

Moderní numerické metody pro neutroniku a sdružené úlohy

Milan Hanuš (mhanus@kma.zcu.cz)

Motivace

• Přesná simulace jaderného reaktoru vyžaduje zachycení mnoha provázaných fyzikálních jevů \Rightarrow přirozeně nelineární úloha.

Neutronika - rozložení neutronového toku $\varphi = \varphi(\mathbf{x}, \mathbf{\Omega}, E, t)$

- monoenergetická difúzní aproximace
- rychlá transienta (změna izotop. složení, zpožděné neutr.): dominantní teplotní vazba skrze Dopplerův efekt

$$\frac{1}{v}\frac{\partial \varphi}{\partial t} - \nabla \cdot D\nabla \varphi + \left[\Sigma_r(T) - \nu \Sigma_f\right]\varphi = q_{\varphi}$$

Termohydraulika - vývoj proudového pole chladiva/moder.

• Tyto jevy lze zhruba zařadit do následujících 4 oblastí, z nichž se dále (velmi zjednodušeně) zaměříme pouze na první dvě.

Vedení tepla - Rozložení teploty $T = T(\mathbf{x}, t)$ v palivu

- ovlivňuje neutroniku, proudění chladiva i str. namáhání
- přestup tepla mezi palivem a chladivem je základním omezujícím faktorem pro provozní výkon reaktoru

$$\rho c_p \frac{\partial T}{\partial t} - \nabla \cdot k(T) \nabla T - \kappa \Sigma_f \varphi = q_T$$

Strukturální mechanika - termoelasticita struktur aktivní zóny

Metoda štěpení operátorů

Řešení jednotlivých fyzikálních modelů prostředky speciálně vyvinutými pro každý z nich zvlášť. Např.

Neutronika – nodální metoda

Teplo – konečné diference

Proudění – konečné objemy

Termoelasticita – konečné prvky (FEM)

- využití existujících ověřených kódů
- netriviální datové přenosy mezi kódy
- ztráta nelinearity řešeného problému

Jednolité řešení sdružené úlohy

- Jednotná diskretizace všech modelů: FEM
- ullet Řešení nelineární soustavy: $\mathbf{F}(\mathbf{Y}) = \mathbf{0}$

- (+) flexib. prostorová i časová diskretizace
- (+) snadné přidružení dalších modelů
- řešení respektuje nelinearitu úlohy
- (−) zvýšení počtu neznámých ⇒ potřeba
 - efektivních řešičů soustav
 - efektivní automatické adaptivity

Ukázka praktického použití FEM

- Řešeno balíkem Hermes (http://hpfem.org)
- VHTR 4-grupový výpočet, kritická úloha

Laminární nestlačitelné proudění (NS)

rychlostní pole, t=20 s, spojitá aproximace

tlakové pole, t=20 s, nespojitá aproximace

Neutronika/teplo – slabá formulace

- Implicitní Eulerova metoda: $\frac{\partial f}{\partial t} \approx \frac{f^r f^{r-1}}{\Delta t}$, $f^r \stackrel{\text{ozn.}}{=} f(\mathbf{x}, t^r)$
- v čase t^s : $\mathbf{F}^s(\mathbf{Y}^s) = \begin{bmatrix} \mathbf{F}_{\varphi}^s(\mathbf{Y}^s) \\ \mathbf{F}_T^s(\mathbf{Y}^s) \end{bmatrix} = \mathbf{0}$, $\mathbf{Y}^s = \begin{bmatrix} \mathbf{Y}_{\varphi}^s \\ \mathbf{Y}_T^s \end{bmatrix}$, \mathbf{Y}_{φ}^s reprezentuje $\varphi^s \stackrel{\text{ozn.}}{=} \varphi(\mathbf{x}, t^s)$

$$F_{\varphi,i}^{s}(\mathbf{Y}) = \int_{V} \left[\frac{1}{v\Delta t} \left(\varphi^{s} - \varphi^{s-1} \right) \Phi_{i} + D\nabla \varphi^{s} \nabla \Phi_{i} + \left(\Sigma_{r}(T^{s}) - \nu \Sigma_{f} \right) \varphi^{s} \Phi_{i} - q_{\varphi} \Phi_{i} \right] dV$$

$$F_{T,j}^{s}(\mathbf{Y}) = \int_{V} \left[\frac{\rho c_{p}}{\Delta t} \left(T^{s} - T^{s-1} \right) \Theta_{j} + k(T^{s}) \nabla T^{s} \nabla \Theta_{j} - \kappa \Sigma_{f} \varphi^{s} \Theta_{j} - q_{T} \Theta_{j} \right] dV$$

s vhodně vybranými funkcemi $\{\Phi_i\}$, $\{\Theta_i\}$.

Řešení ukázkové úlohy

- adaptace v čase $t_{\rm fin}=3$ s:

