

OPTICS

Corbis.com

两光波在空间相遇形成稳定的强弱分布,称为干涉

研究对象:光的本性、光现象、光与物质的相互作用。

光学发展经历了四个阶段

- 一、几何光学时期(17-18世纪) 光的直线传播规律、光学仪器、光的本性。
- 二、波动光学(19世纪初) 光的电磁性质和传播规律,特别是干涉、衍射、 偏振的理论与应用
- 三、量子光学时期(19世纪末-20世纪初) 以光的量子理论为基础,研究光与物质的相互作用 光的波粒二象性、光子
- 四、现代光学时期(20世纪60年代末)激光

光是一种电磁波

实验基础

波动性 光的干涉、衍射实验

横 波 光的偏振实验

本章内容分三大部分

光的干涉

光的衍射

光的偏振

现象、原理及应用

波动光学

研究对象: 光的传播、光与物质的相互作用的规律

理论基础: 麦克斯韦电磁理论——光是某一波段的电磁波

可见光的频率范围

 $7.8 \times 10^{14} \sim 3.9 \times 10^{14} \text{Hz}$

可见光的波长范围

380~760nm

波动光学

光是一种电磁波

光矢量用**E**表示,它在引起人眼视 觉和底片感光上起主要作用。

真空中的光速 $c = 3 \times 10^8 \text{m/s}$

波动性

干涉

薄膜干涉

衍射

圆孔衍射

横波

偏振

偏光3D眼镜

6.1 光源的发光机制

(The luminous principle of light source)

6.1.1 光源的发光机制 相干光

光源的发光是大量的分子或原子进行的一种微观过程 普通光源发光特点:

- 1) 自发辐射(spontaneous radiation);
- 2)每一次发光持续时间很短(τ < 10-8s)

普通光源发出的两束光在空间相遇很难产生相干叠加,这样的光称为非相干绝(noncoherent light)。

激光光源发光特点:

- 1)受激辐射(stimulated radiation);
- 2)每一次发光持续时间较长

激光光源发出的两束光在空间相遇能产生相干叠加,这样的光称为相子光(coherent light)。

光的干涉——自然界中的光的干涉现象

雨后油膜

昆虫的翅膀

肥皂泡

光的干涉与光的相干性

光的干涉是指两列或几列光波在空间相遇时相互叠加, 在某些区域始终加强,在另一些区域则始终消弱, 形成稳定的强弱分布的现象。

相干光: 能产生相干叠加的两束光称为相干光 相干条件: 振动频率相同、振动方向相同、相位差恒定

这两列波在P点的振动分别为:

$$E_1 = E_{10} \cos \left(\omega t - \frac{2\pi}{\lambda} r_1 + \varphi_1\right)$$

$$E_2 = E_{20} \cos \left(\omega t - \frac{2\pi}{\lambda} r_2 + \varphi_2\right)$$

$$E_1 = E_{10} \cos \left(\omega t - \frac{2\pi}{\lambda} r_1 + \varphi_1\right)$$

由波的叠加原理可知在P点处合振动振幅的平方为

干涉项

$$E_2 = E_{20} \cos \left(\omega t - \frac{2\pi}{\lambda} r_2 + \varphi_2\right)$$

$$E^{2} = E_{10}^{2} + E_{20}^{2} + \frac{2E_{10}E_{20}\cos\Delta\varphi}{\lambda}$$

$$\Delta\varphi = \varphi_{2} - \varphi_{1} - \frac{2\pi}{\lambda}(r_{2} - r_{1})$$

相干叠加 (干涉项不为零)

若 $\Delta \varphi$ 恒定(即不随时间变化),有 $\overline{I} = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\Delta \varphi$

相干条件

振动频率相同, 振动方向相同, 相位差恒定

$$\Delta \varphi = \begin{cases} \pm 2k\pi & (k = 0,1,2,\cdots) \bar{I}$$
 取最大,干涉相长
$$(k = 0,1,2,\cdots) \bar{I}$$
 取最小,干涉相消

非相干叠加(干涉项在一个周期内的平均值为零)

若 $\Delta \phi$ 不恒定,即 $\Delta \phi$ 在杂乱变化(因原子发光的间隙性和随机性),有

$$\overline{\cos \Delta \varphi} = 0$$

单频激光器具有很好的相干性,但在自然界中仍能观察到许多干涉现象,这是为什么?

怎样获得相干光?

将来自同一原子的同一次发光"一分为二"。

6.1.2 光程(optical path) 光程差(optical path difference)

设 φ_{01} 、 φ_{02} 分别为 s_1 、 s_2 光源的初相; A_1 、 A_2 分别为 s_1 、 s_2 在P点的振幅, λ_1 和 λ_2 为两波在 r_1 和 r_2 两段路程上介 质中的波长,则两波在P点的振动为

$$E_1 = A_1 \cos(\omega_1 t - \frac{2\pi r_1}{\lambda_1}) + \varphi_{01})$$

$$E_2 = A_2 \cos(\omega_2 t - \frac{2\pi r_2}{\lambda_2} + \varphi_{02})$$

两光波在空间某点P相遇, 讨论相遇点的光强分布。

P点的光振动合成矢量图

由波的叠加原理可知在相遇点P合振动的振幅平方为

$$A^{2} = A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2}\cos(\Delta \varphi)$$

光强分布为:
$$I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\Delta \varphi)$$

光强分布与相位差 $\Delta \varphi$ 有关

$$\Delta \varphi = (\varphi_{01} - \varphi_{02}) + (\frac{2\pi r_2}{\lambda_2} - \frac{2\pi r_1}{\lambda_1}) = (\varphi_{01} - \varphi_{02}) + \frac{2\pi}{\lambda}(n_2 r_2 - n_1 r_1)$$

其中 λ 为两波在真空中的波长,令 $\delta = n_2 r_2 - n_1 r_1$

定义:光在媒质中通过的路程(r)与媒质折射率(n)的 乘积(nr)称为光程 $(optical\ path)$

 $\delta = n_2 r_2 - n_1 r_1$ 称为光程差(optical path difference)

当
$$\varphi_{01}$$
= φ_{02} 时

光程差与相位差之间关系:

$$\Delta arphi = rac{2\pi \delta}{\lambda}$$

薄透镜的等光程性(记住)

透镜成象均为亮点表明各条光线在会聚点相位相同,也就是各条光线光程相等。

重要结论:透镜可以改变光线的传播方向,但对物、象间各光线不会引起附加的光程差。

6.2 分波阵面的干涉

(The interference of dividing wave front)

6.2.1 杨氏双缝干涉

(Young double-slit interference)

1. 实验装置(1801年)

托马斯· 杨 (Thomas Young) 1773-1829,英国 物理学家

2. 干涉条纹分析

设 φ_{01} 、 φ_{02} 分别为 s_1 、 s_2 相干光的初相; A_1 、 A_2 分别为 s_1 、 s_2 在P点的振幅。假设 A_0 = A_1 = A_2 , φ_{01} = φ_{02}

两光波在P点处的光强: $I=A^2=2A_0^2+2A_0^2\cos(\Delta\varphi)$

1) 干涉条纹的光程差分布

P点处的相位差:
$$\Delta \varphi = \frac{2\pi}{\lambda}(r_2 - r_1)$$

$$\begin{cases} \Delta \varphi = \pm 2k\pi & k=0,1,2,...$$
明纹中心 $\Delta \varphi = \pm (2k-1)\pi & k=1,2,...$ 暗纹中心

$$\Delta \varphi = \pm (2k-1)\pi$$
 k=1,2,... 暗纹中心

P点处的光程差为

$$\delta = r_2 - r_1 = \pm k\lambda$$

$$\delta = r_2 - r_1 = \pm (2k - 1) \frac{\lambda}{2}$$
 $k=1,2,...$ 暗纹中心

 λ 为真空中的波长,k称为级数。

2) 干涉条纹的位置分布

$$\delta = r_2 - r_1 \approx d \cdot \sin \theta$$
当 θ 限小时(< 5°)
 $\sin \theta \approx \tan \theta = x/D$

$$x = \pm k \frac{D}{d} \lambda$$

$$k=0,1,2,...$$
明纹中心

$$x = \pm (2k-1) \frac{D}{d} \frac{\lambda}{2}$$
 $k = 1, 2, 3, ...$ 暗纹中心

$$k=1,2,3,...$$
暗纹中心

1)重要结论:

光程差相等的点构成同一条干涉条纹; 相邻两条明(或暗)纹之间光程差的变化为λ。

2)任意二条相邻明(暗)纹之间距离:

$$\Delta x = x_{k+1} - x_k = \frac{(k+1)D\lambda}{d} - \frac{kD\lambda}{d} = \frac{D}{d}\lambda$$

 Δx 与k无关,表明条纹是等宽等间距明暗相间平行条纹,x 越大级数越高。

d不可过大,因为d 过大条纹过密人眼分辫不了就看不到干涉现象(d 约几mm 到10⁻¹mm)

3)入射光为白色光:

a)各级明纹(不含零级)都是彩色条纹

各级明纹不同波长对应的位置:
$$x = k \frac{D}{d} \lambda$$

- b)中央零级明纹是白色条纹
- c)高级次明纹可出现重合

各级明纹的宽度:
$$\Delta x = k \frac{D}{d} \Delta \lambda$$

例1:己知d=0.1mm, D=20cm 入射光波长 \(\lambda = 5460\rm{A}\) 求 1)第一级喑纹位置 2)如某种光照射此装置,测得第 二级明纹之间距离为5.44mm, 此光波波长? 3)如肉眼仅能分辩两条纹的间距为0.15mm, 现用

肉眼观察干涉条纹,双缝的最大间距?

解: 1)
$$x = \pm (2k-1)\frac{D}{d}\frac{\lambda}{2}$$
 取 $k = 1$

$$x_1 = \frac{D}{d} \frac{\lambda}{2} = \frac{20 \times 5460 \times 10^{-8}}{0.01 \times 2} = 5.46 \times 10^{-2} [\text{cm}]$$

2)
$$x = \pm k \frac{D}{d} \lambda$$
 $\Re k = 2$ $x_2 = \frac{5.44}{2} = 2.72 \text{[mm]}$

双缝间距必须小于0.728mm才能看到干涉条纹。

- 例2:杨氏双缝,d=0.5mm,D=25cm, $\lambda_1=4000$ Å, $\lambda_2=6000$ Å
 - 1)分别求出二种波相邻明(暗)纹间距Δx
 - 2)距中央明纹多远处首次重合?各为第几级条纹?

解:1)由条纹的间距公式
$$\Delta x = \frac{D}{d}\lambda$$

$$\Delta x_1 = \frac{D}{d} \lambda_1 = 2 \times 10^{-2} [\text{cm}] \quad \Delta x_2 = \frac{D}{d} \lambda_2 = 3 \times 10^{-2} [\text{cm}]$$

2)设在x处 λ_1 的 k_1 级与 λ_2 的 k_2 级首次重合,则有

$$x = k_1 \frac{D}{d} \lambda_1 = k_2 \frac{D}{d} \lambda_2 \qquad \therefore 2k_1 = 3k_2$$

取
$$k_1=3$$
,则 $k_2=2$ ∴ $x=k_2\frac{D}{d}\lambda_2=6\times10^{-2}$ [cm]

λ₂的第二级与 λ₁ 的第三级重合。

例3:杨氏双缝实验,用透明薄片挡住一个缝发现中央明纹移动了3.5个条纹,如入射光波长 λ =5500Å,薄片折射率n=1.4。

问: 1)该薄片增加了多少光程差? 2)该薄片厚度e=?

解1:1)如挡s₁,0级上移到P点处,即无薄片时的3.5级处。

无薄片, P点光程差: $r_2 - r_1 = 3.5\lambda$

加薄片, P点光程差: $r_2 - [r_1 + (n-1)e] = 0$

薄片增加的光程差:

$$(n-1)e = r_2 - r_1 = 3.5\lambda = 1.93 \times 10^{-6} [m]$$
 S₂

2)
$$e = \frac{3.5\lambda}{n-1} = 4.83 \times 10^{-6} [m]$$

解2:1)考察中心点的光程差

$$\delta = r - [r + (n-1)e] = -3.5\lambda$$

$$(n-1)e = 3.5\lambda = 1.93 \times 10^{-6} [m]^{S_2}$$

2)
$$e = \frac{3.5\lambda}{n-1} = 4.83 \times 10^{-6} [m]$$

(-3.5)

6.2.2 劳埃德镜(Lloyd mirror)与半波损失(half-wave loss)

光从光疏介质射向光密介质时,在正入射(即入射角为0°)或掠入射(即入射角为90°)的情况下,在二种介质界面处反射时相位发生π的突变,此现象称为半波损失。

薄膜干涉

油膜

肥皂膜

照相机的膜

蓝闪碟

银胸丝冠鸟

孔雀

斑喉伞鸟

薄膜 干涉

薄膜的等倾干涉

薄膜等厚干涉 劈尖干涉 牛顿环

6.3 分振幅干涉

(The interference of dividing amplitude)

6.3.1 等倾干涉(equal inclination interference)

(25)

2.干涉条纹分析

1) 点光源照射时干涉条纹的分布

一束光照射在薄膜上

光束1:A点反射的光

光束2: 从A-C-B射出的光

1、2二束光的光程差为:

$$\delta = n_2(\overline{AC} + \overline{CB}) - n_1 \overline{AD} + \delta'$$

δ为附加光程差

 $\delta = \lambda/2 \text{ or } 0$,由周围的介质折射率决定(考虑有没有由于反射引起的半波损失)。

入射角:i,折射角:r

$$\begin{cases}
\overline{AC} = \overline{CB} = \frac{e}{\cos r} \\
\overline{AD} = \overline{AB} \sin i \\
\overline{AB} = 2e \tan r \\
n_1 \sin i = n_2 \sin r
\end{cases}$$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta'$$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = k\lambda$$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = (2k+1)\frac{\lambda}{2}$$
 $k=0,1,\dots$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta'$$

倾角 i 相同, δ 也相同,而 δ 相同的点构成同一级干涉条纹,故称为等概条纹(equal inclination fringes)。

2) 面光源照明时干涉条纹的分布

分振幅干涉,使用面光源时, 每个点光源产生的一组同心 圆条纹彼此互相重叠。

 s_1 、 s_2 、 s_3 发出的光只要入射角 i 相同,都将会聚在同一个圆环上。

等倾条纹照相

讨论:
$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = k\lambda$$

- 1) i 越大 $\Longrightarrow \delta$ 越小 所以越向外,条纹级次k越小;中心处级次最大。
- 2)薄膜厚度变化,条纹有何变化?

- e 增加时,条纹向外移,条纹从中央"冒"出
- e减少时,条纹向里移,条纹从中央"缩"进

思考:移动一个条纹,薄膜厚度 e 改变多少?

设观察中心处(i=0), k和k+1级对应厚度为 e_k 和 e_{k+1}

$$2n_2e_k + \delta' = k\lambda \qquad 2n_2e_{k+1} + \delta' = (k+1)\lambda$$

介质膜:
$$\Delta e = e_{k+1} - e_k = \frac{\lambda}{2n_2}$$
 空气膜: $\Delta e = \frac{\lambda}{2}$

3)白色光入射:

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = k\lambda$$

 n_1,n_2,e 保持不变时, k相同, λ 越大, i 越小,

各级明纹为彩色条纹;对同级而言,红色在内紫色在外。

3.透射光的干涉

1光束:ACD $(n_2 > n_1)$

2光束:ACBE

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = k\lambda$$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \delta' = (2k+1)\frac{\lambda}{2} \quad k=0,1,2,\dots$$

讨论:透射光也是一组明暗相间的圆形等倾条纹对应某入射角 i:反射光明暗条纹与透射光的互补

4.应用:镀增透(反)膜

应用:增透(反)膜

在光学仪器上镀膜, 使某种波长的反射光或透射光因干涉而减少或加强, 以提高仪器反射率或透射率

增透膜 $(n_1 < n < n_2)$:当单色光垂直入射薄膜表面时,在上下表面反射形成相干光2、3,都有半波损失,其光程差为

$$\delta = 2ne = (2k+1)\lambda/2$$
 $k = 0,1,2,3...$

两束光相干减弱,因2、3光强有差别,故不会完全相消,使 反射光减弱,由能量守恒,透 射光必定增强。

镜片左边涂有抗反射涂层 右边则没有抗反射涂层

例4: 黄光 λ =600nm 垂直照射在平行平面肥皂膜上 $(n_2=1.33)$ 如反射光恰好是第一级明纹,求肥皂膜的厚度 e? 黄光在肥皂膜内的波长。

解: 1)垂直入射
$$i=0^{\circ}$$
, $n_1=1$, $n_2=1.33$, $k=1$

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \frac{\lambda}{2} = k\lambda$$

$$2n_2e + \frac{\lambda}{2} = \lambda$$

$$e = \frac{\lambda}{4n_2} = \frac{600 \times 10^{-9}}{4 \times 1.33} = 1.13 \times 10^{-7} [m]$$

2)
$$\lambda' = \frac{\lambda}{n} = \frac{600}{1.33} = 451[\text{nm}]$$

例5: 有一层折射率为1.30的薄油膜,当观察方向与膜面法线方向夹角成 30° 时可看到从膜面反射来的光波长为5000Å问 1)油膜最薄厚度为多少? 2)如从膜面法线方向观察反射光波长为多少?

解:1)
$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \frac{\lambda}{2} = k\lambda$$

$$k=1,2,......$$
明

最薄厚度,取 k=1; i=30°

$$e_{\min} = \frac{(k-1/2)\lambda}{2\sqrt{n_2^2 - n_1^2 \sin^2 i}} = 2083.3(k-1/2) = 1041.6[\text{Å}]$$

2)
$$i=0$$
 $2n_2 e_{\min} + \frac{\lambda}{2} = k\lambda$

$$\lambda = \frac{2n_2 e_{\min}}{k - 1/2} = \frac{2798.16}{k - 1/2} \qquad k=1 \quad \lambda \approx 5416 \text{ Å}$$

例6: 透镜(n_3 =1.5)表面涂有增透膜(MgF_2 : n_2 =1.38) 为了让人眼最敏感的黄绿光 λ =550nm 尽可能透过, 镀的膜厚度为多少?

解一: 反射光相消(有二次半波损失)

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} = (2k+1)\frac{\lambda}{2}$$

k=0,1,2,......暗

$$n_1 = 1$$
 $n_2 = 1.38$
 $n_3 = 1.5$

$$2n_2e=(2k+1)\frac{\lambda}{2}$$

i=0

$$e = \frac{(2k+1)\lambda}{4n_2} = (2k+1)\times 9.96\times 10^{-8} [\text{m}] \ k=0,1,2,....$$

解二: 透射光加强(有一次半波损失)

$$\delta = 2e\sqrt{n_2^2 - n_1^2 \sin^2 i} + \frac{\lambda}{2} = k\lambda$$

$$i=0,$$

$$\delta = 2n_2e + \frac{\lambda}{2} = k\lambda$$
 $k=1,2,...$

$$e = \frac{(2k-1)\lambda}{4n_2} = (2k-1)\times 9.96\times 10^{-8} [\text{m}] \ k=1,2,...$$

6.3.2等厚干涉(interference of equal thickness)

劈尖薄膜

2.干涉条纹分析

$$\delta = n(\overline{AB} + \overline{BC}) - n_1(\overline{AP} - \overline{CP}) + \delta'$$

$$\delta \approx 2ne \cos r + \delta'$$

$$=2e\sqrt{n^2-n_1^2\sin^2i}+\delta'$$

在正入射(即垂直入射)时, i=0

$$\delta = 2ne + \delta'$$

 $\delta = \lambda/2$ or 0,由周围的介质折射率决定。

$$\delta = 2ne + \delta' = k\lambda$$

$$\delta = 2ne + \delta' = (2k+1)\frac{\lambda}{2}$$
 $k=0,1,2,...$ 暗纹中心

$$k=0,1,2,...$$
暗纹中心

$$\delta = 2ne + \delta'$$

- 1)劈尖上厚度 e 相等处,上、下表面反射光的光程差 δ 相等,这些 δ 相等的点构成同一级干涉条纹,故称为 等厚条纹(equal thickness fringes)。
- 2)棱边: e = 0, $\delta' = \lambda/2$ 是暗纹; $\delta' = 0$ 是明纹
- 3)相邻明(暗)纹对应的厚度之差 Δe

$$\Delta e = e_{k+1} - e_k$$

(1)

$$2ne_{k+1} + \delta' = (k+1)\lambda$$

(2)

$$2ne_k + \delta' = k\lambda$$

(3)

由上面三式解得:

$$\Delta e = \frac{\lambda}{2n}$$

(介质劈)

$$\Delta e = \frac{\lambda}{2}$$
 (空气

4)相邻明(暗)纹之间距离L: $L\sin\theta = \frac{\lambda}{2n}$

$$L = \frac{\lambda}{2n \sin \theta}$$
 (介质劈)

$$L = \frac{\lambda}{2\sin\theta}$$
 (空气劈)

- a)L与k无关,所以是等宽等间距明暗相间平行条纹 b) λ 相同, θ 大则L小(条纹密)
- 思考: 1)上玻璃片向上(下)平移, 条纹如何变化?
 - 2) 伊变大(小)条纹如何变?

$$\delta = 2ne + \frac{\lambda}{2}$$

$$\delta = 2ne + \frac{\lambda}{2}$$
2) 棱边 $e = 0$ $\delta = \lambda/2$ 暗纹

3) 相邻明(暗)纹间距L

$$k$$
 级明纹 $2ne_k + \frac{\lambda}{2} = k\lambda$

$$k+1$$
级明纹 $2ne_{k+1} + \frac{\lambda}{2} = (k+1)\lambda$

$$e_{k+1} - e_k = \frac{\lambda}{2n}$$

$$e_{k+1} - e_k = \frac{\lambda}{2n}$$

$$L = \frac{\lambda}{2n\sin\theta}$$

$$L = \frac{\lambda}{2n\theta}$$

$$L = \frac{\lambda}{2n\theta}$$

(1)L与k无关,条纹等间距

(2)
$$L \propto \lambda$$

- (3) $L \propto \frac{1}{\theta}$ $\theta \uparrow , L \downarrow$ 条纹变密
- (4) $L \propto \frac{1}{n}$ n 越大条纹变密

4) 条纹动态分析

$$L = \frac{\lambda}{2n\theta}$$

$$\delta = 2ne + \frac{\lambda}{2}$$

(1)n、 λ 不变, θ ↓ L ↑ 条纹向远离棱边的方向运动

(2) e 均匀上升,等厚线向棱边移动

3.应用

1)精确测量:

$$L = \frac{\lambda}{2n\sin\theta}$$

- ▲测波长: 已知 θ 、n, 测L 可得 λ
- ▲测折射率: 已知 θ 、 λ , 测L 可得n
- ▲测细小直径、厚度、微小变化:

待测样品受热膨胀,条纹向右移; 如移过N个条纹,样品伸长多少?

$$\Delta x = N \frac{\lambda}{2}$$

2)检验光学玻璃质量

待测工件表面有什么缺陷?

最多凸了多少?

$$\Delta h = l \sin \theta = \frac{l}{L} \frac{\lambda}{2}$$

例7: 测微小角度:玻璃劈, 折射率n=1.52, $\lambda=5893$ Å的钠光垂直照射玻璃劈, 测得相邻暗纹之间距离为L=0.25cm 求劈角 θ

$$\delta_{k+1} = 2ne_{k+1} + \frac{\lambda}{2} = [2(k+1)+1]\frac{\lambda}{2}$$
 (2)

$$\Delta e = e_{k+1} - e_k = \frac{\lambda}{2n}$$

$$\Delta e = L \sin \theta = \frac{\lambda}{2n}$$

$$\sin \theta = \frac{\lambda}{2nL} = 7.75 \times 10^{-5} \quad \theta \approx 7.75 \times 10^{-5} \text{ [rad]}$$

例8: 硅(半导体元件),表面有一层氧化硅(n_2 =1.5),测其厚度e, 削成斜面,用钠光灯(λ =5893Å)垂直照射看到第5个条纹,求:e=?

 n_1

 $den n_3$

 $n_1 < n_2 < n_3$

解:
$$\delta = 2n_2e = k\lambda$$
 $k=0,1,2,...$ 明纹
二次半波损失,所以光程差中
无 $\lambda/2$,底边 $(e=0)$ 为明纹.

取 k=4

$$e = \frac{k\lambda}{2n_2} = \frac{4 \times 5893 \times 10^{-10}}{2 \times 1.5} = 7.857 \times 10^{-7} [\text{m}]$$

 $e = 0.78[\mu m]$

思考: $如 n_1 > n_2 > n_3$ 如何求解? $u n_1 < n_2 > n_3$ 如何求解?

- 例9: 两平板玻璃之间形成一个 $\theta=10^{-4}$ rad的空气劈尖,若用 $\lambda=600$ nm 的单色光垂直照射。求:
 - 1)第15条明纹距劈尖棱边的距离;
 - 2)若劈尖充以液体(n=1.28)后,第15条明纹移动了多少?
- 解: 1)设第k条明纹对应的空气厚度为 e_k

曲
$$\delta = 2e_k + \frac{\lambda}{2} = k\lambda$$

$$e_{15} = \frac{2 \times 15 - 1}{4} \times 600 \times 10^{-9}$$

$$= 4.35 \times 10^{-6} [m]$$

$$\therefore L_{15} = \frac{e_{15}}{\sin \theta} \approx \frac{e_{15}}{\theta} = 4.35 \times 10^{-2} [\text{m}]$$

2)第15条明纹向棱边方向移动(为什么?)

设第15条明纹距棱边的距离为 L_{15} ',所对应的液体厚度为 e_{15} '

因空气中第15条明纹对应的光程差等于液体中第15条明纹对应的光程差,有

$$2e_{15} + \frac{\lambda}{2} = 2ne'_{15} + \frac{\lambda}{2}$$
$$\therefore e'_{15} = \frac{e_{15}}{n}$$

$$\Delta L = L_{15} - L'_{15}$$

$$= \frac{e_{15} - e'_{15}}{\theta} = 9.5 \times 10^{-3} [\text{m}]$$

6.3.3 牛顿环(Newton rings)

1.观察牛顿环装置

R一平凸透镜半径

o-平凸透镜与 平晶的接触点

相当于劈尖干涉

top view, looking down:

2.干涉条纹分析

空气劈:

$$\mathcal{S}=2e+rac{\lambda}{2}=k\lambda$$

$$\delta = 2e + \frac{\lambda}{2} = (2k+1)\frac{\lambda}{2}$$

k=0,1,2,.....暗纹中心

3.牛顿环干涉条纹的分布特点

1)中心接触点:

$$e=0, \delta'=\lambda/2$$
 是暗纹;

2)明暗纹位置(环半径)

$$r^2 = R^2 - (R - e)^2 = 2R \cdot e - e^2 \approx 2R \cdot e$$

 $e = r^2/2R$ 代入明(喑)纹式中化简得:

$$r = \sqrt{\frac{(2k-1)R\lambda}{2}}$$

$$r = \sqrt{kR\lambda}$$

$$k=0,1,2,....$$
暗纹中心

牛顿环是同心圆环,条纹从里向外逐渐变密,中心干涉级次最低。

例10: 如图为观察牛顿环的装置,平凸透镜的半径为R=1m的球面; 用波长 $\lambda=500$ nm的单色光垂直照射。 求(1)在牛顿环半径 $r_m=2$ mm范围内能见多少明环?

(2)若将平凸透镜向上平移 e_0 = 1μ m最靠近中心o处的明环是平移前的第几条明环?

解: (1) 第k条明环半径为

$$r=\sqrt{\frac{(2k-1)R\lambda}{2}}, k=1,2,\cdots$$

令
$$r=r_m$$
,:. $k=8.5$ 有8条明环

$$\frac{2ne_0}{\lambda} = \frac{2 \times 1 \times 1 \times 10^{-6}}{5 \times 10^{-7}} = 4$$
 最中间为平移前的第5条

6.3.4 迈克尔逊干涉仪(Michelson interferometer)

1.迈克尔逊干涉仪构造

Michelson干涉仪产生的背景: 寻找以太(ether)

2. Michelson干涉仪的干涉条纹分析

1)若M₁与M₂′平行 → 等倾条纹

若用面光源,须加一透镜L 在焦平面E上可见到干涉条纹。

若条纹从中央冒出来 $(或缩进去)N个条纹时,<math>M_1$ 平移的距离为

$$\Delta d = N \frac{\lambda}{2}$$

2)若M₁与M₂′有微小夹角 → 等厚条纹

 M_1 平移,则干涉条纹移动,若 M_1 平移 Δd 时,干涉条纹移过N条,则:

$$\Delta d = N \frac{\lambda}{2}$$

3.应用

- 1)测光谱线的波长,谱线宽度,精细结构
- 2)校准长度,测微小角度和微小位移,测折射率
- 3)标准米的长度:已知氪86(86Kr)波长λ=6057.802105Å

 M_1 镜移动的距离使得干涉圆环"冒出"或"吞进" N=3301527.46 个圆环时为1m。即:

$$1[m] = N \frac{\lambda}{2} = 3301527.46 \frac{\lambda}{2}$$

例11: 用钠光灯(λ =589.3nm)作光源,在迈氏干涉仪的一支光路上,放置一长度为140mm的玻璃容器,当以某种气体充入容器时,观察干涉条纹移动了180条求: 该种气体的折射率 n=?(空气的 n_0 =1.000276)

解:设1为玻璃容器的长度,用被测气体代替空气后

光程差的改变量为 $2(n-n_0)l$

$$2(n-n_0)l=N\lambda$$

$$n = n_0 + \frac{N\lambda}{2l} = 1.000655$$

