Ensayo avanzado Caso 2

Viacheslav Shalisko 2022-10-29

Prepar el entorno y cargar bibliotecas necesarias

```
set.seed(1234)
options(scipen = 6, digits = 3)
library(sp)
library(rgdal)
## Please note that rgdal will be retired by the end of 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
##
## rgdal: version: 1.5-32, (SVN revision 1176)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.4.3, released 2022/04/22
## Path to GDAL shared files: C:/Users/vshal/AppData/Local/R/win-library/4.2/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 7.2.1, January 1st, 2021, [PJ VERSION: 721]
## Path to PROJ shared files: C:/Users/vshal/AppData/Local/R/win-library/4.2/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:1.5-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
library(raster)
library(spdep)
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Linking to GEOS 3.9.1, GDAL 3.4.3, PROJ 7.2.1; sf use s2() is TRUE
```

Lectura de datos fuente

library(ncf)

mun <- readOGR("Insumos carlos/LimiteMunicipal MGJ2012 modificadoDecreto26837.shp")</pre>

OGR data source with driver: ESRI Shapefile
Source: "G:\Mi unidad\UdeG_Docencia\CUCSH_Doctorado_TT3\2022B\Caso_2\Insumos_carlos\LimiteMunicipal
_MGJ2012_modificadoDecreto26837.shp", layer: "LimiteMunicipal_MGJ2012_modificadoDecreto26837"
with 125 features
It has 7 fields
Integer64 fields read as strings: OBJECTID CLAVE

mun

class : SpatialPolygonsDataFrame

features : 125

extent : 427476, 865451, 2096902, 2515726 (xmin, xmax, ymin, ymax)

crs : +proj=utm +zone=13 +datum=WGS84 +units=m +no defs

variables : 7

names : OBJECTID, NOMBRE, REGIÓN, CLAVE, km2,

DESCRIPCIO, MINUS

min values : 1, ACATIC, ALTOS NORTE, 1, 79.6982019022,

Mapa General de Jalisco 2012, publicado en el Periódico Oficial El Estado de Jalisco, el 27 de marzo d

e 2012, Acatlán de Juárez

max values : 99, ZAPOTLANEJO, VALLES, 99, 3344.25486244, Mapa General de Jalisco 201
2, publicado en el Periódico Oficial El Estado de Jalisco, el 27 de marzo de 2012 y modificado por Dec
reto 26837/LXI/18 Mezquitic publicado en el Periódico Oficial El Estado de Jalisco, el 3 de junio de 2
018, Zapotlanejo

DM <- readOGR("Insumos_carlos/Jal_Den_Mad_Todas.shp")</pre>

OGR data source with driver: ESRI Shapefile
Source: "G:\Mi unidad\UdeG_Docencia\CUCSH_Doctorado_TT3\2022B\Caso_2\Insumos_carlos\Jal_Den_Mad_Tod
as.shp", layer: "Jal_Den_Mad_Todas"
with 2669 features
It has 47 fields
Integer64 fields read as strings: tipEmpr Field

DM

```
## class
             : SpatialPointsDataFrame
## features : 2669
             : 445542, 852618, 2123027, 2503121 (xmin, xmax, ymin, ymax)
## extent
             : +proj=utm +zone=13 +datum=WGS84 +units=m +no defs
## variables : 47
## names
                                                clee,
                                                                                 nom estab,
raz social, codigo act,
                                                                         nombre act,
                                                                                             per oc
u, tipo_vial,
                nom_vial,
                            tipo_v_e_1, nom_v_e_1, tipo_v_e_2, nom_v_e_2, tipo_v_e_3, nom_v_e_3,
## min values : 1625930, 1400132191000001100000000011, ABASTECEDORA DE EMPAQUES DE OCIDENTE, ABASTECE
DORA DE EMPAQUES DE OCCIDENTE SA DE CV,
                                          321111,
                                                                                        Aserraderos
integrados, 0 a 5 personas, ANDADOR, 1° DE ABRIL,
                                                        ANDADOR,
                                                                                 ANDADOR,
                                                                         1,
ANDADOR,
## max values : 9365810, 150573222100001350010000000U3,
                                                                              XHIBE CARTON,
XHIBE CARTON SA DE CV,
                         333241, Tratamiento de la madera y fabricación de postes y durmientes, 6 a
                       ZOQUIPAN, PROLONGACION, ZUÑIGA, PROLONGACION, ZARAGOZA, VIADUCTO, ZA
10 personas,
             RETORNO,
RAGOZA, ...
```

Visualizar datos fuente

```
plot(DM, main = "Ubicación de empresas madereras")
plot(mun, border = "gray", add = TRUE)
```

Ubicación de empresas madereras

Distrigución de empresas por tamaño


```
DM$Personas_log <- log(DM$Personas)
plot(density(DM$Personas_log), main = "Distrigución de empresas por tamaño (Log)")</pre>
```

Distrigución de empresas por tamaño (Log)

Identificar vecinos

```
mun_neighbours <- poly2nb(mun)
mun_neighbours
```

```
## Neighbour list object:
## Number of regions: 125
## Number of nonzero links: 616
## Percentage nonzero weights: 3.94
## Average number of links: 4.93
```

```
plot(mun, border = 'lightgrey')
plot(mun_neighbours, coordinates(mun), add = TRUE, col = 'red')
```


Calcular distancias con vecinos

mun_lw <- nb2listw(mun_neighbours)
mun_lw</pre>

```
## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 125
## Number of nonzero links: 616
## Percentage nonzero weights: 3.94
## Average number of links: 4.93
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 125 15625 125 58.1 519
```

Calcular número de personas involucrados en industria maderera por municipio

```
mun@data[,"CLAVE"] <- as.numeric(mun@data[,"CLAVE"])
DM_mun <- over(DM, mun[,"CLAVE"])
DM <- cbind(DM, DM_mun)

DM[,c("Personas","CLAVE")]</pre>
```

```
: SpatialPointsDataFrame
## class
## features
              : 2669
## extent
              : 445542, 852618, 2123027, 2503121 (xmin, xmax, ymin, ymax)
              : +proj=utm +zone=13 +datum=WGS84 +units=m +no defs
## crs
## variables : 2
## names
              : Personas, CLAVE
                    5,
## min values :
## max values :
                     300,
                           125
```

```
[1]
               35 120
                         15
                             55 130
                                        5 320
                                                 20 195
                                                           NA
                                                                   115
                                                                         10
                                                                             220
##
   [16]
          45
               70
                   160
                         NA
                             60
                                  15 120 575
                                                 45
                                                      70
                                                           50
                                                                10
                                                                    NA
                                                                         NA
                                                                              65
   [31]
          NA
                5
                         NA 115
                                  75
                                            10 4600
                                                      15
                                                                              25
   [46]
         190
               25
                    35
                         NA 125
                                  15
                                       20 385
                                                 15
                                                      20
                                                           NA
                                                                20
                                                                     55
                                                                         85
                                                                              10
   [61]
          10 565
                    75
                         10 385 775
                                       10
                                           15 1715
                                                      NA
                                                           15
                                                               690
                                                                    95
                                                                         10
                                                                               5
   [76]
         140 245 170
                         10
                             15
                                 85 315
                                            70
                                                 70 175
                                                           45
                                                                50
                                                                     NA
                                                                          5 185
##
##
   [91]
           5 1125
                   365
                         5
                             25 1575 2375
                                           5
                                                 70 1250
                                                            5
                                                                15
                                                                     5
                                                                         60
                                                                              NA
## [106]
                             15
                                     25 25 15
                                                                90
                                                                              85
          10 385
                    25
                         40
                                  30
                                                      15
                                                           NA
                                                                   90 6485
## [121]
               25 140
                         50
                             10
```

```
mun@data[is.na(mun@data$Personas),"Personas"] <- 0
mun@data$Personas
```

```
##
     [1]
            55
                      120
                             15
                                  55
                                       130
                                               5 320
                                                         20
                                                              195
                                                                     0
                                                                           5
                                                                               115
                                                                                     10
                                                                                          220
                 35
##
    [16]
            45
                 70
                      160
                                  60
                                        15
                                             120
                                                  575
                                                         45
                                                               70
                                                                    50
                                                                          10
                                                                                      0
                                                                                           65
                                        75
                                                   10 4600
##
    [31]
             0
                   5
                       80
                              0
                                 115
                                              65
                                                               15
                                                                    40
                                                                          45
                                                                                60
                                                                                     30
                                                                                           25
##
    [46]
           190
                 25
                              0
                                 125
                                        15
                                              20
                                                  385
                                                         15
                                                               20
                                                                     0
                                                                          20
                                                                                55
                                                                                     85
                                                                                           10
                       75
                                 385
                                       775
                                                                0
                                                                         690
##
    [61]
            10
                565
                             10
                                              10
                                                   15 1715
                                                                    15
                                                                                95
                                                                                     10
                                                                                            5
    [76]
                245
                      170
                             10
                                        85
                                             315
                                                              175
                                                                                          185
##
##
    [91]
             5 1125
                      365
                              5
                                  25 1575 2375
                                                    5
                                                         70 1250
                                                                      5
                                                                          15
                                                                                 5
                                                                                     60
                                                                                            0
## [106]
                385
                       25
                             40
                                  15
                                        30
                                              25
                                                                                90 6485
                                                                                           85
## [121]
                 25
                      140
                             50
                                  10
```

```
mun@data$Personas_log <- log(mun@data$Personas)
mun@data[mun@data$Personas_log < 0,"Personas_log"] <- 0
mun@data$Personas_log</pre>
```

```
## [1] 4.01 3.56 4.79 2.71 4.01 4.87 1.61 5.77 3.00 5.27 0.00 1.61 4.74 2.30 5.39 ## [16] 3.81 4.25 5.08 0.00 4.09 2.71 4.79 6.35 3.81 4.25 3.91 2.30 0.00 0.00 4.17 ## [31] 0.00 1.61 4.38 0.00 4.74 4.32 4.17 2.30 8.43 2.71 3.69 3.81 4.09 3.40 3.22 ## [46] 5.25 3.22 3.56 0.00 4.83 2.71 3.00 5.95 2.71 3.00 0.00 3.00 4.01 4.44 2.30 ## [61] 2.30 6.34 4.32 2.30 5.95 6.65 2.30 2.71 7.45 0.00 2.71 6.54 4.55 2.30 1.61 ## [76] 4.94 5.50 5.14 2.30 2.71 4.44 5.75 4.25 4.25 5.16 3.81 3.91 0.00 1.61 5.22 ## [91] 1.61 7.03 5.90 1.61 3.22 7.36 7.77 1.61 4.25 7.13 1.61 2.71 1.61 4.09 0.00 ## [106] 2.30 5.95 3.22 3.69 2.71 3.40 3.22 3.22 2.71 2.71 0.00 4.50 4.50 8.78 4.44 ## [121] 0.00 3.22 4.94 3.91 2.30
```

Visualizar distribución de municipios por tamaño de industria maderera

plot(density(mun\$Personas), main = "Distribución de municipios por tamaño de ind. maderera")

Distribución de municipios por tamaño de ind. maderera

plot(density(mun\$Personas_log), main = "Distribución de municipios por tamaño de ind. maderera (Log)")

Distribución de municipios por tamaño de ind. maderera (Log)

Calcular el indice I de Moran global

```
# Prueba de Moran con simulación de MC

IMglobal <- moran.mc(mun$Personas, mun_lw, nsim=9999, alternative="greater")

IMglobal
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: mun$Personas
## weights: mun_lw
## number of simulations + 1: 10000
##
## statistic = 0.3, observed rank = 9997, p-value = 0.0003
## alternative hypothesis: greater
```

```
plot(IMglobal)
```

Density plot of permutation outcomes

Monte-Carlo simulation of Moran I

```
# Prueba de Moran con simulación de MC con datos logaritmicos

IMglobal_log <- moran.mc(mun$Personas_log, mun_lw, nsim=9999, alternative="greater")

IMglobal_log
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: mun$Personas_log
## weights: mun_lw
## number of simulations + 1: 10000
##
## statistic = 0.3, observed rank = 10000, p-value = 0.0001
## alternative hypothesis: greater
```

```
plot(IMglobal_log)
```

Density plot of permutation outcomes

Visualizar grafica de Moran

```
moran.plot(mun$Personas, mun_lw, zero.policy=NULL)
```


moran.plot(mun\$Personas_log, mun_lw, zero.policy=NULL)

Generar grafica de correlación espacial en función de distancia

Analisis de Moral Local (analisis LISA)

Con datos sobre número de personas en industria maderera

```
IMlocal <- localmoran(mun$Personas, mun_lw, zero.policy=TRUE)
head(IMlocal)</pre>
```

```
## Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii))
## 0 -0.0572 -0.000436 0.01787 -0.425 0.671109
## 1 -0.0651 -0.000540 0.01304 -0.565 0.571980
## 2 0.0226 -0.000176 0.00426 0.349 0.727055
## 3 0.0616 -0.000654 0.01992 0.441 0.659295
## 4 -0.3657 -0.000436 0.01054 -3.557 0.000376
## 5 0.0320 -0.000146 0.00216 0.692 0.488927
```

mun_IMlocal <- cbind(mun, IMlocal)
#str(mun_IMlocal@data)
hist(mun_IMlocal\$Ii)</pre>

Histogram of mun_IMlocal\$li

hist(mun_IMlocal\$E.Ii)

Histogram of mun_IMlocal\$E.li

hist(mun_IMlocal@data[,14], xlab = "Pr(z != E(Ii))")

Histogram of mun_IMlocal@data[, 14]

Con datos sobre número de logaritmo de personas en industria maderera

```
IMlocal_log <- localmoran(mun$Personas_log, mun_lw, zero.policy=TRUE)
head(IMlocal_log)</pre>
```

```
##
         Ιi
                    E.Ii
                            Var.Ii
                                     Z.Ii Pr(z != E(Ii))
## 0 0.0489 -0.000411562 0.0168626 0.380
                                                  0.7041
## 1 -0.0061 -0.000000461 0.0000112 -1.827
                                                  0.0677
## 2 0.0295 -0.003189531 0.0768991 0.118
                                                  0.9062
## 3 0.1363 -0.001598593 0.0486597 0.625
                                                  0.5320
## 4 0.1677 -0.000411562 0.0099503 1.685
                                                  0.0920
## 5 -0.1898 -0.003622697 0.0531898 -0.807
                                                  0.4194
```

```
mun_IMlocal_log <- cbind(mun, IMlocal_log)
#str(mun_IMlocal_log@data)
hist(mun_IMlocal_log$Ii)</pre>
```

Histogram of mun_IMlocal_log\$li


```
hist(mun_IMlocal_log$E.Ii)
```

Histogram of mun_IMlocal_log\$E.li

hist(mun_IMlocal_log@data[,14], xlab = "Pr(z != E(Ii))")

Histogram of mun_IMlocal_log@data[, 14]

Visualizar valores de significancia en analisis de Moran Local

Tamaño de industria maderera (personas involucradas) Valor P (significancia) de autocorrelación espacial

Tamaño de industria maderera (Log personas involucradas) Valor P (significancia) de autocorrelación espacial

Seleccionar los muncipios con autocorrelación espacial significativa

```
mun_IMlocal_sig <- mun_IMlocal[mun_IMlocal@data[,14] <= 0.05,]
mun_IMlocal_log_sig <- mun_IMlocal_log[mun_IMlocal_log@data[,14] <= 0.05,]</pre>
```

Visualizar valor de I de Moran local para los municipios con autocorrelación significativa

Analisis con número de personas Valor li para municipios con autocorrelación significativa

Analisis con logaritmo de número de personas Valor li para municipios con autocorrelación significativa

Visualizar los clusters de autocirrelación espacial por tipo

Annalisis de Moran local de tamaño de industria maderera Clases de corelación (promedio)

Annalisis de Moran local de Log tamaño de industria maderera Clases de corelación (promedio)

