Ф-03-Лекция -11. Ряды с положительными членами.

П.1 Понятие числового ряда. Основные понятия.

Рассматривается числовая последовательность $\{a_n\}$ вещественных (или комплексных)

чисел. Сумма первых k ее членов называется k – ой частичной суммой: $S_k = \sum_{n=1}^k a_n$ числового ряда.

ОПР. Числовой ряд $\sum_{n=1}^{\infty} a_n$ (1) называется сходящимся, если существует конечный предел

последовательности $\{S_k\}$ частичных сумм, т.е. $S = \lim_{k \to \infty} \sum_{n=1}^k a_n$ - сумма числового ряда.

Член a_n последовательности $\{a_n\}$ называют общим членом числового ряда. Если предела последовательности $\{S_k\}$ не существует или он бесконечный, то соответствующий числовой ряд называют расходящимся.

ПРИМЕР 1. Исследовать на сходимость числовой ряд с общим членом $a_n = q^n$ (ряд геометрической прогрессии).

РЕШЕНИЕ. Воспользуемся формулой суммы k членов геометрической прогрессии:

$$S_k = \frac{a_1(1-q^k)}{1-q}$$
 . Если $|q| < 1$, существует предел $S = \lim_{k o \infty} S_k = \lim_{k o \infty} \frac{a_1(1-q^k)}{1-q} = \frac{a_1}{1-q}$.

При q=1 $a_{\scriptscriptstyle n}=1$ для любого n , $S_{\scriptscriptstyle k}=k$ и соответствующий ряд расходится.

При q=-1 последовательность $S_k=\frac{1}{2}\Big(\!(-1)^k-1\Big)$ ограничена, но не имеет предела, и ряд

также расходится. Расходимость ряда при |q| > 1 следует из неограниченности

последовательности $S_k = \frac{q(1-q^k)}{1-q}$ и, как следствие, отсутствие у нее предела.

Применяя к $\{S_k\}$ критерий Коши для последовательности, получим КРИТЕРИЙ КОШИ для числового ряда.

Числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится в том и только в том случае, если

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall m > N_{\varepsilon} u \; \forall n > m \Longrightarrow \left| a_{m+1} + a_{m+2} + \ldots + a_{n} \right| < \varepsilon \; .$$

ДОКАЗАТЕЛЬСТВО. Последовательность $\{S_k\}$ сходится в том и только в том случае, если к ней применим критерий Коши:

$$\forall \varepsilon > 0 \; \exists \; N_{\varepsilon} : \forall m > N_{\varepsilon} u \; \forall n > m \Longrightarrow \left| S_n - S_m \right| = \left| a_{m+1} + a_{m+2} + \ldots + a_n \right| < \varepsilon \; .$$

Замечание. Из критерия следует, возможность предельного перехода в неравенстве:

$$\forall \varepsilon > 0 \,\exists \, N_{\varepsilon} : \forall m > N_{\varepsilon} \Longrightarrow \left| a_{m+1} + a_{m+2} + \ldots \right| = \left| \sum_{k=1}^{\infty} a_{m+k} \right| < \varepsilon$$

Ряд $\sum_{k=1}^{\infty} a_{m+k}$ называют остатком ряда (1). Он содержит все члены ряда (1) с номерами n>m .

Для сходящегося ряда (1) сумма остатка равна $S-S_m$ и она стремится к нулю с ростом m . Арифметические свойства сходящихся рядов.

1. Если два ряда $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2) сходятся, то ряд $\sum_{n=1}^{\infty} \left(a_n + b_n\right)$ также сходится и

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

2. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то ряд $\sum_{n=1}^{\infty} \lambda a_n$ также сходится для любого λ и

$$\sum_{n=1}^{\infty} \lambda a_n = \lambda \cdot \sum_{n=1}^{\infty} a_n$$

- 3. Сходимость и расходимость ряда $\sum_{n=1}^{\infty} a_n$ и любого его остатка $\sum_{k=1}^{\infty} a_{m+k}$ одновременная.
- 4. Для любой подпоследовательности номеров $\left\{n_{k}\right\}_{k=1}^{\infty}$, $n_{k+1} > n_{k}$ рассмотрим ряд $\sum_{k=1}^{\infty} b_{k}$ (3),

где $b_k = a_{n_k+1} + a_{n_k+2} + \ldots + a_{n_{k+1}}$. Тогда из сходимости ряда (1) следует сходимость (3) и они имеют одинаковые суммы.

Заметим, что между частичными суммами рядов (1) и (3) справедливо соотношение:

$$S_{m}^{3} = \sum_{k=1}^{m} b_{k} = (a_{1} + a_{2} + \dots + a_{n_{1}}) + (a_{n_{1}+1} + a_{n_{1}+2} + \dots + a_{n_{2}}) + \dots + (a_{n_{m-1}+1} + a_{n_{m-1}+2} + \dots + a_{n_{m}}) = S_{n_{m}}^{1}$$

т.е. S_m^3 является подпоследовательностью S_n^1 и сходимость S_n^1 означает существование такого же предела для любой подпоследовательности.

ТЕОРЕМА1. (НЕОБХОДИМОЕ УСЛОВИЕ сходимости ряда)

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$.

ДОКАЗАТЕЛЬСТВО. По критерию Коши $\forall \varepsilon > 0 \ \exists \ N_\varepsilon : \forall n > N_\varepsilon \Rightarrow \left| S_n - S_{n-1} \right| = \left| a_n \right| < \varepsilon$. Существуют расходящиеся ряды, для которых $\lim_{n \to \infty} a_n = 0$.

ПРИМЕР 2. (гармонический ряд). Доказать, что ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

РЕШЕНИЕ. Действительно, $S_{2^n} - S_{2^{n-1}} = \frac{1}{2^{n-1}+1} + \frac{1}{2^{n-1}+2} + \ldots + \frac{1}{2^{n-1}+2^{n-1}} > 2^{n-1} \cdot \frac{1}{2^n} = \frac{1}{2}$

для любого n , и критерий Коши для последовательности $\{S_k\}$ не выполняется, т.е. ряд расходится.

П2. Ряды с положительными членами.

Если $a_n > 0$ для любого n, то ряд (1) называют рядом с положительными членами.

ТЕОРЕМА 2. Для сходимости числового ряда с положительными членами необходимо и достаточно, чтобы последовательность его частичных сумм $\{S_k\}$ была ограниченной.

ДОКАЗАТЕЛЬСТВО. Если ряд $\sum_{n=1}^{\infty} a_n$ (1) сходится, то последовательность $\{S_k\}$ имеет

предел и является ограниченной. Если ряд $\sum_{n=1}^{\infty} a_n$ с положительными членами, то

 $S_{n+1} = S_n + a_{n+1} > S_n$ для любого n , т.е. последовательность $\{S_k\}$ монотонно возрастает. Если $\{S_k\}$ ограничена, то она, как известно, имеет предел и ряд (1) сходится.

Применение этого простого (необходимого и достаточного!) условия сходимости рядов с положительными членами затруднено тем, что нахождение частичных сумм S_k не всегда возможно.

ТЕОРЕМА 3. (Признак СРАВНЕНИЯ 1 для рядов с положительными членами)

Если ряды $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2) с положительными членами удовлетворяют условию:

 $a_n \le b_n$ для всех n > N, то из сходимости ряда (2) следует сходимость ряда (1) и из расходимости ряда (1) следует расходимость ряда (2).

ДОКАЗАТЕЛЬСТВО. По свойству 3 можно полагать, что неравенство $a_n \le b_n$ выполняется для любого n. Если S'_k и S''_k частичные суммы рядов (1) и (2), то $S'_k \le S''_k$ и из ограниченности частичных сумм ряда (2) следует ограниченность частичных сумм ряда (1) и на основании теоремы2 сходимость ряда (1). Если ряд (1) расходится, то S'_k неограниченны и S''_k неограниченны. Тогда на основании теоремы 2 ряд (2) расходится.

ТЕОРЕМА 4. (Признак СРАВНЕНИЯ 2 для рядов с положительными членами)

Если ряды $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2) с положительными членами удовлетворяют условию:

 $\lim_{n\to\infty}\frac{a_n}{b_n}=\lambda$, то при $\lambda>0\,$ сходимость и расходимость рядов (1) и (2) одновременная.

Если $\lambda = 0$, то из сходимости ряда (2) следует сходимость ряда (1), а из расходимости ряда (1) следует расходимость ряда (2).

ДОКАЗАТЕЛЬСТВО. Пусть $\lambda > 0$. По определению предела, для

$$arepsilon=\lambda/2\ \exists N: \forall n>N o a_n<rac{3\lambda}{2}b_n\ \$$
и $b_n<rac{2}{\lambda}a_n$. Тогда на основании теоремы 3 из

сходимости (1) следует сходимость (2) и наоборот. Из расходимости (1) следует расходимость (2) и наоборот. Пусть $\lambda=0$. Тогда $\forall \varepsilon>0$ $\exists N: \forall n>N \Rightarrow a_n<\varepsilon\cdot b_n$. Из последнего неравенства утверждения теоремы 4 следуют из теоремы 3.

Теорема 5 (Интегральный признак сходимости)

Если y = f(x) монотонно убывающая на $D = [1; \infty)$ функция, $f(x) \ge 0$ и интеграл

$$\int\limits_{1}^{\infty}f(x)dx<\infty \ \text{ сходится, то ряд } \sum_{n=1}^{\infty}a_{n} \text{ с общим членом } a_{n}=f(n) \text{ сходится. Если интеграл}$$

 $\int_{0}^{\infty} f(x)dx$ расходится, то ряд расходится.

ДОКАЗАТЕЬСТВО. Из монотонности: $f(n+1) \le f(x) \le f(n)$ для всех $x \in [n; n+1]$. Тогда $f(n+1) \le \int_{-\pi}^{n+1} f(x) dx \le f(n)$. Если интеграл $\int_{-\pi}^{\infty} f(x) dx < \infty$, то

$$\forall \varepsilon > 0 \ \exists N : \forall n > N, \forall m > n \Rightarrow \int_{n-1}^{m} f(x) dx < \varepsilon \Rightarrow f(n) + f(n+1) + \dots + f(m) \leq \int_{n-1}^{m} f(x) dx < \varepsilon$$

и для ряда (1) выполняется критерий Коши и ряд сходится. Если интеграл расходится, то последовательность $I_k = \int\limits_{-k}^{k+1} f(x) dx$ неограниченная и частичные суммы

$$S_k = f(1) + f(2) + \dots + f(k) \ge \int_1^2 f(x) dx + \int_2^3 f(x) dx + \dots + \int_k^{k+1} f(x) dx = \int_1^{k+1} f(x) dx$$
 также

неограниченны. Последнее свидетельствует о расходимости ряда (1).

ПРИМЕР 3. Исследовать на сходимость ряд $\sum_{1}^{\infty} \frac{1}{n^p}$ в зависимости от параметра p.

РЕШЕНИЕ. Если $p \le 0$, то ряд расходится по невыполнению необходимого признака.

Пусть p > 0. Тогда функция $f(x) = \frac{1}{x^p}$ монотонно убывает на $[1; \infty)$ и интеграл

$$\int\limits_{1}^{\infty} f(x) dx = \lim_{n \to \infty} \int\limits_{1}^{n} \frac{1}{x^{p}} dx = \lim_{n \to \infty} \frac{x^{1-p}}{1-p} \Big|_{x=1}^{x=n} = \frac{1}{1-p} \lim_{n \to \infty} \left(\frac{1}{n^{p-1}} - 1 \right).$$
 Если $p > 1$, то интеграл сходится

и по интегральному признаку сходится ряд. Если 0 , то интеграл расходится и по интегральному признаку расходится ряд. При <math>p = 1 (гармонический ряд) расходимость ряда была доказана в примере 2.

ТЕОРЕМА 6. (Признак ДАЛАМБЕРА для рядов с положительными членами).

- 1. Если общий член $a_n > 0$ ряда (1) удовлетворяет условию: существует константа
- $\lambda:0<\lambda<1,$ для которой $a_{\scriptscriptstyle n+1}\leq \lambda\cdot a_{\scriptscriptstyle n} \ \, \forall n\geq n_{\scriptscriptstyle 0}$, то ряд (1) сходится;
- 2. Если выполняется противоположное неравенство $a_{n+1} \ge a_n, \ \forall n \ge n_0$, то ряд (1) расходится;
- 3. Если существует предел $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lambda<1$, то ряд (1) сходится. Если $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lambda>1$, то ряд
- (1) расходится. Существуют сходящиеся и расходящиеся ряды (1), для которых $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1$

ДОКАЗАТЕЛЬСТВО.

1.Перемножим неравенства $a_{k+1} \le \lambda a_k$, $\forall k = n_0, n_0 + 1, ..., n - 1$. Тогда

$$a_{n_0+1} \cdot a_{n_0+2} \cdot \ldots \cdot a_{n-1} \cdot a_n \leq \lambda^{n-n_0} a_{n_0} \cdot a_{n_0+1} \cdot \ldots \cdot a_{n-1} \to a_n \leq a_{n_0} \cdot \lambda^{n-n_0} \ .$$

Ряд с общим членом $b_n = a_{n_0} \cdot \lambda^{n-n_0}$ при $0 < \lambda < 1$ является сходящимся (ряд геометрической прогрессии), поэтому по признаку сравнения 1 ряд (1) сходится.

- 2. Ряд (1) расходится по невыполнению необходимого признака сходимости.
- 3. Если $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lambda<1$, то для $\varepsilon=\frac{1-\lambda}{2}$ существует

 $n_0: \forall n \geq n_0 \to \frac{a_{n+1}}{a_n} \leq \lambda + \frac{1-\lambda}{2} \to a_{n+1} \leq \mu a_n, \ \mu = \frac{1+\lambda}{2} < 1$ и для ряда (1) выполнено условие

пункта 1 теоремы и ряд сходится.

Если
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lambda > 1$$
, то для $\varepsilon = \frac{\lambda-1}{2}$ существует

$$n_{\scriptscriptstyle 0}: \forall n \geq n_{\scriptscriptstyle 0} \rightarrow \frac{a_{\scriptscriptstyle n+1}}{a_{\scriptscriptstyle n}} \geq \lambda - \frac{\lambda-1}{2} = \frac{\lambda+1}{2} \rightarrow a_{\scriptscriptstyle n+1} \geq \mu a_{\scriptscriptstyle n}, \ \mu = \frac{\lambda+1}{2} > 1 \ \text{ и ряд (1) расходится по}$$

невыполнению необходимого признака.

Для всех обобщенных гармонических рядов с общим членом $a_n = \frac{1}{n^p}$

 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{n^p}{(n+1)^p}=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^p=1,\ \forall p\ ,\ \text{но среди них есть расходящиеся (пример 2) и сходящиеся (пример 3, <math>p>1$).}

ТЕОРЕМА 7. (РАДИКАЛЬНЫЙ признак КОШИ)

Пусть $\sum_{n=1}^{\infty} a_n$ ряд с положительными членами, для которого

1. общий член $a_n>0$ удовлетворяет условию: существует n_0 , для которого $\sqrt[n]{a_n}\leq \lambda <1,\, \forall n\geq n_0$.

Тогда ряд (1) сходится.

- 2. Если общий член a_n ряда(1) удовлетворяет условию: существует возрастающая подпоследовательность номеров $\{n_k\}$, для которой $n_k a_{n_k} \ge 1$, то ряд (1) расходится.
- 3. Если $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lambda < 1$, то ряд (1) сходится. Если $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lambda > 1$, то ряд (1) расходится.

При $\overline{\lim_{n\to\infty}} \sqrt[n]{a_n} = 1$ существуют ряды сходящиеся и расходящиеся.

Доказательство

- 1. Из условия теоремы следует, что $a_n \le \lambda^n$, $\forall n \ge n_0$ и сходимость ряда (1) следует из признака сравнения 1, поскольку ряд геометрической прогрессии (пример 1) при $\lambda < 1$ сходящийся.
- 2. При выполнении условия теоремы $a_{n_k} \ge \lambda^{n_k}$ и при $\lambda > 1$ не выполняется необходимый признак сходимости, т.е. ряд (1) расходится.

3. Если
$$\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = \lambda < 1$$
, то для $\varepsilon = \frac{1-\lambda}{2} \ \exists n_0 : \forall n \geq n_0 \to a_n \leq (\lambda + \frac{1-\lambda}{2})^n = \left(\frac{\lambda+1}{2}\right)^n$ и ряд (1)

мажорируется рядом сходящейся геометрической прогрессии.

Если $\varlimsup_{n\to\infty} \sqrt[n]{a_n}=\lambda>1$, то существует подпоследовательность номеров $\left\{n_k\right\}$, для которой

$$a_{n_k} \ge \left(\lambda - \varepsilon\right)^{n_k} = \left(\frac{3\lambda - 1}{2}\right)^{n_k} = \mu^{n_k}$$
, $\mu > 1$, $\forall k$, то ряд (1) расходится по невыполнению необходимого признака.

Для обобщенно гармонических рядов $\overline{\lim_{n\to\infty}} \sqrt[n]{\frac{1}{n^p}} = \lim_{n\to\infty} e^{-\frac{p\ln n}{n}} = 1$ при любых p>0 и среди них существуют сходящиеся и расходящиеся ряды.

Пример 4 Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{n \log_a^p n}$ (4) при a > 1 и различных значениях параметра p.

Применим интегральный признак Коши:

$$f(x) = \frac{1}{x \log_a^p x}$$
 монотонно убывает на [2;∞) и интеграл для $p \neq 1$

$$\int_{2}^{\infty} \frac{dx}{x \log_{a}^{p} x} = \ln^{p} a \cdot \int_{2}^{\infty} \frac{dx}{x \ln^{p} x} = \left| u = \ln x \right| = \ln^{p} a \cdot \int_{\ln 2}^{\infty} \frac{du}{u^{p}} = \ln^{p} a \cdot \frac{u^{1-p}}{1-p} \bigg|_{u=\ln a}^{\infty}$$

сходится при p > 1 и расходится при p < 1. По интегральному признаку Коши это означает расходимость ряда (4) при p < 1и его сходимость при p > 1.

При
$$p=1$$
 интеграл $\int\limits_{2}^{\infty} \frac{dx}{x \log_a x} = \ln a \cdot \int\limits_{2}^{\infty} \frac{dx}{x \ln x} = \left| u = \ln x \right| = \ln a \cdot \int\limits_{\ln 2}^{\infty} \frac{du}{u} = \ln a \cdot \ln(\ln x)_{u=\ln a}^{\infty} = \infty$

расходится и поэтому ряд $\sum_{n=2}^{\infty} \frac{1}{n \log_a n}$ расходится

Следующий признак помогает разобраться с ситуацией $\lambda=1$.

ЛЕММА. Ряды $\sum_{n=1}^{\infty} a_n$ (1) и $\sum_{n=1}^{\infty} b_n$ (2) с положительными членами удовлетворяют условию

$$\exists n_0: \forall n \geq n_0 \rightarrow \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n} (5), \text{ to}$$

- 1. из сходимости ряда (2) следует сходимость ряда (1);
- 2. из расходимости ряда (1) следует расходимость ряда (2).

ДОКАЗАТЕЛЬСТВО. Перемножим неравенства (5) для $n=n_0, n_0+1, ..., n-1$. Тогда $\frac{a_{n_0+1} \cdot a_{n_0+2} \cdot ... \cdot a_n}{a_{n_0} \cdot a_{n_0+1} \cdot ... a_{n-1}} \leq \frac{b_{n_0+1} \cdot b_{n_0+2} \cdot ... \cdot b_n}{b_{n_0} \cdot b_{n_0+1} \cdot ... b_{n-1}} \ .$ После сокращения приходим к неравенству $\frac{a_n}{a_{n_0}} \leq \frac{b_n}{b_{n_0}} \to a_n \leq \frac{a_{n_0}}{b_{n_0}} \cdot b_n, \ \forall n \geq n_0 \ .$ Тогда утверждения леммы следуют из признака сравнения 1.

Рассмотрим несколько достаточных признаков сходимости и расходимости, связанных с этой леммой.

ТЕОРЕМА 8. (Признак сходимости РААБЕ)

Пусть ряд $\sum_{n=1}^{\infty} a_n$ (1) с положительными членами и

- 1. существует число p>1, для которого $n\cdot\left(\frac{a_n}{a_{n+1}}-1\right)\geq p,\,\forall n\geq n_0$. Тогда ряд (1) сходится.
- 2. найдется $n_{_0}$. для которого $n\cdot\left(\frac{a_{_n}}{a_{_{n+1}}}-1\right)\leq 1,\ \forall n\geq n_{_0}$. Тогда ряд (1) расходится.
- 3. существует $\lim_{n\to\infty} \left(n \left(\frac{a_n}{a_{n+1}} 1 \right) \right) = p$. Тогда при p>1 ряд (1) сходится, при p<1 расходится.

Доказательство.

1. Возьмем любое $q\in (1;p)$. Рассмотрим замечательный предел $\lim_{n\to\infty}\frac{\left(1+\frac{1}{n}\right)^q-1}{1/n}=q$. Для $\varepsilon=p-q$ существует

$$n_0: \forall n > n_0 \to q - \varepsilon < \frac{\left(1 + 1/n\right)^q - 1}{1/n} < q + \varepsilon \to \left(1 + 1/n\right)^q < (q + (p - q)) \cdot \frac{1}{n} = \frac{p}{n}$$
.

Из условия теоремы

$$\left(\frac{a_{n}}{a_{n+1}}-1\right) \geq \frac{p}{n} > \left(1+1/n\right)^{q}-1, \rightarrow \frac{a_{n}}{a_{n+1}} > \left(1+\frac{1}{n}\right)^{q} = \frac{\left(n+1\right)^{q}}{n^{q}} \rightarrow \frac{a_{n+1}}{a_{n}} < \frac{1/\left(n+1\right)^{q}}{1/n^{q}}, \forall n \geq n_{0}$$

Обозначая через $b_n = \frac{1}{n^q}$, приходим к условию леммы $\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$ при q > 1 . Тогда из

сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$.

2. Из условия следует $\frac{a_n}{a_{n+1}} \le 1 + \frac{1}{n} = \frac{n+1}{n} \to \frac{a_{n+1}}{a_n} \ge \frac{b_{n+1}}{b_n}$, где $b_n = \frac{1}{n}$. Тогда из расходимости ряда $\sum_{n=1}^{\infty} b_n$ следует расходимость ряда $\sum_{n=1}^{\infty} a_n$.

3. Условие теоремы перепишем в виде $n\left(\frac{a_n}{a_{n+1}}-1\right)=p+o(1)$ \Rightarrow

$$\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + o\left(\frac{1}{n}\right). \ \text{Если} \ b_n = \frac{1}{n^q}, \ \text{то} \ \frac{b_n}{b_{n+1}} = \frac{(n+1)^q}{n^q} = \left(1 + \frac{1}{n}\right)^q = 1 + \frac{q}{n} + o\left(\frac{1}{n}\right). \ \text{Пусть} \ p > 1 \ \text{и}$$

выберем число q : 1 < q < p . Тогда ряд $\sum_{n=1}^{\infty} b_n$ сходится и

$$\exists n_0: \forall n>n_0 \Rightarrow \frac{a_n}{a_{n+1}}>\frac{b_n}{b_{n+1}} \to \frac{a_{n+1}}{a_n}<\frac{b_{n+1}}{b_n}\,, \text{ что по лемме означает сходимость ряда (1)}.$$

Пусть p < 1. Выберем число q : p < q < 1. Тогда ряд (2) расходится и

$$\frac{a_{_{n}}}{a_{_{n+1}}} < \frac{b_{_{n}}}{b_{_{n+1}}} \to \frac{b_{_{n+1}}}{b_{_{n}}} < \frac{a_{_{n+1}}}{a_{_{n}}} \, \mathrm{для} \, n > n_{_{0}} \, . \, \, \mathrm{Torдa} \, \, \mathrm{no} \, \, \mathrm{лемме} \, \, \mathrm{ряд} \, (1) \, \mathrm{расходится}.$$

В завершении приведем формулировку достаточного признака сходимости рядов с положительными членами, объединяющий признаки Даламбера и Раабе.

Теорема 9 (признак Гаусса)

Если для ряда
$$\sum_{n=1}^{\infty} a_n$$
, $a_n > 0$ найдутся числа n_0 , λ , μ , $\alpha > 0$, $C > 0$, для которых

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\theta_n}{n^{1+\alpha}} \ \text{с ограниченной последовательностью} \ \theta_n : \left|\theta_n\right| \leq C, \ \forall n \geq n_0 \ , \ \text{то}$$

- 1. При $\lambda > 1$ ряд сходится.
- 2. При λ < 1 ряд расходится.
- 3. При $\lambda = 1, \mu > 1$ ряд сходится
- 4. При $\lambda = 1$, $\mu \le 1$ ряд расходится

ВОПРОСЫ К ЭКЗАМЕНУ.

- 1. Понятие сходимости числового ряда. Критерий Коши для сходимости числового ряда. Необходимое условие сходимости.
- 2. Числовые ряды с положительными членами. Необходимое и достаточное условие сходимости ряда с положительными членами.
- 3. Числовые ряды с положительными членами. Признак сравнения 1 рядов с положительными членами.
- 4. Числовые ряды с положительными членами. Признак сравнения 2 рядов с положительными членами.
- 5. Числовые ряды с положительными членами. Признак Даламбера.
- 6. Числовые ряды с положительными членами. Интегральный признак Коши.
- 7. Числовые ряды с положительными членами. Радикальный признак Коши.
- 8. Числовые ряды с положительными членами. Признак Раабе.