${\rm SF}1678$ Groups and Rings - Course Summary

Leo Trolin

29/05-2025

About
Groups
Groups & subgroups
Group homomorphisms
Cosets
Normal subgroups
Cyclic groups
Group actions
Sylow groups
Permutation groups
Some notation for important groups
Rings
Rings, subrings & ideals
Ring homomorphisms
Polynomials
Integral domains
Primes
Euclidian domains
Unique factorization domains
Modules
Field extensions
Algebraic closures
Splitting fields
Finite fields
Overview of types of rings

About

This summary contains the contents of the course Groups and Rings which I believe to be important for the exam and would be suitable on a cheat sheet. Some content, mainly technical lemmas, have been omitted.

Groups

Groups & subgroups

Definition:

Let $G \neq \emptyset$ be a set with a map $\circ : G \times G \to G$. We define the following properties (with the implicit operation \circ):

- Associative: $\forall a, b, c \in G : (ab)c = a(bc)$
- Unit element/Identity: $\exists e \in G : ea = a = ae$
- Inverse elements: $\forall a \in G \ \exists b \in G : ab = e = ba$
- Commutative: $\forall a, b \in G : ab = ba$

Then, (G, \circ) is called a

- Semigroup if associativity holds.
- Monoid if associativity and existence of a unit hold.
- Group if associativity, existence of a unit, and existence of inverses hold.
- Abelian group if associativity, existence of a unit, existence of inverses, and commutativity hold.

Proposition:

Let G be a group.

- (a) The unit element is unique.
- (b) The inverse of any $a \in G$ is unique.

Proposition:

Let $G \neq \varnothing$ be a set with a map $\circ: G \times G \to G$ such that

- \bullet o is associative
- There exists a left unit: $\exists e \in G \ \forall a \in G : ea = a$.
- All elements have a left inverse: $\forall a \in G \ \exists b \in G : ba = e$

Then (G, \circ) is a group.

Definition: (Submonoid)

Let G be a monoid and $H \subseteq G$ a subset. H is a submonoid of G if

- (i) $e \in H$
- (ii) $\forall a, b \in H : ab \in H$

Definition: (Subgroup)

Let G be a group and $H \subseteq G$ a subset. H is a subgroup of G, written $H \subseteq G$, if

- (i) $e \in H$
- (ii) $\forall a, b \in H : ab \in H$
- (iii) $\forall a \in H : a^{-1} \in H$

Group homomorphisms

Definition: (Monoid homomorphism)

Let G_1, G_2 be monoids and $\varphi: G_1 \to G_2$ a map. φ is a monoid homomorphism if

- (i) $\forall a, b \in G_1 : \varphi(ab) = \varphi(a)\varphi(b)$
- (ii) $\varphi(e_{G_1}) = e_{G_2}$

Definition: (Group homomorphism)

Let G_1, G_2 be groups and $\varphi: G_1 \to G_2$ a map. φ is a group homomorphism if (i) $\forall a, b \in G_2: \varphi(ab) = \varphi(a)\varphi(b)$

Proposition:

Let $\varphi: G_1 \to G_2$ be a group homomorphism. Then:

- (a) $\varphi(e_{G_1}) = e_{G_2}$
- (b) $\forall a \in G_1 : \varphi(a)^{-1} = \varphi(a^{-1})$

Definition: (Types of group homomorphisms)

- (a) For two groups G_1, G_2 : $\text{Hom}(G_1, G_2) := \{ \varphi : G_1 \to G_2 \mid \varphi \text{ is a group homomorphism} \}.$
- (b) An injective homomorphism is a monomorphism. A surjective homomorphism is an epimorphism. A bijective homomorphism is an isomorphism.
- (c) For a group $G: \operatorname{End}(G) := \operatorname{Hom}(G, G)$ and its elements are endomorphisms of G. Also, $\operatorname{Aut}(G) := \{\varphi \in \operatorname{End}(G) \mid \varphi \text{ is bijective}\}\$ and its elements are automorphisms of G.

Proposition:

Compositions of group homomorphisms are group homomorphisms.

Proposition:

If G is a group, then $(Aut(G), \circ)$ is a group.

Proposition:

Let G_1 and G_2 be groups and $\varphi \in \text{Hom}(G_1, G_2)$.

- (a) $\ker \varphi \leq G_1$
- (b) $\operatorname{im} \varphi \leq G_2$
- (c) φ injective \iff $\ker \varphi = \{e\}$
- (d) $H_1 \leq G_1 \implies \varphi(H_1) \leq G_2$
- (e) $H_2 \leq G_2 \implies \varphi^{-1}(H_2) \leq G_1$

Definition: (Conjugation)

Let G be a group and $a \in G$ an element. We define conjugation by a as $\gamma_a : G \to G, g \mapsto aga^{-1}$; also called an inner automorphism of G.

 $\operatorname{Inn}(G) := \{ \gamma_a \mid a \in G \} \le \operatorname{Aut}(G).$

→ Comment:

It holds that $\gamma_a \in \operatorname{Aut}(G)$, and $G \to \operatorname{Aut}(G)$, $a \mapsto \gamma_a$ is a group homomorphism.

Cosets

Definition: (Coset)

Let G be a group and $H \leq G$ a subgroup. For $a \in G$, a left coset is $aH := \{ah \mid h \in H\}$. The set of all left cosets of H in G are denoted $G/H := \{aH \mid a \in G\}$.

Analogously, right cosets are Ha while the set of all right cosets are $H \setminus G$.

Lemma:

Let $a, b \in G$. The following are equivalent:

- (a) aH = bH
- (b) $aH \cap bH \neq \emptyset$
- (c) $a \in bH$
- (d) $b^{-1}a \in H$

Corollary:

Let $H \leq G$. Then G is the disjoint union of all left cosets of H in G:

$$G = \bigcup_{C \in G/H}^{\cdot} C$$

Definition: (Index)

Let $H \leq G$. The index of H in G is $[G:H] = |G/H| = |H \backslash G|$.

Theorem: (Theorem of Lagrange)

Let $H \leq G$ where G is a finite group. Then

$$\operatorname{ord}(G) = [G : H] \operatorname{ord}(H).$$

Normal subgroups

<u>Definition/Lemma:</u> (Normal subgroup)

Let $H \leq G$. H is a normal subgroup of G, denoted $H \subseteq G$, if one of the following equivalent statements are true:

- (i) $\forall \gamma \in \text{Inn}(G), \, \gamma(H) = H \text{ (meaning } \forall a \in G, \, aHa^{-1} = H)$
- (ii) $\forall \gamma \in \text{Inn}(G), \ \gamma(H) \subseteq H$
- (iii) $\forall \gamma \in \text{Inn}(G), \ \gamma(H) \supseteq H$
- (iv) $\forall a \in G, aH = Ha$

Example: (Examples of normal subgroups)

- Let $\varphi: G_1 \to G_2$ be a group homomorphism. Then $\ker(\varphi) \leq G_1$ is a normal subgroup.
- $\{e\} \subseteq G$ and $G \subseteq G$.
- \bullet If G is an abelian group, then all its subgroups are normal subgroups.

Theorem/Definition:

Let G be a group and $N \subseteq G$ be a normal subgroup.

- (a) $\forall a, b \in G, (aN)(bN) = abN$
- (b) G/N is a group called the quotient group or factor group of G modulo N.
 - Its elements are on the form aN with multiplication as in (a).
 - Its unit is eN = N.
 - Inverses are $(aN)^{-1} = a^{-1}N$.
- (c) The canonical projection $\pi: G \to G/N, a \mapsto aN$ is a surjective group homomorphism with $\ker(\pi) = N$.

Proposition: (Universal property of π)

Let $\varphi: G_1 \to G_2$ be a group homomorphism, and let $N \subseteq G_1$ be a normal subgroup such that $N \subseteq \ker(\varphi)$. Then there is a unique group homomorphism $\bar{\varphi}: G_1/N \to G_2$ such that $\varphi = \bar{\varphi} \circ \pi$.

$$G_1 \xrightarrow{\varphi} G_2$$

$$\pi \searrow \nearrow \bar{\varphi}$$

$$G_1/N$$

Moreover,

- (a) $\operatorname{im}(\bar{\varphi}) = \operatorname{im}(\varphi)$
- (b) $\ker(\bar{\varphi}) = \pi(\ker(\varphi))$
- (c) $\ker(\varphi) = \pi^{-1}(\ker(\bar{\varphi}))$
- (d) $\bar{\varphi}$ injective $\iff N = \ker(\varphi)$

Corollary:

Let $\varphi: G_1 \to G_2$ be a surjective group homomorphism. Then G_2 is canonically isomorphic to $G_1/\ker(\varphi)$.

Skipped: First and second isomorphism theorems

Cyclic groups

Definition: (Generated subgroup, cyclic group)

Let G be a group and $M \subseteq G$ be a subset.

(a) Then

$$\langle M \rangle := \{e\} \cup \left\{ a_1^{\varepsilon_1} \dots a_n^{\varepsilon_n} \mid n \in \mathbb{N}, a_i \in M, \varepsilon_i = \pm 1 \right\} = \bigcap_{\substack{H \leq G, \\ M \subseteq H}} H$$

is the subgroup generated by M. It is the smallest subgroup of G containing M.

- (b) If $M = \{a\}$, we write $\langle a \rangle$ and call it the cyclic group generated by a. Then $\langle a \rangle = \{e, a, a^2, \dots\}$.
- → Comment:

Cyclic groups are abelian.

Theorem:

Let G be a cyclic group.

- (a) If $|G| = \infty$, then $G \cong \mathbb{Z}$.
- (b) If $|G| = m < \infty$, then $G \cong \mathbb{Z}/m\mathbb{Z}$.

Proposition:

Let $H \leq \mathbb{Z}$. Then $H = m\mathbb{Z}$ for some $m \in \mathbb{Z}$.

Proposition:

Let G be a cyclic group and let $H \leq G$ be a subgroup. Then H is cyclic.

Definition: (Order)

Let G be a group and $a \in G$ be an element. The order of a is $\operatorname{ord}(a) := \operatorname{ord}(\langle a \rangle)$.

→ Comment:

 $\overline{\text{If ord}(a)} < \infty$, then the order of a is the smallest positive integer m such that $a^m = e$.

Theorem: (Fermat's little theorem)

Let G be a finite group and $a \in G$ be an element. Then

$$\operatorname{ord}(a) \mid \operatorname{ord}(G) \quad \text{and} \quad a^{\operatorname{ord}(G)} = e.$$

In a number theoretic setting, if p is prime and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$.

Corollary:

Let G be a group of prime order p. Then,

- (a) $G \cong \mathbb{Z}/p\mathbb{Z}$
- (b) $\forall a \in G \text{ except } e, \operatorname{ord}(a) = p \text{ and } G = \langle a \rangle.$

Group actions

Definition: (Group action)

Let G be a group and X a set. An action of G on X is a map $G \times X \to X$, $(g,x) \mapsto g \cdot x$ such that

- (i) $e \cdot x = x, \ \forall x \in X$
- (ii) $g \cdot (h \cdot x) = (gh) \cdot x, \ \forall x \in X, \forall g, h \in G$

Definition: (Stabilizer)

Consider a group action of G on X and let $x \in X$. Then the stabilizer of x in G is $G_x := \{g \in G \mid g \cdot x = x\}$.

→ Comment:

 $G_x \leq \overline{G}$.

Definition: (G-orbit)

Consider a group action $G \times X \to X$ and let $x \in X$. Then the G-orbit of x is $G \cdot x := \{g \cdot x \mid g \in G\} \subseteq X$.

The set of G-orbits in X is written $G \setminus X := \{G \cdot x \mid x \in X\}.$

<u>Definition</u>: (Transitive)

A group action $G \times X \to X$ is transitive if $|G \setminus X| = 1$.

Proposition:

Consider a group action $G \times X \to X$.

- (a) G-orbits constitute equivalence classes on X by $x \sim y \iff y \in G \cdot x$ for $x, y \in X$.
- (b) Let $x, y \in G$. Then, $G \cdot x = G \cdot y \iff G \cdot x \cap G \cdot y \neq \emptyset$.
- (c) X is the disjoint union of its G-orbits.

Corollary: (Orbit equation)

Let $G \times X \to X$ be a group action on a finite set X. Then,

$$|X| = \sum_{B \in G \setminus X} |B|.$$

Theorem: (Orbit-Stabilizer theorem)

Let $G \times X \to X$ be a group action and $x \in X$ be an element.

- (a) The map $G \to X, g \mapsto g \cdot x$ induces a bijection of cosets $G/G_x \xrightarrow{\sim} G \cdot x$.
- (b) $|G \cdot x| = [G : G_x]$

Proposition: (Burnside's lemma)

Let $G \times X \to G$ be a group action of a finite group G. For $g \in G$, define the set of fixed points $\text{Fix}(g) := \{x \in X : g \cdot x = x\}$. Then,

$$|G \setminus X| = \frac{1}{\operatorname{ord}(G)} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

Definition: (Centralizer, center)

Let G be a group and $S \subseteq G$ a subset.

- (a) The centralizer of S is $Z_S(G) := \{g \in G \mid \forall s \in S : gs = sg\}.$
- (b) The center of G is $Z(G) := Z_G(G)$.

Proposition:

Let G be a group and $S \subseteq G$ a subset.

- (a) $Z_S(G) \leq G$
- (b) Z(G) is the kernel of $G \to \operatorname{Aut}(G), g \mapsto (\gamma_g : G \to G, a \mapsto gag^{-1})$
- (c) $Z(G) \subseteq G$ and $G/Z(G) \cong Inn(G)$.
- (d) G/Z(G) is cyclic \iff G is abelian.

Definition: (System of representatives)

Let $G \times X \to X$ be a group action.

- (a) For $B \in G \setminus X$, $x \in B$ is called a representative of B.
- (b) For a family $(B_i)_{i \in I}$ of disjoint G-orbits, a system of representatives is a family $(x_i)_{i \in I}$ of elements of X such that $x_i \in B_i \ \forall i \in I$.

Theorem: (Class equation)

Let G be a finite group and consider the conjugation action $G \times G \to G$, $(g, x) \mapsto gxg^{-1}$. Let x_1, \ldots, x_k be a system of representatives of the orbits contained in G - Z(G). Then,

$$\operatorname{ord}(G) = \operatorname{ord}(Z(G)) + \sum_{i=1}^{k} [G : Z_{\{x_i\}}(G)]$$
$$= \operatorname{ord}(Z(G)) + \sum_{i=1}^{k} |G \cdot x_i|.$$

→ Comment:

Orbits not contained in G - Z(G) are singletons $\{z\}$ for some $z \in Z(G)$.

Corollary:

Let G be a group of order p^2 for a prime p. Then G is abelian.

Sylow groups

Definition: (Conjugate)

Let G be a group.

- (a) $h_1 \in G$ is conjugate to $h_2 \in G$ if there exists $g \in G$ such that $h_2 = gh_1g^{-1}$.
- (b) $H_1 \leq G$ is conjugate to $H_2 \leq G$ if there exists $g \in G$ such that $H_2 = gH_1g^{-1}$.

Defintion: (p-group, p-Sylow subgroup)

Let G be a finite group and p be a prime.

- (a) G is a p-group if $\operatorname{ord}(G) = p^k$ for some $k \in \mathbb{N}$.
- (b) $H \leq G$ is a p-Sylow subgroup if H is a p-group and $p \nmid [G:H]$. (If $\operatorname{ord}(H) = p^k$, then no greater power of p is in the prime factorization of $\operatorname{ord}(G)$)

Course Summary

Theorem: (Sylow theorems)

Let G be a finite group and p be a prime.

- (a) G has at least one p-Sylow subgroup. More precisely: For any p-subgroup $H \leq G$, there is a p-Sylow subgroup $S \leq G$ such that $H \leq S$.
- (b) Let $S \leq G$ be a p-Sylow subgroup and $H \leq G$ be a subgroup. Then, H is a p-Sylow subgroup if and only if H is conjugate to S.
- (c) Let $s_p(G)$ be the number of p-Sylow subgroups in G. Then, $s_p(G) \mid \operatorname{ord}(G)$ and $s_p(G) \equiv 1 \mod p$.

Lemma: ("Key lemma")

Let G be a group and $H, K \subseteq G$ be normal subgroups such that $H \cap K = \{e\}$. Then,

- (a) $\forall h \in H, \forall k \in K : hk = kh$
- (b) $\varphi: H \times K \to G, (h, k) \mapsto hk$ is an injective group homomorphism.

Corollary:

Let G be a finite group and p be a prime.

- (a) $p \mid \operatorname{ord}(G) \implies \exists g \in G : \operatorname{ord}(g) = p$
- (b) G is a p-group $\iff \forall g \in G \; \exists t \in \mathbb{N} : g^{p^t} = e$
- (c) Let $H \leq G$. H is a p-Sylow group $\iff H$ is a maximal p-group in G.
- (d) Let $S \leq G$ be a p-Sylow subgroup. Then $S \subseteq G \iff s_p(G) = 1$.

$\underline{\text{Corollary}} :$

Let G be a finite abelian group and p be a prime. Then, G has exactly one p-Sylow subgroup, namely $S_p := \{g \in G \mid \exists t \in \mathbb{N} : g^{p^t} = e\}.$

Proposition:

Let G be a finite abelian group. Then, G is the direct product of its p-Sylow subgroups.

In other words, if we prime factorize $\operatorname{ord}(G) = \prod_{i=1}^k p_i^{n_i}$, then $G \cong \prod_{i=1}^k S_{p_i}$ with S_{p_i} defined above.

Theorem: (Fundamental theorem of finite abelian groups)

Every finite abelian group is the direct product of cyclic groups of prime-power order.

Theorem: (Fundamental theorem of finitely generated abelian groups)

Let G be an abelian group generated by $M \subseteq G$ with $|M| < \infty$. Then, $G \cong \mathbb{Z}^d \times G'$ where G' is a finite abelian group.

Permutation groups

Here, we are working with the permutation group S_n (see next subsection).

Definition: (r-cycle, etc.)

- (a) Let $\pi \in S_n$ and $r \geq 2$. π is an r-cycle if $\pi = (x_1, \ldots, x_r)$ for distinct x_1, \ldots, x_r , that is:
 - $\pi(x_i) = x_{i+1}$ for $i = 1, \dots, r-1$
 - $\bullet \ \pi(x_r) = x_1$
 - $\pi(x) = x$ if $x \neq x_1, \dots, x_r$.
- (b) Two cycles (x_1, \ldots, x_r) and (y_1, \ldots, y_s) are disjoint if $\{x_1, \ldots, x_r\} \cap \{y_1, \ldots, y_s\} = \emptyset$.
- (c) A 2-cycle is a transposition.

Proposition:

Let n > 2.

- (a) If $\pi_1, \pi_2 \in S_n$ are disjoint cycles, then $\pi_1 \circ \pi_2 = \pi_2 \circ \pi_1$.
- (b) Every $\pi \in S_n$ is a product of disjoint cycles, unique up to ordering.
- (c) Every $\pi \in S_n$ is a product of transpositions.

Proposition/definition: (sgn)

Let $\pi \in S_n$ be written as a product of transpositions $\pi = \tau_1 \dots \tau_l$. Then, the map $\operatorname{sgn}: S_n \to \{\pm 1\}, \pi \mapsto \operatorname{sgn}(\pi) := (-1)^l$ is a well-defined group homomorphism.

Definition: (Even/odd)

A permutation $\pi \in S_n$ is even if $sgn(\pi) = 1$ and odd if $sgn(\pi) = -1$.

Definition: (Alternating group A_n)

The alternating group on $\{1, ..., n\}$ is $A_n := \ker(\operatorname{sgn}) = \{\pi \in S_n \mid \pi \text{ is even}\}.$

Proposition:

- (a) If $n \geq 2$, then $A_n \subseteq S_n$ and $[S_n : A_n] = 2$.
- (b) If $n \geq 3$, then $A_n = \{\prod_{j=1}^l \sigma_j \mid l \in \mathbb{N}, \sigma_j \in S_n \text{ is a 3-cycle}\}.$

Some notation for important groups

Example: (Permutation group)

Let $X \neq \emptyset$ be a set. Then $S(X) = \{\pi : X \to X \mid \pi \text{ is bijective}\}$ is a permutation group under composition. If $X = \{1, \ldots, n\}$, then $S(X) = S_n$.

Example: (Dihedral group)

For $n \in \mathbb{Z}_{>0}$, let $\sigma : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by $\frac{2\pi}{n}$ and $\tau : \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the x-axis. Then, $D_n := \{\sigma^k \mid k = 0, \dots, n-1\} \cup \{\tau\sigma^k \mid k = 0, \dots, n-1\}$ is the nth dihedral group under composition.

It holds that $\tau \sigma \tau = \sigma^{-1}$.

An alternate definition is $D_n := \langle \sigma, \tau \mid \operatorname{ord}(\sigma) = n, \operatorname{ord}(\tau) = 2, \tau \sigma \tau = \sigma^{-1} \rangle$.

Example: (Matrix groups)

For a field \mathbb{K} , we define the following groups:

- $GL(n, \mathbb{K}) = \{ M \in \mathbb{K}^{n \times n} \mid \det M \neq 0 \}$ is the general linear group.
- SL(n, K) = {M ∈ K^{n×n} | det M = 1} is the special linear group.
 O(n, K) = {M ∈ K^{n×n} | M^T = M⁻¹} is the orthogonal group.
 U(n) = {M ∈ C^{n×n} | M[†] = M⁻¹} is the unitary group.

- $SO(n, \mathbb{K}) = SL(n, \mathbb{K}) \cap O(n, \mathbb{K})$ is the special orthogonal group.
- $SU(n) = SL(n, \mathbb{C}) \cap U(n)$ is the special unitary group.

Rings

Rings, subrings & ideals

Definition: (Ring)

A ring $(R, +, \cdot)$ is a set $R \neq \emptyset$ with maps $+: R \times R \to R, \cdot: R \times R \to R$ where

- (R, +) is an abelian group
- (R, \cdot) is a monoid
- $\forall a, b, c \in R : a(b+c) = ab + bc, (b+c)a = ba + ca$ (distributivity)

A ring is commutative if (R, \cdot) is a commutative monoid.

We denote the additive identity as 0 and the multiplicative identity as 1. We denote the additive inverse of $a \in R$ as -a.

Proposition:

Let $(R, +, \cdot)$ be a ring. Then, (a) $0 \cdot a = 0 = a \cdot 0 \ \forall a \in R$

(b) $(-a)b = a(-b) = -(ab) \ \forall a, b \in R$

Definition: (Subring, Ring Extension)

Let $(R, +, \cdot)$ be a ring. Then, $S \subseteq R$ is a subring if $(S, +, \cdot)$ is a ring and $1 \in S$. (thus, 1 will be the multiplicative identity of S)

The pair $S \subseteq R$ is called a ring extension.

Definition: (R^*)

For a ring R, we define $R^* := \{a \in R \mid \exists b \in R : ab = 1 = ba\}$. The elements of R^* are called units.

Definition: (Division Ring/Skew Field)

A ring R is a division ring/skew field if $R^* = R \setminus \{0\}$ and $R \neq \{0\}$.

Definition: (Field)

A ring R is a field if it is a commutative skew field.

Definition: (Ideal)

Let R be a ring and $I \subseteq R$ a subset. I is an ideal in R, written $I \subseteq R$, if

- (i) I is an additive subgroup
- (ii) $\forall r \in R, \forall a \in I : ra, ar \in I.$

Proposition:

Let R be a ring and $I \subseteq R$ an ideal.

- (a) $1 \in I \iff I = R$.
- (b) If R is a field, then I is a trivial ideal $\{0\}$ or R.

Definition: (Principal ideal)

Let R be a commutative ring and $a \in R$ an element. Then, $\langle a \rangle := aR \leq R$ is the principal ideal generated by a.

Definition/Proposition: $(\langle A \rangle)$

Let R be a commutative ring and $A \subseteq R$ a subset. The ideal generated by A is $\langle A \rangle := \{ \sum_{i=1}^n a_i r_i \mid n \in \mathbb{N}, a_i \in A, r_i \in R \} \leq R$. It is the smallest ideal in R containing A.

If $|A| < \infty$, we say that $\langle A \rangle$ is finitely generated.

Definition/Proposition:

Let R be a ring and $I, J \subseteq R$ be ideals. Then the following are ideals:

- (a) $I + J := \{a + b \mid a \in I, b \in J\} \le R$
- (b) $I \cdot J := \{\sum_{i=1}^{n} a_i \cdot b_i \mid n \in \mathbb{N}, a_i \in I, b_i \in J\} \le R$
- (c) $I \cap J \leq R$

Ring homomorphisms

Definition: (Ring homomorphism)

Let R and S be rings and $\varphi: R \to S$ be a map. φ is a ring homomorphism if

- (i) $\forall a, b \in R : \varphi(a+b) = \varphi(a) + \varphi(b)$ (group homomorphism wrt. +)
- (ii) $\forall a, b \in R : \varphi(ab) = \varphi(a)\varphi(b)$
- (iii) $\varphi(1_R) = \varphi(1_S)$ (monoid homomorphism wrt. ·)

If φ is bijective, then φ is called a ring isomorphism.

Proposition:

Let $\varphi: R \to S$ be a ring homomorphism.

- (a) $\ker(\varphi) \leq R$
- (b) $im(\varphi)$ is a subring of S.
- (c) $\varphi|_{R^*}: R^* \to S^*$ is a group homomorphism, where the group operation is \cdot . Note: φ maps units to units!
- (d) $\ker(\varphi)$ is a subring of $R \iff \ker(\varphi) = R \iff S = \{0\}$

Corollary:

Let $\varphi: \mathbb{K} \to R$ be a ring homomorphism where \mathbb{K} is a field and $R \neq \{0\}$. Then, φ is injective.

Theorem/Definition: (Quotient ring)

Let R be a ring and $I \subseteq R$ be an ideal.

- (a) $x \sim y \iff x y \in I$ defines an equivalence relation on R with equivalence classes [x] := x + I for $x \in R$.
- (b) Denote the set of all equivalence classes as R/I, called a factor/quotient/residue class ring. This is a ring with
 - $(x+I) + (y+I) := (x+y) + I, \forall x, y \in R$
 - $\bullet \ (x+I) \cdot (y+I) := (xy) + I, \forall x, y \in R$
- (c) The canonical projection $\pi: R \to R/I, x \to x+I$ is a surjective ring homomorphism with $\ker(\pi) = I$.

Proposition: (Universal property of π)

Let $\varphi: R \to S$ be a ring homomorphism. Let $I \subseteq R$ be an ideal with $I \subseteq \ker(\varphi)$. Then, there is a unique ring homomorphism $\bar{\varphi}: R/I \to S$ such that $\varphi = \bar{\varphi} \cdot \pi$.

$$R \xrightarrow{\varphi} S$$

$$\pi \searrow \bar{\varphi}$$

$$R/I$$

Moreover,

- (a) $\operatorname{im}(\bar{\varphi}) = \operatorname{im}(\varphi)$
- (b) $\ker(\bar{\varphi}) = \pi(\ker(\varphi))$
- (c) $\ker(\varphi) = \pi^{-1}(\ker(\bar{\varphi}))$
- (d) $\bar{\varphi}$ is injective $\iff I = \ker(\varphi)$

Corollary:

Let $\varphi:R\to S$ be a surjective ring homomorphism. Then, S is canonically isomorphic to $R/\mathrm{ker}(\varphi)$.

Skipped: First and second isomorphism theorems

Polynomials

Definition: (Polynomial, etc.)

Let R be a ring and let X_1, \ldots, X_k be variables. For an $i = (i_1, \ldots, i_k) \in \mathbb{N}^k$ we write $X^i := X_1^{i_1} \cdots X_k^{i_k}$ in multi-index notation. For $i, j \in \mathbb{N}^k$ we define $i + j := (i_1 + j_1, \ldots, i_k + j_k)$.

A formal power series in X_1, \ldots, X_k with coefficients in R is a formal sum $\sum_{i \in \mathbb{N}^k} a_i X_i$ where $a_i \in R \ \forall i \in \mathbb{N}^k$.

We denote the set of all formal power series as

$$R[[X_1,\ldots,X_k]] := \left\{ \sum_{i \in \mathbb{N}^k} a_i X_i \middle| a_i \in R \right\}.$$

On these we define addition and multiplication via

$$\sum_{i \in \mathbb{N}^k} a_i X^i + \sum_{i \in \mathbb{N}^k} b_i X^i := \sum_{i \in \mathbb{N}^k} (a_i + b_i) X^i,$$

$$\sum_{i \in \mathbb{N}^k} a_i X^i \cdot \sum_{i \in \mathbb{N}^k} b_i X^i := \sum_{i \in \mathbb{N}^k} \left(\sum_{m+n=i} a_m b_n \right) X^i \qquad \text{(Cauchy product)}$$

A formal power series is a polynomial if only finitely many a_i are nonzero. We denote the set of all polynomials as

$$R[X_1,\ldots,X_k] := \{ f \in R[[X_1,\ldots,X_k]] | f \text{ is a polynomial } \}.$$

The degree of a polynomial is deg $f := \max\{i_1 + \dots + i_k \mid a_i \neq 0\}$ if $f \neq 0$, and deg $0 := -\infty$.

A polynomial f is homogeneous of degree d if $a_i \neq 0$ holds only for $i_1 + \cdots + i_k = d$. We denote the set of all polynomials homogeneous of degree d as

$$R[X_1, \dots, X_k]_d := \{ f \in R[[X_1, \dots, X_k]] | f \text{ is homogeneous of degree } d \}.$$

If k=1, we say that the leading coefficient of a polynomial f of degree n is a_n .

If k = 1, we say that a polynomial of degree n is monic if $a_n = 1$.

Proposition:

Let R be a ring.

- (a) $(R[[X_1, ..., X_k]], +, \cdot)$ is a ring.
- (b) $R[[X_1, \ldots, X_k]]$ is commutative $\iff R$ is commutative
- (c) $R[X_1, \ldots, X_k]$ is a subring of $R[[X_1, \ldots, X_k]]$.
- (d) $R[[X_1, ..., X_k]] \cong R[[X_1, ..., X_{k-1}]][[X_k]]$ as rings.
- (e) $R[X_1, ..., X_k] \cong R[X_1, ..., X_{k-1}][X_k]$ as rings.
- (f) $R[[X_1, \dots, X_k]]^* = \{\sum_{i \in \mathbb{N}^k} a_i X^i \mid a_{(0,\dots,0)} \in R^* \}$

Proposition:

Let R be a ring and let $f, g \in R[X_1, \ldots, X_k]$. Then,

- (a) $\deg(f+g) \le \max\{\deg(f), \deg(g)\}\$
- (b) $\deg(f \cdot g) \le \deg(f) + \deg(g)$

Integral domains

Definition: (Zero divisor)

Let R be a ring. $x \in R$ is a zero divisor if $\exists y \in R \setminus \{0\}$ such that xy = 0 or yx = 0.

Proposition:

Units in a ring are not zero divisors.

Definition/Proposition: (Integral domain)

Let $R \neq \{0\}$ be a commutative ring. It is an integral domain/ID if its only zero divisor is 0; or equivalently, if $\forall x, a, b \in R, x \neq 0$ it holds that $xa = xb \implies a = b$.

Proposition:

Let R be an integral domain.

- (a) $f, g \in R[X_1, \dots, X_k] \implies \deg(fg) = \deg(f) + \deg(g)$
- (b) $R[X_1, \dots, X_k]^* = R^*$

Theorem/Definition: (Field of fractions)

Let R be an integral domain.

- (a) Let $M := R \times R \setminus \{0\}$. Then, $(a,b) \sim (c,d) \iff ad = bc$ defines an equivalence relation on M. Denote the equivalence classes as $[a, b] := \frac{a}{b}$.
- (b) Let $Q(R) := \{\frac{a}{b} \mid (a,b) \in M\}$ called the field of fractions or quotient field of R. It is a field with
 - $\frac{a}{b} + \frac{c}{d} := \frac{ad + bc}{bd}$ $\frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd}$

 - zero element $\frac{0}{1}$
 - one element $\frac{1}{1}$
 - $-\frac{a}{b} = \frac{-a}{b}$ and $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$
- (c) The map $R \to Q(R)$, $a \mapsto \frac{a}{1}$ is an injective ring homomorphism.
- (d) Q(R) is the smallest field containing R. More specifically, for an injective ring homomorphism $\varphi: R \hookrightarrow \mathbb{K}$, there is a unique ring homomorphism $\bar{\varphi}: Q(R) \hookrightarrow \mathbb{K}$ with $\bar{\varphi}|_{R} = \varphi$, which is injective.

$$R \xrightarrow{\varphi} \mathbb{K}$$

$$\searrow \bar{\varphi}$$

$$Q(R)$$

Definition: (Associated)

Let R be a commutative ring, and $a, b \in R$. a and b are associated if $\exists c \in R^*$ such that b = ca. This is an equivalence relation.

Lemma:

Let R be an ID, and $a, b \in R$. Then, a and b are associated $\iff \langle a \rangle = \langle b \rangle$.

Definition: (Principal ideal domain)

Let R be an integral domain. R is a principal ideal domain/PID if every ideal is principal. (generated by a single element)

Primes

Definition: (Prime, maximal ideal)

Let R be a commutative ring and $I \subseteq R$ an ideal.

- (a) I is a prime ideal if $1 \notin I$ and $\forall a, b \in R : (ab \in I \implies a \in I \text{ or } b \in I)$.
- (b) I is a maximal ideal if $1 \notin I$ and $\forall J \subseteq R$: $(I \subseteq J \implies J = I \text{ or } J = R)$.

Theorem:

Let R be a commutative ring and $I \subseteq R$ an ideal.

- (a) I is prime \iff R/I is an integral domain.
- (b) I is maximal $\iff R/I$ is a field.
- (c) I is maximal $\implies I$ is prime.

Corollary:

Let $m \in \mathbb{N}$.

- (a) $m\mathbb{Z} \leq \mathbb{Z}$ is prime $\iff m$ is a prime number or m = 0.
- (b) $m\mathbb{Z} \subseteq \mathbb{Z}$ is maximal $\iff m$ is a prime number

Definition: (gcd, coprime)

Let R be a commutative ring.

- (a) $a \in R$ divides $b \in R$ if $b \in \langle a \rangle$, written $a \mid b$. (i.e., b = ar for some $r \in R$)
 - Note: Units divide everything
- (b) A greatest command divisor/gcd of $a_1, \ldots, a_n \in R$ is a common divisor $g \in R$ of the a_i 's such that every other common divisor divides g.
 - Note: If g is a gcd of some numbers and $u \in \mathbb{R}^*$ is a unit, then ug is also a gcd.
- (c) $a, b \in R$ are coprime if 1 is a gcd of a and b.

Proposition:

In integral domains, gcd's are unique up to unit multiplication.

Definition: (Prime, irreducible)

Let R be a commutative ring and let $p \in R$, $p \neq 0$, $p \notin R^*$.

- (a) p is prime if $\forall a, b \in R : p \mid ab \implies p \mid a \text{ or } p \mid b$.
 - Note: p is prime $\iff \langle p \rangle$ is a prime ideal
- (b) p is irreducible if $\forall a, b \in R : p = ab \implies a \in R^*$ or $b \in R^*$. Otherwise, p is reducible.

Proposition:

Let R be an integral domain and let $p \in R, p \neq 0, p \notin R^*$.

- (a) p is prime $\implies p$ is irreducible.
- (b) If R is a PID, then p is irreducible \iff p is prime \iff $\langle p \rangle$ is maximal.

Corollary:

Let R be a PID and let $I \subseteq R$ be an ideal with $I \neq \{0\}$. Then, I is prime \iff I is maximal.

Definition: (Coprime ideals)

Let R be a ring. Two ideals $I, J \subseteq R$ are coprime if I + J = R.

→ Comment:

Let $m, n \in \mathbb{N}$. $m\mathbb{Z}, n\mathbb{Z} \leq \mathbb{Z}$ are coprime $\iff m$ and n are coprime integers.

Theorem: (Chinese remainder theorem/CRT)

Let R be a ring and let $I_1, \ldots, I_n \leq R$ be pairwise coprime ideals. Denote $\pi_i : R \to R/I_i$ as the canonical projections. Then, $\pi : R \to R/I_1 \times \cdots \times R/I_n$, $x \mapsto (\pi_1(x), \ldots, \pi_n(x))$ is a surjective ring homomorphism with $\ker(\pi) = I_1 \cap \ldots \cap I_n$. In particular, $R/\bigcap_{i=1}^n I_i \cong \prod_{i=1}^n R/I_i$.

Definition: (Congruent)

Let R be a ring and $I \leq R$ an ideal. Two elements $x, y \in R$ are congruent modulo I if $x - y \in I$, written $x \equiv y \mod I$, or if $I = \langle a \rangle$, $x \equiv y \mod a$.

Corollary: (Classic CRT)

Let $a_1, \ldots a_n \in \mathbb{Z}$ be pairwise coprime. Then, the system of conguences $x \equiv x_i \mod a_i, i = 1, \ldots, n$ is solvable for arbitrary $x_i \in \mathbb{Z}$. The solution x is unique modulo $a_1 \cdots a_n$, i.e. all solutions are $x + a_1 \cdots a_n \mathbb{Z}$.

- → Solution algorithm:
 - 1. Let $a := a_1 \cdots a_n$.
 - 2. $\forall 1 \leq i \leq n$: Find $d_i \in a_i \mathbb{Z}$ and $e_i \in \frac{a}{a_i} \mathbb{Z}$ such that $d_i + e_i = 1$, e.g. via the extended Euclidian algorithm.
 - 3. $x := \sum_{i=1}^{n} x_i e_i$ is a solution.

Euclidian domains

Proposition: (Polynomial division)

Let R be a commutative ring and let $g \in R[X]$, $g \neq 0$ whose leading coefficient is a unit in R. Then, for any $f \in R[X]$, there are unique $q, r \in R[X]$ such that f = qg + r and $\deg(r) < \deg(g)$.

Definition: (Euclidian domain)

Let R be an integral domain. It is an Euclidian domain if there is a map $\delta: R \setminus \{0\} \to \mathbb{N}$ such that, $\forall f, g \in R, g \neq 0 \ \exists q, r \in R: f = qg + r \ \text{and} \ r = 0 \ \text{or} \ \delta(r) < \delta(g)$. Here, δ is called the Euclidian function or degree function.

Algorithm: (Euclidian algorithm)

Let R be a Euclidian domain and $a, b \in R \setminus \{0\}$. We wish to compute a gcd of a and b.

- 1. Set $z_0 := a$, $z_1 := b$.
- 2. For i = 1, 2, ...: If $z_i = 0$, then set $z_{i+1} := 0$. If $z_i \neq 0$, then compute $q_i, z_{i+1} \in R$ such that $z_{i-1} = q_i z_i + z_{i+1}$ and $z_{i+1} = 0$ or $\delta(z_{i+1}) < \delta(z_i)$.
- 3. Return z_n such that $z_n \neq 0$ and $z_{n+1} = 0$.

Corollary: (Extended Euclidian algorithm)

Let R be a Euclidian domain and $a, b \in R \setminus \{0\}$. Then, the Euclidian algorithm yields $x, y \in R$ such that the returned gcd is xa + yb, via substitution in the equations $z_{i-1} = q_i z_i + z_{i+1}$.

Corollary:

The extended Euclidian algorithm can compute a gcd of multiple elements in a Euclidian domain, since gcd(a,b,c) is associated to gcd(gcd(a,b),c)

Proposition:

Let R be an integral domain and let $a_1, \ldots, a_n \in R$. If $\langle a_1, \ldots, a_n \rangle = \langle g \rangle$ for some $g \in R$, then g is a gcd of a_1, \ldots, a_n . In particular, in PIDs, gcd's always exist.

Corollary:

Let R be a PID and let $a_1, \ldots, a_n \in R$. Then, $g \in R$ is a gcd of $a_1, \ldots, a_n \iff \langle g \rangle = \langle a_1, \ldots, a_n \rangle$.

Unique factorization domains

Definition/Proposition: (Unique factorization domain)

Let R be an integral domain. It is a factorial ring/unique factorization domain/UFD if every $a \in R$, $a \neq 0$, $a \notin R^*$ is a finite product of prime elements. Then, such a factorization is unique up to ordering and unit multiplication of each element.

→ Comment:

In a UFD, gcd's always exist.

Proposition:

Let R be a UFD and let $p \in R$, $p \neq 0$, $p \notin R^*$. Then, p is irreducible \iff p is prime.

Skipped: Noetherian rings. Sorry Emmy:(

Theorem: (Gauss)

If R is a UFD, then R[X] is a UFD.

Corollary:

If R is a UFD, then $R[X_1, \ldots, X_n]$ is a UFD.

Proposition/Definition: (Valuation)

Let R be a UFD and let $P \subseteq R$ be a system of representatives of the prime elements in R, that is, every prime in R is associated to exactly one element in P. Consider the field of fractions Q(R). Then, every $x \in Q(R)^*$ admits a unique factorization of the form $x = \varepsilon \prod_{p \in P} p^{v_p(x)}$ where $\varepsilon \in R^*$ and $v_p(x) \in \mathbb{Z}$ is the p-adic valuation of x. All but finitely many $v_p(x)$ are zero, that is, the product is finite.

If $f = \sum_{i=0}^n a_i X^i \in Q(R)[X]$, then for a prime p we define $v_p(f) := \min\{v_p(a_i) \mid i = 0, \dots n\}$. We set $v_p(0) := \infty$.

Definition: (Primitive)

Let R be a UFD. $f \in R[X]$ is primitive if 1 is a gcd of its coefficients.

Lemma:

Let R be a UFD and let $f \in R[X]$. Then, f is primitive $\iff v_p(f) = 0$ for all primes $p \in R$.

Skipped: Gauss lemma and tools for proving Gauss theorem.

Proposition:

Let R be a UFD and $f \in R[X]$.

- (a) If deg(f) = 0, then f is prime in $R[X] \iff f$ is prime in R.
- (b) If $\deg(f) > 0$, then f is prime in $R[X] \iff f$ is primitive and prime in Q(R)[X].

Note: primes and irreducibles are equivalent in R, R[X] and Q(R)[X].

Proposition: (Eisenstein's criterion)

Let R be a UFD and let $f = a_n X^n + \dots + a_0 \in R[X]$ be a primitive polynomial with $\deg(f) > 0$. If there is a prime $p \in R$ such that $p \nmid a_n$, $p \mid a_i$ for $i = 0, \dots, n-1$ and $p^2 \nmid a_0$, then f is irreducible in R[X] (and equivalently in Q(R)[X]).

Proposition:

Let R be a UFD and S be an ID, and let $\sigma: R \to S$ be a ring homomorphism. Let $f = a_n X^n + \dots + a_0 \in R[X]$, and define $f^{\sigma} := \sigma(a_n) X^n + \dots + \sigma(a_0) \in S[X]$. If $\deg(f^{\sigma}) = \deg(f) > 0$, and $f^{\sigma} \in S[X]$ is irreducible, then $f \in R[X]$ is irreducible.

→ Comment:

This is usually used by applying the canonical projection $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ to $\mathbb{Z}[X]$.

Modules

Definition: (Module)

Let R be a ring. A left R-module M is an abelian group (M,+) with a map $R \times M \to M, (r,m) \mapsto rm$ such that

- (i) $\forall r_1, r_2 \in R, \forall m \in M : (r_1 r_2) m = r_1(r_2 m)$
- (ii) $\forall r_1, r_2 \in R, \forall m \in M : (r_1 + r_2)m = r_1m + r_2m$
- (iii) $\forall r \in R, \forall m_1, m_2 \in M : r(m_1 + m_2) = rm_1 + rm_2$
- (iv) $\forall m \in M : 1m = m$

Right R-modules are defined analogously with $M \times R \to M, (m,r) \mapsto mr$. If R is commutative, these coincide and we just say R-module.

Definition: (Module homomorphism)

Let R be a ring and let M, N be left R-modules. A map $\varphi : M \to N$ is an R-module homomorphism if $\forall r_1, r_2 \in R, \forall m_1, m_2 \in M : \varphi(r_1m_1 + r_2m_2) = r_1\varphi(m_1) + r_2\varphi(m_2)$. We denote the set of these as $\operatorname{Hom}_R(M, N)$.

A bijective R-module homomorphism is an isomorphism.

Definition: (Submodule)

Let R be a ring and M be a left R-module. A subset $M' \subseteq M$ is a submodule of M if $M' - M' \subseteq M'$ and $RM' \subseteq M'$.

Proposition:

Let R be a ring, M, N be left R-modules, $\varphi \in \operatorname{Hom}_R(M,N)$ be an R-module homorphsim and $M' \subseteq M$ and $N' \subseteq N$ be submodules. Then, $\varphi^{-1}(N') \subseteq M$ and $\varphi(M') \subseteq N$ are submodules. Specifically, $\ker(\varphi) = \varphi^{-1}(0)$ and $\operatorname{im}(\varphi) = \varphi(M)$ are submodules.

Proposition/Definition: (Quotient module)

Let R be a ring, M be a left R-module and $N \subseteq M$ be a submodule.

- (a) $M/N := \{m+N \mid m \in M\}$ is a left R-module via r(m+N) := rm + N called the quotient module.
- (b) The canonical projection $\pi: M \to M/N, m \mapsto m+N$ is a surjective R-module homomorphism with $\ker(\pi) = N$.
- (c) Let $\varphi \in \operatorname{Hom}_R(M, L)$ with $\ker(\pi) = N$. Then, $\operatorname{im}(\varphi)$ is canonically isomorphic to M/N.

Definition/Proposition: (Generated submodule)

Let R be a ring, M be a left R-module and $E \subseteq M$ be a subset. Then, the submodule generated by E is, equivalently,

$$\langle E \rangle := \bigcap_{\substack{\text{submodules } N \subseteq M, \\ E \subset N}} N = \left\{ \sum_{i=1}^n r_i e_i \mid n \in \mathbb{N}, r_i \in R, e_i \in E \right\}.$$

Definition: (Basis, etc.)

Let R be a ring, M be a left R-module and $E \subseteq M$ be a subset.

- (a) E generates M if $\langle E \rangle = M$.
- (b) M is finitely generated if $\exists E' \subseteq M$ that generates M with $|E'| < \infty$.
- (c) E is R-independent if $\forall n \in \mathbb{N}, \forall r_i \in R, \forall e_i \in E$ with pairwise distinct e_i 's: $\sum_{i=1}^n r_i e_i = 0 \implies r_i = 0, i = 1, \ldots, n$.
- (d) E is an R-basis of M is E generates M and E is R-independent. Note: This is equivalent to that every element in M can be written uniquely up to ordering as an R-linear combination of elements in E.
- (e) M is free if it has a basis.

Theorem/Definition:

Let $R \neq \{0\}$ be a commutative ring and M be a finitely generated free R-module. Then, every R-basis of M has the same finite cardinality, called the rank of M.

Leo Trolin | 29/05-2025

Field extensions

Proposition/Definition: (Characteristic)

Let R be an integral domain. Then, there is a unique ring homomorphism $\varphi : \mathbb{Z} \to R$. There is a $p \in \mathbb{N}$ such that $\ker(\varphi) = \langle p \rangle$ where p is either 0 or a prime number, called the characteristic of R, written $p = \operatorname{char}(R)$.

<u>Definition</u>: (\mathbb{F}_p)

Let p be a prime number. Then, $\mathbb{F}_p := (\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ as a field.

Proposition:

- (a) $0 = \operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = \operatorname{char}(\mathbb{R}[X])$
- (b) $\operatorname{char}(\mathbb{F}_p) = p$

Definition: (Subfield)

A subring T of a field $\mathbb K$ is a subfield if T is a field.

Proposition/Definition: (Prime subfield)

Let \mathbb{K} be a field.

- (a) For every subfield T of K, we have $char(T) = char(\mathbb{K})$.
- (b) $P := \bigcap_{\text{subfields } T \subseteq \mathbb{K}} T$ is a subfield of \mathbb{K} , called the prime subfield of \mathbb{K} . It is the unique smallest subfield of \mathbb{K} .

Proposition:

Let \mathbb{K} be a field and P be its prime subfield.

- (a) $\operatorname{char}(\mathbb{K}) = p > 0 \iff P \cong \mathbb{F}_p$
- (b) $\operatorname{char}(\mathbb{K}) = 0 \iff P \cong \mathbb{Q}$

Definition: (Extension field, etc.)

Let \mathbb{L} be a field with a subfield \mathbb{K} .

- (a) The pair $\mathbb{K} \subseteq \mathbb{L}$ is called a field extension; \mathbb{L} is an extension field of \mathbb{K} . We denote this as \mathbb{L}/\mathbb{K} .
- (b) An intermediate field is a subfield T such that $\mathbb{K} \subseteq T \subseteq \mathbb{L}$.
- (c) \mathbb{L} is a \mathbb{K} -vector space by restricting $\cdot : \mathbb{L} \times \mathbb{L} \to \mathbb{L}$ to $\mathbb{K} \times \mathbb{L} \to \mathbb{L}$. The dimension of this vector space is $[\mathbb{L} : \mathbb{K}] = \dim_{\mathbb{K}}(\mathbb{L})$, called the degree of \mathbb{L} over \mathbb{K} .
- (d) The field extension $\mathbb{K} \subseteq \mathbb{L}$ is finite if $[\mathbb{L} : \mathbb{K}]$ is finite, otherwise it is infinite.

Proposition:

Let $\mathbb{K} \subseteq \mathbb{L} \subseteq \mathbb{M}$ be field extensions. Then, $[\mathbb{M} : \mathbb{K}] = [\mathbb{M} : \mathbb{L}] \cdot [\mathbb{L} : \mathbb{K}]$.

Corollary:

Let $\mathbb{K} \subseteq \mathbb{L} \subseteq \mathbb{M}$ be field extensions. If $[\mathbb{M} : \mathbb{K}]$ is prime, then $\mathbb{L} = \mathbb{K}$ or $\mathbb{L} = \mathbb{M}$.

Definition: (Algebraic)

Let $\mathbb{K} \subseteq \mathbb{L}$ be a field extension.

- (a) An element $\alpha \in \mathbb{L}$ is algebraic over \mathbb{K} if $\alpha^n + c_1\alpha^{n-1} + \cdots + c_n = 0$ for $n \geq 1$ and $c_1, \ldots, c_n \in \mathbb{K}$. Otherwise, α is transcendental over \mathbb{K} .
- (b) The extension field \mathbb{L} is algebraic over \mathbb{K} if every $\alpha \in \mathbb{L}$ is algebraic over \mathbb{K} . Then, $\mathbb{K} \subseteq \mathbb{L}$ is an algebraic field extension.

Proposition/Definition: (Minimal polynomial)

Let $\mathbb{K} \subseteq \mathbb{L}$ be a field extension and let $\alpha \in \mathbb{L}$ be algebraic over \mathbb{K} .

- (a) There is a unique monic polynomial $f_{\alpha} \in \mathbb{K}[X]$ of smallest degree such that $f_{\alpha}(\alpha) = 0$, called the minimal polynomial of α over \mathbb{K} .
- (b) f_{α} is irreducible. Moreover, if $f \in \mathbb{K}[X]$ is a monic, irreducible polynomial with $f(\alpha) = 0$, then $f = f_{\alpha}$.
- (c) $K[\alpha] \cong K[X]/\langle f_{\alpha} \rangle$ is an extension field of \mathbb{K} .
- (d) $[K[\alpha] : \mathbb{K}] = \deg(f_{\alpha})$

Proposition/Definition: (Generated field, etc.)

Let $\mathbb{K} \subseteq \mathbb{L}$ be a field extension.

(a) For $\mathcal{A} \subseteq \mathbb{L}$, the subfield of \mathbb{L} generated by \mathcal{A} over \mathbb{K} is

$$\mathbb{K}(\mathcal{A}) := \bigcap_{\substack{\text{subfields } T \subseteq \mathbb{L}, \\ \mathbb{K} \cup \mathcal{A} \subseteq T}} T.$$

It is the smallest subfield of \mathbb{L} that contains both \mathbb{K} and \mathcal{A} .

- (b) If $\mathcal{A} = \{\alpha_1, \dots, \alpha_n\}$, we write $\mathbb{K}(\alpha_1, \dots, \alpha_n) := \mathbb{K}(\mathcal{A})$. It holds that $\mathbb{K}(\alpha_1, \dots, \alpha_n) = Q(K[\alpha_1, \dots, \alpha_n])$.
- (c) The field extension $\mathbb{K} \subseteq \mathbb{L}$ is finitely generated if $\exists \alpha_1, \ldots, \alpha_n \in \mathbb{L} : \mathbb{L} = \mathbb{K}(\alpha_1, \ldots, \alpha_n)$. It is called simple if n = 1. The degree of α over \mathbb{K} is $[\mathbb{K}(\alpha) : \mathbb{K}]$.
- (d) For (possibly infinite!) $A \subseteq \mathbb{L}$, $\mathbb{K}(A) = \bigcup_{A' \subseteq A, |A'| < \infty} \mathbb{K}(A')$.

Theorem:

Let $\mathbb{K} \subseteq \mathbb{L}$ be a field extension. Then, the following are equivalent:

- (i) \mathbb{L}/\mathbb{K} is finite.
- (ii) $\exists \alpha_1, \ldots, \alpha_n \in \mathbb{L}$ which are algebraic over \mathbb{K} with $\mathbb{L} = \mathbb{K}(\alpha_1, \ldots, \alpha_n)$ (which also implies $\mathbb{L} = \mathbb{K}[\alpha_1, \ldots, \alpha_n]$).
- (iii) \mathbb{L}/\mathbb{K} is finitely generated and algebraic.

Corollary:

Let $\mathbb{K} \subseteq \mathbb{L}$ be a field extension. Then, \mathbb{L}/\mathbb{K} is algebraic $\iff \exists \mathcal{A} \subseteq \mathbb{L}$ with $\mathbb{L} = \mathbb{K}(\mathcal{A})$ and all $\alpha \in \mathcal{A}$ are algebraic over \mathbb{K} .

Proposition:

Let $\mathbb{K} \subseteq \mathbb{L} \subseteq \mathbb{M}$ be field extensions.

- (a) If $\alpha \in \mathbb{M}$ is algebraic over \mathbb{L} , and \mathbb{L}/\mathbb{K} is algebraic, then α is algebraic over \mathbb{K} .
- (b) \mathbb{M}/\mathbb{K} is algebraic $\iff \mathbb{M}/\mathbb{L}$ and \mathbb{L}/\mathbb{K} are algebraic.

Algebraic closures

Proposition: (Kronecker's construction)

Let \mathbb{K} be a field and let $f \in \mathbb{K}[X]$ with $\deg(f) \geq 1$. Then, there is a finite field extension $\mathbb{K} \subseteq \mathbb{L}$ such that $f(\alpha) = 0$ for some $\alpha \in \mathbb{L}$. If f is irreducible, then we can set $\mathbb{L} := \mathbb{K}[X]/\langle f \rangle$ and $\alpha = \pi(X)$.

Corollary:

Let \mathbb{K} be a field and let $f \in \mathbb{K}[X]$ with $\deg(f) \geq 1$. Then, there is a finite field extension $\mathbb{K} \subseteq \mathbb{L}$ such that f factorizes into linear factors in $\mathbb{L}[X]$.

Definition/Proposition: (Algebraically closed)

Let K be a field. It is algebraically closed if one of the following equivalent statements hold:

- (i) $\forall f \in \mathbb{K}[X] \setminus \mathbb{K} \ \exists \alpha \in \mathbb{K} : f(\alpha) = 0$
- (ii) $\forall f \in \mathbb{K}[X] \setminus \mathbb{K} \ \exists c \in \mathbb{K}^*, \exists \alpha_1, \dots, \alpha_n \in \mathbb{K} : f = c \prod_{i=1}^n (X \alpha_i)$
- (iii) Every algebraic field extension $\mathbb{K} \subseteq \mathbb{L}$ is trivial, i.e. $\mathbb{K} = \mathbb{L}$

Definition: (Algebraic closure)

Let \mathbb{K} be a field. An algebraic closure $\overline{\mathbb{K}}$ is an extension field of \mathbb{K} that is algebraically closed, and algebraic over \mathbb{K} .

Definition: (K-homomorphism)

Let $\mathbb{K} \subseteq \mathbb{L}$ and $\mathbb{K} \subseteq \mathbb{L}'$ be field extensions. A field homomorphism $\varphi : \mathbb{L} \to \mathbb{L}'$ is a \mathbb{K} -homomorphism if $\varphi|_{\mathbb{K}} = \mathrm{id}_{\mathbb{K}}$. If φ is also a field isomorphism, then φ is a \mathbb{K} -isomorphism.

Theorem:

Let \mathbb{K} be a field.

- (a) \mathbb{K} has an algebraic closure $\overline{\mathbb{K}}$.
- (b) For any two algebraic closures $\overline{\mathbb{K}}_1, \overline{\mathbb{K}}_2$ of \mathbb{K} , there is a \mathbb{K} -isomorphism $\varphi : \overline{\mathbb{K}}_1 \xrightarrow{\sim} \overline{\mathbb{K}}_2$.

Skipped: Tools for proving this theorem

Splitting fields

<u>Definition</u>: (Splitting field)

Let \mathbb{K} be a field and let $\mathcal{F} \subseteq \mathbb{K}[X] \setminus \mathbb{K}$. A splitting field of \mathcal{F} over \mathbb{K} is an extension field \mathbb{L} of \mathbb{K} such that

- (i) Every $f \in \mathcal{F}$ factorizes into linear factors in $\mathbb{L}[X]$
- (ii) $\mathbb{L} = \mathbb{K}(\mathcal{A})$ where $\mathcal{A} = \{ \alpha \in \mathbb{L} \mid \exists f \in \mathcal{F} : f(\alpha) = 0 \}$

→ Comment:

 \mathbb{L} is a splitting field of $\{f_1,\ldots,f_n\}$ \iff \mathbb{L} is a splitting field of $f_1\cdots f_n$.

Theorem:

Let \mathbb{K} be a field and let $\mathcal{F} \subseteq \mathbb{K}[X] \setminus \mathbb{K}$.

- (a) There is a splitting field of \mathcal{F} over \mathbb{K} .
- (b) For any two splitting fields $\mathbb{L}_1, \mathbb{L}_2$ of \mathcal{F} over \mathbb{K} , there is a \mathbb{K} -isomorphism $\mathbb{L}_1 \xrightarrow{\sim} \mathbb{L}_2$.

Finite fields

Theorem:

Let \mathbb{F} be a finite field. Denote $p := \operatorname{char}(\mathbb{F})$ and $q := |\mathbb{F}|$.

- (a) p > 0, and \mathbb{F} contains \mathbb{F}_p as its prime subfield.
- (b) $q = p^n$ where $n = [\mathbb{F} : \mathbb{F}_p]$.
- (c) \mathbb{F} is a splitting field of $X^q X$ over \mathbb{F}_p . Its elements are precisely the q different zeros of $X^q X$.

Theorem:

Let $n \in \mathbb{N}$ and let p be a prime number. Let $q := p^n$.

- (a) There exists a field \mathbb{F}_q with $|\mathbb{F}_q| = q$.
- (b) \mathbb{F}_q is unique up to \mathbb{F}_p -isomorphism.

Overview of types of rings

 $Rings \subset Commutative \ rings \subset IDs \subset GCD \ domains \subset UFDs \subset PIDs \subset Euclidian \ domains \subset Fields$ Implications of general ring types:

- If R is an ID, then $R[X_1, \ldots, X_k]$ is an ID.
- If \mathbb{K} is a field and $R \subseteq \mathbb{K}$ is a nonzero subring, then R is an ID.
- If R is a UFD, then $R[X_1, ..., X_n]$ is a UFD (Gauss theorem).
- If \mathbb{K} is a field, then $\mathbb{K}[X]$ is a Euclidian domain (with $\delta = \deg$).
- If \mathbb{K} is a field and $f \in \mathbb{K}[X]$ with $\deg(f) \geq 1$, then $\mathbb{K}[X]/\langle f \rangle$ is a field $\iff f$ is irreducible.

Specific examples of rings:

- \mathbb{Z} is a Euclidian domain (with $\delta = abs$).
- $\mathbb{Z}[X]$ is a UFD, but not a PID.
- $\mathbb{Z}/p\mathbb{Z}$ is a field iff p is prime (otherwise just a commutative ring)
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields, out of which only \mathbb{C} is algebraically closed.