CS1231 Chapter 7

Functions

7.1 Basics

Definition 7.1.1. Let A, B be sets. A function or a map from A to B is a relation f from A to B such that any element of A is f-related to a unique element of B, i.e.,

(F1) every element of A is f-related to at least one element of B, or in symbols,

$$\forall x \in A \ \exists y \in B \ (x,y) \in f;$$

(F2) every element of A is f-related to at most one element of B, or in symbols,

$$\forall x \in A \ \forall y_1, y_2 \in B \ \big((x, y_1) \in f \land (x, y_2) \in f \Rightarrow y_1 = y_2 \big).$$

We write $f: A \to B$ for "f is a function from A to B". Here A is called the *domain* of f, and B is called the *codomain* of f.

Remark 7.1.2. The negations of (F1) and (F2) can be expressed respectively as

- $(\sim F1) \exists x \in A \ \forall y \in B \ (x,y) \notin f$; and
- $(\sim F2) \exists x \in A \exists y_1, y_2 \in B \ ((x, y_1) \in f \land (x, y_2) \in f \land y_1 \neq y_2).$

Example 7.1.3. Let $A = \{u, v, w\}$ and $B = \{1, 2, 3, 4\}$.

- (1) $f = \{(\mathbf{v}, 1), (\mathbf{w}, 2)\}$ is not a function $A \to B$ because $\mathbf{u} \in A$ such that no $y \in B$ makes $(\mathbf{u}, y) \in f$, violating (F1).
- (2) $g = \{(\mathbf{u}, 1), (\mathbf{v}, 2), (\mathbf{v}, 3), (\mathbf{w}, 4)\}$ is not a function $A \to B$ because $\mathbf{v} \in A$ and $2, 3 \in B$ such that $(\mathbf{v}, 2), (\mathbf{v}, 3) \in g$ but $2 \neq 3$, violating (F2).
- (3) $h = \{(u, 1), (v, 1), (w, 4)\}$ is a function $A \to B$ because both (F1) and (F2) are satisfied.

Example 7.1.4. (1) $r = \{(x,y) \in \mathbb{R}_{\geqslant 0} \times \mathbb{R}_{\geqslant 0} : x = y^2\}$ is a function $\mathbb{R}_{\geqslant 0} \to \mathbb{R}_{\geqslant 0}$ because for every $x \in \mathbb{R}_{\geqslant 0}$, there is a unique $y \in \mathbb{R}_{\geqslant 0}$ such that $(x,y) \in r$, namely $y = \sqrt{x}$.

(2) $r_1 = \{(x,y) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} : x = y^2\}$ is not a function $\mathbb{R} \to \mathbb{R}_{\geqslant 0}$ because $-1 \in \mathbb{R}$ that is not equal to y^2 for any $y \in \mathbb{R}_{\geqslant 0}$, violating (F1).

(3) $r_2 = \{(x,y) \in \mathbb{R}_{\geqslant 0} \times \mathbb{R} : x = y^2\}$ is not a function $\mathbb{R}_{\geqslant 0} \to \mathbb{R}$ because $1 \in \mathbb{R}_{\geqslant 0}$ and $-1, 1 \in \mathbb{R}$ such that $1 = (-1)^2$ and $1 = 1^2$ but $-1 \neq 1$, violating (F2).

Question 7.1.5. Which of the arrow diagrams below represent a function from the LHS set 7a to the RHS set?

7.2 Images

Definition 7.2.1. Let $f: A \to B$.

- (1) If $x \in A$, then f(x) denotes the unique element $y \in B$ such that $(x, y) \in f$. We call f(x) the image of x under f.
- (2) The range of f, denoted range (f), is defined by

$$range(f) = \{ f(x) : x \in A \}.$$

Remark 7.2.2. It follows from the definition of images that if $f: A \to B$ and $x \in A$, then for all $y \in B$,

$$(x,y) \in f \quad \Leftrightarrow \quad y = f(x).$$

Example 7.2.3. The function $r: \mathbb{R}_{\geqslant 0} \to \mathbb{R}_{\geqslant 0}$ in Example 7.1.4(1) satisfies

$$\forall x,y \in \mathbb{R}_{\geqslant 0} \ \big(y=r(x) \Leftrightarrow x=y^2\big).$$

Note that range $(r) = \mathbb{R}_{\geqslant 0}$, because for every $y \in \mathbb{R}_{\geqslant 0}$, there is $x \in \mathbb{R}_{\geqslant 0}$ such that y = r(x), namely $x = y^2$.

Definition 7.2.4. A Boolean function is a function $\{T, F\}^n \to \{T, F\}$ where $n \in \mathbb{Z}^+$.

Example 7.2.5. We can view the inclusive or \vee as the Boolean function $d: \{T, F\}^2 \to \{T, F\}$ satisfying, for all $p, q \in \{T, F\}$,

$$d(p,q) = \begin{cases} F, & \text{if } p = F = q; \\ T, & \text{otherwise.} \end{cases}$$

22

Note that range(d) = {T, F}, because d(T, T) = T and d(F, F) = F.

Proposition 7.2.6. Let $f, g: A \to B$. Then f = g if and only if f(x) = g(x) for all $x \in A$.

Proof. (\Rightarrow) Assume f = g. Let $x \in A$. Then

$$(x, f(x)) \in f$$
 by the \Leftarrow part of Remark 7.2.2.

$$\therefore (x, f(x)) \in g$$
 as $f = g$.

$$\therefore f(x) = g(x)$$
 by the \Rightarrow part of Remark 7.2.2.

 (\Leftarrow) Assume f(x) = g(x) for all $x \in A$. For each $x \in A$ and each $y \in B$,

$$(x,y) \in f$$
 \Leftrightarrow $y = f(x)$ by Remark 7.2.2;
 \Leftrightarrow $y = g(x)$ by our assumption;
 \Leftrightarrow $(x,y) \in g$ by Remark 7.2.2.

So
$$f = g$$
.

Example 7.2.7. The descriptions of r and d in Examples 7.2.3 and 7.2.5 in terms of r(x) and d(p,q) uniquely characterize these functions by Proposition 7.2.6, and can thus serve as definitions of r and d.

Example 7.2.8. Let $f: \{0,2\} \to \mathbb{Z}$ and $g: \{0,2\} \to \mathbb{Z}$ defined by setting, for all $x \in \{0,2\}$,

$$f(x) = 2x$$
 and $g(x) = x^2$.

Then f = g by Proposition 7.2.6, because f(x) = g(x) for every $x \in \{0, 2\}$.

Example 7.2.9. Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Q} \to \mathbb{Q}$ defined by

$$\forall x \in \mathbb{Z} \ (f(x) = x^3) \text{ and } \forall x \in \mathbb{Q} \ (g(x) = x^3).$$

Then $f \neq g$ because (1/2, 1/8) is an element of g but not of f.

7.3 Composition

Proposition 7.3.1. Let $f: A \to B$ and $g: B \to C$. Then $g \circ f$ is a function $A \to C$. Moreover, for every $x \in A$,

$$(g \circ f)(x) = g(f(x)).$$

Proof. (F1) Let $x \in A$. Use (F1) for f to find $y \in B$ such that $(x, y) \in f$. Use (F1) for g to find $z \in C$ such that $(y, z) \in g$. Then $(x, z) \in g \circ f$ by the definition of $g \circ f$.

(F2) Let $x \in A$ and $z_1, z_2 \in C$ such that $(x, z_1), (x, z_2) \in g \circ f$. Use the definition of $g \circ f$ to find $y_1, y_2 \in B$ such that $(x, y_1), (x, y_2) \in f$ and $(y_1, z_1), (y_2, z_2) \in g$. Then (F2) for f implies $y_1 = y_2$. So $z_1 = z_2$ as g satisfies (F2).

These show $g \circ f$ is a function $A \to C$. Now, for every $x \in A$,

$$(x, f(x)) \in f$$
 and $(f(x), g(f(x))) \in g$ by the \Leftarrow part of Remark 7.2.2;
 \therefore $(x, g(f(x))) \in g \circ f$ by the definition of $g \circ f$;
 \therefore $g(f(x)) = (g \circ f)(x)$ by the \Rightarrow part of Remark 7.2.2.

Example 7.3.2. Let $f, g: \mathbb{Z} \to \mathbb{Z}$ such that for every $x \in \mathbb{Z}$,

$$f(x) = 3x$$
 and $g(x) = x + 1$.

By Proposition 7.3.1, for every $x \in \mathbb{Z}$,

$$(g \circ f)(x) = g(f(x)) = g(3x) = 3x + 1$$
 and $(f \circ g)(x) = f(g(x)) = f(x+1) = 3(x+1)$.

Note $(g \circ f)(0) = 1 \neq 3 = (f \circ g)(0)$. So $g \circ f \neq f \circ g$ by Proposition 7.2.6.

Definition 7.3.3. Let A be a set. Then the *identity function* on A, denoted id_A , is the function $A \to A$ which satisfies, for all $x \in A$,

$$id_A(x) = x.$$

Example 7.3.4. Let $f: A \to B$.

- (1) $f \circ id_A = f$ by Proposition 7.2.6, because Proposition 7.3.1 implies
 - $f \circ id_A$ is a function $A \to B$; and
 - $(f \circ id_A)(x) = f(id_A(x)) = f(x)$ for all $x \in A$.
- (2) $id_B \circ f = f$ by Proposition 7.2.6, because Proposition 7.3.1 implies
 - $id_B \circ f$ is a function $A \to B$; and
 - $(\mathrm{id}_B \circ f)(x) = \mathrm{id}_B(f(x)) = f(x)$ for all $x \in A$.

Question 7.3.5. Which of the following define a function $f: \mathbb{Z} \to \mathbb{Z}$ that satisfies $f \circ f = f$?

- (1) f(x) = 1231 for all $x \in \mathbb{Z}$.
- (2) f(x) = x for all $x \in \mathbb{Z}$.
- (3) f(x) = -x for all $x \in \mathbb{Z}$.
- (4) f(x) = 3x + 1 for all $x \in \mathbb{Z}$.
- (5) $f(x) = x^2$ for all $x \in \mathbb{Z}$.

7.4 Inverse and bijectivity

Definition 7.4.1. Let $f: A \to B$.

(1) f is surjective or onto if

$$\forall y \in B \ \exists x \in A \ y = f(x). \tag{F}^{-1}1$$

A *surjection* is a surjective function.

(2) f is injective or one-to-one if

$$\forall x_1, x_2 \in A \ (f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$$
 (F⁻¹2)

An *injection* is an injective function.

Figure 7.1: Surjectivity (left) and injectivity (right)

(3) f is bijective if it is both surjective and injective. A bijection is a bijective function.

Remark 7.4.2. In view of Remark 7.2.2, one can formulate $(F^{-1}1)$ and $(F^{-1}2)$ for a general relation f from A to B as follows:

 $(F^{-1}1) \ \forall y \in B \ \exists x \in A \ (x,y) \in f;$

$$(F^{-1}2) \ \forall x_1, x_2 \in A \ \forall y \in B \ ((x_1, y) \in f \land (x_2, y) \in f \Rightarrow x_1 = x_2).$$

By the definition of f^{-1} , these are equivalent respectively to (F1) and (F2) for f^{-1} , i.e.,

- $\forall y \in B \ \exists x \in A \ (y, x) \in f^{-1}$; and
- $\forall x_1, x_2 \in A \ \forall y \in B \ ((y, x_1) \in f^{-1} \land (y, x_2) \in f^{-1} \Rightarrow x_1 = x_2).$

So f^{-1} is a function $B \to A$ if and only if f satisfies the relational version of $(F^{-1}1)$ and $(F^{-1}2)$. Similarly, the conditions (F1) and (F2) are equivalent to $(F^{-1}1)$ and $(F^{-1}2)$ for f^{-1} .

Proposition 7.4.3. If f is a bijection $A \to B$, then f^{-1} is a bijection $B \to A$.

Proof. In view of the discussion in Remark 7.4.2, conditions (F1), (F2), (F⁻¹1), and (F⁻¹2) for f are equivalent respectively to conditions (F⁻¹1), (F⁻¹2), (F1), and (F2) for f⁻¹. \Box

Example 7.4.4. The function $f: \mathbb{Q} \to \mathbb{Q}$, defined by setting f(x) = 3x + 1 for all $x \in \mathbb{Q}$, is surjective.

Proof. Take any
$$y \in \mathbb{Q}$$
. Let $x = (y-1)/3$. Then $x \in \mathbb{Q}$ and $f(x) = 3x + 1 = y$.

Remark 7.4.5. A function $f: A \to B$ is not surjective if and only if

$$\exists y \in B \ \forall x \in A \ (y \neq f(x)).$$

Example 7.4.6. Define $g: \mathbb{Z} \to \mathbb{Z}$ by setting $g(x) = x^2$ for every $x \in \mathbb{Z}$. Then g is not surjective.

Proof. Note $g(x) = x^2 \ge 0 > -1$ for all $x \in \mathbb{Z}$. So $g(x) \ne -1$ for all $x \in \mathbb{Z}$, although $-1 \in \mathbb{Z}$.

Example 7.4.7. As in Example 7.4.4, define $f: \mathbb{Q} \to \mathbb{Q}$ by setting f(x) = 3x + 1 for all $x \in \mathbb{Q}$. Then f is injective.

Proof. Let $x_1, x_2 \in \mathbb{Q}$ such that $f(x_1) = f(x_2)$. Then $3x_1 + 1 = 3x_2 + 1$. So $x_1 = x_2$.

Remark 7.4.8. A function $f: A \to B$ is *not* injective if and only if

$$\exists x_1, x_2 \in A \ (f(x_1) = f(x_2) \land x_1 \neq x_2).$$

Example 7.4.9. As in Example 7.4.6, define $g: \mathbb{Z} \to \mathbb{Z}$ by setting $g(x) = x^2$ for every $x \in \mathbb{Z}$. Then g is not injective.

Proof. Note
$$g(1) = 1^2 = 1 = (-1)^2 = g(-1)$$
, although $1 \neq -1$.

Question 7.4.10. Amongst the arrow diagrams in Question 7.1.5 that represent a function, which ones represent injections, which ones represent surjections, and which ones represent bijections?

Ø 7c

Proposition 7.4.11. Let $f: A \to B$ and $g: B \to A$. Then

$$g = f^{-1} \Leftrightarrow \forall x \in A \ \forall y \in B \ (g(y) = x \Leftrightarrow y = f(x)).$$

Proof.

$$g = f^{-1}$$
 \Leftrightarrow $\forall y \in B$ $\forall x \in A$ $((y, x) \in g \Leftrightarrow (y, x) \in f^{-1})$ as $g, f^{-1} \subseteq B \times A$;
 \Leftrightarrow $\forall x \in A$ $\forall y \in B$ $((y, x) \in g \Leftrightarrow (x, y) \in f)$ by the definition of f^{-1} ;
 \Leftrightarrow $\forall x \in A$ $\forall y \in B$ $(g(y) = x \Leftrightarrow y = f(x))$ by Remark 7.2.2.

Example 7.4.12. As in Example 7.4.7, define $f: \mathbb{Q} \to \mathbb{Q}$ by setting f(x) = 3x + 1 for all $x \in \mathbb{Q}$. Note that for all $x, y \in \mathbb{Q}$,

$$y = 3x + 1 \quad \Leftrightarrow \quad x = (y - 1)/3.$$

Let $g: \mathbb{Q} \to \mathbb{Q}$ such that g(y) = (y-1)/3 for all $y \in \mathbb{Q}$. The equivalence above implies

$$\forall x, y \in \mathbb{Q} \ (y = f(x) \Leftrightarrow x = g(y)).$$

So Proposition 7.4.11 tells us $g = f^{-1}$.

Note 7.4.13. We have no guarantee of a description of the inverse of a general bijection that is much different from what is given by the definition.

Proposition 7.4.14. Let f be a bijection $A \to B$. Then $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

Proof. We know f^{-1} is a function by Proposition 7.4.3, because f is bijection.

For the first part, let $x \in A$. Define y = f(x). Then

$$(f^{-1} \circ f)(x) = f^{-1}(f(x))$$
 by Proposition 7.3.1;
 $= f^{-1}(y)$ by the definition of y ;
 $= x$ by Proposition 7.4.11, as $y = f(x)$;
 $= \mathrm{id}_A(x)$ by the definition of id_A .

So $f^{-1} \circ f = \mathrm{id}_A$ by Proposition 7.2.6.

For the second part, let $y \in B$. Define $x = f^{-1}(y)$. Then

$$(f \circ f^{-1})(y) = f(f^{-1}(y))$$
 by Proposition 7.3.1;
 $= f(x)$ by the definition of x ;
 $= y$ by Proposition 7.4.11, as $f^{-1}(y) = x$;
 $= \mathrm{id}_B(y)$ by the definition of id_B .

So $f \circ f^{-1} = id_B$ by Proposition 7.2.6.