En Mathematica, une liste d'objets est représentée par ces objets mis entre accolades et séparés par des virgules. Du point de vue mathématique, une liste de longueur n se comporte comme un n-uplet : deux listes sont égales si et seulement si elles ont la même longueur et les mêmes éléments dans le même ordre. Quelques remarques avant de commencer :

- Length[s] renvoie la longueur de la liste s.
- Join[s1,s2,...,sn] renvoie la concaténation des listes s1, s2, ..., sn. Par exemple, la concaténation des listes {1,2} et {3,4,5} est la liste {1,2,3,4,5}.
- s[[i]] renvoie le ième élément de la liste s.
- Mathematica sait ajouter, soustraire, multiplier, etc, des listes entre-elles, ou les multiplier par un nombre.

Dans ce TD, on représente un point du plan par la liste de ses coordonnées. Ainsi, la liste $\{2,5\}$ représente le point d'abscisse 2 et d'ordonnée 5.

- 1. Écrire une fonction affixe $[\{x_{-}, y_{-}\}]$ prenant en paramètre un point $\{x, y\}$ et renvoyant le nombre complexe x + iy.
- 2. Écrire la fonction réciproque de la précédente, $image[z_{-}]$, prenant en paramètre un nombre complexe z et renvoyant le point {Re z, Im z}.
 - On écrit maintenant des fonctions décrivant des transformations géométriques bien connues du plan.
- 3. Écrire une fonction similitude $[\omega_-, \lambda_-, \theta_-, m_-]$ prenant en paramètre un point ω , deux réels λ et θ et un point m, et renvoyant l'image du point m par la similitude directe de centre ω , de rapport λ et d'angle θ . Un passage par les nombres complexes sera bien entendu judicieux.
- 4. En déduire
 - (a) Une fonction homothetie $[\omega_-, \lambda_-, m_-]$ prenant en paramètre un point ω , un réel λ et un point m et renvoyant l'image du point m par l'homothétie de centre ω et de rapport λ .
 - (b) Une fonction rotation $[\omega_-, \theta_-, M_-]$ prenant en paramètres un point ω , un angle θ et un point m, et renvoyant l'image du point m par la rotation de centre ω et d'angle θ .

Étant donnés deux points a et b, on définit les points p_1 , p_2 et p_3 par :

- Le point p_1 se situe au tiers du segment [a, b].
- Le point p_3 se situe aux deux tiers du segment [a, b].
- Le point p_2 est l'image du point p_3 par la rotation d'angle $\frac{\pi}{3}$ et de centre p_1 .

On définit la transformée de Von Koch du segment [a,b] comme la liste de points $\{a,p_1,p_2,p_3,b\}$. On définit également la transformée de Von Koch d'une liste de points $\{a_1,a_2,\ldots,a_n\}$ comme étant la liste obtenue en concaténant les transformées de Von Koch de chacun des segments $[a_i,a_{i+1}]$ pour $i=1\ldots,n-1$.

- 5. Écrire la fonction $transfol[a_,b_]$ calculant la transformée de Von Koch d'un segment [a,b]. Tester cette fonction avec $a=\{0,1\}$ et $b=\{1,0\}$. Tracer le résultat : si s est une liste de points, l'expression ListPlot[s, Joined->True, AspectRatio->1] trace les points à l'écran dans un repère orthonormé et relie les points successifs.
- 6. Écrire la fonction transfo2[s_] calculant la transformée de Von Koch d'une liste s de points.
- 7. On part de la liste de points $s_0 = \{b, a, c, b\}$ où a, b et c sont les points du plan d'affixes respectives 1, j et j^2 . On définit ensuite par récurrence sur n la liste s_n : pour tout entier naturel n, s_{n+1} est la transformée de Von Koch de la liste s_n .
- 8. Cette question se traite avec un papier et un crayon. Combien la liste s_n contient-elle de points? Que vaut la somme des longueurs des segments dont les extrémités sont les points successifs de la liste s_n ? Que se passe-t-il lorsque n tend vers l'infini?
- 9. Écrire une fonction vonkoch[n] réalisant automatiquement cette itération, puis tracer s_n pour les premières valeurs de n. Les résultats précédents devraient vous inciter à une certaine prudence quant aux entiers n à tester.
- 10. Que se passe-t-il si l'on démarre de la liste $s_0 = \{b, c, a, b\}$?