Chapitre 0

Les nombres

I. <u>L'ensemble ℝ et les intervalles</u>

1) Ensembles de nombres

Définitions:

- L'ensemble des nombres entiers **naturels** $\{0; 1; 2; ...\}$ est noté \mathbb{N} .
- L'ensemble des nombres entiers **relatifs** {...;-3;-2;-1;0;1;2;...} est noté Z.
- L'ensemble des nombres pouvant s'écrire sous la forme $\frac{a}{10^n}$, avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$, est appelé ensemble des nombres **décimaux**. Il se note \mathbb{D} .
- L'ensemble des nombres pouvant s'écrire sous la forme $\frac{p}{q}$, avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$, est appelé ensemble des nombres **rationnels**. Il se note \mathbb{Q} .
- L'ensemble de tous les nombres, entiers, décimaux, rationnels, irrationnels, est appelé ensemble des **nombres réels**, et il est noté \mathbb{R} .

Il est commode de représenter \mathbb{R} par une droite graduée (l'ensemble des abscisses des points de la droite correspond à l'ensemble des nombres réels).

Définitions:

- Encadrer un nombre x, c'est trouver deux nombres a et b tels que a < x < b.
 La différence b − a est l'amplitude de l'encadrement.
- Arrondir un nombre, c'est lui trouver la valeur la plus proche à une précision donnée.

Exemples:

- $3,1 < \pi < 3,2$ est un encadrement d'amplitude 10^{-1} du nombre π .
- 3,1 est l'arrondi du nombre π à 10⁻¹.

2) Les intervalles de \mathbb{R}

Certaines parties de \mathbb{R} sont appelés intervalles.

• L'intervalle **fermé** [a ; b] est l'ensemble de tous les nombres réels x tels que $a \le x \le b$.

• L'intervalle ouvert]c; d[est l'ensemble de tous les nombres réels y tels que c < y < d.

• On définit de même les intervalles :

Intervalle		Ensemble des nombres <i>x</i> vérifiant	Représentation
[a; b[fermé à gauche, ouvert à droite	$a \le x < b$	a
]a;b]	ouvert à gauche, fermé à droite	$a < x \le b$	

[a; +∞[fermé à gauche, ouvert à droite	$a \le x$	a
]a; +∞[ouvert	a < x	a
]-∞ ; b]	ouvert à gauche, fermé à droite	$x \le b$	
]-∞ ; b[ouvert	<i>x</i> < <i>b</i>	

Exemples:

- 0.5 < 0.582 < 0.6 a le même sens que $0.582 \in [0.5; 0.6]$.
- Pour dire que 0,5 n'est pas un élément de]0,5; 0,6] on écrit $0,5 \notin]0,5$; 0,6]

Remarque:

L'ensemble des nombres réels se note \mathbb{R} ou $]-\infty$; $+\infty[$

3) Intersections et réunions d'intervalles

• Intersection

Définition:

L'intersection de deux intervalles I et J est l'ensemble des nombres qui sont dans I et dans J : elle se note $I \cap J$.

Exemple:

Soit A = [-2; 3] et B = [1; 8] alors $A \cap B = [1; 3]$.

Remarque:

Il se peut que l'intersection de deux intervalles soit un ensemble ne contenant aucun nombre.

Il est appelé ensemble vide et se note \varnothing .

• Réunion

Définition:

La **réunion** de deux intervalles I et J est l'ensemble des nombres qui sont dans I **ou** dans J : elle se note $I \cup J$.

Exemple:

Soit A = [-2; 3] et B = [1; 8] alors $A \cup B = [-2; 8]$.

4) Valeur absolue d'un nombre réel

Définition:

Soit x un nombre réel.

On appelle **valeur absolue de** x, et on note |x|, le nombre réel égal à $\begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$.

Exemples:

$$|4| = 4$$
 ; $|-1,5| = -(-1,5) = 1,5$

Définitions:

Soient a, x et r des nombres réels avec $r \ge 0$.

- On appelle **distance entre les nombres** a et x le nombre |x-a|. Cette distance est aussi égale à |a-x|.
- $x \in [a-r; a+r]$ si et seulement si $|x-a| \le r$.

Exemples:

- La distance entre les nombres -5 et 4 est égale à |4 (-5)| = |9| = 9.
- En prenant a = 5 et r = 0,1: $x \in [4,9;5,1]$ si et seulement si $|x-5| \le 0,1$. Ce qui revient à dire que la distance entre les nombres x et 5 est inférieure ou égale à 0,1.

Propriété :

Pour tout nombre réel x et tout entier naturel n, il existe un nombre décimal d tel que :

$$|x-d| \le \frac{1}{10^n} .$$

d est alors appelé valeur approchée de x à 10^{-n} près.

Exemple:

- $3,1 < \pi < 3,2$ donc 3,1 est une valeur approchée du nombre π à 10^{-1} près.
- 3,2 est également une valeur approchée du nombre π à 10^{-1} près.

II. Les racines carrées

1) Racine carrée d'un nombre positif

Définition:

Pour tout nombre **positif** a, la **racine carrée** de a est le nombre positif dont le carré est a.

Exemple:

La racine carrée de 64 est 8 parce que $8^2 = 64$ et $8 \ge 0$.

Notation:

La racine carrée de a se note \sqrt{a} .

Conséquence:

Pour tout nombre **positif** $a: \sqrt{a^2} = a$ et $(\sqrt{a})^2 = a$.

2) Produit et quotient de deux racines carrées

Définition:

Le produit de deux racines carrées est égal à la racine carrée du produit.

Pour
$$a \ge 0$$
 et $b \ge 0$:
 $\sqrt{a} \times \sqrt{b} = \sqrt{a \times b}$

Exemples:

$$\sqrt{9\times2} = \sqrt{9}\times\sqrt{2} = 3\sqrt{2}$$
 ; $\sqrt{7}\times\sqrt{5} = \sqrt{7\times5} = \sqrt{35}$

<u>Propriété :</u>

Le quotient de deux racines carrées est égal à la racine carrée du quotient.

Pour
$$a \ge 0$$
 et $b > 0$:
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

5

Exemples:

$$\sqrt{\frac{4}{3}} = \frac{\sqrt{4}}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$
 ; $\frac{\sqrt{80}}{\sqrt{5}} = \sqrt{\frac{80}{5}} = \sqrt{16} = 4$

Remarques:

- Si a et b sont strictement positifs, alors $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$
- Pour tout nombre réel a, on a $\sqrt{a^2} = |a|$.

III. Calcul littéral

1) <u>Développer et réduire</u>

Définition:

Développer un produit c'est remplacer celui-ci par une somme.

Propriétés:

On considère les nombres relatifs : k, a, b, c, d

- k(a+b)=ka+kb
- (a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd

Remarque:

S'agissant de nombres relatifs, il faut respecter la règle des signes pour la multiplication.

Définition:

Réduire une expression littérale c'est écrire celle-ci avec le moins de termes possibles.

Exemple:

Développer (et réduire) :

$$A = (x+5)(4x-1)$$

$$A = (x+5)(4x-1)$$

$$A = 4x^2 - x + 20x - 5$$
 (Développement)

$$A = 4 x^2 + 19 x - 5$$
 (Réduction)

2) <u>Les identités remarquables</u>

Pour tous les nombres *a* et *b* :

Développement

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a-b)(a+b) = a^2-b^2$$

Factorisation

3) Factoriser une expression

Définition:

Factoriser une somme (ou une différence) c'est remplacer celle-ci par un produit.

En utilisant un facteur commun

•
$$A=8x^3-12x^2$$

 $A=4x^2\times 2x-4x^2\times 3$
 $A=4x^2(2x-3)$

(identification du facteur commun) (règle de distributivité)

•
$$B = (2x-3)(x-4)-(2x-3)(7-3x)$$

 $B = (2x-3)[(x-4)-(7-3x)]$
 $B = (2x-3)[x-4-7+3x]$
 $B = (2x-3)(4x-11)$

(identification du facteur commun) (règle de distributivité) (simplification de l'expression entre crochet) (réduction)

En utilisant une identité remarquable

•
$$A=9x^2-42x+49$$

 $A=(3x)^2-2\times(3x)\times(7)+(7)^2$ (on reconnaît $a^2-2ab+b^2=(a-b)^2$)
 $A=(3x-7)^2$

•
$$B=36x^2-25$$

 $B=(6x)^2-(5)^2$ (on reconnaît $a^2-b^2=(a-b)(a+b)$)
 $B=(6x-5)(6x+5)$

IV. Équations et inéquations

1) <u>Définitions</u>

Définition:

Une égalité dans laquelle un nombre inconnu est remplacé par une lettre s'appelle une équation.

Définition:

Résoudre cette équation, c'est trouver toutes les valeurs numériques que l'on peut donner à cette inconnue pour que l'égalité soit vraie.

2) Résolution d'une équation

Pour résoudre une équation, on utilise les deux règles suivantes :

Propriété:

Une équation a les mêmes solutions que toutes les équations obtenues en **ajoutant** (ou en retranchant) un **même nombre** aux **deux membres** de l'équation.

Propriété:

Une équation a les mêmes solutions que toutes les équations obtenues en **multipliant** (ou en divisant) par un **même nombre**, non nul, les **deux membres** de l'équation.

3) Équation de la forme $A \times B = 0$

Lorsqu'une équation se présente sous la forme d'un produit de facteurs égal à zéro, il ne faut surtout pas développer ce produit mais utiliser les règles suivantes.

Propriétés:

- Si un produit est nul, alors l'un au moins de ses facteurs est nul.
- Si l'un des facteurs d'un produit est nul alors ce produit est nul.

Les solutions de l'équation $A \times B = 0$ seront les solutions des équations A = 0 et B = 0.

Exemple:

Résoudre l'équation
$$(2-3x)(4x+8)=0$$

Le produit $(2-3x)(4x+8)$ est nul lorsque :
 $2-3x=0$ ou $4x+8=0$

On résout ces équations :

$$2-3x = 0$$

$$2-3x-2 = 0-2$$

$$-3x = -2$$

$$-\frac{1}{3} \times -3x = -\frac{1}{3} \times -2$$

$$x = \frac{2}{3}$$

$$4x+8 = 0$$

$$4x+8-8 = 0-8$$

$$4x = -8$$

$$\frac{1}{4} \times 4x = \frac{1}{4} \times -8$$

$$x = -2$$

Vérifications :

pour
$$x = \frac{2}{3}$$
:
 $\left(2 - 3 \times \frac{2}{3}\right) \left(4 \times \frac{2}{3} + 8\right) = 0 \times \left(\frac{8}{3} - 8\right) = 0$

$$pour $x = -2$:
 $(2 - 3 \times -2)(4 \times -2 + 8) = (2 + 6) \times 0 = 0$$$

Conclusion : $\frac{2}{3}$ et -2 sont les solutions de l'équation.

4) Résolution d'inéquations

Pour résoudre une inéquation, on utilise les règles suivantes :

Propriétés:

- Si $a \le b$ et c > 0 alors $ac \le bc$.
- Si $a \le b$ et c < 0 alors $ac \ge bc$.
- Si $a \le b$ et c > 0 alors $\frac{a}{c} \le \frac{b}{c}$.
- Si $a \le b$ et c < 0 alors $\frac{a}{c} \ge \frac{b}{c}$.

Définition:

Résoudre une **inéquation**, c'est trouver **toutes** les valeurs possibles du nombre inconnu telles que l'**inégalité** soit **vraie** : ces valeurs sont les **solutions** de l'inéquation.

Exemple:

Résoudre l'inéquation $3x-6 \ge 0$.

$$3x-6 \ge 0 \Leftrightarrow x \ge 2$$
.

L'ensemble des solutions est : $[2;+\infty[$

V. Système de deux équations à deux inconnues

1) Équation du 1er degré à deux inconnues

Définition:

Une **équation** du **1**^{er} **degré** à **deux inconnues** x et y est une équation qui peut se ramener à une équation de la forme ax+by=c où a, b et c sont trois nombres donnés.

Exemple:

Soit l'équation 3x-5y=2.

 $3\times4-5\times2=12-10=2$, donc le couple (4 ; 2) est **une** solution de cette équation ((14 ; 8) également). 3x-5y=2 a une **infinité** de solutions.

2) Système de deux équations à deux inconnues

Définitions:

Un système de deux équations du 1^{er} degré à deux inconnues x et y est de la forme :

$$\begin{cases} ax+by=c \\ a'x+b'y=c' \end{cases}$$
 où a, b, c, a', b', c' sont des nombres donnés.

Résoudre un tel système, c'est trouver les couples (x; y) qui vérifient **simultanément** les deux équations.

Exemple:

Le couple (2; 3) est solution du système $\begin{cases} 4x - 2y = 2 \\ x + y = 5 \end{cases}$.

En effet, on vérifie que
$$\begin{cases} 4 \times 2 - 2 \times 3 = 8 - 6 = 2 \\ 2 + 3 = 5 \end{cases}$$

3) Résolution d'un système

o Par substitution

$$\begin{cases} x+2 & y=7 \\ 2x+3 & y=11 \end{cases}$$
 On exprime une inconnue en fonction de l'autre (ici x en fonction de y)
$$\begin{cases} x=7-2 & y \\ 2\times(7-2 & y)+3 & y=11 \end{cases}$$
 On substitue une inconnue pour obtenir une équation du 1^{er} degré à une inconnue
$$\begin{cases} x=7-2 & y \\ 14-4 & y+3 & y=11 \end{cases}$$
 On résout la $2^{\text{ème}}$ équation et on obtient y

$$\begin{cases} x=7-2 & y \\ -y=-3 \end{cases}$$
 On utilise la $1^{\text{ère}}$ équation pour obtenir x

$$\begin{cases} x=1 \\ y=3 \end{cases}$$

Vérifications :

$$\begin{cases} 1+2\times3=1+6=7\\ 2\times1+3\times3=2+9=11 \end{cases}$$

La solution est le couple (1; 3).

• Par combinaison

On cherche à avoir les mêmes coefficients devant les
$$x$$
 pour chaque équation.
$$\begin{cases} 3x+4y=5 \\ 2x-3y=9 \end{cases}$$
 On multiplie la $1^{\text{ère}}$ équation par $\mathbf{2}$ et la $2^{\text{ème}}$ équation par $\mathbf{3}$.
$$\begin{cases} 6x+8y=10 \\ 6x+8y=10 \\ 17y=-17 \end{cases}$$
 On conserve la $1^{\text{ère}}$ équation et on soustrait la $2^{\text{ème}}$ équation à la $1^{\text{ère}}$ (combinaison)
$$\begin{cases} 6x+8y=10 \\ 17y=-17 \end{cases}$$
 On résout la $2^{\text{ème}}$ équation et on obtient y
$$y=-1$$
 On utilise la $1^{\text{ère}}$ équation pour obtenir x
$$y=-1$$

Vérifications:

La solution est le couple (3 ; -1)

VI. Arithmétique

1) Ensemble \mathbb{Z}

Propriété:

La somme, la différence et le produit de deux entiers relatifs sont des entiers relatifs.

Remarque:

Pour la division dans \mathbb{Z} , on utilise la **division euclidienne** :

Pour tout entier relatifs a et b, avec b non nul, on peut écrire a de façon unique sous la forme

$$a = b \times q + r$$

où q est un entier relatif et r un entier naturel tel que $0 \le r \le |b|$.

q est appelé le **quotient** et r le **reste** de la division.

2) Multiples et diviseurs dans \mathbb{Z}

Définitions:

Soient deux entiers relatifs n et p.

Si le reste dans la division euclidienne de n par p est égal à 0, c'est-à-dire s'il existe un entier relatif q tel que $n = p \times q$, on dit que :

- p est un diviseur de n ou que n est divisible par p.
- n est un **multiple** de p.

Remarque:

Tout nombre entier relatif non nul n est toujours divisible au moins par 1 et par lui-même et admet une infinité de multiples. Les multiples de n sont de la forme $k \times n$ où $k \in \mathbb{Z}$.

Propriété:

On considère trois entiers relatifs a, n et m.

Si les entiers n et m sont deux multiples de a, alors la somme (n+m), la différence (n-m) et le produit $n \times m$ sont aussi des multiples de a.

Démonstration (pour la somme) :

Comme *n* est un multiple de *a*, on peut écrire : $n = k_1 \times a$, où k_1 est un entier relatif.

De même, on peut écrire $m = k_2 \times a$, où k_2 est un entier relatif, car m est un multiple de a.

On en déduit que $n + m = k_1 \times a + k_2 \times a = (k_1 + k_2) \times a$.

Or $(k_1 + k_2)$ est la somme de deux entiers relatifs, c'est donc un entier relatif.

Ainsi, par définition, a est un diviseur (n + m).

Autrement dit, la somme (n + m) est un multiple de a.

3) Parité

Définitions:

On considère un entier relatif n.

- Si *n* est divisible par 2 (ou si *n* est un multiple de 2), on dit que *n* est **pair**.
 - Il existe alors un entier relatif k tel que $n = 2 \times k$.
- Sinon, on dit que *n* est **impair**.

Il existe alors un entier relatif k tel que $n = 2 \times k + 1$.

Démonstration :

On considère un entier relatif n.

On effectue la division euclidienne de n par 2 : on obtient $n = 2 \times k + r$ avec k un entier relatif et r un entier naturel tel que $0 \le r < 2$.

r étant entier, on a soit r = 0, soit r = 1.

- Si *n* est pair : par définition, 2 divise *n* et r = 0. Donc $n = 2 \times k$.
- Sinon n est impair et 2 ne divise pas n. Donc $r \neq 0$. Ainsi r = 1 et $n = 2 \times k + 1$.

Exemples:

- 38 est un nombre pair car $38 = 2 \times 19$.
- 17 est un nombre impair car $17 = 2 \times 8 + 1$.

Propriétés:

- La somme de deux nombres pairs est un nombre pair.
- La somme de deux nombres impairs est un nombre pair.
- La somme d'un nombre pair et d'un nombre impair est un nombre impair.

Propriétés:

On considère un entier relatif n.

- Si n est pair, alors le carré n^2 est pair.
- Si n est impair, alors le carré n^2 est impair.

Démonstration :

On considère un entier relatif n.

• Si *n* est pair : on peut écrire $n = 2 \times k$ avec *k* un entier relatif.

Alors
$$n^2 = (2k) \times (2k) = 2 \times (2k^2)$$
.

Donc 2 divise n^2 , d'où n^2 est pair.

• Si *n* est impair : on peut écrire $n = 2 \times k + 1$ avec *k* un entier relatif.

Alors
$$n^2 = (2k+1) \times (2k+1) = (2k)^2 + 2 \times 2k \times 1 + 1^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

On en déduit que n^2 est impair.

Remarque:

La réciproque de ce théorème est vraie :

- Si le carré n^2 d'un entier n est pair, alors n est pair.
- Si le carré n^2 d'un entier n est impair, alors n est impair.

4) Nombres premiers

Définition:

Un nombre **entier naturel** est **premier** s'il n'admet que deux diviseurs positifs distincts : 1 et luimême.

Remarque:

1 n'est pas un nombre premier.

Propriété:

Soit n un nombre entier qui n'est pas premier. Son plus petit diviseur différent de 1 (et lui-même) est un nombre premier plus petit ou égal à \sqrt{n} .

Exemple:

$$12 = 4 \times 3 = 2 \times 2 \times 3$$
.

Le plus petit diviseur de 12 est 2 qui est premier.

Chacun des diviseurs premiers de 12 est plus petit que $\sqrt{12}$ ($\sqrt{12} \approx 3,46$).

Propriété:

Tout nombre entier peut se décomposer de manière unique sous la forme d'un produit de nombres premiers.

Exemple:

$$84 = 2 \times 42$$

$$84 = 2 \times 2 \times 21$$

$$84 = 2 \times 2 \times 3 \times 7$$

7 est un nombre premier, donc la décomposition cherchée est $84 = 2^2 \times 3 \times 7$.

5) Fraction irréductible

Définition:

Une fraction est irréductible si le numérateur et le dénominateur n'admettent qu'un seul diviseur commun : 1.

Exemples:

- $\frac{5}{3}$ est une fraction irréductible, car le seul diviseur commun de 5 et 3 est 1.
- $\frac{12}{15}$ n'est pas une fraction irréductible, car 3 est un diviseur commun à 12 et 15.
- $\frac{84}{30} = \frac{2^2 \times 3 \times 7}{2 \times 3 \times 5} = \frac{2 \times 2 \times 3 \times 7}{2 \times 3 \times 5} = \frac{2 \times 7}{5} = \frac{14}{5}$