Term 3 Week 5 Handout Solutions

Euler's Criterion

1. We observe that

$$\left(\frac{p-a}{p}\right) = \left(\frac{-a}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{a}{p}\right)$$

since $p - a \equiv -a \pmod{p}$. If $p \equiv 1 \pmod{4}$ then (-1|p) = 1, and so

$$\left(\frac{p-a}{p}\right) = \left(\frac{a}{p}\right).$$

If $p \equiv 3 \pmod{4}$ then (-1|p) = -1, and so

$$\left(\frac{p-a}{p}\right) = -\left(\frac{a}{p}\right).$$

This completes the proof.

2. Let P=(p-1)/2 and α be the index of a for some primitive root of p that we shall call g. From Fermat's Little Theorem we know that either

$$a^P \equiv 1 \pmod{p}$$

or

$$a^P \equiv -1 \pmod{p}$$
;

the goal here is to prove that the distinction between the two cases is exactly the distinction between (a|p) = 1 and (a|p) = -1.

First consider the case where (a|p)=1. Then $a^P\equiv g^{\alpha P}\pmod{p}$. Since (a|p)=1, it follows that α is even and therefore that αP is a multiple of p-1. We know that g raised to any multiple of p-1 is unity, so

$$a^P \equiv 1 \equiv \left(\frac{a}{p}\right) \pmod{p}.$$

If (a|p)=-1, then α is odd, and so αP cannot be a multiple of p-1. Since g is a primitive root, the only powers of g that are congruent to unity are the multiples of p-1, and so $g^{\alpha P}\not\equiv 1$; hence

$$a^P \equiv g^{\alpha P} \equiv -1 \equiv \left(\frac{a}{p}\right) \pmod{p}.$$

This completes the proof of Euler's Criterion.

3. Since p = 4k + 1, we have p - 1 = 4k. By Wilson's Theorem

$$(p-1)! \equiv (4k)! \equiv -1 \pmod{p}.$$

Notice that $4k \equiv -1$, $4k - 1 \equiv -2$, $4k - 2 \equiv -3$, and so on, all the way down to $2k + 1 \equiv -2k$, so we actually have

$$1 \times (-1) \times 2 \times (-2) \times \dots \times 2k \times (-2k) \equiv -1 \pmod{p}$$

which becomes

$$(2k)!^2 \equiv -1 \pmod{p}.$$

The solution to the congruence is therefore $x \equiv \pm (2k)! \pmod{p}$.