Lecture 9: Modelo Hedónico Urban Economics

Ignacio Sarmiento-Barbieri

Universidad de los Andes

September 9, 2024

0/26

Modelos

- Where do you want to live?
 - Spatial equilibrium
 - ▶ Within cities: Alonso-Muth-Mills (Monocentric/Polycentric Model)
 - ► Hedonic pricing of amenities and local public goods (Rosen)
 - ► Across locations: Rosen-Roback

Mercados de Viviendas

- ► Residential real estate is a huge market
 - ► The course will not cover commercial real estate
- ► Housing is by far the main asset for most households
- ► Macroeconomic relevance

Greater London Real Home Price Index, Quarterly, 1987-I to 2007-II

3/26

Home price indices deflated for consumer prices and rescaled to 1890=100, Netherlands, Norway, and USA.

5/26

Fig. 1. Kernel density estimates for log of real sales price.

Figure 4: Estimated Sale Price Densities for Chicago

Rosen's Hedonic Model

- ► Goods are valued for their utility-bearing attributes
- ▶ Heterogeneous or differentiated goods are products whose characteristics vary in such a way that there are distinct product varieties even though the product is sold in one market (e.g. houses, cars, computers, etc).
- ► The variation in product variety gives rise to variations in product prices within each market.
- ► The hedonic method relies on market transactions for these differentiated goods to determine the implied value or implicit price of characteristics.

- ► House: $z = (z_1, ..., z_n)$
- ▶ Price: $p(z) = p(z_1, ..., z_n)$
- ightharpoonup Consumer utility is U(x,z) where x is non-housing consumption
- ▶ The consumer buys one house and has budget y = x + p(z)
 - ▶ *y* denotes exogenous income
 - x denotes consumption of non-housing goods

- ightharpoonup Each firm produces a specific bundle of attributes $z=(z_1,\ldots,z_n)$
- ▶ Production costs are $C(M, z, \beta)$ where
 - \blacktriangleright M(z) denotes number of units produced of designs offering specification z
 - ightharpoonup Producers have different technologies parametrized by β
- ▶ The firm is a price taker p(z) and maximizes profits

$$\pi = Mp(z) - C(M, z) \tag{1}$$

Market Equilibrium

- ▶ The market hedonic function p(z) is a joint envelope
 - Upper envelope of consumer's bid functions
 - ► Lower envelope of producer's offer functions
- lacktriangle Quantities demanded and supplied at each z depend on all of p(z)

Market Equilibrium

20 / 26

- Rosen (1974) proposed a two-step empirical strategy
 - Estimate hedonic prices p(z) with the best fitting functional form
 - Take partial derivatives of the estimate $\hat{p}(z)$ at the sample values and estimate the simultaneous demand and supply equations

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z)) \tag{2}$$

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z))$$

$$\frac{\partial p}{\partial z_i} = G_i(z, x^s, p(z))$$
(2)

21/26

- Rosen (1974) proposed a two-step empirical strategy
 - Estimate hedonic prices p(z) with the best fitting functional form
 - Take partial derivatives of the estimate $\hat{p}(z)$ at the sample values and estimate the simultaneous demand and supply equations

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z)) \tag{2}$$

$$\frac{\partial p}{\partial z_i} = F_i(z, x^d, y - p(z))$$

$$\frac{\partial p}{\partial z_i} = G_i(z, x^s, p(z))$$
(2)

Problems?

Empirics Solutions

- ▶ Bartik (1987): exogenous shifts in the consumer's budget constraint
 - Exogenous income changes if you can find them (field experiments)
- Urban economists have mostly shied away from structural estimation
 - ► Stop at the first-step hedonic regression
 - ► Focus on omitted-variable bias

Example: Currie et al (2015) AER

American Economic Review 2015, 105(2): 678–709 http://dx.doi.org/10.1257/aer.20121656

> Environmental Health Risks and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings[†]

> > By Janet Currie, Lucas Davis, Michael Greenstone, and Reed Walker*

Zip Code with TRI Toxic Plants within one mile

Example: Currie et al (2015) AER

Example: Currie et al (2015) AER

TABLE 2—THE EFFECT OF TOXIC PLANTS ON LOCAL HOUSING VALUES

	0–0.5 Miles		0.5–1 Miles		0–1 Miles		0–1 Miles (+/– 2 years)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel C. First difference: (Plant Opening) X Near	00	ct of plant op -0.107*** (0.034)	enings and c -0.007 (0.023)	losings -0.008 (0.020)	-0.020 (0.022)	-0.022 (0.019)	-0.030 (0.028)	-0.038 (0.025)
(Plant Closing) × Near	0.017 (0.011)	0.010 (0.009)	0.008 (0.005)	0.003 (0.004)	0.010* (0.006)	0.005 (0.005)	0.005 (0.007)	0.001 (0.005)
I_0 : Opening = $-$ Closing (p -value)	0.051	0.013	0.968	0.827	0.688	0.438	0.402	0.164
Observations	1,114,248	1,114,248	1,305,780	1,305,780	1,375,751	1,375,751	1,196,000	1,196,000
State × year fixed FE County × year FE	X	X	X	X	X	X	X	X