PSE605A (Photonics Lab Techniques)

Lab Report: Experiment 1

He-Ne Laser

Submitted by
Md Sk Sahidulla
Roll Number: 231160005
M.Tech,2023

Submitted to Dr. Pratik Sen Mr. Shivam Verma (TA)

Center for Lasers and Photonics IIT KANPUR Academic Year 2023-2024 Date: 05/02/2024

Contents

1	Objectives						
2	Apparatus						
3	Plots & Tables	3					
	3.1 For Chopper method	3					
	3.1.1 Plots for Chopper method	3					
	3.1.2 Tables for Chopper method	6					
	3.2 For Knife Edge method	7					
	3.2.1 Plots for Knife Edge method	7					
	3.2.2 Tables for Knife Edge method	10					
	ŭ						
4	Calculations	11					
	4.1 For Chopper method	11					
	4.2 For Knife Edge method	11					
5	Comparisons between Manufacturing data and Experimental						
	data	12					
6	Error Analysis	12					
	6.1 Error analysis for Chopper method	12					
	6.2 Error analysis for Knife Edge method	13					
7	Source of Error	13					
8	Discussions & Conclusions	14					
9	References	14					
${f L}$	ist of Tables						
	1 Chopper method: beam width value	6					
	2 Chopper method: Calculation of various parameter	6					
	3 Knife Edge method: beam width value	10					
	4 Knife Edge method: Calculation of various parameter	10					
	5 Comparisons between Manufacturing data and Experimental data	12					

Beam parameter of He-Ne Laser

1 Objectives

To calculate beam parameters of He-Ne laser using:

- a) Knife Edge
- b) Intensity profile measurement

2 Apparatus

- He-Ne Laser
- Pinhole Photo-detector (PD)
- Chopper
- Chopper controller
- Knife edge
- Mounts
- Posts & holders for different instruments
- Lock-in amplifier
- Iris
- Digital multimeter
- Biasing circuit of PD
- BNC cables.

3 Plots & Tables

3.1 For Chopper method

3.1.1 Plots for Chopper method

Figure 1: Chopper method: Intensity distribution when detector at 100 cm

Figure 2: Chopper method: Intensity distribution when detector at 130 cm

Figure 3: Chopper method: Intensity distribution when detector at 160 cm

3.1.2 Tables for Chopper method

Table 1: Chopper method: beam width value

′.	1. Chopper method: beam width						
	Distance (cm)	C1 from curve fit (mm)	Beam width (mm) $w = \sqrt{2}C1$				
	100	1.1647	1.6471				
	130	1.2188	1.7236				
	160	1.2804	1.8108				

Table 2: Chopper method: Calculation of various parameter

	$\begin{array}{c} \text{Distance} \\ \text{(cm)} \\ L \end{array}$	Lower bound for C1 (mm)	Upper bound for C1 (mm)	Beam width (mm) $w = \sqrt{2}C1$	Δw (mm)	Lower bound for θ (mrad)	Upper bound for θ (mrad)	$\Delta \theta$ (mrad)
	100	1.0434	1.2861	1.6471	0.3432	0.1365	0.1107	0.0258
Ī	130	1.1099	1.3277	1.7236	0.3080	0.1283	0.1073	0.0210
Ī	160	1.1593	1.4015	1.8108	0.3425	0.1229	0.1016	0.0213

From Table 1 we get,

W1 = 1.6471 mm as beam width at a distance of 100 cm

W2 = 1.7236 mm as beam width at a distance of 130cm

W3 = 1.8106 mm as beam width at a distance of 160cm

From the above data, we calculate the following parameters:

- \bullet The divergence angle is found to be $\theta_0=0.8762~\mathrm{mrad}$
- The Beam Spot size(radius) is found out to be $w_0 = 0.2299 \text{ mm}$
- $\bullet\,$ The Rayleigh range is $Z_r=0.2624~\mathrm{m}$

3.2 For Knife Edge method

3.2.1 Plots for Knife Edge method

Figure 4: Knife Edge method: Intensity distribution when detector at 100 cm

Figure 5: Knife Edge method: Intensity distribution when detector at 130 cm

Figure 6: Knife Edge method: Intensity distribution when detector at 160 cm

3.2.2 Tables for Knife Edge method

Distance (cm)	C from curve fit (mm)	Beam width (mm) $w = \sqrt{2}C$	
100	0.3939	0.5571	
130	0.5386	0.7617	
160	0.3173	0.4487	

Table 3: Knife Edge method: beam width value

Table 4: Knife Edge method: Calculation of various parameter

Distance (cm) L	Lower bound for C (mm)	Upper bound for C1 (mm)	Beam width (mm) $w = \sqrt{2}C$	Δw (mm)	Lower bound for θ (mrad)	Upper bound for θ (mrad)	$\Delta \theta$ (mrad)
100	0.3316	0.4563	0.5571	0.1763	0.4295	0.3121	0.1174
130	0.2106	0.8667	0.7617	0.9279	0.6763	0.1643	0.5120
160	0.2188	0.4158	0.4487	0.2786	0.6510	0.3425	0.3085

From Table 3 we get,

W1 = 0.5571 mm as beam width at a distance of 100 cm

W2 = 0.7617 mm as beam width at a distance of 130cm

W3 = 0.4487 mm as beam width at a distance of 160cm

From the above data, we calculate the following parameters:

- \bullet The divergence angle is found to be $\theta_0=0.9148~\mathrm{mrad}$
- The Beam Spot size(radius) is found out to be $w_0 = 0.2202 \text{ mm}$
- $\bullet\,$ The Rayleigh range is $Z_r=0.2407~\mathrm{m}$

4 Calculations

4.1 For Chopper method

We know, D=30 cm, λ =632.8 nm. From Table 1, $w_1=1.6471$ mm, $w_2=1.7236$ mm, $w_3=1.8106$ mm

• Divergence Angle (θ_0) :

$$\theta_0 = \frac{1}{\sqrt{2D}} \sqrt{w_3^2 - 2w_2^2 + w_1^2}$$

$$\theta_0 = 0.8762 \ mrad$$

• Beam Spot size (w_0) :

$$w_0 = \frac{\lambda}{\pi \theta_0}$$

$$w_0 = \frac{632.8 * 10^{-9}}{\pi * 0.8762 * 10^{-3}} = 0.2299 \ mm$$

• Rayleigh range (Z_r) :

$$Z_r = \frac{\pi w_0^2}{\lambda}$$

$$Z_r = \frac{\pi * (0.2299 * 10^{-3})^2}{632.8 * 10^{-9}} = 0.2624 \ m$$

4.2 For Knife Edge method

From Table 3,

 $w_1 = 0.5571 \ mm, \ w_2 = 0.7617 \ mm, \ w_3 = 0.4487 \ mm$

• Divergence Angle (θ_0) :

$$\theta_0 = \frac{1}{\sqrt{2D}} \sqrt{w_3^2 - 2w_2^2 + w_1^2}$$
$$\theta_0 = 0.9148 \ mrad$$

• Beam Spot size (w_0) :

$$w_0 = \frac{\lambda}{\pi \theta_0}$$

$$w_0 = \frac{632.8 * 10^{-9}}{\pi * 0.9148 * 10^{-3}} = 0.2202 \ mm$$

• Rayleigh range (Z_r) :

$$Z_r = \frac{\pi w_0^2}{\lambda}$$

$$Z_r = \frac{\pi * (0.2202 * 10^{-3})^2}{632.8 * 10^{-9}} = 0.2407 \ m$$

5 Comparisons between Manufacturing data and Experimental data

Table 5: Comparisons between Manufacturing data and Experimental data

Parameter	Manufacturing data	Experimental data		
	Manufacturing data	Chopper method	Knife Edge method	
Divergence angle (mrad)	1	0.8762	0.9148	
Beam spot size (mm)	0.2014	0.2299	0.2202	
Rayleigh range (m)	0.2013	0.2624	0.2407	

6 Error Analysis

• Manufacturing Data:

Divergence angle $(\theta_t)=1$ mrad. Beam radius $(w_t)=0.2014$ mm. Rayleigh range $(Z_{rt})=0.2013$ m.

6.1 Error analysis for Chopper method

• Error in Divergence Angle (θ_0) :

Percentile error in calculating divergence angle,

$$\frac{\delta\theta}{\theta} * 100\% = \left| \frac{\theta_t - \theta_0}{\theta_t} \right| * 100\%$$

$$\frac{\delta\theta}{\theta} * 100\% = \left| \frac{1 - 0.8762}{1} \right| * 100\% = 12.38 \%$$

• Error in Beam Radius (w_0) :

Percentile error in calculating beam radius,

$$\frac{\delta w}{w} * 100\% = \left| \frac{w_t - w_0}{\theta_t} \right| * 100\%$$

$$\frac{\delta w}{w} * 100\% = \left| \frac{0.2014 - 0.2299}{0.2014} \right| * 100\% = 14.15 \%$$

• Error in Rayleigh range (Z_r) :

Percentile error in calculating Rayleigh range,

$$\frac{\delta Z_r}{Z_r} * 100\% = \left| \frac{Z_{rt} - Z_r}{Z_{rt}} \right| * 100\%$$

$$\frac{\delta Z_r}{Z_r} * 100\% = \left| \frac{0.2013 - 0.2624}{0.2013} \right| * 100\% = 30.35 \%$$

6.2 Error analysis for Knife Edge method

• Error in Divergence Angle (θ_0) :

Percentile error in calculating divergence angle,

$$\frac{\delta\theta}{\theta}*100\% = \left|\frac{\theta_t - \theta_0}{\theta_t}\right|*100\%$$

$$\frac{\delta\theta}{\theta}*100\% = \left|\frac{1-0.9148}{1}\right|*100\% = 8.52~\%$$

• Error in Beam Radius (w_0) :

Percentile error in calculating beam radius,

$$\frac{\delta w}{w} * 100\% = \left| \frac{w_t - w_0}{\theta_t} \right| * 100\%$$

$$\frac{\delta w}{w} * 100\% = \left| \frac{0.2014 - 0.2202}{0.2014} \right| * 100\% = 9.33 \%$$

• Error in Rayleigh range (Z_r) :

Percentile error in calculating Rayleigh range,

$$\frac{\delta Z_r}{Z_r} * 100\% = \left| \frac{Z_{rt} - Z_r}{Z_{rt}} \right| * 100\%$$

$$\frac{\delta Z_r}{Z_r} * 100\% = \left| \frac{0.2013 - 0.2407}{0.2013} \right| * 100\% = 19.57 \%$$

7 Source of Error

- The position of the scale in the knife edge is in an odd position. That's why there is a possibility of error of perpendicularity.
- The smallest division of the scale is in order of the beam spot of the gaussian beam. That's why errors arise when taking a reading between the smallest division.
- There is a noise in the detector due to the unavailability of the completely dark room.

8 Discussions & Conclusions

• divergence Angle:

Errors in calculating the divergence angle in the chopper and the knife edge methods are 12.38% and 8.52%. These errors are not negligible. But in our case knife edge method is more suitable than chopper method.

• Beam radius:

Errors in calculating the divergence angle in the chopper and knife edge methods are 14.15% and 9.33%. The percentile error is higher than the percentile error in the divergence angle.

• Rayleigh range:

Errors in calculating the divergence angle in the chopper and knife edge methods are 30.35% and 19.57%. Errors in calculating the rayleigh range are too high for both methods. It will affect the work where we use this He-Ne laser.

• We can see here errors are gradually increasing. That's why the errors in calculating divergence have to be negligible. Otherwise we will be in trouble while using this He-Ne laser.

9 References

- "Laser Physics" by Milonni & Eberly, Wiley publication, 1st edition (2010)
- "Principles of Lasers" by Svelto and Orazio, Springer publication, 4th edition (1998)
- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.211.4430&rep=rep1&type=pdf
- http://web.physics.ucsb.edu/phys128/experiments/laser/LaserFall06.pdf
- http://www.phys.unm.edu/msbahae/Optics