6ª

Lista de Exercícios

(Espaços Vetoriais)

- **1.** Seja V um K-espaço vetorial. Se $\alpha \in K$ e $v \in V$ prove as seguintes propriedades:
 - (a) $\alpha \cdot 0 = 0$;
 - (b) 0 · v = 0; (observe que o mesmo símbolo 0 é usado em ambos os lados desta equação; do lado esquerdo ele denota um escalar, enquanto do lado direito ele denota um vetor)
 - (c) se $\alpha v = 0$, então $\alpha = 0$ ou v = 0.
- **2.** Considere o seguinte sistema de equações lineares homogêneas

$$\begin{cases} \alpha_{11}x_1 + \dots + \alpha_{1n}x_n = 0 \\ \alpha_{21}x_1 + \dots + \alpha_{2n}x_n = 0 \\ \vdots \\ \alpha_{m1}x_1 + \dots + \alpha_{mn}x_n = 0 \end{cases}$$
 (\star)

onde $\alpha_{ij} \in \mathbb{R}$ para $1 \le i \le m$ e $1 \le j \le n$. Uma solução de (\star) é uma n-upla $(a_1, \ldots, a_n) \in \mathbb{R}^n$ que satisfaz todas as suas equações. Verifique que o conjunto das soluções de (\star) é um subespaço vetorial de \mathbb{R}^n com as operações usuais.

- **3.** Verifique que uma reta de \mathbb{R}^3 é um subespaço vetorial se, e somente se, ela passa pela origem.
- **4.** Verifique que um plano de \mathbb{R}^3 é um subespaço vetorial se, e somente se, ele passa pela origem.
- **5.** Sejam V um K-espaço vetorial e $v_1, \ldots, v_m \in V$. Denote por $[v_1, \ldots, v_m]$ o conjunto de todas as combinações lineares $\alpha_1 v_1 + \cdots + \alpha_m v_m$, onde $\alpha_1, \ldots, \alpha_m \in K$. Verifique que

 $[v_1, \ldots, v_m]$ é um subespaço vetorial de V. Esse subespaço é chamado de *subespaço gerado* por v_1, \ldots, v_m .

- **6.** Seja $V = \{(a,b) \in \mathbb{R}^2 \mid a,b > 0\}$. Defina em V as seguintes operações: para $(a,b),(c,d) \in V$, defina $(a,b) \oplus (c,d) := (ac,bd)$; para $\alpha \in \mathbb{R}$ e $(a,b) \in V$, defina $\alpha \odot (a,b) := (a^{\alpha},b^{\alpha})$. Verifique que com essas operações V é um \mathbb{R} -espaço vetorial.
- Seja V = {a + bt + ct² ∈ P(K) | c ≠ 0}, isto é, V é o conjunto de todos os polinômios de grau (exatamente) igual a
 Defina em V as operações usuais de adição de polinômios e de multiplicação de polinômio por escalar. Explique porque V não é um K-espaço vetorial.
- **8.** Seja $V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(K) \middle| abcd = 0 \right\}$. Defina em V as operações usuais de adição de matrizes e de multiplicação de matriz por escalar. Explique porque V não é um K-espaço vetorial.
- **9.** Seja $V = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \in M_{2 \times 1}(K) \mid a+b \text{ \'e par} \right\}$. Por exemplo,

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -8 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \end{bmatrix}, e \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

todas pertencem a V. Defina em V as operações usuais de adição de matrizes e de multiplicação de matriz por escalar. Explique porque V não é um K-espaço vetorial.

Respostas