

Chapitre VI – Primitives et équations différentielles

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES					
I - Pı	imitives de fonctions continues				
1.	Définition				
2.	Primitive de fonctions usuelles				
3.	Opérations sur les primitives				
II - Équations différentielles 4 1. Qu'est-ce-qu'une équation différentielle? 4					
2.	Résolution d'équations différentielles de la forme $y'=ay$				
3.	Résolution d'équations différentielles de la forme $y'=ay+b$ 6				

I - Primitives de fonctions continues

1. Définition

À RETENIR : DÉFINITION 💡

Soit f un fonction définie et continue sur un intervalle I. On appelle **primitive** de f, toute fonction F définie sur I et qui vérifie pour tout $x \in I$: F'(x) = f(x).

À LIRE : NOTE 99

Une primitive est toujours définie à une constante près.

En effet. On considère la fonction f définie pour tout $x \in \mathbb{R}$ par f(x) = 2x. Alors, $F_1(x) = x^2 + 1$ est une primitive de la fonction f (car F'(x) = 2x = f(x)).

Mais $F_1(x)$ n'est pas la seule primitive de f!

On peut citer par exemple $F_2(x) = x^2 + 10$ et $F_3(x) = x^2 + 3$ qui sont également des primitives de f.

C'est pour cette raison que l'ont dit que les primitives sont définies à une constante près (lorsque l'on dérive, la constante devient nulle).

Ainsi, toute **fonction continue** sur un intervalle admet **une infinité de primitives** d'une forme particulière sur cet intervalle. Plus formellement :

À RETENIR : INFINITÉ DE PRIMITIVES 📍

Une fonction continue f sur un intervalle I admet une infinité de primitives sur I de la forme $x \mapsto F_0(x) + c$ avec $c \in \mathbb{R}$ (où F_0 est une primitive de f).

DÉMONSTRATION : INFINITÉ DE PRIMITIVES

Soit F une autre primitive de f sur I. On a pour tout $x \in I$:

 $(F - F_0)'(x) = F'(x) - F'_0(x) = f(x) - f(x) = 0$ (car F_0 et F sont deux primitives de f).

Donc il existe une constante réelle c telle que $F-F_0=c$. D'où pour tout $x\in I$, $F(x)=F_0(x)+c$: ce qu'il fallait démontrer.

2. Primitive de fonctions usuelles

Le tableau suivant est à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

À RETENIR 💡

Soit λ une constante réelle.

Fonction	Primitive	Domaine de définition de la primitive
λ	λx	\mathbb{R}
e^{x}	e ^x	\mathbb{R}
$\frac{1}{x}$	ln(x)	\mathbb{R}_+^*
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	\mathbb{R}_+^*
x^a avec $a \in \mathbb{R}$ et $a \neq -1$	$\frac{1}{a+1}x^{a+1}$	\mathbb{R}_+^*
sin(x)	$-\cos(x)$	\mathbb{R}
cos(x)	sin(x)	\mathbb{R}

3. Opérations sur les primitives

Le tableau suivant est également à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

À RETENIR 💡

Soit u une fonction continue.

Fonction	Primitive	Domaine de définition de la primitive
u'e ^u	e ^u	En tout point où <i>u</i> est définie.
$\frac{u'}{u}$	ln(u)	En tout point où <i>u</i> est définie et est non-nulle. On peut retirer la valeur absolue si <i>u</i> est positive.
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	En tout point où <i>u</i> est définie et est strictement positive.
$u'(u)^a$ avec $a\in\mathbb{R}$ et $a eq$	$\frac{1}{a+1}u^{a+1}$	En tout point où <i>u</i> est définie.
$u'\sin(u)$	$-\cos(u)$	En tout point où <i>u</i> est définie.
$u'\cos(u)$	sin(u)	En tout point où <i>u</i> est définie.

II - Équations différentielles

1. Qu'est-ce-qu'une équation différentielle?

Commençons cette partie par quelques définitions.

À RETENIR : DÉFINITION 💡

- Une **équation différentielle** est une égalité liant une fonction inconnue y à ses dérivées successives (y', y'', ...) contenant éventuellement d'autres fonctions connues.
- Une **solution** d'une équation différentielle est une fonction vérifiant l'égalité décrite précédemment.

À LIRE : EXEMPLE 99

La fonction logarithme est une solution de l'équation différentielle $y' = \frac{1}{x}$.

La fonction exponentielle est une solution de l'équation différentielle y'=y, mais aussi de l'équation différentielle y''=y, etc...

2. Résolution d'équations différentielles de la forme y' = ay

Nous allons donner une formule permettant de résoudre des équations différentielles de la forme y'=ay.

À RETENIR : FORMULE 🜹

On pose (E): y' = ay (où a est un réel). Alors l'ensemble des solutions de (E) est l'ensemble des fonctions $x \mapsto ce^{ax}$ où $c \in \mathbb{R}$.

DÉMONSTRATION

Vérifions tout d'abord que les fonctions $x \mapsto ke^{ax}$ sont solutions de (E). Soit $c \in \mathbb{R}$, posons pour tout $x \in \mathbb{R}$, $y_c(x) = ce^{ax}$.

Alors pour tout $x \in \mathbb{R}$, $y'_c(x) = ace^{ax}$ et $ay_c(x) = ace^{ax}$. Donc $y'_c = ay_c$: y_c est bien solution de (E).

Montrons que les fonctions y_c sont les seules solutions de (E). Soit y une solution quelconque de (E) sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on pose $z(x) = y(x)e^{-ax}$. En dérivant :

$$z'(x) = y'(x)e^{-ax} + y(x)(-ae^{-ax}) = e^{-ax}(y'(x) - ay(x))$$

De plus, comme y est solution de (E), on a y' - ay = 0, donc z' = 0.

Ainsi, il existe une constante réelle c telle que z=c. C'est-à-dire que pour tout $x \in \mathbb{R}$:

$$c = y(x)e^{-ax} \iff y(x) = ce^{ax}$$
. Ce qui termine la preuve.

À RETENIR : THÉORÈME 📍

Pour tout réels x_0 et y_0 , il existe une **unique** fonction y solution de l'équation différentielle (E) telle que $y(x_0) = y_0$.

À LIRE : EXEMPLE 99

Résolvons l'équation différentielle (E) : y' - 5y = 0 sous condition d'avoir y(0) = 1.

Dans une premier temps, on écrit l'équation sous une meilleure forme : $y'-5y=0\iff y'=5y$. On a donc a=5. Les solutions de l'équation (E) sont les fonctions définies $x\mapsto ce^{5x}$ où $c\in\mathbb{R}$.

Maintenant, il faut trouver la fonction y qui vaut 1 en 0. Soit donc y une telle solution de (E). Alors :

 $y(0) = 1 \iff ce^{5\times 0} = 1 \iff c = e^{-1}$. La solution recherchée est donc la fonction $y: x \mapsto e^{-1}e^{5x}$.

3. Résolution d'équations différentielles de la forme y' = ay + b

Nous allons donner une formule permettant de résoudre des équations différentielles de la forme y'=ay+b.

À RETENIR : FORMULE 🕴

On pose (E): y' = ay + b (où a est un réel non-nul et b est un réel). Alors l'ensemble des solutions de (E) est l'ensemble des fonctions $x \mapsto ce^{ax} - \frac{b}{a}$ où $c \in \mathbb{R}$.

À RETENIR : THÉORÈME 📍

Pour tout réels x_0 et y_0 , il existe une **unique** fonction y solution de l'équation différentielle (E) telle que $y(x_0) = y_0$.

À LIRE : EXEMPLE 99

Résolvons l'équation différentielle (E): y'=2y-1 sous condition d'avoir y(1)=0.

On a donc a=2 et b=-1. Les solutions de l'équation (E) sont les fonctions définies $x\mapsto ce^{2x}+\frac{1}{2}$ où $c\in\mathbb{R}$.

Maintenant, il faut trouver la fonction y qui vaut 0 en 1. Soit donc y une telle solution de (E). Alors :

 $y(1)=0 \iff ce^{2\times 1}+\frac{1}{2}=0 \iff c=-\frac{1}{2e^2}.$ La solution recherchée est donc la fonction $y:x\mapsto -\frac{e^{2x}}{2e^2}+\frac{1}{2}.$