Name-Satyam Bhalerao

Subject-BDA Lab Roll No.- 2193227

Class-IS-2 Batch 2

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
data=pd.read_csv(r"D:/MIT/BDA/lab/archive/full_grouped.csv")
```

In [3]:

data.head()

Out[3]:

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered
0	January	Afghanistan	0	0	0	0	0	0	0
1	January	Albania	0	0	0	0	0	0	0
2	January	Algeria	0	0	0	0	0	0	0
3	January	Andorra	0	0	0	0	0	0	0
4	January	Angola	0	0	0	0	0	0	0
4									•

In [4]:

```
df=data[(data['Country/Region'] == 'India')]
```

In [5]:

df.head()

Out[5]:

	Date	Country/Region	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered
79	January	India	0	0	0	0	0	0	0
266	January	India	0	0	0	0	0	0	0
453	January	India	0	0	0	0	0	0	0
640	January	India	0	0	0	0	0	0	0
827	January	India	0	0	0	0	0	0	0

In [6]:

df=df.drop('Country/Region',axis=1)
df=df.drop('WHO Region',axis=1)

In [7]:

df.head()

Out[7]:

	Date	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered
79	January	0	0	0	0	0	0	0
266	January	0	0	0	0	0	0	0
453	January	0	0	0	0	0	0	0
640	January	0	0	0	0	0	0	0
827	January	0	0	0	0	0	0	0

In [8]:

df.count()

Out[8]:

Date 188 Confirmed 188 Deaths 188 Recovered 188 Active 188 New cases 188 New deaths 188 New recovered 188 dtype: int64

In [9]:

import seaborn as sns

In [10]:

sns.heatmap(df.corr())

Out[10]:

<AxesSubplot:>

In [11]:

```
# y1=plt.bar(df['Date'],df["Confirmed"])
# y2=plt.bar(df['Date'],df["Deaths"])
# y3=plt.bar(df['Date'],df["Recovered"])
# y4=plt.
# y5=plt.
# y6=plt.
# y7=plt.
figure, axis = plt.subplots(2, 4)
axis[0, 0].bar(df['Date'],df["Confirmed"])
axis[0, 0].set_title("Confirmed death from Jan to july")
# For Cosine Function
axis[0, 1].bar(df['Date'],df["Deaths"])
axis[0, 1].set_title("death from Jan to july")
# For Tangent Function
axis[0, 2].bar(df['Date'],df["Recovered"])
axis[0, 2].set_title("Recoverd from Jan to july")
# For Tanh Function
axis[0, 3].bar(df['Date'],df["Active"])
axis[0, 3].set_title("Active Cases from Jan to july")
axis[1, 0].bar(df['Date'],df["New cases"])
axis[1, 0].set_title("New Cases from Jan to july")
# For Cosine Function
axis[1, 1].bar(df['Date'],df["New deaths"])
axis[1, 1].set_title("New deaths from Jan to july")
# For Tangent Function
axis[1, 2].bar(df['Date'],df["New recovered"])
axis[1, 2].set_title("New recoverd from Jan to july")
plt.subplots_adjust(left=0.1,
                    bottom=0.1,
                    right=4,
                    top=4,
                    wspace=0.2,
                    hspace=0.4)
plt.show()
```


In [12]:

```
df=data[(data['Country/Region'] == 'US')]
```

In [13]:

```
df=df.drop('Country/Region',axis=1)
df=df.drop('WHO Region',axis=1)
```

In [14]:

df.head()

Out[14]:

	Date	Confirmed	Deaths	Recovered	Active	New cases	New deaths	New recovered
173	January	1	0	0	1	0	0	0
360	January	1	0	0	1	0	0	0
547	January	2	0	0	2	1	0	0
734	January	2	0	0	2	0	0	0
921	January	5	0	0	5	3	0	0

In [15]:

sns.heatmap(df.corr())

Out[15]:

<AxesSubplot:>

In [16]:

```
# y1=plt.bar(df['Date'],df["Confirmed"])
# y2=plt.bar(df['Date'],df["Deaths"])
# y3=plt.bar(df['Date'],df["Recovered"])
# y4=plt.
# y5=plt.
# y6=plt.
# y7=plt.
figure, axis = plt.subplots(2, 4)
axis[0, 0].bar(df['Date'],df["Confirmed"])
axis[0, 0].set_title("Confirmed death from Jan to july")
# For Cosine Function
axis[0, 1].bar(df['Date'],df["Deaths"])
axis[0, 1].set_title("death from Jan to july")
# For Tangent Function
axis[0, 2].bar(df['Date'],df["Recovered"])
axis[0, 2].set_title("Recoverd from Jan to july")
# For Tanh Function
axis[0, 3].bar(df['Date'],df["Active"])
axis[0, 3].set_title("Active Cases from Jan to july")
axis[1, 0].bar(df['Date'],df["New cases"])
axis[1, 0].set_title("New Cases from Jan to july")
# For Cosine Function
axis[1, 1].bar(df['Date'],df["New deaths"])
axis[1, 1].set_title("New deaths from Jan to july")
# For Tangent Function
axis[1, 2].bar(df['Date'],df["New recovered"])
axis[1, 2].set_title("New recoverd from Jan to july")
plt.subplots_adjust(left=0.1,
                    bottom=0.1,
                    right=4,
                    top=4,
                    wspace=0.2,
                    hspace=0.4)
plt.show()
```


In []:			

In []: