Цель работы: изучить метод наименьших квадратов и применить его на практике для получения коэффициентов линейной и квадратичной функциональных зависимостей.

Краткие теоретические сведения

Метод Наименьших Квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Для линейной функциональной зависимости получим:

$$y_i = ax_i + b + \delta_i$$

$$\delta_i = y_i - (ax_i + b)$$

$$F(a,b) = \sum_{i=1}^{n} \delta_i^2 = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 \rightarrow \min F(a,b)$$

$$\begin{cases} \frac{\partial F(a,b)}{\partial a} = 0\\ \frac{\partial F(a,b)}{\partial b} = 0 \end{cases}$$

Система линейных алгебраических уравнений для линейной аппроксимирующей функции:

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

Для квадратичной зависимости получим:

$$y_i = a_0 + a_1 x_i + a_2 x_i^2 + \delta_i$$

$$\delta_i = y_i - (a_0 + a_1 x_i + a_2 x_i^2)$$

$$F(a_0, a_1, a_2) = \sum_{i=1}^n \delta_i^2 = \sum_{i=1}^n (y_i - (a_0 + a_1 x_i + a_2 x_i^2))^2 \rightarrow \min F(a_0, a_1, a_2)$$

$$\begin{cases} \frac{\partial F}{\partial a_0} = 0\\ \frac{\partial F}{\partial a_1} = 0\\ \frac{\partial F}{\partial a_2} = 0 \end{cases}$$

Система линейных алгебраических уравнений для квадратичной аппроксимирующей функции:

$$\begin{cases} a_0 \sum_{i=1}^n x_i^2 + a_1 \sum_{i=1}^n x_i + a_2 n = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i^3 + a_1 \sum_{i=1}^n x_i^2 + a_2 \sum_{i=1}^n x_i = \sum_{i=1}^n x_i y_i \\ a_0 \sum_{i=1}^n x_i^4 + a_1 \sum_{i=1}^n x_i^3 + a_2 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i^2 y_i \end{cases}$$

Задание

- 1. Изучить метод наименьших квадратов. Вывести систему линейных алгебраических уравнений в общем виде для нахождения коэффициентов линейной и квадратичной функциональных зависимостей.
- 2. По исходным экспериментальным данным (см. приложение) составить свою систему линейных алгебраических уравнений и решить ее методом Гаусса. Написать программу на ЭВМ, реализующую данный процесс. Протестировать ее на контрольном примере.
- 3. Построить точечную диаграмму экспериментальных данных и графики аппроксимирующих функций для линейного и квадратичного случаев.
- 4. Оценить погрешности метода наименьших квадратов. Найти среднеквадратическое отклонение. Провести анализ работы и сделать выводы.

Вариант 1.

X	1,577	1,044	1,577	1,044	1,577	1,044	1,577	1,044	1,577	1,044
у	1,538	1,406	1,538	1,406	1,538	1,406	1,538	1,406	1,538	1,406

Вариант 2.

x	2,358	2,727	2,238	2,758	2,315	2,728	2,426	2,958	2,178	2,006
у	2,348	2,313	2,637	2,504	1,948	2,299	2,249	3,128	2,032	1,948

Вариан	т 3	

X	0,168	0,115	0,928	0,962	0,129	0,762	0,646	0,085	0,186	0,563
у	7,962	7,957	3,199	3,300	7,829	3,833	4,482	8,393	7,362	5,086

Вариант 4.

	х	3,244	3,802	3,001	3,72	3,803	3,27	3,409	3,307	3,856	3,917
	у	1,375	3,018	1,173	2,71	3,012	1,818	1,783	1,929	3,382	3,724

Вариант 5.

x	4.302	4.381	4.626	4.886	4.808	4.872	4.382	4.181	4.483	4.418
у	11.471	12.517	14.606	17.85	16.571	17.478	12.559	10.723	13.098	12.843

Вариант 6.

x	2,358	2,787	2,738	2,758	2,315	2,728	2,426	2,958	2,178	2,006
у	1,026	1,823	1,888	1,957	1,126	1,990	1,069	2,569	1,028	0,908

Вариант 7.

	X	3,244	3,802	3,001	3,720	3,803	3,270	3,409	3,307	3,856	3,917
Ì	у	4,399	6,635	3,534	6,468	6,881	4,462	5,115	4,519	7,198	7,691

Вариант 8.

	х	3,244	3,802	3,001	3,720	3,803	3,270	3,409	3,307	3,856	3,917
ŀ	y	3,526	6,003	2,351	5,625	5,677	3,206	4,171	3,429	5,928	6,563

Вариант 9.

х	1.577	1.538	1.333	1.847	1.797	1.910	1.371	1.527	1.632	1.034
у	0.427	0.427	0.297	0.004	0.052	-0.098	0.565	0.26	0.082	0.834

Вариант 10.

X	2,358	1,501	2,358	1,501	2,358	1,501	2,358	1,501	2,358	1,501
у	2,737	2,245	2,737	2,245	2,737	2,245	2,737	2,245	2,737	2,245

Вариант 11.

	х	0,161	0,118	0,926	0,967	0,129	0,765	0,643	0,081	0,182	0,563
ŀ	у	3,243	3,398	1,287	0,835	3,448	1,479	1,935	3,851	3,103	2,041

Вариант 12

	X	0,168	0,115	0,928	0,962	0,129	0,762	0,646	0,055	0,186	0,563
ŀ	у	5,524	5,605	3,264	3,072	5,497	3,579	3,645	5,667	5,131	4,127

Вариант	13.

х	0,168	0,115	0,928	0,926	0,129	0,762	0,646	0,085	0,186	0,563
у	8,943	9,091	4,388	4,029	9,065	4,911	5,700	9,443	8,417	6,373

Вариант 14.

х	0,168	0,115	0,928	0,962	0,129	0,762	0,646	0,085	0,186	0,563
у	5,861	6,212	2,868	2,647	6,198	3,499	3,529	6,511	5,955	4,185

Вариант 15.

х		0,115	0,928	0,962	0,129	0,762	0,646	0,085	0,186	0,563
У	6,961	7,578	3,587	3,604	7,301	4,331	0,915	0,262	6,783	5,025

Вариант 16.

X	2,358	2,737	2,738	2,758	2,315	2,728	2,426	2,958	2,178	2,006
y	-0,017	0,598	0,398	0,806	-0,029	0,379	0,246	0,863	-0,164	-0,055

Вариант 17.

X	3,244	3,802	3,001	3,720	3,803	3,270	3,409	3,307	3,856	3,917
у	3,301	5,227	2,892	5,075	5,162	3,693	3,992	3,856	5,251	5,735

Вариант 18.

Dupman										
х	3,244	3,802	3,001	3,720	3,803	3,270	3,409	3,307	3,856	3,917
у	4,282	7,337	3,124	6,952	7,643	4,214	4,756	4,284	7,686	8,554

Вариант 19.

х	3,244	3,802	3,001	3,720	3,803	3,270	3,409	3,307	3,856	3,917
у	5,296	8,499	3,839	7,772	8,600	5,152	5,836	5,431	8,894	9,545

Вариант 20.

х	4,302	4,381	4,626	4,886	4,808	4,872	4,382	4,181	4,483	4,418
у	5,495	5,645	6,894	8,135	7,738	8,272	5,567	4,883	6,175	5,681

Вариант 21.

:	x	4,302	4,381	4,626	4,886	4,808	4,872	4,382	4,181	4,483	4,418
	y	7,105	7,689	8,964	10,384	9,929	10,455	7,570	6,787	8,035	7,940

Вариант 22.

X	4,302	4,381	4,626	4,886	4,808	4,872	4,382	4,181	4,483	4,418
у	12,832	13,092	15,730	18,489	17,934	18,610	13,315	11,559	14,088	13,447

Вариант 23.

Х	4,302	4,381	4,626	4,886	4,808	4,872	4,382	4,181	4,483	4,418
у	8,067	9,681	11,494	13,321	12,931	13,451	9,562	8,066	10,250	9,643

Вариант 24.

X	4,302	4,381	4,626	4,886	4,808	4,872	4,382	4,181	4,483	4,418
у	9,843	10,403	12,094	14,286	14,052	14,601	10,382	9,357	11,438	10,961

Вариант 25.

X	2,358	2,737	2,738	2,758	2,315	2,728	2,426	2,958	2,178	2,006
у	2,162	3,302	2,956	3,040	2,430	3,006	2,548	3,880	2,124	2,197

Контрольные вопросы

- 1. Метод наименьших квадратов. Суть метода. Погрешность метода.
- 2. Критерий Сильвестра.
- 3. Метод Гаусса и его модификации для решения СЛАУ.
- 4. Точные методы решения СЛАУ.
- 5. Аппроксимация функций.

Содержание отчета по лабораторной работе

- 1. Титульный лист.
- 2. По заланиям 1-4:
 - вывод СЛАУ 2-го и 3-го порядка;
 - точечная диаграмма экспериментальных данных;
 - код программы, блок-схема алгоритма метода Гаусса и его модификаций;
 - графики аппроксимирующих функций для линейного и квадратичного случаев;
 - вычисление погрешности метода наименьших квадратов;
 - анализ полученных результатов.

Литература: [11], [13]-[14]