Spring 2023: CS5710 - Machine Learning

In-Class Programming Assignment-4

GitHub Link - https://github.com/raimukul/MachineLearning Assignments

Video link-

https://drive.google.com/file/d/12RFhEuUN1nxvux8EN39QYeSSReYUybeZ/view?usp=sharing

Code:

1. Pandas

1. Read the provided CSV file 'data.csv'.

https://drive.google.com/drive/folders/1h8C3mLsso-R-sIOLsvoYwPLzy2fJ4IOF?usp=sharing

- 2. Show the basic statistical description of the data.
- 3. Check if the data has null values. a. Replace the null values with the mean.
- 4. Select at least two columns and aggregate the data using: min, max, count, mean.
- 5. Filter the data frame to select the rows with calories values between 500 and 1000.
- 6. Filter the data frame to select the rows with calories values > 500 and pulse < 100.
- 7. Create a new "df_modified" data frame that contains all the columns from df except for "Maxpulse".
- 8. Delete the "Maxpulse" column from the main df dataframe
- 9. Convert the datatype of Calories column to int datatype.
- 10. Using pandas create a scatter plot for the two columns (Duration and Calories).

In [1]:

```
#Read the provided CSV file 'data.csv'.
https://drive.google.com/drive/folders/1h8C3mLsso-R-
sIOLsvoYwPLzy2fJ4IOF?usp=sharing

import pandas as pd

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/data/data.csv')
In [17]:
```

	Duration	Pulse	Maxpulse	Calories
0	60	110	130	409.1
1	60	117	145	479.0
2	60	103	135	340.0
3	45	109	175	282.4
4	45	117	148	406.0
164	60	105	140	290.8
165	60	110	145	300.0
166	60	115	145	310.2
167	75	120	150	320.4
168	75	125	150	330.4

[169 rows x 4 columns]

In [2]:

df = pd.DataFrame(df)

In [3]:

#Show the basic statistical description about the data.

df=df.describe()

df

Out[3]:

	Duration	Pulse	Maxpulse	Calories
count	169.000000	169.000000	169.000000	164.000000
mean	63.846154	107.461538	134.047337	375.790244
std	42.299949	14.510259	16.450434	266.379919
min	15.000000	80.000000	100.000000	50.300000
25%	45.000000	100.000000	124.000000	250.925000

	Duration	Pulse	Maxpulse	Calories
50%	60.000000	105.000000	131.000000	318.600000
75%	60.000000	111.000000	141.000000	387.600000
max	300.000000	159.000000	184.000000	1860.400000

In [4]:

#Check if the data has null values.

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/data/data.csv')
df.isnull()

Out[4]:

	Duration	Pulse	Maxpulse	Calories
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
			•••	
164	False	False	False	False
165	False	False	False	False

	Duration	Pulse	Maxpulse	Calories		
166	False	False	False	False		
167	False	False	False	False		
168	False	False	False	False		
169 r	ows × 4 co	lumns				
					In [5]:	
#che	cking i	s the	re any n	ull valu	e is there or not.	
df.i	snull()	.valu	es.any()			
					Out[5]:	
True					الماري].	
					In [7]:	
# a.	Replac	e the	null va	lues wit	h the mean	
new_	df=df.f	illna	(df.mean	())		
					In [10]:	
					[]	
new_	df.isnu	11().	values. <mark>a</mark>	ny()		
					Out[10]:	
Fals	Э				Out[10].	
					In [11]:	
	Select t, mean		ast two	columns	and aggregate the data using: min, max,	
# by valu		group	by funct	ion with	aggregation to get mean, min and max	

```
result = df.groupby('Duration').agg({'Calories': ['mean', 'min', 'max']})
print("Mean, min, and max values are")
print(result)
```

Mean, $\min,$ and \max values are

	Calories		
	mean	min	max
Duration			
15	87.350000	50.5	124.2
20	151.600000	50.3	229.4
25	244.200000	244.2	244.2
30	192.125000	86.2	319.2
45	273.236364	100.7	406.0
60	339.675000	215.2	486.0
75	325.400000	320.4	330.4
80	643.100000	643.1	643.1
90	541.800000	466.4	700.0
120	666.833333	500.0	1000.1
150	939.400000	816.0	1115.0
160	943.700000	853.0	1034.4
180	733.600000	600.1	800.4
210	1618.200000	1376.0	1860.4
270	1729.000000	1729.0	1729.0
300	1500.200000	1500.2	1500.2

In [12]:

#5. Filter the dataframe to select the rows with calories values between 500 and 1000.

df.query('Calories < 1000 and Calories > 500')

Out[12]:

	Duration	Pulse	Maxpulse	Calories
51	80	123	146	643.1
62	160	109	135	853.0
65	180	90	130	800.4

	Duration	Pulse	Maxpulse	Calories
66	150	105	135	873.4
67	150	107	130	816.0
72	90	100	127	700.0
73	150	97	127	953.2
75	90	98	125	563.2
78	120	100	130	500.4
90	180	101	127	600.1
99	90	93	124	604.1
103	90	90	100	500.4
106	180	90	120	800.3
108	90	90	120	500.3

In [13]:

6. Filter the dataframe to select the rows with calories values > 500 and pulse < 100

df.query('Calories > 500 and Pulse < 100')</pre>

Out[13]:

	Duration	Pulse	Maxpulse	Calories	
65	180	90	130	800 4	

	Duration	Pulse	Maxpulse	Calories
70	150	97	129	1115.0
73	150	97	127	953.2
75	90	98	125	563.2
99	90	93	124	604.1
103	90	90	100	500.4
106	180	90	120	800.3
108	90	90	120	500.3

In [14]:

#7. Create a new "df_modified" dataframe that contains all the columns from df except for "Maxpulse"

df_modified=df.drop(columns=["Maxpulse"])

df_modified

Out[14]:

	Duration	Pulse	Calories
0	60	110	409.1
1	60	117	479.0
2	60	103	340.0
3	45	109	282.4

	Duration	Pulse	Calories
4	45	117	406.0
164	60	105	290.8
165	60	110	300.0
166	60	115	310.2
167	75	120	320.4
168	75	125	330.4

169 rows × 3 columns

In [17]:

```
# 8. Delete the "Maxpulse" column from the main df dataframe
df.drop(columns=["Maxpulse"], axis=1, inplace=True)
df
```

Out[17]:

	Duration	Pulse	Calories
0	60	110	409.1
1	60	117	479.0
2	60	103	340.0
3	45	109	282.4

```
Duration Pulse Calories
  4
         45
              117
                    406.0
          ...
              ...
 164
         60
              105
                    290.8
 165
                    300.0
         60
              110
 166
         60
              115
                    310.2
 167
         75
              120
                    320.4
 168
         75
              125
                    330.4
169 rows × 3 columns
                                                                             In [22]:
#9. Convert the datatype of Calories column to int datatype.
df=df.fillna(df.mean())
df = df.astype({'Calories':'int'})
print(df.dtypes)
Duration
           int64
Pulse
            int64
Calories
            int64
dtype: object
                                                                             In [23]:
#Using pandas create a scatter plot for the two columns (Duration and
Calories).
df.plot(kind = 'scatter', x = 'Duration', y = 'Calories')
```

/usr/local/lib/python3.9/dist-packages/pandas/plotting/_matplotlib/core.py:11 14: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored

scatter = ax.scatter(

Out[23]:

1. (Titanic Dataset)

- 1. Find the correlation between 'survived' (target column) and 'sex' column for the Titanic use case inclass.
- a. Do you think we should keep this feature?
- 2. Do at least two visualizations to describe or show correlations.
- 3. Implement Naïve Bayes method using scikit-learn library and report the accuracy.

In [24]:

```
test_df = pd.read_csv("/content/drive/MyDrive/Colab
Notebooks/Dataset/test.csv")
```

train_df = pd.read_csv("/content/drive/MyDrive/Colab
Notebooks/Dataset/train.csv")

In [25]:

#Data ANalysis

train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
	63 . 64.60		

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [26]:

train df.describe()

Out[26]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [27]:

```
import seaborn as sns
%matplotlib inline
from matplotlib import pyplot as plt
survived = 'Survived'
not survived = 'not survived'
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
women = train_df[train_df['Sex']=='female']
men = train_df[train_df['Sex'] == 'male']
ax = sns.distplot(women[women['Survived']==1].Age.dropna(), bins=18, label
= survived, ax = axes[0], kde =False)
ax = sns.distplot(women[women['Survived']==0].Age.dropna(), bins=40, label
= not survived, ax = axes[0], kde = False)
ax.legend()
ax.set_title('Female')
ax = sns.distplot(men[men['Survived']==1].Age.dropna(), bins=18, label =
survived, ax = axes[1], kde = False)
```

```
ax = sns.distplot(men[men['Survived']==0].Age.dropna(), bins=40, label =
not survived, ax = axes[1], kde = False)
ax.legend()
= ax.set title('Male')
<ipython-input-27-0cf8acbfe0d6>:10: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 ax = sns.distplot(women[women['Survived']==1].Age.dropna(), bins=18, label
= survived, ax = axes[0], kde =False)
<ipython-input-27-0cf8acbfe0d6>:11: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  ax = sns.distplot(women[women['Survived']==0].Age.dropna(), bins=40, label
= not survived, ax = axes[0], kde =False)
<ipython-input-27-0cf8acbfe0d6>:14: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  ax = sns.distplot(men[men['Survived']==1].Age.dropna(), bins=18, label = su
rvived, ax = axes[1], kde = False)
<ipython-input-27-0cf8acbfe0d6>:15: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
```

For a guide to updating your code to use the new functions, please see

https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax = sns.distplot(men[men['Survived']==0].Age.dropna(), bins=40, label = no
t survived, ax = axes[1], kde = False)

In [30]:

```
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
```

train_data = pd.read_csv('/content/drive/MyDrive/Colab
Notebooks/Dataset/train.csv')

test_data = pd.read_csv('/content/drive/MyDrive/Colab
Notebooks/Dataset/test.csv')

print("Correlation between Survived and Sex: ",corr)

Find the correlation between Survived and Sex

```
corr =
train_data['Survived'].corr(train_data['Sex'].astype('category').cat.codes
)
```

```
print('a. Do you think we should keep this feature?')
print('Yes, we should keep this feature as it has a correlation of', corr,
'with the target variable but some other features can be dropped as they
have very less correlation with the target variable.')
# Do at least two visualizations to describe the data
# Histogram of age
train data['Age'].plot.hist(title='Histogram of Age')
plt.show()
# Scatter plot of age and fare
train data.plot.scatter(x='Age', y='Fare', title='Scatter plot of Age and
Fare')
plt.show()
# Plot between age and survived
train data.plot.scatter(x='Age', y='Survived', title='Scatter plot of Age
and Survived')
plt.show()
```

Correlation between Survived and Sex: -0.5433513806577555 a. Do you think we should keep this feature? Yes, we should keep this feature as it has a correlation of -0.54335138065775 55 with the target variable but some other features can be dropped as they have very less correlation with the target variable.

/usr/local/lib/python3.9/dist-packages/pandas/plotting/_matplotlib/core.py:11 14: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored

scatter = ax.scatter(

2. (Glass Dataset)

- 1. Implement Naïve Bayes method using scikit-learn library. a. Use the glass dataset available in Link also provided in your assignment. b. Use train_test_split to create training and testing part.
- 2. Evaluate the model on testing part using score and Do at least two visualizations to describe or show correlations in the Glass Dataset.

In [32]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
import warnings
```

```
warnings.filterwarnings("ignore")
# a. read glass.csv file as a dataframe
glass data = pd.read csv('/content/drive/MyDrive/Colab
Notebooks/Dataset/glass.csv')
# b. Use train test split to create training and testing part
# Split the data into training and testing data
X train, X test, y train, y test =
train test split(glass data.drop('Type', axis=1), glass data['Type'],
test size=0.3, random state=42)
# implement Naïve Bayes method using scikit-learn library and Evaluate the
model on testing part using score and classification report
# Create a Gaussian Classifier
model = GaussianNB()
# Train the model using the training sets
model.fit(X train, y train)
# Predict the response for test dataset
y pred = model.predict(X test)
# Calculate the accuracy of the model
print("Accuracy of the Naive Bayes model: ", accuracy score(y test,
y pred))
# Print classification report
print('Classification Report for Naive Bayes model: ')
print(classification report(y test, y pred))
```

```
# Use SVM method using scikit-learn library and Evaluate the model on
testing part using score and classification report
# Create a SVM Classifier
model = SVC(kernel='linear')
# Train the model using the training sets
model.fit(X train, y train)
# Predict the response for test dataset
y pred = model.predict(X test)
# Calculate the accuracy of the model
print("Accuracy of the SVM model: ", accuracy score(y test, y pred))
# Print classification report
print('Classification Report for SVM model: ')
print(classification report(y test, y pred))
# Do at least two visualizations to describe or show correlations in the
Glass Dataset
# Histogram of refractive index
glass_data['RI'].plot.hist(title='Histogram of Refractive Index')
plt.show()
# Scatter plot of refractive index and Ca
glass data.plot.scatter(x='RI', y='Ca', title='Scatter plot of Refractive
Index and Ca')
plt.show()
print('Which algorithm you got better accuracy? Can you justify why?')
# accuracy of Naive Bayes model: 0.3076923076923077
```

accuracy of SVM model: 0.676923076923077

print('SVM model has better accuracy than Naive Bayes model. This is
because SVM model tries to find the best possible decision boundary
between the data points of different classes. It tries to maximize the
margin between the decision boundary and the data points. On the other
hand, Naive Bayes model assumes that the features are independent of each
other and tries to find the probability of the data point belonging to a
particular class. Hence, SVM model has better accuracy than Naive Bayes
model.')

Accuracy of the Naive Bayes model: 0.3076923076923077 Classification Report for Naive Bayes model:

	precision	recall	f1-score	support
1	0.00	0.00	0.00	19
2	0.40	0.17	0.24	23
3	0.08	0.75	0.15	4
5	0.33	0.17	0.22	6
6	0.75	1.00	0.86	3
7	0.90	0.90	0.90	10
accuracy			0.31	65
macro avg	0.41	0.50	0.40	65
weighted avg	0.35	0.31	0.29	65

Accuracy of the SVM model: 0.676923076923077 Classification Report for SVM model:

	precision	recall	f1-score	support
1	0.65	0.79	0.71	19
2	0.59	0.70	0.64	23
3	0.00	0.00	0.00	4
5	0.75	0.50	0.60	6
6	0.50	0.33	0.40	3
7	1.00	0.90	0.95	10
accuracy			0.68	65
macro avg	0.58	0.54	0.55	65
weighted avg	0.65	0.68	0.65	65

Which algorithm you got better accuracy? Can you justify why? SVM model has better accuracy than Naive Bayes model. This is because SVM model tries to find the best possible decision boundary between the data points of different classes. It tries to maximize the margin between the decision boundary and the data points. On the other hand, Naive Bayes model assumes that the features are independent of each other and tries to find the probability of the data point belonging to a particular class. Hence, SVM model has better accuracy than Naive Bayes model.