# Série 03 –De la structure à la polarité des entités chimiques

# La géométrie des édifices atomiques

La **géométrie** d'une molécule ou d'un ion polyatomique est celle dans laquelle les doublets d'électrons externes, liants et non liants, de chaque atome s'écartent au maximum les uns des autres.

| Nombre de liaisons (simples ou doubles)<br>+ nombre de doublets non liants | Répartition des doublets<br>d'électrons autour de l'atome A | Géométrie de la molécule<br>autour de l'atome central A                                                                                                                                                                           |
|----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4                                                                          |                                                             | <ul> <li>Tétraédrique si A est lié à 4 atomes.</li> <li>Pyramide à base triangulaire si A est lié à 3 atomes et possède 1 doublet non liant.</li> <li>Coudée si A est lié à 2 atomes et possède 2 doublets non liants.</li> </ul> |
| 3                                                                          | / A plan                                                    | <ul> <li>Triangulaire si A est lié à 3 atomes.</li> <li>Coudée si A est lié à 2 atomes et possède 1 doublet non liant.</li> </ul>                                                                                                 |
| 2                                                                          | —— A——                                                      | • Linéaire.                                                                                                                                                                                                                       |

# Exemples

| Nom                | Méthane              | Ammoniac                          | Eau                  | Méthanal        | Dioxyde de carbone |
|--------------------|----------------------|-----------------------------------|----------------------|-----------------|--------------------|
| Formule            | CH <sub>4</sub>      | NH₃                               | H₂O                  | CH₂O            | CO <sub>2</sub>    |
| Schéma<br>de Lewis | H<br>H—C—H<br> <br>H | H—N—H<br> <br> <br>               | н— <mark>о</mark> —н | 0<br>≡<br>H—C—H | (O=C=0)            |
| Modèle             |                      |                                   |                      |                 |                    |
| Géométrie          | Tétraédrique         | Pyramidale à base<br>triangulaire | Coudée               | Triangulaire    | Linéaire           |

# Les molécules polaires et apolaires



# Échelle de Pauling des électronégativités

| H<br>2,2      |               |                  |  |                 |
|---------------|---------------|------------------|--|-----------------|
| Li<br>1,0     | <b>Be</b> 1,6 | <b>C</b> 2,6     |  | <b>F</b><br>4,0 |
| <b>Na</b> 0,9 | Mg<br>1,3     | <b>Si</b><br>1,9 |  | <b>C</b> ℓ 3,2  |

#### Polarisation d'une liaison covalente

On compare l'électronégativité de deux atomes en calculant la **différence**  $\Delta X$  de leurs électronégativités.

Dans une liaison covalente entre deux atomes identiques ou d'électronégativités proches ( $\Delta X \leqslant 0,4$ ), le doublet est équitablement réparti entre les deux atomes de la liaison. On dit que la liaison est **apolaire**.

Dans une liaison covalente entre deux atomes d'électronégativités suffisamment différentes (0,4  $< \Delta X <$  1,7 à 2), le doublet est délocalisé vers l'atome le plus électronégatif. On dit que la liaison est **polaire** (ou **polarisée**).

L'atome le plus électronégatif porte alors une **charge partielle négative** notée  $\delta$ -, et l'autre, une **charge partielle positive** notée  $\delta$ + (FIG. 10).

Lorsque deux atomes ont des électronégativités très différentes ( $\Delta X > 1.7$  à 2), le doublet d'électrons est complètement capté par l'atome le plus électronégatif. Cet atome porte une charge négative. L'autre atome porte une charge positive. On dit alors que la liaison est **ionique**, et non plus covalente (FIG. 11).

#### **Exercice 01-QCM**

Pour chaque question, indiquer la (ou les) bonne(s) réponse(s)

| Α | В | С |
|---|---|---|
|   |   |   |

# La formation d'une molécule ou d'un ion

| 1. Dans le schéma de Lewis d'un atome, le point (•) représente un électron :                                                                                                      | de la couche interne.                                 | de la couche de<br>valence.                         | susceptible de former<br>une liaison covalente.     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 2. L'atome d'azote dont le schéma de Lewis est donné ci-contre :                                                                                                                  | peut s'entourer de<br>trois atomes.                   | peut s'entourer de<br>deux atomes.                  | peut former trois<br>liaisons covalentes.           |
| 3. Dans la molécule de dichlore, dont le schéma de Lewis est donné ci-contre, un atome de chlore est entouré de : $ \overline{\underline{C\ell}} - \overline{\underline{C\ell}} $ | 4 électrons.                                          | 7 électrons.                                        | 8 électrons.                                        |
| 4. La molécule de disulfure de dihydrogène $H_2S_2$ est formée d'atomes, dont les schémas de Lewis sont donnés ci-dessous :    S   H   Le schéma de Lewis de la molécule est :    | \$=H-H=\$>                                            | н— <u>\$</u> — <u>\$</u> —н                         | H—H— <u>s</u> =\$                                   |
| 5. L'ion chlorure, dont le schéma de Lewis est donné ci-contre, est entouré de : $ \overline{\underline{C\ell}} $                                                                 | 8 électrons.                                          | 9 électrons.                                        | 10 électrons.                                       |
| 6. Dans l'ion hydroxyde, dont le schéma de<br>Lewis est donné ci-dessous :                                                                                                        | l'atome d'hydrogène<br>est entouré de<br>2 électrons. | l'atome d'oxygène<br>est entouré de<br>8 électrons. | l'atome d'oxygène<br>est entouré de<br>9 électrons. |

# La géométrie des édifices atomiques

| 7. La géométrie de la molécule de phosgène, dont le modèle est représenté ci-contre, est :  | pyramidale.                         | triangulaire.                     | tétraédrique.                         |
|---------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------------|
| 8. La géométrie de l'ion  ammonium dont le shéma de H—N—H  Lewis est donné ci-contre, est : | pyramidale.                         | triangulaire.                     | tétraédrique.                         |
| 9. La géométrie de l'ion ammonium NH‡<br>est due à :                                        | la répulsion entre les<br>doublets. | la répulsion entre les<br>atomes. | la présence de la charge<br>positive. |

# Les molécules polaires et apolaires

| 10. L'électronégativité d'un atome traduit son aptitude à :                                      | former une liaison avec<br>un autre atome. | attirer le doublet qui le<br>lie à un autre atome.          | obtenir une<br>configuration<br>électronique identique<br>à celle d'un gaz noble.                        |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 11. Les atomes de chlore Cℓ et d'hydrogène H ont pour électronégativités respectives 3,2 et 2,2. | La liaison H—Cℓ est<br>polarisée.          | La molécule de<br>chlorure d'hydrogène<br>HCℓ est apolaire. | Le doublet d'électrons<br>est plus proche de<br>l'atome d'hydrogène<br>H que de l'atome de<br>chlore Cℓ. |

#### Exercice 02- Un traitement de l'eau

L'acide hypochloreux est l'espèce active utilisée pour le traitement de l'eau de certaines piscines. La molécule d'acide hypochloreux est modélisée ci-contre.



Interpréter la géométrie de la molécule autour de l'atome d'oxygène, à partir de son schéma de Lewis :

$$H-\overline{O}-\overline{C\ell}$$

# **Exercice 03- Le Méthanol**

Le méthanol, dont le modèle de sa molécule est donné ci-contre, est un alcool produit naturellement par de nombreuses variétés de bactéries.

- La molécule de méthanol est-elle polaire ou apolaire ?
   Données
- $\chi(H) = 2.2$ ;  $\chi(C) = 2.6$  et  $\chi(O) = 3.4$ .
- Les valeurs des électronégativités des atomes d'hydrogène et de carbone étant proches, les liaisons C-H sont non polarisées.



# **Exercice 04- Liaisons polaires ou apolaires**

- **1.** Parmi les liaisons covalentes ci-dessous, lesquelles sont polaires ? Lesquelles sont apolaires ? Justifier en calculant si besoin la différence d'électronégativité entre les deux atomes liés.
- a. C—C; b. C—H; c. C—O; d. C—Cl; e. C—N; f. H—Cl.
- **2.** Dans le cas des liaisons polaires, représenter la charge partielle positive et la charge partielle négative.

#### Exercice 05- Justifier la présence d'une lacune électronique

• Justifier la présence de la lacune dans le schéma de Lewis de la molécule de chlorure d'aluminium.



#### Exercice 06- Prévoir la polarité d'une molécule

• Parmi les deux molécules dont les modèles sont fournis, laquelle est une molécule polaire ? Justifier.



> Borane BH<sub>3</sub>



> Ammoniac NH<sub>3</sub>

#### Données

• 
$$\chi(H) = 2.2$$
;  $\chi(B) = 2.0$  et  $\chi(N) = 3.0$ .

#### Exercice 06

# Un précurseur du nylon

Utiliser un modèle pour expliquer ; rédiger une explication.

Commencer par résoudre l'énoncé compact. En cas de difficultés, passer à l'énoncé détaillé.



L'oxime est un intermédiaire de synthèse du nylon. Le modèle de sa molécule est reproduit ci-dessus.

- H(o); C(o); N(o); O(o).
- H (1s<sup>1</sup>); C (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>); N (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>); O (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>).

#### Énoncé compact

 Justifier la géométrie de cette molécule autour des atomes de carbone C, d'azote N et d'oxygène O.

#### Énoncé détaillé

- 1. Déterminer le nombre d'électrons de valence des atomes d'hydrogène, de carbone, d'azote et d'oxygène.
- 2. Établir le schéma de Lewis de chaque atome.
- 3. Assembler les schémas de Lewis des atomes afin d'obtenir le schéma de Lewis de la molécule d'oxime.
- 4. Pour chacun des atomes C, N et O, déterminer le nombre d'atomes et de doublets non liants entourant chacun d'eux.
- 5. Utiliser le résultat de la question précédente pour justifier la géométrie de la molécule autour de ces atomes.

#### Exercice 07

#### Le méthoxyméthane

Proposer et utiliser un modèle ; rédiger une explication.

Commencer par résoudre l'énoncé compact. En cas de difficultés, passer à l'énoncé détaillé.

Le méthoxyméthane C<sub>2</sub>H<sub>6</sub>O est un gaz incolore utilisé pour traiter les verrues dans les fluides cryogéniques. Dans sa molécule, l'atome d'oxygène est fixé à deux atomes de carbone.

#### Données

- H (1s<sup>1</sup>);  $\chi$ (H) = 2,2. C (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>);  $\chi$ (C) = 2,6.
- O (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>); χ(O) = 3,4.
- On considère que les liaisons C-H de cette molécule ne sont pas polarisées.

#### Énoncé compact

La molécule de méthoxyméthane est-elle polaire ?

# Énoncé détaillé

- 1. Déterminer le nombre d'électrons de valence des atomes de la molécule de méthoxyméthane.
- 2. Établir le schéma de Lewis de chaque atome puis de la molécule.
- 3. Pour chacun des atomes de carbone et d'oxygène, déterminer le nombre d'atomes et de doublets non liants entourant chacun d'eux.
- 4. Justifier alors la géométrie de la molécule autour de ces atomes.
- 5. Expliquer pourquoi les liaisons C-O de cette molécule sont polarisées.
- Déterminer la position moyenne des charges partielles positives et négatives.
- 7. La molécule de méthoxyméthane est-elle polaire ?

### **Exercice 08**

# Une solution aqueuse

Proposer un modèle ; utiliser un modèle pour prévoir.

Le méthanal est très soluble dans l'eau. Les solutions aqueuses de méthanal sont utilisées comme désinfectant dans les pédiluves pour animaux.



> Schéma de Lewis d'une molécule de méthanal



- 1. Déterminer la géométrie de la molécule de méthanal autour de l'atome de carbone.
- 2. Quel est l'état physique du méthanal à température ambiante? Justifier.
- 3. Sachant qu'une molécule polaire est généralement soluble dans l'eau, expliquer pourquoi on peut obtenir des solutions aqueuses de méthanal.

#### Données

- T<sub>fus</sub> (méthanal) : −92 °C.
- T<sub>éb</sub> (méthanal) : −19,5 °C.
- $\chi(H) = 2.2$ ;  $\chi(C) = 2.6$ ;  $\chi(O) = 3.4$ .