Lecture 7-8 WIRELESS NETWORKS

Reference

"INTRODUCTION TO WIRELESS AND MOBILE SYSTEMS", DHARMA ARAWAL"

IT412 - Mobile Computing - Introduction © Assoc Prof.Nahe AHkel 2018 2019 7

Contents

- 1- Mobility
- 2-Direct & Indirect routing
- 3-Handling mobility in cellular networks (Handoff)
- 4-Location Management

What is mobility?

spectrum of mobility, from the network perspective:

mobile

Mobility: approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
 - routing tables indicate where each mobile located
 - no changes to end-systems
- Let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - address of mobile, sends directly to mobile

Mobility: approaches

- Let routing handle it is advertise permanent address of mobil not sidence via usual routing table exchange.
 scalable to millions of
 - routing table mobile located mobile
 - no changes to end-systems
- let end-systems handle it:
 - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
 - address of mobile, sends directly to mobile

Mobility: registration

End result:

- Foreign agent knows about mobile
- Home agent knows location of mobile

Mobility via Indirect Routing

Indirect Routing: comments

- Mobile uses two addresses:
 - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
 - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-network-mobile
 - inefficient when correspondent, mobile are in same network

Indirect Routing: moving between networks

- suppose mobile user moves to another network
 - registers with new foreign agent
 - new foreign agent registers with home agent
 - home agent update care-of-address for mobile
 - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

Mobility via Direct Routing

Mobility via Direct Routing

Mobility via Direct Routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
 - what if mobile changes visited network?

Accommodating mobility with direct routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

Components of cellular network architecture

6: Wireless and Mobile Networks

6-11

Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon)
 - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
 - visitor location register (VLR): database with entry for each user currently in network
 - could be home network

6: Wireless and Moote Networks

Ø-17

GSM: indirect routing to mobile

GSM: handoff with common MSC

- Handoff goal: route call via new base station (without interruption)
- reasons for handoff.
 - stronger signal to/from new BSS (continuing connectivity, less battery drain)
 - load balance: free up channel in current BSS
 - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

GSM: handoff with common MSC

- 1. old BSS informs MSC of impending handoff, provides list of 1+ new BSSs
- MSC sets up path (allocates resources) to new BSS
- new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- mobile, new BSS signal to activate new channel
- mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

6: Wireless and Mobile Networks

6-20

GSM: handoff between MSCs

- anchor MSC: first MSC visited during cal
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

(a) before handoff

6: Wireless and Nobile Networks

6-21

GSM: handoff between MSCs

- anchor MSC: first MSC visited during cal
 - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- □ IS-41 allows optional path minimization step to shorten multi-MSC chain

(b) after handoff

6: Wireless and Mobile Networks

6-22

Mobility: GSM versus Mobile IP

GSM element	Comment on GSM element	Mobile IP element
Home system	Network to which mobile user's permanent phone number belongs	Home network
Gateway Mobile Switching Center, or "home MSC". Home Location Register (HLR)	Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information.	
Visited System	Network other than home system where mobile user is currently residing	Visited network
Visited Mobile services Switching Center. Visitor Location Record (VLR)	Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user	Foreign agent
Mobile Station Roaming Number (MSRN), or "roaming number"	Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.	Care-of- address

- How does the network track a user's current cell to deliver a call?
- Two main operations:
 - Location update (MS sends location to BS)
 - Paging (cellular network sends location request to BSs)
- Number of cells to be paged depends on how location update is performed

24 IT412 - Mobile Computing - Cellular Networks © M. Abu-Ekheli

Location Management

- Location update is global or local
 - Global: all subscribers update their location
 - Local: subscriber chooses when and where to update location
- · Location update is static or dynamic
 - Static: predetermined set of cells at which location updates must be performed
 - Dynamic: location update is generated by MS based on its mobility

- Mobility Models are models for the movement of mobile users, and how their location, velocity and acceleration change over time
- Examples
 - Random Walk
 - Random Waypoint
 - City Section
 - Cell Residence Time-based
 - Markov Walk
 - Activity-based

IT412 - Mobile Computing - Cellular Networks @ M. Abu-Ekhelr

Mobility Models

Random Walk → at each time slot, subscriber decides to either stay at cell or move to adjacent cell. MS moves from current location to new location by randomly choosing a direction & speed of travel from pre-defined ranges, [speedmin; speedmax] and [0;2π]. Movement is in either a constant time interval t or a constant distance traveled d

Mobility Models

Random Walk → at each time slot, subscriber decides to either stay at cell or move to adjacent cell. MS moves from current location to new location by randomly choosing a direction & speed of travel from pre-defined ranges, [speedmin; speedmax] and [0;2π]. Movement is in either a constant time interval t or a constant distance traveled d

IT 412 - Mobile Computing - Cellular Neworks @ M. AburEkhell

Mobility Models

 Random Waypoint → node selects a random destination & a random speed. Node moves to destination and pauses for a fixed period before another random location & speed are chosen

Mobility Models

 City section → nodes are located in intersections. Based on speed & block length, time to move in a path can be computed. MS chooses destination intersection. Path with least amount of travel time is found, and node moves along it

IT412 - Mobile Computing - Cellular Neworks @ M. Abu-Ekheli

Mobility Models

 Gauss-Markov Walk → at fixed intervals of time, movement is determined by updating current speed & direction of MS. Values of speed & direction at movement n are calculated based on values of speed & direction at the n - 1 movement

Mobility Models

- Cell Residence Time-based → follow random or Gamma distribution to determine cell residence time
- Activity-based → determine route based on next activity to be performed by user

31 IT412 - Mobile Computing - Celuar Neworks @ M. Abu-Ekneir

Location Management

General Schemes

- 1. Never Update Scheme
- 2. Always Update Scheme
- 3. Location Area Scheme
- 4. Reporting Cells
- 5. Time-based
- 6. Movement -based

 17412 Mootile Computing Cellular Neworks © M. Abu/Elkneir

 How does the network track a user's current cell to deliver a call?

1. Never Update Scheme

- MS never tells its home MSC where it is
- When network needs to forward new call to MS, it pages all service area
- Very expensive for network in terms of bandwidth use

34 IT412 - Mobile Computing - Cellular Neworks © M. Abu-Ekhelir

Location Management

 How does the network track a user's current cell to deliver a call?

2. Always Update Scheme

- Whenever MS detects that it entered a new cell, it sends a location update to MSC
- Network always knows where the MS is
- Expensive to MS

 How does the network track a user's current cell to deliver a call?

3. Location Area Scheme

- Tradeoff between network paging and MS updates
- Divide service area into location areas (LAs)
- Each LA consists of a number of adjacent cells
- Each LA has a unique ID
- Each BS broadcasts the ID of the LA to which it belongs
- When an MS enters a new LA, it updates its location with MSC (usually the manager of the LA)
- When the network needs to find an MS, it pages its current LA

36 IT412 · Mobile Computing - Celular Neworks @ M. Abu-Ekheir

Location Management

How does the network track a user's current cell to deliver a call?

4. Reporting Cells

- Select subset of cells as reporting cells
- Cell broadcasts a signal to indicate if it is reporting or not
- Reporting cell i vicinity is all non-reporting cells reachable from cell i without crossing another reporting cell
- MS updates location when it moves to a new reporting cell
- Cellular network pages MS in reporting cell and its vicinity
- Cost of paging increases with size of vicinity
 38 (7412 Mobile Computing Cellular Networks & M. Advullance)

Location Management

 How does the network track a user's current cell to deliver a call?

5. Time-based

- Given a time threshold T, a MS updates its location every T units of time
- When cellular system has incoming call for MS, it pages cell i where last update was made
- If MS is not found at cell i, cells i + j and i j are paged, where j starts at 1, until MS is found
- T can be determined on a per-user basis

 How does the network track a user's current cell to deliver a call?

6. Movement-based

- MS keeps counter that is increased by 1 when MS crosses the boundary to a new cell
- Boundary crossing can be detected by comparing BS IDs
- When counter reaches a predetermined threshold
 M, MS updates its location and resets counter to
 zero
- MS is guaranteed to be within distance M from its last reported cell (residing area)

40 IT412 - Mobile Computing - Cellular Neworks © M. Abu-Ekheir

Thanks- Questions!