## Essence of the lecture (19/21/22/23/24)

## 凸问题:

- 非凸、非拟凸问题的松弛 (零范数的松弛)
- 广义凸问题及相关定义
- 问题的等价变换
- 狭义凸问题
- 凸问题的性质: 局部最优 = 全局最优, 目标函数可微情况下的最优解

#### 零范数的松弛:

在一维条件下,零范数是拟凸函数 (非凸),在  $n \ge 2$  情况下,零范数非拟凸,此时主要有两种松弛方法。

- 松弛为 l<sub>1</sub> 范数,该函数为凸函数
- 松弛为  $log(ax^2+1)$ ,该函数非凸,但是是拟凸函数



图 1:  $f(x) = log(ax^2 + 1), a \to +\infty$  时整体趋近零范数, 拟凸函数

广义凸问题: 凸目标, 凸集约束

一般优化问题的描述:

min 
$$f_0(x)$$
  
s.t.  $f_i(x) \le 0$   $i = 1, ..., m$   
 $h_i(x) = 0$   $i = 1, ..., p$ 

x 称为优化变量 (optimization variable),  $f_0$  称为目标函数、损失函数、效用函数,  $f_i(x) \leq 0$  称为不等式约束 (inequality constraint),  $h_i(x) = 0$  称为等式约束 (equality constraint), m = p = 0 时为无约束 (unconstrained) 问题

## 概念定义 (注意 inf 可以对应 min):

优化问题的域 (domain): 
$$D = \bigcap_{i=0}^{m} dom \ f_i \cap \bigcap_{i=1}^{p} dom \ h_i$$

可行解集 (feasible set):  $X_f = \{x \mid x \in D, f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$ 

最优值 (optimization value):  $p^* = \inf \{f_0(x) \mid x \in X_f\}$ , 若  $X_f = \emptyset$ ,  $p^* = +\infty$ 

最优解 (optimization point/solution): 若  $x^*$  可行,且  $f_0(x^*) = p^*$ ,称  $x^*$  为最优解

 $\varepsilon$  次优解集 (ε-suboptional set):  $X_{\varepsilon} = \{x \mid x \in X_f, f_0(x) \le p^* + \varepsilon\}$ 

局部最优解 (locally optional): 
$$f_0(x) = \inf \left\{ f_0(z) \mid h_i(z) = 0, i = 1, \dots, m \\ \|z - x\| \le R \right\}$$
, 解集为  $X_{loc}$ 

## 不等式约束采用 < 而非 < 的原因

若  $x \in X_f$ ,  $f_i(x) = 0$ , 则  $f_i(x) \le 0$  为活动 (active) 约束若  $x \in X_f$ ,  $f_i(x) < 0$ , 则  $f_i(x) \le 0$  为非活动 (inactive) 约束而所有的 < 约束都可以转化为  $\le$  约束例如 money<100 $\Rightarrow$   $-|log(100 - money)| <math>\le 0$ 

## 问题的等价变换

例: Box Constraint

$$l_i \le x \le u_i \Rightarrow \begin{cases} l_i - x_i \le 0 \\ x_i - u_i \le 0 \end{cases}$$

例:将问题的量纲做标准化

$$\min \ \alpha_0 f_0(x)$$

s.t. 
$$\alpha_i f_i(x) \le 0$$
  $i = 1, ..., m$   
 $\beta_i h_i(x) = 0$   $i = 1, ..., p$ 

例:利用函数进行等价变换

| $\psi_0$                     | $R \to R$ | 単增                                        |
|------------------------------|-----------|-------------------------------------------|
| $\psi_1,\ldots,\psi_m$       | $R \to R$ | $\psi_i(u) \le 0 \Leftrightarrow u \le 0$ |
| $\varrho_1,\ldots,\varrho_p$ | $R \to R$ | $\varrho_i(u) = 0 \Leftrightarrow u = 0$  |

$$\min \ \psi_0 \left( f_0(x) \right)$$

s.t. 
$$\psi_i(f_i(x)) \le 0$$
  $i = 1, ..., m$   
 $\varrho_i(h_i(x)) = 0$   $i = 1, ..., p$ 

如 
$$\min \|Ax - b\|_2 \Leftrightarrow \|Ax - b\|_2^2$$

## 例:消除等式约束

$$\{h_i(x)=0,i=1,\ldots,p\}$$
 看作一组方程, $X=\varrho(Z),\ Z\in R^k,\ \varrho:\ R^k\to R^n$  min  $f_0(\varrho(x))$   $\Rightarrow$   $X^*=\varrho(Z^*)$  s.t.  $f_i(\varrho(x))\leq 0$   $i=1,\ldots,m$ 

## 例:消除线性等式约束

在线性等式约束的情况下,  $h_i(x) = 0 \Rightarrow Ax - b = 0$ 

此时若方程无解,则问题无解,若 A 可逆,则  $X = A^{-1}b$ 

否则可将等式约束化为  $X = FZ + X_0$ , FZ 在 A 的零空间,即将求解 n 维的 X 化为求解 n-r 维的 Z (因为初等变换 F 不改变 Z 的秩)

只有在有必要的情况下这样做,有时候会带来麻烦(具体麻烦未提及)

#### 狭义凸问题:

$$min \quad f_0(x)$$
  $f_0(x)$ 为凸 
$$s.t. \quad f_i(x) \leq 0 \qquad i=1,\ldots,m \qquad f_i(x)$$
均为凸 
$$a_i^T x = b_i \qquad i=1,\ldots,p \qquad$$
等式约束为仿射函数

#### 例:引入松弛变量 (slack variable) $s_i$

虽然是一个升维的情况,但是有时可以将问题化为非常特殊的形式更易求解

min 
$$f_0(x)$$
  
 $s.t.$   $s_i \le 0$   
 $f_i(x) - s_i = 0$   $i = 1, ..., m$   
 $a_i^T x = b_i$   $i = 1, ..., p$ 

### 类似有相关问题(max concave ⇔ min convex)

Quasi-convex optimization  $f_0$  为拟凸函数, $f_i$ , $h_i$  为凸函数

None-convex optimization  $f_0$  为凹函数,  $f_i$ ,  $h_i$  为凸函数

#### 求证: 凸问题的局部最优即为全局最优

设 x 不是全局最优,  $\exists y \in X_f$ , s.t.  $f_0(y) < f_0(x)$ 

$$\because$$
 x 为局部最优,  $\Rightarrow \|y-x\|_2 > R$  令  $z = \theta y + (1-\theta)x$ ,取  $\theta = \frac{R}{2\|y-x\|_2} \in [0,1]$ 

$$\therefore$$
 z 为凸组合, $z \in X_f$  且 $f_0(z) \le \theta f_0(y) + (1-\theta)f_0(x)$ 

$$||z-x||_2 = \theta ||x-y||_2 = \frac{R}{2} < R$$
, 由 x 局部最优有  $f_0(x) \le f_0(z)$ 

由此应该有 $f_0(y) < f_0(x) \le f_0(z)$  (两条蓝色结论矛盾, 因此原假设成立)

#### 分析: 目标函数可微情况下的最优解

考虑凸函数的一阶条件: 
$$f(y) \ge f(x) + \nabla f^T(x)(y-x)$$
 对于全局最优  $x^*$ , 此时一定有  $\nabla f_0^T(x^*)(y-x^*) \ge 0$ 

## 例: 约束仅为等式约束的情况, min $f_0(x)$ s.t. $x \ge 0$

此时问题仅有 Ax = b 这一约束条件,由  $Ax^* = b$ , $Ay = b \Rightarrow y = x^* + v$ , $v \in Null(A)$  回代,有  $\nabla f^T(x)v \ge 0$ 

要求对 
$$\forall v \in Null(A)$$
均成立  $\Rightarrow \begin{cases} v = 0 \\ \nabla f(x)$ 与 Null(A) 正交

第一种情况下, x = y, 说明有且仅有一解,  $x = A^{-1}b$ 

例: 约束仅为非负约束,  $\min f_0(x)$  s.t.  $x \ge 0$ 

即在给定 x 的情况下,对于  $\forall y \geq 0$ , $\nabla f^T(x)(y-x) \geq 0 \Rightarrow \nabla f^T(x)y - \nabla f^T(x)x \geq 0$   $f^T(x)y = \sum a_i x_i$ ,为了保证对于任意 y 成立,故  $a_i \geq 0 \Leftrightarrow \nabla f(x) \geq 0$  结合  $x \geq 0$ ,有 $\nabla f^T(x)x \geq 0$ ,又取 y=0 时,有 $\nabla f^T(x)x \leq 0$ 

综上,有 
$$\nabla f^T(x) = 0 \Rightarrow \begin{cases} x \ge 0 \\ \nabla f(x) \ge 0 \end{cases}$$
 (互补条件: Complementarity) 
$$(\nabla f(x))_i x_i = 0$$

# Essence of the lecture (25/26/27/28)

## 典型的凸问题:

- 线性规划
- 线性分数规划
- 二次规划(二次约束的二次规划)
- 半正定规划
- 多目标优化

#### 线性规划:

线性规划要求目标和约束均为线性

linear program 线性问题(名词)

linear programing 线性问题求解(动词)

$$min \quad c^T x + d$$
 
$$s.t. \quad Gx \le h, \ Ax = b$$

#### 线性规划的等价变换

min 
$$c^{T}x + d$$
 min  $c^{T}x^{+} - c^{T}x^{-} + d$   
s.t.  $Gx + s = h$  s.t.  $Gx^{+} - Gx^{-} + s = h$   
 $Ax = b$   $Ax^{+} - Ax^{-} = b$   
 $s \ge 0$   $s \ge 0, x^{+} \ge 0, x^{-} \ge 0$ 

通过这种变换能够将问题化为线性约束以及非负约束,这方便使用函数 (linprog) 进行求解。

#### 线性分数规划 (linear fractional programing)

BTW, 线性分数函数保凸, 是拟凸函数但不是凸函数, 例如 1/x

$$(P_0) \quad \min \quad \frac{c^T x + d}{e^T x + f} \qquad (P_1) \quad \min \quad c^T y + dz$$

$$s.t. \quad Gx \le h \qquad s.t. \quad Gy - hz \le 0$$

$$Ax = b \qquad Ax - bz = 0$$

$$e^T x + f > 0 \qquad e^T y + fz = 1$$

$$z \ge 0$$

#### 证明两问题等价的思路: P1 的可行解在 P2 可行, P2 的可行解在 P1 可行, 同时二者的值相同

证明: 1) 若 x 在  $P_0$  可行,取  $y = \frac{x}{e^T x + f}$ ,  $z = \frac{1}{e^T x + f}$ 

$$\begin{cases} Gy - hz = \frac{Gx - h}{e^T x + f} \le 0 \\ Ay - bz = \frac{Ax - b}{e^T x + f} = 0 \\ e^T x + fz = \frac{e^T x + f}{e^T x + f} = 1 \end{cases} \Rightarrow \mathbf{x} \text{ 同时在 P1 可行,同时目标函数值均为 } \frac{c^T x + d}{e^T x + f} \\ z > 0 \end{cases}$$

2) 若 v,z 在 P<sub>1</sub> 中可行

当 z>0  $\Rightarrow$   $x=\frac{y}{z}$  在  $P_0$  可行,且目标函数值均为  $c^Ty+dz$  当 z=0,此时有  $Gy\geq0$ ,Ay=0, $e^Ty=1$ ,设  $x_0$  为  $P_0$  的可行解,找到射线

$$\begin{cases} Gx = Gx_0 + Gty \le h \\ Ax = Ax_0 + tAy = b \\ e^Tx + f = e^Tx_0 + f + te^Ty > 0 \end{cases}$$
目标: 在该射线上找到一点使得  $P_1$ ,  $P_2$  同解
$$f_0(x) = f_0(x_0 + ty) = \frac{c^Tx_0 + c^Tty + d}{e^Tx_0 + e^Tty + f} \xrightarrow{t \to \infty} c^Ty$$

综上,  $P_0$ ,  $P_1$  两问题等价

## 二次规划 (Quadratic Programing)

min 
$$\frac{1}{2}X^T P X + q^T x + r$$
  
s.t.  $Qx \le h$   $P \in S^n_+$   
 $Ax = b$ 

### 线性规划问题的最优解只能在边界点取到,二次规划问题的最优解可能在内部取到

## 二次约束的二次规划 (Quadratically Constrained Quadratic Programing, QCQP)

$$\min \quad \frac{1}{2}X^T P X + q^T x + r$$

$$s.t. \quad \frac{1}{2}X^T P_i X + q_i^T x + r \le 0 \qquad P \in S_{++}^n$$

$$Ax = b \qquad \qquad P_i \in S_+^n, \ i = 1, \dots, m$$

#### 二次的约束条件其实是椭圆

#### 例:稀疏约束下的最小二乘

之前提到可以使用 1 范数取代 0 范数

$$\hat{x} = \arg\min_{x} \quad \|b - Ax\|_{2}^{2} + \lambda_{0} \|x\|_{0}$$

$$= \arg\min_{x} \quad \|b - Ax\|_{2}^{2} + \lambda_{1} \|x\|_{1} \quad (l_{1} - regularized \ least \ squares)$$

此时由于目标函数内涉及绝对值,是不可导的,同时也不是二次规划问题 令  $x=x^+-x^-$ ,回代,由于  $\lambda_1\|x^+-x^-\|_1=\lambda_11^Tx^++\lambda_11^Tx^-$ ,从而消除绝对值,化为二次规划的问题

$$\hat{x} = \arg\min_{x} \quad \|b - Ax^{+} - Ax^{-}\|_{2}^{2} + \lambda_{1} 1^{T} x^{+} + \lambda_{1} 1^{T} x^{-}$$

$$s.t. \quad x^{+}, x^{-} \ge 0$$

类似有  $(l_2 - regularized \ least \ squares)$ ,以下两种表述等价,但右边的表述是标准的 QCQP 形式

$$\arg \min_{x} \quad \|b - Ax\|_{2}^{2} + \lambda_{2} \|x\|_{2} \qquad \qquad \arg \min_{x} \quad \|b - Ax\|_{2}^{2}$$

$$\Rightarrow \quad X^{T} (A^{T}A + \lambda_{2}I)X + \dots \qquad \qquad s.t. \quad \lambda_{2} \|x\|_{2} \le \theta$$

## 半正定规划 (Semi-definite Program)

半正定规划有两种形式,一种是矩阵形式,一种是向量形式

半正定规划的矩阵形式,这实际上是矩阵空间的线性规划(因为 trace 的操作实际上是线性操作,可从特例对角矩阵理解)

min 
$$tr(CX)$$
  
s.t.  $tr(A_iX) = b_i, i = 1, ..., p$   
 $X \succeq 0, X \in S^n_+, C \in R^{n \times n}, A_i \in R^{n \times n}, b_i \in R$ 

半正定规划的向量形式

min 
$$c^T x$$
  
s.t.  $x_1 A_1 + \dots + x_n A_n \preceq B$   
 $x \in \mathbb{R}^n, B, A_1, \dots, A_n \in \mathbb{S}^k, C \in \mathbb{R}^n$ 

例: 谱范数 (最大奇异值) 问题的转换

原问题:  $||A(x)||_2$ 

由于  $||A(x)||_2 \le \sqrt{S} \Leftrightarrow A(x)^T A(x) - SI \le 0$ 

问题化为

min 
$$\sqrt{S}$$
 (非凸)  $\Leftrightarrow$   $S$  (凸) (1)  $s.t.$   $A(x)^T A(x) \leq SI$ 

 $\Rightarrow \min t$ 

$$s.t. \quad A(x)^T A(x) \le t^2 I, \ t \ge 0 \tag{2}$$

 $\Rightarrow \min t$ 

s.t. 
$$\begin{bmatrix} tI & A(x) \\ A^{T}(x) & tI \end{bmatrix} \succeq 0, \ t \ge 0$$
 (3)

 $\Rightarrow \min t$ 

s.t. 
$$Y = \begin{bmatrix} tI & A(x) \\ A^{T}(x) & tI \end{bmatrix}, Y \succeq 0, t \geq 0$$
 (4)

(1) 通过将目标函数转为 S,使称为凸问题,(2) 到 (3) 的转化是线性代数的内容,(3) 不够之处在于仍旧存在二次项约束,(4) 通过设置 Y,将矩阵正定条件拆出一个等式约束,而后  $Y \succeq 0$  变为标准的半定规划形式

#### 多目标优化

帕累托(帕累托曲面/曲线,帕累托最优点/最优值)

帕累托曲面/曲线 (pareto front): 若找到另一解, 使其在某指标上更好, 必然在某指标上更差。

若  $\{f_0(x)\}\$  在  $\mathbb{R}^k$  中为凸,f(x) 为凸, $h_i(x)$  为仿射,则必可由如下方法求得 pareto front 中一点

min 
$$\sum_{i=1}^{q} \lambda_i f_{0i}(x)$$
s.t. 
$$\lambda_i \ge 0$$

$$f_i(x) \le 0 \qquad i = 1, \dots, m$$

$$h_i(x) = 0 \qquad i = 1, \dots, p$$

从而通过遍历 $\{\lambda_i\}$ 可以找出所有解,然而现实中由于f(x)的凸性无法满足,导致无法找出帕累托曲面上所有点

## 例: Rideg Regression

## 关键是展示目标函数和约束可以相互转换

原问题是一个多目标优化问题(左),右边是该问题的等价转换形式,要证明这两种形式等价

$$\begin{cases} \min & \|b - Ax\|^2 & \min & \|b - Ax\|^2 + \lambda \|x\|^2 \\ \min & \|x\|^2 & \Leftrightarrow & \min & \|b - Ax\|^2 \\ \sin & \|x\|^2 & s.t. & \|x\|^2 \le \epsilon \end{cases}$$
 (1)



图 2: 这幅图是目标函数的帕累托曲面,横轴表示最小化误差这一目标,纵轴表示能量这一目标,两个端点分别表示两种表述中的不同取值,例如与横轴的交点,意味着能量为 0,即  $\epsilon=0$ ,相应的在 (1) 中代表仅考虑能量, $\lambda=+\infty$ ,另一情况同理