

SLAM: Least Squares

Robot Localization and Mapping 16-833

Michael Kaess

October 2, 2024

The SLAM Problem (t=0)

Onboard sensors:

- Wheel odometry
- Inertial measurement unit (gyro, accelerometer)
- Sonar
- Laser range finder
- Camera
- RGB-D sensors

The SLAM Problem (t=1)

The SLAM Problem (t=n-1)

The SLAM Problem (t=n)

Odometry measurement

Factor Graph Representation of SLAM

Odometry measurement

Bipartite graph with *variable nodes* and *factor nodes*

Factor Graph Representation of SLAM

Bipartite graph with *variable nodes* and *factor nodes*

Factor Graph Representation of SLAM

"Pose graph" (no explicit modeling of landmarks)

Bipartite graph with *variable nodes* and *factor nodes*

Factor Graph: Advanced Example

Anchor nodes, Kim et al. ICRA 2010

- Can also include calibration parameters
 - Camera intrinsics, sensor/vehicle alignment, wheel diameter...

Larger Factor Graph SLAM Example

Variables and Measurements

• Variables:

$$\Theta = \{x_0, x_1 \cdots x_n, l_1, l_2\}$$

Might include other quantities such as lines, planes and calibration parameters

Measurements:

$$Z = \{p, u_1 \cdots u_n, m_1 \cdots m_4\}$$

p is a prior to fix the gauge freedom (all other measurements are relative!)

Generative Sensor Model – 1D Example

• 1D world, laser range finder at x=0, wall at x=r

- Measurements: z_1 , z_2 , z_3
- Factor graph:

• Assumption: z_i are iid (independent and identically distributed) Gaussian random noise with mean r and covariance σ^2 : $z \sim N(r, \sigma^2)$

Generative Sensor Model

What can we do with the generative sensor model?

$$z = r + \nu$$
, $\nu \sim N(0, \sigma^2)$, $p(z|r)$

- Simulate
 - Given the variable, we can draw samples from ν to simulate the measurement process
- Test
 - Given the variable and a measurement, evaluate its probability (density) under this model $p(z|r)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(z-r)^2}$
- Inference
 - Given the measurement, we can perform inference about the variable (typically from multiple measurements)

Finding the Best Solution

Our goal is to find the Θ that maximizes $p(\Theta|Z)$

Bayes Rule

Our goal is to find the Θ that maximizes $p(\Theta|Z)$

Likelihood Prior

Posterior
$$p(\Theta|Z) = \frac{p(Z|\Theta) p(\Theta)}{p(Z)}$$

Evidence

Note:

- While the measurements Z are given, the generative sensor models provide us with likelihood functions $L(\Theta; z_i) \propto p(z_i|\Theta)$
- Evidence is independent of Θ

Maximum Likelihood and Maximum A Posteriori

Maximum A Posteriori (MAP)

$$\Theta_{MAP} = \operatorname{argmax}_{\Theta} \ p(Z|\Theta) \ p(\Theta)$$

Maximum Likelihood Estimator (MLE)

$$\Theta_{MLE} = \operatorname{argmax}_{\Theta} L(\Theta; Z)$$

Factorization of Probability Density

Conditional independence:

$$p(z_1 z_2 | \Theta) = p(z_1 | \Theta) p(z_2 | \Theta)$$

$$\operatorname{argmax}_{\Theta} p(p|\Theta) p(u_1|\Theta) \cdots p(u_n|\Theta) p(m_1|\Theta) \cdots p(m_4|\Theta)$$

SLAM as a Least-Squares Problem

- On the board:
 - Log monotonic
 - Linear case
 - Normal equations
 - Solving with pseudo inverse

SLAM as a Least-Squares Problem

Normal equations:

$$A^T A x = A^T b$$

Summary

- Instead of filtering, we can formulate the SLAM problem as a batch least-squares problem
- Normal density --log(monotonic)--> Mahalanobis distance
- Normal equations

Factor Graphs for Robot Perception: 2.1-2.4

Next: Exploiting Sparsity
Factor Graphs for Robot Perception: 3