RSA Algorithm

Key Generation Alice

Select p, q

p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calcuate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate $d \equiv e^{-1} \pmod{\phi(n)}$ Public key $PU = \{e, n\}$

Private key $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext: M < nCiphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Public Key

Ciphertext:

Plaintext: $M = C^d \mod n$

Figure 9.5 The RSA Algorithm

Exercise:

p=3, q=17, M=5, e=5

$$n = pq$$

= 3 * 17 $\phi(n) = (p-1)(q-1) = 2 * 16 = 32$

= 51 $\operatorname{de} \bmod \frac{\phi(n)}{\phi(5)} = 1$ $\operatorname{d}(5) \bmod 32 = 1$

 $13(5) \mod 32 = 1$

d=13

Encryption by bob with Alice's public key:

C = M^e mod n

 $= 5^5 \mod 51$

= 14

Decryption by Alice with Alice's private key

 $M = C^d \mod n$

= 14^13 mod 51

= 5

<u>RSA Cipher Calculator - Online Decoder, Encoder, Translator</u> - A link that can verify your d (private key) and C (cipher text)

Diffie-Hellman

Global Public Elements

q prime number

 α and α a primitive root of q

User A Key Generation

Select private $X_A < q$

Calculate public $Y_A = \alpha^{XA} \mod q$

User B Key Generation

Select private X_B $X_B < q$

Calculate public $Y_B = \alpha^{XB} \mod q$

Calculation of Secret Key by User A

 $K = (Y_B)^{XA} \bmod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{XB} \bmod q$

Figure 10.1 The Diffie-Hellman Key Exchange Algorithm

Exercise:

$q = 23$, $\alpha = 5$, $XA = 4$, $XB = 3$					
А		В			
YA = α ^ XA mod q YA = 5^4 mod 23 = 4 K = (YB)^XA mod q = 10^4 mod 23 = 18	Untrusted Network	YB = a ^ XB mod q YB = 5^3 mod 23 = 10 K = (YA)^XB mod q = 4^3 mod 23 = 18			
∴ 18 is the secret key					