

Query Intelligence in E-Commerce Search

01 Introduction

Aim

Search Query Intelligence has many flavours of preprocessing like tokenization, vector search etc.

We mainly focus on User clicks data and how it can improve the existing search functionality. (Feedback loops)

Our idea

- Apache Solr (for searching)
- Apache Spark (for preprocessing)

Based on the user clicks data, do preprocessing, and improve the accuracy of the boost values in the search query.

```
"query":["keyword1"^31,"keyword2"^43,"keyword3"^82,"keyword4"^31]
"fields": ["upc"^42, "name"^45, "manufacturer"^49, "score"^52],
"limit": 5,
"params": {
    "qf": "name manufacturer longDescription",
    "defType": "edismax",
```

"indent": "true",

"sort": "score desc, upc asc",

"885909471812"^202, "886111287055"^109]

"qf": "name manufacturer longDescription",

"boost": "sum(1,query({! df=upc v=\$signals_boosting}))",
"signals boosting": ["885909457588"^966, "885909457595"^205,

02 Datasets

Products.csv

48195 rows, 5 columns (doc_id, name,manufacturer, short Description, long Description)

Signals.csv

2M rows 5 columns (session_id,user_id, type, target, time)

If the type is query, then the target is query text that user has entered.

If the type is click, add-to-cart, purchase then target is doc_id of product.csv

TLDR:- Products.csv and Signals.csv are interlinked.

https://github.com/ai-powered-search/retrotech

Boosting products for a query

"885909457588"^966 "885909457595"^205 "885909471812"^202 "886111287055"^109 "843404073153"^73 "885909457601"^62 "635753493559"^62 "885909472376"^61 "610839379408"^29 "884962753071"^28

- Basic Intuition: From User clicks data, for each query see what products have been clicked and how many times and try to store them in a separate collection.
- Next time, when user enters any query, search in that collection and identify the document and their frequency (boost) and form a list and search in original query
- So, basically we are recommending products with more clicks.

Finding Related Keywords

comp_score	pmi2	_users2	_users1 n	k2 r	k1
1.0	1.2318940540272372	4829	7554	touchpad	ipad hp
1.25	1.430517155037946	7554	2842	ipad	ipad 2
1.666666666666667	1.6685364924472557	7554	1818	ipad	tablet
2.125	1.2231908670315748	7554	2785	ipad	touchpad
2.6	1.7493143317791537	7554	1627	ipad	tablets
3.083333333333333	1.9027023623302282	7554	1254	ipad	ipad2
3.5714285714285716	1.4995901756327583	1814	7554	apple	ipad
4.0625	1.3943192464710108	4829	2785	touchpad	touchpad hp
4.55555555555555	1.5940745096856273	1421	7554	np tablet	ipad h
5.05	0.8634782989267505	7554	2931	ipad	ood touch
5.545454545454546	2.415162433949984	612	7554	i pad	ipad
6.041666666666667	0.827835342752348	7554	2833	ipad	kindle
6.538461538461538	0.5933664189857986	7554	3554	ipad	laptop
7.035714285714286	2.916383652644603	326	7554	ple ipad	ipad ap
7.533333333333333	1.1805849845414993	4829	2842	touchpad	ipad 2 hp
8.03125	1.2902371152378296	3554	3369	laptop	laptops
10.025	3.180197301966425	204	7554	i pad 2	ipad

Basic Intuition:-

If user_1 types a query_1 and clicks on a product p

If user_2 types a query_2 and clicks on same product p

query_1 and query_2 are semantically similar

We use PMI and composite score statistics to balance n_users1 and n_users2

Finding Misspelled Words

	misspell	correction	misspell_counts	correction_counts	edit_dist
50	iphone3	iphone	6	16854	1
61	laptopa	laptop	6	14119	1
62	latop	laptop	5	14119	1
136	toucpad	touchpad	6	11550	1
137	touxhpad	touchpad	5	11550	1
148	wirless	wireless	6	10060	1
127	tableta	tablet	6	8260	1
10	cape	case	5	7541	1
8	cage	case	6	7541	1
30	gallaxy	galaxy	6	5839	1
64	loptops	laptops	5	5565	1
90	potable	portable	6	4477	1
5	bluetooh	bluetooth	5	4461	1
146	wats	wars	5	4179	1
56	kimdle	kindle	5	4129	1
99	rauter	router	5	4067	1
77	modum	modem	6	3590	1
76	moden	modem	5	3590	1
135	tosheba	toshiba	6	3432	1
34	gates	games	6	3239	1

Basic Intuition:-

Calculate the frequency for each query.

Quantile (0-20%) would likely be a misspelled word as less frequently used.

(80-100%) quantile would be a correct word as more frequently used.

Find the relation between (0-20%) and (80-100%) using edit distance.

Generalizable search systems

q=title:(\${keywords})^10 overview:(\${keywords})^20 {!func}release_year^0.01

- Above is a manual ranking function combining title, overview, and release year weights
- as searched keywords
- Learning to Rank (LTR) takes our proposed relevance factors, and learns an optimal ranking function and brings relevant documents to the top, and push irrelevant ones to the bottom.
- We'll find the optimal weights for title, overview, and release_year in a scoring function like the one above.

Bias in our data

It turns out that these click data have biases. These include:

- Position bias Position bias is present in of most search systems. If users are shown search results, they tend to prefer highly ranked search results over lower ones - even when those lower results are in fact more relevant.
- Confidence bias Documents with little click data influence the judgments the same as documents with more click data.

Addressing the bias in our data

Position Bias

- Detecting Position Bias? If the top positions have a significantly higher CTR
- Addressing Position Bias with SDBN:
 - Mark the Last Click In each search session, identify the last result that was clicked.
 - Consider Examinations Assume that all results above (and including) the last clicked result were actually seen or "examined" by the user.
 - Calculate Relevance (Grade): No. of clicks/No. of examines.

Confidence bias

- Detecting Confidence bias? Document gets clicked every time it's examined, but it's only been examined a few times
- Addressing Position Bias with Beta Distribution
 - Setting up the Beta Distribution –
 Setting a prior belief about document relevance using a default grade and weight, which establish initial values for a (prior_a) and b (prior_b) i.e. (prior_grade = prior_a / (prior_a + prior_b))
 - Updating with Click Data As clicks and examines are observed, "a" is incremented by the click count and "b" by the count of non-clicked examines
 - Calculating the Updated Grade posterior_a / posterior_a + posterior_b

Proposed Methodology

feature deltas (normalized

release year features)

Evaluation Metrics of Model

- Accuracy
- Precision
- Recall
- F1 score
- Mean Squared Error

Thanks!