

Low-shot visual object counting

Matej Kristan

Visual Cognitive Systems Laboratory
Faculty of computer and information science
University of Ljubljana, Slovenia

Data Science, FRI, November 2023

How I got into counting

~2016 an astrophysicist-turned-marine-biologist asked me for help

How many polyps in the image?

State-of-the art approaches in counting

Counting by detection

Lin et al. SMCA2001; Zhao et al. CVPR2003; Ge et al. CVPR2009; Leibe et al. CVPR2005; Idrees et al. CVPR2013

Counting by density est.

Arteta et al. ECCV2014; Pham et al. ICCV2015; Zhang et al. CVPR2015; Zhang et al. CVPR2016; Zeng et al. ICIP2017; Sindagi et al. AVSS2017; Cao et al. ECCV2018; Ranjan et al. ECCV2018; Ma et al. ICCV2019; Zhang et al. ICCV2019; Jiang et al. CVPR2019; Wan et al. ICCV2019; Liu et al. CVPR2019; Wan et al. Neurips2020; Wan et al. CVPR2021; Cheng et al. CVPR2022

Counting by regression

Chan et al. CVPR2008; Ryan et al. DIC2009; Kong et al. ICPR2006; Chen et al. BMVC2012

The challenges of polyp counting

- Requirement: visualized locations and sizes
- High size variability, high density, bluring, nonconstant contrast, ...

Our approach (v2): Segment and fit circles into the mask

Detection-by-segmentation counting

Above human-level performance, PoCo2 released to biology community

Method	Ratio	Rel. err.	AR
PoCo2 ^(4,64)	0.99 ± 0.02	0.01 ± 0.02	0.94 ± 0.01
RetinaNet	0.92 ± 0.05	0.08 ± 0.05	0.89 ± 0.04

Zavrtanik, Vodopivec, Kristan, *A segmentation-based* approach for polyp counting in the wild, Engineering Applications of Artificial Intelligence, Elsevier, 2020

Adapted for industrial surface inspection

Defect counting by segmentation

Low-shot counting – the FSC147 benchark

- The FSC147¹ benchmark with few-shot (& O-shot) challenge ¹Ranjan, et al. "Learning to count everything." CVPR 2021
- Few-shot counting:

"Given a few exemplars, count all objects of the same class in the image."

• Zero-shot counting: "Count the majority class objects in the image."

Few-shot counting: the standard pipeline¹

- Extract features of the entire image (f^E)
- Pool features for each exemplar into queries (object prototypes) ($oldsymbol{q}_i$)
- Correlate the queries with the extracted features and decode into density
- Sum the density map
- Challenge: The prototypes should be able to detect all instances well

¹Ranjan, et al. "Learning to count everything." CVPR 2021

Related works

Metric learning [Shi et al., CVPR2022]

Feature enhancing [You et al., WACV2023]

Transformer [Chang et al., BMVC2022]

Observations:

- Prototype constructed by pooling to a fixed-size correlation filter
- Shape information is lost
- Shape should guide filter construction

Our approach: LOCA

- Low-shot Object Counting network with iterative prototype Adaptation
- Explicitly addresses scale information
- Propose object prototype extraction (OPE) module, which is modulated by the shape information for improved correlation filter construction

Đukić, Zavrtanik, Lukežič, Kristan, A Low-Shot Object Counting Network With Iterative Prototype Adaptation, ICCV2023

Object prototype extraction (OPE)

 Shape and appearance queries extracted separately

OPE: Iterative adaptation

Shape query network

$$[W_i,H_i] \rightarrow Q$$

LOCA: Experimental results on FSC147¹

- 147 object categories (89 in training, and 29 in test set)
- 6000 images (3659 for training)
- On average 56 objects per image (between 7 and 3731)
- 3 objects annotated with a bounding box in each image

¹Ranjan, et al. "Learning to count everything." CVPR 2021

Few-shot performance

Three-shot setup

Method	Validat	Validation set		t set
Method	MAE	RMSE	MAE	RMSE
GMN [ACCV2018]	29.66	89.81	26.52	124.57
MAML [PMLR2017]	25.54	79.44	24.90	112.68
FamNet [CVPR2021]	23.75	69.07	22.08	99.54
CFOCNet[wacv202	1]21.19	61.41	22.10	112.71
BMNet+ [CVPR2022]	15.74	58.53	14.62	91.83
SAFECount[WACV202	3] 15.28 ③	47.202	14.323	85.542
CounTR [BMVC2022]	13.13②	49.833	11.952	91.23③
LOCA (ours)	10.241	32.56①	10.791	56.971

RMSE is improved by 33.4%

One-shot setup

RMSE is improved by 16.3%

Method	Validat	Validation set		Test set	
Method	MAE	RMSE	MAE	RMSE	
GMN [ACCV2018]	29.66	89.81	26.52	124.57	
CFOCNet[WACV2021	27.82	71.99	28.60	123.96	
FamNet[cvpr2021	26.55	77.01	26.76	110.95	
BMNet+[CVPR2022	17.89	61.12	16.89	96.653	
LaoNet [Arxiv2021]	17.113	56.813	15.783	97.15	
CounTR[BMVC2022	2]13.15②	49.722	12.06①	90.012	
LOCA (ours)	11.36①	38.041	12.53②	75.321	

Three-shot performance

LOCA delivers a more accurate density

Zero-shot (vs Few-shot) performance

Appearance/shape queries replaced by a trainable prototype

Method	Validat	tion set	Test set		
Method	MAE	RMSE	MAE	RMSE	
RepRPN-C [23]	29.24	98.11	26.66	129.11	
RCC [11]	17.493	58.812	17.123	104.532	
CounTR [16]	17.40①	70.333	14.12①	108.013	
LOCA (ours)	17.432	54.96①	16.222	103.96①	

LOCA is the top overall counter

On par with the state-of-the-art

Đukić, et al., A Low-Shot Object Counting Network With Iterative Prototype Adaptation, ICCV2023

Issues with SOTA low-shot (LS) counters

- Large within-class diversity requires general features to maximize recall
- Application to multi-class images often leads to reduced Precision

A novel DAVE counter

• Slides ommitted from publix since the paper's under review...

Pelhan, Lukežič, Zavrtanik, Kristan, DAVE – A Detect-and-Verify Paradigm for Low-Shot Counting, (submitted) 2023

Density-based counting performance

3-shot counting

	Validation set		Tes	t set
Method	MAE	RMSE	MAE	RMSE
GMN [20]	29.66	89.81	26.52	124.57
MAML [10]	25.54	79.44	24.90	112.68
FamNet [27]	23.75	69.07	22.08	99.54
CFOCNet [38]	21.19	61.41	22.10	112.71
BMNet+ [29]	15.74	58.53	14.62	91.83
VCN [25]	19.38	60.15	18.17	95.60
SAFECount [39]	15.28	47.203	14.32	85.543
CounTR [16]	13.13③	49.83	11.95③	91.23
LOCA [6]	10.242	32.562	10.792	56.972
DAVE	8.91①	28.08①	8.66①	32.36①

Prompt-based counting

	Validation Set		Tes	st Set
Method	MAE	RMSE	MAE	RMSE
ZeroClip [37]	26.93	88.63	22.09	115.17
CLIP-Count [15]	18.793	61.182	17.783	106.622
CounTX [1]	17.702	63.613	15.73②	106.883
DAVE _{prm}	15.48①	52.57①	14.90①	103.42①

0-shot counting

	Validation Set		Tes	t Set
Method	MAE	RMSE	MAE	RMSE
RepRPN-C [26]	29.24	98.11	26.66	129.11
RCC [13]	17.49	58.813	17.12	104.53③
CounTR [16]	17.402	70.33	14.12①	108.01
LOCA [6]	17.43③	54.962	16.22③	103.962
DAVE _{0-shot}	15.54①	52.67①	15.142	103.49①

- Outperforms 3-shot sota (substantial RMSE reduction) [LOCA ICCV2023]
- Outperforms prompt-based sota [ZeroClip CVPR2023, CounTX BMVC2023]
- Slightly outperforms or performs on par with 0-shot sota [LOCA ICCV2023]

False response activation reduction

Performance on multi-class images

- Multi-class test set FSCD147_{mul}
- Retrained LOCA with multi-class images:

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
008	
	30000
18.8	

		FSCD147		FSCE)147 _{mul}
	MAE(↓)	RMSE(↓)	AP50(↑)	MAE(↓)	RMSE(↓)
LOCA [6]	10.792	56.97②	-	21.28	43.67
LOCA _{mul} [6]	12.63	78.95	-	13.25②	22.57②
CounTR [16]	11.953	91.233	-	14.563	27.413
DAVE	8.66①	32.36①	61.08①	3.05①	4.941

- LOCA_{mul} improves over LOCA on multi-class, but not on the original dataset
- Margin between DAVE and top-performer further increases on FSCD147mul (~40% FSCD vs ~80% FSDC_{mul})

Few-shot <u>detection</u> performance analysis

	Validation Set		Test Set	
Method	AP↑	AP50 ↑	AP∱	AP50 ↑
FSDetView-PB [35]	-	-	13.41	32.99
FSDetView-RR [35]	-	-	17.21	33.70
AttRPN-RR [9]	-	-	18.53	35.87
AttRPN-PB [9]	-	-	20.973	37.193
C-DETR [22]	17.27②	41.902	22.662	50.572
DAVE	24.201	61.08①	26.81①	62.82①
$DAVE_{0\operatorname{-shot}}$	16.312	46.871	18.552	50.082

shot 16.31② 46.87① 18.55② 50.08② **←** (medals are vs CDETR)

DAVE outperforms CDETR¹ by ~20% (AP & AP50)

Better Pr / Re : (1), (2)

• Better in high-density regions: (3), (4)

Better learns what to count (5)

Even 0-shot DAVE performs on par with CDETR (!)

¹Nguyen et al, ECCV2022

Counting-by-detection performance

• Estimate the counts by the number of detections: DAVEbox

Few-s	not.	SPTII	n
I C VV 3		366	P

	Valida	Validation Set		st Set	
Method	MAE	RMSE	MAE	RMSE	
FSDetView-RR [35]	_	-	37.83	146.56	
FSDetView-PB [35]	-	-	37.54	147.07	
AttRPN-RR [9]	-	-	32.70	141.073	
AttRPN-PB [9]	-	-	32.423	141.55	
C-DETR [22]	20.382	82.452	16.792	123.562	
DAVE ^{box}	9.75①	40.30①	10.45①	74.51①	
LOCA [6]	10.242	32.562	10.792	56.972	
DAVE	8.91①	28.081	8.66 1	32.36①	

- DAVE outperforms detection sota by ~40% MAE/RMSE
- Not only detection-based, also density-based estimates of LOCA
- DAVEbox lags behind DAVE in high-density scenes with small objects

Conclusion

Overviewed our recent work on counting

PoCo!

Zavrtanik, Vodopivec, Kristan, A segmentation-based approach for polyp counting in the wild, Engineering Applications of Artificial Intelligence, Elsevier, 2020

LOCA!

Đukić, Zavrtanik, Lukežič, Kristan, A Low-Shot Object Counting Network With Iterative Prototype Adaptation, ICCV2023

DAVE!

Pelhan, Lukežič, Zavrtanik, Kristan,
DAVE – A Detect-and-Verify Paradigm
for Low-Shot Counting,
(submitted)

- Several directions for future research:
 - Further increase detection capabilities on high-density regions.
 - Explore possibility of (automatic) exemplar re-selection & interactive counting.
 - Connection to retrieval, tracking, etc.

Thanks

The PoCO/LOCA/DAVE core team

Nikola Đukić

Vitjan Zavrtanik

Alan Lukežič

Matej Kristan

