Lexical Analysis

Lecture 02

Role of the Lexical Analyzer

- Identify the words: Lexical Analysis
 - Converts a stream of characters (input program) into a stream of tokens.
 - Also called Scanning or Tokenizing
- Identify the sentences: Parsing.
 - Derive the structure of sentences: construct parse trees from a stream of tokens.

Interaction of Lexical Analyzer with Parser

- Often a subroutine of the parser
- Secondary tasks of Lexical Analyzer
 - Strip out comments and white spaces from the source
 - Correlate error messages with the source program
 - Preprocessing may be implemented as lexical analysis takes place

Issues in lexical analysis

- Simplicity/Modularity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

- Token: Name given to a family of words.
 - e.g., tok_integer_constant
- Lexeme: Actual sequence of characters representing a word.
 - e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token.
 - e.g., digit followed by zero or more digits

Token Sample	Lexemes	Pattern
tok_while	while	while
tok_integer_constant	32894, -1093, 0	digit followed by zero or more digits
tok_relation	<, <=, =, !=, >, >=	< or <= or = or != or >= or >
tok_identifier	buffer_size, D2	letter followed by letters or digits

Token Stream

- Tokens are terminal symbol in the grammar for the source language
- keywords, operators, identifiers, constants, literal strings, punctuation symbols etc. are treated as tokens
- Source:

```
if (x == -3.1415) /* test x */ then ...
```

Token Stream:

```
< IF >
< LPAREN >
< ID, "x" >
< EQUALS >
< NUM, -3.14150000 >
< RPAREN >
< THEN >
```

Token Attributes

- More than one lexeme matches a pattern
 - We need attribute to distinguish them
 - e.g. "tok relation" matches "< or <= or = or != or >= or >"
 - tok_integer_constant, 1415 >
 token type token attribute (if available)
 - Lexical analyzer collects information about tokens and as well as their attributes
- Attributes influence the translation of tokens
- A token usually has only a single attribute
 - A pointer to the symbol-table entry
 - Other attributes (e.g. line number, lexeme) can be stored in symbol table
- Example:

```
- E = M * C ** 2
<tok_identifier, pointer to symbol table entry for E>
<tok_assign, >
<tok_identifier, pointer to symbol table entry for M>
```

Lexical Error

- Few errors can be caught by the lexical analyzer
 - Most errors tend to be "typos"
 - Not noticed by the programmer
 - return 1.23;
 - retunn 1,23;
 - Still results in sequence of legal tokens
 - <ID, "retunn"> <INT,1> <COMMA> <INT,23> <SEMICOLON>
 - No lexical error, but problems during parsing!
 - Another example: fi(a == f(x))
- Errors caught by lexer:
 - EOF within a String / missing "
 - Invalid ASCII character in file
 - String / ID exceeds maximum length
 - etc...

Recovery from lexical errors

- Panic mode recovery
 - Delete successive characters from the input until the lexical analyzer can find a well-formed token
 - ".....day = 30 ^^^ month;"
 - May confuse the parser
 - The parser will detect syntax errors and get straightened out (hopefully!)
- Other possible error-recovery actions
 - Deleting an extra character
 - Inserting a missing character
 - Replacing an incorrect character by a correct character
 - Swapping two adjacent character
 - Attempt to repair the input using single error transformations

Implementing a lexical analyzer

Managing Input Buffers

- Option 1: Read one char from OS at a time.
- Option 2: Read N characters per system call
 - e.g., N = 4096
- Manage input buffers in Lexer
 - More efficient
- Often, we need to look ahead

- But! Due to look ahead we need to push back the lookahead characters
 - Need specialized buffer managing technique to improve efficiency

Buffer Pairs

Token could overlap / span buffer boundaries

Solution: Use a paired buffer of N characters each

Code:

Sentinels

- Technique: Use "Sentinels" to reduce testing
- Choose some character that occurs rarely in most inputs e.g. '\0'


```
forward++;
if *forward == '\0' then
    if forward at end of buffer #1 then
        Read next N bytes into buffer #2;
        forward = address of first char of buffer #2;
elself forward at end of buffer #2 then
        Read next N bytes into buffer #1;
        forward = address of first char of buffer #1;
else
        // do nothing; a real \0 occurs in the input
endIf
```

- Alphabet (∑) : AKA character class
 - A set of symbols ("characters")
 - Examples: $\Sigma = \{ 1, 0 \}$: binary alphabet $\Sigma = \{ 1, 2, 3, 4, 5, 6 \}$: Alphabet on dice outcome
- String: AKA Sentence or word
 - Sequence of symbols
 - Finite in length
 - Example: abbadc

Length of s = |s|

- Empty String (ε)
 - It is a string
 - $|\epsilon| = 0$
- Language
 - A set of strings over some fixed alphabet
 - Examples: L1 = { a, baa, bccb }
 L2 = { }
 L3 = {ε}

 Note the difference

L4 = $\{\varepsilon, ab, abab, ababab, abababab,\}$

Each string is finite in length, but the set may have an infinite number of elements.

- Prefix ...of string s
 - String obtained by removing zero or more trailing symbols
 - s = hello
 - Prefixes: ε , h, he, hel, hell, hello
- Suffix ...of string s
 - String obtained by deleting zero or more of the leading symbols
 - s = hello
 - Suffixes: hello, ello, llo, lo, o, ε
- Substring ...of string s
 - String obtained by deleting a prefix and a suffix
 - s = hello
 - Substrings: ε. ell, hel, llo, hello,
- Proper prefix / suffix / substring ... of s
 - String \$1 that is respectively prefix, suffix, or substring of s such that s1 ≠ s and s1 ≠ ε
- Subsequence....of string s
 - String formed by deleting zero or more not necessarily contiguous symbols
 - S=hello
 - Subsequence: hll, eo, hlo, etc.

```
"Concatenation"
                                                  Other notations: x || y
     Strings: x, y
     Concatenation: xy
                                                                             x + y
     Example:
                                                                             x ++ y
             x = abb
                                                                             \mathbf{x} \cdot \mathbf{y}
             y = cdc
             xy = abbcdc
             yx = cdcabb
What is the "identity" for concatenation?
             \mathbf{x} = \mathbf{x}\mathbf{x} = \mathbf{x}
Multiplication ⇔ Concatenation
Exponentiation \Leftrightarrow ?
Define s^0 = \varepsilon
            s^{N} = s^{N-1}s
Example \mathbf{x} = \mathbf{ab}
            \mathbf{x}^0 = \mathbf{\epsilon}
            x^1 = x = ab
            x^2 = xx = abab
            x^3 = xxx = ababab
```

- Language
 - A set of strings
 - L = { ... }
 - M = { ... }
- Union of two languages
 - $L \cup M = \{ s \mid s \text{ is in } L \text{ or is in } M \}$
 - Example:
 - L = { a, ab }
 - $M = \{ c, dd \}$
 - L ∪ M = { a, ab, c, dd }
- Concatenation of two languages
 - L M = { st | s is in L and t is in M }
 - Example:
 - $L = \{ a, ab \}$
 - $M = \{ c, dd \}$
 - L M = { ac, add, abc, abdd }

Kleene closure

```
Let: L = \{ a, bc \}
Example: L^0 = \{ \epsilon \}
              L^1 = L = \{ a, bc \}
              L^2 = LL = \{ aa, abc, bca, bcbc \}
              L^3 = LLL = \{ aaa, aabc, abca, abcbc, bcaa, bcabc, bcbca, bcbcbc \}
              ...etc...
              L^{N} = L^{N-1}L = LL^{N-1}
                                                                \sum_{i=0}^{\infty} a^{i} = a^{0} \cup a^{1} \cup a^{2} \cup
The "Kleene Closure" of a language:
              L^* = \bigcup^{\infty} L^i = L^0 \cup L^1 \cup L^2 \cup L^3 \cup ...
Example:
              L^* = \; \{ \;\; \epsilon, \, \mathtt{a}, \, \mathtt{bc}, \, \mathtt{aa}, \, \mathtt{abc}, \, \mathtt{bca}, \, \mathtt{bcbc}, \, \mathtt{aaa}, \, \mathtt{aabc}, \, \mathtt{abca}, \, \mathtt{abcbc}, \, ... \; \}
                                                                                         Ľ3
```

Positive closure

- Let: L = { a, bc }
 Example: L⁰ = { ε }
 L¹ = L = { a, bc }
 L² = LL = { aa, abc, bca, bcbc }
 L³ = LLL = { aaa, aabc, abca, abcbc, bcaa, bcbca, bcbcbc }
 ...etc...
- The "Positive Closure" of a language:

 $L^{N} = L^{N-1}L = LL^{N-1}$

$$\mathbf{L}^+ = \bigcup_{i=1}^{\infty} \mathbf{L}^i = \mathbf{L}^1 \cup \mathbf{L}^2 \cup \mathbf{L}^3 \cup \dots$$

- Example:
- Note ϵ is not included UNLESS it is in L to start with
- $L^+ = \{$ a, bc, aa, abc, bca, bcbc, aaa, aabc, abca, abcbc, ... $\}$

Example

D+ = "The set of strings with one or more digits"

($L \cup D$)* = "Sequences of zero or more letters and digits"

L ((L \cup D)*) = "Set of strings that start with a letter, followed by zero or more letters and digits."

Definition: Regular Expressions

- (Over alphabet Σ)
- ε is a regular expression.
- If **a** is a symbol (i.e., if $\mathbf{a} \in \Sigma$, then **a** is a regular expression.
- If R and S are regular expressions, then R|S is a regular expression.
- If R and S are regular expressions, then RS is a regular expression.
- If R is a regular expression, then R* is a regular expression.
- If R is a regular expression, then (R) is a regular expression.

Regular Expressions and Language

- (Over alphabet Σ)
- And, given a regular expression R, what is L(R)?
- ε is a regular expression.
 - $L(\varepsilon) = \{ \varepsilon \}$
- If **a** is a symbol (i.e., if $\mathbf{a} \in \Sigma$, then **a** is a regular expression.
 - $L(a) = \{ a \}$
- If R and S are regular expressions, then R|S is a regular expression.
 - $L(R|S) = L(R) \cup L(S)$
- If R and S are regular expressions, then RS is a regular expression.
 - -L(RS) = L(R)L(S)
- If R is a regular expression, then R* is a regular expression.
 - $L(R^*) = (L(R))^*$
- If R is a regular expression, then (R) is a regular expression.

How to "Parse" Regular Expressions

Precedence:

- * has highest precedence.
- Concatenation as middle precedence.
- I has lowest precedence.
- Use parentheses to override these rules.

• Examples:

- $a b^* = a (b^*)$
 - If you want (a b)* you must use parentheses.
- a | b c = a | (b c)
 - If you want (a | b) c you must use parentheses.
- Concatenation and | are associative.
 - (a b) c = a (b c) = a b c
 - (a | b) | c = a | (b | c) = a | b | c
- Example:
 - bd|ef*|ga=(bd)|(e(f*))|(ga)

Regular Language

- Definition: "Regular Language" (or "Regular Set")
- ... A language that can be described by a regular expression.
- Any finite language (i.e., finite set of strings) is a regular language.
- Regular languages are (usually) infinite.
- Regular languages are, in some sense, simple languages.
- Regular Languages

 — Context-Free Languages

• Examples:

Equality vs Equivalence

Are these regular expressions equal?

Yet, they describe the same language.

$$L(R) = L(S)$$

"Equivalence" of regular expressions

If
$$L(R) = L(S)$$
 then we say $R \cong S$ "R is equivalent to S"

From now on, we'll just say R = S to mean R ≅ S

Algebraic law of regular expressions

Let R, S, T be regular expressions...

I is commutative

$$RIS = SIR$$

Lis associative

$$RI(SIT) = (RIS)IT = RISIT$$

Concatenation is associative

$$R(ST) = (RS)T = RST$$

Concatenation distributes over I

$$R(SIT) = RSIRT$$

 $(RIS)T = RTIST$

 ε is the identity for concatenation

$$\varepsilon R = R \varepsilon = R$$

* is idempotent

$$(R^*)^* = R^*$$

Relation between * and ε

$$R^* = (R \mid \epsilon)^*$$

Preferred

Regular Definition

 If Σ is an alphabet of basic symbols then a regular definition is a sequence of the following form:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$\dots$$

$$d_n \rightarrow r_n$$

where

- Each d_i is a new symbol such that d_i ∉ Σ and d_i ≠d_j
 where j < I
- Each r_i is a regular expression over Σ ∪ {d₁,d₂,...,d_{i-1})

Regular Definition

```
Letter = a \mid b \mid c \mid ... \mid z
          \underline{\text{Digit}} = 0 \mid 1 \mid 2 \mid \dots \mid 9
          \underline{ID} = \underline{Letter} ( \underline{Letter} | \underline{Digit} ) *
Names (e.g., <u>Letter</u>) are underlined to distinguish from a sequence of symbols.
                          Letter ( Letter | Digit )*
                     = {"Letter", "LetterLetter", "LetterDigit", ... }
Each definition may only use names previously defined.
    ⇒ No recursion
          Regular Sets = no recursion
          CFG = recursion
```

Addition Notation / Shorthand

```
One-or-more: +
    X^{+} = X(X^{*})
    \underline{\text{Digit}}^+ = \underline{\text{Digit}} \ \underline{\text{Digit}}^* = \underline{\text{Digits}}
Optional (zero-or-one): ?
    X? = (X \mid \varepsilon)
    Num = Digit^+ (.Digit^+)?
Character Classes: [FirstChar-LastChar]
    Assumption: The underlying alphabet is known ...and is ordered.
    Digit = [0-9]
    Letter = [a-zA-Z] = [A-Za-z]
Variations:
    Zero-or-more: ab^*c = a\{b\}c = a\{b\}^*c
     One-or-more: ab^{\dagger}c = a\{b\}^{\dagger}c
     Optional: ab?c = a[b]c
```

Nonregular sets

```
Many sets of strings are not regular.
   ...no regular expression for them!
The set of all strings in which parentheses are balanced.
         (()(()))
   Must use a CFG!
Strings with repeated substrings
   { XcX | X is a string of a's and b's }
         abbbabcabbbab
          CFG is not even powerful enough.
The Problem?
   In order to recognize a string,
         these languages require memory!
```

Problem: How to describe tokens?

Solution: Regular Expressions

Problem: How to recognize tokens?

Approaches:

1. Hand-coded routines

- 2. Finite State Automata
- 3. Scanner Generators (Java: JLex, C: Lex)

Scanner Generators

Input: Sequence of regular definitions

Output: A lexer (e.g., a program in Java or "C")

Approach:

- Read in regular expressions
- Convert into a Finite State Automaton (FSA)
- Optimize the FSA
- Represent the FSA with tables / arrays
- Generate a table-driven lexer (Combine "canned" code with tables.)