# First Order Logic and KR Herbrand Models



# **Objectives**



Objective

Explain how Herbrand models are defined and reduces the complexity of FOL reasoning

#### **Herbrand Models**

A Hebrand interpretation is a special case of first-order interpretation

- A Herbrand interpretation of signature  $\sigma$  (containing at least one object constant) is an interpretation of  $\sigma$  such that
  - its universe (Herbrand Universe) is the set of all ground (i.e., variable-free) terms of  $\sigma$ ,
  - every ground term is interpreted as itself ( $t^{I} = t$ )

$$\alpha^{x} = \alpha$$

## Herbrand Models, cont'd

#### Herbrand interpretations of the signature {P, a}

$$|I| = 3a\zeta$$

$$Q^{I} = \alpha$$

$$P^{I}(\alpha) = \pm$$

$$|I| = 3a4$$

$$a^{T} = a$$

$$p^{T}(a) = f$$

$$2$$

Herbrand models of the signature {P, a} that satisfies formula P(a)



### Herbrand Models, cont'd

Herbrand interpretations of the signature  $\{P, a, b\}$   $|I| = \beta a, b \}$   $\alpha^{x} = \alpha$   $\beta^{x} = b$   $\rho^{x}(a) = f$   $\rho^{x}(b) = f$   $\rho^{x}(b) = f$   $\rho^{x}(b) = f$ 

$$|I| = 34, b$$

$$\alpha^{x} = a$$

$$b^{x} = b$$

$$P^{T}(a) = f$$

$$P^{T}(b) = f$$

$$p^{r}(a) = f$$

$$p^{r}(b) = x$$

$$p^{\mathrm{T}}(a) = \pm p^{\mathrm{T}}(b) = \pm p^{\mathrm{T}}(b)$$

Herbrand models of the signature {P, a, b} that satisfies formula P(a)

An Herbrand interpretation can be identified with the set of ground atoms to which it assigns the value true.

#### **Exercise**

1. Let  $F_1$  be  $P(a) \wedge \exists x \neg p(x)$ .

Find the Herbrand models of F<sub>1</sub> whose signature is {a,P}.

$$|I| = \lambda a \lambda$$
  $\mathcal{P}^{r}(a) = t$ 

Find the Herbrand models of F<sub>1</sub> whose signature {a,b,P}

$$|T| = 3a, b$$
  $p^{T}(a) = f$ 

$$p^{T}(b) = f$$

$$|T| = \lambda a, b; \quad \text{or } p^{x}(a) = f \quad \text{or } p^{x}(b) = f \quad \text{or$$

2. Let  $F_2$  be  $P(a) \land \neg P(b) \land \exists x \neg P(x)$ .

Find the Herbrand models of  $F_2$  whose signature is  $\{a,b,P\}$ .

#### **Entailment and Herbrand Models**

# Without functions, entailment restricted to Herbrand models is decidable

- Herbrand models are finitely enumerable

#### With functions, this is not the case

# When the Herbrand universe is finite, quantified formulas can be identified with propositional formulas

- $\forall x P(x)$  vs.  $P(a) \land P(b) \land P(c)$
- $-\exists x P(x) \text{ vs. } P(a) \vee P(b) \vee P(c)$

## Wrap-Up

