STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor č. 2: Fyzika

Počítačové modelování dynamických magnetických systémů

Ondřej Sedláček

Hlavní město Praha

Praha, 2023

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor č. 2: Fyzika

Počítačové modelování dynamických magnetických systémů

Computer modelling of dynamic magnetic systems

Jméno: Ondřej Sedláček

Škola: Gymnázium Christiana Dopplera, Zborovská 621, 150 00

Malá Strana

Kraj: Hlavní město Praha

Konzultant: RNDr. Pavel Josef, CSc.

Prohlášení

Prohlašuji, že jsem svou práci SOČ vypracoval samostatně a použil jsem pouze prameny a literaturu uvedené v seznamu bibliografických záznamů.

Prohlašuji, že tištěná verze a elektronická verze soutěžní práce SOČ jsou shodné.

Nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) ve znění pozdějších předpisů.

V Praze dne 9. září 2023		
	Ondřej Sedláček	

Poděkování

Chtěl bych poděkovat ...

Anotace

Sem napíšeš svůj abstrakt. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Klíčová slova

Šablona, LATFX, SOČ, ...

Annotation

Write your abstract here! Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords

Template, LATEX, High school proffessional activity, ...

OBSAH

1	Úvo	\mathbf{d}
	1.1	Nomenklatura
2	Úvo	dní sledování
	2.1	Určení parametrů
		2.1.1 Parametry týkající se konfigurace spinnerů
		2.1.2 Parametry týkající se pohybu spinnerů
	2.2	Modelování magnetů
	2.3	Popis magnetických interakcí

1 Úvod

Motivací pro tuto práci byla úloha mezinárodní fyzikální soutěže zvané "International Young Physicists Tournament", neboli IYPT. U nás je avšak tato soutěž známější pod zkratkou TMF vycházející z překladu původního názvu - "Turnaj mladých fyziků". Soutěž se v České republice kéná pod záštitout Fakulty jaderné a fyzikálně inženýrské ČVUT, FZU AV ČR, MŠMT a JČMT a z podstaty soutěže je cílem úloh dovést středoškolské studenty k vědeckému sledování nejrůznějších jevů ze všech částí fyziky.

Úloha, kterou jsem se zabýval, je v pořadí desáta úloha letošního, tedy 37., ročníku. Zadání je následovné [7]:

10. Magnetický převod

"Vezměte několik identických prstových točítek ¹ a připevněte k jejich koncům neodymové magnety. Pokud umístíte točítka v rovině vedle sebe a točíte jedním z nich, ostatní se začnou otáčet jen vlivem magnetického pole. Prozkoumejte a vysvětlete tento jev."

Zadání úlohy je, jak je pro TMF tradiční, velmi otevřené a je tedy na řešiteli, aby si vymezil přesnou oblast svého zkoumání. Tato práce se bude zabívat:

- 1. Určením vlastností prstových točítek (dále "fidget spinner" či pouze "spinner")
- 2. Popisem třecích sil působících na spinner
- 3. Vývojem simulace chování systémů více fidget spinnerů a porovnáním této simulace s realitou
- 4. Přenosem úhlové rychlosti
- 5. Přenosem momentu síly
- 6. Možným využím získaných poznatků k vývoji efektivnějších magnetických převodů

¹Z překladu anglického "Fidget spinner"

1.1 Nomenklatura

V tabulce 1 definujeme symboly, které budeme používat v průběhu celé práce, společně s jejich významem:

Tab. 1: Nomenklatura

•	71		. •	•	
•	/ 120	tnnc	11 C	nın	norii
v	Ias	OTTOS	OI S	, bitt	neru

\mathbf{Symbol}	${f Jednotka}$	a Popis	Poznámka
\overline{n}		Celkový počet ramen	Ekvivaletní počtu magnetů
r	m	Poloměr spinneru	Ekvivaletní vzdálenosti osy
			otáčení od magnetů
S	(m, m, 0)	Střed spinneru v rovině	(tzn. pozice osy otáčení)
P(i)	(m, m, 0)	Pozice i . magnetu spinneru	Funkce indexu magnetu
φ	rad	Úhel rotace spinneru	
ω	$\operatorname{rad} \cdot s^{-1}$	Úhlová rychlost spinneru	
I	$kg \cdot m^2$	Moment setrvačnosti spinneru	
α	$\mathrm{rad}\cdot s^{-2}$	Koeficient rychlostně nezávislého	viz ??
		brzdného úhlového zrychlení	
β	s^{-1}	Koeficient lineárně závislého brzd-	viz ??
		ného úhlového zrychlení	
γ	rad^{-1}	Koeficient kvadraticky závislého	viz ??
		brzdného úhlového zrychlení	
c_1, t_{max}	s	Celková délka otáčení spinneru	viz ??

Vlastnosti magnetu

\mathbf{Symbol}	Jednotka	Popis	Poznámka
$ec{m}$	$A \cdot m^2$	Magnetický moment	
$ec{B}_r$	T	Remanentní magentizace	(tzv. remanence)
V	m^3	Objem magnetu	
$F_m(\vec{r}, \vec{m_1}, \vec{m_2})$	N	Silová interakce mezi magnetickými mo-	[1]
		menty $\vec{m_1}$ a $\vec{m_2}$ vzdálenými o \vec{r}	
$B(\vec{r}, \vec{m})$	T	Magnetická indukce tvořená magnetic-	[1, 2]
		kými momentem \vec{m} ve vzdálenosti \vec{r}	
$ au_F, au_{mag}$	Nm	Momenty sil působící na spinner vychá-	[2, 3], viz ??
		zející ze silové a magnetické interakce	

Dále stojí za zmínku, že pro vyjádření chyby měření je v textu používána tzv. shorthand error notation [5] (pro naše účely zkráceno na SEN). Pro jasnost uvedeme příklad, kde zápis pomocí SEN vypadá takto: 11.5(12), a ekvivalentní přepis do standardní notace je: 11.5 ± 1.2 . Tímto zjednodušíme zápis: $11.5 \pm 1.2 = 11.5(12)$ [6].

2 ÚVODNÍ SLEDOVÁNÍ

Prvním krokem v řešení této úlohy bylo kvalitativní sledování jejich chování v co největším rozpětí konfigurací, abychom mohli určit relevantní parametry a odstranit nezajímavé konfigurace.

Hlavním poznatkem je změna chování systému dvou pinnerů v závislosti na jejich relativních rychlostech. Máme-li na stole 2 spinnery, ze kterých je jeden nehybný, a druhý roztočíme na nízké otáčky, dojde po krátké chvíli k silné, ale chaotické, interakci (viz příloha 1). Naopak, roztočíme-li druhý spinner znatelně rychleji, nedochází téměř k žádné interakci (viz příloha 2). Druhý spinner se prvnímu spinneru efektivně jeví jako permanentí magnet - druhý magnet se tedy nanejvýše umístí do energeticky nejvýhodnější polohy a dále zůstává nehybný.

Obr. 1: Spinner osazeným neodymovými magnety

Obr. 2: Tři interagující spinnery

Dalším cenným poznatkem je, že při interakci více spinnerů se systém chová chaoticky téměř vždy (viz příloha 3). Toto pro nás dělá měření interakcí více jak dvou spinnerů nepříznivé a k získání použitelných výsledků je důležité omezit naše bádání pouze na jeden či dva spinnery. Poté, co kvalitně popíšeme menší počet spinnerů, se můžeme pomocí simulace pokusit o extrapolování našeho modelu na více spinnerů.

Z přesného zadání můžeme také vyčíst nějaké důležité předpoklady. Jmenovitě se jedná o umístění všech spinnerů v jedné "rovině vedle sebe", což z velké míry usnadní budoucí výpo-

čty, točením pouze "jedním z nich" a omezení interakcí mezi spinnery pouze na "vlivy magentického pole". Neměli bychom opomenout ani skutečnost, že všechny spinnery mají být "identické".

2.1 Určení parametrů

Z úvodního sledování není těžké určit relevantní parametry a vybrat, které z nich je možné s naším vybavením měřit.

2.1.1 Parametry týkající se konfigurace spinnerů

Jakožto nejdůležitější bychom určitě označili relativní pozice všech spinnerů, které popíšeme pomocí jejich středů $S_1, S_2, ...$ (každý střed je braný jako vektor ve spinnerové rovině) a jejich poloměrů $r_1, r_2, ...$ Dále bude k přesnému určení pozicí magnetů nezbytné znát okamžité úhly rotace spinnerů, které ozačíme $\varphi_1, \varphi_2, ...$ Nakonec k popsání spinneru musíme určit počet ramen, neboli počet připevněných magnetů. Tento počet označíme n a pro naše spinnery platí n = 3.

Pomocí těchto údajů je triviální vyjádřit pozici P(i) libovolného magnetu pomocí jeho indexu i (kde $0 \le i < n$):

$$P(i) = S + \left(r\cos\left(\varphi + \frac{2\pi i}{n}\right), r\sin\left(\varphi + \frac{2\pi i}{n}\right), 0\right) \tag{1}$$

Kromě pozice magnetu hraje také klíčovou roli nasměrování jeho pólů. Zde definujeme 3 důležité orientace pólů (viz Obr. 3):

- 1. Vertikální (vertical)
- 2. Odstředivá (eccentric)
- 3. Tečná (tangent)

V našich experimentech jsme používali převážně vertikální konfiguraci, jelikož takto bylo uchycení magnetů nejjednodušší. Magnety se totiž samy připevnily ke kovovému závaží v každém z ramen spinneru (viz Obr. 1), které je zde z důvodu zvýšení momentu setrvačnosti.

Tyto konfigurace jsme také schopni popsat a to opět jakožto funkci indexu magnetu. Nejdříve vyjádříme směrový vektor $\vec{u}(i)$ pro i. magnet v každé konfiguraci:

Obr. 3: Tři námi vyhranění orientace magnetů

Tab. 2: Směrové vektory pro různé konfigurace

KonfiguraceSměrový vektor magnetuVertikální $\vec{u}(i) = (0,0,1)$ Odstředivá $\vec{u}(i) = \widehat{P(i) - S}$ Tečná $\vec{u}(i) = (0,0,1) \times (\widehat{P(i) - S})$

Když nyní zvolíme velikost magnetického momentu našich magnetů $|\vec{m}_0|$, jsme schopni popsat magnetický moment včetně jeho velikosti ²:

$$\vec{m} = |\vec{m}_0| \cdot \vec{u}(i) \tag{2}$$

Velikost magentických momentů bude záviset na teplotě, velikosti a materiálových vlastnostech magnetů (např. jejich chemickém složení a kvalitě), ale to, jaká je pravá velikost magnetických momentů $|\vec{m}_0|$, je momentálně nepodstatné a určíme ji později (viz kap. ??).

Posledním parametrem, který zmíníme, ale nebudeme se jím zabývat, je přitahování, či odpuzování magnetů. V našem případě jsem se zaměřili převážně na systémy, kde se všechny magnety odpuzují.

2.1.2 Parametry týkající se pohybu spinnerů

Druhou, složitější, částí popisu našeho systému je jeho pohyb a chování v čase. Zde se nevyhneme úhlovým rychlostem jednotlivých spinnerů, které budeme značit $\omega_1, \omega_2, \ldots$ Poté by nás přirozeně napadlo úhlové zrychlení $\alpha_1, \alpha_2, \ldots$, ale pro náš případ bude šikovnější využít toho, že $\tau = I\alpha$, kde τ značí moment síly a I značí moment setrvačnosti spinneru. Moment setrvačnosti určíme později ve své vlastní kapitole (viz kap. ??).

Posledním parametrem, který zmíníme, je tření v ložiscích spinnerů a jiné odporové síly. Těm se budeme do hloubky věnovat v kapitole ??.

²Všimněme si, že $u(i) = \hat{u}(i)$

 $^{^3}$ Někdy také značeno J

2.2 Modelování magnetů

V průběhu našich experimentů používáme neodymové (NdFeB) magnety krychlového tvaru o hraně 5mm a jakosti N35. ⁴ Toto označení jakosti neodymových magnetů popisuje jejich chemické složení, tepelnou odolonost a hlavně sílu [8], která je popsána pomocí tzv. remanentní magnetizace, neboli remanence.

Jelikož jsou magnety poměrně malé, můžeme je ve větších vzdálenostech aproximovat jakožto magnetické dipóly. Zároveň existuje velmi elegantní způsob, jak vypočítat velikost magnetického dipólu z jeho remanence [2]:

$$|\vec{m}_0| = \frac{1}{\mu_0} |\vec{B}_r| V \tag{3}$$

Tabulkové hodnoty pro remanenci NdFeB magnetů jsou sice známé, ale v našem případě budeme přesnou hodnotu $|\vec{B_r}|$ našich magnetů měřit později, v kapitole ??.

2.3 Popis magnetických interakcí

Jelikož k popisu magnetů používáme idealizaci pomocí magnetických dipólů, můžeme popsat interakce mezi nimi pomocí následujících rovnic.

1. Silové interakce [1] mezi dvěma momenty \vec{m}_1 a \vec{m}_2 , které jsou od sebe vzdáleny \vec{r}^5 :

$$F_m(r, m_1, m_2) = \frac{3\mu_0}{4\pi ||r||^5} \left[(m_1 \cdot r)m_2 + (m_2 \cdot r)m_1 + (m_1 \cdot m_2)r - \frac{5(m_1 \cdot r)(m_2 \cdot r)}{||r||^2} r \right]$$
(4)

2. Magnetické interakce, neboli působení momentu síly [2] na \vec{m}_2 z důvodu vytvoření magnetické indukce $B(r, m_1)$ momentem \vec{m}_1 [1]:

$$B(r,m) = \frac{\mu_0}{4\pi} \frac{3\hat{r}(\hat{r} \cdot m) - m}{|r|^3}$$

$$\tau = m_2 \times B(r, m_1)$$
(5)

⁴Jakosti neodymových magnetů se pohybují od N35 do N55 [8].

 $^{^5\}vec{r} = P_1 - P_2$

LITERATURA

- [1] YUNG, Kar W.; LANDECKER, Peter B. a VILLANI, Daniel D. An Analytic Solution for the Force Between Two Magnetic Dipoles. [Online]. *Magnetic and Electrical Separation*. 1998, roč. 9, č. 1, s. 39-52. ISSN 1055-6915. Dostupné z: https://doi.org/10.1155/1998/79537. [cit. 2023-12-16].
- [2] CULLITY, B. D. a GRAHAM, C. D. Introduction to magnetic materials. Second edition. Hoboken: IEEE Press, [2009]. ISBN 978-0-471-47741-9.
- [3] SERWAY, Raymond A. a JEWETT, John W. Jr. *Physics for scientists and engineers*. 6th ed. Belmont: Thomson-Brooks/Cole, 2004. ISBN 0-534-40842-7.
- [4] YE, Jianhe; ZHAN, Pengfei; ZENG, Jincheng; KUANG, Honglin; DENG, Yongfang et al. Concise magnetic force model for Halbach-type magnet arrays and its application in permanent magnetic guideway optimization. [Online.] *Journal of Magnetism and Magnetic Materials.* 2023, roč. 587. ISSN 03048853. Dostupné z: https://doi.org/10.1016/j.jmmm.2023.171301. [cit. 2023-12-16].
- [5] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Standard Uncertainty and Relative Standard Uncertainty [online]. [cit. 2023-12-16]. Dostupné z: https://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html
- [6] Jasper. Shorthand notation(with brackets) erroraccroscit. cimalpoint[duplicate][online]. 2023-12-16]. Dostupné https://physics.stackexchange.com/questions/445141/ z: shorthand-error-notation-with-brackets-accros-decimal-point
- [7] Turnaj mladých fyziků [online]. [cit. 2023-12-16]. Dostupné z: https://tmf.fzu.cz/tasks.php?y
- [8] Neodymium Magnet Grades [online]. [cit. 2023-12-16]. Dostupné z: https://totalelement.com/blogs/about-neodymium-magnets/neodymium-rare-earth-magnet-grades

LITERATURA LITERATURA

SEZNAM OBRÁZKŮ

1	Spinner osazeným neodymovými magnety	
2	Tři interagující spinnery	
3	Tři námi vyhranění orientace magnetů	f

SEZNAM TABULEK

1	Nomenklatura	4
2	Směrové vektory pro různé konfigurace	7

PŘÍLOHY

1.	Videozáznam interakce nehybného a pomalého spinneru	VID1
2.	Videozáznam interakce nehybného a rychláho spinneru	VID2
3.	Videozáznam interakce 3 spinnerů	VID: