

GB04/4762

INVESTOR IN PEOPLE

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

The Patent Office Concept House Cardiff Road Newport

South Wales

NP18580 7 DEC 2004

WIPO

PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

7 November 2004

BEST AVAILABLE COPY

Patents Act 1977
(Rule 16)

Request for grant of a patent
(See the notes on the back of this farm You can also get the an explanatory leaflet from the Patent Office of the back of this farm You can also get the second of the patent of the patent of the back of this farm You can also get the second of the patent of the pate

this form)

13NDV03 E851660-1 D02246_____ P01/7700 0.00-0326396_89

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

1. Your reference P018661GB ZCW 1 2 NOV 2003 2. Patent application number 0326396.9 (The Patent Office will fill this part in) Cyclacel Limited 3. Full name, address and postcode of the or of 12 St James's Square each applicant (underline all surnames) London SW1Y 4RB Patents ADP number (if you know it) 7316292004 If the applicant is a corporate body, give the United Kingdom country/state of its incorporation Title of the invention Method D Young & Co Name of your agent (if you have one) "Address for service" in the United Kingdom 21 New Fetter Lane to which all correspondence should be sent London (including the postcode) EC4A 1DA 59006 Patents ADP number (if you know it) Priority application number Date of filing Priority: Complete this section if you are Country (day / montb / year) (if you know it) declaring priority from one or more earlier patent applications, filed in the last 12 months. Date of filing Number of earlier UK application Divisionals, etc: Complete this section only if (day / month / year) this application is a divisional application or

8. Is a Patents Form 7/77 (Statement of inventorship and of right to grant of a patent) required in support of this request?

Answer YES If:

resulted from an entitlement dispute (see note f)

a) any applicant named in part 3 is not an inventor, or

- there is an inventor who is not named as an applicant, or
- c) any named applicant is a corporate body.
 Otherwise answer NO (See note d)

nts Form 1/77

 Accompanying documents: A patent application must include a description of the invention.
 Not counting duplicates, please enter the number of pages of each item accompanying this form:

Continuation sheets of this form -

Description 148

Claim(s) 9

Abstract 1

Drawing(s) 7 + 7

10. If you are also filing any of the following, state how many against each item.

Priority documents -

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for a preliminary examination and search (Patents Form 9/77)

Request for a substantive examination (Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature(s)

D'yaing & Co

Date

12 November 2003

12. Name, daytime telephone number and e-mail address, if any, of person to contact in the United Kingdom

Zöe Clyde-Watson

D Young & Co (Agents for the Applicants)

020 7353 4343

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Not≈s .

u). If you need help to fell in this formion you have any our more presentant the Present C Title on 00,150 500505.

The present invention relates to polo-like kinases (PLKs) and small molecule inhibitors thereof. More specifically, the invention relates to a method for designing and identifying small molecule inhibitors using a homology model for PLK.

BACKGROUND TO THE INVENTION

5

10

15

20

25

30

The Polo-like kinase family consists of key cell cycle regulatory enzymes with integral roles in controlling entry into and progression through mitosis. Many tumour cells express high levels of PLK1 and are responsive to antisense oligonucleotides targeting this protein.

Initiation of mitosis requires activation of M-phase promoting factor (MPF), *i.e.* the complex between CDK1 and B-type cyclins [1]. The latter accumulate during the S and G2 phases of the cell cycle and promote the inhibitory phosphorylation of the MPF complex by WEE1, MIK1, and MYT1 kinases. At the end of the G2 phase, corresponding dephosphorylation by the dual-specificity phosphatase CDC25C triggers the activation of MPF [2]. In interphase, cyclin B localizes to the cytoplasm and becomes phosphorylated during prophase, followed by nuclear translocation. The nuclear accumulation of active MPF during prophase is thought to be important for initiating M-phase events [3]. However, nuclear MPF is kept inactive by WEE1 unless counteracted by CDC25C. The phosphatase CDC25C itself, localized to the cytoplasm during interphase, accumulates in the nucleus in prophase. The nuclear entry of both cyclin B and CDC25C are promoted through phosphorylation by PLK1 [4]. This kinase is thus an important regulator of M-phase initiation.

In humans, there exist three closely related polo-like kinases (PLKs) [5]. They contain a highly homologous N-terminal catalytic kinase domain and their C-termini contain two or three conserved regions, the polo boxes. The function of the polo boxes remains incompletely understood but polo box-dependent PLK1 activity is required for proper metaphase/anaphase transition and cytokinesis [6]. Of the three PLKs, PLK1 is the best characterized; it regulates a number of cell division cycle effects, including the onset of

mitosis, DNA-damage checkpoint activation, regulation of the anaphase promoting complex, phosphorylation of the proteasome, and centrosome duplication and maturation. Mammalian PLK2 (also known as SNK) and PLK3 (also known as PRK and FNK) were originally shown to be immediate early gene products. PLK3 kinase activity appears to peak during late S and G2 phase. It is also activated during DNA damage checkpoint activation and severe oxidative stress. PLK3 also plays an important role in the regulation of microtubule dynamics and centrosome function in the cell and deregulated PLK3 expression results in cell cycle arrest and apoptosis [7]. PLK2 is the least-well understood homologue of the three PLKs. Both PLK2 and PLK3 may have additional important post-mitotic functions [8].

5

10

15

25

The fact that human PLKs regulate some fundamental aspects of mitosis was shown by anti-PLK1 antibody microinjection of human tumour cells [9]. This treatment had no effect on DNA replication but impaired cell division. Cells were arrested in mitosis and showed abnormal distribution of condensed chromatin and monoastral microtubules nucleated from duplicated but unseparated centrosomes. By contrast, non-immortalized human cells arrested as single, mononucleated cells in G2. Moreover, when PLK1 function was blocked through adenovirus-mediated delivery of a dominant-negative gene, tumour-selective apoptosis in many tumour cell lines was observed, whereas again normal epithelial cells, although arrested in mitosis, escaped the mitotic catastrophe seen in tumour cells [10]. PLK1 activity is thus necessary for the functional maturation of centrosomes in late G2/early prophase and subsequent establishment of a bipolar spindle. Furthermore, these results suggest the presence in normal cells of a centrosome-maturation checkpoint that is sensitive to PLK1 impairment. Depletion of cellular PLK1 through the small interfering RNA (siRNA) technique also confirmed that this protein is required for multiple mitotic processes and completion of cytokinesis [11]. A potential therapeutic rationale for PLE inhibition is also suggested by work vide PI II Lace acida anticense o Capanelo cidas

PLK1 expression is of prognostic value for patients suffering from various types of tumours [14-16].

Although the therapeutic potential of pharmacological PLK inhibition has been appreciated [17], very little has been reported to date concerning small-molecule PLK inhibitors that may be useful as drugs. The only characterized biochemical PLK1 inhibitor is scytonemin, a symmetric indolic marine natural product [18,19]. Scytonemin inhibits phosphorylation of CDC25C by recombinant PLK1 with an IC₅₀ value of about 2 μM (at an ATP concentration of 10 μM). Inhibition is apparently reversible and the mechanism with respect to ATP of mixed-competitive mode. Similar potency against other protein serine/threonine- and dual specificity cell-cycle kinases, including MYT1, CHK1, CDK1/cyclin B, and PKC, was observed. Scytonemin showed pronounced anti-proliferative effects on various human cell lines in vitro.

٠,;

The present invention seeks to elucidate small molecule PLK inhibitors, and in particular, provides a method for designing and identifying such inhibitors. The invention also seeks to elucidate further information on the 3-dimensional structure of the PLK binding domain and the nature of the binding interactions between PLK and such small molecule inhibitors.

20

5

10

STATEMENT OF INVENTION

The present invention relates to a homology model for PLK, and the use thereof in the indentification of small molecule PLK inhibitors.

As used herein, the term "model" refers to a structural model such as a three dimensional (3D) structural model (or representation thereof) comprising PLK. Preferably, the model comprising PLK is built from all or a portion of the structure co-ordinates presented in Table 2. The homology model of the invention enables candidate compounds to be identified that bind spatially and preferentially to PLK, particularly to the active site of PLK.

Aspects of the invention are presented in the accompanying claims and are further described in the following paragraphs.

DETAILED DESCRIPTION

5

20

25

ASSAYS BASED ON THE PLK1 HOMOLOGY MODEL

A first aspect of the invention relates to a method of screening for a modulator of PLK, wherein the method comprises using the structure co-ordinates of Table 2

Since no experimental three-dimensional structures of PLK kinase domains are known, 10 a PLK1 kinase domain homology model was constructed (Example 1) [31]. This model provides a plausible complex with the natural ligand ATP in the active site (Figure 2), as well as with two non-selective ATP-competitive kinase inhibitors, which were also found to inhibit PLK1, namely staurosporine [32] (IC₅₀ w.r.t. PLK1 = 0.4 μM) and 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol 15 w.r.t. PLK1 = $4 \mu M$) (Figure 7).

Of particular interest in the PLK1 kinase domain structure are Cys⁶⁷ and Cys¹³³, both of which line the ATP binding site. Cys¹³³ is located in the so-called hinge region, which is present in many kinases, and connects the N- and C-terminal lobes of the kinase domain. Its side chain projects away from the ATP-binding pocket, although its backbone NH and CO functions are probably involved in H-bonding with the purine system of ATP. The side chain of Cys⁶⁷ on the PLK1 N-terminal lobe, on the other hand, points into the ATP-binding pocket and probably contributes directly to ATP binding via contacts with the ribose and/or triphosphate moieties. The position occupied by Cys⁶⁷ in PLK1 is usually occupied by valine in other kinases and there contributes van der Waals contacts to ATP binding. A record unusual residue Phalical

while is a company to the in the state of the same of the same

As discussed above, Cys^{67} of PLK1 is of particular interest, since in the modelled PLK1-ATP complex structure it is positioned closely to the ribose ring of ATP (Figure 4a). This situation is reminiscent of the HER-2 case as described above. More specifically, a close contact between the Cys^{67} thiol group and the 5'-O of the ribose portion of ATP is observed. A suitable adenosine-derived covalent inhibitor would thus be 5'-thioadenosine. Modelling (Figure 4b) of this compound into the active site of PLK1 suggests that a simple rotation of the C^{α} - C^{β} bond of Cys^{67} should accommodate this inhibitor in such a way as to bring the sulfur atoms of Cys^{67} and 5'-thioadenosine into disulfide-bonding distance without large perturbations of the bound adenine portion.

5

10

15

20

25

30

In order to test the hypothesis that Cys⁶⁷ may indeed be involved in ATP binding by PLK1, the effect of non-specific thiol modifying agents such as thimerosal [34], Nethylmaleimide, and iodoacetamide on PLK1 enzymatic activity was studied. All these reagents were found to inhibit CDC25C phosphorylation by PLK1 to some extent, indicating the involvement of Cys residues in enzymatic activity. The fact that such inhibition could be abolished in the presence of an excess of the reducing agent dithiothreitol, which specifically reduces disulfide bonds and competes with Cys thiol groups for thiol modifying agents [35], is consistent with this notion (Example 6). Adenosine derivatives were studied next (Figure 5). Unmodified adenosine did not inhibit PLK1 function at concentrations up to 0.2 mM, whereas 2'- and 5'thioadenosines did. 5-Thioadenosine was about 3-fold more potent than its analogue 2'thioadenosine, supporting the hypothesis that the 5'-OH of the ribose ring is better oriented to react with Cys⁶⁷. Again a lack of inhibition was observed in the presence of DTT. Kinetic analysis of PLK1 inhibition (Example 7) showed that with e.g. 5'thioadenosine (Figure 6) this was dependent on ATP concentration but not competitive with ATP as would be the case for a reversible competitive ATP antagonist. The effects of the above thiol modifying reagents on a closely related serine/threonine kinase were also studied. Casein kinase II (CKII) was selected based on its sensitivity to certain inhibitors [36], e.g. wortmannin and LY294002 [37], which were also found to be capable of inhibiting PLK1 (IC₅₀ with respect to PLK1 of < 0.1 µM and < 5 µM, respectively). No significant inhibition of CKII enzymatic activity was observed at

concentrations up to 0.2 mM with thimerosal, N-ethylmaleimide, iodoacetamide, adenosine, 2'-thioadenosine, or 5'-thioadenosine using the assay described in *Example* 4.

- In summary, these results suggest that PLK-specific ATP antagonists can be developed that derive their potency and PLK selectivity from a combination of non-covalent binding to the unique ATP-binding pocket of PLK1 and covalent binding to the Cys⁶⁷ thiol group.
- 10 Preferred embodiments of the invention will now be described.

15

-20

25

In one preferred embodiment of the invention, the method comprises the steps of:

- (a) providing at least a portion of the structure co-ordinates of Table 2;
- (b) employing at least a portion of the structure co-ordinates of Table 2 to design or select or synthesise a putative modulator of PLK;
- (c) contacting the putative modulator of PLK with PLK or a mutant, variant, homologue, derivative or fragment thereof, in the presence of a substrate of PLK; and
- (d) determining whether said putative modulator of PLK modulates PLK.

In a preferred embodiment, at least a portion of the structure co-ordinates of Table 2 and/or the putative modulator of PLK and/or the substrate are provided on a machine-readable data storage medium comprising a data storage material encoded with machine readable data.

In a preferred embodiment, the putative modulator of PLK is selected from a library of compounds. Preferably, the library is an *in silico* library. Suitable *in silico* libraries will be

In another preferred embodiment, the putative modulator of PLK is selected from a database.

In another preferred embodiment, the putative modulator of PLK is designed de novo.

In yet another preferred embodiment, the putative modulator of PLK is designed from a known PLK modulator.

Preferably, the design or selection of the putative modulator of PLK is performed in conjunction with computer modelling.

In one particularly preferred embodiment, the putative modulator of PLK inhibits PLK activity.

15 More preferably, the PLK is PLK1.

In a further preferred embodiment, the putative modulator of PLK is useful in the prevention and/or treatment of a PLK related disorder.

20 Even more preferably, the PLK related disorder is a proliferative disorder.

More preferably still, the proliferative disorder is selected from cancer, leukemia, glomerulonephritis, rheumatoid arthritis, psoriasis and chronic obstructive pulmonary disorder.

25

5

A second aspect of the invention relates to an assay for a candidate compound capable of modulating PLK, said assay comprising the steps of:

- (a) contacting said candidate compound with PLK;
- (b) detecting whether said candidate compound forms associations with one or more amino acid residues corresponding to PLK amino acid residues L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.

In one preferred embodiment, said candidate compound is selected by performing rational drug design with a 3-dimensional model of PLK in conjunction with computer modelling.

In an even more preferred embodiment, the assay comprises detecting whether said candidate compound forms an association with the amino acid residue corresponding to PLK amino acid residue C67.

A third aspect of the invention relates to the use of a compound selected from the following:

- 10 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol; 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
- or a pharmaceutically acceptable salt thereof, in an assay for identifying candidate compounds capable of modulating PLK.

Preferably, the assay is a competitive binding assay.

- 20 More preferably, the assay comprises contacting a candidate compound with PLK in the presence of a compound selected from:
 - (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and

- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-25 (2,4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
 - or a pharmaceutically acceptable salt thereof, and detecting any change in the

- (a) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprises the structure co-ordinates of Table 2;
- (b) a working memory for storing instructions for processing said computerreadable data;
- (c) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

Another aspect of the invention relates to a machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by at least a portion of the structure co-ordinates of Table 2.

A further aspect of the invention relates to the use of the above-described computer or machine readable data storage medium to predict the structure and/or function of potential modulators of PLK.

Another aspect relates to the use of at least a portion of the structure co-ordinates of Table 2 to screen for modulators of PLK.

A further aspect relates to the use of at least a portion of the structure co-ordinates of Table 2 to solve the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK.

Preferably, the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK is solved using molecular replacement.

25

5

10

15

Yet another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 in molecular design techniques to design, select and synthesise modulators of PLK.

- A further aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 in the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK.
- Another aspect of the invention relates to the use of at least a portion of the structure co-ordinates of Table 2 to screen small molecule databases for chemical entities or compounds that modulate PLK.

PLK MODULATORS

A further aspect of the invention relates to a PLK modulator identified by the above-described method, or a candidate compound identified by the above-described assay.

Preferably, the PLK modulator or candidate compound of the invention inhibits PLK activity.

20

(

More preferably, the PLK modulator or candidate compound of the invention is capable of forming a covalent bond with the amino acid residue corresponding to PLK amino acid residue C67.

More preferably still, the PLK modulator or candidate compound of the invention is capable of forming a disulfide bond with the thiol group of the amino acid residue corresponding to PLE amino acid residue C67.

The present invention permits the use of molecular design techniques to design, select and synthesise chemical entities and compounds, including PLK modulating compounds, capable of binding to PLK, in whole or in part.

By way of example, the structure co-ordinates of Table 2 may be used to design compounds that bind to PLK and may alter the physical properties of the compounds (eg. solubility) or PLK itself. This invention may be used to design compounds that act as modulators, such as competitive inhibitors - of PLK by binding to all or a portion of the active site of PLK. Compounds may also be designed that act as non-competitive inhibitors of PLK. These non-competitive inhibitors may bind to all or a portion of PLK already bound to its substrate and may be more potent and specific than known PLK inhibitors that compete only for the PLK active site. Similarly, non-competitive inhibitors that bind to and inhibit PLK whether or not it is bound to another chemical entity may be designed using the structure co-ordinates of PLK described herein.

. 22.

15

20

25

30

10

5

The present invention may also allow the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that binds to PLK. Thus, the time-dependent analysis of structural changes in PLK during its interaction with other molecules may be performed. The reaction intermediates of PLK may also be deduced from the reaction product in co-complex with PLK. Such information is especially useful to design improved analogues of known PLK modulators or to design new PLK modulators based on the reaction intermediates of the PLK enzyme and PLK-modulator complex. This may provide a new route for designing PLK modulators with high specificity and stability. Preferably, this provides a new route for designing PLK modulators with high specificity, high stability and low toxicity.

Small molecule databases or candidate compounds may be screened for chemical entities or compounds that can bind in whole, or in part, to PLK. Thus, in a preferred embodiment, the putative PLK modulator is from a library of compounds or a database. In this screening, the quality of fit of such entities or compounds to the binding site

may be judged by various methods – such as shape complementarity or estimated interaction energy (Meng, E. C. et al., J. Comp. Chem., 13, pp. 505-524 (1992)).

The structure co-ordinates of Table 2, or portions thereof, may also be useful in solving the structure of crystal forms of PLK. They may also be used to solve the structure of PLK mutants, PLK variants, PLK homologues, PLK derivatives, PLK fragments and PLK complexes.

10

15

Preferably, the structure co-ordinates of Table 2 may be used to solve the structure of the crystalline form of proteins having significant amino acid sequence homology to any functional domain of PLK. By way of example, molecular replacement may be used. In this method, the unknown crystal structure, whether it is a crystal form of PLK, a PLK mutant, a PLK variant, a PLK homologue (eg. another protein with significant amino acid sequence homology to any functional domain of PLK), a PLK derivative, a PLK fragment or a PLK co-complex may be determined using the PLK structure co-ordinates of the present invention. This method will provide a more accurate structural form for the unknown crystal more quickly and efficiently than attempting to determine such information *ab initio*.

20. In a preferred embodiment of the present invention, the PLK crystal of unknown structure further comprises an entity bound to the PLK protein or a portion thereof, for example, an entity that is an inhibitor of PLK.

The crystal structures of such complexes may be solved by molecular replacement or in combination with MAD (Multiwavelength Anomalous Dispersion) and/or MIRAS (Multiple Isomorphous Replacement with Anomalous Scattering) procedures - and compared with that of wild-type FLK. Potential sites for modification within the

The structures and complexes of PLK may be refined using computer software - such as X-PLOR (Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)), MLPHARE (Collaborative computational project Number 4. The CCP4 Suite: Programs for Protein Crystallography (1994) Acta Crystallogr. D 50, 760-763) and SHARP [De La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameters refinement in the MIR and MAD methods (1997) Methods Enzymol. 276, 472-494). Preferably, the complexes are refined using the program CNS (Brünger et al. (1998) Acta Crystallogr. D 54, 905-921). During the final stages of refinement water molecules, ions and inhibitor molecules may be inserted in the structure. This information may thus be used to optimise known classes of PLK modulators, eg. PLK inhibitors, and more importantly, to design and synthesise novel classes of PLK modulators.

5

10

15

20

25

30

The overall figure of merit may be improved by iterative solvent flattening, phase combination and phase extension with the program SOLOMON [Abrahams, J. P. & Leslie, A. G. W. Methods used in structure determination of bovine mitochondrial F1 ATPase. (1996) Acta Crystallogr. D 52, 110-119].

77:

ς,

The structure co-ordinates of the homology model of the present invention may also facilitate the identification of related proteins or enzymes analogous to PLK in function, structure or both, thereby further leading to novel therapeutic modes for treating or preventing PLK related diseases.

The design of compounds that bind to or modulate PLK according to the present invention generally involves consideration of two factors. Firstly, the compound must be capable of physically and structurally associating with PLK. Non-covalent molecular interactions important in the association of PLK with its substrate may include hydrogen bonding, van der Waals and hydrophobic interactions. Secondly, the compound must be able to assume a conformation that allows it to associate with PLK. Although certain portions of the compound may not directly participate in the association with PLK, those portions may still influence the overall conformation of the molecule. This may have a significant impact on potency. Such conformational

requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of a binding site of PLK, or the spacing between functional groups of a compound comprising several chemical entities that directly interact with PLK.

5

The potential modulating or binding effect of a chemical compound on PLK may be analysed prior to its actual synthesis and testing by the use of computer modelling techniques. If the theoretical structure of the given compound suggests insufficient interaction and association with PLK, then synthesis and testing of the compound may be obviated. However, if computer modelling indicates a strong interaction, the molecule may be synthesised and tested for its ability to bind to PLK and modulate (eg. inhibit) using the fluorescent substrate assay of Thornberry et al. (2000) Methods Enzymol. 322, pp 100-110. In this manner, synthesis of inactive compounds may be avoided.

15

10

A modulating or other binding compound of PLK may be computationally evaluated and designed by means of a series of steps in which chemical entities or candidate compounds are screened and selected for their ability to associate with PLK.

A person skilled in the art may use one of several methods to screen chemical entities or candidate compounds for their ability to associate with PLK and more particularly with the individual binding sites of PLK. This process may begin by visual inspection of, for example, the active site on the computer screen based on the PLK co-ordinates of the present invention. Selected chemical entities or candidate compounds may then be positioned in a variety of orientations, or docked, with PLK. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimisation and molecular dynamics with standard molecular mechanics force fields -

(Goodford (1985) J. Med. Chem., 28, pp. 849-857) and AUTODOCK (Goodsell and Olsen (1990), Proteins: Structure. Function, and Genetics, 8, pp. 195-202.

Once suitable chemical entities or candidate compounds have been selected, they may be assembled into a single compound, such as a PLK modulator. Assembly may proceed by visual inspection of the relationship of the chemical entities or candidate compounds in relation to the structure co-ordinates of PLK. This may be followed by manual model building using software - such as Quanta, Sybyl, O, HOOK or CAVEAT [Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models (1991) Acta Crystallogr. A 47, 110-119].

5

10

15

20

25

Refinement of the model may be carried out using the program CNS [Brünger, A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. (1998) Acta Crystallogr. D 54, 905-921].

Various programs may be used by a skilled person to connect the individual chemical entities or candidate compounds, such as 3D Database systems (Martin (1992) *J. Med. Chem.*, 35, pp. 2145-2154) and CAVEAT (Bartlett *et al.* (1989) *Royal Chem. Soc.* 78, pp. 182-196).

Rather than build a PLK inhibitor one chemical entity at a time, modulating or other PLK binding compounds may be designed as a whole or *de novo* using either an empty binding site or optionally including some portion(s) of a known inhibitor(s). Such compounds may be designed using programs that may include but are not limited to LEGEND (Nishibata and Itai (1991) Tetrahedron, 47, p. 8985) and LUDI (Bohm (1992) *J. Comp. Aid. Molec. Design*, 6, pp. 61-78).

Other molecular modelling techniques may also be employed in accordance with this invention – such as those described by Cohen et al., J. Med. Chem., 33, pp. 883-894 (1990); Navia and Murcko (1992) Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to PLK may be computationally evaluated. Specific computer software may be used to evaluate the efficiency of binding (eg. to evaluate compound deformation energy and electrostatic interaction), such as QUANTA/CHARMM (Accelrys Inc., USA) and Insight II/Discover (Biosym Technologies Inc., San Diego, Calif., USA). These programs may be implemented, for instance, using a suitable workstation. Other hardware systems and software packages will be known to those persons skilled in the art.

Once a PLK-modulating compound has been selected or designed, as described above, substitutions may be made (eg. in atoms or side groups) to improve or modify the binding properties. The substitutions may be conservative ie. the replacement group may have approximately the same size, shape, hydrophobicity and charge as the original group. Such substituted chemical compounds may then be analysed for efficiency of binding to PLK by the same computer methods described above.

Candidate compounds and modulators of PLK etc. which are identified using the methods of the present invention may be screened in assays. Screening can be, for example in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models,-binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity.

25

5

Current screening technologies are described in Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes. New York, NY, Marcel Deltker, 2000.

The term "PLK modulator" may refer to a single entity or a combination of entities.

The PLK modulator may be an antagonist or an agonist of PLK.

As used herein, the term "agonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of increasing a proportion of the PLK that is in an active form, resulting in an increased biological response.

As used herein, the term "antagonist" means any entity, which is capable of interacting (eg. binding) with PLK and which is capable of decreasing (eg. inhibiting) a proportion of the PLK that is in an active form, resulting in a decreased biological response.

12

Preferably, the PLK modulators of the present invention are antagonists of PLK.

The modulator of PLK may be an organic compound or other chemical. The modulator of PLK may be a compound, which is obtainable from or produced by any suitable source, whether natural or artificial. The modulator of PLK may be an amino acid molecule, a polypeptide, or a chemical derivative thereof, or a combination thereof. The modulator of PLK may even be a polynucleotide molecule, which may be a sense or an anti-sense molecule. The modulator of PLK may even be an antibody.

The modulator of PLK may be designed or obtained from a library of compounds, which may comprise peptides, as well as other compounds, such as small organic molecules.

25

30

10

By way of example, the modulator of PLK may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic agent, a semi-synthetic agent, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised agent, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant agent,

an antibody, a natural or a non-natural agent, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof).

5

10

15

25

Typically, the modulator of PLK will be an organic compound. Typically, the organic compounds will comprise two or more hydrocarbyl groups. Here, the term "hydrocarbyl group" means a group comprising at least C and H and may optionally comprise one or more other suitable substituents. Examples of such substituents may include halo-, alkoxy-, nitro-, an alkyl group, a cyclic group etc. In addition to the possibility of the substituents being a cyclic group, a combination of substituents may form a cyclic group. If the hydrocarbyl group comprises more than one C then those carbons need not necessarily be linked to each other. For example, at least two of the carbons may be linked via a suitable element or group. Thus, the hydrocarbyl group may contain hetero atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for instance, sulphur, nitrogen and oxygen. For some applications, preferably the modulator of PLK comprises at least one cyclic group. The cyclic group may be a polycyclic group, such as a non-fused polycyclic group. For some applications, the modulator of PLK comprises at least the one of said cyclic groups linked to another hydrocarbyl group.

The modulator of PLK may contain halo groups, for example, fluoro, chloro, bromo or iodo groups, or one or more of alkyl, alkoxy, alkenyl, alkylene and alkenylene groups, each of which may be branched or unbranched.

The modulator of PLK may be a structurally novel modulator of PLK, or may be an analogue of a known modulator of PLK.

Preferably, the PLE modulators have improved properties over those praviously

The modulator of PLK may be used in combination with one or more other pharmaceutically active agents. If combinations of active agents are administered, then they may be administered simultaneously, separately or sequentially.

5 CANDIDATE COMPOUNDS

As used herein, the term "candidate compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not.

The candidate compound may be designed or obtained from a library of compounds, which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the candidate compound may be a natural substance, a biological macromolecule, or an extract made from biological materials - such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic candidate compound, a semi-synthetic candidate compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised candidate compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically, for example, either using a peptide synthesiser or by recombinant techniques or combinations thereof, a recombinant candidate compound, a natural or a non-natural candidate compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof. The candidate compound may even be a compound that is a modulator of PLK, such as a known inhibitor of PLK, that has been modified in some way eg. by recombinant DNA techniques or chemical synthesis techniques.

25

10

15

20

Typically, the candidate compound will be prepared by recombinant DNA techniques and/or chemical synthesis techniques.

Once a candidate compound capable of interacting PLK has been identified, further steps may be carried out to select and/or to modify the candidate compounds and/or to modify existing compounds, such that they are able to modulate PLK.

In one aspect, the modulator of PLK may act as a model (for example, a template) for the development of other compounds.

A further aspect relates to the use of candidate compounds or PLK modulators identified by the assays and methods of the invention in one or more model systems, for example, in a biological model, a disease model, or a model for PLK inhibition. Such models may be used for research purposes and for elucidating further details of the biological, physicochemical, pharmacological and/or pharmacokinetic activity of a particular candidate compound. By way of example, the candidate compounds or PLK modulators of the present invention may be used in biological models or systems in which the cell cycle is known to be of particular significance, e.g. in models relating to cell fertilization, especially in animals.

MIMETIC

1

5

10

25

As used herein, the term "mimetic" relates to any chemical which includes, but is not limited to, a peptide, polypeptide, antibody or other organic chemical which has the same qualitative activity or effect as a known compound. That is, the mimetic is a functional equivalent of a known compound.

20 - CHEMICAL SYNTHESIS METHODS ...

Preferably, the modulator of PLK of the present invention may be prepared by chemical synthesis techniques.

It will be apparent to those skilled in the art that sensitive functional groups may need to be protected and deprotected during synthesis of a compound of the invention. This may be achieved by conventional techniques, for example as described in "Protective Groups in Organic Synthesis" by T W Greene and P G M Wuts, John Wiley and Sons Inc. (1991),

possible during e.g. a guanylation step. It should be possible to circumvent potential problems such as this by choice of reaction sequence, conditions, reagents, protection/deprotection regimes, etc. as is well-known in the art.

5 The compounds and salts may be separated and purified by conventional methods.

10

Separation of diastereomers may be achieved by conventional techniques, e.g. by fractional crystallisation, chromatography or H.P.L.C. of a stereoisomeric mixture of a compounds or suitable salts or derivatives thereof. An individual enantiomer of a compound may also be prepared from a corresponding optically pure intermediate or by resolution, such as by H.P.L.C. of the corresponding racemate using a suitable chiral support or by fractional crystallisation of the diastereomeric salts formed by reaction of the corresponding racemate with a suitably optically active acid or base.

15 PLK, modulators of PLK or variants, homologues, derivatives, fragments or mimetics thereof may be produced using chemical methods to synthesise the PLK or the modulator of PLK in whole or in part. For example, a PLK peptide or a modulator of PLK that is a peptide can be synthesised by solid phase techniques, cleaved from the resin, and purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures And Molecular Principles, WH Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

Synthesis of peptides (or variants, homologues, derivatives, fragments or mimetics thereof) may be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences comprising the modulator of PLK, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant modulator of PLK.

CHEMICAL MODIFICATION

In one embodiment, the modulator of PLK may be a chemically modified modulator of PLK. The chemical modification of a modulator of PLK may either enhance or reduce interactions between the modulator of PLK and the target, such as hydrogen bonding interactions, charge interactions, hydrophobic interactions, van der Waals interactions or dipole interactions.

PROCESS

5

Another aspect of the invention relates to a process comprising the steps of:

- 10 (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more modulators of PLK; and
 - (c) preparing a quantity of said one or more PLK modulators.
- 15 A further aspect of the invention relates to a process comprising the steps of:
 - (a) performing the method according to the invention, or an assay according to the invention;
 - (b) identifying one or more PLK modulators; and
 - (c) preparing a pharmaceutical composition comprising said one or more identified

20 PLK modulators.

A further aspect relates to a process comprising the steps of:

- (a) performing the method according to the invention, or an assay according to the invention;
- 25 (b) identifying one or more PLK modulators;
 - (c) modifying said one or more PLK modulators; and
 - (d) optionally preparing a pharmaceutical composition comprising said one or more

 	 	 	· <u></u>

acceptable carrier, diluent, excipient or adjuvant or any combination thereof. Even though the PLK modulators or candidate compounds (including their pharmaceutically acceptable salts, esters and pharmaceutically acceptable solvates) can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent, particularly for human therapy. The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine.

Examples of such suitable excipients for the various different forms of pharmaceutical compositions described herein may be found in the "Handbook of Pharmaceutical Excipients, 2nd Edition, (1994), Edited by A Wade and PJ Weller.

Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985).

15

10

5

Examples of suitable carriers include lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol and the like. Examples of suitable diluents include ethanol, glycerol and water.

20

The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as, or in addition to, the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

25

Examples of suitable binders include starch, gelatin, natural sugars such as glucose, anhydrous lactose, free-flow lactose, beta-lactose, corn sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose and polyethylene glycol.

30

Examples of suitable lubricants include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium PLKtate, sodium chloride and the like.

Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may be also used.

5

10

15

20

25

SALTS/ESTERS

The PLK modulators or candidate compounds of the present invention can be present as salts or esters, in particular pharmaceutically acceptable salts or esters.

Pharmaceutically acceptable salts of the PLK modulators or candidate compounds of the invention include suitable acid addition or base salts thereof. A review of suitable pharmaceutical salts may be found in Berge et al, J Pharm Sci, 66, 1-19 (1977). Salts are formed, for example with strong inorganic acids such as mineral acids, e.g. sulphuric acid, phosphoric acid or hydrohalic acids; with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C₁-C₄)-alkyl- or aryl-sulfonic acids which are unsubstituted or substituted (for example, by a halogen) such as methane- or p-toluene sulfonic acid.

Esters are formed either using organic acids or alcohols/hydroxides, depending on the functional group being esterified. Organic acids include carboxylic acids, such as alkanecarpoxylic acids or 1 to 12 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acids acids with commuted or uncommuted discribentific acids.

sulfonic acid. Suitable hydroxides include inorganic hydroxides, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide. Alcohols include alkanealcohols of 1-12 carbon atoms which may be unsubstituted or substituted, e.g. by a halogen).

5

10

15

20

25

30

ENANTIOMERS/TAUTOMERS

In all aspects of the present invention previously discussed, the invention includes, where appropriate all enantiomers and tautomers of the PLK modulators or candidate compounds of the invention. The man skilled in the art will recognise compounds that possess an optical properties (one or more chiral carbon atoms) or tautomeric characteristics. The corresponding enantiomers and/or tautomers may be isolated/prepared by methods known in the art.

STEREO AND GEOMETRIC ISOMERS

Some of the PLK modulators or candidate compounds of the invention may exist as stereoisomers and/or geometric isomers, e.g. they may possess one or more asymmetric and/or geometric centres and so may exist in two or more stereoisomeric and/or geometric forms. The present invention contemplates the use of all the individual stereoisomers and geometric isomers of those agents, and mixtures thereof. The terms used in the claims encompass these forms, provided said forms retain the appropriate functional activity (though not necessarily to the same degree).

The present invention also includes all suitable isotopic variations of the PLK modulators or candidate compounds, or pharmaceutically acceptable salts thereof. An isotopic variation of a PLK modulator or candidate compound of the present invention or a pharmaceutically acceptable salt thereof is defined as one in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from the atomic mass usually found in nature. Examples of isotopes that can be incorporated into the agent and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulphur, fluorine and chlorine such as ²H, ³H, ¹³C, ¹⁴C, ¹⁵N, ¹⁷O, ¹⁸O, ³¹P, ³²P, ³⁵S, ¹⁸F and ³⁶Cl, respectively. Certain isotopic variations of the agent and pharmaceutically acceptable salts thereof,

for example, those in which a radioactive isotope such as ³H or ¹⁴C is incorporated, are useful in drug and/or substrate tissue distribution studies. Tritiated, i.e., ³H, and carbon-14, i.e., ¹⁴C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with isotopes such as deuterium, i.e., ²H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased *in vivo* half-life or reduced dosage requirements and hence may be preferred in some circumstances. Isotopic variations of the PLK modulators or candidate compounds of the present invention can generally be prepared by conventional procedures using appropriate isotopic variations of suitable reagents.

10

25

5

SOLVATES

The present invention also includes solvate forms of the PLK modulators or candidate compounds. The terms used in the claims encompass these forms.

15 POLYMORPHS

The invention furthermore relates to PLK modulators or candidate compounds of the present invention in their various crystalline forms, polymorphic forms and (an)hydrous forms. It is well established within the pharmaceutical industry that chemical compounds may be isolated in any of such forms by slightly varying the method of purification and or isolation form the solvents used in the synthetic preparation of such compounds.

PRODRUGS

The invention further includes PLK modulators or candidate compounds of the present invention in prodrug form. Such prodrugs are generally compounds of the invention wherein one or more appropriate groups have been modified such that the modification may be reversely upon administration to a formal or manuscripton subject. Onch

THERAPEUTIC USE

5

20

25

The PLK modulators or candidate compounds of the present invention have been found to possess anti-proliferative activity and are therefore believed to be of use in the treatment of proliferative disorders, such as cancers, leukaemias or other disorders associated with uncontrolled cellular proliferation such as psoriasis and restenosis.

A further aspect of the invention therefore relates to a method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a compound selected from the following:

- 10 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethylthiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;
- or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK such that said proliferative disorder is treated.

Another aspect relates to a method of treating a proliferative disorder comprising inhibiting PLK by administering to a subject in need thereof, a therapeutically effective amount of a compound selected from the following:

- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that treatment of the proliferative disorder occurs.

Another aspect of the invention relates to a method of preventing and/or treating a PLK related disorder comprising administering a PLK modulator or candidate compound of the invention and/or a pharmaceutical composition according to the invention, wherein said

PLK modulator, said candidate compound or said pharmaceutical, is capable of causing a beneficial preventative and/or therapeutic effect.

Preferably, for this aspect, the PLK modulator or candidate compound is selected from the following:

(i) 5'-thioadenosine, or a derivative thereof:

(

5

10

15

- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof.

A further aspect of the invention relates to the use of a PLK modulator or candidate compound according to the invention in the preparation of a medicament for treating a PLK related disorder. Preferably, the PLK related disorder is a proliferative disorder, more preferably cancer.

As used herein the phrase "preparation of a medicament" includes the use of the compound directly as the medicament in addition to its use in a screening programme for further therapeutic agents or in any stage of the manufacture of such a medicament.

Another aspect relates to a method of treating a PLK dependent disorder in a subject in need thereof, said method comprising administering to said subject a compound selected from the following:

- 25 (i) 5'-thioadenosine, or a derivative thereof;
 - (ii) staurosporine, or a derivative thereof; and
 - (iii) 4-[4-(4-methyl-2-methylaminothicael-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-: Littlemah i-dilama-5-yl-yyramidin-1-dilamani-ylamani con i-1-1-lamani-ylamani-ylamani

Preferably, the PLK dependent disorder is a disorder associated with increased PLK activity. Even more preferably, the disorder is cancer.

The term "proliferative disorder" is used herein in a broad sense to include any disorder that requires control of the cell cycle, for example cardiovascular disorders such as restenosis and cardiomyopathy, auto-immune disorders such as glomerulonephritis and rheumatoid arthritis, dermatological disorders such as psoriasis, anti-inflammatory, anti-fungal, antiparasitic disorders such as malaria, emphysema and alopecia. In these disorders, the compounds of the present invention may induce apoptosis or maintain stasis within the desired cells as required.

Preferably, the proliferative disorder is a cancer or leukaemia.

In another preferred embodiment, the proliferative disorder is psoriasis.

15

20

25

10

5

The compounds of the invention may inhibit any of the steps or stages in the cell cycle, for example, formation of the nuclear envelope, exit from the quiescent phase of the cell cycle (G0), G1 progression, chromosome decondensation, nuclear envelope breakdown, START, initiation of DNA replication, progression of DNA replication, termination of DNA replication, centrosome duplication, G2 progression, activation of mitotic or meiotic functions, chromosome condensation, centrosome separation, microtubule nucleation, spindle formation and function, interactions with microtubule motor proteins, chromatid separation and segregation, inactivation of mitotic functions, formation of contractile ring, and cytokinesis functions. In particular, the compounds of the invention may influence certain gene functions such as chromatin binding, formation of replication complexes, replication licensing, phosphorylation or other secondary modification activity, proteolytic degradation, microtubule binding, actin binding, septin binding, microtubule organising centre nucleation activity and binding to components of cell cycle signalling pathways.

30

As defined herein, an anti-proliferative effect within the scope of the present invention may be demonstrated by the ability to inhibit cell proliferation in an *in vitro* whole cell

assay, for example using any of the cell lines A549, HeLa, HT-29, MCF7, Saos-2, CCRF-CEM, HL-60 and K-562, or by showing kinase inhibition in an appropriate assay. These assays, including methods for their performance, are described in more detail in the accompanying Examples. Using such assays it may be determined whether a compound is anti-proliferative in the context of the present invention.

In one preferred embodiment, the compound of the invention is administered orally.

5

10

. 20

25

In one embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit at least one PLK enzyme.

In a more preferred embodiment of the invention, the compound of the invention is administered in an amount sufficient to inhibit PLK1.

In one particularly preferred embodiment, the compounds of the invention are ATP-antagonistic inhibitors of PLK1.

In the present context ATP antagonism refers to the ability of an inhibitor compound to diminish or prevent PLK catalytic activity, i.e. phosphotransfer from ATP to a macromolecular PLK substrate, by virtue of reversibly or irreversibly binding at the enzyme's active site in such a manner as to impair or abolish ATP binding.

In another preferred embodiment, the compound of the invention is administered in an amount sufficient to inhibit PLK2 and/or PLK3.

Yet another aspect relates to a method of inhibiting PLK in a cell comprising contacting said cell with an amount of a compound selected from the following:

Figure 1 and the second second

or a pharmaceutically acceptable salt thereof, such that PLK is inhibited in said cell.

Preferably, the cell is a cancer cell.

5 ADMINISTRATION

The pharmaceutical compositions of the present invention may be adapted for oral, rectal, vaginal, parenteral, intramuscular, intraperitoneal, intraarterial, intrathecal, intrabronchial, subcutaneous, intradermal, intravenous, nasal, buccal or sublingual routes of administration.

10

25

30

For oral administration, particular use is made of compressed tablets, pills, tablets, gellules, drops, and capsules. Preferably, these compositions contain from 1 to 250 mg and more preferably from 10-100 mg, of active ingredient per dose.

40.0

Other forms of administration comprise solutions or emulsions which may be injected intravenously, intraarterially, intrathecally, subcutaneously, intradermally, intraperitoneally or intramuscularly, and which are prepared from sterile or sterilisable solutions. The pharmaceutical compositions of the present invention may also be in form of suppositories, pessaries, suspensions, emulsions, lotions, ointments, creams, gels, sprays, solutions or dusting powders.

An alternative means of transdermal administration is by use of a skin patch. For example, the active ingredient can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. The active ingredient can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.

Injectable forms may contain between 10 - 1000 mg, preferably between 10 - 250 mg, of active ingredient per dose.

Compositions may be formulated in unit dosage form, i.e., in the form of discrete portions containing a unit dose, or a multiple or sub-unit of a unit dose.

DOSAGE

A person of ordinary skill in the art can easily determine an appropriate dose of one of the instant compositions to administer to a subject without undue experimentation. Typically, a physician will determine the actual dosage which will be most suitable for an individual patient and it will depend on a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy. The dosages disclosed herein are exemplary of the average case. There can of course be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

Depending upon the need, the agent may be administered at a dose of from 0.01 to 30 mg/kg body weight, such as from 0.1 to 10 mg/kg, more preferably from 0.1 to 1 mg/kg body weight.

20

In an exemplary embodiment, one or more doses of 10 to 150 mg/day will be administered to the patient for the treatment of malignancy.

PLK FRAGMENT

Another aspect of the invention relates to a fragment of PLK, or a homologue, mutant, or derivative thereof, comprising a ligand binding domain, said ligand binding domain being defined by the aming acid residue structural coordinates selected from one or

As used herein, the term "portion thereof" means the structural co-ordinates corresponding to a sufficient number of amino acid residues of the PLK sequence (or homologue thereof) that are capable of interacting with a candidate compound capable of binding to the LBD. This term includes ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural co-ordinates provided in the homology model may contain a subset of the amino acid residues in the LBD which may be useful in the modelling and design of compounds that bind to the LBD.

5

15

In one preferred embodiment, the fragment of PLK, or a homologue, mutant or derivative thereof, corresponds to a portion of the structure co-ordinates of Table 2.

Another aspect of the invention relates to the use of the above-described fragment of PLK, or a homologue, mutant, or derivative thereof, in an assay for identifying candidate compounds capable of modulating PLK.

The PLK proteins produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the nucleotide sequence and/or the vector used.

- As will be understood by those skilled in the art, expression vectors containing a PLK encoding nucleotide sequence or a mutant, variant, homologue, derivative or fragment thereof, may be designed with signal sequences which direct secretion of the PLK coding sequences through a particular prokaryotic or eukaryotic cell membrane.
- The PLK encoding sequence may be fused (eg. ligated) to nucleotide sequences encoding a polypeptide domain which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53). Preferably, the polypeptide domain which facilitates purification of soluble proteins is fused in frame with the PLK encoding sequence. Such purification facilitating domains include, but are not limited to, metal chelating peptides—such as histidine-tryptophan modules that allow purification on immobilised metals (Porath J (1992) Protein Expr Purif 3, 263-281), protein A domains that allow purification on immobilised immunoglobulin, and the domain utilised in the FLAGS extension/affinity

purification system (Immunex Corp, Seattle, WA). The inclusion of a cleavable linker sequence such as Factor XA or enterokinase (Invitrogen, San Diego, CA) between the purification domain and PLK is useful to facilitate purification.

5 NUCLEOTIDE SEQUENCES

As used herein, the term "nucleotide sequence" refers to nucleotide sequences, oligonucleotide sequences, polynucleotide sequences and variants, homologues, fragments and derivatives thereof (such as portions thereof) which comprise the nucleotide sequences encoding PLK.

10

15

20

25

The nucleotide sequence may be DNA or RNA of genomic or synthetic or recombinant origin, which may be double-stranded or single-stranded whether representing the sense or antisense strand or combinations thereof.

Preferably, the term nucleotide sequence is prepared by use of recombinant DNA techniques (e.g. recombinant DNA). The nucleotide sequences may include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the nucleotide sequences described herein may be modified by any method available in the art.

It will be understood by a skilled person that numerous different nucleotide sequences can encode the same protein as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not substantially affect the activity encoded by the

a functional protein according to the present invention (or even a modulator of PLK according to the present invention if said modulator comprises a nucleotide sequence or an amino acid sequence).

5 AMINO ACID SEQUENCES

25

As used herein, the term "amino acid sequence" is synonymous with the term "polypeptide" and/or the term "protein". In some instances, the term "amino acid sequence" is synonymous with the term "peptide".

The amino acid sequence may be isolated from a suitable source, or it may be made synthetically or it may be prepared by use of recombinant DNA techniques.

VARIANTS/HOMOLOGUES/DERIVATIVES/FRAGMENTS

The PLK described herein is intended to include any polypeptide, which has the activity of the naturally occurring PLK and includes all vertebrate and mammalian forms. Such terms also include polypeptides that differ from naturally occurring forms of PLK by having amino acid deletions, substitutions, and additions, but which retain the activity of PLK.

47,7

The term "variant" is used to mean a naturally occurring polypeptide or nucleotide sequences which differs from a wild-type or a native sequence.

The term "fragment" indicates that a polypeptide or nucleotide sequence comprises a fraction of a wild-type or a native sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The sequence may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the sequence comprises at least 50%, more preferably at least 65%, more preferably at least 80%, most preferably at least 90% of the wild-type sequence.

The present invention also encompasses the use of variants, homologues and derivatives of nucleotide and amino acid sequences. Here, the term "homologue" means an entity

having a certain homology with amino acid sequences or nucleotide sequences. Here, the term "homology" can be equated with "identity".

In the present context, an homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), it is preferred to express homology in terms of sequence identity.

5

15

25

An homologous sequence is taken to include a nucleotide sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the subject sequence.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

% homology may be calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each amino acid in one sequence is directly compared with the corresponding amino acid in the other sequence, one residue at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of residues.

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following amino acid residues to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons. For example when using the GCG Wisconsin Bestfit package the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

5

10

15

20

25

30

Calculation of maximum % homology therefore firstly requires the production of an optimal alignment, taking into consideration gap penalties. A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux et al., 1984, Nucleic Acids Research 12:387). Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel et al., 1999 ibid — Chapter 18), FASTA (Atschul et al., 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel et al., 1999 ibid, pages 7-58 to 7-60). However, for some applications, it is preferred to use the GCG Bestfit program. A new tool, called BLAST 2 Sequences is also available for comparing protein and nucleotide sequence (see FEMS Microbiol Lett 1999 174(2): 247-50; FEMS Microbiol Lett 1999 177(1): 187-8)

Although the final % homology can be measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default

一次できるとうない

values or a custom symbol comparison table if supplied (see user manual for further details). For some applications, it is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62. Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

5

10

15

The sequences may also have deletions, insertions or substitutions of amino acid residues, which produce a silent change and result in a functionally equivalent substance. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the secondary binding activity of the substance is retained. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine, glycine, alanine, asparagine, glutamine, serine, threonine, phenylalanine, and tyrosine.

Conservative substitutions may be made, for example according to the Table below.

20- Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other:

ALIPHATIC	Non-polar	GAP
		ILV
	Polar - uncharged	CSTM
		иú
	D-lor - chergad	D.F.
	,	
·		

occur i.e. like-for-like substitution such as basic for basic, acidic for acidic, polar for polar etc. Non-homologous substitution may also occur i.e. from one class of residue to another or alternatively involving the inclusion of unnatural amino acids such as ornithine (hereinafter referred to as Z), diaminobutyric acid ornithine (hereinafter referred to as B), norleucine ornithine (hereinafter referred to as O), pyriylalanine, thienylalanine, naphthylalanine and phenylglycine.

5

10

15

20

25

30

Replacements may also be made by unnatural amino acids include; alpha* and alpha-disubstituted* amino acids, N-alkyl amino acids*, lactic acid*, halide derivatives of natural amino acids such as trifluorotyrosine*, p-Cl-phenylalanine*, p-Br-phenylalanine*, p-I-phenylalanine*, L-allyl-glycine*, β-alanine*, L-α-amino butyric acid*, L-γ-amino butyric acid*, L-α-amino isobutyric acid*, L-ε-amino caproic acid*, 7-amino heptanoic acid*, L-methionine sulfone*, L-norleucine*, L-norvaline*, p-nitro-L-phenylalanine*, L-hydroxyproline*, L-thioproline*, methyl derivatives of phenylalanine (Phe) such as 4-methyl-Phe*, pentamethyl-Phe*, L-Phe (4-amino)*, L-Tyr (methyl)*, L-Phe (4-isopropyl)*, L-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid)*, L-diaminopropionic acid * and L-Phe (4-benzyl)*. The notation * has been utilised for the purpose of the discussion above (relating to homologous or non-homologous substitution), to indicate the hydrophobic nature of the derivative whereas * has been utilised to indicate the hydrophilic nature of the derivative, * indicates amphipathic characteristics.

The term "derivative" or "derivatised" as used herein includes chemical modification of an entity, such as candidate compound or a PLK modulator. Illustrative of such chemical modifications would be replacement of hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

Variant amino acid sequences may include suitable spacer groups that may be inserted between any two amino acid residues of the sequence including alkyl groups such as methyl, ethyl or propyl groups in addition to amino acid spacers such as glycine or β -alanine residues. A further form of variation, involves the presence of one or more amino acid residues in peptoid form, will be well understood by those skilled in the art. For the avoidance of doubt, "the peptoid form" is used to refer to variant amino acid

residues wherein the α -carbon substituent group is on the residue's nitrogen atom rather than the α -carbon. Processes for preparing peptides in the peptoid form are known in the art, for example Simon RJ et al., PNAS (1992) 89(20), 9367-9371 and Horwell DC, Trends Biotechnol. (1995) 13(4), 132-134.

5

15

20

25

MUTANT

As used herein, the term "mutant" refers to PLK comprising one or more changes in the wild-type PLK sequence.

The term "mutant" is not limited to amino acid substitutions of the amino acid residues in PLK, but also includes deletions or insertions of nucleotides which may result in changes in the amino acid residues in the amino acid sequence of PLK.

The present invention also enables the solving of the crystal structure of PLK mutants. More particularly, by virtue of the present invention, the location of the active site of PLK based on the structural coordinates of Table 2 permits the identification of desirable sites for mutation. For example, one or more mutations may be directed to a particular site - such as the active site - or combination of sites of PLK. Similarly, only a location on, at or near the enzyme surface may be replaced, resulting in an altered surface charge of one or more charge units, as compared to the wild-type enzyme. Alternatively, an amino acid residue in PLK may be chosen for replacement based on its hydrophilic or hydrophobic characteristics.

Such mutants may be characterised by any one of several different properties as compared with wild-type PLK. For example, such mutants may have altered surface charge of one or more charge units. or have an increased stability to subunit dissociation or an altered substrate specificity in comparison with, or a higher specific

may be generated by site specific replacement of a particular amino acid with an unnaturally occurring amino acid. This may be achieved by growing a host organism capable of expressing either the wild-type or mutant polypeptide on a growth medium depleted of one or more natural amino acids but enriched in one or more corresponding unnaturally occurring amino acids.

HOST CELLS

5

10

15

20

30

As used herein, the term "host cell" refers to any cell that comprises nucleotide sequences that are of use in the present invention, for example, nucleotide sequences encoding PLK.

Host cells may be transformed or transfected with a nucleotide sequence contained in a vector e.g. a cloning vector. Preferably, said nucleotide sequence is carried in a vector for the replication and/or expression of the nucleotide sequence. The cells will be chosen to be compatible with the said vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

The gram-negative bacterium E. coli is widely used as a host for cloning nucleotide sequences. This organism is also widely used for heterologous nucleotide sequence expression. However, large amounts of heterologous protein tend to accumulate inside the cell. Subsequent purification of the desired protein from the bulk of E. coli intracellular proteins can sometimes be difficult.

In contrast to *E. coli*, bacteria from the genus Bacillus are very suitable as heterologous hosts because of their capability to secrete proteins into the culture medium. Other bacteria suitable as hosts are those from the genera Streptomyces and Pseudomonas.

Depending on the nature of the polynucleotide and/or the desirability for further processing of the expressed protein, eukaryotic hosts including yeasts or other fungi may be preferred. In general, yeast cells are preferred over fungal cells because yeast cells are easier to manipulate. However, some proteins are either poorly secreted from

the yeast cell, or in some cases are not processed properly (e.g. hyperglycosylation in yeast). In these instances, a different fungal host organism should be selected.

Examples of expression hosts are fungi - such as Aspergillus species (such as those described in EP-A-0184438 and EP-A-0284603) and Trichoderma species; bacteria - such as Bacillus species (such as those described in EP-A-0134048 and EP-A-0253455), Streptomyces species and Pseudomonas species; yeasts - such as Kluyveromyces species (such as those described in EP-A-0096430 and EP-A-0301670) and Saccharomyces species; and mammalian cells - such as CHO-K1 cells.

10

5

The use of host cells may provide for post-translational modifications as may be needed to confer optimal biological activity on recombinant expression products of the present invention.

Aspects of the present invention also relate to host cells comprising the PLK constructs of the present invention. The PLK constructs may comprise a nucleotide sequence for replication and expression of the sequence. The cells will be chosen to be compatible with the vector and may for example be prokaryotic (for example bacterial), fungal, yeast or plant cells.

20

25

In a preferred embodiment, the host cells are mammalian cells, such as CHO-K1 cells.

VECTOR

Aspects of the present invention relate to a vector comprising a nucleotide sequence, such as a nucleotide sequence encoding PLK or a modulator of PLK, administered to a subject.

ereferede TIII. els medellos el FIII le prenesa antica deliceral celebra y medi un and by way of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a host and/or a target cell for the purpose of replicating the vectors comprising nucleotide sequences and/or expressing the proteins encoded by the nucleotide sequences. Examples of vectors used in recombinant DNA techniques include, but are not limited to, plasmids, chromosomes, artificial chromosomes or viruses.

The term "vector" includes expression vectors and/or transformation vectors.

10

20

25

The term "expression vector" means a construct capable of in vivo or in vitrolex vivo expression.

The term "transformation vector" means a construct capable of being transferred from one species to another.

REGULATORY SEQUENCES

In some applications, nucleotide sequences are operably linked to a regulatory sequence which is capable of providing for the expression of the nucleotide sequence, such as by a chosen host cell. By way of example, a vector comprising the PLK nucleotide sequence is operably linked to such a regulatory sequence i.e. the vector is an expression vector.

The term "operably linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.

30 The term "regulatory sequences" includes promoters and enhancers and other expression regulation signals. The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site.

Enhanced expression of a nucleotide sequence, for example, a nucleotide sequence encoding PLK, may also be achieved by the selection of heterologous regulatory regions, e.g. promoter, secretion leader and terminator regions, which serve to increase expression and, if desired, secretion levels of the protein of interest from the chosen expression host and/or to provide for the inducible control of the expression of PLK. In eukaryotes, polyadenylation sequences may be operably connected to the PLK nucleotide sequence.

Preferably, the PLK nucleotide sequence is operably linked to at least a promoter.

10

15

20

25

Aside from the promoter native to the gene encoding the PLK nucleotide sequence, other promoters may be used to direct expression of the PLK polypeptide. The promoter may be selected for its efficiency in directing the expression of the PLK nucleotide sequence in the desired expression host.

In another embodiment, a constitutive promoter may be selected to direct the expression of the PLK-nucleotide sequence. Such an expression construct may provide additional advantages since it circumvents the need to culture the expression hosts on a medium containing an inducing substrate.

Hybrid promoters may also be used to improve inducible regulation of the expression construct.

The promoter can additionally include features to encure or to increase expression in a

light or stress inducible elements. Also, suitable elements to enhance transcription or translation may be present.

EXPRESSION VECTOR

(

15

30

- Preferably, nucleotide sequences, such as nucleotide sequences encoding PLK or modulators of PLK, are inserted into a vector that is operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell.
- Nucleotide sequences produced by a host recombinant cell may be secreted or may be contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors can be designed with signal sequences, which direct secretion of the nucleotide sequence through a particular prokaryotic or eukaryotic cell membrane.

Preferably, the expression vectors are stably expressed in CHO cells as described previously (Ehlers *et al.* (1996) *Biochemistry 35*, 9549-9559). More preferably, the expression vectors are pLEN- tACEΔ36g(1, 2, 3, 4) and pLEN- tACEΔ36g(1,3).

20 FUSION PROTEINS

PLK or a modulator of PLK may be expressed as a fusion protein to aid extraction and purification and/or delivery of the modulator of PLK or the PLK protein to an individual and/or to facilitate the development of a screen for modulators of PLK.

25 Examples of fusion protein partners include glutathione-S-transferase (GST), 6xHis, GAL4 (DNA binding and/or transcriptional activation domains) and β-galactosidase.

It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences. Preferably, the fusion protein will not hinder the activity of the protein of interest.

The fusion protein may comprise an antigen or an antigenic determinant fused to the substance of the present invention. In this embodiment, the fusion protein may be a non-naturally occurring fusion protein comprising a substance, which may act as an adjuvant in the sense of providing a generalised stimulation of the immune system. The antigen or antigenic determinant may be attached to either the amino or carboxy terminus of the substance.

ORGANISM

5

10

20

25

The term "organism" in relation to the present invention includes any organism that could comprise PLK and/or modulators of PLK. Examples of organisms may include mammals, fungi, yeast or plants.

Preferably, the organism is a mammal. More preferably, the organism is a human.

15 TRANSFORMATION

As indicated earlier, the host organism can be a prokaryotic or a eukaryotic organism. Examples of suitable prokaryotic hosts include *E. coli* and *Bacillus subtilis*. Teachings on the transformation of prokaryotic hosts are well documented in the art, for example see Sambrook et al (Molecular Cloning: A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory Press) and Ausubel *et al.*, Current Protocols in Molecular Biology (1995), John Wiley & Sons, Inc. Examples of suitable eukaryotic hosts include mammalian cells.

If a prokaryotic host is used then the nucleotide sequence, such as the PLK nucleotide sequence, may need to be suitably modified before transformation - such as by removal of introns.

This fie trecent invintion also relates to the transformation of a host call With a

sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing coding sequences can be designed with signal sequences which direct secretion of the coding sequences through a particular prokaryotic or eukaryotic cell membrane. Other recombinant constructions may join the coding sequence to nucleotide sequence encoding a polypeptide domain, which will facilitate purification of soluble proteins (Kroll *DJ et al* (1993) DNA Cell Biol 12:441-53) e.g. 6-His or Glutathione-S-transferase.

TRANSFECTION

Vectors comprising for example, the PLK nucleotide sequence, may be introduced into host cells, for example, mammalian cells, using a variety of methods.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (*Nature Biotech*. (1996) 14, 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2,-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

三年歌 看三流海南

20

25

30

15

5

Uptake of nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and DEAE-dextran) and lipofectants (for example lipofectamTM and transfectamTM). Typically, nucleic acid constructs are mixed with the transfection agent to produce a composition.

Such methods are described in many standard laboratory manuals - such as Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

The present invention is further described by way of example, and with reference to the following figures wherein:

Figure 1 shows multiple sequence alignment (Clustal W) of human PLK1 (P53350), PLK2 (Q9NYY3), and PLK3 (Q9H4B4).

Figure 2 shows a schematic view of PLK1 homology model in complex with ATP (stick model, labelled). The protein structure is indicated with a ribbon (loops, thin; helices, thick; sheets, arrows). The Cys residues are shown with space-filled atoms and are labelled.

Figure 3 shows sequence alignment of PLK1 and PKA kinase domains.

Figure 4 shows modelled complex between PLK1 and ATP (a) and 5'-thioadenosine (b). The positions of the thiol groups (SH) of Cys⁶⁷ and 5'thioadenosine are indicated.

Figure 5 shows dose response curves of PLK1 activity inhibition by various adenosine derivatives in the absence or presence of the reducing agent dithiothreitol (+DTT or – DTT).

Figure 6 shows kinetic analysis of PLK1 inhibition by 5'-thioadenosine.

Figure 7 shows modelled PLK1-bound conformations of ATP (a); 5'-thioadenosine (b); staurosporine (c); and 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol (d). Non-H atoms are labelled.

EYAMPLES

10

15

20

Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995) and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, John Wiley & Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, In Situ Hybridization: Principles and Practice; Oxford University Press; M. J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, Irl Press; D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press; Using Antibodies: A Laboratory Manual: Portable Protocol NO. I by Edward Harlow, David Lane, Ed Harlow (1999, Cold Spring Harbor Laboratory Press, ISBN 0-87969-544-7); Antibodies: A Laboratory Manual by Ed Harlow (Editor), David Lane (Editor) (1988, Cold Spring Harbor Laboratory Press, ISBN 0-87969-314-2), 1855. Handbook of Drug Screening, edited by Ramakrishna Seethala, Prabhavathi B. Fernandes (2001, New York, NY, Marcel Dekker, ISBN 0-8247-0562-9); and Lab Ref: A Handbook of Recipes, Reagents, and Other Reference Tools for Use at the Bench, Edited Jane Roskams and Linda Rodgers, 2002, Cold Spring Harbor Laboratory, ISBN 0-87969-630-3. Each of these general texts is herein incorporated by reference.

+

Example 1

5

10

15

20

25

30

Construction of PLK1 homology model

The homology model for PLK1 kinase domain was generated using the program module Homology within the molecular modelling package Insight II (Accelrys, San Diego, CA) [38]. The sequence containing the kinase domain of PLK1 (residues 1 – 356) was employed in a FASTA sequence and structural search [39] in order to find the closest sequence-related kinase for which experimental structural information was available. For this search, the BLOSUM 50 scoring matrix [40] and a specific residue string value of 2 was employed. The closest match of known structure proved to be that of cAMP-dependent protein kinase (protein kinase A, PKA) with a sequence identity of

30 % and similarity of close to 50 % (Figure 3). Although these values are typically low for homology model building, the structural conservation of protein kinases was thought to allow a valid structure to be generated. Sequence alignment of PLK1 kinase domain with PKA in addition to CDK2 and ERK2 (which also were among the most homologous structures) indicated that the minimal kinase domain included residues 52 -308. For the sequence alignment, the PAM 120 multiple scoring matrix [41] was used with a dimension block of 0.6, a high significance p value of 0.0001, a not significant p value of 0.1, and a pair-wise threshold of 60. Using a combination of the three structures to generate coordinates for the regions that had the highest identity in each kinase (Table 1), a model structure for the kinase domain was constructed. The strategy generally involved using PKA to define the structurally conserved regions (SCRs) from which the coordinates were subsequently transferred. This was then followed by loop construction where the non-SCRs were generated by de-novo building and subsequent evaluation of the most realistic coordinates (in terms of energetics of the loop itself and the exclusion of loops leading to overlapping atoms). After loop building was completed for missing coordinates, the raw coordinates were then refined using successive rounds of end repair splice repairing using an omega force constant of 50, energy minimization (100 steps of steepest descent to a derivative of 5). The model was then completed through using a further minimisation and 1 ps of molecular dynamics to more fully explore the conformational space of the loop regions. The final model structure was then checked against databases of protein structures for bond length and dihedral angle violations. The results indicated that these as a whole were within acceptable limits with > 80 % of residues having phi-psi plots with the allowed region in Ramachandran space [42]. The coordinate file for the final PLK1 homology model -ATP complex in Brookhaven Protein Databank (PDB) format [43] is shown in Table 2.

Framale?

(

5

10

15

5

10

15

20

25

30

downstream of the ORF, by inclusion in the antisense PCR primer. The PCR product generated was cloned into pCR4-Topo (Invitrogen), and sequenced. The ORF was then sub-cloned as an Nhe I / Eco RI fragment into pSSP1, a derivative of bacmid transfer vector pFastBac HTa (Invitrogen). The PLK1 ORF was cloned into pSSP1 such that the resulting PLK1 translation product would have a 19 amino acid N-terminal tag (MSYYHHHHHHGMASDDDDK) containing a hexahistidine tag and an enterokinase cleavage site. The pSSP1-Plk1 expression cassette was transferred into bacmid DNA by transposition in E. coli DH10Bac (Invitrogen). Purified recombinant bacmid DNA was transfected into Sf9 cells, to produce an infective stock of recombinant baculovirus. Following subsequent amplification and titering of the baculoviral stock, this was used to infect Sf9 cells at a multiplicity of infection of approximately 3. His-tagged PLK1 was expressed by incubating the infected cells at 27 °C, with shaking. Two days after infection, the cells were collected by centrifugation. Prior to purification, PLK1 expression was confirmed by Western blotting. To the cell pellet from 150 mL Sf9 insect cell culture 10 mL lysis buffer [10 mM Tris-HCl pH 8.0, 150 ml NaCl, 20 mM βmercaptoethanol, 1 mM PMSF, 1 mM benzamidine, protease inhibitor cocktail (Sigma; 1: 1,000 diluted), 20 mM imidazolel, supplemented with 2 mM NaF and 1 mM Na_3VO_4 , was added; the mixture was sonicated (6 × 20 s) on ice and centrifuged for 15 min at 15,000 r.p.m. The supernatant was filtered (0.45 µm filter) and the filtrate was applied to a pre-equilibrated (with 20 mL lysis buffer) 1.2-mL Ni-NTA agarose column (Qiagen). After incubation for 2 h at 4 °C, the non-bound fraction was eluted with was buffer (as lysis buffer but 300 mM NaCl and without imidazole). Protein was eluted with elution buffer (as lysis buffer but 100 mM NaCl, 250 mM imidazole, 0.02 % Nonidet P-40). Pooled fractions containing target protein were applied to an equilibrated (with dialysis buffer) 5-mL HiTrapTM desalting column (Amersham Biosciences) and eluted with dialysis buffer (25 mM Tris/MES pH 7.6, 1 mM βmercaptoethanol, 0.01 % Tween-20, 10 mM MgCl₂, 50 µM ATP, 100 mM NaCl, 1 mM PMSF, 1 mM benzamidine, 10 % glycerol). Pooled fractions containing pure target protein were centrifuged 15,000 r.p.m. for 15 min. The supernatant PLK1 stock solution was stored at -70 °C.

14.

Example 3

PLK1 assay

5

10

20

25

PLK1 kinase activity was assayed using human CDC25C phosphatase as a substrate [4]. The assays were carried out using 96-well microtitre plates by incubating CDC25C (2 μ g/well) with 1 μ g/well of purified human recombinant PLK1 and varying concentrations of the candidate compound in a total volume of 25 μ L of 20 mM Tris/HCl buffer pH 7.5, supplemented with 25 mM β -glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μ M ATP and 0.5 μ Ci of [γ -³²P]-ATP. The reaction mixture was incubated at 30 °C for 1 h, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of CDC25C phosphorylation was assessed by scintillation counting using a Packard TopCount plate reader.

Commence of the property of the second of the second

Example 4

15 Casein kinase II (CKII) assay

Human recombinant CKII activity was assayed using the peptide H-Arg-Arg-Arg-Glu-Glu-Glu-Glu-Glu-Glu-Glu-OH as a substrate. The assays were carried out using 96-well microtitre plates by incubating the peptide substrate (10 μM) with 20 Units/well of CKII (New England Biolabs) and varying concentrations of the candidate compound in a total volume of 25 μL of 25 mM MOPS buffer pH 7.0, supplemented with 25 mM β-glycerophosphate, 5 mM EGTA, 1 mM DTT, and 1 mM NaVO₃. Reaction was initiated by the addition of 100 μM ATP and 0.25 μCi of [γ-³²P]-ATP. The reaction mixture was incubated at 30 °C for 15 minutes, then stopped with 75 mM aq orthophosphoric acid, transferred onto a 96-well P81 filter plate (Whatman), dried, and the extent of peptide phosphorylation was assessed by scintillation counting using a Packard Top Count plate

thiazol-5-yl)-pyrimidin-2-ylamino]-phenol were synthesised in accordance with the methodology described in WO 01/72745. Staurosporine and derivatives thereof (such as CGP 41251 and UCN-01) are described in the literature [see for example, Gescher A., Gen Pharmacol. 1998, 31, p721-8].

5

Synthesis of 5'-deoxy-5-thio-adenosine (4)

5'-Deoxy-5-thio-adenosine (4) is a known compound [45] and it can be prepared readily from commercially available 2',3'-isopropylideneadenosine 1 as shown in Scheme 1 [46].

10

15

20

25

Scheme 1

5'-Deoxy-5'-acetylthio-2',3'-O-isopropylideneadenosine (2)

Diethyl azodicarboxyl-ate (3.4 mL, 21.73 mmol) was added drop-wise over 5 min to an ice-cold solution of triphenylphosphine (5.7 g, 21.73 mmol). The solution was stirred for 30 min at 0 °C prior to the addition of 2',3'-O-isopropylideneadenosine (1; 3.0 g, 9.76 mmol) and stirring was then continued for a further 10 min to produce a yellow suspension. To the suspension a solution of thioacetic acid (1.6 mL, 21.73 mmol) in absol tetrahydrofuran (5 mL) was added drop-wise and stirring was then continued for a further 1 h at 0 °C. During this time the yellow suspension became a darker yellow solution. After stirring for 1 h the solvent was removed under reduced pressure and the resulting yellowish residue was purified by flash chromatography on silica gel [350 g, CHCl₃/THF (4:1 v/v) and then CHCl₃/CH₃OH (9:1 v/v)]. The fractions containing the product were combined and the solvent removed under reduced pressure. The residue was dried *in vacuo* (0.5 mbar) to furnish pure protected thionucleoside 2 (3.2 g, 90 %) as a white foam; TLC R_f (CH₂Cl₂/CH₃OH, 9:1 v/v) = 0.6, mp = 56-57 °C; ¹H-NMR (CDCl₃): δ 1.39 (s, 6H, CH₃), 2.34 (s, 3H, COCH₃), 3.18 and 3.29 (AB part of ABX

spectrum, $J_{5'a-H, 4'-H} = J_{5'b-H, 4'-H} = 6.5$ Hz, $J_{gem} = 13.5$ Hz, 2H, 5'a-H, 5'b-H), 4.34 (dt, $J_{4'-H, 3'-H} = 3$ Hz, $J_{4'a-H, 5a'-H} = J_{4'-H, 5'b-H} = 7$ Hz, 1H, 4'-H), 4.97 (dd, $J_{3'-H, 4'-H} = 3$ Hz, $J_{3'-H, 4'-H} = 3$ Hz, $J_{3'-H, 4'-H} = 6.5$ Hz, 1H, 3' H), 5.51 (dd, $J_{2'-H, 1'-H} = 2$ Hz, $J_{2'-H, 3'-H} = 6.5$ Hz, 1H, 2'-H), 6.07 (d, $J_{1'-H, 2'-H} = Hz$, 1H, 1'-H), 5.9 (s, br., 2H, NH₂), 7.90 (s, 1H, 8-H) and 8.36 (s, 1H, 2-H); ¹³C-NMR (CDCl₃): δ 25.56 (q, CH₃), 27.33 (q, CH₃), 30.79 (q, COCH₃), 31.60 (t, C-5'), 84.24 (d, C-3'), 84.43 (d, C-2'), 86.47 (d, C-4'), 91.07 (d, C-1'), 114.75 (s, C(CH₃)₂), 120.53 (s, C-5), 140.09 (d, C-8), 149.42 (s, C-4), 153.45 (d, C-2), 155.92 (s, C-6) and 194.79 (s, CO); ESMS; m/z: 366.0 [M + H⁺]; [α]_D (CDCl₃) = -13.2.

10 <u>5'-Deoxy-5'acetyl-thioadenosine (3)</u>

5

15

25

A solution of compound 2 (200 mg, 0.54 mmol) was stirred in a mixture of formic acid and water (10 ml, 1:1) at room temperature. The progress of the reaction was monitored by reversed-phase HPLC. After 50 h reaction time the solvent was evaporated under reduced pressure. Traces of formic acid were removed by co-evaporating 5 times with absolute ethanol to produce an off-white powder, which was purified by silica gel flash chromatography [30 g, CH₂Cl₂/CH₃OH (4:1 v/v)]. The fractions containing the product were combined, the solvent removed under reduced pressure and the product further dried *in vacuo* (0.5 mbar) to title compound 3 (150 mg, 86 %); TLC R_f (CH₂Cl₂:CH₃. OH, 9:1 v/v) = 0.24; 1 H-NMR (CDCl₃): δ 2.32 (s, 3H, COCH₃), 3.15 and 3.34 (AB part of ABX specirum, $J_{5'-H, 4'-H} = 5.5$ Hz, $J_{5'b-H}$, 4'-H = 7 Hz, $J_{gem} = 14$ Hz, 2H, 5'a-H, 5'b-H), 3.9 (ddd, $J_{4'-H, 3'-H} = 3.5$ Hz, $J_{5'a-H, 4'-H} = 6$ Hz, $J_{5'b-H, 4'-H} = 7.5$ Hz, 1H, 4'-H), 4.08 (m, 1H, 3'-H), 4.76 (t, $J_{2'-H, 1'-H} = J_{2'-H, 3'-H} = J_{2'-H, 2'-OH} = 6$ Hz, 1H, 2'-H), 5.37 (s, 1H, D₂0 exchangeable, 3'-OH), 5.51 (s, 1H, D₂0 exchangeable, 2'-OH), 5.85 (d, $J_{1'-H, 2'-H} = 6$ Hz, 1H, 1'-H), 7.28 (s, br., 2H, D₂0 exchangeable, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.53 (s, 1H, 8-H); ESMS; m/z: 326.5 [M + H[†]].

5'-Deorry-5'-thioadenosine (4)

vacuo to afford title compound 4 (25 mg, 55 %); TLC R_f (CH₂Cl₂/CH₃OH, 7:1 v/v) = 0.85; mp = 109-110 °C, ¹H-NMR [(D₆ DMSO)]: δ 2.57 (s, br., 1H, 5'-SH), 2.75-2.80 (m, 2H, 5'a-H, 5'b-H), 3.98 (dt, $J_{4'-H, 3'-H} = 3$ Hz, $J_{4'-H, 5'a-H} = J_{4'-H, 5'b-H} = 6$ Hz, 1H, 4'-H), 4.18 (q, $J_{3'-H, 2'-H} = J_{3'-H, 4'-H} = J_{3'-H, 3'-OH} = 4$ Hz, 1H, 3'-H), 4.78 (q, $J_{2'-H, 1'-H} = J_{2'-H, 3'-OH} = 5$ Hz, 1H, 2'-H), 5.28 (d, $J_{3'-OH, 3'-OH} = 5$ Hz, 1H, 3'-OH), 5.48 (d, $J_{2'-OH, 2'-H} = 6$ Hz, 1H, 2'-OH), 5.88 (d, $J_{1'-H, 2'-H} = 6$ Hz, 1H, 1'-H), 7.28 (s, br., 2H, 6-NH₂), 8.14 (s, 1H, 2-H) and 8.35 (s, 1H, 8-H); ESMS; m/z: 283.92 [M + H⁺]; [α]_D (DMSO) = -29.3.

10 Example 6

5

15

20

Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and thiol-reactive compounds

Adenosine, N-ethylmaleimide, iodoacetamide, and thimerosal were obtained from Sigma Chemical Co. 2'-Thioadenosine was obtained from Calbiochem. 5'-Thioadenosine was prepared as described in *Example 5*. All compounds were made up as 10 mM stocks in neat dimethylsulfoxide and fresh dilutions to the desired concentrations were made in assay buffer prior to the assay. The candidate compounds were incubated with the enzyme in the kinase assay buffer for the duration of the assay, usually 1 hour at 30 °C (refer *Example 3*). For each compound duplicate samples, one of which contained dithiothreitol (DTT) at 1 mM final concentration, were assayed. The results are summarized in *Table 3* and *Figure 5*.

京 二部二部 では できます。

Example 7

ATP-dependence of PLK1 inhibition by 5'-thioadenosine

The kinase assay described in Example 3 was used. ATP dependence of the effects of adenosine, 2'-thioadenosine, 5-'thioadenosine, and thimerosal was investigated at 12.5, 25, 50, and 100 µM ATP. The results showed that none of these compounds were classical competitive inhibitors with respect to ATP, as would be expected from a covalent inhibitor. Results of the kinetic analysis with 5'-thioadenosine are shown in

30 *Figure* 6.

Example 8

(

5

10

15

Contact models of PLK1 kinase domain with bound ligands

The homology model described in Example 1 was used as the basis for the docking of ATP, 5'-thioadenosine, and two additional ATP-competitive kinase inhibitors we have found to inhibit PLK1. The conformations of these ligands in the PLK1 ATP-binding pocket are depicted in Figure 7. Descriptions of the PLK1-ligand complex structures in the form of interatomic distances between the residues lining the ATP-binding pocket of PLK1 and the ligands were obtained using the molecular modelling programs Quanta2000 (Accelrys, CA, USA) and Maestro (Schrodinger Inc., Oregon, USA). The output from the former lists all contacts between PLK1 and ligands that are less than 3.5 Å. In the latter case a listing of all PLK1-ligand contacts not involving H atoms is given, together with the interatomic distances. Also given is a measure of the quality of the contacts. Only favourable contacts are listed and the closer the value of the contact cut-off ratio to 1.3, the better the contact. Results are summarized in Table 4 (Maestro) & Table 5 (Quanta) for ATP, in Table 6 (Maestro) & Table 7 (Quanta) for 5'thioadenosine, in Table 8 (Maestro) & Table 9 (Quanta) for staurosporine, and in Table 10 (Maestro) & Table 11 (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)pyrimidin-2-ylamino]-phenol. The ligand atom numbering is shown in Figure 7.

20

25

Various modifications and variations of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the relevant fields are intended to be covered by the present invention.

REFERENCES

- [1] Nurse, P. (1990) Nature, 344, 503-508.
- [2] Nigg, E.A. (2001) Nat. Rev. Mol. Cell Biol., 2, 21-32.
- [3] Takizawa, C.G. and Morgan, D.O. (2000) Curr. Opin. Cell Biol., 12, 658-665.
- [4] Roshak, A.K., Capper, E.A., Imburgia, C., Fornwald, J., Scott, G. and Marshall, L.A. (2000) Cell. Signalling, 12, 405-411.
- [5] Glover, D.M., Hagan, I.M. and Tavares, A.A. (1998) Genes Dev., 12, 3777-3787.
- [6] Seong, Y.-S., Kamijo, K., Lee, J.-S., Fernandez, E., Kuriyama, R., Miki, T. and Lee, K.S. (2002) J. Biol. Chem., 277, 32282 -32293.
- [7] Wang, Q., Xie, S., Chen, J., Fukusawa, K., Naik, U., Traganos, F., Darzynkiewicz, Z., Jhanwar-Uniyal, M. and Dai, W. (2002) Mol. Cell. Biol., 22, 3450-3459.
- [8] Kauselmann, G., Weiler, M., Wulff, P., Jessberger, S., Konietzko, U., Scafidi, J., Staubli, U., Bereiter-Hahn, J., Strebhardt, K. and Kuhl, D. (1999) EMBO J., 18, 5528-5539.
- [9] Lane, H.A. and Nigg, E.A. (1996) J. Cell. Biol., 135, 1701-1713.
- [10] Cogswell, J.P., Brown, C.E., Bisi, J.E. and Neill, S.D. (2000) Cell Growth Differ., 11, 615-623.
- [11] Liu, X. and Erikson, R.L. (2003) Proc. Natl. Acad. Sci. USA, 100, 5789-5794.
- [12] Spankuch-Schmitt, B., Wolf, G., Solbach, C., Loibl, S., Knecht, R., Stegmuller, M., von Minckwitz, G., Kaufmann, M. and Strebhardt, K. (2002) Oncogene, 21, 3162-3171.
- [13] Smith, M.R., Wilson, M.L., Hamanaka, R., Chase, D., Kung, H., Longo, D.L. and Ferris, D.K. (1997) Biochem. Biophys. Res. Commun., 234, 397-405.

- [14] Takahashi, T., Sano, B., Nagata, T., Kato, H., Sugiyama, Y., Kunieda, K., Kimura, M., Okano, Y. and Saji, S. (2003) Cancer Science, 94, 148-152.
- [15] Tokumitsu, Y., Mori, M., Tanaka, S., Akazawa, K., Nakano, S. and Niho, Y. (1999) Int. J. Oncol., 15, 687-692.
- [16] Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H.J., Altmannsberger, H.-M., Rübsamen-Waigmann, H. and Strebhardt, K. (1997) *Oncogene*, 14, 543-549.
- [17] Kraker, A.J. and Booher, R.N. (1999) In Annual Reports in Medicinal Chemistry (Vol. 34) (Doherty, A.M., ed.), pp. 247-256, Academic Press.
- [18] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Eichman, C., Jackson, J.R., Mattern, M., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) J. Pharmacol. Exp. Ther., 303, 858-866.
- [19] Stevenson, C.S., Capper, E.A., Roshak, A.K., Marquez, B., Grace, K., Gerwick, W.H., Jacobs, R.S. and Marshall, L.A. (2002) Inflammation Research, 51, 112-114.
- [20] Singh, J. (1994) Protein Engineering, 7, 849-858.
- [21] Singh, J., Dobrusin, E.M., Fry, D.W., Haske, T., Whitty, A. and McNamara, D.J. (1997) J. Med. Chem., 40, 1130-1135.
- [22] Fry, D.W., Bridges, A.J., Denny, W.A., Doherty, A., Greis, K.D., Hicks, J.L., Hook, K.E., Keller, P.R., Leopold, W.R., Loo, J.A., McNamara, D.J., Nelson, J.M., Sherwood, V., Smaill, J.B., Trumpp-Kallmeyer, S. and Dobrusin, E.M. (1998) Proc. Natl. Acad. Sci. USA, 95, 12022-12027.

- [24] Tsou, H.-R., Mamuya, N., Johnson, B.D., Reich, M.F., Gruber, B.C., Ye, F., Nilakantan, R., Shen, R., Discafani, C., DeBlanc, R., Davis, R., Koehn, F.E., Greenberger, L.M., Wang, Y.-F. and Wissner, A. (2001) J. Med. Chem., 44, 2719-2734.
- [25] Denny, W.A. (2002) Pharmacology & Therapeutics, 93, 253-261.
- [26] Smaill, J.B., Rewcastle, G.W., Loo, J.A., Greis, K.D., Chan, O.H., Reyner, E.L., Lipka, E., Showalter, H.D.H., Vincent, P.W., Elliott, W.L. and Denny, W.A. (2000) J. Med. Chem., 43, 1380-1397.
- [27] Allen, L.F., Lenehan, P.F., Eiseman, I.A., Elliott, W.L. and Fry, D.W. (2002) Seminars in Oncology, 29 (3, Suppl. 11), 11-21.
- [28] Torrance, C.J., Jackson, P.E., Montgomery, E., Kinzler, K.W., Vogelstein, B., Wissner, A., Nunes, M., Frost, P. and Discafani, C.M. (2000) Nat. Med., 6(9), 1024-1028.
- [29] Wissner, A., Overbeek, E., Reich, M.F., Floyd, M.B., Johnson, B.D., Mamuya, N., Rosfjord, E.C., Discafani, C., Davis, R., Shi, X., Rabindran, S.K., Gruber, B.C., Ye, F., Hallett, W.A., Nilakantan, R., Shen, R., Wang, Y.-F., Greenberger, L.M. and Tsou, H.-R. (2003) J. Med. Chem., 46, 49-63.
- [30] Stamos, J., Sliwkowski, M.X. and Eigenbrot, C. (2002) J. Biol. Chem., 277, 46265-46272.
- [31] Brenner, S.E. (2001) Nat. Rev. Genet., 2, 801-809.
- [32] Gescher, A. (1998) General Pharmacology, 31, 721-728.
- [33] Fischer, P.M. and Wang, S. (2001) In PCT Intl. Patent Appl. WO 2001072745, Cyclacel Limited, UK.
- [34] Elferink, J.G.R. (1999) Gen. Pharmacol., 33, 1-6.
- [35] Cleland, W.W. (1964) Biochemistry, 4, 480-485.

- [36] Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. (2000) Biochem. J., 351, 95-105.
- [37] Walker, E.H., Pacold, M.E., Perisic, O., Stephens, L., Hawkins, P.T., Wymann, M.P. and Williams, R.L. (2000) Mol. Cell, 6, 909-919.
- [38] Greer, J. (1990) Proteins, 7, 317-334.

(

- [39] Pearson, W.R. (2000) Methods Mol. Biol., 132, 185-219.
- [40] Henikoff, S. and Henikoff, J.G. (1992) Proc. Natl. Acad. Sci. USA, 89, 10915-10919.
- [41] Altschul, S.F. (1991) J. Mol. Biol., 219, 555-565.
- [42] Venkatachalam, C.M. and Ramachandran, G.N. (1973) Ann. Rev. Biochem., 38, 45-77.
- [43] Westbrook, J.D. and Fitzgerald, P.M.D. (2003) Methods Biochem. Anal., 44, 161-179.
- [44] Hamanaka, R., Maloid, S., Smith, M.R., O'Connell, C.D., Longo, D.L. and Ferris, D.K. (1994) Cell Growth Differ., 5, 249-257.
- [45] Marriott, J.H., Mottahedeh, M. and Reese, C.B. (1990) Tetrahedron Lett., 31, 7485-7488.
- [46] Pignot, M., Pljevaljcic, G. and Weinhold, E. (2000) Eur. J. Org. Chem., 549-555.

Table 1. Sequence comparison between PLK1 and CDK2, ERK-2, or PKA kinase domains, respectively.

DI I/I segrence segrent	Sequence identity (%)					
PLK1 sequence segment	CDK2	ERK-2	PKA			
1-50	0	8	12			
51-100	14	20	28			
101-150	18	8	20			
. 151–200	44	48	44			
201-250	30	30	42			
251-306	18	20	22			

Table 2. PDB coordinate file of PLK1-ATP homology model

MOTA	1	N	ARG	52	108.414	117.322	91.897	1.00	0.00	N
ATOM	2	CA	ARG	52	109.182	116.827	90.698	1.00	0.00	C
ATOM	3	C	ARG	52	108.390	116.045	89.578	1.00	0.00	С
ATOM	4	0	ARG	52	108.985	115.798	88.530	1.00	0.00	0
ATOM	5	CB	ARG	52	110.589	116.233	91.053	1.00	0.00	C
ATOM	6	CG	ARG	52	110.801	114.702	91.020	1.00	0.00	C
ATOM	_ 7	CD	ARG	52	112,287	114.328	91.157	1.00	0.00	C
MOTA	8	NE	ARG	52	112.450	112.916	90.739	1.00	0.00	И
ATOM	9	CZ	ARG	52	113.551	112.190	90.870	1.00	0.00	C
ATOM	10	NHl	ARG	52	114.666	112.630	91.370	1.00	0.00	N
MOTA	11	NH2	ARG	52	113.501	110.971	90.474	1.00	0.00	N
MOTA	12	1H	ARG	52	107.626	116.687	92.087	1.00	0.00	H
MOTA	13	2H	ARG	52	109.037	117.350	92.717	1.00	0.00	H
MOTA	14	HE	ARG	52	111.635	112.458	90.308	1.00	0.00	H
MOTA	15	HA	ARG	52	109.432	117.749	90.134	1.00	0.00	H
ATOM	16	1HB	ARG	52	111.303	116.678	90.331	1.00	0.00	H
ATOM	17	2HB	ARG	52	110.945	116.616	92.029	1.00	0.00	H
ATOM	18	1HG	ARG	52	110.209	114.203	91.813	1.00	0.00	H
ATOM	19	2HG	ARG	52	110.408	114.292	90.070	1.00	0.00	H
ATOM	20	1HD	ARG	52	112.925	114.977	90.524	1.00	0.00	H
MOTA	21	2HD	ARG	· 52	112.620	114.481	92.204	1.00	0.00	H
MOTA	22	2HH1	ARG	52	114.619	113.601	91.675	1.00	0.00	н
ATOM	23	1HH1	ARG	52	115.438	111.966	91.428	1.00	0.00	H
ATOM	24	1HH2	ARG	52	112.572	110.717	90.120	1.00	0.00	H
MOTA	25	2HH2	ARG	52	114.330	110.391	90.596	1.00	0.00	H
MOTA	26	N	TYR	53	107.105	115.659	89.725	1.00	0.00	N
ATOM	27	CA	TYR	53	106.360	114.857	88.698	1.00	0.00	С
MOTA	28	C	TYR	5 3	104.944	115.448	88.356	1.00	0.00	C
MOTA	29	0	TYR	53	104.213	115.917	89.234	1.00	0.00	0
MOTA	30	CB	TYR	53	106.221	113.387	89.193	1.00	0.00	С
MOTA	31	CG	TYR	53	107.481	112.506	89.105	1.00	0.00	С
ATOM	32	CD1	TYR	53	108.238	112.270	90.254	1.00	0.00	С
MOTA	33	CD2	TYR	53		111.902	87.899	1.00	0.00	С
MOTA	34	CE1		53		111.450	90.197	1.00	0.00	С
MOTA	35	CE2	TYR	53		111.069	87.849	1.00	0.00	С
MOTA	36	CZ	TYR	53	109.729	110.848	89.000	1.00	0.00	С
MOTA	37	OH	TYR	53	110.838	110.047	88.972	1.00	0.00	. 0
MOTA	38	H	TYR	53		115.929	90.587	1.00	0.00	H
MOTA	39	HA	TYR	53		114.835	87.749	1.00	0.00	H
ATOM	40	1HB	TYR	53		113.374	90.220	1.00	0.00	· H
MOTA	41	2HB	TYR	53		112.881	88.609	1.00	0.00	H
MOTA	42		TYR	53		112.729	91.194	1.00	0.00	H
MOTA	43		TYR	53		112.078	86.995	1.00	0.00	H
MOTA	44	_	TYR	53		111.296	91. 0 80	1.00	0.00	H
ATOM	45	HE2		53		110.610	86.916	1.00	0.00	H
MOTA	46	HH	TYR	53		109.782	88.067	1.00	0.00	н
MOTA	47	И	VAL	54		115.358	87.076	1.00	0.00	. N
ATOM	48	CA	VAL	54		115.765	86.588	1.00	0.00	C
MOTA	49	С	VAL.			114.515	85.933	1.00	0.00	C
MOTA	50	0	VAL	54	102.989	113.950	84.954	1.00	0.00	0

MOTA	51	CB	VAL	54	103.294	116.991	85.608	1.00	0.00	С
MOTA	52	CG1	VAL	54	101.959	117.391	84.930	1.00	0.00	Č
MOTA	53	CG2	VAL	54	103.822	118.277	86.288	1.00	0.00	č
ATOM	54	H	VAL	54		114.977	86.430	1.00	0.00	н
ATOM	55	HA	VAL	54	102.552	116.097	87.438	1.00	0.00	H
ATOM	56	HB	VAT.	54		116.714	64.602	1.00	0.00	н
ATOM	57	1HG1	VAL	54		117.679	85.665	1.00	0.00	H
ATOM		2HG1		54		118.243	84.234	1.00	0.00	н
ATOM		3HG1		54		116.567	84.325	1.00		
ATOM		2HG2		54		118.112	86.769		0.00	H
ATOM		3HG2		54		119.104		1.00	0.00	H
ATOM		1HG2		54		118.642	85.567	1.00	0.00	H
ATOM	63	N	ARG	55		114.102	87.079	1.00	0.00	H
ATOM	64	CA	ARG	55			86.439	0.00	0.00	N
ATOM	65	c	ARG	55 55		113.002	85.830	0.00	0.00	c
ATOM	66	ō	ARG	55 55		113.480	84.579	0.00	0.00	C
ATOM	67	CB	ARG	55		114.441	84.665	0.00	0.00	0
ATOM	68	CG	ARG			112.395	86.882	0.00	0.00	C
ATOM	69	CD		55	100.151		88.159	0.00	0.00	C
ATOM	70		ARG,	55		111.038	88.997	0.00	0.00	С
		NE	ARG	55		110.761	90.348	0.00	0.00	N
ATOM	71	CZ	ARG	55		110.180	91.339	0.00	0.00	C
ATOM	72	NH1		55		109.704	91.239	0.00	0.00	N
ATOM	73	NH2		55		110.091	92.474	0.00	0.00	N
ATOM	74	HE	ARG	55	100.615		90.530	1.00	0.00	H
MOTA	75	H	ARG	55	100.954		87.214	0.00	0.00	H
ATOM	76		ARG	55	101.187		85.519	0.00	0.00	H
ATOM	77		ARG	55		111.617	86.379	0.00	0.00	H
ATOM	78		ARG	55	98.793	113.166	87.182	0.00	0.00	H
MOTA	79 :		ARG	55	100.628	112.570	88.763	0.00	0.00	H
ATOM	80 2		ARG	55	100.970	111.072	87.909	0.00	0.00	H
ATOM	. 81 :		ARG -	55	.98.785	110.098	88.493	0.00	.0.00	Ĥ.
ATOM			ARG	55	98.176	111.658	89.090	0.00	0.00	H
ATOM		LHH1		55	97.371	109.276	92.070	0.00	0.00	H
ATOM		SHHI		55	97.378	109.802	90.301	0.00	0.00	H
MOTA	85 :	LHH2	ARG	55	99.060	109.677	93.250	0.00	0.00	H
MOTA	86 2	2HH2	ARG	55	100.498	110.524	92.448	0.00	0.00	H
MOTA	87	N	GLY	56	99.823	112.791	83.436	1.00	0.00	N
MOTA	88	CA	GLY	56	99.062	113.119	82.194	1.00	0.00	С
ATOM	89	С	GLY	56	97.780	112.295	81.942	1.00	0.00	C
ATOM	90	0	GLY	56	96.678	112.843	81.956	1.00	0.00	0
ATOM	91	H	GLY	56	100.528	112.039	83.459	1.00	0.00	H
MOTA	92 3	LHA	GLY	56	98.786	114.192	82.166	1.00	0.00	H
ATOM	93 2	2HA	GLY	56	99.729	112.995	81.322	1.00	0.00	н
ATOM	94	N .	ARG	57	97.923	110.991	81.655	1.00	0.00	N
ATOM-	- 95	·CA···	ARG-	- 57 -	96::765	110.087	81:374-	1.00	0.00	 -C
ATOM	96	C :	ARG	57	97.000	108.655	81.967	1.00	0.00	C
ATOM	97	0	ARG	57	98.134	108.174	82.064	1.00	0.00	0
ATOM	98	CB 2	ARG	57	96.526	110.079	79.834	1.00	0.00	C
MOTA	99	CG 2	ARG	57	95.213		79.373	1.00	0.00	Ċ
ATOM	100	CD 2	ARG	57	94.996		77.856	1.00	0.00	C
ATOM	101	NE 2	ARG	57	93.701		77.548	1.00	0.00	N
MOTA	102	CZ Z	ARG	57	93.241		76.337	1.00	0.00	c
ATOM	103	NH1 2	ARG	57		108.827			0.00	N
ATOM		NH2		5 7	92.101		76.262	1.00	0.00	N
ATOM			ARG	57	93.108		78.347	1.00	0.00	H
ATOM	106		ARG	57		110.643	81.765	1.00	0.00	H
ATOM	107		ARG	57		110.497		1.00	0.00	н
MOTA	108 1		ARG	57		111.124		1.00	0.00	H
ATOM	109 2		ARG.	57		109.607		1.00	0.00	H
ATOM	110 1		irg	57			79.670	1.00	0.00	H
ATOM	111 2		1EG	57	94.345		79.850	1.00	0.00	Ħ
R. Tobi	122 1	ر لات	11:02	57	91.261		77 315	1.00	0.00	H
	13.5	-		==	-2.200			110	1.22	7
.: :::	21 2	<u> </u>		,			:::::	. 13		
		==		-	-	· - •			• -	•
		=	-						•	
•.				•			-			
			=						•	
	_		<u> </u>							
							•			
			-							

						0.5					
ATOM	124		PHE	58	92.925	104.888	82.221	1.00	0.00		C
MOTA	125		PHE	58		104.847	81.539	1.00	0.00		C
MOTA	126		PHE	58		105.992	81.449	1.00	0.00		C
MOTA	127		PHE	58		107.179	82.043	1.00	0.00		C
ATOM ATOM	128		PHE	58 58		107.221	82.725 82.064	1.00	0.00		C
ATOM	129 130		PHE	58		108.372 106.419	82.064	1.00	0.00		H H
MOTA		1HB	PHE	58		105.145	84.019	1.00	0.00		н
ATOM	132		PHE	58		106.807	84.415	1.00	0.00		н
ATOM	133		PHE	58		103.999	82.262	1.00	0.00		H
ATOM	134		PHE	58		103.929	81.068	1.00	0.00		н
MOTA	135	HZ	PHE	58	89.986	105.961	80.913	1.00	0.00		H
ATOM	136		PHE	58	90.738	108.067	81.966	1.00	0.00		H
ATOM	137		PHE	58		108.149	83.179	1.00	0.00		H
ATOM	138		LEU	59		104.662	81.698	0.00	0.00		N
ATOM ATOM	139		LEU	59 59		103.546	80.752	0.00	0.00		C
ATOM	140 141		LEU	59 59		102.327	81.038 80.211	0.00	0.00	•	0
ATOM	142		LEU	59		103.309	80.853	0.00	0.00		c
ATOM	143		LEU	59		102.416	79.817	0.00	0.00		Č
ATOM	144	CD1	LEU	59	99.468	100.925	79.926	0.00	0.00		С
MOTA	145	CD2	LEU	59	99.633	102.897	78.369	0.00	0.00		С
MOTA	146		LEU	59		104.671	82.627	0.00	0.00		H
ATOM	147		PEA	59		103.877	79.716	0.00	0.00		H
MOTA		1HB	LEU	59		102.939	81.865	0.00	0.00		H
MOTA MOTA	149 150		LEU	59 59		104.291	80.798 80.047	0.00	0.00		H
MOTA		1HD1		59 59		102.501	80.956	0.00	0.00		H
MOTA	152			59		100.688	79.606	0.00	0.00		Н
MOTA	153			59		100.321	79.304	0.00	0.00		H
MOTA	154	1HD2	ĹEU	59		102.327	77.675	0.00	0.00	•	H.
MOTA	155	2HD2	LEU	59	98.592	102.786	78.012	0.00	0.00		Н
ATOM		3HD2		59		103.961	78.256	0.00	0.00		H
ATOM	157		GLY	60		101.691	82.223	0.00	0.00		N
MOTA	158		GLY	60		100.505	82.595	0.00	0.00		C
MOTA MOTA	159 160		GLY GLY	60 60		100.470	84.075 84.920	0.00	0.00		Ö
ATOM	161		GLY	60		102.031	82.805	0.00	0.00		н
MOTA		1HA	GLY	60	96.432	99.582	82.395	0.00	0.00		H
ATOM	163		GLY	60		100.400	81.931	0.00	0.00		H
ATOM	164	N	LYS	61	94.466	99.529	84.393	1.00	0.00		N
MOTA	165		LYS	61	93.868	99.405	85.758	1.00	0.00		C
ATOM	166		LYS	61	93.299	97.972	86.042	1.00	0.00		C
MOTA	167		LYS	61	92.266	97.584	85.486	1.00	0.00		0
MOTA MOTA	168 169		LYS LYS	61 61		100.472 100.597	85.958 87.406	1.00	0.00		C
ATOM	170		LYS	61		100.537	87.529	1.00	0.00		c
ATOM	171		LYS	61		101.830	88.958	1.00	0.00		c
ATOM	172		LYS	61		102.910	89.003	1.00	0.00		N
MOTA	173		LYS	61		102.999	89.961	1.00	0.00		H
MOTA	174	2HZ	LYS	61	90.040	103.799	88.719	1.00	0.00		H
MOTA		3HZ	LYS	61		102.687	88.359	1.00	0.00		H
ATOM	176		LYS	61	94.523	98.723	83.745	1.00	0.00		H
ATOM	177		LYS	61	94.668	99.606 101.471	86.500 85.646	1.00	0.00		H
MOTA .		1HB 2HB	LYS	61 61		100.252	85.275	1.00	0.00		H
MOTA		1HG	LYS	61	91.791	99.629	87.739	1.00	0.00		H
ATOM		2HG	LYS	61		100.804	88.098	1.00	0.00		H
ATOM	182	1HD	LYS	61		102.672	87.205	1.00	0.00		H
MOTA	183	2HD	Lys	61		101.497	86.825	1.00	0.00		H
MOTA		1HE	LYS	61		100.873	89.292	1.00	0.00		H
ATOM		2HE	LYS	61		102.052	89.669	1.00	0.00		H
MOTA	186		GLY	. 62	93.868	97.257 95.929	87.026 87.443	0.00	0.00		C
ATOM ATOM	187 188		GLY GLY	62 62	93.338 93.782	95.949	88.844	0.00	0.00		C
ATOM	189		GLY	62	93.881	96.219	89.801	0.00	0.00		0
MOTA	190		GLY	62	94.799	97.595	87.296	0.00	0.00		н
ATOM		1HA	GLY	62	93.630	95.190	86.668	0.00	0.00		H
ATOM	192		GLY	62	92.228	95.918	87.437	0.00	0.00		H
MOTA	193		GLY	63	94.055	94.138	88.968	1.00	0.00		N
MOTA	194		GLY	63	94.411	93.510	90.288	1.00	0.00		C
MOTA	195		GLY	63	95.817	93.707	90.924	1.00	0.00		C
MOTA	196	0	GLY	63	96.231	92.889	91.746	1.00	0.00	-	0

The state of the s

						04					
ATOM	197	H	GLY	63	93.953	93.598	88.103	1.00	0.00		H
ATOM		1HA	GLY	63	93.677	93.819	91.056	1.00	0.00		H
ATOM	199	2HA	GLY	63	94.259	92.418	90.203	1.00	0.00		H
ATOM	200	N	PHE	64	96.503	94.806	90.594	0.00	0.00		N
ATOM	201	CA.	PHE	64	97.650	95.340	91.383	0.00	0.00		C
ATOM ATOM	202	0	PHE	64	97.219	96.766	91.673	0.00	0.00		C
ATOM	203 204	CB	PHE	64 64	96.780 98.957	96.906 95.211	93.017 90.531	0.00	0.00		O C
ATOM	205	CG	PHE	64	100.322	95.180	91.262	0.00	0.00		c
ATOM	206		PHE	64	101.339	94.374	90.729	0.00	0.00		c
ATOM	207		PHE	64	102.589	94.313	91.339	0.00	0.00		C
MOTA	208	CZ	PHE	64	102.844	95.070	92.476	0.00	0.00		C
MOTA	209	CE2	PHE	64	101.849	95.880	93.015	0.00	0.00		C
MOTA	210	CD2	PHE	64	100.597	95.943	92.407	0.00	0.00		C
ATOM	211	H	PHE	64	96.013	95.366	89.888	0.00	0.00		H
ATOM	212	HA	PHE	64	97.815	94.744	92.306	0.00	0.00		H
ATOM		1HB	PHE	64	98.995	95.988	89.745	0.00	0.00		H
ATOM	214	2HB	PHE	64	98.885	94.272	89.943	0.00	0.00		H
ATOM ATOM	215 216		PHE	64 64	101.175 103.371	93.786 93.687	89.834 90.923	0.00	0.00		H H
ATOM	217	HZ	PHE	64	103.371	95.022	92.935	0.00	0.00		н
ATOM	218		PHE	64	102.058	96.458	93.903	0.00	0.00		H
ATOM	219		PHE	64	99.845	96.585	92.839	0.00	0.00		H
ATOM	220	N	ALA	65	97.243	97.795	90.990	1.00	0.00		N
ATOM	221	CA	ALA	65	96.401	99.013	91.144	1.00	0.00		C
ATOM	222	С	ALA	65	96.155	99.807	89.814	1.00	0.00		C
ATOM	223	0	ALA	65	95.088	99.660	89.208	1.00	0.00		0
MOTA	224	CB	ALA	65	96.915	99.890	92.311	1.00	0.00		C
ATOM	225	H	ALA	65	97.644	97.519	90.086	1.00	0.00	• •	H
ATOM ATOM	226 227	HA 2HB	ALA ALA	65 65	95.375 · 96.805	98.686 99.369	91.416 93.278	1.00	0.00		H H·,
ATOM	228	3HB	ALA	65		100.139	92.197	1.00	0.00	•	H
ATOM	229	1HB	ALA	65		100.841	92.391	1.00	0.00		н
ATOM	230	N	LYS	66		100.720	89.405	1.00	0.00		N
ATOM	231	CA	LYS	66		101.620	88.233	1.00	0.00		C
MOTA	232	C	LYS	66	98.200	102.188	87.702	1.00	0.00		C
MOTA	233	0	LYS	66	98.947	102.808	88.469	1.00	0.00		0
ATOM	234	CB	LYS	66		102.752	88.564	1.00	0.00		C
ATOM	235	CG	LYS	66		103.839	89.590	1.00	0.00		C
ATOM	236	CE	LYS LYS	66 66		104.754	89.991 90.862	1.00 1.00	0.00		C
ATOM ATOM	237 238	NZ	LYS	66		106.785	91.189	1.00	0.00		N
ATOM		1HZ	LYS	66		107.574	91.773	1.00	0.00		Н
ATOM		2HZ	LYS	66		107.146	90.319	1.00	0.00		H
ATOM	241	3Hz	LYS	. 66 -	93.670	106:234	~ 91.702	-100	-0.00		H-
ATOM	242	H	LYS	66	97.952	100.685	89.906	1.00	0.00		H
ATOM	243	HA	LYS	66		101.006	87.418	1.00	0.00		H
ATOM	244		LYS	66		103.250	87.615	1.00	0.00		H
ATOM		2HB	LYS	66		102.272	88.900	1.00	0.00		H
ATOM	246	1HG 2HG	LYS	66 66		103.368	90.497 89.163	1.00 1.00	0.00		H H
ATOM ATOM	248		LYS	66		105.136	89.086	1.00	0.00		H
ATOM	249		LYS	66			90.526	1.00	0.00		H
ATOM	250		LYS	66		105.558		1.00	0.00		H
ATOM	251		LYS	66		106.524		1.00	0.00		H
ATOM	252	N	CYS	67	98.478	102.033	86.400	1.00	0.00		Ŋ
ATOM	253	CA	CYS	67		102.670		1.00	0.00		C
ATOM	254	C	CYS	67		103.971		1.00	0.00		C
ATOM	255	0	CYS	67 		104.091		1.00	0.00		0
MOTA	256		CYS	67 67		101.592		1.00	0.00 0.00		c s
atom Atom	257 251	eg E	CYS	67 67		101.262					7
-121		7. T.		57 _			::. <u>:::</u>	1.00	0.00		ŧ
	::			~	11.17.				::::		
-=				-		• • • • • • • • • • • • • • • • • • • •	: =::				
		-	•								

-

						65					
ATOM	270	CE1	PHE	68	96.435	109.246	85.843	.1.00	0.00		.C
MOTA	271	CZ	PHE	68	95.682	108.371	86.620	1.00	0.00		C
MOTA	272	CE2	PHE	68	96.228	107.159	87.035	1.00	0.00		С
ATOM	273	CD2	PHĖ	68	97.532	106.823	86.682	1.00	0.00		C
MOTA	274	H	DHE .	68	101.038	104.758	85.528	1.00	0.00		H
ATOM	275	ĦĀ	PHE	68	99.054	106.312	83.764	1.00	0.00		Ħ
ATOM	276	1HB	PHE	68	100.300	107.066	86.470	1.00			H
MOTA	277		PHE	68		108.312	85.283	1.00	0.00		H
ATOM	278	HD1		68		109.598	84.877	1.00	0.00		H
MOTA	279	HE1		68		110.183	85.512	1.00	0.00		H H
MOTA	280	HZ	PHE	68		108.628	86.896	1.00	0.00		H
MOTA	281	HE2	_	68		106.480	87.633	1.00	0.00		н
ATOM	282	HD2		68		105.882	87.013	1.00 1.00	0.00		N
ATOM	283	N	GLU	. 69		107.502	82.456 81.744	1.00	0.00		C
ATOM	284	CA	GLU	69		108.317 109.587	82.591	1.00	0.00		č
ATOM	285	C	GLU	69 69		110.527	82.695	1.00	0.00		ō
MOTA MOTA	286 287	O CB	GLU	69		108.631	80.346	1.00	0.00		c
ATOM	288	CG	GLU	69		109.425	79.404	1.00	0.00		C
ATOM	289	CD	GLU	69		109.581	77.983	1.00	0.00		C
ATOM	290	OE1		69		108.612	77.239	1.00	0.00		0
ATOM	291		GLU	69		110.872	77.674	1.00	0.00		0
ATOM	292	H	GLU	69	•	107.688	82.316	1.00	0.00		H
MOTA	293	HA	GLU	69	102.816	107.705	81.581	1.00	0.00		H
ATOM		1HB	GLU	69	101.047	107.679	79.841	1.00	0.00		H
MOTA	295	2HB	GLU	69	100.356	109.179	80.447	1.00	0.00		H
MOTA	296	1HG	GLU	69	102.471	110.425	79.828	1.00	0.00		H
ATOM	297	2HG	GLU	69		108.929	79.306	1.00	0.00		H
MOTA	298	N	ILE	· 70		109.579	83.229	1.00	0.00		N
MOTA	299	CA.		70		110.642	84.193	1.00	0.00		C
MOTA	300	С	ILE	70		111.309	83.637	1.00	0.00		0
ATOM	301	0_	ILE	70	106.208		83.454	1.00	0.00		C
ATOM	302	CB	ILE	70		110.093	85.662 86.195	1.00	0.00		Č
MOTA	303		ILE	70·		109.225 111.255	86.658	1.00	0.00		Č
ATOM	304		ILE	70 70		108.633	87.611	1.00	0.00		č
MOTA	305 306	H	ILE	70		108.715	83.099	1.00	0.00		H
MOTA .	307	HA	ITE	70		111.422	84.256	1.00	0.00		H
ATOM	308	HB	ILE	70		109.444	85.657	1.00	0.00		H
ATOM		1HG1		70		109.795	86.130	1.00	0.00		H
ATOM		2HG1		70		108.371	85.507	1.00	0.00		H
ATOM		2HG2		70	105.106	111.947	86.313	1.00	0.00		H
ATOM		3HG2		70	103.412	111.865	86.831	1.00	0.00		H
ATOM	313	1HG2	ILE	70	104.649	110.880	87.643	1.00	0.00		H
ATOM	314	2HD1	ILE	70		108.167	87.762	1.00	0.00		H
MOTA	315	3HD1	ILE	70		109.405	88.395	1.00	0.00		H
ATOM	316	1HD1		70		107.858	87.810	1.00	0.00		H
ATOM	317	N	SER	71		112.631	83.413	1.00	0.00		N C
ATOM	318	CA	SER	71		113.412	83.098	1.00	0.00		c
ATOM	319	C	SER	71		113.834	84.385	1.00 1.00	0.00		Ö
ATOM	320	0	SER	71 71		114.421 114.645	85.309 82.265	1.00	0.00		č
ATOM	321	CB	SER	71		115.366	81.807	1.00	0.00		ŏ
ATOM	322 323	OG H	SER SER	71 71		113.093	83.746	1.00	0.00		н
ATOM ATOM	324	HA	SER	71		112.810	82.450	1.00	0.00		H
ATOM		1HB	SER	71		114.332	81.383	1.00	0.00		H
ATOM		2HB	SER	71		115.316	82.847	1.00	0.00		H
ATOM	327	HG	SER	71		115.699	82.578	1.00	0.00		H
ATOM	328	N	ASP	72		113.631	84.406	1.00	0.00		N
ATOM	329		ASP	72	109.394	114.350	85.338	1.00	0.00		C
ATOM	330	· c	ASP	72		115.878	84.976	1.00	0.00		C
ATOM	331	0	ASP	72		116.245	83.851	1.00	0.00		0
ATOM	332	CB	ASP	72	110.803	113.684		1.00	0.00	**	G.
ATOM	333	ÇG	ASP	72		113.276	86.597	1.00	0.00		C
ATOM	334		ASP	72		112.171	86.785	1.00	0.00		0
MOTA	335		ASP	72		114.257	87.539	1.00	0.00		0
ATOM	336	H	ASP	72		113.054	83.626	1.00	0.00		H H
ATOM	337	HA	ASP	72		114.230	86.367	1.00 1.00	0.00	•	H
ATOM		1HB	ASP	72 72		112.765	84.660 84.736	1.00	0.00		H
MOTA	339		ASP	72		114.326 116.750	85.893	1.00	0.00		N
ATOM	340	N	ALA ALA	73 73		118.750	85.618	1.00	0.00		c
ATOM	341	CA C	ALA	73 73		119.067	85.378	1.00	0.00		č
MOTA	342	U	₩.	73	110.050	. 110.007	55.576		• •		_

("

ATOM	343	0	ALA	73	110 112	119.894	84.466	1.00	0.00		0
ATOM	344	СВ	ALA	73		118.712	86.796	1.00	0.00		č
ATOM	345	H	ALA	73		116.340	86.825	1.00	0.00		н
MOTA	346	HA	ALA	73		118.298	84.699	1.00	0.00		н
ATOM	347		ALA	73		118.105	86.956	1.00	0.00		H
MOTA		знв	ALA	73		118.720	87.749	1.00	0.00		H
ATOM		1HB	ALA	73		119.748	86.618	1.00	0.00		н
ATOM	350	N	ASP	74		118.878	86.187	1.00	0.00		N
ATOM	351	CA	ASP	74		119.637	86.060	1.00	0.00		C
ATOM	352	C	ASP	74		119.098	84.983	1.00	0.00		č
MOTA	353	ō	ASP	74		119.901	84.399	1.00	0.00		ō
ATOM	354	CB	ASP	74		119.767	87.483	1.00	0.00		Č
ATOM	355	CG	ASP	74		120.707	88.409	1.00	0.00		Č
ATOM	356		ASP	74		121.888	88.568	1.00	0.00		ō
ATOM	357		ASP	74		120.106	88.975	1.00	0.00		ō
ATOM	358	H	ASP	74		118.227	86.954	1.00	0.00		н
ATOM	359	HA	ASP	74		120.667	85.713	1.00	0.00		H
ATOM		1HB	ASP	74		118.780	87.967	1.00	0.00		H
ATOM		2HB	ASP	74		120.175	87.408	1.00	0.00		н
ATOM	362	N	THR	75		117.782	84.701	0.00	0.00		N
ATOM	363	CA	THR	75		117.208	83.552	0.00	0.00		Ċ
ATOM	364	C	THR	75		117.002	82.190	0.00	0.00		č
ATOM	365	ō	THR	75		116.797	81.167	0.00	0.00		ō
ATOM-	366	СВ	THR	75		115.866	83.972	0.00	0.00		Ċ
ATOM	367		THR	75		114.890	84.377	0.00	0.00		ō
ATOM	368	CG2	THR	75		115.964	85.096	0.00	0.00		Ċ
ATOM	369	н	THR	75		117.204	85.264	0.00	0.00		н
ATOM	370	HA	THR	75		117.901	83.291	0.00	0.00		н
ATOM	371	HB	THR	75		115.471	83.084	0.00	0.00		H
ATOM	372	HG1	THR	75		114.041	84.362	0.00	0.00		н
MOTA	373	'lHG2		75		114.990	85.288	0.00	0.00		·H
ATOM	374	2HG2	THR	75	116.800		84.847	0.00	0.00		H
ATOM	375			75	115.544		86.048	0.00	0.00		н
ATOM	376	N	LYS	76	112.156	117.002	82.157	1.00	0.00		N
ATOM	377	CA	LYS	76	111.326	116.626	80.966	1.00	0.00		C
ATOM	378	C	LYS	76	111.521	115.147	80.454	1.00	0.00		C
ATOM	379	0	LYS	76	111.955	114.899	79.326	1.00	0.00		Ο.
ATOM	380	CB	LYS	76	111.377	117.750	79.890	1.00	0.00		C
MOTA	381	CG	LYS	76	110.215	117.715	78.869	1.00	0.00		C
MOTA	382	CD	LYS	76	110.269	118.893	77.878	1.00	0.00		C
MOTA	383	CE	LYS	76	109.083	118.874	76.902	1.00	0.00		C
ATOM	384	NZ	LYS	76	109.178	120.032	75.991	1.00	0.00		N
ATOM		1HZ	LYS	76	108.383	120.020	75.336	1.00	0.00	`	H
ATOM	386	2HZ	LYS	76	109.156	120.904	76.540	1.00	0.00		H
ATOM"	387	3HZ	LYS	76	110.059	119.982	75.461	1.00	.0:00	-	H.
ATOM	388	H	LYS	76	111.732		83.060	1.00	0.00		H
ATOM	389	HA	LYS	76	110.283		81.335	1.00	0.00		H
ATOM		1HB	LYS	76	111.373	118.738	80.390	1.00	0.00		H
ATOM	391		LYS	76	112.350		79.362	1.00	0.00		H
ATOM	392		LYS	76	110.236		78.310	1.00	0.00		. н
MOTA	393		LYS	76	109.246		79.405	1.00	0.00		H
MOTA	394		LYS	76	110.276		78.439	1.00	0.00		H
ATOM	395		LYS	76	111.226		77.323	1.00	0.00		H
ATOM	396		LYS	76	109.072		76.323	1.00	0.00	-	H
ATOM	397		LYS	76	108.124		77.455	1.00	0.00		H
ATOM	398	N	GLU	77	111.182		81.304	1.00	0.00		N
ATOM	399		GLU	77	111.388		81.010	1.00	0.00		C
ATOM	400		GLU	77	110.056		81.242	1.00	0.00		C
MOTA	401		GTD	77	109.498		82.341	1 00	0.00		0
MOTA	402		GLU	77	112.526		81.907	1.00	0.00		C
RION	103		GLU.	77	113_952		01.620	1.00	0.00		c
30.000	-04	· <u>T</u>	JLU	7~	115.000 113.133	11111111	10.535	1.00	0.00		ت
:	_ 2 .3				7.72		-1-115	• ::			
<u></u>			==					::			
	-		- <u>-</u> -								
	-										

.....

						67					
MOTA	416	0	VAL	78	109.020	108.243	80.129	1.00	0.00		0
MOTA	417	CB	VAL	78	107.372		78.964	1.00	0.00		С
MOTA	418	CG1		78	106.959		78.749	1.00	0.00		C
ATOM	419	CG2		78	108.015		77.661	1.00	0.00		С Н
ATOM	420	H	VAL	78	110.071		79.345 81.062	1.00 1.00	0.00		н
ATOM	421	HA. HB	VAL VAL	78 78	107.598		79.103	1.00	0.00		н
ATOM ATOM	422	1HG1		78 78	107.833		78.578	1.00	0.00		H.
ATOM	424	2HG1		78	106.287		77.879	1.00	0.00		н
ATOM		3HG1		78	106.421		79.625	1.00	0.00		H
ATOM	426	2HG2	VAL	78	108.267	109.184	77.736	1.00	0.00		H
ATOM	427	3HG2	VAL	78	107.338		76.794	1.00	0.00		H
ATOM	428	1HG2	VAL	78	108.950		77.408	1.00	0.00		H
ATOM	429	N	PHE	79		108.656	81.701	1.00	0.00		С И
MOTA	430	CA	PHE	79	107.559		82.387	1.00 1.00	0.00 0.00		c
ATOM	431	C	PHE	79 79	105.163	106.654	82.583 82.943	1.00	0.00		ŏ
ATOM ATOM	432 433	O CB	PHE	79 79		107.551	83.793	1.00	0.00		Č
ATOM	434	CG	PHE	79		107.986	83.837	1.00	0.00		C
ATOM	435		PHE	79		109.280	84.244	1.00	0.00		C
ATOM	436	CE1	PHE	79	111.344	109.666	84.309	1.00	0.00		C
ATOM	437	CZ	PHE	79		108.773	83.948	1.00	0.00		c
MOTA	438		PHE	79		107.481	83.544	1.00	0.00		C
ATOM	439	CD2		79		107.088	83.496	1.00	0.00		C
ATOM	440	H	PHE	79		109.437	82.183	1.00 1.00	0.00		н
ATOM	441	HA	PHE	79 79		106.643 108.258	81.810 84.363	1.00	0.00		н
ATOM ATOM	442 443	1HB 2HB	PHE	79 79		106.607	84.368	1.00	0.00		H
ATOM	444		PHE	79		109.992	84.503	1.00	0.00		H
ATOM	445	HE1		79		110.656	84.642	1.00	0.00		Ħ
MOTA	446	HZ	PHE	79	113.384	109.073	84.006	1.00	0.00		H
MOTA	447	HE2	PHE	79		106.782	83.282	1.00	0.00		H
MOTA	448		PHE	79		106.085	83.177	1.00	0.00		H
MOTA	449	N	ALA	80		105.319	82.471	0.00	0.00		N C
MOTA	450	CA	ALA	80		104.508	83.001 84.547	0.00	0.00		c
ATOM	451	C	ALA ALA	80 80		104.272 103.428	85.035	0.00	0.00		ŏ
MOTA MOTA	452 453	CB	ALA	80		103.194	82.218	0.00	0.00		C
MOTA	454	н	ALA	80		104.891	82.358	0.00	0.00		H.
ATOM	455	HA	ALA	80		105.000	82.765	0.00	0.00		H
ATOM	456	1HB	ALA	80	104.222	102.506	82.564	0.00	0.00		Ħ
MOTA	457	2HB	ALA	80		103.354	81.136	0.00	0.00		H
ATOM	458		ALA	80		102.656	82.325	0.00	0.00		H N
ATOM	459	N	GLY	81		105.047 105.001	85.329 86.811	1.00 1.00	0.00		Ċ
MOTA	460 461	CA.	GPA GPA	81 81		104.300	87.487	1.00	0.00		c
MOTA MOTA	462	0	GLY	81		104.747	87.385	1.00	0.00		0
ATOM	463	н	GLY	81		105.767	84.788	1.00	0.00		H
ATOM	464		GLY	81	105.375	104.556	87.150	1.00	0.00		H.
ATOM	465	2HA	GLY	81		106.029	87.189	1.00	0.00		H
ATOM	466	N	LYS	82		103.207	88.205	0.00	0.00		N
ATOM	467	CA	LYS	82		102.410	88.951	0.00	0.00		C
ATOM	468		LYS	82		102.984 102.982	90.404 91.231	0.00	0.00		ō
ATOM ATOM	469 470	O CB	LYS	82 82		100.916	88.804	0.00	0.00		Č
ATOM	471		LYS	82	102.310		89.746	0.00	0.00		C
ATOM	472	CD	LYS	82	102.506		89.344	0.00	0.00		C
ATOM	473		LYS	82	103.964	97.854	89.290	0.00	0.00		С
MOTA	474	NZ	LYS	82	104.023		88.932	0.00	0.00		N
ATOM		1HZ	LYS	82	103.258		89.258	1.00	0.00		H
MOTA		2HZ	LYS	82	104.049		87.906	1.00	0.00		H H
ATOM		3HZ	LYS	82 82	104.877	95.915 102.956	89.296 88.189	1.00	0.00		, H
ATOM	478 479		LYS	82		102.350	88.412	0.00	0.00		н
MOTA MOTA		1HB	LYS	82		100.839	88.899	0.00	0.00		H
ATOM		2HB	LYS	82		100.609	87.752	0.00	0.00		H
MOTA		1HG	LYS	82	101.223	100.047	89.831	0.00	0.00		H
ATOM		2HG	LYS	82		100.010	90.766	0.00	0.00		H
MOTA		1HD	LYS	82	102.006		88.371	0.00	0.00		H
ATOM		2HD	LYS	82	101.939		90.057	0.00	0.00	•	H H
MOTA		THE	LYS	82	104.477		90.265	0.00	0.00		H
ATOM		2HE	LYS	82 83	104.562	98.441 103.425	88.556 90.715	0.00	0.00		N
ATOM	488	N	THE	0.5	101.013	LUJ. 443	20.713	5.00	5.50		

(* ·

							•				
						68			•		
3.001	400	C 3	T7 17								_
MOTA MOTA	489 490	CA C	ILE	83 83		103.996 102.861		0.00	0.00		C
ATOM	491	Ö	ILE	83		102.450	92.636	0.00	0.00		Ö
ATOM	492	CB	ILE	83		105.267	91.908	0.00	0.00		č
ATOM	493		ILE	83		105.908	93.291	0.00	0.00		c
ATOM	494	CG1	ILE	83		106.395		0.00	0.00		C
MOTA	495	CD1	ILE	83	99.796	106.303	89.513	0.00	0.00		C
ATOM	496	H	ILE	83		103.382		0.00	0.00		H
ATOM	497	HA	ILE	83		104.343		0.00	0.00		H
ATOM	498	HB 1HG2	ILE	83		104.929		0.00	0.00		H
ATOM ATOM		2HG2		· 83		106.771 105.197		0.00	0.00		H H
ATOM		3HG2		83		106.268	93.788	0.00	0.00		н
ATOM		1HG1		. 83		106.416		0.00	0.00		н
ATOM	503	2HG1	ILE	83	99.975	107.399		0.00	0.00		H
MOTA	504	1HD1	ILE	83	100.166	107.159	88.919	0.00	0.00		H
ATOM		2HD1		83		105.386		0.00	0.00		H
ATOM	506	3HD1		83		106.323		0.00	0.00		H
ATOM	507	N	VAL	84		102.366		1.00	0.00		N
ATOM ATOM	508 509	CA C	VAL VAL	84 84		101.190	94.755 96.168	1.00 1.00	0.00		C
ATOM	510	ŏ	VAL	84		101.085		1.00	0.00		ō
ATOM	511	CB	VAL	84		100.119		1.00	0.00		C
ATOM	512	CG1	VAL	84	100.985	98.872		1.00	0.00		C
MOTA	513	CG2	VAL	84	101.915	99.594	93.519	1.00	0.00		C
ATOM	514	H	VAL	84		102.693	93.997	1.00	0.00		H
ATOM	515	HA	VAL	84		100.666		1.00	0.00		H
MOTA	516	HB 1HG1	VAL	84		100.600 98.329	95.394	1.00	0.00		H
MOTA MOTA		2HG1		84 84 .	100.133	98.329		1.00	0.00		н
ATOM		3HG1		84	100.689	99.129	96.724	1.00	0.00		· н
ATOM		2HG2		84		100.415	92.933	1.00	0.00		H
MOTA	521	3HG2	VAL	84	102.707	98.831	93.635	1.00	0.00		H
ATOM	522	1HG2	VAL	84	101.112	99.150	92.899	1.00	0.00		H
MOTA	523	N	PRO	85		101.783	96.473	1.00	0.00		N
ATOM	524	CA	PRO	85		102.296		1.00	0.00		C
ATOM ATOM	525 526	С 0	PRO PRO	85 85		101.264	98.958 98.822	1.00	0.00		C
ATOM	527	СВ	PRO	85		102.731	97.410	1.00	0.00		č
ATOM	528	CG	PRO	85		101.769	96.303	1.00	0.00		Ċ
ATOM	529	CD	PRO	85		101.509	95.509	1.00	0.00		C
ATOM	530	HA	PRO	85	98.468	103.206	98.052	1.00	0.00		H
ATOM	531		PRO	85		102.729	98.270	1.00	0.00		H
ATOM	532		PRO	85		103.769	97.020	1.00	0.00		H
ATOM	533		PRO	85		100.819	96.743	1.00	0.00		H
ATOM ATOM	534 535	2HG	PRO PRO	85 85		100.464	95.675 95.147	1.00	0.00		н
ATOM	536	2HD	PRO	85		102.183	94.633	1.00	0.00		н
ATOM	537	N	LYS	86		101.742		0.00	0.00	•	N
MOTA	538	CA	LYS	86	98.662	100.888	101.331	0.00	0.00		C
ATOM	539	C	LYS	86			101.889	0.00	0.00		С
MOTA	540	0_	LYS	86			102.113	0.00	0.00		0
MOTA	541	CB	LYS	86			102.404	0.00	0.00		C
ATOM ATOM	542 543	CC CD	LYS LYS	86 86			102.985 103.828	0.00	0.00		c
ATOM	544	CE	LYS	86			104.284	0.00	0.00		č
ATOM	545	NZ	LYS	86			105.030	0.00	0.00		N
MOTA	546		LYS	86			105.341	1.00	0.00		H
1221	517	222	LIC	SC	22.222	105.550	105.951	2.00	6 65		u
ATOM.	54B.		LYS	86		106.335		1.00	0.00		H
STOLL	<u> </u>	Ħ	LVS	86			100.099	0.00	6.00		H
ATCH HTT) 70 . C_	.: <u>.</u> :		\$3 63			.101_023	0.00 0.01	1.00		i 편
		<u> </u>		- -					• • •		:
					٠.:	• 11.	· •				
* ***	٠.	<u>.</u>			:			-			
		<u>-</u>									
	٠-					. .	•				
			•								
-						-					
-:							· 				
-			•								

			69	
ATOM	562 O SER	87	94.403 97.411 101.905 1.00 0.00	0
MOTA	563 CB SER	87	94.007 100.572 103.026 1.00 0.00	C
ATOM	564 OG SER	87	92.956 99.832 103.653 1.00 0.00	O H
ATOM	565 H SER	87	96.215 101.475 101.887 1.00 0.00	н
ATOM	SGG HA SER	97	95.461 99.059 103.431 1.00 0.00 94.402 101.305 103.758 1.00 0.00	H
MOTA	567 1HB SER	87	93.596 101.174 102.191 1.00 0.00	H
MOTA	568 2HB SER 569 HG SER	87 87	92.584 99.229 102.998 1.00 0.00	H
MOTA	569 HG SER 570 N LEU	88	94.447 98.902 100.227 1.00 0.00	N
ATOM ATOM	571 CA LEU	88	94.175 97.890 99.154 1.00 0.00	C
ATOM	572 C LEU .	88	95.362 96.936 98.752 1.00 0.00	C
MOTA	573 O LEU	88	95.100 95.892 98.156 1.00 0.00	0
ATOM	574 CB LEU	88	93.567 98.609 97.916 1.00 0.00	C
ATOM	575 CG LEU	88	92.166 99.261 98.079 1.00 0.00 91 833 100 106 96.839 1.00 0.00	c
ATOM	576 CD1 LEU	88	32.033 200.000	ċ
MOTA	577 CD2 LEU	88	31.033	н
ATOM	578 H LEU	88	94.777 99.847 100.006 1.00 0.00 93.404 97.191 99.529 1.00 0.00	H
MOTA	579 HA LEU 580 1HB LEU	88 88	94.292 99.365 97.570 1.00 0.00	H
ATOM ATOM	580 1HB LEU 581 2HB LEU	88	93.512 97.889 97.075 1.00 0.00	H
ATOM	581 2HB HEU	88	92.179 99.938 98.956 1.00 0.00	H
ATOM	583 2HD1 LEU	88	92.580 100.904 96.672 1.00 0.00	H
MOTA	584 3HD1 LEU	88	91.798 99.496 95.915 1.00 0.00	H
ATOM	585 1HD1 LEU	88	90.851 100.605 96.935 1.00 0.00	H H
ATOM	586 2HD2 LEU	88	91.004 97.492 97.449 1.00 0.00 91 192 97.637 99.211 1.00 0.00	н
MOTA	587 3HD2 LEU	88	31.13	н
MOTA	588 1HD2 LEU	88	90.055 98.690 98.359 1.00 0.00 96.626 97.224 99.109 1.00 0.00	N
MOTA	. 589 N LEU 590 CA LEU	89 89	97.699 96.192 99.214 1.00 0.00	, C
MOTA		89	97.562 95.227 100.455 1.00 0.00	C
MOTA MOTA	591 C LEU 592 O LEU	89	97.664 94.008 100.298 1.00 0.00	0
ATOM	593 CB LEU	89	99.055 96.960 99.166 1.00 0.00	C
MOTA	594 CG LEU	89	100.327 96.091 98.994 1.00 0.00	c ·
MOTA	595 CD1 LEU	89	100.467 95.560 97.558 1.00 0.00	c
ATOM	596 CD2 LEU	89	101.587 96.896 99.355 1.00 0.00	н
MOTA	597 H LEU	89	30.700	H
MOTA	598 HA LEU	89	97.643 95.547 98.314 1.00 0.00 99.038 97.716 98.354 1.00 0.00	H
ATOM	599 1HB LEU	89 89	99.142 97.561 100.093 1.00 0.00	H
MOTA	600 2HB LEU 601 HG LEU	89	100.270 95.225 99.684 1.00 0.00	H
MOTA ATOM	602 2HD1 LEU	89	99.536 95.099 97.181 1.00 0.00	H
ATOM	603 3HD1 LEU	89	100.723 96.351 96.834 1.00 0.00	H
ATOM	604 1HD1 LEU	89	101.247 94.781 97.489 1.00 0.00	H H
ATOM	605 2HD2 LEU	89	101.702 97.797 98.723 1.00 0.00	н
ATOM	606 3HD2 LEU	89	101.302	н
ATOM	607 1HD2 LEU	89	102:307	N
ATOM	608 N LEU	90	97.330 95.750 101.676 1.00 0.00 97.169 94.928 102.915 1.00 0.00	C.
MOTA	609 CA LEU 610 C LEU	90 90	95.928 93.965 102.973 1.00 0.00	C
MOTA	610 C LEU 611 O LEU	90	96.098 92.800 103.340 1.00 0.00	0
MOTA MOTA	612 CB LEU	90	97.194 95.890 104.141 1.00 0.00	C
ATOM	613 CG LEU	90	98.552 96.556 104.496 1.00 0.00	C
MOTA	614 CD1 LEU	90	98.334 97.715 105.480 1.00 0.00	C
ATOM	615 CD2 LEU	90	99.545 95.556 105.115 1.00 0.00 97.315 96.778 101.696 1.00 0.00	н
MOTA	616 H LEU	90	7,1323	н
MOTA	617 HA LEU	90	98.046 94.258 102.994 1.00 0.00 96.424 96.670 103.982 1.00 0.00	H
MOTA	618 1HB LEU	90 90	96.838 95.348 105.041 1.00 0.00	H
ATOM	619 2HB LEU 620 HG LEU	90	99.004 96.976 103.574 1.00 0.00	H
MOTA	620 HG LEU 621 2HD1 LEU	90	97.669 98.489 105.053 1.00 0.00	н
MOTA MOTA	621 2HD1 LEU	90	97.880 97.378 106.432 1.00 0.00	H
ATOM	623 1HD1 LEU	90	99.284 98.222 105.733 1.00 0.00	H
ATOM	624 2HD2 LEU	90	99.137 95.070 106.021 1.00 0.00	H H
ATOM	625 3HD2 LEU	90	99.817 94.752 104.408 1.00 0.00	H
MOTA.	626 1HD2 LEU		100:400 50:000	N.
MOTA	627 N LYS	91	34.703	Ċ
MOTA	628 CA LYS	, 91	93.473 93.563 102.662 0.00 0.00 93.508 92.243 101.787 0.00 0.00	С
MOTA	629 C LYS	91	93.266 91.185 102.376 0.00 0.00	0
MOTA	630 O LYS	91 91	92.218 94.452 102.398 0.00 0.00	C
MOTA	631 CB LYS 632 CG LYS	91	91.542 95.092 103.637 0.00 0.00	C
ATOM	632 CG LYS 633 CD LYS	91	92.338 96.229 104.304 0.00 0.00	C
MOTA MOTA	634 CE LYS	91	91.582 96.846 105.488 0.00 0.00	С
AION.				

(

ATOM	635	NZ	LYS	91	92.386	97.929	106.087	0.00	0.00	N
ATOM	636	1HZ	LYS	91	91.873	98.339	106.881	1.00	0.00	H
ATOM	637		LYS	91	93.283		106.419	1.00	0.00	H
ATOM	638		LYS	91	92.562		105.380	1.00	0.00	H
ATOM	639	н	LYS	91	94.687		102.350	0.00	0.00	н
ATOM	640	HA	LYS	91	93.377		102.550		0.00	н
								0.00		
ATOM	641		LYS	91	91.440		101.916	0.00	0.00	H
ATOM	642		LYS	91	92.435		101.637	0.00	0.00	н
ATOM	643	1HG	LYS	91	91.314	94.304	104.382	0.00	0.00	H
ATOM	644	2HG	LYS	91	90.551	95.483	103.331	0.00	0.00	H
ATOM	645	1HD	LYS	91	92.559	97.007	103.551	0.00	0.00	H
ATOM	646	2HD	LYS	91	93.322	95.847	104.640	0.00	0.00	H
ATOM	647	1HE	LYS	91	91.361	96.077	106.256	0.00	0.00	н
ATOM	648	2HE	LYS	91	90.598		105.168	0.00	0.00	н
ATOM	649	N	PRO	92	93.817		100.453	1.00	0.00	N
ATOM	650	CA	PRO	92	94.036	90.912	99.718	1.00	0.00	Ĉ
ATOM		C	PRO	92		90.180	99.890		0.00	č
	651				95.423			1.00		ō
ATOM	652	0	PRO	92	95.793	89.369	99.038	1.00	0.00	
MOTA	653	CB	PRO	92	93.768	91.398	98.277	1.00	0.00	C
ATOM	654	CG	PRO	92	94.319	92.824	98.235	1.00	0.00	С
MOTA	655	CD	PRO	92	93.992	93.397	99.612	1.00	0.00	C
MOTA	656	HA	PRO	92	93.260	90.170	99.994	1.00	0.00	H
ATOM	657	1HB	PRO	92	94.220	90.748	97.504	1.00	0.00	H
ATOM	658	2HB	PRO	92	92.679	91.403	98.076	1.00	0.00	н
ATOM	659	1HG	PRO	92	95.417	92.815	98.087	1.00	0.00	H
ATOM	660		PRO	92	93.897	93.431		1.00	0.00	H
ATOM	661		PRO	92	94.812	94.049	99.968	1.00	0.00	н
ATOM	662	2HD	PRO	92	93.067	94.003	99.577	1.00	0.00	н
										N
ATOM	663	N	HIS	93	96.172		100.981	1.00	0.00	
ATOM	664	CA.	HIS	93	97.474		101.304	1.00	0.00	C
ATOM	665	С	HIS	93	98.649		100.264	1.00	0.00	C
ATOM	666	0	HIS	93	99.418	88.994	99.993	1.00	0.00	0
MOTA	667	CB	HIS	93	97.234	88.275	101.763	1.00	0.00	C
ATOM	668	CG	HIS	93	96.378	88.105	103.018	1.00	0.00	C
ATOM	669	ND1	HIS	93	96.872	88.240	104.307	1.00	0.00	И
ATOM	670	CE1	HIS	93	95.697	88.123	105.005	1.00	0.00	С
MOTA	671	NE2	HIS	93	94.519	87.915	104.337	1.00	0.00 -	N
ATOM	672		HIS	93	94.985		103.034	1.00	0.00	С
ATOM	673	H	HIS	93	95.706		101.647	1.00	0.00	н
ATOM	674	на	HIS	93	97.865		102.198	1.00	0.00	н
ATOM		1HB	HTS	93	96.801		100.929	1.00	0.00	H
									0.00	н
ATOM	676	2HB	HIS	93	98.208		101.958	1.00		н
ATOM	677		HIS	93	95.706		106.083	1.00	0.00	
ATOM	_678	_HE2			93.557_		104.690	1.00	0.00	_ H
ATOM	679	HD2	HIS	93	94.367		102.148	1.00	0.00	н
MOTA	680	N	GLN	94	98.823	91.137	99.720	0.00	0.00	N
ATOM	681	CA	GLN	94	99.797	91.412	98.619	0.00	0.00	С
ATOM	682	C	GLN	94	101.180	92.046	99.017	0.00	0.00	C
ATOM	683	0	GLN	94	102.059	92.109	98.155	0.00	0.00	0
ATOM	684	CB	GLN	94	99.060	92.295	97.574	0.00	0.00	C
ATOM	685	CG	GLN	94	97.975	91.596	96.709	0.00	0.00	c.
ATOM	686	CD	GLN	94	97.355	92.477	95.614	0.00	0.00	Ċ
ATOM	687	OE1		94	97.667	93.647	95.421	0.00	0.00	ō
ATOM		NE2		94	96.472	91.924	94.827	0.00	0.00	й
	688					91.789	99.942			н
ATOM	689	H	GLN	94	98.058			0.00	0.00	
ATOM	690	HA	GLN	94	100.067	90.467	98.106	0.00	0.00	H
ATOM	691		GLN	94	99.805	92.722	96.876	0.00	0.00	H
ATOM	692		GTM	94	98.619	93.181		0.00	0.00	H
eri Oiri	223		CT14	フҽ	97.206	71.517	ـ 7.36 ح	v.ùo	û.vû	ri.
ATOM	€9:		GIM	9-1	98.111	90.700	96.231	0.00	0.00	H
	€9 5 .	1357	27.77	_ 91	96.673	30_570	S 1.5 <u>15</u> _	_0.00	0.00	<u>u</u>
1761	- 212	-:	#1.07	_ 24_	S 21.372 .	22392		0.00	1.00	<u>:-</u>
	:-	• •	·=	• =	21	75.275	103.212	1 42		1
	٠.		-	-	:	1 1				
						.				

						71				
ATOM	708	HE	ARG	95	105.252	95.916	103.996	1.00	0.00	н
ATOM	709	H	ARG	95	100.593	92.395		1.00	0.00	H
ATOM	710	HA	ARG	95	102.788	94.078		1.00	0.00	н
MOTA		1HB	ARG	95	101.543	94.148		1.00	0.00	H H
УÜÜW	712	2HB	ARG	95	102.374 104.606	92.691 3 93.950 3		1.00	0.00	H
ATOM		1HG	ARG ARG	95 95	104.606	95.395		1.00	0.00	н
MOTA MOTA		2HG 1HD	ARG	95	102.448	95.423		1.00	0.00	н
ATOM	716		ARG	95	103.278	93.931		1.00	0.00	н
ATOM		2HH1		95	103.101	95.282		1.00	0.00	н
ATOM	718	1HH1		95	104.170	96.209	107.835	1.00	0.00	H
MOTA	719	1HH2	ARG	95	106.362	96.872		1.00	0.00	H
ATOM	720	2HH2	ARG	95	105.945	97.078		1.00	0.00	н
ATOM	721	N	GLU	96	104.096	91.080		0.00	0.00	N
ATOM	722	CA	GLU	96	105.189	90.147		0.00	0.00	C
MOTA	723	C	GLU	96 06	104.931	89.350 88.989	99.079 98.402	0.00	0.00	ō
ATOM	724	O CB	GLU	96 96	105.894 105.463	89.164		0.00	0.00	· č
MOTA MOTA	725 726	CG	GLU	96	106.066	89.793		0.00	0.00	Č
MOTA	727	CD	GLU	96	106.233	88.802		0.00	0.00	С
ATOM	728		GLU	96	105.377	88.590		0.00	0.00	0
MOTA	729	OE2	GLU	96	107.438	88.174	103.990	0.00	0.00	0
ATOM	730	H	GLU	96	103.250	90.754		0.00	0.00	H
MOTA	731	HA	GLU	96	106.124	90.718		0.00	0.00	н
MOTA	732		GLU	96	106.166	88.381		0.00	0.00	H H
MOTA	733		GLU	96	104.534	88.612		0.00	0.00	н
MOTA	734		GLU	96 96	105.426 107.044	90.617 90.260		0.00	0.00	н
ATOM ATOM	735 736	2HG N	GLU LYS	96 97	103.671	89.057	98.688	0.00	0.00	Ŋ
ATOM	737		LYS	. 97 .	103.353		97.488	.0.00	0.00	С
ATOM	738	c	LYS	97	103.443	88.919	96.085	0.00	0.00	C
ATOM	739	o	LYS	97	104.022	88.356	95.154	0.00	0.00	0
ATOM	740	CB	LYS	97	,101.948	87.561	_97.656	0.00	0.00	С
ATOM	741	CG	LYS	97	101.708	86.653′		0.00	0.00	C
MOTA	742		LYS	97	100.329	85.964	98.808	0.00	0.00	C
MOTA	743		LYS	97	99.974	85.222		0.00	0.00	C N
MOTA	744		LYS	97 07	98.655	84.577	99.947	0.00	0.00	H
ATOM	745		LYS LYS	97 97	98.413 97.942	85.294	99.755	1.00	0.00	н
ATOM ATOM	746 747		LYS	97	98.690	83.908	99.164	1.00	0.00	H
ATOM	748		LYS	97	102.948	89.411	99.318	0.00	0.00	H
ATOM	749		LYS	97	104.088	87.389	97.445	0.00	0.00	H
ATOM	750	1HB	LYS	97	101.171	88.351	97.642	0.00	0.00	. н
MOTA	751	2HB	LYS	97	101.748	86.960	96.746	0.00	0.00	н
MOTA		1HG	LYS	97	102.512	85.895	98.965	0.00	0.00	H H
ATOM		2HG	LYS	97	101.772	87.260	99.808	0.00	0.00	H
ATOM	754		LYS	97 07	99.549	86.725 85.270	98.598 97.945	0.00	0.00	н
ATOM		2HD 1HE	LYS	97 97	100.312		100.353	0.00	0.00	. н
MOTA MOTA	756 757		LYS	97	99.946		100.959	0.00	0.00	н
ATOM	758		MET	98	102.791	90.083	95.914	0.00	0.00	N
ATOM	759		MET	98	102.786	90.853	94.632	0.00	0.00	C
ATOM	760		MET	98	103.722	92.109	94.646	0.00	0.00	C
ATOM	761	. 0	MET	98	104.487	92.313	93.699	0.00	0.00	0
MOTA	762		MET	98	101.318	91.226	94.282	0.00	0.00	C
ATOM	763		MET	98	100.475	90.087	93.674	0.00	0.00	C S
ATOM	764		MET	98	98.916	90.757 89.275	93.075 92.335	0.00	0.00	c
ATOM	765		MET	98 98	98.221 102.511	90.501	96.807	0.00	0.00	н
MOTA MOTA	766 767		MET MET	98	102.311	90.224	93.803	0.00	0.00	H
ATOM		1HB	MET	98	100.800	91.647	95.163	0.00	0.00	н
ATOM		2HB	MET	98	101.318	92.056	93.554	0.00	0.00	н
MOTA		1.HG	MET	98	101.006	89.617	92.825	0.00	0.00	. н
ATOM		2HG	MET	98	100.289	89.287	94.414	0.00	0.00	н
ATOM		1HE	MET	98	98.818	88.972	91.457	0.00	0.00	н
ATOM		2HE	MET	98	97.185	89.464	92.000	0.00	0.00	H
MOTA		3HE	MET	98	98.208	88.439	93.057	0.00	0.00	H
ATOM	775		SER	99	103.680 104.779	92.944 93.904	95.705 95.997	0.00	0.00	C
MOTA	776		ser ser	99 9 9	104.779	93.204	96.500	0.00	0.00	č
MOTA MOTA	. 777 778		SER	99 .	106.170	91.989	96.692	0.00	0.00	ō
ATOM	779		SER	99	104.199	94.965	96.962	0.00	0.00	C
ATOM	780		SER	99	105.102	96.061	97.138	0.00	0.00	0
	•									

				•		70				
2001	=					72				
ATOM ATOM	781 782		SER	99	103.120			0.00	0.00	
ATOM		1HB	SER SER	99 99	105.037 103.243				0.00	
ATOM		2HB	SER	99	103.243			0.00	0.00	
ATOM	785		SER	99	104.767			0.00	0.00	
ATOM	786	N	MET	100	107.175				0.00	
MOTA	787	CA	MET	100	108.594	93.499		1.00	0.00	
ATOM	788		MET	100	109.244	93.032		1.00	0.00	
MOTA	789		MET	100	110.469			1.00	0.00	
ATOM ATOM	790		MET MET	100	108.921			1.00	0.00	
MOTA	791 792		MET	100 100	108.700			1.00	0.00	
ATOM	793	CE	MET	100	109.201 108.896		100.548	1.00 1.00	0.00	
ATOM	794	H	MET	100	106.918			1.00	0.00	
ATOM	795	HA	MET	100	109.184			1.00	0.00	
ATOM	796	1HB	MET	100	108.342			1.00	0.00	
ATOM		2HB	MET	100	109.979	92.253	97.800	1.00	0.00	
ATOM		1HG	MET	100	109.273		99.344	1.00	0.00	
ATOM		2HG	MET	100	107.633	93.478	99.390	1.00	0.00	
MOTA MOTA		1HE 3HE	MET MET	100	109.507		101.915	1.00	0.00	
ATOM		2HE	MET	100 100	107.830 109.152		102.019 102.907	1.00	0.00	
ATOM	803	N	GLU	101	108.496	92.944	94.163	1.00	0.00	
ATOM	804	CA	GLU	101	109.067		92.774	0.00	0.00	
ATOM	805	C	GLU	101	110.071	94.151	92.406	0.00	0.00	
MOTA	806	0	GLU	101	110.931	93.963	91.547	0.00	0.00	
ATOM	807	CB	GLU	101	107.894		91.754	0.00	0.00	
ATOM	808	CG	GLU	101	106.842	94.060	91.838	0.00	0.00	
ATOM ATOM	809 810	CD	GLU GLU	101	106.279		90.600	0.00	0.00	
ATOM	811		GLU	. 101, 101	105.843		. 89.632 90.633		0.00	:
ATOM	812	H	GLU	101	107.491	92.835	94.351	0.00	0.00	
ATOM	813	AH	GLU	101	109.663	92.066	92.653	0.00	0.00	
ATOM	814	1HB	GLU	101	107.339	91.952	91.938	0.00	0.00	
ATOM	815		GLU	101	108.294	92.806	90.725	0.00	0.00	
ATOM	816		GLU	101	107.241	94.883	92.455	0.00	0.00	
ATOM ATOM	817		GLU	101	105.963	93.712	92.397		0.00	
ATOM	818 819	N CA	ILE	102 102	110.011	95.307	93.091	0.00	0.00	
ATOM	820	C	ILE	102	111.117 112.564	96.324 95.800	93.126 93.464	0.00	0.00 0.00	
ATOM	821	ō	ILE	102	113.523	96.238	92.831	0.00	0.00	
ATOM	822	CB	ILE	102	110.710	97.558	94.018	0.00	0.00	
ATOM	823	CG2	LLE	102	109.536	98.355	93.396	0.00	0.00	
ATOM	824		ILE	102	110.409	97.228	95.514	0.00	0.00	
ATOM	825		ILE	102	110.410	98.432			0.00	
ATOM ATOM	826 827	H	ILE	102	109.270	95.297	93.797	0.00	0.00	
MOTA	828	HA HB	ILE	102 102	111.220	96.704	92.090	0.00	0.00	
ATOM		1HG2		102	111.585 109.385	98.242 99.330	94.004 93.894	0.00	0.00	
ATOM		2HG2		102	109.710	98.570	92.327	0.00	0.00	
ATOM		3HG2		102	108.578	97.804	93.456		0.00	
ATOM		1HG1		102	111.165	96.515	95.895	0.00	0.00	
ATOM		2HG1		102	109.448	96.687	95.601	0.00	0.00	
ATOM		1HD1		102	110.241	98.116	97.517	0.00	0.00	
ATOM ATOM		2HD1		102	111.381	98.963	96.454	0.00	0.00	
ATOM	837	3HD1 N	SER	102 103	109.623 112.731	99.168 94.840	96.227	0.00	0.00	
ATOM	838	CA.	SER	103	114.010	94.850	94.395 94.548	1.00	0.00	
ATOM	930	~	é E B	103	314.207	22.001	98.388	1.60	0.00	
RTOM	840	0	SER	103	115.580	92.714	93.302	1.00	0.00	
RTOH	821	GB.	SER.	103	13.2 . 24.6	93 317	95_903_	1.00	0.00	
TON	112	ΦI	EFF.	111	175.222	93.703	95.223	1.00	0.00	
	· . :	:- :-	. ===	-0		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	7 23	7 63	
. :::		=	7.		• . • • • • •		• -		-	
				-	<u> </u>				-	

ннынийососсинныныний пососсоныныный сосссоныный пососсоный пининый пиний пиний пиний пиний пиний пиний пиний пи

					15				
MOTA	854 CG	1 ILE	104	112.175	89.917	92.006	0.00	0.00	C
MOTA	855 CD	1 ILE	104	110.818	89.209	91.806	0.00	0.00	C
ATOM	856 H	ILE	104	112.552	93.098	92.676	0.00	0.00	H
MOTA	857 HA	ILE	104	114.641	91.231	91.467	0.00	0.00	H
MOTA	858 HB		104	111.688	91.577	90.702	0.00	0.00	H
ATOM.	859 1HG		104	112.044	89.477	89.301	0.00	0.00	H
ATOM	860 2HG		104	112.997	90.835	88.724	0.00	0.00	H
MOTA	861 3HG		104	113.784	89.541	89.662	0.00	0.00	H
MOTA	862 1HG		104	112.122	90.432	92.984	0.00	0.00	H
ATOM	863 2HG		104	112.976	89.162	92.138	0.00	0.00	H
MOTA	864 1HD		104	110.546	88.603	92.691	0.00	0.00	H
MOTA	865 2HD		104	109.990	89.923	91.641	0.00	0.00	H
MOTA	866 3HD		104	110.825	88.518	90.944	0.00	0.00	H
ATOM	867 N	HIS	105	113.344	93.746	89.616	1.00	0.00	N
MOTA	868 CA		105	113.695	94.702	88.517 88.831	1.00	0.00	č
MOTA	869 C	HIS	105	114.587	95.965 96.646	87.890	1.00	0.00	ŏ
ATOM	870 O	HIS	105 105	114.998 112.403	95.005	87.708	1.00	0.00	č
ATOM	871 CB 872 CG		105	111.208	95.654	88.402	1.00	0.00	č
ATOM ATOM		1 HIS	105	109.950	95.079	88.433	1.00	0.500	N
ATOM		1 HIS	105	109.254	96.094	89.029	1.00	0.00	C
MOTA		2 HIS	105	109.900	97.248	89.378	1.00	0.00	N
ATOM		2 HIS	105	111.175	96.940	88.946	1.00	0.00	С
ATOM	877 H	HIS	105	112.395	93.691	90.011	1.00	0.00	H
ATOM	878 HA		105	114.335	94.144	87.803	1.00	0.00	H
ATOM	879 1HB		105	112.660	95.634	86.835	1.00	0.00	H
MOTA	880 2HB	HIS	105	112.066	94.058	87.248	1.00	0.00	H
ATOM	881 HE	1 HIS	105	108.185	95.999	89.157	1.00	0.00	H
ATOM	882 HE	2 HIS	105	109.511	98.124	89.737	1.00	0.00	H
MOTA	883 · HD	2 HIS	105	112.024	97.602	88.960	1.00	0.00	. Н
MOTA	884 N	ARG	106	114.967	96.248	90.091	1.00	0.00	Ŋ
ATOM	885 CA		106	116.188	97.062	90.403	1.00	0.00	c
MOTA	886 C	ARG	106	117.561	96.302	90.234	1.00	0.00	0
ATOM	887 O	ARG	106	118.534	96.905	89.777	1.00	0.00	c
MOTA	888 CE		106	116.016	97.669	91.825	1.00	0.00	c
ATOM	889 CG		106	116.944	98.849	92.215	1.00	0.00	c
MOTA	890 CI		106		100.176	91.548 92.139	1.00 1.00	0.00	Ŋ
ATOM	891 NE		106 106		101.306	91.754	1.00	0.00	c
ATOM	892 C2	11 ARG	106		102.985	90.782	1.00	0.00	N
ATOM ATOM		12 ARG	106		103.444	92.389	1.00	0.00	N
ATOM	895 HE		106		101.093	92.904	1.00	0.00	н
ATOM	896 H	ARG	106	114.499	95.669	90.799	1.00	0.00	H
ATOM	897 HA		106	116.232	97.909	89.690	1.00	0.00	H
ATOM	898 1HE		106	114.973	98.014	91.962	1.00	0.00	H
MOTA	899 2HE	ARG	106	116.131	96.860	92.572	1.00	0.00	H
ATOM	900 1HG	ARG	106	116.907	98.977	93.315	1.00	0.00	H
MOTA	901 2HG	ARG	106	118.005	98.616	91.995	1.00	0.00	H
ATOM	902 1HI	ARG	106		100.122	90.454	1.00	0.00	H
ATOM	903 2HI		106		100.362	91.693	1.00	0.00	H
ATOM	904 2HF		106		102.231	90.280	1.00	0.00	H
ATOM	905 1HF		106		103.981	90.557	1.00	0.00	H
ATOM	906 1HF		106		103.015	93.111	1.00	0.00	H
MOTA	907 2HF		106		104.410	92.071	1.00	0.00	N
ATOM	908 N	SER	107	117.656 118.898	95.006 94.191	90.591 90.412	1.00	0.00	Ĉ
ATOM	909 CA	SER SER	107	119.231	93.611	88.983	1.00	0.00	č
ATOM	910 C 911 O		107 107	120.313		88.811	1.00	0.00	ō
ATOM ATOM	912 CE		107	118.801	93.051	91.457	1.00	0.00	C
ATOM	913 00		107	120.020	92.306	91.515	1.00	0.00	0
ATOM	914 H		107	116.758		90.835	1.00	0.00	H
ATOM	915 HA		107	119.773	94.811	90.692	1.00	0.00	H
ATOM	916 1HE		107	118.583		92.468	1.00	0.00	H
ATOM	917 2HE		107	117.956	92.371	91.219	1.00	0.00	H
ATOM	918 HG		107	120.314	92.177	90.601	1.00	0.00	H
ATOM	919 N	LEU	108	118.339	93.708	87.985	1.00	0.00	N
ATOM	920 C		108	118.502	93.046	86.658	1.00	0.00	C
ATOM	921 C	LEU	108	119.119		85.584	1.00	0.00	C
ATOM	922 O	LEU	108	118.409		84.814	1.00	0.00	0
MOTA	923 CE		108	117.098	92.487	86.259	1.00	0.00	C
MOTA	924 CG		108	116.686	91.054	86.710	1.00	0.00	C
ATOM		T PEG	108	117.204		88.077	1.00	0.00	C
ATOM	926 CI	2 LEU	108	115.152	90.965	86.708	1.00	0.00	Ċ

元 とうこれははあいまいいよう

ATOM	927	H	LEU	108	117.463	94.155	88.273	1.00	0.00		H
ATOM	928	HA	LEU	108	119.184	92.174	86.733	1.00	0.00		H
ATOM	929	1HB	LEU	108	116.324	93.229	86.542	1.00	0.00		H
ATOM	930	2HB	LEU	108	117.022	92.480	85.156	1.00	0.00		H
ATOM	931	HG	LEU	108	117.076	90.334	85.960	1.00	0.00		Н
ATOM	932	2HD1		108	119.307	90.517	99.100	1.00	0.00		H
ATOM	933	3HD1	LEU	108	116.898	91.239	88.903	1.00	0.00		H
ATOM .	934	1HD1	LEU	108	116.842	89.558	88.321	1.00	0.00		H
ATOM	935	2HD2	LEU	108	114.700	91.680	87.419	1.00	0.00		H
ATOM	936	3HD2	LEU	108	114.728	91.191	85.712	1.00	0.00		Н
ATOM	937	1HD2	LEU	108	114.791	89.961	86.993	1.00	0.00		H
ATOM	938	N	ALA	109	120.459	94.046	85.502	1.00	0.00		N
ATOM	939	CA	ALA	109	121.181	94.809	84.450	1.00	0.00		С
ATOM	940	C	ALA	109	121.276	94.026	83.092	1.00	0.00		C
ATOM	941	0	ALA	109	122.205	93.242	82.864	1.00	0.00		0
MOTA	942	CB	ALA	109	122.549	95.166	85.065	1.00	0.00		C
ATOM	943	H	ALA	109	120.937	93.517	86.238	1.00	0.00		H
MOTA	944	HA	ALA	109	120.661	95.770	84.261	1.00	0.00		H
ATOM		2HB	ALA	109	122.442	95.760	85.993	1.00	0.00		H
ATOM		3HB	ALA	109	123.147	94.269	85.313	1.00	0.00		H
ATOM	947	1HB	ALA	109	123.155	95.773	84.367	1.00	0.00		H
ATOM	948	N	HIS	110	120.281	94.224	82.211	0.00	0.00		И
ATOM	949	CA	HIS	110	120.183	93.522	80.899	0.00	0.00		C
ATOM	950	С	HIS	110	119.536	94.431	79.796	0.00	0.00		C
ATOM	951	0	HIS	110	118.774	95.359	80.081	0.00	0.00		0
ATOM	952	CB	HIS	110	119.385	92.201	81.129	0.00	0.00		C
ATOM	953	CG	HIS	110	119.470	91.154	80.018	0.00	0.00		C
ATOM	954		HIS	110	118.360	90.593	79.403	0.00	0.00		И
ATOM	955		HIS	110	118.990	89.661	78.619	0.00	0.00		C
ATOM	956		HIS	110	120.356	89.578	78.616	0.00	0.00		N
•	957		HIS	110	120.651	90.545	79.559		0.00		,C.
ATOM	958	H	HIS	110	119.499	94.777	82.586	0.00	0.00		H
ATOM	959	HA	HIS	110	121.208	93.272	80.555	0.00	0.00		H
ATOM		1HB	HIS	110	118.324	92.438	81.344	0.00	0.00		H
ATOM ATOM	961 962	2HB HE1	HIS	110	119.738	91.705 88.948	82.050 78.058	0.00	0.00		Н
ATOM	963	HE2		110 110	118.402 120.958	88.868	78.185	0.00	0.00		Н
ATOM	964	HD2		110	121.637	90.755	79.950	0.00	0.00		Н
ATOM	965	N	GLN	111	119.796	94.124	78.511	1.00	0.00		N
ATOM	966	CA	GLN	111	119.073	94.767	77.370	1.00	0.00		c
ATOM	967	c	GLN	111	117.522	94.518	77.294	1.00	0.00	•	Ċ
ATOM	968	ō	GLN	111	116.783	95.452	76.977	1.00	0.00		Ó
ATOM	969	CB	GLN	111	119.814	94.355	76.065	1.00	0.00		C
ATOM	970	CG	GLN	111	119.352	95.115	74.789	1.00	0.00		C
ATOM-	971	- CD-	GLN -		-120.079 -		73.503-				C.
ATOM	972	OEL	GLN	111	119.676	93.832	72.768	1.00	0.00	•	0
ATOM	973	NE2	GLN	111	121.156	95.386	73.167	1.00	0.00		N
ATOM	974	H	GLN	111	120.352	93.273	78.391	1.00	0.00		H
ATOM	975	HA	GLN	111	119.191	95.864	77.481	1.00	0.00		н
ATOM	976	1HB	GLN	111	120.904	94.513	76.190	1.00	0.00		H
MOTA	977	2HB	GLN	111	119.695	93.264	75.901	1.00	0.00		H
ATOM	978	1ĤG	GLN	111	118.276	94.920	74.613	1.00	0.00		H
ATOM		2HG	GLN	111	119.413	96.208	74.943	1.00	0.00		H
MOTA		1HE2		111	121.424	96.166	73.769	1.00	0.00		H
ATOM		2HE2		111	121.540	95.113	72.259	1.00	0.00		H
ATOM	982		HIS	112	117.029	93.294	77.559	1.00	0.00		N
ATOM	983		HIS	112	115.593	92.928	77.334	1.00	0.00		C
ATOM	984		HIS	112	114.665	93.099	78.602	1.00	0.00		C
ATOM	985		HIS	112	113.745	92.309	78.828	1.00	0.00		0
MOTA	986		HIS	112	115.545	91.483	76.735	1.00	0.00		C
ATOM	287		HIS	112	115.435	21.110	75.527	1.00	0.00		C
AIOH		EDT.	F. 5	F.E.2	111.759	93.021	1.500	1.00	0.00		1)
7777	: 1	- <u>:</u>		113	17,731	3	77.671	:::	. :		-
		·=.		-		10.222		-			
		-	. =		•	-	. .				
	•			=							
•				-			• :		•		

					13					
MOTA	1000 C	'A VAL	113	114.177	94.363	80.732	1.00	0.00		C
ATOM	1001 0	. VAL	113	113.876	95.899	80.839	1.00	0.00		C
ATOM	1002	_	113	114.762	96.727	80.603	1.00	0.00		0
ATOM		B VAL	113	115.031	93.822	81.942	1.00	0.00		C
ATOM		G1 VAL	113	114.422	94.136	83.330	1:00	0.00		C.
ATOM		G2 VAL	113	115.264	92.290	81.916	1.00	0.00		С
ATOM	1005 E		113	115.671	94.731	79.141	1.00	0.00		H
			113	113.208	93.826	80.741	1.00	0.00		H
ATOM		-	113	116.025	94.314	81.899	1.00	0.00		H
ATOM					93.722	83.446	1.00	0.00		H
ATOM	1009 1H		113	113.405			1.00	0.00		H
ATOM	1010 2F		113	115.039	93.742	84.161		0.00		H
MOTA	1011 3F		113	114.345	95.227	83.509	1.00			н
MOTA	1012 2F		113	115.809	91.975	81.008	1.00	0.00		
MOTA	1013 3F		113	115.874	91.945	82.773	1.00	0.00		H
ATOM	1014 1F		113	114.314	91.724	81.936	1.00	0.00		H
MOTA	1015 1	1 VAL	114	112.642	96.296	81.208	0.00	0.00		и
ATOM	1016 (A VAL	114	112.230	97.744	81.262	0.00	0.00		C
ATOM	1017 (C VAL	114	113.120	98.550	82.289	0.00	0.00		C
MOTA	1018 (O VAL	114	113.304	98.124	83.436	0.00	0.00		0
MOTA	1019 (CB VAL	114	110.701	97.852	81.615	0.00	0.00		C
ATOM	1020	CG1 VAL	114	110.200	99.308	81.734	0.00	0.00		С
ATOM	1021 (CG2 VAL	114	109.717	97.185	80.624	0.00	0.00		C
ATOM		H VAL	114	112.016	95.535	81.503	0.00	0.00		H
ATOM		IA VAL	114	112.370	98.187	80.256	0.00	0.00		H
ATOM		HB VAL	114	110.557	97.367	82.602	0.00	0.00		H
ATOM		HG1 VAL	114	110.767		82.479	0.00	0.00		H
MOTA		HG1 VAL	114	110.258	99.866	80.780	0.00	0.00		H
ATOM		HG1 VAL	114	109.150	99.339	82.069	0.00	0.00		H
		HG2 VAL	114	109.688	97.697	79.644	0.00	0.00		н
MOTA			114	109.962	96.125	80.438	0.00	-0.00	. •:	. н
ATOM		HG2 VAL		108.678	97.192	81.006	0.00	0.00	• .	H
ATOM		HG2 VAL	114		99.701	81.873	1.00	0.00		N
MOTA		N GLY	115	113.677		82.744	1.00	0.00		Ĉ
ATOM		CA GLY	115		100.527		1.00	0.00		Č
ATOM		C GLY	115		101.190	83.956				ō
ATOM		O GFA	115		101.999	83.811	1.00	0.00		
ATOM	1035	H GLY	115		100.067	80.961	1.00	0.00		H
MOTA	1036 1		115	115.441	99.941	83.061	1.00	0.00		H
MOTA	1037 2	HA GLY	115		101.342	82.130	1.00	0.00		н
MOTA	1038	N PHE	116		100.805	85.163	1.00	0.00		N
ATOM	1039	CA PHE	116	113.653	101.270	86.423	1.00	0.00		C
ATOM	1040	C PHE	116	114.361	102.526	87.030	1.00	0.00		C
ATOM	1041	O PHE	116	115.506	102.470	87.485	1.00	0.00		0
ATOM	1042	CB PHE	116	113.598	100.040	87.373	1.00	0.00		C
ATOM		CG PHE	116	112.797	100.237	88.671	1.00	0.00		С
ATOM		CD1 PHE	116	111.508	100.777	88.644	1.00	0.00		C
ATOM		CE1 PHE	116		100.954	89.820	1.00	0.00		С
MOTA		CZ PHE	116		100.551	91.030	1.00	0.00		C
ATOM		CE2 PHE	116	112.610	99.980	91.072	1.00	0.00		C
		CD2 PHE	116	113.338	99.830	89.893	1.00	0.00		C
MOTA			116	114.915	99.996	85.144	1.00	0.00		H
ATOM		H PHE			101.542	86.204	1.00	0.00		H
ATOM		HA PHE	116	113.152	99.173	86.844	1.00	0.00		H
ATOM	1051 1		116		99.711	87.601	1.00	0.00		н
ATOM			116	114.633	101.070	87.714	1.00	0.00		H
ATOM		HD1 PHE	116				1.00	0.00		H
MOTA		HE1 PHE	116		101.392	89.786	1.00	0.00		H
ATOM		HZ PHE	116		100.687	91.925				H
MOTA		HE2 PHE	116	113.026		92.013	1.00	0.00		н
ATOM		HD2 PHE	116	114.313		89.922	1.00	0.00		
MOTA		n HIS	117		103.657	87.050	1.00	0.00		И
MOTA	1059	CA HIS	117		104.947	87.595	1.00	0.00		C
MOTA	1060	C HIS	117		105.098	89.160	1.00	0.00		C
ATOM	1061	O HIS	117		105.637	89.731	1.00	0.00		0
ATOM	1062	CB HIS	117			86.836	1.00	0.00		℃
ATOM		CG HIS	117		107.481	87.004	1.00	0.00	•	C
ATOM		ND1 HIS	117	113.032	108.504	87.493	1.00	0.00		N
ATOM		CE1 HIS	117		109.556	87.340	1.00	0.00		C
ATOM		NE2 HIS	117		109.346	86.812	1.00	0.00		N
MOTA		CD2 HIS	117		107.982	86.595	1.00	0.00		C
MOTA		H HIS	117		103.548	86.734	1.00	0.00		H
ATOM		HA HIS	117		105.053	87.312	1.00	0.00		H
			117		105.837	85.749	1.00	0.00		H
ATOM					105.988	87.128	1.00	0.00		H
MOTA			117		110.546	87.656	1.00	0.00		н
MOTA	1072	HE1 HIS	117	113.600	110.340	67.636	2.00			

						10					
	ATOM	1073		2 HIS	117	115.907 110.015 86.667 1	.00	0.00			н
	MOTA	1074	HD2	2 HIS	117		.00	0.00			H
	MOTA	1075	N	GLY	118		.00	0.00			
	ATOM	1076	CA	GLY							N
	ATOM	1077		GLY			.00	0.00			С
	ATOM	1078		GLY			.00	0.00			C
	ATOM						.00	0.00			0
		1079		GLY			.00	0.00			H
	MOTA		1HA	GLY		113.891 104.600 91.798 1	.00	0.00			H
	ATOM		2HA	GLY	118	112.763 105.919 91.540 1	.00	0.00			H
	ATOM	1082	N	PHE	119		.00	0.00			N
	ATOM	1083	CA	PHE	119		.00	0.00			c
	ATOM	1084	C	PHE	119		.00	0.00			~
	ATOM	1085		PHE	119						C
	ATOM	1086		PHE	119		.00	0.00			0
	ATOM	1087		PHB			.00	0.00			C
	ATOM				119	### ###	.00	0.00			C
		1088		PHE	119		.00	0.00			C
	ATOM	1089		. PHE	119	114.134 101.278 97.487 1.	.00	0.00			С
	ATOM	1090		PHE	119	115.288 101.058 96.739 1.	. 00	0.00			C
	ATOM	1091	CE2	PHE	119	115.225 101.031 95.348 1.	.00	0.00			Č
	MOTA	1092	CD2	PHE	119		.00	0.00			Č
	ATOM	1093	H	PHE	119		.00	0.00			
	ATOM	1094	HA	PHE	119						H
	ATOM	1095		PHE	119		.00	0.00			H
	ATOM	1095					.00	0.00			H
				PHE	119		.00	0.00			H
	ATOM	1097		PHE	119		.00	0.00			H
	MOTA	1098		PHE	119	114.185 101.302 98.566 1.	.00	0.00			H
	MOTA	1099	HZ	PHE	119	116.236 100.912 97.237 1.	.00	0.00			H
	ATOM	1100	HE2	PHE	119		00	0.00			н
	ATOM	1101	HD2	PHE	119		00	0.00			н
	ATOM	1102	N	PHE	120		00	0.00			
	ATOM	1103	CA.	PHE	120				•	٠.	N
	ATOM	1104	c	PHE	120			0.00			C
	ATOM	1105	õ	PHE			00	0.00			C
	ATOM				120		00	0.00			0
		1106	CB	PHE	120		00	0.00			C
	ATOM	1107	CG	PHE	120		00	0.00			C
	MOTA	1108		PHE	120	109.235 108.097 93.260 1.	00	0.00			C
	MOTA	1109	CEl	PHE	120			0.00			C
	MOTA	1110	CZ	PHE	120			0.00			c
	ATOM	1111	CE2	PHE	120			0.00			č
	ATOM	1112		PHE	120	111.279 107.789 94.510 1.		0.00			
	ATOM	1113	H	PHE	120			•			C
	ATOM	1114	HA.	PHE	120			0.00			H
	ATOM	1115		PHE		110.320 106.093 96.884 1.		0.00			H
					120	107.971 107.235 95.375 1.		0.00			H
	ATOM	1116		PHE	120	109.108 108.011 96.421 1.	00	0.00			H
	ATOM	1117		PHE.	120		00-	0.00			Ħ
	ATOM	1118	HEL	PHE	120	109.473 108.812 91.255 1.	00	0.00			H
	ATOM	1119	HZ	PHE	120	111,928 108.856 91.355 1.6		0.00			H
•	MOTA	1120	HE2	PHE	1.20	113.096 108.229 93.448 1.		0.00			H
	ATOM	1121	HD2	PHE	120	111.798 107.499 95.411 1.0		0.00			H
	ATOM	1122	N	GLU	121	108.716 105.034 98.534 1.6		0.00			
	ATOM	1123		GLU	121						N
	ATOM	1124		GLU	121			0.00.			C
	ATOM	1125				107.252 105.878 100.408 1.0		0.00			C
	ATOM	1125		GLU	121	107.704 106.199 101.511 1.0		0.00			0
				GLU	121	108.493 103.563 100.497 1.0		0.00			C
	ATOM	1127		GLU	121	108.826 102.219 99.790 1.0)O (0.00			C
	MOTA	1128		GLU	121	109.594 101.222 100.647 1.0	00 (0.00			С
	ATOM	1129	OE1	GLU	121	110.803 101.042 100.568 1.0	00 (3.00			0
	ATOM	1130	OE2	GLU	121	108.785 100.544 101.503 1.0		0.00			ō
	MOTA	1131	H (GLU	121	109.733 105 042 98 555 1.0					<u>::</u>
	ATOM	1132		GLU	121	105.880 101.122 99.185 1.0		0.00			H
	P.TOM	1130		CLU.	121	109.116 101.005 100.925 1.0					
	ATOM	1231 1		750	171	-		0.00			H
	77 2 ::	1111				- 107.557 130.033 101.070 1.0 - 117.001 4.4.700 98.050 0.1		0.00			j.,
						- 117/703 A.L.TII PR.IZG 5.1		35			••
					-			•			
				-= .			-	:			
		==									
					_						

							11					
	MOTA	1146	HA	ASP	122	106.761	108.465	100.784	1.00	0.00		Ħ
	ATOM	1147		ASP	122		108.341	98.348	1.00	0.00		H
	MOTA	1148 1149	N N	asp asn	122 123		109.796 107.982	99.277	1.00	0.00		H N
	ATOM ATOM	1150	CA	ASN	123		107.582		1.00 1.00	0.00		C
	ATOM	1151	c	ASN	123		106.194		1.00	0.00		c
	ATOM	1152	0	ASN	123		105.962		1.00	0.00		0
	ATOM	1153	CB	ASN	123	102.752	108.748	103.604	1.00	0.00		C
	MOTA	1154	CG	asn	123		110.195		1.00	0.00		С
	ATOM	1155		ASN	123		110.586		1.00	0.00		0
	ATOM	1156		ASN	123		111.034		1.00	0.00		N
	ATOM ATOM	1157 1158	H HA	asn asn	123 123		108.049		1.00 1.00	0.00		H
	ATOM	1159		ASN	123		108.658		1.00	0.00		H
	ATOM	1160		ASN	123		108.508		1.00	0.00		H
	MOTA		1HD2		123		111.971		1.00	0.00		H
	ATOM	1162	2HD2	ASN	123	102.787	110.631	101.927	1.00	0.00		H
	MOTA	1163	N	ASP	124		105.188		1.00	0.00		N
	ATOM	1164	CA	ASP			103.736		1.00	0.00		C
	MOTA	1165	0	ASP ASP	124 124		103.261		1.00	0.00		C
	ATOM ATOM	1166 1167		ASP	124		103.142		1.00 1.00	0.00		c
	ATOM	1168	CG	ASP	124		103.228		1.00	0.00		Č
	ATOM	1169		ASP	124		102.645		1.00	0.00		0
	ATOM	1170	OD2	ASP	124	103.021	104.022	106.677	1.00	0.00		0
	MOTA	1171	H	ASP	124		105.526		1.00	0.00		H
	MOTA	1172	HA	ASP	124		103.217		1.00	0.00		H
	ATOM	1173		ASP	124		103.615		1.00	0.00		H H
	ATOM ATOM	1174 1175	2HB N	ASP PHE	124 125		102.072 104.082		1.00	0.00		N
	ATOM	1176	CA	PHE	125		103.745	99.679	1.00	0.00		c
	ATOM	1177	c	PHE	125		103.892	98.614	1.006			C
	ATOM	1178	0	PHE	125	104.244	104.757	98.716	1.00	0.00		0
	ATOM	1179	CB	PHE	125		104.492	99.325	1.00	0.00		C
	MOTA	1180	CG	PHE	125		106.028	99.414	1.00	0.00		C
	MOTA	1181		PHE	125		106.635		1.00	0.00		C
	ATOM ATOM	1182 1183	CZ	PHE	125 125		108.019	99.539	1.00 1.00	0.00		c
	ATOM	1184		PHE	125		108.208	98.386	1.00	0.00		č
	ATOM	1185		PHE	125		106.824	98.323	1.00	0.00		C
	ATOM	1186	н	PHE	125		105.039		1.00	0.00		H
	MOTA	1187	HA	PHE	125		102.672	99.674	1.00	0.00		H
	ATOM	1188		PHE	125		104.191	98.304	1.00	0.00	•	H
	MOTA	1189		PHE	125		104.073	99.960	1.00	0.00		H
	ATOM ATOM	1190 1191		PHE	125 125		106.040		1.00 1.00	0.00		Н
	ATOM	1192	HZ	PHE	125		109.878	99.588	1.00	0.00		H
	MOTA	1193		PHE	125		108.821	97.541	1.00	0.00		H
	ATOM	1194		PHE	125		106.371	97.423	1.00	0.00		H
	MOTA	1195	N	VAL	126		102.985	97.623	1.00	0.00		N
	MOTA	1196	CA	VAL	126		102.689	96.843	1.00	0.00		C
	MOTA	1197		VAL	126		103.180	95.362	1.00	0.00		0
	ATOM ATOM	1198 1199	O CB	VAL VAL	126 126		102.708 101.163	94.614 96.936	1.00 1.00	0.00		C
	ATOM	1200		VAL	126		100.850		1.00	0.00		C
	ATOM	1201		VAL	126		100.582		1.00	0.00		C
	ATOM	1202	H	VAL	126	102.554	102.412		1.00	0.00		H
	ATOM	1203	HA	VAL	126		103.229		1.00	0.00		H
	ATOM	1204	HB	VAL	126		100.587		1.00	0.00		H
	MOTA		1HG1		126		101.379		1.00	0.00		H
	ATOM ATOM		2HG1 3HG1		126 126		99.769 101.147		1.00 1.00	0.00		H H
	ATOM		2HG2		126		100.624		1.00	0.00		H
•	ATOM		3HG2		126		99.521		1.00	0.00		H
	ATOM		1HG2		126		101.142		1.00	0.00		H
	MOTA	1211	N	PHE	127	105.383	104.087	94.921	1.00	0.00		N
	MOTA	1212	CA	PHE	127		104.515		1.00	0.00		C
	ATOM	1213		PHE	127		103.719		1.00	0.00		C
	MOTA MOTA	1214 1215	O CB	PHE	12 7 127		103.756 106.036		1.00 1.00	0.00		0
	ATOM	1215	CG	PHE	127		106.036		1.00	0.00		c
	ATOM	1217		PHE	127		107.434		1.00	0.00		C
	ATOM	1218		PHE	127		108.284		1.00	0.00		C

l .													
	•					•	78	•					
	N THOM	1210	CZ	מנות	107	100 537							
	MOTA MOTA	1219 1220	CZ CR2	PHE	127 127	102.537 102.603		94.615 93.306	1.00	0.00			C
	ATOM	1221		PHE	127	103.636		92.922	1.00	0.00			C
	ATOM	1222	H	PHE	127	105.994		95.651	1.00	0.00			н
	ATOM	1223	HA	PHE	127	104.504		92.983	1.00	0.00			H
	АТОМ	1224		PHE	127	106.677		93.988	1.00	Û.ÛÛ			H
	ATOM	1225	2HB	PHE	127	106.045		92.376	1.00	0.00			H
	MOTA MOTA	1226 1227		PHE	127 127	105.287 103.464		95.888	1.00	0.00			H
	ATOM	1228	HZ	PHE	127	101.733		96.551 94.911	1.00	0.00			H H
	ATOM	1229		PHE	127	101.855		92.583	1.00	0.00			H
	ATOM	1230	HD2	PHE	127	103.676		91.905	1,00	0.00			н
	ATOM	1231	N	VAL	128	106.219		91.663	1.00	0.00			N
	ATOM	1232	CA	VAL	128	107.158		90.872	1.00	0.00			C
	ATOM ATOM	1233 1234	C O	VAL VAL	128 128	107.331		89.474	1.00	0.00			C
	ATOM	1235	СВ	VAL	128	106.446 106.594		88.615 90.814	1.00	0.00			0
	ATOM	1236		VAL	128	107.465	99.721	89.999	1.00	0.00			C
	ATOM	1237		VAL	128	106.366		92.194	1.00	0.00			c
i	MOTA	1238	H	VAL	128	105.201		91.501	1.00	0.00			H
	ATOM	1239	HA	VAL	128	108.153		91.363	1.00	0.00			H
	ATOM ATOM	1240	HB 1HG1	VAL	128	105.612		90.316	1.00	0.00			H
	ATOM		2HG1		128 128	107.653 : 108.447	99.557	88.969 90.475	1.00	0.00			H
	ATOM		3HG1		128	106.997	98.722	89.899	1.00	0.00			H H
	MOŢA	1244	2HG2	VAL	128	105.597		92.771	1.00	0.00			H
	ATOM		3HG2	-	128	106.020	98.990	92.117	1.00	0.00			H
	ATOM		1HG2		128	107.283		92.811	1.00	0.00			H
	ATOM ATOM	1247 1248	N CA	VAL VAL	129 129	108.436		89.266	0.00	0.00			N
•	ATOM	1246	CA	VAL	129	108.635 : 109.469 :		.88.036 86.957	0.00	0.00			.G .
	ATOM	1250	ō	VAL	129	110.682		87.095	0.00	0.00			o
	ATOM	1251	CB	VAL	129	109.234		88.417	0.00	0.00			Č
	ATOM	1252		VAL	129	109.436	106.777	87.201	0.00	0.00			C
	ATOM	1253		VAL	129	108.356		89.410	0.00	0.00			C
	ATOM ATOM	1254 1255	H HA	VAL VAL	129 129	109.032		90.098	0.00	0.00			H
	ATOM	1256	HB	VAL	129	107.648 1 110.228 1		87.586 88.887	0.00	0.00			H H
	ATOM	1257			129	109.949		87.483	0.00	0.00			H
	MOTA	1258			129	110.064 1		86.415	0.00	0.00			H
	ATOM	1259			129	108.480		86.723	0.00	0.00		:	H
	ATOM	1260			129	108.744 1		89.571	0,00	0.00			H
	ATOM ATOM	1261 1262			129 129	107.313 1 108.321 1		89.057	0.00	0.00			H
	ATOM	- 1263		LEU	-130 -	108.799		90.404 85.886	0.00	0.00			N ·
	ATOM	1264		LEU	130	109.415 1		84.746	1.00	0.00			c
	ATOM	1265	C	LEU	130	109.327 1		83.403	1.00	0.00			C
	ATOM	1266		LEU	130	108.558 1		83.303	1.00	0.00			0
	MOTA	1267		LEU	130	108.620 1		84.676	1.00	0.00	•		C
	ATOM ATOM	1268 1269	CG CD1	LEU	130 130	108.913 1 107.776		85.784 85.901	1.00	0.00			C
	ATOM	1270	CD2		130	110.226		85.529	1.00	0.00			C C
	MOTA	1271		LEU	130	107.802 1		85.837	1.00	0.00			H
	ATOM	1272		LEU	130	110.488 1	.02.267	84.925	1.00	0.00			H
	ATOM	1273		LEU	130	107.535 1		84.647	1.00	0.00			H
	ATOM	1274 :		LEU	130	108.787 1		83.694	1.00	0.00			H
	ATOM ATOM	1275 1276 2		LEU	130 130	108.983 1 107.947	98.341	86.758 86.729	1.00	0.00			H
	ATOM	1277			130	106.801		86.090	1.00	0.00			H H
	ATOM	1278			130		98.457	84.978	1.00	0.00			H
	ATOM.	127973			120	110.487	98.555	86.373	1.00	0.00		Į.	4
	.22.02.1	3,000.3			2.20	2101172		83.62E	1.00	$\theta_{\rm A}\theta\theta_{\rm B}$			Ī
							32.111	CF III	. ::	5:5		-	-
				-=	===		-	-		-			
									• •				
		:					•						
				_	-								
	::					•		•					

ATOM	1292	HA	GLU	131	110.247	104.702	81.185	0.00	0.00		H
ATOM	1293	1HB	GLU	131	111.036	103.469	79.097	0.00	0.00		H
ATOM	1294		GLU	131		101.969	79.995	0.00	0.00		H
											н
ATOM	1295		GLU	131		102.929	81.533	0.00	0.00		
ATOM	1296		GLU	131		104.481	80.717	0.00	0.00		H
ATOM	1297	N	LEU	132	108.277	104.581	79.443	1, . 00	0.00		Й
MOTA	1298	CA	LEU	132	106.903	104.705	78.848	1.00	0.00		C
MOTA	1299	С	LEU	132	106.653	103.852	77.552	1.00	0.00	•	C
ATOM	1300	ō	LEU	132		104.373	76.440	1.00	0.00		0
											č
MOTA	1301	CB	LEU	132		106.229	78.718	1.00	0.00		
ATOM	1302	CG	LEU	132		106.739	78.479	1.00	0.00		С
ATOM	1303	CD1	LEU	132	104.708	106.724	77.008	1.00	0.00		C
ATOM	1304	CD2	LEU	132	104.071	106.043	79.333	1.00	0.00		C
ATOM	1305	н	LEU	132		105.267	79.254	1.00	0.00		H
							79.594		0.00		н
MOTA	1306	HA	LEU	132		104.329		1.00			
ATOM	1307		ĿΕŪ	132		106.718	79.651	1.00	0.00		H
ATOM	130,8	2HB	LEU	132	107.268	106.664	77.950	1.00	0.00		H
MOTA	1309	HG	.PEA	132	105.158	107.808	78.772	1.00	0.00		H
ATOM		2HD1	छन्द	132	103.786	107.316	76.851	1.00	0.00		H
ATOM		3HD1		132		107.156	76.347	1.00	0.00		н
											H
ATOM		1HD1		132		105.704	76.637	1.00	0.00		
MOTA	1313	2HD2	LEU	132	103.075	106.495	79.174	1.00	0.00		H
MOTA	1314	3HD2	LEU	132	103.980	.104.969	79.087	1.00	0.00		H
ATOM	1315	1HD2	LEU	132	104.296	106.123	80.410	1.00	0.00		H
ATOM	1316	N	CYS	133		102.527	77.702	1.00	0.00		N
								1.00	0.00		C
ATOM	1317	CA	CYS	133		101.589	76.542				
ATOM	1318	C	CYS	133		100.892	76.285	1.00	0.00		C
MOTA	1319	0	CYS	133	104.198	100.720	77.177	1.00	0.00		0
ATOM	1320	CB	CYS	133	107.598	100.603	76.742	1.00	0.00		С
ATOM	1321	SG	CYS	133	109,201	101.492	76.858	1.00	0.00		S
ATOM	1322	H	CYS	133		102.222		1.00	0.00		H
											н
ATOM	1323	HA	CYS	133		102.141	75.607	1.00	0.00		
MOTA	1324	1HB	CYS	133	107.458	99.988	77.648	1.00	0.00		H
MOTA	1325	2HB	CYS	133	107.663	99.900	75.893	1.00	0.00		H,
ATOM	1326	HG	CYS	133	109.042	102.358	75.852	1.00	0.00		H
ATOM	1327	N	ARG	134		100.465	75.033	1.00	0.00		N '
									0.00		
ATOM	1328	CA	ARG	134	103.490	99.798	74.659	1.00			
ATOM	1329	С	ARG	134	103.590	98.225	74.735	1.00	0.00		C.
ATOM	1330	0	ARG	134	104.065	97.571	73.813	1.00	0.00		Ο .
ATOM	1331	CB	ARG	134	103.084	100.221	73.216	1.00	0.00		С,
ATOM	1332	CG	ARG	134	102.443	101.619	73.038	1.00	0.00		C .
ATOM	1333	CD	ARG	134		101.772	71.607	1.00	0.00		c "
									0.00		N
MOTA	1334	NE	ARG	134		103.064	71.452	1.00			
MOTA	1335	CZ	ARG	134		103.419	70.376	1.00	0.00		C
MOTA	1336	NH1	ARG	134	100.385	102.699	69.293	1.00	0.00		N
MOTA	1337	NH2	ARG	134	99.837	104.556	70.389	1.00	0.00		N
ATOM	1338	HE	ARG	134	101.171	103.752	72.213	1.00	0.00		H
ATOM	1339	H	ARG	134		100.514	74.405	1.00	0.00		H
											H
ATOM '	1340	HA	ARG	134		100.125	75.335	1.00	0.00		
MOTA	1341	1HB	ARG	134	103.960	100.113	72.542	1.00	0.00		H
ATOM	1342	2HB	ARG	134	102.359	99.472	72.836	1.00	0.00		H
ATOM	1343	1HG	ARG	134	101.637	101.756	73.785	1.00	0.00		H
ATOM	1344	2HG	ARG	134		102.403	73.263	1.00	0.00		H
ATOM	1345		ARG	134		101.701	70.882	1.00	0.00		H
						100.921	71.383	1.00	0.00		н
ATOM	1346		ARG	134							
ATOM		2HH1		134		101.836	69.356	1.00	0.00		H
MOTA		1441		134		103.155	68.477	1.00	0.00		H
MOTA	1349	1HH2	ARG	134	99.920	105.082	71.261	1.00	0.00		H
ATOM	1350	2HH2	ARG	134	99.221	104.761	69.596	1.00	0.00		H
ATOM	1351	N	ARG	135	103.087	97.624	75.813	1.00	0.00		N
	1352	CA	ARG	135	102.444	96.259	75.882	1.00	0.00		C
ATOM											
ATOM	1353	C	ARG	135	102.227	95.298	74.626	1.00	0.00		C
ATOM	1354	0	ARG	135	102.193	95.768	73.496	1.00	0.00	•	0
ATOM	1355	CB	ARG	135	101.170	96.500	76.763	1.00	0.00		С
ATOM	1356	CG	ARG	135	100.249	97.756	76.533	1.00	0.00		С
ATOM	1357	CD CD	ARG	135	99.239	98.054	77.662	1.00	0.00		C
								1.00	0.00		N
ATOM	1358	NE	ARG	135	98.236	96.968	77.722				
ATOM	1359	CZ	ARG	135	98.273	96.032	78.641	1.00	0.00		C
ATOM	1360	NHI	ARG	135	98.483	96.230	79.894	1.00	0.00		N
MOTA	1361	NH2	ARG	135	98.048	94.829	78.294	1.00	0.00		N
ATOM	1362	HE	ARG	135	97.982	96.480	76.853	1.00	0.00		H
ATOM	1363	H	ARG	135	102.981	98.280	76.595	1.00	0.00		H
		HA	ARG	135	103.127	95.662	76.520	1.00	0.00		н
MOTA	1364	IIM	- ALUS	エッコ	103.14/	22.002	,0.520	1.00			

					80				
MOTA	1365 1H	B ARG	135	100.547	95.585	76.749	1.00	0.00	H
MOTA	1366 2H	B ARG	135	101.503	96.524	77.819	1.00	0.00	H
ATOM	1367 1H	G ARG	135	100.861	98.670	76.445	1.00	0.00	H
ATOM	1368 2H	G ARG	135	99.741	97.682	75.554	1.00	0.00	н
ATOM	1369 1H		135	99.775	98.187	78.627	1.00	0.00	н
MOTA	·1370 2H		135	98.722	99.018	77.487	1.00	0.00	H
ATOM	1371 2H		135	97.841	96.966				
ATOM	1372 1H		135	98.325		80.275	1.00	0.00	H
ATOM					95.288	80.351	1.00	0.00	H
	1373 1H		135	97.606	94.599	77.401	1.00	0.00	H
ATOM	1374 2H		135	97.832	94.231	79.153	1.00	0.00	H
MOTA	1375 N		136	102.093	93.951	74.777	1.00	0.00	N
ATOM	1376 C		136	102.057	92.967	73.624	1.00	0.00	C
MOTA	1377 C		136	100.688	92.376	73.061	1.00	0.00	С
MOTA	1378 O	ARG	136	100.739	91.506	72.193	1.00	0.00	0
ATOM	1379 C	B ARG	136	103.087	91.811	73.900	1.00	0.00	C
MOTA	1380 C	G ARG	136	104.158	91.580	72.810	1.00	0.00	C
MOTA	1381 C	D ARG	136	105.251	92.657	72.832	1.00	0.00	C
MOTA	1382 N	E ARG	. 136	106.206	92.383	71.732	1.00	0.00	N
MOTA	1383 C	Z ARG	136	107.389	92.960	71.582	1.00	0.00	С
ATOM	1384 N	H1 ARG	136	107.878	93.831	72.403	1.00	0.00	N
ATOM		H2 ARG	136	. 108.094	92.643	70.557	1.00	0.00	N
ATOM	1386 H		136	105.927	91.687	71.026	1.00	0.00	н
ATOM	1387 H		136	102.248	93.616	75.740	1.00	0.00	н
ATOM	1388 H		136						
ATOM	1389 1H			102.443	93.480	72.718	1.00	0.00	H
ATOM			136	103.582	91.925	74.880	1.00	0.00	H
	1390 2H		136	102.546	90.859	74.040	1.00	0.00	H
MOTA	1391 1H		136	104.633	90.591	72.959	1.00	0.00	H
ATOM	1392 2H		136	103.686	91.522	71.809	1.00	0.00	H
MOTA	1393 1H		136	104.817	93.671	72.717	1.00	0.00	H
ATOM	1394 2HI		136	105.766	92.652	73.815	1.00	0.00	H
MOTA	1395 · 2H		136	107.240		·73.160	1:00	0.00	 H.
ATOM	1396 1H		136	108.786	94.233	72.170	1.00	0.00	H
ATOM	1397 1H	H2 ARG	136	107.610	91.983	69.942	1.00	0.00	H
ATOM	1398 2H	12 ARG	136	108.989	93.111	70.433	1.00	0.00	H
ATOM	1399 N	SER	137	99.408	92.748	73.311	1.00	0.00	N
ATOM	1400 C	A SER	137	98.894	93.583	74.450	1.00	0.00	C
ATOM	1401 C	SER	137	98.599	95.136	74.259	1.00	0.00	Ç
ATOM	1402 0	SER	137	98.196	95.769	75.225	1.00	0.00	0
ATOM	1403 C		137	97.668	92.796	75.047	1.00	0.00	Č
ATOM	1404 00		137	96.959	93.495	76.093	1.00	0.00	ō
ATOM	1405 H	SER	137	98.778	92.393	72.582	1.00	0.00	н
ATOM	1406 HZ		137	99.623	93.559	75.279	1.00	0.00	н
ATOM	1407 1H		137	96.937	92.555	74.252	1.00	0.00	н
ATOM	1408 2H		137	97.996	91.822	75.453	1.00	0.00	H
ATOM .					92.949				H.
ATOM						76.949			
	1410 N	LEU	138	98.732	96.006	73.240	1.00	0.00	N
ATOM	1411 C		138	98.781	95.723	71.777	1.00	0.00	C
ATOM	1412 C	LEU	138	97.517	94.909	71.295	1.00	0.00	C
MOTA	1413 0	LEU	138	97.528	93.692	71.106	1.00	0.00	0
MOTA	1414 CE		138	100.246	95.409	71.362	1.00	0.00	C
ATOM	1415 CG		138	100.687	95.099	69.916	1.00	0.00	C
ATOM	1416 CI	1 LEU	138	102.198	94:813	69.905	1.00	0.00	C
MOTA	1417 CI	2 LEU	138	100.015	93.877	69.283	1.00	0.00	C
ATOM	1418 H	LEU	138	98.550	96.940	73.620	1.00	0.00	H
ATOM	1419 HA	LEU	138	98.653	96.705	71.281	1.00	0.00	H
ATOM	1420 1HE	LEU	138	100.846	96.286	71.679	1.00	0.00	H
ATOM	1421 2HB		138	100.635	94.628	72.003	1.00	0.00	H
ATOM	1422 HG		138	100.492	95.999			0.00	H
ATOM	1423 2HD		138		95.565	70.484		0.00	Ħ
MOTA	1434 3HD		138		93.835			0.00	H
ATOH	1405 1HD		138	102.447	94.808			0.00	E
ATOM	LeZo-Inc		156	100.083	95.561-				
								0.00	Fi.
3.7.7.	MOT DEE		123	13.315	::.CJE	79.005	1.31	4 44	•
		= ===	723	.11.11	:. :::	27.516.	2:	1.5	
	-			-:-	• • •	- 1:2			
				•			-		
• • • • • • • • • • • • • • • • • • • •	· -		:	•		7			
	-								
: <u>=</u>		<u> </u>							
•									
-									

						01					
ATOM	1438		LEU		95.105	94.027	70.683	1.00	0.00		H
ATOM		1HB	LEU		95.156	95.360	73.209	1.00	0.00		H
MOTA		2HB	LEU	139	93.707	96.006	72.523	1.00	0.00		H
MOTA	1441		LEU		94.301	92.982	72.746	1.00	0.00		H
ATOM		2HD1		139	94.379	94.064	75.041	1.00	0.00		H
ATOM	1443			139	92.776	94.796	74.748	1.00	0.00		н
ATOM	1444			139	92.958	93.031	74.876	1.00	0.00		Ħ
MOTA		2HD2		139	91.625	94.498	72.380	1.00	0.00		H
MOTA		3HD2		139	92.420	93.425	71.210	1.00	0.00		H
MOTA		1HD2		139	91.766	92.749	72.704	1.00	0.00		H
ATOM	1448		GLU	140	94.311	96.661	68.919	1.00	0.00		N
MOTA	1449		GLU	140	95.583	97.311	68.479	1.00	0.00		C
MOTA	1450		GLU		96.622	96.377	67.752	1.00	0.00		C
MOTA	1451		GLU		96.907	95.279	68.222	1.00	0.00		0.
ATOM	1452		GLU	140	96.197	98.284	69.534	1.00	0.00		C
MOTA	1453	CG	GLU	140	96.556	99.716	69.056	1.00	0.00		C
ATOM	1454	CD	GLU	140		100.407	69.926	1.00	0.00		C
MOTA	1455		GLU	140	98.716	99.888	70.184	1.00	0.00		0
ATOM	1456		GLU	140		101.695	70.221	1.00	0.00		0
ATOM ATOM	1457	H	GLU	140	93.439	96.792	68.391	1.00	0.00		H
ATOM	1458 1459	HA	GLU	140 140	95.204	97.973	67.674	1.00	0.00		H
ATOM	1460		GLU		95.535	98.373	70.417	1.00	0.00		H
ATOM	1461		GLU	140 140	97.116	97.812	69.926	1.00	0.00		H
ATOM	1462				96.948	99.703	68.025	1.00	0.00		H
ATOM	1462		GLU LEU	140 141		100.338	69.008 66.605	1.00	0.00		H
ATOM	1464	CA.	LEU	141	97.189 98.215	96.813		1.00	0.00		N
ATOM	1465	C	LEU	141	97.869	96.059 94.561	65.806	1.00	0.00		C C
ATOM	1466	Ö	LEU	141	97.231	94.319	65.465 64.446	1.00	0.00		Ö
ATOM	1467	CB	LEU	141	99.684		66.287	1.00			c
ATOM	1468		LEU	141	100.294	96.288 97.716	66.239	1.00	0.00		ር ተካ ይ
ATOM	1469		LEU	141	99.949	98.559	67.478	1.00	0.00		C
ATOM	1470		LEU	141	101.828	97.644	66.150	1.00	0.00		C .
ATOM	1471	H	LEU	141	96.894	97.753	66.330	1.00	0.00		н
ATOM	1472	HA	LEU	141	98.193	96.531	64.805	1.00	0.00		н :
ATOM	1473		LEU	141	99.800	95.860	67.293	1.00	0.00		н
ATOM	1474		LEU	141	100.316	95.635	65.650	1.00	0.00		H 2
ATOM	1475	HG	LEU	141	99.924	98.234	65.331	1.00	0.00		н
ATOM	1476			141	98.865	98.650	67.627	1.00	0.00		H :
ATOM		3HD1		141	100.359	98.128	68.411	1.00	0.00		н
ATOM		1HD1		141	100.344	99.590	67.401	1.00	0.00		н . і
ATOM		2HD2		141	102.277	97.137	67.025	1.00	0.00		н
ATOM		3HD2		141	102.157	97.089	65.253	1.00	0.00		н
ATOM		1HD2		141	102.288	98.647	66.082	1.00	0.00		H
ATOM	1482	N	HIS	142	98.239	93.574	66.305	1.00	0.00		N
ATOM	1483	CA	HIS	142	97.890	92.130	66.120	1.00	0.00		C
ATOM	1484	C	HIS	142	96.376	91.786	65.867	1.00	0.00		C
ATOM	1485	0	HIS	142	96.077	91.082	64.902	1.00	0.00		0
ATOM	1486	CB .	HIS	142	98.520	91.384	67.333	1.00	0.00	•	C
MOTA	1487	CG	HIS	142	98.401	89.863	67.314	1.00	0.00		C
ATOM	1488	ND1	HIS	142	99.032	89.064	66.378	1.00	0.00		N
MOTA	1489	CE1	HIS	142	98.517	87.850	66.743	1.00	0.00		C
MOTA	1490	NE2	HIS	142	97.673	87.762	67.818	1.00	0.00		N
ATOM	1491	CD2	HIS	142	97.591	89.095	68.166	1.00	0.00		С
MOTA	1492	H	HIS	142	98.568	93.935	67.207	1.00	0.00		H
MOTA	1493	HA	HIS	142	98.425	91.776	65.215	1.00	0.00		H
MOTA	1494	lhb	HIS	142	99.601	91.610	67.390	1.00	0.00		H
ATOM	1495	2HB	HIS	142	98.095	91.771	68.280	1.00	0.00		H
ATOM	1496	HE1	HIS	142	98.758	86.968	66.161	1.00	0.00		H
ATOM	1497	HE2	HIS	142	97.139	86.941	68.140	1.00	0.00		H
ATOM	1498	HD2	HIS	142	96.957	89.499	68.943	1.00	0.00		H
MOTA	1499	N	Päs	143	95.427	92.296	66.675	1.00	0.00		N
ATOM	1500	CA	LYS	143	93.966	92.168		~1.00	0.00		C
ATOM	1501	C	LYS	143	93.456	92.911	65.071	1.00	0.00		C
ATOM	1502	0	LYS	143	92.547	92.416	64.401	1.00	0.00		0
MOTA	1503	СВ	LYS	143	93.182	92.544	67.652	1.00	0.00		С
MOTA	1504	CG	LYS	143	91.694	92.119	67.639	1.00	0.00		C
ATOM	1505	CD	LYS	143	90.996	92.400	68.981	1.00	0.00		С
ATOM	1506	CE	LYS	143	89.522	91.976	68.981	1.00	0.00		C
ATOM	1507	NZ	LYS	143	88.936	92.262	70.305	1.00	0.00		N
ATOM	1508		LYS	143	87.946	91.979	70.312	1.00	0.00		H
ATOM	1509		LYS	143	89.448	91.737	71.029	1.00	0.00		н
ATOM	1510	3HZ	LYS	143	89.005	93.271	70.501	1.00	0.00		H

						02					
MOTA	1511		LYS	143	95.796	92.914	67.405	1.00	0.00		H
MOTA	1512		LYS	143	93.768	91.094		1.00	0.00		H
ATOM		1HB	LYS	143	93.663	92.071		1.00	0.00		H
ATOM ATOM	1514	2HB	LYS LYS	143 143	93.260 91.157	93.634	67.831	1.00	0.00		H
ATOM		2HG	LYS	143	91.612	92.643 91.041	66.822 67.399	1.00 1.00	0.00		H H
ATOM	1517		LYS	143	91.533	91.864	69.788	1.00	0.00		H
ATOM	1518	2HD	LYS	143	91.083	93.480	69.220	1.00	0.00		н
MOTA	1519		LYS	143	88.963	92.511	68.187	1.00	0.00		H
ATOM	1520		LYS	143	89.428	90.895	68.753	1.00	0.00		H
MOTA	1521		ARG	144	94.052	94.055	64.693	0.00	0.00		N
ATOM	1522		ARG	144	93.818	94.707	63.364	0.00	0.00		C
ATOM ATOM	1523 1524	C O	ARG ARG	144 144	94.430 93.771	93.932 93.765	62.133 61.107	0.00	0.00		C
ATOM	1525		ARG	144	94.325	96.187	63.398	0.00	0.00		0 C
ATOM	1526		ARG	144	94.048	97.079	64.638	0.00	0.00		c
ATOM	1527		ARG	144	92.575	97.236	65.036	0.00	0.00		č
ATOM	1528	NE	ARG	144	92.517	98.058	66.275	0.00	0.00		N
MOTA	1529	CZ	ARG	144	91.428	98.276	67.001	0.00	0.00		C
ATOM	1530		ARG	144	90.254	97.796	66.722	0.00	0.00		N
ATOM	1531		ARG	144	91.551	99.010	68.049	0.00	0.00		N
ATOM ATOM	1532 1533	HE H	ARG	144	93.394	98.494	66.595	1.00	0.00		H
MOTA	1534	HA	ARG ARG	144 144	94.877 92.724	94.270 94.742	65.261	0.00	0.00		H
ATOM	1535		ARG	144	93.934	96.702	63.188 62.499	0.00	0.00		H H
ATOM	1536		ARG	144	95.422	96.182	63.249	0.00	0.00		н
ATOM	1537	1HG	ARG	144	94.490	98.081	64.473	0.00	0.00		н
ATOM	1538	2HG	ARG	144	94.603	96.661	65.499	0.00	0.00		. н
ATOM	1539		ARG	144	92.121	96.238	65.209	0.00	0.00		H
MOTA	1540		ARG	144	91.997	97.713	64.219	0.00	0.00		, H
ATOM ATOM		1HH1		144	- 89.492		67.359		0.00		. H
ATOM		2HH1 1HH2		144 144	90.243 90.714	97.220 99.175	65.880	0.00	0.00		H
ATOM	1544			144	92.504	99.350	68.606 68.179	0.00	0.00		H H
ATOM	1545	N	ARG	145	95.685	93.464	62.247	1.00	0.00		N
ATOM	1546	CA	ARG	145	96.370	92.597	61.243	1.00	0.00		Ċ
ATOM	1547	C	ARG	145	95.872	91.111	61.094	1.00	0.00		C
ATOM	1548	0	ARG	145	96.228	90.473	60.101	1.00	0.00		0
ATOM	1549	CB	ARG	145	97.877	92.563	61.650	1.00	0.00		C
ATOM	1550	CG	ARG	145	98.679	93.889	61.575	1.00	0.00		C
ATOM ATOM	1551 1552	CD NE	ARG ARG	145 145	100.051 100.752	93.757	62.256	1.00	0.00		C
ATOM	1553	CZ	ARG	145	100.752	95.066 95.278	62.215 62.604	1.00 1.00	0.00		N C
ATOM	1554	NH1		145	102.785	94.365	63.098	1.00	0.00		N
ATOM	1555		ARG _		102.465		62.475	1.00			, N
MOTA	1556	HE	ARG	145	100.224	95.874	61.856	1.00	0.00	-	H
MOTA	1557	H	ARG	145	96.135	93.688	63.146	1.00	0.00		H
ATOM	1558		ARG	145	96.281	93.057	60.240	1.00	0.00		H
ATOM	1559		ARG	145	97.951	92.141	62.674	1.00	0.00		H
ATOM ATOM	1560 1561		ARG ARG	145 145	98.410	91.821	61.021	1.00	0.00		H
ATOM	1562		ARG	145	98.805 98.115	94.204 94.711	60.520 62.056	1.00	0.00		H
ATOM	1563		ARG	145	99.923	93.427	63.309	1.00	0.00		H
ATOM	1564		ARG	145	100.648	92.971	61.751	1.00	0.00		H
ATOM	1565	2HH1	ARG	145	102.341	93.449	63.156	1.00	0.00		H
MOTA		1HH1		145	103.735	94.640	63.347	1.00	0.00		H
ATOM	1567			145	101.776		62.057	1.00	0.00		H
ATOM		2HH2		145	103.434	96.635	62.741	1.00	0.00		H
atom atom	1569		LYS	146	95.154	90.529		1.00	0.00		Ŋ
ATOM	1570 1571		lis Lis	146	94.309 96.148	89.U36	63.315	1.00	0.00		Č
EZOL.	1572		LIE.		56.165	88.227 87.557	62.721 <i>8</i> 3.775	1.32	0.00		C C
RTI.		<u>ت</u> ے:		111.	1252	20.122.		1.30	0.ec.		ē
	271		- .		:::::	:::::	12.273	1.11	1 10		
Ξ.	. 1								-		-
	- 	:	<u> </u>			: :			. ::.		
				•							-
:: <u>:</u>			··-								
	= = = = = = = = = = = = = = = = = = = =						•	-	•		
	_	•									
						-					

					03					**
MOTA	1584 2HE	LYS	146	94.824		60.112		0.00		H H
ATOM	1585 1HG		146	94.419	86.340	61.489		0.00		H
ATOM	1586 2HG		146		87.000	62.003	1.00	0.00		
ATOM	1587 1HI		146	92.118	87.145	59.582	1.00	0.00		H
ATOM	1588 2HI		146	93.694	86.549	59.054	1.00	0.00		H
ATOM	1589 1HE		146	93.296	84.375	60.333	1.00.	0.00		H
ATOM	1590 2H	LYS	146	91.704	84.972	60.836	1.00	0.00		H
MOTA	1591 N	ALA	147	97.248	88.196	61.950	1.00	0.00		N
ATOM	1592 . C		147	98.402	87.294	62.187	1.00	0.00		C
ATOM	1593 C	ALA	147	99.779	87.983	61.895	1.00	0.00		C
ATOM	1594 0	ALA	147		88.722	60.915	1.00	0.00		0
	1595 CI		147		86.085	61.256	1.00	0.00		C
MOTA	1596 H		147	97.178	88.800	61.122	1.00	0.00		Ħ
MOTA	1597 H		147	98.408	86.934	63.237	1.00	0.00		H
MOTA	1598 2H		147	97.255	85.528	61.536	1.00	0.00		H
MOTA			147	98.071	86.380	60.195	1.00	0.00		H .
MOTA			147	99.006	85.368	61.308	1.00	0.00		H
MOTA	1600 1H		148	100.806	87.700	62.716	1.00	0.00		N
MOTA	1601 N		148	102.207	88.129	62.439	1.00	0.00		С
MOTA	1602 C		148	102.986	87.003	61.680	1.00	0.00		С
ATOM	1603 C		148	103.014	85.843	62.105	1.00	0.00		0
MOTA	1604 0		148	102.939	88.519	63.757	1.00	0.00		С
MOTA	1605 C			102.326	89.637	64.641	1.00	0.00		С
MOTA		G LEU	148	103.212	89.891	65.868	1.00	0.00		C
ATOM		D1 LEU	148	102.098	90.967	63.907	1.00	0.00		C
MOTA		D2 LEU	148	100.590	87.057	63.490	1.00	0.00		H
ATOM	1609 H		148	102.200	89.037	61.803	1.00	0.00		H
ATOM		A LEU	148	103.042	87.607	64.378	1.00	0.00		H
MOTA	1611 1H		148	103.042	88.795	63.509	1.00	0.00		H
ATOM	1612 2H		148		89.275	65.004	1.00	0.00		. н .
MOTA		G ĻEU	148	101.343	88.954	66.407	1.00	0.00		H
MOTA	1614 2H		148		90.351	65.609	1.00	0.00		H ·
MOTA	1615 3H		148	104.185	90.564	66.595	1.00	0.00		н,
MOTA	1616 lH		148	102.720	91.381	63.491	1.00	0.00		H
MOTA	1617 2F		148	103.034		63.072	1.00	0.00		H
ATOM	1618 3F		148	101.382	90.848	64.580	1.00	0.00		H
MOTA	1619 1F		148	101.664	91.730	60.563	1.00	0.00		M · · ·
MOTA	1620 N		149	103.648	87.338	59.754	1.00	0.00		Ĉ.
MOTA		A THR	149	104.435	86.350	60.498	1.00	0.00		C. S.
MOTA	1622 (THR.	149	105.682	85.746	61.461	1.00	0.00		o":
MOTA		O THR	149	106.190	86.324	58.370	1.00	0.00		Cn;
MOTA		CB THR	149	104.837	86.961	58.524	1.00	0.00		o``^
MOTA		OG1 THR	149	105.679	88.098	57.459	1.00	0.00		C
ATOM	1626 (CG2 THR	149	103.673	87.383	60.285	1.00	0.00		н
ATOM	1627 I	H THR	149	103.553	88.318	59.545	1.00	0.00		H
ATOM	1628	HA THR	149	103.758	85.496	57.810	1.00	0.00		H
ATOM		HB THR	149	105.407	86.192		1.00	0.00		H
MOTA		HG1 THR	149	105.422	88.711	57.831	1.00	0.00		H
MOTA	1631 1	HG2 THR	149	104.024	87.738	56.472	1.00	0.00		H.
ATOM		HG2 THR	149	102.982	86.539	57.266 57.904	1.00	0.00		н
MOTA	1633 3	HG2 THR	149	103.065	88.194		0.00	0.00		N
ATOM	1634	M GLU	150	106.193	84.586 83.885		0.00	0.00	•	С
MOTA	1635	CA GLU	150	107.355				0.00		С
MOTA	1636	C GLU	150	108.671	84.748			0.00		0
MOTA	1637	O GLU	150	109.164	84.675			0.00		c
MOTA	1638	CB GLU	150	107.587	82.517			0.00		C
ATOM	1639	CG GLU	150	106.402	81.503			0.00		C
MOTA		CD GLU	150	106.509	80.210			0.00		o
MOTA		OE1 GLU	150	107.099	79.207			0.00		0
MOTA	1642	OE2 GLU	150	105.835	80.283					н
ATOM	1643	h GLU	150	105.612	84.128		_			H
ATOM		HA GLU	150	107.022	83.624					H
MOTA	1645 1	HB GLU	150	108.487						H
MOTA	1646 2		150	107.856	82.703					H.
MOTA	1647 1		150	105.461	81.993					н
MOTA	1648 2		150	106.235	81.212					N
ATOM		N PRO	151	109.214	85.621					Č
ATOM		CA PRO	151	110.199	86.694					č
ATOM	1651	CD PRO	151	108.872						č
MOTA	1652	C PRO	151	109.855						õ
ATOM	1653	O PRO	151	110.743						c
ATOM	1654	CB PRO		110.413						c
MOTA		CG PRO	151	109.986						н
ATOM		HA PRO	151	111.150	86.203	60.668	0.00	0.00		**

ATOM	1657	7 1HD	PRO	151	107.885	86.088	58.412	0.00	0.00		н
MOTA	1658	3 2HD	PRO	151	108.856	84.598			0.00		H
ATOM	1659	1HB	PRO	151	111.462	87.754	58.917		0.00		H
MOTA	1660	2HB	PRO	151	109.787	88.335	58.968		0.00		н
ATOM	1661	. 1HG	PRO		110.834	85.785	57.690		0.00		H
ATOM		2HG	PRO		109.669	06.944	57.018				
ATOM	1663		GLU		108.587				0.00		H
ATOM	1664		GLU			88.146	61.648	1.00	0.00		N
ATOM					108.117	89.007	62.775		0.00		С
	1665		GLU		107.904	88.238	64.129	1.00	0.00		C
ATOM	1666		GLU		108.439	88.657	65.158	1.00	0.00		0
ATOM	1667		GLU	152	106.855	89.756	62.250	1.00	0.00		С
ATOM	1668		GLU	152	106.211	90.800	63.203	1.00	0.00		C
MOTA	1669		GLU	152	106.987	92.086	63.492	1.00	0.00		С
ATOM	1670		CLU	152	108.200	92.220	63.370	1.00	0.00		0
ATOM	1671		GLU	152	106.172	93.078	63.939	1.00	0.00		0
MOTA	1672	H	GLU	152	107.932	87.605	61.072	1.00	0.00		H
MOTA	1673	HA	GLU	152	108.892	89.773	62.981	1.00	0.00		H
MOTA	1674	1HB	GLU	152	107.096	90.261	61.293	1.00	0.00		H
MOTA	1675	2HB	GLU	152	106.081	89.009	61.984	1.00	0.00		н
ATOM	1676	1HG	GLU	152	105.230	91.093	62.786	1.00	0.00		н
ATOM	1677	2HG	GLU	152	105.977	90.333	64.176	1.00	0.00		н
ATOM	1678		ALA	153	107.158	87.116	64.137	0.00	0.00		
ATOM	1679		ALA	153	107.037	86.226	65.325				N
ATOM	1680		ALA	153	. 108.359	85.596		0.00	0.00		C
ATOM	1681		ALA	153			65.902	0.00	0.00		C
ATOM	1682				108.492	85.516	67.125	0.00	0.00		0
ATOM	1683		ALA	153	105.982	85.168	64.944	0.00	0.00		C
			ALA	153	106.793	86.850	63.212	0.00	0.00		H
ATOM	1684		ALA	153	106.608	86.829	66.151	0.00	0.00		H
MOTA	1685		ALA	153	105.751	84.502	65.795	0.00	0.00		H
	16.86		_ALA-		105.021-			<u>o-oo-</u>	000-		H
MOTA	1687		ALA	. 153	106.317	84.525	64:108	0.00	0.00		H
ATOM	1688	N	ARG	154	109.343	85.199	65.066	0.00	0.00		N
MOTA	1689	CA	ARG	154	110.722	84.852	65.539	0.00	0.00		C
ATOM	1690	C	ARG	154	111.530	85.995	66.258	0.00	0.00		C
ATOM	1691	0	ARG	154	112.158	85.741	67.286	0.00	0.00		0
MOTA	1692	CB	ARG	154	111.503	84.146	64.390	0.00	0.00		С
ATOM	1693	CG	ARG	154	112.107	85.065	63.296	0.00	0.00		Ċ
ATOM	1694	CD	ARG	154	113.543	85.528	63.593	0.00	0.00		Č
ATOM	1695	NE	ARG	154	113.880	86.656	62.687	0.00	0.00		и
MOTA	1696	CZ	ARG	154	114.866	87.527	62.870	0.00	0.00		Č
ATOM	1697		ARG	154	115.740	87.459	63.831	0.00	0.00	•	и
ATOM	1698		ARG	154	114.962	88.493	62.030	0.00		-	
ATOM	1699	HE	ARG	154	113.299	86.772	61.844		0.00		N
ATOM	1700	н	ARG	154				1.00	0.00		H
ATOM-	-1701			- 154	109.127	85.334	64.069	0.00	0.00		H
ATOM	1702				110.592		66.310	0.00	0.00		H.
ATOM	1702		ARG ARG	154	110.836	83.409	63.904	0.00	0.00		H
ATOM				154	112.305	83.522	64.828	0.00	0.00		H
	1704		ARG	154	111.443	85.935	63.149	0.00	0.00		H
ATOM	1705		ARG	154	112.090	84.564	62.315	0.00	0.00		H
ATOM	1706		ARG	154	114.240	84.680	63.473	0.00	0.00		H
ATOM '	1707		ARG	154	113.654	85.843	64.648	0.00	0.00		H
ATOM		1HH1		154	116.480	88.160	63.838	0.00	0.00		H
ATOM	1709			154	115.646	86.618	64.402	0.00	0.00		H
ATOM	1710	1HH2	ARG	154	115.697	89.181	62.187	0.00	0.00		H
MOTA	1711	2HH2	ARG	154	114.203	88.476	61.347	0.00	0.00		H
MOTA	1712	N	TYR	155	111.514	87.235	65.733	1.00	0.00		N
MOTA	1713	CA	TYR	155	112.066	88.440	66.422	1.00	0.00		C
MOTA	1714	C	TYR	155	111.457	88.734		1.00	0.00		č
ATOM	1715		TYR	155	112.186	89.051	68.784	1.00	0.00		ñ
MOTA	1716		TYR	155	111.395	69.611	65.411	1.00	0.00		
ATON	1717		TR	155	112.698	90.878	65.739	1.00			c
rion	1718	CPI		722	312.5.2	511015T			0.00		c ~
7.3	1711	7.5				51.015 51.573		1.00	0.50		Œ
7 2	- :=:			. 22			::.EEE	1.33	•		•
		<u> </u>		- = =			. 3 ;;;				•
::	· 	-	- -		-						
	-										

						00					**
ATOM	1730	HE1	TYR	155	115.698	92.323	65.073	1.00	0.00		H
ATOM	1731	HE2	TYR	155	112.486	93.787	67.484	1.00	0.00		Ħ
ATOM	1732	HH	TYR	155	114.330	94.967	66.971	1.00	0.00		H
ATOM	1733	N	TYR	156	110.132	88.574	67.992	0.00	0.00		11
ATOM	1734	CA	TYR	156	109.433	88.599	69.304	0.00	0.00		C
ATOM	1735	c	TYR	156	109.852	87.428	70.275	0.00	0.00		C
	1736	ō	TYR	156	110.195	87.710	71.422	0.00	0.00		0
ATOM			TYR	156	107.898	88.642	69.018	0.00	0.00		C
MOTA	1737	CB			107.223	89.943	68.497	0.00	0.00		C
MOTA	1738	CG	TYR	156		90.774	67.520	0.00	0.00		C
MOTA	1739	CD1		156	107.798			0.00	0.00		Č
MOTA	1740	CE1		156	107.141	91.923	67.090		0.00		Č
ATOM	1741	\mathbf{cz}	TYR	156	105.895	92.247	67.606	0.00			Ö
ATOM	1742	OH	TYR	156	105.263	93.392	67.205	0.00	0.00		c
MOTA	1743	CE2	TYR	156	105.296	91.425	68.555	0.00	0.00		
MOTA	1744	CD2	TYR	156	105.959	90.281	68.997	0.00	0.00		C
MOTA	1745	H	TYR	156	109.565	88.424	67.145	1.00	0.00		H
ATOM	1746	HA	TYR	156	109.702	89.539	69.829	0.00	0.00		H
ATOM	1747	1HB	TYR	156	107.396	88.358	69.964	0.00	0.00		H
ATOM		2HB	TYR	156	107.629	87.819	68.330	0.00	0.00		H
ATOM	1749	HD1	TYR	156	108.758	90.552	67.084	0.00	0.00		H
ATOM	1750		TYR	156	107.610	92.568	66.361	0.00	0.00		H
ATOM	1751	HH	TYR	156	104.508	93.523	67.781	0.00	0.00		H
ATOM	1752		TYR	156	104.337	91.683	68.977	0.00	0.00		H
ATOM	1753		TYR	156	105.486	89.679	69.760	0.00	0.00		H
	1754	N	LEU	157	109.860	86.143	69.853	1.00	0.00		N
ATOM		CA	LEU	157	110.345	85.012	70.711	1.00	0.00		C.
ATOM	1755	CA	LEU	157	111.873	84.971	71.073	1.00	0.00		С
ATOM	1756		LEU	157	112.208	84.574	72.191	1.00	0.00		0
MOTA	1757	0			109.771	83.662	70.181	1.00	0.00		С
ATOM	1758	CB	LEU	157		.82.934	69.039	1.00	0.00		C
MOTA	1759	CG	LEU	157	110.541	81.907	69.572	1.00		•	~ c ₩//
MOTA	1760		LEU	157	111.558		68.098	1.00	0.00		Č.
MOTA	1761		LEU	157	109.575	82.206		1.00	0.00		H
ATOM	1762	H	LEU	157	109.582	86.019	68.870	1.00	0.00		н
MOTA	1763	HA.	LEU	157	109.856	85.147	71.693		0.00		
MOTA	1764		LEU	157	109.664	82.968	71.037	1.00			H H
MOTA	1765	2HB	FEA	157	108.718	83.834	69.881	1.00	0.00		H . 4
MOTA	1766	HG	LEU	157	111.088	83.689	68.443	1.00	0.00		
MOTA	1767	2HD1	ĻEU	157	112.317	82.369	70.227	1.00	0.00		**.
ATOM	1768	3HD1	LEU	157	111.074	81.105	70.159	1.00	0.00		н ;
ATOM	1769	1HD1	LEU	157	112.116	81.418	68.750	1.00	0.00		H
ATOM	1770			157	108.993	81.441	68.635	1.00	0.00	•	H
ATOM	1771			157	108.848	82.902	67.638	1.00	0.00		· H · 377
ATOM		1HD2		157	110.101	81.700	67.267	1.00	0.00		H
ATOM	1773	N	ARG	158	112.794	85.339	70.162	1.00	0.00		N
ATOM	1774	CA	ARG	158	114.267	85.286	70.417	1.00	0.00		С
ATOM	1775	c.	ARG	158	114.818	86.178	71.582	1.00	0.00		C
ATOM	1776	ŏ	ARG	158	115.619	85.706	72.392	. 1.00	0.00		0
MOTA	1777	СВ	ARG	158	115.007	85.449	69.057	1.00	0.00		C
	1778	CG	ARG	158	115.175	86.874	68.458	1.00	0.00		С
MOTA		CD CD	ARG	158	116.540	87.524	68.779	1.00	0.00		C
ATOM	1779 1780	NE	ARG	158	116.446	89.000	68.662	1.00	0.00		N
MOTA					117.045	89.775	67.769	1.00	0.00		C
MOTA	1781	CZ	ARG	158	117.835	89.356	66.828	1.00	0.00		N
MOTA	1782		ARG	158	116.819	91.036	67.853	1.00	0.00		N
ATOM	1783		ARG	158	115.849	89.477	69.353	1.00	0.00		н
MOTA	1784	HE	ARG	158		85.649	69.259	1.00	0.00		н
MOTA	1785	H	ARG	158	112.401		70.742	1.00	0.00		H
MOTA	1786	HA	ARG	158	114.482	84.249		1.00	0.00		H
MOTA	1787		ARG	158	115.999	84.986	69.177				H
MOTA	1788		ARG	158	114.521	84.802	68.299	1.00	0.00		H
MOTA	1789		ARG	158	115.054	86.841	67.357	1.00	0.00		H
ATOM	1790	2HG	ARG	158	114.337	87.520	68.789	1.00	0.00		
ATOM	1791		ARG	158	116.836	87.294	69.821	1.00	0.00		H
MOTA	1792		ARG		. 117:337	87.084	68.149	1.00	0.00	•	H
ATOM	1793	2HH1	ARG	158	117.958	88.343	66.791	1.00	0.00		H
MOTA		1HH1		158	118.205	90.060	66.191	1.00	0.00		H
ATOM		1HH2		158	116.085	91.238	68.536	1.00	0.00		H
ATOM		2HH2		158	117.170	91.627	67.101	1.00	0.00		H
ATOM	1797	N	GLN	159	114.342	87.426	71.705	0.00	0.00		N
ATOM	1798	CA	GLN	159	114.561	88.275	72.911	0.00	0.00		C
ATOM	1799	c	GLN		113.899	87.764	74.246	. 0.00	0.00		C
ATOM	1800	ō	GLN	159	114.458	87.994	75.318	0.00	0.00		0
ATOM	1801	CB	GLN		114.096	89.718	72.581	0.00	0.00		C
MOTA	1802	CG	GLN		114.776	90.433	71.381	0.00	0.00		С
311017											

ATOM	180	3 · CD	GLM	159	114.427	91.912	71.236	0.00	0.00		С
MOTA	180	4 OE1	L GLN	159	113.474	92.320	70.582	0.00	0.00		ō
ATOM	180	5 NE2	GLN	159	115.171	92.782	71.861	0.00	0.00		N
ATOM	180	6 H	GLN	159	113.734	87.719	70.929	0.00	0.00		H
MOTA	180	7 HA	GLN	159	115.650	88.322	73.109		0.00		Ħ
atom	180	в тив	GLN	159	114.249	90.337	73.487	0.00	0.00		H
MOTA	180	9 2HB	GLM	159	113.003	89.711	72.411	0.00	0.00		H
ATOM	1810	0 lHG	GLM	159	114.475	89.939	70.438	0.00	0.00		н
ATOM	181:	1 2HG	GLN	159	115.875	90.305	71.420	0.00	0.00		н
MOTA	1812	2 1HE2	GLN	159	115.731	92.400	72.632	0.00	0.00		H
MOTA	1813	3 2HE2	GLN	159	114.805	93.732	71.792	0.00	0.00		H
ATOM	1814	4 N	ILE	160	112.749	87.059	74.203	0.00	0.00		N
ATOM	1815	5 CA	ILE	160	112.178	86.320	75.382	0.00	0.00		C
ATOM	1816	5 C	ILE	160	113.065	85.090	75.820	0.00	0.00		Ċ
MOTA	1817	7 0	ILE	160	113.349	84.959	77.011	0.00	0.00		ō
ATOM	1818	CB	ILE	160	110.665	85.933	75.161	0.00	0.00		Č
ATOM	1819	CG2	ILE	160	110.033	85.314	76.441	0.00	0.00		č
ATOM	1820	CG1	ILE	160	109.741	87.100	74.696	0.00	0.00		Č
ATOM	1821	CD1	ILE	160	108.408	86.662	74.063	0.00	0.00		Č
MOTA	1822	H	ILE	160	112.391	86.927	73.248	0.00	0.00		H
ATOM	1823	HA.	ILE	160	112.195	87.020	76.242	0.00	0.00		H
MOTA	1824	HB	ILE	160	110.651	85.163	74.364	0.00	0.00		H
MOTA	1825	1HG2	ILE	160	108.989	84.988	76.278	0.00	0.00		H
ATOM	1826	2HG2	ILE	160	110.580	84.418	76.788	0.00	0.00		H
ATOM	1827	7 3HG2	ILE	160	110.020	86.029	77.284	0.00	0.00		H
ATOM	1828	1HG1	ILE	160	110.259	87.714	73.936	0.00	0.00		H
MOTA		2HG1		160	109.554	87.808	75.526	0.00	0.00		H
MOTA	1830	1HD1	ILE	160	107.902	87.513	73.570	0.00	0.00		H
MOTA	1831	. 2HD1	ILE	160	108.545	85.892	73.285	0.00	0.00		H
-ATOM		-3HD1	IPE	- 160	107-708-	86:253	74:812	-0.00-	0:-00:-		
ATOM	1833		VAL	161 -	113.521		74.899	0.00	0.00		· in ´
MOTA	1834		VAL	161	114.529	83.137	75.205	0.00	0.00		C .
ATOM	1835		VAL	161	115.907	83.685	75.750	0.00	0.00		С
ATOM	1836		VAL	161	116.400	83.167	76.752	0.00	0.00		0
ATOM	1837		VAL	161	114.681	82.153	73.984	0.00	0.00		C
ATOM	1838		VAL	161	115.681	80.993	74.226	0.00	0.00		C
ATOM	1839		VAL	161	113.363	81.472	73.541	0.00	0.00		C
ATOM	1840		VAL	161	113.202	84.416	73.940	0.00	0.00		H
MOTA	1841		VAL	161	114.115	82.533	76.037	0.00	0.00		H
MOTA	1842		VAL	161	115.060	82.747	73.126	0.00	0.00		н
ATOM	1843			161	115.804	80.350	73.333	0.00	0.00		H
MOTA		2HG1		161	116.693	81.358	74.477	0.00	0.00		H
ATOM		3HG1		161	115.368	80.335	75.059	0.00	0.00		H
ATOM		1HG2		161	113.504	80.827	72.653	0.00	0.00		H
.WO.LY.		"2HG2		161	112.928	80.840	74.338	0.00	0.00		H
ATOM		3HG2		161	112.588	82.210	73.260	0.00	0.00		H
ATOM	1849	N	LEU	162	116.504	84.730	75.145	0.00	0.00		N
ATOM	1850	CA	LEU	162	117.649	85.484	75.753	0.00	0.00		C
ATOM	1851	C	LEU	162	117.378	86.204	77.127	0.00	0.00		C
ATOM	1852	0	LEU	162	118.260	86.217	77.988	0.00	0.00		0
ATOM	1853	CB	LEU	162	118.193	86.481	74.690	0.00	0.00		C
ATOM ATOM	1854	CG	LEU	162	118.906	85.886	73.448	0.00	0.00		C
ATOM	1855	CD1		162	119.135	86.980	72.393	0.00	0.00		С
ATOM	1856 1857			162	120.255	85.243	73.811	0.00	0.00		С
ATOM	1858		LEU	162	116.028	85.052	74.289	0.00	0.00		H
ATOM	1859		LEU	162 162	118.451	84.756	75.972	0.00	0.00		H
ATOM	1860		LEU		118.894	87.188	75.175	0.00	0.00		H
ATOM	1861		T.EU	162 163	117.350	87.120	74.357	0.00	0.00		H
ATOM		1HD1		162	118.252	85.114	72 991	u uù	υ ὑυ		ŗ
RTOM		CHDI		162	119.596	86.571	71.476	0.00	0.00		H
RECE		CHOL			110.105	87.353	72.080	0.00	0.00		स
	:			132	119.301 .11.755	87.785	70 757	0.03	6.00		Fi
				٠			72:323	9.41	7 61		*2
			=				<u>.</u>		-		
. :						-					
	_:		-		= =	-	· - ·	•			
	-:		Ţ.								
-			-								

						01					
ATOM	1876	CA	CYS	164	114.876	83.737	80.335	1.00	0.00		C
ATOM	1877	C	CYS	164	116.266	83.039	80.567	1.00	0.00		č
ATOM	1878	0	CYS	164	116.521				0.00		ō
ATOM	1879	CB	CYS	164	113.829						č
, TLOM	1880	SG	CYS	164	112.154						ŝ
MOTA	1881	н	CYS	164	114.400						
ATOM	1882	HA	CYS	164	114.518				0.00		H
ATOM	1883		CYS	164	114.081				0.00		H
ATOM	1884		CYS	164		82.520			0.00		H
ATOM	1885	HG	CYS		113.813	81.822	80.285		0.00		H
ATOM	1886	•		164	112.078	83.650	81.109		0.00		H
		N	GLN	165	117.185		79.584		0.00		N
MOTA	1887	CA	GLN	165	118.630	82.717	79.812		0.00		C
ATOM	1888	C	GLN	165	119.377		80.884		0.00		C
MOTA	1889	0	GLN	165	120.137	83.048	81.686	1.00	0.00		0
ATOM	1890	CB	GLN	165	119.305	82.732	78.409	1.00	0.00		C
ATOM	1891	CG	GTW	165	120:812	82.361	78.337	1.00	0.00		C
ATOM	1892	СD	GLN	165	121.171	80.925	78.714	1.00	0.00		C
MOTA	1893	OE1	GLN	165	121.176	80.021	77.889	1.00	0.00		٥
ATOM	1894	NE2	GLN	165	121.483	80.662	79.958	1.00	0.00		Ŋ
MOTA	1895	H	GLN	165	116.831	83.380	78.683	1.00	0.00		H-
ATOM	1896	HA	GLN	165	118.685	81.679	80.192		0.00		H
ATOM	1897	1HB	GLN	165	118.748	82.064	77.721	1.00	0.00		H
MOTA	1898	2HB	GLN	165	119.186	83.742	77.971		0.00		H
MOTA	1899		GLN	165	121.163	B2.514	77.300	1.00	0.00		H
MOTA	1900		GLN	165	121.416	83.072	78.933	1.00	0.00		
MOTA	1901			165	121.348	81.425	80.632	1.00			H
ATOM	1902	2HE2	GLN	165	121.686	79.679	80.146		0.00		H
ATOM	1903	N	TYR	166	119.158	84.923		1.00			H
ATOM	1904	CA	TYR	166			80.915	0.00	0.00		N
ATOM	1905		TYR		119.568	85.789	82.059	0.00	0.00	•	C
MOTA	1906	0	TYR	166	. 118.771	85.539	83.393	0.00	.0.00	:	C .
ATOM	1907			166	119.399	85.300	84.425	0.00	0.00		0 '
ATOM		CB	TYR	166	119.502	87.256	81.545	0.00	0.00		C
	1908	CG	TYR	166	120.132	88.308	82.473	0.00	0.00		С
ATOM	1909		TYR	166	121.487	88.633	82.352	0.00	0.00		C
MOTA	1910		TYR	166	122.045	89.626	83.155	0.00	0.00		C
ATOM	1911	CZ	TYR	166	121.259	90.279	84.099	0.00	0.00	•	C
ATOM	1912	OH	TYR	166	121.795	91.289	84.845	0.00	0.00		٥
ATOM	1913		TYR	166	119.916	89.950	84.239	0.00	0.00		C
ATOM	1914	CD2	TYR	166	119.349	88.973	83.422	0.00	0.00		С
MOTA	1915	H	TYR	166	118.685	85.361	80.112	1.00	0.00		H
MOTA	1916	HA	TYR	166	120.631	85.572	82.293	0.00	0.00		H
MOTA	1917	1HB	TYR	166	118.451	87.533	81.332	0.00	0.00		H
ATOM	1918 :	2HB	TYR	166	119.994	87.330	80.555	0.00	0.00		н
ATOM	1919	HD1	TYR	166	122.106	88.133	81.622	0.00	0.00		H
MOTA	1920	HE1	TYR	166	123.087	89.891	83.046	0.00	0.00		н
MOTA	1921	HH	TYR	166	122.244	91.892	84.240	0.00	0.00		н
ATOM	1922	HE2		166	119.310	90.457	84.974	0.00	0.00		H.
ATOM	1923	HD2		166	118.302	88.727	83.543	0.00	0.00		н
ATOM	1924	N	LEU	167	117.424	85.573	83.383	0.00	0.00		N
ATOM	1925		LEU	167	116.580	85.358	84.599	0.00	0.00		
ATOM	1926		LEU	167	116.762	83.982	85.326	0.00			C
ATOM	1927		LEU	167	116.762				0.00		C
ATOM	1928	_	LEU	167	115.083	85.622			0.00		0
ATOM	1929		LEU	167	114.679		84.256	0.00	0.00		C
ATOM	1930		TEA .			87.034	83.757	0.00	0.00		C
ATOM	1931	CD2			113.194	87.063	83.364	0.00	0.00		C
ATOM				167	114.939	88.119	84.808	0.00	0.00		С
	1932		LEU	167	117.014	85.798	82.466	0.00	0.00		H
ATOM	1933		LEU	167	116.884	86.113	85.350	0.00	0.00		H
MOTA	1934 1		LEU	167	114.473	85.389	85.151	0.00	0.00		H
MOTA	1935 2		LEU	167	114.764	84.870	83.510	0.00	0.00		H
ATOM			LEU	167	115.274	87.289	82.858	0.00	0.00		H
ATOM	1937 1			167	112.894	88.053	82.971	0.00	0.00		H.
MOTA	1938 2			167	112.964	86.327	82.572	0.00	0:00		H ·
ATOM	1939 3			167	112.532	86.847	84.222	0.00	0.00		H
MOTA	1940 1	HD2	LEU	167	114.642	89.118	84.443	0.00	0.00		H
MOTA	1941 2			167	114.388	87.929	85.748	0.00	0.00		H
MOTA	1942 3	HD2	LEU	167	116.011	88.196	85.072	0.00	0.00		H
MOTA			HIS	168	116.757	82.845	84.609	0.00	0.00		N
MOTA	1944		HIS	168	117.105	81.512	85.190	0.00	0.00		C
MOTA			RIS	168	. 118.576	81.396	85.749	0.00	0.00		c
ATOM			HIS	168	118.773	80.818	86.819	0.00	0.00		0
ATOM			HIS	168	116.788	80.395	84.153	0.00	0.00		
ATOM			HIS	168	115.353	80.235	83.617				C
							03.01/	0.00	0.00		C

ATO	4 194	10 3775				00				•	
			l HIS		114.19	99 80.80	9 84.14	43 0.0	0.0	^	
ATOM			1 HIS	168	113.27						N
ATOM		1 NE	2 HIS	168	113.67			_			С
ATOM	1 195	2 CD:	HIS	168					0.0	0	N
ATOM		3 н	HIS		115.03		31 82.49	98 0.0	0.0	0	С
ATOM		_			116.57		72 83.60	0.0	0.0	n	н
			HIS	168	116.44	0 81.34	3 86.06				
ATOM		2 THB	HIS	168	117.07						н
ATOM		6 2HB	HIS	168	117.46						H
ATOM	195	7 HE1	. HIS	168			.			כ	H
ATOM			HIS		112.23			2 0.0	0 0.0)	н
ATOM				168	113.10		7 81.59	0.0	0 0.00)	н
			HIS	168	115.75	6 78.87	6 81.94				
ATOM			ARG	169	119.58	7 81.99					H
ATOM		1 CA	ARG	169	120.93	-					N
ATOM	196	2 C	ARG	169	120.97	_)	C
ATOM	1963	3 0	ARG	169					0.00)	, C
ATOM			ARG		121.74		1 87.88	8 1.00	0.00)	0
ATOM				169	121.82	82.76	6 84.52	1 1.00			č
	1965		ARG	169	123.343	82.85					
ATOM	1966	S CD	ARG	169	124.142						C
ATOM	1967	7 NE	ARG	169	125.583			_			C
ATOM	1968	CZ	ARG	169							N
ATOM	1969		ARG		126.573			3 1.00	0.00		С
ATOM	1970			169	126.421	. 84.150	81.954	1.00	0.00		N
		_	ARG	169	127.763	83.721	83.66				
ATOM	1971		ARG	169	125.830						N
ATOM	1972	H	ARG	169	119.258						H
MOTA	1973	HA	ARG	169	121.348						H
ATOM	1974	1HB	ARG					1.00	0.00		H
ATOM		2HB	ARG	169	121.700			1.00	0.00		н
ATOM	1976	2110		169	121.462	83.761	84.197	1.00			н
			ARG	169	123.525	83.511					
ATOM	1977		ARG	169	123.729						н
MOTA	1978	1HD	ARG	169			82.737	1.00			H
MOTA	1979	2HD	ARG	7169	123 707				0.00	· . · -	H
MOTA	1980	2HH1	APC	169	123.797			1.00	0.00	-	H
ATOM	1987	1HH1	ADC		125.445			1.00	0.00		н
ATOM	1002	THAT	ARG	169	127.263	84.410	81.442	1.00	0.00		
	1962	1HH2	ARG	169	127.763	83.411		1.00	0.00		H
ATOM		2HH2 .	ARG	169	128.535	84.007					H
ATOM	1984	N .	ASN	170	120.138	84.208		1.00	0.00		H
ATOM	1985		ASN	170	119.868		87.078	1.00	0.00		N
ATOM	1986		ASN	170		84.914	88.374	1.00	0.00		. C
ATOM	1987				119.114		89.511	1.00	0.00		Ċ
ATOM			ASN	170	118.897	84.666	90.590	1.00	0.00		
	1988		ASN	170 .	119.043	86.208	88.075	1.00	0.00		. 0
ATOM	1989		\SN	170	119.476	87.253	87.043		-		С.
ATOM	1990	OD1 2	ASN	170	118.647	87.828		1.00	0.00		C
ATOM	1991	ND2		170			86.350	1.00	0.00		0
ATOM	1992		SN		120.734	87.585	86.923	1.00	0.00		N
ATOM	1993			170	119.600	84.408	86.222	1.00	0.00		H
 ATOM-			LSN	.170	120.836	.85216 .	. 88.819	-1 -00	- 000		· н
	1994		LSN	170	118.016	85.911	87.792	1.00			
ATOM	1995	2HB A	SN	170	118.903	86.769	89.016		0.00		H
ATOM	1996	1HD2 A	SN	170	120.898			1.00	0.00		H
ATOM	1997 :	2HD2 A	SN	170	121.406	88.227	86.142	1.00	0.00		H
ATOM	1998		RG			86.966	87.382	1.00	0.00		H
ATOM	1999			171	118.659	82.858	89.280	1.00	0.00		N
ATOM			RG	171	117.640	82.151	90.127	1.00	0.00		Ĉ
_	2000	_	RG	171	116.210	82.824	90.209	1.00	0.00		_
ATOM	2001	O A	RG	171	115.514	82.730	91.223				С
ATOM	2002	CB A	RG	171	118.236	81.706		1.00	0.00		0
ATOM	2003			171				1.00	0.00		C
ATOM					119.399	80.683		1.00	0.00		C
ATOM	_			171	119.917	80.277	92.807	1.00	0.00		č
				171	120.996		92.633	1.00	0.00		
_				171	121.728		93.607		0.00		N
		NHL AF		171		79.037	94 966				C
ATOM	2008	يرد تشاع	2	171	122.602	13 3444			0.00		N
ROTE		HE AR		171					0.00		īri
		H AF			121.194	70.955		i.uu	0.00		સ
			_	171	1 <u>12.555</u>	22.435	68.3Tz		იდი		17
		<u> </u>	<u> </u>	.71	, <u>1</u> <u></u>				::		•
			<u>.</u> .	 -	_ <u></u>		1.1.1		::		•
			<u>-</u>	-	-						
		· •.	-								
		··•. •	-			_	•				
					· • •						
•			-			-					
	•				-						

						89					
ATOM	2022	N	VAL	172	115.741	83.442	89.110	1.00	0.00		N
ATOM	2023	CA	VAL	172	114.438	84.169	89.046	1.00	0.00		C
MOTA	2024	0	VAL VAL	172 172	113.496 113.552	83.370 83.505	88.083 86.855	1.00	0.00		0
MOTA MOTA	2025	CB	VAL	172	114.661	85.671	88.631	1.00	u.00		c
ATOM	2027		VAL	172	113.351	86.468	88.415	1.00	0.00	•	С
MOTA	2028	CG2	VAL	172	115.491	86.480	89.657	1.00	0.00		C
MOTA	2029	H	VAL	172	116.426	83.513	88.344	1.00	0.00		H
ATOM ATOM	2030 2031	HA HB	VAL VAL	172 172	113.959 115.214	84.202 85.677	90.047 87.669	1.00	0.00		H
ATOM	2031	1HG1		172	112.732	86.513	89.332	1.00	0.00		Н
ATOM	2033	2HG1		172	113.547	87.510	88.101	1.00	0.00		H
MOTA	2034	3HG1		172	112.721	86.025	87.621	1.00	0.00		H
MOTA		2HG2		172	116.478	86.016	89.846	1.00	0.00		H
ATOM ATOM	2036 2037	3HG2 1HG2		172 172	115.697 114.986	87.510 86.556,	89.309 90.638	1.00	0.00		H
MOTA	2038	N	ILE	173	112.575	82.575	88.653	0.00	0.00		N
MOTA	2039	CA	ILE	173	111.447	81.954	87.886	0.00	0.00		C
MOTA	2040	C	ILE	173	110.383	83.074	87.611	0.00	0.00		C
MOTA	2041	0	ILE	173	109.709	83.512	88.544	0.00	0.00		0
ATOM ATOM	2042 2043	CB CG2	ILE ILE	173 173	110.844 109.635	80.716 80.078	88.658 87.912	0.00	0.00		c
ATOM	2044		ILE	173	111.881	79.595	88.975	0.00	0.00		C
MOTA	2045	CDI	ILE	173	111.442	78.565	90.033	0.00	0.00		C
MOTA	2046	H	ILE	173	112.632	82.538	89.675	0.00	0.00		H
MOTA MOTA	2047 2048	HA HB	ILE ILE	173 173	111.836 110.467	81.577 81.102	86.918 89.627	0.00	0.00		H
ATOM		1HG2	ILE	173	109.151	79.289	88.517	0.00	0.00	•	H
ATOM		2HG2	ILE	173	108.838	80.813	87.695	0.00	0.00		H
MOTA		3HG2		173	109.929	79.606	86.958	0.00	0.00		H
MOTA				173	112.824	80.045	89.341	0.00	0.00		H
ATOM ATOM	2053	2HG1 1HD1	ILE	173 173	112.172 112.255	79.077 77.853	88.044 90.265	0.00	0.00		Н
MOTA	2055	2HD1		173 .	111.160	79.050	90.988	0.00	0.00		H
MOTA	2056	3HD1	ILE	173	110.575	77.962	89.706	0.00	0.00		H
MOTA	2057	N	HIS	174	110.237	83.550	86.361	1.00	0.00		N
ATOM ATOM	2058 2059	CA C	HIS HIS	174 174	109.317 107.793	84.693 84.449	86.059 86.376	1.00	0.00	•	c
MOTA	2060	ō	HIS	174	107.197	85.215	87.138	1.00	0.00		0
MOTA	2061	CB	HIS	174	109.621	.85.167	84.608	1.00	0.00		¢
MOTA	2062	CG	HIS	174	108.991	86.510	84.245	1.00	0.00		C
ATOM ATOM	2063 2064	ND1	HIS	174 174	109.547 108.528	87.720 88.561	84.610 84.240	1.00	0.00		N
ATOM	2065	NE2		174	107.408	88.047	83.646	1.00	0.00	•	N
MOTA	2066		HIS	174	107.722	86.700	83.677	1.00	0.00		C
MOTA	2067	H	HIS	174	111.089	83.401	85.808	1.00	0.00		Н
MOTA	2068	HA	HIS	174	109.616	85.530 85.272	86.728 84.465	1.00	0.00		H
ATOM ATOM	2069 2070	1HB 2HB	HIS HIS	174 174	110.714 109.312	84.405	83.873	1.00	0.00	•	Н
MOTA	2071	HEL		174	108.594	89.618	84.467	1.00	0.00		H
MOTA	2072		HIS	174	106.492	88.497	83.525	1.00	0.00		Н
MOTA	2073	HD2		174	107.043	85.901 83.405	83.421 85.801	1.00	0.00		H
ATOM ATOM	2074 2075	N CA	ARG ARG	175 175	107.160 105.738	83.405	86.076	0.00	0.00		c
MOTA	2076	C	ARG	175	104.626	83.935	85.455	0.00	0.00		C
MOTA	2077	0	ARG	175	103.710	83.427	84.802	0.00	0.00		0
MOTA	2078	CB	ARG	175	105.530	82.631	87.571	0.00	0.00		C
ATOM ATOM	2079 2080	CG	ARG ARG	175 175	104.378 104.296	81.637 81.222	87.838 89.315	0.00	0.00		C
ATOM	2081	NE	ARG	175	103.290	80.140	89.415	0.00	0.00		N
MOTA	2082	CZ	ARG	175 ·		79.593	90.531	0.00	0.00		C
MOTA	2083		ARG	175	103.214	79.931	91.729	0.00	0.00		N
ATOM ATOM	2084	NH2 HE	ARG	175	101.966 102.905	78.668 79.778	90.400 88.530	1.00	0.00		N
ATOM	2085 2086	H	ARG ARG	175 175	102.303	82.919	85.104	0.00	0.00		Н
ATOM	2087	HA	ARG	175	105.622	82.068	85.513	0.00	0.00		H
MOTA	2088		ARG	175	105.397	83.551	88.171	0.00	0.00		H
MOTA	2089		ARG	175	106.465	82.177	87.958	0.00	0.00		H
ATOM ATOM	2090 2091		ARG ARG	175 175	104.517 103.406	80.733 82.064	87.210 87.515	0.00	0.00		H
ATOM	2092		ARG	175	104.009	82.089	89.943	0.00	0.00		н
MOTA	2093	2HD	ARG	175	105.280	80.863	89.681	0.00	0.00		H
MOTA	2094	11111	ARG	175	102.744	79.451	92.498	0.00	0.00		H

							90					
	ATOM		2HH1		175	103.889	80.695	91.751	0.00	0.00		H
	MOTA		1HH2		175	101.643	78.167	91.237	0.00	0.00		H
	ATOM			ARG	175	101.804	78.446	89.417	0.00	0.00		H
	atom atom	2098 2099	n Ca	asp asp	176 176	104.702	85.268	85.615	0.00	0.00	•	N C
	ATOM	2100	C	ASP	176	103.764 104.080	86.234 86.497	84.968 83.442	0.00	0.00 0.00		c
	ATOM	2101	ō	ASP	176	104.454	87.605	83.049	0.00	0.00		õ
	ATOM	2102	CB	ASP	176	103.818	87.483	85.894	0.00	0.00		č
	ATOM	2103	CG	ASP	176	102.699	88.484	85.653	0.00	0.00		C
	ATOM	2104	OD1	ASP	176	101.504	88.205	85.698	0.00	0.00		0
	ATOM	2105		ASP	176	103.054	89.672	85.637	0.00	0.00		0
	ATOM	2106	H	ASP	176	105.525	85.562	86.163	0.00	0.00		H
	ATOM ATOM	2107	HA	ASP ASP	176	102.735	85.823	85.015	0.00	0.00		H
	ATOM	2108 2109		ASP	176 176	104.797 103.748	87.993 87.209	85.798 86.962	0.00	0.00		H H
	ATOM	2110	N	LEU	177	103.740	85.481	82.572	0.00	0.00		N
	ATOM	2111	CA	LEU	177	104.341	85.556	81.137	0.00	0.00		c
	ATOM	2112	С	LEU	177	103.112	85.411	80.177	0.00	0.00		С
	ATOM	2113	0	LEU	177	102.648	84.308	79.872	0.00	0.00		0
	MOTA	2114	CB	LEU	177	105.476	84.511	80.915	0.00	0.00		C
	ATOM	2115	CG	TEA	177	106.235	84.562	79.560	0.00	0.00		C
	ATOM	2116		LEU	177	106.906	85.921	79.284	0.00	0.00		C
	MOTA MOTA	2117 2118	H H	LEU	177 177	107.333 103.702	83.485 84.587	79.529 83.030	0.00	0.00		н
	MOTA	2119	HA	LEU	177	104.805	86.542	80.937	0.00	0.00		H
	ATOM	2120		LEU	177	105.054	83.496	81.051	0.00	0.00		H
	ATOM	2121		LEU	177	106.224	84.609	81.725	0.00	0.00		H
	ATOM	2122	HG	LEU	177	105.517	84.348	78.741	0.00	0.00		H
	MOTA		1HD1		177	107.505	85.902	78.353	0.00	0.00		Ĥ
_	ATOM		2HD1		177	106.167		79.150		0.00		H
	ATOM		3HD1 1HD2		177	107.586	86.228	80.101	0.00	0.00		H
	MOTA MOTA		SHD5		177 177	107.855 108.102	83.463 83.646	78.556 80.307	0.00	0.00		H H
	ATOM		3HD2		177	106.926	82.471	79.685	0.00	0.00		H
	ATOM	2129	N	LYS	178	102.583	86.554	79.709	0.00	0.00		N
	ATOM	2130	CA	LYS	178	101.463	86.610	78.722	0.00	0.00		C
	ATOM	2131	С	LYS	178	101.689	87.771	77.676	0.00	0.00		C
	MOTA	2132	0_	LYS	178	102.744	88.413	77.632	0.00	0.00		0
	ATOM	2133	CB	LYS	178	100.114	86.647	79.527	0.00	0.00		C
	ATOM ATOM	2134 2135	CG CD	LYS LYS	178 178	99.771 98.457	88.005 88.773	80.244 79.928	0.00	0.00		c
	MOTA	2136	CE	LYS	178	98.363	90.078	80.774	0.00	0.00		č
	MOTA	2137	NZ	LYS	178	97.371	91.082	80.284	0.00	0.00		N
	ATOM	2138	1HZ	LYS	178	96.334	90.864	80.118	1.00	0.00		н
	ATOM	2139	2HZ	LYS	.178 -	- 97357	92.061	80.681	1.00	0.00		H
	ATOM	2140		LYS	178	97.360	91.463	79.301	1.00	0.00		H
	MOTA	2141	H	LYS	178	103.132	87.388	79.934	0.00	0.00		H
	ATOM ATOM	2142 2143	HA	Lys Lys	178 178	101.469	85.678 85.941	78.119 80.379	0.00	0.00		H H
	ATOM	2144		LYS	178	99.318	86.209	78.895	0.00	0.00		н
	ATOM	2145		LYS	178	100.614	88.710	80.085	0.00	0.00		н
	MOTA	2146	2HG	LYS	178	99.828	87.850	81.343	0.00	0.00		H
	ATOM	2147		LYS	178	97.563	88.150	80.119	0.00	0.00		H
	ATOM	2148		LYS	178	98.407	89.015	78.850	0.00	0.00		H
	ATOM	2149		LYS	.178	99.353	90.577	80.849	0.00	0.00		H
	atom Atom	2150 2151		LYS LEU	178 179	98.140 100.665	89.833 88.092	81.834 76.867	0.00 1.00	0.00		H
	ATOM ATOM	2151		LEU	179	100.661	89.288	75.979	1.00	0.00		C
	ATOM	2153		LEU	179	100.758	90.666	76.713	1 00	0.00		<u>.</u>
	دښنک و	2256		LEU	179	101.659	91.433	76.379	1.00	0.00		e
	MOTA	2155		PER	179	29.151	39.228	75.007	1.00	0.00		Ξ
	RTCH	2155.		•	272	89.25 f	92.33		2.40	0.00		÷
		.137	:==:			::			• .	:: 7		
	:: <u>1</u> .:	-127	ΞΞ		:		• - = = =					

_

--

								4 00	0.00		н
MOTA	2168 3F	ID2 L	BU	179	98.936	89.497	72.259				H
ATOM	2169 1F	1D2 L	EU	179	98.605	87.800	71.899		0.00		N
ATOM			LY	180	99.916	90.992	77.712	1.00	0.00		C
ATOM		ZA G	LY	180	100.099	92.232	78.527	1.00	0.00		
ATOM			LY	180	101.529	92.588	79.036	1.00	0.00		C
ATOM			ГY	160	102.069	93.647	78.710	1.00	0.00		0
			LY	180	99.039	90.461	77.744	1.00	0.00		Ħ
MOTA	2175 1	-	LY	180	99.812	93.071	77.875	1.00	0.00		H
MOTA.	2176 21		LY	180	99.394	92.319	79.367	1.00	0.00		H
ATOM			SN	181	102.174	91.645	79.727	0.00	0.00		N
MOTA			LSN	181	103.474	91.871	80.434	0.00	0.00		С
MOTA				181	104.829	91.922	79.623	0.00	0.00		С
ATOM			ASN		105.920	91.917	80.207	0.00	0.00		0
MOTA			LSN	181	103.520	90.754	81.519	0.00	0.00		C
MOTA			ASN	181		90.641	82.505	0.00	0.00		C
ATOM	-		ASN	181	102.405	89.904	82.283	0.00	0.00		0
ATOM		OD1 A		181	101.450			. 0.00	0.00		N
ATOM		ND2		181	102.429	91.382		0.00	0.00		H
MOTA			ASN	181	101.561	90.881	80.025	0.00	0.00		н
ATOM	2186	HA.	ASN	181	103.420	92.840	80.969		0.00		н
ATOM	2187 1	HB 2	asn	181	104.500	90.872	82.106	0.00	0.00		н
ATOM	2188 2		ASN	181	103.685	89.766	81.039	0.00			н
ATOM	2189 1	HD2	asn	181	102.021	90.827	84.338	0.00	0.00		н
ATOM	2190 2	HD2	ASN	181	103.337	91.837	83.699	0.00	0.00		N
ATOM			LEU	182	104.794	92.001	78.289	0.00	0.00		C
ATOM	2192	CA	LEU	182	106.015	92.163	77.449	0.00	0.00		Č
ATOM	2193		LEU	182	105.850	93.462	76.595	0.00	0.00		
ATOM	2194		LEU	182	104.848	93.643	75.902	0.00	0.00		0
ATOM	2195		LEU	182	106.188	90.902	76.560	0.00	0.00		C
MOTA	2196		LEU	182	106.477	89.531	77.242	0.00	0.00		C
ATOM	2197	CD1		182	106.212	88.418	76.223	0.00	0.00		C
ATOM	2198	CD2		"182	107.914	89.431	77.773	0.00	0.00		, C
ATOM	2199		LEU	182	103.841	92.184	77.945	0.00	0.00		H
	2200		PEA	182	106.927	92.272	78.072	0.00	0.00		H
ATOM	2200		PEA	182	106.998	91.117	75.844	0.00	0.00		H
ATOM			LEU	182	105.275	90.809	75.941	0.00	0.00		H
MOTA	2202 2			182	105.775	89.389	78.091	0.00	0.00		H
ATOM	2203	HG	LEU		106.449	87.416	76.624	0.00	0.00		H
MOTA	2204			182	105.148	88.392	75.917	0.00	0.00		H
MOTA	2205			182	. 106.808	88.561	75.304	0.00	0.00		·H
MOTA	2206			182	108.125	88.438	78.211	0.00	0.00		H
MOTA	2207			182	108.666	89.603	76.980	0.00	0.00		H
MOTA	2208			182	108.102	90.172	78.570	0.00	0.00		Ħ
ATOM	2209			182		94.384	76.619	1.00	0.00		N
ATOM	2210	N	PHE	183	106.816	95.801	76.213	1.00	0.00		C
MOTA	2211	CA	PHE	183	106.566	96.162	74.934	1.00	0.00		С
MOTA	2212	C	PHE	183	107.378	96.004	74.910	1.00	0.00		0
MOTA	2213	0	PHE	183	108.602		77.437		0.00		С
ATOM	2214	CB	PHE	183	106.879	96.721		1.00	0.00		С
MOTA	2215	CG	PHE	183	105.873	96.583		1.00	0.00		С
MOTA	2216		PHE	183	104.710	97.353			0.00		C
MOTA	2217	CE1	PHE	183	103.664	97.046		1.00	0.00		· c
MOTA	2218	\mathbf{cz}	PHE	183	103.797	96.002			0.00		c
ATOM	2219		PHE	183	104.987				0.00		C
ATOM	2220	CD2	PHE	183	106.024	95.575			0.00		H
MOTA	2221	H	PHE	183	107.542						H
ATOM	2222	HA	PHE	183	105.494						H
ATOM	2223	1HB	PHE	183	107.909						H
ATOM	2224	2HB	PHE	183	106.890						H
ATOM	2225		PHE	183	104.614						н
ATOM	2226	HE1	PHE	183	102.761						
ATOM	2227	HZ	PHE	183	102.988	95.770	81.054				H
ATOM	2228		PHE	183	105.094	94.496	81.163				н
ATOM	2229		PHE	183	106.917	94.968	79.579			_	H
ATOM	2230	N	LEU	184	106.730		73.873				N .
	2231	CA	LEU	184	107.416						C
ATOM		c	LEU	184	108.064			1.00			C
ATOM	2232	0	LEU	184					0.00		0
ATOM			LEU	184	106.409				0.00		С
ATOM		CB		184	106.138						С
ATOM		CG	LEU		105.052				0.00		С
MOTA			LEU	184	107.372						С
ATOM			LEU	184	107.372						Ħ
ATOM		H	TEA								н
MOTA		HA	LEU	184	108.217						н
MOTA	2240	1HB	PEA	184	105.456	, ,1.314					

משמ	M 2241 200			
ATO	_	184	106.746 98.394 70.898 1.00 0.00	**
ATO:	M 2242 HG LEU	184	105 777 05 107	H
ATO	M 2243 2HD1 LEU		104 120 0.00	H
ATO			>7:130 70:031 1:00 0:00	H
			105.390 97.690 68.883 1.00 0.00	H
ATO		184	104 757 06 000 40 000	
ATO:	M 2246 2HD2 LEU	184	107 705 06 007	H
ATO				H
		184	108.239 95.724 70.200 3.22 3.22	H
ATO		184	107 163 05 345 60 033 5 6	
ATO	M 2249 N ASN	185	109 403 89 774 73 050	H
ATO			12.00 0.00	N
		185	110.106 100.086 73.132 1.00 0.00	C
MOTA		185	110 040 100 000	c
ATOM	1 2252 O ASN	185	109 564 100 405 80 800	
ATOM	1 2253 CB ASN	185	117 500 00 000	0
ATOM			111.522 99.846 73.732 1.00 0.00	C
		185		c
ATOM		185	112 502 00 200 77 575	
ATOM	1 2256 ND2 ASN	185	113 633 00 600	0
ATOM			2.00 0.00	N
		185	109.889 97.875 72.930 1.00 0.00	H
ATOM		185	709 576 100 716 72 070 7 00	
ATOM	2259 1HB ASN	185	177 919 100 916 74 999 7	H
ATOM			777 474 474	H
ATOM		185	111.419 99.249 74.657 1.00 0.00	H
		185	114 326 00 305 70 770	
ATOM	2262 2HD2 ASN	185	113 566 99 525 74 427 5 6	Ħ
ATOM		186	110 562 102 162	3
ATOM			110.562 102.162 71.853 1.00 0.00	Ţ
		186	110.544 103.106 70.696 1.00 0.00	2
ATOM		186	117 300 102 710 60 405 7 40	
ATOM	2266 O GLU	186	177 000 103 204 50 277	
ATOM)
ATOM		186	110.887 104.518 71.262 1.00 0.00	•
	2268 CG GLU	186	109 836 105 202 80 105 1 2 2	
ATOM	2269 CD GLU	186	109 642 104 655 53 656	
ATOM	2270 OE1 GLU	186	109.642 104.655 73.619 1.00 0.00	:
ATOM			110.476_103.990 _ 74.228 - 1-00 0.00) - -
		186	108.515 104.880 74.100 1.00 0.00	
ATOM	2272 H GLU	186	110,799,102,401, 72,707, 7,00	
ATOM	2273 HA GLU	186	100 504 100 155	[
ATOM	2274 1HB GLU			•
		186	111.880 104.501 71.757 1.00 0.00	
ATOM	2275 2HB GLU	186	171 034 105 100 70 400 7 00	
ATOM	2276 1HG GLU	186	110 104 106 260 20 205	
MOTA	2277 2HG GLU	186	100 000 100	
ATOM			108.852 105.215 71.690 1.00 0.00 H	
		187	112.403 101.825 69.536 1.00 0.00 M	
MOTA	2279 CA ASP	187	112 000 101 111 60 000	
ATOM	2280 C ASP	187	112 260 00 707 67 000	
ATOM	2281 O ASP	187		
ATOM			112.928 98.972 67.175 1.00 0.00 O	
		187	114.526 100.991 68.633 1.00 0.00 C	
ATOM	2283 CG ASP	187	115 212 102 200 40	
ATOM	2284 OD1 ASP	187	115 655 102 960 65 550	
ATOM	2285 OD2 ASP		115.655 102.860 67.559 1.00 0.00	
ATOM			115.596-102.774 - 69.835 - 1.00 - 0.00	•
	2286 H ASP	187	112.486 101.438 70.483 1.00 0.00	
ATOM	2287 HA ASP	187	112 875 101 719 67 427 1 22	
ATOM	2288 1HB ASP	187	114 712 100 469 60 500 7 60	
ATOM	2289 2HB ASP			
ATOM		187	114.992 100.341 67.870 1.00 0.00 H	
	2290 N LEU	188	111 182 00 345 50 505 5 5 5	
ATOM	2291 CA LEU	188	110 435 99 974 69 959	
ATOM	2292 C LEU	188	117 000	
ATOM			2.55 0.00	
ATOM		188	110.984 95.685 68.210 1.00 0.00	
	2294 CB LEU	188	109 963 97 964 66 889 4 55	
ATOM	2295 CG LEU	188	100 000 00 110	
ATOM		188	100 006 00 004 64 657	
ATOM			108.906 98.904 64.675 1.00 0.00 C	
		188	107.720 99.221 66.860 1.00 0.00	
ATOM		188	110 807 100 045 60 101 1 00	
ATOM	2299 HA LEU	188	100 504 00 000 00	
ETCH		T02	2.00 0.00 H	
ATOM			110.866 97.831 66.144 1.00 0.00 H	
		158	109.408 97.011 (8.523 1.00 n.oo	
/·TOLL	2262 27 177	188	109.656-200.013 #8.895-17 FTT 6 88	
:.=:::	THE THE LET			
		: <u>:</u>		
. :			11.17E 11.17E	
: .		-		
	- <u></u>		•	

						93				
ATOM	2314	CG	GLU	189	114.656	95.681	69.821	1.00	0.00	С
ATOM	2315	CD	GLU	189	114.692	96.837	68.832	1.00	0.00	C
ATOM ATOM	2316 2317		GTA GTA	189 189	115.281 113.970	97.892 96.585	69.046 67.707	1.00	0.00	0
ATOM	2318	H	GLU	189	111.640	97.704	70.480	1.00	0.00	H
ATOM	2319	HA	GLU	189	112.131	94.686	70.075	1.00	0.00	н
MOTA	2320	1HB	GLU	189	113.790	96.916	71.405	1.00	0.00	н
ATOM	2321		GLU	189	114.042	95.267	71.843	1.00	0.00	н
ATOM	2322	1HG	GLU	189	115.685	95.563	70.206	1.00	0.00	н
ATOM ATOM	2323 2324	2HG N	GLU VAL	189 190	114.440 111.664	94.731 93.866	69.294 72.489	1.00	0.00	H N
MOTA	2325	CA	VAL	190	111.100	93.293	73.754	1.00	0.00	Ċ
ATOM	2326	c	VAL	190	111.790	93.877	75.036	1.00	0.00	c
MOTA	2327	0	VAL	190	112.974	93.637	75.298	1.00	0.00	0
MOTA	2328	CB	VAL	190	111.177	91.721	73.750	1.00	0.00	c
MOTA	2329		VAL	190	110.578	91.047	75.010	1.00	0.00	. c
ATOM ATOM	2330 2331	H	VAL VAL	190 190	110.495 112.242	91.026 93.298	72.548 71.855	1.00 1.00	0.00	н
ATOM	2332	HA	VAL	190	110.025	93.542	73.801	1.00	0.00	H
ATOM	2333	HB	VAL	190	112.252	91.463	73.722	1.00	0.00	· H
MOTA		1HG1		190	109.496	91.252	75.118	1.00	0.00	н
ATOM		2HG1		190	110.706	89.949	74.991	1.00	0.00	H
ATOM ATOM		3HG1 2HG2		190 190	111.068 110.881	91.390 91.382	75.941 71.576	1.00	0.00	H
ATOM		3HG2		190	110.658	89.933	72.556	1.00	0.00	н
ATOM		1HG2		190	109.401	91.178	72.544	1.00	0.00	H
ATOM	2340	N	LYS	191	110.996	94.554	75.872	1.00	0.00	N
ATOM	2341	CA	LYS	191	111.369	94.885	77.269	1.00	0.00	C
MOTA MOTA	2342 2343	С 0	Lys Lys	191 191	110.423 109.215	94.113 94.364	78.258 78.306	1.00	0.00	0
ATOM	2344	СВ	LYS	191	111.259	96.423	77.448	1.00	0.00	Ğ.
MOTA	2345	CG	LYS	191	112.257	97.343	76.706	1.00	0.00	С
MOTA	2346	CD	LYS	191	113.703	97.231	77.229	1.00	0.00	c
ATOM	2347	CE	LYS	191	114.545	98.495	76.998	1.00	0.00	C
ATOM ATOM	2348 2349	NZ 1 H Z	LYS LYS	191 191	115.860 116.437	98.307 99.148	77.636 77.489	1.00	0.00	н
ATOM	2350		LYS	191	115.733	98.151	78.646	1.00	0.00	н
MOTA	2351		LYS	191	116.331	97.491	77.220	1.00	0.00	H
MOTA	2352	H	LYS	191	110.119	94.893	75.451	1.00	0.00	H
ATOM	2353	HA	LYS	191	112.417	94.601	77.489	1.00	0.00	H H
ATOM ATOM	2354 2355		Lys Lys	191 191	110.229 111.347	96.745 96.649	77.190 78.525	1.00	0.00	н
ATOM	2356		LYS	191	112.222	97.146	75.616	1.00	0.00	н
ATOM	2357		LYS	191	111.899	98.383	76.832	1.00	0.00	н
MOTA		1HD	LYS	191	113.684	97.025	78.314	1.00	0.00	н
MOTA	2359		LYS	191	114.192	96.343	76.780	1.00	0.00	H H
ATOM ATOM	2360 2361		Lys Lys	191 191	114.675 114.048	98.701 99.385	75.921 77.436	1.00	0.00	. H
ATOM	2362	N	ILE	192	110.954	93.189	79.078	1.00	0.00	N
MOTA	2363	CA	ILE	192	110.156	92.448	80.114	1.00	0.00	С
ATOM	2364	С	ILE	192	109.807	93.417	81.306	1.00	0.00	. с
MOTA	2365	0	ILE	192	110.706	93.999 91.140	81.924	1.00	0.00	0 C
ATOM ATOM	2366 2367	CB CG1	ILE ILE	192 192	110.905 111.266	90.151	80.577 79.424	1.00	0.00	
ATOM	2368		ILE	192	110.090	90.351	81.640	1.00	0.00	Ċ
MOTA	2369	CD1	ILE	192	112.362	89.124	79.760	1.00	0.00	C
MOTA	2370	H	ILE	192	111.953	92.986	78.923	1.00	0.00	н
MOTA	2371	HA	ILE	192	109.209	92.115	79.643	1.00	0.00	H.
ATOM ATOM	2372	HB 1HG1	ILE	192 192	111.853 110.364	91.469 89.623	81.050 79.069	1.00	0.00	H.
ATOM		2HG1		192	111.620	90.711	78.536	1.00	0.00	н
MOTA		2HG2		192	109.842	90.969	82.524	1.00	0.00	H
MOTA		3HG2		192	109.133 -		81.241	1.00	0.00	• н
ATOM		1HG2		192	110.648	89.485 89.619	82.042	1.00	0.00	H H
MOTA MOTA		2HD1 3HD1		192 192	113.309 112.073	88.451	80.049 80.588	1.00	0.00	H
ATOM		1HD1		192	112.580	88.482	78.887	1.00	0.00	н
MOTA	2381	N	GLY	193	108.501	93.593	81.560	1.00	0.00	N
ATOM	2382	CA	GLY	193	107.981	94.465	82.644	1.00	0.00	c
ATOM	2383	C	GLY	193	106.797	93.807	83.394	1.00	0.00	0
ATOM ATOM	2384 2385	H O	GLY GLY	193 193	106.069 107.857	92.963 92.935	82.867 81.093	1.00	0.00	н
ATOM	2386		GLY	193	108.780	94.742	83.361	1.00	0.00	H

							74						
ATOM	238	7 2HA	GLY	193		107.620	95.417	82.214	1.00	0.00		H	
MOTA	2388		ASP			106.620	94.204	84.651	0.00	0.00		N	
ATOM	2389		ASP			105.779	93.470	85.637	0.00	0.00		C	
MOTA	2390		ASP			106.338	92.050		0.00	0.00		C	
MOTA	2393		ASP			106.262	91.059		0.00			Ũ	
ATOM	2392		ASP			104.243	93.694		0.00			C	
ATOM	2393		ASP			103.710	94.969		0.00	0.00		C	
MOTA MOTA	2394 2399		LASP			102.591	94.994	86.709	0.00	0.00		0	
MOTA.	2396		qza s qza			104.420	95.994		0.00	0.00		0	
MOTA	2397		ASP			107.243	94.956		0.00	0.00		H	
ATOM		3 1HB	ASP	194		103.702	94.081 92.835	86.538 85.929	0.00	0.00		H	
ATOM	2399		ASP	194		103.762	93.706	84.427	0.00	0.00		H	
ATOM	2400		PHE	195		106.971	92.028	87.220	0.00	0.00		H N	
ATOM	2401		PHE	195		107.659	90.844	87.809	0.00	0.00		Č	
MOTA	2402	C C	PHE	195		106.955	90.346	89.118	0.00	0.00		č	
MOTA	2403	3 0	PHE	195		107.603	89.677	89.928	0.00	0.00		ō	
ATOM	2404	L CB	PHE	195		109.123	91.329	88.053	0.00	0.00		C	
MOTA	2405	CG	PHE	195		110.056	91.346	86.828	0.00	0.00		C	
MOTA	2406		PHE	195		110.856	90.237	86.538	0.00	0.00		C	
MOTA	2407		PHE	195		111.733	90.267	85.457	0.00	0.00		C	
ATOM	2408		PHE	195		111.821	91.406	84.661	0.00	0.00		C	
ATOM	2409	•	PHE	195		111.028	92.514	84.943	0.00	0.00		C	
ATOM	2410		PHE	195		110.140	92.480	86.015	0.00	0.00		C	
MOTA MOTA	2411		PHE	195		106.824	92.881	87.779	0.00	0.00		H	
ATOM	2412	HA 1HB	PHE	195		107.709	89.937	87.162	0.00	0.00		H	
ATOM		2HB	PHE	195 195		109.585	90.688	88.817	0.00	0.00		H	
ATOM	2415		PHE	195		109.136 110.792	92.321 89.343	88.548 87.141	0.00	0.00		H	
ATOM	2416		PHE	195		110.734		85.231		0.00	 	H	
MOTA	2417		PHE	195	Ξ.	112.500		83.821	0.00	0.00	 	н	
ATOM	2418		PHE	195		111.092	93.402	84.334	0.00	0.00		н	
ATOM	2419	HD2	PHE	195		109.522	93.343	86.222	0.00	0.00		н	
MOTA	2420	N	GLY	196		105.650	90.587	89.364	0.00	0.00		N	
MOTA	2421		GLY	196		105.014	90.327	90.689	0.00	0.00		C	
MOTA	2422		GLY	196		104.105	89.088	90.820	0.00	0.00		C	
MOTA	2423	0	GLY	196		102.957	89.227	91.239	0.00	0.00		0	
ATOM ATOM	2424 2425	H 1HA	GLY	196		105.226	91.180	88.638	0.00	0.00		Ħ	
ATOM	2426		GLY GLY	196 196		104.419	91.219	90.959	0.00	0.00		H	
ATOM	2427	N	LEU	197		105.762 104.634	90.262 87.889	91.504	0.00	0.00		H	
MOTA	2428	CA	LEU	197		104.022	86.603	90.543 91.006	1.00	0.00		N C	
ATOM	2429	C	LEU	197		105.151	85.715	91.663	1.00	0.00		c	
ATOM	2430	0	LEU	197		105.867	86.202	92.541	1.00	0.00.			
MOTA	. 2431	CB_	1.EA	197				89.856	1.00	0.00		C	_
MOTA	2432	CG	LEU	197		101.879	86.642	89.386	1.00	0.00		Ċ	
MOTA	2433		LEU	197		101.258	85.871	88.209	1.00	0.00		C·	
MOTA	2434		LEU	197		100.819	86.751	90.496	1.00	0.00		C	
ATOM	2435	H	LEU	197		105.635	87.961	90.323	1.00	0.00		H	
ATOM ATOM	2436	HA	LEU	197		103.337	86.799	91.855	1.00	0.00		Ħ	
ATOM	2437 2438		LEU	197		103.851	85.796	88.985	1.00	0.00		H	
ATOM		HG		197 197		102.903 102.132	84.921 87.665	90.170	1.00	0.00		H	
MOTA		2HD1		197		101.973	85.727	89.038 87.381	1.00	0.00		H	
ATOM		3HD1		197		100.903	84.864	88.502	1.00	0.00		H	
ATOM		1HD1		197		100.391	86.412	87.783	1.00	0.00		H	
MOTA		2HD2		197		100.543		90.917	1.00	0.00		H	
MOTA	2444	3HD2	LEU	197		101.167	87.379	91.337	1.00	0.00		Ħ	
ATOM		1HD2	LEU	197		99.890	67.224	ลับ วิวว	1.00	0.55		h	
à TOPE	2115		414	758		105.261	84.400	91.365	0.00	0.00		17	
ATOM	3447		ALA.	128		106.333	CZ.495	91.934	0.00	9.90		ō	
RTON	27.5	7	72	156		THE 882.	02:55=	13 113	1.00	3.00		.~	
	1443	_	. <u></u> .	1.2.2			::.::		:	:		-	
	7.1	-	· <u></u>	::		- :	:	• •					
				•			_						

						93					
ATOM	2460	CB	THR	199	104.846	84.607	96.453	0.00	0.00		C
ATOM	2461		THR	199	105.108	85.041	97.781	0.00	0.00		0
ATOM	2462	CG2	THR	199	103.621 104.928	83.679	96.562	0.00	0.00		C H
ATOM ATOM	2463 2464	H HA	THR	199 199	106.844	83.743 84.891	94.023 95.797	0.00	0.00		н
ATOM	2465	нв	THR	199	104.555	85.498	95.858	0.00	0.00		H
ATOM	2466		THR	199	105.389	84.253	98.258	0.00	0.00		H
MOTA		1HG2	THR	199	103.274	83.329	95.574	0.00	0.00		H
ATOM	2468	2HG2	THR	199	103.828	82.784	97.176	0.00	0.00		H
ATOM	2469	3HG2		199	102.768	84.204	97.033	0.00	0.00		H
ATOM	2470	N	LYS	200	108.191	82.708	96.444	0.00	0.00		N
MOTA	2471	CA	LYS	200	109.045	81.751 82.493	97.211	0.00	0.00		C
ATOM ATOM	2472	0	LYS	200 200	110.269 110.965	83.267	97.854 97.191	0.00	0.00		ō
ATOM	2473 2474	СВ	LYS	200	109.511	80.590	96.281	0.00	0.00		c
ATOM	2475	CG	LYS	200	108.392	79.733	95.634	0.00	0.00		C
ATOM	2476	CD	LYS	200	108.929	78.488	94.901	0.00	0.00		C
MOTA	2477	CE	LYS	200	107.840	77.788	94.074	0.00	0.00		C
ATOM	2478	NZ	LYS	200	108.399	76.594	93.408	0.00	0.00		N
ATOM	2479		LYS	200	107.662	76.132	92.856	1.00	0.00		H
ATOM	2480		LYS	200	109.168	76.877	92.784	1.00	0.00		H
MOTA MOTA	2481 2482	H	LYS	200 200	108.757 108.518	75.940 83.167	94.118 95.581	1.00 0.00	0.00		Н
ATOM	2483	HA	LYS	200	108.457	81.285	98.030	0.00	0.00		н
ATOM	2484		LYS	200	110.160	81.001	95.481	0.00	0.00		H
ATOM	2485		LYS	200	110.174	79.924	96.865	0.00	0.00	•	H
MOTA	2486	1HG	LYS	200	107.653	79.425	96.400	0.00	0.00		H
ATOM	2487		LYS	200	107.826	80.368	94.923	0.00	0.00		H
ATOM	2488		LYS	200	109.766	78.777	94.234	0.00	0.00		H
MOTA	2489		LYS	200	109.366 106.978	77.785 77.501	95.637 94.711	0.00 0.00	0.00		H, H
ATOM ATOM	2490 2491		LYS	200 200	107.440	78.483	93.308	0.00	0.00		н
ATOM	2492	N	VAL	201	110.533	82.262	99.151	0.00	0.00		N
MOTA	2493	CA	VAL	201	111.582	83.002	99.926	0.00	0.00		C
MOTA	2494	C	VAL	201	112.931	82.205	100.056	0.00	0.00		C
MOTA	2495	0	VAL	201	112.932		100.172	0.00	0.00		0
ATOM	2496	CB	VAL		110.952		101.300	0.00	0.00		C
ATOM	2497		VAL	201	110.769		102.349	0.00	0.00		C
MOTA MOTA	2498 2499	H	VAL VAL	201 201	111.719 109.948	81.547	101.969 99.591	0.00	0.00		Н
ATOM	2500	HA.	VAL	201	111.822	83.938	99.379	0.00	0.00		н
ATOM	2501	HB	VAL	201	109.942		101.080	0.00	0.00		H
MOTA	2502	1HG1	VAL	201	111.738	81.929	102.713	0.00	0.00		H
MOTA		2HG1		201	110.206		103.235	0.00	0.00		H
MOTA		3HG1		201	110.214		101.938	0.00	0.00		H H
ATOM		1HG2		201	112.741		102.280	0.00	0.00		H
MOTA MOTA		2HG2 3HG2		201 201	111.820 111.200		102.874	0.00	0.00		н
MOTA	2508	N	GLU	202	114.083		100.125	0.00	0.00		N
ATOM	2509	CA	GLU	202	115.425		100.286	0.00	0.00		C
ATOM	2510	C	GLU	202	115.779	81.725	101.739	0.00	0.00		С
MOTA	2511	0	GLU	202	116.881		102.253	0.00	0.00	•	0
ATOM	2512	CB	GLU	202	116.504	83.217	99.708	0.00	0.00		C
MOTA	2513 2514	CD	GLU	202 202	116.458 115.676	83.535 84.788	98.184 97.775	0.00	0.00		C
ATOM ATOM	2515		GTO	202	114.539	85.053	98.156	0.00	0.00		ō
ATOM	2516		GLU	202	116.386	85.585	96.932	0.00	0.00		o
MOTA	2517	H	GLU	202	114.001	83.871	99.795	0.00	0.00		H
ATOM	2518	HA	GLU	202	115.455	81.342	99.651	0.00	0.00		H
ATOM	251,9		GLU	202	116.534		100.302	0.00	0.00		H
MOTA	2520		GLU	202	117.493	82.758	99.902	0.00	0.00		H
MOTA	2521 2522		GLU	202	117.496	83.646 82.676	97.815 97.616	0.00	0.00		H
ATOM ATOM	2523	N N	GLU TYR	202 ·	116.054 114.863		102.354	0.00	0.00		N
ATOM	2524	CA	TYR	203	115.139		103.556	0.00	0.00		Ĉ
MOTA	2525	c c	TYR	203	114.495		103.433	0.00	0.00		C
MOTA	2526	0	TYR	203	115.206	77.708	103.643	0.00	0.00		0
ATOM	2527	CB	TYR	203	114.729		104.875	0.00	0.00		C
ATOM	2528	CG	TYR	203	115.716		105.398	0.00	0.00		C
MOTA	2529		TYR	203	116.989		105.840	0.00	0.00		C
ATOM ATOM	2530 2531	CEL	TYR TYR	203	117.875 117.489		106.344	0.00	0.00		c
ATOM ATOM	2532	OH	TYR	203 203	118.352		106.929	0.00	0.00		ō
				203							-

矿二色 化粉塑力法

•											
						96					
ATOM	2533		TYR	203	116.225		105.991	0.00	0.00		С
MOTA	2534	CD2 H	TYR TYR	203	115.340		105.477	0.00	0.00		C
MOTA MOTA	2535 2536	HA	TYR	203 203	113.907 116.228		101.972 103.608	1.00	0.00		H
ATOM	2537		TYR	203	113.711		104.769	0.00	0.00		H
ATOM	2538		TYR	203	114.617		105.682	0.00	0.00		H
MOTA	2539		TYR	203	117.300	80.485	105.787	0.00	0.00		H
MOTA	2540		TYR	203	118.858		106.672	0.00	0.00		H
ATOM ATOM	2541	HH	TYR	203	119.183		107.133	0.00	0.00		H
ATOM	2542 2543	HD2	TYR TYR	203 203	115.933 114.361		106.059	0.00	0.00		H H
ATOM	2544	N	ASP	204	113.189		103.110	0.00	0.00		N
MOTA	2545	CA	ASP	204	112.574		102.817	0.00	0.00		C
MOTA	2546	C	ASP	204	111.617	77.238	101.564	0.00	0.00		Ç
ATOM	2547	0	ASP	204	110.886		101.331	0.00	0.00		0
ATOM ATOM	2548 2549	CB	ASP ASP	204 204	111.973		104.114	0.00	0.00		C
ATOM	2550		ASP	204	110.524 110.164		104.462	0.00	0.00		o
MOTA	2551		ASP	204	109.676		104.080	0.00	0.00		ō
ATOM	2552	H	ASP	204	112.693		102.920	0.00	0.00		H
ATOM	2553	HA	ASP	204	113.401		102.528	0.00	0.00		H
ATOM	2554		ASP	204	112.050		104.043	0.00	0.00		H
MOTA MOTA	2555 2556	N	ASP GLY	204 205	112.599 111.602		104.991	0.00	0.00		H N
ATOM	2557	CA	GLY	205	110.724	76.006	99.584	0.00	0.00		C
ATOM	2558	C	GLY	205	109.511	75.068	99.784	0.00	0.00		Č
ATOM	2559	0	GLY	205	109.682	73.872	100.024	0.00	0.00		0
ATOM	2560	H	GLY	205	112.181		101.128	0.00	0.00		H
MOTA	2561		GLY	205	110.407	76.994	99.196		0.00.		H-
MOTA	2562 2563	N N	GLU	205 206	111.323	75.579 75.605	98.760 99.660	0.00	0.00 0.00	• • • •	H
ATOM	2564	CA	GLU	206	107.034	74.858	99.972	0.00	0.00		C
ATOM	2565	C	GLU	206	105.858	75.267	99.020	0.00	0.00		Ċ
MOTA	2566	0	GLU	206	105.527	76.451	98.906	0.00	0.00		0
MOTA	2567	CB	GLU	206	106.695		101.487	0.00	0.00	•	C
ATOM ATOM	2568 2569	CD	GLU	206 206	106.381 106.297		101.985	0.00	0.00		C
ATOM	2570		GLU	206	107.039		104.309	0.00	0.00		õ
ATOM	2571		GLU	206	105.335		103.853	0.00	0.00		ō
MOTA	. 2572	H	GLU	206	108.289	76.621	99.527	0.00	0.00		H
ATOM	2573	HA	GLU	206	107.213	73.774	99.821	0.00	0.00		H
ATOM	2574 2575		GLU	206	105.848		101.750	0.00	0.00		H
ATOM ATOM	2576		GLU	206 206	107.545 107.156		102.075 101.629	0.00	0.00 _0.00_		H -H-
ATOM	25.7.7-			206	105.439		101.526	0.00	0.00		H
MOTA	2578	N	ARG	207	105.178	74.299	98.371	0.00	0.00		N
MOTA	2579	CA	ARG	207	103.984	74.593	97.511	0.00	0.00		C
ATOM	2580	C	ARG	207	102.644	74.622	98.338	0.00	0.00		C
ATOM ATOM	2581 2582	CB O	ARG	207 207	101.731 103.948	73.817 73.615	98.148 96.295	0.00	0.00		0
ATOM	2583	CG	ARG	207	105.115	73.695	95.268	0.00	0.00		c
ATOM	2584	CD	ARG	207	106.268	72.718	95.557	0.00	0.00		C
ATOM	2585	NE	ARG	207	107.373	72.962	94.591	0.00	0.00		N
ATOM	2586	CZ	ARG	207	100.655	73.134	94.889	0.00	0.00		С
ATOM	2587	MHI		207	109.140	73.144	96.096	0.00	0.00		N
MOTA MOTA	2588 2589	NH2 HE	ARG	207 207	109.474 107.118	73.306	93.911 93.594	0.00	0.00 0.00		H
ATOM	2590		ARG	207	105.521	73.344	98.513	0.00	0.00		<u> </u>
MOTA	2591		arg	207	104 084	75.500	27.033	9.00	u. uu		77
à L ÛM	7253		ARC	207	103.801	73.574	96.640	0.00	0.00		Ħ
ATOH AZZK	2592 2554		ARG Lan	207	103.015	73.828			0.00		11
) 1662 1177		700 772 202, 202	زد:	.4.CaT^	¥	1.55		
. 2::	- ::::			· • _		- : :		• •			

						91					
MOTA	2606	CB	LYS	208	102.023	76.067	101.541	0.00	0.00		С
ATOM	2607	7 CG	LYS	208	101.078		102.758		0.00		Ċ
MOTA	2608		LYS	208	101.870						
MOTA							104.081		0.00		C
	2609		LYS	208	101.036		105.304		0.00		C
ATOM	2610		LYS	208	101.838	76.307	106.527	0.00	0.00		N
ATOM	2611	. 1HZ	LYS	208	101,282	76.576	107.351	1.00	0.00		H
ATOM	2612	2HZ	LYS	208	102.106		106.602		0.00		н
ATOM	2613	3HZ	LYS	208	102.687		106.482		0.00		н
ATOM	2614		LYS	208	103.435						
ATOM	2615						99.387		0.00		H
			LYS	208	100.792		100.241		0.00		H
ATOM		1HB	LYS	208	102.739	75.245	101.756	0.00	0.00		H
ATOM		2HB	LYS	208	102.644	76.983	101.497	0.00	0.00		H
ATOM	2618	1HG	LYS	208	100.505	77.126	102.695	0.00	0.00		Ħ
ATOM	2619	2HG	LYS	208	100.318	75.374	102.740	0.00	0.00		H
ATOM	2620	1HD	LYS	208	102.260		104.211		0.00		н
ATOM		2HD	LYS	208	102.765		104.020				
ATOM		1HE	LYS	208					0.00		H
ATOM		2HE			100.722		105.221	0.00	0.00		H
			LYS	208	100.104		105.360	0.00	0.00	,	H
MOTA	2624		LYS	209	100.659	77.740	98.691	0.00	0.00		N
ATOM	2625		LYS	209	99.705	78.666	97.997	0.00	0.00		C
ATOM	2626	C	LYS	209	99.374	78.284	96.498	0.00	0.00		C
ATOM	2627	0	LYS	209	98.226	78.420	96.065	0.00	0.00		. 0
ATOM	2628	CB	LYS	209	100.265	80.104	98.203	0.00	0.00		Ċ
ATOM	2629		LYS	209	99.332						
ATOM	2630					81,261	97.765	0.00	0.00		C
			LYS	209	99.630	81.806	96.350	0.00	0.00		C
ATOM	2631		LYS	209	98.518	82.713	95.793	0.00	0.00		C
MOTA	2632		LYS	209	97.422	81.903	95.221	0.00	0.00		N
MOTA	2633	1HZ	LYS	209	96.689	82.527	94.854	1.00	0.00		H
MOTA	2634	2HZ	LYS	209	97.789	81.319	94.457	1.00	0.00		H
MOTA	2635	3HZ	LYS	209	97.023	81299	95.954	1.00	0.00		H
ATOM	2636		LYS	209	101.624	77.598	98.384	0.00		•	
ATOM	2637		LYS	209					0.00		H
ATOM	2638				98.723	78.635	98.513	0.00	0.00		H
			LYS	209	100.457	80.245	99.286		. 0.00		н
ATOM	2639		LYS	209	101.263	80.211	97.735	0.00	0.00		H
ATOM	2640		LYS	209	98.273	80.948	97.853	0.00	0.00		Ħ
MOTA	2641	2HG	LYS	209	99.430	82.095	98.485	0.00	0.00		H
MOTA	2642	1HD	LYS	209	100.572	82.388	96.396	0.00	0.00		н
ATOM	2643	2HD	LYS	209	99.846	80.986	95.638	0.00	0.00		н
ATOM	2644		LYS	209	98.125	83.390					
ATOM	2645						96.578	0.00	0.00		H
			LYS	209	98.924	83.383	95.009	0.00	0.00		H
ATOM	2646	N	THR	210	100.341	77.767	95.710	0.00	0.00		N
ATOM	2647	CA	THR	210	100.077	76.742	94.640	0.00	0.00		C
ATOM	2648	C	THR	210	99.851	77.267	93.177	0.00	0.00		C
ATOM	2649	0	THR	210	100.677	76.956	92.318	0.00	0.00		ō
ATOM	2650	CB	THR	210	99.149	75.559	95.084	0.00			č
ATOM	2651		THR	210					0.00		
ATOM					99.601	75.041	96.330	0.00	0.00		0
	2652		THR	210	99.114	74.344	94.145	0.00	0.00		С
ATOM	2653	H	THR	210	101.215	77.717	96.237	0.00	0.00		H
ATOM	2654	HA	THR	210	101.060	76.239	94.553	0.00	0.00		H
ATOM	2655	HB	THR	210	98.116	75.943	95.207	0.00	0.00		н
MOTA	2656	HG1	THR	210	99.191	74.178	96.440	0.00	0.00		н.
ATOM	2657	1HG2	THR	210	98.450	73.553	94.537				
ATOM	2658			210	98.737			0.00	0.00		H
ATOM						74.606	93.138	0.00	0.00		H
	2659			210	100.117	73.895	94.010	0.00	0.00		H
ATOM	2660	N	LEU	211	98.760	77.989	92.859	0.00	0.00		N
ATOM	2661	CA	LEU	211	98.390	78.383	91.462	0.00	0.00		С
ATOM	2662	C	LEU	211	98.152	79.921	91.268	0.00	0.00		С
ATOM	2663	٥	LEU	211	97.299	80.524	91.926	0.00	0.00		ō
ATOM	2664	CB	LEU	211	97.152	77.525	91.055	0.00	0.00		Ċ
ATOM	2665	CG	LEU	211	96.653	77.648					
ATOM							89.589	0.00	0.00		C
	2666		LEU	211	97.684	77.137	88.570	0.00	0.00		С
MOTA	2667		LEU	211	95.344	76.862	89.403	0.00	0.00		C
MOTA	2668	H	LEU	211	98.174	78.215	93.673	1.00	0.00		H
MOTA	2669	HA	LEU	211	99.205	78.082	90.775	0.00	0.00		H
ATOM	2670	1HB	LEU	211	96.317	77.777		.0.00	0.00		H
ATOM	2671	2HB	LEU	211	97.367	76.457	91.258	0.00	0.00		н
ATOM	2672		TEA	211	96.437	78.714					
ATOM	2673			211	97.305		89.370	0.00	0.00		H
ATOM	2674					77.209	87.538	0.00	0.00		H
				211	98.623	77.717	88.593	0.00	0.00		H
MOTA	2675			211	97.946	76.077	88.745	0.00	0.00		H
ATOM	2676			211	94.944	76.959	88.377	0.00	0.00		Ħ
ATOM	2677			211	95.475	75.781	89.600	0.00	0.00		н
ATOM	2678	3HD2	LEU	211	94.551	77.222	90.084	0.00	0.00		н
								3.00	0.00		Д

The second of th

ATOM	2679	N	CYS	212	98.844	80.530	90.287	0.00	0.00		N
ATOM	2680	CA	CYS	212	98.480	81.859	89.721	0.00	0.00		C
MOTA	2681	С	CYS	212	98.878	82.007	88.209	0.00	0.00		C
ATOM	2682	0	CYS	212	99.672	81.234	87.662	0.00	0.00		0
ATOM	2683	CB	CAS	212	99.121	82.952	90.615	0.00	0,66		C
ATOM	2684	SG	CYS	212	100.943	82.953	90.479	0.00	0.00		S
MOTA	2685	H	CYS	212	99.566	79.952	89.843	0.00	0.00		H
MOTA	2686	HA	CYS	212	97.378	81.976	89.772	0.00	0.00		H
ATOM	2687	1HB	CYS	212	98.834	82.823	91.677	0.00	0.00		H
ATOM	2688	2HB	CYS	212	98.750	83.954	90.330	0.00	0.00		н
MOTA	2689	HG	CYS	212	101.154	81.796	91.094	1.00	0.00		H
MOTA	2690	N	GLY	213	98.337	83.037	87.535	0.00	0.00		N
ATOM	2691	CA	GLY	213	98.800	83.453	86.181	0.00	0.00		C
ATOM	2692	C	GLY	213	97.663	83.738	85.183	0.00	0.00		C
ATOM	2693	0	GLY	213	96.866	84.657	85.383	0.00	0.00		ō
MOTA	2694	H	GLY	213	97.707	83.619	88.099	0.00	0.00		H
ATOM	2695		GLY	213	99.534	82.740	85.752	0.00	0.00		H
ATOM	2696		GLY	213	99.374	84.392	86.282	0.00	0.00		H
ATOM	2697	N	THR	214	97.627	82.972	84.088	0.00	0.00		N
ATOM	2698	CA	THR	214	96.718	83.237	82.933	0.00	0.00		Ĉ
ATOM	2699	C	THR	214	96.128	81.867	82.441	0.00	0.00		č
ATOM	2700	Ö	THR	214	96.917	81.060	81.936	0.00	0.00		0
ATOM	2701	CB	THR	214	97.505						c
						83.999	81.819	0.00	0.00		
MOTA	2702		THR	214	97.923	85.263	82.313	0.00	0.00		0
MOTA	2703			214	96.715	84.308	80.537	0.00	0.00		c
ATOM	2704	H	THR	214	98.341	82.239	84.062	0.00	0.00		H
ATOM	2705	HA	THR	214	95.895	83.909	83.235	0.00	0.00		H
ATOM	2706	HB	THR	214	98.407	83.413	81.557	0.00	0.00		H
MOTA	2707		THR	214	98.390	85.696	81.594	0.00	0.00		н
MOTA		1HG2		214		•	79.799	•			H
- ATOM		2HG2		214	96.367	83.386	80.036	0.00	0.00	•	- H
ATOM		3HG2		214	95.823	84.928	80.747	0.00	0.00		H
MOTA	2711	Ŋ	PRO	215	94.799	81.546	82.525	0.00	0.00		N
MOTA	2712	CA	PRO	215	94.254	80.205	82.148	0.00	0.00		C
ATOM	2713	CD	PRO	215	93.794	82.405	83.185	0.00	0.00		С
ATOM	2714	C	PRO	215	94.668	79.504	80.814	0.00	0.00		С
ATOM	2715	0	PRO	215	94.961	78.311	80.835	0.00	0.00		0
MOTA	2716	CB	PRO	215	92.735	80.418	B2.290	0.00	0.00		C
MOTA	2717	CG	PRO	215	92.599	81.474	83.388	0.00	0.00		C
ATOM	2718	HA	PRO	215	94.580	79.510	82.945	0.00	0.00		H
ATOM	2719	1HD	PRO	215	93.527	83.261	82.535	0.00	0.00		H
MOTA	2720		PRO	215	94.140	82.814	84.156	0.00	0.00		H
MOTA	2721	1HB	PRO	215	92.203	79.478	82.536	0.00	0.00		H
ATOM	2722	2HB	PRO	215	92.296	80.791	81.344	0.00	0.00		
ATOM	2723	1HG_	PRO	215	92.652 -	80.997	84.386	0.00	0.00		H
MOTA	2724	2HG	PRO	215	91.637	82.017	83.344	0.00	0.00		H
MOTA	2725	N	ASN	216	94.745	80.230	79.689	1.00	0.00		N
MOTA	2726	CA	asn	216	95.298	79.690	78.401	1.00	0.00		C
ATOM	2727	C	ASN	216	96.866	79.462	78.324	1.00	0.00		C
ATOM	2728	0	ASN	216	97.340	78.817	77.387	1.00	0.00		0
ATOM	2729	CB	ASN	216	94.840	80.631	77.244	1.00	0.00		C
MOTA	2730	CG	ASN	216	93.338	80.908	77.057	1.00	0.00		C
ATOM	2731	OD1	ASN	216	92.446	80.174	77.461	1.00	0.00		0
ATOM	2732	ND2		216	92.998	82.007	76.437	1.00	0.00		N
ATOM	2733	H	ASN	216	94.425	81.195	79.805	1.00	0.00		H
ATOM	2734		ASN	216	94.848	78.695	78.209	1.00	0.00		H
ATOM	2735		ASN	216	95.381	81.591	77.334	1.00	0.00		Ħ
ATOM	2736		ASN	216	95.186	80.193	76.288	1.00	0.00		H
ATOM	2737			216	91.991	82.076	76.364	7 00	7 20		12
ZT()MI	2720			21.6	93.751	82.524	75.978	1.00	0.00		ä
ATON	2739	FiJ	TYP.	217	97.665	86.01E	70.253	0.00	6 00		27
ATOM	2710		77	21.7	r e ril 5?		75 205	9 60			
. 232	1 - 12	-	-=	227	-=,=1"		· · · · · · · · · · · · · · · · · · ·				-
				===	2]	:::	• •			
						-					

						99				
MOTA	2752		TYR		99.528	79.534	78.286	0.00	0.00	H
MOTA		1HB	TYR		100.632	81.524	79.806	0.00	0.00	H
ATOM ATOM	2754 2755		TYR L TYR		99.005 101.934	82.062 82.173	79.960	0.00	0.00	H
ATOM	2756		TYR		102.158	83.101	77.953 75.707	0.00	0.00	H
ATOM	2757		TYR		101.054	83.350	73.772	0.00	0.00	н
ATOM	2758		TYR		97.896	83.266	75.315	0.00	0.00	н
ATOM	2759	HD2	TYR		97.654	82.353	77.596	0.00	0.00	н
ATOM	2760	N	ILE	218	99.176	78.544	81.339	1.00	0.00	N
ATOM	2761		ILE	218	99.789	77.778	82.473	1.00	0.00	C
ATOM	2762		ILE	218	100.234	76.315	82.106	1.00	0.00	C
ATOM MOTA	2763		ILE	218	99.593	75.634	81.302	1.00	0.00	', 0
ATOM	2764 2765		ILE ILE	218 218	98.852	77.782	83.741	1.00	0.00	C
ATOM	2766		ILE	218	97.441 98.755	77.159 79.177	83.512 84.408	1.00	0.00	C
ATOM	2767		ILE	218	96.717	76.713	84.792	1.00	0.00	· č
ATOM	2768		ILE	218	98.162	78.681	81.261	1.00	0.00	H
MOTA	2769	HA	ILE	218	100.713	78.317	82.768	1.00	0.00	H
MOTA	2770		ILE	218	99.357	77.140	84.489	1.00	0.00	H
MOTA		1HG1		218	96.797	77.850	82.931	1.00	0.00	H
MOTA		2HG1		218	97.535	76.264	82.866	1.00	0.00	H
MOTA MOTA		2HG2		218 218	99.752	79.601	84.631	1.00	0.00	H
MOTA		1HG2		218	98.227 98.211	79.903 79.141	83.765 85.371	1.00	0.00	H H
ATOM		2HD1		218	97.360	76.074	85.427	1.00	0.00	H
ATOM		3HD1		218	96.388	77.571	85.404	1.00	0.00	H
ATOM	2778	1HD1	ILE	218	95.818	76.116	84.556	1.00	0.00	H
ATOM	2779		ALA	219	101.320	75.825	82.731	0.00	0.00	N
ATOM	2780		ALA	219	101.841	74.455	82.485	0.00	0.00	C
ATOM	2781		AĻA.		101.206		83.368	0.00	0.00	C.
MOTA MOTA	2782 2783		ALA ALA	219 219	100.817	73.579	84.511	0.00	0.00	
MOTA	2784		ALA	219	101.770	74.552 76.471	82.711 83.382	0.00	0.00	C H
ATOM	2785		ALA	219	101.687	74.215	81.416	0.00	0.00	H
ATOM	2786		ALA	219	103.872	73.623	82.397	0.00	0.00	н
MOTA	2787	2HB	ALA	219	103.825	75.369	82.126	0.00	0.00	H
MOTA	2788		ALA	219	103.616	74.720	83.775	0.00	0.00	H
MOTA	2789		PRO	220	101.158	72.005	82.943	0.00	0.00	N
MOTA	2790	CA	PRO	220	100.659	70.877	83.791	0.00	0.00	C
ATOM ATOM	2791 2792	CD	PRO	220 220	101.394	71.597	81.543	0.00	0.00	C
MOTA	2793	ō	PRO	220	101.187 100.407	70.651 70.199	85.247 86.082	0.00	0.00	0
MOTA	2794	CB	PRO	220	100.904	69.656	82.883	0.00	0.00	Č
MOTA	2795	CG	PRO	220	100.785	70.200	81.462	0.00	0.00	č
ATOM	2796	HA	PRO	220	99.562	71.009	83.886	0.00	0.00	H
ATOM	2797		PRO	220	102.476	71.581	81.306	0.00	0.00	H
ATOM	2798		PRO	220	100.898	72.264	80.814	0.00	0.00	H
ATOM	2799		PRO	220	100.186	68.836	83.080	0.00	0.00	H
ATOM ATOM	2800 2801		PRO PRO	220 220	101.916 99.721	69.231 70.265	83.038 81.158	0.00	0.00	H H
ATOM	2802		PRO	220	101.288	69.563	80.711	0.00	0.00	Ħ
ATOM	2803		GLU	221	102.455	70.966	85.580	0.00	0.00	N
ATOM	2804	CA	GLU	221	102.945	70.910	86.995	0.00	0.00	C
MOTA	2805	C	GLU	221	102.260	71.890	88.015	0.00	0.00	C
MOTA	2806	0	GLU	221	101.936	71.471	89.129	0.00	0.00	0
ATOM	2807	CB	GLU	221	104.487	71.081	87.071	0.00	0.00	C
ATOM ATOM	2808 2809	CD	GLU	221	105.359	69.952	86.464	0.00	0.00	C
ATOM	2810		GLU	221 221	106.798 107.633	70.025 70.826	86.972 86.560	0.00	0.00	c o
ATOM	2811		GLU	221	107.020	69.153	87.992	0.00	0.00	o
ATOM	2812	H	GLU	221	102.987	71.365	84.803	0.00	0.00	н
ATOM	2813	HA	GLU	221	102.712	69.898	87.380	0.00	0.00	H
ATOM	2814		GLU	221	104.749	71.155	88.147	0.00	0.00	 H.
ATOM	2815		GLU	221	104.783	72.059	86.645	0.00	0.00	H
MOTA	2816		GLU	221	105.363	70.002	85.361	0.00	00.0	H.
ATOM ATOM	2817 2818		GLU	221 -	104.941	68.959	86.717	0.00	0.00	H
ATOM	2819	N CA	VAL VAL	222 222	102.046 101.206	73.170 74.108	87.658 88.480	1.00	0.00	N C
ATOM	2820	C	VAL	222	99.684	73.725	88.570	1.00	0.00	C
MOTA	2821	ō	VAL	222	99.093	73.815	89.649	1.00	0.00	ō
MOTA	2822	CB	VAL	222	101.425	75.616	88.090	1.00	0.00	c
MOTA	2823	CG1		222	102.863	76.109	88.353	1.00	0.00	С
ATOM	2824	CG2	VAL	222	101.043	76.020	86.649	1.00	0.00	C

明明 これのではい 二の事でする

ATOM	2825	H	VAL	222	102.203	73.339	86.661	1.00	0.00		H
MOTA	2826	HA	VAL	· 222	101.561	74.024	89.528	1.00	0.00		H
MOTA	2827	HB	VAL	222	100.774	76.205	88.767	1.00	0.00		H
MOTA	2828	1HG1	VAL	222	103.609	75.553	87.759	1.00	0.00		H
Y.L.OM	2829	2HG1	VAL	222	102.997	77.183	28.122	1.00	0.00		ñ
ATOM	2830	3HG1	VAL	222	103.135	75.982	89.416	1.00	0.00		H
ATOM	2831	2HG2	VAL	222	100.005	75.734	86.400	1.00	0.00		H
MOTA	2832	3HG2	VAL	222	101.111	77.114	86.497	1.00	0.00		H
ATOM	2833	1HG2	VAL	222	101.699	75.546	85.896	1.00	0.00		H
ATOM	2834	N.	LEU	223	99.058	73.284	87.463	1.00	0.00		N
ATOM	2835	CA	LEU	223	97.660	72.767	87.463	1.00	0.00		C
ATOM	2836	C	LEU	223	97.419	71.428	88.252	1.00	0.00		C
ATOM	2837	0	LEU	223	96.535	71.382	89.110	1.00	0.00		0
MOTA	2838	CB	LEU	223	97.223	72.719	85. <i>9</i> 70	1.00	0.00		С
ATOM	2839	CG	LEU	223	95.765	72.282	85.690	1.00	0.00		C
ATOM	2840	CD1	LEU	223	94.728	73.218	86.333	1.00	0.00		C
MOTA	2841	CD2	LEU	223	95.530	72.202	84.175	1.00	0.00		C
MOTA	2842	H	LEU	223	99.671	73.215	86.643	1.00	0.00		H
MOTA	2843	HA	LEU	223	97.031	73.525	87.968	1.00	0.00		H
MOTA	2844	1HB	LEU	223	97.391	73.708	85.502	1.00	0.00		H
MOTA	2845	2HB	LEU	223	97.903	72.033	85.428	1.00	0.00		H
MOTA	2846	HG	LEU	223	95.616	71.263	86.104	1.00	0.00		H
MOTA	2847	2HD1	LEU	223	94.851	73.284	87.429	1.00	0.00		H
MOTA	2848	3HD1	LEU	223	94.782	74.249	85.935	1.00	0.00		H
ATOM	2849	1HD1	LEU	223	93.699	72.854	86.179	1.00	0.00		H
ATOM		2HD2		223	95.604	73.188	83.680	1.00	0.00		H
MOTA		3HD2		223	96.256	71.532	83.677	1.00	0.00		H
ATOM	2852			223	94.532	71.792	83.951	1.00	0.00		H
MOTA	2853	N	SER	224	98.187	70.356	87.989	1.00	0.00		N
ATOM	2854	CA	SER	224			88 -7 36-		-0.00		C
	2855	G.,	SER	224.		68.999	90.199	1.00	0.00	:	, G
ATOM	2856	0	SER	224	98.658	67.921	90.799	1.00	0.00		0
ATOM	2857	CB	SER	224	98.741	67.985	87.840	1.00	0.00		C
ATOM	2858	OG.	SER	224	98.135	67.870	86.550	1.00	0.00		0
MOTA	2859	H	SER	224	98.879	70.476	87.238	1.00	0.00		H
ATOM	2860	HA	SER	224	97.005	68.795	88.832	1.00	0.00		H
ATOM	2861		SER	224	99.820	68.204	87.720	1.00	0.00		H
MOTA MOTA	2862 2863	2HB HG	SER	224	98.702	66.998	88.340	1.00	0.00		H
MOTA	2864	N	SER Lys	224 225	97.378 99.135	67.267 70.118	86.625 90.782	1.00	0.00		H
ATOM	2865	CA	LYS	225	99.694	70.118	92.172	1.00	0.00		C N
ATOM	2866	C	LYS	225	101.005	69.347	92.400	1.00	0.00		C
ATOM	2867	ŏ	LYS	225	101.003	68.465	93.259	1.00	0.00		Ö
ATOM	2868	CB	LYS	225	98.586	69.988	93.255	1.00	0.00		Ċ
ATOM	2869		LYS	225	- 97.368		-93.162	1.00	0.00		
ATOM	2870		LYS	225	96.400	70.792	94.350	1.00	0.00		c
ATOM	2871	CE	LYS	225	95.179	71.713	94.203	1.00	0.00		č
ATOM	2872	NZ	LYS	225	94.285	71.539	95.364	1.00	0.00		N
ATOM	2873		LYS	225	93.467	72.156	95.264	1.00	0.00		H
ATOM	2874		LYS	225	93.970	70.559	95.412	1.00	0.00		н
ATOM	2875		LYS	225	94.792	71.779	96.228	1.00	0.00		H
ATOM	2876	H	LYS	225	98.995	70.950	90.199	1.00	0.00		H
ATOM	2877		LYS	225	100.027	71.236	92.303	1.00	0.00		H
ATOM	2878		LYS	225	98.236	68.938	93.219	1.00	0.00		H
ATOM	2879		LYS	225	99.054	70.093	94.253	1.00	0.00		H
ATOM	2880		LYS	225	97.711	71.987	93.077	1.00	0.00		н
ATOM	2881		LYS	225	96.821	70.743	92.216	1.00	0.00		H
ATOM	2882		LYS	225	96.066	69.738	94.425	1.00	0.00		H
MOTA	2883		LYS	225	96.931	71.007	95.295	1.00	0 00		==
アルレグ	2001		112	د کے نے	95.494	72.773	91.114	1.00	0.00		Ħ
MOTA	2885	OHE	LVS	225	90.630	11.275	93.368	1.00	0.00		Ħ
STOR	383£			caa.	112.051	F31.678	GETTE.	1.01	1.00		ź.,
	-::"	- "-	:::E		111.112	6 1 12			• • • • • • • • • • • • • • • • • • • •		
· 3 .	- - -	-		·==					•		

-

					101					
2898	H	LYS	226			90.892	0.00			H H
2899			226							н
										H
				_	67.407	90.074	0.00	0.00		H
				102.712	66.247	90.442	0.00	0.00		Ħ
		LYS	226	103.564	66.527	88.001	0.00			H
		LYS	226	102.191						H
		LYS	226							H
								0.00		N
_						92.196	0.00	0.00		C
			227	107.474	70.781	90.969	0.00	0.00		C
2911	0	GLY	227	108.252	70.317	90.129				O H
2912	H	GLY	227							H
							_			H
						90.862	1.00	0.00		N
				107.134	72.882	89.682	1.00	0.00		C
2917	c	HIS	228	108.488	73.673	89.671	1.00			С 0
2918	0	HIS	228	109.095	73.931					c
2919	CB	HIS								č
								0.00		N
					76.176	91.952	1.00	0.00		C
			228	105.504	77.090	91.195	1.00	0.00		N
2924	CD2	HIS	228	106.028	76.252					C H
2925	H	HIS	228							н
									•	H
						89.57B	1.00	0.00		H
				104.223	76.496	92.796	1.00	0.00		H
2930			228	105.433	78.113	91.204			•	H H
2931	HD2		228							N
										C
						87.228	1.00	0.00		C
	_			109.414	76.160	86.618	1.00	0.00		0
		SER	229	111.307	73.436	88.019	1.00			0
2937	OG	SER	229	111.082						н
										H
						88.078	1.00	0.00		H
				111.226	72.659	88.807	1.00	0.00		H
		SER	229	110.404	72.178	86.829				H
2943		PHE	230	111.629						C
	_									C
							1.00	0.00		0
					77.459	85.816	1.00	0.00		c
		PHE	230	114.486	76.333	85.620	1.00			C
	CD:		230							c
										C
								0.00		С
				114.956	75.593			0.00		C
		PHE	230	112.386	75.821					H
295	HA.	PHE	230							н
2956	5 1HB									H
								٠.		H
								0.00		H
		PHE	230	117.066	73.490	85.087		_		H
	l HE	2 PHE	230					_		H H
					–					N
										C
								0.00		C
						81.604	1.00	0.00		0
		GLU	231	110.656	73.133				•	c
296	8 CG									c
										ō
297	U OE	اللفا د	431	116.13/	,,,,,,	. 55.657				
	2899 2900 2901 2903 2903 2906 2906 2913 2914 2911 2911 2911 2911 2911 2911 2911	2899 HA 2900 1HB 2901 2HB 2901 2HB 2901 2HB 2901 2HB 2902 1HG 2903 2HD 2905 1HB 2905 2HD 2906 1HE 2907 2HB 2908 CA 2910 C C 2911 HA 2913 1HA 2914 2HB 2919 CB 2917 CB 2918 CD 2918 CD 2918 CD 2918 CD 2918 CD 2918 CD 2919 CB 2920 PB 2920 CB 2921 CD 2921 CB 2921 CD 2922 CB 2923 CC 2924 CD 2925 CB 2926 CB 2927 CB 2928 CB 2938 CB 2948 CB	2899 HA LYS 2900 1HB LYS 2901 2HB LYS 2902 1HG LYS 2903 2HG LYS 2904 1HD LYS 2905 2HD LYS 2906 1HE LYS 2907 2HE LYS 2908 N GLY 2910 C GLY 2911 O GLY 2911 O GLY 2912 H GLY 2913 1HA GLY 2914 2HA GLY 2915 N HIS 2916 CA HIS 2917 C HIS 2918 O HIS 2919 CB HIS 2920 CG HIS 2921 ND1 HIS 2922 CE1 HIS 2921 ND1 HIS 2922 CE1 HIS 2923 NE2 HIS 2924 CD2 HIS 2925 H HIS 2926 HIS 2927 1HB HIS 2928 2HB HIS 2928 2HB HIS 2929 HE1 HIS 2928 2HB HIS 2929 HE1 HIS 2929 HE1 HIS 2928 2HB HIS 2929 HE1 HIS 2930 CG SER 2931 CD SER 2933 CA SER 2934 C SER 2934 C SER 2935 O SER 2936 CB SER 2937 CG SER 2937 CG SER 2938 H SER 2939 HA SER 2939 HA SER 2939 HA SER 2940 1HB SER 2941 2HB SER 2941 2HB SER 2942 CD PHE 2953 CD PHE 2954 C PHE 2955 C PHE 2955 C PHE 2956 L PHE 2957 2HB PHE 2958 HD1 PHE 2959 HE1 PHE 2959 CD GLU 2968 CG GLU 2969 CD GLU	2899 HA LYS 226 2900 1HB LYS 226 2901 2HB LYS 226 2901 2HB LYS 226 2901 2HG LYS 226 2903 2HG LYS 226 2905 2HD LYS 226 2906 1HE LYS 226 2907 2HE LYS 226 2908 N GLY 227 2909 CA GLY 227 2910 C GLY 227 2911 O GLY 227 2911 O GLY 227 2911 HA GLY 227 2912 H GLY 227 2913 1HA GLY 227 2915 N HIS 228 2916 CA HIS 228 2917 C HIS 228 2917 C HIS 228 2918 O HIS 228 2919 CB HIS 228 2919 CB HIS 228 2911 ND1 HIS 228 2920 CG HIS 228 2921 ND1 HIS 228 2921 ND1 HIS 228 2921 ND1 HIS 228 2922 CE1 HIS 228 2923 NE2 HIS 228 2924 CD2 HIS 228 2925 H HIS 228 2926 HA HIS 228 2927 1HB HIS 228 2928 2HB HIS 228 2929 HE1 HIS 228 2929 HE1 HIS 228 2931 HD2 HIS 230 2935 O SER 229 2936 CB SER 229 2937 OG SER 229 2938 H SER 229 2937 OG SER 229 2938 H SER 229 2939 HA SER 229 2931 N PHE 230 2940 1HB SER 229 2941 2HB SER 229 2935 O SER 229 2936 CB SER 229 2937 OG SER 229 2937 OG SER 229 2938 H SER 229 2936 CB SER 229 2937 OG SER 2	2899 HA LYS 226 103.295 2900 1HB LYS 226 104.478 2901 2HB LYS 226 101.3337 2902 1HG LYS 226 101.442 2903 2HG LYS 226 102.712 2904 1HD LYS 226 102.504 2905 2HD LYS 226 102.191 2906 1HE LYS 226 102.050 2908 N GLY 227 105.779 2909 CA GLY 227 107.043 2910 C GLY 227 107.474 2911 O GLY 227 105.763 2913 1HA GLY 227 106.975 2915 N HIS 228 106.938 2916 CA HIS 228 106.938 2917 C HIS 228 107.134 2917 C HIS 228 106.938 2918 O HIS 228 106.938 2921 ND1 HIS 228 104.839 2922 CE1 HIS 228 104.839 2922 CE1 HIS 228 104.839 2922 CE1 HIS 228 104.822 2923 NE2 HIS 228 106.269 2926 HA HIS 228 105.504 2924 CD2 HIS 228 105.504 2924 CD2 HIS 228 105.504 2925 HH HIS 228 105.504 2926 HA HIS 228 105.504 2927 1HB HIS 228 105.638 2921 ND1 HIS 228 105.504 2928 2HE HIS 228 105.504 2929 HE1 HIS 228 105.504 2929 HE1 HIS 228 105.638 2931 HD2 HIS 228 105.504 2929 HE1 HIS 228 105.638 2931 HD2 HIS 228 105.433 2931 HD2 HIS 228 106.583 2932 N SER 229 108.982 2933 CA SER 229 108.982 2934 C SER 229 100.414 2936 CB SER 229 100.414 2936 CB SER 229 100.414 2936 CB SER 229 100.404 2937 N SER 229 100.667 2940 THB SER 229 110.404 2943 N PHE 230 111.679 2946 O PHE 230 111.679 2950 CB1 PHE 230 114.974 2950 CB1 PHE 230 113.651 2957 HHB PHE 230 113.651 2958 HD PHE 230 113.651 2959 HE1 PHE 230 113.651 2966 O GLU 231 110.660 2966 O GLU 231 110.660 2967 CB GLU 231 110.660 2969 CD GLU 231 110.678	2899 H LYS 226 101.835 70.349 2899 HA LYS 226 103.295 68.031 2900 HB LYS 226 104.478 67.911 2901 HB LYS 226 101.422 67.407 2903 HG LYS 226 102.712 66.247 2904 HD LYS 226 102.191 67.603 2905 2HD LYS 226 100.625 65.645 2907 2HE LYS 226 102.050 64.607 2908 N GLY 227 107.043 69.942 2910 C GLY 227 107.043 69.942 2910 C GLY 227 107.474 70.781 2911 D GLY 227 107.867 69.245 2912 H GLY 227 107.867 69.245 291 D HIS	2898 H LYS 226 103.295 68.031 92.309 2890 IHB LYS 226 103.295 68.031 92.309 2901 ZHB LYS 226 103.337 69.102 89.410 2901 ZHG LYS 226 102.312 66.247 90.074 2905 ZHD LYS 226 102.312 66.247 90.442 2905 ZHD LYS 226 102.356 66.547 88.001 2905 ZHD LYS 226 100.625 66.646 88.504 2907 ZHE LYS 226 100.625 66.647 88.504 2908 N GLY 227 105.779 69.164 92.013 2907 ZHE LYS 226 100.036 64.607 88.504 2909 CA GLY 227 105.763 69.942 92.196 2911 O GLY 227 105.763 68.170 91.29 2911 O GLY 227 107.867 69.245	2898 H LYS 226 101.835 70.349 90.892 0.00 2890 1 HB LYS 226 103.295 68.031 92.309 0.00 2901 2 HB LYS 226 103.337 69.102 89.410 0.00 2902 2 HG LYS 226 102.712 66.247 90.442 0.00 2904 1 HD LYS 226 102.712 66.247 90.442 0.00 2905 2HD LYS 226 102.191 67.603 87.712 0.00 2905 1HE LYS 226 102.596 66.657 88.601 0.00 2907 2HE LYS 226 102.050 64.607 88.504 0.00 2908 CA GLY 227 107.474 70.761 99.922 10.00 2910 C GLY 227 107.474 70.761 99.622 0.00 2911 A GLY 227 107.474 70.761 99.622 0.00 2911 A <td< td=""><td> 2898 H LYS 226</td><td> 2998 R LVS 226</td></td<>	2898 H LYS 226	2998 R LVS 226

- <u>:</u>

1:2.:::

102

0

H

H

: **-** -

(

					100 700	70.451	77.675	0.00	0.00	H
MOTA	3044	HH2		235		72.617			0.00	H
MOTA	3045		TRP	235		78.574			0.00	N
MOTA	3046		SER	236		79.951		_	0.00	С
MOTA	3047	CA	SER	236 236		80.630	76.859		0.00	С
MOTA	3048	C	SER	236		81.372	76.112		0.00	Ō
MOTA	3049	0	SER	236	_	80.831	79.347	1.00	0.00	C
MOTA	3050	CB	SER SER	236		80.340	80.418	1.00	0.00	0
ATOM	3051	OG	SER	236		78.388	79.317	1.00	0.00	H
MOTA	3052	H	SER	236		79.893	77.768	1.00	0.00	H
ATOM	3053	HA	SER	236	105.351	80.918	79.709	1.00	0.00	H
MOTA	3054 3055	2HB	SER	236	103.998	81.867	79.110	1.00	0.00	H
MOTA	3055	HG	SER	236	102.778	79.795	80.055	1.00	0.00	н
MOTA	3057	N	ILE	237	106.309	80.357	76.616	1.00	0.00	И
MOTA MOTA	3058	CA	ILE	237	107.003	80.705	75.321	1.00	0.00	c c
ATOM	3059	C	ILE	237	106.456	79.903	74.072	1.00	0.00	o
ATOM	3060	ō	ILB	237	106.248	80.500	73.014	1.00	0.00	Č
ATOM	3061	CB	ILE	237	108.578	80.663	75.438	1.00	0.00	č
ATOM	3062	CG1	ILE	237	109.157	81.505	76.618	1.00	0.00	č
ATOM	3063	CG2	ILE	237	109.275	81.142	74.129	1.00 1.00	0.00	Ċ
ATOM	3064	CD1	ILE	237	110.646	81.287	76.949	1.00	0.00	H
MOTA	3065	H	ILE	237	106.740	79.761	77.333	1.00	0.00	H
MOTA	3066	HА	ILE	237	106.758	81.763	75.117 75.604	1.00	0.00	H
ATOM	3067	HB	ILE	237	108.860	79.603	76.437	1.00	0.00	H
MOTA	3068	1HG1	ILE	237	108.966	82.579	77.540	1.00	0.00	н
MOTA	3069			237	108.591	81.285	73.244	1.00	0.00	н
MOTA	3070	2HG2	ILE	237	108.960	80.560 _. 82.205	73.906	1.00	0.00	H
MOTA	3071	3HG2	ILE	237	109.062 110.374	81.034	74.173	1.00	0.00	H
ATOM	3072	1HG2	ILE	237	110.884	80.218	77.100	1.00	0.00	H
ATOM	3073	2HD1	. 11bg	237	111.312	81.668	76.152	1.00	0.00	H
MOTA	3074			237 237	110.933	81.818	77.875	1.00	0.00	H
MOTA	3075		GLY	238	106.200	78.583	74.167	0.00	0.00	Ŋ
MOTA	3076	N CA	GLY	238	105.387	77.841	73.149	0.00	0.00	c
ATOM	3077	C	GLY	238	103.976	78.385	72.795	0.00	0.00	C
MOTA	3078 3079		GLY	238	103.633	78.481	71.615	0.00	0.00	0
MOTA	3079		GLY	238	106.452	78.180	75.081	0.00	0.00	н
MOTA		1HA	GLY	238	105.261	76.799	73.491	0.00	0.00	н
MOTA MOTA	3082		GLY	238	105.967	77.757	72.212	0.00	0.00	H
ATOM	3083		CYS	239	103.189	78.784	73.803	1.00	0.00	C N
ATOM	3084		CYS	239	101.955	79.588	73.598	1.00	0.00	Ċ
ATOM	3085		CYS	239	102.130	81.037	73.017	1.00	0.00	ő
ATOM	3086		CYS	239	101.320	81.424	72.177	1.00	0.00	č
ATOM	3087	CB	CYS	239	101.175	79.555		1.00	0.00	s
ATOM	3088	SG	CYS	239	100.684	77.847		1.00	0.00	н
ATOM	3089	H	CYS	239	103.559	78.560		1.00	0.00	H
MOTA	3090			239	101.333	79.056		1.00	0.00	н
MOTA		. 1HB		239	101.770	79.984 80.168			0.00	H
ATOM		2HB		239	100.257	78.149			0.00	H
ATOM	3093			239	99.879 103.144	81.846				N
MOTA	3094		ILE	240	103.1446				0.00	С
MOTA	3095			240 240	103.857	83.041			0.00	C
MOTA	3096		ILE	240	103.322			1.00		0
ATOM				240	104.363			1.00		C
MOTA			1 ILE	240	104.030		73.537			c
MOTA			2 ILE	240	105.884		73.375			C
ATOM			1 ILE	240	102.718					C
MOTA MOTA			ILE	240	103.768	81.425				н н
ATOM				240	102.475	83.683				H
ATOM				240	104.204					H
ATOM	310	5 1HG	1 ILE	240	104.839					· · н
ATOM	310	6 2HC	1 ILE	240	104.027					H
ATOM	310	7 2HG	2 ILE	240	106.194	82.878				H
ATOM	310	8 3HC	2 ILE	240	106.204					H
ATOM	310	9 1HC	32 ILE	240	106.480					H
ATOM	311	0 2HI	1 ILE	240	101.825					н
ATOM	311	1 зн	1 ILE	240	102.667					н
ATOM			ol ILE		102.619					N
ATOM			MET	241	104.735					С
MOTA					104.976 103.699	81.31				C
ATOM			MET		103.59					0
ATOM	1 311	6 0	MET	241	103.303	. 02.00	··- -			

三人種 一年以前は海の南東の一十

						104					
ATOM	.3117		MET	241	106.015	80.527	69.488	1.00	0.00		C
MOTA	3118		MET		106.567	80.031		1.00	0.00		C
ATOM	3119		MET		107.621	78.555		1.00	0.00	•	s
ATOM	3120		MET		108.499	78.673		1.00	0.00		C
ATOM	3121		MET	241	105.091	81.530		1.00	0.00		H
MOTA	3122		MET	241	105.453	82.535		1.00	0.00		H
MOTA		1HB	MET	241	106.874	80.850		1.00	0.00		H
MOTA MOTA		2HB	MET MET	241	105.577	79.664		1.00	0.00		H
MOTA		2HG	MET	241	105.735	79.767		1.00	0.00		H
ATOM		1HE	MET	241 241	107.116 109.111	80.834		1.00	0.00		H
MOTA		3HE	MET	241	107.793	79.588 78.671		1.00	0.00		H
ATOM	3129		MET	241	109.169	77.807		1.00	0.00		H
MOTA	3130		TYR	242	102.832	80.420		0.00	0.00		N
ATOM	3131		TYR	242	101.524	80.095		0.00	0.00		C
ATOM	3132		TYR	242	100.518	81.301		0.00	0.00		C
MOTA	3133		TYR	242	100.074	81.616	67.254	0.00	0.00		Ö
MOTA	3134		TYR	242	100.977	78.843	69.192	0.00	0.00	•	č
MOTA	3135		TYR	242	99.848	78.067	68.487	0.00	0.00		Č
ATOM	3136		TYR	242	98.549	78.587	68.430	0.00	0.00		č
MOTA	3137		TYR	242	97.505	77.821	67.920	0.00	0.00		č
ATOM	3138		TYR	242	97.747	76.525	67.476	0.00	0.00		č
MOTA	3139	OH	TYR	242	96.709	75.742	67.055	0.00	0.00		ō
ATOM	3140	CEZ	TYR	242	99.037	76.005	67.506	0.00	0.00		C
MOTA	3141	CD2	TYR	242	100.086	76.773	68.008	0.00	0.00		C
ATOM	3142	H	TYR	242	103.082	79.937	69.961	1.00	0.00		H
ATOM	3143	HA	TYR	242	101.733	79.791	67.401	0.00	0.00	-	H
ATOM	3144		TYR	242	100.640	79.136	70.204	0.00	0.00		H
MOTA	3145		TYR	242	101.809		6.939.9_	000-	000		H
_ATOM _		HD1			98,325	79.574			0.00.		- H
MOTA	3147		TYR	242	96.504	78.227	67.911	0.00	0.00		H
MOTA MOTA	3148	HH	TYR	242	95.880	76.166	67.285	0.00	0.00		H
ATOM	3149 3150	HE2 HD2		242	99.213	74.992:		0.00	0.00		H
MOTA	3151	N	THR	242 243	101.076 100.184	76.342 81.981	68.058	0.00	0.00		H
ATOM	3152	CA	THR	243	99.285	83.185	69.478 69.481	1.00	0.00		N
MOTA	3153	c c	THR	243	99.713	84.342	68.514	1.00	0.00 0.00	•	C
ATOM	3154	0	THR	243	98.888	84.807	67.726	1.00	0.00		õ
MOTA	3155	CB	THR	243	99.090	83.743	70.932	1.00	0.00		Č
ATOM	3156	OG1	THR	243	98.832	82.718	71.884	1.00	0.00	•	ŏ
MOTA	3157	CG2	THR	243	97.910	84.721	71.059	1.00	0.00		Ċ
ATOM	315B	H	THR	243	100.655	81.660	70.333	1.00	0.00		H
MOTA	3159	HA	THR	243	98.293	82.839	69.129	1.00	0.00		H
ATOM	3160	HB	THR	243	100.024	_84,260	_71.238-	1.00			H
	3161			243	99.139	83.061	72.734	1.00	0.00		H
ATOM		1HG2		243	97.704	85.005	72.105	1.00	0.00		H
ATOM		2HG2		243	98.085	85.655	70.491	1.00	0.00		H
ATOM		3HG2		243	96.979	84.281	70.658	1.00	0.00		H
ATOM	3165	N	LEU	244	100.985	84.781	68.545	1.00	0.00		N
ATOM	3166	CA	LEU	244	101.545	85.737	67.545	1.00	0.00		C
ATOM ATOM	3167	C	LEU	244	101.478	85.258	66.049	1.00	0.00		С
ATOM	3168 3169	O CB	LEU	244 244	101.053 102.996	86.030	65.189	1.00	0.00		0
ATOM	3170	CG	LEU	244	102.336	86.108 86.828	67.971	1.00	0.00		C
ATOM	3171	CD1		244	104.693	86.857	69.336		0.00		C
ATOM	3172	CD2		244	102.634	88.258	69.681 69.3 <i>6</i> 4	1.00	0.00		C
ATOM	3173	Н	LEU	244	101.595	94.257	69.185	1.00	0.00		H
ATOM	3174	HA	LEU	244	100.944	86.664	67.581	1.00	0.00		Y.
ATOM	3175		Leu	519	101.555	05.L/7	67.962	1.00	0.00		H
74.7.54	3176		PEO	244	103.453	86.722	67.179	1.00	0.00		H
rtom	3177		Leu	244	102. 497	22.247	70.237	(T)			:-
ATOM	1178	TILL-		: :	.00.105	1212.7	77. 57		•		
:		====		<u>-</u>	77 212	• • :::					
					_						

.. -

		an.	* ***	245	400 044	00 000					~
MOTA	3190		PEA	245	103.344	82.362	61.820	1.00	0.00		C
ATOM	3191	CD2	LEU	245	103.963	80.340	63.152	1.00	0.00		C
ATOM	3192	H	LEU	245	102.133	83.433	66.548	1.00	0.00		H
ATOM	3193	HA	LEU	245	102.271	84.194	63.697	1.00	0.00		H
ATOM	3194	1HB	LEU	245	103.730	82.513	64.700	1.00	0.00		н
MOTA	3195	2HB	PRO	245	102.371	81.475	65.084	1.00	0.00		H
MOTA	3196	HG	LEU	245	101.953	80.980	62.714	1.00	0.00		H
											H
MOTA		2HD1		245	102.592	83.146	61.614	1.00	0.00		
MOTA	3198	3HD1	LEU	245	104.301	82.881	62.016	1.00	0.00		H
ATOM	3199	1HD1	LEU	245	103.446	81.789	60.880	1.00	0.00		н
ATOM	3200	2HD2	URU	245	104.967	80.740	63.387	1.00	0.00		H
MOTA	3201			245	103.690	79.650	63.972	1.00	0.00		H
ATOM	3202	1HD2	LEU	245	104.055	79.729	62.234	1.00	0.00		H
ATOM	3203	N	VAL	246	99.420	82.532	64.412	1.00	0.00		N
ATOM	3204	CA	VAL	246	98.018	82.373	63.887	1.00	0.00		C
											č
ATOM	3205	С	VAL	246	97.012	83.542	64.197	1.00	0.00		
ATOM	3206	0	VAL	246	96.113	83.787	63.387	1.00	0.00		0
MOTA	3207	CB	VAL	246	97.466	80.939	64.220	1.00	0.00		C
ATOM	3208	CG1.	VAL	-246	97.060	80.705	65.691	1.00	0.00		C
ATOM	3209		VAL	246	96.256	80.541	63.340	1.00	0.00		c
MOTA	3210	H	VAL	246	99.698	82.253	65.364	1.00	0.00		H
ATOM	3211	HA	∇AL	246	98.082	82.391	62.781	1.00	0.00		H
ATOM	3212	HB	VAL	246	98.274	80.217	63.987	1.00	0.00		H
ATOM		1HG1		246	96.219	81.348	66.008	1.00	0.00		H
MOTA		2HG1		246	96.751	79.661	65.873	1.00	0.00		H
ATOM	3215	3HG1	VAL	246	97.889	80.912	66.389	1.00	0.00		H
ATOM	3216	2HG2	VAL	246	96.503	80.566	62.265	1.00	0.00		H
MOTA	3217	3HG2	VAL	246	95.894	79.519	63.559	1.00	0.00		H
ATOM		1HG2		246	95.393	81.219	63.488	1.00	0.00		н
MOTA	3219	. N .	GLY	247	97.099		65.360		0.00		N
ATOM '	3220	` CA	GLY	247	96.020	85.100	65.871	0.00	0.00		С
ATOM	3221	C	GLY	247	95.492	84.695	67.263	0.00	0.00		С
ATOM	3222	0	GLY	247	95.697	85.401	68.254	0.00	0.00		0
											н
MOTA	3223	H	GLY	247	97.934	83.977	65.917	0.00	0.00		
ATOM	3224	1HA	GLY	247	95.163	85.180	65.173	0.00	0.00		H
ATOM	3225	2HA	GLY	247	96.403	86.132	65.927	0.00	0.00		H
MOTA	3226	N	LYS	248	94.784	83.561	67.320	1.00	0.00		N
ATOM	3227	CA	LYS	248	94.201	83.016	68.579	1.00	0.00		C
ATOM	3228	C	LYS	248	95.191	82.099	69.402	1.00	0.00		C
MOTA	3229.	. 0	LYS	248	95.994	81.382	68.791	1.00	0.00		0
MOTA	3230	CB	LYS	248	92.912	82.231	68.204	1.00	0.00		C
ATOM	3231	CG	LYS	248	91.705	83.103	67.777	1.00	0.00		C
											č
ATOM	3232	CD	LYS	248	90.498	82.257	67.331	1.00	0.00		
ATOM	3233	CE	LYS	248	89.278	83.127	66.999	1.00	0.00		С
ATOM	3234	NZ	LYS	248	88.159	82.262	66.577	1.00	0.00		N
ATOM	3235	1HZ	LYS	248	87.339	82.845	66.354	1.00	0.00		H
MOTA	3236	2HZ	LYS			81.725	65.743	1.00			н
				248	88.436				0.00		
ATOM	3237	3HZ	LYS	248	87.920	81.612	67.339	1.00	0.00		H
ATOM	3238	H	LYS	248	94.798	83.034	66.443	1.00	0.00		H
ATOM	3239	HA	LYS	248	93.904	83.868	69.219	1.00	0.00		H
ATOM	3240		LYS	248	93.145	81.487	67.415	1.00	0.00		н
ATOM	3241		LYS				69.067	1.00			H
				248	92.596	81.613			0.00		
ATOM	3242		LYS	248	91.419	83.774	68.610	1.00	0.00		H
ATOM	3243	2HG	LYS	248	92.002	83.776	66.948	1.00	0.00		H
ATOM	3244	1HD	LYS	248	90.780	81.656	66.443	1.00	0.00		H
ATOM	3245		LYS	248	90.239	81.516	68.112	1.00	0.00		H
	3246				88.979	83.741	67.873	1.00	0.00		н
ATOM			LYS	248							
MOTA	3247		LYS	248	89.524	83.843	66.188	1.00	0.00	•	H
ATOM	3248	N ·	PRO	249	95.154	82.039	70.771	0.00	0.00		N
MOTA	3249	CA	PRO	249	96.020	81.112	71.555	0.00	0.00		C
ATOM	3250	CD	PRO	249	94.324	82.923	71.609	0.00	0.00		. C
					95.717	79.571	71.421				· c
ATOM	3251	C	PRO	249				0.00	0.00	. •	
MOTA	3252	0	PRO	249	94.594	79.206	71.051	0.00	0.00		0
MOTA	3253	CB	PRO	249	95.856	81.670	72.986	0.00	0.00		С
ATOM	3254	CG	PRO	249	94.475	82.324	73.005	0.00	0.00		C
ATOM	3255	HA	PRO	249	97.059	81.260	71.214	0.00	0.00		н
					93.266	82.947		0.00	0.00		н
MOTA	3256		PRO ·				71.289				
ATOM	3257		PRO	249	94.709	83.962	71.575	0.00	0.00		H
3 most		7 7 7 7 7	PRO	249	96.635	82.431	73.179	0.00	0.00		H
MOTA	3258	TUD									
ATOM	3258 3259		PRO	249	95.969	80.898	73.772	0.00	0.00		H
ATOM	3259	2HB	PRO	249	95.969						
ATOM ATOM	3259 3260	2HB 1HG	PRO PRO	249 249	95.969 94.358	83.079	73.801	0.00	0.00		H
ATOM	3259	2HB 1HG	PRO	249	95.969						

-	_	
		-
•		

						100				
MOTA	3263	CA	PRO	250	96.501	77.190	71.345	0.00	0.00	C
MOTA	3264	CD	PRO	250	98.027	78.957	72.199	0.00	0.00	C
MOTA	3265	С	PRO	250	95.405	76.338	72.063	0.00	0.00	C
ATOM	3266	0	PRO	250	94.769	75.510	71.408	0.00	0.00	0
ATOM	3267	CR	PRO	250	97.937	76.661	71.500	0.00	0.00	C
ATOM	3268	CG	PRO	250	98.615	77.582	72.511	0.00	0.00	C
ATOM	3269	AН	PRO	250	96.236	77.132	70.273	0.00	0.00	H
MOTA	3270		PRO	250	98.022	79.609	73.093	0.00	0.00	н.
ATOM	3271		PRO	250	98.612	79.473	71.412	0.00	0.00	H
ATOM	3272		PRO	250	98.465	76.713	70.531	0.00	0.00	H
ATOM	3273		PRO	250	97.983	75.602	71.782	0.00	0.00	H
ATOM	3274		PRO	250	99.717	77.552	72.427	0.00	0.00	H
MOTA	3275		PRO	250	98.359	77.276	73.544	0.00	0.00	H
ATOM	3276	N	PHE	251	95.171	76.536	73.369	0.00	0.00	N
ATOM	3277	ÇA	PHE	251	93.963	75.999	74.056	0.00	0.00	С
ATOM	3278	C	PHE	251	93.134	77.170	74.676	0.00	0.00	C
ATOM	3279	0	PHE	251	93.535	77.784	75.669	0.00	0.00	0
MOTA	3280	CB	PHE	251	94.359	74.924	75.110	0.00	0.00	C
MOTA	3281	CG	PHE	251	94.855	73.539	74.627	0.00	0.00	C
ATOM	3282		PHE	251	94.370	72.914	73.468	0.00	0.00	C
ATOM	3283		PHE	251	94.778	71.624	73.136	0.00	0.00	C
ATOM	3284	CZ	PHE	251	95.658	70.940	73.966	0.00	0.00	С
ATOM	3285		PHE	251	96.139	71.542	75.122	0.00	0.00	C
MOTA	3286		PHE	251	95.739	72.836	75.452	0.00	0.00	C
ATOM	3287	H	PHE	251	95.711	77.322	73.743	0.00	0.00	H
ATOM	3288	HA	PHE	251	93.295	75.495	73.329	0.00	0.00	H
ATOM	3289		PHE	251	93.478	74.727	75.750	0.00	0.00	H
ATOM	3290		PHE	251	95.092	75.375	75.806	0.00	0.00	H
ATOM	3291		PHE	251	93.671	73.410	72.814	0.00	_ <u>0.00</u> _	 H
MOTA		HE1_		251	94.410	71.151.	72.236	0.00	.0.00	 Н
ATOM	3293	HZ	PHE	251	95.972	69.941	73.707	0.00	0.00	H
ATOM	3294		PHE	251	96.825	71.005	75.763	0.00	0.00	H
MOTA	3295		PHE	251	96.115	73.283	76.358	0.00	0.00	H
MOTA MOTA	3296	n ca	GLU	252	91.963	77.457	74.083	1.00	0.00	С И
ATOM	3297 3298	CA	GLU	252 252	90.978	78.433	74.629	1.00	0.00	C
ATOM	3299	o	GLU	252 252	89.511 88.774	77.887 78.205	74.512 73.573	1.00	0.00 0.00	٥
ATOM	3300	CB	GLU	252	91.191	79.843	74.006	1.00	0.00	. c
ATOM	3301	CG	GLU	252	91.120	79.990	72.457	1.00	0.00	· c
MOTA	3302	æ	GLU	252	90.880	81.410	71.943	1.00	0.00	c
ATOM .	3303		GLU	252	91.116	82.435	72.575	1.00	0.00	ō
ATOM	3304		GLU	252	90.369	81.410	70.683	1.00	0.00	ŏ
ATOM	3305	н	GLU	252	91.798	76.958	73.202	1.00	0.00	н
ATOM	3306	HA	GLU	252	91.157	78.567	75.716			 ·H
ATOM _			GLU-	. 252	90.450	80.523	74.472	1.00	0.00	 H
ATOM	3308		GLU	252	92.170	80.226	74.346	1.00	0.00	н
ATOM	3309		GLU	252	92.052	79,611	71.998	1.00	0.00	H
ATOM	3310		GLU	252	90.319	79.351	72.044	1.00	0.00	H
ATOM	3311	N	THR	253	89.078	77.064	75.479	1.00	0.00	N
ATOM	3312	CA	THR	253	87.671	76.555	75.551	1.00	0.00	C
MOTA	3313	С	THR	253	86.821	77.456	76.525	1.00	0.00	C
MOTA	3314	0	THR	253		78.092		1.00	0.00	o
ATOM	3315	CB		253	87.705			1.00	0.00	С
ATOM	3316	OG1		253	88.536		74.942		0.00	0
ATOM	3317	CG2		253	86.347			1.00	0.00	C
MOTA	3318	H	THR	253	89.751	76.885		1.00	0.00	H
MOTA	3319		THR	253	87.207	76.633	74.548	1.00	0.00	н
MOTA	3320	HB	THR	253	88.122		76.897	1.00	0.00	II
ATOM	3321	HC1	THE	253	88.5 <i>6</i> 5	77 255	75.277	1.00	U. UU	1.1
17وٽ ۾ پير	3233	LHG2	THE	253	86.242	73.225	76.002	1.00	0.00	77
	3223			253	82.661	74.772.	77 :79	1.11	0.00	•
	3324 -	3: :: :::::::::::::::::::::::::::::::::		-33T.	7. 71		7., 775		7.00	-
. .	-===			.5.	-2.13€	:	777.7.2.2			
		-	-	-			-			

-

						107					
ATOM	3336	N	CYS	255	85.100	78.129	79.298	1.00	0.00		N
ATOM	3337	CA	CYS	255	85.274	78.483	80.735	1.00	0.00		C
ATOM	3338	С	CYS	255	86.653	77.980	81.291	1.00	0.00		C
MOTA	3339	0	CYS	255	87.287	77.081	80.727	1.00	0.00	-	0
ATOM	3340	CB	CYS	255	84.059	77.949	81.532	1.00	0.00		s
ATOM	3341	SG	CYS	255	83.991	76.125 77.541	81.530 78.829	1.00	0.00		н
ATOM	3342	H	CYS	255 255	85.801 85.285	79.588	80.834	1.00	0.00		H
MOTA	3343 3344	HA	CYS	255 ·	84.098	78.298	82.579	1.00	0.00		H
MOTA MOTA		2HB	CYS	255	83.111	78.350	81.122	1.00	0.00		Ħ
ATOM	3346	HG	CYS	255	83.576	75.982	80.275	1.00	0.00		H
-ATOM	3347.	N	LEU	256	87.110	78.539	82.429	1.00	0.00		N
ATOM	3348	CA	LEU	256	88.437	78.204	83.043	1.00	0.00		C
MOTA	3349	С	LEU	256	88.717	76.678	83.289	1.00	0.00		C
ATOM	3350	0	LEU	256	89.732	,76.166	82.819	1.00	0.00		0 C
ATOM	3351	CB	LEU	256	88.641	79.036	84.347	1.00 1.00	0.00		c
MOTA	3352	CG	LEU	256	88.951	80.551 81.413	84.214 83.867	1.00	0.00		č
MOTA	3353		LEU	256 256	87.723 89.546	81.077	85.533	1.00	0.00		Č
MOTA	3354 3355	H H	LEU LEU	256	86.525	79.294	82.798	1.00	0.00		н
ATOM ATOM	3356	HA	LEU	256	89.222	78.522	82.328	1.00	0.00		H
ATOM	3357		LEU	256	87.794	78.878	85.043	1.00	0.00		H
MOTA	3358		LEU	256	89.502	78.580	84.880	1.00	0.00		H
ATOM	3359	HG	LEU	256	89.710	80.687	83.419	1.00	0.00		H
ATOM	3360			256	87.335	81.198	82.857	1.00	0.00		H
ATOM	3361	3HD1	LEU	256	86.893	81.266	84.584	1.00	0.00		H
ATOM	3362			256	87.965	82.492	83.872	1.00	0.00		H
ATOM	3363			256	88.839	80.978	86.380	1.00	0.00		H H
MOTA	3364			256	90.465	80.530	85.818	1.00	0.00		H.
MOTA	3365			256	89.825	82.144	85.467	1.00· 1.00	0.00	•	N
MOTA	3366	И.	LYS	257	87.800	75.951 74.462	83.953 84.089	1.00	0.00		Ċ
ATOM	3367	CA	LYS	257 257	87.873 87.861	73.614	82.764	1.00	0.00		C
MOTA	3368	C	LYS LYS	257	88.490	72.555	82.727	1.00	0.00		0
ATOM ATOM	3369 3370	O CB	LYS	257	86.754	74.003	85.066	1.00	0.00		C
ATOM .	3371	CG	LYS	257	86.922	74.460	86.537	1.00	0.00		С
ATOM	3372	CD	LYS	257	85.765	73.981	87.434	1.00	0.00		C
ATOM	3373	CE		257	85.926	74.466	88.881	1.00	0.00		C
ATOM	3374	NZ	LYS	257	84.781	73.996	89.685	1.00	0.00		N
ATOM	3375		LYS	257	84.887	74.321	90.657	1.00	0.00		H
MOTA	3376		LYS	257	83.906	74.372	89.292	1.00	0.00		H
ATOM	3377		LYS	257	84.749	72.967	89.670	1.00	0.00		н
MOTA	3378	H	LYS	257	86.991	76.492	84.272 84.568	1.00	0.00		н
MOTA	3379	HA	LYS	257 257	88.840 85.766	74.217 74.319	84.678	1.00	0.00		H
MOTA	3380 3381		LYS LYS	257 257	86.711	72.897	85.064	1.00	0.00		H
ATOM ATOM	3382		LYS	257	87.885	74.087	86.937	1.00	0.00		H
MOTA	3383		LYS	257	86.992	75.564	86.588	1.00	0.00		H
ATOM	3384		LYS	257	84.800	74.343	87.025	1.00	0.00		H
ATOM	3385		LYS	257	85.706	72.875	87.407	1.00	0.00		H
ATOM	3386	1HE	LYS	257	86.87 7	74.097	89.316	1.00	0.00		H
ATOM	3387	2HE	LYS	257	85.978	75.573	88.918	1.00	0.00		H N
ATOM	3388	N	GLU	258	87.189	74.064	81.686	1.00	0.00		C
ATOM	3389		GLU	258	87.332	73.448	80.332 79.619	1.00	0.00		c
ATOM	3390		GLU	258	88.705	73.711 72.754	79.114	1.00	0.00		ŏ
ATOM	3391		GLU	258	89.293 86.118	73.847	79.451	1.00	0.00		c
MOTA	3392		GLU	258 258	84.750	73.213	79.823	1.00	0.00		С
MOTA	3393 3394		GLU	258	84.645	71.709		1.00	0.00		C
ATOM ATOM	3395		GLU	258	84.362	71.217		1.00	0.00		0
ATOM	3396		GLU	258	84.899	70.977	80.687	1.00	0.00		0
MOTA	3397		GLU	258	86.861	75.028	81.801	1.00	0.00		H
MOTA	3398		GLU	258	87.289	72.346		1.00	0.00		H
ATOM	3399		GLU	258	86.027	74.951		1.00	0.00		H
MOTA	3400		GLU	258	86.339	73.566		1.00	0.00		H
ATOM		1HG	GLU	258	84.495	73.423		1.00	0.00		H H
ATOM	3402		GLU	258	83.951	73.695		1.00	0.00		N
MOTA	3403		THR	259	89.256	74.941		1.00 1.00	0.00		C
MOTA	3404		THR	259	90.700	75.186 74.348		1.00	0.00		č
MOTA	3405		THR THR	259 259	91.743 92.662	73.765		1.00	0.00		ŏ
MOTA	3406 3407		THR	259 259	90.988	76.720		1.00	0.00		c
MOTA MOTA	3407		1 THR	259	90.192	77.414		1.00	0.00		0
AION.	2400				20.202						

. ...

一年の日本の大変の

MOTA	3409	CG2	THR	259	92.425	77.133	78.955	1.00	0.00		С
MOTA	3410	Н	THR	259	88.665	75.681	80.011	1.00			H
MOTA	3411	L. HA	THR	259	90.841	74.870	78.203	1.00			H
MOTA	3412	HB	THR	259	90.750	77.097	80.320	1.00			ä
ATOM	3413	HG1	THR	259	90.577	78.292	78.280	1.00			H
ATOM	3414	1HG2	THR	259	92.562	78.226	79.020	1.00			н
ATOM	3415	2HG2	THR	259	93.166	76.690	79.646	1.00			H
ATOM		3HG2		259	92.711	76.823	77.933	1.00			H
ATOM	3417		TYR	260	91.586	74.262	81.423	0.00			N
ATOM	3418		TYR	260	92.363	73.330	82.294	0.00			Č
MOTA	3419		TYR	260	92.279	71.804	81.919	0.00			c
ATOM	3420		TYR	260	93.315	71.139	81.844	0.00			
ATOM	3421		TYR	260	91.924	73.570	83.770		0.00		0
ATOM	3422		TYR	260	92.128	74.943		0.00	0.00		C
ATOM	3423		TYR	260	92.987	75.934	84.457	0.00	0.00		C
ATOM	3424					-	83.963	0.00	0.00		C
ATOM	3425		TYR	260	93.105	77.157	84.618	0.00	0.00		C
MOTA				260	92.370	77.402	85.772	0.00	0.00		C
	3426		TYR	260	92.494	78.601	86.417	0.00	0.00		0
ATOM	3427		TYR	260	91.523	76.424	86.280	0.00	0.00		C
ATOM	3428		TYR	260	91.408	75.196	85.631	0.00	0.00		C
ATOM	3429		TYR	260	90.890	74.876	81.869	1.00	0.00		H
ATOM	3430		TYR	260	93.435	73.594	82.207	0.00	0.00		H
MOTA		1HB	TYR	260	92.431	72.818	84.399	0.00	0.00		H
ATOM	3432		TYR	260	90.856	73.289	83.848	0.00	0.00		Ħ
MOTA	3433		TYR	260	93.564	75.768	83,063	0.00	0.00		H
MOTA	3434			260	93.777	77.903	84.231	0.00	0.00		H
ATOM	3435		TYR	260	93.285	79.038	86.094	0.00	0.00		H
MOTA	3436		TYR	260	90.964	76.616	87.184	0.00	0.00		H
ATOM	3437	HD2	TYR	260	90.752	74.444	86.046	0.00	0.0.0_		H
ATOM	3438	N	LEU.	261	- 91-075	71.265	81.640	1.00	0.00		N
MOTA	· 3439	ĊA "	LEU	261	90.897	69.932	80.984	1.00	0.00	• •	C.
ATOM	3440	C	LEU	261	91.694	69.702	79.646	1.00	0.00		C
MOTA	3441	0	LEU	261	92.322	68.652	79.497	1.00	.0.00		0
MOTA	3442	CB	LEU	261	89.358	69.723	80.849	1.00	0.00		C
ATOM	3443	CG	LEU	261	88.856	68.354	80.325	1.00	0.00		Ċ
MOTA	3444	CD1	LEU	261	89.165	67.203	81.298	1.00	0.00		Č
ATOM	3445	CD2	LEU	261	87.340	68.412	80.075	1.00	0.00		Ċ
MOTA	3446	H	LEU	261	90.292	71.922	81.746	1.00	0.00		н
ATOM	3447	HA	LEU	261	91.277	69.171	81.692	1.00	0.00		H
ATOM	3448	1HB	LEU	261	88.869	69.924	81.824	1.00	0.00		H
MOTA	3449	2HB	LEU	261	88.967	70.510	80.178	1.00	0.00		н
ATOM	3450	HG	LEU	261	89.350	68.138	79.355	1.00	0.00		н
MOTA	3451	2HD1		261	90.254	67.069	81.437	1.00	0.00		H
ATOM		3HD1		261	88.721	67.367	82.298		. 0.00-		H
	. 3453				88.781	66.236	80.922	1.00	0.00		H
ATOM		2HD2		261	86.774	68.623	81.001	1.00	0.00		Ħ
ATOM		3HD2		261	87.082	69.198	79.340	1.00			H
MOTA		1HD2		261	86.959	67.459	79.664	1.00	0.00		
ATOM	3457	N	ARG	262	91.731	70.679	78.720		0.00		H
ATOM	3458	CA	ARG	262	92.648	70.647	77.542	1.00	0.00		N
MOTA	3459	C	ARG	262	94.188			1.00	0.00		C
ATOM	3460	ō	ARG	262	94.905	70.612 69.763	77.880	1.00	0.00		C
ATOM	3461		ARG	262	92.340		77.348	1.00	0.00		0
ATOM	3462		ARG	262		71.831	76.577	1.00	0.00		C
ATOM	3463		ARG		90.899	72.128	76.094	1.00	0.00		C
ATOM	3464		ARG	262	90.194	70.966	75.385	1.00	0.00		C
ATOM				262	88.899	71.458	74.845	1.00	0.00		Ŋ
	3465		ARG	262	88.061	70.748	74.099	1.00	0.00		C
MOTA	3466	NH1		262	88.245	69.501	73.778	1.00	0.00		N
ATOM	3467	NH2		262	87.005	71 007	70.552	1.00	00,00		И
2007	3458		ARG	262	88.631	72.428.	75 067	1.00	0.00		¥
ATOM	3460		AFIG.	262	91.153	71.197	30 9EZ	1.05	6.66		£
5 11 27 2	5275		arū	377	71.449	12.711	T# 3-	15	• : `		
AITT			<u>-::</u>	12	: 127	- :		:			
		===]. <u>.</u>		• • •						

ATOM	3482	CA	ILE	263	96.162	71.638	79.087	0.00	0.00	C
ATOM	3483	С	ILE	263	96.852	70.322	79.595	0.00	0.00	С
ATOM	3484	0	ILE	263	97.919	69.961	79.089	0.00	0.00	0
MOTA	3485	CB	ILE	263	96.358	72.915	79.998	0.00	0.00	C
ATOM	3486	CG2		263	97.713	72.981	80.760	0.00	0.00	C
ATOM	3487	CGI		263	96.180	74.229	79.176	0.00	0.00	C
ATOM	3488	CDI		263	96.033	75.524	79.988	0.00	0.00	С
ATOM	3489	H	ILE	263	93.987	72.147	79.138	0.00	0.00	H
ATOM	3490	HA	ILE	263	96.703	71.848	78.143	0.00	0.00	H
ATOM	3491	HB	ILE	263	95.570	72.886	80.779	0.00	0.00	H
ATOM		1HG2		263	97.758	73.841	81.453	0.00	0.00	H
ATOM		2HG2		263	97.888	72.090	81.391	0.00	0.00	H
ATOM		3HG2		263	98.576	73.073	80.078	0.00	0.00	H
ATOM		1HG1		263	,95.276	74.150	78.541	0.00	0.00	H
ATOM		2HG1		263	97.018	74.342	78.460	0.00	0.00	H
		1HD1		263	95.825	76.385	79.327	0.00	0.00	H
ATOM		2HD1		263	95.201	75.466	80.716	0.00	0.00	H
ATOM		3HD1		263	96.952	75.777	80.549	0.00	0.00	H
ATOM		N	LYS	264	96.248	69.602	80.554	1.00	0.00	N
MOTA	3500		LYS	264	96.726	68.247	80.970	1.00	0.00	C
ATOM	3501	CA		264	96.706	67.106	79.876	1.00	0.00	C
ATOM	3502	C	LYS		97.548	66.207	79.928	1.00	0.00	0
ATOM	3503	0	LYS	264	95.936	67.915	82.266	1.00	0.00	С
MOTA	3504	CB	LYS	264	96.507	66.746	83.102	1.00	0.00	С
ATOM	3505	CG	LYS	264		66.668	84.497	1.00	0.00	C
MOTA	3506	CD	LYS	264	95.859	65.540	85.352	1.00	0.00	C
ATOM	3507	CE	LYS	264	96.455 95.990	65.686	86.747	1.00	0.00	N
ATOM	3508	NZ	LYS	264		64.930	87.323	1.00	0.00	H
MOTA	3509		LYS	264	96.389	66.597	87.118	1.00	0.00	Н
ATOM	3510		LYS	264	96.296		86775	1.00	0.00	. н
ATOM	3511		LYS	264	94.962		80.830	1.00	0.00	н
MOTA	3512	H	LYS	264	95.332 97.791	69.978 68.352	81.256	1.00	0.00	H
MOTA	3513	HA	LYS	264		68.811	82.921	1.00	0.00	н
ATOM	3514		LYS	264	95.915			1.00	0.00	н
ATOM	3515		LYS	264	94.873	67.717	82.021 82.559	1.00	0.00	. н
ATOM	3516		LYS	264	96.375	65.790		1.00	0.00	н
ATOM	3517			. 264	97.603	66.872	83.218	1.00	0.00	H
MOTA	3518		LYS	264	95.990	67.646	85.005	1.00	0.00	H
MOTA	3519		LYS	264	94.763	66.533	84.400	1.00	0.00	н
MOTA	3520		LYS	264	96.164	64.551	84.944	1.00	0.00	н
ATOM	3521		LYS	264	97.564	65.563	85.324	1.00	0.00	N
MOTA	3522	N	LYS	265	95.801	67.156	78.879	1.00	0.00	c
MOTA	3523	CA	LYS	265	95.810	66.235	77.699	1.00	0.00	ā
ATOM	3524	C	LYS	265	96.949	66.440	76.629	1.00	0.00	ō
MOTA	3525	0_	LYS	265	97.292	65.473	75.946	1.00	0.00	č
ATOM	3526	CB	LYS	265	94.419	66.320	77.003	1.00	0.00	č
ATOM	3527	CG	LYS	265	93.209	65.795	77.809 77.056	1.00	0.00	č
ATOM	3528	CD	LYS	265	91.881	66.006			0.00	č
ATOM	3529	CE	LYS	265	90.672	65.560	77.889	1.00	0.00	n
MOTA	3530	NZ	LYS	265	89.430	65.791	77.125	1.00		н
ATOM	3531		LYS	265	88.620	65.492	77.686	1.00	0.00	H
ATOM	3532		LYS	265	89.343	66.794	76.905	1.00	0.00	н
MOTA		3HZ	LYS	265	89.460	65.250	76.249	1.00	0.00	н
MOTA	3534		LYS	265	95.178	67.973	78.921			н
MOTA	3535		LYS	265	95.937	65.197	78.066	1.00	0.00	н
ATOM	3536		LYS	265	94.232	67.367	76.691		0.00	н
ATOM	3537		LYS	265	94.456	65.750	76.053	1.00	0.00	н
MOTA	3538		LYS	265	93.348	64.723	78.049		0.00	H
ATOM	3539		LYS	265	93.160	66.311	78.789	1.00	0.00	н
MOTA	3540		LYS	265	91.772	67.079	76.801	1.00		н
ATOM	3541		LYS	265	91.908	65.464	76.090	1.00	0.00	н
MOTA	3542		LYS	265	90.760	64.492	78.170	1.00	0.00	
MOTA	3543		LYS	265	90.640	66.128	78.842	1.00	0.00	Ä
MOTA	3544		ASN	266	97.497	67.659	76.420	1.00	0.00	и
MOTA	3545		ASN	266	98.622	67.927	75.454	1.00	0.00	c
ATOM	3546		ASN	266	98.354	67.785	73.900	1.00	0.00	
ATOM	3547		asn	266	99.262	68.052	73.108	1.00	0.00	0
MOTA	3548		ASN	266	99.918	67.198	75.952	1.00	0.00	c
MOTA	3549		ASN	266	101.331	67.657	75.554	1.00	0.00	
ATOM	3550		ASN	266	102.317	67.035	75.926	1.00	0.00	0
MOTA	3551		ASN	266	101.533	68.726	74.836	1.00	0.00	N
MOTA	3552		ASN	266	97.146	68.365	77.079	1.00	0.00	н
ATOM	3553		ASN	266	98.819	69.010	75.570	1.00	0.00	H
ATOM	3554	1HB	asn	266	99.928	67.201	77.057	1.00	0.00	H

						110					
MOTA	3555	2HB	asn	266	99.845	66.127	75.691	1.00	0.00		H
MOTA	3556	1HD2	asn	266	102.525	68.892	74.616	1.00	0.00		H
MOTA	3557	2HD2	A:SN	266	100.737	68.989	74.248	1.00	0.00		H
MOTA	3558	N	GLU	267	97.150	67.411	73.431	1.00	0.00		N
МОТА	3559	CĀ	<u>दा</u> गा	267	96.876	67.153	71.985	1.00	0.00		C
ATOM	3560	C	GLU	267	96.696	68.462	71.129	1.00	0.00		C
MOTA	3561	0	GLU	267	95.588	68.985	70.971	1.00	0.00		0
ATOM	3562	CB	GLU	267	95.662	66.183	71.946	1.00	0.00		С
ATOM	3563	CG	GLU	267	95.357	65.583	70.549	1.00	0.00		C
ATOM	3564	CD	GLU	267	94.191	64.600	70.541	1.00	0.00		C
ATOM	3565	OE1	GLU	267	94.308	63.397	70.740	1.00	0.00		0
ATOM	3566		GLU	267	93.002	65.207	70.284	1.00	0.00		0
ATOM	3567	H	GLU	267	96.511	67.122	74.178	1.00	0.00		H
ATOM	3568	HA	GLU	267	97.734	66.589	71.560	1.00	0.00		н
ATOM	3569		GLU	267	95.833	65.341	72.650	1.00	0.00		H
ATOM	3570		GLU	267	94.761	66.704	72.329	1.00	0.00		H
ATOM	3571		GLU	267	95.145	66.387	69.818	1.00	0.00		H
MOTA	3572		GLU	267	96.246	65.055	70.155	1.00	0.00		H
ATOM	3573	N	TYR	268	97.801	68.977	70.566	1.00	0.00		N
MOTA	3574	CA	TYR	268	97.809	70.263	69.810	1.00	0.00		Ċ
MOTA	3575	C	TYR	268	97.716	70.049	68.260	1.00	0.00		c
MOTA	3576	o	TYR	268	98.681	69.627	67.613	1.00	0.00		Õ
ATOM	3577	CB	TYR	268	99.087	71.069	70.197	1.00	0.00		Ċ
ATOM	3578	CG	TYR	268	99.105	71.681	71.610	1.00	0.00		Č
ATOM	3579		TYR	268	99.934	71.160	72.610	1.00	0.00		č
ATOM	3580		TYR	268	98.293	72.781	71.901	1.00	0.00		č
ATOM	3581		TYR	268	99.936	71.723	73.886	1.00	0.00		č
ATOM	3582		TYR	268	98.311	73.348	73.172	1.00	0.00		ä
ATOM	3583	CZ	TYR	268	99.135	72.824	74.159	1.00	0.00		Č
ATOM	3584	OH	TYR	268			75.404				<u> </u>
ATOM		- <u>H</u> -	TYR	268	98.686		70.662	1:00	0.00		Ή.
ATOM	3586	HA	TYR	268	96.943	70.887	70.118	1.00	0.00		н
ATOM	3587		TYR	268	99.988	70.447	70.028	1.00	0.00		н
ATOM	3588		TYR	268	99.218	71.902	69.480	1.00	0.00		н
ATOM	3589		TYR	268	100.574	70.315	72.401	1.00	0.00		н
MOTA	3590		TYR	268	97.630	73.189	71.151	1.00	0.00		H
ATOM	3591		TYR	268	100.564	71.324	74.667	1.00	0.00		н
ATOM	3592	HE2	TYR	268	97.647	74.166	73.408	1.00	0.00		н
MOTA	3593	HH	TYR	268	98.543	74.141	75.387	1.00	0.00		H
ATOM	3594	N	SER	269	96.568	70.395	67.653	1.00	0.00		N
ATOM	3595	CA	SER	269	96.405	70.397	66.171	1.00	0.00	•	· c
ATOM	3596	c	SER	269	96.971	71.702	65.513	1.00	0.00		č
ATOM	3597	ō	SER	269	96.390	72.782	65.646	1.00	0.00		ō
ATOM	3598	CB	SER	269	94.904	70.187	65.869	1.00	0.00		<u>c</u>
ATOM	3599	OG		269_			64.462				·· ··· ō
ATOM	3600	H	SER	269	95.820	70.687	68.289	1.00	0.00		H
ATOM	3601	HA	SER	269	96.930	69.519	65.741	1.00	0.00		H
ATOM	3602		SER	269	94.538	69.257	66.349	1.00	0.00		H
ATOM	3603		SER	269	94.294	71.008	66.298	1.00	0.00		н
ATOM	3604	HG	SER	269	94.931	70.946	64.075	1.00	0.00		H
ATOM	3605	N	ILE	270	98.101	71.600	64.796	1.00	0.00		N
ATOM	3606	CA	ILE	270	98.790	72.785	64.192	1.00	0.00		Ċ
ATOM	3607	c	ILE	270	98.061	73.392	62.921	1.00	0.00		Ċ
ATOM	3608	ō	ILE	270	97.670	72.619	62.038	1.00	0.00		ō
ATOM	3609	CB	ILE	270	100.313	72.516	63.902	1.00	0.00		Č
ATOM	3610	CG1		270	100.607	71.347	62.913	1.00	0.00		č
MOTA	3611	CG2		270	101.142	72.357	65.205	1.00	0.00		č
ATOM	3612	CD1		270	101.972	71.429	62.207	1.00	0.00		č
MOTA	3613	H	ILE	270	98.550	70.660	64.833	1.00	0.00		Ξ
2. <u>1.</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3623	1	TILE	ن زند ن زند	98.791	73.563	64.976	1.00	0.00		H
MON	3615	HB.	ILE	270	100.693	701441	63.419	1.00	0.00		12
LTOM	3613 3613		- - -	276	100.013	·0.270	521117	00	1.11		H
	7.53.			5-7	72,534		77.12				
									. -		
				•		-	• •				
-			<u>:</u> :				-				
						-	-				
				-							
	•										
			•								

					00 637	75 076	60.365	0.00	0.00	
MOTA	3628		PRO	271	99.637	75.076	61.795	0.00	0.00	
MOTA	3629		PRO	271	97.285	76.826		0.00	0.00	
ATOM	3630	CG	PRO	271	97.187	76.890	63.320			
ATOM	3631	HA	PRO	271	96.457	74.900	61.214	0.00	0.00	
MOTA	3632	1HD	PRO	271	99.104	76.028	63.948	0.00	0.00	
ATOM	3633	2HD	PRO	271	97.663	75.374	64.789	0.00	0.00	
ATOM	3634	1HB	PRO	271	96.401	77.273	61.302	0.00	0.00	
ATOM	3635		PRO	271	98.155	77.425	61.460	0.00	0.00	
MOTA	3636		PRO	271	96.138	76.747	63.647	0.00	0.00	
ATOM	3637		PRO	271	97.527	77.855	63.736	0.00	0.00	
	3638	N	LYS	272	97.848	75.012	59.012	1.00	0.00	
ATOM		CA	LYS	272	98.620	74.638	57.781	1.00	0.00	
ATOM	3639		LYS	272	99.753	75.604	57.258	1.00	0.00	
MOTA	3640	C			100.562	75.181	56.429	1.00	0.00	
MOTA	3641	0	LYS	272		74.311	56.660	1.00	0.00	
MOTA	3642	CB	LYS	272	97.590	73.042	56.890	1.00	0.00	
ATOM	3643	CG	LYS	272	96.728		55.741	1.00	0.00	
MOTA	3644	CD	LYS	272	95.734	72.788		1.00		
MOTA	3645	CE	LYS	272	94.875	71.542	55.996	1.00	0.00	
MOTA	3646	NZ	LYS	272	93.936	71.353	54.873		0.00	
MOTA	3647	1HZ	LYS	272	93.359	70.516	55.044	1.00		
ATOM	3648	2HZ	LYS	272	93.326	72.179	54.792	1.00	0.00	
ATOM	3649	3HZ	LYS	272	94.465	71.231	53.998	1.00	0.00	
ATOM	3650	H	LYS	272	96.826	74.945	59.037	1.00	0.00	
ATOM	3651	HA	LYS	272	99.166	73.697	58.001	1.00	0.00	
ATOM	3652		LYS	272	96.940	75.189	56.482	1.00	0.00	
ATOM	3653		LYS	272	98.135	74.172	55.706	1.00	0.00	
ATOM	3654		LYS	272	97.390	72.162	57.013	1.00	0.00	
ATOM	3655		LYS	272	96.173	73.124	57.844	1.00	0.00	
	3656		LYS	272	95.079	73.673	55.612	1.00	0.00	
ATOM			LYS	272	96.288	72.683	54.786	1.00	0.00	
ATOM	3657			272	95.515	70.644	56.117	1.00	0.00	•
ATOM	3658		LYS		94.310	71.646	56.944	1.00	0.00	
ATOM	3659		LYS	272		76.859	57.732	0.00	0.00	
ATOM	3660	N	HIS	273	99.852		57.532	0.00	0.00	
ATOM	3661	CA	HIS	273	101.068	77.716		0.00	0.00	
ATOM	3662	С	HIS	273	102.303	77.505	58.495		0.00	
MOTA	3663	0	HIS	273	103.356	78.106	58.261	0.00		
MOTA	3664	CB	HIS	273	100.609	79.199	57.426	0.00	0.00	
ATOM	3665	CG	HIS	273	100.004	79.854	58.670	0.00	0.00	
ATOM	3666	ND1	HIS	273	100.759	80.491	59.641	0.00	0.00	
MOTA	3667	.CE1	HIS	273	99.745	80.966	60.435	0.00	0.00	
ATOM	3668	NE2	HIS	273	98.441	80.711	60.103	0.00	0.00	
ATOM	3669		HIS	273	98.631	79.995	58.934	0.00	0.00	
ATOM	3670	H	HIS	273	99.200	77.027	58.504	0.00	0.00	
ATOM	3671	HA	HIS	273	101.491	77.482	56.535	0.00	0.00	
		1HB	HIS	273	99.904	79.300	56.580	0.00	0.00	
MOTA		2HB	HIS	273	101.478	79.808	57.111	0.00	0.00	
ATOM			HIS	273	99.988	81.567	61.300	0.00	0.00	
ATOM	3674				97.590	81.135	60.489	0.00	0.00	
ATOM	3675		HIS	273	97.843	79.641	58.283	0.00	0.00	
MOTA	3676		HIS	273		76.650	59.534	1.00	0.00	
ATOM	3677		ILE	274	102.221		60.408	1.00	0.00	
MOTA	3678		ILE	274	103.380	76.285	59.646	1.00	0.00	
ATOM	3679		ILE	274	104.287	75.247	59.306	1.00	0.00	
MOTA	3680		ILE	274	103.846	74.144			0.00	
MOTA	3681		ILE	274	102.859	75.786	61.818	1.00		
ATOM	3682	CG1	. ILE	274	102.352	76.893	62.794	1.00	0.00	
MOTA	3683	CG2	ILE	274	103.914	74.996	62.640	1.00	0.00	
ATOM	3684	CD1	. ILE	274	101.144	77.724	62.340	1.00	0.00	
ATOM	3685	H	ILE	274	101.319	76.162	59.609	1.00	0.00	
MOTA	3686		ILE	274	103.981	77.196	60.601	1.00	0.00	
ATOM	3687		ILE	274	102.021	75.081	61.635	1.00	0.00	
ATOM	3688	1HG1		274	102.069	76.430	63.760	1.00	0.00	
ATOM	3680	2HG1	TIP	274	103.185	77.575	63.045	1.00	0.00	
		2HG2		274	104.283	74.114	62.088	1.00	0.00	
MOTA	. 2020	3HG2	TT.P	274	104.802	75.606	62.892	1.00	0.00	
MOTA		1HG2		274	103.506		63.590	1.00	0.00	
MOTA					101.395		61.491	1.00	0.00	
ATOM		2HD1		274	100.312		62.015	1.00	0.00	
MOTA		3HD1		274			63.149	1.00	0.00	
MOTA		1HD1		274	100.765		59.420	1.00	0.00	
MOTA	3696		ASN	275	105.570			1.00	0.00	
MOTA	3697		ASN	275	106.556		58.827	1.00	0.00	
MOTA	3698		ASN	275	107.024		59.801		0.00	
MOTA	3699	0	ASN		106.988		61.018	1.00		
MOTA	3700	CB	ASN	275	107.707	75.475	58.199	1.00	0.00	

MOTA	3701	CG	ASN	275	108.908	75.847	59.075	1.00	0.00		C
MOTA	3702		asn	275	109.770	75.027	59.362	1.00	0.00		. 0
ATOM	3703		ASN	275	109.051	77.070	59.501	1.00	0.00		N
ATOM	3704	H	ASN	275	105.796	76.553	59.657	1.00	0.00		H
ATOM	3705	HA	ASN	275	T00.038	74.137	57.980	1.00	0.00		H
MOTA	3706		ASN	275	108.130	74.902	57.357	1.00	0.00		H
MOTA	3707		ASN	275	107.304	76.377	57.702	1.00	0.00		H
ATOM		1HD2		275	109.868	77.196	60.104	1.00	0.00		H
MOTA MOTA		2HD2		275 276	108.261	77.716	59.370	1.00	0.00		H
ATOM	3710 3711	N CA	PRO PRO	276 276	107.529	72.281	59.351	1.00	0.00		N C
ATOM	3712	C.	PRO	276	108.012 109.169	71.204 71.505	60.272 61.293	1.00	0.00		c
ATOM	3713	o	PRO	276	109.175	70.916	62.375	1.00	0.00		0
ATOM	3714	CB	PRO	276	108.317	70.048	59.295	1.00	0.00		Č
ATOM	3715	CG	PRO	276	108.521	70.705	57.929	1.00	0.00		Č
ATOM	3716	CD	PRO	276	107.552	71.883	57.930	1.00	0.00		č
MOTA	3717	HA	PRO	276	107.154	70.888	60.894	1.00	0.00		H
MOTA	3718		PRO	276	109.183	69.429	59.600	1.00	0.00		H
MOTA	3719	2HB	PRO	276	107.450	69.360	59.253	1.00	0.00		H
ATOM	3720	1HG	PRO	276	109.564	71.066	57.829	1.00	0.00		H
ATOM	3721	2HG	PRO	276	108.334	70.011	57.088	1.00	0.00		H
ATOM	3722	1HD	PRO	276	107.894	72.676	57.242	1.00	0.00		H
ATOM	3723	2HD	PRO	276	106.538	71.571	57.604	1.00	0.00		H
ATOM	3724	N	VAL	277	110.109	72.418	60.991	1.00	0.00		N
ATOM	3725	CA	VAL	277	111.112	72.927	61.992	1.00	0.00		C
ATOM	3726	C	VAL	277	110.471	73.844	63.108	1.00	0.00		C
ATOM	3727	0	VAL	277	110.775	73.669	64.292	1.00	0.00		0
ATOM	3728	CB	VAL	277	112.343	73.601	61.275	1.00	0.00		c
ATOM	3729		VAL	277	113.500	73.923	62.250	1.00	0.00		<u>c</u>
ATOM ATOM	3730 3731	H'	VAL.	277 277	112.986- 109.923	-72.778- 72.910	-60-130 60.110	1.00	0.00	·.	C H
ATOM	3732	HA	VAL	277	111.515	72.046	62.533	1.00	0.00		H
ATOM	3733	нв	VAL	277	111.989	74.556	60.836	1.00	0.00		н
ATOM		1HG1		277	113.946	73.012	62.689	1.00	0.00		н
ATOM		2HG1		277	114.317	74.489	61.763	1.00	0.00		H
ATOM		3HG1		277	113.158	74.543	63.096		0.00		H
MOTA	3737	2HG2	VAL	277	112.267	72.588	59.312	1.00	0.00		· H
MOTA	3738	3HG2	VAL	277	113.844	73.303	59.667	1.00	0.00		H
MOTA	3739	1HG2	VAL	277	113.347	71.793	60.477	1.00	0.00		H
ATOM	3740	N	ALA	278	109.573	74.787	62.751	1.00	0.00		N
ATOM	3741	CA	ALA	278 .	108.679	75.464	63.733	1.00	0.00		C
ATOM	3742	C	ALA	278	107.712	74.540	64.557	1.00	0.00		C
ATOM	3743	0	ALA	278	107.630	74.703	65.775	1.00	0.00		0
ATOM	3744	CB	ALA	278	107.921	76.556	62.955	1.00	0.00		C .
ATOM	3745.		ALA.		109-:333-	74.7/38		1.00	0.00		H
ATOM ATOM	3746	HA	ALA	278	109.320	75.978	64.478	1.00	0.00		H
ATOM	3747 3748		ALA ALA	278 278	108.606 107.273	77.275	62.472	1.00	0.00		H H
ATOM		1HB	ALA	278	107.267	76.132 77.145	62.163 63.624	1.00 1.00	0.00		H
ATOM	3750	N	ALA	279	107.026	73.560	63.934	1.00	0.00		N
ATOM	3751	CA	ALA	279	106.300	72.479	64.659	1.00	0.00		č
ATOM	3752	C.	ALA	279	107.139	71.631	65.676	1.00	0.00		č
MOTA	3753	ō	ALA	279	106.714	71.487	66.822	1.00	0.00		ō
ATOM	3754	CB	ALA	279	105.640	71.588	63.591	1.00	0.00		č
MOTA	3755	н	ALA	279	107.144	73.548	62.910	1.00	0.00		н
MOTA	3756	HA	ALA	279	105.486	72.953	65.245	1.00	0.00		H
MOTA	3757	2HB	ALA	279	105.033	72.162	62.868	1.00	0.00		H
MOTA	3758	знв	ALA	279	106.390	71.021	63.011	1.00	0.00		H
ATOM	3759		ALA	279	104.968	70.841	84 UZ3	1 00	9.20		π
IIICII	3750		>ĒK	280	108.335	71.141	65.295	1.00	0.00		M
s LOL	3761		Ser	280	EIE. 201	70.528	66.216	1.00	0.00		C
<u> 27 25</u> 7	2.7.52		JII.	160	103.777	TETTE		1.10	2.00		€.
-TI::		٠		• • •		7:-7:	_ 19 2		-:		
	-	=		::		· . · ·					

						113				
ATOM	3774	0	LEU	281	109.153	74.008	70.512	0.00	0.00	
MOTA	3775	CB	LEU	281	110.916 111.466	74.971 76.022	67.767 68.769	0.00	0.00	
ATOM	3776	CG CD1	LEU	281 281	112.724	75.538	69.510	0.00	0.00	
ATOM ATOM	3777 3778		PEA	281	111.794	77.333	68.038	0.00	0.00	
ATOM	3779	H ·	LEU	281	110.044	73.008	66.280	Û.ÛÛ	0.00	
ATOM	3780	HA	LEU	281	111.034	73.249	69.067	0.00	0.00	
MOTA	3781		LEU	281	110.155	75.447	67.118	0.00	0.00	
MOTA		2HB	TEA	281	111.735 110.686	74.695 76.238	67.073 69.526	0.00	0.00	
MOTA	3783 3784	HG 1HD1	LEU	281 281	113.118	76.305	70.202	0.00	0.00	
MOTA MOTA		2HD1		281	112.523	74.639	70.123	0.00	0.00	
ATOM		3HD1		281	113.541	75.285	68.812	0.00	0.00	
MOTA		1HD2		281	112.150	78.116	68.736	0.00	0.00	
MOTA		2HD2		281	112.581	77.195 77.749	67.273 67.522	0.00	0.00	
MOTA	3789	3HD2 N	IFE	281 282	110.909 107.811	74.141	68.710	1.00	0.00	
ATOM ATOM	3790 3791	CA	ILE	282	106.519	74.183	69.481	1.00	0.00	
ATOM	3792	C	ILE	282	106.240	72.868	70.311	1.00	0.00	
ATOM	3793	0	ILE	282	105.937	72.968	71.499	1.00	0.00	
MOTA	3794	CB	ILE	282	105.333	74.624	68.532 67.944	1.00 1.00	0.00 0.00	
MOTA	3795		ILE	282	105.508 103.939	76.060 74.566	69.215	1.00	0.00	
MOTA	3796 3797		ILE	282 282	104.640	76.398	66.716	1.00	0.00	
MOTA MOTA	3798	Н	ILE	282	107.829	74.102	67.681	1.00	0.00	
ATOM	3799	HA	ILE	282	106.618	74.980	70.244	1.00	0.00	
MOTA	3800	HB	IFB	282	105.319	73.908	67.686	1.00	0.00 0.00	
MOTA		1HG1	ILE	282	105.354 106.559	76.820 76.201	68.735 67.631	1.00		
MOTA		2HG1 2HG2		282 282	103.703	73.553	69.590	1.00	0.00	
MOTA MOTA				282	103.874	75.257	70.076	1.00	0.00	
ATOM		1HG2		282	103.116	74.826	68.525	1.00	0.00	
MOTA		2HD1		282	104.804	75.679	65.892	1.00	0.00	
ATOM		3HD1		282	103.559	76.401 77.403	66.950 66.322	1.00 1.00	0.00	
MOTA		1HD1	GFN IPE	282 283	104.881 106.365	71.662	69.727	1.00	0.00	•
MOTA MOTA	3809 3810	N CA	GIM	283	106.324	70.366	70.478	1.00	0.00	
ATOM	3811	C	GLN	283	107.407	70.164	71.602	1.00	0.00	
ATOM	3812	0	GLN	283	107.077	69.647	72.669	1.00	0.00	
MOTA	3813	CB	GLN	283	106.371	69.207	69.441	1.00	0.00	
ATOM	3814		GLN	283	105.123	69.066 67.998	68.524 67.437	1.00	0.00	
ATOM ATOM	3815 3816		GLN	283 283	105.203	68.208	66.378	1.00	0.00	
MOTA	3817			283	104.736	66.821	67.648	1.00	0.00	
ATOM	3818		GLN	283	106.619	71.701	68.728	1.00	0.00	
MOTA	3819		GLN	283	105.351	70.309	71.006	1.00 1.00	0.00	
ATOM	3820		GLN	283	107.284 106.509	69.312 68.248	68.820 69.979	1.00	0.00	
ATOM	3821	1HG	GFN GFN	283 283	104.215	68.892	69.130	1.00	0.00	
ATOM ATOM		2HG	GLN	283	104.931	70.020	68.000	1.00	0.00	
ATOM		1HE2		283	104.316	66.660	68.566	1.00	0.00	
ATOM	3825		GLN	283	104.911	66.152	66.894	1.00	0.00	
MOTA	3826		LYS	284	108.670 109.702	70.582 70.663	71.395 ·72.477	1.00	0.00	
MOTA	3827 3828		LYS LYS	284 284	109.702	71.603	73.689	1.00	0.00	
MOTA MOTA	3829		LYS	284	109.483	71.189	74.843	1.00	0.00	
ATOM	3830		LYS	284	111.052	71.077	71.820	1.00	0.00	
MOTA	3831		LYS	284	111.752	69.995	70.965	1.00 1.00	0.00	
ATOM	3832		LYS	284	112.939	70.569 69.518	70.164 69.246	1.00	0.00	
MOTA	3833		LYS	284 284	113.574 114.669		68.468	1.00	0.00	
MOTA MOTA	3834 3835	1HZ	LYS	284	115.093		67.853	1.00	0.00	•
ATOM		2HZ	LYS	284	114.295		67.895	1:00	0.00	
ATOM		3HZ	LYS	284	115.385	70.498	69.111	1.00	0.00	
ATOM	3838		LYS	284	108.845	70.927	70.442 72.914	1.00 1.00	0.00	
MOTA	3839		LYS	284 284	109.825 110.891		72.914	1.00	0.00	
MOTA MOTA		1HB	LYS	284	111.762		72.606	1.00	0.00	
ATOM		1HG	LYS	284	112.088		71.612	1.00	0.00	
ATOM		2HG	LYS	284	111.023		70.266	1.00	0.00	
MOTA		1HD	LYS	284	112.585		69.555		0.00	
MOTA		2HD	LYS	284	113.695 113.956		70.860 69.840		0.00	
MOTA	3846	1HB	LYS	284	*********	-5.003	55.040	2.00		

A Committee of the comm

ATOM		7 2HE	LYS	284	112.813	69.091	68.562	1.00	0.00		H
MOTA	3848	3 N	MET	285	108.903	72.845	73.438	1.00	0.00		N
ATOM	3849		MET	285	108.343	73.747	74.490	1.00	0.00		С
MOTA	3850		MET	_	107.007	73.268	75.172	1.00	0.00		C
MOTA	3853		MET		106.880	73.356	76.396	1.00	0.00		0
ATOM	3852		MET		108.192	75.163	73.863	1.00	0.00		C
ATOM	3853		MET		109.509	75.909	73.553	1.00	0.00		C
ATOM	3854		MET		109.147	77.567	72.955	1.00	0.00		S
ATOM	3855		MET		110.808	78.115	72.529	1.00	0.00		C
ATOM	3856		MET	-	108.820	73.061	72.436	1.00	0.00		H
MOTA	3857		MET		109.080	73.822	75.315	1.00	0.00		H
MOTA	3858		MET		107.573	75.105	72.945	1.00	0.00		H
MOTA		2HB	MET		107.603	75.796	74.550	1.00	0.00		H
MOTA	3860		MET		110.149	75.976	74.452	1.00	0.00		H
MOTA MOTA	3861	2HG	MET	285	110.091	75.364	72.785	1.00	0.00		H
ATOM			MET	285	111.438	78.200	73.430	1.00	0.00		H
ATOM	3863 3864		MET	285	111.288	77.407	71.829	1.00	0.00		H
ATOM	3865		MET	285	110.774	79.105	72.043	1.00	0.00		H
ATOM	3866		Leu Leu	286 286	106.023	72.769	74.403	0.00	0.00		N
ATOM	3867		LEU	286	104.734	72.249	74.938	0.00	0.00		C
ATOM	3868		LEU	286	104.765	70.689	75.136	0.00	0.00		C ·
ATOM	3869		LEU	286	104.191	69.933	74.344	0.00	0.00		0
ATOM	3870		LEU	286	103.593 103.350	72.713	73.979 73.781	0.00	0.00		C
ATOM	3871		. LEU	286	103.330	74.234 74.488		0.00	0.00		C
ATOM	3872		LEU	286	102.828	74.911	72.647 75.053	0.00	0.00		C
ATOM	3873		LEU	286	106.248	72.721	73.399	0.00	0.00		C
ATOM	3874		LEU	286	104.520	72.696	75.927	0.00	0.00		H H
ATOM	3875		LEU	286	102.649	72.257	74.326	0.00	0.00		H
ATOM		_2HB	LEU-				72.989	0.00	0.00		H
MOTA	3877	HG		286	104.310	74.702	73.489	0.00	0.00		" H
MOTA	3878	1HD1	LEU	286	102.251	75.564	72.415	0.00	0.00		H
MOTA	3879	2HD1	LEU	286	102.649	73.981	71.715	0.00	0.00		н
ATOM	3880	3HD1	LEU	286	101.334	74.117	72.893	0.00	0.00		H
ATOM	3881	1HD2	LEU	286	102.662	75.994	74.907	0.00	0.00		H
ATOM	3882	2HD2	LEU	286	101.871	74.475	75.399	0.00	0.00		H
ATOM	3883	3HD2	LEU	286	103.544	74.819	75.886	0.00	0.00	-	Ħ
ATOM	3884	N	GLN	287	105.413	70.203	76.211	0.00	0.00		N
ATOM	3885	CA	GLN	287	105.589	68.743	76.475	0.00	0.00		C
ATOM	3886	С	GLN	287	105.173	68.375	77.939	0.00	0.00		C
ATOM	3887		- GLN	287	105.882	68.685	78.895	0.00	0.00		0
ATOM	3888	CB	GLN	287	107.068	68.397	76.131	0.00	0.00		C
ATOM	3889	CG	GLN	287	107.540	66.935	76.360	0.00	0.00		C
ATOM	3890	CD	GLN	287	106.894	65.837	75.513	`0 · 0`0 [_]	_0.00		C:
ATOM	3891				107.388	65.437	74.467	0.00	0.00		0
ATOM	3892 3893	H H	GLN GLN	287	105.791	65.276	75.937	0.00	0.00		N
ATOM	3894	HA	GLN	287	105.978	70.908	76.702	0.00	0.00		H
ATOM		1HB	GLN	287 287	104.957	68.147	75.785	0.00	0.00		H
ATOM	3896		GLN	287	107.737 107.271	69.060	76.715	0.00	0.00		H
ATOM	3897		GLN	287	107.477	68.671	75.076	0.00	0.00		H
ATOM	3898		GLN	287	108.623	66.675 66.896	77.433	0.00	0.00		H
ATOM	3899			287	105.310	65.754	76.145 76.700	0.00	0.00		H
ATOM	3900			287	105.323	64.634	75.247	0.00	0.00		H
ATOM	3901	N	THR	288	104.048	67.664	78.139	1.00	0.00		H N
ATOM	3902	CA	THR	288	103.543	67.291	79.511	1.00	0.00		C
ATOM	3903	C	THR	288	104.436	66.358	80.418	1.00	0.00		C
ATOM	3904	ō	THR	288	104.234	66.308	81.634	1.00	0.00		Ö
ATOM	3905	CB	THR	288	102.058	85.827	70.200	1.00	ŭ.Jŭ		č
≟.ı Öra	3905	CGI	THR	268	101.424	56.260		1.00	0.00		ō
a to h	3907	CGII	THE	208	101.822.	65.103	78.815	1.00	0.00		÷
7777	3525	Æ	THE.	16.6.	101.175	77	77.200	2.13			
77.	700	T.F.	≅		::::	-3.21 3	تاوادو	:			
	- : - :	=		: :	11.515		-				
		-			-						

		•				112				
ATOM	3920	CG	ASP	289	105.899	62.579	79.992	0.00	0.00	
MOTA	3921	OD1		289	105.743	61.857	80.970	0.00	0.00	
ATOM	3922	OD2		289	105.173	62.469	78.848	0.00	0.00	
ATOM	3923	H	ASP	289 .	105.566	65.931 64.747	78.873 81.643	0.00	0.00	
MOTA	3924	HA	ASP	289	106.183 107.856	63.302	80.382	0.00	0.00	
ATOM	3925	2HB	ASP ASP	. 289 289	107.206	63.884	78.866	0.00	0.00	
ATOM	3926 3927	N N	PRO	290	108.009	66.769	81.862	1.00	0.00	
ATOM ATOM	3928	CA	PRO	290	109.137	67.754	81.926	1.00	0.00	
ATOM	3929	c	PRO	290	110.615	67.241	81.787	1.00	0.00	
ATOM	3930	0	PRO	290	111.483	68.016	81.382	1.00	0.00	
MOTA	3931	CB	PRO	290	108.847	68.505	83.240	1.00	0.00	
MOTA	3932	CG	PRO	290	107.998	67.547	84.076	1.00	0.00	
MOTA	3933	CD	PRO	290	107.135	66.813	83.051	1.00	0.00	
MOTA	3934	HA	PRO	290	109.003	68.477 68.838	81.096 83.770	1.00 1.00	0.00	
ATOM	3935		PRO	290	109.761 108.273	69.427	83.016	1.00	0.00	
ATOM	3936		PRO PRO	290 290	108.650	66.830	84.612	1.00	0.00	
ATOM ATOM	3937 3938		PRO	290	107.394	68.066	84.842	1.00	0.00	
ATOM	3939		PRO	290	106.837	65.816	83.426	1.00	0.00	
ATOM	3940		PRO	290	106.212	67.384	82.828	1.00	0.00	
ATOM	3941	N	THR	291	110.902	65.954	82.033	0.00	0.00	
ATOM	3942	CA	THR	291	112.170	65.287	81.572	0.00	0.00	
ATOM	3943	С	THR	291	112.443	65.277	80.021	0.00	0.00 0.00	
MOTA	3944	0	THR	291	113.599	65.396	79.608 82.150	0.00	0.00	
ATOM	3945	CB	THR	291	112.272 111.144	63.838 63.050	81.782	0.00	0.00	
MOTA	3946		THR THR	291 291	112.401	63.745	83.679	0.00	0.00	
ATOM	3947 3948	CG2 H	THR	291	110.076	65.407	82.290	0.00	0.00	
ATOM ATOM	3949	HA	THR	291	113.018	65.861	81.998	0.00	0.00	
ATOM	3950	HB	THR	291	113.182	63.366	81.723	0.00	0.00	
ATOM	3951		THR	291	111.255	62.203	82.220	0.00	0.00	
ATOM	3952	1HG2	THR	291	112.536	62.702	84.020	0.00	0.00	
MOTA	3953	2HG2		291	113.270	64.321	84.048	0.00	0.00	
MOTA	3954			291	111.506	64.145	84.192	0.00	0.00	
MOTA	3955	N	ALA	. 292	111.407	65.155 65.430	79.170 77.707	1.00	0.00	
ATOM	3956	CA	ALA	292	111.517 111.351	66.921	77.217	1.00	0.00	
MOTA	3957		ALA ALA	292 292	111.419	67.163	76.008	1.00	0.00	
MOTA	3958 3959		ALA	292	110.464	64.496	77.075	1.00	0.00	
ATOM ATOM	3960		ALA	292	110.496	65.160	79.642	1.00	0.00	
ATOM	3961		ALA	292	112.511	65.107	77.339	1.00	0.00	
ATOM	3962		ALA	292	110.646	63.432	77.318	1.00	0.00	
ATOM	3963	знв	ALA	292	109.436	64.743	77.400	1.00	0.00	
MOTA	3964		ALA	292	110.472	64.572	75.971	1.00	0.00 0.00	
MOTA	3965		ARG	293	111.155	67.913	78.102 77.730	0.00	0.00	
ATOM	3966		ARG	293	111.035 112.431	69.349 70.079	77.848	0.00	0.00	
MOTA	3967		ARG ARG	293 293	112.874	70.307	78.980	0.00	0.00	
MOTA	3968 3969		ARG	293	109.945	69.948	78.668	0.00	0.00	
MOTA MOTA	3970		ARG	293	109.355	71.322	78.250	0.00	0.00	
ATOM	3971		ARG	293	108.545	72.043	79.350	0.00	0.00	
ATOM	3972		ARG	293	107.377	71.246	79.800	0.00	0.00	
MOTA	3973	cz	ARG	293	106.613	71.500	80.849	0.00	0.00	
MOTA	3974		. ARG	293	106.746	72.531	81.627	0.00	0.00	
MOTA	3975			293	105.679	70.655	81.106	0.00	0.00	
ATOM	3976		ARG	293	107.138 111.190	70.414 67.608	79.242 79.081	0.00	0.00	
ATOM	3977		ARG	293 293	110.638	69.440	76.702	0.00	0.00	
MOTA	3978	HA 1HB	ARG ARG	293	110.346	70.018	79.696	0.00	0.00	
ATOM		2HB	ARG	293	109.087	69.250	78.757	0.00	0.00	
ATOM ATOM		1HG	ARG	293	108.717	71.197	77.352	0.00	0.00	
ATOM		2HG	ARG	293	110.172	71.994	77:921	0.00	0.00	
ATOM		1HD	ARG	293	108.180	73.013	78.961	0.00	0.00	
ATOM	3984	2HD	ARG	293	109.216	72.282	80.197	0.00	0.00	
ATOM		1HH1		293	106.110	72.599	82.417	0.00	0.00	
ATOM		2HH1		293	107.501	73.161	81.338	0.00	0.00 0.00	
ATOM		1HH2		293	105.098	70.793 69.884	81.925	0.00	0.00	
ATOM		2HH2			105.711 113.176	70.471	80.425 76.769		0.00	
MOTA	3989		PRO PRO		114.485	71.175	76.703		0.00	
ATOM ATOM	3990 3991		PRO		114.392	72.639	77.466		0.00	
ATOM	3992		PRO		113.468	73.393	77.152		0.00	
0.1		_								

оосинпнисторостиннинний прососиннинносториннинносториннинносториннинносториннинниннинниннинниннинниннинниннинн

11.

MOTA	3993	CB	PRO	294	115.049	71.081	75.481	1.00	0.00		С
MOTA	3994	CG	PRO	294	113.832	70.955	74.566	1.00	0.00		C
ATOM	3995	CD	PRO	294	112.832	70.136	75.375	1.00	0.00		C
ATOM	3996	HA	PRO	294	115.134	70.581	77.588	1.00	0.00		H
ATOM	3997		PRO	294	115.680	71.944	75.202	1.00	0.00		Ħ
ATOM	3998		PRO	294	115.686	70.180	75.389	1.00	0.00		H
ATOM	3999	1HG	PRO	294	113.411	71.958	74.363	1.00	0.00		H
MOTA	4000		PRO		114.067	70.495	73.588	1.00	0.00		H
ATOM	4001		PRO	294	111.795	70.403	75.105	1.00	0.00		H
ATOM	4002	2HD	PRO	294	112.957	69.050	75.192	1.00	0.00		H
ATOM	4003	N	THR	295	115.339	73.037	78.328	1.00	0.00	•	N
ATOM	4004	CA	THR	295	115.353	74.386	78.981	1.00	0.00		С
ATOM	4005	C	THR	295	116.817	74.695	79.466	1.00	0.00		С
ATOM	4006	0	THR	295	117.387	73.917	80.231	1.00	0.00		0
ATOM	4007	CB	THR	295	114.333	74.468	80.166	1.00	0.00		С
ATOM	4008		THR	295	113.010	74.194	79.725	1.00	0.00		ō
MOTA	4009		THR	295	114.231	75.846	80.832	1.00	0.00		C
MOTA	4010	H	THR	295	116.015	72.303	78.578	1.00	0.00		H
MOTA	4011	HA	THR	295	115.040	75.133	78.232	1.00	0.00		H
MOTA	4012	HB	THR	295	114.610	73.714	80.932	1.00	0.00		H
MOTA	4013	HG1	THR	295	113.092	73.632	78.939	1.00	0.00		H
ATOM	4014	1HG2	THR	295	113.968	76.636	80.108	1.00	0.00		H
ATOM	4015	2HG2	THR	295	113.451	75.851	81.616	1.00	0.00		H
ATOM		3HG2		295	115.181	76.140	81.311	1.00	0.00		н
ATOM	4017	N	ILE	296	117.571	75.760	.79.174	1.00	0.00		N
ATOM	4018	CA	ILE	296	117.200	76.943	78.320	1.00	0.00		Ĉ
		C	ILE						0.00		c
ATOM	4019			296	118.198	77.193	77.130	1.00			
ATOM	4020	0	ILE	296	117.754	77.424	76.002	1.00	0.00		0
ATOM	4021	CB	ILE	296	116.909	78.203	79.219	1.00	0.00		C
ATOM	4022		_ILE_		-116285-			_	0.00		C
MOTA	4023	. CG2		296 ``	118.123	· 78.712		1.00	0.00	•	c
ATOM	4024	CD1	ILE	296	114.886	79.182	77.886	1.00	0.00		C
ATOM	4025	H	ILE	296	118.460	75.689	79.683	1.00	0.00		H
MOTA	4026	HA	ILE	296	116.253	76.730	77.797	1.00	0.00		H
MOTA	4027	HB	ILE	296	116.153	77.880	79.960	1.00	0.00		H
MOTA		1HG1		296	116.200	80.276	79.177	1.00	0.00	-	н
MOTA		2HG1		296	116.970	79.783	77.684	1.00	.0.00		н
MOTA		2HG2									н
				296	118.571	77.916	80.662	1.00	0.00		
ATOM		3HG2		296	118.925	79.109	79.388	1.00	0.00		H
ATOM		1HG2	ILE	296	117.843	79.526	80.735	1.00	0.00		Н.
ATOM		2HD1		296	114.897	78.440	77.066	1.00	0.00		H
ATOM	4034	3HD1	ILE	296	114.170	78.831	78.652	1.00	0.00		H
ATOM	4035	1HD1	ILE	296	114.472	80.115	77.461	1.00	0.00		H
ATOM	4036	N	ASN	297	119.524	77.082	77.342	1.00	0.00		N
ATOM	4037	CA	ASN	297 -	120.539-	76.963	76.244	1.00	0.00		C
ATOM	4038	C	ASN	297	120.318	75.865	75.137	1.00	0.00		C
ATOM	4039	ō	ASN	297	120.720	76.074	73.993	1.00	0.00		ō
ATOM	4040	CB	ASN	297	121.955	76.877	76.885	1.00	0.00		č
ATOM		CG	ASN			75.635					c
	4041			297	122.271		77.728	1.00	0.00		
ATOM	4042	ODI		297	121.591	75.318	78.696	1.00	0.00		0
MOTA	4043	MD3		297	123.300	74.896	77.410	1.00	0.00		N
ATOM	4044	H	ASN	297	119.777	76.885	78.316	1.00	0.00		H
MOTA	4045	AH	ASN	297	120.509	77.926	75.696	1.00	0.00		H
MOTA	4046	1HB	ASN	297	122.710	77.007	76.087	1.00	0.00		H
MOTA	4047	2HB	ASN	297	122.116	77.751	77.540	1.00	0.00		H
MOTA	4048	1HD2	ASN	297	123.467	74.122	78.059	1.00	0.00		H
ATOM		2HD2		297	123.883	75.208	76.631	1.00	0.00		H
ATOM	4050	-	GLU	298	119.665	74.735	75.458	1.00	0.00		M
MOTA	4051		GLIT	298	119.131	73.759	74.458	1 00	0.00		ت
ATOM LICI:			نابتي			74.333			0.00		č
	4052			298	115.095		73.417	1.00			-
т тога : тога	2053		Gra	238	113.222	73.070	72.223	1.00	0.00.		÷
<u> </u>	4024		325	128-	170,500	11.51.5	75.517	2200	. 00		'-
-TIII	7.5 E	JT		* = 5 .	7.2 .	: -: -: -: -: -: -: -: -: -: -: -: -	· . <u></u>		7.7		
***	23										
. . .	-	-	_		•	•					
-• •		· <u>:</u>				-					
	. :				-						
		_	•								
		-									

(

C

0

0

0.00

1.00

73.274 65.704

117.932

303

GLU

MOTA

4138

H

1.00 0.00 75.882 72.942 116.186 LEU 299 CA 4066 MOTA 77.050 72.136 1.00 0.00 116.861 299 С LEU MOTA 4067 0.00 70.965 1.00 299 116.532 77.249 LEU 4068 O MOTA 0.00 73.767 1.00 76.408 114.977 299 CB LEU ATOM 4069 0.00 74.328 1.00 113.984 75.356 299 CG LEU 4070 ATOM 0.00 76.019 75.358 1.00 299 113.061 ATOM 4071 CD1 LEU 1.00 0.00 113.127 73.229 74.708 299 LEU 4072 CD2 ATOM 1.00 0.00 75.335 74.857 117.153 LEU 299 4073 H ATOM 72.171 1.00 0.00 75.187 115.798 299 LEU 4074 HA ATOM 74.594 1.00 0.00 77.032 299 115.370 1HB LEU ATOM 4075 1.00 0.00 73.148 77.123 299 114.398 4076 2HB LEU ATOM 0.00 114.545 74.556 74.851 1.00 LEU 299 4077 HG ATOM 76.425 76.207 1.00 0.00 299 113.638 4078 2HD1 LEU ATOM 0.00 74.931 1.00 76.850 112.472 LEU 299 ATOM 4079 3HD1 1.00 0.00 75.786 112.342 75.295 299 4080 1HD1 LEU ATOM 0.00 112.564 75.457 72.542 1.00 LEU 299 4081 2HD2 ATOM 72.517 1.00 0.00 74.125 4082 3HD2 LEU 299 113.738 ATOM 73.649 1.00 0.00 74.008 299 112.380 4083 1HD2 LEU ATOM 0.00 0.00 72.742 117.800 77.804 300 N LEU ATOM 4084 0.00 78.749 72.003 0.00 118.689 4085 CA LEU 300 ATOM 0.00 0.00 78.094 70.910 LEU 300 119.619 C ATOM 4086 0.00 69.791 0.00 119.696 78.602 300 LEU ATOM 4087 0 0.00 79.548 73.087 0.00 119.475 300 ATOM 4088 CB LEU 0.00 72.617 0.00 80.865 120.146 4089 CG LEU 300 ATOM 81.989 72.419 0.00 0.00 300 119.115 CD1 LEU 4090 MOTA 0.00 0.00 81.327 73.645 300 121.191 LEU ATOM 4091 CD2 73.722 0.00 0.00 117.959 77.545 Н LEU 300 MOTA 4092 0.00 0.00 79.456 71.458 118.035 LEU 300 4093 HA MOTA 0.00 73.511 0.00 78.874 120.243 300 1HB LEU 4094 ATOM 0.00 0.00 79.790 73.950 118.821 LEU 300 MOTA 4095 2HB 0.00 0.00 71.654 120.669 80.685 4096 HG LEU 300 ATOM 0.00 0.00 82.917 72.055 119.592 1HD1 LEU 300 4097 ATOM 0.00 71.675 0.00 81.724 118.343 4098 2HD1 LEU 300 ATOM 82.249 73.357 0.00 0.00 118.589 LEU 300 3HD1 ATOM 4099 0.00 0.00 73.327 121.695 82.259 LEU 300 4100 1HD2 ATOM 0.00 0.00 81.517 74.640 120.746 2HD2 LEU 300 4101 MOTA 0.00 80.573 73.783 0.00 121,988 300 4102 3HD2 LEU MOTA 71.206 1.00 0.00 76.970 120.297 ASN 301 MOTA 4103 N 0.00 70.204 1.00 121.104 76.208 ASN 301 4104 CA ATOM 0.00 1.00 120.227 75.154 69.432 4105 301 MOTA С ASN 0.00 120.271 73.949 69.696 1.00 ASN 301 4106 0 ATOM 1.00 0.00 75.573 70.940 CB ASN 301 122.318 4107 ATOM 0.00 71.451 1.00 76.548 301 123.381 ASN MOTA 4108 CG 1.00 0.00 70.727 77.005 124.255 ASN 301 4109 OD1 ATOM 0.00 76.909 72.706 1.00 123.349 4110 ND2 ASN 301 ATOM 0.00 1.00 76.589 72.137 120,089 ASN 301 4111 Н ATOM 0.00 69.441 1.00 121.521 76.899 ASN 301 ATOM 4112 HA 0.00 1.00 121.973 71.753 74.907 301 MOTA 4113 1HB ASN 0.00 1.00 74.896 70.241 122.841 4114 2HB ASN 301 ATOM 0.00 72.912 1.00 77.663 301 124.007 1HD2 ASN 4115 ATOM 0.00 73.193 1.00 76.659 122.480 ASN 301 2HD2 ATOM 4116 0.00 68.462 1.00 75.633 119.431 302 4117 N ASP ATOM 0.00 74.800 1.00 67.682 118.470 ASP 302 4118 CA ATOM 1.00 0.00 75.124 66.146 118.558 302 C ASP 4119 ATOM 1.00 0.00 76.244 65.746 118.888 ASP 302 MOTA 4120 ٥ 68.304 1.00 0.00 117.068 75.070 ASP 302 ATOM 4121 CB 0.00 67.769 1.00 115.930 74.205 ASP 302 4122 CG ATOM 0.00 66.736 1.00 115.315 74.453 302 4123 OD1 ASP MOTA 1.00 73.122 68.555 0.00 115.684 ASP 302 4124 OD2 ATOM 68.388 1.00 0.00 119.450 76.657 ASP 302 ATOM 4125 Ħ 1.00 0.00 67.810 73.724 118.713 302 4126 HA ASP MOTA 0.00 1.00 74.932 69.403 117.108 4127 ASP 302 1HB ATOM 76.131 68.168 1:00 0.00 116.784 302 4128 2HB ASP MOTA 1.00 0.00 65.272 74.166 GLU 303 118.186 MOTA 4129 N 1.00 0.00 63.789 118.106 74.393 303 4130 CA GLU MOTA 0.00 1.00 75.612 63.272 117.247 GLU 303 ATOM 4131 C 0.00 62.311 1.00 76.272 117.653 0 GLU 303 4132 ATOM 1.00 0.00 63.143 73.037 GLU 303 117.698 CB MOTA 4133 0.00 1.00 61.594 72.950 117.791 4134 CG GLU 303 ATOM 0.00 73.093 61.008 1.00 119.196 4135 œ GLU 303 ATOM 0.00 1.00 60.934 72.174 OEL GLU 303 120.002 4136 ATOM 60.580 1.00 0.00 74.358 119.453 GLU 303 OE2 4137 MOTA

117

ATOM	4139	HA	GLU	303	119.138	74.609	63.453	1.00	0.00			H
ATOM	4140	1HB	GLU	303	118.319	72.218	63.562	1.00	0.00			H
ATOM	4141	2HB	GLU	303	116.662	72.789	63.449	1.00	0.00			H
ATOM	4142	1HG	GLU	303	117.397	71.974	61.259	1.00	0.00			H
ATOM	4143	211G	GLU	303	117.126	73.698	61.122	1.00	0.00			H
ATOM	4144	N	PHE	304	116.123	75.957	63.930	1.00	0.00			N
ATOM	4145	CA	PHE	304	115.408	77.255	63.706	1.00	0.00	•		C
ATOM	4146	C	PHE	304	116.187	78.601	64.004	1.00	0.00			c
ATOM	4147	0	PHE	304	115.678	79.671	63.666	1.00	0.00			ō
ATOM	4148	СВ	PHE	304	114.086	77.155	64.532	1.00	0.00			Č
ATOM	4149	CG	PHE	304	112.952	78.103	64.094	1.00	0.00			c
MOTA	4150		PHE	304	112.209	77.828	62.941	1.00	0.00			c
ATOM	4151		PHE	304	111.199	78.696	62.531	1.00	0.00			c
MOTA	4152	CZ	PHE	304	110.911	79.832	63.280	1.00	0.00			C
ATOM	4153		PHE	304	111.637	80.110	64.436	1.00	0.00			C.
ATOM	4154		PHE	304		79.248						C
ATOM	4155	H	PHE		112.654		64.842	1.00	0.00			
ATOM	4156	HA	PHE	304 304	115.943	75.378	64.761		0.00			H
			PHE		115.142	77.303	62.631	1.00	0.00			H
ATOM	4157			304	113.671	76.131	64.512	1.00	0.00			H
ATOM	4158		PHE	304	114.322	77.303	65.605	1.00	0.00			H
ATOM	4159		PHE	304	112.421	76.945	62.353	1.00	0.00			H
ATOM	4160		PHE	304	110.639	78.489	61.632	1.00	0.00			H
ATOM	4161	HZ	PHE	304	110.124	80.503	62.962	1.00	0.00			H
ATOM	4162		PHE	304	111.414	80.993	65.017	1.00	0.00			H
ATOM	4163	·HD2		304	113.223	79.482	65.731	1.00	0.00			H
ATOM	4164	N	PHE	305	117.381	78.573	64.630	1.00	0.00			N
ATOM	4165	CA	PHE	305	118.152	79.787	65.016	1.00	0.00			C
ATOM	4166	C	PHE	305	119.662	79.644	64.585	1.00	0.00			C
ATOM	4167	0	PHE	305	120.540	79.402	65.413	1.00	0.00			_0_
MOTA	4168		-PHE-	305·· <u>·</u> ··				1.00	0.00			Ċ
ATOM	4169	CG	PHE	305	118.007	81.423	67.096	1.00	0.00		•	C
MOTA	4170		PHE	305	117.364	82.517	66.501	1.00	0.00			С
MOTA	4171		PHE	305	117.504	83.793	67.039	1.00	0.00			C
MOTA	4172	CZ	PHE	305	118.254	83.979	68.198	1.00	0.00			C
MOTA	4173		PHE	305	118.865	82.894	68.816	1.00	0.00			C
ATOM	4174		PHE	305	118.748	81.623	68.264	1.00	0.00			C
MOTA	4175	H	PHE	305	117.712	77.629	64.875	1.00	0.00			H
ATOM	4176	HA	PHE	305	117.765	80.671	64.481	1.00	0.00			H
MOTA	4177	1HB	PHE	305	116.802	79.722	66.766	1.00	0.00			H
ATOM	4178	2HB	PHE	305	118.447	79.271	67.120	1.00	0.00			H
ATOM	4179	HD1	PHE	305	116.765	82.390	65.609	1.00	0.00			H
ATOM	4180	HE1	PHE	305	117.030	84.635	66.552	1.00	0.00			H
ATOM	4181	HZ	PHE	305	118.367	84.968	68.618	1.00	0.00			H
ATOM	4182	HE2	PHE	305	119.442	83.036	69.715	1.00	0.00			H -
ATOM.	4183	HD2 -	PHE	·305 ÷	119.245	80.795	68.747	1.00	0.00			H
ATOM	4184	N	THR	306	119.955	79.784	63.270	1.00	0.00			N
ATOM	4185	CA	THR	306	121.282	79.388	62.661	1.00	0.00			C
MOTA	4186	C	THR	306	122.021	80.408	61.698	1.00	0.00			C
MOTA	4187	0	THR	306	123.248	80.336	61.626	1.00	0.00			0
MOTA	4188	CB	THR	306	121.171	77.981	61.978	1.00	0.00			C
MOTA	4189	OG1	THR	306	120.041	77.881	61.114	1.00	0.00			0
MOTA	4190	CG2	THR	306	121.072	76.801	62.954	1.00	0.00			C
MOTA	4191	H	THR	306	119.106	79.752	62.694	1.00	0.00			H
ATOM	4192	HA	THR	306	122.024	79.272	63.477	1.00	0.00			H
ATOM	4193	HB	THR	306	122.083	77.809	61.368	1.00	0.00			H
MOTA	4194	HG1		306	119.374	77.379	61.601	1.00	0.00			H
ATOM		1HG2		306	121.035	75.832	62.425	1.00	0.00			H
MOTA		2HG2		306	121.942	76.765	63.637	1.00	0.00			H
MOTA		3HC2		306	120.171	76 967	52.521	1.55	Ú. UU			н
MÜİM	4198	M	SER	307	121.351	81.322	30.959	1.00	0.00			74
ATOI:	<199	Œ.	SEC	207"	122.008	83.279	60.005	1 50	0.00			
	4200	C	SEE	:0	151.517	:T6I	28.003	č				-
				- : -	:.:.	11.111		- ::				
	:: :	=	= -	-	7.00.7.2							

· ·

_-

						117				^
ATOM	4212	oc	GLY	308	121.218	87.503	62.866	1.00	0.00	0
ATOM	4213	0	GLY	308	122.904	87.719	61.299	0.00	0.00	H
ATOM	4214	HC	GLY	308	120.660	86.703	63.195	1.00	0.00	H
ATOM	4215	н	GLY	308	122.592	84.429	61.338	1.00	0.00	
ATOM	4216		GLY	308	121.270	86.515	59.672	0.00	0.00	H
ATOM	4217		GLY	308	120.155	86.006	60.912	0.00	0.00	H
TER	122,									_
ATOM	4218	PG	ATP	400H	94.957	91.733	84.664		56.62	P
MOTA	4219	OlG		400H	94.187	90.944	83.509		61.42	0
ATOM	4220	PB	ATP	400H	95.915	93.870	83.671		53.17	P
ATOM	4221		ATP	400H	96.089	93.010	82.330		54.96	0
ATOM	4222		ATP	400H	96.187	97.690	82.708		34.47	0
	4223	PA	ATP	400H	96.566	96.129	82.542		45.52	P
MOTA MOTA	4224	05	ATP	400H	98.142	95.970	82.935.		43.48	0
	4225		ATP	400H	94.875	93.256	84.560		53.99	0
MOTA	4225		ATP	400H	. 96.437	91.126	84.983	1.00	57.35	0
ATOM	4227		ATP	400H	94.312	91.481	86.097		57.62	0
ATOM	4227		ATP	400H	96.428	95.839	80.960		42.48	0
MOTA	4229		ATP	400H	95.542	95.326	83.388	1.00	50.69	0
ATOM	4230		ATP	400H	97.232	93.930	84.606	1.00	58.07	0
ATOM			ATP	400H	99.030	97.140	83.056	1.00	39.42	C
MOTA	4231	C5A	ATP	400H	105.482	98.998	81.874	1.00	22.15	C
MOTA	4232	02	ATP	400H	102.885	98.017	86.127	1.00	41.77	0
ATOM	4233		ATP	400H	102.084	98.131	84.952	1.00	38.93	C
ATOM	4234	CZA CZ	ATP	400H	103.750		80.504	1.00	24.73	C
MOTA	4235			400H	101.513	97.285	82.879	1.00	32.13	0
MOTA	4236	04	ATP	400H	102.647	97.361	83.759		30.56	C
MOTA	4237	C1	ATP	400H	103.870	98.006	83.189	1.00	23.28	N
MOTA	4238	И9	ATP	400H	105.187	97.588	83.362		19.33	C
ATOM	4239	CB	ATP	400H	106.229	98.104	82.631	1.00	24.44	N
MOTA	.4240		ATP	400H	104.058	98.982	82.211	1.00	23.86	C
ATOM	4241	_	ATP		105.895	99.858	80.790		20.25	С
MOTA	4242		ATP	400H 400H	107.148	99.906	80.376	1.00	24.16	N
MOTA	4243		ATP			100.612	80.163		22.35	N
MOTA	4244		ATP	400H	103.170	99.872	81.450	1.00	25.23	N
MOTA	4245		ATP	400H	100.578	96.609	86.178		49.35	0
MOTA	4246		ATP	400H	100.570	97.532	85.088		39.09	C
ATOM	4247		ATP	400H	100.405	96.839	83.718		36.99	C
MOTA	4248		ATP	400H 400H	99.210	97.562	82.051	1.00		H
ATOM		2H5	ATP	400H	98.505	97.953	83.587	1.00	0.00	H
ATOM		1H5	ATP		102.013	99.195	84.663	1.00		H
ATOM	4251		ATP			101.207	79.921	1.00		H
MOTA	4252		ATP	400H	103.102	96.326	84.052	1.00		H
ATOM	4253		ATP		102.312	96.787	84.057	1.00		H
ATOM	4254		ATP			99.359	80.926		_	H
MOTA	4255		ATP		107.816		79.847			н
MOTA		2H6	ATP		107.380	97.170	86.050			H
MOTA	4257		2 ATP		103.375					H
MOTA	4258		3 ATP		101.361		•			H
ATOM	4259		ATP		99.958					H
MOTA	4260) H4	ATP	400H	100.487	95.730	65.032			
END										

Table 3. Inhibition of PLK1 enzymatic activity by adenosine, thioadenosines, and various thiol-reactive compounds in the presence or absence of dithiothreitol (+DTT or -DTT); IC₅₀; concentration with half-maximal inhibition.

Compound	IC ₅₀ (μM)		
<u></u>	+DTT	- DTT	
Thimerosal	> 200	22	
N-ethylmaleimide	> 200	55	
Iodoacetamide	> 200	83	
Adenosine	> 200	> 200	
2'-Thioadenosine	> 200	120	
5'-Thioadenosine	> 200	39	

Table 4. PLK1 contact model (Maestro) for ATP.

	<u> </u>				.0) 101 2111 .
	PL	K1			- G
	Residue	Atom	ATP atom	Distance (Å)	Contact cut-off ratio
	K178	NZ	O1B	3.1	1.0
ļ	K178	CE	O1B	. 4.0	1.2
	R135	NH1	O1A	3.9	1.2
-	K61	CA	O1A	4.2	1.3
L	K61-	N	O1A	3.0	1.0
L	G60	N	O1A	4.1	1.3
. [G60	C	O1A	3.2	- 1.0
L	R135	NH1	PA	3.3	1.0
L	R135	CZ	PA	4.3	1.2
L	G60	3HD2	PA	4.4	1.3
L	R135	NH1	O5	3.1	1.0
L	G63	N	O3G	3.9	1.2
L	R135	NE	O2A	3.9	1.2
L	F135	NH2	O2A	3.3	1.0
L	R136	CZ	O2A	3.0	0.9
L	F136	NH1	C5A	3.3	10
L	C67	£G ∣	CSA.	3.7	1.1
_	F([3 -]	TEL	i	2.3	1
_				-	

		121	·	
D194	CG	O2	3.2	1.0
K82	NZ	O2	3.4	1.1
K82	CE	O2	3.3	1.0
K82	CD	O2	3.3	1.0
K82	CG	O2	4.1	1.3
K82	CB	O2	3.9	1.2
C67	SG	C2A	4.1	1.2
D194	OD2	C2A	3.4	1.1
D194	OD1	C2A	3.6	1.1
D194	CG	C2A	3.8	1.1
K82	CD	C2A	4.4	1.3
C67	CB	C2A	3.9	1.1
F183	CZ	C2	4.6	1.3
F183	CE1	C2	3.7	1.0
F183	CD1	C2	3.9	1.1
C133	0	C2	3.4	1.0
C133	C	C2	4.4	1.3
A80	CB	C2	3.4	1.0
L59	CD1	C2	4.3	1.2
L59	CG	C2	4.4	1.3
C67	SG	04	4.2	1.3
F183	CZ	04	3.6	1.1
F183	CE1	04	4.0	1.2
D194	CB	<u>C1</u>	4.4	1.3
F183	CZ	· C1	3.8	1.1
F183	CE1	C1	4.4	1.3
D194	OD2	C1	3.3	1.0
D194	OD1	C1	3.8	1.1
D194	CG	C1	3.6	1.0
F183	CE2	N9	4.0	1.2
F183	CZ	N9	3.5	1.0
F183	CE1	N9	3.8	1.2
D194	OD2	N9	3.7	1.2
D194	CG	N9	4.3	1.3
D194	CB	C8	4.5	1.3
F183	CE2	C8	3.7	1.1
F183	CZ	C8	3.7	1.0
F183	CE1	C8	4.2	1.2
D194	OD2	C8	3.4	1.0
D194	CG	C8	4.1	1.2
G193	C	C8	4.1	1.2
G193	$\frac{c}{c}$	C8	4.3	1.2
D194	N	C8	3.9	1.2
F183	CD2	C8	4.4	1.2
L130	CD1	C8	3.9	1.1
F183	CE2	N7	3.8	1.1
L103	عندب	1 11/		

		77100							
						3.9)	1.3	[
		_						1.2	?
						4.4		1.3	}
		C	;			4.4			
						4.0		1.2	
						4.0			
						4.3			
						4.1		1.2	
						4.2			
						3.7	T		
					_	4.4	T		
					\perp	4.2]	1.2	
					\bot			1.0	
								1.0	
	\dashv				_			1.1	
	-		\dashv		4			1.2	
	-		+		_			1.3	
					4			1.1	
	-		-		1			1.0	
	+		+		_		\perp	1.2	
	+		+		+				
	+				4		\bot		
	+		+-		╀-			1.1	
			+-		4		_	1.3	
	╁		+-		╁				·
	╁		+		╀-				
	+		-		┼				
	_		_		<u> </u>				
	_		_		ـ		4_		
					-				_
					-		-		_]
	_						┵		╛
								1.3	
		- <u>D</u>					┼	1.1	
		NT I					╀	1.3	4
		5					↓	1.2	_
							├		1
183		= +				4.0	<u> </u>	13	Ţ
				-		<u> </u>	<u> </u>	1.1	_!
	=								_
	F18 F18 G19 F18 F18 V11 V11 L130 F183 F183 F183 F183 F183	F183 F183 F183 C133 A80 F183 V114 C133 C133 E131 F183 V114 C133 C133 C133 C133 C133 C133 C133 C	F183 CR F183 CI G193 C F183 CD F183 CD F183 CD V114 CG V114 CG L130 CD F183 CE F183 CD F183 CD F183 CE F183 CE F183 CD F183 CG V114 CG C133 CB C133 CB C133 CD F183 CG V114 CG V114 CG V114 CB C133 CB C133 CB C133 CB C133	F183 CE1 F183 CD1 G193 C F183 CD2 F183 CG V114 CG2 V114 CG1 L130 CD1 L130 CB F183 CE2 F183 CE1 F183 CD1 A80 CB F183 CE1 F183 CE1 F183 CE1 F183 CB F183 CD1 C133 O A80 CB F183 CD2 F183 CG V114 CG1 C133 CB C133 N E131 O F183 CG V114 CG1 V114 CG2 V114 CG2 V114 CB C133 CB C133 CB <t< td=""><td>F183 CE1 N F183 CD1 N G193 C N G193 C N F183 CD2 N F183 CG N V114 CG2 N V114 CG1 N L130 CB N F183 CE2 C4 F183 CE1 C4 F183 CE1 C4 F183 CE1 C4 F183 CZ C6 F183 CE1 C6 F183 CE1 C6 F183 CE1 C6 F183 CD1 C6 F183 CD2 C6 F183 CG C6 C133 N C6</td><td>F183 CE1 N7 F183 CD1 N7 G193 C N7 F183 CD2 N7 F183 CG N7 F183 CG N7 V114 CG2 N7 V114 CG1 N7 L130 CD1 N7 L130 CB N7 F183 CE2 C4 F183 CE1 C4 F183 CD1 C4 A80 CB C4 F183 CE1 C6 F183 CE1 C6 F183 CD1 C6 F183 CD1 C6 F183 CD2 C6 F183 CD2 C6 F183 CG C6 F183 CG C6 F183 CG C6 F183 CG C6 C133 N C6 <tr< td=""><td>F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.0 F183 CG N7 4.0 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CE1 C4 4.0 A80 CB C4 4.3 F183 CD1 C6 3.5 C133 O C6 4.1 A80 CB C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.4 </td></tr<><td>F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.3 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CD1 C4 4.0 A80 CB C4 4.3 F183 CE1 C6 3.8 F183 CD1 C6 3.7 F183 CD1 C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.9</td><td>F183 CE1 N7 4.2 1.2 F183 CD1 N7 4.4 1.3 G193 C N7 4.4 1.3 G193 C N7 4.0 1.2 F183 CD2 N7 4.0 1.2 F183 CG N7 4.3 1.3 V114 CG2 N7 4.1 1.2 V114 CG1 N7 4.2 1.2 L130 CD1 N7 3.7 1.1 L130 CB N7 4.4 1.3 F183 CE2 C4 4.2 1.2 F183 CE2 C4 4.2 1.2 F183 CE1 C4 3.4 1.0 F183 CE1 C4 4.0 1.1 A80 CB C4 4.3 1.2 F183 CE1 C6 3.8 1.1 F183 CD1 C6<!--</td--></td></td></t<>	F183 CE1 N F183 CD1 N G193 C N G193 C N F183 CD2 N F183 CG N V114 CG2 N V114 CG1 N L130 CB N F183 CE2 C4 F183 CE1 C4 F183 CE1 C4 F183 CE1 C4 F183 CZ C6 F183 CE1 C6 F183 CE1 C6 F183 CE1 C6 F183 CD1 C6 F183 CD2 C6 F183 CG C6 C133 N C6	F183 CE1 N7 F183 CD1 N7 G193 C N7 F183 CD2 N7 F183 CG N7 F183 CG N7 V114 CG2 N7 V114 CG1 N7 L130 CD1 N7 L130 CB N7 F183 CE2 C4 F183 CE1 C4 F183 CD1 C4 A80 CB C4 F183 CE1 C6 F183 CE1 C6 F183 CD1 C6 F183 CD1 C6 F183 CD2 C6 F183 CD2 C6 F183 CG C6 F183 CG C6 F183 CG C6 F183 CG C6 C133 N C6 <tr< td=""><td>F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.0 F183 CG N7 4.0 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CE1 C4 4.0 A80 CB C4 4.3 F183 CD1 C6 3.5 C133 O C6 4.1 A80 CB C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.4 </td></tr<> <td>F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.3 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CD1 C4 4.0 A80 CB C4 4.3 F183 CE1 C6 3.8 F183 CD1 C6 3.7 F183 CD1 C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.9</td> <td>F183 CE1 N7 4.2 1.2 F183 CD1 N7 4.4 1.3 G193 C N7 4.4 1.3 G193 C N7 4.0 1.2 F183 CD2 N7 4.0 1.2 F183 CG N7 4.3 1.3 V114 CG2 N7 4.1 1.2 V114 CG1 N7 4.2 1.2 L130 CD1 N7 3.7 1.1 L130 CB N7 4.4 1.3 F183 CE2 C4 4.2 1.2 F183 CE2 C4 4.2 1.2 F183 CE1 C4 3.4 1.0 F183 CE1 C4 4.0 1.1 A80 CB C4 4.3 1.2 F183 CE1 C6 3.8 1.1 F183 CD1 C6<!--</td--></td>	F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.0 F183 CG N7 4.0 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CE1 C4 4.0 A80 CB C4 4.3 F183 CD1 C6 3.5 C133 O C6 4.1 A80 CB C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.4	F183 CE1 N7 4.2 F183 CD1 N7 4.4 G193 C N7 4.4 G193 C N7 4.0 F183 CD2 N7 4.0 F183 CG N7 4.3 V114 CG2 N7 4.1 V114 CG1 N7 4.2 L130 CD1 N7 3.7 L130 CB N7 4.4 F183 CE2 C4 4.2 F183 CE2 C4 4.2 F183 CE1 C4 3.4 F183 CD1 C4 4.0 A80 CB C4 4.3 F183 CE1 C6 3.8 F183 CD1 C6 3.7 F183 CD1 C6 3.7 F183 CD2 C6 4.5 F183 CG C6 3.9	F183 CE1 N7 4.2 1.2 F183 CD1 N7 4.4 1.3 G193 C N7 4.4 1.3 G193 C N7 4.0 1.2 F183 CD2 N7 4.0 1.2 F183 CG N7 4.3 1.3 V114 CG2 N7 4.1 1.2 V114 CG1 N7 4.2 1.2 L130 CD1 N7 3.7 1.1 L130 CB N7 4.4 1.3 F183 CE2 C4 4.2 1.2 F183 CE2 C4 4.2 1.2 F183 CE1 C4 3.4 1.0 F183 CE1 C4 4.0 1.1 A80 CB C4 4.3 1.2 F183 CE1 C6 3.8 1.1 F183 CD1 C6 </td

C133	N	N1	3.4	1.1
E131	0	N1	3.5	1.1
C67	SG	N3	4.5	1.3
F183	CZ	N3	4.1	1.2
F183	CE1	N3	3.5	1.0
F183	CD1	N3	4.1	1.2
F183	CD1	N3	3.9	1.1
L59	CD1	N3	4.1	1.2
D194	OD2	O3	3.9	1.3
D194	CG	O3	3.5	1.1
K82	CD	O3	4.1	1.3
C67	SG	C3	3.8	1.1
D194	OD1	C3	3.6	1.1
D194	CG	C3	4.1	1.2
C67	CB	C3	4.1	1.2
C67	SG	C4A	4.1	1.2
D194	OD1	C4A	4.1	1.2

Table 5. PLK1 contact model (Quanta) for ATP.

		Protein –
PLK1	Residue	ligand atom
residue	atom	distance (Å)
L59	HG	3.5
L59	HD11	3.2
L59	HG	2.6
L59	HD13	3.1
G60	CA	2.8
G60	C	3.2
G60	HA1	1.9
G60	HA2	3.1
G60	HA1	3.5
G60	HA1	3.5
G60	HA1	2.9
K61	N	3.0
K61	H	2.2
G62	HA1	3.1
G63 ·	H	2.9
C67	HG	3.1
C67	HB2	3.0
C67	HG	3.2
C67	HG	3.0
C67	HG	3.4
C67	- HB2	·-·- ·-3 . 3·-
C67	HG	3.2
C67	HG	3.2

	<u>C6</u>		HC		2.9	
	C6′		SG		3.0	
	C67		HG		2.7	
			CB		2.9	
	C67		SG		3.3	
	C67		HB1		2.9	
	C67		HB2	_	2.2	
	C67		HG_		2.5	
	<u>C67</u>		CB		3.3	
	C67		SG		3.0	
	C67	\perp	HB2		2.6	_
	C67		HG		2.7	_
	A80		CB	\Box	3.4	
	A80		HB1		2.9	_
	A80		HB2	\Box	3.1	_
	A80	\bot	HB3		3.2	_
	A80		CB		3.3	
	A80		HB1		3.2	_
	A80-	<u></u>	-HB2-		2.9	
	A80		HB3		3.1	7
	A80		HB1	$oxed{T}$	3.0	\dashv
I	A80	\perp	HB1	T	3.2	\dashv
ŀ	A80		HB2		3.0	\exists
ŀ	A80		HB3	T	3.4	7
L	K82	\perp	CD		3.3	7
L	K82	\perp	CE	T	3.3	7
_	K82		NZ	T	3.4	1
	K82	1_	HZ2		2.8	1
	K82		HB2		3.1	1
_	K82		HD1		2.4	1
_	K82		HE2		3.0	1
_	K82		HD1		3.4	1
_	K82		HD1		3.1	
_	K82]	HB2		3.5	
_	K82		CE		3.4	
	K82 K82		NZ		3.1	
_	K82	}F	NZ HZ1 HZ2		3.4 3.1 3.5 2.2 1.2	
_	1432].	<u> 172</u>		22	
_	110	<u> </u>			1.5	
						_

		125			
	V114	HG13		2.7	
	V114	HG21		3.4	
	V114	HG23		3.2	
	V114	CB		3.3	
	V114	CG1		2.5	
_	V114	CG2		2.9	
	V114	HG11		3.4	
	V114	HG12		2.5	
	V114	HG13	Γ	1.8	
	V114	HG21		2.8	
-	V114	HG23	1	2.3	
-	V114	HG12	1	2.3 3.2	
\vdash	V114	HG13	\top	3.2	
\vdash	L130	HD11	T	3.1	
\vdash	L130	HD11	十	2.8]
\vdash	L130	HD11	+	3.0	1
-	L130	HB2	十	3.2	1
-	E131	0	\dagger	3.4	1
\vdash	E131	1 0	╁	2.8	1
\vdash	E131	0	-	2.8 3.5	1
	E131	0	十	3.3	1
\vdash	E131	C	十	3.1	1
\vdash	E131	0	十	2.0	1
\vdash	C133	0	十	3.4	٦
-	C133	H	+	3.3	1
	C133	+ H	十	2.9	7
-	C133	HB1	十	2.7	٦
+	C133	N	\dashv	3.4	7
-	C133	0	+	3.1	7
-	C133	H	+	2.8	٦
-	C133	0	十	3.0	٦
-	· C133	HB1	+	3.4	٦
-	C133	N	十	2.9	٦
-	· C133		_	3.1	٦
-	C133	H	十	2.0	ᅵ
-	C133	HB1	_	2.3	\neg
}	R135	HH12	一	3.0	╗
}	R135	NH1	_	3.3	
ŀ	R135	HH12		2.7	
-	R135	HH11		2.9	
. }	R135	NH1		3.1	
}	R135	HH12	\dashv	2.9	
}	R135	HH11	_	2.7	
}	R135	CZ		3.0	
}	R135			2.3	
ŀ	R135			3.3	
	K122	14117			-

15)

		<u>-</u>
R135	HH12	1.9
R135	HH11	2.1
R135	HH22	2.8
R135	NH1	3.3
R135	HH12	3.0
R135	HH11	3.4
R135	NH1	2.6
R135	HH12	2.3
R135	HH11	3.0
K178	NZ	3.1
K178	HZ1	3.1
K178	HZ2	2.3
F183	HE1	3.3
F183	HZ	2.8
F183	HZ	3.2
F183	CZ	3.5
F183	HZ	3.2
F183	CE1	3.4
F183_	HE1	3:3
F183	HD1	3.3
F183	CE1	3.5
F183	HE1	3.0
F183	HZ	3.1
G193	HA2	3.5
G193	HA2	3.1
G193	· C	3.4
G193	HA2	3.2
D194	CG	3.2
D194	OD1	3.1
D194	OD2	2.5
D194	OD2	3.4
D194	OD2	3.3
D194	OD2	3.4
D194	OD1	2.6
D194	CB	3.3
D194	CG	2.6
D194	OD1	3.0
D193	QD2	2.7
T:191	HES	2.9
7107		
	_	

D194	OD2	1.6
D194	CG	2.6
D194	OD1	1.7
D194	OD2	3.1

Table 6. PLK1 contact model (Maestro) for 5'-thioadenosine.

Residue Atom adenosine atom (A) cut-off ratio G60 CA S5 4.0 1.1 C67 N S5 3.3 1.0 K66 C S5 3.9 1.1 K61 CA S5 4.1 1.2 K61 N S5 3.9 1.2 K60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.5 1.0 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.6 1.1 C67 CB C5A 3.6 1.0 C67 CB C5A <th colspan="2">PLK1</th> <th>5'-Thio-</th> <th>Distance</th> <th>Contact</th>	PLK1		5'-Thio-	Distance	Contact
G60 CA S5 4.0 1.1 C67 N S5 3.3 1.0 K66 C S5 3.9 1.1 K66 CA S5 4.1 1.2 K61 CA S5 4.3 1.2 K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 G60 C S5 3.5 1.0 C67 CB S5 3.6 1.0 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.6 1.1 C67 CB C5A 3.6 1.1 C67 CB C5A 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CE2 C5 4.1 <th></th> <th></th> <th></th> <th>1</th> <th></th>				1	
C67 N S5 3.3 1.0 K66 C S5 3.9 1.1 K66 CA S5 4.1 1.2 K61 CA S5 4.3 1.2 K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 CB C5A 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CE2 C5 3.8 </td <td>G60</td> <td>CA</td> <td></td> <td>4.0</td> <td>1.1</td>	G60	CA		4.0	1.1
K66 C S5 3.9 1.1 K66 CA S5 4.1 1.2 K61 CA S5 4.3 1.2 K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.0 F183 CZ C5 3.5 1.0 F183 CB1 C5 4.1 1.2 A80 CB C5 3.8				3.3	1.0
K66 CA S5 4.1 1.2 K61 CA S5 4.3 1.2 K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 CB C5A 3.6 1.0 F183 CZ C5A 3.5 1.0 F183 CB1 C5 3.5 1.0 F183 CB2 C5 3.8 1.1 F183 CB2 C5 <				3.9	1.1
K61 CA S5 4.3 1.2 K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 3.5 1.0 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2				4.1	
K61 N S5 3.9 1.2 G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CB1 C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2				4.3	
G60 O S5 3.4 1.0 G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 3.5 1.0 F183 CZ C5 3.5 1.0 F183 CB1 C5 3.5 1.0 F183 CB2 C5 3.8 1.1 F183 CB2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.3 1.0 K82 CB O2				3.9	1.2
G60 C S5 3.5 1.0 C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 NH2 C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 SG C5A 3.6 1.0 C67 CB C5A 3.6 1.0 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CE2 C5 3.8 1.1 F183 CE2 C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 M82 NZ O2				3.4	1.0
C67 SG S5 3.3 0.9 C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 CZ C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2				3.5	1.0
C67 CB S5 3.6 1.0 C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 CZ C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.2 1.0 K82 CB O2				3.3	0.9
C67 CA S5 4.1 1.2 R135 NH2 C5A 3.7 1.2 R135 CZ C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 CB O2 3.1 1.0 K82 CB O2 3.1 1.0 K82 CG O2				3.6	1.0
R135 NH2 C5A 3.7 1.2 R135 CZ C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CB O2 3.2 1.0 K82 CG O2					1.2
R135 CZ C5A 4.0 1.2 R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CB O2 3.1 1.0 K82 CB O2 3.1 1.0 K82 CB O2 4.0 1.3 D194 OD1 C2A				3.7	1.2
R135 NH2 C5A 3.6 1.1 C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CB1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CB O2 3.1 1.0 K82 CB O2 3.2 1.0 K82 CG O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD1 C2A					1.2
C67 SG C5A 3.6 1.0 C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CB O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD1 C2A 3.4 1.0 D194 OD1 C2A				3.6	1.1
C67 CB C5A 4.2 1.2 F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CB O2 3.1 1.0 K82 CB O2 3.1 1.0 K82 CB O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD1 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 K82 CB C2A					1.0
F183 CZ C5 3.5 1.0 F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CB O2 3.1 1.0 K82 CB O2 3.1 1.0 K82 CB O2 3.1 1.0 K82 CB O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A					1.2
F183 CE1 C5 3.5 1.0 F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CO1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A					1.0
F183 CD1 C5 4.1 1.2 A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 3.9 1.2 K82 CE C2A 3.9 1.2 K82 CE C2A				3.5	1.0
A80 CB C5 3.8 1.1 F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 3.9 1.2 K82 CE C2A 3.9 1.2 K82 CE C2A 3.9 1.1 K82 CD C2A					1.2
F183 CE2 C5 4.0 1.2 D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CD1 C2A 3.6 1.1 D194 CD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 3.9 1.2 K82 CE C2A 3.9 1.2 K82 CD C2A 3.9 1.1				3.8	1.1
D194 OD1 O2 3.6 1.2 D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 3.8 1.1 K82 CB C2A 3.9 1.2 K82 CE C2A 3.9 1.2 K82 CD C2A 3.9 1.1					1.2
D194 CG O2 3.3 1.0 K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.6	1.2
K82 NZ O2 3.1 1.0 K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.3	1.0
K82 CB O2 3.8 1.2 K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.1	1.0
K82 CE O2 3.1 1.0 K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.8	1.2
K82 CD1 O2 3.2 1.0 K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.1	1.0
K82 CG O2 4.0 1.3 D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.2	1.0
D194 OD2 C2A 3.4 1.0 D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				4.0	1.3
D194 OD1 C2A 3.6 1.1 D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.4	
D194 CG C2A 3.8 1.1 K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.6	1.1
K82 CB C2A 4.1 1.2 C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.8	
C67 CB C2A 3.9 1.2 K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1 L3 1.2 1.2 1.2				4.1	
K82 CE C2A 4.2 1.2 K82 CD C2A 3.9 1.1				3.9	
K82 CD C2A 3.9 1.1				4.2	
10 10				3.9	
	F183	CZ	C2	4.2	1.2

128						
C133		C2	3.5	1.1		
F183			3.5	1.0		
F183			4.0	1.2		
R135			4.1	1.3		
L59	CD1		3.8	1.1		
L59	CG	C2	4.2	1.2		
A80	CB	C2	3.4	1.0		
R135		O4	3.0	1.0		
R135		04	3.3	1.0		
D194		O4	3.8	1.3		
R135		O4	2.8	0.9		
C67	SG	O4	3.6	1.1		
C67	CB	O4	3.9	1.2		
F183	CZ	C1	4.2	1.2		
R135	NH2	C1	3.7	1.2		
R135	CZ	C1	4.3	1.3		
D194	OD2	C1	3.6	1.1		
D194	OD1	C1	3.3	1.0		
D194	CG_	C1	3.7	1.1		
R135	NH2	C1 `	3.9	1.2		
C67	CB	C1	4.4	1.3		
F183	CZ	N9	3.7	1.1		
F183	CE1	N9	4.2	1.3		
F183	CZ	C8	3.8	1.1		
D194	OD2	· C8	4.3	1.2		
F183	CE2	C8	4.1	1.2		
L130	CD1	C8	3.6	1.1		
F183	CZ	N7	3.8	1.1		
F183	CE1	N7	4.2	1.3		
F183	CE2	N7	3.9	1.2		
L130	CD1	N7	3.6	1.1		
L130	CB	N7	3.9	1.2		
F183	CZ	C4	3.5	1.0		
F183.	CE1	C4	3.6	1.0		
R135	NH2	C4	4.1	1.2		
A80 F183	CB	C4	4.0	1.2		
F183	CE2	C4	4.4	1.3		
C133	0	Cô	3.9	1.1.		
12172		C3	<u> </u>	7.2		
	<u></u>					

E131	0	C6	3.5	1.1
F183	CE1	N6	4.0	1.2
F183	CD1	N6	3.7	1.1
A80	СВ	N6	4.1	1.3
F183	CG	N6	3.9	1.2
C133	SG	N6	4.3	1.3
C133	SB	N6	3.6	1.1
F183	CE1	N6	4.1	1.3
C133	N	N6	3.7	1.2
E131	0	N6	2.9	1.0
V114	CG2	N6 ·	4.1	1.3
V114	CG1	N6	3.7	1.1
F125	CE2	N6	4.0	1.2
F183	CZ	N1	4.3	1.3
C133	0	N1	3.1	1.0
C133	C	N1	3.8	1.2
F183	CE1	N1	3.4	1.0
F183	CD1	N1	3.6	1.1
A80	CB	N1	3.3	1.0
C133	CA	N1	4.1	1.2
C133	N	N1	3.6	1.1
E131	0	N1	3.8	1.2
F183	CZ	N3	4.0	1.2
F183	CE1	N3	3.6	1.1
R135	NH2	N3	3.4	1.1
C67	SG	N3	4.0	1.2
L59	CD1	N3	3.8	1.2
A80	CB	N3	3.8	1.1
D194	OD2	O3	3.0	0.9
D194	CG	O3	3.2	1.0
K82	NZ.	O3	3.7	1.2
K82	CE	. O3	4.1	1.3
K82	CD	O3	3.5	1.1
D194	OD2	C3	3.7	1.1
D194	OD1	C3	3.3	1.0
D194	CG	C3	3.9	1.2
C67	SG	C3	4.5	1.3
C67	CB	C3	4.1	1.2
K82	CD	C3	3.8	1.1
· R135	NH2	C4A	3.4	1.0
R135	CZ	C4A	3.9	1.1
D194	OD2	C4A	4.4	1.3
D194	OD1	C4A	3.3	1.0
D194	CG	C4A	4.2	1.2
R135	NH2	C4A	3.6	1.1
C67	SG	C4A	4.0	1.1

C67	CB	C4A	4.2	1.2
				1.2

Table 7. PLK1 contact model (Quanta) for 5'-thioadenosine.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	HG	3.4
L59	HD11	3.5
L59	HD13	3.3
L59	HD11	3.2
L59	CG	3.2
L59	CD1	3.0
L59	HG	2.5
L59	HD11	2.9
L59	HD13	2.5
G60	C	3.2
G60	0	3.2
~G60	HA1	3.1
G60	HA1	3.3
C67	N	3.1
C67	CB	3.1
C67	SG	2.0
C67	H	2.7
C67	HB2	3.0
C67	SG	3.2
C67	HB2	3.0
C67	- SG	3.4
C67	HB2	3.4
C67	HB2	3.1
C67	SG	3.4
C67	CB	3.1
C67	HB1	3.2
C67	HB2	2.1
C67	СВ	3.5
C67	HB2	2.6
A80	HE1	3.4
AS)	HE3	3.2
- :10		- - - †

A80	HB3	3.4
A80	CB	3.3
A80	HB1	3.1
A80	HB2	2.9
A80	HB3	3.2
A80	HB1	2.9
A80	HB1	3.3
A80	HB2	3.3
K82	CD	3.2
K82	CE	3.1
K82	NZ	3.1
	HZ2	2.5
K82 K82	HB2	3.0
	HD1	2.5
K82	HE2	2.6
K82	HB2	3.1
K82	HD1	2.9
K82	HZ2	3.1
K82	HD1	2.5
K82	HD1	2.7
K82	CB ·	3.5
K82	HB2	2.4
K82	HD1	3.1
K82	CE	3.3
K82	NZ	2.9
K82	HZ2	2.0
K82	HD1	2.9
K82	HE2	3.1
K82	HZ2	2.9
K82	HD1	3.2
K82	HB2	3.3
K82_	$\frac{\text{HD2}}{\text{HD1}}$	2.6
K82	HG13	3.3
V114	HG13	2.9
.V114	HG23	3.5
V114	CG1_	2.8
V114 V114	CG2	3.3
V114 V114	HG12	2.8
	HG12	1.9
V114 V114	HG21	3.2
V114 V114	HG23	2.7
V114 V114	HG13	3.5
	HD13	3.2
L130	HD11	3.0
L130	HB1	3.4
L130	HB2	3.4
L130	111111	

				_	
	L130		HD13		3.5
	L130		HD11		2.8
	L130		CD1		3.2
	L130		HD13		2.9
	L130		HD11		2.6
	L130		HB2		3.2
	E131		0		3.5
	E131		0		2.9
-	E131		0		3.2
Į	E131		0		2.5
	C133		H	\neg	3.2
	C133	\neg	H	7	2.9
L	C133	1	HB1	\dashv	2.7
	C133		0	\dashv	3.1
	C133	T	H	1	2.7
	C133	T	0	\top	3.1
L	C133	T	HB1	\top	3.2
L	C133	T	N	\top	2.7
L	C133	T	CA	\top	3.2
Ŀ	C133	T	CB		2.8
L	C133	T	SG	1	3.4
L	C133	T	H	1	2.0
L	C133		HB1	T	2.0
L	R135	T	HH11	T	3.1
	R135	T	HH22	T	3.2
	R135		CZ	T	3.3
	R135		NH1		
	R135		NH2		3.0
_	R135		HH11	T	1.8
	R135	\prod	HH22	T	2.1
	R135		HH11	Г	3.0
	R135		HH22		2.7
	R135		HH11		3.4
	R135		HH11		3.3
	R135		NH1		
	R135		HH11		2.8
	R135		NH2		3.4
	ř.155		нши		2.6
	T:13;		ਪੁਧਾਨ		2.5
	33_				
	-				

HH11	3.4
HH22	2.5
NH2	2.9
HH11	3.2
HH21	3.5
HH22	2.1
CE1	3.5
HE1	2.9
HZ	3.3
HZ	3.1
HZ	3.5
HE1	3.4
HZ	3.2
CE1	3.4
CE1	3.4
HD1	3.4
HE1	3.2
HE1	2.9
HE1	3.2
HZ	2.9
CG	3.3
OD2	2.5
OD2	3.4
OD1	3.3
CG	3.2
OD1	2.6
OD2	3.0
OD1	3.3
OD1	3.3
CG	2.7
OD1	2.4
OD2	2.9
OD2	3.4
H	3.3
CG	2.4
	2.8
OD2	1.5
	2.3
OD1	1.7
	2.3
OD1	2.4
	HH22 NH2 HH11 HH21 HH22 CE1 HE1 HZ HZ HZ HE1 HZ CE1 CE1 CE1 CE1 CE1 CE1 CO1 CO1 CG CD1 CG CG COD1

and the second of the second s

Table 8. PLK1 contact model (Maestro) for staurosporine.

	DI K1								
	PLK1		Staurospori	ne	Distanc		Contac	t	
	Resid	ue Ato	om	atom		(Å)		cut-off	
	C67	C	D				\perp	ratio	
	D19			O4		3.5		1.1	
	C67			C21		4.1		1.2	
1	C67			C23	_	4.2	\perp	1.2	
ł	C67			C18		3.7		1.0	
ŀ	C67		_	C18	\dashv	3.9	\bot	1.1	
ŀ	C67			C19		4.3	\perp	1.2	
ŀ	D194			C19		4.2		1.2	
ŀ	D194			C16	_	3.4	\perp	1.0	
}	G193		+	C16-	4	4.0	丄	1.2	
H	G193		+	C16	4	3.7	\bot	1.1	
╟	L130		+	C16	_	4.3		1.3	
\vdash	F183			C16	_	4.3		1.3	
 -	F183			C14		3.3		1.0	
· -	F183	CZ		C14	-	3.7	<u> </u>	1.1	
-	L130	CD:		C14	_	4.1		1.2	
-	L130	CD2		C14	4	4.3		1.3	٦
-	L130	CD1		C14	\perp	3.9		1.1	7
\vdash	L130	CG	+	C14	4	4.2	\perp	1.2	7
-	A80	CB	1.	C14	1	3.8	\perp	1.1	7
\vdash	D194	CB		C14	_	4.2		1.2	7
_	G193	OD1	+	C15	1	3.9		1.2	٦
_	G193	0	_	C15	\perp	3.6	<u> </u>	1.1	7
ı – –	F183	C	4-	C15	 -	4.1		1.2	7
	L130	CE1	┼	C15	↓_	3.8		1.1	7
_	L130	CD2	┼	C15	\perp	3.9		1.2	1
	L130	CD1	┼	C15	<u> </u>	3.6		1.1	7
		CG	┼-	C15	<u> </u>	4.1		1.2	1
	L130	CB	├-	C15	_	4.3		1.2	1
	F183 F183	CE1		C13		3.8		1.1	
		CZ	<u> </u>	C13		4.3		1.2	
	7183	CD1	<u> </u>	C13		4.2		1.2	
	C67	SG		C13		4.6		1,3	
<u></u>	480	CB 3G		C13		3.4		1.0	
	<u>ز محت</u>	<u> </u>		<u>712.</u>		3.0		1.1	•
									_
				-			-		_

L59					
C67 SG C10 4.1 1.2 A80 CB C10 4.3 1.3 L59 CD1 C10 3.9 1.1 C67 SG C11 3.6 1.0 C67 CB C11 4.4 1.3 A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.1 1.3 R135 CG C5 3.7 1.1 R135 CG C5 3.7 1.1 R135 CG C5 3.9 1.1 L59 C C5	L59	CB	C7	3.8	
A80 CB C10 4.3 1.3 L59 CD1 C10 3.9 1.1 C67 SG C11 3.6 1.0 C67 CB C11 4.4 1.3 A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 CA C20 3.8 1.1 L59 C C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 L59 C C5 3.			C10	4.1	
L59 CD1 C10 3.9 1.1 C67 SG C11 3.6 1.0 C67 CB C11 4.4 1.3 A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 </td <td></td> <td></td> <td>C10</td> <td>4.3</td> <td>1.3</td>			C10	4.3	1.3
C67 SG C11 3.6 1.0 C67 CB C11 4.4 1.3 A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 CA C20 3.8 1.1 C60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 CA C5 4.3 1.3 L59 C C5 3.9 1.1 L59 C C5 3.7 <td></td> <td></td> <td>C10</td> <td>3.9</td> <td>1.1</td>			C10	3.9	1.1
C67 CB C11 4.4 1.3 A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 C C5 3.7 1.1 R135 CG C4 3.5 <td></td> <td></td> <td></td> <td>3.6</td> <td>1.0</td>				3.6	1.0
A80 CB C11 4.4 1.3 R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 L59 C C5 3.9 1.1 L59 C C5 3.9 1.1 L59 C C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 CG C4 3.5 <td></td> <td></td> <td></td> <td></td> <td>1.3</td>					1.3
R135 CG C6 4.0 1.2 L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 NE C4 3.7					1.3
L59 C C6 4.4 1.3 L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 C C5 3.7 1.1 R135 NE C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0					1.2
L59 CB C6 3.8 1.1 G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 CA C5 4.3 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 CB C5 4.1 1.2 L59 C C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.4 1.3 L59 C C4 3.8 <td></td> <td>C</td> <td></td> <td></td> <td></td>		C			
G60 CA N3 4.2 1.3 G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 CA C5 4.3 1.3 L59 C C5 3.9 1.1 L59 CB C5 3.9 1.1 L59 CB C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.2 <td></td> <td></td> <td></td> <td></td> <td>1.1</td>					1.1
G60 CA C20 3.8 1.1 G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 CB C5 4.1 1.2 L59 C C5 3.7 1.1 R135 NE C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.2 1.0 R135 CG C3 4.1					
G60 N C20 4.2 1.3 L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 C C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 NE C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.8 1.1 L59 C C4 4.4 1.3 L59 C C3 4.1					
L59 C C20 4.3 1.2 L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 C C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4					
L59 O C20 4.1 1.3 R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 CB C5 4.1 1.2 L59 C C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CG C3 4.1 1.2 R135 CG C3 4.1 1.2 L59 C C3 4.1					1.2
R135 CG C5 3.7 1.1 G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 C C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.1 1.2 L59 C C3 4.1					1.3
G60 CA C5 4.3 1.3 G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CG C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1					1.1
G60 N C5 4.2 1.3 L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1			<u>C5</u>		
L59 C C5 3.9 1.1 L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8					
L59 CB C5 4.1 1.2 L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 C60 CA C1 3.7 1.1 L59 O C1 4.2					1.1
L59 O C5 3.7 1.1 R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4					
R135 CG C4 3.5 1.0 R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3					
R135 NE C4 3.7 1.1 R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
R135 CD C4 4.0 1.2 L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3					
L59 C C4 3.8 1.1 L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
L59 CB C4 4.4 1.3 L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
L59 O C4 3.2 1.0 R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
R135 CG C3 4.1 1.2 R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
R135 CD C3 4.4 1.3 L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
L59 C C3 4.1 1.2 L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2			l		
L59 O C3 3.2 1.0 G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
G60 CA C2 4.1 1.2 L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
L59 O C2 3.8 1.2 G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
G60 CA C1 3.7 1.1 L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
L59 O C1 4.2 1.3 C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
C67 CB C25 4.4 1.3 G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
G60 CA C25 4.3 1.3 D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
D194 OD2 C23 4.0 1.2 D194 CG C22 4.0 1.2					
D194 CG C22 4.0 1.2					
D194 OD2 C22 3.5 1.0					
, , , , , , , , , , , , , , , , , , ,	D194	OD2			
DIST ODI					
D194 CG C26 4.0 1.2					
D194 OD2 C26 3.4 1.0					
K82 CE C26 4.2 1.2					
K82 CD C26 3.9 1.1					
K82 CG C26 4.4 1.3	K82	CG	C26	4.4	1.3

a marie e de la manda par com la como de la

	CCC								
				C26		4.2		1.2	
	G180 O N181 O			<u>O6</u>		3.7		1.2	
	N18			C27		3.8		1.2	
	N18		C	C27		4.2		1.2	
	G18		À	C27		3.8		1.1	
	G18		<u>2</u>	C27		3.6		1.1	
	D194		C	C27		4.2		1.2	
	D194		G	C27		4.4		1.3	
	G193		1	C27		3.9		1.2	
	G193)	C27		3.1		1.0	
	G180			C27		4.0		1.2	
				N4		3.6		1.2	_
ı	D194			N4		4.2		1.3	
H	N181			C28		4.1		1.3	
ŀ	K178			C28		3.7		1.1	
ŀ	D176		_	C28	\bot	4.4		1.3	
H	D194			C28		4.1		1.2	
-	D194			C28		4.1		1.2	_
. -	D194 O		2	C28	T	3.3	\top	1.0	-
F	C133			C9		3.5	_	1.1	
\vdash	C133 C			C9		3.8	1	1.1	\exists
\vdash	C133	N		C9	\perp	3.9		1.2	┪
-	A80	CB		C9		3.9		1.2	\dashv
\vdash	L59	CD		C9	T	3.9	_	1.1	\dashv
\vdash	R134	CA		N1	T	4.0	\top	1.2	\dashv
H	R134	N	1	N1		4.0 ·	1	1.3	┪
\vdash	C133	0		N1		2.8	1	0.9	7
Ļ	C133	C		N1		3.4		.1.0	٦.
<u> </u>	L59 -	CD2		N1		4.2	1	1.3	7
<u> </u>	L59	CD1	_ _	N1		3.8		1.2	1
	R135	CG		O5		3.8		1.2	1
	R135	NH2		O5		3.1		1.0	1
_	R135	CZ		O5		3.4		1.1	1
	R135	CD	4_	O5		3.8		1.2	1
	L59	CD2	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	O5		3.6		1.1	1
	L59	CG	_	O5		4.1		13	1
	L59 N105	CB	 _	O5		3.9		1.2	1
_ <u>i</u>	1122	ÇĞ	<u> </u>	Cŝ		3.9		1.2 1.1 1.2	t
<u>'-</u>	133	0	-	C3		3.6		1,5	
			· —						_
		-		•					

Table 9. PLK1 contact model (Quanta) for staurosporine.

PLK1 residue	Residue atom	Protein — ligand atom distance (Å)
T.50	HB1	2.8
L59 L59	HD13	3.1
L59 L59	HD13	3.0
L39	HB1	2.9
L59 L59	HB1	3.2
L59	0	3.2
T 50	HB1	3.4
L59	0	3.2
L59 L59	HD13	2.8
T 50	HD13	2.7
L59	HD22	3.3
L59	HB1	3.0
L59 · · · L59 ·	HD22	2.6
L39	HB1	2.9
L39	HD13	2.9
L39	HD13	2.9
L59 L59 L59 L59 L59	0	3.4
L59	HB1	3.1
L59	O	3.5
L59	CD1	3.3
L59	HD13	2.4
L59		3.1
L59	HD13	3.2
L59	HD22	3.2
G60	HA1	2.8
G60	HA1	3.5
G60	HA1	3.3
G60	HA1	2.7
G60	HA1	3.3
G60		2.9
G60	HA1	3.4
G60	CA C	3.4
G60		2.5
G60	HA1	2.5
C67	HB1	3.4 2.5 2.8 3.3
C67	HB2	2 2
C67	HB1	2 /
C67	HB1	2 1
C67	HB1	3.3 3.4 3.1 3.5
C67	HB1	3.4
C67	СВ	3.4

C67		HB1		2.3			
	C67		HG		3.5		
	A80		HB2		3.5		
	A80		CB		3.4		
	A80		HB2		3.0		
	A80		HB3		2.9		
	A80		HB3		3.1		
	A80		HB3		3.4	_	
	A80		HB1		3.3		
	A80		HB2		3.4		
	A80		СВ		3.0		
	A80		HB1		3.0		
	A80		HB2		2.6		
	A80		HB3		2.7		
	A80	\perp	CB		2.9		
	A80		HB1 -		2.2		
	A80	\bot	HB2		3.3		
	A80	\perp	HB3		2.7		
	K82		HD2		3.0		
	K82		HD2		3.4		
	K82		HD2		3.3	_	
	K82	\perp	HE1		3.1		
١	K82		CD		3.5	٦	
	K82	\perp	HZ3		2.9		
1	K82		HD2		2.5		
L	K82		HE1		3.3		
L	K82		HB2		3.1	٦	
L	K82	L	HG1		3.3		
L	K82		HD2		2.7	1	
L	L130		HD12	7	3.3	1	
L130			HB1		3.0	1	
	L130		HD12		2.9	1	
	L130		HD22		3.5	1	
_	L130		HD12		2.6	1	
_	L130		HD22		3.1		
_	L130		CD1	3.4			
	L130		CD2	3.1			
_	Liśū		HD12		2.6		
_	1130		11/23		-:-		
_							
	•					-	

L132	HA	3.5
L132	C	3.4
C133	0 C	2.8
C133	C	3.4
C133	0	3.5
C133	H	3.4
C133	HB1	3.1
C133 C133	N	3.5
C133	H	3.4
C133	C	2.7
C133	0	1.8
C133	0	1.8
R134	HA	3.1
R134	HA	3.4
R134 R134	HA	3.4
	HA	2.8
R134	HG2	3.0
R135	<u> </u>	3.3
R135	HG2	
R135	HG1	3.0
R135	HG2	
R135	CG	3.5
. R135	HE	3.2
R135	HG1	2.7
R135	HG2	3.3
R135	HG1	3.1
R135	HE	3.4
R135	NE	2.8
R135	CZ	3.4
R135	NH2	3.1
R135	HE	1.7
R135	HG2	3.0
R135	HH21	2.2
R135	HE	2.6
R135	HG2	2.9
R135	HH21	3.4
R135	CG	3.5
R135	NE.	3.0
R135	HE	2.4
R135	HG1	3.0
R135	HG2	3.2
R135	HH21	3.2
R135	H	3.3.
R135	HE	3.5
R135	HE	1.7
K178	HZ1	3.5
K178	HZ1	2.7
		1

	K178		HZ1		3.2	
	K178		NZ		3.5	_
	K178		HZ1		2.5	_
	K178		NZ		2.9	_
	K178		HZ1		2.0	_
•	K178		HZ2		3.2	_
	K178		HZ3		3.5	_
	K178		HZ1		2.0	_
	G180		0		3.5	_
	G180		O		3.3	_
	G180		0		2.6	_
	N181		HA		2.8	_
	N181		CA		3.4	_
	N181	T	OD1		3.2	_
	N181	$_{ m I}$	HA	7	2.3	_
	N181		CA		3.2	_
	N181	\perp	C	\exists	3.5	
	N181		0		3.2	_
١	N181		HA		2.3	
	N181		OD1		3.2	7
-	F183		CE1		3.3	7
1	F183	\perp	HE1		2.8	1
1	F183	\perp	HE1	\Box	2.9	1
1	F183	1_	HE1		2.9	1
L	F183	<u> </u>	CE1		3.0	1
F	F183	1	CZ		3.0	1
L	F183	1_	HE1		2.6	1
L	F183		HZ		2.7	1
L	G193		0		3.1	1
L	G193	L	HA2		3.4	
L	G193	<u>_</u>	0		3.0	
L	G193	_	0	_	3.3	
	G193		0	1	2.5	
_	D194		OD1	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	3.4	
_	D194		OD2	_	3.4	
	D194		<u>H</u>	_	3.0	
	D194		OD2	<u>L</u>	3.3	
	D194		HB2		3.3	
	D101		₫ G	!	3:0	
	7-1-1		_: <u>+</u> -			
	ti					

D194	CG	3.0
D194	OD1	2.8
D194	OD2	2.6
D194	N	3.2
D194	H	2.2
D194	HB2	2.8
D194	H	3.5
D194	H	3.0
D194	OD2	2.7
D194	CB	3.2
D194	CG	3.3
D194	OD2	2.9
D194	HB1	3.5
D194	HB2	2.3
D194	H	2.2

Table 10. PLK1 contact model (Maestro) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1		Ligand	Distance	Contact
Residue	Atom	atom	(Å)	cut-off ratio
D194	OD2	NM1	3.8	1.2
K82	CD	NM1	4.1	1.3
D194	CG	CM12	4.0	1.2
D194	OD2	CM12	3.6	1.1
F64	CG	CM12	4.0	1.2
D194	OD1	CM12	3.5	1.1
K82	NZ	CM12	4.2	1.3
K82	CD	CM12	3.9	1.1
F64	CD1	CM12	4.1	1.2
F64	CB	CM12	3.8	1.1
D194	CG	С	4.0	1.2
D194	OD2	С	3.5	1.0
D194	OD1	С	3.8	1.2
K82	CD	С	4.1	1.2
C67	CB	С	4.0	1.2
D194	CG	N	3.5	1.1
D194	OD2	N	3.4	1.0
D194	OD1	N	3.1	1.0
K82	NZ	N	3.4	1.1
K82	CE	N	3.4	1.0
K82	CD	N	3.5	1.1
K82	CB	N	4.2	1.3
D194	CG	C1	3.9	1.1

				142	
	D194			3.8	1.1
	D194			3.7	1.2
	K82			4.1	1.2
	K82			4.1	1.2
	L130			4.1	1.2
	D194			3.7	1.1
	D194			4.3	1.3
	D194			4.1	1.2
	D194		CM2	4.0	1.2
	D194		CM2	3.6	1.1
	D194		CM2	3.5	1.1
	K82	NZ	CM2	3.9	1.2
	K82	CE	CM2	4.1	1.2
	L130	CD2		3.9	1.2
	L130	CD1	CM2	3.8	1.1
	D194	OD2	S	4.2	1.2
	C67	SG	S	3.5	1.0
ı	C67	CB	S	3.3	0.9
	D194	OD2	C2	4.3	. 1.3
	F183	CZ	C2	4.1	1.2
1	C67	SG	C2	3.9	1.1
ŀ	C67	CB	C2	4.3	1.3
ŀ	F183	CZ	N1	4.0	1.2
1	F183	CG	N1	4.2	1.3
ŀ	F183	CE1	N1	3.5	1.1
ŀ	F183	CD1	N1	3.6	1.1
L	C133	N	N1	3.8	1.2
Ļ	E131	0	N1	3.6	1,2
L	A80	CB	N1	3.3	1.0
L	C133	0	N1	3.4	1.1
L	C133	С	N1	4.2	1.3
_	F183	CD2	C3	4.3	1.3
_	F183	CE2	C3	4.2	1.2
_	F183	CZ	C3	4.0	1.2
	F183	CG	C3 C3 C3	4.3	1.3
_	F183	CE1	C3	4.0	1.2
_	F183	CD1	C3 [4.1	1.2
_	Ei31	0	C3	3.5	1.1
_	490 7171	(TE.)	<u>:3</u>	3.5	1.0
-				-,:	

		17.	,	
F183	CZ	C5	3.6	1.0
F183	CE1	C5	4.0	1.2
C67	SG	C5	3.9	1.1
A80	CB	C5	4.1	1.2
F183	CZ	N6	3.6	1.1
F183	CE1	N6	3.5	1.1
C67	SG	N6	3.5	1.0
A80 ·	CB	N6	3.9	1.2
F183	CZ	C7	3.8	1.1
F183	CE1	C7	3.3	1.0
F183	CD1	C7	3.8	1.1
C67	SG	C7	4.2	1.2
A80	CB	C7	3.5	1.0
C133	ō	C7	3.6	1.1
F183	CE1	N2	3.4	1.0
F183	CD1	N2	3.8	1.2
A80	CB	N2	4.2	1.3
C133	0	N2	2.8	0.9
C133	C	N2	4.0	1.2
L59	CD2	N2	3.9	1.2
F183	CE1	C8	3.9	1.1
C133	O	C8	3.6	1.1
L59	CD2	C8	3.8	1.1
L59	CG	C8	4.2	1.2
L59	CB	C8	4.1	1.2
R135	CB	C9	4.4	1.3
R135	N	C9	4.1	1.3
R134	CA	C9	4.2	1.2
C133	O	C9	3.4	1.0
C133	C	C9	4.4	1.3
L59	CD2	<u>C9</u>	3.9	1.1
L59	CG	C9	4.0	1.2
L59	CB	C9	4.3	1.2
R135	NH2	011	2.9	1.0
R135	NH1	011	3.4	1.1
R135	CZ	011	3.5	1.1
L59	C	O11	3.5	1.1
R135	NH2	C10	4.1	1.3
R135	CZ	C10	4.4	1.3
L59	CG	C10	4.1	1.2
L59	CB	C10	4.2	1.2
R135	NH2	C10	3.4	1.1
	NH1	C11	3.5	1.1
R135	CZ	C11	3.6	1.1
R135	C	C11	3.7	1.1
L59		C11	4.4	1.3
L59	CG	1 011	1 7.7	1

			Ţ	44	
	L59	CB	C11	4.0	1.2
	L59	0	C11	3.2	1.0
	L59	CA	C11	4.3	1.2
ļ	R135	NII1	C12	4.2	1.3
	F183	CE1	C12	4.3	1.2
	C67	SG	C12	4.3	1.2
	L59	C	C12	4.4	1.3
L	L59	CD2	C12	4.4	1.3
L	L59	CG	C12	4.4	1.3
	L59	CB	C12	3.8	1.1
	R135	NH2	C13	4.0	1.2
	R135	NH1	C13	3.3	1.0
	R135	CZ	C13	3.8	1.1
L	G60	CA	C13	4.3	1.2
L	G60	N	C13	3.8	1.2
	L59	C	C13	3.5	1.0
	L59	CB	C13	3.8	1.1
	L59	0	C13	3.4	1.1
Ĺ	L59	CA	C13	4.2	1.2

Table 11. PLK1 contact model (Quanta) for 4-[4-(4-methyl-2-methylamino-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol.

PLK1 residue	Residue atom	Protein – ligand atom distance (Å)
L59	0	1.7.
L59	HD23	2.9
L59	HB1	3.1
L59	HD23	2.9
L59	HB1	3.5
L59	HG	3.3
L59	HD23	3.2
L59	0	2.7
L59	HG	3.3
L59	0	3.2
L59	HB1	3.2
L59	Hii	
	-	

L59	HA	3.4
L59	HB1	3.1
L59	С	3.2
L59	0	3.2
L59	HB1	3.1
G60	N	3.2
G60	CA	3.4
G60	HA1	2.6
F64	HB2	2.9
F64	HB2	3.5
F64	CB	3.4
F64	HB2	2.4
F64	HD1	3.2
F64	CB	3.2
F64	HB1	3.0
F64	HB2	2.5
C67	HB1	2.5 3.3
C67	HB1	3.0
C67	CB	3.3
C67	HB1	2.6
C67	HB2	3.4
C67	SG	3.5
C67	HB1	3.0
C67	HB2	3.3
A80	CB	3.3
A80	HB1	3.0
A80	HB2	3.1
A80	HB3	3.0
	CB	3.5
A80	HB1	3.3
A80	HB3	2.9
A80	HB1	3.4
A80	HB3	3.4
A80	HB1	3.3
A80	HB1	3.0
A80	HB1	2.9
A80	HB2	3.4
A80	HB3	3.0
· A80	HD1	3.0
K82	HD1	2.9
K82		3.1
K82	HD1	3.5
K82	CD	3.4
K82	CE	
K82	NZ	3.4
K82	HZ2	2.7
K82	HB2	3.4

		 _
K82	HD1	2.7
K82	HE2	3.0
K82	HE2	3.3
K82	IIZ2	3.4
K82	HE2	3.3
K82	HZ2	3.0
K82	HD1	3.4
K82	CD	3.0
K82	HZ2	3.2
K82	HD1	2.2
K82	HD2	2.9
K82	HE2	3.0
K82	NZ	3.1
K82	HZ2	2.6
K82	HZ3	2.9
K82	HE2	3.1
V114	HG12	2.9
V114	HG12	3.5
L130	HD13	3.3
L130	HD13	3.1
L130	HD22	3.2
L130	HB1	3.5
L130	HB1	3.3
L130	HD13	3.0
L130	HD22	. 3.1
L130	CG	3.4
L130	CD1	2.8
L130	CD2	2.9
L130	HD13	2.3
L130	HD11	2.6
L130	HD22	2.3
L130	HD21	2.8
L130	HB1	3.1
L130	CD1	3.3
L130	HB1	2.8
L130	HD13	2.4
L130	HD22	2.8
E151	Ü	3.5
EL31	0	3.5
1112		
• • •		

C133	0	1.8
C133	0	2.6
R134	HA	3.2
R134	CA	3.3
R134	HA	2.3
R135	HH22	2.0
R135	H	3.2
R135	HB1	3.4
R135	CZ	3.5
R135	NH1	3.4
R135	NH2	2.9
R135	HH11	2.8
R135	HH22	2.0
R135	H	. 3.5
R135	NH2	3.4
R135	HH11	3.1
R135	HH22	2.8
R135	NH1	3.3
R135	HH11 .	2.9
R135	H	2.9
R135	H	3.5
R135	HH11	3.3
R135	HH22	2.8
R135	NH1	2.9
R135	HH12	3.2
R135	HH11	2.4
F183	HZ	3.5
F183	HZ	. 3.3
F183	HE1	3.2
F183	HZ	3.4
F183	CE1	3.3
F183	HE1	3.0
F183	CE1	3.4
F183	HE1	2.8
F183	HE1_	2.9
F183	HE1	3.3
F183	HE2	3.1
F183	HD1	3.3
F183	HE1	3.2
F183	HE1	3.4
G193	HA2	3.3
D194	OD2	3.5
D194.	OD1	3.1
D194	OD2	3.4
D194	'H	3.2
D194	CG	2.9

I	D194	OD1	2.5
	D194	OD2	2.6
	D194	N	3.0
	D194	Ħ	2.7
	D194	H	3.4
L	D194	N	3.1
L	D194	CA	3.3
L	D194	CG	3.0
L	D194	OD1	2.6
L	D194	H	2.7
L	D194	HA	2.7

CLAIMS

- 1. A method of screening for a modulator of PLK, wherein the method comprises using the structure co-ordinates of Table 2.
- 2. A method according to claim 1 comprising the steps of:
- (a) providing at least a portion of the structure co-ordinates of Table 2;
- (b) employing at least a portion of the structure co-ordinates of Table 2 to design or select or synthesise a putative modulator of PLK;
- (c) contacting the putative modulator of PLK with PLK or a mutant, variant, homologue, derivative or fragment thereof, in the presence of a substrate of PLK; and
- (d) determining whether said putative modulator of PLK modulates PLK.
- 3. A method according to claim 1 or claim 2 wherein at least a portion of the structure co-ordinates of Table 2 and/or the putative modulator of PLK and/or the substrate are provided on a machine-readable data storage medium comprising a data; storage material encoded with machine readable data.
- 4. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is selected from a library of compounds.
- 5. A method according claim 2 or claim 3 wherein the putative modulator of PLK is selected from a database.
- 6. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is designed *de novo*.
- 7. A method according to claim 2 or claim 3 wherein the putative modulator of PLK is designed from a known PLK modulator.
- 8. A method according to claim 2 or claim 3 wherein the design or selection of the putative modulator of PLK is performed in conjunction with computer modelling.

- 9. A method according to any preceding claim wherein the putative modulator of PLK inhibits PLK activity.
- 10. A method according to any preceding claim wherein the PLK is PLK1.
- 11. A method according to any preceding claim wherein the putative modulator of PLK is useful in the prevention and/or treatment of a PLK related disorder.
- 12. A method according to claim 11 wherein the PLK related disorder is a proliferative disorder.
- 13. A method according to claim 12 wherein the proliferative disorder is selected from cancer, leukemia, glomerulonephritis, rheumatoid arthritis, psoriasis and chronic obstructive pulmonary disorder.
- 14. An assay for a candidate compound capable of modulating PLK, said assay comprising the steps of:
- (a) contacting said candidate compound with PLK;
- (b) detecting whether said candidate compound forms associations with one or more amino acid residues corresponding to PLK amino acid residues L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.
- 15. An assay according to claim 14 wherein said candidate compound is selected by performing rational drug design with a 3-dimensional model of PLK in conjunction with computer modelling.

får – Andrick u<mark>tkating</mark> ti slånd in om åf mille stating til lekende ommeller i Statining utfilmer i like statining til slånd om åf mille inner i skalle stating til stating. Som

- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol; 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an assay for identifying candidate compounds capable of modulating PLK.

- 18. Use according to claim 17 wherein the assay is a competitive binding assay.
- 19. Use according to claim 17 or claim 18 wherein the assay comprises contacting a candidate compound with PLK in the presence of a compound selected from:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, and detecting any change in the interaction between (i), (ii) or (iii) and PLK.

- 20. A PLK modulator identified by the method of any one of claims 1 to 13, or a candidate compound identified by an assay according to any one of claims 14 to 19.
- 21. A PLK modulator or candidate compound according to claim 20 wherein the PLK modulator inhibits PLK activity.
- 22. A PLK modulator or candidate compound according to claim 20 or claim 21 which is capable of forming a covalent bond with the amino acid residue corresponding to PLK amino acid residue C67.

- 23. A PLK modulator or candidate compound according to claim 22 which is capable of forming a disulfide bond with the thiol group of the amino acid residue corresponding to PLK amino acid residue C67.
- 24. A PLK modulator or candidate compound according to claim 20 which is an irreversible antagonist.
- 25. A pharmaceutical composition comprising a PLK modulator or candidate compound according to any one of claims 20 to 24 and a pharmaceutically acceptable carrier, diluent, excipient or adjuvant or any combination thereof.
- 26. A method of preventing and/or treating a PLK related disorder comprising administering a PLK modulator or candidate compound according to any one of claims 20 to 24 and/or a pharmaceutical composition according to claim 25 wherein said PLK modulator, said candidate compound or said pharmaceutical, is capable of causing a beneficial preventative and/or therapeutic effect.
- 27. A method according to claim 26 wherein the PLK modulator or candidate compound is selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof:
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof.

22. Use of a PLE modulator according to any one of claims 20 to 24 in the presention of a matter section of a matter section.

- 30. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more modulators of PLK; and
- (d) preparing a quantity of said one or more PLK modulators.
- 31. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more PLK modulators; and
- (c) preparing a pharmaceutical composition comprising said one or more identified PLK modulators.
- 32. A process comprising the steps of:
- (a) performing the method according to any of claims 1 to 13, or an assay according to any one of claims 14 to 19;
- (b) identifying one or more PLK modulators;
- (c) modifying said one or more PLK modulators; and
- (d) optionally preparing a pharmaceutical composition comprising said one or more PLK modulators.
- 33. A computer for producing a three-dimensional representation of PLK wherein said computer comprises:
- (a) a computer-readable data storage medium comprising a data storage material encoded with computer-readable data, wherein said data comprises the structure co-ordinates of Table 2;
- (b) a working memory for storing instructions for processing said computerreadable data;
- (c) a central-processing unit coupled to said working memory and to said computerreadable data storage medium for processing said computer-machine readable data into said three-dimensional representation; and

- (d) a display coupled to said central-processing unit for displaying said threedimensional representation.
- 34. A machine-readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by at least a portion of the structure co-ordinates of Table 2.
- 35. Use of the computer of claim 33 or the machine readable data storage medium of claim 34 to predict the structure and/or function of potential modulators of PLK.
- 36. Use of at least a portion of the structure co-ordinates of Table 2 to screen for modulators of PLK.
- 37. Use of at least a portion of the structure co-ordinates of Table 2 to solve the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK.
- 38. Use according to claim 37 wherein the structure of the crystalline form of any other protein with significant amino acid sequence homology to any functional domain of PLK is solved using molecular replacement.
- 39. Use of at least a portion of the structure co-ordinates of Table 2 in molecular design techniques to design, select and synthesise modulators of PLK.
- 40. Use of at least a portion of the structure co-ordinates of Table 2 in the development of compounds that can isomerise to reaction intermediates in the chemical reaction of a substrate or other compound that hinds to PLE.

- 42. A method of treating a proliferative disorder, said method comprising administering to a subject in need thereof a compound selected from the following:
- 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethylthiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK such that said proliferative disorder is treated.

- 43. A method of treating a proliferative disorder comprising inhibiting PLK by administering to a subject in need thereof, a therapeutically effective amount of a compound selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that treatment of the proliferative disorder occurs.

- 44. A method of treating a PLK dependent disorder in a subject in need thereof, said method comprising administering to said subject a compound selected from the following:
- 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2-amino-4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, in an amount sufficient to inhibit PLK.

- 45. A method according to claim 45 wherein the PLK dependent disorder is a disorder associated with increased PLK activity.
- 46. A method according to claim 44 or claim 45 wherein the disorder is cancer.
- 47. A method of inhibiting PLK in a cell comprising contacting said cell with an amount of a compound selected from the following:
- (i) 5'-thioadenosine, or a derivative thereof;
- (ii) staurosporine, or a derivative thereof; and
- (iii) 4-[4-(4-methyl-2-methylaminothiazol-5-yl)-pyrimidin-2-ylamino]-phenol, 4-[4-(2,4-dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol or 4-[4-(2-amino-4-methyl thiazol-5-yl)-pyrimidin-2-ylamino]-phenol;

or a pharmaceutically acceptable salt thereof, such that PLK is inhibited in said cell.

- 48. A method according to claim 47 wherein the cell is a cancer cell.
- 49. A fragment of PLK, or a homologue, mutant, or derivative thereof, comprising a ligand binding domain, said ligand binding domain being defined by the amino acid residue structural coordinates selected from one or more of the following: L59, G60, C67, A80, K82, L130, C133, R135, F183 and D194.
- 50. A fragment of PLK, or a homologue, mutant or derivative thereof, according to claim 49 which corresponds to a portion of the structure co-ordinates of Table 2.
- 51. Use of a fragment of PLK, or a homologue, mutant, or derivative thereof, according to claim 50 or 51 in an assay for identifying candidate compounds capable of modulating PLE.

- 53. An assay substantially as described herein, and with reference to the accompanying drawings.
- 54. A PLK modulator substantially as described herein, and with reference to the accompanying drawings.
- 55. A process substantially as described herein, and with reference to the accompanying drawings.

158 ABSTRACT

METHOD

The present invention relates to a homology model for PLK, and the use thereof in assays for the indentification of small molecule PLK modulators.

The invention further relates to PLK modulators identified by said assays, and their use in the treatment of PLK-related disorders such as proliferative disorders.

```
------MS-AAVTAGKLARA----PADPGKAGVPGVAAPG---APAAAP
sp | P53350 |
          {\tt MELLRTITYQPAASTKMCEQALGKGCGADSKKKRPPQPPEESQPPQSQAQVPPAAPHHHH}
sp Q9NYY3
          -----PPAGPG---PPPSALRGPELEMLAGL
sp Q9H4B4
         PAKEIP----EVLVDPRSRRRYVRGRFLGKGGFAKCFEISDADTKEVFAGKIVPKSLLLK
sp | P53350 |
          HHSHSGPEISRIIVDPTTGKRYCRGKVLGKGGFAKCYEMTDLTNNKVYAAKIIPHSRVAK
sp Q9NYY3
          PTSDPG----RLITDPRSGRTYLKGRLLGKGGFARCYEATDTETGSAYAVKVIPQSRVVK
sp Q9H4B4
                    .::.** : : * :*:.******:* :*
8p | P53350 | PHQREKMSMEISIHRSLAHQHVVGFHGFFEDNDFVFVVLELCRRRSLLELHKRRKALTEP
          PHOREKIDKEIELHRILHHKHVVQFYHYFEDKENIYILLEYCSRRSMAHILKARKVLTEP
sp | Q9NYY3 |
          PHQREKILNEIELHRDLQHRHIVRFSHHFEDADNIYIFLELCSRKSLAHIWKARHTLLEP
sp|Q9H4B4|
          EARYYLRQIVLGCQYLHRNRVIHRDLKLGNLFLNEDLEVKIGDFGLATKVEYDGERKKTL
sp | P53350 |
          EVRYYLRQIVSGLKYLHEQEILHRDLKLGNFFINEAMELKVGDFGLAARLEPLEHRRRTI
EP Q9NYY3
          EVRYYLRQILSGLKYLHQRGILHRDLKLGNFFITENMELKVGDFGLAARLEPPEQRKKTI
sp Q9H4B4
          sp|P53350| CGTPNYIAPEVLSKKGHSFEVDVWSIGCIMYTLLVGKPPFETSCLKETYLRIKKNEYSIP
          {\tt CGTPNYLSPEVLNKQGHGCESDIWALGCVMYTMLLGRPPFETTNLKETYRCIREARYTMP}
sp Q9NYY3
sp|Q9H4B4| CGTPNYVAPEVLLRQGHGPEADVWSLGCVMYTLLCGSPPFETADLKETYRCIKQVHYTLP
          ******::**** ::**. * *:*::**:* * * *****: **** *:: .*::*
sp|P53350| KHINPVAASLIQKMLQTDPTARPTINELLNDEFFTSGYIPARLPIT-CLTIP-----PR
          SSLLAPAKHLIASMLSKNPEDRPSLDDIIRHDFFLQGFTPDRLSSSCCHTVPDFHLSSPA
sp Q9NYY3
sp Q9H4B4 | ASLSLPARQLLAAILRASPRDRPSIDQILRHDFFTKGYTPDRLPISSCVTVPDLTPPNPA
                * *: :* .* **:::::..:** .*: * **. : * *:*
           ---FSIAPSSLDPSNRK-------P----LTVLNKGLENP----LPER-----
sp | P53350 |
          KNFFKKAAAALFGGKKDKARYIDTHNRVSKEDEDIYKLRHDLKKTSITQQPSKHRTDEEL
sp Q9NYY3
sp|Q9H4B4| RSLFAKVTKSLFVRKKK-----SKNHAQERDE-VSGLVSGLMRTSVGHQDAR-----
                .. :*
          --PRE----KEEPVVR-ET------GEVVDCHLSDMLQQLHSVNASKPSERGLVR
sp | P53350 |
sp Q9NYY3 | QPPTTTVARSGTPAVENKQQIGDAIRMIVRGTLGSCSSSECLEDSTMGSVADTVARVLR
sp Q9H4B4 --PEAPAASGPAPVSLVETAPEDSS---PRGTLASSGHG--FEEGLTVATVVESALCALR
                                        * : .. .
sp|P53350| --QEEAEDPACIP-----IFWVSKWVDYSDKYGLGYQLCDNSVGVLFNDSTRLILYN
          GCLENMPEADCIPKEQLSTS-FQWVTKWVDYSNKYGFGYQLSDHTVGVLFNNGAHMSLLP
BP Q9NYY3
sp Q9H4B4 NCIAFMPPAEQNPAPLAQPEPLVWFSEWVGFSNKFGFGYQLSSRRVAVLFNDGTHMALSA
                               Bp|P53350| DGDSLQYIERDGTESYLTVSSHPNSLMKKITLLKYFRNYMSEHLLKAGANITPREGDELA
sp Q9NYY3 DKKTVHYYAELGQCSVFPATDAPEQFISQVTVLKYFSHYMEENLMDGG-DLPSVTDIRRP
sp Q9H4B4 NRKTVHYNPTSTKHFSFSVGAVRRALQPQLGILRYFASYMEQHLMKGG-DLPSVEEVEVP
                                 . : :: :*:** **.::*:..* ::..
          : .:::*
sp|P53350| RLPYLRTWFRTRSAIILHLSNGSVQINFFQDHTKLILCP--LMAAVTYIDEKRDFRTYRL
SP Q9NYY3 R-LYLLQWLKSDKALMMLFNDGTFQVNFYHDHTKIIICSQNEEYLLTYINEDRISTTFRL
sp|Q9H4B4| APPLLLQWVKTDQALLMLFSDGTVQVNFYGDHTKLILSG-WEPLLVTFVARNRSACTYLA
                                                      :*::. . . *
              * * .:: .*::: : .:*:.*:*: ***: ***:*:.
sp | P53350 | SLLEEYGCCKELASRLRYARTMVDKLLSSRSASNRLKAS
sp Q9NYY3 TTLLMSGCSSELKNRMEYA----LNMLLQRCN-----
sp | Q9H4B4 | SHLRQLGCSPDLRQRLRYA----LRLLRDRSPA-----
                **. :* .*:.**
                                  .:* .*.
```


FIGURE 2

1	MGANVINGKI ARADADDGKAGVPGVAAPGAAAPDAKEIDEVI.VDP	47	bī'KI
1	• • • • • • • • • • • • • • • • • • • •	23	PKA
48	RSRRRYVRGRFLGKGGFAKCFEISDADIKEVFAGK	· 82	PLK1
24	::: :: . . .:: . KEDFLKKWESPAQNIAHIDQFERIKTIGIGSFGRVMLVKHKETGNHYAMK	73	PKA
83	IVPKSLILKPHQREKMSMEISIHRSLAHQHVVGFHGFFEDNDFVFVVLEL	132	PLK1
74	:. :: .	123	PKA ·
133	CRRSILELHKRRKALITEPEARYYLRQIVIGCQYLHRNRVIHRDLKICNL	182	PLK1
124	VPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENL	173	PKA.
183	FINEDLEVKIGDFGLATKVEYDGERKKILGGIPNYIAPEVLSKKGHSFEV	232	PLK1
174	.:::::. . .: : . . : :: LIDQQGYIQVIDFGFAKRVKCRIWILCGIPEYLAPEIILSKGYNKAV	220	PKA 🎎
233	DVWSIGCIMYTLLVGKPPFETSCLKETYLRIKKNEYSIPKHINPVAASLI	282	PLK1
221	. :: .:: .:. . : .: .: .: .: : DWWAIGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLL	270	PKA
283	QKMLQIDPIARPTINELLNDEFF-TSGYIPARLPITCLTIPPRFS	326	PLK1
271	:.: :: ::: ::: : . RNLLQVDLTKRFCNLKNGVNDIKNHKWFATIDWIAIYQRKVEAPFIPKFK	320	PKA ·
I			

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.