Sorting

Chapter 7 in Weiss

Insertion Sort: Idea

- At the k^{th} step, put the k^{th} input element in the correct place among the first k elements
- Result: After the *k*th step, the first *k* elements are sorted.

Runtime: worst case

best case : average case :

3

Selection Sort: idea

- Find the smallest element, put it 1st
- $\bullet\,$ Find the next smallest element, put it 2^{nd}
- Find the next smallest, put it 3rd
- And so on ...

4

Selection Sort: Code

```
void SelectionSort (Array a[0..n-1]) {
    for (i=0, i<n: ++i) {
        j = Find index of smallest entry in a[i..n-1]
        Swap(a[i],a[j])
    }
}

Runtime:
    worst case
    best case
    best case
    :
}</pre>
```

average case :

HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
  pivot := median3(A,left,right);
  pivotindex := Partition(A,left,right-1,pivot);
  Quicksort(A, left, pivotindex - 1);
  Quicksort(A, pivotindex + 1, right);
else
        Insertionsort(A,left,right);
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

14

QuickSort:

Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don't need to know proof details for this course.

17

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1)extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

Sort Properties

Are the following: Insertion Sort?	stable?		in-place?	
	No	Yes	Can Be No	Yes
Selection Sort?	No	Yes	Can Be No	Yes
MergeSort?	No	Yes	Can Be No	Yes
OuickSort?	No	Yes	Can Be No	Yes