Analysis US Airline Sentiments and Classification Models Evaluations

Research Problem

Dataset: Tweet dataset from Kaggle[1] (14640 rows x 15 columns)

Problem: Use word embedding to find the relationship of sentiment and feedback from Twitter

Hypothesis

- H0: cannot improve the performance with different model

Approach

Data Processing: clean data and CountVectorizer

'@VirginAmerica had to change to another airline to get to DC today ... Why is @united able to land in DC but not you? Cost me \$800 ...ugh'

'virginamerica have to change to another airline to get to dc today why be unite able to in dc but not you cost me ugh'

- Split data into training set and testing set: 0.33
- Testing set and validation set: 0.5
- Model selection Grid Search
 - Baseline: naive Bayes
 - Decision Tree & Random Forest & logistic regression
 - Ensemble model

```
The vector is:
[[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
```

```
[0 0 0 ... 0 0 0]
[0 0 0 ... 0 0 0]
```


Evaluation

- f1_score, accuracy
 - Five models → best model

- McNemar's test
 - Baseline compares with best model

Result

f1_score & accuracy

Best model:

Voting Classifier

McNemar's Test Result

P-value: 1.0670431364752282e-10 < 0.05

Conclusion: reject H0

Thank You

