Cvičení 1

Na rozehřátí: Pro zadané funkce f(n), g(n) zjistěte, zda $f = \mathcal{O}(g)$ nebo $f = \Omega(g)$ (a kdy nastane obojí, tj. $f = \Theta(g)$).

- (a) $f(n) = 100n + \log n$, $g(n) = n + (\log n)^2$
- (d) $f(n) = (\log n)^{\log n}, \ g(n) = n/\log n$
- (b) $f(n) = n \log n$, $g(n) = 10n \log 10n$ (e) f(n) = n!, $g(n) = 2^n$
- (c) $f(n) = n^{1.01}$, $g(n) = n \log^2 n$ (f) $f(n) = \sum_{j=1}^n j^k$, $g(n) = n^{k+1}$

Úlohy na RAMu

Úloha 1: Jak byste na RAMu naprogramovali podmínky a cykly?

Úloha 2: A jak napsat volání funkce?

Úloha 3: Jak prohodit obsah dvou paměťových buněk bez použití jakékoli jiné buňky?

Úloha 4: Naprogramujte binární vyhledávání na RAMu. Rozmyslete, kolik instrukcí se v nejhorším případě provede při hledání v posloupnosti délky n.

Úloha 5: Co když v programu na RAMu budeme potřebovat několik různých polí, jejichž velikost předem neznáme?

Úloha 6: Uvažme RAM s neomezenou velikostí čísel.

- (a) Jak zakódovat libovolné množství celých čísel $c_1, \ldots c_n$ do jednoho C (aby se jednotlivá čísla dala jednoznačně dekódovat)?
- (b) Jak pozměnit libovolný program, aby použil jen konstantně mnoho paměťových buněk? Na časové složitosti nám teď nezáleží.

K rozmyšlení

Úloha 7: Napadá vás, jak model RAM rozšířit, aby program mohl interagovat s uživatelem?

Úloha 8: Je prostorová složitost omezená tou časovou?

Rekurzivní hádanky

Poznáte, co dělají následující funkce?

f(x,y): if $x==0 \Rightarrow return y$ else => return $f((x&y) << 1, x^y)$ g(x,y): if $y==0 \Rightarrow return 0$ else if even(y) => return 2*g(x, y/2)else => return 2*g(x, y/2) + xh(x,y): if $x < y \Rightarrow return (0,x)$ else: (a,b) <- 2*h(x/2, y)if $odd(x) \Rightarrow b \leftarrow b+1$ if b>=y => a <- a+1, b <- b-y return (a,b) d(x,y): if $x==y \Rightarrow return x$ if even(x) and even(y): return 2*d(x/2, y/2)if even(x): return d(x/2, y)if even(y): return d(x, y/2)if x>y: return d(x-y, y)

else: return d(x, y-x)