Options de taux

Antonin Chaix - Richard Guillemot

Master IFMA

21 Février 2015

Soit une courbe de taux constante égale à 2% (taux actuariel à composition annuelle).

Quel est le nominal et le sens d'un swap de marché, de maturité 20 ans dont la sensibilité est égale à 328 kEUR/bp?

- a) 50 Mios d'euros payeur de taux fixe.
- b) 100 Mios d'euros receveur de taux fixe.
- c) 150 Mios d'euros receveur de taux fixe.
- d) 200 Mios d'euros payeur de taux fixe.

Soit une courbe de taux constante égale à 2% (taux actuariel à composition annuelle).

Quel est le nominal et le sens d'un swap de marché, de maturité 20 ans dont la sensibilité est égale à 328 kEUR/bp?

- a) 50 Mios d'euros payeur de taux fixe. FAUX
- b) 100 Mios d'euros receveur de taux fixe. FAUX
- c) 150 Mios d'euros receveur de taux fixe. FAUX
- d) 200 Mios d'euros payeur de taux fixe. VRAI

Soit une courbe de taux constante égale à 2% (taux actuariel à composition annuelle).

Quel est le tenor d'un swap de marché payeur de taux fixe de nominal 100 Mios d'euros dont la sensibilité est égale à 128 kEUR/bp?

- a) 10 ans.
- b) 15 ans.
- c) 20 ans.
- d) 30 ans.

Soit une courbe de taux constante égale à 2% (taux actuariel à composition annuelle).

Quel est le tenor d'un swap de marché payeur de taux fixe de nominal 100 Mios d'euros dont la sensibilité est égale à 128 kEUR/bp?

- a) 10 ans. FAUX
- b) 15 ans. VRAI
- c) 20 ans. FAUX
- d) 30 ans. FAUX

Soit un swap dont la sensibilité est de -90kEUR/bp et la convexité est de 94 EUR bp/bp.

Quelle est sa sensibilité si les taux augmentent de 100bp?

- a) -81 kEUR/bp.
- b) -99 kEUR/bp.
- c) -85 kEUR/bp.
- d) -95 kEUR/bp.

Soit un swap dont la sensibilité est de -90kEUR/bp et la convexité est de 94 EUR bp/bp.

Quelle est sa sensibilité si les taux augmentent de 100bp?

- a) -81 kEUR/bp.VRAI
- b) -99 kEUR/bp.FAUX
- c) -85 kEUR/bp.FAUX
- d) -95 kEUR/bp.**FAUX**

Quel est le produit qui apporte le plus de convexité/concavité de taux (pour une maturité, un sens et un nominal donné)?

- a) Une jambe variable de swap.
- b) Une jambe fixe de swap.
- c) Un swap.
- d) Une obligation à taux variable.

Quel est le produit qui apporte le plus de convexité/concavité de taux (pour une maturité, un sens et un nominal donné)?

- a) Une jambe variable de swap. FAUX
- b) Une jambe fixe de swap. FAUX
- c) Un swap. VRAI
- d) Une obligation à taux variable. FAUX

Taux Stochastiques

En l'absence d'opportunité d'arbitrage il existe une probabilité Q où la valeur actualisée d'un actif financier est une martingale, c'est à dire si X_t est la valeur d'un actif financier à la date t est une Q-martingale :

$$M_t = e^{-\int_0^t r_s ds} X_t$$

Par conséquent la valeur actuelle de l'actif est :

$$X_t = \mathbb{E}_t^Q[e^{-\int_0^T r_s} X_T]$$

Lorsque **les taux sont stochastiques**, on ne peut pas sortir le facteur d'actualisation de l'espérance!!!

Changement de numéraire

Un numéraire est un actif financier N_t :

- ne distribuant pas de dividendes.
- toujours strictement positif.

 N_t est associé à une mesure de probabilité Q^N .

Pour tout actif X de marché de valeur X_t , $\frac{X_t}{N_t}$ est une Q^N -martingale donc :

$$\frac{X_t}{N_t} = \mathbb{E}_t^{Q^N} \left[\frac{X_T}{N_T} \right]$$

Par conséquent si on considère 2 numéraires N_t et N_t^\prime :

$$X_t = N_t \mathbb{E}_t^{Q^N} \left[\frac{X_T}{N_T} \right] = N_t' \mathbb{E}_t^{Q^{N'}} \left[\frac{X_T}{N_T'} \right]$$

Les probabilités risque-neutre et forward-neutre

ullet La probabilité **risque-neutre** Q est associée au numéraire :

$$N_t = e^{\int_0^t r_s ds}$$

qui correspond à 1 euro capitalisé jusqu'en t de façon continue.

• La probabilité **forward-neutre** Q^T est associée au numéraire :

$$N_t = B(t,T) = \mathbb{E}_t^Q [e^{-\int_0^T r_s}]$$

qui correspond à recevoir 1 euro en T.

Exemple "classique" de changement de numéraire

Soit X un call sur un sous-jacent de valeur S_t de maturité T. Il paie donc en T le flux suivant $(S_t - K)_+$. Sa valeur est en t est :

$$X_t = \mathbb{E}[e^{-\int_0^t r_s ds}(S_t - K)_+]$$

Si l'on passe sous la probabilité forward-neutre Q^T :

$$X_t = B(t, T) \mathbb{E}^{Q^T} \left[\frac{(S_t - K)_+}{B(T, T)} \right]$$

On ne considère plus l'actif S_T mais le forward $F_t = \frac{S_t}{B(t,T)}$ qui par construction est une martingale sous Q^T (pas de drift dans la diffusion).

 F_t est la valeur de S exprimée dans le numéraire B(t, T).

Exemple "classique" de changement de numéraire

On modélise alors F_t de la façon suivante :

$$\begin{cases} dF_t = \sigma \ F_t \ dW_t^{Q^T} \\ \text{où } W^{Q^T} \text{est un mouvement brownien standard sous la mesure } Q^T \end{cases}$$

On valorise alors l'option au moyen de la formule de Black & Scholes :

$$X_t = B(t, T) \text{ BS}_{call}(T - t, K, F_t, \sigma)$$

avec:

$$\begin{cases} \mathbf{BS}_{\mathsf{call}}(\tau, K, F, \sigma) = F \mathcal{N}(d_1) - K \mathcal{N}(d_2) \\ \mathbf{BS}_{\mathsf{put}}(\tau, K, F, \sigma) = K \mathcal{N}(-d_2) - F \mathcal{N}(-d_1) \\ \mathcal{N} : \mathsf{fonction} \ \mathsf{de} \ \mathsf{r\'epartition} \ \mathsf{de} \ \mathsf{la} \ \mathsf{loi} \ \mathsf{normale} \ \mathsf{centr\'ee} \ \mathsf{r\'eduite} \\ d_1 = \frac{\ln\left(\frac{F}{K}\right) + \frac{1}{2}\sigma^2\tau}{\sigma\sqrt{\tau}} \\ d_2 = d_1 - \sigma\sqrt{\tau} \end{cases}$$

Considérons un cap sur EURIBOR 6M de strike K qui démarre en T_0 et mature en T_n .

A chaque date T_i , le cap verse le flux suivant :

$$\delta_i \max (L(T_{i-1}^f, T_{i-1}, T_i) - K, 0)$$

avec:

- T_{i-1}^f : la date de fixing de l'EURIBOR 6M qui démarre en T_{i-1} et mature en T_i .
- δ_i : la fraction d'année exprimée dans la convention ACT 360.

Un cap est un panier de caplets. On peut valoriser un caplet ainsi :

$$\mathbf{PV}_{\mathsf{Caplet}}^{i}(t) = \delta_{i} \mathbb{E}_{t}^{Q} \left(e^{-\int_{0}^{T_{i}} r_{s} ds} \left(L(T_{i-1}^{f}, T_{i-1}, T_{i}) - K \right)^{+} \right)$$

en passant sous la mesure forward neutre Q^{T_i} :

$$\mathsf{PV}_{\mathsf{Caplet}}^{i}(t) = \delta_{i} \; B(t, T_{i}) \; \mathbb{E}_{t}^{Q^{T_{i}}} \Big(\big(L(T_{i-1}^{f}, T_{i-1}, T_{i}) - K \big)^{+} \Big)$$

Nous allons reproduire le raisonnement de l'exemple classique, en effet $L(T_{i-1}^f, T_{i-1}, T_i)$ est une martingale sous Q^{T_i} :

$$L(t, T_{i-1}, T_i) = \frac{B(t, T_{i-1}) - B(t, T_i)}{B(t, T_i)}$$

C'est la valeur d'un prêt forward qui démarre en T_{i-1} et mature en T_i exprimée dans le numéraire forward T_i .

On peut aussi réécrire la valeur d'un caplet ainsi :

$$\mathbf{PV}_{\mathsf{Caplet}}^{i}(t) = \mathbb{E}_{t}^{Q} \left(e^{-\int_{0}^{T_{i}} r_{s} ds} \left(1 + \delta_{i} L(T_{i-1}^{f}, T_{i-1}, T_{i}) - 1 + \delta_{i} K \right)^{+} \right)$$

Nous passons sous la mesure forward neutre $Q^{T_{i-1}}$:

$$\mathbf{PV}_{\mathsf{Caplet}}^{i}(t) = B(t, T_{i-1}) \mathbb{E}_{t}^{Q^{T_{i-1}}} \left(\left(1 - \underbrace{\frac{1 + \delta_{i}K}{1 + \delta_{i}L(T_{i-1}^{f}, T_{i-1}, T_{i})}}_{\mathsf{Obligation z\acute{e}ro coupon de taux fixe K}} \right)^{+} \right)$$

On peut exprimer le caplet comme un "put" sur une obligation zéro coupon de taux fixe K, martingale sous la probabilité $Q^{T_{i-1}}$.

Si on suppose une dynamique log-normale sur le LIBOR :

$$\begin{cases} dL(t, T_{i-1}, T_i) = \sigma \ L(t, T_{i-1}, T_i) \ dW_t^{Q^{T_i}} \\ \text{où } W^{Q^{T_i}} \text{est un mouvement brownien standard sous la mesure } Q^{T_i} \end{cases}$$

On peut exprimer la valeur actuelle du caplet au moyen de la formule de Black & Scholes :

$$\mathbf{PV}_{\mathsf{Caplet}}^{i}(t) = \delta_{i}B(t, T_{i}) \; \mathbf{BS}_{\mathsf{call}} \big(T_{i-1}^{f} - t, K, L(t, T_{i-1}, T_{i}), \sigma \big)$$

Soit l'échéancier d'un swap standard qui démarre en T_0 et mature en T_n

Le détenteur de la swaption associée payeuse de strike K est l'option d'entrer, à la date de maturité $T_f=T_0-2$ jours ouvrés, dans ce swap sans frais quelque soit le niveau de marché.

On valorise la swaption de la façon suivante :

$$\mathbf{PV}_{\mathsf{Sw}}^{P}(t) = B(t, T_f) \ \mathbb{E}_{t}^{Q^{T_f}} \Big(ig(\mathbf{PV}_{V}(T_f) - \mathbf{PV}_{F}(T_f) ig)^+ \Big)$$

que l'on peut réécrire en fonction du taux de swap et de l'annuité :

$$\mathbf{PV}_{\mathsf{Sw}}^{P}(t) = B(t, T_f) \, \mathbb{E}_{t}^{Q^{T_f}} \Big(\mathsf{LVL}(T_f, T_0, T_n) \, \big(S(T_f, T_0, T_n) - K \big)^+ \Big)$$

avec:

$$LVL(t, T_0, T_n) = \sum_{i=1}^n \delta_i B(t, T_i)$$

$$S(t, T_0, T_n) = \frac{B(t, T_0) - B(t, T_n)}{\text{LVL}(t, T_0, T_n)}$$

On passe sous la mesure Level Q^{LVL} aussi dite **swap-neutre**, la mesure du numéraire Level sous laquelle le taux de swap est naturellement martingale :

$$\mathbf{PV}_{\mathsf{Sw}}^{P}(t) = \mathsf{LVL}(t, T_0, T_n) \, \mathbb{E}_t^{Q^{\mathsf{LVL}}} \Big(\big(S(T_f, T_0, T_n) - K \big)^+ \Big)$$

On suppose une dynamique lorgnormale pour le taux de swap :

$$\begin{cases} dS(t, T_0, T_n) = \sigma S(t, T_0, T_n) \ dW_t^{Q^{\text{LVL}}} \\ \text{où } W^{Q^{\text{LVL}}} \text{est un mouvement brownien standard sous la mesure } Q^{\text{LVL}} \end{cases}$$

ce qui nous donne :

$$\mathbf{PV}_{\mathsf{Sw}}^{P}(t) = \mathsf{LVL}(t, T_0, T_n) \; \mathbf{BS}_{\mathsf{call}} \big(T_f - t, K, S(t, T_0, T_n), \sigma \big)$$

Sans changer de mesure, on peut réécrire la valeur d'une swaption :

$$\mathbf{PV}_{\mathsf{Sw}}^{P}(t) = B(t, T_f) \, \mathbb{E}_{t}^{Q^{T_f}} \Big(\big(B(T_f, T_0) - \underbrace{B(T_f, T_n) - \mathsf{KLVL}(T_f, T_0, T_n)}_{\mathsf{Obligation \ de \ taux \ fixe \ K} \big)$$

La swaption peut être exprimée comme un put de strike $B(T_f, T_0) \simeq 1$ sur une obligation de de taux fixe K.

Cette obligation est naturellement martingale sous la probabilité Q^{T_f} .

Quantile de la loi normale - Sens de la volatilité

Au bout d'un an un actif financer de volatilité σ a plus d'une chance sur **deux** de s'être écartée de $\pm \sigma$ de sa valeur initiale.

Le modèle normal

La dynamique du taux est la suivante :

$$dF_t = \sigma \ dW_t$$

Son intégration est immédiate :

$$F_t = F_0 + \sigma W_t$$

On peut facilement calculer la valeur actuelle d'un call ou d'un put :

$$\begin{aligned} \mathbf{N}_{\mathsf{call}}(\tau, K, F, \sigma) &= \sigma \sqrt{\tau} \Big(d^+ \mathcal{N}(d^+) + \mathcal{N}'(d^+) \Big) \\ \mathbf{N}_{\mathsf{put}}(\tau, K, F, \sigma) &= \sigma \sqrt{\tau} \Big(d^- \mathcal{N}(d^-) + \mathcal{N}'(d^-) \Big) \end{aligned}$$

avec:

$$d^{\pm} = \pm \frac{F - K}{\sigma \sqrt{\tau}}$$

Le modèle normal

Il produit un smile décroissant :

Le taux forward est 5%. La volatilité normale σ est égale à 0,90%.

Le modèle normal

Le modèle Lognormal décalé

La dynamique du taux est la suivante :

$$dF_t = \sigma(F_t + d)dW_t$$

On l'intègre facilement :

$$F_t = (F_0 + d) \exp\left(-\frac{1}{2}\sigma^2 t + \sigma W_t\right) - d$$

On peut facilement calculer la valeur d'un call ou d'un put en adaptant la formule de Black & Scholes :

$$\mathsf{SL}_{\mathsf{call/put}}(\tau, K, F, \sigma, d) = \mathsf{BS}_{\mathsf{call/put}}(\tau, K + d, F + d, \sigma)$$

Le modèle Lognormal décalé

Le modèle lornormal décalé permet de contrôler la pente du smile gràce au paramètre de décalage :

Le forward est égal à 5%. Le paramètre σ est calibré de telle sorte que la volatilité à la monnaie (strike 5%) demeure égale à 18%.

Le modèle SABR

SABR est l'acronyme de Sigma-Alpha-Beta-Rho, le noms de ses paramètres.

Sa diffusion est la suivante :

$$\begin{cases} dF_t = \sigma_t F_t^{\beta} dW_t^1 \\ \frac{d\sigma_t}{\sigma_t} = \alpha dW_t^2 \end{cases}$$

Le modèle SABR est défini par quatre paramètres :

- σ_0 : valeur initiale de la volatilité
- α : volatilité (log-normale) de la volatilité (*volvol*)
- ullet eta : exposant CEV, compris entre 0 et 1
- ρ : corrélation entre les deux browniens $(d < W^1, W^2 >_t = \rho dt, \ \rho \in [-1, 1])$

Le modèle SABR

On considère une option de maturité 1 an sur un taux sous-jacent de forward $F_0=5.00\%$. On part du jeu de paramètres SABR suivant : $\sigma_0=0.03$, $\alpha=0.60$, $\rho=-0.10$, $\beta=0.40$.

Pricing d'une swaption

Quelles sont les quantités qui sont martingales sous la mesure risque-neutre Q.

- a) B(t, T)
- b) $L(t, T_1, T_2) = \frac{1}{\delta} \left(\frac{B(t, T_1)}{B(t, T_2)} 1 \right)$
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i)$
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)}$
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)}$
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i)$

Quelles sont les quantités qui sont martingales sous la mesure risque-neutre Q.

- a) B(t, T)**VRAI**
- b) $L(t,T_1,T_2)=rac{1}{\delta}ig(rac{B(t,T_1)}{B(t,T_2)}-1ig)$ FAUX
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i) VRAI$
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)}$ FAUX
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)}$ **FAUX**
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i)$ FAUX

Quelles sont les quantités qui sont martingales sous les mesures forward-neutre $Q^{T_0}, Q^{T_1}, Q^{T_2}, Q^{T_n}, Q^{T_f}$.

- a) B(t, T)
- b) $L(t, T_1, T_2) = \frac{1}{\delta} \left(\frac{B(t, T_1)}{B(t, T_2)} 1 \right)$
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i)$
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)}$
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)}$
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i)$

Quelles sont les quantités qui sont martingales sous les mesures forward-neutre $Q^{T_0}, Q^{T_1}, Q^{T_2}, Q^{T_n}, Q^{T_f}$.

- a) B(t, T)FAUX
- b) $L(t,T_1,T_2)=rac{1}{\delta}ig(rac{B(t,T_1)}{B(t,T_2)}-1ig)$ VRAI Q^{T_2}
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i)$ FAUX
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)}$ FAUX
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)} VRAIQ^{T_1}$
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i) \mathbf{VRAI} Q^{T_f}$

Quelles sont les quantités qui sont martingales sous la mesure swap-neutre Q^{LVL} .

- a) B(t, T)
- b) $L(t, T_1, T_2) = \frac{1}{\delta} \left(\frac{B(t, T_1)}{B(t, T_2)} 1 \right)$
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i)$
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)}$
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)}$
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i)$

Quelles sont les quantités qui sont martingales sous la mesure swap-neutre Q^{LVL} .

- a) B(t, T)**FAUX**
- b) $L(t,T_1,T_2)=rac{1}{\delta}ig(rac{B(t,T_1)}{B(t,T_2)}-1ig)$ FAUX
- c) $LVL(t, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_i)$ FAUX
- d) $S(t, T_0, T_n) = \frac{B(t, T_0) B(t, T_n)}{LVL(t, T_0, T_n)} VRAI$
- e) $B(t, T_1, T_2) = \frac{B(t, T_2)}{B(t, T_1)}$ **FAUX**
- f) $LVL(t, T_f, T_0, T_n) = \sum_{i=1}^{N} \delta_i B(t, T_f, T_i)$ FAUX

Supposons que la quantité $B(t, T_1, T_2)$ est lognormal de volatilité σ sous la mesure Q^{T_1} .

Quelle loi suit la quantité $L(t, T_1, T_2)$:

- a) la loi lognormale
- b) la loi normale
- c) la loi lognormal décalée
- d) la loi SABR

Donnez le paramétrage de ces lois.

Supposons que la quantité $B(t, T_1, T_2)$ est lognormal de volatilité σ sous la mesure Q^{T_1} .

Quelle loi suit la quantité $L(t, T_1, T_2)$:

- a) la loi lognormaleFAUX
- b) la loi normale VRAI $\sigma \times L(0, T_1, T_2)$
- c) la loi lognormal décalée**VRAI** $(\sigma, \frac{1}{\delta})$
- d) la loi SABRFAUX

Donnez le paramétrage de ces lois.

Couverture d'un swap 20 ans par un swap 10 ans.

On souhaite maintenant couvrir un swap receveur de taux fixe de marché pour un nominal de 100 millions d'euros et de maturité 20 ans par un swap payeur de taux fixe de marché mais de maturité 10 ans.

Swap	Sensibilité	
Swap 1	-163 kEUR/bp	
Swap 2	-90 kEUR/bp	

Il nous faut donc traiter 182 Mios ($\frac{163}{90} \times$ 100 Mios EUR) d'euros de swap de marché de maturité 10 ans.

R	PNL	ΔPNL	
2%	0.000 Mios EUR		
3%	0.175 Mios EUR	174.843 kEUR	
1%	0.187 Mios EUR	186.815 kEUR	

Couverture d'un swap 20 ans par un swap 10 ans.

Les 144 EUR/bp/bp de convexité positive nous font gagner 180 kEUR que les taux augmentent ou baissent de 50bp.

$$\Delta PNL = \underbrace{\mathsf{Sensi}}_{0} \times \Delta R + \frac{1}{2} \times \underbrace{\mathsf{Convexit\acute{e}}}_{144} \times \underbrace{\Delta R^{2}}_{2500} = 180 \, kEUR$$

Couverture d'un swap 20 ans par un swap 30 ans.

On souhaite maintenant couvrir un swap receveur de taux fixe de marché pour un nominal de 100 millions d'euros et de maturité 20 ans par un swap de payeur de taux fixe de marché mais de maturité 30 ans.

Swap	Sensibilité	
Swap 1	-163 kEUR/bp	
Swap 2	-224 kEUR/bp	

Il nous faut donc traiter 73 Mios ($\frac{163}{224} \times$ 100 Mios EUR) d'euros de swap de marché de maturité 30 ans.

R	PNL	ΔPNL	
2%	-0.000 Mios EUR		
3%	-0.157 Mios EUR	-157.214 kEUR	
1%	-0.179 Mios EUR	-178.950 kEUR	

Couverture d'un swap 20 ans par un swap 30 ans.

Les 133 EUR/bp/bp de convexité négative nous font perdre 166 kEUR que les taux augmentent ou baissent de 50bp.

$$\Delta PNL = \underbrace{\mathsf{Sensi}}_{0} \times \Delta R + \frac{1}{2} \times \underbrace{\mathsf{Convexit\acute{e}}}_{-133} \times \underbrace{\Delta R^{2}}_{2500} = -166 kEUR$$

LIBOR in arrears - Valorisation

Le contrat **FRA** paie le flux $[L(T_f, T_1, T_2) - R_A]$ en T_2 . Le contrat **LIBOR In Arrears** paie le flux $[L(T_f, T_1, T_2) - R_B]$ en T_1 .

 R_A et R_B sont les taux fixes qui rendent respectivement la valeur de chacun de ces deux contrats nulle.

 R_A et R_B sont ils égaux?

LIBOR in arrears - Valorisation

Dans le cas du FRA le calcul est direct, car on calcule l'espérance du LIBOR sous sa probabilité naturelle Q^{T_2} :

$$R_A = \mathbb{E}_t^{Q^{T_2}}[L(T_f, T_1, T_2)]$$

= $L(t, T_1, T_2)$

Dans le cas du LIBOR in arrears, le calcul nécessite un changement de probabilité :

$$\begin{split} R_B &= \mathbb{E}_t^{Q^{T_1}}[L(T_f, T_1, T_2)] \\ &= \mathbb{E}_t^{Q^{T_2}}\Big[L(T_f, T_1, T_2) \frac{1 + \delta L(T_f, T_1, T_2)}{1 + \delta L(t, T_1, T_2)}\Big] \\ &= \frac{L(t, T_1, T_2) + \delta \mathbb{E}_t^{Q^{T_2}}[L(T_f, T_1, T_2)^2]}{1 + \delta L(t, T_1, T_2)} \end{split}$$

LIBOR in arrears - Valorisation

Si on suppose une dynamique lognormale sur le LIBOR :

$$\begin{cases} dL(t,T_1,T_2) = \sigma \ L(t,T_1,T_2) \ dW_t^{Q^{T_2}} \\ \text{où } W^{Q^{T_2}} \text{est un mouvement brownien standard sous la mesure } Q^{T_i} \end{cases}$$

On peut achever le calcul :

$$R_B = L(t, T_1, T_2) \underbrace{\frac{1 + \delta L(t, T_1, T_2)e^{\sigma^2(T_f - t)}}{1 + \delta L(t, T_1, T_2)}}_{\text{Aiustement de convexité}}$$

LIBOR in arrears - Gestion

Considérons une gestion qui ignore les ajustements de convexité.

Pour simplifier les formules, on suppose que t=0 et on note $\delta=T_2-T_1$

	PV	Sensi <i>R</i>	Sensi <i>F</i>
MM	$rac{1}{(1+T_1R)}$	$h_1 = rac{-T_1}{(1+T_1R)^2}$	0
FRA	$rac{\delta(F-K)}{(1+T_1R)(1+\delta F)}$	0	$h_2 = \frac{1 + \delta K}{(1 + T_1 R)(1 + \delta F)^2}$
ARREARS	$\frac{\delta(F-K^*)}{(1+T_1R)}$	$H_1 = \frac{-T_1\delta(F - K^*)}{(1 + T_1R)^2}$	$H_2 = \frac{\delta}{(1+T_1R)}$
	·	Ratio MM	Ratio FRA
		$r_1 = \delta(F - K^*)$	$r_2 = \frac{(1+\delta F)^2}{1+\delta K^*}$

Plus la valeur du FRA augmente plus il faut en acheter!!!

