PhAI Cheatsheet Draft

Fabian Hauser

12. Mai 2017

Dieses Dokument gibt einen Überblick über die PhAI-Vorlesung FS2017

1 Kinematik

Gleichförmige Bewegung	$s(t) = v \cdot t + s_0$
Gioremorninge Deweguing	
	\vec{v} (Konstant)
Gleichmässig beschleunigte	$s(t) = \frac{1}{2}a \cdot t^2 + v_0 \cdot t + s_0$
Bewegung	$ec{v}(t) = ec{a} \cdot t + ec{v}_0$
	\vec{a} (Konstant)
Mittlere Geschwindigkeit	$\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_1}{t_2 - t_1}$
Mittlere Beschleunigung	$\bar{a} = \frac{\Delta v}{\Delta t}$

2 Kinetik

Impuls	$ec{p} = [Ns] = \left[rac{kg \cdot m}{s} ight]$	
Kraft	$\vec{F}=m\vec{a}=[N]=\left[\frac{kg\cdot m}{s^2}\right]=\frac{\mathrm{d}}{\mathrm{d}t}~\vec{p}~\mathrm{d}t$ (Newtonscher Impulssatz)	Newton
Energie	$W = [J] = [Nm] = [Ws] = \left[\frac{kg \cdot m^2}{s^2}\right]$	Joule
	$1 [kWh] = 3.6 \cdot 10^6 [J]$	
Leistung	$P = [W] = \left[\frac{J}{s}\right] = \left[\frac{kg \cdot m^2}{s^3}\right]$	Watt

2.0.1 Kinetische Energie

Kraft
$$F = ma = \frac{p}{t}$$

Strecke
$$s = \frac{1}{2}at^2$$

Geschwindigkeit
$$v = at$$

Impuls
$$p = mv$$

Energie
$$W = Fs = \frac{1}{2}mv^2$$

Abbildung 1: Darstellung von Kräften

2 Dimensional

$$F_x = F\cos(\alpha)$$

$$F_y = Fsin(\alpha)$$

3 Dimensional

$$F_x = F\cos(\varphi)\sin(\vartheta)$$

$$F_y = Fsin(\varphi)sin(\vartheta)$$

$$F_z = F\cos(\vartheta)$$

2.0.2 Potentielle Energie

Kraft
$$F = mg = \frac{p}{t}$$

Höhe
$$h = [m]$$

Geschwindigkeit
$$v = gt$$

Beschleunigung
$$g \approx 9.81 \frac{m}{s^2}$$

Impuls
$$p = mv$$

Energie
$$W = Fh = mgh$$

2.0.3 Federkraft

Federkonstante
$$k = \left[\frac{N}{m}\right] = \left[\frac{kg}{s^2}\right]$$

Kraft
$$F = kx$$
 Energie
$$W = \frac{1}{2}kx^2$$

2.1 Schiefer Wurf

2.2 Haft- und Gleitreibung

Ist unabhängig von der Fläche.

Gleichgewicht eines starren Körpers an der Ebene $F_{tot} = \sum F_i = 0$

2.3 Drehmoment

Drehmoment wird in t^{-1} , meist s⁻¹ oder min⁻¹ angegeben. Die Hebelkraft funktioniert dank dem Drehmoment.

2.4 Winkelgeschwindigkeit und Radialbeschleunigung

Die Winkelgeschwindigkeit wird in $\omega=\frac{v}{r}\left[\frac{rad}{s}\right]$ angegeben Winkelbeschleunigung wird mit mit α angegeben.

Die Radialbeschleunigung zeigt nach innen zum Kreismittelpunkt Berechnung: $a_r=\omega^2 r=\frac{v^2}{r}=\left[\frac{rad}{s^2}\right]$

Berechnung:
$$a_r = \omega^2 r = \frac{v^2}{r} = \left[\frac{rad}{s^2}\right]$$

2.4.1 Rotationsenergie

Rotationsenergie: $W=E_{rot}=\frac{1}{2}J\omega^2$

2.4.2 Impuls

Impulserhaltung: In einem geschlossenen System ohne externe einflüsse ist der Impuls 0.

2.4.3 Drehimpuls

Der Drehimpuls L ist parallel zur Drehachse. Um diesen zu ändern, braucht es einen Drehmoment.

3

$$\begin{array}{l} L = \sum_{i} r_{i} \times p_{i} = \sum_{i} r_{i} \times mv_{i} \ [L] = kgm^{2}s^{-2} \\ \frac{dL}{dt} = M \Rightarrow \frac{d\overline{p}}{dt} = \overline{F} \end{array}$$

Drehimpulserhaltung Die Energie aus einem Drehimpuls muss erhalten bleiben.

Drehimpuls auf der schiefen Ebene

Runde Zylinder, welche eine schiefe Ebene hinunterrollen: $mgh = E_{kin} + E_{rot} = \frac{m}{2}v^2 + \frac{J}{2}\omega^2$

Je weiter die Masse von der Drehachse weg ist, desto träger ist die Drehung.

2.5 Masse und Trägheit

Das Gewicht eines Körpers ist von der Masse abhängig: F = mg. Masse ist für eine Trägheit und Gravitation zuständig. Achtung: Gewicht \neq Masse!

2.5.1 Trägheitsmoment

Bezüglich einer Achse:

$$J = \int r^2 dm = \left[kg \cdot m^2 \right]$$

2.6 Elastischer Stoss

Sowohl Impuls als auch Energie bleibt erhalten; dank beiden Gleichungen kann eine eindeutige Lösung errechnet werden.

Schwerpunktgeschwindigkeit: $u = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

2.7 Inelastischer Stoss

$$m_1v_1 + m_2v_2 = (m_1 + m_2)u \Rightarrow u = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}$$

2.7.1 Verlorene Kinetische Energie

Die verlorene kinetische Energie wird als $Q=E_{kin}-E'_{kin}$

2.7.2 Kraftstoss

$$\int_{t_1}^{t_2} p(t)dt = p(t_2) - p(t_1) = \int_{t_1}^{t_2} F(t)dt$$

2.8 Dichte

Volumen V mal Dichte ϱ $m = \varrho V$

3 Hydrostatik

Druck
$$p = \frac{F}{A} = [Pa] = \left[\frac{N}{m^2}\right] = \left[\frac{J}{m^3}\right] = \left[\frac{kg}{m \cdot s^2}\right]$$
 Pascal 1 bar $= 10^5 Pa$

In der Hydrostatik geht es um die Beschreibung von Fluiden, d.h. Flüssigkeiten und Gasen.

3.1 Besondere Einheiten

Kraft
$$F = \frac{p}{A}$$
 $A = Area$

Hydrostatischer Druck
$$p = \varrho gh$$

Masse
$$m = \varrho V = \varrho A \Delta h$$

3.2 Schweredruck

$$p_h = \rho g h$$

Statischer Auftrieb: Das gewicht des verdrängten Fluids geht verloren.

$$F_A = \rho_f g V$$

3.3 Strömungen

Avogadro Konstante: $N_A \approx 6.022 \cdot 10^2 3 Teilchen$

Die Knudsen Zahl: $Kn = \frac{\lambda}{L} \ll 1$

Dichte eines Fuluidelements: $\varrho = \frac{NM}{V}$ mit

N Anzahl Teilchen

M Masse pro Teilchen

V Volumen

3.3.1 Mittlere Geschwindigkeit mehrerer Teilchen

Mittlere Geschindigkeit über den Impuls $(m\overline{v} = \overline{p})$

3.3.2 Kontinuitätsgleichung (Masenerhaltung)

u = v = Strömungsgeschwindigkeit

$$\varrho_1 v_1 A_1 = \varrho_2 v_2 A_2$$

Massenstrom
$$\dot{m} = \left[\frac{kg}{s}\right]$$

Spezialfall: Inkompressibel $\rho_1 = \rho_2$, Volumenstrom $V_1 A_1 = V_2 A_2$ mit $VA = \begin{bmatrix} m^2/s \end{bmatrix}$

3.3.3 Gesetz von Torricelli

$$v = \sqrt{2gh}$$

Dies ist ein Spezialfall der Bernoulligleichung.

3.3.4 Reynolds-Zahl

Die Reynolds-Zahl besangt, wann eine Strömung nicht mehr laminar sondern turbulent wird

$$Re = 2320 = \frac{\varrho lu}{\eta} = \frac{lu}{v}$$

 ϱ dichte

u Geschwindigkeit

I Dimension/Grösse des Systems

 η Dynamische Viskosität (Einheit: $Pa\cdot s = \frac{kg}{m\cdot s})$

3.3.5 Strömungswiderstand

Bernoulli sagt, dass $p + \frac{\rho}{2}u^2 = \text{konst.}$ ist, d.h. es gäbe in einer Leitung keinen Widerstand. Dies stimmt nicht bei realen Fluiden: In der Mitte strömt es schneller, da das Rohr konstant u = 0 ist, gibt es Reibung (also mechanische Energie => wärme)

3.3.6 Gesetz von Blasius

Wie hoch ist der Druckabfall im Rohr?

 \bar{u} ist die gemittelte Geschwindigkeit

l ist die Länge

d ist der Durchmesser

 $\lambda = \lambda(Re)$ ist eine Reibungszahl

$$\Delta p = \lambda \frac{l}{d} \frac{\rho \bar{u}^2}{2}$$

Druckwiderstand (Luftwiederstand) einer Kugel ($C_w \approx 0 - 5$)

$$F_D = C_w \frac{\varrho}{2} u^2 A$$

Bei einem Luftstrom gibt es vor einem Körper einen Staudruck und nach dem Körper einen Unterdruck.

 C_w ist ein Mass eines Luftwiderstandes eines Körpers.

3.3.7 Dimensionsanalyse: Rohrströmung

Variablen

 Δp Druckunterschied

- *l* Länge
- d Durchmesser
- ϱ Dichte
- η Viskosität
- u Geschwindigkeit

Dimensionen

LLänge

M Masse

T Zeit

Wir wollen $\Delta p = F(l, d, \varrho, \eta, u)$

II-Theorem: Es gibt M-N unabhängige dimensions
lose Grössen. in diesem Fall: M-N=6-3=3

$$\Pi_{1} = \frac{\Delta p}{\varrho u^{2}}$$

$$\Pi_{2} = \frac{l}{d}$$

$$\Pi_{3} = \frac{\varrho u d}{\mu} = Re$$

$$\Rightarrow \Pi_1 = G(\Pi_2, \Pi_3)$$

Unter der Annahme, dass der Druckabfall proportional zur Länge ist:

$$\Pi_1 = \tilde{G}(\Pi_3)\Pi_2$$

3.3.8 Beispiel: Endgeschwindigkeit eines Fallenden Gegenstandes

3.3.9 Beispiel: Flugzeug gleitwinkel

3.3.10 Druckwellen

Druckwellen können sich nur mit Schallgeschwindigkeit fortbewegen.

Wird z.B. Luft schneller als mit Schallgeschwindigkeit komprimiert, steigt die Temperatur, damit steigt die Schallgeschwindigkeit entsprechend.

Machzahl bei Flugzeugen $M_a = \frac{v}{c_{\text{schallgeschw.}}}$

3.4 Entropie

In einem geschlossenen System gelten immer die Hydrodynamischen Gesettze:

- 1. Hauptsatz: Die Energie ist erhalten
- 2. Hauptsatz: Die Entropie darf nicht abnehmen

Wärme fliesst immer vom wärmeren zum kälteren Körper (durch Wärmeleitung, Konvektion und Wärmestrahlung). Vakum hat keine Wärmeleitung.

4 TODO

```
Druckabfall Rohrleitung: \Delta p = \lambda(Re)\frac{\rho u^2}{2}\frac{l}{d}
Re = \frac{\rho u d}{\mu}
\mu = \text{Viskosität}
\rho = \text{Dichte}
Zähigkeit = dynamische Viskosität
Laminare oder Turbulende ströhmung? Re < 2340 -> Laminar \lambda(re) = 64/Re
Re > 2340: Turbulent \lambda(Re) = \frac{0.316}{Re^{1/4}}
```