SAKET ADHAU

Machine Learning and Optimization

 □ Department of Chemical Engineering (IKP), NTNU, Trondheim, Norway

♦ https://saketadhau.github.io 🖬 saketadhau 👺 saket.adhau@ntnu.no

RESEARCH INTERESTS

- 1. Machine learning for MPC
- 4. Optimization
- 2. Nonlinear model predictive control
- 3. Embedded systems

EDUCATION

Machine Learning Research Assistant

Sep'19-Ongoing

- Norwegian University of Science and Technology (NTNU), Norway
 - Part of the project "Intelligent use of data to build optimization tools for cyber-physical systems in the process industry" funded by the Research Council of Norway.
 - By leveraging big data and machine-learning algorithms, task is to utilize process data to develop machine-learning based models (also known as digital-twins), that can be used for developing optimization tools. This will enable to address the challenges with respect to developing models for optimization.

Master of Technology, Instrumentation and Control

Aug'17-June'19

- College of Engineering Pune, India
 - Thesis Title: Learning Based Model Predictive Control
 - Supervisor: Prof. Dayaram Sonawane
 - CGPA: 8.16

Bachelor of Engineering, Instrumentation and Control

Aug'13-June'17

- University of Pune, India
 - Project Title: System Identification and PID Control of PMDC Motor using MAT-LAB and LabVIEW
 - Supervisor: Dr. Milind Bongulwar
 - Mention: First Class with Distinction | Percentage: 69.67

WORK EXPERIENCE

Trainee Engineer

June'19-August'19

- Aker Solution, Pune, India.
 - Post Graduate Trainee Engineer in the Application Engineering department.
 - Developed automated method for testing of the subsea module used in offshore oil fields.

PUBLICATIONS

Articles in international conferences 2021

- Mohanty N. R., **Adhau S.**, Ingole D., and Sonawane D., "Hardware Implementation of Low-complexity Deep Learning-based Model Predictive Controller", accepted for presentation and publication in the proceedings of the 2021 European Control Conference (ECC).
- Adhau S., Naik Vihang, and Skogestad S., "Constrained Neural Networks for Approximate Nonlinear Model Predictive Control", submitted to 60th IEEE conference on Decision and Control (CDC).
- Jugade C., Patne V., Adhau S., Ingole D., Sonawane D., "FPGA Implementation Framework for Accelerating Nonlinear MPC Through Machine Learning", submitted to 7th IFAC conference on Nonlinear Model Predictive Control, NMPC 2021.

2019

- Adhau S., Patil S., Ingole D., Sonawane D., "Embedded Implementation of Deep Learning-Based Linear Model Predictive Control", in Proceedings of 6th Indian Control Conference, IEEE, Hyderabad, India, 2019.
- Adhau S., Patil S., Ingole D., and Sonawane D., "Implementation and Analysis of Nonlinear Model Predictive Controller on Embedded Systems for Real-Time Applications", in Proceedings of the 17th European Control Conference (ECC'19), IFAC and IEEE, Naples, Italy, 2019.

2018

• Adhau S., Phalke K., Nalawade A., Ingole D., Patil S., Sonawane D., "Implementation and Analysis of Offset-Free Explicit Model Predictive Controller on FPGA", in Proceedings of 5th Indian Control Conference, IEEE, Delhi, India, 2018.

THEORETICAL BACKGROUND

- Machine Learning: physics-informed ML, deep learning, classification and regression trees, clustering
- Systems Modeling: differential equations, linear, nonlinear, hybrid systems, data-driven
- Control Design: model predictive control (MPC), learning-based control
- Optimisation: linear (LP), quadratic (QP), nonlinear programming (NLP)

INTERNSHIP EXPERIENCE

Bosch Chassis Systems India Pvt. Limited, Chakan, Pune. June'15 - July'15

- Worked with the TeF department towards maintenance and predictive safety standards.
- Carried out analysis of Mean Time To Repair (MTTR) and Mean Time Between Repair (MTBR) on the assembly lines (NOAH, Line 51, TMC line).

POSITIONS OF RESPONSIBILITY

- Co-supervisor for master's theses student at the Department of Chemical Engineering, NTNU.

 Autumn 2020
- Coordinator for 3^{rd} Winter School.

Dec'18

- Served as convener and co-ordinator of 3rd Winter School on Optimization and
 Optimal Control A Data-based Approach at Embedded Systems Lab, COEP.
- Teaching Assistant.

July'18-Dec'18

Served as TA for Microcontroller Techniques and Its Applications fand Embedded
 System Design which was a special course.

AWARDS AND FUNDING

• Project accepted for oral presentation in MATLAB Expo'19.

May'19

• Student support program for Indian Control Conference – IIT Delhi.

Jan'19

• Xilinx University Program for researchers – Pynq development board and software. Sep'18

TECHNICAL SKILLS

- Programming languages: Python, MATLAB, C, LATEX.
- Data Science Tools: PyTorch, TensorFlow, NumPy, Pandas, SciPy, Matplotlib, Scikitlearn, Matlab Statistics and Machine Learning Toolbox
- Control Tools: Matlab toolboxes (Simulink, Stateflow, System Identification, MPT3, MPC, Control Systems), CasADi.
- **Development:** Atmel Studio, Vivado, MPLAB X, HDL coder, LabView, Arduino IDE, Linux.
- Toolboxes: Protoip, MPT toolbox, ACADO Toolkit, CasADi, FORCES, GRAMPC.
- Version Control and Code Management: GitHub, GitLab, Google Colab, Jupyter notebooks.

PROJECTS

• Deep Neural Networks based Linear MPC

- Trained highly nonlinear and linear models using neural networks, to mimic the original model.
- Neural networks were trained to behave as Linear model predictive controller to reduce the online optimization and guarantee safety.
- The designed neural network was also implemented on ARM Cortex-M3 to prove the usability in embedded devices.

• Implementation of nonlinear MPC on ARM Cortex-M3 and FPGA

 Successfully implemented nonlinear MPC on for the first time ARM Cortex-M3 and FPGA using GRAMPC and ACADO toolkit

- The performance of NMPC controller was rigorously tested using HIL simulations in MAT-LAB
- Designed framework for easy implementation of NMPC on micro-controllers and FPGA.

Linear and explicit MPC on ARM Cortex-M3 and FPGA

- Implemented Interior Point Method, Active Set Method and KWIK Algorithm for linear MPC on Arm Cortex-M3
- Validated the designed MPC on DC motor using HIL simulation for real-time using Simulink coder.
- Implemented Explicit MPC using MPT toolbox, Hybrid toolbox and MATLAB based toolbox on micro-controllers and validated the same on actual plant
- The same framework was also validated and detailed analysis were carried out on FPGA Zedboard.

• Auto-tuning of PID controller using optimization method

- Evaluated optimization algorithm SQP for auto-tuning of PID controller
- Verified values of K_p , K_i and K_d parameters using run-time optimization in MAT-LAB/Simulink.

• Parameter Estimation and Position control of PMDC motor

- Validated PMDC motor model using parameter estimation
- Implemented SQP algorithm in MATLAB for parameter estimation
- Implemented and tested PID controller for position and speed control on ARM Cortex-M3 micro-controller

• System Identification and PID Control

- System identification for an unknown DC motor was done using System Identification toolbox of MATLAB
- Verified the system by passing through various linear and non-linear signals for accurate system model
- PID tuning using Zeigler Nicholas and Cohen-Coon methods for speed control of the DC motor using identified state-space model
- Implemented PID controller on 8-bit micro-controller using plain C code, MATLAB based embedded coder and in LabVIEW using toolbox for VISA protocol.

CERTIFICATES

• Hands-on CasADi course on Optimal Control, Hasselt, Belgium [Link] Nov'19

• Winter School on Optimization and Optimal Control - A Data-based Approach. Dec'18

PERSONAL DETAILS

• Citizenship: Indian

• Current Residence: Trondheim, Norway

• Languages: English - Fluent, Norwegian - Level 1

• Date of Birth: 29 May 1995