pofc2

September 19, 2024

0.1 Can mlp learn to classifier clean modulated signals just as well as convnet?

```
[27]: import pickle
  import matplotlib.pyplot as plt

[28]: with open('./Data/Unimpaired_diff_BW_mod22.pickle', 'rb') as f:
          data = pickle.load(f, encoding='latin1')
          print(data.keys())

          dict_keys(['oqpsk', 'gmsk', '64apsk', '2fsk', 'ook', '128apsk', '4fsk', '8psk', '16psk', 'bpsk', 'qam16', 'cpfsk', 'qam256', '256apsk', '16apsk', 'pam4', '32psk', 'gfsk', 'qam64', 'qpsk', '32apsk', 'qam32'])

[29]: oqpsk = data['oqpsk']
          plt.figure(1)
          plt.plot(oqpsk[0].T)
          plt.figure(2)
          plt.scatter(oqpsk[0][0], oqpsk[0][1], c='r')
```

[29]: <matplotlib.collections.PathCollection at 0x7ad99eb20a60>


```
[30]: gmsk = data['gmsk']
  plt.figure(1)
  plt.plot(gmsk[0].T)
  plt.figure(2)
  plt.scatter(gmsk[0][0], gmsk[0][1], c='r')
```

[30]: <matplotlib.collections.PathCollection at 0x7ad9a57c33a0>


```
[31]: bpsk = data['bpsk']
  plt.figure(1)
  plt.plot(bpsk[0].T)
  plt.figure(2)
  plt.scatter(bpsk[0][0], bpsk[0][1], c='r')
```

[31]: <matplotlib.collections.PathCollection at 0x7ad9a58d4a60>


```
[32]: qam16 = data['qam16']
    plt.figure(1)
    plt.plot(qam16[0].T)
    plt.figure(2)
    plt.scatter(qam16[0][0], qam16[0][1], c='r')
```

[32]: <matplotlib.collections.PathCollection at 0x7ad9a56e4220>


```
[33]: fsk4 = data['4fsk']
    plt.figure(1)
    plt.plot(fsk4[0].T)
    plt.figure(2)
    plt.scatter(fsk4[0][0], fsk4[0][1], c='r')
```

[33]: <matplotlib.collections.PathCollection at 0x7ad99af94130>


```
[34]: import torch
      import torch.nn as nn
      import torch.nn.functional as F
      from torch.utils.data import Dataset, DataLoader, random_split
      from torchvision.transforms import Compose, Lambda
      import numpy as np
      from sklearn.model_selection import StratifiedShuffleSplit
[35]: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
[36]: class IQDataset(Dataset):
          def __init__(self, data, labels, data_transform=None):
              self.data = data
              self.labels = labels
              self.data_transform = data_transform
          def __len__(self):
              return len(self.data)
          def __getitem__(self, idx):
              data = self.data[idx]
              labels = self.labels[idx]
              if self.data_transform:
                  data = self.data_transform(data)
              elif isinstance(data, np.ndarray):
                  data = torch.from_numpy(data).float()
              return data, labels
[37]: labels = data.keys()
      X = np.concatenate([data[label] for label in labels])
      y = np.concatenate([np.ones(data[label].shape[0]) *
                         i for i, label in enumerate(labels)])
      X.shape, y.shape
[37]: ((219912, 2, 128), (219912,))
[38]: sss = StratifiedShuffleSplit(n_splits=1, test_size=0.3, random_state=0)
      train_idx, test_idx = next(sss.split(X, y))
[39]: MLP_txfm = Compose([
          Lambda(lambda x: torch.tensor(x).float()),
          Lambda(lambda x: x.view(-1))
     ])
```

```
dataset = IQDataset(X[train_idx], y[train_idx], data_transform=MLP_txfm)
      train_dataset, val_dataset = random_split(
          dataset, [int(0.8 * len(dataset)), len(dataset) - int(0.8 * len(dataset))])
      train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
      val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
[40]: class MLP(nn.Module):
          def __init__(self, in_features, hidden_features, out_features):
              super(MLP, self).__init__()
              self.fc1 = nn.Linear(in_features, hidden_features)
              self.fc2 = nn.Linear(hidden_features, hidden_features)
              self.fc3 = nn.Linear(hidden_features, out_features)
          def forward(self, x):
              x = F.relu(self.fc1(x))
              x = F.relu(self.fc2(x))
              x = self.fc3(x)
              return x
[41]: class ConvNet(nn.Module):
          def __init__(self, in_channels, num_classes):
              super(ConvNet, self).__init__()
              self.conv1 = nn.Conv1d(in_channels, 16, 5, padding='same')
              self.conv2 = nn.Conv1d(16, 32, 5, padding='same')
              self.maxpool = nn.MaxPool1d(2) # 2x downsampling
              self.fc1 = nn.Linear(1024, num_classes) # 128 / 4 * 32 = 1024
          def forward(self, x):
              x = F.relu(self.conv1(x))
              x = self.maxpool(x)
              x = F.relu(self.conv2(x))
              x = self.maxpool(x)
              x = x.view(x.size(0), -1)
              x = self.fc1(x)
              return x
[42]: def train_one_epoch(model, optimizer, criterion, train_loader):
          model.train()
          avg_loss = 0.
          for data, labels in train_loader:
              data, labels = data.to(device), labels.to(device)
              optimizer.zero_grad()
              output = model(data)
              loss = criterion(output, labels.long())
```

```
loss.backward()
        optimizer.step()
        avg_loss += loss.item()
    return avg_loss / len(train_loader)
def validate(model, criterion, val_loader):
   model.eval()
    avg loss = 0.
    correct = 0
    with torch.no_grad():
        for data, labels in val_loader:
            data, labels = data.to(device), labels.to(device)
            output = model(data)
            avg_loss += criterion(output, labels.long()).item()
            pred = F.softmax(output, dim=-1).argmax(dim=1, keepdim=True)
            correct += pred.eq(labels.view_as(pred)).sum().item()
    return avg_loss / len(val_loader), correct / len(val_loader.dataset)
```

```
[43]: class Tracker:
          def __init__(self, metric, mode='auto'):
              self.metric = metric
              self.mode = mode
              self.mode dict = {
                  'auto': np.less if 'loss' in metric else np.greater,
                  'min': np.less,
                  'max': np.greater
              }
              self.operator = self.mode_dict[mode]
              self._best = np.inf if 'loss' in metric else -np.inf
          @property
          def best(self):
              return self._best
          @best.setter
          def best(self, value):
              self._best = value
```

```
print(f'Model has {sum(p.numel() for p in model.parameters())} parameters')
history = {
    'train_loss': [],
    'val_loss': [],
    'val acc': []
}
for epoch in range(NUM EPOCHS):
    train_loss = train_one_epoch(model, optimizer, criterion, train_loader)
    val loss, val acc = validate(model, criterion, val loader)
    print(
        f'Epoch {epoch}, Train Loss: {train_loss}, Val Loss: {val_loss}, Val_
  →Acc: {val_acc}')
    history['train_loss'].append(train_loss)
    history['val_loss'].append(val_loss)
    history['val_acc'].append(val_acc)
    if tracker.operator(val_loss, tracker.best):
        tracker.best = val_loss
        torch.save(model.state_dict(), './Models/best_mlp.pth')
        print('Model saved with val loss:',
              val_loss, 'at ./Models/best_mlp.pth')
Model has 137238 parameters
Epoch 0, Train Loss: 1.5374527312031223, Val Loss: 1.174192016741197, Val Acc:
0.605073405222814
Model saved with val loss: 1.174192016741197 at ./Models/best_mlp.pth
Epoch 1, Train Loss: 1.0565946272408135, Val Loss: 0.9838634078871548, Val Acc:
0.6595426789658309
Model saved with val loss: 0.9838634078871548 at ./Models/best_mlp.pth
Epoch 2, Train Loss: 0.9144472695536724, Val Loss: 0.8978868533827187, Val Acc:
0.6837404183448097
Model saved with val loss: 0.8978868533827187 at ./Models/best_mlp.pth
Epoch 3, Train Loss: 0.8443075458348092, Val Loss: 0.8517410799102744, Val Acc:
0.6997531505781474
Model saved with val loss: 0.8517410799102744 at ./Models/best mlp.pth
Epoch 4, Train Loss: 0.8018891648925351, Val Loss: 0.8265247595953916, Val Acc:
0.7076133558529297
Model saved with val loss: 0.8265247595953916 at ./Models/best_mlp.pth
Epoch 5, Train Loss: 0.7734160682974806, Val Loss: 0.8191302797195201, Val Acc:
0.7081005586592178
Model saved with val loss: 0.8191302797195201 at ./Models/best_mlp.pth
```

tracker = Tracker('val_loss')

Epoch 6, Train Loss: 0.749570601875053, Val Loss: 0.7864358304445618, Val Acc:

0.7182343770300117

Model saved with val loss: 0.7864358304445618 at ./Models/best_mlp.pth

Epoch 7, Train Loss: 0.7348068544433531, Val Loss: 0.7771800289458575, Val Acc: 0.7250876965051318

Model saved with val loss: 0.7771800289458575 at ./Models/best_mlp.pth

Epoch 8, Train Loss: 0.7200027033628567, Val Loss: 0.7579432146880981, Val Acc: 0.7314862933610498

Model saved with val loss: 0.7579432146880981 at ./Models/best_mlp.pth

Epoch 9, Train Loss: 0.7098306185024129, Val Loss: 0.7698805538602831, Val Acc: 0.721612316486943

Epoch 10, Train Loss: 0.7017935700433909, Val Loss: 0.7478195880370472, Val Acc: 0.7324606989736261

Model saved with val loss: 0.7478195880370472 at ./Models/best_mlp.pth

Epoch 11, Train Loss: 0.6933927211042317, Val Loss: 0.7490214257503967, Val Acc: 0.7349941535663246

Epoch 12, Train Loss: 0.688711042031278, Val Loss: 0.7326348251890418, Val Acc: 0.740158503312979

Model saved with val loss: 0.7326348251890418 at ./Models/best mlp.pth

Epoch 13, Train Loss: 0.6838089217842942, Val Loss: 0.7372655619713376, Val Acc: 0.7328829414057425

Epoch 14, Train Loss: 0.6771660595203134, Val Loss: 0.7382753528229049, Val Acc: 0.7376575289073665

Epoch 15, Train Loss: 0.675403771593404, Val Loss: 0.7216245077728358, Val Acc: 0.7433090814603092

Model saved with val loss: 0.7216245077728358 at ./Models/best_mlp.pth

Epoch 16, Train Loss: 0.6704666859400864, Val Loss: 0.7189368535363166, Val Acc: 0.744153566324542

Model saved with val loss: 0.7189368535363166 at ./Models/best_mlp.pth

Epoch 17, Train Loss: 0.6654367825061385, Val Loss: 0.7294945531328395, Val Acc: 0.7342795894504353

Epoch 18, Train Loss: 0.6619099988259721, Val Loss: 0.7136381606756094, Val Acc: 0.7425295569702481

Model saved with val loss: 0.7136381606756094 at ./Models/best_mlp.pth

Epoch 19, Train Loss: 0.6609841239788403, Val Loss: 0.7117987552257342, Val Acc: 0.7461023775496947

Model saved with val loss: 0.7117987552257342 at ./Models/best_mlp.pth

Epoch 20, Train Loss: 0.6570521717250858, Val Loss: 0.7065884137636405, Val Acc: 0.7463946992334676

Model saved with val loss: 0.7065884137636405 at ./Models/best_mlp.pth

Epoch 21, Train Loss: 0.654396837761601, Val Loss: 0.6921094492897933, Val Acc: 0.751039365986748

Model saved with val loss: 0.6921094492897933 at ./Models/best_mlp.pth

Epoch 22, Train Loss: 0.6528296658484215, Val Loss: 0.6991421507897778, Val Acc: 0.7500324801870859

Epoch 23, Train Loss: 0.6496664499634116, Val Loss: 0.695703366154327, Val Acc: 0.7506496037417175

Epoch 24, Train Loss: 0.6488743516788076, Val Loss: 0.7090873296448994, Val Acc: 0.7465246199818111

```
Epoch 25, Train Loss: 0.6469121919913426, Val Loss: 0.6973380799853046, Val Acc: 0.7493503962582825
```

Epoch 26, Train Loss: 0.6439503157106304, Val Loss: 0.6845766814698312, Val Acc: 0.75370274132779

Model saved with val loss: 0.6845766814698312 at ./Models/best_mlp.pth

Epoch 27, Train Loss: 0.6435700504965335, Val Loss: 0.6956812850473331, Val Acc: 0.7504872028062881

Epoch 28, Train Loss: 0.6414367669966352, Val Loss: 0.712629210726123, Val Acc: 0.7454202936208912

Epoch 29, Train Loss: 0.6407441921700562, Val Loss: 0.6880066721610191, Val Acc: 0.7543523450695075

Epoch 30, Train Loss: 0.6397259319043834, Val Loss: 0.6899142217660866, Val Acc: 0.7522411329089256

Epoch 31, Train Loss: 0.6367497627465376, Val Loss: 0.6896868752294364, Val Acc: 0.7514616084188644

Epoch 32, Train Loss: 0.6363536527897669, Val Loss: 0.6989277293625156, Val Acc: 0.7460698973626088

Epoch 33, Train Loss: 0.6350606190566739, Val Loss: 0.6919524150969207, Val Acc: 0.7518838508509809

Epoch 34, Train Loss: 0.6331031938928169, Val Loss: 0.6933719735217366, Val Acc: 0.7507145641158893

Epoch 35, Train Loss: 0.6328044036869322, Val Loss: 0.685052427779477, Val Acc: 0.7528257762764714

Epoch 36, Train Loss: 0.6317589022248217, Val Loss: 0.6881586862254118, Val Acc: 0.7528582564635572

Epoch 37, Train Loss: 0.6295262773947828, Val Loss: 0.6842190963085567, Val Acc: 0.7550344289983111

Model saved with val loss: 0.6842190963085567 at ./Models/best mlp.pth

Epoch 38, Train Loss: 0.6292281368005489, Val Loss: 0.6781534688433135, Val Acc: 0.7556840327400286

Model saved with val loss: 0.6781534688433135 at ./Models/best_mlp.pth

Epoch 39, Train Loss: 0.629854089348432, Val Loss: 0.6802175554407225, Val Acc: 0.7535728205794465

Epoch 40, Train Loss: 0.6286289407529283, Val Loss: 0.6853073626478142, Val Acc: 0.7536702611407041

Epoch 41, Train Loss: 0.6274779112842617, Val Loss: 0.6777665680380749, Val Acc: 0.7563336364817461

Model saved with val loss: 0.6777665680380749 at ./Models/best_mlp.pth

Epoch 42, Train Loss: 0.6245518333534353, Val Loss: 0.682236362871475, Val Acc: 0.7534753800181889

Epoch 43, Train Loss: 0.6253285195710412, Val Loss: 0.6868558871721305, Val Acc: 0.7533129790827595

Epoch 44, Train Loss: 0.6240996338928418, Val Loss: 0.6844908537523026, Val Acc: 0.7533454592698454

Epoch 45, Train Loss: 0.6226349736644435, Val Loss: 0.6808468983552166, Val Acc: 0.7555216318045992

Epoch 46, Train Loss: 0.6223895612839879, Val Loss: 0.6706797781701153, Val Acc: 0.7570157204105495

Model saved with val loss: 0.6706797781701153 at ./Models/best_mlp.pth Epoch 47, Train Loss: 0.6211793030483688, Val Loss: 0.6798021647603341, Val Acc: 0.759029492009874

Epoch 48, Train Loss: 0.6206433982020944, Val Loss: 0.6860780209488586, Val Acc: 0.7553267506820839

Epoch 49, Train Loss: 0.6212244527189413, Val Loss: 0.6794575133891864, Val Acc: 0.7533454592698454

```
[45]: plt.figure(1)
  plt.plot(history['train_loss'], label='train_loss')
  plt.plot(history['val_loss'], label='val_loss')
  plt.legend()

plt.figure(2)
  plt.plot(history['val_acc'], label='val_acc')
  plt.legend()
```

[45]: <matplotlib.legend.Legend at 0x7ad9c7dcb430>


```
[47]: model = ConvNet(in_channels=2, num_classes=len(labels)).to(device)
    optimizer = torch.optim.Adam(
        model.parameters(), lr=1e-3, weight_decay=5e-4) # L2 regularization
    criterion = nn.CrossEntropyLoss()
    tracker = Tracker('val_loss')

print(f'Model has {sum(p.numel() for p in model.parameters())} parameters')

history = {
    'train_loss': [],
    'val_loss': [],
    'val_acc': []
}
```

```
for epoch in range(NUM_EPOCHS):
    train_loss = train_one_epoch(model, optimizer, criterion, train_loader)
    val_loss, val_acc = validate(model, criterion, val_loader)
        f'Epoch {epoch}, Train Loss: {train loss}, Val Loss: {val loss}, Val_
  →Acc: {val_acc}')
    history['train_loss'].append(train_loss)
    history['val_loss'].append(val_loss)
    history['val_acc'].append(val_acc)
    if tracker.operator(val_loss, tracker.best):
        tracker.best = val_loss
        torch.save(model.state_dict(), './Models/best_convnet.pth')
        print('Model saved with val loss:',
              val_loss, 'at ./Models/best_convnet.pth')
Model has 25318 parameters
Epoch 0, Train Loss: 1.5035233854101553, Val Loss: 1.1265492247396294, Val Acc:
0.6386579186696115
Model saved with val loss: 1.1265492247396294 at ./Models/best convnet.pth
Epoch 1, Train Loss: 0.9939782235042619, Val Loss: 0.8908661828915031, Val Acc:
0.7023840457321034
Model saved with val loss: 0.8908661828915031 at ./Models/best_convnet.pth
Epoch 2, Train Loss: 0.8353282560672535, Val Loss: 0.7940981756984754, Val Acc:
0.7276536312849162
Model saved with val loss: 0.7940981756984754 at ./Models/best convnet.pth
Epoch 3, Train Loss: 0.7462510570949565, Val Loss: 0.7543433858226765, Val Acc:
0.7408730674288684
Model saved with val loss: 0.7543433858226765 at ./Models/best_convnet.pth
Epoch 4, Train Loss: 0.6884977312506437, Val Loss: 0.6883596751920159, Val Acc:
0.7612056645446278
Model saved with val loss: 0.6883596751920159 at ./Models/best_convnet.pth
Epoch 5, Train Loss: 0.6455298900859763, Val Loss: 0.6610975813271472, Val Acc:
0.7760491100428738
Model saved with val loss: 0.6610975813271472 at ./Models/best_convnet.pth
Epoch 6, Train Loss: 0.6157149611881536, Val Loss: 0.6192450842598641, Val Acc:
0.7757892685461868
Model saved with val loss: 0.6192450842598641 at ./Models/best_convnet.pth
Epoch 7, Train Loss: 0.5916923259134013, Val Loss: 0.6018127820387807, Val Acc:
0.7879043783292192
Model saved with val loss: 0.6018127820387807 at ./Models/best_convnet.pth
Epoch 8, Train Loss: 0.5710766438184759, Val Loss: 0.5788216089533869, Val Acc:
0.7935559308821619
Model saved with val loss: 0.5788216089533869 at ./Models/best_convnet.pth
Epoch 9, Train Loss: 0.5553759632597778, Val Loss: 0.5728239509299289, Val Acc:
```

0.793783292191763

```
Model saved with val loss: 0.5728239509299289 at ./Models/best_convnet.pth Epoch 10, Train Loss: 0.5430314768077678, Val Loss: 0.5620531294328526, Val Acc: 0.8000194881122515
```

Model saved with val loss: 0.5620531294328526 at ./Models/best_convnet.pth Epoch 11, Train Loss: 0.5306052828948509, Val Loss: 0.5711346974563499, Val Acc: 0.7924840847083279

Epoch 12, Train Loss: 0.5227330668262458, Val Loss: 0.5523390135227829, Val Acc: 0.8010263739119138

Model saved with val loss: 0.5523390135227829 at ./Models/best_convnet.pth Epoch 13, Train Loss: 0.5124426236065, Val Loss: 0.5507673701486112, Val Acc: 0.8026828634532935

Model saved with val loss: 0.5507673701486112 at ./Models/best_convnet.pth Epoch 14, Train Loss: 0.5054614976896314, Val Loss: 0.5207146908449607, Val Acc: 0.8120371573340263

Model saved with val loss: 0.5207146908449607 at ./Models/best_convnet.pth Epoch 15, Train Loss: 0.496533748702233, Val Loss: 0.54070393326436, Val Acc: 0.8024555021436923

Epoch 16, Train Loss: 0.49204145292936596, Val Loss: 0.5565261555330776, Val Acc: 0.8050539171105625

Epoch 17, Train Loss: 0.4866102635531371, Val Loss: 0.5428063363796206, Val Acc: 0.8040795114979862

Epoch 18, Train Loss: 0.4797559358270548, Val Loss: 0.5011656375781769, Val Acc: 0.815545017539301

Model saved with val loss: 0.5011656375781769 at ./Models/best_convnet.pth Epoch 19, Train Loss: 0.4778808984981942, Val Loss: 0.5026976375348348, Val Acc: 0.8135312459399766

Epoch 20, Train Loss: 0.47302365438152705, Val Loss: 0.5177243951386999, Val Acc: 0.8185981551253735

Epoch 21, Train Loss: 0.4690126609216885, Val Loss: 0.49199092440763614, Val Acc: 0.8187605560608029

Model saved with val loss: 0.49199092440763614 at ./Models/best_convnet.pth Epoch 22, Train Loss: 0.46614980461474176, Val Loss: 0.5191466875320159, Val Acc: 0.8207418474730415

Epoch 23, Train Loss: 0.4631803642893556, Val Loss: 0.5048709178298928, Val Acc: 0.8185331947512018

Epoch 24, Train Loss: 0.46017893265171095, Val Loss: 0.4889899065035278, Val Acc: 0.8232753020657398

Model saved with val loss: 0.4889899065035278 at ./Models/best_convnet.pth Epoch 25, Train Loss: 0.457473272635321, Val Loss: 0.4919557370717404, Val Acc: 0.8258412368455242

Epoch 26, Train Loss: 0.45458063929227766, Val Loss: 0.503893121891304, Val Acc: 0.8185656749382877

Epoch 27, Train Loss: 0.45373159656279366, Val Loss: 0.4860133882902122, Val Acc: 0.8232103416915681

Model saved with val loss: 0.4860133882902122 at ./Models/best_convnet.pth Epoch 28, Train Loss: 0.45223908964133197, Val Loss: 0.5026050437462293, Val Acc: 0.8164219825906197

Epoch 29, Train Loss: 0.4495996057960113, Val Loss: 0.4824586473366677, Val Acc:

0.8259061972196959

Model saved with val loss: 0.4824586473366677 at ./Models/best_convnet.pth Epoch 30, Train Loss: 0.44761250872105923, Val Loss: 0.4955121452687066, Val Acc: 0.8185331947512018

Epoch 31, Train Loss: 0.44547789775572616, Val Loss: 0.4859658282865245, Val Acc: 0.8231129011303105

Epoch 32, Train Loss: 0.4448572159022534, Val Loss: 0.46956808222912305, Val Acc: 0.8238599454332857

Model saved with val loss: 0.46956808222912305 at ./Models/best_convnet.pth Epoch 33, Train Loss: 0.4450043572848975, Val Loss: 0.48506994873501924, Val Acc: 0.8215213719631025

Epoch 34, Train Loss: 0.4422958985002018, Val Loss: 0.49659111958117, Val Acc: 0.8180135117578278

Epoch 35, Train Loss: 0.4420570718445354, Val Loss: 0.4715094081090371, Val Acc: 0.8273353254514746

Epoch 36, Train Loss: 0.4394407582363546, Val Loss: 0.4713386546197586, Val Acc: 0.8258087566584383

Epoch 37, Train Loss: 0.43755882730280216, Val Loss: 0.46746430115103105, Val Acc: 0.8270105235806158

Model saved with val loss: 0.46746430115103105 at ./Models/best_convnet.pth Epoch 38, Train Loss: 0.4381258869947753, Val Loss: 0.46767747270664817, Val Acc: 0.8250292321683773

Epoch 39, Train Loss: 0.43545659640588585, Val Loss: 0.4604470732381039, Val Acc: 0.8329543978173314

Model saved with val loss: 0.4604470732381039 at ./Models/best_convnet.pth Epoch 40, Train Loss: 0.4360098505591566, Val Loss: 0.4564339689763412, Val Acc: 0.8318825516434974

Model saved with val loss: 0.4564339689763412 at ./Models/best_convnet.pth Epoch 41, Train Loss: 0.43412529729610605, Val Loss: 0.4879051185950931, Val Acc: 0.8217162530856178

Epoch 42, Train Loss: 0.43421189478753636, Val Loss: 0.4794824834707989, Val Acc: 0.8224957775756788

Epoch 43, Train Loss: 0.43249417088439973, Val Loss: 0.4727948047568865, Val Acc: 0.8250292321683773

Epoch 44, Train Loss: 0.4319671853838663, Val Loss: 0.454218094330958, Val Acc: 0.8311355073405223

Model saved with val loss: 0.454218094330958 at ./Models/best_convnet.pth Epoch 45, Train Loss: 0.43131264328964347, Val Loss: 0.46629678288538506, Val Acc: 0.8324996751981292

Epoch 46, Train Loss: 0.43004299860344086, Val Loss: 0.48895213916232405, Val Acc: 0.825094192542549

Epoch 47, Train Loss: 0.43010535615354306, Val Loss: 0.45414820405522116, Val Acc: 0.8303559828504612

Model saved with val loss: 0.45414820405522116 at ./Models/best_convnet.pth Epoch 48, Train Loss: 0.4304160912293495, Val Loss: 0.469713594296392, Val Acc: 0.832012472391841

Epoch 49, Train Loss: 0.42711283526317767, Val Loss: 0.48224779251703714, Val Acc: 0.8210991295309861

```
[48]: plt.figure(1)
  plt.plot(history['train_loss'], label='train_loss')
  plt.plot(history['val_loss'], label='val_loss')
  plt.legend()

plt.figure(2)
  plt.plot(history['val_acc'], label='val_acc')
  plt.legend()
```

[48]: <matplotlib.legend.Legend at 0x7ad9b4b233d0>

0.2 Testing

```
[62]: results = {
          "mlp": {
              'preds': [],
              'labels': []
          },
          "convnet": {
              'preds': [],
              'labels': []
          }
      }
      test_dataset = IQDataset(X[test_idx], y[test_idx], data_transform=MLP_txfm)
      test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
      model = MLP(in_features=2*128, hidden_features=256,
                  out_features=22)
      model.load_state_dict(torch.load('./Models/best_mlp.pth', weights_only=True))
      model = model.to(device)
```

```
model.eval()
with torch.no_grad():
   for data, labels in test_dataloader:
        data, labels = data.to(device), labels.to(device)
        output = model(data)
       pred = F.softmax(output, dim=-1).argmax(dim=1, keepdim=True)
       results['mlp']['preds'].extend(pred.cpu().numpy())
        results['mlp']['labels'].extend(labels.cpu().numpy())
test_dataset = IQDataset(X[test_idx], y[test_idx])
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
model = ConvNet(in_channels=2, num_classes=22).to(device)
model.load_state_dict(
   torch.load('./Models/best_convnet.pth', weights_only=True))
model.eval()
with torch.no_grad():
   for data, labels in test_dataloader:
        data, labels = data.to(device), labels.to(device)
        output = model(data)
        pred = F.softmax(output, dim=-1).argmax(dim=1, keepdim=True)
        results['convnet']['preds'].extend(pred.cpu().numpy())
       results['convnet']['labels'].extend(labels.cpu().numpy())
```

```
[78]: # visualize the results
     # compute the accuracy, precision, recall, f1-score
     # and the confusion matrix for each model
     from sklearn.metrics import classification_report, confusion_matrix, u
      →accuracy_score
     plt.rcParams['figure.figsize'] = [15, 8]
     labels = ['oqpsk', 'gmsk', '64apsk', '2fsk', 'ook', '128apsk', '4fsk', '8psk', '
      'cpfsk', 'qam256', '256apsk', '16apsk', 'pam4', '32psk', 'gfsk',
      for model name, result in results.items():
         print(f'Performance of {model_name}')
         print(classification_report(
             result['labels'], result['preds'], target_names=labels))
         acc = accuracy_score(result['labels'], result['preds'])
         print('Accuracy:', acc)
         conf_mat = confusion_matrix(
             result['labels'], result['preds'], normalize='true')
         ax = plt.subplot()
         im = ax.matshow(conf_mat, cmap='Blues')
```

Performance of mlp

	precision	recall	f1-score	support
oqpsk	0.94	0.96	0.95	2999
gmsk	0.52	0.78	0.62	2999
64apsk	0.62	0.52	0.57	2999
2fsk	0.49	0.97	0.65	2999
ook	0.98	0.99	0.99	2999
128apsk	0.75	0.52	0.62	2999
4fsk	0.70	0.86	0.77	2999
8psk	0.70	0.71	0.71	2999
16psk	0.84	0.87	0.86	2999
bpsk	0.96	0.99	0.97	2999
qam16	0.85	0.94	0.89	2998
cpfsk	0.33	0.03	0.06	2999
qam256	0.90	0.96	0.93	2999
256apsk	0.76	0.91	0.83	2998
16apsk	0.75	0.75	0.75	2998
pam4	1.00	0.99	1.00	2999
32psk	0.70	0.74	0.72	2999
${ t gfsk}$	0.63	0.24	0.35	2999
qam64	0.79	0.76	0.77	2999
qpsk	0.87	0.73	0.79	2999
32apsk	0.64	0.60	0.62	2998
qam32	0.82	0.85	0.84	2999
accuracy			0.76	65974
macro avg	0.75	0.76	0.74	65974
reighted avg	0.75	0.76	0.74	65974

Accuracy: 0.7575560069118138

Performance of convnet							
	precision	recall	f1-score	support			
oqpsk	0.98	0.99	0.99	2999			
gmsk	0.59	0.37	0.46	2999			
64apsk	0.75	0.73	0.74	2999			
2fsk	0.50	0.21	0.29	2999			
ook	1.00	1.00	1.00	2999			
128apsk	0.83	0.62	0.71	2999			
4fsk	0.93	1.00	0.96	2999			
8psk	0.90	0.84	0.87	2999			
16psk	0.91	0.91	0.91	2999			
bpsk	0.97	0.98	0.98	2999			
qam16	0.96	0.97	0.96	2998			
cpfsk	0.49	0.80	0.61	2999			
qam256	0.98	0.98	0.98	2999			
256apsk	0.86	0.97	0.91	2998			
1							

16apsk	0.92	0.90	0.91	2998
pam4	1.00	1.00	1.00	2999
32psk	0.81	0.86	0.83	2999
gfsk	0.51	0.58	0.54	2999
qam64	0.87	0.88	0.88	2999
qpsk	0.94	0.93	0.93	2999
32apsk	0.71	0.79	0.75	2998
qam32	0.87	0.98	0.92	2999
accuracy			0.83	65974
macro avg	0.83	0.83	0.82	65974
weighted avg	0.83	0.83	0.82	65974

Accuracy: 0.8311456028132295

Observations from the experiment include the following:

- 1. The performance of the ConvNet is not comparable to that of the MLP. There is significant gains with the ConvNet architecture
- 2. Both architectures struggle to classify class with similar signal characteristics eg. gmsk and gfsk, cpfsk and 2fsk