Battle of the Neighborhoods (Week 2) - An Analysis of Fitness in San Francisco Final Report

1 Introduction:

According to a poll conducted by US News in 2019, San Francisco was considered the 4th fittest city in the United States. With the new trend of healthy living and fitness it has become now more than ever a good time to invest in fitness centers. Also, with the accessibility to public transportation it has become easier to access different parts of the city.

As a new fitness center startup in the San Francisco area, we need to take an analysis of the city's neighborhoods to find the most opportunistic area to set up a new fitness center. The aim of this proposal is to analyze the neighborhoods by leveraging Four Square's API to see which areas have the right conditions to create a chain of fitness centers.

This will help to guide our company into making key strategic business decisions.

2 Business Problem:

The purpose of this proposal is to find the most optimal location to open a new fitness center. To do this, we need to answer to following key questions:

- 1. Using FourSquare API, can we get a visual map of different locations with the nearest venues?
- 2. From those venues, how many gyms or fitness centers are the most common in those neighborhoods?
- 3. Can we conduct an analysis where we can isolate specific neighborhoods that can be targeted (i.e., Clustering)?

3 Data:

To complete this analysis, we need to collect data regarding San Francisco's different neighborhoods. We also need to collect data on the different venues surrounding the neighborhoods.

Here is the following data being used to conduct this analysis:

- For San Francisco postal code and Neighborhood data we will be using the following dataset:
 Data Source: http://www.healthysf.org/bdi/outcomes/zipmap.htm)
- 2. To get the latitude and longitude of the locations we will be using the pgeocode package.

3. We will use the Foursquare API to gather venue data for each San Francisco Neighborhood. It will help to isolate the nearest venues per location.

The following data points will be collected for this analysis:

- 1. Zip Code
- 2. Neighborhood
- 3. Neighborhood Latitude
- 4. Neighborhood Longitude
- 5. Name of Venue
- 6. Venue Latitude
- 7. Venue Longitude
- 8. Venue Category

4 Methodology:

Data Collection and Cleaning

To begin our analysis, we first need to scrap the data from the following url: http://www.healthysf.org/bdi/outcomes/zipmap.htm). This url contains zip codes and Neighborhood data needed for this analysis.

To scrap this data, we need to import the requests and BeautifulSoup packages. From there we can load them into a pandas data frame and then clean up the data frame to only use zip code and neighborhood data.

```
In [90]: M # scrap the data from the url
              url = "http://www.healthysf.org/bdi/outcomes/zipmap.htm"
san_fran_url = requests.get(url).text
               soup = BeautifulSoup(san_fran_url,'lxml')
               table = soup.find all("table")
               # move the data into a datafram
               san_fran_df = pd.read_html(str(table))
               # clean the dataframe to fit
               san_fran_df = pd.DataFrame(san_fran_df[4])
san_fran_df.columns = san_fran_df.iloc[0]
san_fran_df = san_fran_df.iloc[1:]
               san_fran_df.drop(index = san_fran_df.index[21],axis = 0, inplace = True)
san_fran_df = san_fran_df.iloc[:,0:2]
               san_fran_df.head()
    Out[90]: Zip Code Neighborhood
               1 94102 Hayes Valley/Tenderloin/North of Market
               2 94103 South of Market
               3 94107
                                             Potrero Hill
                4 94108
                                                   Chinatown
                5 94109 Polk/Russian Hill (Nob Hill)
```

Now that the data neighborhood data has been collected, we can begin collecting the latitude and longitude data from the pgeocode library. By using the Nominatim function, we can query the longitude and latitude data by using just the neighborhood zip code. The data frame will look like the following:

```
In [91]: M # Will use the pgeocode library to get the latitude and longitude coordinates for each neighborhood
nomi_object = pgeocode.Nominatim('us')
latitude = []
                longitude = []
                for index,row in san_fran_df.iterrows():
                    zipcode = nomi_object.query_postal_code(row["Zip Code"])
latitude.append(zipcode.latitude)
                     longitude.append(zipcode.longitude)
                san_fran_df["Latitude"] = latitude
san_fran_df["Longitude"] = longitude
               san_fran_df.head()
    Out[91]:
                 Zip Code
                                                  Neighborhood Latitude Longitude
                1 94102 Hayes Valley/Tenderloin/North of Market 37.7813 -122.4167
                     94103
                                                 South of Market 37.7725 -122,4147
                3 94107
                                                Potrero Hill 37.7621 -122.3971
                      94108
                                                     Chinatown 37,7929 -122,4079
                                  Polk/Russian Hill (Nob Hill) 37.7917 -122.4186
                     94109
```

Visualizing the Data

Before we start adding additional venue data, let us take a visual map of San Francisco and display where each neighborhood is located. For this we will use the Folium library to build a visual map of San Francisco with the latitude and longitude data.

The Foursquare API is a library that is used to get venue data from specified latitude and longitude data. In this case we will be using the san_fran_df data frame to create a new data frame with additional Venue data. We will be looking for the top 100 venues with a radius of 600 meters for each of the selected neighborhoods. This will create the nearby_venues data frame below:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue Latitude	Venue Longitude	Venue Name	Venue Category
0	Hayes Valley/Tenderloin/North of Market	37.7813	-122.4167	37.780178	-122.416505	Asian Art Museum	Art Museum
1	Hayes Valley/Tenderloin/North of Market	37.7813	-122.4167	37.782751	-122.415656	Ales Unlimited: Beer Basement	Beer Bar
2	Hayes Valley/Tenderloin/North of Market	37.7813	-122.4167	37.783084	-122.417650	Saigon Sandwich	Sandwich Place
3	Hayes Valley/Tenderloin/North of Market	37.7813	-122.4167	37.781266	-122.416901	Philz Coffee	Coffee Shop
4	Hayes Valley/Tenderloin/North of Market	37.7813	-122.4167	37.782896	-122.418897	Brenda's French Soul Food	Southern / Soul Food Restaurant

EDA

Before we conduct our cluster analysis, it is good idea to conduct some exploratory data analysis. This will ensure that any data cleaning or feature engineering will need to be done before we build our model. First, let us look at the number of venues by Neighborhood:

```
In [95]: M # To get a count of the number of venues per neighborhood
            nearby_venues.groupby('Neighborhood')["Venue Name"].count()
   Out[95]: Neighborhood
            Bayview-Hunters Point
            Castro/Noe Valley
            Chinatown
                                                        88
            Haight-Ashbury
                                                        35
             Hayes Valley/Tenderloin/North of Market
            Ingelside-Excelsior/Crocker-Amazon
                                                        45
            Inner Mission/Bernal Heights
                                                        58
            Inner Richmond
            Lake Merced
                                                        14
            Marina
                                                        100
             North Beach/Chinatown
            Outer Richmond
                                                        34
            Parkside/Forest Hill
                                                        38
             Polk/Russian Hill (Nob Hill)
                                                        100
            Potrero Hill
                                                        33
            South of Market
                                                       100
             St. Francis Wood/Miraloma/West Portal
            Sunset
                                                        31
             Twin Peaks-Glen Park
                                                        16
             Visitacion Valley/Sunnydale
             Western Addition/Japantown
                                                       100
            Name: Venue Name, dtype: int64
```

By looking at the data, we need a way to convert the categorical data into a numeric value. To do this, we need to use one hot encoding by using the pandas get_dummies function. This will help to construct our K-means clustering model.

```
# This will encode the Venue Category column
san_fran_hot = pd.get_dummies(nearby_venues[['Venue Category']], prefix = "", prefix_sep="")

# Add zipcode and Neighborhood into the dataframe
san_fran_hot['Neighborhood'] = nearby_venues['Neighborhood']

# move zip code and Neighborhood to the front of the data set
fixed_columns = list(san_fran_hot.columns[-1:]) + list(san_fran_hot.columns[:-1])
san_fran_hot = san_fran_hot[fixed_columns]
san_fran_hot
```

For the last step before we build our Kmeans clustering model, we need to build a data frame that takes top 10 most common venues within a neighborhood. To do this we need to first get the

frequency of each of the occurrences per neighborhood.

From there we will build a new neighborhood_venues data frame that will list the most common venues within a particular neighborhood. This data frame will be used to conduct our clustering analysis.

Kmeans Cluster

After our venue data frame has been completed, we can now build our clustering model. We are using the sklearn package we are importing the kmeans clustering algorithm to help to build our model. For our number of k clusters, we decided to 2 was the most optimal number because of the small number of neighborhoods. After the algorithm was modeled, we created a new data frame sf_new_df to show the Cluster labels.

In [101]: N	san kme nei sf_	ans = ghborh new_df	= 2 clusters = san_fra KMeans(n_clusters oods_venues.insert = san_fran_df = sf_new_df.merge	= kclust (0, 'Clus	ters, rand ster Label	dom_stat Ls', km	te = 0).fit eans.labels	;_)	clusters)					
In [102]: 🕨	sf_	new_df												
Out[102]:		Zip Code	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8t Co
	0	94102	Hayes Valley/Tenderloin/North of Market	37,7813	-122.4167	1	Vietnamese Restaurant	Sandwich Place	Hotel	Thai Restaurant	Theater	Hotel Bar	Coffee Shop	В
	1	94103	South of Market	37,7725	-122.4147	1	Nightclub	Coffee Shop	Food Truck	Gay Bar	Cocktail Bar	Sushi Restaurant	Pizza Place	Ren
	2	94107	Potrero Hill	37.7621	-122.3971	1	Breakfast Spot	Coffee Shop	Café	Brewery	Cosmetics Shop	Office	Grocery Store	Res
	3	94108	Chinatown	37.7929	-122.4079	1	Chinese Restaurant	Bakery	Hotel	Coffee Shop	Vietnamese Restaurant	Dim Sum Restaurant	Tea Room	C
	4	94109	Polk/Russian Hill (Nob Hill)	37.7917	-122.4186	1	Grocery Store	Thai Restaurant	Italian Restaurant	Massage Studio	Vietnamese Restaurant	Bakery	French Restaurant	

5 Results:

Now that the model has been build, we can take a visual look at where these current clusters are located. Using the Folium library, we were able to build a map using the new data frame with the cluster labels. Cluster 1 is indicated by the Red and Cluster 2 is indicated by the Purple:

6 Discussion:

Now that we have looked at our results, we can dive deeper into the characteristics of each cluster.

Looking at cluster # 1 below, we can see that this is a much smaller cluster the all the characteristics are very similar. This cluster seems to form around different parks, trails, and playgrounds in the neighborhood. This cluster seems to focus on outdoor activities.

Cluster #1:

By further examining cluster #2, this cluster seems to be the area where most of the indoor activity takes place. This cluster has more restaurant, theater and even gym locations. And by looking at this data frame we see the number of gym or Fitness Center is rather limited neighborhoods. These locations would be the most ideal locations to open a new fitness center.

Cluster #2:

Out[113]:		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
	0	Hayes Valley/Tenderloin/North of Market	Vietnamese Restaurant	Sandwich Place	Hotel	Thai Restaurant	Theater	Hotel Bar	Coffee Shop	Beer Bar	Concert Hall	Bakery
	1	South of Market	Nightclub	Coffee Shop	Food Truck	Gay <mark>B</mark> ar	Cocktail Bar	Sushi Restaurant	Pizza Place	Rental Car Location	Clothing Store	Thai Restaurant
	2	Potrero Hill	Breakfast Spot	Coffee Shop	Café	Brewery	Cosmetics Shop	Office	Grocery Store	Sushi Restaurant	Bookstore	Sandwich Place
	3	Chinatown	Chinese Restaurant	Bakery	Hotel	Coffee Shop	Vietnamese Restaurant	Dim Sum Restaurant	Tea Room	Cocktail Bar	Szechuan Restaurant	Bank
	4	Polk/Russian Hill (Nob.	Grocery Store	Thai Restaurant	Italian Restaurant	Massage Studio	Vietnamese Restaurant	Bakery	French Restaurant	Café	Wine Bar	Gym / Fitness Center

6 Conclusion:

When reviewing the data of each of the San Francisco Neighborhoods, we can see that the neighborhoods in Cluster #2 are the ideal candidates to open a new fitness center. This can be explained by the venue types that are associated with that cluster against what we see in cluster #1. In Cluster #1 we see mainly outdoor venues and locations while Cluster #1 has more indoor venues. Also, public transport also seems more accessible within the 2nd cluster which may mean that the populations may be higher at these locations which can also mean more foot traffic past our fitness location.

With San Francisco being one of the fittest places in the United States, this would be the best time to invest in the creation of this new fitness center.