ADCS - V Space Mission

Salvatore Mangano

Adapted from presentation of Sebastián Franchini

Summary of last lecture

Objective and description of attitude Hardware

- Sensors (determination)
 Sun-, Earth- and Star-Sensor, Magnetometers, Gyroscope
- Actuators (control)
 - Thruster, Reaction wheel, Momentum wheel, Control momentum gyroscope, Magnetic torque

Attitude control methods

Passive and active

Introduction to attitude concepts

- Conservation of angular momentum, Inertia matrix
- Attitude kinematics and dynamics → Euler equation

Environmental torques

Aerodynamic, Gravity-gradient, Magnetic, Solar pressure

Outline

Mission analysis for attitude dynamics and control

Preliminary design of attitude determination and control system (ADCS) for given satellite

Steps of ADCS design process

Bibliography

James R. Wertz and Wiley Larson (1999)
 "Space mission analysis and design"
 Chapter 11: Attitude determination and control

F. N. Medina (~2006)
 Proyecto fin de carrera
 "Satélite de recursos naturales Zahori"

Introduction

Function of ADCS

Hold orientation of satellite in desired direction during mission despite possible external torques act on it

Reorientation (slew maneuvers) according to requirements of mission (payload, solar panels or antennas)

Introduction

Active spacecraft attitude control system consists of:

- Attitude sensors
- Attitude actuators
- Program on processor

Attitude sensors take measurements which are used to compute current spacecraft attitude and/or angular velocity

Attitude actuators then supply torques to correct difference between measured and desired attitude

Program on processor has implemented mathematical relationships between measured attitude and corrective torques (so called **control law**)

Introduction

Sensors make measurements (with error) for determining orientation of vehicle

Sensor measured current state values together with supposed values from control algorithm generates orders for actuators

Actuators produce necessary torques (with errors) on vehicle to move in desired direction

Torques caused by actuators as well as by disturbances produce vehicle dynamics

New state of vehicle is determined by sensors

Steps of ADCS design process

LEO satellite

Characteristics of satellite

Mass (kg)	95
Dimensionss (m x m x m)	1 x 0,4 x 0,7
Power (W)	163
Orbit inclination (°)	35
Height above Earth (km)	395
Pointing precision (°)	0,034

Remark: Scientific goal of Zahori satellite is to detect water under Earth surface

Steps of ADCS design process

LEO satellite

- Payload must point according to nadir of trajectory
- Attitude determination should be autonomous
- Capacity to reorient vehicle: ±20°, 0.3 °/s
- Reorientation: Once each month for 10 orbits (2% of lifespan)
- Accuracy for pointing: 0.034º
- Mass of ADCS subsystem 3 kg (6% dry mass)
- Mass of fuel 14 kg (1 kg for attitude control)
- Use orbital maintenance system
- Lifespan: 2 years

Orbit insertion

Initial acquisition of nominal attitude

Normal mode of operation

Reorientation/Slew

Safe mode

Special conditions

Typical attitude control modes

Orbit insertion

Assume launcher inserts satellite in final orbit without need of ADCS

Initial acquisition of nominal attitude

Normal mode of operation

Design operation for these modes

Reorientation/Slew

Safe mode

Special conditions

Consider only in more advanced design stage

Do not take into account any special operation conditions

Attitude determination and control performance requirements

		Required actions
Determination Range	0.034°	
	Range	±20° of nadir
	Accuracy	0.034°
Control	Range	±50° of nadir
	Angular velocity max.	0.3 %

Steps of ADCS design process

Selection of spacecraft control type

Type of control

- Gravity-gradient
- Gravity-gradient and momentum wheel
- Passive Magnetic
- Pure spin stabilization
- Dual-spin stabilization
- Momentum wheel (1 axis)
- Thruster (3 axes)
- Reaction wheels (3 axes)
- Control momentum gyroscopes (3 axes)

Typical accuracy

±5° (two axes)

±5° (three axes)

±5° (two axes)

±0.1° - 1° (two axes)

±0.1° - 1° (two axes)

±0.1° - 1°

 $\pm 0.1^{\circ} - 5^{\circ}$

 $\pm 0.001^{\circ} - 1^{\circ}$

±0.001° - 1°

^{*} Requires momentum dumping (thruster or magnetic), when wheels reach maximum speed

Steps of ADCS design process

Quantify environment disturbances

Sources of torques for LEO orbit:

Gravity-gradient

Magnetic field torque

Solar radiation pressure

Aerodynamic torque

Disturbances affected by:

- Orientation
- Mass properties
- Design symmetry

Quantify for worst case scenario

Gravity-gradient torque

$$T_g = \frac{3\mu}{2R^3} |I_z - I_y| \sin(2\theta)$$

Influenced primarily by:

- Spacecraft inertia
- Orbit altitude

With:

- T_g: Maximal gravity torque
- μ : Earth's gravity constant [3.986 x 10¹⁴ m³/s²]
- R: Orbit radius [in m]
- \bullet Θ : Maximum deviation of z-axis from local vertical
- I_z , I_y : Moments of inertia about z and y axes (or I_x , is smaller) [in kg m²]

Gravity-gradient torque

$$T_g = \frac{3\mu}{2R^3} \left| I_z - I_y \right| \sin(2\theta)$$

Application to example:

$$\mu$$
 = 3.986 x 10¹⁴ m³/s²

•
$$R = 6.77 \times 10^6 \text{ m}$$

•
$$I_7 = 32.8 \text{ kg m}^2$$

•
$$I_v = 18.9 \text{ kg m}^2$$

•
$$(I_x = 24.7 \text{ kg m}^2)$$

$$\theta$$
 = 1° $T_g = 6.2 \times 10^{-7} \text{ N m}$

$$\theta = 20^{\circ} \longrightarrow T_g = 1.2 \times 10^{-5} \text{ N m}$$

Solar radiation pressure

Influenced primarily by:

- Spacecraft geometry
- Spacecraft center of gravity and center of solar pressure location
- Spacecraft surface reflectivity

Transparent
Absorbent
Reflector (diffuse o specular)

Solar radiation pressure

Worst case solar radiation torque is

$$T_{sp} = \frac{F_s}{c} A_s (1+q) \cos i (c_{ps} - c_g)$$

With:

- F_s : Solar constant [1362 W/m²]
- c: Speed of light $[3 \times 10^8 \text{ m/s}]$
- A_s: Surface area opposing Sun
- q: Reflectance factor (ranging from 0 to 1)
- *i*: Angle of incidence of Sun
- c_{ps} : Location of center of solar pressure
- c_a : Location of center of gravity

Solar radiation pressure

Worst case solar radiation torque is

Application to example:

•
$$F_s = 1362 \text{ W/m}^2$$

•
$$c = 3 \times 10^8 \text{ m/s}$$

•
$$A_s = 5.96 \text{ m}^2$$

$$T_{sp} = \frac{F_s}{c} A_s (1+q) \cos i \left| c_{ps} - c_g \right|$$

$$T_{sp} = 2.4 \times 10^{-7} \text{ Nm}$$

- \bullet q = 0.5 (assume some mean values)
- $i = 0^{\circ}$

Assume maximal possible distance:

•
$$c_{ps}$$
 - c_q = 6 x 10⁻³ m

Magnetic field torque

Influence primary by:

- Orbital altitude
- Orbital inclination
- Residual spacecraft magnetic dipole

$$T_m = D \cdot B$$

With:

- \bullet $T_{\rm m}$: Magnetic torque on spacecraft
- D: Residual dipole of spacecraft [A m²]
- B: Earth's magnetic field [T]

Magnetic field

In first order, dipole Earth magnetic field is given by

$$|B| = \frac{M}{R^3} \left(1 + 3\sin^2\theta_m\right)^{0.5}$$

- B: Magnitude of dipole magnetic field
- M: Magnetic moment of Earth (7.96 · 10¹⁵ T m³)
- R: Orbit radius
- $\Theta_{\rm m}$: Magnetic latitude (angle $\Theta_{\rm m}$ measured northwards from equator)

Worst case:

$$\theta_m = i - 11.5^{\circ} = 23.5^{\circ}$$

$$B = 1.2 \frac{M}{R^3}$$

Magnetic field torque

Residual dipole of vehicle

System of compensation

Typical range between 0.1 and 20 A m²

Typical value for small vehicle $D = 1 \text{ A m}^2$

Finally...

$$T_m = \frac{DM}{R^3} \left[1 + 3\sin^2(i - 11.5^{\circ}) \right]^{0.5}$$

$$T_m = 3.1 \times 10^{-5} \text{ Nm}$$

Aerodynamic torque

Orbital altitude

Spacecraft geometry

$$T_a = \frac{1}{2} \rho v^2 A c_d \left(c_{pa} - c_g \right)$$

 Relative position of center of gravity and center of atmospheric pressure

With:

• ρ : Atmospheric density ($\rho = 10^{-11} \text{ kg/m}^3 \text{ for } 400 \text{ km}$)

• v: Spacecraft velocity (7.67 x 10³ m/s)

• A: Surface area normal to velocity vector (A = 0.42 m^2)

• c_d : Drag coefficient (between 2 and 2.5)

• c_{pa} - c_g : relative location between center of pressure and center of gravity (assume 6 x 10^{-3} m)

$$T_a = 1.7 \times 10^{-6} \text{ Nm}$$

Summary...

Internal disturbances

- In general have control of internal disturbance torques
- Check if internal disturbance torque are smaller than environmental one

Examples:

- Uncertainty of center of gravity (1 3 cm)
- Thruster misalignment (0.1º − 0.5º)
- Mismatch of thruster outputs (±5%)
- Rotating machinery (e.g.: pumps, tape recorder)
- Liquid sloshing (movements of liquid)
- Dynamics of flexible bodies (e.g.: solar panels or antennas)
- Thermal shocks on flexible appendages (e.g.: attitude disturbance when entering/leaving eclipse)

Steps of ADCS design process

 Torque capability determined by slew requirements or need for control above peak disturbance torque in order to maintain pointing accuracy 31

how frequent angular momentum must be dumped

4

Select and size hardware

Torque from reaction wheel must compensate disturbance

Reaction wheel torque ($T_{\rm RW}$) must equal worst-case anticipated disturbance torque ($T_{\rm D}$) plus some margin ($C_{\rm MF}$):

$$T_D = T_m = 3.1 \times 10^{-5} \text{ Nm}$$

$$C_{MF} = 1.1 - 1.5$$

$$T_{RW} \ge T_D C_{MF} = 3.7 \times 10^{-5} \text{ Nm}$$

Slew torque for repointing of satellite

$$\frac{\theta}{2} = \frac{1}{2} \frac{T}{I_X} \left(\frac{t}{2}\right)^2 \qquad T = \frac{4\theta I_X}{t^2}$$

 $2 \quad 2 I_X \setminus 2$ (half of time accelerated and

other half decelerated)

$$T_{RW} = 6 \times 10^{-4} \text{ Nm}$$

$$\theta = 20^{\circ} = 0.35 \,\text{rad}$$

$$t = 4 \,\text{min} = 240 \,\text{s}$$

$$I_{y} = 24.7 \,\text{kg m}^{2}$$

Ability of momentum storage in reaction wheel

One approach to estimate wheel momentum (H) is to integrate worst-case disturbance torque (T_D) over a full orbit. If disturbance is gravity-gradient, maximum disturbance accumulates in $\frac{1}{4}$ of an orbit. Simplified expression for sinusoidal disturbance is:

$$H = T_D P$$

$$H = \left(\frac{2}{\pi}T_D\right)\frac{P}{4}$$

Orbital period P

$$P = 5544 \,\mathrm{s} = 92.4 \,\mathrm{min}$$

$$T_g = 1.2 \times 10^{-5} \text{ N m}$$

Constant

$$H = T_g P = 0.064 \,\mathrm{N}\,\mathrm{m}\,\mathrm{s}$$

$$T_m = 3.1 \times 10^{-5} \text{ Nm}$$

Cyclic

$$H = \frac{2}{\pi} T_g \frac{P}{4} = 0.027 \,\text{Nms}$$

$$T_{sp} = 2.4 \times 10^{-7} \text{ Nm}$$

Cyclic

$$T_a = 1.7 \times 10^{-6} \text{ Nm}$$

Constant

Reaction wheel: Hamster

H_{max} 0.1 Nms @ 15000 rpm

Dimensions 100x100x150 mm

Mass 0.315 kg

Power 1 W

Reaction torque 30 mNm

Moment of inertia of reaction wheel (I_{RW})

$$I_{RW} = \frac{H_{\text{max}}}{\omega_{\text{max}}} = \frac{0.1 \,\text{N m s}}{15000 \frac{2\pi}{60} \frac{1}{\text{s}}} = 6.37 \times 10^{-5} \,\text{kg m}^2$$

Saturation time (t_{sat}) calculated only for constant disturbances

$$\sigma(t) = \frac{T_D}{I_{RW}} \Rightarrow \omega(t) = 0$$

$$\sigma(t) = \frac{T_D}{I_{RW}} t_{sat} \Rightarrow t_{sat} = \frac{I_{RW}}{T_D} \omega_{max}$$

$$T_D = T_a = 1.7 \times 10^{-6} \text{ Nm}$$

$$T_D = T_g = 1.2 \times 10^{-5} \text{ Nm}$$

$$t_{sat} = 981 \text{ min}$$

4

Saturation time

Only two 2% of lifespan in 20° reorientation mode

$$t_{\text{sat}} = 981 \,\text{min} \, 0.98 + 145 \,\text{min} \, 0.02 = 964 \,\text{min}$$

Finally...

- 3 reaction wheels *Hamster*, one on each axes and redundant one
- Mass of reaction wheel: 0.945 kg (mass budget for ADCS subsystem is 3 kg)

Mini thruster

Objectives:

- Maneuver spacecraft over large angles (initial acquisition and emergency)
- Dump extra momentum from a reaction wheels
- Control attitude as redundant system
- Estimate force to compensate disturbances

Thruster force must at least equalize maximal external disturbance Assume thruster moment arm L = 0.3 m

$$T_D = T_m = 3.1 \times 10^{-5} \text{ Nm}$$

$$F = \frac{T_D}{L} = 1 \times 10^{-4} \text{ N}$$

It is a very small value for rocket engine market

- Mini thruster
 - Estimate force to reorient satellite

Maximal angular velocity 0.3%

Assume that thruster burns during 3 s

Take into account mayor moment of inertia (I_z)

$$\ddot{\theta} = \frac{\dot{\theta}}{\Delta t} = 0.1^{\circ}/\text{s}^{2} = 1.7 \times 10^{-3} \text{ rad/s}^{2}$$

$$T = FL = I_{Z}\ddot{\theta}$$

$$F = \frac{I_{Z}\ddot{\theta}}{L} = 0.19 \text{ N}$$

This is small but feasible

- Mini thruster
 - Estimate force for momentum dumping of reaction wheel

Maximal stored momentum of wheel H = 0.1 Nms

Assume that thruster burns during $\Delta t = 5$ s and L = 0.3 m

$$F L \Delta t = H$$

$$F = \frac{H}{L \Delta t} = 0.07 \text{ N}$$

Mini thruster

EADS Astrium 0.5 N HYDRAZINE THRUSTER Model CHT 0.5

Fuel / Propellent	Hydrazine
-------------------	-----------

- Thrust in vacuum 0.5 N
- I_{sp} in vacuum 227.3 s
- Chamber pressure 22 bar
- Length113 mm
- Diameter of nozzle 4.8 mm
- Mass 0.195 kg

Mini thruster

Six thruster: two for each axis

- Mini thruster
 - Estimation of propellant mass (m_p)

Mission of 2 years

Momentum dumping of reaction wheels each 964 min → 1091 pulses

Reorientation 4 pulses each month → 96 pulses

Total impulse
$$I_T = Ft_p = 1091.5 \text{ s} \cdot 0.07 \text{ N} + 96.3 \text{ s} \cdot 0.19 \text{ N} = 436.6 \text{ Ns}$$

Definition of specific impulse, I_{sp} :

$$I_{sp} = \frac{\int_{0}^{t_{p}} F(t) dt}{g_{0} \int_{0}^{t_{p}} G(t) dt} = \frac{Ft_{p}}{g_{0} m_{p}} \qquad m_{p} = \frac{Ft_{p}}{g_{0} I_{sp}} = 0.20 \text{ kg}$$

Sensors

Selection influenced by:

- Required orientation of spacecraft and its accuracy
- Redundancy
- Fault tolerance
- Field of view requirements
- Available data rates

Full 3-axis knowledge requires at least two external vector measurements

Sensors

Sensor	Typical	Mass	Power
	precision	(kg)	(VV)
• Sun *1	0.005° to 3°	0.5 to 7	0 to 3
• Stars	0.0003° to 0.01°	3 to 7	5 to 20
Horizon	0.1° to 1°	2 to 5	5 to 10
•Magnetomete	er0.5° to 3°	0.6 to 1.2	<1

Horizon sensor is added for initial acquisition modes and emergency modes

^{*1} take into account eclipse

Characteristics of star sensor

Mechanical			
Dimensions (with baffle)	80mm x 100mm x 180mm		
Mass	1.1 kg		

Electrical			
Power consumption, max.	2.5 W		
Input voltage range	9 VDC to 18 VDC		

Performance			
Accuracy (x,y / z axis)	0.005° / 0.0338°		
Acquisition probability	>99.7%		
Update period	4 Hz to 8 Hz		
Field of view	14° x 14°		
Time to first acquisition	max. 900 ms		

Using at least two vectors separated by some angular distance between stars → Have full 3-axes determination

Characteristics of Sun sensor

Accuracy (°)	0,0167
Field of view (°)	100 x 50
Number of pixels on CCD	1,728
Frecuency measurement	10 Hz
Power consumed (W)	2,5
Mass	0,35 kg

Sun sensor needs to be replaced during eclipse

Characteristics of Earth horizon sensor

Accuracy (°)	±0,2 (3σ)	
Range of operation around nadir (°)	±10	
Field of view of each telescope (°)	20 (high) x 14,8 (wide)	
Field of view of combined telescopes (°)	120°	
Operational temperature (°C)	45° C (stabilized by heaters)	
Range of operation in orbit (°C)	-40 a 40	
Spectral band (μm)	14 a 16	
Overall mass (kg)	1	
Overall dimension (mm)	190 (diameter), 120 (depth)	
Power consumed by telescopes and heaters (W)	5	

Earth sensors are infrared systems to detect contrast between cold deep space and heat of atmospheric ground

Select and size hardware

Summary

	Nr	Unit mass [kg]	Total [kg]	Power [W]
Reaction wheels	3	0.32	0.95	1.0
Thrusters	6	0.20	1.17	
Fuel	1	0.20	0.20	
Star sensor	1	1.10	1.10	2.5
Sun sensor	1	0.35	0.35	2.5
Horizon sensor	1	1.00	1.00	5.0
			4.77	> 3 kg 11.0

- Pass data to other subsystems
- Review / discuss with other system designers
- ITERATE

Steps of ADCS design process

Dynamic equation

$$\mathbf{T} = \dot{\mathbf{h}}_I = \dot{\mathbf{h}} + \boldsymbol{\omega} \times \mathbf{h}$$

$$\mathbf{T}_C + \mathbf{T}_D = \dot{\mathbf{h}} + \boldsymbol{\omega} \times \mathbf{h}$$

Control torque

Disturbance torque

$$\mathbf{h} = \mathbf{h}_S + \mathbf{h}_W$$
Angular momentum of satellite

Angular momentum of reaction wheel

$$T_{Cx} + T_{Dx} = \dot{h}_{Sx} + \dot{h}_{wx} + (\omega_{y}h_{Sz} - \omega_{z}h_{Sy}) + (\omega_{y}h_{Wz} - \omega_{z}h_{Wy})$$

$$T_{Cy} + T_{Dy} = \dot{h}_{Sy} + \dot{h}_{wy} + (\omega_{z}h_{Sx} - \omega_{x}h_{Sz}) + (\omega_{z}h_{Wx} - \omega_{x}h_{Wz})$$

$$T_{Cz} + T_{Dz} = \dot{h}_{Sz} + \dot{h}_{wz} + (\omega_{x}h_{Sy} - \omega_{y}h_{Sx}) + (\omega_{x}h_{Wy} - \omega_{y}h_{Wx})$$

Complicated nonlinear equations

Control theory does not provide exact analytical solutions

Make assumptions and linearize equation to use control technique

Attitude control discussed in detail in Lecture ADCS - X

Dynamic equation (Restrict to control design of linear system)

Assume small angles and rates \rightarrow Kinematic equation $\omega_i = \dot{\theta}_i$ i = x, y, z

Neglect second order terms of dynamic equation $\omega_i \omega_j \approx 0$

Reaction wheel axis coincides with principle axis of inertia of satellite

Linearized dynamic equations

$$\begin{split} T_{Cx} + T_{Dx} &= \dot{h}_{Sx} + \dot{h}_{Wx} \\ T_{Cy} + T_{Dy} &= \dot{h}_{Sy} + \dot{h}_{Wy} & \text{Note:} \\ T_{Cz} + T_{Dz} &= \dot{h}_{Sz} + \dot{h}_{Wz} & \text{Angular momentum conservation} \end{split}$$

Dynamic equations are decoupled and have same form for each axis Consider only one axis at a time and use $h_i = I_i \omega_i$ i = x, y, z

$$T_{Cx} + T_{Dx} = \dot{h}_{Sx} + \dot{h}_{Wx} \Leftrightarrow T_{Cx} + T_{Dx} = I_{Sx} \ddot{\theta}_{Sx} + \dot{h}_{Wx}$$

Write as $T_{C}+T_{D}=I_{S}\ddot{ heta}+\dot{h}_{W}$

Assume reference angle is zero, then measured angle is directly error in orientation

Control laws

Proportional control torque:

 $T_C = -K\theta$

Control is proportional to error angle (K is proportional gain)

Proportional derivative control torque *: $T_C = -K_1\dot{\theta} - K_2\theta$

Add damping to control

(K₁ is derivative gain)

^{*} The reaction wheels provide this control law (Sidi, 1997)

Dynamic equation for reaction wheel can be written as

$$T_{C} = -\dot{h}_{W} = -K_{1}\dot{\theta} - K_{2}\theta = -K\left(\tau\dot{\theta} + \theta\right)$$

With

- t: time constant
- *K*: gain

They depend on electromechanical design of reaction wheels

Replacing in equation of motion:

$$T_D = I_S \ddot{\theta} + K \tau \dot{\theta} + K \theta$$

It has been considered that exterior torque is due to perturbation, T_D

For analysis apply Laplace transformation

$$L(T_D) = \left[I_S s^2 + K \tau s + K \right] L(\theta)$$

This is a closed-loop system whose second order transfer function is:

$$G(s) = \frac{L(\theta)}{L(T_D)} = \frac{1}{I_S s^2 + K\tau s + K}$$

Or:

$$G(s) = \frac{L(\theta)}{L(T_D)} = \frac{1}{I_S} \frac{1}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

ω_n —undamped natural frequency

(is frequency of oscillation of closed-loop system without damping) ξ→ damping ratio

(is measure of resistance to change system output)

$$\omega_n = \sqrt{\frac{K}{I_S}}$$

$$\xi = \frac{\tau}{2} \sqrt{\frac{K}{I_S}}$$

The system response to a step function of magnitude T_D is evaluated using Laplace transformation (Laplace transformation of unit step function is 1/s)

$$L(T_D) = \frac{T_D}{s} \qquad \qquad L(\theta) = \frac{T_D}{I_S} \frac{1}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$$

With $0 < \xi < 1$ and $\omega_n > 0$ the inverse Laplace transformation of $L(\Theta)$ is given by:

$$\theta(t) = \frac{T_D}{I_S \omega_n^2} \left[1 - e^{-\xi \omega_n t} \left(\cos \omega_d t + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \omega_d t \right) \right]$$

with

$$\omega_d = \omega_n \sqrt{1 - \xi^2}$$

$$\theta(t) = \frac{T_D}{I_S \omega_n^2} \left[1 - e^{-\xi \omega_n t} \left(\cos \omega_d t + \frac{\xi}{\sqrt{1 - \xi^2}} \sin \omega_d t \right) \right]$$

With k = 1 replace in $\theta(t)$:

$$\theta_{\text{max}} = \frac{T_D}{\omega_n^2 I_S} \left(1 + e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}} \right) \qquad \Longrightarrow \qquad \omega_n^2 = \frac{T_D}{\theta_{\text{max}} I_S} \left(1 + e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}} \right)$$

$$\omega_n^2 = \frac{T_D}{\theta_{\text{max}} I_S} \left(1 + e^{-\frac{\pi \xi}{\sqrt{1 - \xi^2}}} \right)$$

$$\omega = 0.057 \, \text{rad/s}$$

Fix damping at 0.5

$$\theta_{\text{max}} = 0.034^{\text{o}}$$

 $I_s = I_Y$ (smallest moment of inertia)

Take into account maximal environmental disturbance (magnetic field)

Finally...

$$\xi = 0.5$$

$$\omega = 0.057 \text{ rad/s}$$

$$\omega = 0.057 \text{ rad/s}$$

$$\omega = \sqrt{\frac{K}{I_s}}$$

$$\xi = \frac{\tau}{2} \sqrt{\frac{K}{I_s}}$$

$$\tau = 17.5 \text{ s}$$

Give these values to reaction wheel manufacturer to tune reaction wheel

Conclusion: Hardware design

Summary

	Nr	Unit mass [kg]	Total [kg]	Power [W]
Reaction wheels	3	0.32	0.95	1.0
Thrusters	6	0.20	1.17	
Fuel	1	0.20	0.20	
Star sensor	1	1.10	1.10	2.5
Sun sensor	1	0.35	0.35	2.5
Horizon sensor	1	1.00	1.00	5.0
			4.77	> 3 kg 11.0

- Pass data to other subsystems
- Review / discuss with other system designers
- ITERATE

Conclusion: ADCS design

