Дискретная математика 2 семестр ПИ, Π екции

Собрано 6 марта 2022 г. в 11:36

Содержание

1.	Кодирование информации	1
	1.1. Задача об оптимальном префиксном коде	1
	1.2. Неравенство Крафта	3
	1.3. Напоминалка	4
	1.4. Конечная случайная схема	4
	1.5. Количество информации	6

Раздел #1: Кодирование информации

1.1. Задача об оптимальном префиксном коде

Пусть Λ – произвольное конечное множество (алфавит), $a \in \Lambda$ – символы. Пусть $\forall a \in \Lambda \ \exists l(a) \in \mathbb{N}, \exists c(a) = \{0,1\}^{l(a)}$ – кодовая последовательность a, где l(a) – длина.

Очевидно, условие $\forall a, b \in \Lambda \to (a \neq b \Rightarrow c(a) \neq c(b))$ не является достаточным для однозначного распознавания символов.

Def 1.1.1. Код называется префиксным, если $\forall a,b \in \Lambda$ $c(a) = \omega \Rightarrow \not\equiv m \in \mathbb{N}_0 : c(b) = \omega \gamma$, где $\gamma \in \{0,1\}^m$

Пусть $\forall a \in \Lambda$ соответствует вероятность p(a) появления этого символа в сообщении. $\sum_{a \in \Lambda} p(a) = 1$ и считаем $\forall a \in \Lambda$ p(a) > 0.

Введем дискретную случайную величину $l: \forall a \in \Lambda \ Pr\{l=l(a)\} = p(a)$ – длина кодовой последовательности символа в сообщении.

Def 1.1.2. Оптимальным называется префиксный код, минимизирующий математическое ожидание $l: \mathbb{E} l = \sum_{a \in \Lambda} l(a)p(a)$

Чем чаще встречается символ, тем короче должна быть кодовая последовательность.

Почему вообще ОПК существует? Известно, что $\mathbb{E}l \geqslant 1$ (в каждой кодовой последовательности должен быть хотя бы один символ). Всегда можно сделать префиксный код, в котором все символы имеют одинаковые длины кодовых последовательностей и эти последовательности различны ($\forall a \in \Lambda \ l(a) = \lceil \log_2(|\Lambda|) \rceil$), т.е. префиксный код существует и матожидание длины кодовой последовательности ограничено.

- <u>Lm</u> 1.1.3. Если в некотором коде C существует $x \in \Lambda : c(x) = \omega \alpha$, где $\alpha \in \{0,1\}$ и при этом $\not\equiv y \in \Lambda, y \neq x : c(y) = \omega \gamma$, где $\gamma \in \{0,1\}^k$ (то есть, если ω не является началом никакой другой кодовой последовательности, кроме c(x)), то код $C' : c'(x) = \omega, \forall y \in \Lambda, y \neq x \ c' = c(y)$ будет префиксным (по построению и условию леммы) и $\mathbb{E}l' = \mathbb{E}l p(x)l(x) + p(x)(l(x) 1) = \mathbb{E}l p(x) < \mathbb{E}l$. Тогда код C точно не мог быть оптимальным.
- <u>Lm</u> 1.1.4 (Лемма о кратчайшем префиксе). Если в префиксном коде $C \exists a, b \in \Lambda, a \neq b : p(a) < p(b), l(a) < l(b)$, то такой код не оптимален.

Доказательство. Проверим, что для кода C', в котором c'(a) = c(b), c'(b) = c(a) и $\forall x \in \Lambda : x \neq a, x \neq b$ c'(x) = c(x) верно $\mathbb{E}l - \mathbb{E}l' > 0$.

$$\mathbb{E}l - \mathbb{E}l' = p(a)l(a) + p(b)l(b) - p(a)l(b) - p(b)l(a) = (p(a) - p(b))(l(a) - l(b)) > 0$$

<u>Lm</u> 1.1.5 (Лемма о соседстве самых редких символов). Пусть $a, b \in \Lambda, a \neq b$ – символы с намиеньшими вероятностями ($\forall x \in \Lambda \ p(x) \geqslant p(b) \geqslant p(a)$). Тогда $\exists \ \text{ОПK} : c(a) = \omega 0, c(b) = \omega 1$, где $\exists k \in \mathbb{N}_0 : \omega \in \{0,1\}^k$ и это самые длинные кодовые последовательности.

Доказательство. Пусть C' – ОПК. По лемме о кратчайшем префиксе a и b имеют самые длинные кодовые последовательности в C': $\forall x \in \Lambda, x \neq a, x \neq b \ l'(a) \geqslant l'(b) \geqslant l'(x)$

Если $c(a) = \omega \gamma, \omega \in \{0,1\}^{l'(b)}, \gamma \in \{0,1\}^{l'(a)-l'(b)}$ и ω не является началом никакой кодовой последовательности (т.к. остальные кодовые последовательности не длиннее ω и $\not\equiv$ символа с кодовой последовательностью ω в силу префиксности C') \Rightarrow можно сократить кодовую последовательность a, создав более оптимальный код (?!).

 \Rightarrow из оптимальности C' следует l(a) = l(b). Пусть $c'(b) = \omega 1$, тогда, если $\exists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = c'(x), c(x) = c'(a), \forall z \in \Lambda, z \neq a, z \neq x \ c(z) = c'(z)$.

Если $\nexists x \in \Lambda : c'(x) = \omega 0$, то построим ОПК $C : c(a) = \omega 0$, $\forall z \in \Lambda, z \neq a \ c(z) = c'(z)$.

<u>Lm</u> 1.1.6 (Лемма об ОПК для расширенного алфавита). Пусть $a,b \in \Lambda, a \neq b$ — символы с намиеньшими вероятностями. $\Lambda' = \Lambda \setminus \{a,b\} \cup \{ab\}$, где $ab \notin \Lambda$, p(ab) = p(a) + p(b). Пусть C'

– ОПК для $\Lambda', c'(\underline{ab}) = \omega$. Тогда для Λ код $C: c(a) = \omega 0, c(b) = \omega 1, \forall x \in \Lambda, x \neq a, x \neq b$ c(x) = c'(x) будет ОПК.

Доказательство. $l(a)p(a)+l(b)p(b)=(l'(\underline{ab})+1)(p(a)+p(b))=l'(\underline{ab})p(\underline{ab})+p(\underline{ab})$. Тогда $\mathbb{E}l=\mathbb{E}l'+p(\underline{ab})$.

Пусть \overline{C} – ОПК для Λ и $\mathbb{E}\overline{l}$ < $\mathbb{E}l$. По лемме о соседстве: $\overline{c}(a) = \gamma 0, \overline{c}(b) = \gamma 1$. Построим \overline{C}' для $\Lambda': \overline{c}'(ab) = \gamma$ и $\forall x \in \Lambda, x \neq a, x \neq b$ $\overline{c}'(x) = \overline{c}(x)$.

 \overline{C}' – префиксный? По Лемме о кратчайшем префиксе $\not\equiv$ символа с кодовой последовательностью длины > $\overline{l}(a)$. Никакой символ не мог иметь кодовую последовательность γ , т.к. \overline{C} префиксный. Единственные две последовательности длины $\overline{l}(a)$, начинающиеся на γ – это коды a и b. Но их нет в Λ' . При этом $\mathbb{E}\overline{l} = \mathbb{E}\overline{l}' = p(-ab_-)$. По предположению $\mathbb{E}l' + p(-ab_-) = \mathbb{E}l > \mathbb{E}\overline{l} = \mathbb{E}\overline{l}' + p(-ab_-)$

(?!) оптимальности
$$C'\Rightarrow \mathbb{E}\bar{l}\geqslant \mathbb{E}l$$
, но т.к. $\overline{C}-\mathrm{O}\Pi\mathrm{K}\Rightarrow \mathbb{E}\bar{l}=\mathbb{E}l$ и $C-\mathrm{O}\Pi\mathrm{K}$.

Задача: нужно построить ОПК на алфавите Λ , $|\Lambda| = M$. По лемме об ОПК для расширенного алфавита задачу построения ОПК можно свести к такой же задаче, но с исходным алфавитом с числом букв на единицу меньше, и с набором вероятностей, получющимся из первоначального сложением двух наименьших вероятностей.

Уменьшаем пока не получится алфавит из двух букв. ОПК для алфавита из 2-х букв – $\{0,1\}$. Строже: $\Lambda_0 := \Lambda$. $\forall k \in 0...(M-3)$ берем $a_k, b_k \in \Lambda_k : \forall x \in \Lambda_k, x \neq a_k, x \neq b_k \ p(a_k) \leqslant p(b_k) \leqslant p(x)$ и построим $\Lambda_{k+1} = \Lambda_k \setminus \{a_k, b_k\} \cup \{a_k b_k\}...$

Для $\Lambda_{M-2} = \{a_{M-2}, b_{M-2}\}$ оптимальным будет код $C_{M-2} : c_{M-2}(a_{M-2}) = 0, c_{M-2}(b_{M-2}) = 1$, т.к. для него $\mathbb{E}l_{M-2} = 1$.

Теперь для $k \in 1...(M-2)$ есть ОПК C_k для Λ_k . По лемме об ОПК для расширенного алфавита строится ОПК C_{k-1} для Λ_{k-1} такой, что $c_{k-1}(a_{k-1}) = c_k(a_{k-1}b_{k-1})0$, $c_{k-1}(b_{k-1}) = c_k(a_{k-1}b_{k-1})1$, $\forall x \in \Lambda_k, x \neq a_{k-1}b_{k-1}$ $c_{k-1}(x) = c_k(x)$.

Выполняем, пока не получится C_0 – ОПК для Λ_0 = Λ .

Пример 1.1.7. $\Lambda_0 = \{a, b, c, d, e, f, g\}, p(a) = 0.13, p(b) = 0.08, p(c) = 0.25, p(d) = 0.18, p(e) = 0.03, p(f) = 0.12, p(g) = 0.21.$

$$a_0$$
, = e, b_0 = b, Λ_1 = $\{a, \underbrace{e, b}, c, d, f, g\}, p(a)$ = $0.13, p(\underbrace{eb})$ = $0.11, p(c)$ = $0.25, p(d)$ = $0.18, p(f)$ =

$$0.12, p(g) = 0.21.$$
 $a_1 = \underbrace{eb}, b_1 = f, \Lambda_2 = \{a, \underbrace{ebf}, c, d, g\}, p(a) = 0.13, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(d) = 0.18, p(g) = 0.21.$ $a_2 = a, b_2 = d, \Lambda_3 = \{\underbrace{ad}, \underbrace{ebf}, c, g\}, p(\underbrace{ad}) = 0.31, p(\underbrace{ebf}) = 0.23, p(c) = 0.25, p(g) = 0.21.$ $a_3 = g, b_3 = \underbrace{ebf}, \Lambda_4 = \{\underbrace{ad}, \underbrace{gebf}, c\}, p(\underbrace{ad}) = 0.31, p(\underbrace{gebf}) = 0.44, p(c) = 0.25.$ $a_4 = c, b_4 = \underbrace{ad}, \Lambda_5 \{\underbrace{cad}, \underbrace{gebf}\}, p(\underbrace{cad}) = 0.56, p(\underbrace{gebf}) = 0.44.$ Тогда $c_5(\underbrace{gebf}) = 0, c(\underbrace{cad}) = 1.$

Теперь раскрываем алфавит обратно:

$$c_4(gebf) = 0, c_4(c) = 10, c_4(ad) = 11.$$

$$c_3(g) = 00, c_3(ebf) = 01, c_3(c) = 10, c_3(\underline{ad}) = 11.$$

$$c_1(g) = 00, c_1(-eb^-) = 010, c_1(f) = 011, c_1(c) = 10, c_1(a) = 110, c_1(d) = 111.$$

$$c_0(g) = 00, c_0(e) = 0100, c_0(b) = 0101, c_0(f) = 011, c_0(c) = 10, c_0(a) = 110, c_0(d) = 111.$$

1.2. Неравенство Крафта

Пусть задан набор длин $l_1,...,l_m$, не все обязательно различны. Может ли такой набор оказаться набором длин некоторого префиксного кода.

Теорема 1.2.1. Для того, чтобы набор длин $l_1,...,l_m$ мог быть набором длин кодовых последовательностей некоторого ΠK для алфавита из m символов необходимо и достаточно, чтобы $\sum_{i=1}^{m} 2^{-l_i} \leq 1.$

Доказательство. " ⇒ ". Пусть ∃ префиксный код для алфавита с кодовыми последовательностями с длинами $l_1,...,l_m$. множество кодовых последовательностей – набор всех путей на двоичном дереве от корня к листьям.

Корень – нулевой уровень. Далее последовательно увеличиваем номер по мере удаления от корня.

Каждой вершине v на уровне t сопоставим число $a(v) = 2^{-t}$

Пусть вершина v на уровне t – не лист. Т.е. на уровне t+1 есть ≥ 1 вершина, получившаяся из v. Обозначим её N(v). Тогда $a(v) \geqslant \sum_{u \in N(v)} a(u)$

Просуммируем неравенства для всех не листов:

$$\sum_{v \text{ не лист}} a(v) \geqslant \sum_{u \text{ не корень}} a(u)$$

 $\Rightarrow 2^0 \geqslant \sum_{\substack{u \text{ листья} \\ }} a(u)$. Необходимость доказана. " \Leftarrow ". Считаем, что выполнено неравенство и пусть $l_1 \leqslant l_2 \leqslant \ldots \leqslant l_m$ n_j — число листьев на уровне $j:n_j=|\{i:l_i=j, i\in 1:m\}|$

$$\sum_{i \in 1:m} 2^{-l_i} \geqslant 1 \Rightarrow \sum_{j \in 1:l_m} 2^{-j} n_j \leqslant \text{. Тогда } \forall j \in 1:l_m: n_j \leqslant 2^j - \left(2^{j-1} n_1 + \ldots + 2 n_{j-1}\right)$$

Пусть $m \neq 1$. Выделим на первом уровне вершин $n_1 \leqslant 2$, на втором уровне останется $2(2-n_1)$. Известно, что $n_2 \leqslant 2^2 - 2n_1 \Rightarrow$ осталось не меньше, чем требуется для второго уровня.

(j-1)-уровень: было свободно $2^{j-1}-\left(2^{j-2}n_1+\ldots+2n_{j-2}\right)$ и n_{j-1} не больше этой величины. Выделим n_{j-1} узлов, останется $2^{j-1}-\left(2^{j-2}n_1+\ldots+2n_{j-2}\right)-n_{j-1}$. Значит на j-м уровне будет $2\cdot(\ldots)=2^j-\left(2^{j-1}n_1+\ldots+2n_{j-1}\right)$

1.3. Напоминалка

Пусть S – конечное множество. |S| = n.

Пусть задана функция $f: S \to [0,1], \forall \omega \in S \exists ! f(\omega) \in [0,1]$

 $\sum_{\omega \in S} f(\omega) = 1$. Определим $\forall A \subseteq S$ величину $Pr(A) = \sum_{\omega \in A} f(\omega)$

 $\frac{\widetilde{\omega \in S}}{\Phi y}$ нкция f в общем-то и не нужна. Достаточно иметь \Pr

Def 1.3.1. (S, Pr) называется вероятностным пространством.

S – npocmpaнcmво элементарных событий.

 $\omega \in S$ – элементарное событие (ucxod). $A \subseteq S$ – событие. Pr(A) – вероятность A.

 $A, B \subseteq S, Pr(A \cap B) = 0$ – несовместные события.

Свойства вероятности:

- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- $Pr(A) + Pr(S \backslash A) = 1$
- $Pr(A \cup B) \leq Pr(A) + Pr(B)$
- $Pr(A) = Pr(A \backslash B) + Pr(A \cap B)$

Неравенство Йенсена:

Def 1.3.2. Функция f называется выпуклой на $X \in R$, если $\forall x_1, x_2 \in X$ и $\forall \alpha \in [0, 1]$ выполняется неравенство $f(\alpha x_1 + (1 - \alpha x_2) \leq \alpha f(x_1) + (1 - \alpha) f(x_2)$

Неравенство Йенсена: пусть f выпуклая на X функция. Тогда $f(\sum_{i=1}^{n} \alpha_i x_i) \leq \sum_{i=1}^{n} \alpha_i f(x_i)$, где

$$x_i \in X, \alpha_i \geqslant 0, \sum_{i=1}^n \alpha_i = 1.$$

Доказательство. База при n=2 верна по определению выпуклой функции. Пусть f – выпуклая на X функция. Тогда

$$f(\sum_{i=1}^{n+1} \alpha_i x_i) = f((1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} x_i + \alpha_{n+1} x_{n+1}) \leq (1 - \alpha_{n+1}) f(\sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} x_i) + \alpha_{n+1} f(x_{n+1}) \leq (1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_i}{1 - \alpha_{n+1}} f(x_i) + \alpha_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} \alpha_i f(x_i)$$

1.4. Конечная случайная схема

Def 1.4.1. Пусть $A_1, A_2, ..., A_n$ — разбиение множества исходов S вероятностного пространства (S, Pr). Конечной случайной схемой называется схема α , сопоставляющая каждому A_i вероятность $Pr(A_i)$

Def 1.4.2. Энтропией КСС называется
$$H(\alpha) = -\sum_{i=1}^{n} Pr(A_i) \times \log Pr(A_i)$$

Свойства энтропии:

- $H(\alpha) \geqslant 0$
- Энтропия характеризует неопределенность, заключенную в КСС
- Для любой $\alpha \subset k$ исходами справедливо $H(\alpha) \leq \log k$

Доказательство. $f(x) := -x \cdot \log x$. На [0,1] функция f(x) строго вогнутая \Rightarrow по неравенству Йенсена $\sum_{i=1}^{n} \lambda_i \cdot f(x_i) \leqslant f(\sum_{i=1}^{n} \lambda_i \cdot x_i)$, причём равенство $\Leftrightarrow x_1 = \dots = x_n$.

Тогда возьмём $x_i = Pr(A_i)$ и $\lambda_i = \frac{1}{k} \ \forall i \in 1...k$, получаем $\sum_{i=1}^k \frac{1}{k} (-Pr(A_i) \times \log Pr(A_i)) \leqslant$

$$\leq -\sum_{i=1}^{k} \frac{1}{k} Pr(A_i) \times \log(\sum_{i=1}^{k} Pr(A_i))$$

$$-\frac{1}{k} \sum_{i=1}^{k} Pr(A_i) \times \log Pr(A_i) \leq -\frac{1}{k} \log \frac{1}{k}$$

$$-\sum_{i=1}^{k} Pr(A_i) \times \log Pr(A_i) \leq \log k$$

Максимальная энтропия для КСС имеет схема с k равновероятностными исходами.

$$H(\alpha) = 0 \Leftrightarrow \exists!$$
 достоверный исход в α

Пусть есть КСС α с исходами $A_1,...,A_k$ и КСС β с исходами $B_1,...,B_l$. Их пересечением $\alpha \cap \beta$ называются КСС, исходы которой – $A_i \cap B_j$, $\forall i \in 1,...,k,j \in 1,...,l$

Тогда
$$H(\alpha \cap \beta) = -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i \cap B_j) \times \log Pr(A_i \cap B_j)$$

T.K.
$$Pr(A_i \cap B_j) = Pr(A_i) \times Pr(B_j | A_i) \Rightarrow H(\alpha \cap \beta) =$$

$$= -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times (\log Pr(A_i) + \log Pr(B_j | A_i)) =$$

$$= -\sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times \log Pr(A_i) - \sum_{i=1}^k \sum_{j=1}^l Pr(A_i) Pr(B_j | A_i) \times \log Pr(B_j | A_i) =$$

$$= -\sum_{i=1}^k Pr(A_i) \cdot \log Pr(A_i) \cdot \sum_{j=1}^l Pr(B_j | A_i) + \sum_{i=1}^k Pr(A_i) \cdot (-\sum_{j=1}^l Pr(B_j | A_i) \cdot \log Pr(B_j | A_i)) =$$

$$= -\sum_{i=1}^k Pr(A_i) \cdot \log Pr(A_i) + \dots = H(\alpha) + \dots$$

Def 1.4.3. Величину $H(\beta|A_i) := -\sum_{j=1}^{l} Pr(A_i) Pr(B_j|A_i) \cdot \log Pr(B_j|A_i)$ называют условной энтропией β при условии A_i

Def 1.4.4. Величину $H_{\alpha}(\beta) \coloneqq \sum_{i=1}^{k} Pr(A_i) \cdot H(\beta|A_i)$ называют средней условной энтропией β при условии α .

Таким образом, $H(\alpha \cap \beta) = H(\alpha) + H_{\alpha}(\beta)$ Докажем, что $0 \le H_{\alpha}(\beta) \le H(\beta)$ Неотрицательность следует из неотрицательности энтропий.

fix
$$j$$
, $f(x) = -x \cdot \log x$, $\lambda_i = Pr(A_i)$, $x_i = Pr(B_j|A_i) \quad \forall i \in 1...k$

Неравенство Йенсена: $\sum_{i=1}^{k} Pr(A_i) \cdot (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \le$

$$\leq \left(-\sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)\right) \cdot \log \sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)$$

$$\Pi \Psi = (-\sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i)) \cdot \log \sum_{i=1}^{k} Pr(A_i) \cdot Pr(B_j|A_i) =$$

$$= -\left(\sum_{i=1}^{k} Pr(B_j \cap A_i)\right) \cdot \log \sum_{i=1}^{k} Pr(B_j \cap A_i) = -Pr(B_j) \cdot \log Pr(B_j)$$

Просуммируем по ј: $\sum_{j=1}^{j} \sum_{i=1}^{k} Pr(A_i) \cdot (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \leq \sum_{j=1}^{l} (-Pr(B_j) \cdot \log Pr(B_j))$

$$\sum_{i=1}^{k} Pr(A_i) \cdot \sum_{j=1}^{l} (-Pr(B_j|A_i) \cdot \log Pr(A_i)) \le -\sum_{j=1}^{l} Pr(B_j) \cdot \log Pr(B_j)$$

$$\sum_{i=1}^{k} Pr(A_i) \cdot H(\beta|A_i) \leqslant H(\beta) \Rightarrow H_{\alpha}(\beta) \leqslant H(\beta)$$

 $H_{\alpha}^{i-1}(\beta) = H(\beta) \Leftrightarrow \text{все } Pr(B_i|A_i)$ равны между собой.

Формула полной вероятности: $\forall j \in 1...lPr(B_j) = \sum_{i=1}^k Pr(B_j|A_i) \cdot Pr(A_i)$

$$\forall j \in 1...lPr(B_j) = Pr(B_j|A_1) \cdot \sum_{i=1}^k Pr(A_i) = Pr(B_j|A_1).$$

То есть $\forall i \in 1...k, j \in 1...l$ $Pr(B_j) = Pr(B_j|A_i)$

Def 1.4.5. События A и B – взаимно независимы $\Leftrightarrow Pr(A \cap B) = Pr(A) \cdot Pr(B) \Leftrightarrow Pr(A) \cdot Pr(B|A) = Pr(A) \cdot Pr(B|A) = Pr(B|$

Def 1.4.6. $KCC \ \alpha \ u \ \beta$ называются независимыми, когда все исходы α независимы со всеми исходами β . В таком случае $H_{\alpha}(\beta)$ максимальна и равна $H(\beta)$

1.5. Количество информации

Def 1.5.1. Величина $I(\alpha, \beta) = H(\beta) - H_{\alpha}(\beta)$ называется количеством информации.

Свойства:

- $I(\alpha, \beta) \geqslant 0$
- $I(\alpha, \beta) = H(\beta) \Leftrightarrow H_{\alpha}(\beta) = 0$
- $I(\alpha, \beta) = I(\beta, \alpha)$
- $I(\alpha, \beta) = 0 \Leftrightarrow \alpha$ и β независимы.

Пример:

Загадано натуральное число $x \in 1...N$

 β – опыт, состоящий в нахождении х, β_m – опыт, показывающий, делится ли x на $m, m \in 1...N$.

 $У \beta$ есть N исходов, у β_m – два исхода.

$$H_{\beta_m}(\beta) = Pr(x : m) \cdot H(\beta | x : m) + Pr(x + m) \cdot H(\beta | x + m)$$

$$q := \left| \frac{N}{m} \right|$$
 — количество чисел от 1 до N, делящихся на m. Тогда $Pr(x : m) = \frac{q}{N}$, $Pr(x + m) = \frac{N-q}{N}$.

$$H(\beta|x;m) = -\sum_{i:m,i\in 1...m} \frac{1}{q} \cdot \log \frac{1}{q} = -\frac{q}{q} \cdot \log \frac{1}{q} = \log q.$$

Аналогично
$$H(\beta|x+m) = \log(N-q) \Rightarrow H_{\beta_m}(\beta) = \frac{q}{N} \cdot \log q + \frac{N-q}{N} \cdot \log(N-q)$$

$$I()\beta_{m},\beta) = \log N - \frac{q}{N} \cdot \log q - \frac{N-q}{N} \cdot \log(N-q) =$$

$$= \frac{q}{N} \cdot \log N - \frac{q}{N} \log q - \frac{N-q}{N} \cdot \log N - \frac{N-q}{N} \cdot \log(N-q) =$$

$$= -\frac{q}{N} \cdot \log \frac{q}{N} - \frac{N-q}{N} \cdot \log \frac{N-q}{N} \leq \log 2$$

Равенство достигается при $q=N-q=\frac{N}{2}.$

Данетки:

Загадано число от 1 до N.

Опыт β – угадать число.

Опыт α – задать любой общий (да/нет) вопрос и получить ответ.

 $H(\beta) = \log N$ (Числа загаданы с равной вероятностью)

 $H(\alpha) \leq \log 2$ (Поскольку есть всего 2 варианта ответа)

 $H(\alpha_1\alpha_2...\alpha_k) \leq \log 2^k = k \log 2$ (k вопросов, 2 варианта ответа)

Чтобы угадать число потребуется $k \geqslant \frac{\log N}{\log 2} = \log_2 N$ вопросов.

Есть ли алгоритм, который умеет угадывать загаданное число за $O(\log N)$.

Избыточное кодирование:

Есть сообщение $u \in \{0,1\}^k$, которое нужно передать.

Можем передавать сообщение $x(u) \in \{0,1\}^n, n \ge k$, содержащую некоторую избыточную информацию (канал связи шумит и может допускать ошибки), но не более d ошибок на сообщение. β заключается в нахождении всех d ошибок. Сколько у β исходов? Для каждого количества

ошибок j от 0 до d есть $\binom{n}{j}$ вариантов их расположения, то есть всего исходов у β ровно $\sum_{i=0}^{d} \binom{n}{j}$

Следовательно, $H(\beta) = \log \sum_{j=0}^{d} \binom{n}{j}$

 α – дополнительное сообщение размера n-k. Их 2^{n-k} и $\Rightarrow H(\alpha) = \log 2^{n-k} = (n-k) \log 2$ Чтобы гарантированно найти все ошибки нужно $H(\alpha) \geqslant H(\beta)$

$$(n-k)\log 2 \ge \log \sum_{j=0}^{d} {n \choose j} \Rightarrow n-k \ge \log_2 \sum_{j=0}^{d} {n \choose j} \Rightarrow k \le n - \log_2 \sum_{j=0}^{d} {n \choose j}$$

Таким образом, если канал связи допускает не более d ошибок, то для передачи сообщения размером k понадобится не менее $k + \log_2 \sum_{j=0}^d \binom{n}{j}$.

Или, поскольку количество ошибок обычно зависит от размера переданного сообщения, если передаётся ${\bf n}$ бит и из них не более d могут быть ошибочными, то в переданном сообщении

можно закодировать сообщение длиной не более $n - \log_2 \sum_{j=0}^d \binom{n}{j}$.

Код Хэмминга:

Предыдущая задача при d=1. Известно, что $2^{n-k}\geqslant \sum_{j=0}^{1}\binom{n}{j}=1+n.$

 $l \coloneqq n - k$ – длина "избыточного сообщения". Тогда $k \le 2^l - l - 1$.

Чем большее сообщение, тем относительно меньше лишней информации. Как передавать дополнительную информацию?

Пример:

Пусть $\mathbf{k}=12$ и мы хотим передать сообщение u=101101011100. Зарезервируем в сообщении длины 17 места с номерами $2^i(1,2,4,8,16)$, а на остальные позиции запишем сообщение: $x_0(u)=1$ 011 0101110 0

Подберём на позицию 2^i такую цифру, чтобы произведение x(u) и i-й строки матрицы было равно 0. На "неопределенных" позициях в строке с номером i стоят $0(2^j = 10...0)$.

На позиции 2^i в i-й строке стоит 1.

$$?*1+_*0+1*1+_**0+0*1+1*0+1*1+_**0+0*1+1*0+0*1+1*0+1*1+1*0+0*1+_**0+0*1==?+1+1+1=1+?=0 \Rightarrow ?=1.$$

Получается $x_1 = 1_1_011_0101110_0$

Аналогично делаем для остальных. Итого x(u) = 111101100101111000

Как определять позицию ошибки? y = 11110110000111000

Посчитаем $A \times y^T = (0, 1, 0, 1, 0)^T$ — двоичная запись позиции с ошибкой.

Старший бит – справа. Почему так?