

Спецкурс ОСФИ Лекция 3 09 марта 2011

Машинное представление цвета. Подбор цветов

Алексей Игнатенко, к.ф.-м.н.

Лаборатория компьютерной графики и мультимедиа ВМК МГУ

Свет и цвет в графической системе

Наблюдатель

На прошлой лекции

$$L_o(p,\omega_o) = \int_{\Omega} f_r(p,\omega_o,\omega_i) L_i(p,\omega_i) \cos \theta_i \, d\omega_i$$

- Тонирование: процесс вычисления исходящего излучения для точки поверхности
- Точность, выразительность, скорость
- Физически обоснованные и эмпирические модели
- Модели:
 - Ламберт
 - Фонг и Блинн-Фонг
 - Лафортюн
 - Кук-Торранс
 - Табличная BRDF

На лекции

- Машинное представление цвета
- Подбор цветов, эксперименты CIE (МКО)
- Цветовое пространство СІЕ ХҮZ
- Пространство CIE LAB
- Цветовая модель и цветовые пространства RGB
- Точка белого, цветовая температура

Цветность и яркость

Восприятие человека позволяет различать

- Яркость
- Оттенок
- Насыщенность

Цветность (chrominance) – на этой лекции

Яркость (luminance) – на следующих

Передача (отображение) цвета

Как соответствуют друг другу

- Видимый глазом свет
- Цвет на мониторе / проекторе
- Цвет на фотографии
- Цвет в графическом редакторе
- Цвет объектов в OpenGL?

Сравните с реальностью

Разные цвета?

Причины

- Печать
- Проектор
- Формат файла
- Видеокарта
- ...

Машинное представление цвета

- Проблема 1: Как однозначно описать цвет?
 - Цвет это не энергетический спектр!
 - Очень сложный механизм восприятия!

• Проблема 2: Цифровое представление цвета в компьютере

Машинное представление цвета: квантованный спектр

• Можно взять видимый спектр (380-780нм) и квантовать его с небольшим шагом (обычно 5-10нм)

 40 float на точку = 160В на пиксель

• Изображение 1Мп = 160 мегабайт!

Зрения человека

Нам нужно только то, что видит человек

Надо разобраться в устройстве светового восприятия

Как мы видим свет

Как мы видим свет:

- Световые лучи входят в глаз через роговицу
 - фокусировка
- Проходят через зрачок, окруженный радужкой
 - Изменение количества света
- Проходят через хрусталик
 - дальнейшая фокусировка
- Проходят через стекловидное тело
- Попадают на сетчатку

Колбочки (цвет) и палочки

Спектральное восприятие цвета:

Колбочки

• Три вида колбочек

- Колбочки каждого вида содержат свой особый пигмент
- Три типа колбочек называют S, M и L
- Пики чувствительности приходятся примерно на 440 нм, 545 нм и 580 нм

Трихроматическая теория

М. В. Ломоносов 1756 Томас Юнг 1807 Гельмгольц 1852

object

S, M, L filters

Что такое цвет?

• Цвет: воспринимаемый результат воздействия света видимой части спектра

- Нет наблюдателя нет восприятие, нет и цвета!
- Каждому спектру соответствует цвет
- Для цвета можно найти несколько спектров (метамеризм)

Подбор цветов

• Не нужно моделировать произвольный спектр

• Трех чисел достаточно для описания цвета

• Нужно разработать принцип численного (количественного) представления цвета

Свет и цвет в графической системе

Эксперименты по подбору цветов

- 1920e-1930e
- Экран размером 2 градуса
- Монохроматический исходный цвет
- Три источника света –
 основные цвета R, G, В
 (монохроматические) создают
 целевой цвет
- Наблюдатель может менять интенсивность каждого источника

Монохроматический цвет 380-780нм с шагом 5нм

Эксперименты по подбору цветов (2)

- Большую часть цветов можно задать как сумму:
 C = rR + gG + bB (аддитивное соответствие)
- Некоторые цвета нельзя задать таким способом, вместо этого:
 C + rR = gG + bB (разностное сопоставление)
 - Создает проблемы для устройств вывода – нельзя создать лампу, которая забирает энергию
 - Позволяет использовать любые разные базовые света

Монохроматический цвет 380-780нм с шагом 5нм

Эксперименты по подбору цветов: проблемы

Результаты верны только для

- конкретного наблюдателя
- для данных основных цветов (ламп)
- для монохроматических целевых цветов

Для практического использования необходимо расширить их

- На более широкий класс наблюдателей
- На более широкий класс базовых цветов
- На более широкий класс целевых цветов

Эксперименты СІЕ (МКО) 1931г

- Эксперименты по воспринимаемому соответствию цветов были проведены на большом количестве людей
- Для людей с нормальным цветовосприятием результаты оказались достаточно близки
 - их можно усреднить
- В 1931 году на их основе МКО стандартизовал понятие стандартного наблюдателя
- Вывод: результаты экспериментов по соответствию цветов для стандартного наблюдателя могут быть применены к любому человеку с нормальным зрением

Эксперименты по подбору цветов: результаты CIE

Можно ли найти тройку чисел для любого спектра?

Мы уже знаем:

- Любое излучение –сумма монохроматических излучений разной интенсивности (амплитуды волны)
- Любой цвет может быть описан тройкой чисел
- Как представить монохроматические цвета с помощью тройки чисел (из экспериментов СІЕ) для данных базовых цветов

Возможно ли на основе этой информации найти тройки чисел для любого цвета?

Да! Закон аддитивности Грассмана

Закон аддитивности Грассмана

- Эмпирический закон о линейности человеческого зрения (Hermann Grassman)
- Аддитивность:
 - Если наблюдатель задаст цвет лучей 1 и 2 как R1B1G1 и R2B2G2 относительно заданных основных цветов
 - То цвет их комбинации цвет будет равен
 - R = R1 + R2
 - G = G1 + G2
 - B = B1 + B2
- Верность для любого уровня интенсивности
 - kC1=kC2, если C1=C2

Закон аддитивности Грассмана (2)

- Позволяет использовать конечный набор соответствий цветов для моделирования бесконечного набора
- Любое спектральное распределение может быть задано как взвешенная сумма монохроматических источников =>
- Если задать RGB-соответствия для этих цветов, то RGB для любого спектрального цвета будет взвешенной суммой RGB монохроматических цветов

$$R = \int_{380}^{780} C(\lambda) r(\lambda) d\lambda$$

$$G = \int_{380}^{780} C(\lambda) g(\lambda) d\lambda$$

$$\mathsf{B} = \int_{380}^{780} \mathcal{C}(\lambda) b(\lambda) d\lambda$$

Пространство CIE RGB 1931

Кривые $r(\lambda), g(\lambda), b(\lambda)$ и спецификация базовых источников света задают трехмерное аддитивное пространство CIE RGB 1931

- Мы умеем для любого спектра находить точку в этом пространстве
- Не все точки пространства соответствуют видимым спектрам
 - Невидимые
 - Отрицательные спектры

Переход между цветовыми пространствами

- Хотим создать другое цветовое пространство с источниками X(λ), Y(λ), Z(λ)
- Пусть знаем координаты этих источников (r1,g1,b1), (r2,g2,b2), (r3,g3,b3) в RGB
- Следовательно:

Переход между цветовыми пространствами (2)

$$egin{pmatrix} r_1 & r_2 & r_3 \ g_1 & g_2 & g_3 \ b_1 & b_2 & b_3 \ \end{pmatrix} egin{pmatrix} x \ y \ z \ \end{pmatrix}$$
 Переход между цветовыми пространствами – линейное преобразование

Переход между преобразование

Пространство CIE XYZ 1931

Задача: создать новое цветовое пространство XYZ, более удобное в работе, чем CIE RGB

- Базовые цвета x(λ), y(λ), z(λ)
 всюду неотрицательны
- y(λ) соответствует стандартной функции спектральной эффективности CIE
- Точка белого «равной энергии» должна соответствовать x=y=z=1/3
 - «плоское» спектральное распределение

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.49 & 0.31 & 0.20 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.00 & 0.01 & 0.99 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Названо CIE XYZ 1931

Пространство CIE ху

- Задача: разделить интенсивность и цвет
 - Вектора разной длины проецируются в одну точку
 - Прямые сохраняются
- Пространство CIE ху

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

Свойства диаграммы цветности

Область основных

- На диаграмме представлены все цвета, видимые человеку
 - Внутри спектральной кривой
- Все цвета, которые могут быть получены смешением любых двух, лежат на прямой между ними
- Все цвета, которые могут быть получены смешением трех цветов, лежат внутри треугольника
 - Смешивая три данных реальных источника света, невозможно получить все цвета, видимые человеком

CIE XYZ на диаграмме цветности rg

- Все видимые цвета попадают внутрь CIE XYZ
- Но базовые источники невозможно физически воспроизвести (не имеют цвета)
 - супернасыщенные

Цветовые пространства и модели

- Цветовая модель абстрактная математическая модель описания цвета набором чисел (обычно тремя)
 - Не имеет функции отображения в абсолютное цветовое пространство
 - Нельзя использовать в прикладных задачах без привязки к абсолютному пространству
- Цветовое пространство = модель + отображение в некоторое исходное (reference) пространство
 - Цвета не зависят от внешних факторов

Модель RGB

- Основана на аддитивной комбинации трех основных цветов красного (Red), зеленого (Green), синего (Blue)
- Описывает системы, основанные на испускании света для получения нужного цвета (телевизоры, мониторы)
- Сами по себе значения r,g,b не несут физического смысла
 - Нужна привязка к исходному цветовому пространству
- Наиболее часто применяется в компьютерной графике, т.к. компьютерная графика работает с изображениями на мониторе

Свет и цвет в графической системе

Спецификация RGB пространств

- На практике существует множество RGB-пространств
 - Пространства конкретных устройств
 - Стандартизированные «рабочие» пространства для устройств
- Пространство можно задать матрицей **RGB->XYZ**
- Однако обычно используются ху-цвета базовых источников и соотношение их яркостей (точка белого)

Свет и цвет в графической системе

Спецификация RGB базовых источников

- Три фосфора задают аддитивное цветовое пространство
- Для полной спецификации обычно задают
 - ху-координаты для r,g,b-фосфоров
 - точку белого (относительная яркость)
- Примеры пространств:
 - NTSC RGB (телевизоры)
 - HDTV RGB (телевизоры)
 - sRGB (мониторы)
- При передаче сигнала (например, телевизионного) цвет кодируется в предположении о соответствии фосфоров монитора (телевизора) стандарту
 - Если не соответствуют, но монитор должен включать в себя коррекцию (аппаратную или программную)

Пространство sRGB (основные цвета и точка белого)

Спецификация RGB элементов: точка белого

- Точка белого цвет, который считается белым в данных условиях
- Для монитора цвет, который испускают фосфоры с максимальной яркостью (1,1,1)
 - Фактически задает относительные яркости фосфоров
- Существуют стандартные точки белого
 - CIE common white points

Точка белого: некоторые стандартные точки белого

Имя	CIE 1931		ССТ	Прим
	Х	у		
Е	1/3	1/3	5400	Точка равной энергии
D55	0.33242	0.34743	5500	
D65	0.31271	0.32902	6500	TV, sRGB
D75	0.29902	0.31485	7500	
A	0.44757	0.40745	2856	Лампа накаливания

Цветовая температура

- Цветовая температура характеристика видимого света
- Сравнение цвета с цветом нагретого черного тела (black body radiator)
- Большинство источников света построены на излучении нагретого тела, поэтому их удобно описывать с помощью цветовой температуры
 - Можно сопоставить с реальным освещением

Цветовая температура: примеры

- 1600 К: восход и закат
- 1800 К: свеча
- 2800 К: лампа накаливания
- 3200 К: студийные лампы
- 5200 К: яркое полуденное солнце
- 5500 К: усредненный дневной свет
- 6000 К: облачное небо
- 20000 К: ярко-синее чистое небо
- 28000 30000 К: молния

Пространство sRGB

- Создано Microsoft, Hewlett-Packard
- Стандартизировано в 1996г.
- На данный момент широко используется:
 - Мониторы
 - Фотоаппараты
- Если для изображения не указано цветовое пространство, можно считать, что это sRGB
- Недостатки: исходные цвета сильно внутри видимой человеком области

Пространство Adobe RGB

- Разработано Adobe в 1998
- Цель иметь возможность работать на мониторе с большинством цветов, доступных в модели СМҮК на принтерах
- Более широкий диапазон передаваемых цветов (gamut)
- Проблема: 8 бит на цвет может не хватать

Отображения передаваемых диапазонов цветовых пространств

- Цветовые пространства имеют разные диапазоны передаваемых цветов (gamut)
- Например, не все цвета изображения с профилем Adobe RGB могут быть показаны на мониторе с фосфорами sRGB
- Нужно преобразовать исходное изображение таким образом, чтобы все его цвета попадали в передаваемый диапазон устройства
- Процесс называется отображением передаваемого диапазона (gamut mapping)
- Два типа непередаваемых цветов
 - Невозможна коррекция цветности (I < 0)
 - Возможна коррекция цветности, но невозможна коррекция интенсивности (I > 1)

Отображения передаваемых диапазонов цветовых пространств: подходы

- Применяется после применения преобразования в целевое пространство
- Локальные и глобальные подходы
- Примеры локальных
 - Масштабирование цвета пикселя до попадания в диапазон
 - Отсечение по [0,1]
 - **—** ...
- Пример глобального подхода:
 - Поиск наименьших и наибольших компонент цвета и масштабирование цветов всего изображения для попадания в диапазон

Однородные и интуитивные цветовые пространства

- Пространства XYZ и RGB недостаточно интуитивно
 - Нет осмысленных значений у компонент X,Z (Y означает светимость)
 - XYZ и RGB нелинейны для восприятия
 - Изменение значений хуг не означает пропорциональное изменение цвета
- Было разработано несколько цветовых пространств, обладающих заданными свойствами

Разница цветов и расстояние

CIE 1976 L*a*b

$$L^* = 116 f(Y/Y_n) - 16$$

$$a^* = 500 [f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200 [f(Y/Y_n) - f(Z/Z_n)]$$

$$f(t) = \begin{cases} t^{1/3}, & t > (6/29)^3 \\ \frac{1}{3} \left(\frac{29}{6}\right)^2 t + \frac{4}{29} \end{cases}$$

Xn,Yn,Zn – точка белого

[© 2005 Bruce MacEvoy - http://www.handprint.com/HP/WCL/color6.html]

CIE 1976 L*a*b

Интуитивные цветовые модели: HSV

- RGB, CMY(K) ориентированы на работу с аппаратурой и неудобны для задания цвета человеком
- Субъективные атрибуты цвета
 - Цветовой тон
 - Насыщенность
 - Светлота
- Психофизические эквиваленты: доминирующая длина волны, чистота, яркость
- Модель HSV удобна для задания цвета человеком
 - Hue Saturation Value

HSV (2)

HSV (3)

Цветовые пространства

- Исходные (reference) цветовые пространства:
 - CIE XYZ
 - CIE L*a*b
 - CIE RGB (не используется)
- Цветовые модели:
 - RGB
 - CMYK
 - YIQ
 - HSV
 - HSL
- Производные цветовые пространства:
 - sRGB (RGB)
 - Adobe RGB (RGB)
 - Apple RGB (RGB)

Ограничения трехцветных пространств

- Нельзя использовать при физических вычислениях, включающих явление дифракции, интерференции
 - Радуга
- Аддитивные пространства имеют достаточно узкий диапазон передачи цвета

Итоги

- Машинное представление цвета
- Подбор цветов, эксперименты CIE (МКО)
- Цветовое пространство СІЕ ХҮZ
- Мониторы. Цветовая модель и цветовое пространство RGB
- Точка белого, цветовая температура