Appendix

Gianluca Mancini, Tullio Nutta, Tianchu Zhang Department of Computer Science, EPFL Lausanne, Switzerland

December 20, 2018

MSE and \mathbb{R}^2 averaged over the heights: comparison seasons wise and year wise

Figure 1: Mean Squared Error for the wind speed

Figure 2: R squared for the wind speed

Wind profile graphs

Figure 3: Wind Speed Profile for the different Seasons and regressions methods

Metrics Comparison Regression Models

Table 1: Mean Squared Errors: Ridge Regression

					0	
Anemometers	1	2	3	4	5	6
Spring	0.62	0.74	0.97	1.30	1.83	2.02
Summer	0.64	0.70	0.96	1.27	1.92	2.04
Autumn	0.58	0.65	0.83	1.29	1.70	2.02
Winter	0.75	0.82	1.18	1.76	2.16	2.79

Table 2: Mean Squared Errors: Random Forest

Anemometers	1	2	3	4	5	6
Spring	0.068	0.070	0.137	0.517	0.500	0.657
Summer	0.059	0.057	0.138	0.634	0.687	0.882
Autumn	0.042	0.048	0.104	0.698	0.864	1.115
Winter	0.062	0.065	0.118	0.635	0.686	0.775

Table 3: Mean Squared Errors: Neural Network

Anemometers	1	2	3	4	5	6
Spring	0.134	0.119	0.207	0.523	0.578	1.014
Summer	0.118	0.170	0.307	0.836	0.800	1.316
Autumn	0.118	0.139	0.259	0.703	0.952	1.326
Winter	0.306	0.253	0.497	1.292	2.049	3.218

Table 4: R squared: Neural Network

Table 1. 10 Squared. 1. Caral 1. Con offi							
Anemometers	1	2	3	4	5	6	
Spring	0.134	0.119	0.207	0.523	0.578	1.014	
Summer	0.118	0.170	0.307	0.836	0.800	1.316	
Autumn	0.118	0.139	0.259	0.703	0.952	1.326	
Winter	0.306	0.253	0.497	1.292	2.049	3.218	

Example of Ridge regression fitting behaviour, Summer

Figure 4: Graphical representation of the regression fit of the testing sample for an emometer 1 in Summer

Figure 5: Graphical representation of the regression fit of the testing sample for an momenter 2 in Summer

Anemometer 3 - summer

Figure 6: Graphical representation of the regression fit of the testing sample for an momenter 3 in Summer

Figure 7: Graphical representation of the regression fit of the testing sample for an momenter 4 in Summer

Figure 8: Graphical representation of the regression fit of the testing sample for an momenter 5 in Summer

Figure 9: Graphical representation of the regression fit of the testing sample for an momenter 6 in Summer

Ridge Prediction: year wise vs season wise training

Table 5: Mean Squared Errors produced with the Ridge Regression

MSE	per A					
1	2	3	4	5	6	Season/Year
0.13	0.13	0.16	0.39	0.30	0.61	Spring
0.12	0.13	0.21	0.47	0.41	0.68	Summer
0.13	0.16	0.13	0.48	0.60	0.76	Autumn
0.17	0.19	0.17	0.39	0.48	0.70	Winter
0.43	0.49	0.45	0.76	0.92	1.15	All Year

Table 6: \mathbb{R}^2 produced with the Ridge Regression

R^2 pe	r Anei					
1	2	3	4	5	6	Season/Year
0.14	0.35	0.57	0.70	0.87	0.80	Spring
0.08	0.34	0.39	0.68	0.85	0.80	Summer
-0.08	-0.13	0.45	0.65	0.78	0.78	Autumn
0.03	0.21	0.67	0.80	0.88	0.87	Winter
-1.57	-1.33	-0.14	0.57	0.72	0.72	All Year

Neural Network MSE training behaviour

Figure 10: Mean Squared Error in function of the number of epochs during the training of the neural network

Feature Importance

Figure 11: Feature Importance obtained with Random Forest for different seasons

Table 7: Legend of the feature importance

Sonic Temperature [C]	0
Height [m]	1
$u_{top} ext{ z [m/s]}$	2
Sonic Temperature at Top [C]	3
Pyranometer Upper Irradiance [W/m ²]	4
Pyranometer Lower Irradiance [W/m ²]	5
Pyrgeometer Upper Irradiance [W/m ²]	6
Pyrgeometer Lower Irradiance [W/m ²]	7
Net Solar radiation [W/m ²]	8
Net (total) radiation [W/m ²]	9
Net Far Infrared radiation [W/m ²]	10
Sky temperature [C]	11
Radiometer Ground temperature [C]	12
Sensor Ground temperature [C]	13
North temperature [C]	14
East temperature [C]	15
South temperature [C]	16
West temperature [C]	17
$u_{top} \ge [\mathrm{m/s}]$	18
$u_{top} ext{ y [m/s]}$	19

Ridge Prediction: one dimensional target variable u_y

Table 8: \mathbb{R}^2 produced with the Ridge Regression with the target variable being the y direction of the speed

R^2 pe	r Aner					
1	2	3	4	5	6	Season/Year
0.25	0.12	0.45	0.77	0.91	0.80	Spring
-0.07	-0.27	-0.28	0.76	0.83	0.80	Summer
-0.13	-0.41	0.24	0.76	0.87	0.80	Autumn
0.05	-0.14	0.71	0.89	0.94	0.88	Winter

Table 9: Mean Squared Errors produced with the Ridge Regression with the target variable being the y direction of the speed

MSE	per A					
1	2	3	4	5	6	Season/Year
0.18	0.20	0.21	0.49	0.28	0.78	Spring
0.24	0.29	0.42	0.56	0.58	0.83	Summer
0.19	0.23	0.17	0.59	0.47	0.92	Autumn
0.24	0.31	0.20	0.48	0.37	0.81	Winter