Manipulation des series chronologiques

P. Hénaff

Version: 19 févr. 2023

Lecture d'une série

```
ts.zc <- get.ts(folder="SBF120", ticker="zc.pa")
```

Rendement quotidien - Zodiac Aerospace

Figure 1: Zodiac Aerospace

Exercice 1

Obtenir le même graphique avec un titre du CAC40. Présentez un graphique de prix et un autre de rendement quotidien.

On liste tous les tickers du CAC40:

```
tickers <- get.tickers(folder="CAC40")
print(tickers)</pre>
```

```
##
                            ai.pa.rda air.pa.rda alo.pa.rda alu.pa.rda
    ac.pa.rda aca.pa.rda
##
      "ac.pa"
                 "aca.pa"
                              "ai.pa"
                                        "air.pa"
                                                    "alo.pa"
                                                                "alu.pa"
    bn.pa.rda bnp.pa.rda
                                                               dg.pa.rda
##
                            ca.pa.rda cap.pa.rda
                                                   cs.pa.rda
      "bn.pa"
                "bnp.pa"
                              "ca.pa"
                                        "cap.pa"
                                                     "cs.pa"
                                                                 "dg.pa"
                ei.pa.rda
                                        fchi.rda fp.pa.rda
   edf.pa.rda
                            en.pa.rda
                                                               fr.pa.rda
##
```

```
"fp.pa"
##
      "edf.pa"
                   "ei.pa"
                                "en.pa"
                                             "fchi"
                                                                     "fr.pa"
                                                                   mc.pa.rda
##
    gle.pa.rda
                gsz.pa.rda ker.pa.rda
                                          lg.pa.rda
                                                      lr.pa.rda
                  "gsz.pa"
##
      "gle.pa"
                               "ker.pa"
                                            "lg.pa"
                                                         "lr.pa"
                                                                     "mc.pa"
##
     ml.pa.rda
                 mt.pa.rda
                             or.pa.rda ora.pa.rda
                                                     pub.pa.rda
                                                                   ri.pa.rda
##
       "ml.pa"
                   "mt.pa"
                                "or.pa"
                                           "ora.pa"
                                                        "pub.pa"
                                                                     "ri.pa"
    rno.pa.rda saf.pa.rda
                            san.pa.rda sgo.pa.rda solb.br.rda
                                                                   su.pa.rda
##
      "rno.pa"
                  "saf.pa"
                               "san.pa"
                                           "sgo.pa"
                                                       "solb.br"
                                                                     "su.pa"
##
##
    tec.pa.rda
                 ug.pa.rda
                             ul.pa.rda vie.pa.rda viv.pa.rda
##
      "tec.pa"
                   "ug.pa"
                                "ul.pa"
                                           "vie.pa"
                                                        "viv.pa"
```

```
ts.ai <- get.ts(folder="CAC40", ticker="ai.pa", returns = FALSE)
ts.ai.ret <- returns(ts.ai)
tmp <- cbind(ts.ai, ts.ai.ret)
colnames(tmp) <- c("prix", "rendement")
ts.air.liquide <- tmp[-1,]
autoplot(ts.air.liquide)</pre>
```


Figure 2: Prix ajusté et rendement de l'action AI

Analyse des composants de l'EuroStoxx 50

On calcule ensuite le rendement moyen annuel et on présente les résultats sous forme de tableau.

```
ts.EuroStoxx50 <- get.all.ts(folder="EuroStoxx50", returns=TRUE, combine=TRUE)
avg.ret <- 252*colMeans(ts.EuroStoxx50)*100

ticker <- toupper(gsub("\\..*$", "", names(avg.ret)))
exchange <- toupper(tools::file_ext(names(avg.ret)))
avg.ret.table <- data.frame(ticker, exchange, avg.ret)</pre>
```

Table 1: Rendement annuel moyen des actions de l'EuroStox
x $50\,$

Ticker	Exchange	Rendement (%)	Ticker	Exchange	Rendement (%)
ABI	BR	5.3	GLE	PA	-9.2
ADS	DE	8.3	GSZ	PA	-1.9
AI	PA	10.0	$_{\mathrm{IBE}}$	MC	-5.2
ALV	DE	3.7	ING		-14.1
ASML		16.4	ISP	MI	-0.6
BAS	DE	10.6	ITX	MC	23.2
BAYN	DE	13.0	MC	PA	9.9
BBVA	MC	-4.6	MUV2	DE	8.1
BMW	DE	10.5	OR	PA	8.5
BN	PA	3.4	PHG		-1.2
BNP	PA	-0.5	RWE	DE	-16.4
CA	PA	-4.2	SAN	MC	-2.9
CS	PA	4.8	SAN	PA	5.5
DAI	DE	7.9	SAP	DE	7.2
DBK	DE	-9.5	SGO	PA	-3.2
$\overline{\mathrm{DG}}$	PA	5.9	SIE	DE	4.8
DPW	DE	5.3	SU	PA	6.4
DTE	DE	7.5	TEF	MC	0.8
EI	PA	28.0	UCG	MI	-29.3
ENEL	MI	0.5	UL	AS	9.4
ENI	MI	1.7	UN		9.6
EOAN	DE	-8.6	VIV	PA	3.7
FP	PA	4.3	VOW	DE	4.3
G	MI	-5.7			

Exercice 2

Calculer la matrice de corrélation des rendements quotidients des actions de l'Eurostoxx50. Recherchez une manière synthétique de présenter le résultat.

On calcule la corrélation des rendements hebdomadaires.

```
ts.all.E50 <- get.all.ts(folder="EuroStoxx50", tickers=NULL, returns=FALSE, combine=TRUE)
ts.all.E50.W <- daily2weekly(ts.all.E50)
tmp <- returns(ts.all.E50.W)
cor.stocks = cor(tmp)
corrplot(cor.stocks, type="upper", cl.pos = "r", tl.pos = "lt",
tl.cex = 0.5, title= "Corrélation (hebdo) des composants de l'EuroStoxx 50", mar=c(0,0,1,0))</pre>
```

Corrélation (hebdo) des composants de l'EuroStoxx 50

Même calcul avec les rendements mensuels:

```
ts.all.E50.M <- daily2monthly(ts.all.E50)
tmp <- returns(ts.all.E50.M)
cor.stocks = cor(tmp)
corrplot(cor.stocks, type="upper", cl.pos = "r", tl.pos = "lt",
tl.cex = 0.5, title= "Corrélation (mensuelle) des composants de l'EuroStoxx 50", mar=c(0,0,1,0))</pre>
```

Corrélation (mensuelle) des composants de l'EuroStoxx 50

Exercice 3

On sélectionne des séries NASDAQ avec au moins 7 ans de données, et on calcule le rendement annuel moyen. Executez le code pas à pas pour comprendre ce que font sapply. Notez aussi l'utilisation de l'option cache=TRUE} pour éviter un re-calcul assez long.

Déterminez les 10 titres avec les meilleurs rendements moyens, et les 10 titres avec les rendements les plus bas.

Table 2: NASDAQ: meilleurs et pires rendements annuels moyens

Ticker	Rendement (%)
EXXI	-32.5
CTCM	-26.9
ETFC	-23.6
ARNA	-21.6
GLCH	-21.4
EROC	-20.3
BBRY	-20.1
APOL	-19.5
BPOP	-19.1
SHLD	-19.1
ALXN	32.3
INCY	33.7
REGN	37.8
NFLX	38.0
PCLN	39.7
PCYC	47.3
QCOR	54.6
HTWR	63.1
SNTS	117.0
BMC	146.2