Computer exercise - Market and Systemic Risk Management

A. Schmidt

June, 2021

Introduction

This is the computational appendix with the analysis made for the Financial Report at the Pokè Bank Johto Region regarding the investment in the Rocket S.A. portfolio.

Dependency installation

```
# Prevents code from getting out of the page
## Works with almost everything except urls and strings.
## Last options hold the position of figures
opts_chunk$set(tidy.opts=list(width.cutoff=50),tidy=TRUE, fig.pos = "!H", out.extra = "")

# Set a seed
set.seed(6969)

# Choosing a color palette
cores <- brewer.pal(8, "Dark2")

# Set a working directory
setwd("C:\\Users\\aisha\\OneDrive\\Documentos\\Mestrado Tinbergen\\Year 2\\Block 05\\Market and Systemi</pre>
```

Data preparation

```
url <- "https://raw.githubusercontent.com/aishameriane/SystemicRisk/main/data.csv"
dfData01 <- read.csv2(url, sep = ",", dec = ".", header = TRUE)
dfData01 <- dfData01[, c("Market", "Schmidt")]
ending <- as.Date("2021-06-25")
# Had to cut one day to make vectors with the same
# size
starting <- as.Date(as.Date("2021-06-25") - 2516)
Date <- as.Date(starting:ending, origin = starting)</pre>
Date <- seq(starting, ending, by = "1 days")
dfData01 <- cbind(Date, dfData01)
```

Exploring data for heavy tails

```
# Data from recessions available at:
{\it \# https://eabcn.org/dc/chronology-euro-area-business-cycles}
recessions_1 <- c("2019Q4")
recessions_2 <- c("2021Q3")
recessions.trim <- data.frame(1, 1, 1, as.Date(as.yearqtr(recessions_1)),
    as.Date(as.yearqtr(recessions 2)))
names(recessions.trim) <- c("DATE", "Variable", "Value",</pre>
    "Peak", "Trough")
dfData02 <- melt(dfData01, id.vars = "Date")</pre>
names(dfData02) <- c("DATE", "Variable", "Value")</pre>
p0 <- ggplot(dfData02[which(dfData02$Variable == "Schmidt"),</pre>
    ]) + geom_line(aes(x = DATE, y = Value, color = Variable),
    alpha = 0.9) + labs(y = "Return", x = "", color = "Series") +
    scale_x_date(date_breaks = "12 months", labels = date_format("%Y")) +
    scale colour manual(values = c("#A43E53")) + theme bw() +
    theme(axis.text.x = element_text(angle = 25, hjust = 1,
        size = 8), legend.position = "none", axis.title.x = element_blank(),
        plot.margin = unit(c(0.1, 0.2, 0.05, 0.2),
            "cm")) + geom_rect(data = recessions.trim,
    aes(xmin = Peak, xmax = Trough, ymin = -Inf, ymax = +Inf),
    fill = "grey", alpha = 0.2)
# Plot a histogram with a normal density
# overlapping Source:
# https://stackoverflow.com/questions/6967664/qqplot2-histogram-with-normal-curve
n <- nrow(dfData01)</pre>
mean <- mean(dfData01[, "Schmidt"])</pre>
sd <- sd(dfData01[, "Schmidt"])</pre>
binwidth <-0.3
```

```
df <- data.frame(x = rnorm(n, mean, sd))</pre>
dfData03 <- cbind(dfData01, df)</pre>
p1 <- ggplot(dfData03, aes(x = Schmidt, mean = mean,
    sd = sd, binwidth = binwidth, n = n)) + geom_histogram(binwidth = binwidth,
    colour = "#A43E53", fill = "#E9975C", size = 0.1,
   alpha = 0.4) + stat_function(fun = function(x) dnorm(x,
   mean = mean, sd = sd) * n * binwidth, color = "#0E1139",
   size = 1) + labs(title = "", y = "Count", x = "Rocket Portfolio Returns (%)") +
   theme(axis.text.x = element_text(size = 6), axis.title.x = element_text(size = 6),
       axis.text.y = element_text(size = 6), axis.title.y = element_text(size = 6),
       plot.margin = unit(c(-1, -0.5, -2, -0.5), "cm")) +
   theme_bw()
# Make a QQplot
p2 <- ggplot(dfData01, aes(sample = Schmidt)) + stat_qq(colour = "#E9975C",
   fill = "#E9975C", size = 1.5, alpha = 0.4) + stat_qq_line(color = "#0E1139",
   size = 1) + labs(title = "", y = "Sample\n Quantile",
   x = "Theoretical Quantile") + theme(axis.text.x = element_text(size = 6),
   axis.title.x = element_text(size = 6), axis.text.y = element_text(size = 6),
   axis.title.y = element_text(size = 6), plot.margin = unit(c(-1,
       -0.5, -2, -0.5), "cm")) + theme_bw()
# png(file = 'Series_01.png', width = 450, height =
grid.arrange(p0, grid.arrange(p1, p2, nrow = 1), nrow = 2)
```



```
# dev.off()
# Cumulative moment plot
dfMoment <- data.frame(matrix(NA, ncol = 5, nrow = nrow(dfData01)))</pre>
names(dfMoment) <- c("Date", "First", "Second", "Third",</pre>
    "Fourth")
# This will compute the cumulative moments
# (centered on zero) up to order k
for (k in 1:4) {
    for (i in 1:nrow(dfData01)) {
        dfMoment[i, k + 1] <- mean(dfDataO1$Schmidt[1:i]^k)</pre>
    }
}
dfMoment$Date <- dfData01$Date</pre>
dfMomentstd <- dfMoment
for (j in 2:5) {
    dfMomentstd[, j] <- (dfMoment[, j] - mean(dfMoment[,</pre>
        j]))/sd(dfMoment[, j])
}
dfMomentstd[1, 2] <- 0</pre>
dfData02 <- melt(dfMomentstd, id.vars = "Date")</pre>
```



```
# dev.off
sd(dfData01$Schmidt)
```

mean(dfData01\$Schmidt)

[1] 0.04111641

[1] 1.383581

Question 1 - what is the maximum amount of asset (in mln USD) that can be invested in the risky portfolio?

- Regulator: with holding the invested portfolio for 100 days, the Value-at-Risk (VaR) at 99.9% level multiplied by a multiplier 3 has to be lower than the capital of the bank
- Capital of the bank 30 million

```
# Computes the Hill estimator Reference:
# https://github.com/bpfaff/evir/blob/master/R/eda.R
# had to adapt so it will spit the confidence
# interval
fhill <- function(data, option = c("alpha", "xi", "quantile"),</pre>
    start = 15, end = NA, reverse = FALSE, p = NA,
    ci = 0.95, auto.scale = TRUE, labels = TRUE, plot = FALSE) {
    data <- as.numeric(data)</pre>
    ordered <- rev(sort(data))</pre>
    ordered <- ordered[ordered > 0]
    n <- length(ordered)</pre>
    option <- match.arg(option)</pre>
    if ((option == "quantile") && (is.na(p)))
        stop("Input a value for the probability p")
    if ((option == "quantile") && (p < 1 - start/n)) {</pre>
        cat("Graph may look strange !! \n\n")
        cat(paste("Suggestion 1: Increase `p' above",
             format(signif(1 - start/n, 5)), "\n"))
        cat(paste("Suggestion 2: Increase `start' above ",
             ceiling(length(data) * (1 - p)), "\n"))
    }
    k \leftarrow 1:n
    loggs <- logb(ordered)</pre>
    avesumlog <- cumsum(loggs)/(1:n)</pre>
    xihat <- c(NA, (avesumlog - loggs)[2:n])</pre>
    alphahat <- 1/xihat
    y <- switch(option, alpha = alphahat, xi = xihat,
        quantile = ordered * ((n * (1 - p))/k)^{(-1/alphahat)}
    ses <- y/sqrt(k)
    if (is.na(end))
        end \leftarrow n
    x <- trunc(seq(from = min(end, length(data)), to = start))
    y \leftarrow y[x]
    ylabel <- option</pre>
    yrange <- range(y)</pre>
    if (ci && (option != "quantile")) {
        qq \leftarrow qnorm(1 - (1 - ci)/2)
        u \leftarrow y + ses[x] * qq
        1 \leftarrow y - ses[x] * qq
        ylabel <- paste(ylabel, " (CI, p =", ci, ")",</pre>
             sep = "")
        yrange <- range(u, 1)</pre>
    }
    if (option == "quantile")
        ylabel <- paste("Quantile, p =", p)</pre>
```

```
index <- x
    if (reverse)
        index <- -x
    if (plot == TRUE) {
        if (auto.scale)
            plot(index, y, ylim = yrange, type = "1",
                xlab = "", ylab = "", axes = FALSE,
                ...) else plot(index, y, type = "1", xlab = "",
            ylab = "", axes = FALSE, ...)
        axis(1, at = index, labels = paste(x), tick = FALSE)
        axis(2)
        threshold <- findthresh(data, x)</pre>
        axis(3, at = index, labels = paste(format(signif(threshold,
            3))), tick = FALSE)
        box()
        if (ci && (option != "quantile")) {
            lines(index, u, lty = 2, col = 2)
            lines(index, 1, lty = 2, col = 2)
        }
        if (labels) {
            title(xlab = "Order Statistics", ylab = ylabel)
            mtext("Threshold", side = 3, line = 3)
        }
    invisible(list(x = index, y = y, u = u, l = 1))
}
1Hill <- fhill(dfData01$Schmidt, option = c("alpha",</pre>
    "xi", "quantile"), start = 15, end = NA, reverse = FALSE,
    p = NA, ci = 0.95, auto.scale = TRUE, labels = TRUE,
   plot = FALSE)
dfHill <- data.frame(lHill$x, lHill$y, lHill$1, lHill$u)
names(dfHill) <- c("statistics", "Estimate", "Lower",</pre>
    "Upper")
p4 <- ggplot(dfHill, aes(x = statistics, y = Estimate)) +
    geom_line(aes(x = statistics, y = Estimate), colour = "#6D304B",
        alpha = 0.9, size = 0.9) + geom_line(aes(x = statistics,
    y = Lower), colour = "#E9975C", alpha = 0.9, size = 0.7,
   linetype = "dashed") + geom_line(aes(x = statistics,
   y = Upper), colour = "#E9975C", alpha = 0.9, size = 0.7,
   linetype = "dashed") + geom_ribbon(aes(ymin = Lower,
   ymax = Upper), fill = "#E9975C", alpha = 0.2) +
   scale_x_continuous(breaks = seq(from = min(dfHill$statistics),
        to = max(dfHill$statistics), by = 75)) + theme_bw() +
   labs(y = "Hill estimator", x = "Order statistics") +
    theme(axis.text.x = element_text(size = 7), axis.title.x = element_text(size = 8),
        axis.text.y = element_text(size = 7), axis.title.y = element_text(size = 8),
        plot.margin = unit(c(0.1, 0.2, 0.05, 0.2),
            "cm"), panel.grid.minor.x = element_blank())
# png(file = 'Series_03.png', width = 450, height =
```

```
# 150)
p4
```



```
# dev.off
lHill <- fhill(dfDataO1$Schmidt, option = c("alpha",</pre>
    "xi", "quantile"), start = 165, end = 172, reverse = FALSE,
    p = NA, ci = 0.95, auto.scale = TRUE, labels = TRUE,
    plot = FALSE)
dfHill <- data.frame(lHill$x, lHill$y, lHill$1, lHill$u)
names(dfHill) <- c("statistics", "Estimate", "Lower",</pre>
    "Upper")
p5 <- ggplot(dfHill, aes(x = statistics, y = Estimate)) +
    geom_line(aes(x = statistics, y = Estimate), colour = "#6D304B",
        alpha = 0.9, size = 0.9) + geom_line(aes(x = statistics,
    y = Lower), colour = "#E9975C", alpha = 0.9, size = 0.7,
    linetype = "dashed") + geom_line(aes(x = statistics,
    y = Upper), colour = "#E9975C", alpha = 0.9, size = 0.7,
    linetype = "dashed") + geom_ribbon(aes(ymin = Lower,
    ymax = Upper), fill = "#E9975C", alpha = 0.2) +
    scale x continuous(breaks = seq(from = min(dfHill$statistics),
        to = max(dfHill$statistics), by = 2)) + theme_bw() +
```


dev.off

```
kstar = 170
alphastar <- dfHill[which(dfHill$statistics == kstar),
    "Estimate"]
print(alphastar)</pre>
```

[1] 2.376191