Pollution MSE

May 31, 2019

```
In [1]: import warnings
                           warnings.filterwarnings('ignore')
                           import pandas as pd
                           import matplotlib.pyplot as plt
                           import seaborn as sns
                           sns.set(font='IPAGothic')
                           import numpy as np
                           import statsmodels.api as sm
                           from sklearn.metrics import mean_squared_error
In [2]: data = pd.read_excel('cleaned_data/Pollution full data Eve.xlsx', parse_dates=['date_timents.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.com/data/pollution.co
In [3]: data = data['pollutantGlobalIndex']
In [4]: print(data.index.min(), data.index.max())
2017-09-06 14:00:00 2019-05-21 12:00:00
In [5]: a = data['2017-09-06 15:00:00':]
In [6]: print(data.index.min(), data.index.max())
2017-09-06 14:00:00 2019-05-21 12:00:00
In [7]: a.head()
Out[7]: date_time
                           2017-09-06 15:00:00
                                                                                                         3
                           2017-09-06 16:00:00
                                                                                                         3
                           2017-09-06 17:00:00
                                                                                                         3
                           2017-09-06 18:00:00
                                                                                                          3
                           2017-09-06 19:00:00
                           Name: pollutantGlobalIndex, dtype: int64
In [8]: a.count()
```

Out[8]: 26273

```
In [9]: data.count()
Out[9]: 26274
In [10]: data = a
In [11]: data.count()
Out[11]: 26273
In [12]: data[16617:]
Out[12]: date_time
         2018-04-10 01:00:00
                                 5
         2018-04-10 01:00:00
         2018-04-10 01:00:00
                                 7
         2018-04-10 02:00:00
                                 7
         2018-04-10 02:00:00
                                 5
         2018-04-10 02:00:00
                                 4
         2018-04-10 02:00:00
                                 7
         2018-04-10 03:00:00
                                 6
         2018-04-10 03:00:00
         2018-04-10 03:00:00
                                 4
         2018-04-10 03:00:00
                                 6
         2018-04-10 04:00:00
                                 6
         2018-04-10 04:00:00
                                 4
         2018-04-10 04:00:00
                                 5
         2018-04-10 04:00:00
                                 6
         2018-04-10 05:00:00
                                 6
         2018-04-10 05:00:00
                                 5
         2018-04-10 05:00:00
                                 5
         2018-04-10 05:00:00
                                 6
         2018-04-10 06:00:00
                                 6
         2018-04-10 06:00:00
                                 5
         2018-04-10 06:00:00
                                 5
         2018-04-10 06:00:00
                                 6
         2018-04-10 07:00:00
                                 6
                                 5
         2018-04-10 07:00:00
         2018-04-10 07:00:00
                                 5
         2018-04-10 07:00:00
                                 6
         2018-04-10 09:00:00
                                 6
         2018-04-10 09:00:00
                                 4
         2018-04-10 09:00:00
                                 5
                                . .
         2019-05-20 07:00:00
                                 6
         2019-05-20 08:00:00
                                 6
         2019-05-20 09:00:00
                                 6
         2019-05-20 10:00:00
                                 6
         2019-05-20 11:00:00
                                 6
```

```
2019-05-20 12:00:00
         2019-05-20 13:00:00
                                7
         2019-05-20 14:00:00
                                7
         2019-05-20 15:00:00
                                7
         2019-05-20 16:00:00
                                8
         2019-05-20 17:00:00
         2019-05-20 18:00:00
         2019-05-20 19:00:00
         2019-05-20 20:00:00
                                7
         2019-05-20 21:00:00
         2019-05-20 22:00:00
                                7
         2019-05-20 23:00:00
                                7
         2019-05-21 00:00:00
         2019-05-21 01:00:00
         2019-05-21 02:00:00
         2019-05-21 03:00:00
         2019-05-21 04:00:00
         2019-05-21 05:00:00
                                6
         2019-05-21 06:00:00
         2019-05-21 07:00:00
         2019-05-21 08:00:00
         2019-05-21 09:00:00
         2019-05-21 10:00:00
         2019-05-21 11:00:00
         2019-05-21 12:00:00
                                7
         Name: pollutantGlobalIndex, Length: 9656, dtype: int64
In [13]: 33234/2
Out[13]: 16617.0
In [14]: data['2019-05-18 15:00:00']
Out[14]: 6
In [15]: tr_start, tr_end = '2017-09-06 15:00:00', '2018-03-05 17:00:00'
         te_start, te_end = '2018-03-05 18:00:00', '2019-05-20 11:00:00'
In [16]: tra = data[tr_start:tr_end].dropna()
         tes = data[te_start:te_end].dropna()
In [17]: tra.count()
Out[17]: 13484
In [18]: tes.count()
Out[18]: 12764
In [19]: resDiff = sm.tsa.arma_order_select_ic(tra, max_ar=7, max_ma=7, ic='aic', trend='c')
         print('ARMA(p,q) =',resDiff['aic_min_order'],'is the best.')
```

```
' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
```

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

```
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
```

' ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir

```
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning:
  "Check mle_retvals", ConvergenceWarning)
/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnir
  ' ignored when e.g. forecasting.', ValueWarning)
```

ARMA(p,q) = (6, 7) is the best.

Parameters

/home/omar/.local/lib/python3.5/site-packages/statsmodels/tsa/base/tsa_model.py:225: ValueWarnirg 'ignored when e.g. forecasting.', ValueWarning)

/home/omar/.local/lib/python3.5/site-packages/statsmodels/base/model.py:508: ConvergenceWarning: "Check mle_retvals", ConvergenceWarning)

Out[20]: <class 'statsmodels.iolib.summary.Summary'>

Statespace Model Results

______ Dep. Variable: pollutantGlobalIndex No. Observations: 13484 Model: SARIMAX(7, 1, 7)Log Likelihood -16423.938 Date: Thu, 30 May 2019 32877.875 AIC Time: 23:51:48 BIC 32990.504 HQIC 32915.441 Sample:

- 13484

Covariance Type: opg

covariance Type:			opg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1	-1.7667	0.059	-29.753	0.000	-1.883	-1.650	
ar.L2	-1.3923	0.084	-16.635	0.000	-1.556	-1.228	
ar.L3	-0.6524	0.068	-9.619	0.000	-0.785	-0.519	
ar.L4	0.6252	0.033	18.940	0.000	0.561	0.690	
ar.L5	1.3118	0.045	28.884	0.000	1.223	1.401	
ar.L6	0.9910	0.054	18.214	0.000	0.884	1.098	
ar.L7	0.3332	0.039	8.553	0.000	0.257	0.410	
ma.L1	1.0844	0.057	18.891	0.000	0.972	1.197	
$\mathtt{ma.L2}$	-0.1875	0.059	-3.166	0.002	-0.304	-0.071	
${\tt ma.L3}$	-0.4530	0.049	-9.265	0.000	-0.549	-0.357	
$\mathtt{ma.L4}$	-0.4643	0.041	-11.279	0.000	-0.545	-0.384	
$\mathtt{ma.L5}$	-0.4412	0.026	-17.145	0.000	-0.492	-0.391	
ma.L6	-0.2515	0.031	-8.120	0.000	-0.312	-0.191	
$\mathtt{ma.L7}$	-0.0843	0.031	-2.751	0.006	-0.144	-0.024	
sigma2	0.6528	0.007	98.079	0.000	0.640	0.666	
Ljung-Box (Q):			85.82	Jarque-Bera	======================================	13107.39	
Prob(Q):			0.00	Prob(JB):	•	0.00	
Heteroskedasticity (H):			0.92	Skew:		0.20	
Prob(H) (two-sided):			0.00	Kurtosis:		7.81	

Warnings:

^[1] Covariance matrix calculated using the outer product of gradients (complex-step).

ARIMA model MSE:4.0156838160913315