Dmitry Sidnev
Summer Camp 2022

Object tracking.

Overview of modern approaches

План:

- 1. Постановка задачи
- 2. Датасеты и челленджи
- 3. Метрики
- 4. Deep learning подходы

Постановка задачи

На заданной последовательности кадров построить траектории объектов

Постановка задачи. Пример

- Есть некоторое помещение.
 Несколько входов, несколько выходов.
- По данным с камеры
 видеонаблюдения нужно
 определить сколько людей за день
 проходит из входа і в выход ј
- Решение: строить траектории пешеходов

Датасеты и челленджи

Самые популярные челленджи для трекинга:

- **MOTChallenge**: самый известный из всех benchmark'ов для 'multiple object tracking'
 - Содержит тренировочный и тестовый датасеты
 - Содержит так называемые `public` детекшены
 - Классы: пешеходы
 - Датасеты: MOT15, MOT16, MOT17, MOT20
 - https://motchallenge.net/
- **KITTI**: трекинг пешеходов и автомобилей
 - Собран с движущейся по улицам города машины
 - 21 видео для тренировки и 29 для теста
 - Можно загрузить результаты только для пешеходов или только для автомобилей
 - http://www.cvlibs.net/datasets/kitti/

- Классические метрики:
 - Mostly Tracked (MT) trajectories: количество ground-truth траекторий, которые корректно сопоставлены минимум на 80% кадров
 - Mostly Lost (ML) trajectories: количество ground truth траекторий, которые корректно сопоставлены менее, чем на 20% кадров
 - Fragments: найденные траектории, которые покрывают не более 80 % ground truth траектории
 - False trajectories: найденные траектории, которые не соответствуют ни одному объекту в ground truth
 - **ID switches**: количество изменений ID корректно сопоставленной траектории

- CLEAR (Classification of Events, Activities and Relationships) MOT metrics:
 - **FP**: количество false positives на всем видео
 - FN: количество false negatives на всем видео
 - **Fragm**: общее количество фрагментов
 - **IDSW**: общее количество "перескоков" ID
 - Multiple object tracking accuracy (**MOTA**) $MOTA = 1 \frac{(FN + FP + IDSW)}{GT}$
 - Multiple object tracking precision (MOTP) $MOTP = \frac{\sum_{t,i} d_{t,i}}{\sum_{t} c_{t}}$

h1, h2, h5 – треки, полученные нашим алгоритмом O1, O2, O3 – ground truth

• **ID scores**: вместо сопоставления ground truth и задетектированных объектов покадрово сопоставление выполняется более глобально и каждая траектория из ground truth соответствует только одной найденной траектории с максимальным количеством корректных кадров

• Identification precision:
$$IDP = \frac{IDTP}{IDTP + IDFP}$$

• Identification recall:
$$IDR = \frac{IDTP}{IDTP + IDFN}$$

• Identification F1:
$$IDF1 = \frac{2}{\frac{1}{IDP} + \frac{1}{IDR}} = \frac{2IDTP}{2IDTP + IDFP + IDFN}$$

Deep learning подходы: online vs offline

- Offline (or Batch) алгоритмы могут использовать информацию с будущих кадров. Такие алгоритмы используют глобальную информацию и, как правило, дают лучше результат
- **Online** алгоритмы могут использовать только данные с текущего кадра и прошлых (в некоторых прикладных задачах это является необходимым условием, например автономное вождение)
 - Из-за невозможности использовать информацию из будущего данный алгоритм не может исправить ошибки в прошлом

SORT (Simple online and realtime tracking)

SORT - один из первых МОТ трекеров, который использовал нейронные сети для детектирования пешеходов.

- Использование в качестве детектора **Faster R-CNN** (только это улучшило метрику МОТА на 18.9% на датасете МОТ15)
- Прогнозирование движения объекта с помощью Kalman filter
- Связывание детекшенов с помощью **Hungarian algorithm**
- Использование intersection-over-union (IoU) для вычисления матрицы схожести

DeepSORT: evolution of the SORT algorithm

DeepSORT использует дополнительно к SORT алгоритму **appearance feature extractor**.

- Каждый детекшен с пешеходом пропускается через сверточную сеть с вектором размерностью 128 на выходе, который неким образом описывает внешние признаки пешехода
- В качестве критерия схожести пешеходов вычисляется евклидово или косинусное расстояние между векторами

https://arxiv.org/abs/1703.07402

Person re-identification based tracking

- Person re-identification
 модели ищут признаки,
 которые являются общими для
 одного и того же человека
- Модели тренируются отдельно на специальных датасетах (Market-1501, MSMT17 e.t.c.)
- Качество трекера сильно зависит от качества применяе мой Person re-identification модели

Multi camera multi-person tracking

- Более сложная подзадача трекинга когда мы имеем несколько камер (перекрывающихся или нет) и требуется отследить объект на всех камерах
- Основная сложность заключается в следующем:
 - Разные камеры могут иметь разное качество, разные уровни освещенности и т.д.
 - Люди попадают на камеры под разными ракурсами, что усложняет их идентификацию
- Самы простой способ решения задачи использование **Person re-identification** моделей

Siamese networks

- Сверточные сети с функцией потерь, которая объединяет информацию с разных изображений для обучения особенностям, которые наилучшим образом отличают объекты друг от друга
- Для использования в трекинге во вре мя инференса функция потерь откидывается и вектор, получаемый с последнего FC слоя может применяться для одиночного детекшена

Примеры использования Siamese networks

Similarity Mapping with Enhanced Siamese Network for Multi-Object Tracking

https://arxiv.org/abs/1609.09156

Примеры использования Siamese networks

Similarity Mapping with Enhanced Siamese Network for Multi-Object Tracking

Figure 3: Architecture of Enhanced Siamese Neural Network

Примеры использования Siamese networks

Deep Continuous Conditional Random Fields with Asymmetric Interobject Constraints for Online Multi-object Tracking

https://arxiv.org/abs/1806.01183

- Две области вырезаются в одном и том же месте на кадре t и t-1, конкатенируются и подаются на вход CNN
- Сверточная нейронная сеть на выходе дает оценку визуального перемещения объекта
- Для решения проблемы перекрытия оценивается скорость перемещения для каждой пары объектов
- Hungarian algorithm для сопоставления треклета и детекшена

LSTM ячейка

Детекшены кадр за кадром подаются на вход рекуррентной сети, которая на каждом очередном шаге использует состояние и веса предыдущего шага

Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies

- Алгоритм основан на обработке 3 характеристик объекта:
 - Внешние признаки
 - Перемещение (скорость движения)
 - Взаимодействие с другими объектами (пересечение)
- Каждая из характеристик вычисляется с помощью отдельной рекуррентной сети

https://arxiv.org/abs/1701.01909

Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies

- Все 3 характеристики объединяются и подаются на вход следующей рекуррентной нейронной сети
- Затем на выходе для каждой пары 'треклет – детекшен' получаем вектор для оценки схожести

Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies

Tracking The Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies

Accupancy map

Ключевые моменты:

- В качестве CNN для извлечения внешних признаков использовалась сеть VGG16
- CNN для извлечения внешних признаков тренировалась, как person re-identification модель
- Количество кадров, необходимое для LSTM зависит от видео и того, как долго объкты перекрываются на видео (для МОТ16 достаточно 6 кадров)
- Алгоритм показывает хорошие результаты на МОТ16

Occlusion handling in tracking multiple people using RNN

Ключевые моменты:

- Основная решаемая проблема перекрытия объектов или незадетекченные объекты, когда трек прерывается
- При помощи рекуррентной нейройнной сети предсказывают баундинг боксы в "будущем" или "прошлом"
- Треклеты, разнесенные во времени и удоволетворяющие заданным критериям, склеиваются в один непрерывный

https://ieeexplore.ieee.org/document/8451140

Occlusion handling in tracking multiple people using RNN

Алгоритм: на вход сети подаются величины ΔX , ΔY , ΔW , ΔH , описывающие изменение координат и размера баундинг бокса между двумя соседними кадрами, до тех пор пока треклет не прервется. Затем начинается фаза предсказания положения и размера баундинг бокса

Occlusion handling in tracking multiple people using RNN

$$overlap_1 + overlap_2 \ge stitch_thr$$

$$overlap_1 = \frac{T_1(t) \cap P_2(t)}{T_1(t) \cup P_2(t)},\tag{2}$$

$$overlap_2 = \frac{P_1(t + \Delta t) \cap T_2(t + \Delta t)}{P_1(t + \Delta t) \cup T_2(t + \Delta t)}.$$

(1) Критерий слияния двух треклетов основан на intersection over union (IoU) между:

- **Т1** треклет, который закончился на кадре t
- **T2** треклет, который является потенциальным кандидатом для слияния на кадре t + Δt
- P1 предсказанный баундинг бокс на кадре t + Δt для T1 (в будущем)
- **P2** предсказанный баундинг бокс на кадре t для T2 (т.е. в прошлом)

Сумма IoU между (T1, P2) и (T2, P1) должна удоволетворять условию (1)

Multiplex Labeling Graph for Near-Online Tracking in Crowded Scenes

https://ieeexplore.ieee.org/document/9098857

- Основная обозначенная проблема перекрытие объектов
- По видео проходит скользящее окно, которое охватывает N кадров
- Треклеты на первом кадре в данном окне имеют свои ID, строится однонаправленный граф для всех объектов, существующих в данном окне
- Каждая вершина графа (т.е. объект) может иметь больше одного ребра, т.е. разные треклеты могут иметь общие детекшены

Multiplex Labeling Graph for Near-Online Tracking in Crowded Scenes

$$S = S_m + S_a$$

S - критерий соединения вершин графа Sm – motion feature Sa – apperance feature

Пример работы трекера

Multiplex Labeling Graph for Near-Online Tracking in Crowded Scenes

RESULTS ON MOT CHALLENGE 2017 TEST(2020.2)

Method	MOTA↑	IDF1↑	MT↑	ML↓	FP↓	FN↓	FP+FN↓	IDS↓	FM↓	detector	type
MLT (ours)	54.8	62.9	24.2%	37.9%	19,118	234,303	253,421	1,077	2,188	public	batch
LSST17[57]	54.7	62.3	20.4%	40.1%	26,091	228,434	254,525	1,243	3,726	public	batch
Tracktor17[47]	53.5	52.3	19.5%	36.6%	12,201	248,047	260,248	2,072	4,611	public	batch
JBNOT[58]	52.6	50.8	19.7%	35.8%	31,572	232,659	264,231	3,050	3,792	public	batch
eTC17[59]	51.9	58.1	23.1%	35.5%	36,164	232,783	268,947	2,288	3,071	public	batch
eHAF[29]	51.8	54.7	23.4%	37.9%	33,212	236,772	269,984	1,834	2,739	public	batch
AFN17[51]	51.5	46.9	20.6%	35.5%	22,391	248,420	270,811	2,593	4,308	public	batch
FWT[60]	51.3	47.6	21.4%	35.2%	24,101	247,921	272,022	2,648	4,279	public	batch
NOTA[48]	51.3	54.5	17.1%	35.4%	20,148	252,531	272,679	2,285	5,798	public	batch
LSST170[57]	52.7	57.9	17.9%	36.6%	22,512	241,936	264,448	2,167	7,443	public	online
FAMNet[61]	52.0	48.7	19.1%	33.4%	14,138	253,616	267,754	3,072	5,318	public	online

Multiplex Labeling Graph for Near-Online Tracking in Crowded Scenes

MOT17 leaderboard (public detections)

Tracker	↑ MOTA	IDF1	MOTP	MT	ML	FP	FN	Recall	Precision	FAF	ID Sw.	Frag	Hz
MLT	75.3 ±12.0	75.5 ±5.9	81.7	1,161 (49.3)	459 (19.5)	27,879	109,836	80.5	94.2	1.6	1,719 (21.3)	1,737 (21.6)	5.9
1. 🔘 🗸	Y. Zhang, H. Sheng, Y. Wu, S. Wang, W. Ke, Z. Xiong. Multiplex Labeling Graph for Near Online Tracking in Crowded Scenes. In IEEE Internet of Things Journal, 2020.												
	67.8 ±15.4	61.4 ±10.8	78.3	848 (36.0)	578 (24.5)	20,982	157,468	72.1	95.1	1.2	3,475 (48.2)	5,668 (78.6)	1.4
MAT	67.1 ±13.1	69.2 ±10.0	80.8	917 (38.9)	622 (26.4)	22,756	161,547	71.4	94.7	1.3	1,279 (17.9)	2,037 (28.5)	11.5
3. 🔘 🗸	MAT: Motion-Aware Multi-Object Tracking												
RGCN_T 4. √	63.9 ±14.2	66.1 ±10.5	79.4	795 (33.8)	655 (27.8)	22,565	179,568	68.2	94.5	1.3	1,774 (26.0)	4,182 (61.3)	59.2
<u>SSAT</u> 5. ○ ✓	62.0 ±16.2	62.6 ±12.3	78.9	650 (27.6)	748 (31.8)	14,970	197,670	65.0	96.1	0.8	1,850 (28.5)	4,911 (75.6)	3.2
UnsupTrack 6.	61.7 ±16.0	58.1 ±11.1	78.3	640 (27.2)	762 (32.4)	16,872	197,632	65.0	95.6	1.0	1,864 (28.7)	4,213 (64.8)	2.0
	S. Karthik, A. Prabhu, V. Gandhi. Simple Unsupervised Multi-Object Tracking. In Arxiv, 2020.												
CTTrackPub 7.	61.5 ±16.1	59.6 ±12.2	78.9	621 (26.4)	752 (31.9)	14,076	200,672	64.4	96.3	8.0	2,583 (40.1)	4,965 (77.1)	17.0
	X. Zhou, V. Koltun, P. Kr"ahenb"uhl. Tracking Objects as Points. In ECCV, 2020.												
Lif_T	60.5 ±13.0	65.6 ±8.6	78.3	637 (27.0)	791 (33.6)	14,966	206,619	63.4	96.0	8.0	1,189 (18.8)	3,476 (54.8)	0.5
8. 🗸	A. Hornakova, R. Henschel, B. Rosenhahn, P. Swoboda. Lifted Disjoint Paths with Application in Multiple Object Tracking. In ICML, 2020.												

Pose tracking

Существует еще один челлендж - **pose tracking** (относительно новый), где необходимо сопровождать объект не по баундинг боксу, а по скелетону, полученному с помощью pose estimation сети: http://humaninevents.org/

- Помимо скелетонов так же доступна привычная аннотация с баундинг боксами
- Для участия доступны несколько треков, в том числе и Multi-person Motion Tracking
- Возможно трекинг на основе скелетонов может дать более точный результат, учитывая более точную информацию о положении человека на кадре относительно баундинг бокса

Заключение

Пример перекрытия объектов с последующим ID switch'ем

- Самая распространенная проблема в задаче трекинга - пересечение объектов, когда один из них частично или полностью перекрывает другой
- Сильное влияние детектора на качество трекинга
- Feature extractors необходимо тренировать отдельно, что требует дополнительных данных и времени для тренировки
- Более качественные решения более требовательны к ресурсам
- Как конкретное решение будет работать с другими камерами, в других условиях и .т.д.?

Al is coming...