

AMENDMENTS TO THE CLAIMS

This listing of the claims will replace all prior versions, and listings, of claims in the application. Deleted material is shown in strike through, and inserted material is underlined, to show the changes made.

1-36. (Cancelled).

1 37. (Currently Amended) A method of controlling a fluid flow rate of at least one pump and
2 an air flow rate of at least one fan, in a cooling system for cooling at least one device, the
3 method comprising the steps of:

4 providing a heat exchanger thermally coupled with the at least one device;

5 providing at least a portion of the heat exchanger with fluid from the at least one
6 pump, the fluid having the ability to absorb and store heat;

7 providing at least one temperature sensor coupled to the at least one device to
8 measure at least one temperature value of the at least one device;

9 receiving the at least one temperature value from the at least one temperature
10 sensor; and

11 providing a controller to selectively control at least one of the fluid flow rate and
12 the air flow rate, based on the at least one temperature value, such that the temperature of the at
13 least one device is maintained below a maximum allowable temperature.

1 38. (Original) The method of claim 37, wherein the fluid flows in a closed loop.

1 39. (Original) The method of claim 37, wherein the device comprises an electronic circuit.

1 40. (Original) The method of claim 39, wherein the electronic circuit is a microprocessor.

1 41. (Cancelled).

1 42. (Currently Amended) The method of claim [[41]] 37, wherein the heat exchanger
2 contains internal flow regions for distributing fluid, and wherein the fluid [[medium]] is
3 [[laterally]] distributed through [[in]] the internal flow regions of the heat exchanger.

- 1 51. (Withdrawn) The method of claim 37, wherein the controller adjusts a current supplied to
2 the at least one pump in response to the measured temperature value of the device.

1 52. (Withdrawn) The method of claim 37, wherein the controller adjusts a voltage supplied to
2 the at least one pump in response to the measured temperature value of the device.

1 53. (Withdrawn) The method of claim 37, wherein the controller adjusts a current supplied to
2 the at least one fan in response to the measured temperature value of the device.

1 54. (Withdrawn) The method of claim 37, wherein the controller adjusts a voltage supplied to
2 the at least one fan in response to the measured temperature value of the device.

1 55. (Withdrawn) The method of claim 37, wherein the controller adjusts an average power
2 supplied to the at least one fan with a pulse width modulated signal.

1 56. (Withdrawn) The method of claim 37, further including a valve for regulating the fluid
2 flow rate, which is selectively opened and closed to a variable state in response to the
3 measured temperature value.

1 57. (Withdrawn) The method of claim 37, wherein the at least one pump is controlled
2 independently of the at least one fan.

1 58. (Withdrawn) The method of claim 37, wherein the at least one pump is controlled
2 cooperatively with the at least one fan.

1 59. (Withdrawn) The method of claim 37, wherein a power consumption of the cooling
2 system is reduced to a minimal level by changing a power to the at least one pump and
3 the at least one fan.

1 60. (Withdrawn) The method of claim 37, wherein a noise of the at least one pump is held
2 constant while the at least one fan is used to control the temperature value of the device.

- 1 61. (Withdrawn) The method of claim 37, wherein a noise of the at least one fan is held
2 constant while the at least one pump is used to control the temperature value of the
3 device.
- 1 62. (Withdrawn) The method of claim 37, wherein time variations in noise level of the at
2 least one fan are minimized according to a predetermined criteria.
- 1 63. (Withdrawn) The method of claim 37, wherein time variations in noise level of the at
2 least one pump are minimized according to a predetermined criteria.
- 1 64. (Withdrawn) The method of claim 37, wherein time variations in noise level of the at
2 least one pump and the at least one fan are minimized according to a predetermined
3 criteria.
- 1 65. (Withdrawn) The method of claim 37, wherein a sum of the noise level of the at least one
2 fan and the at least one pump is minimized.
- 1 66. (Withdrawn) The method of claim 37, wherein the temperature values of the at least one
2 device are maintained between a minimum temperature level and a maximum
3 temperature level, such that the power consumption of the cooling system is reduced to a
4 minimum level.
- 1 67. (Withdrawn) The method of claim 37, wherein the controller includes a control algorithm
2 based on a thermal time constant, wherein the thermal time constant is a product of a
3 thermal resistance value and a thermal capacitance value.
- 1 68. (Withdrawn) The method of claim 67, wherein the thermal time constant is being applied
2 to develop optimal control schemes for at least one of the at least one pump and the at
3 least one fan, in response to power consumed from the at least one device.
- 1 69. (Withdrawn) The method of claim 68, wherein the optimal control schemes include
2 increasing a fluid flow rate of the at least one pump, with no increase of air flow rate of
3 the at least one fan.

1 70. (Withdrawn) The method of claim 68, wherein the optimal control schemes include
2 increasing a fluid flow rate of the at least one pump, with a gradual increase of air flow
3 rate of the at least fan, so that acoustic noise variations are maintained below a
4 predetermined limit.

1 71. (Withdrawn) The method of claim 68, wherein the optimal control schemes include
2 gradually decreasing an air flow rate of the at least one fan such that acoustic noise
3 variations are maintained below a predetermined limit.

1 72. (Withdrawn) The method of claim 68, wherein the optimal control schemes include
2 decreasing a fluid flow rate of the at least one pump, with no increase of air flow rate of
3 the at least one fan.

73-107. (Canceled).

108. (New) The method of claim 37, wherein at least one additional temperature sensor
measures at least one additional temperature value in the cooling system.

109. (New) The method of claim 42, wherein the internal flow regions comprise
microchannels.