26$

결론 : 귀무가설을 기각할 수 있다. 그러므로 세 가지 다이어트 방법의 체중감소량에 차이가 있다고 볼 수 있다. (6) 세 가지 다이어트 방법에 따라 체중 감소량에 차이가 있는지 알아보기 위해 12명의 사람을 3그룹으로 4명씩 무작위로 배치한 후 실험을 진행하였다. 12명의 체중 감소량 합이 60, 감소량의 제곱합이 770이고, ① =350라고 한다.

$$\sum_{i} \sum_{j} y_{ij} = 60, \quad \sum_{i} \sum_{j} y_{ij}^{2} = 770$$

$$TSS = 770 - \frac{60^2}{12} = 470 = > (4),(5)$$
번 분산분석표와 같다.

11.5 다음 표는 세 기관의 연수자들의 학업성과를 비교하기 위해 무작위로 3명씩 선발하여 시험을 본 결과를 분석한 것이다.

변인	자유도	제곱합(SS)	평균제곱(MS)	F	p-값
처리(모형)	2	150.0	75.0	5.0	0.053
오차	6	90.0	15.0		
전체	8	240.0			

(1) 세 기관의 연수자들의 학업성과에 차이가 있다는 주장을 입증하고 싶다. 적절한 가설을 기술하여라.

 H_0 : 세 기관의 연수자들의 학업성과에 차이가 없다.

 H_1 : 세 기관의 연수자들의 학업성과에 차이가 있다.

- (2) 유의수준 1%, 5%, 10%에서 세 국방부 직할부대 및 기관의 연수자들의 학업성과에 차이가 있는지를 각각 검정하여라.
- => 유의수준 1%,5%에서는 p-값이 유의수준보다 크므로 귀무가설을 기각할 수 없다. 즉 세 기관이 연수자들의 학업성과에 차이가 있다고 할수 없다.
- 유의수준 10%에서는 p-값이 유의수준보다 작으므로 귀무가설을 기각할수 있다. 즉 세 기관이 연수자들의 학업성과에 차이가 있다고 할 수 있다.

11.10 빵을 만드는 세 방법에 따라 빵의 밀도에 차이가 있는가를 알아보기 위해 실험을 진행하여 다음과 같은 자료를 얻었다.

방법	관측값					
1	0.95 0.86 0.71 0.72					
2	0.71 0.85 0.62 0.72 0.64					
3	0.69 0.68 0.51 0.73 0.44					

(1) 5% 유의수준에서 세 방법 간에 평균밀도 차이가 있는지를 검정하여라.

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	2	0.089	0.045	3.567
오차	11	0.137	0.012	
전체	13			

기각역: $F \ge F_{0.05,2,11} = 3.98$

결론: 귀무가설을 기각할 수 없다. 그러므로 세 방법 간에 평균밀도 차이가 있다고 할 수 없다.

(2) 만약 방법 1은 새로운 방법이고 방법2와 3은 기존방법이라고 하면 새로운 방법과 기존방법 간에 평균밀도 차이가 있는지를 알아보려면 어떻게 하면 되는 알아보아라.

=> 새로운 방법에 대한 자료가 4개, 기존의 방법 자료가 10개로 하고 독립표본 두 모집단의 평균 비교를 하면 된다.

(3) Fisher LSD와 본페로니 방법을 이용하여 방법 간 평균밀도에 차이가 있는지 다중비교하여라.

LSD :
$$\left|\frac{-}{y_i} - \frac{-}{y_j}\right| > t_{\alpha/2,m-k} \sqrt{MSE} \, \sqrt{\frac{1}{n_i}} + \frac{1}{n_j}$$
 이면 H_0 기각 $t_{0.025,11} = 2.201, \quad MSE = 0.012$

본페로니:
$$\left| \overline{y}_i - \overline{y}_j \right| > t_{\alpha/2p,m-k} \sqrt{MSE} \, \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}$$
 이면 H_0 기각

$$t_{0.00833,1}1 = 2.82 (0.025/3 = 0.00833)$$

종류	평균	종류	평균	차	LSD	본페로니
1	0.01	2	0.708	0.102	0.162	0.207
1 0.81	3	0.61	0.2	0.162	0.207	
2	0.708	3	0.61	0.098	0.152	0.195

LSD: 방법1과 방법3의 빵의 밀도에 차이가 있다고 할 수 있다. 본페로니는 세 방법에 따라 빵의 밀도에 차이가 없다.

12장

12.2 다음 자료는 기초통계학을 수강한 학생들 중 임의로 선택한 7명의 중간시험점수와 기말시험점수이다.

학생	1	2	3	4	5	6	7
중간시험(x)	45	52	63	68	57	55	60
기말시험(y)	49	50	69	71	53	61	62
적합값	46.3	53.8	165.5	70.9	59.1	③ 56.97	62.3
잔차	2.7	2-3.8		0.1	-6.1	4.03	-0.3

참고 : $\sum x_i y_i = 24076$, $\sum x_i^2 = 23196$, $\sum y_i^2 = 25077$

(1) 중간시험과 기말시험의 점수들 간 산점도를 그려보아라.

(2) 중간시험점수와 기말시험점수의 상관계수를 구하여라.

$$r = \frac{s_{xy}}{\sqrt{s_{xx}} \sqrt{s_{yy}}} = \frac{24076 - 7(57.143)(59.286)}{\sqrt{23196 - 7(57.143^2)} \sqrt{25077 - 7(59.286^2)}}$$
$$= \frac{361.541}{18.405 \times 21.753} = 0.903$$

(3) 중간시험점수가 설명변수, 기말시험점수가 반응변수인 단순선형회귀모형의 회귀계수를 최소제곱법으로 추정하여라.

$$\widehat{\beta}_1 = \frac{s_{xy}}{s_{xx}} = \frac{361.541}{338.744} = 1.067$$

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x} = -1.712$$

추정된 회귀직선: $\hat{y}=-1.712+1.067x$

- (4) (3)에서 구한 결과와 표의 값을 이용하여 ①②③④를 계산하여라.
- => 위의 표에 정답
- (5) 중간시험점수가 기말시험점수에 영향을 주는지를 5%유의수준에 확인하여라.

$$H_0: \beta_1 = 0, \quad H_1: \beta_1 \neq 0$$

-검정통계치
$$t=\frac{1.067}{\sqrt{17.463/338.744}}=4.699$$
 > $t_{0.025,5}=2.571$ 이므로

유의수준 5%에서 H_0 기각 할 수 있다.

어기서
$$MSE = \frac{SSE}{n-2} = \left(s_{yy} - \frac{s_{xy}^2}{s_{xx}}\right)/n - 2 = \left(21.753^2 - \frac{361.541^2}{18.405^2}\right)/5 = 17.463$$

- ⇒ 5% 유의수준에서 중간시험점수가 기말시험점수에 영향을 준다고 할 수 있음
- (6) 중간시험점수가 55점 받은 학생의 평균기말시험점수에 대한 95% 신뢰구간을 구하여라.

$$\hat{y}$$
=-1.712+1.067(55) = 56.973

$$t_{0.025.5} = 2.571$$
, $\overline{x} = 57.143$, $s_{xx} = 18.405^2$

$$\hat{y_i} \pm t_{\alpha/2, n-2} \sqrt{MSE} \sqrt{\frac{1}{n} + \frac{(x_i - \overline{x})^2}{s_{xx}}} = 56.973 \pm 4.249$$

- 12.3 다음 자료는 임의로 선발된 20명의 신장과 체중 자료이다.
- (1) 번호1에서 10까지 사람들에 대한 신장과 체중의 산점도를 그리고 신장과 체중 간의 관계를 간략하게 설명하여라.

키와 몸무게 간에는 양의 상관관계를 보인다.

(2) 피어슨의 표본상관관계를 계산하여라.

$$r = \frac{s_{xy}}{\sqrt{s_{xx}} \sqrt{s_{yy}}} = \frac{206138 - 20(167.55)(61.35)}{\sqrt{561941 - 20(167.55^2)} \sqrt{76543 - 20(61.35^2)}} = 0.710$$

$$s_{xy} = 554.15, \ s_{xx} = 480.95, \ s_{yy} = 1266.55$$

(3) 신장을 설명변수, 체중을 반응변수라고 할 때, 최소제곱법을 이용하여 단순 선형회귀식을 추정하여라.

$$\widehat{\beta}_1 = \frac{s_{xy}}{s_{xx}} = \frac{554.15}{480.95} = 1.152$$

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x} = -131.701$$

추정된 회귀직선: \hat{y} =-131.701+1.152x

(4) (3)의 결과에서 절편의 값에는 관계없이 기울기가 1인지 아닌지를 5%유의수준에서 검정하여라.

가설: $H_0: \beta_1 = 1$ vs $H_1: \beta_1 \neq 1$

- 검정통계량:
$$t = \frac{1.1522 - 1}{0.2693} = 0.5652 < t_{0.025,18} = 2.101이므로 5%$$

유의수준에서 H_0 기각 못함

- ⇒ 기울기가 1이라고 할 수 있음
- (5) (3)에서 추정한 회귀식을 이용하여 신장이 185cm인 학생의 체중에 대한 95% 예측구간을 구하여라.

$$MSE = \frac{SSE}{n-2} = \frac{628.059}{18} = 34.8922$$
 $\sqrt{MSE} = 5.9070$

$$S_{xx} = 561941 - \frac{(3351)^2}{20} = 480.95$$

$$\overline{x} = 167.55, \quad t_{0.025,18} = 2.101$$

 $\Rightarrow x = 185$ 에서 y(몸무게) 예측값의 표준오차:

$$\sqrt{MSE} \sqrt{1 + \frac{1}{20} + \frac{(185 - 167.55)^2}{S_{xx}}} = 7.6635$$

⇒ 95% 신뢰구간: 81.4561 ± 2.101 × 7.6635 = 81.4561 ± 16.101

(6) 잔차그림을 통해 등분산 가정을 만족하는지 확인하여라.

12.5 다음 표는 제품인지도의 제곱과 판매량이 선형관계를 가지는 것으로 나타나 설명변수가 제품인지도의 제곱, 반응변수가 판매량인 선형회 귀모형에 대한 결과이다. 회귀모형을 추정하는 데 사용된 자료의 수는 20개이다.

변수	추정값	표준오차
절편	20	1.5
X	1.2	0.3

(1) $S_{xx} = 100/9$ 일 때 분산추정량인 MSE를 구하여라.

$$\widehat{s.e}(\widehat{\beta_1}) = \frac{\sqrt{MSE}}{\sqrt{S_{xx}}} = 0.3 \Rightarrow \sqrt{MSE} = 0.3 \sqrt{S_{xx}} = 0.3 \frac{10}{3} = 1 \Rightarrow MSE = 1$$

(2) 위의 결과를 이용하여 제품인지도의 제곱이 판매량에 영향을 주는지 5%유의수준에서 검정하여라.

가설: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$

- 검정통계량: $|t|=1.2/0.3=4>t_{0.025,18}=2.100$ 이므로 5% 유의수준에서 H_0 기각
- ⇒ 제품인지도의 제곱이 판매량에 영향을 준다고 할 수 있음
- (3) 제품인지도 제곱의 평균이 10이라고 할 때 회귀식의 절편에 대한

95% 신뢰구간을 구하여라.

$$\widehat{s.e}(\widehat{\beta_0}) = \sqrt{MSE} \sqrt{\frac{1}{20} + \frac{\overline{x}^2}{S_{xx}}} = 1\sqrt{\frac{1}{20} + \frac{10^2}{100/9}} = 3.0083$$

$$-\widehat{\beta_0} \pm t_{0.025,18} \times \widehat{s.e}(\widehat{\beta_0}) = 20 \pm 2.101 \times 3.0083 = 20 \pm 6.32$$

(4) 위의 결과를 이용하여 평균 판매량이 50이 되는 제품인지도의 값은 얼마나 될지 유도하여라.

$$\hat{y} = 20 + 1.2x^2 \implies 50 = 20 + 1.2x^2 \implies x = \sqrt{25} = 5$$

13장

13.2 다음 표는 어느 대학에 재학 중인 700명의 여학생을 대상으로 언제 출생했는지를 조사한 자료이다.

월	1	2	3	4	5	6
편0	66	63	64	48	64	74
월	7	8	9	10	11	12
명0	70	59	54	51	45	42

(1) 막대그래프를 이용하여 월별 출생도수를 비교하여라.

(2) 일수와 관계없이 월별 출생비율이 같은지 5%유의수준에서 검정하고 같지 않다면 어떤 월에서 차이가 있는지를 설명하여라.

가설 :
$$H_0: \theta_1 = \theta_2 = \dots = \theta_{12} = \frac{1}{12}$$

검정통계치 :
$$\chi^2 = \frac{(66-58.333)^2}{58.333} + \dots + \frac{(42-58.333)^2}{58.333} = 19.726$$

기각역 : $\chi^2 \ge \chi^2_{0.05,11} = 19.68$

결론: 귀무가설을 기각할 수 있다. 일수와 관계없이 월별 출생비율이 같다고 할 수 없다.

피어슨 잔차를 구한 결과는 다음 표와 같다.

월	1	2	3	4	5	6
명	66	63	64	48	64	74
잔차	1.004	0.611	0.742	-1.353	0.742	2.051
월	7	8	9	10	11	12
명	70	59	54	51	45	42
잔차	1.528	0.087	-0.567	-0.960	-1.746	-2.139

대략적으로 6월, 12월에서 차이가 있었다.

(3) 3~5월을 봄, 6~8월을 여름, 9~11월을 가을, 12~2월을 겨울이라고

할 때,

① 계절에 따른 출생비율이 차이가 있는지를 5% 유의수준에서 검정하여라.

계절	봄	여름	가을	겨울
관측도수	176	203	150	171
기대도수	175	175	175	175

가설 :
$$H_0: \theta_1 = \theta_2 = \theta_3 = \theta_4 = \frac{1}{4}$$

검정통계치 :
$$\chi^2 = \frac{(176-175)^2}{175} + \dots + \frac{(171-175)^2}{175} = 8.149$$

기각역 :
$$\chi^2 \ge \chi^2_{0.05.3} = 7.81$$

결론: 귀무가설을 기각할 수 있다. 계절에 따른 출생비율이 차이가 있다.

② 봄에 태어날 확률에 대한 95% 신뢰구간을 구하여라.

$$p = \frac{176}{700} = 0.251$$
,

$$p \pm z_{0.025} \sqrt{\frac{p(1-p)}{n}} = 0.251 \pm 1.96(0.016) = 0.251 \pm 0.031$$

③ 봄 또는 여름에 태어날 확률이 가을 또는 겨울에 태어날 확률보다 높은지를 5% 유의수준에서 검정하여라.

$$H_0: \theta_1 \leq 0.5 \ , \quad H_1: \theta_1 > 0.5$$

$$p_1 = \frac{176 + 203}{700} = 0.541$$

검정통계치
$$z = \frac{0.541 - 0.5}{\sqrt{0.5 \times 0.5/700}} = 2.17$$

기각역 :
$$z>z_{0.05}=1.645$$

결론: 귀무가설을 기각할 수 있다. 봄 또는 여름에 태어날 확률이 가을 또는 겨울에 태어날 확률보다 높다고 할 수 있다.

13.3 다음 자료는 무작위로 선정된 남성 아이돌 그룹 18팀, 여성 그룹 17팀 멤버의 혈액형 자료를 정리한 것이다.

서 벼	혈액형				합계
성별	Α	В	0	AB	[
남	52	28	26	11	117
여	26	23	23	16	88
합계	78	51	49	27	205

(1) 우리나라 혈액형 분포는 아래와 같다고 한다. 남자그룹 멤버의 혈액형 분포가 우리나라 혈액형 분포와 같은지를 유의수준 5%에서 검정하고 차이가 있다면 어떤 부분에서 차이가 있는지를 설명하여라.

혈액형	Α	В	0	AB
비율	34%	27%	28%	11%

서 벼	성명 혈액형				
성별	Α	В	0	AB	합계
남	52	28	26	11	117
기대도수	39.78	31.59	32.76	12.87	117

가설 : H_0 : $\theta_A = 0.34$, $\theta_B = 0.27$, $\theta_o = 0.28$, $\theta_{AB} = 0.11$

검정통계치 : $\chi^2 = 5.828$

기각역 : $\chi^2 \ge \chi^2_{0.05,3} = 7.81$

결론: 귀무가설을 기각할 수 없다. 남자그룹 멤버의 혈액형 분포가 우리나라 혈액형 분포와 같다고 할 수 있다.

- (2) 남녀 멤버 간에 혈액형 비율에 차이가 있는지를 알아보고자 한다.
- ① 어떤 통계적 모형으로 설명해야 하는지 기술하고 분석목적에 맞게 가설을 설정하여라.
 - 동질성 검정

$$- H_0: \theta_{11} = \theta_{21}, \theta_{12} = \theta_{22}, \theta_{13} = \theta_{23}, \theta_{14} = \theta_{24}$$

② 남녀 멤버 간에 혈액형 분포 차이여부에 대해 5%유의수준으로 검정하고 차이가 있다면 어떤 차이가 있는지를 수정잔차를 이용하여설명하여라.

<기대도수>

성별	설액형				
(O) Z	Α	В	Ο	AB	합계
남	44.517	29.107	27.966	15.410	117
여	33.483	21.893	21.034	11.590	88
합계	78	51	49	27	205

검정통계치 : $\chi^2 = 6.29$

기각역 : $\chi^2 \ge \chi^2_{0.05,3} = 7.81$

결론: 귀무가설을 기각할 수 없다. 남녀 멤버 간에 혈액형 분포가 같다고 할 수 있다.

13.6 다음 자료는 림프종을 치료하기 위해 시토산+프레드니손(CP)와 BCNU + 프레드니손(BP)을 처치한 임상시험 결과이다. 138명에게 CP를 처치하고 135명에게 BP를 처리한 후 환자의 종량의 크기변화를 기준으로 4그룹으로 나누었다고 하자. 이 임상시험이 목적은 두 처지 간처리효과에 차이가 있는지를 검정하는 것이다.

종량크기	현저히	부분적으로	변화없음	더 진행됨	합
CP	작아짐 26	작아짐 51	21	40	138
BP	31	59	11	34	135
합계	57	110	32	74	273

(1) 어떤 통계모형으로 설명해햐 하는지 기술하고 그 모형을 근거로 위의 분할표에 비율을 추가하여라.

- 동질성 검정 -
$$H_0: \theta_{11}=\theta_{21}, \theta_{12}=\theta_{22}, \theta_{13}=\theta_{23}, \theta_{14}=\theta_{24}$$

종량크기	현저히	부분적으로	변화없음	더 진행됨	心
0011	작아짐	작아짐	ᆫᅬᆹᆷ	U C 0 0	I
CP	0.188	0.370	0.152	0.290	1
BP	0.230	0.437	0.081	0.252	1

(2) 두 처치 간 처리효과에 차이가 있는지를 검정하고 차이가 있는 경우

어떤 부분에서 차이가 있는지를 수정잔차를 이용하여 분석하여라. <기대도수>

종량크기	현저히	부분적으로	변화없음	더 진행됨	하
0011	작아짐	작아짐	근욊ᆷ	니 연하ㅁ	
CP	28.813	55.604	16.176	37.407	138
BP	28.187	54.396	15.824	36.593	135
합계	57	110	32	74	273

검정통계치 : $\chi^2 = 4.599$

기각역 : $\chi^2 \ge \chi^2_{0.05,3} = 7.81$

결론: 귀무가설을 기각할 수 없다. 두 처치 간 처리효과에 차이가 없다고 할 수 있다. 13.10 다음 자료는 애완용 새를 키우는 것이 폐암에 대한 위험요소가 되는지를 알아보기 위한 조사결과이다. 표에서 사례는 폐암에 걸린 사람이고 대조는 건강인을 의미하며 경험이 있다는 것은 성인 때 애완용 새를 키웠다는 것을 의미한다.

애완용 새	사례	대조
경험있음	98	101
경험없음	141	328
합계	239	429

- (1) 분석목적에 적합한 통계적 모형을 기술하고 가설을 설정하여라.
- 독립성 검정

가설:

 H_0 : 애완용 새를 키우는 것과 폐암에 대한 위험요소는 관계가 없다.

(2) 이 자료를 이용하여 애완용 새를 키우는 것이 폐암에 대한 위험요소

가 되는지를 5%유의수준에서 검정하여라. <기대도수>

애완용 새	사례	대조
경험있음	71.1991	127.8009
경험없음	167.8009	301.1991
합계	239	429

검정통계치 : χ^2 = 22.374 기각역 : $\chi^2 \geq \chi^2_{0.05,1} = 3.84$

결론: 귀무가설을 기각할 수 있다. 애완용 새를 키우는 것은 폐암에 대한 위험요소와 관계가 있다.

수정잔차

애완용 새	사례	대조
경험있음	4.730134	-4.73013
경험없음	-4.73013	4.730134

비율

애완용 새	사례	대조
경험있음	0.492462	0.507538
경험없음	0.30064	0.69936

사례의 경우 경험있음이 경험없음 보다 상대적으로 비율이 높을 것이고 대조는 경험없음이 경험있음 보다 상대적으로 비율이 높을 것을 알 수 있다.