CLASE #5: 13 DE FEBRERO DE 2019

Ejercicio 5.12. Supongamos que $f : \mathbb{R} \to \mathbb{R}$ posee las dos siguientes propiedades: en primer lugar (i) $f(x) \to 1$ cuando $x \to 0$ y, en segundo lugar, (ii) f(x+y) = f(x)f(y) para cualesquiera $x, y \in \mathbb{R}$. Probar que:

- 1. f es continua en \mathbb{R} .
- 2. f(x) > 0 para todo $x \in \mathbb{R}$.
- 3. $f(rx) = f(x)^r$ cualquiera que sea $r \in \mathbb{Q}$. En particular $f(r) = f(1)^r$ para todo $r \in \mathbb{Q}$.
- 4. $Si\ f(1) = 1$, entonces f es constante.
- 5. Si f(1) > 1, entonces f es estrictamente creciente y $f(x) \to \infty$ cuando $x \to \infty$ y $f(x) \to 0$ cuando $x \to -\infty$.
- 6. Si f(1) < 1, entonces f es estrictamente decreciente y $f(x) \to 0$ cuando $x \to \infty$ y $f(x) \to \infty$ cuando $x \to -\infty$.

Solución. En primer lugar, observamos que $f(0) = f(0+0) = f(0)^2$ implica que $f(0) \in \{0, 1\}$, de forma que por la propiedad (i) necesariamente se tiene que f(0) = 1. Para comprobar que f es continua, sea $x_0 \in \mathbb{R}$ fijado y sea $h \in \mathbb{R}$. Como $f(x_0 + h) = f(x_0)f(h)$ por la propiedad (ii), deducimos que $f(x_0 + h) = f(x_0)f(h) \to f(x_0) = f(x_0)$ por la propiedad (i), cuando $h \to 0$, esto es, f es continua en $x_0 \in \mathbb{R}$. Veamos ahora que f es positiva en \mathbb{R} . Dado que f(0) = f(x - x) = f(x)f(-x), se deduce que $f(-x) = f(x)^{-1}$ cualquiera que sea $x \in \mathbb{R}$, y en particular $f(x) \neq 0$ para todo $x \in \mathbb{R}$. Dado que f(0) = 1 > 0, necesariamente f(x) > 0 para todo $x \in \mathbb{R}$ (si no, por reducción al absurdo, se puede emplear el Teorema de Bolzano). Comprobemos ahora que f(x) = f(x) para todo f(x) = f(x)

$$f(mx) = f(x + \dots + x) = f(x) \dots f(x) = f(x)^{m}$$

para cada $m \in \mathbb{N}$, y como $f(-x) = f(x)^{-1}$, a su vez se generaliza para $m \in \mathbb{Z}$. Por último, si $r = \frac{p}{q}$ para $p, q \in \mathbb{Z}$, $q \neq 0$, deducimos que

$$f(rx)^{q} = f(qrx) = f(px) = f(x)^{p}$$
 y por ende $f(rx) = f(x)^{\frac{p}{q}} = f(x)^{r}$,

lo cual concluye el apartado. Si f(1)=1, la función es necesariamente constante, ya que $f(r)=f(1)^r=1$, y toda función continua viene completamente determinada en $\mathbb R$ en función de su imagen en un conjunto denso, como es $\mathbb Q$, lo cual vimos en el ejercicio anterior. Si por contra $\alpha=f(1)>1$, entonces f es estrictamente creciente, esto lo vimos enla primera clase, pero podemos repetirlo: En efecto, si $m,n\in\mathbb N$ son tales que m< n, entonces

$$1 < \alpha \implies \alpha < \alpha^2$$

ya que α es positivo, y se sigue rigurosamente por inducción que $\alpha^m < \alpha^n$. Por otra parte,

$$\frac{1}{\alpha} < 1 \implies \frac{1}{\alpha} \frac{1}{\alpha} = \alpha^{-2} < \alpha^{-1} = \frac{1}{\alpha}$$

y se sigue por inducción que $\alpha^m < \alpha^n$ cualesquiera que sean $m, n \in \mathbb{Z}$ con m < n. Supongamos ahora que x = p/q e y = r/s, con $p, r \in \mathbb{Z}$, $q, s \in \mathbb{N}$, y x < y, es decir, ps < qr, entonces $\alpha^x < \alpha^y$ pues, por reducción al absurdo, si $\alpha^x \ge \alpha^y$, tendremos que $\alpha^{ps} = (\alpha^x)^{rs} \ge (\alpha^y)^{rs} = \alpha^{qr}$, lo que contradice el enunciado anterior de que $\alpha^m < \alpha^n$ para m = ps y n = qr. Por último, si $x, y \in \mathbb{R}$ son tales que x < y, entonces existen $r, s \in \mathbb{Q}$ por la densidad de los números racionales tales que x < r < s < y y deducimos que

$$\alpha^x = \lim_{n \to \infty} \alpha^{x_n} \le \alpha^r < \alpha^s \le \lim_{n \to \infty} \alpha^{y_n} = \alpha^y$$

donde $\{x_n : n \in \mathbb{N}\} \subset \mathbb{Q}$ es una sucesión de números racionales tal que $x_n \uparrow x$ cuando $n \to \infty$ e $\{y_n : n \in \mathbb{N}\} \subset \mathbb{Q}$ tal que $y_n \downarrow y$ cuando $n \to \infty$. Los límites se deducen de manera sencilla como consecuencia por ser estrictamente creciente y empleando la Desigualdad de Bernoulli. El último apartado se demuestra análogamente.

Ejercicio 5.16. Un coche recorre 100 kilómetros en 50 minutos sin detenerse. Demostrar que hubo un minuto en el cual recorrió exactamente 2 kilómetros (es decir, existe un intervalo $[c, c+1] \subset [0, 50]$, $c \in [0, 49]$, de forma que el recorrido hecho en dicho intervalo es de 2 kilómetros exactamente)

Solución. Sea $x:[0,50] \to [0,100]$ tal que x(t) representa el recorrido realizado hasta el instante t, cualquiera que sea $t \in [0,50]$. Así, x(0) = 0 y x(50) = 100. Definamos la función auxiliar $h:[0,49] \to \mathbb{R}$, dada por la expresión h(t) = x(t+1) - x(t), la cual es continua pues suponemos que x es continua, que mide la distancia recorrida en el intervalo de tiempo [c, c+1]. Tenemos que probar que existe $c \in [0,49]$ en el cual h(c) = 2. Podemos distinguir los siguientes casos:

1. h(t) > 2 para todo $t \in [0, 49]$. Esto es absurdo pues

$$100 = x(50) - x(0) = \sum_{k=0}^{49} [x(k+1) - x(k)]$$
$$= \sum_{k=0}^{49} h(k) > \sum_{k=0}^{49} 2 = 50 \cdot 2 = 100,$$

donde la segunda igualdad se da gracias a lo que se conoce como la telescopicidad de esta suma, de forma que se cancelan unos términos con otros salvo x(50) y x(0).

- 2. h(t) < 2 para todo $t \in [0, 49]$. Es absurdo y se razona de manera similar.
- 3. Existen $t_0, t_1 \in [0, 49]$ de forma que $h(t_0) \leq 2$ y $h(t_1) \geq 2$, y por el Teorema de los Valores Intermedios podemos encontrar $c \in [t_0, t_1]$ o $[t_1, t_0]$ de manera que h(c) = 2.

Nótese que contemplamos así todos los casos.

Ejercicio 6.1. Sean a y b dos número reales tales que a < b y sean f, g: $(a,b) \to \mathbb{R}$ dos funciones diferenciables en $c \in (a,b)$ hasta orden n, un número natural. Entonces, el producto $fg: (a,b) \to \mathbb{R}$ es diferenciable en

c hasta orden n y

$$(fg)^{(n)}(c) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(c) g^{(n-k)}(c),$$

la cual es comúnmente conocida como fórmula generalizada de Leibniz.

Solución. Antes de presentar una demostración rigurosa por inducción resulta conveniente tener en mente la conocida fórmula del binomio de Newton:

$$(x+y)^n = \sum_{k=1}^n \binom{n}{k} x^k y^{n-k}, \quad x, y \in \mathbb{R}, \ n \in \mathbb{N}$$

pues desde las análogas fórmulas que potencias de números reales y derivadas de funciones satisfacen:

$$(x+y)^2 = x^2 + 2xy + y^2,$$
 $(fg)^{(2)} = f^{(2)}g + 2f^{(1)}g^{(1)} + fg^{(2)},$

se sigue la similaridad entre ambas fórmulas. No resulta sorprente que su prueba sea esencialmente la misma. Vamos a demostrar el teorema por inducción sobre $n \in \mathbb{N}$, Si n = 1, esto es, el caso base, sabemos que fg es diferenciable en c y se satisface la bien conocida fórmula del producto (fg)'(c) = f'(c)g(c) + f(c)g'(c), dado que el cálculo del siguiente límite es directo:

$$\lim_{h \to 0} \frac{f(c+h)g(c+h) - f(c)g(c)}{h}$$

$$= \lim_{h \to 0} \frac{f(c+h)g(c+h) - f(c)g(c+h) + f(c)g(c+h) - f(c)g(c)}{h}$$

$$= \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} g(c+h) - \lim_{h \to 0} f(c) \frac{g(c+h) - g(c)}{h}$$

$$= f'(c)g(c) - f(c)g'(c).$$

Supongamos ahora que el resultado es cierto para $n \in \mathbb{N}$ y veamos que se cumple para n+1. Supongamos así que f y g son ambas diferenciables en c hasta orden n+1, de forma que el límite definitorio de la derivada (n+1)-ésima existe:

$$\lim_{h \to 0} \frac{f^{(n)}(c+h)g^{(n)}(c+h) - f^{(n)}(c)g^{(n)}(c)}{h},$$

y por ende f y g son diferenciables hasta orden n en un entorno de c (si no no tendría sentido la expresión $f^{(n)}(c+h)$ ni $g^{(n)}(c+h)$), y la fórmula de Leibniz se satisface en dicho entorno:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$

Esta es claramente una función diferenciable en c dado que es la suma de productos de funciones diferenciables. Veamos ahora que se cumple la fórmula de Leibniz generalizada. En primer lugar, por definición:

$$(fg)^{(n+1)}(c) = \frac{\mathrm{d}}{\mathrm{d}x}(fg)^{(n)}(c) = \frac{\mathrm{d}}{\mathrm{d}x} \left[\sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)} \right] (c),$$

y como consecuencia de la linealidad de la derivada y la regla del producto:

$$= \sum_{k=0}^{n} \binom{n}{k} \left[f^{k+1}(c)g^{(n-k)}(c) + f^{(k)}g^{(n-k+1)}(c) \right]$$

la cual se puede reescribir en la forma:

$$= \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)}(c) g^{(n-k)}(c) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k+1)}(c)$$

haciendo el cambio de variable en la primera suma:

$$= \sum_{k=1}^{n+1} \binom{n}{k-1} f^{(k)}(c) g^{(n-k+1)}(c) + \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(c) g^{(n-k+1)}(c)$$

de forma que, considerando el último término fuera de la primera suma y el primero de la seguna suma, y sacando factor común en los restantes términos:

$$= \binom{n}{0} f(c)g^{(n+1)}(c) + \binom{n}{n} f^{(n+1)}(c)g(c) + \sum_{k=1}^{n} \left[\binom{n}{k-1} + \binom{n}{k} \right] f^{(k)}(c)g^{(n-k+1)}(c)$$

ahora, dado que trivialmente $\binom{n}{0} = \binom{n+1}{0}$ y $\binom{n}{n} = \binom{n+1}{n+1}$ y podemos comprobar fácilmente la identidad combinatoria $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$ cualesquiera que sean $n, k \in \mathbb{N}$ (la fórmula que utilizamos en el triángulo de Tartaglia o Pascal), la anterior expresión, reagrupada, resulta:

$$= \sum_{k=0}^{n+1} {n+1 \choose k} f^{(k)}(c)g^{(n+1-k)}(c),$$

como queríamos probar.