Abstract of the Disclosure

The invention relates to compounds of formula (I) or (II), which are of interest especially for inhibition of polymerization of amyloid \(\beta \) peptide, as model substances for synthesis of amyloid β peptide-ligands, as tools for the identification of other organic compounds with similar functional properties and/or as ligands for detection of amyloid deposits using e.g., positron emission tomography (PET). Formula (II) is: R₁ - A' - Y' - Leu - X' - Z' - B' - R₂ in which X' means any group or amino acid imparting to the compound according to formula (I) the ability to bind to the KLVFF-sequence in amyloid β peptide, or two amino acids imparting the same ability, but with the proviso that one is not proline; Y' means any amino acid; Z' means any non-acidic amino acid; A' means a direct bond or an αamino acid bonded at the carboxyl terminal of the α-carboxy group or a di-, tri-, tetra- or pentapeptide bonded at the carboxyl terminal of the α-carboxy group; B' means a direct bond or an α-amino acid bonded at the α-nitrogen or a di-, tri-, tetra- or pentapeptide bonded at the α -nitrogen of the N-terminal α -amino acid; R_1 is H or -CO- R_3 bonded at the α -amino group of A'; R_2 is H, $-OR_4$ or NR_5R_6 , all bonded to the α -carboxyl group of the α -carboxyterminal of B'; R₃ and R₄ are straight or branched carbon chain of 1-4 carbon atoms; R₅ and R₆ are independently H, alkyl, cycloalkyl, aryl or substituted aryl or together are $-(CH_2)_n$ - where n is 4-5; and R₁ and R₂ together can form a hydrocarbon ring or heterocyclic ring; all α-amino acids being either D- or L-isomers.