¡Bienvenidos a la actividad práctica del módulo!

Antes de empezar

El objetivo de esta actividad es que efectúes un análisis de clasificación KNN que permita desarrollar un modelo predictivo basado en distintas métricas aplicadas a una base de datos grande.

Entregable: Un Jupyter Notebook (archivo de extensión .ipynb), archivo PDF y capturas de pantalla en el espacio de respuesta que muestren tanto el código desarrollado como la solución al problema planteado, incluyendo los comentarios que sean pertinentes a las preguntas que se plantean. Entregas sin estos elementos no serán calificadas.

¡Buena suerte!

Paso a paso:

• Considere la base de datos "<u>recursos humanos.csv</u>" sobre empleados que abandonan una empresa.

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.80	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

El objetivo es analizar porqué los empleados deciden irse con la competencia y éste podría ser un desafío serio para un departamento de recursos humanos, el cual se podría abordar mediante modelos predictivos de Machine Learning. Las variables manejadas son:

- satisfaction_level: Nivel de satisfacción.
 last_evaluation: Puntaje obtenido en la ultima evaluación.
 average_montly_hours: Promedio de horas trabajadas al mes.
 time_spend_company: Tiempo del usuario en la compañía.
 work_accident: Si el empleado ha tenido algún accidente laboral (1 = Sí, 0 = No).
 promotion_last_5years: Si el empleado ha sido promovido en los últimos 5 años.
 sales: Departamento donde trabaja.
 salary: Categoría del salario.
 left: Variable a predecir y si el empleado dejó o no la empresa (1 = Sí, 0 = No).
 - Cargue la base de datos en Python y asegúrese de re-codificar las variables categóricas de manera pertinente antes de iniciar su análisis (Sugerencia: Use "pd.get_dummies")
 - Mediante un análisis exploratorio de datos determine si esta base de datos está equilibrada o no (de acuerdo a las categorías existentes).
 - Use el método de K Vecinos más cercanos para generar un modelo predictivo. Para dicho fin, determine el valor óptimo de K evaluando distintas alternativas: k = 1, 2,, 20
 Asegúrese de respaldar su recomendación de la k óptima en base a una tabla que compare en cada caso las diversas precisiones comentadas en esta lección.

- Elabore un mapa de calor para la matriz de confusión asociada al valor óptimo de k. Interprete verbalmente cada resultado mostrado en dicha matriz.
- Obtenga e interprete la gráfica de la curva ROC para el valor óptimo de k.
- Recuerda guardar el archivo en formato notebook (.ipynb), archivo PDF y capturas de pantalla,
- Titula el archivo como 'Tarea M21-CD TU NOMBRE'.