

Convolutional neural network (CNN) &

Recurrent neural network (RNN)

Vinayakumar R

PhD Student,

Centre for Computational Engineering and Networking, Amrita Vishwa Vidyapeetham,

Coimbatore

https://vinayakumarr.github.io/

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Training DNN

New Activation Function

ReLU

Rectified Linear Unit (ReLU)

Reason:

- 1. Fast to compute
- 2. Vanishing gradient problem

$$f'(x) = \begin{cases} 1 & \text{if } x > = 0 \\ 0 & \text{if } x < 0 \end{cases}$$

$$\sigma'(z) = \sigma(z) * (1 - \sigma(z))$$

• Neural Network with a convolution operation instead of matrix multiplication in at least one of the layers

Input, e.g. an image

1	3	5	2	4
6	0	2	1	3
6	3	1	3	6
7	3	2	1	3
5	3	0	0	2

Filter (Kernel)

0.2 0.7-0.5 0.7

• Input, e.g. an image

1	3	5	2	4
6	0	2	1	3
6	3	1	3	6
7	3	2	1	3
5	3	0	0	2

$$c_1 = f(0.2 * 1 + 0.7 * 3 - 0.5 * 6 + 0.7 * 0) = f(-0.7)$$

$$c_2 = f(0.2 * 3 + 0.7 * 5 - 0.5 * 0 + 0.7 * 2) = f(5.5)$$

Note: Bias terms omitted!

Filter (Kernel)

Feature map

f(-0.7) f(5.5) ...

f represents some nonlinear activation function

Recurrent Neural Networks

Generally there are two kinds of neural networks:

- Feedforward Neural Networks:
 - ✓ connections between the units do not form a cycle

- Recurrent Neural Network:
 - ✓ connections between units form cyclic paths

Recurrent Neural Networks

Recurrent networks introduce cycles and a notion of time.

• They are designed to process sequences of data $x_1, ..., x_n$ and can produce sequences of outputs $y_1, ..., y_m$.

Unrolling RNNs

RNNs can be unrolled across multiple time steps.

This produces a DAG which supports backpropagation.

But its size depends on the input sequence length.

Unrolling RNNs

Usually drawn as:

Often layers are stacked vertically (deep RNNs):

Recurrent Neural Network

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

Recurrent Neural Network

The state consists of a single "hidden" vector **h**:

Long short-term memory

Long short-term memory

$$x_t, h_{t-1}, cl_{t-1} \rightarrow h_t, cl_t$$

$$in_{t} = \sigma \left(w \underset{xin}{x} \underset{t}{t} + w \underset{hin}{h} \underset{t-1}{h} + w \underset{clin}{cl} \underset{t-1}{t} + b \underset{in}{l} \right)$$

$$fr_{t} = \sigma \left(w \underset{xfr}{x} \underset{t}{x} + w \underset{hifr}{h} \underset{t-1}{h} + w \underset{clfr}{cl} \underset{t-1}{t} + b \underset{fr}{b} \right)$$

$$cl_t = fr_t \stackrel{\bigcirc}{\circ} cl_{t-1} + in_t \stackrel{\bigcirc}{\circ} \tanh(w_{xcl} x_t + w_{hcl} hi_{t-1} + b_{cl})$$

$$ot_{t} = \sigma \left(w_{xot} x_{t} + w_{hot} h i_{t-1} + w_{clot} c l_{t} + b_{ot} \right)$$

$$h_t = o t_t^{\odot} \tanh(c l_t)$$

Gated Recurrent Unit

Gated recurrent unit (GRU) is an alternative to LSTM networks.

Formulae shows, unlike LSTM memory cell with a list of gates (input, output and forget), GRU only consist of gates (update and forget) that are collectively involve in balancing the interior flow of information of the unit.

Gated Recurrent Unit

$$x_t, h_{t-1} \to h_t$$

$$in_{-}fr_{t} = \sigma \left(w_{xin_{-}fr} x_{t} + w_{hiin_{-}fr} h_{t-1} + b_{in_{-}fr}\right)$$
 (Update gate)

$$fr_t = \sigma \left(w x f r^x t + w h i f r^h t - 1 + b f r^h \right)$$

(Forget or reset gate)

$$cl_{t} = \tanh(w_{xcl}x_{t} + w_{hcl}(fr^{\bigodot}hi_{t-1}) + b_{cl})$$

(Current memory)

$$h_t = f \stackrel{\bigcirc}{\circ} h_{t-1} + (1 - f) \stackrel{\bigcirc}{\circ} c l$$

(Updated memory)

Extensions to LSTM architecture: Bidirectional RNN, LSTM, GRU

- Only the past information is taken into account in the training of a unidirectional RNN/LSTM
- Bidirectional architecture enables the use of future information
- Implementation with separate Forward-pass and Backwardpass specific layer weights
- Final output computed as the sum of forward and backward layer outputs

Summary

- RNNs allow a lot of flexibility in architecture design
- RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.

Thank you

Questions?

vinayakumarr77@gmail.com

https://vinayakumarr.github.io/

https://sites.google.com/site/vinayakumarr77/

Software Installation

- sudo apt-get install libatlas-base-dev gfortran python-dev
- sudo apt-get install python-pip
- sudo pip install --upgrade pip
- sudo pip install numpy
- sudo pip install scipy
- sudo pip install matplotlib
- Sudo pip install seaborn
- sudo pip install scikit-learn
- sudo pip install tensorflow
- sudo pip install theano
- sudo pip install keras
- sudo pip install pandas
- sudo pip install h5py
- sudo pip install jupyter
- sudo pip install ipython