Microprocessor – Microcontroller 201 W01 – Microcontroller Basics

Nguyen Tran Huu Nguyen

D: Computer Engineering

E: nthnguyen@hcmut.edu.vn

Differences between Microprocessors and Microcontrollers

- Microprocessors (µPs)
 - General-purpose compute "engine"
 - External memory and I/O devices
 - Often requires an operating system (OS)

Differences between Microprocessors and Microcontrollers

- Microcontrollers (MCUs)
 - Usually chosen for a specific purpose
 - Small packages
 - On-chip memory and peripherals
 - Fast "on time," no BIOS or OS needed

Where Did the MCU Come From?

- Intel introduced the 8051 MCU in 1980
 - Small amount of read-only memory (ROM)
 - External memory expansion if needed
 - Four 8-bit I/O ports
 - Not much different from today's MCUs

8051 Architecture (1980)

Texas Instruments MSP430 MCU

ESP8266

PIC18F8722

STM32

Figure 1. System architecture (low-, medium-, XL-density devices) **ICode** Flash FLITF **DCode** Cortex-M3 System SRAM matrix DMA DMA₁ **FSMC** SDIO Bridge 2 AHB system bus Ch.2 APB1 Bridge 1 APB2 Reset & clock control (RCC) ADC1 ADC2 ADC3 USART1 **DMA Request** SPI1 TIM1 DMA2 **AFIO** TIM8 12C1 TIM6 **GPIOA** UART5 TIM5 **GPIOB** UART4 TIM4 USART3 TIM3 Ch.1 USART2 TIM2 Ch.2 Ch.5 DMA request ai14800c

Why Use an MCU?

- Everything in one small package
- Mix and match peripherals and I/O types
- Lots of memory, flash for code, SRAM for data
- Readily available hardware and software tools
- Helpful support communities and forums
- Reference designs
- Code libraries and examples

What Peripherals Do MCUs Offer?

- Digital I/O -- On or Off
 - Parallel signals
 - Pulse-width-modulated logic signals
 - Counters and timers

- Analog I/O -- Voltages
 - Comparators
 - Analog-to-digital converters (ADCs)
 - Digital-to-analog converters (DACs)

What Peripherals Do MCUs Offer?

- Communication Devices
 - UART or USART
 - SPI
 - I2C
 - I2S
 - CAN
 - USB
 - Ethernet
- Interrupts

Peripherals Devices in MCUs

- Parallel I/O Ports
 - Usually 8 or 16 bits for simultaneous control
 - Toggle individual bits
 - Require setup of registers

Parallel I/O-Port Examples

How Do I Set Up I/O Ports?

TABLE 2-1: PIC16F631/677/685/687/689/690 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page					
Bank	0															
00h	INDF	Addressing	this location	uses conten	ts of FSR to	address data	memory (no	t a physical r	register)	xxxx xxxx	44,205					
01h	TMR0	Timer0 Mod	dule Register							xxxx xxxx	81,205					
02h	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	44,205					
03h	STATUS	IRP	RP1	С	0001 1xxx	36,205										
04h	FSR	Indirect Dat	a Memory A	ddress Point	er					xxxx xxxx	44,205					
05h	PORTA ⁽⁷⁾	_	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	59,205					
06h	PORTB ⁽⁷⁾	RB7	RB6	RB5	RB4	_	_	_	_	xxxx	69,205					
07h	PORTC ⁽⁷⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	76,205					
08h	_	Unimpleme		_	_											
09h	_	Unimpleme	Unimplemented — — — Unimplemented — — — —													
0Ah	PCLATH	_	_	_	Write Buffer	for upper 5	bits of Progra	am Counter		0 0000	44,205					
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RABIE	TOIF	INTF	RABIF ⁽¹⁾	0000 000x	38,205					
0Ch	PIR1	_	ADIF ⁽⁴⁾	RCIF ⁽²⁾	TXIF(2)	SSPIF(5)	CCP1IF(3)	TMR2IF ⁽³⁾	TMR1IF	-000 0000	41,205					
0Dh	PIR2	OSFIF	C2IF	C1IF	EEIF	_	_	_	_	0000	42,205					
0Eh	TMR1L	Holding Re	gister for the	Least Signifi	cant Byte of t	the 16-bit TM	IR1 Register			xxxx xxxx	86,205					
0Fh	TMR1H	55.11														
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	88,205					
11h	TMR2 ⁽³⁾	Timer2 Mod	dule Register							0000 0000	91,205					

Table 59. GPIO register map and reset values

		_						15000	A ASSESSMENT		-	_	- 3			Πα	1						_	_		_	_	_		_	_	_	_
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	2	4	က	2	-	0
0x00	GPIOx _CRL		NF 7 :0]		DDE 7 :0]	(NF 6 :0]		DE 6 :0]	CN (1:	5 :0]		DDE 5 :0]	4	NF 4 :0]	MC [1	1		NF 3 :0]	E	OD 3 :0]		NF 2 :0]		DE 2 :0]		NF 1 :0]	E	OD 1 :0]		NF 0 :0]	[1	DE 0 :0]
0x04	GPIOx _CRH	CI 1	NF 5 :0]	MC 1	DDE 5 0]	CI 1	NF 4 :0]	MC 1	DDE 4 :0]	CI	NF 3	MC 1	DDE 3 :0]	CI 1	NF 2 :0]	MC	DE 2	CI	NF 1 :0]	M(OD 11 :0]	CI 1	NF 0 :0]	MC 1	DDE 0 :0]	С	NF 9 :0]	M	OD :9 :0]	С	NF 8 :0]	MC	DDE 8 :0]
0x08	GPIOx _IDR Reset value								Rese		d				88			0	0	0	0	0	0	0	100	Ry	0	0	0	0	0	0	0
0x0C	GPIOx _ODR Reset value								Rese	erved	d							ODRy											0				
0x10	GPIOx _BSRR Reset value	0	0	0	0	0	0	0	BR[15:0]	0	0	0	0	0	0	0	BSR[15:0]															
0x14	GPIOx _BRR Reset value		Reserved											BR[15:0]											0								
0x18	GPIOx _LCKR Reset value							Re	eserv	red							o LCKK	LCK[15:0]										0					

Toble CO AEIO register man and recet values

	<u> </u>		v:	. 1	Tak	ole	60	. Δ	FI	0	reg	jis	ter	m	ap	aı	nd	re	se	t v	alι	les	•			(4)				vi i	2		
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	80	7	9	2	4	8	2	-	0
0x00	AFIO_EVCR		Reserved														EVOE	CONTRACTOR STATE			Pir												
	Reset value																	0	0	0	0	0	0	C									
0x04	AFIO_MAPR low-, medium-, high- and XL- density devices		Reserved				SWJ_CFG[2]	SWJ_CFG[0] SWJ_CFG[0]			Reserve d			ADCZ_ETRGINJ_REMAP ADC1_ETRGREG_REMAP ADC1_ETRGINJ_REMAP		_ETRGINJ	TIM5CH4_IREMAP	PD01_REMAP CAN1_REMAP[1] CAN1_REMAP[0]		CAN1_REMAP[0]	TIM4_REMPAP		TIM3_REMPAP[1] TIM3_REMPAP[0]		TIM2_REMPAP[0]	TIM1_REMPAP[1]	TIM1_REMPAP[0]	USART3_REMAP[1]	USART3_REMAP[0]	USART2_REMAP			SPI1 REMAP
	Reset value						0	0 0 0					0	0	0	0	0	0	0 0		0	0 0		0	0	0	0	0	0	0	0	0	0
0x04	AFIO_MAPR connectivity line devices	Reserved	PTP_PPS_REMAP	TIM2ITR1_IREMAP	SPI3_REMAP	Reserved	SWJ_CFG[2]	SWJ_CFG[1]	SWJ_CFG[0]	MII_RMII_SEL	CAN2_REMAP	ETH_REMAP		Reserved			TIM5CH4_IREMAP	PD01_REMAP	CAN1_REMAP[1]	CAN1_REMAP[0]	TIM4_REMPAP	TIM3_REMPAP[1]	TIM3_REMPAP[0]	TIM2_REMPAP[1]	TIM2_REMPAP[0]	TIM1_REMPAP[1]	TIM1_REMPAP[0]	USART3_REMAP[1]	USART3_REMAP[0]	USART2_REMAP	USART1_REMAP	I2C1_REMAP	SPI1_REMAP
8	Reset value		0	0	0		0	0	0	0	0	0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	AFIO_MAPR		Re	ser	ved			SWJ G[2				Re	serv	ed			TIM5CH4_IREMAP	PD01_REMAP	Reserved		TIM4_REMAP	TIM3 REMAPIT-01		TIM2 REMADIT-01	for a formation	TIMA DEMADIT-01	for I round Train	USART3 REMAPIT-01		USART2_REMAP	USART1_REMAP	I2C1_REMAP	SPI1_REMAP

Pulse-Width Modulator

- PWM Peripheral
 - Converts a value to a proportional pulse width
 - Operate continuously and independently
 - Motor, LED, servo, and power control

Counters and Timers

- Operate for a specific period or create a delay
- Count external events, count up or down
- Count clock "ticks" between the same or different events
- Choose from various clock sources

Analog Comparator

- Compare two voltages and...
 - Cause a bit to change state
 - Generate an interrupt
 - Wake an MCU from a sleep state

Analog-to-Digital Converter

- Convert a voltage to a digital value; 8, 10, 12 bits...
- Unipolar, 0 volts to MCU V+ (+3.3 or 5 volts)
- Might require external signal conditioning

Digital-to-Analog Converter

- Unipolar output, might require external offset
- High-impedance output, could require buffering
- 10- and 12-bit DACs common on MCUs
- Filter a PWM output to get an analog voltage

UART Communications

- Universal Asynchronous Receiver-Transmitter (UART)
 - Serial communications
 - Self-timing operations
 - Usually 8-bit transmissions at standard rates
 - Common on most MCUs

UART Communications Timing

Communications at 9600 bits/sec

Serial-Communications

Reference

- "Serial Port Complete," 2nd ed., by Jan Axelson, Lakeview Research, 2007. ISBN: 978-1-931448-06-2.

Serial Peripheral Interface (SPI)

- Used for chip-to-chip communications
- Requires a clock signal to all SPI ("spy") devices
- Not a formal standard
- Operates with ADCs, DACs, real-time clocks

Inter Integrated-Circuit Interface (I²C)

- Similar to SPI communications, but two wires
- Multiple masters and slaves
- Acknowledgements and bus arbitration
- Philips (NXP) standard (Rev. 3, June 2007)

Controller-Area Network (CAN)

- A standard for vehicle equipment
- Uses an ISO-type "stack"

- 2-wire differential bus, no common ground needed
- Uses standardized packets of information

Controller-Area Network (CAN)

References

- ISO Standard 11898-x (\$)
- "Controller Area Network," by Konrad Etschberger," IXXAT Automation, 2001. ISB: 978-3-00-007376-0.
- "A Comprehensive Guide to Controller Area Network," by Wilfried Voss, Copper Hill Media, 2008. ISBN: 978-0976511601.

Ethernet and USB

- Governed by standards
- Require a software "stack"
 - Purchase, license, or create one yourself
 - MCU vendors might have stacks
- Some MCUs include everything except the physical interface (PHY)
- Can demand considerable memory
- Start with a development kit or reference design

Interrupts

- Cause immediate action
- Internal and external hardware and software sources
- Two types of action -- one or many vectors
- Can present debug challenges

An ADC Interrupt

How Do I Get a Quick Start?

How Do I Get Started?

