AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior listings of claims in the application:

 (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_{6}$$
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein

 R_3 is C_1 - C_{10} alkyl;

 $R_4 \text{ to } R_7 \text{ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO_3T, -CO_2T, -OH, -(CH_2)_aSO_3T, -(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aOCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aOCO(CH_2)_bPO_3HT, -(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bPO_3T_2, -(CH_2)_aCONH(CH_2)_bPO_3HT, -(CH_2)_aCONH(CH_2)_bCO_2CH_2CH_2CO_2CH_2CH_2CH_2CO_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2C$

 $Y_1 \text{ is selected from the group consisting of C5-C20 polyhydroxyaryl, saccharides,} \\ \text{hydrophilic peptides, arylpolysulfonates, -}(CH_2)_aOSO_3T, -(CH_2)_aNHSO_3T, -(CH_2)_aCO_2(CH_2)_bSO_3T, -(CH_2)_aOCO(CH_2)_bSO_3T, -(CH_2)_aNHCO(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aNHCONH(CH_2)_bSO_3T, -(CH_2)_aOCONH(CH_2)_bSO_3T, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2, -(CH_2)_aOCO(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_2(CH_2)_$

 $-(CH_2)_aOCO(CH_2)_bPO_3T_2, \ -(CH_2)_aCONH(CH_2)_bPO_3HT, \ -(CH_2)_aCONH(CH_2)_bPO_3T_2, \\ -(CH_2)_aNHCO(CH_2)_bPO_3HT, \ -(CH_2)_aNHCO(CH_2)_bPO_3T_2, \ -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, \\ -(CH_2)_aNHCONH(CH_2)_bPO_3T_2, \ -(CH_2)_aNHCSNH(CH_2)_bPO_3HT, \ -(CH_2)_aNHCSNH(CH_2)_bPO_3T_2, \\ -(CH_2)_aOCONH(CH_2)_bPO_3HT, \ -(CH_2)_aOCONH(CH_2)_bPO_3T_2, \ -CH_2(CH_2-O-CH_2)_c-CH_2-OH_2, \\ -(CH_2)_b-N(R_a)-(CH_2)_b-CO_2T; \ -(CH_2)_b-N(R_a)-(CH_2)_i-CO_2^T \\ -(CH_2)_b-N(R_a)-(CH_2)_b-CO_2T; \ -(CH_2)_b-N(R_a)-(CH_2)_i-CO_2^T \\ -(CH_2)_b-N(R_a)-(CH_2)_b-N(R_a)-(CH_2)_b-N(R_a)-(CH_2)_i-CO_2^T \\ -(CH_2)_b-N(R_a)-(CH_2)_b-N(R_a)-(CH_2)_b-N(R_a)-(CH_2)_i-CO_2^T \\ -(CH_2)_b-N(R_a)-($

W₁ is -CR_cR_d;

a, b, d, f, h, i, and j independently vary from 1-10;

c, e, g, and k independently vary from 1-100;

 R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; and T is either H or a negative charge.

2-3. (CANCELED)

4. (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of a composition comprising formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 N_{1}
 N_{1}
 N_{1}
 N_{2}

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, $-SO_3T$, $-CO_2T$, -OH, $-(CH_2)_aSO_3T$, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNHSO_3T$, $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-(CH_2)_aCONH(CH_2)_bSO_3T$, $-(CH_2)_aNHCONH(CH_2)_bSO_3T$, $-(CH_2)_aNHCSNH(CH_2)_bSO_3T$, $-(CH_2)_aOCONH(CH_2)_bSO_3T$, $-(CH_2)_aPO_3HT$, $-(CH_2)_aPO_3HT$, $-(CH_2)_aPO_3HT$, $-(CH_2)_aPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aNHCONH(CH_2)_bPO_3HT$, $-(CH_2)_aNHC$

-(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_r-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and -NR_c; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is either H or a negative charge.

- 5. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 4 which comprises administering to an individual an effective amount of the composition wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_r-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and -NR_c; a, b, d, f, h, I, and j independently vary from 1-5; c, e, g, and k independently vary from 1-20; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is a negative charge.
- 6. (WITHDRAWN) The method for performing the diagnostic or therapeutic procedure of claim 5 which comprises administering to an individual an effective amount of the composition wherein each R_3 , R_4 , R_6 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_1 is $-C(CH_3)_2$; T is a negative charge.
- 7. (WITHDRAWN) The method of claim 4 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.
- 8. (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by fluorescence wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- 9. (WITHDRAWN) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by absorption wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- 10. (WITHDRAWN) The method of claim 4 wherein said procedure is for physiological function monitoring.

- 11. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for renal function monitoring.
- 12. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for cardiac function monitoring.
- 13. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for kidney function monitoring.
- 14. (WITHDRAWN) The method of claim 10 wherein the diagnostic procedure is for determining organ perfusion in vivo.
- 15. (CANCELED)
- 16. (WITHDRAWN) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of formula 1

$$R_{5}$$
 R_{7}
 N_{1}
 R_{7}

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH

-(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, -NR_c, and -S-; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is either H or a negative charge; with the proviso that when W₁ is -S-, R₃-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.

17. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein R₃ is C₁ alkyl.

18. CANCELED

19. (PREVIOUSLY PRESENTED) The composition of claim 17 wherein each of R_4 to R_7 is independently -H or -SO₃T.

20-22. CANCELED

23. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein each of R_4 to R_7 is independently -H or -SO₃T.

24-26. CANCELED