# COMPUTER VISION 2021 - 2022 > OPTICAL FLOW

UTRECHT UNIVERSITY
RONALD POPPE

## **OPTICAL FLOW**

#### What is shown here?





## **OPTICAL FLOW<sup>2</sup>**

#### **Essential for analyzing motion in video**

- Tracking
- Recognition (of actions, activities or scenes)
- Alignment (in time)
- Depth estimation (from a single camera)

#### Often used in combination with spatial image features

Also employed in convolutional neural networks

## **OPTICAL FLOW<sup>3</sup>**

Zuffi et al., ICCV 2013



Alldieck et al., GCPR 2017



## **OPTICAL FLOW OVER THE YEARS**

1940 Term coined by JJ Gibson

1981 Lucas & Kanade: sparse optical flow

1981 Horn & Schunck: global estimations with smoothness contraint

2004 Brox et al.: warping-based

2010 Sun et al.: performance evaluation, median filtering

2011 Brox & Malik: variational optical flow

2015 Fischer et al.: FlowNet

2017 Ilg et al.: FlowNet 2.0

2020 Teed & Deng: multi-scale correlation

## **DATASETS OVER THE YEARS**

Middlebury (2007)



**Sintel (2012)** 





**KITTI (2015)** 



## FARNEBACK VS. LUCAS-KANADE

#### Lucas-Kanade was originally a sparse algorithm

- Based on neighborhoods
- Also exists in a dense variation

#### Farnebäck uses second-order polynomial expansion of neighborhoods

Allows for the integration of prior knowledge (certainty)

Sparse/dense Lucas-Kanade and Farnebäck are supported in OpenCV

### **MATERIALS**

FlowNet 2.0: <a href="https://www.youtube.com/watch?v=JSzUdVBmQP4">https://www.youtube.com/watch?v=JSzUdVBmQP4</a>

Paperswithcode: <a href="https://paperswithcode.com/task/optical-flow-estimation">https://paperswithcode.com/task/optical-flow-estimation</a>

**Optical flow survey:** 

https://www.sciencedirect.com/science/article/abs/pii/S0923596518302479

# **QUESTIONS?**

## **VOXEL-BASED LABELING**

## **VOXEL-BASED LABELING**

#### Goal: determine which voxels belong to which object/subject

Color indicates the subject identity



## TRACKING AND LABELING

#### Tracking: "following" people over time

Keeping a consistent labeling of the voxel clusters

#### **Usually:**

- Cluster and label
- Use temporal information (previous position/movement)

In Assignment 3, we use a different approach

## **FIRST ANALYSIS**

#### Voxels that are close together, are likely to be from the same person

- Height does not play a role → ignore it?
- Cluster voxels based on location in 3D space?

#### In an image, voxels can be projected to each view

#### Should then be "on" a subject

- Each subject might be wearing differently colored clothing
- Label voxels based on colors?

## CONCEPT

#### For our voxel-based tracking, we use two types of input:

- The voxel model
- The 2D images from each view

#### We'll use concepts we've discussed previously:

- Clustering of voxels (3D)
- Color models (image)

## **CONCEPT<sup>2</sup>**

#### **Initialization (offline):**

- Cluster voxels into persons using only voxel locations
- Make a color model for each person (project to image)



#### For each next frame (online):

- Cluster these voxels to form the new person locations
- Label voxels to persons using color models (compare to offline model)

## **CONCEPT**<sup>3</sup>



## INITIALIZATION

#### When clustering the voxels into persons:

- Choose a frame where everyone is visible and well-seperated
- The number of clusters is equal to the number of subjects
- Run a clustering algorithm based on the location of the voxel
- Ignore the height!
- Check if clusters are close to each other (you're stuck in a local minimum)

#### Output:

- Cluster centers corresponding to the location of each person (on the ground plane, so (x,z) location)
- A label of each voxel to which person it belongs

## **INITIALIZATION<sup>2</sup>**

Next step is to make a color model for each person

#### We need to know which pixels belong to which person:

- Project the labeled voxels to view (multiple views for additional points)
- Make sure that the pixels are visible (occlusion!)

#### Construct the color model (per view or all views together):

- Histogram
- GMM
- Mean color (will not give you the full points)

## **INITIALIZATION<sup>3</sup>**

#### You might want to make a smart color model:

- Use only the lower/upper part?
- Discard dark pixels?
- Etc.





## **ONLINE PROCESSING**

The online processing deals with labeling the voxels in subsequent frames

#### We will use color cues!

- Normally, you would track the position, based on the previous position and an estimate of the movement
- E.g., using Kalman filters

## **ONLINE PROCESSING<sup>2</sup>**

Online processing: label the voxels in subsequent frames using color

First, cluster the voxels. Each cluster should correspond to a person, but we do not know which (because of the random initialization)

- And we're not going to cheat by using the previous clusters as initialization!
- So this step is exactly the same as in the offline phase

#### Then, find out which cluster belongs to which person:

- Project voxels of one cluster to one camera (occlusion!)
- Determine the color of the pixels
- Use a suitable measure for distance between pixels and model

## ONLINE PROCESSING<sup>3</sup>

#### This will give you (per voxel or per cluster), a person label

- We need to combine all those labels into a coherent (final) labels
- Majority voting might work
- But avoid assigning the same label to two people!

## ONLINE PROCESSING<sup>4</sup>

Once we know which voxels (or cluster) belongs to each person, we determine the position of each person:

- Outliers have quite a large impact on the estimation
- Optionally: iteratively filter out outliers
- Optionally: if you can improve the tracks, you can earn additional points (in case you might use tracking or smoothing)

## **CHOICE TASKS**

#### Using multiple cameras to increase the robustness: 10

- Instead of projecting to a single view, use multiple cameras
- Helps when a person is occluded in your view

# Finding a way to deal with people outside the voxel space (finding out when K=4 clusters is too much): 10

- Occasionally, a person leaves the view area
- Determine when this happens and adjust the number of clusters accordingly

## **CHOICE TASKS<sup>2</sup>**

Implementing tracking based on previous position and movement: 10 (in addition, not as replacement, to the color-based labeling)

- Think about using the position, direction or speed
- Using the previous positions as a starting point for your clustering will give you max 5

#### Smoothing of trajectories: 5 (can be a post-processing step)

Get rid of noise in the estimation of the ground location

## **CHOICE TASKS<sup>3</sup>**

Getting rid of outliers and ghost voxels: 10 (based on the clustering, find out which voxels should be removed altogether so they don't influence the calculation of the center)

Only filtering of outliers: max 5

#### Updating your color model over time: 10

Adapt the color model of each person



## **ASSIGNMENT**

## **ASSIGNMENT**

#### **Assignment 2:**

Deadline is Wednesday March 2, 23:00 (tomorrow)

#### **Assignment 3:**

Deadline is Sunday March 13, 23:00

## **NEXT LECTURE**

Next lecture: Training, classification, detection

Thursday March 3, 11:00-12:45, BOL-0.204

# **QUESTIONS?**