Theoretische Physik IV

Philipp Dijkstal und Jan Krause

3. Juni 2013

Inhaltsverzeichnis

1	Prin	zipien	der Thermodynamik	2
	1.1	Grundkonzepte der Thermodynamik		2
		1.1.1	Thermodynamische Systeme	2
		1.1.2	Thermodynamische Gleichgewichtszustände	2
		1.1.3	Adiabatische Erreichbarkeit	3
		1.1.4	Kontrolle thermodynamischer Gleichgewichtszustände	6
		1.1.5	Grundproblem der Thermodynamik	6
		1.1.6	Einfache Thermodynamische Systeme	7
	1.2	Thern	nische Gleichgewichtsbedingungen	8
		1.2.1	Thermisches Gleichgewicht und Temperatur	8
		1.2.2	Mechanisches Gleichgewicht	9
		1.2.3	Chemisches Gleichgewicht	9
		1.2.4	Adiabatische Erreichbarkeit thermodynamischer Prozesse	9
		1.2.5	Thermodynamische Maschinen	10
	1.3	Extre	malprinzipien und thermodynamische Potentiale	11
		1.3.1	Prinzip minimaler Energie	11

1 Prinzipien der Thermodynamik

Grundbegriffe:

- thermodynamische Gleichgewichtszustände, leicht beschreibbar
- thermodynamische Systeme
- \rightarrow Aussagen über natürliche Zustandsänderungen

1.1 Grundkonzepte der Thermodynamik

1.1.1 Thermodynamische Systeme

- wohldefinierte Menge einer physikalischen Substanz
- (Idealisierung) Skalierbarkeit (beliebige Teilungs- und Vereinigungsprozesse sind möglich)
- 1 Atom, 1 Universum sind keine thermodynamische Systeme

1.1.2 Thermodynamische Gleichgewichtszustände

Postulat I: Makroskopische Materie kann in thermodynamischen Gleichgewichtszuständen sein Eigenschaften:

- keine zeitlichen Änderungen (auf makroskopischen Skalen)
- unabhängig von Präparation (Historie)
- wenige Parameter (thermodynamische Variablen, Koordinaten)

z.B. Einfache Systeme (ungeladen, keine Oberflächeneffekte)

innere Energie (Gesamtenergie) U

Volumen V

Teilchenzahlen N_i , i = 1, ..., r

$$X = (U, V, N_1, ..., N_r)$$

1. Hauptsatz der Thermodynamik

Wird ein thermodynamischer Gleichgewichtszustand Y von X durch "natürliche Prozessführung" (adiabatische Erreichbarkeit) erreicht, so ist die am thermodynamischen System verrichtete Areit unabhängig davon, auf welchem Wege diese Arbeit zugeführt wurde, d.h. U ist eine thermodynamische Koordinate.

 \rightarrow "Innere Energie U ist immer eine Koordinate" Inhalt des 1. HS

Sonderfälle

- Reservoir: U ist die einzige thermodynamische Variable
- Mechanische Systeme im Gleichgewicht: Masse M in konsv. Schwerefeld (g Erdbeschleunigung)

$$X = (U = Mgz)$$
, mit $z = \text{const}$

Bemerkungen: $U, V, N_1, ..., N_i$ skalieren mit der Größe des Systems

 \rightarrow extensive thermodynamische Variablen

1.1.3 Adiabatische Erreichbarkeit

Max Planck

Y ist von X aus adiabatisch erreichbar, d.h. X<Y, wenn es möglich ist, die Zustandsänderung des betrachteten thermodynamischen Systems von X nach Y mit Hilfe eines thermodynamischen Hilfssystems (Umgebung, z.B. Maschine) so durchzuführen, dass der einzige Effekt auf dieses Hilfssystem äquivalent einer mechanischen Energieänderung ist, wie z.B. das Heben oder Senken eines Gewichts.

 \rightarrow Formulierung ohne Begriffe Wärme und Temperatur

Literatur:

- Thess: Das Entropieprinzip (Thermodynamik für Unzufriedene)
- E.Lieb, J. Yngvason: Phys. Rep. 310/S.1 (1999)

mathematisch:

$$X, Y \in \Gamma$$

Ordnungsrelation: $X < Y \Leftrightarrow S(X) \leq S(Y)$

Notation:

$$X < Y \land Y < X \Leftrightarrow X \sim Y$$

$$X < Y \land Y \not< X \Leftrightarrow X \ll Y$$

Zusammengesetze Systeme:

$$X = (U_1, V_1, N_1)$$

$$Y = (U_2, V_2, N_2)$$

$$(X,Y) = (U_1, V_1, N_1, U_2, V_2, N_2)$$

Axiome der adiabatischen Erreichbarkeit:

• reflexiv:

$$X \sim X$$
 (1)

• transitiv:

$$X < Y \land Y < Z \Rightarrow X < Z \tag{2}$$

• konsistent:

$$\left. \begin{array}{l}
X < X'; X, X' \in \Gamma \\
Y < Y'; Y, Y' \in \Gamma'
\end{array} \right\} \Rightarrow (X, Y) < (X', Y')$$
(3)

• skalierbar:

$$X < Y \Rightarrow \lambda X < \lambda Y$$

$$\lambda X := (\lambda U_1, \lambda V_1, \lambda N_1)$$
(4)

• teilen und wiedervereinigen:

$$((1 - \lambda)X, \lambda X) \sim X, \quad \lambda \in [0, 1] \tag{5}$$

• stabil:

$$X, Y \in \Gamma, \quad Z_0, Z_1 \in \Gamma', \quad \epsilon \to 0$$

 $(X, \epsilon Z_0) < (Y, \epsilon Z_1) \Rightarrow X < Y$ (6)

• Vergleichbarkeitsprinzip:

Für jedes Paar von Zuständen $X,Y \in \Gamma$ gilt entweder X < Y oder Y < X oder beides. Dies gilt auch für zusammengesetzte Systeme und Zustände der Form

$$\underbrace{((1-\lambda)X,\lambda X)}_{:=X_{\lambda}} < \underbrace{((1-\lambda')Y,\lambda'Y)}_{:=Y_{\lambda'}} \quad \text{für } 0 \le \lambda,\lambda' \le 1$$

$$:= X_{\lambda}$$

$$(7)$$

 $X_{\lambda} < Y_{\lambda'}$ oder $X_{\lambda} > Y_{\lambda'}$ oder beides

Dazu gehören andere Zustandsräume Γ_{λ} .

$$\Gamma_{1-\lambda} \times \Gamma_{\lambda} \ni X_{\lambda} := ((1-\lambda)X_1, \lambda X_2) \quad X_1, X_2, Y_1, Y_2 \in \Gamma$$

$$Y_{\lambda} := ((1-\lambda)Y_1, \lambda Y_2)$$
(8)

• konvexe Kombinierbarkeit:

$$Z := (1 - \lambda)X + \lambda Y, \quad \lambda \in [0, 1], \quad \text{Linearkombination von } \lambda X \text{ und } (1 - \lambda)X$$

$$((1 - \lambda)X, \lambda Y) < Z \tag{9}$$

Mischung möglich!

Vorlesung 2 - 18.04.2013

 \Rightarrow lokales Entropieprinzip (für 1 thermodynamisches System, Γ)

 $\exists S_{\Gamma}(X)$ mit folgenden Eigenschaften:

• monoton unter <

$$X < Y \quad ; \quad X, Y \in \Gamma \Leftrightarrow S_{\Gamma}(X) \le S_{\Gamma}(Y)$$
 (10)

• additiv

$$S_{\Gamma \times \Gamma}((X,Y)) = S_{\Gamma}(X) + S_{\Gamma}(Y) \tag{11}$$

• skalierbar

$$S_{\Gamma_{\lambda}}(\lambda X) = \lambda S_{\Gamma}(X) \tag{12}$$

• konkav

$$0 \le \lambda \le 1$$
 vgl. konvexe Kombinierbarkeit
$$\lambda S_{\Gamma}(X) + (1 - \lambda)S_{\Gamma}(Y) \le S_{\Gamma}(\lambda X + (1 - \lambda)Y)$$
 (13)

Konstruktion der Entropiefunktion:

wähle $X_0 \in \Gamma$, $X_1 \in \Gamma$, $X_0 \ll X_1$; sei $X \in \Gamma$

$$S_{\Gamma}(X) := \sup_{\lambda} \{ \lambda : ((1 - \lambda)X_0, \lambda X_1) < X \}$$

$$\Leftrightarrow X \sim ((1 - \underbrace{S_{\Gamma}(X)}_{\in \mathbb{R}})X_0, \underbrace{S_{\Gamma}(X)}_{\in \mathbb{R}}X_1)$$
(14)

Alternative Definition von $((1 - \lambda)X_0, \lambda X_1) < X$:

- $0 \le \lambda \le 1$
- $\lambda < 0$: $(1 \lambda)X_0 < (X, -\lambda X_1)$
- $(1 \lambda) < 0$: $\lambda X_1 < ((\lambda 1)X_0, X)$

Eindeutigkeit: $\tilde{S}_{\Gamma}(X) = aS_{\Gamma}(X) + b$

Es gilt:

• Betrachtung zusammengesetzter Systeme (ohne Mischung und chemische Reaktionen)

$$\rightarrow \exists S(X) = a_{\Gamma}S_{\Gamma}(X) + b_{\Gamma} \text{ mit}$$

 a_Γ kann auf a_{Γ^0} zurückgeführt werden,

 b_{Γ} beliebig.

d.h. durch die Wahl der Entropiefunktion für eine Substanz, z.B. H_2O , sind alle multiplikativen Konstanten festgelegt, additive Konstanten sind frei wählbar.

Referenzsubstanz: z.B. H_2O , d.h. $X_0 \ll X_1$, $X_0, X_1 \in \Gamma \Rightarrow S_{\Gamma}(X)$ festgelegt betrachte 2. Substanz $Y_0 \ll Y_1$, $Y_0, Y_1 \in \Gamma' \Rightarrow S_{\Gamma'}(Y)$

bestimmt mit
$$(Y_0, tX_1) \sim (Y_1, tX_0)$$

$$\Rightarrow S_{\Gamma'}(Y_0) + tS_{\Gamma}(X_1) = S_{\Gamma'}(Y_0) + tS_{\Gamma}(X_0)$$

$$\Leftrightarrow S_{\Gamma'}(Y_1) - S_{\Gamma'}(Y_0) = t(S_{\Gamma}(X_1) - S_{\Gamma}(X_0))$$
(15)

Betrachtung von Mischungen und chemischen Prozessen
 ⇒ alle additiven Konstanten sind durch die Wahl eines einzigen a bestimmt.

\Rightarrow globales Entropieprinzip

 \exists globale Entropiefunktion S(X):

- $\bullet\,$ eindeutig bis auf die Wahl einer multiplikativen und einer additiven Konstante.
- monton, additiv, skalierbar, konkav in Bezug auf adiabatische Erreichbarkeit und für alle Materialien.

$$X < Y \Leftrightarrow S(X) \le S(Y)$$

$$X < Y \land Y < X \Leftrightarrow X \sim Y$$

$$X < Y \land Y \nleq X \Leftrightarrow X \ll Y$$

$$(16)$$

Postulat II

Die globale Entropiefunktion ist:

• stetig differenzierbar in Bezug auf alle extensiven thermodynamischen Variablen

 \bullet streng monoton wachsend in Bezug auf U¹

1.1.4 Kontrolle thermodynamischer Gleichgewichtszustände

Extensive Parameter $(\underbrace{(U,V,N)})$ sind kontrollierbar durch "Wände".

Es gibt adiabatische Wände mit der Eigenschaft:

Energieänderungen haben ihre Ursache in Arbeit

1.1.5 Grundproblem der Thermodynamik

1. Ausgangspunkt: Zusammengesetztes, abgeschlossenes, thermodynamisches System. 2 Wände müssen Eigenschaften stabilisieren.

Beseitigt man die Wände zwischen 2 Systemen, gilt Energieerhaltung, aber man weiß nicht, wie sich diese Energie verteilt.

- 2. Neuer thermodynamischer Gleichgewichtszustand, 5- statt 6-dimensional
- \Rightarrow Frage: Was bestimmt X? Welcher neuer thermodynamischer Zusstand ist adiabatisch erreichbar?

Postulat III:

Der neue adiabatisch erreichbare, thermodynamische Gleichgewichtszustand ist durch maximale Entropie charakterisiert, d.h.

 $S(X_0) \to \max$.,

falls X_0 eindeutig, dann X_0 stabil

Thermodynamische Fundamentalrelation

$$S(X) \xrightarrow{X=(U,V,N)} dS(U,V,N) = \underbrace{\frac{\partial S}{\partial U}\Big|_{(V,N)}}_{=:\frac{1}{T}} dU + \underbrace{\frac{\partial S}{\partial V}\Big|_{(U,N)}}_{=:\frac{p}{T}} dV + \underbrace{\frac{\partial S}{\partial N}\Big|_{(U,V)}}_{=:-\frac{\mu}{T}} dN \stackrel{!}{=} 0$$

$$(17)$$

mit

T: Temperatur

p: Druck

 μ : chemisches Potential

 \rightarrow Kodierung eines thermodynamischen Systems entweder durch Angabe von

S(X) oder von

 $(T(X), p(X), \mu(X))$

Vorlesung 3 23.4.2013

Für stabiles Gleichgewicht: dS = 0 und $d^2S < 0$

Konsequenzen:

- (1) S(U, V, N) ist streng monoton wachsend in U entropische Fundamentalrelation
 - U(S, V, N) energetische Fundamentalrelation
 - $S(U, V, N) \to \max. \Leftrightarrow U(S, V, N) \to \min.$

¹diese Eigenschaften lassen sich auch durch weitere Axiome erzwingen

 $^{^2}$ Skizze

•
$$\frac{\partial S}{\partial U}|_{(V,N)} \gg 0, T := \frac{\partial U}{\partial S}|_{(V,N)} \ge 0$$

• Postulat IV: $\frac{\partial U}{\partial S}:=T=0$ für Zustände mit S=0

(2) Intensive Variablen thermodynamischer Systeme z.B.: Sei $X=(U,V,N_j) \to S(X)$ extensive Variablen $U(S,V,N_j) \Leftrightarrow S(U,V,N_j)$ Fundamentalrelationen

$$\rightarrow dU(X) = \underbrace{\frac{\partial U}{\partial S}}_{:=T(X)} dS(X) + \underbrace{\frac{\partial U}{\partial V}}_{:=-p(X)} dV(X) + \sum_{j} \underbrace{\frac{\partial U}{\partial N_{j}}}_{:=\mu_{j}(X)} dN_{j}(X)$$
 (18)

 $S(U, V, N_i)$ bzw. $U(S, V, N_i)$ - Fundamental relationen

 $\Leftrightarrow T(X), p(X), \mu_j(X)$ - Zustandsgleichungen Temperatur, Druck, chemisches Potential unabhängig von Systemgröße (intensiv)

ullet betrachte **quasistatischen Prozess**, d.h. X < Y und alle Zwischenschritte sind termodynamische Gleichgewichtszustände

Wärme:

$$dU = \underbrace{TdS}_{:=\delta W_M} - \underbrace{pdV}_{j} + \underbrace{\sum_{j} \mu_j dN_j}_{:=\delta W_{Ch}}$$

$$\tag{19}$$

Wärme, mechanische Arbeit, chemische Arbeit

Langsame Prozesführung ist notwendig, um quasistatische Prozesse zu gewährleisten!

(3) Eulersche Relationen

 $U_{\lambda}(\lambda S, \lambda V, \lambda N_j) = \lambda U(S, V, N_j)$ wegen Extensivität

$$\Rightarrow \frac{d}{d\lambda} U_{\lambda} \Big|_{\lambda=1} = U(S, V, N_{j}) = \underbrace{\frac{\partial U_{\lambda}}{\partial \lambda S}}_{=T} S + \underbrace{\frac{\partial U_{\lambda}}{\partial \lambda V}}_{=-p} V + \sum_{j} \underbrace{\frac{\partial U_{\lambda}}{\partial \lambda N_{j}}}_{=\mu_{j}} N_{j}$$

$$\Leftrightarrow U(X) = T(X)S(X) - p(X)V(X) + \sum_{j} \mu_{j}(X)N_{j}(X) \quad \text{Euler-Relation}$$

$$\Rightarrow S = \frac{U}{T} + \frac{p}{T}V - \sum_{j} \frac{\mu_{j}}{T}N_{j}$$

$$(20)$$

(4) Gibbs-Duhem Relationen:

$$dU = TdS - pdV + \sum_{j} \mu_{j} dN_{j} + \underbrace{SdT - Vdp + \sum_{j} N_{j} d\mu_{j}}_{=0 \Rightarrow \text{nicht alle int. Variablen sind unabhängig!}}$$
(21)

1.1.6 Einfache Thermodynamische Systeme

• Einkomponentiges ideales Gas

X = (U, V, N), Referenzzustand $X_0 = (U_0, V_0, N_0), S(X_0) = N_0 s_0$

$$S(U, V, N) = Ns_0 + NR \ln \left(\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right)$$
klassische Physik (22)

$$R = N_A k_B = 8,32 J K^{-1} mol^{-1}$$

$$c = \frac{3}{2}$$

$$N_A = 6,022 \times 10^{23} J K^{-1}$$

$$k_B = 1,381 \times 10^{-23} J K^{-1}$$

• Einkomponentiges "reales" Gas

$$S(U, V, N) = Ns_0 + NR \ln \left(\frac{\left(\frac{U}{N} + \frac{a}{V/N}\right)^c \left(\frac{V}{N} - b\right)}{\left(\frac{U_0}{N_0} + \frac{a}{V/N}\right)^c \left(\frac{V_0}{N_0} - b\right)} \right)$$

$$(23)$$

• Elektromagnetisches Feld: X = (U, V)

$$S(U,V) = \frac{4}{3}b^{1/4}U^{3/4}V^{1/4} \quad b := \frac{\pi^2 kg^4}{15\hbar^3 c^3} \approx 7,56 \times 10^{-16} Jm^{-3} K^{-4}$$
(24)

 \rightarrow Zustandsgleichung

$$\frac{\partial S}{\partial U} \equiv \frac{1}{T} = b^{1/4} U^{-1/4} V^{1/4} \Leftrightarrow \frac{1}{T} = \left(b \frac{V}{U} \right)^{1/4}
\frac{U}{V} = b T^4 \quad \text{Stefan-Boltzmann-Gesetz}
\frac{\partial S}{\partial V} = \frac{p}{T} \Leftrightarrow p = \frac{1}{3} \left(b \frac{U^3}{V^3} \right)^{1/4} \underbrace{T}_{\left(\frac{U}{V}, \frac{1}{k}\right)^{1/4}} = \frac{1}{3} \frac{U}{V} \tag{25}$$

1.2 Thermische Gleichgewichtsbedingungen

1.2.1 Thermisches Gleichgewicht und Temperatur

Problem: Bild

Vorlesung 4 - 25.04.2013

Frage: Was passiert, wenn adiabatische Wand entfernt wird? $d(U_1 + U_2) = 0$ $d(V_1 + V_2) = 0$

$$d(N_1 + N_2) = 0$$

$$X = ((U_1, V_1, N_1), (U_2, V_2, N_2)) < Y$$
(26)

S \to max. $dS=0,\,d^2S<0$ lokales thermodynamisches Gleichgewicht $S(X_1,X_2)=S_1(X_1)+S_2(X_2)$ Additivität

$$dS = \underbrace{\frac{\partial S_1}{\partial U_1}}_{:=\frac{1}{T_1(X_1)}} dU_1 + \underbrace{\frac{\partial S_2}{\partial U_2}}_{:=\frac{1}{T_2(X_2)}} \underbrace{\frac{dU_2}{\partial U_1}}_{=-dU_1} = \left(\frac{1}{T_1(X_1)} - \frac{1}{T_2(X_2)}\right) dU_1 \stackrel{!}{=} 0 \tag{27}$$

• neuer thermodynamischer Gleichgewichtszustand

$$T_1(X_1) = T_2(X_2); \quad X_1 = (U_1, V_1, N_1); \quad X_2 = (U - U_1, V_2, N_2) \quad \text{mit} \quad U = U_1 + U_2$$
 (28)

• Betrachtung eines quasistatischen Prozesses:

$$dS = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dU_1 \ge 0 \quad \text{für} X < Y \tag{29}$$

$$T_1 > T_2 \Rightarrow dU_1 < 0$$

1.2.2 Mechanisches Gleichgewicht

Frage:

adiabate Wand \rightarrow diabate Wand

feste Wand \rightarrow feste Wand

$$dS = \underbrace{\frac{\partial S_1}{\partial U_1}}_{:=\frac{1}{T_1}} dU_1 + \underbrace{\frac{\partial S_2}{\partial U_2}}_{:=\frac{1}{T_2}} \underbrace{\frac{dU_2}{\partial U_1}}_{:=\frac{p_1}{T_1}} + \underbrace{\frac{\partial S_1}{\partial V_1}}_{:=\frac{p_2}{T_2}} dV_1 + \underbrace{\frac{\partial S_1}{\partial V_2}}_{:=\frac{p_2}{T_2}} \underbrace{\frac{dV_2}{\partial V_2}}_{:=-dV_1} \stackrel{!}{=} 0$$
(30)

$$0 \le dS = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dU_1 + \left(\frac{p_1}{T_1} - \frac{P_2}{T_2}\right) dV_1 \tag{31}$$

$$seiT_1 = T_2 \land P_1 > P_2 \Rightarrow dV_1 > 0 \tag{32}$$

1.2.3 Chemisches Gleichgewicht

adiabate Wand \rightarrow diabate Wand impermeable Wand \rightarrow permeable Wand

$$U_1 + U_2 = U$$

 $N_1 + N_2 = N$

$$dS = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dU_1 + \underbrace{\left(\frac{\partial S_1}{\partial N_1} - \underbrace{\frac{\partial S_2}{\partial N_2}}\right)}_{=:-\frac{\mu_1}{T_1}} dN_1 \stackrel{!}{=} 0 \tag{33}$$

$$\left. \begin{array}{l}
T_1(X_1) = T_2(X_2) \\
\mu_1(X_1) = \mu_2(X_2)
\end{array} \right\} \to (U_1, N_1) \tag{34}$$

$$\begin{split} 0 & \leq dS = -\left(\frac{\mu_1}{T_1} - \frac{\mu_2}{T_2}\right) dN_1 \\ \text{Sei } T_1 & = T_2 \wedge \mu_1 > \mu_2 \Rightarrow dN_1 < 0 \end{split}$$

1.2.4 Adiabatische Erreichbarkeit thermodynamischer Prozesse

2. Hauptsatz der Thermodynamik:

Konsequenz von: S(X) konkav und $T := \frac{\partial U}{\partial S} \geq 0$

• Clausius:

Es gibt keine Zustandsänderung mit dem einzigen Resultat, dass Wärme³ von einer Substanz niederer Temperatur auf eine Substanz höherer Temperatur übergeht. (BILD konkaves S über U)

• Kelvin-Planck:

Es gibt keine Zustandsänderung mit dem einzigen Resultat, dass sich eine Substanz abkühlt und ein

³Nur U ändert sich, V und N konstant

1.2.5 Thermodynamische Maschinen

- Wärmekraftmaschine $\Delta W_b>0, \mbox{ maximal bei gegebener } -\Delta U_a>0$
- Kühlschrank $-\Delta Q_c>0, \, \mbox{maximal bei gegebener} \, -\Delta W_b>0$
- Wärmepumpe $\Delta U_a \equiv \Delta Q_C > 0, \text{ maximal bei gegebener } -\Delta W_b > 0$

Energie:

$$-\Delta U_a = \Delta W_b + \Delta Q_C \tag{35}$$

Entropie:

$$\Delta S_a + \underbrace{S_b}_{=0} + \Delta S_C \ge 0 \tag{36}$$

Aber: Keine Aussage, wie die Prozesse genau ablaufen Doch wegen Eigenschaften der Enropiefunktion gilt

$$\Delta S_i \le \frac{1}{T_i} \Delta U_i \tag{37}$$

System ohne Arbeitskoordinaten

$$\Rightarrow \Delta U_i = \Delta Q_i \tag{38}$$

$$\Delta Q_i \geq T_i \Delta S_i \tag{39}$$

$$-\Delta Q_a \equiv -\Delta U_a \le -T_a \Delta S_a \tag{40}$$

Wärmekraftmaschine

$$\Delta W_h =$$

$$-\Delta U_a - \underbrace{\Delta Q_C}_{\geq T_C \Delta S_C} \leq -\Delta U_a - T_c \Delta S_C \leq -T_a \Delta S_a - T_C \Delta S_c \leq -T_a \Delta S_a + T_c \Delta S_a = (T_c - T_a) \Delta S_a \tag{41}$$

$$\eta := \frac{\Delta W_b}{-\Delta U_a} \le \frac{-\Delta U_a + T_c \Delta S_a}{-U_a} = 1 + \frac{T_c \Delta S_a}{T_a} \le 1 + \frac{T_c \Delta S_a}{-T_a \Delta S_a} = 1 - \frac{T_c}{T_a} := \eta_c \tag{42}$$

$K\ddot{u}hlschrank$

$$\eta_K := \left(\frac{-\Delta Q_c}{-\Delta W_b}\right) \le \frac{T_c}{T_a - T_c} \tag{43}$$

Wärmepumpe

$$\eta_W := \left(\frac{\Delta Q_A}{-\Delta W_b}\right) \le \frac{T_a}{T_a - T_c} \tag{44}$$

1.3 Extremalprinzipien und thermodynamische Potentiale

1.3.1 Prinzip minimaler Energie

Prinzip maximaler Entropie

 $S(U, V, N, X_{\alpha})$ $S \to \max$ bei gegebenen Werten von U, V_i, N

notwendig: dS = 0 für dU = dV = d = 0

lokal hinreichend: $d^2S < 0$ stabil

S monoton in U $\to U(S, V, N, X_{\alpha})$ kann bestimmt werden.

Es gilt im thermodynamischen Gleichgewichtszustand:

 $U(S, V, N, X_{\alpha}) \to \min$ für S,V,N konstant.

Analogon aus der Geometrie: Kreis

 $U \rightarrow Umfang$

 $S \to Fläche$

Kreis hat

- bei gegebenen Umfang die größte Fläche
- bei gegebener Fläche den kleinsten Umfang

zu zeigen:

-
$$dU = 0$$
 für $dS = dV = dN = 0$

-
$$dU^2 > 0$$
 für $dS = dV = dN = 0$

$$dS = \frac{\partial S}{\partial U}dU + \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial N}dN + \sum_{\alpha} \frac{\partial S}{\partial X_{\alpha}} \bigg|_{U} dX_{\alpha}$$

$$dU = \frac{\partial U}{\partial S}dS + \frac{\partial U}{\partial V}dV + \frac{\partial U}{\partial N}dN + \sum_{\alpha} \frac{\partial U}{\partial X_{\alpha}} \bigg|_{S} dX_{\alpha}$$
(45)

für beide obeigen Gleichungen gilt:dV = dN = 0 für dU = 0 gilt:

$$\frac{\partial U}{\partial S}dS + \sum_{\alpha} \frac{\partial U}{\partial X_{\alpha}} \Big|_{S} dX_{\alpha} = 0$$

$$= > dS = -\frac{1}{T} \sum_{\alpha} \frac{\partial U}{\partial X_{\alpha}} \Big|_{S} dX_{\alpha}$$

$$= > dS = 0 <= > -\frac{1}{T} \sum_{\alpha} \frac{\partial U}{\partial X_{\alpha}} \Big|_{S} dX_{\alpha} = 0 <= > U \text{ extremal für } S = const.$$

$$T(S, V, N) := \frac{\partial U}{\partial S}(S, V, N) \to S(T, V, N)$$
(46)