Due: Friday, August 31, in class.

Note that this is problems: Chapter 11.2: #3, #6, #7, #8, #10.

3. Show that an open ball in \mathbb{R}^n is bounded.

Solution: Let **u** be a point in \mathbb{R}^n and consider the open ball $B_r(\mathbf{u})$ for r > 0. We will show that $B_r(\mathbf{u})$ is bounded. Set $M = ||\mathbf{u}||$. We claim that for all $\mathbf{v} \in B_r(\mathbf{u})$, $||\mathbf{v}|| < M + r$. To prove this, note that by the triangle inequality:

$$dist(\mathbf{0}, \mathbf{v}) \leq dist(\mathbf{0}, \mathbf{u}) + dist(\mathbf{u}, \mathbf{v}) < M + r.$$

It follows that $B_r(\mathbf{u})$ is bounded.

- 6. Let A be a subset of \mathbb{R}^n and let the function $f:A\to\mathbb{R}$ be continuous.
 - (a) If A is bounded, is f(A) bounded?
 - (b) If A is closed, is f(A) closed?

Solution:

- (a) Not necessarily. Consider the following counterexample. We know that the set A=(0,1) is bounded in \mathbb{R} and the function $f:(0,1)\to\mathbb{R}$ defined by f(x)=1/x is continuous. However $f(A)=(1,\infty)$ which is definitely not bounded.
- (b) Not necessarily. Consider the following counterexample. We know that \mathbb{R} is closed in \mathbb{R} and that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \arctan(x)$ is continuous on \mathbb{R} . Then it can be checked that $f(\mathbb{R}) = (-\pi/2, \pi/2)$, which is not closed.
- 7. Suppose that the function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and that $f(\mathbf{u}) \ge ||\mathbf{u}||$ for every point in \mathbf{u} in \mathbb{R}^n . Prove that $f^{-1}([0,1])$ is sequentially compact.

Solution: We will show that $f^{-1}([0,1])$ is closed and bounded. It will then follow from Theorem 11.18 that $f^{-1}([0,1])$ is sequentially compact. First note that because [0,1] is closed in \mathbb{R} and f is continuous, then $f^{-1}([0,1])$ must be closed, this is Theorem 11.12. It remains to show that $f^{-1}([0,1])$ is bounded.

We show that for all $\mathbf{u} \in f^{-1}([0,1])$, $||\mathbf{u}|| \leq 1$. Because $\mathbf{u} \in f^{-1}([0,1])$, there is $x \in [0,1]$ such that $f(\mathbf{u}) \in [0,1]$. Hence we have

$$||\mathbf{u}|| \leqslant f(\mathbf{u}) < 1.$$

It follows that $f^{-1}([0,1])$ is bounded and therefore $f^{-1}([0,1])$ is sequentially compact.

8. Let A and B be sequentially compact subsets of \mathbb{R} . Define $K = \{(x,y) \in \mathbb{R}^2 \mid x \in A, y \in B \}$. Prove that K is sequentially compact.

Solution: Suppose that $\{(x_k, y_k)\}_{k\geqslant 0}$ is a sequence in K, so that $\{x_k\}_{k\geqslant 0}$ and $\{y_k\}_{k\geqslant 0}$ are sequences in A and B respectively. Since A is sequentially compact, $\{x_k\}_{k\geqslant 0}$ has a subsequence $\{x_{k_j}\}_{j\geqslant 0}$ that converges to a value $x\in A$. We can use $\{x_{k_j}\}_{j\geqslant 0}$ to define a subsequence of $\{y_k\}_{k\geqslant 0}$ in B given by $\{y_{k_j}\}_{j\geqslant 0}$. Since B is sequentially continuous, $\{y_{k_j}\}_{j\geqslant 0}$ also has a convergent subsequence $\{y_{k_{j_i}}\}_{i\geqslant 0}$ which converges to some y in B. This defines a subsequence of $\{x_{k_j}\}_{j\geqslant 0}$, $\{x_{k_{j_i}}\}_{i\geqslant 0}$, that also converges to x since $\{x_{k_j}\}_{j\geqslant 0}$ converges to x. Then $\{(x_{k_{j_i}},y_{k_{j_i}})\}_{i\geqslant 0}$ is a subsequence of $\{(x_k,y_k)\}_{k\geqslant 0}$ in K and by the componentwise convergence criterion for sequences, this subsequence converges to $(x,y)\in K$. Since this argument applies to all sequences in K, it follows that K is sequentially compact.

10. A mapping $F: \mathbb{R}^n \to \mathbb{R}^m$ is said to be Lipschitz if there is a number C

$$dist(F(\mathbf{u}), F(\mathbf{v})) \leq C dist(\mathbf{u}, \mathbf{v})$$

for all points \mathbf{u} and \mathbf{v} in \mathbb{R}^n . Show that a Lipschitz mapping is uniformly continuous.

Solution: Pick a point $\mathbf{u} \in \mathbb{R}^n$. For any $\epsilon > 0$, set $\delta = \frac{\epsilon}{C}$. Then because F is Lipschitz continuous, we have that for all \mathbf{v} such that

$$dist(\mathbf{u}, \mathbf{v}) < \delta$$

we have

$$dist(F(\mathbf{u}), F(\mathbf{v})) \leq C dist(\mathbf{u}, \mathbf{v}) < C\delta = \epsilon.$$

Since our choice of δ does not depend upon \mathbf{u} , then F is uniformly continuous.