- Logistic regression is used for solving classification problems two class classification
- Logistic regression is a linear model, it expects the features to have good linear relationship with the label

	Actual	Prediction	
7	.1	1 🗸	V
4	1	0 ×	
٦	1	0 🗡	
	0	0	/
	0	0	/
	0	1	
	0	1	
	0	0	\checkmark
→	1	0 7	
٦	1	1 🗸	V
	0	1	
-1	1	0 7	
~	1	0 4	
	0	0	
و	1	0 +	·/

Correctness of model for both class i and class is Recall - consectness of model for only class.

Telecon chum of Site equipment BI -DO Wase (055

Confusion Matrix

Predictions

	Confusion	0	1
	Matrix	Negative	Positive
Achielan	0	True Negative	False Positive FP
	1	False Negative FN	True Positive TP

$$Accuracy = \frac{7N+TP}{TN+FP+FN+TP}$$

$$Recult = \frac{TP}{TP+FN}$$

$$Precision = \frac{TP}{TP+FP}$$

$$FI score = \frac{1}{A+A} = \frac{2xPxR}{P+R}$$