

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 92.3%

Graded Quiz

LATEST SUBMISSION GRADE

reward

92	92.3%				
1.	Which approach ensures continual exploration? (Select all that apply)	1/1 point			
	Exploring starts				
	Correct Correct! Exploring starts guarantee that all state-action pairs are visited an infinite number of times in the limit of an infinite number of episodes.				
	On-policy learning with a deterministic policy				
	$lacksquare$ On-policy learning with an ϵ -soft policy				
	\checkmark Correct Correct! ϵ -soft policies assign non-zero probabilities to all state-action pairs.				
	Off-Policy learning with an ϵ -soft behavior policy and a deterministic target policy				
	\checkmark Correct Correct! ϵ -soft policies have non-zero probabilities for all actions in all states. The behavior policy is used to generate samples and should be exploratory.				
	$lacksquare$ Off-Policy learning with an ϵ -soft target policy and a deterministic behavior policy				
2.	When can Monte Carlo methods, as defined in the course, be applied? (Select all that apply)	1/1 point			
	When the problem is continuing and there are sequences of states, actions, and rewards				
	When the problem is continuing and there is a model that produces samples of the next state and reward				
	When the problem is episodic and there are sequences of states, actions, and rewards				
	Correct! Well-defined returns are available in episodic tasks.				

When the problem is episodic and there is a model that produces samples of the next state and

Correct! Well-defined returns are available in episodic tasks.

3. Which of the following learning settings are examples of off-policy learning? (Select all that apply)

1 / 1 point

- Learning about multiple policies simultaneously while following a single behavior policy
 - ✓ Correct

Correct! Off-policy learning enables learning about multiple target policies simultaneously using a single behavior policy.

- Learning the optimal policy while continuing to explore
 - ✓ Correct

Correct! An off-policy method with an exploratory behavior policy can assure continual exploration.

Learning from data generated by a human expert

/ Correct

Correct! Applications of off-policy learning include learning from data generated by a non-learning agent or human expert. The policy that is being learned (the target policy) can be different from the human expert's policy (the behavior policy).

4. If a trajectory starts at time t and ends at time T, what is its relative probability under the target policy π and the behavior policy b?

1 / 1 point

- $\bigcirc \ \prod_{k=t}^{T-1} \frac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
- igcirc $\sum_{k=t}^{T-1} rac{\pi(A_k \mid S_k)}{b(A_k \mid S_k)}$
- $\bigcirc \ \frac{\pi(A_{T-1} \mid S_{T-1})}{b(A_{T-1} \mid S_{T-1})}$
- $\bigcirc \frac{\pi(A_t \mid S_t)}{b(A_t \mid S_t)}$

✓ Correct

Correct! This is the importance sampling ratio and is used to weight returns in off-policy Monte-Carlo Policy Evaluation.

5. When is it possible to determine a policy that is greedy with respect to the value functions v_{π}, q_{π} for the policy π ? (Select all that apply)

1 / 1 point

When state values v_π and a model are available

✓ Correct

Correct! With state values and a model, one can look ahead one step and see which action leads to the best combination of reward and next state.

	$lacksquare$ When state values v_π are available but no model is available.	
	$lacksquare$ When action values q_π and a model are available	
	Correct Correct! Action values are sufficient for choosing the best action in each state.	
	$igspace$ When action values q_π are available but no model is available.	
	 Correct Correct! Action values are sufficient for choosing the best action in each state. 	
6.	Monte Carlo methods in Reinforcement Learning work by Planning with a model of the environment Averaging sample rewards Performing sweeps through the state set	0 / 1 point
	Averaging sample returns ! Incorrect Incorrect, this is what bandit methods do. In Reinforcement Learning, value functions also depend on future rewards. Please review Lesson 1 (Video: What is Monte Carlo?)	
7.	Which of the following is a requirement for using Monte Carlo policy evaluation with a behavior policy b for a target policy π ? $ \bigcirc \ \text{For each state } s \text{ and action } a, \text{if } b(a \mid s) > 0 \text{ then } \pi(a \mid s) > 0 $	1/1 point
	$igotimes$ For each state s and action a , if $\pi(a\mid s)>0$ then $b(a\mid s)>0$	
	$igcirc$ All actions have non-zero probabilities under π	
	\checkmark Correct Correct! Every action taken under π must have a non-zero probability under b .	
8.	Suppose the state s has been visited three times, with corresponding returns 8 , 4 , and 3 . What is the current Monte Carlo estimate for the value of s ? 3 15 5 3.5	1/1 point
	✓ Correct Correct! The Monte Carlo estimate for the state value is the average of sample returns observed from that state.	

9.		does Monte Carlo prediction perform its first update? Ifter the first time step	1/1 point
		When every state is visited at least once	
	A	t the end of the first episode	
	~	Correct! Monte Carlo Prediction updates value estimates at the end of an episode.	
10.		nte Carlo prediction of state-values, memory requirements depend on (select all that apply) he number of states	1/1 point
	~	Correct! Monte Carlo Prediction needs to store the estimated value for each state.	
	П	he number of possible actions in each state	
	✓ T	he length of episodes	
	~	Correct Correct! Monte Carlo Prediction needs to store the sequence of states and rewards. during an episode	
11.	For M	onte Carlo Prediction of state-values, the number of updates at the end of an episode depends on	1 / 1 point
	O T	he number of states	
	O T	he number of possible actions in each state	
	T	the length of the episode	
	~	Correct Correct! Monte Carlo Prediction updates the estimated value of each state visited during the episode.	
12.	Which	n approach can find an optimal deterministic policy? (select all that apply)	1/1 point
	✓ E	xploring Starts	
	~	Correct Correct! Exploring starts ensure that every state-action pair is visited even if the policy is deterministic.	
	<u></u> ε	-greedy exploration	
	✓ C	Off-policy learning with an ϵ -soft behavior policy and a deterministic target policy	
	~	Correct Correct! In this case, the behavior policy can maintain exploration while the target policy is	

- 13. In an ϵ -greedy policy over ${\cal A}$ actions, what is the probability of the highest valued action if there are no other actions with the same value?
 - $\bigcirc 1 \epsilon$

 - $O_{\frac{\epsilon}{A}}$

Correct! The highest valued action still has a chance of being selected as an exploratory action.