Coalescing - Expansion d'opérateur

Raphaël Le Bihan

23 juin 2020

On étudie dans ce document le remplacement d'un opérateur défini par son expression dans une formule FOML. On cherche à montrer en particulier que pour un opérateur $d(\vec{x_i}) \triangleq e_d$ et une formule FOML ϕ , si ϕ est valide une fois abstraite en FOL, alors la formule $\widetilde{\phi}$ obtenue en remplaçant chaque occurence de $d(e_i)$ par $e_d(\vec{e_i}/\vec{x_i})$ est également valide une fois abstraite en FOL.

Définition Remplacement d'un opérateur défini

Soit ϕ une formule FOML pouvant contenir des occurences de d. On définit récursivement $\widetilde{\phi}$ la formule obtenue par expansion de d par :

$$\begin{split} \widetilde{x} & \triangleq x \\ \widetilde{v} & \triangleq v \\ \\ \widetilde{op(\overrightarrow{e_i})} & \triangleq op(\widetilde{\widetilde{e_i}}) \\ \widetilde{e_1 = e_2} & \triangleq \widetilde{e_1} = \widetilde{e_2} \\ \\ \widetilde{FALSE} & \triangleq FALSE \\ \widetilde{e_1 \Rightarrow e_2} & \triangleq \widetilde{e_1} \Rightarrow \widetilde{e_2} \\ \\ \widetilde{\forall x : e} & \triangleq \forall x : \widetilde{e} \\ \\ \widetilde{\nabla e} & \triangleq \nabla \widetilde{e} \end{split}$$

Propriété 1 Soit $d(\vec{x_i}) \triangleq e_i$ un opérateur défini, et ϕ une formule FOML pouvant contenir des occurences de d. Soit \mathcal{M} un modèle FOL où on peut interpréter $\widetilde{\phi}_{\text{FOL}}$. Alors il existe \mathcal{M}_d un modèle FOL où on peut interpréter

 ϕ_{fol} et dom $\mathcal{M}_d = \text{dom } \mathcal{M}$ tel que :

$$\llbracket \widetilde{\phi}_{\text{FOL}} \rrbracket_{\mathcal{M}} = \llbracket \phi_{\text{FOL}} \rrbracket_{\mathcal{M}_d}$$

Preuve On montre que la propriété est vraie pour ϕ_{FOL}^y pour toute liste de variables rigides y et on impose des conditions plus fortes sur \mathcal{M}_d .

- 1. \mathcal{M}_d et \mathcal{M} ont même domaine, et même interprétation des opérateurs $op \in \mathcal{O}$ et des opérateurs générés lors de l'abstraction de $\widetilde{\phi}$;
- 2. \mathcal{M}_d et \mathcal{M} ont même affectation sur les variables libres de $\widetilde{\phi}_{\text{FOL}}$;
- 3. Opérateurs générés lors de l'abstraction de ϕ . A DEFINIR!! Et à étudier!

On fait une preuve par récurrence sur ϕ .

- Cas $\phi = x \mid y \mid$ FALSE. Il suffit de poser $\mathcal{M}_d = \mathcal{M}$.
- Cas $\phi = (\phi_1 \Rightarrow \phi_2)$. Par définition $\phi_{\text{FOL}}^y = \phi_{1_{\text{FOL}}}^y \Rightarrow \phi_{2_{\text{FOL}}}^y$ et $\widetilde{\phi}_{\text{FOL}}^y = \widetilde{\phi}_{1_{\text{FOL}}}^y \Rightarrow \widetilde{\phi}_{2_{\text{FOL}}}^y$. Par hypothèse de récurrence sur ϕ_1 et ϕ_2 il existe \mathcal{M}_{d1} et \mathcal{M}_{d2} vérifiant les hypothèses 1, 2 et 3. On pose \mathcal{M}_d qui a même domaine et interprétation des opérateurs que \mathcal{M}_{d1} et \mathcal{M}_{d2} , et dont l'affectation ξ_d des variables est défini pour toute variable x (flexible ou rigide) comme :

$$\xi_d(x) = \begin{cases} \xi_{d1}(x) & \text{si } x \in fv(\phi_1) \\ \xi_{d2}(x) & \text{sinon} \end{cases}$$

Alors \mathcal{M}_d vérifie les hypothèses 1, 2 et 3. De plus : $\llbracket \phi_1^y_{\text{FOL}} \rrbracket_{\mathcal{M}_{d1}} = \llbracket \phi_1^y_{\text{FOL}} \rrbracket_{\mathcal{M}_d}$ et $\llbracket \phi_2^y_{\text{FOL}} \rrbracket_{\mathcal{M}_{d2}} = \llbracket \phi_2^y_{\text{FOL}} \rrbracket_{\mathcal{M}_d}$. Alors :

$$\begin{split} \llbracket \phi_{\text{FOL}}^y \rrbracket_{\mathcal{M}_d} &= \left\{ \begin{array}{l} \text{tt} \quad \text{si } \llbracket \phi_{1_{\text{FOL}}}^y \rrbracket_{\mathcal{M}_d} \neq \text{tt ou } \llbracket \phi_{2_{\text{FOL}}}^y \rrbracket_{\mathcal{M}_d} = \text{tt} \\ \text{ff} \quad \text{sinon} \\ &= \left\{ \begin{array}{l} \text{tt} \quad \text{si } \llbracket \widetilde{\phi}_{1_{\text{FOL}}}^y \rrbracket_{\mathcal{M}} \neq \text{tt ou } \llbracket \widetilde{phi_{2_{\text{FOL}}}} \rrbracket_{\mathcal{M}} = \text{tt} \\ \text{ff} \quad \text{sinon} \\ \\ \text{par hypothèse de récurrence} \\ &= \llbracket \widetilde{\phi}_{\text{FOL}}^y \rrbracket_{\mathcal{M}} \end{split}$$

— Les cas $\phi = (\phi_1 = \phi_2)$ et $\phi = op(\vec{\phi_i})$ sont similaires.

— Cas $\phi = \forall x : \psi$. Par définition $\phi_{\text{FOL}}^y = \forall x : \psi_{\text{FOL}}^{xy}$ et $\widetilde{\phi}_{\text{FOL}}^y = \forall x : \widetilde{\psi}_{\text{FOL}}^{xy}$. On pose $\mathcal{M}_d = \mathcal{M}$, qui vérifie bien les hypothèses 1, 2 et 3. Alors :

$$\begin{split} \llbracket \phi_{\text{\tiny FOL}}^y \rrbracket_{\mathcal{M}_d} &= \llbracket \forall x : \psi_{\text{\tiny FOL}}^{xy} \rrbracket_{\mathcal{M}_d} \\ &= \left\{ \begin{array}{ll} \text{tt} & \text{si pour } a \in \text{dom} \mathcal{M}_d, \llbracket \psi_{\text{\tiny FOL}}^{xy} \rrbracket_{\mathcal{M}[x \mapsto a]} = \text{tt} \\ \text{ff} & \text{sinon} \end{array} \right. \end{split}$$

Propriété 2 Soit $d(\vec{x_i}) \triangleq e_d$ un opérateur défini, et ϕ une formule FOML pouvant contenir des occurences de d. Si $\vDash_{\text{FOL}} \phi_{\text{FOL}}$ alors $\vDash_{\text{FOL}} \widetilde{\phi}_{\text{FOL}}$.

Preuve Pour tout modèle \mathcal{M} de $\widetilde{\phi}_{FOL}$ par la propriété 1 il existe \mathcal{M}_d tel que

$$[\![\widetilde{\phi}_{\text{FOL}}]\!]_{\mathcal{M}} = [\![\phi_{\text{FOL}}]\!]_{\mathcal{M}_d} = tt$$

car $\phi_{\mbox{\tiny FOL}}$ est valide. Alors $\widetilde{\phi}_{\mbox{\tiny FOL}}$ est valide.