Étude et analyse des écoulements compressibles

Dominique Thévenin

October 18, 2004

Contents

1	Intr	roduction	7
2	Éco	oulements monodimensionnels permanents	13
	2.1	Introduction	13
	2.2	Écoulements isentropiques de gaz réels	13
		2.2.1 Établissement des équations	13
		2.2.2 Influence d'une variation de la section	15
		2.2.3 Conditions critiques	17
	2.3	Cas d'un gaz parfait	18
		2.3.1 Équations générales	18
		2.3.2 Conditions critiques pour un gaz parfait	20
		2.3.3 Vitesse de décharge	21
	2.4	Tables d'écoulements isentropiques	21
	2.5	Écoulements unidimensionnels avec frottement et apport de chaleur	22
	2.6	Influence du frottement sur l'écoulement	25
	2.7	Influence d'un apport de chaleur sur l'écoulement	26
	2.8	Conclusion	29
	2.9	Exercices d'application	30
		2.9.1 Écoulement dans une tuyère	30
		2.9.2 Écoulement avec apport de chaleur	31
3	Onc	des de choc droites	33
	3.1	Introduction	33
	3.2	Équations de bilan à travers un choc droit	33

	3.3	Ondes de choc droites pour un gaz parfait	35
	3.4	Propriétés de l'écoulement	37
	3.5	Tables de choc	39
	3.6	Relation de Rankine-Hugoniot, ligne de Rayleigh	40
	3.7	Conclusion	42
	3.8	Exercices d'application	43
		3.8.1 Évolution de l'écoulement à travers un choc droit pour la rentrée atmosphérique d'une navette	43
		3.8.2 Mesure de vitesse par tube de Pitot dans un écoulement supersonique	44
		3.8.3 Modèle monodimensionnel simple d'une entrée d'air	45
		3.8.4 Statoréacteur à combustion supersonique	46
4	Ond	les de choc obliques	49
	4.1	Introduction	49
	4.2	Équations de bilan pour les ondes de choc obliques	49
	4.3	Ondes de choc obliques dans un gaz parfait	52
	4.4	Tables et abaques pour les chocs obliques	54
	4.5	Indétermination entre choc fort et choc faible	55
	4.6	Ondes de choc obliques très faibles	56
	4.7	Lignes de Mach ou ondes de Mach	58
	4.8	Polaires de choc	59
	4.9	Écoulement sur un dièdre	60
	4.10	Conclusion	61
	4.11	Exercices d'application	62
		4.11.1 Évolution à travers une onde de choc oblique	62
		4.11.2 Réflexion d'un choc oblique sur une paroi	63
		4.11.3 Forme d'un jet en sortie de tuyère supersonique	64
		4.11.4 Optimisation d'une entrée d'air en écoulement supersonique	65
5	Mét	chode des caractéristiques	67
	5.1	Introduction	67
	5.2	Définition des caractéristiques	67

	5.3	Rechei	rche des caracteristiques	69
	5.4	Utilisa	ation des relations de caractéristiques	74
	5.5	Caract	téristiques pour un gaz calorifiquement parfait	76
	5.6	Détent	te et compression par ondes simples	78
		5.6.1	Positionnement des lignes caractéristiques	80
		5.6.2	Détente de Prandtl-Meyer	80
		5.6.3	Compression continue	81
	5.7	Écoule	ements de révolution	83
	5.8	Écoule	ements coniques de révolution	86
	5.9	Conclu	usion	89
	5.10	Exerci	ces d'application	90
		5.10.1	Caractéristiques pour une détente par ondes simples	90
		5.10.2	Positionnement des lignes caractéristiques	91
		5.10.3	Force normale s'exerçant sur une plaque plane	92
		5.10.4	Moteur de correction d'attitude pour satellites	93
		5.10.5	Effet du double décrochement	94
		5.10.6	Choc conique	95
6	Mét	hode	des petites perturbations	97
	6.1	Introd	uction	97
	6.2	Exemp	ple de linéarisation	97
	6.3	Écoule	ement dérivant d'un potentiel	99
	6.4	Calcul	du potentiel scalaire	100
	6.5	Cas de	es ailes planes	103
		6.5.1	Condition de tangence approchée	103
		6.5.2	Calcul du coefficient de pression	105
		6.5.3	Aile d'envergure infinie en attaque droite	106
		6.5.4	Problème symétrique et problème portant	111
		6.5.5	Cas d'une aile quelconque	112
		6.5.6	Bords d'attaque subsonique et supersonique	115
		6.5.7	Expression générale du potentiel par la méthode des sources	115

		6.5.8	Formule d'Evvart pour les ailes à bords d'attaque partiellement su- personiques	. 117
		6.5.9	Notions sur les écoulements inverses	. 126
	6.6	Concli	usion	. 127
	6.7	Exerci	ces d'application	. 129
		6.7.1	Aile rectangulaire d'envergure finie	. 129
		6.7.2	Aile trapézoïdale d'envergure finie	. 130
7	Intr	oducti	ion à l'hypersonique	131
	7.1	Introd	luction	. 131
	7.2	Cadre	de l'analyse	. 131
	7.3	Défini	tion des écoulements hypersoniques	. 133
	7.4	Phéno	mènes de déséquilibre	. 133
	7.5	Onde	de choc en écoulement hypersonique	. 135
	7.6	Appro	ximation newtonienne	. 139
	7.7	Princi	pales conséquences des effets de gaz réels	. 140
	7.8	Conclu	usion	. 142
	7.9	Exerci	ices d'application	. 143
		7.9.1	Moment exercé sur une plaque plane en rentrée atmosphérique	. 143
8	Not	ions su	ur les écoulements instationnaires	145
	8.1	Introd	luction	. 145
	8.2	Écoule	ements isentropiques	. 145
	8.3	Problè	ème du piston en mouvement	. 149
	8.4	Ondes	s de choc en mouvement $\ldots \ldots \ldots \ldots \ldots$. 152
	8.5	Tube a	à choc	. 154
	8.6	Conclu	usion	. 157
	8.7	Exerci	ces d'application	. 158
		8.7.1	Ouverture d'un tube en surpression	. 158
		8.7.2	Onde de choc en propagation	. 159
		8.7.3	Tube à choc	. 160

9	Dét	onations et déflagrations	161
	9.1	Introduction	161
	9.2	Configuration et équations de bilan	162
	9.3	Propriétés de la courbe de Rankine-Hugoniot	163
	9.4	Distribution d'entropie le long de la courbe d'Hugoniot	166
	9.5	Vitesse des gaz brûlés derrière une détonation	167
	9.6	Le modèle de Zel'Dovich, Von Neumann, Döring (ZND)	168
	9.7	Conclusion	169
10	Mét	hodes numériques spécifiques	171
	10.1	Introduction	171
	10.2	Système d'équations	172
		10.2.1 Matrice jacobienne du système	173
		10.2.2 Rappel sur le Problème de Riemann	174
	10.3	Formulation de Godunov	175
		10.3.1 Problèmes associés	178
		10.3.2 Solveur de Riemann approché de Roe	179
	10.4	Équations de Navier-Stokes	183
		10.4.1 Conditions aux limites	183
		10.4.2 Modèles de turbulence	184
	10.5	Conclusion	185
11	Prin	ncipales méthodes expérimentales	187
	11.1	Introduction	187
	11.2	Visualisation des structures de l'écoulement	187
		11.2.1 Ombroscopie	187
		11.2.2 Strioscopie	189
		11.2.3 Interférométrie	190
	11.3	Mesures de vitesses	191
		11.3.1 Mesures par sonde de Pitot	192
		11.3.2 Anémométrie par fil chaud	192
		11.3.3 Anémométrie Laser	193

	11.4 Mesures de températures	. 194
	11.4.1 Thermocouples	. 194
	11.4.2 Mesures optiques	. 194
	11.4.3 Peintures thermosensibles	. 195
	11.5 Mesures de flux de chaleur	. 196
	11.6 Mesures de pressions et d'efforts	. 196
	11.6.1 Mesures de pressions	. 196
	11.6.2 Mesures d'efforts	. 197
	11.7 Conclusion	. 197
\mathbf{A}	Références	199
В	Tables d'écoulements subsoniques ($\gamma = 1.4$)	201
\mathbf{C}	Tables d'écoulements supersoniques et de chocs ($\gamma = 1.4$)	205

Chapter 1

Introduction

Les écoulements supersoniques se rencontrent fréquemment dans de nombreux domaines d'application, tous vitaux pour la survie et le rayonnement d'un pays développé. Parmi les applications techniques les plus actuelles, on pense bien sûr au domaine militaire (missiles, avions de chasse et d'observation, Fig.1.1).

Figure 1.1: Avion d'observation supersonique SR-71 (Dryden center)

Cependant, les utilisations civiles se renforcent. Pour le transport aérien, en dépit du récent accident de Concorde (qui n'est pas intervenu en régime supersonique!), plusieurs projets de successeurs potentiels sont prêts (Fig.1.2). De plus, de nombreuses applications aérospatiales sont concernées au quotidien par les écoulements fortement compressibles (fusées, navettes, capsules de réentrée atmosphérique, ...).

Il existe de nombreux autres domaines, parfois fort inattendus, où l'on rencontre des écoulements supersoniques (comme les systèmes Laser, les problèmes de sécurité — ex-

Figure 1.2: Projet d'avion de transport supersonique de deuxième génération (documentation Aérospatiale)

plosions — faisant intervenir des ondes de détonations, ou encore certains phénomènes stellaires, Fig.1.3).

Parmi les applications les plus exotiques, on trouve sans conteste les tentatives de développement de véhicules terrestres (qu'il est difficile de nommer encore automobiles) pouvant franchir le mur du son au sol (Fig.1.4).

En règle générale, tous ces écoulements sont malheureusement très complexes, même pour des géométries extrêmement simples (Fig.1.5), faisant intervenir chocs droits et obliques, détachés ou attachés, détentes et poches subsoniques localisées, interactions fortes entre ondes de choc et couches limites...

La difficulté de comprendre ces phénomènes est d'ailleurs démontrée par le nombre de pilotes qui ont laissé leur vie en tentant de franchir le mur de son : trépidations effroyables de l'appareil conduisant parfois à sa destruction, pertes de portance incompréhensibles, commandes ne répondant plus, ou répondant subitement à l'envers... Dans la seule année 1946, plus de douze pilotes s'écrasèrent au sol ou furent pulvérisés en vol avec leur appareil (rappelons que toutes ces tentatives de franchissement du mur du son s'effectuaient en piqué pour atteindre une vitesse maximale – beaucoup ne réussissant jamais à redresser leur appareil). Notons d'ailleurs que cette époque fut la plus meurtrière de l'histoire de l'aviation, bien plus que les premiers balbutiements du début du siècle, qui s'effectuaient à très basse vitesse et altitude. Finalement, l'avion-fusée Bell X1 (Fig.1.6) fut le premier à franchir cette limite mythique, les techniciens américains ayant beaucoup bénéficié des connaissances tout à fait en pointe des ingénieurs aéronautiques allemands "invités" à s'installer aux USA à la fin de la guerre.

Il existe aussi un certain nombre de cas où l'on observe localement des poches superson-

Figure 1.3: Nébuleuse planétaire M2-9 (Hubble, 1997). Une violente interaction entre deux étoiles aboutit à l'expulsion violente de jets hypersoniques à plus de 300 km/s.

iques, alors que l'écoulement global reste, lui, pleinement subsonique. Cela correspond à un domaine d'application majeure, car c'est précisément le cas rencontré sur les profils d'aile dans le domaine transsonique (Figure 1.7 et 1.8).

Il s'agit d'ailleurs là du cas probablement le plus complexe à traiter (combinaison de zones subsoniques et supersoniques), accessible en général uniquement par la simulation numérique ou les mesures expérimentales, alors qu'un écoulement complètement supersonique est susceptible de simplifications importantes.

Dans ce cours, nous nous attacherons à mettre en évidence quelques caractéristiques fondamentales des écoulements supersoniques. Après avoir rappelé les notions principales liées aux écoulements supersoniques monodimensionnels, et avoir décrit relativement en détail les phénomènes d'ondes de choc droites et obliques, nous introduirons une notion fondamentale pour l'étude des écoulements supersoniques, à savoir celle de lignes caractéristiques. Nous présenterons ensuite la méthode des petites perturbations, utile en particulier pour définir les profils d'aile, avant de traiter plus précisément le cas hypersonique, qui correspond aux principales applications aérospatiales. Il sera alors temps de s'intéresser brièvement aux problèmes qui ne sont accessibles qu'à une analyse prenant en compte les aspects instationnaires, ainsi qu'aux détonations. Pour finir, nous aborderons le problème de la simulation numérique de tels écoulements supersoniques, sujet qui prend une importance croissante à l'heure actuelle. Une brève présentation des principales techniques expérimentales utilisées permettra de terminer cet enseignement.

Figure 1.4: Véhicule transsonique SSC, propulsé par deux turbines aéronautiques

Figure 1.5: Interférogramme montrant les lignes de densité constante. Écoulement dans une soufflerie supersonique à nombre de Mach 1,32 sur un coin de demi-angle 10 ° suivi d'une plaque plane. Dans ces conditions, le choc amont ne peut rester attaché.

Figure 1.6: L'avion-fusée Bell X1 en vol.

Figure 1.7: Écoulement localement supersonique sur une aile d'avion volant en régime transsonique

Figure 1.8: Écoulement localement supersonique sur un projectile lancé à Mach0.946

Chapter 2

Écoulements monodimensionnels permanents

2.1 Introduction

Le présent chapitre traite de la dynamique des gaz dans un cadre très simplifié. Nous étudierons ici uniquement des écoulements unidimensionnels, en considérant éventuellement l'effet du frottement et du transfert de chaleur. Cette étude sera limitée aux écoulements stationnaires. Un chapitre sera consacré ultérieurement à l'introduction des notions principales liées aux écoulements instationnaires. Nous nous limiterons de plus pour l'essentiel à l'étude de gaz parfaits, ce qui correspond à la très grande majorité des écoulements rencontrés en pratique. Les principes introduits sont particulièrement utiles pour décrire les écoulements dans des conduites.

Ces écoulements s'effectuent en général de façon adiabatique (c'est à dire sans échange de chaleur). Si l'on peut de plus négliger les effets du frottement (conduit court), ces écoulements peuvent être également considérés comme réversibles. Ces deux conditions (adiabaticité, réversibilité) correspondent à des écoulements isentropiques.

L'irréversibilité de l'écoulement est mise en défaut en présence d'ondes de choc droites ou obliques. Si de telles ondes sont présentes, les relations présentées dans ce chapitre ne sont valables qu'en amont et en aval de ces ondes de choc. Des relations de saut au niveau des ondes de choc peuvent alors être utilisées pour relier ces différentes grandeurs.

2.2 Écoulements isentropiques de gaz réels

2.2.1 Établissement des équations

Nous supposons dans cette section que l'écoulement est unidimensionnel, stationnaire, qu'il n'y a pas d'apport de chaleur ni de travail. De plus, nous négligeons l'influence des

forces de frottement, ainsi que de toute force de volume. L'écoulement est de plus supposé isentropique.

Dans ces conditions, la conservation de la masse se résume à :

$$\dot{m} = \rho A v$$
 (2.1)
= constante

La conservation de l'énergie s'écrit pour sa part en partant du premier principe de la thermodynamique écrit pour un système ouvert en régime permanent. Pour une unité de masse du fluide, on a :

$$\delta\left(h + \frac{v^2}{2}\right) = 0\tag{2.2}$$

soit par conséquent

$$h + \frac{v^2}{2} = h_i$$
= constante (2.3)

Dans cette expression, h_i désigne l'enthalpie d'arrêt, c'est à dire l'enthalpie du fluide ramené au repos. Comme le montre cette relation, l'enthalpie du fluide ne peut en aucun cas dépasser l'enthalpie d'arrêt dans les conditions étudiées. La connaissance de l'enthalpie d'arrêt h_i et de l'enthalpie h dans une section permet de recalculer immédiatement la vitesse dans cette section par $v = [2(h_i - h)]^{1/2}$.

Le bilan de quantité de mouvement s'obtient à partir d'un bilan macroscopique. Considérant l'élément de conduit de la Figure 2.1, le bilan s'écrit en terme de force pariétale pour le volume de contrôle δV :

$$\delta \boldsymbol{F}_p = -\delta[(pA + \dot{m}v)\boldsymbol{N}]$$

Projetant cette relation sur l'axe des x, on obtient simplement :

$$\delta F_{px} = - \delta(pA + \dot{m}v)$$

La force élémentaire exercée sur la paroi peut d'autre part s'écrire en fonction de la pression moyenne s'exerçant sur $\delta \Sigma$: $\delta F_{px} = -p \ \delta \Sigma \cos \alpha$. Comme on a aussi $\cos \alpha = \delta A/\delta \Sigma$, on trouve finalement $\delta F_{px} = -p \ \delta A$. En substituant dans la relation initiale, on trouve :

$$-p \, \delta A = -p \, \delta A - A \, \delta p - \dot{m} \, \delta v - v \, \delta \dot{m}$$

Le dernier terme de cette égalité est nul, car \dot{m} est constant dans le conduit. On a donc finalement $A(\delta p + \rho v \delta v) = 0$, ou encore sous forme différentielle :

$$dp + \rho v dv = 0 \tag{2.4}$$

On doit adjoindre aux équations décrivant la conservation de la masse, de l'énergie et de la quantité de mouvement l'équation d'état du fluide. De plus, l'écoulement est par hypothèse isentropique. On a donc finalement pour décrire le système :

Figure 2.1: Configuration pour le bilan de quantité de mouvement

• Bilan de masse

$$\rho A v = \text{constante} \tag{2.5}$$

• Bilan de quantité de mouvement

$$dp + \rho v dv = 0 \tag{2.6}$$

• Bilan d'énergie

$$h + \frac{v^2}{2} = \text{constante} \tag{2.7}$$

• Bilan d'entropie

$$s = \text{constante}$$
 (2.8)

• Équation d'état (plusieurs formes possibles)

$$\rho = \rho(s, p) \tag{2.9}$$

2.2.2 Influence d'une variation de la section

Pour étudier l'effet d'un changement de section, nous reprenons les équations de bilan de masse et de quantité de mouvement écrites sous forme différentielle :

$$\frac{d\rho}{\rho} + \frac{dA}{A} + \frac{dv}{v} = 0$$
$$\frac{dp}{\rho} + vdv = 0$$

On peut noter d'autre part que :

$$\frac{dp}{\rho} = \frac{dp}{d\rho} \frac{d\rho}{\rho}$$
$$= \left(\frac{\partial p}{\partial \rho}\right)_s \frac{d\rho}{\rho}$$

puisque l'écoulement est isentropique.

On sait d'autre part que la célérité sonore locale est définie par :

$$c^2 = \left(\frac{\partial p}{\partial \rho}\right)_s \tag{2.10}$$

On peut donc écrire :

$$\frac{dp}{\rho} = c^2 \frac{d\rho}{\rho}$$

Introduisant cette relation dans l'équation de bilan de quantité de mouvement, on a finalement :

$$c^2 \frac{d\rho}{\rho} + v^2 \frac{dv}{v} = 0$$

Ou encore:

$$\frac{d\rho}{\rho} = -M^2 \frac{dv}{v}$$

en introduisant le nombre de Mach local M=v/c. Cette dernière relation montre le lien entre nombre de Mach et variation relative de la densité. Pour de faibles nombres de Mach (M < 0.1 - 0.2), les variations de densité peuvent être pratiquement négligées (en l'absence bien sûr d'effet extérieur, par exemple une réaction chimique). Par contre, pour des nombres de Mach élevés comme ceux que nous rencontrerons en pratique dans ce cours, les variations de densité deviennent considérables et ne peuvent plus être négligées.

Substituant la dernière relation obtenue dans le bilan de masse, on obtient une relation entre la vitesse et la section :

$$\left[\left(1 - M^2\right)\frac{dv}{v} + \frac{dA}{A} = 0\right] \tag{2.11}$$

Cette relation fondamentale est appelée équation d'Hugoniot. Elle relie les variations de section et de vitesse à la valeur du nombre de Mach. On peut alors distinguer les cas suivants :

• pour M < 1, c'est à dire pour les écoulements subsoniques, une diminution de la section produit une augmentation de la vitesse

• pour M > 1, c'est à dire pour les écoulements supersoniques (cas qui nous intéresse plus particulièrement), une diminution de la section conduit au contraire à une diminution de la vitesse

On peut aussi établir une équation analogue pour relier changements de section et de pression. Reprenant le bilan de quantité de mouvement sous la forme :

$$\frac{dp}{p} + \frac{\rho v^2}{p} \frac{dv}{v} = 0$$

On peut combiner cette relation avec l'équation d'Hugoniot et obtenir :

$$(M^2 - 1)\frac{dp}{p} + \frac{\rho v^2}{p}\frac{dA}{A} = 0 (2.12)$$

On voit ainsi que pour un écoulement supersonique, une diminution de la section s'accompagne d'une diminution de la vitesse, mais d'une augmentation de la pression.

2.2.3 Conditions critiques

Lorsque l'écoulement devient sonique, on dit que le fluide atteint les conditions critiques (v_*, p_*, T_*, \ldots) . Considérant la relation d'Hugoniot, on voit que le fluide ne peut atteindre les conditions critiques qu'au niveau d'un col du système unidimensionnel (M = 1) implique dA = 0.

Attention : Ne surtout pas croire que l'inverse est également vrai ! En fait, dA = 0 implique en général dv = 0, ou (beaucoup plus rarement !) M = 1. La présence d'un col se traduit donc en général tout simplement par une variation nulle de la vitesse.

Le passage par les conditions critiques est très bien illustré par l'exemple classique de la tuyère de Laval (Figure 2.2). Dans cette configuration, l'écoulement, initialement

Figure 2.2: Tuyère de Laval

subsonique, est accéléré dans un convergent, atteint les conditions critiques au niveau du col, passe alors en régime supersonique, et continue d'être accéléré par la suite dans un divergent.

2.3 Cas d'un gaz parfait

Équations générales 2.3.1

Nous particularisons maintenant les résultats obtenus ci-dessus pour le cas d'un gaz parfait, caractérisé par les relations :

$$p = \rho r T \tag{2.13}$$

$$h = c_p T (2.14)$$

Dans ce cas, l'expression de l'entropie est simplement :

$$s = c_v \ln \left(\frac{p}{\rho^{\gamma}}\right) \tag{2.15}$$

soit encore

$$p = \rho^{\gamma} \exp\left(\frac{s}{c_v}\right)$$

Une évolution isentropique est donc simplement caractérisée par les relations

$$\frac{p}{\rho^{\gamma}}$$
 = constante, ou (2.16)

$$\frac{p}{\rho^{\gamma}} = \text{constante, ou}$$

$$\frac{p}{T^{\gamma/(\gamma-1)}} = \text{constante}$$
(2.16)

La célérité sonore peut se calculer très simplement dans ces conditions :

$$c^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{s} = \gamma \rho^{\gamma - 1} \exp\left(\frac{s}{c_{v}}\right) \tag{2.18}$$

Soit finalement:

$$c^2 = \frac{\gamma p}{\rho} = \gamma r T \tag{2.19}$$

A partir de là, nous allons simplement chercher à exprimer toutes les variables de l'écoulement en fonction du nombre de Mach local M et des conditions d'arrêt isentropique (enthalpie h_i , pression p_i , température T_i , densité ρ_i , ces grandeurs étant reliées par les équations d'état $p_i = \rho_i r T_i$ et $h_i = c_p T_i$). Pour cela, nous repartons du bilan d'énergie :

$$h_i = h + \frac{v^2}{2}$$

Cette relation peut s'écrire successivement

$$c_p T_i = c_p T + \frac{v^2}{2}$$
$$\frac{T_i}{T} = 1 + \frac{v^2}{2c_p T}$$

On peut alors utiliser la relation $c_p = \gamma r/(\gamma - 1)$ pour obtenir :

$$\frac{v^2}{2c_pT} = \frac{v^2}{2\frac{\gamma r}{\gamma - 1}T} = \frac{\gamma - 1}{2}\frac{v^2}{c^2} = \frac{\gamma - 1}{2}M^2$$
 (2.20)

Le rapport T_i/T prend alors directement la forme :

$$\boxed{\frac{T_i}{T} = 1 + \frac{\gamma - 1}{2}M^2} \tag{2.21}$$

Utilisant les relations (2.16) et (2.17), on peut alors obtenir de la même façon :

$$\left| \frac{p_i}{p} = \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{\gamma/(\gamma - 1)} \right| \tag{2.22}$$

$$\frac{\rho_i}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{1/(\gamma - 1)} \tag{2.23}$$

Les trois rapports p/p_i , T/T_i et ρ/ρ_i , sont ainsi déterminés de façon univoque en fonction du nombre de Mach local M. On utilisera parfois par la suite $\pi(M) = p/p_i$.

D'autre part, la température d'arrêt et la pression d'arrêt sont constantes en écoulement isentropique. De ce fait, il est pratique d'exprimer le débit massique en fonction de ces quantités, de la section locale A et du nombre de Mach local M. On part de la relation définissant le débit massique :

$$\dot{m} = \rho A v$$

On substitue dans cette expression $\rho = p/(rT)$ et $v = Mc = M(\gamma rT)^{1/2}$:

$$\dot{m} = \frac{p}{rT}AM(\gamma rT)^{1/2} = AMp\left(\frac{\gamma}{rT}\right)^{1/2} \tag{2.24}$$

Nous faisons maintenant apparaître les rapports p_i/p et T_i/T :

$$\dot{m} = AMp_i \left(\frac{p}{p_i}\right) \left(\frac{\gamma}{rT_i}\right)^{1/2} \left(\frac{T_i}{T}\right)^{1/2}$$

On peut maintenant utiliser les expressions reliant p_i/p et T_i/T au nombre de Mach local, pour obtenir :

$$\dot{m} = AMp_i \left(\frac{\gamma}{rT_i}\right)^{1/2} \left(1 + \frac{\gamma - 1}{2}M^2\right)^{-(\gamma + 1)/2(\gamma - 1)}$$
(2.25)

Une relation utile reste encore à présenter. Il s'agit de celle reliant la section locale et la section critique A_* . Pour ce faire, on commence par exprimer le débit dans la section critique :

$$\dot{m}_* = A_* p_i \left(\frac{\gamma}{rT_i}\right)^{1/2} \left(\frac{\gamma+1}{2}\right)^{\frac{-(\gamma+1)}{2(\gamma-1)}}$$

On réécrit alors cette relation sous la forme :

$$\dot{m}_* = \frac{\Psi_* A_* p_i}{(\gamma r T_i)^{1/2}} = \frac{\Psi_* A_* p_i}{c_i}$$
 (2.26)

Avec:

$$\Psi_* = \gamma \left(\frac{2}{\gamma + 1}\right)^{\frac{(\gamma + 1)}{2(\gamma - 1)}} \tag{2.27}$$

On obtient alors aisément l'expression de A/A_* en égalant les deux expressions obtenues pour le débit, qui est conservé :

$$\frac{A}{A_*} = \Sigma(M)$$

ou encore

$$\boxed{\frac{A}{A_*} = \frac{1}{M} \left[\frac{2}{\gamma + 1} \left(1 + \frac{\gamma - 1}{2} M^2 \right) \right]^{\frac{(\gamma + 1)}{2(\gamma - 1)}}}$$
(2.28)

Enfin, en multipliant membre à membre les équations (2.25) et (2.28), on voit immédiatement que la valeur de la section locale disparaît des équations, de même que toute la parenthèse faisant intervenir le nombre de Mach. Il reste alors tout simplement :

$$\dot{m} = \mathcal{F}(\gamma) \frac{p_i A_*}{(rT_i)^{1/2}}$$
(2.29)

avec

$$\mathcal{F}(\gamma) = \gamma^{1/2} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

Cette relation permet de calculer le débit de façon particulièrement simple et avec une bonne précision, p_i , T_i et A_* étant en général des données du problème. Pour un rapport des capacités calorifiques égal à $\gamma = 1.4$, on obtient $\mathcal{F}(1.4) = 0.6847$.

Il n'est pas nécessaire que la section critique A_* existe réellement au sein de l'écoulement étudié pour que les relations présentées soient valables. Il est fréquent d'introduire une section critique "fictive" afin de pouvoir utiliser ces relations, particulièrement simples mais puissantes.

2.3.2 Conditions critiques pour un gaz parfait

De la même façon que nous avons présenté les valeurs critiques dans le cas d'un gaz réel, il est facile de donner les conditions critiques (autrement dit, les valeurs en un col

amorcé) pour un gaz parfait. Ces conditions ne font intervenir que le rapport des chaleurs spécifiques γ :

$$T_* = \frac{2}{\gamma + 1} T_i \tag{2.30}$$

$$p_* = \left(\frac{2}{\gamma + 1}\right)^{\gamma/(\gamma - 1)} p_i \tag{2.31}$$

$$\rho_* = \left(\frac{2}{\gamma+1}\right)^{1/(\gamma-1)} \rho_i \tag{2.32}$$

Pour un gaz parfait vérifiant $\gamma = 1.4$, la température au col est environ 17% inférieure à la température d'arrêt isentropique, alors que la pression au col vaut environ la moitié de p_i .

2.3.3 Vitesse de décharge

Il s'agit de la vitesse atteinte en détendant un écoulement de façon isentropique à partir des conditions d'arrêt, jusqu'à ce que l'on atteigne une pression p. Pour trouver l'expression de cette vitesse de décharge, on écrit l'équation de bilan d'énergie :

$$c_p T_i = \frac{{v_D}^2}{2} + c_p T$$

Ce qui donne

$$v_D = \left[2c_p T_i \left(1 - \frac{T}{T_i}\right)\right]^{1/2}$$

En utilisant la relation isentropique établie précédemment entre p/p_i et T/T_i , on a finalement :

$$v_D = \left(2c_p T_i \left[1 - \left(\frac{p}{p_i}\right)^{(\gamma - 1)/\gamma}\right]\right)^{1/2} \tag{2.33}$$

2.4 Tables d'écoulements isentropiques

Les formules présentées ci-dessus sont proposées sous forme tabulée dans le document annexe pour un gaz parfait présentant un rapport des chaleurs spécifiques $\gamma = 1.4$. Des tables analogues existent pour d'autres valeurs de γ . De nombreux problèmes d'écoulements supersoniques peuvent être résolus simplement et rapidement en faisant appel à ces tables (ou en refaisant les calculs à partir des formules analytiques, solution plus précise, mais plus longue...). La procédure consiste simplement a considérer T_i , p_i et ρ_i comme les données du problème. Les relations isentropiques (2.21) à (2.23) permettent alors de déterminer directement la pression, la température et la densité en tout point du conduit,

en connaissant simplement la valeur du nombre de Mach local M. Il ne reste plus alors qu'à utiliser la relation (2.28) pour trouver la valeur du nombre de Mach en fonction de la section du conduit, et le problème peut être considéré comme résolu. Nous aurons régulièrement l'occasion d'utiliser ces tables durant le cours.

2.5 Écoulements unidimensionnels avec frottement et apport de chaleur

Refaisons un bilan de quantité de mouvement dans une configuration analogue à celle utilisée précédemment, mais en introduisant une force de frottement élémentaire $\delta \boldsymbol{F}_t$ exercée par le fluide sur les parois du conduit, et une quantité de chaleur δQ apportée de l'extérieur au fluide par unité de masse (Figure 2.3). On considère que la force de frottement ne possède une composante globale que selon la direction x, $\delta \boldsymbol{F}_t = \delta F_t \boldsymbol{N}$. Le bilan de quantité de mouvement s'écrit alors pour le volume de contrôle δV :

Figure 2.3: Configuration pour le bilan de quantité de mouvement avec frottement et apport de chaleur

$$\delta \boldsymbol{F}_p = -\delta \left[(pA + \dot{m}v) \boldsymbol{N} \right]$$

Projetant cette relation sur l'axe des x, on obtient simplement :

$$\delta F_{px} = - \delta(pA + \dot{m}v)$$

La force élémentaire exercée sur la paroi peut d'autre part s'écrire en fonction de la pression moyenne s'exerçant sur $\delta \Sigma$, et de la force de frottement : $\delta F_{px} = \delta F_t - p \delta \Sigma \cos \alpha$. Comme on a aussi $\cos \alpha = \delta A/\delta \Sigma$, on trouve finalement $\delta F_{px} = \delta F_t - p \delta A$. En substituant dans la relation initiale, on trouve :

$$\delta F_t - p \, \delta A = -p \, \delta A - A \, \delta p - \dot{m} \, \delta v - v \, \delta \dot{m}$$

Le dernier terme de cette égalité est encore nul, car \dot{m} est constant dans le conduit. On a donc finalement $A(\delta p + \rho v \delta v) + \delta F_t = 0$, ou encore sous forme différentielle :

$$dp + \rho v dv + df = 0 (2.34)$$

où l'on a défini $df = \delta F_t/A$.

D'autre part, le bilan d'énergie s'écrit simplement sous forme différentielle :

$$dh + vdv = dQ (2.35)$$

On a donc finalement pour décrire le système :

• Bilan de masse

$$\rho Av = \text{constante} \tag{2.36}$$

ou, sous forme différentielle :

$$\frac{d\rho}{\rho} + \frac{dA}{A} + \frac{dv}{v} = 0 \tag{2.37}$$

• Bilan de quantité de mouvement

$$dp + \rho v dv + df = 0 (2.38)$$

• Bilan d'énergie

$$dh + vdv = dQ (2.39)$$

• Équation d'état (plusieurs formes possibles)

$$\rho = \rho(s, p) \tag{2.40}$$

Cherchons maintenant à généraliser la relation d'Hugoniot. L'équation d'état du gaz peut se mettre sous la forme :

$$p = p(\rho, s)$$

ou encore

$$dp = \left(\frac{\partial p}{\partial \rho}\right)_s d\rho + \left(\frac{\partial p}{\partial s}\right)_\rho ds$$

On sait déjà que par définition :

$$\left(\frac{\partial p}{\partial \rho}\right)_s = c^2 > 0$$

D'autre part, on admettra que

$$\left(\frac{\partial p}{\partial s}\right)_{\rho} = \kappa^2$$

est aussi une quantité strictement positive. Dans le cas d'un gaz parfait, on a par exemple :

$$\frac{p}{\rho^{\gamma}} = \exp\left(\frac{s}{c_v}\right) \tag{2.41}$$

Ce qui conduit à :

$$\frac{dp}{p} - \gamma \frac{d\rho}{\rho} = \frac{ds}{c_v}$$

et finalement à:

$$\left(\frac{\partial p}{\partial s}\right)_{\rho} = \frac{p}{c_v}$$
$$= \kappa^2 > 0$$

En remplaçant dp par la formule ainsi déterminée dans l'équation de bilan de quantité de mouvement (2.38), on trouve :

$$\rho v dv + c^2 d\rho + \kappa^2 ds + df = 0$$

On utilise alors l'équation de bilan de masse pour éliminer $d\rho$ de cette équation :

$$\rho v dv - c^2 \rho \frac{dv}{v} - c^2 \rho \frac{dA}{A} + \kappa^2 ds + df = 0$$

$$\tag{2.42}$$

On veut maintenant exprimer la variation d'entropie ds. On sait pour cela que :

$$dh = Tds + \frac{dp}{\rho} \tag{2.43}$$

On peut donc réécrire l'équation de bilan d'énergie en introduisant ds:

$$Tds + \frac{dp}{\rho} + vdv = dQ$$

En combinant avec l'équation de bilan de quantité de mouvement divisée par ρ

$$\frac{dp}{\rho} + vdv + \frac{df}{\rho} = 0$$

on trouve finalement:

$$ds = \frac{1}{T} \left(\frac{df}{\rho} + dQ \right) \tag{2.44}$$

Introduisant cette valeur de la variation d'entropie dans (2.42), on trouve en divisant tout par ρc^2 :

$$\frac{dv}{v}\left(1 - \frac{v^2}{c^2}\right) + \frac{dA}{A} = \frac{1}{\rho c^2} \left[\kappa^2 \frac{dQ}{T} + \left(1 + \frac{\kappa^2}{\rho T}\right) df\right]$$

On a donc finalement la relation d'Hugoniot généralisée :

$$\frac{dv}{v}\left(1-M^2\right) + \frac{dA}{A} = \frac{1}{\rho c^2} \left[\kappa^2 \frac{dQ}{T} + \left(1 + \frac{\kappa^2}{\rho T}\right) df\right]$$
(2.45)

On vérifie immédiatement qu'on retrouve bien la relation d'Hugoniot classique si dQ = df = 0. Les coefficients de dQ et de df étant positifs, on voit qu'un apport extérieur de chaleur dQ > 0, ou la présence de frottement aux parois, ont les mêmes effets sur la vitesse qu'une diminution de la section de passage. Étudions maintenant plus en détails ces effets.

2.6 Influence du frottement sur l'écoulement

De façon intuitive, il semble satisfaisant de trouver que l'effet du frottement est assimilable à un effet de rétrécissement de la section utilisable par le fluide. Par contre, une analyse trop rapide peut se révéler déconcertante. Plaçons nous en régime subsonique, en l'absence d'apport de chaleur (dQ=0), et pour une section constante. L'équation d'Hugoniot s'écrit :

$$\frac{dv}{v}\left(1 - M^2\right) = \frac{1}{\rho c^2} \left(1 + \frac{\kappa^2}{\rho T}\right) df$$

Dans ces conditions, en l'absence de frottement, la vitesse reste constante. Par contre, en présence de frottement, la vitesse augmente, ce qui semble peu conforme à l'intuition. En fait, l'ambiguïté n'est qu'apparente. A partir de l'équation d'Hugoniot

$$\frac{dv}{v}\left(1 - M^2\right) = \frac{1}{\rho c^2} \left(1 + \frac{\kappa^2}{\rho T}\right) df$$

et de l'équation de bilan de masse pour A = constante

$$\frac{d\rho}{\rho} + \frac{dv}{v} = 0$$

on tire:

$$\frac{d\rho}{\rho} = \frac{1}{\rho c^2} \frac{1}{M^2 - 1} \left(1 + \frac{\kappa^2}{\rho T} \right) df$$

On se souvient d'autre part que :

$$dp = c^2 d\rho + \kappa^2 ds$$
$$= c^2 d\rho + \kappa^2 \frac{1}{T} \left(\frac{df}{\rho} \right)$$

En introduisant cette relation dans la précédente, on trouve finalement la variation de pression sous la forme :

$$dp = \left(1 + \frac{M^2 \kappa^2}{\rho T}\right) \frac{df}{M^2 - 1} \tag{2.46}$$

Ceci prouve que, dans le cas subsonique considéré, M<1, la pression diminue le long de la conduite, puisque df>0. On explique ainsi le paradoxe précédemment décrit. En l'absence de frottement, la vitesse reste constante, et la pression également. Par contre, en présence de frottement, l'augmentation de la vitesse est en fait due à la diminution de la pression, indispensable pour que l'écoulement puisse avoir lieu.

En résumé, en régime subsonique, la présence de frottement entraîne une augmentation de la vitesse, liée à une diminution de la pression. En régime supersonique, le frottement produit une diminution de la vitesse, liée à une augmentation de la pression.

2.7 Influence d'un apport de chaleur sur l'écoulement

De très nombreux écoulements supersoniques d'intérêt pratique sont le siège d'une réaction chimique exothermique très intense (par exemple dans le moteur Vulcain, Fig.2.4).

Figure 2.4: Moteur Vulcain 2 (photo SEP)

Considérons un écoulement sans frottement d'un gaz parfait à section constante. Les équations de bilan s'écrivent entre deux sections (1) et (2) :

$$\rho_1 v_1 = \rho_2 v_2 \tag{2.47}$$

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 \tag{2.48}$$

$$c_p T_{i1} + Q = c_p T_{i2} (2.49)$$

où Q est la quantité de chaleur apportée à l'écoulement par unité de masse de fluide entre (1) et (2), ce qui veut dire que la puissance totale apportée est $\dot{m}Q$. En écrivant la conservation du débit à l'aide de (2.29), on a maintenant :

$$\frac{p_{i1}A_{*1}}{T_{i1}^{1/2}} = \frac{p_{i2}A_{*2}}{T_{i2}^{1/2}}$$

On connaît d'autre part les fonctions :

$$\frac{p_1}{p_{i1}} = \pi(M_1)$$

$$\frac{p_2}{p_{i2}} = \pi(M_2)$$

$$\frac{A_1}{A_{*1}} = \Sigma(M_1)$$

$$\frac{A_2}{A_{*2}} = \Sigma(M_2)$$

Utilisant le fait que par hypothèse $A_1 = A_2$, on a alors :

$$\left(\frac{T_{i2}}{T_{i1}}\right)^{1/2} = \frac{p_2}{p_1} \frac{\pi(M_1)}{\pi(M_2)} \frac{\Sigma(M_1)}{\Sigma(M_2)}$$

Pour l'équation de bilan de quantité de mouvement, on peut écrire :

$$p_{1} + \rho_{1}v_{1}^{2} = p_{1}\left(1 + \frac{\rho_{1}v_{1}^{2}}{p_{1}}\right)$$
$$= p_{1}\left(1 + \frac{\gamma v_{1}^{2}}{c_{1}^{2}}\right)$$
$$= p_{1}\left(1 + \gamma M_{1}^{2}\right)$$

Donc:

$$\frac{p_2}{p_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2} \tag{2.50}$$

Et la variation de température totale par apport de chaleur s'écrit finalement :

$$\left(\frac{T_{i2}}{T_{i1}}\right)^{1/2} = \left(\frac{1+\gamma M_1^2}{1+\gamma M_2^2}\right) \frac{\pi(M_1)}{\pi(M_2)} \frac{\Sigma(M_1)}{\Sigma(M_2)}
= \frac{\Phi(M_1)}{\Phi(M_2)}$$
(2.51)

en définissant $\Phi(M) = (1 + \gamma M^2) \pi(M) \Sigma(M)$. La fonction $\Phi(M)$ peut facilement être représentée (Figure 2.5). Elle passe par un minimum pour M = 1 et possède une asymptote horizontale. Connaissant toutes les conditions dans la section (1), on peut facilement

Figure 2.5: Variation de température totale par apport de chaleur extérieur

déterminer maintenant les paramètres de l'écoulement dans la section (2). La relation (2.49) donne T_{i2} . Ensuite, l'équation (2.51) permet de trouver $\Phi(M_2)$, donc aussi M_2 . La formule (2.21) donne alors directement T_2 . La pression p_2 est donnée directement par (2.50), et l'on en déduit p_{i2} grâce à (2.22). La densité peut se calculer à partir de l'équation d'état.

Si Q est positif, on trouve bien sûr $T_{i2} > T_{i1}$. Dans ces conditions, (2.51) montre que $\Phi(M_1) > \Phi(M_2)$. Par conséquent :

- $\bullet \,$ si $M_1 < 1, \, M_2$ est supérieur à M_1
- si $M_1 > 1$, M_2 est inférieur à M_1

Ceci correspond bien aux résultats obtenus dans le cas général. Tous calculs faits, l'influence d'un apport de chaleur extérieur effectué à section constante est résumé dans le tableau suivant :

variable	pour $M < 1$	pour $M > 1$
T_i	7	7
M	7	X
p	×	7
p_i	×	×
v	7	×
T	\nearrow (pour $0 < M < \gamma^{-1/2}$),	7
	$\searrow (\text{pour } M > \gamma^{-1/2})$	

2.8 Conclusion 29

La variation un peu curieuse de la température statique peut se démontrer comme suit. On écrit la conservation du débit à section constante :

$$\rho V = \left(\frac{p}{rT}\right) \left(M\sqrt{\gamma rT}\right) = \text{constante}$$
 (2.52)

C'est à dire

$$\frac{pM}{T^{1/2}} = \text{constante}$$

Sous forme variationnelle:

$$\frac{dp}{p} + \frac{dM}{M} - \frac{dT}{2T} = 0$$

De même, la formulation variationnelle de (2.50) s'écrit :

$$\frac{dp}{p} + \frac{2\gamma M \, \mathrm{d}M}{1 + \gamma M^2} = 0$$

On a donc finalement:

$$\frac{dT}{T} = 2\frac{dM}{M} \frac{1 - \gamma M^2}{1 + \gamma M^2} \tag{2.53}$$

On retrouve bien le sens de variation donné précédemment.

2.8 Conclusion

Les formules données dans ce chapitre permettent déjà la résolution de nombreux problèmes d'écoulements supersoniques. Mais leur validité est limitée au régime isentropique, ce qui conduit en général à ne pouvoir utiliser ces formules que dans un certain nombre de zones de l'écoulement, à l'intérieur desquelles cette hypothèse est vérifiée. En dehors des cas du frottement et de l'apport de chaleur extérieur à section constante, traités relativement en détail, des variations brutales et importantes de l'entropie interviennent fréquemment en liaison avec un autre phénomène très répandu en écoulement supersonique : les chocs. Il convient donc de s'y intéresser maintenant afin de pouvoir faire le lien entre les différentes zones isentropiques de l'écoulement.

2.9 Exercices d'application

2.9.1 Écoulement dans une tuyère

On cherche à déterminer l'écoulement dans une tuyère. Les conditions génératrices sont $p_i = 30$ bar, $T_i = 600$ K. Le col du système est amorcé et associé à une section A = 10 cm². Les valeurs en sortie du système sont indicées s. On sait que l'écoulement est supersonique et adapté dans la section de sortie, et est constitué d'un gaz parfait avec $\gamma = 1.4$. Il n'y a pas d'onde de choc dans l'écoulement, et le frottement est négligé. Pour de l'air, on rappelle que l'on a r = 287 J/(kg.K).

Figure 2.6: Écoulement dans une tuyère

Questions:

- 1. Quelle est la valeur de la section de sortie A_s ?
- 2. Quelle est la température en sortie T_s , ainsi que la vitesse en sortie v_s ?
- 3. Donner la valeur du débit traversant le système.
- 4. Donner les valeurs de température, pression et masse volumique au col du système.
- 5. Recalculer les valeurs dans la section de sortie en utilisant les tables d'écoulement.

2.9.2 Écoulement avec apport de chaleur

On cherche à résoudre un problème d'écoulement simple, au sein duquel on apporte de la chaleur, et qui peut être utilisé pour décrire certaines propriétés de systèmes propulsifs aérobies. En amont du dispositif, on a un écoulement d'air ($\gamma=1.4$) avec les conditions $M_0=2,\ T_0=167\ {\rm K},\ p_0=0.25\ {\rm bar},\ {\rm que}\ {\rm l'on}\ {\rm peut}\ {\rm identifier}\ {\rm aux}\ {\rm conditions}\ {\rm de}\ {\rm vol}.$ La section (1) correspond à $A_1=25\ {\rm cm}^2,$ et on a d'autre part $A_2=A_3$. On a mesuré la valeur du nombre de Mach en (2), et trouvé $M_2=3.19$. On sait qu'il n'y a initialement pas d'onde de choc dans l'écoulement, et que l'effet des frottements peut être négligé.

Figure 2.7: Écoulement avec apport de chaleur

Questions:

- 1. Calculer A_2 , M_3 , et la valeur de la section critique fictive A_{*0} correspondant à l'écoulement initial, lorsqu'il n'y a pas d'apport de chaleur.
- 2. On provoque un dégagement de chaleur dans l'écoulement entre (2) et (3) (zone grisée). Calculer la puissance ainsi nécessaire si l'on observe que l'on obtient en sortie $M_3 = 1$? La chaleur massique à pression constante du gaz vaut $C_p = 1000$ J/(kg.K).
- 3. Cette puissance est apportée par la combustion totale d'un combustible libérant sous forme de chaleur 10⁶ J/kg consommé. Quel est le débit de combustible nécessaire, et que peut-on alors observer ?
- 4. Que se passe-t-il si l'on augmente encore la puissance dégagée dans l'écoulement ?

Chapter 3

Ondes de choc droites

3.1 Introduction

On rencontre de très nombreux écoulements compressibles à grande vitesse qui présentent des variations extrêmement rapides des paramètres caractérisant l'écoulement sur des distances très faibles, typiquement de l'ordre de grandeur du libre parcours moyen des molécules. Il est bien clair que, dans cette configuration, les équations développées pour traiter les milieux continus perdent leur validité. Il est alors nécessaire, soit d'employer une autre modélisation, soit de traiter ces phénomènes, que nous appellerons chocs, comme des discontinuités. C'est cette deuxième voie que nous utiliserons au cours de ce chapitre. Ainsi, en utilisant des équations de bilan au travers de ces discontinuités, nous pourrons établir un lien entre les propriétés de l'écoulement en amont et en aval de l'onde de choc, et relier ainsi les valeurs caractérisant ces deux zones (typiquement isentropiques) à travers l'onde de choc qui, elle, modifie l'entropie des particules fluides.

Cependant, il peut être nécessaire, pour certaines applications, de représenter correctement les évolutions complètes au sein de l'onde de choc. C'est par exemple possible en repartant de la Physique Statistique et en poussant les développements à un ordre plus élevé que ceux conduisant aux équations d'Euler (ordre 0) ou de Navier-Stokes (premier ordre). Nous représentons ci-dessous à titre d'exemple l'évolution continue des vitesse et température adimensionnée à travers un choc à Mach 5. Deux solutions sont représentées (Fig.3.1), la solution donnée par les équations de Navier-Stokes étant en fait erronée. Celle notée "Woods", correcte, correspond à une solution au second ordre.

3.2 Équations de bilan à travers un choc droit

La configuration que nous étudions est représentée sur la Figure 3.2. On considère l'onde de choc comme une surface de discontinuité perpendiculaire à l'écoulement, séparant une région amont (indice (1)) d'une région avale (indice (2)). Cette onde de choc est stationnaire, c'est à dire est immobile par rapport au référentiel du laboratoire (nous

Figure 3.1: Évolutions des vitesse et température adimensionnées à la traversée d'une onde de choc droite à Mach 5. Seule la solution notée "Woods", correspondant à un développement au second ordre, est acceptable (Woods et al., Journal of Computational Physics, 1994). La valeur λ_1 utilisée pour adimensionnaliser l'abscisse est le libre parcours moyen des molécules dans le gaz au sein duquel le choc se propage.

Figure 3.2: Configuration pour le bilan à travers un choc droit

traiterons ultérieurement un certain nombre de problèmes dans un cadre instationnaire). Les hypothèses principales utilisées sont :

- pas de forces de frottement, ni de forces de volume
- toutes les lignes de courant sont parallèles entre elles et perpendiculaires à la surface du choc
- il n'y a pas de réaction chimique ni d'apport de chaleur extérieur, et le fluide reste en équilibre thermodynamique

On va maintenant écrire les différentes équations de conservation, permettant de relier l'état (1) à l'état (2). Pour la conservation de la masse, on a simplement :

$$\rho_1 v_1 = \rho_2 v_2 \tag{3.1}$$

puisque le choc, perpendiculaire à l'écoulement, est infiniment mince, et que la section reste donc constante $(A_1 = A_2)$.

Pour la quantité de mouvement, on obtient :

$$\dot{m}v_2 - \dot{m}v_1 = p_1 A_1 - p_2 A_2$$

en considérant que le débit reste constant, et que la variation de quantité de mouvement ne résulte que des forces de pression. Puisque $A_1 = A_2$, et en utilisant (3.1), on a finalement :

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2$$

En l'absence de travail et d'apport de chaleur, le bilan d'énergie s'écrit simplement :

$$h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}$$

En adjoignant à ces équations l'équation d'état du gaz, on obtient ainsi quatre équations, permettant par exemple, à partir de la connaissance de l'état (1), de calculer les quatre inconnues p_2 , ρ_2 , v_2 , h_2 qui caractérisent l'état (2).

• Bilan de masse

$$\rho_1 v_1 = \rho_2 v_2 \tag{3.2}$$

• Bilan de quantité de mouvement

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 \tag{3.3}$$

• Bilan d'énergie

$$h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2} \tag{3.4}$$

• Équation d'état (plusieurs formes possibles)

$$\rho = \rho(s, p) \tag{3.5}$$

Nous allons maintenant particulariser ces résultats au cas du gaz parfait, dans la mesure où nous travaillerons très généralement dans ce cadre.

3.3 Ondes de choc droites pour un gaz parfait

On sait que, dans ce cas, l'équation d'état du gaz s'écrit très simplement, par exemple sous la forme :

$$p = \rho r T$$

Les équations de bilan se simplifient alors pour obtenir :

• Bilan de masse

$$\rho_1 v_1 = \rho_2 v_2 \tag{3.6}$$

• Bilan de quantité de mouvement

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 \tag{3.7}$$

• Bilan d'énergie

$$c_p T_1 + \frac{v_1^2}{2} = c_p T_2 + \frac{v_2^2}{2} \tag{3.8}$$

• Équation d'état

$$p = \rho r T \tag{3.9}$$

On va maintenant chercher à faire apparaître les nombres de Mach amont et aval pour obtenir des rapports simples. On a ainsi pour l'équation d'énergie :

$$c_p T_1 + \frac{v_1^2}{2} = c_p T_1 \left(1 + \frac{v_1^2}{2c_p T_1} \right)$$
$$= c_p T_1 \left(1 + \frac{\gamma - 1}{2} M_1^2 \right)$$

pusique $c_1^2=\gamma rT_1$ et $c_p=(\gamma r)/(\gamma-1)$. L'équation de bilan d'énergie se ramène ainsi à :

$$\frac{T_2}{T_1} = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{1 + \frac{\gamma - 1}{2} M_2^2} \tag{3.10}$$

L'équation de bilan de quantité de mouvement peut maintenant être transformée en utilisant :

$$p_1 + \rho_1 v_1^2 = p_1 \left(1 + \frac{\rho_1 v_1^2}{p_1} \right)$$
$$= p_1 \left(1 + \gamma M_1^2 \right)$$

en utilisant $c_1^2 = \gamma p/\rho$. On a donc maintenant la deuxième relation cherchée :

$$\frac{p_2}{p_1} = \frac{1 + \gamma M_1^2}{1 + \gamma M_2^2} \tag{3.11}$$

Utilisant l'équation d'état des gaz parfaits, on peut en déduire immédiatement l'évolution du rapport ρ_2/ρ_1 .

Il reste maintenant à relier les nombres de Mach amont et aval. Pour ce faire, on utilise le bilan de masse :

$$\frac{\rho_2}{\rho_1} = \frac{v_1}{v_2} = \frac{M_1 c_1}{M_2 c_2} \tag{3.12}$$

On peut transformer les premier et troisième membres de cette égalité en employant :

$$\rho = \frac{p}{rT}$$

$$c = (\gamma rT)^{1/2}$$

pour obtenir:

$$\frac{p_2}{p_1} = \frac{M_1}{M_2} \left(\frac{T_2}{T_1}\right)^{1/2}$$

Les rapports des pressions et des températures ont déjà été reliés aux variations des nombres de Mach précédemment. Par simple substitution, on obtient donc la relation suivante entre les nombres de Mach amont et aval :

$$\frac{1+\gamma M_1^2}{1+\gamma M_2^2} = \frac{M_1}{M_2} \left(\frac{1+\frac{\gamma-1}{2}M_1^2}{1+\frac{\gamma-1}{2}M_2^2} \right)^{1/2}$$

On peut résoudre assez facilement cette équation du second degré en élevant tout au carré et en prenant par exemple M_2^2 comme inconnue en fonction de M_1^2 . La solution triviale $M_2^2 = M_1^2$ étant écartée, on a finalement :

$$M_2^2 = \frac{2 + (\gamma - 1) M_1^2}{2\gamma M_1^2 + 1 - \gamma}$$
(3.13)

Le nombre de Mach M_2 en aval du choc est représenté en fonction de M_1 sur la Figure 3.3. Nous montrerons un peu plus loin que le nombre de Mach amont doit nécessairement être supérieur à 1 pour qu'il puisse y avoir onde de choc. Les ondes de choc ne peuvent en aucun cas se former dans un écoulement subsonique. Comme le montre la figure, le nombre de Mach en aval de l'onde de choc droite est, lui, toujours inférieur à 1. En résumé, un choc droit s'accompagne toujours d'une transition "supersonique \rightarrow subsonique". La figure montre de plus que M_2 diminue de façon monotone quand on augmente M_1 , et tend vers une valeur asymptotique pour $M_1 \rightarrow \infty$, valeur que (3.13) permet de déterminer comme $M_{2 \text{lim}} = [(\gamma - 1)/(2\gamma)]^{1/2}$.

3.4 Propriétés de l'écoulement

La relation (3.13), combinée aux formules trouvées précédemment donnant les rapports de pression, température, densité, permet de donner désormais directement la valeur de ces rapports en fonction du nombre de Mach amont (par exemple). On a ainsi :

$$\left| \frac{T_2}{T_1} = \left(\frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1} \right) \left(\frac{\gamma - 1}{\gamma + 1} + \frac{2}{(\gamma + 1) M_1^2} \right) \right|$$
(3.14)

De la même façon, on trouve:

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1}$$
(3.15)

Figure 3.3: Lien entre les nombres de Mach de part et d'autre d'un choc droit

Enfin, on a en utilisant l'équation d'état :

$$\frac{\rho_2}{\rho_1} = \frac{p_2}{p_1} \frac{T_1}{T_2} = \frac{(\gamma + 1)M_1^2}{2 + (\gamma - 1)M_1^2}$$
(3.16)

Comme $\rho_1 v_1 = \rho_2 v_2$, on a de même immédiatement :

Considérant toutes ces relations, on voit que, pour $M_1 \to \infty$, on a également $T_2 \to \infty$ et $p_2 \to \infty$. Par contre, on voit que les rapports des densités et des vitesses ont une limite finie :

$$\lim_{M_1 \to \infty} \frac{\rho_2}{\rho_1} = \lim_{M_1 \to \infty} \frac{v_1}{v_2}$$
$$= \frac{\gamma + 1}{\gamma - 1}$$

Il peut être également utile d'obtenir le lien entre les pressions totales de part et d'autre du choc. Pour ce faire, on écrit :

$$\frac{p_{i2}}{p_{i1}} = \frac{p_{i2}}{p_2} \frac{p_2}{p_1} \frac{p_1}{p_{i1}}$$

où le deuxième rapport du membre de droite est donné par (3.15), et les premier et troisième correspondent simplement à la relation isentropique (2.22). On a donc finalement :

$$\frac{p_{i2}}{p_{i1}} = \left\{ \left[\frac{\gamma - 1}{\gamma + 1} + \frac{2}{(\gamma + 1) M_1^2} \right]^{\gamma} \left(\frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1} \right) \right\}^{-1/(\gamma - 1)}$$
(3.18)

La dernière relation que nous utiliserons est celle donnant la variation d'entropie à travers l'onde de choc. Pour ce faire, on écrit :

$$\frac{s_2 - s_1}{c_v} = \ln \left[\frac{p_2}{p_1} \left(\frac{\rho_1}{\rho_2} \right)^{\gamma} \right]$$

On connaît déjà les rapports de pression et densité en fonction du nombre de Mach amont. On obtient alors facilement :

$$\frac{s_2 - s_1}{c_v} = \ln \left[\left(\frac{1}{\gamma + 1} \right)^{\gamma + 1} \left(2\gamma M_1^2 - \gamma + 1 \right) \left(\frac{2}{M_1^2} + \gamma - 1 \right)^{\gamma} \right]$$
(3.19)

On voit que la variation d'entropie s'annule pour $M_1 = 1$ (onde de choc infiniment faible). Pour $M_1 > 1$, la variation d'entropie est positive, et elle serait négative pour $M_1 < 1$. Cette dernière hypothèse étant impossible suivant le deuxième principe de la thermodynamique, on voit qu'une onde de choc droite stationnaire ne peut exister que dans un écoulement supersonique.

Attention : Ceci n'exclut pas la propagation d'ondes de choc, par exemple dans un écoulement au repos. Ainsi, suite par exemple à une explosion, une onde de choc peut parfaitement traverser une pièce. Cette onde de choc ne sera bien sûr pas stationnaire par rapport au référentiel de la pièce.

Dans ces conditions, il est facile de représenter l'évolution des différents paramètres de l'écoulement à travers l'onde de choc droite :

variable	
M	$M \ge 1 \to M \le 1$
T_i	=
p	7
p_i	X
v	X
T	7
s	7

3.5 Tables de choc

Toutes les relations établies à la section précédente sont d'un usage courant, et il est donc particulièrement pratique d'en disposer sous forme tabulée. C'est ainsi que l'on pourra trouver dans l'annexe au cours tous les tableaux correspondants, établis pour un rapport des chaleurs massiques $\gamma=1.4$. La plupart des problèmes que nous rencontrerons pourront être simplement résolus en utilisant ces tables. Il est bien sûr toujours possible, dans certains cas particuliers, ou pour obtenir une précision plus élevée, de repartir des formules analytiques données précédemment. Les notations utilisées dans les tables reprennent celles employées dans la section précédente, avec la section (1) en amont du choc droit stationnaire, et la section (2) en aval.

3.6 Relation de Rankine-Hugoniot, ligne de Rayleigh

L'équation de Rankine-Hugoniot permet de relier les rapports de pression et de densité à travers une onde de choc. Pour l'obtenir, on utilise les relations (3.15) et (3.16) établies précédemment :

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 - \frac{\gamma - 1}{\gamma + 1}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) M_1^2}{2 + (\gamma - 1) M_1^2}$$

On commence par tirer M_1 de la première équation :

$$M_1^2 = \frac{(\gamma + 1) p_2 + (\gamma - 1) p_1}{2\gamma p_1}$$

Et, en reportant dans la seconde égalité, on obtient :

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma+1)\frac{p_2}{p_1} + (\gamma-1)}{(\gamma+1) + (\gamma-1)\frac{p_2}{p_1}}$$

En inversant cette relation, on obtient l'équation de Rankine-Hugoniot :

$$\frac{p_2}{p_1} = \frac{\frac{\gamma+1}{\gamma-1} \frac{\rho_2}{\rho_1} - 1}{\frac{\gamma+1}{\gamma-1} - \frac{\rho_2}{\rho_1}} \tag{3.20}$$

Cette relation permet de relier l'état thermodynamique en amont de l'onde de choc (p_1, ρ_1) à l'état en aval (p_2, ρ_2) . L'évolution correspondante est représentée sur la Figure 3.4. On a porté sur cette même figure la courbe isentropique correspondant à $p_2/p_1 = (\rho_2/\rho_1)^{\gamma}$. On voit que les deux courbes correspondantes sont tangentes au niveau du point (1,1), correspondant à une onde de choc infiniment faible. Ainsi, les chocs faibles peuvent en première approximation être considérés comme isentropiques.

Il est également possible d'établir l'équation d'Hugoniot dans le cas plus général des gaz réels. On repart pour ce faire des équations générales du choc droit (3.2) à (3.5) :

$$\rho_1 v_1 = \rho_2 v_2
p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2
h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2}
h = h(p, \rho)$$

On commence par mettre l'équation d'énergie sous la forme :

$$h_2 - h_1 = \frac{1}{2} \left(v_1^2 - v_2^2 \right)$$

Figure 3.4: Représentation de l'équation de Rankine-Hugoniot, de l'évolution isentropique, et d'une droite de Rayleigh

Cette équation se transforme en utilisant l'équation de conservation de la masse en :

$$h_2 - h_1 = \frac{1}{2} v_1 v_2 \left(\frac{\rho_2}{\rho_1} - \frac{\rho_1}{\rho_2} \right)$$

L'équation de conservation de la quantité de mouvement se réécrit :

$$p_2 - p_1 = \rho_1 v_1^2 - \rho_2 v_2^2$$
$$= v_1 v_2 (\rho_2 - \rho_1)$$

en utilisant de nouveau la conservation de la masse. On élimine à présent le produit v_1v_2 entre les deux dernières relations obtenues, ce qui conduit à :

$$h_2 - h_1 = \frac{1}{2} \left(\frac{p_2 - p_1}{\rho_2 - \rho_1} \right) \left(\frac{\rho_2}{\rho_1} - \frac{\rho_1}{\rho_2} \right)$$
$$= \frac{1}{2} (p_2 - p_1) \frac{\rho_2 + \rho_1}{\rho_1 \rho_2}$$

L'équation de Rankine-Hugoniot s'écrit donc finalement pour un gaz réel :

$$h_2 - h_1 = \frac{1}{2} (p_2 - p_1) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right)$$
 (3.21)

Connaissant l'équation d'état $h = h(p, \rho)$, on peut alors relier les états 1 et 2 en amont et en aval du choc droit.

La ligne de Rayleigh correspond à une deuxième méthode pour relier l'évolution de la densité et de la pression, en prenant en compte le nombre de Mach amont. En repartant de l'équation de quantité de mouvement, on a successivement :

$$p_{2} - p_{1} = \rho_{1}v_{1}^{2} - \rho_{2}v_{2}^{2}$$

$$= \rho_{1}v_{1}^{2} \left(1 - \frac{\rho_{2}v_{2}}{\rho_{1}v_{1}}\frac{v_{2}}{v_{1}}\right)$$

$$= \rho_{1}v_{1}^{2} \left(1 - \frac{v_{2}}{v_{1}}\right)$$

puisque $\rho_1 v_1 = \rho_2 v_2$. On réécrit alors :

$$p_2 - p_1 = \rho_1 v_1^2 \left(1 - \frac{\rho_1}{\rho_2} \right)$$

En divisant par p_1 :

$$\frac{p_2}{p_1} - 1 = \frac{v_1^2}{rT_1} \left(1 - \frac{\rho_1}{\rho_2} \right)$$

En fait, on écrit généralement la formule de la ligne de Rayleigh sous la forme :

$$\boxed{\frac{p_2}{p_1} - 1 = \gamma M_1^2 \left(1 - \frac{\rho_1}{\rho_2} \right)} \tag{3.22}$$

Il s'agit de l'équation d'une droite dans le plan $(p_2/p_1, \rho_1/\rho_2)$. L'intersection de la droite de Rayleigh avec la ligne d'Hugoniot donne les conditions du choc correspondant au nombre de Mach M_1 (Figure 3.4).

3.7 Conclusion

A l'aide des formules et des méthodes de raisonnement présentées dans ce chapitre, il est possible d'analyser de nombreux écoulements supersoniques présentant des chocs droits. En particulier, en combinant ces résultats avec ceux du chapitre précédent, il est possible de relier les paramètres de l'écoulement entre différentes zones isentropiques séparées par des ondes de choc droites. Un grand nombre de problèmes monodimensionnels peuvent ainsi être résolus complètement.

Néanmoins, dans les cas bi- ou tridimensionnels, à géométrie plus complexe, les ondes de choc ne sont qu'exceptionnellement droites. Le cas plus général est celui d'ondes de choc obliques qui, bien qu'analogue au problème que nous venons d'aborder, peut s'avérer dans certains cas nettement plus complexe. Il convient donc de s'y intéresser maintenant.

3.8 Exercices d'application

3.8.1 Évolution de l'écoulement à travers un choc droit pour la rentrée atmosphérique d'une navette

On se place dans les conditions amont correspondant à la rentrée atmosphérique d'une navette à 75 km d'altitude. On a alors $T_1=205.3$ K, $p_1=2.5$ Pa, $v_1=7181$ m/s. On considèrera l'atmosphère locale comme un gaz parfait avec $\gamma=1.4$ et r=287 J/kg.K. Il se forme une onde de choc en avant du nez de la navette, que l'on assimilera localement à une onde de choc droite.

Figure 3.5: Onde de choc pour une rentrée atmosphérique

Question:

1. Calculer les paramètres de l'écoulement derrière cette onde de choc et la température au niveau du nez de la navette.

3.8.2 Mesure de vitesse par tube de Pitot dans un écoulement supersonique

On a un écoulement amont de température totale connue. On place un tube de Pitot dans cet écoulement, supersonique. Il se forme une onde de choc en avant du tube, que l'on assimilera localement à une onde de choc droite. On mesure la pression p_2 et la pression totale p_{i2} derrière l'onde de choc.

Figure 3.6: Mesure de vitesse par tube de Pitot dans un écoulement supersonique

- 1. Établir la formule donnant la valeur de la vitesse dans l'écoulement v_1 en fonction de p_2 et p_{i2} .
- 2. Application numérique avec $T_i=1200$ K, $p_{i2}=92.42$ Pa, $p_2=82.07$ Pa, écoulement de gaz parfait avec $\gamma=1.4$ et une masse molaire moyenne $\overline{W}=29.866$ g/mol.

3.8.3 Modèle monodimensionnel simple d'une entrée d'air

On veut représenter par un modèle monodimensionnel très simple le comportement d'une entrée d'air de système propulsif, placé dans un écoulement d'air supersonique à $M_0 = 2$. Pour ce faire, on place un dispositif obturateur mobile selon x en sortie du modèle. Géométriquement, on a $A_1 = 25$ cm², $A_2 = 75$ cm², et $A_3 = A_2$ en l'absence d'obturateur.

Figure 3.7: Modèle d'entrée d'air

- 1. L'obturateur bouche complètement la section (3). Quelle est la configuration de l'écoulement ? Quelle est la pression mesurée à l'intérieur de l'entrée d'air ?
- 2. On retire progressivement l'obturateur vers la droite. Calculer la section de sortie \overline{A}_3 pour que l'onde de choc frontale se fixe exactement au niveau de la section (1). On constate qu'on a alors $M_3=1$. Calculer \overline{M}_2 et le débit massique $\overline{\dot{m}}$.
- 3. On déplace maintenant l'obturateur vers la gauche pour obtenir $A_3 = k\overline{A}_3$ avec k < 1. Quel est le comportement de l'écoulement ? Calculer M_2 et la valeur de $\epsilon = \dot{m}/\overline{\dot{m}}$. Application numérique pour k = 0.8.
- 4. On prend à présent k > 1. Quelle est la position du choc, la valeur de M_2 et de ϵ ? Application numérique pour k = 2.
- 5. Le choc peut-il arriver jusque dans la section (2)? Si oui, calculer la valeur correspondante de k. Que se passe-t-il si on peut augmenter encore k?

3.8.4 Statoréacteur à combustion supersonique

On considère un écoulement d'air dans un dispositif représenté sur la Figure ci-dessous, et l'on sait que cet écoulement est partout supersonique. L'écoulement amont correspond aux conditions de vol à 20 km d'altitude, soit $M_0 = 12$, $p_0 = 900$ Pa, $T_0 = 230$ K. La section d'entrée du moteur vaut $A_0 = 5 \text{ m}^2$. L'entrée d'air se situe entre les sections (0) et (1), et est le siège d'un réseau de chocs obliques qui ne nous intéressera pas plus avant, mais qui conduit à la perte de 50% de la pression totale initiale $(p_{i1}/p_{i0}=0.5)$. Elle est suivie d'une région isentropique entre les sections (1) et (2). Le nombre de Mach M_1 à l'entrée de cette région est $M_1 = 5$, et la section A_2 vaut 0.25 m^2 . La chambre de combustion est située entre les sections (2) et (3), et la combustion se traduit par une quantité de chaleur apportée de façon homogène par unité de masse de combustible Q =1.4 10⁶ J/kg. Les parois de la chambre de combustion forment un divergent, spécialement étudié pour que l'apport de chaleur s'effectue à pression constante. Enfin, l'écoulement entre les sections (3) et (4) s'effectue de manière isentropique, la section de sortie valant $A_4 = 5 \text{ m}^2$. L'écoulement est considéré comme monodimensionnel et stationnaire, l'effet des frottements étant négligé, de même que la variation de débit due à l'injection du combustible.

Figure 3.8: Modèle de statoréacteur à combustion supersonique

- 1. Donner les caractéristiques de l'écoulement dans la section (2).
- 2. Donner les bilans $(2) \rightarrow (3)$ de la chambre de combustion.
- 3. En déduire les caractéristiques de l'écoulement dans les sections (3), puis (4).
- 4. Calculer la poussée et le rendement propulsif du superstatoréacteur.

5. Quel doit-être le profil A(x) de la chambre de combustion pour obtenir une combustion à p constante ?

Chapter 4

Ondes de choc obliques

4.1 Introduction

Comme dans le chapitre précédent, nous traiterons les ondes de choc obliques comme des discontinuités. Il n'est donc ici pas question de s'intéresser à leur structure interne, mais tout simplement d'établir des relations de saut permettant de coupler les états amont et aval de part et d'autre de l'onde de choc oblique. Les techniques utilisées sont tout à fait analogues à celles présentées précédemment. En fait, les relations données pour les chocs droits restent valables à condition de remplacer le nombre de Mach amont par la composante normale du nombre de Mach amont. Par contre, la résolution complète du problème peut parfois apparaître comme plus complexe, et il est nécessaire d'avoir un peu l'habitude de résolution ce type de problème pour déterminer rapidement la méthode de résolution à employer. Les ondes de choc obliques sont présentes dans un très grand nombre de configurations, et il serait pratiquement plus simple de dire que les écoulements supersoniques ne présentant pas d'onde de choc oblique sont fort rares (Figure 4.1).

4.2 Équations de bilan pour les ondes de choc obliques

La configuration que nous étudions est représentée sur la Figure 4.2. On considère l'onde de choc comme étant produite par une déviation de l'écoulement, par exemple suite à une inflexion de la paroi. Cette onde de choc oblique sépare une région amont (indice (1)) d'une région aval (indice (2)). Cette onde de choc est stationnaire, c'est à dire immobile par rapport au référentiel du laboratoire (nous traiterons ultérieurement un certain nombre de problèmes dans un cadre instationnaire). On notera respectivement v_1 et v_2 les vitesses en amont et en aval de l'onde de choc, ϵ est l'angle entre v_1 et la direction du choc rectiligne, β est l'angle entre v_2 et le choc. La valeur $\delta = \epsilon - \beta$ représente le changement de direction de l'écoulement, c'est à dire la déflexion.

On désignera par n et t les parties normale et tangentielle des vecteurs considérés. Des

Figure 4.1: Exemple de chocs obliques sur une maquette d'avion à Mach 1.1, observés par ombroscopie.

considérations géométriques conduisent dès lors à :

$$\begin{array}{rcl} v_{1}^{2} & = & v_{n1}^{2} + v_{t1}^{2} \\ v_{2}^{2} & = & v_{n2}^{2} + v_{t2}^{2} \\ v_{t1} & = & v_{1}\cos\epsilon \\ v_{n1} & = & v_{1}\sin\epsilon \\ v_{t2} & = & v_{2}\cos\beta \\ v_{n2} & = & v_{2}\sin\beta \end{array}$$

Les hypothèses principales utilisées sont :

- pas de forces de frottement, ni de forces de volume
- toutes les lignes de courant sont parallèles entre elles
- il n'y a pas de réaction chimique ni d'apport de chaleur extérieur, et le fluide reste en équilibre thermodynamique

On peut maintenant écrire les différentes équations de conservation, permettant de relier l'état (1) à l'état (2), de la même manière qu'au chapitre précédent. Pour la conservation de la masse, on a simplement :

$$\rho_1 v_{n1} = \rho_2 v_{n2} \tag{4.1}$$

Figure 4.2: Configuration pour le bilan à travers un choc oblique

Pour la quantité de mouvement suivant la direction normale, on obtient :

$$p_1 + \rho_1 v_{n1}^2 = p_2 + \rho_2 v_{n2}^2 \tag{4.2}$$

Le même bilan suivant la direction tangentielle donne :

$$\rho_1 v_{n1} v_{t1} = \rho_2 v_{n2} v_{t2} \tag{4.3}$$

En l'absence de travail et d'apport de chaleur, le bilan d'énergie s'écrit simplement :

$$h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2} \tag{4.4}$$

Comparant les équations (4.1) et (4.3), on obtient immédiatement :

$$v_{t1} = v_{t2} (4.5)$$

On peut alors simplifier le bilan d'énergie sous la forme :

$$h_1 + \frac{v_{n1}^2}{2} = h_2 + \frac{v_{n2}^2}{2} \tag{4.6}$$

En regardant avec un peu plus d'attention les équations (4.1), (4.2) et (4.6), on s'aperçoit que l'on a en fait exactement les mêmes équations que celles obtenues au chapitre précédent pour les chocs droits, à la condition de remplacer partout la vitesse amont v_1 par sa composante normale v_{n1} . De ce fait, toutes les formules établies au chapitre précédent restent valables en remplaçant v_1 par v_{n1} . Ceci implique entre autres que, pour que le choc oblique stationnaire puisse exister dans un tel écoulement, il est nécessaire que la composante normale v_{n1} , et donc à plus forte raison la vitesse totale v_1 , corresponde à un écoulement supersonique.

Comme $v_{n2} < v_{n1}$ (d'après la théorie du choc droit, v_{n2} est dans tous les cas subsonique), et que l'on a d'autre part $v_{t2} = v_{t1}$, des considérations géométriques montrent

que l'écoulement est toujours défléchi vers la direction de l'onde de choc oblique (l'onde de choc oblique "attire" l'écoulement).

Pour compléter le système, il reste à adjoindre à ces équations l'équation d'état du gaz. Ceci permet, à partir de la connaissance de l'état (1) et de la déflexion δ de l'écoulement, de calculer les quatre inconnues p_2 , ρ_2 , v_2 , h_2 qui caractérisent l'état (2). En résumé, on a :

• Bilan de masse

$$\rho_1 v_{n1} = \rho_2 v_{n2} \tag{4.7}$$

• Bilan de quantité de mouvement normale

$$p_1 + \rho_1 v_{n1}^2 = p_2 + \rho_2 v_{n2}^2 \tag{4.8}$$

• Bilan de quantité de mouvement tangentielle

$$v_{t1} = v_{t2} (4.9)$$

• Bilan d'énergie

$$h_1 + \frac{v_{n1}^2}{2} = h_2 + \frac{v_{n2}^2}{2} \tag{4.10}$$

• Équation d'état (plusieurs formes possibles)

$$\rho = \rho(s, p) \tag{4.11}$$

Nous allons maintenant particulariser ces résultats au cas du gaz parfait.

4.3 Ondes de choc obliques dans un gaz parfait

On sait que, dans ce cas, l'équation d'état du gaz s'écrit très simplement, par exemple sous la forme :

$$p = \rho r T$$

$$h = c_p T$$

L'équation de bilan d'énergie se simplifie alors pour obtenir :

$$c_p T_1 + \frac{v_{n1}^2}{2} = c_p T_2 + \frac{v_{n2}^2}{2} \tag{4.12}$$

Il est alors possible d'établir les relations donnant le lien entre les propriétés de l'écoulement en amont et en aval de l'onde de choc oblique. Pour cela, comme mentionné à la section précédente, il suffit de remplacer le nombre de Mach M_1 par sa composante normale

 M_{n1} dans les formules établies au chapitre précédent pour l'onde de choc droite. Cette composante normale a pour expression simple :

$$M_{n1} = M_1 \sin \epsilon \tag{4.13}$$

On obtient alors:

$$\frac{T_2}{T_1} = \left(\frac{2\gamma}{\gamma+1}M_1^2\sin^2\epsilon - \frac{\gamma-1}{\gamma+1}\right) \\
\left(\frac{\gamma-1}{\gamma+1} + \frac{2}{(\gamma+1)M_1^2\sin^2\epsilon}\right) \tag{4.14}$$

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 \sin^2 \epsilon - \frac{\gamma - 1}{\gamma + 1} \tag{4.15}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_1^2 \sin^2 \epsilon}{2 + (\gamma - 1)M_1^2 \sin^2 \epsilon}$$
(4.16)

$$\frac{s_2 - s_1}{c_v} = \ln\left[\left(\frac{1}{\gamma + 1}\right)^{\gamma + 1} \left(2\gamma M_1^2 \sin^2 \epsilon - \gamma + 1\right) \left(\frac{2}{M_1^2 \sin^2 \epsilon} + \gamma - 1\right)^{\gamma}\right]$$

$$(4.17)$$

Toutes ces expressions font intervenir l'angle d'inclinaison ϵ du choc par rapport à la direction initiale de l'écoulement, qu'il est donc indispensable de déterminer. Pour ce faire, on part par exemple de l'équation de conservation de la masse, mise sous la forme :

$$\frac{\rho_2}{\rho_1} = \frac{v_{n1}}{v_{n2}}$$

Les composantes normales de la vitesse sont exprimées en fonction des angles ϵ et $\beta = \epsilon - \delta$.

$$v_{n1} = v_{t1} \tan \epsilon$$

 $v_{n2} = v_{t2} \tan (\epsilon - \delta)$

Comme d'autre part $v_{t1} = v_{t2}$, on a en reportant les expressions précédentes dans l'équation de conservation de la masse :

$$\frac{\tan \epsilon}{\tan (\epsilon - \delta)} = \frac{\rho_2}{\rho_1} \tag{4.18}$$

En rapprochant cette équation de (4.16), on aboutit à :

$$\frac{\tan \epsilon}{\tan (\epsilon - \delta)} = \frac{(\gamma + 1)M_1^2 \sin^2 \epsilon}{2 + (\gamma - 1)M_1^2 \sin^2 \epsilon}$$
(4.19)

Connaissant le nombre de Mach amont M_1 ainsi que l'angle de déflexion δ , il est alors possible de calculer l'angle du choc oblique par rapport à l'écoulement amont.

En séparant $\tan (\epsilon - \delta)$ en termes faisant intervenir simplement ϵ et δ , on peut obtenir une relation donnant la variation de δ avec ϵ pour une valeur donnée de M_1 :

$$\boxed{\frac{1}{\tan \delta} = \left(\frac{\gamma + 1}{2} \frac{M_1^2}{M_1^2 \sin^2 \epsilon - 1} - 1\right) \tan \epsilon} \tag{4.20}$$

L'intérêt de cette équation est en particulier de permettre une tabulation directe reliant δ à ϵ pour M_1 donné.

Pour obtenir le nombre de Mach en aval du choc oblique, on peut utiliser la relation établie pour les ondes de choc droites en introduisant les composantes normales du nombre de Mach :

$$M_{n2}^2 = \frac{M_{n1}^2 + 2/(\gamma - 1)}{2\gamma M_{n1}^2/(\gamma - 1) - 1}$$

que l'on peut réécrire directement :

$$M_2^2 \sin^2(\epsilon - \delta) = \frac{M_1^2 \sin^2 \epsilon + 2/(\gamma - 1)}{2\gamma M_1^2 \sin^2 \epsilon/(\gamma - 1) - 1}$$
(4.21)

On peut représenter les variations correspondantes sous forme de tables ou de figures.

4.4 Tables et abaques pour les chocs obliques

Les relations présentées dans la section précédente peuvent bien sûr être utilisées pour des calculs directs ou itératifs conduisant à la solution du problème avec une très bonne précision. Dans un assez grand nombre de cas, cette précision n'est pas indispensable, et l'on peut se contenter d'estimer la valeur du résultat à partir de tables ou d'abaques existants. On évite ainsi des calculs itératifs parfois assez longs, au prix d'une relative perte de précision. Les abaques les plus utiles sont présentés en fin de document, en particulier la relation entre angle de choc et déflexion pour différentes valeurs du nombre de Mach amont M_1 .

Conformément à la remarque faite lors de l'établissement des équations générales (les équations restent les mêmes que celles correspondant au choc droit si l'on remplace les nombres de Mach M_1 et M_2 par leur composante normale M_{n1} et M_{n2}), il est possible d'utiliser les tables de chocs droits fournies en annexe pour déterminer les variations engendrées par un choc oblique. Si la déflexion δ et le nombre de Mach amont M_1 sont donnés, il faut d'abord déterminer l'angle de choc ϵ , puis calculer le nombre de Mach normal amont $M_{n1} = M_1 \sin \epsilon$. On lit alors dans les tables de choc droit les valeurs des rapports de propriétés associés à M_{n1} . On obtient aussi la valeur de M_{n2} , et il est possible de repasser à M_2 par $M_2 = M_{n2}/\sin{(\epsilon - \delta)}$.

4.5 Indétermination entre choc fort et choc faible

Comme il est apparent sur l'une des figures proposées en annexe, il existe pour un même nombre de Mach amont M_1 et pour une même déflexion δ deux valeurs possibles pour l'angle de choc ϵ (et donc également deux valeurs possibles pour le Mach aval M_2). La valeur d' ϵ la plus élevée correspond aux chocs obliques forts (le cas limite du choc "oblique" le plus intense étant bien sûr le choc droit). Dans ce cas, l'écoulement aval est subsonique. Pour la valeur d' ϵ la plus petite, on obtient un choc oblique faible, et l'écoulement en aval du choc reste généralement supersonique, sauf pour une faible plage de valeurs de δ et M_1 , où l'écoulement devient faiblement subsonique.

Il n'existe pas de méthode absolue pour savoir si la solution physique du problème associée à une configuration donnée est celle du choc oblique fort ou faible. Mais on constate expérimentalement que l'onde oblique faible apparaît dans la plupart des cas, en particulier dans les cas où le choc est "attaché" (c'est à dire directement en contact avec l'obstacle qui le cause). L'onde de choc oblique forte est beaucoup plus rare (Figure 4.3). Elle n'apparaît en général que pour des chocs obliques ou non-rectilignes détachés. Il

Figure 4.3: Quelques configurations caractéristiques où l'on peut généralement savoir s'il s'agit d'un choc oblique de type faible ou fort

existe des configurations où les deux solutions (forte et faible) sont présentes au sein d'un même choc non-rectiligne, la solution forte étant en général liée au choc presque droit, puis évoluant en s'affaiblissant vers une onde de choc oblique de type faible (Figure 4.4).

Figure 4.4: Configuration montrant la présence d'un choc détaché à l'amont d'un obstacle : dièdre de demi-angle 10° placé dans un écoulement à nombre de Mach 1.32.

4.6 Ondes de choc obliques très faibles

Lorsque la déflexion de l'écoulement δ est de faible amplitude, on est en présence soit d'une onde de choc quasi-droite (choc oblique très fort), soit d'une onde de choc oblique très faible. Nous ne considérons ici que ce dernier cas. On a alors $\tan\delta \simeq \delta$, et la relation (4.20) se simplifie pour donner :

$$rac{1}{\delta} \simeq \left(rac{\gamma+1}{2} rac{M_1^2}{M_1^2 \sin^2 \epsilon - 1} - 1
ight) an \epsilon$$

On peut réécrire cette relation sous la forme :

$$M_1^2 \sin^2 \epsilon - 1 \simeq \left(\frac{\gamma + 1}{2} M_1^2 \tan \epsilon\right) \delta - \left(M_1^2 \sin^2 \epsilon - 1\right) \delta \tan \epsilon$$

On peut alors tirer de cette relation une équation pour $M_1^2 \sin^2 \epsilon - 1$, en notant simplement que cette expression est de l'ordre de δ lorsque $\delta \to 0$. Dans ces conditions, le deuxième terme du membre de droite de l'égalité précédente est d'ordre δ^2 , et l'on obtient au premier ordre en δ :

$$M_1^2 \sin^2 \epsilon - 1 \simeq \left(\frac{\gamma + 1}{2} M_1^2 \tan \epsilon\right) \delta$$

D'autre part, pour $\delta \simeq 0$, on a d'après (4.20) $\sin \epsilon \simeq 1/M_1$, ou encore :

$$\tan \epsilon \simeq \frac{1}{(M_1^2 - 1)^{1/2}} \tag{4.22}$$

Finalement, on a donc:

$$M_1^2 \sin^2 \epsilon - 1 \simeq \frac{\gamma + 1}{2} \frac{M_1^2}{(M_1^2 - 1)^{1/2}} \delta$$
 (4.23)

On peut dès lors déduire aisément la variation de pression relative au travers de ce choc faible en partant de (4.15):

$$\frac{\Delta p}{p_1} = \frac{p_2 - p_1}{p_1} = \frac{2\gamma}{\gamma + 1} \left(M_1^2 \sin^2 \epsilon - 1 \right) \tag{4.24}$$

soit

$$\frac{\Delta p}{p_1} \simeq \frac{\gamma M_1^2}{(M_1^2 - 1)^{1/2}} \delta \tag{4.25}$$

La variation de pression est donc directement proportionnelle à l'angle de déflexion δ . On détermine de façon analogue la déviation de vitesse.

$$\frac{\Delta v}{v_1} = \frac{v_2 - v_1}{v_1} = \frac{v_2}{v_1} - 1 \tag{4.26}$$

Le rapport v_2/v_1 s'exprime en fonction des angles de choc et de déflexion

$$\frac{v_2}{v_1} = \frac{\cos \epsilon}{\cos \left(\epsilon - \delta\right)}$$

Ainsi l'on a :

$$\frac{\Delta v}{v_1} = \frac{\cos \epsilon - \cos (\epsilon - \delta)}{\cos (\epsilon - \delta)}$$

Cette relation se simplifie pour $\delta \simeq 0$ en :

$$\frac{\Delta v}{v_1} = -\frac{\sin \epsilon}{\cos \epsilon} \delta$$

soit finalement

$$\frac{\Delta v}{v_1} = -\frac{1}{(M_1^2 - 1)^{1/2}}\delta\tag{4.27}$$

La variation relative de vitesse est donc elle aussi proportionnelle à la déflexion δ pour les chocs obliques très faibles.

4.7 Lignes de Mach ou ondes de Mach

Comme pour le choc droit, l'onde de choc oblique ne peut exister que si le nombre de Mach amont normal est supersonique, c'est à dire pour $M_1 \sin \epsilon \geq 1$. Ceci implique d'ailleurs que l'écoulement est lui-même supersonique $(M_1 \geq 1)$. Dans le cas limite où $M_1 \sin \epsilon = 1$, la relation (4.20) montre que $\delta = 0$, ce qui revient à dire que l'écoulement ne subit aucune déviation. L'onde de choc oblique est alors appelée onde de Mach. Sa direction est donnée par $\sin \epsilon = 1/M_1$, et les pression, densité, vitesse, température subissent des variations infiniment faibles au travers de cette ligne.

$$\frac{p_2}{p_1} = \frac{v_2}{v_1} = \frac{T_2}{T_1} = 1 (4.28)$$

Nous appelerons l'angle correspondant à cette configuration angle de Mach, noté μ . Il n'existe pas d'onde de choc oblique stationnaire faisant avec l'écoulement amont un angle inférieur à μ .

$$\mu = \sin^{-1}\left(\frac{1}{M_1}\right) \tag{4.29}$$

Les lignes de Mach sont donc des lignes inclinées d'un angle $\pm \mu$ par rapport à la direction locale de l'écoulement. Dans le prochain chapitre, nous appelerons aussi ces lignes de Mach (Fig.4.5) du nom de caractéristiques, et elles nous permettront de résoudre des configurations d'écoulements plus complexes.

Figure 4.5: Les lignes de Mach (ondes de choc obliques extrêmement faibles) sont observées ici expérimentalement à Mach 1.5 en plaçant des morceaux de ruban adhésif sur la paroi.

4.8 Polaires de choc

Les polaires de choc constituent une méthode rapide et utile pour visualiser certains phénomènes d'interaction. Pour les introduire, intéressons nous à la façon dont varie la vitesse v_2 après le choc oblique pour une vitesse amont v_1 donnée lorsqu'on fait varier l'angle de choc ϵ . Pour ce faire, il suffit d'appliquer les formules présentées ci-dessus. Connaissant v_1 et T_1 , donc M_1 , et l'angle de choc ϵ , on calcule le nombre de Mach normal M_{n1} . On peut alors calculer le rapport des températures T_2/T_1 par (4.14), et l'on en déduit T_2 . D'autre part, la connaissance de M_1 et d' ϵ permet de déterminer immédiatement δ par (4.20). Connaissant d'autre part le Mach normal derrière le choc M_{n2} par (4.21), on détermine le nombre de Mach aval par $M_2 = M_{n2}/\sin{(\epsilon - \delta)}$. On calcule alors directement la vitesse en aval de l'onde de choc oblique par $v_2 = M_2 \sqrt{\gamma r T_2}$. On peut ainsi obtenir la Figure 4.6. La courbe (\mathcal{C}) décrite par l'extrémité du vecteur

Figure 4.6: Variation de la vitesse \boldsymbol{v}_2 derrière le choc avec l'angle de choc ϵ pour une vitesse amont donnée \boldsymbol{v}_1

vitesse aval v_2 lorsque l'on fait varier ϵ est appelée polaire de choc. Cette courbe nécessite quelques commentaires.

Lorsque l'angle de choc ϵ tend vers l'angle de Mach μ , on se dirige vers un choc infiniment faible. Ainsi, la vitesse aval \mathbf{v}_2 tend vers la vitesse amont \mathbf{v}_1 . Lorsqu' ϵ croît de μ à $\pi/2$, l'angle de déviation commence par augmenter, passe par un maximum δ_m , puis décroît et s'annule lorsqu' $\epsilon = \pi/2$ (cas limite du choc normal). Sur la Figure 4.6, on a également porté la courbe donnant la célérité sonore critique en aval c^* correspondant à un écoulement aval sonique. Si l'extrémité de \mathbf{v}_2 se situe en dehors de ce cercle, l'écoulement aval est supersonique, il est subsonique dans le cas contraire. Le point de la polaire de choc où l'on a $M_2 = 1$ est dans tous les cas très voisin du point de déviation maximale, qui

se trouve en fait très légèrement à l'intérieur du cercle de rayon c^* , associé à la déviation δ^* .

Le point de déviation maximale de l'écoulement δ_m correspond à ϵ tel que $\frac{\partial \delta}{\partial \epsilon} = 0$. Pour le calculer, on part de la relation (4.20), mise sous la forme :

$$\cot \delta = \left(\frac{\gamma + 1}{2} \frac{M_1^2}{M_1^2 \sin^2 \epsilon - 1} - 1\right) \tan \epsilon$$

Une valeur nulle de la dérivée correspond alors à :

$$\frac{M_1^2}{M_1^2 \sin^2 \epsilon - 1} - \frac{2}{\gamma + 1} - \frac{2M_1^4 \cos^2 \epsilon \sin^2 \epsilon}{\left(M_1^2 \sin^2 \epsilon - 1\right)^2} = 0$$

Posons pour simplifier $M_1^2 \sin^2 \epsilon = 1 + Z$, on a la simple équation :

$$\frac{2\gamma}{\gamma+1}Z^2 + \left(4 - M_1^2\right)Z - 2\left(M_1^2 - 1\right) = 0$$

On peut résoudre très simplement cette équation du second degré en Z. Par exemple, pour $M_1 = 2$ et $\gamma = 1.4$, on trouve $\delta_m = 23^{\circ}$ pour un angle de choc $\epsilon = 64.5^{\circ}$.

Une autre forme des polaires de choc (correspondant simplement à un autre système de coordonnées) est fréquemment utilisée. En reprenant le même principe que précédemment, on représente l'évolution des paramètres à travers le choc oblique dans un repère $(\ln(p_2/p_1), \delta)$, parfois plus approprié.

4.9 Écoulement sur un dièdre

Dans cette configuration (Figure 4.2), on connaît immédiatement l'angle de déviation δ , nécessairement égal à l'angle du dièdre. On peut dans un premier temps tracer la polaire de choc correspondant à cette configuration. On voit que, si $\delta < \delta_m$, deux solutions existent pour la vitesse en aval, ces deux solutions étant associées à la même vitesse amont, mais à des angles de choc différents. Ces deux solutions correspondent aux solutions forte et faible mentionnées dans la section 4.5. Comme on l'a alors précisé, c'est toujours la solution faible que l'on trouve expérimentalement dans le cas d'un choc attaché à la pointe du dièdre. Cette solution correspond au cas où \mathbf{v}_2 est plus proche de \mathbf{v}_1 sur la polaire de choc.

Lorsque δ est compris entre δ^* et δ_m , on a vu précédemment que la solution en aval correspond à un écoulement subsonique. Cette solution ne peut être physique que dans le cas où le dièdre s'étend jusqu'à l'infini aval, configuration bien sûr impossible dans la pratique. D'autre part, si δ dépasse δ_m , la polaire de choc ne fait plus apparaître aucune solution pour l'écoulement aval. Dans ce cas, on assiste à la formation d'une onde de choc détachée courbe (Figure 4.3), comme si l'on se trouvait en présence d'un obstacle émoussé placé dans l'écoulement.

4.10 Conclusion 61

On en déduit que, dans cette configuration, seule la partie de la polaire de choc située entre $\delta=0$ (choc infiniment faible) et $\delta=\delta^*$ (écoulement aval sonique) possède une réalité physique.

4.10 Conclusion

Dorénavant, nous sommes en mesure de résoudre la plupart des écoulements simples faisant intervenir des ondes de choc. Bien sûr, nous nous sommes limités au cas des chocs droits. Mais il est relativement facile d'étudier le cas des chocs courbes en utilisant les relations que nous avons développées, car celles-ci restent valides localement. Ainsi, en assimilant une onde de choc courbe à la réunion d'un ensemble de chocs obliques, localement rectilignes (dans le plan tangent local du choc courbe), il est possible de pousser l'analyse assez loin.

D'autre part, l'un des concepts introduit dans ce chapitre va permettre un traitement plus rapide et plus aisé de configurations non-monodimensionnelles ne présentant pas de discontinuités. La méthode des caractéristiques, que nous avons mentionnée en parlant des chocs obliques infiniment faibles, autorise un traitement adéquat de nombreux problèmes, même relativement complexes.

4.11 Exercices d'application

4.11.1 Évolution à travers une onde de choc oblique

On se place dans les conditions amont correspondant à $T_1=280~{\rm K},\,p_1=0.9~{\rm bar},\,M_1=3.$ On considèrera le gaz comme un gaz parfait avec $\gamma=1.4$ et $r=287~{\rm J/kg.K}.$ Suite à une déflexion de la paroi, il se forme une onde de choc oblique rectiligne, dont le pied est attaché à la paroi au niveau de la déflexion.

Figure 4.7: Onde de choc oblique causée par une déflexion de la paroi

Question:

1. Calculer les paramètres de l'écoulement derrière cette onde de choc oblique.

4.11.2 Réflexion d'un choc oblique sur une paroi

On considère un écoulement supersonique confiné entre deux parois. Suite à une déflexion de la paroi inférieure, un choc oblique rectiligne se forme dans l'écoulement. Ce choc rencontre la paroi supérieure au point C. On suppose que l'écoulement derrière ce premier choc est encore supersonique.

Figure 4.8: Réflexion d'une onde de choc oblique sur une paroi

Question:

1. De façon qualitative, décrire ce qui se passe au niveau du point C. On utilisera les polaires de choc dans un plan $(\delta, \log p_2/p_1)$ pour mettre en évidence les différentes possibilités.

4.11.3 Forme d'un jet en sortie de tuyère supersonique

On considère un écoulement supersonique généré par une tuyère de Laval amorcée, avec comme pression génératrice $p_i = 5$ bar. Dans la section de sortie, on a $M_0 = 2$, et la pression ambiante dans le laboratoire est $p_a = 1$ bar. On considère que le gaz est un gaz parfait avec $\gamma = 1.4$ et r = 287 J/kg.K, et que les frottements sont négligeables. On sait qu'il n'y a pas d'onde de choc à l'intérieur du dispositif.

Figure 4.9: Forme d'un jet en sortie de tuyère supersonique

- 1. Quelle est la pression p_0 dans la section de sortie?
- 2. Quel est le critère physique qui va déterminer la forme du jet ?
- 3. Déterminer cette forme.

4.11.4 Optimisation d'une entrée d'air en écoulement supersonique

On peut montrer que la poussée d'un réacteur dépend fortement des pertes de pression génératrice p_i occasionnées par le système de chocs présents dans l'entrée d'air. On introduit de ce fait un paramètre $\eta = p'_i/p_{i0}$, rapport entre la pression génératrice à la fin de l'entrée d'air et la pression génératrice initiale, et l'on souhaite maximiser la valeur de η . Pour les applications, on considèrera un écoulement amont caractérisé par $M_0 = 2$.

Figure 4.10: Optimisation d'une entrée d'air

- 1. Pour une entrée d'air de type Pitot, que vaut η ?
- 2. On souhaite diminuer la violence du choc. Pour ce faire, on utilise un système à proue émergente, avec un angle δ . Calculer η pour $\delta = 10, 16$ et 22°. Conclure.
- 3. On souhaite améliorer encore le dispositif. On adopte une double proue émergente, avec $\delta_0 = 14^{\circ}$ et $\delta_1 = 8^{\circ}$. Conduit-elle à un gain sur η ?
- 4. Comment pourrait-on améliorer encore le dispositif ? Quel point a-t-on négligé, qui peut réduire considérablement les gains de ce système ?

Figure 4.11: Souris sur le Mirage 2000–5

Chapter 5

Méthode des caractéristiques

5.1 Introduction

Afin de pousser plus loin l'analyse des écoulements supersoniques, il est maintenant possible et nécessaire d'introduire un concept supplémentaire, celui de lignes caractéristiques. Grâce à cette analyse, qui reste facile à interpréter physiquement, et que l'on peut simplement relier aux ondes de choc infiniment faibles, nous serons à même de résoudre pas à pas des écoulements complexes, à la condition de maîtriser les conditions initiales et les conditions aux limites du problème. Il existe différentes méthodes pour introduire le concept des caractéristiques, que l'on peut classifier selon la part plus ou moins grande accordée à la rigueur mathématique ou à la physique. L'une d'entre elles a été retenue ici, qui nous a semblé une relativement bonne combinaison, mais qui est loin d'être la seule possible.

5.2 Définition des caractéristiques

La configuration que nous allons utiliser pour introduire les caractéristiques est représentée sur la Figure 5.1. On cherche ainsi à calculer l'écoulement autour d'un corps (A) connu placé dans un écoulement uniforme à l'infini amont de nombre de Mach M_1 . Pour simplifier le problème, on se place dans le cas d'un écoulement bidimensionnel plan. Nous supposons de plus un écoulement permanent, ne présentant ni discontinuité, ni apport d'énergie extérieur. Le gaz est supposé en équilibre thermodynamique, et divariant. L'état thermodynamique peut donc être représenté par deux grandeurs. Nous prendrons ici la pression et l'entropie. En un point quelconque, l'écoulement sera alors parfaitement déterminé par la donnée supplémentaire de ϕ , angle de la vitesse locale avec la vitesse à l'infini amont. L'enthalpie totale $h_i = h + v^2/2$ est constante dans tout l'écoulement.

On suppose qu'à un certain stade du calcul, on connaît l'ensemble des paramètres de l'écoulement jusqu'à une courbe (Γ) donnée, en n'ayant utilisé pour ce faire que les conditions aux limites sur le corps (\mathcal{A}) en amont de l'intersection $(\mathcal{A}) \cap (\Gamma)$. On souhaite

Figure 5.1: Configuration pour l'introduction des caractéristiques

maintenant prolonger le calcul. Pour ce faire, nous allons utiliser les variables p, pression, s, entropie, et ϕ , angle fait localement par la vitesse \boldsymbol{v} avec l'écoulement amont non perturbé. L'écoulement, connu en un point M de (Γ) , pourra être calculé en un point M' situé en aval de (Γ) au voisinage de M, par les relations :

$$p(M') = p(M) + \left(\frac{\partial p}{\partial x}\right)_M dx + \left(\frac{\partial p}{\partial y}\right)_M dy$$
$$\phi(M') = \phi(M) + \left(\frac{\partial \phi}{\partial x}\right)_M dx + \left(\frac{\partial \phi}{\partial y}\right)_M dy$$
$$s(M') = s(M) + \left(\frac{\partial s}{\partial x}\right)_M dx + \left(\frac{\partial s}{\partial y}\right)_M dy$$

Ces relations ne sont bien sûr valables que s'il n'y a pas de discontinuité dans l'écoulement entre M et M'. Dans ces équations, p(M), $\phi(M)$, s(M), dx, dy sont des données pour le calcul (on a MM' = [dx, dy]). On peut donc déterminer toutes les variables en M', à la condition de connaître les dérivées de ces variables au point M.

Admettons qu'il en soit ainsi, et examinons le cas où le point M' voisin de M est situé à la surface du corps (\mathcal{A}) . Dans ces conditions, $\phi(M')$ est connu à partir des relations précédentes. Il est clair que le $\phi(M')$ calculé n'a aucune raison d'être égal au $\phi(M')$ physique, qui traduit le fait que l'écoulement en M' est nécessairement tangent au corps (\mathcal{A}) . Dans ce cas, la solution trouvée sur (Γ) n'est pas satisfaisante, et doit être modifiée pour prendre en compte la condition aux limites en M'.

Par contre, si l'une quelconque des dérivées partielles sur (Γ) , par exemple $\frac{\partial \phi}{\partial y}$, peut y être choisie arbitrairement, il sera toujours possible, quelle que soit la forme du corps (\mathcal{A}) en aval, de trouver une solution satisfaisant les conditions aux limites. Il suffira de choisir pour $\left(\frac{\partial \phi}{\partial y}\right)_M$ la valeur qui permet de trouver la valeur correcte $\phi(M')$. Une telle courbe (Γ) , dont l'existence n'est pour l'instant pas évidente, et le long de laquelle l'écoulement aval est indéterminé, est appelée courbe caractéristique. Si de telles courbes existent, l'écoulement déterminé jusqu'à (Γ) reste compatible avec tous les corps possibles en aval de (Γ) .

Dans un tel cas, on n'utilise pour calculer l'écoulement jusqu'à (Γ) et sur (Γ) que les conditions aux limites sur le corps (\mathcal{A}) jusqu'au point $(\mathcal{A}) \cap (\Gamma)$. Le calcul de l'écoulement sur une seconde ligne caractéristique (Γ') , voisine de (Γ) , ne fera de même intervenir que les conditions aux limites supplémentaires entre $(\mathcal{A}) \cap (\Gamma)$ et $(\mathcal{A}) \cap (\Gamma')$. Il est ainsi possible de faire progresser le calcul numérique pas à pas vers l'aval, en ne faisant toujours intervenir les conditions aux limites que jusqu'au point d'intersection de la ligne caractéristique considérée avec le corps (\mathcal{A}) .

La question essentielle demeure : les lignes caractéristiques existent-elles ?

5.3 Recherche des caractéristiques

On se donne une distribution des grandeurs p, ϕ , s sur une ligne (Γ) donnée, et on recherche à quelle condition cette ligne (Γ) constitue une ligne caractéristique. Ces conditions ne feront que traduire la propriété, montrée dans la section précédente, que le calcul des dérivées partielles de p, ϕ et s est indéterminé sur (Γ).

Les profils p, ϕ et s étant parfaitement connus sur (Γ) , les trois premières relations que nous pouvons écrire sont :

$$\delta p = \frac{\partial p}{\partial x} \, \delta x + \frac{\partial p}{\partial y} \, \delta y \tag{5.1}$$

$$\delta\phi = \frac{\partial\phi}{\partial x}\,\delta x + \frac{\partial\phi}{\partial y}\,\delta y \tag{5.2}$$

$$\delta s = \frac{\partial s}{\partial x} \, \delta x + \frac{\partial s}{\partial y} \, \delta y \tag{5.3}$$

Dans ces équations δx et δy représentent un déplacement connu le long de (Γ) , par conséquent δp , $\delta \phi$, δs sont connus. Nous avons au total six inconnues (2 dérivées partielles pour 3 variables). Nous avons donc besoin de trois équations supplémentaires. Elles sont bien sûr données par les équations générales de l'écoulement :

$$\operatorname{div}(\rho v) = 0$$

$$\frac{Dv}{Dt} + \frac{1}{\rho}\operatorname{grad} p = 0$$

$$\frac{D(h + v^2/2)}{Dt} = 0$$

Il reste à transformer ces équations pour faire intervenir les variables considérées. Comme systèmes d'axe, on prend un système orthonormal (x,y) porté par la vitesse à l'infini amont, et un deuxième système local (x_1,y_1) ayant pour origine le point M où nous voulons écrire les relations, le vecteur unitaire de x_1 étant colinéaire à la vitesse \boldsymbol{v} au point M (Figure 5.2). L'équation de continuité s'écrit dans le nouveau repère en un point P quelconque :

$$\frac{\partial (\rho u_1)}{\partial x_1} + \frac{\partial (\rho v_1)}{\partial y_1} = 0$$

Figure 5.2: Repère utilisé pour le calcul des caractéristiques

où u_1 et v_1 sont les composantes de la vitesse \boldsymbol{v} dans le nouveau repère, c'est à dire $u_1 = v \cos (\phi - \phi_M)$ et $v_1 = v \sin (\phi - \phi_M)$. En remplaçant dans l'égalité initiale, on trouve :

$$\cos(\phi - \phi_M) \frac{\partial(\rho v)}{\partial x_1} - \rho v \sin(\phi - \phi_M) \frac{\partial \phi}{\partial x_1} + \sin(\phi - \phi_M) \frac{\partial(\rho v)}{\partial y_1} + \rho v \cos(\phi - \phi_M) \frac{\partial \phi}{\partial y_1} = 0$$

Cette équation devient en M:

$$\frac{\partial \left(\rho v\right)}{\partial x_1} + \rho v \frac{\partial \phi}{\partial y_1} = 0 \tag{5.4}$$

Pour le bilan de quantité de mouvement, on a selon la direction x_1 :

$$u_1 \frac{\partial u_1}{\partial x_1} + v_1 \frac{\partial u_1}{\partial y_1} + \frac{1}{\rho} \frac{\partial p}{\partial x_1} = 0$$

On remplace comme précédemment u_1 et v_1 par leurs expressions dans le nouveau repère, et l'on obtient au point M l'équation :

$$v\frac{\partial v}{\partial x_1} + \frac{1}{\rho}\frac{\partial p}{\partial x_1} = 0 \tag{5.5}$$

De façon analogue, on trouve en projection sur y_1 :

$$v^2 \frac{\partial \phi}{\partial x_1} + \frac{1}{\rho} \frac{\partial p}{\partial y_1} = 0 \tag{5.6}$$

Cette équation ne fait intervenir que les dérivées partielles de ϕ et p, et est donc l'une des relations supplémentaires cherchées.

Le bilan d'énergie devient pour sa part simplement :

$$\frac{\partial h}{\partial x_1} + v \frac{\partial v}{\partial x_1} = 0 \tag{5.7}$$

Exprimant l'enthalpie en terme d'entropie et de pression, on peut aussi écrire :

$$T\frac{\partial s}{\partial x_1} + \frac{1}{\rho} \frac{\partial p}{\partial x_1} + v \frac{\partial v}{\partial x_1} = 0$$

Compte tenu de (5.5), on obtient immédiatement :

$$\frac{\partial s}{\partial x_1} = 0$$

qui constitue la cinquième relation recherchée. Il reste maintenant à mettre à profit le bilan de masse. Pour cela, on retransforme (5.4) pour obtenir :

$$\frac{1}{\rho v} \frac{\partial (\rho v)}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0$$

Soit encore:

$$\frac{1}{\rho} \frac{\partial \rho}{\partial x_1} + \frac{1}{v} \frac{\partial v}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0 \tag{5.8}$$

En tenant compte de (5.5), on a donc :

$$\frac{1}{\rho} \frac{\partial \rho}{\partial x_1} - \frac{1}{\rho v^2} \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0$$

La célérité locale du son est définie par :

$$c^2 = \left(\frac{\partial p}{\partial \rho}\right)_s \tag{5.9}$$

On a vu précédemment que l'entropie est constante le long de x_1 . Par conséquent, on a :

$$c^2 \frac{\partial \rho}{\partial x_1} = \frac{\partial p}{\partial x_1}$$

On a donc pour l'équation de continuité :

$$\frac{1}{\rho c^2} \left(1 - \frac{c^2}{v^2} \right) \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0$$

En introduisant le nombre de Mach M = v/c, et en définissant la variable γ par $c^2 = \gamma p/\rho$ (γ n'est pas nécessairement constant), on obtient donc finalement :

$$\frac{M^2 - 1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0$$

qui constitue la dernière relation cherchée. Avec les nouveaux paramètres introduits, on réécrit (5.6):

$$\frac{1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial y_1} + \frac{\partial \phi}{\partial x_1} = 0$$

Si l'on résume l'ensemble des six équations trouvées, on a :

$$\frac{1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial y_1} + \frac{\partial \phi}{\partial x_1} = 0 ag{5.10}$$

$$\frac{M^2 - 1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0 ag{5.11}$$

$$\delta x_1 \frac{\partial p}{\partial x_1} + \delta y_1 \frac{\partial p}{\partial y_1} = \delta p \tag{5.12}$$

$$\delta x_1 \frac{\partial \phi}{\partial x_1} + \delta y_1 \frac{\partial \phi}{\partial y_1} = \delta \phi \tag{5.13}$$

$$\frac{\partial s}{\partial x_1} = 0 (5.14)$$

$$\delta x_1 \frac{\partial s}{\partial x_1} + \delta y_1 \frac{\partial s}{\partial y_1} = \delta s \tag{5.15}$$

Ce système de 6 équations à 6 inconnues se sépare trivialement en deux sous-systèmes indépendants. Le premier regroupe les 4 premières équations et ne fait pas intervenir s (4 inconnues). Les deux dernières équations ne font intervenir que l'entropie (deux inconnues) et peuvent être résolues séparément.

Pour que ce deuxième sous-système soit indéterminé, il faut que le déterminant principal associé soit nul :

$$\left|\begin{array}{cc} 1 & 0 \\ \delta x_1 & \delta y_1 \end{array}\right| = 0$$

Par conséquent, il faut $\delta y_1 = 0$, ce qui implique que la courbe (Γ) considérée est simplement une ligne de courant. Le long de cette courbe, on a $\delta s = 0$, et on vérifie immédiatement dans le deuxième sous-système que $\frac{\partial s}{\partial y_1}$ peut être choisie arbitrairement. Les lignes de courant constituent donc une première famille de caractéristiques.

On reprend maintenant le premier sous-système de 4 équations à 4 inconnues. L'indétermination se traduit par la nullité du déterminant principal ainsi que de l'un des déterminants complémentaires obtenus par permutation des colonnes de coefficients (sinon, il pourrait simplement ne pas y avoir de solution au système). Le déterminant principal s'écrit :

$$\Delta = \begin{vmatrix} 0 & \frac{1}{\gamma M^2 p} & 1 & 0\\ \frac{M^2 - 1}{\gamma M^2 p} & 0 & 0 & 1\\ \delta x_1 & \delta y_1 & 0 & 0\\ 0 & 0 & \delta x_1 & \delta y_1 \end{vmatrix}$$

On a donc:

$$\Delta = -\frac{(\delta x_1)^2}{\gamma p M^2} + (\delta y_1)^2 \frac{M^2 - 1}{\gamma p M^2}$$

La nullité du déterminant principal s'écrit donc :

$$(M^{2} - 1) (\delta y_{1})^{2} = (\delta x_{1})^{2}$$
(5.16)

Nécessairement, il faut donc que M>1, c'est à dire que l'écoulement soit supersonique. Dans ce cas, la pente de (Γ) au point M est donnée par :

$$\frac{\delta y_1}{\delta x_1} = \pm \frac{1}{\sqrt{M^2 - 1}} \tag{5.17}$$

$$= \pm \tan \mu \tag{5.18}$$

où μ est l'angle de Mach (cf. chapitre précédent). On a ainsi en chaque point deux lignes caractéristiques supplémentaires (Γ^+) et (Γ^-) faisant l'angle de Mach avec la vitesse locale.

Il reste à observer l'annulation d'un des déterminants complémentaires, par exemple celui relatif à $\frac{\partial p}{\partial x_1}$. On a alors :

$$\Delta' = \left| egin{array}{cccc} 0 & rac{1}{\gamma M^2 p} & 1 & 0 \ 0 & 0 & 0 & 1 \ \delta p & \delta y_1 & 0 & 0 \ \delta \phi & 0 & \delta x_1 & \delta y_1 \end{array}
ight|$$

On a ainsi:

$$\Delta' = -\frac{1}{\gamma M^2 p} \delta p \, \delta x_1 - \, \delta \phi \, \delta y_1$$

que l'on souhaite annuler. On obtient par conséquent deux relations complémentaires. Sur (Γ^+) , déterminée par :

$$\boxed{\frac{\delta y_1}{\delta x_1} = \tan \mu} \tag{5.19}$$

on a:

$$\frac{1}{\gamma M^2} \frac{\delta p}{p} + \frac{1}{\sqrt{M^2 - 1}} \, \delta \phi = 0$$

soit encore:

$$\frac{\sin \mu \cos \mu}{\gamma} \frac{\delta p}{p} + \delta \phi = 0 \tag{5.20}$$

Sur (Γ^{-}) , déterminée par :

$$\frac{\delta y_1}{\delta x_1} = -\tan\mu \tag{5.21}$$

on a:

$$\frac{\sin \mu \cos \mu}{\gamma} \frac{\delta p}{p} - \delta \phi = 0$$
(5.22)

On a ainsi mis en évidence trois familles de lignes caractéristiques à condition que l'écoulement soit supersonique : les lignes de courant, le long desquelles l'entropie est conservée, les lignes (Γ^+) faisant l'angle $+\mu$ avec les lignes de courant, le long desquelles (5.20) est vérifiée, et les lignes (Γ^-) faisant l'angle $-\mu$ avec les lignes de courant, et pour lesquelles la relation (5.22) est obtenue.

5.4 Utilisation des relations de caractéristiques

On reprend le problème proposé au début de ce chapitre (Figure 5.3). On connaît tous les paramètres de l'écoulement sur une courbe (Γ^+). Comment peut-on poursuivre le calcul ? On introduit la variable $z = \ln p$. Les relations de caractéristiques se simplifient. Sur

Figure 5.3: Utilisation de la méthode des caractéristiques

 (Γ^+) , on obtient la relation :

$$\frac{\sin \mu \cos \mu}{\gamma} \, \delta z + \, \delta \phi = 0 \tag{5.23}$$

Sur (Γ^-) , on a:

$$\frac{\sin \mu \cos \mu}{\gamma} \, \delta z - \, \delta \phi = 0 \tag{5.24}$$

En un point L de (Γ^+) , on connaît ϕ_L et μ_L . On trace la caractéristique (Γ^-) en L, assimilée à une droite faisant avec x l'angle $(\phi_L - \mu_L)$. Cette assimilation à une droite n'est bien sûr valide que parce que l'on se limitera à une résolution itérative ne faisant intervenir que des déplacements du premier ordre dans l'espace. La caractéristique ainsi tracée coupe le corps (\mathcal{A}) en un point L_1 , où la direction de la vitesse est imposée par la condition de tangence au corps. Donc ϕ_{L_1} est connu. La relation de caractéristique sur (Γ^-) s'écrit d'autre part le long de (LL_1) :

$$\left(\frac{\sin\mu\cos\mu}{\gamma}\right)_{LL_1}(z_{L_1}-z_{L})-(\phi_{L_1}-\phi_{L})=0$$

Dans cette formule, la première parenthèse représente la valeur moyenne de $\sin \mu \cos \mu / \gamma$ entre L et L_1 . En première approximation, et dans la mesure où nous nous limiterons à des

déplacements infinitésimaux, on prendra pour cette valeur moyenne la valeur en L, connue. On peut dès lors déduire de la relation précédente, connaissant ϕ_{L_1} par les conditions aux limites, la valeur de z_{L_1} , ou encore de p_{L_1} . D'autre part, la ligne KL_1 , qui suit le corps (\mathcal{A}) , est également nécessairement ligne de courant. Par conséquent, la troisième relation de caractéristique conduit à $s_{L_1} = s_K$, ce qui finit de définir complètement l'écoulement en L_1 .

On se souvient qu'une approximation a été faite pour la valeur de $\sin \mu \cos \mu / \gamma$. Il est maintenant possible de raffiner la précision si cela apparaît nécessaire, en prenant comme deuxième approximation pour $\left(\frac{\sin \mu \cos \mu}{\gamma}\right)_{LL_1}$ la valeur $\frac{1}{2}\left[\frac{\sin \mu_L \cos \mu_L}{\gamma_L} + \frac{\sin \mu_{L_1} \cos \mu_{L_1}}{\gamma_{L_1}}\right]$. On aboutit ainsi à un deuxième jeu de paramètres en L_1 , et il est possible d'itérer jusqu'à obtenir la convergence.

Connaissant maintenant la solution en L_1 , il est possible de tracer la caractéristique (Γ^+) issue de ce point. Prenant un deuxième point M sur la caractéristique (Γ^+) issue de L, on trace alors la caractéristique (Γ^-) issue de M. Ces deux caractéristiques se coupent en M_1 . On peut écrire sur $L_1 \to M_1$:

$$\left(rac{\sin\mu\cos\mu}{\gamma}
ight)_{L_1\,M_1}(z_{M_1}-z_{L_1})+(\phi_{M_1}-\phi_{L_1})=0$$

On écrit de même sur $M \to M_1$:

$$\left(rac{\sin\mu\cos\mu}{\gamma}
ight)_{MM_1}(z_{M_1}-z_M)-(\phi_{M_1}-\phi_M)=0$$

On aboutit ainsi à un système de deux équations à deux inconnues, qu'il est aisé de résoudre pour obtenir z_{M_1} et ϕ_{M_1} . Connaissant ϕ_{M_1} , il est facile de tracer la ligne de courant passant par M_1 , qui coupe le segment ML_1 en un point M_1 . On sait dès lors que $s_{M_1} = s_{M_1}$, cette dernière valeur étant obtenue par interpolation à partir de s_M et de s_{L_1} , connus, par :

$$s_{M_1'} = \frac{\overline{M_1' L_1} s_M - \overline{M_1' M} s_{L_1}}{\overline{M} L_1}$$

On peut maintenant poursuivre la résolution de proche en proche le long de la caractéristique (Γ^+) issue de L_1 , qui est ainsi parfaitement déterminée dans sa totalité. Il est ensuite possible de calculer de même les paramètres sur une autre caractéristique (Γ^+), issue d'un point M_2 du corps (\mathcal{A}), voisin de L_1 . Ainsi, tout l'écoulement situé en aval de la caractéristique initiale peut être calculé à partir de la seule connaissance des conditions aux limites sur le corps (\mathcal{A}).

5.5 Caractéristiques pour un gaz calorifiquement parfait

On se limite donc à présent au cas du gaz parfait avec $\gamma = \text{constante}$. On va transformer l'expression de $[\sin \mu \cos \mu / (\gamma p)] \delta p$. Partant de :

$$h + \frac{v^2}{2} = \text{constante}$$

On a dh + v dv = 0. D'autre part $v^2 = M^2c^2$. Partant de $c^2 = \gamma rT$, on a $c^2 = \gamma (c_p - c_v) T$, donc :

$$c^2 = \gamma \left(c_p - \frac{c_p}{\gamma} \right) T \tag{5.25}$$

Comme on a $h = c_p T$, la formule précédente se réduit à :

$$c^2 = (\gamma - 1) h \tag{5.26}$$

Et donc:

$$v^{2} = M^{2}c^{2}$$

$$= \frac{(\gamma - 1) h}{\sin^{2} u}$$
(5.27)

On réécrit alors cette dernière égalité par différentiation :

$$2v dv = (\gamma - 1) \left[\frac{dh}{\sin^2 \mu} - 2h \frac{\cos \mu d\mu}{\sin^3 \mu} \right]$$

Le bilan d'énergie sous forme différentielle se ramène alors à son tour à :

$$dh\left[1 + \frac{\gamma - 1}{2}\frac{1}{\sin^2\mu}\right] - h\frac{\cos\mu(\gamma - 1) d\mu}{\sin^3\mu} = 0$$

On sait d'autre part que $dh = T ds + \frac{dp}{\rho}$. On peut donc écrire :

$$\frac{\mathrm{d}p}{\rho} = \frac{h\cos\mu \left(\gamma - 1\right) \,\mathrm{d}\mu}{\sin^3\mu \left[1 + \frac{\gamma - 1}{2} \frac{1}{\sin^2\mu}\right]} - T \,\mathrm{d}s \tag{5.28}$$

Repartant de $h=c_pT$, la loi des gaz parfaits donne $h=\frac{c_p}{r}\frac{p}{\rho}$. Comme $r=c_p-c_v$ et $\gamma=c_p/c_v$, on a donc également la relation simple :

$$h = \frac{\gamma}{\gamma - 1} \frac{p}{\rho} \tag{5.29}$$

En remplaçant h par sa valeur dans (5.28), on obtient finalement:

$$\frac{\sin \mu \cos \mu}{\gamma} \frac{\mathrm{d}p}{p} = \frac{2 \cos^2 \mu \, \mathrm{d}\mu}{\gamma - \cos(2\mu)} - \frac{\sin \mu \cos \mu}{\gamma} \frac{\mathrm{d}s}{r}$$

On définit à présent la fonction $\mathcal{P}(\mu)$, appelée nombre de pression, par :

$$d\mathcal{P}(\mu) = \frac{2\cos^2 \mu}{\gamma - \cos(2\mu)} d\mu \tag{5.30}$$

Les relations de caractéristiques se réécrivent alors plus simplement, en les exprimant dans les coordonnées (ξ, η) liées respectivement aux caractéristiques (Γ^{-}) et (Γ^{+}) (Figure 5.4). En introduisant le nombre de pression dans (5.20) et (5.22), on obtient sur (Γ^{-}) :

$$\frac{\partial \mathcal{P}}{\partial \xi} - \frac{\partial \phi}{\partial \xi} = \frac{\sin \mu \cos \mu}{\gamma r} \frac{\partial s}{\partial \xi}$$
 (5.31)

De même, sur (Γ^+) :

$$\frac{\partial \mathcal{P}}{\partial \eta} + \frac{\partial \phi}{\partial \eta} = \frac{\sin \mu \cos \mu}{\gamma r} \frac{\partial s}{\partial \eta} \tag{5.32}$$

Si l'on considère un écoulement qui est de plus isentropique, ces relations se simplifient et deviennent:

$$\frac{\partial \mathcal{P}}{\partial \xi} - \frac{\partial \phi}{\partial \xi} = 0 \qquad \text{sur } (\Gamma^{-})$$
 (5.33)

$$\frac{\partial \mathcal{P}}{\partial \xi} - \frac{\partial \phi}{\partial \xi} = 0 \qquad \text{sur} (\Gamma^{-})
\frac{\partial \mathcal{P}}{\partial \eta} + \frac{\partial \phi}{\partial \eta} = 0 \qquad \text{sur} (\Gamma^{+})$$
(5.33)

En résumé, on a donc, dans le cas d'un écoulement isentropique isoénergétique de gaz calorifiquement parfait:

$$\mathcal{P} - \phi = \text{constante} \quad \text{sur} (\Gamma^{-})$$
 (5.35)
 $\mathcal{P} + \phi = \text{constante} \quad \text{sur} (\Gamma^{+})$ (5.36)

$$\mathcal{P} + \phi = \text{constante} \quad \text{sur} (\Gamma^+)$$
 (5.36)

Cette situation est représentée sur la Figure 5.4. Le nombre $\mathcal{P}(\mu)$, que l'on peut tout

Figure 5.4: Configuration pour l'utilisation des caractéristiques en gaz parfait

aussi bien représenter par $\mathcal{P}(M)$, est calculé par intégration à partir de sa définition (5.30). Il vient en fait simplement :

$$\mathcal{P}(\mu) = -\mu - \sqrt{\frac{\gamma + 1}{\gamma - 1}} \arctan \left[\sqrt{\frac{\gamma - 1}{\gamma + 1}} \cot \mu \right] + \text{constante}$$
 (5.37)

On choisit fréquemment la constante pour obtenir $\mathcal{P}=1000$ (exprimé en degrés) pour M=1. La valeur de \mathcal{P} , bien sûr, n'est définie que pour $M\geq 1$. \mathcal{P} décroît quand M augmente. Pour $\gamma=1.4$ par exemple, $\lim_{M\to\infty}\mathcal{P}=870$. La fonction $\mathcal{P}(M)$ est tabulée. En fait, on trouve encore plus fréquemment sous forme tabulée la fonction $\nu(M)=1000-\mathcal{P}$, appelée angle de Prandtl-Meyer. On a alors :

$$\nu + \phi = \text{constante}$$
 sur (Γ^{-}) (5.38)

$$\nu - \phi = \text{constante}$$
sur (Γ^+) (5.39)

5.6 Détente et compression par ondes simples

On considère la configuration représentée sur la Figure 5.5. Un écoulement amont

Figure 5.5: Configuration pour le calcul d'une détente par ondes simples

uniforme supersonique de Mach M_1 constitué d'un gaz calorifiquement parfait s'écoule au-dessus d'une paroi rectiligne. A partir du point M, la paroi se courbe progressivement jusqu'au niveau d'un point S, où la paroi devient de nouveau rectiligne, faisant un angle ϕ_S avec la paroi initiale. On souhaite déterminer les caractéristiques de l'écoulement.

On considère pour ce faire la caractéristique (Γ^+) issue du point M, notée (C_1). L'écoulement uniforme amont ne peut être perturbé qu'en aval de cette caractéristique, qui fait un angle

 $\mu_M = \arcsin\left(\frac{1}{M_1}\right)$ avec l'écoulement amont. Cette caractéristique est bien sûr une droite puisque le nombre de Mach juste en amont est partout égal à M_1 . On trace maintenant une caractéristique (Γ^-) à partir d'un point M_1 quelconque de la première caractéristique. Le long de cette deuxième ligne caractéristique (C_2), $\mathcal{P} - \phi$ est constant. On a donc :

$$\mathcal{P} - \phi = \mathcal{P}_{M_1} - \phi_{M_1}$$
$$= \mathcal{P}_{M_1}$$

puisque $\phi_{M_1} = 0$. Mais d'autre part, le long de la caractéristique (C_1) issue de M, $\mathcal{P} + \phi = \text{constante}$, et partout sur cette caractéristique $\phi = 0$. Donc la valeur de \mathcal{P} est constante le long de cette caractéristique, ce qui induit $\mathcal{P}_M = \mathcal{P}_{M_1}$. Le long de la caractéristique (C_2) , on a donc :

$$\mathcal{P} - \phi = \mathcal{P}_M$$

On est parti d'un point quelconque de la caractéristique (C_1) pour obtenir cette relation. Celle-ci est donc nécessairement vérifiée dans tout le plan en aval de la caractéristique (C_1) . Soit N un point quelconque de la paroi en aval de S. En ce point, la direction de la vitesse est imposée par la condition aux limites. Cet angle est égal à ϕ_S au point N. D'autre part, il existe une caractéristique (Γ^-) issue d'un point de (C_1) qui aboutit au point N. On a donc aussi en ce point :

$$\mathcal{P}_N - \phi_N = \mathcal{P}_M$$

On sait $\phi_N = \phi_S$. On en déduit :

$$\mathcal{P}_N = \mathcal{P}_M + \phi_S$$

Cette relation permet de déterminer complètement l'écoulement en tout point de la paroi situé en aval de S. Connaissant \mathcal{P}_N , on remonte au nombre de Mach M_N . On connaît alors toutes les variables en N à partir des relations d'évolution isentropiques. On notera d'autre part que l'écoulement en N ne dépend que de la pente locale de la paroi en N, et non de ce qui s'est passé entre M et N. On trace maintenant une caractéristique (Γ^+) issue de N. On a le long de cette caractéristique (C_3) :

$$\mathcal{P} + \phi = \mathcal{P}_N + \phi_N$$

Et on a toujours la relation valable dans tout le plan en aval de (C_1) :

$$\mathcal{P} - \phi = \mathcal{P}_M$$

où \mathcal{P}_M est connu. On en déduit immédiatement que \mathcal{P} (donc μ , et donc le nombre de Mach M) restent constants, égaux à leur valeur en N, sur cette caractéristique (C_3) . Cette ligne caractéristique est donc aussi nécessairement une droite le long de laquelle l'écoulement est uniforme. On sait désormais déterminer l'écoulement dans tout le plan, à partir des conditions aux limites sur le corps.

Figure 5.6: Configuration pour le calcul de la divergence des ondes de Mach

5.6.1 Positionnement des lignes caractéristiques

On va montrer que, lorsque ϕ_S est négatif (c'est à dire lorsque le corps s'écarte de l'écoulement initial), les lignes de Mach successives sont divergentes, et qu'elles sont au contraire convergentes pour $\phi_S \geq 0$. Pour cela, considérons la Figure 5.6. On veut montrer que le signe de $d\theta$ correspond au signe de $d\phi$. Pour cela, on écrit :

$$d\theta = (\phi + d\phi + \mu + d\mu) - (\phi + \mu)$$
$$= d\mu + d\phi$$

Mais d'autre part $\mathcal{P} - \phi = \text{constante dans tout le plan en aval de } (C_1)$. Donc $d\mathcal{P} = d\phi$, ou encore :

$$d\phi = \frac{2\cos^2\mu \,d\mu}{\gamma - \cos(2\mu)}$$

d'après la définition de \mathcal{P} . On obtient donc finalement :

$$d\theta = \frac{\gamma + 1}{1 + \cos(2\mu)} d\phi$$

Cette relation prouve que les lignes caractéristiques s'écartent les unes des autres quand $d\phi$ est négatif, et qu'elles tendent au contraire à se rapprocher pour $d\phi \geq 0$.

5.6.2 Détente de Prandtl-Meyer

On suppose dans cette configuration que la paroi subit une déviation brutale d'un angle ϕ_d au point M (Figure 5.7). On peut bien sûr passer sans difficulté à ce cas à partir du

Figure 5.7: Configuration pour le calcul de la détente de Prandtl-Meyer

cas précédent, où l'on avait une évolution progressive. On a $\phi_d < 0$. Donc en un point N en aval de M, $\mathcal{P}_N = \mathcal{P}_M + \phi_d$, ce qui conduit à $\mathcal{P}_N < \mathcal{P}_M$, puisque $\phi_d < 0$. On a par conséquent $M_N > M_M$, et par suite $p_N < p_M$ en prenant les relations d'évolution isentropiques. Le fluide subit une détente centrée en M, appelée détente de Prandtl-Meyer. La configuration obtenue est aussi nommée éventail de détente.

5.6.3 Compression continue

Dans cette configuration, on observe une déviation progressive de la paroi avec $\phi > 0$ (Figure 5.8). Comme on l'a vu précédemment, les lignes caractéristiques issues de la

Figure 5.8: Configuration pour le calcul de la compression continue

paroi ont tendance à se rapprocher les unes des autres. De plus, comme $\phi > 0$, on a augmentation du nombre de pression, donc diminution du nombre de Mach, et par suite

augmentation de la pression. Il s'agit donc bien d'une compression continue. Considérons deux caractéristiques (C_1) et (C_2) , de type (Γ^+) , qui se coupent en un point I. Nous avons démontré précédemment que, dans cette configuration, la pression reste constante le long de (C_1) , égale à sa valeur en N_1 , p_{N_1} . Il en est de même sur (C_2) , où la pression vaut partout p_{N_2} . Mais d'autre part, la compression entraîne $p_{N_2} > p_{N_1}$. Il y a donc incompatibilité à partir du point I.

Pour continuer d'étudier ce problème complexe, nous restreignons maintenant l'étude au cas où toutes les caractéristiques issues de la rampe de compression convergent en un même point I (cette condition n'a aucune raison d'être vérifiée de façon générale). Pour étudier ce qui se passe en I, on utilise les polaires de choc. Dans un graphe $(\phi, \ln(p/p_1))$, on représente d'une part l'évolution progressive de la pression sur la paroi par la courbe (Λ) , et d'autre part la polaire de choc (Σ_1) associée à l'écoulement amont. Ces deux courbes sont osculatrices à l'origine (Figure 5.9). Considérons maintenant une ligne de courant

Figure 5.9: Diagramme $(\phi, \ln (p/p_1))$

de l'écoulement. Près de la paroi, la déviation de l'écoulement se fera de façon continue, progressive, à travers les différentes caractéristiques pour obtenir finalement la déviation totale ϕ_d , en aboutissant à un état (2). Si l'on se rapproche maintenant de I, la déviation de l'écoulement va devenir de plus en plus brutale, et finalement s'effectuer de façon discontinue au point I. On connaît depuis le chapitre précédent le mécanisme associé à une déviation brutale de l'écoulement : il s'agit d'un choc oblique, amenant l'écoulement en un état (3). Pour que la configuration ainsi obtenue soit réalisable, il faudrait que les écoulements (2) et (3) aient à la fois même direction et même pression. Ces deux écoulement auraient donc le même point représentatif dans le diagramme $(\phi, \ln (p/p_1))$. Or (3) doit de plus se trouver nécessairement sur la polaire de choc (Σ_1) . C'est donc impossible, car il n'y a pas d'intersection des deux courbes. La configuration réelle fait donc en fait intervenir un choc supplémentaire (Ω_2) , en général très faible, qui transforme l'écoulement (2) en un écoulement (2'), compatible avec (3) (Figure 5.8). La polaire de

choc (Σ_2) de Ω_2 intersecte la polaire de choc (Σ_1) , et c'est le point d'intersection qui donnera les états (2') et (3).

La configuration finale est donc déjà très complexe, alors que l'on a pourtant négligé de nombreux aspects (confinement, réflexions), et que l'on s'est placé dans le cas le plus simple (convergence de toutes les lignes caractéristiques en I). Un exemple de résultat obtenu expérimentalement est présenté sur la Figure 5.10.

Figure 5.10: Résultat expérimental pour le cas de la compression continue. Une surface concave cylindrique est placée dans un écoulement à nombre de Mach 1.96.

5.7 Écoulements de révolution

On change maitenant la configuration étudiée (Figure 5.11). De nombreuses équations restent inchangées par rapport aux analyses bidimensionnelles précédentes. En particulier, les équations de quantité de mouvement et d'énergie écrites dans les axes locaux (x_1, y_1) sont complètement inchangées $(5.5 \ a)$:

$$v\frac{\partial v}{\partial x_1} + \frac{1}{\rho}\frac{\partial p}{\partial x_1} = 0$$
$$v^2\frac{\partial \phi}{\partial x_1} + \frac{1}{\rho}\frac{\partial p}{\partial y_1} = 0$$

Figure 5.11: Configuration pour l'utilisation des caractéristiques en écoulement axisymétrique

$$\frac{\partial h}{\partial x_1} + v \frac{\partial v}{\partial x_1} = 0$$

Pour l'équation de continuité, il convient de refaire un bilan dans la configuration axisymétrique. Considérons pour ce faire le volume de contrôle engendré par la rotation du rectangle [$\mathrm{d}x_1$, $\mathrm{d}y_1$] de sommet K, autour de l'axe (Ox). Le débit entrant par KK' vaut $2\pi y_K$ $\mathrm{d}y_1\rho u_1$, celui entrant par KL vaut $2\pi y_K$ $\mathrm{d}x_1\rho v_1$, où u_1 et v_1 sont les composantes de la vitesse en K, exprimée dans les axes (Mx_1, My_1) . Le débit total qui sort de l'élément de volume vaut $2\pi \frac{\partial (\rho u_1 y_K)}{\partial x_1}$ $\mathrm{d}x_1$ $\mathrm{d}y_1 + 2\pi \frac{\partial (\rho v_1 y_K)}{\partial y_1}$ $\mathrm{d}x_1$ $\mathrm{d}y_1$, qui doit être nul. Donc :

$$\frac{\partial \left(\rho u_1 y_K\right)}{\partial x_1} + \frac{\partial \left(\rho v_1 y_K\right)}{\partial y_1} = 0$$

Remplaçant u_1 et v_1 par $v\cos(\phi - \phi_M)$ et $v\sin(\phi - \phi_M)$ respectivement, et faisant tendre K vers M, on obtient :

$$\frac{\partial \left(\rho v y\right)}{\partial x_1} + \rho v y \frac{\partial \phi}{\partial y_1} = 0 \tag{5.40}$$

où y représente la distance de M à (Ox). Pour rechercher les caractéristiques, il faut transformer cette équation. Ainsi, on écrit :

$$\frac{1}{\rho vy} \frac{\partial (\rho vy)}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = 0$$

ou encore:

$$\frac{1}{\rho} \frac{\partial \rho}{\partial x_1} + \frac{1}{v} \frac{\partial v}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = -\frac{1}{y} \frac{\partial y}{\partial x_1}$$
$$= -\frac{\sin \phi}{y}$$

Cette équation ne diffère de (5.8) que par le second membre, et peut donc être transformée de façon analogue, pour donner :

$$\frac{M^2 - 1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = -\frac{\sin \phi}{y} \tag{5.41}$$

Le système complet de 6 équations à 6 inconnues s'écrit donc dans ce cas :

$$\frac{1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial y_1} + \frac{\partial \phi}{\partial x_1} = 0 ag{5.42}$$

$$\frac{M^2 - 1}{\gamma M^2} \frac{1}{p} \frac{\partial p}{\partial x_1} + \frac{\partial \phi}{\partial y_1} = -\frac{\sin \phi}{y} \tag{5.43}$$

$$\delta x_1 \frac{\partial p}{\partial x_1} + \delta y_1 \frac{\partial p}{\partial y_1} = \delta p \tag{5.44}$$

$$\delta x_1 \frac{\partial \phi}{\partial x_1} + \delta y_1 \frac{\partial \phi}{\partial y_1} = \delta \phi \tag{5.45}$$

$$\frac{\partial s}{\partial x_1} = 0 ag{5.46}$$

$$\delta x_1 \frac{\partial s}{\partial x_1} + \delta y_1 \frac{\partial s}{\partial y_1} = \delta s \tag{5.47}$$

La seule différence avec le résultat obtenu dans le cas d'un écoulement bidimensionnel plan est donc le second membre de la deuxième égalité. Ainsi, le déterminant principal du système est rigoureusement identique à celui trouvé précédemment. Il existe donc, dans le cas des écoulements axisymétriques, deux lignes caractéristiques autres que les lignes de courant (le long desquelles s = constante), faisant en chaque point l'angle $\pm \mu$ (angle de Mach) avec la vitesse locale.

Le déterminant secondaire est par contre modifié par la présence d'un terme supplémentaire au second membre. On trouve :

$$\Delta' = \left| egin{array}{cccc} 0 & rac{1}{\gamma M^2 p} & 1 & 0 \ -rac{\sin \phi}{y} & 0 & 0 & 1 \ \delta p & \delta y_1 & 0 & 0 \ \delta \phi & 0 & \delta x_1 & \delta y_1 \end{array}
ight|$$

On a ainsi:

$$\Delta' = -\frac{1}{\gamma M^2 p} \delta p \, \delta x_1 - \delta y_1 \left(\delta \phi + \frac{\sin \phi}{y} \, \delta y_1 \right)$$
$$= 0$$

On obtient alors les relations suivantes. Sur (Γ^+) , déterminée par :

$$\frac{\delta y_1}{\delta x_1} = \tan \mu \tag{5.48}$$

on a:

$$\frac{\sin \mu \cos \mu}{\gamma} \frac{\delta p}{p} + \delta \phi = -\frac{\sin \mu \sin \phi}{y} \delta \eta \tag{5.49}$$

Sur (Γ^{-}) , déterminée par :

$$\frac{\delta y_1}{\delta x_1} = -\tan \mu \tag{5.50}$$

on a:

$$\frac{\sin \mu \cos \mu}{\gamma} \frac{\delta p}{p} - \delta \phi = -\frac{\sin \mu \sin \phi}{y} \delta \xi \tag{5.51}$$

Dans le cas d'un gaz calorifiquement parfait, il vient, de façon analogue à précédemment, sur (Γ^{-}) :

$$\frac{\partial \left(\mathcal{P} - \phi\right)}{\partial \xi} = -\frac{\sin \mu \sin \phi}{y} + \frac{\sin \mu \cos \mu}{\gamma r} \frac{\partial s}{\partial \xi}$$
 (5.52)

Sur (Γ^+) :

$$\frac{\partial \left(\mathcal{P} + \phi\right)}{\partial \eta} = -\frac{\sin \mu \sin \phi}{y} + \frac{\sin \mu \cos \mu}{\gamma r} \frac{\partial s}{\partial \eta}$$
 (5.53)

On utilise ces relations exactement de la même façon qu'en écoulement bidimensionnel plan. On notera par contre qu'à cause de la présence du terme supplémentaire $-\frac{\sin\mu\sin\phi}{y}$, il n'y a pas d'équivalent de la détente ou de la compression par ondes simples en configuration axisymétrique. On peut cependant retrouver un équivalent local, par exemple pour la détente de Prandtl-Meyer.

5.8 Écoulements coniques de révolution

Un écoulement est dit conique de centre O s'il est uniforme sur tout rayon polaire passant par O. Ceci revient à dire que p, \mathbf{v} et s ne dépendent que d'un seul paramètre, l'angle θ entre la ligne polaire considérée et l'axe du système (Figure 5.12). La vitesse ne pouvant passer par O que sur un seul rayon, une ligne de courant dans un tel écoulement coupe nécessairement tous les rayons polaires, par suite de la conservation de la masse. Comme l'entropie s et l'enthalpie totale h_i sont constantes le long d'une ligne de courant, il en résulte que l'écoulement conique est isentropique et à enthalpie totale uniforme. L'écoulement à l'infini amont est donc uniforme.

Les propriétés de l'écoulement données jusqu'ici supposent qu'il n'y a pas de discontinuités. Si jamais un choc apparaît dans l'écoulement, il est lui-même nécessairement conique, et l'entropie subit une discontinuité à la traversée du choc.

Supposons maintenant que nous ayons calculé un écoulement conique dans lequel, sur le rayon θ_c , la vitesse passe par O. Nous pouvons immédiatement matérialiser le cône de demi-angle θ_c , qu'aucun écoulement ne peut pénétrer en venant de l'extérieur. On a ainsi obtenu l'écoulement sur un cône.

L'expérience montre effectivement que, sous certaines conditions, un cône plongé dans un écoulement supersonique donne lieu à l'établissement d'un écoulement conique, une

Figure 5.12: Configuration pour l'étude des écoulements coniques de révolution

onde de choc conique étant attachée à la pointe du cône. L'écoulement sur le corps du cône peut lui-même être supersonique ou subsonique. Dans ce dernier cas, il est nécessaire que le cône s'étende jusqu'à l'infini aval. Sinon, la troncature finale créerait une perturbation remontant vers l'amont et modifiant l'écoulement conique. On s'intéresse donc uniquement à des écoulements partout supersoniques, où l'on est parfaitement en droit d'utiliser la méthode des caractéristiques.

L'écoulement conique étant un écoulement de révolution isentropique, les relations de caractéristiques s'écrivent pour un gaz calorifiquement parfait, sur (Γ^-) :

$$\frac{\partial \left(\mathcal{P} - \phi\right)}{\partial \xi} = -\frac{\sin \mu \sin \phi}{y}$$

Sur (Γ^+) :

$$\frac{\partial \left(\mathcal{P} + \phi\right)}{\partial \eta} = -\frac{\sin \mu \sin \phi}{y}$$

Pour simplifier, posons alors $\mathcal{P} = \Lambda + \Psi$, et $\phi = \Psi - \Lambda$. On a simplement :

$$\frac{\partial \Lambda}{\partial \xi} = \frac{\partial \Psi}{\partial \eta}$$
$$= -\frac{\sin \mu \sin \phi}{2y}$$

Considérons maintenant ces relations dans le cas d'un écoulement conique (Figure 5.13). On a :

$$\begin{array}{rcl} \Psi_{M'} - \Psi_{M} & = & \mathrm{d}\Psi \\ & = & -\frac{\sin\mu\sin\phi}{2y} \; \mathrm{d}\eta \end{array}$$

Figure 5.13: Configuration pour l'étude des caractéristiques liées aux écoulements coniques de révolution

D'autre part $MM' = d\eta = \overline{HM'}/\sin(HMM') = r d\theta/\sin(\mu + \phi - \theta)$, et $y = r\sin\theta$. On a donc :

$$\frac{\partial \Psi}{\partial \theta} = -\frac{\sin \mu \sin \phi}{2 \sin \theta \sin (\mu + \phi - \theta)}$$
 (5.54)

$$\frac{\partial \Lambda}{\partial \theta} = \frac{\sin \mu \sin \phi}{2 \sin \theta \sin (\mu + \theta - \phi)} \tag{5.55}$$

On voit ainsi que, si l'écoulement est uniforme sur un rayon d'angle θ , il l'est aussi sur un rayon voisin, les dérivées $\frac{\partial \Psi}{\partial \theta}$ et $\frac{\partial \Lambda}{\partial \theta}$ ne faisant pas intervenir r, et l'écoulement est conique.

Nous souhaitons maintenant calculer l'écoulement sur un cône de demi-angle θ_c , placé à incidence nulle dans un écoulement supersonique. Le problème direct, consistant à se donner l'écoulement amont et à en déduire l'écoulement autour du cône est très complexe, car il est difficile de situer la position de l'onde de choc. On procède donc différemment. On se donne la position du cône ($\theta = \theta_c$), et l'écoulement à sa surface (nombre de Mach M_c). On cherche alors à déterminer l'écoulement à l'infini amont ayant permis d'aboutir à cette configuration. La connaissance de M_c et θ_c donnent Λ_c et Ψ_c . De proche en proche, en utilisant les relations (5.54) et (5.55), on calcule Λ et Ψ sur des rayons polaires à θ croissant. Il reste à déterminer le moment où l'on rencontre l'onde de choc conique.

Deux paramètres suffisent pour déterminer le choc $(M_1 \text{ et } \sigma, \text{ ou } \sigma \text{ et } \delta, \dots)$. Or le calcul itératif réalisé donne sur chaque rayon polaire θ , Λ et Ψ , soit encore M et ϕ . Si le rayon polaire considéré coïncide avec la face aval du choc, on a $\sigma = \theta$, $M_2 = M$ et $\delta = \phi$, c'est à dire trois paramètres pour définir le choc. Puisque 2 paramètres suffisent en fait, il est nécessaire que ces 3 valeurs vérifient une relation de compatibilité. On peut par exemple procéder comme suit : $\tan \sigma / \tan (\sigma - \delta) \to \rho_2/\rho_1 \to M_{n1} \to M_{n2}^* \to M_2^* = M_{n2}^* / \sin (\sigma - \delta)$. La face aval du choc conique est atteinte si cette valeur du Mach aval calculée à partir de σ et δ est identique à la valeur M obtenue sur ce rayon polaire par le calcul à partir de la surface du cône.

Les écoulements coniques supersoniques peuvent être décrits sous forme tabulée. Le fluide

5.9 Conclusion 89

subit une première compression à la traversée du choc, puis une compression isentropique entre le choc et le cône.

Attention : la déviation δ subie par l'écoulement à la traversée du choc conique n'est pas égale au demi-angle du corps conique θ_c .

Le nombre de Mach M_c à la surface du cône étant inférieur au nombre de Mach amont M_1 , il existe une valeur minimale $M_1^* > 1$, pour laquelle $M_c = 1$. Pour $M_1 < M_1^*$, il n'existe pas de solution conique ayant une réalité physique : on observe la formation d'un choc courbe détaché du corps conique. La valeur de M_1^* croît avec l'angle θ_c du corps.

5.9 Conclusion

Les méthodes de résolution utilisant les lignes caractéristiques sont particulièrement puissantes, surtout si l'on compare la portée des résultats obtenus avec la relative simplicité de la théorie sous-jacente. On peut les utiliser soit de façon analytique, comme nous l'avons fait dans ce chapitre, soit par le biais d'une implémentation numérique. De plus, les bases physiques solides des caractéristiques rendent leur utilisation encore plus séduisante.

Dans de nombreuses configurations, et en particulier pour le calcul de profils élancés placés dans un écoulement supersonique, il existe une deuxième méthode analytique qui permet d'obtenir rapidement des résultats très intéressants. Elle est basée sur l'idée qu'un profil élancé n'introduit en fait que des perturbations minimes dans l'écoulement, et qu'il est donc possible d'utiliser une approximation linéarisée du premier ordre pour décrire les modifications ainsi introduites.

5.10 Exercices d'application

5.10.1 Caractéristiques pour une détente par ondes simples

On considère la configuration représentée sur la Figure 5.14. Un écoulement amont uniforme supersonique de Mach M_1 constitué d'un gaz calorifiquement parfait s'écoule audessus d'une paroi rectiligne. A partir du point M, la paroi se courbe progressivement jusqu'au niveau d'un point S, où la paroi devient de nouveau rectiligne, faisant un angle ϕ_S avec la paroi initiale. On souhaite déterminer les caractéristiques de l'écoulement.

Figure 5.14: Caractéristiques pour une détente par ondes simples

- 1. Déterminer les caractéristiques en amont du point M.
- 2. Montrer que, en aval de la caractéristique (Γ^+) issue de M, on a partout $\mathcal{P}-\phi=\mathcal{P}_{\mathcal{M}}$.
- 3. Déterminer la caractéristique (Γ^+) issue d'un point N situé sur la paroi en aval de S.
- 4. Que se passe-t-il si les points M et S sont confondus?
- 5. Pour $M_1=2$ et $\phi_S=-10^\circ$, déterminer le nombre de Mach et la pression après la détente.

5.10.2 Positionnement des lignes caractéristiques

On considère la configuration représentée sur la Figure 5.15. Un écoulement amont uniforme supersonique de Mach M_1 constitué d'un gaz calorifiquement parfait s'écoule audessus d'une paroi rectiligne. A partir d'un point donné, la paroi se courbe progressivement. A partir d'une analyse locale, on veut savoir si les lignes caractéristiques s'écartent ou se rapprochent les unes des autres.

Figure 5.15: Positionnement des lignes caractéristiques

- 1. Relier géométriquement la variation de θ à celles de μ et ϕ .
- 2. A partir des relations de caractéristiques, relier univoquement les variations de θ et ϕ , et conclure.

5.10.3 Force normale s'exerçant sur une plaque plane

On considère la configuration représentée sur la Figure 5.16. Une plaque plane de surface S=1 m² est placée dans un écoulement amont uniforme supersonique d'air de Mach $M_1=2$ et de pression $p_1=0.25$ bar. La plaque a un angle d'incidence $\alpha=5^{\circ}$, et on négligera les effets de bords.

Figure 5.16: Force normale s'exerçant sur une plaque plane

Question:

1. Calculer la force normale qui s'exerce sur cette plaque plane.

5.10.4 Moteur de correction d'attitude pour satellites

On considère la configuration représentée sur la Figure 5.17. Il s'agit d'un écoulement de gaz parfait à $\gamma=1.4$. L'angle de déviation de la paroi est $\theta=120^\circ$.

Figure 5.17: Moteur de correction d'attitude pour satellites

- 1. Montrer que l'écoulement en aval de la détente de Prandtl-Meyer n'est pas sensible à la présence de la paroi.
- 2. Pour quelle valeur θ_{lim} ce phénomène commence-t-il à apparaître ?

Figure 5.18: Le satellite européen ERS-2 en intégration chez Matra Marconi Space

5.10.5 Effet du double décrochement

On considère la configuration représentée sur la Figure 5.19. Il s'agit d'un écoulement de gaz parfait à $\gamma=1.4$, subissant deux décrochements de la paroi qui se compensent, avec $\delta=10^{\circ}$.

Figure 5.19: Effet du double décrochement

- 1. Déterminer l'aspect de l'écoulement.
- 2. Calculer $M_3, p_3/p_1$ et l'épaisseur angulaire de l'éventail de détente.

5.10.6 Choc conique

On considère la configuration représentée sur la Figure 5.20. Il s'agit d'un écoulement d'air, arrivant sur un cône de demi-angle $\delta=20^{\circ}$.

Figure 5.20: Choc conique

- 1. Calculer le nombre de Mach M_c et la pression p_c à la surface du cône.
- 2. Que se passe-t-il si le nombre de Mach de l'écoulement incident vaut $M_1=1.2$?

Chapter 6

Méthode des petites perturbations

6.1 Introduction

Le calcul de l'écoulement complet autour d'un obstacle présente de très grandes difficultés, même pour des formes extrêmement simples. Négliger, comme nous l'avons fait jusqu'à présent, les effets visqueux permet de s'affranchir d'un certain nombre de difficultés, mais ne suffit pas pour aboutir directement à des solutions analytiques.

Pour aller plus loin dans la résolution de ce type de problèmes (écoulement autour d'un corps placé dans un écoulement supersonique), il est nécessaire d'accepter une hypothèse supplémentaire, assez forte, mais souvent relativement bien vérifiée : les perturbations apportées par la présence du corps dans l'écoulement restent petites. Ainsi, considérant que la vitesse à l'infini amont est V_0 et est portée par l'axe (Ox), on écrira les vitesses en un point M quelconque sous la forme :

$$u = V_0 (1 + \tilde{u})$$

$$v = V_0 \tilde{v}$$

$$w = V_0 \tilde{w}$$

La vitesse en un point quelconque est donc la somme de la vitesse de l'écoulement infini amont uniforme V_0 et de la vitesse locale $v = V_0(\tilde{u}, \tilde{v}, \tilde{w})$, dite vitesse de perturbation (où $\tilde{u}, \tilde{v}, \tilde{w}$ sont sans dimension). Dans tout ce chapitre, nous ferons l'hypothèse que $\|v\| \ll V_0$, ce qui nous conduira à une solution analytique pour un assez grand nombre de problèmes. Ce type de solution reste utilisé aujourd'hui au niveau de l'avant-projet, par exemple pour définir des profils d'ailes adaptés à une mission donnée.

6.2 Exemple de linéarisation

Considérons un écoulement bidimensionnel plan, par exemple un écoulement supersonique uniforme dévié brutalement en un point M d'un angle δ . On a traité ce problème de façon

Figure 6.1: Rafale C (photo Dassault)

exacte par la méthode des caractéristiques dans le chapitre précédent (section 5.6.2). On peut ainsi trouver facilement le nombre de Mach et la pression sur la paroi en fonction de la déflexion. On peut alors calculer le coefficient de pression K_p défini par :

$$K_p = \frac{p - p_1}{\frac{1}{2}\rho_1 v_1^2}$$

Ce coefficient ne dépend que de M_1 et de la déviation δ , c'est à dire $K_p = f(M_1, \delta)$. Si la déviation δ reste faible, on peut faire un développement limité de K_p suivant les puissances de δ . On écrit ainsi :

$$K_p = \left\{ f(M_1, \delta) \right\}_{\delta=0} + \delta \left\{ \frac{\partial f(M_1, \delta)}{\partial \delta} \right\}_{\delta=0} + \frac{\delta^2}{2!} \left\{ \frac{\partial^2 f(M_1, \delta)}{\partial \delta^2} \right\}_{\delta=0} + \dots$$

Dans le cas particulier considéré, $p=p_1$ (donc $K_p=0$) quand $\delta=0$, donc on peut écrire la relation précédente :

$$K_p = a\delta + b\delta^2 + \dots$$

La perturbation est liée à l'angle δ . En théorie dite linéarisée, on négligera tous les termes d'ordre supérieur à 1 en δ (c'est à dire les termes en δ^2 , δ^3 , ...), et on cherchera la solution au problème sous la forme $K_p = a\delta$. Notre problème est donc réduit à la détermination de a.

En résumé, en théorie linéarisée, on choisira un petit paramètre caractérisant la perturbation, et on cherchera les modifications apportées à l'écoulement uniforme amont en se limitant au premier ordre par rapport à ce paramètre.

6.3 Écoulement dérivant d'un potentiel

Dans un écoulement sans discontinuités, uniforme à l'infini amont, on a vu que l'entropie s est partout constante, le vecteur tourbillon est partout nul, et la vitesse \boldsymbol{v} dérive donc d'un potentiel scalaire Φ :

$$\mathbf{v} = \mathbf{grad}\left(\Phi(x, y, z)\right) \tag{6.1}$$

La relation de Crocco, reliant vitesse, enthalpie et entropie, s'écrit :

$$\mathbf{rot} \boldsymbol{v} \wedge \boldsymbol{v} + \mathbf{grad} h_i - T\mathbf{grad} s = 0$$

Dans le cas d'un écoulement uniforme à l'infini amont, on a dans tous les cas annulation du second terme ;

$$\mathbf{rot} \mathbf{v} \wedge \mathbf{v} - T\mathbf{grad}s = 0$$

Par contre, si des discontinuités (par exemple des chocs courbes) apparaissent, le gradient de l'entropie n'est plus nécessairement nul. Il en est de même de $\mathbf{rot}v$, et donc la vitesse ne peut plus s'exprimer à partir d'un potentiel scalaire Φ .

Faisons l'hypothèse que tous les chocs présents dans l'écoulement sont très faibles. On a trouvé à la traversée du choc pour un gaz parfait, dans le cas général (section 4.3) :

$$\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2 \sin^2 \epsilon - \frac{\gamma - 1}{\gamma + 1}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) M_1^2 \sin^2 \epsilon}{2 + (\gamma - 1) M_1^2 \sin^2 \epsilon}$$

$$\frac{s_2 - s_1}{c_v} = \ln \left[\left(\frac{1}{\gamma + 1} \right)^{\gamma + 1} \left(2\gamma M_1^2 \sin^2 \epsilon - \gamma + 1 \right) \left(\frac{2}{M_1^2 \sin^2 \epsilon} + \gamma - 1 \right)^{\gamma} \right]$$

Supposer que l'onde de choc est faible, c'est dire que $M_1 \sin \epsilon \simeq 1$. On peut réécrire les équations précédentes :

$$\frac{p_2}{p_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_1^2 \sin^2 \epsilon - 1 \right)$$

$$\frac{\rho_1}{\rho_2} = 1 - \frac{2}{\gamma + 1} \left(\frac{M_1^2 \sin^2 \epsilon - 1}{M_1^2 \sin^2 \epsilon} \right)$$

$$\frac{s_2 - s_1}{c_v} = \ln \left[\left(\frac{1}{\gamma + 1} \right)^{\gamma + 1} \left(2\gamma M_1^2 \sin^2 \epsilon - \gamma + 1 \right) \right]$$

$$\left(\frac{2}{M_1^2 \sin^2 \epsilon} + \gamma - 1 \right)^{\gamma}$$

Introduisant dans ces équations $\kappa = M_1 \sin \epsilon - 1$, petit paramètre utilisé pour le développement, on a $(\kappa \ll 1)$:

$$\frac{p_2 - p_1}{p_1} \simeq \frac{2\gamma}{\gamma + 1} (M_1 \sin \epsilon + 1) \kappa$$

Pour la densité:

$$\frac{\rho_1}{\rho_2} = 1 - \frac{2}{\gamma + 1} \frac{\left(M_1 \sin \epsilon + 1\right) \kappa}{M_1^2 \sin^2 \epsilon}$$

donc:

$$\left(\frac{\rho_1}{\rho_2}\right)^{-1} \simeq 1 + \frac{2}{\gamma + 1} \frac{\left(M_1 \sin \epsilon + 1\right) \kappa}{M_1^2 \sin^2 \epsilon}$$

Après transformation, on a donc :

$$\frac{\rho_2 - \rho_1}{\rho_1} \simeq \frac{2\kappa \left(M_1 \sin \epsilon + 1 \right)}{\left(\gamma + 1 \right) M_1^2 \sin^2 \epsilon}$$

On en déduit donc immédiatement que :

$$\frac{p_2 - p_1}{p_1} = \mathcal{O}(\kappa)$$

$$\frac{\rho_2 - \rho_1}{\rho_1} = \mathcal{O}(\kappa)$$

Pour l'entropie, un calcul un peu plus complexe montre que l'on obtient finalement :

$$s_2 - s_1 = \mathcal{O}(\kappa^2)$$

En théorie linéarisée, nous ne calculerons les perturbations qu'au premier ordre (terme en κ). Les variations d'entropie, donc du rotationnel de la vitesse par la relation de Crocco, seront par suite considérées comme nulles. Dans le cadre de cette approximation, la vitesse \boldsymbol{v} dérive donc encore d'un potentiel scalaire $\Phi(x,y,z)$ si tous les chocs présents dans l'écoulement sont faibles.

6.4 Calcul du potentiel scalaire

Pour un écoulement permanent isoénergétique de fluide parfait, on peut écrire les équations d'Euler :

$$\frac{\frac{\mathrm{D}\rho}{\mathrm{D}t} + \rho \mathrm{div} \boldsymbol{v} = 0}{\rho \frac{\mathrm{D}\boldsymbol{v}}{\mathrm{D}t} + \mathbf{grad}p = 0}$$
$$\frac{\frac{\mathrm{D}s}{\mathrm{D}t} = 0}{\frac{\mathrm{D}s}{\mathrm{D}t}} = 0$$

L'équation de quantité de mouvement se réécrit après multiplication scalaire par v:

$$\rho \boldsymbol{v} \cdot \frac{\mathrm{D} \boldsymbol{v}}{\mathrm{D} t} + \boldsymbol{v} \cdot \mathbf{grad} p = 0$$

ou encore:

$$\rho \boldsymbol{v} \cdot \frac{\mathbf{D}\boldsymbol{v}}{\mathbf{D}t} + \frac{\mathbf{D}p}{\mathbf{D}t} = 0$$

D'autre part, on a :

$$\frac{\mathrm{D}p}{\mathrm{D}t} = c^2 \frac{\mathrm{D}\rho}{\mathrm{D}t}$$

puisque l'entropie est constante le long des lignes de courant et que, par définition, $c^2 = \left(\frac{\partial p}{\partial \rho}\right)_s$. On a donc pour la quantité de mouvement :

$$\rho \mathbf{v} \cdot \frac{\mathbf{D} \mathbf{v}}{\mathbf{D} t} + c^2 \frac{\mathbf{D} \rho}{\mathbf{D} t} = 0$$

En tenant compte de l'équation de continuité, l'équation de bilan de quantité de mouvement s'écrit donc finalement :

$$\boldsymbol{v} \cdot \frac{\mathbf{D}\boldsymbol{v}}{\mathbf{D}t} = c^2 \mathrm{div}\boldsymbol{v} \tag{6.2}$$

La vitesse totale s'exprimant en tout point de l'écoulement sous la forme $\boldsymbol{v}=(u,v,w)$ avec :

$$u = V_0 (1 + \tilde{u})$$

$$v = V_0 \tilde{v}$$

$$w = V_0 \tilde{w}$$

on a de même pour les composantes de $\frac{\mathrm{D}\boldsymbol{v}}{\mathrm{D}t}$:

$$\frac{\mathrm{D}\boldsymbol{v}}{\mathrm{D}t} = \begin{bmatrix} V_0^2 \left[(1+\tilde{u}) \frac{\partial \tilde{u}}{\partial x} + v \frac{\partial \tilde{u}}{\partial y} + w \frac{\partial \tilde{u}}{\partial z} \right] \\ V_0^2 \left[(1+\tilde{u}) \frac{\partial \tilde{v}}{\partial x} + v \frac{\partial \tilde{v}}{\partial y} + w \frac{\partial \tilde{v}}{\partial z} \right] \\ V_0^2 \left[(1+\tilde{u}) \frac{\partial \tilde{w}}{\partial x} + v \frac{\partial \tilde{w}}{\partial y} + w \frac{\partial \tilde{w}}{\partial z} \right] \end{bmatrix}$$

A partir de la relation de conservation de l'énergie, on peut obtenir une relation pour c^2 :

$$h_i = h + \frac{V^2}{2}$$

= constante

et:

$$h = c_p T$$

$$= \frac{c_p}{\gamma r} \gamma r T$$

$$= \frac{c^2}{\gamma - 1}$$

d'où:

$$\frac{V^2}{2} + \frac{c^2}{\gamma - 1} = \frac{V_0^2}{2} + \frac{c_0^2}{\gamma - 1}$$

D'où:

$$c^{2} = c_{0}^{2} - \frac{\gamma - 1}{2} V_{0}^{2} \left(2\tilde{u} + \tilde{u}^{2} + \tilde{v}^{2} + \tilde{w}^{2} \right)$$

En remplaçant les différents termes, (6.2) devient après quelques calculs :

$$\begin{split} \left(1-M_0^2\right)\frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} + \frac{\partial \tilde{w}}{\partial z} &= \\ M_0^2\left[\left(\gamma+1\right)\tilde{u} + \frac{\gamma+1}{2}\tilde{u}^2 + \frac{\gamma-1}{2}\left(\tilde{v}^2+\tilde{w}^2\right)\right]\frac{\partial \tilde{u}}{\partial x} \\ + M_0^2\left[\left(\gamma-1\right)\tilde{u} + \frac{\gamma+1}{2}\tilde{v}^2 + \frac{\gamma-1}{2}\left(\tilde{w}^2+\tilde{u}^2\right)\right]\frac{\partial \tilde{v}}{\partial y} \\ + M_0^2\left[\left(\gamma-1\right)\tilde{u} + \frac{\gamma+1}{2}\tilde{w}^2 + \frac{\gamma-1}{2}\left(\tilde{v}^2+\tilde{u}^2\right)\right]\frac{\partial \tilde{w}}{\partial z} \\ + M_0^2\left[\left(1+\tilde{u}\right)\tilde{v}\frac{\partial \tilde{u}}{\partial y} + \tilde{v}\tilde{w}\frac{\partial \tilde{v}}{\partial z} + \left(1+\tilde{u}\right)\tilde{w}\frac{\partial \tilde{w}}{\partial x} \\ + \left(1+\tilde{u}\right)\tilde{w}\frac{\partial \tilde{u}}{\partial z} + \tilde{v}\tilde{w}\frac{\partial \tilde{w}}{\partial y} + \left(1+\tilde{u}\right)\tilde{v}\frac{\partial \tilde{v}}{\partial x} \right] \end{split}$$

Comme précisé dans l'introduction, on suppose que $\|(\tilde{u}, \tilde{v}, \tilde{w})\| \ll 1$, on considère de plus que les dérivées de ces grandeurs sont elles-mêmes très petites devant 1 (pas de variation brutale du profil), et on néglige tous les termes du troisième ordre dans l'égalité précédente.

$$(1 - M_0^2) \frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} + \frac{\partial \tilde{w}}{\partial z} =$$

$$M_0^2 \left[(\gamma + 1) \tilde{u} \frac{\partial \tilde{u}}{\partial x} + (\gamma - 1) \tilde{u} \left(\frac{\partial \tilde{v}}{\partial y} + \frac{\partial \tilde{w}}{\partial z} \right) + \tilde{v} \frac{\partial \tilde{u}}{\partial y} + \tilde{w} \frac{\partial \tilde{w}}{\partial x} + \tilde{w} \frac{\partial \tilde{u}}{\partial z} + \tilde{v} \frac{\partial \tilde{v}}{\partial x} \right]$$

On fait maintenant l'hypothèse que M_0 n'est pas très supérieur à 1 (ce qui élimine le cas hypersonique). Alors $\|(M_0^2\tilde{u}, M_0^2\tilde{v}, M_0^2\tilde{w})\|$ reste négligeable devant 1. D'autre part, supposons que M_0 n'est pas voisin de 1 (ce qui élimine le cas transsonique), afin que le premier terme du membre de gauche reste comparable aux deux autres. L'équation ci-dessus devient alors simplement au premier ordre :

$$\left(1 - M_0^2\right) \frac{\partial \tilde{u}}{\partial x} + \frac{\partial \tilde{v}}{\partial y} + \frac{\partial \tilde{w}}{\partial z} = 0$$

Exprimée en fonction du potentiel Φ , cette équation devient :

$$\left(1 - M_0^2\right) \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$$

Introduisons maintenant le potentiel de perturbation φ , dont dépend la vitesse de pertubation, c'est à dire $(\tilde{u}, \tilde{v}, \tilde{w}) = \mathbf{grad}\varphi$, ce qui conduit directement à $\Phi = V_0(\varphi + x)$. Le potentiel de perturbation φ vérifie la même égalité que Φ :

$$\left[\left(1 - M_0^2 \right) \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0 \right]$$
 (6.3)

Il s'agit d'une équation linéaire du second ordre à coefficients constants. Elle est valable pour les cas supersoniques non transsoniques et non hypersoniques.

Dans le cas transsonique, il n'est plus légitime de négliger le terme $M_0^2 (\gamma + 1) \tilde{u}$ devant $(1 - M_0^2)$, et l'équation du potentiel prend une forme non-linéaire nettement plus complexe à résoudre :

$$\left(1 - M_0^2\right) \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = M_0^2 \left(\gamma + 1\right) \frac{\partial \varphi}{\partial x} \frac{\partial^2 \varphi}{\partial x^2}$$

Pour définir complètement le potentiel φ , il suffit maintenant de lui imposer des conditions aux limites appropriées, c'est à dire $\varphi = 0$ à l'infini amont (pas de perturbation), et vitesse tangente à l'obstacle à la surface de celui-ci. Nous pouvons alors calculer φ .

6.5 Cas des ailes planes

6.5.1 Condition de tangence approchée

Nous considérons des ailes quasi-planes, et choisissons un système d'axes lié à l'aile, tel que l'axe (Ox) porte la vitesse à l'infini amont \mathbf{V}_0 , et tel que tous les points de l'aile soient voisins du plan (Oxy) (Figure 6.2). Soit M un point de la surface de l'aile, où le vecteur unitaire normal \mathbf{n} à cette aile a pour composantes (n_x, n_y, n_z) . Le choix des axes et l'hypothèse d'aile quasi-plane imposent $\| n_x \| \ll 1, \| n_y \| \ll 1, \| n_z \| \simeq 1$. La vitesse \mathbf{V} au point M a pour composantes :

$$oldsymbol{V} = egin{array}{c} V_0 \left(1 + rac{\partial arphi}{\partial x}
ight) \ V_0 rac{\partial arphi}{\partial z} \ V_0 rac{\partial arphi}{\partial z} \ \end{array}$$

La condition de tangence sur l'aile s'écrit $\boldsymbol{V} \cdot \boldsymbol{n} = 0$, soit ici :

$$\left(1 + \frac{\partial \varphi}{\partial x}\right) n_x + \frac{\partial \varphi}{\partial y} n_y + \frac{\partial \varphi}{\partial z} n_z = 0$$

En ne conservant à nouveau que les termes du premier ordre, on obtient :

$$n_x + \frac{\partial \varphi}{\partial z} n_z = 0$$

Figure 6.2: Configuration pour l'étude des ailes planes

Soit encore:

$$\frac{\partial \varphi}{\partial z} = -\frac{n_x}{n_z} \tag{6.4}$$

En tout point situé sur l'aile, la dérivée du potentiel de perturbation par rapport à la variable z doit être égale à la pente locale du profil obtenu par section de l'aile par un plan parallèle au plan (Oxz) et passant par M.

Figure 6.3: Bombardier stratégique B2

On peut pousser encore la simplification. Comme tout point M de l'aile est associé à une coordonnée z très petite, et en admettant qu'on peut écrire un développement limité pour

 $\frac{\partial \varphi}{\partial z}$ jusqu'à z=0, on a :

$$\frac{\partial \varphi}{\partial z}(x, y, z) = \frac{\partial \varphi}{\partial z}(x, y, 0) + z \frac{\partial^2 \varphi}{\partial z^2}(x, y, 0) + \cdots$$

En prenant alors pour approximation $\frac{\partial \varphi}{\partial z}(x,y,z) = \frac{\partial \varphi}{\partial z}(x,y,0)$, on a finalement la relation :

$$\frac{\partial \varphi}{\partial z}(x, y, 0) = -\frac{n_x}{n_z}$$

$$= \frac{\partial h}{\partial x}$$
(6.5)

Dans cette relation, z = h(x, y) représente le profil en coupe de l'aile. Cette égalité signifie qu'au point P, projection du point M situé sur le profil sur le plan z = 0, la dérivée $\frac{\partial \varphi}{\partial z}$ du potentiel de perturbation doit être égale à la pente locale du profil au point M. La condition de tangence a ainsi été transférée du profil extérieur au plan z = 0.

Le potentiel φ est défini dans tout le plan, y compris à l'intérieur de l'aile. Mais suite à la dernière modification effectuée, il est discontinu, ainsi que ses dérivées, dans le plan z=0 sur la forme en plan de l'aile.

6.5.2 Calcul du coefficient de pression

Le coefficient de pression K_p est défini par :

$$K_p = \frac{p - p_0}{\frac{1}{2}\rho_0 V_0^2} \tag{6.6}$$

$$= \frac{p - p_0}{\frac{1}{2}\gamma p_0 M_0^2} \tag{6.7}$$

Les variations d'entropie étant négligées (hypothèse des petites perturbations), on a donc à partir des relations d'évolution isentropique pour la pression et la température :

$$\frac{p}{p_0} = \left(\frac{T}{T_0}\right)^{\frac{\gamma}{\gamma - 1}} \tag{6.8}$$

$$= \left(\frac{c}{c_0}\right)^{\frac{2\gamma}{\gamma-1}} \tag{6.9}$$

La célérité du son est également obtenue à partir de l'équation de l'énergie :

$$\frac{V^2}{2} + \frac{c^2}{\gamma - 1} = \frac{V_0^2}{2} + \frac{c_0^2}{\gamma - 1}$$

Donc:

$$c^{2} = c_{0}^{2} + \frac{\gamma - 1}{2} V_{0}^{2} \left(1 - \frac{V^{2}}{V_{0}^{2}} \right)$$
 (6.10)

A partir de (6.9) et de (6.10), on tire :

$$\frac{p}{p_0} = \left[1 + \frac{\gamma - 1}{2} M_0^2 \left(1 - \frac{V^2}{V_0^2} \right) \right]^{\frac{\gamma}{\gamma - 1}}$$

Les hypothèses faites pour développer le modèle des petites perturbations montrent immédiatement que $\frac{\gamma-1}{2}M_0^2\left(1-\frac{V^2}{V_0^2}\right)\ll 1$. On peut donc développer le crochet du membre de droite, et, en ne gardant que le premier ordre, la relation précédente devient :

$$\frac{p}{p_0} = 1 + \frac{\gamma}{2} M_0^2 \left(1 - \frac{V^2}{V_0^2} \right)$$

Le coefficient de pression s'écrit alors simplement :

$$K_p = 1 - \frac{V^2}{V_0^2}$$

On peut réécrire le dernier terme à partir du potentiel de perturbation :

$$\frac{V^2}{V_0^2} = \left(1 + \frac{\partial \varphi}{\partial x}\right)^2 + \left(\frac{\partial \varphi}{\partial y}\right)^2 + \left(\frac{\partial \varphi}{\partial z}\right)^2$$

En ne gardant à nouveau que le premier ordre, on a finalement :

$$K_p = -2\frac{\partial \varphi}{\partial x}$$
 (6.11)

6.5.3 Aile d'envergure infinie en attaque droite

Le bord d'attaque est dans ce cas parallèle à (Oy) (Figure 6.4). Dans le cas considéré, il n'y a plus de dépendance selon y, et l'équation (6.3) se réduit à :

$$\frac{\partial^2 \varphi}{\partial z^2} - \beta_0^2 \frac{\partial^2 \varphi}{\partial x^2} = 0$$

où l'on a posé $\beta_0^2 = M_0^2 - 1$. On peut faire le changement de variable donné par $\xi = x - \beta_0 z$ et $\eta = x + \beta_0 z$. L'équation du potentiel devient alors simplement :

$$\frac{\partial^2 \varphi}{\partial \xi \partial \eta} = 0$$

La solution générale de cette équation simple est :

$$\varphi = f(\xi) + g(\eta)$$

= $f(x - \beta_0 z) + g(x + \beta_0 z)$

La fonction f a donc une valeur constante sur les droites d'équation $x - \beta_0 z = \text{constante}$, de même g a une valeur constante sur les droites d'équation $x + \beta_0 z = \text{constante}$. Les

Figure 6.4: Configuration pour l'étude de l'aile d'envergure infinie en attaque droite

fonctions f et g étant nécessairement nulles à l'infini amont (du fait des conditions aux limites), on voit que le problème se ramène simplement à la détermination de f sur l'extrados et de g sur l'intrados de l'aile.

Sur l'extrados, la condition de tangence s'écrit, en notant δ^+ la pente locale du profil sur l'extrados :

$$\left(\frac{\partial \varphi}{\partial z}\right)_{z=0^{+}} = \delta^{+}(x)$$

$$= -\beta_{0} \left(\frac{\partial f}{\partial \xi}\right)_{z=0^{+}}$$

Donc on obtient pour f sur l'extrados :

$$f(x - \beta_0 z) = -\frac{1}{\beta_0} \int_0^{\xi} \delta^+(\tau) d\tau$$

On obtient de même pour la fonction g sur l'intrados :

$$g(x + \beta_0 z) = \frac{1}{\beta_0} \int_0^{\eta} \delta^-(\tau) d\tau$$

On peut alors directement calculer le coefficient de pression sur cette aile :

$$K_p^{\pm} = -2 \left(\frac{\partial \varphi}{\partial x} \right)_{z=0^{\pm}}$$

Sur l'extrados, on a donc :

$$K_p^+ = -2\left(\frac{\partial f}{\partial \xi}\right)_{z=0^+}$$
$$= 2\frac{\delta^+}{\beta_0}$$

On a de même sur l'intrados :

$$K_p^- = -2\left(\frac{\partial g}{\partial \eta}\right)_{z=0^-}$$
$$= -2\frac{\delta^-}{\beta_0}$$

Par conséquent, sur une aile d'envergure infinie en attaque droite, la pression ne dépend que de la pente locale du profil δ .

Le coefficient de portance C_z est défini par :

$$C_z = \frac{Z}{q_0 l_c}$$

où l_c est la corde de l'aile, et Z la composante de la force exercée sur cette aile selon la direction z. Pour l'aile considérée, ce coefficient a pour expression :

$$C_z = \frac{1}{l_c} \int_0^{l_c} \left(K_p^- - K_p^+ \right) dx$$
$$= -\frac{2}{\beta_0 l_c} \int_0^{l_c} \left(\delta^+ + \delta^- \right) dx$$

Si l'aile est en fait une plaque plane, à l'incidence α (exprimée bien sûr en radian), on a $\delta^+ = \delta^- = -\alpha$. On trouve alors pour la portance :

$$C_z = \frac{4\alpha}{\beta_0}$$

On peut pour comparer résoudre également ce problème par la méthode des caractéristiques. On prend pour ce faire comme variables $\tilde{u} = \frac{\partial \varphi}{\partial x}$ et $\tilde{w} = \frac{\partial \varphi}{\partial z}$. L'équation du potentiel s'écrit simplement dans ce système :

$$\frac{\partial \tilde{w}}{\partial z} - \beta_0^2 \frac{\partial \tilde{u}}{\partial x} = 0$$

Il nous faut une deuxième équation, donnée par exemple par la condition $\mathbf{rot} \mathbf{V} = 0$:

$$\frac{\partial \tilde{w}}{\partial x} - \frac{\partial \tilde{u}}{\partial z} = 0$$

On adjoint, comme au chapitre précédent, les deux relations triviales :

$$\delta \tilde{u} = \frac{\partial \tilde{u}}{\partial x} dx + \frac{\partial \tilde{u}}{\partial z} dz$$

$$\delta \tilde{w} = \frac{\partial \tilde{w}}{\partial x} dx + \frac{\partial \tilde{w}}{\partial z} dz$$

On recherche alors les courbes caractéristiques. L'annulation du déterminant principal correspond à :

$$\begin{vmatrix} -\beta_0^2 & 0 & 0 & 1\\ 0 & -1 & 1 & 0\\ dx & dz & 0 & 0\\ 0 & 0 & dx & dz \end{vmatrix} = 0$$
$$= \beta_0^2 (dz)^2 - (dx)^2$$

Les courbes caractéristiques sont donc définies par :

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \pm \frac{1}{\beta_0}$$

Il s'agit des droites d'équation $x \pm \beta_0 z = \text{constante}$, qui font avec l'axe (Ox) l'angle de Mach $\pm \mu$ défini par $\sin \mu = 1/M_0$. Les relations de caractéristiques s'obtiennent en annulant le premier déterminant secondaire. On trouve finalement :

$$\delta \tilde{u} \, dx - \delta \tilde{w} \, dz = 0$$

On a donc finalement (Figure 6.5), sur (Γ^+) définie par :

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{\beta_0} \tag{6.12}$$

la relation:

$$\tilde{u} - \frac{1}{\beta_0}\tilde{w} = \text{constante} \tag{6.13}$$

Parallèlement, on a sur (Γ^{-}) définie par :

$$\frac{\mathrm{d}z}{\mathrm{d}x} = -\frac{1}{\beta_0} \tag{6.14}$$

la relation:

$$\tilde{u} + \frac{1}{\beta_0}\tilde{w} = \text{constante} \tag{6.15}$$

A l'infini amont, on a bien sûr $\tilde{u} = \tilde{w} = 0$. On a donc sur l'intrados :

$$\tilde{u}^- - \frac{\tilde{w}^-}{\beta_0} = 0$$

Figure 6.5: Configuration pour l'étude de l'aile d'envergure infinie en attaque droite par la méthode des caractéristiques

D'où:

$$K_{p}^{-} = -2\tilde{u}^{-}$$

$$= -\frac{2\tilde{w}^{-}}{\beta_{0}}$$

$$= -2\frac{\delta^{-}}{\beta_{0}}$$
(6.16)

De même, sur l'extrados :

$$\tilde{u}^+ + \frac{\tilde{w}^+}{\beta_0} = 0$$

D'où:

$$K_p^+ = -2\tilde{u}^+$$

$$= \frac{2\tilde{w}^+}{\beta_0}$$

$$= 2\frac{\delta^+}{\beta_0}$$
(6.17)

On retrouve donc bien la même solution qu'avec la méthode des petites perturbations. On retiendra aussi qu'en théorie linéarisée, les caractéristiques sont des droites faisant avec la vitesse amont l'angle de Mach μ_0 , donné par $\sin \mu_0 = 1/M_0$. En écoulement tridimensionnel, on mettrait de même en évidence des cônes de Mach, de demi-angle μ_0 autour de l'axe porté par V_0 .

6.5.4 Problème symétrique et problème portant

Le profil d'une aile quelconque peut être déterminé par les équations donnant la forme de son intrados et de son extrados, $z = h^{\pm}(x, y)$. La pente des profils est donnée par $\delta^{\pm} = \frac{\partial h^{\pm}}{\partial x}(x, y)$.

Considérons dans un premier temps une aile symétrique par rapport au plan z=0. On a donc $h^+=-h^-$, d'où $\delta^+=-\delta^-$. On a donc de même pour les vitesses $\tilde{w}^+=-\tilde{w}^-$, ce qui se traduit sur le potentiel en z=0 par :

$$\left(\frac{\partial \varphi}{\partial z}\right)_{0^{+}} = -\left(\frac{\partial \varphi}{\partial z}\right)_{0^{-}}$$

La fonction $\frac{\partial \varphi}{\partial z}$ étant impaire en z, la fonction φ est elle-même nécessairement paire en z. La dérivée $\frac{\partial \varphi}{\partial x}$ est donc elle-même paire en z. En dehors de la forme en plan de l'aile (Figure 6.6), il faut que la composante w de la vitesse soit continue, y compris dans le plan z=0. Il est par conséquent nécessaire que :

$$w(z=0) = \left(\frac{\partial \varphi}{\partial z}\right)_{z=0} = 0 \tag{6.18}$$

Sur l'aile, les coefficients de pression deviennent :

$$K_p^+ = -2\left(\frac{\partial\varphi}{\partial x}\right)_{z=0^+}$$
$$= -2\left(\frac{\partial\varphi}{\partial x}\right)_{z=0^-}$$
$$= K_p^-$$

L'égalité des coefficients de pression prouve que la portance d'une aile symétrique est nulle. Ce type de problème est dit problème symétrique ou problème d'épaisseur.

Considérons maintenant une aile d'épaisseur nulle. On a dans ces conditions $h^+=h^-$, soit $\delta^+=\delta^-$. La condition aux limites impose que sur z=0:

$$\left(\frac{\partial \varphi}{\partial z}\right)_{z=0^{+}} = \left(\frac{\partial \varphi}{\partial z}\right)_{z=0^{-}}$$

La dérivée $\frac{\partial \varphi}{\partial z}$ étant symétrique en z, la fonction $\varphi(x,y,z)$ est nécessairement impaire en z. Il en est bien sûr de même pour $\frac{\partial \varphi}{\partial x}$. Dans le plan z=0, en dehors de l'aile, on a bien sûr également $\left(\frac{\partial \varphi}{\partial z}\right)_{z=0^+} = \left(\frac{\partial \varphi}{\partial z}\right)_{z=0^-}$, aucune condition supplémentaire n'est à imposer. Considérons maintenant les coefficients de pression $K_p = -2\frac{\partial \varphi}{\partial x}$. Sur l'aile, on a immédiatement $K_p^+ = -K_p^-$, cette différence de pression entre intrados et extrados crée la portance. En dehors de l'aile, il faut imposer la condition $K_p^+ = -K_p^- = 0$, puisqu'il ne peut exister de discontinuité de pression. Cette condition équivaut simplement à $\tilde{u}^+ = \tilde{u}^- = 0$ dans le plan z=0.

Figure 6.6: Configuration pour l'étude des problèmes symétrique et portant

6.5.5 Cas d'une aile quelconque

En raison de la linéarité de l'équation du potentiel (6.3), le problème général de la détermination du potentiel de perturbation autour d'une aile quelconque $z=h^{\pm}(x,y)$ peut toujours se décomposer sous la forme d'un problème symétrique et d'un problème portant.

On écrit ainsi $\varphi = \varphi_e + \varphi_p$. Le potentiel φ_e est associé au problème d'épaisseur correspondant à l'aile symétrique associée à l'aile réelle et de même forme en plan :

$$z = \pm h_e$$
$$= \pm \frac{1}{2} \left(h^+ - h^- \right)$$

Figure 6.7: Un Concorde d'Air France à l'embarquement

De l'autre côté, φ_p est associé au problème portant, avec :

$$z = h_p$$
$$= \frac{1}{2} \left(h^+ + h^- \right)$$

Les potentiels φ_e et φ_p étant des potentiels de perturbation, ils vérifient (6.3) et sont nuls à l'infini amont. Il en est de même de leur somme. Il reste à vérifier que les conditions aux limites sur l'aile sont bien vérifiées par la somme des potentiels. Il s'agit de :

$$\left(\frac{\partial \varphi}{\partial z}\right)_{z=0^{+}} = \delta^{+}$$

$$\left(\frac{\partial \varphi}{\partial z}\right)_{z=0^{-}} = \delta^{-}$$

La vérification est immédiate. On a par exemple pour la première égalité :

$$\left(\frac{\partial \varphi_e}{\partial z}\right)_{z=0^+} + \left(\frac{\partial \varphi_p}{\partial z}\right)_{z=0^+} = \frac{1}{2} \left(\frac{\partial h^+}{\partial z} - \frac{\partial h^-}{\partial z}\right) + \frac{1}{2} \left(\frac{\partial h^+}{\partial z} + \frac{\partial h^-}{\partial z}\right) \\
= \frac{\partial h^+}{\partial z}$$

Figure 6.8: Décomposition du problème général en problème symétrique et portant

qui constitue bien la relation cherchée. Le potentiel de perturbation est donc bien donné par la somme des potentiels d'épaisseur et de portance (Figure 6.8). Il est possible d'effectuer une autre décomposition du même type, en séparant les effets d'incidence et les effets de cambrure (Figure 6.9). Si on fait varier l'incidence α de l'aile épaisse initiale, les potentiels φ_e et φ_c restent quasi-constants dans le cadre de nos hypothèses où l'épaisseur et l'incidence restent faibles. Seul le potentiel φ_α traduisant l'effet de l'incidence varie comme α . Il en résulte en particulier que la variation de portance d'une aile quelconque en fonction de l'incidence est identique à celle d'une plaque plane de même forme en plan.

6.5.6 Bords d'attaque subsonique et supersonique

Une perturbation apportée dans un écoulement supersonique au niveau d'un point P ne peut avoir d'influence que dans l'arrière-cône de Mach issu de P, dont l'axe, en théorie linéarisée, est parallèle à \mathbf{V}_0 et dont le demi-angle au sommet est l'angle de Mach initial $\mu_0 = \sin^{-1}(1/M_0)$.

Selon que la composante V_{n0} de la vitesse normale au bord d'attaque est plus grande ou plus petite que la vitesse du son c_0 , on dit que le bord d'attaque est supersonique ou subsonique. Selon la valeur du nombre de Mach M_0 , un même bord d'attaque peut bien sûr être subsonique (faible M_0) ou supersonique (M_0 élevé). Une partie du bord d'attaque d'une aile peut être supersonique, l'autre subsonique (Figure 6.10) Considérons une aile delta à bords d'attaque totalement supersoniques. Apportons une perturbation en un point Q, placé à l'extrados de l'aile. L'intrados ignore complètement cette perturbation (pas de propagation possible de l'information), intrados et extrados sont donc parfaitement indépendants. Si on considère maintenant une aile à bord d'attaque subsonique, toute une région de l'intrados est placée dans l'arrière cône de Mach de Q, et ressent donc la perturbation. Intrados et extrados ne sont plus indépendants. Ces concepts seront importants pour la suite, mais il faut préalablement introduire la méthode des sources.

6.5.7 Expression générale du potentiel par la méthode des sources

On peut immédiatement vérifier que toute fonction $\varphi_P(x,y,z)$ de la forme :

$$\varphi_P(x, y, z) = \frac{1}{\sqrt{(x - \xi)^2 - \beta_0^2 \left[(y - \eta)^2 + (z - \zeta)^2 \right]}}$$
(6.19)

est solution de l'équation du potentiel (6.3). Cette solution correspond à l'effet qu'une source placée en un point P de coordonnées (ξ, η, ζ) exerce en tout point M de coordonnées (x, y, z). La fonction φ_P n'est définie qu'à l'intérieur du cône de Mach de sommet P, et est singulière à la surface de ce cône.

On peut alors directement obtenir des solutions plus générales à l'équation du potentiel (6.3), qui est linéaire, en prenant pour φ le potentiel créé par un ensemble infini de sources placées sur une surface (A), par exemple dans le plan $(\zeta = 0)$.

$$\varphi(x, y, z) = \int \int_{(\mathcal{A})} \frac{f(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^2 - \beta_0^2 \left[(y - \eta)^2 + z^2 \right]}}$$

La surface (A) est l'intersection du plan $\zeta=0$ avec l'avant-cône de Mach issu du point M (Figure 6.11). Pour définir le potentiel global $\varphi(x,y,z)$, il reste à exprimer que la vitesse $\tilde{w}(x,y,0)$ satisfait aux conditions posées dans le plan z=0. Or, il est possible de montrer que :

$$\tilde{w}^{+}(x, y, 0) = \lim_{z \to 0^{+}} \frac{\partial}{\partial z} \iint_{(\mathcal{A})} \frac{f(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2} [(y - \eta)^{2} + z^{2}]}}$$

$$= -\pi f(x,y)$$

On en tire l'expression générale du potentiel pour $z \geq 0$:

$$\varphi(x, y, z) = -\frac{1}{\pi} \int \int_{(\mathcal{A})} \frac{\tilde{w}^{+}(\xi, \eta) \, d\xi \, d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2} \left[(y - \eta)^{2} + z^{2} \right]}}$$
(6.20)

Le second membre de l'égalité est pair en z. En problème symétrique, l'expression précédente est encore valable pour z<0. En revanche, on sait qu'en problème portant φ est impaire en z, et on écrira donc pour z<0:

$$\varphi(x, y, z) = \frac{1}{\pi} \int \int_{(A)} \frac{\tilde{w}^{+}(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2} [(y - \eta)^{2} + z^{2}]}}$$

Pour résoudre complètement le problème, il suffit désormais d'exprimer \tilde{w}^+ dans tout le domaine (\mathcal{A}) .

Considérons dans un premier temps le problème symétrique. Nous avons vu précédemment que, dans le plan (z=0), la vitesse \tilde{w} est nulle en dehors de l'aile et que, sur l'aile, $\tilde{w}^+ = \delta^+$, pente locale du profil. L'aire d'intégration (\mathcal{A}) se limite à la portion de la surface du plan comprise dans l'avant-cône de Mach du point M où l'on veut calculer le potentiel (Figure 6.12). On a :

$$\varphi(x, y, z) = -\frac{1}{\pi} \int \int_{(A)} \frac{\delta^{+}(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2} [(y - \eta)^{2} + z^{2}]}}$$

Sur l'aile, $\delta^+(\xi, \eta)$ est une donnée, le problème se ramène donc à l'intégration d'une fonction connue, et est formellement résolu. Si le point M(x, y, z) est sur l'aile dans le plan (z = 0), la surface d'intégration (\mathcal{A}) est la portion de la surface en plan de l'aile comprise entre les deux lignes de Mach passant par M, à l'amont du point M.

Pour le problème portant, \tilde{w}^+ en dehors de l'aile dans le plan (z=0) n'est pas forcément nul. L'aire d'intégration (\mathcal{A}) dans la formule du potentiel n'est donc pas nécessairement limitée à une portion de la surface en plan de l'aile. Ainsi, pour une aile delta à bords d'attaque subsoniques, le domaine d'intégration (\mathcal{A}) comprend deux triangles situés en dehors de l'aile, sur lesquels \tilde{w}^+ constitue une des inconnues du problème (Figure 6.13). Par contre, si cette aile delta est à bords d'attaque supersoniques, les vitesses de perturbation sont nulles à l'amont des bords d'attaque et, dans ce cas, il ne faut répartir que des sources connues, sur l'aile. On a de nouveau :

$$\varphi^{+}(x, y, 0) = -\frac{1}{\pi} \int \int_{(\mathcal{A})} \frac{\delta^{+}(\xi, \eta) d\xi d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2} [(y - \eta)^{2} + z^{2}]}}$$

6.5.8 Formule d'Evvart pour les ailes à bords d'attaque partiellement supersoniques

On cherche dans ce cas à exprimer le potentiel de perturbation de l'écoulement portant en un point M d'une aile, placé sous l'influence d'un bord d'attaque subsonique précédé d'un bord d'attaque supersonique (Figure 6.14). Dans la configuration représentée, (P'AP) est un bord d'attaque supersonique, par contre (PC) est subsonique. Le potentiel de perturbation φ au point M(x,y) s'obtient par une répartition de sources, dans le plan (z=0), au niveau de l'avant-cône de Mach issu du point M. On connaît déjà les propriétés suivantes : en amont de (APB), l'écoulement n'est pas perturbé par la présence de l'aile, donc on a nécessairement $\tilde{w}=0$; d'autre part, à la surface de l'aile, à l'intérieur de la surface (APCM), on connaît \tilde{w}^+ par la relation $\tilde{w}^+=\delta^+$. Par contre, en dehors de l'aile, \tilde{w} est inconnu dans (PBC). L'expression du potentiel peut s'écrire directement :

$$\varphi_{M}^{+} = -\frac{1}{\pi} \int \int_{(MAPC)} \frac{\delta^{+}(\xi, \eta) \, d\xi \, d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2}(y - \eta)^{2}}} - \frac{1}{\pi} \int \int_{(CPB)} \frac{\gamma(\xi, \eta) \, d\xi \, d\eta}{\sqrt{(x - \xi)^{2} - \beta_{0}^{2}(y - \eta)^{2}}}$$

Dans cette égalité, $\gamma(\xi, \eta)$ représente l'intensité inconnue des sources à répartir dans (CPB). On effectue maintenant la transformation :

$$\lambda = \xi - \beta_0 \eta$$

$$\nu = \xi + \beta_0 \eta$$

Les lignes $\lambda = \text{constante}$ et $\nu = \text{constante}$ constituent les lignes de Mach du problème.La figure transformée dans le plan (λ, ν) est représentée sur la Figure 6.15. La transformée du point $O = (\xi = 0, \eta = 0)$ est le point $o = (\lambda = 0, \nu = 0)$. Celle de $M = (\xi = x, \eta = y)$ est $m = (\lambda_m = x - \beta_0 y, \nu_m = x + \beta_0 y)$. Et on a :

$$(x - \xi)^2 - \beta_0^2 (y - \eta)^2 = (\lambda_m - \lambda) (\nu_m - \nu)$$

Le jacobien de la transformation vaut :

$$\frac{D(\lambda, \nu)}{D(\xi, \eta)} = \begin{vmatrix} 1 & -\beta_0 \\ 1 & \beta_0 \end{vmatrix} \\
= 2\beta_0$$

On a donc:

$$\varphi_{m}^{+} = -\frac{1}{2\pi\beta_{0}} \int \int_{(mapc)} \frac{\delta^{*}(\lambda, \nu) \, d\lambda \, d\nu}{\sqrt{(\lambda_{m} - \lambda)(\nu_{m} - \nu)}} - \frac{1}{2\pi\beta_{0}} \int \int_{(cpb)} \frac{\gamma^{*}(\lambda, \nu) \, d\lambda \, d\nu}{\sqrt{(\lambda_{m} - \lambda)(\nu_{m} - \nu)}}$$

Soit maintenant $\nu = f_1(\lambda)$ l'équation du bord d'attaque (pa), et $\nu = f_2(\lambda)$ celle du bord d'attaque (pc). Il vient maintenant :

$$\varphi_{m}^{+} = -\frac{1}{2\pi\beta_{0}} \int_{0}^{\lambda_{c}} \frac{d\lambda}{\sqrt{\lambda_{m} - \lambda}} \left[\int_{f_{1}(\lambda)}^{f_{2}(\lambda)} \frac{\delta^{*}(\lambda, \nu) d\nu}{\sqrt{\nu_{m} - \nu}} + \int_{f_{2}(\lambda)}^{\nu_{m}} \frac{\gamma^{*}(\lambda, \nu) d\nu}{\sqrt{\nu_{m} - \nu}} \right] - \frac{1}{2\pi\beta_{0}} \int_{\lambda_{c}}^{\lambda_{m}} \frac{d\lambda}{\sqrt{\lambda_{m} - \lambda}} \int_{f_{1}(\lambda)}^{\nu_{m}} \frac{\delta^{*}(\lambda, \nu) d\nu}{\sqrt{\nu_{m} - \nu}}$$

Considérons maintenant un point D quelconque sur le segment (CB). Comme $\frac{\partial \varphi}{\partial x} = 0$ en dehors de l'aile, dans le plan $(\zeta = 0)$, et que $\varphi = 0$ en amont de la ligne de Mach (PB), on en déduit que le potentiel en D est nul. On exprime alors ce potentiel par la formule précédente :

$$\varphi_D = -\frac{1}{2\pi\beta_0} \int_0^{\lambda_d} \frac{\mathrm{d}\lambda}{\sqrt{\lambda_d - \lambda}} \left[\int_{f_1(\lambda)}^{f_2(\lambda)} \frac{\delta^* (\lambda, \nu) \, \mathrm{d}\nu}{\sqrt{\nu_d - \nu}} + \int_{f_2(\lambda)}^{\nu_d} \frac{\gamma^* (\lambda, \nu) \, \mathrm{d}\nu}{\sqrt{\nu_d - \nu}} \right]$$

avec $\nu_d = \nu_m$. Le potentiel φ_D doit être nul que que soit la valeur de λ_d . Il en résulte que le terme entre crochets doit être nul. L'expression de φ_m^+ donnée précédemment se simplifie donc de manière considérable :

$$\varphi_m^{+} = -\frac{1}{2\pi\beta_0} \int_{\lambda_c}^{\lambda_m} \frac{\mathrm{d}\lambda}{\sqrt{\lambda_m - \lambda}} \int_{f_1(\lambda)}^{\nu_m} \frac{\delta^*(\lambda, \nu) \, \mathrm{d}\nu}{\sqrt{\nu_m - \nu}}$$

La fonction inconnue $\gamma^*(\lambda, \nu)$ a désormais disparu. Revenant au plan physique, il vient désormais :

$$\varphi_{M}^{+} = -\frac{1}{\pi} \iint_{(MAA'C)} \frac{\delta^{+}(\xi, \eta) \, d\xi \, d\eta}{\sqrt{(x-\xi)^{2} - \beta_{0}^{2} (y-\eta)^{2}}}$$

On n'a donc plus qu'un simple problème d'intégration.

Supposons maintenant que le point M soit dans la région d'influence de deux bords d'attaque subsoniques. Le bord (P'DEP) est supersonique, alors que (P'A) et (PC) sont subsoniques (Figure 6.16). Le potentiel au point M peut s'obtenir par répartition de sources dans tout l'avant-cône de Mach de M (domaine (A_3) , potentiel φ_3), ou par répartition dans le domaine d'Evvard numéro 1, (domaine (A_1) , potentiel φ_1), ou dans le domaine d'Evvard numéro 2, (domaine (A_2) , potentiel φ_2), avec $\varphi_M = \varphi_1 = \varphi_2 = \varphi_3$. Dans tous ces domaines, il y a des zones extérieures à l'aile dans lesquelles l'intensité des sources à répartir est inconnue. On peut aussi bien écrire :

$$\varphi_m = \varphi_1 + \varphi_2 - \varphi_3$$

et, comme en un même point les trois potentiels ont même intensité de source $-\tilde{w}^+/\pi$, on voit que par exemple les contributions des répartitions de sources placées dans la région $(\infty EPC\infty)$ des potentiels φ_1 et φ_3 s'annulent. Il suffit donc en définitive de répartir des sources de puissance connue sur l'aile : on utilise $+\delta(\xi,\eta)$ dans le domaine (AMCB), et $-\delta(\xi,\eta)$ dans le domaine (DBE).

Dans le cas de bords d'attaque totalement subsoniques, l'application répétée de la méthode précédente montre que l'on a à calculer la somme d'une série à termes alternés pour obtenir le potentiel de perturbation φ_M .

Figure 6.9: Décomposition du problème général en problème d'incidence et de cambrure

Figure 6.10: Distinction entre bord d'attaque subsonique et supersonique

Figure 6.11: Configuration pour l'expression du potentiel par la méthode des sources

M dans le plan de l'aile

Figure 6.12: Configuration pour l'expression du potentiel par la méthode des sources en problème symétrique

Figure 6.13: Configuration pour l'expression du potentiel par la méthode des sources en problème portant

Figure 6.14: Configuration pour l'expression du potentiel pour les ailes à bords d'attaque partiellement supersoniques

Figure 6.15: Configuration transformée pour l'expression du potentiel d'une aile à bords d'attaque partiellement supersoniques

Figure 6.16: Configuration pour l'expression du potentiel d'une aile avec plusieurs bords d'attaque subsoniques

6.5.9 Notions sur les écoulements inverses

On considère une aile placée dans un écoulement de vitesse uniforme à l'infini amont V_0 , et $\varphi_1(x, y, z)$ le potentiel de perturbation correspondant. On appelle φ_2 le potentiel de perturbation d'une aile de même forme en plan que la précédente, mais avec une loi d'épaisseur et une incidence pouvant être différentes, avec le sens de la vitesse inversé par rapport au cas précédent (Figure 6.17). Un des résultats les plus utilisés de

Figure 6.17: Configuration pour l'étude des écoulements inverses

l'étude des écoulements inverses se traduit par la relation suivante :

$$\int \int_{(S)} \frac{\partial \varphi_1}{\partial x} \frac{\partial \varphi_2}{\partial z} \, ds = \int \int_{(S)} \frac{\partial \varphi_2}{\partial x} \frac{\partial \varphi_1}{\partial z} \, ds$$
 (6.21)

Pour une première application, on considère la même aile, plaque plane de forme en plan (S), à la même incidence α , dans l'écoulement direct et dans l'écoulement inverse. On a

6.6 Conclusion 127

alors:

$$\frac{\partial \varphi_1^+}{\partial z} = \frac{\partial \varphi_2^+}{\partial z}$$
$$= -\alpha$$
$$= \text{constante}$$

La relation (6.21) s'écrit alors :

$$\alpha \iint_{(S)} \frac{\partial \varphi_1^+}{\partial x} ds = \alpha \iint_{(S)} \frac{\partial \varphi_2^+}{\partial x}$$

Et, comme:

$$K_p^- - K_p^+ = 4 \frac{\partial \varphi^+}{\partial x}$$

on obtient immédiatement $Z_1 = Z_2$. La portance de l'aile est donc la même dans l'écoulement direct et dans l'écoulement inverse.

Attention : ceci ne signifie pas que le coefficient de pression est le même, dans les deux écoulements, en un point donné de l'aile.

Choisissons comme deuxième exemple une aile delta, plaque plane à bords d'attaque supersoniques, placée à l'incidence α . On vient de voir qu'elle a même portance que dans l'écoulement inverse, à même incidence (Figure 6.18). Dans l'écoulement inverse, les bords de fuite (BA) et (CA) sont supersoniques. L'écoulement inverse sur l'aile est donc celui qui existerait sur une aile d'envergure infinie en attaque droite, à l'incidence α . Son coefficient de portance est donc connu :

$$C_{Z2} = \frac{4\alpha}{\sqrt{M_0^2 - 1}}$$

valeur qui est égale, d'après ce qui précède, à C_{Z1} . Le coefficient de portance d'une aile delta plane à bords d'attaque supersoniques est donc $C_Z = \frac{4\alpha}{\sqrt{M_0^2 - 1}}$.

6.6 Conclusion

Au cours de ce chapitre, nous avons pu nous familiariser avec la méthode des petites perturbations. Celle-ci est particulièrement utile pour l'étude et le développement de profils d'aile. De nombreux exemples nous ont permis de calculer la portance de divers profils fréquemment rencontrés dans la pratique. Bien sûr, cette méthode possède aussi ses limites. En particulier, son application est difficile dans les cas transsoniques et hypersoniques. Ce dernier cas va faire l'objet du prochain chapitre.

Figure 6.18: Écoulement inverse sur une aile delta

6.7 Exercices d'application

6.7.1 Aile rectangulaire d'envergure finie

On considère la configuration représentée sur la Figure 6.19. Un écoulement amont uniforme supersonique de Mach M_1 arrive sur une aile plane rectangulaire de corde c et d'envergure 2b. Les effets de bord ne peuvent être négligés.

Figure 6.19: Aile rectangulaire d'envergure finie

Questions:

- 1. Déterminer la différence des coefficients de pression $\Delta K_p^{\pm} = K_p^- K_p^+$ sur l'aile. Dans la partie soumise à l'influence du bord, on admettra que cette différence varie linéairement entre ses valeurs extrêmes suivant y.
- 2. En déduire la force normale F_N sur l'aile et le coefficient de portance $C_z = F_N/(q_0 S)$.
- 3. Exprimer le coefficient de portance en fonction de l'allongement $\Lambda = (\text{envergure})^2/S$, et conclure.

6.7.2 Aile trapézoïdale d'envergure finie

On considère la configuration représentée sur la Figure représentée sur l'abaque. Un écoulement amont uniforme supersonique de Mach M_1 arrive sur une aile plane trapézoïdale d'envergure finie définie par les paramètre géométriques donnés sur la Figure de l'abaque, à une incidence α . Les effets de bord ne peuvent être négligés. On a par définition $C_N = C_{N\alpha}\alpha$, ce qui traduit l'évolution linéarisée de la portance pour de faibles valeurs de α .

Questions:

- 1. Montrer que l'abaque proposé n'est utilisable que pour une aile à bords d'attaque supersoniques.
- 2. Calculer $\cos \lambda$ pour une aile rectangulaire et une aile Delta.
- 3. Calculer C_N et F_N pour une aile rectangulaire avec 2b=2 m et c=0.5 m, mise à une incidence $\alpha=5^{\circ}$. Les conditions de l'écoulement amont sont $M_0=2$ et $p_0=0.25$ bar. Quelle est l'importance des effets de bord ?

Chapter 7

Introduction à l'hypersonique

7.1 Introduction

L'activité de recherche concernant les écoulements hypersoniques est directement couplée à l'intensité du programme spatial. Ainsi, la mise en place du projet Hermès a conduit à porter un intérêt très fort à ce type de configuration. Depuis la mise en sommeil de ce projet, les différentes possibilités de remplacement, basées sur des capsules de réentrée atmosphérique classiques, ont permis le maintien d'un niveau de recherche non négligeable pour optimiser les formules proposées.

Les écoulements hypersoniques peuvent constituer le sujet d'un livre en propre, et nous nous contenterons donc à ce niveau de mettre en valeur un certain nombre d'aspects caractéristiques de ces écoulements, qui les différencient souvent nettement des écoulements supersoniques à nombre de Mach modéré. En général, les configurations hypersoniques réalistes ne sont accessibles à l'analyse que par le biais de méthodes numériques, et nous renvoyons donc également au chapitre postérieur consacré à ce point.

7.2 Cadre de l'analyse

Comme mentionné précédemment, cette analyse est essentiellement liée aux phénomènes de réentrée atmosphérique d'un véhicule spatial, ou au déplacement à très grande vitesse d'un véhicule aérospatial dans la haute atmosphère. Néanmoins, les aspects traités dans la suite de ce chapitre seront restreints à des déplacements ayant lieu à moins de 80 km d'altitude environ, afin de pouvoir continuer à faire l'hypothèse de milieu continu. En effet, dans la très haute atmosphère (dont on peut grossièrement situer la limite vers 120 km d'altitude), le libre parcours moyen des molécules devient très important du fait des très faibles pressions ambiantes, et est alors du même ordre de grandeur que les dimensions caractéristiques des véhicules considérés. Dans ce cas, il est hors de question de pouvoir rester dans le cadre de la Mécanique des Fluides "classique", telle que nous l'avons utilisée jusqu'à présent. La seule solution est alors de résoudre l'écoulement en utilisant

Figure 7.1: Décollage de la navette Discovery pour la mission STS-96 (suite de l'assemblage de la Station Spatiale Internationale)

les équations de Boltzmann, c'est à dire au niveau moléculaire, problème suffisamment éloigné du nôtre pour que nous l'évitions. Par contre, à partir de 80 km d'altitude environ, la pression caractéristique devient suffisamment élevée pour que l'on puisse se placer dans l'hypothèse de régime continu, et utiliser les équations classiques de Navier-Stokes. Dans cette partie de la trajectoire d'un véhicule aérospatial, on note typiquement l'apparition d'ondes de choc très fortes, et les effets de gaz réels induits (déséquilibre chimique et thermodynamique, ionisation) deviennent prépondérants, provoquant des flux de chaleur élevés à la paroi. L'écoulement reste par contre généralement laminaire, en dépit des vitesses élevées rencontrées, du fait des faibles masses volumiques qui caractérisent ce domaine. Lorsque l'altitude décroît encore, les chocs deviennent moins importants, et les déséquilibres induits aussi, limitant les flux de chaleur à la paroi. Par contre, les effets turbulents augmentent, ce qui provoque a contrario un fort accroissement de la charge thermique de la paroi dans les zones turbulentes.

7.3 Définition des écoulements hypersoniques

Il n'est pas possible de définir la frontière supersonique-hypersonique aussi clairement que celle caractérisant la transition subsonique-supersonique. En fait, cette frontière peut intervenir sur une plage relativement large de vitesses et de nombres de Mach, et correspond à l'apparition de phénomènes physico-chimiques (ou effets de gaz réels) qui modifient l'écoulement de façon sensible.

Par exemple, dans le cas de la rentrée atmosphérique, ces effets sont sensibles pour des vitesses supérieures à environ 5 km/s et des nombres de Mach supérieurs à 7, alors qu'ils peuvent déjà l'être pour des vitesses bien inférieures dans le cas d'un écoulement dans une tuyère, où le fluide amont est fortement chauffé et comprimé avant la détente.

D'une manière très simplifiée, les écoulements hypersoniques se caractérisent par des vitesses et des températures très élevées. Les temps mécaniques de ces écoulements sont très courts. Ainsi, pour un véhicule de longueur caractéristique $L_0=1$ m se déplaçant à $v_{\infty}=10$ km/s, on a $\tau_m=L_0/v_{\infty}=10^{-4}$ s. Du fait de la condition de non-glissement à la paroi, la présence du véhicule s'accompagne d'un fort ralentissement du fluide au voisinage de celui-ci. Ceci implique une transformation de l'énergie cinétique, très élevée en amont du corps, en énergie thermique à son voisinage, d'où l'apparition de niveaux énergétiques considérables. Par exemple, la conservation de l'enthalpie totale $h=c_pT+\frac{v^2}{2}$ pour un corps se déplaçant à 7 km/s dans une atmosphère d'air à 200 K se traduit par :

$$c_p T_{\infty} + \frac{{v_{\infty}}^2}{2} = c_p T_s$$

où T_s désigne la température du véhicule au niveau du point d'arrêt. Dans ces conditions, on a $c_\infty = \sqrt{\gamma r T_\infty}$ conduisant à $M_\infty \simeq 25$. D'autre part, on a $c_p \simeq 10^3$ J/kg.K, si bien que l'on calcule immédiatement $T_s \simeq 25000$ K. On comprend les difficultés technologiques liées au problème de la protection thermique de l'engin (et l'état de cette protection thermique au retour du premier – et unique – vol de la navette russe Bourane)! En fait, ce calcul simplifié n'est pas très réaliste, mais il reste vrai que le problème des flux de chaleur à la paroi constitue la plus grande difficulté technologique de tels vols hypersoniques. Il est donc indispensable d'obtenir une prédiction honorable des températures atteintes dans les conditions réelles de vol, en prenant en compte des modèles physiques adéquats.

7.4 Phénomènes de déséquilibre

L'un des phénomènes fondamentaux à prendre en compte pour obtenir des prédictions correctes de la température est la dissociation des molécules d'oxygène et d'azote, qui sont les principaux constituants de l'air. En effet, la température de 25000 K calculée précédemment est nettement supérieure à ces températures de dissociation (typiquement 3000 K pour l'oxygène et 6000 K pour l'azote). On a alors les réactions :

$$O_2 \rightleftharpoons O + O$$

 $N_2 \rightleftharpoons N + N$

Dans le cas général, la formation effective d'oxygène et d'azote atomique est déterminée par la comparaison du temps caractéristique chimique τ_c avec le temps mécanique τ_m . Si l'écoulement est très rapide comparé à la chimie $(\tau_m \ll \tau_c)$, les phénomènes de dissociation n'ont pas le temps de se mettre en place. On peut ainsi supposer qu'en tout point de l'écoulement la composition chimique du fluide est constante, et on dira que l'écoulement est figé. Dans le cas contraire $(\tau_c \ll \tau_m)$, les réactions sont très rapides par rapport aux phénomènes convectifs, et l'écoulement est dit à l'équilibre chimique. Entre ces deux cas limites, on a déséquilibre chimique lorsque $\tau_m \sim \tau_c$, les phénomènes chimiques ayant lieu sur une distance comparable à la longueur caractéristique du corps en déplacement. Il est alors nécessaire de suivre en tout point de l'écoulement la composition chimique dans le fluide.

Cette composition va à son tour fortement influer sur la température. Les réactions de dissociation considérées sont endothermiques, et consomment donc une partie de l'énergie thermique disponible. Ainsi, si on suppose que l'on obtient l'équilibre, la température de 25000 K calculée précédemment serait ramenée à approximativement 7000 K par endothermicité des réactions de dissociation. Malheureusement, le cas le plus général est celui du déséquilibre chimique, impliquant un calcul complet en chaque point de l'écoulement. C'est typiquement le cas sur une trajectoire de rentrée atmosphérique entre 80 et 40 km d'altitude.

Pour obtenir des modèles encore plus précis, il est nécessaire de prendre en compte l'ionisation de certaines espèces, par exemple :

$$N + O \rightleftharpoons NO^+ + e^-$$

Ces réactions sont activées par un niveau de température très élevé. Elles modifient peu la nature de l'écoulement, mais perturbent fortement les communications entre l'engin et la Terre ("black-out" radio).

Enfin, le déséquilibre thermodynamique est provoqué principalement par les fortes variations des différentes propriétés locales de l'écoulement (température, pression, composition). En effet, l'énergie d'une molécule se répartit sur différents niveaux énergétiques qui sont les niveaux translationnel (température cinétique), rotationnel, vibrationnel et électronique. La part relative de ces niveaux est déterminée par leur degré de peuplement. Dans le cas classique de l'équilibre thermodynamique local, les différentes populations se répartissent selon la distribution de Boltzmann, connue en fonction des propriétés thermodynamiques locales. Des modifications de ces propriétés conduisent à des modifications des répartitions entre les différents niveaux énergétiques. Ces échanges d'énergie s'effectuent généralement en un temps beaucoup plus court que les temps caractéristiques correspondant aux réactions chimiques et aux variations des grandeurs hydrodynamiques de l'écoulement, ce qui permet de garder l'hypothèse d'équilibre thermodynamique local. Ce n'est plus nécessairement le cas dans les écoulements hypersoniques, où ces trois temps caractéristiques peuvent devenir comparables. La répartition des populations entre les différents niveaux énergétiques peut donc s'écarter de la répartition d'équilibre, et il est nécessaire de mener une analyse détaillée pour prendre en compte ces phénomènes.

Figure 7.2: Essai en soufflerie du prototype de l'avion spatial hypersonique américain X33

7.5 Onde de choc en écoulement hypersonique

On a établi précédemment les relations de saut (ou relations de Rankine-Hugoniot) à travers un choc rectiligne. Ces relations restent bien sûr valides dans un premier temps dans le cas hypersonique. Ainsi, en notant (1) les conditions en amont du choc, et (2) les conditions en aval, on obtient :

$$\frac{T_2}{T_1} = \left(\frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}\right) \left(\frac{\gamma-1}{\gamma+1} + \frac{2}{(\gamma+1)M_1^2}\right)
\frac{p_2}{p_1} = \frac{2\gamma}{\gamma+1}M_1^2 - \frac{\gamma-1}{\gamma+1}
\frac{v_1}{v_2} = \frac{\rho_2}{\rho_1}
= \frac{(\gamma+1)M_1^2}{2+(\gamma-1)M_1^2}$$

En ne gardant que le premier ordre pour $M_1 \gg 1$, on aboutit au système encore plus simple (mais dont la validité est limitée à une assez faible plage de nombre de Mach) :

$$\frac{T_2}{T_1} = \frac{2\gamma(\gamma - 1)}{(\gamma + 1)^2} M_1^2
\frac{p_2}{p_1} = \frac{2\gamma}{\gamma + 1} M_1^2
\frac{v_1}{v_2} = \frac{\rho_2}{\rho_1}$$

$$= \frac{(\gamma+1)}{(\gamma-1)}$$

Par contre, l'équation d'état introduite pour compléter ce système, à savoir $h = c_p T$, n'est pas suffisante pour décrire les effets de gaz réels apparaissant à haute température. Cette équation d'état est en fait une version simplifiée découlant de l'hypothèse $c_p = \text{constante}$, à partir de la véritable relation :

$$h(T) = h(T_0) + \int_{T_0}^T c_p(\tau) d\tau$$

A haute température, à cause de l'excitation progressive des niveaux internes des molécules, il n'est pas possible de considérer c_p comme une constante. La prise en compte d'une équation d'état réaliste, qui devient en fait une fonction non linéaire de la température, fait qu'il n'est plus possible de résoudre analytiquement les équations de Rankine-Hugoniot. La situation est d'autant plus complexe que l'enthalpie du fluide dépend également de sa composition chimique, qui est elle-même fonction du degré de déséquilibre au sein de l'écoulement, degré qui varie en fonction de la position par rapport au choc.

Le choc étant considéré comme une discontinuité en régime continu, le temps de traversée est excessivement court, à la limite nul, et en tout cas négligeable devant le temps caractéristique chimique. Alors qu'on assiste à une brutale augmentation de température et de pression, on peut donc supposer qu'il y a figeage de la composition chimique du fluide entre la zone située en amont du choc et l'aval immédiat du choc (Figure 7.3). Le retour à l'équilibre de ce système constitue le processus de relaxation derrière une onde de choc. La résolution des équations de Rankine-Hugoniot sous l'hypothèse de l'écoulement figé

Figure 7.3: Configuration de l'écoulement pour un choc en régime hypersonique

conduit alors à des valeurs de la température, de la pression et de la vitesse en aval de l'onde de choc qui constituent les conditions initiales du processus de relaxation. Dans cette zone de relaxation, les températures associées aux niveaux vibrationnel, rotationnel

et translationnel sont généralement distinctes. On n'a plus d'équilibre thermodynamique local, et il est indispensable de faire appel à des notions de Physique Statistique pour résoudre correctement la structure locale de l'écoulement.

Les équations de conservation à la traversée du choc sont données de façon classique par :

$$\rho_1 v_1 = \rho_2 v_2 \tag{7.1}$$

$$p_1 + \rho_1 v_1^2 = p_2 + \rho_2 v_2^2 (7.2)$$

$$h_1 + \frac{v_1^2}{2} = h_2 + \frac{v_2^2}{2} \tag{7.3}$$

On adjoint à ce système l'équation d'état des mélanges de gaz parfaits :

$$p_1 = \rho_1 \frac{R}{W_1} T_1$$

$$p_2 = \rho_2 \frac{R}{W_2} T_2$$

désignant par R la constante des gaz parfaits et par W_i la masse molaire du mélange correspondant. Enfin, on donne une équation d'état exprimant l'enthalpie du fluide. Dans le cas présent, la composition chimique étant supposée figée, on a :

$$h = h(T)$$

Le saut d'enthalpie donne alors la relation :

$$h_2 = h_1 + \frac{v_1^2}{2} \left[1 - \left(\frac{v_2}{v_1} \right)^2 \right]$$
$$= h(T_2)$$

On suppose le figeage de la composition chimique à travers le choc, donc $W_2=W_1$. L'équation d'état du mélange de gaz parfaits donne alors immédiatement :

$$T_2 = T_1 \frac{p_2}{p_1} \frac{\rho_1}{\rho_2} \tag{7.4}$$

Or, (7.1) donne:

$$\frac{\rho_1}{\rho_2} = \frac{v_2}{v_1}$$

Donc, (7.4) se réécrit :

$$T_2 = T_1 \frac{p_2}{p_1} \frac{v_2}{v_1}$$

Il reste à exprimer p_2/p_1 . D'après (7.2), on a :

$$p_2 = p_1 + \rho_1 v_1^2 \left(1 - \frac{\rho_2 v_2^2}{\rho_1 v_1^2} \right)$$

soit encore

$$p_2 = p_1 + \rho_1 v_1^2 \left(1 - \frac{v_2}{v_1} \right)$$

Donc

$$\frac{p_2}{p_1} = 1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \frac{v_2}{v_1} \right)$$

On a donc finalement pour la température :

$$T_2 = T_1 \frac{v_2}{v_1} \left[1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \frac{v_2}{v_1} \right) \right] \tag{7.5}$$

Il est donc nécessaire de résoudre l'équation suivante implicite en v_2/v_1 :

$$F\left(\frac{v_2}{v_1}\right) = h(T_2) - h(T_1) - \frac{v_1^2}{2} \left[1 - \left(\frac{v_2}{v_1}\right)^2\right]$$

$$= h\left(T_1 \frac{v_2}{v_1} \left[1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \frac{v_2}{v_1}\right)\right]\right) - h\left(T_1\right) - \frac{v_1^2}{2} \left[1 - \left(\frac{v_2}{v_1}\right)^2\right]$$

$$= 0$$

Cette équation peut être résolue par la méthode de Newton ou par dichotomie. Ces deux méthodes s'avèrent stables et convergentes car l'enthalpie est une fonction monotone croissante avec la température. Par exemple, pour des conditions initiales correspondant environ à la réentrée atmosphérique d'une navette à 75 km d'altitude ($v_1 = 7181 \text{ m/s}$, $T_1 = 205.3 \text{ K}$, $p_1 = 2.5 \text{ Pa}$), on trouve en aval du choc $T_2 = 16590 \text{ K}$, $v_2 = 741 \text{ m/s}$, $p_2 = 1959 \text{ Pa}$.

Essayons maintenant de prendre en compte partiellement les effets de dissociation, en considérant que l'on obtient l'équilibre chimique en aval. Sous cette hypothèse, la résolution des équations de Rankine-Hugoniot permet d'obtenir les conditions thermodynamiques en fin du processus de relaxation. La formulation devient nettement plus complexe que la précédente puisqu'il faut calculer, en fonction de la température et de la pression, la composition chimique du milieu à l'équilibre. De plus, la formulation est pleinement implicite puisque la température T_2 dépend elle-même directement de la composition à l'équilibre. En effet, la loi des gaz parfaits donne :

$$\frac{p_2 W_2}{\rho_2 T_2} = \frac{p_1 W_1}{\rho_1 T_1}$$

soit

$$T_2 = \frac{W_2}{W_1} T_1 \frac{p_2}{p_1} \frac{\rho_1}{\rho_2}$$

et W_2 est une fonction de la concentration des différentes espèces présentes dans l'écoulement. On obtient ainsi, à partir de la relation (7.5), l'équation suivante :

$$T_2 = \frac{W_2}{W_1} T_1 \frac{v_2}{v_1} \left[1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \frac{v_2}{v_1} \right) \right]$$

A chaque itération i de la méthode itérative utilisée pour la résolution de l'équation

$$F\left(\frac{v_2}{v_1}\right) = h(T_2) - h(T_1) - \frac{v_1^2}{2} \left[1 - \left(\frac{v_2}{v_1}\right)^2\right]$$

il est nécessaire de déterminer $T_{s,i}$ qui est donné par la relation suivante :

$$T_{s,i} = \frac{W_{s,i}}{W_1} T_1 \left(\frac{v_2}{v_1}\right)_i \left[1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \left(\frac{v_2}{v_1}\right)_i \right) \right]$$

Pour résoudre à nouveau cette équation implicite, on construit un processus itératif, donc une suite de valeurs $(T_{s,i})^j$ dont $T_{s,i}$ est la limite.

La relation de récurrence est donnée par les relations suivantes :

$$(W_{s,i})^{j} = f \left[(T_{s,i})^{j}, p_{s,i} \right]$$

$$(T_{s,i})^{j+1} = \frac{(W_{s,i})^{j}}{W_{1}} T_{1} \left(\frac{v_{2}}{v_{1}} \right)_{i} \left[1 + \frac{\rho_{1} v_{1}^{2}}{p_{1}} \left(1 - \left(\frac{v_{2}}{v_{1}} \right)_{i} \right) \right]$$

en initialisant par exemple par:

$$(T_{s,i})^0 = T_1 \left(\frac{v_2}{v_1}\right)_i \left[1 + \frac{\rho_1 v_1^2}{p_1} \left(1 - \left(\frac{v_2}{v_1}\right)_i\right)\right]$$

La fonction f donne simplement la valeur de la masse molaire du mélange en fonction de la température et de la pression, à partir du calcul de la composition à l'équilibre chimique.

Pour l'exemple déjà utilisé précédemment, on trouve finalement $T_2 = 5794$ K, $v_2 = 404.6$ m/s et $p_2 = 2061$ Pa. On voit que la variation de pression est faible, mais par contre les écarts de vitesse et température sont considérables.

7.6 Approximation newtonienne

Cette méthode d'analyse très simple s'appuie sur la théorie corpusculaire de la résistance de l'air due à Newton (1687), d'où son nom. Utilisée dès les débuts de l'aviation pour tenter de calculer l'effet sustentateur d'une aile, elle a été rapidement abandonnée, car donnant des résultats dramatiquement faux. En fait, elle n'apporte des résultats intéressants qu'à vitesses élevées, puisqu'elle suppose que les particules d'air ignorent la présence de l'aile avant de la rencontrer (Figure 7.4).

Dans cette théorie, seules les particules comprises entre AA' et BB' sont concernées par la présence du profil, les autres n'étant pas déviées. Ensuite, on considère que les particules qui rencontrent l'aile perdent leur quantité de mouvement normale à la plaque, la partie tangentielle étant inchangée. Le fluide longe ainsi l'obstacle.

Figure 7.4: Configuration utilisée dans l'approximation newtonienne

Pour une épaisseur unité, le débit de quantité de mouvement normale à la plaque plane de surface S est ici $\rho_0 V_0^2 S \sin^2 \theta$. Un bilan de quantité de mouvement donne alors :

$$\left(p_0 + \rho_0 V_0^2 \sin^2 \theta\right) S = F$$

où F est la force exercée sur la plaque, normale à celle-ci. Le phénomène étant uniforme sur l'intrados, la surpression par rapport à la pression à l'infini p_0 vaut :

$$p - p_0 = \frac{F}{S}$$
$$= \rho_0 V_0^2 \sin^2 \theta$$

Sur l'extrados règne la pression ambiante p_0 , puisque les autres particules ne sont pas déviées. Ainsi, pour cette théorie, le coefficient de pression vaut $K_p^- = 2\sin^2\theta$. Le coefficient de portance associé vaut donc alors :

$$C_z = 2\sin^2\theta\cos\theta \tag{7.6}$$

et la traînée correspondante $C_x = 2 \sin^3 \theta$.

Pour une surface non plane, cette formule est applicable localement en considérant l'angle θ fait entre l'élément de surface et la vitesse à l'infini. Il suffit ensuite d'intégrer sur tout l'intrados pour obtenir la portance.

Cette évolution en $\sin^2\theta$ est remarquablement vérifiée par l'expérience aux grands nombres de Mach chaque fois que la courbure d'un corps varie peu à partir du point d'arrêt.

7.7 Principales conséquences des effets de gaz réels

La première conséquence importante est la difficulté de la détermination du centre de pression d'un profil portant donné, c'est à dire, de façon plus générale, de la détermination

de la pression au voisinage de la paroi. En effet, la pression est calculée au moyen de codes de calcul de l'écoulement couplés aux équations de Rankine-Hugoniot. Si l'on considère un gaz parfait à $\gamma=1.4$, on obtient une approximation très grossière de la réalité. Si on suppose maintenant que les niveaux vibrationnels des molécules sont excités à leur valeur d'équilibre, on peut conserver une méthode de résolution identique, mais en modifiant la valeur de γ . On prend alors :

$$\gamma = \frac{\frac{7}{2} + 1}{\frac{5}{2} + 1} \\
= 1.286$$

et la distribution de pression obtenue est plus précise. Si la dissociation de O_2 et de N_2 est prise en compte, la valeur correspondante de γ diminue à nouveau (typiquement $\gamma \sim 1.15$), et la qualité des résultats est encore améliorée. On peut enfin supposer qu'il y a équilibre chimique et l'on obtient alors des résultats relativement précis pour l'évaluation des distributions de pression.

Le moment de tangage de l'objet est lui aussi très affecté par les effets de gaz réels. Considérons par exemple une plaque plane de largeur L et d'extension transversale infinie, placée sous un angle d'incidence α par rapport à l'écoulement à l'infini amont. Dans ces conditions, une onde de choc s'établit à un angle θ avec la plaque (Figure 7.5). La

Figure 7.5: Configuration pour l'étude du moment de tangage

déflexion θ_e obtenue dans l'hypothèse de l'équilibre chimique est plus faible que celle correspondant au cas d'un gaz parfait figé, θ_p . On a alors pour les pressions $p_e < p_p$, le centre de pression étant dans les deux cas positionné en L/2.

Dans le cas d'un écoulement en déséquilibre chimique, il faut de plus tenir compte des temps caractéristiques des différents phénomènes mis en jeu. De façon simplifiée, on peut dire que la zone située près du bord d'attaque de la plaque est dans une situation proche d'un écoulement figé, puisqu'elle correspond à un très faible temps de transit des particules à l'intérieur de la zone réactive (zone comprise entre le choc et la paroi). Plus on s'éloigne du bord d'attaque et plus on se rapproche de l'équilibre chimique (temps

de transit important). Les conséquences de ce phénomène sont l'apparition d'un choc courbe, et le déplacement du centre de pression vers l'avant, puisque la pression sur la plaque décroît lorsque l'on s'éloigne du bord d'attaque. Il y a donc apparition d'un moment de tangage qui tend à faire remonter l'avant de l'engin et qu'il faudra compenser. Cet effet, mal estimé, aurait pu conduire à un accident majeur sur le premier vol de la navette américaine. La complexité des prédictions est bien sûre encore plus considérable dans le cas de profils aux formes complexes.

Les phénomènes chimiques ont d'autre part des conséquences directes sur la conception de la paroi de l'engin. En effet, il y a une forte dissociation moléculaire dans le fluide au voisinage de la paroi, et donc, localement, une concentration élevée d'oxygène atomique. Cette espèce est extrêmement réactive, et peut conduire rapidement à la dégradation de la surface (adsorption, réaction avec le matériau constituant la paroi, puis désorption). Si la surface est catalytique vis à vis des espèces considérées, on a une recombinaison partielle ou totale des radicaux, ce qui augmente à nouveau de façon très importante les flux de chaleur à la paroi, en relibérant la chaleur prise à l'écoulement initial par les phénomènes de dissociation. C'est pour cette raison que des travaux expérimentaux très importants ont été entrepris pour caractériser les matériaux utilisés sur les engins en vol hypersonique. Dans le cas par exemple de la navette américaine, le système de protection thermique est recouvert d'une pellicule de Vycor qui diminue sensiblement les flux de chaleur du fait de sa non-catalycité. Quel que soit le type de paroi choisi, il reste bien sûr une partie du flux thermique qu'il est impossible de réduire. Ce flux est directement lié au gradient entre la température du fluide au voisinage de la paroi (typiquement $\sim 10000 \text{ K}$) et la température de la paroi elle-même, qui ne doit généralement pas dépasser 1000 à 1500 K. Ce flux conductif ($\phi = -\lambda \operatorname{grad} T$) peut atteindre des valeurs très élevées, par exemple 300 kW/m². L'ensemble de ce flux n'est heureusement pas transmis à l'intérieur du matériau, une bonne partie étant réémise par rayonnement vers le milieu extérieur. On estime que 10% seulement du flux total pénètre réellement dans la paroi. Ceci constitue néanmoins une valeur respectable, qu'il est nécessaire d'estimer précisément pour le dimensionnement des dispositifs de refroidissement.

7.8 Conclusion

Dans ce chapitre, essentiellement qualitatif, nous nous sommes attachés à mettre en évidence un certain nombre de phénomènes que nous avons négligés jusqu'à présent, et qui ne sont véritablement importants qu'en régime hypersonique. Ceci peut en particulier donner une idée des difficultés rencontrées lorsqu'il s'agit de réaliser un dispositif réel, éventuellement capable de transporter des personnes humaines, et non plus seulement d'obtenir une idée qualitative grossière des caractéristiques d'un objet à la géométrie très simplifiée.

Un autre aspect très important négligé jusqu'à maintenant est la non-stationnarité de la plupart des écoulements. Il convient de s'y intéresser maintenant, ce que nous allons faire dans le prochain chapitre.

7.9 Exercices d'application

7.9.1 Moment exercé sur une plaque plane en rentrée atmosphérique

On considère la configuration représentée sur la Figure 7.6. Une plaque plane pénètre dans l'atmosphère à une incidence de 45° , et à M=15. On considère que la pression sur l'extrados est uniforme. Le centre de gravité de la plaque est situé en son milieu, G. La longueur de la plaque vaut 2L=1 m, et sa largeur est l=1 m. On négligera les effets de bord.

Figure 7.6: Plaque plane en rentrée atmosphérique

- 1. En utilisant les tables pour un gaz parfait à $\gamma = 1.4$, calculer la pression sur l'intrados dans le cas du gaz figé (non-réactif), notée p_f .
- 2. Même question si le gaz est en équilibre chimique, conduisant à la pression p_e .
- 3. En supposant (hypothèse très grossière) que la pression sur l'intrados varie linéairement dans le sens des x croissants entre p_f et p_e (bord d'attaque figé, bord de fuite en équilibre chimique), calculer le moment angulaire des forces de pression sur la plaque.

Chapter 8

Notions sur les écoulements instationnaires

8.1 Introduction

Dans tous les chapitres précédents, nous avons étudié les écoulements en négligeant les variations temporelles. Nous allons maintenant, en partant d'un exemple simple, introduire quelques notions générales concernant les écoulements instationnaires. En effet, dans bien des cas, l'hypothèse de stationnarité ne peut conduire à une description acceptable de l'écoulement (amorçage d'une tuyère, phénomènes de pompage, propagation de chocs,...)

8.2 Écoulements isentropiques

On considère à titre d'exemple simple le cas d'un écoulement monodimensionnel dans un conduit de section constante. Les diverses grandeurs caractérisant l'écoulement (pression, vitesse,...) ne sont fonctions que de deux variables, la coordonnée de position x et le temps t (Figure 8.1). Les équations de bilan de masse et de quantité de mouvement s'écrivent simplement dans ce cas :

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0$$
$$\rho \frac{Du}{Dt} + \frac{\partial p}{\partial x} = 0$$

Passons maintenant à l'écriture de l'équation de conservation de l'énergie. On considère le volume fixe contenu entre les plans d'abscisse x et x+dx. On appelle δm la masse de gaz contenue dans ce volume, qui dépend du temps. Pendant le temps dt, l'énergie totale contenue dans ce volume varie de $\frac{\partial}{\partial t} \left[\delta m \left(e + \frac{u^2}{2} \right) \right] dt$, où e est l'énergie interne spécifique. Cette variation est due à plusieurs facteurs : d'une part, à l'entrée et à la sortie du fluide, par les faces amont et aval, pendant le temps dt, conduisant à une variation

Figure 8.1: Configuration d'écoulement monodimensionnel instationnaire

d'énergie donnée par $-\frac{\partial}{\partial x}\left[\rho u \, \mathrm{d}t S\left(e+\frac{u^2}{2}\right)\right] \, \mathrm{d}x$, où S est la section du conduit; d'autre part, au changement d'énergie dû aux forces extérieures, donné par $-\frac{\partial}{\partial x}\left[pSu\,\mathrm{d}t\right] \, \mathrm{d}x$. On a alors, considérant que $\delta m=\rho S\,\mathrm{d}x$,

$$\frac{\partial}{\partial t} \left[\rho \left(e + \frac{u^2}{2} \right) \right] = -\frac{\partial}{\partial x} \left[pu + \rho u \left(e + \frac{u^2}{2} \right) \right]$$

En introduisant l'enthalpie $h=e+p/\rho,$ on peut mettre finalement cette égalité sous la forme :

$$\frac{\mathrm{D}}{\mathrm{D}t}\left(h + \frac{u^2}{2}\right) = \frac{1}{\rho}\frac{\partial p}{\partial t} \tag{8.1}$$

En combinant les équations de bilan d'énergie et de quantité de mouvement, et en tenant compte du fait que $dh = T ds + \frac{dp}{\rho}$, il vient pour l'entropie :

$$T\frac{\mathrm{D}s}{\mathrm{D}t} = 0 \tag{8.2}$$

Ainsi, si le fluide est initialement isentropique, et s'il ne se produit pas de choc, le fluide reste isentropique. On a alors s = constante.

Le fluide étant divariant et l'entropie constante, on voit que p est une fonction directe de ρ , sous la forme $p = g(\rho)$. Posant $c^2 = \frac{\mathrm{d}p}{\mathrm{d}\rho}$, on a :

$$\frac{\partial \rho}{\partial t} = \frac{\mathrm{d}\rho}{\mathrm{d}p} \frac{\partial p}{\partial t}$$
$$= \frac{1}{c^2} \frac{\partial p}{\partial t}$$

Et de même:

$$\frac{\partial \rho}{\partial x} = \frac{\mathrm{d}\rho}{\mathrm{d}p} \frac{\partial p}{\partial x}$$
$$= \frac{1}{c^2} \frac{\partial p}{\partial x}$$

On peut alors réécrire les équations de conservation de la masse et de la quantité de mouvement sous la forme :

$$\frac{1}{c^2}\frac{\partial p}{\partial t} + \frac{u}{c^2}\frac{\partial p}{\partial x} + \rho\frac{\partial u}{\partial x} = 0 \tag{8.3}$$

$$\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 \tag{8.4}$$

Nous allons maintenant pouvoir traiter ce système par la méthode des caractéristiques.

Il faut donc rechercher les courbes (Γ) dans le plan (x,t) le long desquelles le prolongement analytique de la solution est indéterminé. Le système d'équations que doivent satisfaire les quatre dérivées partielles $\frac{\partial p}{\partial t}, \frac{\partial p}{\partial x}, \frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}$ est constitué d'une part des deux équations (8.3) et (8.4), et d'autre part des deux relations triviales :

$$\frac{\partial p}{\partial t} dt + \frac{\partial p}{\partial x} dx = dp$$

$$\frac{\partial u}{\partial t} dt + \frac{\partial u}{\partial x} dx = du$$

où dt et dx correspondent à des déplacements sur (Γ) , et dp et du sont les variations correspondantes.

On écrit d'abord que le déterminant principal est indéterminé :

$$\Delta = \begin{vmatrix} \frac{1}{c^2} & \frac{u}{c^2} & 0 & \rho \\ 0 & \frac{1}{\rho} & 1 & u \\ dt & dx & 0 & 0 \\ 0 & 0 & dt & dx \end{vmatrix}$$
$$= \left(\frac{dx}{dt}\right)^2 - 2u\frac{dx}{dt} + u^2 - c^2$$
$$= 0$$

On en tire immédiatement :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u \pm c$$

Il existe donc deux familles de caractéristiques, dont la pente locale, dans le plan (x, t), vaut $(u \pm c)$. On écrit ensuite la condition d'indétermination, par exemple à partir du quatrième déterminant secondaire :

$$\Delta' = \begin{vmatrix} \frac{1}{c^2} & \frac{u}{c^2} & 0 & 0\\ 0 & \frac{1}{\rho} & 1 & 0\\ dt & dx & 0 & dp\\ 0 & 0 & dt & du \end{vmatrix}$$
$$= 0$$

Ce qui s'écrit encore :

$$\frac{\mathrm{d}p}{\rho} + \left(\frac{\mathrm{d}x}{\mathrm{d}t} - u\right) \, \mathrm{d}u = 0$$

On a donc finalement, sur la première caractéristique (Γ^+) , définie par :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u + c \tag{8.5}$$

la relation:

$$du + \frac{dp}{\rho c} = 0 ag{8.6}$$

De même, on a sur la seconde caractéristique (Γ^-), définie par :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u - c \tag{8.7}$$

la relation:

$$du - \frac{dp}{\rho c} = 0 (8.8)$$

Ces relations générales sont appelées relations de Riemann. On notera au passage qu'en écoulement instationnaire, les caractéristiques sont toujours réelles, indépendamment du nombre de Mach. Il s'agit d'une différence importante avec les écoulements permanents.

Si on suppose maintenant que le gaz est calorifiquement parfait, comme s = constante, on a $p/\rho^{\gamma} = \text{constante}$, et on en déduit :

$$c^{2} = \frac{\mathrm{d}p}{\mathrm{d}\rho}$$
$$= \frac{\gamma p}{\rho}$$

On a alors aussi:

$$\frac{\mathrm{d}p}{p} = \gamma \frac{\mathrm{d}\rho}{\rho}$$

et

$$2\frac{\mathrm{d}c}{c} = \frac{\mathrm{d}p}{p} - \frac{\mathrm{d}\rho}{\rho}$$

Des transformations successives donnent alors :

$$\frac{\mathrm{d}p}{\rho c} = \frac{2p}{\rho c^2} \, \mathrm{d}c + \frac{p}{\rho c} \frac{\mathrm{d}\rho}{\rho}$$
$$= \frac{2 \, \mathrm{d}c}{\gamma} + \frac{p}{\gamma \rho c} \frac{\mathrm{d}p}{p}$$

donc

$$\frac{\gamma - 1}{\gamma} \frac{\mathrm{d}p}{\rho c} = \frac{2}{\gamma} \, \mathrm{d}c$$
$$\frac{\mathrm{d}p}{\rho c} = \frac{2}{\gamma - 1} \, \mathrm{d}c$$

Dans le cas du gaz calorifiquement parfait, les relations de Riemann s'écrivent donc de façon simple sous forme intégrée. Sur la première caractéristique (Γ^+), définie par :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u + c \tag{8.9}$$

on a la relation:

$$u + \frac{2}{\gamma - 1}c = \text{constante}$$
 (8.10)

De même, sur la seconde caractéristique (Γ^{-}) , définie par :

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u - c \tag{8.11}$$

on a la relation:

$$u - \frac{2}{\gamma - 1}c = \text{constante}$$
 (8.12)

8.3 Problème du piston en mouvement

On cherche à résoudre le problème suivant : un piston, initialement immobile dans un tube contenant un gaz au repos, est mis en mouvement à l'instant t=0, selon un diagramme de marche $x=\mathcal{C}(t)$ imposé, vers la gauche (Figure 8.2). On veut déterminer l'écoulement à droite du piston. Les conditions initiales sont données par u=0, $c=c_0$, $p=p_0$ à t=0. La condition aux limites à la surface du piston impose que la vitesse du gaz y soit localement égale à la vitesse du piston. On trace une caractéristique (Γ -) quelconque de pente locale (u-c). Elle coupe l'axe des x, c'est à dire (t=0) en un point Q. Le long de cette caractéristique, la relation de Riemann s'écrit :

$$u - \frac{2}{\gamma - 1}c = \text{constante}$$

$$= \text{valeur au point } Q$$

$$= -\frac{2}{\gamma - 1}c_0$$

Cette relation est vraie pour toute caractéristique (Γ^-). Elle est donc vraie dans tout le plan (x,t) à droite de \mathcal{C} . Donc, dans toute cette partie du plan, on a :

$$u - \frac{2}{\gamma - 1}c = -\frac{2}{\gamma - 1}c_0 \tag{8.13}$$

Soit maintenant P un point quelconque du diagramme de marche C(t) du piston. En ce point, la condition aux limites impose que la vitesse du gaz soit u_p , vitesse du piston. Le

Figure 8.2: Configuration pour le problème du piston

valeur de c est c_p donnée par la relation (8.13). Traçons maintenant la caractéristique (Γ^+) de pente locale $(u_p + c_p)$ au point P. Le long de cette caractéristique, on a :

$$u + \frac{2}{\gamma - 1}c = u_p + \frac{2}{\gamma - 1}c_p$$

on en déduit, compte-tenu de (8.13):

$$u = u_p$$
 $= constante$

et

$$c = c_p$$
 $= constante$

On voit donc que toutes les caractéristiques (Γ^+) issues de la courbe (\mathcal{C}) sont des droites, de pente variable ($u_p + c_p$). La caractéristique (Γ^+) passant par O a pour pente c_0 . Il en est de même pour toutes les caractéristiques (Γ^+) issues de l'axe (Ox) avec $x \geq 0$.

Examinons maintenant l'évolution du gaz dans une section $x = \text{constante} = x_0$. Au point A_0 , c'est le repos, u = 0 et $c = c_0$. Au point A_1 , on a les deux relations :

$$u_{A_1} + \frac{2}{\gamma - 1}c_{A_1} = u_{Q_1} + \frac{2}{\gamma - 1}c_{Q_1}$$
$$= \frac{2}{\gamma - 1}c_0$$
$$u_{A_1} - \frac{2}{\gamma - 1}c_{A_1} = -\frac{2}{\gamma - 1}c_0$$

On a donc toujours le repos. Cette situation persiste juqu'au point A_2 . Au point A_P , les conditions sont celles qui régnaient à la surface du piston, en P, à un instant antérieur.

On voit donc que la perturbation provoquée dans le tuyau par la mise en déplacement du piston ne se fait sentir en x_0 qu'au bout d'un temps x_0/c_0 . C'est à dire que c_0 correspond à la vitesse de propagation de l'information dans le milieu au repos. Or, d'après les relations de Riemann, une perturbation de vitesse s'accompagne d'une perturbation de pression. La grandeur c_0 est donc la vitesse de propagation d'une perturbation de pression infiniment faible, c'est à dire la vitesse du son dans le fluide au repos. Le problème du piston est l'exemple type d'une propagation par ondes simples, se déplaçant à la vitesse (u+c).

Dans l'exemple choisi, u est négatif et décroît, alors que c reste toujours positive. Comme $u-\frac{2}{\gamma-1}c=-\frac{2}{\gamma-1}c_0$, c décroît, de même que la pression puisque $p/p_0=(c/c_0)^{\frac{2\gamma}{\gamma-1}}$. Les ondes qui se propagent vers la droite sont donc des ondes de détente. Compte-tenu de la diminution de la pression, on voit qu'il existe une vitesse maximale que l'on peut imprimer au fluide par le biais du déplacement du piston. En effet, u sera maximale lorsque l'on obtiendra c=0 (limite au demeurant irréaliste). La vitesse limite est donc :

$$v_l = \frac{2}{\gamma - 1} c_0 \tag{8.14}$$

A titre de comparaison, l'utilisation de la relation établie en écoulement stationnaire $h+\frac{v^2}{2}=$ constante conduirait à :

$$\frac{v^2}{2} + \frac{c^2}{\gamma - 1} = \frac{c_0^2}{\gamma - 1}$$

donnant une vitesse limite de :

$$v_l' = \left(\frac{2}{\gamma - 1}\right)^{1/2} c_0$$

Pour $\gamma=1.4$ et $c_0=340$ m/s, on voit qu'utiliser les relations établies en stationnaire pour traiter ce problème foncièrement instationnaire conduit à une erreur considérable $(v_l=760 \text{ m/s} \text{ au lieu de } v_l=1700 \text{ m/s}, \text{ valeur correcte}).$

Supposons maintenant que les conditions initiales sont les mêmes à gauche qu'à droite du piston, et déterminons l'écoulement dans la partie gauche. On voit facilement, en traçant

une caractéristique (Γ^+) , que la relation (8.13) est remplacée par :

$$u + \frac{2}{\gamma - 1}c = \frac{2}{\gamma - 1}c_0 \tag{8.15}$$

Comme précédemment, les caractéristiques issues de (C), cette fois de type (Γ^-) , sont des droites. La relation précédente montre que $c > c_0$ puisque u < 0, et on a donc aussi $p > p_0$. Les droites (Γ^-) représentent le diagramme de marche d'ondes de compression. Leur vitesse est $\frac{\mathrm{d}x}{\mathrm{d}t} = u - c$. On voit que lorsque la vitesse du piston s'accroît en module, la pente des caractéristiques (Γ^-) s'accroît également. Ainsi, les ondes caractéristiques émises par le piston ont tendance à se rattraper. On peut voir de la même façon que, à droite, les ondes de détente s'écartent. Si la longueur du tuyau est suffisante, les ondes de compression, en se rattrapant, vont engendrer une onde de choc.

Figure 8.3: Ariane 5 au décollage

8.4 Ondes de choc en mouvement

On considère, dans des axes liés au laboratoire, une onde de choc Ω qui se déplace à la vitesse $(D_1 + u_1)$ dans un fluide animé de la vitesse u_1 , associée à un état (1) déterminé par (p_1, T_1, c_1, γ) . Après passage de l'onde de choc, le fluide est dans l'état (2), caractérisé par $(u_2, p_2, T_2, c_2, \gamma)$, qu'il s'agit de définir (Figure 8.4). Plaçons nous alors dans des axes liés à Ω . Le problème à résoudre devient celui de la traversée d'un choc fixe par

Figure 8.4: Configuration pour le problème du choc droit en mouvement

un écoulement (p_1, T_1, c_1) de vitesse par rapport au choc $-D_1$, problème que nous savons résoudre. Si on pose maintenant $w = u_2 - u_1$, les équations générales s'écrivent dans ce cas précis :

$$\rho_1 D_1 = \rho_2 (D_1 - w)
p_2 - p_1 = \rho_1 D_1 w
h_1 = h_2 + \frac{w^2}{2} - D_1 w$$

Si le gaz est calorifiquement parfait, on obtient alors immédiatement, en posant $\Delta_1 = \frac{D_1}{c_1}$ $(\Delta_1 \text{ est nécessairement supérieur ou égal à 1})$:

$$\frac{p_2}{p_1} = \Pi$$

$$= 1 + \frac{2\gamma}{\gamma + 1} \left(\Delta_1^2 - 1 \right)$$
(8.16)

$$= 1 + \frac{2\gamma}{\gamma + 1} \left(\Delta_1^2 - 1 \right) \tag{8.17}$$

$$\frac{\rho_1}{\rho_2} = 1 - \frac{2}{\gamma + 1} \left(1 - \frac{1}{\Delta_1^2} \right) \tag{8.18}$$

L'expression de $W = \frac{w}{c_1} = \frac{u_2 - u_1}{c_1}$ s'obtient alors à partir de $\rho_1 D_1 = \rho_2 (D_1 - w)$:

$$W = \left(1 - \frac{\rho_1}{\rho_2}\right) \Delta_1$$

$$= \frac{2}{\gamma + 1} \left(\Delta_1 - \frac{1}{\Delta_1} \right)$$

Le rapport des célérités sonores $C = c_2/c_1$ s'obtient à partir de :

$$C^{2} = \frac{c_{2}^{2}}{c_{1}^{2}}$$
$$= \frac{p_{2}}{p_{1}} \frac{\rho_{1}}{\rho_{2}}$$

On obtient:

$$C^{2} = 1 + 2 \frac{\gamma - 1}{(\gamma + 1)^{2}} \left(\gamma \Delta_{1}^{2} - \frac{1}{\Delta_{1}^{2}} - \gamma + 1 \right)$$

On a choisi $\Delta_1 = D_1/c_1$ comme paramètre (nombre de Mach de l'écoulement amont, dans des axes liés au choc). Pour certaines applications, il est plus intéressant de prendre le rapport de compression $\Pi = \frac{p_2}{p_1}$ comme paramètre. On obtient alors les relations :

$$\Delta_1^2 = \frac{1}{2\gamma} [(\gamma + 1) \Pi + \gamma - 1] \tag{8.19}$$

$$W^{2} = \frac{2}{\gamma} \left(\frac{(\Pi - 1)^{2}}{(\gamma + 1)\Pi + \gamma - 1} \right)$$
 (8.20)

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \Pi + \gamma - 1}{(\gamma - 1) \Pi + \gamma + 1}$$
(8.21)

$$C^{2} = \Pi \frac{(\gamma - 1)\Pi + \gamma + 1}{(\gamma + 1)\Pi + \gamma - 1}$$
(8.22)

Si l'on considère des chocs de plus en plus intenses $(\Delta_1 \to \infty)$, on obtient $\Pi \to \infty$, $\frac{\rho_2}{\rho_1} \to \frac{\gamma+1}{\gamma-1}$, $W^2 \to \infty$, et $C^2 \to \infty$. On observe qu'alors $\frac{W^2}{C^2} \to \frac{2}{\gamma(\gamma-1)}$. Pour $\gamma = 1.4$, la limite de W/C est donc 1.89.

Si $u_1 = 0$, $\frac{W}{C} = \frac{u_2}{c_2}$ est le nombre de Mach de l'écoulement (2) dans des axes liés au laboratoire. Ainsi, si on fait traverser par une onde de choc très intense un tuyau contenant initialement un gaz immobile, on observera à la traversée du choc une compression et un échauffement intense, avec un entraînement à grande vitesse du gaz, mais le nombre de Mach restera modéré. En fait, dans ce cas, il faudrait prendre en compte les effets de gaz réel, comme nous l'avons fait dans le chapitre sur les écoulements hypersoniques.

8.5 Tube à choc

Il s'agit du dispositif le plus couramment utilisé pour créer des ondes de choc intenses. Soit un tube divisé en deux compartiments par un diaphragme. A droite, le gaz se trouve dans l'état (1) caractérisé par (γ_1, p_1, c_1) dans lequel on souhaite faire passer une onde de choc. A gauche, un gaz dans l'état (5) donné par (γ_5, p_5, c_5) . La pression initiale

8.5 Tube à choc 155

Figure 8.5: Tir de missile Aster

 p_5 est plus grande que la pression p_1 (Figure 8.6). A l'instant t=0, le diaphragme de séparation est volatilisé. On conçoit aisément que le gaz (5) à haute pression va se déplacer vers la droite. Il faut que, instantanément, prennent naissance des phénomènes qui assurent, sur les surfaces de séparation, l'égalité des vitesses et des pressions des gaz qui, initialement, étaient dans les états (1) et (5).

On observe qu'un choc se forme dans le milieu (1), et des ondes de détente se propagent dans (5), donnant naissance respectivement aux écoulements (2) et (4), tels que $u_2 = u_4$, et $p_2 = p_4$ (conditions aux limites à travers la discontinuité de contact). L'évolution continue au sein de l'éventail de détente est facilement obtenue en utilisant les relations de caractéristiques. Imposons-nous le rapport de compression souhaité à travers le choc, $\Pi = p_2/p_1$. Quelle valeur faut-il donner à p_5/p_1 pour pouvoir l'obtenir ? Les équations du problème seront détaillées durant le cours :

$$\frac{u_2^2}{c_1^2} = \frac{2}{\gamma} \frac{(\Pi - 1)^2}{(\gamma + 1)\Pi + \gamma - 1}$$
 (8.23)

$$u_4 + \frac{2}{\gamma_5 - 1}c_4 = \frac{2}{\gamma_5 - 1}c_5 \tag{8.24}$$

$$\frac{p_4}{p_5} = \left(\frac{c_4}{c_5}\right)^{\frac{2\gamma_5}{\gamma_5 - 1}} \tag{8.25}$$

La relation (8.23) donne le rapport u_2/c_1 . La condition aux limites impose d'autre part $u_4 = u_2$. La relation (8.24) donne le rapport c_4/c_5 , et (8.25) donne p_4/p_5 . Comme p_4 doit être égal à p_2 , connu par $p_2/p_1 = \Pi$, le rapport p_5/p_1 est déterminé.

A titre d'exemple, on souhaite obtenir $\Pi=10$, en utilisant de l'air à $\gamma=1.4$ dans les deux compartiments, et avec $T_1=T_5$. On trouve $u_2/c_1=2.178$, $c_4/c_5=0.564$, $p_5/p_4=55$ donc $p_5/p_1=550$. On a alors $\Delta_1=2.95$, $c_2/c_1=1.62$ et $M_2=u_2/c_2=1.34$.

Figure 8.6: Configuration pour l'étude du tube à choc

Supposons maintenant que le compartiment haute pression contienne de l'hélium ($\gamma_5 = 5/3$), avec $T_5 = T_1$. On trouve pour obtenir $\Pi = 10$, $u_2/c_1 = 2.178$, $c_4/c_5 = 0.752$, $p_5/p_4 = 4.16$, donc $p_5/p_1 = 41.6$. On voit l'intérêt d'utiliser, dans le compartiment moteur, un gaz léger ayant une énergie interne spécifique élevée et dans lequel la célérité du son est grande (inversement proportionnelle à la masse moléculaire).

Le problème traité ici est nommé plus généralement problème de Riemann. Il s'agit donc de calculer l'évolution d'une discontinuité en prenant comme conditions initiales u_l , p_l , ρ_l pour x < 0, et u_r , p_r , ρ_r pour x > 0 à t = 0, avec $p_r < p_l$. On vient de résoudre ce problème, et l'on a vu que la solution était donnée par la propagation de trois ondes, deux ondes acoustiques (une de compression et une de détente), associées aux vitesses de propagation (u+c) et (u-c), et une onde de séparation, associée à la vitesse de propagation u. Cette solution va être utilisée dans le prochain chapitre pour réaliser une résolution numérique de problèmes concernant des écoulements supersoniques instationnaires.

8.6 Conclusion 157

8.6 Conclusion

Ce bref chapitre a permis de mettre en évidence un certain nombre de caractéristiques des écoulements instationnaires. En particulier, il est clair que l'erreur commise en utilisant des résultats développés dans un cadre stationnaire pour traiter de tels écoulements est rédhibitoire. Malheureusement, il est difficile de pousser très loin l'analyse théorique des écoulements instationnaires, car elle s'avère trop compliquée. L'une des possibilités pour aller plus loin dans l'analyse de ces écoulements, comme d'ailleurs de tous les écoulements à structure complexe, est d'utiliser des méthodes numériques pour résoudre complètement la structure de l'écoulement.

8.7 Exercices d'application

8.7.1 Ouverture d'un tube en surpression

On considère la configuration représentée sur la Figure 8.7. Un tube de longueur infinie contenant de l'air à une pression $p_0 = 1.5$ bar, possédant une vitesse du son c_0 , est terminé par un diaphragme. Le milieu extérieur est lui aussi infini, à une pression p_a que l'on pourra considérer comme constante. Au temps t = 0, on rompt instantanément le diaphragme qui bouche le tube.

Figure 8.7: Ouverture d'un tube en surpression

- 1. Quelle est la condition aux limites qui va déterminer la solution?
- 2. Que se passe-t-il qualitativement à l'intérieur du tube?
- 3. Quelle est la valeur du nombre de Mach en un point B lorsque l'écoulement dans le tube est devenu uniforme entre A et B?
- 4. Quelle serait la valeur de ce même nombre de Mach obtenue en utilisant les résultats développés dans un cadre stationnaire ?

8.7.2 Onde de choc en propagation

On considère la configuration représentée sur la Figure 8.8. Une onde de choc droite se propage dans un tube contenant de l'air immobile à une pression $p_0 = 0.25$ bar et à une température $T_0 = 293$ K. La vitesse de propagation de l'onde de choc est $D_0 = 3260$ m/s.

Figure 8.8: Onde de choc en propagation

- 1. Déterminer l'état (1) derrière l'onde de choc en propagation (pression, température, vitesse).
- 2. Le choc vient buter contre le fond du tube, et se réfléchit. Quelle est la vitesse D_1 du choc réfléchi ? Quelles sont les conditions (2) du gaz derrière l'onde de choc réfléchie ?

8.7.3 Tube à choc

On considère la configuration représentée sur la Figure 8.9. Un tube de longueur infinie contient de l'air immobile. Ce tube est initialement divisé en deux zones au moyen d'un diaphragme. A gauche du diaphragme, on a la pression p_5 et la vitesse du son c_5 , avec $\gamma_5 = 1.4$. A droite, on a la pression p_1 et la vitesse du son c_1 , avec $\gamma_1 = 1.4$ également. Les températures T_1 et T_5 sont égales, mais la pression p_5 est très supérieure à la pression p_1 . Pour l'application de la méthode des caractéristiques, on admettra qu'il convient d'utiliser la valeur du γ associée au milieu non perturbé. A l'instant t=0, le diaphragme est volatilisé.

Figure 8.9: Tube à choc

- 1. Que se passe-t-il qualitativement à l'intérieur du tube?
- 2. On veut obtenir un rapport de compression à travers le choc $\Pi = p_2/p_1 = 10$. Quel doit être pour ce faire le rapport initial des pressions p_5/p_1 ?
- 3. Donner les pentes des phénomènes caractéristiques dans le diagramme (t, x) pour $T_1 = T_5 = 300$ K.
- 4. Déterminer le rapport initial des pressions p_5/p_1 pour obtenir $\Pi = 10$ si la partie à gauche du diaphragme contient en fait de l'hélium avec $\gamma_5 = 5/3$.

Chapter 9

Détonations et déflagrations

9.1 Introduction

La détonation traduit un couplage intense entre une onde de choc et des processus réactifs, conduisant à un phénomène très énergétique, et potentiellement très dangereux. La destruction totale d'un silo à grains en Aquitaine au cours de l'été 1997 a été la dernière grande catastrophe meurtrière en France due à une détonation, en l'occurence liée à la combustion de poussières de grains dans de l'air. Mais de telles catastrophes se produisent très (trop) fréquemment, et il est important de comprendre ce phénomène pour mieux lutter contre lui.

Figure 9.1: Explosion en vol d'une fusée Titan IV en Août 1998

D'autre part, il existe des cas où l'on souhaite provoquer une détonation dans des dispositifs réels. C'est par exemple le cas pour stabiliser des flammes sur des ondes de choc en écoulement supersonique (principe possible pour un superstatoréacteur), ou pour des études actuelles aux États-Unis concernant un super-canon destiné à "tirer" et à satelliser de petites charges.

Le lieu des réactions chimiques dans un écoulement est appelé "front de flamme" ou bien "onde de combustion". Dans cette région des réactions très rapides ont lieu et de la lumière est souvent émise. On distingue en général deux types de flammes :

- les flammes de prémélange : le mélange est parfait avant les réactions,
- les flammes non-prémélangées ou flammes de diffusion : les réactifs diffusent les uns au sein des autres tout en réagissant.

Les situations traitées ici concernent des flammes de prémélange. Au sein de ces dernières, il est possible de distinguer trois catégories :

- explosion : le taux de dégagement de chaleur par unité de temps est très élevé, mais il ne nécessite pas le passage d'une onde de combustion,
- déflagration : une onde de combustion se propage à des vitesses subsoniques,
- détonation : une onde de combustion se propage à des vitesses supersoniques.

C'est ce dernier cas qui va nous intéresser dans le cadre du cours sur les Écoulements Supersoniques. Pour plus de détails, nous renvoyons en particulier au cours de Combustion II, qui traite le problème dans toute sa généralité, et en prenant en compte de façon plus complète les processus chimiques. Nous nous intéresserons ici davantage à l'aspect global de l'écoulement.

9.2 Configuration et équations de bilan

La configuration que nous étudions est représentée sur la Figure 9.2.

Les mécanismes qui conduisent à l'accélération d'une flamme et à la formation d'une détonation sont très variés. Ces mécanismes sont étudiés en détail notamment dans l'analyse de la sécurité de fonctionnement de systèmes et procédés. Soit un tube contenant un mélange réactif, ouvert à une seule de ses extrémités : une onde de combustion peut s'y propager si il y a allumage à l'extrémité ouverte. L'onde atteint une vitesse stationnaire et n'accélère pas pour former une détonation. Si le mélange est allumé à l'extrémité fermée, les gaz brûlés agissent comme un piston et poussent le front vers les gaz frais. Cette onde peut s'accélérer et former une détonation.

En négligeant l'effet Dufour et la diffusion des espèces, et en notant 1 et 2 les états amont et aval de la discontinuité, les équations décrivant des gaz frais et brûlés séparés par une discontinuité se ramènent à :

$$\rho_1 u_1 = \rho_2 u_2 \tag{9.1}$$

Figure 9.2: Onde de combustion, dans le référentiel lié à cette onde

$$p_1 + \rho_1 u_1^2 = p_2 + \rho_2 u_2^2 \tag{9.2}$$

$$c_p T_1 + \frac{1}{2}u_1^2 + q = c_p T_2 + \frac{1}{2}u_2^2$$
(9.3)

avec $q=h_1^0-h_2^0$ l'apport d'enthalpie et $h^0=\sum_i^N Y_i \Delta h_{f,i}^0.$ D'où :

$$p_2 - p_1 = \rho_1 u_1^2 - \rho_2 u_2^2 = \left(\frac{1}{\rho_1} - \frac{1}{\rho_2}\right) \dot{m}^2 \tag{9.4}$$

qui donne la relation de la ligne de Rayleigh, déjà rencontrée lors de l'étude des chocs :

$$\rho_1^2 u_1^2 = \dot{m}^2 = \frac{p_2 - p_1}{\frac{1}{\rho_1} - \frac{1}{\rho_2}}$$
(9.5)

Pour un gaz parfait idéal $c_p = \frac{\gamma}{\gamma-1} r$, donc l'équation de l'énergie se réécrit :

$$\frac{\gamma}{\gamma - 1} \left(\frac{p_2}{\rho_2} - \frac{p_1}{\rho_1} \right) - \frac{1}{2} (u_1^2 - u_2^2) = q \tag{9.6}$$

Les bilans de quantités de mouvement et de masse permettent d'exprimer la relation précédente sous la forme :

$$\frac{\gamma}{\gamma - 1} \left(\frac{p_2}{\rho_2} - \frac{p_1}{\rho_1} \right) - \frac{1}{2} (p_2 - p_1) \left(\frac{1}{\rho_1} + \frac{1}{\rho_2} \right) = q$$
 (9.7)

Il s'agit de la relation de Rankine-Hugoniot. La représentation de p_2 en fonction de ρ_2 à q fixé s'appelle alors la courbe d'Hugoniot.

9.3 Propriétés de la courbe de Rankine-Hugoniot

La courbe d'Hugoniot est le lieu des états de l'écoulement $(\frac{1}{\rho_2}, p_2)$ pour un état 1 caractérisé par $(\frac{1}{\rho_1}, p_1)$ et un dégagement de chaleur q fixés.

Figure 9.3: Courbe d'Hugoniot

Le point $(\frac{1}{\rho_1}, p_1)$, appelé origine de la courbe de Rankine-Hugoniot est désigné par A.

Les différents domaines de solutions sont déterminés en traçant les tangentes à la courbe issues de A et les droites verticales et horizontales issues de A. La courbe est alors divisée en cinq régions. Les deux points de tangence sont appelés points de Chapman-Jouguet, notés C-J: U sera le point C-J supérieur et L le point C-J inférieur.

La courbe représente toutes les solutions de l'équation, pas seulement les solutions physiques.

Dans la région V, p_2 est strictement supérieur à p_1 et $\frac{1}{\rho_2}$ est strictement supérieur à $\frac{1}{\rho_1}$. L'expression de la ligne de Rayleigh implique alors u_1 imaginaire. Ce domaine ne comporte donc pas de solutions physiques.

Aux points C-J les pentes valent par construction (tangence):

$$\left[\frac{dp_2}{\left(d\frac{1}{\rho_2}\right)}\right]_{C-J} = \frac{p_2 - p_1}{\frac{1}{\rho_2} - \frac{1}{\rho_1}}$$
(9.8)

d'où:

$$\frac{p_2 - p_1}{\frac{1}{\rho_2} - \frac{1}{\rho_1}} = -\left[\rho_2^2 \frac{dp_2}{d\rho_2}\right]_{C-J}$$
$$= -\rho_2^2 c_2^2$$
$$= -\gamma \rho_2 p_2$$

D'après (9.5), on a:

$$\frac{p_2 - p_1}{\frac{1}{q_1} - \frac{1}{q_2}} = -\dot{m}^2 = -\rho_1^2 u_1^2 = -\rho_2^2 u_2^2$$

En rapprochant les deux dernières relations, on a donc

$$\gamma \rho_2 p_2 = \rho_2^2 u_2^2$$

Donc, en divisant tout par $\rho_2^2 c_2^2$:

$$\frac{\gamma p_2}{\rho_2 c_2^2} = M_2^2$$

et finalement:

$$M_2 = 1 \tag{9.9}$$

Dans les régions de détonation (I et II), $\frac{1}{\rho_2} < \frac{1}{\rho_1}$ et donc $u_1 > u_2$.

Dans le référentiel du laboratoire, si on appelle V_w la vitesse de l'onde de détonation :

$$v_1 = V_w - u_1 \tag{9.10}$$

et

$$v_2 = V_w - u_2 (9.11)$$

 V_w est égal à u_1 , les gaz frais étant au repos avant le passage de l'onde de détonation.

Figure 9.4: Onde de combustion dans le référentiel du laboratoire

Physiquement les gaz brûlés derrière une détonation (régions I et II) suivent le front de l'onde. Pour le point C-J supérieur, $u_2=c_2$ car $M_2=1$, donc $V_w=c_2+v_2>c_2$. La vitesse de l'onde de détonation est donc supérieure à la célérité du son dans les gaz brûlés, il s'agit donc d'une onde supersonique.

La région I est appelée région des détonations fortes. Dans ce cas la pression des gaz brûlés est supérieure à la pression d'une onde de $C-J: p_2 > p_U$. Au travers d'une onde de détonation forte, la vitesse des gaz (par rapport au front de l'onde) est ralentie d'une vitesse supersonique à une vitesse subsonique et les pression et densité augmentent notablement.

Ces détonations fortes sont rarement observées, elles nécessitent des ondes accélérées en laboratoire, ainsi que des confinements très importants.

La région II est appelée région des détonations faibles : la pression des gaz brûlés est plus faible que celle de l'onde de C-J ($p_2 < p_U$). En passant au travers d'une telle onde, la vitesse relative des gaz est diminuée, mais les gaz brûlés ont toujours une vitesse supérieure à celle du son. Ces ondes sont rarement observées, elles nécessitent des mélanges à chimie très rapide. On peut noter qu'une détonation isochore $(\frac{1}{\rho_1} = \frac{1}{\rho_2})$ correspond à une vitesse infinie de l'onde.

Dans la plupart des cas, on rencontre des détonations dont les conditions sont proches de celles du point de C-J, représentées par le point U. Ce point correspond au minimum de vitesse de l'onde.

Si on considère à présent les points situés en dessous de l'horizontale passant par A, on trouve que le point de la déflagration de C-J correspond au maximum de vitesse de déflagration.

La région III est la région des faibles déflagrations : $p_1 > p_2 > p_L$ et $\frac{1}{\rho_2} > \frac{1}{\rho_1}$. Au travers de cette onde, les gaz sont accélérés en conservant des vitesses subsoniques. La déflagration isobare $(p_2 = p_1)$ correspond à une vitesse nulle de l'onde de combustion. Ces déflagrations sont souvent observées : dans la plupart des configurations expérimentales, la pression des gaz brûlés est plus faible que celle des gaz frais.

La région IV est appelée la région des déflagrations fortes. Les gaz sont accélérés de vitesses subsoniques à supersoniques. Ces ondes ne sont pas observées en pratique. La solution correspondant au point de C-J désigné par L n'est pas non plus obtenue dans les expériences.

Dans la région III les gaz brûlés s'éloignent de l'onde à une vitesse donnée par :

$$u_2 - u_1 = \dot{m} \left(\frac{1}{\rho_2} - \frac{1}{\rho_1} \right)$$
$$= -v_2$$

puisque $\dot{m} = \rho_1 u_1 = \rho_2 u_2$ et $v_1 \simeq 0$. On a donc $v_2 < 0$.

C'est une des différences caractéristiques entre déflagrations et détonations : pour les détonations, la combustion est "accrochée" à l'onde et la suit dans son déplacement. Pour les déflagrations, les gaz brûlés tendent à s'éloigner de l'onde de combustion.

9.4 Distribution d'entropie le long de la courbe d'Hugoniot

Il est possible de montrer que le long de la courbe d'Hugoniot:

$$T_2 \frac{ds_2}{d\left(\frac{1}{\rho_2}\right)} = \frac{1}{2} \left(\frac{1}{\rho_1} - \frac{1}{\rho_2}\right) \left(\frac{dp_2}{d\left(\frac{1}{\rho_2}\right)}\right) - \frac{p_2 - p_1}{\frac{1}{\rho_2} - \frac{1}{\rho_1}}$$
(9.12)

et qu'aux points C - J:

$$\left[\frac{ds_2}{d\left(\frac{1}{\rho_2}\right)}\right]_{C-I} = 0$$
(9.13)

Le point U correspond alors à un minimum et le point L à un maximum. L'entropie varie alors comme indiqué sur la figure 9.5.

Figure 9.5: Variation de l'entropie le long de la courbe de Hugoniot

9.5 Vitesse des gaz brûlés derrière une détonation

A partir de l'écriture du second principe :

$$ds = \left[\frac{\partial s}{\partial \left(\frac{1}{\rho}\right)}\right]_{p} d\left(\frac{1}{\rho}\right) + \left[\frac{\partial s}{\partial p}\right]_{p} dp \tag{9.14}$$

en considérant la dérivée isentropique de la pression p par rapport à $\frac{1}{\rho}$ et un chemin le long de la courbe de Hugoniot, la relation suivante est obtenue (l'indice HC désigne une dérivée le long de la courbe d'Hugoniot) :

$$-\rho_2^2 u_2^2 + \rho_2^2 c_2^2 = \left[\frac{\partial s}{\partial \left(\frac{1}{\rho} \right)} \right]_{HC} \left[\frac{-2T_2}{\frac{1}{\rho_1} - \frac{1}{\rho_2}} \right] + \frac{1}{\left[\frac{\partial s}{\partial p} \right]_{\frac{1}{\rho}}}$$
(9.15)

avec $\rho_2^2 \left[\frac{\partial p_2}{\partial \rho_2} \right]_s = \rho_2^2 c_2^2$, c'est à dire que c_2 est la vitesse du son. Le terme de droite est alors positif dans la région I, donc $u_2 < c_2$.

On peut ainsi en déduire qu'en tout point situé au-dessus de U sur la courbe d' Hugoniot, la vitesse des gaz brûlés est subsonique. Or dans le référentiel du laboratoire :

$$V_w = v_2 + u_2 (9.16)$$

donc $c_2 > V_w - v_2$, soit $c_2 + v_2 > V_w$,

où c_2 désigne la vitesse de propagation de perturbations acoustiques (célérité du son), v_2 la vitesse des particules suivant l'onde et $c_2 + v_2$ la vitesse de propagation de n'importe quelle perturbation dans la direction du mouvement de l'onde.

Ainsi toute onde de détente se propagera plus rapidement que l'onde de combustion et réduira sa force. Dans ces conditions toute solution de la région I évoluera vers la solution du point U.

Par des considérations analogues, on peut montrer qu'une onde détonation correspondant à la région II tend elle aussi à évoluer vers la solution U de Chapman-Jouguet. Ceci explique pourquoi les détonations observées expérimentalement correspondent pratiquement toutes à cette solution particulière.

9.6 Le modèle de Zel'Dovich, Von Neumann, Döring (ZND)

Le modèle ZND suppose que l'écoulement est strictement mono-dimensionnel et stationnaire par rapport au front de détonation. Ce modèle décrit la structure d'une onde de détonation comme suit : une onde de choc se déplaçant à la vitesse de la détonation, avec des réactions chimiques se produisant derrière le choc sur une distance plus grande que l'épaisseur d'un choc classique. Dans le modèle ZND l'onde de choc porte les réactifs à une température à laquelle ils réagissent à une vitesse suffisante pour que la zone de réaction se propage aussi vite que l'onde de choc. L'hypothèse qu'il y a peu de réactions chimiques au sein même du choc est justifiée par le fait que l'épaisseur de ce dernier, de l'ordre de quelques libres parcours moyen de molécules, ne permet pas un nombre suffisant de chocs entre ces molécules pour qu'elles réagissent. Ainsi, le dégagement de chaleur est important au sein d'une région située en aval du choc.

Il y a plusieurs chemins possibles pour un mélange réactif de l'état amont à l'état aval. Tous ces chemins peuvent vérifier les équations de conservation. Un mélange dans l'état $(\frac{1}{\rho_1}, p_1)$ peut rencontrer l'onde de détonation et atteindre directement l'état C-J, mais pour ce faire le mélange doit réagir tout le long du chemin. Or, la compression n'étant pas suffisante le long de ce chemin, il ne peut y avoir une température suffisante pour le démarrage des réactions. Le chemin (a) ne permet pas d'entretenir l'onde de réaction.

Figure 9.6: Chemin suivi par le mélange dans le plan $(p, \frac{1}{\rho})$

Le chemin (b) représente un chemin possible pour un mélange à cinétique rapide.

9.7 Conclusion 169

Le chemin (c) correspond à un mélange caractérisé par une cinétique lente.

Dans la limite d'un dégagement d'énergie nul au sein du choc, le chemin (d) coïncide avec la courbe d' Hugoniot. Le pic de pression derrière le choc est appelé "pic de Von Neumann".

Selon ce modèle il y a des gradients élevés de pression et de densité au front de l'onde de détonation. Ceci est observé expérimentalement pour des pressions initiales inférieures à la pression atmosphérique. Mais le "pic de Von Neumann" est plus difficile à mettre en évidence.

9.7 Conclusion

Nous avons brièvement abordé dans ce chapitre le problème des détonations. Différents régimes ont été mis en évidence, et la complexité du phénomène devrait maintenant apparaître clairement au lecteur. Pourtant, notre analyse est très simplifiée, et nous renvoyons de nouveau au cours de Combustion II et aux références qui y sont citées pour de plus amples détails. Ce sujet est en effet suffisamment important pour avoir donné lieu à d'abondantes recherches.

Lorsque la détonation n'a plus une structure unidimensionnelle, il devient pratiquement impossible de l'étudier analytiquement. Il est alors très utile de pouvoir employer le puissant outil de la simulation numérique pour aller plus avant.

Chapter 10

Méthodes numériques spécifiques

10.1 Introduction

Jusqu'à présent, nous sommes parvenus à analyser des écoulements supersoniques relativement complexes à partir de méthodes analytiques, qui nous ont permis de mettre en évidence un certain nombre de caractéristiques fondamentales de ces écoulements. Si l'on regarde avec attention les développements qui ont été menés, on s'aperçoit que ces méthodes analytiques font appel à des hypothèses souvent très restrictives, parfois irréalistes si l'on veut confronter les résultats obtenus avec des écoulements réels. Ainsi, ces solutions analytiques, très intéressantes d'un point de vue théorique et comme première approximation de la solution, sont en général insuffisantes lorsque l'on souhaite obtenir une précision élevée dans une configuration plus complexe.

D'autre part, les études expérimentales d'écoulements supersoniques sont souvent très complexes (voir également le prochain chapitre), parfois impossibles à mettre en œuvre (pas d'accès direct à l'écoulement, conditions trop extrêmes pour permettre la survie des instruments), et sont toujours très coûteuses lorqu'il s'agit de réaliser une étude systématique d'une configuration donnée.

Ainsi, en complément aux méthodes expérimentales et aux développements analytiques, on a progressivement développé un nouveau cadre d'analyse des écoulements supersoniques, basé sur une résolution numérique des équations décrivant ces écoulements. Suite à l'augmentation constante de la puissance des ordinateurs, et à la baisse parallèle du coût de l'heure de calcul, ces simulations numériques tendent à prendre une importance considérable au sein de la recherche comme de l'industrie, et il est indispensable de posséder un certain nombre de notions de base sur ce sujet.

Nous nous limiterons dans ce chapitre à une classe particulière de méthodes de résolution, la méthode de Godunov, en combinaison avec une résolution exacte ou approchée (solveur de Roe) du problème de Riemann associé. D'autres méthodes sont certainement plus adaptées pour résoudre certains types de problèmes, mais il est impossible de décrire toutes les méthodes existantes du fait de leur nombre, lié à la difficulté de trouver le meilleur compromis entre exactitude du résultat et coût du calcul.

Nous renvoyons bien sûr pour plus de détails au cours de Mécanique des Fluides Numérique, beaucoup plus complet que cette présentation sommaire, et en particulier à la partie traitant des systèmes hyperboliques.

10.2 Système d'équations

Les équations utilisées généralement pour décrire les écoulements supersoniques sont les équations d'Euler, obtenues à partir des équations complètes de Navier-Stokes en négligeant les termes de viscosité.

On peut les écrire sous forme compacte, en se limitant sans perte de généralité à un cas monodimensionnel instationnaire :

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

où le vecteur des variables s'écrit $U=(\rho,\rho v,\rho E)$ et le vecteur des flux associés $F\left(U\right)=(\rho v,\rho v^2+p,(\rho E+p)\,v)$. Dans ces équations, on a utilisé les mêmes conventions que dans les chapitres précédents : x désigne la coordonnée d'espace et t celle de temps, ρ est la densité, p est la pression, v est la vitesse dans cette configuration monodimensionnelle, enfin E représente l'énergie spécifique totale, c'est à dire $\rho E=\rho e+\rho \frac{v^2}{2}$, avec $e=h-p/\rho$. On définit de même l'enhalpie spécifique totale par $H=h+\frac{v^2}{2}$.

Pour écrire ces équations, on a fait l'hypothèse qu'il n'y a pas de forces extérieures (la gravité peut généralement être négligée à juste titre), qu'il n'y a pas de réactions chimiques, et que l'écoulement est à l'équilibre thermodynamique. Si ces deux dernières hypothèses ne sont pas vérifiées, il faut rajouter d'autres équations de bilan au système, ce qui complexifie bien sûr le problème. Dans le cadre qui nous intéresse, nous en resterons aux équations d'Euler simples proposées initialement. On appellera par la suite ρ , ρv et ρE les variables conservatives du système, alors que ρ , v et e seront les variables primitives. Pour fermer le système, il est indispensable d'y adjoindre une loi d'état thermodynamique du gaz, par exemple :

$$p = p(\rho, e)$$

Plaçons-nous dans le cas d'un gaz calorifiquement parfait. On peut alors exprimer l'énergie interne spécifique e sous la forme :

$$e = c_v T$$

$$= \frac{r}{\gamma - 1} T$$

$$= \frac{1}{\gamma - 1} \frac{p}{\rho}$$

La loi d'état sous la forme donnée plus haut s'écrit donc :

$$p = (\gamma - 1) \rho e$$

10.2.1 Matrice jacobienne du système

Le système d'équations considéré, mis sous la forme :

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

peut se transformer pour devenir:

$$\frac{\partial U}{\partial t} + A\left(U\right)\frac{\partial U}{\partial x} = 0$$

en introduisant la matrice A, dite matrice jacobienne du flux, et donnée par :

$$A = \frac{\mathrm{d}F}{\mathrm{d}U}(U)$$

Calculons la matrice jacobienne du système que nous considérons. Les composantes du flux sont :

$$F^{(1)} = \rho v$$

$$F^{(2)} = \frac{(\rho v)^2}{\rho} + p$$

$$F^{(3)} = [\rho E + p] \frac{\rho v}{\rho}$$

$$= \rho H \frac{\rho v}{\rho}$$

où l'on a tout exprimé avec les variables conservatives. La loi d'état s'écrit de même :

$$p = (\gamma - 1) \left[\rho E - \frac{1}{2} \frac{(\rho v)^2}{\rho} \right]$$

On peut réexprimer $F^{(3)}$ comme :

$$F^{(3)} = \left[\gamma \rho E - \frac{\gamma - 1}{2} \frac{(\rho v)^2}{\rho} \right] \frac{\rho v}{\rho}$$

On obtient alors pour la matrice jacobienne du flux :

$$A = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{3-\gamma}{2}v^2 & (3-\gamma)v & \gamma-1 \\ -(H-\frac{\gamma-1}{2}v^2)v & H-(\gamma-1)v^2 & \gamma v \end{bmatrix}$$

On se rappelle (voir cours de Méthodes Numériques pour les Écoulements) qu'un système de lois de conservation est hyperbolique si la matrice A(U) a toutes ses valeurs propres réelles et est diagonalisable. Pour la matrice jacobienne ci-dessus, on peut vérifier que l'on obtient après quelques calculs la forme simple :

$$\det (A - \lambda I) = (v - \lambda) (v - c - \lambda) (v + c - \lambda)$$

où c est la célérité du son donnée par $c^2=\gamma p/\rho.$ Les valeurs propres de la matrice sont donc :

$$\lambda^{(1)} = v - c$$

$$\lambda^{(2)} = v$$

$$\lambda^{(3)} = v + c$$

et l'on a toujours $\lambda^{(1)} < \lambda^{(2)} < \lambda^{(3)}$, de sorte que les équations d'Euler monodimensionnelles constituent un système hyperbolique de lois de conservation.

10.2.2 Rappel sur le Problème de Riemann

Nous avons déjà résolu le Problème de Riemann à propos du tube à choc dans le chapitre traitant des écoulements instationnaires. Nous revenons brièvement ici sur ce problème car il est à la base de la plupart des méthodes numériques utilisées pour des écoulements à grande vitesse.

Ce problème représente l'écoulement obtenu expérimentalement par la rupture soudaine d'une membrane dans un long tube unidimensionnel séparant deux régions contenant le même gaz dans deux états initiaux de pression et densité différentes. Les conditions initiales à gauche (5) et à droite (1) sont donc, à t = 0, u_5 , p_5 , p_5 pour x < 0 et u_1 , p_1 , p_1 pour x > 0, la membrane étant située initialement en x = 0.

Si les effets visqueux sont négligeables le long des parois du tube et si celui-ci est infiniment long, évitant ainsi les réflexions aux extrémités, la solution exacte aux équations d'Euler s'obtient grâce à des ondes simples séparant des régions aux propriétés uniformes.

Lorsque la membrane se brise, à t=0, la discontinuité de pression progresse vers la droite dans la région de plus faible pression et, simultanément, une détente se propage vers la gauche dans la région de haute pression. De plus, une discontinuité de contact séparant ces deux zones se propage vers la droite du tube. Puisque le choc et la discontinuité de contact se propagent dans des régions d'état uniforme, ils ont nécessairement une vitesse de propagation constante, et il en est de même pour l'éventail de détente dans la partie gauche.

On peut alors distinguer les régions suivantes (Fig.10.1) : la région (1) contient le gaz non perturbé à la pression p_1 . Elle est séparée par une onde de choc de la région (2) qui représente le gaz initialement à faible pression, mais désormais perturbé par l'onde de choc. La discontinuité de contact sépare cette région (2) de la région (4), qui contient le gaz initialement à haute pression, désormais perturbé par le passage de l'éventail de détente. A gauche de l'éventail de détente se trouve le gaz non perturbé à la pression p_5 .

Connaissant les conditions initiales, on sait résoudre entièrement ce problème, et déterminer en tout point la pression, la vitesse, et toute autre grandeur. En cas de doute, se reporter au chapitre sur les Écoulements Instationnaires. Ainsi, on connaît la solution exacte au Problème de Riemann, que nous pouvons désormais utiliser.

10.3

Figure 10.1: Configuration pour le problème de Riemann

10.3 Formulation de Godunov

Nous restons pour décrire cette méthode dans un cadre monodimensionnel. On considère une grille de discrétisation du problème en temps et en espace. La valeur de U au temps t_n et au point x_i est représentée par U_i^n . Les points de discrétisation sont donc notés x_i , et $x_{i+\frac{1}{2}}$ est le milieu de l'intervalle $[x_i, x_{i+1}]$. La solution continue au temps t_n est notée U^n . La méthode de Godunov comprend trois étapes principales :

1. On connaît à un instant t_n la solution complète du problème sur le maillage de discrétisation, c'est à dire les valeurs de U_i^n pour tout i. Il s'agit à ce stade d'un problème discret. On construit alors une fonction continue par morceaux représentant la solution réelle U à l'instant t_n en prenant $\forall i, \forall x \in [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}], U^n = U_i^n$ (Figure 10.2). Cette approximation constante par morceaux constitue une moyenne de la solution exacte continue U^n sur le pas du maillage Δx . L'erreur faite est donc également d'ordre Δx en espace, ce qui montre que le schéma global sera seulement du premier ordre en espace. Numériquement, ce processus se traduit au

Chapitre 10.

Figure 10.2: Première étape de la méthode de Godunov

niveau des équations d'Euler générales :

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = 0$$

par une intégration en espace :

$$\frac{\partial}{\partial t} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x,t) \, \mathrm{d}x = F\left(x_{i-\frac{1}{2}},t\right) - F\left(x_{i+\frac{1}{2}},t\right)$$

On intègre à présent cette équation en temps pour obtenir :

$$\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U^{n+1}(x) dx - \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U^{n}(x) dx = -\Delta t \left[\hat{F}\left(x_{i+\frac{1}{2}}, t\right) - \hat{F}\left(x_{i-\frac{1}{2}}, t\right) \right]$$

où \hat{F} désigne la moyenne en temps du flux F entre t_n et t_{n+1} . Si on définit la valeur moyenne de la variable U sur l'intervalle spatial considéré par :

$$\overline{U_i} = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U(x,t) \, \mathrm{d}x$$

la relation de conservation précédente devient finalement :

$$\overline{U_i^{n+1}} - \overline{U_i^n} = -\frac{\Delta t}{\Delta x} \left[\hat{F}\left(x_{i+\frac{1}{2}}, t\right) - \hat{F}\left(x_{i-\frac{1}{2}}, t\right) \right]$$

2. On observe donc des discontinuités dans la solution à tous les points $x_{i+\frac{1}{2}}$. Au niveau de ces points, le problème posé est un problème de Riemann, que nous avons résolu de façon exacte précédemment. On sait que la solution consiste en une superposition de trois ondes (deux ondes acoustiques, associées aux valeurs propres (v-c) et (v+c), et une onde entropique associée à la valeur propre v),

Figure 10.3: Deuxième étape de la méthode de Godunov

qui vérifient localement les équations de conservation (Figure 10.3). On dénote par $U^{(R)}(x/t, U_l, U_r)$ la solution exacte du problème de Riemann avec les conditions initiales :

$$U = U_l \qquad x < 0$$

$$U = U_r \qquad x > 0$$

La solution exacte du problème local qui nous intéresse est donc représentée par :

$$U^{(R)}(x,t) = U^{(R)}\left(\frac{x - x_{i+\frac{1}{2}}}{t - t^n}, U_i^n, U_{i+1}^n\right)$$

Pour obtenir une résolution globale correcte des différents problèmes de Riemann, il est indispensable qu'il n'y ait pas d'interférence entre les différentes solutions obtenues à tous les points $x_{i+\frac{1}{2}}$. Ceci pose une condition stricte reliant le pas d'espace Δx et le pas de temps d'intégration Δt , du type :

$$\max (\text{valeurs propres}) \ \Delta t < \frac{\Delta x}{2}$$

condition qui traduit simplement le fait que les ondes en déplacement issues de la résolution du problème de Riemann local en $x_{i+\frac{1}{2}}$ n'ont pas le temps nécessaire pour aller interférer avec les solutions des problèmes de Riemann voisins en $x_{i-1+\frac{1}{2}}$ et $x_{i+1+\frac{1}{2}}$. On résoud donc par une méthode donnée ces problèmes de Riemann en chacun des points $x_{i+\frac{1}{2}}$, de façon indépendante les uns des autres.

3. Il reste maintenant à trouver la nouvelle solution discrète aux points x_i , notée U_i^{n+1} . Pour ce faire, on intègre la solution continue obtenue au pas précédent entre $x_{i-\frac{1}{2}}$

et $x_{i+\frac{1}{2}}$. La nouvelle solution U_i^{n+1} correspond donc à une intégration sur deux demi-mailles, où des problèmes de Riemann différents ont été résolus (Figure 10.4). On obtient ainsi :

Figure 10.4: Troisième étape de la méthode de Godunov

$$\overline{U_i^{n+1}} = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} U^{(R)}(x, t^{n+1}) dx$$

et l'on peut différencier en deux parties, correspondant aux deux problèmes de Riemann contribuant à la nouvelle solution U_i^{n+1} :

$$\overline{U_i^{n+1}} = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_i} U^{(R)}(\frac{x}{\Delta t}, U_{i-1}^n, U_i^n) dx + \frac{1}{\Delta x} \int_{x_i}^{x_{i+\frac{1}{2}}} U^{(R)}(\frac{x}{\Delta t}, U_i^n, U_{i+1}^n) dx$$

En fait, le premier et le troisième pas de cette méthode sont purement numériques, et correspondent à des étapes de restriction et de prolongement entre solution continue et solution discrète. Le pas intermédiaire, lui, correspond à la véritable étape d'intégration du problème. Ces différentes étapes sont en pratique indépendantes les unes des autres, et il existe donc différentes familles de méthodes, regroupées génériquement sous le nom de méthodes de Godunov, qui utilisent des techniques variées pour réaliser les étapes 1, 2 et 3 décrites ci-dessus.

10.3.1 Problèmes associés

Un certain nombre de problèmes apparaissent pour la solution de problèmes réels, multidimensionnels. Dans les cas comportant plusieurs dimensions d'espace, il faut traiter chaque direction successivement, ce qui peut entraîner des erreurs. De plus, la conservation de chocs raides n'est pas complètement assurée par l'algorithme ci-dessus. Il est alors éventuellement nécessaire de rajouter des algorithmes de détection de fronts, afin de

déterminer à quel moment il s'agit de détecter un choc ou bien une discontinuité. De plus, l'intégration nécessaire pour repasser à la version discrétisée, analogue à une interpolation, introduit une dissipation numérique qu'il est nécessaire de contrôler au mieux.

Le problème principal reste le coût de cette résolution. En effet, les différents problèmes de Riemann qu'il s'agit de résoudre complètement à chaque point $x_{i+\frac{1}{2}}$ sont complexes, ce qui introduit des temps de calcul considérables. Or on a vu précédemment que la méthode de Godunov n'était que du premier ordre en espace, et l'information donnée par la résolution exacte des problèmes de Riemann est ensuite dégradée par intégration sur la maille. Plusieurs personnes ont donc proposé de substituer à la résolution exacte du problème de Riemann une résolution approchée, beaucoup plus rapide à obtenir, mais qui garderait le maximum d'informations physiques indispensables. Nous ne présentons maintenant qu'un seul de ces solveurs approchés, celui proposé par Roe.

10.3.2 Solveur de Riemann approché de Roe

Ce solveur approché est basé sur une décomposition caractéristique des différences de flux, tout en gardant les propriétés de conservation du schéma originel. On cherche pour ce faire à remplacer la matrice jacobienne exacte A(U) présente dans les équations d'Euler d'origine :

$$\frac{\partial U}{\partial t} + A\left(U\right)\frac{\partial U}{\partial x} = 0$$

par une matrice approchée $\hat{A}(U_i, U_{i+1})$. Pour ce faire, Roe a, par des considérations physiques, cherché une matrice \hat{A} vérifiant le conditions suivantes :

• pour tout couple de variables U_i, U_{i+1} , la matrice \hat{A} doit vérifier :

$$F(U_{i+1}) - F(U_i) = \hat{A}(U_i, U_{i+1})(U_{i+1} - U_i)$$

• chaque fois que $U_i = U_{i+1} = U$, la matrice \hat{A} doit correspondre à la matrice jacobienne exacte du système :

$$\hat{A}(U, U) = A(U)$$

 \bullet la matrice \hat{A} doit posséder uniquement des valeurs propres réelles, et ses vecteurs propres sont linéairement indépendants.

Les valeurs propres de la matrice \hat{A} sont les vitesses de propagation des ondes présentes dans le problème de Riemann approché, les vecteurs propres à droite constituant ces ondes associées. Indépendamment de la forme particulière de cette matrice \hat{A} , les propriétés de définition indiquent la nature du problème de Riemann approché que l'on considère. En particulier, la première propriété exigée se traduit sur les valeurs propres \mathcal{C} de \hat{A} par :

$$F(U_{i+1}) - F(U_i) = C(U_{i+1} - U_i)$$

Ceci est identique aux relations de Rankine-Hugoniot pour une discontinuité de vitesse \mathcal{C} entre deux états U_i et U_{i+1} . Ainsi, le solveur de Riemann approché reconnaît seulement, mais de façon exacte, de telles discontinuités. Ceci va entraîner un certain nombre de problèmes, en particulier au niveau du traitement des éventails de détente.

Pour construire sa matrice, Roe introduit la variable Z, donnée par :

$$Z = \sqrt{\rho} \begin{vmatrix} 1 \\ v \\ H \end{vmatrix}$$

On vérifie alors que la variable U et le flux F peuvent s'exprimer directement à partir des composantes de Z, par :

$$U = \begin{vmatrix} z_1^2 \\ z_1 z_2 \\ \frac{z_1 z_3}{\gamma} + \frac{(\gamma - 1)z_2^2}{2\gamma} \end{vmatrix}$$

et

$$F = \begin{vmatrix} z_1 z_2 \\ \frac{(\gamma - 1)z_1 z_3}{\gamma} + \frac{(\gamma + 1)z_2^2}{2\gamma} \\ z_2 z_3 \end{vmatrix}$$

On dénote \overline{z} la valeur moyenne de z sur l'intervalle $[x_i, x_{i+1}]$, c'est à dire $\overline{z} = (z_{i+1} + z_i)/2$. On peut alors vérifier que, en définissant les matrices \hat{B} et \hat{C} par :

$$\hat{B} = \begin{bmatrix} \frac{2\overline{z_1}}{\overline{z_2}} & 0 & 0\\ \frac{\overline{z_2}}{\overline{z_3}} & \frac{\overline{z_1}}{\gamma} & 0\\ \frac{\overline{z_3}}{\gamma} & \frac{\gamma - 1}{\gamma} \overline{z_2} & \frac{\overline{z_1}}{\gamma} \end{bmatrix}$$

et

$$\hat{C} = \begin{bmatrix} \frac{\overline{z_2}}{\gamma} & \overline{z_1} & 0\\ \frac{\gamma - 1}{\gamma} \overline{z_3} & \frac{\gamma + 1}{\gamma} \overline{z_2} & \frac{\gamma - 1}{\gamma} \overline{z_1}\\ 0 & \overline{z_3} & \overline{z_2} \end{bmatrix}$$

on obtient les relations:

$$U_{i+1} - U_{i} = \hat{B} (Z_{i+1} - Z_{i})$$

$$F (U_{i+1}) - F (U_{i}) = \hat{C} (Z_{i+1} - Z_{i})$$

On obtient alors directement la matrice de linéarisation désirée, par :

$$\hat{A} = \hat{C}\hat{B}^{-1}$$

Une analyse plus approfondie révèle alors une propriété remarquable du résultat. La matrice \hat{A} est identique à la matrice jacobienne exacte si l'on remplace les variables du

système par des variables pondérées par la racine carrée des densités. Ces moyennes basées sur les densités sont définies en posant $R_{i+\frac{1}{2}} = \sqrt{\rho_{i+1}/\rho_i}$, avec :

$$\begin{array}{rcl} \hat{\rho}_{i+\frac{1}{2}} & = & \sqrt{\rho_{i+1}\rho_{i}} \\ & = & R_{i+\frac{1}{2}}\rho_{i} \\ \\ \hat{v}_{i+\frac{1}{2}} & = & \frac{\overline{z_{2}}}{\overline{z_{1}}} \\ & = & \frac{R_{i+\frac{1}{2}}v_{i+1} + v_{i}}{R_{i+\frac{1}{2}} + 1} \\ \\ \hat{H}_{i+\frac{1}{2}} & = & \frac{\overline{z_{3}}}{\overline{z_{1}}} \\ & = & \frac{R_{i+\frac{1}{2}}H_{i+1} + H_{i}}{R_{i+\frac{1}{2}} + 1} \end{array}$$

Les valeurs propres et vecteurs propres de la matrice de linéarisation \hat{A} sont donc connus. Il suffit de remplacer les variables d'origine par les variables moyennes définies ci-dessus dans les résultats trouvés précédemment. On peut montrer que les moyennes définies ci-dessus sont les seules qui peuvent permettre de construire une matrice de linéarisation satisfaisant les critères imposés au départ. On peut aisément remarquer que tous ces résultats restent inchangés dans le cas de problèmes multidimensionnels.

La méthode de résolution de Roe est maintenant complètement déterminée, et se décompose en 4 étapes :

1. pour chaque cellule $[x_i, x_{i+1}]$, calculer les valeurs moyennes définies ci-dessus, et la vitesse du son associée, par :

$$\hat{c}^2 = (\gamma - 1) \left(\hat{H} - \frac{\hat{v}^2}{2} \right)$$

2. calculer les valeurs propres et vecteurs propres de la matrice de linéarisation \hat{A} . On trouve pour les valeurs propres :

$$\begin{array}{lll} \hat{\lambda}^{(1)} & = & \hat{v} \\ \hat{\lambda}^{(2)} & = & \hat{v} + \hat{c} \\ \hat{\lambda}^{(3)} & = & \hat{v} - \hat{c} \end{array}$$

Pour les vecteurs propres à droite associés, on trouve :

$$\hat{r}^{(1)} = \begin{vmatrix} 1 \\ \hat{v} \\ \frac{\hat{v}^2}{2} \end{vmatrix}$$

$$\hat{r}^{(2)} = \frac{\hat{\rho}}{2\hat{c}} \begin{vmatrix} 1 \\ \hat{v} + \hat{c} \\ \hat{H} + \hat{v}\hat{c} \end{vmatrix}$$

$$\hat{r}^{(3)} = \frac{\hat{\rho}}{2\hat{c}} \begin{vmatrix} 1 \\ \hat{v} - \hat{c} \\ \hat{H} - \hat{v}\hat{c} \end{vmatrix}$$

Toutes ces variables sont considérées au point $x_{i+\frac{1}{6}}$.

3. calculer l'amplitude des ondes associées, où toutes les variables sont à nouveau considérées au point $x_{i+\frac{1}{2}}$:

$$w_{1} = \rho_{i+1} - \rho_{i} - \frac{p_{i+1} - p_{i}}{\hat{c}_{i+\frac{1}{2}}^{2}}$$

$$w_{2} = v_{i+1} - v_{i} + \frac{p_{i+1} - p_{i}}{\hat{\rho}_{i+\frac{1}{2}}\hat{c}_{i+\frac{1}{2}}}$$

$$w_{3} = v_{i+1} - v_{i} - \frac{p_{i+1} - p_{i}}{\hat{\rho}_{i+\frac{1}{2}}\hat{c}_{i+\frac{1}{2}}}$$

Il s'agit là des relations de Riemann, que nous avons obtenues par la méthode des caractéristiques dans le chapitre traitant des écoulements instationnaires dans la section 8.2.

4. il ne reste alors plus qu'à évaluer le flux numérique du schéma de Roe par l'une des trois formules équivalentes :

$$\hat{F}_{i+\frac{1}{2}}^{(R)} = \frac{1}{2} (F_i + F_{i+1}) - \frac{1}{2} \sum_j \| \hat{\lambda}^{(j)} \| w_j \hat{r}^{(j)} \\
= F_i + \sum_j \hat{\lambda}^{(j)-} w_j \hat{r}^{(j)} \\
= F_{i+1} - \sum_j \hat{\lambda}^{(j)+} w_j \hat{r}^{(j)}$$

où les signes + et - pour les valeurs propres correspondent au sens de propagation de l'onde associée. Ainsi, ces trois égalités expriment simplement la prise en compte du sens de propagation des ondes pour calculer la valeur du flux.

Le problème majeur lié à la résolution approchée du problème de Riemann par la méthode de Roe est l'impossibilité de prendre en compte correctement le passage d'un éventail de détente par un point sonique. Une solution possible est de rajouter de façon artificielle un éventail de détente au sein de la solution approchée du problème de Riemann lorsque ce phénomène se produit. Une façon d'implémenter cette méthode est de modifier le module des valeurs propres par :

$$\parallel \hat{\lambda} \parallel_{\text{mod}} = \begin{cases} \parallel \hat{\lambda}_{i+\frac{1}{2}} \parallel & \text{si } \parallel \hat{\lambda}_{i+\frac{1}{2}} \parallel \geq \epsilon \\ \epsilon & \text{si } \parallel \hat{\lambda}_{i+\frac{1}{2}} \parallel < \epsilon \end{cases}$$

où l'on choisit :

$$\epsilon = \max \left[0, \left(\hat{\lambda}_{i+\frac{1}{2}} - \lambda_{i}\right), \left(\lambda_{i+1} - \hat{\lambda}_{i+\frac{1}{2}}\right)\right]$$

Cette technique permet de résoudre partiellement le problème mentionné plus haut. Au total, on obtient une résolution du problème avec une bonne exactitude, à un coût bien inférieur à celui correspondant à une solution exacte du problème de Riemann. La principale limitation concernant la résolution provient en fait à ce stade des étapes de restriction et de prolongement qui entourent la résolution du problème de Riemann. Par conséquent, différentes techniques ont été proposées pour améliorer l'ordre du schéma numérique en adoptant une représentation meilleure que la représentation triviale sous forme de fonction continue par morceaux choisie ici.

10.4 Équations de Navier-Stokes

On considère maintenant le système complet d'équations de Navier-Stokes, où les termes liés à la viscosité ne sont plus négligés :

$$\frac{\partial U}{\partial t} + \frac{\partial F\left(U\right)}{\partial x} = 0$$

où le vecteur des variables s'écrit $U = (\rho, \rho \mathbf{v}, \rho E)$ et le vecteur des flux associés $F(U) = (\rho \mathbf{v}, \rho \mathbf{v} \otimes \mathbf{v} + p \overline{\mathbf{I}} - \overline{\boldsymbol{\tau}}, \rho \mathbf{v} H - \overline{\boldsymbol{\tau}} \cdot \mathbf{v} - k \mathbf{grad} T)$. Le principe de la résolution des équations complètes de Navier-Stokes utilise à la base les techniques développées pour la résolution des équations d'Euler. En effet, il est possible de décomposer le terme de flux donné ci-dessus en deux parties. La première, notée F_i contient tous les termes non-visqueux, présents dans les équations d'Euler. Le deuxième terme, noté F_v , rassemble tous les termes visqueux que l'on vient de rajouter. On a :

$$F_i = (\rho \boldsymbol{v}, \rho \boldsymbol{v} \otimes \boldsymbol{v} + p\overline{\boldsymbol{I}}, \rho \boldsymbol{v}H)$$

$$F_v = (0, \overline{\boldsymbol{\tau}}, \overline{\boldsymbol{\tau}} \cdot \boldsymbol{v} + k \mathbf{grad}T)$$

On peut alors écrire les équations de Navier-Stokes sous la forme :

$$\frac{\partial U}{\partial t} + \frac{\partial F_i(U)}{\partial x} - \frac{\partial F_v(U)}{\partial x} = 0$$

On résoud alors les équations d'Euler classiques par les méthodes décrites précédemment. L'effet des termes visqueux est ensuite pris en compte dans une deuxième étape, qui permet d'aboutir à la solution du système global. En effet, les termes visqueux ne posent aucun problème en terme de stabilité du schéma numérique, car ils sont constitués de dérivées secondes des variables, dérivées qui n'engendrent pas de problèmes de stabilité numérique dans des conditions normales. Ainsi, on peut résoudre la partie visqueuse par des méthodes simples, classiques, et rajouter la variation correspondante à la solution intermédiaire trouvée pour les équations d'Euler.

10.4.1 Conditions aux limites

Les conditions aux limites utilisées pour la résolution numérique du problème jouent souvent un rôle déterminant dans la qualité de la solution obtenue. Les principales conditions aux limites rencontrées sont les suivantes :

Figure 10.5: Calcul numérique sur la configuration du prototype d'avion spatial Hyper X

- à la paroi, on écrit que la vitesse du fluide v est égale à la vitesse de la paroi v_p , autrement dit qu'il n'y a pas de glissement entre fluide et paroi. Pour la température, on considère généralement soit une paroi isotherme $T = \text{constante} = T_p$, soit une condition sur le flux ϕ_p à la paroi $-k \text{grad} T = \phi_p$. Pour la pression, on utilise fréquemment l'approximation de couche limite qui conduit à grad p = 0 selon la normale à la paroi.
- au niveau des conditions d'entrée dans le domaine de calcul, toutes les valeurs doivent être imposées, puisque toutes les ondes se propagent vers l'intérieur du domaine de calcul, ce qui veut dire que toute l'information provient de l'extérieur de ce domaine.
- pour les conditions de sortie du domaine de calcul, on voit que toute l'information sort de ce domaine (toutes les ondes caractéristiques quittent le domaine de calcul). On utilise donc des techniques d'extrapolation à partir des valeurs connues à l'intérieur du domaine pour aboutir aux valeurs à la frontière.

10.4.2 Modèles de turbulence

Plusieurs modèles de turbulence ont été développés pour les équations de Navier-Stokes utilisées pour représenter des écoulements supersoniques. Le meilleur compromis entre

10.5 Conclusion 185

coût et exactitude est peut-être apporté par le modèle algébrique de Baldwin-Lomax. Celui-ci repose sur l'hypothèse de Boussinesq, qui consiste à écrire le tenseur des contraintes de Reynolds sous une forme analogue au tenseur des contraintes laminaire, en introduisant une viscosité turbulente μ_t , qui est la seule grandeur à déterminer.

Pour implémenter le modèle de Baldwin-Lomax, on décompose l'écoulement en une couche interne, correspondant approximativement à la couche limite, et une couche externe qui représente le reste de l'écoulement. Bien sûr, les deux modèles doivent donner une même valeur à l'interface entre les deux zones. En notant y la distance à la paroi, la viscosité turbulente ν_t^i dans la couche interne est alors donnée par l'intermédiaire d'une longueur de mélange l par :

$$u^i_t = l^2 \parallel \mathbf{rot} oldsymbol{v} \parallel$$

La longueur de mélange est donnée par la formule de Prandtl-Van Driest :

$$l = 0.41y \left[1 - \exp\left(-\frac{y^+}{26}\right) \right]$$

avec:

$$y^+ = \frac{y}{\nu} \sqrt{\frac{\tau_w}{\rho}}$$

où τ_w est la valeur au niveau de la paroi.

Dans la couche externe, on utilise pour la viscosité turbulente :

$$\nu_t^o = 0.0168 \beta F y_{\max} \Gamma_{\max}$$

La fonction d'intermittence F est donnée par :

$$F = \left(1 + 5.5 \left(\frac{0.3y}{y_{\text{max}}}\right)^6\right)^{-1}$$

et la fonction Γ est définie par :

$$\Gamma = y \left(1 - \exp\left(-\frac{y^+}{26} \right) \right) \parallel \mathbf{rot} v \parallel$$

La valeur y_{\max} correspond au point où la fonction Γ atteint son maximum, Γ_{\max} . La constante β est prise égale à 1.6.

Ce modèle n'est cependant pas capable de représenter correctement les effets de décollement de la couche limite.

10.5 Conclusion

Dans ce chapitre, nous avons décrit de façon très succincte une technique numérique de résolution des équations d'Euler ou de Navier-Stokes, utilisées pour représenter des

configurations d'écoulements supersoniques. La méthode présentée est loin d'être la seule disponible, et n'est pas forcément la plus adaptée pour certains types de problèmes. En fait, le domaine de la simulation numérique est probablement celui où les améliorations techniques et les progrès enregistrés à l'heure actuelle sont les plus notables, ce qui rend difficile une présentation très complète des modèles existants. Des configurations de plus en plus complexes sont maintenant susceptibles d'être étudiées de façon correcte par le biais de simulations numériques. Chez tous les industriels du secteur, ces calculs sont maintenant utilisés de façon courante en appoint aux études expérimentales.

Chapter 11

Principales méthodes expérimentales

11.1 Introduction

Les connaissances dont nous disposons à l'heure actuelle dans le domaine des écoulements supersoniques sont pour la plupart issues à l'origine d'observations expérimentales. En général, les acquis théoriques n'ont été développés qu'à partir de phénomènes observés expérimentalement et restés initialement inexpliqués. De même, les calculs numériques restent pour l'instant un appoint aux expériences plus qu'une solution de remplacement, même si l'augmentation des puissances de calcul et la diminution du coût des ordinateurs tendent à favoriser la simulation aux dépens de l'expérience. Dans tous les cas, il est nécessaire de valider les codes par comparaison avec des résultats expérimentaux détaillés, et de nombreuses configurations ne restent accessibles qu'à l'expérience. Beaucoup de techniques sont disponibles pour réaliser des mesures dans des écoulements supersoniques.

11.2 Visualisation des structures de l'écoulement

11.2.1 Ombroscopie

Cette méthode, de mise en œuvre simple, consiste à éclairer la veine d'expérience au moyen d'un faisceau lumineux émanant d'une source quasi-ponctuelle, et à observer le phénomène par projection sur un écran. Le principe de cette méthode repose sur une modification de la répartition des éclairements provoquée par la convergence ou la divergence des faisceaux lumineux à la traversée du phénomène aérodynamique.

En réalité, les déviations angulaires (convergence et divergence du faisceau) induites par les phénomènes aérodynamiques sont très faibles (inférieures au degré). Dans ces conditions, on conçoit que si l'écran de réception P est placé dans un plan proche de la veine, ces effets de convergence-divergence ne vont provoquer aucune modification sensible dans la répartition des éclairements. Par contre, si l'écran est placé à grande distance, ces mêmes

Figure 11.1: Soufflerie transsonique de la NASA, Langley

effets auront des conséquences perceptibles, la convergence produisant un accroissement d'intensité dans certaines zones de l'image, alors que les effets de divergence se traduiront par un assombrissement local (Figure 11.2, où l'on a représenté l'évolution d'une surface d'onde Σ). De toute façon, l'ombroscopie n'est vraiment sensible que pour les zones de

Figure 11.2: Description du principe de l'ombroscopie

l'écoulement où le gradient de masse volumique évolue très rapidement. En effet, c'est seulement dans ce cas que l'œil sera capable de percevoir un contraste entre des plages d'intensités lumineuses inégales, qui sont alors quasi-contigües. C'est la raison pour laquelle cette méthode ne permet en définitive que de déceler les effets aérodynamiques les plus fins, comme par exemple les ondes de choc. Elles apparaissent sur l'ombroscopie comme des lignes dont l'un des bords est plus clair que le fond de l'image et l'autre plus foncé.

11.2.2 Strioscopie

Comme l'ombroscopie, la strioscopie repose sur l'effet de déviation des faisceaux lumineux à travers l'écoulement. Toutefois, elle en diffère par le fait que les modifications d'éclairement ne sont plus produites par un phénomène de concentration-dispersion de l'énergie lumineuse, mais par un masque réalisant un diaphragme strioscopique, qui permet de mettre en évidence les rayons déviés à partir de la veine d'expérience. La méthode la plus simple est la strioscopie à couteaux (Figure 11.3). On éclaire un écoulement par

Figure 11.3: Description du principe de la strioscopie

une source lumineuse ponctuelle de lumière blanche S placée au foyer objet d'un collimateur. Le faisceau parallèle traverse l'écoulement, puis est refocalisé sur l'arête du couteau strioscopique C. Juste derrière ce couteau, un objectif réalise la conjugaison optique entre la veine et le plan d'observation P, pour y obtenir une image nette.

Si le faisceau ne subit aucune perturbation, on obtient une image de diffraction pure. Si l'image est rigoureusement centrée sur l'arête du couteau, le plan image reçoit 50% du flux lumineux initial, uniformémement réparti dans l'image de la veine. Aucun phénomène n'apparaît.

Si des gradients de réfraction apparaissent dans la veine, ils dévient localement les rayons lumineux, et ces déviations se répercutent par des déplacements proportionnels dans le plan du couteau strioscopique. Suite à ces déplacements, un certain nombre de points de la veine (par exemple B) possèderont une image entièrement démasquée (B'), donc particulièrement claire. Pour d'autres (par exemple A), le déplacement aura conduit à un masquage complet par le couteau, et leur image correspondra à une strie obscure. Tel quel, ce système conduit à une image en tout ou rien, violemment contrastée, mais contenant peu d'informations.

Pour améliorer cette image, on emploie de préférence une source lumineuse étendue, ce qui permet d'obtenir un échelonnement des nuances de gris en fonction de l'importance de la déviation. On emploie alors un premier couteau strioscopique, parallèle à celui utilisé précédemment, sur lequel on forme l'image de la source avec un condenseur. En fait, ceci revient à rajouter un couteau fictif dans le plan du couteau matériel initial, séparé de

celui-ci par une fente fictive. La quantité de lumière focalisée sur l'image d'un point de la veine est fonction de la largeur de cette fente fictive.

La sensibilité de la strioscopie à couteaux est directionnelle. Elle est maximale pour une déviation orthogonale à l'arête du couteau, et nulle dans la direction parallèle à cette arête. On est donc fréquemment conduit à modifier l'orientation des couteaux en cours d'expérience.

On peut également réaliser de la strioscopie interférentielle en remplaçant les couteaux d'un strioscope classique par des biprismes particuliers.

11.2.3 Interférométrie

L'interférométrie rend visible, sous forme de franges d'interférence, les modifications de chemin optique affectant les rayons d'un faisceau lumineux ayant traversé un milieu transparent hétérogène (Figure 11.4).

Figure 11.4: Exemple de résultat obtenu par interférométrie. Expérience dans un tube à choc à un nombre de Mach de 1.67. La surface supérieure est inclinée de 2° par rapport à l'écoulement.

Pour ce faire, on utilise deux faisceaux identiques à l'origine et cohérents entre eux, l'un cheminant dans le milieu et l'autre au dehors, que l'on amène ensuite en coïncidence pour les faire interférer (Figure 11.5). Les franges d'interférence observées doivent alors

permettre de déterminer la grandeur physique recherchée. Toutefois, le chemin optique L étant égal au produit de l'épaisseur e du milieu par son indice de réfraction n, une modification du chemin optique peut provenir aussi bien d'une modification de l'un que de l'autre de ces paramètres :

$$dL = n de + e dn$$

En aérodynamique, c'est le terme dn, représentant les variations d'indice liées à la masse volumique, qui doit être déduit des modifications de L. C'est possible quand de est nul ou connu, comme par exemple pour une veine guidée, pour un profil bidimensionnel ou à symétrie de révolution.

Figure 11.5: Description du principe de l'interférométrie

11.3 Mesures de vitesses

De nombreuses méthodes existent pour déterminer les vitesses de l'écoulement. Celles plus spécifiquement liées aux écoulements hypersoniques seront laissées de côté.

11.3.1 Mesures par sonde de Pitot

Dans un écoulement supersonique, le nombre de Mach local M_1 peut être calculé à partir des valeurs expérimentales de la pression d'arrêt p_{t2} et de la pression statique p_2 derrière un choc droit en appliquant la formule :

$$\frac{p_{t2}}{p_2} = \left(\frac{(\gamma+1)^2 M_1^2}{4\gamma M_1^2 - 2(\gamma-1)}\right)^{\frac{\gamma}{\gamma-1}}$$

On peut alors calculer en chaque point le nombre de Mach, et par conséquent la vitesse. Néanmoins, ces calculs nécessitent bien sûr une précision suffisante concernant la détermination de la pression d'arrêt et de la température. Différentes variantes de la sonde de Pitot existent pour s'affranchir plus ou moins complètement des effets directionnels. De plus, des corrections peuvent être effectuées sur les mesures pour prendre en compte la taille des orifices conduisant aux capteurs de pression, ainsi que les effets de déséquilibre entre température translationnelle et rotationnelle.

11.3.2 Anémométrie par fil chaud

Cette technique très ancienne continue d'être utilisée pour réaliser des mesures de vitesse. L'élément sensible est un fil métallique très fin, chauffé par un courant électrique, et refroidi par l'écoulement incident. La réponse fournie par le fil chaud dépend principalement de la vitesse et de la température, typiquement sous la forme :

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = RI^2$$

$$= \left(a + b\sqrt{v}\right)(T - T_f)$$

où R est la résistance du fil, I l'intensité associée, a et b les coefficients du fil chaud, v la vitesse du fluide et T_f sa température. L'anémométrie la plus performante est réalisée en maintenant constante la température T du fil, mais elle exige une électronique plus coûteuse. Elle a par contre l'avantage, souvent crucial pour les écoulements supersoniques, de procurer un temps de réponse très court grâce à la diminution de l'inertie du fil. On utilise des combinaisons de plusieurs fils chauds pour déterminer simultanément plusieurs composantes de la vitesse en un point.

On notera que, dans les cas supersonique et hypersonique, les pertes par conduction et par rayonnement deviennent fréquemment du même ordre de grandeur que les pertes par convection, qui sont seules prises en compte dans le cas classique. La perte de chaleur par rayonnement peut être évaluée à partir de la connaissance de la constante de Stefan σ , du facteur d'émissivité ϵ du fil, de sa surface A, de sa température d'équilibre T_e et de la température T_p des parois environnantes, pour donner :

$$\Phi_r = \epsilon \sigma A \left(T_e^4 - T_p^4 \right)$$

On peut aussi directement calibrer cette perte en l'absence d'écoulement dans la soufflerie. La perte par conduction ne peut pas être déterminée simplement, et on prévoit donc des systèmes supplémentaires d'alimentation et de régulation qui permettent de chauffer les supports du fil et d'ajuster leur température à la température du fil pour éliminer les pertes par conduction.

11.3.3 Anémométrie Laser

Cette technique permet la mesure non intrusive des composantes de la vitesse instantanée du fluide en mesurant la vitesse de particules entraînées par ce fluide. Ces particules doivent avoir une taille très faible pour bien suivre l'écoulement, ne pas perturber l'écoulement, être en nombre suffisamment faible pour qu'il n'y en ait qu'une à la fois dans le volume de mesure, mais suffisamment élevé pour que les mesures soit significatives. Pour les gaz, on est en général amené à ensemencer l'écoulement avec différents types de particules (fumées, oxydes de titane,...), de préférence calibrées. Il existe principalement deux techniques d'anémométrie laser :

- la technique la plus classique consiste à construire à partir d'un faisceau laser dédoublé, où l'une des composantes a été déphasée avant pénétration dans la veine de mesure, un petit volume de contrôle où sont ainsi réalisées des franges d'interférence animées d'un défilement connu. Lors du passage d'une particule au sein de ce volume, un signal est récupéré sur un photomultiplicateur, signal qui permet immédiatement d'obtenir une des composantes de la vitesse. On exploite pour ce faire le changement de fréquence du rayonnement à la suite de sa diffusion par une particule animée d'une vitesse u, il s'agit donc d'un effet Doppler. Cette méthode est relativement délicate à mettre en œuvre.
- la méthode du bipoint consiste à amener deux faisceaux lasers en deux points séparés par une distance d. Une particule qui passe successivement par les deux points de focalisation diffuse deux signaux lumineux séparés de τ , et on en déduit immédiatement la vitesse $v=d/\tau$ (Figure 11.6). L'inconvénient principal de cette méthode est qu'on ne mesure qu'une seule composante de la vitesse. Mais elle est bien adaptée aux très grandes vitesses, où la première méthode ci-dessus nécessiterait des fréquences de travail trop élevées. De plus, cette deuxième méthode amène à travailler avec relativement peu de particules, cas le plus fréquemment rencontré dans les écoulements rapides.

Dans les cas supersoniques et hypersoniques, le problème principal de ces deux méthodes de mesure est de s'assurer que les particules employées possèdent bien la même vitesse que l'écoulement au point de mesure, car les problèmes d'inertie peuvent devenir prépondérants. Par contre, le grand avantage de ces méthodes est de rendre superflu l'intrusion d'un quelconque appareil de mesure dans l'écoulement.

Figure 11.6: Description du principe de la méthode du bipoint

11.4 Mesures de températures

11.4.1 Thermocouples

Les mesures de température les plus courantes peuvent être réalisées au moyen de thermocouples. Nous renvoyons à d'autres cours pour une description détaillée de ces dispositifs. Notons simplement que dans un cadre supersonique et hypersonique, il est nécessaire d'employer des dispositifs résistant à des températures potentiellement très élevées, ce qui limite les possibilités d'emploi (chromel/alumel limité à 1250 K, platine rhodié/platine à environ 1600 K). D'autre part, dans le cas où la rafale est de courte durée, il est indispensable d'obtenir des temps de réponse très brefs afin de pouvoir réellement réaliser la mesure.

11.4.2 Mesures optiques

Pour ce point aussi, nous renvoyons à d'autres documents. En plus des méthodes classiques permettant de mesurer la température d'un corps par l'intermédiaire du rayonnement émis naturellement, il est également possible d'exciter un milieu par le biais d'un rayonnement incident, par exemple un faisceau électronique. La détermination de la population moléculaire des différents niveaux d'excitation permet de calculer la température des molécules dans l'élément de volume considéré. Ces mesures sont complexes, et nécessitent un appareillage important.

11.4.3 Peintures thermosensibles

Cette méthode de mesure globale de la température et des échauffements est basée sur la propriété qu'ont les peintures thermosensibles de changer de teinte lorsqu'un certain niveau de température est atteint. La teinte de la peinture est donc directement liée à la température superficielle locale, et la frontière entre deux teintes représente à chaque instant une ligne isotherme. On utilise de préférence pour la maquette un matériau le plus isolant possible, et le choix de la peinture est conditionné par le niveau des températures atteint pendant la rafale. En général, une précision acceptable ne peut être obtenue que par un étalonnage préalable soigné des niveaux de température. Ce mode de mesure est particulièrement intéressant pour déceler certaines singularités de l'écoulement pariétal, telles que décollements et interactions couche limite - onde de choc sur des maquettes de forme complexe. Il est bien évident par contre que le niveau de sensibilité de cette méthode reste peu élevé, et qu'elle n'est donc utilisable que pour des variations de température importantes.

On peut d'autre part noter qu'à partir d'un film donnant l'évolution des teintes de la maquette au cours du temps, on peut calculer l'évolution de la température de la paroi au cours du temps, donc sa dérivée, et en déduire une estimation du flux de chaleur à la paroi (voir également la section suivante).

Figure 11.7: Test du prototype d'avion spation Hyper X en soufflerie

11.5 Mesures de flux de chaleur

Comme on l'a vu en particulier dans le chapitre consacré aux écoulements hypersoniques, le problème des flux de chaleur à la paroi peut s'avérer crucial sur un plan technologique. Il est donc indispensable de pouvoir estimer ces flux, par exemple lors d'essais dans des souf-fleries super- ou hypersoniques. Les résultats ainsi obtenus sur des maquettes à échelles réduites sont alors susceptibles d'être comparés aux prédictions données par les modèles utilisés, ou transposés au cas réel par des lois de similitude adaptées.

Un autre problème de ces mesures est que les souffleries généralement utilisées ne délivrent que des rafales de très courte durée (quelques secondes au maximum). Il est donc nécessaire de disposer d'appareils de mesure à faible temps de réponse, par exemple des fluxmètres à inertie thermique. Le principe de fonctionnement en est simple : une portion de paroi d'épaisseur e, baignée par l'écoulement et ayant une capacité calorifique connue par unité de surface ρce subit en un temps dt une augmentation de température dT proportionnelle au flux :

$$dT = \frac{\Phi dt}{\rho ce}$$

Il suffit donc en principe de connaître l'évolution de la température en fonction du temps et de la dériver pour obtenir le flux Φ . Dans la pratique, cette dérivée, pour être déterminée avec précision, doit être le quotient d'accroissements notables de température et de temps dans des conditions telles que le flux soit pratiquement constant. Le coefficient de flux de chaleur local s'en déduit par :

$$C_h = \frac{\Phi}{\rho_f v_f (h_p - h_f)}$$

$$\sim \frac{\Phi}{\rho_f v_f c_p (T_p - T_f)}$$

où les indices f se rapportent au fluide à la frontière de la couche limite au point considéré. On voit dans cette formule que l'erreur tend à devenir importante pour $T_p \to T_f$. On essaye donc en général d'obtenir un rapport T_p/T_f relativement constant, et le plus faible possible, de façon que la variation de température T_p nécessaire à la mesure du flux soit négligeable devant l'écart $(T_p - T_f)$. La mesure de T_p se fait grâce à des thermocouples noyés dans la paroi de la maquette. Cette méthode de mesure, uniquement applicable au cas de parois relativement minces, permet généralement d'obtenir une erreur inférieure à 10%.

11.6 Mesures de pressions et d'efforts

11.6.1 Mesures de pressions

Nous ne rentrerons pas dans les détails sur ce sujet. En effet, les capteurs de pression utilisés pour obtenir la pression à la paroi ne diffèrent pas fondamentalement dans le

11.7 Conclusion 197

cas supersonique de ceux utilisés couramment pour les autres configurations. On utilise des capteurs localisés dans la paroi de la maquette ou de la veine et délivrant un signal électrique fonction du niveau de la pression appliquée. Les capteurs les plus répandus sont les capteurs à variation de résistance, et ceux à variation de capacité. Pour obtenir une très bonne précision, on peut être amené à mettre en œuvre des corrections concernant la dimension de l'orifice de prise de pression ainsi que la tubulure de liaison entre l'orifice et le capteur.

11.6.2 Mesures d'efforts

Les efforts et moments aérodynamiques qui s'exercent sur les maquettes en veine d'essai sont de faible intensité. Par contre, il est souvent très intéressant de les mesurer pour obtenir des indications sur la traînée de l'objet, ou sur son bilan traînée-poussée dans le cas de systèmes propulsifs. Ces mesures d'effort sont en général effectuées au moyen de balances de différents types. Ces balances utilisent des dispositifs extensométriques très sensibles (donc malheureusement très fragiles), qui permettent de mesurer les différentes contraintes engendrées par les efforts appliqués sur la maquette. Pour une mesure par résistance, une contrainte N engendrée sur une jauge produit une variation de sa résistance R suivant :

$$\frac{\Delta R}{R} \equiv \frac{N}{E}$$

où E est le module d'élasticité du support. Ces jauges sont de faible encombrement et peuvent équiper de petits éléments dynamométriques. En raison de leur grande sensibilité, ces jauges détectent aussi les contraintes parasites dues à des déformations d'origine thermique, et sont donc très sensibles aux écarts de température. En pratique, les mesures d'effort sont probablement les plus complexes à réaliser, et les précisions atteintes restent très inférieures à celles correspondant aux autres types de mesure.

11.7 Conclusion

Nous avons présenté dans ce chapitre les principales techniques expérimentales utilisées pour examiner les écoulements supersoniques. Les mesures expérimentales constituent en effet le seul moyen possible pour valider les simulations numériques, et, dans bien des cas, la seule possibilité d'analyser des écoulements inaccessibles au calcul, car trop complexes. Malheureusement, ces mesures sont très coûteuses et il est difficile d'obtenir une bonne précision, ce qui explique la recherche permanente de nouvelles méthodes utilisant les derniers développements techniques (lasers,...). En particulier, on essaye de s'orienter de plus en plus vers des méthodes de mesure non-intrusives, ne perturbant pas l'écoulement.

Appendix A

Références

Nous nous limitons ici volontairement à une courte liste de livres, qui nous semblent suffisants pour aborder la majeure partie des problèmes d'écoulements supersoniques. Tous ces livres ont à un moment ou à un autre inspiré une partie de ce cours.

- J. D. Anderson, Hypersonic and high-temperature gas dynamics, McGraw-Hill Book Company, New York, (1989).
- J. D. Anderson, *Modern Compressible Flow*, McGraw-Hill Book Company, New York, (1982).
- S. Candel, Mécanique des Fluides, Dunod Université, (1995).
- R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, MacMillan, New York, (1948).
- G. Dorey, Étude des Écoulements Supersoniques, Cours de l'École Centrale Paris, (1989).
- G. Emmanuel, Gasdynamics: Theory and Applications, AIAA Press, Washington, (1968).
- J.P. Gilly, L. Rosenthal et Y. Sémézis, Aérodynamique Hypersonique, Gauthier-Villars, Paris, (1970).
- O. Guérineau, Contribution à l'étude de la combustion supersonique, Thèse de l'École Centrale Paris, (1996).
- Z. Han and X. Yin, *Shock Dynamics*, Fluid Mechanics and its applications Series, Kluwer Academic Publishers, (1992).
- C. Hirsch, Numerical Computation of Internal and External Flows, John Wiley and Sons, Chichester, (1990).
- M. Rasmussen, Hypersonic flow, John Wiley and Sons, (1994).

200 Annexe A. Références

- P. Rebuffet, Aérodynamique Expérimentale, tome 2, Dunod, Paris, (1966).
- H. Schlichting et E. Truckenbrodt, Aerodynamics of the Airplane, McGraw-Hill International Book Company, New York, (1979).
- K. Takayama (Éditeur), Shock Waves, tomes 1 et 2, Springer-Verlag, Berlin, (1992).
- M. Thévenin, Détonique théorique, Éditions ENSTA, (1981).
- F. Thivet, Modélisation et calcul d'écoulements hypersoniques en déséquilibre chimique et thermodynamique, Thèse de l'École Centrale Paris 1992-39, (1992).
- M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford, (1982).
- G. B. Whitham, *Linear and Non-Linear Waves*, Wiley Interscience, New York, (1973).
- Y. B. Zel'dovich, Y. P. Raizer, W. D. Hayes et R. F. Probstein, *Physics of shock waves and high-temperature hydrodynamic phenomena*, Academic Press, New York, (1966).
- M. T. Zucrow et J. D. Hoffman, *Gas Dynamics, Vol. II*, Krieger Publishing Company, 2nd ed., (1985).

Appendix B

Tables d'écoulements subsoniques $(\gamma = 1.4)$

M	p/p_i	$ ho/ ho_i$	T/T_i	β	q/p_i	A/A_*	V/c_*
0	1	1	1	1	0	∞	0
0.01	0.9999	1	1	0.9999	7 e – 05	57.874	0.010954
0.02	0.9997	0.9998	0.9999	0.9998	0.0002799	28.942	0.021908
0.03	0.9994	0.9996	0.9998	0.9995	0.0006296	19.301	0.03286
0.04	0.9989	0.9992	0.9997	0.9992	0.001119	14.481	0.043811
0.05	0.9983	0.9988	0.9995	0.9987	0.001747	11.591	0.054759
0.06	0.9975	0.9982	0.9993	0.9982	0.002514	9.6659	0.065703
0.07	0.9966	0.9976	0.999	0.9975	0.003418	8.2915	0.076644
0.08	0.9955	0.9968	0.9987	0.9968	0.00446	7.2616	0.08758
0.09	0.9944	0.996	0.9984	0.9959	0.005638	6.4613	0.09851
0.1	0.993	0.995	0.998	0.995	0.006951	5.8218	0.10944
0.11	0.9916	0.994	0.9976	0.9939	0.008399	5.2992	0.12035
0.12	0.99	0.9928	0.9971	0.9928	0.009979	4.8643	0.13126
0.13	0.9883	0.9916	0.9966	0.9915	0.01169	4.4969	0.14217
0.14	0.9864	0.9903	0.9961	0.9902	0.01353	4.1824	0.15306
0.15	0.9844	0.9888	0.9955	0.9887	0.0155	3.9103	0.16395
0.16	0.9823	0.9873	0.9949	0.9871	0.0176	3.6727	0.17482
0.17	0.98	0.9857	0.9943	0.9854	0.01983	3.4635	0.18569
0.18	0.9776	0.984	0.9936	0.9837	0.02217	3.2779	0.19654
0.19	0.9751	0.9822	0.9928	0.9818	0.02464	3.1123	0.20739
0.2	0.9725	0.9803	0.9921	0.9798	0.02723	2.9635	0.21822
0.21	0.9697	0.9783	0.9913	0.9777	0.02994	2.8293	0.22904
0.22	0.9668	0.9762	0.9904	0.9755	0.03276	2.7076	0.23984
0.23	0.9638	0.974	0.9895	0.9732	0.03569	2.5968	0.25063
0.24	0.9607	0.9718	0.9886	0.9708	0.03874	2.4956	0.26141

 \hookrightarrow

M	p/p_i	ρ/ρ_i	T/T_i	β	q/p_i	A/A_*	V/c_*
0.25	0.9575	0.9694	0.9877	0.9682	0.04189	2.4027	0.27217
0.26	0.9541	0.967	0.9867	0.9656	0.04515	2.3173	0.28291
0.27	0.9506	0.9645	0.9856	0.9629	0.04851	2.2385	0.29364
0.28	0.947	0.9619	0.9846	0.96	0.05197	2.1656	0.30435
0.29	0.9433	0.9592	0.9835	0.957	0.05553	2.0979	0.31504
0.3	0.9395	0.9564	0.9823	0.9539	0.05919	2.0351	0.32572
0.31	0.9355	0.9535	0.9811	0.9507	0.06293	1.9765	0.33637
0.32	0.9315	0.9506	0.9799	0.9474	0.06677	1.9219	0.34701
0.33	0.9274	0.9476	0.9787	0.944	0.07069	1.8707	0.35762
0.34	0.9231	0.9445	0.9774	0.9404	0.0747	1.8229	0.36822
0.35	0.9188	0.9413	0.9761	0.9367	0.07878	1.778	0.37879
0.36	0.9143	0.938	0.9747	0.933	0.08295	1.7358	0.38935
0.37	0.9098	0.9347	0.9733	0.929	0.08719	1.6961	0.39988
0.38	0.9052	0.9313	0.9719	0.925	0.09149	1.6587	0.41039
0.39	0.9004	0.9278	0.9705	0.9208	0.09587	1.6234	0.42087
0.4	0.8956	0.9243	0.969	0.9165	0.1003	1.5901	0.43133
0.41	0.8907	0.9207	0.9675	0.9121	0.1048	1.5587	0.44177
0.42	0.8857	0.917	0.9659	0.9075	0.1094	1.5289	0.45218
0.43	0.8807	0.9132	0.9643	0.9028	0.114	1.5007	0.46257
0.44	0.8755	0.9094	0.9627	0.898	0.1186	1.474	0.47293
0.45	0.8703	0.9055	0.9611	0.893	0.1234	1.4487	0.48326
0.46	0.865	0.9016	0.9594	0.8879	0.1281	1.4246	0.49357
0.47	0.8596	0.8976	0.9577	0.8827	0.1329	1.4018	0.50385
0.48	0.8541	0.8935	0.9559	0.8773	0.1378	1.3801	0.5141
0.49	0.8486	0.8894	0.9542	0.8717	0.1426	1.3595	0.52433
0.5	0.843	0.8852	0.9524	0.866	0.1475	1.3398	0.53452
0.51	0.8374	0.8809	0.9506	0.8602	0.1525	1.3212	0.54469
0.52	0.8317	0.8766	0.9487	0.8542	0.1574	1.3034	0.55483
0.53	0.8259	0.8723	0.9468	0.848	0.1624	1.2865	0.56493
0.54	0.8201	0.8679	0.9449	0.8417	0.1674	1.2703	0.57501
0.55	0.8142	0.8634	0.943	0.8352	0.1724	1.2549	0.58506
0.56	0.8082	0.8589	0.941	0.8285	0.1774	1.2403	0.59507
0.57	0.8022	0.8544	0.939	0.8216	0.1825	1.2263	0.60505
0.58	0.7962	0.8498	0.937	0.8146	0.1875	1.213	0.61501
0.59	0.7901	0.8451	0.9349	0.8074	0.1925	1.2003	0.62492
0.6	0.784	0.8405	0.9328	0.8	0.1976	1.1882	0.63481
0.61	0.7778	0.8357	0.9307	0.7924	0.2026	1.1767	0.64466

 \hookrightarrow

M	p/p_i	ρ/ρ_i	T/T_i	β	q/p_i	A/A_*	V/c_*
0.62	0.7716	0.831	0.9286	0.7846	0.2076	1.1656	0.65448
0.63	0.7654	0.8262	0.9265	0.7766	0.2127	1.1552	0.66427
0.64	0.7591	0.8213	0.9243	0.7684	0.2177	1.1451	0.67402
0.65	0.7528	0.8164	0.9221	0.7599	0.2226	1.1356	0.68374
0.66	0.7465	0.8115	0.9199	0.7513	0.2276	1.1265	0.69342
0.67	0.7401	0.8066	0.9176	0.7424	0.2326	1.1179	0.70307
0.68	0.7338	0.8016	0.9153	0.7332	0.2375	1.1097	0.71268
0.69	0.7274	0.7966	0.9131	0.7238	0.2424	1.1018	0.72225
0.7	0.7209	0.7916	0.9107	0.7141	0.2473	1.0944	0.73179
0.71	0.7145	0.7865	0.9084	0.7042	0.2521	1.0873	0.74129
0.72	0.708	0.7814	0.9061	0.694	0.2569	1.0806	0.75076
0.73	0.7016	0.7763	0.9037	0.6834	0.2617	1.0742	0.76019
0.74	0.6951	0.7712	0.9013	0.6726	0.2664	1.0681	0.76958
0.75	0.6886	0.766	0.8989	0.6614	0.2711	1.0624	0.77894
0.76	0.6821	0.7609	0.8964	0.6499	0.2758	1.057	0.78825
0.77	0.6756	0.7557	0.894	0.638	0.2804	1.0519	0.79753
0.78	0.6691	0.7505	0.8915	0.6258	0.2849	1.0471	0.80677
0.79	0.6625	0.7452	0.889	0.6131	0.2894	1.0425	0.81597
0.8	0.656	0.74	0.8865	0.6	0.2939	1.0382	0.82514
0.81	0.6495	0.7347	0.884	0.5864	0.2983	1.0342	0.83426
0.82	0.643	0.7295	0.8815	0.5724	0.3026	1.0305	0.84335
0.83	0.6365	0.7242	0.8789	0.5578	0.3069	1.027	0.85239
0.84	0.63	0.7189	0.8763	0.5426	0.3112	1.0237	0.8614
0.85	0.6235	0.7136	0.8737	0.5268	0.3153	1.0207	0.87037
0.86	0.617	0.7083	0.8711	0.5103	0.3195	1.0179	0.87929
0.87	0.6106	0.703	0.8685	0.4931	0.3235	1.0153	0.88818
0.88	0.6041	0.6977	0.8659	0.475	0.3275	1.0129	0.89703
0.89	0.5977	0.6924	0.8632	0.456	0.3314	1.0108	0.90583
0.9	0.5913	0.687	0.8606	0.4359	0.3352	1.0089	0.9146
0.91	0.5849	0.6817	0.8579	0.4146	0.339	1.0071	0.92332
0.92	0.5785	0.6764	0.8552	0.3919	0.3427	1.0056	0.93201
0.93	0.5721	0.6711	0.8525	0.3676	0.3464	1.0043	0.94065
0.94	0.5658	0.6658	0.8498	0.3412	0.3499	1.0031	0.94925
0.95	0.5595	0.6604	0.8471	0.3122	0.3534	1.0021	0.95781
0.96	0.5532	0.6551	0.8444	0.28	0.3569	1.0014	0.96633
0.97	0.5469	0.6498	0.8416	0.2431	0.3602	1.0008	0.97481
0.98	0.5407	0.6445	0.8389	0.199	0.3635	1.0003	0.98325
0.99	0.5345	0.6392	0.8361	0.1411	0.3667	1.0001	0.99165
1	0.5283	0.6339	0.8333	0	0.3698	1	1

Appendix C

Tables d'écoulements supersoniques et de chocs ($\gamma = 1.4$)

M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_{2}/p_{1}	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
1	0.5283	0.6339	0.8333	1	0	90	1	1	1	1	1
1.01	0.5221	0.6287	0.8306	1	0.044725	81.93	0.9901	1.023	1.017	1.007	1
1.02	0.516	0.6234	0.8278	1	0.12569	78.64	0.9805	1.047	1.033	1.013	1
1.03	0.5099	0.6181	0.825	1.001	0.22943	76.14	0.9712	1.071	1.05	1.02	1
1.04	0.5039	0.6129	0.8222	1.001	0.35098	74.06	0.962	1.095	1.067	1.026	0.9999
1.05	0.4979	0.6077	0.8193	1.002	0.48741	72.25	0.9531	1.12	1.084	1.033	0.9999
1.06	0.4919	0.6024	0.8165	1.003	0.63669	70.63	0.9444	1.144	1.101	1.039	0.9998
1.07	0.486	0.5972	0.8137	1.004	0.79729	69.16	0.936	1.169	1.118	1.046	0.9996
1.08	0.48	0.592	0.8108	1.005	0.96804	67.81	0.9277	1.194	1.135	1.052	0.9994
1.09	0.4742	0.5869	0.808	1.006	1.1479	66.55	0.9196	1.219	1.152	1.059	0.9992
1.1	0.4684	0.5817	0.8052	1.008	1.3362	65.38	0.9118	1.245	1.169	1.065	0.9989
1.11	0.4626	0.5766	0.8023	1.01	1.5321	64.28	0.9041	1.271	1.186	1.071	0.9986
1.12	0.4568	0.5714	0.7994	1.011	1.735	63.23	0.8966	1.297	1.203	1.078	0.9982
1.13	0.4511	0.5663	0.7966	1.013	1.9445	62.25	0.8892	1.323	1.221	1.084	0.9978
1.14	0.4455	0.5612	0.7937	1.015	2.16	61.31	0.882	1.35	1.238	1.09	0.9973
1.15	0.4398	0.5562	0.7908	1.017	2.381	60.41	0.875	1.376	1.255	1.097	0.9967
1.16	0.4343	0.5511	0.7879	1.02	2.6073	59.55	0.8682	1.403	1.272	1.103	0.9961
1.17	0.4287	0.5461	0.7851	1.022	2.8385	58.73	0.8615	1.43	1.29	1.109	0.9953
1.18	0.4232	0.5411	0.7822	1.025	3.0743	57.94	0.8549	1.458	1.307	1.115	0.9946
1.19	0.4178	0.5361	0.7793	1.028	3.3142	57.18	0.8485	1.485	1.324	1.122	0.9937
1.2	0.4124	0.5311	0.7764	1.03	3.5582	56.44	0.8422	1.513	1.342	1.128	0.9928
1.21	0.407	0.5262	0.7735	1.033	3.806	55.74	0.836	1.541	1.359	1.134	0.9918
1.22	0.4017	0.5213	0.7706	1.037	4.0572	55.05	0.83	1.57	1.376	1.141	0.9907
1.23	0.3964	0.5164	0.7677	1.04	4.3117	54.39	0.8241	1.598	1.394	1.147	0.9896
1.24	0.3912	0.5115	0.7648	1.043	4.5694	53.75	0.8183	1.627	1.411	1.153	0.9884
1.25	0.3861	0.5067	0.7619	1.047	4.8299	53.13	0.8126	1.656	1.429	1.159	0.9871
1.26	0.3809	0.5019	0.759	1.05	5.0931	52.53	0.8071	1.686	1.446	1.166	0.9857
1.27	0.3759	0.4971	0.7561	1.054	5.359	51.94	0.8016	1.715	1.463	1.172	0.9842
1.28	0.3708	0.4923	0.7532	1.058	5.6272	51.38	0.7963	1.745	1.481	1.178	0.9827
1.29	0.3658	0.4876	0.7503	1.062	5.8977	50.82	0.7911	1.775	1.498	1.185	0.9811
1.3	0.3609	0.4829	0.7474	1.066	6.1703	50.28	0.786	1.805	1.516	1.191	0.9794
1.31	0.356	0.4782	0.7445	1.071	6.4449	49.76	0.7809	1.835	1.533	1.197	0.9776

M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_{2}/p_{1}	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
1.32	0.3512	0.4736	0.7416	1.075	6.7213	$\frac{\mu}{49.25}$	0.776	$\frac{p_2/p_1}{1.866}$	$\frac{\rho_2/\rho_1}{1.551}$	1.204	0.9758
1.33	0.3464	0.469	0.7387	1.08	6.9995	48.75	0.7712	1.897	1.568	1.21	0.9738
1.34	0.3417	0.4644	0.7358	1.084	7.2794	48.27	0.7664	1.928	1.585	1.216	0.9718
1.35	0.337	0.4598	0.7329	1.089	7.5607	47.79	0.7618	1.96	1.603	1.223	0.9697
1.36	0.3323	0.4553	0.73	1.094	7.8435	47.33	0.7572	1.991	1.62	1.229	0.9676
1.37	0.3277	0.4508	0.7271	1.099	8.1276	46.88	0.7527	2.023	1.638	1.235	0.9653
1.38	0.3232	0.4463	0.7242	1.104	8.413	46.44	0.7483	2.055	1.655	1.242	0.963
1.39	0.3187	0.4418	0.7213	1.109	8.6995	46.01	0.744	2.087	1.672	1.248	0.9607
1.4	0.3142	0.4374	0.7184	1.115	8.987	45.58	0.7397	2.12	1.69	1.255	0.9582
1.41	0.3098	0.433	0.7155	1.12	9.2756	45.17	0.7355	2.153	1.707	1.261	0.9557
1.42	0.3055	0.4287	0.7126	1.126	9.565	44.77	0.7314	2.186	1.724	1.268	0.9531
1.43	0.3012	0.4244	0.7097	1.132	9.8553	44.37	0.7274	2.219	1.742	1.274	0.9504
1.44	0.2969	0.4201	0.7069	1.138	10.146	43.98	0.7235	2.253	1.759	1.281	0.9476
1.45	0.2927	0.4158	0.704	1.144	10.438	43.6	0.7196	2.286	1.776	1.287	0.9448
1.46	0.2886	0.4116	0.7011	1.15	10.731	43.23	0.7157	2.32	1.793	1.294	0.942
1.47	0.2845	0.4074	0.6982	1.156	11.023	42.86	0.712	2.354	1.811	1.3	0.939
1.48	0.2804	0.4032	0.6954	1.163	11.317	42.51	0.7083	2.389	1.828	1.307	0.936
1.49	0.2764	0.3991	0.6925	1.169	11.611	42.16	0.7047	2.423	1.845	1.314	0.9329
1.5	0.2724	0.395	0.6897	1.176	11.905	41.81	0.7011	2.458	1.862	1.32	0.9298
1.51	0.2685	0.3909	0.6868	1.183	12.2	41.47	0.6976	2.493	1.879	1.327	0.9266
1.52	0.2646	0.3869	0.684	1.19	12.495	41.14	0.6941	2.529	1.896	1.334	0.9233
1.53	0.2608	0.3829	0.6811	1.197	12.79	40.81	0.6907	2.564	1.913	1.34	0.92
1.54	0.257	0.3789	0.6783	1.204	13.086	40.49	0.6874	2.6	1.93	1.347	0.9166
1.55	0.2533	0.375	0.6754	1.212	13.381	40.18	0.6841	2.636	1.947	1.354	0.9132
1.56	0.2496	0.371	0.6726	1.219	13.677	39.87	0.6809	2.673	1.964	1.361	0.9097
1.57	0.2459	0.3672	0.6698	1.227	13.973	39.56	0.6777	2.709	1.981	1.367	0.9062
1.58	0.2423	0.3633	0.667	1.234	14.269	39.27	0.6746	2.746	1.998	1.374	0.9026
1.59	0.2388	0.3595	0.6642	1.242	14.565	38.97	0.6715	2.783	2.015	1.381	0.8989
1.6	0.2353	0.3557	0.6614	1.25	14.86	38.68	0.6684	2.82	2.032	1.388	0.8952
1.61	0.2318	0.352	0.6586	1.258	15.156	38.4	0.6655	2.857	2.049	1.395	0.8915
1.62	0.2284	0.3483	0.6558	1.267	15.452	38.12	0.6625	2.895	2.065	1.402	0.8877
1.63	0.225	0.3446	0.653	1.275	15.747	37.84	0.6596	2.933	2.082	1.409	0.8838
$\frac{1.64}{1.65}$	0.2217 0.2184	0.3409 0.3373	0.6502 0.6475	1.284 1.292	16.043 16.338	$\frac{37.57}{37.31}$	0.6568 0.654	2.971 3.01	2.099 2.115	1.416 1.423	0.8799
1.66	0.2154 0.2151	0.3337	0.6447	1.301	16.633	37.04	0.6512	3.048	$\frac{2.113}{2.132}$	1.423	0.876 0.872
1.67	0.2131	0.3302	0.6419	1.31	16.928	36.78	0.6312 0.6485	3.048	2.132	1.437	0.868
1.68	0.2113	0.3362 0.3266	0.6392	1.319	17.222	36.53	0.6458	3.126	2.146	1.444	0.8639
1.69	0.2057	0.3230	0.6364	1.319	17.516	36.28	0.6431	3.165	2.103	1.451	0.8599
1.7	0.2026	0.3232 0.3197	0.6337	1.338	17.81	36.03	0.6405	3.205	2.198	1.451	0.8557
1.71	0.2020 0.1996	0.3163	0.631	1.347	18.103	35.79	0.638	3.245	2.214	1.466	0.8516
1.72	0.1966	0.3129	0.6283	1.357	18.396	35.55	0.6355	3.285	2.214	1.473	0.8474
1.73	0.1936	0.3095	0.6256	1.367	18.689	35.31	0.633	3.325	2.247	1.48	0.8431
1.74	0.1907	0.3062	0.6229	1.376	18.981	35.08	0.6305	3.366	2.263	1.487	0.8389
1.75	0.1878	0.3029	0.6202	1.386	19.273	34.85	0.6281	3.406	2.279	1.495	0.8346
1.76	0.185	0.2996	0.6175	1.397	19.565	34.62	0.6257	3.447	2.295	1.502	0.8302
1.77	0.1822	0.2964	0.6148	1.407	19.855	34.4	0.6234	3.488	2.311	1.509	0.8259
1.78	0.1794	0.2931	0.6121	1.418	20.146	34.18	0.621	3.53	2.327	1.517	0.8215
1.79	0.1767	0.29	0.6095	1.428	20.436	33.96	0.6188	3.571	2.343	1.524	0.8171
1.8	0.174	0.2868	0.6068	1.439	20.725	33.75	0.6165	3.613	2.359	1.532	0.8127
			l		l			i		l	

	,	,			1			,	,		,
M	p/p_i	$ ho/ ho_i$	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
1.81	0.1714	0.2837	0.6041	1.45	21.014	33.54	0.6143	3.655	2.375	1.539	0.8082
1.82	0.1688	0.2806	0.6015	1.461	21.302	33.33	0.6121	3.698	2.391	1.547	0.8038
1.83	0.1662	0.2776	0.5989	1.472	21.59	33.12	0.6099	3.74	2.407	1.554	0.7993
1.84	0.1637	0.2745	0.5963	1.484	21.877	32.92	0.6078	3.783	2.422	1.562	0.7948
1.85	0.1612	0.2715	0.5936	1.495	22.163	32.72	0.6057	3.826	2.438	1.569	0.7902
1.86	0.1587	0.2686	0.591	1.507	22.449	32.52	0.6036	3.87	2.454	1.577	0.7857
1.87	0.1563	0.2656	0.5884	1.519	22.734	32.33	0.6016	3.913	2.469	1.585	0.7811
1.88	0.1539	0.2627	0.5859	1.531	23.019	32.13	0.5996	3.957	2.485	1.592	0.7765
1.89	0.1516	0.2598	0.5833	1.543	23.303	31.94	0.5976	4.001	2.5	1.6	0.772
1.9	0.1492	0.257	0.5807	1.555	23.586	31.76	0.5956	4.045	2.516	1.608	0.7674
1.91	0.147	0.2542	0.5782	1.568	23.869	31.57	0.5937	4.089	2.531	1.616	0.7627
1.92	0.1447	0.2514	0.5756	1.58	24.151	31.39	0.5918	4.134	2.546	1.624	0.7581
1.93	0.1425	0.2486	0.5731	1.593	24.432	31.21	0.5899	4.179	2.562	1.631	0.7535
1.94	0.1403	0.2459	0.5705	1.606	24.712	31.03	0.588	4.224	2.577	1.639	0.7488
1.95	0.1381	0.2432	0.568	1.619	24.992	30.85	0.5862	4.27	2.592	1.647	0.7442
1.96	0.136	0.2405	0.5655	1.633	25.271	30.68	0.5844	4.315	2.607	1.655	0.7395
1.97	0.1339	0.2378	0.563	1.646	25.549	30.51	0.5826	4.361	2.622	1.663	0.7349
1.98	0.1318	0.2352	0.5605	1.66	25.827	30.33	0.5808	4.407	2.637	1.671	0.7302
1.99	0.1298	0.2326	0.558	1.674	26.104	30.17	0.5791	4.453	2.652	1.679	0.7255
2	0.1278	0.23	0.5556	1.688	26.38	30	0.5774	4.5	2.667	1.687	0.7209
2.01	0.1258	0.2275	0.5531	1.702	26.655	29.84	0.5757	4.547	2.681	1.696	0.7162
2.02	0.1239	0.225	0.5506	1.716	26.93	29.67	0.574	4.594	2.696	1.704	0.7115
2.03	0.122	0.2225	0.5482	1.73	27.203	29.51	0.5723	4.641	2.711	1.712	0.7069
2.04	0.1201	0.22	0.5458	1.745	27.476	29.35	0.5707	4.689	2.725	1.72	0.7022
2.05	0.1182	0.2176	0.5433	1.76	27.748	29.2	0.5691	4.736	2.74	1.729	0.6975
2.06	0.1164	0.2152	0.5409	1.775	28.02	29.04	0.5675	4.784	2.755	1.737	0.6928
2.07	0.1146	0.2128	0.5385	1.79	28.29	28.89	0.5659	4.832	2.769	1.745	0.6882
2.08	0.1128	0.2104	0.5361	1.806	28.56	28.74	0.5643	4.881	2.783	1.754	0.6835
2.09	0.1111	0.2081	0.5337	1.821	28.829	28.59	0.5628	4.929	2.798	1.762	0.6789
2.1	0.1094	0.2058	0.5313	1.837	29.097	28.44	0.5613	4.978	2.812	1.77	0.6742
2.11	0.1077	0.2035	0.529	1.853	29.364	28.29	0.5598	5.027	2.826	1.779	0.6696
2.12	0.106	0.2013	0.5266	1.869	29.631	28.14	0.5583	5.077	2.84	1.787	0.6649
2.13	0.1043	0.199	0.5243	1.885	29.896	28	0.5568	5.126	2.854	1.796	0.6603
2.14	0.1027	0.1968	0.5219	1.902	30.161	27.86	0.5554	5.176	2.868	1.805	0.6557
2.15	0.1011				30.425		0.554		2.882		0.6511
2.16	0.09956	0.1925	0.5173	1.935	30.688	27.58	0.5525	5.277	2.896	1.822	0.6464
2.17	0.09802	0.1903	0.515	1.953	30.951	27.44	0.5511	5.327	2.91	1.831	0.6419
2.18	0.09649	0.1882	0.5127	1.97	31.212	27.3	0.5498	5.378	2.924	1.839	0.6373
2.19	0.095	0.1861	0.5104	1.987	31.473	27.17	0.5484	5.429	2.938	1.848	0.6327
2.2	0.09352	0.1841	0.5081	2.005	31.732	27.04	0.5471	5.48	2.951	1.857	0.6281
2.21	0.09207	0.182	0.5059	2.023	31.991	26.9	0.5457	5.531	2.965	1.866	0.6236
2.22	0.09064	0.18	0.5036	2.041	32.249	26.77	0.5444	5.583	2.978	1.875	0.6191
2.23	0.08923	0.178	0.5014	2.059	32.507	26.64	0.5431	5.635	2.992	1.883	0.6145
2.24	0.08785	0.176	0.4991	2.078	32.763	26.51	0.5418	5.687	3.005	1.892	0.61
2.25	0.08648	0.174	0.4969	2.096	33.018	26.39	0.5406	5.74	3.019	1.901	0.6055
2.26	0.08514	0.1721	0.4947	2.115	33.273	26.26	0.5393	5.792	3.032	1.91	0.6011
2.27	0.08382	0.1702	0.4925	2.134	33.527	26.14	0.5381	5.845	3.045	1.919	0.5966
2.28	0.08251	0.1683	0.4903	2.154	33.78	26.01	0.5368	5.898	3.058	1.929	0.5921
2.29	0.08123	0.1664	0.4881	2.173	34.032	25.89	0.5356	5.951	3.071	1.938	0.5877
0	J.00120	5.1001	J. 1001	2 .110	31.002	_0.00	0.0000	U.001	0.011	1.000	0.0011

14	n/n	0/0	T/T	1/1	l		14	n /n	0 /0	T/T	n /n
$\frac{M}{2.3}$	$p/p_i = 0.07997$	$\frac{\rho/\rho_i}{0.1646}$	$\frac{T/T_i}{0.4859}$	$A/A_* = 2.193$	$\frac{\nu}{34.283}$	$\frac{\mu}{25.77}$	$M_2 = 0.5344$	$\frac{p_2/p_1}{6.005}$	$\frac{\rho_2/\rho_1}{3.085}$	T_2/T_1 1.947	$\frac{p_{i2}/p_{i1}}{0.5833}$
2.31	0.07997	0.1640 0.1628	0.4839 0.4837	2.213	34.533	25.65	0.5344 0.5332	6.059	3.098	1.947	0.5789
2.31	0.07751	0.1609	0.4816	2.213	34.782	25.53	0.5332 0.5321	6.113	3.11	1.965	0.5745
2.33	0.07631	0.1503 0.1592	0.4310 0.4794	2.254	35.031	25.42	0.5321	6.167	3.123	1.974	0.5743 0.5702
2.34	0.07631 0.07512	0.1592 0.1574	0.4794 0.4773	2.274	35.279	25.42	0.5309 0.5297	6.222	3.136	1.984	0.5658
2.35	0.07312 0.07396	0.1574 0.1556	0.4773 0.4752	2.214	35.526	25.18	0.5286	6.276	3.149	1.993	0.5615
2.36	0.07330 0.07281	0.1530 0.1539	0.4731	2.316	35.771	25.07	0.5275	6.331	3.162	2.002	0.5572
2.37	0.07168	0.1522	0.4709	2.338	36.017	24.96	0.5264	6.386	3.174	2.012	0.5529
2.38	0.07057	0.1505	0.4688	2.359	36.261	24.85	0.5253	6.442	3.187	2.021	0.5486
2.39	0.06948	0.1488	0.4668	2.381	36.504	24.73	0.5242	6.497	3.199	2.031	0.5444
2.4	0.0684	0.1472	0.4647	2.403	36.747	24.62	0.5231	6.553	3.212	2.04	0.5401
2.41	0.06734	0.1456	0.4626	2.425	36.988	24.52	0.5221	6.609	3.224	2.05	0.5359
2.42	0.0663	0.1439	0.4606	2.448	37.229	24.41	0.521	6.666	3.237	2.059	0.5317
2.43	0.06527	0.1424	0.4585	2.471	37.469	24.3	0.52	6.722	3.249	2.069	0.5276
2.44	0.06426	0.1408	0.4565	2.494	37.708	24.19	0.5189	6.779	3.261	2.079	0.5234
2.45	0.06327	0.1392	0.4544	2.517	37.946	24.09	0.5179	6.836	3.273	2.088	0.5193
2.46	0.06229	0.1377	0.4524	2.54	38.183	23.99	0.5169	6.894	3.285	2.098	0.5152
2.47	0.06133	0.1362	0.4504	2.564	38.42	23.88	0.5159	6.951	3.298	2.108	0.5111
2.48	0.06038	0.1346	0.4484	2.588	38.655	23.78	0.5149	7.009	3.31	2.118	0.5071
2.49	0.05945	0.1332	0.4464	2.612	38.89	23.68	0.514	7.067	3.321	2.128	0.503
2.5	0.05853	0.1317	0.4444	2.637	39.124	23.58	0.513	7.125	3.333	2.138	0.499
2.51	0.05762	0.1302	0.4425	2.661	39.357	23.48	0.512	7.183	3.345	2.147	0.495
2.52	0.05674	0.1288	0.4405	2.686	39.589	23.38	0.5111	7.242	3.357	2.157	0.4911
2.53	0.05586	0.1274	0.4386	2.712	39.82	23.28	0.5102	7.301	3.369	2.167	0.4871
2.54	0.055	0.126	0.4366	2.737	40.05	23.18	0.5092	7.36	3.38	2.177	0.4832
2.55	0.05415	0.1246	0.4347	2.763	40.28	23.09	0.5083	7.42	3.392	2.187	0.4793
2.56	0.05332	0.1232	0.4328	2.789	40.508	22.99	0.5074	7.479	3.403	2.198	0.4754
2.57	0.0525	0.1218	0.4309	2.815	40.736	22.9	0.5065	7.539	3.415	2.208	0.4715
2.58	0.05169	0.1205	0.4289	2.842	40.963	22.81	0.5056	7.599	3.426	2.218	0.4677
2.59	0.0509	0.1192	0.4271	2.869	41.189	22.71	0.5047	7.659	3.438	2.228	0.4639
2.6	0.05012	0.1179	0.4252	2.896	41.415	22.62	0.5039	7.72	3.449	2.238	0.4601
2.61	0.04935	0.1166	0.4233	2.923	41.639	22.53	0.503	7.781	3.46	2.249	0.4564
2.62	0.04859	0.1153	0.4214	2.951	41.863	22.44	0.5022	7.842	3.471	2.259	0.4526
2.63	0.04784	0.114	0.4196	2.979	42.086	22.35	0.5013	7.903	3.483	2.269	0.4489
2.64	0.04711	0.1128	0.4177		42.307		0.5005		3.494	2.28	0.4452
	0.04639		0.4159	3.036	42.529	22.17	0.4996	8.026	3.505	2.29	0.4416
2.66	0.04568	0.1103	0.4141	3.065	42.749	22.08	0.4988	8.088	3.516	2.301	0.4379
2.67	0.04498	0.1091	0.4122	3.094	42.968	22	0.498	8.15	3.527	2.311	0.4343
2.68	0.04429	0.1079	0.4104	3.123	43.187	21.91	0.4972	8.213	3.537	2.322	0.4307
2.69	0.04362	0.1067	0.4086	3.153	43.405	21.82	0.4964	8.275	3.548	2.332	0.4271
2.7	0.04295	0.1056	0.4068	3.183	43.621	21.74	0.4956	8.338	3.559	2.343	0.4236
2.71	0.04229	0.1044	0.4051	3.213	43.838	21.65	0.4949	8.401	3.57	2.354	0.4201
2.72	0.04165	0.1033	0.4033	3.244	44.053	21.57	0.4941	8.465	3.58	2.364	0.4166
2.73	0.04102	0.1022	0.4015	3.275	44.267	21.49	0.4933	8.528	3.591	2.375	0.4131
2.74	0.04039	0.101	0.3998	3.306	44.481	21.41	0.4926	8.592	3.601	2.386	0.4097
2.75	0.03978	0.09994	0.398	3.338	44.694	21.32	0.4918	8.656	3.612	2.397	0.4062
2.76	0.03917	0.09885	0.3963	3.37	44.906	21.24	0.4911	8.721	3.622	2.407	0.4028
2.77	0.03858	0.09778	0.3945	3.402	45.117	21.16	0.4903	8.785	3.633	2.418	0.3994
2.78	0.03799	0.09671	0.3928	3.434	45.327	21.08	0.4896	8.85	3.643	2.429	0.3961

3.6	, 1	,	I m /m	1 4 / 4	ı	1	1 3.6	,	1 1	m /m	1 /
M 2.70	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
2.79	0.03742	0.09566	0.3911	3.467	45.537	21	0.4889	8.915	3.653	2.44	0.3928
2.8	0.03685	0.09463	0.3894	3.5	45.746	20.92	0.4882	8.98	3.664	2.451	0.3895
2.81	0.03629	0.0936	0.3877	3.534	45.954	20.85	0.4875	9.045	3.674	2.462	0.3862
2.82	0.03574	0.09259	0.386	3.567	46.161	20.77	0.4868	9.111	3.684	2.473	0.3829
2.83	0.0352	0.09158	0.3844	3.601	46.368	20.69	0.4861	9.177	3.694	2.484	0.3797
2.84	0.03467	0.09059	0.3827	3.636	46.573	20.62	0.4854	9.243	3.704	2.496	0.3765
2.85	0.03415	0.08962	0.381	3.671	46.778	20.54	0.4847	9.31	3.714	2.507	0.3733
2.86	0.03363	0.08865	0.3794	3.706	46.982	20.47	0.484	9.376	3.724	2.518	0.3701
2.87	0.03312	0.08769	0.3777	3.741	47.185	20.39	0.4833	9.443	3.734	2.529	0.367
2.88	0.03263	0.08675	0.3761	3.777	47.388	20.32	0.4827	9.51	3.743	2.54	0.3639
2.89	0.03213	0.08581	0.3745	3.813	47.589	20.24	0.482	9.577	3.753	2.552	0.3608
2.9	0.03165	0.08489	0.3729	3.85	47.79	20.17	0.4814	9.645	3.763	2.563	0.3577
2.91	0.03118	0.08398	0.3712	3.887	47.99	20.1	0.4807	9.713	3.773	2.575	0.3547
2.92	0.03071	0.08307	0.3696	3.924	48.19	20.03	0.4801	9.781	3.782	2.586	0.3517
2.93	0.03025	0.08218	0.3681	3.961	48.388	19.96	0.4795	9.849	3.792	2.598	0.3487
2.94	0.0298	0.0813	0.3665	3.999	48.586	19.89	0.4788	9.918	3.801	2.609	0.3457
2.95	0.02935	0.08043	0.3649	4.038	48.783	19.81	0.4782	9.986	3.811	2.621	0.3428
2.96	0.02891	0.07957	0.3633	4.076	48.98	19.75	0.4776	10.06	3.82	2.632	0.3398
2.97	0.02848	0.07872	0.3618	4.115	49.175	19.68	0.477	10.12	3.829	2.644	0.3369
2.98	0.02805	0.07788	0.3602	4.155	49.37	19.61	0.4764	10.19	3.839	2.656	0.334
2.99	0.02764	0.07705	0.3587	4.194	49.564	19.54	0.4758	10.26	3.848	2.667	0.3312
3	0.02722	0.07623	0.3571	4.235	49.757	19.47	0.4752	10.33	3.857	2.679	0.3283
3.01	0.02682	0.07541	0.3556	4.275	49.95	19.4	0.4746	10.4	3.866	2.691	0.3255
3.02	0.02642	0.07461	0.3541	4.316	50.142	19.34	0.474	10.47	3.875	2.703	0.3227
3.03	0.02603	0.07382	0.3526	4.357	50.333	19.27	0.4734	10.54	3.884	2.714	0.32
3.04	0.02564	0.07303	0.3511	4.399	50.523	19.2	0.4729	10.62	3.893	2.726	0.3172
3.05	0.02526	0.07226	0.3496	4.441	50.713	19.14	0.4723	10.69	3.902	2.738	0.3145
3.06	0.02489	0.07149	0.3481	4.483	50.902	19.07	0.4717	10.76	3.911	2.75	0.3118
3.07	0.02452	0.07074	0.3466	4.526	51.09	19.01	0.4712	10.83	3.92	2.762	0.3091
3.08	0.02416	0.06999	0.3452	4.57	51.277	18.95	0.4706	10.9	3.929	2.774	0.3065
3.09	0.0238	0.06925	0.3437	4.613	51.464	18.88	0.4701	10.97	3.938	2.786	0.3038
3.1	0.02345	0.06852	0.3422	4.657	51.65	18.82	0.4695	11.05	3.947	2.799	0.3012
3.11	0.0231	0.06779	0.3408	4.702	51.835	18.76	0.469	11.12	3.955	2.811	0.2986
3.12	0.02276	0.06708	0.3393	4.747	52.02	18.69	0.4685	11.19	3.964	2.823	0.296
3.13	0.02243	0.06637		4.792	52.203	18.63			3.973	2.835	0.2935
3.14	0.0221	0.06568	0.3365	4.838	52.386	18.57	0.4674	11.34	3.981	2.848	0.291
3.15	0.02177	0.06499	0.3351	4.884	52.569	18.51	0.4669	11.41	3.99	2.86	0.2885
3.16	0.02146	0.0643	0.3337	4.93	52.751	18.45	0.4664	11.48	3.998	2.872	0.286
3.17	0.02114	0.06363	0.3323	4.977	52.932	18.39	0.4659	11.56	4.006	2.885	0.2835
3.18	0.02083	0.06296	0.3309	5.025	53.112	18.33	0.4654	11.63	4.015	2.897	0.2811
3.19	0.02053	0.06231	0.3295	5.073	53.291	18.27	0.4648	11.71	4.023	2.909	0.2786
3.2	0.02023	0.06165	0.3281	5.121	53.47	18.21	0.4643	11.78	4.031	2.922	0.2762
3.21	0.01993	0.06101	0.3267	5.17	53.649	18.15	0.4639	11.85	4.04	2.935	0.2738
3.22	0.01964	0.06037	0.3253	5.219	53.826	18.09	0.4634	11.93	4.048	2.947	0.2715
3.23	0.01936	0.05975	0.324	5.268	54.003	18.03	0.4629	12.01	4.056	2.96	0.2691
3.24	0.01908	0.05912	0.3226	5.319	54.179	17.98	0.4624	12.08	4.064	2.972	0.2668
3.25	0.0188	0.05851	0.3213	5.369	54.355	17.92	0.4619	12.16	4.072	2.985	0.2645
3.26	0.01853	0.0579	0.3199	5.42	54.529	17.86	0.4614	12.23	4.08	2.998	0.2622
3.27	0.01826	0.0573	0.3186	5.472	54.704	17.81	0.461	12.31	4.088	3.011	0.26

14		- / -	Tr /Tr	4/4	Π		1.1	/	. /.	Tr. /Tr	. /
$\frac{M}{3.28}$	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 54.077	μ	$M_2 = 0.4605$	$\frac{p_2/p_1}{12.38}$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
3.29	0.01799 0.01773	0.05671	0.3173	5.523	54.877	17.75			4.096	3.023	0.2577
3.3	0.01773	0.05612	0.316	5.576	55.05	17.7	0.46	12.46	4.104	3.036	0.2555
		0.05554 0.05497	0.3147	5.629 5.682	55.222	17.64	0.4596	12.54	4.112	3.049	0.2533
3.31	0.01722		0.3134 0.3121		55.393	17.58	0.4591	12.62 12.69	4.12	3.062	0.2511
3.32	0.01698 0.01673	0.0544 0.05384	0.3121 0.3108	5.736 5.79	55.564	17.53 17.48	0.4587 0.4582	12.09 12.77	4.128 4.135	$\frac{3.075}{3.088}$	0.2489 0.2468
3.34	0.01649	0.05384 0.05329	0.3108 0.3095	5.845	55.734 55.904	17.48	0.4582 0.4578	12.77	4.133	3.101	0.2446
3.35	0.01649 0.01625	0.05329 0.05274	0.3093 0.3082	5.9	56.073	17.42	0.4578 0.4573	12.93	4.143	3.114	0.2440 0.2425
3.36	0.01623 0.01602	0.05274 0.0522	0.3062	5.956	56.241	17.31	0.4569	13	4.151	3.114	0.2423
3.37											
3.38	0.01579 0.01557	0.05166 0.05113	0.3057 0.3044	6.012 6.069	56.409 56.576	17.26 17.21	0.4565 0.456	13.08 13.16	4.166 4.173	3.141 3.154	0.2383 0.2363
3.39		0.05113 0.05061	0.3044 0.3032		56.742	17.21	0.456	13.10	4.173		
3.4	0.01534			6.126	56.908	17.10	0.4550 0.4552	13.24		3.167	0.2342 0.2322
3.41	0.01512	0.05009	0.3019	6.184 6.242				13.32	4.188	3.18	
	0.01491 0.0147	0.04958	0.3007		57.073	17.05	0.4548		4.196	3.194	0.2302
3.42		0.04908	0.2995	6.301	57.237	17	0.4544	13.48	4.203	3.207	0.2282
3.43	0.01449	0.04858	0.2982 0.297	6.36 6.42	57.401 57.564	16.95 16.9	0.454 0.4535	13.56	4.211 4.218	3.22 3.234	0.2263 0.2243
	0.01428	0.04808						13.64 13.72			
3.45	0.01408	0.04759	0.2958	6.48	57.726	16.85	0.4531		4.225	3.247	0.2224
3.46	0.01388 0.01368	0.04711	0.2946	6.541	57.888 58.05	16.8	0.4527	13.8	4.232	3.261	0.2205
	0.01368	0.04663	0.2934 0.2922	6.602		16.75	0.4523	13.88	4.24	3.274	0.2186
3.48	0.01349 0.0133	0.04616	0.2922	6.664 6.727	58.21	16.7	0.4519	13.96	4.247	3.288	0.2167
		0.04569			58.37	16.65	0.4515	14.04	4.254	3.301	0.2148
3.5	0.01311	0.04523	0.2899	6.79	58.53	16.6	0.4512	14.12	4.261	3.315	0.2129
$\frac{3.51}{3.52}$	0.01293	0.04478	0.2887	6.853	58.689	16.55	0.4508	14.21	4.268	3.329	0.2111
$\frac{3.52}{3.53}$	0.01274	0.04433	0.2875	6.917 6.982	58.847	$16.5 \\ 16.46$	0.4504 0.45	14.29	4.275 4.282	3.342	0.2093 0.2075
	0.01256	0.04388	0.2864		59.005			14.37		3.356	
$\frac{3.54}{3.55}$	$\begin{array}{c} 0.01239 \\ 0.01221 \end{array}$	0.04344 0.043	0.2852 0.2841	7.047 7.113	59.162 59.318	16.41 16.36	0.4496 0.4492	14.45 14.54	4.289 4.296	3.37 3.384	0.2057 0.2039
3.56	0.01221 0.01204	0.043 0.04257	0.2829	7.113	59.318	16.31	0.4492	14.62	4.290	3.398	0.2039
$\frac{3.50}{3.57}$	0.01204	0.04237 0.04214	0.2829	7.246	59.629	16.27	0.4485	14.02	4.309	3.412	0.2022
3.58		0.04214 0.04172	0.2806	7.240	59.784	16.22	0.4481	14.79	4.316	3.412	0.2004 0.1987
3.59	0.01171 0.01155	0.04172 0.04131	0.2795	7.313	59.784	16.17	0.4481	14.79	4.310	3.44	0.1987
3.6	0.01133 0.01138	0.04131	0.2784	7.45	60.091	16.17	0.4474	14.95	4.323	3.454	0.197 0.1953
3.61	0.01138 0.01123	0.04049	0.2734 0.2773	7.519	60.091 60.244	16.13	0.4474 0.4471	14.95 15.04	4.336	3.468	0.1935 0.1936
3.62	0.01123 0.01107	0.04049	0.2773 0.2762	7.519		16.04	0.4471 0.4467	15.12	4.343	3.482	0.1930 0.192
3.63		0.03968		7.659		15.99	0.4467 0.4463	15.12 15.21	4.35	3.496	0.192
3.64	0.01092 0.01076	0.03908 0.03929	0.2751 0.274	7.73	60.549 60.7	15.99 15.95	0.446	15.21 15.29	4.356	3.490	0.1903
3.65	0.01070	0.03929	0.274	7.802	60.85	15.9	0.4456	15.38	4.363		0.1871
3.66	0.01062 0.01047	0.0389 0.03852	0.2729	7.874	61.001	15.86	0.4450 0.4453	15.46	4.369	$\frac{3.525}{3.539}$	0.1871
3.67	0.01047 0.01032	0.03852	0.2718 0.2707	7.947	61.15	15.80	0.4453 0.445	15.40 15.55	4.309		0.1839
3.68	0.01032	0.03776	0.2707	8.02	61.299	15.77	0.446	15.63	4.370	$\frac{3.553}{3.567}$	0.1839
3.69	0.01018 0.01004	0.03776	0.2686	8.02	61.447	15.72	0.4440 0.4443	15.03 15.72	4.382	3.582	0.1823
3.7	0.01004 0.009903	0.03739 0.03702	0.2675	8.169	61.595	15.68	0.4439	15.72	4.395	3.596	0.1807
				8.244	61.743		0.4439	15.89			
$\frac{3.71}{3.72}$	$\begin{array}{c} 0.009767 \\ 0.009633 \end{array}$	0.03665 0.03629	0.2665 0.2654	8.244	61.743	15.64 15.59	0.4430 0.4433	15.89 15.98	4.401	$\frac{3.611}{3.625}$	0.1777
3.73	0.009633			8.397	62.036	15.59 15.55	0.4433		4.408	3.64	0.1761
3.74		0.03594 0.03558	0.2644 0.2633	8.474	62.181		0.443 0.4426	16.07 16.15	4.414	$\frac{3.64}{3.654}$	0.1746
	0.00937					15.51	0.4420 0.4423				0.1731
3.75	0.009242	0.03524	0.2623	8.552	62.326	15.47		16.24	4.426	3.669	0.1717
3.76	0.009116	0.03489	0.2613	8.63	62.471	15.42	0.442	16.33	4.432	3.684	0.1702

3.77 Ö.008991 Ö.03455 Ö.2602 8.709 G2.615 15.38 Ö.4417 G.42 4.439 3.698 Ö.1687 3.78 Ö.008869 Ö.03325 D.2592 8.789 G2.758 15.34 O.441 16.59 4.451 3.713 O.1683 3.8 Ö.008629 Ö.03355 D.2572 8.916 63.044 15.26 O.4407 16.68 4.457 3.743 O.1631 3.81 Ö.008362 Ö.03325 Ö.2562 9.115 63.327 15.18 O.4404 16.76 4.469 3.777 O.1631 3.83 Ö.008836 Ö.03258 Ö.2522 9.366 63.748 15.09 0.4395 4.475 3.787 O.1633 3.84 Ö.008171 Ö.03292 2.366 63.748 15.09 0.4395 17.04 4.441 3.87 O.07344 0.03134 0.2522 9.366 63.748 15.09 0.4395 17.02 4.448 3.447 0.1589 3.89 <	14	m/m	0/0	T /T	1/1	Γ	l	1.1	n /m	. / .	T /T	
3.78 0.008869 0.03421 0.2529 8.789 62.758 15.34 0.4414 16.59 4.445 3.713 0.1673 3.79 0.008748 0.03328 0.2582 8.895 62.044 15.26 0.4407 16.68 4.457 3.728 0.1653 3.81 0.008512 0.03322 0.2552 9.15 63.044 15.26 0.4407 16.68 4.469 3.757 0.1617 3.81 0.008283 0.03229 0.2552 9.15 63.347 15.18 0.4401 16.68 4.469 3.757 0.1617 3.84 0.008171 0.03227 0.2522 9.366 63.748 15.05 0.4395 16.744 4.481 3.870 0.0508 3.85 0.00808 0.03134 0.2513 9.51 63.871 15.05 0.4395 17.44 4.487 3.877 0.1563 3.87 0.00733 0.03144 0.2433 0.521 64.020 14.98 0.4383 17.44	M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
3.79 0.008748 0.03388 0.2522 8.860 62.901 15.26 0.4407 16.68 4.451 3.722 0.1659 3.81 0.008612 0.03335 0.2522 9.9032 63.186 15.22 0.4404 16.77 4.463 3.757 0.1631 3.82 0.008396 10.329 0.2522 9.198 63.486 15.14 0.4398 16.96 4.469 3.772 0.1617 3.83 0.008171 0.03227 0.2532 9.282 63.668 15.09 0.4395 1.744 4.481 3.802 0.1667 3.85 0.00866 0.03195 0.2513 9.511 63.878 15.01 0.4389 1.713 4.487 3.817 0.0753 0.03164 0.2413 9.644 14.94 0.4383 1.744 4.504 3.82 0.1563 3.88 0.007532 0.03144 0.2449 9.879 64.141 14.90 0.438 1.744 4.504 3.824 3.99 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
3.8. 0.008629 0.03355 0.2572 8.951 63.044 15.26 0.4407 16.75 4.463 3.757 0.1631 3.81 0.008510 0.03322 0.2562 0.326 0.326 15.26 0.4404 16.76 4.469 3.757 0.1617 3.83 0.008383 0.03258 0.2522 0.198 63.468 15.14 0.4308 16.50 4.475 3.787 0.1613 3.84 0.00817 0.03227 0.2532 0.286 63.688 15.14 0.4308 16.50 4.475 3.787 0.1603 3.84 0.00817 0.03227 0.2532 0.326 63.688 15.15 0.4392 17.13 4.475 3.17 0.1576 3.86 0.00866 0.03195 0.5222 9.366 63.748 15.05 0.4392 17.13 4.475 3.817 0.1576 3.86 0.00751 0.03165 0.2513 0.451 63.887 15.01 0.4389 17.31 4.487 3.817 0.1576 3.86 0.007651 0.03165 0.2513 0.451 63.887 15.01 0.4389 17.31 4.495 3.832 0.1563 3.87 0.007841 0.03165 0.2523 0.362 64.164 14.94 0.4383 17.4 4.514 3.817 0.1563 3.89 0.007635 0.03074 0.2484 0.471 64.302 14.95 0.4383 17.4 4.514 3.898 0.1533 3.99 0.007331 0.03044 0.2494 0.498 64.475 14.82 0.4375 17.67 4.521 3.908 0.1533 3.91 0.007331 0.03044 0.2447 0.799 64.473 14.78 0.4375 17.67 4.521 3.908 0.1475 3.93 0.007331 0.03044 0.2448 0.077 64.473 14.78 0.4369 17.94 4.538 3.939 0.1475 3.93 0.007331 0.00398 0.2446 0.076 64.898 14.77 0.4366 17.94 4.538 3.954 0.1465 3.93 0.007331 0.0398 0.2436 0.106 64.984 14.75 0.4366 17.94 4.538 3.954 0.1465 3.93 0.007331 0.03998 0.2436 0.106 64.984 14.75 0.4366 17.94 4.538 3.954 0.1465 3.93 0.007331 0.03998 0.2436 0.106 64.984 14.75 0.4356 17.94 4.544 0.4366 17.94 4.544 0												
3.8.1 0.008512 0.03322 0.2562 9.032 6.3186 15.22 0.4404 16.77 4.63 3.777 0.1631 3.8.2 0.008396 0.0329 0.2552 9.115 63.327 15.18 0.4401 16.86 4.469 3.772 0.1617 3.8.3 0.008283 0.03258 0.2542 9.198 63.368 15.14 0.4388 16.95 4.475 3.787 0.1603 3.8.4 0.008171 0.03227 0.2532 9.366 63.748 15.05 0.4392 17.04 4.81 3.802 0.1589 3.8.5 0.007631 0.03134 0.2503 9.537 64.026 14.98 0.4386 17.31 4.498 3.822 0.1563 3.8.7 0.007631 0.03144 0.2448 9.711 64.164 14.98 0.4387 17.4 4.504 3.862 0.1532 3.9.9 0.007632 0.03044 0.2448 9.711 64.302 14.9 0.438 17.4												
3.82 0.008396 0.0329 0.2552 9.115 63.327 15.18 0.4401 16.86 4.469 3.772 0.1617 3.83 0.008217 0.03258 0.2424 9.198 63.468 15.09 0.4355 1.473 3.787 0.1603 3.84 0.00806 0.03195 0.2522 9.366 63.748 15.05 0.4395 17.13 4.481 3.802 0.1568 3.85 0.007651 0.03165 0.2532 9.366 63.748 15.05 0.4392 17.13 4.487 3.817 0.05744 0.03134 0.2503 9.451 66.887 15.10 0.4380 17.22 4.492 3.822 0.1563 3.88 0.007739 0.03104 0.2493 9.624 64.164 4.494 0.4381 17.4 4.504 3.882 0.1533 3.89 0.00733 0.03015 0.2464 9.888 64.576 14.82 0.4377 17.56 4.521 3.983 0.0676												
3.83 0.008283 0.03258 0.2542 9.198 63.468 15.14 0.4395 17.04 4.875 3.877 0.1603 3.84 0.008171 0.03227 0.2522 9.282 63.608 15.09 0.4392 17.13 4.887 3.817 0.1576 3.85 0.007841 0.03136 0.2523 9.366 63.884 15.01 0.4389 17.22 4.92 3.832 0.1563 3.87 0.007841 0.03134 0.2503 9.537 64.026 14.98 0.4383 17.31 4.99 3.847 0.1563 3.88 0.007635 0.03044 0.2448 9.711 64.302 14.9 0.438 17.49 4.51 3.838 0.151 3.99 0.007632 0.03044 0.2444 9.799 64.44 14.86 0.4377 17.58 4.51 3.98 0.153 3.90 0.00732 0.02986 0.2455 9.977 64.713 14.78 0.4375 17.67 4.												
3.84 0.008171 0.03227 0.2322 9.282 63.088 15.09 0.4395 17.04 4.841 3.802 0.1589 3.85 0.007951 0.03165 0.2512 9.366 63.748 15.05 0.4399 17.23 4.892 3.832 0.1656 3.87 0.007844 0.03134 0.2503 9.537 64.026 14.98 0.4389 17.24 4.92 3.832 0.163 3.88 0.007739 0.03104 0.2439 9.714 64.326 14.9 0.388 1.07635 0.03074 0.2444 9.799 64.44 14.86 0.4377 17.58 4.516 3.878 0.0533 3.91 0.007431 0.03015 0.2464 9.888 64.576 14.82 0.4375 17.67 4.521 3.998 0.0413 3.92 0.007431 0.03015 0.2464 9.888 64.576 14.82 0.4375 17.67 4.521 3.938 0.1485 3.93 0.007431												
3.85 0.00806 0.03195 0.2522 9.366 63.748 15.05 0.4392 17.13 4.487 3.817 0.1576 3.86 0.0079544 0.03134 0.2503 9.451 63.887 15.01 0.4389 17.22 4.492 3.832 0.1563 3.87 0.007634 0.03134 0.2503 9.537 64.026 14.98 0.4383 17.4 4.504 3.862 0.1536 3.89 0.007635 0.03044 0.2474 9.799 64.444 14.86 0.4377 17.58 4.516 3.893 0.1513 3.91 0.007431 0.30305 0.2446 9.88 64.576 14.82 0.4375 17.67 4.527 3.933 0.007332 0.02986 0.2446 10.07 64.848 14.74 0.4369 17.56 4.527 3.933 0.1465 3.93 0.007137 0.02992 0.2436 10.16 64.984 14.7 0.4369 17.56 4.527 3.933 0.1485												
3.86 0.007951 0.03165 0.2513 9.451 63.887 15.01 0.4389 17.22 4.492 3.832 0.1563 3.87 0.007844 0.03134 0.2503 9.537 64.026 14.98 0.4383 17.31 4.498 3.847 0.1549 3.88 0.007732 0.03014 0.2484 9.711 64.302 1.9 0.4383 17.49 4.51 3.862 0.1536 3.99 0.007532 0.03045 0.2444 9.799 64.44 1.482 0.4375 17.66 4.516 3.893 0.1485 3.91 0.007332 0.02986 0.2455 9.977 64.713 1.478 0.4372 1.76 4.521 3.993 0.1485 3.93 0.007137 0.02990 0.2426 10.05 66.188 14.74 0.4369 1.75 4.533 3.994 0.1484 3.94 0.007137 0.02920 0.2427 10.25 65.852 14.63 4.854 4.544 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
3.87 0.007844 0.03134 0.2503 9.537 64.026 1.4.98 0.4386 1.7.31 4.488 3.847 0.1549 3.88 0.0077695 0.03074 0.2484 9.711 64.302 1.4.94 0.4383 17.49 4.504 3.862 0.1536 3.89 0.007532 0.03044 0.2474 9.799 64.44 14.86 0.4377 17.58 4.516 3.893 0.1531 3.91 0.007431 0.03015 0.2464 9.888 64.576 14.82 0.4372 17.76 4.521 3.908 0.1497 3.92 0.007332 0.02986 0.2445 10.07 64.848 14.74 0.4366 17.85 4.533 3.999 0.1475 3.93 0.007137 0.02992 0.2427 10.26 65.118 14.66 0.4363 18.04 4.538 3.999 0.1435 3.95 0.006948 0.02874 0.2418 10.34 65.253 14.66 0.4363 18.04												
3.88 0.007739 0.03104 0.2493 9.624 64.164 1.4.94 0.4383 17.4 4.504 3.862 0.1536 3.89 0.007632 0.03014 0.2484 9.711 64.302 1.4.9 0.488 17.49 4.51 3.893 0.1531 3.91 0.007431 0.03015 0.2464 9.888 64.576 14.82 0.4375 17.67 4.521 3.908 0.1497 3.92 0.007332 0.02986 0.2446 10.07 64.848 14.74 0.4369 17.67 4.521 3.93 0.1485 3.93 0.007137 0.02992 0.2446 10.16 64.848 1.47 0.4366 17.94 4.338 3.954 0.1468 3.95 0.007042 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.13 4.56 4.55 4.51 4.59 0.4358 18.22 45.55 0.146 3.98 0.06675 0.0281 0.0248 1.55												
3.89 0.007635 0.0374 0.2484 9.711 64.302 1.4.9 0.438 17.49 4.51 3.878 0.1523 3.9 0.007532 0.03044 0.2474 9.799 64.44 14.86 0.4377 17.58 4.516 3.908 0.1197 3.91 0.007332 0.02986 0.2465 9.898 64.576 14.82 0.4375 17.67 4.521 3.908 0.1497 3.94 0.007332 0.02986 0.2446 10.07 64.713 14.78 0.4372 17.67 4.521 3.903 0.1485 3.94 0.007137 0.02992 0.2426 10.05 64.848 14.77 0.4366 17.94 4.534 3.969 0.1448 3.95 0.006948 0.02846 0.2427 10.25 65.352 14.53 0.4352 18.31 4.549 3.985 0.1433 3.97 0.006674 0.02819 0.2399 10.52 65.782 14.51 0.4352 18.31												
3.9 0.007532 0.0344 0.2474 9.799 64.44 14.86 0.4375 17.58 4.516 3.893 0.113 3.91 0.007431 0.02958 0.2455 9.977 64.713 14.78 0.4375 17.67 4.521 3.908 0.1487 3.92 0.007333 0.02958 0.2446 10.07 64.848 14.74 0.4369 17.85 4.533 3.939 0.1472 3.94 0.007137 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.04 4.544 3.969 0.006848 0.02478 10.248 65.318 14.63 0.436 18.13 4.549 3.985 0.1438 3.97 0.006675 0.02846 0.2408 10.44 65.386 14.59 0.4358 18.21 4.556 4.014 0.1423 3.98 0.006764 0.02819 0.2399 10.53 65.52 14.51 0.4358 18.21 4.55 4.014 1.444 0.4364												
3.91 0.007431 0.03015 0.2464 9.888 64.576 14.82 0.4375 17.67 4.521 3.908 0.1497 3.92 0.007332 0.02986 0.2455 9.977 64.713 14.78 0.4372 17.76 4.527 3.923 0.1485 3.93 0.007137 0.02929 0.2436 10.16 64.984 14.7 0.4366 17.94 4.538 3.954 0.146 3.95 0.007042 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.04 4.544 3.969 0.1448 3.96 0.006655 0.02846 0.2408 10.44 65.286 14.55 0.4355 18.31 4.56 4.016 0.1413 3.98 0.006764 0.02819 0.2399 10.52 65.652 14.55 0.4355 18.31 4.56 4.016 0.1413 3.99 0.006675 0.02730 0.2391 10.26 65.652 14.55 0.4352 18.41												
3.92 0.007332 0.02986 0.2455 9.977 64.713 14.78 0.4372 17.76 4.527 3.93 0.1485 3.93 0.007733 0.02958 0.2446 10.07 64.848 14.74 0.4369 17.85 4.533 3.939 0.1476 3.95 0.007042 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.04 4.544 3.969 0.1448 3.96 0.006848 0.02874 0.2418 10.34 65.253 14.55 0.4358 18.22 4.555 4 0.1423 3.97 0.006676 0.02849 0.2399 10.53 65.52 14.55 0.4358 18.22 4.555 4 0.1423 3.99 0.006675 0.02739 0.2399 10.63 65.52 14.51 0.4332 18.41 4.566 4.031 0.1376 4.01 0.006499 0.0274 0.3372 10.81 65.917 14.44 0.4347 18.59 4.5												
3.93 0.007233 0.02958 0.2446 10.07 64.848 14.74 0.4369 17.85 4.533 3.939 0.1472 3.94 0.007137 0.02929 0.2436 10.16 64.984 14.7 0.4366 17.94 4.538 3.954 0.146 3.95 0.00742 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.04 4.549 3.969 0.1448 3.96 0.006875 0.02846 0.2408 10.44 65.386 14.59 0.4358 18.22 4.555 4 0.1423 3.98 0.006764 0.02819 0.2399 10.53 65.52 14.51 0.4355 18.31 4.56 4.016 0.1413 3.99 0.006675 0.02766 0.2381 10.72 65.785 14.48 0.435 18.41 4.566 4.031 0.1396 4.01 0.006413 0.0274 0.2372 10.81 65.917 14.44 0.4347 18.59 4.												
3.94 0.007137 0.02929 0.2436 10.16 64.984 14.7 0.4366 17.94 4.538 3.954 0.148 3.95 0.007042 0.02902 0.2427 10.25 55.118 14.66 0.4363 18.04 4.544 3.969 0.1448 3.96 0.006848 0.02846 0.2408 10.44 65.325 14.59 0.4358 18.22 4.555 4 0.1423 3.98 0.006764 0.02819 0.2399 10.53 65.52 14.55 0.4355 18.31 4.566 4.016 0.1411 3.99 0.006675 0.02733 0.239 10.62 65.652 14.51 0.4355 18.41 4.566 4.031 0.1389 4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4344 18.59 4.577 4.062 0.1364 4.02 0.006413 0.02649 0.2354 11.01 66.179 14.37 0.4342 18.78												
3.95 0.007042 0.02902 0.2427 10.25 65.118 14.66 0.4363 18.04 4.544 3.969 0.1448 3.96 0.006948 0.02874 0.2418 10.34 65.253 14.63 0.436 18.13 4.549 3.985 0.1435 3.97 0.006675 0.02819 0.2399 10.53 65.562 14.55 0.4355 18.31 4.566 4.016 0.1413 3.99 0.006675 0.02793 0.239 10.62 65.652 14.51 0.4352 18.51 4.566 4.016 0.1379 4 0.006586 0.02766 0.2381 10.72 65.785 14.48 0.435 18.51 4.571 4.047 0.1388 4.01 0.006493 0.02643 0.0237 10.81 65.917 14.44 0.4344 18.69 4.582 4.078 0.1376 4.02 0.00613 0.02663 0.2345 11.11 66.391 14.37 0.4346 18.99 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
3.96 0.006948 0.02874 0.2418 10.34 65.253 14.63 0.436 18.13 4.549 3.985 0.1435 3.97 0.006855 0.02846 0.2408 10.44 65.386 14.59 0.4358 18.22 4.555 4 0.1423 3.98 0.006764 0.02819 0.2399 10.53 65.52 14.55 0.4352 18.31 4.566 4.016 0.1411 3.99 0.006675 0.02776 0.2381 10.72 65.785 14.48 0.4352 18.41 4.566 4.03 0.1398 4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4344 18.69 4.577 4.062 0.1376 4.02 0.006413 0.02688 0.2354 11.01 66.179 14.37 0.4342 18.78 4.588 4.094 0.1334 4.05 0.006028 0.02638 0.2334 11.21 66.439 14.29 0.4336 18.97 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
3.97 0.006855 0.02846 0.2408 10.44 65.386 14.59 0.4358 18.22 4.555 4 0.1423 3.98 0.006764 0.02819 0.2399 10.53 65.52 14.55 0.4355 18.31 4.56 4.016 0.1411 3.99 0.006675 0.02793 0.239 10.62 65.652 14.51 0.4352 18.41 4.566 4.031 0.1399 4 0.006499 0.02744 0.2372 10.81 65.917 14.44 0.4347 18.59 4.577 4.042 0.1376 4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4347 18.59 4.577 4.047 4.03 0.006328 0.02663 0.2345 11.11 66.399 14.33 0.4342 18.78 4.588 4.094 0.1376 4.05 0.006163 0.02638 0.2336 11.21 66.499 14.29 0.4336 18.97 4.598 4.1												
3.98 0.006764 0.02819 0.2399 10.53 65.52 14.55 0.4355 18.31 4.56 4.016 0.1411 3.99 0.006675 0.02793 0.239 10.62 65.652 14.51 0.4352 18.41 4.566 4.031 0.1399 4 0.006586 0.02764 0.2372 10.81 65.785 14.48 0.435 18.51 4.571 4.047 0.1388 4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4347 18.59 4.577 4.062 0.1376 4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4342 18.878 4.588 4.094 0.1363 4.03 0.006163 0.02638 0.2345 11.11 66.399 14.33 0.4336 18.97 4.598 4.125 0.133 4.05 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06												
3.99 0.006675 0.02793 0.239 10.62 65.652 14.51 0.4352 18.41 4.566 4.031 0.1399 4 0.006586 0.02766 0.2381 10.72 65.785 14.48 0.435 18.5 4.571 4.047 0.1388 4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4347 18.59 4.577 4.062 0.1376 4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4344 18.69 4.582 4.078 0.1364 4.03 0.006245 0.02663 0.2345 11.11 66.309 14.33 0.4339 18.88 4.593 4.11 0.1342 4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4334 18.90 4.604 4.141 0.1313 4.06 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16		0.006855										
4 0.006586 0.02766 0.2381 10.72 65.785 14.48 0.435 18.5 4.571 4.047 0.1388 4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4347 18.59 4.577 4.062 0.1376 4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4344 18.69 4.582 4.078 0.1364 4.03 0.006328 0.02663 0.2345 11.11 66.309 14.33 0.4339 18.88 4.593 4.11 0.1342 4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.05 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.141 0.1318 4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16	3.98	0.006764	0.02819				14.55				4.016	
4.01 0.006499 0.0274 0.2372 10.81 65.917 14.44 0.4347 18.59 4.577 4.062 0.1376 4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4344 18.69 4.582 4.078 0.1364 4.03 0.006328 0.02688 0.2354 11.01 66.179 14.37 0.4342 18.78 4.588 4.094 0.1353 4.04 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.06 0.006082 0.02513 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.141 0.1319 4.07 0.006002 0.02589 0.2311 11.51 66.898 14.22 0.4331 19.16 4.604 4.114 0.133 4.08 0.005923 0.02546 0.231 11.61 66.954 14.15 0.4329 19.35	3.99									4.566	4.031	
4.02 0.006413 0.02714 0.2363 10.91 66.048 14.4 0.4344 18.69 4.582 4.078 0.1364 4.03 0.006328 0.02688 0.2354 11.01 66.179 14.37 0.4342 18.78 4.588 4.094 0.1353 4.04 0.006245 0.02638 0.2336 11.11 66.309 14.33 0.4336 18.87 4.598 4.11 0.1342 4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.06 0.006082 0.02549 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02546 0.231 11.51 66.896 14.15 0.4329 19.25 4.614 4.173 0.1286 4.19 0.005845 0.0254 0.2301 11.61 66.954 14.15 0.4326 19.44	4	0.006586	0.02766			65.785	14.48					0.1388
4.03 0.006328 0.02688 0.2354 11.01 66.179 14.37 0.4342 18.78 4.588 4.094 0.1353 4.04 0.006245 0.02663 0.2345 11.11 66.309 14.33 0.4339 18.88 4.593 4.11 0.1342 4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.06 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.11 0.1319 4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02546 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005845 0.02447 0.2293 11.71 67.082 14.12 0.4324 19.44	4.01					65.917	14.44				4.062	0.1376
4.04 0.006245 0.02663 0.2345 11.11 66.309 14.33 0.4339 18.88 4.593 4.11 0.1342 4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.06 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.141 0.1319 4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02564 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005845 0.02516 0.2293 11.71 67.082 14.12 0.4326 19.35 4.619 4.189 0.1286 4.11 0.005694 0.02493 0.22281 11.92 67.336 14.05 0.4319 19.64	4.02	0.006413	0.02714	0.2363	10.91	66.048	14.4	0.4344	18.69	4.582	4.078	0.1364
4.05 0.006163 0.02638 0.2336 11.21 66.439 14.29 0.4336 18.97 4.598 4.125 0.133 4.06 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.141 0.1319 4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02564 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4326 19.35 4.619 4.189 0.1286 4.11 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4324 19.44 4.624 4.205 0.1276 4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64	4.03				11.01							0.1353
4.06 0.006082 0.02613 0.2327 11.31 66.569 14.26 0.4334 19.06 4.604 4.141 0.1319 4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02544 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005769 0.02546 0.2301 11.61 66.954 14.15 0.4326 19.35 4.619 4.189 0.1286 4.1 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4324 19.44 4.624 4.205 0.1276 4.11 0.005694 0.02493 0.2284 11.82 67.209 14.08 0.4319 19.64 4.63 4.221 0.1264 4.12 0.005619 0.0247 0.2267 12.03 67.462 14.01 0.4316 19.73												
4.07 0.006002 0.02589 0.2319 11.41 66.698 14.22 0.4331 19.16 4.609 4.157 0.1308 4.08 0.005923 0.02564 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005845 0.0254 0.2301 11.61 66.954 14.15 0.4326 19.35 4.619 4.189 0.1286 4.11 0.005769 0.02493 0.2284 11.82 67.209 14.08 0.4321 19.54 4.63 4.221 0.1265 4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.635 4.237 0.1265 4.13 0.005546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4311 19.93									18.97	4.598	4.125	
4.08 0.005923 0.02564 0.231 11.51 66.826 14.19 0.4329 19.25 4.614 4.173 0.1297 4.09 0.005845 0.0254 0.2301 11.61 66.954 14.15 0.4326 19.35 4.619 4.189 0.1286 4.1 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4324 19.44 4.624 4.205 0.1276 4.11 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.63 4.221 0.1256 4.13 0.005619 0.0247 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 <th< td=""><td></td><td>0.006082</td><td></td><td></td><td>11.31</td><td></td><td></td><td></td><td></td><td>4.604</td><td></td><td>0.1319</td></th<>		0.006082			11.31					4.604		0.1319
4.09 0.005845 0.0254 0.2301 11.61 66.954 14.15 0.4326 19.35 4.619 4.189 0.1286 4.1 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4324 19.44 4.624 4.205 0.1276 4.11 0.005694 0.02493 0.2284 11.82 67.209 14.08 0.4321 19.54 4.63 4.221 0.1265 4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.635 4.237 0.1254 4.13 0.00546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.65 4.285 0.1234 4.15 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
4.1 0.005769 0.02516 0.2293 11.71 67.082 14.12 0.4324 19.44 4.624 4.205 0.1276 4.11 0.005694 0.02493 0.2284 11.82 67.209 14.08 0.4321 19.54 4.63 4.221 0.1265 4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.635 4.237 0.1254 4.13 0.005546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4311 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 <												
4.11 0.005694 0.02493 0.2284 11.82 67.209 14.08 0.4321 19.54 4.63 4.221 0.1265 4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.635 4.237 0.1254 4.13 0.005546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.84 0.4304 20.22												
4.12 0.005619 0.0247 0.2275 11.92 67.336 14.05 0.4319 19.64 4.635 4.237 0.1254 4.13 0.005546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 <												
4.13 0.005546 0.02447 0.2267 12.03 67.462 14.01 0.4316 19.73 4.64 4.253 0.1244 4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.2 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 <	4.11	0.005694	0.02493		11.82	67.209		0.4321	19.54	4.63	4.221	0.1265
4.14 0.005474 0.02424 0.2258 12.14 67.588 13.98 0.4314 19.83 4.645 4.269 0.1234 4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.456 13.74 0.4299 20.41 <t< td=""><td>4.12</td><td>0.005619</td><td></td><td></td><td></td><td>67.336</td><td>14.05</td><td></td><td></td><td>4.635</td><td></td><td></td></t<>	4.12	0.005619				67.336	14.05			4.635		
4.15 0.005403 0.02401 0.225 12.24 67.713 13.94 0.4311 19.93 4.65 4.285 0.1223 4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4	4.13	0.005546	0.02447	0.2267		67.462	14.01	0.4316	19.73	4.64	4.253	0.1244
4.16 0.005333 0.02379 0.2242 12.35 67.838 13.91 0.4309 20.02 4.655 4.301 0.1213 4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4	4.14	0.005474	0.02424	0.2258	12.14	67.588	13.98	0.4314	19.83	4.645	4.269	0.1234
4.17 0.005264 0.02357 0.2233 12.46 67.963 13.88 0.4306 20.12 4.66 4.318 0.1203 4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.6	$4.\overline{15}$					$67.\overline{713}$	13.94			4.65		0.1223
4.18 0.005195 0.02335 0.2225 12.57 68.087 13.84 0.4304 20.22 4.665 4.334 0.1193 4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.69										4.655		
4.19 0.005128 0.02313 0.2217 12.68 68.21 13.81 0.4302 20.32 4.67 4.35 0.1183 4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135	4.17									4.66		0.1203
4.2 0.005062 0.02292 0.2208 12.79 68.333 13.77 0.4299 20.41 4.675 4.367 0.1173 4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135	4.18	0.005195	0.02335	0.2225	12.57	68.087	13.84	0.4304	20.22	4.665	4.334	0.1193
4.21 0.004997 0.02271 0.22 12.9 68.456 13.74 0.4297 20.51 4.68 4.383 0.1164 4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135			0.02313	0.2217	12.68	68.21	13.81	0.4302	20.32	4.67	4.35	0.1183
4.22 0.004932 0.0225 0.2192 13.02 68.578 13.71 0.4295 20.61 4.685 4.399 0.1154 4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135	4.2	0.005062	0.02292	0.2208	12.79	68.333	13.77	0.4299	20.41	4.675	4.367	0.1173
4.23 0.004869 0.02229 0.2184 13.13 68.7 13.67 0.4292 20.71 4.69 4.416 0.1144 4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135	4.21	0.004997	0.02271	0.22	12.9	68.456	13.74	0.4297	20.51	4.68	4.383	0.1164
4.24 0.004806 0.02209 0.2176 13.25 68.821 13.64 0.429 20.81 4.694 4.432 0.1135	4.22		0.0225	0.2192	13.02	68.578	13.71	0.4295	20.61	4.685	4.399	0.1154
	4.23	0.004869	0.02229	0.2184	13.13	68.7	13.67	0.4292	20.71	4.69	4.416	0.1144
$oxed{4.25 \mid 0.004745 \mid 0.02189 \mid 0.2168 \mid 13.36 \mid 68.942 \mid 13.61 \mid 0.4288 \mid 20.91 \mid 4.699 \mid 4.449 \mid 0.1126}$	4.24	0.004806	0.02209	0.2176	13.25	68.821	13.64	0.429	20.81	4.694	4.432	0.1135
	4.25	0.004745	0.02189	0.2168	13.36	68.942	13.61	0.4288	20.91	4.699	4.449	0.1126

14	m /m	. / .	T/T	A / A		l	M	n /m	0 /0	T /T	n /n
M 106	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	12.50	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
4.26	0.004684	0.02169	0.216	13.48	69.063	13.58	0.4286	21.01	4.704	4.465	0.1116
4.27	0.004624	0.02149	0.2152	13.6	69.183	13.54	0.4283	21.11	4.709	4.482	0.1107
4.28	0.004565	0.02129	0.2144	13.72	69.303	13.51	0.4281	21.2	4.713	4.499	0.1098
4.29	0.004507	0.0211	0.2136	13.83	69.422	13.48	0.4279	21.3	4.718	4.515	0.1089
4.3	0.004449	0.0209	0.2129	13.95	69.541	13.45	0.4277	21.4	4.723	4.532	0.108
4.31	0.004393	0.02071	0.2121	14.08	69.659	13.42	0.4275	21.51	4.728	4.549	0.1071
4.32	0.004337	0.02052 0.02034	0.2113	14.2	69.777	13.38	0.4272	21.61	4.732	4.566	0.1062
4.33	$\begin{array}{c} 0.004282 \\ 0.004228 \end{array}$	0.02034 0.02015	0.2105 0.2098	14.32	69.895 70.012	13.35 13.32	0.427 0.4268	21.71 21.81	4.737 4.741	4.583	0.1054 0.1045
4.34				14.45							
4.35	0.004174	0.01997	0.209	14.57	70.129	13.29	0.4266	21.91	4.746	4.616	0.1036
4.36	0.004121	0.01979	0.2083	14.7	70.245	13.26	0.4264	22.01	4.75	4.633	0.1028
4.37	0.004069	0.01961	0.2075	14.82	70.361	13.23	0.4262	22.11	4.755	4.65	0.102
4.38	0.004018	0.01944	0.2067	14.95	70.476	13.2	0.426	22.22	4.76	4.668	0.1011
4.39	0.003968	0.01926	0.206	15.08	70.591	13.17	0.4258	22.32	4.764	4.685	0.1003
4.4	0.003918	0.01909	0.2053	15.21	70.706	13.14	0.4255	22.42	4.768	4.702	0.09948
4.41	0.003868	0.01892	0.2045	15.34	70.82	13.11	0.4253	22.52	4.773	4.719	0.09867
4.42	0.00382	0.01875	0.2038	15.47	70.934	13.08	0.4251	22.63	4.777	4.736	0.09787
4.43	0.003772	0.01858	0.203	15.61	71.048	13.05	0.4249	22.73	4.782	4.753	0.09707
4.44	0.003725	0.01841	0.2023	15.74	71.161	13.02	0.4247	22.83	4.786	4.771	0.09628
4.45	0.003678	0.01825	0.2016 0.2009	15.87	71.274	12.99	0.4245	22.94	4.79	4.788	0.0955
4.46	0.003633	0.01808		16.01	71.386	12.96	0.4243	23.04	4.795	4.805 4.823	0.09473
4.47	0.003587	0.01792	0.2002	16.15	71.498	12.93	0.4241	23.14	4.799		0.09396
4.48	0.003543	0.01776	0.1994	16.28	71.61	12.9	0.4239	23.25	4.803	4.84	0.0932
4.49	0.003499	0.01761	0.1987	16.42 16.56	71.721	12.87	0.4237 0.4236	23.35 23.46	4.808 4.812	4.858	0.09244
4.51	$\begin{array}{c} 0.003455 \\ 0.003412 \end{array}$	$\begin{array}{c} 0.01745 \\ 0.01729 \end{array}$	0.198 0.1973	16.56	71.832 71.942	12.84 12.81	0.4234	23.56	4.812	4.875 4.893	0.0917 0.09096
4.51	0.003412 0.00337	0.01729 0.01714	0.1973	16.84	72.052	12.78	0.4234	23.67	4.810	4.093	0.09090
4.53	0.00337	0.01714 0.01699	0.1960 0.1959	16.99	72.052	12.75	0.4232 0.423	23.77	4.824	4.91	0.09022
4.54	0.003328	0.01684	0.1959 0.1952	17.13	72.102 72.271	12.73	0.423 0.4228	23.88	4.829	4.946	0.08878
4.55	0.003233 0.003247	0.01669	0.1932 0.1945	17.13	72.38	12.72	0.4226 0.4226	23.99	4.833	4.963	0.08806
4.56	0.003247 0.003207	0.01654	0.1949	17.42	72.489	12.67	0.4224	24.09	4.837	4.981	0.08735
4.57	0.003168	0.01634	0.1932	17.57	72.597	12.64	0.4224 0.4222	24.2	4.841	4.999	0.08665
4.58	0.003100	0.01625	0.1935	17.72	72.705	12.61	0.422	24.31	4.845	5.017	0.08596
4.59	0.00309	0.01611	0.1918	17.87	72.812	12.58	0.4219	24.41	4.849	5.034	0.08527
4.6	0.003053		0.1911	18.02	72.919			24.52	4.853	5.052	0.08459
4.61	0.003015	0.01583	0.1905	18.17	73.026	12.53	0.4215	24.63	4.857	5.07	0.08391
4.62	0.002978	0.01569	0.1898	18.32	73.132	12.5	0.4213	24.74	4.861	5.088	0.08324
4.63	0.002942	0.01556	0.1891	18.48	73.238	12.47	0.4211	24.84	4.865	5.106	0.08257
4.64	0.002906	0.01542	0.1885	18.63	73.344	12.45	0.421	24.95	4.869	5.124	0.08192
4.65	0.002871	0.01529	0.1878	18.79	73.449	12.42	0.4208	25.06	4.873	5.142	0.08126
4.66	0.002836	0.01515	0.1872	18.94	73.554	12.39	0.4206	25.17	4.877	5.161	0.08062
4.67	0.002802	0.01502	0.1865	19.1	73.659	12.36	0.4204	25.28	4.881	5.179	0.07998
4.68	0.002768	0.01489	0.1859	19.26	73.763	12.34	0.4203	25.39	4.885	5.197	0.07934
4.69	0.002734	0.01476	0.1852	19.42	73.867	12.31	0.4201	25.5	4.889	5.215	0.07871
4.7	0.002701	0.01464	0.1846	19.58	73.97	12.28	0.4199	25.61	4.893	5.233	0.07809
4.71	0.002669	0.01451	0.1839	19.75	74.073	12.26	0.4197	25.71	4.896	5.252	0.07747
4.72	0.002637	0.01438	0.1833	19.91	74.176	12.23	0.4196	25.82	4.9	5.27	0.07685
4.73	0.002605	0.01426	0.1827	20.07	74.279	12.21	0.4194	25.94	4.904	5.289	0.07625
4.74	0.002573	0.01414	0.182	20.24	74.381	12.18	0.4192	26.05	4.908	5.307	0.07564
		· · · · •								1	

7.6	1	,	m /m	1 4 / 4		1	1.6	. ,	, , , , , , , , , , , , , , , , , , ,	m /m	1 /
M 75	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 74.400	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
4.75	0.002543	0.01402	0.1814	20.41	74.482	12.15	0.4191	26.16	4.912	5.325	0.07505
4.76	0.002512	0.0139	0.1808	20.58	74.584	12.13	0.4189	26.27	4.915	5.344	0.07445
4.77	0.002482	0.01378	0.1802	20.75	74.685	12.1	0.4187	26.38	4.919	5.363	0.07387
4.78	0.002452	0.01366	0.1795	20.92	74.786	12.08	0.4186	26.49	4.923	5.381	0.07329
4.79	0.002423	0.01354	0.1789	21.09	74.886	12.05	0.4184	26.6	4.926	5.4	0.07271
4.8	0.002394	0.01343	0.1783	21.26	74.986	12.02	0.4183	26.71	4.93	5.418	0.07214
4.81	0.002366	0.01331	0.1777	21.44	75.086	12	0.4181	26.83	4.934	5.437	0.07157
4.82	0.002338	0.0132	0.1771	21.61	75.185	11.97	0.4179	26.94	4.937	5.456	0.07101
4.83	0.00231	0.01309	0.1765	21.79	75.285	11.95	0.4178	27.05	4.941	5.475	0.07046
4.84	0.002283	0.01298	0.1759	21.97	75.383	11.92	0.4176	27.16	4.945	5.493	0.06991
4.85	0.002255	0.01287	0.1753	22.15	75.482	11.9	0.4175	27.28	4.948	5.512	0.06936
4.86	0.002229	0.01276	0.1747	22.33	75.58	11.87	0.4173	27.39	4.952	5.531	0.06882
4.87	0.002202	0.01265	0.1741	22.51	75.678	11.85	0.4172	27.5	4.955	5.55	0.06828
4.88	0.002177	0.01254	0.1735	22.7	75.775	11.82	0.417	27.62	4.959	5.569	0.06775
4.89	0.002151	0.01244	0.1729	22.88	75.872	11.8	0.4169	27.73	4.962	5.588	0.06722
4.9	0.002126	0.01233	0.1724	23.07	75.969	11.78	0.4167	27.85	4.966	5.607	0.0667
4.91	0.002101	0.01223	0.1718	23.25	76.066	11.75	0.4165	27.96	4.969	5.626	0.06618
4.92	0.002076	0.01213	0.1712	23.44	76.162	11.73	0.4164	28.07	4.973	5.646	0.06567
4.93	0.002052	0.01202	0.1706	23.63	76.258	11.7	0.4163	28.19	4.976	5.665	0.06516
4.94	0.002028	0.01192	0.17	23.82	76.353	11.68	0.4161	28.3	4.98	5.684	0.06465
4.95	0.002004	0.01182	0.1695	24.02	76.449	11.66	0.416	28.42	4.983	5.703	0.06415
4.96	0.001981	0.01173	0.1689	24.21	76.544	11.63	0.4158	28.54	4.987	5.722	0.06366
4.97	0.001957	0.01163	0.1683	24.41	76.638	11.61	0.4157	28.65	4.99	5.742	0.06317
4.98	0.001935	0.01153	0.1678	24.6	76.732	11.58	0.4155	28.77	4.993	5.761	0.06268
4.99	0.001912	0.01144	0.1672	24.8	76.826	11.56	0.4154	28.88	4.997	5.781	0.0622
5	0.00189	0.01134	0.1667	25	76.92	11.54	0.4152	29	5	5.8	0.06172
5.01	0.001868	0.01125	0.1661	25.2	77.014	11.51	0.4151	29.12	5.003	5.819	0.06124
5.02	0.001847	0.01115	0.1656	25.4	77.107	11.49	0.4149	29.23	5.007	5.839	0.06077
5.03	0.001825	0.01106	0.165	25.61	77.2	11.47	0.4148	29.35	5.01	5.859	0.0603
5.04	0.001804	0.01097	0.1645	25.81	77.292	11.44	0.4147	29.47	5.013	5.878	0.05984
5.05	0.001783	0.01088	0.1639	26.02	77.384	11.42	0.4145	29.59	5.016	5.898	0.05938
5.06	0.001763	0.01079	0.1634	26.22	77.476	11.4	0.4144	29.7	5.02	5.917	0.05893
5.07	0.001742	0.0107	0.1628	26.43	77.568	11.38	0.4142	29.82	5.023	5.937	0.05848
5.08	0.001722	0.01061	0.1623	26.64	77.659	11.35	0.4141	29.94	5.026	5.957	0.05803
5.09	0.001703		0.1618		77.75	11.33 11.31		30.06	5.029	5.977	0.05759
5.1	0.001683	0.01044 0.01035	0.1612	27.07 27.28	77.841	11.31	0.4138 0.4137	30.18	5.033	5.997	0.05715
$\frac{5.11}{5.12}$	0.001664 0.001645		0.1607 0.1602	27.28	77.931	11.29		30.3	5.036	6.016	0.05672
		0.01027 0.01019		27.72	78.021	11.20	0.4136		5.039	6.036 6.056	0.05629
5.13	$\begin{array}{c} 0.001626 \\ 0.001608 \end{array}$		0.1597		78.111 78.201	11.24	0.4134	30.54	5.042		$\begin{array}{c} 0.05586 \\ 0.05543 \end{array}$
5.14	0.001608 0.001589	0.0101 0.01002	0.1591	27.94 28.16			0.4133	30.66	5.045	6.076	
5.15		0.01002 0.009939	0.1586		78.29 78.379	11.2	0.4132	30.78	5.048	6.096	0.05501
5.16	0.001571	0.009939	0.1581 0.1576	28.38 28.6	78.468	11.17 11.15	0.413 0.4129	$30.9 \\ 31.02$	5.051	6.116	0.0546
	0.00153			28.83		11.13	0.4129 0.4128		5.054	6.137	0.05418
5.18	$\begin{array}{c} 0.001536 \\ 0.001518 \end{array}$	0.009778 0.009699	0.1571 0.1566	29.06	78.556 78.645	11.13	0.4128 0.4126	31.14 31.26	5.058 5.061	6.157 6.177	0.05377 0.05337
$\frac{5.19}{5.2}$	0.001518 0.001501	0.009699	0.1561	29.00	78.732	11.11	0.4120 0.4125	31.38	5.061 5.064	6.197	0.05337 0.05297
$\frac{5.2}{5.21}$	0.001301	0.00962 0.009543	0.1501 0.1555	29.28	78.82	11.09	0.4123 0.4124	31.5	5.067	6.217	0.05297 0.05257
$\frac{5.21}{5.22}$	0.001484 0.001468	0.009345	0.1555	29.51	78.907	11.07	0.4124	31.62	5.007	6.238	0.05257 0.05217
5.23	0.001408 0.001451	0.009466	0.153 0.1545	29.74	78.994	11.04	0.4123	31.75	5.073	6.258	0.05217 0.05178
მ.⊿პ	0.001491	0.009389	0.1040	∠9.9ŏ	10.994	11.02	0.4121	91.79	0.073	0.208	0.00178

M	n/n	0/0	T/T	A / A	l		M_2	n /n	0 /0	T/T	n /n
$\frac{M}{5.24}$	$p/p_i = 0.001435$	$\frac{\rho/\rho_i}{0.009314}$	$\begin{array}{ c c }\hline T/T_i\\0.154\end{array}$	$A/A_* = 30.21$	$\frac{\nu}{79.081}$	$\frac{\mu}{11}$	0.412	$\frac{p_2/p_1}{31.87}$	$\frac{\rho_2/\rho_1}{5.076}$	$\frac{T_2/T_1}{6.278}$	p_{i2}/p_{i1} 0.05139
5.25	0.001433	0.009314	0.154 0.1536	30.45	79.061	10.98	0.412	31.99	5.079	6.299	0.05139
5.26	0.001419	0.009239	0.1530 0.1531	30.43	79.108 79.254	10.96	0.4119	32.11	5.082	6.319	0.051 0.05062
5.27	0.001403	0.009103	0.1531 0.1526	30.92	79.234	10.94	0.4116	32.11	5.085	6.34	0.05002 0.05024
5.28	0.001387	0.009092	0.1520 0.1521	31.16	79.426	10.94	0.4115	32.24	5.088	6.36	0.03024 0.04987
5.29	0.001372	0.003013	0.1521	31.41	79.420	10.92	0.4113 0.4114	32.48	5.09	6.381	0.0495
5.3	0.001330	0.008947	0.1511	31.65	79.596	10.88	0.4114	32.40	5.093	6.401	0.04913
5.31	0.001341	0.008805	0.1511	31.89	79.681	10.85	0.4112	32.73	5.096	6.422	0.04876
5.32	0.001311	0.008734	0.1501	32.14	79.766	10.83	0.411	32.85	5.099	6.443	0.0484
5.33	0.001297	0.008665	0.1497	32.39	79.85	10.81	0.4109	32.98	5.102	6.464	0.04804
5.34	0.001282	0.008596	0.1492	32.64	79.934	10.79	0.4108	33.1	5.105	6.484	0.04768
5.35	0.001268	0.008528	0.1487	32.89	80.018	10.77	0.4107	33.23	5.108	6.505	0.04733
5.36	0.001254	0.008461	0.1482	33.14	80.102	10.75	0.4106	33.35	5.111	6.526	0.04697
5.37	0.00124	0.008394	0.1478	33.4	80.185	10.73	0.4104	33.48	5.113	6.547	0.04663
5.38	0.001227	0.008327	0.1473	33.66	80.268	10.71	0.4103	33.6	5.116	6.568	0.04628
5.39	0.001213	0.008262	0.1468	33.91	80.351	10.69	0.4102	33.73	5.119	6.589	0.04594
5.4	0.0012	0.008197	0.1464	34.17	80.433	10.67	0.4101	33.85	5.122	6.61	0.0456
5.41	0.001187	0.008132	0.1459	34.44	80.516	10.65	0.41	33.98	5.125	6.631	0.04526
5.42	0.001174	0.008068	0.1454	34.7	80.598	10.63	0.4099	34.11	5.127	6.652	0.04493
5.43	0.001161	0.008005	0.145	34.96	80.679	10.61	0.4098	34.23	5.13	6.673	0.0446
5.44	0.001148	0.007942	0.1445	35.23	80.761	10.59	0.4096	34.36	5.133	6.694	0.04427
5.45	0.001135	0.00788	0.1441	35.5	80.842	10.57	0.4095	34.49	5.136	6.715	0.04395
5.46	0.001123	0.007818	0.1436	35.77	80.923	10.55	0.4094	34.61	5.138	6.736	0.04362
5 47	0.001111	0.007757	0.1432	36.04	81.004	10.53	0.4093	34.74	5.141	6.758	0.0433
5.47	0.001111	0.001131	0.1402	30.04	01.004	10.00	0.4030	94.14	0.111	0.100	0.0455
5.48	0.001111	0.007697	0.1432 0.1427	36.32	81.084	10.55	0.4093	34.87	5.144	6.779	0.0433
						10.51 10.49		34.87 35			
5.48 5.49 5.5	0.001099 0.001087 0.001075	0.007697 0.007637 0.007578	0.1427 0.1423 0.1418	36.32 36.59 36.87	81.084 81.165 81.245	10.51 10.49 10.48	0.4092 0.4091 0.409	34.87 35 35.12	5.144 5.146 5.149	6.779 6.8 6.822	0.04299 0.04267 0.04236
5.48 5.49 5.5 5.51	0.001099 0.001087 0.001075 0.001063	0.007697 0.007637 0.007578 0.007519	0.1427 0.1423 0.1418 0.1414	36.32 36.59 36.87 37.15	81.084 81.165 81.245 81.325	10.51 10.49 10.48 10.46	0.4092 0.4091 0.409 0.4089	34.87 35 35.12 35.25	5.144 5.146 5.149 5.152	6.779 6.8 6.822 6.843	0.04299 0.04267 0.04236 0.04205
5.48 5.49 5.5 5.51 5.52	0.001099 0.001087 0.001075 0.001063 0.001052	0.007697 0.007637 0.007578 0.007519 0.00746	0.1427 0.1423 0.1418 0.1414 0.141	36.32 36.59 36.87 37.15 37.43	81.084 81.165 81.245 81.325 81.404	10.51 10.49 10.48 10.46 10.44	0.4092 0.4091 0.409 0.4089 0.4088	34.87 35 35.12 35.25 35.38	5.144 5.146 5.149 5.152 5.154	6.779 6.8 6.822 6.843 6.865	0.04299 0.04267 0.04236 0.04205 0.04175
5.48 5.49 5.5 5.51 5.52 5.53	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403	0.1427 0.1423 0.1418 0.1414 0.141 0.1405	36.32 36.59 36.87 37.15 37.43 37.71	81.084 81.165 81.245 81.325 81.404 81.483	10.51 10.49 10.48 10.46 10.44 10.42	0.4092 0.4091 0.409 0.4089 0.4088 0.4086	34.87 35 35.12 35.25 35.38 35.51	5.144 5.146 5.149 5.152 5.154 5.157	6.779 6.8 6.822 6.843 6.865 6.886	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144
5.48 5.49 5.5 5.51 5.52 5.53 5.54	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401	36.32 36.59 36.87 37.15 37.43 37.71	81.084 81.165 81.245 81.325 81.404 81.483 81.563	10.51 10.49 10.48 10.46 10.44 10.42	0.4092 0.4091 0.409 0.4089 0.4088 0.4086 0.4085	34.87 35 35.12 35.25 35.38 35.51 35.64	5.144 5.146 5.149 5.152 5.154 5.157 5.159	6.779 6.8 6.822 6.843 6.865 6.886 6.908	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38	0.4092 0.4091 0.409 0.4089 0.4088 0.4086 0.4085 0.4084	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.28	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38 10.36	0.4092 0.4091 0.409 0.4089 0.4088 0.4086 0.4085 0.4084 0.4083	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04084 0.04054
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232 0.007177	0.1427 0.1423 0.1418 0.1414 0.1405 0.1401 0.1397 0.1392 0.1388	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38 10.36	0.4092 0.4091 0.409 0.4089 0.4088 0.4086 0.4085 0.4084 0.4083	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04084 0.04054 0.04025
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007345 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38 10.36 10.34 10.32	0.4092 0.4091 0.409 0.4089 0.4088 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04084 0.04054 0.04025 0.03996
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232 0.007177 0.007121 0.007067	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38 10.36 10.34 10.32	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.408	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04084 0.04054 0.03996 0.03967
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.6	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \\ 0.007067 \\ 0.007012 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 39.74	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032	10.51 10.49 10.48 10.46 10.44 10.42 10.4 10.38 10.36 10.34 10.32 10.31	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.408 0.4079	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04084 0.04054 0.04025 0.03996 0.03967 0.03938
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.6 5.61	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.000954	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 39.74 40.04	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109	10.51 10.49 10.48 10.46 10.44 10.42 10.38 10.36 10.34 10.32 10.31 10.29	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.408 0.4079 0.4078	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.172 5.175 5.177	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04084 0.04054 0.04025 0.03996 0.03938 0.0391
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.000954 0.0009438	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007345 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \\ 0.006905 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1375 0.1371 0.1367	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.34	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186	10.51 10.49 10.48 10.46 10.44 10.42 10.38 10.36 10.34 10.32 10.31 10.29 10.27	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4078 0.4077	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04014 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.61 5.62 5.63	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.000954 0.0009438 0.0009337	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007177 0.007121 0.007067 0.006959 0.006955 0.006853	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1371 0.1367 0.1363	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.34 40.64	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263	10.51 10.49 10.48 10.46 10.42 10.4 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4078 0.4077	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.175 5.175 5.185	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882 0.03854
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.61 5.62 5.63 5.64	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.0009438 0.0009337 0.0009237	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007245 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \\ 0.006853 \\ 0.0068 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375 0.1367 0.1363 0.1358	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.04 40.64 40.94	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 82.032 82.109 82.186 82.263 82.34	10.51 10.49 10.48 10.46 10.44 10.42 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23 10.21	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4081 0.408 0.4079 0.4077 0.4076 0.4075	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.175 5.175 5.185	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125	0.04299 0.04267 0.04236 0.04205 0.04175 0.04114 0.04014 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882 0.03854 0.03826
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62 5.63 5.64 5.65	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.000954 0.0009438 0.0009337 0.0009237 0.0009139	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232 0.007177 0.007121 0.007067 0.006959 0.00695 0.006853 0.0068 0.006748	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375 0.1371 0.1363 0.1358 0.1354	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.34 40.64 40.94 41.24	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263 82.34 82.417	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23 10.21 10.19	0.4092 0.4091 0.409 0.4089 0.4088 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4078 0.4077 0.4076 0.4075 0.4074	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882 0.03854 0.03826 0.03798
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.59 5.6 5.61 5.62 5.63 5.64 5.65 5.65	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.0009643 0.000954 0.0009337 0.0009139 0.0009041	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.007403 \\ 0.007289 \\ 0.007232 \\ 0.007177 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \\ 0.006853 \\ 0.0068 \\ 0.006748 \\ 0.006697 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375 0.1371 0.1367 0.1363 0.1358 0.1354 0.135	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.04 40.34 40.64 41.24 41.55	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263 82.34 82.417 82.493	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23 10.19 10.18	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4077 0.4076 0.4075 0.4074 0.4073	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.19	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147 7.169	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04084 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882 0.03854 0.03798 0.03771
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62 5.63 5.64 5.65 5.66 5.65 5.66 5.65	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.000954 0.0009438 0.0009337 0.0009139 0.0009041 0.0008945	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007289 0.007232 0.007177 0.007121 0.007067 0.006959 0.00695 0.006853 0.006748 0.006697 0.006646	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375 0.1367 0.1363 0.1358 0.1354 0.135	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.34 40.64 41.24 41.55 41.86	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263 82.34 82.417 82.493 82.569	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23 10.21 10.19 10.18	0.4092 0.4091 0.409 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4077 0.4076 0.4075 0.4074 0.4073 0.4072	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21 37.34	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.199	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147 7.169 7.191	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04084 0.04054 0.04025 0.03996 0.03996 0.03938 0.0391 0.03882 0.03854 0.03826 0.03798 0.03744
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62 5.63 5.64 5.65 5.65 5.65 5.66 5.67	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.000954 0.0009438 0.0009337 0.0009237 0.0009139 0.0009041 0.0008945 0.000885	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232 0.007177 0.007121 0.007067 0.006959 0.006853 0.0068 0.006697 0.006696	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1375 0.1371 0.1367 0.1363 0.1358 0.1354 0.1346 0.1342	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.74 40.04 40.34 40.64 40.94 41.24 41.55 41.86 42.17	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263 82.34 82.417 82.493 82.569 82.645	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.34 10.32 10.27 10.25 10.23 10.21 10.19 10.18 10.16	0.4092 0.4091 0.4099 0.4089 0.4086 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4078 0.4077 0.4076 0.4075 0.4074 0.4073 0.4072 0.4071	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21 37.34 37.47	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.19 5.192 5.195	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.103 7.125 7.147 7.169 7.191 7.213	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04084 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03882 0.03854 0.03826 0.03771 0.03744 0.03717
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62 5.63 5.64 5.65 5.65 5.66 5.67 5.68 5.69	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.000954 0.0009438 0.0009337 0.0009237 0.0009337 0.000941 0.0008945 0.000885 0.0008756	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.0074403 \\ 0.007289 \\ 0.007232 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \\ 0.006853 \\ 0.0068 \\ 0.006748 \\ 0.006697 \\ 0.006596 \\ 0.006596 \\ 0.006545 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1384 0.1379 0.1375 0.1371 0.1367 0.1363 0.1358 0.1354 0.1346 0.1342 0.1338	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.04 40.64 41.24 41.55 41.86 42.17 42.48	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 82.032 82.109 82.186 82.263 82.34 82.417 82.493 82.569 82.645 82.72	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.32 10.31 10.29 10.27 10.25 10.23 10.21 10.19 10.18 10.14 10.12	0.4092 0.4091 0.4099 0.4089 0.4086 0.4085 0.4084 0.4083 0.4081 0.4079 0.4077 0.4076 0.4075 0.4074 0.4073 0.4071 0.4071	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21 37.34 37.47 37.61	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.19 5.192 5.195 5.197	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147 7.169 7.191 7.213 7.236	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03854 0.03826 0.03771 0.03744 0.03717 0.03691
5.48 5.49 5.5 5.51 5.52 5.53 5.54 5.55 5.56 5.57 5.58 5.60 5.61 5.62 5.63 5.64 5.65 5.66 5.67 5.68 5.69 5.7	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.000954 0.0009438 0.0009337 0.0009237 0.0009139 0.0009041 0.000885 0.0008756 0.0008663	0.007697 0.007637 0.007578 0.007519 0.00746 0.007403 0.007345 0.007289 0.007232 0.007177 0.007121 0.007067 0.006959 0.00695 0.0068 0.006748 0.006697 0.006545 0.006496	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1388 0.1384 0.1379 0.1375 0.1371 0.1363 0.1358 0.1354 0.1342 0.1338 0.1334	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.04 40.04 41.24 41.55 41.86 42.17 42.48	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 81.954 82.032 82.109 82.186 82.263 82.34 82.417 82.493 82.569 82.645 82.72 82.796	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.34 10.32 10.31 10.29 10.27 10.25 10.23 10.21 10.19 10.18 10.16 10.14 10.12 10.1	0.4092 0.4091 0.4099 0.4089 0.4088 0.4085 0.4084 0.4083 0.4082 0.4081 0.4079 0.4078 0.4077 0.4076 0.4075 0.4074 0.4073 0.4071 0.4077 0.4069	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21 37.34 37.47 37.61 37.74	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.19 5.192 5.195 5.197 5.2	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147 7.169 7.191 7.213 7.236 7.258	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03854 0.03854 0.03771 0.03744 0.03717 0.03691 0.03664
$\begin{array}{c} 5.48 \\ 5.49 \\ \hline 5.5 \\ 5.51 \\ \hline 5.52 \\ \hline 5.53 \\ \hline 5.54 \\ \hline 5.55 \\ \hline 5.56 \\ \hline 5.57 \\ \hline 5.58 \\ \hline 5.60 \\ \hline 5.61 \\ \hline 5.62 \\ \hline 5.63 \\ \hline 5.64 \\ \hline 5.65 \\ \hline 5.66 \\ \hline 5.67 \\ \hline 5.68 \\ \hline 5.69 \\ \end{array}$	0.001099 0.001087 0.001075 0.001063 0.001052 0.00104 0.001029 0.001018 0.001007 0.0009961 0.0009853 0.0009748 0.000954 0.0009438 0.0009337 0.0009237 0.0009337 0.000941 0.0008945 0.000885 0.0008756	$\begin{array}{c} 0.007697 \\ 0.007637 \\ 0.007578 \\ 0.007519 \\ 0.00746 \\ 0.0074403 \\ 0.007289 \\ 0.007232 \\ 0.007121 \\ 0.007067 \\ 0.007012 \\ 0.006959 \\ 0.006853 \\ 0.0068 \\ 0.006748 \\ 0.006697 \\ 0.006596 \\ 0.006596 \\ 0.006545 \end{array}$	0.1427 0.1423 0.1418 0.1414 0.141 0.1405 0.1401 0.1397 0.1392 0.1384 0.1379 0.1375 0.1371 0.1367 0.1363 0.1358 0.1354 0.1346 0.1342 0.1338	36.32 36.59 36.87 37.15 37.43 37.71 38 38.28 38.57 38.86 39.15 39.44 40.04 40.04 40.64 41.24 41.55 41.86 42.17 42.48	81.084 81.165 81.245 81.325 81.404 81.483 81.563 81.641 81.72 81.798 81.876 82.032 82.109 82.186 82.263 82.34 82.417 82.493 82.569 82.645 82.72	10.51 10.49 10.48 10.46 10.44 10.38 10.36 10.32 10.31 10.29 10.27 10.25 10.23 10.21 10.19 10.18 10.14 10.12	0.4092 0.4091 0.4099 0.4089 0.4086 0.4085 0.4084 0.4083 0.4081 0.4079 0.4077 0.4076 0.4075 0.4074 0.4073 0.4071 0.4071	34.87 35 35.12 35.25 35.38 35.51 35.64 35.77 35.9 36.03 36.16 36.29 36.42 36.55 36.68 36.81 36.94 37.08 37.21 37.34 37.47 37.61	5.144 5.146 5.149 5.152 5.154 5.157 5.159 5.162 5.165 5.167 5.17 5.172 5.175 5.177 5.18 5.182 5.185 5.187 5.19 5.192 5.195 5.197	6.779 6.8 6.822 6.843 6.865 6.886 6.908 6.929 6.951 6.973 6.994 7.016 7.038 7.06 7.081 7.103 7.125 7.147 7.169 7.191 7.213 7.236	0.04299 0.04267 0.04236 0.04205 0.04175 0.04144 0.04114 0.04054 0.04025 0.03996 0.03967 0.03938 0.0391 0.03854 0.03854 0.03771 0.03744 0.03717 0.03691

14		- / -	Tr /Tr	4/4	I	l	1.1	/	. /.	Tr. /Tr	/
M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	$\frac{p_2/p_1}{20.14}$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
5.73	0.0008392	0.00635	0.1322	43.75	83.02	10.05	0.4066	38.14	5.207	7.324	0.03586
5.74	0.0008303	0.006302	0.1318	44.07	83.095	10.03	0.4065	38.27	5.209	7.347	0.03561
5.75	0.0008216	0.006254	0.1314	44.4	83.169	10.02	0.4064	38.41	5.212	7.369	0.03536
5.76	0.000813	0.006207	0.131	44.72	83.243	9.998	0.4063	38.54	5.214	7.391	0.0351
5.77	0.0008044	0.006161	0.1306	45.05	83.317	9.98	0.4062	38.68	5.217	7.414	0.03486
5.78	0.000796	0.006114	0.1302	45.38	83.39	9.963	0.4061	38.81	5.219	7.436	0.03461
5.79	0.0007876	0.006069	0.1298	45.72	83.464	9.946	0.406	38.94	5.221	7.459	0.03436
5.8	0.0007794	0.006023	0.1294	46.05	83.537	9.928	0.4059	39.08	5.224	7.481	0.03412
5.81	0.0007713	0.005978	0.129	46.39	83.61	9.911	0.4059	39.22	5.226	7.504	0.03388
5.82	0.0007632	0.005934	0.1286	46.72	83.682	9.894	0.4058	39.35	5.228	7.527	0.03364
5.83	0.0007553	0.005889	0.1282	47.07	83.755	9.877	0.4057	39.49	5.231	7.549	0.0334
5.84	0.0007474	0.005846	0.1279	47.41	83.827	9.86	0.4056	39.62	5.233	7.572	0.03317
5.85	0.0007396	0.005802	0.1275	47.75	83.899	9.842	0.4055	39.76	5.235	7.595	0.03293
5.86	0.000732	0.005759	0.1271	48.1	83.971	9.826	0.4054	39.9	5.237	7.618	0.0327
5.87	0.0007244	0.005716	0.1267	48.45	84.043	9.809	0.4053	40.03	5.24	7.64	0.03247
5.88	0.0007169	0.005674	0.1263	48.8	84.114	9.792	0.4052	40.17	5.242	7.663	0.03224
5.89	0.0007095	0.005632	0.126	49.15	84.185	9.775	0.4051	40.31	5.244	7.686	0.03202
5.9	0.0007021	0.00559	0.1256	49.51	84.256	9.758	0.405	40.45	5.246	7.709	0.03179
5.91	0.0006949	0.005549	0.1252	49.86	84.327	9.742	0.4049	40.58	5.249	7.732	0.03157
5.92	0.0006877	0.005508	0.1249	50.22	84.398	9.725	0.4049	40.72	5.251	7.755	0.03135
5.93	0.0006807	0.005468	0.1245	50.59	84.468	9.708	0.4048	40.86	5.253	7.778	0.03113
5.94	0.0006737	0.005428	0.1241	50.95	84.539	9.692	0.4047	41 14	5.255	7.801	0.03092
5.95	0.0006668	0.005388	0.1238	51.32	84.609	9.675	0.4046	41.14	5.257	7.824	0.0307
5.96	0.0006599	0.005348	0.1234	51.68	84.678	9.659	0.4045	41.28	5.26	7.848	0.03049
5.97	0.0006532	0.005309	0.123	52.05	84.748	9.643	0.4044	41.41	5.262	7.871	0.03028
5.98	0.0006465	0.00527	0.1227	52.43	84.817	9.626	0.4043	41.55	5.264	7.894	0.03007
5.99	0.0006399	0.005232	0.1223	52.8	84.887	9.61	0.4042	41.69	5.266	7.917	0.02986
6	0.0006334	0.005194	0.122	53.18	84.955	9.594	0.4042	41.83	5.268	7.941	0.02965
6.01	0.0006269	0.005156	0.1216	53.56	85.024	9.578	0.4041	$\frac{41.97}{42.11}$	5.27	7.964	0.02945
6.02	0.0006205	$\begin{array}{c} 0.005118 \\ 0.005081 \end{array}$	0.1212	53.94	85.093	9.562 9.546	0.404	42.11	5.273 5.275	7.987	0.02924
$\frac{6.03}{6.04}$	$\begin{array}{c} 0.0006142 \\ 0.000608 \end{array}$	0.005081 0.005044	0.1209 0.1205	54.32	85.161 85.23	9.540	0.4039 0.4038	42.23	5.277	8.011	0.02904
6.04			0.1203 0.1202	$\frac{54.71}{55.1}$	85.298	9.53	0.4036	42.4	5.279	8.034	0.02884 0.02864
	0.0006018	0.005008					0.4037			8.058	
6.06	$\begin{array}{c} 0.0005957 \\ 0.0005897 \end{array}$	0.004971	0.1198	55.49	85.365	9.498 9.482		42.68	5.281 5.283	8.081	0.02844
6.07				55.88	85.433 85.5	9.482 9.467				8.105	0.02825 0.02806
6.08	0.0005838	0.0049	0.1191 0.1188	56.28	85.568	9.467	0.4035	42.96	5.285 5.287	8.129	
6.09	0.0005779	0.004864		56.68		9.431 9.435	0.4034 0.4033	43.1		8.152	0.02786
6.1	0.0005721	0.004829	0.1185 0.1181	57.08	85.635 85.702			43.25	5.289	8.176	0.02767
6.11	0.0005663	$\begin{array}{c} 0.004795 \\ 0.00476 \end{array}$		57.48		9.42	0.4033	43.53	5.291	8.2	0.02748
6.12	$\begin{array}{c} 0.0005606 \\ 0.000555 \end{array}$		0.1178	57.88 58.29	85.768	9.404	0.4032	43.53	5.293	8.224	0.0273 0.02711
6.13	0.000535	$\begin{array}{c} 0.004726 \\ 0.004692 \end{array}$	0.1174 0.1171	58.7	85.835 85.901	9.389 9.373	0.4031 0.403	43.82	5.295 5.297	8.247 8.271	0.02711 0.02692
6.15	0.0005494 0.0005439	0.004692 0.004658	0.1171	59.11	85.967	9.358	0.403	43.96	5.297	8.295	0.02692 0.02674
		0.004638 0.004625				9.338	0.4029	43.90			
$\frac{6.16}{6.17}$	$\begin{array}{c} 0.0005385 \\ 0.0005331 \end{array}$	0.004625 0.004592	0.1164 0.1161	59.53 59.94	86.033 86.099	9.343 9.327	0.4029 0.4028	$\frac{44.1}{44.25}$	5.301 5.303	8.319 8.343	$\begin{array}{c} 0.02656 \\ 0.02638 \end{array}$
6.18	0.0005331 0.0005278	0.004592 0.004559	0.1161	60.36	86.164	9.327	0.4028 0.4027	44.25	5.305	8.367	0.02638 0.0262
6.19	0.0005278 0.0005225	0.004539 0.004527	0.1158 0.1154	60.79	86.23	9.312 9.297	0.4027	44.59	5.307	8.391	0.0262 0.02602
6.19	0.0005225	0.004327	0.1154 0.1151	61.21	86.295	9.297	0.4026 0.4025	44.68	5.309	8.415	0.02602 0.02584
6.21	0.0005173 0.0005122	0.004493 0.004463	0.1131	61.64	86.36	9.262 9.267	0.4025 0.4025	44.82	5.311	8.439	0.02564 0.02567
0.41	0.0000122	0.004403	0.1140	01.04	00.00	9.201	0.4020	44.04	0.911	0.439	0.02307

14	m /m	-/-	T/T	1/1	Γ	Γ	1.1	m /m	. / .	T /T	
$\frac{M}{6.22}$	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν ος 105	$\frac{\mu}{9.252}$	$M_2 = 0.4024$	$\frac{p_2/p_1}{44.07}$	$\frac{\rho_2/\rho_1}{5.313}$	T_2/T_1	p_{i2}/p_{i1}
6.23	$\begin{array}{c} 0.0005071 \\ 0.0005021 \end{array}$	0.004431	0.1144	62.07	86.425			44.97		8.464	0.0255
6.24		0.0044	0.1141 0.1138	62.5 62.93	86.489	9.237 9.222	0.4023 0.4022	45.12 45.26	5.315 5.317	8.488	$\begin{array}{c} 0.02532 \\ 0.02515 \end{array}$
6.25	$\begin{array}{c} 0.0004971 \\ 0.0004922 \end{array}$	0.004309	0.1135	63.37	86.554 86.618	9.222	0.4022	45.41	5.319	8.512	0.02313
6.26	0.0004922 0.0004874		0.1133 0.1132	63.81	86.682	9.207	0.4022	45.55	5.321	8.536	0.02498 0.02482
6.27	0.0004874	$\begin{array}{c} 0.004307 \\ 0.004277 \end{array}$	0.1132 0.1138	64.25	86.746	9.192 9.177	0.4021	45.7	5.323	8.561 8.585	0.02462 0.02465
6.28	0.0004823	0.004211	0.1128 0.1125	64.69	86.81	9.177	0.4019	45.84	5.325	8.61	0.02403
6.29	0.0004778	0.004240 0.004217	0.1123 0.1122	65.14	86.873	9.103	0.4019	45.99	5.325 5.327	8.634	0.02448 0.02432
6.3	0.0004731	0.004217	0.1122	65.59	86.937	9.143	0.4013	46.14	5.329	8.658	0.02432
6.31	0.0004638	0.004157	0.1116	66.04	87	9.119	0.4013 0.4017	46.29	5.331	8.683	0.02410 0.02399
$\frac{6.31}{6.32}$	0.0004038 0.0004593	0.004138 0.004128	0.1113	66.5	87.063	9.119	0.4017	46.43	5.332	8.708	0.02399
6.33	0.0004593	0.004128	0.1113	66.95	87.126	9.104	0.4016	46.58	5.334	8.732	0.02367
6.34	0.0004548 0.0004504	0.0041	0.1109	67.41	87.188	9.09	0.4010 0.4015	46.73	5.336	8.757	0.02367 0.02352
6.35	0.0004304	0.004071	0.1100	67.88	87.251	9.073	0.4013 0.4014	46.88	5.338	8.781	0.02336
6.36	0.0004416	0.004042	0.1103	68.34	87.313	9.001	0.4014 0.4014	47.02	5.34	8.806	0.02330 0.0232
6.37	0.0004410 0.0004373	0.004014 0.003986	0.11	68.81	87.375	9.040	0.4014	47.02	5.342	8.831	0.0232 0.02305
6.38	0.0004373 0.0004331	0.003958	0.1097 0.1094	69.28	87.437	9.032	0.4013	47.17	5.344	8.856	0.02303
6.39	0.0004331 0.0004288	0.003933	0.1094	69.75	87.499	9.018	0.4012	47.47	5.345	8.881	0.0229 0.02274
6.4	0.0004288 0.0004247	0.003931 0.003904	0.1091	70.23	87.561	8.989	0.4011	47.62	5.347	8.905	0.02274 0.02259
6.41	0.0004247	0.003904	0.1085	70.23	87.622	8.975	0.4011	47.77	5.349	8.93	0.02244
$\frac{6.41}{6.42}$	0.0004200 0.0004165	0.003877	0.1083 0.1082	71.19	87.684	8.961	0.401	47.77	5.351	8.955	0.02244
6.43	0.0004105 0.0004125	0.00383	0.1082 0.1079	71.19	87.745	8.947	0.4009	48.07	5.353	8.98	0.0223 0.02215
6.44	0.0004125 0.0004085		0.1079	72.16		8.933	0.4009	48.22	5.354	9.005	0.02213
6.44	0.0004085	$\begin{array}{c} 0.003797 \\ 0.003771 \end{array}$	0.1070	72.10	87.806 87.867	8.919	0.4008	48.37	5.356	9.003	0.022
$\frac{6.45}{6.46}$	0.0004045	0.003771	0.1073	73.14	87.927	8.905	0.4007	48.52	5.358	9.056	0.02180 0.02171
6.47	0.0003968	0.003743	0.107	73.63	87.988	8.891	0.4007	48.67	5.36	9.030	0.02171 0.02157
6.48	0.0003908	0.003719	0.1064	74.13	88.048	8.877	0.4005	48.82	5.362	9.106	0.02137
6.49	0.000393	0.003668	0.1064 0.1061	74.13	88.108	8.864	0.4003 0.4004	48.97	5.363	9.100	0.02143 0.02129
6.5	0.0003855	0.003643	0.1001 0.1058	75.13	88.168	8.85	0.4004	49.12	5.365	9.156	0.02129 0.02115
6.51	0.0003818	0.003618	0.1055	75.64	88.228	8.836	0.4004	49.12	5.367	9.182	0.02113 0.02101
$\frac{6.51}{6.52}$	0.0003781	0.003513	0.1053 0.1052	76.15	88.288	8.823	0.4003 0.4002	49.43	5.369	9.102	0.02101
6.53	0.0003745	0.003568	0.1052	76.66	88.347	8.809	0.4002 0.4002	49.43	5.37	9.207	0.02037
$\frac{6.53}{6.54}$	0.0003749	0.003544	0.103 0.1047	77.18	88.407	8.795	0.4002 0.4001	49.73	5.372	9.252	0.02073
6.55	0.0003709	0.003544 0.00352	0.1047	77.69	88.466	8.782	0.4001	49.13	5.374	9.233	0.02047
6.56	0.0003674	0.00332			88.525			50.04	5.375	9.309	0.02047
6.57	0.0003604			78.74	88.584			50.04	5.377	9.334	0.0203
6.58	0.0003004 0.000357	0.003472	0.1038 0.1035	79.26	88.642	8.741	0.3999	50.15	5.379	9.36	0.0202
6.59				79.79		8.728			5.381		
	$\begin{array}{c} 0.0003536 \\ 0.0003503 \end{array}$	$\begin{array}{c} 0.003425 \\ 0.003402 \end{array}$	0.1032 0.103	80.32	88.701 88.759	8.715	0.3998 0.3997	$50.5 \\ 50.65$	$\frac{5.381}{5.382}$	9.386 9.411	0.01994 0.01981
6.61	0.0003303	0.003402	0.103 0.1027	80.32	88.817	8.713	0.3997	50.81	5.384	9.411	0.01981
$\frac{6.61}{6.62}$	0.000347 0.0003437	0.003356	0.1027 0.1024	81.4	88.876	8.688	0.3997	50.96	5.386	9.463	0.01968 0.01955
$\frac{6.62}{6.63}$	0.0003437	0.003333	0.1024 0.1021	81.4	88.933	8.675	0.3996	51.12	5.387	9.403	0.01955 0.01943
6.64	0.0003404 0.0003372	0.0033311	0.1021	82.48	88.991	8.662	0.3995	$\frac{51.12}{51.27}$	5.389	9.400	0.01943
6.65	0.0003341		0.1019	83.03		8.649	0.3993 0.3994	51.43	5.391	9.514	0.0193
6.66	0.0003341	0.003289 0.003267	0.1016	83.58	89.049	8.636	0.3994 0.3993		5.391 5.392	9.54	0.01918 0.01905
6.67	0.0003309	0.003267	0.1013		89.106	8.623	0.3993	51.58	5.394	9.500	
6.68	0.0003278	0.003245 0.003223	0.101	84.13	89.164			51.74			0.01893
6.69	0.0003247 0.0003217	0.003223	0.1008	84.68 85.24	89.221 89.278	8.61 8.597	0.3992 0.3992	51.89 52.05	5.395 5.397	9.618 9.644	0.01881 0.01869
6.7	0.0003217	0.003201					0.3992 0.3991				
0.7	0.0003187	0.00518	0.1002	85.8	89.335	8.584	0.9991	52.2	5.399	9.67	0.01857

7.6	/	,	m /m	1 4 / 4	I	I	1.0	,	1 /	m /m	1 /
M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 20.1	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
6.71	0.0003157	0.003158	0.09995	86.37	89.391	8.571	0.399	52.36	5.4	9.696	0.01845
6.72	0.0003127	0.003137	0.09968	86.94	89.448	8.558	0.399	52.52	5.402	9.722	0.01833
6.73	0.0003098	0.003116	0.09942	87.51	89.504	8.545	0.3989	52.68	5.403	9.748	0.01821
6.74	0.0003069	0.003096	0.09915	88.08	89.561	8.532	0.3988	52.83	5.405	9.775	0.0181
6.75	0.0003041	0.003075	0.09889	88.66	89.617	8.52	0.3988	52.99	5.407	9.801	0.01798
6.76	0.0003013	0.003055	0.09862	89.24	89.673	8.507	0.3987	53.15	5.408	9.827	0.01786
6.77	0.0002985	0.003034	0.09836	89.82	89.728	8.494	0.3987	53.31	5.41	9.853	0.01775
6.78	0.0002957	0.003014	0.0981	90.41	89.784	8.482	0.3986	53.46	5.411	9.88	0.01764
6.79	0.000293	0.002994	0.09784	91	89.84	8.469	0.3986	53.62	5.413	9.906	0.01753
6.8	0.0002902	0.002974	0.09758	91.59	89.895	8.457	0.3985	53.78	5.415	9.933	0.01741
6.81	0.0002876	0.002955	0.09732	92.19	89.95	8.444	0.3984	53.94	5.416	9.959	0.0173
6.82	0.0002849	0.002935	0.09706	92.79	90.005	8.432	0.3984	54.1	5.418	9.986	0.01719
6.83	0.0002823	0.002916	0.09681	93.39	90.06	8.419	0.3983	54.26	5.419	10.01	0.01709
6.84	0.0002797	0.002897	0.09655	94	90.115	8.407	0.3983	54.42	5.421	10.04	0.01698
6.85	0.0002771	0.002878	0.0963	94.61	90.17	8.394	0.3982	54.58	5.422	10.07	0.01687
6.86	0.0002746	0.002859	0.09604	95.22	90.224	8.382	0.3981	54.74	5.424	10.09	0.01676
6.87	0.000272	0.00284	0.09579	95.83	90.279	8.37	0.3981	54.9	5.425	10.12	0.01666
6.88	0.0002696	0.002821	0.09554	96.45	90.333	8.357	0.398	55.06	5.427	10.15	0.01655
6.89	0.0002671	0.002803	0.09529	97.08	90.387	8.345	0.398	55.22	5.428	10.17	0.01645
6.9	0.0002646	0.002785	0.09504	97.7	90.441	8.333	0.3979	55.38	5.43	10.2	0.01634
6.91	0.0002622	0.002766	0.09479	98.33	90.495	8.321	0.3979	55.54	5.431	10.23	0.01624
6.92	0.0002598	0.002748	0.09454	98.96	90.548	8.309	0.3978	55.7	5.433	10.25	0.01614
6.93	0.0002575	0.00273	0.0943	99.6	90.602	8.297	0.3977	55.86	5.434	10.28	0.01604
6.94	0.0002551	0.002713	0.09405	100.2	90.655	8.285	0.3977	56.02	5.436	10.31	0.01594
6.95	0.0002528	0.002695	0.0938	100.9	90.709	8.273	0.3976	56.19	5.437	10.33	0.01584
6.96	0.0002505	0.002677	0.09356	101.5	90.762	8.261	0.3976	56.35	5.439	10.36	0.01574
6.97	0.0002482	0.00266	0.09332	102.2	90.815	8.249	0.3975	56.51	5.44	10.39	0.01564
6.98	0.000246	$\begin{array}{c} 0.002643 \\ 0.002626 \end{array}$	0.09307	102.8 103.5	90.867	8.237 8.225	0.3975	56.67	5.442	10.42 10.44	0.01554
7	0.0002438		0.09283		90.92		0.3974	56.84	5.443		0.01545
	0.0002416	$\begin{array}{c} 0.002609 \\ 0.002592 \end{array}$	0.09259	104.1	90.973	8.213 8.201	0.3974 0.3973	57 57.16	5.444	10.47	0.01535
7.01 7.02	$\begin{array}{c} 0.0002394 \\ 0.0002372 \end{array}$	0.002592 0.002575	$0.09235 \\ 0.09211$	104.8 105.5	91.025	8.19		57.10	5.446 5.447		0.01526
7.02			0.09211 0.09188	105.5	91.077 91.13		0.3973 0.3972	57.49		10.52	
7.03	$\begin{array}{c} 0.0002351 \\ 0.000233 \end{array}$	$\begin{array}{c} 0.002559 \\ 0.002542 \end{array}$	0.09168 0.09164	106.1	91.13	8.178 8.166	0.3972	57.49	5.449	10.55 10.58	0.01507 0.01497
	0.000233					8.155		57.82		10.58	
7.05				107.5	91.234				5.452		0.01488
7.06	$\begin{array}{c} 0.0002288 \\ 0.0002267 \end{array}$	$\begin{array}{c} 0.00251 \\ 0.002494 \end{array}$	0.09117 0.09093	108.2 108.9	91.285 91.337	8.143 8.131	0.397 0.397	57.98 58.15	5.453 5.454	10.63 10.66	0.01479 0.0147
7.07	0.0002247	0.002494 0.002478	0.09093	108.9	91.337	8.131	0.3969	58.31	5.456	10.69	
7.08	0.0002247 0.0002227	0.002478	0.0907	1109.5	91.389	8.12	0.3969	58.48	5.457	10.69	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
7.09	0.0002227	0.002462	0.09047 0.09024	110.2	91.44	8.097	0.3968	58.65	5.459	10.72	0.01432
7.11	0.0002207	0.002440 0.00243	0.09024 0.09001	111.6	91.491	8.085	0.3968	58.81	5.46	10.74	0.01443
7.11	0.0002187	0.00245 0.002415	0.09001	111.0	91.542	8.074	0.3967	58.98	5.461	10.77	0.01434 0.01425
7.13	0.0002108 0.0002149	0.002413 0.0024	0.08955	113	91.595	8.062	0.3967	59.14	5.463	10.83	0.01425
7.14	0.0002149 0.000213	0.0024	0.08933 0.08932	113.7	91.695	8.051	0.3966	59.14	5.464	10.85	0.01410
7.14	0.000213	0.002369	0.08909	113.7	91.095	8.04	0.3966	59.48	5.465	10.88	0.01408
7.16	0.0002111 0.0002092	0.002354	0.08886	115.2	91.745	8.028	0.3965	59.46	5.467	10.00	0.01399
7.17	0.0002092	0.002334	0.08864	115.2	91.790	8.017	0.3965	59.81	5.468	10.91	0.0139
7.17	0.0002073	0.002339	0.08841	116.6	91.840	8.006	0.3964	59.98	5.47	10.94	0.01382
7.19	0.0002033	0.002324 0.00231	0.08819	117.3	91.947	7.995	0.3964	60.15	5.471	10.97	0.01374
1.19	0.0002037	0.00231	0.00019	111.0	91.941	1.990	0.0904	00.19	0.411	10.99	0.01303

M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_{2}/p_{1}	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
7.2	0.0002019	0.002295	0.08797	118.1	91.997	7.984	0.3963	60.31	5.472	11.02	0.01357
7.21	0.0002001	0.002281	0.08774	118.8	92.046	7.972	0.3963	60.48	5.474	11.05	0.01349
7.22	0.0001983	0.002266	0.08752	119.6	92.096	7.961	0.3962	60.65	5.475	11.08	0.0134
7.23	0.0001966	0.002252	0.0873	120.3	92.146	7.95	0.3962	60.82	5.476	11.11	0.01332
7.24	0.0001949	0.002238	0.08708	121	92.195	7.939	0.3961	60.99	5.478	11.13	0.01324
7.25	0.0001932	0.002224	0.08686	121.8	92.245	7.928	0.3961	61.16	5.479	11.16	0.01316
7.26	0.0001915	0.00221	0.08664	122.5	92.294	7.917	0.396	61.33	5.48	11.19	0.01308
7.27	0.0001898	0.002196	0.08643	123.3	92.343	7.906	0.396	61.5	5.481	11.22	0.013
7.28	0.0001881	0.002182	0.08621	124.1	92.392	7.895	0.3959	61.66	5.483	11.25	0.01292
7.29	0.0001865	0.002169	0.08599	124.8	92.441	7.884	0.3959	61.83	5.484	11.28	0.01285
7.3	0.0001848	0.002155	0.08578	125.6	92.49	7.873	0.3958	62	5.485	11.3	0.01277
7.31	0.0001832	0.002142	0.08556	126.4	92.538	7.863	0.3958	62.18	5.487	11.33	0.01269
7.32	0.0001816	0.002128	0.08535	127.2	92.587	7.852	0.3957	62.35	5.488	11.36	0.01262
7.33	0.0001801	0.002115	0.08514	127.9	92.635	7.841	0.3957	62.52	5.489	11.39	0.01254
7.34	0.0001785	0.002102	0.08492	128.7	92.683	7.83	0.3956	62.69	5.49	11.42	0.01246
7.35	0.0001769	0.002089	0.08471	129.5	92.731	7.82	0.3956	62.86	5.492	11.45	0.01239
7.36	0.0001754	0.002076	0.0845	130.3	92.78	7.809	0.3955	63.03	5.493	11.47	0.01232
7.37	0.0001739	0.002063	0.08429	131.1	92.827	7.798	0.3955	63.2	5.494	11.5	0.01224
7.38	0.0001724	0.00205	0.08408	131.9	92.875	7.788	0.3955	63.38	5.495	11.53	0.01217
7.39	0.0001709	0.002037	0.08388	132.7	92.923	7.777	0.3954	63.55	5.497	11.56	0.0121
7.4	0.0001694	0.002025	0.08367	133.5	92.97	7.766	0.3954	63.72	5.498	11.59	0.01202
7.41	0.000168	0.002012	0.08346	134.3	93.018	7.756	0.3953	63.89	5.499	11.62	0.01195
7.42	0.0001665	0.002	0.08326	135.2	93.065	7.745	0.3953	64.07	5.5	11.65	0.01188
7.43	0.0001651	0.001988	0.08305	136	93.112	7.735	0.3952	64.24	5.502	11.68	0.01181
7.44	0.0001637	0.001975	0.08285	136.8	93.16	7.724	0.3952	64.41	5.503	11.71	0.01174
7.45	0.0001623	0.001963	0.08264	137.6	93.206	7.714	0.3951	64.59	5.504	11.73	0.01167
7.46	0.0001609	0.001951	0.08244	138.5	93.253	7.704	0.3951	64.76	5.505	11.76	0.0116
7.47	0.0001595	0.001939	0.08224	139.3	93.3	7.693	0.395	64.93	5.507	11.79	0.01153
7.48	0.0001581	0.001927	0.08203	140.1	93.347	7.683	0.395	65.11	5.508	11.82	0.01146
7.49	0.0001568	0.001916	0.08183	141	93.393	7.673	0.395	65.28	5.509	11.85	0.0114
7.5	0.0001554	0.001904	0.08163	141.8	93.44	7.662	0.3949	65.46	5.51	11.88	0.01133
7.51	0.0001541	0.001892	0.08143	142.7	93.486	7.652	0.3949	65.63	5.511	11.91	0.01126
7.52	0.0001528	0.001881	0.08123	143.6	93.532	7.642	0.3948	65.81	5.513	11.94	0.0112
7.53	0.0001515	0.001869	0.08104	144.4	93.578	7.632	0.3948	65.98	5.514	11.97	0.01113
7.54 7.55	0.0001502	0.001858	0.08084	145.3	93.624	7.621	0.3947	66.16	5.515	12 12.03	0.01106
	$\begin{array}{c} 0.0001489 \\ 0.0001477 \end{array}$	0.001847	0.08064 0.08045	146.2 147	93.67	7.611	0.3947	66.34 66.51	5.516	12.05	
7.56 7.57	0.0001477	$\begin{array}{c} 0.001836 \\ 0.001824 \end{array}$	0.08045 0.08025	147.9	93.716 93.761	7.601 7.591	0.3946 0.3946	66.69	5.517 5.518	12.06	0.01093 0.01087
7.58	0.0001464 0.0001452	0.001824	0.08025	147.9	93.807	7.581	0.3946	66.87	5.52	12.08	0.01087
7.59	0.0001432 0.0001439	0.001813	0.03000	149.7	93.852	7.571	0.3945	67.04	5.521	12.11	0.01031
7.6	0.0001439	0.001802 0.001792	0.07967	150.6	93.898	7.561	0.3945 0.3945	67.22	5.522	12.14	0.01074
7.61	0.0001427	0.001792	0.07948	151.5	93.943	7.551	0.3944	67.4	5.523	12.17	0.01062
7.62	0.0001413	0.001731	0.07928	152.4	93.988	7.541	0.3944	67.58	5.524	12.23	0.01056
7.63	0.0001403	0.00177	0.07909	153.3	94.033	7.531	0.3943	67.75	5.525	12.26	0.01049
7.64	0.0001331	0.001733	0.0789	154.2	94.078	7.521	0.3943	67.93	5.527	12.29	0.01043
7.65	0.0001368	0.001738	0.07871	155.1	94.123	7.511	0.3943	68.11	5.528	12.32	0.01037
7.66	0.0001357	0.001738	0.07852	156	94.167	7.501	0.3942	68.29	5.529	12.35	0.01031
7.67	0.0001331	0.001717	0.07833	157	94.212	7.491	0.3942	68.47	5.53	12.38	0.01025
7.68	0.0001334	0.001707	0.07815	157.9	94.256	7.482	0.3941	68.65	5.531	12.41	0.01019
1 1.00											

M	n/n	0/0	T/T	A / A	Γ.,		14	n /n	0 /0	T/T	n /n
$\frac{M}{7.60}$	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 04.201	$\frac{\mu}{7.472}$	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
7.69	0.0001323	0.001697	0.07796	158.8	94.301		0.3941	68.83	5.532	12.44	0.01013
7.7	0.0001312	0.001687	0.07777	159.8	94.345	7.462	0.3941	69	5.533	12.47	0.01008
7.71	0.0001301	0.001677	0.07759	160.7	94.389	7.452	0.394	69.18	5.534	12.5	0.01002
7.72	0.000129	0.001667	0.0774	161.7	94.433	7.443	0.394	69.36	5.536	12.53	0.009959
7.73	0.0001279	0.001657	0.07722	162.6	94.477	7.433	0.3939	69.55	5.537	12.56	0.009902
7.74	0.0001269	0.001647	0.07703	163.6	94.521	7.423	0.3939	69.73	5.538	12.59	0.009845
7.75	0.0001258	0.001637	0.07685	164.5	94.564	7.414	0.3939	69.91 70.09	5.539	12.62	0.009788 0.009732
7.76	0.0001248	0.001627	0.07667	165.5	94.608 94.652	7.404	0.3938 0.3938		5.54	12.65	
7.77	0.0001237	0.001618	0.07648	166.5		7.394 7.385		70.27	5.541	12.68	0.009676
7.78	0.0001227	0.001608	0.0763	167.4	94.695		0.3937	70.45	5.542	12.71	0.00962
7.79	0.0001217	0.001599	0.07612	168.4	94.738	7.375	0.3937	70.63	5.543	12.74	0.009565
7.8	0.0001207	0.001589	0.07594	169.4	94.781	7.366	0.3937	70.81	5.544	12.77	0.00951
7.81	0.0001197	0.00158	0.07576	170.4	94.825	7.356	0.3936	71 10	5.545	12.8	0.009456
7.82	0.0001187	0.001571	0.07558	171.4	94.868	7.347	0.3936	71.18	5.547	12.83	0.009402
7.83	0.0001177	0.001561	0.0754	172.4	94.91	7.338	0.3935	71.36	5.548	12.86	0.009348
7.84	0.0001168	0.001552	0.07523	173.4	94.953	7.328	0.3935	71.54	5.549	12.89	0.009295
7.85	0.0001158	0.001543	0.07505	174.4	94.996	7.319	0.3935	71.73	5.55	12.92	0.009242
7.86	0.0001149	0.001534	0.07487	175.4	95.039	7.309	0.3934	71.91	5.551	12.95	0.009189
7.87	0.0001139	0.001525	0.0747 0.07452	176.4	95.081	7.3	0.3934	72.09	5.552	12.99	0.009137
7.88	0.000113	0.001516	0.07432 0.07435	177.5	95.123	7.291	0.3933	72.28	5.553	13.02	0.009085
7.89	0.0001121	0.001507		178.5	95.166	7.281	0.3933	72.46	5.554	13.05 13.08	0.009033
7.9	0.0001111	0.001498	0.07417	179.5	95.208	7.272	0.3933	72.64	5.555		0.008982
7.91	0.0001102	0.00149	0.074	180.5	95.25	7.263	0.3932	72.83	5.556	13.11	0.008931
7.92	$0.0001093 \\ 0.0001084$	$0.001481 \\ 0.001472$	0.07383 0.07365	181.6 182.6	95.292 95.334	7.254 7.244	0.3932 0.3931	73.01 73.2	5.557 5.558	13.14 13.17	0.00888
7.94	0.0001084 0.0001076	0.001472 0.001464	0.07348	183.7	95.376	7.235	0.3931	73.38	5.559	13.17	0.00878
7.94	0.0001070	0.001404 0.001455	0.07348 0.07331	184.7	95.418	7.226	0.3931	73.57	5.56	13.23	0.008731
7.96	0.0001067	0.001455 0.001447	0.07331 0.07314	185.8	95.418 95.459	7.220	0.3931	73.76	5.561	13.26	0.008682
7.97	0.0001038 0.000105	0.001447	0.07314 0.07297	186.9	95.501	7.208	0.393	73.94	5.562	13.29	0.008633
7.98	0.000103	0.001438 0.00143	0.0728	187.9	95.542	7.199	0.393	74.13	5.563	13.32	0.008584
7.99	0.0001041	0.00143 0.001422	0.07263	189	95.583	7.19	0.3929	74.31	5.564	13.36	0.008536
8	0.0001033 0.0001024	0.001422	0.07246	190.1	95.625	7.181	0.3929	74.5	5.565	13.39	0.008488
8.01	0.0001024	0.001414	0.0723	191.2	95.666	7.172	0.3929	74.69	5.566	13.42	0.00844
8.02	0.0001010	0.001397	0.07213	192.3	95.707	7.163	0.3928	74.87	5.567	13.45	0.008393
8.03	$9.997_{\mathrm{e}-5}$	0.001331		193.4	95.748	7.154	0.3928	75.06	5.568	13.48	0.008346
8.04	9.916e -5	0.001381	0.0718	194.5	95.789	7.145	0.3927	75.25	5.569	13.51	0.008299
8.05	9.837e -5	0.001373	0.07163	195.6	95.829	7.136	0.3927	75.44	5.57	13.54	0.008253
8.06	9.758e -5	0.001365	0.07147	196.7	95.87	7.127	0.3927	75.62	5.571	13.57	0.008207
8.07	9.679e -5	0.001358	0.0713	197.8	95.911	7.118	0.3926	75.81	5.572	13.61	0.008161
8.08	9.602e -5	0.00135	0.07114	199	95.951	7.109	0.3926	76	5.573	13.64	0.008115
8.09	9.525e -5	0.001342	0.07097	200.1	95.992	7.1	0.3926	76.19	5.574	13.67	0.00807
8.1	9.449e -5	0.001334	0.07081	201.2	96.032	7.092	0.3925	76.38	5.575	13.7	0.008025
8.11	9.373e -5	0.001327	0.07065	202.4	96.072	7.083	0.3925	76.57	5.576	13.73	0.007981
8.12	9.298e -5	0.001319	0.07049	203.5	96.112	7.074	0.3925	76.76	5.577	13.76	0.007937
8.13	9.224e -5	0.001312	0.07033	204.6	96.152	7.065	0.3924	76.95	5.578	13.79	0.007893
8.14	9.15e -5	0.001304	0.07017	205.8	96.192	7.057	0.3924	77.14	5.579	13.83	0.007849
8.15	9.078e -5	0.001297	0.07001	207	96.232	7.048	0.3924	77.33	5.58	13.86	0.007805
8.16	9.005e -5	0.001289	0.06985	208.1	96.272	7.039	0.3923	77.52	5.581	13.89	0.007762
8.17	8.934e -5	0.001282	0.06969	209.3	96.312	7.031	0.3923	77.71	5.582	13.92	0.007719
							1				1

M	n/n.	0/0:	T/T_i	A/A_*	ν	.,	M_2	n- /n:	0-/0-	T_2/T_1	n /n
8.18	p/p_i $8.863e-5$	$\frac{\rho/\rho_i}{0.001275}$	0.06953	$\frac{A_{1}A_{*}}{210.5}$	$\frac{\nu}{96.351}$	$\frac{\mu}{7.022}$	0.3923	$\frac{p_2/p_1}{77.9}$	$\frac{\rho_2/\rho_1}{5.583}$	$\frac{12/11}{13.95}$	p_{i2}/p_{i1} 0.007677
8.19	8.793e -5	0.001273	0.06937	211.7	96.391	7.013	0.3923 0.3922	78.09	5.584	13.98	0.007634
8.2	8.723e -5	0.001267	0.06921	212.8	96.43	7.005	0.3922 0.3922	78.28	5.585	14.02	0.007592
8.21	8.654e-5	0.00120 0.001253	0.06921	214	96.469	6.996	0.3922 0.3921	78.47	5.586	14.02	0.007551
8.22	8.586e-5	0.001233	0.0689	215.2	96.509	6.988	0.3921 0.3921	78.66	5.587	14.08	0.007509
8.23	8.518e-5	0.001240	0.06874	216.4	96.548	6.979	0.3921 0.3921	78.86	5.588	14.11	0.007309
8.24	8.451e -5	0.001239 0.001232	0.06859	217.7	96.587	6.971	0.3921 0.392	79.05	5.588	14.11	0.007403
8.25	8.384e -5	0.001232 0.001225	0.06843	218.9	96.626	6.962	0.392	79.24	5.589	14.14	0.007386
8.26	8.318e -5	0.001218	0.06828	220.1	96.665	6.954	0.392	79.43	5.59	14.21	0.007346
8.27	8.253e -5	0.001211	0.06813	221.3	96.703	6.945	0.3919	79.63	5.591	14.24	0.007346
8.28	8.188e -5	0.001211	0.06797	222.5	96.742	6.937	0.3919	79.82	5.592	14.27	0.007366
8.29	8.124e -5	0.001203	0.06782	223.8	96.781	6.928	0.3919	80.01	5.593	14.31	0.007200
8.3	8.06e -5	0.001193	0.06767	225.6	96.819	6.92	0.3918	80.21	5.594	14.34	0.007220
8.31	7.997e-5	0.001191	0.06752	226.3	96.858	6.912	0.3918	80.4	5.595	14.37	0.007137
8.32	7.935 _{e-5}	0.001134	0.06732 0.06737	227.5	96.896	6.903	0.3918	80.59	5.596	14.4	0.007147
8.33	7.933e-5 $7.873e-5$	0.001178	0.06731 0.06721	228.8	96.934	6.895	0.3918 0.3917	80.79	5.597	14.43	0.007109
8.34	7.811e -5	0.001171	0.06706	230	96.972	6.887	0.3917 0.3917	80.98	5.598	14.47	0.00707
8.35	7.75e-5	0.001103	0.06691	231.3	97.011	6.878	0.3917	81.18	5.599	14.47	0.007031
8.36	7.69e-5	0.001158 0.001152	0.06676	232.6	97.011	6.87	0.3917 0.3917	81.37	5.599	14.53	0.006955
8.37	7.63e-5	0.001132	0.06662	233.9	97.043	6.862	0.3916	81.57	5.6	14.56	0.006918
8.38	7.571e -5	0.001149	0.06647	235.2	97.124	6.854	0.3916	81.76	5.601	14.6	0.00688
8.39	7.512e-5	0.001133	0.06632	236.5	97.162	6.845	0.3916	81.96	5.602	14.63	0.006843
8.4	$7.454_{\mathrm{e}-5}$	0.001136	0.06617	237.8	97.2	6.837	0.3915	82.15	5.603	14.66	0.006806
8.41	7.396 _e -5	0.001120	0.06603	239.1	97.237	6.829	0.3915	82.35	5.604	14.7	0.006769
8.42	7.339e -5	0.001114	0.06588	240.4	97.275	6.821	0.3915	82.55	5.605	14.73	0.006733
8.43	7.282e -5	0.001111	0.06573	241.7	97.312	6.813	0.3914	82.74	5.606	14.76	0.006697
8.44	7.226e -5	0.001102	0.06559	243	97.35	6.805	0.3914	82.94	5.606	14.79	0.006661
8.45	7.17e-5	0.001096	0.06544	244.3	97.387	6.796	0.3914	83.14	5.607	14.83	0.006625
8.46	7.115e -5	0.00109	0.0653	245.7	97.424	6.788	0.3913	83.33	5.608	14.86	0.006589
8.47	7.06e -5	0.001084	0.06515	247	97.461	6.78	0.3913	83.53	5.609	14.89	0.006554
8.48	7.006e -5	0.001078	0.06501	248.4	97.498	6.772	0.3913	83.73	5.61	14.93	0.006519
8.49	6.952e -5	0.001072	0.06487	249.7	97.535	6.764	0.3912	83.93	5.611	14.96	0.006484
8.5	6.898e -5	0.001066	0.06472	251.1	97.572	6.756	0.3912	84.12	5.612	14.99	0.006449
8.51	6.846e -5	0.00106	0.06458	252.5	97.609	6.748	0.3912	84.32	5.613	15.02	0.006415
8.52	6.793e -5		0.06444	253.8	97.646		0.3911	84.52	5.613	15.06	0.00638
8.53	6.741e -5		0.0643	255.2	97.682		0.3911		5.614		0.006346
8.54	6.69e -5	0.001043	0.06416	256.6	97.719	6.725	0.3911	84.92	5.615	15.12	0.006313
8.55	6.638e -5	0.001037	0.06402	258	97.755	6.717	0.3911	85.12	5.616	15.16	0.006279
8.56	6.588e -5	0.001031	0.06388	259.4	97.792	6.709	0.391	85.32	5.617	15.19	0.006246
8.57	6.538e -5	0.001026	0.06374	260.8	97.828	6.701	0.391	85.52	5.618	15.22	0.006212
8.58	6.488e -5	0.00102	0.0636	262.2	97.864	6.693	0.391	85.72	5.618	15.26	0.006179
8.59	6.438e -5	0.001015	0.06346	263.6	97.9	6.685	0.3909	85.92	5.619	15.29	0.006147
8.6	6.39e -5	0.001009	0.06332	265	97.936	6.677	0.3909	86.12	5.62	15.32	0.006114
8.61	6.341e -5	0.001004	0.06319	266.4	97.972	6.67	0.3909	86.32	5.621	15.36	0.006082
8.62	6.293e -5	0.0009981	0.06305	267.9	98.008	6.662	0.3909	86.52	5.622	15.39	0.00605
8.63	6.245e -5	0.0009927	0.06291	269.3	98.044	6.654	0.3908	86.72	5.623	15.42	0.006018
8.64	6.198e -5	0.0009873	0.06277	270.8	98.08	6.646	0.3908	86.92	5.623	15.46	0.005986
8.65	$6.151 {\scriptstyle\mathrm{e}-5}$	0.000982	0.06264	272.2	98.116	6.639	0.3908	87.13	5.624	15.49	0.005954
8.66	6.105e -5	0.0009767	0.0625	273.7	98.151	6.631	0.3907	87.33	5.625	15.53	0.005923

7.1		- / -	Tr /Tr	4/4		l	1.1	/	. / .		/
M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
8.67	6.059e-5	0.0009714	0.06237	275.1	98.187	6.623	0.3907	87.53	5.626	15.56	0.005892
8.68	6.013e-5	0.0009662	0.06223	276.6	98.222	6.616	0.3907	87.73	5.627	15.59	0.005861
8.69	5.968 _e -5	0.000961	0.0621	278.1	98.258	6.608	0.3906	87.94	5.627	15.63	0.00583
8.7	5.923 _e -5	0.0009558	0.06197	279.6	98.293	6.6	0.3906	88.14	5.628	15.66	0.005799
8.71	5.878e-5	0.0009507	0.06183	281.1	98.328	6.593	0.3906	88.34	5.629	15.69	0.005769
8.72	5.834e-5	0.0009456	0.0617	282.6	98.363	6.585	0.3906	88.54	5.63	15.73	0.005739
8.73	5.79e-5	0.0009405	0.06157	284.1	98.398	6.578	0.3905	88.75	5.631	15.76	0.005709
8.74	5.747e-5	0.0009355	0.06143	285.6	98.433	6.57	0.3905	88.95	5.631	15.8	0.005679
8.75	5.704 _{e-5}	0.0009305	0.0613	287.1	98.468	6.562	0.3905	89.16	5.632	15.83	0.005649
8.76	5.661 _e -5	0.0009255	0.06117	288.6	98.503	6.555	0.3904	89.36	5.633	15.86	0.00562
8.77	5.619e-5	0.0009205	0.06104	290.1	98.538	6.547	0.3904	89.57	5.634	15.9	0.00559
8.78	5.577e -5	0.0009156	0.06091	291.7	98.573	6.54	0.3904	89.77	5.635	15.93	0.005561
8.79	5.536e-5	0.0009107	0.06078	293.2	98.607	6.532	0.3904	89.97	5.635	15.97	0.005532
8.8	5.494e -5	0.0009059	0.06065	294.8	98.642	6.525	0.3903	90.18	5.636	16	0.005504
8.81	5.453e -5	0.0009011	0.06052	296.3	98.676	6.518	0.3903	90.39	5.637	16.03	0.005475
8.82	5.413e -5	0.0008963	0.06039	297.9	98.711	6.51	0.3903	90.59	5.638	16.07	0.005447
8.83	5.373e -5	0.0008915	0.06026	299.5	98.745	6.503	0.3903	90.8	5.638	16.1	0.005418
8.84	5.333e -5	0.0008868	0.06014	301	98.779	6.495	0.3902	91	5.639	16.14	0.00539
8.85	5.293e -5	0.0008821	0.06001	302.6	98.814	6.488	0.3902	91.21	5.64	16.17	0.005362
8.86	$5.254 \mathrm{e}{-5}$	0.0008774	0.05988	304.2	98.848	6.481	0.3902	91.42	5.641	16.21	0.005335
8.87	5.215e -5	0.0008728	0.05975	305.8	98.882	6.473	0.3901	91.62	5.641	16.24	0.005307
8.88	5.177e -5	0.0008682	0.05963	307.4	98.916	6.466	0.3901	91.83	5.642	16.28	0.00528
8.89	5.139e -5	0.0008636	0.0595	309	98.95	6.459	0.3901	92.04	5.643	16.31	0.005253
8.9	5.101e -5	0.000859	0.05938	310.6	98.984	6.451	0.3901	92.25	5.644	16.34	0.005226
8.91	5.063e -5	0.0008545	0.05925	312.3	99.017	6.444	0.39	92.45	5.644	16.38	0.005199
8.92	5.026e -5	0.00085	0.05913	313.9	99.051	6.437	0.39	92.66	5.645	16.41	0.005172
8.93	$4.989 \mathrm{e}{-5}$	0.0008456	0.059	315.5	99.085	6.43	0.39	92.87	5.646	16.45	0.005145
8.94	$4.952 \mathrm{e}{-5}$	0.0008411	0.05888	317.2	99.118	6.422	0.39	93.08	5.647	16.48	0.005119
8.95	$4.916 \mathrm{e}{-5}$	0.0008367	0.05875	318.8	99.152	6.415	0.3899	93.29	5.647	16.52	0.005093
8.96	4.88e -5	0.0008323	0.05863	320.5	99.185	6.408	0.3899	93.5	5.648	16.55	0.005067
8.97	$4.844 \mathrm{e}{-5}$	0.000828	0.05851	322.1	99.218	6.401	0.3899	93.7	5.649	16.59	0.005041
8.98	4.809e -5	0.0008236	0.05838	323.8	99.252	6.394	0.3899	93.91	5.65	16.62	0.005015
8.99	$4.773_{\rm e-5}$	0.0008193	0.05826	325.5	99.285	6.386	0.3898	94.12	5.65	16.66	0.004989
9	$4.739_{\rm e-5}$	0.000815	0.05814	327.2	99.318	6.379	0.3898	94.33	5.651	16.69	0.004964
9.01	$4.704_{\rm e-5}$			328.9	99.351	6.372	0.3898	94.54	5.652	16.73	0.004939
9.02	4.67e -5	0.0008066	0.0579	330.6	99.384	6.365	0.3897	94.75	5.653	16.76	0.004913
9.03	$4.636 \mathrm{e}{-5}$	0.0008024	0.05778	332.3	99.417	6.358	0.3897	94.96	5.653	16.8	0.004888
9.04	$4.602 \mathrm{e}{-5}$	0.0007982	0.05766	334	99.45	6.351	0.3897	95.18	5.654	16.83	0.004864
9.05	$4.569 \mathrm{e}{-5}$	0.000794	0.05754	335.7	99.483	6.344	0.3897	95.39	5.655	16.87	0.004839
9.06	$4.535 \mathrm{e}{-5}$	0.0007899	0.05742	337.5	99.515	6.337	0.3896	95.6	5.656	16.9	0.004814
9.07	4.503e -5	0.0007858	0.0573	339.2	99.548	6.33	0.3896	95.81	5.656	16.94	0.00479
9.08	4.47e -5	0.0007818	0.05718	340.9	99.581	6.323	0.3896	96.02	5.657	16.97	0.004766
9.09	$4.438 \text{e}{-5}$	0.0007777	0.05706	342.7	99.613	6.316	0.3896	96.23	5.658	17.01	0.004742
9.1	$4.405 \mathrm{e}{-5}$	0.0007737	0.05694	344.5	99.646	6.309	0.3895	96.44	5.658	17.04	0.004718
9.11	$4.374 \mathrm{e}{-5}$	0.0007697	0.05682	346.2	99.678	6.302	0.3895	96.66	5.659	17.08	0.004694
9.12	4.342e-5	0.0007657	0.05671	348	99.71	6.295	0.3895	96.87	5.66	17.12	0.00467
9.13	4.311e -5	0.0007618	0.05659	349.8	99.743	6.288	0.3895	97.08	5.66	17.15	0.004646
9.14	4.28e -5	0.0007578	0.05647	351.6	99.775	6.281	0.3894	97.3	5.661	17.19	0.004623
9.15	$4.249_{\mathrm{e}-5}$	0.0007539	0.05636	353.4	99.807	6.274	0.3894	97.51	5.662	17.22	0.0046

14	n /n	0/0	T/T_i	1/1	T		M_2	n /n	0 /0	T_2/T_1	n /n
$\frac{M}{9.16}$	$\frac{p/p_i}{4.218_{\rm e-5}}$	$\frac{\rho/\rho_i}{0.0007501}$	0.05624	$A/A_* = 355.2$	$\frac{\nu}{99.839}$	$\frac{\mu}{6.267}$	0.3894	$\frac{p_2/p_1}{97.72}$	$\frac{\rho_2/\rho_1}{5.663}$	$\frac{1_{2}/1_{1}}{17.26}$	p_{i2}/p_{i1} 0.004577
9.10	4.218e-5 $4.188e-5$	0.0007301 0.0007462	0.05624 0.05612	357	99.839	6.261	0.3894 0.3894	97.12	5.663	17.29	0.004577
9.17	4.158e-5 $4.158e-5$	0.0007402 0.0007424	0.05612 0.05601	358.8	99.903	6.254	0.3893	98.15	5.664	17.29	0.004534
9.19	4.138e-5 $4.128e-5$	0.0007424	0.05589	360.6	99.903	6.247	0.3893	98.37	5.665	17.36	0.004531
9.19	4.128e-5 $4.099e-5$	0.0007348	0.05578	362.5	99.967	6.24	0.3893	98.58	5.665	17.30	0.004308
9.21	4.099e-5 $4.069e-5$	0.0007348	0.05566	364.3	99.998	6.233	0.3893	98.79	5.666	17.44	0.004463
9.21	4.009e-5 $4.04e-5$	0.000731	0.05555	366.2	100.03	6.227	0.3892	99.01	5.667	17.47	0.004403
9.23	4.011e -5	0.0007273	0.05544	368	100.06	6.22	0.3892	99.23	5.667	17.51	0.004419
9.24	3.983e -5	0.0007199	0.05532	369.9	100.09	6.213	0.3892	99.44	5.668	17.54	0.004397
9.25	3.954e -5	0.0007162	0.05521	371.7	100.03	6.206	0.3892	99.66	5.669	17.58	0.004375
9.26	3.926e -5	0.0007102	0.0551	373.6	100.16	6.2	0.3892	99.87	5.669	17.62	0.004353
9.27	3.898 _e -5	0.0007120	0.05499	375.5	100.19	6.193	0.3891	100.1	5.67	17.65	0.004331
9.28	3.871e -5	0.0007054	0.05487	377.4	100.13	6.186	0.3891	100.1	5.671	17.69	0.004331
9.29	3.843 _{e-5}	0.0007031	0.05476	379.3	100.25	6.179	0.3891	100.5	5.671	17.72	0.004288
9.3	3.816e -5	0.0006982	0.05465	381.2	100.28	6.173	0.3891	100.7	5.672	17.76	0.004267
9.31	3.789e -5	0.0006947	0.05454	383.1	100.20	6.166	0.389	100.7	5.673	17.8	0.004246
9.32	3.762e -5	0.0006912	0.05434	385.1	100.31	6.159	0.389	101.2	5.673	17.83	0.004240 0.004225
9.33	3.735e -5	0.0006877	0.05432	387	100.37	6.153	0.389	101.4	5.674	17.87	0.004204
9.34	3.709e-5	0.0006842	0.05421	389	100.41	6.146	0.389	101.6	5.675	17.91	0.004183
9.35	3.683e -5	0.0006807	0.0541	390.9	100.44	6.14	0.3889	101.8	5.675	17.94	0.004162
9.36	3.657e -5	0.0006773	0.05399	392.9	100.47	6.133	0.3889	102	5.676	17.98	0.004142
9.37	3.631e -5	0.0006739	0.05388	394.8	100.5	6.126	0.3889	102.3	5.677	18.01	0.004121
9.38	3.605e -5	0.0006705	0.05377	396.8	100.53	6.12	0.3889	102.5	5.677	18.05	0.004101
9.39	3.58e -5	0.0006671	0.05366	398.8	100.56	6.113	0.3888	102.7	5.678	18.09	0.004081
9.4	3.555e -5	0.0006638	0.05356	400.8	100.59	6.107	0.3888	102.9	5.679	18.12	0.004061
9.41	3.53e -5	0.0006604	0.05345	402.8	100.62	6.1	0.3888	103.1	5.679	18.16	0.004041
9.42	3.505e -5	0.0006571	0.05334	404.8	100.65	6.094	0.3888	103.4	5.68	18.2	0.004021
9.43	3.481e -5	0.0006538	0.05323	406.8	100.68	6.087	0.3888	103.6	5.681	18.23	0.004001
9.44	$3.456 _{\mathrm{e}-5}$	0.0006506	0.05313	408.8	100.71	6.081	0.3887	103.8	5.681	18.27	0.003982
9.45	3.432e-5	0.0006473	0.05302	410.9	100.74	6.074	0.3887	104	5.682	18.31	0.003962
9.46	3.408e -5	0.0006441	0.05291	412.9	100.77	6.068	0.3887	104.2	5.683	18.34	0.003943
9.47	$3.384 \mathrm{e}{-5}$	0.0006409	0.05281	414.9	100.8	6.062	0.3887	104.5	5.683	18.38	0.003924
9.48	$3.361\mathrm{e}{-5}$	0.0006377	0.0527	417	100.83	6.055	0.3886	104.7	5.684	18.42	0.003904
9.49	3.337e -5	0.0006345	0.0526	419.1	100.86	6.049	0.3886	104.9	5.684	18.45	0.003885
9.5	$3.314\mathrm{e}{-5}$	0.0006313	0.05249	421.1	100.89	6.042	0.3886	105.1	5.685	18.49	0.003866
9.51	3.291e -5	0.0006282	0.05239		100.92	6.036	0.3886	105.3	5.686	18.53	0.003848
9.52	3.268e -5	0.0006251	0.05228	425.3	100.95	6.03	0.3886	105.6	5.686	18.57	0.003829
9.53	3.246e -5	0.000622	0.05218	427.4	100.98	6.023	0.3885	105.8	5.687	18.6	0.00381
9.54	3.223e -5	0.0006189	0.05208	429.5	101.01	6.017	0.3885	106	5.688	18.64	0.003792
9.55	3.201e -5	0.0006158	0.05197	431.6	101.04	6.011	0.3885	106.2	5.688	18.68	0.003773
9.56	3.179e -5	0.0006128	0.05187	433.7	101.07	6.004	0.3885	106.5	5.689	18.71	0.003755
9.57	3.157e -5	0.0006098	0.05177	435.9	101.1	5.998	0.3884	106.7	5.689	18.75	0.003737
9.58	$3.135\mathrm{e}{-5}$	0.0006067	0.05167	438	101.13	5.992	0.3884	106.9	5.69	18.79	0.003719
9.59	$3.113\mathrm{e}{-5}$	0.0006037	0.05156	440.2	101.16	5.985	0.3884	107.1	5.691	18.83	0.003701
9.6	$3.092\mathrm{e}{-5}$	0.0006008	0.05146	442.3	101.19	5.979	0.3884	107.4	5.691	18.86	0.003683
9.61	3.07e -5	0.0005978	0.05136	444.5	101.22	5.973	0.3884	107.6	5.692	18.9	0.003665
9.62	3.049e -5	0.0005949	0.05126	446.7	101.25	5.967	0.3883	107.8	5.692	18.94	0.003647
9.63	3.028e -5	0.0005919	0.05116	448.8	101.28	5.96	0.3883	108	5.693	18.98	0.00363
9.64	$3.007\mathrm{e}{-5}$	0.000589	0.05106	451	101.3	5.954	0.3883	108.3	5.694	19.01	0.003612

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M	n/n	0/0	T/T_i	1/1			M_2	n /n	0.10	T/T	l n /n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		p/p_i	ρ/ρ_i		A/A_*	ν 101 22	μ 5.049		$\frac{p_2/p_1}{108.5}$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
0.68 2.926												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003146
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.003132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003132
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003117
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003073
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.003059
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash											0.003045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.003045
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.003016
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.002988
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.002961
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.002933
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												0.002906
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												0.00288
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									119.8			0.002853
10.18 2.092 _{e-5} 0.0004545 0.04603 583 102.8 5.637 0.3872 120.7 5.724 21.09 0.0028												0.002827
												0.002801
\mid 10.2 \mid 2.065e-5 \mid 0.0004503 \mid 0.04585 \mid 588.4 \mid 102.85 \mid 5.626 \mid 0.3872 \mid 121.2 \mid 5.725 \mid 21.17 \mid 0.0023	10.2	$2.065 \mathrm{e}{-5}$	0.0004503	0.04585	588.4	102.85	5.626	0.3872	121.2	5.725	21.17	0.002775
	10.22	$2.038 \mathrm{e}{-5}$				102.9	5.615	0.3872	121.7	5.726	21.25	0.00275
	10.24					102.95	5.604		122.2		21.33	0.002725

M	n/n.	0/0	T/T_i	A/A_*	ν	.,	M_2	no /no	02/01	T_2/T_1	nio/nii
$\frac{10.26}{10.26}$	p/p_i 1.985_{e-5}	$\frac{\rho/\rho_i}{0.0004378}$	0.04534	$\frac{A/A_*}{605}$	$\frac{\nu}{103.01}$	$\frac{\mu}{5.593}$	0.3871	$\frac{p_2/p_1}{122.6}$	$\frac{\rho_2/\rho_1}{5.728}$	$\frac{12/11}{21.41}$	p_{i2}/p_{i1} 0.0027
10.28	1.965e-5	0.0004378	0.04518	610.6	103.06	5.582	0.3871	123.1	5.729	21.49	0.0027
10.26	1.934e-5	0.0004338 0.0004298	0.04513	616.2	103.00	5.571	0.3871 0.387	123.1	5.73	21.43	0.002673
10.32	1.909e-5	0.0004258	0.04484	621.9	103.11	5.561	0.387	124.1	5.731	21.65	0.002631
10.34	1.885 _e -5	0.0004230 0.0004219	0.04468	627.6	103.10	5.55	0.387	124.1	5.732	21.73	0.002627
10.34	1.861 _e -5	0.0004213	0.04451	633.4	103.26	5.539	0.3869	125.1	5.733	21.81	0.00258
10.38	1.837e-5	0.0004142	0.04435	639.2	103.31	5.528	0.3869	125.5	5.734	21.89	0.002557
10.4	1.813 _e -5	0.0004104	0.04419	645	103.36	5.518	0.3869	126	5.735	21.97	0.002534
10.42	1.79e-5	0.0004066	0.04402	650.9	103.41	5.507	0.3868	126.5	5.736	22.06	0.002511
10.44	1.767e-5	0.0004029	0.04386	656.9	103.46	5.497	0.3868	127	5.737	22.14	0.002488
10.46	1.745e -5	0.0003993	0.0437	662.9	103.51	5.486	0.3868	127.5	5.738	22.22	0.002466
10.48	1.723_{e-5}	0.0003956	0.04354	668.9	103.56	5.475	0.3867	128	5.739	22.3	0.002444
10.5	1.701e-5	0.000392	0.04338	675	103.61	5.465	0.3867	128.5	5.74	22.38	0.002422
10.52	1.679e-5	0.0003885	0.04323	681.1	103.66	5.455	0.3867	128.9	5.741	22.46	0.002401
10.54	1.658e -5	0.000385	0.04307	687.2	103.71	5.444	0.3866	129.4	5.742	22.54	0.002379
10.56	1.637e -5	0.0003815	0.04291	693.4	103.76	5.434	0.3866	129.9	5.743	22.63	0.002358
10.58	1.616e -5	0.0003781	0.04276	699.7	103.81	5.424	0.3866	130.4	5.743	22.71	0.002337
10.6	1.596e-5	0.0003746	0.0426	706	103.86	5.413	0.3865	130.9	5.744	22.79	0.002317
10.62	1.576e -5	0.0003713	0.04245	712.3	103.91	5.403	0.3865	131.4	5.745	22.87	0.002296
10.64	$1.556\mathrm{e}{-5}$	0.000368	0.0423	718.7	103.95	5.393	0.3865	131.9	5.746	22.96	0.002276
10.66	1.537e-5	0.0003647	0.04215	725.2	104	5.383	0.3864	132.4	5.747	23.04	0.002256
10.68	1.518e -5	0.0003614	0.04199	731.6	104.05	5.373	0.3864	132.9	5.748	23.12	0.002236
10.7	1.499e-5	0.0003582	0.04184	738.2	104.1	5.363	0.3864	133.4	5.749	23.21	0.002216
10.72	1.48e -5	0.000355	0.0417	744.7	104.15	5.353	0.3863	133.9	5.75	23.29	0.002197
10.74	1.462e -5	0.0003518	0.04155	751.4	104.19	5.343	0.3863	134.4	5.751	23.37	0.002178
10.76	1.444e -5	0.0003487	0.0414	758	104.24	5.333	0.3863	134.9	5.752	23.46	0.002159
10.78	$1.426\mathrm{e}{-5}$	0.0003456	0.04125	764.8	104.29	5.323	0.3862	135.4	5.752	23.54	0.00214
10.8	1.408e -5	0.0003426	0.0411	771.5	104.33	5.313	0.3862	135.9	5.753	23.62	0.002121
10.82	1.391e -5	0.0003395	0.04096	778.3	104.38	5.303	0.3862	136.4	5.754	23.71	0.002103
10.84	1.374e -5	0.0003365	0.04081	785.2	104.43	5.293	0.3862	136.9	5.755	23.79	0.002084
10.86	$1.357\mathrm{e}{-5}$	0.0003336	0.04067	792.1	104.47	5.283	0.3861	137.4	5.756	23.88	0.002066
10.88	1.34e -5	0.0003306	0.04053	799.1	104.52	5.274	0.3861	137.9	5.757	23.96	0.002049
10.9	$1.324 \mathrm{e}{-5}$	0.0003277	0.04038	806.1	104.57	5.264	0.3861	138.4	5.758	24.05	0.002031
10.92	1.307e -5	0.0003249	0.04024	813.2	104.61	5.254	0.386	139	5.759	24.13	0.002013
10.94			0.0401	820.3	104.66		0.386	139.5	5.759	24.22	0.001996
10.96		0.0003192		827.4	104.7	5.235		140	5.76	24.3	0.001979
10.98	1.26 _{e-5}	0.0003164	0.03982	834.6	104.75	5.225	0.386	140.5	5.761	24.39	0.001962
11	1.245 _{e-5}	0.0003137	0.03968	841.9	104.8	5.216	0.3859	141	5.762	24.47	0.001945
11.02	1.23 _{e-5}	0.000311	0.03954	849.2	104.84	5.206	0.3859	141.5	5.763	24.56	0.001928
11.04	1.215e-5	0.0003083	0.03941	856.6	104.89	5.197	0.3859	142	5.764	24.64	0.001912
11.06	1.2e-5	0.0003056	0.03927	864	104.93	5.188	0.3858	142.5	5.764	24.73	0.001896
11.08	1.186 _{e-5}	0.000303	0.03913	871.5	104.98	5.178	0.3858	143.1	5.765	24.81	0.00188
11.1	1.171 _{e-5}	0.0003003	0.039	879	105.02	5.169	0.3858	143.6	5.766	24.9	0.001864
11.12	1.157e-5	0.0002978	0.03886	886.6	105.06	5.159	0.3858	144.1	5.767	24.99	0.001848
11.14	1.143 _{e-5}	0.0002952	0.03873	894.2	105.11	5.15	0.3857	144.6	5.768	25.07	0.001832
11.16	1.13 _{e-5}	0.0002927	0.0386	901.9	105.15	5.141	0.3857	145.1	5.768	25.16	0.001817
11.18	1.116 _{e-5}	0.0002902	0.03846 0.03833	909.6	105.2 105.24	5.132 5.123	0.3857	$\frac{145.7}{146.2}$	5.769	25.25 25.33	0.001801
11.22	1.103 _{e-5}	$\begin{array}{c} 0.0002877 \\ 0.0002852 \end{array}$		917.4			0.3856		5.77		0.001786
11.22	1.09e -5	0.0002852	0.0382	925.2	105.28	5.113	0.3856	146.7	5.771	25.42	0.001771

14	m/m	0/0	T/T	4/4			1.1	m /m	. /.	T /T	m /m
M 11.04	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	$\frac{\mu}{5.104}$	M_2	$\frac{p_2/p_1}{1.47.2}$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
11.24	1.077e-5	0.0002828	0.03807	933.1	105.33		0.3856	147.2	5.772	25.51	0.001756
11.26	1.064e-5	0.0002804	0.03794	941.1	105.37	5.095	0.3856	147.8	5.772	25.6	0.001741
11.28	1.051e-5	0.000278	0.03781	949.1	105.41	5.086	0.3855	148.3	5.773	25.68	0.001727
11.3	1.039e-5	0.0002756	0.03768	957.2	105.46	5.077	0.3855	148.8	5.774	25.77	0.001712
11.32	1.026e-5	0.0002733	0.03755	965.3	105.5	5.068	0.3855	149.3	5.775	25.86	0.001698
11.34	1.014e-5	0.000271	0.03743	973.4	105.54	5.059	0.3855	149.9	5.775	25.95	0.001684
11.36	1.002e-5	0.0002687	0.0373	981.7	105.59	5.05	0.3854	150.4	5.776	26.04	0.00167
11.38	9.904e-6	0.0002664	0.03717	990	105.63	5.041	0.3854	150.9	5.777	26.12	0.001656
11.4	9.788 _e -6	0.0002642	0.03705	998.3	105.67	5.032	0.3854	151.5	5.778	26.21	0.001642
11.42	9.673 _e -6	0.000262	0.03692	1007	105.71	5.024	0.3854	152	5.778	26.3	0.001629
11.44	9.559e-6	0.0002598	0.0368	1015	105.76	5.015	0.3853	152.5	5.779	26.39	0.001615
11.46	9.447 _{e-6}	0.0002576	0.03668	1024	105.8	5.006	0.3853	153.1	5.78	26.48	0.001602
11.48	9.337 _e -6	0.0002554	0.03655	1032	105.84	4.997	0.3853	153.6	5.781	26.57	0.001589
11.5	9.228e-6	0.0002533	0.03643	1041	105.88	4.989	0.3853	154.1	5.781	26.66	0.001576
11.52	9.12e-6	0.0002512	0.03631	1050	105.92	4.98	0.3852	154.7	5.782	26.75	0.001563
11.54	9.014e-6	0.0002491	0.03619	1058	105.96	4.971	0.3852	155.2	5.783	26.84	0.00155
11.56	8.91 _e -6	0.000247	0.03607	1067	106	4.963	0.3852	155.7	5.784	26.93	0.001537
11.58	8.806e-6	0.000245	0.03595	1076	106.05	4.954	0.3852	156.3	5.784	27.02	0.001525
11.6	8.704 _{e-6}	0.000243	0.03583	1085	106.09	4.945	0.3851	156.8	5.785	27.11	0.001512
11.62	8.604e-6	0.0002409	0.03571	1094	106.13	4.937	0.3851	157.4	5.786	27.2	0.0015
11.64	8.504e-6	0.000239	0.03559	1103	106.17	4.928	0.3851	157.9	5.786	27.29	0.001488
11.66	8.406e-6	0.000237	0.03547	1112	106.21	4.92	0.3851	158.4	5.787	27.38	0.001475
11.68	8.31 _e -6	0.000235	0.03536	1121	106.25	4.911	0.385	159	5.788	27.47	0.001463
11.7	8.214e-6	0.0002331	0.03524	1130	106.29	4.903	0.385	159.5	5.789	27.56	0.001452
11.72	8.12e-6	0.0002312	0.03512	1140	106.33	4.895	0.385	160.1	5.789	27.65	0.00144
11.74	8.027e-6	0.0002293	0.03501	1149	106.37	4.886	0.385	160.6	5.79	27.74	0.001428
11.76	7.935e-6	0.0002274	0.03489	1158	106.41	4.878	0.3849	161.2	5.791	27.83	0.001417
11.78	7.845e-6	0.0002256	0.03478	1168	106.45	4.87	0.3849	161.7	5.791	27.93	0.001405
11.8	7.755e-6	0.0002237	0.03466	1177	106.49	4.861	0.3849	162.3	5.792	28.02	0.001394
11.82	7.667e - 6	0.0002219	0.03455	1187	106.53	4.853	0.3849	162.8	5.793	28.11	0.001383
11.84	7.58e-6	0.0002201	0.03444	1197	106.57	4.845	0.3848	163.4	5.793	28.2	0.001372
11.86	7.494_{e-6}	0.0002183	0.03433	1206	106.61	4.837	0.3848	163.9	5.794	28.29	0.001361
11.88	7.409_{e-6}	0.0002165	0.03422	1216	106.65	4.829	0.3848 0.3848	164.5	5.795	28.39	0.00135
11.9	7.325e-6	0.0002148	0.0341	1226	106.69	4.82		165	5.795	28.48	0.001339
11.92	7.243_{e-6}		0.03399	1236	106.72	4.812	0.3848	165.6	5.796	28.57	0.001328
11.94	7.161 _{e-6}	0.0002113	0.03388	1246	106.76	4.804	0.3847	166.2	5.797	28.66	0.001318
11.96	7.08e-6	0.0002096	0.03377	1256	106.8	4.796	0.3847	166.7	5.797	28.76	0.001307
11.98	7.001_{e-6}	0.000208	0.03367	1266	106.84	4.788	0.3847	167.3	5.798	28.85	0.001297
12 02	6.922 _e -6	0.0002063	0.03356	1276	106.88	4.78	0.3847	167.8	5.799	28.94	0.001287
12.02	6.845e-6	0.0002046	0.03345	1286	106.92	4.772	0.3846	168.4	5.799	29.04	0.001276
12.04	6.768e-6	0.000203	0.03334	1297	106.96	4.764	0.3846	169	5.8	29.13	0.001266
12.06	6.692e-6	0.0002014	0.03324	1307	106.99	4.756	0.3846	169.5	5.801	29.22	0.001256
12.08	6.618e-6	0.0001998	0.03313	1318	107.03	4.748	0.3846	170.1	5.801	29.32	0.001246
12.1 12.12	6.544e-6	0.0001982	0.03302	1328	107.07	4.741	0.3846	170.6	5.802	29.41	0.001237
	6.471 _{e-6}	0.0001966	0.03292	1339	107.11	4.733	0.3845	171.2	5.802	29.51	0.001227
12.14	6.4e-6	0.000195	0.03281	1349	107.14	4.725	0.3845	171.8	5.803	29.6	0.001217
12.16	6.329e-6	0.0001935	0.03271	1360	107.18	4.717	0.3845	172.3	5.804	29.7	0.001208
12.18	6.259e-6	0.000192	0.0326	1371	107.22	4.709	0.3845	172.9	5.804	29.79	0.001198
12.2	6.189e -6	0.0001904	0.0325	1382	107.26	4.702	0.3844	173.5	5.805	29.88	0.001189

M	n/n	0/0	T/T_i	1/1		Ι.,	M_2	n /n	0 /0	T /T	n /n
$\frac{M}{12.22}$	$\begin{array}{ c c }\hline p/p_i\\ 6.121_{\rm e-6}\end{array}$	$\frac{\rho/\rho_i}{0.0001889}$	$\frac{1/T_i}{0.0324}$	A/A_{*} 1393	$\frac{\nu}{107.29}$	$\frac{\mu}{4.694}$	0.3844	$\frac{p_2/p_1}{174}$	$\frac{\rho_2/\rho_1}{5.806}$	T_2/T_1 29.98	$p_{i2}/p_{i1} = 0.00118$
12.24	$\begin{array}{c} 0.121\mathrm{e}{-6} \\ 6.054\mathrm{e}{-6} \end{array}$	0.0001889	0.0324 0.0323	1404	107.29	4.686	0.3844	174.6	5.806	30.07	0.00118
12.24	5.987e-6	0.0001874	0.0323 0.03219	1415	107.37	4.679	0.3844	175.2	5.807	30.07	0.001171
12.28	5.921e-6	0.000180	0.03219	1426	107.37	4.671	0.3844	175.8	5.807	30.17	0.001101
$\frac{12.26}{12.3}$	$\begin{array}{c} 5.921e - 6 \\ 5.856e - 6 \end{array}$	0.0001843	0.03199	1437	107.44	4.663	0.3843	176.3	5.808	30.27	0.001132
$\frac{12.3}{12.32}$	5.792e-6	0.0001831	0.03199	1448	107.44	4.656	0.3843	176.9	5.809	30.46	0.001144
12.34	5.729e-6	0.0001810 0.0001802	0.03179	1460	107.51	4.648	0.3843	177.5	5.809	30.55	0.001136
12.36	5.666e -6	0.0001788	0.03169	1471	107.55	4.641	0.3843	178.1	5.81	30.65	0.001120
12.38	5.605e-6	0.0001774	0.03159	1482	107.59	4.633	0.3843	178.6	5.81	30.74	0.001111
12.4	5.544e -6	0.0001771	0.03149	1494	107.62	4.626	0.3842	179.2	5.811	30.84	0.001103
12.42	5.483_{e-6}	0.0001747	0.0314	1506	107.66	4.618	0.3842	179.8	5.812	30.94	0.0011
12.44	5.424e -6	0.0001717	0.0313	1517	107.69	4.611	0.3842	180.4	5.812	31.03	0.001083
12.46	5.365e-6	0.0001733	0.0312	1529	107.73	4.603	0.3842	181	5.813	31.13	0.001075
12.48	5.307e-6	0.000172	0.0311	1541	107.76	4.596	0.3842	181.5	5.813	31.23	0.001067
12.5	5.25 _e -6	0.0001100	0.03101	1553	107.8	4.589	0.3841	182.1	5.814	31.33	0.001059
$\frac{12.5}{12.52}$	5.193e-6	0.000168	0.03091	1565	107.84	4.581	0.3841	182.7	5.815	31.42	0.001053
12.54	5.137e-6	0.0001667	0.03082	1577	107.87	4.574	0.3841	183.3	5.815	31.52	0.001031
12.56	5.082e -6	0.0001654	0.03072	1589	107.91	4.567	0.3841	183.9	5.816	31.62	0.001035
12.58	5.027e-6	0.0001642	0.03063	1601	107.94	4.559	0.3841	184.5	5.816	31.72	0.001037
12.6	$4.974 \text{e}{-6}$	0.0001629	0.03053	1614	107.98	4.552	0.384	185.1	5.817	31.81	0.001019
12.62	4.92e-6	0.0001616	0.03044	1626	108.01	4.545	0.384	185.6	5.817	31.91	0.001011
12.64	4.868e -6	0.0001604	0.03035	1638	108.04	4.538	0.384	186.2	5.818	32.01	0.001004
12.66	4.816e-6	0.0001592	0.03025	1651	108.08	4.53	0.384	186.8	5.818	32.11	0.000996
12.68	$4.764 \mathrm{e}{-6}$	0.000158	0.03016	1664	108.11	4.523	0.384	187.4	5.819	32.21	0.0009885
12.7	$4.714 e{-6}$	0.0001568	0.03007	1676	108.15	4.516	0.3839	188	5.82	32.31	0.0009811
12.72	$4.664 e{-6}$	0.0001556	0.02998	1689	108.18	4.509	0.3839	188.6	5.82	32.4	0.0009737
12.74	$4.614\mathrm{e}{-6}$	0.0001544	0.02989	1702	108.22	4.502	0.3839	189.2	5.821	32.5	0.0009664
12.76	$4.565_{\mathrm{e}-6}$	0.0001532	0.02979	1715	108.25	4.495	0.3839	189.8	5.821	32.6	0.0009591
12.78	$4.517_{\mathrm{e}-6}$	0.0001521	0.0297	1728	108.29	4.488	0.3839	190.4	5.822	32.7	0.000952
12.8	$4.469_{\mathrm{e}-6}$	0.0001509	0.02961	1741	108.32	4.481	0.3839	191	5.822	32.8	0.0009449
12.82	$4.422 \mathrm{e}{-6}$	0.0001498	0.02952	1754	108.35	4.474	0.3838	191.6	5.823	32.9	0.0009378
12.84	$4.375 \mathrm{e}{-6}$	0.0001486	0.02944	1767	108.39	4.467	0.3838	192.2	5.823	33	0.0009308
12.86	$4.329 \mathrm{e}{-6}$	0.0001475	0.02935	1781	108.42	4.46	0.3838	192.8	5.824	33.1	0.0009239
12.88	$4.284 \mathrm{e}{-6}$	0.0001464	0.02926	1794	108.45	4.453	0.3838	193.4	5.824	33.2	0.000917
12.9		0.0001453			108.49		0.3838	194	5.825	33.3	0.0009102
12.92				1821	108.52	4.439	0.3837	194.6	5.826	33.4	0.0009035
12.94	$4.151\mathrm{e}{-6}$	0.0001432	0.02899	1835	108.55	4.432	0.3837	195.2	5.826	33.5	0.0008968
12.96	$4.107_{\mathrm{e}-6}$	0.0001421	0.02891	1848	108.59	4.425	0.3837	195.8	5.827	33.6	0.0008902
12.98	$4.065 \mathrm{e}{-6}$	0.000141	0.02882	1862	108.62	4.419	0.3837	196.4	5.827	33.7	0.0008836
13	$4.022\mathrm{e}{-6}$	0.00014	0.02874	1876	108.65	4.412	0.3837	197	5.828	33.8	0.0008771
13.02	3.98e -6	0.0001389	0.02865	1890	108.68	4.405	0.3837	197.6	5.828	33.91	0.0008706
13.04	3.939e-6	0.0001379	0.02856	1904	108.72	4.398	0.3836	198.2	5.829	34.01	0.0008642
13.06	3.898e -6	0.0001369	0.02848	1918	108.75	4.391	0.3836	198.8	5.829	34.11	0.0008579
13.08	$3.858\mathrm{e}{-6}$	0.0001359	0.0284	1932	108.78	4.385	0.3836	199.4	5.83	34.21	0.0008516
13.1	3.818e -6	0.0001349	0.02831	1947	108.82	4.378	0.3836	200	5.83	34.31	0.0008454
13.12	3.779e-6	0.0001339	0.02823	1961	108.85	4.371	0.3836	200.7	5.831	34.41	0.0008392
13.14	3.74e -6	0.0001329	0.02814	1976	108.88	4.365	0.3836	201.3	5.831	34.52	0.0008331
13.16	3.701e-6	0.0001319	0.02806	1990	108.91	4.358	0.3835	201.9	5.832	34.62	0.000827
13.18	3.663e -6	0.0001309	0.02798	2005	108.94	4.351	0.3835	202.5	5.832	34.72	0.000821

14	n/n	0/0	T/T	1/1		l	14	n /n	0.10	T/T	n /n
M 12.2	$\frac{p/p_i}{3.626_{\rm e-6}}$	ρ/ρ_i	T/T_i	$A/A_* = 2020$	100 00	4 245	M_2	$p_2/p_1 = 203.1$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
13.2		0.00013	0.0279		108.98	4.345	0.3835		5.833	34.82	0.000815
13.22	3.588e-6	0.000129	0.02781	2034	109.01	4.338	0.3835	203.7	5.833	34.93	0.0008091
13.24	3.552e-6	0.0001281	0.02773	2049		4.332	0.3835	204.3	5.834	35.03	0.0008033
13.26	3.515e-6	0.0001271	0.02765	2064	109.07	4.325	0.3835	205	5.834	35.13	0.0007975
13.28	3.479e-6	0.0001262	0.02757	2080	109.1	4.319	0.3834	205.6	5.835	35.24	0.0007917
13.3	3.444 _e -6	0.0001253	0.02749	2095	109.13	4.312	0.3834	206.2	5.835	35.34	0.000786
13.32	3.409e-6	0.0001244	0.02741	2110	109.17	4.306	0.3834	206.8	5.836	35.44	0.0007803
13.34	$\frac{3.374e-6}{2.24}$	0.0001235	0.02733	2125	109.2	4.299	0.3834	207.4	5.836	35.55	0.0007747
13.36	3.34 _{e-6}	0.0001226	0.02725	2141	109.23	4.293	0.3834	208.1	5.837	35.65	0.0007691
13.38	3.306e-6	0.0001217	0.02717	2156	109.26	4.286	0.3834	208.7	5.837	35.75	0.0007636
13.4	3.273e-6	0.0001208	0.02709	2172	109.29	4.28	0.3833	209.3	5.837	35.86	0.0007581
13.42	3.24e-6	0.0001199	0.02701	2188	109.32	4.273	0.3833	209.9	5.838	35.96	0.0007527
13.44	3.207e-6	0.0001191	0.02693	2204	109.35	4.267	0.3833	210.6	5.838	36.07	0.0007473
13.46	3.175e-6	0.0001182	0.02686	2219	109.38	4.261	0.3833	211.2	5.839	36.17	0.000742
13.48	3.143 _{e-6}	0.0001174	0.02678	2235	109.41	4.254	0.3833	211.8	5.839	36.28	0.0007367
13.5	3.111e-6	0.0001165	0.0267	2252	109.44	4.248	0.3833	212.5	5.84	36.38	0.0007315
13.52	3.08e-6	0.0001157	0.02663	2268	109.47	4.242	0.3832	213.1	5.84	36.49	0.0007263
13.54	3.049e-6	0.0001148	0.02655	2284	109.5	4.235	0.3832	213.7	5.841	36.59	0.0007211
13.56	3.019e-6	0.000114	0.02647	2300	109.53	4.229	0.3832	214.4	5.841	36.7	0.000716
13.58	2.988e-6	0.0001132	0.0264	2317	109.56	4.223	0.3832	215	5.842	36.8	0.000711
13.6	$2.959 \mathrm{e}{-6}$	0.0001124	0.02632	2333	109.59	4.217	0.3832	215.6	5.842	36.91	0.0007059
13.62	$2.929 \mathrm{e}{-6}$	0.0001116	0.02625	2350	109.62	4.211	0.3832	216.3	5.843	37.01	0.0007009
13.64	2.9e -6	0.0001108	0.02617	2367	109.65	4.204	0.3832	216.9	5.843	37.12	0.000696
13.66	2.871e -6	0.00011	0.0261	2384	109.68	4.198	0.3831	217.5	5.843	37.23	0.0006911
13.68	2.843e-6	0.0001092	0.02602	2401	109.71	4.192	0.3831	218.2	5.844	37.33	0.0006863
13.7	2.814e -6	0.0001085	0.02595	2418	109.74	4.186	0.3831	218.8	5.844	37.44	0.0006814
13.72	$2.787 \mathrm{e}{-6}$	0.0001077	0.02587	2435	109.77	4.18	0.3831	219.4	5.845	37.55	0.0006767
13.74	$2.759_{\mathrm{e}-6}$	0.0001069	0.0258	2452	109.8	4.174	0.3831	220.1	5.845	37.65	0.0006719
13.76	$2.732 \mathrm{e}{-6}$	0.0001062	0.02573	2469	109.83	4.168	0.3831	220.7	5.846	37.76	0.0006672
13.78	2.705e -6	0.0001054	0.02566	2487	109.86	4.162	0.3831	221.4	5.846	37.87	0.0006626
13.8	2.678e -6	0.0001047	0.02558	2504	109.89	4.156	0.383	222	5.847	37.97	0.0006579
13.82	2.652e -6	0.000104	0.02551	2522	109.92	4.149	0.383	222.7	5.847	38.08	0.0006534
13.84	$2.626 \mathrm{e}{-6}$	0.0001032	0.02544	2540	109.95	4.143	0.383	223.3	5.847	38.19	0.0006488
13.86	2.6e -6	0.0001025	0.02537	2558	109.98	4.137	0.383	223.9	5.848	38.3	0.0006443
13.88	2.575 _{e-6}			2576	110.01		0.383	224.6	5.848	38.4	0.0006398
13.9	2.55e-6	0.0001011	0.02523	2594	110.04		0.383	225.2	5.849	38.51	0.0006354
13.92	2.525e-6	0.0001004	0.02516	2612	110.07	4.12	0.383	225.9	5.849	38.62	0.000631
13.94	2.5e-6	$9.966 \mathrm{e}{-5}$	0.02508	2630	110.09	4.114	0.3829	226.5	5.849	38.73	0.0006267
13.96	$2.476 {\scriptstyle\mathrm{e}-6}$	$9.897\mathrm{e}{-5}$	0.02501	2648	110.12	4.108	0.3829	227.2	5.85	38.84	0.0006223
13.98	2.452e -6	$9.828 \mathrm{e}{-5}$	0.02495	2667	110.15	4.102	0.3829	227.8	5.85	38.95	0.000618
14	$2.428 \mathrm{e}{-6}$	9.76e -5	0.02488	2685	110.18	4.096	0.3829	228.5	5.851	39.05	0.0006138
14.02	$2.404 \mathrm{e}{-6}$	$9.692 \mathrm{e}{-5}$	0.02481	2704	110.21	4.09	0.3829	229.2	5.851	39.16	0.0006096
14.04	2.381e -6	$9.625 {\scriptstyle\mathrm{e}-5}$	0.02474	2723	110.24	4.084	0.3829	229.8	5.852	39.27	0.0006054
14.06	$2.358 \mathrm{e}{-6}$	$9.558 \mathrm{e}{-5}$	0.02467	2742	110.26	4.079	0.3829	230.5	5.852	39.38	0.0006012
14.08	$2.335 \mathrm{e}{-6}$	$9.492 \scriptstyle{\rm e-5}$	0.0246	2761	110.29	4.073	0.3828	231.1	5.852	39.49	0.0005971
14.1	2.313e -6	$9.427_{\mathrm{e}-5}$	0.02453	2780	110.32	4.067	0.3828	231.8	5.853	39.6	0.0005931
14.12	2.29e-6	$9.362 {\scriptstyle\mathrm{e}-5}$	0.02446	2799	110.35	4.061	0.3828	232.4	5.853	39.71	0.000589
14.14	$2.268 \mathrm{e}{-6}$	$9.297 \mathrm{e}{-5}$	0.0244	2818	110.38	4.055	0.3828	233.1	5.854	39.82	0.000585
14.16	$2.247 \mathrm{e}{-6}$	$9.233 \mathrm{e}{-5}$	0.02433	2838	110.4	4.05	0.3828	233.8	5.854	39.93	0.000581

M	p/p_i	0/0	T/T_i	A/A_*	ν	.,	M_2	no /no	02/01	T_2/T_1	nio/nii
14.18	$\frac{p/p_i}{2.225_{\mathrm{e}-6}}$	$\frac{\rho/\rho_i}{9.17_{\mathrm{e}-5}}$	0.02426	$\frac{A_{1}A_{*}}{2857}$	$\frac{\nu}{110.43}$	$\frac{\mu}{4.044}$	0.3828	$\frac{p_2/p_1}{234.4}$	$\frac{\rho_2/\rho_1}{5.854}$	40.04	$p_{i2}/p_{i1} = 0.0005771$
14.2	2.204e-6	9.107e-5	0.02420 0.0242	2877	110.46	4.038	0.3828	235.1	5.855	40.15	0.0005771
14.22	2.183_{e-6}	9.045 _e -5	0.02413	2896	110.49	4.033	0.3827	235.7	5.855	40.26	0.0005693
14.24	2.162e-6	8.983e -5	0.02416	2916	110.43 110.52	4.027	0.3827	236.4	5.856	40.37	0.0005654
14.26	$\begin{array}{c} 2.102\text{e}{-6} \\ 2.141\text{e}{-6} \end{array}$	8.922e-5	0.02400	2936	110.54	4.021	0.3827	237.1	5.856	40.48	0.0005616
14.28	2.141e-6 $2.121e-6$	8.861e -5	0.02393	2956	110.57	4.016	0.3827	237.7	5.856	40.59	0.0005578
14.3	2.101e-6	8.801e-5	0.02387	2976	110.6	4.01	0.3827	238.4	5.857	40.71	0.000554
14.32	2.081e -6	8.741 _{e-5}	0.0238	2997	110.62	4.004	0.3827	239.1	5.857	40.82	0.0005503
14.34	2.061e-6	8.682e -5	0.02374	3017	110.65	3.999	0.3827	239.7	5.858	40.93	0.0005466
14.36	2.041e-6	8.623e -5	0.02367	3038	110.68	3.993	0.3827	240.4	5.858	41.04	0.0005429
14.38	2.022e-6	8.564 _e -5	0.02361	3058	110.71	3.988	0.3826	241.1	5.858	41.15	0.0005393
14.4	2.003e-6	8.506e -5	0.02354	3079	110.73	3.982	0.3826	241.8	5.859	41.26	0.0005357
14.42	$1.984 \text{e}{-6}$	8.449e-5	0.02348	3100	110.76	3.977	0.3826	242.4	5.859	41.38	0.0005321
14.44	1.965e -6	8.392e-5	0.02342	3121	110.79	3.971	0.3826	243.1	5.859	41.49	0.0005285
14.46	1.947e-6	8.335 _e -5	0.02335	3142	110.81	3.966	0.3826	243.8	5.86	41.6	0.000525
14.48	1.928e-6	8.279e -5	0.02329	3163	110.84	3.96	0.3826	244.4	5.86	41.71	0.0005215
14.5	1.91e-6	8.224e -5	0.02323	3184	110.87	3.955	0.3826	245.1	5.861	41.83	0.000518
14.52	1.892e-6	8.169e-5	0.02317	3206	110.89	3.949	0.3825	245.8	5.861	41.94	0.0005146
14.54	1.875e-6	8.114 _{e-5}	0.0231	3227	110.92	3.944	0.3825	246.5	5.861	42.05	0.0005111
14.56	1.857e-6	8.059e -5	0.02304	3249	110.95	3.938	0.3825	247.2	5.862	42.16	0.0005078
14.58	1.84e-6	8.006e -5	0.02298	3271	110.97	3.933	0.3825	247.8	5.862	42.28	0.0005044
14.6	1.823e-6	7.952e -5	0.02292	3292	111	3.927	0.3825	248.5	5.862	42.39	0.0005011
14.62	1.806e-6	7.899e-5	0.02286	3314	111.02	3.922	0.3825	249.2	5.863	42.51	0.0004977
14.64	1.789e-6	7.847e-5	0.0228	3337	111.05	3.917	0.3825	249.9	5.863	42.62	0.0004945
14.66	1.772e-6	7.794e -5	0.02274	3359	111.08	3.911	0.3825	250.6	5.864	42.73	0.0004912
14.68	1.756e -6	$7.743_{\mathrm{e}-5}$	0.02268	3381	111.1	3.906	0.3825	251.3	5.864	42.85	0.000488
14.7	1.739e-6	$7.691\mathrm{e}{-5}$	0.02262	3404	111.13	3.901	0.3824	251.9	5.864	42.96	0.0004848
14.72	1.723e-6	7.64e -5	0.02256	3426	111.15	3.895	0.3824	252.6	5.865	43.08	0.0004816
14.74	1.707e-6	7.59e -5	0.0225	3449	111.18	3.89	0.3824	253.3	5.865	43.19	0.0004784
14.76	1.692e -6	7.54e -5	0.02244	3472	111.21	3.885	0.3824	254	5.865	43.31	0.0004753
14.78	1.676e -6	7.49e -5	0.02238	3495	111.23	3.88	0.3824	254.7	5.866	43.42	0.0004722
14.8	1.661e -6	7.441e -5	0.02232	3518	111.26	3.874	0.3824	255.4	5.866	43.53	0.0004691
14.82	1.645e -6	$7.392 {\scriptstyle \mathrm{e}-5}$	0.02226	3541	111.28	3.869	0.3824	256.1	5.866	43.65	0.000466
14.84	1.63e -6	$7.343 \mathrm{e}{-5}$	0.0222	3564	111.31	3.864	0.3824	256.8	5.867	43.77	0.000463
14.86	1.615e -6	$7.295\mathrm{e}{-5}$			111.33	3.859	0.3823		5.867	43.88	0.00046
14.88		$7.247_{\mathrm{e}-5}$			111.36	3.853	0.3823	258.2	5.867	44	0.000457
14.9	1.586e -6	7.2e -5	0.02203	3635	111.38	3.848	0.3823	258.8	5.868	44.11	0.000454
14.92	1.571e-6	$7.153 \mathrm{e}{-5}$		3659	111.41	3.843	0.3823	259.5	5.868	44.23	0.0004511
14.94	$1.557\mathrm{e}{-6}$	$7.106 \mathrm{e}{-5}$	0.02191	3683	111.43	3.838	0.3823	260.2	5.869	44.34	0.0004482
14.96	$1.543_{\mathrm{e}-6}$	7.06e -5	0.02185	3707	111.46	3.833	0.3823	260.9	5.869	44.46	0.0004453
14.98	$1.529 \mathrm{e}{-6}$	7.014e -5	0.0218	3731	111.48	3.828	0.3823	261.6	5.869	44.58	0.0004424
15	1.515e -6	6.968e -5	0.02174	3755	111.51	3.823	0.3823	262.3	5.87	44.69	0.0004395
15.02	1.501e -6	6.923e -5	0.02168	3780	111.53	3.817	0.3823	263	5.87	44.81	0.0004367
15.04	1.487e-6	6.878e -5	0.02163	3804	111.56	3.812	0.3822	263.7	5.87	44.93	0.0004339
15.06	1.474e-6	6.833e -5	0.02157	3829	111.58	3.807	0.3822	264.4	5.871	45.04	0.0004311
15.08	1.461 _{e-6}	6.789e-5	0.02151	3854	111.61	3.802	0.3822	265.1	5.871	45.16	0.0004283
15.1	1.447 _{e-6}	6.745e -5	0.02146	3879	111.63	3.797	0.3822	265.8	5.871	45.28	0.0004256
15.12	1.434e-6	6.702e -5	0.0214	3904	111.66	3.792	0.3822	266.6	5.872	45.4	0.0004229
15.14	1.421e -6	6.658e -5	0.02135	3929	111.68	3.787	0.3822	267.3	5.872	45.51	0.0004202

14	n/n	0/0	T/T	1/1	l .,	l	11	n /n	0.10	T/T	n /n
M 15 16	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 111 71	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
15.16	1.409e-6	6.615e -5	0.02129	3954	111.71	3.782	0.3822	268	5.872	45.63	0.0004175
15.18	1.396e-6	6.573e - 5	0.02124	3980	111.73	3.777	0.3822	268.7	5.873	45.75	0.0004148
15.2	1.383e-6	6.531e-5	0.02118	4006	111.75	3.772	0.3822	269.4	5.873	45.87	0.0004122
15.22	1.371e-6	6.489e-5	0.02113	4031	111.78	3.767	0.3821	270.1	5.873	45.99	0.0004095
15.24	1.359e-6	6.447 _{e-5}	0.02107	4057	111.8	3.762	0.3821	270.8	5.874	46.11	0.0004069
15.26	1.347e-6	6.406e-5	0.02102	4083	111.83	3.757	0.3821	271.5	5.874	46.22	0.0004044
15.28	1.335e-6	6.365e-5	0.02097	4109	111.85	3.752	0.3821	272.2	5.874	46.34	0.0004018
15.3	1.323e-6	6.324e-5	0.02091	4136	111.87	3.747	0.3821	272.9	5.875	46.46	0.0003992
15.32	1.311 _e -6	6.284 _{e-5}	0.02086	4162	111.9	3.743	0.3821	273.7	5.875	46.58	0.0003967
15.34	1.299 _e -6	6.244e-5	0.02081	4189	111.92	3.738	0.3821	274.4	5.875	46.7	0.0003942
15.36	1.288 _{e-6}	6.204e-5	0.02075	4215	111.95	3.733	0.3821	275.1	5.875	46.82	0.0003917
15.38	1.276 _{e-6}	6.165e-5	0.0207	4242	111.97	3.728	0.3821	275.8	5.876	46.94	0.0003893
15.4	1.265 _e -6	6.126e-5	0.02065	4269	111.99	3.723	0.382	276.5	5.876	47.06	0.0003868
15.42	1.254e-6	6.087e-5	0.0206	4296	112.02	3.718	0.382	277.2	5.876	47.18	0.0003844
15.44	1.243 _{e-6}	6.049e-5	0.02054	4323	112.04	3.713	0.382	278	5.877	47.3	0.000382
15.46	1.232e-6	6.01e-5	0.02049	4351	112.06	3.709	0.382	278.7	5.877	47.42	0.0003796
15.48	1.221e-6	5.972e-5	0.02044	4378	112.09	3.704	0.382	279.4	5.877	47.54	0.0003772
15.5	1.21e-6	5.935e-5	0.02039	4406	112.11	3.699	0.382	280.1	5.878	47.66	0.0003748
15.52	1.199e-6	5.897e-5	0.02034	4434	112.13	3.694	0.382	280.8	5.878	47.78	0.0003725
15.54	1.189e-6	5.86e-5	0.02028	4462	112.16	3.69	0.382	281.6	5.878	47.9	0.0003702
15.56	1.178e-6	5.823e-5	0.02023	4490	112.18	3.685	0.382	282.3	5.879	48.02	0.0003679
15.58	1.168e-6	5.787e-5	0.02018	4518	112.2	3.68	0.3819	283	5.879	48.14	0.0003656
15.6	1.158e-6	5.751e-5	0.02013	4546	112.23	3.675	0.3819	283.8	5.879	48.26	0.0003633
15.62	1.148e-6	5.715e-5	0.02008	4575	112.25	3.671	0.3819	284.5	5.88	48.39	0.000361
15.64	1.138e-6	5.679e-5	0.02003	4604	112.27	3.666	0.3819	285.2	5.88	48.51	0.0003588
15.66	1.128e-6	5.644e-5	0.01998	4632	112.3	3.661	0.3819	285.9	5.88	48.63	0.0003566
15.68	1.118e-6	5.608e-5	0.01993	4661	112.32	3.657	0.3819	286.7	5.88	48.75	0.0003544
15.7	1.108e-6	5.573e-5	0.01988	4690	112.34	3.652	0.3819	287.4	5.881	48.87	0.0003522
15.72	1.098e-6	5.539e-5	0.01983	4720	112.36	3.647	0.3819	288.1	5.881	48.99	0.00035
15.74	1.089e-6	5.504e-5	0.01978	4749	112.39	3.643	0.3819	288.9	5.881	49.12	0.0003479
15.76	1.079e-6	5.47 _{e-5}	0.01973	4779	112.41	3.638	0.3819	289.6	5.882	49.24	0.0003457
15.78	1.07e-6	5.436 _{e-5}	0.01968	4808	112.43	3.633	0.3818	290.3	5.882	49.36	0.0003436
15.8	1.061e-6	5.403e -5	0.01964	4838	112.45	3.629	0.3818	291.1	5.882	49.48	0.0003415
15.82	1.052e-6	5.369e-5	0.01959	4868	112.48	3.624	0.3818	291.8	5.882	49.61	0.0003394
15.84	1.043e-6	5.336e-5		4898	112.5	3.62	0.3818	292.6	5.883	49.73	0.0003373
15.86	1.034e-6	5.303e-5	0.01949	4928	112.52	3.615	0.3818	293.3	5.883	49.85	0.0003352
15.88	1.025e-6	5.271 _{e-5}	0.01944	4959	112.54	3.61	0.3818	294	5.883	49.98	0.0003332
15.9	1.016e-6	5.238e-5	0.01939	4989	112.57	3.606	0.3818	294.8	5.884	50.1	0.0003311
15.92	1.007e-6	5.206e-5	0.01935	5020	112.59	3.601	0.3818	295.5	5.884	50.23	0.0003291
15.94	9.985e-7	5.174e - 5	0.0193	5051	112.61	3.597	0.3818	296.3	5.884	50.35	0.0003271
15.96	9.9e-7	5.142e-5	0.01925	5082	112.63	3.592	0.3818	297	5.884	50.47	0.0003251
15.98	9.815e-7	5.111e-5	0.0192	5113	112.65	3.588	0.3818	297.8	5.885	50.6	0.0003232
16	9.731 _{e-7}	5.08e-5	0.01916	5145	112.68	3.583	0.3817	298.5	5.885	50.72	0.0003212
16.02	9.648e - 7	5.049e-5	0.01911	5176	112.7	3.579	0.3817	299.2	5.885	50.85	0.0003192
16.04	9.565 _e -7	5.018e-5	0.01906	5208	112.72	3.574	0.3817	300	5.886	50.97	0.0003173
16.06	9.484e-7	4.987 _{e-5}	0.01902	5239	112.74	3.57	0.3817	300.7	5.886	51.1	0.0003154
16.08	9.403_{e-7}	4.957e-5	0.01897	5271	112.76	3.565	0.3817	301.5	5.886	51.22	0.0003135
16.1	9.323e-7	4.927 _{e-5}	0.01892	5304	112.78	3.561	0.3817	302.2	5.886	51.35	0.0003116
16.12	$9.244\mathrm{e}{-7}$	$4.897 \mathrm{e}{-5}$	0.01888	5336	112.81	3.557	0.3817	303	5.887	51.47	0.0003097

M	n/n.	0/0:	T/T_i	A/A_*	ν	l ,,	M_2	n- /n:	0-10-	T_2/T_1	n/n
$\frac{101}{16.14}$	$\begin{array}{ c c }\hline p/p_i\\ 9.166 \text{e}{-7}\end{array}$	$ ho/ ho_i$ 4.867 e-5	0.01883	$\frac{A_{1}A_{*}}{5368}$	$\frac{\nu}{112.83}$	$\frac{\mu}{3.552}$	0.3817	$\frac{p_2/p_1}{303.7}$	$\frac{\rho_2/\rho_1}{5.887}$	$\frac{12/11}{51.6}$	p_{i2}/p_{i1} 0.0003079
16.14	9.100e - 7 9.088e - 7	4.838e-5	0.01833 0.01879	5401	112.85	3.548	0.3817	304.5	5.887	51.72	0.0003079
16.18	9.030e - 7 9.011e - 7	4.808e-5	0.01874	5434	112.87	3.543	0.3817	305.3	5.888	51.72	0.0003042
16.13	8.935e -7	4.779e-5	0.01874	5467	112.89	3.539	0.3817	306	5.888	51.97	0.0003042
16.22	8.86 _e -7	4.75 _{e-5}	0.01865	5500	112.03	3.535	0.3816	306.8	5.888	52.1	0.0003023
16.24	8.785 _e -7	4.722e-5	0.01861	5533	112.94	3.53	0.3816	307.5	5.888	52.23	0.0003003
16.26	8.711 _e -7	4.693e-5	0.01856	5566	112.96	3.526	0.3816	308.3	5.889	52.35	0.0002969
16.28	8.638e-7	4.665e -5	0.01852	5600	112.98	3.522	0.3816	309	5.889	52.48	0.0002952
16.3	8.565e-7	4.637e-5	0.01847	5633	113	3.517	0.3816	309.8	5.889	52.61	0.0002934
16.32	8.493e-7	4.609e-5	0.01843	5667	113.02	3.513	0.3816	310.6	5.889	52.73	0.0002917
16.34	8.422e-7	4.582e -5	0.01838	5701	113.04	3.509	0.3816	311.3	5.89	52.86	0.0002899
16.36	8.352e-7	$4.554_{\rm e-5}$	0.01834	5736	113.06	3.504	0.3816	312.1	5.89	52.99	0.0002882
16.38	8.282e-7	$4.527_{\mathrm{e}-5}$	0.01829	5770	113.08	3.5	0.3816	312.9	5.89	53.11	0.0002865
16.4	8.213e-7	4.5e -5	0.01825	5804	113.1	3.496	0.3816	313.6	5.89	53.24	0.0002848
16.42	8.144e-7	4.473e -5	0.01821	5839	113.12	3.492	0.3816	314.4	5.891	53.37	0.0002831
16.44	8.076e-7	4.446e -5	0.01816	5874	113.15	3.487	0.3815	315.2	5.891	53.5	0.0002814
16.46	8.009e-7	4.42e -5	0.01812	5909	113.17	3.483	0.3815	315.9	5.891	53.63	0.0002798
16.48	7.943e -7	$4.394\mathrm{e}{-5}$	0.01808	5944	113.19	3.479	0.3815	316.7	5.892	53.75	0.0002781
16.5	7.877e-7	$4.368 {\scriptstyle\mathrm{e}-5}$	0.01803	5980	113.21	3.475	0.3815	317.5	5.892	53.88	0.0002765
16.52	7.811e -7	$4.342\mathrm{e}{-5}$	0.01799	6015	113.23	3.47	0.3815	318.2	5.892	54.01	0.0002748
16.54	7.747e -7	$4.316 \mathrm{e}{-5}$	0.01795	6051	113.25	3.466	0.3815	319	5.892	54.14	0.0002732
16.56	7.683e -7	4.29e -5	0.01791	6087	113.27	3.462	0.3815	319.8	5.893	54.27	0.0002716
16.58	7.619e -7	$4.265 \mathrm{e}{-5}$	0.01786	6123	113.29	3.458	0.3815	320.5	5.893	54.4	0.00027
16.6	7.556e -7	4.24e -5	0.01782	6159	113.31	3.454	0.3815	321.3	5.893	54.53	0.0002684
16.62	$7.494 \mathrm{e}{-7}$	$4.215\mathrm{e}{-5}$	0.01778	6195	113.33	3.449	0.3815	322.1	5.893	54.65	0.0002669
16.64	7.432e-7	4.19e -5	0.01774	6232	113.35	3.445	0.3815	322.9	5.894	54.78	0.0002653
16.66	$7.371\mathrm{e}{-7}$	$4.165\mathrm{e}{-5}$	0.0177	6269	113.37	3.441	0.3815	323.6	5.894	54.91	0.0002638
16.68	7.311e -7	$4.141\mathrm{e}{-5}$	0.01765	6306	113.39	3.437	0.3814	324.4	5.894	55.04	0.0002622
16.7	7.251e -7	$4.117_{\mathrm{e}-5}$	0.01761	6343	113.41	3.433	0.3814	325.2	5.894	55.17	0.0002607
16.72	7.191e -7	$4.093 \mathrm{e}{-5}$	0.01757	6380	113.43	3.429	0.3814	326	5.895	55.3	0.0002592
16.74	7.132e-7	$4.069 \mathrm{e}{-5}$	0.01753	6417	113.45	3.425	0.3814	326.8	5.895	55.43	0.0002577
16.76	7.074e -7	4.045e -5	0.01749	6455	113.47	3.421	0.3814	327.5	5.895	55.56	0.0002562
16.78	7.016e -7	$4.021\mathrm{e}{-5}$	0.01745	6493	113.49	3.417	0.3814	328.3	5.895	55.69	0.0002547
16.8	6.959e -7	3.998e -5	0.01741	6531	113.51	3.412	0.3814	329.1	5.896	55.82	0.0002532
16.82		3.974e -5			113.53	3.408			5.896	55.95	0.0002517
16.84		3.951 _{e-5}			113.55	3.404			5.896	56.09	0.0002503
16.86	6.79e-7	3.928e-5	0.01729	6646	113.57	3.4	0.3814	331.5	5.896	56.22	0.0002488
16.88	6.735e-7	3.905e-5	0.01725	6685	113.59	3.396	0.3814	332.3	5.897	56.35	0.0002474
16.9	6.68e-7	3.883e-5	0.01721	6723	113.61	3.392	0.3814	333	5.897	56.48	0.000246
16.92	6.626e-7	3.86 _e -5	0.01717	6762	113.63	3.388	0.3813	333.8	5.897	56.61	0.0002446
16.94	6.573e - 7	3.838e-5	0.01713	6802	113.65	3.384	0.3813	334.6	5.897	56.74	0.0002432
16.96	6.52e-7	3.816e-5	0.01709	6841	113.67	3.38	0.3813	335.4	5.897	56.87	0.0002418
16.98	6.467 _{e-7}	3.794 _{e-5}	0.01705	6881	113.69	3.376	0.3813	336.2	5.898	57.01	0.0002404
17 02	6.415 _e -7	3.772e-5	0.01701	6921 6961	113.71	3.372	0.3813	337	5.898	57.14	0.000239
17.02	6.363e-7	3.75e-5	0.01697		113.73	3.368 3.364	0.3813	337.8	5.898	57.27	0.0002376
17.04 17.06	6.312e-7	3.729e-5	0.01693 0.01689	7001 7041	113.75	3.364	0.3813 0.3813	338.6	5.898	57.4	0.0002363 0.0002349
17.08	6.261e-7 $6.211e-7$	3.707e-5 $3.686e-5$	0.01689 0.01685	7041	113.77 113.79	3.356	0.3813	339.4	5.899 5.899	57.54 57.67	0.0002349
17.08	6.211e-7 $6.161e-7$	3.665 _{e-5}		7122	113.79	3.353	0.3813	340.2	5.899		0.0002336
11.1	U.101e-7	ა.იიე _{e-5}	0.01681	1122	119.8	ა.ამპ	0.3013	941	0.099	57.8	0.0002322

M	n/n.	0/0.	T/T_i	4/4	٠,,	·	M_2	n- /n:	0-10-	T- /T.	n /n
$\frac{NI}{17.12}$	$\frac{p/p_i}{\epsilon 112}$	ρ/ρ_i		$A/A_* = 7163$	$\frac{\nu}{113.82}$	$\frac{\mu}{3.349}$	0.3813	$\frac{p_2/p_1}{341.8}$	$\frac{\rho_2/\rho_1}{5.899}$	T_2/T_1	p_{i2}/p_{i1}
	6.112e-7	3.644 _{e-5}	0.01677							57.93	0.0002309
17.14	6.063e-7	3.623e-5	0.01673	7204	113.84	3.345	0.3813	342.6	5.9	58.07	0.0002296
17.16	6.014e-7	3.602e-5	0.0167	7246	113.86	3.341	0.3813 0.3812	343.4	5.9	58.2	0.0002283
17.18	5.966e - 7	3.582e-5	0.01666	7287	113.88	3.337		344.2	5.9	58.33	0.000227
17.2	5.919e-7	3.561e-5	0.01662	7329	113.9	3.333	0.3812	345	5.9	58.47	0.0002257
17.22	5.871 _e -7	3.541 _e -5	0.01658	7371	113.92	3.329	0.3812	345.8	5.901	58.6	0.0002244
17.24	5.825e-7	$3.521\mathrm{e}{-5}$ $3.501\mathrm{e}{-5}$	0.01654	7413	113.94	3.323	0.3812	346.6	5.901	58.74	$\begin{array}{c} 0.0002232 \\ 0.0002219 \end{array}$
17.26 17.28	5.778e-7		0.01651	$7455 \\ 7497$	113.96		0.3812	347.4	5.901	58.87	
	5.733 _e -7	3.481 _{e-5}	0.01647		113.98	3.318	0.3812	348.2	5.901	59	0.0002207
17.3	5.687e-7	3.461 _e -5	0.01643	7540	114	3.314	0.3812	349	5.901	59.14	0.0002194
17.32	5.642e-7	3.441 _{e-5}	0.01639	7583	114.01	3.31	0.3812	349.8	5.902	59.27	0.0002182
17.34 17.36	5.597e-7	3.422e-5	0.01636	7626	114.03	3.306	0.3812	350.6	5.902	59.41	0.000217
	5.553e-7	3.403e-5	0.01632	7669	114.05	3.302	0.3812	351.4	5.902	59.54	0.0002157
17.38	5.509e-7	3.383e-5	0.01628	7712	114.07	3.298	0.3812	352.2	5.902	59.68	0.0002145
17.4	5.466e-7	3.364 _{e-5}	0.01625	7756	114.09	3.295	0.3812	353.1	5.903	59.81	0.0002133
17.42	5.423 _{e-7}	3.345 _{e-5}	0.01621	7800	114.11	3.291	0.3812	353.9	5.903	59.95	0.0002121
17.44	5.38e-7	3.327e-5	0.01617	7844	114.13	3.287	0.3811	354.7	5.903	60.08	0.0002109
17.46	5.338e-7	3.308e-5	0.01614	7888	114.14	3.283	0.3811	355.5	5.903	60.22	0.0002098
17.48	5.296e-7	3.289 _{e-5}	0.0161	7932	114.16	3.28	0.3811	356.3	5.903 5.904	60.36	0.0002086
17.5 17.52	5.254e-7	3.271 _e -5	0.01606 0.01603	7977	114.18	3.276	0.3811 0.3811	357.1		60.49	0.0002074
	5.213e-7	3.252e-5 3.234e-5		8022	114.2	3.272 3.268	0.3811	357.9	5.904 5.904		0.0002063
17.54 17.56	$\frac{5.172e-7}{5.132e-7}$	3.234e-5 3.216e-5	0.01599 0.01596	8067 8112	114.22	3.265		358.8 359.6	5.904	60.77	$\begin{array}{c c} 0.0002051 \\ \hline 0.000204 \end{array}$
17.58	$\frac{5.132e-7}{5.092e-7}$	3.210e-5 $3.198e-5$	0.01590 0.01592	8157	114.24 114.25	3.261	0.3811 0.3811	360.4	5.904	61.04	0.000204
17.6	5.092e-7 5.052e-7	3.196e-5 $3.18e-5$	0.01592 0.01589	8203	114.25	3.257	0.3811	361.2	5.904	61.18	0.0002029
17.62	5.032e-7 5.013e-7	$3.163_{\mathrm{e}-5}$	0.01585	8249	114.27	3.253	0.3811	362	5.905	61.31	0.0002017
17.64	$\frac{3.013e-7}{4.974e-7}$	$3.145 \text{e}{-5}$	0.01581	8295	114.23	3.25	0.3811	362.9	5.905	61.45	0.0001995
17.66	$4.935_{\mathrm{e}-7}$	3.128e-5	0.01578	8341	114.33	3.246	0.3811	363.7	5.905	61.59	0.0001933
17.68	4.897e-7	3.11 _{e-5}	0.01574	8388	114.34	3.242	0.3811	364.5	5.906	61.72	0.0001973
17.7	4.859e -7	3.093e-5	0.01571	8434	114.36	3.239	0.3811	365.3	5.906	61.86	0.0001962
17.72	4.821 _{e-7}	3.076e -5	0.01567	8481	114.38	3.235	0.381	366.2	5.906	62	0.0001951
17.74	4.784e-7	3.059e -5	0.01564	8528	114.4	3.231	0.381	367	5.906	62.14	0.0001941
17.76	$4.747_{\rm e-7}$	3.042e -5	0.0156	8575	114.42	3.228	0.381	367.8	5.906	62.28	0.000193
17.78	4.71e -7	3.025e -5	0.01557	8623	114.43	3.224	0.381	368.6	5.907	62.41	0.0001919
17.8	$4.674 \text{e}{-7}$	3.008e-5		8671	114.45	3.221	0.381	369.5	5.907	62.55	0.0001909
17.82	4.638e -7	2.992e -5	0.0155	8718	114.47	3.217	0.381	370.3	5.907	62.69	0.0001898
17.84	4.602e -7	$2.975 \text{e}{-5}$	0.01547	8767	114.49	3.213	0.381	371.1	5.907	62.83	0.0001888
17.86	4.566e -7	$2.959_{\rm e-5}$	0.01543	8815	114.51	3.21	0.381	372	5.907	62.97	0.0001878
17.88	$4.531\mathrm{e}{-7}$	$2.943 \mathrm{e}{-5}$	0.0154	8863	114.52	3.206	0.381	372.8	5.908	63.11	0.0001867
17.9	$4.497_{\mathrm{e}-7}$	2.926e -5	0.01537	8912	114.54	3.203	0.381	373.6	5.908	63.25	0.0001857
17.92	4.462e -7	2.91e -5	0.01533	8961	114.56	3.199	0.381	374.5	5.908	63.39	0.0001847
17.94	$4.428 \mathrm{e}{-7}$	$2.895 \mathrm{e}{-5}$	0.0153	9010	114.58	3.195	0.381	375.3	5.908	63.52	0.0001837
17.96	$4.394\mathrm{e}{-7}$	$2.879 \mathrm{e}{-5}$	0.01526	9060	114.59	3.192	0.381	376.2	5.908	63.66	0.0001827
17.98	$4.361\mathrm{e}{-7}$	$2.863 \mathrm{e}{-5}$	0.01523	9109	114.61	3.188	0.381	377	5.909	63.8	0.0001817
18	$4.327 \mathrm{e}{-7}$	$2.847 \mathrm{e}{-5}$	0.0152	9159	114.63	3.185	0.381	377.8	5.909	63.94	0.0001807
18.02	$4.294 \mathrm{e}{-7}$	$2.832\mathrm{e}{-5}$	0.01516	9209	114.65	3.181	0.3809	378.7	5.909	64.08	0.0001797
18.04	$4.262 \mathrm{e}{-7}$	$2.816 \mathrm{e}{-5}$	0.01513	9260	114.66	3.178	0.3809	379.5	5.909	64.22	0.0001788
18.06	$4.229 \mathrm{e}{-7}$	$2.801\mathrm{e}{-5}$	0.0151	9310	114.68	3.174	0.3809	380.4	5.909	64.36	0.0001778
18.08	$4.197 \mathrm{e}{-7}$	$2.786 \mathrm{e}{-5}$	0.01507	9361	114.7	3.171	0.3809	381.2	5.91	64.51	0.0001768

14	n/n	0/0	T/T_i	A / A		l	M_2	n /n	0 /0	T/T	n /n
$\frac{M}{18.1}$	$\frac{p/p_i}{4.165_{\mathrm{e}-7}}$	$\frac{\rho/\rho_i}{2.771_{e-5}}$	0.01503	$A/A_* = 9412$	$\frac{\nu}{114.71}$	$\frac{\mu}{3.167}$	0.3809	$\frac{p_2/p_1}{382}$	$\frac{\rho_2/\rho_1}{5.91}$	T_2/T_1 64.65	p_{i2}/p_{i1} 0.0001759
18.12	4.103e-7 $4.133e-7$	2.771e-5 $2.756e-5$	0.01503	9463	114.71	3.164	0.3809	382.9	5.91	64.79	0.0001739
18.14	4.133e - 7 $4.102e - 7$	2.741 _{e-5}	0.013 0.01497	9514	114.75	3.16	0.3809	383.7	5.91	64.93	0.0001749
18.16	4.102e-7 $4.071e-7$	2.726e-5	0.01497	9566	114.77	3.157	0.3809	384.6	5.91	65.07	0.000174
18.18	4.04e-7	2.720e-5 2.711e-5	0.01493	9618	114.77	3.153	0.3809	385.4	5.911	65.21	0.0001731
18.2	4.04e-7 $4.01e-7$	2.711e-5 2.697e-5	0.01487	9670	114.78	3.15	0.3809	386.3	5.911	65.35	0.0001721
18.22	3.98e -7	2.682e-5	0.01484	9722	114.82	3.146	0.3809	387.1	5.911	65.49	0.0001712
18.24	3.95e -7	2.668e -5	0.01481	9775	114.83	3.143	0.3809	388	5.911	65.64	0.0001703
18.26	3.92e-7	2.653e -5	0.01477	9827	114.85	3.139	0.3809	388.8	5.911	65.78	0.0001685
18.28	3.89e-7	2.639e-5	0.01474	9880	114.87	3.136	0.3809	389.7	5.912	65.92	0.0001676
18.3	3.861 _e -7	2.625e -5	0.01471	9934	114.88	3.132	0.3809	390.5	5.912	66.06	0.0001667
18.32	3.832e-7	$2.611_{\rm e-5}$	0.01468	9987	114.9	3.129	0.3809	391.4	5.912	66.2	0.0001658
18.34	3.803e -7	$2.597_{\mathrm{e}-5}$	0.01465	1.004e4	114.92	3.126	0.3808	392.2	5.912	66.35	0.0001649
18.36	3.775e -7	2.583e -5	0.01462	1.009e4	114.93	3.122	0.3808	393.1	5.912	66.49	0.000164
18.38	3.747e-7	2.569e-5	0.01458	1.005e4 1.015e4	114.95	3.119	0.3808	394	5.912	66.63	0.0001631
18.4	3.719e-7	$2.555_{\mathrm{e}-5}$	0.01455	1.02e4	114.97	3.115	0.3808	394.8	5.913	66.78	0.0001623
18.42	3.691e -7	2.542 e-5	0.01452	1.026e4	114.98	3.112	0.3808	395.7	5.913	66.92	0.0001614
18.44	3.663e -7	2.528e -5	0.01449	1.031e4	115	3.109	0.3808	396.5	5.913	67.06	0.0001606
18.46	3.636e -7	2.515e -5	0.01446	1.037e4	115.02	3.105	0.3808	397.4	5.913	67.21	0.0001597
18.48	3.609e-7	2.501e -5	0.01443	1.042e4	115.03	3.102	0.3808	398.3	5.913	67.35	0.0001589
18.5	3.582e-7	2.488e-5	0.0144	1.048e4	115.05	3.099	0.3808	399.1	5.914	67.49	0.000158
18.52	3.556e -7	2.475e -5	0.01437	1.053e4	115.07	3.095	0.3808	400	5.914	67.64	0.0001572
18.54	3.529e -7	2.461e -5	0.01434	1.059e4	115.08	3.092	0.3808	400.9	5.914	67.78	0.0001564
18.56	3.503e - 7	2.448e -5	0.01431	1.065e4	115.1	3.089	0.3808	401.7	5.914	67.93	0.0001555
18.58	$3.477_{\mathrm{e}-7}$	2.435e -5	0.01428	1.07e4	115.12	3.085	0.3808	402.6	5.914	68.07	0.0001547
18.6	3.451e -7	2.423e -5	0.01425	1.076e4	115.13	3.082	0.3808	403.5	5.915	68.21	0.0001539
18.62	3.426e-7	2.41e -5	0.01422	1.082e4	115.15	3.079	0.3808	404.3	5.915	68.36	0.0001531
18.64	3.401e-7	$2.397 \mathrm{e}{-5}$	0.01419	1.087e4	115.17	3.075	0.3808	405.2	5.915	68.5	0.0001523
18.66	3.376e -7	$2.384 {\scriptstyle\mathrm{e}-5}$	0.01416	1.093e4	115.18	3.072	0.3807	406.1	5.915	68.65	0.0001515
18.68	$3.351\mathrm{e}{-7}$	$2.372\mathrm{e}{-5}$	0.01413	1.099e4	115.2	3.069	0.3807	406.9	5.915	68.79	0.0001507
18.7	$3.326\mathrm{e}{-7}$	$2.359 \mathrm{e}{-5}$	0.0141	1.105e4	115.21	3.065	0.3807	407.8	5.915	68.94	0.0001499
18.72	3.302e -7	$2.347\mathrm{e}{-5}$	0.01407	1.111e4	115.23	3.062	0.3807	408.7	5.916	69.08	0.0001491
18.74	3.277e-7	$2.335 {\scriptstyle\mathrm{e}-5}$	0.01404	1.116e4	115.25	3.059	0.3807	409.6	5.916	69.23	0.0001483
18.76	$3.253\mathrm{e}{-7}$	$2.322\mathrm{e}{-5}$	0.01401	1.122e4	115.26	3.056	0.3807	410.4	5.916	69.38	0.0001476
18.78	$3.229\mathrm{e}{-7}$	2.31e -5	0.01398	1.128e4	115.28	3.052	0.3807	411.3	5.916	69.52	0.0001468
18.8	3.206e -7	$2.298 \mathrm{e}{-5}$	0.01395	1.134e4	115.29	3.049	0.3807	412.2	5.916	69.67	0.000146
18.82	3.182e -7	$2.286 \mathrm{e}{-5}$	0.01392	1.14e4	115.31	3.046	0.3807	413.1	5.916	69.81	0.0001453
18.84	$3.159\mathrm{e}{-7}$	$2.274\mathrm{e}{-5}$	0.01389	1.146e4	115.33	3.043	0.3807	413.9	5.917	69.96	0.0001445
18.86	$3.136\mathrm{e}{-7}$	$2.262 \mathrm{e}{-5}$	0.01386	1.152e4	115.34	3.039	0.3807	414.8	5.917	70.11	0.0001438
18.88	3.113e -7	$2.251\mathrm{e}{-5}$	0.01383	1.158e4	115.36	3.036	0.3807	415.7	5.917	70.25	0.000143
18.9	3.091e -7	$2.239 \mathrm{e}{-5}$	0.0138	1.164e4	115.37	3.033	0.3807	416.6	5.917	70.4	0.0001423
18.92	3.068e -7	$2.227\mathrm{e}{-5}$	0.01378	1.17e4	115.39	3.03	0.3807	417.5	5.917	70.55	0.0001415
18.94	3.046e -7	$2.216 \mathrm{e}{-5}$	0.01375	1.176e4	115.41	3.027	0.3807	418.3	5.918	70.7	0.0001408
18.96	$3.024\mathrm{e}{-7}$	$2.204\mathrm{e}{-5}$	0.01372	1.182e4	115.42	3.023	0.3807	419.2	5.918	70.84	0.0001401
18.98	3.002e -7	$2.193 \mathrm{e}{-5}$	0.01369	1.188e4	115.44	3.02	0.3807	420.1	5.918	70.99	0.0001394
19	2.98e -7	$2.181\mathrm{e}{-5}$	0.01366	1.195e4	115.45	3.017	0.3806	421	5.918	71.14	0.0001386
19.02	2.958e -7	2.17e-5	0.01363	1.201e4	115.47	3.014	0.3806	421.9	5.918	71.29	0.0001379
19.04	$2.937\mathrm{e}{-7}$	$2.159_{\mathrm{e}-5}$	0.0136	1.207e4	115.48	3.011	0.3806	422.8	5.918	71.43	0.0001372
19.06	$2.916 \mathrm{e}{-7}$	2.148e -5	0.01358	1.213e4	115.5	3.007	0.3806	423.7	5.919	71.58	0.0001365

14	/	- / -	Tr /m	4/4		T	1.1	/	. / .		/
M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν 115 51	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
19.08	2.895e-7	2.137e-5	0.01355	1.22e4	115.51	3.004	0.3806	424.6	5.919	71.73	0.0001358
19.1	2.874e-7	2.126e-5	0.01352	1.226e4	115.53	3.001	0.3806	425.4	5.919	71.88	0.0001351
19.12	2.853e - 7	2.115e-5	0.01349	1.232e4	115.55	2.998	0.3806	426.3	5.919	72.03	0.0001344
19.14	2.833e-7	2.104e-5	0.01346	1.239e4	115.56	2.995	0.3806	427.2	5.919	72.18	0.0001337
19.16	2.812e-7	2.093e-5	0.01344	1.245e4	115.58	2.992	0.3806	428.1	5.919	72.33	0.0001331
19.18	2.792e-7	2.082e-5	0.01341	1.251e4	115.59	2.989	0.3806	429	5.92	72.47	0.0001324
19.2	2.772e-7	2.072e-5	0.01338	1.258e4	115.61	2.986	0.3806	429.9	5.92	72.62	0.0001317
19.22	2.752e-7	2.061 _{e-5}	0.01335	1.264 _{e4}	115.62	2.982	0.3806	430.8	5.92	72.77	0.000131
19.24	2.733_{e-7}	2.05e-5	0.01333	1.271e4	115.64	2.979	0.3806	431.7	5.92	72.92	0.0001304
19.26	2.713 _e -7	2.04e-5	0.0133	1.277e4	115.65	2.976	0.3806	432.6	5.92	73.07	0.0001297
19.28	2.694e-7	2.029e-5	0.01327	1.284e4	115.67	2.973	0.3806	433.5	5.92	73.22	0.000129
19.3	2.674e-7	2.019e-5	0.01325	1.29 _{e4}	115.68	2.97	0.3806	434.4	5.921	73.37	0.0001284
19.32	2.655e-7	2.009e-5	0.01322	1.297e4	115.7	2.967	0.3806	435.3	5.921	73.52	0.0001277
19.34	2.636e-7	1.999e-5	0.01319	1.304e4	115.71	2.964	0.3806	436.2	5.921	73.67	0.0001271
19.36	2.618e-7	1.988 _{e-5}	0.01316	1.31 _{e4}	115.73	2.961	0.3805	437.1	5.921	73.82	0.0001264
19.38	2.599 _{e-7}	1.978e-5	0.01314	1.317e4	115.74	2.958	0.3805	438	5.921	73.97	0.0001258
19.4	2.581 _{e-7}	1.968e-5	0.01311	1.324e4	115.76	2.955	0.3805	438.9	5.921	74.13	0.0001252
19.42	2.562e-7	1.958e-5	0.01308	1.33e4	115.77	2.952	0.3805	439.8	5.921	74.28	0.0001245
19.44	2.544e-7	1.948 _{e-5}	0.01306	1.337e4	115.79	2.949	0.3805	440.7	5.922	74.43	0.0001239
19.46	2.526e-7	1.939e-5	0.01303	1.344e4	115.8	2.946	0.3805	441.6	5.922	74.58	0.0001233
19.48	2.508e-7	1.929e-5	0.013	1.351e4	115.82	2.943	0.3805	442.5	5.922	74.73	0.0001227
19.5	2.491 _{e-7}	1.919 _{e-5}	0.01298	1.357e4	115.83	2.94	0.3805	443.5	5.922	74.88	0.0001221
19.52	2.473e-7	1.909e-5	0.01295	1.364e4	115.85	2.937	0.3805	444.4	5.922	75.03	0.0001214
19.54	2.456e-7	1.9e-5	0.01293	1.371e4	115.86	2.934	0.3805	445.3	5.922	75.19	0.0001208
19.56	2.438 _{e-7}	1.89 _{e-5}	0.0129	1.378e4	115.88	2.931	0.3805	446.2	5.923	75.34	0.0001202
19.58	2.421 _{e-7}	1.881 _{e-5}	0.01287	1.385e4	115.89	2.928	0.3805	447.1	5.923	75.49	0.0001196
19.6	2.404e-7	1.871 _e -5	0.01285	1.392e4	115.91	2.925	0.3805	448	5.923	75.64	0.000119
19.62	2.387e-7	1.862e-5	0.01282	1.399e4	115.92	2.922	0.3805	448.9	5.923	75.79	0.0001184
19.64	2.37e-7	1.852e-5	0.0128	1.406e4	115.94	2.919	0.3805	449.9	5.923	75.95	0.0001178
19.66	2.354e-7	1.843e-5	0.01277	1.413e4	115.95	2.916	0.3805	450.8	5.923	76.1	0.0001172
19.68	2.337e-7	1.834e-5	0.01275	1.42e4	115.97	2.913	0.3805	451.7	5.924	76.25 76.41	0.0001167
$\frac{19.7}{19.72}$	$2.321 e{-7} \\ 2.305 e{-7}$	1.825 _{e-5}	0.01272 0.01269	$\frac{1.427_{\text{e}4}}{1.435_{\text{e}4}}$	115.98 115.99	2.91 2.907	0.3805 0.3805	452.6 453.5	5.924 5.924	76.56	$\begin{array}{c} 0.0001161 \\ 0.0001155 \end{array}$
19.72	2.303e-7 $2.289e-7$	1.816 _{e-5}	0.01269	1.433e4 1.442e4	116.01	2.907	0.3805	453.5	5.924 5.924	76.71	0.0001133
		1.807e-5						454.4			
19.76	2.273 _{e-7}	1.798e-5 $1.789e-5$	0.01264	1.449 _{e4}	116.02		0.3804		5.924	76.87	0.0001144
19.78 19.8	2.257e-7 $2.241e-7$	1.78 _{e-5}	$\begin{array}{c} 0.01262 \\ 0.01259 \end{array}$	$\frac{1.456_{\text{e}4}}{1.463_{\text{e}4}}$	$\frac{116.04}{116.05}$	2.898 2.895	0.3804 0.3804	456.3 457.2	5.924 5.924	77.02	$\begin{array}{c} 0.0001138 \\ 0.0001132 \end{array}$
							0.3804				
19.82 19.84	2.226 _{e-7}	1.771 _{e-5}	0.01257	$\frac{1.471\text{e}_4}{1.478\text{e}_4}$	$\frac{116.07}{116.08}$	2.892 2.889	0.3804 0.3804	458.1 459.1	5.925 5.925	77.33	0.0001127
19.84	$2.21_{\rm e-7} \\ 2.195_{\rm e-7}$	1.762e-5 $1.753e-5$	$\begin{array}{c} 0.01254 \\ 0.01252 \end{array}$	1.475e4 1.485e4	116.08	2.886	0.3804	460	5.925	77.64	$\begin{array}{c} 0.0001121 \\ 0.0001116 \end{array}$
19.88	2.195e-7 $2.18e-7$	1.735e-5 1.745e-5	0.01232 0.01249	1.403e4 1.493e4	116.11	2.883	0.3804	460.9	5.925	77.79	0.0001110
19.00	2.164e -7	1.745e-5 $1.736e-5$	0.01249 0.01247	1.493e4 1.5e4	116.11	2.88	0.3804	461.8	$\frac{5.925}{5.925}$	77.95	0.000111
19.92	2.104e-7 $2.149e-7$	1.730e-5 1.727e-5	0.01247	1.5e4 1.508e4	116.12	2.878	0.3804	462.8	5.925	78.1	0.0001103
19.92	2.149e-7 $2.135e-7$	1.727e-5 1.719e-5	0.01244 0.01242	1.505e4 1.515e4	116.14	2.875	0.3804	463.7	5.925	78.26	0.0001099
19.94	2.135e-7 $2.12e-7$	1.719e-5 $1.71e-5$	0.01242 0.01239	1.513e4 1.523 e4	116.13	2.873	0.3804	464.6	5.926	78.41	0.0001094
19.98	$\begin{array}{c} 2.12\text{e}-7 \\ 2.105\text{e}-7 \end{array}$	1.71e-5 1.702e-5	0.01239	1.523e4 1.53e4	116.17	2.869	0.3804	465.6	5.926	78.57	0.0001083
20	2.103e-7 $2.091e-7$	1.702e-5 1.694e-5	0.01237	1.53e4 1.538e4	116.16	2.866	0.3804	466.5	5.926	78.72	0.0001083
20	2.091e-7 2.091e-7	1.694e-5 $1.694e-5$	0.01235	1.538e4	116.2	2.866	0.3804 0.3804	466.5	5.926	78.72	0.0001078
20.2	$\begin{array}{c} 2.091\mathrm{e}{-7} \\ 1.952\mathrm{e}{-7} \end{array}$	1.694e-5 $1.612e-5$	0.01233	1.535e4 1.615e4	116.2	2.838	0.3803	475.9	5.927	80.29	0.0001078
20.2	1.90∠e-7	1.U12e-5	0.01211	1.010e4	110.04	4.000	0.0000	410.9	0.941	00.49	0.0001020

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	n/n	0/0	T/T_i	A/A_*	l		M_2	n /n	0 /0	T/T	n /n
20.6 1.7047 1.4635 0.01142 1.866-4 116.61 2.786 0.3802 349-5 5.93 8.36 9.3195 20.8 1.5947 1.395-5 0.01142 1.956-4 116.74 2.720 0.3802 514.3 5.933 86.96 8.4785 21.2 1.3977 1.273 0.0108 2.147-4 117.2 2.074 0.3801 524.2 5.934 88.34 8.9915 21.6 1.2277 1.1585 0.01062 2.248-4 117.24 2.638 3.442 5.936 9.35 7.7255 21.5 1.1527 1.1065 0.01062 2.241-4 117.36 2.699 0.38 54-3 5.939 9.50.5 7.0525 21.5 1.0115 0.01062 2.573-4 117.6 2.582 0.389 574.8 5.949 9.57 6.4475 22.2 1.0155 1.0115 0.009967 2.994 117.71 2.595 0.3799 574.8 5.94				,			•				,	
20.8 1.594-c7 1.395-c8 0.01142 1.866e4 116.74 2.756 0.3802 504.6 5.933 85.07 8.887-c8 21.2 1.492-c7 1.321-c5 0.0111 2.049e4 117 2.704 0.3801 524.2 5.934 88.34 8.091-c9 21.4 1.309-c7 1.212-c5 0.0108 2.147c4 117.12 2.076 0.3801 524.2 5.934 89.99 7.735-c2 21.6 1.227-c7 1.158-c5 0.01041 2.352-d 117.36 2.605 0.38 544.3 5.938 98.06 7.735-c2 21.8 1.152-c7 1.011-c5 0.01041 2.352-d 117.36 2.605 0.38 545.3 5.938 93.05 6.741-c5 22.1 1.051-c7 1.011-c5 0.01041 2.352-d 117.36 2.605 0.38 564.5 5.939 95.06 6.741-c5 22.2 1.051-c5 1.011-c5 1.011-c5 2.605 0.379 574.8 9.94												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
21.2 1.397~7 1.27 $_{-8}$ 0.011 2.049et 117 2.704 0.3801 524.2 5.934 88.34 8.091~5 21.4 1.309~7 1.212~5 0.0106 2.248ct 117.24 2.654 0.385 544.2 5.936 91.66 7.379~5 21.8 1.152~7 1.106~5 0.01041 2.352ct 117.48 2.605 0.38 544.3 9.936 67.739~5 22 1.081~7 1.101~6 0.01041 2.352ct 117.48 2.605 0.38 544.3 9.398 66.7379~5 22.1 1.011~6 0.1004 2.573ct 117.66 2.582 0.3799 554.2 5.942 10.30 6.168~5 22.2 1.514~1 9.511~1 117.62 2.582 0.3799 555.2 5.941 103.6 6.168~5 22.2 8.439~8 8.838~6 0.009527 2.936 117.93 2.514 0.3798 655.2 5.942 105.2 5.522~6 23.2												
21.4 1.3097 1.2125 0.0108 2.147** 117.12 2.678 0.3801 5.41. 5.935 89.99 7.7255 21.6 1.2277 1.1585 0.0106 2.248** 117.36 2.629 0.38 544. 5.936 9.60 7.7395 21.8 1.1527 1.1065 0.0104 2.352** 117.36 2.629 0.38 564.5 5.939 9.506 0.7395 22.1 0.817 0.57**-5 0.01021 2.461** 117.48 2.605 0.38 564.5 5.939 95.06 0.741*-5 3.35 7.052*-6 22. 1.0157 1.057*-5 0.01094 2.573** 117.46 2.635 0.3799 574.8 5.94 96.77 6.447*-5 3.41*-5 0.0098** 2.81** 117.71 2.559 0.3799 585.2 5.941 9.63 5.068** 6.68**-6 3.6096** 2.81** 117.71 2.559 0.3799 585.2 5.941 9.35 5.628** 6.168**-6 3.6096** 2.81** 117.71 2.559 0.3799 585.2 5.941 9.35 5.628** 6.168**-6 3.6096** 2.81** 117.72 2.536 0.3799 585.2 5.941 9.35 5.652*-5 3.61**-6 3.628**-6 3.6096** 2.81** 117.72 2.536 0.3799 585.2 5.941 9.35 5.628**-6 3.61**-6 3.628**-6 3.63**-6 3.6096** 2.93*** 118.04 2.492 0.3798 607.7 5.944 103.8 5.414*-5 3.628**-6 3.63**-6 3.6096** 3.38**-1 118.04 2.492 0.3798 617.7 5.945 105.6 5.818*-6 3.63**-6 3.63**-6 3.63**-6 3.38**-1 118.55 2.490 0.3797 610.7 5.945 105.6 5.818*-6 3.63**-6 3.63**-6 3.63**-6 3.63**-1 3.63**-6 3.739*-6 3.739*-6 610.7 5.948 111.4 4.573*-6 3.63**-6 3.63**-6 3.63**-6 3.734*-6 3.734*-6 3.739*-6 3.739*-6 3.734*-6 3.734*-6 3.734*-6 3.734*-6 3.734*-6 3.734*-6 3.734*-6 3.734*-6 3.734												
21.6 1.2277 1.1588 0.0106 2.248.et 117.24 2.654 0.38 544.2 5.936 91.66 7.3705 2.1 1.1527 1.1065 0.01024 2.352.et 117.48 2.605 0.38 564.5 5.939 95.06 6.7415 2.2 1.0157 1.0115 0.01004 2.573.et 117.6 2.582 0.3799 575.2 5.941 96.77 6.4475 2.2 9.5418 9.2536 0.00967 2.694.et 117.72 2.559 0.3799 575.7 5.941 10.03 5.9045 2.2 8.7918 9.2536 0.00964 2.814 117.82 2.536 0.3799 575.7 5.941 10.03 5.9045 2.2 8.4388 8.009527 2.936.et 117.33 2.514 0.3798 667.8 5.941 10.38 6.52-5 2.3 7.4888 8.177-6 0.00924 3.338.et 118.25 2.499 0.3796 667.8 <td></td>												
21.8 1.152~7 1.106s~5 0.01041 2.3524 117.36 2.629 0.38 554.3 5.938 93.55 7.052~5 22 1.081~7 1.057~5 0.01022 2.461e4 117.46 2.682 0.3799 574.8 5.94 9.67.7 6.447~5 22.4 9.541~8 9.67~6 0.009867 2.69e4 117.71 2.559 0.3799 585.2 5.941 98.51 6.168~5 22.6 8.971~8 9.253~6 0.009694 2.81e4 117.71 2.536 0.3799 585.2 5.941 10.03 5.964~6 22.8 8.439.8 8.858~6 0.00993 3.65e4 118.04 2.492 0.3798 617. 5.94 10.03 5.414~5 23.2 7.488~8 8.127~6 0.009094 3.38e4 118.55 2.499 0.3796 62.6 5.945 105.6 5.168~6 23.3 6.6644~8 7.467~6 0.00887 3.63e4 118.55 2.489 0.3796 65.												
22 1.081-7 1.057-8 0.01022 2.461-8 117.48 2.605 0.38 64.5 5.939 95.06 6.741-5 22.2 1.015-7 1.011-5 0.00964 2.573-8 117.6 2.882 0.3799 574.8 5.94 96.77 6.474-5 22.4 9.541-8 9.67-6 0.00964 2.69-4 117.71 2.59 0.3799 585.2 5.941 98.51 6.168-5-2 22.8 8.439-8 8.858-6 0.009627 2.936-8 117.93 2.514 0.3798 66.3 5.943 102 5.62ε-5 23.7 7.948-8 8.127-6 0.00904 3.198-4 118.15 2.47 0.3798 66.3 5.945 103.8 5.414-5 23.4 7.048-8 7.789-6 0.009049 3.384-8 118.25 2.49 0.3797 66.7 5.946 107.4 4.972-5 24.5 5.913-8 6.648-8 7.616-6 0.00866 3.784-8 118.55 2.248 0.379												
22.2 1.0157 1.0115 0.01004 2.573-st 117.61 2.582 0.3799 574.8 5.941 96.77 6.0487-s 22.4 9.5418 9.0536 0.009667 2.694-1 117.71 2.559 0.3799 585.2 5.941 98.75 6.685 22.8 8.4398 8.8586 0.009527 2.936-4 117.93 2.514 0.3798 606.3 5.941 10.38 5.6123 23.7 7.488 8.4326 0.009049 3.388-4 118.04 2.492 0.3798 617 5.944 103.8 5.4145 23.2 7.488 7.7896 0.009049 3.388-1 118.25 2.479 0.3797 638.7 5.946 107.4 4.9722 23.6 6.6448 7.4616 0.00875 3.63-4 118.56 2.489 0.3797 649.6 5.947 109.2 4.7685 24.5 5.528 6.5946 0.008465 3.794-4 118.56 2.388 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
22.4 9.541c=8 9.67e=6 0.009867 2.69e 117.71 2.559 0.3799 585.2 5.941 98.51 6.168c=5 22.6 8.971c=8 9.253e=6 0.009694 2.81et 117.92 2.514 0.3798 695.7 5.942 100.3 5.904e=6 23 7.943c=8 8.483e=6 0.009363 3.065et 118.04 2.492 0.3798 617 5.944 103.8 5.414c=2 23.2 7.48c=8 8.127c=6 0.009049 3.338et 118.55 2.479 0.3797 636.7 5.946 105.0 5.187c=5 23.4 7.048c=8 7.467c=6 0.00806 3.68st 118.56 2.499 0.3797 649.6 5.947 105.2 4.75e=5 23.8 6.266c=8 7.161c=6 0.00806 3.78st 118.56 2.388 0.3796 671.8 5.948 112.9 4.38e=5 24.2 5.58ce 8 6.59d=6 0.008328 4.10cs 118.64 2.38e 0.3796 </td <td></td>												
22.6 8.9711-s 9.253-s 0.009694 2.814-s 117.82 2.536 0.3799 505.7 5.942 100.3 5.904-s 22.8 8.439-s 8.858-s-6 0.009567 2.936-s 118.04 2.492 0.3798 6073 5.944 103.8 5.414-s 23.2 7.48-s 8.127-s-6 0.009204 3.199-s 118.15 2.47 0.3798 627.8 5.945 105.6 5.187-s-2 23.4 7.048-s 7.789-s 0.009049 3.338-s 118.25 2.449 0.3797 638.7 5.946 107.4 4.972-s-5 23.6 6.644-s 7.467-s 0.008807 3.481-s 118.35 2.429 0.3797 660.7 5.948 111.1 4.768-s-5 24.2 5.582-s 6.594-s 0.008605 3.783-s 118.56 2.388 0.3796 671.8 5.948 112.9 4.388-s-5 24.4 5.527-s 6.333-s 0.008163 4.275-s 118.84 2.33 0.												
22.8 8.439-se 8.858-se 0.009527 2.936-se 117.93 2.514 0.3798 606.3 5.943 102 5.652-se 23.2 7.48-se 8.127-se 0.009303 3.065-se 118.15 2.47 0.3798 617.8 5.946 105.6 5.187-c 23.2 7.48-se 8.127-se 0.009049 3.338-se 118.15 2.449 0.3797 638.7 5.946 107.4 4.972-c= 23.6 6.644-se 7.467-6 0.008879 3.481-se 118.15 2.429 0.3797 649.6 5.947 109.2 4.768-c= 23.8 6.266-se 7.616-se 0.00875 3.634e 118.6 2.368 0.3797 669.6 5.947 109.2 4.768-c= 24.2 5.582-se 6.594-e 0.008465 3.942-e 118.66 2.368 0.3796 663.1 5.948 112.9 4.388-c= 24.6 4.981-se 6.639-e 0.008195 4.275-e 118.64 2.339 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
23 7.943~-8 8.483~6 0.009363 3.065~4 118.04 2.492 0.3798 617 5.944 103.8 5.414~5 23.2 7.48~-8 8.127~6 0.009204 3.3984 118.15 2.47 0.3798 627.8 5.945 107.4 4.972~-5 23.4 7.048~-8 7.789~6 0.009049 3.3884 118.25 2.429 0.3797 638.7 5.946 107.4 4.972~-5 23.8 6.266~8 7.161~6 0.00875 3.6344 118.56 2.388 0.3797 660.7 5.948 111.1 4.573~-5 24 5.913~8 6.67~6 0.008605 3.9424 118.60 2.388 0.3796 661.4 5.948 111.0 4.578~-5 24.2 5.582~8 6.594~6 0.008465 3.9424 118.64 2.33 0.3796 663.4 5.94 116.7 4.044~-5 24.2 5.585 5.484~6 0.00804 4.254*-4 118.84 2.33 0.3796 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
23.2 $7.48e-8$ $8.127e-6$ 0.009204 $3.199e4$ 118.15 2.47 0.3798 627.8 5.945 105.6 $5.187e-5$ 23.4 $7.048e-8$ $7.789e-6$ 0.009499 $3.338e4$ 118.25 2.449 0.3797 638.7 5.947 109.2 $4.768e-5$ 23.8 $6.264e-8$ $7.467e-6$ 0.008806 $3.83e4$ 118.36 2.429 0.3797 606.7 5.948 111.1 $4.573e-5$ 24.2 $5.582e-8$ $6.594e-6$ 0.008466 $3.942e4$ 118.65 2.388 0.3796 $631.$ 5.948 111.2 $4.388e-5$ 24.4 $5.272e-8$ $6.33-6$ 0.008495 $4.275e+4$ 118.60 2.349 0.3796 $632.$ 118.6 $4.981e-6$ 0.07960 $4.275e+6$ 118.84 2.331 0.3796 $632.$ 118.6 $4.981e-6$ 0.008464 $4.45e+6$ 118.94 2.311 0.3796 $632.$ 9.592 120.5 <												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
23.6 $6.644_{\bullet-8}$ $7.467_{\bullet-6}$ 0.008897 3.481_{\bullet} 118.35 2.429 0.3797 64.96 5.948 111.1 $4.753_{\bullet-5}$ 2.4 $5.913_{\bullet-8}$ $6.87_{\bullet-6}$ 0.008465 3.838_{\bullet} 118.66 2.388 0.3796 60.71 5.948 111.1 $4.753_{\bullet-5}$ 2.4 $5.913_{\bullet-8}$ $6.87_{\bullet-6}$ 0.008465 $3.942_{\bullet}4$ 118.66 2.388 0.3796 60.71 5.949 114.8 $4.211_{\bullet-5}$ 2.4 $5.272_{\bullet-8}$ $6.33_{\bullet-6}$ 0.008195 $4.275_{\bullet-1}$ 118.84 2.33 0.3796 69.44 5.95 116.7 $4.044_{\leftarrow-5}$ 2.4.8 $4.709_{\bullet-8}$ $5.84_{\bullet-6}$ 0.00804 $4.45_{\bullet-1}$ 118.84 2.311 0.3795 70.9 5.951 118.6 $3.884_{\leftarrow-5}$ 2.5.2 $4.214_{\leftarrow-8}$ $5.344_{\leftarrow-6}$ 0.007937 $4.614_{\leftarrow-6}$ $1.324_{\leftarrow-6}$ $1.924_{\leftarrow-6}$ $1.924_{\leftarrow-6}$ $1.924_{\leftarrow-6}$ $1.924_{\leftarrow-6}$ $1.924_{\leftarrow-6}$ <												
23.8 6.266e-8 7.161e-6 0.00875 3.63e4 118.46 2.408 0.3797 660.7 5.948 11.11 4.573e-5 24 5.913e-8 6.87e-6 0.008606 3.783e4 118.56 2.388 0.3796 671.8 5.949 11.6 4.388e-5 24.4 5.52e-8 6.594e-6 0.008328 4.106e4 118.75 2.349 0.3796 683.1 5.949 11.6 4.211e-5 24.4 5.27e-8 6.33e-6 0.008195 4.27e-4 118.84 2.33 0.3796 604.4 5.952 11.6 4.21e-5 24.8 4.709e-8 5.84e-6 0.00804 4.45e4 118.94 2.311 0.3795 71.4 5.952 12.5 3.58e-5 25.2 4.42e-8 5.611e-6 0.00769 5.09e4 119.21 2.256 0.3795 752.5 5.952 122.5 3.58e-5 25.2 4.21e-8 5.94e-6 0.00752 5.2084 119.29 2.239 0.3794												
24 $5.913 - 8$ $6.87e - 6$ 0.008606 $3.783 + 6$ $11.8.65$ 2.388 0.3796 $6.71.8$ 5.948 11.29 $4.388 - 5$ 24.2 $5.582 - 8$ $6.594 - 6$ 0.008465 $3.942 + 4$ 118.65 2.368 0.3796 683.1 5.949 11.48 $4.211 - 5$ 24.6 $4.981 - 8$ $6.079 - 6$ 0.008195 $4.275 + 4$ 118.84 2.331 0.3796 694.4 5.951 11.6 $4.044 - 5$ 24.8 $4.709 - 8$ $5.84 - 6$ 0.008064 $4.45 + 4$ $11.9.4$ 2.311 0.3795 75.95 12.5 $3.586 - 5$ 25.2 $4.214 - 8$ $5.394 - 6$ 0.00797 $4.61 + 6$ 11.91 2.274 0.3795 75.25 12.4 $3.44 - 5$ 25.2 $4.214 - 8$ $5.394 - 6$ 0.007572 2.084 $11.9.2$ 2.274 0.3795 75.2 12.4 $3.18 - 6$ 25.6 $3.78 - 8$ $4.89 - 6$ 0.007572 <td></td>												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
6.2 3.216_{e-8} 4.447_{e-6} 0.007231 5.841_{e-4} 119.55 2.187 0.3794 80.7 5.957 134.4 2.843_{e-5} 26.4 3.05_{e-8} 4.282_{e-6} 0.007123 6.066_{e4} 119.63 2.171 0.3794 813 5.957 136.5 2.738_{e-5} 26.6 2.894_{e-8} 4.125_{e-6} 0.007017 6.297_{e4} 119.71 2.154 0.3793 825.3 5.958 138.5 2.638_{e-5} 2.6 2.747_{e-8} 3.974_{e-6} 0.006913 6.535_{e4} 119.79 2.138 0.3793 85.03 5.959 140.6 2.542_{e-5} 2.6 2.609_{e-8} 3.83_{e-6} 0.00612 $6.781_{e}4$ 119.95 2.107 0.3793 850.3 5.969 140.4 2.45_{e-5} 2.7 2.478_{e-8} 3.692_{e-6} 0.00616 7.294_{e4} 120.02 2.092 0.3793 850.5 5.961 149.1 $2.19e_$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												2.362e -5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.8	1.665e -8				120.53	1.99		967.5		162.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											164.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
29.8 1.313 _{e-8} 2.346 _{e-6} 0.005599 1.106 _{e5} 120.86 1.923 0.3791 1036 5.966 173.6 1.502 _{e-5}	29.4	1.443e-8	$2.509 \mathrm{e}{-6}$	0.005751	1.035e5	120.73	1.949	0.3791	1008	5.965	169	1.606e -5
29.8 1.313e-8 2.346e-6 0.005599 1.106e5 120.86 1.923 0.3791 1036 5.966 173.6 1.502e-5	29.6	1.376e-8	$2.425 _{\mathrm{e}-6}$	0.005674	1.07e5	120.8	1.936	0.3791	1022	5.966	171.3	$1.553 \mathrm{e}{-5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.8	1.313e-8	$2.346 \mathrm{e}{-6}$		1.106e5	120.86	1.923	0.3791	1036	5.966	173.6	1.502e -5
	30	$1.254 \mathrm{e}{-8}$	$2.269_{\mathrm{e}-6}$	0.005525	1.144e5	120.92	1.91	0.379	1050	5.967	175.9	1.453e -5

14	m /m	0/0	T/T	A / A			1.1	n /n	0 / 0	T /T	n /n
M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	$\frac{p_2/p_1}{1064}$	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
30.2	1.197 _{e-8}	2.195 _e -6	0.005452	1.182e5	120.99	1.898	0.379	1064	5.967	178.3	1.406 _{e-5}
30.4	1.143 _{e-8}	2.124e-6	0.005381	1.222e5	121.05	1.885	0.379	1078	5.968	180.6	1.361 _{e-5}
30.6	1.092e-8	2.056e-6	0.005311	1.262e5	121.11	1.873	0.379	1092	5.968	183	1.317e-5
30.8	1.044e-8	1.991 _e -6	0.005243	1.304e5	121.17	1.861	0.379	1107	5.969	185.4	1.275e-5
31	9.976e-9	1.927e-6	0.005176	1.346e5	121.23	1.849	0.379	1121	5.969	187.8	1.235 _{e-5}
31.2	9.539e-9	1.867e-6	0.00511	1.39e5	121.29	1.837	0.379	1136	5.969	190.2	1.196 _{e-5}
31.4	9.124e-9	1.808e-6	0.005046	1.435e5	121.35	1.825	0.3789	1150	5.97	192.7	1.159e-5
31.6	8.73e - 9	1.752e-6	0.004982	1.481e5	121.4	1.813	0.3789	1165	5.97	195.1	1.123e-5
31.8	8.354 _e -9	1.698e-6	0.00492	1.528e5	121.46	1.802	0.3789	1180	5.97	197.6	1.088e-5
32	7.997e-9	1.646e-6	0.004859	1.576e5	121.52	1.791	0.3789	1194	5.971	200.1	1.055e-5
32.2	7.658e-9	1.596e-6	0.004799	1.626e5	121.57	1.78	0.3789	1209	5.971	202.6	1.023e-5
32.4	7.334e -9	1.547e-6	0.00474	1.677e5	121.63	1.769	0.3789	1225	5.972	205.1	9.917e-6
32.6	7.026e-9	1.501e-6	0.004683	1.729e5	121.68	1.758	0.3789	1240	5.972	207.6	9.618e -6
32.8	6.733e -9	1.456e -6	0.004626	1.782e5	121.73	1.747	0.3789	1255	5.972	210.1	9.33e -6
33	$6.454 \mathrm{e}{-9}$	1.412e-6	0.00457	1.837e5	121.79	1.737	0.3789	1270	5.973	212.7	9.053e -6
33.2	6.188e-9	1.37e-6	0.004516	1.893e5	121.84	1.726	0.3788	1286	5.973	215.3	8.785e-6
33.4	$5.934\mathrm{e}{-9}$	1.33e -6	0.004462	1.95e 5	121.89	1.716	0.3788	1301	5.973	217.9	8.527e -6
33.6	5.692e -9	$1.291\mathrm{e}{-6}$	0.004409	2.009e5	121.94	1.705	0.3788	1317	5.974	220.5	8.277e-6
33.8	5.462e -9	1.253e -6	0.004358	2.069e5	121.99	1.695	0.3788	1333	5.974	223.1	8.037e -6
34	$5.242\mathrm{e}{-9}$	1.217e-6	0.004307	2.131e5	122.04	1.685	0.3788	1348	5.974	225.7	7.804e -6
34.2	$5.032\mathrm{e}{-9}$	1.182e-6	0.004257	2.194e5	122.09	1.676	0.3788	1364	5.974	228.4	7.58e -6
34.4	$4.831\mathrm{e}{-9}$	1.148e-6	0.004207	$2.259 {\scriptstyle \mathrm{e}5}$	122.14	1.666	0.3788	1380	5.975	231	7.364e -6
34.6	$4.64 {\scriptstyle\mathrm{e}} {-9}$	1.116e -6	0.004159	$2.325 {\rm e}5$	122.19	1.656	0.3788	1397	5.975	233.7	7.154e -6
34.8	$4.457\mathrm{e}{-9}$	1.084e -6	0.004112	$2.392 {\rm e}5$	122.23	1.647	0.3788	1413	5.975	236.4	6.952e -6
35	$4.283_{\mathrm{e}-9}$	1.054e -6	0.004065	2.461e5	122.28	1.637	0.3788	1429	5.976	239.1	6.757e -6
35.2	4.116e -9	$1.024\mathrm{e}{-6}$	0.004019	2.532e5	122.33	1.628	0.3787	1445	5.976	241.9	6.568e -6
35.4	$3.957\mathrm{e}{-9}$	9.956e -7	0.003974	2.605e5	122.37	1.619	0.3787	1462	5.976	244.6	6.386e -6
35.6	3.804e -9	$9.681\mathrm{e}{-7}$	0.00393	2.679e5	122.42	1.61	0.3787	1478	5.976	247.4	6.209e -6
35.8	3.658e -9	$9.414 \mathrm{e}{-7}$	0.003886	$2.754 {\scriptstyle \mathrm{e}5}$	122.46	1.601	0.3787	1495	5.977	250.2	6.039e -6
36	3.519e -9	$9.157\mathrm{e}{-7}$	0.003843	2.832e5	122.51	1.592	0.3787	1512	5.977	252.9	5.874e -6
36.2	3.386e -9	8.907e-7	0.003801	2.911e5	122.55	1.583	0.3787	1529	5.977	255.8	5.714e -6
36.4	$3.258 \mathrm{e}{-9}$	8.666e -7	0.00376	2.992e5	122.59	1.574	0.3787	1546	5.977	258.6	5.56e -6
36.6	$3.136\mathrm{e}{-9}$	8.433e -7	0.003719	3.075e5	122.64	1.566	0.3787	1563	5.978	261.4	5.41e -6
36.8	3.019e -9	8.207e-7	0.003679	3.159e5	122.68	1.557	0.3787	1580	5.978	264.3	5.265e -6
37	2.907e -9	7.988e -7		3.246e 5		1.549		1597	5.978	267.1	5.125e -6
37.2	2.8e-9	7.777e-7	0.0036	3.334e5	122.76	1.54	0.3787	1614	5.978	270	4.99e -6
37.4	$2.697 \mathrm{e}{-9}$	$7.572\mathrm{e}{-7}$	0.003562	3.424e5	122.8	1.532	0.3787	1632	5.979	272.9	$4.858 \mathrm{e}{-6}$
37.6	$2.598 \mathrm{e}{-9}$	7.373e -7	0.003524	3.516e5	122.84	1.524	0.3787	1649	5.979	275.8	4.731e -6
37.8	$2.504\mathrm{e}{-9}$	7.181e -7	0.003487	3.61e 5	122.88	1.516	0.3786	1667	5.979	278.8	4.608e -6
38	$2.414\mathrm{e}{-9}$	$6.994\mathrm{e}{-7}$	0.003451	3.707e5	122.92	1.508	0.3786	1684	5.979	281.7	4.488e -6
38.2	$2.327\mathrm{e}{-9}$	6.814e -7	0.003415	3.805e5	122.96	1.5	0.3786	1702	5.98	284.7	$4.373\mathrm{e}{-6}$
38.4	$2.244 \mathrm{e}{-9}$	$6.639 \mathrm{e}{-7}$	0.003379	3.905e5	123	1.492	0.3786	1720	5.98	287.7	$4.261_{\rm e-6}$
38.6	$2.164 \mathrm{e}{-9}$	6.469e -7	0.003345	4.007e5	123.04	1.485	0.3786	1738	5.98	290.7	$4.152\mathrm{e}{-6}$
38.8	$2.087\mathrm{e}{-9}$	6.305e -7	0.00331	$4.112 {\scriptstyle \mathrm{e}5}$	123.08	1.477	0.3786	1756	5.98	293.7	$4.046\mathrm{e}{-6}$
39	$2.014\mathrm{e}{-9}$	6.145e -7	0.003277	4.218e5	123.12	1.469	0.3786	1774	5.98	296.7	$3.944\mathrm{e}{-6}$
39.2	$1.943 \mathrm{e}{-9}$	5.991e -7	0.003243	4.327e5	123.15	1.462	0.3786	1793	5.981	299.7	3.845e -6
39.4	$1.875 \mathrm{e}{-9}$	5.841e -7	0.003211	4.438e5	123.19	1.454	0.3786	1811	5.981	302.8	3.749e -6
39.6	1.81e -9	5.695e -7	0.003178	4.552e 5	123.23	1.447	0.3786	1829	5.981	305.9	$3.655\mathrm{e}{-6}$
39.8	$1.748 \mathrm{e}{-9}$	5.554e -7	0.003147	4.667e5	123.26	1.44	0.3786	1848	5.981	309	3.565e -6

M	p/p_i	$ ho/ ho_i$	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	ρ_2/ρ_1	T_2/T_1	p_{i2}/p_{i1}
40	$\frac{P/Pi}{1.687e-9}$	$5.417_{\mathrm{e}-7}$	0.003115	4.785 _{e5}	123.3	$\frac{\mu}{1.433}$	0.3786	$\frac{p_2/p_1}{1867}$	5.981	312.1	$\frac{p_{i2}/p_{i1}}{3.477_{e-6}}$
40.2	1.63e-9	5.284e -7	0.003084	4.906e5	123.34	1.425	0.3786	1885	5.981	315.2	3.392 _{e-6}
40.4	1.574e-9	5.155e -7	0.003054	5.028e5	123.37	1.418	0.3786	1904	5.982	318.3	3.309e-6
40.6	1.521 _e -9	5.029e -7	0.003024	5.154e5	123.41	1.411	0.3786	1923	5.982	321.5	3.229_{e-6}
40.8	1.47e-9	4.908e-7	0.002995	5.281e5	123.44	1.404	0.3785	1942	5.982	324.6	3.151 _e -6
41	1.42e-9	4.789_{e-7}	0.002966	5.412e5	123.47	1.398	0.3785	1961	5.982	327.8	3.075e-6
41.2	1.373e-9	4.675e -7	0.002937	5.545e5	123.51	1.391	0.3785	1980	5.982	331	3.001e-6
41.4	1.327e-9	4.563e -7	0.002909	5.68e5	123.54	1.384	0.3785	1999	5.983	334.2	2.93 _e -6
41.6	1.283 _e -9	4.455e -7	0.002881	5.818e5	123.57	1.377	0.3785	2019	5.983	337.4	2.86 _{e-6}
41.8	1.241 _{e-9}	4.35e -7	0.002853	5.959e5	123.61	1.371	0.3785	2038	5.983	340.7	2.793_{e-6}
42	1.2e-9	$4.247_{\mathrm{e-7}}$	0.002826	6.102e5	123.64	1.364	0.3785	2058	5.983	343.9	2.727e-6
42.2	1.161 _e -9	4.148e-7	0.0028	6.248e5	123.67	1.358	0.3785	2077	5.983	347.2	2.663e-6
42.4	1.124e-9	4.051e -7	0.002774	6.397e5	123.7	1.351	0.3785	2097	5.983	350.5	2.601e-6
42.6	1.087e-9	3.957e -7	0.002748	6.549e5	123.74	1.345	0.3785	2117	5.984	353.8	2.541e -6
42.8	1.052e-9	3.866e -7	0.002722	6.704e5	123.77	1.339	0.3785	2137	5.984	357.1	2.482e-6
43	1.019e-9	3.777e-7	0.002697	6.861e5	123.8	1.333	0.3785	2157	5.984	360.5	2.425e -6
43.2	9.861 _{e-10}	3.691e -7	0.002672	7.022e5	123.83	1.326	0.3785	2177	5.984	363.8	2.37e-6
43.4	$9.549_{ m e-10}$	3.607e -7	0.002648	7.185e5	123.86	1.32	0.3785	2197	5.984	367.2	2.316e -6
43.6	$9.247_{\mathrm{e}-10}$	3.525e -7	0.002623	7.352e5	123.89	1.314	0.3785	2218	5.984	370.6	$2.264 \mathrm{e}{-6}$
43.8	$8.956 \mathrm{e}{-10}$	3.445e -7	0.0026	$7.522{\scriptstyle \mathrm{e}5}$	123.92	1.308	0.3785	2238	5.984	374	2.213e-6
44	8.676e -10	3.368e -7	0.002576	7.694e5	123.95	1.302	0.3785	2258	5.985	377.4	$2.163 \mathrm{e}{-6}$
44.2	8.405e -10	3.293e -7	0.002553	7.87e5	123.98	1.296	0.3785	2279	5.985	380.8	$2.115\mathrm{e}{-6}$
44.4	$8.144_{\rm e-10}$	3.219e -7	0.00253	8.049e5	124.01	1.291	0.3785	2300	5.985	384.3	2.068e -6
44.6	$7.893_{\rm e-10}$	3.148e -7	0.002507	8.232e5	124.04	1.285	0.3785	2321	5.985	387.7	2.022e-6
44.8	7.65e -10	3.078e -7	0.002485	8.417e5	124.07	1.279	0.3784	2341	5.985	391.2	1.977e-6
45	$7.416_{\rm e-10}$	3.011e -7	0.002463	8.606e5	124.09	1.273	0.3784	2362	5.985	394.7	1.934e-6
45.2	7.19e -10	$2.945\mathrm{e}{-7}$	0.002441	8.799e5	124.12	1.268	0.3784	2383	5.985	398.2	1.892e-6
45.4	$6.971 {\scriptstyle\mathrm{e}-10}$	2.881e -7	0.00242	8.995e5	124.15	1.262	0.3784	2405	5.985	401.7	1.85e -6
45.6	6.761e -10	2.818e -7	0.002399	9.194e5	124.18	1.257	0.3784	2426	5.986	405.3	1.81e -6
45.8	6.557e -10	$2.757_{\rm e-7}$	0.002378	9.397e5	124.2	1.251	0.3784	2447	5.986	408.8	1.771e -6
46	$6.361 {\scriptstyle\mathrm{e}-10}$	2.698e -7	0.002357	9.603e5	124.23	1.246	0.3784	2468	5.986	412.4	1.733e-6
46.2	$6.171 {\scriptstyle\mathrm{e}-10}$	2.64e -7	0.002337	9.813e5	124.26	1.24	0.3784	2490	5.986	416	1.696e -6
46.4	5.987e -10	$2.584 \mathrm{e}{-7}$	0.002317	1.003e6	124.29	1.235	0.3784	2512	5.986	419.6	1.66e -6
46.6	5.81e-10	2.529e-7	0.002297	1.024e6	124.31	1.23	0.3784	2533	5.986	423.2	1.625e-6
46.8	5.639e-10	2.476e -7		1.047e6	124.34	1.224	0.3784	2555	5.986	426.8	1.591e-6
47	5.474e -10	2.424e-7	0.002258	1.069e6	124.36	1.219	0.3784	2577	5.986	430.5	1.557e-6
47.2	5.314 _e -10	2.373e -7	0.002239	1.092 e6	124.39	1.214	0.3784	2599	5.987	434.1	1.524e-6
47.4	5.159e -10	2.323e-7	0.00222	1.115e6	124.42	1.209	0.3784	2621	5.987	437.8	1.493e-6
47.6	5.01e-10	2.275e-7	0.002202	1.139e6	124.44	1.204	0.3784	2643	5.987	441.5	1.462e-6
47.8	4.865e-10	2.228 _{e-7}	0.002184	1.163 _{e6}	124.47	1.199	0.3784	2665	5.987	445.2	1.431 _{e-6}
48	4.725 _e -10	2.182 _{e-7}	0.002165	1.187e6	124.49	1.194	0.3784	2688	5.987	448.9	1.402e-6
48.2	4.59_{e-10}	2.137 _{e-7}	0.002148	1.212e6	124.52	1.189	0.3784	2710	5.987	452.7	1.373e-6
48.4	4.459_{e-10}	2.094e-7	0.00213	1.238e6	124.54	1.184	0.3784	2733	5.987	456.4	1.345e-6
48.6	4.332e-10	2.051e-7	0.002112	1.263e6	124.56	1.179	0.3784	2755	5.987	460.2	1.318e-6
48.8	4.21e-10	2.009e-7	0.002095	1.289e6	124.59	1.174	0.3784	2778	5.987	464	1.291 _{e-6}
49	4.091 _{e-10}	1.969e-7	0.002078	1.316e6	124.61	1.169	0.3784	2801	5.988	467.8	1.265 _{e-6}
49.2	$3.977\mathrm{e}{-10}$	$1.929\mathrm{e}{-7}$	0.002061	1.343e6	124.64	1.165	0.3784	2824	5.988	471.6	1.24e -6

M	p/p_i	ρ/ρ_i	T/T_i	A/A_*	ν	μ	M_2	p_2/p_1	$ ho_2/ ho_1$	T_2/T_1	p_{i2}/p_{i1}
49.4	$3.865 {\scriptstyle\mathrm{e}-10}$	1.89e-7	0.002045	1.37e 6	124.66	1.16	0.3784	2847	5.988	475.5	1.215e -6
49.6	3.758e -10	1.853e -7	0.002028	1.398e6	124.68	1.155	0.3784	2870	5.988	479.3	1.191e-6
49.8	$3.654_{\rm e-10}$	1.816e -7	0.002012	1.427e 6	124.71	1.151	0.3784	2893	5.988	483.2	1.167e-6
50	$3.553\mathrm{e}{-10}$	1.78e-7	0.001996	1.455e6	124.73	1.146	0.3784	2917	5.988	487.1	1.144e -6

Figure C.2: Extrait pour faible déflexion de l'abaque reliant l'angle de déflexion de l'écoulement avec l'angle du choc oblique en fonction du nombre de Mach amont

Figure C.3: Extrait pour forte déflexion de l'abaque reliant l'angle de déflexion de l'écoulement avec l'angle du choc oblique en fonction du nombre de Mach amont