27-07-2021 Shift-2

1

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 Shift-2(1-15)

- 1) The point P(a, b) undergoes the following three transformations successively:
 - a) reflection about the line y = x.
 - b) translation through 2 units along the positive direction of x-axis.
 - c) rotation through angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction.

If the co-ordinates of the final position of the point P are $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$, then the value of 2a + b is equal to:

- a) 13
- b) 9
- c) 5
- d) 7
- 2) A possible value of 'x', for which the ninth term in the expansion of $\left\{3^{\log_3 \sqrt{25^{x-1}+7}} + 3^{\left(-\frac{1}{8}\right)\log_3\left(5^{x-1}+1\right)}\right\}^{10}$ in the increasing powers of $3^{\left(-\frac{1}{8}\right)\log_3\left(5^{x-1}+1\right)}$ is equal to 180, is:
 - a) 0
 - b) -1
 - c) 2
 - d) 1
- 3) For real numbers α and $\beta \neq 0$, if the point of intersection of the straight lines $\frac{x-\alpha}{1} = \frac{y-1}{2} = \frac{z-1}{3}$ and $\frac{x-4}{\beta} = \frac{y-6}{3} = \frac{z-7}{3}$, lies on the plane x + 2y z = 8, then $\alpha \beta$ is equal to:
 - a) 5
 - b) 9
 - c) 3
 - d) 7
- 4) Let $f: \mathbf{R} \to \mathbf{R}$ be defined as f(x+y) + f(x-y) = 2f(x) f(y), $f(\frac{1}{2}) = -1$. Then, the value of $\sum_{k=1}^{20} \frac{1}{\sin(k)\sin(k+f(k))}$ is equal to:

- a) $\csc^2(21)\cos(20)\cos(2)$
- b) $\sec^2(1)\sec(21)\cos(20)$
- c) $\csc^2(1) \csc(21) \sin(20)$
- d) $\sec^2(21)\sin(20)\sin(2)$
- 5) Let $\mathbb C$ be the set of all complex numbers. Let $S_1 = \{z \in \mathbb C : |z-2| \le 1\}$ and $S_2 = \{z \in \mathbb C : |z-2| \le 1\}$ $\{z \in \mathbb{C} : z(1+i) + \overline{z}(1-i) \ge 4\}$. Then the maximum value of $|z - \frac{5}{2}|^2$ for $z \in S_1 \cap S_2$ is equal to:
 - a) $\frac{3+2\sqrt{2}}{4}$

 - b) $\frac{5+2\sqrt{2}}{2}$ c) $\frac{3+2\sqrt{2}}{2}$ d) $\frac{5+2\sqrt{2}}{4}$
- 6) A student appeared in an examination consisting of 8 true-false type questions. The student guesses the answers with equal probability. The smallest value of n, so that the probability of guessing at least 'n' correct answers is less than $\frac{1}{2}$, is:
 - a) 5
 - b) 6
 - c) 3
 - d) 4
- 7) If $\tan\left(\frac{\pi}{9}\right)$, x, $\tan\left(\frac{7\pi}{18}\right)$ are in arithmetic progression and $\tan\left(\frac{\pi}{9}\right)$, y, $\tan\left(\frac{5\pi}{18}\right)$ are also in arithmetic progression, then |x-2y| is equal to:
 - a) 4
 - b) 3
 - c) 0
 - d) 1
- 8) Let the mean and variance of the frequency distribution

$$x: x_1 = 2 \quad x_2 = 6 \quad x_3 = 8 \quad x_4 = 9$$

 $f: 4 \quad 4 \quad \alpha \quad \beta$

be 6 and 6.8 respectively. If x_3 is changed from 8 to 7, then the mean for the new data will be:

- a) 4
- b) 5
- c) $\frac{17}{3}$ d) $\frac{16}{3}$
- 9) The area of the region bounded by y x = 2 and $x^2 = y$ is equal to:

 - a) $\frac{16}{3}$ b) $\frac{2}{3}$

- c) $\frac{9}{2}$
- 10) Let y = y(x) be the solution of the differential equation $(x x^3) dy = (y + yx^2 3x^4) dx$, x \(\delta \) 2. If y(3) = 3, then y(4) is equal to:
 - a) 4
 - b) 12
 - c) 8
 - d) 16
- 11) The value of $\lim_{x\to 0} \left(\frac{x}{\sqrt[8]{1-\sin(x)} \sqrt[8]{1+\sin(x)}} \right)$ is equal to:
 - a) 0
 - b) 4
 - c) -4
 - d) -1
- 12) Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through the point:
 - a) (1, 2)
 - b) (2, 2)
 - c) (2,1)
 - d) (1,3)
- 13) Let $\alpha = \max_{x \in \mathbf{R}} \left\{ 8^{2\sin(3x)} \cdot 4^{4\cos(3x)} \right\}$ and $\beta = \min_{x \in \mathbf{R}} \left\{ 8^{2\sin(3x)} \cdot 4^{4\cos(3x)} \right\}$. If $8x^2 + bx + c = 0$ is a quadratic equation whose roots are $\alpha^{\frac{1}{5}}$ and $\beta^{\frac{1}{5}}$, then the value of c b is equal to:
 - a) 42
 - b) 47
 - c) 43
 - d) 50
- 14) Let $f:[0,\infty)\to[0,3]$ be a function defined by

$$f(x) = \begin{cases} \max \left\{ \sin (t) : 0 \le t \le x \right\}, & 0 \le x \le \pi \\ 2 + \cos (x), & x > \pi \end{cases}$$

Then which of the following is true?

- a) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$.
- b) f is differentiable everywhere in $(0, \infty)$.
- c) f is not continuous exactly at two points in $(0, \infty)$.
- d) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$.

15) Let N be the set of natural numbers and a relation R on N be defined by

$$R = \{(x, y) \in \mathbf{N} \times \mathbf{N} : x^3 - 3x^2y - xy^2 + 3y^3 = 0\}.$$

Then the relation R is:

- a) symmetric but neither reflexive nor transitive
- b) reflexive but neither symmetric nor transitive
- c) reflexive and symmetric, but not transitive
- d) an equivalence relation