Almost Global Homotopy Theory

Zhen Huan

Sun Yat-sen University

September 25, 2018

Plan

- Preliminary: classical homotopy theory; stable homotopy theory.
- Model category;
- Equivariant homotopy theory;
- Global homotopy theory;
- Almost global homotopy theory;
- Examples: Quasi-theories.

Top The category of topological spaces and continuous maps *Top** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a homotopy equivalence

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps.

Top* The category of based spaces and based maps

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are homotopic $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them.

Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a homotopy equivalent

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps. **Top*** The category of based spaces and based maps.

a homotopy h between continuous maps f and $g: X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a

there exists a map $g: Y \longrightarrow X$ and $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$. $X \simeq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps. *Top** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map
$$h: X \times [0,1] \longrightarrow Y$$
 such that $f(x) = h(x,0)$ and $g(x) = h(x,1)$.

f and g are **homotopic** $f \stackrel{"}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a

there exists a map $g: Y \longrightarrow X$ and $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$. $X \simeq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps.

 Top_* The category of based spaces and based maps.

a **homotopy** h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1).

f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them.

Being homotopic is an equivalence relation

$f: X \longrightarrow Y$ is a

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

*Top** The category of topological spaces and continuous maps. *Top** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

*Top** The category of topological spaces and continuous maps. *Top** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a homotopy equivalence

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$.

 $X \subseteq Y$. X and Y are homotopy equivalent

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps. **Top*** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a homotopy equivalence

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Top The category of topological spaces and continuous maps. **Top*** The category of based spaces and based maps.

a homotopy h between continuous maps f and g: $X \longrightarrow Y$

a map $h: X \times [0,1] \longrightarrow Y$ such that f(x) = h(x,0) and g(x) = h(x,1). f and g are **homotopic** $f \stackrel{h}{\simeq} g$ if there exists a homotopy between them. Being homotopic is an equivalence relation.

$f: X \longrightarrow Y$ is a homotopy equivalence

there exists a map $g: Y \longrightarrow X$ and $g \circ f \subseteq id_X$ and $f \circ g \subseteq id_Y$. $X \subseteq Y$. X and Y are homotopy equivalent.

- objects: topological spaces.
- morphisms: homotopy classes of maps.

Homotopy groups: $\pi_n(X, x) := [S^n, X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X, x) := [S^n, X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X, x) := [S^n, X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X,x) \longrightarrow \pi_n(Y,f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X, x) := [S^n, X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X,x) \longrightarrow \pi_n(Y,f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X,x) := [S^n,X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CVV-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X,x) := [S^n,X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

LVV complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X,x) := [S^n,X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ —cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X,x) := [S^n,X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ -cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy groups: $\pi_n(X,x) := [S^n,X]_*$.

Example

$$\pi_0(S^0) = S^0$$
. $\pi_1(S^1) \cong \mathbb{Z}$. $\pi_n(S^n) \cong \mathbb{Z}$.

$f: X \longrightarrow Y$ is a weak homotopy equivalence

 $f_*: \pi_n(X, x) \longrightarrow \pi_n(Y, f(x))$ is an isomorphism for each n and each x.

homotopy equivalence \Rightarrow weak homotopy equivalence.

CW-complex: nice spaces

$$X^{n+1}$$
: attach $(n+1)$ -cells D^{n+1} to X^n along attaching maps $S^n \longrightarrow X^n$.

- Any Hausdorff topological space is weak homotopy equivalent to a CW-complex.
- Weak homotopy equivalences between connected CW-complexes are homotopy equivalences.

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

constant map;
 covering space;
 fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

constant map;
 covering space;
 fiber bundle.

Serre fibration

Homotopy Lifting Property

 $p: E \longrightarrow B$ is called a fibration if $p: E \longrightarrow B$ satisfies the Homotopy Lifting Property, i.e. given any map $f: X \longrightarrow E$ and homotopy $h: X \times [0,1] \longrightarrow B$ with $h_0 = p \circ f$, there exists an extension $\overline{h}: X \times [0,1] \longrightarrow E$ making the diagram commute.

Example

• constant map; • covering space; • fiber bundle.

Serre fibration

Cofibrations: dual to fibration

Homotopy Extension Property

 $i:A\longrightarrow X$ is called a cofibration if $i:A\longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f:A\longrightarrow X$, homotopy $h:A\times [0,1]\longrightarrow Y$ with $h_0=f\circ i$, there exists an extension $\overline{h}:X\times [0,1]\longrightarrow Y$ making the diagram commute.

$$\begin{array}{ccc}
A & \xrightarrow{h} & Y^{[0,1]} \\
\downarrow i & \overline{h} & \downarrow ev_0 \\
X & \xrightarrow{f} & Y
\end{array}$$

The inclusion of a relative CW-complex is a cofibration.

Cofibrations: dual to fibration

Homotopy Extension Property

 $i:A\longrightarrow X$ is called a cofibration if $i:A\longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f:A\longrightarrow X$, homotopy $h:A\times [0,1]\longrightarrow Y$ with $h_0=f\circ i$, there exists an extension $\overline{h}:X\times [0,1]\longrightarrow Y$ making the diagram commute.

The inclusion of a relative CW-complex is a cofibration.

Cofibrations: dual to fibration

Homotopy Extension Property

 $i:A\longrightarrow X$ is called a cofibration if $i:A\longrightarrow X$ satisfies the Homotopy Extension Property, i.e. if given any map $f:A\longrightarrow X$, homotopy $h:A\times [0,1]\longrightarrow Y$ with $h_0=f\circ i$, there exists an extension $\overline{h}:X\times [0,1]\longrightarrow Y$ making the diagram commute.

The inclusion of a relative CW-complex is a cofibration.

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n: S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^S(X) = colim_{l \to \infty} \pi_{n+l}(S^l \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{l \to \infty}[S^l \wedge Y_+, X_{n+l}].$$

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it.

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n : S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^S(X) = colim_{I \to \infty} \pi_{n+I}(S^I \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{l \to \infty}[S^l \wedge Y_+, X_{n+l}].$$

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it.

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n: S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^{\mathcal{S}}(X) = colim_{I \to \infty} \pi_{n+I}(S^I \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{l \to \infty}[S^l \wedge Y_+, X_{n+l}].$$

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it.

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n: S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^S(X) = colim_{I \to \infty} \pi_{n+I}(S^I \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{l \to \infty}[S^l \wedge Y_+, X_{n+l}].$$

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it.

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n: S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^S(X) = colim_{I \to \infty} \pi_{n+I}(S^I \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{I \to \infty}[S^I \wedge Y_+, X_{n+I}].$$

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it

Stable Homotopy Theory

Spectrum

a sequence $\{X_n, \sigma_n\}_n$ where X_n are based spaces and $\sigma_n: S^1 \wedge X_n \longrightarrow X_{n+1}$ are based maps.

Stable homotopy groups

$$\pi_n^S(X) = colim_{I \to \infty} \pi_{n+I}(S^I \wedge X).$$

Spectrum defines homology and cohomology

$$H_n(Y) = colim_{l\to\infty} \pi_{n+l}(Y_+ \wedge X_l);$$

$$H^n(Y) = colim_{I \to \infty}[S^I \wedge Y_+, X_{n+I}].$$

Brown Representation Theorem

- (i) For each homology theory, there exists a spectrum representing it.
- (ii) For each cohomology theory, there exists a spectrum representing it.

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

- 2-out-of-3: If two of f, g, gf are weak homotopy equivalences, then so is the third.
- Retracts: $A \xrightarrow{id} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

- **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.
- Retracts: $A \xrightarrow{id} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

- **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.
- Retracts: $A \xrightarrow{id} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

• **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.

• Retracts: $A \xrightarrow{id} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

• **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.

• Retracts: $A \xrightarrow{id} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

- **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.
- Retracts: $A \xrightarrow{i} B \xrightarrow{r} A$ f is a retract of g. $f \downarrow g \qquad \downarrow f$ $A' \xrightarrow{i'} B' \xrightarrow{r'} A'$

Motivating example: the category of topological spaces

- weak homotopy equivalence
- Serre fibration
- retract of relative cell complex

Features

- **2-out-of-3**: If two of f, g, gf are weak homotopy equivalences, then so is the third.

If g is a weak homotopy equivalence/Serre fibration/retract of relative cell complex, then so is f.

• • • •

Definition: A model structure on a category ${\mathcal C}$

• Weak Equivalence • Fibration • Cofibration.

satisfying the axioms

- Retracts;
- 2-out-of-3;
- Lifting: $A \xrightarrow{f} X$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) . $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration.

Definition: A model structure on a category ${\mathcal C}$

- Weak Equivalence Fibration Cofibration. satisfying the axioms:
 - Retracts;
 - 2-out-of-3;
 - Lifting: $A \xrightarrow{f} X$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : $\mathsf{Map}(\mathcal{C}) \longrightarrow \mathsf{Map}(\mathcal{C})$. $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

Definition: $\overline{\mathsf{A}}$ model structure on a category \mathcal{C}

- Weak Equivalence Fibration Cofibration. satisfying the axioms:
 - Retracts;
 - 2-out-of-3;
 - Lifting: $A \xrightarrow{f} X$ $\downarrow \downarrow \downarrow \downarrow \downarrow p$ $B \xrightarrow{g} Y$

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) . $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration. $\delta(f)$ is a fibration.

Definition: A model structure on a category ${\mathcal C}$

- Weak Equivalence Fibration Cofibration. satisfying the axioms:
 - Retracts;
 - 2-out-of-3;

The trivial cofibrations have the left lifting property w.r.t. fibrations; cofibrations have the left lifting property w.r.t. trivial fibrations.

• Factorization: (α, β) , (γ, δ) : Map $(\mathcal{C}) \longrightarrow$ Map (\mathcal{C}) . $f = \beta(f) \circ \alpha(f)$; $f = \delta(f) \circ \gamma(f)$. $\alpha(f)$ is a cofibration, $\beta(f)$ is a trivial fibration, $\gamma(f)$ is a trivial cofibration, $\delta(f)$ is a fibration.

Homotopy Category Ho(C)

 \mathcal{C} : a category. \mathcal{W} : a subcategory of weak equivalences

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- same objects as C
- morphism: a finite string of composable arrows $(f_1, f_2, \cdots f_n)$ where f_i is
 - ullet either a morphism in ${\mathcal C}$
 - or w^{-1} , $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1}) / \langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{R \atop L} \mathcal{D}$

Homotopy Category Ho(C)

 $\mathcal{C}\colon$ a category. $\mathcal{W}\colon$ a subcategory of weak equivalences.

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- ullet same objects as ${\mathcal C}$
- morphism: a finite string of composable arrows $(f_1, f_2, \dots f_n)$ where f_i is
 - ullet either a morphism in ${\mathcal C}$

• or
$$w^{-1}$$
, $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{R \atop L} \mathcal{D}$

Homotopy Category $\overline{Ho(\mathcal{C})}$

 \mathcal{C} : a category. \mathcal{W} : a subcategory of weak equivalences.

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- ullet same objects as $\mathcal C$;
- morphism: a finite string of composable arrows $(f_1, f_2, \dots f_n)$ where f_i is
 - ullet either a morphism in ${\cal C}$
 - or w^{-1} , $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1}) / \langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\stackrel{R}{\hookrightarrow}} \mathcal{D}$.

Homotopy Category Ho(C)

 $\mathcal{C}\colon$ a category. $\mathcal{W}\colon$ a subcategory of weak equivalences.

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- same objects as C;
- morphism: a finite string of composable arrows $(f_1, f_2, \dots f_n)$ where f_i is
 - ullet either a morphism in ${\cal C}$
 - \bullet or w^{-1} , $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{R} \mathcal{D}$.

Quillen equivalence: $Ho(\mathcal{C}) \overset{\mathbb{R}}{\underset{\mathbb{L}}{\longrightarrow}} Ho(\mathcal{D})$.

Homotopy Category Ho(C)

 \mathcal{C} : a category. \mathcal{W} : a subcategory of weak equivalences.

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- ullet same objects as \mathcal{C} ;
- morphism: a finite string of composable arrows $(f_1, f_2, \dots f_n)$ where f_i is
 - ullet either a morphism in ${\mathcal C}$
 - \bullet or w^{-1} , $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{R \atop l} \mathcal{D}$.

Quillen equivalence: $Ho(\mathcal{C}) \stackrel{\mathbb{R}}{\underset{\mathbb{L}}{\longleftrightarrow}} Ho(\mathcal{D})$

Homotopy Category Ho(C)

 \mathcal{C} : a category. \mathcal{W} : a subcategory of weak equivalences.

The free category $F(\mathcal{C},\mathcal{W}^{-1})$

- ullet same objects as \mathcal{C} ;
- morphism: a finite string of composable arrows $(f_1, f_2, \dots f_n)$ where f_i is
 - ullet either a morphism in ${\cal C}$
 - or w^{-1} . $w \in \mathcal{W}$.

$$Ho(\mathcal{C}) := F(\mathcal{C}, \mathcal{W}^{-1})/\langle 1 = (1), 1 = (w, w^{-1}), 1 = (w^{-1}, w) \rangle$$

Morphisms $\mathcal{C} \longrightarrow \mathcal{D}$

Quillen adjunction: $(L \dashv R) : \mathcal{C} \xrightarrow{\mathcal{R}} \mathcal{D}$.

G–CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

$$GTop \longrightarrow [Orb_G^{op}, Top]$$
$$X \mapsto (G/H \mapsto X^H)$$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

$$Ho(GTop) \xrightarrow{\cong} Ho([Orb_G^{op}, Top]).$$

G–CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

$$GTop \longrightarrow [Orb_G^{op}, Top]$$

 $X \mapsto (G/H \mapsto X^H)$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

$$Ho(GTop) \xrightarrow{\cong} Ho([Orb_G^{op}, Top])$$

G–CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

$$GTop \longrightarrow [Orb_G^{op}, Top]$$
$$X \mapsto (G/H \mapsto X^H)$$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

$$Ho(GTop) \xrightarrow{\cong} Ho([Orb_G^{op}, Top])$$

G-CW complex

 X^0 : disjoint union of orbits G/H.

 X^{n+1} : attach G-cells $G/H \times D^{n+1}$ to X^n along attaching G-maps

$$G/H \times S^n \longrightarrow X^n$$
.

Equivariant homotopy group

$$GTop \longrightarrow [Orb_G^{op}, Top]$$
$$X \mapsto (G/H \mapsto X^H)$$

$$\underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Elmendorf's theorem

$$Ho(GTop) \stackrel{\cong}{\longrightarrow} Ho([Orb_G^{op}, Top]).$$

Which is the BEST model?

Orthogonal G-spectra

Why BEST?

Combine the best feature of other models.

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best feature of other models

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best feature of other models.

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

Equivariant Stable Homotopy Theory (2000s) [MMSS] S_G — Modules Orthogonal G-Spectra Q.E. Q.E.

Which is the BEST model?

Orthogonal G-spectra.

Why BEST?

Combine the best feature of other models.

- Coordinate-free.
- Their weak equivalence implies isomorphism of homotopy groups.

Orthogonal *G*—spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_G —space

A G—continuous functor $X: \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G—spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \wedge S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Equivariant notion of a functor with smash product

An \mathcal{I}_G -FSP is an \mathcal{I}_G -space X with

- a unit $\eta: S \longrightarrow X$;
- a natural product $\mu: X \overline{\wedge} X \longrightarrow X \circ \bigoplus$

Orthogonal *G*—spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_G —space

A G-continuous functor $X: \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G-spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \wedge S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Equivariant notion of a functor with smash product

An \mathcal{I}_G -FSP is an \mathcal{I}_G -space X with

- a unit $\eta: S \longrightarrow X$;
- a natural product $\mu: X \overline{\wedge} X \longrightarrow X \circ \bigoplus$

Orthogonal *G*—spectrum

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_G —space

A G-continuous functor $X: \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G—spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \wedge S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Equivariant notion of a functor with smash product

An \mathcal{I}_G -FSP is an \mathcal{I}_G -space X with

- a unit $\eta: S \longrightarrow X$;
- a natural product $\mu: X \overline{\wedge} X \longrightarrow X \circ \bigoplus$

 \mathcal{I}_G : the category of orthogonal representations of G.

 Top_G : the category of based G-spaces and continuous based maps.

\mathcal{I}_G —space

A G-continuous functor $X: \mathcal{I}_G \longrightarrow Top_G$.

Orthogonal G—spectrum

An \mathcal{I}_G -space X with a natural transformation $X(-) \wedge S^- \longrightarrow X(- \oplus -)$ such that the associativity and unitality diagrams commute.

Equivariant notion of a functor with smash product

An \mathcal{I}_G -FSP is an \mathcal{I}_G -space X with

- a unit $\eta: S \longrightarrow X$;
- a natural product $\mu: X \overline{\wedge} X \longrightarrow X \circ \bigoplus$

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$K^0_{\{e\}}(X) = K^0(X).$$
 $K^0_G(\operatorname{pt}) \cong RG.K^0_{\mathbb{Z}/p}(\operatorname{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ K^0_{\mathbb{T}}(\operatorname{pt}) \cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$K^0_{\{e\}}(X) = K^0(X).$$
 $K^0_G(\operatorname{pt}) \cong RG.K^0_{\mathbb{Z}/p}(\operatorname{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. K^0_{\mathbb{T}}(\operatorname{pt}) \cong \mathbb{Z}[q^{\pm}].$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X).$$
 $\mathcal{K}^0_G(\mathsf{pt}) \cong \mathcal{R}G.\mathcal{K}^0_{\mathbb{Z}/n}(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}]$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$K^0_{\{e\}}(X)=K^0(X).$$

$$K_G^0(\mathsf{pt}) \cong RG.K_{\mathbb{Z}/n}^0(\mathsf{pt}) \cong \mathbb{Z}[x^{\pm}]/\langle x^n - 1 \rangle. K_{\mathbb{T}}^0(\mathsf{pt}) \cong \mathbb{Z}[q^{\pm}].$$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$\mathcal{K}^0_{\{e\}}(X) = \mathcal{K}^0(X).$$
 $\mathcal{K}^0_G(\mathsf{pt}) \cong RG.\mathcal{K}^0_{\mathbb{Z}/p}(\mathsf{pt}) \cong \mathbb{Z}[x^\pm]/\langle x^n - 1 \rangle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^\pm].$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$:
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} \mathcal{K}^0_{\{\mathrm{e}\}}(X) &= \mathcal{K}^0(X). \ \mathcal{K}^0_G(\mathrm{pt}) &\cong \mathcal{R}G.\mathcal{K}^0_{\mathbb{Z}/p}(\mathrm{pt}) \cong \mathbb{Z}[x^\pm]/\langle x^n-1
angle. \ \mathcal{K}^0_{\mathbb{T}}(\mathrm{pt}) \cong \mathbb{Z}[q^\pm]. \end{aligned}$$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} \mathcal{K}^0_{\{\mathrm{e}\}}(X) &= \mathcal{K}^0(X). \ \mathcal{K}^0_G(\mathrm{pt}) &\cong \mathcal{R}G.\mathcal{K}^0_{\mathbb{Z}/p}(\mathrm{pt}) \cong \mathbb{Z}[x^\pm]/\langle x^n-1
angle. \ \mathcal{K}^0_{\mathbb{T}}(\mathrm{pt}) \cong \mathbb{Z}[q^\pm]. \end{aligned}$$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

It has been noticed since the beginning of equivariant homotopy theory that certain theories naturally exist not just for a particular group, but in a uniform way for all groups in a specific class.

Example: equivariant K-theory

 $K_G^0(X)$: the Grothendieck group of the isomorphism classes of G-vector bundles over the G-space X.

Example (When G varies)

$$egin{aligned} \mathcal{K}^0_{\{e\}}(X) &= \mathcal{K}^0(X). \ \mathcal{K}^0_G(\mathsf{pt}) &\cong \mathcal{R}G.\mathcal{K}^0_{\mathbb{Z}/p}(\mathsf{pt}) \cong \mathbb{Z}[x^\pm]/\langle x^n-1
angle. \ \mathcal{K}^0_{\mathbb{T}}(\mathsf{pt}) \cong \mathbb{Z}[q^\pm]. \end{aligned}$$

- Restriction map: $K_G(X) \longrightarrow K_H(X)$;
- Induced map: $K_H(X) \longrightarrow K_G(X)$;
- Change-of-group isomorphism: $K_G(Y \times_H G) \stackrel{\cong}{\longrightarrow} K_H(Y)$;

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from \mathbb{L} to the category of topological spaces.

The category O

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

The category \mathbb{L}

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from $\mathbb L$ to the category of topological spaces.

The category O

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle

An **orthogonal spectrum** is a based continuous functor from \mathbb{O} to the category of based topological spaces.

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from $\mathbb L$ to the category of topological spaces.

The category \mathbb{O}

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from $\mathbb O$ to the category of based topological spaces.

The category $\mathbb L$

- objects: inner product real spaces;
- morphism set L(V, W): the linear isometric embeddings.

An **orthogonal space** is a continuous functor from $\mathbb L$ to the category of topological spaces.

The category \mathbb{O}

- objects: inner product real spaces;
- morphism set O(V, W): the Thom space of the total space

$$\xi(V,W) := \{(w,\phi) \in W \times L(V,W) | w \perp \phi(V)\}$$

of the orthogonal complement vector bundle.

An **orthogonal spectrum** is a based continuous functor from $\mathbb O$ to the category of based topological spaces.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^{\mathcal{G}}(X) = \operatorname{colim}_{V \in s(\mathcal{U}_{\mathcal{G}})} [S^V, X(V)]^{\mathcal{G}}.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^{\mathcal{G}}(X) = \operatorname{colim}_{V \in s(\mathcal{U}_{\mathcal{G}})} [S^V, X(V)]^{\mathcal{G}}.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X) \text{ and } \pi_{-k}^G(X) = \pi_0^G(S^k \wedge X).$$

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G$$

$$\pi_k^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(\Omega^k X)$$
 and $\pi_{-k}^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(S^k \wedge X)$.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^{\mathcal{G}}(X) = \operatorname{colim}_{V \in s(\mathcal{U}_{\mathcal{G}})}[S^V, X(V)]^{\mathcal{G}}.$$

$$\pi_k^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(\Omega^k X)$$
 and $\pi_{-k}^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(S^k \wedge X)$.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(\Omega^k X)$$
 and $\pi_{-k}^{\mathcal{G}}(X) = \pi_0^{\mathcal{G}}(S^k \wedge X)$.

- level model structure;
- strong level model structure;
- global model structure;

$$\pi_0^G(X) = \operatorname{colim}_{V \in s(\mathcal{U}_G)}[S^V, X(V)]^G.$$

$$\pi_k^G(X) = \pi_0^G(\Omega^k X)$$
 and $\pi_{-k}^G(X) = \pi_0^G(S^k \wedge X)$.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: *Global orthogonal spectra*, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
 - easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category 0;
- Quasi-theories can be globalized.

- equivalent to Schwede's global homotopy theory;
- easy to work with for specific theories.

Anna Marie Bohmann: Global orthogonal spectra, 2014

- enriched indexed categories;
- Atiyah-Bott-Shapiro orientation has global version.

David Gepner, Andre Henriques: Homotopy Theory of Orbispaces, 2007

- infinity categories;
- easier to work with for elliptic cohomology theories.

- add restriction maps to the category \mathbb{O} ;
- Quasi-theories can be globalized.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $QEll_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^*)_G(X);$
- Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEII_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^*)_G(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $\bullet \ \ \mathit{QEII}^*_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (\mathcal{K}^*_{\mathit{Tate}})_{G}(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $QEII_G^*(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (K_{Tate}^*)_G(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $\bullet \ \ \mathit{QEII}^*_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (\mathcal{K}^*_{\mathit{Tate}})_{G}(X);$
- Change-of-group isomorphism: $QEII_G^*(G \times_H X) \cong QEII_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $\bullet \ \ \mathit{QEII}^*_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (\mathcal{K}^*_{\mathit{Tate}})_{G}(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can *PROBABLY* be globalized.

We constructed an orthogonal G—spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

[Then Huan: Quasi alliptic schemology and its Spectrum, 2017]

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $\bullet \ \ \mathit{QEII}^*_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (\mathcal{K}^*_{\mathit{Tate}})_{G}(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal G—spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

[Then Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

$$QEII_G^*(X) = \prod_{g \in G_{conj}^{tors}} K_{\Lambda_G(g)}^*(X^g)$$

[Huan]

- $\bullet \ \ \mathit{QEII}^*_{G}(X) \otimes_{\mathbb{Z}[q^{\pm}]} \mathbb{Z}((q)) = (\mathcal{K}^*_{\mathit{Tate}})_{G}(X);$
- Change-of-group isomorphism: $QEll_G^*(G \times_H X) \cong QEll_H^*(X)$.

Question: does global elliptic cohomology theory exist?

- Jacob Lurie: Elliptic cohomology theories can be globalized.
- Nora Ganter: Quasi-elliptic cohomology has better chances than Grojnowski equivariant elliptic cohomology theory to be put together naturally in a uniform way and made into an ultra-commutative global cohomology theory in the sense of Schwede.
- Cohomology theories with the change-of-group isomorphisms can PROBABLY be globalized.

We constructed an orthogonal G-spectrum for $QEll_G^*(-)$, which cannot give a global spectrum in Schwede's sense.

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to \mathbb{L}

- objects: (G, V) with $G \leqslant O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

$$G \longrightarrow O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_2^*}$$

$$H \cap O(V) \longrightarrow O(W)$$

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to \mathbb{L}

- objects: (G, V) with $G \leqslant O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

$$G \longrightarrow O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_2^*}$$

$$H \cap O(V) \longrightarrow O(W)$$

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to \mathbb{L}

- objects: (G, V) with $G \leqslant O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

$$G \longrightarrow O(V)$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_2^*}$$

$$H \cap O(V) \longrightarrow O(W)$$

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leqslant O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

$$\begin{array}{ccc}
G & \longrightarrow & O(V) \\
\phi_1 & & & \downarrow \phi_2^* \\
I \cap O(V) & \longrightarrow & O(W)
\end{array}$$

Observation: restriction maps don't need to be identity maps.

- $\{E_G^n, \sigma_{G,n}\}_{n,G}$: equivariant spectra representing $\{E_G^*(-)\}_G$. $E_G^n \simeq_H E_H^n$ for $H \stackrel{i}{\hookrightarrow} G$.
- For an orthogonal spectrum X, $X(i^*(V)) = i^*X(V)$ for any G-representation V.

The new diagram D_0 : add restriction maps to $\mathbb L$

- objects: (G, V) with $G \leq O(V)$ finite
- morphisms: $\phi = (\phi_1, \phi_2) : (G, V) \longrightarrow (H, W)$ with $\phi_2 : V \longrightarrow W$ a linear isometric embedding and $\phi_1 : H \cap O(V) \longrightarrow G$ a group homomorphism.

Setting up the theory [Huan]

The feature of D_0

- ullet D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 —space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)}: S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

Setting up the theory [Huan

The feature of D_0

- D_0 is a symmetric monoidal category.
- \bullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 —space and D_0 —spectrum.

A D_0 —space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

Setting up the theory [Huan]

The feature of D_0

- D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 —space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

Setting up the theory [Huan

The feature of D_0

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 —space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$
- A morphism of D_0 —spectra: compatible with the structure maps.

Setting up the theory [Huan

The feature of D_0

- D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 —space and D_0 —spectrum

A D_0 —space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

- D₀ is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map

[Huan

- D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps

- D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps

- D_0 is a symmetric monoidal category.
- ullet D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

- D_0 is a symmetric monoidal category.
- D_0 is a generalized Reedy category in Berger and Moerdijk's sense.
 - linear isometric embedding: raising degree;
 - restriction map: lowering degree.

We can also define D_0 -space and D_0 -spectrum.

A D_0 -space is a continuous functor from D_0 to the category of based compactly generated weak Hausdorff spaces.

A D_0 -spectrum X consists of

- a based G-space X(G, V);
- a $G \times H$ -equivariant based structure map $\sigma_{(G,V),(H,W)} : S^W \wedge X(G,V) \longrightarrow X(G \times H,V \oplus W)$

A morphism of D_0 —spectra: compatible with the structure maps.

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H—weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W —spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\longleftrightarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin—level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

Zhen Huan: Almost global homotopy theory, 2018

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H—weak equivalence.

$$Sp_W^{D_0}$$
: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in $D_0 T^W$.

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\longleftrightarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin—level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

The right subject: D_0^W – spectra

[Huan]

The category $D_0 T^W$

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H—weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\longleftrightarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

Zhen Huan: Almost global homotopy theory, 2018]

The right subject: D_0^W – spectra

[Huan]

The category $D_0 T^W$

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\leftarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

Zhen Huan: Almost global homotopy theory, 2018

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H—weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\leftarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\longleftrightarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

Zhen Huan: Almost global homotopy theory, 2018

the full subcategory of D_0T consisting of those objects $X:D_0\longrightarrow T$ that maps each restriction map $(G,V)\longrightarrow (H,V)$ to an H-weak equivalence.

$Sp_W^{D_0}$: the category of D_0^W -spectra

A D_0^W -spectrum X is both a D_0 -spectrum and a D_0 -space in D_0T^W .

Relation with Schwede's global homotopy theory

$$(P\dashv Q): Sp^O \stackrel{Q}{\underset{P}{\longleftrightarrow}} Sp_W^{D_0}$$

- The Reedy model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-level model structure on orthogonal spectra.
- The global model structure on $Sp_W^{D_0}$ is Quillen equivalent to the Fin-global model structure on orthogonal spectra.

[Zhen Huan: Almost global homotopy theory, 2018]

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k})$.

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).$$

$$K_{n, Tate_G}^*(X) \cong QK_{n, G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_{\sigma}^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma})$$

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k})$ The corresponding quasi-theory:

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

$$K_{n,Tate_G}^*(X) \cong QK_{n,G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k}).$

The corresponding quasi-theory:

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).$$

$$K_{n,Tate_G}^*(X) \cong QK_{n,G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_{\sigma}^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

$$K_{n, Tate_G}^*(X) \cong QK_{n, G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_{\sigma}^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

$$K_{n, Tate_G}^*(X) \cong QK_{n, G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_{\sigma}^n} E_{n,\Lambda_G^n(\sigma)}^*(X^{\sigma}).$$

Divisible group: a better algebraic object associated to an elliptic curve than formal group.

the generalized Tate K-theory and generalized quasi-elliptic cohomology

$$0 \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_n \longrightarrow (\mathbb{Q}/\mathbb{Z})^n \longrightarrow 0.$$

 \mathbb{G}_m : formal group of Tate K-theory; $\Gamma((\mathbb{G}_m \oplus_{\mathbb{Z}_p^n} \mathbb{Q}_p^n)[p^k]) = K_{n,Tate}^0(B\mathbb{Z}_{p^k})$. The corresponding quasi-theory:

$$QK_{n,G}^*(X) := K^*(\Lambda^n(X/\!\!/G)) \cong \prod_{\sigma \in G_z^n} K_{\Lambda^n_G(\sigma)}^*(X^{\sigma}).$$

$$K_{n,\mathsf{Tate}\,G}^*(X) \cong \mathsf{Q}K_{n,G}^*(X) \otimes_{\mathbb{Z}[q^{\pm}]^{\otimes n}} \mathbb{Z}((q))^{\otimes n}.$$

Quasi-theories

$$QE_{n,G}^*(X) := E^*(\Lambda^n(X/\!\!/ G)) \cong \prod_{\sigma \in G_z^n} E_{n,\Lambda_G^{\sigma}(\sigma)}^*(X^{\sigma}).$$

Theorem

If the theory $\{E_{n,G}^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$.

In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]

[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]

[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Theorem

If the theory $\{E_{n,G}^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$.

In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]

[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]

[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Theorem

If the theory $\{E_{n,G}^*(-)\}_G$ can be globalized, there is a D_0^W -spectrum representing the quasi-theory $\{QE_{n,G}^*(-)\}_G$.

In particular, quasi-elliptic cohomology, the quasi-theory of Tate K-theory, can be globalized in almost global homotopy theory.

[Zhen Huan: Quasi-elliptic cohomology, PhD thesis]

[Zhen Huan: Quasi-elliptic cohomology and its Spectrum, 2017]

[Zhen Huan: Quasi-theories and their equivariant orthogonal spectra, 2018]

[Zhen Huan: Almost global homotopy theory, 2018]

My conjecture

The globalness of a cohomology theory is determined by the formal component of its divisible group; when the étale component varies, the globalness does not change.

Thank you.

Some references

https://huanzhen84.github.io/zhenhuan/Huan-HUST-2018.pdf

- Ando, Hopkins, Strickland: "Elliptic spectra, the Witten genus and the theorem of the cube". Invent. Math., 146(3):595–687, 2001.
- lacktriangle Ando, Hopkins, Strickland, "The sigma orientation is an H_{∞} map", Amer. J. 2004;
- Atiyah, "Power operations in K-theory", Quart. J. Math. Oxford Ser. (2) 17 1966.
- Atiyah," Equivariant K-theory and completion", J. Differential Geometry 3 1969.
- Berger, Moerdijk, "On an extension of the notion of Reedy category", Mathematische Zeitschrift, December 2011.
- Bohmann, "Global orthogonal spectra", Homology, Homotopy and Applications. Vol 16 (2014), No 1, 313–332.
- Gepner, "Homotopy Topoi and Equivariant Elliptic Cohomology", Thesis (Ph.D.)University of Illinois at Urbana-Champaign. 1999.
- Gepner, Henriques, "Homotopy Theory of Orbispaces", available at arXiv:math/0701916.
- Ginzburg, Kapranov, Vasserot, "Elliptic algebras and equivariant elliptic cohomology I", available at arXiv:q-alg/9505012.
- Greenlees, May, "Localization and completion theorems for MU- module spectra", Ann. of Math. (2), 146(3) (1997), 509–544.
- Katz, Mazur, "Arithmetic moduli of elliptic curves", Annals of Mathematics Studies, vol. 108, 1985.
- Lurie, "A Survey of Elliptic Cohomology", in Algebraic Topology Abel Symposia Volume 4, 2009, pp 219–277.
- Mandell, May, "Equivariant orthogonal spectra and S-modules", Mem., Amer. Math. Soc. 159 (2002), no. 755, x+108 pp.
- Mandell, May, Schwede, Shipley, "Model categories of diagram spectra", Proc. London Math. Soc. 82(2001).
- May, "Equivariant homotopy and cohomology theory", CBMS Regional Conference Series in Mathematics, vol. 91, 1996.
- Rezk. "Quasi-elliptic cohomology". 2011.
- Schwede, "Global Homotopy Theory", global.pdf.