

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2000-154255
(43)Date of publication of application : 06.06.2000

(51)Int.Cl. C08G 81/02
C08G 77/442
C08L 23/26
C08L 33/08
C08L 33/10
C08L 83/05
// C08G 77/12

(21)Application number : 11-259984
(22)Date of filing : 14.09.1999

(71)Applicant : KANEKA FUCHI CHEM IND CO LTD
(72)Inventor : FUJITA MASAYUKI
HASEGAWA NOBUHIRO
NAKAGAWA YOSHIKI

(30)Priority

Priority number : 10263821 Priority date : 18.09.1998 Priority country : JP

(54) CURABLE COMPOSITION FOR MOLDING AND MOLDED ITEM OBTAINED BY CURING SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a curable composition for molding which is excellent in processibility and curability by compounding an alkenylated vinyl polymer and a hydrosilylated compound as the essential ingredients.
SOLUTION: A vinyl polymer having at least one alkenyl group represented by $\text{CH}_2=\text{C}(\text{R}1)-$ (wherein R1 is H or methyl) is used. A vinyl polymer formed by using at least 40 wt.% (meth)acrylic acid-based monomer is especially preferable. The mol.wt. distribution is preferably lower than 1.8. The vinyl polymer is preferably one formed by living free-radical polymerization, especially atom transfer free-radical polymerization. A compound such as a linear polysiloxane or a cyclic siloxane can be used as the hydrosilylated compound. The vinyl polymer and the hydrosilylated compound are compounded in a molar ratio of alkenyl group to hydrosilyl group of 5-0.2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-154255

(P2000-154255A)

(43)公開日 平成12年6月6日(2000.6.6)

(51) Int.Cl.
C 08 G 81/02
77/442
C 08 L 23/26
33/08
33/10

識別記号

F I
C 08 G 81/02
77/442
C 08 L 23/26
33/08
33/10

マーク(参考)

審査請求 未請求 請求項の数10 OL (全17頁) 最終頁に続く

(21)出願番号 特願平11-259984
(22)出願日 平成11年9月14日(1999.9.14)
(31)優先権主要番号 特願平10-263821
(32)優先日 平成10年9月18日(1998.9.18)
(33)優先権主張国 日本 (JP)

(71)出願人 000000941
鐘淵化学工業株式会社
大阪府大阪市北区中之島3丁目2番4号
(72)発明者 藤田 雅幸
兵庫県神戸市兵庫区吉田町1-2-80鐘淵
化学工業株式会社機能性材料R&Dセンター
神戸研究所内
(72)発明者 長谷川 伸洋
兵庫県神戸市兵庫区吉田町1-2-80鐘淵
化学工業株式会社機能性材料R&Dセンター
神戸研究所内

最終頁に続く

(54)【発明の名称】 成形用硬化性組成物およびこれを硬化させてなる成形体

(57)【要約】

【課題】 液状の状態で充填材等の配合剤を混練することができることにより加工性に優れ、かつ硬化性に優れるので短時間で成形可能な成形用硬化性組成物、およびこれを硬化させてなる十分な機械特性を有する成形体を提供する。

【解決手段】 下記の2成分:

(A) 下記一般式(1)で表されるアルケニル基を少なくとも1個有するビニル系重合体、

$\text{CH}_2=\text{C}(\text{R}')-$ (1)

(式中、R'は水素またはメチル基を示す。)

(B) ヒドロシリル基含有化合物、を必須成分とする成形用硬化性組成物を用いて硬化させる。

【特許請求の範囲】

【請求項1】以下の2成分：

(A) 一般式(1)で表されるアルケニル基を少なくとも1個有するビニル系重合体、

(式中、R¹は水素またはメチル基を示す。)

(B) ヒドロシリル基含有化合物、を必須成分とする成形用硬化性組成物。

【請求項2】(A) 成分のビニル系重合体の分子量分布が1.8未満である請求項1記載の成形用硬化性組成物。

【請求項3】(A) 成分のビニル系重合体が(メタ)アクリル系重合体である請求項1又は2のいずれか1項に記載の成形用硬化性組成物。

【請求項4】(A) 成分のビニル系重合体がアクリル系重合体である請求項1～3のいずれか1項に記載の成形用硬化性組成物。

【請求項5】(A) 成分のビニル系重合体がリビングラジカル重合法により製造されることを特徴とする請求項1～4のいずれか1項に記載の成形用硬化性組成物。

【請求項6】(A) 成分のビニル系重合体が原子移動ラジカル重合法により製造されることを特徴とする請求項1～5のいずれか1項に記載の成形用硬化性組成物。

【請求項7】(A) 成分が一般式(1)に示すアルケニル基を分子鎖末端に少なくとも1個有するビニル系重合体である請求項1～6のいずれか1項に記載の成形用硬化性組成物。

【請求項8】(A) 成分が以下の工程：

(1) ビニル系モノマーを原子移動ラジカル重合法により重合することにより、一般式(2)で示す末端構造を有するビニル系重合体を製造し、

式中、R²およびR³はビニル系モノマーのエチレン性不飽和基に結合した基を示す。Xは塩素、臭素またはヨウ素を示す。

(2) 前記重合体の末端ハロゲンを一般式(1)のアルケニル基を有する置換基に変換する；により得られるビニル系重合体である請求項1～7のいずれか1項に記載の成形用硬化性組成物。

【請求項9】(A) 成分が以下の工程：

(1) ビニル系モノマーをリビングラジカル重合法により重合することにより、ビニル系重合体を製造し、

(2) 繰いて重合性の低いアルケニル基を少なくとも2個有する化合物を反応させる；により得られるビニル系重合体である請求項1～7のいずれか1項に記載の成形用硬化性組成物。

【請求項10】請求項1～9のうちいずれか1項に記載の成形用硬化性組成物を硬化させてなる成形体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、成形用硬化性組成物およびこれを硬化させてなる成形体に関する。さらに詳しくは、アルケニル基含有ビニル系重合体と、ヒドロシリル基含有化合物を必須成分とし、成形によって硬化物を得る成形用硬化性組成物および該組成物を硬化させてなる成形体に関する。

【0002】

【従来の技術】ビニル系重合体や(メタ)アクリル系重合体を主成分とする成形体は、高分子量の重合体を各種添加剤とともにロールやミル等を用いて加熱状態で混練し、成形することにより得られている。熱可塑性樹脂あるいは熱硬化性樹脂を成形する場合は、加熱溶融状態で成形する必要があり、熱に弱い添加剤を用いる事ができないなどの問題がある。またアクリルゴムに代表されるゴムを成形する場合は、未加硫ゴムに充填材、加硫剤等の配合剤を混練した後に加硫成形することにより得られるが、この場合上記の問題点以外に、混練り時にロールに付着したり、シーティング時に平滑になりにくかったり、あるいは成形時に非流動性である等の加工性の悪さと加硫速度の遅さ、あるいは長時間のポストキュアが必要である等硬化性の悪さにも問題がある。

【0003】

【発明が解決しようとする課題】本発明は、充填材等の配合剤を混練することが可能な液状の重合体を用いることにより、加工性に優れかつ硬化性に優れた成形用硬化性組成物、及びこれを硬化させてなる充分な機械特性、耐熱性および耐油性を有する成形体を提供すること目的とするものである。

【0004】

【課題を解決するための手段】本発明は以下の2成分：

(A) 一般式(1)で表されるアルケニル基を少なくとも1個有するビニル系重合体、

(式中、R¹は水素またはメチル基を示す。)

(B) ヒドロシリル基含有化合物、を必須成分とする成形用硬化性組成物およびこれを硬化させてなる成形体である。

【0005】

【発明の実施の形態】本発明は以下の2成分：

(A) 一般式(1)で表されるアルケニル基を少なくとも1個有するビニル系重合体、

(式中、R¹は水素またはメチル基を示す。)

(B) ヒドロシリル基含有化合物、を必須成分とする成形用硬化性組成物およびこれを硬化させてなる成形体である。

【0006】以下に、本発明の成形用硬化性組成物について詳述する。

[(A) 成分のビニル系重合体について] (A) 成分のビニル系重合体の架橋性基である、上述の一般式(1)

で表されるアルケニル基としては、下記一般式(3)で表される炭化水素系のアルケニル基；一般式(4)で表されるエーテル結合を有するアルケニル基、一般式(5)および(6)で表されるエステル結合を有するアルケニル基および一般式(7)で表されるカーボネート結合を有するアルケニル基など酸素原子を介して主鎖に結合されるアルケニル基；などが挙げられる。

(式中、R¹は上述したものと同様である。R⁴は、直接結合または炭素数1～20の2価の炭化水素基を示す。)

上記一般式(3)において、R⁴としては特に限定されないが、例えば、-(CH₂)_n-（nは0～10の整数）、-CH₂CH(CH₃)-、-CH₂CH(CH₃)CH₂-等が挙げられる。

(式中、R¹は上述したものと同様である。R⁵は、直接結合または1個以上のエーテル結合を含有していてよい炭素数1～20の2価の有機基を示す。)

上記一般式(4)、(5)、(6)および(7)において、R⁵としては特に限定されないが、例えば、-(CH₂)ⁿ-、(nは0～20の整数)、-CH₂CH(CH₃)-、-CH₂CH(CH₃)CH₂-；-CH₂OCH₂CH₂CH₂-、-CH₂OCH₂CH₂CH₂CH₂-；o-，m-，p-C₆H₄-、o-，m-，p-C₆H₂-C₆H₄-、o-，m-，p-CH₂-C₆H₄-CH₂-等が挙げられる。

【0007】また、一般式(8)で表される電子吸引基を有する基も一般式(1)のアルケニル基として挙げられる。

(式中、R¹、R⁶は上述したものと同様である。R⁶およびR⁷はともにカルバニオンC-を安定化する電子吸引基、または一方が上記電子吸引基で他方が水素または炭素数1～10のアルキル基もしくはフェニル基を示す。)

上記一般式(8)におけるR⁶およびR⁷の電子吸引基としては特に限定されないが、例えば、-CO₂R(エステル基)、-C(O)R(ケト基)、-CON(R₂)(アミド基)、-COSR(チオエステル基)、-CN(ニトリル基)、-NO₂(ニトロ基)等が挙げられる。置換基Rは炭素数1～20のアルキル基、炭素数6～20のアリール基または炭素数7～20のアラルキル基を示し、炭素数1～10のアルキル基もしくはフェニル基が好ましい。R⁶およびR⁷としては、-CO₂R、-C(O)Rおよび-CNが特に好ましい。

【0008】(A)成分のビニル系重合体の主鎖を形成するモノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸-n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-tert-ブチル、(メタ)アクリル酸-n-ベンチル、(メタ)アクリル酸-n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-n-ヘプチル、(メタ)アクリル酸-n-オクチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸-3-メトキシブチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸-2-アミノエチル、-a-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸-2-トリフルオロメチルエチル、(メタ)アクリル酸-2-バーフルオロエチルエチル、(メタ)アクリル酸-2-バーフルオロエチル-2-バーフルオロブチルエチル、(メタ)アクリル酸-2-バーフルオロエチル、(メタ)アクリル酸バーフルオロメチル、(メタ)アクリル酸ジバーフルオロメチルメチル、(メタ)アクリル酸2-バーフルオロメチル-2-バーフルオロエチルメチル、(メタ)アクリル酸-2-バーフルオロヘキシルエチル、(メタ)アクリル酸-2-バーフルオロデシルエチル、(メタ)アクリル酸-2-バーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマー；ステレン、ビニルトルエン、α-メチルスチレン、クロロスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー；バーフルオロエチレン、バーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー；ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー；無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル；フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル；マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシリマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー；アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー；アクリルアミド、メタクリルアミド

等のアミド基含有ビニル系モノマー；酢酸ビニル、プロピオン酸ビニル、ビバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類；エチレン、プロピレン等のアルケン類；ブタジエン、イソブレン等の共役ジエン類；塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いてもよく、2種以上を併用しても構わない。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/またはメタクリル酸を示す。

【0009】一般式(1)に示すアルケニル基を少なくとも1個有するビニル系重合体では、上記のモノマーの中で(メタ)アクリル酸系モノマーを40重量%以上用いて合成することにより得られた(メタ)アクリル系重合体が、物性面からより好ましい。また一般式(1)に示すアルケニル基を少なくとも1個有するビニル系重合体では、上記モノマーの中でアクリル酸系モノマーを40重量%以上用いて合成することにより得られたアクリル系重合体が、物性面から更に好ましい。

【0010】アルケニル基を少なくとも1個有するビニル系重合体の分子量分布、すなわち重量平均分子量(M_w)と数平均分子量(M_n)の比(M_w/M_n)については特に限定されない。しかし、硬化性組成物とした際の粘度を低く抑えて取扱いを容易にし、なおかつ十分な硬化物性を得るために、分子量分布は狭いのが好ましい。分子量分布の値としては1.8未満が好ましく、より好ましくは1.7以下、さらに好ましくは1.6以下、さらに好ましくは1.5以下、さらに好ましくは1.4以下、さらに好ましくは1.3以下である。分子量分布の測定は、ゲルバーミエーションクロマトグラフィー(GPC)で測定するのが最も一般的である。移動相としてはクロロホルムやTHFを、カラムとしてはポリスチレンゲルカラムを用い、数平均分子量等はポリスチレン換算で求めることができる。

【0011】アルケニル基を少なくとも1個有するビニル系重合体の分子量については特に限定されないが、500~100000の範囲にあるのが好ましい。分子量が500以下であると、ビニル系重合体の本来の特性が発現されにくく、また、100000以上であると、取り扱いが困難になる。

【0012】アルケニル基を少なくとも1個有するビニル系重合体は、種々の重合法により得ることができ、その方法は特に限定されない。しかし、モノマーの汎用性、制御の容易性の点からラジカル重合法によって、直接アルケニル基を導入したり、1段階あるいは数段階の反応でアルケニル基に変換できる特定の官能基を有するビニル系重合体を得、この特定の官能基をアルケニル基に変換することによりアルケニル基を少なくとも1個有するビニル系重合体を得る方法がより好ましい。

【0013】アルケニル基を含む特定の官能基を有するビニル系重合体を合成する方法において用いられるラジ

カル重合法は、重合開始剤としてアゾ系化合物、過酸化物などを用いて、特定の官能基を有するモノマーとビニル系モノマーとを単に共重合させる「一般的なラジカル重合法」と末端などの制御された位置に特定の官能基を導入することが可能な「制御ラジカル重合法」に分類できる。

【0014】「一般的なラジカル重合法」は简便な方法であるが、この方法では特定の官能基を有するモノマーは確率的にしか重合体中に導入されないので、官能化率の高い重合体を得ようとした場合には、このモノマーをかなり大量に使う必要があり、逆に少量使用ではこの特定の官能基が導入されない重合体の割合が大きくなるという問題点がある。またフリーラジカル重合であるため、分子量分布が広く粘度の高い重合体しか得られないという問題点もある。

【0015】「制御ラジカル重合法」は、更に、特定の官能基を有する連鎖移動剤を用いて重合をおこなうことにより末端に官能基を有するビニル系重合体が得られる「連鎖移動剤法」と重合生長末端が停止反応などを起こさずに生長することによりほぼ設計どおりの分子量の重合体が得られる「リビングラジカル重合法」とに分類することができる。

【0016】「連鎖移動剤法」は、官能化率の高い重合体を得ることが可能であるが、開始剤に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、処理も含めて経済面で問題がある。また上記の「一般的なラジカル重合法」と同様、フリーラジカル重合であるため分子量分布が広く、粘度の高い重合体しか得られないという問題点もある。

【0017】これらの重合法とは異なり、「リビングラジカル重合法」は、重合速度が高く、ラジカル同士のカップリングなどによる停止反応が起こりやすいため制御が難しいとされるラジカル重合でありながら、停止反応が起こりにくく、分子量分布の狭い(M_w/M_n が1.1~1.5程度)重合体が得られるとともに、モノマーと開始剤の仕込み比によって分子量を自由にコントロールすることができる。

【0018】従って「リビングラジカル重合法」は、分子量分布が狭く、粘度が低い重合体を得ることができる上に、特定の官能基を有するモノマーを重合体のほぼ任意の位置に導入することができるため、上記特定の官能基を有するビニル系重合体の製造方法としてはより好ましいものである。

【0019】なお、リビング重合とは狭義においては、末端が常に活性を持ち続けて分子鎖が生長していく重合のことをいうが、一般には、末端が不活性化されたものと活性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。本発明における定義も後者である。

【0020】「リビングラジカル重合法」は近年様々な

グループで積極的に研究がなされている。その例としては、たとえばジャーナル・オブ・アメリカン・ケミカルソサエティー (J. Am. Chem. Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ (Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物などのラジカル捕捉剤を用いるもの、有機ハロゲン化合物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」 (Atom Transfer Radical Polymerization: ATRP) などがあげられる。

【0021】「リビングラジカル重合法」の中でも、有機ハロゲン化合物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有するビニル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば Matyjaszewski ら、ジャーナル・オブ・アメリカン・ケミカルソサエティー (J. Am. Chem. Soc.) 1995年、117巻、5614頁、マクロモレキュールズ (Macromolecules) 1995年、28巻、7901頁、サイエンス (Science) 1996年、272巻、866頁、WO96/30421号公報、WO97/18247号公報あるいは Sawamoto ら、マクロモレキュールズ (Macromolecules) 1995年、28巻、1721頁などが挙げられる。

【0022】この原子移動ラジカル重合では、有機ハロゲン化合物、特に反応性の高い炭素-ハロゲン結合を有する有機ハロゲン化合物（例えば、 α -位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物）、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。

【0023】この重合法を用いて架橋性のビニル系重合体を得るために、開始点を2個以上有する有機ハロゲン化合物、またはハロゲン化スルホニル化合物が開始剤として用いられる。それらの具体例としては、

$\text{o}-, \text{m}-, \text{p}-\text{XCH}_2-\text{C}_6\text{H}_4-\text{CH}_2\text{X}, \text{o}-, \text{m}-, \text{p}-\text{CH}_3\text{C}(\text{H})(\text{X})-\text{C}_6\text{H}_4-\text{C}(\text{H})(\text{X})\text{CH}_3, \text{o}-, \text{m}-, \text{p}-\text{(CH}_3)_2\text{C}(\text{X})-\text{C}_6\text{H}_4-\text{C}(\text{X})(\text{CH}_3)_2$

（上記式中、 C_6H_4 はフェニレン基を示す。Xは塩素、臭素、またはヨウ素を示す。）

$\text{RO}_2\text{C}-\text{C}(\text{H})(\text{X})-(\text{CH}_2)_n-\text{C}(\text{H})(\text{X})-\text{CO}_2\text{R}, \text{RO}_2\text{C}-\text{C}(\text{CH}_3)(\text{X})-(\text{CH}_2)_n-\text{C}(\text{CH}_3)(\text{X})-\text{CO}_2\text{R}, \text{RC}(\text{O})-\text{C}$

$(\text{H})(\text{X})-(\text{CH}_2)_n-\text{C}(\text{H})(\text{X})-\text{C}(\text{O})\text{R}, \text{RC}(\text{O})-\text{C}(\text{CH}_3)(\text{X})-(\text{CH}_2)_n-\text{C}(\text{CH}_3)(\text{X})-\text{C}(\text{O})\text{R}$

（上記式中、Rは炭素数1～20のアルキル基、アリール基またはアラルキル基を示す。nは0～20の整数を表し、Xは塩素、臭素、ヨウ素を示す。）

$\text{XCH}_2-\text{C}(\text{O})-\text{CH}_2\text{X}, \text{H}_3\text{C}-\text{C}(\text{H})(\text{X})-\text{C}(\text{O})-\text{C}(\text{H})(\text{X})-\text{CH}_3, (\text{H}_3\text{C})_2\text{C}(\text{X})-\text{C}(\text{O})-\text{C}(\text{X})(\text{CH}_3)_2, \text{C}_6\text{H}_5\text{C}(\text{H})(\text{X})-(\text{CH}_2)_n-\text{C}(\text{H})(\text{X})\text{C}_6\text{H}_5$

（上記式中、Xは塩素、臭素またはヨウ素を表し、nは0～20の整数を示す。）

$\text{XCH}_2\text{CO}_2-(\text{CH}_2)_n-\text{OCOCH}_2\text{X}, \text{CH}_3\text{C}(\text{H})(\text{X})\text{CO}_2-(\text{CH}_2)_n-\text{OCOC}(\text{H})(\text{X})\text{CH}_3, (\text{CH}_3)_2\text{C}(\text{X})\text{CO}_2-(\text{CH}_2)_n-\text{OCOC}(\text{X})(\text{CH}_3)_2$

（上記式中、nは1～20の整数を示す。）

$\text{XCH}_2\text{C}(\text{O})\text{C}(\text{O})\text{CH}_2\text{X}, \text{CH}_3\text{C}(\text{H})(\text{X})\text{C}(\text{O})\text{C}(\text{O})\text{C}(\text{H})(\text{X})\text{CH}_3, (\text{C}\text{H}_3)_2\text{C}(\text{X})\text{C}(\text{O})\text{C}(\text{O})\text{C}(\text{X})(\text{CH}_3)_2, \text{o}-, \text{m}-, \text{p}-\text{XCH}_2\text{CO}_2-\text{C}_6\text{H}_4-\text{OCOCH}_2\text{X}, \text{o}-, \text{m}-, \text{p}-\text{CH}_3\text{C}(\text{H})(\text{X})\text{CO}_2-\text{C}_6\text{H}_4-\text{OCOC}(\text{H})(\text{X})\text{CH}_3, \text{o}-, \text{m}-, \text{p}-\text{(CH}_3)_2\text{C}(\text{X})\text{CO}_2-\text{C}_6\text{H}_4-\text{OCOC}(\text{X})(\text{CH}_3)_2, \text{o}-, \text{m}-, \text{p}-\text{XSO}_2-\text{C}_6\text{H}_4-\text{SO}_2\text{X}$

（上記式中、Xは塩素、臭素、またはヨウ素を示す。）

重合触媒として用いられる遷移金属錯体としては特に限定されないが、好ましくは周期律表第7族、8族、9族、10族、または11族元素を中心金属とする金属錯体錯体である。更に好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が好ましい。1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアノ化第一銅、酸化第一銅、過塩素酸第一銅等である。銅化合物を用いる場合、触媒活性を高めるために2、2'ービピリジル及びその誘導体、1,10-フェナントロリン及びその誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2-アミノエチル)アミン等のポリアミン等の配位子が添加される。また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体 ($\text{RuCl}_2(\text{PPh}_3)_3$) も触媒として好適である。ルテニウム化合物を触媒として用いる場合は、活性化剤としてアルミニウムアルコキシド類が添加される。更に、2価の鉄のビストリフェニルホスフィン錯体 ($\text{FeCl}_2(\text{PPh}_3)_2$)、2価のニッケルのビストリフェニルホスフィン錯体 ($\text{NiCl}_2(\text{PPh}_3)_2$)、及び、2価のニッケルのビストリプチルホスフィン錯体 ($\text{NiBr}_2(\text{PBu}_3)_2$) も、触媒として

好適である。

【0024】この重合において用いられるビニル系のモノマーとしては特に限定されず、既に例示したものすべて好適に用いることができる。

【0025】上記重合反応は、無溶媒でも可能であるが、下記の各種溶媒中で行うこともできる。溶媒としては特に限定されず、例えば、ベンゼン、トルエン等の炭化水素系溶媒；ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼン等のエーテル系溶媒；塩化メチレン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒；アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒；メタノール、エタノール、プロパンール、イソブロパノール、*n*-ブチルアルコール、*t*-ブチルアルコール等のアルコール系溶媒；アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトロリ系溶媒；酢酸エチル、酢酸ブチル等のエステル系溶媒；エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。これらは、単独でもよく、2種以上を併用してもよい。また、エマルジョン系もしくは超臨界流体CO₂を媒体とする系においても重合を行うことができる。

【0026】重合は、0~200℃の範囲で行なうことが

(式中、R'は水素またはメチル基を表し、互いに同一であっても異なっていてもよい。R^gは-C(O)O-(エステル基)、またはo-, m-もしくはp-フェニレン基を示す。R^gは直接結合、または1個以上のエーテル結合を有していてもよい炭素数1~20の2価の有機基を示す。R^gがエステル基のものは(メタ)アクリレート系化合物、R^gがフェニレン基のものはスチレン系の化合物である。)

上記一般式(9)におけるR⁹としては、特に限定されないが、例えば、メチレン、エチレン、プロピレン等のアルキレン基；o-, m-, p-フェニレン基；ベンジル基等のアラルキル基；-CH₂CH₂-O-CH₂-や-O-CH₂-等のエーテル結合を含むアルキレン基等が挙げられる。

〔0030〕上記一般式(9)の化合物の中でも、入手が容易であるという点から下記のものが好ましい。

(上記の各式において、nは0～20の整数を示す。)

(上記の各式において、 n は1～20の整数、 m は0～20の整数を示す。)

o-, m-, p-ジビニルベンゼン、o-, m-, p-

でき、好ましくは、室温～150℃の範囲である。

〔0027〕一般式(1)で示されるアルケニル基を少なくとも1個有するビニル系重合体の製造方法は、以下の[A]～[C]において具体的に例示して説明するがこれらに限定されるものではない。

[A] ラジカル重合によりビニル系重合体を合成する際に、重合体主鎖に直接アルケニル基を導入する方法。

[B] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体を用いて、このハロゲンをアルケニル基含有官能基に置換する方法。

[C] 水酸基を少なくとも1個有するビニル系重合体を用いて、この水酸基をアルケニル基含有官能基に置換する方法。

〔0028〕上記会成法、〔A-〕の重合体主鎖に直接アルケニル基を導入する方法としては特に限定されないが、具体的には次に述べる〔A-a〕～〔A-b〕の方法なども挙げることができる。

【0029】【A-a】リビングラジカル重合によりビニル系重合体を合成する際に、所定のビニル系モノマーとともに、下記一般式(9)等で表される一分子中に重合性のアルケニル基および重合性の低いアルケニル基を併せ持つ化合物をも反応させる方法。

(上記の各式において、 C_6H_4 はフェニレン基を示す。)

なお、上記重合性のアルケニル基および重合性の低いアルケニル基を併せ持つ化合物を反応させる時期としては特に制限はないが、リビングラジカル重合において、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。

【0031】 [A-b] リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは

所定のモノマーの反応終了後に、第2のモノマーとして、重合性の低いアルケニル基を少なくとも2個有する化合物を反応させる方法。

【0032】このような化合物としては特に限定されないが、一般式(10)に示される化合物等が挙げられる。

(式中、R'は水素またはメチル基を表し、互いに同一でも異なっていてもよい。R¹⁰は1個以上のエーテル結合を含んでいてもよい炭素数1～20の2価の有機基を示す。)

上記一般式(10)に示される化合物としては特に限定されないが、入手が容易であるということから、1, 5-ヘキサジエン、1, 7-オクタジエン、1, 9-デカジエンが好ましい。

【〇〇三三】上記合成法【A】の重合体主鎖に直接アルケニル基を導入することによる、アルケニル基を少なくとも1個有するビニル系重合体の合成方法においては、一分子当たりに導入されるアルケニル基の制御がより容易である点から【A- b】の方法が好ましい。

(式中、R¹は上述したものと同様である。R¹¹およびR¹²は水素、または炭素数1～10のアルキル基、炭素数6～10のアリール基、または炭素数7～10のアラルキル基を表し、これらは互いに同じであっても異なっていてもよい。R¹³は、炭素数1～10のアルキル基、アリール基、またはアラルキル基を示す。)

上記一般式 (11) の有機錫化合物の具体例を示すならば、アリルトリブチル錫、アリルトリメチル錫、アリル

(式中、 R^1 、 R^5 、 R^8 および R^7 は上述したものと同様である。 M^+ はアルカリ金属イオンまたは4級アンモニウムイオンを示す。)

アルカリ金属イオンとしてはリチウムイオン、ナトリウムイオン、カリウムイオンが、また、4級アンモニウムイオンとしては、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、トリメチルベンジルアンモニウムイオン、トリメチルドデシルアンモニウムイオン、テトラブチルアンモニウムイオン等が具体例として挙げられる。

【0039】上記一般式(12)のカルバニオンは、その前駆体に対して塩基性化合物を作用させ、活性プロトンを引き抜くことによって得ることができる。

【0040】一般式(12)のカルバニオンの前駆化合物としては以下のような化合物が例示できる。

〔0034〕上記合成分成法〔B〕における一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体の合成法は原子移動ラジカル重合法が好ましい。この重合体のハロゲンをアルケニル基含有官能基に置換する方法としては特に限定されないが、具体的には次に述べる〔B-a〕～〔B-d〕の方法などを挙げることができる。

〔0035〕 [B-a] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体にアルケニル基を有する各種の有機金属化合物を作用させてハロゲンを置換する方法。

【0036】このような有機金属化合物としては、有機リチウム、有機ナトリウム、有機カリウム、有機マグネシウム、有機錫、有機ケイ素、有機亜鉛、有機銅等が挙げられる。特に上記一般式(2)のハロゲンと選択的に反応し、カルボニル基との反応性が低いという点で、有機錫、有機銅化合物が好ましい。

【0037】アルケニル基を有する有機錫化合物としては、特に制限はないが、下記一般式(11)で示される化合物が好ましい。

トリ（ヒオキチル）錫、アリルトリ（シクロヘキシリ）錫等が例示される。アルケニル基を有する有機銅化合物としては、ジビニル銅リチウム、ジアリル銅リチウム、ジイソプロペニル銅リチウム等が例示される。

【0038】 [B-1b] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体に、下記一般式(12)等で表されるアルケニル基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。

N) 2, o-, m-, p-H₂C=CH-C₆H₄-CH₂
 CH(CN) 2, H₂C=CH-(CH₂)_nNO₂, o-
 m-, p-H₂C=CH-C₆H₄-CH₂NO₂, o-
 m-, p-H₂C=CH-C₆H₄-CH₂CH₂N
 O₂, H₂C=CH-CH(C₆H₅)(CO₂C₂H₅),
 H₂C=CH-(CH₂)_nCH(C₆H₅)(CO₂C
 2H₅), o-, m-, p-H₂C=CH-C₆H₄-CH
 (C₆H₅)(CO₂C₂H₅), o-, m-, p-H₂C=
 CH-C₆H₄-CH₂CH(C₆H₅)(CO₂C₂H₅)
 (上記式中、nは1~10の整数を示す。)

上記化合物からプロトンを引き抜き一般式(12)のカルバニオンとするためには各種の塩基性化合物が使用される。これらの塩基性化合物としては以下のような化合物が例示できる。ナトリウム、カリウム、リチウム等のアルカリ金属；ナトリウムメトキシド、カリウムメトキシド、リチウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムエトキシド、ナトリウム-tert-ブトキシド、カリウム-tert-ブトキシド等の金属アルコキシド；炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム等の炭酸塩；水酸化ナトリウム、水酸化カリウム等の水酸化物；水素化ナトリウム、水素化カリウム、メチルリチウム、エチルリチウム等の水素化物；n-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド等の有機金属；アンモニア；トリメチルアミン、トリエチルアミン、トリブチルアミン等のアルキルアミン；テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン等のポリアミン；ビリジン、ピコリン等のビリジン系化合物等塩基性化合物の使用量は前駆物質に対して当量または小過剉量用いればよく、好ましくは1~1.2当量である。

【0041】上記のカルバニオンとして4級アンモニウム塩も使用できる。この場合、カルボン酸化合物のアルカリ金属塩であるものを調製し、これに4級アンモニウムハライドを作用させることによって得られる。4級アンモニウムハライドとしては、テトラメチルアンモニウムハライド、テトラエチルアンモニウムハライド、トリメチルベンジルアンモニウムハライド、トリメチルデシルアンモニウムハライド、テトラブチルアンモニウムハライド等が例示される。

【0042】上記前項化合物と塩基性化合物を反応させる際に用いられる溶媒としては、例えば、ベンゼン、トルエン等の炭化水素系溶媒；ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼン等のエーテル系溶媒；塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒；アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒；メタノール、エタノール、プロパンノール、イソブロパノール、n-ブチルアルコール、tert-ブ

テルアルコール等のアルコール系溶媒；アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒；酢酸エチル、酢酸ブチル等のエステル系溶媒；エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒；ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒；ジメチルスルホキシド等のスルホキシド系溶媒等が挙げられる。これらは、単独又は2種以上を混合して用いることができる。

【0043】上記の前駆体に塩基性化合物を作用させることにより一般式(12)で表されるカルバニオンが調製され、一般式(2)のハロゲン末端を有するビニル系重合体と反応させることにより、目的とする一般式

(1) で表されるアルケニル基を末端に有するビニル系重合体を得ることができる。

【004.4】 [B-c] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体に、金属単体あるいは有機金属化合物を作用させてエノレートアニオンとし、かかる後に、アルケニル基を有する求電子化合物と反応させる方法。

【0045】金属単体としては、生成するエノレートアニオンが他のエステル基を攻撃したり転移するような副反応を起こしにくいという点で亜鉛が特に好ましい。アルケニル基を有する求電子化合物としては各種のものを使用することができる。例えば、ハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物、アルケニル基を有するカルボニル化合物、アルケニル基を有するイソシアネート化合物、アルケニル基を有する酸ハロゲン化物等である。これらのうち、ハロゲンやアセチル基のような脱離基を有するアルケニル基含有化合物を用いると、主鎖に炭素以外の原子が導入されず、ビニル系重合体の耐候性が失われないので好ましい。

【0046】[日-d.] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体に、下記一般式(13)等で表されるアルケニル基含有オキシアニオン又は下記一般式(14)等で表されるアルケニル基含有カルボキシレートアニオンを反応させて、上記ハロゲンをアルケニル基含有置換基に置換する方法。

(式中、R¹、R⁵およびM⁺は上述したものと同様である。)

(式中、R¹、R⁵およびM⁺は上述したものと同様である。)

一般式(13)および(14)で表されるオキシアニオンの前駆化合物としては以下のような化合物:

$C=C(CH_3)-C(O)O-(CH_2)_2-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-C_6H_4-CH_2-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-C_6H_4-CH_2-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-O-C_6H_4-CH_2-OH$ 等のアルコール性水酸基含有化合物； $\circ-$ 、 $m-$ 、 $p-H_2C=CH-C_6H_4-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-C_6H_4-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-O-C_6H_4-OH$ 等のフェノール性水酸基含有化合物； $H_2C=CH-C(O)-OH$ 、 $H_2C=CH-C(CH_3)-C(O)-OH$ 、 $H_2C=CH-CH_2-C(O)-OH$ 、 $H_2C=CH-(CH_2)_n-C(O)-OH$ (n は、2~20の整数を示す。)、 $H_2C=CH-(CH_2)_n-O-C(O)-(CH_2)_m-C(O)-OH$ (m 及び n は、同一又は異なって、0~19の整数を示す。)、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-C_6H_4-C(O)-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-C_6H_4-C(O)-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-O-C_6H_4-C(O)-OH$ 、 $\circ-$ 、 $m-$ 、 $p-H_2C=CH-CH_2-O-C_6H_4-C(O)-OH$ (n は、0~13の整数を示す。)等のカルボキシル基含有化合物；等が挙げられる。

【0047】上記の化合物からプロトンを引き抜き上記一般式(13)あるいは(14)のアニオンとするためには各種の塩基性化合物が使用され、その具体例としては、前述の一般式(12)のカルバニオンを調製する際に用いられる塩基性化合物がすべて好適に使用される。

(式中、 R^1 、 R^9 および X は上述したものと同様である。 R^{14} 、 R^{15} は水素または炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または他端において相互に連結したものを示す。 R^{16} は $-C(O)O-$ (エステル基)、 $-C(O)-$ (ケト基)、または $\circ-$ 、 $m-$ 、 p -フェニレン基を示す。)

一般式(15)で表されるアルケニル基を有する有機ハロゲン化物の具体例としては、 $XCH_2C(O)O(CH_2)_nCH=CH_2$ 、 $H_3CC(H)(X)C(O)O(CH_2)_nCH=CH_2$ 、 $(H_3C)_2C(X)C(O)O(CH_2)_nCH=CH_2$ 、 $CH_3CH_2C(H)(X)C(O)O(CH_2)_nCH=CH_2$ 。

【0051】

【化1】

(上記の各式において、 X は塩素、臭素、またはヨウ素を示す。 n は0~20の整数を示す。)

また、反応溶媒についてもカルバニオンを調製する際に用いられるものがすべて好適に使用される。

【0048】上記合成法【B】の中では、高い比率でアルケニル基を導入することができるから、有機ハロゲン化物、またはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として用いる原子移動ラジカル重合法によって得られた一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体のハロゲンを【B-d】の方法により変換することによりアルケニル基を導入する方法が好ましい。【B-d】の方法の中では一般式(14)等で表されるアルケニル基含有カルボキシレートアニオンを反応させる方法がより好ましい。

【0049】有機ハロゲン化物、またはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒としてビニル系モノマーを重合する原子移動ラジカル重合法を用いることを特徴とするビニル系重合体の製造法において、アルケニル基を有する有機ハロゲン化物を開始剤として用いれば、片末端にアルケニル基を有し、他の末端が上記一般式(2)の構造を有するビニル系重合体を得ることができる。このようにして得られる重合体の停止末端のハロゲンをアルケニル基含有置換基に変換すれば、両末端にアルケニル基を有するビニル系重合体を得ることができる。その変換方法としては、既に記載した方法を使用することができる。

【0050】アルケニル基を有する有機ハロゲン化物としては特に制限はないが、例えば、下記一般式(15)に示す構造を有するものが例示される。

【0052】

【化2】

(上記各式において、 X は塩素、臭素、またはヨウ素を示す。 n は1~20の整数を、 m は0~20の整数を示す。)

\circ 、 m 、 $p-XCH_2-C_6H_4-(CH_2)_n-CH=CH_2$ 、 H_2 、 \circ 、 m 、 $p-CH_3C(H)(X)-C_6H_4-(CH_2)_n-CH=CH_2$ 、 H_2 、 \circ 、 m 、 $p-CH_3CH_2C(H)(X)-C_6H_4-(CH_2)_n-CH=CH_2$

(上記各式において、 X は塩素、臭素、またはヨウ素を示す。 n は0~20の整数を示す。)

o, m, p-XCH₂-C₆H₄-(CH₂)_n-O-(C
H₂)=CH=CH₂, o, m, p-CH₃C(H)
(X)-C₆H₄-(CH₂)_n-O-(CH₂)=CH=
CH₂, o, m, p-CH₃CH₂C(H)(X)-C₆H
4-(CH₂)_n-O-(CH₂)=CH=CH₂

(上記各式において、Xは塩素、臭素、またはヨウ素を示す。nは1~20の整数を表し、mは0~20の整数を示す。)

o, m, p-XCH₂-C₆H₄-O-(CH₂)_n-CH
=CH₂, o, m, p-CH₃C(H)(X)-C₆H₄-
O-(CH₂)_n-CH=CH₂, o, m, p-CH₃CH
2C(H)(X)-C₆H₄-O-(CH₂)_n-CH=C
H₂

(式中、R¹、R⁹、R¹⁴、R¹⁵、Xは上述したものと同様である。R¹⁷は、直接結合、-C(O)O-(エステル基)、-C(O)-(ケト基)、または、o-, m-, p-フェニレン基を示す。)

R⁹は直接結合、または炭素数1~20の2価の有機基(1個以上のエーテル結合を含んでいても良い)であるが、直接結合である場合は、ハロゲンの結合している炭素にビニル基が結合しており、ハロゲン化アリル化物である。この場合は、隣接ビニル基によって炭素-ハロゲン結合が活性化されているので、R¹⁷としてC(O)O基やフェニレン基等を有する必要は必ずしもなく、直接結合であってもよい。R⁹が直接結合でない場合は、炭素-ハロゲン結合を活性化するために、R¹⁷としてはC(O)O基、C(O)基、フェニレン基が好ましい。

【0053】上記一般式(16)の化合物は、具体的には下記の化合物を例示できる。

CH₂=CHCH₂X, CH₂=C(CH₃)CH₂X, C
H₂=CHC(H)(X)CH₃, CH₂=C(CH₃)C
(H)(X)CH₃, CH₂=CHC(X)(CH₃)₂,
CH₂=CHC(H)(X)C₂H₅, CH₂=CHC
(H)(X)CH(CH₃)₂, CH₂=CHC(H)
(X)C₆H₅, CH₂=CHC(H)(X)CH₂C
H₅, CH₂=CHCH₂C(H)(X)-CO₂R, C
H₂=CH(CH₂)₂C(H)(X)-CO₂R, CH₂=C
H(CH₂)₃C(H)(X)-CO₂R, CH₂=CHC
H₂C(H)(X)-C₆H₅, CH₂=CH(CH₂)₂C
(H)(X)-C₆H₅, CH₂=CH(CH₂)₃C
(H)(X)-C₆H₅.

(上記各式において、Xは塩素、臭素、またはヨウ素を示す。Rは炭素数1~20のアルキル基、アリール基、アラルキル基を示す。)

アルケニル基を有するハロゲン化スルホニル化合物は、具体的には下記の化合物を例示できる。

o-, m-, p-CH₂=CH-(CH₂)_n-C₆H₄-
SO₂X, o-, m-, p-CH₂=CH-(CH₂)_n-

(上記各式において、Xは塩素、臭素、またはヨウ素を表し、nは0~20の整数を示す。)

o, m, p-XCH₂-C₆H₄-O-(CH₂)_n-O-
(CH₂)=CH=CH₂, o, m, p-CH₃C(H)
(X)-C₆H₄-O-(CH₂)_n-O-(CH₂)=C
H=CH₂, o, m, p-CH₃CH₂C(H)(X)-C
H₄-O-(CH₂)_n-O-(CH₂)=CH=CH
₂

(上記の各式において、Xは塩素、臭素、またはヨウ素を示す。nは1~20の整数を表し、mは0~20の整数を示す。)

アルケニル基を有する有機ハロゲン化物としてはさらに一般式(16)で示される化合物が挙げられる。

(X)-R¹⁷-R¹⁵ (16)

O-C₆H₄-SO₂X

(上記各式において、Xは塩素、臭素、またはヨウ素を示す。nは0~20の整数を示す。)

アルケニル基を有する有機ハロゲン化物、またはハロゲン化スルホニル化合物等を開始剤として用いると、片末端がアルケニル基、他の末端が上記一般式(2)で示されるハロゲン末端の重合体を得ることができる。この重合体の一般式(2)で表されるハロゲンを置換できる。同一または異なる官能基を合計2個以上有する化合物を用いて、ハロゲン末端どうしをカップリングさせることによっても、末端にアルケニル基を有するビニル系重合体を得ることができる。

【0054】末端ハロゲンを置換できる、同一または異なる官能基を合計2個以上有するものとしては特に制限はないが、ポリオール、ポリアミン、ポリカルボン酸、ポリチオール、およびそれらの塩、アルカリ金属硫化物等が好ましい。これら化合物の具体例としては下記の化合物を例示できる。

【0055】エチレングリコール、1, 2-プロパンジオール、1, 3-プロパンジオール、2-メチル-1, 3-プロパンジオール、2, 2-ジメチル-1, 3-プロパンジオール、1, 4-ブタンジオール、1, 3-ブタンジオール、1, 2-ブタンジオール、2, 3-ブタンジオール、ビナコール、1, 5-ペンタンジオール、1, 4-ペンタンジオール、2, 4-ペンタンジオール、1, 6-ヘキサンジオール、1, 7-ヘプタンジオール、1, 8-オクタンジオール、1, 9-ノナンジオール、1, 10-デカンジオール、1, 12-ドデカンジオール、1, 2-シクロヘキサンジオール、1, 3-シクロヘキサンジオール、1, 4-シクロヘキサンジオール、1, 3-シクロヘキサンジオール、1, 4-シクロヘキサンジオール、グリセロール、1, 2, 4-ブタントリオール、カテコール、レゾルシノール、ヒドロキノン、1, 2-ジヒドロキシナフタレン、1, 3-ジヒドロキシナフタレン、1, 5-ジヒドロキシナフタレン、2, 6-ジヒドロキシナフタレン、2, 2'-ビフ

エノール、4, 4'-ビフェノール、ビス(4-ヒドロキシフェニル)メタン、4, 4'-イソプロピリデンフェノール、3, 3'-(エチレンジオキシ)ジフェノール、 α , α' -ジヒドロキシ-p-キシレン、1, 1, 1-トリス(4-ヒドロキシフェニル)エタン、ピロガロール、1, 2, 4-ベンゼントリオール等のポリオール；および、上記ポリオール化合物のアルカリ金属塩；エチレンジアミン、1, 3-ジアミノプロパン、1, 2-ジアミノプロパン、1, 4-ジアミノブタン、1, 2-ジアミノ-2-メチルプロパン、1, 5-ジアミノベントン、2, 2-ジメチル-1, 3-プロパンジアミン、1, 6-ヘキサンジアミン、1, 7-ヘプタンジアミン、1, 8-オクタンジアミン、1, 9-ジアミノノナン、1, 10-ジアミノデカン、1, 12-ジアミノドデカン、4, 4'-メチレンビス(シクロヘキシリアミン)、1, 2-ジアミノシクロヘキサン、1, 3-ジアミノシクロヘキサン、1, 4-ジアミノシクロヘキサン、1, 2-フェニレンジアミン、1, 3-フェニレンジアミン、1, 4-フェニレンジアミン、 α , α' -ジアミノ-p-キシレン等のポリアミン；および上記ポリアミン化合物のアルカリ金属塩；シュウ酸、マロン酸、メチルマロン酸、ジメチルマロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、1, 7-ヘプタンジカルボン酸、1, 8-オクタンジカルボン酸、1, 9-ノナンジカルボン酸、1, 10-デカンジカルボン酸、1, 11-ウンデカンジカルボン酸、1, 12-ドデカンジカルボン酸、1, 2-シクロヘキサンジカルボン酸、1, 2-シクロヘキサンジカルボン酸、1, 3-シクロヘキサンジカルボン酸、1, 4-シクロヘキサンジカルボン酸、1, 3, 5-シクロヘキサントリカルボン酸、フタル酸、イソフタル酸、テレフタル酸、1, 2, 3-ベンゼントリカルボン酸、1, 2, 4, 5-ベンゼンテトラカルボン酸等のポリカルボン酸；および上記ポリカルボン酸のアルカリ金属塩；1, 2-エタンジオール、1, 3-プロパンジオール、1, 4-ブタジオール、2, 3-ブタンジオール、1, 5-ベンゼンジオール、1, 6-ヘキサンジオール、1, 7-ヘプタンジオール、1, 8-オクタンジオール、1, 9-ノナンジオール、2-メルカブトエチルエーテル、p-キシレン- α , α' -ジオール、1, 2-ベンゼンジオール、1, 3-ベンゼンジオール、1, 4-ベンゼンジオール、等のポリチオール；および、上記ポリチオール化合物のアルカリ金属塩；硫化リチウム、硫化ナトリウム、硫化カリウム。

【0056】上記のポリオール、ポリアミン、ポリカルボン酸、ポリチオールを用いる際は、置換反応を促進させるために、塩基性化合物が併用され、その具体例としては、既に例示したものが挙げられる。

【0057】上記合成法【C】の水酸基を少なくとも1個有するビニル系重合体を用いて、この水酸基をアルケニル基含有官能基に置換する方法としては特に限定されないが、具体的には次に述べる【C-a】～【C-d】の方法などを挙げることができる。

【0058】なお、上記の水酸基を少なくとも1個有するビニル系重合体は、後述する【D-a】～【D-f】の方法により得ることができる。

【0059】【C-a】水酸基を少なくとも1個有するビニル系重合体の水酸基に、水酸化ナトリウム、ナトリウムメトキシド等の塩基を作成させた後に、塩化アリルのようなアルケニル基含有ハロゲン化物と反応させる方法。

【0060】【C-b】水酸基を少なくとも1個有するビニル系重合体とアリルイソシアネート等のアルケニル基含有イソシアネート化合物とを反応させる方法。

【0061】【C-c】ビリジン等の塩基存在下、水酸基を少なくとも1個有するビニル系重合体を(メタ)アクリル酸クロリド等のアルケニル基含有酸ハロゲン化物と反応させる方法。

【0062】【C-d】酸触媒の存在下、水酸基を少なくとも1個有するビニル系重合体とアクリル酸等のアルケニル基含有カルボン酸とを反応させる方法。

【0063】【C】の方法で用いる水酸基を少なくとも1個有するビニル系重合体の製造方法は以下に示す【D-a】～【D-f】のような方法が例示されるが、これらの方針に限定されるものではない。

【0064】【D-a】リビングラジカル重合によりビニル系重合体を合成する際に、下記一般式(17)等で表される一分子中に重合性のアルケニル基および水酸基を併せ持つ化合物を第2のモノマーとして反応させる方法。

(式中、 R^1 、 R^8 および R^9 は上述したものと同様である。)

なお、一分子中に重合性のアルケニル基および水酸基を併せ持つ化合物を反応させる時期に制限はないが、特にゴム的な性質を期待する場合には重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして反応させるのが好ましい。

【0065】【D-b】リビングラジカル重合によりビニル系重合体を合成する際に、重合反応の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、一分子中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。

【0066】このような化合物としては特に限定されないが、一般式(18)に示される化合物等が挙げられる。

(式中、 R^1 および R^{10} は上述したものと同様である。)

上記一般式(18)に示される化合物としては特に限定

されないが、入手が容易であるということから、10-ウンデセノール、5-ヘキセノール、アリルアルコールのようなアルケニルアルコールが好ましい。

【0067】 [D-c] 特開平4-132706号公報などに開示されるような方法で、原子移動ラジカル重合により得られる一般式(2)で表される炭素-ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを、加水分解あるいは水酸基含有化合物と反応させることにより、末端に水酸基を導入する方法。

【0068】 [D-d] 原子移動ラジカル重合により得られる一般式(2)で表される炭素-ハロゲン結合を少なくとも1個有するビニル系重合体に、一般式(19)に挙げられるような水酸基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。

(式中、R⁵、R⁶およびR⁷は上述したものと同様である。)

[D-e] 原子移動ラジカル重合により得られる一般式(2)で表される炭素-ハロゲン結合を少なくとも1個有するビニル系重合体に、例えば亜鉛のような金属単体あるいは有機金属化合物を作用させてエノレートアニオンを調製し、かかる後にアルデヒド類、又はケトン類を反応させる方法。

【0069】 [D-f] 一般式(2)で表されるハロゲンを少なくとも1個有するビニル系重合体に、下記一般式(20)等で表される水酸基含有オキシアニオン又は下記一般式(21)等で表される水酸基含有カルボキシレートアニオンを反応させて、上記ハロゲンを水酸基含有置換基に置換する方法。

(式中、R⁵およびM⁺は上述したものと同様である。)

(式中、R⁵およびM⁺は上述したものと同様である。)本発明では[D-a]～[D-b]のような水酸基を導入する方法にハロゲンが直接関与しない場合、制御がより容易である点から[D-b]の方法がさらに好ましい。

【0070】 また[D-c]～[D-f]のような一般式(2)で表される炭素-ハロゲン結合を少なくとも1個有するビニル系重合体のハロゲンを変換することにより水酸基を導入する場合は、制御がより容易である点から[D-f]の方法がさらに好ましい。

〔(B) 成分のヒドロシリル基含有化合物について〕

(B) 成分のヒドロシリル基含有化合物としては特に制限はなく、各種のものを用いることができる。すなわち、一般式(22)または(23)で表される鎖状ポリシロキサン：

(式中、R¹⁸およびR¹⁹は炭素数1～6のアルキル基、または、フェニル基、R²⁰は炭素数1～10のアルキル基またはアラルキル基を示す。aは0≤a≤100、bは2≤b≤100、cは0≤c≤100を満たす整数を示す。)

一般式(24)で表される環状シロキサン：

【0071】

【化3】

(式中、R²¹およびR²²は炭素数1～6のアルキル基、または、フェニル基、R²²は炭素数1～10のアルキル基またはアラルキル基を示す。dは0≤d≤8、eは2≤e≤10、fは0≤f≤8の整数を表し、かつ3≤d+e+f≤10を満たす。) 等の化合物を用いることができる。

【0072】 これらは単独で用いても2種以上を混合しても用いてもかまわない。これらのシロキサンの中でも(メタ)アクリル系重合体との相溶性の観点から、フェニル基を有する下記一般式(25)、(26)で表される鎖状シロキサンや、一般式(27)、(28)で表される環状シロキサンが好ましい。

(式中、R²⁴は水素またはメチル基を示す。gは2≤g≤100、hは0≤h≤100の整数を示す。C₆H₅はフェニル基を示す。)

【0073】

【化4】

(式中、R²⁴は水素、またはメチル基を示す。iは2≤i≤10、jは0≤j≤8、かつ3≤i+j≤10を満たす整数を示す。C₆H₅はフェニル基を示す。)

(B) 成分の少なくとも1個のヒドロシリル基を有する化合物としてはさらに、分子中に2個以上のアルケニル基を有する低分子化合物に対し、一般式(2-2)から(2-8)に表されるヒドロシリル基含有化合物を、反応後にも一部のヒドロシリル基が残るようにして付加反応させて得られる化合物を用いることもできる。分子中に2個以上のアルケニル基を有する化合物としては、各種のものを用いることができる。例示するならば、1, 4-ペンタジエン、1, 5-ヘキサジエン、1, 6-ヘプタジエン、1, 7-オクタジエン、1, 8-ノナジエン、1, 9-デカジエン等の炭化水素系化合物、O,O'-ジアリルビスフェノールA、3, 3'-ジアリル

ビスフェノールA等のエーテル系化合物、ジアリルフタレート、ジアリルイソフタレート、トリアリルドリメテート、テトラアリルピロメリテート等のエステル系化合物、ジエチレングリコールジアリルカーボネート等のカーボネート系化合物が挙げられる。

【0074】上記一般式(2-2)から(2-8)に示した過剰量のヒドロシリル基含有化合物に対し、ヒドロシリル化触媒の存在下、上に挙げたアルケニル基含有化合物をゆっくり滴下することにより該化合物を得ることができる。このような化合物のうち、原料の入手容易性、過剰に用いたシロキサンの除去のしやすさ、さらには

(A) 成分の重合体への相溶性を考慮して、下記のものが好ましい。

【0075】

【化5】

(nは2~4の整数、mは5~10の整数)

【硬化物の作成方法】重合体(A)と硬化剤(B)は任意の割合で混合することができるが、硬化性の面から、アルケニル基とヒドロシリル基のモル比が5~0.2の範囲にあることが好ましく、さらに、2.5~0.4であることが特に好ましい。モル比が5以上になると硬化が不十分でべとつきのある強度の小さい硬化物しか得られず、また、0.2より小さくすると、硬化後も硬化物中に活性なヒドロシリル基が大量に残るので、クラック、ボイドが発生し、均一で強度のある硬化物が得られない。

【0076】重合体(A)と硬化剤(B)との硬化反応は、2成分を混合して加熱することにより進行するが、

反応をより迅速に進めるために、ヒドロシリル化触媒を添加することができる。このようなヒドロシリル化触媒としては特に限定されず、例えば、有機過酸化物やアゾ化合物等のラジカル開始剤、および遷移金属触媒が挙げられる。

【0077】ラジカル開始剤としては特に限定されず、例えば、ジ-t-ブチルペルオキシド、2, 5-ジメチル-2, 5-ジ-(t-ブチルペルオキシ)ヘキサン、2, 5-ジメチル-2, 5-ジ-(t-ブチルペルオキシ)-3-ヘキシン、ジクミルペルオキシド、t-ブチルクミルペルオキシド、α, α'-ビス(t-ブチルペ

ルオキシ) イソプロピルベンゼンのようなジアルキルペルオキシド、ベンゾイルペルオキシド、ローコロロベンゾイルペルオキシド、m-クロロベンゾイルペルオキシド、2, 4-ジクロロベンゾイルペルオキシド、ラウロイルペルオキシドのようなジアシルペルオキシド、過安息香酸-t-ブチルのような過酸エステル、過ジ炭酸ジイソプロピル、過ジ炭酸ジ-2-エチルヘキシルのようなペルオキシジカーボネート、1, 1-ジ(t-ブチルペルオキシ) シクロヘキサン、1, 1-ジ(t-ブチルペルオキシ)-3, 3, 5-トリメチルシクロヘキサンのようなペルオキシケタール等を挙げることができる。

【0078】また、遷移金属触媒としても特に限定されず、例えば、白金単体、アルミナ、シリカ、カーボンブラック等の担体に白金固体を分散させたもの、塩化白金酸、塩化白金酸とアルコール、アルdehyd、ケトン等との錯体、白金-オレフィン錯体、白金(0)-ジビニルテトラメチルジシロキサン錯体が挙げられる。白金化合物以外の触媒の例としては、RhCl₃(PPPh₃)₃、RhCl₃、RuCl₃、IrCl₃、FeCl₃、AlCl₃、PdCl₂·H₂O、NiCl₂、TiCl₄等が挙げられる。これらの触媒は単独で用いてもよく、2種類以上を併用してもかまわない。触媒量としては特に制限はないが、(A)成分のアルケニル基1molに対し、10⁻¹~10⁻⁸molの範囲で用いるのが良く、好ましくは10⁻³~10⁻⁶molの範囲で用いるのがよい。10⁻⁸molより少ないと硬化が十分に進行しない。またヒドロシリル化触媒は高価であるので10⁻¹mol以上用いないのが好ましい。

【0079】本発明の成形用硬化性組成物には、物性を調整するために各種の添加剤、例えば、老化防止材、充填材、可塑剤、物性調整剤、貯蔵安定性改良剤などを配合してもよい。

【0080】ビニル系重合体は本来、耐久性に優れた重合体であるので、老化防止剤は必ずしも必要ではないが、従来公知の酸化防止剤、紫外線吸収剤を適宜用いることができる。

【0081】配合できる充填材としては、特に限定されず、例えば、微粉末シリカ、炭酸カルシウム、クレー、タルク、酸化チタン、亜鉛華、珪藻土、硫酸バリウム、カーボンブラックなどが挙げられる。なかでも粘度と物性のバランスから微粉末シリカが好ましい。水分が多く含まれると硬化反応時に副反応がおこつ可能性があるため、無水シリカがさらに好ましい。無水シリカの表面を疎水処理したものが、成形に適した流動性を発現しやすいため特に好ましい。

【0082】可塑剤としては物性の調整、性状の調節等の目的により、ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類；ジオクチルアジベート、ジオクチルセバケート等の非芳香族二塩基

酸エステル類；ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート等のポリアルキレングリコールのエステル類；トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類；塩化パラフィン類；アルキルジフェニル、部分水添ターフェニル等の炭化水素系油等を単独、または2種以上混合して使用することができるが、必ずしも必要とするものではない。なおこれら可塑剤は、重合体製造時に配合することも可能である。

【0083】配合できる貯蔵安定性改良剤は、本組成物の貯蔵時の増粘および貯蔵後の硬化速度の著しい変化を抑えることができるものであれば特に限定されず、例えば、ベンゾチアゾール、ジメチルマレート等が挙げられる。

【0084】硬化条件については特に制限はないが、一般に0℃~200℃、好ましくは30℃~150℃、さらに好ましくは80℃~150℃で硬化させるのがよい。これにより短時間で成形用硬化性を得ることができる。

【0085】本発明の成形用硬化性組成物の成形方法としては、特に限定されず、一般に使用されている各種の成形方法を用いることができる。例えば、注型成形、圧縮成形、トランファーファー成形、射出成形、押し出し成形、回転成形、中空成形、熱成形などが挙げられる。特に自動化、連続化が可能で、生産性に優れるという観点から射出成形によるものが好ましい。

【0086】本発明の成形用硬化性組成物から得られた成形体は、ゴム弾性を示す成形体としてはガスケット、パッキン類を中心に広く使用することができる。例えば自動車分野ではボディ部品として、気密保持のためのシール材、ガラスの振動防止材、車体部位の防振材、特にウインドシールガスケット、ドアガラス用ガスケットに使用することができる。シャーシ部品として、防振、防音用のエンジンおよびサスペンションゴム、特にエンジンマウントラバーに使用することができる。エンジン部品としては、冷却用、燃料供給用、排気制御用などのホース類、エンジンオイル用シール材などに使用することができる。また、排ガス清浄装置部品、ブレーキ部品にも使用できる。家電分野では、パッキン、Oリング、ベルトなどに使用できる。具体的には、照明器具用の飾り類、防水パッキン類、防振ゴム類、防虫パッキン類、クリーナ用の防振・吸音と空気シール材、電気温水器用の防滴カバー、防水パッキン、ヒータ部パッキン、電極部パッキン、安全弁ダイアフラム、酒かん器用のホース類、防水パッキン、電磁弁、スチームオーブンレンジ及びジャー炊飯器用の防水パッキン、給水タンクパッキン、吸水バルブ、水受けパッキン、接続ホース、ベルト、保温ヒータ部パッキン、蒸気吹き出しロシールなど、燃焼機器用のオイルパッキン、Oリング、ドレインパッキン、加圧チューブ、送風チューブ、送・吸気パッ

キン、防振ゴム、給油口パッキン、油量計パッキン、送油管、ダイアフラム弁、送気管など、音響機器用のスピーカーガスケット、スピーカーエッジ、ターンテーブルシート、ベルト、ブーリー等が挙げられる。建築分野では、構造用ガスケット（ジッパーガスケット）、空気膜構造屋根材、防水材、定形シーリング材、防振材、防音材、セッティングブロック、摺動材等に使用できる。スポーツ分野では、スポーツ床として全天候型舗装材、体育館床等、スポーツシューズとして靴底材、中底材等、球技用ボールとしてゴルフボール等に使用できる。防振ゴム分野では、自動車用防振ゴム、鉄道車両用防振ゴム、航空機用防振ゴム、防舷材等に使用できる。海洋・土木分野では、構造用材料として、ゴム伸縮継手、支承、止水板、防水シート、ラバーダム、弾性舗装、防振パット、防護体等、工事副材料としてゴム型枠、ゴムパッカー、ゴムスカート、スポンジマット、モルタルホース、モルタルストレーナ等、工事補助材料としてゴムシート類、エアホース等、安全対策商品としてゴムブイ、消波材等、環境保全商品としてオイルフェンス、シルトフェンス、防汚材、マリンホース、ドレッシングホース、オイルスキマー等に使用できる。その他、板ゴム、マット、フォーム板等にも使用できる。

【0087】

【実施例】以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下記実施例に限定されるものではない。

【0088】下記実施例および比較例中「部」および「%」は、それぞれ「重量部」および「重量%」を表す。

【0089】下記実施例中、「数平均分子量」および「分子量分布（重量平均分子量と数平均分子量の比）」は、ゲルパーミエーションクロマトグラフィー（GPC）を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの（shodex GPC K-804：昭和電工（株）製）、GPC溶媒としてクロロホルムを用いた。

（製造例1）遠流管および搅拌機付きの10Lのセパラブルフラスコに、CuBr（36.02g、0.2511mol）を仕込み、反応容器内を窒素置換した。アセトニトリル（618mL）を加え、オイルバス中70°Cで15分間搅拌した。これにアクリル酸ブチル（360mL、2.51mol）、アクリル酸エチル（500mL、4.62mol）、アクリル酸2-メトキシエチル（375mL、2.91mol）、2,5-ジプロモアジビン酸ジエチル（150.68g、0.419mol）、ペンタメチルジエチレントリアミン（2.18mL、1.81g、10.46mmol）（これ以降トリアミンと表す）を加え、反応を開始した。70°Cで加熱搅拌しながら、アクリル酸ブチル（1440mL）、ア

クリル酸エチル（2002mL）、アクリル酸2-メトキシエチル（1498mL）を210分かけて連続的に滴下した。モノマーの滴下途中にトリアミン（7.63mL、6.33g、36.5mmol）を追加した。反応開始より330分経過後に1,7-オクタジエン（1236mL、922g、8.37mol）、トリアミン（26.16mL、21.71g、0.125mol）を加え、引き続き70°Cで250分加熱搅拌した。

【0090】反応混合物をトルエンで希釈し、活性アルミニナカラムを通した後、揮発分を減圧留去することによりアルケニル基末端共重合体〔アルケニル末端ポリ（アクリル酸ブチル、アクリル酸エチル、アクリル酸メトキシエチル）の共重合体：共重合体〔1〕〕を得た。共重合体〔1〕の数平均分子量は19600、分子量分布は1.24であった。

【0091】遠流管付5Lセパラブルフラスコに、共重合体〔1〕（1.90kg）、酢酸カリウム（98.2g）、N,N-ジメチル酢酸アミド（1.9L）を仕込み、窒素気流下70°Cで9時間加熱搅拌した。加熱減圧下でN,N-ジメチル酢酸アミドを除去した後、トルエンで希釈した。トルエンに不溶な固体分（KBrおよび余剰な安息香酸カリウム）を活性アルミニナカラムで滤過した。ろ液の揮発分を減圧留去することにより共重合体〔2〕を得た。

【0092】遠流管付5Lセパラブルフラスコに、共重合体〔2〕（0.8kg）、珪酸アルミ（177g、協和化学製、キヨーワード700PEL）、トルエン（3.2L）を仕込み、窒素気流下100°Cで3時間加熱搅拌した。珪酸アルミを滤過により除去した後、ろ液のトルエンを減圧留去することによりビニル基末端共重合体（共重合体〔3〕）を得た。得られた共重合体の数平均分子量はGPC測定（ポリスチレン換算）により20300、分子量分布は1.31であった。共重合体1分子当たりに導入された平均のビニル基の数を1H-NMR分析により求めたところ、約2.7個であった。

（実施例1）製造例1で得られた共重合体〔3〕100gと、分子中に平均5個のヒドロシリル基と平均5個のα-メチルスチレン基を含有する鎖状シロキサン6.9gおよび0.5g白金の1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン錯体2:14mlとを室温にて手混ぜし、脱泡した。この混合物は室温で充分な流动性を示した。この混合物を型枠に流し込み、150°Cで硬化養生させたところ、10分で充分な硬化物が得られた。なお、共重合体のビニル基に対して、鎖状シロキサンの使用量はヒドロシリル基のモル比で1.8当量、白金触媒の使用量はモル比で 1.5×10^{-4} 当量とした。

（実施例2）製造例1で得られた共重合体〔3〕100gと、アエロジル（R-974：日本アエロジル製）20g、分子中に平均5個のヒドロシリル基と平均5個の

α -メチルスチレン基を含有する鎖状シロキサン6.9gおよび0価白金の1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン錯体2.34mIとを室温にて手混ぜし、脱泡した。この混合物は室温で充分な流动性を示した。この混合物をカートリッジに詰めた後、カートリッジから一定形状の型枠に押出した。50℃で10分静置したところ、セルフレベリングした。これを150℃で硬化養生させたところ、そのままの形状を保ちながら、10分で充分な硬化物が得られた。なお、共重合体のビニル基に対して、鎖状シロキサンの使用量はヒドロシリル基のモル比で1.8当量、白金触媒の使用量はモル比で 2×10^{-4} 当量とした。

(比較例1) 末端がアルケニル化された分子量約1万のポリオキシプロピレングリコール100gと、分子中に

平均5個のヒドロシリル基と平均5個の α -メチルスチレン基を含有する鎖状シロキサン6.9gおよび0価白金の1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン錯体0.64mIとを室温にて混練し、脱泡した。150℃で硬化養生させたところ、10分で充分な硬化物が得られた。なお、重合体のビニル基に対して、鎖状シロキサンの使用量はヒドロシリル基のモル比で1.5当量、白金触媒の使用量はモル比で 5.0×10^{-4} 当量とした。

【0093】実施例1～実施例2と比較例1で作製した硬化物の硬度(JIS A)、耐油性(JIS K 6820)の結果を表1に示した。

【0094】

【表1】

	硬度	耐油性(重量増分:%)	
		室温×70h	150℃×70h
実施例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体単独硬化物	15	0.3	2
実施例2 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体配合硬化物	26	0.3	2
比較例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)単独硬化物	24	19	130

実施例1～実施例2と比較例1で作製した硬化物の硬化養生後の機械物性を表2に示した。

【0095】

【表2】

	M ₅₀ (MPa)	M ₁₀₀ (MPa)	T _{max} (MPa)	E _b (G)
実施例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体単独硬化物	0.13	0.23	0.54	220
実施例2 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体配合硬化物	0.23	0.51	3.81	380
比較例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)単独硬化物	0.37	0.56	0.57	100

実施例1～実施例2と比較例1で作製した硬化物の硬化養生後の圧縮永久歪み特性(JIS K 6262、ただし試験条件は150℃、72時間とした。)を表3に示した。

【0096】

【表3】

	圧縮永久歪み(%)
実施例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体単独硬化物	15
実施例2 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)共重合体配合硬化物	40
比較例1 のアルケニル末端ポリ(アクリル酸ブチル、イソブチリック酸ブチル)単独硬化物	-(原形留めず)

【0097】

【発明の効果】本発明の成形用硬化性組成物は、液状の状態で充填材等の配合剤を混練することができることに

より加工性に優れ、かつ硬化性に優れるので短時間で成形可能である。また、これを硬化させてなる成形体は充分な機械特性、耐熱性および耐油性を有する。

フロントページの続き

(51) Int. Cl. 7

識別記号

F I

テーマコード(参考)

C O 8 L 83/05

C O 8 L 83/05

// - C O 8 G 77/12

C O 8 G 77/12

(72) 発明者 中川 佳樹

兵庫県神戸市兵庫区吉田町1-2-80
化学工業株式会社機能性材料R Dセンター
神戸研究所内