Average Power in Signals

Binary Channel Model

- Usually, the transmitter determines P[IN=0/1]
 - e.g. P[IN=0] = P[IN=1] = 0.5
- P_{e0} and P_{e1} depend on
 - the transmit levels (r_{min}, r_{max})
 - the power in the noise
 - the threshold

Inside the Binary Channel

- Under our simplifying assumptions, we can consider one bit at a time.
- The channel adds an offset r_{min} and scaling by r_{max}-r_{min}

$$r = \begin{cases} r_{\text{min}} & \text{if} \quad IN = 0 \\ r_{\text{max}} & \text{if} \quad IN = 1 \end{cases}$$

- The noise v is additive: y = r + v
- The output is obtained by thresholding y:

$$OUT = \begin{cases} 0 & \text{if} \quad y < T \\ 1 & \text{if} \quad y \geq T \end{cases} \qquad T = threshold$$

Noise Leads to Bit Errors

Power Consumption

- Power is energy used per unit time:
 - $power = \frac{energy}{time}$
 - 1 Watt = Unit of Power
 - Lifting an apple (~100g) up by 1m in 1s requires ~1W
- Batteries contain a fixed amount of energy.
 - The higher the power consumption of the device they are powering, the faster this energy is used up.

BP-4L 1000mAh 3.7V RECHARGEABLE LI-ION BATTERY

Power Consumption

- Calculating the amount of energy in a battery
 - Batteries are typically rated at fixed voltage in volts (V) and a charge capacity in milliamp-hours (mAh)
 - Multiplying these together gives the total energy stored in the battery in milliwatt-hours (mWh)
 - For example, this mobile phone battery contains 3700mWh of energy
- Typical power consumption:
 - microwave oven 1000W
 - desktop computer 120W
 - notebook computer 40W
 - human brain 10W
 - mobile phone 1W

BP-4L 1000mAh 3.7V rechargeable li-ion battery

Average Power in Signals

For communication, we usually have signals that vary around an average value

- For communication, we are interested in how much the signals differ from their average: $\Delta r = r r_{ave}$
- Since $\triangle r$ can be both positive and negative, its average value over many samples is zero:

$$\frac{1}{N}\sum_{n=1}^{N}\Delta r(n)=0$$

The average power is the average squared value over many samples:

$$P = \frac{1}{N} \sum_{n=1}^{N} (\Delta r(n))^{2}$$

Average Power for Bit Signals

$$P_{\text{signal}} = \frac{1}{N} \sum_{n=1}^{N} (\Delta r(n))^{2}$$

If 0 and 1's are equally likely,

$$\mathbf{r}_{\text{ave}} = \frac{1}{2} \mathbf{r}_{\text{min}} + \frac{1}{2} \mathbf{r}_{\text{max}}$$

• If IN = 0,

$$\Delta \mathbf{r} = \mathbf{r}_{\min} - \mathbf{r}_{\text{ave}} = \mathbf{r}_{\min} - \left(\frac{1}{2}\mathbf{r}_{\min} + \frac{1}{2}\mathbf{r}_{\max}\right) = \frac{1}{2}\left(\mathbf{r}_{\min} - \mathbf{r}_{\max}\right)$$

• If IN = 1,

$$\Delta \mathbf{r} = \mathbf{r}_{\text{max}} - \mathbf{r}_{\text{ave}} = \mathbf{r}_{\text{max}} - \left(\frac{1}{2}\mathbf{r}_{\text{min}} + \frac{1}{2}\mathbf{r}_{\text{max}}\right) = \frac{1}{2}\left(\mathbf{r}_{\text{max}} - \mathbf{r}_{\text{min}}\right)$$

The average power is

$$P_{\text{signal}} = \frac{1}{2} \left[\frac{1}{2} (r_{\text{max}} - r_{\text{min}}) \right]^2 + \frac{1}{2} \left[\frac{1}{2} (r_{\text{max}} - r_{\text{min}}) \right]^2 = \frac{\left(r_{\text{max}} - r_{\text{min}} \right)^2}{4}$$