Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grosse-Erdmann, Schmies, Trunk SS 2007 23.07.2007

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:		Vorname:						
MatrNr.:		Studi	engang	;:				
Die Lösungen sind in Reinschr schriebene Klausuren können ni e				_	ben. M	lit Blei	stift ge-	
Dieser Teil der Klausur umfass vollständigen Rechenweg an.		Rechei	naufgal	oen. G	eben S	Sie imn	ner den	
Die Bearbeitungszeit beträgt 60 Minuten.								
Die Gesamtklausur ist mit 40 v beiden Teile der Klausur mindes					·			
Korrektur								
	1	2	3	4	5	6	Σ	

1. Aufgabe 6 Punkte

Berechnen Sie die Funktionalmatrix der Abbildung

$$f \colon \mathbb{R}^2 \to \mathbb{R}^3 \quad \text{mit} \quad \vec{f}(x,y) = \begin{pmatrix} e^{x \cos y} \\ \sqrt{1 + \sin^2 x} \\ \ln(1 + x^2 y^4) \end{pmatrix}.$$

2. Aufgabe

Bestimmen Sie für die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = 2x + y \cos x$ im Punkt $(0,\pi)$ die Richtung des größten Anstiegs sowie alle Richtungen, in denen der Anstieg gleich Null ist.

5 Punkte

3. Aufgabe 9 Punkte

Gegeben sei die Funktion
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \frac{1}{2} \sum_{i=1}^{3} (x + ya_i - b_i)^2$$

mit
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 3$ und $b_1 = 2$, $b_2 = 1$, $b_3 = 5$.

Ermitteln Sie alle Punkte, in denen f lokale Extrema hat. Die Funktionswerte müssen nicht berechnet werden.

Geben Sie auch die Art der Extrema an. Hat f globale Extrema?

4. Aufgabe 7 Punkte

Berechnen Sie alle Extrema der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y)=(x-\frac{1}{2})^2+2(y+\frac{1}{2})^2+\frac{9}{4}$ unter der Nebenbedingung $\frac{x^2}{2}+y^2=3$.

5. Aufgabe 6 Punkte

Berechnen Sie das Volumen von $M = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 4 - (x^2 + y^2)\}.$

6. Aufgabe 7 Punkte

Bestimmen Sie den Flächeninhalt des Flächenstücks $F = \{(x, y, z) \in \mathbb{R}^3 \mid z = 2x + 3y, -x^2 \le y \le x, \ 0 \le x \le 1\}.$