

IE-0469 Sistemas de Potencia I

Presentación #2 Modelos de cargas

Dr. Andrés Argüello Guillén

andres.arguelloguillen@ucr.ac.cr

Sistemas de Potencia I

- Cálculo I
- Cálculo II
- Álgebra lineal
- Circuitos lineales I
- Matemática superior
- Circuitos lineales II
- Electromagnetismo
- Análisis de sistemas
- Máquinas eléctricas I
- Máquinas eléctricas II
- Transmisión de Potencia
- Sistemas de Control

Power System Stability and Control (Kundur) Capítulo 7 Power System Loads

Modelos de carga compuesta (conjuntos de componentes)

Modelado de cargas estáticas

La mayoría de las cargas eléctricas dependen de la tensión de operación. La demanda se representa con el modelo exponencial:

$$P = P_0 \left(\frac{V}{V_0}\right)^{\alpha} \qquad \qquad Q = Q_0 \left(\frac{V}{V_0}\right)^{\beta}$$

donde

- P Potencia activa demandada por la carga
- Q Potencia reactiva demandada por la carga
- P_0 Potencia activa a una tensión V_0
- Q_0 Potencia reactiva a una tensión V_0
- V_0 Tensión inicial de la carga
- α Exponente de potencia activa
- β Exponente de potencia reactiva

$$\alpha, \beta = 0$$
 Carga tipo potencia constante

$$\alpha, \beta = 1$$
 Carga tipo corriente constante

$$\alpha, \beta = 2$$
 Carga tipo impedancia constante

Coeficientes α y β (de medición)

Tĺpicamente:

 $0.5 < \alpha < 1.8$

 $1.5 < \beta < 6$

Modelo ZIP

Cuando la carga tiene componentes de potencia constante, corriente constante e impedancia constante, se usa **modelo ZIP**:

$$P = P_0 \left(\frac{a_0 + a_1}{V_0} \left(\frac{V}{V_0} \right) + \frac{a_2}{V_0} \left(\frac{V}{V_0} \right)^2 \right)$$

$$\mathbf{Z} \qquad \mathbf{I} \qquad \mathbf{P}$$

$$Q = Q_0 \left(\frac{b_0 + b_1}{V_0} \left(\frac{V}{V_0} \right) + \frac{b_2}{V_0} \left(\frac{V}{V_0} \right)^2 \right)$$

Donde los coeficientes a_i y b_i conforman el 100% de la demanda original P_0 y Q_0 , es decir:

$$a_0 + a_1 + a_2 = 1$$

 $b_0 + b_1 + b_2 = 1$

Ejemplo

Una carga demanda $P_0 = 100~MW$ a una tensión de $V_0 = 1.02~p.u.$ Si la tensión disminuyó a 0.98~p.u., determine la nueva demanda si sabe que la carga es $10\%~P_{cte}$, $30\%~I_{cte}$ y $60\%~Z_{cte}$.

Solución:

$$P = P_0 \left(a_0 + a_1 \left(\frac{V}{V_0} \right) + a_2 \left(\frac{V}{V_0} \right)^2 \right)$$

$$a_0 = 0.10, a_1 = 0.3, a_2 = 0.6$$

Entonces,

$$P = 100 \left(0.1 + 0.3 \left(\frac{0.98}{1.02} \right) + 0.6 \left(\frac{0.98}{1.02} \right)^2 \right) = 94.21 MW$$

Ejemplo

Una carga demanda $P_0=100~MW$ a una tensión de $V_0=1.00~p.u.$ Si la tensión aumentó a 1.035~p.u., determine la nueva demanda si sabe que la carga es $10\%~P_{cte}$ y $90\%~Z_{cte}$.

Modelado de cargas dinámicas

Utilizado para modelar la respuesta de la demanda de las cargas después de una perturbación que afectó a V o f. Necesarios para modelo de grandes cantidades de motores (60%-70% de la carga mundial), oscilaciones interárea, estabilidad de tensión

$$\begin{split} P &= P_0 \Big[p_1 \bar{V}^2 + p_2 \bar{V} + p_3 \Big] (1 + K_{pf} \Delta f) \\ Q &= Q_0 \Big[q_1 \bar{V}^2 + q_2 \bar{V} + q_3 \Big] (1 + K_{qf} \Delta f) \\ \Delta f &= f - f_0 \\ 0 &< K_{pf} < 3 \\ -2 &< K_{qf} < 0 \end{split}$$

Modelado de cargas dinámicas

- Relés de protección térmicos y de sobrecorriente.
- Cargas térmicas (calentadores de agua, refrigeradores)
- Dispositivos con delays o controles en el tiempo

Modelado de cargas dinámicas

La potencia demandada por la carga es:

$$P = z_P P_o \left(\frac{V}{V_o}\right)^{\alpha_t}$$

$$Q = z_Q Q_o \left(\frac{V}{V_o}\right)^{\beta_t}$$

Donde z_P y z_Q son variables adimensionales asociadas a la carga dinámica y se rigen por:

$$T_P \dot{z}_P = \left(\frac{V}{V_o}\right)^{\alpha_s} - z_P \left(\frac{V}{V_o}\right)^{\alpha_t}$$

$$T_Q \dot{z}_Q = \left(\frac{V}{V_o}\right)^{\beta_s} - z_Q \left(\frac{V}{V_o}\right)^{\beta_t}$$

 α_s exponente de P en rég. permanente

 α_t exponente de P en rég. transitorio

 β_s exponente de Q en rég. permanente β_t exponente de Q en rég. transitorio

Motor de inducción trifásico

https://la.mathworks.com/help/mcb/ref/inductionmotor.html

Se usa corrientes positivas cuando entran a los devanados. Aquí se usan minúsculas para el estator y mayúsculas para el rotor.

3 ecuaciones para los devanados del estator

$$v_a = R_s i_a + \frac{d\psi_a}{dt}$$
 $v_b = R_s i_b + \frac{d\psi_b}{dt}$ $v_c = R_s i_c + \frac{d\psi_c}{dt}$

3 ecuaciones para los devanados del rotor

$$0 = R_r i_A + \frac{d\psi_A}{dt} \qquad 0 = R_r i_B + \frac{d\psi_B}{dt} \qquad 0 = R_r i_C + \frac{d\psi_C}{dt}$$

 R_s y R_r son las resistencias por fase de devanado de estator y rotor.

Transformada de Park (Truco: multiplicar por $e^{j\theta}$)

$$v_{ds} = R_{s}i_{ds} + \omega_{s}\psi_{qs} + \frac{d\psi_{ds}}{dt}$$

$$v_{qs} = R_{s}i_{qs} - \omega_{s}\psi_{ds} + \frac{d\psi_{qs}}{dt}$$

$$v_{os} = R_{s}i_{os} + \frac{d\psi_{os}}{dt}$$

$$0 = R_{r}i_{dr} + (\omega_{s} - \omega_{r})\psi_{qr} + \frac{d\psi_{dr}}{dt}$$

$$0 = R_{r}i_{qr} - (\omega_{s} - \omega_{r})\psi_{dr} + \frac{d\psi_{qr}}{dt}$$

$$0 = R_{r}i_{qr} - (\omega_{s} - \omega_{r})\psi_{dr} + \frac{d\psi_{qr}}{dt}$$

$$0 = R_{r}i_{or} + \frac{d\psi_{or}}{dt}$$
Rotor

Transformando los flujos encadenados

$$\begin{aligned} \psi_{a} &= L_{aa}i_{a} + L_{ab}(i_{b} + i_{c}) + L_{aA}[i_{A}\cos\theta + i_{B}\cos(\theta + 120^{\circ}) + i_{C}\cos(\theta - 120^{\circ})] \\ \psi_{A} &= L_{AA}i_{A} + L_{AB}(i_{B} + i_{C}) + L_{aA}[i_{a}\cos\theta + i_{b}\cos(\theta - 120^{\circ}) + i_{c}\cos(\theta + 120^{\circ})] \end{aligned}$$

$$\begin{bmatrix} \psi_{ds} \\ \psi_{qs} \\ \psi_{os} \\ \psi_{dr} \\ \psi_{qr} \\ \psi_{or} \end{bmatrix} = \begin{bmatrix} L_{ss} & L_{sr} & L_{sr} \\ L_{ss} & L_{sr} & L_{sr} \\ L_{sr} & L_{rr} & L_{rr} \\ L_{sr} & L_{or} \end{bmatrix} \begin{bmatrix} i_{ds} \\ i_{qs} \\ i_{os} \\ i_{dr} \\ i_{qr} \\ i_{or} \end{bmatrix}$$

$$R_s$$
 0.01 - 0.12 pu R_r 0.01 - 0.13 pu $L_{ss} - L_{sr}$ 0.07 - 0.15 pu $L_{rr} - L_{sr}$ 0.06 - 0.18 pu L_{sr}

 L_{ls} Inductancia de dispersión del estator

 $L_{sr} = L_m$ Inductancia mutua (o de magnetización)

 L_{lr} Inductancia de dispersión del rotor

Balance de potencias en estator

La potencia activa que entra al motor es:

$$p_{T}(t) = v_{a}i_{a} + v_{b}i_{b} + v_{c}i_{c} = v_{ds}i_{ds} + v_{qs}i_{qs} + v_{os}i_{os}$$

$$= (R_{s}i_{ds}^{2} + R_{s}i_{qs}^{2} + R_{s}i_{os}^{2}) + (i_{ds}\frac{d\psi_{ds}}{dt} + i_{qs}\frac{d\psi_{qs}}{dt} + i_{os}\frac{d\psi_{os}}{dt})$$

$$+\omega_{s}(\psi_{qs}i_{ds} - \psi_{ds}i_{qs})$$

$$\frac{d}{d} \text{ de energía magnética}$$

$$p_{s \to r} = \omega_{s}T_{e}$$
almacenada en estator.

$$T_e = \psi_{qs}i_{ds} - \psi_{ds}i_{qs} = \psi_{dr}i_{qr} - \psi_{qr}i_{dr} = L_{sr}(i_{qr}i_{ds} - i_{dr}i_{qs}).$$

Movimiento del rotor

La dinámica electromecánica para el eje se represente por la ecuación de oscilación:

$$2H\frac{d}{dt}\omega_r=T_e-T_m$$
 H es la constante de inercia, en s.

 ω_r , T_e y T_m en p.u.

El par mecánico (de carga) varía con la velocidad:

$$T_m = T_{mo} \left(A\omega_r^2 + B\omega_r + C \right)$$
 donde $A + B + C = 1$

 T_{mo} es el par cuando $\omega_r = 1$

Modelo de 3er orden

Para estabilidad no consideramos la dinámica rápida de fenómenos electromagnéticos en estator.

$$v_{ds} = R_s i_{ds} + \omega_s \psi_{qs} + \frac{d\psi_{ds}^0}{dt}$$
 $v_{qs} = R_s i_{qs} - \omega_s \psi_{ds} + \frac{d\psi_{qs}^0}{dt}$

Las otras ecuaciones se mantienen igual:

$$\frac{d\psi_{dr}}{dt} = -R_r i_{dr} - (\omega_s - \omega_r) \psi_{qr} \quad \frac{d\psi_{qr}}{dt} = -R_r i_{qr} + (\omega_s - \omega_r) \psi_{dr}$$

$$\psi_{ds} = L_{ss} i_{ds} + L_{sr} i_{dr} \qquad \psi_{dr} = L_{sr} i_{ds} + L_{rr} i_{dr}$$

$$\psi_{qs} = L_{ss} i_{qs} + L_{sr} i_{qr} \qquad \psi_{qr} = L_{sr} i_{qs} + L_{rr} i_{qr}$$

$$2H \frac{d}{dt} \omega_r = \psi_{dr} i_{qr} - \psi_{qr} i_{dr} - T_{mo} \left(A \omega_r^2 + B \omega_r + C \right)$$

Parámetros típicos de motores para modelo de par mecánico

	A	B	C	H (s)
Bomba de calor, aire acondicionado	0.2	0	0.8	0.28
Refrigerador, congelador	0.2	0	0.8	0.28
Lavadora de platos	1	0	0	0.28
Lavadora de ropa	1	0	0	1.5
Secadora de ropa	1	0	0	1.3
Bombas, ventiladores y otros motores	1	0	0	0.7
Motor industrial pequeño	1	0	0	0.7
Motor industrial grande	1	0	0	1.5
Auxiliares de plantas de energía	1	0	0	1.5
Bomba de agua para agricultura	1	0	0	0.4

Parámetros típicos de motores

			Static characteristics									Dynamic Characteristics									
Component	PF	Pv	Pf	Qv	Q/	$N_{\rm m}$	PF_{on}	Po	Pf_{uu}	Qv_{nm}	$Qf_{\rm nm}$	$R_{\rm s}$	X,	X_{m}	R_{r}	X,	A	В	H	LF_m	
Resistance space heater	1.0	2.0	0.0	0.0	0.0	0.0				i i i i i i i i i i i i i i i i i i i		-	-	-	-	-		-		-	
Heat pump space heating	0.84	0.2	0.9	2.5	-1.3	0.9	1.0	2.0	0.	0.	0.	.33	.076	2.4	.048	.062	0.2	0.	0.28	0.6	
Heat pump central air cond.	0.81	0.2	0.9	2.5	-2.7	1.0						.33	.076	2.4	.048	.062	0.2	0.	0.28	0.6	
Central air conditioner	0.81	0.2	0.9	2.2	-2.7	1.0						.33	.076	2.4	.048	.062	0.2	0.	0.28	0.6	
Room air conditioner	0.75	0.5	0.6	2.5	-2.8	1.0	000 (00 A)					.10	.10	1.8	.09	.06	0.2	0.	0.28	0.6	
Water heater	1.0	2.0	0.0	0.0	0.0	0.0							-		-		-	-	-	-	
Range	1.0	2.0	0.0	0.0	0.0	0.0			2000			-	-	-	ļ <u>-</u>	-	,	-	-		
Refrigerator and freezer	0.84	0.8	0.5	2.5	-1.4	0.8	1.0	2.0	0	0.	0.	.056	.087	2.4	.053	.082	0.2	0.	0.28	0.5	
Dishwasher	0.99	1.8	0.0	3.5	-1.4	0.8	1.0	2.0	0.	0.	0.	.11	.14	2.8	.11	.065	1.0	0.	0.28	0.5	
Clothes washer	0.65	0.08	2.9	1.6	1.8	1.0						.11	.12	2.0	.11	.13	1.0	0.	0.69	0.4	
Incandescent lighting	1.0	1.54	0.0	0.0	0.0	0.0	-					-	-	-	-	-		-	-	-	
Clothes dryer	0.99	2.0	0.0	3.3	-2.6	0.2	1.0	2.0	0.	0.	0.	.12	.15	1.9	.13	.14	1.0	0.	0.11	0.4	
Colored television	0.77	2.0	0.0	5.2	-4.6	0.0						-	-	-	-	-		-	_		
Furnace fan	0.73	0.08	2.9	1.6	1.8	1.0				5		_		-	-		-	_	-	-	
Commercial heat pump	0.84	0.1	1.0	2.5	-1.3	0.9	1.0	2.0	0.	0.	0.	.53	.83	1.9	.036	.068	0.2	0.	0.28	0.6	
Heat pump commercial A/C	0.81	0.1	1.0	2.5	-1.3	1.0				30,22		.53	.83	1.9	.036	.068	0.2	0.	0.28	0.6	
Commercial central A/C	0.75	0.1	1.0	2.5	-1.3	1.0				3000000 20000000		.53	.83	1.9	.036	.068	0.2	0.	0.28	0.6	
Commercial room A/C	0.75	0.5	0.6	2.5	-2.8	1.0						.10	.10	1.8	.09	.06	0.2	0.	0.28	0.6	
Fluorescent lighting	0.90	1.0	1.0	3.0	-2.8	0.0	(April)					-	-	-	-			-	· -	-	
Pumps, fans, other motors	0.87	0.08	2.9	1.6	1.8	1.0						.079	.12	3.2	.052	.12	1.0	0.	0.7	0.7	
Electrolysis	0.90	1.8	-0.3	2.2	0.6	0.0						-	-	-	-		-	-		-	
Arc furnace	0.72	2.3	-1.0.	1.61	-1.0	0.0						Ŀ	-	-	-	-		-	-	-	
Small industrial motors	0.83	0.1	2.9	0.6	-1.8	1.0				-		.031	.10	3.2	.018	.18	1.0	0.	0.7	0.6	
Large industrial motors	0.89	0.05	1.9	0.5	1.2	1.0						.013	.067	3.8	.009	.17	1.0	0.	1.5	0.8	
Agricultural water pumps	0.85	1.4	5.6	1.4	4.2	1.0						.025	.088	3.2	.016	.17	1.0	0.	0.8	0.7	
Power plant auxiliaries	0.80	0.08	2.9	1.6	1.8	1.0						.013	.14	2.4	.009	.12	1.0	0.	1.5	0.7	

Fuente: Carson W. Taylor "Power System Voltage Stability", EPRI.

Software de Simulación

Matlab - Simulink

https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/pss-software/psse-xplore-order-form.html

PSS/e - Python

https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/pss-software/psse-xplore-order-form.html

https://www.anaconda.com/distribution/

Simulación de cargas estáticas

Simulación de la salida de una línea de transmisión que conlleva a caída de tensión en carga exponencial

Simulación en RAMSES (o PSS/e)

Tensión en barra 3 (de distribución)

Tensión en barra 4 (de transmisión)

Simulación en RAMSES (o PSS/e)

Potencia activa y reactiva demandada por la carga en barra 3

Simulación de motor de inducción

Simulación de la salida de una línea de transmisión que conlleva a caída de tensión en terminales del motor

$$X_s = 0.1$$
 $X_r = 0.18$ $X_m = 3.2 \text{ pu}$ $R_r = 0.018 \text{ pu}$ $H = 0.5 \text{ s}$

Simulación en RAMSES

Tensión en barra 3 (terminales del motor)

Simulación en RAMSES

Potencia activa y reactiva demandada por motor

Simulación en PSID

Comparación de tensiones en barras 3 para modelo de motor de 5to y 3er orden ante una perturbación en el sistema de 4 barras.

https://github.com/NREL-SIIP/PowerSimulationsDynamics.jl