Lab00-Proof

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name: WendiChen Student ID: 519021910071 Email: chenwendi-andy@sjtu.edu.cn
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and prove by contradiction)

Proof. Assume that $\forall t$ satisfying n < t < n!, t is a composite number.

Then $\forall t$ satisfying n < t < n!, t is not a prime factor of n! - 1.

Since n! - 1 is a composite number, there exists a prime factor p of n! - 1 satisfying 1 . By definition of <math>n!, p is a prime factor of n!.

Then p is a common divisor of n!-1 and n!, which contradicts the conclusion that the greatest common divisor of n!-1 and n! is 1.

2. Use the minimal counterexample principle to prove that for any integer $n \geq 7$, there exists integers $i_n \geq 0$ and $j_n \geq 0$, such that $n = i_n \times 2 + j_n \times 3$.

Proof. Define P(n) be the statement that "there exists integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 2 + j_n \times 3$ ". We will try to prove that P(n) is true for every $n \ge 7$.

If P(n) is not true for every $n \geq 7$, then there are values of n for which P(n) is false, and there must be a smallest such value, say n = k.

Since $P(7) = 2 \times 2 + 1 \times 3$, we have $k \ge 8$, and $k - 1 \ge 7$.

Since k is the smallest value for which p(k) is false, P(k-1) is true. Thus there exists integers $i_{k-1} \ge 0$ and $j_{k-1} \ge 0$, such that $k-1 = i_{k-1} \times 2 + j_{k-1} \times 3$, and i_{k-1} and j_{k-1} cannot be 0 at the same time.

If $i_{k-1} \geq 1$, we have

$$k = k - 1 + 1$$

$$= i_{k-1} \times 2 + j_{k-1} \times 3 + 1$$

$$= i_{k-1} \times 2 + j_{k-1} \times 3 + 3 - 2$$

$$= (i_{k-1} - 1) \times 2 + (j_{k-1} + 1) \times 3$$

Let i_k be $i_{k-1}-1$ and j_k be $j_{k-1}+1$, then $k=i_k\times 2+j_k\times 3$.

If $j_{k-1} \geq 1$, we have

$$k = k - 1 + 1$$

$$= i_{k-1} \times 2 + j_{k-1} \times 3 + 1$$

$$= i_{k-1} \times 2 + j_{k-1} \times 3 + 4 - 3$$

$$= (i_{k-1} + 2) \times 2 + (j_{k-1} - 1) \times 3$$

Let i_k be $i_{k-1}+2$ and j_k be $j_{k-1}-1$, then $k=i_k\times 2+j_k\times 3$.

We have derived a contradiction, which allows us to conclude that our original assumption is false. \Box

3. Suppose the function f be defined on the natural numbers recursively as follows: f(0) = 0, f(1) = 1, and f(n) = 5f(n-1) - 6f(n-2), for $n \ge 2$. Use the strong principle of mathematical induction to prove that for all $n \in N$, $f(n) = 3^n - 2^n$.

Proof. Let P(n) be the statement $f(n) = 3^n - 2^n$. We will try to prove that P(n) is true for every $n \in \mathbb{N}$.

f(2) is $5 \times 1 - 6 \times 0 = 5 = 3^2 - 2^2$, which satisfies $f(n) = 3^n - 2^n$. Also, f(0) is $0 = 3^0 - 2^0$ and f(1) is $1 = 3^1 - 2^1$, which satisfies $f(n) = 3^n - 2^n$. Obviously, P(n) is true for n = 0, 1, 2.

Assume for $k \geq 2$ and $2 \leq n \leq k, P(n)$ is true. Now let us prove that P(k+1) is true.

By definition, we have

$$f(k+1) = 5f(k) - 6f(k-1)$$

$$= 5 \times (3^k - 2^k) - 6 \times (3^{k-1} - 2^{k-1})$$

$$= 5 \times 3^k - 5 \times 2^k - 2 \times 3^k + 3 \times 2^k$$

$$= 3^{k+1} - 2^{k+1}$$

Therefore, P(k+1) is true.

According to the strong principle of mathematical induction, for every $n \in N$, P(n) is true, and $f(n) = 3^n - 2^n$.

4. An *n*-team basketball tournament consists of some set of $n \geq 2$ teams. Team p beats team q iff q does not beat p, for all teams $p \neq q$. A sequence of distinct teams $p_1, p_2, ..., p_k$, such that team p_i beats team p_{i+1} for $1 \leq i < k$ is called a ranking of these teams. If also team p_k beats team p_1 , the ranking is called a k-cycle.

Prove by mathematical induction that in every tournament, either there is a "champion" team that beats every other team, or there is a 3-cycle.

Proof. Let P(n) be the statement "for a directed complete graph G_n with n vertices, either there is a vertex with an out-degree of n-1, or there is a 3-vertex loop". We will try to prove that P(n) is true for every $n \geq 2$. This is equivalent to the original problem.

For a n = 2, by the definition, there must be a vertex whose out-degree is 1. For n = 3, we can enumerate all the possible graphs and find that either there is a vertex with an out-degree of 2, or there is a 3-vertex loop. Obviously, P(n) is true for n = 2, 3.

Assume P(k) is true for some $k \geq 3$. Now let us prove that P(k+1) is true.

The construction of a directed complete graph G_{k+1} with k+1 vertices can be viewed as adding a new vertex V_{k+1} to a directed complete graph G_k with k vertices and connecting this vertex with the others respectively.

If there is a 3-vertex loop in G_k , that loop is also in G_{k+1} . Then P(k+1) is true.

If there is not a 3-vertex loop in G_k , there must be a vertex with an out-degree of k-1 in G_k which is denoted by V_p . If the edge between V_{k+1} and V_p is directed to V_{k+1} . Then V_p is the vertex with an out-degree of k in G_{k+1} . If that edge is directed to V_p , there is another vertex V_q satisfying V_p is directed to V_q , V_q is directed to V_{k+1} and V_{k+1} is directed to V_p , which compose a 3-vertex loop (if V_q doesn't exist, then V_{k+1} is the vertex with an out-degree of k). Therefore, P(k+1) is true.

According to the mathematical induction, P(n) is true for every $n \geq 2$, and the original proposition is true.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.