

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#_{+}^{2}}\alpha\beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + ^{\alpha\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	4 <u>1</u> 3	0	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\sqrt{2}kt_1\right $	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$	
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	
$\omega_1^{\#_2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha_\beta$	$\omega_{1+}^{\#1} + ^{\alpha\beta} \left[\frac{1}{6} \left(t_1 + 4 t_2 \right) \right]$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + ^{\alpha eta}$	$f_{1+}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$	

 $\frac{ikt_1}{\sqrt{2}}$

$\omega_{0^{+}}^{\#1} + \begin{array}{ccccccccccccccccccccccccccccccccccc$		$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$
$f_{0+}^{#2} + 0 0 0 0$	$\omega_{0}^{\#1}$ †	0	0	0	0
7011 0 0 0	$f_{0}^{#1}\dagger$	0	0	0	0
$\omega_{0}^{\#1} + 0 0 0 k^2 r_2 + t_2$	$f_{0}^{#2} \dagger$	0	0	0	0
, L	$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

$\sigma_{2^{-}}^{\#1}$	0	0	$\frac{2}{2}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}_{+}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
·	$\sigma_2^{\#1} + ^{lphaeta}$	$\tau_{2+}^{\#1} + ^{\alpha\beta}$	$\sigma_{2^{-}}^{*1} +^{\alpha \beta \chi}$	

	Massive particle				
? $J^P = 0^{-/}$	Pole residue:	$-\frac{1}{r_2} > 0$			
$\frac{3}{2}$	Polarisations:	1			
$\overline{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$			
?	Spin:	0			
·	Parity:	Odd			

	Massive particle								
	Pole residue:	$-\frac{1}{r_2} > 0$							
2	Polarisations:	1							
- :	Square mass:	$-\frac{t_2}{r_2} > 0$							
	Spin:	0							
	Parity:	Odd							

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)

$f_{2}^{\#1} \dagger^{\alpha\beta}$		$\frac{\sqrt{2}}{\sqrt{2}}$	k^2	t_1	0						
$\omega_2^{\#3}$	1 $^{\alpha}$	βχ	0	()	<u>t</u> 1 2					
	#	I	1	1	3	m	8	8	2	20	- 17
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$t_0^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \ \sigma_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta = 0$	Total #:	1