2.4

- 3. The function $\tan t$ is discontinuous at odd multiples of $\pi/2$. Since $3\pi/2 < 2\pi < 5\pi/2$, the initial value problem has a unique solution on the interval $(3\pi/2, 5\pi/2)$.
- 5. $p(t) = 2t/(16 t^2)$ and $g(t) = 3t^2/(16 t^2)$. These functions are discontinuous at $x = \pm 4$. The initial value problem has a unique solution on the interval (-4, 4).
- 7. The function f(t,y) is continuous everywhere on the plane, except along the straight line y = -2t/5. The partial derivative $\partial f/\partial y = -16t/(2t+5y)^2$ has the same region of continuity.
- 9. The function f(t,y) is discontinuous along the coordinate axes, and on the hyperbola $t^2 y^2 = 1$. Furthermore,

$$\frac{\partial f}{\partial y} = \frac{\pm 1}{y(1 - t^2 + y^2)} - 2\frac{y \ln|ty|}{(1 - t^2 + y^2)^2}$$

has the same points of discontinuity.

2.6

- 1. M(x,y)=4x+3 and N(x,y)=6y-1. Since $M_y=N_x=0$, the equation is exact. Integrating M with respect to x, while holding y constant, yields $\psi(x,y)=2x^2+3x+h(y)$. Now $\psi_y=h'(y)$, and equating with N results in the possible function $h(y)=3y^2-y$. Hence $\psi(x,y)=2x^2+3x+3y^2-y$, and the solution is defined implicitly as $2x^2+3x+3y^2-y=c$.
- 11. $M(x,y) = x \ln y + xy$ and $N(x,y) = y \ln x + xy$. Note that $M_y \neq N_x$, and hence the differential equation is not exact.
- 18. Observe that $(M(x))_y = (N(y))_x = 0$.

2.4.1) Determine (without solving the problem) on internal in which the solution of the piven initial value problem is artain to exist.

Rewrite the differential equation as $y' + \frac{\ln(t)}{t-5}y = 2t$

The coefficient $\frac{\ln(t)}{t-5}$ is continuous where $t70, t \neq 5$. Since the initial condition is specified at t=1. Theorem 2.4.1 assures the existence of a unique Solution on the interval 0 < t < 5.

11) State where in ty-plane the hypotheses of theorem 2.4.2 one souths fied.

one souths fied.

$$\frac{dy}{dt} = \frac{2+t^3}{3y-y^2}, \quad y' = \frac{2+t^3}{3y(3-y)} = f(t,y)$$

the function f(t,y) is continuous everywhere except y=0 x y=3. The partial derivative, $\frac{\partial f}{\partial y}$ has the some region of continuity.

13) Solve the IVP and defermine how the interval in which the solution exists depends on the initial value you y' = -2t/y, $y(0) = y_0$.

The equation is separable, with y dy = -2t dt.

Integrating both order, the solution is given by $y^2(t) = -2t^2 + y_0^2$, $y^2(t) = 7\sqrt{-2t^2 + y_0^2}$.

if yeto, the solution emists as long as ItIZ yo/2

22) a) Verify that both $y_1(t) = 1-t$ and $y_2(t) = -t^2/4$ ore solutions of the initial value problem $y = \frac{-t}{2} + \frac{1}{4} + \frac{1}{$

where one these solutions valid?

livert the solutions in WP, observe that youth is a solution for +>,2; yzlt) is a solution for experient of the contract of the solution for the contract of t

b) Emploin why the enostence of two solutions of the opiver problem does not contradict the uniqueness pot of meaner 24.2.

Because $fy = \frac{\partial f}{\partial y} = \frac{1}{\sqrt{t^2 + uy}}$ is not continuous. at (2, -1) (inial value).

context, satisfies the differential equation in port (a) for t> -2c. If c=-1 the mittal equation is also satisfied, and the solution is also satisfied, and the solution if y = y(t) is obtained. Show that there is no choice of c that pives the second solution y = y(t).

Insert the solution in IVP, observe the enpression with the square root is $Vt^2+4et+4e^2=V(t+2e)$ Thus $1+2e > 0 \Rightarrow t > -2e$ then equation holds

If e=-1 then y(t)=-t+1 satisfies y(2)=-1,

the initial condition $y(t)=ct+c^2=y_2(t)=-t^2/4\Rightarrow ct+c^2=-t^2/4$ c=t/2-2-not constant

HW2

Section 2.6 - Problem 3: $(6x^2 - 2xy + 4) + (6y^2 - x^2 + 2)y' = 0$

by theorem 2.6.1, page 96 the epn is exact if and only if $M_y = N_x$

My = -2x and Nx = -2x so eqn is exact. => > 7 P(x1y) such that

 $M(x,y) = \Psi_{x}(x,y)$ and $M(x,y) = \Psi_{y}(x,y)$

From Mytelex and have dult

Mystlydy of text of the response

So, from M= Yx

 $\Psi(x,y) = \int M dx = \int (6x^2 - 2y + 4) dx = 2x^3 - x^2y + 4x + h(y)$ and from $N = \frac{1}{2}$

 $W_y = \frac{1}{6}(2x^3 - x^2y + 4x + h(y)) = N = 6y^2 - x^2 + 2$ $-x^{2} + h'(y) = 6y^{2} - x^{2} + 2$ $dh(y) = 6y^{2} + 2 \quad \text{so} \quad h(y) = 2y^{3} + 2y$

 $\psi(x,y) = 2x^3 - x^2y + 4x + 2y^3 + 2y$

the solution is y(x, b)=c i.e [2x3+2y-xy+4x+2y=c]

Section 2.6- Problem 5;
$$\frac{dy}{dx} = -\frac{ax+bb}{bx+cy}$$

$$y'(bx+cy) + (ax+by) = 0$$

$$M_{y}(x,y) = b \quad \text{and} \quad M_{y}(x,y) = b \quad \text{so} \quad \text{the epn is}$$

$$M_{y}(x,y) = b \quad \text{and} \quad M_{y}(x,y) = b \quad \text{so} \quad \text{the epn is}$$

$$M_{y}(x,y) = M_{y} = M_{y} = M_{y}$$

$$M_{y}(x,y) = M_{y} = M_{y} = M_{y} = M_{y}$$

$$M_{y}(x,y) = M_{y} = M_{y}$$

Scanned by CamScanner

Section 2.6 - Problem
$$Y$$
: $(e^{x}siny - 3ysinx) + (e^{x}cosy + 3cosx)y = 0$
 $My = e^{x}.cosy - 3siny$ and

 $N_X = e^{x}.cosy - 3sinx$ so $M_Y = N_X$ eqn is exact.

then $\exists \psi(x_1y)$ such deat,

 $\psi_X = M$ and $\psi_Y = N$

from $M = \psi_X$
 $\psi(x_1y) = \int M(x_1y) dx = \int (e^{x}siny - 3ysinx) dx$
 $= e^{x}siny + 3ycosx + h(y)$
 $e^{x}cosy + 3cosx = e^{x}cosy + 3cosx + h(y)$
 $e^{x}cosy + 3cosx = e^{x}cosy + 3cosx + h(y)$
 $e^{x}cosy + 3cosx = e^{x}cosy + 3cosx + h(y)$

thus, $\psi(x_1y) = e^{x}.siny + 3ycosx + c_1$

thus, $\psi(x_1y) = e^{x}.siny + 3ycosx + c_1$
 $e^{x}siny + 3ycosx + c_1 = c_2$ or call $c = c_2 - c_1$
 $e^{x}siny + 3ycosx + c_1 = c_2$ or call $c = c_2 - c_1$
 $e^{x}siny + 3ycosx + c_1 = c_2$ or call $c = c_2 - c_1$

 $(xy^2 + bx^2y) + (x+y)x^2y' = 0$ M(x,y) N(x,y)Section 2.6 - Problem 15: $M_y = 2xy + bx^2 = N_x = 3x^2 + 2xy$ eqn is exact iff $bx^2=3x^2$ i.e b=3So $My = 2xy + 3x^2$ and $Nx = 3x^2 + 2xy$ then Eykry) such shat $\Psi_{x} = M$ and $\Psi_{y} = N$ from M= Vx we have that, $\psi(x,y) = \int M(x,y) dx = \int (xy^2 + 3x^2y) dx = \frac{xy^2}{2} + x^2y + h(y)$ W(x,y) = = { x22+x3y + h(y) from My = N $N = \mathbf{w} x^3 + y x^2 = \frac{d}{dy} \mathcal{V}(x,y) = \frac{d}{dy} \left(\frac{1}{2} x^2 y^2 + x^3 y + h(y) \right)$ x3+ yx2 = x2y+x3+ h'(y) 0= h'(y) -> h(y) = 4 the sol. is of the form $\Psi(X,Y) = C_2$ OR & (4,14) = 1 x3y1+ x3y+ c1 = C2 ive (1xy + xy = 6-6,

Scanned by CamScanner

Section 2.6 - Problem 27: Find an integrative factor and solve the given equation. $1 + (x/y - \cos y) \cdot y' = 0$ $M_Y = 0$ and $N_X = \frac{1}{Y}$ From equation (26) (textbook, page 99, Section 2.6) the integrating factor M satisfies, $M\mu_y - N\mu_x + (M_y - N_x)\mu = 0$ Taking $\mu_x = 0$ (integrating factor depends only on y), $M \cdot \mu_y + (0 - \frac{1}{y})\mu = 0$ $1. \mu y = \frac{1}{9} \mu \quad OR \quad \frac{d\mu}{dy} = \frac{m}{y}$ $\Rightarrow \frac{d\mu}{\mu} = \frac{dy}{y}$ so that, ln(μ) = ln(y) or $\mu = y$ lm ltiply the equation by y to get, $\frac{y}{M} + \frac{(x - y\cos y)y' = 0}{N}$ so that eqn is exact. $= D \exists \mathcal{V}(x_1y_1) \quad \text{Such that} \quad \mathcal{V}_X = M \text{ and } \mathcal{V}_Y = N.$ Solving for ψ we obtain, Xy-yshy-cosy=c|

Scanned by CamScanner