

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA EXAMEN

Pregunta 1

Una solución es por inducción fuerte.

Tenemos:

Caso Base: $1 = b^0 1, b > 1$.

H.I.: Suponemos que $\forall k < n. \ k = \sum_{i=0}^{m} a_i b^i$

Paso Inductivo: Sabemos que:

$$n = bs + n \mod b, \ (s < n)$$

Aplicando la hipótesis tenemos:

$$n = b(\sum_{i=0}^{k_s} a_i b^i) + n \mod b$$
$$n = (\sum_{i=0}^{k_s} a_i b^{i+1}) + n \mod b$$

Notando que $n \mod b < b$ definimos $n \mod b = \bar{a}_0$ y $\bar{a}_i = a_{i-1}, i > 0$ de lo que concluimos:

$$n = \sum_{i=0}^{k_s+1} \bar{a}_i b^i$$

Completando la demostración.

- (1 punto) Por el caso base.
- (1 punto) Por decomponer n.
- (1 punto) Por usar la hipótesis correctamente.
- (1 punto) Por argumentar que $n \mod b < b$
- (1 punto) Por definir \bar{a}_i .
- (1 punto) Por concluir correctamente.

Pregunta 2

Pregunta 2.1 Para esta pregunta se pedía mostrar que para todo par de vértices u, v en un árbol existe un único camino que los conecta.

La distribución del puntaje es la siguiente (si se prueba por contradicción):

- (1 punto) Por decir que existen 2 caminos desde u a v que son distintos: camino $1 = u, x_1, x_2, ..., x_n, v$, y camino $2 = u, z_1, z_2, ..., z_m, v$.
- (1.5 puntos) Por identificar algún nodo (x_j en el camino 1, y z_k en el camino 2 con $x_j = z_k$) donde los caminos se separan (notar que este nodo perfectamente puede no ser u.
- (1.5 puntos) Por identificar el primer nodo en ambos caminos (despues de x_j e z_k tal que vuelven a coincidir los caminos (notar que perfectamente puede no ser u).
- (2 punto) Por concluir correctamente explicando cual es la contradicción. Nota: los que dijeron que $u, x_1, x_2, ..., x_n, v, z_n, ..., z_1, u$ era un ciclo, no obtienen los puntajes intermedios, es decir, obtienen 3 puntos.

Pregunta 2.2 Para esta pregunta se pedía mostrar que todo árbol es 2-coloreable. La distribución del puntaje es la siguiente (si se prueba por inducción fuerte en |V|):

- (1 punto) Por caso base.
- (2 puntos) En el caso inductivo: por argumentar que eliminar un nodo <u>cualquiera</u>, las componentes conexas resultantes son árboles.
- (2 puntos) En el caso inductivo: Por usar hipótesis de inducción sobre los árboles resultantes y decir que cada uno de ellos es 2-coloreable.
- (1 punto) En el caso inductivo: Por unificar la 2-coloración en una para todo el árbol original y concluir (argumentar como elegimos la coloración total).

Pregunta 3

Pregunta 3.1

Esta afirmación era FALSA. Bastaba con dar un contraejemplo:

Consideremos n=3 y la fórmula $p_1 \to (p_2 \to p_3)$. Es fácil ver que con la valuación $\sigma=(1,0,0)$, tenemos que $p_1 \to (p_2 \to p_3)(\sigma)=1$, y $(p_1 \to p_3)(\sigma)=0$. Entonces no se cumple $p_1 \to (p_2 \to p_3) \models p_1 \to p_3$, porque existe una valuación satisface la primera fórmula y no la segunda.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 puntos) Por decir que era falsa.
- (2 puntos) Por construir un contraejemplo.
- (3 puntos) Por mostrar una valuación que contradiga la definición de consecuencia lógica en el contraejemplo.

Pregunta 3.2

Esta afirmación era VERDADERA.

A lo largo de la demostración usaremos la notación $\alpha_k := p_{k+1} \to (p_{k+2} \to (p_{k+3} \to \dots \to (p_{n-1} \to p_n)\dots))$. Notamos que $\alpha_{n-1} = p_n$.

Para demostrar que la afirmación es verdadera, consideramos una valuación σ tal que $(p_1 \to p_n)(\sigma) = 1$. Y tenemos que demostrar que $\alpha_0(\sigma) = 1$. Esto lo haremos en dos casos:

- Caso 1: $p_1 = 0$ en σ . Como $\alpha_0 = p_1 \to \alpha_1$, se tiene $\alpha_0(\sigma) = (0 \to \alpha_1) = 1$.
- Caso 2: $p_1 = 1$ en σ . Notamos que como $(p_1 \to p_n)(\sigma) = 1 \land p_1(\sigma) = 1$, entonces $p_n(\sigma) = 1$. Para continuar el análisis de este caso lo dividimos en dos subcasos:
 - Caso 2.a: La valuación σ es tal que $p_i(\sigma) = 1 \ \forall i = 1,...,n$. Esto es $\sigma = (1,1,1...,1)$. En este caso tenemos que $\alpha_{n-1}(\sigma) = p_n(\sigma) = 1$. Luego, $\alpha_{n-2}(\sigma) = (1 \to \alpha_{n-1})(\sigma) = 1$. De igual forma $\alpha_{n-3}(\sigma) = (1 \to \alpha_{n-2})(\sigma) = 1$, y siguiendo con este razonamiento concluímos que, $\alpha_0(\sigma) = (1 \to \alpha_1)(\sigma) = 1$.
 - Caso 2.b: La valuación σ es tal que $\exists n-1 > i \geq 1 \mid p_{i+1}(\sigma) = 0$. Así, $\alpha_k(\sigma) = p_{i+1} \to \alpha_{i+1} = 0 \to \alpha_{i+1} = 1$. Además, $\forall j \leq k-1$, como $\alpha_j = p_{j+1} \to \alpha_{j+1}$, entonces el valor de verdad de α_j no depende de p_{j+1} , ya que $\alpha_{j+1}(\sigma) = 1$. De esta manera, $\alpha_j(\sigma) = 1 \ \forall j \leq k-1$, incluyendo j=0, de donde tenemos que $\alpha_0(\sigma) = 1$, que era lo que buscabamos concluir.

De esta manera, dado cualquiera σ tal que $(p_1 \to p_n)(\sigma) = 1$, queda demostrado que $\alpha_0(\sigma) = 1$ en cualquier caso posible.

Dado lo anterior, la distribución de puntaje es la siguiente:

- (1 punto) Por el caso 1.
- (1 punto) Por usar que $p_n(\sigma) = 1$ en caso 2.a.
- (1 punto) Por mostrar que $\alpha_i(\sigma) = 1 \ \forall i \text{ en caso } 2.a.$
- (2 puntos) Por demostrar que si un $\alpha_i(\sigma) = 1$, entonces $\alpha_i(\sigma) = 1 \ \forall i < j$ en caso 2.b.
- (1 punto) Por concluir lo pedido.

Pregunta 4

Pregunta 4.1

Sea $R \subseteq A \times A$ una relación anti-transitiva y refleja. Para demostrar que R es de equivalencia, debemos demostrar que es simétrica y transitiva, pues la reflexividad ya está dada.

Sean $a, b \in A$ tales que $(a, b) \in R$. Como R es refleja, sabemos que $(a, a) \in R$. Tenemos entonces que $(a, a) \in R \land (a, b) \in R$ y por anti-transitividad concluimos que $(b, a) \in R$. Esto es, $(a, b) \in R \implies (b, a) \in R$, por lo que R es simétrica.

Sean $a,b,c \in A$ tales que $(a,b) \in R \land (b,c) \in R$. Por anti-transitividad, sabemos que $(c,a) \in R$. Pero además ya demostramos que R es simétrica, por lo que tenemos también que $(a,c) \in R$. Esto es,

 $(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$, por lo que R es transitiva.

Por ser R refleja, simétrica y transitiva, es de equivalencia.

Dado lo anterior, la distribución del puntaje es la siguiente:

- (1,5 puntos) Por usar la reflexividad o anti-transitividad correctamente en la demostración de simetría.
- (1,5 puntos) Por demostrar simetría de R.
- (1,5 puntos) Por usar la anti-transitividad correctamente en la demostración de transitividad.
- (1,5 puntos) Por demostrar transitividad de R.

Pregunta 4.2

Consideremos los conjuntos dependientes de n

$$I_{n-1} = \{(i, i) \in \mathbb{N} \times \mathbb{N} \mid i < n - 1\} \quad \mathbf{y}$$

$$T_{n-1} = \{(i, j) \in \mathbb{N} \times \mathbb{N} \mid i \ge n - 1 \land j \ge n - 1\}.$$

Luego, dado un n > 0, tomemos $R_n = I_{n-1} \cup T_{n-1}$. Demostraremos que R_n es un relación de equivalencia sobre \mathbb{N} , y que $|\mathbb{N}/R_n| = n$.

Es fácil ver que $I_{\mathbb{N}} \subseteq R_n$, por lo que R_n es refleja.

Sean $a, b \in \mathbb{N}$ tales que $(a, b) \in R_n$. Si a = b, entonces trivialmente $(b, a) \in R_n$. Si $a \neq b$, tenemos que necesariamente $(a, b) \in T_{n-1}$, por lo que deducimos que $a \geq n-1 \wedge b \geq n-1$. Pero por la definición de T_{n-1} , esto significa que $(b, a) \in T_{n-1}$, por lo que $(b, a) \in R_n$. Es decir, $(a, b) \in R_n \implies (b, a) \in R_n$, por lo que R_n es simétrica.

Sean $a, b, c \in \mathbb{N}$ tales que $(a, b) \in R_n \land (b, c) \in R_n$. Notemos que si cualquiera de los tres números es menor a n-1, como todos comparten un par ordenado con otro, los tres deben ser menores a n-1. Esto es que $(a, b) \in I_{n-1} \land (b, c) \in I_{n-1}$, como a, b, c < n-1. Luego a = b = c, por lo que $(a, c) \in R_n$. Si, en cambio, alguno es distinto, tenemos que $a, b, c \ge n-1$. En particular, tenemos que $a \ge n-1 \land c \ge n-1$ y luego $(a, c) \in T_{n-1}$ por lo que $(a, c) \in R_n$. Esto es, $(a, b) \in R_n \land (b, c) \in R_n \implies (a, c) \in R_n$ por lo que R_n es transitiva.

Como R_n es refleja, simétrica y transitiva, es de equivalencia. Ahora, sea k < n-1. Por la definición de R_n , tenemos que $[k]_{R_n} = \{k\}$. En cambio, para todo $l \ge n-1$, $[l]_{R_n} = \{j \in \mathbb{N} \mid j \ge n-1\}$. Tenemos que las clases de equivalencia de R_n son siempre n-1 singletons y un conjunto infinito, es decir, siempre hay n clases de equivalencia. Por lo tanto, $|\mathbb{N}/R_n| = n$.

Dado lo anterior, para esta relación u otra correcta no vista en clases, la distribución del puntaje es la siguiente:

- (2 puntos) Por definir correctamente R_n .
- (2 puntos) Por demostrar que R_n es de equivalencia.
- (2 puntos) Por argumentar correctamente que $|\mathbb{N}/R_n| = n$.

Alternativamente, podemos usar la congruencia módulo n, $R_n = \equiv_n$. Se vio en clases que esta relación es de equivalencia.

Para $i, j \in \mathbb{N}$ cualesquiera, tenemos que $i \equiv_n j$ si, y solo si, $i \mod n = j \mod n$, es decir, si los restos de su divisón por n son iguales. Notemos que esto es equivalente a decir que $[i]_{\equiv_n} = [j]_{\equiv_n}$ Por la definición de división, el resto es un número r tal que $0 \le r < n$, por lo que hay n restos posibles distintos. Entonces, existen n clases de equivalencia según \equiv_n , y finalmente $|\mathbb{N}/\equiv_n|=n$.

Dado lo anterior, la distribución del puntaje es la siguiente:

- (3 puntos) Por utilizar \equiv_n con correcta intención.
- (3 puntos) Por argumentar correctamente que $|\mathbb{N}/\equiv_n|=n$.

Pregunta 5

Pregunta 5.1 Bastaba con mostrar que como A es finito y compuesto de naturales, entonces tiene un elemento máximo m, de lo que se concluye que:

$$\forall n > m. \ f_{A,k}(n) = f(n)$$

Luego tomando $c_1 = c_2 = 1$ y $n_0 = m$ se tiene que $f_{a,k}(n) \in \Theta(f(n))$. La distribución del puntaje es la siguiente:

- (2 puntos) Por decir que A tiene máximo.
- (2 puntos) Por mostrar la relación entre las funciones para n > m.
- (2 puntos) Por definir correctamente las constantes y concluir.

Pregunta 5.2

Habían multiples soluciones posibles para esta pregunta. Acá se mostrará una solución por inducción. El resto de las soluciones quedaron con puntaje a criterio del corrector procurando asignar puntaje acorde a los puntos mencionados.

Haciendo inducción simple sobre n se tiene:

Caso Base: Para n=1 por enunciado sabemos que A_1 numerable.

HI: Asumimos que $A_1 \times A_2 \times \cdots \times A_n$ es numerable.

Paso Inductivo Probaremos que $A_1 \times A_2 \times \cdots \times A_n \times A_{n+1}$ es numerable.

Consideremos $A = A_1 \times A_2 \times \cdots \times A_n$ numerable por H.I. Usando que el producto cartesiano de dos conjuntos numerables es numerable (en clases solo se vió el caso $\mathbb{N} \times \mathbb{N}$, si bien la demostración es trivial mediante una biyección se aceptó que se considerara como un resultado conocido.) tenemos que $A \times A_{n+1}$ es numerable.

Notar que $A \times A_{n+1} \neq A_1 \times A_2 \times \cdots \times A_n \times A_{n+1}$, puesto en que en el primer conjunto se tienen pares ordenados de dos elementos, en que el primer elemento es un par ordenado de tamaño n y por otro lado en el segundo conjunto se tienen pares ordenados de tamaño n+1. Luego para cerrar la demostración planteamos la función $F: A \times A_{n+1} \to A_1 \times A_2 \times \cdots \times A_n \times A_{n+1}$, tal que :

$$F(((a_1, a_2, \dots, a_n), b)) = (a_1, a_2, \dots, a_n, b)$$

Podemos notar que F es trivialmente biyectiva por lo que concluimos que $A_1 \times A_2 \times \cdots \times A_n \times A_{n+1}$ es numerable. Completando la inducción y la demostración.

- (1 punto) Por el caso base.
- (2 punto) Por usar la hipótesis de inducción.
- (2 puntos) Por concluir que $A \times A_{n+1}$ es numerable.
- (1 puntos) Por cerrar la demostración y concluir lo pedido correctamente.