

Séries numériques et intégrales généralisées M33 - Devoir Surveillé N°1

MARDI 3 NOVEMBRE 2020, DURÉE 2 HEURES

Aucun document n'est autorisé, les calculatrices et autres objets électroniques sont interditsts. La rédaction tiendra une part importante dans l'évaluation des copies.

Exercice 1. Soit A et B deux parties non vides et bornées de \mathbb{R} . On note A+B l'ensemble $A+B=\{a+b \mid a \in A, b \in B\}$.

- 1. Montrer que A+B est majoré par sup $A+\sup B$. En déduire que A+B admet une borne supérieure.
- 2. Montrer que $\sup(A+B) = \sup A + \sup B$.
- 3. Application : Soit $X = \left\{ \frac{(-1)^p}{p} + \frac{2}{q} \ / \ p, q \in \mathbb{N}^* \right\}$. Déterminer $\sup X$

Exercice 2.

1. Soit $n \in \mathbb{N}^*$ fixé. Montrer par récurrence sur p que quel que soit $p \in \mathbb{N}^*$,

$$\frac{1}{(n+1)^2} + \ldots + \frac{1}{(n+p)^2} < \frac{1}{n} - \frac{1}{n+p}.$$

2. Soit $(u_n)_{n\geqslant 1}$ la suite définie par

$$u_n = \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2}.$$

Montrer que $(u_n)_n$ est une suite convergente (on ne cherchera pas à déterminer la limite de cette suite).

Exercice 3. Indiquer si les intégrales généralisées suivantes sont convergentes ou divergentes. Justifier.

1.
$$I = \int_0^1 \frac{\sin(5x) - \sin(3x)}{x^{\frac{5}{3}}} dx$$
.

$$2. \ J = \int_1^{+\infty} \frac{\ln t}{t^2} dt.$$

Exercice 4.

- 1. Soit $x \ge 1$. Déterminer la nature de l'intégrale impropre $\int_x^{+\infty} \frac{e^{-t}}{t} dt$.
- 2. Pour tout x > 1, on pose $f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt$. Montrer que pour tout $x \ge 1$, $0 \le f(x) \le \frac{e^{-x}}{x}$. En déduire $\lim_{x \to +\infty} f(x)$.
- 3. Soit x > 1. Montrer que $\int_x^{+\infty} \frac{e^{-t}}{t^2} dt$ converge et satisfait $0 < \int_x^{+\infty} \frac{e^{-t}}{t^2} dt < \frac{e^{-x}}{x^2}$. En déduire que $\lim_{x \to +\infty} \frac{x}{e^{-x}} \int_x^{+\infty} \frac{e^{-t}}{t^2} dt = 0$.
- 4. Faire une intégration par parties pour montrer que $f(x) \sim_{x \to +\infty} \frac{e^{-x}}{r}$.