Appendix B

Summary of Synthetic Variables Estimation

28.06.2022

Appendix B - Summary of Synthetic Variables Estimation

Introduction

Synthetic variables consists in variables measuring the affinity between a set of individual characteristics and the set relevant parties identified in each political context (see Eijk and Franklin 1996, 346–48; Eijk et al. 2006, 441–43; De Sio and Franklin 2011, 10–15; Eijk, De Sio, and Vezzoni 2021, 34–35). These variables, atheoretic in nature, are determined for each political system by (1) selecting a set of independent variables, (2) regressing all the relevant vote choices on these variables and finally (3) estimating the linear predictions of said regression analyses. For this reason, such variables are commonly labelled 'y-hats'.

B.1 Austria

Synthetic variables have been estimated for the full set of Austrian parties available in the original 2019 EES Austrian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.1.1).

Dep. Var.PartyParty name (eng)stack_101101Austrian People's Partystack_102102Austrian Social Democratic Partystack 104104NEOS - The New Austria and Liberal Forum

Austrian Freedom Party

Alliance for the Future of Austria

The Greens

stack 106

stack 103

stack 105

106

103

105

Table B.1.1: Relevant Austrian parties

Full OLS models converge and coefficients do not show any particular issues (see Table B.1.7). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.044 for party 103 (Austrian Freedom Party) and a maximum of 0.058, 0.058 for party 102, 104 (Austrian Social Democratic Party, NEOS - The New Austria and Liberal Forum). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in all 6 cases out of 6 full models perform better (see Table B.1.2).

	Table B 1.2:	Akaike Information	Criterion values for	OLS full and null models
--	--------------	--------------------	----------------------	--------------------------

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_101	101	682.375	720.163	-37.787
$stack_102$	102	624.274	665.472	-41.198
$stack_104$	104	421.355	462.888	-41.533
$stack_106$	106	668.762	698.015	-29.253
$stack_103$	103	782.815	810.946	-28.131
${\rm stack}_105$	105	48.952	78.412	-29.460

On the contrary, one out of six logistic regression models (see Table B.1.8) show inflated standard errors for some of the coefficients of interest:

• model 12: D8 rec, D1 rec;

Model 12 presents a more problematic profile, since it affects the models constant terms with its inflated standard errors.

Model 12's inflated standard errors are due to separation issues. In short, no respondent from rural areas or small cities and members of trade unions voted for party 505 (see Tables B.1.5, B.1.6).

As a consequence, a constrained version of model 12 without said variables was estimated and contrasted with the original, full model. Likelihood-ratio test results show that H_0 (namely, that the constrained model

Table B.1.3: Likelihood-ratio Test between model 6a (unconstrained) and model 6b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
856	93.61638			
854	78.81738	2	14.799	0.0006116

does not fit better than the full model) can be rejected at p<0.001 (see Table B.1.3). Consequently, synthetic variables for respondents' vote choice for party 105 have been predicted relying on the unconstrained model.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.027 for party 105 (Alliance for the Future of Austria) and a maximum of 0.085 for party 101 (Austrian People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 5 cases out of 6 null models perform better than full ones.

Table B.1.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_101	101	792.119	868.142	-76.023
${\rm stack}_102$	102	810.678	845.471	-34.793
$stack_104$	104	479.493	483.460	-3.967
$stack_106$	106	621.067	625.784	-4.717
$stack_103$	103	794.266	806.568	-12.302
${\rm stack}_105$	105	102.817	102.106	0.711

Table B.1.5: Cross tabulation between vote choice for party 105 and respondents' area of residency

stack_105/D8_rec	0	1	Total
0	370	595	965
1	0	10	10
NA	13	12	25
Total	383	617	1000

Table B.1.6: Cross tabulation between vote choice for party 105 and respondents' marital status

stack_105/D1_rec	0	1	Total
0	636	329	965
1	10	0	10
NA	19	6	25
Total	665	335	1000

Table B.1.7: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	101	102	104	106	103	105
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
$D3$ _rec2	-0.012	0.005	-0.027	0.035	-0.073**	-0.025
	(0.024)	(0.023)	(0.021)	(0.024)	(0.026)	(0.017)
$D8_rec1$	0.003	0.067**	0.037	0.036	-0.041	0.010
	(0.025)	(0.025)	(0.022)	(0.025)	(0.027)	(0.018)
D5_rec1	$0.027^{'}$	-0.069^{**}	-0.024	-0.042	-0.003	-0.038^{*}
	(0.025)	(0.024)	(0.022)	(0.025)	(0.027)	(0.018)
EDU_rec2	0.006	0.002	$0.029^{'}$	0.031	-0.015	$0.015^{'}$
	(0.033)	(0.032)	(0.029)	(0.033)	(0.035)	(0.023)
EDU_rec3	-0.057	0.090**	0.087**	0.144***	-0.138^{***}	0.083***
_	(0.035)	(0.034)	(0.031)	(0.035)	(0.037)	(0.025)
D1 rec1	-0.026	0.143***	-0.017	0.027	-0.019	0.024
	(0.026)	(0.025)	(0.022)	(0.026)	(0.027)	(0.018)
D7 rec1	$0.032^{'}$	0.006	$0.032^{'}$	0.017	-0.011	-0.009
	(0.029)	(0.028)	(0.025)	(0.029)	(0.030)	(0.020)
D7 rec2	$0.059^{'}$	-0.045	0.098**	$0.055^{'}$	-0.062	-0.028
	(0.037)	(0.036)	(0.032)	(0.037)	(0.039)	(0.026)
D6 une1	-0.013	-0.046	-0.036	-0.041	$0.124^{'}$	$0.061^{'}$
_	(0.064)	(0.062)	(0.055)	(0.063)	(0.067)	(0.045)
D4 age	0.0004	-0.001	-0.003****	-0.003****	-0.0001	-0.002****
_ 0	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
D10 rec	0.043***	-0.008	0.019***	-0.001	-0.009	$0.002^{'}$
_	(0.006)	(0.006)	(0.005)	(0.006)	(0.006)	(0.004)
Constant	0.362***	0.395***	0.427***	0.412***	0.479***	0.311***
	(0.051)	(0.050)	(0.045)	(0.051)	(0.054)	(0.036)
N	877	879	873	878	875	869
R-squared	0.066	0.069	0.070	0.057	0.056	0.057
Adj. R-squared	0.054	0.058	0.058	0.045	0.044	0.045

^{***}p < .001; **p < .01; *p < .05

Table B.1.8: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	101	102	104	106	103	105
	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12
D3_rec2	0.321	0.052	-0.578*	0.389	-0.620***	0.258
	(0.184)	(0.182)	(0.263)	(0.219)	(0.188)	(0.694)
$D8_rec1$	-0.031	0.165	-0.329	0.188	-0.140	18.220
	(0.191)	(0.194)	(0.266)	(0.231)	(0.192)	(2394.693)
D5_rec1	0.194	-0.351	0.043	0.069	0.416*	-0.069
	(0.196)	(0.189)	(0.271)	(0.228)	(0.201)	(0.694)
EDU_rec2	0.066	0.375	0.300	0.154	-0.072	0.010
	(0.254)	(0.281)	(0.384)	(0.341)	(0.237)	(0.906)
EDU_rec3	-0.366	0.648^{*}	$0.644^{'}$	0.806*	-0.578^{*}	-0.015
	(0.276)	(0.289)	(0.386)	(0.332)	(0.273)	(0.946)
D1_rec1	-0.128	1.041***	-0.125	-0.299	-0.007	-18.081
	(0.194)	(0.187)	(0.275)	(0.241)	(0.195)	(2507.533)
D7_rec1	0.206	$0.417^{'}$	$0.209^{'}$	$0.257^{'}$	-0.171	-1.056
	(0.230)	(0.225)	(0.326)	(0.279)	(0.209)	(0.758)
$D7_rec2$	0.790**	$0.192^{'}$	$0.498^{'}$	$0.535^{'}$	-0.442	-1.052
	(0.276)	(0.287)	(0.382)	(0.326)	(0.294)	(1.141)
D6_une1	-1.789	0.114	$0.645^{'}$	-0.260	-0.064	0.066
	(1.038)	(0.489)	(0.579)	(0.636)	(0.479)	(1.122)
D4_age	0.019***	0.016**	-0.029****	-0.016^*	0.009	-0.030
	(0.006)	(0.006)	(0.008)	(0.007)	(0.006)	(0.022)
D10_rec	0.316***	-0.121^*	-0.032	-0.031	-0.092	-0.083
	(0.043)	(0.048)	(0.066)	(0.056)	(0.048)	(0.204)
Constant	-3.430^{***}	-3.100****	-1.221^{*}	-2.124^{***}	-1.345^{***}	-19.871
	(0.424)	(0.428)	(0.539)	(0.480)	(0.395)	(2394.694)
N	866	866	866	866	866	866
Log Likelihood	-384.060	-393.339	-227.746	-298.534	-385.133	-39.409
AIC	792.119	810.678	479.493	621.067	794.266	102.817

^{***}p < .001; **p < .01; *p < .05

B.2 Belgium

Synthetic variables have been estimated for the full set of Belgian parties available in the original 2019 EES Belgian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Tables B.2.1 and B.2.2). Note that the Belgian sample is splitted according to the two electoral colleges of Belgium, namely the Dutch and the French electoral college.

Table B.2.1: Relevant Belgian parties in Dutch electoral college

Dep. Var.	Party	Party name (eng)
stack_201	201	Workers Party of Belgium
$stack_202$	202	Christian Democratic and Flemish Party
$stack_203$	203	Socialist Party Different
$stack_204$	204	Open Flemish Liberals and Democrats
$stack_205$	205	New Flemish Alliance
stack_206	206	Green
stack_207	207	Flemish Interest

Table B.2.2: Relevant Belgian parties in French electoral college

Dep. Var.	Party	Party name (eng)
stack_208	208	Francophone Socialist Party
$stack_209$	209	Reform Movement
$stack_210$	210	Humanist Democratic Centre
$stack_211$	211	Ecologists
$stack_212$	212	National Front (Belgium)
$stack_213$	213	Workers Party of Belgium
$stack_214$	214	Francophone Democratic Federalists

Full OLS models converge and coefficients do not show any particular issue (see Table B.2.11 and Table B.2.13).

For the Dutch electoral college: In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0 for party 203 (Socialist Party Different) and a maximum of 0.062 for party 202 (Christian Democratic and Flemish Party). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models show that in all 2 cases out of 7 null models perform better (see Table B.2.3).

For the French electoral college: In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.027 for party 211 (Ecologists) and a maximum of 0.128 for party 213 (Workers Party of Belgium). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models show that in all 7 cases out of 7 full models perform better (see Table B.2.4).

Also, all seven logistic regression models in the Dutch electoral college show no issue (see Table B.2.12) On the contrary, one out of seven logistic regression models in the French electoral college (see Table B.2.14) show inflated standard errors for some of the coefficients of interest:

Table B.2.3: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_201$	201	218.286	221.796	-3.510
$stack_202$	202	172.948	196.202	-23.255
$stack_203$	203	312.241	302.151	10.090
$stack_204$	204	234.958	251.257	-16.299
$stack_205$	205	433.439	430.468	2.970
stack_206	206 207	259.913	271.127 400.672	-11.213 1.340
$stack_207$	207	498.332	499.672	-1.340

Table B.2.4: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_208$	208	224.742	243.907	-19.165
$stack_209$	209	238.028	251.788	-13.760
$stack_210$	210	126.949	151.975	-25.026
$stack_211$	211	238.956	240.069	-1.113
$stack_212$	212	150.043	161.937	-11.894
${\rm stack}_213$	213	211.229	254.330	-43.100
$stack_214$	214	132.800	136.790	-3.990

Model 26's of the French electoral college presents a more problematic profile, since the models constant term shows inflated standard errors.

Inflated standard errors are due to separation issues. In short:

- No respondents from rural areas voted for party 212 (Table B.2.8);
- No low and high educated respondents voted for party 212 (Table B.2.9)
- No upper class respondents voted for party 212 (Table B.2.10);

As consequence, a constrained version without said variables (namely, model 26b) was estimated and contrasted with the original, full model (model 26a). Likelihood-ratio test results show that H_0 (namely, that the constrained model does not fit better than the full model) cannot be rejected at p<0.05 (see Table B.2.5). Consequently, synthetic variables for respondents' vote choice for party 212 have been predicted relying on the constrained model.

Table B.2.5: Likelihood-ratio Test between Model 26a (unconstrained) and Model 26b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
372	42.18100			
367	29.34199	5	12.83901	0.024935

In the case of the Dutch electoral college: In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.062 for party 207 (Flemish Interest) and a maximum of 0.012 for party 203 (Socialist Party Different). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 5 cases out of 7 null models perform better than full ones (see Table B.2.6).

In the case of the Fench electoral college: In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.158 for party 212 (National Front (Belgium)) and a maximum of 0.02 for party 210 (Humanist Democratic Centre). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 7 full models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 26b (see Table B.2.7).

Table B.2.6: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_201	201	256.725	261.229	-4.504
$\rm stack_202$	202	317.743	314.286	3.457
$stack_203$	203	572.088	581.032	-8.944
$stack_204$	204	361.724	357.521	4.203
$stack_205$	205	486.627	477.614	9.013
$stack_206$	206	347.090	340.740	6.350
$stack_207$	207	171.854	163.767	8.087

Table B.2.7: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_208	208	334.675	326.04300	8.632000
$stack_209$	209	292.012	297.36100	-5.349000
$stack_210$	210	200.627	206.63700	-6.010000
$stack_211$	211	331.408	336.11000	-4.702000
$stack_212$	212	51.342	46.34600	4.996000
stack_212*	212	54.181	46.34632	7.834681
$stack_213$	213	276.248	277.95700	-1.709000
$stack_214$	214	150.056	140.68100	9.375000

^{*} AIC value of 212 refers to Model 26b (constrained).

Table B.2.8: Cross tabulation between vote choice for party 212 and respondents' area of residency

$stack_212/D8_rec$	0	1	Total
0	152	256	408
1	0	4	4
NA	9	16	25
Total	161	276	437

Table B.2.9: Cross tabulation between vote choice for party 212 and respondents' education

stack_212/EDU_rec	1	2	3	NA	Total
0	48	132	223	5	408
1	0	4	0	0	4
NA	4	9	11	1	25
Total	52	145	234	6	437

Table B.2.10: Cross tabulation between vote choice for party 212 and respondents' subjective social class

stack_212/D7_rec	0	1	2	NA	Total
0	140	196	64	8	408
1	2	2	0	0	4
NA	7	14	1	3	25
Total	149	212	65	11	437

Table B.2.11: Vote choice for a relevant party according to respondents socio-demographic characteristics at Dutch Electoral College (Ordinary square models)

	9 (v -	,				
	207	201	204	206	203	202	205
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	0.046	0.023	0.004	0.005	-0.033	0.076**	-0.005
	(0.027)	(0.025)	(0.029)	(0.027)	(0.033)	(0.028)	(0.035)
$D8_rec1$	0.007	-0.044	-0.007	-0.032	-0.042	-0.033	-0.027
	(0.027)	(0.025)	(0.029)	(0.027)	(0.033)	(0.028)	(0.035)
$D5_rec1$	-0.006	0.005	-0.023	-0.013	0.038	-0.025	0.063
	(0.028)	(0.026)	(0.030)	(0.028)	(0.034)	(0.029)	(0.036)
EDU_rec2	0.080	0.014	0.018	-0.108^*	-0.039	$0.070^{'}$	0.026
	(0.050)	(0.047)	(0.054)	(0.050)	(0.061)	(0.051)	(0.064)
EDU_rec3	$0.070^{'}$	0.045	0.001	-0.092	0.021	$0.093^{'}$	-0.012
	(0.049)	(0.046)	(0.053)	(0.049)	(0.060)	(0.050)	(0.063)
D1_rec1	0.057^{st}	-0.047	0.067^{*}	0.006	-0.068^*	$0.002^{'}$	-0.004
	(0.028)	(0.026)	(0.030)	(0.028)	(0.034)	(0.029)	(0.036)
D7_rec1	-0.015	0.036	0.016	0.091**	-0.012	-0.006	-0.074
	(0.029)	(0.028)	(0.032)	(0.029)	(0.036)	(0.030)	(0.038)
$D7_rec2$	-0.095^*	-0.031	-0.019	0.103^{*}	0.076	-0.018	-0.038
	(0.048)	(0.045)	(0.052)	(0.048)	(0.059)	(0.049)	(0.062)
D4_age	-0.002^{**}	-0.001	-0.001	-0.002^{**}	0.001	-0.003^{***}	-0.003**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.002	0.042***	0.003	0.023**	0.011	0.006	0.016
	(0.008)	(0.008)	(0.009)	(0.008)	(0.010)	(0.008)	(0.010)
Constant	0.281***	0.351***	0.364***	0.501***	0.497***	0.426***	0.577***
	(0.068)	(0.064)	(0.073)	(0.068)	(0.084)	(0.070)	(0.087)
N	508	518	518	519	514	518	519
R-squared	0.045	0.080	0.019	0.068	0.033	0.058	0.040
Adj. R-squared	0.026	0.062	-0.0004	0.049	0.013	0.040	0.021

^{***}p < .001; **p < .01; *p < .05

Table B.2.12: Vote choice for a relevant party according to respondents socio-demographic characteristics at Dutch Electoral College (Logistic regression models)

	207	201	204	206	203	202	205
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	0.010	0.406	-0.039	-0.080	-0.352	-0.106	0.709
	(0.369)	(0.328)	(0.215)	(0.291)	(0.239)	(0.303)	(0.515)
$D8_rec1$	-0.184	0.220	-0.213	0.506	-0.247	-0.013	0.065
	(0.367)	(0.327)	(0.214)	(0.306)	(0.238)	(0.302)	(0.492)
$D5_rec1$	0.129	-0.370	-0.200	0.046	0.436	-0.512	0.191
	(0.380)	(0.325)	(0.222)	(0.312)	(0.261)	(0.307)	(0.537)
EDU_rec2	-1.077	0.782	0.119	0.613	-0.357	-0.398	0.651
	(0.588)	(0.691)	(0.409)	(0.646)	(0.417)	(0.506)	(1.104)
EDU_rec3	-0.520	1.006	0.261	0.382	-0.465	-0.447	0.771
	(0.570)	(0.665)	(0.404)	(0.649)	(0.413)	(0.489)	(1.081)
$D1_rec1$	-0.282	0.164	-0.422	0.847^{**}	0.134	0.158	0.534
	(0.387)	(0.327)	(0.227)	(0.303)	(0.245)	(0.311)	(0.495)
$D7_rec1$	-0.368	-0.220	0.127	0.353	-0.093	0.964*	-0.268
	(0.378)	(0.349)	(0.239)	(0.323)	(0.259)	(0.383)	(0.508)
$D7_rec2$	-1.936	0.260	0.750^{*}	-0.193	-0.386	1.079^*	-0.820
	(1.073)	(0.508)	(0.365)	(0.599)	(0.449)	(0.527)	(1.097)
D4_age	0.008	-0.029**	0.022***	0.016	-0.009	-0.003	-0.008
	(0.011)	(0.010)	(0.006)	(0.009)	(0.007)	(0.009)	(0.015)
$D10_rec$	0.352***	-0.044	-0.121	-0.073	0.060	0.098	-0.634
	(0.086)	(0.100)	(0.069)	(0.090)	(0.069)	(0.083)	(0.324)
Constant	-2.373**	-1.867^{*}	-1.977^{***}	-4.168***	-0.715	-2.152**	-3.768**
	(0.880)	(0.829)	(0.569)	(0.893)	(0.581)	(0.711)	(1.398)
N	503	503	503	503	503	503	503
Log Likelihood	-117.362	-147.872	-275.044	-169.862	-232.314	-162.545	-74.927
AIC	256.725	317.743	572.088	361.724	486.627	347.090	171.854

^{***}p < .001; **p < .01; *p < .05

Table B.2.13: Vote choice for a relevant party according to respondents socio-demographic characteristics at French Electoral College (OLS regression models)

	208	209	210	211	212	213	214
	Model 15	Model 16	Model 17	Model 18	Model 19	Model 20	Model 21
$D3_rec2$	0.035	0.027	0.025	0.017	-0.056	-0.008	-0.018
	(0.033)	(0.033)	(0.029)	(0.033)	(0.030)	(0.032)	(0.030)
$D8_rec1$	-0.019	-0.021	-0.030	0.031	-0.010	-0.023	0.043
	(0.033)	(0.034)	(0.030)	(0.034)	(0.030)	(0.033)	(0.030)
$D5_rec1$	0.065	-0.018	0.019	-0.004	0.068*	0.044	0.034
	(0.033)	(0.034)	(0.030)	(0.034)	(0.030)	(0.033)	(0.030)
EDU_rec2	-0.184**	0.0001	-0.032	-0.074	0.009	0.090	-0.109^*
	(0.057)	(0.059)	(0.051)	(0.058)	(0.052)	(0.058)	(0.053)
EDU_rec3	-0.172**	0.073	-0.029	0.022	-0.037	-0.020	-0.085
	(0.055)	(0.056)	(0.049)	(0.056)	(0.050)	(0.055)	(0.050)
D1_rec1	0.040	-0.056	-0.080*	0.027	-0.010	0.100**	0.007
	(0.035)	(0.035)	(0.031)	(0.035)	(0.032)	(0.035)	(0.031)
$D7_rec1$	-0.035	0.101**	0.085**	0.052	-0.045	-0.081^*	0.063
	(0.036)	(0.037)	(0.032)	(0.037)	(0.033)	(0.036)	(0.033)
$D7_rec2$	-0.112^*	0.168**	0.046	0.066	-0.097^*	-0.142**	0.055
	(0.050)	(0.051)	(0.045)	(0.051)	(0.046)	(0.050)	(0.045)
D4_age	-0.003**	-0.002	-0.003***	-0.002*	-0.002*	-0.004***	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.011	0.024**	0.035^{***}	0.003	0.021**	0.004	0.016*
	(0.009)	(0.009)	(0.008)	(0.009)	(0.008)	(0.009)	(0.008)
Constant	0.652***	0.360***	0.460***	0.479***	0.319***	0.528***	0.401***
	(0.070)	(0.072)	(0.063)	(0.071)	(0.064)	(0.071)	(0.064)
N	395	393	392	396	392	387	384
R-squared	0.094	0.082	0.109	0.052	0.078	0.150	0.061
Adj. R-squared	0.071	0.058	0.085	0.027	0.054	0.128	0.035

^{***}p < .001; **p < .01; *p < .05

Table B.2.14: Vote choice for a relevant party according to respondents socio-demographic characteristics at French Electoral College (Logistic regression models)

	208	209	210	211	212	212	213	214
	Model 22	Model 23	Model 24	Model 25	Model 26a	Model 26b	Model 27	Model 28
$D3_rec2$	0.251	0.555	-0.393	-0.092	0.277	0.179	-0.170	-0.132
	(0.296)	(0.327)	(0.440)	(0.298)	(1.084)	(1.033)	(0.334)	(0.525)
D8_rec1	-0.677^*	-0.313	-0.771	0.458	18.905		-0.205	0.646
	(0.297)	(0.327)	(0.420)	(0.316)	(5661.450)		(0.336)	(0.593)
D5_rec1	0.538	0.128	0.601	-0.415	-0.522	-0.428	-0.078	-0.685
	(0.315)	(0.333)	(0.472)	(0.300)	(1.073)	(1.036)	(0.336)	(0.519)
EDU_rec2	-0.288	1.505	0.596	-1.011	19.728		0.083	0.683
	(0.493)	(1.086)	(0.861)	(0.546)	(10629.430)		(0.532)	(1.166)
EDU_rec3	-0.218	1.956	0.545	-0.025	0.037		-0.506	0.342
	(0.466)	(1.056)	(0.824)	(0.471)	(11710.110)		(0.536)	(1.145)
D1_rec1	-0.149	-0.197	-0.631	0.377	0.338	0.419	0.644	0.807
	(0.319)	(0.360)	(0.486)	(0.316)	(1.154)	(1.090)	(0.341)	(0.544)
D7_rec1	-0.287	0.775	0.566	0.799*	-0.089		-0.456	0.996
	(0.323)	(0.418)	(0.500)	(0.382)	(1.103)		(0.340)	(0.695)
$D7_rec2$	-0.545	1.109*	0.501	1.150*	-18.595		-2.376*	1.282
	(0.482)	(0.518)	(0.624)	(0.456)	(7868.020)		(1.042)	(0.820)
D4_age	-0.009	0.003	0.006	-0.002	-0.001	0.003	-0.001	0.021
	(0.009)	(0.010)	(0.013)	(0.009)	(0.031)	(0.029)	(0.010)	(0.016)
$D10_rec$	-0.034	-0.204	0.403***	-0.112	0.253	0.290	0.011	0.108
	(0.085)	(0.111)	(0.095)	(0.087)	(0.214)	(0.212)	(0.087)	(0.123)
Constant	-0.850	-4.237***	-4.018***	-1.939**	-41.918	-5.298**	-1.392*	-5.868***
	(0.616)	(1.153)	(1.035)	(0.641)	(12043.120)	(1.873)	(0.699)	(1.442)
N	378	378	378	378	378	378	378	378
Log Likelihood	-156.337	-135.006	-89.313	-154.704	-14.671	-21.091	-127.124	-64.028
AIC	334.675	292.012	200.627	331.408	51.342	54.181	276.248	150.056

^{***}p < .001; **p < .01; *p < .05

B.3 Bulgaria

Synthetic variables have been estimated for seven out of thirteen relevant parties available in the original 2019 EES Bulgarian voter study (Table B.3.1) and selected according to the criteria stated in the EES 2019 SDM codebook (for the criteria see Sect. XXX).

Table B.3.1: Relevant Bulgarian parties

Dep. Var.	Party	Party name (eng)
stack_301	301	Citzizens for European Development of Bulgaria (GERB)
$stack_302$	302	Coalition for Bulgaria (KB)
$stack_303$	303	Movements for Rights and Freedoms (DPS)
$stack_304$	304	IMRO – Bulgarian National Movement
$stack_305$	305	Democratic Bulgaria
$stack_306$	306	Will
$stack_307$	307	National Union Attack (ATAKA/ATA)

Full OLS models converge and coefficients do not show any particular issue (see Table B.3.13). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.01 for party 306 (Will) and a maximum of 0.036 for party 303 (Movements for Rights and Freedoms (DPS)). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models suggests that only one null model performs marginally better than the full ones (see Table B.3.2).

Table B.3.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_301$	301	784.128	794.234	-10.106
$stack_302$	302	392.612	409.552	-16.940
$stack_303$	303	-348.802	-325.216	-23.586
$stack_304$	304	319.463	337.587	-18.124
$stack_305$	305	337.528	342.058	-4.531
$stack_306$	306	96.336	95.297	1.039
$stack_307$	307	-185.834	-178.896	-6.938

On the contrary, four out of seven logistic regression models (see Table B.3.14) show inflated standard errors for some of the coefficients of interest, in particular:

Model 9a: D8_rec;Model 10a: D7_rec;Model 13a: EDU_rec;

• Model 14a: D7 rec and D8 rec.

The constant term and other regression coefficients of model 10 are not affected by said inflated standard errors, whereas the remaining ones present a more problematic profile. Inflated standard errors due to separation issues affect all th models. In short:

- No respondents from rural areas voted for party 302 (Table B.3.8);
- No upper middle or upper class respondents voted for party 303 (Table B.3.9);
- No low educated people voted for party 306 (Table B.3.10);
- No upper middle or upper class respondents and living in rural areas ones voted for party 307 (Table B.3.12);

As a consequence, constrained versions of the models have been estimated, removing misfitted variables. Likelihood-ratio test results show that H_0 can be rejected only for model 9, while in all the other cases the null hypothesis cannot be rejected.

Consequently, synthetic variables for respondents' vote choice for parties 303, 306, and 307 have been generated relying on the constrained models (models 10b, 13b, 14b).

Table B.3.3: Likelihood-ratio Test between model 9a (unconstrained) and model 9b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
880	453.1108			
879	446.4830	1	6.627802	0.0100399

Table B.3.4: Likelihood-ratio Test between model 10a (unconstrained) and model 10b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
881	93.53127			
879	91.53421	2	1.997058	0.3684209

Table B.3.5: Likelihood-ratio Test between model 13a (unconstrained) and model 13b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
881	233.5034			
879	231.5236	2	1.979863	0.3716022

Table B.3.6: Likelihood-ratio Test between model 14a (unconstrained) and model 14b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
882	85.21094			
879	82.50028	3	2.710651	0.4384203

In terms of model fit (Table B.3.7), adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.048 for party 306 (Will) and a maximum of 0.054 for party 302 (Coalition for Bulgaria (KB)). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 6 cases out of 7 null models perform better than full ones. According to AIC values only for model 13b the constrained model appears to have a better fit than the null model (see Table B.3.7).

Table B.3.7: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_301$	301	800.542	796.444	4.098
$stack_302$	302	468.483	497.232	-28.749
$stack_303$	303	113.534	111.660	1.874
$stack_304$	304	399.043	392.678	6.365
$stack_305$	305	411.160	403.798	7.362
$stack_306$	306	253.524	243.923	9.600
$stack_307$	307	104.500	102.601	1.900
$stack_303*$	303	473.111	111.660	361.451
$stack_306*$	306	111.531	243.923	-132.392
stack_307*	307	251.503	102.601	148.903

^{*} AIC value refers to models 10b, 13b and 14b (constrained).

Table B.3.8: Cross tabulation between vote choice for party 302 and respondents' area of residency

$stack_302/D8_rec$	0	1	Total
0	55	834	889
1	0	73	73
NA	3	51	54
Total	58	958	1016

Table B.3.9: Cross tabulation between vote choice for party 303 and respondents' subjective social class

$stack_303/D7_rec$	0	1	2	NA	Total
0	388	448	94	21	951
1	6	5	0	0	11
NA	17	26	7	4	54
Total	411	479	101	25	1016

Table B.3.10: Cross tabulation between vote choice for party 306 and respondents' education

stack_306/EDU_rec	1	2	3	NA	Total
0	37	268	611	18	934
1	0	5	22	1	28
NA	2	16	36	0	54
Total	39	289	669	19	1016

Table B.3.11: Cross tabulation between vote choice for party 307 and respondents' subjective social class

$stack_307/D7_rec$	0	1	2	NA	Total
0	390	448	94	21	953
1	4	5	0	0	9
NA	17	26	7	4	54
Total	411	479	101	25	1016

Table B.3.12: Cross tabulation between vote choice for party 307 and respondents' subjective social class

stack_307/D8_rec	0	1	Total
0	55	898	953
1	0	9	9
NA	3	51	54
Total	58	958	1016

Table B.3.13: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	301	302	303	304	305	306	307
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	0.016	-0.014	0.032*	-0.020	-0.005	0.0005	-0.016
	(0.024)	(0.020)	(0.013)	(0.019)	(0.019)	(0.017)	(0.014)
$D8_rec1$	0.078	0.089^{*}	-0.052	0.062	0.089^{*}	0.032	0.013
	(0.054)	(0.043)	(0.029)	(0.042)	(0.042)	(0.036)	(0.031)
$D5_rec1$	0.031	0.009	0.015	0.040	-0.006	0.015	0.021
	(0.027)	(0.022)	(0.015)	(0.021)	(0.021)	(0.019)	(0.016)
EDU_rec2	-0.145^*	-0.188**	-0.122**	-0.122^*	-0.043	-0.082	-0.110^*
	(0.072)	(0.060)	(0.039)	(0.057)	(0.058)	(0.050)	(0.044)
EDU_rec3	-0.135	-0.180**	-0.127**	-0.091	-0.0002	-0.099*	-0.116**
	(0.072)	(0.060)	(0.040)	(0.057)	(0.058)	(0.050)	(0.044)
D1_rec1	0.061	0.027	0.034*	0.060*	0.062*	0.022	0.056**
	(0.032)	(0.026)	(0.017)	(0.025)	(0.025)	(0.022)	(0.019)
D7_rec1	0.040	0.010	0.016	0.012	0.024	0.015	-0.005
	(0.026)	(0.021)	(0.014)	(0.020)	(0.021)	(0.018)	(0.015)
$D7_rec2$	0.040	0.030	0.020	-0.015	0.055	0.013	-0.023
	(0.044)	(0.036)	(0.024)	(0.034)	(0.035)	(0.031)	(0.026)
D4_age	0.001	0.004***	-0.001**	-0.001	-0.0002	-0.001	-0.0002
	(0.001)	(0.001)	(0.0005)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.024**	0.003	0.006	0.021***	0.008	0.011*	0.011**
	(0.007)	(0.006)	(0.004)	(0.006)	(0.006)	(0.005)	(0.004)
Constant	0.242^{**}	0.159^*	0.256***	0.254***	0.130	0.248***	0.198***
	(0.083)	(0.069)	(0.045)	(0.066)	(0.067)	(0.058)	(0.051)
N	923	917	922	923	908	919	922
R-squared	0.032	0.039	0.046	0.040	0.027	0.020	0.029
Adj. R-squared	0.021	0.029	0.036	0.030	0.016	0.010	0.018

^{***}p < .001; **p < .01; *p < .05

18

Table B.3.14: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

N.C. 1.1	301	302	302	303	303	304	305	306	306	307	307
Model	8	9a	9b	10a	10b	11	12	13a	13b	14a	14b
$D3_rec2$	0.170	-0.551^*	-0.562^{*}	0.437	0.429	-0.738^*	-0.412	0.076	0.096	-1.486	-1.545
	(0.186)	(0.264)	(0.262)	(0.676)	(0.675)	(0.305)	(0.293)	(0.399)	(0.398)	(0.855)	(0.843)
$D8_rec1$	0.350	15.830		-1.914*	-1.883^*	0.272	0.989	0.012	0.200	16.049	
	(0.455)	(868.103)		(0.775)	(0.746)	(0.753)	(1.031)	(1.058)	(1.043)	(2175.581)	
$D5_rec1$	-0.107	0.075	0.072	-0.714	-0.757	0.533	-0.271	0.568	0.693	-1.333	-1.331
	(0.204)	(0.293)	(0.290)	(0.683)	(0.682)	(0.365)	(0.313)	(0.510)	(0.506)	(0.763)	(0.759)
EDU_rec2	-0.566	-1.031	-1.055	0.842	0.754	-0.864	0.177	14.343		-1.472	-1.643
	(0.525)	(1.122)	(1.119)	(1.229)	(1.223)	(0.863)	(1.106)	(1123.071)		(1.428)	(1.408)
EDU_rec3	-0.495	-0.475	-0.409	1.060	0.898	-0.378	0.763	14.793		-1.782	-1.916
	(0.523)	(1.103)	(1.098)	(1.306)	(1.294)	(0.843)	(1.090)	(1123.071)		(1.488)	(1.471)
D1_rec1	0.517^{*}	0.038	0.033	-0.739	-0.715	-0.079	0.481	-0.536	-0.516	2.128**	2.121**
	(0.216)	(0.317)	(0.316)	(1.119)	(1.117)	(0.372)	(0.332)	(0.556)	(0.556)	(0.756)	(0.752)
$D7_rec1$	0.014	-0.311	-0.254	0.149	, ,	-0.031	0.071	0.741	0.756	-0.037	,
	(0.199)	(0.274)	(0.273)	(0.682)		(0.308)	(0.313)	(0.464)	(0.462)	(0.707)	
$D7_rec2$	0.363	0.104	0.146	-15.966		-0.624	0.397	0.541	0.610	-15.704	
	(0.310)	(0.434)	(0.432)	(1789.433)		(0.636)	(0.467)	(0.713)	(0.709)	(1740.482)	
D4_age	0.011	0.051***	0.052***	-0.071*	-0.069*	0.009	0.006	0.013	0.018	0.014	0.018
	(0.007)	(0.010)	(0.010)	(0.032)	(0.032)	(0.011)	(0.011)	(0.015)	(0.014)	(0.028)	(0.028)
$D10_rec$	0.075	0.017	0.020	0.245	0.249	0.081	-0.111	0.091	0.089	0.229	0.212
	(0.055)	(0.076)	(0.076)	(0.191)	(0.191)	(0.087)	(0.086)	(0.119)	(0.119)	(0.203)	(0.200)
Constant	-2.325****	-19.844	-4.195***	-1.487	-1.474	-3.184**	-4.122**	-19.832	-5.714***	-19.689	-3.797**
	(0.651)	(868.104)	(1.074)	(1.513)	(1.486)	(1.060)	(1.450)	(1123.071)	(1.316)	(2175.581)	(1.289)
N	890	890	890	890	890	890	890	890	890	890	890
Log Likelihood	-389.271	-223.241	-226.555	-45.767	-46.766	-188.522	-194.580	-115.762	-116.752	-41.250	-42.605
AIC	800.542	468.483	473.111	113.534	111.531	399.043	411.160	253.524	251.503	104.500	101.211

^{***}p < .001; **p < .01; *p < .05

B.4 Czech Republic

Synthetic variables have been estimated for the full set of Czech parties available in the original 2019 EES Czech Republic voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.4.1).

Table B.4.1: Czech Republic relevant parties

Dep. Var.	Party	Party name (eng)
stack_601	601	Christian and Democratic Union / Czechoslovak People's Party
$stack_603$	603	Czech Social Democratic Party
$stack_604$	604	Civic Democratic Party
$stack_605$	605	Communist Party of Bohemia and Moravia
$stack_606$	606	ANO 2011
$stack_607$	607	Czech Pirate Party
$stack_608$	608	Freedom and Direct Democracy Tomio Okamura
$stack_602$	602	Tradition, Responsibility, Prosperity 09 (TOP 09)

Full OLS models converge and coefficients do not show any particular issues (see Table B.4.8). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.023, 0.023 for party 603, 608 (Czech Social Democratic Party, Freedom and Direct Democracy Tomio Okamura) and a maximum of 0.203 for party 601 (Christian and Democratic Union / Czechoslovak People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.4.2).

Table B.4.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_601	601	52.665	237.851	-185.186
$stack_603$	603	160.505	169.927	-9.422
$stack_604$	604	389.269	459.680	-70.412
$\rm stack_605$	605	392.501	411.747	-19.246
$stack_606$	606	745.102	803.107	-58.006
$stack_607$	607	525.489	633.168	-107.678
$stack_608$	608	459.283	468.756	-9.473
$\rm stack_602$	602	140.632	241.723	-101.090

On the contrary, five out of eight logistic regression models (see Table B.4.9) show inflated standard errors for some of the coefficients of interest. In particular:

- model 9: D6_une
- model 10a: EDU rec (both categories), D7 rec (second category), D6 une
- model 11: D6_une model 15: D6_une
- model 16: D6_une

However, for models 9, 11, 15 and 16 the constant terms and other regressors are not affected by the inflated standard errors. Model 10a appears more problematic.

The inflated standard errors in model 10a are due to separation issues. In short, no respondents who are unemployed or of high subjective social status voted for party 603. Only one respondent with low education voted for party 603. (See tables B.4.5, B.4.6, B.4.7)

As a consequence, a constrained version of model 10 (namely, model 10b) without said variables was estimated and contrasted with the original full model (model 10a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.4.3). Consequently, synthetic variables for respondents' vote choice for party 603 have been predicted relying on the constrained model (model 10b).

Table B.4.3: Likelihood-ratio Test between model 10a (unconstrained) and model 10b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	849	163.7771			
Unconstrained	844	153.7958	5	9.981323	0.0757662

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.065 for party 603 (Czech Social Democratic Party) and a maximum of 0.155 for party 601 (Christian and Democratic Union / Czechoslovak People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in four cases out of eight null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 10b (see Table B.4.4).

Table B.4.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_601	601	214.1510	255.3350	-41.184000
$stack_602$	602	268.2320	275.1270	-6.894000
$stack_603$	603	177.7960	168.9080	8.888000
$stack_603*$	603	177.7771	168.9081	8.869078
$stack_604$	604	473.8810	462.0590	11.822000
$\rm stack_605$	605	331.0110	331.1770	-0.166000
$stack_606$	606	723.2760	774.4330	-51.157000
$stack_607$	607	530.3500	528.9600	1.390000
stack_608	608	395.1280	394.0820	1.046000

^{*} AIC value refers to model 10b (constrained).

Table B.4.5: Cross tabulation between vote choice for party 603 and respondents' education

stack_603/EDU_rec	1	2	3	NA	Total
0	71	542	343	7	963
1	1	14	4	0	19
NA	3	7	7	1	18
Total	75	563	354	8	1000

Table B.4.6: Cross tabulation between vote choice for party 603 and respondents' subjective social class

$stack_603/D7_rec$	0	1	2	NA	Total
0	366	467	118	12	963
1	8	11	0	0	19
NA	8	9	0	1	18
Total	382	487	118	13	1000

Table B.4.7: Cross tabulation between vote choice for party 603 and respondents' employment status

stack_603/D6_une	0	1	Total
0	945	18	963
1	19	0	19
NA	17	1	18
Total	981	19	1000

22

Table B.4.8: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	601	603	604	605	606	607	608	602
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
$D3_rec2$	0.0003	-0.022	0.016	-0.001	-0.024	0.026	-0.024	0.039*
	(0.017)	(0.018)	(0.021)	(0.021)	(0.026)	(0.023)	(0.022)	(0.018)
$D8_rec1$	0.026	0.008	0.001	-0.010	0.012	0.003	0.009	-0.014
	(0.019)	(0.021)	(0.024)	(0.024)	(0.029)	(0.026)	(0.025)	(0.021)
$D5_rec1$	-0.012	-0.030	-0.019	-0.054*	0.035	-0.050^{*}	0.002	-0.040^*
	(0.018)	(0.019)	(0.022)	(0.022)	(0.026)	(0.023)	(0.022)	(0.019)
EDU_rec2	-0.003	-0.020	0.004	-0.017	-0.025	0.014	0.057	-0.007
	(0.035)	(0.038)	(0.043)	(0.043)	(0.053)	(0.046)	(0.045)	(0.038)
EDU_rec3	0.028	-0.031	0.022	-0.044	-0.077	0.038	-0.001	0.023
	(0.036)	(0.038)	(0.044)	(0.044)	(0.054)	(0.047)	(0.046)	(0.038)
D1_rec1	0.038	0.121***	0.046	0.077**	0.078*	-0.025	0.084**	0.004
	(0.024)	(0.025)	(0.029)	(0.029)	(0.035)	(0.031)	(0.030)	(0.025)
D7_rec1	0.018	0.013	0.036	-0.015	0.032	-0.012	-0.054*	0.036
	(0.019)	(0.020)	(0.023)	(0.023)	(0.028)	(0.025)	(0.024)	(0.020)
$D7_rec2$	-0.018	0.040	0.094**	-0.017	0.033	0.055	-0.052	0.041
	(0.029)	(0.030)	(0.035)	(0.035)	(0.043)	(0.038)	(0.036)	(0.030)
$D6_une1$	-0.014	0.008	-0.101	0.144	-0.077	0.043	0.097	-0.074
	(0.070)	(0.074)	(0.085)	(0.085)	(0.104)	(0.092)	(0.088)	(0.076)
D4_age	-0.003***	-0.0001	-0.005***	0.003***	0.006***	-0.008***	0.001	-0.005***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.068***	0.003	0.021***	-0.016*	-0.013	0.003	-0.011	0.023^{***}
	(0.005)	(0.005)	(0.006)	(0.006)	(0.008)	(0.007)	(0.006)	(0.005)
Constant	0.278***	0.299***	0.469***	0.187***	0.136*	0.720***	0.240***	0.453***
	(0.044)	(0.046)	(0.053)	(0.053)	(0.065)	(0.057)	(0.055)	(0.046)
N	863	864	864	864	865	863	864	841
R-squared	0.213	0.036	0.101	0.047	0.088	0.140	0.036	0.136
Adj. R-squared	0.203	0.023	0.090	0.034	0.077	0.128	0.023	0.125

^{***}p < .001; **p < .01; *p < .05

23

Table B.4.9: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	601	603	603	604	605	606	607	608	602
	Model 9	Model 10a	Model 10b	Model 11	Model 12	Model 13	Model 14	Model 15	Model 16
D3_rec2	0.032	0.111	0.153	-0.039	-0.357	-0.405^*	-0.027	-0.079	0.001
	(0.419)	(0.502)	(0.495)	(0.265)	(0.339)	(0.199)	(0.244)	(0.295)	(0.377)
$D8_rec1$	0.185	0.547	0.455	-0.056	0.008	-0.002	0.117	0.509	-1.146**
	(0.483)	(0.652)	(0.645)	(0.299)	(0.383)	(0.227)	(0.282)	(0.384)	(0.379)
$D5_rec1$	-0.060	-0.277	-0.213	-0.223	-0.354	0.551**	0.030	0.846*	-0.328
	(0.436)	(0.514)	(0.505)	(0.269)	(0.333)	(0.213)	(0.254)	(0.354)	(0.383)
EDU_rec2	-1.014	17.215	, ,	0.025	-0.513	-0.028	0.298	0.945	-0.546
	(0.697)	(2200.736)		(0.540)	(0.656)	(0.484)	(0.531)	(1.042)	(0.686)
EDU_rec3	-0.680	16.563		0.060	-0.448	-0.316	0.699	1.144	0.262
	(0.700)	(2200.736)		(0.549)	(0.688)	(0.500)	(0.530)	(1.046)	(0.666)
D1_rec1	0.030	0.803	0.827	$0.175^{'}$	$0.693^{'}$	0.527^{*}	-0.176	$0.253^{'}$	-0.155
	(0.531)	(0.556)	(0.551)	(0.344)	(0.405)	(0.253)	(0.347)	(0.376)	(0.529)
$D7_rec1$	$0.653^{'}$	-0.151	, ,	0.206	-0.314	0.554^{*}	-0.506	-0.585	$0.997^{'}$
	(0.477)	(0.508)		(0.307)	(0.351)	(0.217)	(0.271)	(0.329)	(0.520)
$D7_rec2$	-1.370	-16.813		0.805^{*}	-0.685	0.618	-0.047	0.229	1.182
	(1.131)	(1627.428)		(0.393)	(0.661)	(0.334)	(0.360)	(0.423)	(0.626)
D6_une1	-13.302	-16.379		-14.133	0.953	-0.308	0.296	-13.887	-14.354
	(1083.416)	(4685.595)		(681.233)	(1.107)	(1.097)	(0.804)	(671.864)	(1089.635)
D4_age	0.004	-0.015	-0.001	-0.004	0.038***	0.048***	-0.025**	0.011	-0.025
_	(0.013)	(0.016)	(0.015)	(0.008)	(0.011)	(0.007)	(0.008)	(0.010)	(0.013)
$D10_rec$	0.579***	$0.079^{'}$	$0.052^{'}$	0.088	-0.159	-0.020	-0.124	-0.093	0.091
	(0.081)	(0.135)	(0.132)	(0.069)	(0.125)	(0.058)	(0.087)	(0.100)	(0.094)
Constant	-4.343****	-20.454	-4.406****	-2.468^{***}	-3.991****	-4.550^{***}	-1.310^*	-4.985***	-1.905^{*}
	(0.970)	(2200.736)	(1.019)	(0.659)	(0.936)	(0.631)	(0.630)	(1.187)	(0.867)
N	856	856	856	856	856	856	856	856	856
Log Likelihood	-95.076	-76.898	-81.889	-224.940	-153.506	-349.638	-253.175	-185.564	-122.116
AIC	214.151	177.796	177.777	473.881	331.011	723.276	530.350	395.128	268.232

^{***}p < .001; **p < .01; *p < .05

B.5 Croatia

Synthetic variables have been estimated for seven out of fourteen Croatian parties available in the original 2019 EES Croatian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.5.1).

Table B.5.1: Relevant Croatian parties

Dep. Var.	Party	Party name (eng)
stack_412	412	Social Democratic Party of Croatia
$stack_404$	404	Croation Democratic Union
$stack_414$	414	Human Shield
$stack_405$	405	Coaltion of HSS (1191810) + GRA?ANSKO-LIBERALNI SAVEZ - GLAS +IDS (1191953)
$stack_406$	406	Bridge of Independent Lists
stack_413 stack 401	413 401	Party of Anti-corruption, Development and Transparency Milan Bandic 365 – The Party of Labour and Solidarity

Full OLS models converge and coefficients do not show any particular issues (see Table B.5.13). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.029 for party 413 (Party of Anti-corruption, Development and Transparency) and a maximum of 0.119 for party 404 (Croation Democratic Union). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in all 7 cases out of 7 full models perform better than full ones (see Table B.5.2).

Table B.5.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_412	412	666.758	739.344	-72.586
$stack_404$	404	310.472	415.168	-104.696
$stack_414$	414	293.685	342.782	-49.098
$stack_405$	405	240.279	292.137	-51.857
$stack_406$	406	140.904	166.996	-26.092
$stack_413$	413	26.159	39.969	-13.810
stack_401	401	-228.581	-153.443	-75.137

On the contrary, two out of seven logistic regression models (see Table B.5.14) show inflated standard errors for some of the coefficients of interest. In particular:

- model 13a: EDU_rec, D6_une;
- model 14a: D8_rec, D5_rec, EDU_rec, D7_rec (only for category 2), D6_une;

Those models 13a and 14a present more problematic profiles, since they affect their models' constant terms through their inflated standard errors.

The inflated standard errors of model 13a and 14a are due to separation issues. In short, no respondent with low education and unemployment voted for party 413 (see Tables B.5.6, B.5.7). As well as, no respondents

from rural areas or small cities who are single, low educated, with high subjective socioeconomic status (SES) and unemployed voted for party 401 (see Tables B.5.8, B.5.9, B.5.10, B.5.11, B.5.12).

As a consequence, a constrained version of model 8 and 13 (namely, model 14b, 13b) without said variables were estimated and contrasted with the original full model (model 14a, 13a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected for party 401 (see Table B.5.3). Consequently, synthetic variables for respondents' vote choice for party 413 have been predicted relying on the constrained model (model 14b). For party 413 H_0 cannot be rejected (see Table B.5.4). Consequently, synthetic variables for respondents' vote choice for party 413 have been predicted relying on the constrained model (model 13b).

Table B.5.3: Likelihood-ratio Test between model 14a (unconstrained) and model 8b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	883	65.66908			
Unconstrained	876	52.29526	7	13.37382	0.0635075

Table B.5.4: Likelihood-ratio Test between model 13a (unconstrained) and model 13b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	879	145.7295			
Unconstrained	876	142.1282	3	3.60133	0.3078558

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.092 for party 413 (Party of Anti-corruption, Development and Transparency) and a maximum of 0.098 for party 412 (Social Democratic Party of Croatia). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 7 null models perform better than full ones. According to AIC values the related null models appear to have a better fit than models 13b and 14b (see Table B.5.5).

Table B.5.5: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_401	401	76.29500	73.92600	2.369000
$stack_401*$	401	75.66908	73.92592	1.743168
$stack_404$	404	406.63000	425.29500	-18.665000
$stack_405$	405	292.77400	303.31300	-10.539000
$stack_406$	406	193.08600	185.68300	7.403000
$stack_412$	412	599.94700	667.24200	-67.294000
$stack_413$	413	166.12800	154.17300	11.955000
$stack_413*$	413	163.72954	154.17283	9.556711
stack_414	414	481.70400	472.07800	9.626000

^{*} AIC value refers to model 13b and 14b (constrained).

Table B.5.6: Cross tabulation between vote choice for party 413 and respondents' education

stack_413/EDU_rec	1	2	3	NA	Total
0	41	434	440	44	959
1	0	5	10	1	16
NA	4	19	9	1	33
Total	45	458	459	46	1008

Table B.5.7: Cross tabulation between vote choice for party 413 and respondents' employment status

stack_413/D6_une	0	1	Total
0	875	84	959
1	16	0	16
NA	29	4	33
Total	920	88	1008

Table B.5.8: Cross tabulation between vote choice for party 401 and respondents' education

stack_401/EDU_rec	1	2	3	NA	Total
0	41	435	448	44	968
1	0	4	2	1	7
NA	4	19	9	1	33
Total	45	458	459	46	1008

Table B.5.9: Cross tabulation between vote choice for party 401 and respondents' employment status

$stack_401/D6_une$	0	1	Total
0	884	84	968
1	7	0	7
NA	29	4	33
Total	920	88	1008

Table B.5.10: Cross tabulation between vote choice for party 401 and respondents' subjective SES membership

$stack_401/D7$ rec	0	1	2	NA	Total
0	383	429	133	23	968
1	2	4	1	0	7
NA	13	16	3	1	33
Total	398	449	137	24	1008

Table B.5.11: Cross tabulation between vote choice for party 401 and respondents' marital status

stack_401/D5_rec	0	1	Total
0	330	638	968
1	0	7	7
NA	9	24	33
Total	339	669	1008

Table B.5.12: Cross tabulation between vote choice for party 401 and respondents' area of residency

stack_401/D8_rec	0	1	Total
0	179	789	968
1	0	7	7
NA	8	25	33
Total	187	821	1008

Table B.5.13: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	412	404	414	405	406	413	401
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3$ _rec2	-0.021	-0.001	0.005	0.006	0.003	-0.028	0.014
	(0.023)	(0.019)	(0.019)	(0.019)	(0.017)	(0.017)	(0.014)
$D8_rec1$	-0.038	0.008	-0.037	0.028	-0.004	0.034	0.009
	(0.030)	(0.024)	(0.024)	(0.024)	(0.022)	(0.022)	(0.018)
$D5_rec1$	-0.093***	0.005	-0.045^*	-0.068**	-0.022	-0.023	-0.027
	(0.025)	(0.021)	(0.021)	(0.021)	(0.019)	(0.019)	(0.015)
EDU_rec2	-0.095	-0.098	-0.131**	-0.157^{**}	-0.133**	-0.167^{***}	-0.045
	(0.062)	(0.051)	(0.050)	(0.052)	(0.046)	(0.048)	(0.038)
EDU_rec3	-0.067	-0.060	-0.174***	-0.110^*	-0.139**	-0.168***	-0.074
	(0.063)	(0.052)	(0.051)	(0.053)	(0.047)	(0.049)	(0.038)
$D1_rec1$	0.050	0.066**	-0.008	0.008	0.014	0.034	-0.005
	(0.027)	(0.022)	(0.022)	(0.022)	(0.020)	(0.020)	(0.016)
$D7_rec1$	0.105^{***}	0.047^{*}	0.014	0.083***	0.039^{*}	0.051^{**}	0.037^{*}
	(0.025)	(0.021)	(0.020)	(0.020)	(0.019)	(0.019)	(0.015)
$D7_rec2$	0.099**	0.113***	0.015	0.083**	0.037	0.032	0.025
	(0.037)	(0.030)	(0.030)	(0.030)	(0.028)	(0.027)	(0.023)
D6_une1	0.026	-0.013	0.024	0.006	0.041	-0.005	-0.030
	(0.042)	(0.035)	(0.034)	(0.034)	(0.031)	(0.031)	(0.026)
D4_age	0.005***	0.0004	-0.003***	0.001	-0.001	0.0001	-0.003***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.028***	0.042***	-0.001	-0.022***	0.015^{***}	-0.008*	0.020***
	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.003)
Constant	0.311***	0.089	0.574***	0.332***	0.347***	0.313***	0.231***
	(0.071)	(0.058)	(0.058)	(0.059)	(0.053)	(0.055)	(0.043)
N	911	912	911	868	911	829	910
R-squared	0.099	0.130	0.075	0.082	0.051	0.042	0.101
Adj. R-squared	0.088	0.119	0.064	0.070	0.040	0.029	0.090

^{***}p < .001; **p < .01; *p < .05

Table B.5.14: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

model	412 8	404 9	414 10	405 11	406 12	413 13a	413 13b	401 14a	401 14b
D3_rec2	-0.129	-0.514	-0.456	0.827*	-0.095	-0.423	-0.459	0.701	0.568
D5_1cc2	(0.220)	(0.290)	(0.263)	(0.375)	(0.477)	(0.541)	(0.539)	(0.893)	(0.875)
D8_rec1	0.323	-0.239	-0.198	0.774	0.462	-0.292	-0.225	18.994	(0.019)
D6_1ec1	(0.324)	(0.346)	(0.317)	(0.622)	(0.660)	(0.666)	(0.660)	(5163.834)	
D5 rec1	-0.374	0.525	0.168	0.022) 0.118	-0.111	0.102	0.152	18.677	
D9_lec1	(0.236)	(0.346)	(0.287)	(0.391)	-0.111 (0.517)	(0.603)	(0.604)	(3933.114)	
EDII maa?	, ,		` /	,	` /	` /	(0.004)	` /	
EDU_rec2	-0.189	0.037	-0.362	-0.474	-1.281	14.858		18.318	
EDII 9	(0.826)	(0.707)	(0.563)	(1.142)	(0.781)	(1761.469)		(9794.447)	
EDU_rec3	-0.054	0.428	-0.271	-0.271	-1.348	15.390		17.456	
D4 4	(0.823)	(0.709)	(0.578)	(1.134)	(0.816)	(1761.469)	0.440	(9794.447)	
D1_rec1	0.575*	0.515	-0.116	0.478	0.662	0.059	0.112	-0.967	-0.707
	(0.238)	(0.296)	(0.305)	(0.391)	(0.487)	(0.601)	(0.601)	(1.119)	(1.107)
D7_rec1	0.666**	0.250	-0.187	0.928*	-0.151	-0.108	0.007	0.675	
	(0.251)	(0.338)	(0.284)	(0.455)	(0.522)	(0.625)	(0.613)	(0.927)	
$D7_rec2$	0.713*	1.181**	-0.041	1.280*	0.100	0.791	0.979	-17.869	
	(0.350)	(0.400)	(0.397)	(0.552)	(0.720)	(0.704)	(0.685)	(6002.379)	
D6_une1	-0.945	-0.250	0.344	-0.263	-0.262	-15.334		-19.065	
	(0.613)	(0.627)	(0.432)	(0.762)	(1.057)	(1237.430)		(7686.376)	
D4_age	0.053***	-0.001	-0.025^{*}	0.028^{*}	0.006	0.022	0.030	-0.026	-0.002
_ 0	(0.009)	(0.011)	(0.011)	(0.013)	(0.018)	(0.020)	(0.020)	(0.034)	(0.029)
D10 rec	-0.202****	0.273***	-0.024	-0.314^{**}	0.292**	-0.082	-0.093	0.473^{*}	$0.444*^{'}$
	(0.057)	(0.065)	(0.061)	(0.104)	(0.109)	(0.133)	(0.131)	(0.208)	(0.202)
Constant	-4.496***	-4.112***	-0.755	-5.633***	-4.225***	-19.746	-5.198***	-60.802	-6.646***
	(0.933)	(0.860)	(0.677)	(1.365)	(1.136)	(1761.469)	(1.273)	(11750.140)	(1.667)
N	888	888	888	888	888	888	888	888	888
Log Likelihood	-287.974	-191.315	-228.852	-134.387	-84.543	-71.064	-72.865	-26.148	-32.835
AIC	599.947	406.630	481.704	292.774	193.086	166.128	163.730	76.295	75.669

^{***}p < .001; **p < .01; *p < .05

B.6 Cyprus

Synthetic variables have been estimated for six out of seven Cypriot parties available in the original 2019 EES Cypriot voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.6.1).

Table B.6.1: Relevant Cypriot parties

Dep. Var.	Party	Party name (eng)
stack_501	501	Progressive Party of the Working People
$stack_502$	502	Democratic Rally
$stack_503$	503	Democratic Party
$stack_504$	504	United Democratic Union of Centre
$stack_505$	505	Ecological and Environmental Movement (Cyprus Green Party)
$\rm stack_507$	507	National Popular Front

Full OLS models converge and coefficients do not show any particular issues (see Table B.6.11). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of -0.007 for party 504 (United Democratic Union of Centre) and a maximum of 0.079 for party 502 (Democratic Rally). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 4 cases out of 6 null models perform better than full ones (see Table B.6.2).

Table B.6.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_501$	501	343.229	362.833	-19.603
$stack_502$	502	398.664	423.119	-24.454
$stack_503$	503	263.353	256.408	6.945
$stack_504$	504	146.189	132.322	13.867
$stack_505$	505	114.659	107.763	6.896
$stack_507$	507	205.547	199.847	5.700

On the contrary, three out of six logistic regression models (see Table B.6.12) show inflated standard errors for some of the coefficients of interest. In particular:

- model 9: D7_rec (only for category 2);
- model 11a: D8 rec, D5 rec, EDU rec, D7 rec (only for category 2), D6 une;
- model 12: D6 une.

Nevertheless the constant terms and other regression coefficients of model9 and 12 are not affected by said inflated standard errors, whereas model 11a presents a more problematic profile.

Model 11a inflated standard errors are due to separation issues. In short, no respondent from rural areas or small cities, who is single, low educated, with high subjective socioeconomic status (SES), members of trade unions, and unemployed voted for party 505 (see Tables B.6.5, B.6.6, B.6.7, B.6.8, B.6.9, B.6.10).

As a consequence, a constrained version of model 11 (namely, model 11b) without said variables was estimated and contrasted with the original full model (model 11a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.6.3). Consequently, synthetic variables for respondents' vote choice for party 505 have been predicted relying on the constrained model (model 11b).

Table B.6.3: Likelihood-ratio Test between model 5a (unconstrained) and model 5b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	390	52.23925			
Unconstrained	382	39.43782	8	12.80143	0.1188668

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.183 for party 505 (Ecological and Environmental Movement (Cyprus Green Party)) and a maximum of 0.068 for party 501 (Progressive Party of the Working People). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 6 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 11b (see Table B.6.4).

Table B.6.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_501	501	264.62700	285.99700	-21.370000
$stack_502$	502	358.88900	382.63700	-23.749000
$stack_503$	503	233.62800	228.82500	4.803000
$stack_504$	504	151.57100	135.86200	15.709000
$stack_505$	505	63.43800	55.60500	7.832000
$stack_505*$	505	60.23925	55.60541	4.633845
stack_507	507	115.46200	116.26300	-0.800000

^{*} AIC value refers to model 11b (constrained).

Table B.6.5: Cross tabulation between vote choice for party 505 and respondents' area of residency

stack_505/D8_rec	0	1	Total
0	84	354	438
1	0	5	5
NA	10	48	58
Total	94	407	501

Table B.6.6: Cross tabulation between vote choice for party 505 and respondents' marital status

stack_505/D5_rec	0	1	Total
0	104	334	438
1	0	5	5
NA	14	44	58
Total	118	383	501

Table B.6.7: Cross tabulation between vote choice for party 505 and respondents' education

stack_505/EDU_rec	1	2	3	NA	Total
0	92	175	154	17	438
1	0	2	3	0	5
NA	5	20	33	0	58
Total	97	197	190	17	501

Table B.6.8: Cross tabulation between vote choice for party 505 and respondents' subjective SES

$stack_505/D7_rec$	0	1	2	NA	Total
0	161	246	25	6	438
1	2	3	0	0	5
NA	24	30	2	2	58
Total	187	279	27	8	501

Table B.6.9: Cross tabulation between vote choice for party 505 and respondents' trade union membership

$stack_505/D1_rec$	0	1	NA	Total
0	339	84	15	438
1	5	0	0	5
NA	47	8	3	58
Total	391	92	18	501

Table B.6.10: Cross tabulation between vote choice for party 505 and respondents' employment status

$stack_505/D6$ une	0	1	NA	Total
0	398	39	1	438
1	5	0	0	5
NA	55	3	0	58
Total	458	42	1	501

Table B.6.11: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		501	502	503	504	505	507
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D3_rec2$	0.095**	-0.057	0.047	0.012	0.054	-0.086**
$\begin{array}{c} - \\ 0.046) & (0.049) & (0.041) & (0.036) & (0.035) & (0.00) \\ 0.5_rec1 & 0.041 & -0.022 & 0.036 & 0.021 & 0.025 & -0. \\ 0.043) & (0.046) & (0.039) & (0.034) & (0.033) & (0.00) \\ 0.043) & (0.046) & (0.039) & (0.034) & (0.033) & (0.00) \\ 0.050) & (0.053) & (0.045) & (0.040) & (0.038) & (0.00) \\ 0.050) & (0.053) & (0.045) & (0.040) & (0.038) & (0.00) \\ 0.055) & (0.052)^* & 0.087 & 0.056 & 0.062 & 0.00 \\ 0.055) & (0.059) & (0.050) & (0.044) & (0.042) & (0.00) \\ 0.022 & 0.126^{**} & 0.026 & -0.020 & -0.009 & 0.00 \\ 0.044) & (0.047) & (0.040) & (0.035) & (0.034) & (0.00) \\ 0.037) & (0.040) & (0.034) & (0.030) & (0.029) & (0.00) \\ 0.037) & (0.040) & (0.034) & (0.030) & (0.029) & (0.00) \\ 0.022 & -0.015 & 0.166 & 0.063 & 0.110 & 0.068 & -0. \\ 0.083) & (0.089) & (0.076) & (0.066) & (0.064) & (0.00) \\ 0.062 & (0.066) & (0.056) & (0.049) & (0.049) & (0.00) \\ 0.4_age & 0.0002 & 0.002^* & 0.002^* & -0.0002 & -0.001 & -0. \\ 0.001) & (0.001) & (0.001) & (0.001) & (0.001) & (0.001) \\ 0.00_rec & -0.027^* & 0.043^{***} & -0.002 & 0.010 & 0.002 & 0.00 \\ 0.0012) & (0.012) & (0.011) & (0.009) & (0.009) & (0.009) \\ \end{array}$		(0.036)	(0.038)	(0.032)	(0.029)	(0.027)	(0.030)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D8_rec1$	0.023	-0.039	0.010	0.012	0.007	0.017
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.046)	(0.049)	(0.041)	(0.036)	(0.035)	(0.039)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D5_rec1$	0.041	-0.022	0.036	0.021	0.025	-0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.043)	(0.046)	(0.039)	(0.034)	(0.033)	(0.036)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EDU_rec2	-0.106*	0.111^*	0.069	0.037	0.015	0.027
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.050)	(0.053)	(0.045)	(0.040)	(0.038)	(0.042)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EDU_rec3	-0.091	0.152**	0.087	0.056	0.062	0.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.055)	(0.059)	(0.050)	(0.044)	(0.042)	(0.046)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D1_rec1$	0.022	0.126**	0.026	-0.020	-0.009	0.059
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.044)	(0.047)	(0.040)	(0.035)	(0.034)	(0.037)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D7_rec1$	-0.135***	0.099*	0.006	-0.003	0.019	-0.006
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.037)	(0.040)	(0.034)	(0.030)	(0.029)	(0.032)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D7_rec2$	-0.015	0.166	0.063	0.110	0.068	-0.073
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.083)	(0.089)	(0.076)	(0.066)	(0.064)	(0.071)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D6_une1	0.141*	0.004	0.048	0.025	0.014	-0.029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(0.062)	(0.066)	(0.056)	(0.049)	(0.049)	(0.054)
D10_rec -0.027^* 0.043^{***} -0.002 0.010 0.002 0.00 0.002 0.00 0.002 0.00	D4_age	0.0002	0.002*	0.002*	-0.0002	-0.001	-0.002
$ (0.012) \qquad (0.012) \qquad (0.011) \qquad (0.009) \qquad (0.009) \qquad (0.009) $		(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
	$D10_rec$	-0.027^*	0.043***	-0.002	0.010	0.002	0.007
Constant $0.436***$ -0.012 0.071 0.118 0.122 0.26		(0.012)	(0.012)	(0.011)	(0.009)	(0.009)	(0.010)
Consumu 0.400 0.012 0.011 0.110 0.122 0.20	Constant	0.436***	-0.012	0.071	0.118	0.122	0.267***
$(0.086) \qquad (0.093) \qquad (0.079) \qquad (0.069) \qquad (0.067) \qquad (0.0$		(0.086)	(0.093)	(0.079)	(0.069)	(0.067)	(0.074)
N 429 429 430 426 426 42	N	429	429	430	426	426	427
R-squared 0.092 0.103 0.034 0.019 0.035 0.0	R-squared	0.092	0.103	0.034	0.019	0.035	0.037
Adj. R-squared 0.068 0.079 0.009 -0.007 0.009 0.0	Adj. R-squared	0.068	0.079	0.009	-0.007	0.009	0.012

^{***}p < .001; **p < .01; *p < .05

Table B.6.12: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	501	502	503	504	505	505	507
	Model 7	Model 8	Model 9	Model 10	Model 11a	Model 11b	Model 12
D3_rec2	0.831*	0.009	-0.026	-0.574	0.765	0.480	-0.710
	(0.376)	(0.289)	(0.396)	(0.535)	(1.003)	(0.948)	(0.666)
D8_rec1	-0.400	-0.590	-0.453	-0.126	17.416	, ,	0.650
	(0.405)	(0.342)	(0.458)	(0.695)	(4596.323)		(0.866)
$D5_rec1$	0.788	-0.058	0.178	-0.254	18.156		0.607
	(0.472)	(0.366)	(0.498)	(0.652)	(4131.731)		(0.859)
EDU_rec2	-0.578	0.084	0.412	-0.706	18.744		0.527
	(0.435)	(0.407)	(0.541)	(0.731)	(4353.602)		(0.830)
EDU_rec3	-0.558	0.567	0.841	-0.133	19.398		-2.071
	(0.552)	(0.474)	(0.657)	(0.748)	(4353.602)		(1.285)
D1_rec1	0.116	0.366	0.500	0.393	-18.666		1.438*
	(0.415)	(0.322)	(0.422)	(0.614)	(4622.859)		(0.629)
D7_rec1	-1.147**	0.862*	-0.585	1.074	-0.675		0.979
	(0.377)	(0.339)	(0.405)	(0.692)	(0.992)		(0.739)
$D7_rec2$	-1.344	0.869	-15.491	1.801	-19.230		0.864
	(1.081)	(0.677)	(846.929)	(0.990)	(9246.777)		(1.327)
D6_une1	0.740	-0.166	0.593	-0.022	-17.834		-16.117
	(0.517)	(0.577)	(0.610)	(1.079)	(6687.900)		(1678.260)
D4_age	0.031*	0.035***	0.035*	0.005	0.047	0.019	-0.024
	(0.012)	(0.010)	(0.014)	(0.016)	(0.039)	(0.026)	(0.020)
D10_rec	-0.136	0.252**	0.045	0.009	-0.328	-0.294	-0.251
	(0.113)	(0.098)	(0.127)	(0.167)	(0.303)	(0.286)	(0.222)
Constant	-3.008**	-4.667^{***}	-4.409^{***}	-3.456^{**}	-58.902	-4.437^{**}	-3.020^*
	(0.979)	(0.799)	(1.124)	(1.269)	(7559.844)	(1.605)	(1.380)
N	394	394	394	394	394	394	394
Log Likelihood	-120.313	-167.444	-104.814	-63.785	-19.719	-26.120	-45.731
AIC	264.627	358.889	233.628	151.571	63.438	60.239	115.462

^{***}p < .001; **p < .01; *p < .05

B.7 Denmark

Synthetic variables have been estimated for seven of ten of Danish parties available in the original 2019 EES Danish voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.7.1).

Table B.7.1: Relevant Danish parties

Dep. Var.	Party	Party name (eng)
$stack_701$	701	Social Democratic Party
$stack_702$	702	Liberals
$stack_703$	703	Danish People's Party
$stack_704$	704	Radical Party
$stack_705$	705	Socialist People's Party
$stack_706$	706	Red-Green Unity List
$stack_707$	707	Conservative People's Party

Full OLS models converge and coefficients do not show any particular issues (see Table B.7.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.006 for party 703 (Danish People's Party) and a maximum of 0.088 for party 707 (Conservative People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 1 case out of 7 null models perform better than full ones (see Table B.7.2).

Table B.7.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_701$	701	600.463	650.130	-49.667
$stack_{-702}$	702	664.818	698.147	-33.329
$stack_{-703}$	703	708.256	702.351	5.905
$stack_704$	704	320.091	385.068	-64.976
$stack_{-705}$	705	604.462	637.521	-33.060
$stack_706$	706	651.928	694.182	-42.255
$stack_707$	707	363.465	431.607	-68.141

Furthermore, there were no unusual standard errors for any coefficients in the logistic regression models. (see Table B.7.5)

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.044 for party 704 (Radical Party) and a maximum of 0.016 for party 703 (Danish People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 7 null models perform better than full ones (see Table B.7.3).

Table B.7.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_701	701	757.463	771.073	-13.610
$stack_702$	702	746.983	757.681	-10.698
$stack_{-703}$	703	591.403	602.927	-11.523
$stack_{-704}$	704	394.100	379.564	14.536
${\rm stack}_{-705}$	705	524.266	523.116	1.150
$stack_706$	706	409.327	412.696	-3.369
$stack_707$	707	316.348	314.621	1.727

Table B.7.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	701	702	703	704	705	706	707
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	0.083***	-0.050^*	-0.068**	0.035	0.088***	0.044	-0.086***
	(0.023)	(0.024)	(0.024)	(0.020)	(0.023)	(0.024)	(0.020)
$D8_rec1$	0.069^{*}	0.001	0.036	0.001	0.065^{*}	0.053	0.020
	(0.028)	(0.029)	(0.030)	(0.024)	(0.028)	(0.029)	(0.025)
$D5_rec1$	-0.008	0.036	0.026	-0.025	-0.022	-0.039	-0.006
	(0.024)	(0.025)	(0.026)	(0.021)	(0.025)	(0.026)	(0.022)
EDU_rec2	-0.060	0.112*	0.037	-0.034	-0.069	-0.056	0.070
	(0.051)	(0.053)	(0.055)	(0.044)	(0.053)	(0.054)	(0.046)
EDU_rec3	-0.023	0.038	-0.005	0.004	-0.004	0.003	0.048
	(0.048)	(0.049)	(0.051)	(0.041)	(0.049)	(0.050)	(0.042)
D1_rec1	0.137***	-0.056^*	-0.002	0.004	0.066*	0.040	-0.009
	(0.026)	(0.027)	(0.028)	(0.022)	(0.026)	(0.027)	(0.023)
$D7_rec1$	-0.001	0.100***	-0.047	0.045^{*}	-0.019	-0.021	0.063**
	(0.026)	(0.027)	(0.028)	(0.022)	(0.027)	(0.027)	(0.023)
$D7_rec2$	-0.118**	0.173***	-0.053	0.048	-0.076*	-0.113**	0.192***
	(0.036)	(0.037)	(0.038)	(0.031)	(0.036)	(0.037)	(0.032)
D6_une1	0.053	-0.057	-0.004	-0.022	-0.043	-0.033	-0.090^*
	(0.047)	(0.049)	(0.051)	(0.041)	(0.048)	(0.050)	(0.042)
D4_age	0.0001	-0.002^*	0.001	-0.005****	-0.002^{**}	-0.004****	-0.001
_	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.015^{*}	0.023**	$0.005^{'}$	0.013^{*}	0.013	0.008	0.029***
	(0.007)	(0.007)	(0.007)	(0.006)	(0.007)	(0.007)	(0.006)
Constant	0.353***	0.386***	0.312***	0.509***	0.379***	0.490***	0.269***
	(0.062)	(0.064)	(0.066)	(0.053)	(0.063)	(0.065)	(0.055)
N	879	878	877	873	863	861	863
R-squared	0.078	0.061	0.018	0.095	0.062	0.072	0.099
Adj. R-squared	0.067	0.049	0.006	0.083	0.050	0.060	0.088

^{***}p < .001; **p < .01; *p < .05

Table B.7.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

<u> </u>	701	700	7 00	70.4	70 F	7 00	707
	701	702	703	704	705	706	707
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	0.523**	-0.191	-0.729**	-0.078	0.871***	0.167	-0.356
	(0.193)	(0.193)	(0.230)	(0.296)	(0.261)	(0.284)	(0.347)
$D8_rec1$	0.123	0.007	0.418	-0.134	-0.413	-0.011	-0.484
	(0.233)	(0.231)	(0.296)	(0.361)	(0.276)	(0.348)	(0.374)
$D5_rec1$	0.072	0.408	-0.308	-0.334	-0.074	-0.039	0.190
	(0.201)	(0.212)	(0.234)	(0.310)	(0.259)	(0.296)	(0.374)
EDU_rec2	-0.608	-0.463	0.769	0.757	0.059	-0.267	0.413
	(0.418)	(0.452)	(0.652)	(0.815)	(0.628)	(0.635)	(0.829)
EDU_rec3	-0.382	-0.330	0.415	0.926	0.547	0.006	-0.252
	(0.372)	(0.408)	(0.630)	(0.777)	(0.575)	(0.584)	(0.795)
$D1_rec1$	0.719**	-0.199	-0.234	0.536	-0.224	0.243	0.009
	(0.232)	(0.216)	(0.241)	(0.366)	(0.272)	(0.320)	(0.392)
$D7_rec1$	0.127	0.504*	0.130	0.013	0.101	-0.005	0.534
	(0.213)	(0.244)	(0.257)	(0.335)	(0.290)	(0.299)	(0.468)
$D7_rec2$	-0.565	1.006***	-0.174	0.086	0.554	-2.400^*	1.381**
	(0.330)	(0.290)	(0.372)	(0.458)	(0.352)	(1.034)	(0.510)
D6_une1	0.166	0.189	-0.184	-0.598	-0.248	-0.884	-0.477
	(0.363)	(0.407)	(0.496)	(0.744)	(0.545)	(0.741)	(1.039)
D4_age	0.004	0.012	0.025**	-0.012	-0.006	0.003	0.011
	(0.006)	(0.006)	(0.008)	(0.010)	(0.008)	(0.009)	(0.011)
$D10_rec$	0.158**	0.063	-0.032	-0.026	0.012	-0.309**	0.172
	(0.052)	(0.054)	(0.068)	(0.086)	(0.070)	(0.110)	(0.090)
Constant	-2.640***	-2.587***	-3.542***	-3.088***	-2.640***	-2.409**	-4.064***
	(0.515)	(0.537)	(0.757)	(0.926)	(0.700)	(0.757)	(1.000)
N	874	874	874	874	874	874	874
Log Likelihood	-366.732	-361.492	-283.702	-185.050	-250.133	-192.664	-146.174
AIC	757.463	746.983	591.403	394.100	524.266	409.327	316.348

^{***}p < .001; **p < .01; *p < .05

B.8 Estonia

Synthetic variables have been estimated for seven of twelve Estonian parties available in the original 2019 EES Estonian voter study selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.8.1).

Table B.8.1: Relevant Estonian parties

Dep. Var.	Party	Party name (eng)
stack_901	901	Estonian Reform Party
$stack_902$	902	Estonian Center Party
$stack_903$	903	Conservative People's Party of Estonia
$stack_904$	904	Union for the Republic – Res Publica
$stack_905$	905	Social Democratic Party
$stack_906$	906	Estonia 200
$stack_907$	907	Estonian Greens

Full OLS models converge and coefficients do not show any particular issues (see Table B.8.13). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.026 for party 906 (Estonia 200) and a maximum of 0.061 for party 905 (Social Democratic Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 7 null models perform better than full ones (see Table B.8.2).

Table B.8.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_901	901	648.376	681.225	-32.850
$stack_902$	902	468.344	482.379	-14.035
$stack_903$	903	523.076	555.418	-32.342
$stack_904$	904	315.169	331.505	-16.336
$stack_905$	905	366.351	406.867	-40.517
$stack_906$	906	322.705	332.960	-10.255
$stack_907$	907	171.172	186.800	-15.628

On the contrary, three out of seven logistic regression models (see Table B.8.14) show inflated standard errors for some of the coefficients of interest. In particular:

- model 9: D6 une;
- model 13a: EDU_rec;
- model 14a: D5_rec, EDU_rec, D1_rec, D6_une.

Nevertheless, model 9's constant terms and other regression coefficients are not affected by said inflated standard errors, whereas model 13a and 14a present a more problematic profile.

Model 13a's and 14a's inflated standard errors are due to separation issues. In short, no respondents from respondent with low education voted for party 906 (see Table B.8.8). Also, no respondent with low education,

high subjective social status, who are members of trade unions, unemployed and only very few respondents who are married or in a partnership (2 and 9;regressor D5_rec) voted for party 907 (see Tables B.8.9, B.8.10, B.8.11, B.8.12).

As a consequence, a constrained version of model 13 (namely, model 13b) without said variable was estimated and contrasted with the original full model (model 13a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.8.3). Consequently, synthetic variables for respondents' vote choice for party 906 have been predicted relying on the constrained model (model 13b).

Table B.8.3: Likelihood-ratio Test between model 13a (unconstrained) and model 13b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	800	202.9630			
Unconstrained	798	198.2016	2	4.761363	0.0924875

Regarding model 14, a constrained version (namely, model 14b) without said variables was estimated and contrasted with the original full model (model 14a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.8.4).

Furthermore, another constrained version of model 14 (namely, model 14c) with the same retrictions as model 14b but this time including the varible about marriage (D5_rec) was estimated. Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.8.5).

Then comparing the fit of 14b and 14c. Likelihood-ratio test results show that H_0 (namely, that the 'fuller' constrained model with D5_rec fits better than the constrained model without D5_rec) cannot be rejected (see Table B.8.5). Consequently, synthetic variables for respondents' vote choice for party 907 have been predicted relying on the less constrained model with D5_rec (model 14c).

Table B.8.4: Likelihood-ratio Test between model 14a (unconstrained) and model 14b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	803	85.96929			
Unconstrained	798	75.48917	5	10.48012	0.0627196

Table B.8.5: Likelihood-ratio Test between model 14a (unconstrained) and model 14c (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	802	79.88766			
Unconstrained	798	75.48917	4	4.398489	0.3547543

Table B.8.6: Likelihood-ratio Test between model 14b (constrained) and model 14c (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	803	85.96929			
Unconstrained	802	79.88766	1	6.081631	0.0136595

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.108 for party 907 (Estonian Greens) and a maximum of 0.038 for party 903 (Conservative People's Party of Estonia). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 7 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 13b and 14c (see Table B.8.7).

Table B.8.7: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_901	901	694.22900	705.58000	-11.351000
$stack_902$	902	508.86500	506.31300	2.552000
$stack_903$	903	506.76400	528.63400	-21.871000
$stack_904$	904	415.12500	419.58900	-4.464000
$stack_905$	905	652.00400	649.26800	2.736000
$stack_906$	906	222.20200	211.17100	11.030000
stack_906*	906	222.96295	211.17148	11.791471
$stack_907$	907	99.48900	91.80200	7.687000
stack_907*	907	99.96929	91.80221	8.167081

^{*} AIC value refers to model 13b for 906* (constrained) and 14c for 907* (constrained but including D5_rec).

Table B.8.8: Cross tabulation between vote choice for party 906 and respondents' education

stack_906/EDU_rec	1	2	3	NA	Total
0	46	456	425	29	956
1	0	9	18	0	27
NA	0	8	8	1	17
Total	46	473	451	30	1000

Table B.8.9: Cross tabulation between vote choice for party 907 and respondents' marital status

stack_907/D5_rec	0	1	Total
0	328	644	972
1	2	9	11
NA	7	10	17
Total	337	663	1000

Table B.8.10: Cross tabulation between vote choice for party 907 and respondents' education

stack_907/EDU_rec	1	2	3	NA	Total
0	46	463	436	27	972
1	0	2	7	2	11
NA	0	8	8	1	17
Total	46	473	451	30	1000

Table B.8.11: Cross tabulation between vote choice for party 907 and respondents' trade union membership

stack_907/D1_rec	0	1	Total
0	880	92	972
1	11	0	11
NA	16	1	17
Total	907	93	1000

Table B.8.12: Cross tabulation between vote choice for party 907 and respondents' employment status

stack_907/D6_une	0	1	Total
0	945	27	972
1	11	0	11
NA	16	1	17
Total	972	28	1000

Table B.8.13: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	901	902	903	904	905	906	907
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	0.042	-0.012	-0.127***	-0.039	0.126***	0.035	0.075***
	(0.026)	(0.023)	(0.024)	(0.021)	(0.021)	(0.021)	(0.019)
$D8_rec1$	0.011	0.050	-0.080**	-0.112^{***}	0.036	0.027	0.024
	(0.029)	(0.025)	(0.026)	(0.023)	(0.024)	(0.024)	(0.021)
$D5$ _rec1	0.009	-0.021	-0.015	-0.034	0.010	0.026	-0.002
	(0.027)	(0.024)	(0.025)	(0.022)	(0.023)	(0.023)	(0.020)
EDU_rec2	-0.086	0.074	0.011	0.025	-0.017	-0.045	-0.030
	(0.061)	(0.055)	(0.058)	(0.051)	(0.052)	(0.051)	(0.046)
EDU_rec3	-0.034	0.039	-0.012	0.049	0.006	-0.008	-0.006
	(0.061)	(0.055)	(0.058)	(0.051)	(0.052)	(0.051)	(0.046)
D1_rec1	-0.066	0.058	-0.008	-0.062	0.028	-0.041	-0.047
	(0.042)	(0.038)	(0.039)	(0.034)	(0.036)	(0.035)	(0.032)
$D7_rec1$	0.100***	-0.042	-0.049	0.001	0.014	0.023	0.009
	(0.027)	(0.024)	(0.025)	(0.022)	(0.023)	(0.023)	(0.020)
$D7_rec2$	0.175***	-0.080^*	-0.084^*	-0.042	0.062	0.099**	0.032
	(0.042)	(0.038)	(0.039)	(0.035)	(0.035)	(0.035)	(0.031)
D6_une1	-0.108	-0.027	0.032	-0.065	-0.047	0.021	0.070
	(0.075)	(0.067)	(0.069)	(0.061)	(0.063)	(0.063)	(0.056)
D4_age	-0.001	0.001	0.001	0.0004	-0.003***	-0.001*	-0.002***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
D10_rec	-0.022**	0.026***	0.014	0.007	-0.003	-0.015^*	0.003
	(0.008)	(0.007)	(0.008)	(0.007)	(0.007)	(0.007)	(0.006)
Constant	0.518***	0.269***	0.361***	0.453***	0.420***	0.366***	0.371***
	(0.072)	(0.064)	(0.067)	(0.059)	(0.061)	(0.060)	(0.054)
N	814	817	810	807	814	794	810
R-squared	0.065	0.043	0.065	0.046	0.074	0.040	0.045
Adj. R-squared	0.052	0.030	0.052	0.033	0.061	0.026	0.032

 $^{^{***}}p < .001; ^{**}p < .01; ^{*}p < .05$

Table B.8.14: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	901	902	903	904	905	906	906	907	907
model	8	9	10	11	12	13a	13b	14a	14c
$D3_rec2$	0.181	-0.163	-1.362***	-0.654*	0.571**	-0.430	-0.461	0.522	0.447
	(0.204)	(0.251)	(0.268)	(0.285)	(0.221)	(0.434)	(0.432)	(0.750)	(0.746)
$D8_rec1$	0.064	0.453	-0.567^{*}	-0.597^*	-0.208	0.123	0.197	-0.659	-0.583
	(0.227)	(0.306)	(0.259)	(0.288)	(0.229)	(0.522)	(0.518)	(0.759)	(0.751)
$D5_rec1$	0.139	0.010	-0.259	-0.257	-0.114	-0.064	0.039	17.058	17.268
	(0.220)	(0.269)	(0.264)	(0.295)	(0.223)	(0.468)	(0.466)	(1676.995)	(1749.196)
EDU_rec2	-0.288	0.676	0.305	0.358	-0.278	14.762	, ,	15.512	
	(0.483)	(0.758)	(0.646)	(0.768)	(0.488)	(1014.112)		(3995.567)	
EDU_rec3	-0.0001	$0.463^{'}$	$0.212^{'}$	$0.349^{'}$	0.054	15.433		16.573	
	(0.478)	(0.761)	(0.648)	(0.774)	(0.482)	(1014.112)		(3995.567)	
D1_rec1	-0.459	$0.387^{'}$	-0.033	-0.650	0.163	-0.916	-0.833	$-17.124^{'}$	
	(0.377)	(0.369)	(0.428)	(0.612)	(0.330)	(1.035)	(1.033)	(2956.242)	
$D7_rec1$	0.564*	0.078	-0.066	-0.300	0.150	0.561	0.669	0.597	0.695
	(0.224)	(0.267)	(0.267)	(0.292)	(0.229)	(0.481)	(0.473)	(0.891)	(0.875)
$D7_rec2$	0.732*	0.244	0.238	-1.583^*	0.498	-0.198	-0.015	0.928	1.261
	(0.308)	(0.390)	(0.380)	(0.750)	(0.321)	(0.829)	(0.816)	(1.043)	(1.017)
D6_une1	-1.178	-15.134	0.295	-0.601	0.067	0.248	0.277	-16.569	, ,
	(1.034)	(795.306)	(0.670)	(1.053)	(0.638)	(1.072)	(1.062)	(5415.937)	
D4_age	0.019**	0.018*	0.011	0.019^{*}	0.007	-0.012	-0.010	-0.013	-0.013
	(0.006)	(0.008)	(0.008)	(0.009)	(0.006)	(0.014)	(0.013)	(0.024)	(0.023)
$D10_rec$	-0.207**	0.115	0.172*	0.036	-0.134	-0.048	-0.052	-0.215	-0.237
	(0.078)	(0.074)	(0.070)	(0.088)	(0.078)	(0.154)	(0.156)	(0.335)	(0.337)
Constant	-2.864***	-4.250***	-2.093**	-2.752**	-2.210***	-18.050	-3.246***	-36.807	-21.105
	(0.593)	(0.914)	(0.734)	(0.884)	(0.579)	(1014.112)	(0.909)	(4333.229)	(1749.197)
N	810	810	810	810	810	810	810	810	810
Log Likelihood	-335.115	-242.432	-241.382	-195.562	-314.002	-99.101	-101.481	-37.745	-39.944
AIC	694.229	508.865	506.764	415.125	652.004	222.202	222.963	99.489	95.888

^{***}p < .001; **p < .01; *p < .05

B.9 Finland

Synthetic variables have been estimated for the full set of Finnish parties available in the original 2019 EES Finnish voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.9.1).

Table B.9.1: Relevant Finnish parties

Dep. Var.	Party	Party name (eng)
$stack_1001$	1001	Finnish Social Democrats
$\rm stack_1002$	1002	True Finns
$\rm stack_1003$	1003	National Coalition
$stack_1004$	1004	Finnish Centre
$\rm stack_1005$	1005	Green Union
stack_1006	1006	Left Wing Alliance
$stack_1007$	1007	Swedish People's Party

Full OLS models converge and coefficients do not show any particular issues (see Table B.9.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.037 for party 1001 (Finnish Social Democrats) and a maximum of 0.135 for party 1003 (National Coalition). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.9.2).

Table B.9.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_1001$	1001	503.822	524.434	-20.611
$stack_1002$	1002	760.632	793.350	-32.719
$stack_1003$	1003	455.497	567.635	-112.137
$stack_1004$	1004	213.717	257.058	-43.341
$stack_1005$	1005	579.991	634.977	-54.986
$\rm stack_1006$	1006	541.751	575.824	-34.073
$stack_1007$	1007	185.984	217.272	-31.288

Similarly, only one out of the seven logistic regression models (see Table B.9.5) show inflated standard errors for one of the coefficients of interest. In particular:

• model 11: D6_une

However, the constant term and the other regressors of model 11 seem not to be affected by the inflated standard errors. Thus, no further adjustments are made and model 11 is kept as is.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.08 for party 1007 (Swedish People's Party) and a maximum of 0.076 for party 1003 (National Coalition). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in two cases out of seven null models perform better than full ones (see Table B.9.3).

Table B.9.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1001	1001	490.829	497.038	-6.210
$stack_1002$	1002	646.780	659.969	-13.189
$stack_1003$	1003	478.675	520.112	-41.437
$stack_1004$	1004	255.100	260.410	-5.310
$stack_1005$	1005	540.504	546.870	-6.366
$\rm stack_1006$	1006	365.669	363.652	2.017
stack_1007	1007	195.727	183.272	12.455

Table B.9.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1001	1002	1003	1004	1005	1006	1007
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	0.046*	-0.143***	-0.041	-0.010	0.157***	0.062**	-0.002
	(0.022)	(0.026)	(0.022)	(0.019)	(0.023)	(0.023)	(0.019)
$D8_rec1$	0.109***	-0.069^*	0.044	-0.016	0.070*	0.059*	0.012
	(0.029)	(0.033)	(0.028)	(0.024)	(0.030)	(0.029)	(0.024)
$D5_rec1$	-0.046*	0.032	0.007	-0.017	-0.055^*	-0.028	-0.050**
	(0.023)	(0.027)	(0.022)	(0.019)	(0.024)	(0.023)	(0.019)
EDU_rec2	-0.026	0.110*	-0.003	0.018	-0.037	-0.027	0.028
	(0.045)	(0.051)	(0.043)	(0.037)	(0.047)	(0.045)	(0.037)
EDU_rec3	0.008	0.021	-0.016	0.005	0.012	0.006	0.031
	(0.042)	(0.049)	(0.041)	(0.035)	(0.044)	(0.043)	(0.035)
D1_rec1	0.073**	-0.016	-0.039	-0.006	0.038	0.063**	0.025
	(0.023)	(0.027)	(0.023)	(0.020)	(0.024)	(0.024)	(0.019)
$D7_rec1$	0.004	0.023	0.157***	0.081***	0.031	-0.058*	0.066**
	(0.026)	(0.030)	(0.025)	(0.022)	(0.027)	(0.026)	(0.021)
$D7_rec2$	-0.100**	0.005	0.299***	0.056	-0.021	-0.196***	0.101***
	(0.035)	(0.040)	(0.034)	(0.029)	(0.036)	(0.035)	(0.029)
$D6_une1$	-0.032	0.025	-0.028	0.0004	-0.013	0.0001	0.0001
	(0.037)	(0.042)	(0.036)	(0.031)	(0.038)	(0.037)	(0.030)
D4_age	0.001	-0.002**	-0.001	-0.002**	-0.003***	-0.001	-0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.011	0.004	0.028***	0.040***	0.003	0.007	0.029***
	(0.008)	(0.009)	(0.007)	(0.006)	(0.008)	(0.008)	(0.006)
Constant	0.282***	0.593***	0.320***	0.329***	0.417^{***}	0.368***	0.170***
	(0.060)	(0.069)	(0.058)	(0.050)	(0.062)	(0.061)	(0.049)
N	843	851	847	845	845	846	844
R-squared	0.049	0.062	0.146	0.074	0.087	0.064	0.061
Adj. R-squared	0.037	0.050	0.135	0.062	0.075	0.052	0.049

^{***}p < .001; **p < .01; *p < .05

Table B.9.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1001	1002	1003	1004	1005	1006	1007
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	0.020	-0.712**	-0.144	-0.019	0.873***	-0.055	-0.713
	(0.252)	(0.218)	(0.255)	(0.384)	(0.245)	(0.307)	(0.506)
$D8_rec1$	0.410	-0.808***	1.040^*	-0.580	0.236	0.277	-0.538
	(0.348)	(0.242)	(0.427)	(0.423)	(0.317)	(0.427)	(0.546)
$D5_rec1$	0.027	0.013	0.026	0.282	-0.580^*	-0.404	0.107
	(0.258)	(0.215)	(0.259)	(0.401)	(0.244)	(0.312)	(0.488)
EDU_rec2	0.364	0.974	0.436	-0.178	-0.547	0.385	0.091
	(0.656)	(0.525)	(0.668)	(0.858)	(0.411)	(0.793)	(1.200)
EDU_rec3	0.656	0.878	0.602	0.030	-0.505	0.875	0.841
	(0.622)	(0.507)	(0.629)	(0.786)	(0.379)	(0.751)	(1.095)
D1_rec1	0.650^{*}	0.125	-0.007	-0.376	0.168	0.519	-0.057
	(0.274)	(0.219)	(0.259)	(0.394)	(0.248)	(0.333)	(0.486)
$D7_rec1$	-0.138	-0.385	0.890**	1.057^{*}	0.636^{*}	-0.464	0.631
	(0.285)	(0.252)	(0.315)	(0.448)	(0.264)	(0.342)	(0.565)
$D7_rec2$	-0.455	0.538	1.538***	0.287	0.018	-1.597^*	0.853
	(0.410)	(0.292)	(0.342)	(0.650)	(0.392)	(0.748)	(0.651)
D6_une1	-0.242	-0.783	0.463	-15.884	0.362	-1.179	0.107
	(0.494)	(0.402)	(0.413)	(1057.586)	(0.365)	(0.747)	(0.797)
D4_age	0.033***	-0.008	0.022**	0.015	0.001	0.004	-0.010
	(0.009)	(0.007)	(0.008)	(0.012)	(0.007)	(0.010)	(0.015)
$D10_rec$	0.048	-0.026	0.238**	0.241*	0.059	-0.152	0.146
	(0.083)	(0.069)	(0.073)	(0.106)	(0.079)	(0.128)	(0.134)
Constant	-5.248***	-1.371^*	-5.783***	-4.311***	-2.606***	-3.517^{***}	-3.863**
	(0.874)	(0.611)	(0.856)	(1.069)	(0.602)	(0.994)	(1.341)
N	834	834	834	834	834	834	834
Log Likelihood	-233.414	-311.390	-227.338	-115.550	-258.252	-170.835	-85.864
AIC	490.829	646.780	478.675	255.100	540.504	365.669	195.727

^{***}p < .001; **p < .01; *p < .05

B.10 France

Synthetic variables have been estimated for seven out of forteen French parties available in the original 2019 EES French voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.10.1).

Table B.10.1: Relevant French parties

Dep. Var.	Party	Party name (eng)
stack_1113	1113	The Republicans
$stack_1105$	1105	Socialist Party
$stack_11111$	1111	National Rally
$stack_1114$	1114	Europe Ecology - The Greens
$stack_1101$	1101	Unbowed France
stack_1110 stack_1102	1110 1102	Generation.s, the movement The Republic Onwards!

Full OLS models converge and coefficients do not show any particular issues (see Table B.10.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.038, 0.038 for party 1105, 1111 (Socialist Party, National Rally) and a maximum of 0.122 for party 1110 (Generation.s, the movement). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 7 cases out of 7 full models perform better (see Table B.10.2).

Table B.10.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1113	1113	403.730	484.329	-80.599
$\rm stack_1105$	1105	389.302	413.135	-23.833
$stack_11111$	1111	793.339	817.144	-23.805
$stack_11114$	1114	502.767	556.941	-54.174
$stack_1101$	1101	372.314	453.519	-81.205
stack_1110	1110	116.558	210.757	-94.199
$stack_1102$	1102	657.229	705.587	-48.357

Also the full Logit models converge and coefficients do not show any particular issues (see Table B.10.5) In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.078 for party 1110 (Generation.s, the movement) and a maximum of 0.105 for party 1113 (The Republicans). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 2 cases out of 6 full models perform better (see Table B.10.3).

Table B.10.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1113	1113	404.384	454.071	-49.687
$stack_1105$	1105	332.931	317.328	15.603
$stack_11111$	1111	772.123	771.426	0.696
$stack_11114$	1114	547.599	547.508	0.090
$stack_1101$	1101	388.236	383.077	5.159
stack_1110	1110	215.168	201.572	13.596
stack_1102	1102	710.954	774.865	-63.911

Table B.10.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1113	1105	1111	1114	1101	1110	1102
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3$ _rec2	0.010	0.016	-0.017	0.051*	0.011	0.019	-0.025
	(0.020)	(0.020)	(0.025)	(0.022)	(0.020)	(0.018)	(0.024)
$D8_rec1$	0.010	0.033	-0.022	0.012	-0.008	0.011	0.073**
	(0.022)	(0.022)	(0.027)	(0.023)	(0.022)	(0.020)	(0.025)
$D5_rec1$	-0.001	-0.007	0.024	-0.030	0.001	-0.011	-0.023
	(0.022)	(0.022)	(0.028)	(0.024)	(0.022)	(0.021)	(0.026)
EDU_rec2	-0.010	0.035	0.131**	-0.015	0.014	0.023	-0.044
	(0.039)	(0.039)	(0.049)	(0.042)	(0.039)	(0.036)	(0.046)
EDU_rec3	-0.038	0.052	0.036	0.026	0.011	0.029	-0.025
	(0.038)	(0.038)	(0.047)	(0.040)	(0.038)	(0.035)	(0.044)
D1_rec1	0.055	0.121***	0.117**	0.109***	0.149***	0.173***	0.043
	(0.030)	(0.029)	(0.036)	(0.031)	(0.029)	(0.027)	(0.034)
$D7_rec1$	0.089***	0.046*	-0.056*	0.067**	-0.011	0.051*	0.118***
	(0.023)	(0.023)	(0.029)	(0.024)	(0.023)	(0.021)	(0.027)
$D7_rec2$	0.189***	-0.005	-0.026	0.027	-0.090**	-0.011	0.194***
	(0.030)	(0.030)	(0.037)	(0.032)	(0.030)	(0.027)	(0.035)
D6_une1	-0.011	0.027	-0.002	-0.016	0.071	0.030	-0.087
	(0.045)	(0.044)	(0.055)	(0.048)	(0.045)	(0.042)	(0.052)
D4_age	-0.001	-0.002**	-0.002*	-0.004****	-0.004***	-0.003****	-0.0003
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.035***	-0.008	0.013	-0.016**	-0.001	0.002	0.011
	(0.006)	(0.006)	(0.007)	(0.006)	(0.006)	(0.005)	(0.006)
Constant	0.242***	0.309***	0.356***	0.560***	0.437***	0.301***	0.274***
	(0.050)	(0.050)	(0.062)	(0.053)	(0.050)	(0.046)	(0.058)
N	902	901	900	902	888	810	898
R-squared	0.108	0.050	0.050	0.081	0.110	0.134	0.075
Adj. R-squared	0.096	0.038	0.038	0.070	0.099	0.122	0.064

^{***}p < .001; **p < .01; *p < .05

Table B.10.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

•							
	1113	1105	1111	1114	1101	1110	$\boldsymbol{1102}$
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3$ _rec2	0.381	0.189	-0.153	0.195	0.191	-0.089	-0.460*
	(0.287)	(0.344)	(0.192)	(0.242)	(0.306)	(0.458)	(0.201)
$D8_rec1$	-0.414	0.019	-0.218	-0.429	-0.612^{*}	0.389	0.383
	(0.291)	(0.365)	(0.199)	(0.244)	(0.302)	(0.526)	(0.224)
$D5_rec1$	0.715	-0.229	-0.059	-0.063	0.037	-0.532	-0.274
	(0.379)	(0.364)	(0.211)	(0.264)	(0.333)	(0.474)	(0.223)
EDU_rec2	-0.068	1.202	0.484	-0.173	-0.446	0.962	0.181
	(0.611)	(1.051)	(0.408)	(0.452)	(0.545)	(1.084)	(0.479)
EDU_rec3	-0.280	1.231	0.208	0.098	-0.080	0.689	0.708
	(0.598)	(1.042)	(0.407)	(0.434)	(0.521)	(1.087)	(0.459)
D1_rec1	-0.376	-0.607	0.220	0.521	0.337	1.035	-0.214
	(0.488)	(0.632)	(0.279)	(0.309)	(0.411)	(0.544)	(0.318)
$D7_rec1$	0.937^{*}	-0.357	-0.525^{*}	0.723^{*}	-0.234	0.021	0.592*
	(0.425)	(0.384)	(0.210)	(0.281)	(0.312)	(0.494)	(0.258)
$D7_rec2$	1.895***	-0.019	-0.584^{*}	0.069	-1.515^*	-0.159	1.294***
	(0.452)	(0.480)	(0.291)	(0.402)	(0.639)	(0.720)	(0.291)
D6_une1	0.389	-0.268	-0.385	0.415	-1.185	-0.345	-1.965
	(0.660)	(0.758)	(0.456)	(0.473)	(1.033)	(1.059)	(1.025)
D4_age	0.038***	0.005	0.015*	-0.010	0.003	-0.001	0.028***
	(0.010)	(0.011)	(0.006)	(0.008)	(0.009)	(0.014)	(0.006)
$D10_rec$	0.220***	-0.027	0.019	-0.126	-0.058	-0.204	-0.015
	(0.066)	(0.100)	(0.053)	(0.074)	(0.092)	(0.156)	(0.055)
Constant	-6.287^{***}	-4.235****	-2.216***	-1.989***	-2.219**	-4.307***	-3.983****
	(0.938)	(1.184)	(0.524)	(0.565)	(0.720)	(1.306)	(0.603)
N	905	905	905	905	905	905	905
Log Likelihood	-190.192	-154.466	-374.061	-261.799	-182.118	-95.584	-343.477
AIC	404.384	332.931	772.123	547.599	388.236	215.168	710.954

^{***}p < .001; **p < .01; *p < .05

B.11 Germany

Synthetic variables have been estimated for all of German parties available in the original 2019 EES German voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.11.1).

Table B.11.1: Relevant german parties

Dep. Var.	Party	Party name (eng)
stack_801	801	Christian Democratic Union / Christian Social Union
$stack_802$	802	Sozialdemokratische Partei Deutschlands (SPD)
$stack_805$	805	Free Democratic Party
$stack_803$	803	Alliance 90 / The Greens
$stack_804$	804	The Left
stack_807 stack_806	807 806	Alternative for Germany Pirates

Full OLS models converge and coefficients do not show any particular issues (see Table B.11.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.023 for party 807 (Alternative for Germany) and a maximum of 0.132 for party 806 (Pirates). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 7 null models perform better than full ones (see Table B.11.2).

Table B.11.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_801	801	631.253	723.798	-92.544
$\rm stack_802$	802	479.712	515.917	-36.205
$stack_805$	805	396.890	446.781	-49.891
$stack_803$	803	729.551	749.883	-20.332
$stack_804$	804	562.799	597.527	-34.728
$stack_807$	807	624.700	634.098	-9.398
$stack_806$	806	68.843	178.350	-109.507

On the contrary, one out of seven logistic regression models (see Table B.11.5) show inflated standard errors for one of the coefficients of interest. In particular:

• model 10: D6_une

Nevertheless, model 10's constant term and other regression coefficients are not affected by said inflated standard error. Therefore, we do not adapt the model.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.127 for party 806 (Pirates) and a maximum of 0.07 for party 801 (Christian Democratic Union / Christian Social Union). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 1 case out of 7 null models perform better than full ones (see Table B.11.3).

Table B.11.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_801	801	783.323	844.663	-61.339
$stack_802$	802	591.363	602.235	-10.872
$stack_805$	805	371.471	373.555	-2.084
$stack_803$	803	850.034	850.477	-0.444
$stack_804$	804	374.707	384.835	-10.128
$\rm stack_807$	807	592.655	593.786	-1.131
stack_806	806	123.144	111.226	11.918

Table B.11.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	801	802	805	803	804	807	806
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3$ _rec2	-0.038	0.004	0.026	0.040	-0.006	-0.019	-0.016
	(0.024)	(0.022)	(0.021)	(0.025)	(0.023)	(0.024)	(0.017)
$D8_rec1$	-0.039	0.022	-0.033	0.029	0.012	-0.022	0.037
	(0.027)	(0.025)	(0.024)	(0.029)	(0.026)	(0.027)	(0.020)
$D5_rec1$	-0.004	-0.001	0.018	-0.060*	-0.021	0.089***	0.031
	(0.025)	(0.023)	(0.022)	(0.027)	(0.024)	(0.025)	(0.018)
EDU_rec2	-0.034	-0.029	-0.001	-0.009	-0.018	-0.063	-0.022
	(0.042)	(0.038)	(0.037)	(0.044)	(0.040)	(0.042)	(0.031)
EDU_rec3	-0.003	-0.012	0.019	0.028	0.013	-0.052	0.029
	(0.043)	(0.039)	(0.038)	(0.045)	(0.041)	(0.043)	(0.031)
$D1_rec1$	-0.026	0.145^{***}	0.009	0.094**	0.143^{***}	0.019	0.095***
	(0.030)	(0.028)	(0.027)	(0.032)	(0.029)	(0.030)	(0.022)
$D7_rec1$	0.091***	0.029	0.044	0.082**	-0.074**	-0.088***	-0.057**
	(0.026)	(0.024)	(0.023)	(0.028)	(0.025)	(0.026)	(0.019)
$D7_rec2$	0.181***	-0.009	0.159***	0.101*	-0.162***	-0.071	-0.081**
	(0.038)	(0.035)	(0.033)	(0.040)	(0.036)	(0.037)	(0.027)
$D6_une1$	-0.207**	-0.108	-0.110	-0.122	0.040	0.018	0.014
	(0.066)	(0.060)	(0.058)	(0.071)	(0.064)	(0.066)	(0.049)
D4_age	0.002**	0.002*	0.0004	-0.001	-0.002^*	-0.001	-0.005***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.044***	0.018**	0.029***	0.012	-0.007	0.001	0.006
	(0.006)	(0.006)	(0.006)	(0.007)	(0.006)	(0.006)	(0.005)
Constant	0.254***	0.249***	0.258***	0.425***	0.451***	0.354***	0.391***
	(0.059)	(0.054)	(0.052)	(0.063)	(0.057)	(0.059)	(0.043)
N	866	865	862	867	863	868	854
R-squared	0.124	0.065	0.080	0.048	0.064	0.036	0.143
Adj. R-squared	0.113	0.053	0.068	0.035	0.052	0.023	0.132

^{***}p < .001; **p < .01; *p < .05

Table B.11.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	801	802	805	803	804	807	806
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	-0.462^{*}	-0.152	0.178	0.315	0.352	-0.553*	0.528
	(0.188)	(0.226)	(0.308)	(0.178)	(0.307)	(0.230)	(0.674)
$D8_rec1$	-0.349	0.293	0.245	0.400	-0.180	-0.098	1.210
	(0.204)	(0.275)	(0.374)	(0.219)	(0.340)	(0.255)	(1.070)
$D5_rec1$	-0.058	-0.064	0.580	-0.192	0.044	0.386	0.273
	(0.197)	(0.240)	(0.361)	(0.185)	(0.316)	(0.245)	(0.706)
EDU_rec2	0.189	0.781	-0.138	0.025	-0.384	-0.096	-0.715
	(0.338)	(0.499)	(0.576)	(0.323)	(0.490)	(0.378)	(0.903)
EDU_rec3	0.156	0.778	-0.014	0.286	-0.030	-0.500	-1.026
	(0.344)	(0.503)	(0.576)	(0.327)	(0.503)	(0.401)	(0.983)
D1_rec1	-0.503^*	0.902***	-0.372	0.040	0.866*	-0.246	-0.370
	(0.249)	(0.256)	(0.418)	(0.226)	(0.355)	(0.312)	(0.892)
$D7_rec1$	0.448*	0.321	0.623	0.284	-0.879**	-0.494^*	-0.790
	(0.215)	(0.257)	(0.402)	(0.203)	(0.317)	(0.241)	(0.756)
$D7_rec2$	0.589*	0.084	1.276**	0.669^{*}	-2.590*	-0.570	0.102
	(0.288)	(0.374)	(0.461)	(0.269)	(1.033)	(0.382)	(0.902)
D6_une1	-1.533	-0.878	-13.942	-0.351	1.162*	-0.083	1.054
	(1.035)	(1.038)	(716.924)	(0.561)	(0.551)	(0.640)	(1.166)
D4_age	0.023***	0.027***	0.018	-0.012^*	0.010	0.009	-0.039
	(0.006)	(0.007)	(0.010)	(0.005)	(0.010)	(0.007)	(0.021)
$D10_rec$	0.293***	0.021	0.095	-0.048	-0.215^*	-0.118	0.084
	(0.045)	(0.058)	(0.075)	(0.049)	(0.103)	(0.069)	(0.154)
Constant	-2.987^{***}	-4.765^{***}	-5.020****	-1.569****	-2.675^{***}	-1.797**	-3.292^*
	(0.500)	(0.694)	(0.879)	(0.449)	(0.754)	(0.568)	(1.605)
N	871	871	871	871	871	871	871
Log Likelihood	-379.662	-283.681	-173.736	-413.017	-175.353	-284.327	-49.572
AIC	783.323	591.363	371.471	850.034	374.707	592.655	123.144

^{***}p < .001; **p < .01; *p < .05

B.12 Greece

Synthetic variables have been estimated for the full set of Greek parties available in the original 2019 EES Greece voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.12.1).

Table B.12.1: Relevant Greece parties

Dep. Var.	Party	Party name (eng)
stack_1201	1201	Coalition of the Radical Left
$stack_1202$	1202	New Democracy
$stack_1203$	1203	Golden Dawn
$stack_1204$	1204	Panhellenic Socialist Movement/ Movement for Change
$stack_1205$	1205	Communist Party of Greece

Full OLS models converge and coefficients do not show any particular issues (see Table B.12.7). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.015 for party 1204 (Panhellenic Socialist Movement/ Movement for Change) and a maximum of 0.081 for party 1202 (New Democracy). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.12.2).

Table B.12.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1201	1201	822.224	839.980	-17.757
$stack_1202$	1202	766.550	831.163	-64.614
$stack_1203$	1203	131.977	163.404	-31.427
$stack_1204$	1204	206.109	208.918	-2.809
$stack_1205$	1205	237.283	258.529	-21.246

On the contrary, two out of five logistic regression models (see Table B.12.8) show inflated standard errors for some of the coefficients of interest. In particular:

- model 8a: EDU rec (both categories), D1 rec
- model 9: D7_rec (second category)

However, for model 9 the constant term and other regressors are not affected by the inflated standard errors. Model 8a appears more problematic.

The inflated standard errors in model 8a are potentially due to separation issues. In short, no respondent with low education voted for party 1203 and only two respondents who were union members voted for party 1203. (See Tables B.12.5, B.12.6)

As a consequence, a constrained version of model 8 (namely, model 8b) without said variables was estimated and contrasted with the original full model (model 8a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) can be rejected (see Table B.12.3).

Table B.12.3: Likelihood-ratio Test between model 8a (unconstrained) and model 8b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	851	282.583			
Unconstrained	848	270.891	3	11.69196	0.0085164

Consequently, synthetic variables for respondents' vote choice for party 1203 have been predicted relying on the unconstrained model (model 8a).

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.035 for party 1205 (Communist Party of Greece) and a maximum of 0.078 for party 1204 (Panhellenic Socialist Movement/ Movement for Change). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in one case out of five the null model performs better than the full ones. According to AIC values the related null model appears to have a better fit than model 8b (see Table B.12.4).

Table B.12.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1201	1201	824.145	828.3560	-4.21100
$stack_1202$	1202	932.433	944.2880	-11.85500
$stack_1203$	1203	294.891	294.6670	0.22400
$stack_1203*$	1203	300.583	294.6668	5.91624
$stack_1204$	1204	309.280	337.5330	-28.25300
$stack_1205$	1205	302.786	294.6670	8.11900

^{*} AIC value refers to model 8b (constrained).

Table B.12.5: Cross tabulation between vote choice for party 1203 and respondents' education level

stack_1203/EDU_rec	1	2	3	NA	Total
0	46	199	626	38	909
1	0	12	27	0	39
NA	2	12	36	7	57
Total	48	223	689	45	1005

 ${\bf Table~B.12.6:~Cross~tabulation~between~vote~choice~for~party~1203~and~respondents'~trade~union~membership~status}$

stack_1203/D1_rec	0	1	Total
0	820	89	909
1	37	2	39
NA	55	2	57
Total	912	93	1005

56

Table B.12.7: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1201	1202	1203	1204	1205
	Model 1	Model 2	Model 3	Model 4	Model 5
D3_rec2	0.089***	-0.038	-0.031	-0.019	0.057**
	(0.026)	(0.025)	(0.018)	(0.019)	(0.019)
$D8_rec1$	-0.025	0.081	0.003	-0.010	-0.040
	(0.046)	(0.044)	(0.031)	(0.033)	(0.033)
$D5_rec1$	0.027	0.037	-0.015	0.031	0.012
	(0.029)	(0.028)	(0.020)	(0.021)	(0.021)
EDU_rec2	-0.117	-0.090	0.133**	-0.066	-0.072
	(0.068)	(0.065)	(0.046)	(0.048)	(0.049)
EDU_rec3	-0.100	-0.104	0.076	-0.055	-0.021
	(0.065)	(0.063)	(0.045)	(0.046)	(0.047)
D1_rec1	0.031	-0.030	-0.037	0.104***	0.049
	(0.044)	(0.043)	(0.030)	(0.032)	(0.032)
$D7_rec1$	-0.054^*	0.114***	-0.040^*	0.033	-0.060**
	(0.027)	(0.026)	(0.018)	(0.019)	(0.020)
$D7_rec2$	-0.121*	0.212***	0.024	-0.017	-0.084*
	(0.052)	(0.051)	(0.036)	(0.037)	(0.038)
D6_une1	-0.060	0.027	0.003	-0.005	-0.065*
	(0.039)	(0.038)	(0.026)	(0.028)	(0.028)
D4_age	0.0004	-0.001	-0.002**	0.001	-0.0001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.028***	0.043^{***}	0.021^{***}	0.004	-0.018***
	(0.007)	(0.007)	(0.005)	(0.005)	(0.005)
Constant	0.530^{***}	0.234**	0.110*	0.180**	0.315***
	(0.079)	(0.077)	(0.054)	(0.056)	(0.057)
N	898	900	899	886	896
R-squared	0.043	0.092	0.058	0.028	0.047
Adj. R-squared	0.031	0.081	0.046	0.015	0.035

^{***}p < .001; **p < .01; *p < .05

Table B.12.8: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1201	1202	1203	1203	1204	1205
	Model 6	Model 7	Model 8a	Model 8b	Model 9	Model 10
$D3_rec2$	0.133	0.002	-0.449	-0.382	-0.240	-0.055
	(0.185)	(0.171)	(0.372)	(0.371)	(0.354)	(0.369)
$D8_rec1$	-0.014	0.384	0.134	0.141	-0.723	-0.613
	(0.331)	(0.328)	(0.630)	(0.626)	(0.528)	(0.515)
$D5_rec1$	0.235	0.071	-0.113	-0.070	0.513	0.411
	(0.210)	(0.192)	(0.407)	(0.408)	(0.442)	(0.424)
EDU_rec2	-0.513	-0.495	16.506	, ,	0.050	-0.500
	(0.442)	(0.408)	(1571.670)		(1.158)	(0.893)
EDU_rec3	-0.601	-0.454	16.228		0.039	-0.421
	(0.423)	(0.389)	(1571.670)		(1.124)	(0.850)
D1_rec1	$0.243^{'}$	-0.207	-16.574		1.507***	0.466
	(0.296)	(0.286)	(1154.167)		(0.389)	(0.561)
D7_rec1	-0.061	0.426^{*}	-0.678	-0.723^*	1.425**	-0.531
	(0.189)	(0.181)	(0.368)	(0.363)	(0.440)	(0.370)
$D7_rec2$	$-0.65\acute{6}$	0.689^{*}	-1.319	-1.483	-14.887	-0.505
	(0.411)	(0.314)	(1.047)	(1.040)	(773.813)	(0.772)
D6_une1	-0.824^*	0.176	-0.560	-0.399	0.239	0.621
	(0.342)	(0.255)	(0.631)	(0.630)	(0.533)	(0.467)
D4_age	0.014	-0.002	0.004	0.008	0.033^{*}	-0.001
	(0.007)	(0.007)	(0.015)	(0.014)	(0.014)	(0.015)
$D10_rec$	-0.161^{***}	0.204***	0.158	$0.145^{'}$	$0.150^{'}$	-0.246^{**}
	(0.048)	(0.045)	(0.093)	(0.093)	(0.092)	(0.093)
Constant	-1.131^{*}	-2.015****	-19.391	-3.443****	-5.823****	-1.656
	(0.531)	(0.515)	(1571.670)	(0.930)	(1.310)	(0.975)
N	860	860	860	860	860	860
Log Likelihood	-400.072	-454.216	-135.446	-141.291	-142.640	-139.393
AIC	824.145	932.433	294.891	300.583	309.280	302.786

^{***}p < .001; **p < .01; *p < .05

B.13 Hungary

Synthetic variables have been estimated for seven out of eight Hungarian parties available in the original 2019 EES Hungarian voter study selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.13.1).

Table B.13.1: Relevant Hungarian parties

Dep. Var.	Party	Party name (eng)
stack_1301	1301 1302	Democratic Coalition FIDESZ-KDNP Alliance
stack_1302 stack_1303	1302 1303	Jobbik
stack_1304 stack 1306	1304 1306	Politics Can Be Different Hungarian Socialist Party
stack_1300	1307	Our Homeland Movement
stack_1308	1308	Momentum Movement

Full OLS models converge and coefficients do not show any particular issues (see Table B.13.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.021 for party 1308 (Momentum Movement) and a maximum of 0.11 for party 1302 (FIDESZ-KDNP Alliance). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.13.2).

Table B.13.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1301	1301	695.969	736.686	-40.717
$\rm stack_1302$	1302	818.639	914.037	-95.399
$stack_1303$	1303	462.137	543.950	-81.813
$stack_1304$	1304	135.446	146.605	-11.158
$stack_1306$	1306	296.612	314.278	-17.666
$stack_1307$	1307	135.544	160.468	-24.924
$stack_1308$	1308	600.852	608.757	-7.905

On the contrary, three out of seven logistic regression models (see Table B.13.5) show inflated standard errors for some of the coefficients of interest. In particular:

- model 11: D7 rec (second category)
- model 12: D6_une
- model 13: D7_rec (second category), D6_une

However, for these models the constant terms and other regressors are not affected by the inflated standard errors. Thus, no additional adjustments are made and models 11, 12 and 13 are not modified.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.07 for party 1304 (Politics Can Be Different) and a maximum of 0.082 for party 1302

(FIDESZ-KDNP Alliance). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in three cases out of seven null models perform better than full ones (see Table B.13.3).

Table B.13.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1301	1301	711.843	766.824	-54.981
$stack_1302$	1302	869.347	949.018	-79.671
$stack_1303$	1303	457.605	455.166	2.439
$stack_1304$	1304	125.609	119.342	6.268
$stack_1306$	1306	287.679	293.324	-5.645
$stack_1307$	1307	221.046	227.216	-6.170
$stack_1308$	1308	514.295	508.228	6.067

Table B.13.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1301	1302	1303	1304	1306	1307	1308
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	0.012	-0.004	-0.032	0.027	0.013	-0.043*	0.005
	(0.024)	(0.025)	(0.021)	(0.017)	(0.019)	(0.018)	(0.023)
$D8_rec1$	0.005	-0.020	-0.090***	-0.013	-0.004	0.019	0.073**
	(0.029)	(0.031)	(0.025)	(0.021)	(0.023)	(0.021)	(0.028)
$D5_rec1$	-0.002	0.066*	-0.032	-0.027	-0.002	0.011	-0.031
	(0.025)	(0.026)	(0.022)	(0.018)	(0.020)	(0.018)	(0.023)
EDU_rec2	-0.004	0.002	0.015	-0.0004	-0.020	-0.050	-0.041
	(0.042)	(0.045)	(0.037)	(0.031)	(0.034)	(0.032)	(0.040)
EDU_rec3	-0.042	0.013	0.023	0.013	-0.008	-0.015	-0.034
	(0.043)	(0.045)	(0.037)	(0.031)	(0.034)	(0.032)	(0.040)
D1_rec1	0.054	-0.016	0.076*	0.057^{*}	0.081**	0.093***	0.034
	(0.037)	(0.039)	(0.032)	(0.027)	(0.029)	(0.027)	(0.035)
D7_rec1	-0.020	0.072**	-0.060**	-0.020	-0.018	-0.028	-0.031
	(0.025)	(0.026)	(0.022)	(0.018)	(0.020)	(0.019)	(0.024)
$D7_rec2$	0.012	0.113	0.001	-0.050	0.027	-0.034	0.016
	(0.057)	(0.060)	(0.049)	(0.042)	(0.045)	(0.042)	(0.054)
D6_une1	-0.061	-0.019	-0.052	-0.019	-0.045	-0.035	-0.125^*
	(0.063)	(0.066)	(0.054)	(0.046)	(0.050)	(0.046)	(0.059)
D4_age	0.005***	-0.0001	-0.005***	-0.002***	0.002***	-0.002***	-0.0001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.025***	0.065***	-0.008	-0.008	-0.019****	-0.003	-0.021****
	(0.006)	(0.007)	(0.006)	(0.005)	(0.005)	(0.005)	(0.006)
Constant	0.195***	0.180**	0.652***	0.370***	0.166***	0.333***	0.397***
	(0.054)	(0.057)	(0.047)	(0.039)	(0.043)	(0.040)	(0.051)
N	911	916	918	910	915	880	906
R-squared	0.067	0.120	0.107	0.036	0.042	0.052	0.032
Adj. R-squared	0.055	0.110	0.096	0.024	0.031	0.040	0.021

^{***}p < .001; **p < .01; *p < .05

Table B.13.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1301	1302	1303	1304	1306	1307	1308
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
D3_rec2	-0.122	-0.191	-0.438	1.182	-0.084	-1.416**	-0.063
	(0.199)	(0.173)	(0.270)	(0.693)	(0.363)	(0.511)	(0.248)
$D8_rec1$	0.122	-0.032	-0.805**	0.899	0.968	-0.358	0.798*
	(0.250)	(0.211)	(0.284)	(1.072)	(0.618)	(0.500)	(0.389)
$D5_rec1$	-0.159	0.333	-0.184	0.487	0.859^{*}	0.271	-0.052
	(0.203)	(0.184)	(0.275)	(0.700)	(0.427)	(0.476)	(0.255)
EDU_rec2	-0.008	0.048	0.669	-1.492	-0.627	-0.126	0.419
	(0.377)	(0.330)	(0.530)	(1.455)	(0.680)	(0.892)	(0.514)
EDU_rec3	-0.239	0.134	0.704	0.667	-0.253	0.821	0.352
	(0.387)	(0.329)	(0.528)	(1.117)	(0.673)	(0.823)	(0.514)
D1_rec1	0.476	-0.053	-0.331	0.324	-0.815	0.628	-0.309
	(0.286)	(0.256)	(0.451)	(0.815)	(0.746)	(0.535)	(0.419)
D7_rec1	-0.068	0.261	-0.383	0.737	-0.720	-0.041	0.298
	(0.209)	(0.181)	(0.292)	(0.673)	(0.411)	(0.425)	(0.263)
$D7_rec2$	-0.048	0.639	-0.331	-15.078	0.021	-16.343	0.947^{*}
	(0.490)	(0.372)	(0.634)	(1515.647)	(0.776)	(1536.508)	(0.462)
D6_une1	-0.069	-0.281	-0.183	1.454	-15.489	-16.521	0.216
	(0.566)	(0.561)	(0.657)	(1.160)	(1105.602)	(1806.943)	(0.637)
D4_age	0.048***	0.013**	-0.017^*	-0.005	0.030**	-0.022	0.001
	(0.007)	(0.005)	(0.008)	(0.019)	(0.012)	(0.014)	(0.007)
$D10_rec$	-0.203**	0.370***	-0.045	0.003	-0.191	-0.257	-0.157
	(0.063)	(0.043)	(0.077)	(0.172)	(0.123)	(0.155)	(0.080)
Constant	-3.686***	-2.645***	-1.215^*	-6.460***	-5.125***	-2.051^*	-3.348***
	(0.533)	(0.416)	(0.594)	(1.731)	(1.070)	(0.931)	(0.658)
N	844	844	844	844	844	844	844
Log Likelihood	-343.922	-422.674	-216.802	-50.805	-131.840	-98.523	-245.148
AIC	711.843	869.347	457.605	125.609	287.679	221.046	514.295

^{***}p < .001; **p < .01; *p < .05

B.14 Ireland

Synthetic variables have been estimated for the full set of Irish parties available in the original 2019 EES Irish voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.14.1).

Table B.14.1: Irish relevant parties

Dep. Var.	Party	Party name (eng)
stack_1402	1402	Familiy of the Irish
$stack_1403$	1403	Labour Party
$stack_1401$	1401	Soldiers of Destiny
$stack_1404$	1404	Green Party
$stack_1405$	1405	Ourselves Alone
$stack_1406$	1406	Solidarity - People Before Profit/

Full OLS models converge and coefficients do not show any particular issues (see Table B.14.6). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.026 for party 1404 (Green Party) and a maximum of 0.111 for party 1401 (Soldiers of Destiny). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 6 cases out of 6 full models perform better (see Table B.14.2).

Table B.14.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1402	1402	482.194	542.391	-60.197
$stack_1403$	1403	254.212	273.301	-19.090
$stack_1401$	1401	405.420	494.195	-88.775
$stack_1404$	1404	452.410	463.429	-11.018
$stack_1405$	1405	419.079	482.320	-63.242
$stack_1406$	1406	354.990	374.578	-19.587

On the contrary, one out of six logistic regression models (see Table B.14.7) show inflated standard errors for one of the coefficients of interest:

• model 8: EDU rec;

Model 8 presents a problematic profile since its inflated standard error is affecting the constant term and are due to separation issues. In short, only one low educated respondent voted for party 1403 (see Tables B.14.5)

As a consequence, a constrained version of model 8 (namely, model 8b) without said variables was estimated and contrasted with the original full model (model 8a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.14.3). Consequently, synthetic variables for respondents' vote choice for party 1403 have been predicted relying on the constrained model (model 8b).

Table B.14.3: Likelihood-ratio Test between model 8a (unconstrained) and model 8b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	818	175.4496			
Unconstrained	816	171.8613	2	3.588386	0.1662616

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.039 for party 1403 (Labour Party) and a maximum of 0.033 for party 1402 (Familiy of the Irish). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 4 cases out of 6 full models perform better. According to AIC values the related null model appears to have a better fit than model 8b (see Table B.14.4).

Table B.14.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1401	1401	526.5670	532.3840	-5.817000
$stack_1402$	1402	702.4450	728.4990	-26.055000
$stack_1403$	1403	195.8610	190.4440	5.417000
$stack_1403*$	1403	195.4496	190.4442	5.005436
$stack_1404$	1404	534.5190	536.8130	-2.294000
$\rm stack_1405$	1405	443.6380	447.6410	-4.003000
$stack_1406$	1406	235.9670	233.1430	2.825000

^{*} AIC value refers to model 8b (constrained).

Table B.14.5: Cross tabulation between vote choice for party 505 and respondents' education

stack_1403/EDU_rec	1	2	3	NA	Total
0	80	365	421	66	932
1	0	8	12	3	23
NA	3	18	20	4	45
Total	83	391	453	73	1000

Table B.14.6: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1402	1403	1401	1404	1405	1406
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
$D3_rec2$	0.007	0.031	-0.047^{*}	0.055*	-0.019	0.021
	(0.022)	(0.019)	(0.021)	(0.022)	(0.021)	(0.021)
$D8_rec1$	0.029	0.050^{*}	0.017	0.035	-0.026	0.020
	(0.024)	(0.021)	(0.023)	(0.023)	(0.023)	(0.022)
$D5_rec1$	0.029	0.009	0.006	0.005	0.010	0.018
	(0.025)	(0.022)	(0.024)	(0.025)	(0.024)	(0.024)
EDU_rec2	-0.059	-0.052	0.070	-0.031	0.039	-0.032
	(0.042)	(0.037)	(0.041)	(0.042)	(0.041)	(0.040)
EDU_rec3	-0.022	-0.002	0.036	0.015	-0.016	-0.055
	(0.041)	(0.036)	(0.040)	(0.041)	(0.040)	(0.039)
D1_rec1	-0.016	0.021	-0.036	0.018	0.025	0.055*
	(0.025)	(0.022)	(0.024)	(0.025)	(0.024)	(0.023)
$D7_rec1$	0.075**	0.062**	0.098***	0.081***	-0.020	-0.040
	(0.024)	(0.021)	(0.023)	(0.023)	(0.023)	(0.022)
$D7_rec2$	0.137***	0.078*	0.140***	0.050	-0.030	-0.038
	(0.040)	(0.035)	(0.038)	(0.040)	(0.039)	(0.038)
D6_une1	-0.098*	-0.028	-0.034	-0.083	0.037	0.110*
	(0.046)	(0.040)	(0.044)	(0.046)	(0.045)	(0.044)
D4_age	-0.001	-0.001	-0.002**	0.001	-0.006***	-0.002**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.030^{***}	0.009*	0.039^{***}	-0.002	0.003	-0.007
	(0.005)	(0.004)	(0.004)	(0.005)	(0.004)	(0.004)
Constant	0.338***	0.325***	0.321***	0.348***	0.599^{***}	0.477^{***}
	(0.052)	(0.045)	(0.050)	(0.052)	(0.050)	(0.050)
N	848	848	846	841	848	826
R-squared	0.092	0.047	0.123	0.038	0.096	0.049
Adj. R-squared	0.080	0.035	0.111	0.026	0.084	0.036

^{***}p < .001; **p < .01; *p < .05

Table B.14.7: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

·							
	1402	1403	1403	1401	1404	1405	1406
	Model 7	Model 8a	Model 8b	Model 9	Model 10	Model 11	Model 12
$D3$ _rec2	0.040	0.036	0.092	-0.416	-0.131	-0.105	0.290
	(0.199)	(0.469)	(0.466)	(0.247)	(0.241)	(0.273)	(0.415)
$D8_rec1$	-0.102	1.522*	1.518*	0.220	0.166	-0.562^{*}	0.018
	(0.208)	(0.759)	(0.757)	(0.266)	(0.262)	(0.273)	(0.446)
$D5_rec1$	0.065	-0.101	0.006	0.152	-0.038	0.697^{*}	0.741
	(0.226)	(0.510)	(0.508)	(0.281)	(0.269)	(0.343)	(0.513)
EDU_rec2	-0.515	15.396		1.199	-0.663	0.288	0.038
	(0.378)	(1180.765)		(0.751)	(0.456)	(0.498)	(0.805)
EDU_rec3	-0.129	15.791		1.321	-0.184	-0.526	-0.055
	(0.367)	(1180.765)		(0.746)	(0.429)	(0.511)	(0.816)
D1_rec1	-0.337	0.516	0.496	0.039	0.389	0.161	0.709
	(0.236)	(0.490)	(0.488)	(0.273)	(0.257)	(0.295)	(0.438)
$D7_rec1$	0.149	0.276	0.396	0.246	0.875^{**}	-0.241	-0.643
	(0.216)	(0.518)	(0.505)	(0.264)	(0.277)	(0.284)	(0.455)
$D7_rec2$	0.052	0.291	0.409	0.088	0.844*	-1.267	-0.911
	(0.348)	(0.848)	(0.828)	(0.439)	(0.401)	(0.747)	(1.051)
D6_une1	-0.574	0.058	-0.046	0.481	-0.277	-0.976	1.782**
	(0.545)	(1.079)	(1.064)	(0.476)	(0.622)	(0.749)	(0.544)
D4_age	0.026***	0.028	0.026	0.017^{*}	0.015^{*}	-0.021*	0.004
	(0.006)	(0.016)	(0.015)	(0.008)	(0.008)	(0.010)	(0.015)
$D10_rec$	0.143^{***}	-0.178	-0.180	0.130^{**}	-0.032	0.029	-0.171
	(0.040)	(0.104)	(0.104)	(0.049)	(0.049)	(0.056)	(0.095)
Constant	-3.025***	-21.694	-6.214***	-4.899***	-3.176***	-1.501^*	-4.090***
	(0.491)	(1180.765)	(1.182)	(0.858)	(0.576)	(0.620)	(1.121)
N	828	828	828	828	828	828	828
Log Likelihood	-339.222	-85.931	-87.725	-251.283	-255.260	-209.819	-105.984
AIC	702.445	195.861	195.450	526.567	534.519	443.638	235.967

^{***}p < .001; **p < .01; *p < .05

B.15 Italy

Synthetic variables have been estimated for the full set of relevant parties available in the original 2019 EES Italian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.15.1).

Table B.15.1: Relevant Italian parties

Dep. Var.	Party	Party name (eng)
stack_1501	1501	Democratic Party
$stack_1502$	1502	Go Italy
$stack_1503$	1503	Northern League
$stack_1504$	1504	Five Star Movement
$stack_1505$	1505	Italian Left
stack_1506 stack_1507	1506 1507	More Europe (+Europa) Brothers of Italy - National Centre-right

Full OLS models converge and coefficients do not show any particular issues (see Table B.15.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.026 for party 1507 (Brothers of Italy - National Centre-right) and a maximum of 0.079 for party 1506 (More Europe (+Europa)). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show full models always perform better (see Table B.15.2).

Table B.15.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1501	1501	604.084	635.702	-31.618
$stack_1502$	1502	379.529	426.389	-46.861
$stack_1503$	1503	875.306	890.751	-15.445
$stack_1504$	1504	680.820	708.829	-28.009
$stack_1505$	1505	208.266	268.839	-60.573
stack_1506 stack_1507	1506 1507	271.014 539.212	333.051 552.821	-62.037 -13.609

Also considering logistic regression models no anomalies were detected. (see Table B.15.5) In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.032 for party 1507 (Brothers of Italy - National Centre-right) and a maximum of 0.005 for party 1501 (Democratic Party). The differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 5 cases out of 7 null models perform marginally better than full ones (see Table B.15.3).

Table B.15.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_1501$	1501	790.955	796.676	-5.721
$stack_1502$	1502	323.098	320.684	2.414
$stack_1503$	1503	1013.665	1012.910	0.756
$stack_1504$	1504	795.498	796.676	-1.178
$stack_1505$	1505	203.427	200.042	3.384
${\rm stack}_1506$	1506	304.503	302.061	2.442
stack_1507	1507	322.427	314.532	7.895

^{*} AIC value refers to model 11b (constrained).

Table B.15.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1501	1502	1503	1504	1505	1506	1507
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	0.020	-0.024	0.006	-0.022	0.055**	0.067***	-0.017
	(0.022)	(0.020)	(0.026)	(0.023)	(0.018)	(0.019)	(0.022)
$D8_rec1$	$0.052^{'}$	0.014	$0.003^{'}$	$0.015^{'}$	-0.023	-0.012	0.009
	(0.032)	(0.028)	(0.037)	(0.034)	(0.026)	(0.028)	(0.031)
D5_rec1	0.007	-0.012	$0.003^{'}$	0.056^{*}	0.031	0.003	0.008
	(0.025)	(0.022)	(0.029)	(0.026)	(0.020)	(0.021)	(0.024)
EDU_rec2	0.010	-0.020	-0.087	-0.064	-0.047	-0.048	0.028
	(0.039)	(0.035)	(0.045)	(0.041)	(0.032)	(0.033)	(0.038)
EDU_rec3	0.066	-0.045	-0.189***	-0.074	0.017	0.010	-0.021
	(0.041)	(0.036)	(0.047)	(0.042)	(0.033)	(0.034)	(0.039)
D1_rec1	0.182***	0.083**	-0.002	0.009	0.148***	0.136***	$0.027^{'}$
	(0.030)	(0.027)	(0.035)	(0.032)	(0.024)	(0.026)	(0.029)
$D7_rec1$	0.034	0.089***	0.005	-0.025	-0.018	0.037	0.060*
	(0.025)	(0.022)	(0.028)	(0.026)	(0.020)	(0.021)	(0.024)
$D7_rec2$	0.064	0.095**	0.014	-0.147^{***}	0.018	0.103**	0.095^{*}
	(0.040)	(0.035)	(0.047)	(0.042)	(0.032)	(0.034)	(0.039)
D4_age	0.0001	-0.002**	-0.001	-0.004***	-0.002***	-0.003***	-0.0005
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.002	0.020***	0.021***	0.016**	-0.009^*	0.0004	0.019***
	(0.005)	(0.004)	(0.006)	(0.005)	(0.004)	(0.004)	(0.005)
Constant	0.177**	0.272***	0.530***	0.577***	0.319***	0.335***	0.219***
	(0.064)	(0.056)	(0.074)	(0.067)	(0.052)	(0.054)	(0.062)
N	902	903	904	904	896	872	899
R-squared	0.056	0.071	0.038	0.052	0.086	0.090	0.037
Adj. R-squared	0.045	0.061	0.028	0.041	0.076	0.079	0.026

 $^{^{***}}p < .001; \, ^{**}p < .01; \, ^{*}p < .05$

Table B.15.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1501	1502	1503	1504	1505	1506	1507
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3_rec2$	0.050	-0.239	-0.228	-0.111	-0.337	0.161	-0.113
	(0.184)	(0.336)	(0.156)	(0.184)	(0.457)	(0.347)	(0.336)
$D8_rec1$	0.613^{*}	1.094	0.087	-0.110	-0.586	-0.176	-0.374
	(0.304)	(0.740)	(0.225)	(0.257)	(0.510)	(0.469)	(0.438)
D5_rec1	$0.263^{'}$	$0.022^{'}$	$0.063^{'}$	$0.330^{'}$	0.020	-0.660	$0.303^{'}$
	(0.210)	(0.369)	(0.173)	(0.209)	(0.486)	(0.355)	(0.395)
EDU_rec2	$0.147^{'}$	-0.639	-0.548^{*}	$0.515^{'}$	-0.286	-0.387	0.662
	(0.345)	(0.540)	(0.247)	(0.351)	(0.688)	(0.670)	(0.761)
EDU_rec3	0.504	-0.456	-0.857**	0.439	-0.065	0.646	0.966
	(0.350)	(0.545)	(0.262)	(0.365)	(0.718)	(0.640)	(0.770)
D1_rec1	0.286	0.204	-0.091	-0.214	1.031*	-0.299	-1.007
	(0.238)	(0.406)	(0.210)	(0.253)	(0.492)	(0.507)	(0.616)
D7_rec1	0.219	0.870*	0.151	-0.292	-1.082^*	-0.152	0.132
	(0.210)	(0.418)	(0.172)	(0.192)	(0.515)	(0.387)	(0.377)
$D7_rec2$	0.752*	0.466	0.388	-1.563**	-0.471	0.614	-0.013
	(0.301)	(0.638)	(0.269)	(0.485)	(0.788)	(0.527)	(0.605)
D4_age	0.016**	-0.015	0.004	-0.002	0.016	-0.008	0.010
	(0.006)	(0.011)	(0.005)	(0.006)	(0.015)	(0.011)	(0.011)
$D10_rec$	-0.052	0.157^{*}	0.049	0.055	-0.202	-0.120	0.142
	(0.040)	(0.073)	(0.034)	(0.040)	(0.108)	(0.079)	(0.073)
Constant	-3.572***	-3.875***	-0.893^*	-1.885***	-3.041^*	-2.118*	-4.594***
	(0.581)	(1.056)	(0.431)	(0.551)	(1.196)	(0.955)	(1.111)
N	873	873	873	873	873	873	873
Log Likelihood	-384.478	-150.549	-495.833	-386.749	-90.713	-141.251	-150.214
AIC	790.955	323.098	1013.665	795.498	203.427	304.503	322.427

^{***}p < .001; **p < .01; *p < .05

B.16 Latvia

Synthetic variables have been estimated for seven out of eighteen Latvian parties available in the original 2019 EES Latvian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.17.1).

Table B.16.1: Relevant Latvian parties

Dep. Var.	Party	Party name (eng)
stack_1611	1611	For Fatherland and Freedom - National Independence Movement of Latvia
$stack_1608$	1608	New Conservative Party
$stack_1609$	1609	Development/For!
$stack_1605$	1605	Who owns the state?
$stack_1610$	1610	Social Democratic Party ""Harmony""
stack_1604 stack_1616	1604 1616	Green and Farmers' Union Unity

Full OLS models converge and coefficients do not show any particular issue (see Table B.17.15). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.008 for party 1608 (New Conservative Party) and a maximum of 0.047 for party 1610 (Social Democratic Party "Harmony""). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models shows that in 5 cases out of 7 full models perform better (see Table B.17.2).

Table B.16.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_1611$	1611	417.189	427.783	-10.593
$stack_1608$	1608	313.166	308.067	5.099
$stack_1609$	1609	298.365	304.472	-6.107
$stack_1605$	1605	-52.283	-52.571	0.288
$stack_1610$	1610	610.902	638.014	-27.112
$stack_1604$	1604	225.227	225.784	-0.556
$stack_1616$	1616	432.780	446.309	-13.529

On the contrary, six out of seven logistic regression models (see Tables B.17.16, ??) show inflated standard errors for some of the coefficients of interest, in particular:

- Model 8,14: EDU_rec, D6_une;
- Model 9: D6_une;
- Model 11: D5_rec;
- Model 12,13: EDU_rec.

Nevertheless, models 9 and 11 constant terms and other regression coefficients are not affected by said inflated standard errors, whereas models 8, 12, 13 and 14 presents a more problematic profile.

Models 8, 12, 13 and 14 inflated standard errors are due to separation issues. In short, no respondents with low education and unemployement did vote for party 1611 and 1616 (see Tables B.17.9, B.17.10, B.17.11,

B.17.12). For party 1610 and 1604 no respondents with low education voted for them (see Tables B.17.13, B.17.14).

As a consequence, a constrained version of model 8, 12, 13 and 14 (namely, model 8b, 12b, 13b, 14b) without said variables was estimated and contrasted with the original full model (model 8a, 12a, 13a, 14a). Likelihood-ratio test results show

- that for model 8 H_0 (namely, that the constrained model fits better than the full model) can be rejected at p<0.05 (see Table B.17.3). If just EDU_rec is dropped, H_0 cannot be rejected and the constant term is also not affected (see Table B.17.4). Thus, synthetic variables for respondents' vote choice for party 1611 have been predicted relying on the constrained model (model 8b).
- that for model 12 H_0 cannot be rejected (see Table B.17.5). Consequently, synthetic variables for respondents' vote choice for party 1610 have been predicted relying on the constrained model (model 12b).
- that for model 13 H_0 can be rejected at p<0.05 (see Table B.17.6). Consequently, synthetic variables for respondents' vote choice for party 1604 have been predicted relying on the unconstrained model.
- that for model 14 H_0 can be rejected at p<0.001 (see Table B.17.7). Consequently, synthetic variables for respondents' vote choice for party 1616 have been predicted relying on the unconstrained model.

Table B.16.3: Likelihood-ratio Test between Model 8a (unconstrained) and (Fully constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
784	471.7312			
781	462.0985	3	9.632677	0.021961

Table B.16.4: Likelihood-ratio Test between Model 8a (unconstrained) and Model 8b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	465.9043			
781	462.0985	2	3.805825	0.1491336

Table B.16.5: Likelihood-ratio Test between Model 12a (unconstrained) and Model 12b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	474.9240			
781	469.9404	2	4.98362	0.08276

Table B.16.6: Likelihood-ratio Test between Model 13a (unconstrained) and Model 13b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	259.4469			
781	252.4689	2	6.977971	0.0305318

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.055 for party 1608 (New Conservative Party) and a maximum of 0.043 for party 1616 (Unity). Moreover, the difference between Akaike Information Criterion (AIC) values for logistic full models

Table B.16.7: Likelihood-ratio Test between Model 14 (unconstrained and constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	589.2081			
781	573.1949	2	16.01324	0.0003332

and null models shows that in 3 cases out of 7 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than Model 11b (see Table B.17.8).

Table B.16.8: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1604	1604	276.4690	270.1370	6.332000
$stack_1611*$	1605	70.3280	72.5630	-2.235000
$stack_1608$	1608	296.2430	282.6840	13.559000
$stack_1609$	1609	462.4940	456.5220	5.972000
$stack_1610$	1610	493.9400	493.8890	0.051000
$stack_1610$	1610	494.9240	493.8894	1.034646
$stack_1611$	1611	486.0990	480.1110	5.988000
$stack_1611$	1611	485.9043	480.1108	5.793550
stack_1610*	1616	597.1950	625.7790	-28.584000

 $^{^{*}}$ AIC value refers to model 8b and 12b (constrained).

Table B.16.9: Cross tabulation between vote choice for party 1611 and respondents' education

stack_1611/EDU_rec	1	2	3	NA	Total
0	26	422	422	17	887
1	1	36	46	3	86
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.16.10: Cross tabulation between vote choice for party 1611 and respondents' employment status

stack_1611/D6_une	0	1	Total
0	838	49	887
1	85	1	86
NA	26	1	27
Total	949	51	1000

Table B.16.11: Cross tabulation between vote choice for party 1616 and respondents' education

stack_1616/EDU_rec	1	2	3	NA	Total
0	26	414	380	18	838
1	1	44	88	2	135
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.16.12: Cross tabulation between vote choice for party 1616 and respondents' employment status

$stack_1616/D6$ _une	0	1	Total
0	791	47	838
1	132	3	135
NA	26	1	27
Total	949	51	1000

Table B.16.13: Cross tabulation between vote choice for party 1610 and respondents' education membership

stack_1610/EDU_rec	1	2	3	NA	Total
0	26	419	424	17	886
1	1	39	44	3	87
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.16.14: Cross tabulation between vote choice for party 1604 and respondents' education

$stack_1604/EDU_rec$	1	2	3	NA	Total
0	27	446	442	18	933
1	0	12	26	2	40
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.16.15: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1611	1608	1609	1605	1610	1604	1616
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	-0.029	0.010	0.029	0.014	0.050	0.032	0.033
	(0.023)	(0.022)	(0.022)	(0.017)	(0.026)	(0.020)	(0.023)
$D8_rec1$	-0.108***	-0.077**	-0.055^*	-0.051^*	0.177^{***}	-0.029	-0.057^{*}
	(0.028)	(0.027)	(0.026)	(0.021)	(0.031)	(0.025)	(0.028)
$D5_rec1$	-0.044	-0.015	-0.062^*	-0.013	0.028	-0.001	-0.034
	(0.026)	(0.024)	(0.024)	(0.019)	(0.029)	(0.023)	(0.026)
EDU_rec2	0.079	0.003	0.065	0.035	0.003	0.020	0.047
	(0.071)	(0.067)	(0.066)	(0.052)	(0.078)	(0.061)	(0.070)
EDU_rec3	0.118	0.031	$0.119^{'}$	0.061	-0.060	0.086	0.128
	(0.071)	(0.067)	(0.066)	(0.053)	(0.079)	(0.062)	(0.070)
D1_rec1	0.025	0.003	0.009	-0.008	0.027	0.019	0.027
	(0.030)	(0.028)	(0.028)	(0.022)	(0.034)	(0.026)	(0.030)
D7_rec1	0.038	0.021	$0.017^{'}$	0.020	0.013	0.038	0.030
	(0.024)	(0.023)	(0.022)	(0.018)	(0.027)	(0.021)	(0.024)
$D7_rec2$	0.034	-0.011	-0.007	0.021	-0.022	0.038	0.029
	(0.045)	(0.043)	(0.043)	(0.034)	(0.050)	(0.039)	(0.045)
D6_une1	-0.082	-0.103	0.044	-0.003	$0.043^{'}$	0.012	-0.072
	(0.060)	(0.055)	(0.057)	(0.043)	(0.066)	(0.051)	(0.058)
D4_age	0.001	-0.001	-0.001	-0.002***	-0.001	0.0001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.0001	0.004	-0.009	-0.0003	0.010	0.002	0.001
	(0.006)	(0.006)	(0.006)	(0.005)	(0.007)	(0.006)	(0.006)
Constant	0.281**	0.376***	0.384***	0.280***	0.138	0.229**	0.202^{*}
	(0.089)	(0.084)	(0.083)	(0.065)	(0.098)	(0.076)	(0.088)
N	784	768	`767 [′]	770	792	790	` 789 ´
R-squared	0.041	0.022	0.036	0.028	0.060	0.028	0.044
Adj. R-squared	0.027	0.008	0.022	0.014	0.047	0.014	0.030

^{***}p < .001; **p < .01; *p < .05

Table B.16.16: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1611	1611	1608	1609	1605	1610	1610	1604	1604
	Model 8a	Model 8b	Model 9	Model 10	Model 11	Model 12a	Model 12b	Model 13	Model 14
$D3$ _rec2	-0.402	-0.376	0.050	0.118	-0.566	-0.566	0.269	-0.149	-0.149
	(0.261)	(0.260)	(0.365)	(0.271)	(1.022)	(1.022)	(0.258)	(0.374)	(0.225)
$D8_rec1$	-0.152	-0.181	-0.420	-0.759**	-2.391^*	-2.391^*	1.129^{*}	-0.717	-0.279
	(0.305)	(0.304)	(0.408)	(0.286)	(1.091)	(1.091)	(0.438)	(0.395)	(0.251)
$D5_rec1$	-0.208	-0.167	-0.221	-0.525	17.895	17.895	-0.176	0.310	-0.151
	(0.287)	(0.286)	(0.394)	(0.276)	(2703.384)	(2703.384)	(0.275)	(0.451)	(0.246)
EDU_rec2	16.015	,	-1.380	-0.347	-2.112	-2.112	,	13.702	15.051
	(1358.359)		(0.821)	(0.779)	(1.475)	(1.475)		(849.755)	(807.771)
EDU_rec3	16.146		-0.917	-0.176	-2.407	-2.407		14.637	15.782
	(1358.359)		(0.806)	(0.783)	(1.632)	(1.632)		(849.755)	(807.771)
D1_rec1	0.241	0.264	-0.021	0.270	0.412	0.412	0.224	0.509	-0.198
	(0.315)	(0.313)	(0.471)	(0.336)	(1.216)	(1.216)	(0.305)	(0.434)	(0.301)
$D7_rec1$	-0.026	-0.001	0.025	0.228	0.057	0.057	0.423	0.392	-0.032
	(0.270)	(0.268)	(0.380)	(0.275)	(1.056)	(1.056)	(0.274)	(0.408)	(0.229)
$D7_rec2$	0.268	0.304	0.130	-0.357	2.371	2.371	0.403	0.359	0.035
	(0.463)	(0.459)	(0.678)	(0.638)	(1.467)	(1.467)	(0.465)	(0.701)	(0.431)
D6_une1	-16.014	-15.184	-15.525	0.414	3.005*	3.005*	0.494	0.838	-15.058
	(1087.082)	(675.024)	(1096.940)	(0.579)	(1.175)	(1.175)	(0.563)	(0.810)	(652.557)
D4_age	0.007	0.008	-0.002	0.006	0.062	0.062	0.005	0.002	0.031***
	(0.008)	(0.008)	(0.012)	(0.009)	(0.043)	(0.043)	(0.008)	(0.012)	(0.007)
$D10_rec$	0.082	0.079	0.090	-0.094	-0.403	-0.403	0.078	-0.094	0.0002
	(0.068)	(0.068)	(0.094)	(0.081)	(0.348)	(0.348)	(0.067)	(0.111)	(0.061)
Constant	-18.424	-2.426***	-1.641	-1.624	-22.634	-22.634	-3.976***	-17.389	-18.454
	(1358.359)	(0.636)	(1.110)	(0.974)	(2703.385)	(2703.385)	(0.710)	(849.755)	(807.771)
N	793	793	793	793	793	793	793	793	793
Log Likelihood	-231.049	-232.952	-136.122	-219.247	-23.164	-23.164	-237.462	-126.234	-286.597
AIC	486.099	485.904	296.243	462.494	70.328	70.328	494.924	276.469	597.195

 $^{^{***}}p < .001; \, ^{**}p < .01; \, ^{*}p < .05$

B.17 Lithuania

Synthetic variables have been estimated for seven out of eighteen Latvian parties available in the original 2019 EES Latvian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.17.1).

Table B.17.1: Relevant Latvian parties

Dep. Var.	Party	Party name (eng)
stack_1611	1611	For Fatherland and Freedom - National Independence Movement of Latvia
$stack_1608$	1608	New Conservative Party
$stack_1609$	1609	Development/For!
$stack_1605$	1605	Who owns the state?
$stack_1610$	1610	Social Democratic Party ""Harmony""
stack_1604 stack_1616	1604 1616	Green and Farmers' Union Unity

Full OLS models converge and coefficients do not show any particular issue (see Table B.17.15). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.008 for party 1608 (New Conservative Party) and a maximum of 0.047 for party 1610 (Social Democratic Party "Harmony""). Moreover, the difference between Akaike Information Criterion (AIC) values for full OLS models and null models shows that in 5 cases out of 7 full models perform better (see Table B.17.2).

Table B.17.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_1611$	1611	417.189	427.783	-10.593
$stack_1608$	1608	313.166	308.067	5.099
$stack_1609$	1609	298.365	304.472	-6.107
$stack_1605$	1605	-52.283	-52.571	0.288
$stack_1610$	1610	610.902	638.014	-27.112
$stack_1604$	1604	225.227	225.784	-0.556
$stack_1616$	1616	432.780	446.309	-13.529

On the contrary, six out of seven logistic regression models (see Tables B.17.16, ??) show inflated standard errors for some of the coefficients of interest, in particular:

- Model 8,14: EDU_rec, D6_une;
- Model 9: D6_une;
- Model 11: D5_rec;
- Model 12,13: EDU_rec.

Nevertheless, models 9 and 11 constant terms and other regression coefficients are not affected by said inflated standard errors, whereas models 8, 12, 13 and 14 presents a more problematic profile.

Models 8, 12, 13 and 14 inflated standard errors are due to separation issues. In short, no respondents with low education and unemployement did vote for party 1611 and 1616 (see Tables B.17.9, B.17.10, B.17.11,

B.17.12). For party 1610 and 1604 no respondents with low education voted for them (see Tables B.17.13, B.17.14).

As a consequence, a constrained version of model 8, 12, 13 and 14 (namely, model 8b, 12b, 13b, 14b) without said variables was estimated and contrasted with the original full model (model 8a, 12a, 13a, 14a). Likelihood-ratio test results show

- that for model 8 H_0 (namely, that the constrained model fits better than the full model) can be rejected at p<0.05 (see Table B.17.3). If just EDU_rec is dropped, H_0 cannot be rejected and the constant term is also not affected (see Table B.17.4). Thus, synthetic variables for respondents' vote choice for party 1611 have been predicted relying on the constrained model (model 8b).
- that for model 12 H_0 cannot be rejected (see Table B.17.5). Consequently, synthetic variables for respondents' vote choice for party 1610 have been predicted relying on the constrained model (model 12b).
- that for model 13 H_0 can be rejected at p<0.05 (see Table B.17.6). Consequently, synthetic variables for respondents' vote choice for party 1604 have been predicted relying on the unconstrained model.
- that for model 14 H_0 can be rejected at p<0.001 (see Table B.17.7). Consequently, synthetic variables for respondents' vote choice for party 1616 have been predicted relying on the unconstrained model.

Table B.17.3: Likelihood-ratio Test between Model 8a (unconstrained) and (Fully constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
784	471.7312			
781	462.0985	3	9.632677	0.021961

Table B.17.4: Likelihood-ratio Test between Model 8a (unconstrained) and Model 8b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	465.9043			
781	462.0985	2	3.805825	0.1491336

Table B.17.5: Likelihood-ratio Test between Model 12a (unconstrained) and Model 12b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	474.9240			
781	469.9404	2	4.98362	0.08276

Table B.17.6: Likelihood-ratio Test between Model 13a (unconstrained) and Model 13b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	259.4469			
781	252.4689	2	6.977971	0.0305318

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.055 for party 1608 (New Conservative Party) and a maximum of 0.043 for party 1616 (Unity). Moreover, the difference between Akaike Information Criterion (AIC) values for logistic full models

Table B.17.7: Likelihood-ratio Test between Model 14 (unconstrained and constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
783	589.2081			
781	573.1949	2	16.01324	0.0003332

and null models shows that in 3 cases out of 7 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than Model 11b (see Table B.17.8).

Table B.17.8: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1604	1604	276.4690	270.1370	6.332000
$stack_1611*$	1605	70.3280	72.5630	-2.235000
$stack_1608$	1608	296.2430	282.6840	13.559000
$stack_1609$	1609	462.4940	456.5220	5.972000
$stack_1610$	1610	493.9400	493.8890	0.051000
$stack_1610$	1610	494.9240	493.8894	1.034646
$stack_1611$	1611	486.0990	480.1110	5.988000
$stack_1611$	1611	485.9043	480.1108	5.793550
stack_1610*	1616	597.1950	625.7790	-28.584000

^{*} AIC value refers to model 8b and 12b (constrained).

Table B.17.9: Cross tabulation between vote choice for party 1611 and respondents' education

stack_1611/EDU_rec	1	2	3	NA	Total
0	26	422	422	17	887
1	1	36	46	3	86
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.17.10: Cross tabulation between vote choice for party 1611 and respondents' employment status

stack_1611/D6_une	0	1	Total
0	838	49	887
1	85	1	86
NA	26	1	27
Total	949	51	1000

Table B.17.11: Cross tabulation between vote choice for party 1616 and respondents' education

stack_1616/EDU_rec	1	2	3	NA	Total
0	26	414	380	18	838
1	1	44	88	2	135
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.17.12: Cross tabulation between vote choice for party 1616 and respondents' employment status

$stack_1616/D6$ _une	0	1	Total
0	791	47	838
1	132	3	135
NA	26	1	27
Total	949	51	1000

Table B.17.13: Cross tabulation between vote choice for party 1610 and respondents' education membership

stack_1610/EDU_rec	1	2	3	NA	Total
0	26	419	424	17	886
1	1	39	44	3	87
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.17.14: Cross tabulation between vote choice for party 1604 and respondents' education

$stack_1604/EDU_rec$	1	2	3	NA	Total
0	27	446	442	18	933
1	0	12	26	2	40
NA	2	13	12	0	27
Total	29	471	480	20	1000

Table B.17.15: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1611	1608	1609	1605	1610	1604	1616
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	-0.029	0.010	0.029	0.014	0.050	0.032	0.033
	(0.023)	(0.022)	(0.022)	(0.017)	(0.026)	(0.020)	(0.023)
$D8_rec1$	-0.108***	-0.077**	-0.055^{*}	-0.051^*	0.177^{***}	-0.029	-0.057^{*}
	(0.028)	(0.027)	(0.026)	(0.021)	(0.031)	(0.025)	(0.028)
$D5_rec1$	-0.044	-0.015	-0.062^*	-0.013	0.028	-0.001	-0.034
	(0.026)	(0.024)	(0.024)	(0.019)	(0.029)	(0.023)	(0.026)
EDU_rec2	0.079	0.003	0.065	0.035	0.003	0.020	0.047
	(0.071)	(0.067)	(0.066)	(0.052)	(0.078)	(0.061)	(0.070)
EDU_rec3	0.118	0.031	$0.119^{'}$	0.061	-0.060	0.086	0.128
	(0.071)	(0.067)	(0.066)	(0.053)	(0.079)	(0.062)	(0.070)
D1_rec1	0.025	0.003	0.009	-0.008	0.027	0.019	0.027
	(0.030)	(0.028)	(0.028)	(0.022)	(0.034)	(0.026)	(0.030)
D7_rec1	0.038	0.021	$0.017^{'}$	0.020	0.013	0.038	0.030
	(0.024)	(0.023)	(0.022)	(0.018)	(0.027)	(0.021)	(0.024)
$D7_rec2$	0.034	-0.011	-0.007	0.021	-0.022	0.038	0.029
	(0.045)	(0.043)	(0.043)	(0.034)	(0.050)	(0.039)	(0.045)
D6_une1	-0.082	-0.103	0.044	-0.003	$0.043^{'}$	0.012	-0.072
	(0.060)	(0.055)	(0.057)	(0.043)	(0.066)	(0.051)	(0.058)
D4_age	0.001	-0.001	-0.001	-0.002***	-0.001	0.0001	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.0001	0.004	-0.009	-0.0003	0.010	0.002	0.001
	(0.006)	(0.006)	(0.006)	(0.005)	(0.007)	(0.006)	(0.006)
Constant	0.281**	0.376***	0.384***	0.280***	0.138	0.229**	0.202^{*}
	(0.089)	(0.084)	(0.083)	(0.065)	(0.098)	(0.076)	(0.088)
N	784	768	`767 [′]	770	792	790	` 789 ´
R-squared	0.041	0.022	0.036	0.028	0.060	0.028	0.044
Adj. R-squared	0.027	0.008	0.022	0.014	0.047	0.014	0.030

^{***}p < .001; **p < .01; *p < .05

Table B.17.16: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1611	1611	1608	1609	1605	1610	1610	1604	1604
	Model 8a	Model 8b	Model 9	Model 10	Model 11	Model 12a	Model 12b	Model 13	Model 14
$D3_rec2$	-0.402	-0.376	0.050	0.118	-0.566	-0.566	0.269	-0.149	-0.149
	(0.261)	(0.260)	(0.365)	(0.271)	(1.022)	(1.022)	(0.258)	(0.374)	(0.225)
$D8_rec1$	-0.152	-0.181	-0.420	-0.759**	-2.391*	-2.391*	1.129^*	-0.717	-0.279
	(0.305)	(0.304)	(0.408)	(0.286)	(1.091)	(1.091)	(0.438)	(0.395)	(0.251)
$D5_rec1$	-0.208	-0.167	-0.221	-0.525	17.895	17.895	-0.176	0.310	-0.151
	(0.287)	(0.286)	(0.394)	(0.276)	(2703.384)	(2703.384)	(0.275)	(0.451)	(0.246)
EDU_rec2	16.015	` ,	-1.380	-0.347	-2.112	-2.112	, ,	13.702	15.051
	(1358.359)		(0.821)	(0.779)	(1.475)	(1.475)		(849.755)	(807.771)
EDU_rec3	16.146		-0.917	-0.176	-2.407	-2.407		14.637	15.782
	(1358.359)		(0.806)	(0.783)	(1.632)	(1.632)		(849.755)	(807.771)
D1_rec1	0.241	0.264	-0.021	$0.270^{'}$	$0.412^{'}$	0.412	0.224	0.509	-0.198
	(0.315)	(0.313)	(0.471)	(0.336)	(1.216)	(1.216)	(0.305)	(0.434)	(0.301)
D7_rec1	-0.026	-0.001	$0.025^{'}$	$0.228^{'}$	$0.057^{'}$	$0.057^{'}$	$0.423^{'}$	$0.392^{'}$	-0.032
	(0.270)	(0.268)	(0.380)	(0.275)	(1.056)	(1.056)	(0.274)	(0.408)	(0.229)
$D7_rec2$	$0.268^{'}$	0.304	$0.130^{'}$	-0.357	$2.371^{'}$	2.371	$0.403^{'}$	$0.359^{'}$	$0.035^{'}$
	(0.463)	(0.459)	(0.678)	(0.638)	(1.467)	(1.467)	(0.465)	(0.701)	(0.431)
D6_une1	-16.014	-15.184	-15.525	0.414	3.005^{*}	3.005^{*}	0.494	$0.838^{'}$	-15.058
	(1087.082)	(675.024)	(1096.940)	(0.579)	(1.175)	(1.175)	(0.563)	(0.810)	(652.557)
D4_age	0.007	0.008	-0.002	0.006	0.062	0.062	0.005	0.002	0.031***
	(0.008)	(0.008)	(0.012)	(0.009)	(0.043)	(0.043)	(0.008)	(0.012)	(0.007)
$D10_rec$	$0.082^{'}$	$0.079^{'}$	$0.090^{'}$	-0.094	-0.403	-0.403	$0.078^{'}$	-0.094	0.0002
	(0.068)	(0.068)	(0.094)	(0.081)	(0.348)	(0.348)	(0.067)	(0.111)	(0.061)
Constant	-18.424	-2.426^{***}	-1.641	-1.624	-22.634	-22.634	-3.976***	-17.389	-18.454
	(1358.359)	(0.636)	(1.110)	(0.974)	(2703.385)	(2703.385)	(0.710)	(849.755)	(807.771)
N	793	793	793	793	793	793	793	793	793
Log Likelihood	-231.049	-232.952	-136.122	-219.247	-23.164	-23.164	-237.462	-126.234	-286.597
AIC	486.099	485.904	296.243	462.494	70.328	70.328	494.924	276.469	597.195

 $^{^{***}}p < .001; \, ^{**}p < .01; \, ^{*}p < .05$

B.18 Luxembourg

Synthetic variables have been estimated for seven out of ten Luxembourgian parties available in the original 2019 EES Luxembourgian voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.18.1).

Dep. Var. Party Party name (eng) stack 1801 1801 Christian Social People's Party stack 1802 1802 Socialist Workers' Party $stack_1803$ 1803 Democratic Party stack 1804 1804 The Greens stack 1805 1805 The Left

Alternative Democratic Reform Party

Pirate Party of Luxembourg

Table B.18.1: Relevant Luxembourgian parties

Full OLS models converge and coefficients do not show any particular issues (see Table B.18.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.013 for party 1806 (Alternative Democratic Reform Party) and a maximum of 0.136 for party 1804 (The Greens). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 1 case out of 7 null models perform better than full ones (see Table B.18.2).

Table B.18.2:	Akaike	Information	Criterion v	alues for	r OLS	full and	null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1801	1801	307.051	321.535	-14.484
$stack_1802$	1802	198.883	208.287	-9.404
$stack_1803$	1803	252.751	277.718	-24.967
$\rm stack_1804$	1804	264.835	320.320	-55.485
$stack_1805$	1805	160.767	168.247	-7.480
$\rm stack_1806$	1806	56.601	51.752	4.849
$stack_1807$	1807	28.790	45.389	-16.599

On the contrary, four out of seven logistic regression models (see Table B.18.5) show inflated standard errors for one of the coefficients of interest. In particular:

• model 8, 9, 10 and 12: D6_une.

stack 1806

stack 1807

1806

1807

Nevertheless, the constant term and other regression coefficients of models 8, 9, 10 and 12 are not affected by said inflated standard error. Therefore, we do not adapt the model.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.074 for party 1805 (The Left) and a maximum of 0.022 for party 1801 (Christian Social People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 6 cases out of 7 null models perform better than full ones (see Table B.18.3).

Table B.18.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1801	1801	374.770	385.253	-10.483
$stack_1802$	1802	278.141	270.650	7.491
$stack_1803$	1803	433.856	426.431	7.425
$stack_1804$	1804	416.070	408.096	7.975
$stack_1805$	1805	200.446	188.620	11.825
stack_1806 stack_1807	1806 1807	179.297 155.919	171.048 152.574	8.248 3.345

Table B.18.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1801	1802	1803	1804	1805	1806	1807
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	0.009	-0.009	0.009	0.056	0.006	-0.026	0.005
	(0.032)	(0.029)	(0.030)	(0.031)	(0.027)	(0.024)	(0.024)
$D8_rec1$	-0.004	-0.028	0.022	-0.0002	-0.003	0.011	-0.016
	(0.032)	(0.029)	(0.030)	(0.031)	(0.028)	(0.025)	(0.024)
$D5_rec1$	0.013	-0.029	-0.052	-0.033	-0.013	0.0003	-0.058*
	(0.036)	(0.032)	(0.034)	(0.034)	(0.030)	(0.027)	(0.026)
EDU_rec2	0.115	0.169**	0.083	-0.041	-0.053	0.065	-0.087^{*}
	(0.059)	(0.053)	(0.056)	(0.057)	(0.051)	(0.046)	(0.044)
EDU_rec3	0.110	0.099	0.077	0.033	0.012	0.020	-0.083^*
	(0.057)	(0.051)	(0.054)	(0.055)	(0.049)	(0.044)	(0.042)
$D1_rec1$	0.005	0.060*	-0.045	-0.036	-0.009	-0.007	-0.025
	(0.032)	(0.029)	(0.031)	(0.031)	(0.028)	(0.025)	(0.024)
$D7_rec1$	0.005	0.097*	0.173***	0.175***	-0.012	-0.033	0.031
	(0.045)	(0.041)	(0.043)	(0.043)	(0.039)	(0.035)	(0.034)
$D7_rec2$	-0.026	0.154***	0.198***	0.219***	-0.010	-0.031	-0.012
	(0.048)	(0.043)	(0.045)	(0.046)	(0.041)	(0.037)	(0.035)
$D6_une1$	-0.192	-0.012	-0.221^*	-0.166	0.098	0.215^*	0.172*
	(0.114)	(0.107)	(0.107)	(0.108)	(0.097)	(0.092)	(0.084)
D4_age	-0.0001	-0.002**	-0.002*	-0.005***	-0.003***	-0.001	-0.003***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.053***	-0.001	0.003	-0.012	-0.015	0.015*	-0.004
	(0.010)	(0.009)	(0.009)	(0.009)	(0.008)	(0.007)	(0.007)
Constant	0.270***	0.307***	0.365***	0.531***	0.439***	0.183**	0.426***
	(0.080)	(0.072)	(0.076)	(0.077)	(0.068)	(0.062)	(0.059)
N	454	449	453	454	453	446	453
R-squared	0.077	0.068	0.098	0.157	0.063	0.038	0.082
Adj. R-squared	0.054	0.044	0.076	0.136	0.040	0.013	0.059

^{***}p < .001; **p < .01; *p < .05

Table B.18.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1801	1802	1803	1804	1805	1806	1807
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
D3_rec2	0.279	-0.020	-0.020	0.153	0.379	-0.587	0.259
	(0.281)	(0.345)	(0.254)	(0.261)	(0.435)	(0.477)	(0.519)
$D8_rec1$	-0.203	0.160	0.084	0.053	0.204	-0.858	-0.643
	(0.279)	(0.352)	(0.257)	(0.265)	(0.446)	(0.474)	(0.511)
D5_rec1	-0.250	$0.137^{'}$	0.340	-0.091	-0.354	0.202	-0.747
	(0.302)	(0.381)	(0.300)	(0.289)	(0.451)	(0.530)	(0.524)
EDU_rec2	1.419^{*}	$0.528^{'}$	$0.532^{'}$	-0.412	-0.446	-0.067	-0.422
	(0.674)	(0.603)	(0.588)	(0.493)	(0.755)	(0.734)	(0.701)
EDU_rec3	$1.264^{'}$	-0.401	$0.622^{'}$	-0.113	$0.020^{'}$	-0.550	-0.988
	(0.670)	(0.607)	(0.563)	(0.450)	(0.688)	(0.733)	(0.688)
D1_rec1	$0.157^{'}$	$0.593^{'}$	-0.162	-0.088	$0.449^{'}$	$0.399^{'}$	$0.357^{'}$
	(0.281)	(0.349)	(0.258)	(0.267)	(0.448)	(0.472)	(0.534)
D7_rec1	-0.687	-0.597	0.890^{*}	$0.582^{'}$	-0.895	0.106	-0.173
	(0.365)	(0.479)	(0.448)	(0.418)	(0.553)	(0.566)	(0.570)
$D7_rec2$	-0.729	$0.259^{'}$	0.811	$0.568^{'}$	-0.774	-0.877	-1.473
	(0.387)	(0.462)	(0.462)	(0.435)	(0.585)	(0.723)	(0.858)
D6_une1	-14.981	-14.425	-14.974	-0.115	-13.885	$1.511^{'}$	$1.245^{'}$
	(901.653)	(885.645)	(884.461)	(1.098)	(863.380)	(1.157)	(1.229)
D4_age	0.020*	-0.012	0.003	-0.015	0.0005	0.004	-0.013
	(0.008)	(0.011)	(0.008)	(0.008)	(0.013)	(0.015)	(0.016)
$D10_rec$	0.232**	$0.067^{'}$	0.014	-0.169	-0.244	-0.140	-0.151
	(0.074)	(0.097)	(0.076)	(0.090)	(0.162)	(0.163)	(0.178)
Constant	-3.629****	-2.139^*	-3.116^{***}	-1.027	-2.212^{*}	-2.220^{*}	-0.925
	(0.856)	(0.840)	(0.771)	(0.655)	(0.999)	(1.116)	(1.028)
N	443	443	443	443	443	443	443
Log Likelihood	-175.385	-127.070	-204.928	-196.035	-88.223	-77.648	-65.959
AIC	374.770	278.141	433.856	416.070	200.446	179.297	155.919

^{***}p < .001; **p < .01; *p < .05

B.19 Malta

Synthetic variables have been estimated for the full set of Maltese parties available in the original 2019 EES Maltese voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.19.1).

Table B.19.1: Relevant Maltese parties

Dep. Var.	Party	Party name (eng)
stack_1901	1901	Labour Party
$stack_1902$	1902	Nationalist Party
$stack_1903$	1903	Democratic Alternative
$stack_1904$	1904	Democratic Party
$stack_1905$	1905	Imperium Europa

Full OLS models converge and coefficients do not show any particular issues (see Table B.19.19). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.058 for party 1901 (Labour Party) and a maximum of 0.105 for party 1904 (Democratic Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 5 null models perform better than full ones (see Table B.19.2).

Table B.19.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1901	1901	328.713	339.868	-11.155
$stack_1902$	1902	241.813	267.804	-25.991
$stack_1903$	1903	2.060	20.944	-18.884
$stack_1904$	1904	-86.223	-56.098	-30.124
$stack_1905$	1905	-59.754	-47.221	-12.532

On the contrary, three out of five logistic regression models (see Table B.19.20) show inflated standard errors for some of the coefficients of interest. In particular:

- model 8a: D8_rec, EDU_rec, D1_rec, D7_rec (only for category 2), D6_une;
- model 9a: D8_rec, D7_rec (for category 1 and 2), D6_une;
- model 10a: D8_rec, EDU_rec (only for category 3), D7_rec (only for category 2), D6_une.

The constant terms and other regression coefficients of models 8a, 9a and 10a are affected by the above mentioned variables' inflated standard error showing unusual values.

Model 8a's inflated standard errors are due to separation issues. In short, no respondents from rural areas, with low education, with high subjective social status, members of trade unions, and unemployed voted for party 1903 (see Tables B.19.7, B.19.8, B.19.9, B.19.10, B.19.11).

Model 9a's inflated standard errors are due to separation issues. In short, no respondents from rural areas, with NA in their subjective social status and NA in their employment information voted for party 1904 (see Tables B.19.12, B.19.13, B.19.14).

Model 10a's inflated standard errors are due to separation issues. In short, no respondents from rural areas, with high education or NA in their education information, with high subjective social status, members of trade unions, and unemployed or NA in their employment information voted for party 1905 (see Tables B.19.15, B.19.16, B.19.17, B.19.18).

As a consequence, constrained versions of model 8, 9 and 10 (namely, model 8b, 9b and 10b) without said variables were estimated and contrasted with the originals full model (model 8a, 9a and 10a).

For model 8 Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) is rejected (see Table B.19.3). Consequently, synthetic variables for respondents' vote choice for party 1903 have been predicted relying on the unconstrained model (model 8a).

For model 9 Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) can not be rejected (see Table B.19.4). Consequently, synthetic variables for respondents' vote choice for party 1904 have been predicted relying on the constrained model (model 9b).

For model 10 Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) can not be rejected (see Table B.19.5). Consequently, synthetic variables for respondents' vote choice for party 1905 have been predicted relying on the constrained model (model 10b).

Table B.19.3: Likelihood-ratio Test between model 8a (unconstrained) and model 8b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	319	42.95925			
Unconstrained	312	28.50452	7	14.45473	0.0436599

Table B.19.4: Likelihood-ratio Test between model 9a (unconstrained) and model 9b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	316	54.49792			
Unconstrained	312	45.14544	4	9.352487	0.0528682

Table B.19.5: Likelihood-ratio Test between model 10a (unconstrained) and model 10b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	318	62.42784			
Unconstrained	312	53.36654	6	9.0613	0.1701599

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.157 for party 1904 (Democratic Party) and a maximum of 0.04 for party 1901 (Labour Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 2 cases out of 5 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 9b and 10b (see Table B.19.6).

Table B.19.6: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_1901	1901	429.65800	449.66400	-20.006000
$stack_1902$	1902	324.54300	337.57100	-13.028000
$stack_1903$	1903	52.50500	53.63500	-1.131000
$stack_1904$	1904	69.14500	61.75600	7.389000
stack_1904*	1904	70.49792	61.75601	8.741919
stack_1905 stack_1905*	1905 1905	77.36700 74.42784	69.53500 69.53533	$7.831000 \\ 4.892508$

^{*}AIC value refers to model 9b for 1904* (constrained) and to model 10b for 1905* (constrained).

Table B.19.7: Cross tabulation between vote choice for party 1903 and respondents' area of residency

stack_1903/D8_rec	0	1	Total
0	4	367	371
1	0	6	6
NA	8	118	126
Total	12	491	503

Table B.19.8: Cross tabulation between vote choice for party 1903 and respondents' education

stack_1903/EDU_rec	1	2	3	NA	Total
0	114	173	72	12	371
1	0	2	4	0	6
NA	33	61	31	1	126
Total	147	236	107	13	503

Table B.19.9: Cross tabulation between vote choice for party 1903 and respondents' subjective SES

stack_1903/D1_rec	0	1	NA	Total
0	284	79	8	371
1	6	0	0	6
NA	97	24	5	126
Total	387	103	13	503

Table B.19.10: Cross tabulation between vote choice for party 1903 and respondents' trade union membership

stack_1903/D7_rec	0	1	2	NA	Total
0	127	192	38	14	371
1	1	5	0	0	6
NA	40	60	13	13	126
Total	168	257	51	27	503

Table B.19.11: Cross tabulation between vote choice for party 1903 and respondents' employment status

stack_1903/D6_une	0	1	NA	Total
0	352	17	2	371
1	6	0	0	6
NA	117	9	0	126
Total	475	26	2	503

Table B.19.12: Cross tabulation between vote choice for party 1904 and respondents' area of residency

stack_1904/D8_rec	0	1	Total
0	4	366	370
1	0	7	7
NA	8	118	126
Total	12	491	503

Table B.19.13: Cross tabulation between vote choice for party 1904 and respondents' subjective SES

stack_1904/D7_rec	0	1	2	NA	Total
0	127	194	35	14	370
1	1	3	3	0	7
NA	40	60	13	13	126
Total	168	257	51	27	503

Table B.19.14: Cross tabulation between vote choice for party 1904 and respondents' employment status

stack_1904/D6_une	0	1	NA	Total
0	352	16	2	370
1	6	1	0	7
NA	117	9	0	126
Total	475	26	2	503

Table B.19.15: Cross tabulation between vote choice for party 1905 and respondents' area of residency

$stack_1905/D8_rec$	0	1	Total
0	4	364	368
1	0	9	9
NA	8	118	126
Total	12	491	503

Table B.19.16: Cross tabulation between vote choice for party 1905 and respondents' education

$stack_1905/EDU_rec$	1	2	3	NA	Total
0	111	169	76	12	368
1	3	6	0	0	9
NA	33	61	31	1	126
Total	147	236	107	13	503

Table B.19.17: Cross tabulation between vote choice for party 1905 and respondents' subjective SES

stack_1905/D7_rec	0	1	2	NA	Total
0	122	195	38	13	368
1	6	2	0	1	9
NA	40	60	13	13	126
Total	168	257	51	27	503

 $Table\ B.19.18:\ Cross\ tabulation\ between\ vote\ choice\ for\ party\ 1905\ and\ respondents'\ trade\ union\ membership$

stack_1905/D6_une	0	1	NA	Total
0	349	17	2	368
1	9	0	0	9
NA	117	9	0	126
Total	475	26	2	503

89

Table B.19.19: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	1901	1902	1903	1904	1905
	Model 1	Model 2	Model 3	Model 4	Model 5
D3_rec2	0.009	0.017	0.048	0.031	0.023
	(0.040)	(0.036)	(0.025)	(0.023)	(0.023)
$D8_rec1$	-0.054	0.122	0.069	0.106	0.081
	(0.120)	(0.112)	(0.081)	(0.072)	(0.074)
$D5_rec1$	0.051	-0.061	-0.033	-0.036	-0.059^*
	(0.046)	(0.041)	(0.029)	(0.026)	(0.027)
EDU_rec2	-0.099*	0.010	0.029	0.010	0.037
	(0.046)	(0.042)	(0.030)	(0.026)	(0.027)
EDU_rec3	-0.174**	0.153**	0.132***	0.071*	-0.030
	(0.058)	(0.052)	(0.038)	(0.033)	(0.035)
D1_rec1	0.086	-0.049	0.014	0.015	0.0004
	(0.048)	(0.042)	(0.030)	(0.027)	(0.028)
$D7_rec1$	-0.145***	0.117^{**}	0.021	0.038	0.010
	(0.042)	(0.038)	(0.027)	(0.024)	(0.025)
$D7_rec2$	-0.184*	0.229***	0.046	0.078	0.001
	(0.075)	(0.066)	(0.047)	(0.042)	(0.044)
D6_une1	-0.052	0.162*	-0.051	-0.038	0.012
	(0.086)	(0.080)	(0.055)	(0.049)	(0.052)
D4_age	-0.001	-0.001	-0.002**	-0.003***	-0.003***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.005	0.018*	-0.0003	0.005	0.005
	(0.008)	(0.007)	(0.005)	(0.005)	(0.005)
Constant	0.838***	0.115	0.144	0.103	0.136
	(0.141)	(0.131)	(0.094)	(0.083)	(0.086)
N	366	363	368	368	367
R-squared	0.087	0.124	0.105	0.132	0.090
Adj. R-squared	0.058	0.096	0.077	0.105	0.062

^{***}p < .001; **p < .01; *p < .05

Table B.19.20: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	1901	1902	1903	1904	1904	1905	1905	
	Model 6	Model 7	Model 8	Model 9a	Model 9b	Model 10a	Model 10b	
$D3_rec2$	-0.265	0.128	-2.373	-1.437	-1.496	-0.175	-0.225	
	(0.242)	(0.295)	(1.456)	(1.153)	(1.112)	(0.825)	(0.785)	
$D8_rec1$	-1.157	0.029	16.044	17.178		16.553		
	(1.219)	(1.206)	(20639.260)	(13271.490)		(13818.120)		
$D5_rec1$	0.561	-0.151	2.365	-1.079	-1.159	-1.927^*	-1.718	
	(0.293)	(0.345)	(1.765)	(0.980)	(0.965)	(0.956)	(0.918)	
EDU_rec2	-0.677^*	0.470	18.869	0.952	1.005	0.757		
	(0.283)	(0.375)	(3592.839)	(1.381)	(1.156)	(0.885)		
EDU_rec3	-0.958**	0.950*	20.630	-0.537	0.248	-17.021		
	(0.358)	(0.438)	(3592.839)	(1.531)	(1.442)	(3155.681)		
D1_rec1	0.581*	-0.256	-19.465	0.620	0.658	-0.199	-0.483	
	(0.291)	(0.367)	(4241.033)	(0.965)	(0.921)	(1.138)	(1.111)	
D7_rec1	-0.845***	1.164**	1.069	17.402	, ,	-1.467	, ,	
	(0.256)	(0.365)	(1.345)	(2518.866)		(0.871)		
$D7_rec2$	-1.335^{**}	1.605**	-18.873	19.172		-18.094		
	(0.452)	(0.504)	(5741.919)	(2518.866)		(4498.985)		
D6_une1	-0.594	1.004	-15.495	-15.842		-17.585		
	(0.577)	(0.600)	(9574.639)	(6600.938)		(6559.436)		
D4_age	0.007	0.024**	-0.165	0.006	0.013	0.004	0.004	
	(0.007)	(0.009)	(0.087)	(0.028)	(0.025)	(0.023)	(0.021)	
$D10_rec$	-0.006	0.061	-0.380	-0.022	-0.034	-0.031	-0.034	
	(0.050)	(0.063)	(0.259)	(0.175)	(0.169)	(0.159)	(0.146)	
Constant	1.446	-4.111^{**}	-33.136	-38.323	-4.105**	-18.828	-2.818**	
	(1.321)	(1.402)	(20949.640)	(13508.410)	(1.528)	(13818.120)	(1.017)	
N	324	324	324	324	324	324	324	
Log Likelihood	-202.829	-150.271	-14.252	-22.573	-27.249	-26.683	-31.214	
AIC	429.658	324.543	52.505	69.145	70.498	77.367	74.428	

^{***}p < .001; **p < .01; *p < .05

B.20 Netherlands

Synthetic variables have been estimated for nine of sixteen Dutch parties available in the original 2019 EES Dutch voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.20.1).

Table B.20.1: Dutch relevant parties

Dep. Var.	Party	Party name (eng)
stack_2001	2001	People's Party for Freedom and Democracy
$\rm stack_2002$	2002	Party of Freedom
$stack_2003$	2003	Christian Democratic Appeal
$stack_2004$	2004	Democrats '66
$stack_2005$	2005	Green Left
$stack_2006$	2006	Socialist Party
$stack_2007$	2007	Labour Party
$stack_2008$	2008	Christian Union
$stack_2012$	2012	Forum for Democracy

Full OLS models converge and coefficients do not show any particular issues (see Table B.20.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.035 for party 2007 (Labour Party) and a maximum of 0.287 for party 2008 (Christian Union). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 9 null models perform better than full ones (see Table B.20.2).

Table B.20.2: Akaike Information Criterion values for OLS full and null models

Dep. Var. Party Full Mod. Null Mod. Diff. (Full-Null) stack_2001 2001 454.279 531.738 -77.459 stack_2002 2002 548.978 581.994 -33.017 stack_2003 2003 217.757 350.169 -132.411 stack_2004 2004 330.443 390.042 -59.599 stack_2005 2005 473.891 525.482 -51.591 stack_2006 2006 335.561 364.542 -28.981					
stack_2002 2002 548.978 581.994 -33.017 stack_2003 2003 217.757 350.169 -132.411 stack_2004 2004 330.443 390.042 -59.599 stack_2005 2005 473.891 525.482 -51.591	Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2003 2003 217.757 350.169 -132.411 stack_2004 2004 330.443 390.042 -59.599 stack_2005 2005 473.891 525.482 -51.591	stack_2001	2001	454.279	531.738	-77.459
stack_2004 2004 330.443 390.042 -59.599 stack_2005 2005 473.891 525.482 -51.591	$\rm stack_2002$	2002	548.978	581.994	-33.017
stack_2005 2005 473.891 525.482 -51.591	$stack_2003$	2003	217.757	350.169	-132.411
	$stack_2004$	2004	330.443	390.042	-59.599
stack 2006 2006 335.561 364.542 -28.981	$stack_2005$	2005	473.891	525.482	-51.591
	stack_2006	2006	335.561	364.542	-28.981
stack_2007 2007 429.023 448.610 -19.586	$stack_2007$	2007	429.023	448.610	-19.586
stack_2008 2008 40.047 315.802 -275.755	$stack_2008$	2008	40.047	315.802	-275.755
stack_2012 2012 625.283 658.327 -33.044	$stack_2012$	2012	625.283	658.327	-33.044

Full logit models converge and coefficients do not show any particular issues (see Table B.20.5).

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.045 for party 2006 (Socialist Party) and a maximum of 0.431 for party 2008 (Christian Union). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 4 cases out of 9 null models perform better than full ones (see Table B.20.3).

Table B.20.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2001	2001	481.305	489.018	-7.712
$\rm stack_2002$	2002	357.133	353.172	3.962
$stack_2003$	2003	317.331	317.798	-0.467
$stack_2004$	2004	250.381	247.659	2.723
$stack_2005$	2005	364.861	364.576	0.285
$\rm stack_2006$	2006	342.485	329.791	12.694
$stack_2007$	2007	636.889	643.259	-6.369
$stack_2008$	2008	165.732	293.155	-127.423
stack_2012	2012	620.365	639.394	-19.029

Table B.20.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2001	2002	2003	2004	2005	2006	2007	2008	2012
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9
$D3_rec2$	-0.073***	-0.096***	-0.034	-0.006	0.024	0.007	-0.019	-0.001	-0.103***
	(0.022)	(0.023)	(0.019)	(0.020)	(0.022)	(0.020)	(0.022)	(0.017)	(0.024)
$D8_rec1$	-0.023	-0.040	-0.057**	-0.014	0.039	0.050*	0.027	-0.025	-0.045
	(0.024)	(0.025)	(0.021)	(0.022)	(0.024)	(0.022)	(0.024)	(0.019)	(0.027)
$D5$ _rec1	0.005	0.029	0.023	-0.029	-0.052^*	-0.025	-0.023	0.007	0.036
	(0.023)	(0.024)	(0.020)	(0.021)	(0.023)	(0.022)	(0.023)	(0.018)	(0.026)
EDU_rec2	-0.056	0.024	-0.055	-0.047	-0.105*	-0.001	-0.098*	-0.060	0.022
	(0.041)	(0.043)	(0.036)	(0.038)	(0.042)	(0.038)	(0.040)	(0.032)	(0.046)
EDU_rec3	0.003	0.0004	-0.009	0.023	-0.030	0.043	-0.041	-0.017	0.059
	(0.040)	(0.042)	(0.035)	(0.037)	(0.040)	(0.037)	(0.039)	(0.031)	(0.044)
D1_rec1	0.011	0.068**	0.031	0.057^{*}	0.056*	0.076***	0.103***	0.028	0.034
	(0.024)	(0.026)	(0.021)	(0.023)	(0.025)	(0.023)	(0.024)	(0.019)	(0.027)
D7_rec1	0.117***	-0.049	0.055^{*}	0.045	0.003	-0.052*	0.020	-0.001	-0.050
	(0.025)	(0.027)	(0.022)	(0.023)	(0.026)	(0.024)	(0.025)	(0.020)	(0.028)
$D7_rec2$	0.188***	-0.102**	0.094***	0.078**	-0.006	-0.127***	0.014	0.011	-0.100**
	(0.031)	(0.033)	(0.027)	(0.029)	(0.032)	(0.029)	(0.031)	(0.025)	(0.035)
D6_une1	-0.023	0.042	-0.039	-0.038	0.012	0.024	-0.019	-0.057	-0.084
	(0.049)	(0.052)	(0.043)	(0.046)	(0.050)	(0.046)	(0.049)	(0.039)	(0.055)
D4_age	-0.003***	-0.002***	-0.003***	-0.004***	-0.003***	-0.001^*	-0.001	-0.002**	-0.003***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.003	-0.009	0.035^{***}	-0.005	0.006	0.004	-0.003	0.069***	-0.015**
	(0.005)	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)	(0.006)
Constant	0.463***	0.525***	0.476***	0.524***	0.554***	0.393***	0.465***	0.292***	0.555***
	(0.054)	(0.057)	(0.047)	(0.051)	(0.055)	(0.051)	(0.054)	(0.043)	(0.061)
N	852	852	850	851	850	850	851	849	842
R-squared	0.110	0.063	0.166	0.091	0.083	0.058	0.048	0.296	0.063
Adj. R-squared	0.099	0.050	0.155	0.080	0.071	0.046	0.035	0.287	0.051

^{***}p < .001; **p < .01; *p < .05

94

Table B.20.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2001	2002	2003	2004	2005	2006	2007	2008	2012
	Model 10	Model 11	Model 12	Model 13	Model 14	Model 15	Model 16	Model 17	Model 18
D3_rec2	-0.134	-0.995**	-0.545	-0.189	0.400	0.008	0.017	1.727***	-0.830***
	(0.261)	(0.343)	(0.350)	(0.400)	(0.316)	(0.328)	(0.216)	(0.495)	(0.225)
$D8_rec1$	0.234	-0.239	-0.564	0.311	0.816	0.179	0.092	-0.234	-0.329
	(0.291)	(0.335)	(0.346)	(0.473)	(0.421)	(0.368)	(0.234)	(0.491)	(0.227)
$D5_rec1$	-0.325	-0.024	0.049	-0.318	-0.316	-0.147	0.146	0.313	0.396
	(0.269)	(0.334)	(0.368)	(0.417)	(0.322)	(0.340)	(0.231)	(0.541)	(0.240)
EDU_rec2	0.469	-0.524	-1.713**	-0.811	-0.970	0.107	-0.166	0.090	0.135
	(0.590)	(0.536)	(0.553)	(0.875)	(0.542)	(0.657)	(0.432)	(0.788)	(0.452)
EDU_rec3	0.459	-0.358	-0.965^*	0.671	-0.129	0.294	0.103	-0.604	0.100
	(0.568)	(0.509)	(0.474)	(0.698)	(0.461)	(0.642)	(0.416)	(0.791)	(0.441)
D1_rec1	-0.180	0.388	-0.024	$0.420^{'}$	-0.038	$0.363^{'}$	0.558^{st}	0.288	-0.358
	(0.304)	(0.331)	(0.374)	(0.416)	(0.353)	(0.356)	(0.230)	(0.486)	(0.258)
D7_rec1	1.195^{**}	-0.649	$0.515^{'}$	0.201	0.116	-0.083	$0.320^{'}$	-0.706	$0.260^{'}$
	(0.408)	(0.355)	(0.426)	(0.518)	(0.371)	(0.353)	(0.263)	(0.538)	(0.255)
$D7_rec2$	1.860***	-0.742	$0.392^{'}$	$0.627^{'}$	$0.243^{'}$	-1.049	$0.507^{'}$	-0.196	-0.171
	(0.435)	(0.451)	(0.501)	(0.547)	(0.435)	(0.590)	(0.311)	(0.606)	(0.332)
D6_une1	$0.055^{'}$	0.124	$0.850^{'}$	-0.174	$0.245^{'}$	0.251	-0.189	-0.584	-0.655
	(0.635)	(0.642)	(0.654)	(1.059)	(0.643)	(0.636)	(0.547)	(1.733)	(0.620)
D4_age	0.008	-0.007	0.010	-0.027^{*}	-0.017	$0.017^{'}$	0.025***	0.014	$0.003^{'}$
_ 0	(0.007)	(0.010)	(0.010)	(0.013)	(0.009)	(0.010)	(0.007)	(0.013)	(0.007)
D10 rec	-0.029	-0.045	0.158^{*}	-0.040	-0.055	-0.052	-0.113	0.981***	-0.230^{**}
_	(0.065)	(0.078)	(0.071)	(0.097)	(0.081)	(0.087)	(0.058)	(0.140)	(0.071)
Constant	-4.160^{***}	-1.264	-2.555^{***}	-2.741^{**}	-2.422^{***}	-3.947^{***}	-3.678^{***}	-8.086***	-1.619^{**}
	(0.760)	(0.689)	(0.737)	(0.948)	(0.731)	(0.913)	(0.611)	(1.320)	(0.575)
N	842	842	842	842	842	842	842	842	842
Log Likelihood	-228.653	-166.567	-146.665	-113.191	-170.430	-159.243	-306.445	-70.866	-298.182
AIC	481.305	357.133	317.331	250.381	364.861	342.485	636.889	165.732	620.365

^{***}p < .001; **p < .01; *p < .05

B.21 Poland

Synthetic variables have been estimated for five out of six Polish parties available in the original 2019 EES Poland voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.21.1).

Table B.21.1: Relevant Polish parties

Dep. Var.	Party	Party name (eng)
$stack_2104$	2104	Law and Justice
$\rm stack_2106$	2106	Kukiz'15
stack_2102	2102	Spring
$\rm stack_2105$	2105	Poland Together
$stack_2103$	2103	European Coalition

Full OLS models converge and coefficients do not show any particular issues (see Table B.21.8). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.028 for party 2103 (European Coalition) and a maximum of 0.125 for party 2104 (Law and Justice). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.21.2).

Table B.21.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2104	2104	833.338	943.422	-110.085
$stack_2106$	2106	437.048	502.658	-65.610
$stack_2102$	2102	469.635	555.309	-85.674
$\rm stack_2105$	2105	193.751	222.690	-28.939
$stack_2103$	2103	112.730	127.620	-14.890

On the contrary, one out of the five logistic regression models (see Table B.21.9) show inflated standard errors for some of the coefficients of interest. In particular:

• model 9a: EDU_rec (both categories), D7_rec (second category), D6_une

Model 9a appears to be problematic as its constant term seems to be affected by the inflated standard errors issue.

The inflated standard errors in model 9a are due to separation issues. In short, no respondent who is unemployed or of high subjective social status voted for party 2105. Only one respondent with low education voted for party 2105. (See tables B.21.5, B.21.6, B.21.7)

As a consequence, a constrained version of model 9 (namely, model 9b) without said variables was estimated and contrasted with the original full model (model 9a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.21.3). Consequently, synthetic variables for respondents' vote choice for party 2105 have been predicted relying on the constrained model (model 9b).

Table B.21.3: Likelihood-ratio Test between model 9a (unconstrained) and model 9b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	901	165.5611			
Unconstrained	896	155.4471	5	10.11397	0.0720696

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.062 for party 2105 (Poland Together) and a maximum of 0.071 for party 2104 (Law and Justice). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in one case out of five null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 9b (see Table B.21.4).

Table B.21.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2102	2102	544.1240	548.0700	-3.946000
$stack_2103$	2103	1020.6860	1082.1110	-61.424000
$stack_2104$	2104	946.7780	1020.9980	-74.219000
$stack_2105$	2105	179.4470	170.9330	8.514000
$stack_2105*$	2105	179.5611	170.9328	8.628321
$\rm stack_2106$	2106	477.0260	480.2080	-3.182000

^{*} AIC value refers to model 9b (constrained).

Table B.21.5: Cross tabulation between vote choice for party 2105 and respondents' education

stack_2105/EDU_rec	1	2	3	NA	Total
0	57	246	636	34	973
1	1	4	13	1	19
NA	1	2	3	2	8
Total	59	252	652	37	1000

Table B.21.6: Cross tabulation between vote choice for party 2105 and respondents' subjective social class

stack_2105/D7_rec	0	1	2	NA	Total
0	314	493	147	19	973
1	11	8	0	0	19
NA	4	2	1	1	8
Total	329	503	148	20	1000

Table B.21.7: Cross tabulation between vote choice for party 2105 and respondents' employment status

stack_2105/D6_une	0	1	Total
0	931	42	973
1	19	0	19
NA	8	0	8
Total	958	42	1000

98

Table B.21.8: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2104	2106	2102	2105	2103
	Model 1	Model 2	Model 3	Model 4	Model 5
$D3_rec2$	-0.050	-0.003	0.095***	0.054**	0.024
	(0.026)	(0.021)	(0.021)	(0.018)	(0.017)
$D8_rec1$	0.038	-0.015	-0.008	0.021	0.002
	(0.035)	(0.028)	(0.029)	(0.025)	(0.023)
D5_rec1	0.039	0.041	0.064*	0.074***	0.029
	(0.030)	(0.024)	(0.025)	(0.021)	(0.020)
EDU_rec2	-0.034	0.027	0.047	0.009	0.018
	(0.065)	(0.052)	(0.054)	(0.047)	(0.043)
EDU_rec3	-0.001	0.047	0.034	-0.004	0.007
	(0.061)	(0.049)	(0.050)	(0.043)	(0.040)
D1_rec1	0.010	-0.013	0.030	0.012	0.047^{*}
	(0.034)	(0.028)	(0.028)	(0.024)	(0.023)
$D7_rec1$	-0.037	-0.006	-0.027	-0.045^*	0.00005
	(0.029)	(0.023)	(0.024)	(0.020)	(0.019)
$D7_rec2$	0.005	-0.032	-0.045	-0.046	0.015
	(0.041)	(0.033)	(0.034)	(0.029)	(0.027)
D6_une1	0.008	0.043	-0.005	0.007	0.022
	(0.075)	(0.061)	(0.063)	(0.055)	(0.051)
D4_age	-0.001	-0.005***	-0.001	-0.002**	0.001*
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.060***	0.017^{***}	-0.041^{***}	-0.017^{***}	-0.018***
	(0.005)	(0.004)	(0.005)	(0.004)	(0.004)
Constant	0.203**	0.473^{***}	0.438***	0.352^{***}	0.308***
	(0.071)	(0.058)	(0.059)	(0.051)	(0.048)
N	905	900	889	884	907
R-squared	0.136	0.093	0.114	0.056	0.040
Adj. R-squared	0.125	0.082	0.103	0.044	0.028

^{***}p < .001; **p < .01; *p < .05

99

Table B.21.9: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2104	2106	2102	2105	2105	2103
	Model 6	Model 7	Model 8	Model 9a	Model 9b	Model 10
$D3_rec2$	-0.168	-0.066	0.396	0.250	0.128	-0.248
	(0.166)	(0.261)	(0.245)	(0.503)	(0.496)	(0.159)
$D8_rec1$	0.056	0.284	-0.052	1.126	1.111	0.305
	(0.216)	(0.384)	(0.338)	(1.047)	(1.040)	(0.230)
$D5_rec1$	0.561**	-0.304	0.177	0.105	0.155	-0.189
	(0.209)	(0.296)	(0.279)	(0.595)	(0.586)	(0.182)
EDU_rec2	0.087	0.583	0.246	16.045	, ,	0.216
	(0.451)	(0.708)	(0.685)	(2361.013)		(0.453)
EDU_rec3	0.226	1.037	0.185	16.329		0.301
	(0.422)	(0.664)	(0.652)	(2361.013)		(0.428)
D1_rec1	0.070	0.339	-0.184	0.641	0.706	-0.090
	(0.209)	(0.309)	(0.361)	(0.570)	(0.559)	(0.219)
$D7_rec1$	-0.087	-0.083	0.038	-0.632		0.434^{*}
	(0.187)	(0.281)	(0.261)	(0.501)		(0.181)
$D7_rec2$	0.218	-0.641	-0.456	-17.149		0.630*
	(0.253)	(0.482)	(0.429)	(1491.045)		(0.249)
D6_une1	0.015	0.567	0.601	-16.565		-0.988
	(0.499)	(0.581)	(0.580)	(3253.938)		(0.635)
D4_age	0.003	-0.034***	0.010	-0.004	-0.0004	0.032***
	(0.005)	(0.009)	(0.008)	(0.017)	(0.016)	(0.005)
$D10_rec$	0.317^{***}	0.022	-0.213***	-0.007	-0.026	-0.134***
	(0.039)	(0.057)	(0.053)	(0.108)	(0.106)	(0.033)
Constant	-3.074***	-1.988**	-2.611***	-20.769	-5.193***	-2.566***
	(0.508)	(0.766)	(0.757)	(2361.013)	(1.407)	(0.504)
N	908	908	908	908	908	908
Log Likelihood	-461.389	-226.513	-260.062	-77.724	-82.781	-498.343
AIC	946.778	477.026	544.124	179.447	179.561	1020.686

^{***}p < .001; **p < .01; *p < .05

B.22 Portugal

Synthetic variables have been estimated for six out of thirteen Portugues parties available in the original 2019 EES Portugues voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.10.1).

Table B.22.1: Relevant Portugues parties

Dep. Var.	Party	Party name (eng)
stack_2202	2202	Social Democratic Party
$stack_2204$	2204	Social Democratic Center-Popular Party
$stack_2201$	2201	Socialist Party
$\rm stack_2203$	2203	Unified Democratic Coalition
$stack_2206$	2206	Left Bloc
$\rm stack_2208$	2208	Party for Animals and Nature

Full OLS models converge and coefficients do not show any particular issues (see Table B.22.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.009 for party 2203 (Unified Democratic Coalition) and a maximum of 0.087 for party 2202 (Social Democratic Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 4 cases out of 6 full models perform better (see Table B.22.2).

Table B.22.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2202	2202	482.135	553.585	-71.451
$stack_2204$	2204	343.262	402.717	-59.455
$stack_2201$	2201	608.395	624.614	-16.219
$\rm stack_2203$	2203	369.656	366.563	3.093
$stack_2206$	2206	546.537	546.208	0.328
$\rm stack_2208$	2208	483.690	550.687	-66.998

Also the full Logit models converge and coefficients do not show any particular issues (see Table B.22.5) In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.052 for party 2203 (Unified Democratic Coalition) and a maximum of 0.032 for party 2208 (Party for Animals and Nature). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 4 cases out of 6 full models perform better (see Table B.22.3).

Table B.22.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2202	2202	556.232	573.650	-17.419
$stack_2204$	2204	283.912	291.392	-7.480
$stack_2201$	2201	847.996	873.875	-25.879
$\rm stack_2203$	2203	290.764	278.322	12.442
$stack_2206$	2206	598.693	582.534	16.159
stack_2208	2208	461.538	478.821	-17.283

Table B.22.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	$\boldsymbol{2202}$	$\boldsymbol{2204}$	$\boldsymbol{2201}$	2203	2206	2208
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
$D3$ _rec2	-0.035	-0.011	-0.017	-0.017	-0.002	0.040
	(0.021)	(0.020)	(0.023)	(0.020)	(0.022)	(0.021)
$D8_rec1$	-0.004	0.004	0.036	0.0002	-0.015	0.008
	(0.030)	(0.027)	(0.032)	(0.028)	(0.031)	(0.030)
$D5$ _rec1	-0.022	-0.028	-0.020	0.011	0.012	0.004
	(0.022)	(0.021)	(0.024)	(0.021)	(0.023)	(0.022)
EDU_rec2	-0.019	-0.040	-0.053	-0.040	0.011	0.017
	(0.039)	(0.036)	(0.041)	(0.036)	(0.040)	(0.039)
EDU_rec3	0.054	$0.017^{'}$	-0.043	-0.022	0.008	0.036
	(0.037)	(0.035)	(0.040)	(0.035)	(0.038)	(0.037)
D1 rec1	0.006	-0.004	$0.051^{'}$	0.089**	0.084**	0.006
	(0.029)	(0.026)	(0.031)	(0.027)	(0.030)	(0.029)
D7_rec1	0.064**	$0.033^{'}$	0.069**	-0.008	$0.034^{'}$	-0.001
	(0.022)	(0.021)	(0.024)	(0.021)	(0.023)	(0.022)
D7 rec2	0.146***	0.122**	-0.065	-0.012	-0.021	0.021
	(0.040)	(0.038)	(0.043)	(0.038)	(0.042)	(0.040)
D6 une1	$0.015^{'}$	$0.052^{'}$	$0.049^{'}$	-0.018	$0.077^{'}$	-0.034
	(0.039)	(0.036)	(0.041)	(0.037)	(0.040)	(0.039)
D4 age	-0.002^{**}	-0.002^{**}	-0.001	-0.001	-0.001	-0.006****
_ 0	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
D10 rec	0.035***	0.032***	0.022***	-0.002	-0.011^{*}	-0.007
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)
Constant	0.357***	0.299***	0.466***	0.359***	0.429***	0.615***
	(0.052)	(0.048)	(0.056)	(0.049)	(0.054)	(0.052)
N	908	907	908	899	911	906
R-squared	0.098	0.086	0.041	0.021	0.024	0.094
Adj. R-squared	0.087	0.075	0.029	0.009	0.012	0.082

 $^{^{***}}p < .001; ^{**}p < .01; ^{*}p < .05$

Table B.22.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2202	$\boldsymbol{2204}$	$\boldsymbol{2201}$	$\boldsymbol{2203}$	2206	2208
	Model 7	Model 8	Model 9	Model 10	Model 11	Model 12
D3_rec2	-0.469	-0.095	0.009	0.228	0.068	0.336
	(0.242)	(0.367)	(0.180)	(0.374)	(0.229)	(0.267)
D8_rec1	-0.121	-0.050	0.119	-0.179	0.070	-0.095
	(0.329)	(0.510)	(0.259)	(0.504)	(0.330)	(0.368)
$D5$ _rec1	0.172	-0.205	0.247	0.116	0.005	0.274
	(0.259)	(0.375)	(0.193)	(0.390)	(0.240)	(0.284)
EDU_rec2	-0.373	-0.264	0.265	0.590	0.119	0.180
	(0.453)	(0.708)	(0.331)	(0.783)	(0.422)	(0.512)
EDU_rec3	0.300	0.133	0.009	0.478	0.030	0.282
	(0.417)	(0.650)	(0.328)	(0.771)	(0.412)	(0.493)
D1_rec1	0.369	-2.025	0.277	0.034	0.340	-0.096
	(0.295)	(1.036)	(0.234)	(0.504)	(0.292)	(0.358)
D7_rec1	0.294	0.308	0.218	-0.414	0.170	0.288
	(0.254)	(0.419)	(0.187)	(0.412)	(0.239)	(0.284)
$D7_rec2$	0.352	1.544**	-0.429	0.464	-0.126	0.950^{*}
	(0.403)	(0.505)	(0.390)	(0.587)	(0.464)	(0.415)
D6_une1	-0.702	0.557	-0.575	0.061	0.459	-1.157
	(0.609)	(0.570)	(0.394)	(0.627)	(0.366)	(0.737)
D4_age	0.015*	0.007	0.024***	0.018	0.011	-0.036***
	(0.008)	(0.011)	(0.006)	(0.012)	(0.007)	(0.010)
D10_rec	0.186***	0.251^{**}	0.132***	-0.203^*	-0.028	-0.216^{**}
	(0.051)	(0.080)	(0.039)	(0.101)	(0.053)	(0.073)
Constant	-3.498****	-4.270^{***}	-3.341^{***}	-4.224****	-2.970****	-1.286^{*}
	(0.615)	(0.920)	(0.487)	(1.049)	(0.591)	(0.639)
N	899	899	899	899	899	899
Log Likelihood	-266.116	-129.956	-411.998	-133.382	-287.346	-218.769
AIC	556.232	283.912	847.996	290.764	598.693	461.538

^{***}p < .001; **p < .01; *p < .05

B.23 Romania

Synthetic variables have been estimated for seven out of eight Romanian parties available in the original 2019 EES Romanian voter study selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.23.1).

Dep. Var. Party Party name (eng)

stack_2301 2301 Social Democratic Party
stack_2303 2303 Alliance of Liberals and Democrats
stack 2305 2305 PRO Romania

National Liberal Party

People's Movement Party

Hungarian Democratic Alliance of Romania

2020 USR(1642421) -PLUS Alliance(1642422)

Table B.23.1: Relevant Romanian parties

Full OLS models converge and coefficients do not show any particular issues (see Table B.23.7). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.013 for party 2308 (People's Movement Party) and a maximum of 0.087 for party 2301 (Social Democratic Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 4 cases out of 6 full models perform better (see Table B.23.2).

Table B.23.2:	Akaike	Information	Criterion v	alues fo	or OLS	full and	null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2301	2301	553.736	625.062	-71.326
$stack_2303$	2303	526.983	546.879	-19.896
$stack_2305$	2305	344.164	365.221	-21.057
$stack_2306$	2306	708.604	720.286	-11.682
$stack_2307$	2307	-105.959	-84.132	-21.826
$stack_2308$	2308	383.403	383.805	-0.402
$stack_2302$	2302	693.376	721.675	-28.299

On the contrary, one out of seven logistic regression models (see Table B.23.8) show inflated standard errors for some of the coefficients of interest:

• model 12: EDU rec, D6 une;

stack 2306

stack 2307

stack 2308

stack 2302

2306

2307

2308

2302

Model 12 presents a problematic profile since the inflated standard errors affect the constant term. Its inflated standard errors are due to separation issues. In short, no respondent with low education and in unemployment voted for party 2307 (see Tables B.23.5, B.23.6).

As a consequence, a constrained version of model 12 (namely, model 12b) without said variables was estimated and contrasted with the original full model (model 12a). Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.23.3).

Consequently, synthetic variables for respondents' vote choice for party 2307 have been predicted relying on the constrained model (model 12b).

Table B.23.3: Likelihood-ratio Test between model 12a (unconstrained) and model 12b (constrained)

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
886	210.8894			
883	205.7107	3	5.178703	0.1591697

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.039 for party 2307 (Hungarian Democratic Alliance of Romania) and a maximum of 0.048 for party 2301 (Social Democratic Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 4 cases out of 7 null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 12b (see Table B.23.4).

Table B.23.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2301	2301	580.5250	611.9490	-31.423000
$\rm stack_2302$	2302	1032.0560	1071.5910	-39.535000
$stack_2303$	2303	371.1440	376.2380	-5.094000
$stack_2305$	2305	368.8180	358.8130	10.005000
$stack_2306$	2306	911.0000	908.7000	2.301000
$stack_2307$	2307	229.7110	223.0520	6.659000
stack_2307*	2307	230.0202	223.0515	6.968671
$\rm stack_2308$	2308	381.8020	370.4750	11.327000

^{*} AIC value refers to model 12b (constrained).

Table B.23.5: Cross tabulation between vote choice for party 505 and respondents' education

stack_2307/EDU_rec	1	2	3	NA	Total
0	51	284	566	43	944
1	0	6	20	2	28
NA	2	5	19	2	28
Total	53	295	605	47	1000

Table B.23.6: Cross tabulation between vote choice for party 505 and respondents' employment

stack_2307/D6_une	0	1	Total
0	923	21	944
1	28	0	28
NA	27	1	28
Total	978	22	1000

Table B.23.7: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2301	2303	2305	2306	2307	2308	2302
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	-0.010	0.016	0.022	0.001	-0.018	-0.012	-0.004
	(0.022)	(0.022)	(0.020)	(0.024)	(0.015)	(0.020)	(0.025)
$D8_rec1$	0.077*	0.062	0.029	-0.056	-0.039	-0.001	0.019
	(0.033)	(0.033)	(0.030)	(0.036)	(0.023)	(0.030)	(0.037)
$D5_rec1$	0.033	0.035	0.042	-0.007	0.011	-0.016	0.011
	(0.026)	(0.026)	(0.024)	(0.028)	(0.018)	(0.024)	(0.029)
EDU_rec2	-0.018	-0.014	-0.005	-0.083	-0.021	0.006	-0.014
	(0.052)	(0.052)	(0.048)	(0.057)	(0.037)	(0.049)	(0.058)
EDU_rec3	-0.054	-0.052	-0.035	-0.075	-0.031	-0.002	0.075
	(0.051)	(0.051)	(0.047)	(0.056)	(0.036)	(0.048)	(0.057)
D1_rec1	0.029	0.031	0.053*	0.036	0.061**	0.068**	-0.035
	(0.028)	(0.027)	(0.025)	(0.030)	(0.019)	(0.025)	(0.031)
$D7_rec1$	-0.011	-0.015	0.022	0.039	-0.014	-0.012	0.064^{*}
	(0.027)	(0.027)	(0.024)	(0.030)	(0.019)	(0.025)	(0.030)
$D7_rec2$	0.074^{*}	0.066*	0.030	-0.001	0.014	-0.011	0.029
	(0.033)	(0.033)	(0.030)	(0.036)	(0.023)	(0.031)	(0.037)
D6_une1	$0.071^{'}$	-0.093	-0.044	-0.050	0.006	-0.113	-0.257^{**}
	(0.083)	(0.082)	(0.075)	(0.091)	(0.058)	(0.076)	(0.092)
D4_age	0.004***	0.002*	-0.001	-0.003***	-0.001**	-0.001	-0.004***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.0005)	(0.001)	(0.001)
$D10_rec$	0.027***	0.018***	0.024***	0.014*	0.013***	0.016**	-0.005
	(0.005)	(0.005)	(0.005)	(0.006)	(0.004)	(0.005)	(0.006)
Constant	-0.120	0.080	0.165^{**}	0.641***	0.199***	0.269***	0.518***
	(0.064)	(0.065)	(0.059)	(0.070)	(0.045)	(0.060)	(0.072)
N	908	904	893	911	899	896	874
R-squared	0.098	0.045	0.047	0.036	0.048	0.025	0.056
Adj. R-squared	0.087	0.034	0.035	0.025	0.036	0.013	0.044

 $^{^{***}}p < .001; \, ^{**}p < .01; \, ^{*}p < .05$

Table B.23.8: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2301	2303	2305	2306	2307	2307	2308	2302
	Model 8	Model 9	Model 10	Model 11	Model 12a	Model 12b	Model 13	Model 14
$D3_rec2$	-0.228	0.373	0.122	-0.218	-0.843	-0.809	-0.312	0.248
	(0.233)	(0.313)	(0.316)	(0.172)	(0.455)	(0.453)	(0.315)	(0.157)
$D8_rec1$	-0.002	1.916	0.141	-0.130	-1.115^{*}	-0.918	0.006	0.046
	(0.358)	(1.025)	(0.500)	(0.243)	(0.509)	(0.495)	(0.464)	(0.238)
$D5_rec1$	0.664*	0.322	0.989^{*}	-0.211	-0.431	-0.314	-0.200	0.137
	(0.315)	(0.386)	(0.493)	(0.198)	(0.479)	(0.474)	(0.350)	(0.187)
EDU_rec2	0.109	0.282	0.692	0.208	14.980		0.153	0.310
	(0.669)	(1.079)	(1.068)	(0.385)	(911.317)		(0.790)	(0.407)
EDU_rec3	0.119	0.288	0.446	-0.059	15.482		-0.082	0.950^{*}
	(0.647)	(1.055)	(1.054)	(0.382)	(911.317)		(0.779)	(0.401)
D1_rec1	0.040	0.540	0.227	0.442^{*}	0.176	0.186	0.218	-0.660**
	(0.281)	(0.347)	(0.365)	(0.201)	(0.520)	(0.520)	(0.374)	(0.217)
$D7_rec1$	-0.188	-0.526	-0.070	-0.144	-0.543	-0.530	-0.360	0.618**
	(0.292)	(0.334)	(0.394)	(0.209)	(0.508)	(0.506)	(0.354)	(0.203)
$D7_rec2$	0.611	-1.116*	0.193	-0.011	0.275	0.264	-0.129	0.131
	(0.319)	(0.500)	(0.456)	(0.255)	(0.565)	(0.562)	(0.439)	(0.255)
D6_une1	1.294	-14.721	0.430	0.058	-14.993	-14.000	-13.763	-0.222
	(0.690)	(975.564)	(1.081)	(0.613)	(1595.657)	(982.695)	(605.885)	(0.677)
D4_age	0.037^{***}	0.029**	0.015	-0.011^*	0.009	0.016	0.020^{*}	-0.021***
	(0.008)	(0.010)	(0.010)	(0.005)	(0.014)	(0.013)	(0.010)	(0.005)
$D10_rec$	0.139^*	-0.047	0.095	0.081	-0.072	-0.069	-0.093	-0.088^*
	(0.056)	(0.076)	(0.077)	(0.042)	(0.104)	(0.103)	(0.076)	(0.038)
Constant	-5.070***	-6.304****	-5.548***	-0.760	-17.352	-2.688**	-3.121**	-0.981^*
	(0.847)	(1.563)	(1.272)	(0.472)	(911.317)	(0.909)	(0.957)	(0.478)
N	895	895	895	895	895	895	895	895
Log Likelihood	-278.263	-173.572	-172.409	-443.500	-102.855	-105.010	-178.901	-504.028
AIC	580.525	371.144	368.818	911.000	229.711	230.020	381.802	1032.056

^{***}p < .001; **p < .01; *p < .05

B.24 Slovakia

Synthetic variables have been estimated for nine out of ten Slovakian parties available in the original 2019 EES Slovakia voter study selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.24.1).

Table B.24.1: Relevant Slovakian parties

Dep. Var.	Party	Party name (eng)
stack_2510	2510	Christian Democratic Movement
$\rm stack_2501$	2501	People's Party Our Slovakia
$stack_2509$	2509	We are family
$\rm stack_2503$	2503	Direction - Social Democracy
$stack_2505$	2505	Freedom and Solidarity
$stack_2506$	2506	Ordinary People and Independent Personalities
$stack_2508$	2508	Electoral alliance Progressive Slovakia and TOGETHER – Civic Democracy
$stack_2504$	2504	Slovak National Part
$stack_2507$	2507	Bridge

Full OLS models converge and coefficients do not show any particular issues (see Table B.24.8). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.011 for party 2505 (Freedom and Solidarity) and a maximum of 0.141 for party 2510 (Christian Democratic Movement). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in eight out of nine cases (see Table B.24.2).

Table B.24.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2510	2510	122.988	249.895	-126.907
$\rm stack_2501$	2501	603.763	604.122	-0.359
$stack_2509$	2509	337.752	363.837	-26.085
$\rm stack_2503$	2503	616.661	633.097	-16.436
$\rm stack_2505$	2505	404.605	403.405	1.200
$stack_2506$	2506	370.421	373.616	-3.195
$stack_2508$	2508	615.166	627.328	-12.162
$\rm stack_2504$	2504	217.881	223.280	-5.399
stack_2507	2507	-159.866	-157.311	-2.555

On the contrary, two out of nine logistic regression models (see Table B.24.9) show inflated standard errors for some of the coefficients of interest. In particular:

- model 15: D6_une
- model 18a: EDU_rec (both categories), D1_rec, D6_une

However, for model 15 the constant term and other regressors are not affected by the inflated standard errors. Model 18a appears more problematic.

The inflated standard errors in model 18a are due to separation issues. In short, no respondent with low education voted for party 2507. Furthermore, only one respondent with trade union membership status and only one respondent who is unemployed voted for party 2507. (See tables B.24.5, B.24.6, B.24.7)

As a consequence, a constrained version of model 18 (namely, model 18b) without said variables was estimated and contrasted with the original (model 18a), full model. Likelihood-ratio test results show that H_0 (namely, that the constrained model fits better than the full model) cannot be rejected (see Table B.24.3). Consequently, synthetic variables for respondents' vote choice for party 2507 have been predicted relying on the constrained model (model 18b).

Table B.24.3: Likelihood-ratio Test between model 18a (unconstrained) and model 18b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	888	98.52036			
Unconstrained	884	92.23932	4	6.281031	0.1791207

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.059 for party 2507 (Bridge) and a maximum of 0.1 for party 2510 (Christian Democratic Movement). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in six cases out of nine null models perform better than full ones. According to AIC values the related null model appears to have a better fit than model 18b (see Table B.24.4).

Table B.24.4: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2501	2501	500.2010	488.3540	11.848000
$stack_2503$	2503	481.8520	498.2260	-16.374000
$stack_2504$	2504	247.7260	237.3100	10.416000
$\rm stack_2505$	2505	415.8300	404.5320	11.298000
$stack_2506$	2506	286.6800	278.1040	8.576000
$stack_2507$	2507	116.2390	111.7950	4.444000
$stack_2507*$	2507	114.5204	111.7951	2.725274
$\rm stack_2508$	2508	668.4200	673.2700	-4.850000
$stack_2509$	2509	325.4510	310.2900	15.161000
${\rm stack}_2510$	2510	299.7850	335.0130	-35.228000

^{*} AIC value refers to model 18b (constrained).

Table B.24.5: Cross tabulation between vote choice for party 2507 and respondents' education

stack_2507/EDU_rec	1	2	3	NA	Total
0	78	521	360	8	967
1	0	7	4	0	11
NA	3	11	7	1	22
Total	81	539	371	9	1000

 $\begin{tabular}{l} Table B. 24.6: Cross tabulation between vote choice for party 2507 and respondents' trade union membership status \\ \end{tabular}$

stack_2507/D1_rec	0	1	Total
0	803	164	967
1	10	1	11
NA	17	5	22
Total	830	170	1000

Table B.24.7: Cross tabulation between vote choice for party 2507 and respondents' employment status

stack_2507/D6_une	0	1	Total
0	910	57	967
1	10	1	11
NA	21	1	22
Total	941	59	1000

Table B.24.8: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2510	$\boldsymbol{2501}$	2509	2503	2505	2506	2508	$\boldsymbol{2504}$	2507
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9
$D3_rec2$	-0.023	-0.017	0.057**	-0.008	-0.010	0.004	0.020	-0.027	-0.012
	(0.017)	(0.023)	(0.020)	(0.023)	(0.020)	(0.020)	(0.023)	(0.018)	(0.015)
$D8_rec1$	-0.002	-0.032	-0.013	-0.009	0.0001	-0.007	0.020	-0.015	-0.031^*
	(0.018)	(0.024)	(0.020)	(0.024)	(0.021)	(0.021)	(0.024)	(0.019)	(0.016)
$D5_rec1$	-0.002	0.014	0.010	0.038	-0.015	-0.009	0.017	0.008	0.001
	(0.018)	(0.024)	(0.021)	(0.024)	(0.021)	(0.021)	(0.024)	(0.019)	(0.016)
EDU_rec2	0.009	0.033	0.028	-0.092	0.009	-0.022	-0.098*	-0.064	-0.040
	(0.037)	(0.048)	(0.041)	(0.048)	(0.043)	(0.042)	(0.049)	(0.039)	(0.031)
EDU_rec3	0.015	-0.020	-0.012	-0.097^*	0.034	-0.009	-0.062	-0.096*	-0.021
	(0.037)	(0.048)	(0.042)	(0.049)	(0.043)	(0.042)	(0.049)	(0.039)	(0.032)
D1_rec1	0.006	$0.043^{'}$	0.034	$0.040^{'}$	0.006	-0.011	-0.002	0.073**	0.045^{*}
	(0.023)	(0.030)	(0.026)	(0.030)	(0.027)	(0.026)	(0.031)	(0.024)	(0.020)
D7_rec1	$0.007^{'}$	-0.051^{*}	-0.005	$0.023^{'}$	0.048^{*}	0.014	0.072**	$0.027^{'}$	0.015
	(0.019)	(0.025)	(0.022)	(0.025)	(0.022)	(0.022)	(0.026)	(0.020)	(0.016)
$D7_rec2$	0.007	-0.079^{*}	-0.076^{*}	-0.038	0.046	-0.010	0.102**	-0.004	0.006
	(0.029)	(0.038)	(0.032)	(0.038)	(0.034)	(0.033)	(0.038)	(0.030)	(0.025)
D6_une1	0.048	0.044	$0.070^{'}$	-0.001	-0.047	$0.035^{'}$	-0.089	-0.003	-0.032
	(0.038)	(0.050)	(0.043)	(0.050)	(0.045)	(0.044)	(0.052)	(0.040)	(0.033)
D4_age	0.00002	-0.001	-0.003****	0.004***	-0.002^{**}	-0.002^{***}	-0.001	0.001^{*}	0.001
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.0005)
$D10_rec$	0.043***	-0.003	-0.001	0.003	-0.003	0.007	-0.005	0.006	0.009**
	(0.004)	(0.005)	(0.004)	(0.005)	(0.004)	(0.004)	(0.005)	(0.004)	(0.003)
Constant	0.132^{**}	0.383***	0.429***	0.157^{**}	0.371***	0.411***	0.432***	0.241***	0.141***
	(0.041)	(0.054)	(0.047)	(0.054)	(0.048)	(0.048)	(0.056)	(0.044)	(0.036)
N	904	906	906	907	906	904	891	905	901
R-squared	0.152	0.024	0.052	0.041	0.023	0.027	0.038	0.030	0.027
Adj. R-squared	0.141	0.012	0.040	0.030	0.011	0.015	0.026	0.018	0.015

^{***}p < .001; **p < .01; *p < .05

Table B.24.9: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

model	2510 10	2501 11	2509 12	2503 13	2505 14	2506 15	2508 16	2504 17	2507 18a	2507 18b
•										
$D3_rec2$	-0.219	-0.158	0.336	-0.212	0.033	-0.495	0.071	-0.397	0.633	0.699
	(0.344)	(0.256)	(0.345)	(0.260)	(0.289)	(0.374)	(0.209)	(0.413)	(0.712)	(0.711)
$D8_rec1$	-0.217	-0.072	0.073	0.437	-0.0001	-0.176	0.467^{*}	0.803	-1.565^{*}	-1.513^*
	(0.346)	(0.269)	(0.364)	(0.292)	(0.309)	(0.379)	(0.236)	(0.511)	(0.712)	(0.705)
$D5_rec1$	-0.171	0.188	-0.046	-0.162	-0.452	-0.212	0.212	-0.048	-0.002	0.114
	(0.359)	(0.274)	(0.356)	(0.270)	(0.297)	(0.387)	(0.227)	(0.426)	(0.715)	(0.714)
EDU_rec2	0.052	-0.256	-0.094	-0.162	-0.208	-0.331	-1.032*	-0.610	16.902	
	(0.717)	(0.546)	(0.694)	(0.662)	(0.612)	(0.723)	(0.405)	(0.851)	(3243.229)	
EDU rec3	$0.372^{'}$	-0.216	-0.207	-0.550	$0.213^{'}$	-0.160	-0.998^{*}	-0.653	16.615	
_	(0.716)	(0.552)	(0.711)	(0.685)	(0.607)	(0.726)	(0.411)	(0.876)	(3243.229)	
D1_rec1	-0.193	-0.417	$0.382^{'}$	$0.171^{'}$	$\stackrel{\cdot}{0.352}^{\prime}$	-0.796	$0.254^{'}$	$0.283^{'}$	$-17.225^{'}$	
_	(0.473)	(0.393)	(0.418)	(0.342)	(0.359)	(0.620)	(0.264)	(0.517)	(2191.015)	
D7_rec1	-0.638	-0.352	-0.387	$0.269^{'}$	0.189	-0.334	0.615^{*}	$0.115^{'}$	-0.624	-0.614
_	(0.382)	(0.274)	(0.363)	(0.282)	(0.334)	(0.420)	(0.247)	(0.431)	(0.784)	(0.782)
$D7_rec2$	$0.073^{'}$	-0.479	-0.721	0.298	$0.450^{'}$	$0.468^{'}$	$0.570^{'}$	-1.227	$1.255^{'}$	$1.042^{'}$
_	(0.495)	(0.450)	(0.658)	(0.451)	(0.458)	(0.527)	(0.354)	(1.075)	(0.900)	(0.818)
D6_une1	-0.439	0.926^{*}	-0.005	0.143	-0.403	-15.376	-0.953	-0.198	-17.201	,
_	(0.783)	(0.425)	(0.759)	(0.633)	(0.750)	(913.004)	(0.737)	(1.061)	(3833.733)	
D4_age	0.006	0.004	-0.002	0.048***	0.007	0.010	0.020**	0.027	0.016	0.024
0	(0.011)	(0.009)	(0.011)	(0.009)	(0.009)	(0.012)	(0.007)	(0.014)	(0.021)	(0.021)
D10 rec	0.495***	-0.054	-0.126	0.076	-0.119	0.117	-0.035	0.079	0.059	0.054
	(0.080)	(0.054)	(0.078)	(0.050)	(0.064)	(0.071)	(0.043)	(0.078)	(0.131)	(0.129)
Constant	-4.704***	-2.082***	-2.654***	-5.075***	-2.761***	-3.138***	-2.796***	-4.836***	-21.546	-5.535***
0011000110	(0.899)	(0.615)	(0.798)	(0.777)	(0.688)	(0.829)	(0.486)	(1.035)	(3243.229)	(1.408)
N	896	896	896	896	896	896	896	896	896	896
Log Likelihood	-137.892	-238.101	-150.726	-228.926	-195.915	-131.340	-322.210	-111.863	-46.120	-49.260
AIC	299.785	500.201	325.451	481.852	415.830	286.680	668.420	247.726	116.239	114.520

^{***}p < .001; **p < .01; *p < .05

B.25 Slovenia

Synthetic variables have been estimated for the full set of Slovene parties available in the original 2019 EES Slovene voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.25.1).

Table B.25.1: Relevant Slovene parties

Dep. Var.	Party	Party name (eng)
stack_2401	2401	Electoral alliance with Slovenian Democratic Party and Slovenian People's Party
$stack_2402$	2402	List of Marjan Sarec
$stack_2403$	2403	Social Democratic Party
$stack_2404$	2404	New Slovene Christian People's Party
$stack_2405$	2405	The Left
$stack_2406$	2406	Slovenian National Party
$stack_2407$	2407	Party of Miro Cerar
$stack_2408$	2408	Alliance of Alenka Bratusek
$stack_2409$	2409	Democratic Party of Pensioners of Slovenia

Full OLS models converge and coefficients do not show any particular issues (see Table B.25.10). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.008 for party 2408 (Alliance of Alenka Bratusek) and a maximum of 0.093 for party 2401 (Electoral alliance with Slovenian Democratic Party and Slovenian People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 8 cases out of 9 full models perform better (see Table B.25.2).

Table B.25.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_2401$	2401	492.524	564.516	-71.993
$stack_2402$	2402	622.271	631.346	-9.075
$stack_2403$	2403	454.770	463.393	-8.624
$stack_2404$	2404	156.681	223.585	-66.904
$stack_2405$	2405	424.234	442.635	-18.402
$stack_2406$	2406	355.738	359.973	-4.235
$stack_2407$	2407	-6.900	0.717	-7.616
$stack_2408$	2408	45.308	41.280	4.028
stack_2409	2409	-84.887	-82.166	-2.721

On the contrary, three out of nine logistic regression models (see Tables B.25.11, ??) show inflated standard errors for some of the coefficients of interest, in particular:

- model 14: Edu_rec, D7_rec (category 2 only);
- model 16: D6 une;
- model 17: EDU_rec.

Nevertheless, model 16's constant term and other regression coefficients are not affected by said inflated standard errors, whereas models 14a and 17a present a more problematic profile.

Model 14's inflated standard errors are due to separation issues. In short, no respondents with low education and high subjective socioeconomic status (SES) voted for party 2405 (see Tables B.25.7, B.25.8). In model 17a, no respondents with low education voted for party 2408 (see Table B.25.9).

As a consequence, constrained versions of model 14 and 17 (namely, models 14b, 17b) without said variables were estimated and contrasted with the original full model (models 14a, 17a). Likelihood-ratio test results show that in case of model 14 H_0 (namely, that the constrained model fits better than the full model) can be rejected at p<0.001 (see Table B.25.3). However, if just EDU_rec is dropped H_0 cannot be rejected. (See Table B.25.4). For model 17 H_0 cannot be rejected (see Table B.25.5). Consequently, synthetic variables for respondents' vote choice for party 2405 have been predicted relying on a constrained model, only dropping EDU_rec (model 14b). Regarding model 17, synthetetic variables for respondents' vote choice for party 2408 have been predicted relying on the constrained model (model 17b).

Table B.25.3: Likelihood-ratio Test between model 14a (unconstrained) and model 14 (Fully constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	851	292.9527			
Unconstrained	847	276.8023	4	16.15043	0.0028238

Table B.25.4: Likelihood-ratio Test between model 14a (unconstrained) and model 14b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	849	282.3458			
Unconstrained	847	276.8023	2	5.543542	0.0625511

Table B.25.5: Likelihood-ratio Test between model 17a (unconstrained) and model 17b (constrained)

Model	Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
Constrained	849	134.8392			
Unconstrained	847	132.3788	2	2.460367	0.292239

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.051 for party 2409 (Democratic Party of Pensioners of Slovenia) and a maximum of 0.14 for party 2401 (Electoral alliance with Slovenian Democratic Party and Slovenian People's Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 5 cases out of 9 full models perform better. According to AIC values the related null models don't appear to have a better fit than model 14b and 17b (see Table B.25.6).

Table B.25.6: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2408*	2408	154.8392	161.1619	-6.322664
$stack_2401$	2401	480.4460	560.9320	-80.486000
$stack_2402$	2402	649.8930	647.8300	2.063000
$stack_2403$	2403	477.3410	496.7800	-19.439000
$stack_2404$	2404	214.6000	221.0530	-6.454000
$stack_2405$	2405	300.8020	307.1020	-6.300000
stack_2405*	2405	302.3458	307.1019	-4.756039
$stack_2406$	2406	290.5380	281.8270	8.711000
$stack_2407$	2407	104.2410	101.9590	2.282000
$stack_2408$	2408	156.3790	161.1620	-4.783000
$stack_2409$	2409	132.8190	128.3320	4.486000

^{*} AIC value refers to model 14b and 17b (constrained).

Table B.25.7: Cross tabulation between vote choice for party 2405 and respondents' education

stack_2405/EDU_rec	1	2	3	NA	Total
0	76	446	380	40	942
1	0	20	18	0	38
NA	2	14	4	0	20
Total	78	480	402	40	1000

Table B.25.8: Cross tabulation between vote choice for party 2405 and respondents' subjective SES

stack_2405/D7_rec	0	1	2	NA	Total
0	425	379	110	28	942
1	23	14	0	1	38
NA	10	6	4	0	20
Total	458	399	114	29	1000

Table B.25.9: Cross tabulation between vote choice for party 2408 and respondents' education

stack_2408/EDU_rec	1	2	3	NA	Total
0	76	454	393	40	963
1	0	12	5	0	17
NA	2	14	4	0	20
Total	78	480	402	40	1000

Table B.25.10: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2401	2402	2403	2404	2405	2406	2407	2408	2409
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8	Model 9
D3_rec2	-0.032	-0.020	-0.016	-0.035	-0.006	-0.064**	-0.0001	-0.001	0.002
	(0.022)	(0.024)	(0.022)	(0.018)	(0.021)	(0.021)	(0.017)	(0.017)	(0.016)
$D8_rec1$	-0.0003	-0.008	-0.003	0.008	-0.015	-0.034	-0.026	0.002	-0.014
	(0.023)	(0.025)	(0.023)	(0.019)	(0.022)	(0.022)	(0.017)	(0.018)	(0.017)
$D5_rec1$	-0.039	0.020	-0.029	0.009	-0.057^{*}	-0.001	-0.026	-0.015	-0.015
	(0.025)	(0.027)	(0.025)	(0.021)	(0.024)	(0.023)	(0.019)	(0.019)	(0.018)
$\mathrm{EDU} \mathrm{_{rec}2}$	-0.002	-0.086	0.011	-0.067	0.031	-0.020	-0.024	-0.025	-0.045
	(0.045)	(0.049)	(0.045)	(0.037)	(0.043)	(0.041)	(0.034)	(0.034)	(0.032)
EDU_rec3	-0.014	-0.083	0.018	-0.067	0.076	-0.024	0.010	-0.035	-0.046
	(0.046)	(0.050)	(0.045)	(0.038)	(0.043)	(0.042)	(0.034)	(0.035)	(0.032)
$D1_rec1$	-0.042	0.065^{*}	0.019	-0.023	0.051^{*}	0.022	0.035	0.021	0.042^{*}
	(0.025)	(0.027)	(0.025)	(0.021)	(0.024)	(0.023)	(0.019)	(0.019)	(0.018)
$D7_rec1$	0.050^{*}	0.002	0.021	0.037	-0.045^*	0.013	0.012	0.026	0.008
	(0.024)	(0.026)	(0.024)	(0.020)	(0.023)	(0.022)	(0.018)	(0.018)	(0.017)
$D7_rec2$	0.071	0.003	0.121***	0.043	-0.013	0.031	0.064*	0.043	0.033
	(0.037)	(0.041)	(0.037)	(0.031)	(0.036)	(0.035)	(0.028)	(0.029)	(0.027)
$D6_une1$	0.051	0.019	-0.021	0.002	0.010	0.027	0.015	-0.048	-0.020
	(0.039)	(0.042)	(0.038)	(0.032)	(0.038)	(0.036)	(0.029)	(0.030)	(0.028)
D4_age	-0.001	0.004***	0.003**	0.001	-0.0003	-0.001	-0.002**	0.002*	0.002***
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.050***	-0.015^*	-0.010	0.041***	-0.026***	0.010	-0.006	-0.007	-0.005
	(0.006)	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)	(0.004)	(0.004)
Constant	0.248***	0.361***	0.237***	0.161***	0.362***	0.354***	0.311***	0.169***	0.152***
	(0.057)	(0.061)	(0.056)	(0.046)	(0.054)	(0.052)	(0.042)	(0.043)	(0.040)
N	847	846	843	841	848	847	840	848	845
R-squared	0.105	0.036	0.036	0.100	0.047	0.030	0.035	0.021	0.029
Adj. R-squared	0.093	0.023	0.023	0.088	0.034	0.018	0.022	0.008	0.016

^{***}p < .001; **p < .01; *p < .05

116

Table B.25.11: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

Model	$\begin{array}{c} 2401 \\ 10 \end{array}$	$\begin{array}{c} 2402 \\ 11 \end{array}$	$\begin{array}{c} 2403 \\ 12 \end{array}$	$2404\\13$	$2405 \\ 14a$	$\begin{array}{c} 2405 \\ 14 \mathrm{b} \end{array}$	$2406 \\ 15$	$\begin{array}{c} 2407 \\ 16 \end{array}$	$\begin{array}{c} 2408 \\ 17a \end{array}$	$\begin{array}{c} 2408 \\ 17 \mathrm{b} \end{array}$	$\begin{array}{c} 2409 \\ 18 \end{array}$
D3_rec2	-0.512*	0.039	-0.502	-0.325	-0.424	-0.421	-0.407	0.516	0.262	0.292	-0.740
D0_1002	(0.255)	(0.210)	(0.261)	(0.438)	(0.349)	(0.348)	(0.372)	(0.743)	(0.539)	(0.536)	(0.645)
D8_rec1	-0.247	0.145	0.059	0.858	0.042	0.053	-0.859*	-0.904	0.045	0.072	-0.380
Do_reer	(0.257)	(0.225)	(0.276)	(0.507)	(0.366)	(0.363)	(0.377)	(0.755)	(0.572)	(0.568)	(0.618)
D5 rec1	0.361	0.425	-0.317	0.188	-0.484	-0.443	0.114	-1.084	0.779	0.775	-0.550
Do_reer	(0.313)	(0.256)	(0.279)	(0.501)	(0.359)	(0.358)	(0.426)	(0.744)	(0.692)	(0.692)	(0.647)
EDU rec2	0.531	-1.142**	0.205	-1.338*	16.321	(0.550)	0.355	-2.434	14.959	(0.002)	-0.307
LDC_ICC2	(0.538)	(0.363)	(0.639)	(0.668)	(1247.687)		(0.698)	(1.288)	(1120.176)		(1.101)
EDU_rec3	0.083	-1.012**	0.162	-1.035	16.414		0.152	-0.739	14.400		-1.493
LD C_ICCO	(0.562)	(0.363)	(0.642)	(0.639)	(1247.687)		(0.726)	(0.953)	(1120.176)		(1.281)
D1_rec1	0.102	0.180	0.540	-1.024	-0.289	-0.267	0.054	0.114	-0.108	-0.107	0.762
D1_lec1	(0.277)	(0.237)	(0.279)	(0.583)	(0.436)	(0.435)	(0.403)	(0.755)	(0.679)	(0.675)	(0.663)
D7 rec1	0.254	-0.085	0.512	0.598	-0.437	-0.409	0.274	-1.276	0.746	0.726	-0.736
D1_lec1	(0.270)	(0.232)	(0.291)	(0.496)	(0.356)	(0.355)	(0.393)	(1.136)	(0.590)	(0.588)	(0.711)
D7_rec2	-0.244	0.170	1.110**	0.932	-16.652	-16.767	0.290	1.203	0.527	0.436	-0.467
D1_1ec2	(0.489)	(0.329)	(0.370)	(0.631)	(1047.658)	(1070.521)	(0.598)	(0.759)	(0.885)	(0.871)	(1.095)
D6 une1	0.248	(0.329) -0.111	0.416	-0.700	-0.101	-0.113	-0.412	-15.697	0.009	0.099	-0.231
D0_uner	(0.443)	(0.381)	(0.417)	(1.050)	(0.559)	(0.552)	(0.753)	(1779.231)	(1.087)	(1.082)	(1.079)
D4 ago	0.029**	0.022**	0.041***	-0.0002	-0.004	-0.001	-0.021	0.006	0.098***	0.100***	0.073**
D4_age	(0.029)	(0.022)	(0.041)	-0.0002 (0.015)	-0.004 (0.012)	(0.012)	-0.021 (0.014)	(0.026)	(0.029)	(0.028)	(0.028)
D10 mag	0.478***	-0.037	-0.121	0.378***	-0.270*	-0.286*	0.014)	(0.026) -0.013	-0.058	-0.067	-0.136
D10_rec			-								
C	(0.057)	(0.054)	(0.073)	(0.094)	(0.116)	(0.115)	(0.086)	(0.177)	(0.147)	(0.144)	(0.171)
Constant	-5.164***	-2.381***	-4.544***	-4.194***	-17.946	-1.829**	-2.304**	-2.800*	-25.024	-10.473***	-6.218**
N	(0.731)	(0.512)	(0.801)	(0.910)	(1247.687)	(0.678)	(0.835)	(1.224)	(1120.177)	(2.078)	(1.933)
N	859	859	859	859	859	859	859	859	859	859	859
Log Likelihood	-228.223	-312.946	-226.671	-95.300	-138.401	-141.173	-133.269	-40.121	-66.189	-67.420	-54.409
AIC	480.446	649.893	477.341	214.600	300.802	302.346	290.538	104.241	156.379	154.839	132.819

^{***}p < .001; **p < .01; *p < .05

B.26 Spain

Synthetic variables have been estimated for seven of fifteen Spanish parties available in the original 2019 EES Spanish voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.26.1).

Table B.26.1: Relevant Spanish parties

Dep. Var.	Party	Party name (eng)
$stack_2601$	2601	Spanish Socialist Workers' Party
$\rm stack_2602$	2602	Popular Party
$stack_2603$	2603	Podemos (We Can)
$stack_2604$	2604	Citizens - Party of the Citizenry
$stack_2605$	2605	Voice
$stack_2606$	2606	Republican Left of Catalonia
$stack_2609$	2609	Commitment to Europe

Full OLS models converge and coefficients do not show any particular issues (see Table B.26.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.033 for party 2601 (Spanish Socialist Workers' Party) and a maximum of 0.151 for party 2602 (Popular Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 7 null models perform better than full ones (see Table B.26.2).

Table B.26.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2601	2601	705.870	725.668	-19.798
$\rm stack_2602$	2602	557.069	694.177	-137.108
$stack_2603$	2603	594.433	689.794	-95.361
$stack_2604$	2604	555.534	615.298	-59.764
$stack_2605$	2605	406.763	515.855	-109.092
stack_2606	2606	$295.035 \\ 225.770$	327.931	-32.896
$stack_2609$	2609	225.770	262.243	-36.474

On the contrary, one out of seven logistic regression models (see Table B.26.5) show inflated standard errors for one of the coefficients of interest. In particular:

• model 14: D10_rec.

Nevertheless, model 7's constant term and other regression coefficients are not affected by said inflated standard error. Therefore, we do not adapt the models.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.086 for party 2609 (Commitment to Europe) and a maximum of 0.085 for party 2602 (Popular Party). Moreover, the differences between Akaike Information Criterion (AIC) values for logistic full models and null models show that in 3 cases out of 7 null models perform better than full ones (see Table B.26.3).

Table B.26.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2601	2601	1034.103	1023.898	10.205
$stack_2602$	2602	661.246	724.588	-63.343
$stack_2603$	2603	642.191	671.944	-29.752
$stack_2604$	2604	702.135	691.187	10.948
$stack_2605$	2605	411.134	414.884	-3.750
$\rm stack_2606$	2606	244.572	250.879	-6.307
$stack_2609$	2609	88.819	83.795	5.024

Table B.26.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2601	2602	2603	2604	2605	2606	2609
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
D3_rec2	0.050*	-0.022	0.020	0.011	-0.081***	-0.024	-0.006
	(0.024)	(0.022)	(0.023)	(0.022)	(0.020)	(0.019)	(0.019)
$D8_rec1$	0.043	-0.054	0.031	0.006	-0.076**	0.032	0.027
	(0.033)	(0.031)	(0.032)	(0.031)	(0.028)	(0.027)	(0.026)
$D5$ _rec1	-0.012	-0.010	0.008	0.004	0.009	0.019	0.010
	(0.026)	(0.024)	(0.025)	(0.024)	(0.022)	(0.021)	(0.021)
EDU_rec2	0.061	0.013	-0.047	0.007	-0.016	-0.031	-0.042
	(0.047)	(0.043)	(0.045)	(0.043)	(0.040)	(0.037)	(0.037)
EDU_rec3	0.055	0.049	-0.091^*	0.045	0.033	-0.097**	-0.071^*
	(0.044)	(0.040)	(0.041)	(0.040)	(0.037)	(0.035)	(0.035)
D1_rec1	0.082**	-0.016	0.136***	0.004	0.039	0.128***	0.150***
	(0.031)	(0.029)	(0.029)	(0.029)	(0.026)	(0.025)	(0.024)
$D7_rec1$	-0.016	0.086***	-0.035	0.037	0.024	-0.024	-0.023
	(0.026)	(0.024)	(0.025)	(0.024)	(0.022)	(0.021)	(0.021)
$D7_rec2$	-0.011	0.128***	-0.068	0.125***	0.091**	-0.013	-0.007
	(0.040)	(0.037)	(0.038)	(0.037)	(0.034)	(0.032)	(0.032)
D6_une1	-0.093^*	0.036	-0.017	-0.026	0.079*	-0.025	-0.025
	(0.041)	(0.038)	(0.039)	(0.038)	(0.035)	(0.033)	(0.033)
D4_age	-0.003***	0.0004	-0.004***	-0.002*	-0.0005	-0.001	-0.001^*
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	-0.013*	0.057***	-0.027***	0.036***	0.042***	-0.005	-0.002
	(0.005)	(0.005)	(0.005)	(0.005)	(0.005)	(0.004)	(0.004)
Constant	0.537***	0.188**	0.629***	0.318***	0.207***	0.268***	0.298***
	(0.063)	(0.058)	(0.060)	(0.058)	(0.054)	(0.051)	(0.051)
N	905	905	901	905	904	893	865
R-squared	0.045	0.161	0.122	0.086	0.135	0.060	0.065
Adj. R-squared	0.033	0.151	0.111	0.075	0.124	0.048	0.053

^{***}p < .001; **p < .01; *p < .05

Table B.26.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2601	2602	2603	2604	2605	2606	2609
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
D3_rec2	0.232	-0.198	-0.229	0.234	-0.732*	-0.277	0.332
	(0.157)	(0.211)	(0.213)	(0.205)	(0.302)	(0.407)	(0.806)
$D8_rec1$	0.073	-0.879***	0.740^{*}	0.067	-0.296	0.211	-0.125
	(0.219)	(0.259)	(0.345)	(0.292)	(0.390)	(0.566)	(1.124)
D5_rec1	0.047	0.064	-0.031	-0.068	-0.080	0.425	0.327
	(0.170)	(0.237)	(0.227)	(0.222)	(0.330)	(0.456)	(0.886)
EDU_rec2	0.268	-0.016	-0.420	0.406	1.314	-0.117	-1.577
	(0.318)	(0.452)	(0.376)	(0.480)	(1.059)	(0.613)	(1.492)
EDU_rec3	0.296	$0.257^{'}$	-0.397	0.766	$1.655^{'}$	-1.251^*	-0.850
	(0.297)	(0.417)	(0.343)	(0.448)	(1.031)	(0.624)	(1.164)
D1_rec1	$0.339^{'}$	-0.713^*	0.592^{*}	-0.315	-0.549	0.681	$1.190^{'}$
	(0.194)	(0.322)	(0.244)	(0.281)	(0.411)	(0.482)	(0.818)
D7 rec1	-0.061	0.817**	-0.573^{*}	-0.144	0.008	$0.234^{'}$	-0.522
	(0.170)	(0.261)	(0.225)	(0.223)	(0.333)	(0.445)	(0.950)
D7 rec2	-0.136	1.119***	-0.779^{*}	$-0.11\dot{1}$	$0.387^{'}$	$0.423^{'}$	$1.169^{'}$
	(0.263)	(0.334)	(0.394)	(0.333)	(0.428)	(0.704)	(0.990)
D6_une1	-0.638^{*}	$0.135^{'}$	-0.100	-0.501	0.311	$0.374^{'}$	$0.870^{'}$
	(0.301)	(0.363)	(0.360)	(0.394)	(0.468)	(0.657)	(1.193)
D4_age	-0.0003	0.011	-0.011	0.0002	-0.005	0.032^{*}	$0.030^{'}$
	(0.005)	(0.007)	(0.007)	(0.006)	(0.009)	(0.013)	(0.026)
D10 rec	-0.036	0.269***	-0.281^{***}	$0.058^{'}$	0.188**	-0.405^{**}	-17.167
	(0.036)	(0.043)	(0.064)	(0.044)	(0.059)	(0.154)	(2163.353)
Constant	-1.412^{***}	-2.907^{***}	-0.999	-2.592^{***}	-3.775^{**}	-4.647^{***}	-5.436*
	(0.426)	(0.596)	(0.536)	(0.609)	(1.152)	(1.118)	(2.200)
N	891	891	891	891	891	891	891
Log Likelihood	-505.051	-318.623	-309.096	-339.068	-193.567	-110.286	-32.410
AIC	1034.103	661.246	642.191	702.135	411.134	244.572	88.819

^{***}p < .001; **p < .01; *p < .05

B.27 Sweden

Synthetic variables have been estimated for the full set of Swedish parties available in the original 2019 EES Swedish voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.27.1).

Table B.27.1: Relevant Swedish parties

Dep. Var.	Party	Party name (eng)
$stack_2702$	2702	Social Democratic Labour Party
$stack_2705$	2705	Moderate Coalition Party
$stack_2707$	2707	Green Ecology Party
$\rm stack_2704$	2704	Liberal People's Party
$stack_2703$	2703	Centre Party
stack_2708	2708	Sweden Democrats
$stack_2706$	2706	Christian Democrats
$stack_2701$	2701	Left Party

Full OLS models converge and coefficients do not show any particular issues (see Table B.27.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.02 for party 2702 (Social Democratic Labour Party) and a maximum of 0.103 for party 2707 (Green Ecology Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that the full models perform better in all cases (see Table B.27.2).

Table B.27.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
stack_2702	2702	736.830	742.960	-6.131
$\rm stack_2705$	2705	583.583	623.368	-39.785
$stack_2707$	2707	397.673	479.613	-81.940
$stack_2704$	2704	221.126	263.305	-42.179
$stack_2703$	2703	216.840	266.672	-49.831
$stack_2708$	2708	836.810	856.252	-19.442
$stack_2706$	2706	470.258	502.935	-32.677
$stack_2701$	2701	542.761	577.778	-35.018

On the contrary, one out of eight logistic regression models (see Table B.27.5) show inflated standard errors for one of the coefficients of interest. In particular:

• model 10: D6_une

However, the constant term and the other regressors of model 10 are not affected by the inflated standard error issue. Therefore, no additional adjustments are made and model 10 is kept as is.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.041 for party 2704 (Liberal People's Party) and a maximum of 0.036 for party 2705 (Moderate Coalition Party). Moreover, the differences between Akaike Information Criterion (AIC) values

for logistic full models and null models show that in three cases out of eight null models perform better than full ones (see Table B.27.3).

Table B.27.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_2702$	2702	806.614	820.036	-13.422
${\rm stack}_2705$	2705	501.736	522.644	-20.909
stack_2707	2707	360.001	359.457	0.544
stack_2704	2704	256.021	247.996	8.025
$stack_2703$	2703	299.075	299.837	-0.762
stack_2708	2708	736.057	735.017	1.040
$stack_2706$	2706	371.163	370.795	0.368
$\rm stack_2701$	2701	419.663	424.960	-5.297

122

Table B.27.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2702	2705	2707	2704	2703	2708	2706	2701
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
D3_rec2	0.017	-0.028	0.090***	0.018	0.042*	-0.091**	-0.019	0.056*
	(0.026)	(0.024)	(0.021)	(0.019)	(0.019)	(0.027)	(0.022)	(0.023)
$D8_rec1$	0.042	0.026	0.019	$0.040^{'}$	0.021	-0.047	$0.027^{'}$	-0.003
	(0.033)	(0.030)	(0.027)	(0.025)	(0.024)	(0.035)	(0.028)	(0.030)
$D5_rec1$	-0.017	-0.001	-0.052^*	-0.026	-0.027	0.035	0.007	-0.054*
	(0.027)	(0.025)	(0.022)	(0.020)	(0.020)	(0.028)	(0.023)	(0.024)
EDU_rec2	0.026	-0.063	0.034	0.031	-0.003	-0.041	-0.038	0.049
	(0.050)	(0.046)	(0.041)	(0.037)	(0.037)	(0.053)	(0.043)	(0.045)
EDU_rec3	-0.004	-0.045	0.063	0.061	0.031	-0.112*	-0.025	0.075
	(0.049)	(0.045)	(0.040)	(0.036)	(0.036)	(0.052)	(0.042)	(0.044)
D1_rec1	0.068*	-0.043	0.034	0.017	0.024	-0.015	-0.038	0.064**
	(0.027)	(0.025)	(0.022)	(0.020)	(0.020)	(0.029)	(0.023)	(0.024)
$D7_rec1$	-0.039	0.121***	0.031	0.080***	0.065**	0.016	0.094***	-0.089***
	(0.028)	(0.026)	(0.023)	(0.021)	(0.021)	(0.030)	(0.024)	(0.025)
$D7_rec2$	-0.097^*	0.227***	0.011	0.120***	0.068*	0.013	0.118***	-0.134***
	(0.040)	(0.036)	(0.032)	(0.029)	(0.029)	(0.042)	(0.034)	(0.035)
D6_une1	-0.075	-0.062	-0.076	0.001	-0.014	0.223***	-0.007	-0.052
	(0.054)	(0.049)	(0.044)	(0.040)	(0.040)	(0.057)	(0.046)	(0.048)
D4_age	-0.001	-0.001	-0.005***	-0.003***	-0.003***	0.001	-0.0001	-0.002**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.012	0.005	0.014*	0.012*	0.019***	-0.003	0.029***	-0.003
	(0.007)	(0.006)	(0.006)	(0.005)	(0.005)	(0.007)	(0.006)	(0.006)
Constant	0.454***	0.433^{***}	0.397^{***}	0.275^{***}	0.297^{***}	0.427^{***}	0.248***	0.383***
	(0.066)	(0.061)	(0.054)	(0.049)	(0.049)	(0.070)	(0.057)	(0.059)
N	854	852	852	849	853	852	851	850
R-squared	0.032	0.070	0.115	0.073	0.081	0.047	0.062	0.065
Adj. R-squared	0.020	0.058	0.103	0.061	0.069	0.035	0.050	0.053

^{***}p < .001; **p < .01; *p < .05

Table B.27.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

	2702	2705	2707	2704	2703	2708	2706	2701
	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14	Model 15	Model 16
D3 rec2	-0.065	-0.641*	0.845**	-0.122	0.008	-0.290	-0.126	0.205
	(0.184)	(0.270)	(0.325)	(0.404)	(0.351)	(0.200)	(0.318)	(0.281)
$D8_rec1$	0.347	0.250	-0.175	0.369	-0.228	-0.283	-0.103	0.207
	(0.251)	(0.337)	(0.396)	(0.556)	(0.442)	(0.233)	(0.378)	(0.382)
$D5_rec1$	0.061	0.512	0.146	-0.259	-0.818*	0.135	0.059	-0.359
	(0.190)	(0.269)	(0.330)	(0.404)	(0.368)	(0.205)	(0.320)	(0.291)
EDU_rec2	0.704	$\stackrel{\cdot}{0.457}^{'}$	-0.227	$0.850^{'}$	-0.555	-0.095	-0.545	$0.677^{'}$
	(0.463)	(0.648)	(0.548)	(1.075)	(0.654)	(0.367)	(0.616)	(0.769)
EDU rec3	0.612	$0.762^{'}$	-0.034	$0.823^{'}$	-0.124	-0.340	-0.235	0.974
	(0.454)	(0.625)	(0.537)	(1.057)	(0.607)	(0.358)	(0.569)	(0.755)
D1 rec1	0.747***	-0.364	-0.324	-0.576	1.232^{**}	-0.197	-0.123	$0.596^{'}$
	(0.203)	(0.257)	(0.325)	(0.411)	(0.444)	(0.201)	(0.321)	(0.309)
D7 rec1	-0.095	0.640^{*}	$0.074^{'}$	$1.020^{'}$	0.995^{*}	-0.102	-0.161	-1.043****
	(0.198)	(0.313)	(0.347)	(0.531)	(0.425)	(0.212)	(0.345)	(0.307)
D7 rec2	-0.212	1.033**	$0.314^{'}$	1.302^{*}	$\stackrel{}{0}.157^{'}$	-0.374	$0.078^{'}$	-1.320° *
	(0.286)	(0.361)	(0.463)	(0.614)	(0.703)	(0.322)	(0.447)	(0.547)
D6 une1	-0.990	-14.798	-1.183	-0.325	$0.349^{'}$	0.742^{*}	-0.964	-0.458
	(0.541)	(529.544)	(1.034)	(1.058)	(0.649)	(0.346)	(1.039)	(0.630)
D4 age	0.015**	0.008	-0.029^{**}	$0.012^{'}$	0.0003	0.012^{*}	0.028**	$0.003^{'}$
_ 0	(0.005)	(0.007)	(0.010)	(0.012)	(0.011)	(0.006)	(0.009)	(0.009)
D10 rec	$0.070^{'}$	-0.010	0.026	-0.129	$0.063^{'}$	-0.067	0.173^{*}	-0.149
_	(0.046)	(0.065)	(0.075)	(0.124)	(0.087)	(0.056)	(0.069)	(0.089)
Constant	-3.545^{***}	-3.836^{***}	-1.812^{*}	-5.244****	-3.889^{***}	-1.535^{**}	-3.938****	-3.314^{***}
	(0.580)	(0.798)	(0.717)	(1.322)	(0.913)	(0.495)	(0.824)	(0.910)
N	847	847	847	847	847	847	847	847
Log Likelihood	-391.307	-238.868	-168.000	-116.010	-137.538	-356.029	-173.582	-197.832
AIC	806.614	501.736	360.001	256.021	299.075	736.057	371.163	419.663

^{***}p < .001; **p < .01; *p < .05

B.28 United Kingdom

Synthetic variables have been estimated for seven out of fourteen British (UK) parties available in the original 2019 EES British (UK) voter study and selected according to the criteria stated in the EES 2019 SDM codebook (for the relevant parties see Table B.28.1).

Table B.28.1: Relevant British (UK) parties

Dep. Var.	Party	Party name (eng)
$stack_2801$	2801	Conservative Party
$\rm stack_2802$	2802	Labour Party
$stack_2803$	2803	Liberal Democrats
$stack_2804$	2804	Green Party
$stack_2805$	2805	Scottish National Party
stack_2806 stack_2807	2806 2807	United Kingdom Independence Party The Brexit Party

Full OLS models converge and coefficients do not show any particular issues (see Table B.28.4). In terms of model fit, the adjusted coefficient of determination (R^2) values vary between a minimum value of 0.033 for party 2807 (The Brexit Party) and a maximum of 0.225 for party 2805 (Scottish National Party). Moreover, the differences between Akaike Information Criterion (AIC) values for full OLS models and null models show that in 0 cases out of 7 null models perform better than full ones (see Table B.28.2).

Table B.28.2: Akaike Information Criterion values for OLS full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_2801$	2801	608.974	701.857	-92.883
$\rm stack_2802$	2802	511.047	692.047	-180.999
$stack_2803$	2803	501.942	556.253	-54.311
$stack_2804$	2804	358.272	446.949	-88.678
$stack_2805$	2805	40.646	246.372	-205.726
$stack_2806$	2806	284.626	351.711	-67.085
$stack_2807$	2807	738.940	756.590	-17.650

On the contrary, two out of seven logistic regression models (see Table B.28.5) show inflated standard errors for some of the coefficients of interest. In particular:

- model 8: D6 une;
- model 12: D7_rec (only for category 2).

Nevertheless, the constant terms and other regression coefficients of models 8 and 12 are not affected by said inflated standard errors. Therefore, we do not adapt the models.

In terms of model fit, adjusted McFadden's pseudo R^2 values for the logistic full models vary between a minimum value of -0.083 for party 2806 (United Kingdom Independence Party) and a maximum of 0.054 for party 2807 (The Brexit Party). Moreover, the differences between Akaike Information Criterion (AIC)

values for logistic full models and null models show that in 3 cases out of 7 null models perform better than full ones (see Table B.28.3).

Table B.28.3: Akaike Information Criterion values for logistic full and null models

Dep. Var.	Party	Full Mod.	Null Mod.	Diff. (Full-Null)
$stack_2801$	2801	463.434	475.051	-11.617
$\rm stack_2802$	2802	611.773	640.123	-28.350
$stack_2803$	2803	682.822	690.427	-7.605
$stack_2804$	2804	336.476	333.022	3.455
$stack_2805$	2805	223.256	214.772	8.485
$\rm stack_2806$	2806	155.407	145.559	9.848
stack_2807	2807	828.182	877.704	-49.522

Table B.28.4: Propensity to vote for a relevant party according to respondents' socio-demographic characteristics (OLS regression models)

	2801	2802	2803	2804	2805	2806	2807
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
$D3_rec2$	0.011	0.007	0.007	0.032	0.011	0.004	-0.023
	(0.023)	(0.022)	(0.022)	(0.020)	(0.017)	(0.019)	(0.025)
$D8_rec1$	-0.039	0.044	-0.024	0.003	-0.041^*	-0.014	-0.005
	(0.027)	(0.026)	(0.026)	(0.024)	(0.020)	(0.023)	(0.030)
$D5_rec1$	0.036	-0.024	-0.003	-0.028	0.037*	0.040	0.061*
	(0.025)	(0.024)	(0.024)	(0.022)	(0.019)	(0.021)	(0.028)
EDU_rec2	0.006	-0.044	-0.043	-0.0001	-0.003	0.066*	0.024
	(0.040)	(0.038)	(0.038)	(0.035)	(0.029)	(0.033)	(0.044)
EDU_rec3	-0.057	0.043	0.053	0.074*	0.024	-0.020	-0.095^*
	(0.043)	(0.040)	(0.040)	(0.037)	(0.031)	(0.035)	(0.046)
D1_rec1	0.008	0.141***	0.069^{*}	0.065^{*}	0.126***	0.074**	0.043
	(0.030)	(0.028)	(0.028)	(0.026)	(0.022)	(0.025)	(0.033)
$D7_rec1$	0.157***	-0.097***	0.070**	-0.019	$0.027^{'}$	$0.025^{'}$	0.008
	(0.025)	(0.024)	(0.024)	(0.022)	(0.019)	(0.021)	(0.028)
$D7_rec2$	0.307***	-0.142**	0.078	-0.041	0.037	0.025	-0.017
	(0.047)	(0.045)	(0.044)	(0.041)	(0.034)	(0.039)	(0.051)
D6_une1	-0.037	0.041	-0.040	-0.053	-0.031	0.052	0.038
	(0.047)	(0.045)	(0.045)	(0.041)	(0.035)	(0.040)	(0.052)
D4_age	0.003***	-0.006***	-0.003****	-0.005***	-0.004***	-0.002**	0.001
-	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
$D10_rec$	0.018**	0.010	0.008	0.007	0.025***	0.027***	0.022***
	(0.006)	(0.005)	(0.005)	(0.005)	(0.004)	(0.005)	(0.006)
Constant	0.213***	0.681***	0.491***	0.563***	0.297***	0.205***	0.258***
	(0.060)	(0.057)	(0.057)	(0.052)	(0.045)	(0.050)	(0.066)
N	871	869	869	865	852	861	858
R-squared	0.124	0.208	0.084	0.120	0.235	0.098	0.045
Adj. R-squared	0.112	0.198	0.072	0.109	0.225	0.087	0.033

^{***}p < .001; **p < .01; *p < .05

Table B.28.5: Vote choice for a relevant party according to respondents' socio-demographic characteristics (Logistic regression models)

`							
	2801	2802	2803	2804	2805	2806	2807
	Model 8	Model 9	Model 10	Model 11	Model 12	Model 13	Model 14
$D3$ _rec2	0.504	-0.251	-0.229	0.210	-0.102	-0.273	-0.410^{*}
	(0.268)	(0.219)	(0.204)	(0.329)	(0.429)	(0.554)	(0.179)
$D8_rec1$	-0.044	0.271	-0.121	0.241	-0.670	-0.297	0.189
	(0.296)	(0.266)	(0.230)	(0.408)	(0.444)	(0.575)	(0.209)
D5_rec1	-0.212	-0.189	-0.132	-0.507	-0.008	0.600	0.349
	(0.282)	(0.239)	(0.220)	(0.345)	(0.483)	(0.699)	(0.197)
EDU_rec2	0.476	0.231	-0.467	0.944	-0.186	0.453	-0.043
	(0.502)	(0.423)	(0.335)	(0.780)	(0.796)	(1.087)	(0.292)
EDU_rec3	0.652	0.398	0.170	1.364	0.465	-0.390	-0.520
	(0.521)	(0.434)	(0.342)	(0.781)	(0.802)	(1.168)	(0.327)
D1_rec1	-0.043	0.654**	0.023	0.365	1.047^{*}	0.540	-0.457
	(0.347)	(0.250)	(0.260)	(0.386)	(0.470)	(0.668)	(0.259)
$D7_rec1$	0.191	-0.535^*	0.478^{*}	-0.110	-0.091	1.148	0.030
	(0.294)	(0.249)	(0.217)	(0.368)	(0.449)	(0.643)	(0.195)
$D7_rec2$	1.265^{**}	-1.224*	0.148	0.253	-15.172	1.352	-0.064
	(0.404)	(0.552)	(0.403)	(0.584)	(805.417)	(0.915)	(0.389)
D6_une1	-15.862	0.077	-1.357	-1.696	-0.276	0.895	0.504
	(798.462)	(0.386)	(0.742)	(1.041)	(1.083)	(1.164)	(0.360)
D4_age	0.020*	-0.027***	0.010	-0.025*	0.003	0.014	0.034***
	(0.008)	(0.007)	(0.006)	(0.010)	(0.014)	(0.018)	(0.006)
$D10_rec$	0.060	0.063	0.006	-0.134	-0.088	0.193	-0.025
	(0.062)	(0.050)	(0.049)	(0.091)	(0.107)	(0.114)	(0.048)
Constant	-4.323***	-1.112^*	-2.100***	-2.772**	-3.430**	-6.330***	-3.025***
	(0.748)	(0.563)	(0.523)	(0.939)	(1.163)	(1.699)	(0.510)
N	875	875	875	875	875	875	875
Log Likelihood	-219.717	-293.886	-329.411	-156.238	-99.628	-65.704	-402.091
AIC	463.434	611.773	682.822	336.476	223.256	155.407	828.182

^{***}p < .001; **p < .01; *p < .05

References

- De Sio, Lorenzo, and Mark Franklin. 2011. "Generic Variable Analysis: Climbing the Ladder of Generality with Social Science Data." In. 1st European Conference on Comparative Electoral Research, Sofia. https://www.researchgate.net/publication/339474208_Generic_variable_analysis_climbing_the_ladder_of_generality_with_social_science_data.
- Eijk, Cees van der, Wouter van der Brug, Martin Kroh, and Mark Franklin. 2006. "Rethinking the Dependent Variable in Voting Behavior: On the Measurement and Analysis of Electoral Utilities." *Electoral Studies* 25 (3): 424–47. https://doi.org/10.1016/j.electstud.2005.06.012.
- Eijk, Cees van der, Lorenzo De Sio, and Cristian Vezzoni. 2021. "Harmonising Data, Analytical Approaches and Analysis Isssues." In *Consequences of Context. How the Social, Political, and Economic Environment Affects Voting*, edited by Hermann Schmitt, Paolo Segatti, and Cees van der Ejik, 21–44. London; Lanham: Rowman & Littlefield.
- Eijk, Cees van der, and Mark Franklin. 1996. Choosing Europe?: The European Electorate and National Politics in the Face of Union. Ann Arbor, MI: University of Michigan Press. https://doi.org/10.3998/mpub.13603.