acorn Vignette

Tychele N. Turner, Ph.D., Washington University School of Medicine 2023-01-18

Contents

call up acorn
check out acorn functions
load in test data
extract individual
extract individuals if you want
extract SNVs
extract indels
extract MNVs (there are none in the test set)
calculate the Transition/Transversion ratio
calculate deletion/insertion ratio
calculate deletion lengths
calculate insertion lengths
keep only the autosomes
keep only the X chromosome
keep only the Y chromosome (there are none on the Y in the test dataset)
calculate counts per individual
load in example data for parental age analyses
make parental age object
run parental age analyses including both mother and father
run parental age analyses for father age only
run parental age analyses for mother age only

call up acorn

library('acorn')

check out acorn functions

lsf.str("package:acorn")

```
## annotateCpG : function (DNVobject = NULL, CpGannot = NULL)
## calculateDeletionInsertionratio : function (DNVobject = NULL)
## calculateDeletionLengths : function (DNVobject = NULL)
## calculateInsertionLengths : function (DNVobject = NULL)
## calculateMNVLengths : function (DNVobject = NULL)
## calculateTiTvratio : function (DNVobject = NULL)
## countsPerIndividual : function (DNVobject = NULL)
## extractAutosomes : function (DNVobject = NULL)
## extractINDELs : function (DNVobject = NULL)
## extractIndividual : function (DNVobject = NULL, individual = NULL)
## extractMNVs : function (DNVobject = NULL)
## extractSNVs : function (DNVobject = NULL)
## extractX : function (DNVobject = NULL)
## extractY : function (DNVobject = NULL)
## fatherAge : function (parentalAgeObject = NULL)
## hello : function ()
## motherAge : function (parentalAgeObject = NULL)
## parentalAge : function (parentalAgeObject = NULL)
## parentalAgeObject : function (counts = NULL, parentalData = NULL)
## readDNV : function (DNVfile = NULL)
load in test data
input <- readDNV(paste(path.package("acorn"), "/extdata/dnms_from_Ng_et_al_2022_Human_Mutation_paper.txt
head(input)
      SAMPLE CHROM POS_B38 REFERENCE
                                                        ALTERNATE
## 1 HG01928 chr1 913941
                                                                Т
## 2 HG03915 chr1 917676
                                   С
                                                                Α
## 3 HG03915 chr1 918783
                                   G
                                                                C
## 4 HG00450 chr1 1216505
                                   Α
                                                                G
## 5 HG02257 chr1 1217502
                                   G
## 6 HG00465 chr1 1366883
                                   G GGTGTGAATTGGTGTAGTGTGAATGAGT
##
## 1
                                 chr1_913941_G_T
## 2
                                 chr1 917676 C A
## 3
                                 chr1_918783_G_C
## 4
                                chr1_1216505_A_G
                                chr1_1217502_G_A
## 6 chr1_1366883_G_GGTGTGAATTGGTGTAGTGTGAATGAGT
str(input)
                    9741 obs. of 6 variables:
## 'data.frame':
## $ SAMPLE : chr "HG01928" "HG03915" "HG03915" "HG00450" ...
```

```
## $ POS_B38 : int 913941 917676 918783 1216505 1217502 1366883 1765426 2332062 2645102 3355666 ...
## $ REFERENCE: chr "G" "C" "G" "A" ...
## $ ALTERNATE: chr "T" "A" "C" "G" ...
          : chr "chr1_913941_G_T" "chr1_917676_C_A" "chr1_918783_G_C" "chr1_1216505_A_G" ...
extract individual
ind <- extractIndividual(input, "HG01928")</pre>
head(ind)
       SAMPLE CHROM POS_B38 REFERENCE ALTERNATE
##
                                                             ID
## 1 HG01928 chr1 913941
                             G T chr1 913941 G T
## 12 HG01928 chr1 3393842
                                   G
                                           A chr1_3393842_G_A
## 166 HG01928 chr1 44230922
                                          T chr1_94001171_C_T
C chr1_154777
                                  C
                                            T chr1_44230922_C_T
                                 C
## 304 HG01928 chr1 94001171
## 405 HG01928 chr1 151473815
                                 T
## 422 HG01928 chr1 156638884 G
                                            A chr1_156638884_G_A
nrow(ind)
## [1] 85
table(ind[,1])
##
## HG01928
##
       85
extract individuals if you want
ind <- extractIndividual(input, c("HG01928", "HG03915"))</pre>
head(ind)
##
       SAMPLE CHROM POS_B38 REFERENCE ALTERNATE
                                                           ID
## 1 HG01928 chr1 913941
                                  G
                                           T chr1_913941_G_T
## 2 HG03915 chr1 917676
                                           A chr1_917676_C_A
                                 C
## 3 HG03915 chr1 918783
                                 G
                                          C chr1_918783_G_C
## 12 HG01928 chr1 3393842
                                 G
                                          A chr1_3393842_G_A
## 74 HG03915 chr1 18766956
                                 T
                                          A chr1_18766956_T_A
## 166 HG01928 chr1 44230922
                                 С
                                          T chr1_44230922_C_T
nrow(ind)
```

\$ CHROM : chr "chr1" "chr1" "chr1" "chr1" ...

[1] 158

```
table(ind[,1])
##
## HG01928 HG03915
                 73
        85
\mathbf{extract}\ \mathbf{SNVs}
snvs <- extractSNVs(input)</pre>
nrow(snvs)
## [1] 8558
extract indels
indels <- extractINDELs(input)</pre>
nrow(indels)
## [1] 1183
extract MNVs (there are none in the test set)
mnvs <- extractMNVs(input)</pre>
nrow(mnvs)
## [1] 0
calculate the Transition/Transversion ratio
calculateTiTvratio(input)
## number of transitions (A>G, C>T, G>A, T>C): 5708
## number of transversions (A>C, A>T, C>A, C>G, G>C, G>T, T>A, T>G: 2850
## Ti/Tv ratio: 2.00280701754386
## Plot of different nucleotide changes:
```


calculate deletion/insertion ratio

```
\verb|calculateDeletionInsertion| ratio (\verb|input|)
```

```
## number of deletions 540
## number of insertions 643
## deletion/insertion ratio: 0.839813374805599
```

calculate deletion lengths

```
dellengths <- calculateDeletionLengths(input)</pre>
```

deletion lengths (n=540)

head(dellengths)

[1] 2 2 27 2 2 15

calculate insertion lengths

inslengths <- calculateInsertionLengths(input)</pre>

insertion lengths (n=643)

head(inslengths)

[1] 28 3 37 37 41 5

keep only the autosomes

```
aut <- extractAutosomes(input)
nrow(aut)</pre>
```

[1] 9262

table(aut[,2])

```
##
    chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19
                                                                          chr2 chr20
##
     707
           408
                               338
                                            251
                                                        233
                                                               232
                                                                     206
                                                                           833
                                                                                  257
##
                  477
                        408
                                     479
                                                  273
## chr21 chr22
                 chr3
                       chr4
                              chr5
                                    chr6
                                          chr7
                                                 chr8
                                                       chr9
           154
                  696
                        642
                               614
                                     551
                                                  501
                                                        377
     143
                                           482
```

keep only the X chromosome

```
X <- extractX(input)</pre>
nrow(X)
## [1] 479
table(X[,2])
## chrX
## 479
keep only the Y chromosome (there are none on the Y in the test dataset)
Y <- extractY(input)
nrow(Y)
## [1] 0
calculate counts per individual
counts <- countsPerIndividual(input)</pre>
## mean of the counts per individual:
## 79.19512
## standard deviation of the counts per individual:
## 12.20431
## Plot generating of the density of the DNV counts.
```

density of DNV counts per individual

head(counts)

```
## sample dnv_count
## 1 HG00405 70
## 2 HG00423 78
## 3 HG00429 57
## 4 HG00438 66
## 5 HG00444 74
## 6 HG00447 75
```

load in example data for parental age analyses

```
input <- readDNV(paste(path.package("acorn"),"/extdata/dnms_from_Ng_et_al_2022_Human_Mutation_paper.txt
countExample <- read.delim(paste(path.package("acorn"),"/extdata/dnm_count_example.txt",sep=""))
parentExample <- read.delim(paste(path.package("acorn"),"/extdata/parental_age_example.txt",sep=""))</pre>
```

make parental age object

```
parents <- parentalAgeObject(countExample, parentExample)</pre>
```

run parental age analyses including both mother and father

```
parentalAge(parents)
```



```
## $'summary of linear model for father's and mother's age at birth and DNV counts'
##
## Call:
## lm(formula = dnm_counts ~ fatherAge + motherAge, data = parentalAgeObject)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -30.190 -6.831
                   -0.477
                             6.975 31.700
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.8374
                            7.7691
                                     1.395 0.166220
                            0.2669
                                     3.871 0.000196 ***
## fatherAge
                 1.0331
## motherAge
                 0.7179
                            0.3174
                                     2.262 0.025955 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
## Residual standard error: 11.14 on 97 degrees of freedom
## Multiple R-squared: 0.3732, Adjusted R-squared: 0.3603
## F-statistic: 28.87 on 2 and 97 DF, p-value: 1.45e-10
##
## $'confidence interval of linear model for father's and mother's age at birth and DNV counts'
##
                     2.5 %
                              97.5 %
## (Intercept) -4.58207432 26.256945
## fatherAge
                0.50343356
                           1.562695
                0.08788934
## motherAge
                            1.347946
```

run parental age analyses for father age only

```
fatherAge(parents)
```



```
## $'correlation of father's age at birth and DNV counts'
##
## Pearson's product-moment correlation
##
data: parentalAgeObject[, 3] and parentalAgeObject[, 2]
## t = 7.1073, df = 98, p-value = 1.927e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
```

```
## 0.4368243 0.6994934
## sample estimates:
        cor
## 0.5832034
##
##
## $'summary of linear model for father's age at birth and DNV counts'
##
## Call:
## lm(formula = dnm_counts ~ fatherAge, data = parentalAgeObject)
## Residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -33.027 -6.690 -0.768 7.624 29.579
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                        6.9218 2.805 0.00608 **
## (Intercept) 19.4131
                           0.2022 7.107 1.93e-10 ***
               1.4374
## fatherAge
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 11.37 on 98 degrees of freedom
## Multiple R-squared: 0.3401, Adjusted R-squared: 0.3334
## F-statistic: 50.51 on 1 and 98 DF, p-value: 1.927e-10
##
## $'confidence interval of linear model for father's age at birth and DNV counts'
                 2.5 %
                          97.5 %
## (Intercept) 5.676962 33.149157
## fatherAge 1.036030 1.838704
```

run parental age analyses for mother age only

```
motherAge(parents)
```



```
## $'correlation of mother's age at birth and DNV counts'
##
##
    Pearson's product-moment correlation
##
## data: parentalAgeObject[, 4] and parentalAgeObject[, 2]
## t = 6.1173, df = 98, p-value = 1.955e-08
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
    0.3671661 0.6545122
   sample estimates:
##
         cor
## 0.5256736
##
##
## $'summary of linear model for mother's age at birth and DNV counts'
##
   lm(formula = dnm_counts ~ motherAge, data = parentalAgeObject)
##
## Residuals:
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -33.793 -7.578
                    -0.467
                             7.825
                                     33.927
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.2284
                            7.8898
                                      2.564
                                              0.0119 *
```

```
## motherAge 1.5412 0.2519 6.117 1.96e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.91 on 98 degrees of freedom
## Multiple R-squared: 0.2763, Adjusted R-squared: 0.2689
## F-statistic: 37.42 on 1 and 98 DF, p-value: 1.955e-08
##
##
##
##
##
##
##
##
##
(Intercept) 4.571389 35.88550
## motherAge 1.041211 2.04113
```