ТРЯП 1

Ковалев Алексей

- **1.** Регулярное выражение для этого языка $(a|b)^*bb(a|b)^*$. Для доказательства покажем, что язык L из условия и язык L_1 , задаваемый PB совпадают. Покажем включения в обе стороны.
 - 1. Очевидно, что слово bb является подсловом слова, задаваемого PB $(a|b)^*bb(a|b)^*$, поэтому $L_1 \subset L$.
 - 2. Рассмотри произвольное слово $w \in L$. Оно содержит подстроку bb. Представим слово w как w_1bbw_2 , где $w_1, w_2 \in \{a, b\}^*$. Слово w задается регулярным выражениям, так как $(a|b)^*$ задает любое слово из $\{a, b\}^*$, в том числе w_1 и w_2 . Значит $L \subset L_1$.

Ответ: $(a|b)^*bb(a|b)^*$.

- **2.** Регулярное выражение для этого языка (a|b)*a(a|b)*b(a|b)*|(a|b)*b(a|b)*a(a|b)*. Для доказательства покажем, что язык L из условия и язык L_1 , задаваемый PB совпадают. Покажем включения в обе стороны.
 - 1. Очевидно, что в слове, задаваемом РВ $(a|b)^*a(a|b)^*b(a|b)^*|(a|b)^*b(a|b)^*a(a|b)^*$ есть буквы a и b, поэтому $L_1 \subset L$.
 - 2. Рассмотри произвольное слово $w \in L$. Оно содердит и букву a, и букву b. Тогда оно представимо либо как $w_1aw_2bw_3$, либо как $w_1bw_2aw_3$, где w_1 , w_2 , $w_3 \in \{a,b\}^*$. Такие представления задаются регулярными выражениями $(a|b)^*a(a|b)^*b(a|b)^*$ и $(a|b)^*b(a|b)^*a(a|b)^*a(a|b)^*$ соответсвенно, так как $(a|b)^*$ задает любое слово из $\{a,b\}^*$, в том числе w_1 , w_2 и w_3 . Тогда слово w задается приведенным PB. Значит $L \subset L_1$.

Ответ: $(a|b)^*a(a|b)^*b(a|b)^*|(a|b)^*b(a|b)^*a(a|b)^*$.

- **3.** Регулярное выражение для этого языка $a^*(b|aaa^*)^*a^*$. Для доказательства покажем, что язык L из условия и язык L_1 , задаваемый PB совпадают. Покажем включения в обе стороны.
 - 1. В слове, задаваемом РВ $a^*(b|aaa^*)^*a^*$, нет подстроки bab, так как после любой буквы b, кроме, может быть, последней, идет либо буква b, либо хотя бы две буквы a. Значит $L_1 \subset L$.
 - 2. Рассмотри произвольное слово $w \in L$. Оно может быть представленно в виде

$$w = a^{\alpha_0} b^{\beta_1} a^{\alpha_1} \dots b^{\beta_n} a^{\alpha_n} = w_1 b^{\beta_1} a^{\alpha_1} \dots b^{\beta_n} w_2$$

где $\alpha_1, \ldots, \alpha_{n-1}, \beta_1, \ldots, \beta_n \in \mathbb{N}; \ \alpha_0, \alpha_n \in \mathbb{N}_0$. Причем $\alpha_1, \ldots, \alpha_{n-1} \geqslant 2$, так как w не имеет подстроки bab. Тогда w_1 и w_2 задаются PB a^* , каждый из блоков вида $b^{\beta_i}a^{\alpha_i}, i \in \{1, 2, \ldots, n-1\}$ может быть задан PB $(b|aaa^*)^*$, так как содержит произвольное количество букв b и неравное 1 число букв a. Последний блок также может быть задан PB $(b|aaa^*)^*$, так как имеет вид b^{β_n} . Значит и само w слово может быть задано PB $a^*(b|aaa^*)^*a^*$, то есть $L \subset L_1$.

Ответ: $a^*(b|aaa^*)^*a^*$.

- **4.** Регулярное выражение для этого языка $(a^*(baa^*)^*b)|\varepsilon$. Для доказательства покажем, что язык L из условия и язык L_1 , задаваемый PB совпадают. Покажем включения в обе стороны.
 - 1. Слово, заданное PB, либо равно ε , либо имеет последнюю букву b и не содержит двух букв b подряд. Значит $L_1 \subset L$.
 - 2. Будем доказывать индукцией по длине слова. База индукции: слово длины 0 лежит и в L, и в L_1 , то есть для него включение $L \subset L_1$ выполнено. Переход индукции: предположим, что слово $\forall w \in L, |w| = n$ выполняется $w \in L_1$. Рассмотрим произвольное слово $w \in L$ длины n+1. Так как в этом слове нет двух b подряд и после любой a есть b, те же условия верны и для его суффикса w_1 длины n. Поэтому для

этого суффикса верно предположение индукции и он лежит в L_1 , а значит задается РВ $(a^*(baa^*)^*b)|\varepsilon$. В случае, когда $w=aw_1$, оно может быть задано этим РВ, так как РВ начинается с a^* . Если $w=bw_1$, то w_1 либо пусто, либо начинается с a. В первом случае w=b и задается РВ, во втором случае w также может быть задано РВ, так как в нем есть часть $(baa^*)^*$. Значит переход индукции корректен. Тогда выполнено включение $L \subset L_1$.

Ответ: $(a^*(baa^*)^*b)|\varepsilon$.