## II. kolo kategorie Z7

## Z7-II-1

Na pohádkovém ostrově žijí draci a kyklopové. Všichni draci jsou červení, tříhlaví a dvounozí. Všichni kyklopové jsou hnědí, jednohlaví a dvounozí. Kyklopové mají jedno oko uprostřed čela, draci mají na každé hlavě dvě oči. Dohromady mají kyklopové a draci 42 očí a 34 nohou.

Kolik draků a kolik kyklopů žije na ostrově?

(M. Petrová)

**Možné řešení.** Protože jak kyklopové, tak draci jsou dvounozí, všech těchto bytostí je celkem 17 (34 : 2 = 17).

Kdyby všechny bytosti byly kyklopové, měly by celkem 17 očí. To je o 25 méně, než kolik jich je ve skutečnosti (42 - 17 = 25).

Každý drak má o 5 očí víc než kterýkoli kyklop, tedy mezi bytostmi je 5 draků (25:5=5). Zbylých 12 bytostí jsou kyklopové (17-5=12).

**Jiné řešení.** Úlohu lze řešit také zkoušením možností: celkem je na ostrově 17 bytostí (34:2=17), mezi nimiž je nanejvýš 7 draků (42:6=7).

V následující tabulce uvádíme v závislosti na počtu draků (d) počet kyklopů (k = 17 - d) a celkový počet jejich očí (6d + k = 5d + 17), který má být 42:

| draci      | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|------------|----|----|----|----|----|----|----|
| kyklopové  | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
| celkem očí | 22 | 27 | 32 | 37 | 42 | 47 | 52 |

Jediné vyhovující řešení je vyznačeno silně.

**Poznámka.** Se značením uvedeným v popisu předchozí tabulky lze počet draků určit jako řešení rovnice 5d + 17 = 42 (což také odpovídá úvahám v prvním řešení úlohy).

Zkoušení je možné založit na jiném principu, přičemž není nutné znát počet bytostí na ostrově (zato uvažovat počty nohou).

**Hodnocení.** 2 body za dílčí postřehy (např. celkový počet bytostí či maximální počet draků); 3 body za dořešení úlohy; 1 bod za úplnost a kvalitu komentáře.

## Z7-II-2

Pravidelný šestiúhelník je čtyřmi svými úhlopříčkami rozdělen na šest trojúhelníků a jeden čtyřúhelník:



Obsah čtyřúhelníku F je 1,8 cm². Určete obsahy trojúhelníků  $A,\,B,\,C,\,D,\,E$  a G.

(E. Semerádová)

Možné řešení. Doplněním chybějících úhlopříček šestiúhelníku získáme jeho rozdělení na 12 navzájem shodných trojúhelníků (úhlopříčky procházející středem šestiúhelníku jej rozdělují na šest shodných rovnostranných trojúhelníků, zbylé tři úhlopříčky představují výšky v těchto trojúhelnících).



Trojúhelníky C, D, G jsou tři z těchto základních trojúhelníků, každý z trojúhelníků A, B, E je tvořen dvěma základními trojúhelníky a čtyřúhelník F třemi.

Obsah čtyřúhelníku F je 1,8 cm², tedy obsah základního trojúhelníku je 0,6 cm². Každý z trojúhelníků C, D, G má obsah 0,6 cm² a každý z trojúhelníků A, B, E má obsah 1,2 cm².

**Hodnocení.** 3 body za pomocné dělení šestiúhelníku a porovnání posuzovaných částí; 2 body za dořešení úlohy; 1 bod za kvalitu komentáře (zahrnující zejména shodnosti pomocných trojúhelníků).

## **Z7**-II-3

Bludička Josefína tančí u močálu, přičemž používá kroky dvojí délky — krátké měří 45 cm, dlouhé 60 cm. Časem si vyšlapala oválnou stezku, po níž za dlouhých nocí tančí stále dokola. Pokud opakuje tři dlouhé kroky dopředu a jeden krátký vzad, pak devadesátým krokem dotančí přesně tam, kde začínala. Pokud opakuje tři krátké kroky dopředu a jeden dlouhý vzad, pak jí také vychází krok přesně tam, kde začínala.

Kolikátým krokem dotančí Josefína na původní místo ve druhém případě?

(M. Petrová)

**Možné řešení.** Jedním velkým čtyřkrokem (třemi dlouhými kroky vpřed a jedním krátkým vzad) se Josefína posune o  $135\,\mathrm{cm}~(3\cdot60-45=135)$ . Devadesát kroků sestává z 22 velkých čtyřkroků a dvou dlouhých kroků ( $90=22\cdot4+2$ ). Josefínin okruh tedy měří  $3\,090\,\mathrm{cm}~(22\cdot135+2\cdot60=3\,090)$ .

Jedním malým čtyřkrokem (třemi krátkými kroky vpřed a jedním dlouhým vzad) se Josefina posune o 75 cm  $(3 \cdot 45 - 60 = 75)$ . Čtyřicet takových čtyřkroků — tedy 160 kroků — ji posune o 3000 cm  $(40 \cdot 75 = 3\,000)$ , přičemž takto jistě nepřekročí původní místo (před posledním zpátečním krokem je ve vzdálenosti 3060 cm). Zbývajících 90 cm urazí dvěma následujícími kroky  $(2 \cdot 45 = 90)$ .

Josefína dotančí na původní místo 162. krokem.

**Poznámka.** Pro přiblížení situace uvádíme několik vzdáleností (v cm) odpovídajících tanečním krokům používaných ve druhém případě:

| krok       | 1  | 2  | 3   | 4  | 5   | 6   |  |
|------------|----|----|-----|----|-----|-----|--|
| vzdálenost | 45 | 90 | 135 | 75 | 120 | 165 |  |

| krok       | <br>158   | 159   | 160   | 161   | 162   | 163   |
|------------|-----------|-------|-------|-------|-------|-------|
| vzdálenost | <br>3 015 | 3 060 | 3 000 | 3 045 | 3 090 | 3 135 |

Odtud je také patrné, že různým krokům odpovídají různé vzdálenosti.

**Hodnocení.** 2 body za délku Josefínina okruhu; 2 body za počet kroků ve druhém případě; 2 body za srozumitelnost a kvalitu komentáře.