CSCI547 Machine Learning Homework 1

Zachary Falkner
Department of Computer Science
University of Montana

March 6, 2018

1 Linear Regression

1A

$$\begin{split} (X^TX + \gamma I_N)\vec{W} &= X^TY \\ \vec{w} &= [w_0, w_1, w_2, w_3] \\ X &= \begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ \dots & \dots & \dots \\ 1 & x_m & x_m^2 & x_m^3 \end{bmatrix} \\ \mathcal{J} &= \frac{1}{2} \left(\sum_{i=1}^m (y_i - w_0 - w_1 x_i - w_2 x_i^2 - w_3 x_i^3) \right)^2 \\ \frac{\partial \mathcal{J}}{\partial w_0} &= -\sum_{i=1}^m (y_i - w_0 - w_1 x_i - w_2 x_i^2 - w_3 x_i^3) \\ \frac{\partial \mathcal{J}}{\partial w_1} &= -\sum_{i=1}^m (x_i (y_i - w_0 - w_1 x_i - w_2 x_i^2 - w_3 x_i^3)) + 2\gamma w_1 \\ \frac{\partial \mathcal{J}}{\partial w_2} &= -\sum_{i=1}^m (x_i^2 (y_i - w_0 - w_1 x_i - w_2 x_i^2 - w_3 x_i^3)) + 2\gamma w_2 \\ \frac{\partial \mathcal{J}}{\partial w_3} &= -\sum_{i=1}^m (x_i^3 (y_i - w_0 - w_1 x_i - w_2 x_i^2 - w_3 x_i^3)) + 2\gamma w_3 \\ \frac{\partial \mathcal{J}}{\partial w_0} &= \sum_{i=1}^m (-y_i + w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3) \\ \frac{\partial \mathcal{J}}{\partial w_1} &= \sum_{i=1}^m (-y_i x_i + w_0 x_i - w_1 x_i^2 - w_2 x_i^3 - w_3 x_i^4) + 2\gamma w_1 \\ \frac{\partial \mathcal{J}}{\partial w_2} &= \sum_{i=1}^m (-y_i x_i^2 + w_0 x_i^2 + w_1 x_i^3 + w_2 x_i^4 + w_3 x_i^5) + 2\gamma w_2 \\ \frac{\partial \mathcal{J}}{\partial w_2} &= \sum_{i=1}^m (-y_i x_i^2 + w_0 x_i^2 + w_1 x_i^3 + w_2 x_i^4 + w_3 x_i^5) + 2\gamma w_2 \\ \end{pmatrix} \end{split}$$

$$\frac{\partial \mathcal{J}}{\partial w_3} = \sum_{i=1}^m (-y_i x_i^3 + w_0 x_i^3 + w_1 x_i^4 + w_2 x_i^5 + w_3 x_i^6) + 2\gamma w_3$$

$$\frac{\partial \mathcal{J}}{\partial w_0} = 0 = \sum_{i=1}^m (-y_i + w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3)$$

$$\frac{\partial \mathcal{J}}{\partial w_1} = 0 = \sum_{i=1}^m (-y_i x_i + w_0 x_i - w_1 x_i^2 - w_2 x_i^3 - w_3 x_i^4) + 2\gamma w_1$$

$$\frac{\partial \mathcal{J}}{\partial w_2} = 0 = \sum_{i=1}^m (-y_i x_i^2 + w_0 x_i^2 + w_1 x_i^3 + w_2 x_i^4 + w_3 x_i^5) + 2\gamma w_2$$

$$\frac{\partial \mathcal{J}}{\partial w_3} = 0 = \sum_{i=1}^m (-y_i x_i^3 + w_0 x_i^3 + w_1 x_i^4 + w_2 x_i^5 + w_3 x_i^6) + 2\gamma w_3$$

$$\sum_{i=1}^m y_i = \sum_{i=1}^m (+w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3)$$

$$\sum_{i=1}^m y_i = \frac{\sum_{i=1}^m (w_0 x_i - w_1 x_i^2 - w_2 x_i^3 - w_3 x_i^4) + 2\gamma w_1}{x_i}$$

$$\sum_{i=1}^m y_i = \frac{\sum_{i=1}^m (w_0 x_i^2 + w_1 x_i^3 + w_2 x_i^4 + w_3 x_i^5) + 2\gamma w_2}{x_i^2}$$

$$\sum_{i=1}^m y_i = \frac{\sum_{i=1}^m (w_0 x_i^3 + w_1 x_i^4 + w_2 x_i^5 + w_3 x_i^6) + 2\gamma w_3}{x_i^3}$$

1B

```
import pandas as pd
import numpy as np
\begin{array}{c} \textbf{import} & \textbf{matplotlib} & \textbf{as} & \textbf{mpl} \\ \end{array}
import matplotlib.pyplot as plt
         degree - an arbitrary degree of polynomial
        gamma - regularaztion strength (constant)
#
        dataset - a pandas dataframe
def fit_with_12(degree, gamma, dataset, test_set):
        #data and target from padas frame
        x = dataset[0].as_matrix().astype(float)
        y = dataset[1].as_matrix().astype(float)
        x_test = test_set[0].as_matrix().astype(float)
        y_test = test_set[1].as_matrix().astype(float)
        xhat = np.linspace(x.min(),x.max(), 200)
        Xhat = np.vander(xhat, N=degree + 1, increasing=True)
        x = 2*(dataset[0] - x.min())/(x.max()-x.min()) - 1 #this is x_tilde
        x_{test} = 2*(test_{set}[0] - x.min())/(x.max()-x.min()) - 1
         # Vandermond matrix (design matrix)
        X = np.vander(x,degree+1,increasing=True)
         # Identitity matrix for regularization
        Eye = np.eye(X.shape[1])
        #Eye hat, to not regularize bias
Eye[0, 0] = 0
         # Solve for weight's set (params) (training)
        w = np.linalg.solve(np.dot(X.T,X) + gamma*Eye,np.dot(X.T,y))
```

```
yhat = np.dot(Xhat,w) # 250x2, 16x1
        X_test = np.vander(x_test, N=degree+1, increasing=True)
        avg_rmse = np.sqrt(np.sum((np.dot(X,w) - y)**2)/len(y))
        avg_rmse_test = np.sqrt(np.sum((np.dot(X_test, w) - y_test)**2)/len(
             y_test))
        plt.plot(x,y,'ro')
        plt.plot(xhat,yhat,'k-')
        plt.plot(x_test, test_set[1], 'b*')
        plt.plot(x_test,y_test,'b^')
        plt.xlabel('Arbitrary Dataset Feature')
        plt.ylabel('Arbitrary Dataset Target')
        plt.show()
if __name__ == "__main__":
        dataset_file = "P1C_training.csv"
        testset_file = "P1C_test.csv"
        dataset = pd.read_csv(dataset_file, header=None)
testset = pd.read_csv(testset_file, header=None)
        fit_with_12(15, 1e-4, dataset, testset)
```

1C

1D

```
import pandas as pd
import numpy as np
```

```
import matplotlib as mpl
import matplotlib.pyplot as plt
def fit_with_12(degree, gamma, dataset, test_set):
        #data and target from padas frame
        x = dataset[0].as_matrix().astype(float)
        y = dataset[1].as_matrix().astype(float)
        x_test = test_set[0].as_matrix().astype(float)
        y_test = test_set[1].as_matrix().astype(float)
        xhat = np.linspace(x.min(),x.max(), 200)
        Xhat = np.vander(xhat, N=degree + 1, increasing=True)
        x = 2*(dataset[0] - x.min())/(x.max()-x.min()) - 1 #this is x_tilde
        x_{test} = 2*(test_{set}[0] - x.min())/(x.max()-x.min()) - 1
        # Vandermond matrix (design matrix)
        X = np.vander(x,degree+1,increasing=True)
        # Identitity matrix for regularization
        Eye = np.eye(X.shape[1])
        {\it \#Eye\ hat}\,,\ to\ not\ regularize\ bias
        Eye[0, 0] = 0
        # Solve for weight's set (params) (training)
        w = np.linalg.solve(np.dot(X.T,X) + gamma*Eye,np.dot(X.T,y))
        yhat = np.dot(Xhat,w) # 250x2, 16x1
        X_test = np.vander(x_test, N=degree+1, increasing=True)
        avg_rmse = np.sqrt(np.sum((np.dot(X,w) - y)**2)/len(y))
        avg_rmse_test = np.sqrt(np.sum((np.dot(X_test, w) - y_test)**2)/len(
            y_test))
        return avg_rmse, avg_rmse_test
if __name__ == "__main__":
        dataset_file = "P1C_training.csv"
        testset_file = "P1C_test.csv'
        dataset = pd.read_csv(dataset_file, header=None)
        testset = pd.read_csv(testset_file, header=None)
        degs = []
        rmses = []
        rmses_test = []
        for i in range(1, 16):
                avg_rmse, avg_rmse_test = fit_with_12(i, 0, dataset, testset
                degs.append(i)
                rmses.append(avg_rmse)
                rmses_test.append(avg_rmse_test)
        plt.plot(degs,rmses,'b-')
        plt.plot(degs, rmses_test, 'r-')
        plt.xlabel('Degree N')
        plt.ylabel('Average RMSE')
```


1E

```
{\color{red} {\tt import}} \ {\color{blue} {\tt pandas}} \ {\color{blue} {\tt as}} \ {\color{blue} {\tt pd}}
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
def fit_with_12(degree, gamma, dataset, test_set):
         \#data and target from padas frame
        x = dataset[0].as_matrix().astype(float)
        y = dataset[1].as_matrix().astype(float)
        x_test = test_set[0].as_matrix().astype(float)
         y_test = test_set[1].as_matrix().astype(float)
         xhat = np.linspace(x.min(),x.max(), 200)
        Xhat = np.vander(xhat, N=degree + 1, increasing=True)
        x = 2*(dataset[0] - x.min())/(x.max()-x.min()) - 1 #this is x_tilde
         x_{test} = 2*(test_{set}[0] - x.min())/(x.max()-x.min()) - 1
         # Vandermond matrix (design matrix)
        X = np.vander(x,degree+1,increasing=True)
         \# Identitity matrix for regularization
        Eye = np.eye(X.shape[1])
         #Eye hat, to not regularize bias
         Eye[0, 0] = 0
         # Solve for weight's set (params) (training)
```

```
w = np.linalg.solve(np.dot(X.T,X) + gamma*Eye,np.dot(X.T,y))
        \mathtt{yhat} \; = \; \mathtt{np.dot(Xhat,w)} \; \; \# \; \; 250\,x2\,, \quad 16\,x1
        X_test = np.vander(x_test, N=degree+1, increasing=True)
        avg_rmse = np.sqrt(np.sum((np.dot(X,w) - y)**2)/len(y))
        avg_rmse_test = np.sqrt(np.sum((np.dot(X_test, w) - y_test)**2)/len(
            y_test))
        return avg_rmse, avg_rmse_test
if __name__ == "__main__":
        dataset_file = "P1C_training.csv"
        testset_file = "P1C_test.csv"
        dataset = pd.read_csv(dataset_file, header=None)
        testset = pd.read_csv(testset_file, header=None)
        rmses = []
        rmses_test = []
        gammas = np.logspace(-10, 3, 150)
        for i in gammas:
                 avg_rmse, avg_rmse_test = fit_with_12(15, i, dataset,
                     testset)
                 rmses.append(avg_rmse)
                 rmses_test.append(avg_rmse_test)
        plt.semilogx(gammas,rmses,'b-')
        plt.semilogx(gammas, rmses_test, 'r-')
        plt.xlabel('Gamma')
        plt.ylabel('Average RMSE')
        plt.show()
```


1F

```
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn import linear_model
def fit_with_l1(degree, gamma, dataset, test_set):
        #data and target from padas frame
        x = dataset[0].as_matrix().astype(float)
        y = dataset[1].as_matrix().astype(float)
        x_test = test_set[0].as_matrix().astype(float)
        y_test = test_set[1].as_matrix().astype(float)
        xhat = np.linspace(x.min(),x.max(), 200)
        Xhat = np.vander(xhat, N=degree + 1, increasing=True)
        x = 2*(dataset[0] - x.min())/(x.max()-x.min()) - 1 #this is x_tilde
        x_{test} = 2*(test_{set}[0] - x.min())/(x.max()-x.min()) - 1
        # Vandermond matrix (design matrix)
        X = np.vander(x,degree+1,increasing=True)
        # Identitity matrix for regularization
        Eye = np.eye(X.shape[1])
        \#Eye\ hat, to not regularize bias
        Eye[0, 0] = 0
        # Solve for weight's set (params) (training)
        w = np.linalg.solve(np.dot(X.T,X) + gamma*Eye,np.dot(X.T,y))
        yhat = np.dot(Xhat,w) # 250x2, 16x1
        X_test = np.vander(x_test, N=degree+1, increasing=True)
        lasso = linear_model.Lasso(alpha=gamma, max_iter=10000000)
        lasso.fit(X, y)
        avg\_rmse = np.sqrt(np.sum((np.dot(X,w) - y)**2)/len(y))
        avg\_rmse\_test = np.sqrt(np.sum((np.dot(X\_test, w) - y\_test)**2)/len(
           y_test))
        return avg_rmse, avg_rmse_test
if __name__ == "__main__":
        dataset_file = "P1C_training.csv"
        testset_file = "P1C_test.csv"
        dataset = pd.read_csv(dataset_file, header=None)
        testset = pd.read_csv(testset_file, header=None)
        rmses = []
        rmses_test = []
        gammas = np.logspace(-10, 3, 40)
        for i in gammas:
```


The plots look nearly identical to me with the exception that 1E is smoother because i used less points in 1F (Lasso takes a long time to run with small alphas)

1G*

```
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

def fit_with_l2(degree, gamma, dataset, test_set):
    #data and target from padas frame
    x = dataset[0].as_matrix().astype(float)
    y = dataset[1].as_matrix().astype(float)
x_test = test_set[0].as_matrix().astype(float)
```

```
y_test = test_set[1].as_matrix().astype(float)
                   xhat = np.linspace(x.min(),x.max(), 200)
                   Xhat = np.vander(xhat, N=degree + 1, increasing=True)
                   x = 2*(dataset[0] - x.min())/(x.max()-x.min()) - 1 #this is x_tilde
                   x_{test} = 2*(test_{set}[0] - test_{set}[0].min())/(test_{set}[0].max() - test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0].min())/(test_{set}[0
                             test_set[0].min()) - 1
                    # Vandermond matrix (design matrix)
                   X = np.polynomial.legendre.legvander(x,degree)
                    # Identitity matrix for regularization
                   Eye = np.eye(X.shape[1])
                   #Eye hat, to not regularize bias
                   Eye[0, 0] = 0
                   # Solve for weight's set (params) (training)
                   w = np.linalg.solve(np.dot(X.T,X) + gamma*Eye,np.dot(X.T,y))
                   yhat = np.dot(Xhat,w) # 250x2, 16x1
                   X_test = np.polynomial.legendre.legvander(x_test, degree)
                   avg_rmse = np.sqrt(np.sum((np.dot(X,w) - y)**2)/len(y))
                   avg_rmse_test = np.sqrt(np.sum((np.dot(X_test, w) - y_test)**2)/len(
                            y_test))
                   return avg_rmse, avg_rmse_test
if __name__ == "__main__":
                   dataset_file = "P1C_training.csv"
                   testset_file = "P1C_test.csv"
                   dataset = pd.read_csv(dataset_file, header=None)
                   testset = pd.read_csv(testset_file, header=None)
                   degs = []
                   rmses = []
                   rmses_test = []
                   for i in range(1, 21):
                                       avg_rmse, avg_rmse_test = fit_with_12(i, 0, dataset, testset
                                       degs.append(i)
                                        rmses.append(avg_rmse)
                                       rmses_test.append(avg_rmse_test)
                   plt.plot(degs,rmses,'b-')
                   plt.plot(degs, rmses_test, 'r-')
                   plt.xlabel('Degree N')
                   plt.ylabel('Average RMSE')
                   plt.show()
```


Probability and Bayes Theorem

2A Bayesian Inference

$$\begin{split} &P(D) = 10^{-4} \\ &P(\neg D) = 1 - 10^{-4} \\ &P(T|D) = 0.99 \\ &P(T) = P(D)P(T|D) + P(\neg D)P(\neg T|D) \\ &P(D|T) = \frac{P(T|D)P(D)}{P(T)} \\ &P(D|T) = \frac{P(T|D)P(D)}{P(T)} \\ &P(D|T) = \frac{P(T|D)P(D)}{P(T)} \\ &P(D|T) = \frac{P(T|D)P(D)}{P(D)P(T|D) + P(\neg D)P(\neg T|D)} \\ &P(D|T) = \frac{0.99*10^{-4}}{10^{-4}*0.99+(1-10^{-4})*0.01} \\ &P(D|T) = 0.0098039 \\ &P(T_N|D) = 0.99999 \\ &P(D|T_N) = \frac{0.99999*10^{-4}}{10^{-4}*0.99999+(1-10^{-4})*0.00001} \\ &P(D|T) = 0.9090983 \end{split}$$

2B Bayesian Linear Regression

2C* Updating Bayesian Linear Regression

Naive Bayes

3A

We do not need to compute the denomenator in the classification rule for Naive Bayes because we are assuming the data is independent and identically distributed. That is, it is a normal distribution with no dependence between features.

3B

```
import pandas as pd
import numpy as np
import matplotlib as mpl
{\color{red} \textbf{import}} \ \ \textbf{matplotlib.pyplot} \ \ \textbf{as} \ \ \textbf{plt}
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
if __name__ == "__main__":
        digits = load_digits()
        data = np.round(digits['data']/16.0)
                     # n x m matrix of features
        y = digits.target # n vector of classes
        X,X_test,y,y_test = train_test_split(X,y,test_size=0.33,random_state
            =42) # Split into 33% test and 67% training sets
        classes = np.linspace(0,9,10)
        m = X.shape[0] # Number of data instances
        m_test = X_test.shape[0] # Number of test data instances
        N = 10
                         # Number of classes
        n = X.shape[1] # Number of features
        mu_array = np.zeros((n,N))
        sigma2_array = np.zeros((n,N))
        prior_array = np.zeros((N))
        #Learning phase
        for k in range(N):
                              #Loop over each class label
                 C_k = classes[k]
```

```
prior = sum(y==C_k)/float(y.shape[0])
                                       # Count the number of data
            where the label is C_k
        mu = np.sum(X[y==C_k],axis=0)/len(X[y==C_k])
                               # Take the mean of those features
            where the corresponding label is C_{-}k
        mu_array[:,k] = mu
                                                          # Store in
            the arrays we created above
        prior_array[k] = prior
\verb|class_probabilities = \verb|np.zeros((m,N))| # \textit{The probabilities for} \\
for i,x in enumerate(X): # Loop over the training data instances
        for k in range(N): # Loop over the classes
                prior = prior_array[k]
                mu = mu_array[:,k]
                \# \ likelihood = np.prod(np.exp(-(x-mu)**2/(2*sigma2))
                    ) #change me
                likelihood = np.prod(np.power(mu, x) * np.power((1-
                   mu), 1-x))
                posterior_k = prior*likelihood
                class_probabilities[i,k] = posterior_k
class_probabilities /= np.sum(class_probabilities,axis=1,keepdims=
    True)
y_pred_train = np.argmax(class_probabilities,axis=1)
cm_train = confusion_matrix(y,y_pred_train)
print(cm_train)
print("training accuracy:", 1 - sum(abs(y!=y_pred_train))/float(m))
# Test set predictions
class_probabilities = np.zeros((m_test,N))
for i,x in enumerate(X_test):
        for k in range(N):
                prior = prior_array[k]
                mu = mu_array[:,k]
                sigma2 = sigma2_array[:,k]
                likelihood = np.prod(np.power(mu, x) * np.power((1-
                    mu), 1-x))
                posterior_k = prior*likelihood
                class_probabilities[i,k] = posterior_k
class_probabilities /= class_probabilities.sum(axis=1,keepdims=True)
y_pred_test = np.argmax(class_probabilities,axis=1)
cm_test = confusion_matrix(y_test,y_pred_test)
print(cm_test)
print("test accuracy:", 1 - sum(abs(y_test-y_pred_test))/float(
    m_test))
```

training confusion matrix:

[119	0	0	0	1	2	0	0	0	1]
0	108	4	0	0	1	1	0	7	6
1	2	116	1	0	0	0	0	2	3
0	2	1	111	0	2	0	6	2	3
0	1	0	0	108	0	1	4	3	0
0	0	1	2	1	99	0	0	0	6
0	3	0	0	1	0	119	0	1	0
0	0	1	0	0	0	0	115	1	0
0	11	3	0	0	3	0	2	101	2
0	0	0	2	0	2	0	3	2	103

training accuracy: 0.913549459684

testing confusion matrix:

$\lceil 52 \rceil$	0	0	0	2	1	0	0	0	0
0	37	5	0	1	0	0	0	7	5
0	4	46	0	0	0	0	0	2	0
0	0	2	45	0	0	0	1	3	5
0	0	0	0	63	0	0	1	0	0
2	0	0	0	1	60	0	0	0	10
0	0	0	0	0	1	55	0	1	0
1	0	1	0	0	1	0	58	0	1
0	2	2	1	0	1	0	0	45	1
[0	0	0	4	0	1	0	4	2	57

test accuracy: 0.872053872054