

Computer vision methods timeline

Le Thanh Ha, Ph.D

Assoc. Prof. at University of Engineering and Technology, Vietnam National University

ltha@vnu.edu.vn; lthavnu@gmail.com; 0983 692 592

Computer vision methods timeline

- Before 1995: Template matching
 - Match patches to find the correspondence between images.
- 1995 2000: Local feature descriptor
 - Scale Invariant Feature Transform (SIFT)
- 2000 2005: Machine learning for feature descriptors
 - Modern image dataset
 - Bins, Grids, and Visual Words
- 2005 2010: Object template
 - Histogram of Oriented Gradients (HOG)
 - Deformable Parts-based Model (DPM)
- 2010 now: Big data, Convolutional network, Deep learning

Compression &

transmission

TYPICAL IMAGE PROCESSING WORKFLOW

Compression & Transmission

- Reduce the size of video presentation to be sent effectively over error-prone network or to be stored
- Smallest in size, best in quality
- Tolerate with network conditions
- H.264/AVC, H.265/HEVC, VP9, Raspro

Segmentation & Preprocess

- Noise removal
- Image enhancement
- Temporal segmentation: scene cut, key frames,...
- Spatial segmentation: grabcut, background subtraction

Background subtraction

Feature Extraction

- Target object must be detected and described with small number of dimensions. It should be:
 - Robustness
 - Repeatable
 - Noise tolerable
 - Invariant to illumination, rotation, scaling, and view point.

Image feature examples

Histogram based: Histogram of oriented gradients (HOG)

- Feature points:
 - Harris corners
 - Sussan corner
- Feature points description:
 - SIFT
 - SURF

Deep learning

Feature modeling/learning

- A training dataset must be collected.
- A model must be used to generalize the input features and map it to desired output (class):
 - Support Vector Machines
 - Neuron networks
 - Logistics
 - Decision tree
 - Ada-boost
 - **—** ...
- After trained, the model can be used to classify the testing data.

