studyguide

Shantanu Vyas

October 17, 2016

Contents

1	Cha	pter 1		2
	1.1	Propo	sitional Logic	2
		1.1.1	Converse Contrapositive and Inverse $(p \rightarrow q) \dots$	2
	1.2	Applie	cations of Propositional Logic	3
		1.2.1	Examples of turning sentences into propositional Logic.	3
	1.3	Propo	sitional Equivalences	3
		1.3.1	Logical Equivalences	3
		1.3.2	Logical Equivelences Involving Conditional Statements	3
		1.3.3	Logical Equivalences Involving Biconditional Statements	4
	1.4	Predic	cates and Quantifiers	4
		1.4.1	Quantifiers	4
	1.5	Neste	d Quantifers	4
		1.5.1	Nested Quantifiers can be used when there are multiple	
			variables such as x and y	4
		1.5.2	Quantification of Two Variables	4
	1.6	Rules	of Inference	6
		1.6.1	Rules of inference	6
		1.6.2	Rules of Inference for Quantifies Statements	7
	1.7	Introd	luction to Proofs	7
		1.7.1	There are 3 main methods for proofs	7
	1.8	Proof	methods and Strategy	8
		1.8.1	Exhaustive Proof	8
2	Cha	pter 2	2	9
	2.1	_		9
		2.1.1	Definition	9
		2.1.2	Number sets	9

	2.1.3	Interval Notation	 9
	2.1.4	Empty Set	 9
	2.1.5	Subsets	 10
	2.1.6	Proper Subset	 10
	2.1.7	Set Cardinality	 10
2.2	Set O _I	perations	 10
2.3	Functi	ions	 10
2.4	Seque	nces and Summations	 10
2.5	Cardir	nality of Sets	 10
2.6	Matrio	ces	 10

1 Chapter 1

1.1 Propositional Logic

1.1.1 Converse Contrapositive and Inverse $(p \rightarrow q)$

• Coverse

$$- \ q \to p$$

• Contrapositive

$$- \ q \to \neg p$$

 \bullet Inverse

$$- \neg p \rightarrow \neg q$$

1.2 Applications of Propositional Logic

1.2.1 Examples of turning sentences into propositional Logic.

1.3 Propositional Equivalences

1.3.1 Logical Equivalences

$p \wedge T$	p	Identity Laws
$p \lor F$	p	
$p \lor T$	T	Domination Laws
$p \wedge F$	F	
$p \lor p$	p	Idempotent Laws
$p \land p$	p	
$\neg(\neg p)$	p	Double Negation Laws
$p \lor q$	$\mathbf{q} \vee p$	Commutative Laws
$p \land q$	$q \wedge p$	
$(p \lor q) \lor r$	$p \lor (q \lor r)$	Associative Laws
$(p \land q) \land r$	$p \land (q \land r)$	
$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$	Distributive Laws
$p \land (q \lor r)$	$(p \land q) \lor (p \land r)$	
$\neg(\mathbf{p} \land q)$	$\neg p \lor q$	De Morgans Laws
$\neg (p \ v \ q)$	$\neg p \land q$	
$p \lor (p \land q)$	p	Absorption Laws
$p \land (p \lor q)$	p	
$p \ v \ \neg p$	${ m T}$	Negation Laws
$p \land p$	F	

1.3.2 Logical Equivelences Involving Conditional Statements

$p \rightarrow q$	$\neg p \lor q$
$p \rightarrow q$	$\neg \mathbf{q} \to p$
$p \lor q$	$\neg \mathbf{p} \to q$
$p \land q$	$\neg(\mathbf{p} \to q)$
$\neg(p \to q)$	$p \land q$
$(p \to q) \land (p \to r)$	$p \to (q \land r)$
$(p \to r) \land (q \to r)$	$(p \lor q) \to r$
$\overline{(p \to q) \lor (p \to r)}$	$p \to (q \lor r)$
$(p \to r) \lor (q \to r)$	$(p \land q) \to r$

1.3.3 Logical Equivalences Involving Biconditional Statements

$p \leftrightarrow q$	$(p \to q) \land (q \to p)$
$p \leftrightarrow q$	$\neg p \leftrightarrow q$
$p \leftrightarrow q$	$(p \land q) \lor (p \land q)$
$\neg(\mathbf{p}\leftrightarrow q)$	$p \leftrightarrow q$

1.4 Predicates and Quantifiers

1.4.1 Quantifiers

- Universal Quantifer
 - $\forall (x) P(x)$
 - * Definition: For all x in the universe P(x) is true;
 - * Negation
 - $\neg \forall (x) \ P(x) \ can also be written as \exists \neg P(x)$
 - There exists an x such that P(x) is false
- Existential Quantifer
 - $\ \exists (x) \ P(x)$
 - * Definition: For all x in the universe P(x) is true for at least one x;
 - * Negation
 - $\neg \exists (x) P(x) \text{ can also be written as } \forall \neg P(x)$
 - · All x in the universe make P(x) false

1.5 Nested Quantifers

- 1.5.1 Nested Quantifiers can be used when there are multiple variables such as x and y
 - \forall (x) \exists (y) (x + y = 0)
- 1.5.2 Quantification of Two Variables

Statement	When True	When False
$\forall (x) \forall (y) P(x,y)$	P(x,y) is true for every pair	When there is a x,y
		for which $P(x,y)$ is false
$\forall (x) \exists (y) P(x,y)$	For every x there is a y	When there is an x such
	for which $P(x,y)$ is true	that $P(x,y)$ is false for every y
$\exists (x) \forall (y) P(x,y)$	There is an x for which $P(x,y)$	When for every x there is a y
	is true for every y	for which $P(x,y)$ is false
$\exists (x)\exists (y)P(x,y)$	There is a pair for x,y	P(x,y) is false for
$\exists (y) \exists (x) P(x,y)$	for which $P(x,y)$ is true	every pair of x and y

1.6 Rules of Inference

1.6.1 Rules of inference

Rule of Inference	Tautology	Name
p	$(p \land (p \to q)) \to q$	Modus Ponens
$p \to q$		
$\frac{q}{\neg q}$		
$\neg q$	$(\neg q \land (p \to q)) \to p$	Modus Tollens
$p \to q$		
$\frac{\neg p}{p \to q}$		
	$((p \lor q) \land p) \to q$	Hypothetical
$q \to r$		Syllogism
		
$\frac{\mathbf{p} \to r}{\mathbf{p} \vee q}$		
	$p \to (p \lor q)$	Disjunctive
$\neg p$		$\operatorname{Syllogism}$
<u>q</u>	\ (\ / \)	A 11:4:
p	$p \to (p \lor q)$	Addition
n\/a		
$\frac{\mathbf{p} \vee q}{\mathbf{p} \wedge q}$	$(p \land q) \to p$	Simplification
p∧ <i>q</i>	$(p/q) \rightarrow p$	Simplification
n		
p	$((p)\land (q)) \to (p\land q)$	Conjunction
q	$(P)^{\prime\prime}(q))$ \prime $(P)^{\prime\prime}(q)$	Conjunction
ч <u></u>		
$p \land q$		
$\frac{p \vee q}{p \vee q}$	$((p \lor q) \land (p \lor r)) \to (q \lor r)$	Conjucttion
$\neg p \lor r$	(1 1) (1)	J
<u>.</u>		
$\mathbf{q} \vee r$		

1.6.2 Rules of Inference for Quantifies Statements

Rules of Inference	Name
$\forall (x)P(x)$	Universal Instantiation
	
P(c)	
P(x) for an Arbitrary c	Universal Generalization
	
$\forall (x)P(x)$	
$\exists (x)P(x)$	Existential Instantiation
	
P(c) for some element c	
P(x) for some element c	Existential Generalization
$\exists P(x)$	

1.7 Introduction to Proofs

1.7.1 There are 3 main methods for proofs.

- Direct Proof
 - Construct a conditional statement $p \rightarrow q$
 - Assume p to be true
 - Use rules of inference to then show that when p is true q must be true (p true and q false can not happen)
- Proof by Contraposition
 - Construct a conditional statement $p \rightarrow q$
 - Set up the contrapositive to be $\neg q \rightarrow \neg p$
 - Prove that if $\neg q$ is true then $\neg p$ has to be true
- Proof by Contradiction
 - If we want to prove p is true set up the contradiction to be $\neg p \rightarrow q$
 - Because q is false but $\neg p \to q$ is true we know is false which means p is true
 - You are assuming your premise to be false then attempting to show that the conditional statement is then false

1.8 Proof methods and Strategy

1.8.1 Exhaustive Proof

- Sometimes w cannot prove a theorem using a single argument that holds for all possible cases.
- Proofs by exhaustion use proof by cases for every element and check examples.
- Example
 - Prove that $(n+1)^3 \ge 3^n$ if n is a positive integer ≤ 4
 - To do this test for $n = \{1, 2, 3, 4\}$
 - Since for $n = \{1,2,3,4\}$ 3^n is greater we proved this statement through Proof by Exhaustion
- Proof by Cases
 - A proof by cases must cover all possible cases that arise in a theorem.
 - Example
 - * Prove that if n is an integer than $n^2 \ge n$
 - * We check 3 cases
 - * 1) n = 0; $0^2 = 0$ which follows $n^2 \ge n$
 - * 2) n \geq 1; Multiply both sides of the inequality n \geq 1 by the positive integer n. We get n^2 > n*1 for n \geq 1
 - * 3) $n \le 1$; Since $n^2 \ge 0$ it follows $n^2 \ge n$
- Leveraging Proof by Cases
- Existence Proofs
- Proof Stratagies
 - Forward and Backward Reasoning
 - Adapting Existing Proofs
 - Looking for Counterexamples

2 Chapter 2

2.1 Sets

2.1.1 Definition

- A set is an unordered collection of objects. $a \in A$
- Set builder notation
 - Set builder notation is used to describe a set.
 - $O = \{x \mid x \text{ is a positive integer less than } 10\}$
 - $\ O = \{x \mid x < 10 \, \land \, 2x{+}1 \in Z{+} \ \}$

2.1.2 Number sets

- $N = \{0,1,2,...\}$ Set of Natural Numbers
- $Z+=\{1,2,3,\ldots,\}$ Set of Positive Integers
- R = Set of Real Numbers
- R+ = Set of positive Real Numbers
- C = Set of complex numbers

2.1.3 Interval Notation

$\overline{[a,b]}$	$\{\mathbf{a} \le x \le b\}$
[a,b)	$\{a \le x\}b\}$
$\overline{(a,b]}$	$\{a \mid x \leq b\}$
$\overline{(a,b)}$	{a x b}

2.1.4 Empty Set

- Denoted by Ø
- All sets contain the empty set although it does not count as a element when measuring cardinality

2.1.5 Subsets

• The set A is a subset of B iff every element of A is also in B. Denoted by A $\subseteq B$

2.1.6 Proper Subset

• The set A is a subset of B iff every element of A is also in B but A \neq B. Denoted by A \subset B

2.1.7 Set Cardinality

 \bullet If S is a set the cardinality of the set denoted by |S| is the number of UNIQUE elements.

- Example
$$S = \{1,2,3,3,4,4,5\} |S| = 5$$

- 2.2 Set Operations
- 2.3 Functions
- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices

 \emptyset