19. The fact that $a^2 \ge 0$ for all numbers a, elementary as it may seem, is nevertheless the fundamental idea upon which most important inequalities are ultimately based. The great-granddaddy of all inequalities is the *Schwarz inequality*:

$$x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}.$$

The three proofs of the Schwarz inequality outlined below have only one thing in common - their reliance on the fact that $a^2 \ge 0$ for all a.

(a) Prove that if $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$ for some number $\lambda \geq 0$, then equality holds in the Schwarz inequality. Prove the same thing if $y_1 = y_2 = 0$. Now suppose that y_1 and y_2 are not both 0, and that there is no number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$. Then

$$0 < (\lambda y_1 - x_1)^2 + (\lambda y_2 - x_2)^2 = \lambda^2 (y_1^2 + y_2^2) - 2\lambda (x_1 y_1 + x_2 y_2) + (x_1^2 + x_2^2)$$

Using problem 18, complete the proof of the Schwarz inequality.

Proof. Suppose that for some number $\lambda \geq 0$, $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$. Then

$$\begin{split} \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2} &= \sqrt{x_1^2 + x_2^2} \sqrt{(\lambda x_1)^2 + (\lambda x_2)^2} = \sqrt{x_1^2 + x_2^2} \sqrt{\lambda^2 (x_1^2 + x_2^2)} \\ &= \lambda (\sqrt{x_1^2 + x_2^2})^2 = \lambda (x_1^2 + x_2^2) = \lambda x_1^2 + \lambda x_2^2 \\ &= x_1 \lambda x_1 + x_2 \lambda x_2 = x_1 y_1 + x_2 y_2, \end{split}$$

so equality holds.

Next, suppose that $y_1 = y_2 = 0$. Then

$$\sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2} = \sqrt{x_1^2 + x_2^2} \sqrt{0} = 0 \sqrt{x_1^2 + x_2^2} = 0 = 0 x_1 + 0 x_2 = x_1 y_1 + x_2 y_2.$$

Finally, suppose that y_1 and y_2 are not both 0, and that there is no number λ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$. Then the equation $\lambda^2 (y_1^2 + y_2^2) - 2\lambda (x_1 y_1 + x_2 y_2) + (x_1^2 + x_2^2) = 0$ has no solution λ . We can then divide by $(y_1^2 + y_2^2)$ to obtain $\lambda^2 + (\frac{-2(x_1 y_1 + x_2 y_2)}{(y_1^2 + y_2^2)})\lambda + \frac{(x_1^2 + x_2^2)}{(y_1^2 + y_2^2)} = 0$.

Then if $b = \frac{-2(x_1y_1 + x_2y_2)}{y_1^2 + y_2^2}$ and $c = \frac{x_1^2 + x_2^2}{y_1^2 + y_2^2}$, from problem 18, we have $b^2 - 4c < 0$. Then

$$b^2 - 4c = \left(\frac{-2(x_1y_1 + x_2y_2)}{y_1^2 + y_2^2}\right)^2 - \frac{4(x_1^2 + x_2^2)}{y_1^2 + y_2^2} = \frac{4(x_1y_1 + x_2y_2)^2}{(y_1^2 + y_2^2)^2} - \frac{4(x_1^2 + x_2^2)}{y_1^2 + y_2^2},$$

so

$$(x_1y_1 + x_2y_2)^2 - (x_1^2 + x_2^2)(y_1^2 + y_2^2) < 0,$$

which finally results in

$$(x_1y_1 + x_2y_2) < \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}.$$

(b) Prove the Schwarz inequality by using $2xy \le x^2 + y^2$ with $x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}$ and $y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}}$ first for i = 1 and then for i = 2.

Proof. Let $x = \frac{x_i}{\sqrt{x_1^2 + x_2^2}}$ and $y = \frac{y_i}{\sqrt{y_1^2 + y_2^2}}$ for i = 1. Then

$$2xy = 2\frac{x_1y_1}{\sqrt{{x_1}^2 + {x_2}^2}\sqrt{{y_1}^2 + y_2^2}}$$
 and $x^2 + y^2 = \frac{{x_1}^2}{{x_1}^2 + {x_2}^2} + \frac{{y_1}^2}{{y_1}^2 + {y_2}^2}$.

Next, for i = 2

$$2xy = 2\frac{x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}}$$
 and $x^2 + y^2 = \frac{x_2^2}{x_1^2 + x_2^2} + \frac{y_2^2}{y_1^2 + y_2^2}$.

Knowing that $2xy \le x^2 + y^2$, derived from $(x-y)^2 \ge 0$, we can sum the inequalities to obtain

$$2\left(\frac{x_1y_1+x_2y_2}{\sqrt{{x_1}^2+{x_2}^2}\sqrt{{y_1}^2+{y_2}^2}}\right) \le \frac{{x_1}^2+{x_2}^2}{{x_1}^2+{x_2}^2} + \frac{{y_1}^2+{y_2}^2}{{y_1}^2+{y_2}^2} = 2,$$

so

$$\frac{x_1y_1 + x_2y_2}{\sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}} \le 1 \text{ and } x_1y_1 + x_2y_2 \le \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}.$$

(c) Prove the Schwarz inequality by first proving that

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2.$$

Proof. For some numbers x_1, x_2, y_1, y_2 , we have

$$(x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2 = x_1^2y_1^2 + 2x_1x_2y_1y_2 + x_2^2y_2^2 + x_1^2y_2^2 - 2x_1x_2y_1y_2 + x_2^2y_1^2$$
$$= x_1^2y_1^2 + x_2^2y_1^2 + x_1^2y_2^2 + x_2^2y_2^2$$
$$= (x_1^2 + x_2^2)(y_1^2 + y_2^2).$$

Then since $(x_1y_2 - x_2y_1)^2 \ge 0$, we have

$$(x_1y_1 + x_2y_2)^2 \le (x_1^2 + x_2^2)(y_1^2 + y_2^2)$$
 and $x_1y_2 + x_2y_2 \le \sqrt{x_1^2 + x_2^2}\sqrt{y_1^2 + y_2^2}$.

(d) Deduce, from each of these three proofs, that equality holds only when $y_1 = y_2 = 0$ or when there is a number $\lambda \geq 0$ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

Proof. For proof (a), it is already shown that if y_1 and y_2 are not both 0, and there is no number $\lambda \geq 0$ such that $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$, then $x_1 y_1 + x_2 y_2 < \sqrt{x_1^2 + x_2^2} \sqrt{y_1^2 + y_2^2}$. For proof (b) we used the fact that $(x - y)^2 \geq 0$. Equality then holds when x = y, so

$$\frac{x_i}{\sqrt{{x_1}^2 + {x_2}^2}} = \frac{y_i}{\sqrt{{y_1}^2 + {y_2}^2}} \text{ and } x_i = y_i \frac{\sqrt{{x_1}^2 + {x_2}^2}}{\sqrt{{y_1}^2 + {y_2}^2}},$$

so $x_i = \lambda y_i$.

For proof (c), we've shown that equality holds when $(x_1y_2 - x_2y_1)^2 = 0$, so when $x_1y_2 = x_2y_1$. Then either $y_1 = y_2 = 0$, or if we assume without loss of generality that $y_2 \neq 0$, we can take $\lambda = \frac{x_2}{y_2}$ so $x_1 = \lambda y_1$ and $x_2 = \lambda y_2$.

20. Prove that if

$$|x - x_0| < \frac{\epsilon}{2}$$
 and $|y - y_0| < \frac{\epsilon}{2}$,

then

$$|(x+y)-(x_0+y_0)| < \epsilon$$
 and $|(x-y)-(x_0-y_0)| < \epsilon$.

Proof. Suppose that $|x-x_0|<\frac{\epsilon}{2}$ and $|y-y_0|<\frac{\epsilon}{2}$. Then

$$|(x+y)-(x_0+y_0)|=|(x-x_0)+(y-y_0)| \le |x-x_0|+|y-y_0| < \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon,$$

and

$$|(x-y) - (x_0 - y_0)| = |(x-x_0) + (y_0 - y)| \le |x-x_0| + |y_0 - y| = |x-x_0| + |y-y_0| = \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

21. Prove that if

$$|x-x_0| < \min(\frac{\epsilon}{2(|y_0|+1)}, 1) \text{ and } |y-y_0| < \frac{\epsilon}{2(|x_0|+1)},$$

then $|xy - x_0y_0| < \epsilon$.

Proof. We have $|x| - |x_0| \le |x - x_0| < 1$, so $|x| < 1 + |x_0|$. Then

$$|xy - x_0y_0| = |x(y - y_0) + y_0(x - x_0)| \le |x||y - y_0| + |y_0||x - x_0| < (1 + |x_0|)|y - y_0| + |y_0||x - x_0|$$

$$= \frac{\epsilon}{2} + |y_0||x - x_0|,$$

and since $|x-x_0| < \frac{\epsilon}{2(|y_0|+1)}$, then

$$|x-x_0|(|y_0|+1) = |y_0||x-x_0|+|x-x_0| < \frac{\epsilon}{2},$$

so
$$\frac{\epsilon}{2} + |y_0||x - x_0| < \epsilon$$
, therefore $|xy - x_0y_0| < \epsilon$.

22. Prove that if $y_0 \neq 0$ and

$$|y - y_0| < \min(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{2}),$$

then $y \neq 0$ and

$$\left|\frac{1}{y} - \frac{1}{y_0}\right| < \epsilon.$$

Proof. We have $|y_0| = |(y_0 - y) + y| \le |y - y_0| + |y|$, so since $|y - y_0| < \frac{|y_0|}{2}$, then

$$|y| \ge |y_0| - |y - y_0| > |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}.$$

Then

$$\left| \frac{1}{y} - \frac{1}{y_0} \right| = \left| \frac{y_0 - y}{yy_0} \right| = \frac{|y - y_0|}{|y||y_0|} < \frac{\frac{\epsilon |y_0|^2}{2}}{|y||y_0|} < \frac{\frac{\epsilon |y_0|^2}{2}}{\frac{|y_0|}{2}|y_0|} = \epsilon$$

23. Replace the question marks in the following statement by expressions involving ϵ, x_0 and y_0 , so that the conclusion will be true:

If $y_0 \neq 0$ and

$$|y - y_0| < ?$$
 and $|x - x_0| < ?$

then $y \neq 0$ and

$$\left|\frac{x}{y} - \frac{x_0}{y_0}\right| < \epsilon.$$

Proof. We've shown in problem 21, that if $|x-x_0|<\min(\frac{\epsilon}{2(|y_0|+1)},1)$ and $|y-y_0|<\frac{\epsilon}{2(|x_0|+1)}$, then $|xy-x_0y_0|<\epsilon$. Then for $\left|\frac{x}{y}-\frac{x_0}{y_0}\right|<\epsilon$ to be true, we want $|x-x_0|<\min(\frac{\epsilon}{2(|y_0|+1)},1)$ and we need to find a condition for $|y-y_0|<?$ such that $|\frac{1}{y}-\frac{1}{y_0}|<\frac{\epsilon}{2(|x_0|+1)}$. We can then substitute ϵ in problem 22 for $\frac{\epsilon}{2(|x_0|+1)}$, so

$$|y - y_0| < min(\frac{|y_0|}{2}, \frac{\epsilon |y_0|^2}{4(|x_0| + 1)}).$$