Logik Serie 5

Nikita Emanuel John Fehér, 3793479 Erik Thun, 3794446

13. Juni 2025 Mittwoch 09:15-10:45 Keitsch, Jamie; Gruppe e

H 5-1. Terminduktion (2 Pkt.) Gegeben eine Struktur $\mathfrak A$ und zwei Belegungen β und γ . Zeigen Sie per Terminduktion, daß für alle Terme $t \in T$: Falls $\beta|_{\text{var}}(t) = \gamma|_{\text{var}}(t)$, dann $\beta(t) = \gamma(t)$.

H 5-2. Erfüllbarkeit und Co.

(3 Pkt.)

Kreuzen Sie in der Tabelle an, ob die betreffende Formel erfüllbar, falsifizierbar, unerfüllbar oder tautologisch ist

Formel	Erfüllbar	Falsifizierbar	Unerfüllbar	Tautologisch
$\forall x P(x) \to \exists y P(y)$				
$\forall x Q(x,x) \to \exists y \forall z Q(z,y)$				
$\forall x \neg P(x) \land \exists y P(f(y,y))$				

H 5-3. Modell und Widerlegung

(5 Pkt.)

Kreuzen Sie in der Tabelle an, ob die betreffende Struktur $\mathfrak A$ ein Modell der Formel φ ist. Geben Sie im Falle einer Widerlegung eine falsifizierende Instanz an. Es gilt:

•
$$U^{\mathfrak{A}_1} = U^{\mathfrak{A}_2} = U^{\mathfrak{A}_3} = \mathbb{N}, c^{\mathfrak{A}_1} = c^{\mathfrak{A}_2} = c^{\mathfrak{A}_3} = 0, d^{\mathfrak{A}_1} = d^{\mathfrak{A}_2} = d^{\mathfrak{A}_3} = 1$$

$$\bullet \ f^{\mathfrak{A}_1}(n,m) = \max(m,n), f^{\mathfrak{A}_2}(n,m) = n \cdot m, f^{\mathfrak{A}_3}(n,m) = n+1$$

Formel		\mathfrak{A}_2	\mathfrak{A}_3
$\forall x (f(x,x) = x \to (x = c \lor x = d))$			
$\forall x \exists y \exists z f(y, z) = x$			

a) Gegeben nachfolgende Folgerungsaussagen:

$$\forall x \exists y R(x,y) \models \exists y \forall x R(x,y)$$
 und $\exists y \forall x R(x,y) \models \forall x \exists y R(x,y)$

Geben Sie jeweils an, ob die Aussage wahr oder falsch
 ist. Begründen Sie im Falschheitsfalle Ihre Antwort mit einer Struktur
 $\mathfrak A$ wobei $\left|U^{\mathfrak A}\right|=3$ gilt.

b) Gegeben die folgenden beiden Formeln

$$\varphi := \forall x (f(x) \neq x \land f(f(f(x))) = x)$$
 und $\psi := \forall x (f(x) \neq x \land f(f(x)) = x)$

Welche der Formeln ist durch eine Struktur $\mathfrak A$ mit $\left|U^{\mathfrak A}\right|=3$ erfüllbar? Geben Sie im Erfüllbarkeitsfalle eine bezeugende Interpretation $f^{\mathfrak A}$ an bzw. begründen Sie kurz, warum eine solche Interpretation nicht existiert.

c) Geben Sie eine erfüllbare Formel ξ mit $s(\xi) = \{P^1, Q^1\}$ (ohne Verwendung des Gleichheitssymbols) an, sodaß für jedes Modell (\mathfrak{A},β) von ξ gilt: $\left|U^{\mathfrak{A}}\right| \geq 3$. Ohne Begründung!

H 5-5. Semantische Äquivalenz

(5 Pkt.)

Gegeben seien die folgenden drei Äquivalenzaussagen:

- 1. $\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$
- 2. $\exists x \varphi \to \psi \equiv \forall x (\varphi \to \psi)$ mit $\varphi, \psi \in \mathcal{F}_{PL}$ und $x \notin \text{frei}(\psi)$
- 3. $\forall x \exists x \varphi \equiv \exists x \varphi \text{ mit } \varphi \in \mathcal{F}_{PL}$

Geben Sie im Äquivalenzfalle einen Beweis unter Verwendung der in VL7 angegebenen semantischen Äquivalenzen an. Falls die Äquivalenzaussage nicht gilt, geben Sie eine bezeugende Interpretation (\mathfrak{A}, β) an.