

Hashing Techniques

Hashing Functions & Collision Handling

The Search Problem

- 2/23
- Find items with keys matching a given search key
 - Given an array A, containing n keys, and a search key x, find the index i such as x=A[i]
 - As in the case of sorting, a key could be part of a large record.

example of a record

Key other data

Applications

- Text #
- Keeping track of customer account information at a bank
 - Search through records to check balances and perform transactions
- Keep track of reservations on flights
 - Search to find empty seats, cancel/modify reservations
- Search engine
 - Looks for all documents containing a given word

Special Case: Dictionaries

- Dictionary = data structure that supports mainly two basic operations: insert a new item and return an item with a given key
- Queries: return information about the set S:
 - Search (S, k)
 - Minimum (S), Maximum (S)
 - Successor (S, x), Predecessor (S, x)
- Modifying operations: change the set
 - ▶ Insert (S, k)
 - ▶ Delete (S, k) not very often

Direct Addressing

Assumptions:

- Key values are distinct
- ▶ Each key is drawn from a universe U = {0, 1, . . . , m 1}
- Idea:
 - Store the items in an array, indexed by keys
 - Direct-address table representation:
 - An array T[0 ... m I]
 - Each slot, or position, in T corresponds to a key in U
 - For an element x with key k, a pointer to x (or x itself) will be placed in location T[k]
 - If there are no elements with key k in the set, T[k] is empty, represented by NIL

Direct Addressing (cont'd)

(insert/delete in O(1) time)

Operations

Alg.: DIRECT-ADDRESS-SEARCH(T, k) return T[k]

Alg.: DIRECT-ADDRESS-INSERT(T, x) $T[key[x]] \leftarrow x$

Alg.: DIRECT-ADDRESS-DELETE(T, x) $T[key[x]] \leftarrow NIL$

Running time for these operations: O(1)

Comparing Different Implementations

- Implementing dictionaries using:
 - Direct addressing
 - Ordered/unordered arrays
 - Ordered/unordered linked lists

Insert	Search
O(1)	O(1)
O(N)	O(lgN)
O(N)	O(N)
O(1)	O(N)
O(1)	O(N)
	O(I) O(N) O(N) O(I)

Examples Using Direct Addressing

Example 1:

- (i) Suppose that the keys are integers from 1 to 100 and that there are about 100 records
- (ii) Create an array A of 100 items and store the record whose key is equal to i in A[i]

Example 2:

- (i) Suppose that the keys are nine-digit social security numbers
- (ii) We can use the same strategy as before but it very inefficient now: an array of 1 billion items is needed to store 100 records!!
 - |U| can be very large
 - |K| can be much smaller than |U|

Hash Tables

- 18 X8X
- When K is much smaller than U, a hash table requires much less space than a direct-address table
 - Can reduce storage requirements to |K|
 - Can still get O(1) search time, but on the <u>average</u> case, not the worst case

Hash Tables

Idea:

- Use a function h to compute the slot for each key
- Store the element in slot h(k)
- ▶ A hash function h transforms a key into an index in a hash table T[0...m-1]:

$$h: U \to \{0, 1, \ldots, m-1\}$$

- We say that k hashes to slot h(k)
- Advantages:
 - Reduce the range of array indices handled: m instead of |U|
 - Storage is also reduced

Example: HASH TABLES

Revisit Example 2

Suppose that the keys are nine-digit social security numbers

Possible hash function

 $h(ssn) = sss \mod 100 \text{ (last 2 digits of ssn)}$

e.g., if ssn = 10123411 then h(10123411) = 11)

Do you see any problems with this approach?

Collisions

₹

- Two or more keys hash to the same slot!!
- For a given set K of keys
 - If |K| ≤ m, collisions may or may not happen, depending on the hash function
 - If |K| > m, collisions will definitely happen (i.e., there must be at least two keys that have the same hash value)
 - Avoiding collisions completely is hard, even with a good hash function

Handling Collisions

10 H

- We will review the following methods:
 - Chaining
 - Open addressing
 - Linear probing
 - Quadratic probing
 - Double hashing
- We will discuss chaining first, and ways to build "good" functions.

Handling Collisions Using Chaining

Idea:

Put all elements that hash to the same slot into a linked list

Slot j contains a pointer to the head of the list of all elements that hash to j

Collision with Chaining - Discussion

- Choosing the size of the table
 - Small enough not to waste space
 - Large enough such that lists remain short
 - ▶ Typically 1/5 or 1/10 of the total number of elements
- How should we keep the lists: ordered or not?
 - Not ordered!
 - Insert is fast
 - Can easily remove the most recently inserted elements

Insertion in Hash Tables

Alg.: CHAINED-HASH-INSERT(T, x)
insert x at the head of list T[h(key[x])]

- Morst-case running time is O(1)
- Assumes that the element being inserted isn't already in the list
- It would take an additional search to check if it was already inserted

Deletion in Hash Tables

Alg.: CHAINED-HASH-DELETE(T, x)

delete x from the list T[h(key[x])]

- Need to find the element to be deleted.
- Worst-case running time:
 - Deletion depends on searching the corresponding list

Searching in Hash Tables

Alg.: CHAINED-HASH-SEARCH(T, k) search for an element with key k in list T[h(k)]

 Running time is proportional to the length of the list of elements in slot h(k)

Analysis of Hashing with Chaining: Worst Cast

- How long does it take to search for an element with a given key?
- Worst case:
 - All n keys hash to the same slot
 - Worst-case time to search is ⊕(n), plus time to compute the hash function

Analysis of Hashing with Chaining :Average Case

- depends on how well the hash function distributes the n keys among the m slots
- Simple uniform hashing assumption:
 - Any given element is equally likely to hash into any of the m slots (i.e., probability of collision Pr(h(x)=h(y)), is I/m)
- Length of a list:

$$T[j] = n_j, j = 0, 1, ..., m-1$$

Number of keys in the table:

$$n = n_0 + n_1 + \cdots + n_{m-1}$$

Expected value of n_j:

$$E[n_i] = \alpha = n/m$$

Load Factor of a Hash Table

Load factor of a hash table T:

$$\alpha = n/m$$

- ▶ n = # of elements stored in the table
- \rightarrow m = # of slots in the table = # of linked lists
- lacktriangle α encodes the average number of elements stored in a chain
- $\triangleright \alpha$ can be <, =, > I

Case 1: Unsuccessful Search (i.e., item not stored in the table)

Theorem

An unsuccessful search in a hash table takes expected time $\Theta(1+\alpha)$ under the assumption of simple uniform hashing

(i.e., probability of collision Pr(h(x)=h(y)), is I/m)

Proof

- Searching unsuccessfully for any key k
 - need to search to the end of the list T[h(k)]
- Expected length of the list:
 - \rightarrow E[n_{h(k)}] = α = n/m
- ightharpoonup Expected number of elements examined in an unsuccessful search is α
- Total time required is:
 - O(I) (for computing the hash function) + α \rightarrow $\Theta(1+\alpha)$

Case 2: Successful Search

Successful search: $\Theta(1 + \frac{a}{2}) = \Theta(1 + a)$ time on the average (search half of a list of length a plus O(1) time to compute h(k))

Analysis of Search in Hash Tables

- If m (# of slots) is proportional to n (# of elements in the table):
- n = O(m)
- $\alpha = n/m = O(m)/m = O(1)$
- ⇒ Searching takes constant time on average

Hash Functions

- 10 X
- A hash function transforms a key into a table address
- What makes a good hash function?
 - (I) Easy to compute
 - (2) Approximates a random function: for every input, every output is equally likely (simple uniform hashing)
- In practice, it is very hard to satisfy the simple uniform hashing property
 - i.e., we don't know in advance the probability distribution that keys are drawn from

Good Approaches for Hash Functions

- Minimize the chance that closely related keys hash to the same slot
 - Strings such as pt and pts should hash to different slots
- Derive a hash value that is independent from any patterns that may exist in the distribution of the keys

The Division Method

Idea:

 Map a key k into one of the m slots by taking the remainder of k divided by m

$$h(k) = k \mod m$$

Advantage:

fast, requires only one operation

Disadvantage:

- Certain values of m are bad, e.g.,
 - power of 2
 - non-prime numbers

Example - The Division Method

- If m = 2^p, then h(k) is just the least significant p bits of k
 - \rightarrow p = 1 \Rightarrow m = 2
 - \Rightarrow h(k) = {0, 1}, least significant | bit of k
 - \rightarrow p = 2 \Rightarrow m = 4
 - \Rightarrow h(k) = {0, 1, 2, 3}, least significant 2 bits of k
- Choose m to be a prime, not close to a power of 2
 - Column 2: k mod 97
 - Column 3: k mod 100

m

25089 63 89 21183 37 83 25137 14 37 25566 55 66

26966 0 66 4978 31 78 20495 28 95

Open Addressing

- Text #
- If we have enough contiguous memory to store all the keys (m
 - N) \Rightarrow store the keys in the table itself
- No need to use linked lists anymore
- Basic idea:
 - Insertion: if a slot is full, try another one, until you find an empty one
 - Search: follow the same sequence of probes
 - Deletion: more difficult ... (we'll see why)
- Search time depends on the length of the probe sequence!


```
HASH-INSERT(T, k)
1 \quad i \leftarrow 0
   repeat j \leftarrow h(k, i)
             if T[j] = NIL
               then T[j] \leftarrow k
                     return j
                                                HASH-SEARCH(T, k)
               else i \leftarrow i + 1
                                                1 \quad i \leftarrow 0
   until i = m
                                                   repeat j \leftarrow h(k, i)
   error "hash table overflow"
                                                             if T[j] = k
                                                                then return j
                                                             i \leftarrow i + 1
                                                       until T[j] = NIL or i = m
                                                    return NIL
```

Generalize hash function notation:

- A hash function contains two arguments now:
 - (i) Key value, and (ii) Probe number

$$h(k,p), p=0,1,...,m-1$$

Probe sequences

$$$$

- ▶ Must be a permutation of <0,1,...,m-1>
- There are m! possible permutations
- Good hash functions should be able to produce all m! probe sequences

34

Common Open Addressing Methods

9663

- Linear probing
- Quadratic probing
- Double hashing

Linear probing: Inserting a key

Idea: when there is a collision, check the next available position in the table (i.e., probing)

$$h(k,i) = (h^{\dagger}(k) + i) \mod m$$

 $i=0,1,2,...$

- First slot probed: h¹(k)
- Second slot probed: h¹(k) + I
- Third slot probed: h¹(k)+2, and so on

probe sequence: $\langle h^{\dagger}(k), h^{\dagger}(k)+1, h^{\dagger}(k)+2, \rangle$

Linear probing: Searching for a key

- Three cases:
 - (I) Position in table is occupied with an element of equal key
 - (2) Position in table is empty
 - (3) Position in table occupied with a different element
- Case 3: probe the next higher index until the element is found or an empty position is found
- The process wraps around to the beginning of the table

Linear probing: Deleting a key

Problems

- Cannot mark the slot as empty
- Impossible to retrieve keys inserted after that slot was occupied
- Solution
 - Mark the slot with a sentinel value DELETED
- The deleted slot can later be used for insertion
- Searching will be able to find all the keys

Primary Clustering Problem

10 H

- Some slots become more likely than others
- Long chunks of occupied slots are created
 - ⇒ search time increases!!

initially, all slots have probability 1/m

Slot b: 2/m

Slot d: 4/m

Slot e: 5/m

Quadratic probing

$$h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$
, where $h': U - - > (0, 1, ..., m - 1)$

- Clustering problem is less serious but still an issue (secondary clustering)
- How many probe sequences quadratic probing generate? *m* (the initial probe position determines the probe sequence)

Double Hashing

- (I) Use one hash function to determine the first slot
- (2) Use a second hash function to determine the increment for the probe sequence

$$h(k,i) = (h_1(k) + i h_2(k)) \text{ mod } m, i=0,1,...$$

- Initial probe: h₁(k)
- Second probe is offset by $h_2(k)$ mod m, so on ...
- Advantage: avoids clustering

Double Hashing: Example

$$h_1(k) = k \mod 13$$

 $h_2(k) = 1 + (k \mod 11)$
 $h(k,i) = (h_1(k) + i h_2(k)) \mod 13$

Insert key 14:

$$h_1(14,0) = 14 \mod 13 = 1$$

 $h(14,1) = (h_1(14) + h_2(14)) \mod 13$
 $= (1 + 4) \mod 13 = 5$
 $h(14,2) = (h_1(14) + 2 h_2(14)) \mod 13$
 $= (1 + 8) \mod 13 = 9$

Thank you!