Asignatura: Ecuaciones Diferenciales Ordinarias. Plantilla para el informe final. Curso 2023, eds.

ANÁLISIS DE STABILITY AND NUMERICAL SIMULATION OF PREY-PREDATOR SYSTEM WITH HOLLING TYPE-II FUNCTIONAL RESPONSES FOR ADULT PREY

Abel LLerena Domínguez

Amanda Cordero Lezcano

Grupo C212
Ciencia de la Computación
Facultad de Matemática y Computación
Universidad de La Habana. Cuba

Grupo C212
Ciencia de la Computación
Facultad de Matemática y Computación
Universidad de La Habana. Cuba

Christopher Guerra Herrero

Marlon Díaz Pérez

Grupo C212
Ciencia de la Computación
Facultad de Matemática y Computación
Universidad de La Habana. Cuba

Grupo C212
Ciencia de la Computación
Facultad de Matemática y Computación
Universidad de La Habana. Cuba

Pedro Pablo Álvarez Portelles

Grupo C212
Ciencia de la Computación
Facultad de Matemática y Computación
Universidad de La Habana, Cuba

TAREAS A REALIZAR

En el Informe debe Presentar:

- Informe de la Tarea Investigativa II. Título del artículo analizado
- Autores del trabajo.
- Resumen del trabajo.
- Intoducción del trabajo debe de mensional, los autores del artículo analizado, la revista donde se publicó. Año. Factor de impacto de la revista. Valoración del artículo: Explicación sobre lo que trata el artículo, problemática que se propone resolver, técnicas utilizadas.
- Otro epígrafe para presentar las ecuaciones que ilustran el modelo matemático utilizado. Condiciones iniciales o de frontera. Resultados a los que arriban. Ejemplos numéricos: Reproducción de los algunos de los ejemplos o experimentos numéricos que se expliquen en el artículo, utilizando para ello (RK4/Euler explícito o implícito) estudiado en clases y comparar resultados. Buscar puntos de equilibrio en caso de existir y analizar la estabilidad de dichos puntos. Pueden usarse para ello recursos computacionales. Presentar el diagrama de fases entre un par variables incógnitas, valorando su comportamiento.
- Conclusiones: Una valoración de lo que usted ha aprendido con este trabajo, como valora la posibilidad de que se pueda continuar esta línea de investigación.

- Bibliografía Consultada.
- Anexos: Incluir seudo códigos de sus programas.
- Valoraremos las iniciativas que presenten, como pueden ser, interfaces gráficas, bases de datos, elementos vinculen con otras asignaturas de la especialidad.

ESTRUCTURA DE LA PLATILLA

RESUMEN

Aquí va el resumen del trabajo en esta plantilla LATEX

1 INTRODUCCIÓN

Aquí va la introduccón del trabajo en esta plantilla LATEX

1.1 Estructura del trabajo

2 RESULTADOS FUNDAMENTALES.

Muestre sólo las ecuaciones más importantes y numere únicamente las ecuaciones mostradas a las que se hace referencia explícita en el texto.

$$\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}.$$

$$c^{2} = a^{2} + b^{2}$$

$$ax^2 + bx + c = 0, \text{ donde } a \neq 0.$$
 (1)

En el texto, cada referencia a un número de ecuación debe ir también entre paréntesis. Por ejemplo, la solución de (??) está dada por (??) en los Axenos ??.

$$ax^2 + bx + c = 0 (2)$$

2.0.1 Métodos y algoritmos utilizados

Esta subsección se describen los códigos de programas utilizados en el trabajo mediante las siguiente instrucciones.

$$y_{n+1}=y_n+hf(x_n,y_n)$$

- Utilice viñetas estándar en lugar de tildes, flechas, etc.
- 1. En las listas numeradas, las etiquetas no deben ser números arábigos encerrados entre paréntesis, (?)

Table 1: Uso de tabla

-	IQ	Dieta
-	70	Cualquier cosa
-	60	-

.

Definición 1

Teorema 1

Corolario 2

•

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2000. *Discrete-Event System Simulation*. 3rd ed. Upper Saddle River, New Jersey: Prentice-Hall, Inc.

REFERENCES

Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2000. *Discrete-Event System Simulation*. 3rd ed. Upper Saddle River, New Jersey: Prentice-Hall, Inc.

AGRADCIEMIENTOS

A ANEXOS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ si } a \neq 0.$$
 (3)