Lecture 5 Part II

CARDINALITY (NON-EXAMINABLE)

1 / 16

Tan Kai Meng (NUS) Semester 1, 2019/20

Informally, the cardinality of a set A, denoted |A|, is the size of A.

For a finite set A, its cardinality is the number of distinct elements in A, so that the notation |A| agrees with what we defined earlier.

Let $f: A \to B$ be a function. Intuitively,

- If f is injective, then B has at least as many elements as A, i.e. $|A| \leq |B|$.
- If f is surjective, then A has at least as many elements as B, i.e. $|A| \ge |B|$.
- If f is bijective, then A has as many elements as B, i.e. |A| = |B|.

Tan Kai Meng (NUS) Semester 1, 2019/20 2 / 16

Definition

Let A and B be sets.

- We write $|A| \le |B|$ if and only if there exists an injective function $f: A \to B$.
- We write |A| = |B| if and only if $|A| \le |B|$ and $|B| \le |A|$.
- We further write |A| < |B| if $|A| \le |B|$ and $|A| \ne |B|$.

Note

- By Cantor-Bernstein Theorem, |A| = |B| if and only if there exists a bijective function $f: A \to B$.
- For a finite set A, we have |B| < |A| if B is a proper subset of A.
- For an infinite set A, it is possible for a proper subset B of A to have |B|=|A|. Eg. $|\mathbb{Z}^+|=|\mathbb{Z}|$.

4□ > 4□ > 4□ > 4□ > 4□ > 9

3 / 16

Note

- Let A be a set. Then |A| = |A| and $|A| \le |A|$.
- Because composition of functions preserves injectivity and surjectivity, we have

$$\begin{aligned} |A| &= |B| \land |B| = |C| \quad \Rightarrow \quad |A| = |C|; \\ |A| &\le |B| \land |B| \le |C| \quad \Rightarrow \quad |A| \le |C|; \\ |A| &= |B| \land |B| \le |C| \quad \Rightarrow \quad |A| \le |C|; \\ |A| &\le |B| \land |B| = |C| \quad \Rightarrow \quad |A| \le |C|. \end{aligned}$$

We summarise these as:

$$\begin{split} |A| &= |B| = |C| \quad \Rightarrow \quad |A| = |C|; \\ |A| &\leq |B| \leq |C| \quad \Rightarrow \quad |A| \leq |C|; \\ |A| &= |B| \leq |C| \quad \Rightarrow \quad |A| \leq |C|; \\ |A| &\leq |B| = |C| \quad \Rightarrow \quad |A| \leq |C|. \end{split}$$

Tan Kai Meng (NUS)

4 / 16

Lemma

Let A be a set. Then $|A| < |\mathcal{P}(A)|$.

Proof.

The function $f:A\to \mathcal{P}(A)$ defined by $a\mapsto \{a\}$ for all $a\in A$ is injective, so that $|A|\leq |\mathcal{P}(A)|.$

Suppose, for the sake of contradiction, that $|A| = |\mathcal{P}(A)|$.

- **1** Then there exists a bijective function $g: A \to \mathcal{P}(A)$.
- $\textbf{2} \ \, \mathsf{Let} \,\, X = \{a \in A \mid a \notin g(a)\}.$
- By (1) and (3), there exists $x \in A$ such that g(x) = X.
 - - **1** By (2) and (4.1), $x \notin g(x)$.
 - ② By (4) and (4.1.1), $x \notin X$, contradicting (4.1).
 - **2** Case 2: $x \notin X$.
 - **1** By (2) and (4.2), $x \in g(x)$.
 - ② By (4) and (4.2.1), $x \in X$, contradicting (4.2).
- **1** Thus, there does not exist $x \in A$ such that g(x) = X.
- **1** Thus g is not surjective, a contradiction.

Tan Kai Meng (NUS)

 \mathbb{Z}^+ has the smallest cardinality among infinite sets:

Lemma

Let A be an infinite set. Then $|\mathbb{Z}^+| \leq |A|$.

Sketch of proof.

- **1** We pick distinct $a_1, a_2, \ldots \in A$ as follows:
 - Let a_1 be any element of A.
 - **2** Having chosen a_1, \ldots, a_n , we have $\{a_1, \ldots, a_n\} \subsetneq A$.
 - **3** Thus $A \setminus \{a_1, \ldots, a_n\} \neq \emptyset$, and we may pick $a_{n+1} \in A \setminus \{a_1, \ldots, a_n\}$.
- ② Define $f: \mathbb{Z}^+ \to A$ by $f(n) = a_n$ for all $n \in \mathbb{Z}^+$. Then f is injective by construction.

Tan Kai Meng (NUS)

Countable Sets

Definition

A set A is **countable** if and only if $|A| \leq |\mathbb{Z}^+|$.

Example

- All finite sets are countable.
- ② If $|B| \le |A|$ and A is countable, then B is countable. In particular, all subsets of a countable set are countable.

Note

The last lemma tells us that:

- If A is infinite, then A is countable if and only if $|A| = |\mathbb{Z}^+|$.
- Every infinite set has a subset that is infinite and countable.

4 D > 4 A > 4 B > 4 B > B = 990

Proposition

Let A and B be countable sets. Then $A \times B$ is countable.

Proof.

- **1** There exist injective functions $f: A \to \mathbb{Z}^+$ and $g: B \to \mathbb{Z}^+$.
- ② Define $h: A \times B \to \mathbb{Z}^+$ by $h(a,b) = 2^{f(a)}3^{g(b)}$ for all $(a,b) \in A \times B$.
- lacksquare Take $(a_1,b_1),(a_2,b_2)\in A\times B$, and assume that $h(a_1,b_1)=h(a_2,b_2).$
- $Then 2^{f(a_1)}3^{g(b_1)} = 2^{f(a_2)}3^{g(b_2)}.$
- **5** By uniqueness of prime factorisation of positive integers, we have $f(a_1)=f(a_2)$ and $g(b_1)=g(b_2)$.
- **1** Thus $a_1 = a_2$ and $b_1 = b_2$ by injectivity of f and g.
- Hence $(a_1, b_1) = (a_2, b_2)$.
- **1** Consequently, h is injective, and $A \times B$ is countable.

Note

The last proposition may be generalised to the following:

Let $n \in \mathbb{Z}^+$. If A_1, A_2, \ldots, A_n are countable, then $A_1 \times A_2 \times \ldots \times A_n$ is countable.

In other words: A finite product of countable sets is countable.

Tan Kai Meng (NUS) Semester 1, 2019/20 10 / 16

Corollary

Q is countable.

Sketch of proof.

- Every rational number has a unique expression in the form $\frac{a}{b}$ with $\gcd(a,b)=1$ and $b\in\mathbb{Z}^+$.
- ② Thus we have an injective function $f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}^+$; $\frac{a}{b} \mapsto (a,b)$.
- **3** Thus, $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}^+|$.
- **3** But \mathbb{Z} and \mathbb{Z}^+ are both countable, so that $\mathbb{Z} \times \mathbb{Z}^+$ is countable. Thus $|\mathbb{Z} \times \mathbb{Z}^+| \leq |\mathbb{Z}^+|$.
- **⑤** Hence $|\mathbb{Q}| \le |\mathbb{Z}^+|$, i.e. \mathbb{Q} is countable.

Proposition

A countable union of countable sets is countable: Let I be a countable set, and for each $i \in I$, let A_i be a countable set. Then $\bigcup_{i \in I} A_i$ is countable.

Sketch of proof.

- **1** We may assume that $I \subseteq \mathbb{Z}^+$.
- ② There exist injective functions $f_i: A_i \to \mathbb{Z}^+$ for each $i \in I$.
- $\textbf{3} \ \text{ For each } a \in \bigcup_{i \in I} A_i \text{, let } n_a := \min\{i \in I \mid a \in A_i\}.$
- $\bullet \ \, \text{Define } h: \bigcup_{i \in I} A_i \to \mathbb{Z}^+ \times \mathbb{Z}^+ \,\, \text{by } h(a) = (n_a, f_{n_a}(a)).$
- **5** Take $a, a' \in \bigcup_{i \in I} A_i$, and assume that h(a) = h(a').
- **1** Then $n_a = n_{a'}$ and $f_{n_a}(a) = f_{n_{a'}}(a')$.
- Thus $f_{n_a}(a) = f_{n_a}(a')$, so that a = a' since f_{n_a} is injective.
- **1** Hence h is injective, so that $|\bigcup_{i \in I} A_i| \leq |\mathbb{Z}^+ \times \mathbb{Z}^+|$.
- **9** But $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable, so that $|\mathbb{Z}^+ \times \mathbb{Z}^+| \leq |\mathbb{Z}^+|$.
- \bigcirc Thus $|\bigcup_{i\in I} A_i| \leq |\mathbb{Z}^+|$, and $\bigcup_{i\in I} A_i$ is countable.

Uncountable Sets

Definition

A set is uncountable if and only if it is not countable.

Note

- All uncountable sets are infinite.
- Let A be a set. Then A is uncountable if and only if $|\mathbb{Z}^+| < |A|$.
- $\mathcal{P}(\mathbb{Z}^+)$ is uncountable.

Lemma

Let A and B be sets. If B is uncountable and $|B| \leq |A|$, then A is uncountable.

Proof by contradiction.

- Suppose that A is countable, i.e. $|A| \leq |\mathbb{Z}^+|$.
- ② Since $|B| \leq |A|$, we have $|B| \leq |\mathbb{Z}^+|$, i.e. B is countable, a contradiction.

In particular, if $B \subseteq A$ and B is uncountable, then A is uncountable.

Tan Kai Meng (NUS) Semester 1, 2019/20 14 / 16

Proposition

Let $S = \{x \in \mathbb{R} \mid 0 < x < 1\}$. Then S is uncountable.

Sketch of proof using Cantor's diagonal argument.

- 4 Every real number has a unique decimal expansion with no trailing 9's.
- $oldsymbol{2}$ Suppose that S is countable.
- ③ Since S is infinite, $|S|=|\mathbb{Z}^+|$, so there exists a bijective function $f:\mathbb{Z}^+\to S.$
- **①** For each $n \in \mathbb{Z}^+$, let the decimal expansion of f(n) be $0.d_{1n}d_{2n}\cdots$.
- **5** Let a be the real number whose decimal expansion is $0.a_1a_2\cdots$, where

$$a_i = \begin{cases} 4, & \text{if } d_{ii} = 5; \\ 5, & \text{if } d_{ii} \neq 5. \end{cases}$$

- **1** Then $a \in S$, but $a \neq f(i)$, since they differ at the i-th decimal place, for all $i \in \mathbb{Z}^+$.
- \bigcirc Thus f is not surjective, a contradiction.

Corollary

 \mathbb{R} is uncountable.

Proof.

 $S\subseteq\mathbb{R}$ and S is uncountable, so \mathbb{Q} is uncountable.

Corollary

The set $\mathbb{R}-\mathbb{Q}$ of irrational numbers is uncountable, and $|\mathbb{Q}|<|\mathbb{R}-\mathbb{Q}|$.

Proof.

- **①** \mathbb{Q} is infinite and countable, so that $|\mathbb{Q}| = |\mathbb{Z}^+|$.
- ② If $\mathbb{R} \mathbb{Q}$ is countable, then $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \mathbb{Q})$ is the union of two countable sets, and hence countable, a contradiction.
- **3** Thus $\mathbb{R} \mathbb{Q}$ is uncountable, and $|\mathbb{Q}| = |\mathbb{Z}^+| < |\mathbb{R} \mathbb{Q}|$.