Chapter 7

Exercise 7.4 The state diagram for this exercise is shown in Figure ?? on page ??.

Figure 7.1: State Transition Diagram of Exercise 7.4

Exercise 7.6 The state table for this exercise is:

PS	In_{I}	put	
	x = 0	x = 1	
0	0	1	1
1	1	2	0
2	2	3	1
3	3	4	0
4	4	5	1
5	5	6	0
6	6	0	1
	N	S	Output (z)

From where we obtain the following state transition and output functions:

$$s(t+1) = (s(t) + x(t)) \mod 7$$

 $z(t) = (s(t) + 1) \mod 2$

The system is a modulo-7 counter whose output is 1 whenever the number of 1's in the input modulo 7 is even

Exercise 7.10 The input has four values; we represent it by the bit-vector (x_1, x_0) with the following code: a = 00, b = 01, c = 10, and d = 11.

There are six states; we represent each one by the bit vector (y_2, y_1, y_0) and each state S_i correspond to a code shown in the next table (arbitrary):

State	$\left(y_2,y_1,y_0\right)$
S_0	001
S_1	010
S_2	000
S_3	011
S_4	100
S_5	101

The output z has five integer values. We use binary code for these integers, (z_2, z_1, z_0) . The corresponding state table is

PS	x = 00	x = 01	x = 10	x = 11			
000	001,011	010,001	000,000	000,000			
001	$011,\!100$	$010,\!001$	$001,\!000$	$001,\!000$			
010	$010,\!000$	$010,\!000$	010,000	101,000			
011	011,000	$011,\!000$	101,000	$011,\!000$			
100	100,000	$100,\!000$	100,000	$010,\!000$			
101	000,010	$001,\!001$	100,001	$101,\!000$			
	$\overline{NS(Y_2Y_1Y_0),Output(z)}$						

To obtain switching expressions, Karnaugh maps can be used. Since there are five variables, it is convenient to use 4-variable maps and include the 5th variable in the cells.

The expressions are:

$$Y_2 = x_1 x_0 y_1 y_0' + x_1 x_0' y_1' y_0 + x_1' y_1' y_0' y_2 + x_0' y_1' y_0' y_2 + x_1 y_1' y_0 y_2$$

$$Y_1 = x_1'y_1 + y_1y_0x_0 + y_1y_0'x_0' + y_0x_1'y_2' + y_1'y_0'x_0y_2'$$

$$Y_0 = x_1' x_0' y_1' y_2' + y_0' y_0 y_2' + x_1' x_0 y_1' y_0 y_2 + y_1 y_0 + y_0 x_1 x_0 + y_1 x_1 x_0$$

$$z_2 = x_1' x_0' y_1' y_0 y_2'$$

$$z_1 = x_1' x_0' y_2' y_1' y_0' + x_1' x_0' y_2 y_1' y_0$$

$$z_0 = y_1'y_0x_1x_0y_2 + y_2'y_1'y_0x_1' + y_1'y_0x_1'x_0$$

Exercise 7.12

The number of possible input sequences starting at time $t_1 = 5$ and going up to $t_2 = 16$ would be:

$$2^{16-5+1} = 2^{12}$$
 possible input sequences

As it's possible to have the system in two different states at time t_1 , S_3 or S_1 , for the same input sequence it's possible to get two possible sequence pairs. So, the number of sequence pairs needed to describe the system would be:

$$2 \times 2^{12} = 2^{13}$$

Calling the states by their number (e.g. S_2 is called 2), three possible sequence pairs are:

t												
x(t)	1	1	0	0	1	1	1	0	1	1	0	1
s(t)	3	3	3	1	2	2	2	2	0	1	3	1
z(t)	c	\mathbf{c}	\mathbf{c}	\mathbf{a}	b	b	b	b	\mathbf{a}	\mathbf{a}	\mathbf{c}	\mathbf{a}

								12				
x(t) $s(t)$	1	1	0	1	1	0	1	1	0	0	1	0
s(t)	3	3	3	1	3	3	1	3	3	1	2	2
z(t)	c	\mathbf{c}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{a}	b	b

t	5	6	7	8	9	10	11	12	13	14	15	16
x(t)	1	1	0	1	1	1	0	0	1	1	1	1
s(t)	1	3	3	1	3	3	3	1	2	2	2	2
$x(t) \\ s(t) \\ z(t)$	a	\mathbf{c}	\mathbf{c}	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{c}	\mathbf{a}	b	b	b	b

Exercise 7.16

Based on the outputs for each state we get the first partition P_1 as:

$$P_1 = (A, D, E)(B, F, G)(C, H)$$

Let's call (A,D,E) as group 1, (B,F,G) as group 2 and (C,H) as group 3. We can construct a table representing the next group for each state transition:

	group 1			gı	roup	group 3		
	\boldsymbol{A}	D	E	B	F	G	C	H
0	2	2	2	3	3	3	3	3
1	3	3	3	1	1	1	1	1

From the table we can see that the columns for each group of states are the same, and so, the states in each group are also 2-equivalent. $P_2 = P_1$. Renaming the states in group 1 as α , the states in group 2 as β and in group 3 as γ , we can represent the reduced sequential system as:

PS	Input					
	x = 0	x = 1				
α	eta,0	$\gamma,0$				
eta	$\gamma, 1$	lpha,1				
γ	$\gamma,0$	lpha,1				

Exercise 7.24

Since two different patterns are generated, the system consists of two independent pattern generators, let's call these systems A and B. The corresponding state diagram is given in Figure ??. The states S_{Ai} belongs to system A and states S_{Bi} belongs to system B.

Figure 7.2: State diagram of Exercise 7.24