### Lighting

9<sup>TH</sup> WEEK, 2021



#### Why We Need Shading

 Suppose we build a model of a sphere using many polygons and color it with glcolor

We get something like

• But we want

#### Shading

- Determining a <u>color</u> for each filled <u>pixel</u>
- <u>Light-material</u> interactions cause each point to have a different color or shade
- Need to consider
  - Light sources
  - Material properties
  - Location of viewer
  - Surface orientation



#### **Scattering of Light**

- Light strikes A
  - Some scattered
  - Some absorbed
- Some of scattered light strikes B
  - Some scattered
  - Some absorbed
- Some of this scattered light strikes A and so on





#### Rendering Equation

- The infinite scattering and absorption of light can be described by the rendering equation
  - Cannot be solved in general
  - Ray tracing is a special case for perfectly reflecting surfaces
- Rendering equation is global and includes
  - Shadows
  - Multiple scattering from object to object

#### **Global Effects**



#### Local vs. Global Rendering

- Correct shading requires a global calculation involving all objects and light sources
  - Incompatible with pipeline model which shades each polygon independently ( > local rendering)
- In computer graphics, especially real time graphics, we are happy if things "look right"
  - Many techniques exist for approximating global effects



#### **Light-Material Interaction**

- Light that strikes an object is partially absorbed and partially scattered (reflected)
- The amount <u>reflected</u> determines the color and brightness of the object
  - Ex) red surface under white light
- The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface

#### **Surface Types**

- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror
  - A very rough surface scatters light in all directions
- <u>Specular</u> surfaces mirror
  - Scattering reflected light in a narrow range of angle
- <u>Diffuse</u> surfaces chalk, clay
  - Scattering reflected light all directions
- <u>Translucent</u> surfaces glass, water
  - Refraction



#### **Light Sources**

 General light sources are difficult to work with because we must integrate light coming from all points on the surface



- Simple mathematical models:
  - <u>Point</u> light
  - Distant light (<u>directional</u> light)
  - <u>Spotlight</u>

#### **Point Light Sources**

- Emitting light equally in all directions
  - $\mathbf{p}_0$ : the location of a point light source

$$\mathbf{I}(\mathbf{p}_0) = \begin{bmatrix} I_r(\mathbf{p}_0) \\ I_g(\mathbf{p}_0) \\ I_b(\mathbf{p}_0) \end{bmatrix}$$

- Attenuation
  - Proportional to the inverse square distance

$$\mathbf{I}(\mathbf{p}, \mathbf{p}_0) = \frac{1}{|\mathbf{p} - \mathbf{p}_0|^2} \mathbf{I}(\mathbf{p}_0)$$

$$\mathbf{I}(\mathbf{p}, \mathbf{p}_0) = \frac{1}{k_c + k_l d + k_q d^2} \mathbf{I}(\mathbf{p}_0)$$



#### **Directional Light Sources**

- Parallel direction of lights
  - Infinite distance away from the surface
  - Location → direction

$$\mathbf{p}_0 = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \qquad \mathbf{p}_0 = \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix}$$



#### **Spotlight Sources**

- Characterized by a narrow range of angle through which light is
  - emitted
    - **p**<sub>s</sub>: apex of a cone
    - I<sub>s</sub>: direction of pointing
    - $\theta$ : angle to determine width
- Distribution of light
  - Concentrating in the center

$$\cos \phi = \mathbf{s} \cdot \mathbf{l}_{s}$$

• Light intensity drop off

$$\cos^e \phi = (\mathbf{s} \cdot \mathbf{l}_s)^e$$



#### **Phong Reflection Model**

- A simple model that can compute rapidly
- Three components (light-material interactions)
  - Ambient
  - <u>Diffuse</u>
  - <u>Specular</u>
- Using four vectors
  - **n**: <u>normal</u>
  - v: to the <u>viewer</u> or COP
  - 1: to <u>light</u> source
  - **r**: perfect <u>reflector</u>



#### **Ambient Reflection**

- Same at every point on the surface
- Ambient reflection coefficient

$$\mathbf{k}_{a} = (k_{ar}, k_{ag}, k_{ab}), \quad 0 \le k_{ar}, k_{ag}, k_{ab} \le 1$$

- Amount reflected
  - Some is absorbed and some is reflected
- Three components (red, green, blue)
- Ambient reflection term in rendering equation

$$\mathbf{I}_a = \mathbf{k}_a \mathbf{L}_a$$

- Can be any of the individual light sources
- Can be a <u>global</u> ambient term

#### **Diffuse** Reflection

- Light scattered equally in all directions
  - Perfectly diffuse surface
  - → So rough that there is no preferred angle of reflection
- <u>Lambert</u>'s law
  - Amount of light reflected is proportional to vertical component of incoming light
    - Reflected light  $\propto \cos u$

$$\cos u = \mathbf{l} \cdot \mathbf{n}$$

• Diffuse reflection term

$$\mathbf{I}_d = \mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_d$$

Incorporating a <u>distance</u> term

$$\mathbf{I}_{d} = \frac{\mathbf{k}_{d}}{k_{c} + k_{l}d + k_{q}d^{2}} (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_{d}$$





#### **Specular Reflection**

Smooth surfaces show specular highlights



• Specular reflection term

$$\mathbf{I}_s = \mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_s$$

- α: <u>shininess</u> coefficient
  - $\alpha \rightarrow$  infinite : mirror
  - $100 < \alpha < 200$ : metal
  - $5 < \alpha < 10$ : plastic





#### **Computation of Reflection**

- Light sources
  - Each light source has separate <u>ambient</u>, <u>diffuse</u>, and <u>specular</u> terms + separate red, green, blue components = nine coefficients

$$(L_{ar}, L_{ag}, L_{ab}, L_{dr}, L_{dg}, L_{db}, L_{sr}, L_{sg}, L_{sb})$$

- Material properties
  - Matching light source properties
  - Nine coefficients:  $(k_{ar}, k_{ag}, k_{ab}, k_{dr}, k_{dg}, k_{db}, k_{sr}, k_{sg}, k_{sb})$
  - Shininess coefficient:  $\alpha$

#### Adding up the Components

- For each light source and each color component, the Phong model can be written
  - Most surfaces are neither ideal diffusers nor perfectly specular

$$\mathbf{I} = \mathbf{I}_a + \mathbf{I}_d + \mathbf{I}_s$$

$$= \mathbf{k}_a \mathbf{L}_a + \mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_d + \mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_s$$



Including the <u>distance</u> term

$$\mathbf{I} = \mathbf{k}_a \mathbf{L}_a + \frac{1}{k_c + k_l d + k_q d^2} \left( \mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_d + \mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_s \right)$$

#### **Computation of Vectors**

Normal vectors

$$\mathbf{n} = (\mathbf{p}_1 - \mathbf{p}_0) \times (\mathbf{p}_2 - \mathbf{p}_0)$$

- Ideal reflector
  - Angle of incidence == angle of reflection

$$\mathbf{r} = \mathbf{l} + 2((\mathbf{l} \cdot \mathbf{n})\mathbf{n} - \mathbf{l})$$
$$= 2(\mathbf{l} \cdot \mathbf{n})\mathbf{n} - \mathbf{l}$$

• Halfway vector  $\mathbf{h} = \frac{\mathbf{l} + \mathbf{v}}{|\mathbf{l} + \mathbf{v}|}$ 

$$\theta + \psi = (\theta - \psi) + \phi$$
$$\therefore 2\psi = \phi$$

$$\mathbf{I}_{s} = \mathbf{k}_{s} (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_{s} \qquad \mathbf{I}_{s} = \mathbf{k}_{s} (\mathbf{n} \cdot \mathbf{h})^{\beta} \mathbf{L}_{s}$$
Phong Model Blinn Model





# Utah Teapots with Different Material Properties \_\_\_\_\_



#### Summary

- Shading → light-material interaction
- Surface types







- Light sources → point light, directional light, and spotlight
- Phong reflection model = ambient + diffuse + specular  $\mathbf{I} = \mathbf{I}_a + \mathbf{I}_d + \mathbf{I}_s$

$$= \mathbf{k}_a \mathbf{L}_a + \mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_d + \mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_s$$

attenuation

$$\mathbf{I} = \mathbf{k}_a \mathbf{L}_a + \frac{1}{k_c + k_l d + k_q d^2} \left( \mathbf{k}_d (\mathbf{l} \cdot \mathbf{n}) \mathbf{L}_d + \mathbf{k}_s (\mathbf{r} \cdot \mathbf{v})^{\alpha} \mathbf{L}_s \right)$$



## 수고하셨습니다