MODVLE 2: - Addressing Hodes, Instruction classification, Instruction format, Data transfer operation, Arithmetic operations, Logical Operations, Stack and substitute operation, Looping, Counting and indexing operations.

INSTRUCTION FORMAT!

· An instruction is a binary pattern designed inside a microproussor to perform a specific function. The entire group of instructions, called the instruction set, determines What functions the microperocussor can perform.

· lack instruction consists of two parts. The first part is called opcode and the second to called as operand.

. The opcode part of an instruction specifies the operation to be performed. The operand can be specified in a no of Ways - It includes

11) & bit 16 bit General purpose Register.

(ii) A memory location

(iii) A8 bit (port address [16 bit memory address
(iv) Implicit operand: The operand is not speciful, instead
it is secured in register.

Defending upon the no of leytes or bit patterns required to specify an operation and the data, the instructions are

of 3 types: · One byte instructions · Two light instructions

1 BYTE INSTRUCTIONS

· A llyte instruction includes the opcode and the operand in the 8 bit only ite one byte.

. The one byte intuitions specify the operation to be performed and who is going to perform it. These withuctions,

EXAMPLE

1) MOV B, C

. This instruction mous the contents of register C. in negister B.

This instruction has an opcode 41 H and is a one byte instruction. This instruction copies the content of register. Cin Bregister.

& BYTES INSTRUCTIONS

The abytes instruction uses first byte to specify the operand.

ic opcode and second byte to specify the operand.

These instructions requires two successive memory location in the memory.

in the memory. · First light stored is operate and second light stored is data ie ofoland or adduss.

Sall a line yas

effect to him owner

the soul for the second

TORMAT

opcode operand

EXAMPLE

MVI B, 574

· This instruction mones the data 57 y in neglister B. .

The frist legte of this instruction is the operate for instruction MVIB, and the second legte is the data that is to be moved to register B.

3 BYTE INSTRUCTIONS

The 3 bytes instruction uses foist byte to specify the operation is opcode, second and third bytes are used to specify the

FORMAT

opcode operand operand

EXAMPLE

STA 5600 H

· This instruction moves the contents of accumulator to the memory location 5600H.

. The flist light of this instruction is opcode for instruction STA 56001 and the second and third bytes are the address 5600 H

. The microprocessor 8085 is an 8 bet microprocessor and has 8 bit oprodes. Each instruction has a unique opcode.

The operation information regarding the oberation,

- type of operation to be performed, registeres to be used,

thank The operation to be performed registeres to be used,

Notations used in object code or opcode are:

· Meaning
Destination register(s)
ddd = sss 111 = A register
000 = B register
010 = Dregister
100=H regester
Restart no ooo to 111

Notations	Hearing
TEE TEE	An 8 bit winay data unit
X	Register pair 0 = BC 1= DE
27	Register pair 00 = BC 01 = DE 10 = HL
	11 = SPLif push (POP) PSW A 16 bit memory address
PPQQ	A 16 bit imenting auto

IN	FORM	ATION	OPERATIONS
Io	Io	Io	Operation
0	0	0	Read set interrupt mask
0	0	1	Immediate operation Rp
0	1	0	Load store
0 1		-1-	Increment Docrement Rp
1	0	0	Increment Single Register
10		1	Decrement Single Reguter
		10	Immediate aperations
1			Register shifting/

enc. I	MIC U	MIT CIERATION
	AL I	operation
		Add
	ī	Add with carry
-	0	SUB
-	1	SUB with borrow
10	D	Logical AND
+	1	X-OR .
+	10	Logical OR.
+	1	1 Compare
	ETIC I	0 0 1 0 0 0 0

Tile (BAA	NXH.	MOITION
CB	CB	CB	operation
0	0	0	JNZ.
0	0	1	3人
0	1	0	JNC
0	1	1,	4C
1	0	0	Jio
+	10	1	JEE
1:	1	0	-78
H	ti	11	JM

50	B		Bo		operation
0	0		0:	10	and trainal return
0	0	1	1	1	simple return Miscellaneous
0	+	1	0	1	Conditional jump
10	+	1	1	1	Unconditional fump Hiscellareaus
r	it	0	10	,	Conditional CALL
1	1	0	1	1	Surfle CALL Miscellaneous
t	T	1	1	O	Special A/L operations
1	1	1	1	1	Special unconditional

EXAMPLE

(i) MVI A, AO H: This instruction transfers immediate data (Ao H) to A register. (ii) "LXIH, C200H: This instruction transfers 16 bit immediate data C200 to HL register and higher register pair. Lower order data (00 H) to L register and higher Order data (C2H) to H negister. REGISTER ADDRESSING MODE In register addressing mode the source and destination operands are general purpose registers. The negister addressing instructions are generally of lbyte i've of cope only The opeope (specifies the operation and registers to be used to perform - the Oberation. opcode Register INSTRUCTION EXAMPLE Regesters (1) MOV D, B: This instruction copies the contents of neglister B to the D neglister. The oteran source and distination operands are both registers. (ii) ADD B: This instruction adds the contents of B negister and A register. The data is present in both B and A registers. The result is stored in the accumulator. (iii) PCHL: This instruction will transfer the contents of register pair HL to the PC. DIRECT ADDRESSING MODE INSTRUCTION In direct addressing mode the opcode Address 16 bit address of the Oborand is given within the instruction itself: The instructions in the direct addressing mode are 3 lyte wistenctions. operand Frist lyth is a OPCODE, second is loner order address byte and third is higher order address byte. For I 0 instruction that use direct addressing mode are 2 legte as the

address log I/O is one legte.

Memory

EXAMPLE

(1) LDA C2004: Load accumulator directly from memory location. In this instruction the Jontents of C200 meniony location are transferred to accumulator.

(ii) STA C2004: Store accumulator ducidly to memory location. In this instruction the contents of accumulator are stored at memory location C2004.

INDIRECT ADDRESSING MODE

In indirect addressing mode the instructions reference the memory through a register pair ie the memory address where the operand is located is specified by the Contents of a register paire.

EXAMPLE

- (i) MOV A, M: In this case M is a memory pointer specifying HL negister pair where the address is expect. The contents & HILlfair are used as address and the contents of that mentory location are transferred to accumulated
- (ii) LDAX B: In this case BC register pair is used as address and the contents of the memory location specified by BC. negister pair are copied to accumulator:

IMPLIED ADDRESSING OR IMPLICIT ADDRESSING MODE

. The implied mode of addressing absent require any

- · The data is specified within the opcode itself. Generally the implied addressing mode instruction is a 1 byte instruction.

 The data is supposed to be present generally in accumulator.
 - EXAMPLE
- 1) RAL: Rotate accumulator left, it operates on the data in accumulator only so whenever RAL is used It is implied that the data to be operated on is available in accumulator only.
- (ii) CMC: Complement carry flag.

TIMING DIAGRAM

We duant graphical presentation of steps with respect to time ic clock. The graphical representation is called as the "Timing diagram".

INSTRUCTION CYCLE, MACHINE CYCLE AND TSTATES

INSTRUCTION CYCLE

. The CPU fetches one instruction from the meniory at a time and execute it. The essential steps beguned by cpulto fetch and execute an instruction is called as instruction cycle. An instruction cycle consists of a fetch cycle and an execute cycle. In a fetch cycle the CPU fetches the opcode of the instruction from the memory. The steps required to acquire the data from the memory and Jimplete the operation that is specified in the instruction is constituted by the execute cycle.

. The total time required to execute an instruction is IC = FC+GC

IC: Time required for instruction cycle

Fc: time required for fetch cycle

Ec: time required for Execution cycle.

MACHINE CYCLE	. 104	to comblete 5
· the time yearing in	icroprocessor Tlo	device is called
The Constitution of	1011 010000	301000
a machine cifele operation read; mexicy write, I/Ora	ad. I/o write	ask performed)
in machine cycle.	11. 1	

· An instruction cycle thus consists of several machines cycles.

· The microprocessor 8085A consists of seven different types

TACHINE CYCLE	S	TAT	vs		co	NTROL	
	TOM	Sı	So	RD	WR	INTA	
biode fetch	0	١.	1	0	Ì		
Memory Read	0	1	0.	Ø	i	The state of	
Memory White	0	0	1	1	0	1/1	
Ilo Read	1	1	0	0	1.	. 1.	
Ilonvite	1	0	1	l	0	123	100
INTR Acknowledge	. 1	1	1	1	1	0.	
Bus golle	0	1	0 0		1	1 1	1.

TSTATE

Microprocessor textorms an operation in a specific time period is specific clock yells. Each clock yell is 'called as T State.

The number of T states required to perform an operation is called madline cycles.

Hachine cycle consists of 3+06T states and 17 state is of one clock poriod. An instruction cycle consists of 1+05

CLASSIFICATION OF THE INSTRUCTION SET

The instructions are generally classified into the functional categories as follows:

- i) Pata-transfer group
- ii) Aruthmetic group
- iii) Logical group
- iv) Branching group
- V) stack and Hachine control group

Notations used in Instructions

Notations	Meaning	
M	negister paix. pointed.	by HL
H	8 bit register	12.5
Rp	16 bit register	-
Rs .	Source Register	E
- R _D ,	Destination Register	1364
addr	16 let address.	4.70 and
data	8 lut data :	
data 16 bit	16 but data	