AFCS/Spring 2014

Vector Spaces

Prof.Dr. Ferucio Laurenţiu Ţiplea

"Al. I. Cuza" University of Iaşi, Department of Computer Science,

lasi 740083, Romania,

URL: http://www.infoiasi.ro/~fltiplea

E-mail fltiplea@mail.dntis.ro

Contents

- 1. Definitions and examples
- 2. Basis and dimension
- 3. Application: error detecting and correcting codes

Definition 1 Let $(F,+,-,0,\circ,',e)$ be a field. A vector space over F is an algebraic system $(V,\oplus,\ominus,0,\cdot)$ which consists of a commutative group $(V,\oplus,\ominus,0)$ and a function $\cdot:F\times V\to V$ such that:

- 1. $\alpha \cdot (x \oplus y) = \alpha \cdot x \oplus \alpha \cdot y$, for any $\alpha \in F$ and $x, y \in V$;
- 2. $(\alpha + \beta) \cdot x = \alpha \cdot x \oplus \beta \cdot x$, for any $\alpha, \beta \in F$ and $x \in V$;
- 3. $(\alpha \circ \beta) \cdot x = \alpha \cdot (\beta \cdot x)$, for any $\alpha, \beta \in F$ and $x \in V$;
- 4. $e \cdot x = x$, for any $x \in V$.

The elements of V are called vectors, the elements of F are called scalars, and F is called the field of scalars of V. The operation \oplus is called the vector addition and the operation \cdot is called the scalar multiplication.

Remark 1 To simplify the notation, we will denote the operations of F by $(F,+,-,0,\cdot,',1)$ and the operations of V by $(V,+,-,0,\cdot)$. Moreover, the symbol of the operation \cdot will be mostly omitted. Therefore, the axioms of V can be rewritten as follows:

- 1. $\alpha(x+y) = \alpha x + \alpha y$, for any $\alpha \in F$ and $x, y \in V$;
- 2. $(\alpha + \beta)x = \alpha x + \beta x$, for any $\alpha, \beta \in F$ and $x \in V$;
- 3. $(\alpha\beta)x = \alpha(\beta x)$, for any $\alpha, \beta \in F$ and $x \in V$;
- 4. 1x = x, for any $x \in V$.

Vector subtraction is defined by x - y = x + (-y), for any $x, y \in V$.

The vector space which consists of the only element 0 is called the trivial vector space (it is unique up to isomorphism).

Example 1

1. Let F be a field and $n \ge 1$. Denote by F^n the set of all n-dimensional vectors over F. Define vector addition by

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$$

and scalar multiplication by

$$b(a_1,\ldots,a_n)=(ba_1,\ldots,ba_n),$$

for any $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in F^n$ and $b \in F$. With these operations, F^n is a vector space over F. If we identify F^1 with F, then F can be viewed as a vector space over itself.

2. The set of all $m \times n$ matrices over F, denoted $^mF^n$, can be organized as a vector space over F. Vector addition is matrix addition, and scalar multiplication is the usual multiplication with scalars.

Example 2

- 1. \mathbb{Q}^n , \mathbb{R}^n , and \mathbb{C}^n are vector spaces.
- 2. C can be viewed as a vector space over R, and both C and R can be viewed as vector spaces over Q.
- 3. The set of all functions from \mathbf{R} to \mathbf{R} , together with the addition f+g and scalar multiplication αf ($(\alpha f)(x)=\alpha f(x)$, for any x), form a vector space over \mathbf{R} .

Proposition 1 Let V be a vector space over a field F. Then, for any $x,y\in V$ and $\alpha,\beta\in F$, the following properties hold

- 1. 0x = 0;
- 2. (-1)x = -x;
- 3. $(-\alpha)x = \alpha(-x) = -\alpha x$;
- **4.** $\alpha 0 = 0$;
- 5. if $\alpha x = 0$, then $\alpha = 0$ or x = 0;
- 6. if $\alpha x = \alpha y$, then $\alpha = 0$ or x = y;
- 7. if $\alpha x = \beta x$, then $\alpha = \beta$ or x = 0.

Definition 2 Let V and U be vector spaces over a field F. We say that U is a subspace of V, denoted $U \leq V$, if $U \subseteq V$ and the restriction of V's operations to U coincide with U's operations.

Example 3

- 1. If V is a vector space over F, then $\{0\}$ and V are subspaces of V.
- 2. Let F be a field and $n \ge 1$. The set U of all vectors of F^n whose first coordinate is 0 is a subspace of F^n . When $n \ge 2$, this subspace can be identified with F^{n-1} .

Let V be a vector space over a field F, $x_1, \ldots, x_k \in V$, and $\alpha_1, \ldots, \alpha_k \in F$, where $k \geq 1$. An expression

$$\alpha_1 x_1 + \ldots + \alpha_k x_k$$

is called a linear combination of x_1, \ldots, x_k .

The set of all linear combinations of x_1, \ldots, x_k forms a subspace of V; this subspace is called the subspace generated by x_1, \ldots, x_k . It is usually denoted by $\langle x_1, \ldots, x_k \rangle_V$ or $\langle x_1, \ldots, x_k \rangle$. Therefore,

$$\langle x_1, \dots, x_k \rangle = \{ \alpha_1 x_1 + \dots + \alpha_k x_k | \alpha_1, \dots, \alpha_k \in F \}.$$

If $x = \sum \alpha_i x_i$ then we say that x is a linear combination of x_1, \ldots, x_k or that x is linearly dependent of x_1, \ldots, x_k .

Definition 3 Let V be a vector space over a field F. The vectors x_1, \ldots, x_k from V are called linearly dependent if there exist $\alpha_1, \ldots, \alpha_k \in F$, not all 0, such that $\sum \alpha_i x_i = 0$.

If x_1, \ldots, x_k are not linearly dependent, then they are called linearly independent. That is, x_1, \ldots, x_k are linearly independent if for any $\alpha_1, \ldots, \alpha_k \in F$, the relation $\sum \alpha_i x_i = 0$ leads to $\alpha_1 = \cdots = \alpha_k = 0$.

Remark 2 Let V be a vector space over a field F.

- 1. $x \in V$ is linearly independent iff $x \neq 0$.
- 2. If $x_1, \ldots, x_k \in V$ are linearly independent, then $x_i \neq 0$, for any i. Moreover, $x_i \neq x_j$, for any $i \neq j$.

Proposition 2 Let V be a vector space over a field F. x_1, \ldots, x_k from V are linearly dependent iff there exists $1 \le i \le k$ such that x_i is a linear combination of the other vectors.

2. Basis and dimension

Definition 4 Let V be a non-trivial vector space over a field F. A finite subset $B \subseteq V$ is called a **basis** of V if it is linearly independent and generates V (each element in V is a linear combination of vectors in B).

Remark 3

- If x_1, \ldots, x_k form a basis for V, then $x_i \neq x_j$, for any $i \neq j$. Therefore, $\{x_1, \ldots, x_k\}$ has exactly k vectors.
- We have considered only finite basis. There are approaches for infinite basis too.

2. Basis and dimension

Example 4

1. Let F be a field and $n \ge 1$. The vector space F^n can be generated by

$$\mathbf{e_1} = (1, 0, 0, \dots, 0, 0)$$
 $\mathbf{e_2} = (0, 1, 0, \dots, 0, 0)$
 \cdots
 $\mathbf{e_n} = (0, 0, 0, \dots, 0, 1).$

2. Let F be a field and $m, n \ge 1$. The vector space ${}^mF^n$ can be generated by E_{ij} , where

$$E_{ij}(u,v) = \left\{ egin{array}{ll} 1, & \mbox{if } u=i \mbox{ and } v=j \ 0, & \mbox{otherwise,} \end{array}
ight.$$

for any $i, u \in \{1, ..., m\}$ and $v, j \in \{1, ..., n\}$.

2. Basis and dimension

Theorem 1 Let V be a vector space over a field F. $B = \{x_1, \ldots, x_k\} \subseteq V$ is a basis of V iff any $x \in V$ can be uniquely written as a linear combination of vectors in B.

Corollary 1 If A and B are finite linearly independent sets that generate a vector space V, then |A| = |B|.

Definition 5 Let V be a vector space over a field F. V is called finite dimensional if there exists a (finite) basis B for V. In this case, |B| is called the dimension of V, denoted dim(V). If V is not finite dimensional then it is called infinite dimensional.

Example 5

- 1. $dim(F^n) = n$ and $dim(^mF^n) = mn$.
- 2. $F^{\mathbf{N}}$ is an infinite dimensional.

Entities involved in information transmission:

- sender (encoder);
- receiver (decoder);
- channel.

Examples of entities involved in information transmission:

- satellite station, Earth station, atmosphere;
- emission device, reception device, telephone cable.

Main problem: noise

Main question: develop codes capable of error detection and correction

We will use only bloc binary codes.

Transmission channels can be classified into:

- noiseless channels (also called perfect channels);
- noise channels, which can be
 - symmetric the probability that a bit is (correctly) received is the same for both bits;
 - asymmetric it is not symmetric.

We will use only binary symmetric channels (BSC). Basic assumptions about them:

- BSCs do not change the length of the binary sequence transmitted through them;
- receiving order of the bits = sending order of the bits.

The reliability of a BSC is a real number $p \in (0,1)$ which gives the probability that the bit b received is the bit b sent.

We may consider only BSCs with reliability 1/2 .

Let $C_1 = \{00, 01, 10, 11\}$. With such a code, no error can be detected (but they may occur).

Let $C_2 = \{000, 011, 101, 110\}$ (obtained from C_2 by adding the parity bit). With such a code, any singular error is detected.

Definition 6 The information ratio of a code C of length n is

$$ri(C) = \frac{log_2|C|}{n}.$$

$$ri(C_1) = 1$$
 and $ri(C_2) = 2/3$.

<u>Case analysis</u>: channel reliability $p = 1 - 10^{-8}$, transmission rate 10^7 bits/sec:

• Let $C = \{0, 1\}^{11}$. A simple computation shows that

$$\frac{11}{10^8} \cdot \frac{10^7}{11} = 0.1$$
 code words/sec

with exact one undetected error will be transmitted. This means 8640 code words/day !!!

▶ Let C' be obtained from C by adding the parity bit. A simple computation shows that

$$\frac{66}{10^{16}}\cdot\frac{10^7}{12}pprox \frac{5.5}{10^9}$$
 code words/sec

with undetected errors will be transmitted. This means a code word/2000 days !!!

Let C be a code of length n, $w \in \{0,1\}^n$ and $v \in C$. Let d be the number of positions on which w and v disagree. Then, the probability that v was sent when w was received is

$$\phi_p(v, w) = p^{n-d}(1-p)^d,$$

where p is the channel reliability.

In practice, we know w but we do not know v. Usually, we choose v such that the probability

$$\phi_p(v, w) = \max\{\phi_p(u, w) | u \in C\}$$

is minimized. Of course, v might not be unique.

Theorem 2 Let C be a code of length n, $v_1, v_2 \in C$, and $w \in \{0, 1\}^n$, and d_1 (d_2) be the number of positions on which v_1 and w (v_2 and w, respectively), disagree. Then,

$$\phi_p(v_1, w) \le \phi_p(v_2, w) \Leftrightarrow d_1 \ge d_2$$

(it is assumed that the channel reliability satisfies 1/2).

We will work exclusively with the vector space F_2^n , where $F_2 = \mathbf{Z}_2$. Vector addition and scalar multiplication are given by:

where $\alpha, x_i, y_i \in F_2$, $x_i + y_i$ is the addition modulo 2, and $\alpha \cdot x_i$ is given by

$$0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$$
 and $1 \cdot 1 = 1$.

Definition 7 Let $v \in \{0,1\}^*$. The Hamming weigth of v, denoted Hw(v), is the number of 1s in v.

Definition 8 Let $v, w \in \{0, 1\}^n$, for some n. The Hamming distance of v and w, denoted Hd(v, w), is Hd(v, w) = Hw(v + w).

Proposition 3 The following properties hold true:

- (1) $0 \le Hw(v) \le n$;
- (2) Hw(v) = 0 iff v = 0;
- (3) $0 \le Hd(v, w) \le n$;
- (4) Hd(v, w) = 0 iff v = w;
- (5) Hd(v, w) = Hd(w, v);
- (6) $Hw(v+w) \le Hw(v) + Hw(w)$;
- (7) $Hd(v, w) \le Hd(v, u) + Hd(u, w);$
- (8) Hw(av) = aHw(v);
- (9) Hd(av, aw) = aHd(v, w),

for any $u, v, w \in \{0, 1\}^n$ and $a \in \{0, 1\}$, where $n \ge 1$.

Definition 9 Let C be a code of length n.

- (1) C detects the error $u \in \{0,1\}^n \{0^n\}$ if $v + u \notin C$, for any $v \in C$.
- (2) C is a t-detector code if C detects any error with Hamming weight at most t, but there exists an error with Hamming weight t+1 that cannot be detected by C.

Definition 10 Let C be a code. The distance of C, denoted d(C), is

$$d(C) = \min\{Hd(v, w)|v, w \in C, v \neq w\}.$$

Theorem 3 Let C be a code of length n and distance d. Then,

- (1) C detects all errors $u \in \{0,1\}^n \{0^n\}$ with $Hw(u) \leq d-1$;
- (2) there exists at least one error $u \in \{0,1\}^n \{0^n\}$ with Hw(u) = d that cannot be detected by C.

Definition 11 Let C be a code of length n.

- (1) C corrects the error $u \in \{0,1\}^n \{0^n\}$ if Hd(v+u,v) < Hd(v+u,w), for any $v \in C$ şi $w \in C \{v\}$.
- (2) C is a t-corrector code if C corrects all errors with Hamming weight at most t, but there exists at least one error with Hamming weight t+1 that cannot be corrected by C.

Theorem 4 Let C be a code of length n and distance d. Then,

- (1) C corrects all errors $u \in \{0,1\}^n \{0^n\}$ with $Hw(u) \leq \lfloor (d-1)/2 \rfloor$;
- (2) there exists at least one error $u \in \{0, 1\}^n \{0^n\}$ with $Hw(u) = \lfloor (d-1)/2 \rfloor + 1$ that cannot be corrected by C.