7.9

I couldn't figure this problem out. It seemed simple, where I thought I would just have to plug the pairs into the *elgamald* function on the V200, using a pair as my y, then p and a as in the book. I tried plugging that into a WolframAlpha ElGamal Decryptor widget (https://www.wolframalpha.com/widgets/view.jsp?id=978d7097ff2a699194ad4282bd27b1dc), but when I tried to do the method myself, I got 28885 instead of 12354.

	d(y1, y2) = y2(y1^a)^-1 mod p	^
	y1	3781	
	у2	14409	
	a	7899	
	р	31847	
	Decry	ypt	
Result:			
12354			

Figure 1

My process involved using the formula on the top of *Figure 1*. I first did my $y1^a$, which was 31847⁷⁸⁹⁹. I took this mod p to make it manageable, which left me with

Figure 2

Then, I used my program that I've added to a previous assignment that finds *all* the invertible elements and their inverses, given a modulus. I searched this table for 3554, and found the inverse, which I then multiplied by $y2 \mod p$.

3552	3550	4638
3553	3551	4834
3554	3552	11844
3555	3553	735
3556	3554 · ·	21766
3557	3555	10544
3558	3556	4057
3559	3557	1343
3560	3558	546
3561	3559	12635
	1 1	

Figure 3

21766 x 14409 mod 31847 = 28885.

This is also the answer I got when I plugged in the following into the V200:

```
[[3871][14409]] -> y
31847 -> p
7899 -> a
elgamald(y, p, a)
```

output: 28885

However, this differs from the computed value from above, and I can't figure out how to get to the correct answer.

7.10

I tried to follow this top answer's guide to find these polynomials:

https://math.stackexchange.com/questions/32197/find-all-irreducible-monic-polynomials-in-mathbbz-2x-with-degree-equal

However, I had a hard time following, so I fully just checked the problems against his list.

$$x^5 + x^4 + 1 - Reducible$$

$$x^5 + x^3 + 1 - Irreducible$$

$$x^5 + x^4 + x^2 + 1$$
 – Reducible

7.12

I tried setting up the problem as in 7.9:

$$(K, H) \rightarrow y$$

$$K, H = 2x + 2, x^2 + 2$$

$$x^2 + 2 ((2x + 2)^{11})^{-1} \mod p$$

However, this seemed impossible to solve without a proper value for p, and I had no idea where to go next.

I apologize for the poor workmanship on this and the past few assignments. I got married this past Saturday, and I've had no time for anything else.