

Computer Science Department University of Crete

Opinion Mining on Parliamentary Commentaries, using Machine Learning.

Moschonas Giannis, Smyrnaios Giorgos

Graduate thesis 2015

Opinion Mining on Parliamentary Commentaries, using Machine Learning.

Moschonas Giannis, Smyrnaios Giorgos

Computer Science Department
University of Crete

Computer Science Department UNIVERSITY OF CRETE Heraklion, Greece 2015 Opinion Mining on Parliamentary Commentaries, using Machine Learning.

© Moschonas Giannis - Smyrnaios Giorgos, 2015.

Supervisor: Name, Company or Department

Examiner: Name, Department

Graduate thesis 2015 Department of Computer Science University of Crete

E-mail (Moschonas): jmoschon@csd.uoc.gr E-mail (Smyrnaios): gsmyrneo@csd.uoc.gr

Typeset in LATEX Heraklion, Greece 2015

Moschonas Giannis, Smyrnaios Giorgos Compute Science Department University of Crete

Abstract

Natural Language Processing is a scientific field in the area of Computer Science, which seeks a better correlation between natural language and computers. In fact Natural Language Processing is a wide scientific field in which technologies such as "Machine Translation", "Named Entity Recognition and Disambiguation", "Sentiment Analysis" and more are included. This Thesis seeks a better approach in order to export information from plain texts, which basically contain civil placements on consultation laws issued by the Greek Government. Attempted to export proposals - counterproposal of the authors and also the arguments that the authors expressed. Finally attempted to export the entire view of the author summarized in a word "Positive" or "Negative", according to the opinion that the author expressed in the text. To export of these data is made entirely by analysing texts through a three step process (which will be explained in detail in the following chapter of this Thesis) and implementing techniques from the wide spectrum of NLP (such as Information Retrieval, Part-Of-Speech Tagging, Sentiment Analysis, etc.). The results show that we can create realistic methods in order to export this type of Semantic Information. Recently the research community gives more interesting on this subject, because ic could be exploited in a number of other areas outside the field of Computer Science (eg. Journalism, Politics, etc.).

Keywords: argument extraction, sentiment, machine learning, suggestion extraction, POS Tagging, opinion mining, natural language processing.

Declaration of Authorship

We declare that this thesis titled, "Natural Languages Processing on Parliamentary Commentaries, using Machine Learning." and the work presented in it are our own. We confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where we have consulted the published work of others, this is always clearly at-tributed.
- Where we have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely our own work.
- We have acknowledged all main sources of help.
- Where the thesis is based on work done by ourselfs jointly with others, we have made clear exactly what was done by others and what I have contributed ourselves.

Giannis Moschonas		
Name	Sign	
Giorgos Smyrnaios		
Name	Sign	

Acknowledgements

TODO

Name Familyname, Gothenburg, Month Year

Contents

Li	st of	Figur	res	X
Li	st of	Table	es ·	X
1	Intr	oduct	ion	1
2	Bac	kgrou	nd	2
	2.1	Machi	ine Learning	. 2
			2.1.0.1 Categorization of Machine Learning Algorithms	
			2.1.0.2 Machine Learning Algorithms	. 2
	2.2	Part-0	Of-Speech Tagging (POS-Tagging)	
	2.3	Inform	mation Retrieval	
			2.3.0.3 Information Retrieval Algorithms	. 3
	2.4	Relate	ed Work	. 3
	2.5	Equat	tion	
3	Met	thods		4
	3.1	Prepa	aring the Dataset	. 4
		3.1.1	Dataset	. 4
		3.1.2	Choosing Set of Documents	. 6
		3.1.3	Finalizing the Dataset	. 6
		3.1.4	Database	
		3.1.5	Building a Trainset	
	3.2		ment Extraction	
		3.2.1	Selecting Argument Markers	
		3.2.2	POS-Tagging	
			3.2.2.1 POS-Tagger	
			3.2.2.2 POS-Tagger Output	
			3.2.2.3 Parsing XML File	
		2.2.2	3.2.2.4 Uploading to Database	
		3.2.3	Apply Machine Learning	
			3.2.3.1 Selecting Train and Test Set	
			3.2.3.2 Machine Learning Process	
	0.0	C	3.2.3.3 Machine Learning Algorithms	
	3.3	00	estion Extraction	
		3.3.1	Selecting Suggestion Markers	
		3.3.2	POS-Tagging and Lemmatization the set of Documents	. 15

		4.1.3	Information about the Train Set	
4	Eva 4.1		n and Results nent Extraction	19
		3.4.2	Perform Sentiment Analysis	
	3.4	Overa	3.3.5.2 Machine Learning Process	16 17
		3.3.5	Learning Processs	16
		3.3.3 3.3.4	Apply Information Retrieval Methods in order to find the Suggestions	15

List of Figures

3.1	Entity - Relation Model	7
4.1	Argumentative Sentences in Train Set	19
4.2	Argument Marker - Number of Verbs in a Sentence	20
4.3	Argument Marker - Number of Verbs in Passive Voice in a Sentence	20
4.4	Argument Marker - Number of Cue Words in a Sentence	20
4.5	Argument Marker - Number of Connective Words in a Sentence	21
4.6	Argument Marker - Total words in a Sentence	21
4.7	Argument Marker - Word Mean Length	21
4.8	Argument Marker - Number of Adjectives in a Sentence	22
4.9	Argument Marker - Number of Adverbs in a Sentence	22
4.10	Argument Marker - Number of Nouns in a Sentence	$2\overline{2}$
4.11	Error Rate of Argumentative Sentence Classification	24

List of Tables

4.1	Detailed Accuracy for Class "No" (Argument Extraction)	23
4.2	Detailed Accuracy for Class "Yes" (Argument Extraction)	23
4.3	Weighted Average on both Classes (Argument Extraction)	23
4.4	Additional Statistical Information (Argument Extraction)	23
4.5	Detailed Accuracy for Class "No" (Suggestion Extraction)	24
4.6	Detailed Accuracy for Class "Yes" (Suggestion Extraction)	25
4.7	Weighted Average on both Classes (Suggestion Extraction)	25
4.8	Additional Statistical Information (Suggestion Extraction)	25
4.9	Detailed Accuracy for Class "No" (Suggestion Extraction, using Equiv-	
	alent Train Set)	26
4.10	Detailed Accuracy for Class "Yes" (Suggestion Extraction, using Equiv-	
	alent Train Set)	26
4.11	Weighted Average on both Classes (Suggestion Extraction, using Equiv-	
	alent Train Set)	26
4.12	Additional Statistical Information (Suggestion Extraction, using Equiv-	
	alent Train Set)	26

1 Introduction

2

Background

TODO

2.1 Machine Learning

TODO

2.1.0.1 Categorization of Machine Learning Algorithms

TODO

2.1.0.2 Machine Learning Algorithms

TODO

2.2 Part-Of-Speech Tagging (POS-Tagging)

TODO

2.3 Information Retrieval

2.3.0.3 Information Retrieval Algorithms

TODO

2.4 Related Work

TODO

2.5 Equation

$$f(t) = \begin{cases} 1, & t < 1 \\ t^2 & t \ge 1 \end{cases}$$
 (2.1)

3

Methods

In this chapter, we will thoroughly analyse the ways with which the three processing stages which were presented in the previous units, were implemented.

In order to describe in the best possible way the process that was followed, a detailed description of the dataset which was used will be given, as well as of the features that characterise it. Then, we will describe the relational database model which we used to store the information from the texts (dataset). Finally, for each one of the process stages, we will describe the methodology with which each matter was approached.

3.1 Preparing the Dataset

In this part of the methodology, the features of the used dataset (3.1.1) will be described in detail. Some information on the way of choosing data (3.1.2) will be described as well. Next, the way of data mining from the Greek Open Government platform¹ (3.1.3) and finally, the Entity-Relation Model (3.1.4) of the database which was used to store the data will also be described.

3.1.1 Dataset

As it has already been mentioned in some points of this Thesis, the data that were used have been taken from the Greek Open Government platform, which constitutes a platform of electronic consultation of citizens on texts, more specifically on laws and decrees that the Greek Government issues. These data are open and accessible to everyone.

In this section, the basic features of the studied texts will be described. The reason why this section comes first in this part of the methodology, is that the very nature of these texts (they are basically users' comments to the online service), created many problems in their analysis.

As it has already been mentioned, the texts that were studied feature several oddities, some of which made the process of analysing them difficult.

¹http://www.opengov.gr

- Initially, the first that we can notice is that the length of the texts is relatively short. To be precise, it is rare for them to be longer than 3000 characters (approximately 200 words, 80% of the texts). The length of the text did not affect all the stages of the analysis. The biggest difficulty appeared in the effort to extract the degree of the writer's agreement with the initial text (more details will be given later).
- A second remark is the fact that the texts that were studied do not consist an official text. By the term "official", we want first to declare that the texts are made up of users' comments in an online service and secondly, that they contain many errors (spelling etc). This created many difficulties in the studying of these comments. The first difficulty had to do with the tools needed in order to conduct the overall analysis of each text. The basic idea was that the tools had to be tolerant when it came to errors, at least up to a degree.

Some very usual errors are:

- 1. spelling errors
- 2. absence of some letters in a word
- 3. letter transposition in a word
- 4. use only of capital letters
- 5. absence of punctuation
- 6. wrong sentence separation (there was no gap after the dot)
- 7. some more errors that will not be mentioned for ease of reference
- One more issue is that there are many times when syntactic structure errors are spotted. This problem is directly connected to the use of POS-Tagger for the syntactic analysis (parsing) of texts. This issue affects, to some degree, the extrapolation of arguments and of proposals and counter proposals that the user makes.
- Another feature is that the texts are entirely in Greek. This problem is more serious, because there are no tools which we needed at some point of the analysis, that support the Greek Language. Subsequently, as we will see later on, there was the need to resort to some compromising solutions.
- One last issue that is worth mentioning, which constitutes a more qualitative feature, at least in the whole of texts that were studied, is the fact that the majority of users who wrote a comment are "annoyed". This "annoyance" stems from the fact that the texts that are under discussion contain laws and presidential decrees that, essentially, lead to a decrease in public spending towards the citizens. This "annoyance" is noted almost in the entire dataset that we studied. The problem is that the texts in which the writers agree with the initial text are limited. As a result, this issue complicates the process of acknowledging, if the writer agrees with the initial text.

3.1.2 Choosing Set of Documents

To continue the process, we randomly chose five different bills that contained a significant amount of users' replies. Afterwards, we selected a few, trying to eliminate the replies that we did not want to process. For example:

- replies that only contained one sentence
- replies in greeklish

Next, we limited the dataset so as to contain a number of approximately two hundred replies. This total is the final dataset that was studied and on which the conclusions for all the processing stages were based.

3.1.3 Finalizing the Dataset

The last step for the creation of the final dataset was the data mining from the Greek Open Government platform² (the website for public consultation on laws). This process was simple enough, since the service provides the users with the option to locally store all the comments that have been posted for each law or decree. The data were in excel file format, providing for each comment the following meta-data:

- the Law Article which was commented
- an id for each comment
- the name of the user-commenter
- the date

These data were later stored in the database which was created for the storage of data that were collected in all the stages of processing.

3.1.4 Database

In order to store the database, an MySQL³ Database was created, whose Entity-Relation Model⁴ can be presented in the following layout.

²http://www.opengov.gr

³https://www.mysql.com

⁴https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

Figure 3.1: Entity - Relation Model

In the above layout, we can see the Entity-Relation Model that was used for storing data. The keys for each table of data have been marked with bold.

3.1.5 Building a Trainset

One last element that deals with the chapter on dataset, is characterising a total of sentences if each one of them contains an Argument or a Suggestion. We should note here that sentence separation will be analysed thoroughly later. The Train set that we created, as we will see in the chapters that follow, is needed so that the machine learning algorithms can become train, as well as to achieve a better evaluation. The set of sentences that was created contains approximately one thousand sentences.

3.2 Argument Extraction

At this point, the process with which the Argument Extraction was carried out on the whole of the texts will be described. The process is based on three stages:

- Selecting Argument Markers (3.2.1).
- POS-Tagging the set of documents (3.2.2).
- Applying machine learning to the Argument Markers (3.2.3).

Each one of the three stages will be explained right away.

3.2.1 Selecting Argument Markers

This step, in essence, constitutes the selection process of certain "criteria" that will help us define what an argument is. Essentially, this process constituted the hardest part in the whole Argument Extraction stage. This step, by extension, was performed only once.

Having studied enough from Related Work (which was mentioned to a great extent above), it was clear that in order to extract the arguments from the texts that we had available we would have to apply some Machine Learning process. Therefore, it is now clearer that at this step (3.2.1), we had to define some parameters which will define with a relative clarity whether a sentence is an argument or not.

But before we get in the process of searching for these variables, we had one more difficulty to face. Even though it sounds relatively easy to recognise the arguments in a text, in reality it was a rather difficult process. There was great difficulty for the whole team that is working on this Project to agree on whether a sentence contains an argument or not. After a lot of discussion, we ended up with the following definition:

Sentence is likely to contain an argument if it contains the following markers:

- The sentence provides a context clue from which we can interpret that the writer expresses an opinion.
- The sentence is explanatory, which means that the writer wants either to further explain or support an opinion.

If there is any of the above markers in a sentence, then this sentence can be characterised as an argument (Argumentative sentence). Even with the above two conventions, in some cases it is still difficult to determine whether a sentence is an argument. More precisely, another convention has been set, with which we made an effort to exclude the sentences that are interrogative. The reason is that usually, interrogative sentences are likely to express irony. In our dataset this was actually very usual.

Having set the above conventions, we studied a total of Argumentative Sentences, in order to be able to track down "Argument Markers". In essence, we looked for parts of speech (for example the number of verbs, number of adjectives and more), as well as other variables that often appear in this type of sentences. These variables were

to be used in the next steps and especially in the step where the "Machine Learning" process is applied

From the study that was conducted, also combining Related work, we ended up with the following variables:

- Number of Verbs: In many studies which have been conducted in the past, it was noted that verbs are closely linked to arguments. To be precise, verbs express action. Another characteristic is that verbs syntactically compose a sentence or, a little more arbitrarily, verbs enrich a sentence. Consequently, it was noted that the sentences which contain arguments usually have a larger number of verbs.
- missing:
- **Key Words:** This variable refers to the number of words that were traced in a group of words that we created. This group contains words that are used when someone tries to explain or support an opinion. For example, in this group there are the words consider, believe, admit, suppose, think, must, consequently, since, until, because, namely.
- Number of Connective Words: This variable counts the number of linking words that were found in a sentence. In essence, this number has a direct relation to the next variable which shows the total number of words. The idea of counting the length of a sentence lies to the fact that usually, longer sentences are more likely to contain arguments. Especially when the studied dataset contains texts with arguments and political discussion.
- Total Number of Words: respectively with the previous variable.
- Average Number of Letters in a Word: This variable came up from the bibliography that we had available. It has been noted that this variable, especially in texts that contain political discussion, can help in a significant way to track arguments.
- Number of Adjectives: It is the number of arguments that were found in a sentence. The logic behind this variable is the same with the "Number of Verbs" variable logic.
- Number of Adverbs: It came up after studying the bibliography and it states the number of adverbs in a sentence.
- **Number of Nouns:** The role of this variable is equivalent to the "Number of Adjectives" variable.
- A Boolean Variable that States Whether a Sentence is Interrogative: The need for this variable was explained thoroughly above.

3.2.2 POS-Tagging

In this part we will analyse the second step in the process of argument extraction from a text. Unlike the previous step (3.2.1), the execution of this step is essential for every new step we wish to analyse.

As it has already been mentioned above (2.2), the POS-Tagging procedure has as goal to analyse the grammar of the text, as well as to extract an output which will contain a recognition of what part of speech each word is. Clearly, this process is very important for Argument Extraction because it constitutes the way with which all parts of speech will be detected.

3.2.2.1 POS-Tagger

In this Thesis, "ILSP POS-Tagger⁵" was used, which was created by the "Institute of Language and Speech processing⁶".

3.2.2.2 POS-Tagger Output

From the outputs supported by POS-Tagger that we had available, we have chosen the "xceslemma" option, with which-apart from POS-Tagging, Lemmatization can also be accomplished. We will need the latter in the next unit that we are going to study. The output given is in XML format. An example can be seen below:

```
<?xml version='1.0' encoding='UTF-8'?>
<cesDoc xmlns="http://www.xces.org/schema/2003" version="0.4">
 <text>
   <body>
     < s id = "s1" >
         <t id="t1" word="..." tag="AtDfNeSgNm" lemma="..."/>
         <t id="t2" word="..." tag="RgFwOr" lemma="..."/>
         <t id="t3" word="..." tag="PnReNe03SgNmXx" lemma="..."/>
         <t id="t4" word="..." tag="VbMnIdPr03SgXxIpPvXx" lemma="..."/>
         <t id="t5" word="..." tag="VbMnIdPr03SgXxIpPvXx" lemma="..."/>
         <t id="t6" word="..." tag="AsPpSp" lemma="..."/>
         <t id="t7" word="..." tag="NoCmFeSgAc" lemma="..."/>
         <t id="t8" word="..." tag="RgFwOr" lemma="..."/>
         <t id="t9" word="..." tag="PTERM_P" lemma="..."/>
       </s>
     </body>
 </\text{text}>
</cesDoc>
```

The text that was given as input was "The output which is given is in XML format". We note that for every word of the text, the following information is given:

- Id: an auto increment identifier given in every word of the text
- Word: the initial word of the text

```
5http://nlp.ilsp.gr/soaplab2-axis/
```

- Tag: the Grammar concerning the particular word. For example, verbs start with "Vb" and nouns with "No". The whole tagset can be found here: http://nlp.ilsp.gr/nlp/tagset examples/tagset en/.
- Lemma: it is the dictionary entry of each word. For example, we note that the verb "given" has "give" as its lemma.

3.2.2.3 Parsing XML File

For the operation and data extraction from the XML file, DOM (Document Object Model⁷) was used, which is a platform for the representation and the interaction with objects in XML files. In this platform, the nodes of each file are organised in a tree form called the DOM tree. The objects in the DOM tree can be operated using the methods for objects. DOM's public interface is determined in Application Programming Interface.

3.2.2.4 Uploading to Database

Finally, the data from the Parsing of XML file (3.2.2.3) are stored in the Database and more precisely in the "opngv_argument" table. For storing, the following Query is used:

INSERT INTO opngv_argument VALUES (values..)

3.2.3 Apply Machine Learning

The last stage for argument retrieval consists of the application of a Machine Learning process. In order for this process to be accomplished, a train set and a test set should have been clearly set.

3.2.3.1 Selecting Train and Test Set

In this case in point, the train set is stored in the Data Base. More precisely, the train set retrieval from the Database is done with the following query:

⁷http://www.w3.org/DOM/

```
SELECT
       opngv_argument.verbs,
      opngv_argument.pv_verbs,
       opngv_argument.cue_words,
      opngv argument.connective words,
      opngv argument.total words,
       opngy argument.word mean length,
       opngv_argument.adjective,
       opngy argument.adverbs,
       opngv_argument.noons,
      opngv_argument.question,
       opngv_trainset.Argument
FROM
      opngv_sentence
       INNER JOIN opngv_argument
              ON\ opngv\_sentence.comment\_id = opngv\_argument.comment\_id
              AND opngv_sentence_id = opngv_argument.sentence_id
       INNER JOIN opngy trainset
              ON opngy sentence.comment id = opngy trainset.comment id
              AND opngv_sentence.sentence_id = opngv_trainset.sentence_id
```

Whereas the test set constitutes the total of the sentences of a text, which we wish to analyse. In essence, to make it clearer, two tables, which contain the same columns, are created every time. The train set table contains the data as described in units (3.1.5) and (3.2.1). The second table (test set), contains the data that came up from the process that was described in unit (3.2.2) for new texts.

3.2.3.2 Machine Learning Process

For the application of a Machine Learning Process, the Weka Framework "Weka 3: Data Mining Software in Java⁸" was used.

"Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes."

3.2.3.3 Machine Learning Algorithms

To verify the accuracy of the Train set, we tried many algorithms:

- Logistic Regression⁹
- Native Bayes¹⁰

⁸http://www.cs.waikato.ac.nz/ml/weka/

⁹https://en.wikipedia.org/wiki/Logistic_regression

¹⁰https://en.wikipedia.org/wiki/Naive_Bayes_classifier

- Support Vector Machines¹¹
- Random Forest¹²

The results will be analysed in the following units.

3.3 Suggestion Extraction

At this section we will describe the procedure that we followed in order to achieve the Suggestion Extraction. The Procedure has five steps:

- Selecting Suggestion Markers (3.3.1)
- POS-Tagging & Lemmatization the set of Documents (3.3.2)
- Apply Information Retrieval Methods in order to find the suggestions (3.3.3)
- Adding additional features for the optimization of Machine Learning Process (3.3.4)
- Apply Machine Learning (3.3.5)

Each one from the above steps will be explained in detail, in the next sections.

3.3.1 Selecting Suggestion Markers

As in the previous chapter we have, at this stage, to set some suggestion markers i.e., some characteristics in each sentence, which, if they appear, then the sentence that is being studied probably contains a suggestion.

The basic idea that we applied is based, to a great extent, on Greek Grammar. We found that a suggestion can be "modelled" better than an argument. The basic concept is that in order to make a suggestion, a writer is "obliged" to follow some Grammar rules.

We know that according to Greek Grammar, in order to express incitement in a sentence, the writer should use mainly either the Imperative or the Subjunctive Grammatical mood. These two Grammatical moods are often linked to the meaning we want to detect in our texts.

Starting with the aforementioned concept, we noted that the use exclusively of Greek Grammar is not enough. In some way, we had to specify with more clarity what we were looking for in a text.

So, we extended the above concept. We combined Grammar rules with lemmas in order to achieve higher accuracy.

¹¹https://en.wikipedia.org/wiki/Support_vector_machine

¹²https://en.wikipedia.org/wiki/Random_forest

To make the above process clearer: Initially, using the "ILSP POS-Tagger" output, we noted the Grammar tags (3.2.2.2), as well as the lemmas of verbs (3.2.2.2) in order to create a list of verbs that are involved in cases where a sentence can be considered as a suggestion. We can say that we noted the verbs which define the meaning of a sentence, making it a suggestion.

An example can make the concept that was presented even clearer: Given the sentence "a change in paragraph 5 of the law must be made.." we noted that, in this example, "must be made" plays a determining role in order to put across the meaning of the sentence as a suggestion. This particular part of the sentence also has a particular Grammatical form.

```
<?xml version='1.0' encoding='UTF-8'?>
<cesDoc xmlns="http://www.xces.org/schema/2003" version="0.4">
 <text>
   <body>
     <s id="s1" casing="lowercase">
        <t id="t1" word="..." tag="VbIsIdPr03SgXxIpAvXx" lemma="..."/>
        <t id="t2" word="..." tag="PtSj" lemma="..."/>
         <t id="t3" word="..." tag="VbMnIdXx03SgXxPePvXx" lemma="..."/>
         <t id="t4" word="..." tag="NoCmFeSgNm" lemma="..."/>
         <t id="t5" word="..." tag="AsPpPaFeSgAc" lemma="..."/>
         <t id="t6" word="..." tag="NoCmFeSgAc" lemma="..."/>
        <t id="t7" word="..." tag="DIG" lemma="..."/>
        <t id="t8" word="..." tag="AtDfMaSgGe" lemma="..."/>
        <t id="t9" word="..." tag="NoCmMaSgGe" lemma="..."/>
        <t id="t10" word="..." tag="PTERM_P" lemma="..."/>
       </s>
     </body>
 </text>
</cesDoc>
```

More precisely, we noticed that some tags, such as "VbLsLdPr03SgXxLpAvXx" and "VbMnLdXx03SgXxPePvXx" appear in many cases. Finally, we created a list with many cases that we detected. Some cases appear below:

- We have to VbLsLdPr03SgXxpAvXx PtSj
- PtSj VbMnLdXxPepvXx must be studied
- VbMnLdXx03SgXxPePvXx PtSj must be applied
- Add PtSj VbMnLdPr03SXxLpPvxX
- ..

The above list is, in essence, the suggestion markers that we created. (The full list contains about eighty suggestion markers. The list is part of the submitted code.)

3.3.2 POS-Tagging and Lemmatization the set of Documents

The second stage for suggestion mining lies in the POS-Tagger performance. This process is the same as the one described in unit (3.2.2) and for the sake of brevity it will not be analysed again here.

3.3.3 Apply Information Retrieval Methods in order to find the Suggestions

Having created the suggestion markers, as we saw in unit (3.2.1), we have, at this point, to analyse the way with which we can find similarities between the sentences being analysed and the suggestion markers.

Initially, for every sentence in the process of analysis, the POS-Tagging & Lemmatization method (3.3.2) is applied. From the Output of this process we make good use of the information that is absolutely essential for this step. So, for every sentence we keep the following information:

- the verb tag.
- the verb lemma.
- the lemmas of words "to", "will".
- tags of the words "to", "will".
- "Qst" if the sentence is interrogative.

So, the sentence that we saw above, "a change must be made" in paragraph 5 of the law" becomes "VbLsLdPr03SgXxLpAvXx should PtSj be VbMnLdXx03SgXxPePvXx made".

The next step is to create a similarity score between the sentence that came up and each one of the suggestion markers. The comparison was made using TF-IDF¹³ and Jaccard Similarity¹⁴ and as we will see in the following unit, the results were satisfying enough.

One more point that we need to stress is that we divided the suggestion markers in 4 categories, depending on the Grammatical mood, "Imperative" or "Subjunctive" and depending on whether the verbs are in a Past Tense (should have). The categories, as well as all the suggestion markers can be found in the "suggestionQ file" through the online repository¹⁵.

Finally, having made the above comparisons, only the highest score will be kept, as well as the category from which this score came up. We should also note that the sentences that contain "Qst" automatically get zero score because we wanted to exclude the interrogative sentences for the same reasons that were mentioned earlier.

¹³https://en.wikipedia.org/wiki/Tf%E2%80%93idf

¹⁴https://en.wikipedia.org/wiki/Jaccard_index

¹⁵https://github.com/csdRepo/OpinionMining.git

3.3.4 Adding additional features for the optimization of Machine Learning Processs

In order to achieve better results in each sentence that resulted from the above process, we counted the number of words from which it is made up.

3.3.5 Apply Machine Learning

The last stage for the retrieval of suggestions is the application of a Machine Learning Process. To implement this process, a train set and a test set must be definitely determined.

3.3.5.1 Selecting Train and Test Set

In this case, too, the train set is stored in the Database. To be precise, the retrieval of the train set from the Database is done with the following query:

```
SELECT
      opngv_suggestion.weight,
      opngv suggestion.category,
      opngv suggestion.total words,
      opngv_trainset.Suggestion
FROM
      opngv_sentence
      INNER JOIN opngv suggestion
              ON opngv_sentence.comment_id = opngv_suggestion.comment_id
              AND opngv_sentence_id = opngv_suggestion.sentence_id
      INNER JOIN opngv_trainset
              ON opngy sentence.comment id = opngy trainset.comment id
              AND opngy sentence sentence id = opngy trainset.sentence id
ORDER BY
      opngv_trainset.Suggestion DESC
LIMIT 366
```

In this case, too, the test set consists of the sentences of the text, more precisely, the sentences that came up from the process (3.3.3).

3.3.5.2 Machine Learning Process

As in the Argument Extraction (3.2.3.2), the Weka Framework was also used here. Again, for the sake of brevity, it will not be analysed here.

3.3.5.3 Machine Learning Algorithms

To verify the accuracy of the Train Set, we tested enough Algorithms:

• Native Bayes¹⁶

¹⁶https://en.wikipedia.org/wiki/Naive_Bayes_classifier

- Support Vector Machines¹⁷
- Random Forest¹⁸
- J48¹⁹

3.4 Overall Opinion Extraction

In this final chapter, the third leg of this Thesis, where the possibility of recognising the general degree of the writer's agreement in regard with the initial public consultation text of the Greek Government was studied, will be analysed. For this process, no kind of meta-data which would have supplied this information automatically (Agree/Disagree button, Like etc.), was used. The whole process has been completed by studying exclusively the users' texts.

For the effective mining of this kind of information from the texts, we used the "Sentiment Analysis" method, in an attempt to recognise the sentiments with which the users write their texts. Having analysed the sentiments, we noted that very often it seems that they match each writer's degree of agreement. In more detail, this process can be divided as follows:

- Translate Documents to English (3.4.1).
- Perform Sentiment Analysis (3.4.2).

3.4.1 Translate Documents to English

TODO

3.4.2 Perform Sentiment Analysis

- SentiStrength²⁰: "SentiStrength estimates the strength of positive and negative sentiment in short texts, even for informal language. It has human-level accuracy for short social web texts in English, except political texts. SentiStrength reports two sentiment strengths:
 - -1 (not negative) to -5 (extremely negative)
 - 1 (not positive) to 5 (extremely positive)

¹⁷https://en.wikipedia.org/wiki/Support vector machine

¹⁸https://en.wikipedia.org/wiki/Random_forest

¹⁹https://en.wikipedia.org/wiki/J48

²⁰http://sentistrength.wlv.ac.uk

Why does it use two scores? Because research from psychology has revealed that we process positive and negative sentiment in parallel - hence mixed emotions. SentiStrength can also report binary (positive/negative), trinary (positive/negative/neutral) and single scale (-4 to +4) results."

• Sentiment Analysis with Python NLTK Text Classification²¹: "Sentiment analysis using a NLTK 2.0.4 powered text classification process. It can tell you whether it thinks the text you enter below expresses positive sentiment, negative sentiment, or if it's neutral. Using hierarchical classification, neutrality is determined first, and sentiment polarity is determined second, but only if the text is not neutral."

²¹http://text-processing.com/docs/sentiment.html

4

Evaluation and Results

TODO

4.1 Argument Extraction

TODO

4.1.1 Argument Markers

Figure 4.1: Argumentative Sentences in Train Set.

Figure 4.2: Argument Marker - Number of Verbs in a Sentence.

Figure 4.3: Argument Marker - Number of Verbs in Passive Voice in a Sentence.

Figure 4.4: Argument Marker - Number of Cue Words in a Sentence.

Figure 4.5: Argument Marker - Number of Connective Words in a Sentence.

Figure 4.6: Argument Marker - Total words in a Sentence.

Figure 4.7: Argument Marker - Word Mean Length.

Figure 4.8: Argument Marker - Number of Adjectives in a Sentence.

Figure 4.9: Argument Marker - Number of Adverbs in a Sentence.

Figure 4.10: Argument Marker - Number of Nouns in a Sentence.

4.1.2 Algorithms used in Machine Learning Procedure $_{\rm TODO}$

Table 4.1: Detailed Accuracy for Class "No" (Argument Extraction).

Algorithm	Precision	Recall	F-Measure
SVM	0.815	0.830	0.823
Random Forest	0.818	0.818	0.818
Native Bayes	0.718	0.899	0.798
Logistic Regression	0.801	0.819	0.819

Table 4.2: Detailed Accuracy for Class "Yes" (Argument Extraction).

Algorithm	Precision	Recall	F-Measure
SVM	0.836	0.821	0.828
Random Forest	0.827	0.827	0.827
Native Bayes	0.873	0.663	0.754
Logistic Regression	0.837	0.802	0.819

Table 4.3: Weighted Average on both Classes (Argument Extraction).

Algorithm	Precision	Recall	F-Measure
SVM	0.826	0.826	0.826
Random Forest	0.823	0.823	0.823
Native Bayes	0.797	0.778	0.776
Logistic Regression	0.820	0.819	0.819

Table 4.4: Additional Statistical Information (Argument Extraction).

	Frequenncy	Percentage
Correctly Classified Instances	838	82.56%
Incorrectly Classified Instances	177	17.4383
Kappa statistic	0.6512	-
Mean absolute error	0.1744	-
Root mean squared error	0.4176	-
Relative absolute error	-	34.90%
Root relative squared error	-	83.54%
Coverage of cases (0.95 level)	-	82.56%
Mean rel. region size (0.95 level)	-	50%
Total Number of Instances	1015	

4.1.3 Information about the Train Set

TODO

Figure 4.11: Error Rate of Argumentative Sentence Classification.

4.2 Suggestion Extraction

TODO

4.2.1 "10 Fold Cross Validation" on Train Set

Table 4.5: Detailed Accuracy for Class "No" (Suggestion Extraction).

Algorithm	Precision	Recall	F-Measure
J48	0.881	0.923	0.901
Random Forest	0.890	0.915	0.902
Native Bayes	0.912	0.915	0.604
SVM	0.839	0.989	0.908

Table 4.6: Detailed Accuracy for Class "Yes" (Suggestion Extraction).

Algorithm	Precision	Recall	F-Measure
J48	0.552	0.432	0.485
Random Forest	0.556	0.489	0.519
Native Bayes	0.608	0.601	0.604
SVM	0.735	0.137	0.230

Table 4.7: Weighted Average on both Classes (Suggestion Extraction).

Algorithm	Precision	Recall	F-Measure
J48	0.822	0.834	0.826
Random Forest	0.830	0.837	0.833
Native Bayes	0.858	0.858	0.858
SVM	0.820	0.835	0.786

TODO

Table 4.8: Additional Statistical Information (Suggestion Extraction).

	Frequenncy	Percentage
Correctly Classified Instances	871	85.81%
Incorrectly Classified Instances	144	14.19%
Kappa statistic	0.518	-
Mean absolute error	0.1901	-
Root mean squared error	0.3382	-
Relative absolute error	-	64.21%
Root relative squared error	-	87.98%
Coverage of cases (0.95 level)	-	95.67%
Mean rel. region size (0.95 level)	-	70.64%
Total Number of Instances	1015	

4.2.2 Equivalent Train Set

Table 4.9: Detailed Accuracy for Class "No" (Suggestion Extraction, using Equivalent Train Set).

Algorithm	Precision	Recall	F-Measure
J48	0.940	0.810	0.870
Random Forest	0.996	0.810	0.893
Native Bayes	0.941	0.828	0.881
SVM	0.939	0.819	0.875

Table 4.10: Detailed Accuracy for Class "Yes" (Suggestion Extraction, using Equivalent Train Set).

Algorithm	Precision	Recall	F-Measure
J48	0.470	0.765	0.582
Random Forest	0.533	0.984	0.641
Native Bayes	0.495	0.765	0.601
SVM	0.479	0.760	0.588

Table 4.11: Weighted Average on both Classes (Suggestion Extraction, using Equivalent Train Set).

Algorithm	Precision	Recall	F-Measure
J48	0.855	0.802	0.818
Random Forest	0.912	0.841	0.857
Native Bayes	0.861	0.817	0.831
SVM	0.856	0.808	0.823

Table 4.12: Additional Statistical Information (Suggestion Extraction, using Equivalent Train Set).

	Frequenncy	Percentage
Correctly Classified Instances	854	84.14%
Incorrectly Classified Instances	161	15.86%
Kappa statistic	0.5966	-
Mean absolute error	0.2273	-
Root mean squared error	0.3467	-
Relative absolute error	-	47.98%
Root relative squared error	-	73.02%
Coverage of cases (0.95 level)	-	97.14%
Mean rel. region size (0.95 level)	-	83.00%
Total Number of Instances	1015	-

4.3 Overall Opinion Extraction

5

Demo Application

TODO

One Text Analysis

Basic Form Elements
Text area
Let's try Reset Button
For any Bugs don't be afraid to inform us
jmoschon@csd.uoc.gr or gsmyrneo@csd.uoc.gr

One Text Analysis

One Text Analysis

6

Conclusion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Bibliography

- [1] Wandhofer, T., Van Eeckhaute, C., Taylor, S., and Fernandez, M. (2012). Wegov analysis tools to connect policy makers with citizens online. In Proceedings of the tGov Conference May 2012, Brunel University.
- [2] Diakopoulos, N. A. and Shamma, D. A. (2010). Characterizing debate performance via aggregated twitter sentiment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
- [3] Tumasjan, A., Sprenger, T. O., Sandner, P. G., and Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment.
- [4] Argument Extraction from News, Blogs, and Social Media Theodosis Goudas Department of Digital Systems, University of Piraeus, Christos Louizos, Department of Informatics & Telecommunications University of Athens, Georgios Petasis and Vangelis Karkaletsis Software and Knowledge Engineering Laboratory.
- [5] Simone Teufel. 1999. Argumentative Zoning: Information Extraction from Scientific Text. Ph.D. thesis, University of Edinburgh.
- [6] Alan Sergeant. 2013. Automatic argumentation extraction. In Proceedings of the 10th European Semantic Web Conference, ESWC '13, pages 656–660, Montpellier, France.
- [7] Annotating Argument Components and Relations in Persuasive Essays C Stab, I Gurevych COLING 2014.