

Imperial College London

GPPS 1st Turbomachinery
CFD Workshop

GPPS-TC-2021-0050

Validation and Verification of RANS Solvers for TUDa-GLR-OpenStage Transonic Axial Compressor

Mingmin Zhu¹, Xiao He^{2,*}, Fabian Klausmann³, Jinfang Teng¹ and Mehdi Vahdati²

School of Aeronautics and Astronautics, Shanghai Jiao Tong University
 Department of Mechanical Engineering, Imperial College London
 Institute of Gas Turbines and Aerospace Propulsion, Technische Universität Darmstadt,

Contents

- Methodology
- Results
- Discussions on Geometric Uncertainty And Error
- Conclusions and Future Works

Methodology

© CFD Solvers

- ANSYS CFX 20.1
 - Element-based finite volume method
- Numeca FineTurbo 14.1
 - Cell-centered control volume method

Boundary Conditions

Locations	Settings		
Inlet	Axial direction / Measured P* and T* profiles		
	Turbulence intensity / length scale: 4% / 0.09mm		
Inlet duct hub	Inviscid wall		
R / S and S / OGV	Mixing plane		
Outlet	1.5 times the compressor core axial length downstream of OGV		
	Constant backpressure		

Methodology

Grids

- Numeca AutoGrid v5
- Hexahedron grids / O4H topology
- $y^+ < 3$
- OGV remain the Medium density

Illustration of grid topology

Grid	Grid Points (mil.)			
density	Rotor	Stotor	OGV	Total
UltraCoarse	0.12	0.04	0.85	1.01
Coarse	0.28	0.16	0.85	1.29
Medium	1.08	0.53	0.85	2.46
Fine	3.36	1.8	0.85	6.01
UltraFine	11.8	5.81	0.85	18.43

- 100% speed
- Characteristic curves of $\pi^* \& \eta^*$
- Radial profiles at rotor outlet (ME21)
 & stage outlet (ME30)

- Effect of Grid Density Compressor Maps at 100%N
 - CFX, SST
 - Grid density ↑ → Curves towards top right corner
 - Fine \rightarrow UltraFine: 0.01 and 0.1% variation of $\pi^* \& \eta^*$

Effect of Grid Density – Radial Profiles

- Grid density $\uparrow \rightarrow \pi^*, \alpha, \eta^* \uparrow$
- Fine & Ultrafine: Overprediction above 80% span

- Effect of Grid Density Quantity v.s. Nominal grid spacing
 - $\pi^* \& \eta^* \text{ v.s. } \Delta = (1/N_g)^{1/3} \text{ (PE condition)}$
 - Curves: Least-squares fits of parabolas
 - CFX (SST)
 - Discretization error $(q_{\text{ideal}}$ $q_{\text{Fine}})$: 0.01 in π^* and 0.5% in η^*

 The Fine grid is adopted for all the simulations in later calculations

- Effect of Advection Scheme
 - Overlapping results are expected
 - Numeca(Central) & Numeca(Upwind): almost overlapping
 - CFX(High Resolution): slightly higher m_c , $\pi^* \& \eta^*$

Effect of Advection Scheme – Radial Profiles

- CFX: higher than Numeca results
- Minor difference → numerical settings

Difference in numerical settings

Solver	SST Model	Wall function
CFX	2003 version	Scalable wall function
Numeca	1994 version	No wall function

Effect of Turbulence Model

- Numeca, Fine grid
 - SST, SA, SARC, EARSM
- Turbulence model has a great influence

- Effect of Turbulence Model Radial Profiles
 - SA & SARC: underpredict the pressure ratio below 80% span
 - Results of SST and EARSM are close

The choice of turbulence model remains an open option for the users.

- Effect of Rotor-Stator Interface Model
 - Mixing Plane v.s. Sliding Interface
 - CFX, Medium grid, SST, PE condition
 - Stator Blades: 29 to 32 → 1R2S
 - 10 revolutions (Time step: $\Delta t \cdot BPF = 50$)

Case	Peak efficiency			
Case	m (kg/s)	π^* (-)	η^* (%)	
Experiment	16.00	1.49	86.9	
1R1S, steady	16.01	1.51	88.5	
1R2S, steady	16.02	1.51	88.4	
1R2S, unsteady	15.98	1.50	87.7	

 Mixing Plane is sufficient for the simulation at PE condition

Discussions on Geometric Uncertainty and Error

Effect of Rotor Running Tip Gap Shape

Cooo	Tip gap size (mm)		
Case	13% c _t	$32\% c_t$	93% c _t
Datum	0.75	0.75	0.75
TC, PE, uniform	0.77	0.77	0.77
TC, NS, uniform	0.87	0.87	0.87
TC, PE, non-uniform	0.72	0.77	0.78
TC, NS, non-uniform	0.83	0.87	0.96

 Such a small change in tip gap size has negligible effects on the compressor performance

Discussions on Geometric Uncertainty and Error

- Effect of Stator Hub Cavity
 - A secondary flow passage that connects the stator inlet hub to the stator outlet hub
 - Overprediction below 20% ?
 - Numeca, Fine grid, SST

- The cavity domain with zero leakage flow has a negligible effect on the main flow;
- A non-zero leakage flow can potentially lead to an evident difference.

GPPS-TC-2021-0050

Discussions on Geometric Uncertainty and Error

- Effect of Stage Throat Area Change
 - Slight difference in the throat area →
 an evident change in the inflow incidence
 - Normalized mass flow rate m/m_c
 - 16.09 kg/s
 - 16.00 kg/s
 - 15.86 kg/s
 - CFX, Fine grid, SST
 - 16.09 kg/s: better agreement between 30% and 70% span.

 The inconsistency near both endwalls comes from other uncertainties and errors, rather than throat area.

ME21 ME30

Conclusions and Future Works

Rotor near-tip flow / Stator near-hub flow

- Turbulence models
- Real geometric effects

Grid Density

• Fine(1.8 - 3.4 mil./passage): in-depth flow field analysis

 Recommended grid points can be used as a reference

Medium(0.5 - 1.1 mil./passage): optimization and full-annulus

Advection Scheme

Inconsistent numerical settings:
 Turbulence model version / wall function

 More RANS solvers to understand the effects of these settings

• The choice among turbulence models remain an open option

 More RANS flow solvers with more turbulence models

Mixing Plane is sufficient at PE condition

 Effect of R/S interface model at NS condition

GPPS-TC-2021-0050

17/18

