Equations différentielles (GM3)

Hasnaa Zidani

LMI - INSA Rouen

2022/2023 - CM1

https://moodle.insa-rouen.fr/course/view.php?id=1464

1/33

Equation Différentielle Ordinaire (EDO)

$$F(t, X(t), X'(t), X''(t), \cdots, X^{(n)}(t)) = 0$$
 for $t \in I$.

De nombreuses applications!

- ➤ Une EDO modélise l'évolution d'un phénomène physique (économique ou biologique, ...) dont l'état peut être décrit par un nombre fini de variables $X(t) \in \mathbb{R}^d$.
- ➤ L'évolution du système est déterministe : connaissant les conditions initiales, on peut en déduire l'état du système à un instant futur ou passé.
- Deux méthodes de résolution.
 - Simulation numérique: permet de prédire la solution à court terme
 - Analyse qualitative et asymptotique: permet de prédire le comportement général à court, moyen ou long terme (stabilité, périodicité, chaos, ...etc.)

Objectifs du cours

➤ Systèmes linéaires homogènes

$$\dot{X}(t) = AX(t)$$

> Systèmes linéaires et affines

$$\dot{X}(t) = A(t)X(t) + b(t)$$

➤ Equations nonlinéaires

$$\dot{X}(t) = f(t, X(t))$$

Applications

- Mécanique classique (loi de Newton)
- Chimie (cinétique)
- Dynamiques de populations (modèle logistique, Lotka-Voltera)
- A Résolution d'EDP (caractéristiques, vagues solitaires ou solitons)

Programme de la séance

- Continuité. Applications linéaires
- Différentiabilité
- Différentiabilité d'ordre deux
- 4 Inversion locale. Fonctions implicites

Continuité

- Soient E et F deux espaces vectoriels normés
- Dans la suite, on notera Ω un ouvert de \mathbb{E} contenant x, et J une application de $\Omega \subset \mathbb{E} \text{ dans } \mathbb{F}$
- On dit que J est **continue** en un point $x \in \Omega$ si

$$\forall h \in \mathbb{E} \text{ avec } x + h \in \Omega \qquad J(x + h) = J(x) + \varepsilon_0(h),$$
 (1)

où $\varepsilon_0: \mathbb{E} \to \mathbb{F}$ telle que

$$\|\varepsilon_0(h)\|_{\mathbb{F}} \to 0$$
 quand $\|h\|_{\mathbb{E}} \to 0$.

 \blacksquare En d'autres termes, J est continue si et seulement si

$$\forall \epsilon > 0, \quad \exists \eta > 0, \quad \forall y \in \Omega, \quad \|y - x\|_{\mathbb{E}} < \eta \Longrightarrow \|J(y) - J(x)\|_{\mathbb{F}} < \epsilon.$$

L'expression (1) est un **développement limité d'ordre 0** au voisinage de x.

Applications linéaires

- L'espace vectoriel des applications linéaires de \mathbb{E} vers \mathbb{F} sera noté $\mathcal{L}(\mathbb{E}, \mathbb{F})$.
- Dans le cas $\mathbb{F} = \mathbb{R}$, les éléments de $\mathcal{L}(\mathbb{E}, \mathbb{R})$ sont appelés des formes linéaires.

Lemme (Lorsque \mathbb{E} et \mathbb{F} sont de dimension finie)

L'ensemble $\mathcal{L}(\mathbb{E}, \mathbb{F})$ est un espace vectoriel muni de la norme

$$||f||_{\mathcal{L}(\mathbb{E},\mathbb{F})} := \sup_{x \neq 0} \frac{||f(x)||_{\mathbb{F}}}{||x||_{\mathbb{E}}} = \sup_{||x||_{\mathbb{E}}=1} ||f(x)||_{\mathbb{F}} = \sup_{||x||_{\mathbb{E}} \leq 1} f(x).$$

 \spadesuit Lorsque la dimension de $\mathbb E$ est *finie*, toutes les applications linéaires sont continues. C'est faux lorsque la dimension de $\mathbb E$ est *infinie*!

Programme de la séance

- Ontinuité. Applications linéaires
- Différentiabilité
- Différentiabilité d'ordre deux
- 4 Inversion locale. Fonctions implicites

Définition

Soit $(\mathbb{E}, \|\cdot\|_{\mathbb{E}})$ et $(F\|\cdot\|_{\mathbb{F}})$ deux espaces normés. Soit $J: \mathbb{E} \to \mathbb{F}$ une application.

▶ La dérivée au **sens de Fréchet** de J en un point $x \in \mathbb{E}$, lorsqu'elle existe, est une application <u>linéaire continue</u> de $DJ(x) : \mathbb{E} \to \mathbb{F}$ telle que

$$||J(x+h)-J(x)-DJ(x)\cdot h||_{\mathbb{F}}=||h||_{\mathbb{E}} \varepsilon(h),$$

où $\varepsilon : \mathbb{E} \to \mathbb{R}_+$ avec $\varepsilon(h) \to 0$ lorsque $h \to 0$.

Définition

Soit $(\mathbb{E}, \|\cdot\|_{\mathbb{E}})$ et $(F\|\cdot\|_{\mathbb{F}})$ deux espaces normés. Soit $J: \mathbb{E} \to \mathbb{F}$ une application.

▶ La dérivée au **sens de Fréchet** de J en un point $x \in \mathbb{E}$, lorsqu'elle existe, est une application <u>linéaire continue</u> de $DJ(x) : \mathbb{E} \to \mathbb{F}$ telle que

$$||J(x+h)-J(x)-DJ(x)\cdot h||_{\mathbb{F}}=||h||_{\mathbb{E}}\ \varepsilon(h),$$

où $\varepsilon : \mathbb{E} \to \mathbb{R}_+$ avec $\varepsilon(h) \to 0$ lorsque $h \to 0$.

➤ On dit que *J* est différentiable en *x*, au sens de Fréchet, lorsque la dérivée *DJ(x)* existe.

Définition

Soit $(\mathbb{E}, \|\cdot\|_{\mathbb{E}})$ et $(F\|\cdot\|_{\mathbb{F}})$ deux espaces normés. Soit $J: \mathbb{E} \to \mathbb{F}$ une application.

▶ La dérivée au **sens de Fréchet** de J en un point $x \in \mathbb{E}$, lorsqu'elle existe, est une application <u>linéaire continue</u> de $DJ(x) : \mathbb{E} \to \mathbb{F}$ telle que

$$||J(x+h)-J(x)-DJ(x)\cdot h||_{\mathbb{F}}=||h||_{\mathbb{E}} \varepsilon(h),$$

où $\varepsilon : \mathbb{E} \to \mathbb{R}_+$ avec $\varepsilon(h) \to 0$ lorsque $h \to 0$.

- ➤ On dit que *J* est différentiable en *x*, au sens de Fréchet, lorsque la dérivée *DJ(x)* existe.
- ➤ La fonction J est dite **continument différentiable** en x lorsque J est différentiable dans un voisinage de x et l'application $y \mapsto DJ(y)$ est continue en x, i.e.,

$$\lim_{y\to x}\|DJ(y)-DJ(x)\|_{\mathcal{L}(\mathbb{E},\mathbb{F})}=0.$$

➤ Si $J : \mathbb{E} \to \mathbb{F}$ est différentiable dans un voisinage de $x \in E$, alors J est continue. En effet, on a

$$||J(x+h)-J(x)||_F \leq \underbrace{||DJ(x).h||_F + ||h||_E \varepsilon(h)}_{\varphi(h)},$$

avec $\varphi(h) \to 0$ (car $DJ(x) : \mathbb{E} \to \mathbb{F}$ est une application linéaire et continue).

➤ Par définition la dérivée au sens de Fréchet correspond à un développement limité d'ordre 1 au voisinage de x, de la forme

$$\forall h \in \mathbb{E}$$
 $J(x+h) = J(x) + DJ(x) \cdot h + ||h|| \epsilon(h).$

avec $\epsilon : \mathbb{E} \to \mathbb{F}$ avec $\epsilon(h) \to 0$ lorsque $h \to 0$.

 \triangleright Si la différentielle de J en x existe, elle est unique.

Si
$$\mathbb{E} := \mathbb{R}^n$$
 et $\mathbb{F} := \mathbb{R}$

 \mathscr{O} Si $\mathbb{F} = \mathbb{R}$, alors la dérivée d'une application $J : \mathbb{E} \to \mathbb{R}$ en un point x est une forme linéaire continue.

Proposition - Notion du Gradient

➤ Si $(\mathbb{E}, \langle \cdot, \cdot \rangle_{\mathbb{E}})$ est de dimension finie, alors il existe $p \in \mathbb{E}$ tel que

$$DJ(x) \cdot h = \langle p, h \rangle_{\mathbb{E}} \quad \forall h \in \mathbb{E}.$$

On appelle *p* le gradient de *J* en *x* et on note $p = \nabla J(x)$.

Si
$$\mathbb{E} := \mathbb{R}^n$$
 et $\mathbb{F} := \mathbb{R}^m$

 \Rightarrow Soit $J : \mathbb{E} \to \mathbb{F}$ une fonction différentiable en $x \in \mathbb{E}$

Proposition - La matrice Jacobienne

➤ Si $\mathbb{E} := \mathbb{R}^n$ et $\mathbb{F} := \mathbb{R}^m$, alors il existe une unique matrice $M \in \mathbb{M}_{m,n}$ telle que

$$DJ(x) \cdot h = Mh$$
 $\forall h \in \mathbb{E} = \mathbb{R}^n$.

 \blacktriangleright On appelle M la matrice Jacobienne (ou Jacobienne) de J en x et on note

$$M = DJ(x)$$
.

Est-ce qu'on a une forme explicite des coefficients de la Jacobienne?

Rappel sur les normes matricielles

- \blacktriangleright La Jacobienne ne dépend pas des normes choisies sur $\mathbb{E} = \mathbb{R}^n$ et $\mathbb{F} = \mathbb{R}^m$
- ➤ On peut munir l'espace $A \in \mathbb{M}_{m,n}$ de la **norme induite** $||A||_{m,n}$ vérifie:

$$||Ax||_{\mathbb{R}^m} \leq ||A||_{m,n}||x||_{\mathbb{R}^n} \quad \forall x \in \mathbb{R}^n.$$

▶ Pour toute matrice $A \in \mathbb{M}_{m,n}$, il existe $\bar{x} \in \mathbb{R}^n$ avec $\|\bar{x}\|_{\mathbb{R}^n} = 1$ et tel que

$$\|A\|_{m,n}=\|A\bar{x}\|_{\mathbb{R}^m}.$$

➤ Soient $A \in \mathbb{M}_{m,n}$ et $B \in \mathbb{M}_{n,r}$. On a:

$$||AB||_{m,r} \leq ||A||_{m,n} ||B||_{n,r}.$$

- ➤ Si n = m, on a $||I_n||_{n,n} = 1$.
- ➤ Rappelons enfin qu'il existe des normes matricielles qui ne sont pas induites (par exemple, la norme matricielle de **Frobenius**)

Proposition

Soit $\mathbb{E}, \mathbb{F}, \mathbb{G}$ trois espaces normés.

⇒ (Somme) Si $J_1 : \mathbb{E} \to \mathbb{F}$ et $J_2 : \mathbb{E} \to \mathbb{F}$ sont différentiables en $x \in \mathbb{E}$, alors $J_1 + J_2$ est aussi différentiable en x, et on a

$$D(J_1 + J_2)(x) \cdot h = DJ_1(x) \cdot h + DJ_2(x) \cdot h \quad \forall h \in E.$$

→ (Produit) La fonction $J_1 \times J_2$ est aussi différentiable^a en X, et on a

$$D(J_1 \times J_2)(x) \cdot h = DJ_1(x) \cdot [J_2(x) \cdot h] + J_1(x) \times [[DJ_2(x) \cdot h].$$

⇒ Si $J_1 : \mathbb{E} \to \mathbb{F}$ est différentiable en $x \in \mathbb{E}$ et $J_2 : \mathbb{F} \to \mathbb{G}$ différentiable en $J_1(x)$. Alors $J_2 \circ J_1$ est différentiable en x, et on a

$$D(J_2 \circ J_1)(x) = DJ_2(J_1(x)) \circ DJ_1(x).$$

^aLorsqu'on peut définir la fonction produit!

Théorème (la valeur moyenne)

Soit $J: \mathbb{E} \to \mathbb{R}$ une fonction différentiable sur \mathbb{E} .

Pour tout $x, y \in \mathbb{E}$, il existe $\theta \in (0, 1)$ tel que $z_{\theta} := \theta x + (1 - \theta)y \in \mathbb{E}$ vérifie:

$$J(y) - J(x) = DJ(z_{\theta}) \cdot (y - x).$$

Différentiabilité directionnelle

Définition

Soit $(E, \|\cdot\|_{\mathbb{E}})$ et $(F, \|\cdot\|_{F})$ deux espaces normés.

Soit $J : E \to F$ une fonction, et soit $x, v \in E$.

La dérivée directionnelle de J en x, dans la direction v, est la limite suivante (lorsqu'elle existe !):

$$J'(x;v):=\lim_{t\to 0^+}\frac{J(x+tv)-J(x)}{t}.$$

➤ Lorsque J est Fréchet différentiable en x, alors J admet des dérivées directionnelles

$$J'(x; v) = DJ(x) \cdot v \quad \forall v \in E.$$

Dans ce cas, l'application $v \mapsto J'(x; v)$ est linéaire et continue.

► En général, l'application $v \mapsto J'(x; v)$ est positivement homogène:

$$J'(x;tv)=tJ'(x;v) \quad \forall t>0.$$

➤ La dérivée directionnelle demande moins de régularité.

Différentiabilité au sens de Gateaux

Définition

On dit que la fonction $J: E \to F$ est dérivable (ou différentiable) au sens de Gateaux en $x \in E$, si elle admet des dérivées directionnelles J'(x; v) pour tout $v \in E$ et s'il existe une application linéaire $dJ(x): E \to F$ telle que :

$$\forall v \in E$$
 $J'(x; v) = dJ(x) \cdot v$

☆ Si $E = \mathbb{R}^n$ et $F = \mathbb{R}$, et si J est Gateaux différentiable, on continue à identifier dJ(x) avec un vecteur $p \in \mathbb{R}^n$ tel que

$$dJ(x) \cdot v = \langle p, v \rangle,$$

et $p = \nabla J(x)$ est encore appelé gradient de J en x.

Remarques.

Une fonction dérivable au sens de Fréchet l'est aussi au sens de Gateaux, mais la réciproque est fausse.

Exemple:
$$J(x,y) = \frac{x^6}{(y-x^2)^2 + x^8}$$
 pour $(x,y) \neq (0,0)$, $J(0,0) = 0$.

☆ La Gateaux-différentiabilité n'implique même pas la continuité, comme le montre le contre-exemple qui suit.

Contre-exemple

On se place dans $E = \mathbb{R}^2$. Soient $q \ge p > 5$ deux réels. Montrer que la fonctionnelle J définie par

$$J(x,y) = \begin{cases} \frac{x^p}{(y-x^2)^2 + x^q} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est différentiable au point (0,0) au sens de Gateaux, mais qu'elle n'est pas continue en ce point.

Dérivées partielles

- **→** On suppose que $\mathbb{E} = \mathbb{R}^n$ et $\mathbb{F} = \mathbb{R}$. Soit $J : \mathbb{R}^n \to \mathbb{R}$ une fonctionnelle.
- ightharpoonup Soit (e_1, \dots, e_n) la base canonique de \mathbb{R}^n .

Définition

Supposons que les dérivées directionnelles suivantes de *J* en *x* existent

$$J'(x; e_i) = \lim_{t\to 0^+} \frac{J(x + te_i) - J(x)}{t}$$

et que les applications: $\lambda \longmapsto J'(x; \lambda e_i)$ sont linéaires.

On appelle **dérivée partielle** de J par rapport à x_i le coefficient $\frac{\partial J}{\partial x_i}(x)$ tel que:

$$J'(x; e_i) = \frac{\partial J}{\partial x_i}(x) e_i.$$

Lemme

Si J est Fréchet différentiable en x, alors

$$\nabla J(x) = \begin{pmatrix} \frac{\partial J}{\partial x_1}(x) \\ \vdots \\ \frac{\partial J}{\partial x_n}(x) \end{pmatrix}.$$

Parfois, on notera simplement $\partial_i J(x)$ au lieu de $\frac{\partial J}{\partial x_i}(x)$

 \rightarrow Par définition, la dérivée partielle $\partial_i J(x)$ correspond à la dérivée de

$$t \longmapsto J(x_1, \cdots, x_{i-1}, t, x_{i+1}, \cdots, x_n)$$

Une fonctionnelle $J: \mathbb{R}^n \to \mathbb{R}$ qui admet des dérivées partielles n'est pas nécessairement différentiable (ni même continue!)

Contre-exemple

La fonction $J: \mathbb{R}^2 \to \mathbb{R}$ définie par $J(x, y) = \frac{xy}{x^2 + y^2}$ et J(0, 0) = 0.

- a) Justifier que J est différentiable en tout point de l'ouvert $\mathbb{R}^2 \setminus \{(0,0)\}$.
- b) Montrer que $t \mapsto J(t,0)$ est continue sur \mathbb{R} .
- c) Montrer que J admet des dérivées partielles $\partial_1 J(0,0)$ et $\partial_2 J(0,0)$ en (0,0).
- d) Vérifier que J n'est pas continue en (0,0). Conclure.

Lien entre dérivées partielles et Fréchet différentiabilité

Théorème

Soit $J: \mathbb{R}^n \to \mathbb{R}$ une fonctionnelle. On a l'équivalence entre les assertions suivantes.

- (i) J est de classe C^1 dans un voisinage de X
- (ii) Il existe $\delta > 0$ tel que J admet des dérivées partielles en tout point $y \in \mathbb{B}(x, \delta)$ et l'application

$$y \longmapsto \begin{pmatrix} \frac{\partial J}{\partial x_1}(y) \\ \vdots \\ \frac{\partial J}{\partial x_n}(y) \end{pmatrix}$$

est continue sur $\mathbb{B}(x, \delta)$.

Le Cas où $\mathbb{E} = \mathbb{R}^n$ et $\mathbb{F} = \mathbb{R}^m$

▶ Dans le cas où $\mathbb{F} = \mathbb{R}^m$, J(x) correspond à un vecteur à m composantes

$$J(x) = \begin{pmatrix} J_1(x) \\ J_2(x) \\ \vdots \\ J_m(x) \end{pmatrix} \quad \text{ou} \quad J(x) = \sum_{l=1}^m J_l(x)e'_l,$$

dès lors que l'on a choisi une base $(e'_l)_{1 \le l \le m}$ de \mathbb{F} .

➤ On peut reprendre la construction ci-dessus, et différencier chaque composante de J. La différentielle de J en x (lorsqu'elle existe) peut alors être écrite composante par composante

$$DJ_{1}(x) \cdot h = \langle \nabla J_{1}(x), h \rangle = \partial_{1}J_{1}(x)h_{1} + \partial_{2}J_{1}(x)h_{2} + \ldots + \partial_{n}J_{1}(x)h_{n}$$

$$DJ_{2}(x) \cdot h = \langle \nabla J_{2}(x), h \rangle = \partial_{1}J_{2}(x)h_{1} + \partial_{2}J_{2}(x)h_{2} + \ldots + \partial_{n}J_{2}(x)h_{n}$$

$$\vdots = \vdots$$

$$DJ_{m}(x) \cdot h = \langle \nabla J_{m}(x), h \rangle = \partial_{1}J_{m}(x)h_{1} + \partial_{2}J_{m}(x)h_{2} + \ldots + \partial_{n}J_{m}(x)h_{n}.$$

Le Cas où $\mathbb{E} = \mathbb{R}^n$ et $\mathbb{F} = \mathbb{R}^m$ - Jacobienne

► La matrice associée à DJ(x) dans les bases $(e_k)_{1 \le k \le n}$ et $(e'_l)_{1 \le l \le m}$ est appelée matrice jacobienne de J en x, et on la note [DJ(x)]

$$[DJ(x)] := \begin{pmatrix} \partial_1 J_1(x) & \partial_2 J_1(x) & \dots & \partial_n J_1(x) \\ \partial_1 J_2(x) & \partial_2 J_2(x) & \dots & \partial_n J_2(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 J_m(x) & \partial_2 J_m(x) & \dots & \partial_n J_m(x) \end{pmatrix}.$$

➤ Lorsque n = m, son déterminant est appelé jacobien de J en x, égal à

$$\mathbf{Det}[DJ(x)] = \begin{vmatrix} \partial_1 J_1(x) & \partial_2 J_1(x) & \dots & \partial_n J_1(x) \\ \partial_1 J_2(x) & \partial_2 J_2(x) & \dots & \partial_n J_2(x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_1 J_n(x) & \partial_2 J_n(x) & \dots & \partial_n J_n(x) \end{vmatrix}.$$

Quelques Propriétés utiles pour le calcul de la Jacobienne

(Somme) Si $J : \mathbb{E} \to \mathbb{F}$ et $G : \mathbb{E} \to \mathbb{F}$ sont de classe C^1 alors

$$[D(J+G)(x)] = [DJ(x)] + [DG(x)]$$

(Composition) Si $J : \mathbb{E} \to \mathbb{F}$ et $G : \mathbb{F} \to \mathbb{G}$ sont de classe C^1 alors

$$\left[D(G\circ J)(x)\right]=\left[DG(J(x))\right]\times\left[DJ(x)\right]$$

Programme de la séance

- Ontinuité. Applications linéaires
- Différentiabilité
- Différentiabilité d'ordre deux
- 4 Inversion locale. Fonctions implicites

➤ On supose que $J : \mathbb{E} \to \mathbb{F}$ est différentiable sur un **voisinage de** x.

- ➤ On supose que $J : \mathbb{E} \to \mathbb{F}$ est différentiable sur un voisinage de x.
- ➤ Si l'application $DJ : \mathbb{E} \to \mathcal{L}(\mathbb{E}, \mathbb{F})$ est elle-même différentiable, alors sa différentielle est appelée **différentielle seconde** de J en x, et on la note $D^2J(x)$
- ➤ On dit que J est deux fois différentiable au point x

- ▶ On supose que $J: \mathbb{E} \to \mathbb{F}$ est différentiable sur un voisinage de x.
- \blacktriangleright Si l'application $DJ: \mathbb{E} \to \mathcal{L}(\mathbb{E}, \mathbb{F})$ est elle-même différentiable, alors sa différentielle est appelée différentielle seconde de J en x, et on la note $D^2J(x)$
- ➤ On dit que J est deux fois différentiable au point x
- Noter que $D^2 J(x)$ appartient à $\mathcal{L}(\mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$.

- \blacktriangleright On supose que $J: \mathbb{E} \to \mathbb{F}$ est différentiable sur un voisinage de x.
- \blacktriangleright Si l'application $DJ: \mathbb{E} \to \mathcal{L}(\mathbb{E}, \mathbb{F})$ est elle-même différentiable, alors sa différentielle est appelée **différentielle seconde** de J en x, et on la note $D^2J(x)$
- ➤ On dit que J est deux fois différentiable au point x
- Noter que $D^2 J(x)$ appartient à $\mathcal{L}(\mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$.
- ➤ Si la différentielle $x \mapsto D^2 J(x)$ est une application continue de \mathbb{E} dans $\mathcal{L}(\mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$, on dit que **J** est une application de **classe** \mathcal{C}^2 .

Représentation de la Hessienne

Théorème (de Schwarz)

Soit J une application deux fois différentiable en x. Alors $D^2J(x)$ est une application (bilinéaire, continue et) symétrique de $\mathbb{E}\times\mathbb{E}$ dans \mathbb{F} .

➤ On peut *identifier* $\mathcal{L}(\mathbb{E}, \mathcal{L}(\mathbb{E}, \mathbb{F}))$ à $\mathcal{L}(\mathbb{E} \times \mathbb{E}, \mathbb{F})$, et on écrit donc :

$$(D^2J(x)\cdot h)\cdot k=D^2J(x)\cdot (h,k), \qquad (h,k)\in \mathbb{E}\times \mathbb{E}.$$

Si k = h, on condense les notations en $D^2 J(x) \cdot h^2$.

▶ Dans ce cas, la hessienne $D^2 J(x)$ est une forme bilinéaire et continue de $\mathbb{R}^{n \times n}$.

- \blacktriangleright Dans ce cas, la hessienne $D^2J(x)$ est une forme bilinéaire et continue de $\mathbb{R}^{n\times n}$.
- \blacktriangleright D'après l'identification ci-dessus, il existe un **unique** élément $[D^2J(x)] \in \mathbb{M}_{n,n}$ tel que

$$D^2 J(x) \cdot (h, k) = \langle [D^2 J(x)] h, k \rangle_{\mathbb{R}^n} \quad \forall h, k \in \mathbb{R}^n.$$

- ▶ Dans ce cas, la hessienne $D^2J(x)$ est une forme bilinéaire et continue de $\mathbb{R}^{n\times n}$.
- ▶ D'après l'identification ci-dessus, il existe un **unique** élément $[D^2J(x)] \in \mathbb{M}_{n,n}$ tel que

$$D^2 J(x) \cdot (h, k) = \langle [D^2 J(x)] h, k \rangle_{\mathbb{R}^n} \quad \forall h, k \in \mathbb{R}^n.$$

Les coefficients de $[D^2J(x)]$ sont des dérivées partielles secondes, notées $\frac{\partial^2 J}{\partial x_k \partial x_l}(x)$ ou $\partial_k \partial_l J(x)$.

- ➤ Dans ce cas, la hessienne $D^2J(x)$ est une forme bilinéaire et continue de $\mathbb{R}^{n\times n}$.
- ▶ D'après l'identification ci-dessus, il existe un **unique** élément $[D^2J(x)] \in \mathbb{M}_{n,n}$ tel que

$$D^2 J(x) \cdot (h, k) = \langle [D^2 J(x)] h, k \rangle_{\mathbb{R}^n} \quad \forall h, k \in \mathbb{R}^n.$$

- Les coefficients de $[D^2J(x)]$ sont des dérivées partielles secondes, notées $\frac{\partial^2 J}{\partial x_\nu \partial x_i}(x)$ ou $\partial_k \partial_l J(x)$.
- ➤ Ici aussi, on peut montrer que

$$[D^2J(x)] = \begin{pmatrix} \partial_1\partial_1J(x) & \partial_2\partial_1J(x) & \dots & \partial_n\partial_1J(x) \\ \partial_1\partial_2J(x) & \partial_2\partial_2J(x) & \dots & \partial_n\partial_2J(x) \\ \dots & \dots & \dots \\ \partial_1\partial_nJ(x) & \partial_2\partial_nJ(x) & \dots & \partial_n\partial_nJ(x) \end{pmatrix}.$$

- \blacktriangleright Dans ce cas, la hessienne $D^2J(x)$ est une forme bilinéaire et continue de $\mathbb{R}^{n\times n}$.
- ➤ D'après l'identification ci-dessus, il existe un **unique** élément $[D^2J(x)] \in \mathbb{M}_{n,n}$ tel que

$$D^2 J(x) \cdot (h, k) = \langle [D^2 J(x)] h, k \rangle_{\mathbb{R}^n} \quad \forall h, k \in \mathbb{R}^n.$$

- \blacktriangleright Les coefficients de $[D^2J(x)]$ sont des dérivées partielles secondes, notées $\frac{\partial^2 J}{\partial x_i \partial x_i}(x)$ ou $\partial_k \partial_l J(x)$.
- Ici aussi, on peut montrer que

$$[D^2J(x)] = \begin{pmatrix} \partial_1\partial_1J(x) & \partial_2\partial_1J(x) & \dots & \partial_n\partial_1J(x) \\ \partial_1\partial_2J(x) & \partial_2\partial_2J(x) & \dots & \partial_n\partial_2J(x) \\ \dots & \dots & \dots \\ \partial_1\partial_nJ(x) & \partial_2\partial_nJ(x) & \dots & \partial_n\partial_nJ(x) \end{pmatrix}.$$

En particulier, on peut écrire :

$$D^2J(x)\cdot(h,h')=(\nabla^2J(x)h,h')=\sum_{i,j=1}^nh_i\,h'_j\partial_i\partial_jJ(x)$$

