

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TEXAS 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

August 20, 2018

InVue 9201 Baybrook Lane Charlotte, North Carolina 28277

Dear Adam Krause,

Enclosed is the EMC test report for limited compliance testing of the InVue, Watch Charger, for Class B device, tested to the requirements of Title 47 of the CFR, Ch. 1 Part 18 for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices..

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely,

MET LABORATORIES, INC.

Joel Huna

Documentation Department

Reference: (\InVue\EMC99785-FCC18 Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc. While use of the A2LA logo in this report reflects MET accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Electromagnetic Compatibility Test Report

for

InVue Watch Charger

Tested under

Title 47 of the CFR, Part 18 for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices

MET Report: EMC99785-FCC18 Rev. 1

August 20, 2018

Bradley Jones

Test Engineer, EMC Lab

Brodles Jour

Joel Huna

Documentation Department

Joel Huna

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested **is** capable of operation in accordance with the requirements of Title 47 of the CFR, Part 18 for a Class B Digital Device under normal use and maintenance.

John Mason

Director, Electromagnetic Compatibility Lab

John W. Mason

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	August 7, 2018	Initial Issue.
1	August 20, 2018	Typo Correction.

Table of Contents

1.0	Testing Summary	.7
2.0	Testing Summary Equipment Configuration	. 8
	2.1 Overview	. 8
	2.2 Test Site	. 9
	2.3 Measurement Uncertainty	. 9
	2.4 Description of Test Sample	. 9
	2.5 Equipment Configuration	. 9
	2.6 Support Equipment	10
	2.7 Ports and Cabling Information	10
	2.8 Mode of Operation	11
	2.9 Method of Monitoring EUT Operation	11
	2.10 Modifications	11
	2.10.1 Modifications to EUT	
	2.10.2 Modifications to Test Standard	
	2.11 Disposition of EUT	11
	2.12 Test Software Used	11
3.0	Electromagnetic Compatibility Emission Criteria	12
	3.1 Conducted Emission Limits	12
	3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance	16
4.0	Test Equipment	20

List of Tables

Table 1: List of Abbreviations	6
Table 2: Testing Summary	7
Table 3. EUT Overview	8
Table 4. Uncertainty Calculations Summary	9
Table 5. Equipment Configuration	9
Table 6. Support Equipment	. 10
Table 7. Ports and Cabling Information	
Table 8. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a)	. 12
Table 9. Conducted Emissions, Phase Line, Test Results	. 13
Table 10. Conducted Emissions, Neutral Line, Test Results	
Table 11: Test Equipment List	. 20
List of Figures	
Figure 1. Block Diagram of Test Configuration	. 10
List of Photographs	
Photograph 1: Conducted Emissions at the Mains Terminal Test Setup	
1 notograph 2. Radiated Emission, 16st betap, below 1 OHZ	

List of Terms and Abbreviations

AC	Alternating Current	
ACF	Antenna Correction Factor	
Cal	Calibration	
d	Measurement Distance	
dB	Decibels	
dBμA	Decibels above one microamp	
dBμV	Decibels above one microvolt	
dBμA/m	Decibels above one microamp per meter	
dBμV/m	Decibels above one microvolt per meter	
DC	Direct Current	
E	Electric Field	
ESD	Electrostatic Discharge	
EUT	Equipment Under Test	
f	Frequency	
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)	
GRP	Ground Reference Plane	
Н	Magnetic Field	
НСР	Horizontal Coupling Plane	
Hz	Hertz	
IEC	International Electrotechnical Commission	
kHz	kilohertz	
kPa	kilopascal	
kV	kilovolt	
LISN	Line Impedance Stabilization Network	
MHz	Megahertz	
μН	microhenry	
μ F	microfarad	
μs	microseconds	
PRF	Pulse Repetition Frequency	
RF	Radio Frequency	
RMS	Root-Mean-Square	
V/m	Volts per meter	
VCP	Vertical Coupling Plane	

Table 1: List of Abbreviations

1.0 Testing Summary

The following tests specified below were performed with the following results.

Reference and Test Description	Results	Comments
Title 47 of the CFR, Part 18 - 18.309 (a) Conducted Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices	Compliant	Measured emissions were within applicable limits.
Title 47 of the CFR, Part 18 - 18.305 (b) Radiated Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices	Compliant	Measured emissions were within applicable limits.

Table 2: Testing Summary

2.0 **Equipment Configuration**

2.1 Overview

MET Laboratories, Inc. was contracted by InVue to perform testing on the Watch Charger, under InVue purchase order number 57873.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the InVue, Watch Charger.

In accordance with §2.955(a) (3), the following data is presented in support of the verification of the InVue, Watch Charger. InVue should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Watch Charger has been **permanently** discontinued, as per §2.955(b).

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Watch Charger
Model(s) Covered:	Watch Charger
Primary Power as Tested:	4.5-5.5 VDC
Equipment Emissions Class:	В
Highest Clock Frequency:	N/A
Evaluated by:	Bradley Jones
Report Date:	August 20, 2018

Table 3. EUT Overview

2.2 **Test Site**

All testing was performed at MET Laboratories, Inc., 914 West Patapsco Avenue, Baltimore, MD 21230 All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

MET Laboratories is a ISO/IEC 17025 accredited site by A2LA, #0591.01.

Radiated Emissions measurements were performed in a semi-anechoic chamber. In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

2.3 **Measurement Uncertainty**

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.32 dB	2	95%
RF Power Conducted Spurious Emissions	±2.25 dB	2	95%
RF Power Radiated Emissions	±3.01 dB	2	95%

Table 4. Uncertainty Calculations Summary

2.4 **Description of Test Sample**

The Watch Charger (EUT) is a device used to charge smart watches using inductively coupled power transfer. The intent is to place the EUT on a variety of stands/displays that are designed to display smart watches in a retail environment (in a store). The watch is placed in contact with the EUT. The EUT is not intended to charge the watch at a distance. Powering the EUT is a 5V wall outlet power supply connected to the attached cable with a USB-A connector.

2.5 **Equipment Configuration**

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Rev.#
A		Watch Charger (EUT)	F1671	F1671107	N/A	0

Table 5. Equipment Configuration

2.6 **Support Equipment**

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
В	Power Supply (5V)	InVue	PS515	N/A
С	Smart Watch	Confidential	Confidential	N/A

The 'Customer Supplied Calibration Data' column will be marked as either not applicable, not available, or will contain the calibration date supplied by

Table 6. Support Equipment

Ports and Cabling Information 2.7

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
1	Vin	2 conductor, 24AWG	1	1	1.1	No	B.Vout
2	RFout	Wireless power transfer (no cable)	1	N/A	N/A	No	C.RFin

Table 7. Ports and Cabling Information

Figure 1. Block Diagram of Test Configuration

2.8 Mode of Operation

There are three devices supplied for testing. One with production firmware (gPC0808) that utilizes the full frequency band (120kHz-190kHz). There is one that radiates only at 120kHz to make it easy to analyze harmonics, etc., at that frequency. There is a third device that radiates at 155kHz for the same reason. These frequencies were identified as the most interesting frequencies through testing a very similar device with the same parts. Each of these devices can be tested both with the supplied smart watch placed on it's surface (charging mode) and without the smart watch (idle mode). Both modes require only that the supplied 5V power supply is attached to wall power and that the EUT is plugged into it.

NOTE: If it is found that frequencies different from 120kHz and 155kHz are needed, they can be suppled.

2.9 Method of Monitoring EUT Operation

- 1. The supplied smart watch will be charging when the EUT is performing its intended function. This can be observed by viewing the display of the watch when it is off (there will be a lightning bolt on the screen).
- 2. When the EUT is not functioning properly, there will not be a lightning bolt on the screen of the smart watch when placed on the charger.

2.10 Modifications

2.10.1 Modifications to the EUT

No modifications were made to the EUT.

2.10.2 Modifications to the Test Standard

No modifications were made to the test standard.

2.11 Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electro-Magnetic Compatibility Lab for testing was returned to InVue upon completion of testing.

2.12 Test Software Used

Conducted Emissions - Trace Data Grabber version 01/26/2016 Radiated Emissions- EMC-REG-TDS-11, Radiated Emissions Prescan.xls version 06/29/11

3.0 **Electromagnetic Compatibility Emission Criteria**

3.1 Conducted Emission Limits

Test Requirement(s):

18.307 For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 µH/50 Ohms Line Impedance Stabilization Network (LISN).

(b) All other part 18 consumer devices:

Frequency of Emission	18.307(a) ISM Conducted Limits (dB μ V)				
(MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 - 5	56	46			
5 - 30	60	50			

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — *The limit decreases linearly with the logarithm if the frequency in the range 0.05 MHz to 0.5 MHz.

Table 8. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a)

18.311 The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, "Methods of Measurements of Radio Noise Emissions from ISM equipment''. Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

Test Procedure:

The EUT was setup on a wooden table, 80cm above the ground plane. The method of testing, test conditions, and test procedures of CISPR 22 were used. The EUT was powered through a $50\Omega/50\mu H$ LISN. An EMI receiver, connected to the measurement port of the LISN, scanned the frequency range from 150 kHz to 30 MHz in order to find the peak conducted emissions. All peak emissions within 20 dB of the limit, six highest peaks were re-measured using a quasi-peak and average detector.

Environmental Conditions for Conducted Emissions				
Ambient Temperature (°C) 23.7				
Relative Humidity (%)	38			

Test Results: The EUT was compliant with the of this section. Measured emissions were within

applicable limits.

Test Technician(s): Bradley Jones

Test Date(s): July 20, 2018

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.209	17.16	0	17.16	63.25	-46.09	13.82	0	13.82	53.25	-39.43
0.292	17.93	0	17.93	60.47	-42.54	14.86	0	14.86	50.47	-35.61
0.368	15.58	0	15.58	58.55	-42.97	11.89	0	11.89	48.55	-36.66
11.39	16.71	0.09	16.8	60	-43.2	8.668	0.09	8.758	50	-41.242
16.97	16.91	0.13	17.04	60	-42.96	8.294	0.13	8.424	50	-41.576
25.14	19.83	0.21	20.04	60	-39.96	10.05	0.21	10.26	50	-39.74

Table 9. Conducted Emissions, Phase Line, Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.206	17.85	0	17.85	63.37	-45.52	14.7	0	14.7	53.37	-38.67
0.29	18.54	0	18.54	60.52	-41.98	15.74	0	15.74	50.52	-34.78
0.454	16.59	0	16.59	56.8	-40.21	13.27	0	13.27	46.8	-33.53
11.45	16.77	0.09	16.86	60	-43.14	9.714	0.09	9.804	50	-40.196
16.62	18.93	0.13	19.06	60	-40.94	9.779	0.13	9.909	50	-40.091
25.37	20.01	0.2	20.21	60	-39.79	9.671	0.2	9.871	50	-40.129

Table 10. Conducted Emissions, Neutral Line, Test Results

Conducted Emissions at the Mains Terminal Test Data:

Plots 1. Conducted Emissions at the Mains Terminal Test Data - Line Plot

Plots 2. Conducted Emissions at the Mains Terminal Test Data – Neutral Plot

Photograph 1: Conducted Emissions at the Mains Terminal Test Setup

3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance

Test Method: ANSI C63.4- American National Standard for Methods of Measurement of

Radio-Noise Emissions from Low-Voltage Electrical and Electronic

Equipment in the Range of 9 kHz to 40 GHz

Test Standard: Title 47 of the Code of Federal Regulations (CFR), Part 18 Subpart C

Test Requirement(s): 18.305 Field strength limits:

(a) ISM equipment operating on a frequency specified in § 18.301 is permitted unlimited

radiated energy in the band specified for that frequency.

(b) The field strength levels of emissions which lie outside the bands specified in §

18.301, unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)	
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 25×SQRT(power/500)	300 1300	
	Any non-ISM frequency	Below 500 500 or more	15 15×SQRT(power/500)	300 1300	
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 (²)	1,600 (²)	
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300	
Ultrasonic	Below 490 kHz	Below 500 500 or more	2,400/F(kHz) 2,400/F(kHz)× SQRT(power/500)	300 ³ 300	
	490 to 1,600 kHz Above 1,600 kHz	Any Any	24,000/F(kHz) 15	30 30	
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30	

 $^{^{1}}$ Field strength may not exceed 10 μ V/m at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

² Reduced to the greatest extent possible.

 $^{^{3}}$ Field strength may not exceed $^{10} \mu V/m$ at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.

⁴ Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

18.311 The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, "Methods of Measurements of Radio Noise Emissions from ISM equipment". Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

Test Procedures:

The EUT was placed on a non-metallic table, 80 cm above the ground plane (See Photograph 2 - 5) inside a semi-anechoic chamber. Measurements were made with a loop antenna.

Radiated Emission measurements were made in accordance with the general procedures of ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz" as well as the procedures delineated in FCC Measurement Procedure MP-5, "Methods of Measurements of Radio Noise Emissions from ISM equipment".

For each point of measurement, the turntable was rotated, the positions of the interface cables were varied, and the antenna height was varied in order to find the maximum radiated emissions.

Measurements were made at 3m. The limit line was corrected for 3m using $40 \operatorname{Log}^{(d1)}_{d2}$.

Environmental Conditions for Radiated Emissions					
Ambient Temperature (°C)	23.7				
Relative Humidity (%)	38				

Test Results: The EUT was compliant with the requirements of this section. Measured emissions were

within applicable limits.

Bradley Jones Test Technician(s):

Test Date(s): July 30, 2018

Plots 3. Radiated Emission - Fundamental 150 - 180 kHz Plot

Plots 4. Radiated Emission – 10 – 150 kHz Plot

Plots 5. Radiated Emission - 150 kHz - 30 MHz Plot

Photograph 2: Radiated Emission, Test Setup, Below 1 GHz

Test Equipment 4.0

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

Test Name: Conducte	Test Date(s): July 30,2018							
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date			
1T4563	LISN (10 AMP)	Solar Electronics Company	9322-50-R-10-BNC	03/13/2017	09/13/2018			
1T4612	Spectrum Analyzer	Agilent Technologies	E4407B	05/15/2018	11/15/2019			
1T4503	Shielded Room	Universal Shielding Corp	N/A	Not Re	quired			
Test Name: Radiated Emissions Test Date(s): July								
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date			
1T4800	Antenna, Loop	EMCO	6512	04/12/2017	10/12/2018			
1U0150	EMI Test Receiver	Rohde & Schwarz	ESIB7	06/29/2018	07/14/2018			
1T4300A	SEMI-ANECHOIC 1T4300A CHAMBER # 1 (FCC)		EMC TEST SYSTEMS NONE		01/31/2019			
Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.								

Table 11: Test Equipment List