United States
Department of
Agriculture

Forest Service

Forest Management Service Center

Fort Collins, CO

2008

Revised:

June 2021

Inland California and Southern Cascades (CA) Variant Overview

Forest Vegetation Simulator

Limber pine stand in California (Hazel Gorden, FS-R5)

Inland California and Southern Cascades (CA) Variant Overview

Forest Vegetation Simulator

Authors and Contributors:

The FVS staff has maintained model documentation for this variant in the form of a variant overview since its release in 1998. The original author was Gary Dixon. In 2008, the previous document was replaced with this updated variant overview. Gary Dixon, Christopher Dixon, Robert Havis, Chad Keyser, Stephanie Rebain, Erin Smith-Mateja, and Don Vandendriesche were involved with this major update. Stephanie Rebain cross-checked information contained in this variant overview with the FVS source code.

FVS Staff. 2008 (revised June 29, 2021). Inland California and Southern Cascades (CA) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 79p.

Table of Contents

1.0 Introduction	
2.0 Geographic Range	2
3.0 Control Variables	3
3.1 Location Codes	3
3.2 Species Codes	4
3.3 Habitat Type, Plant Association, and Ecological Unit Codes	5
3.4 Site Index	6
3.4.1 Region 5 Site Class	9
3.5 Maximum Density	9
4.0 Growth Relationships	12
4.1 Height-Diameter Relationships	12
4.2 Bark Ratio Relationships	14
4.3 Crown Ratio Relationships	16
4.3.1 Crown Ratio Dubbing	16
4.3.2 Crown Ratio Change	20
4.3.3 Crown Ratio for Newly Established Trees	20
4.4 Crown Width Relationships	20
4.4.1 Region 5 Crown Width	20
4.4.2 Region 6 Crown Width	22
4.5 Crown Competition Factor	26
4.6 Small Tree Growth Relationships	26
4.6.1 Small Tree Height Growth	26
4.6.2 Small Tree Diameter Growth	29
4.7 Large Tree Growth Relationships	30
4.7.1 Large Tree Diameter Growth	30
4.7.2 Large Tree Height Growth	
5.0 Mortality Model	38
6.0 Regeneration	41
7.0 Volume	45
8.0 Fire and Fuels Extension (FFE-FVS)	55
9.0 Insect and Disease Extensions	56
10.0 Literature Cited	57

11.0 Appendices	62
11.1 Appendix A: Plant Association Codes	62

Quick Guide to Default Settings

Parameter or Attribute	Default Setting		
Number of Projection Cycles	1 (10 if using FVS GUI)		
Projection Cycle Length	10 years		
Location Code (National Forest)	610 – Rogue River		
Plant Association Code (Region 5 / Region 6)	0 (Unknown) / 46 (CW	(C221 ABCO-PSME)	
Slope	5 percent		
Aspect	0 (no meaningful aspe	ect)	
Elevation	35 (3500 feet)		
Latitude / Longitude	Latitude	Longitude	
All location codes	42	124	
Site Species (Region 5 / Region 6)	DF / Plant Association	Code Specific	
Site Index (Region 5 / Region 6)	80 feet / Plant Associa	tion Code Specific	
Maximum Stand Density Index (R5 /R6)	Species specific / Plant Association Code specific		
Maximum Basal Area	Based on maximum stand density index		
Volume Equations	National Volume Estimator Library		
Merchantable Cubic Foot Volume Specifications:			
Minimum DBH / Top Diameter	KP	All Other Species	
Region 5	6.0 / 6.0 inches	7.0 / 6.0 inches	
Region 6	6.0 / 4.5 inches	7.0 / 4.5 inches	
Stump Height	1.0 foot	1.0 foot	
Merchantable Board Foot Volume Specification	ons:		
Minimum DBH / Top Diameter	KP	All Other Species	
Region 5	6.0 / 6.0 inches	7.0 / 6.0 inches	
Region 6	6.0 / 4.5 inches	7.0 / 4.5 inches	
Stump Height	1.0 foot	1.0 foot	
Sampling Design:			
Large Trees (variable radius plot)	40 BAF		
Small Trees (fixed radius plot)	1/300 th Acre		
Breakpoint DBH	5.0 inches		

1.0 Introduction

The Forest Vegetation Simulator (FVS) is an individual tree, distance independent growth and yield model with linkable modules called extensions, which simulate various insect and pathogen impacts, fire effects, fuel loading, snag dynamics, and development of understory tree vegetation. FVS can simulate a wide variety of forest types, stand structures, and pure or mixed species stands.

New "variants" of the FVS model are created by imbedding new tree growth, mortality, and volume equations for a particular geographic area into the FVS framework. Geographic variants of FVS have been developed for most of the forested lands in the United States.

The ICASCA, or CA, variant was completed in 1998 for the forest types of the northern Inland CAlifornia and Southern CAscades regions of California and Oregon. The CA variant overlaps some of the geographic range of the Klamath Mountains (NC) variant. The model includes forty-seven individual species, and additional species are accommodated through "other softwoods" and "other hardwoods" categories within the model.

Since the variant's completion in 1998, some of the functions have been adjusted and improved as more data has become available, and as model technology has advanced.

To fully understand how to use this variant, users should also consult the following publication:

• Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002)

This publication may be downloaded from the Forest Management Service Center (FMSC), Forest Service website. Other FVS publications may be needed if one is using an extension that simulates the effects of fire, insects, or diseases.

2.0 Geographic Range

The CA variant covers forest areas in parts of California and Oregon. This includes all or part of the Klamath, Lassen, Mendocino, Plumas, and Shasta-Trinity National Forests in California, the Illinois Valley (east) Ranger District of the Siskiyou National Forest in Oregon, and the Applegate and Ashland (west) Ranger Districts of the Rogue River National Forest in Oregon. The suggested geographic range of use for the CA variant is shown in figure 2.0.1.

Figure 2.0.1 Suggested geographic range of use for the CA variant.

Within USFS Region 5, the following forests and districts should use the CA variant: Oak Knoll, Salmon River and Scott River districts of the Klamath NF; Almanor and Hat Creek districts of the Lassen NF; Coming and Stonyford districts of the Mendocino NF; and Big Bar, Hayfork, Mt. Shasta, Shasta Lake, Yolla Bolla, and Weaverville districts of the Shasta-Trinity NF (Warbington 2004, based on Spreadsheet provided by Ralph Warbington, R5 Ecosystem Planning Staff, Remote Sensing Lab, http://www.fs.fed.us/r5/rsl/).

3.0 Control Variables

FVS users need to specify certain variables used by the CA variant to control a simulation. These are entered in parameter fields on various FVS keywords available in the FVS interface or they are read from an FVS input database using the Database Extension.

3.1 Location Codes

The location code is a 3- or 4-digit code where, in general, the first digit of the code represents the Forest Service Region Number, and the last two digits represent the Forest Number within that region. In some cases, a location code beginning with a "7" or "8" is used to indicate an administrative boundary that doesn't use a Forest Service Region number (for example, other federal agencies, state agencies, or other lands).

If the location code is missing or incorrect in the CA variant, a default forest code of 610 (Rogue River National Forest) will be used. Location codes recognized in the CA variant are shown in tables 3.1.1 and 3.1.2.

Table 3.1.1 Location codes used in the CA variant.

Location Code	Location
505	Klamath National Forest
506	Lassen National Forest
508	Mendocino National Forest
511	Plumas National Forest
514	Shasta-Trinity National Forest
610	Rogue River National Forest
611	Siskiyou National Forest
518	Trinity National Forest (mapped to 514)
710	BLM Roseburg ADU
711	BLM Medford ADU
712	BLM Coos Bay ADU

Table 3.1.2 Bureau of Indian Affairs reservation codes used in the CA variant.

Location Code	Location
7801	Berry Creek Off-Reservation Trust Land (mapped to 511)
7803	Cold Springs Rancheria (mapped to 511)
7804	Colusa Rancheria (mapped to 508)
7805	Cortina Indian Rancheria (mapped to 508)
7809	Grindstone Indian Rancheria (mapped to 508)
7811	Jackson Rancheria (mapped to 511)
7812	Chicken Ranch Off-Reservation Trust Land (mapped to 511)
7818	Picayune Off-Reservation Trust Land (mapped to 511)
7822	Rumsey Indian Rancheria (mapped to 508)
7823	Shingle Springs Rancheria (mapped to 511)

Location Code	Location
7826	Table Mountain Rancheria (mapped to 511)
7827	Tule River Reservation (mapped to 511)
7829	Mooretown Off-Reservation Trust Land (mapped to 511)
7837	Pit River Trust Land (mapped to 506)
7842	Quartz Valley Reservation (mapped to 505)
7846	Karuk Off-Reservation Trust Land (mapped to 505)
7864	Santa Rosa Rancheria (mapped to 511)
8104	Cow Creek Reservation (mapped to 611)

3.2 Species Codes

The CA variant recognizes 49 species. You may use FVS species alpha codes, Forest Inventory and Analysis (FIA) species codes, or USDA Natural Resources Conservation Service PLANTS symbols to represent these species in FVS input data. Any valid western species codes identifying species not recognized by the variant will be mapped to the most similar species in the variant. The species mapping crosswalk is available on the variant documentation webpage of the FVS website. Any non-valid species code will default to the "other hardwoods" category.

Either the FVS sequence number or alpha code must be used to specify a species in FVS keywords and Event Monitor functions. FIA codes or PLANTS symbols are only recognized during data input, and may not be used in FVS keywords. Table 3.2.1 shows the complete list of species codes recognized by the CA variant.

Table 3.2.1 Species codes used in the CA variant.

Species	Species		FIA	PLANTS	
Number	Code	Common Name	Code	Symbol	Scientific Name
1	PC	Port-Orford-cedar	041	CHLA	Chamaecyparis lawsoniana
2	IC	incense-cedar	081	CADE27	Libocedrus decurrens
3	RC	western redcedar	242	THPL	Thuja plicata
4	WF	white fir	015	ABCO	Abies concolor
5	RF	California red fir	020	ABMA	Abies magnifica (magnifica)
6	SH	Shasta red fir	021	ABSH	Abies magnifica (shastensis)
7	DF	Douglas-fir	202	PSME	Pseudotsuga menziesii
8	WH	western hemlock	263	TSHE	Tsuga heterophylla
9	MH	mountain hemlock	264	TSME	Tsuga mertensiana
10	WB	whitebark pine	101	PIAL	Pinus albicaulis
11	KP	knobcone pine	103	PIAT	Pinus attenuata
12	LP	lodgepole pine	108	PICO	Pinus contorta
13	СР	Coulter pine	109	PICO3	Pinus coulteri
14	LM	limber pine	113	PIFL2	Pinus flexilis (flexilis)
15	JP	Jeffrey pine	116	PIJE	Pinus jeffreyi
16	SP	sugar pine	117	PILA	Pinus lambertiana
17	WP	western white pine	119	PIMO3	Pinus monticola

Species	Species		FIA	PLANTS	
Number	Code	Common Name	Code	Symbol	Scientific Name
18	PP	ponderosa pine	122	PIPO	Pinus ponderosa
19	MP	Monterey pine	124	PIRA2	Pinus radiata
20	GP	gray pine	127	PISA2	Pinus sabiniana
21	WJ	western juniper	064	JUOC	Juniperus occidentalis
22	BR	Brewer spruce	092	PIBR	Picea breweriana
23	GS	giant sequoia	212	SEGI2	Sequoiadendron giganteum
24	PY	Pacific yew	231	TABR2	Taxus brevifolia
25	OS	other softwoods	298	2TE	
26	LO	coast live oak	801	QUAG	Quercus agrifolia
27	CY	canyon live oak	805	QUCH2	Quercus chrysolepsis
28	BL	blue oak	807	QUDO	Quercus douglasii
29	EO	Engelmann oak	811	QUEN	Quercus engelmanni
30	WO	Oregon white oak	815	QUGA4	Quercus garryana
31	ВО	California black oak	818	QUKE	Quercus kelloggii
32	VO	valley white oak	821	QULO	Quercus lobata
33	Ю	interior live oak	839	QUWI2	Quercus wislizenii
34	BM	bigleaf maple	312	ACMA3	Acer macrophyllum
35	BU	California buckeye	333	AECA	Aesculus californica
36	RA	red alder	351	ALRU2	Alnus rubra
37	MA	Pacific madrone	361	ARME	Arbutus menziesii
38	GC	giant chinquapin	431	CHCHC4	Chrysolepis chrysophylla
39	DG	Pacific dogwood	492	CONU4	Cornus nuttallii
40	FL	Oregon ash	542	FRLA	Fraxinus latifolia
41	WN	walnut species	600	JUGLA	Juglans spp.
42	TO	tanoak	631	LIDE3	Lithocarpus densiflorus
43	SY	California sycamore	730	PLRA	Platanus racemosa
44	AS	quaking aspen	746	POTR5	Populus tremuloides
45	CW	black cottonwood	747	POBAT	Populus trichocarpa
46	WI	Willow species	920	SALIX	Salix spp.
47	CN	California nutmeg	251	TOCA	Torreya californica
48	CL	California-laurel	981	UMCA	Umbellularia californica
49	ОН	other hardwoods	998	2TD	

3.3 Habitat Type, Plant Association, and Ecological Unit Codes

Plant association codes recognized in the CA variant are shown in Appendix A. If an incorrect plant association code is entered or no code is entered, FVS will use the default plant association code, which is 46 (CWC221 ABCO-PSME) for Region 6 forests, and 0 (unknown) in Region 5 forests. In Region 6 forests, plant association codes are used to set default site information such as site species, site indices, and maximum stand density indices. The site species, site index and maximum stand density indices can be reset via FVS keywords. In Region 5 and 6 forests, the plant association codes are used in

the Fire and Fuels Extension (FFE) to set fuel loading in cases where there are no live trees in the first cycle. Users may enter the plant association code or the plant association FVS sequence number on the STDINFO keyword, when entering stand information from a database, or when using the SETSITE keyword without the PARMS option. If using the PARMS option with the SETSITE keyword, users must use the FVS sequence number for the plant association.

3.4 Site Index

Site index is used in some of the growth equations in the CA variant. Users should always use the same site curves that FVS uses as shown in table 3.4.1. Table 3.4.2 shows the reference number to be used in selecting site curves from table 3.4.1 for all species in Region 6. If site index is available, a single site index for the whole stand can be entered, a site index for each individual species in the stand can be entered, or a combination of these can be entered. A site index value must be greater than or equal to 8, otherwise the value is considered a R5 site class code, see section 3.4.1.

Table 3.4.1 Site index reference curves used for species in the CA variant.

Reference		BHA or		USFS Regio
Number	Reference	TTA*	Base Age	n
	Dunning (1942); Dunning & Reineke (1933) or R5			
All Species	Site class	BHA**	50	5
1	Hann & Scrivani (1987)	вна	50	6
2	Dolph (1987)	BHA	50	6
3	Dahms (1964)	TTA	50	6
4	Powers (1972)	ВНА	50	6
5	Porter & Wiant (1965)	TTA	50	6

^{*} Equation is based on total tree age (TTA) or breast height age (BHA)

Table 3.4.2 Reference numbers for site index reference curves in Region 6 by species.

Species	R6 Reference
Code	Number
PC	1
IC	1
RC	1
WF	1
RF	2
SH	2
DF	1
WH	1
МН	2
WB	3
KP	3

Species	R6 Reference
Code	Number
LO	5
CY	5
BL	5
EO	5
WO	4
ВО	4
VO	4
Ю	5
BM	5
BU	4
RA	5

^{**} Height at BHA50 should be entered even though the original site curve was a TTA curve

	T
Species	R6 Reference
Code	Number
LP	3
СР	3
LM	3
JP	1
SP	1
WP	1
PP	1
MP	1
GP	1
WJ	3
BR	1
GS	1
PY	4
OS	1

Species Code	R6 Reference Number
MA	5
GC	5
DG	4
FL	4
WN	5
TO	5
SY	5
AS	5
CW	5
WI	5
CN	5
CL	5
ОН	5

In Region 5 forests, site index values can either be entered directly or based on the Region 5 Site Class Code. See section 3.4.1 for Region 5 Site Class information. If site index is missing or incorrect, the site species is set to Douglas-fir with a default site index set to 80. For species not assigned a site index, site index is determined by multiplying the site species site index by the target species adjustment factor located in table 3.4.3.

Table 3.4.3 Region 5 adjustment factors for 50-year site index values in the CA variant.

Species	R5 Adjustment
Code	Factor
PC	0.90
IC	0.76
RC	0.90
WF	1
RF	1
SH	1
DF	1
WH	0.90
MH	0.90
WB	0.90
KP	0.90
LP	0.90
СР	0.90
LM	0.90
JP	1
SP	1
WP	0.90

Species	R5 Adjustment
Code	Factor
LO	0.57
CY	0.57
BL	0.57
EO	0.57
WO	0.57
ВО	0.57
VO	0.57
Ю	0.57
BM	0.57
BU	0.57
RA	0.57
MA	0.57
GC	0.57
DG	0.57
FL	0.57
WN	0.57
TO	0.57

Species Code	R5 Adjustment Factor
PP	1
MP	0.90
GP	0.90
WJ	0.76
BR	0.76
GS	1
PY	0.76
OS	0.9

Species Code	R5 Adjustment Factor
SY	0.57
AS	0.57
CW	0.57
WI	0.57
CN	0.57
CL	0.57
ОН	0.57

In Region 6 forests, the default site species and site index are determined by plant association codes and shown in Appendix A. If the plant association code is missing or incorrect, the site species is set to Douglas-fir with a default site index set to 92. For species not assigned a site index, site index is determined by first converting the site species site index to a Hann-Scrivani DF site index equivalent. This is done by dividing the site species site index by the site species adjustment factor located in table 3.4.4. Next, the species site index is determined by multiplying the converted site species site index by the species adjustment factor located in table 3.4.4.

Table 3.4.4 Region 6 adjustment factors for 50-year site index values in the CA variant.

Species	R6 Adjustment
Code	Factor
PC	0.90
IC	0.70
RC	0.80
WF	1
RF	1
SH	1
DF	1
WH	0.95
MH	0.90
WB	0.90
KP	0.90
LP	0.90
СР	0.90
LM	0.90
JP	0.94
SP	1
WP	0.94
PP	0.94
MP	0.90
GP	0.90
WJ	0.76

Species	R6 Adjustment
Code	Factor
LO	0.28
CY	0.42
BL	0.34
EO	0.28
WO	0.40
ВО	0.56
VO	0.76
Ю	0.28
BM	0.76
BU	0.56
RA	0.76
MA	0.76
GC	0.76
DG	0.40
FL	0.70
WN	0.40
TO	0.76
SY	0.76
AS	0.40
CW	0.76
WI	0.25

Species	R6 Adjustment
Code	Factor
BR	0.76
GS	1
PY	0.4
OS	0.76

Species Code	R6 Adjustment Factor
CN	0.25
CL	0.25
ОН	0.56

3.4.1 Region 5 Site Class

In Region 5 forests, the site index values can either be entered directly or based on the Region 5 site class (0-7) as shown in table 3.4.1.1. Site class codes of 0-5 were adapted for Region 5 by Jack Levitan from Duncan Dunning's site index curves (Dunning 1942, Dunning & Reineke 1933).

If a Region 5 site class is entered, it is converted to a site index for each species within the model using a two-step process. First, the Region 5 site class is converted to a 50-year site index as shown in table 3.4.1.1 (personal communication with Ralph Warbington in March 2008).

Table 3.4.1.1 Region 5 site class values converted into 50-year site index in the CA variant.

Region 5 Site class	(Breast HT Age) 50-year site index
0	106
1	90
2	75
3	56
4	49
5	39
6	31
7	23

Second, site index for an individual species is determined by multiplying the 50-year site index by a species-specific adjustment factor which is shown in table 3.4.3.

3.5 Maximum Density

Maximum stand density index (SDI) and maximum basal area (BA) are important variables in determining density related mortality and crown ratio change. Maximum basal area is a stand level metric that can be set using the BAMAX or SETSITE keywords. If not set by the user, a default value is calculated from maximum stand SDI each projection cycle. Maximum stand density index can be set for each species using the SDIMAX or SETSITE keywords. If not set by the user, a default value is assigned as discussed below. Maximum stand density index at the stand level is a weighted average, by basal area, of the individual species SDI maximums.

In Region 5, the default maximum SDI is set by species or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for all species is computed using equation {3.5.1}; otherwise, species maximums are assigned from the SDI maximums shown in table 3.5.1.

For Region 5 forests, stand SDI is calculated using the Zeide calculation method (Dixon 2002).

 $\{3.5.1\}$ SDIMAX_i = BAMAX / (0.5454154 * SDIU)

where:

*SDIMAX*_i is the species-specific SDI maximum

BAMAX is the user-specified stand basal area maximum

SDIU is the proportion of theoretical maximum density at which the stand reaches actual

maximum density (default 0.85, changed with the SDIMAX keyword)

In Region 6, the default maximum SDI is set based on a user-specified, or default, plant association code or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for species is computed using equation {3.5.1}; otherwise, the SDI maximum for all species is assigned from the SDI maximum associated with the site species for the plant association code shown in Appendix A. SDI maximums were set based on growth basal area (GBA) analysis developed by Hall (1983) or an analysis of Current Vegetation Survey (CVS) plots in USFS Region 6 by Crookston (2008). Some SDI maximums associated with plant associations are unreasonably large, so SDI maximums are capped at 850.

Table 3.5.1 Region 5 Stand density index maximums by species in the CA variant.

	R5 SDI		
Species Code	Maximum	Mapped to	Source*
PC	592	Alaska yellow-cedar	Shaw
IC	576		Shaw
RC	762		Shaw
WF	800		PSW
RF	1000		PSW
SH	1000		PSW
DF	570		Shaw
WH	682		Shaw
MH	687		Shaw
WB	621		Shaw
KP	679	lodgepole pine	Shaw
LP	679		Shaw
СР	365	Jeffrey pine	PSW
LM	409		Shaw
JP	365		PSW
SP	561		Shaw
WP	272		Shaw
PP	365		PSW
MP	365	ponderosa pine	PSW
GP	214	blue oak	Shaw
WJ	272		Shaw

Species Code	R5 SDI	Mannedte	C *
Species Code	Maximum	Mapped to	Source*
BR	412	white spruce	Shaw
GS	576	incense-cedar	Shaw
PY	576	incense-cedar	Shaw
OS	365	Jeffrey pine	PSW
LO	667	canyon live oak	Shaw
CY	667		Shaw
BL	214		Shaw
EO	214	blue oak	Shaw
WO	440		Shaw
ВО	406		Shaw
VO	440	Oregon white oak	Shaw
Ю	667	canyon live oak	Shaw
BM	629		Shaw
BU	440	Oregon white oak	Shaw
RA	441		Shaw
MA	515		Shaw
GC	785	tanoak	Shaw
DG	406	California black oak	Shaw
FL	441	red alder	Shaw
WN	283	black walnut	Shaw
TO	785		Shaw
SY	499	sycamore	Shaw
AS	562		Shaw
CW	452		Shaw
WI	447	black willow	Shaw
CN	576	incense-cedar	Shaw
CL	406	California black oak	Shaw
ОН	452	black cottonwood	Shaw

^{*}Sources include an unpublished analysis of FIA data by John Shaw (Shaw) and a review of current data/literature by Pacific Southwest Research Station (PSW).

4.0 Growth Relationships

This chapter describes the functional relationships used to fill in missing tree data and calculate incremental growth. In FVS, trees are grown in either the small tree sub-model or the large tree sub-model depending on the diameter.

4.1 Height-Diameter Relationships

Height-diameter relationships in FVS are primarily used to estimate tree heights missing in the input data, and occasionally to estimate diameter growth on trees smaller than a given threshold diameter. In the CA variant, FVS will dub in heights by one of two methods. By default, the CA variant will use the Curtis-Arney functional form as shown in equation $\{4.1.1\}$ (Curtis 1967, Arney 1985). If the input data contains at least three measured heights for a species, then FVS will default to a logistic height-diameter equation $\{4.1.2\}$ (Wykoff, et.al 1982) that may be calibrated to the input data. In the CA variant, this doesn't happen by default, but can be turned on with the NOHTREG keyword by entering "1" in field 2.Coefficients for all height-diameter equations are given in table 4.1.1.

In the CA variant, the default Curtis-Arney equation used depends on the "spline DBH" (given as Z). Values for "spline DBH" are given as Z in table 4.1.1.

{4.1.1} Curtis-Arney functional form

```
DBH \ge Z'': HT = 4.5 + P_2 * \exp[-P_3 * DBH \land P_4]

DBH < Z'': HT = [(4.5 + P_2 * \exp[-P_3 * Z \land P_4] - 4.51) * (DBH - 0.3) / (Z - 0.3)] + 4.51
```

{4.1.2} Wykoff functional form

$$HT = 4.5 + \exp(B_1 + B_2 / (DBH + 1.0))$$

where:

HT is tree height

Z is the "spline DBH" shown in table 4.1.1

DBH is tree diameter at breast height

 B_1 - B_2 are species-specific coefficients shown in table 4.1.1 P_2 - P_4 are species-specific coefficients shown in table 4.1.1

Data were available to fit Curtis-Arney and Wykoff height-diameter coefficients for incense-cedar, white fir, California red fir, Shasta red fir, Douglas-fir, knobcone pine, lodgepole pine, Jeffrey pine, sugar pine, western white pine, ponderosa pine, gray pine, Oregon white oak, California black oak, and Pacific madrone). Curtis-Arney coefficients for the other species were fit from inventory data from other forests in Region 6. Wykoff coefficients for other species are from the Klamath Mountains (NC) FVS variant.

Table 4.1.1 Coefficients and "spline DBH" for equations $\{4.1.1\} - \{4.1.2\}$ in the CA variant.

	Curtis-	Arney Coe	Wykoff Coefficients					
Species		-			Default			
Code	P ₂	P_3	P ₄	Z	B ₁	B ₂		
PC	8532.9026	8.0343	-0.1831	3.0	4.7874	-7.317		
IC	695.4196	7.5021	-0.3852	6.0	5.2052	-20.1443		
RC	487.5415	5.4444	-0.3801	3.0	4.7874	-7.317		
WF	467.307	6.1195	-0.4325	3.0	5.218	-14.8682		
RF	606.3002	6.2936	-0.386	3.0	5.2973	-17.2042		
SH	606.3002	6.2936	-0.386	3.0	5.2973	-17.2042		
DF	408.7614	5.4044	-0.4426	3.0	5.3076	-14.474		
WH	263.1274	6.9356	-0.6619	3.0	4.7874	-7.317		
МН	233.6987	6.9059	-0.6166	3.0	4.7874	-7.317		
WB	89.5535	4.2281	-0.6438	3.0	4.7874	-7.317		
KP	101.517	4.7066	-0.954	2.0	4.6843	-6.5516		
LP	99.1568	12.13	-1.3272	5.0	4.8358	-9.2077		
CP	514.1013	5.5983	-0.2734	3.0	4.7874	-7.317		
LM	514.1013	5.5983	-0.2734	3.0	4.7874	-7.317		
JP	744.7718	7.6793	-0.3779	5.0	5.1419	-19.8143		
SP	944.9299	6.2428	-0.3087	5.0	5.3371	-19.3151		
WP	422.0948	6.0404	-0.4525	3.0	5.2649	-15.5907		
PP	1267.7589	7.4995	-0.3286	2.0	5.382	-20.4097		
MP	113.7962	4.7726	-0.7601	3.0	4.7874	-7.317		
GP	79986.6348	9.9284	-0.1013	2.0	4.6236	-13.0049		
WJ	60.6009	4.1543	-0.6277	3.0	4.7874	-7.317		
BR	91.7438	17.1081	-1.4429	3.0	4.7874	-7.317		
GS	8532.9026	8.0343	-0.1831	3.0	4.7874	-7.317		
PY	127.1698	4.8977	-0.4668	3.0	4.7874	-7.317		
OS	79986.6348	9.9284	-0.1013	3.0	4.7874	-7.317		
LO	105.0771	5.6647	-0.6822	3.0	4.6618	-8.3312		
CY	105.0771	5.6647	-0.6822	3.0	4.6618	-8.3312		
BL	59.0941	6.1195	-1.0552	3.0	4.6618	-8.3312		
EO	59.0941	6.1195	-1.0552	3.0	4.6618	-8.3312		
WO	40.3812	3.7653	-1.1224	3.0	3.8314	-4.8221		
ВО	120.2372	4.1713	-0.6113	3.0	4.4907	-7.703		
VO	126.7237	3.18	-0.6324	3.0	4.6618	-8.3312		
10	55	5.5	-0.95	3.0	4.6618	-8.3312		
BM	143.9994	3.5124	-0.5511	3.0	4.6618	-8.3312		
BU	55	5.5	-0.95	3.0	4.6618	-8.3312		
RA	94.5048	4.0657	-0.9592	3.0	4.6618	-8.3312		

	Curtis-	Arney Coe	fficients	1	Wykoff Coefficients		
Species					Default		
Code	P ₂	P ₃	P ₄	Z	B ₁	B ₂	
MA	117.741	4.0764	-0.6151	3.0	4.4809	-7.5989	
GC	1176.9704	6.3245	-0.2739	3.0	4.6618	-8.3312	
DG	403.3221	4.3271	-0.2422	3.0	4.6618	-8.3312	
FL	97.7769	8.8202	-1.0534	3.0	4.6618	-8.3312	
WN	105.0771	5.6647	-0.6822	3.0	4.6618	-8.3312	
TO	679.1972	5.5698	-0.3074	3.0	4.6618	-8.3312	
SY	55	5.5	-0.95	3.0	4.6618	-8.3312	
AS	47.3648	15.6276	-1.9266	3.0	4.6618	-8.3312	
CW	179.0706	3.6238	-0.573	3.0	4.6618	-8.3312	
WI	149.5861	2.4231	-0.18	3.0	4.6618	-8.3312	
CN	55	5.5	-0.95	3.0	4.6618	-8.3312	
CL	114.1627	6.021	-0.7838	3.0	4.6618	-8.3312	
ОН	40.3812	3.7653	-1.1224	3.0	4.6618	-8.3312	

4.2 Bark Ratio Relationships

Bark ratio estimates are used to convert between diameter outside bark and diameter inside bark in various parts of the model. In the CA variant, bark ratio values are determined using estimates from DIB equations or by setting to a constant value. Equations used in the CA variant are shown in equations $\{4.2.1\} - \{4.2.3\}$. Coefficients (b_1 and b_2) and equation reference for these equations by species are shown in table 4.2.1.

 $\{4.2.1\}$ DIB = $b_1 * DBH^b_2$ where BRATIO = DIB / DBH

 $\{4.2.2\}$ DIB = $b_1 + (b_2 * DBH)$ where BRATIO = DIB / DBH

 $\{4.2.3\}$ *BRATIO* = b_1

where:

BRATIO is species-specific bark ratio (bounded to 0.8 < BRATIO < 0.99)

DBH is tree diameter at breast height

DIB is tree diameter inside bark at breast height

 $b_1 - b_2$ are species-specific coefficients shown in table 4.2.1

Table 4.2.1 Coefficients and equation reference for bark ratio equations $\{4.2.1\}$ – $\{4.2.3\}$ in the CA variant.

Species				
Code	b ₁	b ₂	Equation to use	Equation Source
PC	0.94967	1.0	{4.2.1}	Wykoff et al
IC	-0.0549	0.8374	{4.2.2}	Dolph PSW-368
RC	0.94967	1.0	{4.2.1}	Wykoff et al

Species Code	b ₁	b ₂	Equation to use	Equation Source
WF	-0.1593	0.8911	{4.2.2}	Dolph PSW-368
RF	-0.1593	0.8911	{4.2.2}	Dolph PSW-368
SH	-0.1593	0.8911	{4.2.2}	Dolph PSW-368
DF	0.903563	0.989388	{4.2.1}	Walters et al
WH	0.93371	1	{4.2.1}	Wykoff et al
MH	0.93371	1	{4.2.1}	Wykoff et al
WB	0.9	0	{4.2.3}	Wykoff et al
KP	0.9329	0	{4.2.3}	Wykoff (avg. of AF, IC, ES, LP, WP)
LP	0.9	0	{4.2.3}	Wykoff et al
СР	-0.4448	0.8967	{4.2.2}	Dolph PSW-368
LM	0.9	0	{4.2.3}	Wykoff et al
JP	-0.4448	0.8967	{4.2.2}	Dolph PSW-368
SP	-0.1429	0.8863	{4.2.2}	Dolph PSW-368
WP	-0.1429	0.8863	{4.2.2}	Dolph PSW-368
PP	-0.4448	0.8967	{4.2.2}	Dolph PSW-368
MP	-0.4448	0.8967	{4.2.2}	Dolph PSW-368
GP	0.9329	0	{4.2.3}	Wykoff (avg. of AF, IC, ES, LP, WP)
WJ	0.94967	1.0	{4.2.1}	Wykoff et al
BR	0.9	0	{4.2.3}	Wykoff et al
GS	0.94967	1.0	{4.2.1}	Wykoff et al
PY	0.9	0	{4.2.3}	Wykoff et al
OS	-0.4448	0.8967	{4.2.2}	Dolph PSW-368
LO	-0.75739	0.93475	{4.2.2}	Pillsbury and Kirkley
CY	-0.19128	0.96147	{4.2.2}	Pillsbury and Kirkley
BL	-0.17324	0.94403	{4.2.2}	Pillsbury and Kirkley
EO	-0.78572	0.92472	{4.2.2}	Pillsbury and Kirkley
WO	-0.30722	0.95956	{4.2.2}	Pillsbury and Kirkley
ВО	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
VO	-0.38289	0.93545	{4.2.2}	Pillsbury and Kirkley
Ю	0.04817	0.92953	{4.2.2}	Pillsbury and Kirkley
BM	0.0836	0.94782	{4.2.2}	Pillsbury and Kirkley
BU	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
RA	0.075256	0.94373	{4.2.2}	Pil. & Kirk.; Harlow & Harrar
MA	-0.01348	0.98155	{4.2.2}	Pillsbury and Kirkley
GC	0.15565	0.90182	{4.2.2}	Pillsbury and Kirkley
DG	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
FL	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
WN	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
ТО	-0.26824	0.95354	{4.2.2}	Pillsbury and Kirkley
SY	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
AS	0.075256	0.94373	{4.2.2}	Pil. & Kirk.; Harlow & Harrar
CW	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
WI	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
CN	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley
CL	-0.12791	0.96579	{4.2.2}	Pillsbury and Kirkley

Species Code	b ₁	b ₂	Equation to use	Equation Source
ОН	-0.26824	0.95767	{4.2.2}	Pillsbury and Kirkley

4.3 Crown Ratio Relationships

Crown ratio equations are used for three purposes in FVS: (1) to estimate tree crown ratios missing from the input data for both live and dead trees; (2) to estimate change in crown ratio from cycle to cycle for live trees; and (3) to estimate initial crown ratios for regenerating trees established during a simulation.

4.3.1 Crown Ratio Dubbing

In the CA variant, crown ratios missing in the input data are predicted using different equations depending on tree species and size. All live trees less than 1.0" in diameter and dead trees of all sizes use equations {4.3.1.1} and {4.3.1.2} to compute crown ratio. Equation coefficients are found in table 4.3.1.1.

$$\{4.3.1.1\} X = R_1 + R_2 * HT + R_3 * BA + N(0,SD)$$

$$\{4.3.1.2\}$$
 CR = $((X-1)*10.0+1.0)/100$

where:

CR is crown ratio expressed as a proportion (bounded to 0.05 < CR < 0.95)

HT is tree height

BA is total stand basal area

N(0,SD) is a random increment from a normal distribution with a mean of 0 and a standard

deviation of SD

 $R_1 - R_3$ are species-specific coefficients shown in table 4.3.1.1

Table 4.3.1.1 Coefficients for the crown ratio equation {4.3.1.1} in the CA variant.

Species Code	R₁	R ₂	R₃	SD
PC	7.55854	-0.01564	-0.00906	1.9658
IC	7.55854	-0.01564	-0.00906	1.9658
RC	7.55854	-0.01564	-0.00906	1.9658
WF	8.04277	0.0072	-0.01616	1.3167
RF	8.04277	0.0072	-0.01616	1.3167
SH	8.04277	0.0072	-0.01616	1.3167
DF	8.47703	-0.01803	-0.018140	1.3756
WH	7.55854	-0.01564	-0.00906	1.9658
МН	7.55854	-0.01564	-0.00906	1.9658
WB	6.48981	-0.02982	-0.00928	2.0426
KP	6.48981	-0.02982	-0.00928	2.0426
LP	6.48981	-0.02982	-0.00928	2.0426

Species				
Code	R ₁	R ₂	R₃	SD
СР	6.48981	-0.02982	-0.00928	2.0426
LM	6.48981	-0.02982	-0.00928	2.0426
JP	6.48981	-0.02982	-0.00928	2.0426
SP	6.48981	-0.02982	-0.00928	2.0426
WP	6.48981	-0.02982	-0.00928	2.0426
PP	6.48981	-0.02982	-0.00928	2.0426
MP	6.48981	-0.02982	-0.00928	2.0426
GP	6.48981	-0.02982	-0.00928	2.0426
WJ	9.000000	0.000000	0.000000	0.5
BR	8.04277	0.0072	-0.01616	1.3167
GS	6.48981	-0.02982	-0.00928	2.0426
PY	6.48981	-0.02982	-0.00928	2.0426
OS	6.48981	-0.02982	-0.00928	2.0426
LO	5.000000	0.000000	0.000000	0.5
CY	5.000000	0.000000	0.000000	0.5
BL	5.000000	0.000000	0.000000	0.5
EO	5.000000	0.000000	0.000000	0.5
WO	5.000000	0.000000	0.000000	0.5
ВО	5.000000	0.000000	0.000000	0.5
VO	5.000000	0.000000	0.000000	0.5
Ю	5.000000	0.000000	0.000000	0.5
BM	5.000000	0.000000	0.000000	0.5
BU	5.000000	0.000000	0.000000	0.5
RA	5.000000	0.000000	0.000000	0.5
MA	5.000000	0.000000	0.000000	0.5
GC	5.000000	0.000000	0.000000	0.5
DG	5.000000	0.000000	0.000000	0.5
FL	5.000000	0.000000	0.000000	0.5
WN	5.000000	0.000000	0.000000	0.5
TO	5.000000	0.000000	0.000000	0.5
SY	5.000000	0.000000	0.000000	0.5
AS	5.000000	0.000000	0.000000	0.5
CW	5.000000	0.000000	0.000000	0.5
WI	5.000000	0.000000	0.000000	0.5
CN	5.000000	0.000000	0.000000	0.5
CL	5.000000	0.000000	0.000000	0.5
ОН	5.000000	0.000000	0.000000	0.5

A Weibull-based crown model developed by Dixon (1985) as described in Dixon (2002) is used to predict crown ratio for all live trees 1.0" in diameter or larger. To estimate crown ratio using this methodology, the average stand crown ratio is estimated from stand density index using equation {4.3.1.3}. Weibull parameters are then estimated from the average stand crown ratio using equations in equation set {4.3.1.4}. Individual tree crown ratio is then set from the Weibull distribution, equation {4.3.1.5} based on a tree's relative position in the diameter distribution and multiplied by a scale factor, shown in equation {4.3.1.6}, which accounts for stand density. Crowns estimated from the Weibull distribution are bounded to be between the 5 and 95 percentile points of the specified Weibull distribution. Coefficients for the Weibull distribution were fit to equations from the Klamath Mountains (NC) and West Cascades (WC) variants, with species being matched to the closest curve of another appropriate species. Species index mapping and equation coefficients for each species are shown in tables 4.3.1.2 and 4.3.1.3.

 $\{4.3.1.3\}$ ACR = $d_0 + d_1 * RELSDI * 100.0$

{4.3.1.4} Weibull parameters A, B, and C are estimated from average crown ratio

 $A = a_0$

 $B = b_0 + b_1 * ACR (B > 3)$

 $C = c_0 + c_1 * ACR \quad (C > 2)$

 $\{4.3.1.5\}\ Y = 1-\exp(-((X-A)/B)^C)$

 ${4.3.1.6}$ SCALE = 1.5 - RELSDI

where:

ACR is predicted average stand crown ratio for the species
 RELSDI is the relative site density index (Stand SDI / Maximum SDI)
 A, B, C are parameters of the Weibull crown ratio distribution
 X is a tree's crown ratio expressed as a percent / 10

Y is a trees rank in the diameter distribution (1 = smallest; ITRN = largest) divided by the

total number of trees (ITRN) multiplied by SCALE

SCALE is a density dependent scaling factor (bounded to $0.3 \le SCALE \le 1.0$)

CCF is stand crown competition factor

 a_0 , b_{0-1} , c_{0-1} , and d_{0-1} are species-specific coefficients shown in tables 4.3.1.2 and 4.3.1.3

Table 4.3.1.2 Mapped species index for the Weibull parameter equations {4.3.1.3} and {4.3.1.4} in the CA variant.

Species Code	Species Index
PC	6
IC	6
RC	6
WF	4
RF	9
SH	9
DF	3

Species	
Code	Species Index
LO	7
CY	7
BL	7
EO	7
WO	7
ВО	7
VO	7

Species	
Code	Species Index
WH	12
MH	12
WB	13
KP	13
LP	17
СР	13
LM	13
JP	10
SP	2
WP	2
PP	10
MP	10
GP	10
WJ	1
BR	1
GS	1
PY	1
OS	3

Species	
Code	Species Index
Ю	7
BM	14
BU	16
RA	15
MA	5
GC	16
DG	16
FL	16
WN	16
TO	8
SY	16
AS	16
CW	16
WI	16
CN	16
CL	16
ОН	16

Table 4.3.1.3 Coefficients for the Weibull parameter equations $\{4.3.1.3\}$ and $\{4.3.1.4\}$ in the CA variant.

		Species Index							
Coefficient	1	2	3	4	5	6	7	8	9
a_0	0	0	0	0	0	0	0	0	0
b ₀	0.52909	0.25115	0.52909	0.48464	0.08402	0.29964	0.06607	0.25667	0.16601
b ₁	1.00677	1.05987	1.00677	1.01272	1.10297	1.05398	1.10705	1.06474	1.0815
C ₀	-3.48211	0.33383	-3.48211	-2.78353	0.91078	-1.0927	2.04714	0.11729	0.9142
C ₁	1.3878	0.63833	1.3878	1.27283	0.45819	0.80687	0.1507	0.61681	0.45768
d_0	7.48846	6.92893	7.48846	7.44422	3.64292	5.12357	6.82187	5.95912	6.14578
d ₁	-0.02899	-0.04053	-0.02899	-0.04779	-0.00317	-0.01042	-0.02247	-0.01812	-0.02781
				Specie	s Index				
Coefficient	10	11	12	13	14	15	16	17	
a_0	0	0	0	0	1	1	0	0	
b ₀	0.03685	0.25667	0.49085	0.16267	-0.81881	-1.11274	-0.2383	-0.13121	
b ₁	1.09499	1.06474	1.01414	1.0734	1.05418	1.12314	1.18016	1.15976	
C ₀	4.0134	0.11729	3.16456	3.2885	-2.36611	2.53316	3.04413	2.59824	
C ₁	0.04946	0.61681	0	0	1.20241	0	0	0	
d ₀	6.04928	5.95912	5.48853	6.48494	4.42	4.12048	4.62512	4.89032	
d ₁	-0.01091	-0.01812	-0.00717	-0.02325	-0.01066	-0.00636	-0.01604	-0.01884	

4.3.2 Crown Ratio Change

Crown ratio change is estimated after growth, mortality and regeneration are estimated during a projection cycle. Crown ratio change is the difference between the crown ratio at the beginning of the cycle and the predicted crown ratio at the end of the cycle. Crown ratio predicted at the end of the projection cycle is estimated for live tree records using the Weibull distribution, equations $\{4.3.1.3\}$ - $\{4.3.1.6\}$, for all species. Crown change is checked to make sure it doesn't exceed the change possible if all height growth produces new crown. Crown change is further bounded to 1% per year for the length of the cycle to avoid drastic changes in crown ratio. Equations $\{4.3.1.1\}$ and $\{4.3.1.2\}$ are not used when estimating crown ratio change.

4.3.3 Crown Ratio for Newly Established Trees

Crown ratios for newly established trees during regeneration are estimated using equation {4.3.3.1}. A random component is added in equation {4.3.3.1} to ensure that not all newly established trees are assigned exactly the same crown ratio.

```
\{4.3.3.1\} CR = 0.89722 - 0.0000461 * PCCF + RAN
```

where:

CR is crown ratio expressed as a proportion (bounded to $0.2 \le CR \le 0.9$)

PCCF is crown competition factor on the inventory point where the tree is established

RAN is a small random component

4.4 Crown Width Relationships

4.4.1 Region 5 Crown Width

Crown width in Region 5 forests is calculated by using equations $\{4.4.1.1\} - \{4.4.1.5\}$. If a tree has a *DBH* greater than or equal to its threshold diameter (given as *DBH*_T), then it uses equation $\{4.4.1.1\}$, $\{4.4.1.2\}$, or $\{4.4.1.3\}$ depending on the species. If a tree has a *DBH* less than its threshold diameter, then it uses equation $\{4.4.1.4\}$ or $\{4.4.1.5\}$ depending on the height of the tree. Coefficients, equation reference, and threshold diameter values for these equations are shown in table 4.4.1.1 by species.

```
\{4.4.1.1\} DBH > DBH<sub>T</sub>: CW = a_1 + a_2 * DBH
```

$$\{4.4.1.2\}$$
 DBH > DBH_T: CW = $a_1 * DBH^a_2$

$$\{4.4.1.3\}$$
 DBH > DBH_T: CW = $a_1 + a_2 * DBH + a_3 * DBH^2$

$$\{4.4.1.4\}$$
 HT < 4.5' and DBH < DBH_T: CW = HT * s₁

$$\{4.4.1.5\}$$
 HT > 4.5' and DBH < DBH_T: CW = $d_1 + d_2 * DBH$

where:

CW is maximum tree crown width

DBH is tree diameter at breast height

 DBH_T is threshold diameter shown in table 4.4.1.1

HT is tree height

 s_1 , d_{1-2} , and a_{1-3} are species-specific coefficients shown in table 4.4.1.1

Table 4.4.1.1 Coefficients and equation reference for equations $\{4.4.1.1\} - \{4.4.1.5\}$ in the CA variant.

Species	Equation							
Code	Used*	DBH⊤	d ₁	d ₂	a_1	a ₂	a ₃	S ₁
PC	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
IC	{4.4.1.1}	5	3.5	1.192	7.11	0.47	0	0.7778
RC	{4.4.1.1}	5	3.5	1.7	4	1.6	0	0.7778
WF	{4.4.1.1}	5	3.26	1.103	5.82	0.591	0	0.7778
RF	{4.4.1.1}	5	3.5	1.063	6.71	0.421	0	0.7778
SH	{4.4.1.1}	5	3.5	1.063	6.71	0.421	0	0.7778
DF	{4.4.1.1}	5	3.62	1.37	6.81	0.732	0	0.7778
WH	{4.4.1.1}	5	3.5	1.624	4.57	1.41	0	0.7778
МН	{4.4.1.1}	5	3.5	0.852	4.72	0.608	0	0.7778
WB	{4.4.1.2}	5	3.5	0.8496	2.37	0.736	0	0.7778
KP	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
LP	{4.4.1.2}	5	3.5	0.6492	1.91	0.784	0	0.7778
СР	{4.4.2.2}	5	3.5	1.7618	3.9347	0.7086	0	0.7778
LM	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
JP	{4.4.1.2}	5	3.5	0.5754	1.52	0.891	0	0.7778
SP	{4.4.1.1}	7.4	3.5	0.338	-1.476	1.01	0	0.7778
WP	{4.4.1.1}	7.6	3.5	0.329	-0.997	0.92	0	0.7778
PP	{4.4.1.2}	5	3.77	0.7756	2.24	0.763	0	0.7778
MP	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
GP	{4.4.2.2}	5	3.5	1.9108	3.8273	0.7624	0	0.7778
WJ	{4.4.1.2}	5	3.5	1.6684	4.31	0.628	0	0.7778
BR	{4.4.1.1}	5	3.5	2.4	6.5	1.8	0	0.7778
GS	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
PY	{4.4.1.1}	5	3.5	1.56	4.2	1.42	0	0.7778
OS	{4.4.1.1}	5	3.5	1.1	6	0.6	0	0.7778
LO	{4.4.2.2}	5	2.5	3.2150	5.3732	0.7707	0	0.5556
CY	{4.4.1.1}	5	2.5	2.19	5	1.69	0	0.5556
BL	{4.4.1.2}	5	2.5	2.2175	4.49	0.688	0	0.5556
EO	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
WO	{4.4.1.1}	5	2.5	2.036	3.08	1.92	0	0.5556
ВО	{4.4.1.1}	5	2.5	2.7	10	1.2	0	0.5556
VO	{4.4.2.2}	5	2.5	2.2816	4.5628	0.6925	0	0.5556
Ю	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
BM	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
BU	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
RA	{4.4.1.1}	5	2.5	2.63	8	1.53	0	0.5556
MA	{4.4.1.1}	5	3.11	1.008	1	1.43	0	0.5556
GC	{4.4.1.3}	5	2.15	1.646	2.98	1.55	-0.014	0.5556
DG	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556

Species	Equation							
Code	Used*	DBH_T	d ₁	d_2	a_1	a ₂	a ₃	S ₁
FL	{4.4.1.1}	5	2.5	1.22	0.5	1.62	0	0.5556
WN	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
TO	{4.4.1.1}	13.4	2.23	1.63	10	1.05	0	0.5556
SY	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
AS	{4.4.1.1}	5	2.5	1.22	0.5	1.62	0	0.5556
CW	{4.4.1.1}	5	2.5	1.22	0.5	1.62	0	0.5556
WI	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
CN	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
CL	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556
ОН	{4.4.1.1}	5	2.5	1.4	2	1.5	0	0.5556

^{*}Equation refers to the species-specific equation used when DBH \geq DBH_T

4.4.2 Region 6 Crown Width

Crown width for Region 6 forests is calculated using equations $\{4.4.2.1\} - \{4.4.2.6\}$, and coefficients for these equations are shown in table 4.4.2.1. The minimum diameter and bounds for certain data values are given in table 4.4.2.2. Equation numbers in table 4.4.2.1 are given with the first three digits representing the FIA species code, and the last two digits representing the equation source.

```
{4.4.2.1} Bechtold (2004); Equation 01
```

```
DBH \ge MinD: CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2)

DBH < MinD: CW = [a_1 + (a_2 * MinD) * (a_3 * MinD^2)] * (DBH / MinD)
```

{4.4.2.2} Bechtold (2004); Equation 02

```
DBH \ge MinD: CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)

DBH < MinD: CW = [a_1 + (a_2 * MinD) + (a_3 * MinD^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / MinD)
```

{4.4.2.3} Crookston (2003); Equation 03

```
DBH \ge MinD: CW = a_1 * \exp(a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(DBH)) + (a_5 * \ln(HT)) + (a_6 * \ln(BA)))
DBH < MinD: CW = (a_1 * \exp(a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(MinD)) + (a_5 * \ln(HT)) + (a_6 * \ln(BA)))) * (DBH + (MinD))
```

{4.4.2.4} Crookston (2005); Equation 04

```
DBH \ge MinD: CW = a_1 * DBH \land a_2

DBH < MinD: CW = [a_1 * MinD \land a_2] * (DBH / MinD)
```

{4.4.2.5} Crookston (2005); Equation 05

```
DBH \ge MinD: CW = (a_1 * BF) * DBH^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * exp(EL)^a_6

DBH < MinD: CW = [CW = (a_1 * BF) * MinD^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * exp(EL)^a_6] * (DBH / MinD)
```

{4.4.2.6} Donnelly (1996); Equation 06

 $DBH \ge MinD CW = a_1 * DBH^a_2$ $DBH < MinD CW = [a_1 * MinD^a_2] * (DBH / MinD)$

where:

BF is a species-specific coefficient based on forest code shown in table 4.4.2.3

CW is tree maximum crown width

CL is tree crown length

CR% is crown ratio expressed as a percent DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

EL is stand elevation in hundreds of feet

MinD is the minimum diameter
HI is the Hopkins Index

HI = (ELEVATION - 5449) / 100) * 1.0 + (LATITUDE - 42.16) * 4.0 + (-116.39 - LONGITUDE)

* 1.25

 $a_1 - a_6$ are species-specific coefficients shown in table 4.4.2.1

Table 4.4.2.1 Coefficients for crown width equations {4.4.2.1}-{4.4.2.6} in the CA variant.

Species	Equation						
Code	Number*	a_1	a ₂	a ₃	a ₄	a ₅	a_6
PC	04105	4.6387	0.50874	-0.22111	0.17505	0.06447	-0.00602
IC	08105	5.0446	0.47419	-0.13917	0.1423	0.04838	-0.00616
RC	24205	6.2382	0.29517	-0.10673	0.23219	0.05341	-0.00787
WF	01505	5.0312	0.5368	-0.18957	0.16199	0.04385	-0.00651
RF	02006	3.1146	0.578	0	0	0	0
SH	02105	2.317	0.4788	-0.06093	0.15482	0.05182	0
DF	20205	6.0227	0.54361	-0.20669	0.20395	-0.00644	-0.00378
WH	26305	6.0384	0.51581	-0.21349	0.17468	0.06143	-0.00571
MH	26403	6.90396	0.55645	-0.28509	0.2043	0	0
WB	10105	2.2354	0.6668	-0.11658	0.16927	0	0
KP	10305	4.0069	0.84628	-0.29035	0.13143	0	-0.00842
LP	10805	6.6941	0.8198	-0.36992	0.17722	-0.01202	-0.00882
СР	10805	6.6941	0.8198	-0.36992	0.17722	-0.01202	-0.00882
LM	11301	4.0181	0.8528	0	0	0	0
JP	11605	4.0217	0.66815	-0.11346	0.09689	-0.636	0
SP	11705	3.593	0.63503	-0.22766	0.17827	0.04267	-0.0029
WP	11905	5.3822	0.57896	-0.19579	0.14875	0	-0.00685
PP	12205	4.7762	0.74126	-0.28734	0.17137	-0.00602	-0.00209
MP	12702	-2.4909	1.0716	0	0.0648	0	-0.1127
GP	12702	-2.4909	1.0716	0	0.0648	0	-0.1127
WJ	06405	5.1486	0.73636	-0.46927	0.39114	-0.05429	0
BR	09204	2.8232	0.66326	0	0	0	0

Species	Equation						
Code	Number*	a_1	a_2	a ₃	a ₄	a ₅	a ₆
GS	21104	3.7023	0.52618	0	0	0	0
PY	23104	6.1297	0.45424	0	0	0	0
OS	11605	4.0217	0.66815	-0.11346	0.09689	-0.636	0
LO	80102	-16.1696	1.7456	0	0.0925	0	-0.1956
CY	80502	0.2738	1.0534	0	0.035	0	-0.1385
BL	80702	2.711	1.5159	0	0.0415	-0.0271	0
EO	80702	2.711	1.5159	0	0.0415	-0.0271	0
WO	81505	2.4857	0.70862	0	0.10168	0	0
ВО	81802	1.6306	0.9867	0	0.0556	0	-0.1199
VO	82102	-2.1068	1.9385	0	0.086	0	0
Ю	83902	0.7146	1.546	0	0	0	-0.1121
BM	31206	7.5183	0.4461	0	0	0	0
BU	31206	7.5183	0.4461	0	0	0	0
RA	35106	7.0806	0.4771	0	0	0	0
MA	36102	4.9133	0.9459	0	0.0611	0	0.0523
GC	63102	3.115	0.7966	0	0.0745	-0.0053	0.0523
DG	35106	7.0806	0.4771	0	0	0	0
FL	31206	7.5183	0.4461	0	0	0	0
WN	31206	7.5183	0.4461	0	0	0	0
TO	63102	3.115	0.7966	0	0.0745	-0.0053	0.0523
SY	63102	3.115	0.7966	0	0.0745	-0.0053	0.0523
AS	74605	4.7961	0.64167	-0.18695	0.18581	0	0
CW	74705	4.4327	0.41505	-0.23264	0.41477	0	0
WI	31206	7.5183	0.4461	0	0	0	0
CN	98102	2.4247	1.3174	0	0.0786	0	0
CL	98102	2.4247	1.3174	0	0.0786	0	0
ОН	31206	7.5183	0.4461	0	0	0	0

^{*}Equation number is a combination of the species FIA code (###) and equation source (##).

Table 4.4.2.2 MinD values and data bounds for equations {4.4.2.1}-{4.4.2.6} in the CA variant.

Species	Equation						
Code	Number*	MinD	EL min	EL max	<i>HI</i> min	HI max	CW max
PC	04105	1.0	2	52	n/a	n/a	49
IC	08105	1.0	5	62	n/a	n/a	78
RC	24205	1.0	1	72	n/a	n/a	45
WF	01505	1.0	2	75	n/a	n/a	35
RF	02006	1.0	n/a	n/a	n/a	n/a	65
SH	02105	1.0	n/a	n/a	n/a	n/a	65
DF	20205	1.0	1	75	n/a	n/a	80
WH	26305	1.0	1	72	n/a	n/a	54
МН	26403	n/a	n/a	n/a	n/a	n/a	45

Species	Equation						
Code	Number*	MinD	EL min	<i>EL</i> max	HI min	HI max	CW max
WB	10105	1.0	n/a	n/a	n/a	n/a	40
KP	10305	1.0	12	49	n/a	n/a	46
LP	10805	1.0	1	79	n/a	n/a	40
СР	10805	1.0	1	79	n/a	n/a	40
LM	11301	5.0	n/a	n/a	n/a	n/a	25
JP	11605	1.0	n/a	n/a	n/a	n/a	39
SP	11705	1.0	5	75	n/a	n/a	56
WP	11905	1.0	10	75	n/a	n/a	35
PP	12205	1.0	13	75	n/a	n/a	50
MP	12702	5.0	n/a	n/a	-69	-4	54
GP	12702	5.0	n/a	n/a	-69	-4	54
WJ	06405	1.0	n/a	n/a	n/a	n/a	36
BR	09204	1.0	n/a	n/a	n/a	n/a	38
GS	21104	1.0	n/a	n/a	n/a	n/a	39
PY	23104	1.0	n/a	n/a	n/a	n/a	30
OS	11605	1.0	n/a	n/a	n/a	n/a	39
LO	80102	5.0	n/a	n/a	-73	-54	53
CY	80502	5.0	n/a	n/a	-60	-5	49
BL	80702	5.0	n/a	n/a	n/a	n/a	61
EO	80702	5.0	n/a	n/a	n/a	n/a	61
WO	81505	1.0	n/a	n/a	n/a	n/a	39
ВО	81802	5.0	n/a	n/a	-47	-8	52
VO	82102	5.0	n/a	n/a	n/a	n/a	47
Ю	83902	5.0	n/a	n/a	-60	-5	37
BM	31206	1.0	n/a	n/a	n/a	n/a	30
BU	31206	1.0	n/a	n/a	n/a	n/a	30
RA	35106	1.0	n/a	n/a	n/a	n/a	35
MA	36102	5.0	n/a	n/a	-55	15	43
GC	63102	5.0	n/a	n/a	-55	15	41
DG	35106	1.0	n/a	n/a	n/a	n/a	35
FL	31206	1.0	n/a	n/a	n/a	n/a	30
WN	31206	1.0	n/a	n/a	n/a	n/a	30
ТО	63102	5.0	n/a	n/a	-55	15	41
SY	63102	5.0	n/a	n/a	-55	15	41
AS	74605	1.0	n/a	n/a	n/a	n/a	45
CW	74705	1.0	n/a	n/a	n/a	n/a	56
WI	31206	1.0	n/a	n/a	n/a	n/a	30
CN	98102	5.0	n/a	n/a	n/a	n/a	44
CL	98102	5.0	n/a	n/a	n/a	n/a	44
ОН	31206	1.0	n/a	n/a	n/a	n/a	30

Table 4.4.2.3 BF values for equation {4.4.2.5} in the CA variant.

Species	Location Code					
Code	610, 710, 711	611, 712				
IC	0.903	0.821				
DF	1.000	0.961				
WH	1.000	1.028				
MH	0.900	0.900				
LP	0.944	0.944				
SP	1.048	1.000				
WP	1.081	1.000				
PP	0.918	0.951				
RA	0.810	0.810				

^{*}Any BF values not listed in Table 4.4.2.3 are assumed to be BF = 1.0

4.5 Crown Competition Factor

The CA variant uses crown competition factor (CCF) as a predictor variable in some growth relationships. Crown competition factor (Krajicek and others 1961) is a relative measurement of stand density that is based on tree diameters. Individual tree CCF_t values estimate the percentage of an acre that would be covered by the tree's crown if the tree were open-grown. Stand CCF is the summation of individual tree (CCF_t) values. A stand CCF value of 100 theoretically indicates that tree crowns will just touch in an unthinned, evenly spaced stand. Crown competition factor for an individual tree is calculated using equation {4.5.1} and is based off of crown width calculated using the Region 5 crown width equations in section 4.4.1.

 $\{4.5.1\}$ *CCF*_t = 0.001803 * *CW*^2

where:

*CCF*_t is crown competition factor for an individual tree

CW is maximum tree crown width

DBH is tree diameter at breast height

4.6 Small Tree Growth Relationships

Trees are considered "small trees" for FVS modeling purposes when they are smaller than some threshold diameter. The threshold diameter is set to 3.0" for all species in the CA variant.

The small tree model is height-growth driven, meaning height growth is estimated first and diameter growth is estimated from height growth. These relationships are discussed in the following sections.

4.6.1 Small Tree Height Growth

The small-tree height increment model predicts 5-year height growth (HTG) for small trees. Height growth in the CA variant is estimated by using equations $\{4.6.1.1\} - \{4.6.1.4\}$, and then modified with equation $\{4.6.1.5\}$ to account for differences in species, site index, and geographic area. Data was not available to fit small-tree height growth models for the CA variant. Equations $\{4.6.1.1\}$, $\{4.6.1.3\}$, and

{4.6.1.4} were taken from the Western Sierras (WS) variant. Equation {4.6.1.2} was derived from equations in Hann and Scrivani (1987) and Ritchie and Hann (1986). Equation reference and adjustment factors are shown in table 4.6.1.1.

{4.6.1.1} Pines

$$POTHTG = 1.75 * exp(0.7452 - (0.003271 * BAL) - (0.1632 * CR) + (0.0217 * CR^2) + (0.00536* SI))$$
 {4.6.1.2} Firs

$$POTHTG = 1.016605 * DOHTG * (1 - exp(-0.426558 * CR)) * (exp(2.54119 * (RELHT^0.250537 - 1))) DOHTG = (11.35 + 2.157 * SI) / (29 - 0.05 * SI)$$

{4.6.1.3} California black oak

$$POTHTG = \exp(3.817 - (0.7829 * \ln(BAL)))$$

{4.6.1.4} Tanoak

$$POTHTG = \exp(3.385 - (0.5898 * \ln(BAL)))$$

where:

POTHTG is potential height growth

BAL is total basal area in trees larger than the subject tree

CR is crown ratio expressed as a percent divided by 10 for equations {4.6.1.1}, {4.6.1.3}, and

{4.6.1.4}; is crown ratio expressed as a proportion for equation {4.6.1.2}

SI is species site index

For all species except firs, the potential height growth is adjusted based on a species-specific adjustment factor (X), and by the site index of the geographic area using equation {4.6.1.5}. A small random deviation (bounded between -0.2 and 0.05) is then added to the predicted height growth to assure a good distribution of estimated height growths.

$$\{4.6.1.5\}$$
 HTG = POTHTG * $[0.8 + (0.004 * (SI - 50))] * X$

where:

HTG is estimated height growth for the cycle

POTHTG is potential height growth

SI is species site index

X is a species-specific adjustment factor shown in table 4.6.1.1

Table 4.6.1.1 Equation reference, adjustment factors and diameter range where weighting between small and large tree models occurs in the CA variant.

Species Code	POTHTG Equation	Adjustment Factor (X)	X _{min}	X _{max}
	•	rajustilielle i uctor (x)	2411111	Zillux
PC	{4.6.1.2}	1.0	2.0	4.0
IC	{4.6.1.2}	1.0	2.0	4.0
RC	{4.6.1.2}	0.9	2.0	4.0
WF	{4.6.1.2}	1.1	2.0	4.0
RF	{4.6.1.2}	1.1	2.0	4.0

Species Code	POTHTG Equation	Adjustment Factor (X)	X _{min}	X _{max}
SH	{4.6.1.2}	1.1	2.0	4.0
DF	{4.6.1.2}	1.1	2.0	4.0
WH	{4.6.1.2}	0.8	2.0	4.0
MH	{4.6.1.2}	0.9	2.0	4.0
WB	{4.6.1.1}	0.9	2.0	4.0
KP	{4.6.1.1}	1.0	2.0	4.0
LP	{4.6.1.1}	1.0	2.0	4.0
СР	{4.6.1.1}	1.0	2.0	4.0
LM	{4.6.1.1}	1.0	2.0	4.0
JP	{4.6.1.1}	1.0	2.0	4.0
SP	{4.6.1.1}	1.1	2.0	4.0
WP	{4.6.1.1}	1.1	2.0	4.0
PP	{4.6.1.1}	1.0	2.0	4.0
MP	{4.6.1.1}	1.1	2.0	4.0
GP	{4.6.1.1}	0.9	2.0	4.0
WJ	{4.6.1.1}	1.0	2.0	4.0
BR	{4.6.1.2}	0.9	2.0	4.0
GS	{4.6.1.1}	1.0	2.0	4.0
PY	{4.6.1.2}	0.8	2.0	4.0
OS	{4.6.1.1}	1.0	2.0	4.0
LO	{4.6.1.3}	1.1	2.0	4.0
CY	{4.6.1.3}	0.9	2.0	4.0
BL	{4.6.1.3}	1.1	2.0	4.0
EO	{4.6.1.3}	1.1	2.0	4.0
WO	{4.6.1.3}	1.0	2.0	4.0
ВО	{4.6.1.3}	1.1	2.0	4.0
VO	{4.6.1.3}	1.0	2.0	4.0
Ю	{4.6.1.3}	1.1	2.0	4.0
BM	{4.6.1.4}	1.0	2.0	4.0
BU	{4.6.1.3}	1.0	2.0	4.0
RA	{4.6.1.3}	1.0	2.0	4.0
MA	{4.6.1.4}	1.0	2.0	4.0
GC	{4.6.1.3}	1.0	2.0	4.0
DG	{4.6.1.4}	1.0	2.0	4.0
FL	{4.6.1.3}	1.0	2.0	4.0
WN	{4.6.1.3}	1.1	2.0	4.0
ТО	{4.6.1.4}	1.0	2.0	4.0
SY	{4.6.1.3}	1.1	2.0	4.0
AS	{4.6.1.3}	1.2	2.0	4.0
CW	{4.6.1.3}	1.2	2.0	4.0

Species Code	POTHTG Equation	Adjustment Factor (X)	X _{min}	X _{max}
WI	{4.6.1.3}	1.1	2.0	4.0
CN	{4.6.1.2}	0.8	2.0	4.0
CL	{4.6.1.4}	1.0	2.0	4.0
ОН	{4.6.1.3}	1.0	2.0	4.0

For all species, a small random error is then added to the height growth estimate. The estimated height growth (*HTG*) is then adjusted to account for cycle length, user defined small-tree height growth adjustments, and adjustments due to small tree height model calibration from the input data.

Height growth estimates from the small-tree model are weighted with the height growth estimates from the large tree model over a range of diameters (X_{min} and X_{max}) in order to smooth the transition between the two models. For example, the closer a tree's DBH value is to the minimum diameter (X_{min}), the more the growth estimate will be weighted towards the small-tree growth model. The closer a tree's DBH value is to the maximum diameter (X_{max}), the more the growth estimate will be weighted towards the large-tree growth model. If a tree's DBH value falls outside of the range given by X_{min} and X_{max} , then the model will use only the small-tree or large-tree growth model in the growth estimate. The weight applied to the growth estimate is calculated using equation {4.6.1.6}, and applied as shown in equation {4.6.1.7}. The range of diameters where this weighting occurs for each species is shown above in table 4.6.1.1.

{4.6.1.6}

 $DBH < X_{min}$: XWT = 0

 $X_{\min} < DBH < X_{\max}: XWT = (DBH - X_{\min}) / (X_{\max} - X_{\min})$

 $DBH > X_{max}$: XWT = 1

 $\{4.6.1.7\}$ Estimated growth = [(1 - XWT) * STGE] + [XWT * LTGE]

where:

XWT is the weight applied to the growth estimates

DBH is tree diameter at breast height

 X_{max} is the maximum *DBH* where weighting between small and large tree models occurs is the minimum *DBH* where weighting between small and large tree models occurs

STGE is the growth estimate obtained using the small-tree growth model LTGE is the growth estimate obtained using the large-tree growth model

4.6.2 Small Tree Diameter Growth

As stated previously, for trees being projected with the small tree equations, height growth is predicted first, and then diameter growth. So both height at the beginning of the cycle and height at the end of the cycle are known when predicting diameter growth. Small tree diameter growth for trees over 4.5 feet tall is calculated as the difference of predicted diameter at the start of the projection period and the predicted diameter at the end of the projection period, adjusted for bark ratio. Diameter growth is predicted with the height-diameter equations shown in section 4.1 inverted so diameter is a function of height. In the CA variant, diameter growth of all small trees is a weighted

average of the small and large tree predictions when the *DBH* is between 1.5" and 3.0". By definition, diameter growth is zero for trees less than 4.5 feet tall.

4.7 Large Tree Growth Relationships

Trees are considered "large trees" for FVS modeling purposes when they are equal to, or larger than, some threshold diameter. This threshold diameter is set to 3.0" for all species in the CA variant.

The large-tree model is driven by diameter growth meaning diameter growth is estimated first, and then height growth is estimated from diameter growth and other variables. These relationships are discussed in the following sections.

4.7.1 Large Tree Diameter Growth

The large tree diameter growth model used in most FVS variants is described in section 7.2.1 in Dixon (2002). For most variants, instead of predicting diameter increment directly, the natural log of the periodic change in squared inside-bark diameter (ln(*DDS*)) is predicted (Dixon 2002; Wykoff 1990; Stage 1973; and Cole and Stage 1972). For variants predicting diameter increment directly, diameter increment is converted to the *DDS* scale to keep the FVS system consistent across all variants.

In the CA variant, a single equation form is used to estimate large-tree diameter growth in every species except giant sequoia. The equation for giant sequoia is shown in equation {4.7.1.2}, and the equation for all other species is shown in equation {4.7.1.1}. Coefficients for these equations are shown in tables 4.7.1.2 and 4.7.1.4. The tanoak estimate is modified by equation {4.7.1.3} to convert the 5-year estimate into a 10-year estimate.

In the CA variant, each species is mapped into a species index as shown in table 4.7.1.1. The coefficients for each species for equation 4.7.1.1 will depend on the species index of the subject species.

{4.7.1.1} Used for all species except giant sequoia

```
 \ln(DDS) = b_1 + (b_2 * EL) + (b_3 * EL^2) + (b_4 * \ln(SI)) + (b_5 * \sin(ASP)) + (b_6 * \cos(ASP)) + (b_7 * SL) + (b_8 * SL^2) + (b_9 * \ln(DBH)) + (b_{10} * CR) + (b_{11} * CR^2) + (b_{12} * DBH^2) + (b_{13} * BAL / (\ln(DBH + 1.0))) + (b_{14} * PCCF) + (b_{15} * RELHT) + (b_{16} * \ln(BA)) + (b_{17} * BAL)
```

{4.7.1.2} Used for giant sequoia

```
ln(DDS) = -0.4297 + (0.01401 * SI) + (1.26883 * ln(DBH)) + (-0.00035325 * DBH^2) + (0.0027986 * CR^2 / ln(DBH + 1)) + (-0.0079922 * PBAL / ln(DBH + 1))
```

{4.7.1.3} Modifying equation for tanoak

```
ln(DDS) = ln(exp(DDS)* 2.0)
```

where:

DDS is the square of the 10-year diameter growth increment

EL is stand elevation in hundreds of feet

SI is species site index (for mountain hemlock only, SI = SI * 3.281)

ASP is stand aspect SL is stand slope

CR is crown ratio expressed as a proportion

DBH is tree diameter at breast height

BAL is total basal area in trees larger than the subject treePBAL is point basal area in trees larger than the subject tree

PCCF is crown competition factor on the inventory point where the tree is established RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

BA is total stand basal area

 b_1 is a location-specific coefficient shown in table 4.7.1.2 b_2 - b_{17} are species-specific coefficients shown in table 4.7.1.4

Table 4.7.1.1 Mapped species index for each species for large-tree diameter growth in the CA variant.

Alpha Code	Species Index
PC	1
IC	1
RC	1
WF	2
RF	3
SH	3
DF	4
WH	7
MH	7
WB	6
KP	5
LP	6
СР	5
LM	5
JP	9
SP	7
WP	8
PP	9
MP	9
GP	
WJ	5 5 2
BR	
GS	12
PY	5
OS	9

Species Index
-
10
10
10
10
10
10
10
10
10
10
10
11
11
11
10
10
13
10
10
10
10
5
10
10

Table 4.7.1.2 b_1 values by location class for equation $\{4.7.1.1\}$ in the CA variant.

Location	Species Index								
Class	1	2	3	4	5	6	7		
1	-3.428338	-2.108357	-2.073942	-1.877695	0.564402	-2.058828	-2.397678		
2	-3.966547	0	-1.943608	-2.099646	0	-1.596998	0		
3	0	0	0	-2.211587	0	0	0		
4	0	0	0	-1.955301	0	0	0		
5	0	0	0	-2.078432	0	0	0		
Location			Specie	s Index					
Class	8	9	10	11	12	13			
1	-1.626879	-2.922255	-1.958189	-3.3447	0	-0.94563			
2	0	0	0	0	0	0			
3	0	0	0	0	0	0			
4	0	0	0	0	0	0			

Table 4.7.1.3 Classification of location class by species index and location code in the CA variant.

		Species Index											
Location Code	1	2	3	4	5	6	7	8	9	10	11	12	13
505 – Klammath	1	1	1	1	1	1	1	1	1	1	1	1	1
506 – Lassen	1	1	1	2	1	1	1	1	1	1	1	1	1
508 – Mendocino	1	1	1	2	1	1	1	1	1	1	1	1	1
511 – Plumas	1	1	2	1	1	2	1	1	1	1	1	1	1
514 – Shasta-Trinity	2	1	1	3	1	1	1	1	1	1	1	1	1
610 – Rogue River	1	1	1	4	1	1	1	1	1	1	1	1	1
611 - Siskiyou	1	1	1	5	1	1	1	1	1	1	1	1	1
710 – Roseburg	1	1	1	4	1	1	1	1	1	1	1	1	1
711 – Medford	1	1	1	4	1	1	1	1	1	1	1	1	1
712 – Coos Bay	1	1	1	5	1	1	1	1	1	1	1	1	1

Table 4.7.1.4 Coefficients (b_2 - b_{17}) for equation {4.7.1.1} in the CA variant.

	Species Index								
Coefficient	1	2	3	4	5	6	7		
b ₂	0	0.0301	0.0248	-0.0141	0	0	0		
b ₃	0	-0.00030732	-0.00033429	0.00024083	0	0	0		
b ₄	0.820451	0.365679	0.492695	0.759305	0	0.566946	0.963375		
b ₅	0	0.09735	0.13918	0.018681	0.951834	0	-0.014463		
b_6	0	-0.315227	-0.444594	-0.151727	0.64987	0	-0.280294		
b ₇	0	-0.206267	0	-0.339369	0	0	-0.581722		
b ₈	0	0	0	0	0	0	0		
b ₉	0.950418	1.182104	1.186676	0.716226	1.077154	1.218279	0.88615		
b ₁₀	1.815305	2.856578	2.763519	3.272451	-0.276387	3.167164	1.47865		
b ₁₁	0	-1.093354	-0.871061	-1.642904	1.063732	-1.568333	0		
b ₁₂	-0.0002385	-0.0006362	-0.0004572	-0.0002723	0	-0.0014178	-0.0002528		
b ₁₃	-0.005433	-0.005992	-0.003728	-0.008787	0	0	-0.006263		
b ₁₄	-0.000779	-0.001014	0	-0.000224	0	-0.000338	0		
b ₁₅	0	0	0	0	0	0	0		
b ₁₆	-0.000016	-0.058039	-0.122905	-0.028564	0	-0.267873	-0.129146		
b ₁₇	0	0	0	0	-0.000893	0	0		
Coefficient	8	9	10	11	12	13			

b ₂	0	-0.003784	0.0049	0	0	0
b ₃	0	0.0000666	-0.00008781	0	0	0
b ₄	0.7243	1.011504	0.213526	1.334008	0	0.00659
b ₅	-0.562259	0	0	0	0	-0.03587
b_6	-0.17951	0	0	0	0	-0.19935
b ₇	-0.544867	0	0	0	0	0.7353
b ₈	0	0	0	0	0	-0.99561
b ₉	0.825682	0.73875	1.310111	0.955569	0	0.99531
b ₁₀	1.675208	3.454857	0.271183	0	0	2.08524
b ₁₁	0	-1.773805	0	0	0	-0.98396
b ₁₂	-0.0000731	-0.0004708	-0.0003048	0	0	-0.000373
b ₁₃	-0.002133	-0.013091	0	-0.005893	0	-0.00147
b ₁₄	0	-0.000593	-0.000473	0	0	-0.00018
b ₁₅	0	0	0	0	0	0.50155
b ₁₆	-0.203636	-0.131185	0	-0.408462	0	0
b ₁₇	0	0	0	0	0	0

4.7.2 Large Tree Height Growth

Large tree height growth equations in the CA variant are based on site index curves. Species differences in height growth are accounted for by entering the appropriate curve with the species specific site index value. Region 6 forests use site curves as shown in section 3.4. Region 5 forests use Dunning/Levitan site curves shown in equation {4.7.2.6}.

In the CA variant, each species is mapped into a species index as shown in table 4.7.2.1. The coefficients and equations used for each species will depend on the species index of the subject species.

Table 4.7.2.1 Mapped species index for each species for height growth in the CA variant.

Species	
Code	Species Index
PC	3
IC	3
RC	3
WF	3
RF	5
SH	5
DF	3
WH	3
MH	5
WB	6
KP	6
LP	6
СР	6

Species	
Code	Species Index
LO	9
CY	9
BL	9
EO	9
WO	7
ВО	7
VO	7
Ю	9
BM	10
BU	7
RA	10
MA	9
GC	9

Species Code	Species Index
LM	6
JP	4
SP	3
WP	4
PP	4
MP	4
GP	4
WJ	6
BR	3
GS	3
PY	7
OS	3

Species	
Code	Species Index
DG	7
FL	7
WN	10
ТО	8
SY	10
AS	10
CW	10
WI	10
CN	10
CL	10
ОН	10

Using a species site index and tree height at the beginning of the projection cycle, an estimated tree age is computed using the site index curves. Estimated current height (ECH) and estimated future height (H10) are both obtained using the equations shown below. Estimated current height is obtained using estimated tree age at the start of the projection cycle and site index. Estimated future height is obtained using estimated tree age at the start of the projection cycle plus 10-years and site index. Height increment is obtained by subtracting estimated current height from estimated future height, then adjusting the difference according to tree's crown ratio and height relative to other trees in the stand.

Region 6 Forests use equations 4.7.2.1 through 4.7.2.5 for all species.

{4.7.2.1} Used for species index 3 and 4

$$H = (((SI - 4.5) * TOPTRM / BOTTRM) + 4.5) * 1.05$$

 $TOPTRM = 1 - \exp(-\exp(b_0 + (b_1 * \ln(SI - 4.5)) + (b_2 * \ln(A))))$
 $BOTTRM = 1 - \exp(-\exp(b_0 + (b_1 * \ln(SI - 4.5)) + (b_2 * \ln(50))))$

{4.7.2.2} Used for species index 5

$$H = ((SI - 4.5) * (1 - \exp(-X * A^b_1))) / (1 - \exp(-Y * 50^b_1)) + 4.5$$

 $X = (SI * TERM) + (b_4 * TERM^2) + b_5$
 $TERM = A * b_2 * \exp(A * b_3)$
 $Y = (SI * TERM2) + (b_4 * TERM2^2) + b_5$
 $TERM2 = 50 * b_2 * \exp(50 * b_3)$

{4.7.2.3} Used for species index 6

$$H = SI * [b_0 + (b_1 * A) + (b_2 * A^2)] * 1.10$$

{4.7.2.4} Used for species index 7

$$H = [SI * (1 + (b_1 * TERM)) - (b_0 * TERM)] * 0.70$$

 $TERM = SQRT(A) - 7.0711$

{4.7.2.5} Used for species index 8, 9, and 10

$$H = [SI / (b_0 + (b_1 / A))] * 0.80$$

where:

H is estimated height of the tree

SI is species site index

A is estimated age of the tree

 $b_0 - b_5$ are species-specific coefficients shown in table 4.7.2.2

Table 4.7.2.2 Coefficients ($b_0 - b_5$) for height-growth equations in the CA variant.

	Species Index							
Coefficient	3	4	5	6	7	8	9	10
b ₀	-6.21693	-6.54707	0	-0.0968	6.413	0.204	0.375	0.649
b ₁	0.281176	0.288169	1.51744	0.02679	0.322	39.787	31.233	17.556
b ₂	1.14354	1.21297	1.41512E-06	-9.309E-05	0	0	0	0
b ₃	0	0	-0.0440853	0	0	0	0	0
b ₄	0	0	-3049510.	0	0	0	0	0
b ₅	0	0	0.000572474	0	0	0	0	0

Region 5 forests use the Dunning/Levitan site curve { 4.7.2.6} for all species.

{4.7.2.6} Dunning/Levitan site curves

$$A > 40$$
: $H = D_1 + D_2 * In(A)$

A < 40: $H = D_3 * A$

where:

H is estimated height of the treeA is estimated age of the tree

 $D_1 - D_3$ are coefficients based on Region 5 site codes shown in table 4.7.2.3

Table 4.7.2.3 Coefficients for the Dunning/Levitan site curves, nominal site index by site class, and range of Region 6 site values for which the coefficients are used in the CA variant.

Region 5	Nominal	Site Index			
Site Class	Site Index	Range Used	D ₁	D ₂	D ₃
0	106	99+	-88.9	49.7067	2.375
1	90	83 - 98	-82.2	44.1147	2.025
2	75	66 - 82	-78.3	39.1441	1.65
3	56	53 - 65	-82.1	35.416	1.225
4	49	45 - 52	-56	26.7173	1.075
5-7	39	0 - 44	-33.8	18.64	0.875

For both Region 5 and Region 6 forests, potential 10-year height growth (*POTHTG*) is calculated by using equation {4.7.2.8}. Then, modifiers are applied to the height growth based upon a tree's crown ratio (using equation {4.7.2.9}) and relative height (using equation {4.7.2.10}). Equation {4.7.2.11} calculates a height-growth modifier by combining the crown ratio and relative height modifiers. Final

height growth is calculated using equation {4.7.2.12} as a product of the modifier and potential height growth. The final height growth is then adjusted to the length of the cycle.

 $\{4.7.2.8\}$ *POTHTG* = H10 - ECH

 $\{4.7.2.9\}$ HGMDCR = $1 - \exp(-4.26558 * CR)$

 $\{4.7.2.10\}$ HGMDRH = exp $[2.54119 * (RELHT^0.250537 - 1.0)]$

{4.7.2.11} HTGMOD = 1.016605 * HGMDCR * HGMDRH

{4.7.2.12} HTG = POTHTG * HTGMOD

where:

POTHTG is potential height growth

H10 is estimated height of the tree in ten years

ECH is estimated height of the tree at the beginning of the cycle

HGMDCR is a height growth modifier based on crown ratio

HGMDRH is a height growth modifier based on relative height and shade tolerance

HTGMOD is a weighted height growth modifierCR is crown ratio expressed as a proportion

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

(bounded *RELHT* ≤ 1; *RELHT* = 1 if crown competition factor on the inventory point

where the tree is located is less than 100)

5.0 Mortality Model

The CA variant uses an SDI-based mortality model as described in Section 7.3.2 of Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002, referred to as EFVS). This SDI-based mortality model is comprised of two steps: 1) determining the amount of stand mortality (section 7.3.2.1 of EFVS) and 2) dispersing stand mortality to individual tree records (section 7.3.2.2 of EFVS). In determining the amount of stand mortality, the summation of individual tree background mortality rates is used when stand density is below the minimum level for density dependent mortality (default is 55% of maximum SDI), while stand level density-related mortality rates are used when stands are above this minimum level.

The equation used to calculate individual tree background mortality rates for all species is shown in equation {5.0.1}, and this is then adjusted to the length of the cycle by using a compound interest formula as shown in equation {5.0.2}. Species mapping and coefficients for these equations are shown in tables 5.0.1 and 5.0.2. The overall amount of mortality calculated for the stand is the summation of the final mortality rate (*RIP*) across all live tree records.

$$\{5.0.1\}$$
 RI = $[1/(1 + \exp(p_0 + p_1 * DBH))] * 0.5$

$$\{5.0.2\}$$
 RIP = $1 - (1 - RI)^Y$

where:

RI is the proportion of the tree record attributed to mortality RIP is the final mortality rate adjusted to the length of the cycle

DBH is tree diameter at breast height

Y is length of the current projection cycle in years p_0 and p_1 are species-specific coefficients shown in table 5.0.1

Table 5.0.1 Mapped species index for each species for the mortality model in the CA variant.

Species	
Code	Species Index
PC	3
IC	3
RC	3
WF	3
RF	3
SH	3
DF	2
WH	4
MH	4
WB	1
KP	1
LP	5
СР	1
LM	1

Species	
Code	Species Index
LO	3
CY	3
BL	3
EO	3
WO	3
ВО	3
VO	3
Ю	3
BM	3
BU	3
RA	3
MA	3
GC	3
DG	3

Species Code	Species Index
JP	6
SP	1
WP	1
PP	6
MP	6
GP	6
WJ	3
BR	4
GS	3
PY	3
OS	3

Species Code	Species Index
FL	3
WN	3
ТО	3
SY	3
AS	3
CW	3
WI	3
CN	3
CL	3
ОН	3

Table 5.0.2 Coefficients used in the background mortality equation {5.0.1} in the CA variant.

Species Index	p ₀	p ₁
1	6.5112	-0.00525
2	7.2985	-0.01291
3	5.1677	-0.00777
4	9.6943	-0.01273
5	5.9617	-0.03401
6	5.5877	-0.00535

When stand density-related mortality is in effect, the total amount of stand mortality is determined based on the trajectory developed from the relationship between stand SDI and the maximum SDI for the stand. This is explained in section 7.3.2.1 of EFVS.

Once the amount of stand mortality is determined based on either the summation of background mortality rates or density-related mortality rates, mortality is dispersed to individual tree records in relation to a tree's percentile in the basal area distribution (*PCT*) using equation {5.0.3}. This value is then adjusted by a species-specific mortality modifier (representing the species' tolerance) to obtain a final mortality rate as shown in equation {5.0.4}.

The mortality model makes multiple passes through the tree records multiplying a record's trees-peracre value times the final mortality rate (*MORT*), accumulating the results, and reducing the trees-peracre representation until the desired mortality level has been reached. If the stand still exceeds the basal area maximum sustainable on the site the mortality rates are proportionally adjusted to reduce the stand to the specified basal area maximum.

$$\{5.0.3\}$$
 MR = $0.84525 - (0.01074 * PCT) + (0.0000002 * PCT^3)$

 $\{5.0.4\}$ *MORT* = *MR* * *MWT* * 0.1

where:

MR is the proportion of the tree record attributed to mortality (bounded: $0.01 \le MR \le 1$)

PCT is the subject tree's percentile in the basal area distribution of the stand

MORT is the final mortality rate of the tree record

MWT is a mortality weight value based on a species' tolerance shown in table 5.0.3

Table 5.0.3 MWT values for the mortality equation {5.0.4} in the CA variant.

Species	
Code	MWT
PC	0.6
IC	0.6
RC	0.6
WF	0.55
RF	0.5
SH	0.5
DF	0.65
WH	0.65
MH	0.75
WB	0.9
KP	0.9
LP	0.9
СР	1.1
LM	0.9
JP	0.85
SP	0.7
WP	0.75
PP	0.85
MP	0.85
GP	1.1
WJ	1.1
BR	0.65
GS	0.8
PY	0.55
OS	0.65

- the mortality	cquation
Species	
Code	MWT
LO	1.0
CY	1.0
BL	1.0
EO	1.0
WO	1.0
ВО	1.0
VO	1.0
Ю	1.0
BM	0.8
BU	0.8
RA	1.0
MA	0.8
GC	0.8
DG	0.8
FL	0.8
WN	0.8
ТО	0.55
SY	0.8
AS	0.8
CW	0.8
WI	1.0
CN	1.0
CL	1.0
ОН	1.0

6.0 Regeneration

The CA variant contains a partial establishment model which may be used to input regeneration and ingrowth into simulations. A more detailed description of how the partial establishment model works can be found in section 5.4.5 of the Essential FVS Guide (Dixon 2002).

The regeneration model is used to simulate stand establishment from bare ground, or to bring seedlings and sprouts into a simulation with existing trees. Sprouts are automatically added to the simulation following harvest or burning of known sprouting species (see table 6.0.1 for sprouting species).

Table 6.0.1 Regeneration parameters by species in the CA variant.

Species	Sprouting	Minimum Bud	Minimum Tree	Maximum Tree
Code	Species	Width (in)	Height (ft)	Height (ft)
PC	No	0.2	0.5	20.0
IC	No	0.2	0.5	20.0
RC	No	0.2	0.3	20.0
WF	No	0.2	0.8	20.0
RF	No	0.2	0.8	20.0
SH	No	0.2	0.8	20.0
DF	No	0.2	0.8	20.0
WH	No	0.2	0.3	20.0
MH	No	0.2	0.5	20.0
WB	No	0.5	1.2	20.0
KP	No	0.5	1	20.0
LP	No	0.4	1	20.0
СР	No	0.5	1	20.0
LM	No	0.5	1	20.0
JP	No	0.5	1	20.0
SP	No	0.5	0.8	20.0
WP	No	0.3	0.8	20.0
PP	No	0.5	1	20.0
MP	No	0.5	0.8	20.0
GP	No	0.5	1.2	20.0
WJ	No	0.3	1	20.0
BR	No	0.3	0.5	20.0
GS	No	0.3	1	20.0
PY	Yes	0.3	0.3	20.0
OS	No	0.3	0.8	20.0
LO	Yes	0.2	1	20.0
CY	Yes	0.2	0.5	20.0
BL	Yes	0.2	1	20.0
EO	Yes	0.2	1	20.0

Species	Sprouting	Minimum Bud	Minimum Tree	Maximum Tree
Code	Species	Width (in)	Height (ft)	Height (ft)
WO	Yes	0.2	0.8	20.0
ВО	Yes	0.2	1	20.0
VO	Yes	0.2	0.8	20.0
Ю	Yes	0.2	1	20.0
BM	Yes	0.2	0.5	20.0
BU	Yes	0.3	0.8	20.0
RA	Yes	0.1	0.8	20.0
MA	Yes	0.1	0.5	20.0
GC	Yes	0.2	0.8	20.0
DG	Yes	0.1	0.5	20.0
FL	Yes	0.3	0.8	20.0
WN	Yes	0.4	1	20.0
TO	Yes	0.2	0.5	20.0
SY	Yes	0.2	1	20.0
AS	Yes	0.1	1.2	20.0
CW	Yes	0.1	1.2	20.0
WI	Yes	0.1	1	20.0
CN	Yes	0.2	0.3	20.0
CL	Yes	0.2	0.5	20.0
ОН	No	0.2	0.75	20.0

The number of sprout records created for each sprouting species is found in table 6.0.2. For more prolific stump sprouting hardwood species, logic rule {6.0.1} is used to determine the number of sprout records, with logic rule {6.0.2} being used for root suckering species. The trees-per-acre represented by each sprout record is determined using the general sprouting probability equation {6.0.3}. See table 6.0.2 for species-specific sprouting probabilities, number of sprout records created, and reference information.

Users wanting to modify or turn off automatic sprouting can do so with the SPROUT or NOSPROUT keywords, respectively. Sprouts are not subject to maximum and minimum tree heights found in table 6.0.1 and do not need to be grown to the end of the cycle because estimated heights and diameters are end of cycle values.

{6.0.1} For stump sprouting hardwood species

 $DSTMP_i \le 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: NUMSPRC = NINT(0.2 * DSTMP_i)

 $DSTMP_i > 10: NUMSPRC = 2$

{6.0.2} For root suckering hardwood species

 $DSTMP_i \le 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: $NUMSPRC = NINT(-1.0 + 0.4 * DSTMP_i)$

 $DSTMP_i > 10: NUMSPRC = 3$

 $\{6.0.3\}\ TPA_s = TPA_i * PS$

 $\{6.0.4\}$ PS = $((70.7857 - 2.6071 * DSTMP_i) / 100)$

 $\{6.0.5\}$ PS = $((99.9 - 3.8462 * DSTMP_i) / 100)$

 $\{6.0.6\}$ PS = $(TPA_i/(ASTPAR*2))*((ASBAR/198)*(40100.45 - 3574.02*RSHAG^2 + 554.02*RSHAG^3 - 3.5208*RSHAG^5 + 0.011797*RSHAG^7))$

where:

DSTMP_i is the diameter at breast height of the parent tree

NUMSPRC is the number of sprout tree recordsNINT rounds the value to the nearest integer

TPA_s is the trees per acre represented by each sprout record

TPA; is the trees per acre removed/killed represented by the parent tree

PS is a sprouting probability (see table 6.0.2)

ASBAR is the aspen basal area removed ASTPAR is the aspen trees per acre removed

RSHAG is the age of the sprouts at the end of the cycle in which they were created

Table 6.0.2 Sprouting algorithm parameters for sprouting species in the CA variant.

Species Code	Sprouting Probability	Number of Sprout Records	Source
DV	0.4	4	Minore 1996
PY	0.4	1	Ag. Handbook 654
LO	0.5	{6.0.1}	See canyon live oak (CY)
			Conard 1987
CY	0.5	{6.0.1}	Thornburgh 1990
			Paysen et al. 1991
BL	{6.0.4}	{6.0.1}	McCreary et al. 2000
DL DL	(0.0.4)	[0.0.1]	Standiford et al. 2011
EO	0.9	{6.0.1}	Caprio and Zwolinski 1992
20	0.5	[0.0.1]	Howard 1992
wo	0.9	{6.0.1}	Roy 1955
WO	0.5	[0.0.1]	Gucker 2007
ВО	0.9	{6.0.1}	McDonald 1978
ВО	0.5	[0.0.1]	McDonald 1990
VO	0.9	{6.0.1}	Howard 1992
Ю	0.5	{6.0.1}	See canyon live oak (CY)
			Roy 1955
BM	0.9	{6.0.2}	Tappenier et al. 1996
			Ag. Handbook 654
BU	0.8	{6.0.1}	Howard 1992
RA	{6.0.5}	1	Harrington 1984
NA	լս.ս.၁}	1	Uchytil 1989

Species Code	Sprouting Probability	Number of Sprout Records	Source
Code	Fiobability	Sprout Necorus	McDonald et al. 1983
MA	0.9	{6.0.2}	McDonald and Tappenier 1990
			Harrington et al. 1992
GC	0.9	{6.0.2}	Meyer 2012
DG	0.9	{6.0.1}	Gucker 2005
			Sterrett 1915
FL	0.8	{6.0.1}	Ag. Handbook 654
	0.8 for DBH <		
\A/N!	8",	4	Schlesinger 1977
WN	0.5 for DBH >	1	Schlesinger 1989
	8"		
ТО	0.9	{6.0.2}	Harrington et al. 1992 Wilkinson et al. 1997 Fryer 2008
CV	0.7	4	Davis et al. 1989
SY	0.7	1	Esser 1993
AS	{6.0.6}	2	Keyser 2001
CW	0.9	(e 0 3)	Gom and Rood 2000
Cvv	0.9	{6.0.2}	Steinberg 2001
WI	0.9	1	Ag. Handbook 654
CN	0.8	1	Burke 1975
CIV	0.8	1	Howard 1992
CL	0.9	{6.0.2}	Paysen et al. 1991
CL	0.5	ξυ.υ.Ζζ	Ag. Handbook 654

Regeneration of seedlings must be specified by the user with the partial establishment model by using the PLANT or NATURAL keywords. Height of the seedlings is estimated in two steps. First, the height is estimated when a tree is 5 years old (or the end of the cycle – whichever comes first) by using the small-tree height growth equations found in section 4.6.1. Users may override this value by entering a height in field 6 of the PLANT or NATURAL keyword; however the height entered in field 6 is not subject to minimum height restrictions and seedlings as small as 0.05 feet may be established. The second step also uses the equations in section 4.6.1, which grow the trees in height from the point five years after establishment to the end of the cycle.

Seedlings and sprouts are passed to the main FVS model at the end of the growth cycle in which regeneration is established. Unless noted above, seedlings being passed are subject to minimum and maximum height constraints and a minimum budwidth constraint shown in table 6.0.1. After seedling height is estimated, diameter growth is estimated using equations described in section 4.6.2. Crown ratios on newly established trees are estimated as described in section 4.3.1.

Regenerated trees and sprouts can be identified in the treelist output file with tree identification numbers beginning with the letters "ES".

7.0 Volume

In the CA variant, volume is calculated for three merchantability standards: total stem cubic feet, merchantable stem cubic feet, and merchantable stem board feet (Scribner Decimal C (R5) and Scribner (R6)). Volume estimation is based on methods contained in the National Volume Estimator Library maintained by the Forest Products Measurements group in the Forest Management Service Center (Volume Estimator Library Equations 2009). The default volume merchantability standards and equation numbers for the CA variant are shown in tables 7.0.1-7.0.4.

Table 7.0.1 Volume merchantability standards for the CA variant.

Merchantable Cubic Foot Volume Specifications:				
Minimum DBH / Top Diameter	KP	All Other Species		
Region 5	6.0 / 6.0 inches	7.0 / 6.0 inches		
Region 6	6.0 / 4.5 inches	7.0 / 4.5 inches		
Stump Height	1.0 foot	1.0 foot		
Merchantable Board Foot Volume Specifications:				
Minimum DBH / Top Diameter	KP	All Other Species		
Region 5	6.0 / 6.0 inches	7.0 / 6.0 inches		
Region 6	6.0 / 4.5 inches	7.0 / 4.5 inches		
Stump Height	1.0 foot	1.0 foot		

Table 7.0.2 Volume equation defaults for each species, at specific location codes, with model name.

Common Name	Location Code	Equation Number	Reference
Port-Orford-cedar	505, 506, 508, 511, 514	500WO2W081	Wensel and Olsen Profile Model
Port-Orford-cedar	610, 611	616BEHW000	Behre's Hyperbola
Port-Orford-cedar	710, 711, 712	B00BEHW081	Behre's Hyperbola
incense-cedar	505, 506, 508, 511, 514	500WO2W081	Wensel and Olsen Profile Model
incense-cedar	610, 611	616BEHW081	Behre's Hyperbola
incense-cedar	710, 711, 712	B00BEHW081	Behre's Hyperbola
western redcedar	505, 506, 508, 511, 514	500WO2W081	Wensel and Olsen Profile Model
western redcedar	610, 611	616BEHW242	Behre's Hyperbola
western redcedar	710, 711, 712	B00BEHW242	Behre's Hyperbola
white fir	505, 506, 508, 511, 514	500WO2W015	Wensel and Olsen Profile Model
white fir	610, 611	I00FW2W093	Flewelling's 2-Point Profile Model
white fir	710, 711, 712	B00BEHW015	Behre's Hyperbola
California red fir	505, 506, 508, 511, 514	500WO2W020	Wensel and Olsen Profile Model
California red fir	610, 611	616BEHW020	Behre's Hyperbola
California red fir	710, 711, 712	B00BEHW021	Behre's Hyperbola
Shasta red fir	505, 506, 508, 511, 514	500WO2W020	Wensel and Olsen Profile Model
Shasta red fir	610, 611	616BEHW021	Behre's Hyperbola
Shasta red fir	710, 711, 712	B00BEHW021	Behre's Hyperbola

Common Name	Location Code	Equation Number	Reference
Douglas-fir	505, 506, 508, 511, 514	500WO2W202	Wensel and Olsen Profile Model
Douglas-fir	610, 611	F06FW2W202	Flewelling's 2-Point Profile Model
Douglas-fir	710, 711	B01BEHW202	Behre's Hyperbola
Douglas-fir	712	B02BEHW202	Behre's Hyperbola
western hemlock	505, 506, 508, 511, 514	500WO2W015	Wensel and Olsen Profile Model
western hemlock	610, 611	616BEHW263	Behre's Hyperbola
western hemlock	710, 711, 712	B00BEHW263	Behre's Hyperbola
mountain hemlock	505, 506, 508, 511, 514	500WO2W015	Wensel and Olsen Profile Model
mountain hemlock	610, 611	616BEHW264	Behre's Hyperbola
mountain hemlock	710, 711, 712	B00BEHW260	Behre's Hyperbola
whitebark pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
whitebark pine	610, 611	616BEHW101	Behre's Hyperbola
whitebark pine	710, 711, 712	B00BEHW119	Behre's Hyperbola
knobcone pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
knobcone pine	610, 611	616BEHW103	Behre's Hyperbola
knobcone pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
lodgepole pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
lodgepole pine	610, 611	616BEHW108	Behre's Hyperbola
lodgepole pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
Coulter pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
Coulter pine	610, 611	616BEHW000	Behre's Hyperbola
Coulter pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
limber pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
limber pine	610, 611	616BEHW113	Behre's Hyperbola
limber pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
Jeffrey pine	505, 506, 508,511, 514	500WO2W116	Wensel and Olsen Profile Model
Jeffrey pine	610, 611	616BEHW116	Behre's Hyperbola
Jeffrey pine	710, 711, 712	B00BEHW116	Behre's Hyperbola
sugar pine	505, 506, 508, 511, 514	500WO2W117	Wensel and Olsen Profile Model
sugar pine	610, 611	616BEHW117	Behre's Hyperbola
sugar pine	710, 711, 712	B00BEHW117	Behre's Hyperbola
western white pine	505, 506, 508, 511, 514	500WO2W117	Wensel and Olsen Profile Model
western white pine	610, 611	616BEHW119	Behre's Hyperbola
western white pine	710, 711, 712	B00BEHW119	Behre's Hyperbola
ponderosa pine	505, 506, 508, 511, 514	500WO2W122	Wensel and Olsen Profile Model
ponderosa pine	610, 611	I00FW2W073	Flewelling's 2-Point Profile Model
ponderosa pine	710, 711, 712	B00BEHW122	Behre's Hyperbola
Monterey pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model

Common Name	Location Code	Equation Number	Reference
Monterey pine	610, 611	616BEHW000	Behre's Hyperbola
Monterey pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
gray pine	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
gray pine	610, 611	616BEHW000	Behre's Hyperbola
gray pine	710, 711, 712	B00BEHW108	Behre's Hyperbola
western juniper	505, 506, 508, 511, 514	500DVEW060	Pillsbury and Kirkley Equations
western juniper	610, 611	616BEHW064	Pillsbury and Kirkley Equations
western juniper	710, 711, 712	B00BEHW242	Behre's Hyperbola
Brewer spruce	505, 506, 508, 511, 514	500WO2W015	Wensel and Olsen Profile Model
Brewer spruce	610, 611	616BEHW000	Behre's Hyperbola
Brewer spruce	710, 711, 712	B00BEHW093	Behre's Hyperbola
giant sequoia	505, 506, 508, 511, 514	500DVEW212	Pillsbury and Kirkley Equations
giant sequoia	610, 611	616BEHW000	Behre's Hyperbola
giant sequoia	710, 711, 712	B00BEHW211	Behre's Hyperbola
Pacific yew	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
Pacific yew	610, 611	616BEHW231	Behre's Hyperbola
Pacific yew	710, 711, 712	B00BEHW231	Behre's Hyperbola
other softwoods	505, 506, 508, 511, 514	500WO2W108	Wensel and Olsen Profile Model
other softwoods	610, 611	616BEHW298	Behre's Hyperbola
other softwoods	710, 711, 712	B00BEHW999	Behre's Hyperbola
coast live oak	505, 506, 508, 511, 514	500DVEW801	Pillsbury and Kirkley Equations
coast live oak	610, 611	616BEHW000	Behre's Hyperbola
coast live oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
canyon live oak	505, 506, 508, 511, 514	500DVEW805	Pillsbury and Kirkley Equations
canyon live oak	610, 611	616BEHW000	Behre's Hyperbola
canyon live oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
blue oak	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
blue oak	610, 611	616BEHW000	Behre's Hyperbola
blue oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
Engelmann oak	505, 506, 508, 511, 514	500DVEW811	Pillsbury and Kirkley Equations
Engelmann oak	610, 611	616BEHW000	Behre's Hyperbola
Engelmann oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
Oregon white oak	505, 506, 508, 511, 514	500DVEW815	Pillsbury and Kirkley Equations
Oregon white oak	610, 611	616BEHW815	Behre's Hyperbola
Oregon white oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
California black oak	505, 506, 508, 511, 514	500DVEW818	Pillsbury and Kirkley Equations
California black oak	610, 611	616BEHW818	Behre's Hyperbola
California black oak	710, 711, 712	B00BEHW800	Behre's Hyperbola

Common Name	Location Code	Equation Number	Reference
valley white oak	505, 506, 508, 511, 514	500DVEW821	Pillsbury and Kirkley Equations
valley white oak	610, 611	616BEHW000	Behre's Hyperbola
valley white oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
interior live oak	505, 506, 508, 511, 514	500DVEW839	Pillsbury and Kirkley Equations
interior live oak	610, 611	616BEHW000	Behre's Hyperbola
interior live oak	710, 711, 712	B00BEHW800	Behre's Hyperbola
bigleaf maple	505, 506, 508, 511, 514	500DVEW312	Pillsbury and Kirkley Equations
bigleaf maple	610, 611	616BEHW312	Behre's Hyperbola
bigleaf maple	710, 711, 712	B00BEHW312	Behre's Hyperbola
California buckeye	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
California buckeye	610, 611	616BEHW000	Behre's Hyperbola
California buckeye	710, 711, 712	B00BEHW800	Behre's Hyperbola
red alder	505, 506, 508, 511, 514	500DVEW351	Pillsbury and Kirkley Equations
red alder	610, 611	616BEHW351	Behre's Hyperbola
red alder	710, 711, 712	B00BEHW351	Behre's Hyperbola
Pacific madrone	505, 506, 508, 511, 514	500DVEW361	Pillsbury and Kirkley Equations
Pacific madrone	610, 611	616BEHW361	Behre's Hyperbola
Pacific madrone	710, 711, 712	B00BEHW361	Behre's Hyperbola
giant chinquapin	505, 506, 508, 511, 514	500DVEW431	Pillsbury and Kirkley Equations
giant chinquapin	610, 611	616BEHW431	Behre's Hyperbola
giant chinquapin	710, 711, 712	B00BEHW431	Behre's Hyperbola
Pacific dogwood	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
Pacific dogwood	610, 611	616BEHW492	Behre's Hyperbola
Pacific dogwood	710, 711, 712	B00BEHW999	Behre's Hyperbola
Oregon ash	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
Oregon ash	610, 611	616BEHW000	Behre's Hyperbola
Oregon ash	710, 711, 712	B00BEHW312	Behre's Hyperbola
walnut species	505, 506, 508, 511, 514	500DVEW818	Pillsbury and Kirkley Equations
walnut species	610, 611	616BEHW000	Behre's Hyperbola
walnut species	710, 711, 712	B00BEHW999	Behre's Hyperbola
tanoak	505, 506, 508, 511, 514	500DVEW631	Pillsbury and Kirkley Equations
tanoak	610, 611	616BEHW631	Behre's Hyperbola
tanoak	710, 711, 712	B00BEHW631	Behre's Hyperbola
California sycamore	505, 506, 508, 511, 514	500DVEW818	Pillsbury and Kirkley Equations
California sycamore	610, 611	616BEHW000	Behre's Hyperbola
California sycamore	710, 711, 712	B00BEHW800	Behre's Hyperbola
quaking aspen	505, 506, 508, 511, 514	500DVEW818	Pillsbury and Kirkley Equations
quaking aspen	610, 611	616BEHW746	Behre's Hyperbola

Common Name	Location Code	Equation Number	Reference
quaking aspen	710, 711, 712	B00BEHW999	Behre's Hyperbola
black cottonwood	505, 506, 508, 511, 514	500DVEW818	Pillsbury and Kirkley Equations
black cottonwood	610, 611	616BEHW747	Behre's Hyperbola
black cottonwood	710, 711, 712	B00BEHW747	Behre's Hyperbola
Willow species	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
Willow species	610, 611	616BEHW920	Behre's Hyperbola
Willow species	710, 711, 712	B00BEHW999	Behre's Hyperbola
California nutmeg	505, 506, 508, 511, 514	500DVEW807	Pillsbury and Kirkley Equations
California nutmeg	610, 611	616BEHW000	Behre's Hyperbola
California nutmeg	710, 711, 712	B00BEHW231	Behre's Hyperbola
California-laurel	505, 506, 508, 511, 514	500DVEW981	Pillsbury and Kirkley Equations
California-laurel	610, 611	616BEHW000	Behre's Hyperbola
California-laurel	710, 711, 712	B00BEHW631	Behre's Hyperbola
other hardwoods	505, 506, 508, 511, 514	500DVEW801	Pillsbury and Kirkley Equations
other hardwoods	610, 611	616BEHW998	Behre's Hyperbola
other hardwoods	710, 711, 712	B00BEHW999	Behre's Hyperbola

Table 7.0.3 Citations by Volume Model

Model	
Name	Citation
Behre's	USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume Procedures -
Hyperbola	R6 Timber Cruise System. 1978.
Flewelling 2-	Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-shape
Point Profile	stem-profile predictions for western hemlock. Canadian Journal of Forest Research Vol
Model	23. Part I and Part II.
Pillsbury and	Norman H Pillsbury and Michael L Kirkley 1984 Equations for Total, Wood, and saw-Log
Kirkley	Volume for Thirteen California Hardwoods. Pacific Northwest Forest and Range
Equations	Experiment Station Research Note PNW-414.
Wensel and	Wensel, L. C. and C. M. Olson. 1993. Tree Taper Models for Major Commercial California
Olsen Profile	Conifers. Research Note No. 33. Northern Calif. Forest Yield Cooperative. Dept. of
Model	Forstry and Mgmt., Univ. of Calif., Berkeley. 28 pp.

Table 7.0.4 Species-specific default form class values for the CA variant.

	Behre's			- 0		
	Hyperbola			Form Class		
Species	Equation					
Code	Number	0 <dbh<11< th=""><th>11<=DBH<21</th><th>21<=DBH<31</th><th>31<=DBH<41</th><th>DBH>=41</th></dbh<11<>	11<=DBH<21	21<=DBH<31	31<=DBH<41	DBH>=41
	ver NF (610)	0.5	02	76	7.6	7.4
PC	616BEHW000	95	82	76	74	74
IC	616BEHW081	94	94	78	75	74
RC	616BEHW242	95	82	76	75	74
WF*	616BEHW015	96	91	84	83	82
RF	616BEHW020	95	82	76	74	74
SH	616BEHW021	94	90	84	82	81
DF*	616BEHW202	94	87	82	81	81
WH	616BEHW263	91	82	79	78	78
MH	616BEHW264	96	83	79	77	76
WB	616BEHW101	92	92	92	92	87
KP	616BEHW103	95	79	78	78	78
LP	616BEHW108	95	79	78	78	76
СР	616BEHW000	95	95	95	82	82
LM	616BEHW113	95	95	95	82	82
JP	616BEHW116	93	93	86	83	81
SP	616BEHW117	94	90	84	82	82
WP	616BEHW119	94	87	83	82	81
PP*	616BEHW122	93	93	83	81	80
MP	616BEHW000	95	82	79	78	78
GP	616BEHW000	95	95	82	79	78
WJ	616BEHW064	95	95	95	95	95
BR	616BEHW000	93	89	86	84	84
GS	616BEHW000	95	82	76	74	74
PY	616BEHW231	98	98	98	98	88
OS	616BEHW298	95	95	82	79	78
LO	616BEHW000	95	95	86	82	82
CY	616BEHW000	94	94	85	80	80
BL	616BEHW000	95	95	95	86	86
EO	616BEHW000	95	95	95	86	86
WO	616BEHW815	89	89	89	89	89
ВО	616BEHW818	98	88	84	81	81
VO	616BEHW000	95	79	78	76	76
Ю	616BEHW000	95	95	95	95	95

	Behre's					
	Hyperbola			Form Class	I	T
Species	Equation					
Code	Number	0 <dbh<11< th=""><th>11<=DBH<21</th><th>21<=DBH<31</th><th>31<=DBH<41</th><th>DBH>=41</th></dbh<11<>	11<=DBH<21	21<=DBH<31	31<=DBH<41	DBH>=41
BM	616BEHW312	98	84	81	80	79
BU	616BEHW000	95	95	95	95	95
RA	616BEHW351	98	84	81	80	80
MA	616BEHW361	95	86	82	79	79
GC	616BEHW431	95	86	78	76	75
DG	616BEHW492	94	94	85	80	80
FL	616BEHW000	98	88	81	81	80
WN	616BEHW000	95	95	86	82	82
TO	616BEHW631	98	88	80	78	77
SY	616BEHW000	95	95	95	95	95
AS	616BEHW746	98	98	98	98	98
CW	616BEHW747	98	80	78	77	77
WI	616BEHW920	98	98	98	98	98
CN	616BEHW000	95	95	95	95	95
CL	616BEHW000	95	86	82	79	78
ОН	616BEHW998	95	95	95	95	95
Siskiyou N	NF (611)					
PC	616BEHW000	94	90	84	82	81
IC	616BEHW081	89	89	75	71	71
RC	616BEHW242	96	83	78	76	76
WF*	616BEHW015	93	93	86	85	85
RF	616BEHW020	92	87	82	80	79
SH	616BEHW021	96	96	90	87	87
DF*	616BEHW202	93	86	81	80	80
WH	616BEHW263	93	93	90	89	88
МН	616BEHW264	93	89	84	82	81
WB	616BEHW101	91	91	91	91	86
KP	616BEHW103	96	88	86	86	86
LP	616BEHW108	96	88	86	86	85
СР	616BEHW000	91	91	91	86	86
LM	616BEHW113	91	91	91	86	86
JP	616BEHW116	93	93	86	83	81
SP	616BEHW117	96	91	85	84	83
WP	616BEHW119	96	88	84	83	82
PP*	616BEHW122	93	93	83	81	80

	Behre's			- 0		
	Hyperbola			Form Class		
Species Code	Equation Number	0.40011.444	44 4-DDU 434	24 4-0011424	24 4-DDU 444	DDU5 -44
		0 <dbh<11< th=""><th>11<=DBH<21</th><th>21<=DBH<31</th><th>31<=DBH<41</th><th>DBH>=41</th></dbh<11<>	11<=DBH<21	21<=DBH<31	31<=DBH<41	DBH>=41
MP	616BEHW000	91	86	84	82	82
GP	616BEHW000	91	91	86	84	82
WJ	616BEHW064	91	91	91	91	91
BR	616BEHW000	93	89	86	84	84
GS	616BEHW000	91	86	81	79	78
PY	616BEHW231	88	88	88	88	80
OS	616BEHW298	91	91	86	84	82
LO	616BEHW000	95	95	86	82	82
CY	616BEHW000	95	95	86	82	82
BL	616BEHW000	95	95	95	86	86
EO	616BEHW000	95	95	95	86	86
WO	616BEHW815	95	95	95	95	95
ВО	616BEHW818	98	88	84	81	81
VO	616BEHW000	95	79	78	76	76
Ю	616BEHW000	95	95	95	95	95
BM	616BEHW312	98	84	81	80	79
BU	616BEHW000	95	95	95	95	95
RA	616BEHW351	91	86	84	82	82
MA	616BEHW361	98	88	84	81	81
GC	616BEHW431	95	86	78	76	75
DG	616BEHW492	98	98	88	84	84
FL	616BEHW000	98	88	81	81	80
WN	616BEHW000	95	95	86	82	82
ТО	616BEHW631	91	91	82	80	79
SY	616BEHW000	95	95	95	95	95
AS	616BEHW746	95	95	95	95	95
CW	616BEHW747	92	83	81	80	80
WI	616BEHW920	92	92	92	92	92
CN	616BEHW000	95	95	95	95	95
CL	616BEHW000	95	86	82	79	78
ОН	616BEHW998	95	95	95	95	95

^{*}Species whose default volume equation at this location code is not Behre's Hyperbola (see Table 7.0.2).

BLM Locations:		710	711	712
PC	B00BEHW081	73	70	70
IC	B00BEHW081	86	78	78

BLM Lo	cations:	710	711	712
RC	B00BEHW242	80	78	78
WF	B00BEHW015	87	91	91
RF	B00BEHW021	76	78	75
SH	B00BEHW021	76	78	75
DF	B02BEHW202	89	87	87
WH	B00BEHW263	91	91	92
МН	B00BEHW260	76	70	72
WB	B00BEHW119	80	73	80
KP	B00BEHW108	80	68	80
LP	B00BEHW108	80	68	80
СР	B00BEHW108	80	68	80
LM	B00BEHW108	80	68	80
JP	B00BEHW116	80	70	75
SP	B00BEHW117	91	84	91
WP	B00BEHW119	80	76	80
PP	B00BEHW122	88	85	88
MP	B00BEHW108	80	68	80
GP	B00BEHW108	80	68	80
WJ	B00BEHW242	76	70	60
BR	B00BEHW093	76	74	76
GS	B00BEHW211	76	70	75
PY	B00BEHW231	76	76	70
OS	B00BEHW999	76	70	74
LO	B00BEHW800	80	80	80
CY	B00BEHW800	80	80	80
BL	B00BEHW800	80	80	80
EO	B00BEHW800	80	80	80
WO	B00BEHW800	80	80	80
ВО	B00BEHW800	80	80	80
VO	B00BEHW800	80	80	80
10	B00BEHW800	80	80	80
BM	B00BEHW312	84	84	84
BU	B00BEHW800	80	80	80
RA	B00BEHW351	88	88	91
MA	B00BEHW361	81	81	86
GC	B00BEHW431	83	83	86
DG	B00BEHW999	83	83	83
FL	B00BEHW312	84	84	84
WN	B00BEHW999	83	83	83
ТО	B00BEHW631	84	84	86

BLM Locations:		710	711	712
SY	B00BEHW800	80	80	80
AS	B00BEHW999	76	72	75
CW	B00BEHW747	76	72	74
WI	B00BEHW999	75	75	75
CN	B00BEHW231	76	76	70
CL	B00BEHW631	84	84	86
ОН	B00BEHW999	76	70	74

8.0 Fire and Fuels Extension (FFE-FVS)

The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) (Reinhardt and Crookston 2003) integrates FVS with models of fire behavior, fire effects, and fuel and snag dynamics. This allows users to simulate various management scenarios and compare their effect on potential fire hazard, surface fuel loading, snag levels, and stored carbon over time. Users can also simulate prescribed burns and wildfires and get estimates of the associated fire effects such as tree mortality, fuel consumption, and smoke production, as well as see their effect on future stand characteristics. FFE-FVS, like FVS, is run on individual stands, but it can be used to provide estimates of stand characteristics such as canopy base height and canopy bulk density when needed for landscape-level fire models.

For more information on FFE-FVS and how it is calibrated for the CA variant, refer to the updated FFE-FVS model documentation (Rebain, comp. 2010) available on the FVS website.

9.0 Insect and Disease Extensions

The FVS Insect and Pathogen model for dwarf mistletoe has been developed for the CA variant through the participation and contribution of various organizations led by Forest Health Protection. This model is currently maintained by the Forest Management Service Center and regional Forest Health Protection specialists. Additional details regarding this model may be found in chapter 8 of the Essential FVS Users Guide (Dixon 2002).

10.0 Literature Cited

- Arney, J. D. 1985. A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research. 15(3):511-518.
- Atzet, T. and Wheeler D. 1984. Preliminary plant associations of the Siskiyou Mountain Province. Portland, OR: Forest Service. pp 315.
- Bechtold, William A. 2004. Largest-crown-diameter Prediction Models for 53 Species in the Western United States. WJAF. Forest Service. 19(4): pp 241-245.
- Burke, J. G. 1975. Human use of the California nutmeg tree, Torreya calidornica, and other members of the genus. Economic Botany. 29:127-139.
- Burns, R. M., & Honkala, B. H. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC.
- Caprio, Anthony C.; Zwolinski, Malcolm J. 1992. Fire effects on Emory and Mexican blue oaks in southeastern Arizona. In: Ffolliott, Peter F.; Gottfried, Gerald J.; Bennett, Duane A.; [and others], technical coordinators. Ecology and management of oak and associated woodlands: perspectives in the sw United States & n Mexico: Proceedings; 1992 April 27-30; Sierra Vista, AZ. Gen. Tech. Rep. RM-218. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 150-154.
- Cole, D. M.; Stage, A. R. 1972. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20p.
- Conard, Susan G. 1987. First year growth of canyon live oak sprouts following thinning and clearcutting. In: Plumb, Timothy R.; Pillsbury, Norman H., technical coordinators. Proceedings of the symposium on multiple-use management of California's hardwood resources; 1986 November 12-14; San Luis Obispo, CA. Gen. Tech. Rep. PSW-100. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: 439.
- Crookston, Nicholas L. 2003. Internal document on file. Data provided from Region 1. Moscow, ID: Forest Service.
- Crookston, Nicholas L. 2005. Draft: Allometric Crown Width Equations for 34 Northwest United States
 Tree Species Estimated Using Generalized Linear Mixed Effects Models.
- Crookston, Nicholas L. 2008. Internal Report.
- Curtis, Robert O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13(4):365-375.
- Dahms, Walter. 1964. Gross and net yield tables for lodgepole pine. Res. Pap. PNW-8. Portland, OR: Pacific Northwest Forest and Range Experiment Station. 14 p.
- Davis, F. W., Keller, E. A., Parikh, A., & Florsheim, J. 1989. Recovery of the chaparral riparian zone after wildfire. In Proceedings of the Conference, Davis, Pacific Southwest Forest, Range Experiment Station, Berkeley, CA. US Forest Service General Technical Report PSW-110 (pp. 194-203).

- Dixon, G. E. 1985. Crown ratio modeling using stand density index and the Weibull distribution. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 13p.
- Dixon, Gary E. comp. 2002 (revised frequently). Essential FVS: A user's guide to the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Dolph, Leroy K. 1987. Site index curves for young-growth California white fir on the western slopes of the Sierra Nevada. Res. Paper PSW-185. Berkeley, CA: Forest Service, Pacific Southwest Forest and Range Experiment Station.
- Donnelly, Dennis. 1996. Internal document on file. Data provided from Region 6. Fort Collins, CO: Forest Service.
- Dunning, Duncan, and L.H. Reineke. 1933. Preliminary yield tables for second-growth stands in the California pine region. Tech. Bull. 354. Forest Service. 24p.
- Dunning, Duncan. 1942. A site classification for the mixed-conifer selection forests of the Sierra Nevada. Res. Note No. 28. Berkeley, CA: Forest Service, California Forest and Range Experiment Station. 21p.
- Esser, Lora. 1993. Juglans californica. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-shape stem-profile predictions for western hemlock. Canadian Journal of Forest Research Vol 23. Part I and Part II.
- Fryer, Janet L. 2008. Lithocarpus densiflorus. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Gom, L. A., & Rood, S. B. (2000). Fire induces clonal sprouting of riparian cottonwoods. Canadian Journal of Botany, 77(11), 1604-1616.
- Gucker, Corey L. 2005. Cornus nuttallii. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Gucker, Corey L. 2007. Quercus garryana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Hall, Frederick C. 1983. Growth basal area: a field method for appraising forest site productivity for stockability. Can. J. For. Res. 13:70-77.
- Hann, David W. and Scrivani, John A. 1987. Dominant-Height-Growth and Site-Index Equations for Douglas-Fir and Ponderosa Pine in Southwest Oregon. Res. Bull. 59. Oregon State University, College of Forestry, Forest Research Lab.

- Harrington, Constance A. 1984. Factors influencing initial sprouting of red alder. Canadian Journal of Forest Research. 14: 357-361.
- Harrington, T. B., Tappeiner, I. I., John, C., & Warbington, R. 1992. Predicting crown sizes and diameter distributions of tanoak, Pacific madrone, and giant chinkapin sprout clumps. Western Journal of Applied Forestry, 7(4), 103-108.
- Howard, Janet L. 1992. Aesculus californica. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Howard, Janet L. 1992. Torreya californica. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Howard, Janet L. 1992. Quercus Iobata. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Keyser, C.E. 2001. Quaking Aspen Sprouting in Western FVS Variants: A New Approach. Unpublished Manuscript.
- Krajicek, J.; Brinkman, K.; Gingrich, S. 1961. Crown competition a measure of density. Forest Science. 7(1):35-42
- McCreary, Douglas D.; Tietje, William D.; Schmidt, Robert H.; Gross, Rob; Weitkamp, William H.; Willoughby, Bob L.; Bell, Fremont L. 1991. Stump sprouting of blue oaks in California. In: Standiford, Richard B., technical coordinator. Proceedings of the symposium on oak woodlands and hardwood rangeland management; 1990 October 31 November 2; Davis, CA. Gen. Tech. Rep. PSW-126. Berkeley, CA: Pacific Southwest Research Station: 64-69.
- McDonald, Philip M. 1978. Silviculture-ecology of three native California hardwoods on high sites in north central California. Dissertation (Ph.D.), Oregon State University, Department of Forest Science, Corvallis. 309 p.
- McDonald, Philip M.; Minore, Don; Atzet, Tom. 1983. Southwestern Oregon--northern California hardwoods. In: Burns, Russell M., compiler. Silvicultural systems for the major forest types of the United States. Agric. Handb. 445. Washington, DC: U.S. Department of Agriculture: 29-32.
- McDonald, Philip M. 1990. Quercus kelloggii Newb. California Black Oak. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 1281-1299.
- McDonald, Philip M. and Tappenier II, John C. 1990. Arbutus menziesii Pursh. Pacific madrone. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 275-289.
- Meyer, Rachelle. 2012. Chrysolepis chrysophylla. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).

- Minore, D., & Weatherly, H. G. (1996). Stump sprouting of Pacific yew. General Technical Report. PNW-GTR-378. Portland, Or.: U.S. Dept. of Agriculture, Pacific Northwest Research Station.
- Paysen, Timothy E.; Narog, Marcia G.; Tissell, Robert G.; Lardner, Melody A. 1991. Trunk and root sprouting on residual trees after thinning a Quercus chrysolepis stand. Forest Science. 37(1): 17-27.
- Pillsbury, Norman H and Kirkley, Michael L., 1984. Equations for Total, Wood, and saw-Log Volume for Thirteen California Hardwoods. Pacific Northwest Forest and Range Experiment Station Research Note PNW-414.
- Porter, Dennis R. and Harry V. Wiant, Jr. 1965. Site Index Equations for Tanoak, Pacific Madrone, and Red Alder in the Redwood Region of Humboldt County, California. Journal of Forestry. pp 286-287.
- Powers, Robert F. 1972. Site index curves for unmanaged stands of California black oak. Res. Note PSW-262. Berkeley, CA: Forest Service, Pacific Southwest Forest and Range Experiment Station. 5p.
- Rebain, Stephanie A. comp. 2010 (revised frequently). The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 379 p.
- Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p.
- Ritchie, Martin W. and David W. Hann. 1986. Development of a tree height growth model for Douglasfir. Forest Ecology and Management 15(2):135-145.
- Roy, D. F. 1955. Hardwood sprout measurements in northwestern California. Forest Research Notes. California Forest and Range Experiment Station, (95).
- Schlesinger, R. C., & Funk, D. T. 1977. Manager's handbook for black walnut. USDA Forest Service General Technical Report, North Central Forest Experiment Station, (NC-38).
- Schlesinger, Richard C. 1989. Estimating Black Walnut Plantation Growth and Yield. In: Clark, F. Bryan, tech. ed.; Hutchinson, Jay G., ed. Central Hardwood Notes. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.: Note 5.07.
- Stage, A. R. 1973. Prognosis Model for stand development. Res. Paper INT-137. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32p.
- Standiford, R., McCreary, D., Barry, S., & Forero, L. (2011). Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley. California Agriculture, 65(3), 148-154.
- Steinberg, Peter D. 2001. Populus balsamifera subsp. trichocarpa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).

- Sterrett, W. D. 1915. The ashes: their characteristics and management. U.S. Department of Agriculture, Bulletin 299. Washington, DC. 88 p.
- Tappeiner, I. I., John, C., Zasada, J., Huffman, D., & Maxwell, B. D. 1996. Effects of cutting time, stump height, parent tree characteristics, and harvest variables on development of bigleaf maple sprout clumps. Western Journal of Applied Forestry, 11(4), 120-124.
- Thornburgh, Dale A., 1990. Quercus chrysolepsis Liebm. Canyon live oak. In: Burns, Russell M.; Honkala, Barbara H., technical coordinators. Silvics of North America. Volume 2. Hardwoods. Agric. Handb. 654. Washington, DC: U.S. Department of Agriculture, Forest Service: 1206-1218.
- Uchytil, Ronald J. 1989. Alnus rubra. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
- USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume Procedures R6 Timber Cruise System. 1978.
- Van Dyck, Michael G.; Smith-Mateja, Erin E., comps. 2000 (revised frequently). Keyword reference guide for the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Wensel, L. C. and C. M. Olson. 1993. Tree Taper Models for Major Commercial California Conifers.

 Research Note No. 33. Northern Calif. Forest Yield Cooperative. Dept. of Forstry and Mgmt.,
 Univ. of Calif., Berkeley. 28 pp.
- Wilkinson, W. H., McDonald, P. M., & Morgan, P. 1997. Tanoak sprout development after cutting and burning in a shade environment. Western Journal of Applied Forestry, 12(1), 21-26.
- Wykoff, W. R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Science 36(4): 1077-1104.
- Wykoff, William R., Crookston, Nicholas L., and Stage, Albert R. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT: Forest Service, Intermountain Forest and Range Experiment Station. 112p.

11.0 Appendices

11.1 Appendix A: Plant Association Codes

Table 11.1.1 Region 5 plant association codes recognized in the CA variant.

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
1 = 2TE/BEOC2		
Conifer/water birch	43014	501 – Manning & Padgett
2 =2TE/ROWO		
Conifer/wood's rose	43015	501 – Manning & Padget
3 = 2TE/2FORB		
Conifer/tall forb	43016	501 – Manning & Padgett
4 = 2TE/2FORB		
Conifer/mesic forb	43017	501 – Manning & Padget
5 = PICO/CASC12		
Lodgepole pine/mountain sedge	43031	501 – Manning & Padgett
6 = POTR5/BEOC2		
Quaking aspen/water birch	43061	501 – Manning & Padget
7 = POTR5/COSE16		
Quaking aspen/redosier dogwood	43062	501 – Manning & Padgett
8 = POTR5/SALIX		
Quaking aspen/willow	43063	501 – Manning & Padget
9 = POTR5/ROWO		
Quaking aspen/woods' rose	43064	501 – Manning & Padgett
10 = POTR5/BRCA5		
Quaking aspen/California brome	43065	501 – Manning & Padget
11 = POTR5/POPR		
Quaking aspen/Kentucky bluegrass	43066	501 – Manning & Padgett
12 = POTR5/2FORB		
Quaking aspen/mesic forb	43067	501 – Manning & Padget
13 = POPUL/BEOC2		
Cottonwood/water birch	43071	501 – Manning & Padgett
14 = POPUL/COSE16		
Cottonwood/redosier dogwood	43072	501 – Manning & Padget
15 = POPUL/SALIX		
Cottonwood/willow	43073	501 – Manning & Padgett
16 = POPUL/ROWO		
Cottonwood/woods' rose	43074	501 – Manning & Padget
17 = POPUL/RHAR4		
Cottonwood/fragrant sumac	43075	501 – Manning & Padgett
18 = POPUL		
Cottonwood (stream bar)	43076	501 – Manning & Padget
19 = ALIN2		
Gray alder (bench)	43106	501 – Manning & Padgett
20 = BEOC2/2GRAM		
Water birch/mesic graminoid	43153	501 – Manning & Padget
21 = BEOC2/EQAR		
Water birch/field horsetail	43154	501 – Manning & Padgett
22 = BEOC2	42456	FOA Manutica & Book is
Water birch (bench)	43156	501 – Manning & Padget
23 = SAEX/ROWO	433.46	FO1 Monning C Dada
Narrowleaf willow/woods' rose	43246	501 – Manning & Padgett
24 = SAEX Narrowleaf willow (bench)	43267	501 – Manning & Padget
	43207	201 – Maillillig & Pauget
25 = SALE/CASC12	42264	EO1 Manning 9 Dadgett
Lemmons willow/mountain sedge	43261	501 – Manning & Padgett
26 = SALE/2GRAM	42262	EO1 Manning 9 Dodget
Lemmons willow/mesic graminoid	43262	501 – Manning & Padget

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
27 = SALE/2FORB		
Lemmons willow/mesic forb	43263	501 – Manning & Padgett
28 = SALE/2FORB		
Lemons willow/tall forb	43264	501 – Manning & Padget
29 = SALE		
Lemmons willow (seep)	43265	501 – Manning & Padgett
30 = SALE		
Lemmons willow (bench)	43266	501 – Manning & Padget
31 = SALU2/2GRAM		
Yellow willow/ mesic graminoid	43272	501 – Manning & Padgett
32 = SALU2/2FORB		
Yellow willow/mesic forb	43273	501 – Manning & Padget
33 = SALU2/ROWO		
Yellow willow/woods' rose	43274	501 – Manning & Padgett
34 = SALU2/POPR		
Yellow willow/Kentucky bluegrass	43275	501 – Manning & Padget
35 = SALU2		
Yellow willow (bench)	43276	501 – Manning & Padgett
36 = SADR	42222	504 44 1 0.5 1 1
Drummond's willow	43282	501 – Manning & Padget
37 = SALUL/2FORB	42204	FOA Manaina & Dadaatt
Pacific willow/mesic forb	43284	501 – Manning & Padgett
38 = SALUL	42205	FO1 Manning & Dadget
Pacific willow (bench) 39 = SALA6/ROWO	43285	501 – Manning & Padget
Arroyo willow/woods' rose	43287	501 – Manning & Padgett
40 = SALA6	43287	301 – Mailling & Paugett
Arroyo willow (bench)	43288	501 – Manning & Padget
41 = SALIX/CARO6	43288	301 – Wallilling & Fauget
Willow/beaked sedge	43289	501 – Manning & Padgett
42 = SALIX/2GRAM	13203	Joi Manning & Ladgett
Willow/mesic graminoid	43290	501 – Manning & Padget
43 = SALIX/2FORB	1323	
Willow/mesic forb	43291	501 – Manning & Padgett
44 = SALIX/2FORB		5 5
Willow/tall forb	43292	501 – Manning & Padget
45 = SALIX/ROWO		
Willow/woods' rose	43293	501 – Manning & Padgett
46 = SALIX/POPR		
Willow/Kentucky bluegrass	43294	501 – Manning & Padget
47 = SAWO/CASC12		
Wolf's willow/mountain sedge	43304	501 – Manning & Padgett
48 = SAPL2/CASC12		
Diamondleaf willow/mountain sedge	43325	501 – Manning & Padget
49 = SAEA/CASC12		
Mountain willow/mountain sedge	43327	501 – Manning & Padgett
50 = SAOR/2FORB		
Sierra willow/tall forb	43328	501 – Manning & Padget
51 = SALIX/2FORB		
Willow/mesic forb	43329	501 – Manning & Padgett
52 = COSE16		F04 M : 2 = :
Redosier dogwood	43351	501 – Manning & Padget
53 = COSE16/SALIX	*****	F04 - Marriage C 2 - 1 - 11
Redosier dogwood-willow	43352	501 – Manning & Padgett
54 = PRVI/ROWO	40.454	FOA Manutic O Delt
Chokecherry/woods' rose	43451	501 – Manning & Padget
55 = ROWO	43500	EO1 Manning 9 Dadgett
Woods' rose	43500	501 – Manning & Padgett
56 = DAFL3/LIGR Shrubby cinquefail/gray/s licerica root	43554	EO1 Manning 9 Dedect
Shrubby cinquefoil/gray's licorice-root	43554	501 – Manning & Padget

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
57 = ARCA13/2GRAM		
Silver sagebrush/graminoid (dry)	43605	501 – Manning & Padgett
58 = ARCA13/2GRAM		
Silver sagebrush/graminoid (mesic)	43606	501 – Manning & Padget
59 = ARTRT/ROWO		
Basin big sagebrush/woods' rose	43651	501 – Manning & Padgett
60 = CADO2		
Douglas' sedge	43803	501 – Manning & Padget
61 = CASC12	42044	504 14 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mountain sedge 62 = DECA18-CANE2	43811	501 – Manning & Padgett
Tufted hairgrass-Nebraska sedge	43872	501 – Manning & Padget
63 = POSE	43072	301 – Mailling & Fauget
Sandberg bluegrass	43883	501 – Manning & Padgett
64 = DOJE	13003	301 Manning & Laugett
Sierra shootingstar	43905	501 – Manning & Padget
65 = LUPO2-SETR		
Bigleaf lupine-arrowleaf ragwort	43911	501 – Manning & Padgett
66 = IRMI/2GRAM		
Western iris/dry graminoid	43915	501 – Manning & Padget
67 = IRMI/2GRAM		
Western iris/ mesic graminoid	43916	501 – Manning & Padgett
68 = AGST2		
Creping bentgrass	43991	501 – Manning & Padget
69 = HOBR2		
Meadow barley	43995	501 – Manning & Padgett
70 = CHLA		
Port Orford cedar	CCOCCO00	510 – Jimerson, 1994
71 = Part Orferd coder/colol (1)	CCOCCO11	F10 limerson 1004
Port Orford cedar/salal (1) 72 =	CCOCCO11	510 – Jimerson, 1994
Port Orford cedar/pacific rhododendron-salal(1)	CCOCCO12	510 – Jimerson, 1994
73 =	CCOCCO12	310 – Jiller3011, 1334
Port Orford cedar/western azalea (1)	CCOCCO13	510 – Jimerson, 1994
74 =	00000015	323 3
Port Orford cedar-western white pine/huckleberry oak (1)	CCOCCO14	510 – Jimerson, 1994
75 = CHLA-ABCO		
Port Orford cedar-white fir	CCOCFW00	510 – Jimerson, 1994
76 = CHLA-ABCO/QUVA		
Port Orford cedar-white fir/huckleberry oak	CCOCFW11	510 – Jimerson, 1994
77 = CHLA-ABCO-PIMO3/QUVA		
Port Orford cedar-white fir-western white pine/huckleberry oak	CCOCFW12	510 – Jimerson, 1994
78 = CHLA-ABCO/RHOB		
Port Orford cedar-white fir/western azalea	CCOCFW13	510 – Jimerson, 1994
79 = CHLA-ABCO/2FORB	660651444	510
Port Orford cedar-white fir/forbs	CCOCFW14	510 – Jimerson, 1994
80 = CHLA-ABCO/QUSA2	CCOCEWIE	E10 limorcon 1004
Port Orford cedar-white fir/deer oak 81 = CHLA-ABSH/QUSA2-VAME	CCOCFW15	510 – Jimerson, 1994
Port Orford cedar-Shasta red fir/deer oak-thinleaf huckleberry	CCOCFW16	510 – Jimerson, 1994
82 = CHLA-PSME/QUVA	CCOCT VV 10	510 JIIIIEI 3011, 1554
Port Orford cedar-Douglas-fir/huckleberry oak	CCOCFW17	510 – Jimerson, 1994
83 = CHLA-CADE27-ALRH2		
Port Orford cedar-incense cedar-white alder	CCOCFW18	510 – Jimerson, 1994
84 = PSME		,
Douglas-fir	CD000000	513 – Jimerson et al, 1996
85 = PSME-CADE27		,
Douglas-fir-incense cedar	CD0CCI00	513 – Jimerson et al, 1996
86 = PSME-CADE27/FECA		
Douglas-fir-incense cedar/California fescue	CD0CCI11	513 – Jimerson et al, 1996

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
87 = PSME-PIJE		
Douglas-fir-Jeffrey Pine	CD0CPJ00	513 – Jimerson et al, 1996
88 = PSME-PIJE/FECA		
Douglas-fir-Jeffrey pine/California fescue	CD0CPJ11	513 – Jimerson et al, 1996
89 = PSME-ALRU2		
Douglas-fir-red alder	CD0HAR00	513 – Jimerson et al, 1996
90 = PSME-ALRU2/ACCI/CLSIS		
Douglas-fir-red alder/vine maple/Siberian springbeauty	CD0HAR11	513 – Jimerson et al, 1996
91 = PSME-UMCA		
Douglas-fir-California laurel	CD0HBC00	513 – Jimerson et al, 1996
92 = PSME-UMCA/TODI		
Douglas-fir-California laurel/Pacific poison oak	CD0HBC11	513 – Jimerson et al, 199
93 = PSME-UMCA/HODI		
Douglas-fir-California laurel/ocean spray	CD0HBC12	513 – Jimerson et al, 199
94 = PSME-CHCHC4		
Douglas-fir-giant chinquapin	CD0HGC00	513 – Jimerson et al, 1996
95 = PSME-CHCHC4-LIDE3	CD011CC4:	F42 Company 1 1 1 1 1 1 1 1 1
Douglas-fir-giant chinquapin-tanoak	CD0HGC11	513 – Jimerson et al, 199
96 = PSME-CHCHC4/XETE	CD011CC42	F12 10-1
Douglas-fir-giant chinquapin/common beargrass	CD0HGC12	513 – Jimerson et al, 199
97 = PSME-CHCHC4/RHMA3-GASH	CD0UCC12	513 Emanage et al. 1000
Douglas-fir-giant chinquapin/Pacific rhododendron-salal 98 = PSME-CHCHC4/RHMA3-MANE2	CD0HGC13	513 – Jimerson et al, 1996
98 = PSME-CHCHC4/RHMA3-MANE2 Douglas-fir-giant chinquapin/pacific rhododendron-Cascade barberry	CD0HGC14	513 – Jimerson et al, 1996
99 = PSME-CHCHC4/RHMA3-QUSA2/XETE	CDUNGC14	515 – Jillierson et al, 1990
Douglas-fir-giant chinquapin/pacific rhododendron-deer oak/common beargrass	CD0HGC15	513 – Jimerson et al, 199
100 = PSME-CHCHC4-LIDE3/MANE2	CDUNGCIS	515 – Jillierson et al, 199
Douglas-fir-giant chinquapin-tanoak/cascade barberry	CD0HGC16	513 – Jimerson et al, 199
101 = PSME-CHCHC4/RHA3-QUSA-GASH	CDUIIGCIO	515 – Jillierson et al, 199
Douglas-fir-giant chinquapin/pacific rhododendron-deer oak-salal	CD0HGC17	513 – Jimerson et al, 199
102 = PSME-ACER	CDONGCI7	313 Jille13011 et al, 1330
Douglas-fir-maple	CD0HMA00	513 – Jimerson et al, 199
103 = PSME-ACMA3/POMU		
Douglas-fir-bigleaf maple/western swordfern	CD0HMA11	513 – Jimerson et al, 199
104 = PSME-ACMA3/PHLE4		
Douglas-fir-bigleaf maple/Lewis' mock orange	CD0HMA12	513 – Jimerson et al, 199
105 = PSME/ACCI-MARE11		
Douglas-fir/vine maple-Cascade barberry	CD0HMA13	513 – Jimerson et al, 1996
106 = PSME-QUKE		
Douglas-fir-California black oak	CD0H0B00	513 – Jimerson et al, 1996
107 = PSME-QUKE		
Douglas-fir-California black oak (metamorphic)	CD0HOB11	513 – Jimerson et al, 1996
108 = PSME-QUKE		
Douglas-fir-California black oak (sandstone)	CD0HOB12	513 – Jimerson et al, 1996
109 = PSME-QUKE-QUGA4/2GRAM		
Douglas-fir-California black oak-Oregon white oak/grass	CD0HOB13	513 – Jimerson et al, 199
110 = PSME-QUCH2		
Douglas-fir-canyon live oak	CD0HOL00	513 – Jimerson et al, 199
111 = PSME-QUCH2		
Douglas-fir-canyon live oak (rockpile)	CD0HOL11	513 – Jimerson et al, 199
112 = PSME-QUCH2-ARME/TODI		
Douglas-fir-canyon live oak-Pacific madrone/pacific poison oak	CD0HOL12	513 – Jimerson et al, 199
113 = PSME-QUCH2-LIDE3		
Douglas-fir-canyon live oak-tanoak	CD0HOL13	513 – Jimerson et al, 199
114 = PSME-QUGA4		
Douglas-fir-Oregon white oak	CD0HOO00	513 – Jimerson et al, 199
115 = PSME-QUGA4/2GRAM		
Douglas-fir-Oregon white oak/grass	CD0H0011	513 – Jimerson et al, 199
116 = PSME-QUGA4/HODI		
Douglas-fir-Oregon white oak/oceanspray	CD0HOO12	513 – Jimerson et al, 1996

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
117 = PSME-LIDE3		
Douglas-fir-tanoak	CD0HT000	513 – Jimerson et al, 1996
118 = PSME-LIDE3/WHMO		
Douglas-fir-tanoak/common whipplea	CD0HT011	513 – Jimerson et al, 1996
119 = PSME-LIDE3/QUVA-HODI		
Douglas-fir-tanoak/huckleberry oak-oceanspray	CD0HT012	513 – Jimerson et al, 1996
120 = PSME/2SHRUB	CD0CN4000	F12 limerson et al 1000
Douglas-fir/shrub (moist) 121 = PSME/COCOC	CD0SM000	513 – Jimerson et al, 1996
Douglas-fir/California hazelnut	CD0SM011	513 – Jimerson et al, 1996
122 = PSME/QUVA	CDOSIVIOTI	313 – Jillier 3011 et al, 1330
Douglas-fir/huckleberry oak	CD0SOH00	513 – Jimerson et al, 1996
123 = PSME/QUVA/LIDEE	0000000	
Douglas-fir/huckleberry oak-tanoak	CD0SOH12	513 – Jimerson et al, 1996
124 = PSME/QUVA-RHMA3		·
Douglas-fir/huckleberry oak-Pacific rhododendron	CD0SOH13	513 – Jimerson et al, 1996
125 = PIJE		
Jeffrey pine	CPJ00000	512 – Jimerson et al, 1995
126 = PIJE-CADE27		
Jeffrey Pine – Incense cedar	CPJCCI00	512 – Jimerson et al, 1995
127 = PIJE-CADE27-ABCO/QUVA		
Jeffrey Pine-Incense cedar-white fir/huckleberry oak	CPJCCI11	512 – Jimerson et al, 1995
128 = PIJE-CADE27/QUVA/XETE		
Jeffrey Pine-Incense cedar/huckleberry oak/common beargrass	CPJCCI12	512 – Jimerson et al, 1995
129 = PIJE-CADE27/CEPU		
Jeffrey Pine-incense cedar/dwarf ceanothus	CPJCCI13	512 – Jimerson et al, 1995
130 = PIJE-CADE27/CECU	00100144	
Jeffrey Pine-incense cedar/buckbrush	CPJCCI14	512 – Jimerson et al, 1995
131 = PIJE-ABCO/IRIS Jeffrey Pine-white fir/iris	CPJCFW11	E12 limerson et al 100E
132 = PIJE-ABCO/QUSA2/XETE	CPJCFW11	512 – Jimerson et al, 1995
Jeffrey pine-white fir/deer oak/common beargrass	CPJCFW12	512 – Jimerson et al, 1995
133 = PIJE/FEID	CIJCIVVIZ	312 Jille13011 et al, 1333
Jeffrey pine/Idaho fescue	CPJGFI00	512 – Jimerson et al, 1995
134 = PIJE/FEID	0.50.100	312 3
Jeffrey pine/Idaho fescue	CPJGFI11	512 – Jimerson et al, 1995
135 = PIJE/QUVA-ARNE/FEID		
Jeffrey pine/huckleberry oak-pinemat manzanita/Idaho fescue	CPJGFI12	512 – Jimerson et al, 1995
136 = PIJE/QUSA2-ARNE/FEID		
Jeffrey pine/deer oak-pinemat manzanita/Idaho fescue	CPJSOD11	512 – Jimerson et al, 1995
137 = PICO		
Lodgepole pine	CPL00000	512 – Jimerson et al, 1995
138 = PICO/QUVA		
Lodgepole pine/huckleberry oak	CPLSOH00	512 – Jimerson et al, 1995
139 = PICO/QUVA-FRCAO4		
Lodgepole pine/huckleberry oak-California buckthorn	CPLSOH11	512 – Jimerson et al, 1995
140 = PICO/QUVA/LIDE3	001001140	
Lodgepole pine/huckleberry oak-tanoak	CPLSOH12	512 – Jimerson et al, 1995
141 = PICO/LIDE3	CDLCTOOO	512 limanus et al 1005
Lodgepole pine/shrub tanoak 142 = PICO/LIDE3-RHMA3	CPLST000	512 – Jimerson et al, 1995
Lodgepole pine/tanoak-Pacific rhododendron	CPLST011	512 – Jimerson et al, 1995
143 = PILA	CI 131011	512 June 3011 et al, 1333
Sugar pine	CPS00000	512 – Jimerson et al, 1995
144 = PILA-PICO	C1 300000	3.12 Simer 3011 Ct ai, 1333
Sugar pine-lodgepole pine	CPSCPL00	512 – Jimerson et al, 1995
145 = PILA-PICO/QUVA-LIDEE	C1 3C1 200	1_1 3
• •	CPSCPL11	512 – Jimerson et al, 1995
Sugar pine-lodgepole pine/huckleberry oak-tanoak		
Sugar pine-lodgepole pine/huckleberry oak-tanoak 146 = PILA-PICO/LIDEE-RHMA3	CISCILII	

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
147 = PILA-PIMO3		
Sugar pine-western white pine	CPSCPW00	512 – Jimerson et al, 1995
148 = PILA-PIMO3/QUVA-GABU2		
Sugar pine-western white pine/huckleberry oak-dwarf silktassel	CPSCPW11	512 – Jimerson et al, 1995
149 = PILA-CHCHC4		
Sugar pine-giant chinquapin	CPSHGC00	512 – Jimerson et al, 1995
150 = PILA-CHCHC4/Quva-QUSA2		
Sugar pine-giant chinquapin/huckleberry oak-deer oak	CPSHGC11	512 – Jimerson et al, 1995
151 = PIMO3		
Western white pine	CPW00000	512 – Jimerson et al, 1995
152 = PIMO3-PSME	00,440,000	"
Western white pine-Douglas-fir	CPWCD000	512 – Jimerson et al, 1995
153 = PIMO3-PSME/QUVA-LIDEE	CDMCD011	512 lineares et al 1005
Western white pine-Douglas-fir/huckleberry oak-tanoak	CPWCD011	512 – Jimerson et al, 1995
154 = PIMO3/PIMO3	CDMCEMOO	E12 limercan et al 100E
Western white pine/white pine 155 = PIMO3-ABCO/QUVA/ANEMO	CPWCFW00	512 – Jimerson et al, 1995
Western white pine-white fir/huckleberry oak/western anemone	CPWCFW11	512 – Jimerson et al, 1995
156 = PIMO3-PICO	CF VV CF VV 11	312 - Jilliel 3011 et al, 1993
Western white pine-lodgepole pine	CPWCPL00	512 – Jimerson et al, 1995
157 = PIMO3-PICO/LIDEE-RHMA3	C1 VVC1 E00	312 3111013011 00 01, 1933
Western white pine-lodglepole pine/tanoak-Pacific rhododendron	CPWCPL11	512 – Jimerson et al, 1995
158 = PIMO3-PILA		
Western white pine-sugar pine	CPWCPS00	512 – Jimerson et al, 1995
159 = PIMO3-PILA/QUVA-LIDEE		
Western white pine-sugar pine/huckleberry oak-tanoak	CPWCPS11	512 – Jimerson et al, 1995
160 = LIDE3		
Tanoak	HT000000	513 – Jimerson et al, 1996
161 = LIDE3/CADE27		
Tanoak-incense cedar	HT0CCI00	513 – Jimerson et al, 1996
162 = LIDE3-CADE27/FECA		
Tanoak-incense cedar/California fescue	HT0CCI11	513 – Jimerson et al, 1996
163 = LIDE3-CHLA		
Tanoak-Port Orford cedar	HT0CCO00	513 – Jimerson et al, 1996
164 = LIDE3-CHLA-UMCA/VAOV2	UT000044	543
Tanoak-Port Orford cedar-California laurel/California huckleberry	HT0CCO11	513 – Jimerson et al, 1996
165 = LIDE3-CHLA/VAOV2-RHOC	UT000043	543
Tanoak-Port Orford cedar/California huckleberry-western azalea 166 = LIDE3-CHLA/VAOV2	HT0CCO12	513 – Jimerson et al, 1996
Tanoak-Port Orford cedar/California huckleberry	HT0CCO13	513 – Jimerson et al, 1996
167 = LIDE3-CHLA/MANE2/LIBOL2	111000013	313 – Jillierson et al, 1990
Tanoak-Port Orford cedar/Cascade barberry/longtube twinflower	HT0CCO14	513 – Jimerson et al, 1996
168 = LIDE3-CHLA-ALRH2	111000014	313 3111013011 00 01, 1930
Tanoak-Port Orford cedar-white alder (riparian)	HT0CCO15	513 – Jimerson et al, 1996
169 = LIDE3-CHLA/ACCI	111000015	525 3
Tanoak-Port Orford cedar/vine maple	HT0CCO16	513 – Jimerson et al, 1996
170 = LIDE3-CHLA/VAPA		,
Tanoak-Port Orford cedar/red huckleberry	HT0CCO17	513 – Jimerson et al, 1996
171 = LIDE3-CHLA/GASH		
Tanoak-Port Orford cedar/salal	HT0CCO18	513 – Jimerson et al, 1996
172 = LIDE3-CHLA-TSHE/VAOV2		
Tanoak-Port Orford cedar-western hemlock/California huckleberry	HT0CCO19	513 – Jimerson et al, 1996
173 = LIDE3-UMCA		
Tanoak-California laurel	НТОНВСОО	513 – Jimerson et al, 1996
174 = LIDE3-UMCA/TODI		
Tanoak-California laurel/Pacific poison oak	HT0HBC11	513 – Jimerson et al, 1996
175 = LIDE3-UMCA/VAOV2		
Tanoak-California laurel/California huckleberry	HT0HBC12	513 – Jimerson et al, 1996
176 = LIDE3-CHCHC4		
Tanoak-giant chinquapin	HT0HGC00	513 – Jimerson et al, 1996

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
177 = LIDE3-CHCHC4/GASH		
Tanoak-giant chinquapin/salal	HT0HGC11	513 – Jimerson et al, 1996
178 = LIDE3-CHCHC4/GASH-RHMA3		
Tanoak-giant chinquapin/salal-Pacific rhododendron	HT0HGC12	513 – Jimerson et al, 1996
179 = LIDE3-CHCHC4/RHMA3/XETE		
Tanoak-giant chinquapin/Pacific rhododendron/common beargrass	HT0HGC13	513 – Jimerson et al, 1996
180 = LIDE3-CHCHC4/PTAQL		540 "
Tanoak-giant chinquapin/western brackenfern	HT0HGC14	513 – Jimerson et al, 1996
181 = LIDE3-CHCHC4/MANE2	UTOUCC15	F12 limercan et al. 1006
Tanoak-giant chinquapin/Cascade barberry 182 = LIDE3CHCHC4/VAOV2-GASH	HT0HGC15	513 – Jimerson et al, 1996
Tanoak-giant chinquapin/California huckleberry-salal	HT0HGC16	513 – Jimerson et al, 1996
183 = LIDE3/ACER	monder	313 3111013011 00 01, 1330
Tanoak-maple	нтонмооо	513 – Jimerson et al, 1996
184 = LIDE3-ACMA3/POMU		
Tanoak-bigleaf maple/swordfern	HT0HM011	513 – Jimerson et al, 1996
185 = LIDE3/ACCI-GASH		,
Tanoak/vine maple-salal	HT0HM012	513 – Jimerson et al, 1996
186 = LIDE3/ACCI		
Tanoak/vine maple	HT0HM013	513 – Jimerson et al, 1996
187 = LIDE3/QUKE		
Tanoak-California black oak	НТОНОВОО	513 – Jimerson et al, 1996
188 = LIDE3/QUKE		
Tanoak-California black oak	HT0HOB11	513 – Jimerson et al, 1996
189 = LIDE3-QUCH2	1170110100	543 limana at al 1000
Tanoak-canyon live oak	HT0H0L00	513 – Jimerson et al, 1996
190 = LIDE3-QUCH2 Tanoak-canyon live oak (rockpile)	HT0HOL11	513 – Jimerson et al, 1996
191 = LIDE3-QUCH2/VAOV2	monocii	313 – Jiller 3011 et al, 1330
Tanoak-canyon live oak/California huckleberry	HT0HOL12	513 – Jimerson et al, 1996
192 = LIDE3-QUCH2/GASH-MANE2		
Tanoak-canyon live oak/salal-Cascade barberry	HT0HOL13	513 – Jimerson et al, 1996
193 = LIDE-QUCH2-QUKE/TODI		
Tanoak-canyon live oak-California black oak/Pacific poison oak	HT0HOL14	513 – Jimerson et al, 1996
194 = LIDE3-QUCH2/TODI		
Tanoak-canyon live oak/Pacific poison oak	HT0HOL15	513 – Jimerson et al, 1996
195 = LIDE3-QUCH2/MANE2		
Tanoak-canyon live oak/Cascade barberry	HT0HOL16	513 – Jimerson et al, 1996
196 = LIDE3/2SHRUB Tanoak/shrub (dry)	HT0SD000	513 – Jimerson et al, 1996
197 = LIDE3/TODI/LOHIV	11103D000	313 – Jillerson et al, 1990
Tanoak/Pacific poison oak/pink honeysuckle	HT0SD011	513 – Jimerson et al, 1996
198 = LIDE3/MANE2		323 3
Tanoak/Cascade barberry	HT0SD012	513 – Jimerson et al, 1996
199 = LIDE3/VAOV2-GASH		·
Tanoak/California huckleberry-salal	HT0SEH12	513 – Jimerson et al, 1996
200 = LIDE3/VAOV2-RHMA3		
Tanoak/California huckleberry-Pacific rhododendron	HT0SEH13	513 – Jimerson et al, 1996
201 = LIDE3/2SHRUB		
Tanoak/shrub (moist0	HT0SM000	513 – Jimerson et al, 1996
202 = LIDE2/COCOC	LITOCNAGAA	E13 limore = -+ -1 4000
Tanoak/California hazelnut 203 = LIDE3/QUVA	HT0SM011	513 – Jimerson et al, 1996
ZO3 = LIDE3/QUVA Tanoak/huckleberry oak	нтоѕоноо	513 – Jimerson et al, 1996
204 = LIDE3/QUVA-RHMA3	1110301100	515 - Jilliel 3011 et al, 1990
Tanoak/huckleberry oak-Pacific rhododendron	HT0SOH11	513 – Jimerson et al, 1996
205 = LIDE3/GASH-RHMA3	1110001111	2_3 3
Tanoak/salal-Pacific rhododendron	HT0SSG12	513 – Jimerson et al, 1996
206 = LIDE3/GASH-MANE2		,
Tanoak/salal-Cascade barberry	HT0SSG13	513 – Jimerson et al, 1996

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
207 = LIDE3/VAOV2		
Tanoak/California huckleberry	HT0SEH00	513 – Jimerson et al, 1996
208 = LIDE3/VAOV2		
Tanoak/California huckleberry	HT0SEH11	513 – Jimerson et al, 1996
209 = LIDE3/GASH		
Tanoak/salal	HT0SSG00	513 – Jimerson et al, 1996
210 = LIDE3/GASH	LITOCCC11	F12 1:
Tanoak/salal	HT0SSG11	513 – Jimerson et al, 1996
211 = CADE27-PIPO-PSME/CHFO Incense cedar-ponderosa pine-Douglas-fir/mountain misery	CC0311	502 – Benson (1988)
212 = PIJE-ABCO/POA	CC0311	302 - Bellsoll (1988)
Jeffrey pine-white fir/bluegrass (granite)	CPJGBW11	502 – Benson (1988)
213 = PIPO-PIJE-ABCO/ACOCO	0.700.112	
Ponderosa pine-Jeffrey pine-white fir/western needlegrass (ash)	CPJGNG11	502 – Benson (1988)
214 = PIPO-PIJE-QUKE/AMPA2		,
Ponderosa pine-Jeffrey pine-California black oak/pale serviceberry	CPJSAM11	502 – Benson (1988)
215 = PIPO-PIJE-ABCO/AMPA2-MARE11		
Ponderosa pine-Jeffrey pine-white fir/pale serviceberry-creeping barberry	CPJSAM12	502 – Benson (1988)
216 = PIJE-QUKE/RHTRQ		
Jeffrey pine-California black oak/skunkbush sumac	CPJSBB11	502 – Benson (1988)
217 = PIJE/PUTR2-CELE3/ACOCO		
Jeffrey pine/antelope bitterbrush-curl-leaf mountain mahogany/western needlegrass	CPJSBB12	502 – Benson (1988)
218 = PIJE/PUTR2-SYORU/POA		
Jeffrey pine/antelope bitterbrush-Utah snowberry/bluegrass	CPJSBB13	502 – Benson (1988)
219 = PIJE/PUTR2/WYMO		
Jeffrey pine/antelope bitterbrush/woolly mule-ears	CPJSBB14	502 – Benson (1988)
220 = PIPO-PIJE-PSME/PUTR2/WYMO	CDICDD4F	502 Barray (4000)
Ponderosa pine-Jeffrey pine-Douglas-fir/antelope bitterbrush/woolly mule-ears	CPJSBB15	502 – Benson (1988)
221 = PIPO-PIJE-QUKE/POA Ponderosa pine-Jeffrey pine-California black oak/bluegrass (granite)	CPJSBB16	502 – Benson (1988)
222 = PIPO-PIJE/ARTRV-PUTR2	CFJ3BB10	302 – Belison (1988)
Ponderosa pine-Jeffrey pine/mountain big sagebrush-antelope bitterbrush	CPJSBB17	502 – Benson (1988)
223 = PIPO-PIJE/PUTR2/FEID	0.355527	302 2030 (2300)
Ponderosa pine-Jeffrey pine/antelope bitterbrush/Idaho fescue	CPJSBB18	502 – Benson (1988)
224 = PIPO-PIJE/PUTR2/FEID		
Ponderosa pine-Jeffrey pine/antelope bitterbrush/Idaho fescue (granite)	CPJSBB19	502 – Benson (1988)
225 = PIPO-PIJE/PUTR2/SEINM		
Ponderosa pine-Jeffrey pine/antelope bitterbrush/lambstongue ragwort (granite)	CPJSBB20	502 – Benson (1988)
226 = PIPO-PIJE/FRRUM/POSE		
Ponderosa pine-Jeffrey pine/Modoc buckthorn/Sandberg bluegrass	CPJSBB21	502 – Benson (1988)
227 = PIPO-PIJE-ABCO/QUW12		
Ponderosa pine-Jeffrey pine-white fir/interior live oak	CPJSBB23	502 – Benson (1988)
228 = PIJE/CELE3		
Jeffrey pine/curl-leaf mountain mahogany	CPJSMC11	502 – Benson (1988)
229 = PIPO-PIJE/CELE3/PSSPS	CDICMAC12	F02 Parasa (1000)
Ponderosa pine-Jeffrey pine/curl-leaf mountain mahogany/ bluebunch balsamroot	CPJSMC12	502 – Benson (1988)
230 = PIPO-PIJE/CELE3/BASA3 Ponderosa pine-Jeffrey pine/curl-leaf mountain mahogany/ arrowleaf balsamroot	CPJSMC13	502 – Benson (1988)
231 = PIPO-PIJE-ABCO/QUVA/WYMO	CFJSIVICIS	302 – Bellson (1988)
Ponderosa pine-Jeffrey pine-white fir/huckleberry oak/woolly mule-ears	CPJSOH11	502 – Benson (1988)
232 = PIJE/ARTRV/FEID	01301111	302 Bensen (1900)
Jeffrey pine/mountain big sagebrush/Idaho fescue	CPJSSB11	502 – Benson (1988)
233 = PIPO-PIJE-ABCO/SYAC/WYMO		()
Ponderosa pine-Jeffrey pine-white fir/sharpleaf snowberry/ woolly mule-ears	CPJSSS12	502 – Benson (1988)
234 = PIJE-ABCO/SYORU/PONE2		, -7
Jeffrey pine-white fur/Utah snowberry/Wheeler bluegrass	CPJSSY11	502 – Benson (1988)
235 = PIWA/ARNE		
Washoe pine/pinemat manzanita	CPOSMP11	502 – Benson (1988)
236 = PIWA-ABCO/SYORU/PSJA2		
Washoe pine-white fir/Utah snowberry/tuber starwort	CPOSSY11	502 – Benson (1988)

232 = PROP(AMPAZ-MARELI)ARCO9	FVS Sequence Number = Plant Association	Alpha	
Source CPPSAM11 Source	Description	Code	Reference
238 = PRO/AMPAZ-PRUNU	237 = PIPO/AMPA2-MARE11/ARCO9		
2007 2007	Ponderosa pine/pale serviceberry-creeping barberry/ heartleaf arnica	CPPSAM11	502 – Benson (1988)
239	238 = PIPO/AMPA2-PRUNU		
Variable	Ponderosa pine/pale serviceberry-prunus	CPPSAM12	502 – Benson (1988)
200	239 = PIPO-ABCO-PICO/AMPA2		
Ponderosa pine-white fir-lack oak/pale serviceberry Ponderosa pine-white fir/pale serviceberry Ponderosa pine-white fir/pale serviceberry Ponderosa pine-white fir/pale serviceberry-creeping barberry Ponderosa pine-white fir/pale serviceberry-creeping barberry Ponderosa pine-white fir/pale serviceberry-creeping barberry Ponderosa pine-white fir/pale serviceberry-snowbrush cenothus/Orcutt's brome Ponderosa pine-white fir/pale serviceberry-snowbrush cenothus/Orcutt's brome Ponderosa pine-white fir/pale serviceberry-snowbrush cenothus/Orcutt's brome Ponderosa pine-cialifornia black oak/antelope bitterbrush/arrowleaf balsamroot Ponderosa pine-cialifornia black oak/antelope bitterbrush/western needlegrass Ponderosa pine-cialifornia black oak/antelope bitterbrush/daho fescue Ponderosa pine-cialifornia black oak/antelope bitterbrush-delope bitterbrush-delope bitterbrush-nowbrush ceanothus-greenleaf manzanita/Orcutt's brome Ponderosa pine/antelope bitterbrush-nowbrush ceanothus-greenleaf manzanita/Orcutt's brome Ponderosa pine/antelope bitterbrush-prunus/Orcutt's brome Ponderosa pine/antelope bitterbrush-prunush-prunush-prunush-prunush-prunush-prunush-prunush-prunu	Ponderosa pine-white fir-lodgepole pine/pale serviceberry	CPPSAM13	502 – Benson (1988)
124	240 = PIPO-ABCO-QUVA/AMPA2		
Ponderosa pine-white fir/pale serviceberry-creeping barberry 242 = PIPO-ABC/JAMPAZ-CEVE/ABOSO2 Ponderosa pine-white fir/pale serviceberry-snowbrush ceonothus/Orcutt's brome 243 = PIPO-CADE 27/PUTR2/BASA3 Ponderosa pine-white fir/pale serviceberry-snowbrush ceonothus/Orcutt's brome 243 = PIPO-CADE 27/PUTR2/BASA3 Ponderosa pine-white fir/pale serviceberry-snowbrush ceonothus/Orcutt's brome 244 = PIPO-QUKE/PUTR2/ABOCO Onderosa pine-difformia black oalv/antelope bitterbrush/ western needlegrass 245 = PIPO-CULE3-PUTR2/FIED Onderosa pine/antelope bitterbrush-western needlegrass 245 = PIPO-CULE3-PUTR2/FIED Onderosa pine/antelope bitterbrush-snowbrush ceanothus-greenleaf marzanita/Orcutt's brome 246 = PIPO-PUTR2-CEVE-ARPAG/BROR2 Onderosa pine/antelope bitterbrush-snowbrush ceanothus-greenleaf marzanita/Orcutt's brome 248 = PIPO-PUTR2-PURUNJ/BROR2 Onderosa pine/antelope bitterbrush-prunus/Orcutt's brome 248 = PIPO-PUTR2-PURUNJ/BROR2 Onderosa pine/antelope bitterbrush-prunus/Orcutt's brome 248 = PIPO-PUTR2-PURUNJ/BROR2 Onderosa pine/antelope bitterbrush-prunus/Orcutt's brome 250 = PIPO/PUTR2-PURUNJ/BROR2 Onderosa pine/antelope bitterbrush-wax current/Orcutt's brome 250 = PIPO/PUTR2-PURUNJ/BROR2 Onderosa pine/antelope bitterbrush-wax current/Orcutt's brome 250 = PIPO/PUTR2/BROR3 Onderosa pine/antelope bitterbrush-wax current/Orcutt's brome 250 = PIPO/PUTR2/BROS3 CONDEROSA pine/antelope bitterbrush-western needlegrass (pumice) CONDEROSA pine/antelope bitterbrush-western needlegrass COPPSBB1 CONDEROSA pine/antelope bitterbrush-preenleaf manzanita/western needlegrass COPPSB2 CONDEROSA pine/antelope bitt	Ponderosa pine-white fir-black oak/pale serviceberry	CPPSAM14	502 – Benson (1988)
1242 = PIPO-ABCQ/AMPA2_CEVE/BROR2	241 = PIPO-ABCO/AMPA2-MARE11		
Productors pine-white Ir/pale serviceberry-snowbrush ceonothus/Orcutt's brome	Ponderosa pine-white fir/pale serviceberry-creeping barberry	CPPSAM15	502 – Benson (1988)
Mail	242 = PIPO-ABCO/AMPA2-CEVE/BROR2		
Ponderosa pine-incense cedar/antelope bitterbrush/ arrowleaf balsamroot		CPPSAM16	502 – Benson (1988)
244 = PIPO-QUKE/PUTR2/ACOCO	· · · · ·		
Ponderosa pine-California black oak/antelope bitterbrush/ western needlegrass		CPPSBB11	502 – Benson (1988)
MS = PIPO/CELE3-PUTRZ/FEID	·		
Age PIPO/PURT2-REVARPA6/RROR2		CPPSBB12	502 – Benson (1988)
AGE = PIPO/PURTZ-CEVE_ARPA6/BROR2 Pronderosa pine/antelope bitterbrush-nowbrush ceanothus-greenleaf manzanita/Orcutt's brome ATP = PIPO/PURTZ-PRUNU/BROR2 Pronderosa pine/antelope bitterbrush-prunus/Orcutt's brome CPPSBB15 S02 - Benson (1988) AZP = PIPO/PURTZ-PRUNU/BROR2 Pronderosa pine/antelope bitterbrush-prunus/Drcutt's brome CPPSBB15 CPPSBB16 S02 - Benson (1988) AZP = PIPO/PURTZ-PRUNU/BROR2 PRONDEROSA	245 = PIPO/CELE3-PUTR2/FEID		
Ponderosa pine/antelope bitterbrush-snowbrush ceanothus-greenleaf manzanita/Orcutt's brome 247 = PIPO/PURT2-PRUNU/BRORZ 247 = PIPO/PURT2-PRUNU/BRORZ 248 = PIPO/PURT2-PRUNU/PSSPS 249 = PIPO/PURT2-RECE/BRORZ 240 = PIPO/PURT2-RECE/BRORZ 240 = PIPO/PURT2/BASA3 240 = PIPO/PURT2/BASA33		CPPSBB13	502 – Benson (1988)
247 = PIPO/PURT2-PRUNU/J8ROR2	·	00000	500 B (1050)
200 201 202		CPPSBB14	502 – Benson (1988)
248 = PIPO/PUTR2-PRUNU/PSSPS 502 - Benson (1988)			()
Productors pine/antelope bitterbrush-prunus/bluebunch wheatgrass 249 = PIPO/PUTR2-RICE/BROR2 Productors pine/antelope bitterbrush-wax current/Orcutt's brome 250 = PIPO/PUTR2/BASA3 Productors a pine/antelope bitterbrush-wax current/Orcutt's brome 251 = PIPO/PUTR2/BASA3 Productors a pine/antelope bitterbrush/arrowleaf balsamroot 252 = PIPO/PUTR2/FEID Productors a pine/antelope bitterbrush/daho fescue 253 = PIPO/PUTR2/ACCO Productors a pine/antelope bitterbrush/western needlegrass (pumice) Productors a pine/antelope bitterbrush/western needlegrass (pumice) Productors a pine/antelope bitterbrush/western needlegrass (pumice) Productors a pine/antelope bitterbrush/western needlegrass 252 = PIPO/PUTR2/ACCO Productors a pine/antelope bitterbrush/western needlegrass 253 = PIPO-ABCO/CEVE/ACCOC Productors a pine/antelope bitterbrush/western needlegrass 254 = PIPO-ABCO/FUTR2-ARPA6/ACOCO Productors a pine/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABRO/PUTR2-ARPA6/ACOCO Productors a pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ARTRV/FEID Productors a pine/mountain big sagebrush/idaho fescue 255 = PIPO/ARTRV/FEID Productors a pine/mountain big sagebrush/idaho fescue 255 = PIPO/ARTRV/FEID Productors a pine/mountain big sagebrush/idaho fescue 255 = PIPO/ARTRV/FEID Productors a pine/mountain misery/Sierra milk wort 256 = PIME-PIPO/CHPO/POCOC 250 = PIM		CPPSBB15	502 – Benson (1988)
249 = PIPO/PUTR2-RICE/BROR2 Ponderosa pine/antelope bitterbrush-wax current/Orcutt's brome 250 = PIPO/PUTR2/BASA3 Ponderosa pine/antelope bitterbrush/arrowleaf balsamroot 251 = PIPO/PUTR2/BASA3 Ponderosa pine/antelope bitterbrush/daho fescue 252 = PIPO/PUTR2/BACOC Ponderosa pine/antelope bitterbrush/daho fescue 253 = PIPO/PUTR2/ACOCO Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) 253 = PIPO/ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 253 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 253 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 254 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 254 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/snotelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/snotelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/snotelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/snotelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PSME-PIPO/TODI 255 = PSME-PIPO/TODI 255 = PSME-PIPO/TODI 255 = PSME-PIPO/CIPO 250 = PSME-PIPO/CIPO/PO/CIPO 250 = PSME-PIPO/CIPO/PO/CIPO/CIPO/CIPO/CIPO/CIPO/CI	·	00000046	500 0 (1000)
Ponderosa pine/antelope bitterbrush-wax current/Orcutt's brome CPPSBB17 502 – Benson (1988) Ponderosa pine/antelope bitterbrush/arrowleaf balsamroot CPPSBB18 502 – Benson (1988) Ponderosa pine/antelope bitterbrush/ldaho fescue CPPSBB19 502 – Benson (1988) CPPSBB20 502 – Benson (1988) CPPSBB20 502 – Benson (1988) CPPSBB20 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB22 502 – Benson (1988) CPPSBB23 502 – Benson (1988) CPPSBB24 502 – Benson (1988) CPPSBB25 – PSME-PIPO/TODI CPPSBB26 502 – Benson (1988) CPPSBB27 502 – Benson (1988) CPPSBB28 502 – Benson (1988) CPPSBB29 502 – Benson (1988) CPPSBB20 502 – Benson (1988) CPPSBB21 502 – Benson (1988) CPPSBB20 502 – Benson (1988) CPPSBB21 502 – Be		CPPSBB16	502 – Benson (1988)
250 = PIPO/PUTR2/BASA3 Ponderosa pine/antelope bitterbrush/arrowleaf balsamroot 251 = PIPO/PUTR2/FEID Ponderosa pine/antelope bitterbrush/ldaho fescue Ponderosa pine/antelope bitterbrush/ldaho fescue Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass Ponderosa pine/ponderosa pine/ponderosa pine/ponderosa pine/ponderosa pine/posific poison oak Pocositi Soz – Benson (1988) Ponderosa pine/ponderosa pine/ponderosa pine/posific poison oak Pocositi Soz – Benson (1988) Ponderosa pine-white fir-tanoak/deerbrush Ponderosa pine-white fir-tanoak/western brackenfern Pocositi Soz – Benson (1988) Ponderosa pine-white fir-tanoak/western brackenfern Ponderosa pine-white fir-tanoak/western brackenfern Ponderosa pine-white fir-tanoak/california hazelnut/ stickywilly Ponderosa pine-white pine-huckleberry oak-pinemat manzanita Ponderosa pine-white pine-huckleberry oak-pine		00000047	500 5 (1000)
Pronderosa pine/antelope bitterbrush/arrowleaf balsamroot CPPSB18 502 – Benson (1988) 503 – BIPO/PUTR2/FEID CPPSB19 502 – Benson (1988) 505 – PIPO/PUTR2/ACOCO Pronderosa pine/antelope bitterbrush/western needlegrass (pumice) CPPSB20 502 – Benson (1988) 505 – PIPO/BERO/CEVE/ACOCO Pronderosa pine/antelope bitterbrush/western needlegrass (pumice) CPPSB20 502 – Benson (1988) 505 – PIPO/ABRO/CEVE/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass CPPSB21 502 – Benson (1988) 505 – PIPO-ABCO/PUTR2-ARPAG/ACOCO Pronderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass CPPSB22 502 – Benson (1988) 505 – PSME-PIPO-ABCO/PUTR2-ARPAG/ACOCO Pronderosa pine/mountain big sagebrush/Idaho fescue CPPSB11 502 – Benson (1988) 505 – PSME-PIPO/CPD/CPOCO Douglas-fir-ponderosa pine/Pacific poison oak DC0811 502 – Benson (1988) 505 – PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 502 – Benson (1988) 505 – PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0813 502 – Benson (1988) 505 – PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0813 502 – Benson (1988) 505 – PSME-PIPO/CHFO/POCOC DOUglas-fir-mon-canyon live oak/deerbrush DC0813 502 – Benson (1988) 506 – PSME-ABCO-LIDE3/PTAQL DOUglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 502 – Benson (1988) 606 – PSME-CNU2-LIDE3/COCOC/GAAP2 Douglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 502 – Benson (1988) 605 – BROO-PSME-IDE3/COCOC White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0911 502 – Benson (1988) 605 – ABCO-PSME/SYACC-SYZY/ZYZY White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0912 502 – Benson (1988) 606 – ABCO-PSME/Syarpleaf snowberry/thimbleberry WC0913 502 – Benson (1988)		CPPSBB17	502 – Benson (1988)
251 = PIPO/PUTR2/FEID Ponderosa pine/antelope bitterbrush/idaho fescue 252 = PIPO/PUTR2/ACOCO Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) 253 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 254 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 255 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 256 = PSME-PIPO/ATRO/POCOC Ponderosa pine/mountain big sagebrush/Idaho fescue 257 = PSME-PIPO/TODI 258 = PSME-PIPO/TODI 259 = PSME-PIPO/CHEO/POCOC 250 = PSME-PIPO/CHEO/POCOC 250 = PSME-PINUS-QUCH2/CEIN3 250 = PSME-PINUS-QUCH2/CEIN3 250 = PSME-PINUS-QUCH2/CEIN3 250 = PSME-CONIZ-LIDE3/PTAQL 250 = PSME-CONIZ-LIDE3/PTAQL 250 = PSME-CONIZ-LIDE3/PTAQL 250 = PSME-CONIZ-LIDE3/COCOC/GAAP2 250 = PSME-CONIZ-LIDE3/COCOC Mitter fir/tobaccobrush-squawcarpet 250 = PSME-PINMS-QUA-ARNE2 250 = PSM	·		()
Pronderosa pine/antelope bitterbrush/Idaho fescue 152 = PIPO/PUTR2/ACOCO Pronderosa pine/antelope bitterbrush/western needlegrass (pumice) 153 = PIPO-ABCO/CEVE/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 154 = PIPO-ABCO/EVE/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 154 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 155 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 155 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 155 = PIPO/ARTRV/FEID Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 155 = PIPO/ARTRV/FEID Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass 155 = PSME-PIPO/TODI 150 = Benson (1988) 150 = PSME-PIPO/TODI 150 = Benson (1988) 150 = PSME-PIPO/CHFO/POCOC 150 = PSME-PIPO/CHFO/PO	·	CPPSBB18	502 – Benson (1988)
252 = PIPO/PUTR2/ACOCO Ponderosa pine/antelope bitterbrush/western needlegrass (pumice) 253 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine/antelope bitterbrush/western needlegrass 253 = PIPO-ABCO/EVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 254 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 255 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ARTRV/FEID Ponderosa pine/mountain big sagebrush/idaho fescue Ponderosa pine/mountain big sagebrush/idaho fescue Ponderosa pine/mountain big sagebrush/idaho fescue Ponderosa pine/mountain misery/Sierra milk wort Ponderosa pine/mountain misery/Sierra milk wort Douglas-fir-ponderosa pine/mountain dogwood-tanoak/California hazelnut/ stickywilly Douglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 D0911 D0911 D0911 D0911 D0912 D0913 D0913 D0913 D0914 D0915 D0915 D0915 D0916 D0916 D0916 D0917 D0917 D0917 D0918 D0918 D0918 D0917 D0918 D0918 D0918 D0918 D0918 D0918 D0918 D0918 D0919		CDDCDD40	F03 . D (4000)
Pronderosa pine/antelope bitterbrush/western needlegrass (pumice) Pronderosa pine/antelope bitterbrush/western needlegrass Pronderosa pine-white fir/snowbrush ceonothus/western needlegrass Pronderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass Pronderosa pine-white fir/antelope bitterbrush-greenleaf manzanita western needlegrass Pronderosa pine-white fir/antelope bitterbrush-green bitterbrush-greenleaf neovation oak Pronderosa pine-white fir/antelope bitterbrush-greenleaf neovation oak Pronderosa pine-whit		CPPSBB19	502 – Benson (1988)
253 = PIPO-ABCO/CEVE/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 254 = PIPO-ABCO/PUTR2-ARPAG/ACOCO Ponderosa pine-white fir/snowbrush ceonothus/western needlegrass 2554 = PIPO-ABCO/PUTR2-ARPAG/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ARTRV/FEID Ponderosa pine/mountain big sagebrush/Idaho fescue 255 = PIPO/ARTRV/FEID Ponderosa pine/mountain big sagebrush/Idaho fescue 255 = PSME-PIPO/TODI 256 = PSME-PIPO/TODI 250 = PSME-PIPO/TODI 250 = PSME-PIPO/CHFO/POCOC 250 = PSME-PIPO/CHFO/POCOC 251 = PSME-PIPO/CHFO/POCOC 252 = PSME-PIPO/CHFO/POCOC 253 = PSME-PIPO/CHFO/POCOC 254 = PSME-PINUS-QUCLE/ZCEIN3 255 = PSME-PIRUS-QUCLE/ZCEIN3 256 = PSME-ABCO-LIDE3/PTAQL 257 = PSME-PIRUS-QUCLE/ZCEIN3 258 = PSME-BRE-CONU2-LIDE3/PTAQL 259 = PSME-ABCO-LIDE3/PTAQL 250 = PSME-ABCO-LIDE3/PTAQL 250 = PSME-ABCO-LIDE3/COCC/GAAP2 250 = PSME-ABCO-PSME-LIDE3/COCC/GAAP2 250 = PSME-ABCO-PSME-LIDE3/COCCC/GAAP2 250 = PSME-ABCO-PSME/PSMP-RSME-RSME MANCARD		CDDCDD20	FO2 Danson (1000)
CPPSBB21 502 – Benson (1988) 154 – PIPO-ABCO/PUTR2-ARPA6/ACOCO Oronderosa pine-white fir/snowbrush ceonothus/western needlegrass CPPSBB22 502 – Benson (1988) 155 – PIPO/ABCO/PUTR2-ARPA6/ACOCO Oronderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass CPPSBB22 502 – Benson (1988) 155 – PIPO/ARTRV/FEID Oronderosa pine/mountain big sagebrush/ldaho fescue CPPSSB11 502 – Benson (1988) 156 – PSME-PIPO/TODI Orouglas-fir-ponderosa pine/Pacific poison oak CPPSBB21 502 – Benson (1988) 157 – PSME-PIPO/CHFO/POCOC Orouglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 502 – Benson (1988) 158 = PSME-PINUS-QUCH2/CEIN3 Orouglas-fir-pine-canyon live oak/deerbrush DC0813 502 – Benson (1988) 159 = PSME-ABCO-LIDE3/PTAQL Orouglas-fir-white fir-tanoak/western brackenfern DC0911 502 – Benson (1988) 160 = PSME-ABCO-LIDE3/PTAQL Orouglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 502 – Benson (1988) 161 = PIPO-ABCO/CEVE3-CEPR Oronderosa pine-white fir/tobaccobrush-squawcarpet PC0611 502 – Benson (1988) 162 = PILE-PIMO3/QUVA-ARNE2 162 = PILE-PIMO3/QUVA-ARNE2 163 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-tanoak/California hazelnut WC0911 502 – Benson (1988) 164 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0912 502 – Benson (1988) 165 = ABCO-PSME/SYACC-SYN/SYNY White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0913 502 – Benson (1988) 166 = ABCO-PILA/SYAC/CARO5		CPPSBBZU	502 – Benson (1988)
254 = PIPO-ABCO/PUTR2-ARPA6/ACOCO Ponderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass 255 = PIPO/ARTRV/FEID Ponderosa pine/mountain big sagebrush/Idaho fescue Ponderosa pine/ponderosa pine/Pacific poison oak Ponderosa pine/ponderosa pine/ponderosa pine/ponderosa pine/mountain misery/Sierra milk wort Ponderosa pine/mountain misery/Sierra milk wort Ponderosa pine-canyon live oak/deerbrush Ponderosa pine-white fir-tanoak/destern brackenfern Ponderosa pine-white fir-tanoak/western brackenfern Ponderosa pine-white fir-tanoak/california hazelnut/ stickywilly Ponderosa pine-white fir/tobaccobrush-squawcarpet Ponderosa pine-white fir/tobaccobrush-squawcarpet Ponderosa pine-western white pine/huckleberry oak-pinemat manzanita Ponderosa pine-western whit	·	CDDCDD21	FO2 Danson (1000)
Pronderosa pine-white fir/antelope bitterbrush-greenleaf manzanita/western needlegrass CPPSBB22 502 – Benson (1988) 255 – PPIO/ARTRV/FEID Pronderosa pine/mountain big sagebrush/Idaho fescue CPPSSB11 502 – Benson (1988) 256 – PSME-PIPO/TODI Douglas-fir-ponderosa pine/Pacific poison oak DC0811 502 – Benson (1988) 257 – PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 502 – Benson (1988) 258 – PSME-PINUS-QUCH2/CEIN3 D00813 D00813 502 – Benson (1988) 259 – PSME-ABCO-LIDE3/PTAQL D00813 D00911 502 – Benson (1988) 259 – PSME-CONU2-LIDE3/PTAQL D00913-fir-white fir-tanoak/western brackenfern DC0911 502 – Benson (1988) 260 – PSME-CONU2-LIDE3/COCOC/GAAP2 D00913-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 502 – Benson (1988) 261 – PIPO-ABCO/CEVE3-CEPR Ponderosa pine-white fir/tobaccobrush-squawcarpet PC0611 502 – Benson (1988) 263 – ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0911 502 – Benson (1988) 264 – ABCO-PSME/???????? White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0912 502 – Benson (1988) 265 – ABCO-PSME/SYACC-????????? White fir-Douglas-fir-mountain dogwood/bush chinquapin WC0913 502 – Benson (1988)		CPPSBBZI	502 – Benson (1988)
255 = PIPO/ARTRV/FEID Ponderosa pine/mountain big sagebrush/Idaho fescue Ponderosa pine/mountain big sagebrush/Idaho fescue Douglas-fir-ponderosa pine/Pacific poison oak DC0811 502 - Benson (1988) D57 = PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 502 - Benson (1988) DC0813 502 - Benson (1988) DC0913 502 - Benson (1988) DC0914 502 - Benson (1988) DC0915 - FSME-CONU2-LIDE3/COCOC/GAAP2 Douglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 502 - Benson (1988) DC0914 502 - Benson (1988) DC0915 - PRO611 502 - Benson (1988) DC0916 - PINE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/QUVA-ARNE2 DOUGLE-PIMO3/CUVA-BROUCH DC0911 502 - Benson (1988) DC0912 502 - Benson (1988) DC0913 502 - Benson (1988) DC0913 502 - Benson (1988) DC0914 502 - Benson (1988) DC0915 502 - Benson (1988) DC0916 502 - Benson (1988) DC0917 502 - Benson (1988) DC0917 502 - Benson (1988) DC0918 502 - Be		CDDCDD22	EO2 Pancan (1000)
Ponderosa pine/mountain big sagebrush/Idaho fescue 256 = PSME-PIPO/TODI Douglas-fir-ponderosa pine/Pacific poison oak 257 = PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 DC0812 DC0812 502 - Benson (1988) 258 = PSME-PINUS-QUCH2/CEIN3 Douglas-fir-pine-canyon live oak/deerbrush DC0813 DC0911 DC091		CPP3DBZZ	302 - Bellsull (1900)
256 = PSME-PIPO/TODI Douglas-fir-ponderosa pine/Pacific poison oak DC0911 502 - Benson (1988) DC57 = PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC092 502 - Benson (1988) DC092 502 - Benson (1988) DC092 502 - Benson (1988) DC092 503 - Benson (1988) DC092 503 - Benson (1988) DC092 503 - Benson (1988) DC092 - PSME-PINUS-QUCH2/CEIN3 DC092 - PSME-ABCO-LIDE3/PTAQL DC092 - PSME-ABCO-LIDE3/PTAQL DC092 - PSME-CONU2-LIDE3/COCOC/GAAP2 DC092 - PSME-CONU2-LIDE3/COCOC/GAAP2 DC092 - PSME-CONU2-LIDE3/COCOC/GAAP2 DC092 - PSME-CONU2-LIDE3/COCOC/GAAP2 DC092 - PSME-DE3/COCOC/GAAP2 DC092 - PSME-DE3/COCOC/GAAP2 DC093 - PSME-DE3/COCOC/GAAP2 DC094 - PSME-DC094 - PC0611 502 - Benson (1988) DC095 - PSME-DC094 - PC0611 502 - Benson (1988) DC095 - PSME-DC095 - PSME	, ,	CDDCCD11	FO2 Dancon (1000)
Douglas-fir-ponderosa pine/Pacific poison oak DC0811 502 – Benson (1988) DC0812 502 – Benson (1988) DC0813 502 – Benson (1988) DC0814 502 – Benson (1988) DC0815 For PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0815 502 – Benson (1988) DC0816 502 – Benson (1988) DC0817 502 – Benson (1988) DC0818 502 – Benson (1988) DC0911 502 – Benson (1988) DC0912 502 – Benson (1988) DC0913 502 – Benson (1988)		CPF33B11	302 - Bellsull (1900)
257 = PSME-PIPO/CHFO/POCOC Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DC0812 D00812 D00813 D00918 D00918 D00918 D00918 D00918 D00918 D00911 D0091		DC0811	502 - Renson (1988)
Douglas-fir-ponderosa pine/mountain misery/Sierra milk wort DOUglas-fir-ponderosa pine/mountain misery/Sierra milk wort DOUglas-fir-pine-canyon live oak/deerbrush DOUglas-fir-pine-canyon live oak/deerbrush DOUglas-fir-pine-canyon live oak/deerbrush DOUglas-fir-pine-canyon live oak/deerbrush DOUglas-fir-mountain fir-pine-canyon live oak/deerbrush DOUglas-fir-mountain broad-tanoak/western brackenfern DOUglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 DH0711 DH0711 DH0711 DOUglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 DOUglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 DOUglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly DH0711 DOUglas-fir-mountain dogwood/bush chinquapin DH0711 DOUglas-fir-mountain dogwood/bush chinquapin WC0911 DH0711 DOUglas-fir-mountain dogwood/bush chinquapin WC0912 DH0711 DOUglas-fir-mountain dogwood/bush chinquapin WC0912 DH0711 DH0711 DUG911 DUG9		DC0011	302 - Beli3011 (1388)
258 = PSME-PINUS-QUCH2/CEIN3 Douglas-fir-pine-canyon live oak/deerbrush Douglas-fir-pine-canyon live oak/deerbrush Douglas-fir-pine-canyon live oak/deerbrush Douglas-fir-white fir-tanoak/western brackenfern DC0911 D00911 D0091	·	DC0812	502 - Renson (1988)
Douglas-fir-pine-canyon live oak/deerbrush DC0913 502 – Benson (1988) DC0915 502 – Benson (1988) DC0916 502 – Benson (1988) DC0917 502 – Benson (1988) DC0918 502 – Benson (1988) DC0918 502 – Benson (1988) DC0919 502 – Benson (1988)		DC0812	302 - Beli3011 (1388)
259 = PSME-ABCO-LIDE3/PTAQL 260 = PSME-CONU2-LIDE3/COCOC/GAAP2 260 = PSME-CONU2-LIDE3/COCOC/GAAP2 260 = PINE-CONU2-LIDE3/COCOC/GAAP2 260 = PIPO-ABCO/CEVE3-CEPR 260 = PIPO-ABCO/CEVE3-CEPR 260 = PIPO-ABCO/CEVE3-CEPR 260 = PILE-PIMO3/QUVA-ARNE2 261 = PIPO-ABCO/CEVE3-CEPR 260 = PILE-PIMO3/QUVA-ARNE2 262 = PILE-PIMO3/QUVA-ARNE2 263 = ABCO-PSME-LIDE3/COCOC 264 = ABCO-PSME-LIDE3/COCOC 265 = ABCO-PSME/????/???? 266 = ABCO-PSME/SYACC-????/???? 267 = ABCO-PSME/SYACC-????/???? 268 = ABCO-PSME/SYACC-????/???? 269 = ABCO-PSME/SYACC-AROS	•	DC0813	502 - Renson (1988)
Douglas-fir-white fir-tanoak/western brackenfern DC0911 502 – Benson (1988) DC0912 502 – Benson (1988) DC0913 502 – Benson (1988) DC0914 502 – Benson (1988) DC0915 502 – Benson (1988) DC0916 502 – Benson (1988) DC0917 502 – Benson (1988) DC0918 502 – Benson (1988) DC0918 502 – Benson (1988) DC0919 502 – Benson (1988)	o i ,	DC0813	302 - Belison (1988)
260 = PSME-CONU2-LIDE3/COCOC/GAAP2 260 = PSME-CONU2-LIDE3/COCOC/GAAP2 260 = PSME-CONU2-LIDE3/COCOC/GAAP2 261 = PIPO-ABCO/CEVE3-CEPR 260 = PIPO-ABCO/CEVE3-CEPR 260 = PILE-PIMO3/QUVA-ARNE2 262 = PILE-PIMO3/QUVA-ARNE2 263 = ABCO-PSME-LIDE3/COCOC 264 = ABCO-PSME-LIDE3/COCOC 265 = ABCO-PSME/????/???? 266 = ABCO-PSME/SYACC-????/???? 267 = ABCO-PSME/SYACC-????/???? 268 = ABCO-PSME/SYACC-????/???? 269 = ABCO-PSME/SYACC-????/???? 260 = ABCO-PILA/SYAC/CAROS 260 = ABCO-PILA/SYAC/CAROS 260 = ABCO-PILA/SYAC/CAROS	,	DC0911	502 - Renson (1988)
Douglas-fir-mountain dogwood-tanoak/California hazelnut/ stickywilly 261 = PIPO-ABCO/CEVE3-CEPR Ponderosa pine-white fir/tobaccobrush-squawcarpet 262 = PILE-PIMO3/QUVA-ARNE2 Sugar pine-western white pine/huckleberry oak-pinemat manzanita 263 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-tanoak/California hazelnut 264 = ABCO-PSME/????/???? White fir-Douglas-fir-mountain dogwood/bush chinquapin 265 = ABCO-PSME/SYACC-????/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0913 502 - Benson (1988) WC0912 502 - Benson (1988) S03 - Benson (1988) S04 - ABCO-PSME/SYACC-????/???? WC0913 S05 - Benson (1988)		500711	302 DC113011 (1300)
261 = PIPO-ABCO/CEVE3-CEPR 20 onderosa pine-white fir/tobaccobrush-squawcarpet PC0611 502 – Benson (1988) 262 = PILE-PIMO3/QUVA-ARNE2 30	•	DH0711	502 - Benson (1988)
Pronderosa pine-white fir/tobaccobrush-squawcarpet Pronderosa pine-white pine/huckleberry oak-pinemat manzanita QS0111 S02 - Benson (1988) Pronderosa pine-white pine/huckleberry oak-pinemat manzanita Pronderosa pine-white pine-huckleberry oak-pinemat manzanita Pronderosa p		D110/11	302 DE113011 (1300)
262 = PILE-PIMO3/QUVA-ARNE2 Sugar pine-western white pine/huckleberry oak-pinemat manzanita 263 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-tanoak/California hazelnut 264 = ABCO-PSME/????/???? White fir-Douglas-fir-mountain dogwood/bush chinquapin 265 = ABCO-PSME/SYACC-????/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0913 502 - Benson (1988) 266 = ABCO-PILA/SYAC/CARO5	•	PC0611	502 - Renson (1988)
Sugar pine-western white pine/huckleberry oak-pinemat manzanita QS0111 502 – Benson (1988) QB03 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-tanoak/California hazelnut QB0111 502 – Benson (1988) QB03 = ABCO-PSME/????/???? White fir-Douglas-fir-mountain dogwood/bush chinquapin QB0111 502 – Benson (1988) QB03 = Benson (19	1 1	. 50011	302 DCH30H (1300)
263 = ABCO-PSME-LIDE3/COCOC White fir-Douglas-fir-tanoak/California hazelnut 264 = ABCO-PSME/????/??? White fir-Douglas-fir-mountain dogwood/bush chinquapin 265 = ABCO-PSME/SYACC-????/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry 266 = ABCO-PILA/SYAC/CARO5 WC0911 502 - Benson (1988) 502 - Benson (1988)	·	OS0111	502 - Benson (1988)
White fir-Douglas-fir-tanoak/California hazelnut 264 = ABCO-PSME/????/???? White fir-Douglas-fir-mountain dogwood/bush chinquapin 265 = ABCO-PSME/SYACC-???/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0912 502 - Benson (1988) 502 - Benson (1988) 503 - Benson (1988)		Q50111	302 55/130/1 (1300)
264 = ABCO-PSME/???/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0912 WC0912 S02 - Benson (1988) WC0913 WC0913 S02 - Benson (1988)	•	WC0911	502 - Renson (1988)
White fir-Douglas-fir-mountain dogwood/bush chinquapinWC0912502 – Benson (1988)265 = ABCO-PSME/SYACC-????/????WC0913502 – Benson (1988)White fir-Douglas-fir/sharpleaf snowberry/thimbleberryWC0913502 – Benson (1988)266 = ABCO-PILA/SYAC/CARO5		** COSII	302 DC113011 (1300)
265 = ABCO-PSME/SYACC-????/???? White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0913 502 - Benson (1988) 266 = ABCO-PILA/SYAC/CARO5	, ,	WC0912	502 - Renson /10891
White fir-Douglas-fir/sharpleaf snowberry/thimbleberry WC0913 502 – Benson (1988) 266 = ABCO-PILA/SYAC/CARO5		VV COJIZ	302 DE113011 (1300)
266 = ABCO-PILA/SYAC/CARO5	· · · · · · · · · · · · · · · · · · ·	WC0913	502 - Benson (1988)
·		** COJIJ	302 DC113011 (1300)
White-tir-chigar bine/charniest chownerry/ROCC cende Without EW = Device (1990)	White-fir-sugar pine/sharpleaf snowberry/Ross' sedge	WC0914	502 – Benson (1988)

FVS Sequence Number = Plant Association	Alpha	Deference
Description	Code	Reference
267 = ABCO-PSME/CHME2		()
White fir-Douglas-fir/prince's pine	WC0915	502 – Benson (1988)
168 = ABCO-PSME-CADE27/AMPA2		500 5 (1000)
White fir-Douglas-fir-incense cedar/pallid serviceberry	WC0916	502 – Benson (1988)
169 = ABCO-PSME-PIJE/????		500 5 (4000)
White fir-Douglas-fir-Jeffrey pine/rosy everlasting	WC0917	502 – Benson (1988)
770 = PSME-PINUS-CADE27/ASDE6		
Douglas-fir-pine-incense cedar/Indian dream	CC0411	
71 = PSME-PILA/LIDEE/PTAQL		
Douglas-fir-sugar pine/tanoak/western brackenfern	DC1011	
72 = PSME-PILA/LIDEE/TRIEN		
Douglas-fir-sugar pine/tanoak/broadleaf starflower	DC1012	
73 = PSME-PIPO/FRCAO4/PTAQL		
Douglas-fir-ponderosa pine/California buckthorn/western brackenfern	DC1013	
174 = PSME-PIPO/CEIN3/COHE2		
Douglas-fir-ponderosa pine/deerbrush/variableleaf collomia	DC1014	
275 = PSME-PIPO/FECA		
Douglas-fir-ponderosa pine/California fescue	DC1015	
276 = PSME-PIPO/QUVA/POMU		
Oouglas-fir-ponderosa pine/huckleberry oak/western swordfern	DC1016	
277 = PSME-PINUS-CADE27/TRBR3		
Douglas-fir-pine-incense cedar/forest clover	DC1017	
278 = PSME-PINUS-CADE27/CECU/TRBR3-FECA		
Douglas-fir-pine-incense cedar/buckbrush/forest clover-California fescue	DC1018	
79 = PSME-PINUS-CADE27/XETE		
Douglas-fir-pine-incense cedar/common beargrass	DC1019	
280 = PSME/COCOC/POMU		
Douglas-fir/California hazelnut/western swordfern	DS0911	
281 = PIJE-CADE27/CECU/HECAS2		
effrey pine-incense cedar/buckbrush/Shasta heliathella	PG0611	
282 = PIJE-CADE27/MAAQ2/FEID		
effrey pine-incense cedar/hollyleaved barberry/Idaho fescue	PG0612	
283 = PIJE/CELE3/PSSPS		
effrey pine/curl-leaf mountain mahogany/bluebench wheatgrass	PG0613	
284 = PIJE/ERPAA2/PHDI3	1 00013	
leffrey pine/Parry's rabbitbrush/spreading phlox	PG0614	
285 = PIJE-CADE27/QUVA/ASDE6	1 00014	
leffrey pine-incense cedar/huckleberry oak/Indian's dream	PS0911	
286 = ABCO-PSME-PILA/CONU4	F30911	
Nhite fir-Douglas-fir-sugar pine/Pacific dogwood	WC1011	
	WCIOII	
287 = PSME-ABCO/RHOC Douglas-fir-white fir/western azalea	WC1012	
-	WCI012	
288 = PSME-ABCO-PIPO/ARNE/CHUMO2	14/64042	
Douglas-fir-white fir-ponderosa pine/pinemat manzanita/ pipsisseqa	WC1013	
189 = 2TE	cyaaaaa	
Aixed conifer series	CX000000	
190 =		
Aixed conifer dry group	CX0D0000	
91 =		
onderosa pine-mixed conifer/Bolander's bedstraw-milkwort	CX0FBB11	
92 =		
White fir-mixed conifer/false Solomon's seal-Hooker's fairybells	CX0FFS11	
193 =		
Ponderosa pine-mixed conifer/rosy everlasting-naked stemmed	CX0FRE11	
94 =		
White fir-mixed conifer/troul plant	CX0FTP11	
295 =		
Oouglas-fir-mixed conifer/starflower	CX0FWS11	
96 =		
Vhite fir-mixed conifer/Ross' sedge	CX0GCR11	

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
297 = Douglas-fir-mixed conifer-white alder/Indian rhubarb	CX0HAW11	
298 = Mountain dogwood group	CX0HDP00	
299 =	CXCIIDI CC	
Douglas-fir-mixed conifer-mountain dogwood/California hazel buckwheat	CX0HDP13	
300 =		
Douglas-fir-mixed conifer-mountain dogwood/trail plant 301 =	CX0HDP14	
Douglas-fir-mixed conifer-bigleaf maple/trail plant	CX0HMB12	
302 = QUCH2		
Canyon live oak	CX0H0L00	
303 =	CVOLIDIAE	
Ponderosa pine-mixed conifer-canyon live oak/bearclover	CX0H0L15	
304 = Ponderosa pine-mixed conifer/Bolander's bedstraw	CX0H0L16	
305 =	CACHOLIO	
Douglas-fir-mixed conifer-canyon live oak/sword fern	CX0H0L17	
306 = LIDE3	2.0.0.22	
Tanoak	СХОНТ000	
307 = PSME-2TE-LIDE3/CONU4		
Douglas-fir-mixed conifer-tanoak/Pacific dogwood	CX0HT012	
308 = PSME-2TE-LIDE3/CHFO		
Douglas-fir-mixed conifer-tanoak/mountain misery	CX0HT013	
309 = PSME-2TE-LIDE3/COCOC		
Douglas-fir-mixed conifer-tanoak/California hazelnut	CX0HT011	
310 = PSME-2TE-LIDE3/IRIS		
Douglas-fir-mixed conifer-tanoak/iris	CX0HT014	
311 =	CY0140000	
Mixed conifer moderate group 312 =	CX0M0000	
Mixed conifer riparian group	CXORO000	
313 =	слопосос	
Douglas-fir-mixed conifer/serviceberry	CX0SAM12	
314 =		
Evergreen shrub group	CX0SE000	
315 =	CVOCEO11	
White fir-mixed conifer/vine maple-bush chinquapin	CX0SE011	
316 = White fir-mixed conifer/bush chinquapin	CX0SE012	
317 =	CAUSEUIZ	
Ponderosa pine-mixed conifer/shrub canyon live oak, huckleberry oak	CX0SE013	
318 =		
Ponderosa pine-mixed conifer/huckleberry oak (serpentine)	CX0SE014	
319 =		
Douglas-fir-mixed conifer/California hazelnut	CX0SHN12	
320 =		
Douglas-fir-mixed conifer/Sierra laurel	CX0SLS11	
321 =		
White fir-mixed conifer/mountain alder/sedge	CX0SMA11	
322 = White fir-mixed conifer/mountain alder/monkshood	CX0SMA12	
323 =	CAUSIVIATZ	
Bearclover group	CX0SMM00	
324 =	CAOSIVIIVIOO	
Ponderosa pine-mixed conifer/manzanita bearclover	CX0SMM11	
325 =		
Ponderosa pine-mixed conifer/bearclover/Bolander's bedstraw	CX0SMM12	
326 =		
White fir-mixed conifer/creeping snowberry/kelloggia	CX0SSS13	

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
327 =		
Mixed conifer moist group	CX0W0000	
328 =		
Douglas-fir-mixed conifer/American dogwood	CX0SDA11	
329 = ABMAS/RHMA		
Red fir/Pacific rhododendron	RS0511	
330 = ABCO-PILA-ABMAS/PTAQL White fir-sugar pine-red fir/bracken	WC0413	
331 = JUOC/WYMO	WC0413	
Western juniper/woolly mule-ears	JC0111	
332 = JUOC		
Western juniper	JC0112	
333 = TSME		
Mountain hemlock (steep)	MC0211	
334 = PIJE/QUVA		
Jeffrey pine/huckleberry oak	PS0811	
335 = PIJE/ARPA6-CEVE		
Jeffrey pine/greenleaf manzanita-snowbrush ceonothus	PS0812	
336 = PIJE/CECO-ARTR2		
Jeffrey pine/whitethorn ceanothus-big sagebrush	PS0813	
337 = POTR5 Quaking aspen (flats)	QC0211	
338 = POTR5	QC0211	
Quaking aspen (uplands)	QC0212	
339 = ABMA	QC0212	
California red fir	RC0011	
340 = ABMA/ABCO		
California red fir/white fir	RC0331	
341 = ABMA-TSME		
California red fir-mountain hemlock	RC0421	
342 = PIMO3/ARNE		
Western white pine/pinemat manzanita	RC0511	
343 = PIMO3-PICO		
Western white pine-lodgepole pine	RC0512	
344 = PIMO3	DC0513	
Western white pine	RC0513	
345 = PICO/HIAL2 Lodgepole pine/white hawkweed	RC0611	
346 = PICO/LIGR	RC0011	
Lodgepole pine/Gray's licorice-root	RC0612	
347 = PICO		
Lodgepole pine	RC0613	
348 = ABMA/ASBO2		
California red fir/Bolander's locoweed	RF0411	
349 = ABMA/WYMO		
California red fir/wooly mule-ears	RF0412	
350 = ABMA/ARNE		
California red fir/pinemat manzanita	RS0114	
351 = ABCO-PIJE		
White fir-Jeffrey pine	WC0711	
352 = ABCO-ABMA White fir-California red fir (mixed conifer)	WC0712	
353 = PSME/QUVA	WCU/12	507-513 – Jimerson et al,
Douglas-fir/huckleberry oak	CD0SOH11	1996
354 = SESE3	550501111	507-514 – Borchert,
Redwood	CN00000	Segotta, & Purser
355 = SESE3	31100000	507-514 – Borchert,
Redwood (Gamboa-Sur)	CN00011	Segotta, & Purser
356 = SESE3/PTAQ-WOFI		507-514 – Borchert,
Redwood/western brackenfern-giant chainfern (steamsides)	CNF0111	Segotta, & Purser

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
357 = SESE3/POMU-TROV2		507-514 – Borchert,
Redwood/western swordfern-Pacific trillium (Gamboa-Sur)	CNF0211	Segotta, & Purser
358 = SESE3/MAFA3-VISAN2		507-514 – Borchert,
Redwood/California manroot-garden vetch (Gamboa-Sur)	CNF0311	Segotta, & Purser
359 = SESE3-ACMA3/POCA12		507-514 – Borchert,
Redwood-bigleaf maple/California polypody (Gamboa)	CNHB011	Segotta, & Purser
360 = SESE3-LIDE3/CAGL7-IRDO		
Redwood-tanoak/roundfruit sedge-Douglas iris (Gamboa)	CNHT011	507-504 – Smith
361 = PIPO-ABCO/SYAC		507-515 – Borchert, Cunha,
Ponderosa pine-white fir/sharpleaf snowberry	CPPSSS11	Krosse, & Lawrence
362 = QUDO		507-515 – Borchert, Cunha,
Blue oak	HOD00000	Krosse, & Lawrence
363 = QUDO/2GRAM		507-515 – Borchert, Cunha,
Blue oak/annual grass	HODGA000	Krosse, & Lawrence
364 = QUDO/HOMUL-VIPE3		507-515 – Borchert, Cunha,
Blue oak/leporinum barley-Johnny-jump-up	HODGA011	Krosse, & Lawrence
365 = QUDO/LOWR2-NAPU4	110504040	507-515 – Borchert, Cunha,
Blue oak/Chilean bird's foot trefoil-purple tussockgrass	HODGA012	Krosse, & Lawrence
366 = QUDO/EUSP-PETR7		507-515 – Borchert, Cunha,
Blue oak/warty spurge-goldback fern	HODGA013	Krosse, & Lawrence
367 = QUDO/GAAN-LUCO	1100004044	507-515 – Borchert, Cunha,
Blue oak/phloxleaf bedstraw-scarlet lupine	HODGA014	Krosse, & Lawrence
368 = QUDO/ERMO7-HOMUL	HODGAGIE	507-515 – Borchert, Cunha,
Blue oak/musky stork's bill-leporinum barley	HODGA015	Krosse, & Lawrence
369 = QUDO/DEPA2-PHIM	HODGAGIG	507-515 – Borchert, Cunha,
Blue oak/San Bernardino larkspur-imbricate phacelia	HODGA016	Krosse, & Lawrence
370 = QUDO/LUCO-MEAL12	1100004017	507-515 – Borchert, Cunha,
Blue oak/scarlet lupine-foothill clover	HODGA017	Krosse, & Lawrence
371 = QUDO/AMME12-PLNO	LIODCA019	507-515 – Borchert, Cunha,
Blue oak/common fiddleneck-rusty popcornflower 372 = QUDO/EREL6/LOWR2-PLER3	HODGA018	Krosse, & Lawrence
Blue oak/longstem buckwheat/Chilean bird's-foot trefoil-dotseed plantain	HODGA019	507-515 – Borchert, Cunha,
373 = QUDO/COSP-RILE2	HODGA019	Krosse, & Lawrence
Blue oak/spinster's blue eyed Mary-wireweed	HODGA020	507-515 – Borchert, Cunha,
374 = QUDO/CEMOG/BOIN3-LIAF	HODGA020	Krosse, & Lawrence
Blue oak/birchleaf mountain mahogany/hoary bowlesia-San Francisco woodland-star	HODGA021	507-515 – Borchert, Cunha, Krosse, & Lawrence
375 = QUDO/RICA/BRDI3	HODGAGZI	
Blue oak/hillside gooseberry/ripgut brome	HODGA022	507-515 – Borchert, Cunha, Krosse, & Lawrence
376 = QUDO-QUWI2/2GRAM	HODGAGZZ	
Blue oak-interior live oak/grass	HODHOI00	507-515 – Borchert, Cunha, Krosse, & Lawrence
377 = QUDO-QUWI2/LICY3		
Blue oak-interior live oak/mission woodland-star	HODHOI11	507-515 – Borchert, Cunha, Krosse, & Lawrence
378 = ADFA		511 – Gordon & White,
Chamise	SA00000	1994
379 = ADFA/ERFA2-SAAP2	0,100000	511 – Gordon & White,
Chamise/Eastern Mojave buckwheat-white sage	SA0SB000	1994
380 = ADFA/SAME3	0.1002000	511 – Gordon & White,
Chamise/black sage	SA0SBS00	1994
381 = ADFA-CEGRP	57.002000	511 – Gordon & White,
Chamise-desert ceanothus	SA0SCC00	1994
382 = ADFA-CECR	5.100000	511 – Gordon & White,
Chamise-hoaryleam ceanothus	SA0SCH00	1994
383 = ADFA-CETO-CYBI		511 – Gordon & White,
Chamise-woolyleaf ceanothus-mission manzanita	SA0SCT00	1994
384 = ADFA-CECU	2.1000100	511 – Gordon & White,
Chamise-buckbrush	SA0SCW00	1994
385 = ADFA-ARGL4	200000	511 – Gordon & White,
Chamise-bigberry manzanita	SA0SMB00	1994
386 = ADFA-ARGL3		511 – Gordon & White,
Chamise-Eastwood's manzanita	SA0SME00	1994

FVS Sequence Number = Plant Association	Alpha	
Description	Code	Reference
387 = ERFA2-SAAP2		511 – Gordon & White,
Eastern Majove buckwheat-white sage	SB0SSW00	1994
388 = CEMOG		511 – Gordon & White,
Birchleaf mountain mahogany	SBM00000	1994
389 = CECR		511 - Gordon & White,
Hoaryleaf ceanothus	SCH00000	1994
390 = ARGL4		511 – Gordon & White,
Bigberry manzanita	SMB00000	1994
391 = ARGL3		511 – Gordon & White,
Eastwood's manzanita	SME00000	1994
392 = QUCH2		511 – Gordon & White,
Canyon live oak	SOC00000	1994
393 = QUW12		511 – Gordon & White,
Interior live oak	SO100000	1994
394 = QUW12-CELE2		511 – Gordon & White,
Interior live oak-chaparral whitethorn	SOISCL00	1994
395 = QUW12-QUCH2		511 – Gordon & White,
Interior live oak-canyon live oak	SOISOC00	1994
396 = QUW12-QUBE5		511 – Gordon & White,
Interior live oak-scrub oak	SOISOS00	1994
397 = QUBE5		511 – Gordon & White,
Scrub oak	SOS00000	1994
398 = QUBE5-ADFA		511 – Gordon & White,
Scrub oak-chamise	SOSSA000	1994
399 = QUBE5-CEMOG		511 – Gordon & White,
Scrub oak-birchleaf mountain mahogany	SOSSBM00	1994
400 = QUBE5-CEOL-HEAR5		511 – Gordon & White,
Scrub oak-hairy ceanothus-toyon	SOSSCH00	1994
401 = QUBE5-CELE2		511 – Gordon & White,
Scrub oak-chaparral whitethorn	SOSSCL00	1994
402 = ADSP		511 – Gordon & White,
Redshank	SR000000	1994
403 = ADSP-ADFA		511 – Gordon & White,
Redshank-chamise	SROSA000	1994
404 = ARCA11		511 – Gordon & White,
Coastal sagebrush	SSC00000	1994
405 = ARCA11-ERFA2		511 – Gordon & White,
Coastal sagebrush-Eastern Majave buchwheat	SSCSB000	1994
406 = ARCA11-SAME3		511 – Gordon & White,
Coastal sagebrush-black sage	SSCSSB00	1994

Table 11.1.2 Region 6 plant association codes recognized in the CA variant.

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Description	Code	Species	Index*	SDI*	Source*	Reference
407 = PSME-ABCO-PIJE Douglas-fir-white fir-Jeffrey pine	CDC411	DF	85	899	Н	Aztet and Wheeler (1984)
408 = PSME-ABCO-PIPO Douglas-fir-white fir-ponderosa pine	CDC412	DF	87	1155	Н	Aztet and Wheeler (1984)
409 = PSME-ABCO Douglas-fir-white fir	CDC421	DF	72	720	С	Aztet and Wheeler (1984)
410 = PSME-ABCO/HODI Douglas-fir-white fir/creambush oceanspray	CDC431	DF	96	765	С	Aztet and Wheeler (1984)
411 = PSME-ABCO/BENE Douglas-fir-white fir/dwarf Oregongrape	CDC432	DF	93	1193	Н	Aztet and Wheeler (1984)
412 = PSME-PIPO Douglas-fir-ponderosa pine	CDC511	DF	101	735	С	Aztet and Wheeler (1984)
413 = PSME-PIJE Douglas-fir-Jeffrey pin	CDC521	DF	71	595	С	Aztet and Wheeler (1984)

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Description	Code	Species	Index*	SDI*	Source*	Reference
414 = PSME/DEPAUPERATE	Code	Species	IIIUEX	וטכ	Jource	
Douglas-fir/depauperate	CDF911	DF	70	670	С	Aztet and Wheeler (1984)
415 = PSME-LIDE3/GASH	CDF911	DI	70	070		Aztet and Wheeler
Douglas-fir-tanoak/salal	CDH111	DF	86	845	Н	(1984)
416 = PSME/RHMA	CDITIII	Di	00	043		Aztet and Wheeler
Douglas-fir/Pacific rhododendron	CDH112	DF	92	800	С	(1984)
417 = PSME-LIDE3-PILA	051122			000		Aztet and Wheeler
Douglas-fir-tanoak-sugar pine	CDH121	DF	97	720	С	(1984)
418 = PSME-LIDE3						Aztet and Wheeler
Douglas-fir-tanoak	CDH131	DF	81	1098	Н	(1984)
419 = PSME-LIDE3-QUCH						Aztet and Wheeler
Douglas-fir-tanoak-canyon live oak	CDH141	DF	86	780	С	(1984)
420 = PSME-LIDE3/RHDI					_	Aztet and Wheeler
Douglas-fir-tanoak/poison oak	CDH142	DF	82	1050	С	(1984)
421 = PSME-QUSA						Aztet and Wheeler
Douglas-fir-Sadler oak	CDH511	DF	95	1087	Н	(1984)
422 = PSME/RHDI-BEPI					_	Aztet and Wheeler
Douglas-fir/poison oak-Piper's Oregongrape	CDS111	DF	77	655	С	(1984)
423 = PSME/RHDI					_	Aztet and Wheeler
Douglas-fir/poison oak	CDS112	DF	67	630	С	(1984)
424 = PSME/BENE					_	Aztet and Wheeler
Douglas-fir/dwarf Oregongrape	CDS511	DF	93	635	С	(1984)
425 = PSME/BERE					6	Aztet and Wheeler
Douglas-fir/creeping Oregongrape	CDS521	DF	85	670	С	(1984)
426 = TSHE-CHLA					_	Aztet and Wheeler
Western hemlock-Port-Orford-cedar	CHC111	DF	117	1215	С	(1984)
427 = TSHE-THPL/HIGH ELEV					С	Aztet and Wheeler
Western hemlock-western redcedar/high elevation	CHC412	DF	108	945	C	(1984)
428 = TSHE-THPL					С	Aztet and Wheeler
Western hemlock-western redcedar	CHC461	DF	146	1105	C	(1984)
429 = TSHE-ABCO					С	Aztet and Wheeler
Western hemlock-white fir	CHC611	DF	119	890	C	(1984)
430 = TSHE-UMCA	CHIMAA	D.F.	100	CEO	С	Aztet and Wheeler
Western hemlock-California laurel	CHH111	DF	106	650	C	(1984)
431 = TSHE-QUSA	CHUE11	D.F.	100	1153	Н	Aztet and Wheeler (1984)
Western hemlock-Sadler oak 432 = TSHE/GASH	CHH511	DF	108	1152		(/
Western hemlock/salal	CHS131	DF	61	1050	С	Aztet and Wheeler (1984)
433 = TSHE/RHMA	CU3131	DF	01	1030		Aztet and Wheeler
Western hemlock/Pacific rhododendron	CHS331	DF	102	1145	С	(1984)
434 = TSME/POPU	C113331	Di	102	1143		Aztet and Wheeler
Mountain hemlock/skunkleaf polemonium	CMF211	SH	74	555	С	(1984)
435 = PIPO-PSME	CIVII ZII	311	74	333		Aztet and Wheeler
Ponderosa pine-Douglas-fir	CPC411	DF	76	720	Н	(1984)
436 = PIJE-PIMO	0.0.122			, 20		Aztet and Wheeler
Jeffrey pine-western white pine	CPC511	JP	52	420	С	(1984)
437 = PIJE/FEID	0.0000					Aztet and Wheeler
Jeffrey pine/Idaho fescue	CPG141	JP	57	200	С	(1984)
438 = PIJE-QUVA						Aztet and Wheeler
Jeffrey pine-huckleberry oak	CPH411	JP	60	470	С	(1984)
439 = PIJE/CEPU						Aztet and Wheeler
Jeffrey pine/dwarf ceanothus	CPS321	JP	58	364	Н	(1984)
440 = PIJE/GRASS						Aztet and Wheeler
Jeffrey pine/grass	CPS611	JP	57	340	Н	(1984)
441 = PIMO/XETE						Aztet and Wheeler
Western white pine/beargrass	CQF111	WF	33	436	Н	(1984)
442 = ABMAS/POPU					_	Aztet and Wheeler
Shasta red fir/skunkleaf polemonium	CRF211	SH	57	675	С	(1984)
443 = ABMAS/SHEEP						Aztet and Wheeler
Shasta red fir/sheep(grazing destroyed understory plants)	CRF311	SH	50	319	Н	(1984)

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Description	Code	Species	Index*	SDI*	Source*	Reference
444 = ABMAS-QUSA						Aztet and Wheeler
Shasta red fir-Sadler oak	CRH111	SH	81	470	С	(1984)
445 = ABMAS/SYMO						Aztet and Wheeler
Shasta red fir/creeping snowberry	CRS211	SH	91	755	С	(1984)
446 = CHLA-QUVA						Aztet and Wheeler
Port-Orford-cedar-huckleberry oak	CTH111	DF	87	1309	Н	(1984)
447 = CHLA-ACMA					С	Aztet and Wheeler
Port-Orford-cedar-bigleaf maple	CTH211	DF	87	760	C	(1984)
448 = CHLA/BENE/ACTR	CTC444	5.5	0.5	4240	Н	Aztet and Wheeler
Port-Orford-cedar/dwarf Oregongrape/vanillaleaf	CTS111	DF	85	1348	11	(1984)
449 = CHLA/BENE/LIBOL Port-Orford-cedar/dwarf Oregongrape/western twinflower	CTS112	DF	92	370	С	Aztet and Wheeler (1984)
450 = CHLA/GASH	C13112	DF	92	370		Aztet and Wheeler
Port-Orford-cedar/salal	CTS211	DF	83	990	С	(1984)
451 = CHLA/GABU	CISZII	Di Di	03	330		Aztet and Wheeler
Port-Orford-cedar/box-leaved silktassle	CTS311	DF	87	660	С	(1984)
452 = ABCO-PSME	0.0022	5.	0.	000		Aztet and Wheeler
White fir-Douglas-fir	CWC221	DF	92	815	С	(1984)
453 = ABCO-PSME/BENE						Aztet and Wheeler
White fir-Douglas-fir/dwarf Oregongrape	CWC231	DF	95	785	С	(1984)
454 = ABCO-PSME/HODI					_	Aztet and Wheeler
White fir-Douglas-fir/creambush oceanspray	CWC232	DF	89	675	С	(1984)
455 = ABCO-PSME/DEPAUPERATE						Aztet and Wheeler
White fir-Douglas-fir/depauperate	CWC233	DF	78	988	Н	(1984)
456 = ABCO-PIPO					_	Aztet and Wheeler
White fir-ponderosa pine	CWC241	DF	84	930	С	(1984)
457 = ABCO-PIBR/VAME					Н	Aztet and Wheeler
White fir-Brewer spruce/thin-leaved huckleberry	CWC521	DF	57	899	П	(1984)
458 = ABCO-PIBR/GAOV	01110500	25	0.5	074	Н	Aztet and Wheeler
White fir-Brewer spruce/slender salal	CWC522	DF	95	874	11	(1984)
459 = ABCO-PIBR/CHUM	CMCESS	DE	60	225	С	Aztet and Wheeler
White fir-Brewer spruce/western prince's-pine 460 = ABCO-CHLA	CWC523	DF	69	335		(1984) Aztet and Wheeler
White fir-Port-Orford-cedar	CWC611	DF	99	1399	Н	(1984)
461 = ABCO-CHLA/DEPAUPERATE	CWCOII	Di	33	1333		Aztet and Wheeler
White fir-Port-Orford-cedar/depauperate	CWC612	DF	99	1399	Н	(1984)
462 = ABCO-ABMAS/RIBES						Aztet and Wheeler
White fir-Shasta red fir/currant	CWC721	WF	77	665	С	(1984)
463 = ABCO-ABMAS/ROGY						Aztet and Wheeler
White fir-Shasta red fir/baldhip rose	CWC722	DF	89	1349	H	(1984)
464 = ABCO-ABMAS/SYMO					_	Aztet and Wheeler
White fir-Shasta red fir/creeping snowberry	CWC723	DF	81	945	С	(1984)
465 = ABCO-TABR						Aztet and Wheeler
White fir-Pacific yew	CWC811	DF	96	695	С	(1984)
466 = ABCO-CHNO						Aztet and Wheeler
White fir-Alaska cedar	CWC911	WF	65	1641	Н	(1984)
467 = ABCO/HERB					С	Aztet and Wheeler
White fir/herb	CWF911	DF	89	670	C	(1984)
468 = ABCO-LIDE3	01441040	2.5		045	С	Aztet and Wheeler
White fir-tanoak	CWH312	DF	93	815	C	(1984)
469 = ABCO-ACGL White fir Pecky Mountain manle	C\\/\\/\442	DE	100	654	Н	Aztet and Wheeler
White fir-Rocky Mountain maple	CWH413	DF	108	654	11	(1984)
470 = ABCO-QUSA/CHUM White fir Sadler oak/western prince's pine	CWIE11	DE	0.2	1227	Н	Aztet and Wheeler
White fir-Sadler oak/western prince's-pine 471 = ABCO-QUSA/BENE-PAMY	CWH511	DF	93	1337		(1984) Aztet and Wheeler
White-fir Sadler oak/dwarf Oregongrape-Oregon boxwood	CWH521	DF	96	470	С	(1984)
472 = ABCO-QUSA/BENE	CVVIIJZI	51	50	470		Aztet and Wheeler
White fir-Sadler oak/dwarf Oregongrape	CWH522	DF	105	560	С	(1984)
473 = ABCO-QUSA-CACH	3.711322	3.		200		Aztet and Wheeler
White fir-Sadler oak-golden chinquapin	CWH531	DF	94	810	С	(1984)

FVS Sequence Number = Plant		Site Species	Site Index*	Max. SDI*	Source*	Reference
Association Description	Alpha					
	Code					
474 = ABCO/SYMO						Aztet and Wheeler
White fir/creeping snowberry	CWS331	DF	92	695	С	(1984)
475 = ABCO/BENE						Aztet and Wheeler
White fir/dwarf Oregongrape	CWS523	DF	101	900	С	(1984)
476 = LIDE3-SESE2						Aztet and Wheeler
Tanoak-coast redwood	HTC111	DF	125	820	С	(1984)
477 = LIDE3-TSHE						Aztet and Wheeler
Tanoak-western hemlock	HTC211	DF	103	870	С	(1984)
478 = LIDE3-CHLA					_	Aztet and Wheeler
Tanoak-Port-Orford-cedar	HTC311	DF	98	890	С	(1984)
479 = LIDE3-ABCO-ACCI					_	Aztet and Wheeler
Tanoak-white fir-vine maple	HTC411	DF	90	865	С	(1984)
480 = LIDE3-ABCO					_	Aztet and Wheeler
Tanoak-white fir	HTC412	DF	99	970	С	(1984)
481 = LIDE3-QUCH						Aztet and Wheeler
Tanoak-canyon live oak	HTH111	DF	96	735	С	(1984)
482 = LIDE3-QUCH/BENE						Aztet and Wheeler
Tanoak-canyon live oak/dwarf Oregongrape	HTH112	DF	83	650	С	(1984)
483 = LIDE3-UMCA						Aztet and Wheeler
Tanoak-California laurel	HTH211	DF	110	810	С	(1984)
484 = LIDE3-ACCI						Aztet and Wheeler
Tanoak-vine maple	HTH311	DF	104	595	С	(1984)
485 = LIDE3/VAOV2-GASH					_	Aztet and Wheeler
Tanoak/evergreen huckleberry-salal	HTS111	DF	107	910	С	(1984)
486 = LIDE3/VAOV2					_	Aztet and Wheeler
Tanoak/evergreen huckleberry	HTS112	DF	116	915	С	(1984)
487 = LIDE3/RHMA					6	Aztet and Wheeler
Tanoak/Pacific rhododendron	HTS221	DF	111	830	С	(1984)
488 = LIDE3/RHMA-VAOV2					6	Aztet and Wheeler
Tanoak/Pacific rhododendron-evergreen huckleberry	HTS222	DF	93	815	С	(1984)
489 = LIDE3/RHMA-GASH					_	Aztet and Wheeler
Tanoak/Pacific rhododendron-salal	HTS223	DF	68	840	С	(1984)
490 = LIDE3/BENE					_	Aztet and Wheeler
Tanoak/dwarf Oregongrape	HTS311	DF	95	805	С	(1984)
491 = LIDE3/BENE-RHDI					С	Aztet and Wheeler
Tanoak/dwarf Oregongrape-poison oak	HTS312	DF	96	785	C	(1984)
492 = LIDE3/GASH					С	Aztet and Wheeler
Tanoak/salal	HTS321	DF	102	970	C	(1984)
493 = LIDE3/GASH-RHMA					С	Aztet and Wheeler
Tanoak/salal-Pacific rhododendron	HTS331	DF	90	610	C	(1984)
494 = LIDE3/GASH-BENE					С	Aztet and Wheeler
Tanoak/salal-dwarf Oregongrape	HTS341	DF	109	935	C	(1984)
495 = LIDE3/RHDI-LOHI					С	Aztet and Wheeler
Tanoak/poison oak-hairy honeysuckle	HTS411	DF	79	730	C	(1984)
496 = LIDE3/RHCA		5-	F.0	450	С	Aztet and Wheeler
Tanoak/California coffeeberry	HTS511	DF	50	450		(1984)

^{*}Site index estimates are from GBA analysis. SDI maximums are set by GBA analysis (Source=H) or CVS plot analysis (Source=C).

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.