# Árvores Rubro- Negras

Universidade Federal do Estado do Rio de Janeiro Bacharelado de Sistemas de Informação

Estruturas de Dados 2

Professora: Vânia Félix

#### Introdução

- Inventada em 1972, 10 anos depois da AVL por Rudolf Bayer, sob o nome B-árvores binárias simétricas
- Adquirindo em 1978 seu atual nome, por Leo J. Guibas and Robert Sedgewick
- Árvore rubro-negra (do inglês Red-Black trees)
- A árvore rubro-negra tem esse nome devido a "coloração" de seus nós
- Uma árvore rubro negra (ARN) é uma árvore binária de busca com um campo adicional que armazena se o nó é rubro ou negro
- O fato de um nó ser rubro ou negro é usado como fator de balanceamento da ARN

## Introdução

 Objetivo: garantir que operações básicas demorem O(log n) no pior caso.

 Altura máxima: 2 log(n + 1) onde n é o número de nós;

Inserção e remoção: executadas em O(log n).

• 1) Todo nó é VERMELHO ou NEGRO



• 2) A raiz é negra



 3) Para cada nó, todos os caminhos do nó para folhas descendentes contém o mesmo número de nós NEGROS (altura negra)



• 4) Se um nó é VERMELHO, então ambos os seus filhos são NEGROS



-> Propriedade óbvia resultando da quarta condição é que num caminho da raiz até uma subárvore vazia não pode haver dois nós rubros consecutivos

 Observe que as propriedades de uma ARN asseguram que o maior caminho desde a raiz até uma folha é no máximo duas vezes maior que o qualquer outro caminho até outra folha.



#### Altura negra

 Altura negra de um nó: número de nós negros encontrados até qualquer nó folha



• Um nó x de uma árvore rubro negra tem no mínimo  $2^{an(x)} - 1$  nós internos, onde an(x) é a altura negra de x

#### Prova por indução:

- <u>Caso base</u>: Um nó de altura 0 (i.e., nó-folha) tem 0 = 2<sup>0</sup> 1 nós internos
- <u>Caso genérico</u>: Um nó x de altura h > 0 tem 2 filhos com altura negra an(x) ou an(x) 1, conforme x seja vermelho ou negro. No pior caso, x é negro e as subárvores enraizadas em seus 2 filhos têm  $2^{\operatorname{an}(x)-1} 1$  nós internos cada e x tem  $2(2^{\operatorname{an}(x)-1} 1) + 1 = 2^{\operatorname{an}(x)} 1$  nós internos

• Exemplo: para um nó com altura negra 3, ele terá uma quantidade mínima de nós equivalente à  $2^3 - 1 = 7$ .



• Exemplo: para uma altura negra 4, o nó terá  $2^4 - 1 = 15$ 



 Perceba que a quantidade mínima de nós para uma determinada altura negra é sempre uma árvore rubro negra formada apenas por nós negros.



#### Altura máxima

- Uma árvore rubro-negra com n nós tem no máximo altura 2 log (n+1)
- **Prova:** Se uma árvore tem altura h, a altura negra de sua raiz será no mínimo h/2 (pelo critério 3 de construção) e a árvore terá  $n \ge 2^{h/2} 1$  nós internos (Lema 1)
- Como consequência, a árvore tem altura O(log n) e as operações de busca, inserção e remoção podem ser feitas em O(log n)

 Se inserir um nó x numa posição vazia da árvore, isto é, no lugar de um nó nulo/externo, o novo nó deverá ser pintado de rubro

Se o novo nó é raiz, então pintar de negro

Por que pintar de rubro ao inserir?

- Ao inserir um nó x numa posição vazia da árvore este é pintado de rubro.
- Isto garante a manutenção do critério (3), já que um nó rubro não contribui para a altura negra.



- Precisamos identificar alguns nós para verificar se as propriedades de árvore rubro negra foram mantidas depois da inserção.
- Vamos assumir que q é o nó inserido e q é rubro.

- v é o pai de q
- wéopaide v
- t é o irmão de v



• Caso 1 : v é negro



- Todas as propriedades foram mantidas. Inserção finalizada.
- Observe que se q não tem avô, então v é a raiz da árvore.

- Caso 2 : v é rubro, w é negro e t é rubro
- Para manter as propriedades de árvore rubro negras, precisamos alter a cor de *v*, *t* e *w* .



- Caso 3 : v é rubro, w é negro e t é negro
  - 3.1: q é filho esquerdo de v
  - − v é filho esquerdo de w
  - Alteraremos a cor de v e w





Não há propagação.

- Caso 3 : v é rubro, w é negro e t é negro
  - − 3.2 : *q* é filho direito de *v*
  - v é filho direito de w
  - Alteraremos a cor de v e w .



Rotação Simples à Esquerda





- Caso 3 : v é rubro, w é negro e t é negro
  - 3.3: q é filho esquerdo de v
  - v é filho direito de w.
  - Alteraremos a cor de  $q \in w$ .



- Caso 3 : v é rubro, w é negro e t é negro
  - 3.4: *q* é filho direito de *v*
  - v é filho esquerdo de w.
  - Alteraremos a cor de  $q \in w$ .



## Complexidade da inserção

Recolorir tem custo O(1)

Rotação XXX têm custo O(1)

Inserir tem custo O(log n)

- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 1. Inserção do nó 42



- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 2. Toda a raiz de uma árvore rubro-negra deve ser negra, então devemos recolorir o nó 42.



- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 3. Inserção do nó 57. Uma vez que o pai do nó inserido é negro, nenhuma propriedade foi violada.



- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 4. Inserção do nó 11. Uma vez que o pai do nó inserido é negro, nenhuma propriedade foi violada.



- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 5. Inserção do nó 7. A propriedade de árvore rubro-negras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserir os nós: 42, 57,11 e 7 em uma árvore vazia:
  - 6. Como o tio (57) e o pai (11) do nó inserido são rubros, a árvore é recolorida.



 Obs: A raiz ficou vermelha na recoloração inicial (caso 1), então ela é novamente pintada de negro.

• Inserção do nó 8:

- 1. Árvore Inicial



- Inserção do nó 8:
  - 2. Inserção do nó. A propriedade de árvore rubronegras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserção do nó 8:
  - 3. Como o tio (18) e o pai (7) do nó inserido são rubros, a árvore é recolorida.



- Inserção do nó 24:
  - 1. Árvore inicial



- Inserção do nó 24:
  - 2. Inserção do nó. A propriedade de árvore rubronegras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserção do nó 24:
  - 3. Uma vez que o tio (null) do nó inserido é negro e o nó inserido é filho direito, fazemos uma rotação dupla direita.



- Inserção do nó 7:
  - 1. Árvore inicial



- Inserção do nó 7:
  - 2. Inserção do nó. A propriedade de árvore rubronegras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserção do nó 7:
  - 3. Uma vez que o tio (null) do nó inserido é negro e o nó inserido é filho esquerdo, fazemos uma rotação direita.



- Inserção do nó 30:
  - 1. Árvore inicial



- Inserção do nó 30:
  - 2. Inserção do nó. A propriedade de árvore rubronegras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserção do nó 30:
  - 3. Uma vez que o tio (null) do nó inserido é negro e o nó inserido é filho direito, fazemos uma rotação esquerda.



- Inserção do nó 50:
  - 1. Árvore Inicial



- Inserção do nó 50:
  - 2. Inserção do nó. A propriedade de árvore rubronegras que dita que todos os nós rubros devem possuir filhos negros foi violada.



- Inserção do nó 50:
  - 3. Uma vez que o tio (null) do nó inserido é negro e o nó inserido é filho esquerdo, fazemos uma rotação dupla esquerda.











Caso ?



• Caso 2.

Solução



- Caso 2.
- Recoloração





Caso ?



- Caso 2
- Solução ?



- Caso 2
- Recoloração



- Propagação
- Novo caso. Qual?
- Identificar novo q





Rotação Dupla Direita





Caso ?



• Caso 2

Solução ?





- Propagação
- Novo caso. Qual?
- Identificar novo q





Rotação Simples Direita



# Comparação

| Árvore                         | AVL                                                                                                                          | Rubro Negra                                                                                                                                               |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fator de<br>balanceamento      | Cada nó possui um campo bal, que pode ser 0 (balanceada),<br>1 (desbalanceada a direita) e -1<br>(desbalanceada a esquerda). | Cada nó possui um campo cor que pode ser rubro ou negro.                                                                                                  |
| Método de balanceamento        | Se uma subárvore de um nó estiver 2 níveis maior que a outra subárvore (bal = 1 ou -1) ocorre uma rotação.                   | Caso haja dois nós rubros consecutivos ou a quantidade de nós negros até qualquer folha não sejam iguais ocorre uma rotação e, se preciso troca de cores. |
| Tolerância de desbalanceamento | Uma subárvore pode estar 1 nível<br>maior que a outra subárvore de<br>um nó                                                  | Uma subárvore não pode estar 2 vezes maior que a outra subárvore de um nó.                                                                                |
| Crescimento                    | De cima pra baixo (raiz → folhas)                                                                                            | De cima pra baixo (raiz → folhas)                                                                                                                         |

### Ferramenta de animação

http://gauss.ececs.uc.edu/RedBlack/redblack.
html