Common Organic Ligands

Carbon Monoxide (CO) is also an important ligand

Terminology: Hapticity

"eta-x" was originally developed to indicate how many <u>contiguous</u> donor atoms of a π -system were coordinated to a metal center. <u>Hapticity</u> is another word used to describe the bonding mode of a ligand to a metal center. An η^5 -cyclopentadienyl ligand, for example, has all five carbons of the ring bonding to the transition metal center.

 η^X values for all-carbon based ligands where the x value is odd usually indicate <u>anionic</u> carbon ligands (e.g., η^5 -Cp, η^1 -CH₃, η^1 -allyl or η^3 -allyl, η^1 -CH=CH₂). The # of electrons donated (ionic method of electron counting) by the ligand is usually equal to x + 1. Even η^x values usually indicate <u>neutral</u> carbon π -system ligands (e.g., η^6 -C₆H₆, η^2 -CH₂=CH₂, η^4 -butadiene, η^4 -cyclooctadiene). The # of electrons donated by the ligand in the even (<u>neutral</u>) case is usually just equal to x.

	M	M	M
η ⁵ -Cp	η ³ -Cp	η^3 -allyl	η^1 -allyl

Common Ligands and Electrons Contributed

☐ Electron Counting

- a) Common organometallic ligands are assigned an electron count and charge; those that are commonly ions are treated as such
- b) The overall charge on the complex must equal the total charge on ligands plus the charge on the metal; this helps determine delectron count of metal
- c) Add up all electrons from metal d orbitals and ligands to find total e-count

Ligand	Method A	
H	2 (H ⁻)	
Cl, Br, I	$2(X^{-})$	
OH, OR	$2 (OH^-, OR^-)$	
CN	2 (CN ⁻)	
CH ₃ , CR ₃	$2 (CH_3^-, CR_3^-)$	
NO (bent M—N—O)	2 (NO ⁻)	
NO (linear M—N—O)	2 (NO ⁺)	
CO, PR ₃	2	
NH_3 , H_2O	2	
=CRR' (carbene)	2	
$H_2C = CH_2$ (ethylene)	2	
CNR	2	
=0,=s	$4 (O^{2-}, S^{2-})$	
η^3 -C ₃ H ₅ (π -allyl)	$2(C_3H_5^+)$	
≡CR (carbyne)	3	
≡N	$6 (N^{3-})$	
Ethylenediamine (en)	4 (2 per nitrogen)	
Bipyridine (bipy)	4 (2 per nitrogen)	
Butadiene	4	
η ⁵ -C ₅ H ₅ (cyclopentadienyl)	$6 (C_5 H_5^-)$	
η^6 -C ₆ H ₆ (benzene)	6	
η^7 -C ₇ H ₇ (cycloheptatrienyl)	$6 (C_7 H_7^+)$	

Varying Hapticity = Varying Electron Contribution

- ☐ Consider the cyclopentadienyl anion.
- ☐ How do we get the cyclopentadienyl anion? How to understand its structure?

Copyright © 2007 Pearson Prentice Hall, Inc.

Varying Hapticity = Varying Electron Contribution

$M - \langle $
$M \longrightarrow \bigcirc$
$M \longrightarrow$

Dewar-Chatt-Duncanson Model for Metal-Alkene Bonding

 σ -component: C-C π \rightarrow empty metal orbital

 $\pi\text{-component:}$ occupied metal d \to empty C-C π^*

Note the similarity to CO ligands...

σ-component: donation of C lone pair

π-component: backbonding into CO π*

Metal-Carbonyl Complexes

☐ The carbonyl ligand forms a huge number of complexes with metal ions, most commonly in low oxidation states, where it binds to the metal through its C-donor, as in the complexes below, where all the metal ions are zero-valent:

Metal-Carbonyl Complexes: 18 Electron Rule

- Why in the above complexes Ni(0) has four C≡O groups attached to it, Fe(0) five C≡O, and Cr(0) six C≡O?
- ☐ The eighteen electron rule allows us to explain this observation.

☐ The charge on the complexes is zero. Since CO is a neutral molecule, the metals are in the zero oxidation state.

[Ni(CO) ₄]	[Fe(CO) ₅]	[Cr(CO) ₆]
$Ni(0) = d^{10}$ $4 \times CO = 8$	Fe(0) = d ⁸ 5 x CO =10	$Cr(0) = d^6$ 6 x CO = 12
18 e	18e	 18e

Example: A Simple Case

- 1) There is no overall charge on the complex
- There is one anionic ligand (CH₃⁻, methyl group)
- 3) The Re metal atom must have a +1 charge to compensate for the one negatively charged ligand. So the Re is the in the +1 oxidation state. We denote this three different ways: Re(+1), Re(I), or Re^I.

Re(+1)		d^6
2 PR ₃		4e-
2 CO		4e-
CH ₃ ⁻		2e-
$CH_2=CH_2$		2e-
	Total:	18e-

Example: Simple Case with Somewhat Unusual Ligand

- 1) There is a +2 charge on the complex
- 2) The CNCH₃ (methyl isocyanide) ligand is neutral, but lets check the Lewis Dot structure to make sure that is correct:

3) Because there is a +2 charge on the complex and all neutral ligands present, the Mo has a +2 charge & oxidation state.

Example: Somewhat Tricky!

- 1) There is no overall charge on the complex
- 2) There is one anionic ligand $(C_3H_5^-, allyl)$

3) The top ligand is NOT a MeCp⁻! It is a neutral diene that has a H attached to the methyl-substituted ring carbon. This is a neutral 4e- donor.

4) Because the complex is neutral and there is one anionic ligand present, the Rh atom must have a +1 charge to compensate for the one negatively charged ligand. So the Rh atom is in the +1 oxidation state.

Rh(+1)		d^8
PR ₃		2e-
η ⁴ -C ₅ H ₅ Me		4e-
η^3 -C ₃ H ₅		4e-
	7D 4 1	10

Total: 18e-

18 Electron Rule Explains Some Observations

- \square The compound $Mn_2(CO)_{10}$ exists but $Mn(CO)_5$ does not.
- \square A species such as [Mn(CO)₅] would have only 17 e.
- □ Each Mn contributes one electron to the valence shell of the other Mn, giving the metal-metal bonded species $[(CO)_5Mn-Mn(CO)_5]$. To check on the 18e rule, we look at one metal at a time:

Bridging Carbonyl Ligands

 $[Co_2(CO)_8]$

- ☐ Carbonyls may form bridges between two metals, where they donate one electron to each metal in working out the 18 electron rule.
- ☐ In [Co₂(CO)₈], each Co has three terminal CO's, two bridging CO's, and a Co-Co bond:

$$Co(0)$$
 =
 d^9
 3 CO's
 =
 6
 2 bridge CO's
 =
 2
 Co - $Co \text{ bond}$
 =
 1
 18 e

Terminolgy for Bridging Ligands

 μ "mu-x" is the nomenclature used to indicate the presence of a bridging ligand between two or more metal centers. The x refers to the number of metal centers being bridged by the ligand. Usually most authors omit x = 2 and just use μ to indicate that the ligand is bridging the simplest case of two metals.

