Report for Assignment 5

K Means

I have taken Mall Customers dataset from Kaggle. Here we had three features Gender, Age, Income and Spending. I plotted these separately.

Spending score vs age plotting

Using K Means we get clusters.

Then we used silhouette_score to find the best cluster size.

```
For n_clusters = 2, silhouette score is 0.2965167311215868
For n_clusters = 3, silhouette score is 0.4671264942977645
For n_clusters = 4, silhouette score is 0.49369523511548846
For n_clusters = 5, silhouette score is 0.5541446796204179
For n_clusters = 6, silhouette score is 0.5410411871359793
For n_clusters = 7, silhouette score is 0.5327101345818385
For n_clusters = 8, silhouette score is 0.45854013950590267
For n_clusters = 9, silhouette score is 0.4581689704998002
For n_clusters = 10, silhouette score is 0.4505873675162661
For n_clusters = 11, silhouette score is 0.44515537320416854
For n_clusters = 12, silhouette score is 0.4400443397643773
For n_clusters = 13, silhouette score is 0.42365237726710364
```

```
For n_clusters = 14, silhouette score is 0.4186349372846408

For n_clusters = 15, silhouette score is 0.4204044838281923

For n_clusters = 16, silhouette score is 0.4334916895508394

For n_clusters = 17, silhouette score is 0.43051731261305654

For n_clusters = 18, silhouette score is 0.41899366690089124

For n_clusters = 19, silhouette score is 0.4294838009211467
```

Using silhouette_score we get silhouette score is maximum for 5 clusters with score 0.5541446796204179.

So, the optimul number of clusters is 5.

Gaussian Cluster GMM

Using inbuilt function from SKlearn we get clusters,

Then we used PCA on the same dataset. We reduced the dimension of the dataset to 2. I sot two feature Principal Component 1 and Principal Component 2. Then we applied K Means and GMM here also.

Using K means I get cluster,

And using GMM on this we get clusters,

