CS-305 Tutorial-3

Li Construct a Melay machine equivalent to the given Moore machine

P. S.	N. S A = 0	$\alpha = 1$	Output
$\rightarrow q_{0}$	91	92	1
9,	93	92.	0
92	92	91	1
23	20	93	1

2: Construct a Moose machine equivalent to the given Melay machine N.S.

n Merry	100000000000000000000000000000000000000	N.S		- 1	
P. S.	a = 0 state	Olp	state	010	
	21	1	92	0	
$\rightarrow l_1$	9.4	1	24	T	
93	92	1	23	1	
9.	93	0	92	1	
14	1 43		1		

3: Construct a Melay martine which can output EVEN, ODD according as the total number of 1's encountered is even or odd. The input symbols are 0 and 1.

4. Construct a DFA equivalent to NFA as given and also find language accepted by DFA& NFA.

5: The transition table of a NFA M is given below, 2) Construct a DFA equivalent to M.

		E	
state \	0	1	2
→ 9o	2124	24	2223
9,		94	
92			22 93
93		24	•
24			

6. Proue that every NFA can be converted to an equivalent one that has a single accept state.

(NFA only)