

1、巴特沃思低通滤波器与切比雪夫低通滤波器的比较

若将误差均匀地分布在通带内,就可以设计出阶数较低的滤波器

1、巴特沃思低通滤波器与切比雪夫低通滤波器的比较

切比雪夫工型:在通带内是单调的,在阻带内是等波纹

2、切比雪夫低通滤波器的幅频特性

$$|H(\omega)| = \sqrt{\frac{1}{1 + \varepsilon^2 T_n^2 \left(\frac{\omega}{\omega_c}\right)}}$$

• ϵ 是决定通带内起伏大小的波动系数,为小于1的正数; ω_c 为通带截

止频率; $T_n(\omega)$ 是n阶切比雪夫多项式

$$T_n(\omega) = \begin{cases} \cos(n \cdot \cos^{-1}(\omega)) \mid \omega \mid \leq 1 \\ \cosh(n \cdot \cosh^{-1}(\omega)) \mid \omega \mid > 1 \end{cases}$$

$$\cosh x = \frac{e^{x} + e^{-x}}{2}$$

$$\cosh^{-1} x = \ln(x \pm \sqrt{x^{2} - 1})$$

2、切比雪夫低通滤波器的幅频特性

2、切比雪夫低通滤波器的幅频特性

- 当 $0 \le \omega \le \omega_c$ 时, $|H(\omega)|$ 在1与 $1/\sqrt{1+\varepsilon^2}$ 之间等幅波动, ε 愈小,波动幅度愈小
- 所有曲线在 $\omega = \omega_c$ 时通过 $1/\sqrt{1+\varepsilon^2}$ 点
- 当 ω =0时,若n为奇数,则 $|H(\omega)|$ =1;若n为偶数,则 $|H(\omega)|$ = $1/\sqrt{1+\varepsilon^2}$;通带内误差分布是均匀的
- 当 $\omega > \omega_c$ 时,曲线单调下降, \emph{n} 值愈大,曲线下降愈快

- 2、切比雪夫低通滤波器的幅频特性
 - I型切比雪夫滤波器有三个参数需要确定:波动系数 ϵ , 通带截止频率 ω_{ϵ} 和阶数n
 - 通带截止频率一般按照实际要求给定; ϵ 表示通带内最大损耗,由容许的通带最大衰减 α_{\max} 确定

3、切比雪夫低通滤波器的阶次

切比雪夫滤波器的衰减函数定义为

$$\alpha = -20 \lg \left| H(\omega) \right| = 10 \lg \left(1 + \varepsilon^2 T_n^2 \left(\frac{\omega}{\omega_c} \right) \right)$$

$$\alpha_{\rm max}$$

通带最大衰减 α_{max} , 又称为通带波纹 , 定义为

$$\alpha_{\text{max}} = \alpha_p = \alpha|_{\omega = \omega_c} = 10 \lg(1 + \varepsilon^2)$$

波动系数ε为

$$\varepsilon = \sqrt{10^{\frac{\alpha_{\text{max}}}{10}} - 1}$$

3、切比雪夫低通滤波器的阶次

• 由滤波器的通带截止频率 ω_c 及通带内允许的最大衰减 α_{\max} 和阻带下限截止频率 ω_s 及阻带内允许的最小衰减 α_{\min} ,可以确定滤波器所需的阶数n

3、切比雪夫低通滤波器的阶次

阻带内允许的最小衰减为
$$\alpha_{\min} = \alpha_s = 10 \lg \left(1 + \varepsilon^2 \cosh^2 \left(n \cdot \cosh^{-1} \left(\frac{\omega_s}{\omega_c} \right) \right) \right)$$

滤波器的阶次为

$$n = \frac{\cosh^{-1} \left[\sqrt{\left(10^{0.1\alpha_{\min}} - 1\right) / \left(10^{0.1\alpha_{\max}} - 1\right)} \right]}{\cosh^{-1} \left(\frac{\omega_{s}}{\omega_{c}}\right)}$$

求出的 //不一定是整

4、切比雪夫滤波器的极点分布

令jω=s, 代入切比雪夫低通滤波器幅频特性函数

$$H(s)H(-s) = \frac{1}{1 + \varepsilon^2 T_n^2 \left(\frac{s}{j\omega_c}\right)}$$

归一化处理 , 将 s/ω_c 记为 \overline{S}

$$H(\overline{s})H(-\overline{s}) = \frac{1}{1 + \varepsilon^2 T_n^2 \left(\frac{\overline{s}}{j}\right)}$$

4、切比雪夫滤波器的极点分布

若极点
$$s_k = \sigma_k + j\omega_k$$

$$\sigma_{k} = \sin\left(\frac{2k-1}{n}\frac{\pi}{2}\right) \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right) \omega_{k} = \cos\left(\frac{2k-1}{n}\frac{\pi}{2}\right) \cosh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right)$$

I 型切比雪夫低通 滤波器幅度平方函 数极点分布在*s*平面 的椭圆上

$$\Rightarrow a = \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right)$$

$$b = \cosh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right)$$

$$a = \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right)$$

$$a = \sinh\left(\frac{1}{n}\sinh^{-1}\left(\frac{1}{\varepsilon}\right)\right)$$

5、切比雪夫滤波器的传递函数

求出幅度平方函数的极点后,取5左半平面的极点,即可求

得滤波器系统传递函数

$$H(s) = \frac{K}{(s - s_{p1})(s - s_{p2})\cdots(s - s_{pn})}$$

若*n*为奇数,
$$\left|H(\omega)\right|_{\omega=0}=1$$
,则 $K=(-1)^n s_{p1}s_{p2}\cdots s_{pn}$

若*n*为偶数,由于
$$\left|H(\omega)\right|_{\omega=0}=\frac{1}{\sqrt{1+\varepsilon^2}}$$
 , $T_n(0)=1$ 则为通带最小

值,有
$$K = \frac{(-1)^n s_{p1} s_{p2} \cdots s_{pn}}{\sqrt{1+\varepsilon^2}}$$

5、切比雪夫滤波器的传递函数

1.通带波纹0.5dB(\mathcal{E} =0.34931)

n	b_0	b ₁	\mathbf{b}_2	b_3	b ₄	b ₅	b_6	b ₇	
1	2.86278								
2	1.51620	1.42562							
3	0.71569	1.53490	1.25291						
4	0.37905	1.02546	1.71687	1.19739					
5	0.17892	0.75252	1.30957	1.93737	1.17249				
6	0.09476	0.43237	1.17186	1.58976	2.17184	1.15918			
7	0.04473	0.28207	0.75565	1.64790	1.86941	2.41265	1.15122		
8	0.02369	0.15254	0.57356	1.14859	2.18402	2.14922	2.65675	1.14608	

• 切比雪夫低通滤波器归一化H(s)分母多项式D(s)

例5-4 试求二阶切比雪夫低通滤波器系统函数,已知通带波纹

为1dB,归一化截止频率 $\omega_c = 1rad/s$ 。

解:
$$\alpha_{\text{max}} = 1dB$$
 $\epsilon^2 = 10^{\frac{\alpha_{\text{max}}}{10}} - 1 = 0.25892541$

因为 $\omega_c = 1 rad / s$, 查切比雪夫多项式表,有

$$T_2(\omega) = 2\omega^2 - 1$$
 $T_2^2(\omega) = 4\omega^4 - 4\omega^2 + 1$

切比雪夫滤波器<mark>的幅度平方函数</mark>

$$|H(\omega)|^2 = \frac{1}{1.0357016\,\omega^4 - 1.0357016\,\omega^2 + 1.25892541}$$

$$H(s)H(-s) = \frac{1}{1.0357016 \, s^4 + 1.0357016 \, s^2 + 1.25892541}$$

幅度平方函数的极点

$$s_1 = 1.0500049e^{j58.48^{\circ}}$$

$$s_2 = 1.0500049e^{j121.52^{\circ}}$$

$$s_3 = 1.0500049e^{-j121.52^{\circ}}$$

$$s_4 = 1.0500049e^{-j58.48^{\circ}}$$

系统函数H(s)的极点由幅度平方函数的左半平面极点(S_2, S_3)

决定,由于*n*为偶数,有
$$K = \frac{(-1)^n s_{p1} s_{p2} \cdots s_{pn}}{\sqrt{1 + \varepsilon^2}} = 0.9826133$$

$$H(s) = \frac{0.9826133}{s^2 + 1.0977343s + 1.1025103}$$

