Bijlage A

Formularium

A.1 Hydrostatica

Hydrostatische druk:

Hydrostatische kracht:

$$dp = \rho g dz (A.1) F = \int p dA (A.2)$$

A.2 Behoudsvergelijkingen

Behoudsvergelijkingen in integraal vorm

$$0 = \frac{\partial}{\partial t} \int_{CV} \rho dV + \int_{\partial CV} \rho(\boldsymbol{v} \cdot \boldsymbol{n}) dA$$
 (A.3)

$$\sum \mathbf{F} = \frac{\partial}{\partial t} \int_{CV} \rho \mathbf{v} dV + \int_{\partial CV} \rho \mathbf{v} (\mathbf{v} \cdot \mathbf{n}) dA$$
(A.4)

$$\dot{Q} - \dot{W}_t = \frac{\partial}{\partial t} \int_{CV} \rho \left(u + \frac{v^2}{2} + gz \right) dV + \int_{\partial CV} \rho \left(u + \frac{p}{\rho} + \frac{v^2}{2} + gz \right) (\boldsymbol{v} \cdot \boldsymbol{n}) dA$$
 (A.5)

Behoudsvergelijkingen bij een stationaire stroming met één instroming en één uitstroming:

$$0 = \dot{m}_{uit} - \dot{m}_{in} \tag{A.6}$$

$$\sum \mathbf{F} = \dot{m} \left(\mathbf{v}_{uit} - \mathbf{v}_{in} \right) \tag{A.7}$$

$$\dot{Q} - \dot{W}_t = \dot{m} \left(u_{uit} - u_{in} + \frac{p_{uit}}{\rho_{uit}} - \frac{p_{in}}{\rho_{in}} + \frac{v_{uit}^2}{2} - \frac{v_{in}^2}{2} + gz_{uit} - gz_{in} \right)$$
(A.8)

Behoudsvergelijkingen in differentiaal vorm:

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{v} = 0 \tag{A.9}$$

$$\rho \frac{\partial \boldsymbol{v}}{\partial t} + \rho \boldsymbol{v} \boldsymbol{\nabla} \cdot \boldsymbol{v} = -\boldsymbol{\nabla} p + \rho \boldsymbol{g} + \mu \boldsymbol{\nabla}^2 \boldsymbol{v}$$
(A.10)

$$\rho v \frac{\mathrm{d}v}{\mathrm{d}s} + \frac{\mathrm{d}p}{\mathrm{d}s} + \rho g \frac{\mathrm{d}z}{\mathrm{d}s} = 0 \tag{A.11}$$

Mechanische energie vergelijking:

$$z_1 + \frac{p_1}{\rho g} + \frac{v_1^2}{2g} - h_L + h_P = z_2 + \frac{p_2}{\rho g} + \frac{v_2^2}{2g}$$
(A.12)

Dimensieloze getallen $\mathbf{A.3}$

$$Re = \frac{\rho v D}{\mu} = \frac{v D}{\mu}$$
(A.13)
$$C_p = \frac{p}{\frac{1}{2}\rho v^2} \cong \frac{p}{\rho N^2 D^2}$$

$$Fr = \frac{v}{\sqrt{gD}}$$
(A.14)
$$C_F = \frac{F}{\frac{1}{2}\rho v^2 A}$$

Eu =
$$\frac{\Delta p}{\sigma v^2}$$
 (A.15) $C_P = \frac{P}{\frac{1}{2}\rho v^3 D^2} \cong \frac{p}{\rho N^3 D^5}$

$$Ma = \frac{v}{c} \qquad (A.16) \qquad C_p = \frac{\dot{V}}{vD^2} \cong \frac{\dot{V}}{ND^3} \qquad (A.20)$$

Open kanaal stroming **A.4**

Golfsnelheid:

Kritische diepte:

$$c = \sqrt{gy} \tag{A.21}$$

$$c = \sqrt{\frac{g\lambda}{2\pi}} \tag{A.22}$$

Stroming in leidingen A.5

Ladingsverlies bij stroming in een rechte cilindrische leiding:

$$h_{L} = f \frac{v^{2}}{2g} \frac{L}{D} = 8f \frac{\dot{V}^{2}}{g\pi^{2}} \frac{L}{D^{5}} = R\dot{V} = R'\dot{V}^{2}$$

$$(A.24) \qquad \frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3.71} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$

Wrijvingsfactor bij laminaire stroming in cilindrische leidingen:

$$f = \frac{64}{\text{Re}} \tag{A.25}$$

Wrijvingsfactor bij turbulente stroming in cilindrische leidingen volgens Colebrook:

 $y_c = \left(\frac{q^2}{a}\right)^{1/3}$

(A.23)

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\frac{\varepsilon}{\overline{D}}}{3.71} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$
 (A.26)

Ladingsverlies bij stroming door leidingsonderdelen:

(A.25)
$$h_L = K \frac{v^2}{2q} = K \frac{\dot{V}^2}{2qA^2} = R\dot{V} = R'\dot{V}^2$$
 (A.27)

Bijlage B

Tabellen en grafieken

Tabel B.1: Verliescoëfficiënt bij stroming door een cirkelvormige bocht van 90° $h_{\rm L}=Krac{v^2}{2g}$

r/D	1	2	4	6	10
K glad	0.21	0.14	0.11	0.09	0.11
K ruw	0.51	0.30	0.23	0.18	0.20

Tabel B.2: Correctiefactor voor cirkelvormige bochten met andere hoeken $h_{\rm L} = f K_{90^{\circ}} \frac{v^2}{2g}$

α	30°	60°	90°	120°	150°	180°
f	0.4	0.7	1	1.25	1.5	1.7

Tabel B.3: Verliescoëfficiënt voor een plotse verwijding $h_{\rm L} = K \frac{v_1^2}{2g}$

D_2/D_1	1.0	1.2	1.4	1.6	1.8	2.0	3.0	5.0	∞
\overline{K}	0.00	0.09	0.24	0.37	0.48	0.56	0.79	0.92	1.00

Tabel B.4: Correctiefactor voor een geleidelijke verwijding $h_{\rm L}=fK_{180^\circ} \frac{v_1^2}{2g}$

$$h_{\rm L} = f K_{180^{\circ}} \frac{v_1^2}{2a}$$

α	6°	10°	15°	20°	30°	40°	50°	60°	70°	90°
\overline{f}	0.14	0.20	0.30	0.40	0.70	0.90	1.00	1.10	1.10	1.00

HOOFDSTUK B TABELLEN EN GRAFIEKEN

Tabel B.5: Verliescoëfficiënt bij stroming door een plotse vernauwing $h_{\rm L}=K\frac{v_2^2}{2g}$

D_1/D_2	1	1.2	1.4	1.6	1.8	2.0	3.0	5.0
\overline{K}	0.00	0.15	0.24	0.30	0.35	0.38	0.44	0.48

Tabel B.6: Correctie
factor voor een geleidelijke vernauwing $h_{\rm L}=fK_{180^{\circ}}\frac{v_2^2}{2g}$

α	45°	60°	90°	120°	150°	180°
f	0.62	0.71	0.84	0.93	0.98	1.00

Tabel B.7: Verliescoëfficiënt voor een orifice

$$h_{\rm L} = K \frac{v^2}{2g}$$

D_1/I	O_2	1	1.2	1.4	1.6	1.8	2.0	3.0	5.0
\overline{K}	C	0.00	0.24	0.48	0.67	0.83	0.94	1.23	1.40

Tabel B.8: Verliescoëfficiënt bij verschillende types instroming

$$h_{\rm L} = K \frac{v_2^2}{2g}$$

$$K = 0.5$$

$$K = 1.0$$

$$r/D_2$$
 0.00 0.02 0.04 0.06 0.10 >0.15
 K 0.50 0.28 0.24 0.15 0.09 0.04

Figuur B.1: Moody diagram

