Motivic Cohomology 原相/母题/动机/主上同调

o Introduction

1 Intersection Theory

2 Sheaves with Transfers

We fix an $S \in Sm/k$, called the *base scheme*.

2.1 Let $X, Y \in Sm/k$. We define the groups of finite correspondences:

$$Cor_S(X, Y) = \mathcal{Z}\{C \subseteq X \times_S Y\}C \to X \text{ finite.}$$

For any $f: X \to Y$, the graph $\Gamma_f = (x, f(x)) \subseteq X \times_S Y$ is a finite colrespondence from X to Y.

2.2 If $f: X \to Y$ is finite and dim $X = \dim Y$, the guph Γ_f is also a fiwite correspondence from $Y \to X$.

2.3 Define an additic category Cor_S , whose objects are the same as Sm/S und $Cor_S(X, Y)$ is defined in Def 2.1. Contraraviant additine functors

$$F_i \mathfrak{Cor}_{\mathfrak{S}}^{\mathrm{op}} o \mathfrak{Ab}.$$

are called presheaver with transfers. The corresponding category is denoted by $\mathfrak{PSh}(S)$. we have a functor $r \colon Sm/S \to \mathfrak{Cor}_S$ by 2.2

Ex2. 4 Fuery $x \in \text{sim/s}$ give an element. $\mathbb{Z}(x) \in \text{Psh}(S)$ by $\mathbb{Z}(x)(y) = \text{Cor}_s(y, x)$. $(\mathbb{Z}(s) = \mathbb{Z})$

Ex2.5 The presheaves o and 0^* are in. psh (s). For awy $c \in \text{cor}_s(x, y)$ and $f \in O(y)$ (resp. $O^*(y)$)

$$C \xrightarrow{i} X_{\mathcal{L}\pi_1} \times Y \overrightarrow{\pi_2} Y \text{ define } O(c)(t)$$

$$= \operatorname{Tr}_{(/x} \left((P_2 0 i)^{tx} (f) \right)$$

$$(\text{resp. Nc/X} \left((\eta_2 \circ i)^t (t) \right)$$

Def 2.6 Let us describle the composition in loos. Suppose $f \in \text{Cor}(X/Y)$ and $g \in \text{lor}(y, Z)$. xxz^{-113} Define $xx_5Y_5 \xrightarrow{P_{23}} y, y$

gl =
$$P_{13*} (P_{23}^*(g) \cdot P_{12}^*(t))$$

(Check all intersection are proper).

2.4[**2.7**] The composition law is associative.

Proof. Suppose $Z \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{W}$ are morplisms in tors. We have Cartesian squares

$$\begin{array}{ccc} XYZW & \longrightarrow XZW \\ \downarrow & & \downarrow \\ XYZ & \longrightarrow XZ \end{array}$$

Q.E.D.

2.5 Let $f: X \to Y$ be a proper morphism between finite type schemes/ \mathbb{k} and $\mathscr{F} \in \mathscr{K}_a(X)$.

- i) $f_* \mathscr{F} \in \mathscr{K}_a(Y)$ and $R^i f_* \mathscr{F} \in \mathscr{K}_{a-1}(Y)$, i > 0.
- ii) $f_*\mathcal{Z}_a(\mathscr{F}) = \mathcal{Z}_a(f_*\mathscr{F}).$

2.6[2.8]

2.31 [COSIMPLICIAL OBJECT] For and $n \in \mathbb{N}$, define

$$\mathbb{A}^n \cong \Delta^n = \operatorname{Spec}^k[x_0, \cdots, x_n]/(\sum x_i - 1).$$

2.32 (Associated Complexes) For $X \in \mathfrak{PSh}$

3 Milnor K-Theory

3.1[**MILNOR** K-**THEORY**] For any field \mathbb{F} , define $\forall x \in \mathbb{F}^{\times}$,

$$\mathcal{K}^{\mathrm{Mil}}_{\bullet}(\mathbb{F}) = T(\mathbb{F}^{\times})/x \otimes (1-x)$$

to be the Milnor K-theory of \mathbb{F} , which is a graded algebra, where T(X) is

For example, $\mathcal{K}_0^{\text{Mil}}(\mathbb{F}) = \mathcal{Z}$, $\mathcal{K}_1^{\text{Mil}}(\mathbb{F}) = \mathbb{F}^{\times}$.

3.2

- [x][y] + [y][x] = 0;
- [x][x] = [x][-1].

Proof. 1)
$$[x][-x] = [x] \left[\frac{1-x}{1-x^{-1}} \right]$$

= $[x][1-x] + [x^{-1}][1-x^{-1}]$
= 0

$$S_0[x][y] + [y][x] = [x][-x] + [x][y] + [y][x]$$

$$+ [y][-y]$$

$$= [x](-xy] + [y][-xy]$$

$$= (xy][-xy] = 0$$

2)
$$[x][x] = [x][-1] + [x][-x] = [x][-1].D$$
 Q.E.D.

3.3(L)t k be a field and V be a normalized discrete valuation on k. Let $k(V) = \mathcal{O}_V/m_V$ be

Prop 3.3 Let k be a field and v be a normalized discrete valuation on k. Let R(v) = 0r/m $_v$ be the residue field 1. Then \exists ! homomorphism Sit. $\forall u_1, \ldots, u_{n-1} \in k_n^m(k) - k_{n-1}^m(k(v))$ $\partial_v([x][u_1]]$ and $x \in K^x$ whee \bar{u}_i is the (lass of u_i in $R(v)^x$. Prof. The uniqueness is clear. For exist, pence, choosing a uniformizer π , define a graded ring orphism