MBR-Übung

Florian Mayer

29. April 2015

Inhaltsverzeichnis

1	Einf	führung	1
	1.1	MBR Layout	1
	1.2	Kontext des MBRs in einem PC-System	4
2	Übr	ıng	5

1 Einführung

Der MBR, kurz für Master Boot Record, stellt in vielen, heute immer noch im Einsatz befindlichen Rechnersystemen, den fundamentalen Übergang vom BIOS hin zum Betriebssystem dar. Er beinhaltet unter anderem den Bootloader mit dem dieser Übergang, bzw. der eigentliche Startvorgang, erst ermöglicht wird. Der MBR ist eine 512 Bytes große Datenstruktur, die auf IBM-kompatiblen PC-Systemen *immer* den 0-ten Datenblock eines Festspeichers (z.B. HDD, SDD, ...) füllt. Die wichtigsten Informationen, die er speichert sind:

- Die Partitionstabelle,
- der Bootloader und
- die Datenträgersignatur.

1.1 MBR Layout

Die folgenden Grafiken und Tabellen zeigen den Aufbau eines MBRs im Detail.

Offset	Inhalt	Größe in Bytes
0x0000	Bootloader	446
0x01BE	1. Partitionseintrag	16
0x01CE	2. Partitionseintrag	16
0x01DE	3. Partitionseintrag	16
0x01EE	4. Partitionseintrag	16
0x01FE	0x55	1
0x01FF	0xAA	1

Tabelle 1: Grobe MBR Offsettabelle

Master Boot Record Volume Boot Record Sector #0 Sector #63-232 446 Stage 1 Bootloader **Empty Space** octets Master Partition entry #1 Master Partition entry #2 Master Partition entry #3 Master Partition entry #4 Magic Number Volume Partition entry #1 Volume Partition entry #2 Volume Partition entry #3 Volume Partition entry #4 Magic Number 64 octets 2 octets Each partition table entry comprises of 16 octets: Flag Start CHS Type End CHS Start LBA Size 1 3 1 3 4 4 octets

Abbildung 1: Grobes MBR-Layout

Offset	*0	*1	*2	*3	*4	*5	*6	*7	*8	*9	*A	*B	*C	*D	*E	*F
0000	eb	48	90	10	8e	d0	bc	00	b0	b8	00	00	8e	d8	8e	с0
0010	fb	be	00	7c	bf	00	06	b9	00	02	f3	a4	ea	21	06	00
0190	61	64	00	20	45	72	72	6f	72	00	bb	01	00	b4	0e	cd
01a0	10	ac	3с	00	75	f4	с3	00	00	00	00	00	00	00	00	00
01b0	00	00	00	00	00	00	00	00	78	56	34	12	00	00	00	01
01c0	01	00	83	fe	ff	ff	3f	00	00	00	41	29	54	02	00	fe
01d0	ff	ff	82	fe	ff	ff	80	29	54	02	fa	e7	1d	00	00	fe
01e0	ff	ff	83	fe	ff	ff	7a	11	72	02	fa	е7	1d	00	80	fe
01f0	ff	ff	05	fe	ff	ff	74	f9	8f	02	0с	83	6с	04	55	aa

Abbildung 2: Position der Partitionstabelle

Offset	Inhalt	Größe in Bytes
0x00	Bootfähigkeit $0x80_{hex} = bootable, 0x00_{hex} = notbootable$	1
0x01	CHS-Eintrag des ersten Sektors	3
0x 0 4	Partitionstyp	1
0x05	CHS-Eintrag des letzten Sektors	3
0x08	Startsektor	4
0x0C	Sektorenanzahl (LBA-Nummerierung)	4

Tabelle 2: Aufbau eines Partitionstabelleneintrags

Typcode	Bezeichner
0x 0 0	leer/unbenutzt
0x01	FAT12 (Floppy Disks)
0x04	FAT16 <= 32 MiB
0x05	erweiterte Partition
0x 0 6	FAT16 > 32 MiB
0x 0 7	NTFS (Windows NT/2000/XP/Vista/7/8), HPFS (OS/2) oder exFAT
0x0B	FAT32
0x0C	FAT32 mit BIOS-Extensions (LBA)
0x0E	FAT16 > 32 MiB mit BIOS-Extensions (LBA)
0x0F	erweiterte Partition mit BIOS-Extensions (LBA)
0x12	OEM-Partition für Konfiguration
0x27	Windows RE versteckte Partition
0x42	Dynamischer Datenträger
0x82	Linux Swap / Solaris 2.6 X86 bis Solaris 9 X86
0x83	Linux Native
0x8E	Linux LVM
0xA5	FreeBSD
0xA6	OpenBSD
0xA9	NetBSD
0xEE	Legacy MBR mit folgendem EFI-Header
0xEF	EFI-Dateisystem

Tabelle 3: Partitionstypen und deren Kodierung

Abbildung 3: Aufbau eines CHS-Eintrags

1.2 Kontext des MBRs in einem PC-System

Abbildung 4: Partitionslayout

	MBR	GPT	
sector 0	Partition table and stage1 bootloader		O KiB
sector 1	GRUB stage1.5 fits into the gap usually several KiB in size	Partition table and stage1 bootloader	0.5 KiB
sector 34		 unused gap	17 KiB
sector 34+n	unused gap	1st partition	The gap can be zero sectors in length when using GPT, leaving no room for stage1.5
sector 63	1st partition		31.5 KiB

2 Übung

- 1. Geben Sie den gesamten MBR einer Festplatte mittels dd und hexdump aus.
- 2. Geben Sie den Partitionstabelleneintrag der ersten Partition aus. Hinweis: Verwenden Sie wieder dd und hexdump
- 3. Bestimmen Sie:
 - den Typ der Partition,
 - den Start-CHS-Eintrag (Welche Nummer hat der Zylinder?),
 - die Startfähigkeit der Partition,
 - die Anzahl der Sektoren,
 - den End-CHS-Eintrag (Welche Nummer hat der Kopf?) und
 - den Startsektor.

Hinweis: Die Felder der Partitionstabelleneinträge werden immer im Little-Endian-Format abgespeichert

4. Welches Problem sehen Sie im Bezug auf CHS-Einträge im Zusammenhang mit Partitionsgrößen?