Veuillez cocher, pour chaque question, l'unique meilleure réponse sur la feuille-réponse prévue à cet effet (en n'oubliant pas d'indiquer votre nom et login).

Barème: +1 point par bonne réponse cochée, -1/5 point par mauvaise

Commencez par utiliser les questions 1 à 5 pour renseigner l'identifiant l'identifiant du sujet: 11111

- 6. Un seul des ensembles suivants **est** dénombrable :
 - $_{(1)}\square$ $\mathbf{N^{N}}$
 - (2) \square $[0, \pi[$
 - $_{(3)}\square$ $\mathcal{P}(\mathbf{Z})$
 - $_{(4)}\square$ \mathbf{R}_{+}
 - (5) \blacksquare $\{A \in \mathcal{P}(\mathbf{N}) \mid A \text{ fini}\}$
- 7. Le nombre d'opérandes d'une opération sur un ensemble E est appelé son :
 - $_{(1)}\square$ ordre
 - $_{(2)}\square$ valence
 - $_{(3)}\square$ quotient
 - $_{(4)}\square$ cardinal
 - (5)■ arité
- 8. Pour $A, B \in \text{Ens}$, dire que $A \cong B$ signifie...
 - $_{(1)}\square$ toute application $f:A\to B$ est injective
 - (2) il existe une bijection $f: A \to B$
 - $_{(3)}\square$ toute application $f:A\to B$ est bijective
 - $_{(4)}\square$ il existe une injection $f:A\to B$
 - $_{(5)}\square$ il existe une surjection $f:A\to B$
- 9. Pour $A, B \in \text{Ens}$, dire que $|A| \leq |B|$ signifie...
 - $_{(1)}\square$ il existe une surjection $f:A\to B$
 - (2) il existe une injection $f: A \to B$
 - $_{(3)}\square$ toute application $f:A\to B$ est injective
 - $_{(4)}\square$ toute application $f:A\to B$ est bijective
 - $_{(5)}\square$ il existe une bijection $f:A\to B$
- 10. Le théorème de Cantor-Bernstein affirme que :
 - $_{(1)}\square$ pour tout ensemble A, on a $A\cong A$
 - (2) si $|A| \leq |B|$ et $|B| \leq |A|$ alors |A| = |B|
 - (3) Si |A| = |B| et |B| = |C| alors |A| = |C|
 - (4) \square |A| = |B| si et seulement si $A \cong B$
 - $_{(5)}\square$ les classes d'équipotence dans Ens sont disjointes

₍₁₎	$x \star x = x \text{ pour tout } x \in E$
$_{(2)}\Box$	$x \star y = y \star x$ pour tout $x, y \in E$
\square	$(x \star y) \star z = (y \star z) \star x$ pour tout $x, y, z \in E$
(4) •	$x \star (y \star z) = (x \star y) \star z$ pour tout $x, y, z \in E$
$_{(5)}\square$	$x \star (y \star x) = y$ pour tout $x, y \in E$
	des chaînes de caractères ASCII représentant un programme syntaxiquement correct ($i.e.$ qui compile) en C est :
(1)	vide
(2) 	infini dénombrable
$_{(3)}\square$	impossible à déterminer
$_{(4)}\square$	fini non vide
$_{(5)}\square$	infini non dénombrable
13. Le nombre	d'opérations binaires sur un ensemble E à n éléments est :
(1) =	n^{n^2}
	2^{n^2}
(2)	n^{2n}
(3)	n^n 2^{n^n}
(4)□	
(5)	n^{2^n}
	ensemble de cardinal $ E \geqslant 2$ et \star l'opération sur E définie par $x\star y:=y$.
Quelle prop	priété ⋆ ne possède-t-elle pas ?
(1)	existence d'un neutre à gauche
(2)	existence d'un absorbant à droite
(3)	surjectivité
(4) •	commutativité
$_{(5)}\square$	associativité
15. Un soul do	s ensembles suivants n'est pas dénombrable :
15. On seur de	
(1) [□]	$\mathbf{Z} imes \mathbf{Z}$
(2) [□]	N -
(3)	\mathbf{Q}_{+}
(4)	$\mathbf{P} = \{ p \in \mathbf{N} \mid p \text{ premier} \}$
(5) ■	[0,1]

11. Une opération binaire \star sur un ensemble E est dite associative lorsque :