Probing General Relativity using Cosmic lighthouses

Tom Kimpson ¹, Kinwah Wu ¹, and Silvia Zane ¹

¹Mullard Space Science Laboratory, UCL

Intro

General Relativity (GR) is our best theory of space, time and gravity.

We can probe GR in regimes of high spacetime curvature using **pulsars** - cosmic lighthouses - orbiting **massive black holes**

Figure 1. A BH-PSR system

In order to use these systems as probes of strong-field GR in it is necessary to **theoretically model the pulsar timing signal** using computational and numerical methods [1, 2]

Constructing the timing signal

The construction of the timing signal from a pulsar (PSR) orbiting a black hole has 2 primary ingredients:

- 1. **Covariant Ray Tracing in Curved Spacetime** i.e. What is the trajectory of light between the observer and the PSR?
- 2. **Mathematical Optimization** i.e. What are the initial conditions of the ray such that the ray connects the the observer and the PSR?

Astrophysical Background

Black Holes

Black holes are regions of spacetime where the curvature is so extreme that nothing - not even light - can escape.

Originally thought of as purely mathematical artifacts, evidence suggests that they in fact exist as real astrophysical objects. The centre of our own galaxy is thought to host a BH of mass $4 \times 10^6 M_{\odot}$

The most extreme gravity in the universe is found at the surface ('event horizon') of a BH.

Pulsars

Pulsars are exceptionally dense stars composed entirely of neutrons - a teaspoon of pulsar would weigh 1 billion tonnes

Pulsars emit beamed radiation. As they spin this light beam sweeps across the universe, analogous to a lighthouse at sea.

The periodic lighthouse 'pulse' is exceptionally stable; pulsars can be thought of as beaconing gyroscopes, providing the most precise natural clock in the universe.

Covariant Ray Tracing

Using **geometrical optics**, the trajectory of light can be described as a ray.

The Hamiltonian in covariant form of a general spacetime is,

$$H = \frac{1}{2}g_{\mu\nu}p^{\mu}p^{\nu}$$

where $g_{\mu\nu}$ is the *metric* which describes the spacetime and p_{μ} the *contravariant momenta* of the ray.

The ray path is determined via Hamilton's equations:

$$\dot{x}^{\mu} = \frac{\partial H}{\partial p_{\mu}}, \ \dot{p}_{\mu} = -\frac{\partial H}{\partial x^{\mu}}$$

Numerical methods

These equations represent a set of 8 coupled partial differential equations. We can solve these using a **numerical 5th-order Runge Kutta integrator** with adaptive step size [3].

Figure 2. Ray Tracing around a spinning black hole

Finding the intersection

We want to find an intersection of the ray with the pulsar.

We solve this problem **numerically** using a **shooting method**.

This is effectively a **two point boundary value problem**:

Find the initial boundary values (α, β) that minimize $ds = f(\alpha, \beta)$

Figure 3. Shooting from the image plane

Blackbox optimization

The ray tracing is effectively a black box function $f(\alpha, \beta)$ which takes some (α, β) and returns the minimum distance ds along the ray from the target value.

We want to minimize $ds = f(\alpha, \beta)$ to within some tolerance ϵ by varying initial conditions (α, β) .

The adjustment of (α, β) proceeds via a **nonlinear conjugate gradient descent algorithm** [4].

The conjugate direction vector \mathbf{h}_{j} , is updated at each iteration step j as,

$$\mathbf{h}_{j+1} = \mathbf{g}_{j+1} + \gamma_j \mathbf{h}_j , \qquad ($$

where $\mathbf{g}_j = -\nabla f(\alpha_j, \beta_j)$ and

$$\gamma_j = \frac{\mathbf{g}_{j+1} \cdot \mathbf{g}_{j+1}}{\mathbf{g}_j \cdot \mathbf{g}_j} \,, \tag{2}$$

The variables α , β are then updated at each iteration as,

$$\mathbf{x}_{j+1} = \mathbf{x}_j + \delta_j \mathbf{h}_j \;, \tag{3}$$

for vector $\mathbf{x}_j = (\alpha_j, \beta_j)$ and where δ_j is the variable stepsize, determined via an inexact line search

The analytical form of $f(\alpha, \beta)$ is unknown - we are optimizing a blackbox function. The gradients necessary for the optimization are evaluated numerically via the difference quotient.

Why not use `vanilla' gradient descent?

- Due to extreme spacetime curvature, the ray path is very sensitive to changes in (α, β) .
- Consequently $f(\alpha, \beta)$ often takes the form of an ill-conditioned narrow valley.
- Gradient descent becomes **inordinately slow** for such a function surface; the direction of steepest descent is not, in general, in the direction of the minimum and the algorithm instead follows a '**criss-cross' pattern**, oscillating between the sides of the valley.
- This issue is avoided by moving in a direction which is **conjugate** to previous directions.

References

- [1] Kimpson, T., Wu, K., Zane, S., MNRAS, 486:360-377, 2019.
- [2] Kimpson, T., Wu, K. Zane, S., MNRAS, 484:2411-2419, 2019
- [3] Press, W. et al., Reeves, C., Numerical Recipes in Fortran, Cambridge University Press, 1996
- [4] Fletcher, R., Reeves, C., The Computer Journal, 7:149-154, 1964