Big data science Day 3

F. Legger - INFN Torino https://github.com/Course-bigDataAndML/MLCourse-2223

Yesterday

- Big data, analytics
- Distributed computing
- ML: Feature engineering

Today

- Machine learning
 - Architectures
 - Train model and evaluate

Remember:

Machine learning involves two mathematical entities

Model: a mathematical model describes the relationship between different aspects of the data

Features: a feature is a representation of raw data

Feature engineering

Raw Data

```
house info: {
num rooms: 6
num bedrooms: 3
street name: "Shorebird Way"
num basement rooms: -1
```

Feature Vector

1116

Process of creating features from raw data is **feature engineering**.

Raw data doesn't come to us as feature vectors.

Example: supervised classification

Ingredients

- Inputs: X, is a matrix of size n
 (number of samples) x m
 (number of features)
- Features: X, transformed
 inputs, matrix nxm
- Labels: y, vector size n

Recipe: supervised classification

For each input vector
 X_i predict z_i, i=1...n

- $z_i = \phi(W^T X_i)$ yields (0,1)
- Weights: W (matrix) contains the model parameters
- Activation function: φ (step function, sigmoid)

- Cost function == loss function == prediction
 error, function of the model parameters W
- Aim: find weights W that <u>minimize cost function</u>

Activation function

- Turns unbounded output into a known range/shape
- For example, **sigmoid** function only outputs numbers in the range (0, 1)
 - big negative numbers become ~0
 - big positive numbers become ~1.

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}.$$

Another example, linear regression

- Inputs (features): x;
- Labels: y_i
- Model: y = a + bx
- Weight+bias (parameters to be found): a, b
- Cost function: Mean
 Square Error (MSE)
- No activation function: problem is linear

x (independent)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2.$$

Supervised learning

Decision trees: supervised classification

Eat's a lot Exercises in of pizzas? the morning?

Ves? No? Yes? No? Unfit! Fit Fit Unfit!

Typically used in combinations (Random forest, Gradient Tree Boosting)

 Each tree sees part of the training sets and captures part of the information it contains

Ensembles

Bagging

 building multiple models (typically of the same type) from different subsamples of the training dataset

Boosting

 building multiple models (typically of the same type) each of which learns to fix the predictions errors of a prior model in the chain

Stacking

 building multiple models (typically of different types) and a supervisor model that learns how to best combine the predictions of the primary model

Weighting|Blending

 combine multiple models into single prediction using different weight functions

Neural networks: supervised classification

• Basic unit: **Neuron.** A neuron takes inputs, does some math with them,

and produces one output

Support vector machines (SVG), supervised classification

Unsupervised learning

Challenges

- No label (ground truth) in input dataset
- The system must have the ability to recognize patterns in the data without explicitly being told what patterns to identify

Principal Component Analysis (PCA), unsupervised

original data space

K-means clustering, unsupervised

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the *k* clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

You must define **k**, **the number of clusters**, and which **distance** to use!

K-means: Distances

Taxicab or **Manhattan** distance: sum of the projections along all axis

	TYPE	NAME	DESCRIPTION	ADVANTAGES	DISADVANTAGES
Linear	/	Linear regression	The "best fit" line through all data points. Predictions are numerical.	Easy to understand – you clearly see what the biggest drivers of the model are.	Sometimes too simple to capture complex relationships between variables. Tendency for the model to "overfit".
	1	Logistic regression	The adaptation of linear regression to problems of classification (e.g., yes/no questions, groups, etc.)	Also easy to understand.	X Sometimes too simple to capture complex relationships between variables. X Tendency for the model to "overfit".
	*	Decision tree	A graph that uses a branching method to match all possible outcomes of a decision.	Easy to understand and implement.	X Not often used on its own for prediction because it's also often too simple and not powerful enough for complex data.
Tree-based	N/ YIN	Random Forest	Takes the average of many decision trees, each of which is made with a sample of the data. Each tree is weaker than a full decision tree, but by combining them we get better overall performance.	A sort of "wisdom of the crowd". Tends to result in very high quality models. Fast to train.	X Can be slow to output predictions relative to other algorithms. X Not easy to understand predictions.
	Y	Gradient Boosting	Uses even weaker decision trees, that are increasingly focused on "hard" examples.	High-performing.	A small change in the feature set or training set can create radical changes in the model. Not easy to understand predictions.
Neural networks	*	Neural networks	Mimics the behavior of the brain. Neural networks are interconnected neurons that pass messages to each other. Deep learning uses several layers of neural networks put one after the other.	Can handle extremely complex tasks - no other algorithm comes close in image recognition.	X Very, very slow to train, because they have so many layers. Require a lot of power. X Almost impossible to understand predictions.

All models are wrong, but some are useful (George Box)

Hyperparameters vs parameters

- Model parameters are learned during training when we optimize a loss function -> weights
- Hyperparameters are not model parameters and they cannot be directly trained from the data -> model architecture

Hyperparameters	Parameters	Score
n_layers = 3 n_neurons = 512 learning_rate = 0.1	Weights optimization	85%
n_layers = 3 n_neurons = 1024 learning_rate = 0.01	Weights optimization	80%
n_layers = 5 n_neurons = 256 learning rate = 0.1	Weights optimization	92%

Hyperparameter tuning

Modeling Algorithm

Overfitting / underfitting

Underfitting

Model doesn't have enough (hyper-)parameters to describe data

Overfitting
Model has too many
(hyper-)parameters

Classification metrics

- **ROC**: Receiver Operating Characteristics
- AUC: Area under the curve
- TPR: True positive rate
- FPR: False positive rate

Column totals:

TNR/FNR: True/False negative rate

Confusion matrix

1/precision+1/recall

Training and test set

Cross-validation: is you model robust?

- Train/test split
- K-folds cross validation

Loss, or could be any other metrics of interest

Or training epochs (number of iterations)

Hands-on today

- 1. Point your browser to: https://yoga.to.infn.it
- 2. Open a terminal:
 - o cd MLCourse-2223
 - o git pull
 - cp Notebooks/Day2/* ../
- 3. From JupyterHub Home tab:
 - start and run ML_GBT.ipynb
- Apache ML Library <u>MLLib</u>
 - Gradient Boosting Trees (GBT)
 - Hyperparameter optimisation
 - Multilayer Perceptron Classifier (MPC) Bonus