

S2-LP Introduction

AMG RF Application team

- S2-LP overview
- S2-LP kits description
- S2-LP software packages
 - STSW-S2LP-DK
 - STSW-S2LP-SFX-DK

S2-LP overview

What is the S2-LP?

- The S2-LP is a high performance ultralow power RF transceiver, intended for RF wireless applications in the sub-1 GHz band (proprietary radio).
- It is not a SOC. It is an SPI slave and an external microcontroller is always needed to drive it.
- The user can implement its own protocol, controlling the timings and the active phases (RX or TX) according to its proprietary protocol.

The S2-LP is not compliant to any standard protocol (like the *BlueNRG* family products)!

Key points of the S2-LP 5

- It is designed to operate in both the license-free ISM and SRD frequency bands at 433, 868 and 920 MHz, but can also be programmed to operate at other additional frequencies in the 430-470 MHz, 860-940 MHz bands
- It supports the following modulation schemes with datarate from 0.3 to 250kbps:
 - Frequency modulations: 2-FSK, 2-GFSK, 4-FSK, 4-GFSK
 - Amplitude modulations: OOK and ASK
 - Custom modulations: low level control of the SYNTHESIZER and PA (polar mode). This feature is used to implement the **SigFox** modulation)
- It has an integrated SMPS which allows very low power consumption outperforming all competitors and can be supplied in the range [1.8, 3.6]V and [-40 , 851 °C

- A packet handler engine is integrated in the chip to assemble and decode packets with PREAMBLE, SYNC WORD, CRC check words, whitening and FEC
- It is possible to configure the device to stay in low power mode (SLEEP) and automatically wake-up every an amount of time to transmit or receive. An integrated RCO is used for this scope.
- (Linked to the previous point) It is possible to have a fast RX termination algorithm (SNIFF MODE).
- It is possible to configure the device in a **Listen Before Talk** (even called **CSMA**) configuration to minimize the number of collisions while transmitting.

S2-LP consumption 6

STATE	CURRENT	
Shutdown	2.5nA	
Standby	350nA	
Sleep A (no FIFO retention)	600nA	
Sleep B (FIFO retention)	900nA	
Ready	350uA	
TX (@14dBm)	20.6mA	
TX (@10dBm)	10mA	
RX	8mA	
RX (LPM)	6.7mA	

S2-LP vs SPIRIT1

Main differences	S2-LP	SPIRIT1	
Frequency bands	One VCO – Bands are 433, 868 and 915 MHz	Two VCOs – Possibility to address the 169 and 315 MHz bands also	
Sniff low power mode	Fully supported thanks to the timings mechanism the device embeds.	Only partially supported. The MCU needs to be involved to implement this mode.	
SigFox modulation support	It is possible to generate the BPSK modulation thanks to the low level control of the SYNTH and PA.	Not possible	
Max Power	14dBm (16dBm in boost mode)	11dBm (16dBm in boost mode)	
4(G)FSK modulations	Supported	Not supported	
RSSI read while in RX	Supported	Not supported	
VCO online calibration		Not supported	
PA interpolation and PA filters	Supported	Not supported	
Data coding	Manchester, 3o6, UART, FEC, whitening, CRC		
Dual SYNC	Supported	Not supported	
802.15.4g	Supported	Not supported	

life.augmented

S2-LP vs Spirit1 sensitivity (1/2)

Spirit1

- SMPS block close to RF
 - 2dB noise in conducted mode
- Unique decoupling for all internal voltages (Vreg)
 - 1dB noise in conducted mode
- -121dBm @ 1,2Kbps

S2-LP

- SMPS block further from RF
- Separate decoupling for all internal voltages
- Sensitivity?

S2-LP vs Spirit1 sensitivity (2/2)

Spirit1: 1 – 500Kbps

Spirit2: 0,3 - 250 Kbps

S2-LP selectivity (1/2)

- Selectivity: Capability to decode signals in presence of strong nearby interferers
 - Same frequency band (w/ other ISM systems) → Adjacent channel selectivity
 - Nearby frequency band (LTE / GSM) → Blocking selectivity
 - Differentiator: Interferer frequency offset from wanted signal

- RF regulatory: defines receiver categories upon required rejection
 - EN300-220 / EN303-131 : Most stringent "category 1"
 - Adjacent rejection ≥ 60dB & 2MHz / 10MHz : ≥ 84dB

More and more people on ISM / New LTE allocation → Selectivity is important!

S2-LP selectivity (2/2)

Channel filtering improved @ 2MHz compared to Spirit1

S2-LP channel filter is programmable down to 1KHz

S2-LP		Cat 1	433MHz	868MHz
300 bps	Adjacent	60	1	64
	+/- 2MHz / 10MHz	84	1	87/90
1,2Kbps	Adjacent	60	67	59
	+/- 2MHz / 10MHz	84	84/84	81/84

S2-LP is in cat1 in these configurations

S2-LP Power management

S2-LP LDO tree

S2-LP power modes

- Vsmps

 LPM

 Vsmps ≤ 1,2V

 VR

 LDO

 1,2V
- $\mathbf{BM} = \mathbf{Boost\ mode}\ (Vsmps = 1,8V)$
 - → Enables to get +16dBm @ antenna connector

- **HPM = High Performance Mode** (Vsmps = 1,5V)
 - → Internal LDO's used to supply different blocks
 - → Best possible isolation and minimum noise level/ SMPS ripple

- LPM = Low Power mode (Vsmps = 1,2V)
 - → Internal LDO's **by-passed** → Blocks are directly supplied by Vsmps
 - → Better regulation efficiency (+16%) but higher noise & reduced isolation

RX fast termination 41

- S2-LP can automatically do SLEEP-RX and sniff for the power on the air:
 - RCO can be calibrated to be precise in waking up the device
 - If power is NOT detected, the device goes again to sleep
 - If power is detected, the device remains in RX with the RX timeout or until the SYNC is detected
 - If SYNC is detected, the RX is kept so that the packet is fully received

S2-LP allows to do the channel power sniffing without involvement of the external MCU

S2-LP kits description

S2-LP Evaluation kits 15

- The S2-LP evaluation kit is composed by 2 boards:
 - 1 Daughterboard: a shield Arduino connectors compatible
 - 1 Motherboard: STM32L152RE_NUCLEO or STM32L053R8_NUCLEO
 - 1 Antenna tuned for the band used by the board

S2-LP Kits Part Number 16

Kit part number	Daughter Board	Mother Board	Sub-1GHz STD compliancy	SigFox support
STEVAL- FKI433V1	S2-LP + 433MHz band matching network	STM32L152RE_NUCLEO	China: SRCC	-
STEVAL- FKI868V1	S2-LP + 868 and 915 MHz bands matching network	STM32L152RE_NUCLEO	Europe: ETSI EN 300 220, ETSI EN 303 131 US: FCC part 15 and part 90 Japan: ARIB STD T67, T108	Could be used also for SigFox in the RCZ1/3 configurations
STEVAL- FKI915V1	S2-LP + 868 and 915MHz bands matching network	STM32L152RE_NUCLEO	US : FCC part 15 and part 90	Could be used also for SigFox in the RCZ2/4 configurations

Kits Hardware 17

Embedded ST-Link and USB2Serial conv

Embedded ST-Link and USB2Serial conv

S2-LP software packages STSW-S2LP-DK

S2-LP DK Application

A GUI allowing:

- Radio and packet handler easy configuration
- RF tests (TX of unmodulated carrier, TX PN9 sequence, RX activation)
- Packet transmission/reception test with PER evaluation
- Packet transmission/reception test with Sniff low power mode
- Register read/write and dump
- C-code generation for fast configuration

Firmware examples:

- Demonstrating how to use the S2-LP features in an STM32 embedded application
- In a single IAR workspace
- Each program (A and B roles of each example) is an IAR and MDK-ARM Keil configuration and can be compiled and flashed on the NUCLEO board using the embedded ST-Link.

Documents:

- UM2149: Getting started with the S2-LP development kits
- Schematics, gerber file and BOM of each STEVAL-FKI board
- Firmware doxygen documentation

STSW-S2LP-DK Setup 20

- Download the STSW-S2LP-DK from http://www.st.com/en/embedded-software/stsw-s2lp-dk.html
- Unzip the package and launch S2-LP DK-Setup-1.0.0.exe
- Launch the S2-LP DK GUI
- Plug the board via USB. The port combo-box will detect the COM where the S2-LP is connected.
- Click on *Open*. At this stage the GUI is ready to perform the actions defined in the user manual.

Firmware examples 21

- S2-LP DK 1.0.0 supports only STM32L152RE (ARM-CM3 core).
 - The Library examples are given as an IAR EWARM project.
- From **S2-LP DK v1.1.0**, the STM32L053R8 (*ARM-CM0*+ core) is also supported.

S2-LP software packages STSW-S2LP-SFX-DK

S2-LP SigFox GUI Application

S2-LP SigFox Demo GUI PC application :

- Quick SigFox messages exchange
- Choose the message payload
- Set the downlink mode
- Perform the node registration

Documents:

- SigFox Dev Kits User Manual
- SigFox Firmware User Manual (including the current consumption profiles for each RCZ)
- A Doxygen including guidelines to write a SigFox application and to do a quick porting to another platform

ST-SigFox API for S2-LP:

- C embedded libraries to develop that can be easily ported to other platforms
- One simple embedded application to send uplink messages
- IAR and Keil workspaces

STSW-S2LP-SFX-DK Setup 24

- Download the STSW-S2LP-DK from http://www.st.com/en/embedded-software/stsw-s2lp-sfx-dk.html
- Unzip the package and launch S2-LP_SigFox_DK-Setup-1.0.0.exe
- Launch the S2-LP SigFox Demo GUI
- Plug the board via USB. The port combo-box will detect the COM where the S2-LP is connected.
- Click on Open. If the board hasn't the SigFox ID info, the GUI will launch a wizard procedure to register the node.

