

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum

Document ID: Basilisk-thrMomentumManagement

REACTION WHEEL ANGULAR MOMENTUM DUMPING MANAGEMENT MODULE

Prepared by	H. Schaub
-------------	-----------

Status: Initial Document draft

Scope/Contents

This module reads in the Reaction Wheel (RW) speeds, determines the net RW momentum, and then determines the amount of angular momentum that must be dumped. A separate thruster firing logic module called thrMomentumDumping will later on compute the thruster on cycling.

Rev:	Change Description	Ву
Draft	Initial document creation	H. Schaub
0.1	Updated the sign of ${}^{\mathcal{B}}\!\Delta m{H}$	H. Schaub

Contents

1	Module Description	1
	1.1 Algorithm Outline	1
	1.2 Module Messages	2
	1.3 Reset() Method	3
2	Module Functions	3
3	Module Assumptions and Limitations	3
4	Test Description and Success Criteria	3
5	Test Parameters	3
6	Test Results	3
7	User Guide	4

Fig. 1: Overview of the Modules Used to Perform Reaction Wheel Angular Momentum Dumping.

1 Module Description

1.1 Algorithm Outline

To manage the Reaction Wheel (RW) angular momentum build-up over time, a thruster-based momentum dumping strategy is used. Figure 1 illustrates how the momentum dumping will occur simultaneously

Fig. 2: Overview of the Reaction Wheel Angular Momentum Management Module.

with an inertial pointing control solution. Assume the spacecraft contains $N_{\rm RW}$ RWs. The net RW angular momentum is given by

$$\boldsymbol{h}_{s} = \sum_{i=1}^{N_{\mathsf{RW}}} \hat{\boldsymbol{g}}_{s_{i}} J_{s_{i}} \Omega_{i} \tag{1}$$

where \hat{g}_{s_i} is the RW spin axis, J_{s_i} is the spin axis RW inertia and Ω_i is the RW speed rate about this axis. Because the inertial attitude of the spacecraft is assumed to be held nominally steady the body-relative RW cluster angular momentum rate can be approximated as

$$\dot{\boldsymbol{h}}_{s} = \frac{^{\mathcal{B}} \mathrm{d}\boldsymbol{h}_{s}}{\mathrm{d}t} + \boldsymbol{\omega}_{B/N} \times \boldsymbol{h}_{s} \approx \frac{^{\mathcal{B}} \mathrm{d}\boldsymbol{h}_{s}}{\mathrm{d}t}$$
(2)

Figure 2 illustrates the logic of the RW angular momentum dumping management module. Let $h_{s, \min}$ be lower bound that the RW momentum dumping strategy should achieve. The desired net change in inertial angular momentum is thus determined through

$${}^{\mathcal{B}}\Delta \boldsymbol{H} = -{}^{\mathcal{B}}\boldsymbol{h}_s \frac{|\boldsymbol{h}_s| - h_{s,\text{min}}}{|\boldsymbol{h}_s|}$$
(3)

This strategy requires a thruster firing solution which creates this desired ${}^{\mathcal{B}}\Delta H$ over the duration of the momentum dumping. The goal of the RW momentum management module is to simply compute if a ${}^{\mathcal{B}}\Delta H$ is required, or set it equal to zero if the RW momentum is too small. Not that this module will only compute ${}^{\mathcal{B}}\Delta H$ once. Either it is zero or non-zero. To reuse this momentum management module, the reset() function must be called.

1.2 Module Messages

The module input and output messages are illustrated in Figure 3. The module has a single output message of type CmdTorqueBodyIntMsg which contains the desired momentum change ${}^{\mathcal{B}}\Delta H$.

Fig. 3: Illustration of the module input and output messages.

There are 2 required input messages. The message of type RWArrayConfigFswMsg is read in during the Reset() method and provides the RW configuration states. The message of type RWSpeedIntMsg provides the current RW speeds and is read in during the Update() method.

1.3 Reset() Method

The Reset() method reads in the RW and spacecraft configuration messages, and then resets the flag to do the angular momentum checking. The goal here is to do this momentum checking only once after the reset function is called, rather than doing this checking autonomously.

2 Module Functions

- Perform a single angular momentum check after reset: The module should only do this momentum check once after the Reset() method is called.
- Create an output message with the desired RWA momentum change: The output is used by a separate module to determine a momentum dumping actuation implementation.

3 Module Assumptions and Limitations

The module assumes the spacecraft is holding a steady inertial orientation during the momentum dumping maneuver.

4 Test Description and Success Criteria

A module unit test is created which creates the required input messages and runs the module for a single iteration. Two cases are considered where the minimum RWA momentum threshold is exceed or not.

5 Test Parameters

The simulation is setup with 4 RWs with identical J_s values. The unit test verify that the module output message vector matches expected values.

Table 2: Error tolerance for each test.

Output Value Tested	Tolerated Error
torqueRequestBody	1e-12

6 Test Results

All permutations of the test passed:

Table 3: Test results

hsMinCheck	Pass/Fail
0	PASSED
1	PASSED

7 User Guide

The module configurable parameters include:

• hs_min Parameter: This parameter dictates the desired lower ceiling of the RW cluster angular momentum. It must be set prior to calling the routine.