แบบฝึกหัด

- 1. กำหนดแอทริบิวต์ดังต่อไปนี้ จงจำแนกประเภทของแอทริบิวต์ว่าเป็นแอทริบิวต์เชิงคุณภาพ (qualitative) ชนิดใด (nominal, ordinal) หรือเป็นแอทริบิวต์เชิงปริมาณ (quantitative) ชนิดใด (interval, ratio) นอกจากนี้ให้จำแนกด้วย ว่าแอทริบิวต์แต่ละตัวมีชนิดเป็น Binary, Discrete, หรือ Continuous
 - (ก) เวลาในรูปแบบ AM หรือ PM
 - (ข) ความสว่างที่วัดโดยมิเตอร์วัดแสง
 - (ค) ความสว่างที่วัดจากความรู้สึกของมนุษย์

- (ง) มุมที่วัดเป็นองศาระหว่าง 0 ถึง 360
- (จ) เหรียญทอง เหรียญเงิน เหรียญทองแดง ของกีฬาโอลิมปิก
- (ฉ) ความสูงจากระดับน้ำทะเล
- (ช) จำนวนผู้ป่วยในโรงพยาบาลแห่งหนึ่ง
- (ซ) เลข ISBN ของหนังสือ
- (ฌ) ความหนาแน่นของสสารหน่วยเป็น กรัมต่อลูกบาศก์เซนติเมตร
- (ญ) ระยะทางจากจุดศูนย์กลางของวิทยาเขตหน่วยเป็นเมตร
- (ฏ) ชั้นยศของกองทัพ
- (ฏ) ความสามารถในการส่งผ่านคลื่นแสง: opaque translucent transparent
- 2. จงยกตัวอย่างสถาณการณ์ที่ identification numbers (รหัสประจำตัว) น่าจะมีประโยชน์สำหรับการทำนาย
- 3. ปริมาณใดต่อไปนี้ที่มีคุณสมบัติ spatial autocorrelation : daily rainfall หรือ daily temperature และทำไมจึงเป็น เท่นนั้น
- 4. โปรแกรมเมอร์คนหนึ่งได้ออกแบบอัลกอริทึม k-nearest neighbors ดังนี้

Algorithm 2.1 Algorithm for finding K nearest neighbors.

- 1: for i = 1 to number of data objects do
- 2: Find the distances of the i^{th} object to all other objects.
- 3: Sort these distances in decreasing order.
 (Keep track of which object is associated with each distance.)
- 4: **return** the objects associated with the first K distances of the sorted list
- 5: end for
- (ก) จงอภิปรายว่าจะมีปัญหาอะไรเกิดขึ้นได้บ้างกับอัลกอริทึมนี้ ถ้าดาต้าเซตมีข้อมูลซ้ำ (duplicates)
- (ข) จงเสนอวิธีการแก้ไขปัญหาที่เกิดจากการมีข้อมูลซ้ำซ้อนในดาต้าเซต
- 5. คำนวณค่า cosine, correlation, Jaccard และ Euclidean distance ของ ดาต้าอ็อบเจ็กต์ x และ y ดังต่อไปนี้
 - (a) x = (1, 1, 1, 1), y = (2, 2, 2, 2)
 - (\mathfrak{V}) $\times = (0, 1, 0, 1), y = (1, 0, 1, 0)$
 - $(P) \times = (0, -1, 0, 1), y = (1, 0, -1, 0)$
- 6. คำนวณค่า Mutual information ของดาต้าอ็อบเจ็กต์ x และ y ดังต่อไปนี้
 - (a) x = (-7, -2, 1, 0, 1, 2), y = (9, 4, 1, 0, 4, 1)
 - (9) $\times = (1,1,1,1), \vee = (2,2,2,2)$

เอกสารอ้างอิง

[1] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar. "Introduction to Data Mining". Pearson, 2nd edition, 2018.

- 1. ก.) เชิงคุณภาพ ชนิด nominal แบบ binary
 - ข.) เชิงปริมาณ interval แบบ continuous
 - ค.) เชิงคุณภาพ ordinal แบบ discrete
 - ง.) เชิงปริมาณ ratio แบบ continuous
 - จ.) เชิงคุณภาพ ordinal แบบ discrete
 - ฉ.) เชิงปริมาณ interval แบบ continuous
 - ช.) เชิงปริมาณ interval แบบ discrete
 - ซ.) เชิงคุณภาพ nominal แบบ discrete
 - ฌ.) เชิงปริมาณ ratio แบบ continuous
 - ญ.) เชิงปริมาณ interval แบบ continuous
 - ฎ.) เชิงคุณภาพ ordinal แบบ discrete
 - ฎ.) เชิงปริมาณ ratio แบบ continuous
- 2. ต้องการรู้ช่วงอายุ
 - ต้องการรู้ช่วงปีจบ
 - ต้องการรู้วิชาที่น่าจะเรียนในปัจจุบัน
- 3. daily temperature เพราะ ข้อมูลจากพื้นที่หนึ่งที่ได้นั้นจะมีค่าใกล้เคียงกลับพื้นที่ ๆ อยู่ใกล้ ๆ
- ก. มีประสิทธิภาพต่ำจากการที่ต้องนำตัวซ้ำมาประมวลผลร่วมด้วย
 - ได้เพื่อนบ้านที่เป็นตัวซ้ำกับตัวต้น
 - หากมีตัวใกล้ ๆ เป็นตัวซ้ำอาจทำให้เพื่อนบ้านที่ได้มีแต่ตัวนั้น ๆ
 - ข. จัดรวมกลุ่มตัวซ้ำเป็นกลุ่มเดียวกันแล้วให้นับกลุ่มนั้นเป็น data object ตัวหนึ่ง

5.)

ก. cosine

$$< x,y> = 1*2 + 1*2 + 1*2 + 1*2 = 8$$

$$||x|| = (1^2 + 1^2 + 1^2 + 1^2)^{1/2} = 2$$
 $||y|| = (2^2 + 2^2 + 2^2 + 2^2)^{1/2} = 4$

Cosine = 8/2*4 = 1

Correlation mean(x) =
$$(1+1+1+1)/4 = 1$$
 mean(y) = $(2+2+2+2)/4 = 2$

$$S_x = (1/4 - 1*((1-1)^2 + (1-1)^2 + (1-1)^2 + (1-1)^2))^{1/2} = 0 \qquad S_v = (1/4 - 1*((2-2)^2 + (2-2)^2 + (2-2)^2 + (2-2)^2))^{1/2} = 0$$

$$S_{xy} = (1/4 - 1*((1-1)(2-2) + (1-1)(2-2) + (1-1)(2-2) + (1-1)(2-2)))^{1/2} = 0$$

Correlation = 0/0*0 = 0

Jaccard

$$f_{1,2} = 4$$

$$J = 0/4 = 0$$

Euclidean distance

$$d(x,y) = ((1-2)^2 + (1-2)^2 + (1-2)^2 + (1-2)^2)^{1/2} = 2$$

ข.) cosine

$$\langle x,y \rangle = 0*1 + 1*0 + 0*1 + 1*0 = 0$$

$$\|x\| = (0^2 + 1^2 + 0^2 + 1^2)^{1/2} = 2^{1/2} \qquad \qquad \|y\| = (1^2 + 0^2 + 1^2 + 0^2)^{1/2} = 2^{1/2}$$

$$||y|| = (1^2 + 0^2 + 1^2 + 0^2)^{1/2} = 2^{1/2}$$

Cosine = $0/2^{1/2}*2^{1/2} = 0$

Correlation mean(x) = (1+0+1+0)/4 = 1/2 mean(y) = (0+1+0+1)/4 = 1/2

mean(y) =
$$(0+1+0+1)/4 = 1/2$$

 $S_x = (1/4 - 1*((1 - 1/2)^2 + (0 - 1/2)^2 + (1 - 1/2)^2 + (0 - 1/2)^2))^{1/2} = 1/3^{1/2} \\ S_y = (1/4 - 1*((0 - 1/2)^2 + (1 - 1/2)^2 + (0 - 1/2)^2 + (1 - 1/2)^2))^{1/2} = 1/3^{1/2}$

 $S_{xy} = (1/4 - 1*((1 - 1/2)(0 - 1/2) + (0 - 1/2)(1 - 1/2) + (1 - 1/2)(0 - 1/2) + (0 - 1/2)(1 - 1/2)))^{1/2} = (-1/3)^{1/2}$

Correlation = $(-1/3)^{1/2}/(1/3)^{1/2}*(1/3)^{1/2} = 1/(-1/3)^{1/2}$

Jaccard

$$f_{1,0} = 2$$
 $f_{0,1} = 2$

$$J = 0/2 + 2 = 0$$

Euclidean distance

$$d(x,y) = ((1-0)^2 + (0-1)^2 + (1-0)^2 + (0-1)^2)^{1/2} = 2$$

ค. cosine

$$\langle x,y \rangle = 0*1 + -1*0 + 0*-1 + 1*0 = 0$$

$$\|x\| = (0^2 + 1^2 + 0^2 + (-1)^2)^{1/2} = 2^{1/2} \qquad \|y\| = (1^2 + 0^2 + (-1)^2 + 0^2)^{1/2} = 2^{1/2}$$

Cosine = $0/2^{1/2}*2^{1/2} = 0$

Correlation mean(x) = (0+1+0-1)/4 = 0 mean(y) = (1+0-1+0)/4 = 0

 $S_x = (1/4 - 1*((0-0)^2 + (1-0)^2 + (0-0)^2 + (-1-0)^2))^{1/2} = 2/3^{1/2} \\ S_y = (1/4 - 1*((1-0)^2 + (0-0)^2 + (-1-0)^2 + (0-0)^2))^{1/2} = 1/3^{1/2}$

 $S_{xy} = (1/4 - 1*((0-0)(1-0) + (1-0)(0-0) + (0-0)(-1-0) + (1-0)(0-0)))^{1/2} = 0$

Correlation = $0/1/3^{1/2}*1/3^{1/2} = 0$

Jaccard

$$\mathsf{F}_{0,1} = 1 \qquad \ \, \mathsf{f}_{\text{-}1,0} = 1 \qquad \ \, \mathsf{f}_{0,\text{-}1} = 1 \qquad \ \, \mathsf{f}_{\text{-}1,0} = 1$$

$$J = 0/(1+1+1+1) = 0$$

Euclidean distance

 $d(x,y) = ((0-1)^2 + (1-0)^2 + (0-(-1))^2 + (-1-0)^2)^{1/2} = 2$

6. ก.

X _j	$P(X=x_j)$	$-P(X=x_{j}log_{2}P(X=x_{j})$
-7	1/6	0.43082
-2	1/6	0.43082
0	1/6	0.43082
1	2/6	0.52832
2	1/6	0.43082
H(x)		2.2516

Y_k	$P(Y=y_k)$	$-P(Y=y_k)log_2P(Y=y_k)$	
0	1/6	0.43082	
1	2/6	0.52832	
4	2/6	0.52832	
9 1/6		0.43082	
H(y)		1.91828	

x _j	Y _k	$P(X=x_j, Y=y_k)$	$-P(X=x_j, Y=y_k) \log_2 P(X=x_j, Y=y_k)$
-7	9	1/6	0.43082
-2	4	1/6	0.43082
1	1	1/6	0.43082
0	0	1/6	0.43082
1	4	1/6	0.43082
2	1	1/6	0.43082
H(x,y)			2.58492

l(x,y) = 2.2516+1.91828-2.58492 = 1.58496

ข.

x_j $P(X=x_j)$		$-P(X=x_j)log_2P(X=x_j)$	
1 4/4		0	
	H(x)	0	

Y _k P(Y=y _k) 2 4/4		$-P(Y=y_k)log_2P(Y=y_k)$	
		0	
H(y)		0	

X _j	Y_k	$P(X=x_j, Y=y_k)$	$-P(X=x_j, Y=y_k) \log_2 P(X=x_j, Y=y_k)$		
1	2	4/4	0		
H(x,y)			0		

I(x,y) = 0+0-0 = 0

Data objects

ชนิดของแอทริบิวต์

ประโภทของข้อมูล
• ชุดบ้อมูล ก็อ กลุ่มของ data objects ประกอบถ้าย Attributes กีบอกลึกษณะ

ตารางที่ 2.1. ชุดข้อมูลนิสิต (Student Information Data Set) Attributes

\sim			
ลำดับที่	รหัสนิสิต	ชั้นปี	เกรดเฉลี่ยสะสม
1	1034261	2	2.75
2	1034262	3	3.24
3	1034263	2	3.51
4	1034265	1	2.99
5	1034266	3	3.12

คำอธิบาย

Attributes vol Data objects ธามาภาเปลี่บน เปลาไล้กาลอด เล่น อพ หน้าที่ผู้หญาใช้บ-ถูงแล

โอเปอเรชั่น

การแน่งประเภทของ Attributes โดย Operation ของระบบจำนวห

ตารางที่ 2.2. ชนิดของแอทริบิวต์

ตัวอย่าง

อนทองเซอม รถ รพ		M 1000 10	NI GOR IA	เอเบอเงชน
Categorical Nominal (เชิงคุณภาพ)		ค่าของ Nominal attribute สามารถใช้ใน	รหัสไปรษณีย์	ฐานนิยม,
		การแยกแยะดาต้าอ็อบเจ็กต์ได้	รหัสพนักงาน	entropy,
		ด้วยโอเปอเรชั่น Distinctness (=, ≠)	สีตา	contingency correlation,
			เพศ	Chi-squared test
	Ordinal	มีคุณสมบัติและโอเปอเรชั่น Distinctness	ความแข็งของแร่ธาตุ,	มัธยฐาน, เปอร์เซ็นต์ไทล์,
	N. binary	เช่นเดียวกันกับ Nominal attributes และ	เกรด {A, B+, B, C+,	rank correlation, run
	a. Discote	ค่าของ Ordinal attribute สามารถใช้ในการ	C, D+, D, F},	tests, sign tests
		เรียงลำดับดาต้าอ็อบเจ็กต์ได้ ด้วยโอเปอเรชั่น		
		Order (<, >)		
Numeric	Interval	มีคุณสมบัติและโอเปอเรชั่น Distinctness	อุณหภูมิในหน่วย	ค่าเฉลี่ย,
(เชิงปริมาณ)		และ Order เช่นเดียวกันกับ Nominal	องศาเซลเซียส หรือ	ส่วนเบี่ยงเบนมาตรฐาน,
		attributes และ Ordinal attributes	องศาฟาเรนไฮด์,	Pearson's correlation,
		นอกจากนี้ ความแตกต่างระหว่าง interval	วันที่ตามปฏิทิน	t-test, F-test
		attributes สองค่า คำนวณได้ด้วยโอเปอ	1000	
		เรชั่น Addition (+, -) สามารถตีความได้		
		กล่าวคือ interval attributes จะมีหน่วยของ		
		การวัด		
	Ratio	มีคุณสมบัติและโอเปอเรชั่น Distinctness,	อุณหภูมิในหน่วยเคล	ค่าเฉลี่ยเรขาคณิต,
	v. J.continuous	Order, และ Interval เช่นเดียวกันกับ	วิน (Kelvin), อายุ,	ค่าเฉลี่ยฮาร์มอนิค,
	1.5001.100002	Nominal attributes, Ordinal attributes,	มวล, ความยาว,	เปอร์เซ็นต์ความผันแปร
		และ Interval attributes	กระแสไฟฟ้า	
		นอกจากนี้ อัตราส่วนของ ratio attributes		
		ซึ่งคำนวณได้โดยใช้โอเปอเรชั่น		
		Multiplication (x, /) สามารถตีความได้		

กหภานของว การแล้งพุทากสภามของล โมอนายามอยู่บบบบาทางการบางหมาง เดิดหลาแก้ง ไข้ รับสุท 1. เกกหีกล้าแร้ง ภาร ครวจจับและการเป็งปัญญา ถณฑมบังมล 2. กา ใช้อิคกอกวัก็มาการกำเหมือง ข้อมูลกี่ทนากน ต่อข้อมูลกุฬ ภาน ต่ำ • ความผิจผลาถจากการโก อื่อ คือมู่ หูปังบาทซุก บุงกุรที่อนู่ เทกาะบุกมรฤษย์ ปู่ผู้มห ปังขบกกุรที่ขึ้นมหัก เส ยาปู่ง

กาน ผิกผลาก สมการ วิก และ กรเคีย บ่อนุล

บุง กาน นามหกอห์ ราบูบาย เมาการห พบคลบ กอง ทศ ค.ก. กอง ลูบบบ กอง อุโบง พ. ไช้น ข้อมล รบภาพ เจ๋อ มลเพื่อม , กามลำเอียง , กาม เที่ยง พรง และ กา ม แม่นยำ

• กาเพติก พลาก จากการเก็บบ้อมล

โพสา ย์เพมหนุเบุกากองขุกมา การค้นผาใช้งาห

แพ่ปัญนาทั่วไป ของฤพภาพ คำไป ใช้งาพ พี 3 อย่าง

1. Timelines Iron 94 MITINU 2. Relevance ข้อผูล ทุกชั้น ก็จ้าเป็นกัญ ใช้การใกราะห์

3. Knowledge about the Data AMMINION SOS

P-11HH Present

- ใน 8 กะแพนกรับ พี่เนื้อนา เมิ่นเตินใน มูกซิกเลน อร์บายน่าฝัง - ผ้า 2 กรมผน เพราะ ฝกศิกลิกผีกแม่จบ ผกเพื่อเยอะไป