

Question 1: Tidligere eksamensoppgave
X
Hva inneholder prioritetskøen som brukes i Prims algoritme?
O Noder
Question 2: Disjoint Set Forest
Hvilken påstand stemmer om Disjoint Set Forest-datastrukturen (side 568 i boka)?
Uten stikomprimeringsheuristikken vil ikke Find-Set(x) finne riktig representant
Etter Find-Set(x) vil alle noder i treet som x tilhører ha samme forelder x.p
Rangen <i>u.rank</i> for en node <i>u</i> er en øvre grense for høyden til <i>u</i>
Rangen <i>u.rank</i> for en node <i>u</i> er nøyaktig lik høyden til <i>u</i>

Question 3: Prim og Kruskal
Under forløpet til Prim og Kruskal kaller vi mengden med kanter som foreløpig er valgt A . For hvilke algoritmer kan A inneholde mer enn ett tre om gangen?
O Prim og Kruskal
Bare Kruskal
○ Ingen av dem
O Bare Prim
Question 4: Prim og Kruskal
imes
Hvilke påstander stemmer?
✓ Prim er en grådig algoritme.
Kruskal velger alltid en lett kant som den neste kanten.
Kruskal er en grådig algoritme.
\square I Prims algoritme henter <i>Extract-Min(Q)</i> ut noden u fra prioritetskøen Q med lavest verdi for feltet $u.\pi$

Question 5: Kruskals algoritme	
	×
Hva skjer dersom man unnlater å sortere kantene i Kruskals algoritme?	
Man får et spenntre.	
○ Man får ikke et spenntre.	
Man får et minimalt spenntre.	

Hva blir det minimale spenntreet for figuren under?

- A-B, B-C, C-H, F-G, G-H, D-E, D-C
- A-D, B-C, D-C, D-G, F-G, D-E, E-H
- A-D, D-E, E-H, C-H, B-C, F-G, G-H
- A-D, D-C, B-C, C-H, G-H, F-G, E-H

Question 7: Kruskals algoritme
×
Dersom du bruker Kruskals algoritme for å finne det minimale spenntreet i oppgave 6, hvilken kant velges som den syvende kanten?
○ D-G
○ С-Н
○ C-D
○ A-D
Question 8: Prims algoritme
×
Demonstration Deines also situate for \$ figure data scipinals as a material in a group C. buillion bacturals as a group day
Dersom du bruker Prims algoritme for å finne det minimale spenntreet i oppgave 6, hvilken kant velges som den femte kanten? Start i node A .
○ F-G
○ С-Н
○ E-F
○ E-H

Question 9: Minimale spenntrær
×
Et lite land langt, langt borte består av en mengde øyer. Innbyggerne har lenge samlet inn penger for å få veiforbindelse mellom alle øyene. Prislappen på broene er kun avhengig av broenes lengder og de ønsker derfor å binde sammen øyene med kortest mulig samlet brolengde. Hvor mange broer vil du trenge dersom det er n øyer? onumber $(n-1)n/2$ $n/2$ $n/2$
Question 10: Minimale spenntrær
×
Hvis kanten (u, v) er den kanten med lavest vekt i en sammenhengende graf, så er (u, v) med i ett og bare ett minimalt spenntre av grafen.
○ Sant
Usant

Question 11: Minimale spenntrær
×
Hvis kanten (u, v) har lavere vekt enn alle de andre kantene i en sammenhengende graf, så er (u, v) med i alle minimale spenntre av grafen.
Sant
○ Usant
Question 12: Minimale spenntrær
×
Hvis alle kantene i en sammenhengende graf har forskjellige vekter, vil grafen kun ha ett minimalt spenntre.
Sant
○ Usant
Overtine 42: Minimals and attents
Question 13: Minimale spenntrær
Question 13. Minimale spenintrær
Question 13. Minimale spenintrær
Dersom ikke alle kantvektene i en sammenhengende graf er unike, vil denne grafen nødvendigvis ha flere minimale spenntrær.
Dersom ikke alle kantvektene i en sammenhengende graf er unike, vil denne grafen nødvendigvis ha flere minimale
Dersom ikke alle kantvektene i en sammenhengende graf er unike, vil denne grafen nødvendigvis ha flere minimale spenntrær.

Din venn Lurvik tror han har laget en god algoritme for å finne minimale spenntrær. Anta en sammenhengende og urettet graf. Algoritmen er som følger:

La S betegne mengden med foreløpig valgte noder, og A mengden med foreløpig valgte kanter.

A Når algaritman finnar at spanntra av det minimalt

Hvilket alternativ er riktig?

- Når algoritmen finner et spenntre, er det minimalt.
- Algoritmen finner alltid minimale spenntrær.
- O Algoritmen finner spenntrær som ikke er minimale.
- Algoritmen finner aldri minimale spenntrær.