# COVID19 Fake News Detection and Model Explanation

SIT723 - Student ID 219384532 (OSCAR WU)

Link to Video

#### SIT723 - Research Presentation

tttps://cdnapisec.kaltura.com/p/2006242/sp/200624200/embedIframeJs/uiconf\_id/32025882/partner\_id/200 6242?iframeembed=true&playerId=kaltura\_player&entry\_id=1\_r5r31h1d&flashvars%5BstreamerType%5D=aut o&flashvars%5BlocalizationCode%5D=en&flashvars%5BleadWithHTML5%5D=true&flashvars% 5BsideBarContainer.plugin%5D=true&flashvars%5BsideBarContainer.position%5D=left&flashvars%5 BsideBarContainer.clickToClose%5D=true&flashvars%5Bchapters.plugin%5D=true&flashvars%5Bch apters.layout%5D=vertical&flashvars%5Bchapters.thumbnailRotator%5D=false&flashvars%5Bstream Selector.plugin%5D=true&flashvars%5BEmbedPlayer.SpinnerTarget%5D=videoHolder&flashvars%5 BdualScreen.plugin%5D=true&flashyars%5BKaltura.addCrossoriginTolframe%5D=true&&wid=1, u0t5 https://cdnapisec.kaltura.com/p/2006242/sp/200624200/embedIframeJs/uiconf\_i d/32025882/partner id/2006242?iframeembed=true&playerId=kaltura player&en try id=1 r5r31h1d&flashvars%5BstreamerType%5D=auto&flashvars%5Blo calizationCode%5D=en&flashvars%5BleadWithHTML5%5D=true&flas hvars%5BsideBarContainer.plugin%5D=true&flashvars%5BsideBarContain er.position%5D=left&flashvars%5BsideBarContainer.clickToClose%5D=true <u>&amp;flashvars%5Bchapters.plugin%5D=true&amp;flashvars%5Bchapters.layou</u> t%5D=vertical&flashvars%5Bchapters.thumbnailRotator%5D=false&fla shvars%5BstreamSelector.plugin%5D=true&flashvars%5BEmbedPlayer.Spi nnerTarget%5D=videoHolder&flashvars%5BdualScreen.plugin%5D=true&a mp;flashvars%5BKaltura.addCrossoriginTolframe%5D=true&&wid=1 u0t5e mmt

## **Background & Motivation**

The outbreak of COVID-19 in late 2019 has since then resulted in massive misinformation about the virus across social media platforms.

According WHO, Fake news, such as "eating garlic", which result in uncertainty and negative effect in Community



"Eating garlic can kill COVID-19"



WHO Post on Twiiter



Existing Studies used ML and DL to detect fake news.

### **Complex**

Lack of Bench Marking Dataset to conduct fake news detection



Sourced by: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



**CNN Architectures** 

## **Summary of Artefact**



## **Objetives:**

- To collect Multilingual COVID-19 Fake News Dataset
- A comparative of review ML models in detecting COVID-19
- To implement Model-Agnostic-Method (i.e., SHAP and LIME) to interpret model prediction

#### Result

Dataset info

Table 3: Dataset Basic information

| Covid19 fake news Dataset Info |                        |  |  |  |  |
|--------------------------------|------------------------|--|--|--|--|
| Attribute                      | #                      |  |  |  |  |
| Source Website                 | 101                    |  |  |  |  |
| Country                        | 116                    |  |  |  |  |
| Languge News Used              | 35                     |  |  |  |  |
| Unique Label                   | 4                      |  |  |  |  |
| Dataset Shape                  | 15041                  |  |  |  |  |
| Dataset Collected Date Range   | 2020-01-05 ~2022-01-15 |  |  |  |  |

Table 5: Model Performance on COVID-19 Fake News Dataset

|                    |                    | Metrics       |               |               |         |        |  |
|--------------------|--------------------|---------------|---------------|---------------|---------|--------|--|
| No Additional Data | Model Name         | F1-Score      | Recall        | Precision     | ACC     | AUC    |  |
|                    |                    | (False/True)  | (False/True)  | (False/True)  |         |        |  |
|                    | LinearSVC          | 0.9188/0.7086 | 0.9125/0.7266 | 0.9252/0.6914 | 0.8730  | 0.8196 |  |
|                    | LogisticRegression | 0.9317/0.7295 | 0.9071/0.8172 | 0.9576/0.6588 | 0.8909  | 0.8621 |  |
|                    | RandomForest       | 0.9109/0.6805 | 0.9049/0.6971 | 0.9170/0.6647 | 0.8606  | 0.8010 |  |
|                    | CT-BERT-v2         | 0.9791/0.9291 | 0.9780/0.9325 | 0.9802/0.9256 | 0.9677  | 0.9553 |  |
|                    | BERTweet           | 0.9740/0.9049 | 0.9846/0.8704 | 0.9636/0.9422 | 0.9591  | 0.9275 |  |
|                    | Bert-large         | 0.9668/0.8918 | 0.9573/0.9218 | 0.9766/0.8636 | 0.9492  | 0.9400 |  |
|                    | RoBERTa-large      | 0.9718/0.9106 | 0.9514/0.9773 | 0.9932/0.8525 | 0.9572  | 0.9643 |  |
|                    | DistilBERT         | 0.9661/0.8787 | 0.9721/0.8595 | 0.9601/0.8987 | 0.9470  | 0.9158 |  |
| Added Extra Data   | LinearSVC          | 0.8416/0.8302 | 0.8409/0.8310 | 0.8423/0.8295 | 0.8361  | 0.8359 |  |
|                    | LogisticRegression | 0.8604/0.8498 | 0.8277/0.8152 | 0.8580/0.8523 | 0.8553  | 0.8552 |  |
|                    | RandomForest       | 0.8327/0.8189 | 0.8628/0.8472 | 0.8282/0.8238 | 0.8261  | 0.8260 |  |
|                    | CT-BERT-v2         | 0.9642/0.9613 | 0.9696/0.9555 | 0.9589/0.9671 | 0.9628  | 0.9625 |  |
|                    | BERTweet           | 0.9379/0.9300 | 0.9621/0.9044 | 0.9150/0.9570 | 0.9342  | 0.9332 |  |
|                    | Bert-large         | 0.9676/0.9645 | 0.9786/0.9528 | 0.9569/0.9766 | 0.9661  | 0.9657 |  |
|                    | RoBERTa-large      | 0.9693/0.9676 | 0.9615/0.9759 | 0.9771/0.9595 | 0.9685  | 0.9687 |  |
|                    | DistilBERT         | 0.9288/0.9172 | 0.9657/0.8782 | 0.8946/0.9599 | 0.9234. | 0.9219 |  |

News Example: Together help stop spread coronavirus Learn way protect others

#### **SHAP**



#### LIME



## **Conclusion and Further Work**

The study's findings provide three contributions: it describes the entire data gathering process and compares fake news detection models, including regular ML and BERT-based models. Furthermore, model-agnostic methods (i.e., SHAP and LIME) were presented in this study to show explainability in BERT-based models to promote public trust in ML.