

P\_03

#### Opis

Napisz efektywny program w Javie, który będzie realizował następujące operacje:

- 1. Konwertuje wyrażenia arytmetyczne i instrukcje przypisania z notacji INF do ONP.
- 2. Konwertuje <u>wyrażenia arytmetyczne i instrukcje przypisania</u> z ONP do notacji INF, zawierającej minimalną liczbę nawiasów, gwarantującą taką kolejność obliczeń jak w wyrażeniu ONP.

Wyrażenia arytmetyczne mogą zawierać jedynie:

- a. nawiasy: (, ) tylko w notacji INF
- b. operandy: małe litery alfabetu angielskiego
- c. operatory, których priorytety i łączności przestawia tabela:

| operator | priorytet | łączność     | opis operatora     |
|----------|-----------|--------------|--------------------|
| ()       | najwyższy | lewostronna  | nawiasy            |
| !, ~     |           | prawostronna | negacja , - unarny |
| ۸        |           | prawostronna | potęgowania        |
| *,/,%    |           | lewostronna  | multiplikatywny    |
| +, -     |           | lewostronna  | addytywny          |
| <,>      |           | lewostronna  | relacje < i >      |
| ?        |           | lewostronna  | relacja równości   |
| &        |           | lewostronna  | koniunkcja         |
| I        |           | lewostronna  | alternatywa        |
| =        | najniższy | prawostronna | przypisania        |

Podczas konwersji program usuwa znaki, które nie mogą występować w zadanych wyrażeniach, takie jak spacje, przecinki itp. oraz sprawdza poprawność składniową wyrażeń.

Przy czym można założyć, że po usunięciu zbędnych symboli: badana jest poprawność wyrażeń w postaci INF, opisana w następnym punkcie.

W przypadku wyrażenia w ONP, wyrażenie uważamy za poprawne jeśli jest wykonalne.



P\_03

#### Poprawność wyrażeń arytmetycznych w postaci infiksowej (INF)

Badanie poprawności wyrażeń arytmetycznych składa się z dwóch kroków:

- 1. Sprawdzenie, czy wyrażenie jest akceptowane przez poniższy automat skończony:
  - A=(Q, T,  $\delta$ , 0, F), gdzie Q={0, 1, 2} zbiór stanów, 0 stan początkowy,

 $F = \{1\} - zbiór stanów końcowych$ 

T = { z, o1, o2, (, ) } – alfabet symboli, które mogą wystąpić w wyrażeniu, przy czym:

z - operand - zmienna (pojedyncza litera),

o1 - operatory jednoargumentowe { ~ , !)

o2 - operatory dwuargumentowe { ^, \*, /, %, +, -, <, >, ?, &, |, =}

() - nawiasy

 $\delta$  - funkcja przejścia automatu, którą definiuje poniższy graf



Automat rozpoczyna w stanie 0 analizę wyrażenia w INF od pierwszego symbolu wyrażenia. Jeśli automat zakończy analizę wyrażenia w INF znajdzie się w stanie 1 wówczas powiemy, że wyrażenie jest poprawne.

Przykłady błędnych wyrażeń: INF: a~+b , INF: a+b! , INF: ()a+b INF: (a+b)+() , INF: ~()a

- 2. Sprawdzenie, czy nie występują w wyrażeniu następujące przypadki:
  - a. niesparowane nawiasy lub ich zła kolejność, np. ) ( a (
  - b. niezgodność liczby operatorów i operandów, np. a+b\*

Ze względu na efektywność analizy, kroki 1 i 2 powinny być wykonywane w pętli wykonującej konwersję wyrażenia.



P\_03

## Wejście

Dane do programu wczytywane są ze standardowego wejścia zgodnie z poniższą specyfikacją. Pierwsza linia wejścia zawiera liczbę całkowitą z, oznaczającą liczbę linii zawierających wyrażenia arytmetyczne lub instrukcje przypisania, których opisy występują kolejno po sobie.

Każda linia zawiera co najmniej 6 znaków i nie przekracza 256 znaków, może mieć jedną z dwóch postaci:

**INF**: wyrażenie arytmetyczne lub instrukcja przypisania, zapisane w notacji infiksowej,

**ONP**: wyrażenie arytmetyczne lub instrukcja przypisania, zapisane w notacji ONP.

Ostatnia linia każdego zestawu zakończona jest znakiem '\n'.

### Wyjście

- Wyrażenie poprzedzone na wejściu napisem "INF: " musi być na wyjściu poprzedzone napisem "ONP: " i analogicznie wyrażenie poprzedzone na wejściu napisem "ONP: " musi być na wyjściu poprzedzone napisem "INF: ". W przypadku błędnego wyrażenia, na wyjściu, zamiast skonwertowanego wyrażenia pojawi napis *error*.
- W przypadku konwersji wyrażenia w ONP do w INF, wyrażenie w INF <u>musi zawierać</u> <u>minimalną</u> liczbę nawiasów, gwarantującą podczas obliczania taką kolejność operacji (uwzględniając typ łączności i priorytety operatorów) jak w wyrażeniu ONP, np. ONP: x a b c \* \*= zostanie przekształcone do INF: x = a \* ( b \* c )
- W trakcie konwersji program powinien usuwać znaki niewystępujące w wyrażeniach arytmetycznych lub w instrukcjach przypisania, w tym spacje oraz sprawdzać poprawność wyrażeń.
- W przypadku wyrażeń w notacji INF, np. INF: (a, + b) /. . [c3], program pozostawia jedynie: (a+b) /c, pozostałe znaki, w tym spacje zignoruje i po sprawdzeniu poprawności wyrażenia, wypisze na wyjściu: ONP: a b + c /
- W przypadku wyrażeń w notacji ONP, np. ONP: (a,b,.).c;-,\* program pozostawia jedynie: a b c \* i po sprawdzeniu poprawności, dokona konwersji, wypisując na wyjściu: INF: a \* (b c)
- Wszystkie elementy wyrażeń na wyjściu są poprzedzone pojedynczą spacją.



P\_03

### Wymagania implementacyjne

- 1. Ogólnie jak w poprzednich programach, w szczególności jedynym możliwym importem jest import skanera wczytywania z klawiatury. Tym samym klasę stosu należy zaimplementować samodzielnie.
- 2. Przypominam o komentowaniu aplikacji w formie opisanej w punkcie 3 Regulaminu zaliczania programów na BaCy.

#### Przykład danych

| wejście:                                                                                   | wyjście:                     |
|--------------------------------------------------------------------------------------------|------------------------------|
| 12                                                                                         |                              |
| ONP: xabc**=                                                                               | INF: x = a * (b * c)         |
| ONP: ab+a~a-+                                                                              | INF: a + b + ( ~ a - a )     |
| INF: x=~~a+b*c                                                                             | ONP: $x a \sim b c * + =$    |
| <pre>INF: t=~a<x<~b< pre=""></x<~b<></pre>                                                 | ONP: ta~x < b~ < =           |
| INF: $(a,+b)/[c3]$                                                                         | ONP: a b + c /               |
| ONP: (a,b,.).c;-,*                                                                         | INF: a * (b - c)             |
| ONP: abc++def++g+++                                                                        | INF: error                   |
| <pre>INF: x=a=b=c^d^e</pre>                                                                | ONP: x a b c d e ^ ^ = = =   |
| INF: $(r+y)=a=(b+c)+d$                                                                     | ONP: $r y + a b c + d + = =$ |
| INF: x=!(c>a & c <b)< td=""><td>ONP: <math>x c a &gt; c b &lt; &amp; ! =</math></td></b)<> | ONP: $x c a > c b < & ! =$   |
| INF: x=~~a                                                                                 | ONP: x a ~ ~ ~ =             |
| ONP: xa~~~=                                                                                | INF: $x = \sim \sim a$       |
|                                                                                            |                              |