Sprawozdanie z wykonania zadań z sieci Petri

OPRACOWAŁ: SZYMON RYŚ

DNIA 2022-12-14

Link do zadań

Zadanie 1.

wymyslic własna maszyne stanow (maszyna stanow jest modelowana przez sieć Petri, w której każda tranzycja ma dokładnie jedno miejsce wejściowe i jedno miejsce wyjściowe), zasymulowac przykład i dokonac analizy grafu osiagalnosci oraz niezmiennikow j.w.

Graf osiągalności

Graf osiągalności ma w tym przypadku 4 stany:

- S₀ {3,0,0}
- S₀ {1,2,0}
- $S_0 \{2,1,0\}$
- $S_0 \{0,3,0\}$

Możemy zatem wywnioskować, że P2 jest nieosiągalne.

Niezmienniki

Petri net invariant analysis results

T-Invariants

The net is not covered by positive T-Invariants, therefore we do not know if it is bounded and live.

P-Invariants

The net is covered by positive P-Invariants, therefore it is bounded.

P-Invariant equations

$$M(P0) + M(P1) + M(P2) = 3$$

Analysis time: 0.001s

Niezmienniki miejsc

Widać trzy podzbiory w których suma tokenów jest stała:

- {P₀, P1, P₂}
- {P₂}
- $\{P_0, P_1\}$

Niezmienniki przejść

Aby wrócić do początkowego markowania trzeba odpalić raz T_0 lub T_1 .

Zadanie 2.

zasymulowac siec jak ponizej.

Dokonac analizy niezmiennikow przejsc. Jaki wniosek mozna wyciagnac o odwracalności sieci ? Wygenerowac graf osiagalności. Prosze wywnioskowac z grafu, czy siec jest zywa. Prosze wywnioskowac czy jest ograniczona. Objasnic wniosek.

Niezmienniki

Przejść

Sieć nie jest odwracalna ponieważ:

- gdyby była to analiza tych niezmienników pokazałaby ilość przejść jakie trzeba wykonać aby znaleźć się w markowaniu początkowym. Jak widać, nie iestnieje taka kombinacja przejść.

- w miejscu P₃ po każdych 3 przejściach przez sieć jest dodawany jeden token -> liczba tokenów stale rośnie do nieskończoności

Miejsc

- $\{P_0, P_1, P_2\} = 1$
- {P₃} co każde 3 przejścia (1 okrążenie) dodawany jest jeden token.

Ograniczoność

Sieć nie jest ograniczona ponieważ w poszczególnych miejscach sieci ilość tokenów może rosnąć do nieskończoności $\{P_3\}$

Żywość

Sieć jest żywa ponieważ w każdym momencie możemy wykonać przejście - do każdego miejsca wychodzi jedno przejście (graf osiągalności)

Zadanie 3.

zasymulowac wzajemne wykluczanie dwoch procesow na wspolnym zasobie. Dokonac analizy niezmiennikow miejsc oraz wyjasnic znaczenie rownan (P-invariant equations). Ktore rownanie pokazuje dzialanie ochrony sekcji krytycznej ?

Wykluczenie

Niezmienniki

Niezmienniki miejsc

- $\{P_0, P_1, P_2\}$
- {P₃, P₄, P₅}
- $\{P_1, P_4, P_6\}$

Współdzielony zasób może być w jednej chwili tylko w procesie 1., procesie 2. lub monitorze.

Zadanie 4.

uruchomic problem producenta i konsumenta z ograniczonem buforem (mozna posluzyc sie przykladem, menu:file, examples). Dokonac analizy niezmiennikow. Czy siec jest zachowawcza? Ktore rownanie mowi nam o rozmiarze bufora?

Zachowawczość

Sieć jest zachowawcza ponieważ w każdym markowaniu suma tokenów sieci nie ulega zmianie Zauważmy, że niezmienniki miejsc:

- $M(P_0) + M(P_1) + M(P_2) = 1$
- $M(P_3) + M(P_4) + M(P_5) = 1$
- $M(P_6) + M(P_7) = 3$

są stałe.

Zbiory miejsc są rozłączne -> w całej sieci jest 5 tokenów.

Rozmiar bufora jest wyznaczony rowaniem 3.

Zadanie 5.

stworzyc symulacje problemu producenta i konsumenta z nieograniczonym buforem. Dokonac analizy niezmiennikow. Zaobserwowac brak pelnego pokrycia miejsc.

Po 500 przejściach sieć wygląda następująco.

Niezmienniki

Miejsc

Ilość tokenów w producencie / konsumencie jest stała = 1. W buforze jest dowolna.

Przejść

Możmy wrócić do markowania początkowego -> sieć odwracalna.

Brak pokrycia

P6 (bufor) nie jest pokryty niezmiennikami miejsc -> tokeny mogą się stale dodawać.

Zadanie 6.

zasymulowac prosty przyklad ilustrujacy zakleszczenie. Wygenerowac graf osiagalności i zaobserwowac znakowania, z ktoroch nie można wykonac przejsc. Zaobserwowac wlasciwości sieci w "State Space Analysis". Poniżej przyklad sieci z możliwościa zakleszczenia (można wymyslic inny):

Graf osiągalności

Błyskawicznie (po 2 krokach) udało się otrzymać zakleszczenie

Dzieje się tak ponieważ do S_6 i S_7 prowadzą tylko przejścia dochodzące a niema wychodzących. Sieć jest odwracalna.

Ograniczona

Każde markowanie ma 2 tokeny

Bezpieczna

1-ograniczona (maksymalna ilość tokenów w jednym miejscu to 1)

Możliwe zakleszczenie

Na przyklad pozycje P₅ i P₄.