ТИПОВОЙ РАСЧЕТ ПО КУРСУ "ЭЛЕКТРОДИНАМИКА", поток ЭР-15, 4 семестр Часть 1. Плоские волны (сдача на 8 неделе)

Плоская электромагнитная волна с линейной поляризацией распространяется в среде с потерями вдоль одной из декартовых осей (см. таблицу) в сторону увеличения координаты. Известны и приведены в таблице: относительные диэлектрическая и магнитная проницаемости среды ε и μ , удельная проводимость среды σ , частоты f_1 и f_2 . Для различных вариантов в начале координат заданы: а) начальная фаза колебаний проекции вектора \overline{E} или вектора \overline{H} на некоторую ось, например $\phi_{E_x}(0) = -20^0$ или $\phi_{H_y}(0) = \frac{\pi}{3}$; б) средняя плотность мощности потерь p_{cp} или средняя плотность потока мощности Π_{cp} или средняя плотность энергии электрического поля w_{3cp} или средняя плотность энергии маг-

- **нитного поля** w_{Mcp} (для частоты f_1) . Выполните следующее задание. **1**. Найдите тангенс угла потерь и угол потерь на частотах f_1 и f_2 .
- 2. Рассчитайте и постройте частотные зависимости коэффициента фазы, коэффициента ослабления, длины волны и фазовой скорости по точным формулам (жирная линия) в диапазоне частот, в котором тангенс угла потерь изменяется в пределах от 0.02 до 50. Используйте логарифмический масштаб по оси частот. На этих же графиках покажите кривые, полученные: а) по приближенным формулам для среды с малыми потерями (тонкая линия, в диапазоне, где $tg\delta=0.02..1$); б) по приближенным формулам для хорошо проводящей (металлоподобной) среды (тонкая штриховая линия, в диапазоне, где $tg\delta=1..50$). По графикам определите частотные области, в которых приближенные формулы дают погрешность не выше tgcolor 5%.
- 3. Для частот f_1, f_2 и $f_3 = \sqrt{f_1 \cdot f_2}$ рассчитайте и сведите в таблицу значения коэффициента фазы, коэффициента ослабления, длины волны, модуля и фазы характеристического сопротивления среды. Получите общие формулы (для Вашего случая) и формулы с конкретными числовыми параметрами (на частотах f_1 , f_2 и f_3) для зависимостей комплексных амплитуд векторов \overline{E} и \overline{H} и плотности потока мощности от пространственной координаты и для зависимостей мгновенных значений векторов \overline{E} и \overline{H} от пространственной координаты и от времени. Для частот f_1 и f_2 рассчитайте и постройте зависимости амплитуды и мгновенных (при t=0) значений проекций векторов \overline{E} , \overline{H} а также модуля вектора $\overline{\Pi}_{CP}$ от пространственной координаты распространения волны в пределах от 0 до 1,5 λ . **Примечание.** Графики для амплитуды совместите с графиками для мгновенных значений. **Для каждой частоты** все графики приведите на одной странице один под другим в одинаковом масштабе по горизонтали.
- **4. Проанализируйте полученные в пп. 1-3 результаты и представьте выводы:** о влиянии частоты и $tg\delta$ на исследуемые характеристики и графики; о том, в каком направлении график для мгновенных значений \overline{H} сдвинут относительно графика для \overline{E} в пространстве и в каком направлении во времени; обоснуйте, как затухание на расстоянии λ зависит от тангенса угла потерь.

Часть 2. Отражение и преломление плоских волн (сдача на 11 неделе)

Плоская электромагнитная волна падает из среды с параметрами ε и μ на плоскую границу раздела с воздухом **или** из воздуха на плоскую границу раздела со средой с параметрами ε и μ (см. таблицу). **Потери в среде отсутствуют**. Амплитуда вектора \overline{E} в падающей волне такая же, как в части 1 данного ТР для плоской волны в начале координат на частоте f_1 . Выполните следующее задание.

- 1. Найдите углы Брюстера и полного внутреннего отражения для случая перпендикулярной поляризации и для случая параллельной поляризации (если эти углы существуют).
- 2. Запишите исходные формулы и рассчитайте коэффициенты отражения и преломления по вектору \overline{E} , амплитуды векторов (но не проекций!) \overline{E} , \overline{H} и модуля вектора $\overline{\Pi}_{CP}$ в падающей, отраженной и преломленной волне для случая нормального падения и для падения под углом 12^0 для обеих поляризаций падающей волны. Результаты сведите в таблицу.
- 3. Запишите исходные формулы и рассчитайте зависимости коэффициентов отражения и преломления (отдельный график для фазы, отдельный для модуля) от угла падения (в диапазоне от 0^0 до 90^0 , или, при наличии $\phi_{\Pi O}$ от 0^0 до $3\phi_{\Pi O}$ для коэффициента отражения). На каждом графике приведите кривые для случая перпендикулярной поляризации и для случая параллельной поляризации.
- **4.** Сделайте рисунок, **выведите** и запишите исходные формулы и рассчитайте зависимости амплитуды векторов \overline{E} и \overline{H} для случая нормального падения от координаты z, которая изменяется в направлении нормали к поверхности раздела сред. На графиках используйте область изменения z: $z \in -1,5\lambda;1,5\lambda$. Учтите, что поле в первой среде является суперпозицией падающей и отраженной волн.
- **5. Проанализируйте полученные результаты и представьте выводы:** о возможности существования $\varphi_{\rm b}$. $\varphi_{\rm \Pi O}$, о влиянии угла падения и поляризации на исследуемые характеристики, о влиянии фазовых соотношений при интерференции волн в п.4 (покажите, что положение максимумов амплитуды соответствует разности фаз, кратной четному числу π , а минимумов нечетному числу π).