Теортест-1 (Вариант 52)

Тема – определенный интеграл

Задача 1

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-1, 10];
- 2. [-10, 20];
- 3. [-2, 10];
- 4. [-1, 20];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения:

- 1. Длина спрямляемой кривой конечна;
- 2. Длина замкнутой кривой равна нулю;
- 3. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 4. Любая кривая имеет неотрицательную длину;
- 5. Спрямляемы только кусочно-гладкие кривые;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения (тела A и B имеют объем):

- 1. объем любого сечения тела A равен нулю;
- 2. объем A всегда неотрицателен;
- 3. если $A \subset B$, то объем A меньше объема B;
- 4. объем $A \cup B$ равен сумме объемов A и B;

Задача 4

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 2. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 3. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];
- 4. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) > 0, f(b) > 0;
- 2. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 3. f((a+b)/2) = 1;
- 4. f непрерывна в точке a и f(a) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = dv;
- 2. du = v;
- 3. vdt = u'dt;
- 4. du = vdt;

Задача 7

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 2. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 3. первообразная дробно-рациональной функции выражается через элементарные функции;
- 4. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)dx = \int f(1/t)\frac{dt}{t^2}$;
- 2. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt;$
- 3. $\int f(x^2)dx = 2 \int f(t)tdt$;
- 4. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения нижняя сумма Дарбу уменьшается;
- 2. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;
- 3. При измельчении разбиения нижняя сумма Дарбу увеличивается или не изменяется:
- 4. При измельчении разбиения нижняя сумма Дарбу уменьшается или не изменяется;

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t) dt$. Выберите все верные утверждения:

- 1. $\int_{a}^{b} f(x)dx = F(b) F(a);$
- 2. F дифференцируема на [a,b];
- 3. F не убывает на [a, b];
- 4. F первообразная для f на [a,b];