Заметки по машинному обучению и анализу данных. Том 2

Подвойский А.О.

Здесь приводятся заметки по некоторым вопросам, касающимся машинного обучения, анализа данных, программирования на языках Python, R и прочим сопряженным вопросам так или иначе, затрагивающим работу с данными.

Краткое содержание

1 Приемы работы с библиотеками Gym и Ecole	1
2 Отбор признаков с библиотекой BoostARoota	3
3 Площадь по ROC-кривой	3
4 Приемы работы с Gurobi	5
Список иллюстраций	6
Список литературы	6
Содержание	
1 Приемы работы с библиотеками Gym и Ecole	1
1.1 Gym	1
1.2 Ecole	2
1.2.1 Observations	2
2 Отбор признаков с библиотекой BoostARoota	3
3 Площадь по ROC-кривой	3
4 Приемы работы с Gurobi	5
Список иллюстраций	6
Список литературы	6

1. Приемы работы с библиотеками Gym и Ecole

1.1. Gym

Функция окружения (environment) step возвращает четыре значения:

o observation (object): это объект, специфичный для окружающей среды и представляющий результат наблюдения за этой средой (например, состояние доски в настольной игре),

- reward (float): вознаграждение, полученное за предыдущее действие. Масштаб варьируется в зависимости от среды, но цель всегда в том, чтобы сделать суммарное вознаграждение как можно больше,
- done (boolean): флаг завершения эпизода. Многие (но не все) задачи разделены на четко определенные эпизоды, и done = True указывает на то, что эпизод завершился (например, мы потеряли последнюю жизнь в игре),
- o info (dict): диагонстическая информация, полезная для отладки.

Это просто реализация классического цикла «агент – среда». На каждом шаге агент совершает то или иное действие и среда возвращает наблюдения (observation) и вознаграждение (reward).

Процесс запускается вызовом функции reset(), которая возвращает первое приближение observation.

```
import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range(100):
        env.render()
        print(observation)
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()
```

В этом примере мы отбирали случайные действия из пространства действий среды. Каждая среда поставляется с атрибутами action_space и observation_space. Эти атрибуты имеют тип Space и описывают формат допустимых действий и наблюдений

Пространство Descrete описывает фиксированный диапазон неотрицательных чисел, так что в данном случае допустимыми действиями будет 0 или 1. Пространство Box представляет n-мерный ящик, так что в данном случае допустимыми наблюдениями будут 4-мерные массивы.

1.2. Ecole

Полезный ресурс о специальных приемах работы с задачами линейного программирования в частично-целочисленного постановке https://www.gams.com/37/docs/UG_LanguageFeatures.html?search=sos1

Полезный ресурс по математической оптимизации https://scipbook.readthedocs.io/en/latest/

1.2.1. Observations

Knacc ecole.observation.NodeBipartiteObs: двудольный граф наблюдений для узлов branchand-bound дерева. Оптимизационная задача представляется в виде гетерогенного двудольного графа. Между переменной и ограничением будет существовать ребро, если переменная присутствует в ограничении с ненулевым коэффициентом.

Metog reset() в Ecole принимает в качестве аргумента экземпляр проблемы.

2. Отбор признаков с библиотекой BoostARoota

BoostARoota https://github.com/chasedehan/BoostARoota — алгоритм отобора признаков на базе экстримального градиентного бустинга в реализации XGBoost. Алгоритм требует гораздо меньших затрат времени на выполнение. Перед применением необходимо выполнить дамми-кодирование, поскольку базовая модель работает только с количественными признаками.

Отбор признаков выполняется на обучающем поднаборе данных, поэтому предполагается, что массив меток и массив признаков *обучающие*, а для проверки качества модели отбора признаков есть независимая, *тестовая* выборка. Кроме того, если необходимо выбрать оптимальные значения гиперпараметров модели отбора признаков (например, значения гиперпараметров cutoff, iters и delta), то понадобиться еще *проверочная* выборка.

3. Площадь по ROC-кривой

Построение ROC-кривой происходит следующим образом (рис. 1):

- 1. Сначала сортируем все наблюдения по убыванию спрогнозированной вероятности положительного класса,
- 2. Берем единичный квадрат на координатной плоскости. Значения оси абсцисс будут значения ями 1 специфичности (цена деления оси задается значением 1/neg), а значения оси ординат будут значениями чувствительности (цена деления оси задается значением 1/pos). При этом роз это количество наблюдений положительного класса, а neg количество наблюдений отрицательного класса,
- 3. Задаем точку с координатами (0, 0) и для каждого отсортированного наблюдения х:
 - если x принадлежит положительному классу, двигаемся на 1/pos вверх,
 - если х принадлежит отрицательному классу, двигаемся на 1/neg вправо.

Значение вероятности положительного класса, при котором ROC-кривая находится на минимальном расстоянии от верхнего левого угла – точки с координатами (0, 1), дает наибольшую правильность классификации. В данному случае (рис. 2) будет 0.72.

Площадь под ROC-кривой (ROC-AUC) можно интерпретировать как вероятность события, состоящего в том, что классификатор присвоит более высокий ранг (например, вероятность) случайно выбранному экземпляру положительного класса, чем случайно выбранному экземпляру отрицательного класса (если не рассматривать вариант равенства значений рангов).

Замечание

На ROC-кривые не влияет баланс классов (при достаточном объеме выборки) и они могут чрезмерно оптимистично оценивать качество работы алгоритма в случае дисбалансов. Лучше пользоваться гармоническим средним или PR-кривыми

Однако недостаток такой интепретации заключается в том, что мы пренебрегаем часто встречающейся ситуацией равенства вероятностей. Поэтому правильнее будет сказать, что ROC-AUC

Спрогнозированные вероятности положительного класса, отсортированные по убыванию

Рис. 1. Построение ROC-кривой

равен доле пар вида (экземпляр положительного класса, экземпляр отрицательного класса), которые алгоритм верно упорядочил в соответствии с формулой

$$\frac{\sum_{i,j=1}^{n_i, n_j} s(x_i, x_j)}{n_i n_j}, \quad s(x_i, x_j) = \begin{cases} 1, x_i > x_j, \\ 1/2, x_i = x_j, \\ 0, x_i < x_j, \end{cases}$$
(1)

где x_i – ответ алгоритма для положительного экземпляра, x_j – ответ алгоритма для отрицательного экземпляра.

По сути числитель дроби представляет собой сумму количеств j-ых наблюдений отрицательного класса, лежащих ниже каждого i-ого наблюдения положительного класса. Каждое такое количество мы берем по каждому i-ому наблюдению положительного класса в последовательности, отсортированной по мере убывания вероятности положительного класса. Знаменатель дроби – это произведение количества наблюдений положительного класса и наблюдений отрицательного класса.

Если говорить более точно, мы берем наблюдение положительного класса под номером 20 и каждый раз образовываем пару с наблюдением отрицательного класса (рис. 3), у нас 12 пар, 12 раз наблюдение полжительного класса под номером 20 было проранжировано выше наблюдений отрицательного класса 12, 11, 10 и т.д. Записываем число 12 напротив наблюдения 20.

Разные модели нельзя сравнивать только по ROC-AUC. ROC-AUC оценивает разные классификатор, используя метрику, которая сама зависит от классификатора. То есть ROC-AUC оценивает разные классификаторы, используя разные метрики.

Построение ROC-кривой вручную

Рис. 2. ROC-кривая. Порог отсечения 0.72

Замечание

Если часть ROC-кривой лежит ниже диагональной линии, а часть – выше, то это означает, что классы не являются линейно-сепарабельными, а при этом используется линейная модель

При одинаковой ROC-AUC у разных моделей (соответственно с разными ROC-кривыми) будет разное распределение стоимостей ошибочной классификации. Проще говоря, мы можем вычислить ROC-AUC для классификатора A и получить 0.7, а затем вычислить ROC-AUC для второго классификатора и снова получить 0.7, но это не обязательно означает, что у них одна и та же эффективность.

4. Приемы работы с Gurobi

Полезный pecypc https://www.gams.com/latest/docs/S_GUROBI.html#GUROBI_GAMS_GUROBI_ LOG FILE

Чтобы запустить Gurobi в интерактвином режиме, следует в командной оболочке набрать gurobi

Сессия GUROBI

```
gurobi> m = read("./ikp_milp_problem.lp")
gurobi> m.optimize()
gurobi> vars = m.getVars()
gurobi> help(m)
# вывести 2-картежи целочисленных переменных с отличным от нуля значением
gurobi> [(var.varName, var.x) for var in vars if (var.x > 0) and (var.vType == "I")]
gurobi> m.write("res.sol") # записать решение
```

Отсортированные спрогнозированные вероятности положительного класса

20 Р 0,92 0 12 Считаем количество отрицательных ниже каждого наблюдения положительного класса 18 Р 0,88 0 12 количество отрицательных ниже каждого наблюдения положительного класса 17 Р 0,82 0 11 положительного класса 16 Р 0,79 0 11 тельного класса 11 N 0,75 1 10 15 Р 0,73 0 10 14 Р 0,72 0 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 Р 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,24 1 1 N 0,18 1	Nº	фактический класс	спрогно- зированная вероятность положитель- ного класса	скоринговое правило $S(x_i, x_j)$ $= \begin{cases} 1, x_i > x_j, \\ \frac{1}{2}, x_i = x_j, \\ 0, x_i < x_j \end{cases}$	количество наблюдений отрицательного класса, лежащих ниже соответствующего наблюдения положительного класса	
18 Р 0,88 0 12 Отрицательных ниже каждого наблюдения положинаблюдения	20	Р	0,92	0	12	Считаем
12 N 0,85 1 Ниже каждого наблюдения положительного класса 16 Р 0,79 0 11 Тельного класса 16 Р 0,73 0 10 10 10 14 Р 0,72 0 10 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 Р 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	19	Р	0,9	0	12	
12 N 0,85 1 17 P 0,82 0 11 16 P 0,79 0 11 16 P 0,79 0 11 11 N 0,75 1 10 15 P 0,73 0 10 14 P 0,72 0 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	18	Р	0,88	0	12	
17 P 0,82 0 11 положительного класса 16 P 0,79 0 11 тельного класса 11 N 0,75 1 0 1	12	N	0,85	1		
11 N 0,75 1 15 P 0,73 0 10 14 P 0,72 0 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1		Р	0,82	0		
15 P 0,73 0 10 14 P 0,72 0 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	16	Р	0,79	0	11	
14 P 0,72 0 10 10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	11	N	0,75	1		класса
10 N 0,7 1 9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	15	Р		0		
9 N 0,6 1 8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1		Р	0,72	0	10	
8 N 0,59 1 7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	10	N	0,7	1		
7 N 0,58 1 6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1		N		1		
6 N 0,53 1 13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1		N	0,59			
13 P 0,52 0 5 5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1						
5 N 0,4 1 4 N 0,33 1 3 N 0,32 1 2 N 0,24 1	_					
4 N 0,33 1 3 N 0,32 1 2 N 0,24 1		=			5	
3 N 0,32 1 2 N 0,24 1					7	7
2 N 0,24 1						
·						
1 N 0,18 1						
	1	N	0,18	1		

Рис. 3. Расчет ROC-AUC по формуле (1)

Список иллюстраций

1	Построение ROC-кривой	4
2	ROC-кривая. Порог отсечения 0.72	5
3	Расчет ROC-AUC по формуле (1)	6
4	Расчет ROC-AUC по формуле (1) для случая равных вероятностей принадлежности	
	экземпляра положительному классу	7

Список литературы

- 1. $\it Лути, M.$ Изучаем Python, 4-е издание. Пер. с англ. СПб.: Символ-Плюс, 2011. 1280 с.
- 2. $\mathit{Бизли}\ \mathcal{A}.$ Python. Подробный справочник. Пер. с англ. СПб.: Символ-Плюс, 2010. 864 с.

Отсортированные спрогнозированные вероятности положительного класса

случай равенства вероятностей

Nº	фактический класс	спрогно- зированная вероятность положитель- ного класса	Скоринговое правило $S(x_i, x_j)$ $\begin{cases} 1, x_i > x_j, \\ \frac{1}{2}, x_i = x_j, \\ 0, x_i < x_j \end{cases}$	количество наблюдений отрицательного класса, лежащих ниже соответствующего наблюдения положительного класса	
20	Р	0,92	0	12	Считаем
19	Р	0,9	0	12	количество
18 12	P N	0,88 0,88	0,5	11,5	отрицательных ниже каждого
17	P	0,82	0	11	наблюдения положи-
16	Р	0,79	0	11	тельного
11	N	0,75	1		класса
15	Р	0,73	0	10	
14	Р	0,72	0	10	
10	N	0,7	1		
9	N	0,6	1		
8	N	0,59	1		
7	N	0,58	1		
6	N	0,53	1		
13	Р	0,52	0	5	
5	N	0,4	1	7	7
4	N	0,33	1		
3	N	0,32	1		
2	N	0,24	1		
1	N	0,18	1		

Рис. 4. Расчет ROC-AUC по формуле (1) для случая равных вероятностей принадлежности экземпляра положительному классу