F. Parametric Circulation

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

Vova has recently learned what a *circulaton* in a graph is. Recall the definition: let G = (V, E) be a directed graph. A circulation f is such a collection of non-negative real numbers f_e ($e \in E$), that for each vertex $v \in V$ the following *con servation* condition holds:

$$\sum e \in \delta^{-}(v)f_{e} = \sum e \in \delta^{+}(v)f_{e}$$

where $\delta^+(v)$ is the set of edges that end in the vertex v, and $\delta^-(v)$ is the set of edges that start in the vertex v. In other words, for each vertex the total incoming flow should be equal to the total outcoming flow.

Let a Ir-circulation be such a circulation f that for each edge the condition $I_e \le f_e \le r_e$ holds, where I_e and r_e for each edge $e \in E$ are two non-negative real numbers denoting the lower and upper bounds on the value of the circulation on this edge e.

Vova can't stop thinking about applications of a new topic. Right now he thinks about the following *natural* question: let the graph be fixed, and each value I_e and r_e be a linear function of a real variable t:

$$I_{e}(t) = a_{e}t + b_{e} r_{e}(t) = c_{e}t + d_{e}$$

Note that t is the **same** for all edges.

Let t be chosen at random from uniform distribution on a segment [0, 1]. What is the probability of existence of Ircirculation in the graph?

Input

The first line contains two integers n, m ($1 \le n \le 1000$, $1 \le m \le 2000$).

Each of the next m lines describes edges of the graph in the format u_e , v_e , a_e , b_e , c_e , d_e ($1 \le u_e$, $v_e \le n$, $-10^4 \le a_e$, $c_e \le 10^4$, $0 \le b_e$, $d_e \le 10^4$), where u_e and v_e are the startpoint and the endpoint of the edge e, and the remaining 4 integers describe the linear functions for the upper and lower bound of circulation.

It is guaranteed that for any $t \in [0, 1]$ and for any edge $e \in E$ the following condition holds $0 \le I_e(t) \le r_e(t) \le 10^4$.

Output

Print a single real integer — the probability of existence of Ir-circulation in the graph, given that t is chosen uniformly at random from the segment [0, 1]. Your answer is considered correct if its absolute difference

from jury's answer is not greater than 10^{-6} .

Example

0.25

input 3 3 1 2 0 3 -4 7 2 3 -2 5 1 6 3 1 0 4 0 4 output

Note

In the first example the conservation condition allows only circulations with equal values f_e for all three edges. The value of circulation on the last edge should be 4 whatever t is chosen, so the probability is

 $P(4 \in [3, -4t+7] \& 4 \in [-2t+5, t+6]) = 0.25$