DERWENT-ACC-NO: 1999-255295

DERWENT-WEEK: 200111

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Solder ball placement method with template for BGA packaging

INVENTOR: CAI, Y S; LAU, T H

PATENT-ASSIGNEE: ADVANCED SYSTEMS AUTOMATION PTE

LTD[ADSYN], ADVANCED SYSTEMS

AUTOMATION LTD[ADSYN]

PRIORITY-DATA: 1997SG-0003591 (September 26, 1997)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAG	SE PA	GES MAIN-IPC
WO 9917593 A1	April 8, 1999	E	017	H05K 003/34
TW 399275 A	July 21, 2000	N/A	000	H01L 021/60
SG 67423 A1	September 21, 1999	N/A	000	H05K 003/34
KR 99029706 A	April 26, 1999	N/A	000	H05K 003/34

DESIGNATED-STATES: CN JP MX AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT S
E

APPLICATION-DATA:

PUB-NO	APPL-DE	SCRIPTOR	APPL-NO	APPL-DATE
WO 9917593A1	N/A	•	1998WO-SG00054	July 6, 1998
TW 399275A	N/A	19	98TW-0106696	April 30, 1998
SG 67423A1	N/A	19	97SG-0003591	September 26, 1997
KR 99029706A	N/A	19	998KR-0037473	September 11, 1998

INT-CL (IPC): H01L021/60; H05K003/34

ABSTRACTED-PUB-NO: WO 9917593A

BASIC-ABSTRACT: NOVELTY - The placement method uses a template (29)

tnat is

aligned with connection pads on the substrate without using flux. One ball is dropped into each hole (27) in the template directly onto the pads in the absence of flux. The solder balls are then exposed to a laser, resulting in

THIS PAGE BLANK (USPTO)

the rapid melting of the solder onto the substrate pad. The melted balls are then cooled rapidly and the subsequent reflow operation is preferably carried out in a nitrogen environment.

USE - Solder ball grid arrays for connections between IC terminals and PCB conductor tracks

ADVANTAGE - Can be used on high density connection pads, reduces occurrence of short-circuits caused by solder ball bridging

DESCRIPTION OF DRAWING(S) - Shows matrix laser head for reflow of solder balls.

cavity 27

solder ball 28

template 29

flux layer 32

housing 34

optical fibers 36

CHOSEN-DRAWING: Dwg.3/4

TITLE-TERMS:

SOLDER BALL PLACE METHOD TEMPLATE PACKAGE

DERWENT-CLASS: U11 V04 X24

EPI-CODES: U11-D01A3A; U11-E01; V04-R04A5A; X24-A09;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1999-190070

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

H05K 3/34

(11) International Publication Number: WO 99/17593

(43) International Publication Date: 8 April 1999 (08.04.99)

(21) International Application Number:

PCT/SG98/00054

(22) International Filing Date:

6 July 1998 (06.07.98)

(30) Priority Data:

9703591-9

26 September 1997 (26.09.97)

SG

(71) Applicant: ADVANCED SYSTEM AUTOMATION LTD. [SG/SG]; 54 Serangoon North Avenue 4, Singapore 555854

(72) Inventors: CAI, Yun, Sheng; Block 15, Marsiling Lane #09-175, Singapore 730015 (SG). LAU, Tay, Hock; 13 Saraca Place, Singapore 807450 (SG).

(74) Agent: LAWRENCE Y.D. HO & ASSOCIATES; 30 Bideford Road #07-01, Singapore 229922 (SG).

(81) Designated States: CN, JP, MX, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: FLUXLESS LASER REFLOW WITH TEMPLATE FOR SOLDER BALLS OF BGA PACKAGING

(57) Abstract

A system of solder ball (28) placement and fluxless laser reflow on BGA packaging comprising means for template alignment, means for solder ball placement and a laser head. The template (29) is aligned with connection pads located on the surface of the substrate without flux. The aligned template allows accurate guiding of the balls onto the pads by the ball placement means. One ball is dropped into each hole (27) in the template directly onto the pads in the absence of flux. The solder balls positioned on the pads are then exposed to a laser via the laser head (36), resulting in the rapid melting of the solder balls directly onto the substrate pads. The melted balls are then allowed to cool rapidly. The present invention is preferably practiced on pads made from gold. The preferred condition for reflow is under nitrogen environment. Other types of pads composed of materials which are inert, do not oxidize readily in air and compatible with the solder ball reflow process are also compatible with the system according to the present invention.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE .	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland -	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,,	Zimoabwc
CM	Cameroon		Republic of Korea	PL	Poland		
CN.	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	Li	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/17593 PCT/SG98/00054

1

FLUXLESS LASER REFLOW WITH TEMPLATE FOR SOLDER BALLS OF BGA PACKAGING

FIELD OF THE INVENTION

The present invention relates to the use of soldering in the electrical connection between an IC device and a printed circuit board. In particular, the present invention relates to the use of laser technology for the reflowing of solder balls on a ball grid array (BGA) device.

10 BACKGROUND OF THE INVENTION

Ball grid array (BGA) packaging of integrated circuit (IC) devices is gaining increasing importance in IC device production. In BGA packaging, the IC chip is commonly mounted on a copper substrate with copper or gold pads, whereon flux is applied followed by the placement of solder balls. The solder balls are then soldered onto the pads in a reflow oven. Flux contains activators which facilitates the soldering or reflow process of the solder balls onto the copper pads. Due to the instability of copper in the presence of oxygen in the air, copper oxide is often found on the surface of the copper pads, which prevents proper soldering unless flux is present to remove copper oxide and react with the solder ball during the reflow process.

The conventional method of ball placement is to use a vacuum suction head with the appropriate array of suction holes to pick up the soldering balls. The balls sucked up in the proper array onto the head are then

15

20

10

15

20

25

lowered onto a substrate with pre-applied flux. This BGA assembly can then be conveyed to the reflow oven for soldering of the solder balls.

Current trend in IC chip production is for greater IC density per chip. The higher the IC density, the greater the number of interconnects required on the same chip size. Therefore, there has been a demand for BGA packages with higher density pads and solder balls. In these high density BGA packages, the number of interconnecting pads per chip can be as high as 1,000 to 2,000, compared to a low density BGA package of below 400 pads per chip for the same surface area. For high density packages above 400 pads per chip, the pitch (distance between two solder balls) and solder ball size have to be reduced accordingly. For example, a low density BGA configuration of below 400 pads per chip with a pad size of 25 mil. and pitch of 50 mil. can use solder balls of 30 mil. diameter. In the case of high density BGA configurations for example with pads of 10 mil. size and pitch of 20 mil., solder balls of 12 mil. diameter have to be used instead.

This reduced pitch and ball size poses a problem for the soldering process. The first problem is placement problem. Due to the very small size and light weight of the solder balls, even a minute air turbulence or a minor warpage of the substrate might result in a displacement of the ball position. Because of the fine pitch required in high density arrays, even a slight displacement may result in bridging, which is the mixing of two soldering balls to form a connection during the process of soldering in a reflow oven. Once bridging occurs, the entire package has to be rejected. Consequently, conventional method of ball placement using the vacuum suction head results is high rejection rates due to bridging. The second problem is in the

10

15

transfer of the packaging from the ball placement site to the reflow oven. Even if the solder balls were placed accurately, the movement necessary to transfer the packaging to the reflow oven would cause the balls to be displaced. In addition to the problems stated above, bulky and expensive equipment are required for the various steps including solder ball placement, reflowing in a reflow oven, and extensive washing with deionized water to remove any traces of residual flux (for water soluble flux). There is therefore a need to improve the packaging process by designing new concepts of ball placement and soldering which would prevent displacement of the solder balls and bridging while minimizing the amount of equipment involved in the process.

OBJECT OF THE INVENTION

It is an object of the present invention to provide an accurate method of solder ball placement in the packaging of BGA devices.

It is another object to reduce the occurrence of solder ball bridging in the reflowing process in BGA assembly line.

It is a further object to eliminate the necessity of a reflow oven in the soldering of solder balls on BGA devices.

20 It is yet another object to eliminate the steps of flux application and removal in the BGA device assembly process.

10

15

4

SUMMARY OF THE INVENTION

The present invention is a system of solder ball placement and fluxless laser reflow on BGA packaging comprising means for template alignment, means for solder ball placement and a laser head. A flux application step is eliminated and the template is aligned with connection pads located on the surface of the substrate without flux. The aligned template allows accurate guiding of the balls onto the pads by the ball placement means. One ball is dropped into each hole in the template directly onto the pads in the absence of flux. The solder balls positioned on the pads are then exposed to a laser via the laser head, resulting in the rapid melting of the solder balls directly onto the substrate pads. The melted balls are then allowed to cool rapidly. This fluxless laser reflow with template method improves the accuracy of the ball placement and alleviates the problem of ball bridging, while eliminating the use of the reflow oven and the cleaner, which are bulky and expensive equipment involved in the packaging of BGA devices. Packaging with pads made from material suitable for fluxless soldering is required for the practice of the present invention. These suitable materials are noble, and do not oxidize readily in air. Gold pads are preferred.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic illustration of the ball placement system according to the present invention.

Figure 2 is a schematic illustration of the laser reflow system according to the present invention.

Figure 3 is a schematic diagram to show the positioning of the matrix laser head for laser reflow of the solder ball.

Figure 4 is a flow diagram to illustrate the steps involved in the laser reflow process according to the present invention.

10

15

20

25

DESCRIPTION OF THE INVENTION

The present invention utilizes a combination of two separate techniques to achieve synergistically superior results in the packaging of high density BGA devices, while at the same time allows for the elimination of three major steps in the conventional BGA packaging method. The first technique involves the use of a template to guide the release and placement of the ball from a conventional ball sucking head. Once the balls are properly placed above the substrate and within the template, the second technique of laser reflow is used, which causes the melting and effective soldering of the solder balls. Using these two techniques in combination with the use of suitable pads, the two flux application and flux removal steps can be removed. The solder ball can be directly soldered onto the pads without the use of flux. In addition, the step of oven reflow is also eliminated. As a result, the time and bulky equipment required to complete the packaging process is substantially reduced.

Figure 1 shows a schematic illustration of the ball placement process according to the present invention. A template 22 of the high density array is placed directly over the substrate without any prior application of flux. A ball sucking head 24 with solder balls in position is aligned over the pads of the substrate, using the template as a guide. When the array in the ball sucking head is aligned with the array of the template, the vacuum on the ball sucking head is released, and the solder balls are discharged onto the substrate. The ball sucking head may be a conventional one commonly used in BGA packaging, with the array adapted for high density devices. The template can be a wire mesh with the mesh size of the required density.

15

20

25

The template may be made from any material which is heat tolerant such as stainless steel and aluminum. A preferred material is stainless steel. The wire of the mesh should be thick enough to prevent a solder ball from rolling over the wire. For example, for a solder ball with diameter of 12 mil, the thickness of the wire of the mesh, as indicated by reference numeral 26 of Figure 3, should be around 12 mil, to prevent the ball from rolling out of the cavity 27. In addition, the inner area of the cavity should preferably be slightly larger than the cross-sectional area of the solder ball for ease of placement by the ball sucking head, and prevention of a ball getting easily attached to the wire mesh. A preferred area is 15-35% larger than the cross-sectional area of the solder ball. For the present invention, it is necessary for the pads to be made from a suitable metal or alloy which is noble such that the solder balls can be soldered directly onto the pads without the addition of flux. The preferred metal is gold.

Figure 2 illustrates how a matrix laser head is used to reflow the solder balls. The ball sucking head is moved away from the substrate after ball placement, and a laser head 30 is placed over the template and solder balls and melted rapidly under the laser beam to form intermetallic layer. Once the laser beam is switched off, the molten solder ball cools rapidly at a high cooling rate. The laser head is preferably of a gyroscope head or a matrix type head comprising of a series of optical fibers arranged in an identical array as the ball array. Lasers such as neodymium:yttrium-aluminum-garnet (Nd:YAG) laser is suitable for laser reflow. The laser reflow may be performed under normal ambient conditions, or it can be performed in a nitrogen environment. The duration and intensity of the xposure varies

10

15

20

8

with the different solder balls, and can be determined with routine experimentation.

Figure 3 shows the alignment of the optic fibers of the laser head with the solder balls 28 placed inside the cavities 27 of the template 29 above the substrate. The optical fibers are housed in a housing 34 which fixes the position of the optical fibers 36 to match the position of the pads and the solder balls. The wire mesh of the template has a height 26 approximately the same as the diameter of the solder balls.

Figure 4 is a flow diagram to show the process according to the present invention. The template is aligned directly with the substrate followed by ball placement with the ball sucking head 42. Then a visual check 44 is preferably performed to ensure that the balls are placed properly, followed by laser reflow 46. Steps 42-46 are preferably performed with the package stationary to minimize any disturbance to the balls once they are placed onto the substrate. After laser soldering, the package may be heated in a reflow oven or a hot plate 48 for a short time to smoothen and polish the surfaces of the soldered balls. The visual checking step is performed using a camera, for example a CCD (capacitor charge device) camera.

While the present invention has been described particularly with references to Figs 1 and 4, it should be understood that the figures are for illustration only and should not be taken as limitation on the invention. It is contemplated that many changes and modifications may be made by one of ordinary skill in the art without departing from the spirit and the scope of the invention described.

CLAIMS

	\sim	_:		
ı	CI	ЯI	m	:

1	1. A system of solder ball placement and fluxless laser reflow of ball grid
2	array packaging of an IC chip with a substrate having an array of pads
3	comprising :
4	means for template alignment having a template with an array of
5	cavities matching said array of pads,
6	means for solder ball placement and
7	a laser module with a laser head adapted to send at least one laser
8	beam onto said solder balls,
9	said system performing the sequential steps of :
10	aligning said cavities of said template with said array of pads;
11	aligning said means for solder ball placement with said substrate
12	using said template as a guide so that an array of solder balls is aligned
13	with said array of pads;
14	discharging said aligned solder balls onto said pads so that one
15	solder ball is placed within each cavity of said template;
16	aligning said laser head with said substrate; and
17	discharging a laser beam directly onto said solder ball such that said
18	solder balls are melted and soldered onto said pad without flux.
. 1	2. A system of solder ball placement and fluxless laser reflow according to
2	alaim 1 whatain said system further comprises a camera and an

- additional step of visual checking with said camera is performed after
 solder ball placement.
- 1 3. A system of solder ball placement and fluxless laser reflow of ball grid
- 2 array packaging according to claim 1 wherein said laser head is a matrix
- 3 laser head.
- 1 4. A system of solder ball placement and fluxless laser reflow of ball grid
- 2 array packaging according to claim 1 wherein said laser head delivers a
- 3 Nd:YAG laser beam.
- 1 5. A system of solder ball placement and fluxless laser reflow of ball grid
- 2 array packaging according to claim 1 wherein said laser soldering step
- 3 is performed under nitrogen environment.
- 1 6. A system for solder ball soldering according to any one of claims 1-5
- wherein said system further comprises a heat plate, and an additional
- 3 step of heat polishing of said solder balls is performed with said heat
- 4 plate after said laser soldering step.
- 7. A system of laser reflow with template according to any one of claims 1-5
- wherein said system further comprises a reflow oven, and an additional
- 3 step of heat polishing of said solder balls is performed with said reflow
- 4 oven after said laser soldering step.
- 1 8. A system of laser reflow with template according to any one of the
- 2 preceding claims wherein said pad is made from gold.

l	9. An apparatus for solder ball placement of ball grid array packaging of an
2	IC chip with a substrate having an array of pads for interconnection
3	comprising:
1	means for template alignment having a template with an array of
5	cavities matching said array of pads;
5	means for solder ball placement onto said pads without flux; and
7	a laser head adapted to send a laser beam onto said solder balls
3	such that said solder balls are melted.

2/3

3/3

42 BALL PLACEMENT

L

44 VISUAL CHECK

46 LASER REFLOW

J

48 HEAT POLISHING

FIGURE 4

INTERNATIONAL SEARCH REPORT

International Application No. PCT/SG 98/00054

A	CLASSIFICATION OF SUBJECT MATTER					
Int Cl ⁶ :	H05K 3/34					
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
В.	FIELDS SEARCHED					
Minimum docu	mentation searched (classification system followed by field	classification symbols)				
Documentation AU: IPC HO	searched other than minimum documentation to the ex	xtent that such documents are included in t	the fields searched			
DERWENT,	base consulted during the international search (name of JAPIO, INSPEC BGA, Ball Grid Array, laser, Template	of data base and, where practicable, search	terms used)			
C.	DOCUMENTS CONSIDERED TO BE RELEVAN	т				
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.			
Y A Y A	Recent Progress in Printed Circuit Board Techr 27-29 January 1997, "Solder Ball Bumping for Kasulke P et al abstract abstract Derwent Abstract Accession No. 96-281730/29 (MATSUSHITA DENKI SANGYO KK) 14 Ma abstract abstract	Printed Circuit Boards 176 PP Class LO3M23, JP 08-118005 A	9 1 9 1			
X	Further documents are listed in the continuation of Box C	See patent family an	nex			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			the application but cited to derlying the invention cannot sidered to involve an taken alone claimed invention cannot estep when the document is the documents, such on skilled in the art			
Date of the actual completion of the international search Date of mailing of the international search report						
	3 September 1998 3 N SEP 1998					
		Authorized officer S. KAUL Telephone No.: (02) 6283 2182				

Form PCT/ISA/210 (second sheet) (July 1992) cophin

INTERNATIONAL SEARCH REPORT

...ernational Application No.

C (Co-e)	PCT/SG 98/00054					
C (Continuat						
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.				
A	1ST 1997 IEMT/IMC Symposium (IEEE cat. No. 97CH36056) pp 295-298 published Tokyo, Japan 1997 "High Density BGA substrates fabricated by Laser Technology "Hirakawa T et al whole document					
A	Solid State Technology, vol. 39, no. 9, pp. 120-122, 124, 127, 128 Penn Well Publishing USA September 1996 "Laser Drilling Speeds BGA packaging" Lizotte T et al whole document					
A	Proceedings of the Technical Program. National Electronic Packaging and Production Conference. NEPCON East 1994 pp. 336-343 published Stamford. CT. USA "An Overview of advancements in surface mount and fine pitch technology", Rua R whole document					
		·				
	· · · · · · · · · · · · · · · · · · ·					

Form PCT/ISA/210 (continuation of second sheet) (July 1992) cophin