

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

STRUCTURES REPORT 381

FATIGUE LIFE VARIABILITY IN ALUMINIUM ALLOY AIRCRAFT STRUCTURES

by

G. S. JOST and S. P. COSTOLLOE

Approved for Public Release.

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT

C COMMONWEALTH OF AUSTRALIA 1980

COPY No 19

FILE COPY

JANUARY 1980

81 4 2 123

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

14 ARMS11 1 -= 1 STRUCTURES REPORT 381

FATIGUE LIFE YARIABILITY IN ALUMINIUM ALLOY AIRCRAFT STRUCTURES

G. S. JOST and S. P. COSTOLLOE

11 Jan

SUMMARY

A survey of variability in the fatigue lives of aluminium alloy aircraft structures tested under gust and manoeuvre loadings using programmed and random sequences has shown that scatter associated with gust loading is significantly higher than that for manoeuvre loading. By contrast, there appears to be no systematic effect of loading sequence.

The data have been treated both as lognormal and Weibull distributed

POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box 4331, P.O., Melbourne, Victoria, 3001, Australia.

DOCUMENT CONTROL DATA SHEET

. Document Numbers (a) AR Number: AR-001-788 (b) Document Series and Number:	2. Security Classification (a) Complete document:							
AR-001-788 (b) Document Series and Number:								
	Unclassified							
	(b) Title in isolation:							
Structures Report 381	Unclassified							
(c) Report Number: ARL-Struc-Report-381	(c) Summary in isolation: Unclassified							
B. Title: FATIGUE LIFE VARIABILITY STRUCTURES	IN ALUMINIUM ALLOY AIRCRAFT							
Personal Author(s):	5. Document Date:							
G. S. Jost S. P. Costolloe	January, 1980							
S. F. Costolioe	6. Type of Report and Period Covered:							
Corporate Author(s): Aeronautical Research Laboratories	8. Reference Numbers (a) Task: (b) Sponsoring Agency:							
7. Cost Code: 27 7030	(b) Sponsoring / Iguney.							
. Imprint: Aeronautical Research Laboratories, Melbourne	11. Computer Program(s) (Title(s) and language(s)): Not applicable							
Release Limitations (of the document) Approved for public release								
2-0. Overseas: N.O. P.R. 1	B C D E							
Announcement Limitations (of the inform No limitation	ation on this page):							
. Descriptors:	15. Cosati Codes:							
Fatigue life Aircraft	structures 1106							
Aluminium alloys Gust loa	is 1113							
ABS	RACT							

A survey of variability in the fatigue lives of aluminium alloy aircrast structures tested under gust and manoeuvre loadings using programmed and random sequences has shown that scatter associated with gust loading is significantly higher than that for manoeuvre loading. By contrast, there appears to be no systematic effect of loading sequence.

The data have been treated both as lognormal and Weibull distributed.

CONTENTS

	Page No.
NOTATION	
1. INTRODUCTION	1
2. DATA	1
3. ANALYSIS	1
4. CONCLUSIONS	2
REFERENCES	
APPENDIX	
TABLES	
FIGURE	
DISTRIBUTION	

NOTATION

f	function
i	failure number, $1 \le i \le n$
k	sample number, $1 \le k \le m$
n	number in the sample
m	number of sample
s	sample standard deviation of log life
x	fatigue life
y	$\log x$
α	dispersion parameter of Weibull distribution
β	location parameter of Weibull distribution
Γ	gamma function
ν_k	degrees of freedom of k^{th} sample = $n_k - 1$
Σ	sum
σ	standard deviation of log normal distribution
μ	mean of log normal distribution
â	pooled sample estimate of σ
â	pooled sample estimate of α .

1. INTRODUCTION

Since an earlier report on this subject was issued in 1971¹, additional data on fatigue life variability in aircraft structures have been published. In Reference 1 data on scatter arising from full scale fatigue tests on many aluminium alloy aircraft structures were analysed on the basis of the log normal distribution. Data pooling permitted the establishment of typical values for given types of loading and/or sequence. It was considered worthwhile repeating the exercise to include the additional data, and to treat the total body of data also in terms of the two parameter Weibull distribution.

2. DATA

The opportunity has been taken to make some improvements to the earlier report. First, neither the constant amplitude data nor the notched specimen data given there are included here. The relevance of such data to service sequence loading and to real structures, respectively, is now recognised as rather remote, and the present adequate and far more appropriately based data make their use unnecessary.

The variable amplitude data of the original report were classified into symmetric and asymmetric loadings, and those which included ground to air cycles. These categories have been retained but the first two have been retitled gust loading and manoeuvre loading respectively. Loadings in the former category are symmetrical about the 1 g level and are typical of civil or transport aircraft, whilst manoeuvre loadings are characterised by a marked asymmetry typical of, for example, fighter aircraft. All of the additional published data fall into the manoeuvre loading category which now contains over 160 individual test results.

Finally, the source data used for subsequent analysis were not included in the earlier report. That omission is rectified here in Tables 1, 2 and 3 where the details of the data from gust loading, manoeuvre loading and from loadings which included ground to air cycles are given.

it is to be noted that the data considered here have all been generated prior to the general introduction of closed loop servo (or load feedback) fatigue testing equipment with its inherent precision and long term stability. The indications from data obtained on specimens and components under more representative testing and/or more modern testing equipment are that the scatter associated with such tests results does, if anything, tend to decrease. The present scatter estimates may therefore be considered as representing upper variability bounds.

3. ANALYSIS

The data have been fitted to the log normal and Weibull distributions. Defining $y = \log x$, where x represents fatigue life in cycles or hours, the normal distribution of y is given by

$$f(y) = (\sigma \sqrt{2\pi})^{-1} \exp \left[-\frac{1}{2}((y-\mu)/\sigma)^2\right]$$

where μ and σ^2 are the mean and variance respectively, their estimators from a sample of size n being given by

$$\bar{y} = \sum_{i=1}^{n} y_i / n$$

$$s^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2 / (n-1)$$

For the Weibull distribution

$$f(x) = (\alpha/\beta) (x/\beta)^{\alpha-1} \exp \left[-(x/\beta)^{\alpha}\right]$$

where α and β are the dispersion and location parameters of x respectively, their maximum likelihood estimators being given by

$$\hat{\alpha} = n \sum_{i=1}^{n} x_i \hat{\alpha} / \left[n \sum_{i=1}^{n} x_i \hat{\alpha} \ln x_i - \left(\sum_{i=1}^{n} \ln x_i \right) / \sum_{i=1}^{n} x_i \hat{\alpha} \right]$$

and

$$n\hat{\beta}^2 = \sum_{i=1}^n x_i^2$$

Estimates of μ and σ and of α and β for the data of Tables 1, 2 and 3 are given in Tables 4, 5 and 6. In these latter, program loading data have been separated from random loading data.

The final steps are taken in Table 7 for the lognormal analysis, and in Table 8 for the Weibull analysis where the results of pooling of variabilities of like groups of test data are presented*. The data have been pooled as follows: For the data treated as log normal

$$\hat{\sigma}^2 = \sum_k \nu_k \, S_k^2 / \sum_k \nu_k \,,$$

and as Weibull (see Appendix)

$$\hat{a} = \sum_{k} n_k / \sum_{k} \left[n_k \left(\sum_{i} x_{ik} \hat{x} \ln x_{ik} \right) / \left(\sum_{i} x_{ik} \hat{x} \right) \right] = \sum_{i} \ln x_{ik}.$$

Considering first the lognormal analysis, Table 7, the additional data confirm the values previously established:

- (1) for gust loading, $\hat{\sigma} = 0.14$
- (2) for manoeuvre loading $\hat{\sigma} = 0.09$
- (3) the ground to air cycle data are too limited to permit generalised conclusions: their inclusion in the earlier categories does not significantly alter the above values, and
- (4) loading sequence (program versus random) has no significant effect upon variability in fatigue life.

The corresponding Weibull analysis gives, for estimates of typical dispersion parameters:

- (1) for gust loading $\hat{a} = 3.9$, and
- (2) for manoeuvre loading $\hat{a} = 6 \cdot 2$.

Rounding these to the nearest whole numbers, $\hat{a} = 4$ for civil flying and $\hat{a} = 6$ for military fighter flying. The former is in agreement with another estimate for civil aircraft¹⁷.

It is of interest to contrast the \hat{a} and $\hat{\sigma}$ estimates for the various groups of data of Tables 4, 5 and 6. This is shown in Figure 1. On average a straight line relationship between $1/\hat{a}$ and $\hat{\sigma}$ fits the data points well, and is given by

$$\hat{a}\hat{\sigma}=0.6$$
.

4. CONCLUSIONS

Analysis of the fatigue lives of over 200 variable amplitude fatigue tests on aluminium alloy aircraft structures indicates that

(1) Variability in fatigue life may be characterised by the following typical values of dispersion parameter:

^{*} In Reference 1, the question of whether scatter in fatigue life varied with life was examined. It was concluded there that the life range of the data was too limited to allow resolution of this point. The additional data included here do not alter this conclusion.

	Data treated as					
Loading Sequence	Log Normal	Weibull â				
Gust Manoeuvre	0·14 0·09	3·9 6·2				

- (2) These values are statistically independent of whether the loading sequence was program or random.
- (3) These results are not significantly altered by the inclusion of the very limited available data from sequences which included the ground to air cycle.

REFERENCES

- 1. Jost, G. S., Verinder, F. E.—A Survey of Fatigue Life Variability in Aluminium Alloy Aircraft Structures. A.R.L. Dept. of Supply, Report SM329, February, 1971.
- 2. Whaley, R. E.—Fatigue Investigation of Full-Scale Transport-airplane Wings. N.A.C.A. Tech. Note 4132, November 1957.
- Foster, L. R., Whaley, R. E.—Fatigue Investigation of Full-Scale Transport-airplane Wings. N.A.S.A. Tech. Note D-547, October 1960.
- 4. Rosenfeld, M. S.—Aircraft Structural Fatigue Research in the Navy. A.S.T.M. Special Technical Publication No. 338, p. 216, 1963.
- 5. Haas, T.—Spectrum Fatigue Tests on Typical Wing Joints. Materialprufung Bd. 2, p. 1, 1960. (I.C.A.F. Document No. 147).
- Deneff, G. V.—Fatigue Prediction Study. Wright-Patterson Air Force Base, Ohio, Tech. Report No. WADD, TR61-153, January 1962.
- Crichlow, W. J., McCulloch, A. J., Young, L., and Melcon, M. A.—An Engineering Evaluation of Methods for the Prediction of Fatigue Life in Airframe Structures. Wright-Patterson Air Force Base, Ohio, Tech. Report No. ASD-TR-61-434, March 1962.
- 8. Jost, G. S., and Lewis, Jeanette A.—A Comparison of Experimental and Predicted Fatigue Lives of Mustang Wings under Programmed and Random Loading. A.R.L. Dept. of Supply, Report SM.300, December 1964.
- 9. Schijve, J., and de Rijk, P.—Fatigue Lives obtained in Random and Program Tests on Full-scale Wing Centre Sections. N.L.R. TM S.611, December 1963.
- 10. Parish, H. E.—Fatigue Test Results and Analysis of 42 Piston Provost Wings. Ministry of Aviation, S. and T. Memo. 1/65, April 1965.
- 11. Parish, H. E.—Fatigue Test Results and Analysis of four Piston Provost Wings tested in Ascending order of Loading. Ministry of Technology S. and T. Memo 1/68, March 1968.
- 12. Parish, H. E.—Fatigue Test Results and Analysis of 11 Piston Provost Wings to Determine the Effect of Order of Programmed Load. Ministry of Technology S. and T. Memo 5/67, January 1968.
- 13. Ward, A. P., and Parish, H. E.—Fatigue Test Results and Analysis of £6 Piston Provost Wings tested under Random Loading and their Comparison with Block Programming Results from Similar Specimens. Ministry of Defence S. and T. Memo. 5/74, October 1974.
- 14. North American Aviation, Inc.—F-86F Structural Integrity Engineering Investigation Phase II Fatigue Test Program Final Report NA-63-844, Volume II, May 1965.
- 15. Patching, C. A., and Mann, J. Y.—Comparison of an Aluminium Alloy Structure with Notched Specimens under Programme and Random Fatigue Loading Sequences. Fatigue Design Procedures (eds. E. Gassner and W. Schutz) London. Pergamon Press, 1969, pp. 395-432.
- 16. Mordfin, L., and Halsey, N.—Programmed Manoeuvre-Spectrum Fatigue Tests of Aircraft Beam Specimens. A.S.T.M. Special Technical Publication No. 338, p. 251, 1963.
- 17. Thompson, P. A.—A Procedure for Estimating the Demonstrated Fatigue Life of Airplane Structure from Fleet Service Experience. Document No. D6-41246TN, The Boeing Company, 1973.

APPENDIX

Pooling of Weibull Dispersion Estimates

By D. G. Ford

Suppose there are m samples each of size n_k , k = 1 to m, from different Weibull populations with location parameter β_k but a common dispersion parameter, α , then

$$f(x_k) = (\alpha/\beta_k) (x_k/\beta_k)^{\alpha-1} \exp \left[-(x_k/\beta_k)^{\alpha}\right]$$

and the likelihood function is

$$\prod_{k} \left\{ \prod_{i=1}^{n_k} (\alpha/\beta_k) (x_{ik}/\beta_k)^{z-1} \exp\left[-(x_{ik}/\beta_k)^z\right] \right\} = e^L \text{ say.}$$

Then

$$L = \sum_{k} n_k \ln \alpha - \alpha \sum_{k} \ln \beta_k + (\alpha - 1) \sum_{k} \sum_{i} \ln x_{ik} - \sum_{k} \sum_{i} (x_{ik}/\beta_k)^{\alpha}$$
 (1)

Maximum likelihood estimators of α and β_k are found by putting $\partial L/\partial \alpha = 0$ and $\partial L/\partial \beta_k = 0$. For the location parameter

$$\frac{\partial L}{\partial \beta_k} = -\alpha n_k / \beta_k + \alpha \sum_{i=1}^{n_k} x_{ik}^{\alpha} / \beta_k^{\alpha+1} = 0$$

and

the second of th

$$\hat{\beta}_{k}^{\hat{\alpha}} = \sum_{i=1}^{n_{k}} x_{ik}^{\hat{\alpha}} / n_{k}. \tag{2}$$

For the dispersion parameter

$$\frac{\partial L}{\partial \alpha} = \sum_{k} n_k / \alpha - \sum_{k} n_k \ln \beta_k + \sum_{k} \sum_{i=1}^{n_k} \ln x_{ik} - \sum_{k} \sum_{i=1}^{n_k} (x_{ik} / \beta_k)^{\widehat{\alpha}} \ln (x_{ik} / \beta_k) = 0$$

which, after simplifying and substituting for β_k from (2) becomes

$$\hat{\alpha} = \sum_{k} n_k / \sum_{k} n_k \left(\sum_{i=1}^{n_k} x_{ik}^{\hat{\alpha}} \ln x_{ik} \right) / \left(\sum_{i=1}^{n_k} x_{ik}^{\hat{\alpha}} \right) - \sum_{i=1}^{n_k} \ln x_{ik} \right). \tag{3}$$

For its solution Equation (3) requires iterative substitution for \hat{a} : the process is programmed at A.R.L.

TABLE 1
Fatigue Life Data—Gust Loading

Group No.	Reference	Structure	Cycles	Group No.	Reference	Structure	Cycles
1	8 Table VII	Mustang Wing	2418000	5	7 Table 98	Builtup Panel	880000 1008000
		(24S-T)	1485000 1400000	6	7 Table 98	(7075-T6) Builtup Panel (7075-T6)	904000 776000 928000
2	8 Table VII	Mustang Wing	1082000 1016000				
		(24S-T)	820000 801000 1951000	7	9 Table 2	Friendship Wing (7075-T6)	195182 247360
			1994000 1396000	8	8 Table VIII	Mustang Wing (24S-T)	5344000 2751000 1626000 3707000
3	2 Table 3	Commando Wing (24S-T)	8950350 8652005 10322737 7160280 13067511 10919427				4060000 2423000 2340000 3598000 2249000 1390000
4	3 Table V	Commando Wing (24S-T)	531063 722007 584766 733941	9	9 Table 2	Friendship Wing (7075-T6)	208710 146870

TABLE 2
Fatigue Life Data—Manoeuvre Loading

Group No.	Reference	Structure	Cycles	Group No.	Reference	Structure	Cycles
	6 Table 15	Builtup	63300	12	10 Table 4	Piston	108592
	o rubic 15	Structure	62272			Provost	88400
	1	(7075)	85958			Wing	137296
		()	52805			1	132912
					1		141376
2	6 Table 16	Builtup	63128		:		183376
_		Structure	75936			1	176608
}	}	(7075)	68408	1	1	1	144608
			47288				112208
				l		l	150016
3	7 Table 98	Builtup	480000	1		1	177552
		Panel	736000		1	1	178752
	Ì	(7075–T6)	960000		'	1	160864
ļ				1		j	142464
Ì	Ę		}				167744
4	4 Table VI		52170		ļ		148144
ļ		Wing	40348			1 1	108560
Ì			38549				138560
	į						162352
5	4 Table VI		82332				152752
ļ		Wing	77291		!	1 1	153168 130768
}		5	22402	 			155200
6	4 Table V	Fighter	22682		*		154000
ĺ	1	Tail	38629	<u>{</u> {	i	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	158400
		l	33992	 			190128
_	A Table V	Fighton	113209]		1	166624
7	4 Table V	Fighter Tail	93770	1	1		122080
1		1 411	67309		1		165824
1			0/307	İ		1	158320
8	4 Table V	Fighter	107560	1			166528
\ °	4 Table V	Tail	74536	ll.	Ì	i i	189328
		1 4"	109572				121552
1			10,0,0				175104
9	4 Table V	Fighter	45459	1	1	1	118192
) ′	, rabic v	Tail	50883				177408
1			35256				131600
							190192
10	4 Table V	Fighter	31680				123088
ì		Tail	37020	N	;		214752
			40160		1		245552
}		}		}}]		0.450:
11	4 Table V		55019	13	14 pp. B-88	F86-F	84591
[Tail	64833		n 20	Horizontal	
	į		68430		B-89	Stabilizer	150384
1					,		ļ
1	İ		1				1
l		(1	\parallel		1	{
]	<u></u>	1	<u> </u>	<u> </u>	<u> </u>		<u></u>

TABLE 2 [Continued]

Group No.	R	eference	Structure	Cycles	Group No.	R	eference	Structure	Cycles
14	11	Table 3	Piston Provost Wing	177200 142192 124800 122192	22	16	Table VIII	Box Beam (7075-T6)	69660 36720 55080
15	12	Table 3	Piston Provost	125248 130448	23	16	Table VIII	Box Beam (7075-T6)	72756 52116 49794
			Wing	127984 80384 127760 120960 140800	24	13	Table 1 (i)	Piston Provost Wing	129200 155600 127600 148400
				140400 144400 100400	25	8	Table VIII		131200 1147000
16	15	Table 6	Vampire Wing	165600 430760 396940				Wing (24S-T)	912000 720000 924000 907000
,			(2L65)	590782 520472 459952 406552 354576	26	4	Table VI	Fighter Wing	751000 45963 51299 44765
17	15	Table 7	Vampire Wing	452476 383590 379318	27	15	Table VIII	Vampire Wing	466716 366324
		:	Wing (2L65)	379318 406445 414028 370062 400856 380564	28	13	Table I (ii)	(2L65) Piston Provost Wing	140400 104272 145120 114160 132000
18	16	Table VIII	Box Beam (7075-T6)	92777 56540 62190	29	13	Table I (iii)	Piston Provost Wing	145600 191200 215680 150000
19	16	Table VIII	Box Beam (7075–T6)	76140 83700 105840	30	13	Table 1 (iv), (v)	Piston Provost	130640 160000
20	16	Table VIII	Box Beam (7075-T6)	194040 212520			(vi)	Wing	132640 114432 155760 102880
21	16	Table VIII	Box Beam (7075-T6)	261290 132182			1		87360 117600 179264 149440 201344

TABLE 3
Fatigue Life Data—Loading Including Ground to Air Cycles

Group No.	P	Reference	Structure	cture Cycles Group Reference No.		Reference	Structure	Cycles	
1	5	Table 2	Britania Wing Joint	981205 987440 1294976 1082724 1083724	7	7	Table 104 (Fig. 27)	Builtup panel	218881 394309
2	7	Table 103 (Fig. 26)	Builtup panel	638764 765582				,	
3	9	Table 2	Friendship Wing	124121 115706					
4	9	Table 2	Friendship Wing	100707 79726					
5	8	Table VIII	Mustang Wing	485000 1053000 668000 272000 542000 979000 961000 1101000 775000 855000					
6	4	Table VI	Fighter Wing	37575 58338					

TABLE 4
Gust Loading Data—Analysis

Grave	Numbers of load Levels	Loading No. of		Lognor	mal	Weibull		
Group No.	Up/Down	Sequence	Specs.	$ar{x}$ Log Cycles	s	β Cycles	α	
1	3/3	Program	4	6.175	0.158	1761000	3 · 238	
2	3/3	,,	7	6.085	0.165	1455000	3.027	
3	16/16	,,	6	6.985	0.091	10635000	5.641	
4	16/16	,,	4	5.804	0.069	681000	8.954	
5	36/36	,,	2	5.974	0.042	974000	17.668	
6	19/19	,,	3	5.938	0.042	898000	18 · 343	
7	15/15	,,	2	5.342	0.073	233000	10-128	
8	11/11	Random	10	6.436	0.182	3323000	2.754	
9	15/15	,,	2	5 · 243	0.108	191000	6.828	

TABLE 5
Manoeuvre Loading Data—Analysis

Group	No. of L	oad Levels	Landina	No. of	Lognori	nal	Wei	bull
No.	Up/ Down	Lower Bound	Loading Sequence	No. of Specs.	$ar{x}$ Log Cycles	S	β Cycles	α
1	5/1	Constant	Program	4	4.813	0.088	71300	5 · 582
2	5/1	,,	**	4	4 · 798	0.088	68000	7 · 684
3	11/1	!	**	3	5 · 843	0.152	800000	4 · 30
4	4/1	•	. ,,	3	4.636	0.071	46400	7 · 56
5	10/1	,,	••	2	4.902	0.019	81000	37.97
6	4/1	•	•••	3	4 · 491	0.121	34400	6.01
7	5/1	••	••	3	4.951	0.114	99000	5 · 80
8	5/1	,,	**	3	4.981	0.094	104000	8 · 44
9	4/1	•	••	3	4.637	0.082	46600	8-47
10	5/1	•	••	3	4 - 558	0.052	37800	12.86
11	5/1	••	••	3	4 · 796	0.049	65200	14-63
12	6/6	Gust	• • • • • • • • • • • • • • • • • • • •	41	5-180	0.087	167000	5 · 23
13	5/1	Constant	•	3	5.075	0.131	133000	5 · 58
14	6/6	Gust	• ••	4	5 · 146	0.074	151000	6 · 58
15	6/6	•	••	11	5 · 099	0.084	136000	7.04
16	6/6	, ,,	,,	8	5 · 650	0.070	483000	6.53
17	6/6	•••	••	8	5.580	0.036	393000	19.07
18	4/1	Constant	••	3	4.838	0.114	77000	4.72
19	5/1	,,	• • • • • • • • • • • • • • • • • • • •	3	4 · 943	0.074	94200	7 - 48
20	6/1	••	••	2	5 · 308	0.028	208000	26 · 37
21	6/1	•••	• ••	2	5 · 269	0.209	220000	3 · 52
22	6/1	••	,,	3	4.716	0.141	59100	4 · 70
23	5/1	••	,,	3	4.759	0.090	62700	5.93
24	6/6	Gust	••	5	5 · 140	0.039	144000	12.82
25	12/9	Gust	Random	6	5.946	0.073	955000	6.65
26	4/1	Constant	. •••	3	4 674	0.031	48700	17.18
27	6/6	Gust	••	2	5.616	0.074	439000	9.90
28	6/6	••	••	5	5 · 101	0.061	134000	10.18
29	6/6	••	••	. 5	5 · 276	0.111	212000	4.63
30	6/6	**	••	11	5.132	0.107	152000	4.68

TABLE 6

Data Including Ground to Air Cycles—Analysis

Туре			Loading History					Lognormal		Weibull	
Group No.			ad Levels	Loading	l ner	No. of Specs		s	β	α	
		Up/ Down	Lower Bound	Sequence	GA Cycle		Cycles		Cycles		
1	Gust	7/7	Gust	Program	64	5	6.034	0.049	1140000	9 · 228	
2	,,	19/19	,,	**	Complex	2	5.845	0.056	731000	13 - 249	
3	,,	15/15	••	••	12.5	2	5.079	0.022	122000	34 - 177	
4	,,	15/15	,,	Random	12	2	4.952	0.072	94900	10.270	
5	,,	11/11	••	••	≈ 36	10	5 · 854	0.190	857000	3 · 495	
6	Man-		Con-								
	oeuvre	4/1	stant	Program	13	2	4.670	0.135	52200	5 · 454	
7	,,	11/1	••	Random	Complex	2	5.468	0.181	340000	4.076	

TABLE 7
Structural Fatigue Life Variability—Lognormal Analysis

(a) Gust Loading

Loading Spectrum Upper Lower		Loading S	Dooled	
		Program	Random	Pooled
Gust	Gust	0·120 (28, 21) →	.S. → 0·176 (12, 10)	0.141 (40, 31)

(b) Manoeuvre Loading

Loading Spectrum		Loading Sequence		Pooled	
Upper	Lower	Program	Random	rooled	
			N.S.		
Manoeuvre	Gust	0.079 (77, 71)	↔ 0.094 (29, 24)	0.083 (106, 95)	
		1 N.S.	1 N.S.	1 N.S.	
			N.S.		
Manoeuvre	Constant	0 · 103 (53, 35)	↔ 0.031 (3, 2)	0.100 (56, 37)	
			N.S.		
Pooled		0.087 (130, 106	$) \leftrightarrow 0.090 (32, 26)$	0.088 (162, 132	

(c) Loading including Ground Air Cycles

Loading Spectrum		Loading Sequence		Pooled	
Upper	Lower	Ground Air Cycle	Program	Random	Toolea
Gust	Gust	Simple	0·045 (7, 5) 1 N.S. 0·056 (2, 1)	+0·182 (12, 10) Sig	0.147 (21, 16)
Gust	Gust	Complex	0.056 (2, 1)		}
Manoeuvr	e Constant	Simple	0.135 (2, 1) ←		
	! !		N.	S.	0.160 (4, 2)
Manoeuvr	e Constant	Complex		→0·181 (2, 1)	J

Entries show standard deviation of log life, with number of test specimens and degrees of freedom, respectively, in parentheses.

N.S.: F test comparison of variances not significant at 5% level.

Sig.: F test comparison of variances significant at 5°_{\circ} level.

TABLE 8
Structural Fatigue Life Variability—Weibull Analysis

(a) Gust Loading

Loading Spectrum		Loading Sequence		Pooled
Upper	Lower	Program	Random	100104
Gust	Gust	4.708 (28)	2.987 (12)	3.934 (40)

(b) Manoeuvre Loading

Loading Spectrum		Loading Sequence		Pooled
Upper	Lower	Program	Random	Toolog
Manoeuvre	Gust	6.092 (77)	5.620 (29)	5.966 (106
Manoeuvre	Constant	6 · 529 (53)	17 · 185 (3)	6.740 (56)
Pooled		6.233 (130)	5.918 (32)	6 · 171 (162)

(c) Loading Including Ground Air Cycles

Loading Spectrum			Loading Sequence		Pooled
Upper	Lower	Ground Air Cycle	Program	Random	i looku
Gust	Gust	Simple	10.844 (7)	3.893 (12)	5 · 441 (21)
Gust	Gust	Complex	13.25 (2))
Manoeuvre	Constant	Simple	5 · 454 (2)	_	4-665 (4)
Manoeuvre	Constant	Complex		4.076 (2)) . 555 (1)

Entries show dispersion parameter of fatigue life, with number of test specimens in parentheses.

DISTRIBUTION

	Copy No.
AUSTRALIA	
Department of Defence	
Central Office Chief Defence Scientist	1
Deputy Chief Defence Scientist	-
Superintendent, Science and Technology Programs	2
Australian Defence Scientific & Technical Representative (UK)	
Counsellor, Defence Science (USA)	_
Joint Intelligence Organisation	4
Defence Library	5
Assistant Secretary, D.I.S.B.	6–21
Aeronautical Research Laboratories	
Chief Superintendent	22
Library	23
Superintendent—Structures Division	24
Divisional File—Structures	25
Authors: G. S. Jost	26
S. P. Costolloe	27
D. G. Ford	28
L. R. Gratzer	29
Materials Research Laboratories	
Library	30
Defence Research Centre Salisbury	
Library	31
Central Studies Establishment	
Information Centre	32
Defence Regional Office	
Library	33
Air Force Office	
Aircraft Research & Development Unit Scientific Flight Group	34
Air Force Scientific Adviser	35
D. Air Eng. AF	36
Technical Division Library	37
HQ Support Command (SENGSO)	38
RAAF Academy, Point Cook	39
Department of Productivity	
Government Aircraft Factories	
Manager Library	40
Department of Transport	
Secretary	41
Library	42
Airworthiness Group, Mr K. O'Brien	43
Mr.C. Torkington	44

Statutory, State Author	ities and Industry	
C.S.I.R.O. Mechan	nical Engineering Division, Library	45
Qantas, Library		46
Commonwealth Ai	rcraft Corporation:	
Manager	•	47
Manager of E	ngineering	48
Hawker de Havilla		
Librarian, Bar		49
Manager, Lide		50
•		
Universities and Colle	•	
Adelaide	Barr Smith Library	51
Flinders	Library	52
James Cook	Library	53
Latrobe	Library	54
Melbourne	Engineering Library	55
Monash	Library	56
Newcastle	Library	57
New England	Library	58
Sydney	Engineering Library	59
N.S.W.	Library	60
Queensland	Library	61
Tasmania	Engineering Library	62
West. Australia	Library	63
R.M.I.T.	Library	64
K.W.I.T.	Mr H. Millicer	65
	WII II. WIIIICCI	05
CANADA		
	stania Tad Tibuan.	66
	atories Ltd, Library	
CAARC Coordina		67
	Aviation Organization, Library	68
NRC, National Ac	eronautical Establishment, Library	69
Universities and Colle	eges	
McGill	Library	70
Toronto	Institute for Aerospace Studies	71
FRANCE		
		72
AGARD, Library		
ONERA, Library		73
Service de Docume	entation, Technique de l'Aeronautique	74
GERMANY		
ZI DI		75
INDIA		24
CAARC Co-ordin		76
CAARC Co-ordin		77
Civil Aviation Dep		78
Defence Ministry,	Aero Development Establishment, Library	79
	utics Ltd., Library	80
Indian Institute of	Science, Library	81
Indian Institute of	Technology, Library	82
	tical Laboratory, Director	83
INTERNATIONAL COI Per Australian ICA	MMITTEE ON AERONAUTICAL FATIGUE	84–109
i ci Australian IC/	ai representative	0 4 -107

ISRAEL Technion—Israel Institute of Technology, Prof. J. Singer	110
ITALY	
Associazione Italiana di Aeronautica e Astronautica Fiat Co., Dr G. Gabrielli	111 112
JAPAN National Aerospace Laboratory, Library	113
Universities	
Tohoku (Sendai) Library Tokyo Inst. of Space & Aeroscience	114 115
NETHERLANDS	
Central Org. for Applied Science Research TNO, Library National Aerospace Laboratory (NLR), Library	116 117
NEW ZEALAND	
Librarian, Defence Scientific Establishment	118
Transport Ministry, Civil Aviation Division, Library	119
Universities Canterbury Library	120
SWEDEN	
Aeronautical Research Institute	121
SAAB-Scania, Library	122
Research Institute of the Swedish National Defence	123
SWITZERLAND	
Armament Technology and Procurement Group	124
Brown Boverie, Management Chairman	125
Escher—Wyss Ltd., Manager	126
TECHNICAL CO OPERATION PROCESSMEE BANKE THE TOTAL	127-131
TECHNICAL CO-OPERATION PROGRAMME PANEL TPH-3 Per Australian National Leader	127-131
Tel Australian National Leader	
UNITED KINGDOM	
Aeronautical Research Council, Secretary	132
CAARC, Secretary	133
Royal Aircraft Establishment:	134
Farnborough, Library Bedford, Library	135
Commonwealth Air Transport Council Secretariat	136
National Physical Laboratories, Library	137
National Engineering Laboratories, Superintendent	138
British Library, Science Reference Library	139
British Library, Lending Division	140
CAARC Co-ordinator, Structures	141
Aircrast Research Association, Library	142
British Non-Ferrous Metals Res. Assoc.	143
Fulmer Research Institute Ltd., Research Director	144
Rolls-Royce (1971) Ltd.: Aeronautics Division, Chief Librarian	145
Bristol Siddeley Division T.R. & I. Library Services	146
Science Museum Library	147
Welding Institute, Library	148

F

Mile Caralles de Librario III de la Caralles de la

and the selection of the selection of

1

British Aerospace Con	rporation:	
	Division, Library	149
Manchester Divi	150	
Kingston-upon-T		151
	Division, Library	152
Weybridge-Bristo	153	
Warton Division	154	
	155	
	British Hovercraft Corporation Ltd., Library Fairey Engineering Ltd., Hydraulic Division	
Short Brothers Harland		156 157
	Westland Helicopters Ltd.	
_		158
Universities and Colleges Bristol		3.50
	Library, Engineering Department	159 160
Cambridge	Library, Engineering Department	161
Liverpool	Library	161 162
London	Professor A. D. Young, Aero Engineering	
Belfast	Library	163
Manchester	Library	164
Nottingham	Library	165
Sheffield	Library	166
Southampton	Library	167
Strathclyde	Library	168
Cranfield Institute		
of Technology	Library	169
Imperial College	The Head	170
UNITED STATES OF AM	IFRICA	
	Technical Information Facility	171
Sandia Group Resear	172	
American Institute of		
Applied Mechanics R		173
· •		174
The John Crerar Libr	•	175
Bell Helicopter Textro		176
Boeing Co., Head Off		177
	1 Production Division	178
Cessna Aircraft Co., 1		179 180
	Lockheed Missiles and Space Company	
Lockheed California	• •	181 182
_	Lockheed Georgia Company	
McDonnell Douglas Corporation, Director		183
Calspan Corporation		184
Battelle Memorial Ins	titute, Library	185
Universities and Colleges	5	
Brown	Library	186
Florida	Library	187
Harvard	Library	188
Johns Hopkins	Library	189
Iowa State	Library	190
Princeton	Library	191
Stanford	Library	192
Polytechnic Institute	•	
of New York	Aeronautica Labs. Library	193
California Institute		
of Technology	Guggenheim Aeronautical Labs. Library	194
Massachusetts Inst.		
of Technology	Library	195
Spares		196-205