

VLSI Testing 積體電路測試

Boolean Testing without Fault Model

Professor James Chien-Mo Li 李建模
Lab. of Dependable Systems
Graduate Institute of Electronics Engineering
National Taiwan University

(courtesy of Prof. McCluskey, Stanford Univ.)

Course Roadmap (Design Topics)

Why Am I Learning This?

- Functional Testing is important because
 - 1) Many circuits still reply on designers to generate test patterns
 - 2) Functional test applied at speed, important for delay defects
 - 3) Helps to debug design errors

When you see a worthy person, emulate him.
When you see an unworthy person, examine your inner self.
(Confucius)

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
- Conclusions

Many slides in this chapter are in memorial of Prof. McCluskey, CRC, Stanford University

Test Generation

Fault	Combinational	Sequential
Models	Circuits	Circuits
	(seq. ckt. w/ scan)	
No fault model	Toggle Functional Verification Exhaustive Pseudo exhaustive	Checking experiment
Single Stuck-at Fault Model	D PODEN FAN	Extended D 9-valued
Delay Fault Model	Path delay Transition delay	Launch on capture Launch on shift

Testing w/wO Fault Models (review 3.1)

Comparison	Functional testing test ckt functionality w/o fault model	Structural testing test ckt structure with fault model
Test pattern generation	⇔ manual	© automatic
Fault coverage	[⊗] low	[☉] high
Test speed	at-speed testing test at specified circuit speed helps to defect delay faults	Slow speed testing exercise ckt in different ways from functional mode
Test power	© low power	⇔ high power
Verification / silicon debug	© helps to debug	

Two Tests Complement Each Other

Brief History

- 1970~1990
 - Silicon expensive, DFT not widely used
 - ATPG not mature
 - Design simple
 - Functional verification tests without fault model popular
- 1990~2010
 - Silicon not so expensive, DFT became standard
 - ATPG was mature
 - Design very complex, manual test generation infeasible
 - Structural tests with fault model popular
- 2010~
 - Delay defects requires at-speed testing
 - Test power became serious problem
 - Functional verification test become popular again

Func. and Structural Tests Both Needed

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification Test
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
- Conclusions

McCluskey and his collection of hats

Toggle Coverage (DEF-1)

```
toggle\ coverage = \frac{\sum\limits_{all\ nodes\ i} \#\ of\ different\ values\ of\ node\ i}{2 \times total\ \#\ of\ nodes}
```


Toggle Coverage = 17/18 = 94%

Toggle Coverage (DEF-2)

```
toggle\ coverage = \frac{\sum\limits_{all\ nodes\ i}\#of\ different\ transitions\ of\ node\ i}{2\times total\ \#\ of\ nodes}
```


Toggle Coverage = 9/18 =50%

DEF-2 more stringent

Toggle Test: Pros and Cons

- Advantage: Toggle coverage is easy to obtain
 - Logic simulation only, NO fault simulation
 - Short test length
- Disadvantage: Toggle coverage is very optimistic
 - Fault activation only, NO fault propagation

Quiz

Q: Apply 3 patterns to this circuit of 7 nodes. What is toggle coverage? Use DEF-2 (transition). A: 100

Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification Test
 - Exhaustive Test
 - Pseudo Exhaustive Test (PET)
- Conclusions

McCluskey and his collection of hats

Design Verification

- Purpose
 - Establish a design correctly implement a behavior specification
- Created for design verification
 - May not good enough for detecting defects
- Example: Dual 4-to-1 MUX
 - XW=00 selects A1 A2, XW=01 selects B1 B2 etc

Low Fault Coverage Problem

- Design verification patterns
 - Test length =8
 - 100% toggle coverage
 - Only 68% SSF coverage

- ATPG test patterns
 - Same test length
 - 100% toggle coverage
 - 100% SSF coverage

W X	A_1	B₁	C ₁	D_1	A_2	B_2	C_2	D_2	F₁	F ₂
0 0	0	0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0
0 0	1	0	0	0	1	0	0	0	1	1
0 1	0	1	0	0	0	1	0	0	1	1
10	0	0	1	0	0	0	1	0	1	1
11	0	0	0	1	0	0	0	1	1	1

W X	A ₁	B ₁	C_1	D_1	A ₂	B_2	C_2	D_2	F ₁	F ₂
0 0	0	1	1	d	0	1	1	d	0	0
0 1	1	0	d	1	1	0	d	1	0	0
1 0	1	d	0	1	1	d	0	1	0	0
11	d	1	1	0	d	1	1	0	0	0
0 0	1	d	d	d	1	d	d	d	1	1
0 1	d	1	d	d	d	1	d	d	1	1
1 0	d	d	1	d	d	d	1	d	1	1
1 1	d	d	d	1	d	d	d	1	1	1

d = don't care

Long Test Length Problem

- Alternative design verification test set
 - 20 test patterns, 100% SSF coverage

W X	A ₁	B ₁	C ₁	D_1	A ₂	B ₂	C ₂	D_2	F ₁	F ₂
0 0	0	0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	0	0	0	0	0	0
1 0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0
0 0	1	0	0	0	1	0	0	0	1	1
0 1	1	0	0	0	1	0	0	0	0	0
1 0	1	0	0	0	1	0	0	0	0	0
11	1	0	0	0	1	0	0	0	0	0
0 0	0	1	0	0	0	1	0	0	0	0
0 1	0	1	0	0	0	1	0	0	1	1
1 0	0	1	0	0	0	1	0	0	0	0
11	0	1	0	0	0	1	0	0	0	0
0 0	0	0	1	0	0	0	1	0	0	0
0 1	0	0	1	0	0	0	1	0	0	0
1 0	0	0	1	0	0	0	1	0	1	1
11	0	0	1	0	0	0	1	0	0	0
0 0	0	0	0	1	0	0	0	1	0	0
0 1	0	0	0	1	0	0	0	1	0	0
1 0	0	0	0	1	0	0	0	1	0	0
11	0	0	0	1	0	0	0	1	1	1

Summary

- Functional test without fault models
 - at-speed testing
 - low power
 - helps to debug
 - (B) manually generated
 - Cow fault coverage
 - **8** Long test length
- Toggle test
 - Easy to evaluate
 - Two definitions: value, transition
- Design verification test
 - Long test length but low FC

