COMP90018 Mobile Computing Systems Programming (Mo)

Review/Mobile

Author: Min Gao

<u>Week 1</u> – All Slides <u>Week 2</u> – All Slides <u>Week 3</u> – All Slides <u>Week 4</u> – All Slides <u>Week 5</u> – All Slides <u>Week 6</u> – RFID – Slides 1 to 39 <u>Week 6</u> - Mobile Games – Slides 1 to 27 <u>Week 7</u> – Location Privacy – Slides 1 to 34, 43 to 44, 46 to 47 <u>Week 7</u> – Mobile GUIs – Slides 1 to 44 <u>Week 8</u> - Wireless Sensor Networks – Slides 1 to 76 <u>Week 9</u> - Mobile Networks – Slides 1 to 37 Week 10 – Advanced Topics – Not Examinable Week 11 - Not Examinable

L1

Technical Constraints

- 1. Disconnections
- 2. Bandwidth
- 3. Latency
- 4. Network heterogeneity
- 5. Security
- 6. Energy Usage
- 7. Risk to data
- 8. Memory
- 9. Processing power
- 10. Input/Output

Mobile application types

- 1. Native
- 2. Web
- 3. Hybrid

{speed, sensors, dev resources, dev speed, ux/ui, data transfer. updating, offline, monetisation(货币化)}

Mobile computing is about Devices, Users, Agents

Mobile device Types

- Luggable
- Portable
- Wearable
- Insertable

Design fiction

The deliberate use of diegetic prototypes to suspend disbelief about change

- something that creates a story world
- has something prototyped in that story world
- does so in order to create a discursive space

L2 - UX research

UX

UX {User Experience Design} <u>Usability: A part of the User Experience</u>

HCI

HCI {Human Computer Interaction} 人机交互,交互设计

Don Norman 三要素

Don Norman 三要素

- 1. **Visceral** Design (本能层设计): The subconscious reaction based on appearance. {Look, Feel, Sound}
- 2. **Behavioral** Design (行为设计): The reaction that stems from the ease of difficulty of use. {Function, Understandability, Usability, Physical feel}
- 3. **Reflective** Design (反思性设计): The reaction that derives from self-image, experience and memories.

《情感化设计》的笔记-本能, 行为, 反思

情感设计中本能 、 行为 、 反思的解析与表达

- What are the three levels of processing that Don Norman proposes?
- 2 1. Visceral 2. Behavioral 3. Reflective

How do we know what to build

HCD

{Human Centered Design} 以人为本的设计

HCD is a creative approach to problem solving and the backbone. It's a process that starts with the people you're designing for and ends with new solution that are tailor made to suit their needs. HCD is all about building a deep empathy with the people you're designing for; generating tons of ideas; building a bunch of prototypes; sharing what you've made with the people you're designing for; and eventually putting your innovative new solution out in the world.

HCD consists of three phases

- **Inspiration**: you'll learn directly from the people you're designing for as you immerse yourself in their lives and come to deeply understand their needs
- **Ideation**: you'll make sense of what you learned, identify opportunities for design, and prototype possible solutions.
- **Implementation**: you'll bring your solution to life, and to market. And you'll know that your solution will be a success because you've kept people you're looking to serve at the heart of the process.

Shared Value 共同价值

- Desirability 愿望,客观需要 (Wishes of the stakeholder) Do they want this?
 - Will this fill a need
 - Will they actually want it
 - Will this fit into their lives
 - Will it appeal to them
- Feasibility 可行性 (Your ability to deliver) Can we do this?
 - Is the tech within reach
 - How long will this take
 - Can we make it happen
- Viability 行可能性 (whether you should start the project) Should we do this?
 - Will this align with business goals
 - Does it fit the client's budget
 - What is the ROI/Opportunity cost

Shared Value

The Design Process: The Double Diamond

The design process: what is the double diamond

Problem __ divergent thinking (<-discover , develop->) __ Solution

_ convergent thinking (<-define, deliver ->) ___/

- **Discover** insight into the problem
- **Define** the area to focus upon
- **Develop** potential solutions
- **Deliver** solutions that work

1 Brainstorming is a technique that involves __divergent__ thinking.

Interaction Design

Interaction Design Sketchbook

Hunch -> Hack -> Trial -> Idea =>> Design -> Prototype -> Test -> Principles -> Plans -> Product -> Market -> Paradigms

Reasearch Methods category

- **Looking**: Observational Methods
 - <u>Ethnography</u> It is a qualitative orientation to research that emphasises the detailed observation of people in natually occurring settings.
 - <u>Shadowing</u> The researcher accompanies the user and observes how they use the product or service within their natual environment.
 - <u>Video Diary</u> It collect quantitative data which is self-reported by participants over a period.
 - o Case Study
- Learning: Information gathering
 - o Cultural Probes 文化探针研究
 - Technology Probes (the tech probes draw from Social Science, Design and Engineering)
 - o Competitor Analysis (对竞争者应用的研究)
 - How are tech probes different to other prototypes or prodcut?
 - 2 1. They should only contain a handful of functions
 - 3 2. They should be instrumented to collect data from users
 - 3. They should be open for interpretation
- **Asking**: talking to people
 - Questionnaires
 - Interviews
 - Contextual Inquiry <u>情境调查</u>
 - Guessability
 - Experience Sampling alerts
 - Random
 - Scheduled
 - Event-based
- Prototyping: learning by building
 - Sketching [*]: Sketching User Experiences & Sketching user experiences The workbookl

- Task Flows {Tools: <u>Marvel</u>, <u>balsqmiq</u>, <u>sketch</u>}
 - Pads
 - Carousel
 - Wireframes

• Testing:

- Discount usability 可用性
- Eye tracking
- Lab or In-The-Wild (Lab is better)

	Pons	Cons
Ethnography	in depth Better product	Not cheap Time consuming Observer effect Specific
Interview	Simple Cost cheaper Context	Forget Time-consuming You have not direct observation Formal
Experience sampling	Context timely Cheap Scale up Feeling	Insight Dirty hand Input

How to choose a method

research methods

- 1. What people do
- 2. what people say
- 3. Qualitative beats Quantitative

L3 - Mobile Interaction Design

Waves of Mobile computing

Waves of Mobile computing

- Portability: Reducing the hardware size to make it possible to move them relatively easily
 - o example: {Dynabook 1968}
- Miniaturization: Radically smaller, enabling usage on the move
 - example: {apple Newton 1992}
 - example: {palm pilot 1997}

- Connectivity: wireless data networks on the move
 - WAP: wireless application protocol
- **Convergence**: bringing device types together
- **Divergence**: specialised functionality rather than generalised ones
- **Apps**: There's an app for that
 - Natural User Interfaces Are Not Natural
- Digital ecosystems: Pervasive and interrelated technologies working together

Traditional phone VS Current phone

Traditional phone	Current phone
Tactile	Touch
Indirect	Direct
Key presses	Gestures
Single key press	Multi-touch
Portrait	Portrait or landscape

4C Framework for (Digital ecosystems)

- **Communality**: Sequential interaction involving several users.
 - o Personalization
 - Generalization
- **Collaboration**: Simultaneous interation by many users.
 - o Division:
 - Merging:
- **Continuity**: Sequential interaction involving several artifacts.
 - Sychronization:
 - Migration
- **Complementarity**: Simultaneous interaction with multiple artifacts.
 - o Extension:
 - Remote Control:

	Many Users	Many artifacts
sequential (序列的)	Communality (集体性) * Personalization The artifact is personalized to each user {like Facebook} 个性化服务 * Generalization The artifact allows different users to immediately interact without any knowledge of their identity {like a ticket machine} 公众一致化服务	Continuity (连续性) * synchronization a user's data is synchronized across artifacts {like "cloud- based" storage services like Dropbox} 在多个设备之间同步 * migration the state of a user's activity is migrated from one artifact to another {like Apple's AirPlay} 将正在进行的内容无缝转移到另个 设备
simultaneous (同时的)	Collaboration (合作性) * division the artifact is divided into independent sections and each user can interact with it simultaneously {like split- screen views} 同屏幕分屏各自体验 * merging the artifact merges all users' interaction {like a multi-user board game} 同屏不分屏多人体验	Complementarity (互补性) extension * interaction with an artifact is extended to another {Adobe's Nav App moves selected tools in Photoshop onto an iPad} 用另个设备来扩展操控一个设备 * remote control one artifact is used to control another {control Apple TV with a app in iphone} 纯粹用另个设备当遥控器来远程操控

Case Study

- smart phone with smart watches
- phoneTouch

Augmenting the interaction with SENSORS

- Orientation sensor
- Flexcase
- table + pen
- Orbits (eye tracking)

L4 - Progessing Sensor Data

Challenges in Sensor Data

Most data will be like time serious, it's a funciton of time

- 1. The value of sensor data in time t will strongly influence sensor at time t+1. => GPS
- 2. Every sensor has sampling rate -> the data is disparate -> no idea of what happens between sampling rate.
- 3. Don't have enough data point.
- 4. Remove noise -> may lose some information of data.

Filter

Mean and Median Filters, Kalman Filters, Particle Filters

 $z_i = x_i$

 $oldsymbol{z_i}$ is the measurement from sensor, $oldsymbol{x_i}$ is the actual value on ground truth

But the measurement may not equal to actual value

Therefore, we assume $z_i = x_i + v_i$

 v_i is sensor noise, $v_i \sim N(0,\sigma)$

$$z_i = egin{pmatrix} z_i^{(x)} \ z_i^{(y)} \end{pmatrix} ext{ measurement} \ x_i = egin{pmatrix} x_i \ y_i \end{pmatrix} ext{ actual value} \ v_i = egin{pmatrix} v_i^{(x)} \ v_i^{(y)} \end{pmatrix} \sim egin{pmatrix} N(0,\sigma) \ N(0,\sigma) \end{pmatrix} ext{ Normal Dist}$$

Mean Filter

Create the window of a given size, wait till window full, each value will be replaced by the mean value in the given window.

Three problems:

- wait till window full -> delay of the computation.
- No sharp edges
- easy susceptible to outliers

Basic uniform Mean: if window size = 10. the weight that each value will have 0.1

Weighted Mean Filter: The old measurement still has effect, the newer, the larger effect.

Median Filter

Except for outliers. computing/pick the median. Always use the value exist on the window -> doesn't create the data. good for have the sharp edge (but if the window numbers are too much, the sharpness will be lost).

- less susceptible to outliers
- still need wait till window full
- Does not make up data

Both pros and cons for mean/median filter

Pros:

- easy to implement
- efficient
- great cost benefit

Cons:

- Laggy
- No dynamic model

trajectory smooth

Kalman Filter

underlying velocity

$$z_i = egin{pmatrix} z_i^{(x)} \ z_i^{(y)} \end{pmatrix}$$
 $x_i = egin{pmatrix} x_i \ y_i \ v_i^{(x)} \end{pmatrix}$ contain posiitons and velocities total 4 dimensions

$$egin{aligned} ext{Therefore } z_i &= Hx_i + v_i \ H &= egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \ v_i &\sim N(0,R_i) \ R_i &= egin{bmatrix} \sigma^2 & 0 \ 0 & \sigma^2 \end{bmatrix} \end{aligned}$$

modelling the dynamics

Therefore, Measurement matrix is :
$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Measurement noise is : $v_i \sim N(0,R_i)$

Therefore, Dynamics of states is :
$$\phi_{i-1} = egin{bmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Dynamic noise is $: w_{i-1} \sim N(0,Q_i)$

All together

Initial state estimate:
$$x_o = \begin{pmatrix} x_0 \\ y_0 \\ v_0^{(x)} \\ v_0^{(y)} \end{pmatrix} = \begin{pmatrix} z_0^{(x)} \\ z_0^{(y)} \\ 0 \\ 0 \end{pmatrix}$$

Initial estimate of state error covariance:

$$P_0 = egin{bmatrix} \sigma^2 & 0 & 0 & 0 \ 0 & \sigma^2 & 0 & 0 \ 0 & 0 & \sigma_s^2 & 0 \ 0 & 0 & 0 & \sigma_s^2 \end{bmatrix}$$

STEP 1: PREDICT

$$x_i^{predicted} = \phi_{i-1} x_{i-1}^{corrected}$$

Extrapolate the state error covariance:

$$P_{i}^{predicted} = \phi_{i-1}P_{i-1}^{corrected}\phi_{i-1}^{T} + Q_{i-1}$$

STEP 2: MEASURE

Compute the Kalman gain:

$$K_i = rac{P_i^{predicted}H_i^T}{H_iP_i^{predicted}H_i^T + R_i} = H_i^{-1}rac{H_iP_i^{predicted}H_i^T}{H_iP_i^{predicted}H_i^T + R_i}$$

 R_i is the uncertainty from the measurement

 $H_i P_i^{\textit{predicted}} H_i^T$ is the uncertainty propagated by the model

Update extrapolations with new measurements:

$$egin{aligned} x_i^{corrected} &= x_i^{predicted} + K_i(z_i - H_i x_i^{predicted}) \ p_i^{corrected} &= (I - K_i H_i) P_i^{predicted} \end{aligned}$$

- 1. Make prediction most like value based on dynamic model.
- 2. measure use sensor data to correct the prediction.

Pros and Cons for Kalman filter

Pros:

- Dynamic model of the system
- no lag
- Tunable trade-off between model and measurement
- Uncertainty estimate

cons:

- Parameters are not intuitive
- Overshooting

Kalman and Particle

- Kalman is cheap to run
- Particle is general

Kalman	Particle
Bayesian	Bayesian
Gaussian	Gaussian or not
Linear	Linear or not
Online	Online

Particle Filter

Generate hypotheses -> compute weights -> resample

Pros:

- 1. General -> because it doesn't make any assumptions
- 2. Continuous or discrete values is available
- 3. Great result

Cons:

- 1. Lots of memory
- 2. Very slow

L5 - Context & Activity RECOGNITION

Elements of the user's context

- Location
- User's identity
- Time of the day
- Sound levels
- Light levels
- User's motion

Context awareness (activities)

Who What Where When Why

- context **Display** (e.g. GPS can track where you are)
- contextual **augmentation** (e.g. google photo use location and time to create augment info)
- context-aware configuration (configure how devices are used)
- context- triggered actions (changing brightness when light changes)
- contextual adaptation of the environment (turn on heating when go to sleep)
- contextual mediation (based on the limited and needs of the context)
- **context-aware presentation** (e.g. switch Portrait to landscape)

Characteristics of Human Activity Recognition (HAR) Systems

- **Execution** (the timing of the execution of the recognition)
 - **online**: process data in real time. e.g. human-computer interaction
 - **offline**: records the sensor data first. The recognition is performed afterwards. e.g. health monitoring

Generalisation

- **user independent**: working with everyone
- **user specific**: single person data. Performance is usually higher than in the user-independent case, but does not generalise as well to other users.
- **temporal**: both cases.

Recognition

- **continuous**: stream of data. The system automatically "spots" the occurrence of activities or gestures in the streaming sensor data.
- **segmented**: The system assumes that the sensor data stream is segmented at the start and end of a gesture by an oracle.

Activities

- **periodic**: Activities or gestures exhibiting periodicity, such as walking, running, rowing, biking, etc. Sliding window segmentation and frequency-domain features are generally used for classification.
- **sporadic**: The activity or gesture occurs sporadically, interspersed with other activities or gestures. Segmentation plays a key role to isolate the subset of data containing the gesture.
- **static**: The system deals with the detection of static postures or static pointing gestures.

System model

- **stateless**: The recognition system does not model the state of the world.
- **stateful**: The system uses a model of the environment, such as the user's context or an environment map with location of objects.
- Imagine an app that analyses your shopping lists and suggests at the end of the week recipes with a better nutriotional value based on the ingredients of that list. Check all characteristics that apply to this app.
- 2 Offline, User-specific, Periodic

The processing pipeline

sensor

Choosing a sensor

what is it measuring

- Accuracy and precision
- range of the sensor
- resolution or sensitivity of the sensor
- sampling rate or frame rate
- cost

Preprocessing

- Interpolation
- downsampling

Segmentation

- sliding window
 - Non-overlapping sliding window
 - overlapping sliding window
- energy based
- additional context sources

Feature extraction

- Min
- Max
- Range
- Skewness
- Mean
- Energy
- Kurtosis
- Variance

Classifiers

- Hidden Markov Models
- Dynamic Time Wraping
- kNN
- AdaBoost
- Support Vector Machines
- Random Forest

Reporting performance

What proportion of the labelled items were correct?

• **Precision** = True positives / (True positives + False positives)

What proportion of the windows with that activity were recognised?

• **Recall** = True positives / (True positives + False negatives)

F1 Score =
$$\frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}} = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Confusion Matrix

L6 - RFID

RFID technology

Tag

- Microchip connected to an antenna
- can be passive, semi-passive, active
- No battery: passive
- Semni-passive: circuit is battery-powered except communication
- secure
- query tags via radio signals

Reader

• Query tags via radio signals

Example: Visa payWave, payPass

RFID (radio frequency identification)

 Proximity-based technology: determine the tag location by measuring the signal's time of flight (in theory)

Pros:

- Cheap, high volume, large variety
- Long industry experience
- scanning even with high speeds
- no maintenance, simple to manage

Cons:

- No quality of service
- Only passive data acquistion

Characteristics

- No line-of sight necessary
- Resist environmental conditions: frost, heat, dirt, ...
- RFID tags with read & write memory
- Smartcard functionality (JavaCard): cryptographiccomputations for personal contact cards

Passive RFIDs

- Do not need an internal power source
- Operating power is supplied by the reader

Features

3m, cheap

Active RFIDs

• Own power source (battery life expectancy: up to 10 years)

Features

cheap, samll, 100m, combination with sensors

RFID Frequencies

- LF: low frequency
 - o good penetration of materials including water and metal
 - o widely adopted
 - No collision protocol available
 - o Range: 30cm
- HF: high frequency
 - Provides anti-collision protocols
 - o 1m
- UHF : ultra-high frequency
 - Difficult to penetrate of water and metal
 - o range: 3m
- Microwave
 - o range: 2m
 - o high data rate

EPC - pass

Anti-collision & Singulation

Problem

- RFID tags are simple and cannot communicate with other tags
- High probability that two tags in communication rangerespond simultaneously
- Collision

Anti-collision and singulation protocols

- Algorithms to identify all tags
- Anti-collision: trade time for the possibility to interrogate alltags
- Singulation: identify (iterate through) individual tags

ALOHA Protocol

"Tag-Talks-First" behavior: tag automatically sends its ID (and data) if it enters a power field.

If a message collides with another transmission, try resending it later after a random period

Collision types: Partial & complete

Reducing collisions in ALOHA

- Switch-off
 - o After a successful transmission a tag enters the quiet state
- Slow down
 - Reduce the frequency of tag responses
- Carrier sense
 - Use ACK signal of the reader in communication with another tag
 - Reader broadcasts a MUTE command to other tags if itinterrogates one tag

Partial overlap leads to maximum throughput of a 18.4%

Slotted ALOHA protocol

- "Reader-Talks-First": use discrete timeslots SOF (start-of-frame) and EOF (end-of-frame)
- A tag can send only at the beginning of a timeslot
- Leads to complete or no collision
- Increased maximum throughput of 36.8%

Frame-slotted ALOHA

- Group several slots into frames
- Only one tag transmission per frame
- Limits frequently responding tags
- Adaptive version: adjust the number of slots per frame

Protocol	+	-
ALOHA	Adapts quickly to changing numbers of tags Simple reader design	Worst case: never finishes Small throughput
Slotted ALOHA	Doubles throughput	Requires synchronization Tags have to count slots
Frame-slotted- ALOHA	Avoids frequently responding tags	Frame size has to be known or transmitted similar to slotted ALOHA

Binary Tree Protocol I

- DFS
 - "Reader-Talks-First" behavior: reader broadcasts a request command with an ID as a parameter
 - A sub-tree T is searched by an identifier prefix
 - o Only tags with an ID lower or equal respond
 - An interrogated tag is instructed to keep quiet afterward
 - Repeat algorithm until no collision occurs or all tags are quiet

Binary Tree Protocol II

- Each sub-tree T corresponds to an identifier prefix
- Reader searches T by sending prefix, interrogating tags for their next bit
 - If all "0" search Left(T)
 - If all "1" search Right(T)
 - If both "0" and "1" search Left(T) and Right(T)

RFID Applications

- E-passports
 - Security risk: forgery
- Transportation payment

- Electronic toll collection
 - Security risk: denial of service
- Vehicles : Smart key
- Supply chain & inventory management
- Preventation
- product tracking
 - o privacy risk: tracking
- Human implants

Status Quo of RFID Systems

- No authentication
 - Readers are blind: if tag does not reply, reader does not know about it
 - o Tags are promiscuous and reply to any reader
- No access control
 - Malicious reader can link to a tag
 - Malicious tag can spoof a reader
- No encryption
 - Eavesdropping possible (especially for the reader)
- Man-in-the-middle-attack

Privacy Concerns

- Unauthorized surveillance
 - o simple RFID tags support no security mechanisms
 - Permanent RFID serial numbers can compromise privacy
- Potential risks
 - Tags in goods might be a potential risk
 - Threat: scanning of assts of high value

RFID Tag Privacy

TODO