

PPRODUCT INFORMATION
Thermo Scientific
Phusion Hot Start II
High-Fidelity
PCR Master Mix

#F-565S Lot 100 x 50 µL rxns Expiry Date

Store at -20°C

||**|** 67

www.thermoscientific.com/onebio

Ordering information

Component	#F-565S 100 rxns	#F-565L 500 rxns
2X Phusion Hot Start II High- Fidelity PCR Master Mix	2 × 1.25 mL	10 × 1.25 mL
100% DMSO	500 μL	2 x 500 μL
Water, nuclease-free	2 × 1.25 mL	10 × 1.25 mL

1.Introduction

Thermo ScientificTM PhusionTM Hot Start II High-Fidelity DNA Polymerase offers superior performance for all PCR applications. A unique processivity-enhancing domain makes this *Pyrococcus*-like proofreading enzyme extremely processive, accurate and rapid. The error rate of Phusion Hot Start II DNA Polymerase is equal to that of Phusion DNA Polymerase (4.4 × 10-7 in Phusion HF-buffer) when determined with a modified *lacl*-based method¹. It is approximately 50-fold lower than that of *Thermus aquaticus* DNA polymerase and 6-fold lower than that of *Pyrococcus furiosus* DNA polymerase. Phusion Hot Start II High-Fidelity DNA Polymerase is capable of amplifying long amplicons such as the 7.5 kb genomic and 20 kb λ DNA.

Phusion Hot Start II DNA Polymerase combines the DNA polymerase and a reversibly bound, specific Affibody® protein², which inhibits the DNA polymerase activity at ambient temperatures, thus preventing the amplification of non-specific products. In addition, the Affibody ligand inhibits the 3'—5' exonuclease activity of the polymerase, preventing degradation of primers and template DNA during reaction setup. At polymerization temperatures, the Affibody molecule is released, rendering the polymerase fully active. Phusion Hot Start II DNA Polymerase does not require any separate activation step in the PCR protocol.

Phusion Hot Start II DNA Polymerase possesses the following activities: 5'→3' DNA polymerase activity and 3'→5' exonuclease activity. It generates blunt ends in the amplification products. Phusion Hot Start II High-Fidelity PCR Master Mix is a convenient 2X mix containing Phusion Hot Start II DNA Polymerase, nucleotides and optimized reaction buffer including MgCl₂. Only template and primers need to be added by the user.

2. Important Notes

- Use 98 °C for denaturation. (See 5.1 & 5.2)
- The annealing rules are different from many common DNA polymerases (such as *Taq* DNA polymerases). Read Section 5.3 carefully.
- Use 15–30 s/kb for extension. Do not exceed 1 min/kb. (See 5.4)
- Phusion DNA Polymerases produce blunt end DNA products.

3. Setting up PCR reactions using Phusion Hot Start II High-Fidelity PCR Master Mix

Carefully mix and centrifuge all tubes before opening to ensure homogeneity and improve recovery. When using Phusion Hot Start II High-Fidelity PCR Master Mix, it is not necessary to perform the PCR setup on ice.

Due to the unique nature of Phusion DNA Polymerases, optimal reaction conditions may differ from standard enzyme protocols. Phusion DNA Polymerases tend to work better at elevated denaturation and annealing temperatures due to higher salt concentrations in its buffer. Please pay special attention to the conditions listed in section 5 when running your reactions. Following the guidelines will ensure optimal enzyme performance.

Table 1. Pipetting instructions: add items in this order.

Component	20 μL rxn	50 μL rxn	Final conc.
H ₂ O	add to 20 µL	add to 50 µL	
2X Phusion HS II HF Master Mix	10 µL	25 µL	1X
Forward primer *	ΧμL	XμL	0.5 µM
Reverse primer *	ΧμL	ΧμL	0.5 μM
Template DNA	XμL	XμL	
(DMSO**, optional)	(0.6 µL)	(1.5 µL)	(3%)

 $^{^*}$ The recommendation for final primer concentration is 0.5 µM, but it can be varied in a range of 0.2–1.0 µM, if needed.

Table 2. Cycling instruction

Cycle step	2-step protocol		3-step protocol		Cycles
	Temp.	Time	Temp.	Time	Cycles
Initial Denaturation	98 °C	30 s	98 °C	30 s	1
Denaturation Annealing (see 5.3) Extension (see 5.4)	98 °C - 72 °C	5–10 s – 15–30 s/kb	98 °C X °C 72 °C	5–10 s 10–30 s 15–30 s/kb	25–35
Final extension	72 °C 4 °C	5–10 min hold	72 °C 4 °C	5–10 min hold	1

4. Notes about reaction components

4.1. Phusion Hot Start II High-Fidelity PCR Master Mix

2X Phusion Hot Start II High-Fidelity PCR Master Mix contains all the necessary reaction components except for template DNA and primers. The master mix provides 1.5 mM MgCl₂ and 200 μM of each dNTP in final reaction concentration. Phusion Hot Start II DNA polymerase concentration is optimized to give good results in most reactions. When PCR reaction is set up according to the instructions, the final concentration of Phusion enzyme is 1 U in 50 μL reaction (0.4 U in 20 μL reaction).

4.2. Template

For low complexity DNA (e.g. plasmid, lambda or BAC DNA) it is recommended to use 1 pg–10 ng per $50~\mu L$ reaction volume. For high complexity genomic DNA, the amount of DNA template should be 10–250 ng per $50~\mu L$ reaction volume. If cDNA synthesis reaction mixture is used as a source of template, the volume of the template should not exceed 10% of the final PCR reaction volume.

4.3. PCR additives

The recommended reaction conditions for GC-rich templates include 3% DMSO as a PCR additive, which aids in the denaturing of templates with high GC contents. For further optimization, DMSO should be varied in 2% increments. DMSO may also be required for supercoiled plasmids to relax for denaturation. If high DMSO concentration is used, the annealing temperature must be decreased, as DMSO affects the melting point of the primers. It has been reported that 10% DMSO decreases the annealing temperature by 5.5–6.0°C.4

5. Notes about cycling conditions

5.1. Initial denaturation

Denaturation should be performed at 98 °C. Due to the high thermostability of Phusion DNA Polymerases even higher than 98 °C denaturation temperatures can be used. We recommend 30 seconds initial denaturation at 98 °C for most templates. Some templates may require longer initial denaturation time and the length of the initial denaturation time can be extended up to 3 minutes.

5.2. Denaturation

Keep the denaturation as short as possible. Usually 5–10 seconds at 98 °C is enough for most templates. The denaturation time and temperature may vary depending on the ramp rate and temperature control mode of the cycler.

5.3. Primer annealing

The optimal annealing temperature for Phusion DNA Polymerases may be significantly different than annealing temperature with other DNA polymerases. Always use the Tm calculator and instructions on www.thermoscientific.com/pcrwebtools to determine the Tm values of your primers and optimal annealing temperature.

As a basic rule, for primers > 20 nt, anneal for 10-30 seconds at a Tm +3 °C of the lower Tm primer. For primers \leq 20 nt, use an annealing temperature equal to the Tm of the lower Tm primer. If necessary, use a temperature gradient to find the optimal annealing temperature for each template-primer pair combination. The annealing gradient should extend up to the extension temperature (two-step PCR).

Two-step cycling without annealing step is also recommended for high Tm primer pairs.

5.4. Extension

The extension should be performed at 72 °C. Extension time depends on amplicon length and complexity. For low complexity DNA (e.g. plasmid, lambda or BAC DNA) use extension time 15 s per 1 kb. For high complexity genomic DNA 30 s per 1 kb is recommended.

6. Cloning recommendations

Blunt end cloning is recommended when cloning DNA fragments amplified with Phusion DNA Polymerases. If TA cloning is required, it is necessary to add A overhangs to the PCR product (with Thermo Scientific *Taq* DNA Polymerase, for example). However, before adding the A overhangs it is important to remove the Phusion DNA Polymerase by purifying the PCR product. Any remaining Phusion DNA Polymerase will degrade the overhangs, re-creating blunt ends. A detailed protocol for TA cloning of fragments amplified with Phusion DNA Polymerases can be found on our website www.thermoscientific.com/pcrcloning.

(continued on reverse page)

^{**} Addition of DMSO is recommended for GC-rich amplicons. DMSO is not recommended for amplicons with very low GC % or amplicons that are > 20 kb.

7. Troubleshooting

No product at all or low yield

- · Repeat and make sure that there are no pipetting
- Titrate template amount.
- Template DNA may be damaged. Use carefully purified template.
- Increase extension time.
- · Increase the number of cycles.
- Optimize annealing temperature.

- Titrate DMSO (2-8%) in the reaction.
- Denaturation temperature may be too low. Optimal denaturation temperature for most templates is 98 °C or higher.
- Optimize denaturation time.
- · Check the purity and concentration of the primers.
- · Check primer design.

Non-specific products - High molecular weight smears

- Shorten extension time · Reduce the total number
- of cycles. Increase annealing temperature or try 2-step
- Vary denaturation temperature
- Decrease primer concentration.

Non-specific products - Low molecular weight discrete bands

- Increase annealing temperature
- · Shorten extension time.
- Titrate template amount.
- Decrease primer concentration.
- Design new primers.

Technical support:

EMEA: ts.molbio.eu@thermofisher.com

North America, Latin America & APAC: ts.molbio@thermofisher.com

7. References

- Frey M. & Suppmann B. (1995) Biochemica 2: 34-35.
- Nord K. et al. (1997) Nature Biotechnol. 15: 772-777.
- Wikman M. et al. (2004) Protein Eng. Des. Sel. 17: 455-462.
- Chester N. & Marshak D.R. (1993) Analytical Biochemistry 209: 284-290.

CERTIFICATE OF ANALYSIS

DNA amplification assay

Performance in PCR is tested by the amplification of a 7.5 kb fragment of genomic DNA.

Quality authorized by:

Jurgita Zilinskiene

NOTICE TO PURCHASE: LIMITED LICENSE

- The purchase price of this product includes a limited, non-transferable license under U.S. and foreign patents owned by BIO-RAD Laboratories, Inc., to use this product. No other license under these patents is conveyed expressly or by implication to the purchaser by the purchase of this product.
- This product is sold under license from Affibody AB, Sweden.

LIMITED USE LABEL LICENSE: Internal Research and Development Use Only.

The purchase of this product conveys to the buyer the limited, non-exclusive, non-transferable right (without the right to resell, repackage, or further sublicense) to use this product for internal research and development purposes. No other license is granted to the buyer whether expressly, by implication, by estoppel or otherwise. In particular, the purchase of the product does not include or carry any right or license to use, develop, or otherwise exploit this product commercially and no rights are conveyed to the buyer to use the product or components of the product for purposes including but not limited to provision of services to a third party, generation of commercial databases or clinical diagnostics. This product is sold pursuant to authorization from Thermo Fisher Scientific and Thermo Fisher Scientific reserves all other rights. For information on purchasing a license for uses other than internal research and development purposes, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies Inc., 5791 Van Allen Way, Carlsbad, California 92008.

PRODUCT USE LIMITATION

This product is developed, designed and sold exclusively for research purposes and in vitro use only. The product was not tested for use in diagnostics or for drug development, nor is it suitable for administration to humans or animals. Please refer to www.thermoscientific.com/onebio for Material Safety Data Sheet of the product.

© 2015 Thermo Fisher Scientific, Inc. All rights reserved. Affibody is a registered trademark of Affibody AB, Sweden. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.