Scalable Graphs

Graphs and graph analytics with GraphLab Create

Why network analysis?

To understand relationships between entities

- Key nodes
- Outliers and anomalies
- Segmentation
- Connections between nodes of interest
- Comparisons between networks
- Visualization

Scalable Graph = SGraph

SGraph

- On-disk graph store
- Backed by SFrames
- Simple attribute creation
- Fast, straightforward queries
- Lazy evaluation and immutability for chaining operations
- Flexible and powerful computation with triple apply

Basic SGraph usage

- Demo time!
- Recap
 - Constructed an SGraph from scratch
 - Summarized and visualized
 - Attribute manipulation
 - Retrieved vertex neighborhoods
 - Triple apply for more sophisticated computation

Graph Analytics

Tasks vs. tools

	Degree	Page rank	Triangle count	K-core	Com- ponents	Coloring	Shortest path
Key nodes	/	/	✓				
Outliers		/	/		/		
Clusters				1	/	/	
Hidden Connections					/		/
Network comparisons	/	1	✓	1	/	/	

Tasks vs. tools

	Degree	Page rank	Triangle count	K-core	Com- ponents	Coloring	Shortest path
Key nodes	/	✓	✓	✓			
Outliers		✓	√	√	1		
Clusters				/		/	
Hidden Connections					1		/
Network comparisons	1	/	✓	/	1	✓	

Finding key nodes - pagerank

- How influential am I?
- Weighted sum of the influence of nodes directed toward me.
- Compute iteratively.

"PageRank-hi-res". Licensed under Creative Commons Attribution-Share Alike 2.5 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:PageRank-hi-res.png#mediaviewer/File:PageRank-hi-res.png

Finding key nodes - k-core

- How close to the graph "core" am I?
- Recursively prune nodes with degree k.

Castellano, C. and Pastor-Satorras, R. (2012) "Competing activation mechanisms in epidemics on networks." *Scientific Reports* 2: 371. http://www.nature.com/srep/2012/120420/srep00371/fig_tab/srep00371_F1.html

Finding key nodes - triangle count

- How dense is my network?
- Number of my pairs of friends who are friends with each other.

Graph analytics usage

• Demo time!

Exercises