In [20]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from dateutil import parser

In [4]: crime = pd.read_csv("data.csv")

In [5]: crime[:3]

Out[5]:

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description
0	6530342	HP603653	10/01/2008 03:30:00 PM	076XX S COTTAGE GROVE AVE	0460	BATTERY	SIMPLE	SIDEWALK
1	6530343	HP603773	10/01/2008 05:00:00 PM	031XX S GREEN ST	0620	BURGLARY	UNLAWFUL ENTRY	RESIDENCE
2	6530344	HP600313	09/29/2008 04:15:00 PM	063XX S STONY ISLAND AVE	0890	THEFT	FROM BUILDING	OTHER

3 rows × 22 columns

In [6]: plt.xticks(rotation=90)
 sns.countplot(x='Primary Type', hue='Arrest', data=crime)
 plt.show()


```
In [68]: mini_crime = crime[:100]
         def convert to datetime(row) :
             dt = parser.parse(row["Date"])
             return dt
         def label_day_of_week (row) :
             dt = row["Datetime"]
             return dt.weekday()
         def label_day_of_month (row) :
             dt = row["Datetime"]
             return dt.day
         def label month(row) :
             dt = row["Datetime"]
             return dt.month
         def label_year(row) :
             dt = row["Datetime"]
             return dt.year
         def label_hour(row) :
             dt = row["Datetime"]
             return dt.hour
```

```
In [32]: crime["Datetime"] = crime.apply(lambda row : convert_to_datetime(row), a
    xis = 1)
    crime[:3]
```

Out[32]:

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description
0	6530342	HP603653	10/01/2008 03:30:00 PM	076XX S COTTAGE GROVE AVE	0460	BATTERY	SIMPLE	SIDEWALK
1	6530343	HP603773	10/01/2008 05:00:00 PM	031XX S GREEN ST	0620	BURGLARY	UNLAWFUL ENTRY	RESIDENCE
2	6530344	HP600313	09/29/2008 04:15:00 PM	063XX S STONY ISLAND AVE	0890	THEFT	FROM BUILDING	OTHER

3 rows × 23 columns

```
In [37]: crime["Day Of Month"] = crime.apply(lambda row :
    label_day_of_month(row), axis = 1)
```

In [38]: crime["Month"] = crime.apply(lambda row : label_month(row), axis = 1)

In [39]: plt.xticks(rotation=90)
 sns.countplot(x='Day of Week', hue='Arrest', data=crime)
 plt.show()

In [41]: crime[:3]

Out[41]:

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description
0	6530342	HP603653	10/01/2008 03:30:00 PM	076XX S COTTAGE GROVE AVE	0460	BATTERY	SIMPLE	SIDEWALK
1	6530343	HP603773	10/01/2008 05:00:00 PM	031XX S GREEN ST	0620	BURGLARY	UNLAWFUL ENTRY	RESIDENCE
2	6530344	09/29/2008 04:15:00 PM		063XX S STONY ISLAND AVE	0890	THEFT	FROM BUILDING	OTHER

3 rows × 26 columns

In [42]: plt.xticks(rotation=90)
 sns.countplot(x="Day Of Month", hue='Arrest', data=crime)
 plt.show()

In [43]: plt.xticks(rotation=90)
 sns.countplot(x='Month', hue='Arrest', data=crime)
 plt.show()


```
In [58]: usable_crime = crime.copy(True)
    usable_crime["Year"] = usable_crime.apply(lambda row : label_year(row),
    axis=1)
    usable_crime[0:3]
```

Out[58]:

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description
0	6530342	HP603653	10/01/2008 03:30:00 PM	076XX S COTTAGE GROVE AVE	0460	BATTERY	SIMPLE	SIDEWALK
1	6530343	HP603773	10/01/2008 05:00:00 PM	031XX S GREEN ST	0620	BURGLARY	UNLAWFUL ENTRY	RESIDENCE
2	6530344	HP600313	09/29/2008 04:15:00 PM	063XX S STONY ISLAND AVE	0890	THEFT	FROM BUILDING	OTHER

3 rows × 26 columns

In [60]: usable crime = usable crime[

```
(usable_crime["Primary Type"] != "GAMBLING") &
    (usable_crime["Primary Type"] != "LIQUOR LAW VIOLATION") &
    (usable_crime["Primary Type"] != "PROSTITUTION") &
    (usable_crime["Primary Type"] != "NARCOTICS") &
    (usable_crime["Primary Type"] != "PUBLIC INDECENCY")
    ]

In []: usable_crime.drop(inplace = True, labels = ["ID", "Case Number", "Date",
    "Block", "Primary Type", "Description", "Beat", "Ward", "FBI Code", "Up
    dated_on", "Location"])

In []: usable_crime["Day of Week"] = usable_crime.apply(lambda row : label_day_
    of_week(row), axis = 1)

In []: usable_crime["Day Of Month"] = usable_crime.apply(lambda row : label_day_
    of_month(row), axis = 1)
In []: usable crime["Month"] = usable crime.apply(lambda row :
```

label month(row), axis = 1)

Out[69]:

	ID	Case Number	Date	Block	IUCR	Primary Type	Description	Location Description
0	6530342	HP603653	10/01/2008 03:30:00 PM	076XX S COTTAGE GROVE AVE	0460	BATTERY	SIMPLE	SIDEWALK
1	6530343	HP603773	10/01/2008 05:00:00 PM	031XX S GREEN ST	0620	BURGLARY	UNLAWFUL ENTRY	RESIDENCE
2	6530344	HP600313	09/29/2008 04:15:00 PM	063XX S STONY ISLAND AVE	0890	THEFT	FROM BUILDING	OTHER

3 rows × 27 columns

In [52]: plt.xticks(rotation=90)
 sns.countplot(x='Day of Week', hue='Arrest', data=usable_crime)
 plt.show()

In [53]: plt.xticks(rotation=90)
 sns.countplot(x="Day Of Month", hue='Arrest', data=usable_crime)
 plt.show()

In [54]: plt.xticks(rotation=90)
 sns.countplot(x='Month', hue='Arrest', data=usable_crime)
 plt.show()


```
In [70]: plt.xticks(rotation=90)
    sns.countplot(x='Hour', hue='Arrest', data=usable_crime)
    plt.show()
```


In [67]: logistic_crime = usable_crime.copy(True)

Out[67]:

	IUCR	Location Description	Arrest	Domestic	District	Community Area	X Coordinate	Y Coordinate	Ye
	0460	SIDEWALK	False	False	6.0	69.0	1182884.0	1854628.0	20(
	0620	RESIDENCE	False	False	9.0	60.0	1171221.0	1884004.0	20(
1	0890	OTHER	False	False	3.0	42.0	1187961.0	1863261.0	200

In []: