

Petrel 2017 Property Modeling Module 12: Facies modeling using secondary data

Petrel 2017 Property modeling

Intro Propert

Petrel Property Modeling objective and workflow

Property modeling data preparation

Scale up well logs

Univariate and bivariate geostatistics

Facies modeling

Petrophysical modeling

Stochastic and deterministic petrophysical modeling

Use of secondary information for property modeling

Volume calculation and Uncertainty analysis

Global facies distribution control

Attribute probability curves

Control the proportion of each facies vertically in a stratigraphic zone.

- 1. In the Zone settings of the Facies modeling process, select Use the vertical proportion curves from Data analysis.
- 2. Launch the Data analysis process.
- 3. On the **Proportions** tab, check the original facies proportions.

ZoneA (Main_pay)

Common

Zones

Status:

No conditioning to facies. The zone is modeled in one single of

Global seed:

Sequential indicator simulation

Is upscaled

Vertical proportion curves

Relate the probability of a specific discrete parameter, calibrated with its correlation, to a secondary continuous attribute.

- 1. In the Zone settings of the Facies modeling process, select Use the vertical proportion curves from Data analysis.
- 2. Launch the Data analysis process.
- 3. On the **Probability** tab, check the original facies proportions.

Generate a vertical function trend

- Create a new folder in the **Input** pane, right-click it, and click *New function*.
- 2. Assign a name to the new function and specify the ranges for the X and Y axes. Click OK.
- 3. On the **Function** tab in the **Settings** for the new function, create the required probability curve for the facies by clicking the line and moving the points to edit the vertical function.

Generate a probability map trend

Geometrical trend modeling

- 1. Append item in the table.
- 2. Drop the polylines and define the layer range.
- 3. Select the properties to generate.

Geometrical trend applied

Flow line combined with intersection probability property

Discrete trend modeling

Perform discrete trend modeling

- Choose the facies to be included.
- 2. Define the variogram settings for each facies.
 - Select the mean value to the kriging algorithm.

Hierarchical facies modeling

First level facies models can constrain second level facies models when two independent levels of facies models are used.

1 Detailed model

Exercises

- Use variogram and trends for facies modeling
- Crosscheck the results by making average facies maps
- Apply Sequential Indicator Simulation with seismic attributes
- Use SIS with geobody and the probability for local model update
- Apply hierarchical facies modeling using SIS in an existing object model
- Use geometrical trend modeling properties

