Programme 10 - Intégration : Compléments

1 Intégration sur un segment

▶ Intégrabilité automatique pour une fonction continue sur un segment.

(ou continue par morceaux : discontinuités avec limites finies.)

- ▶ Propriétés générales Linéarité, Chasles, positivité, intégrale d'une constante.
- ▶ Intégrale et primitive $\int_a^b f(t) dt = F(b) F(a)$ si F est C^1 sur [a;b] et F' = f.
- ▶ Intégration par parties pour u, v de classe C^1 sur [a; b], on $a: \int_a^b u'v = \left[uv\right]_a^b \int_a^b uv'$.

 (Stratégie: on essaie de se rapprocher de la sortie du calcul)
- ▶ Changement de variables (le changement de variables est indiqué par l'énoncé)
 - *) Hypothèses: $u:[a,b] \to \mathbb{R}$ de classe \mathcal{C}^1 , f continue sur u([a,b]).
 - *) Formule: $\int_a^b f(u(t)) u'(t) dt = \int_{u(a)}^{u(b)} f(x) dx$

(On remplace tous les u(t) par des x, et u'(t) dt par dx.)

*) Notation: on a posé x = u(t) et dx = u'(t) dt. Alors $t = a \rightsquigarrow x = u(a) \dots$

2 Intégration sur un intervalle quelconque

- ► Convergence d'une intégrale étude en $\pm \infty$, en un point x_0^{\pm} .
- Intégrales convergentes de référence
 - ▶ Fonctions exponentielles e^{-ax} , a > 0 sur $[0; +\infty[$.
 - ▶ En $+\infty$: $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge ssi $\alpha > 1$.
 - ► En 0^+ : $\int_{0^+}^1 \frac{dt}{t^{\alpha}}$ converge ssi $\alpha < 1$.

(retournement de ci-dessus)

- ▶ Critère de convergence absolue par comparaison = o(g(t)), $\sim g(t)$ ou $|\cdot| \leq g(t)$.
 - ▶ souvent comparaison à $\frac{1}{t^2}$ pour une intégrale en $+\infty$.
 - souvent comparaison à $\frac{1}{\sqrt{t}}$ pour une intégrale en 0^+ .

3 Densités de probabilité

- ▶ **Définition** une fonction $f: \mathbb{R} \to \mathbb{R}$, ▶ continue sauf év^t en un nb. fini de points,
 - $\forall t \in \mathbb{R}, \quad f(t) \geqslant 0, \text{ et}$
- ▶ Variable aléatoire à densité une v.a.r. X admet pour densité f si $\forall a < b \in \mathbb{R}$, on $a : \mathbb{P}(a \leqslant X \leqslant b) = \int_a^b f(t) \, \mathrm{d}t = 1$.
- ▶ Fonction de répartition associée Alors $\forall x \in \mathbb{R}$, $\mathbb{P}(X \leqslant x) = \int_{-\infty}^{x} f(t) dt \stackrel{\text{(déf)}}{=} F_X(x)$.
- Espérance et moments, variance Sous réserve de convergence absolue :

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x, \qquad \forall n \in \mathbb{N}, \ \mu_n(X) = \mathbb{E}[X^n] = \int_{-\infty}^{\infty} x^n f(x) \, \mathrm{d}x,$$
$$\mathrm{Var}(X) \stackrel{\text{(déf)}}{=} \mathbb{E}\Big[\Big(X - \mathbb{E}[X]\Big)^2\Big] \stackrel{\text{(K-H)}}{=} \mathbb{E}\Big[X^2\Big] - \Big(\mathbb{E}[X]\Big)$$

- Densités usuelles Densité exponentielle
 - ▶ Densité uniforme
 - ▶ Densité normale

4 Questions de cours

1. Définition d'une fonction densité? La densité de $\mathcal{E}(\lambda)$.

2. Énoncer le critère de convergence de Riemann en $+\infty$ et en 0^+ .

3. Convergence et calcul de $\int_0^1 \ln(t) dt$.

4. Énoncer le principe du changement de variables pour une intégrale sur un segment.

5. Définir et exprimer le moment d'ordre n pour variable à densité f.

