





The LEO-II project at the University of Cambridge is supported by EPSRC Grant EP/D070511/1

#### Overview on LEO-II

LEO-II is a standalone, resolution-based higher-order theorem prover that is designed for fruitful cooperation with specialist provers for first-order and propositional logic. The idea is to combine the strengths of the different systems. On the other hand, LEO-II itself, as an external reasoner, wants to support interactive proof assistants such as Isabelle/HOL, HOL, and OMEGA by efficiently automating subproblems and thereby reducing user effort.

LEO-II predominantly addresses higher-order aspects in its reasoning process with the aim to quickly remove higher-order clauses from the search space and to turn them into essentially first-order clauses which can then be refuted with a first-order prover. Furthermore, the project investigates whether techniques that have proved very successful in automated first-order theorem proving, such as shared data structures and term indexing, can be lifted to the higher-order setting.

LEO-II also provides an interactive mode in which user and system can interact to produce resolution proofs in simple type theory. LEO-II is implemented in Objective Caml; it is the successor of LEO, which was implemented in LISP and hardwired to the OMEGA proof assistant.

## Input Syntax: TPTP THF

```
thf(reflexiv,definition,
  (reflexive = (^[R:($i>($i>($o))]: (![X:$i]: ((R @ X) @ X))))).
thf(symmetric,definition,
  (symmetric =
    (^[R:($i>($i>$o))]: (![X:$i,Y:$i]:
        ((R @ X) @ Y) => ((R @ Y) @ X))))).
thf(transitive,definition,
  (transitive =
    (^[R:($i>($i>$o))]: (![X:$i,Y:$i,Z:$i]:
        (((R @ X) @ Y) & ((R @ Y) @ Z)) => ((R @ X) @ Z)))))).
thf(equiv_rel,definition,
    (equiv_rel =
    (^[R:($i>($i>$o))]:
        (reflexive @ R) & (symmetric @ R) & (transitive @ R)))).
thf(test,conjecture,(?[R:($i>($i>$o))]: ~(equiv_rel @ R))).
```

# First Experiments with LEO-II

We evaluate LEO-II's performance on simple problems about sets, relations, and functions. The example problems are taken from the TPTP library and for LEO/Vampire and LEO-II/E they have been reformalized in higher-order logic.

Some examples:

| SET171+3 | $\forall X_{o\alpha}, Y_{o\alpha}, Z_{o\alpha}.X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$           |  |  |
|----------|----------------------------------------------------------------------------------------------------------|--|--|
| SET611+3 | $\forall X_{o\alpha}, Y_{o\alpha}.(X \cap Y = \emptyset) \Leftrightarrow (X \setminus Y = X)$            |  |  |
| SET624+3 | $\forall X_{o\alpha}, Y_{o\alpha}, Z_{o\alpha}.$                                                         |  |  |
|          | $Meets(X,Y\cap Z)\Leftrightarrow Meets(X,Y)\vee Meets(X,Z)$                                              |  |  |
| SET646+3 | $\forall x_{\alpha}, y_{\beta}. Subrel(Pair(x, y), (\lambda u_{\alpha}.T) \times (\lambda v_{\beta}.T))$ |  |  |
| SET670+3 | $\forall Z_{o\alpha}, R_{o\beta\alpha}, X_{o\alpha}, Y_{o\beta}. lsRelOn(R, X, Y) \Rightarrow$           |  |  |
|          | IsRelOn(RestrictRDom(R,Z),Z,Y)                                                                           |  |  |
| with     |                                                                                                          |  |  |
|          |                                                                                                          |  |  |
| _ ∈_     | $= \lambda x_{\alpha}, A_{\alpha}, [Ax]$                                                                 |  |  |





### Cooperation with Other Provers

Provers supported (so far): E, SPASS

Translations supported so far

$$\begin{split} & [\mathsf{Kerber94}] \; (V^0_{\iota \to \iota \to o} \; V^1_\iota \; V^1_\iota) \; \mathsf{translates} \; \mathsf{to} \\ @_{(\iota \to o) \to \iota \to o} (@_{(\iota \to \iota \to o) \to \iota \to (\iota \to o)} (V^0, V^1), V^1) \\ & [\mathsf{Hurd02}] \; (V^0_{\iota \to \iota \to o} \; V^1_\iota \; V^1_\iota) \; \mathsf{translates} \; \mathsf{to} \\ & ti (@(ti(@(ti(V^0, \iota \to \iota \to o), ti(V^1, \iota)), \iota \to o), ti(V^1, \iota)), o) \end{split}$$

#### Results

| Problem              | Vampire $9.0^1$ | ${f LEO/Vamp.}^2$ | LEO-II/E <sup>3</sup> |
|----------------------|-----------------|-------------------|-----------------------|
| SET014+4             | 114.5           | 2.60              | 0.300                 |
| SET017+1             | 1.0             | 5.05              | 0.059                 |
| SET066+1             | _               | 3.73              | 0.029                 |
| SET067+1             | 4.6             | 0.10              | 0.040                 |
| SET076+1             | 51.3            | 0.97              | 0.031                 |
| SET086+1             | 0.1             | 0.01              | 0.028                 |
| SET096+1             | 5.9             | 7.29              | 0.033                 |
| SET143+3             | 0.1             | 0.31              | 0.034                 |
| SET171+3             | 68.6            | 0.38              | 0.030                 |
| SET580+3             | 0.0             | 0.23              | 0.078                 |
| SET601+3             | 1.6             | 1.18              | 0.089                 |
| SET606+3             | 0.1             | 0.27              | 0.033                 |
| SET607+3             | 1.2             | 0.26              | 0.036                 |
| SET609+3             | 145.2           | 0.49              | 0.039                 |
| SET611+3             | 0.3             | 4.00              | 0.125                 |
| SET612+3             | 111.9           | 0.46              | 0.030                 |
| SET614+3             | 3.7             | 0.41              | 0.060                 |
| SET615+3             | 103.9           | 0.47              | 0.035                 |
| SET623+3             | _               | 2.27              | 0.282                 |
| SET624+3             | 3.8             | 3.29              | 0.047                 |
| SET630+3             | 0.1             | 0.05              | 0.025                 |
| SET640+3             | 1.1             | 0.01              | 0.033                 |
| SET646+3<br>SET647+3 | 84.4<br>98.2    | 0.01<br>0.12      | 0.032<br>0.037        |
| SET648+3             | 98.2            | 0.12              | 0.037                 |
| SET649+3             | 117.5           | 0.12              | 0.037                 |
| SET651+3             | 117.5           | 0.23              | 0.029                 |
| SET657+3             | 146.6           | 0.03              | 0.023                 |
| SET669+3             | 83.1            | 0.20              | 0.041                 |
| SET670+3             | 03.1            | 0.14              | 0.067                 |
| SET671+3             | 214.9           | 0.47              | 0.038                 |
| SET672+3             |                 | 0.23              | 0.034                 |
| SET673+3             | 217.1           | 0.47              | 0.042                 |
| SET680+3             | 146.3           | 2.38              | 0.035                 |
| SET683+3             | 0.3             | 0.27              | 0.053                 |
| SET684+3             | _               | 3.39              | 0.039                 |
| SET716+4             | _               | 0.40              | 0.033                 |
| SET724+4             | _               | 1.91              | 0.032                 |
| SET741+4             | -               | 3.70              | 0.042                 |
| SET747+4             | _               | 1.18              | 0.028                 |
| SET752+4             | -               | 516.00            | 0.086                 |
| SET753+4             |                 | 1.64              | 0.037                 |
| SET764+4             | 0.1             | 0.01              | 0.032                 |
| SET770+4             | 145.0           |                   | _                     |

<sup>1</sup> Intel(R) Pentium(R) 4 CPU 2.80GHz, 1GB, Linux, CPULimit 600s 2 Intel(R) Xeon(TM) 4 CPU 2.40GHz, 4GB, Linux, CPULimit 120s

<sup>&</sup>lt;sup>3</sup> Intel(R) Pentium(R) 1 CPU 1.60GHz, 1GB, Linux, CPULimit 120s