AC Fundamentals

Day 12 RC circuit

ILOs – Day 12

- For a resistive + capacitive circuit with AC supply:
 - Derive the expression for current and power
 - Draw phasor diagram
- Define active, reactive, and apparent power in AC circuits and obtain their expressions

AC circuit operation with resistance and capacitance together

Phasor diagram

- \bullet To draw the phasor diagram, we take the signals $V_{RMS},\,I_{RMS},\,V_R,\,V_C$
- The RMS value of current I_{RMS} is considered as the reference phasor and it is thus drawn along the X-axis
- In series circuit, current is common to all the elements, so take current as reference

Phasor diagram

• The RMS value of current I_{RMS} is drawn along the X-axis

Phasor diagram

- Voltage drop across the resistance is $V_{R} = I_{RMS}R$
- V_R phasor is drawn in the same direction as the current phasor

Phasor diagram

Voltage drop across the capacitor is

$$V_C = I_{RMS} X_C$$

- V_C phasor is drawn 90⁰ lagging to the current phasor
- (remember, voltage across a capacitor lags the current through it by 90°)

Phasor diagram

 According to KVL, the supply voltage must equal summation of the two voltage drops, one across the resistance and the other across the capacitance

$$\overline{V_{RMS}} = \overline{V_R} + \overline{V_C}$$

Phasor diagram

$$\overline{V_{\rm RMS}} = \overline{V_{\rm R}} + \overline{V_{\rm C}}$$

• Thus, the supply voltage phasor V_{RMS} is drawn as the vector addition (resultant) of the two phasors V_R and V_C

Phasor diagram

• The angle between the supply voltage V_{RMS} phasor and the supply current I_{RMS} phasor is known as the **power factor angle** ϕ

Phasor diagram

Value of the power factor angle can be expressed from the phasor diagram as:

$$\phi = \tan^{-1} \left(\frac{V_C}{V_R} \right) = \tan^{-1} \left(\frac{I_{RMS} \times X_C}{I_{RMS} \times R} \right) = \tan^{-1} \left(\frac{X_C}{R} \right)$$

$$\phi = \tan^{-1} \left(\frac{1}{\omega CR} \right)$$

$$\phi$$

$$\phi$$

$$\phi$$

Phasor diagram

Drawing only the voltage phasors from the phasor diagram we obtain the so-called **voltage triangle** of a series R-C circuit:

Voltage triangle

From the voltage triangle we have the relation:

$$V_{RMS} = \sqrt{{V_R}^2 + {V_C}^2}$$

$$V_{RMS} = \sqrt{\left(I_{RMS}R\right)^2 + \left(I_{RMS}X_C\right)^2}$$

$$V_{RMS} = I_{RMS} \sqrt{R^2 + X_C^2}$$

$$\frac{V_{RMS}}{I_{RMS}} = \sqrt{R^2 + X_C^2}$$

$$\frac{V_{RMS}}{I_{RMS}} = \sqrt{R^2 + X_C^2} = Z$$

This ratio of V_{RMS} and I_{RMS} in a series R-C circuit is called **impedance** of the circuit that has a magnitude

$$Z = \sqrt{R^2 + X_C^2}$$

The unit of impedance is "Ohm" (Ω).

Voltage triangle

$$V_R = I_{RMS} \times R$$

$$V_L = I_{RMS} \times X_C$$

$$V_{RMS} = I_{RMS} \times Z$$

- Redraw the same triangle in terms of the resistance, reactance, and impedance only
- (by eliminating the common quantity I_{RMS})

Impedance triangle

Hypotenuse of the impedance triangle is the impedance Z

The angle between Z and R is the power factor angle ϕ

More on phase angle

- The supply voltage signal lags the current by a phase angle ϕ which is less than 90°
- This is expected because it is a combination of R and C circuit
- In an R + C circuit, the angle between voltage and current should lie somewhere between 0° (pure resistance) and 90° (pure capacitance)
- When $X_C = R$, the phase angle $\phi = 45^\circ$
- When R > X_C , the phase angle ϕ < 45°
- When $X_C > R$, then the phase angle $\phi > 45^0$

$$v = V_m \sin \omega t$$

$$i = I_m \sin(\omega t + \phi)$$

Instantaneous power

$$p = v \times i$$

$$p = V_m \sin \omega t \times I_m \sin(\omega t + \phi)$$

$$p = V_m I_m \sin \omega t \sin(\omega t + \phi)$$

$$p = \frac{V_m I_m}{2} \left[\cos(\omega t - \omega t - \phi) - \cos(\omega t + \omega t + \phi)\right]$$

$$p = \frac{V_m I_m}{2} \left[\cos(-\phi) - \cos(2\omega t + \phi)\right]$$

$$p = \frac{V_m I_m}{2} \left[\cos(\phi) - \cos(2\omega t + \phi) \right]$$

As earlier, the instantaneous power varies at **twice the frequency** of the input voltage signal.

Average power

$$p = \frac{V_m I_m}{2} \left[\cos(\phi) - \cos(2\omega t + \phi) \right]$$

$$P = \frac{1}{T} \int_{0}^{T} p dt$$

$$P = \frac{1}{T} \int_{0}^{T} \frac{V_{m}I_{m}}{2} \left[\cos(\phi) - \cos(2\omega t + \phi)\right] dt$$

$$P = V_{RMS} I_{RMS} \cos \phi$$

Same expression as for R+L circuit

Active power is the product of RMS values of voltage and current, and the power factor

Summary

Type of circuit	Effective impedance Z (Ω)	Current I _{RMS}	Phase angle (φ) between V & I	Power factor (cos phi)	Active power
R	R	$\frac{V_{\scriptscriptstyle RMS}}{R}$	O_0	1	$V_{\scriptscriptstyle RMS}I_{\scriptscriptstyle RMS}$
L	$X_L = \omega L$	$rac{V_{\scriptscriptstyle RMS}}{X_{\scriptscriptstyle L}}$	I _{RMS} lags V _{RMS} by 90 ⁰	0	0
R-L	$Z = \sqrt{R^2 + X_L^2}$	$rac{V_{\scriptscriptstyle RMS}}{Z}$	I_{RMS} lags V_{RMS} by ϕ $\phi = \tan^{-1} \left(\frac{\omega L}{R} \right)$	(Lag) $\cos \phi$	$V_{\scriptscriptstyle RMS}I_{\scriptscriptstyle RMS}\cos\phi$
С	$X_C = \frac{1}{\omega C}$	$rac{V_{\scriptscriptstyle RMS}}{X_{\scriptscriptstyle C}}$	I _{RMS} leads V _{RMS} by 90 ⁰	0	0
R-C	$Z = \sqrt{R^2 + X_C^2}$	$rac{V_{\scriptscriptstyle RMS}}{Z}$	I_{RMS} leads V_{RMS} by ϕ $\phi = \tan^{-1} \left(\frac{1}{\omega CR} \right)$	(Lead) $\cos \phi$	$V_{RMS}I_{RMS}\cos\phi$

Voltage triangle of RL circuit

$$V_R = V_{RMS} \cos \phi$$
 $V_L = V_{RMS} \sin \phi$

Multiplying all three arms of the voltage triangle by the current I_{RMS} , we have the so called **power triangle**:

- The quantity $P = V_{RMS}I_{RMS}cos\phi$ is called the active power
- It is expressed in the unit of Watt (W)
- The quantity $Q = V_{RMS}I_{RMS}sin\phi$ is called the reactive power
- It is expressed in the unit of Volt-Ampere-Reactive (VA_R)
- The quantity $S = V_{RMS}I_{RMS}$ is called the apparent power (*Total power*)
- It is expressed in the unit of Volt-Ampere (VA)

The relation among the three powers are:

$$S = \sqrt{P^2 + Q^2}$$

- These mathematical relations are equally valid for R-C circuits also
- The practical definition of power factor can now be derived from the power triangle as:

$$\cos \phi = \frac{P}{S} = \frac{\text{Active power}}{\text{Apparent power}}$$

$$\cos \phi = \frac{P}{S} = \frac{\text{Active power}}{\text{Apparent power}}$$

Thus, power factor can be defined as the fraction of total apparent power that is being used as active power

- The power factor is lagging when the current lags the applied voltage (inductive circuit, i.e. R-L circuit)
- The power factor is leading when the current leads the applied voltage (capacitive circuit, i.e. R-C circuit)
- For purely inductive or purely capacitive circuit, the power factor is cos90° = 0
- For purely resistive circuit, the power factor is $cos0^0 = 1$