Задача 5.22

Решение:

Дано:
Уравнение реакции
$$\Delta_f H^\circ(298 \text{ K})$$
: 0 0 -46,2
 $K_\rho = 1$ $S^\circ(298 \text{ K})$: 191,2 130,5 192,6
 $(\mathcal{L} \mathcal{H}/(MOJD) \cdot \mathcal{H})$

Вычислим изменение энтальпии реакции при Т=298 К, используя первое следствие из закона Гесса:

$$\Delta_r$$
H°(298 K) = 2 · Δ_f H°(298 K, NH_{3 (r)}) – [Δ_f H°(298 K, N_{2 (r)}) + 3 · Δ_f H°(298 K, H_{2 (r)})]
 Δ_r H°(298 K) = 2 · (-46,2) – [0 + 3 · 0] = -92,4 (κДж)

Вычислим изменение энтропии реакции при Т=298 К:

$$\Delta_r$$
S°(298 K) = 2 · S°(298 K, NH_{3 (r)}) – [S°(298 K, N_{2 (r)}) + 3 · S°(298 K, H_{2 (r)})]
 Δ_r S°(298 K) = 2 · 192,6 – [191,2 + 3 · 130,5] = -197,5 (Дж/К)

Изменение свободной энергии Гиббса реакции при температуре Т:

$$\Delta_r G^{\circ}(T \ K) = \Delta_r H^{\circ}(298 \ K) - T \cdot \Delta_r S^{\circ}(298 \ K)$$
 или
$$\Delta_r G^{\circ}(T \ K) = -2,3 \cdot R \cdot T \cdot Lg(K_p)$$

Т.к. по условию K_p = 1, значит $Lg(K_p)$ = 0, следовательно $\Delta_r G^{\circ}(T \ K)$ = 0 (Дж);

$$\Rightarrow \Delta_r H^{\circ}(298 \text{ K}) - T \cdot \Delta_r S^{\circ}(298 \text{ K}) = 0$$

$$T = \frac{\Delta_r H^{\circ}(298 \text{ K})}{\Delta_r S^{\circ}(298 \text{ K})}$$

Вычислим температуру при которой константа равновесия реакции равна 1:

$$T = \frac{-92400}{-197.5} = 467,85 \text{ (K)}$$

Выражение для константы равновесия (Кр) данной реакции:

$$K_p = \frac{P^2(NH_3)}{P(N_2) \cdot P^3(H_2)}$$

Ответ: $K_p = 1$ при T = 467,85 (K)