EXAMEN FINAL DE ECONOMETRÍA I (GRUPO 2)

- 1. Considere la base de datos que se le proporcionó.
- a. Estime una ecuación de regresión considerando solo X1 y X2 como variables explicativas. Interprete sus resultados.

Hacemos la regresión y tenemos la siguiente ecuación:

LOG(Y) = 3.33380427873 + 0.0125564453455*X1 - 0.000378564798534*X2

Dependent Variable: Y Method: Least Squares Date: 11/23/20 Time: 07:04 Sample: 1 30

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X2	15.32762 0.780343 -0.050160	7.160234 0.119388 0.129919	2.140659 6.536217 -0.386085	0.0415 0.0000 0.7025
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.683064 0.659587 7.102070 1361.864 -99.79934 29.09534 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		64.63333 12.17256 6.853289 6.993409 6.898115 2.209781

X1 y Y tienen una relación directa, mientras X2 y Y tiene una relación inversa, el modelo no tiene autocorrelación ya que su Durbin Watson es cercano a 2, además X1 es significativa mientas la variable X2 no es significativa.

b. Estime una ecuación de regresión considerando solo X1 y X3 como variables explicativas. Interprete sus resultados.

Tenemos la siguiente ecuación:

LOG(Y) = 3.26230007674 + 0.010776156156*X1 + 0.00301520495067*X3

Dependent Variable: Y Method: Least Squares Date: 11/23/20 Time: 07:05

Sample: 130

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	9.870880	7.061224	1.397899	0.1735
X1	0.643518	0.118477	5.431563	0.0000
X3	0.211192	0.134404	1.571324	0.1278
R-squared	0.708015	Mean dependent var		64.63333
Adjusted R-squared	0.686387	S.D. dependent var		12.17256
S.E. of regression	6.816779	Akaike info criterion		6.771291

Sum squared resid	1254.649	Schwarz criterion	6.911411
Log likelihood	-98.56936	Hannan-Quinn criter.	6.816116
F-statistic	32.73528	Durbin-Watson stat	1.958181
Prob(F-statistic)	0.000000		

Las variables X1 y X3 tienen relación directa con la variable Y, sin embargo la variable X3 no es significativa.

c. Especifique cuál de los modelos se puede considerar como el más óptimo. Sustente por qué.

El modelo más optimo es el segundo modelo donde la variable Y es explicada por X1 y X3, además su R2 es mejor que del primer modelo.

d. Si determina algún problema en la estimación de a. y b. explíquelo y plantee una forma de solucionar dicho problema.

En el segundo modelo tenemos el problema de heterocedasticidad

Heteroskedasticity Test: White

F-statistic	3.178438	Prob. F(5,24)	0.0243
		(, ,	
Obs*R-squared	11.95136	Prob. Chi-Square(5)	0.0355
Scaled explained SS	3.633775	Prob. Chi-Square(5)	0.6032

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/23/20 Time: 07:21

Sample: 1 30

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1^2 X1*X3 X1 X3^2 X3	149.9251 -0.027102 0.044936 0.764823 -0.018411 -2.589842	166.6264 0.032940 0.057328 4.056672 0.059910 5.360651	0.899768 -0.822764 0.783845 0.188535 -0.307304 -0.483121	0.3772 0.4187 0.4408 0.8520 0.7613 0.6334
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.398379 0.273041 31.42393 23699.13 -142.6481 3.178438 0.024260	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		41.82163 36.85577 9.909873 10.19011 9.999524 1.703672

De acuerdo con el test de White el modelo presenta Heterocedasticidad, ya forma de solucionar el problema es transformando las variables.

Dependent Variable: LOG(Y) Method: Least Squares Date: 11/23/20 Time: 07:32

Sample: 130

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(X1) LOG(X2)	0.931013 0.767905 0.002762	0.466400 0.128656 0.118362	1.996169 5.968656 0.023333	0.0561 0.0000 0.9816
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.665461 0.640681 0.121183 0.396505 22.32581 26.85409 0.000000	Mean depend S.D. depende Akaike info co Schwarz crite Hannan-Quin Durbin-Watso	ent var riterion erion in criter.	4.149949 0.202163 -1.288387 -1.148268 -1.243562 2.134749

2. Con la misma base de datos:

a. Estime el modelo completo con las 6 variables explicativas.

Dependent Variable: Y Method: Least Squares
Date: 11/23/20 Time: 07:04

Sample: 1 30 Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	10.78708	11.58926	0.930782	0.3616
X1	0.613188	0.160983	3.809018	0.0009
X2	-0.073050	0.135725	-0.538223	0.5956
X3	0.320332	0.168520	1.900852	0.0699
X4	0.081732	0.221478	0.369031	0.7155
X5	0.038381	0.146995	0.261106	0.7963
X6	-0.217057	0.178209	-1.217986	0.2356
R-squared	0.732602	Mean dependent var		64.63333
Adjusted R-squared	0.662846	S.D. dependent var		12.17256
S.E. of regression	7.067994	Akaike info criterion		6.949994
Sum squared resid	1149.000	Schwarz crite	nn criter.	7.276940
Log likelihood	-97.24991	Hannan-Quir		7.054587
F-statistic Prob(F-statistic)	10.50235 0.000012	Durbin-Wats	on stat	1.795318

b. Estime la ecuación en 1b de la pregunta 1 y compárelo con el modelo con las seis variables explicativas. Evalué la Hipótesis H0: $\beta 2 = \beta 4 = \beta 5 = \beta 6 = 0$. Considere un F de la tabla 2.8. Interprete su conclusión.

Dependent Variable: Y Method: Least Squares Date: 11/23/20 Time: 07:05

Sample: 130

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X3	9.870880 0.643518 0.211192	7.061224 0.118477 0.134404	1.397899 5.431563 1.571324	0.1735 0.0000 0.1278
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.708015 0.686387 6.816779 1254.649 -98.56936 32.73528 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		64.63333 12.17256 6.771291 6.911411 6.816116 1.958181

En el primer modelo las variables explicativas no son estadísticamente significativas, a excepción de la variable explicativa X1 con un Nivel de Significancia de 0.05. En cambio, en estimación b1 la variable X3 no es estadísticamente significativa.

La R2 explica que el 73 % de las fluctuaciones de Y en promedio están siendo explicados por las variables X1 X2 X3 X4 X5 X6.

PRUEBA DE HIPOTESIS

H0: b2=b4=b5=b6=0H1: $b2=b4=b5=b6\neq0$ Con un F de tabla 2.8.

Con un α =0.05, F tabla: 19.371

F calculado = 10.714

Por lo tanto, F calculado cae en la región de aceptación. Tenemos lo criterios suficientes para aceptar H0

3. Utilizando la misma base de datos, especifique un modelo óptimo. Compare ambos modelos y evalué el modelo elegido.

	A	В	С	D	Е	F
CONSTANTE						
	14.37632	42.10866	28.17412	19.97779	50.24456	56.75582
X1						
	0.0000					
X2	0.0000					
AL						
		0.0189				
X3						
			0.000			
37.4			0.0002			
X4						
				0.0006		
X5				0.0000		
					0.4091	
X6						
						0.4132
R2	0.004044	0.404570	0.00007.4	0.040004	0.004470	0.004050
	0.681314	0.181576	0.388974	0.348264	0.024473	0.024052

El mejor modelo es el siguiente: Y=X1+X2+X3+X6

Dependent Variable: Y Method: Least Squares Date: 11/23/20 Time: 07:55

Sample: 1 30

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1 X2 X3 X6	14.30347 0.653378 -0.076817 0.323950 -0.171510	7.739565 0.130511 0.130588 0.157408 0.149040	1.848097 5.006290 -0.588244 2.058019 -1.150761	0.0765 0.0000 0.5616 0.0502 0.2607
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.729341 0.686036 6.820591 1163.012 -97.43172 16.84181 0.000001	Mean depend S.D. depend Akaike info c Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	64.63333 12.17256 6.828781 7.062314 6.903490 1.820195

Tenemos un modelo con coeficientes significativos con R2 mejor que el modelo de las 6 variables.

- 4. En el modelo elegido, evalúe los siguientes supuestos de MRLC
- a. Multicolinealidad: Calcule el factor de inflación (VIF)
- b. Heteroscedasticidad: Prueba de White

Heteroskedasticity Test: White

F-statistic	14.40047	Prob. F(14,15)	0.5058
Obs*R-squared		Prob. Chi-Square(14)	0.4203
Scaled explained SS	4.983139	Prob. Chi-Square(14)	0.9860

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 11/23/20 Time: 07:56

Sample: 130

Included observations: 30

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X1^2 X1*X2 X1*X3 X1*X6 X1 X2^2 X2*X3 X2*X6 X2 X3^2 X3*X6 X3 X6^2 X6	147.8717 0.044555 0.002652 -0.065462 -0.020248 -0.758228 -0.127245 0.091926 0.051308 7.398301 0.080844 -0.073152 -9.610484 -0.000765 1.806366	301.7593 0.088336 0.123918 0.192298 0.156730 7.064284 0.084193 0.121574 0.158181 9.964224 0.154790 0.192511 7.863141 0.069224 7.275592	0.490032 0.504373 0.021403 -0.340420 -0.129187 -0.107333 -1.511343 0.756135 0.324364 0.742486 0.522280 -0.379987 -1.222220 -0.011053 0.248278	0.6312 0.6213 0.9832 0.7383 0.8989 0.9159 0.1515 0.4613 0.7501 0.4693 0.6091 0.7093 0.2405 0.9913 0.8073
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.480016 -0.005303 39.46683 23364.46 -142.4348 0.989073 0.505764	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		38.76705 39.36260 10.49565 11.19625 10.71978 1.753655

De acuerdo con la Test de White hacemos la siguiente prueba de Hipótesis HO: NO EXISTE HETEROCEDASTICIDAD

H1. EXISTE HETEROCEDASTIDAD

Como los P-value son mayores a 0.05 entonces aceptamos la Hipótesis Nula Por tanto, este modelo NO TIENE HETEROCEDASTICIDAD, quiere decir que cuando las variables exógenas la varianza no cambia en el tiempo.

Si hubiese problemas en los supuestos corrijamos.

- 5. Al ejecutar la regresión de la inversión privada y tener en cuenta dos de sus determinantes tuvieron los siguientes resultados.
- a. INFALCIÓN =5.228449-0.828817*R+0.213205*PBI
 La bondad de ajuste R2=0.941937 Nos dice que el 94% de la fluctuación promedio de Y está siendo explicada por las variables R y PBI.
- b. HO: B1=0 H1: B1≠0

Como el P-Value () es mayor a 0.01 entonces aceptamos Ho, ósea la variable R no es significativo.

HO: B2=0 H1: B2≠0