# **CE1 Decision Tree Analysis Report**

### 1. Introduction

This report presents an analysis of decision trees trained and evaluated for predicting the target variable (GOOD BAD). Three key questions were addressed:

- Q1: Model evaluation using GOOD as the target event.
- **Q2**: Model evaluation using BAD as the target event.
- Q3: Modified evaluation using Precision and Recall.

All decision trees were trained using both **Entropy (en\_3, en\_6)** and **Gini (gini\_3, gini\_6)** criteria with max depth=3 and varying min samples leaf values (3% and 6%).

# 2. Evaluation Approach

#### 2.1 Performance Measures Table

| Measure    | Description                                            | Definition of Value<br>Function | Weight                             | Threshold                   |
|------------|--------------------------------------------------------|---------------------------------|------------------------------------|-----------------------------|
| Accuracy   | Measures correct classifications                       | accuracy_score(y_test, y_pred)  | 0.60 (Q1), 0.30 (Q2)               | > 0.70 (Q1),<br>> 0.65 (Q2) |
| Lift       | Measures model effectiveness in ranking positive cases | Measured @ 2nd Decile           | 0.10 (Q1), 0.30<br>(Q2)            | > 0                         |
| Precision  | Measures fraction of correctly classified positives    | precision_score(y_test, y_pred) | 0.40 (Q3)                          | > 0.50                      |
| Recall     | Measures ability to find all positives                 | recall_score(y_test, y_pred)    | 0.30 (Q3)                          | > 0.35                      |
| Simplicity | Ideal leaf size (5-8)                                  | Cutoff: <=2 or >=13             | 0.20 (Q1), 0.30<br>(Q2), 0.15 (Q3) | > 0                         |
| Stability  | Measures response rate stability at 2nd decile         | lift_table['resp_rate']chec k   | 0.10 (Q1), 0.10<br>(Q2), 0.15 (Q3) | > 0                         |

## 3. Summary of Results

### 3.1 Q1 & Q2 Evaluation (Accuracy-Based)

| Model  | Accuracy | Lift @ 2nd Decile | Simplicity<br>Score | Stability Score |
|--------|----------|-------------------|---------------------|-----------------|
| en_3   | 0.74     | 1.190             | 1                   | 1               |
| en_6   | 0.74     | 1.214             | 1                   | 1               |
| gini_3 | 0.74     | 1.190             | 1                   | 1               |
| gini_6 | 0.74     | 1.214             | 1                   | 1               |

Best Model (Q1 & Q2): en 6 (Entropy, min samples leaf=6%) due to highest Lift.

#### 3.2 Q3 Evaluation (Precision & Recall-Based)

| Model  | Precision | Recall  |
|--------|-----------|---------|
| en_3   | 0.779661  | 0.87619 |
| en_6   | 0.757812  | 0.92381 |
| gini_3 | 0.779661  | 0.87619 |
| gini_6 | 0.757812  | 0.92381 |

Best Model (Q3): en\_3 (Entropy, min\_samples\_leaf=3%) due to higher Precision.

# 4. Description of Best Decision Tree

### 4.1 Best DT for Q1 & Q2 (en\_6)

#### Justification-

- The tree structure for en 6 shows the most influential features and classification rules.
- Selected due to higher Lift @ 2nd Decile (1.214).
- Maintains stability and interpretability (depth = 3).

#### Visualization of Decision Tree for en\_6 from notebook-



#### 4.2 Best DT for Q3 (en 3)

#### Justification-

- The tree structure for en 3 was chosen due to its superior **Precision (0.779661)**.
- Balances **Precision-Recall tradeoff**, minimizing false positives.
- Ensures Stability @ 2nd Decile.

#### Visualization of Decision Tree for en\_3 from notebook-



# **5. Evidence of Experimentation**

### Confusion Matrix for en\_3-

| ₹ | Confusion<br>Predicted |    |     | r en_<br>All | _3 |
|---|------------------------|----|-----|--------------|----|
|   | Actual                 |    |     |              |    |
|   | 0                      | 38 | 52  | 90           |    |
|   | 1                      | 26 | 184 | 210          |    |
|   | All                    | 64 | 236 | 300          |    |

### Confusion Matrix for en\_6

| Confusion | Matri | x fo | r en_6 |
|-----------|-------|------|--------|
| Predicted | 0     | 1    | All    |
| Actual    |       |      |        |
| 0         | 28    | 62   | 90     |
| 1         | 16    | 194  | 210    |
| All       | 44    | 256  | 300    |

### Confusion Matrix for gini\_3

| Confusion<br>Predicted | Matr<br>0 |     | r gini<br>All | _3 |
|------------------------|-----------|-----|---------------|----|
|                        | v         |     | ALL           |    |
| Actual                 |           |     |               |    |
| 0                      | 38        | 52  | 90            |    |
| 1                      | 26        | 184 | 210           |    |
| All                    | 64        | 236 | 300           |    |

### Confusion Matrix for Gini\_6

| Confusion | Matri | x fo | r gini | _6 |
|-----------|-------|------|--------|----|
| Predicted | 0     | 1    | All    |    |
| Actual    |       |      |        |    |
| 0         | 28    | 62   | 90     |    |
| 1         | 16    | 194  | 210    |    |
| All       | 44    | 256  | 300    |    |

#### Final Performance Table for Q1 & Q2 from notebook-

|        | Accuracy | Lift @ 2nd Decile | Simplicity Score | Stability Score |
|--------|----------|-------------------|------------------|-----------------|
| en_3   | 0.74     | 1.190             | 1                | 1               |
| en_6   | 0.74     | 1.214             | 1                | 1               |
| gini_3 | 0.74     | 1.190             | 1                | 1               |
| gini 6 | 0.74     | 1.214             | 1                | 1               |

#### Final Performance Table for Q3 from notebook-

```
Precision Recall en_3 0.779661 0.87619 en_6 0.757812 0.92381 gini_3 0.779661 0.87619 gini_6 0.757812 0.92381
```

### 6. Conclusion

- 1. Q1 & Q2 Best Model: en\_6 (Entropy, min\_samples\_leaf=6%) due to its higher Lift @ 2nd Decile.
- 2. Q3 Best Model: en\_3 (Entropy, min\_samples\_leaf=3%) due to its superior Precision-Recall balance.
- 3. Final Model Recommendation:
  - If priority is **Lift & Stability**  $\rightarrow$  Use en\_6.
  - If priority is **Precision & Recall**  $\rightarrow$  Use en\_3.

# 7. Link to Google Colab- <a href="https://colab.research.google.com/drive/11nv-RRB6J\_fP1qRp\_eENmLf\_LJR6EiOi?usp=sharing">https://colab.research.google.com/drive/11nv-RRB6J\_fP1qRp\_eENmLf\_LJR6EiOi?usp=sharing</a>