Métodos Numéricos - Trabajo Práctico 1

Sistemas de Ecuaciones Lineales

Sports Analytics

Utilización de técnicas estadísticas, inteligencia artificial y optimización en el deporte

Confección de rankings y tablas de posiciones

ATP VORLD TOUR	SCORES	STATS RAI	NKINGS PLAYERS		
Emirates ATI	P.RANKING	S Ranking	s Home Singles	S	
RANKING ^	MOVE ^	COUNTRY ^	PLAYER ^		
1	-	iğ.	Novak Djokovic		
2	-		Andy Murray		
3	-	•	Roger Federer		
4	-	+	Stan Wawrinka		
5	-		Rafael Nadal		
6	-	•	Kei Nishikori		

EASTERN CON	FEREN	CE			
Eastern	W	L	PCT	GB	CONF
Cleveland 1	48	19	0.716	0.0	27-12
Toronto ²	45	21	0.682	2.5	30-11
Miami 3	39	28	0.582	9.0	24-18
Atlanta 4	39	29	0.574	9.5	23-18
Boston ⁵	39	29	0.574	9.5	26-18
Charlotte 6	38	29	0.567	10.0	24-15
Indiana 7	36	31	0.537	12.0	23-17
Detroit ⁸	34	34	0.500	14.5	21-20
Chicago	33	33	0.500	14.5	20-21
Washington	32	35	0.478	16.0	23-20
Orlando	29	38	0.433	19.0	16-22
Milwaukee	29	39	0.426	19.5	19-22
New York	28	41	0.406	21.0	17-25
Brooklyn	19	48	0.284	29.0	10-28
Philadelphia ⁰	9	58	0.134	39.0	3-39
WESTERN CON	FEREN	CE			
Western	W	L	PCT	GB	CONF
Golden State ¹ P	61	6	0.910	0.0	36-4
San Antonio ^{2sw}	57	10	0.851	4.0	35-5
Oklahoma City 3	46	22	0.676	15.5	31-11
L.A. Clippers 4	43	24	0.642	18.0	23-16
Memphis ⁵	39	29	0.574	22.5	23-19
Portland ⁶	35	33	0.515	26.5	23-18
Houston ⁷	34	34	0.500	27.5	23-20
Dallas 8	34	34	0.500	27.5	21-19

Confección de rankings y tablas de posiciones

¿Por qué es importante el ranking?

- Determina quién es el *mejor* del torneo
- Clasifica a copas etapas posteriores (playoffs) y/o competencias internacionales (Libertadores, Masters, etc).
 Drafts
- Mucha mucha plata en juego
- Rankear cosas es un problema mucho más abarcativo y con ideas extrapolables (e.g. rankeo de páginas web, rankeo de publicidades)

Preguntas

- ¿Qué métodos/reglas/procedimientos conocen para encarar el problema?
- ¿Cómo son las competencias/torneos?

Confección de rankings y tablas de posiciones

Algunos ejemplos

 En algunas ligas, no todos los equipos se enfrentan todos contra todos (NFL, MLB, NCAA)

To Get to a 9-7 Tiebreaker with Green Bay for Wild Card Spot #2, the Bucs need these results:

- · Dallas over Detroit on Monday Night, Week 16
- Tampa Bay over Carolina, Week 17
- New York Giants over Washington, Week 17
- Detroit over Green Bay, Week 17

To Win the Resulting 9-7 Tiebreaker with Green Bay, the Bucs need these results:

- . Kansas City over Denver, Sunday Night, Week 16
- San Francisco over Seattle, Week 17
- · Indianapolis over Jacksonville, Week 17
- Dallas over Philadelphia, Week 17
- Tennessee over Houston, Week 17
- Aún cuando se enfrentan todos contra todos, no lo hacen la misma cantidad de veces (ej: NBA, 30 equipos, 82 partidos en temporada regular)
- Caso raro: Torneo de Primera División AFA

Pregunta

¿Cómo podemos manejar estos casos?

Descripción general

Algunos objetivos

- Un método simple, que capture la complejidad del problema
- Sólo utilice victorias y derrotas, dejando de lado los marcardores
- Reproducible
- Incorpore la dificultad del schedule de cada equipo
- Asume que el empate no es un resultado posible (solo victorias/derrotas)

Idea general

Dados los resultados obtenidos por un equipo, obtener la probabilidad de que el equipo gane el próximo partido

Primer paso: estimador para victoria en el próximo partido

Laplace rule of succession

Consideremos k ensayos con dos resultados posibles: éxito (victoria) y fracaso (derrota). Sea s el número de éxitos obtenidos, en algunas circunstancias, (s+1)/(k+2) es un mejor estimador que s/k de que el próximo ensayo sea exitoso

Ejemplo

Supongamos que todos los ensayos fueron exitosos. Entonces, s/k = k/k = 1, y no deja lugar a que el ensayo sea fallido. Para valores grandes de k, ambos estimadores se comportan de forma similar

Segundo paso: notación

- $\Gamma = \{1, 2, \dots, T\}$ el conjunto de equipos
- ▶ Dado i ∈ Γ, llamamos:
 - $ightharpoonup n_i$ al total de partidos jugados
 - \triangleright w_i la cantidad de partidos ganados
 - I_i la cantidad de partidos perdidos
- Dados i, j ∈ Γ, llamamos n_{ij} a la cantidad de partidos jugados entre i y j. Notar que n_{ij} = n_{ji}

El estimador para la probabilidad de que el equipo *i* gane el próximo partido es

$$r_i = \frac{1+w_i}{2+n_i} = \frac{1+w_i}{2+w_i+l_i}$$

Tercer paso: incorporando el schedule

Sabemos que:

- $ightharpoonup n_i = w_i + l_i$
- Si no tenemos información sobre los equipos, podemos pensar que r_i = 1/2 para i ∈ Γ
- Notar que n_i puede incluir más de un partido contra un mismo equipo. Llamamos r_i^j al rating del j-ésimo oponente de i

Reescribimos

$$w_i = (w_i - l_i)/2 + n_i/2$$

 $= (w_i - l_i)/2 + \sum_{j=1}^{n_i} 1/2$
 $\approx (w_i - l_i)/2 + \sum_{i=1}^{n_i} r_i^i$

Último paso: armamos el sistema

El rating de un equipo depende de los ratings contra los que jugó:

$$r_i = \frac{1 + w_i}{2 + n_i}$$
 y $w_i = \frac{w_i - l_i}{2} + \sum_{i=1}^{n_i} r_i^i$

Despejando, tenemos que

$$(2+n_i)r_i - \sum_{i=1}^{n_i} r_i^i = 1 + \frac{w_i - l_i}{2} \quad \text{para } i \in \Gamma$$

Esto nos lleva a un sistema Cr = b, con $C \in \mathbb{R}^{T \times T}$, $b \in \mathbb{R}^{T}$, con

$$C_{ij} = \left\{ egin{array}{ll} -n_{ij} & ext{si } i
eq j, \ 2+n_i & ext{si } i = j. \end{array}
ight.$$

$$y b_i = 1 + (w_i - l_i)/2, i \in \Gamma$$

Algunos comentarios generales

- C es lo que se conoce como *Matriz de Colley*
- La matriz C tiene un tipo especial
- Dada una secuencia de partidos y sus resultados, podemos formular el sistema, obtener los ratings r_i de cada equipo y ordenarlos en forma decreciente

Preguntas

- ¿Qué necesitamos para que el método funcione?
- ¿Se les ocurre algún problema que pueda surgir con el método?

Aplicando CMM en la práctica

Ejemplo (Govan et al., 2008)

```
data NFL2007EXAMPLE;
  Input Team_A_Index Score_A Team_B_Index Score_B;
    datalines;
                                      data indexTeam;
1 16 4 13
                                        Input Team $3. Index;
                                        datalines;
2 38 5 17
                                      Car 1
2 28 6 23
                                      Dal 2
                                      Hou 3
3 34 1 21
                                      NO 4
3 23 4 10
                                      Phi 5
                                      Was 6
4 31 1 6
5 33 6 25
                                      run;
5 38 4 23
6 27 2 6
6 20 5 12
run;
```

Objetivos generales

- Trabajar sobre una aplicación real, implementando prototipos de algoritmos relevantes utilizados en la práctica
- Simular un trabajo de investigación:
 - Lectura de literatura (qué hay hecho)
 - Desarrollo de algoritmos para el problema
 - Decisiones de implementación
 - Experimentación, en dos contextos distintos de aplicación
- Utilizar datos reales

TP1: Implementación

- Eliminación Gaussiana (EG) para resolver el sistema
- Especificar en el desarrollo alternativas consideradas para la representación de las matrices e implementación de los métodos

Recordar

La implementación no es lo único que nos importa

TP1: Experimentación

Análisis cuantitativo

- Análisis de errores en el cálculo del ranking
- En todos los casos, justificar elecciones y decisiones tomadas

Análisis cualitativo

- Comparar CMM vs. Winning Percentage (WP) sobre datos reales. Identificar características y situaciones distintivas
- ¿El método CMM es justo?
- Tenemos resultados y un equipo. Determinar una estrategia para obtener la mayor posición posible buscando minimizar la cantidad de partidos ganados

En todos los casos, justificar elecciones y decisiones tomadas

TP1

Material extra (optativo)

Datos reales

- Datos con los resultados de los partidos del circuito ATP de 2015 (tomados de [3])
- Datos con los resultados de la temporada regular NBA 2016 hasta el 15/03 (tomados de [4])

Además

- Dos scripts en python para transformar archivos con los formatos de [3] y [4] al formato del TP
- Más datos deportivos en [2] (sin scripts), [3], [4]
- Tablas de posiciones de la NBA en fechas determinadas en [1]

Bibliografía

http://www.basketball-reference.com/friv/
standings.cgi.

Datahub.

http://datahub.io.

Jeff sackmann atp tennis rankings.

http://github.com/JeffSackmann/tennis_atp.

Massey ratings.

http://masseyratings.com/data.php.