1995 年全国高中数学联赛

		第一试			
一、选择题(每小	题 6 分, 共 36	分)			
1. 设等差数	i 対列{a _n }満足3a	a ₈ =5 <i>a</i> ₁₃ 且 <i>a</i> ₁ >0, <i>S</i>	。 。为其前项之和,	则 S _n 中最大的是()	
(A) S_{10}	(B) S_{11}	$(C) S_{20} \qquad (D$	S_{21}		
2. 设复平面	上单位圆内接面	E 20 边形的 20~	个顶点 所对应的	复数依次为 Z_1, Z_2, \cdots, Z_n	0,
则复数 Z_1^{1995} , Z_2^{199}	⁹⁵ ,…, <i>Z</i> ¹⁹⁹⁵ 所求	寸应的不同的点的	的个数是()		
(A) 4	(<i>B</i>) 5	(<i>C</i>) 10	(<i>D</i>) 20		
3. 如果甲的:	身高数或体重数	全少有一项比2	2大,则称甲不亚	于乙,在 100 个小伙子中	Ι,
	[他 99 人,就和	你他为棒小伙子,	那么,100 个小	伙子中的棒小伙子最多可	ग
能有()	(-) - A	() A	4-3 A		
	(B)2个		(力)100个	**************************************	
4. 以 知万程 注的取值范围是((ᢧ∈1件)在区則([2 11 1 , 2 11 1] <u> </u>	有两个不相等的实根,贝	Į
(A) F >0		(B) 0 < k≤ √	1		
1	1		2 11 +1		
$(C)\frac{1}{2n+1}\langle \underline{\imath} \leq$	≨ 1/√2π+1	(1)以上都不	是		
5. log minico	s1, log _{min} tani	l, log _{emi} sin1, l	log _{:∞i} tan1 的大⁄	小关 系是	
		sin1< log _{sist} tani			
		tan1< log _{rin} cos:			
(C) log_mintan1 log_matan1 log_matan1 log_matan1 log_matan1					
(D) log	atan1< logaiat	an1< log _{rin} cos1	.< log _{ssi} sin1		
6. 设 <i>0</i> 是正	三棱锥 P—ABC	C底面三角形 ABC	C的中心,过 0 f	的动平面与 PC 交于 S,与	î PA,
PB的延长线分	分别交于 Q, R ,	则和式 $\frac{1}{PQ}$ + $\frac{1}{PR}$ + $\frac{1}{PR}$	- S		
(A)有最	大值而无最小	值	(B有最小值而	无最大值	
(<i>c</i>) 既有	「最大值又有最	小值,两者不等	(1)是一个与	面 QPS 无关的常数	
二、填空题(每小	题 9 分,共 54	分)			
1. 设 a, A	β 为一对共轭复	Σ数 ,若 α – β	$ =2\sqrt{3}$,且 $\frac{a}{\beta^2}$ 为	实数,则 a =	
		大体积与这个球 的最大整数,方程	· · · · · · · · · · · · · · · · · · ·	· ·2=0 的实根个数是	
		(v≪3)	7.		-
4. 直角坐板	平面上,满足	不等式组 $\begin{cases} y > 3x \\ y > \frac{x}{3} \\ x + y \le \end{cases}$, 的整点个数	是	
		\ x+y≤	≨100		

- 5. 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5 种颜色可使用,那么不同的染色方法的总数是___
 - 6. 设 M={1, 2, 3, ···, 1995}, A 是 M 的子集且满足条件: 当 x∈A 时, 15x∉A, 则 A 中元素的个数最多是____.

第二试

一、(25 分) 给定曲线族 $2(2\sin\theta-\cos\theta+3)$ $x^2-(8\sin\theta+\cos\theta+1)$ y=0, θ 为参数,求该曲线在直线 y=2x 上所截得的弦长的最大值.

二、(25 分) 求一切实数 p,使得三次方程 $5x^3-5(p+1)x^2+(71p-1)x+1=66p$ 的三个根均为 正整数.

三、(35分)如图,菱形 ABCD 的内切圆 O 与各边分别切于 E_0 E_1 E_2 E_3 E_4 E_4 E_5 E_4 E_5 E_4 E_5 E_6 E_6 E_6 E_7 E_8 E_7 E_8 E_7 E_8 E_7 E_8 $E_$

四、(35分)将平面上的每个点都以红,蓝两色之一着色。证明:存在这样两个相似的三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色.

1995 年全国高中数学联赛一试(解答)

- 一、选择题(每小题6分,共36分)
 - 1. 设等差数列 $\{a_n\}$ 满足 $3a_n=5a_{13}$ 且 $a_1>0$, S_n 为其前项之和,则 S_n 中最大的是((A) S_{10} (B) S_{11} (C) S_{20} (D) S_{21}

【答案】C

【解析】3(a+7d)=5(a+12d), $\Rightarrow d=-\frac{2}{30}a$,令 $a_n=a-\frac{2}{30}a$ $(n-1)\geq 0$, $a_{n+1}=a-\frac{2}{30}a$ n<0, 得*n=*20. 选 C.

2. 设复平面上单位圆内接正 20 边形的 20 个顶点所对应的复数依次为 Z, Z, …, Z, 则复数 z***,z***,…,z***所对应的不同的点的个数是(

(A)4

(B)5

(C) 10

(D) 20

【答案】▲

【解析】设 $z_i = \cos \theta + i \sin \theta$,则 $z_k = z_i e^{i-1}$,其中 $e = \cos \frac{\pi}{10} + i \sin \frac{\pi}{10}$. $e^{i0} = 1$. $e^{i5} = -i$, $\varepsilon^{10} = -1$, $\varepsilon^5 = i$.

- $\therefore \ z_k^{1995} = (\cos 1995 \ \theta + i \sin 1995 \ \theta) \ \ \varepsilon^{1995(i-1)} = (\cos 1995 \ \theta + i \sin 1995 \ \theta) \ (-i)^{i-1}.$
- ∴ 共有 4 个值. 选 4
- 3. 如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在 100 个小伙子 中,如果某人不亚于其他99人,就称他为棒小伙子,那么,100个小伙子中的棒小伙子最 多可能有(

(A)1个 (B)2个

(c)50 个

(D) 100 个

【答案】D

【解析】把身高按从高到矮排为 1~100 号,而规定二人比较,身高较高者体重较小, 则每个人都是棒小伙子. 故选及

4. 已知方程 $|x-2n|=k\sqrt{x(n\in\mathbb{N}^*)}$ 在区间(2n-1,2n+1]上有两个不相等的实根,则 k的取值范围是(

(A) k>0

$$(B) 0 < k \leq \frac{1}{\sqrt{2n+1}}$$

$$(C)\frac{1}{2n+1} < k \leq \frac{1}{\sqrt{2n+1}}$$

(D)以上都不是

【答案】B

【解析】由 $|x-2n| \ge 0$,故 $k \ge 0$,若 k=0,可知在所给区间上只有 1 解. 故 $k \ge 0$.

由图象可得,x=2n+1 时, $k\sqrt{x} \le 1$. 即 $k \le \frac{1}{\sqrt{2n+1}}$. 故选 B.

又解: $y=(x-2n)^2$ 与线段 $y=k^2x(2n-1)$ 有两个公共点. $x^2-(4n+k^2)x+4n^2=0$ 有 (2n-1,2n+1]上有两个根. 故 $\triangle = (4n+k^2)^2 - 16n^2 > 0$. 且 $(2n-1)^2 - (4n+k^2)(2n-1) + 4n^2 > 0$,

$$(2n+1)^2 - (4n+k^2)(2n+1) + 4n^2 \ge 0, \ 2n-1 \le 2n+\frac{1}{2}k^2 \le 2n+1. \implies k \le \frac{1}{\sqrt{2n+1}}.$$

- 5. log minicosi, log minitani, log misini, log mitani的大小关系是
 - (A) logsisicos1 logsisis1 logsisitan1 logsisitan1
 - (B) log_ssisin1< log_ssitan1< log_ssicos1< log_ssictan1
 - (C) log_{sisi}tan1 < log_{sosi}tan1 < log_{sosi}sin1 < log_{sisi}cos1
 - (D) log_saltan1< log_sizitan1< log_sizicos1< log_salsin1

【答案】C

【解析】 $\frac{\pi}{4}$ <1< $\frac{\pi}{2}$, 故 0<cos1<sin1<1<tan1. \Rightarrow

log_{simi}tanl≪0 , log_{somi}tanl≪0 , log_{simi}cosl≫0 , log_{somi}sinl≫0,

设 logsisicos1=a 则得(sin1)*=cos1<sin1, a>1; logsisin1=b,则(cos1)*=sin1>cos1,0<b<1; 即 logsisin1< logsiscos1.

设 log_{sist}tanl=c, log_{sist}tanl=d 则得(sinl)^e=(cosl)^e=tanl, (指数函数图象进行比较), c<d 即 log_{sist}tanl<log_{sost}tanl

故选 C.

- 6. 设 O是正三棱锥 P—ABC 底面三角形 ABC 的中心,过 O 的动平面与 PC 交于 S,与 PA, PB 的延长线分别交于 Q, R,则和式 $\frac{1}{PQ} + \frac{1}{PS}$
 - (A)有最大值而无最小值
- (B)有最小值而无最大值
- (6) 既有最大值又有最小值,两者不等
- (D)是一个与面 QPS 无关的常数

【答案】D

【解析】O到面 PAB、PBC、PCA的距离相等。设∠APB=σ,则

 $V_{sets} = \frac{1}{6} d(PQ \circ PR + PR \circ PS + PS \circ PQ) \sin \sigma$. (其中 d > 0与各侧面的距离).

 $V_{\text{sets}} = \frac{1}{6} PQ \cdot PR \cdot PS \sin \sigma \sin \theta$. (其中 θ 为 PS 与面 PQR 的夹角)

- $\therefore d(PQ \circ PR + PR \circ PS + PS \circ PQ) = PQ \circ PR \circ PS \sin \theta.$
- $\therefore \frac{1}{PQ} \frac{1}{PR} \frac{1}{PS} = \frac{\sin \theta}{d}$ 为定值. 故选 D.
- 二、填空题(每小题9分,共54分)
 - 1. 设 α , β 为一对共轭复数,若 $|\alpha-\beta|=2\sqrt{3}$,且 $\frac{\alpha}{\beta^2}$ 为实数,则 $|\alpha|=$ ____.

【答案】2

【解析】设 a=x+yi, $(x, y \in \mathbb{R})$, 则 $|a-\beta|=2|y|$. ∴ $y=\pm\sqrt{3}$.

设 $\alpha = \theta$,则可取 $\theta + 2 \theta = 2 \pi$,(因为只要求 $|\alpha|$,故不必写出所有可能的角). $\theta = \frac{2}{3}$ π ,于是 $x = \pm 1$. $|\alpha| = 2$.

2. 一个球的内接圆锥的最大体积与这个球的体积之比为____.

【答案】8: 27

【解析】设球半径为 & 其内接圆锥的底半径为 z 高为 b 作轴

截面,则
$$x^2 = h(2R - h)$$
. $V = \frac{1}{3} \times x^2 h = \frac{\pi}{3} h^2 (2R - h) = \frac{\pi}{6} h \cdot h(4R - 2h)$

$$\leq \frac{\pi}{6} \left(\frac{4R}{3}\right)^3 = \frac{8}{27} \cdot \frac{4}{3} \times R^2.$$

二 新求比为 8:27

3. 用[x]表示不大于实数 x 的最大整数,方程 $\lg^2 x$ — [$\lg x$] — 2=0 的实根个数是_____ 【答案】 3

【解析】令 1gx=t,则得 $t^2-2=[t]$. 作图象,知 t=-1, t=2,及 1< t< 2 内有一解. 当 1< t< 2 时, [t]=1, $t=\sqrt{3}$. 故得: $x=\frac{1}{10}$, x=100, $x=10^{\sqrt{3}}$,即共有 3 个实根.

【答案】2511

【解析】如图,即△*048*内部及边界上的整点。由两轴及 x+y=100 围成区域 (包括边界)内的整点数=1+2+3+···+101=5151 个。

由 x 轴、y 3 x, x+y=100 围成区域(不包括 y 3 x 上)内的整点数(x=1, 2, 3 时各有 1 个整点, x=4, 5, 6 时各有 2 个整点, …, x=73, 74, 75 时有 25 个整点, x=76, 77, …, 100 时依次有 25, 24, …, 1 个整点, 共有 3×1+3×2+…+3×25+25+24+…+1=4(1+2+…+25)=1300. 由对称性,由 y 轴、y=3x、x+y=100 围成的区域内也有 1300 个整点.

- ∴所求区域内共有 5151-2600=2551 个整点。
- 5. 将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有 5种颜色可使用,那么不同的染色方法的总数是_____.

【答案】420

【解析】顶点染色,有5种方法,

底面 4 个顶点,用 4 种颜色染, \mathring{A} =24 种方法,用 3 种颜色,选 1.对顶点 \mathring{C} ,这一对顶点用某种颜色染 \mathring{C} ,余下 2 个顶点,任选 2 色染, \mathring{A} 种,共有 \mathring{C} \mathring{C} \mathring{A} =48 种方法;用 2 种颜色染: \mathring{A} =12 种方法;

∴共有 5(24+48+12) =420 种方法.

6. 设 *M*={1, 2, 3, ···, 1995}, *A* 是 *M* 的子集且满足条件: 当 *x*∈ *A* 时, 15 *x*∉ *A*, 则 *A* 中元素的个数最多是

【答案】1870

【解析】1995=15×133. 故取出所有不是 15 的倍数的数, 共 1862 个, 这此数均符合要求。

在所有 15 的倍数的数中,15 的倍数有 8 个,这此数又可以取出,这样共取出了 1870 个。即 | *a*| ≥ 1870.

又 $\{i_1, 15i_2\}$ $\{i_2=9, 10, 11, \dots, 133\}$ 中的两个元素不能同时取出,故 $|A| \le 1995-133+8=1870$.

第二试

一、(25 分) 给定曲线族 $2(2\sin\theta - \cos\theta + 3)x^2 - (8\sin\theta + \cos\theta + 1)y = 0$, θ 为参数,求该曲线在直线 y = 2x 上所載得的弦长的最大值.

【解析】以 y=2x代入曲线方程得 x=0, $x=\frac{8\sin\theta+\cos\theta+1}{2\sin\theta-\cos\theta+3}$.

∴ 所求弦长 $I = \left| \frac{8 \sin \theta + \cos \theta + 1}{2 \sin \theta - \cos \theta + 3} \right| \sqrt{5}$. 故只要求 |x| 的最大值即可.

解之得, $-8 \le x \le 2$. 即 $|x| \le 8$ (当 $\sin \theta = \pm \frac{24}{25}$, $\cos \theta = \mp \frac{7}{25}$ 时即可取得最大值). 故得最大弦长为 $8\sqrt{5}$.

二、(25分) 求一切实数 p,使得三次方程 5㎡—5(p+1)㎡+(71p—1)㎡+1=66p的三个根均为 正整数。

【解析】x=1 是方程的一个根。于是只要考虑二次方程 5x²-5px+66p-1=0

的两个根为正整数即可.

设此二正整数根为 18 平 则由韦达定理知,

$$\begin{cases} u^+v=p & \text{(1)} \\ uv=\frac{1}{5} & (66p-1) & \text{(2)} \end{cases}$$

消去 p, 得 5uv-66(u+v)=-1. 同乘以 5: 5 uv-5×66u-5×66v=-5.

∴ (5*u*-66)(5*v*-66)=66²-5=4351=19×229. 由于 *u*、 *v* 均为整数,故 5*u*-66、5*v*-66 为整数.

∴ 其中使 u、 v为正整数的, 只有 u=17, v=59 这一组值。此时 p=76.

三、(35 分) 如图,菱形 ABCD 的内切圆 O 与各边分别切于 E, F, G, H, 在弧 EF 与 GH 上分别作圆 O 的切线交 AB 于 M, 交 BC 于 N, 交 CD 于 P, 交 DA 于 Q, 求证: MQ//NP.

分析 要证 MQ//NP,因 AB//DC,故可以考虑证明 $\angle AMQ=\angle CPN$. 现 $\angle A=\angle C$,故可证 $\triangle AMQ \sim \triangle CPN$. 于是要证明 AM: AQ=CP: CN.

【解析】证明 设∠ABC=2α。∠BMM=2β。∠BMM=2 r. 则

由 ON 平分 ∠ONE 得 ∠ONE = ∠ONE = 1(180° - 2β) = 90°

 $-\beta$;

同理, ∠0111=∠0114=90°- r.

而∠*com*=180°−∠*ocm*−∠*omc=β+α*=90°− r,于是Δ

COR™ △ ANO.

∴ AN : AO=CO: CN 即 AN - CN=AÔ.

同理, AQ • CP=AO, ∴ AII • CIE=AQ • CP.

∴ △ ABD □ △ CPK ∴ ∠ ABD=∠ CPK

... NO// NP.

四、(35分)将平面上的每个点都以红,蓝两色之一着色.证明:存在这样两个相似的三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色.

【解析】证明:首先证明平面上一定存在三个顶点同色的直角三角形.

设直角三角形 ABC 三顶点同色(∠B 为直角). 把△ABC 补成矩形 ABCD(如图). 把矩形的每边都分成 n 等分(n 为正奇数, n>1, 本题中取 n=1995). 连结对边相应分点, 把矩形 ABCD分成 n 个小矩形.

AB边上的分点共有 n+1 个,由于 n 为奇数,故必存在其中两个相邻的分点同色,(否则任两个相邻分点异色,则可得 A、B 异色),不妨设相邻分点 E、F 同色.考察 E、F 所在的小矩形的另两个项点 E 、P ,若 E 、P 异色,则 $\triangle EFE$ 或 $\triangle DFP$ 为三个项点同色的小直角三角形.若 E 、P 同色,再考察以此二点为项点而在其左边的小矩形,…. 这样依次考察过去,不妨设这一行小矩形的每条竖边的两个顶点都同色.

同样,BC 边上也存在两个相邻的顶点同色,设为 P、Q,

则考察 PQ 所在的小矩形,同理,若 P、Q 所在小矩形的另一横边两个顶点异色,则存在三顶点同色的小直角三角形。否则,PQ 所在列的小矩形的每条横边两个顶点都同色。

现考察 EF所在行与 PQ所在列相交的矩形 GERES 如上述,IS EF都与 IF同色, △IBEE 为 顶点同色的直角三角形。

由 n=1995,故人mac> △ABC,且相似比为 1995,且这两个直角三角形的顶点分别同色。

证明 2: 首先证明: 设 a 为任意正实教,存在距离为 2a 的同色两点. 任取一点 0 (设为红色点),以 0 为圆心,2a 为半径作圆,若圆上有一个红点,则存在距离为 2a 的两个红点,若圆上没有红点,则任一圆内接六边形 ABCDEF 的六个顶点均为蓝色,但此六边形边长为 2a. 故存在距离为 2a 的两个蓝色点.

下面证明:存在边长为 a。 $\sqrt{3}$ a。2a 的直角三角形,其三个顶点同色.如上证,存在距离为 2a 的同色两点 A、B(设为红点),以 AB 为直径作圆,并取圆内接入边形 ACDBEF,若 C、D、E、F 中有任一点为红色,则存在满足要求的红色三角形。若 C、D、E、F 为蓝色,则存在满足要求的蓝色三角形。

下面再证明本題:由上证知,存在边长为 a, $\sqrt{3}$ a,2a 及 1995a,1995 $\sqrt{3}$ a,1995×2a 的两个同色三角形,满足要求.

证明 3: 以任一点 0 为圆心,a 及 1995a 为半径作两个同心圆,在小圆上任取 9 点,必有 5 点同色,设为 &、B、C、D、E、作射线 0A、0B、0C、0D、0E,交大圆于 &',B',C',D',E',则此五点中必存在三点同色,设为 &'、B'、C'、则AABC 与AA'B'C'为满足要求的三角形。