## ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

# «ФИНАНСВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ)

Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Факультет информационных технологий и анализа больших данных Форма обучения очная

Учебный 2020/2021 год, 4 семестр

Курсовая работа

на тему:

«Проверка гипотезы о нормальном распределении дневной логарифмической доходности при условии определенного объема торгов накануне»

Вид исследуемых данных:

Котировки акций компаний, входящих в индекс S&P 100

Допущена к защите 17 мая 2021 г.

# Содержание

| 1. | Вв   | ведение                                                          | 2  |
|----|------|------------------------------------------------------------------|----|
| 1  | .1.  | Подробное разъяснение темы                                       | 2  |
| 1  | .2.  | Описание выборок                                                 | 2  |
| 1  | .3.  | Планируемая новизна                                              | 2  |
| 2. | Пр   | редварительный анализ данных                                     | 2  |
| 3. | Tee  | оретическая справка по проверке гипотез                          | 8  |
| 3  | .1.  | Критерий Пирсона для сложной гипотезы                            | 8  |
| 3  | .2.  | Критерий Колмогорова – Смирнова                                  | 9  |
| 4. | Пр   | ооверка гипотез на модельных данных                              | 9  |
| 5. | Вы   | ыбор альтернативной гипотезы и оценка мощности критерия          | 12 |
| 6. | Пр   | ооверка гипотезы на реальных данных                              | 14 |
|    | .1   | . Проверка гипотезы о нормальном распределении дневной логарифми |    |
| Д  | OXO, | одности при условии определенного объема торгов накануне         | 15 |
| 7. | Зан  | ключение                                                         | 17 |
| 8. | Ли   | тература                                                         | 18 |
| 9. | Пр   | риложения                                                        | 18 |
| Π  | Іри. | ложение 1                                                        | 18 |
| Π  | Іри. | ложение 2 – Код программ                                         | 19 |
| Ι  | Iри. | ложение 3 - Список файлов                                        | 33 |

## 1. Введение

### 1.1. Подробное разъяснение темы

Целью данной курсовой работы является проверка гипотезы о нормальном распределении логарифмической доходности при условии определенного объема торгов накануне.

Основным критерием проверки данной гипотезы был выбран критерий  $\chi^2$  Пирсона. Как вспомогательный критерий для проверки равномерности распределения будет использован критерий Колмогорова - Смирнова. Помимо нулевой гипотезы в качестве альтернативных гипотез было взято распределение Стьюдента со степенями свободны t(2), t(3), t(5), t(15) и стандартное распределение Коши. Мощность критериев оценивается методом Монте-Карло.

## 1.2. Описание выборок

В данной курсовой работе используются данные о котировках 18 компаний, входящий в индекс S&P 100. Это компании со следующими тикерами: AAPL, AMZN, CSCO, DIS, FB, FDX, GOOG, IBM, INTC, KO, MCD, MSFT, NFLX, NKE, PFE, PG, TSLA, V. В курсовой работе будут анализироваться данные за период с 1 января 2010 года по 31 декабря 2020 года. В ходе проверки гипотезы часть данных придется убрать. Гипотеза о нормальном распределении дневной логарифмической доходности будет проверяться 10000 раз.

## 1.3. Планируемая новизна

В качестве новизны в курсовой работе будут рассматриваться другие акции из индекса S&P 100. Будут использованы пять альтернативных гипотез. Также новизна данной работы заключается в том, что квантили и P-значения считаются для различных объемов выборки (году, полугодию, кварталу).

# 2. Предварительный анализ данных

Для анализа будут использоваться акции компаний, входящих в индекс S&P 100, который включает в себя крупнейшие и наиболее авторитетные, стабильные компании, «голубые шишки» из списка S&P 500. Список компаний, входящих в данный индекс, а также

информация о ценах на акции, взяты с сайта <a href="http://finance.yahoo.com">http://finance.yahoo.com</a> . В последний раз данные обновлялись 31.04.21. Ниже приведена таблица компаний и соответствующие им тикеры:

Таблица 1. Список компаний

| Тикер | Компания                       |
|-------|--------------------------------|
| AAPL  | Apple, Inc.                    |
| AMZN  | Amazom.com, Inc.               |
| CSCO  | Cisco Systems, Inc.            |
| DIS   | The Walt Disney Company        |
| FB    | Facebook, Inc.                 |
| FDX   | FedEx Corp.                    |
| GOOG  | Alphabet, Inc.                 |
| IBM   | International Business Machine |
| INTC  | Intel Corp.                    |
| KO    | The Coca-Cola Company          |
| MCD   | McDonald's Corp.               |
| MSFT  | Microsoft Corp.                |
| NKE   | Nike, Inc.                     |
| NFLX  | Netflix, Inc.                  |
| PFE   | Pfizer, Inc.                   |
| PG    | Procter & Gamble Co            |
| TSLA  | Tesla, Inc.                    |
| V     | Visa, Inc.                     |

Для того чтобы удостовериться в пригодности данных по компаниям для исследования в рамках этой работы, рассмотрим таблицу количества торговых дней. Необходимо, чтобы количество дней по каждому тикеру было более 240. Торги должны проводиться на одной бирже, а данные должны быть доступны за один и тот же период времени. Для этого используется программа «Код 01. Количество торговых дней.ipynb» (используемые поля "Date", единица измерения – шт.)

Таблица 2. Количество торговых дней

| Тикеры | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| AAPL   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| AMZN   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| CSCO   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| INTC   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| MCD    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| NKE    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| FDX    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| PG     | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| V      | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| DIS    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| FB     | 0    | 0    | 154  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| GOOG   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| NFLX   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| MSFT   | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| IBM    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| КО     | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| TSLA   | 129  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |
| PFE    | 252  | 252  | 250  | 252  | 252  | 252  | 252  | 251  | 251  | 252  | 252  |

По данным таблицы видно, что не все тикеры удовлетворяют предъявленным требованиям. Из списка исследуемых данных необходимо исключить акции компаний с тикерами FB и TSLA, так как они не торговалась на бирже достаточное количество дней в период с 2010 по 2012 года и в 2010 году соответственно. В остальных компаниях наблюдается одинаковое количество торговых дней.

Рассмотрим максимальные отклонения цен акций, построив таблицу максимальных дневных относительных скачков вверх и вниз по годам и тикерам. Эти таблицы были построены при помощи программы «Код 02. Максимальные скачки цены.ipynb» (используемые поля "Date", "Open", "Close", единица измерения – проценты)

Таблица 3. Максимальные скачки цены вверх (в %)

|      | 2010  | 2011  | 2012  | 2013 | 2014 | 2015 | 2016  | 2017 | 2018 | 2019 | 2020  | Max   |
|------|-------|-------|-------|------|------|------|-------|------|------|------|-------|-------|
| AAPL | 4,08  | 3,85  | 5,31  | 3,96 | 3,72 | 8,7  | 3,08  | 2,67 | 5,98 | 3,95 | 6,26  | 8,7   |
| AMZN | 12,22 | 8,18  | 5,36  | 4,16 | 5,02 | 4,12 | 4,43  | 4,05 | 7,45 | 5,05 | 6,55  | 12,22 |
| CSCO | 4,61  | 4,21  | 3,46  | 2,14 | 3,45 | 3,45 | 2,71  | 2,17 | 4,8  | 3,06 | 9,95  | 9,95  |
| INTC | 3,67  | 3,84  | 4,01  | 3,03 | 5,3  | 6,63 | 2,68  | 2,67 | 4,98 | 4,19 | 12,78 | 12,78 |
| MCD  | 2,25  | 3     | 2,98  | 2,06 | 3,06 | 3,95 | 2,58  | 2,58 | 4,31 | 1,86 | 10,58 | 10,58 |
| NKE  | 4,02  | 5,43  | 3,75  | 4,32 | 3,39 | 3,6  | 3,13  | 4,24 | 6,27 | 2,93 | 10,09 | 10,09 |
| FDX  | 5,49  | 5,73  | 4,59  | 4,56 | 2,61 | 2,64 | 4,34  | 3,29 | 3,99 | 3,62 | 12,98 | 12,98 |
| PG   | 2,41  | 2,95  | 3,22  | 2,09 | 2,2  | 2,43 | 2,9   | 1,56 | 3,05 | 2,16 | 7,11  | 7,11  |
| V    | 4,09  | 14,03 | 3,91  | 3,18 | 4,56 | 6,55 | 5,76  | 1,89 | 5,86 | 3,52 | 6,69  | 14,03 |
| DIS  | 4,68  | 3,93  | 3,43  | 2,65 | 2,26 | 3,2  | 3,8   | 3,49 | 5,31 | 7,32 | 7,88  | 7,88  |
| GOOG | 4,46  | 3,04  | 2,6   | 3,99 | 2,49 | 3,69 | 2,23  | 1,81 | 5,2  | 4,15 | 4,84  | 5,2   |
| NFLX | 10,24 | 9,7   | 19,32 | 16,4 | 8,71 | 9,16 | 11,77 | 4,71 | 9,38 | 5,57 | 11,17 | 19,32 |
| MSFT | 3,76  | 4,28  | 3,23  | 3,72 | 3,69 | 4,84 | 3,16  | 1,87 | 5,7  | 2,79 | 7,68  | 7,68  |
| IBM  | 4,34  | 3,62  | 2,23  | 2,67 | 3,33 | 3,03 | 2,87  | 2,65 | 4,21 | 5    | 6     | 6     |
| КО   | 2,44  | 3,86  | 2,02  | 2,34 | 2,74 | 2,1  | 2,46  | 2,67 | 2,86 | 2,3  | 7,15  | 7,15  |
| PFE  | 3,61  | 3,95  | 2,41  | 2,94 | 2,23 | 3,49 | 4,41  | 3,02 | 4,58 | 3,22 | 6,22  | 6,22  |

Таблица 4. Максимальные скачки цены вниз (в %)

|      | 2010   | 2011  | 2012  | 2013   | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020   | Min    |
|------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|--------|--------|
| AAPL | -4,49  | -3,51 | -5,29 | -4,16  | -4,03 | -6,63 | -2,97 | -4    | -4,04 | -3,24 | -7,26  | -7,26  |
| AMZN | -6,58  | -5,01 | -3,57 | -5,62  | -4,08 | -8,56 | -6,29 | -3,4  | -7,3  | -3,82 | -4,52  | -8,56  |
| csco | -4,69  | -4,17 | -4    | -2,75  | -2,45 | -5,09 | -3,23 | -2,03 | -5,11 | -3,85 | -7,07  | -7,07  |
| INTC | -4,14  | -3,24 | -2,92 | -2,81  | -2,98 | -4,33 | -3,16 | -2,85 | -5,59 | -3,6  | -6,15  | -6,15  |
| MCD  | -2,77  | -1,95 | -2,69 | -1,74  | -2,75 | -4,46 | -4,35 | -2,42 | -4,06 | -2,84 | -5,98  | -5,98  |
| NKE  | -3,02  | -5,3  | -4,65 | -2,64  | -2,72 | -5,53 | -4,33 | -2,04 | -5,93 | -3,53 | -5,68  | -5,93  |
| FDX  | -4,27  | -4,94 | -3,72 | -3,03  | -3,29 | -5,04 | -3,71 | -3,53 | -6,2  | -4,03 | -7,17  | -7,17  |
| PG   | -1,87  | -2,43 | -1,57 | -2,98  | -1,9  | -5,21 | -2,98 | -2,35 | -3,49 | -3,91 | -6,19  | -6,19  |
| V    | -12,94 | -4,38 | -4,59 | -8,64  | -3,65 | -6,58 | -4,44 | -3,5  | -4,94 | -3,47 | -5,23  | -12,94 |
| DIS  | -3,27  | -4,07 | -3,97 | -3,16  | -4,21 | -4,14 | -3,34 | -4,42 | -4,66 | -2,83 | -10,43 | -10,43 |
| GOOG | -3,83  | -4,34 | -8,01 | -2,48  | -5,5  | -5,34 | -5,62 | -3,52 | -5,76 | -2,75 | -5,58  | -8,01  |
| NFLX | -6,09  | -12,5 | -7,15 | -16,84 | -6,56 | -6,98 | -6,88 | -5,41 | -9,16 | -4,86 | -7,48  | -16,84 |
| MSFT | -5,75  | -3,98 | -2,84 | -3,09  | -3,44 | -4,93 | -4,01 | -3,96 | -5,76 | -3,24 | -5,92  | -5,92  |
| IBM  | -2,69  | -3,35 | -2,85 | -2,93  | -3,04 | -4,07 | -3,85 | -2,36 | -4,22 | -3,04 | -6,36  | -6,36  |
| КО   | -2,95  | -3,44 | -1,81 | -2,83  | -2,16 | -2,91 | -2,67 | -1,83 | -3,77 | -2,38 | -8,7   | -8,7   |
| PFE  | -3,99  | -4,27 | -3,04 | -3,68  | -2,72 | -5,6  | -2,7  | -1,62 | -4,96 | -3,08 | -6,46  | -6,46  |

Максимальное отклонение цен как вверх, так и вниз наблюдается у компании с тикером NFLX. С помощью программы «Код 03. Графики цен.ipynb» (используемые поля "Date", "Close", единица измерения — доллары США) построим и рассмотрим графики Netflix, Inc.

Рисунок 1. График цен NFLX за 2012 год



Рисунок 2. График цен NFLX за 2013 год



Судя по данным Таблицы 3 и Таблицы 4 скачки цен, которые можно увидеть на

графика на Рисунке 1 и Рисунке 2, тикер NFLX можно оставить для дальнейшего анализа, так как изменение цены не превышало 50 %.

# 3. Теоретическая справка по проверке гипотез

## 3.1. Критерий Пирсона для сложной гипотезы

В нашем случае мы оцениваем оба параметра выборки (математическое ожидание и дисперсию).

Пусть наша выборка разбита на г групп так, что i-я группа, содержащая  $v_i$  значений, принадлежит интервалу  $\left(\varepsilon_i - \frac{1}{2}h; \varepsilon_i + \frac{1}{2}h\right)$ , где  $\varepsilon_i = \varepsilon_1 + (\mathrm{i} - 1)h$ , а  $h = \frac{x_{max} - x_{min}}{m}$ , где  $m = 1 + [\log_2 n]$ , n - объем выборки. Для двух крайних групп (i = 1 и i = r) за интервалы разбиения следует принять соответственно  $\left(-\infty; \varepsilon_1 + \frac{1}{2}h\right)$  и  $\left(\varepsilon_r - \frac{1}{2}h; +\infty\right)$ . Тогда выражения для нахождения мат. ожидания и дисперсии будут выглядеть следующим образом:

$$m = \frac{1}{n} \sum_{i} v_{i} \frac{\int xg(x) dx}{\int g(x) dx}$$
$$\sigma^{2} = \frac{1}{n} \sum_{i} v_{i} \frac{\int (x - m)^{2} g(x) dx}{\int g(x) dx}$$

При первом приближении получаются следующие формулы:

$$m^* = \frac{1}{n} \sum_{i} \nu_i \varepsilon_i$$
$$\sigma^{*2} = \frac{1}{n} \sum_{i} \nu_i (\varepsilon_i - m^*)^2$$

Критерий Пирсона гласит, что его статистика критерия равна:

$$\chi^2 = \sum_{i}^{r} \frac{(\nu_i - np_i)^2}{np_i}$$

где  $\nu_i$  - групповые вероятности выборки,  $p_i$  — соответствующие значения заданной вероятностной функции, такое что для любой части разбиения  $S_i$  верно:

$$p_i = P(S_i)$$

$$\sum_{1}^{r} p_i = 1$$

Гипотеза  $H_0$  отвергается, если при заданном уровне значимости  $\alpha$  выполняется данное неравенство:

$$X^2 > X_{1-\alpha,r-m-1}^2$$

где r – количество разбиений выборки на отрезки, m – количество оцениваемых параметров,  $X^2$  – вычисленная статистика критерия.

## 3.2. Критерий Колмогорова – Смирнова

В качестве вспомогательного критерия по проверке равномерности распределения Рзначения основного критерия был взят критерий Колмогорова - Смирнова. Он проверяется справедливость гипотезы, позволяет произвести проверку согласия эмпирической функции распределения  $\hat{F}_n(x)$  с теоретической F(x).

 $H_0$ :  $\hat{F}_n(x) = F(x)$ . Статистика критерия Колмогорова определяется как наибольший модуль разности между указанными двумя функциями распределения  $\hat{F}_n(x)$ и F(x):

$$D = \max |\widehat{F}_n(x) - F(x)|.$$

При неограниченных объемах данных случайная величина  $\lambda = D\sqrt{n}$  начинает стремиться к случайной величине Q, имеющей распределение Колмогорова:

$$p(\lambda < x) \to p(\theta \le x) = 1 + 2 \sum_{k=1}^{+\infty} (-1)^{k-1} \cdot e^{2k^2x^2}, n \to \infty$$

При заданном уровне значимости  $\alpha$  представляется возможным найти из соотношения  $P(\lambda \alpha) = \alpha$  соответствующее критическое значение  $\lambda \alpha$ , которое как раз таки даст ответ о справедливости гипотезы  $H_0$ :

- если  $\lambda < \lambda \alpha$ , то считается, что предполагаемая функция распределения согласуется с полученными данными, то есть  $H_0$  верна;
  - если  $\lambda > \lambda \alpha$ , то гипотеза  $H_0$  отклоняется в пользу конкурирующей  $H_1$ .

## 4. Проверка гипотезы на модельных данных

Перед тем как начинать работать с реальными данными, необходимо убедиться, что программы осуществляют верные действия. Поэтому практическая часть начинается с исследования на нормальность модельных данных.

Программа «Код 04. Модельные данные.ipynb» случайным образом генерирует

выборку, распределенную по нормальному закону, и высчитывает для нее значение статистики критерия Пирсона. Объем выборки равен количеству торговых дней одной компании за один год (т.е. n=250). Затем это действие повторяется 10000 раз. Методом Монте-Карло формируется таблица 999 квантилей для распределения статистики.

Таблица 5. Квантили основной статистики

| Квантиль | квартал   | полугодие | год        |
|----------|-----------|-----------|------------|
| 0.1      | 0.9098207 | 1.2383337 | 1.7403321  |
| 0.2      | 1.4182825 | 1.9078275 | 2.487463   |
| 0.3      | 1.9362421 | 2.4971749 | 3.1974014  |
| 0.4      | 2.4535453 | 3.0766045 | 3.9176977  |
| 0.5      | 3.0407026 | 3.7587325 | 4.6915171  |
| 0.6      | 3.6537802 | 4.5116414 | 5.5466956  |
| 0.7      | 4.4850679 | 5.455063  | 6.5517714  |
| 0.8      | 5.6601941 | 6.7745567 | 7.932561   |
| 0.9      | 7.6018455 | 9.0408337 | 10.2334618 |

В работе приведены только 9 квантилей (0,1; 0,2; ...; 0,9), остальные будут представлены в отдельном файле «Таблица 06. 999 квантилей модельных данных.csv».

Далее, с помощью программы «Код 04. Модельные данные.ipynb» проверяется равномерность, с которой Р-значения распределяются на отрезке [0;1]. Для этого в начале создается эмпирический закон из ранее полученных 999 квантилей. Далее следует вычислить Р-значения критерия Пирсона  $\chi^2$  и проверить на равномерность по критерию Колмогорова - Смирнова.

Рисунок 3. Гистограмма p-value критерия Пирсона, посчитанных вручную



Рисунок 4. Гистограмма p-value критерия Колмогорова - Смирнова



Как мы видим, равномерность подтверждается (Рисунок 3, 4), также p-value критерия Колмогорова — Смирнова составляет 0.74454. Следовательно, что и следовало ожидать, гипотеза о нормальном распределении логарифмической доходности на модельных данных

## 5. Выбор альтернативной гипотезы и оценка мощности критерия

Исследуем работу программ на выборках, распределенных не по нормальному закону. В качестве альтернативных гипотез были выбраны следующие: то что логарифмическая доходность имеет распределение Стьюдента со степенями свободны t(2), t(3), t(5), t(15) и стандартное распределение Коши (частный случай распределения Стьюдента со степенями свободы t(1)). Стоит отметить, что распределение Стьюдента используется в статистике для точечного оценивания, тестирования гипотез, касающихся неизвестного среднего статистической выборки из нормального распределения, и построения доверительных интервалов.

Также эти гипотезы выбраны мной не случайно. Распределение Стьюдента сходится к стандартному нормальному при больших значениях статистик. Убедимся в этом при помощи программы «Код 06. Гистограммы p-value распределения Стьюдента.ipynb» 10000 раз вычислим статистику Пирсона  $\chi^2$  и p-value, а затем строим гистограммы p-value для распределения Стьюдента со степенями свободы t(1), t(2), t(3), t(5), t(15).

Рисунок 5–6. Гистограммы p-value критерия Пирсона для распределения Стьюдента с разными степенями свободы



С помощью программы «Код 05. Мощность критерия и распределение Стьюдента.ipynb», 10000 раз вычислим статистику Пирсона  $\chi^2$ . Также следует вычислить Р-значения для этой статистики, а также мощность, поделив количество Р-значений меньше уровня 0,05 на 10000. Найдем таким способом мощность критерия стандартного распределения Коши (Таблица 6) и распределения Стьюдента с 2 (Таблица 7), 3 (Таблица 8), 5 (Таблица 9), 15 (Таблица 10) степенями свободы:

Таблица 6. Мощность критерия для стандартного распределения Коши

| квартал | полугодие | год |
|---------|-----------|-----|
| 0.9967  | 1.0       | 1.0 |

Таблица 7. Мощность критерия для распределения Стьюдента t(2)

| квартал | полугодие | год    |
|---------|-----------|--------|
| 0.8727  | 0.9892    | 0.9999 |

Таблица 8. Мощность критерия для распределения Стьюдента t(3)

| квартал | полугодие | год   |
|---------|-----------|-------|
| 0.6633  | 0.8903    | 0.992 |

Таблица 9. Мощность критерия для распределения Стьюдента t(5)

| квартал | полугодие | год    |
|---------|-----------|--------|
| 0.4012  | 0.5958    | 0.8311 |

Таблица 10. Мощность критерия для распределения Стьюдента t(15)

| квартал | полугодие | год    |
|---------|-----------|--------|
| 0.155   | 0.1946    | 0.2477 |

При увеличении временного интервала мощность критерия увеличивается. Для года при распределении Стьюдента со степенью свободы 2 и 3 и при стандартном распределении Коши мощность критерия достаточно высока. Это подтверждает малую вероятность ошибки второго рода и высокую мощность критерия Пирсона  $\chi^2$ . Однако для остальных временных интервалов распределения Стьюдента мощность критерия получена низкая. Следствием этого является то, что вероятность ошибки второго рода для малых объемов выборки данного распределения высока.

# 6. Проверка гипотезы на реальных данных

Теперь нашу гипотезу необходимо проверить на реальных данных, которые мы отобрали. Программа «Код 07. Реальные данные и равномерность.ipynb» во многом повторяет «Код 04. Модельные данные.ipynb.ipynb». Высчитывается таблица р-значений для основного критерия по годам для каждой компании и строится гистограмма распределения частот p-value. Результаты работы программы представлены ниже:

Таблица 11. P-value критерия Пирсона для реальных данных (период – год)

|      | 2010  | 2011  | 2012  | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| AAPL | 0.006 | 0.318 | 0.0   | 0.878 | 0.002 | 0.0   | 0.0   | 0.0   | 0.0   | 0.275 | 0.022 |
| AMZN | 0.0   | 0.127 | 0.282 | 0.0   | 0.005 | 0.0   | 0.0   | 0.0   | 0.0   | 0.003 | 0.672 |
| CSCO | 0.023 | 0.071 | 0.0   | 0.347 | 0.28  | 0.0   | 0.011 | 0.832 | 0.0   | 0.001 | 0.0   |
| INTC | 0.126 | 0.848 | 0.975 | 0.407 | 0.0   | 0.0   | 0.006 | 0.0   | 0.107 | 0.46  | 0.0   |
| MCD  | 0.123 | 0.084 | 0.046 | 0.26  | 0.0   | 0.0   | 0.0   | 0.0   | 0.001 | 0.014 | 0.0   |
| NKE  | 0.011 | 0.107 | 0.0   | 0.01  | 0.481 | 0.0   | 0.216 | 0.001 | 0.0   | 0.232 | 0.0   |
| FDX  | 0.455 | 0.24  | 0.418 | 0.009 | 0.019 | 0.0   | 0.0   | 0.0   | 0.0   | 0.467 | 0.0   |
| PG   | 0.558 | 0.152 | 0.041 | 0.0   | 0.977 | 0.0   | 0.016 | 0.0   | 0.0   | 0.0   | 0.0   |
| V    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.017 | 0.0   |
| DIS  | 0.551 | 0.173 | 0.0   | 0.333 | 0.0   | 0.0   | 0.002 | 0.0   | 0.006 | 0.0   | 0.0   |
| GOOG | 0.013 | 0.0   | 0.0   | 0.001 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.072 | 0.001 |
| NFLX | 0.025 | 0.0   | 0.0   | 0.0   | 0.003 | 0.002 | 0.0   | 0.0   | 0.004 | 0.25  | 0.389 |
| MSFT | 0.0   | 0.002 | 0.011 | 0.9   | 0.005 | 0.0   | 0.002 | 0.0   | 0.0   | 0.002 | 0.0   |
| IBM  | 0.004 | 0.129 | 0.004 | 0.004 | 0.03  | 0.0   | 0.0   | 0.241 | 0.002 | 0.0   | 0.0   |
| КО   | 0.001 | 0.0   | 0.321 | 0.025 | 0.1   | 0.01  | 0.001 | 0.001 | 0.0   | 0.74  | 0.0   |
| PFE  | 0.059 | 0.077 | 0.0   | 0.0   | 0.048 | 0.0   | 0.005 | 0.0   | 0.0   | 0.294 | 0.0   |

Рисунок 7. Гистограмма p-value критерия Пирсона для реальных данных (период – год)



Таблица 12. Доля проверок, для которых гипотеза принималась

| 1%    | 5%    | 10%   |
|-------|-------|-------|
| 0.347 | 0.256 | 0.222 |

По гистограмме видно, что распределение p-value неравномерно и близко к нулю. Это же подтверждает и p-value критерия Колмогорова: она равна 8.12402234523001e-22. При уменьшении рассматриваемого периода гистограмма p-value становится более равномерной:

Рисунок 8. Гистограмма p-value критерия Пирсона для реальных данных для других периодов



# 6.1. Проверка гипотезы о нормальном распределении дневной логарифмической доходности при условии определенного объема торгов накануне.

Проверим гипотезу при разных объемах торгов. Для этого разобьем данные на 3 интервала: с малым, средним и большим объемом торгов. Проверим основную гипотезу с помощью критерия Пирсона  $\chi^2$ , используя программу «Код 08. Реальные данные при разных объемах торгов и равномерность.ipynb». Объем торгов в денежном выражении считается как произведение среднего арифметического цены открытия (поле «Open») и цены закрытия (поле «Adj Close») на объем торгов в штуках (поле «Volume»). Далее вычисляется логарифмическая доходность по средней цене. Следом вычисляется статистика Пирсона  $\chi^2$  и Р-значения. По полученным данным происходит принятие или опровержение

#### основной гипотезы.

Рассмотрим результаты программы за 2016 год (Рисунок 8, 9, 10). По гистограмме видно, что при увеличении объема торгов гистограмма стремится к равномерной, лучше всего при средних объемах торгов. Сократим рассматриваемый временной интервал – возьмем данные за второе полугодие и за последний квартал 2016 года. Получаем аналогичные результаты. Для всех других годов данная закономерность подтверждается. Также я построила гистограмму p-value для всех годов и всех акций (Рисунок 11). По гистограммам видно, что при средних объемах продаж гистограмма стремится к равномерной в большей степени, чем при других объемах.

Рисунок 9. Гистограммы p-value критерия Пирсона для реальных данных за 2016 год



Рисунок 10. Гистограммы p-value критерия Пирсона для реальных данных за вторую половину 2016 года



Рисунок 11. Гистограммы p-value критерия Пирсона для реальных данных за четвертый квартал 2016 года



Рисунок 12. Гистограммы p-value критерия Пирсона для реальных данных за все года (2010–2020)



### 7. Заключение

В данной курсовой работе с помощью средств Jupyter Notebook была проведена проверка гипотезы о нормальном распределении логарифмической доходности акций компаний, входящих в листинг индекса S&P 100, при условии определенного объема торгов накануне. По результатам проведенной работы подтверждаются результаты прошлых курсовых работ, а именно: опровержение гипотезы о нормальном распределении логарифмической доходности в большинстве случаев. Однако в данном исследовании наблюдается интересная закономерность: при среднем уровне объема торгов гипотеза чаще подтверждается.

Новизна данной работы частично обусловлена новыми требованиями: мною дорабатывались программы, используемые в курсовых работах прошлых лет, а также создавались новые, проводилась оценка параметров нормального распределения.

## 8. Литература

- 1. Г. Крамер «Математические методы статистики» // Издательство «Мир». 1975.— С. 453–477;
- 2. Г. И. Ивченко, Ю. И. Медведев «Введение в математическую статистику» // Издательство «ЛКИ». 2009.— С. 320–332;
- 3. Состав индекса S&P 100// ru.tradingview.com URL: https://ru.tradingview.com/symbols/SP-OEX/components/ (дата обращения: 31.04.2021).
- 4. Yahoo Finance URL: https://finance.yahoo.com/ (дата обращения: 31.04.2021).
- 5. Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: ФИЗМАТЛИТ, 2006. С. 204–209, 214–216;
- 6. Громова М. С. «Проверка гипотезы о нормальном распределении логарифмической доходности по критерию Дэвида-Хартли-Пирсона». Вид исследуемых данных: «Котировки акций компаний, входящих в индекс ММВБ нефти и газа» М., 2019

## 9. Приложения

### Приложение 1

### Характеристики компьютера:

Тип процессора: Intel® Core<sup>TM</sup> i5-8250U CPU @ 1.60GHz 1.80 GHz

Память: 12 GB

Кэш-память: 6 MB Intel® Smart Cache

### Время выполнения программ:

| Название программы                                                      | Время работы |
|-------------------------------------------------------------------------|--------------|
| Код 01. Количество торговых дней.ipynb                                  | 3.55 s       |
| Код 02. Максимальные скачки цены. ipynb                                 | 6.5 s        |
| Код 03. Графики цен.ірупь                                               | 0.64 s       |
| Код 04. Модельные данные.ipynb                                          | 345 s        |
| Код 05. Мощность критерия и распределение Стьюдента.ipynb               | 1243 s       |
| Код 06. Гистограммы p-value распределения Стьюдента.ipynb               | 376 s        |
| Код 07. Реальные данные и равномерность.ipynb                           | 20.5 s       |
| Код 08. Реальные данные при разных объемах торгов и равномерность.ipynb | 26.3 s       |

### Приложение 2 – Код программ

### Код 01. Количество торговых дней. ipynb (Таблица 2)

```
# подготовка библиотек
import pandas as pd
# функция, которая выводит номер начала и конца срезов таблицы соответствующие периоду одного
полугодия
def half_year(df, year, half=1):
  df - датасет, в котором ищутся номера строк
  year - год, по которому нужны данные
  если half = 1 ищутся индексы строк первой половины нужного года,
  если half = 2 ищутся индексы строк второй половины нужного года
  функция выводит номер начала и конца нужного среза таблицы
  (из-за особенностей pandas фактический конец среза на единицу меньше конца, который выводится тут)
  start, end, count = 0, 0, 0
  for i in df['Date']:
    if half == 1:
       if int(i[:4]) == year and (int(i[5:7]) < 7) and start == 0:
         start = count
       if int(i[:4]) == vear and (int(i[5:7]) > 6) and end == 0:
         end = count
         break # для сокращения времени работы функции
       count += 1
    elif half == 2:
       if int(i[:4]) == year and (int(i[5:7]) > 6) and start == 0:
         start = count
       if int(i[:4]) == year+1 and end == 0:
         end = count
         break
       count += 1
  if start != 0 and end == 0:
    end = count
  return start, end
# функция, которая выводит номер начала и конца срезов таблицы соответствующие периоду одного
квартала
def quartal(df, year, quart=1):
  df - датасет, в котором ищутся номера строк
  year - год, по которому нужны данные
  если quart = 1 ищутся индексы строк первого квартала нужного года,
  если quart = 2 ищутся индексы строк второго квартала нужного года,
  если quart = 3 ищутся индексы строк третьего квартала нужного года,
  если quart = 4 ищутся индексы строк четвертого квартала нужного года,
  функция выводит номер начала и конца нужного среза таблицы
  (из-за особенностей pandas фактический конец среза на единицу меньше конца, который выводится тут)
  start, end, count = 0, 0, 0
  for i in df['Date']:
    if quart == 1:
       if int(i[:4]) == year and (int(i[5:7]) < 4) and start == 0:
         start = count
       if int(i[:4]) == vear and (int(i[5:7]) > 3) and end == 0:
```

```
end = count
         break # для сокращения времени работы функции
       count += 1
    elif quart == 2:
       if int(i[:4]) == year and (7 > int(i[5:7]) > 3) and start == 0:
         start = count
       if int(i[:4]) == year and (10 > int(i[5:7]) > 6) and end == 0:
         end = count
         break
       count += 1
    elif quart == 3:
       if int(i[:4]) == year and (10 > int(i[5:7]) > 6) and start == 0:
         start = count
       if int(i[:4]) == year and (int(i[5:7]) > 9) and end == 0:
         end = count
         break
       count += 1
    elif quart == 4:
       if int(i[:4]) == vear and (int(i[5:7]) > 9) and start == 0:
         start = count
       if int(i[:4]) == year+1 and end == 0:
         end = count
         break
       count += 1
  if start != 0 and end == 0:
    end = count
  return start, end
# функция, которая выводит номер начала и конца срезов таблицы при помощи предыдущих функций
def Rows(file, year=False, half=False, quart=False):
  file - файл, из которого берется датасет
  year - год, по которому нужны данные
  half - полугодие в году, по которому нужны данные
  quart - квартал в году, по которому нужны данные
  функция выводит номер начала и конца нужного среза таблицы
  (из-за особенностей pandas фактический конец среза на единицу меньше конца, который выводится тут)
  # считывание данных из csv файла в таблицу
  df = pd.read\_csv(file)
  start - начало среза
  end - конец среза +1
  count - счетчик строк
  start, end, count = 0, 0, 0
  #если не нужно извлекать полугодие, квартал или пятилетку, то находятся индексы для периода 1 год
  if not half and not quart:
    for i in df['Date']:
       if int(i[:4]) == year and start == 0:
         start = count
       if int(i[:4]) == vear+1 and end == 0:
```

```
end = count
         break # для сокращения времени работы функции
       count += 1
    # если все строки были проверены, но end не стал каким-то значение, то end - последняя строка
таблицы
    if start != 0 and end == 0:
       end = count
  # если нужно извлечь полугодие, то запускается функция half_year
  elif half:
    start, end = half_year(df, year, half)
  # если нужно извлечь квартал, то запускается функция quartal
  elif quart:
    start, end = quartal(df, year, quart)
  # частный случай, который учитывается для дальнейшей работы в других функциях
  if start == 1:
    start = 0
  return start, end
# Функция, которая считает количество торговых дней в определенном году
def Num_of_days(file, year, half_year=False, quart=False):
  # считывание данных из csv файла в таблицу
  df = pd.read csv(file)
  # при помощи функции Rows находим строку начала и конца определенного году в таблицу
  start, end = Rows(file, year, half year, quart)
  if start == end:
    return 0
  else:
    # так как из-за особенности pandas end = конец периода в таблице +1, то просто вычитаем из end start
    return end-start
years = range(2010, 2021)
# создаем пустую таблицу с заголовками годами
df = pd.DataFrame(columns=years)
# список тикеров
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX', 'PG', 'V',
    'DIS', 'FB', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'TSLA', 'PFE']
for i in TICK:
  # создание путя к файлу
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = [] # список количества торговых дней во все года для определенного тикера
  for i in years:
    1.append(Num of days(file, i))
  # запись этого списка в таблицу с индексом рассматриваемого тикера
  df.loc[i] = 1
# сохранение таблицы в сѕу файл
df.to_csv('.\\ResultWork\\Num_Of_Days.csv', sep=';')
         Код 02. Максимальные скачки цены.ipynb (Таблица 3, 4)
# подготовка библиотек
import pandas as pd
# функция, которая высчитывает максимальные скачки цены вверх (в процентах)
def Cost_year(file, year):
  # считывание данных из csv файла в таблицу
```

```
df = pd.read csv(file)
  #добавление столбца, в который записываются скачки цен в процентах по всей таблице
  df['dif'] = (df['Close']-df['Open'])/df['Open']*100
  # получение позиций среза с помощью функции Rows (см. выше)
  start, end = Rows(file, year)
  # выводит округленное до двух знаков после запятой максимальное/минимальное значение за
определенный год при помощи среза таблицы
  return round(max(df['dif'][start:end]), 2), round(min(df['dif'][start:end]), 2)
years = range(2010, 2021)
# создаем пустую таблицу с заголовками годами
df = pd.DataFrame(columns=years)
# список тикеров
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
for j in TICK:
  # создание путя к файлу
  file = f'.\TИКЕРЫ\\{i\}.csv'
  1 = [] # список максимальных скачков цены вверх (в процентах) во все года для определенного тикера
  for i in years:
    1.append(Cost_year(file, i)[0])
  # запись этого списка в таблицу с индексом рассматриваемого тикера
  df.loc[j] = 1
# добавления столбца максимумов значений по строкам таблицы
df['Max'] = df[range(2010, 2021)].max(axis=1)
# сохранение таблицы в csv файл
df.to_csv('.\\ResultWork\\Max_Up.csv')
#аналогичные дейтсвия для таблицы максимальных скачков вниз
df = pd.DataFrame(columns=years)
for j in TICK:
  # создание путя к файлу
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = [] # список максимальных скачков цены вниз (в процентах) во все года для определенного тикера
  for i in years:
    1.append(Cost_year(file, i)[1])
  # запись этого списка в таблицу с индексом рассматриваемого тикера
  df.loc[j] = 1
# добавления столбца максимумов значений по строкам таблицы
df['Min'] = df[range(2010, 2021)].min(axis=1)
# сохранение таблицы в сѕу файл
df.to_csv('.\\ResultWork\\Max_Down.csv')
         Код 03. Графики цен.ірупь (Рисунок 1, 2)
# подготовка библиотек
import matplotlib.ticker as ticker
import matplotlib.pyplot as plt
import pandas as pd
# функция, которая возвращает массив цен и дат (таблицу) за нужный период
```

```
def Prices(file, year, half_year=False, quart=False):
  # считывание данных из сѕу файла в таблицу
  df = pd.read_csv(file)
  # получение позиций среза с помощью функции Rows (см. выше)
  start, end = Rows(file, year, half_year, quart)
  return df.loc[start:end, 'Date':'Close']
# нужный тикер и год
stock = 'NFLX'
year = 2012
# создание путя к файлу
file = f'.\TИКЕРЫ\{stock}.csv'
fig, ax = plt.subplots(figsize=(8, 8))
# создание графика цен за нужный год при помощи функции Prices
price = Prices(file, year)
# по оси икс - даты, по оси игрек - цены
ax.plot(price['Date'], price['Close'])
ax.xaxis.set_major_locator(ticker.MultipleLocator(50))
ax.xaxis.set_minor_locator(ticker.MultipleLocator(50))
ax.set title(fГрафик цены закрытия {stock} за {year} год')
plt.xlabel('Дата')
plt.ylabel('Цена, дол.')
# сохранение графика в формате png
plt.savefig('.\\ResultWork\\Max_Up_Stock.png')
# нужный тикер и год
stock = 'NFLX'
year = 2013
# создание путя к файлу
file = f'.\\ТИКЕРЫ\\{stock}.csv'
fig, ax = plt.subplots(figsize=(8, 8))
# создание графика цен за нужный год при помощи функции Prices
price = Prices(file, year)
# по оси икс - даты, по оси игрек - цены
ax.plot(price['Date'], price['Close'])
ax.xaxis.set_major_locator(ticker.MultipleLocator(50))
ax.xaxis.set minor locator(ticker.MultipleLocator(50))
ax.set title(fГрафик цены закрытия {stock} за {year} год')
plt.xlabel('Дата')
plt.ylabel('Цена, дол.')
# сохранение графика в формате png
plt.savefig('.\\ResultWork\\Max_Down_Stock.png')
```

Код 04. Модельные данные.ipynb (Таблица 5, Рисунок 3, 4)

# подготовка библиотек from math import sqrt, log, log2, isnan import scipy.stats as sts import numpy as np import seaborn as sns import matplotlib.pyplot as plt

```
# функция, которая осуществляет оценку параметров \theta1 и \theta2 (мат.ожидание и дисперсию) сгенерированной
рандомной выборки
def ozenka tetta(Data):
  # упорядочивает сгенерированную выборку
  Data = sorted(Data)
  n = len(Data)
  m = 1+int(log2(n)) # по формуле Стерджесса расчитывает количество интервалов разбиения выборки
  h = (max(Data)-min(Data))/m #шаг разбиения
  eps = [min(Data)] # список который будет собирать центральны точки отрезков разбиения (первая точка в
разбиении - минимум выборки)
  Razb = [] # список, который будет собирать разбитые на отрезки данные
  Razb.append([x for x in Data if x < eps[-1]+h/2])
  for i in range(2, m):
    eps.append(eps[0]+(i-1)*h)
    Razb.append([x for x in Data if eps[-1]-0.5*h < x < eps[-1]+0.5*h])
  eps.append(eps[0]+(m-1)*h)
  Razb.append([x for x in Data if x > eps[-1]-0.5*h])
  # список частот (количество элементов в интервалах)
  V = [len(x) \text{ for } x \text{ in Razb}]
  m = [] \# список значений, которые будут суммировать для получения \theta 1
  for i in range(len(V)):
    m.append(V[i]*eps[i])
  m_{-} = 1/n*sum(m) # высчитывает <math>\theta 1 по формуле
  s = [] \# список значений, которые будут суммировать для получения \theta 2
  for i in range(len(V)):
    s.append(V[i]*(eps[i]-m_)**2)
  sigma = 1/n*sum(s) # высчитывает \theta 2 по формуле
  # выводим \theta1, \theta2, список частот, список центральных точек отрезков разбиений
  return m_, sigma_, V, eps
def Pirsons(per):
  n = per
  # генерация нормальной выборки
  Data = sts.norm(0, 1).rvs(n)
  m = 1+int(log2(n)) # по формуле Стерджесса расчитывает количество интервалов разбиения выборки
  h = (max(Data)-min(Data))/m # шаг разбиения
  func = ozenka_tetta(Data) # получение нужный данных при помощи функции ozenka_tetta
  m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2] # считывание необходимых данных для критерия
Пирсона
  Exp = sts.norm(m, sqrt(sigma)) # ожидаемое распределение (то, с которой будем сравнивать рандомную
выборку)
  # формирование списка вероятностей попадания в интервалы разбиения
  P = [Exp.cdf(eps[0]+0.5*h)]
  P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)]
      for x in range(1, len(eps)-1)]
  P += [1-Exp.cdf(eps[-1]-0.5*h)]
  # высчитываем статистику критерия Пирсона
  Z = []
  for i in range(len(P)):
```

```
Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
  chi 2 = sum(Z)
  pvalue = (sts.chi2(len(V)-3).sf(chi 2))
  # возвращаем статистику критерия Пирсона и p-value
  return chi_2, pvalue
N = 10000 # количество значений статистики
# Словарь разных объемов выборки, соответствующие разным временным интервалам
periods = {'квартал': 63, 'полугодие': 126, 'год': 252}
# создание пустых таблицы для 9 и 999 квантилей
df_9, df_999 = pd.DataFrame(), pd.DataFrame()
# заполняем таблицы перебором всех возможных объемов выборки
for i, j in periods.items():
  # вычисление 10 000 значений статистики
  pirs = [Pirsons(j) for _ in range(N)]
  # списки значений статистики и p-value
  chi2, pv_pirs = [x[0] \text{ for } x \text{ in pirs}], [x[1] \text{ for } x \text{ in pirs}]
  # вычисление 9 и 999 квантилей
  chi2 q999 = np.quantile(chi2, np.arange(0.001, 1, 0.001))
  chi2 q9 = np.quantile(chi2, np.arange(0.1, 1, 0.1))
  # вычисление 999 p-value для постоения гистограммы
  pv_q999 = np.quantile(pv_pirs, np.arange(0.001, 1, 0.001))
  # запись в таблицы округленных значений
  df_9[i] = np.round(chi2_q9,7)
  df_{999[i]} = np.round(chi2_q999,7)
# изменение значений индексов строк в таблицах
ind = [round(i, 1) for i in list(np.arange(0.1, 1, 0.1))]
df 9.index = ind
ind = [round(i, 3) for i in list(np.arange(0.001, 1, 0.001))]
df 999.index = ind
# сохранение таблиц в csv файлы
df 9.to csv('.\\ResultWork\\Quant 9.csv', sep=';', encoding='cp1251')
df_999.to_csv('.\\ResultWork\\Quant_999.csv', sep=';', encoding='cp1251')
n = 252
chi2 = [Pirsons(n)[0] \text{ for } in range(N)]
chi2_q999 = np.quantile(chi2, np.arange(0.001, 1, 0.001))
# список p-value критерия Пирсона вручную вычисленных вручную
pvalue pirs = []
for in range(N):
  u0 = Pirsons(n)[0]
  k = 0
  for i in range(len(chi2_q999)):
     if chi2_q999[i] > u0:
       k += 1
```

```
pvalue_pirs.append(k/len(chi2_q999)) #p-value критерия Пирсона вручную
# список p-value критерия Колмогорова - Смирнова
pvalue_ks = []
n=250
for _ in range(N):
  Data = sts.norm(0, 1).rvs(n)
  pvalue_ks.append(sts.kstest(Data, 'norm')[1]) #p-value критерия Колмогорова - Смирнова
sns.histplot(pvalue ks,bins=10,stat='density')
plt.savefig(".\\ResultWork\\Kolmogorov-Smornov_test.png")
plt.show()
sns.histplot(pvalue_pirs,bins=10,stat='density')
plt.savefig(".\\ResultWork\\Pirsons_test.png")
# проверка, что распределения р-значений идентичны
pvalue = sts.ks_2samp(pvalue_ks,pvalue_pirs)
         Код 05. Мощность критерия и распределение Стьюдента. ipynb (Таблица 6, 7, 8, 9, 10)
# подготовка библиотек
from math import sqrt, log, log2, isnan
import scipy.stats as sts
import pandas as pd
N = 10000 # количество значений статистики
# Словарь разных объемов выборки, соответствующие разным временным интервалам
periods = {'квартал': 63, 'полугодие': 126, 'год': 252}
st = [1,2,3,5,15] \# количество степеней свободы
for stepen in st:
  # создание пустой таблицы для записи значений мощности критерия
  pv = pd.DataFrame(columns=list(periods.keys()))
  for l, n in periods.items():
    pvalue = [] #список p-value критерия Пирсона
    for in range(N):
       # генерируем выборку нужного объема распределения Стьюдента
       Data = sts.t(stepen).rvs(n)
       # данный кусок кода поясняется выше
       m = 1 + int(log2(n))
       h = (max(Data)-min(Data))/m
       func = ozenka tetta(Data)
       m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2]
       Exp = sts.norm(m, sqrt(sigma))
       P = [Exp.cdf(eps[0]+0.5*h)]
       P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)  for x in range(1, len(eps)-1)]
       P += [1-Exp.cdf(eps[-1]-0.5*h)]
       Z = []
       for i in range(len(P)):
         Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
       chi 2 = sum(Z)
```

```
pvalue.append(sts.chi2(len(V)-3).sf(chi_2))
# отбираем p-value меньше 0.05
PV = [v for v in pvalue if v < 0.05 or isnan(v)]
# запись мощности критерия в таблицу
pv[l] = [len(PV)/N]
#сохранение таблицы в файл
pv.to_csv(f'.\\ResultWork\\Moщность_крит_t({stepen}).csv', sep=';', encoding='cp1251',index=False)
```

### Код 06. Гистограммы p-value распределения Стьюдента.ipynb (Рисунок 5,6)

```
# подготовка библиотек
from math import sqrt, log, log2, isnan
import scipy.stats as sts
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 3, figsize=(70, 20))
n = 250
for 1, k in enumerate([3, 9, 50]):
  pvalue = []
  n = 250
  for _ in range(10000):
     # генерируем выборку нужного объема распределения Стьюдента
    Data = sts.t(k).rvs(n)
     # данный кусок кода поясняется выше
     m = 1 + int(log2(n)) # формула Стерджесса
     h = (max(Data)-min(Data))/m
     func = ozenka_tetta(Data)
     m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2]
     Exp = sts.norm(m, sqrt(sigma))
     P = [Exp.cdf(eps[0]+0.5*h)]
    P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)]
        for x in range(1, len(eps)-1)]
    P += [1-Exp.cdf(eps[-1]-0.5*h)]
     Z = []
     for i in range(len(P)):
       Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
     chi_2 = sum(Z)
     pvalue.append(sts.chi2(len(V)-3).sf(chi_2))
  ax[1].hist(pvalue, alpha=0.5)
  ax[1].set title(f'Pаспределение Стьюдента с {k} степенями свободы')
plt.savefig(".\\ResultWork\\Student's_raspr_1.png")
#аналогичный код с другими значениями
fig, ax = plt.subplots(1, 2, figsize=(70, 20))
n = 250
for 1, k in enumerate([ 90, 500]):
  pvalue = []
  n = 250
  for _ in range(10000):
     Data = sts.t(k).rvs(n)
     m = 1 + int(log2(n)) # формула Стерджесса
```

```
h = (max(Data)-min(Data))/m
    func = ozenka tetta(Data)
    m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2]
    Exp = sts.norm(m, sqrt(sigma))
    P = [Exp.cdf(eps[0]+0.5*h)]
    P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)]
        for x in range(1, len(eps)-1)
    P += [1-Exp.cdf(eps[-1]-0.5*h)]
    Z = \prod
    for i in range(len(P)):
       Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
    chi 2 = sum(Z)
    pvalue.append(sts.chi2(len(V)-3).sf(chi_2))
  ax[1].hist(pvalue, alpha=0.5)
  ax[1].set_title(f'Pacпределение Стьюдента с {k} степенями свободы')
plt.savefig(".\\ResultWork\\Student's raspr 2.png")
         Код 07. Реальные данные и равномерность. ipynb (Таблица 11, 12, Рисунок 7, 8)
# подготовка библиотек
from math import sqrt, log, log2, isnan
import scipy.stats as sts
import matplotlib.pyplot as plt
import pandas as pd
def Pirsons(file, year=False, half=False, quart=False):
  # высчитываем объем выборки при помощи функции Num_of_days (см.выше)
  n = Num_of_days(file, year, half, quart)
  df = pd.read csv(file)
  start, end = Rows(file, year, half, quart)
  # формируем список лог доходностей определенного периода и акции
  Data = np.log(df['Close']/df['Open'])[start:end]
  # данный кусок кода поясняется выше
  m = 1 + int(log2(n)) # формула Стерджесса
  h = (max(Data)-min(Data))/m
  func = ozenka tetta(Data)
  m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2]
  Exp = sts.norm(m, sqrt(sigma))
  P = [Exp.cdf(eps[0]+0.5*h)]
  P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)  for x in range(1, len(eps)-1)]
  P += [1-Exp.cdf(eps[-1]-0.5*h)]
  Z = \Pi
  for i in range(len(P)):
     Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
  chi 2 = sum(Z)
  pvalue = (sts.chi2(len(V)-3).sf(chi_2))
  return chi_2, round(pvalue, 3)
years = range(2010, 2021)
df = pd.DataFrame(columns=years)
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
```

```
pvalue_pirs=[] # список p-value критерия Пирсона на реальных данных
for i in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = \prod
  for i in years:
     1.append(Pirsons(file, year = i)[1])
  df.loc[i] = 1 # заполняем таблицу
  pvalue_pirs += 1
# сохраняем таблицу и гистограмму в файлы
df.to_csv(f'.\\ResultWork\\Real_data_year.csv', sep=';')
sns.histplot(pvalue_pirs,bins=10)
plt.savefig(".\\ResultWork\\Real_data.png")
""" аналогично для других периодов """
pvalue_half = []
pvalue_quart = []
year = range(2010, 2021)
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
for i in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1, k = [], []
  for i in year:
     1.append(Pirsons(file, i, half=2)[1])
     k.append(Pirsons(file, i, quart=1)[1])
  pvalue half +=1
  pvalue quart += k
fig, ax = plt.subplots(1, 2, figsize = (6,3))
ax[0].hist(pvalue_half, bins=10)
ax[0].set title('Полгода')
ax[1].hist(pvalue quart, bins=10)
ax[1].set title('Квартал')
plt.savefig(f".\\ResultWork\\Real_data_for_different_periods.png")
#высчитывание доли проверок для которых гипотеза принималась
pv001, pv005, pv010 = 0, 0, 0
pv = pd.DataFrame(columns=['1\%','5\%','10\%'])
for j in range(len(TICK)):
  for i in range(len(years)):
     if df.iloc[j,i]>0.01:
       pv001 = pv001+1
     if df.iloc[j,i]>0.05:
       pv005 = pv005+1
     if df.iloc[j,i]>0.1:
       pv010 = pv010+1
[round(pv001/len(TICK)/len(years),3), round(pv005/len(TICK)/len(years),3), round(pv010/len(TICK)/len(years),3)] \\
pv.loc[0] = percent
pv.to_csv(f'.\\ResultWork\\Real_data_percent.csv', sep=';',index=False)
```

11, 12)

Код 08. Реальные данные при разных объемах торгов и равномерность. ipynb (Рисунок 9, 10,

```
from math import sqrt, log, log2, isnan
import scipy.stats as sts
import matplotlib.pyplot as plt
import pandas as pd
def Volumes(file, year = False, half = False, quart = False):
  # считывание данных из csv файла в таблицу
  df = pd.read csv(file)
  # получение позиций среза с помощью функции Rows (см. выше)
  start, end = Rows(file, year = year, half = half, quart = quart)
  # формируем столбец новой цены и новой объема продаж, высчитываем лог доходность также в новых
столбен
  df[\text{new\_price'}] = (df[\text{Adj Close'}] + df[\text{Open'}]) / 2
  df['new_vol'] = df['new_price'] * df['Volume']
  df['log'] = np.log(df['Close'] / df['new_price'])
  return df.loc[start:end]
def Pirsons(file, size, year = False, half = False, quart = False):
  # получаем таблицу при помощи функции Volumes
  df = Volumes(file, year = year, half = half, quart = quart)
  df.index = range(df.shape[0])
  # находим квантили 1/3 и 2/3 уровней в столбце нового объема продаж
  quant = np.quantile(df['new_vol'], np.arange(0, 1, 1/3)[1:])
  Data = []
  # разбиваю данные в соответсвии с нужным параметром (какой объем нужен)
  if size == 1:
     for i in range(df.shape[0]):
       if df.at[i,"new_vol"] <= quant[size - 1]:
          Data.append(df.at[i,'log'])
  elif size == 2:
     for i in range(df.shape[0]):
       if quant[size - 2] < df.at[i,"new vol"] <= quant[size - 1]:
          Data.append(df.at[i,'log'])
  else:
     for i in range(df.shape[0]):
       if df.at[i,"new_vol"] > quant[size - 2]:
          Data.append(df.at[i,'log'])
  # данный кусок кода поясняется выше
  n = len(Data)
  m = 1 + int(log2(n)) # формула Стерджесса
  h = (max(Data)-min(Data))/m
  func = ozenka\_tetta(Data)
  m, sigma, eps, V = \text{func}[0], func[1], func[3], func[2]
  Exp = sts.norm(m, sqrt(sigma))
  P = [Exp.cdf(eps[0]+0.5*h)]
  P += [Exp.cdf(eps[x]+0.5*h)-Exp.cdf(eps[x]-0.5*h)  for x in range(1, len(eps)-1)]
  P += [1-Exp.cdf(eps[-1]-0.5*h)]
  Z = []
  for i in range(len(P)):
     Z.append(((V[i]-n*P[i])**2)/(n*P[i]))
  chi_2 = sum(Z)
  pvalue = (sts.chi2(len(V)-3).sf(chi 2))
  return chi_2, round(pvalue, 3)
```

```
pvalue = [] # список p-value
sizes = {'small': 1,'medium': 2,'large': 3} # соответсвие объема продаж параметру для функции
years = range(2010, 2021)
year = 2016
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
11, 12, 13 = [], [], [] # списки p-value для разных объемов продаж
for j in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  for k in years:
     11.append(Pirsons(file, 1, year = k, half = False, quart = False)[1])
     12.append(Pirsons(file, 2, year = k, half = False, quart = False)[1])
     13.append(Pirsons(file, 3, year = k, half = False, quart = False)[1])
  pvalue += 11+12+13
# создание гистограмм
fig,ax = plt.subplots(1,3,figsize=(10,3))
size=list(sizes.keys())
ax[0].hist(11,density=True)
ax[0].set\_xlim(0,1)
ax[0].set_title(size[0])
ax[1].hist(12,density=True)
ax[1].set xlim(0,1)
ax[1].set_title(size[1])
ax[2].hist(13,density=True)
ax[2].set_xlim(0,1)
ax[2].set_title(size[2])
plt.savefig(f".\\ResultWork\\Volume_for_years.png")
# аналогичный код для других гистограмм
pvalue = []
sizes = {'small': 1,'medium': 2,'large': 3}
years = range(2010, 2021)
year = 2016
df = pd.DataFrame(columns = sizes.keys())
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
for j in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = \lceil \rceil
  for i in sizes.values():
     1.append(Pirsons(file, i, year = year, half = False, quart = False)[1])
  df.loc[j] = 1
  pvalue += 1
fig,ax = plt.subplots(1,3,figsize=(10,3))
size=list(sizes.keys())
for i in range(3):
  ax[i].hist(df[size[i]],bins=10)
```

```
ax[i].set_xlim(0,1)
  ax[i].set_title(size[i])
plt.savefig(f".\\ResultWork\\Volume_for_{year}.png")
pvalue = []
sizes = {'small': 1,'medium': 2,'large': 3}
years = range(2010, 2021)
year = 2016
df = pd.DataFrame(columns = sizes.keys())
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
for j in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = \prod
  for i in sizes.values():
     1.append(Pirsons(file, i, year = year, half = 2, quart = False)[1])
  df.loc[j] = 1
  pvalue += 1
fig,ax = plt.subplots(1,3,figsize=(10,3))
size=list(sizes.keys())
for i in range(3):
  ax[i].hist(df[size[i]],bins=10)
  ax[i].set xlim(0,1)
  ax[i].set title(size[i])
plt.savefig(f".\\ResultWork\\Volume_for_second_half_of_{year}.png")
pvalue = []
sizes = {'small': 1,'medium': 2,'large': 3}
years = range(2010, 2021)
year = 2016
df = pd.DataFrame(columns = sizes.keys())
TICK = ['AAPL', 'AMZN', 'CSCO', 'INTC', 'MCD', 'NKE', 'FDX',
     'PG', 'V', 'DIS', 'GOOG', 'NFLX', 'MSFT', 'IBM', 'KO', 'PFE']
for j in TICK:
  file = f'.\TИКЕРЫ\\{j\}.csv'
  1 = \prod
  for i in sizes.values():
     1.append(Pirsons(file, i, year = year, half = False, quart = 4)[1])
  df.loc[j] = 1
  pvalue += 1
fig,ax = plt.subplots(1,3,figsize=(10,3))
size=list(sizes.keys())
for i in range(3):
  ax[i].hist(df[size[i]])
  ax[i].set xlim(0,1)
  ax[i].set_title(size[i])
plt.savefig(f".\\ResultWork\\Volume_for_fourth_quartal_of_{year}.png")
```

# Приложение 3 - Список файлов

| Имя файла                                                               | Имя программы                                                |
|-------------------------------------------------------------------------|--------------------------------------------------------------|
| Рисунок 1. График цен NFLX за 2012 год                                  | Код 03. Графики цен.ірупь                                    |
| Рисунок 2. График цен NFLX за 2013 год                                  | Код 03. Графики цен.ірупь                                    |
| Рисунок 3. Гистограмма p-value критерия                                 | Код 04. Модельные данные.ipynb                               |
| Пирсона, посчитанных вручную                                            |                                                              |
| Рисунок 4. Гистограмма p-value критерия                                 | Код 04. Модельные данные.ipynb                               |
| Колмогорова – Смирнова                                                  |                                                              |
| Рисунок 5–6. Гистограммы p-value критерия                               | Код 06. Гистограммы p-value распределения                    |
| Пирсона для распределения Стьюдента с разными степенями свободы         | Стьюдента.ipynb                                              |
| Рисунок 7. Гистограмма p-value критерия Пирсона                         | Код 07. Реальные данные и равномерность.ipynb                |
| для реальных данных (период – год)                                      | rod 07.1 easibilitie dannitie ii patitostepitoe1ti.1pytto    |
| Рисунок 8. Гистограмма p-value критерия                                 | Код 07. Реальные данные и равномерность.ipynb                |
| Пирсона для реальных данных для                                         |                                                              |
| других периодов                                                         |                                                              |
| Рисунок 9. Гистограммы p-value                                          | Код 08. Реальные данные при разных объемах                   |
| критерия Пирсона для реальных данных                                    | торгов и равномерность.ipynb                                 |
| за 2016 год                                                             |                                                              |
| Рисунок 10. Гистограммы p-value                                         | Код 08. Реальные данные при разных объемах                   |
| критерия Пирсона для реальных данных                                    | торгов и равномерность.ipynb                                 |
| за вторую половину 2016 года                                            | If 00 P                                                      |
| Рисунок 11. Гистограммы p-value                                         | Код 08. Реальные данные при разных объемах                   |
| критерия Пирсона для реальных данных                                    | торгов и равномерность.ipynb                                 |
| за четвертый квартал 2016 года                                          | Код 08. Реальные данные при разных объемах                   |
| Рисунок 12. Гистограммы p-value критерия                                | торгов и равномерность. ipynb                                |
| Пирсона для реальных данных за все года (2010–2020)                     | represent pushes representations                             |
| Таблица 1. Список компаний                                              | -                                                            |
| Таблица 2. Количество торговых дней                                     | Код 01. Количество торговых дней.ipynb                       |
| Таблица 3. Максимальные скачки цены вверх (в %)                         | Код 02. Максимальные скачки цены.ipynb                       |
|                                                                         |                                                              |
| Таблица 4. Максимальные скачки цены вниз (в %)                          | Код 02. Максимальные скачки цены.ipynb                       |
| Таблица 5. Квантили основной статистики                                 | Код 04. Модельные данные.ipynb                               |
| Таблица 6. Мощность критерия для стандартного                           | Код 05. Мощность критерия и распределение                    |
| распределения Коши                                                      | Стьюдента.ipynb                                              |
| Таблица 7. Мощность критерия для распределения<br>Стьюдента t(2)        | Код 05. Мощность критерия и распределение<br>Стьюдента.ipynb |
| Таблица 8. Мощность критерия для распределения                          | Код 05. Мощность критерия и распределение                    |
| Стьюдента t(3)                                                          | Стьюдента.ipynb                                              |
| Таблица 9. Мощность критерия для распределения                          | Код 05. Мощность критерия и распределение                    |
| Стьюдента t(5)                                                          | Стьюдента.ipynb                                              |
| Таблица 10. Мощность критерия для                                       | Код 05. Мощность критерия и распределение                    |
| распределения Стьюдента t(15)                                           | Стьюдента.ipynb                                              |
| Таблица 11. P-value критерия Пирсона для реальных данных (период – год) | Код 07. Реальные данные и равномерность.ipynb                |
| Таблица 12. Доля проверок, для которых гипотеза                         | Код 07. Реальные данные и равномерность.ipynb                |
| принималась                                                             | 1 17                                                         |