요구사항명세서

(Software Requirements Specification)

프로젝트명

해상교통 빅데이터 분석 및 머신러닝을 활용한 선박 이동 예측 모델 개발

조	02 조
지도교수	김경섭 교수님 (서명)
조원	202000826 김연범 202102925 이한을 201802124 이동원 (종합설계 기수강자)

Table of Contents

1. Introduction	1
1.1. Purpose	1
1.2. Scope	1
1.3. Definitions, acronyms, and abbreviations	1
1.4. References	1
2. External Interface Requirements	2
2.1. 사용자 인터페이스 (User Interface)	2
2.2. 하드웨어 인터페이스 (Hardware Interface) ·······	2
2.3. 소프트웨어 인터페이스 (Software Interface)	2
2.4. 통신 인터페이스 (Communication Interface) ·······	2
3. System Features	3
3.1. 시스템 기능 1 (System Feature 1)	3
3.1.1. 설명 및 우선순위 (Description and Priority) ·······	3
3.1.2. 기능 요구사항 (Functional Requirements) ·······	3
3.2. 시스템 기능 2 (System Feature 2)	3
3.2.1. 설명 및 우선순위 (Description and Priority) ······	3
3.2.2. 기능 요구사항 (Functional Requirements) ·······	3
4. Other Nonfunctional Requirements ······	4
4.1. 성능 요구 (Performance Requirements)	4
4.2. 안전 요구 (Safety Requirements) ······	4
4.3. 보안 요구 (Security Requirements) ·······	4
4.4. 소프트웨어 품질 속성 (Software Quality Attributes) ·······	5
5. Other Requirements ······	6
5.1. H/W 제약 조건 ······	6
5.2. 자원, 인력에 대한 제약 조건	6
6. 부록	7

1. Introduction

1.1. Purpose

이 문서는 AIS 데이터를 기반으로 선박의 항로를 예측하고, 근접 충돌 위험을 탐지하는 소프트웨어 시스템의 개발을 위한 요구사항을 정리한 문서이다. 본 문서는 시스템이 수행해야 할 주요 기능, 성 능 요건, 외부 인터페이스 등의 내용을 명확히 기술함으로써 개발자, 디자이너, 이해관계자 간의 공 통된 이해를 돕는 데 목적이 있다.

이 문서는 특히 선박 운항자 및 항만 관제사(VTS)를 주요 이해당사자(stakeholder)로 하며, 이들이 실시간으로 항로 정보를 파악하고, 충돌 위험에 대한 경고를 신속히 받을 수 있도록 하는 기능을 중심으로 작성되었다. 또한 본 시스템은 항만 안전 확보, 관제 효율성 증대, 해양 사고 예방이라는 더 넓은 범위의 해양 교통 관리 목표를 지원하고자 한다.

1.2. Scope

본 소프트웨어는 AIS(Automatic Identification System) 데이터를 기반으로 선박의 실시간 항로를 분석하고, 충돌 위험을 예측 및 경고하는 시스템이다. 인공지능 기반의 항로 예측 모델과 거리 기반의 충돌 탐지 알고리즘을 통해 해상교통의 안전성과 효율성을 높이는 것을 주요 목표로 한다.

본 소프트웨어를 개발함으로써 기대되는 주요 이점으로는 선박 운항자에게는 충돌 위험, 운항 경로의 실시간 정보제공을 통해 안전한 운항을 제공하며, 항만 관제사(VTS)에게는 교통 혼잡 모니터링에 대한 신속한 대응을 지원하는 데 있다. 기업 입장에서는 운항 안정성을 기반으로 신뢰성과 효율성 향상을 비롯하여 운영 리스크 절감에 따른 경제적 가치 창출이 가능하다. 이 소프트웨어는 추후 스마트 해양 물류, 자율운항 선박 등 미래 해운 산업에서의 경쟁력 확보를 위한 핵심 기술 요소로 활용될 수 있다.

1.3. Definitions, acronyms, and abbreviations

용어	유형	설명		
AIS	약어	선박 위치, 속도, 항로 등의 정보를 자동으로 송수신하는 시스템		
MMSI	약어	선박을 식별할 수 있는 9자리 고유 번호		
Latitude	정의	지구상의 위치를 표시하는 좌표계		
Longitude	정의	지구상의 위치를 표시하는 좌표계		
timestamp	정의	데이터가 수집된 시각		
sog	축약어	대지 속도(knot 단위)		
cog	축약어	항해 방향(0~360도)		
heading	정의	선박이 실제 바라보는 방향		
충돌 위험	정의	두 선박 간의 거리가 설정된 임계지(예: 1km) 이하로 접근했을 때		
0 = 11 =		탐지되는 상황		
Haversine	정의	두 지리 좌표 간의 거리를 구할 때 사용하는 수학 공식		
Fomula	0-1	구 시니 되프 단의 시니를 다를 때 사용하는 구락 증寸		

1.4. References

[1] 해양수산부, 국제해사기구(IMO) 전문용어집, pp. 249-257

[2] 이서정 그리고 박인환, 선박 AIS정보 응용을 위한 데이터베이스 설계 및 구현, *한국항해항만학회 지*, vol. 34, no. 5, pp. 343-348

2. External Interface Requirements

2.1. 사용자 인터페이스 (User Interface)

본 소프트웨어는 선박 운항자 및 관제사를 주요 사용자로 하며, 이들이 실시간 해상 상황을 직관적으로 파악할 수 있도록 구성된다.

2.2. 하드웨어 인터페이스 (Hardware Interface)

본 시스템은 AIS 수신기, 네트워크 장치, DB 서버, 분석 서버, 사용자 단말기 등 다양한 하드웨어 요소를 통해 데이터 수집과 처리 과정을 수행한다.

- AIS 수신 장치: 해상에 위치한 선박에서 송출되는 AIS 신호를 수신
- 네트워크 장비: 수신된 데이터를 내부망 또는 인터넷을 통해 서버로 전달
- 데이터 저장 서버: PostgreSQL
- 분석 서버: 항로 예측 및 충돌 위험 분석 알고리즘을 실행하는 계산 서버(Python API 서버 구동)

- 사용자 단말기(PC, 노트북, 태블릿): 관제사 및 사용자들이 대시보드 또는 시각화 서비스를 이용하는 장치
- => 하드웨어 흐름 구성: AIS 수신기 → 네트워크 장비 → DB 서버 → 분석 서버 → 사용자 단말기

2.3. 소프트웨어 인터페이스 (Software Interface)

본 시스템은 AIS 데이터를 기반으로 선박의 항로를 예측하고 충돌 위험을 실시간으로 탐지하는 소프 트웨어로서, PostgreSQL 서버와 Python 기반 API 서버를 기반으로 동작한다.

- 지도 인터페이스
- 데이터베이스(PostgreSQL) 인터페이스: AIS 데이터 저장, 조회, 전처리 결과 관리
- 모델 인터페이스: 트랜스포머 기반 딥러닝 모델로 항로 예측 수행
- API: API 제공

2.4. 통신 인터페이스 (Communication Interface)

본 시스템 배포 시에 다음과 같은 통신 요소를 고려한다.

- 통신 프로토콜: HTTPS 기반의 REST API 사용 예정
- 데이터 전송 주기: AIS 데이터: 10초 간격, 예측 결과: 1분 간격
- 데이터 전송 포맷: JSON(입력: AIS 시계열 데이터 / 출력: 경로 예측 좌표, 충돌 위험도)
- 통신 대상:
 - PostgreSQL DB 서버
 - 사용자 인터페이스(선박 운항자, 관제사)
 - 예측 모델 서버
- 보안 고려사항:
- 인증: 사용자 로그인 기능
- 암호화: 데이터 전송 시 TLS 암호화 프로토콜 적용

3. System Features

3.1. 시스템 기능 (System Feature)

3.1.1. 설명 및 우선순위 (Description and Priority)

기능명	설명	우선순위	
실시간 선박 위치 수집	AIS 데이터를 통해 주변 선박의 현재 위치, 속도(SOG),		
글시한 한국 귀시 구입 	방향(COG/Heading), 시간을 실시간으로 수집	높음	
하고 에츠 미데	딥러닝 기반 모델(트랜스포머)을 통해 출항지~도착지 간		
항로 예측 모델	최적 항로를 예측	높음	
충돌 위험도 평가	주변 선박의 위치 및 방향을 분석해 충돌 위험을	높음	
알고리즘	평가하고 기준 초과 시 경고	ᄑᆷ	
대체 하리 자도 제아	충돌 위험 발생 시 기존 항로를 수정하여 새로운 안전	중간	
대체 항로 자동 제안	경로를 실시간으로 제시	6건	

3.1.2. 기능 요구사항 (Functional Requirements)

요구사항 분류		기능
요구사항 번호		SFR-001
요구사항 명칭		AIS 실시간 수신
	정의	VTS(관제국) 또는 주변 선박(반경 50km)으로부터 선박 위치 정보를 실시간으로 수신해
	정의	야 한다.
요구사항		
상세설명	세부	• 수신 주기: 10초 내외
	내용	• 수신 항목: MMSI, timestamp, 위도, 경도, SOG, COG, Heading
	., -	
산출정보		AIS 수신 로그, 선박 리스트, 거리 정보
관련 요구사항		SFR-002, SFR-006

요구사항 분류		기능
요구사항 번호		SFR-002
요구사항 명칭		수신 데이터 실시간 저장
	정의	수신된 유효한 데이터를 PostgreSQL 또는 캐시에 저장해야 한다.
요구사항 상세설명	세부 내용	 PostgreSQL 연동 연결 실패 시 로컬 임시 저장 후 재 업로드
산출정보		저장 이력, 저장 성공률
관련 요구사항		SFR-001

요구사항 분류		기능
요구사항 번호		SFR-003
요구사항 명칭		항로 예측 모델 입력 처리
	정의	사용자 또는 시스템으로부터 출발지 및 도착지를 입력받아 모델에 전달해야 한다.
요구사항 상세설명	세부 내용	 입력값: 출발 위도/경도, 도착 위도/경도 좌표 유효성 검사 포함 누락 또는 비정상 입력 시 오류 메시지 제공
산출정보		입력값 검증 로그
관련 요구사항		SFR-004

요구사항 분류		기능
요구사항	번호	SFR-004
요구사항	명칭	트랜스포머 기반 경로 예측
	저이	입력된 출발지-도착지 위치 정보를 기반으로 딥러닝(트랜스포머) 모델을 활용해 경로를
	정의	예측한다.
요구사항		• 과거 학습 데이터를 기반으로 경로 생성
상세설명	세부	• 1분 단위 시간 step 기준 예측 진행
	내용	• 출력: 위도, 경도,SOG, COG 시퀀스
		• ETA(Estimated Time of Arrival) 제공
산출정보		예측 경로 파일, ETA값
관련 요구사항		SFR-003

요구사항 분류		기능
요구사항	번호	SFR-005
요구사항	명칭	예측 경로의 시각화
	정의	예측된 경로를 지도에 시각적으로 출력해야 한다.
요구사항 상세설명	세부 내용	선박 위치와 경로를 poly-line 형태로 표시 경로의 시작과 끝 지점 시각적 강조 지도 확대/축소 기능 제공
산출정보		시각화 결과, 지도 상태 로그
관련 요구사항		SFR-004

요구사항	분류	기능
요구사항 번호		SFR-006
요구사항 명칭		충돌 위험도 계산
	정의	예측 경로와 주변 선박 경로의 교차 여부를 분석하여 위험도를 산출한다.
요구사항 상세설명	세부 내용	 DCPA, TCPA 기반 위험도 계산 위험도 수치(0~100%)로 표현 70% 이상일 경우 '고위험'으로 분류
산출정보		위험도 점수, 위험 구간 정보
관련 요구사항		SFR-001, SFR-004

요구사항 분류		기능
요구사항	번호	SFR-007
요구사항 명칭		위험도 임계치 경고
	정의	위험도 수치가 임계값을 초과할 경우 경고 메시지를 표시해야 한다.
요구사항 상세설명	세부 내용	 시각적 표시(경고 아이콘, 경고선) 관리자 알림 로그 기록 사용자 알림 시스템 연동
산출정보		경고 발생 내역, 로그
관련 요구사항		SFR-006

요구사항 분류		기능
요구사항 번호		SFR-008
요구사항 명칭		대체 경로 생성
	정의	강화학습을 기반으로 위험 구간 회피가 가능한 대체 경로를 생성한다.
요구사항	세부	• 주변 해역 혼잡도 고려
상세설명	내용	• PPO 또는 Dueling DQN 기반 강화학습
		• 현재 위도/경도, 속도, 방향, 목적지 등을 고려하여 새로운 대체 경로 생성
산출정보		대체 경로 시퀀스
관련 요구사항		SFR-004, SFR-006, SFR-009

요구사항 분류		기능
요구사항	번호	SFR-009
요구사항 명칭		대체 경로 자동 전환
	정의	위험 구간 발생 시 기존 경로를 자동으로 대체 경로로 전환한다.
요구사항 상세설명	세부 내용	 기존 경로 대비 안전도 향상 확인 후 적용 사용자 수동 선택 옵션 제공 전환 내역 저장
산출정보		전환 이력, 사용자 선택 로그
관련 요구사항		SFR-008

4. Other Nonfunctional Requirements

4.1. 성능 요구 (Performance Requirements)

요구사항 분류		성능
요구사항 번호		PER-001
요구사항	명칭	AIS 실시간 수신 시간
	정의	AIS 데이터를 수신할 때 요구되는 성능 요건을 정의한다.
		AIS 데이터는 실시간 위치 기반 판단에 활용되므로, 수신 지연 없이 지속적으로 수집되
		어야 하며, 다음과 같은 성능을 만족해야 한다.
요구사항 상세설명	세부 내용	 반응시간: 수신 요청이 발생한 후 최초 데이터 수신까지의 시간이 3초 이내 처리 소요 시간: 수신된 데이터의 필터링 및 저장 과정이 2초 이내 처리율: 시스템은 최소 6회/분 이상의 수신 주기(=10초 간격)로 데이터 처리가 가능해야 함 30척 이상의 선박 동시 대응 수준)
산출정보		
관련 요구사항		SFR-001

요구사항 분류		성능
요구사항 번호		PER-002
요구사항	명칭	트랜스포머 기반 경로 예측 성능
	저이	트랜스포머 기반 딥러닝 모델을 활용한 선박 경로 예측시 요구되는 응답시간 및 처리
	정의	성능 요건을 정의한다.
		선박의 출발지/도착지를 입력받아 트랜스포머 기반 모델을 통해 경로를 에측할 때, 사
		용자 대기시간 최소화 및 실시간성과 정확도를 보장하기 위해 다음 성능을 충족해야
요구사항		함.
· · · · · · · · · · · · · · · · · · ·	세부	
0/11/20	내용	┃ ● 반응시간: 출발지/도착지 입력 후 예측 경로가 시각화되기까지 총 응답시간 30초 이 ┃
	7110	
		│
		• 처리율: 분당 1회 이상의 예측 요청 처리
산출정보		
관련 요구사항		SFR-004

요구사항 분류		성능
요구사항 번호		PER-003
요구사항	명칭	대체 경로 생성 성능
	펀이	강화학습을 기반으로 실시간 충돌 위험을 피할 수 있는 대체 경로를 생성할 때의 처리
	정의	요건을 정의한다.
		실시간 위험 상황 발생 시, 강화학습을 활용해 빠르게 대체 항로를 제시해야 하며, 다음
		성능을 만족해야 함.
요구사항		┃ ┃● 반응시간: 충돌 위험 탐지 후 대체 경로가 사용자에게 제시되기까지의 시간은 5초 ┃
	шн	
상세설명	세부	이내
	내용	┃• 처리 소요 시간: 강화학습 모델이 위험도를 평가하고 최적 경로를 생성하는 데 10초 ┃
		이내
		• 처리율: 6회/분 이상 경로 생성 처리가 가능
		 또한, 생성된 경로는 현재 선박위 위치, 속도, 진행방향, 혼잡도 등을 고려해야 함.
ᄮᄎᅒ	Н	또한, ㅎㅎ한 ㅎ또는 한세 분기계 계시, ㅋㅗ, 분ㅎㅎㅎ, 든답포 ㅎ글 포터에야 다.
산출정보		
관련 요구사항		SFR-008

4.2. 안전 요구 (Safety Requirements)

요구사항	분류	안전
요구사항 번호		SAF-001
요구사항	명칭	충돌 위험도 계산 안전성
	정의	실시간 AIS 데이터를 활용하여 선박 간 충돌 위험도를 계산하고, 사고를 방지하기 위한
	0-1	정확도 및 안전성 기준을 정의한다.
요구사항 상세설명	세부 내용	 선박 간의 거리, 속도, 방향, 예상 경로등을 기반으로 충돌 가능성을 수치화하여 위험도를 산정해야 함. 위험도 계산은 1분 이내 주기로 수행되어야 하며, 이전 시점보다 위험도가 급증하는 경우 즉시 경고 트리거 발생. 위험도가 높음에도 경고 또는 대체 경로 생성이 지연되면 심각한 사고 가능성이 있으므로, 위험도 계산 알고리즘은 검증된 기준에 따라 구축되어야 함. AIS 정보 누락 또는 신뢰도 낮은 데이터가 입력될 경우, 시스템은 해당 위험도 계산
		결과에 대해 불확실성 경고를 제공해야 함. 1. 방지해야 할 사항: 충돌 위험 누락, 계산 지연, 잘못된 위험도 평가 2. 취해야 할 조치: 위험도 상시 모니터링, 알고리즘 성능 정기 검증 3. 참고 규정: 해양수산부 해상교통 안전 지침
산출정보		위험도 로그, 경고 발생 이력
관련 요구사항		SFR-006

요구사항 분류		안전
요구사항 번호		SAF-002
요구사항	명칭	위험도 임계치 경고 안전성
	저이	계산된 위험도가 설정된 임계치를 초과할 경우, 사용자가 즉시 인지할 수 있도록 시각
	정의	적, 청각적 경고를 제공해야 하며, 해당 기능의 신뢰성과 실시간성을 보장해야 한다.
		• 위험도가 시스템 설정 임계값(예: 70%)을 초과할 경우, 3초 이내에 사용자에게 경고
		를 시각(색상 변화, 경고창), 청각(경보음, 알림음)등으로 전달해야 함.
0711+1		• 경고 수동 해제 전까지 지속되어야 하며, 반복 경고 기능이 있어야 함.
요구사항	🖵	• 경고 실패 시, 시스템은 이를 자동 기록하고 관리자에게 통보.
상세설명	세부	
	내용	1. 방지해야 할 상황: 경고 지연, 경고 누락
		2. 취해야 할 조치: 다양한 경고 인터페이스 제공, 운영자 피드백 시스템 구축
		3. 참조 규정: ISO 12100(기계 안전 일반 원칙), IMO SOLAS 제 5장 제 19조(항해장비
		관련)
산출정보		경고 발생 로그
관련 요구사항		SFR-007

요구사항 분류		안전
요구사항 번호		SAF-003
요구사항	명칭	대체 경로 자동 전환 안전성
		충돌 위험도가 임계치를 초과하는 경우, 강화 학습 기반 대체 경로를 신속하게 반영하
	정의	여 선박이 위험 구역을 회피할 수 있도록 항로 자동 전환해야 하며, 이 전환이 안전하
		게 이루어져야 한다.
		• 위험도가 임계치를 초과한 시점부터 10초 이내에 기존 항로에서 대체 경로로 자동 전환되어야 함.
		• 대체 경로는 실시간 AIS 및 혼잡도 정보를 반영하여 안전성이 검증된 경로여야 하
		며, 전환 중 급격한 회두(선회각), 속도 감소 등으로 인한 2차 사고가 발생하지 않도
요구사항		록 해야 함.
상세설명	세부	• 자동 전환 시점, 기존 경로 이탈 거리, 회피 방향 등을 로그로 저장하고, 사용자가
	내용	이를 확인할 수 있어야 함.
	"0	
		1. 방지해야 할 상황: 전환 지연, 안전성 미확보된 경로 전환, 통보 누락
		2. 취해야 할 조치: 전환 알고리즘 검증, 사용자 확인 인터페이스 제공, 화두 안전성 평
		가 적용
		3. 참조 규정: ISO 26262(기능 안전성 기준)
산출정보		대체 경로 자동 전환 로그, 전환 시각 기록
관련 요구사항		SFR-009

4.3. 보안 요구 (Security Requirements)

요구사항 분류		보안 요구사항
요구사항 번호		SEC-001
요구사항 명칭		AIS 수신데이터 보안 관리
	저이	외부에서 수신되는 AIS 데이터를 무결하게 보호하고, 위조/변조 여부를 검증하며, 수신
	정의	과정의 보안성을 확보해야 한다.
		• AIS 수신 시 TLS 기반 암호화 통신(가능 시) 또는 네트워크 방화벽 적용
		• 수신 데이터의 디지털 서명 또는 무결성 해시값 검증을 통해 위변조 탐지
요구사항		• 데이터 수신 포트에 대해 IP 화이트리스트 및 포트 접근 제어 적용
상세설명	세부	• 실시간 수신 데이터에 대한 보안 로그 기록 및 이상 징후 탐지 시스템 연동
	내용	
		1. 방지해야 할 사항: 위조 AIS 데이터 수신, 악의적 트래픽 유입, 데이터 변조
		2. 참조 규정: 사이버 보안 지침, 해양수산부 AIS 보안 가이드라인
		3. 만족해야 할 인증: KISA 정보보호 관리체계(ISMS)
산출정보		수신 무결성 로그, 이상 데이터 감지 리포트, MMSI 필터링 로그
관련 요구사항		SFR-001

요구사항 분류		보안 요구사항
요구사항 번호		SEC-002
요구사항	명칭	저장 AIS 데이터 접근 통제 및 암호화
	저이	저장되는 AIS 데이터에 대한 무단 접근 방지, 변조 방지, 기밀성 보장을 위한 보안 조치
	정의	를 수행해야 한다.
		• 실시간 저장되는 AIS 데이터는 전용 저장소에 접근 제어 정책 적용
	세부 내용	• 데이터 저장 시 SHA-256 수준의 저장 데이터 암호화 수행
		• AIS 저장 테이블 또는 파일은 시스템 사용자 계정 및 역할(Role)에 따른 접근 권한
요구사항		설정
상세설명		• 데이터베이스 접근 시 SQL Injection 및 권한 상승 공격 방지 로직 적용
		* 데이디데이_ TE 시 3QE IIJECTION 및 전한 66 67 6시 포크 ㅋ6
		4 비지케이 취 비취 지자 데이터 이후 다던 여러 데이터 스샤
		1. 방지해야 할 사항: 저장 데이터 유출, 무단 열람, 데이터 손상
		2. 참조 규정: 개인정보 보호법, KISA DB 보안 가이드라인
		3. 만족해야 할 인증: ISMS, ISO/IEC 27001 보안 인증 기준
산출정보		저장 접근 권한 로그, 접근 시도 이력
관련 요구사항		SFR-002

4.4. 소프트웨어 품질 속성 (Software Quality Attributes)

요구사항 분류		품질
요구사항 번호		QLT-001
요구사항 명칭		신뢰성(Reliability)
	정의	시스템은 예측 오류나 데이터 누락에도 안정적인 동작을 보장해야 한다.
요구사항 상세설명	세부 내용	예측 실패 시 예외 처리 및 fallback 전략 구현 강화학습 기반 대체 경로 전환 시에도 시스템 종료 없이 처리 지속 가능해야 함
산출정보		예외 발생 로그, fallback 처리 기록
관련 요구사항		SFR-004

요구사항 분류		품질
요구사항 번호		QLT-002
요구사항 명칭		가용성(Availability)
	정의	AIS 수신 및 경로 예측 서비스는 24/7로 운영되며, 고가용성을 유지해야 한다.
요구사항 상세설명	세부 내용	AIS 수신 지연 시 재전송 요청 처리 모듈 간 통신 오류 감지 및 복구 로직 적용 로드 밸런싱 및 이중화 구성 고려
산출정보		장애 대응 이력
관련 요구사항		SFR-001, SFR-002

요구사항 분류		품질
요구사항 번호		QLT-003
요구사항 명칭		사용성(Usability)
	정의	경로 및 위험도 시각화는 비전문가도 이해할 수 있도록 구성되어야 한다.
요구사항 상세설명	세부 내용	지도 기반 UI 구성, 위험도 색상 구간 시각화 웹 기반 대시보드 구성 필수
산출정보		UI 프로토타입, 사용자 피드백 기록
관련 요구사항		SFR-005, SFR-007

요구사항 분류		품질
요구사항 번호		QLT-004
요구사항 명칭		적응성(Adaptability)
요구사항 상세설명	정의	시스템은 해상 교통 혼잡도, 기상 변화, 정책 변경 등에 적응할 수 있어야 한다.
	세부 내용	 혼잡도 및 위험도 기준 동적 설정 가능 모델 파라미터 및 정책 구성은 외부 설정 파일 기반 운영 모델 업데이트 자동화 지원
산출정보		설정 파일, 혼잡도 기준 변경 로그
관련 요구사항		SFR-008

5. Other Requirements

5.1. H/W 제약 조건

본 시스템은 실시간 AIS 데이터 수집, 딥러닝 기반 항로 예측 및 충돌 회피 경로 계산 등의 복합적 기능을 포함하므로, 안정적 동작을 위한 하드웨어 자원 확보가 필수적이다. 특히, 트랜스포머 기반 딥러닝 모델의 실시간 추론 성능과 데이터 스트리밍 처리의 병렬성을 고려하여 다음과 같은 하드웨어 제약 조건을 명시한다.

(1) 서버 사양 (학습 및 추론 통합 환경 기준)

- CPU: 최소 8코어 3.0GHz 이상 (예: Intel Xeon 또는 AMD Ryzen 9 이상)
- GPU: NVIDIA RTX A5000 또는 RTX 3090 이상 (CUDA 지원, VRAM 24GB 이상)
- Memory(RAM): 최소 64GB 이상
- Storage: SSD 기반 2TB 이상 (대용량 AIS 로그 저장 및 빠른 I/O 대응)
- OS: Ubuntu 20.04 LTS 이상 또는 CentOS 8 이상 (Docker 및 Python 환경 구성 지원)

(2) 실시간 처리 시스템 요구사항

- 데이터 수집 지연 허용 한계: 1초 이하
- 모델 추론 속도: 1분 예측당 500ms 이내 처리
- 병렬 처리량: 초당 최대 100개의 선박 데이터 동시 처리 가능
- 통신 수용도: 최대 1,000선박의 위치 정보 수신
- 네트워크 대역폭: 1Gbps 이상 (외부 해상 관제 시스템 연동 시 안정성 확보 목적)

(3) 클라이언트 UI/대시보드

- RAM 8GB 이상
- GPU 가속 가능한 크롬 브라우저 권장

5.2. 자원, 인력에 대한 제약 조건

본 연구개발은 실시간 해양 교통 정보(AIS 데이터)를 처리하여 항로를 예측하고 충돌 위험을 회피하는 지능형 시스템을 개발하는 것으로, 데이터 처리, 인공지능 모델 설계 및 학습, 실시간 시스템 연동, 시각화 UI 구현 등 다양한 개발 요소가 포함된다. 이에 따라 개발 수행 시 필요한 자원 및 인력에 다음과 같은 제약 조건이 존재한다.

(1) 인력 제약 조건

역할	필요 인원	주요 업무
	1	트랜스포머 기반 경로 예측 모델 및 강화학습 기반 경로 회피
AI 모델 개발자		알고리즘 설계 및 구현
	4	AIS 데이터 전처리, 이상치 제거, PostgreSQL 연동, 실시간 수집
데이터 엔지니어	I	파이프라인 구축
프론트엔드	1	경로 예측 및 위험 시각화 UI, 대시보드 구성, 사용자 입력 UI
개발자		설계

(2) 자원 제약 조건

- 시간 자원:
 - 총 개발 기간: 약 4개월
 - 실시간 시스템 구현 및 테스트를 위한 검증 단계 최소 3주 이상 필요
 - 데이터 수집 및 전처리 자동화까지 초기 4~6주 소요 예상
- 개발 및 테스트 환경 제약:
 - 고성능 GPU 자원 공유 필요 (학습 및 추론용)
 - 외부 AIS 데이터 수신 권한 또는 시뮬레이션 환경 구축 필요
- 데이터 제약:
 - AIS 데이터는 대용량으로, 저장공간과 처리 시간 확보가 요구됨
 - 일부 해역의 AIS 정보가 누락되거나 수신 주기 불규칙할 수 있어 보완용 데이터 또는 시뮬레이터 필요