Exercícios 01 (transformador) Conversão Eletromecânica de Energia I

Questão 1: Para o circuito da figura abaixo, considerando um transformador ideal, calcule:

- a) Os fasores \dot{E}_1 , \dot{E}_2 , \dot{I}_1 e \dot{I}_2 ;
- b) As potências aparente, ativa e reativa fornecidas pelo secundário do transformador;
- c) As potências aparente, ativa e reativa absorvidas pelo primário do transformador.

Questão 2: Considere os circuitos da figura abaixo em que uma fonte de tensão de 220 V alimenta uma carga de impedância $(3+j2)\,\Omega$ através de uma rede de transmissão cuja impedância é de $(1+j2)\,\Omega$. Na configuração (i) a transmissão é feita apenas por cabos, sem nenhuma mudança nos níveis de tensão. Na configuração (ii) a transmissão é feita em níveis mais elevados de tensão, através de um transformador elevador, conectado próximo à geração, e de um abaixador, conectado próximo à carga.

Para cada caso, calcule e responda:

- a) O fasor \dot{V}_2 da tensão da carga;
- b) O fasor \dot{I}_2 da corrente da carga;
- c) A potência aparente complexa \bar{S}_2 transmitida à carga;
- d) A potência aparente complexa \bar{S}_1 fornecida pela fonte;
- e) As potências ativas consumida pela carga (P_2) e fornecida pela fonte (P_1) ;
- f) As perdas na rede de transmissão.

Unidade Curricular: Conversão Eletromecânica de Energia I

Compare os dois sistemas e verifique qual é o mais eficiente.

[†] Indique qual a referência de fase adotada para as grandezas fasoriais.

Curso: Engenharia Elétrica Professor: Jackson Lago, Dr. Eng.

Questão 3: Considere o circuito abaixo e calcule:

- a) O nível mínimo de tensão V_y para que a corrente I_y não ultrapasse 100 A;
- b) As relações de transformação a_1 e a_2 para o nível de tensão escolhido no item a);
- c) Os fasores correntes \dot{I}_x , \dot{I}_y e \dot{I}_z ;
- d) As potências aparente, ativa e reativa fornecidas pela fonte de alimentação.

Questão 4: Para cada segmento do circuito da figura abaixo calcule o fasor corrente indicado, além das tensões e da relação de transformação não informada.

Questão 5: Utilize o simulador numérico de circuitos de sua preferência para validar os resultados obtidos nas questões 1 a 4 (Ex.: PSIM, PLECS, Simulink, PSpice, LTspice, etc).

Questão 6: Defina o que é o transformador ideal.

Questão 7: Sobre o transformador ideal é correto afirmar que:

\square As forças eletromotrizes do primário e secundários estão sempre em fase entre sí.
☐ As correntes do primário e secundários estão sempre em fase entre sí.
O transformador não gera, não acumula e não gasta energia.
A relação de transformação depende da tensão aplicada ao primário.
A tensão do secundário é imposta pelo transformador e depende apenas da tensão e da relação de transformação.
☐ A tensão do secundário depende da carga alimentada pelo transformador.

A defasagem da tensão e corrente, tanto no primário como no secundário, depende apenas da carga acoplada ao transformador.

A amplitude das correntes no primário e secundário do transformador dependem da carga conectado ao secundário do mesmo.

primária

Curso: Engenharia Elétrica Professor: Jackson Lago, Dr. Eng.