

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

Лабораторная работа №4 по курсу "Моделирование" по теме "Модель обслуживающего аппарата"

Студент: Уласик Е.А.

Группа: ИУ7-71

Вариант по списку 18

Преподаватель: Рудаков И.В.

Оглавление

1.	Формализация	3
	· I · · · · · · · · · · · · · · · · · · ·	
2.	Результат работы программы	4
		
3.	Вывод	7

1. Формализация

Система состоит из генератора, который генерирует заявки по равномерному закону с заданными параметрами. Заявки поступают в буфер памяти, после чего поступают на обслуживающий аппарат. Время обработки заявки обслуживающего аппарата распределено по нормальному закону. После обслуживания заявки с вероятностью р снова возвращаются в память. Необходимо определить оптимальную длину очереди, при которой не будут теряться сообщения. Пользоваться принципом Δt и событийным принципом.

Принцип Δt (или пошаговый принцип) заключается в последовательном анализе состояний всех блоков системы в момент времени $t+\Delta t$ по заданному состоянию блоков в момент времени t. Основной недостаток заключается в значительных затратах ресурсов, а при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, что приводит к неадекватности модели.

Характерное свойство моделирования систем в том, что состояния отдельных устройств изменяются в дискретные моменты времени, совпадающих с моментами поступления сообщений в систему. При использовании событийного признака, состояния всех блоков системы анализируются лишь в момент проявления какого-либо события. Моменты наступления следующего события определяются минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменённого состояния каждого из блоков.

2. Результат работы программы

На вход программы поступают параметры распределений, число заявок, вероятность повтора заявки и шаг.

На рисунке 1 изображены входные параметры и результат работы программы на 1000 заявок без повторов:

Рисунок 1. Результат работы программы на 1000 заявок без повторов

На рисунке 2 изображены входные параметры и результат работы программы на 1000 заявок с 10% повторов:

Even Distribution
a: 1 b: 10
Normal Distribution
mu: 4 sigma: 0.2
Common Info
count: $\boxed{1000}$ repeat: $\boxed{10}$ step: $\boxed{0.01}$
Load
Result
Event method: 7 Step method: 9

Рисунок 2. Результат работы программы на 1000 заявок с 10% повторов

На рисунке 3 изображён результат работы программы на 10000 заявок с 10% повторов:

Рисунок 3. Результат работы программы на 10000 заявок с 10% повторов

На рисунке 4 изображены входные параметры и результат работы программы на 10000 заявок с 50% повторов:

Even Distribution

a: 1 b: 10
Normal Distribution
mu: $\boxed{4}$ sigma: $\boxed{0.2}$
Common Info
count: $ 10000 $ repeat: $ 50 $ step: $ 0.01 $
Load
Result
Event method: 2271 Step method: 2238
Рисунок 4. Результат работы программы на 10000 заявок с 50% повторов
На рисунке 5 изображён результат работы программы на 10000 заявок с 90% повторов:
Even Distribution
a: 1 b: 10
Normal Distribution

Torna Distributor
mu: 4 sigma: 0.2
Common Info
count:
Load
Result
Event method: 6361 Step method: 6228

Рисунок 5. Результат работы программы на 10000 заявок с 90% повторов

3. Вывод

Таким образом, можно сделать вывод, что очередь, полученная с использованием принципа Δt имеет меньшую длину, чем очередь, полученная с использованием принципа событий; при увеличении вероятности возврата заявки оптимальная длина очереди увеличивается.