

Big Data Analytics

04: In-Memory Analytics with Pandas. Data Cleaning and Preparation

Instructor: Oleh Tymchuk

#04: Agenda

- Introduction to Data Cleaning
- Handling Missing Data
- Detecting and Removing Duplicates
- Fixing Data Types and Formatting
- Practical cases
- Useful Links

Introduction to Data Cleaning

Why Data Cleaning is Important?

- Real-world data is often messy: missing values, duplicates, inconsistencies
- Data Cleaning is a process of detecting and correcting (or removing) errors, inconsistencies, and inaccuracies in datasets
- Clean data ensures data quality and reliability for accurate analysis
- Saves time and resources by preventing errors in downstream tasks
- A crucial step in any data-driven workflow

Common Data Issues

- Missing or null values
- Duplicates and inconsistencies
- Incorrect data types
- Outliers and incorrect formatting

Handling Missing Data

Identifying Missing Data

- Missing data refers to the absence of values in a dataset
- Represented as NaN (Not a Number) or None in Pandas
- Why Identify Missing Data?
 - Missing data can lead to incorrect analysis or modeling results.
 - Helps decide the appropriate strategy for handling it.
- How to Identify Missing Data

check for missing values:

```
df.isnull()
```

count missing values per column:

```
df.isnull().sum()
```

Strategies for Handling Missing Data

Remove Missing Data

Use when missing data is minimal and doesn't affect analysis

Strategies for Handling Missing Data

Fill Missing Data

Fill with a constant value

```
df.fillna(0) # Fill with 0
```

Fill with statistical measures

```
df.fillna(df.mean()) # Fill with column mean
df.fillna(df.median()) # Fill with column median
```

Forward or backward fill

```
df.fillna(method='ffill') # Forward fill
df.fillna(method='bfill') # Backward fill
```

Strategies for Handling Missing Data

Estimate missing values using interpolation

```
df.interpolate()
```

Use machine learning models to predict missing values

Example: K-Nearest Neighbors (KNN) imputation

Best Practices

- Understand the reason for missing data (e.g., random or systematic)
- Choose a strategy based on the context and impact on analysis

Example. Mean

```
data = pd.Series([30, np.nan, 10, 40, np.nan, 20, np.nan])
filled_mean = data.fillna(data.mean())
```

- How it works?
 - · The mean is calculated as:

$$\frac{30+10+40+20}{4}=25$$

- · Every NaN is replaced with 25.
- Result:*
 - 0 30.0 1 25.0
 - 2 10.0
 - 2 10.6
 - 3 40.0
 - 1 25.0
 - 5 20.0
 - 25.0

dtype: float64

When to use it?*

- If data is evenly distributed without extreme values (outliers).
- Example: Filling missing test scores when calculating class averages.

Example. Median

```
data = pd.Series([30, np.nan, 10, 40, np.nan, 20, np.nan])
```

```
filled median = data.fillna(data.median())
```

- How it works?
 - The median is the middle value of the sorted list: [10, 20, 30, 40].
 - . Since we have an even number of values, the median is:

$$\frac{20+30}{2} = 25$$

· Every NaN is replaced with 25.

Result:

- When to use it? 30.0
 - If data has outliers (e.g., extreme high or low values).
 - Example: Filling missing student salaries in a dataset (since some may have very high salaries, affecting the mean).

dtype: float64

25.0 10.0

40.0 25.0 20.0 25.0

Example. Interpolate

```
data = pd.Series([30, np.nan, 10, 40, np.nan, 20, np.nan])
filled_interpolate = data.interpolate()
```

How it works?

- · Missing values are estimated based on nearby values.
- · Calculation:
 - 1. Between 30 and 10:
 - 2. Between 10 and 40:
 - 3. Between 40 and 20:

$$\frac{30+10}{2} = 20.0$$

$$10 + \frac{40 - 10}{2} = 25.0$$

$$40 + \frac{20 - 40}{2} = 30.0$$

When to use it?

- If data represents a continuous process, such as time series data.
- Example: Filling missing temperature readings from a weather station.

Result:

- 0 30.0
- 1 20.0
- 2 10.0
- 3 40.0
- 4 25.0
- 5 20.0
- 6 30.0
- dtype: float64

Comparison Table

Method	When to Use?	Example
mean() (average)	Data is evenly distributed, no outliers	Student test scores
median()	There are outliers, need a "central" value	Student salaries
interpolate()	Data changes smoothly over time	Temperature sensor data

Comparison Table

Method	How it works?	When to use?
fillna(value)	Replaces NaN with a fixed value	When NaN means missing data (e.g., warehouse stock)
<pre>fillna(method='ffill')</pre>	Copies the previous value	Time series, such as temperature or sales data
fillna(method='bfill')	Copies the next value	When future values are more reliable (e.g., expected payments)
fillna(limit=n, method=)	Limits the number of copied values	When long gaps shouldn't be blindly filled
dropna()	Removes rows with NaN	When missing data is minimal and can be ignored

Detecting and Removing Duplicates

Identifying and Removing Duplicates

What are Duplicates?

- Duplicates are repeated rows in a dataset.
- They can occur due to data entry errors, merging datasets, or other reasons.

Why Remove Duplicates?

- Duplicates can skew analysis and lead to incorrect results.
- They waste storage and computational resources.

```
Detecting duplicates: df.duplicated()
```

Removing duplicates: df.drop duplicates()

Fixing Data Types and Formatting

Handling Incorrect Data Types

What are Incorrect Data Types?

Data stored in a format that doesn't match its intended type (e.g., numbers stored as strings, dates stored as text)

Why Fix Data Types?

- Ensures proper analysis and computation (e.g., arithmetic operations on numeric data)
- Enables use of specialized functions (e.g., date operations)

Common Data Type Issues

- Numeric data stored as strings (e.g., "123" instead of 123)
- Dates stored as strings (e.g., "2023-10-01" instead of datetime)
- Categorical data stored as strings or numbers

How to Fix Data Types

- Converting data types: .astype()
- Parsing dates: pd.to_datetime()
- Handling categorical data: .astype('category')

Fixing Inconsistent Data

What is Inconsistent Data?

Data that doesn't follow a standard format or convention (e.g., mixed cases, extra spaces, inconsistent units)

Why Fix Inconsistent Data?

- Ensures uniformity for accurate analysis and reporting
- Improves readability and usability of the dataset

Common Inconsistencies

- Text: Mixed cases ("New York" vs. "new york"), extra spaces
- Units: Inconsistent measurements (e.g., "kg" vs. "lbs")
- Categories: Different spellings or representations (e.g., "USA" vs. "U.S.A.")

How to Fix Inconsistent Data

- Standardizing text format (lowercase, trimming spaces)
- Correcting categorical inconsistencies (e.g., "USA" vs. "United States")
- Replacing incorrect values: .replace()

Data Cleaning Best Practices

- Always check the dataset before analysis
- Keep track of changes for reproducibility
- Validate results after cleaning

Practical cases

Useful Links

Pandas Cheat Sheet

Working with missing data

Outlier Detection Techniques in Python