# Segmentez des clients d'un site e-commerce

•••

Septembre 2019

# Démarche

#### Contexte:

• Consultant pour Olist est une solution de vente sur les marketplaces en ligne

#### Objectifs:

- Fournir aux équipes marketing une segmentation des clients
- Proposition de contrat de maintenance de la segmentation

#### Données:

• 9 datasets présentant les transactions du 4 septembre 2016 au 29 août 2018

#### Démarche:

- Construction de l'échantillon et nettoyage
- Nettoyage
- Exploration
- Pré-processing / Recherche de la meilleure modélisation
- Fréquence de mise à jour

# Construction de l'échantillon

Etape 1 - Former un dataset de toutes les transactions à partir des 1 dataset composé de 9 tables

#### Etape 2 - Nettoyage du dataset

- Regroupement des 71 catégories de produit en 17 catégories
- Suppression de 49 transactions sans données de géolocalisation
- Suppression de 537 transactions non abouties
- Suppression de la seule transaction de septembre 2018

#### Etape 3 - Former un dataset compilant les données par clients à partir des transactions

- Nombre d'articles achetés
- Somme totale dépensée
- Calcul du nombre de paniers par clients
- Nb moyen d'articles par panier par client
- Fréquence des achats
- Ancienneté du client
- Dépense par catégorie pour chaque client
- Note de satisfaction moyenne
- Nombre de commentaires
- nombre de vendeurs différents par client
- indice de fidélité à un vendeur

lll 099 transactions
20 variables



93 616 clients 39 variables

# **Exploration**

•••

# Etendue de l'étude

111 099

32 015 produits différents vendus

93 616 clients

Sur 2 ans 09/2016 au 08/2018

# Chiffre d'affaires

#### 13 364 401 réals sur 2 ans







60 % du CA réalisé par 20 % des clients

# **Produits**







20% des produits génèrent 75% du CA

# **Achats**

3 % des clients ont commandé + d'une fois 87% des clients n'ont commandé qu'un seul article

Panier moyen 138 réals Satisfaction client

★★★☆

# Temporalité des achats







2 fois moins d'achats les 4 derniers mois

plutôt en semaine

entre 10h et 22h

# Géolocalisation des clients



# Modélisation

•••

# Stratégie

Objectif : Modéliser les données afin segmenter une base client

- => Apprentissage non supervisé
- => Clustering

#### Préprocessing

Standardisation des données

#### Visualisation

• ACP - 2 composantes principales : 42% de la variance

#### Modèles testés :

• Partitioning : KMeans

• Density : DBScan

Hierarchical : Birch

#### Evaluation:

- Coefficient de silhouette
- Visualisation des groupes selon les 2 composantes principales (ACP)
- Interprétabilité des groupes



### Choix des variables

#### Volume des dépenses :

- customer\_unique\_id
- o nb\_of\_items\_bought
- total\_spent
- o nb\_of\_baskets
- o items\_by\_basket(mean)

#### Fréquence des achats

- o time\_length
- o oldest\_purchase
- purchase\_frequency
- mean\_purchase\_frequency(days)
- $\circ$  td

#### Exprimer les dépenses dans les différentes catégories

Appliances, Art, Auto, Cool\_stuff, Culture, Fashion, Food, Furniture, High-Tech, Home, Hygiene, Kids, Leisure, Other, Pet-Shop, Stationery, Telephony, Tools

#### Ancienneté du client

anciennete

#### Satisfaction client

- o review\_score
- o nb\_of\_comments
- o %\_of\_comments

#### Géolocalisation

- customer\_zip\_code\_prefix
- customer\_city
- o customer\_state,
- geolocation\_lat
- o geolocation\_lng

#### Fidélité d'un client à un vendeur

- nb\_of\_sellers\_used
- sellers\_loyalty

# Tests de 3 modèles

#### **KMeans**

#### Principes:

- non hiérarchique
- algorithme itératif qui minimise la somme des distances entre chaque individu et le centroïd.
- Le choix initial des centroïdes conditionne le résultat final.

#### Hyper-paramètre:

n\_clusters (elbow method)

#### **DBScan**

#### Principes:

- Clustering par densité
- Chemin pour passer de proche en proche en restant à l'intérieur du même cluster.
- dssdfs

#### Hyper-paramètres:

- eps=0.8
- min\_samples=50

#### Birch

#### Principes:

- segmentation hiérarchique
- réduit la taille du jeu de données initial en le résumant sous la forme d'une structure hiérarchique à laquelle les points sont agrégés

#### Hyper-paramètres:

- branching\_factor=150
- n\_clusters=5,
- threshold=1.3

# **Evaluations des modèles**

KMeans

Coefficient de silhouette : 0.29



**DBScan** 

Coefficient de silhouette : 0.38



9% d'outliers

Interprétabilité difficile

Birch

Coefficient de silhouette : 0.30



Interprétabilité diffici

# Interprétation des groupes issus du KMeans









#### Non différenciant:

- anciennete
- nb\_of\_baskets
- mean\_purchase\_frequancy(days)

# Description des groupes

|          | total_spent | nb_of_items_b<br>ought | geolocalisation_<br>lat | review_score | description                                                         |
|----------|-------------|------------------------|-------------------------|--------------|---------------------------------------------------------------------|
| Groupe 0 | 75          | 1                      | -22                     | 5            | Clients ayant fait qu'une seule commande<br>Très satisfaits.        |
| Groupe 1 | 100         | 1                      | -8                      | 5            | Client ayant fait qu'une seule commande<br>De la région du Nordeste |
| Groupe 2 | 200         | 2-3                    | -22                     | 4.5          | Clients fidèles<br>Clients satisfaits                               |
| Groupe 3 | 80          | 1                      | -22                     | 2            | Clients ayant fait qu'une seule commande<br>Non satisfaits          |

# **Maintenance**

#### Stratégie

- Prendre les clients de la première année et observer l'évolution de leur groupe tous les 3 mois
- = 23% des clients

Evaluation avec la *v\_measure* 

$$V_{\beta} = (1+\beta) \frac{h \cdot c}{\beta \cdot h + c}$$

#### Résultats:

• v\_measure évolue peu sur N+1. Ce qui est normal car l'immense majorité des clients n'ont fait qu'une commande une fois

#### Recommendation:

- ne pas se contenter de ces résultats
- Améliorer la segmentation dans 6 mois quand la base clientèle aura évolué
- Permettra de mesurer les impacts des campagnes marketing



# Conclusion

#### Difficultés rencontrées :

- première segmentation est exploitable mais n'est qu'un premier pas :
  - o pas assez de données sur les clients (age, sexe, date d'inscription...)
  - business trop récent et en expansion (les groupes sont amenés à bouger)
- Beaucoup d'essais avant de trouver une segmentation interprétable
  - o va et vients en ajoutant/retirant des variables en entrée
  - séparation en 2 datasets (les clients one-shot et les reguliers)

#### Améliorations:

- changer le calcul de la distance (Manhattan, Minkowski...)
- Poids décroissant des variables selon le temps
- PEP8 : commentaires en anglais, 80 caractères maxi