

10. FUZZY LOGIC

Prof. Dr. Sven Behnke

KLAUSUR

■ 20. Juli 15:00-17:00 im HS 1+2 (Hörsaalzentrum, Endenicher Allee 19c)

Geändert: 12:00-14:00 im Wolfgang Paul-Hörsaal, Kreuzbergweg 28

- 90 Minuten Bearbeitungszeit
- Closed Book

BAUSTEINE DER COMPUTATIONAL INTELLIGENCE

MOTIVATION

Entwickelt von Lotfi Zadeh seit 1965

- Modellierung unscharfer Konzepte:
 - Bsp: Alter, Gewicht, Größe, ...
- Modellierung unscharfer Abhängigkeiten (z.B. Regeln):
 - Wenn die Temperatur niedrig ist und Öl wenig kostet, drehe die Heizung auf
- Herkunft der Information:
 - Modellierung von Expertenwissen
 - Repräsentation von Informationen, die aus inhärent ungenauen Daten extrahiert wurden

CHARAKTERISTISCHE FUNKTIONEN KLASSISCHER (SCHARFER) MENGEN

Klassische Mengen können durch eine charakteristische Funktion beschrieben werden:

$$m_{A}(x) := \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \qquad m_{A}(x) \in \{0,1\}$$

Beispiel:

$$A = \{ x \mid a \le x \le b \}$$

CHARAKTERISTISCHE FUNKTIONEN VON FUZZY-MENGEN

Fuzzy-Mengen werden durch eine Mitgliedschaftsfunktion beschrieben:

$$\mu_{\widetilde{A}}(x) \in [0,1]$$

Beispiel: $\widetilde{A} = x$ is roughly in [a, b]

LINGUISTISCHE VARIABLEN UND WERTE

- Zuschreibung von Semantik zu Fuzzy-Mengen
 - Linguistische Variablen: Domäne der Fuzzy-Mengen
 - Linguistische Werte: "Diskretisierung" dieser Domäne durch Fuzzy-Mengen
- Bsp:

- Age: young, old

- Size: small, medium, tall

LINGUISTISCHE WERTE UND KONTEXT

Basketball-Spieler:

→ Linguistische Werte sind kontextabhängig!

BELIEBTE MITGLIEDSCHAFTSFUNKTIONEN

Trapezoid <a,b,c,d>

Dreieck <a,b,b,d>

Gaußglocke N(m,s)

Diskrete Werte {(a,1), (b,0.5)}

FUZZY-MITGLIEDSCHAFTSFUNKTIONEN: GRUNDLEGENDE BEGRIFFE

- **Support**: Menge mit Mitgliedschaft $\mu(x)>0$
- **Core**: Menge mit Mitgliedschaft $\mu(x)=1$
- **a**-cut: Menge mit Mitgliedschaft $\mu(x) >= \alpha$
- Height: Maximale Mitgliedschaft

OPERATOREN AUF FUZZY-MENGEN: KONJUNKTION (UND)

Menge von Personen, die sowohl alt als auch groß sind (Konjunktion)

Grenzfälle der Booleschen Logik müssen weiterhin gelten!

OPERATOREN AUF FUZZY-MENGEN: DISJUNKTION (ODER)

Menge von Personen, die alt oder groß sind (Disjunktion)

OPERATOREN: MIN/MAX - NORM

- Klassische Fuzzy-Operatoren: Min/Max-Norm
 - Konjunktion: $\mu_{A \wedge B}(x) := \min\{\mu_A(x), \mu_B(x)\}$

OPERATOREN: MIN/MAX - NORM

- Klassische Fuzzy-Operatoren: Min/Max-Norm
 - Konjunktion: $\mu_{A \wedge B}(x) \coloneqq \min\{\mu_A(x), \mu_B(x)\}$ Disjunktion: $\mu_{A \vee B}(x) \coloneqq \max\{\mu_A(x), \mu_B(x)\}$

OPERATOREN: MIN/MAX - NORM

- Klassische Fuzzy-Operatoren: Min/Max-Norm
 - Konjunktion: $\mu_{A \wedge B}(x) := \min\{\mu_A(x), \mu_B(x)\}$
 - Disjunktion: $\mu_{A\vee B}(x) := \max\{\mu_A(x), \mu_B(x)\}$
 - Negation: $\mu_{\neg A}(x) \coloneqq 1 \mu_A(x)$

T-NORM UND S-NORM

- Operatoren für Konjunktion (T-Norm) und Disjunktion (S-Norm) müssen zueinander passen
- Können mit De Morganscher Regel ineinander überführt werden:

$$(A \land B = \neg(\neg A \lor \neg B))$$

 $S(u,v) = 1 - T(1-u,1-v)$
 $T(u,v) = 1 - S(1-u,1-v)$

Beispiel Min/Max-Norm:

$$max(u,v) = 1 - min(1-u,1-v)$$

...= 1-1-min(-u,-v) = $max(u,v)$

FUZZY T- UND S-NORMEN

Product-Sum

 $S(a,b) = \max\{a,b\}$

EXTREME FUZZY T- UND S-NORMEN

S-Norm

Lukasiewicz Norm

Drastic Product/Sum

OPERATOR-SPEKTRUM

- Es gibt unterschiedlich extreme Operatoren
- T-Norm und S-Norm müssen zusammen passen

FUZZY NORMEN: PROBLEME

Interessante
Effekte:

$$-A \wedge \neg A = ?$$

$$-A \lor \neg A = ?$$

MITGLIEDSCHAFT VS. WAHRSCHEINLICHKEIT

- Wahrscheinlichkeit:
 - Häufigkeit von Zufallsereignissen

- Mitgliedschaft:
 - Grad der Zugehörigkeit zu einem Konzept

Bsp: Krankheitswahrscheinlichkeit vs.
 Grad der Zugehörigkeit zu den Kranken

FUZZY-IMPLIKATION

- Eine Möglichkeit:
 - Ableitung von Tautologie $A \rightarrow B = \neg A \lor (A \land B)$ und Min/Max-Norm

$$\mu_{A \to B}(x) := \max_{\text{*v*}} \left\{ 1 - \mu_{A}(x), \min_{\text{A} \to B} \left\{ \mu_{A}(x), \mu_{B}(x) \right\} \right\}$$

FUZZY-IMPLIKATION

- Oder umgekehrt:
 - Starte mit Lukasiewicz-Implikation

$$\mu_{A\to B}(x) := \min\{1, 1 - \mu_A(x) + \mu_B(x)\}$$

und leite Lukasiewicz-Disjunktion und -Konjunktion ab

 $A \lor B = \neg A \rightarrow B$

$$\mu_{A \vee B}(x) := \min\{1, \mu_A(x) + \mu_B(x)\}$$

A \wedge B = \neg (\neg A \vee \neg B) // de Morgan

$$\begin{split} &\mu_{A\wedge B}(x)\coloneqq 1-\min\big\{1,1-\mu_A(x)+1-\mu_B(x)\big\} \quad \text{// mit Lukasiewicz-Disjunktion}\\ &=\max\big\{0,\mu_A(x)+\mu_B(x)-1\big\} \end{split}$$

FUZZY-FOLGERUNGEN

Klassischer Modus Ponens:

$$\begin{array}{ccc}
A & \neg A \\
A \to B & A \to B \\
\hline
B & ?
\end{array}$$

Fuzzy: Generalisierter Modus Ponens

$$\frac{\mu_{A'}(x)}{A \to B}$$

$$\frac{\mu_{B'}(y)}{\mu_{B'}(y)}$$

GEMEINSAMER CONSTRAINT: SUPPORT-VERTEILUNG

Mit Min/Max-Norm führt Implikation A->B zu Einschränkungen des Kartesischen Produkts A×B

$$\mu_{A \times B}(x, y) = \min \{ \mu_{A}(x), \mu_{B}(y) \}$$

$$\mu_{B'}(y) = \sup_{x} \{ \min \{ \mu_{A'}(x), \mu_{A \times B}(x, y) \} \}$$

FUZZY-REGELN

Regel:
IF <Prämisse> THEN <Konklusion>

- Fuzzy-Version 1: Mamdani-Regeln
 - Prämisse: Konjunktion (Und) von Fuzzy-Mitgliedschaften
 - Konklusion: Fuzzy-Menge

BEISPIEL: MAMDANI-REGEL

IF age IS young AND car-power IS high THEN risk IS high

FUZZY-REGELN

Regel:
IF <Prämisse> THEN <Konklusion>

- Fuzzy-Version 1: Mamdani-Regeln
 - Prämisse: Konjunktion (Und) von Fuzzy-Mitgliedschaften
 - Konklusion: Fuzzy-Menge
- Fuzzy-Version 2: Takagi-Sugeno-Regeln
 - Prämisse: Konjunktion (Und) von Fuzzy-Mitgliedschaften
 - Konklusion: (normalerweise) reellwertige Funktion vom Grad 0-2.

BEISPIEL: TAKAGI-SUGENO-REGEL

IF age IS young AND car-power IS high THEN risk-factor = w0+w1*age+w2*car-power

FUZZY-REGELSYSTEM

R1: IF age IS young AND car-power IS high THEN risk IS high

R2: IF age IS normal AND car-power IS medium THEN risk IS medium

FUZZYFIZIERUNG SCHARFER EINGABEN

INFERENZ (Z.B. VIA MIN/MAX-NORM)

INFERENZ (Z.B. VIA MIN/MAX-NORM)

DEFUZZYFIZIERUNG

DEFUZZYFIZIERUNG

Schwerpunkt:

$$y = \frac{\int y \cdot \mu_{\text{risk}}(y) dy}{\int \mu_{\text{risk}}(y) dy}$$

Approximation: Gewichtete Summe der einzelnen Ausgabe-Fuzzymengen

Aktivierung der Regel j
$$y = \frac{\sum_{j=1}^{r} \mu_{j} \cdot S_{j}}{\sum_{j=1}^{r} \mu_{j}}$$
 Schwerpunkt der Ausgabe-Fuzzymenge j

FUZZY INFERENZ (MAMDANI)

Fuzzy Rules

FUZZY-REGELSYSTEM (MAMDANI)

FUZZY-REGELSYSTEM (TAKAGI-SUGENO)

R1: IF x IS small THEN y = xR2: IF x IS medium THEN y = 5THEN y = 2*x-5R3: IF x IS large $y = \frac{\sum_{i=1}^{r} \mu_{R_i} \cdot y_i(\vec{x})}{\sum_{i=1}^{r} \mu_{R_i} \cdot y_i(\vec{x})}$ 5 medium small large

KONSTRUKTION VON FUZZY-REGELSYSTEMEN WANG & MENDEL - ALGORITHMUS

Gegeben: Menge von Beispielen, vordefinierte Fuzzy-Mengen

 Beispiele mit höchster Mitgliedschaft bestimmen die Ausgabe

R1: if x is zero then y is medium R2: if x is small then y is medium R3: if x is medium then y is large R4: if x is large then y is medium

- Exponentiell viele Regeln in hochdimensionalen Räumen
- Beliebig gute Approximation wenn Grid-Auflösung fein genug (aber zu welchen Kosten!)
- Falsche Wahl des Grids kann Extrema verpassen

HIGGINS & GOODMAN - ALGORITHMUS

- Starte mit nur einer Mitgliedschaftsfunktion
- Füge neue ein wo der Fehler am größten ist
- Vordefinierter Schwellwert für erwünschten Approximationsfehler
- Findet "beste" Partitionierung (=Grid)

- Nachteile:
 - Konzentration auf Outlier
 - Interpretation schwierig: Granularität hängt nur von Daten ab

ANDERE KONSTRUKTIVE ALGORITHMEN

Lokale Mitgliedschaftsfunktionen

 Teilweise vordefinierte Mitgliedschaftsfunktionen/Granularitäten möglich

Teilweise Toleranz gegen Outlier durch Relevanz-Filter

FREIE FUZZY-REGELN

- Keine globale Granularität:
 - Individuelle (pro Regel) Mitgliedschafts-Funktionen
 - Bessere Modellierung lokaler Eigenschaften
- Nicht alle Attribute in jeder Regel verwendet:
 - Individuelle Auswahl der Prämisse durch Beschränkung auf wenige Attribute
 - Bessere Interpretierbarkeit in hochdimensionalen Räumen
 - Kein exponentielles Wachstum der Regelanzahl mit der Dimensionalität

ERZEUGUNG FREIER FUZZY-REGELN

Ziel: Klassifikation des Eingaberaums entsprechend Trainingsmenge {(x_i, c_i)}

Algorithmus FRL zur Klassifikation:

FORALL training examples (x, c) DO

IF correct rule of class c exists:

- COVERED:
 - increase weight +1
 - adjust core region of rule to cover x

ELSE:

- COMMIT:
 - insert new rule with core=x
 - Support = infinite (i.e. rule is not constrained)

SHRINK:

Reduce support of all rules of conflicting class that cover x
 (e.g. try to keep largest volume).

Until no more changes occurred.

BEISPIEL: FUZZY-KLASSIFIKATOR

ERZEUGUNG FREIER FUZZY-REGELN

Beobachtungen:

- FRL findet Regelmenge, die die Daten vollständig beschreibt (wenn Daten ohne Konflikte sind ...)
- Jede Regel ist eine *partielle Hypothese für eine Teilmenge der Trainingsdaten*
 - Core: Am meisten spezifische Hypothese, die eine Teilmenge der Daten abdeckt
 - Support: eine der generellsten Hypothesen, die eine Teilmenge der Daten abdeckt
 - Support is_more_general_than Core.
- Core und Support-Regionen können interpretiert werden als:
 - Kleinstes Gebiet mit höchster Konfidenz (Wir haben Evidenz)
 - Größtes Gebiet ohne Konflikte (Wir haben noch keine Gegenbeispiele gesehen)

OUTLIER-FILTER

- Problem: Verrauschte Daten erzeugen viele Regeln mit wenigen Datenpunkten
- Ansatz: Entferne Datenpunkte, die von Regeln mit geringem Gewicht beschrieben werden und trainiere erneut

[Berthold 2000]

ANDERE FUZZY-LERNMETHODEN

- Konstruktive Methoden:
 - Erzeuge Fuzzy-Regeln durch Wachstum aus Singleton-Regeln
 - FRL verkleinert Regeln ausgehend von den generellsten Regeln, bis diese zu den Daten passen
- GRID-basierte Methoden:
 - Verschmelze Gridzellen (oder Zeilen/Spalten) wenn keine Datenpunkte enthalten sind oder dieselbe Klasse vorhergesagt wird
- Adaptive Methoden:
 - Initialisiere Regeln zufällig (oder mit Expertenwissen) und optimiere Regel-Parameter (Orte, manchmal auch die Anzahl der Mitgliedschaftsfunktionen) iterativ (Gradientenabstieg, heuristische Optimierung wie z.B. Hill Climbing).
- Neuro-Fuzzy-Methoden:
 - Initialisiere neuronales Netz mit den Regeln und trainiere dieses mit Backpropagation

BEISPIEL: AUTOMATIK-GETRIEBE

- Aufgabe: Verbesserung des VW-Automatik-Getriebes
 - Keine zusätzlichen Sensoren
 - Individuelle Anpassung des Schaltverhaltens
- Idee (1995):
 - Das Fahrzeug "beobachtet" und klassifiziert den Fahrer nach Sportlichkeit
 - ruhig, normal, sportlich

=> Bestimmung eines Sport-Faktors aus [0, 1]

nervös

- => Beruhigung des Fahrers
- Datenerfassung im Testfahrzeug:
 - Verschiedene Fahrer, Klassifikation durch Experten (Mitfahrer)
 - Gleichzeitige Messungen:
 - Geschwindigkeit,
 - Position,
 - Geschwindigkeit des Gaspedals,
 - Winkel des Lenkrades, ...

BEISPIEL: AUTOMATIK-GETRIEBE

Überblick über das Gesamtsystem

FUZZY-INFERENZ

ERGEBNIS: ADAPTIVES SCHALTVERHALTEN

- Fuzzy-Regler mit 7 Regeln
- Optimiertes Programm
 - 24 Byte RAM702 Byte ROMauf Digimat

- Laufzeit 80 ms,12 mal pro Sekunde wurde ein neuer Sportfaktor bestimmt
- In Serie im VW Konzern
- Erlernen von Regelsystemen mit Hilfe von Künstlichen Neuronalen Netzen, Optimierung mit evolutionären Algorithmen

