Funding Constraints and Informational Efficiency

Sergei Glebkin, Naveen Gondhi, John Kuong

INSEAD

FIRS 2019

Important feature of markets: prices reflect information

▶ Informational efficiency: how well prices do so

Important feature of markets: prices reflect information

Informational efficiency: how well prices do so

Prices reflect information. How?

- Investors acquire information about future asset values
- ► Through trading, information gets impounded into prices

Important feature of markets: prices reflect information

▶ Informational efficiency: how well prices do so

Prices reflect information. How?

- Investors acquire information about future asset values
- ► Through trading, information gets impounded into prices

However:

- 1. Trading requires funding
- 2. In reality, investors face funding constraints

Q1: How funding constraints affect info. efficiency?

- Financiers providing funding to investors are concerned about the risk of financing a trade
- Price provides useful information to assess this risk

Q2: Does info. efficiency affect funding constraints?

- ► Financiers providing funding to investors are concerned about the risk of financing a trade
- Price provides useful information to assess this risk

Q2: Does info. efficiency affect funding constraints?

To answer these questions, we need a model where info. efficiency and funding constraints are jointly determined.

We present and analyze such a model Study asset pricing implications of the interaction between constraints and informational efficiency.

We present and analyze a tractable REE model that allows for **general price-dependent** portfolio constraints

We present and analyze a tractable REE model that allows for **general price-dependent** portfolio constraints

- Key to tractability: irrelevance result. For a given quality of investors' private info, info. efficiency is can be found by solving the model without constraints.
- ► As constraints tighten, investors have less incentive to acquire information ⇒ lower informational efficiency

▶ How funding constraints affect informational efficiency?

- ▶ How funding constraints affect informational efficiency?
- ► How informational efficiency affects funding constraints?

- ▶ How funding constraints affect informational efficiency?
- How informational efficiency affects funding constraints?

We uncover a novel information spiral.

Asset pricing implications: a small shock to investors' wealth can lead to large increase in

- risk premium
- volatility
- Sharpe ratio

- ▶ $t \in \{0, 1, 2\}$
- ightharpoonup risk-free bond: r=0
- risky-asset: pays off $f = v + \theta$ at t = 2. Supply = 1. Learnable $v \sim N(\bar{v}, \tau_v^{-1})$; Unlearnable $\theta \sim N(0, \tau_{\theta}^{-1})$
- ▶ at t = 2, investors $i \in [0, 1]$ receive endowment

$$b_i = e_i \theta$$
 $e_i = z + u_i$

▶ at t = 1, i receives signal $s_i = v + \epsilon_i$ and solves:

$$\max_{x_i(p;s_i,e_i)} E[-e^{-\gamma W_i}|s_i,e_i,p]$$

s.t.: $W_i = W_0 + x_i(v - p) + e_i\theta + \eta_i$, and $a(p) \le x_i \le b(p)$

- ▶ $t \in \{0, 1, 2\}$
- ightharpoonup risk-free bond: r=0
- risky-asset: pays off $f = v + \theta$ at t = 2. Supply = 1. Learnable $v \sim N(\bar{v}, \tau_v^{-1})$; Unlearnable $\theta \sim N(0, \tau_{\theta}^{-1})$
- ▶ at t = 2, investors $i \in [0, 1]$ receive endowment

$$b_i = e_i \theta$$
 $e_i = z + u_i$

▶ at t = 1, i receives signal $s_i = v + \epsilon_i$ and solves:

$$\max_{x_i(p;s_i,e_i)} E[-e^{-\gamma W_i}|s_i,e_i,p]$$

s.t.: $W_i = W_0 + x_i(v - p) + e_i\theta + \eta_i$, and $a(p) \le x_i \le b(p)$

- ▶ $t \in \{0, 1, 2\}$
- ightharpoonup risk-free bond: r=0
- ▶ risky-asset: pays off $f = v + \theta$ at t = 2. Supply = 1. Learnable $v \sim N(\bar{v}, \tau_v^{-1})$; Unlearnable $\theta \sim N(0, \tau_\theta^{-1})$
- ▶ at t = 2, investors $i \in [0, 1]$ receive endowment

$$b_i = e_i \theta$$
 $e_i = z + u_i$

▶ at t = 1, i receives signal $s_i = v + \epsilon_i$ and solves:

$$\max_{x_i(p;s_i,e_i)} E[-e^{-\gamma W_i}|s_i,e_i,p]$$

s.t.: $W_i = W_0 + x_i(v - p) + e_i\theta + \eta_i$, and $a(p) \le x_i \le b(p)$ Competitive market maker solves at t = 1:

$$\max_{x_m(p)} E[-e^{-\gamma_m(x_m(v+\theta-p))}|p]$$

- ▶ $t \in \{0, 1, 2\}$
- ightharpoonup risk-free bond: r=0
- ▶ risky-asset: pays off $f = v + \theta$ at t = 2. Supply = 1. Learnable $v \sim N(\bar{v}, \tau_v^{-1})$; Unlearnable $\theta \sim N(0, \tau_a^{-1})$
- ▶ at t = 2, investors $i \in [0, 1]$ receive endowment

$$b_i = e_i \theta$$
 $e_i = z + u_i$

▶ at t = 1, i receives signal $s_i = v + \epsilon_i$ and solves:

$$\max_{x_i(p;s_i,e_i)} E[-e^{-\gamma W_i}|s_i,e_i,p]$$

s.t.: $W_i = W_0 + x_i(v - p) + e_i\theta + \eta_i$, and $a(p) \le x_i \le b(p)$ Competitive market maker solves at t = 1:

$$\max_{x_m(p)} E[-e^{-\gamma_m(x_m(v+\theta-p))}|p]$$

- ▶ $t \in \{0, 1, 2\}$
- ightharpoonup risk-free bond: r = 0
- ▶ risky-asset: pays off $f = v + \theta$ at t = 2. Supply = 1. Learnable $v \sim N(\bar{v}, \tau_v^{-1})$; Unlearnable $\theta \sim N(0, \tau_a^{-1})$
- ▶ at t = 2, investors $i \in [0, 1]$ receive endowment

$$b_i = e_i \theta$$
 $e_i = z + u_i$

▶ at t = 1, i receives signal $s_i = v + \epsilon_i$ and solves:

$$\max_{x_i(p;s_i,e_i)} E[-e^{-\gamma W_i}|s_i,e_i,p]$$

s.t.: $W_i = W_0 + x_i(v - p) + e_i\theta + \eta_i$, and $a(p) \le x_i \le b(p)$ Competitive market maker solves at t = 1:

$$\max_{x \in \{a\}} E[-e^{-\gamma_m(x_m(v+\theta-p))}|p]$$

The equilibrium price clears the market

$$\int x_i(p,s_i,e_i)di + x_m(p) = 1$$

Benchmark: No constraints

Proposition. Suppose investors have identical signal precision τ_ϵ and $\gamma > \bar{\gamma}$. There exists unique linear equilibrium in which:

- ▶ Sufficient statistic of price $\phi^u = f_0 + f_1 p$, $\phi^u = v (\beta^u)^{-1} z$
- β^u is a solution to cubic polynomial

Benchmark: No constraints

Proposition. Suppose investors have identical signal precision τ_ϵ and $\gamma > \bar{\gamma}$. There exists unique linear equilibrium in which:

- ▶ Sufficient statistic of price $\phi^u = f_0 + f_1 p$, $\phi^u = v (\beta^u)^{-1} z$
- $ightharpoonup eta^u$ is a solution to cubic polynomial

In this equilibrium,

$$\mathbb{V}(v|p) = (\tau_v + (\beta^u)^2 \tau_z)^{-1}$$

Informational efficiency is β^u

• increases in τ_{ϵ} , investor's signal precision

Equilibrium with constraints

Proposition. ∃ generalized linear equilibrium in which

▶ Sufficient statistic of price $\phi = f(p)$, $\phi = v - (\beta)^{-1}z$

Equilibrium with constraints

Proposition. ∃ **generalized** linear equilibrium in which

- ▶ Sufficient statistic of price $\phi = f(p)$, $\phi = v (\beta)^{-1}z$
- the function f(p) satisfies the ODE

$$f'(p) = \frac{c_p^m + \pi_2 c_p - \pi_1 a'(p) - \pi_3 b'(p)}{c_\phi^m + \pi_2 c_\phi}$$

where π_1 , π_2 and π_3 - fraction of investors constrained by a(p), unconstrained and constrained by b(p).

Equilibrium with constraints

Proposition. ∃ **generalized** linear equilibrium in which

- ▶ Sufficient statistic of price $\phi = f(p)$, $\phi = v (\beta)^{-1}z$
- the function f(p) satisfies the ODE

$$f'(p) = \frac{c_p^m + \pi_2 c_p - \pi_1 a'(p) - \pi_3 b'(p)}{c_\phi^m + \pi_2 c_\phi}$$

where π_1 , π_2 and π_3 - fraction of investors constrained by a(p), unconstrained and constrained by b(p).

▶ Irrelevance result: $\beta = \beta^u$

Irrelevance result - intuition

Irrelevance result: $\beta = \beta^u$. Price informativeness is unaffected by constraints.

General insights: price reveals information in constrained economy via the variations in fractions of constrained investors

instead of variations in individual investor's demand

Irrelevance result - intuition

Irrelevance result: $\beta = \beta^u$. Price informativeness is unaffected by constraints.

General insights: price reveals information in constrained economy via the variations in fractions of constrained investors

instead of variations in individual investor's demand

Constraints affect both trading intensity and hedging intensity

- ▶ Info efficiency is determined by $\int \frac{\partial x_i}{\partial s_i} di / \int \frac{\partial x_i}{\partial e_i} di$
- ▶ Both $\int \frac{\partial x_i}{\partial s_i} di$ and $\int \frac{\partial x_i}{\partial e_i} di$ are reduced with constraints
- ▶ We show $\int \frac{\partial x_i}{\partial s_i} di / \int \frac{\partial x_i}{\partial e_i} di$ remains unchanged

Irrelevance result - intuition

Irrelevance result: $\beta = \beta^u$. Price informativeness is unaffected by constraints.

General insights: price reveals information in constrained economy via the variations in fractions of constrained investors

instead of variations in individual investor's demand

Constraints affect both trading intensity and hedging intensity

- ▶ Info efficiency is determined by $\int \frac{\partial x_i}{\partial s_i} di / \int \frac{\partial x_i}{\partial e_i} di$
- ▶ Both $\int \frac{\partial x_i}{\partial s_i} di$ and $\int \frac{\partial x_i}{\partial e_i} di$ are reduced with constraints
- ▶ We show $\int \frac{\partial x_i}{\partial s_i} di / \int \frac{\partial x_i}{\partial e_i} di$ remains unchanged

Assumptions needed: continuum of investors; noise comes from endowment shocks

Information acquisition incentives

At date 0, we assume that investors preferences are given by

$$U_0 = E_0 \left[E_1 \left[-e^{-\gamma (W_2 - C(\tau_{\epsilon,i}))} \right] \right]$$

Proposition. The foc for investor *i*

$$C'(\tau_{\epsilon,i}) = \frac{\tau_i}{2\tau_{v,i}^2 \gamma} \underbrace{\frac{E[-e^{-\gamma CE_1} \mathbb{I}_{uncons.}]}{E[-e^{-\gamma CE_1}]}}_{\text{the term due to constraints}} \tag{1}$$

where $\tau_i = \mathbb{V}(f|s_i, e_i, p)^{-1}$ and $\tau_{v,i} = \mathbb{V}(v|s_i, e_i, p)^{-1}$.

Information acquisition incentives

Assume $\gamma_m = 0$.

Result. As constraints tighten (i.e., a(p) increases, b(p) decreases $\forall p$) investors acquire less information and equilibrium info. efficiency decreases.

Intuition: info. is less valuable if one can trade less on it

Portfolio constraint from margin requirements

Margin requirements:

- ▶ To buy (sell short) asset at price p one has to set aside $m^+(p) \ge 0$ ($m^-(p) \ge 0$) per unit
- ► Funding constraint:

$$m^{-}(p)[x]^{-} + m^{+}(p)[x]^{+} \leq W_{0}$$

Implies $a(p) = -\frac{W_0}{m^-(p)}$ and $b(p) = \frac{W_0}{m^+(p)}$.

Portfolio constraint from margin requirements

Margin requirements:

- ▶ To buy (sell short) asset at price p one has to set aside $m^+(p) \ge 0$ ($m^-(p) \ge 0$) per unit
- ► Funding constraint:

$$m^{-}(p)[x]^{-} + m^{+}(p)[x]^{+} \leq W_{0}$$

▶ Implies $a(p) = -\frac{W_0}{m^-(p)}$ and $b(p) = \frac{W_0}{m^+(p)}$.

Assumption: Margins are set based on Value-at-Risk (VaR)

- m^+ is such that $Pr(p-f>m^+(p)|p)=1-\alpha$
- m^- is such that $Pr(f p > m^-(p)|p) = 1 \alpha$

Common in practice. See Brunnermeier and Pedersen (2009).

How informational efficiency affects constraints?

Assume $\gamma_m = 0$.

Proposition. Equilibrium margins satisfy

$$m^+=m^-=rac{\Phi^{-1}(lpha)}{\sqrt{ au_{
m v}+eta^2 au_{
m z}}}.$$

As $\beta\downarrow$, margins increase \implies constraints $\left[-\frac{W_0}{m^-},\frac{W_0}{m^+}\right]$ tighten.

<u>Intuition:</u> with lower info. efficiency, financiers face higher residual risk of financing a trade. Hence, set higher margins.

Information spiral.

Proposition. As constraints tighten, investors acquire less information and equilibrium informational efficiency(β) \downarrow .

Proposition. As $\beta \downarrow$, margins increase and constraints tighten.

Information Spiral Implications: Complementarity

<u>Substuitability</u>: In traditional REE models (GS 1980), the value of acquiring information decreases as others acquire more information

Additional channel (complementarity): As others acquire more information, prices become more informative, margins become lower and increases the agents incentive to acquire information

Proposition. When W_0 is low enough, there is complementairt in information acquisition for τ_ϵ and τ_{ϵ_i} such that

$$\frac{\frac{d}{d\tau_{\epsilon}}}{\operatorname{effect of a change in the constraints}} > -\frac{\frac{d}{d\tau_{\epsilon}}}{\operatorname{d}\tau_{\epsilon}} \underbrace{\log\left(\frac{\tau_{i}}{2\gamma\tau_{v,i}^{2}}\right)}_{\text{GS effect}}.$$

Asset pricing implications: risk premium.

Assume market maker is risk averse, $\gamma_m > 0$.

Risk premium $RP := \mathbb{E}[v - p]$.

Suppose W_0 drops (crisis)

Exogenous private info. W₀ ↓: capacity to go long and short is diminished (tighter constraints)⇒ RP ↑. plot: Move from A to B.

Asset pricing implications: risk premium.

Assume market maker is risk averse, $\gamma_m > 0$.

Risk premium $RP := \mathbb{E}[v - p]$.

Suppose W₀ drops (crisis)

- ▶ Exogenous private info. $W_0 \downarrow$: capacity to go long and short is diminished (tighter constraints) $\Rightarrow RP \uparrow$. plot: Move from A to B.
- ▶ With endogenous private info. Constraints tighten $\Rightarrow \tau_{\epsilon} \downarrow$. plot: Move from B to C. Amplification.

Volatility: Unintended consequences

Often argued: tighter margins should lower volatility.

Suppose margin requirements tighten $(\alpha \uparrow)$.

Volatility: Unintended consequences

Often argued: tighter margins should lower volatility.

Suppose margin requirements tighten $(\alpha \uparrow)$.

- Exogenous private info. Tighter constraints reduce speculation, volatility \(\psi. \) Move from A to B.
- ▶ With endogenous private info. Constraints tighten \Rightarrow $\tau_{\epsilon} \downarrow \Rightarrow$ volatility \uparrow . Move from B to C.

Volatility: Unintended consequences

Often argued: tighter margins should lower volatility.

Suppose margin requirements tighten $(\alpha \uparrow)$.

- Exogenous private info. Tighter constraints reduce speculation, volatility \(\psi. \) Move from A to B.
- ▶ With endogenous private info. Constraints tighten \Rightarrow $\tau_{\epsilon} \downarrow \Rightarrow$ volatility \uparrow . Move from B to C.
- ► Tighter margin requirements can *increase* volatility.

Robustness and additional results (new appendices!)

- We show that our informational spiral holds
 - 1. In a setting with GS information structure and noise traders, where irrelevance result does not hold
 - new chanel: information aggregation. As constraints tighten for informed investors but not for noise traders, less info is embedded into price
 - 2. In a setting where investors are initially endowed with risky asset, not cash
- Analytical conditions under which our information spiral holds with risk-averse market maker
- We attempt to microfound VaR-based margins

Conclusion

- We developed a tractable REE model that allows for general portfolio constraints
- ► Portfolio constraints affect info. efficiency only through info. acquisition channel

When portfolio constraints arise due to margin requirements

- Wealth of investors matters for asset prices and info. efficiency, unlike in traditional CARA models
- Due to novel informational spiral, wealth effects are amplified which has important asset pricing implications