Università degli Studi di Torino

Relazione Laboratorio di Algoritmi

ESERCIZIO 1

Chironna Luca - Ferrero Regis Riccardo - Ferrod Roger

INTRODUZIONE

Lo scopo di questo esercizio era quello di implementare i seguenti tipi di algoritmi di ordinamento, Insertion Sort, Selection Sort, Quick Sort, per poi utilizzarli su un file contenente 20 milioni di records da ordinare.

I tempi di risposta di questi algoritmi sono stati presi tramite la funzione clock() su una macchina del laboratorio avente le seguenti caratteristiche :

- Scientific Linux 6.8(Carbon)
- 7.5 GiB of Memory
- 8 Processors Intel Core i7-2600 CPU @3.40GHz

Per quanto visto a lezione ci aspettavamo che il Quick Sort, avente complessità temporale media di $\Theta(n \log n)$ sarebbe stato il più veloce tra i tre, avendo sia Insertion Sort che Selection Sort una complessità di $\Theta(n2)$.

Abbiamo implementato il Quick Sort con la possibilità di modificare la posizione del pivot nella partizione per confrontare i tempi di ordinamento di tutti i casi possibili.

Gli elementi del record sono caricati in memoria senza un pre-ordinamento, ogni riga è quindi in una posizione randomica.

I tempi sono stati calcolati sul primo campo, in quanto due stringhe di caratteri sono più lente da ordinare rispetto a due numeri a causa del confronto carattere per carattere.

RACCOLTA DATI

Insertion Sort	N	Load(s)	t(s)
	1000	0	0,00
	10000	0	0,265
	50000	0,2	7,615
	100000	0,04	34,97
	150000	0,055	116,635
	200000	0,085	306,605
	250000	0,1	513,695

Selection Sort	N	Load(s)	t(s)
	1000	0	0,00
	10000	0	0,62
	50000	0,02	16,365
	100000	0,04	73,145
	150000	0,06	241,75
	200000	0,09	508,42
	250000	0,105	853,69

Quick Sort Random Pivot	N	Load(s)	t(s)
	1000	0	0,00
	10000	0	0,01
	50000	0,015	0,02
	100000	0,04	0,03
	150000	0,06	0,05
	200000	0,08	0,065
	250000	0,11	0,075
	500000	0,21	0,175
	1000000	0,42	0,42
	5000000	2,285	2,775
	10000000	4,41	6,365
	15000000	6,435	10,18
	20000000	8,35	14,41
Quick Sort Median Pivot	N	Load(s)	t(s)
Median Pivoi	1000	0	0,00
	10000	0	0,01
	50000	0,025	0,015
	100000	0,045	0,025
	150000	0,045	0,05
	200000	0,085	0,06
	250000	0,003	0,075
	500000	0,21	0,165

1000000	0,41	0,405
5000000	2,03	2,76
10000000	4,05	6,285
15000000	6,75	10,15
20000000	8,13	14,67

Quick Sort First Pivot	N	Load(s)	t(s)
	1000	0	0,00
	10000	0	0,005
	50000	0,02	0,015
	100000	0,04	0,03
	150000	0,06	0,05
	200000	0,08	0,06
	250000	0,11	0,075
	500000	0,2	0,175
	1000000	0,4	0,4
	5000000	2,03	2,795
	10000000	4,06	6,36
	15000000	6,08	10,36
	2000000	8,14	14,545

I tempi sono stati presi su due macchine diverse del laboratorio e poi è stata fatta una media aritmetica per ottenere un risultato più accurato.

CONCLUSIONI

Come ci aspettavamo l'algoritmo di ordinamento più veloce è stato il Quick Sort. Invece, l' Insertion Sort e il Selection Sort hanno fallito in quanto il loro tempo medio di ordinamento superava i 10 minuti per un numero di record minore di 1 milione.

Non abbiamo notato grosse variazioni di tempi per quanto riguarda le tre implementazioni del Quick Sort nonostante scegliere il primo elemento come pivot porti al caso peggiore con costo $\Theta(n2)$.

Viene allegato alla relazione un grafico che compara i tempi di ordinamento dei tre algoritmi e uno per i vari casi del Quick Sort.

