

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE170711901

FCC REPORT

(WIFI)

Applicant: Shenzhen Tengwei Video Technology Co., Ltd

Address of Applicant:

Room 505, Rujun Building, Banxuegang Road, Longgang

District

Equipment Under Test (EUT)

Product Name: TH661

Model No.: TH661 (More model numbers refer to Section 5.2.)

Trade mark: TENVIS

FCC ID: 2ADGP-TH661

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Jun., 2017

Date of Test: 30 Jun., to 05 Jul., 2017

Date of report issued: 06 Jul., 2017

Test Result: PASS*

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	06 Jul., 2017	Original

Tested by:

One Open Date: 06 Jul., 2017

Test Engineer

Reviewed by: Date: 06 Jul., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	27
	6.6	BAND EDGE	32
	6.6.1	1 Conducted Emission Method	32
	6.6.2	2 Radiated Emission Method	35
	6.7	Spurious Emission	52
	6.7.1	1 Conducted Emission Method	52
	6.7.2	2 Radiated Emission Method	57
7	TES	T SETUP PHOTO	65
0	EUT	CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and Radiated Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Tengwei Video Technology Co., Ltd
Address of Applicant:	Room 505, Rujun Building, Banxuegang Road, Longgang District
Manufacturer/Factory:	Shenzhen Tengwei Video Technology Co., Ltd
Address of Manufacturer/ Factory:	Room 505, Rujun Building, Banxuegang Road, Longgang District

5.2 General Description of E.U.T.

Product Name:	TH661		
Model No.:	TH661, JPT3815W-HD, IProbot3, TH692, IP602W-HD, IP391W-HD, T8801, T8802, T8805, T8806, T8808, T8809, T8810, T8812, T8817, T8818, T8820, T8822, T8601, T8862, T8863, T6812, T6813, TA702, TA703, TA705, T5801, T5805, T3801, T3806, T3808, T3810, T3812, T3820, T3821, T3822, T3826, T3861, T3862, T3860, T3865, T2801, T2802, T2805, T2808, T2826, TH692S, T8801S, T8805S, T8809S, T8810S, T8817S, T8818S, T8820S, T8822S, T8601S, T8862S, T5801S, T5802S, T5805S, T3801S, T3806S, T3808S, T3810S, T3812S, T3820S, T3821S, T3822S, T3826S, T3861S, T3862S, T3860S, T3865S, T3866S, T3868S, T2801S, T2802S, T2805S, T2806S, T8801D, T8805D, T8810D, T8809D, T8817D, T8818D, T8862D, T3801D, T3806D, T3861D, T3810D, T3812D, T3820D, T3821D, T3822D, T3826D, T3861D, T3862D, T3860D, T3860D, T3865D, T8602D, T8603D		
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))		
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)		
Channel separation:	5MHz		
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)		
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)		
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps		
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	External Antenna		
Antenna gain:	2 dBi		
AC adapter:	Model: LY006SPS-050100UU Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1 A		
Remark:	The No.: The above models were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name for different areas.		

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE170711901

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.			
Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40) 13.5Mbps			

Final Test Mode:

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170711901

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.7 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	07-22-2017	07-22-2020	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018	
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018	

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-22-2020				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018				
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018				
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

0.2 00.1.0.0.0.0.0.								
Test Requirement:	FCC Part 15 C Section 1	5.207						
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 k	 Нz						
Limit:	Frequency range	Limit (dBuV)					
Ziiiitt.	(MHz)							
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the log	arithm of the frequency.						
Test procedure	line impedance stab 50ohm/50uH couplin 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. li interference. In order	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 						
Test setup:	AUX Equipment Test table/Insula Remark EU.T Equipment Under	E.U.T EMI Receiver	ilter — AC power					
Test Instruments:	LISN Line Impedence St. Test table height=0.8m	and the set of the second of the second of						
Test mode:	Refer to section 5.7 for d							
		Etalio						
Test results:	Passed							

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH	Ma	Maximum Conducted Output Power (dBm)			Limit(dBm)	Result
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Lillit(dBill)	Nesuit
Lowest	9.17	10.57	10.75	10.36		Pass
Middle	10.06	11.63	11.61	11.16	30.00	
Highest	11.16	12.61	12.64	11.83		

Test plot as follows:

Date: 4.JUL.2017 20:13:41

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		6dB Emission	Bandwidth (MHz))	Limit(kHz)	Result
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Result
Lowest	10.24	16.56	17.52	36.48		
Middle	10.24	16.56	17.60	36.48	>500	Pass
Highest	10.24	16.56	17.52	36.32		
Test CH		99% Occupy	Bandwidth (MHz)		Limit(kHz)	Result
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	
Lowest	12.16	16.64	22.40	36.32		
Middle	12.24	17.60	18.72	36.48	N/A	N/A
Highest	12.16	22.00	23.04	38.72		

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

wood of one but.								
Test CH	Power Spectral Density (dBm)			Limit(dBm)	Result			
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Ziriit(GBiri)	result		
Lowest	1.23	-2.30	-1.90	-2.40		Pass		
Middle	-0.01	-1.18	-0.92	-4.31	8.00			
Highest	-0.09	-0.01	1.74	-3.60				

6.6 Band Edge

6.6.1 Conducted Emission Method

Toot Deguisement	TOO Dark 45 O Coation 45 047 (d)			
Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:				
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Test plot as follows:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.	209 and 15.205					
Test Method:	ANSI C63.10: 2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark							
receiver cotup.	Above 1GHz	Peak	1MHz	3MHz		Peak Value		
		RMS	1MHz	31	ИНz	Average Value		
Limit:	Frequenc	y l	_imit (dBuV/m @	3m)		Remark		
	Above 1GI	-lz	54.00			verage Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- 							
Test setup:	sheet.	AE EUT (Turntable)	Ground Reference Plane Test Receiver	m Antenna Pre- replier Co	Antenna Tow	ver ver		
Test Instruments:	Refer to section	5.7 for deta	ails					
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:201	13					
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Dis	stance: 3n	m				
Receiver setup:	Frequency	Detecto	tor	RBW	V	BW	Remark
·	30MHz-1GHz	Quasi-pe			300KHz		Quasi-peak Value
	Above 1GHz	Peak		1MHz		ИHz	Peak Value
		RMS		1MHz		ЛHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
	216MHz-960M			46.0			uasi-peak Value
	960MHz-1GH	Z		54.0			uasi-peak Value
	Above 1GHz	: -		54.0 74.0		/	Average Value Peak Value
Test Procedure:	The table was highest radia 2. The EUT was antenna, who tower. 3. The antennathe ground to Both horizon make the med. 4. For each suscase and the meters and to find the med. 5. The test-reconspecified Base. 6. If the emission the limit spend the EUT we have 10dB med.	(above 10 as rotated ation. as set 3 moisted ation. as set 3 moisted ation as the individual and version at the rota taximum rotated aximum rotated at the rota taximum rotated at the rota taximum rotated at the rotat	GHz) at 360 denoters a mounter so varied ine the ertical ent. Emission tenna value was reading tem was with Mof the Een testi reported buld be	above the gradegrees to degrees to degrees to degrees to degree degrees to degree degr	he into of a meter value s of the was a common decommendation of the commo	at a 3 sine the erferent variable to four of the fine ante arrange phts frodegree tect Fude. Example was 1 poed and emission one us	meter chamber. e position of the nce-receiving le-height antenna meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees

Above 1GHz

			Test	t mode: 802.1	1b							
	Test channel: Lowest channel											
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	51.85	36.06	6.81	41.82	52.90	74.00	-21.10	Vertical				
4824.00	47.14	36.06	6.81	41.82	48.19	74.00	-25.81	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4824.00	48.73	36.06	6.81	41.82	49.78	54.00	-4.22	Vertical				
4824.00	44.56	36.06	6.81	41.82	45.61	54.00	-8.39	Horizontal				

	Test channel: Middle channel											
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	46.91	36.32	6.85	41.84	48.24	74.00	-25.76	Vertical				
4874.00	47.24	36.32	6.85	41.84	48.57	74.00	-25.43	Horizontal				
			А	verage Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	42.42	36.32	6.85	41.84	43.75	54.00	-10.25	Vertical				
4874.00	43.28	36.32	6.85	41.84	44.61	54.00	-9.39	Horizontal				

			Test char	nnel: Highest	channel						
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4924.00	46.95	36.58	6.89	41.86	48.56	74.00	-25.44	Vertical			
4924.00	46.52	36.58	6.89	41.86	48.13	74.00	-25.87	Horizontal			
			А	verage Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4924.00	43.38	36.58	6.89	41.86	44.99	54.00	-9.01	Vertical			
4924.00	43.03	36.58	6.89	41.86	44.64	54.00	-9.36	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test	mode: 802.1°	1g					
			Test chan	nel: Lowest o	hannel					
Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	52.16	36.06	6.81	41.82	53.21	74.00	-20.79	Vertical		
4824.00	47.04	36.06	6.81	41.82	48.09	74.00	-25.91	Horizontal		
			Av	erage Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	48.92	36.06	6.81	41.82	49.97	54.00	-4.03	Vertical		
4824.00	44.23	36.06	6.81	41.82	45.28	54.00	-8.72	Horizontal		
				on all Mindella						

	Test channel: Middle channel											
Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	46.88	36.32	6.85	41.84	48.21	74.00	-25.79	Vertical				
4874.00	47.35	36.32	6.85	41.84	48.68	74.00	-25.32	Horizontal				
			Av	verage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4874.00	42.19	36.32	6.85	41.84	43.52	54.00	-10.48	Vertical				
4874.00	43.68	36.32	6.85	41.84	45.01	54.00	-8.99	Horizontal				

			Test chan	nel: Highest o	channel							
	Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	46.98	36.58	6.89	41.86	48.59	74.00	-25.41	Vertical				
4924.00	46.43	36.58	6.89	41.86	48.04	74.00	-25.96	Horizontal				
			Av	erage Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.				
4924.00	43.15	36.58	6.89	41.86	44.76	54.00	-9.24	Vertical				
4924.00	43.82	36.58	6.89	41.86	45.43	54.00	-8.57	Horizontal				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test m	ode: 802.11n	(H20)			
			Test cha	nnel: Lowest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	51.95	36.06	6.81	41.82	53.00	74.00	-21.00	Vertical
4824.00	47.18	36.06	6.81	41.82	48.23	74.00	-25.77	Horizontal
			А	verage Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.63	36.06	6.81	41.82	49.68	54.00	-4.32	Vertical
4824.00	44.85	36.06	6.81	41.82	45.90	54.00	-8.10	Horizontal
			Test cha	nnel: Middle	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.87	36.32	6.85	41.84	48.20	74.00	-25.80	Vertical
4874.00	47.95	36.32	6.85	41.84	49.28	74.00	-24.72	Horizontal
			А	verage Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	42.91	36.32	6.85	41.84	44.24	54.00	-9.76	Vertical
4874.00	43.63	36.32	6.85	41.84	44.96	54.00	-9.04	Horizontal
			Test char	nnel: Highest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
						•		

4924.00

4924.00

Frequency

(MHz)

4924.00

4924.00

46.97

46.25

Read

Level

(dBuV)

43.19

43.27

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.89

6.89

Cable

Loss

(dB)

6.89

6.89

41.86

41.86

Preamp

Factor

(dB)

41.86

41.86

Average Value

48.58

47.86

Level

(dBuV/m)

44.80

44.88

74.00

74.00

Limit Line

(dBuV/m)

54.00

54.00

-25.42

-26.14

Over

Limit

(dB)

-9.20

-9.12

Vertical

Horizontal

Polar.

Vertical

Horizontal

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

36.58

36.58

Antenna

Factor

(dB/m)

36.58

36.58

				ode: 802.11n	` '			
			Test char	nnel: Lowest	channel			
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	51.13	36.06	6.81	41.82	52.18	74.00	-21.82	Vertical
4844.00	47.28	36.06	6.81	41.82	48.33	74.00	-25.67	Horizonta
			А	verage Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	48.69	36.06	6.81	41.82	49.74	54.00	-4.26	Vertical
4844.00	40.03							
4844.00 4844.00	44.16	36.06	6.81	41.82	45.21	54.00	-8.79	Horizonta
				41.82		54.00	-8.79	Horizonta
			Test cha			54.00	-8.79	Horizonta
			Test cha	nnel: Middle		Limit Line (dBuV/m)	-8.79 Over Limit (dB)	Polar.
4844.00 Frequency	44.16 Read Level	Antenna Factor	Test cha	nnel: Middle Peak Value Preamp Factor	channel Level	Limit Line	Over Limit	
4844.00 Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	nnel: Middle Peak Value Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00 Frequency (MHz) 4874.00	Read Level (dBuV) 46.73	Antenna Factor (dB/m) 36.32	Cable Loss (dB) 6.85 6.85	nnel: Middle Peak Value Preamp Factor (dB) 41.84	Level (dBuV/m) 48.06 48.58	Limit Line (dBuV/m) 74.00	Over Limit (dB) -25.94	Polar.
4844.00 Frequency (MHz) 4874.00	Read Level (dBuV) 46.73	Antenna Factor (dB/m) 36.32	Cable Loss (dB) 6.85 6.85	nnel: Middle Peak Value Preamp Factor (dB) 41.84 41.84	Level (dBuV/m) 48.06 48.58	Limit Line (dBuV/m) 74.00	Over Limit (dB) -25.94	Polar.
Frequency (MHz) 4874.00 4874.00 Frequency	Read Level (dBuV) 46.73 47.25 Read Level	Antenna Factor (dB/m) 36.32 36.32 Antenna Factor	Cable Loss (dB) 6.85 6.85 A Cable Loss	nnel: Middle Peak Value Preamp Factor (dB) 41.84 41.84 verage Value Preamp Factor	Level (dBuV/m) 48.06 48.58	Limit Line (dBuV/m) 74.00 74.00 Limit Line	Over Limit (dB) -25.94 -25.42 Over Limit	Polar. Vertical Horizonta

			Test char	nnel: Highest	channel						
Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4904.00	47.13	36.45	6.87	41.85	48.60	74.00	-25.40	Vertical			
4904.00	46.63	36.45	6.87	41.85	48.10	74.00	-25.90	Horizontal			
			А	verage Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.			
4904.00	43.67	36.45	6.87	41.85	45.14	54.00	-8.86	Vertical			
4904.00	43.85	36.45	6.87	41.85	45.32	54.00	-8.68	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.