Deep Q-Learning

Presentation by Rahul Vishwakarma

Content

- Reinforcement Learning
- Q-Learning
- Epsilon greedy policy
- Bellman's Equation
- Deep Q-Learning
- CartPole Game

Reinforcement Learning

Training an agent to interact with an environment in order to maximize the cumulative reward over time.

Q-Learning

The Q-learning algorithm uses a Q-table of State-Action Values.

This Q-table has a row for each state and a column for each action.

Each cell contains the estimated Q-value for the corresponding state-action pair.

	Left	Right	Up	Down
(1,1)	0	0	0	0
(1,2)	0	0	0	0
(1,3)	0	0	0	0
(2,1)	0	0	0	0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(3,1)	0	0	0	0
(3,2)	0	0	0	0
(3,3)	0	0	0	0

Epsilon Greedy Policy

Bellman's Equation

Current action picked using an ε-greedy policy.

	a1	a2	а3	a4
S1	4	9	2	3
S2	0	3	4	7

	a1	a2	а3	a4	
S1	4	9	2	3	
S2	0	3	4	7	

Current state

a2 Q2=3

a3

Q3=4

Q Learning

Deep Q Learning

Q Table vs Neural Network (DQN)

Scalability: Q-tables become impractical as the number of states and actions in the environment grows, making it infeasible to store and update all Q-values explicitly.

Continuous action spaces: In environments with continuous action spaces, it's challenging to create a Q-table that covers all possible actions finely.

Memory requirements: Neural networks typically require less memory than Q-tables when dealing with large state spaces because they store function approximations rather than explicit values for every state-action pair.

Function approximation: Q-tables can only represent linear relationships and are limited in their modeling capacity.

CartPole Game in Jupyter Notebook

References

- Towards Data Science: Reinforcement Learning Explained Visually (Part 4): Q
 Learning, step-by-step
- Analytics Vidhya: A Hands-On Introduction to Deep Q-Learning using OpenAl Gym in Python
- OpenAl Gymnasium Documentation:
 https://gymnasium.farama.org/environments/classic_control/cart_pole/

Thank You