Pengujian Hipotesis Terhadap Satu Sampel

```
import Libraries
import pandas as pd
import scipy.stats as s
from statsmodels.stats.weightstats import ztest
from statsmodels.stats.proportion import proportions_ztest

# Read csv file
df = pd.read_csv("../data/anggur.csv")

display(df)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	5.90	0.4451	0.1813	2.049401	0.070574	16.593818	42.27	0.9982	3.27	0.71	8.64	7
1	8.40	0.5768	0.2099	3.109590	0.101681	22.555519	16.01	0.9960	3.35	0.57	10.03	8
2	7.54	0.5918	0.3248	3.673744	0.072416	9.316866	35.52	0.9990	3.31	0.64	9.23	8
3	5.39	0.4201	0.3131	3.371815	0.072755	18.212300	41.97	0.9945	3.34	0.55	14.07	9
4	6.51	0.5675	0.1940	4.404723	0.066379	9.360591	46.27	0.9925	3.27	0.45	11.49	8
995	7.96	0.6046	0.2662	1.592048	0.057555	14.892445	44.61	0.9975	3.35	0.54	10.41	8
996	8.48	0.4080	0.2227	0.681955	0.051627	23.548965	25.83	0.9972	3.41	0.46	9.91	8
997	6.11	0.4841	0.3720	2.377267	0.042806	21.624585	48.75	0.9928	3.23	0.55	9.94	7
998	7.76	0.3590	0.3208	4.294486	0.098276	12.746186	44.53	0.9952	3.30	0.66	9.76	8
999	5.87	0.5214	0.1883	2.179490	0.052923	16.203864	24.37	0.9983	3.29	0.70	10.17	7

1000 rows × 12 columns

Langkah-Langkah Pembuktian Hipotesis:

- 1. Tentukan hipotesis nol H_0 .
- 2. Tentukan hipotesis alternatif $H_{\rm 1}$.
- 3. Tentukan tingkat signifikan α .
- 4. Tentukan uji statistik yang sesuai dan tentukan daerah kritis.
- 5. Hitung nilai uji statistik dari data sample. Hitung p-value sesuai dengan uji statistik yang digunakan.
- 6. Ambil keputusan "Tolak H_0 " jika nilai uji statistik terletak di daerah kritis, atau dengan tes signifikan, "Tolak H_0 " jika p-value lebih kecil dibanding tingkat signifikansi α yang diinginkan.

Q1: Nilai rata-rata pH di atas 3.29?

Langkah-langkah:

- 1. H_0 : μ = 3.29
- 2. $\mathrm{H}_1: \mu >$ 3.29
- 3. Significance Level : α = 0.05
- 4. Uji Statistik: One-Tailed Test

Daerah Kritis: $1-\alpha$ = 0.95 dan P(z < 1.645) = 0.95 sehingga daerah kritisnya adalah z > 1.645.

Perhitungannya juga ada di kode di bawah ini.

5. Test Statistik:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Perhitungan z dan p-value ada pada kode di bawah ini.

6. Tolak H_0 jika nilai uji terletak di daerah kritis atau dengan dengan tes signifikan $(z>z_{\alpha})$ atau tolak H_0 jika p-value lebih kecil dibandingkan tingkat signifikansi α yang diinginkan. Jika di luar kondisi tersebut, terima H_0 .

Pengambilan keputusan tersebut ada pada kode di bawah ini.

```
In []: df_pH = df["pH"]

# Significance Level
alpha = 0.05

# z value and p value
z_val_pH, p_val_pH = ztest(df_pH, value = 3.29, alternative = 'larger')
print("z =", z_val_pH)

# z-alpha value
z_alpha_val_pH = s.norm.ppf(1 - alpha)
print("z-alpha =", z_alpha_val_pH)
```

```
# Pengambilan Keputusan
  if (z_val_pH > z_alpha_val_pH):
      print("Nilai z lebih besar dari z-alpha sehingga nilai uji terletak di daerah kritis.")
      print("Keputusan dari uji ini adalah tolak H0.\n")
      print("Nilai z tidak lebih besar dari z-alpha sehingga nilai uji tidak terletak di daerah kritis.")
       print("Keputusan dari uji ini adalah tidak tolak H0.\n")
 p_val_pH = s.norm.sf(z_val_pH)
print("p =", p_val_pH)
  # Pengambilan Keputusan
 if (p_val_pH < alpha):</pre>
      print("Wilai p lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tolak HO")
      print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tidak tolak H0")
z = 4.1037807933651145
z-alpha = 1.6448536269514722
Nilai z lebih besar dari z-alpha sehingga nilai uji terletak di daerah kritis.
Keputusan dari uji ini adalah tolak H0.
p = 2.0322630043302333e-05
Nilai p lebih kecil dari tingkat signifikansi yang diinginkan
Keputusan dari uji ini adalah tolak H0
  Kesimpulan:
```

Q2: Nilai rata-rata Residual Sugar tidak sama dengan 2.50?

Langkah-langkah:

Nilai rata-rata pH di atas 3.29.

```
1. {
m H}_0: \mu = 2.50
2. {
m H}_1: \mu \neq 2.50
3. Significance Level : \alpha = 0.05
4. Uji Statistik: Two-Tailed Test Daerah Kritis: z>z_{\alpha/2} atau z<-z_{\alpha/2}
```

Perhitungannya juga ada di kode di bawah ini.

5. Test Statistik:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Perhitungan z-value dan p-value ada pada kode di bawah ini.

6. Tolak H_0 jika $(z>z_{\alpha/2}$ atau $z<-z_{\alpha/2})$ atau tolak H_0 jika p-value lebih kecil dibandingkan tingkat signifikansi α yang diinginkan. Jika di luar kondisi tersebut, terima H_0 .

Pengambilan keputusan tersebut ada pada kode di bawah ini.

```
In [ ]: df residual sugar = df["residual sugar"]
         # Significance Level
         alpha = 0.05
         {\tt z\_val\_residual\_sugar}, \ {\tt p\_val\_residual\_sugar} = {\tt ztest} ({\tt df\_residual\_sugar}, \ {\tt value} = 2.50, \ {\tt alternative} = {\tt 'two-sided'})
         print("z =", z_val_residual_sugar)
         # z-alpha value
         z alpha val residual sugar = s.norm.ppf(1 - (alpha/2))
         print("z-alpha =", z_alpha_val_residual_sugar)
         # Pengambilan Keputusan
         if (z_val_residual_sugar > z_alpha_val_residual_sugar):
             print("Nilai z lebih besar dari z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
              print("Keputusan dari uji ini adalah tolak H0.\n")
         elif (z_val_residual_sugar < z_alpha_val_residual_sugar*(-1)):
    print("Nilai z lebih kecil dari minus z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
             print("Keputusan dari uji ini adalah tolak H0.\n")
             print("Nilai z berada diantara dari minus z-alpha/2 dan z-alpha/2 sehingga nilai uji tidak terletak di daerah kritis.")
             print("Keputusan dari uji ini adalah tidak tolak H0.\n")
         print("p =", p_val_residual_sugar)
         # Pengambilan Keputusan
         if (p_val_residual_sugar < alpha):</pre>
             print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tolak H0.")
             print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tidak tolak H0.")
```

```
z = 2.1479619435539523
z-alpha = 1.959963984540054
Nilai z lebih besar dari z-alpha/2 sehingga nilai uji terletak di daerah kritis.
Keputusan dari uji ini adalah tolak H0.
p = 0.031716778818727434
Nilai p lebih kecil dari tingkat signifikansi yang diinginkan
Keputusan dari uji ini adalah tolak H0.

Kesimpulan:
```

Q3: Nilai rata-rata 150 baris pertama kolom sulphates bukan 0.65?

```
Langkah-langkah: {\rm 1.~H_0:}~\mu = 0.65
```

2. $H_1: \mu \neq 0.65$

3. Significance Level : α = 0.05

4. Uji Statistik: Two-Tailed Test

Daerah Kritis: $z>z_{lpha/2}$ atau $z<-z_{lpha/2}$

Perhitungannya juga ada di kode di bawah ini.

Nilai rata-rata Residual Sugar tidak sama dengan 2.50.

5. Test Statistik:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Perhitungan z-value dan p-value ada pada kode di bawah ini.

6. Tolak \mathbf{H}_0 jika $(z>z_{\alpha/2}$ atau $z<-z_{\alpha/2})$ atau tolak \mathbf{H}_0 jika p-value lebih kecil dibandingkan tingkat signifikansi α yang diinginkan. Jika di luar kondisi tersebut, terima \mathbf{H}_0 .

Pengambilan keputusan tersebut ada pada kode di bawah ini.

```
In [ ]: df_sulphates = df["sulphates"].head(150)
         # Significance Level
        alpha = 0.05
         # z value and p value
        z_val_sulphates, p_val_sulphates = ztest(df_sulphates, value = 0.65, alternative = 'two-sided')
         print("z =", z_val_sulphates)
         z_{alpha} = s.norm.ppf(1 - (alpha/2))
        print("z-alpha =", z_alpha_sulphates)
         # Pengambilan Keputusan
        if (z_val_sulphates > z_alpha_sulphates):
             print("Nilai z lebih besar dari z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
             print("Keputusan dari uji ini adalah tolak H0.\n")
         \textbf{elif (z\_val\_sulphates < z\_alpha\_sulphates*(-1)):}
             print("Wilai z lebih kecil dari minus z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
print("Keputusan dari uji ini adalah tolak H0.\n")
             print("Nilai z berada diantara dari minus z-alpha/2 dan z-alpha/2 sehingga nilai uji tidak terletak di daerah kritis.")
print("Keputusan dari uji ini adalah tidak tolak H0.\n")
         print("p =", p_val_sulphates)
         # Pengambilan Keputusan
         if (p_val_sulphates < alpha):</pre>
             print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tolak H0.")
             print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
             print("Keputusan dari uji ini adalah tidak tolak H0.")
       z = -4.964843393315918
       z-alpha = 1.959963984540054
       Nilai z lebih kecil dari minus z-alpha/2 sehingga nilai uji terletak di daerah kritis.
       Keputusan dari uii ini adalah tolak H0.
       p = 6.875652918327359e-07
       Nilai p lebih kecil dari tingkat signifikansi yang diinginkan
       Keputusan dari uji ini adalah tolak H0.
         Kesimpulan:
```

O4: Nilai rata-rata total sulfur dioxide di bawah 35?

Nilai rata-rata 150 baris pertama kolom sulphates bukan 0.65.

Langkah-langkah:

1. \mathbf{H}_0 : μ = 35

```
2. H_1: \mu < 35
```

3. Significance Level : α = 0.05

4. Uji Statistik: One-Tailed Test

Daerah Kritis: $1 - \alpha$ = 0.95 dan P(z > -1.645) = 0.95 sehingga daerah kritisnya adalah z < -1.645.

Perhitungannya juga ada di kode di bawah ini.

5. Test Statistik:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

Perhitungan z-value dan p-value ada pada kode di bawah ini.

6. Tolak ${
m H}_0$ jika nilai uji terletak di daerah kritis atau dengan dengan tes signifikan ($z<-z_lpha$) atau tolak ${
m H}_0$ jika p-value lebih kecil dibandingkan tingkat signifikansi lpha yang diinginkan. Jika di luar kondisi tersebut, terima ${
m H}_0$.

Pengambilan keputusan tersebut ada pada kode di bawah ini.

```
In [ ]: df_total_sulfur_dioxide_1 = df["total sulfur dioxide"]
          # Significance Level
         alpha = 0.05
         # z value and p value
         z_val_total_sulfur_dioxide_1, p_val_total_sulfur_dioxide_1 = ztest(df_total_sulfur_dioxide_1, value = 35, alternative = 'smaller')
         print("z =", z_val_total_sulfur_dioxide_1)
         z_alpha_total_sulfur_dioxide_1 = -s.norm.ppf(1 - alpha)
         print("z-alpha =", z_alpha_total_sulfur_dioxide_1)
         # Pengambilan Keputusan
         if (z_val_total_sulfur_dioxide_1 < z_alpha_total_sulfur_dioxide_1):</pre>
              print("Nilai z lebih kecil dari minus z-alpha sehingga nilai uji terletak di daerah kritis.")
              print("Keputusan dari uji ini adalah tolak H0.\n")
         else:
              print("Nilai z tidak lebih kecil dari minus z-alpha sehingga nilai uji tidak terletak di daerah kritis.")
print("Keputusan dari uji ini adalah tidak tolak H0.\n")
         print("p =", p_val_total_sulfur_dioxide_1)
          # Pengambilan Keputusan
         if \ (p\_val\_total\_sulfur\_dioxide\_1 \ \ \  alpha):
              print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tolak H0")
              print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
print("Keputusan dari uji ini adalah tidak tolak H0")
       z = 16.786387372296744
       z-alpha = -1.6448536269514722
       Nilai z tidak lebih kecil dari minus z-alpha sehingga nilai uji tidak terletak di daerah kritis.
       Keputusan dari uji ini adalah tidak tolak H0.
       Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
       Keputusan dari uji ini adalah tidak tolak H0
         Kesimpulan:
```

Nilai rata-rata total sulfur dioxide tidak di bawah 35.

Q5: Proporsi nilai total Sulfat Dioxide yang lebih dari 40, adalah tidak sama dengan 50%?

Langkah-langkah:

- 1. H_0 : Proporsi nilai total Sulfat Dioxide yang lebih dari 40 sama dengan 50% (p = 0.5)
- 2. H_1 : Proporsi nilai total Sulfat Dioxide yang lebih dari 40 tidak sama dengan 50% (p eq 0.5)
- 3. Significance Level : α = 0.05
- 4. Uji Statistik: Two-Tailed Test

Daerah Kritis: $1-\alpha$ = 0.95 dan P(z < 1.645) = 0.95 sehingga daerah kritisnya adalah z > 1.645.

Perhitungannya juga ada di kode di bawah ini.

5. Test Statistik:

$$z = \frac{\hat{p} - p_0}{\sqrt{p_0 q_0/r}}$$

Perhitungan z-value dan p-value ada pada kode di bawah ini.

6. Tolak ${
m H}_0$ jika $(z>z_{lpha/2}$ atau $z<-z_{lpha/2})$ atau tolak ${
m H}_0$ jika p-value lebih kecil dibandingkan tingkat signifikansi lpha yang diinginkan. Jika di luar kondisi tersebut, toring ${
m H}_0$

Pengambilan keputusan tersebut ada pada kode di bawah ini.

```
In [ ]: df_total_sulfur_dioxide_2 = df[df["total sulfur dioxide"] > 40]
          # Significance Level
         alpha = 0.05
         # z value and p value
         z_val_total_sulfur_dioxide_2, p_val_total_sulfur_dioxide_2 = proportions_ztest(len(df_total_sulfur_dioxide_2),len(df), value = 0.5, prop_var = 0.
         print("z =", z_val_total_sulfur_dioxide_2)
          # z-alpha value
          z\_alpha\_total\_sulfur\_dioxide\_2 = s.norm.ppf(1 - (alpha/2))
         print("z-alpha =", z_alpha_total_sulfur_dioxide_2)
         if (z_val_total_sulfur_dioxide_2 > z_alpha_total_sulfur_dioxide_2):
              print("Nilai z lebih besar dari z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
              print("Keputusan dari uji ini adalah tolak H0.\n")
          \label{limits} \textbf{elif} \ (\textbf{z}\_\textbf{val}\_\textbf{total}\_\textbf{sulfur}\_\textbf{dioxide}\_\textbf{2} \ \ \textbf{z}\_\textbf{alpha}\_\textbf{total}\_\textbf{sulfur}\_\textbf{dioxide}\_\textbf{2}^*(\textbf{-1})) \colon
              print("Nilai z lebih kecil dari minus z-alpha/2 sehingga nilai uji terletak di daerah kritis.")
print("Keputusan dari uji ini adalah tolak H0.\n")
              print("Nilai z berada diantara dari minus z-alpha/2 dan z-alpha/2 sehingga nilai uji tidak terletak di daerah kritis.")
              print("Keputusan dari uji ini adalah tidak tolak H0.\n")
         print("p =", p_val_total_sulfur_dioxide_2)
          # Pengambilan Keputusan
         if (p_val_total_sulfur_dioxide_2 < alpha):</pre>
              print("Nilai p lebih kecil dari tingkat signifikansi yang diinginkan")
              print("Keputusan dari uji ini adalah tolak H0.")
         else:
              print("Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan")
              print("Keputusan dari uji ini adalah tidak tolak H0.")
       z = 0.7589466384404118
       z-alpha = 1.959963984540054
       Nilai z berada diantara dari minus z-alpha/2 dan z-alpha/2 sehingga nilai uji tidak terletak di daerah kritis.
       Keputusan dari uji ini adalah tidak tolak H0.
       p = 0.4478844782641115
       Nilai p tidak lebih kecil dari tingkat signifikansi yang diinginkan
Keputusan dari uji ini adalah tidak tolak H0.
         Kesimpulan:
```

Proporsi nilai total Sulfat Dioxide yang lebih dari 40, adalah tidak berbeda dengan 50%.