Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Henrik Bachmann, Rosona Eldred, Malte Moos

Sommersemester 2012 Blatt 8

A: Präsenzaufgaben am 7. Juni 2012

1. a) Schreiben Sie die Reihe

$$1 + \frac{4}{5} + \left(\frac{4}{5}\right)^2 + \left(\frac{4}{5}\right)^3 + \dots$$

und ebenfalls die n-te Partialsumme s_n dieser Reihe mit dem Summenzeichen auf. Konvergiert diese Reihe? Geben Sie ggf. den Grenzwert an.

b) Wie a) für

$$1 - \frac{4}{5} + \left(\frac{4}{5}\right)^2 - \left(\frac{4}{5}\right)^3 + \dots$$

c) Begründen Sie, weshalb für $q \in \mathbb{R}$ (mit |q| < 1) Folgendes gilt:

$$\sum_{i=0}^{\infty} q^i = \frac{1}{1-q} \ .$$

d) Für $q \in \mathbb{R}$ mit $|q| \geq 1$: Begründen Sie, weshalb die Reihe $\sum_{i=0}^{\infty} q^i$ divergiert.

2. Die Reihe

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

nennt man bekanntlich $Harmonische\ Reihe$; ihre n-te Partialsumme bezeichnet man mit H_n und man nennt H_n die n-te $harmonische\ Zahl$:

$$H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$
 $(n = 1, 2, \ldots).$

a) Schreiben Sie sowohl H_n als auch die Harmonische Reihe mit dem Summenzeichen auf und berechnen Sie H_1, \ldots, H_4 .

b) Begründen Sie (mündlich) anhand der folgenden Zeile, dass die Harmonische Reihe divergiert:

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{9} + \ldots + \frac{1}{16}}_{\geq \frac{1}{2}} + \ldots \tag{*}$$

c) Skizzieren Sie die Funktion $f(x) = \frac{1}{x}$ für x > 0 und überlegen Sie sich anhand der Skizze, dass Folgendes gilt:

$$\int_{1}^{n+1} \frac{1}{x} dx \le H_n \quad (n = 1, 2, \ldots). \tag{***}$$

Hinweis: H_n ist der Wert einer Obersumme zum linksstehenden Integral.

d) Erläutern Sie, weshalb $(\star\star)$ ebenfalls eine Begründung für die Divergenz der Harmonischen Reihe liefert.

Hinweis: Berechnen Sie das in $(\star\star)$ linksstehende Integral.

3. a) Wir wissen bereits, dass die Reihe $\sum_{i=1}^{\infty} \frac{1}{i^2}$ konvergiert (vgl. Skript, Seite 19/20). Was können wir daraus für die Reihen $\sum_{i=1}^{\infty} \frac{1}{i^{\alpha}}$ mit $\alpha > 2$ schließen?

b) Weisen Sie die Konvergenz der Reihe $\sum_{i=1}^{\infty} \frac{i}{2^i}$ mit dem Quotientenkriterium nach. **Hinweis**: Es ist hier (wie in vielen Fällen) zweckmäßig, die Limes-Version des Quotientenkriteriums zu verwenden.

B: Hausaufgaben zum 14. Juni 2012

1. a) In Präsenzaufgabe 3b) haben wir die Konvergenz der Reihe $\sum_{i=1}^{\infty} \frac{i}{2^i}$ mit dem Quotientenkriterium nachgewiesen. Führen Sie dasselbe mit dem Wurzelkriterium durch. (Es ist zweckmäßig, die Limes-Version des Wurzelkriteriums zu verwenden.)

Hinweis: Es gilt $\sqrt[i]{i} \to 1$ für $i \to \infty$ (siehe Skript, Abschnitt 2.7.2).

- b) Weisen Sie die Konvergenz der Reihe $\sum_{i=0}^{\infty} \frac{(-1)^i \cdot i!}{i^i}$ mit der Limes-Version des Quotientenkriteriums nach.
- c) Berechnen Sie den Konvergenzradius R der Potenzreihe $\sum\limits_{i=0}^{\infty}i^{2}2^{i}x^{i}$ auf zwei Arten:
 - (i) mit Hilfe der Limes-Version des Quotientenkriteriums;
 - (ii) mit Hilfe der Limes-Version des Wurzelkriteriums.
- 2. Entscheiden Sie, ob Konvergenz oder Divergenz vorliegt:

(i)
$$\sum_{i=1}^{\infty} \frac{-1}{2^{i+1}}$$
 (iii) $\sum_{i=1}^{\infty} \frac{1}{2(i+1)}$ (v) $\sum_{i=0}^{\infty} \frac{(-1)^i}{2i+1}$ (ii) $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{2^i}$ (vi) $\sum_{i=1}^{\infty} \frac{(-1)^i}{2^i}$

Für (i) - (iv) gilt: Falls Konvergenz vorliegt, so ermittle man auch den Grenzwert. Falls Sie zu dem Ergebnis gekommen sind, dass im Fall (v) bzw. (vi) Konvergenz vorliegt: Haben Sie eine Idee, welches der Grenzwert ist?

3. Auf Seite 19/20 des Skripts wurde nachgewiesen, dass die Reihe $\sum_{i=1}^{\infty} \frac{1}{i^2}$ konvergiert. Der entscheidende Punkt dabei war der Nachweis, dass die Folge (s_n) der Partialsummen beschränkt ist. Weisen Sie dies auf eine andere Art nach, nämlich mit Mitteln der Integralrechnung.

Hinweis: Gehen Sie ähnlich vor wie in Präsenzaufgabe 2c) und 2d), betrachten Sie hier jedoch eine geeignete Untersumme.

4. Es sei $f: \mathbb{N} \to \mathbb{R}$ eine Funktion, für die $f(n) \to \infty$ für $n \to \infty$ gilt. In der Informatik wird in vielen Zusammenhängen danach gefragt, wie schnell f(n) gegen unendlich geht. Wir betrachten in dieser Aufgabe die Funktion

$$f(n) = H_n = \sum_{i=1}^{n} \frac{1}{i}$$
 $(n = 1, 2, ...),$

die häufig bei der Analyse von Algorithmen auftritt, etwa bei der Laufzeitanalyse von QUICK-SORT, in der das Resultat dieser Übungsaufgabe eine wichtige Rolle spielt (vgl. Cormen et al.: Algorithmen - Eine Einführung).

a) Zeigen Sie

$$H_n - 1 \le \ln(n) \le H_n \quad (n = 1, 2, ...).$$
 (1)

Hinweis: Die "Hälfte" von (1) wurde im Wesentlichen bereits in den Präsenzaufgaben erledigt.

b) Folgern Sie aus (1):

$$\lim_{n \to \infty} \frac{\ln(n)}{H_n} = 1. \tag{2}$$

Hinweis: Wenn a) erledigt ist, so geht b) recht schnell.

(Das Ergebnis (1) (bzw. (2)) können wir auch so aussprechen: Die Funktion $f(n) = H_n$ wächst nur recht langsam, nämlich etwa so wie $\ln(n)$.)