

EBU6018 Advanced Transform Methods

Week 4.4 – Perfect Reconstruction and Daubechies

Dr Yixuan Zou

Lecture Outline

- Perfect Reconstruction
 - Filter Banks
 - ❖ Z-transform
- Daubechies Wavelet Family
 - Orthogonal Filter Banks
 - ❖ Daubechies Wavelet Transform Matrix
 - ❖ Daubechies vs. Haar

Linear Transform Coding

General procedures of linear transform coding:

(Only first M transform coefficients are transmitted)

Linear Transform Coding (LTC)

- Discrete Cosine Transform (DCT) is a type of linear transform coding
- Advantages of DCT
 - most energy concentrated in a few coefficients, so
 - can discard some coeffs, while keeping most of signal

- Fourier transform, wavelet transform can also achieve this, depending on the signal.
- This type of application is known as Linear Transform Coding

Perfect Reconstruction in LTC

- The transmission error is calculated as
 - $J = E(|\mathbf{x} \hat{\mathbf{x}}|^2)$
 - Mean squared error (MSE)
 - E(v) is the expected value (mean) of v
- We want to choose A (forward transform matrix) and B (inverse transform matrix) to minimize J
- Perfect reconstruction: If we keep all the coefficients and let $\mathbf{B} = \mathbf{A}^{-1}$, we have
 - $\hat{y} = y$, hence $\hat{x} = B\hat{y} = By = BAx = Ix = x$

Perfect Reconstruction in Filterbank

We know that it would be good if we can invert a transform to reconstruct the original sequence from the output of the transform.

If we can do so, then we have **Perfect Reconstruction**:

It is only possible to have Perfect Reconstruction if we do not process the output of the transform before we invert it.

Perfect Reconstruction in Filterbank

We know that it would be good if we can invert a transform to reconstruct the original

sequence from the output of the transform.

If we can do so, then we have **Perfect Reconstruction**:

- We want to derive possible relationships between H and G
- Notice that the signals and the filters are functions of z, i.e., operator of Z-transform

It is only possible to have Perfect Reconstruction if we do not process the output of the transform before we invert it.

Z-Transform – Operator z

- ➤ What is z?
 - **The Z-transform of a function** x(n) is given by

$$Z[x(n)] = x(z) = \sum_{n} x(n)z^{-n}$$

- n is an integer
- $z = re^{j\omega} = r(\cos(\omega) + i\sin(\omega))$ is a complex variable, r > 0
 - o r is the magnitude of z, i.e., r = |z|
 - $\circ \omega$ is the phase/angle of z

Z-Transform of Sequences and Filters

- > For example:
 - the sequence s[n] = [3, 6, 2, 8, 5......] can be presented as

$$s(z) = 3 + 6z^{-1} + 2z^{-2} + 8z^{-3} + \dots$$

the Haar low-pass filter $h_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (normalised) could be written $h_0(z) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} z^{-1}$

We use z-transform to represent the position of values in a sequence

Analysis filters H_0 , H_1 and synthesis filters G_0 , G_1 may differ.

- ightharpoonup Recall z-transform: $H(z) = \sum_{n=0}^{N} h[n]z^{-n}$
- Assuming no processing, we typically want Perfect Reconstruction (PR) i.e. that $\hat{X}(z)$ is equal to X(z)
- ightharpoonup This can be achieved with a +ve delay only, i.e. $\hat{X}(z) = z^{-l}X(z)$ for some $l \ge 0$.

It can be shown that

$$\hat{X}(z) = \frac{1}{2} [G_0(z)H_0(z) + G_1(z)H_1(z)]X(z) + \frac{1}{2} [G_0(z)H_0(-z) + G_1(z)H_1(-z)]X(-z)$$

For PR, want 2nd ("alias") term to be zero:

$$G_0(z)H_0(-z) + G_1(z)H_1(-z) = 0$$
 biorthogonal filter bank

It can be shown that

$$\hat{X}(z) = \frac{1}{2} [G_0(z)H_0(z) + G_1(z)H_1(z)]X(z) + \frac{1}{2} [G_0(z)H_0(-z) + G_1(z)H_1(-z)]X(-z)$$

For PR, want 2nd ("alias") term to be zero:

- **Condition 1**: $G_0(z)H_0(-z) + G_1(z)H_1(-z) = 0$ biorthogonal filter bank
- > A possible solution is

$$G_0(z) = H_1(-z)$$
 and $G_1(z) = -H_0(-z)$ This satisfies the alias cancellation condition

For PR, also want 1st term to be a pure delay, e.g.

Condition 2:
$$2z^{-l} = G_0(z)H_0(z) + G_1(z)H_1(z) = G_0(z)H_0(z) - H_0(-z)G_0(-z)$$

i.e.

$$P_0(z) - P_0(-z) = 2z^{-l}$$
 where $P_0(z) = H_0(z)G_0(z)$

- $P_0(z) = H_0(z) G_0(z)$ is the product of two Low-Pass filters
 - ❖ There are many possible types of filter, each requiring specific design criteria, e.g, linear phase, maximally flat, etc
 - There are many ways of factoring $P_0(z)$ into $H_0(z)$ and $G_0(z)$

One of the common ways is defined by:

$$P_0(z) = (1 + z^{-1})^{2k} Q(z)$$

- ❖ where k is some constant and Q(z) can be chosen to give PR
- $Q(z) = -1 + 4z^{-1} z^{-2}$ gives filters that are "maxflat", that is, the passband is maximally flat, e.g., Butterworth filters

- \square $H_0(z)$ and $G_0(z)$ are low-pass filters
- ➤ The number of zeroes that they have and the positions of those zeroes affect the performance of the filters
- ➤ These are FIR filters, and the position of the zeroes affects many of the filter characteristics, including phase response and orthogonality.
- For minimum phase lag, all zeroes must lie inside the unit circle, if all zeroes lie outside the unit circle then the filter is maximum phase.
- For example, if the factors in $P_0(z) = H_0(z)G_0(z) = (1+z^{-1})^{2k}Q(z)$ are

$$H_0(z) = (1 + z^{-1})^2 (c - z^{-1})$$
 and $G_0(z) = (1 + z^{-1})^2 \left(\frac{1}{c} - z^{-1}\right)$

then they are orthogonal, although their phase is not linear.

Daubechies Wavelet Family

- Recall, wavelet design method is:
 - 1) Design product filter $P_0(z)$ to satisfy $P_0(z) P_0(-z) = 2z^{-l}$
 - 2) Factorize $P_0(z)$ into $H_0(z)$ and $G_0(z)$
- \triangleright Example: The k^{th} order Daubechies wavelets (dbk),

$$H_0(z) = (1+z^{-1})^k \prod_{\substack{i=1\\k-1}}^{k-1} (z_i - z^{-1})$$

$$G_0(z) = (1+z^{-1})^k \prod_{\substack{i=1\\k-1}}^{k-1} (\frac{1}{z_i} - z^{-1})$$

where z_i and $1/z_i$ are roots of a polynomial of degree 2k-2

Daubechies Wavelet Family

 \triangleright Using k=1 for dbk wavelet we get

$$H_0(z) = G_0(z) = (1 + z^{-1})$$
 or $H_0(\omega) = (1 + e^{-j\omega n})$ (Not normalised)

- > i.e. the Haar wavelet (apart from a scaling factor).
- \triangleright Using k=2 for dbk wavelet we get

ng
$$k=2$$
 for db k wavelet we get
$$c=2-\sqrt{3} \ , \quad \frac{1}{c}=2+\sqrt{3}$$
 $H_0(z)=(1+z^{-1})^2(c-z^{-1})$ and $G_0(z)=(1+z^{-1})^2(\frac{1}{c}-z^{-1})$

• where $c = 2 - \sqrt{3}$ and 1/c are the roots of the polynomial

$$Q(z) = -1 + 4z^{-1} - z^{-2}$$

Daubechies wavelets are actually orthogonal. (E.g. check the power complementary condition)

Power Complementary Condition

▶ Definition: Transform formed by set of filters $H_0(\omega)$ and $H_1(\omega)$ is energy conserving.

Orthogonal Filter Banks

Orthogonal filter banks are orthogonal in the sense that

$$\sum_{n} h_i[n-2k]h_i[n] = \delta(k) \text{ and } \sum_{n} h_i[n-2k]h_i[n] = 0 \text{ for } i \neq l$$

which can be achieved by e.g. (given without proof)

$$H_1(z) = (-z)^{-N} H_0(-z^{-1})$$

For Haar $h_0 = [h_0(0), h_0(1)] =$ [0.707, 0.707] So $h_1 = [0.707, -0.707]$

i.e. that high—pass analysis filter h_1 is alternating flip of h_0 :

$$(h_1[0], h_1[1], h_1[2], \dots, h_1[N]) = (h_0[N], -h_0[N-1], h_0[N-2], \dots)$$

ightharpoonup Recall, $G_0(z) = H_1(-z)$ and $G_1(z) = -H_0(-z)$, we get e.g.

$$G_0(z) = z^{-N} H_0(z^{-1})$$

 \triangleright So, e.g. the resynthesis filter $\gamma_0[n] \Leftrightarrow G_0(z)$ is flip of $h_0[n]$:

$$(\gamma_0[0], \gamma_0[1], \gamma_0[2], \dots, \gamma_0[N]) = (h_0[N], h_0[N-1], \dots, h_0[0])$$

University of London

Orthogonal Filter Banks – Summary

For our special case of Orthogonal Filter Banks:

- Choose $H_1(z) = -z^{-N}H_0(-z^{-1})$ ie, delayed
- $G_0(z) = H_1(-z) = z^{-N}H_0(z^{-1})$ ie, delayed
- $G_1(z) = -H_0(-z) = z^{-N}H_1(z^{-1})$ ie, delayed

So, if we know $H_0(z)$ then the others can be derived.

That is, the synthesis filters are time-reversed versions of the analysis filters with a delay.

> The values of the scaling coefficients are:

$$h_0[0] = \frac{1+\sqrt{3}}{4\sqrt{2}}$$

$$h_0[1] = \frac{3+\sqrt{3}}{4\sqrt{2}}$$

$$h_0[2] = \frac{3-\sqrt{3}}{4\sqrt{2}}$$

$$h_0[3] = \frac{1-\sqrt{3}}{4\sqrt{2}}$$

The dbk-2 wavelet is also called the D4 wavelet because it has 4 coefficients

Daubechies wavelet: analysis filters

$$h_0[n] = (h_0[0], h_0[1], h_0[2], h_0[3]) = \left(\frac{1+\sqrt{3}}{4\sqrt{2}}, \frac{3+\sqrt{3}}{4\sqrt{2}}, \frac{3-\sqrt{3}}{4\sqrt{2}}, \frac{1-\sqrt{3}}{4\sqrt{2}}\right) = (0.483, 0.837, 0.224, -0.129)$$

$$h_1[n] = (h_1[0], h_1[1], h_1[2], h_1[3]) = (h_0[3], -h_0[2], h_0[1], -h_0[0])$$

Synthesis filters:

$$\begin{split} &\gamma_0[n] = (h_0[3], \ h_0[2], \ h_0[1], \ h_0[0]) \\ &\gamma_1[n] = (h_1[3], \ h_1[2], (-h_0[1], h_0[0]), h_0[0]), -h_0[2], \ h_0[3]) \end{split}$$

Question: What are the elements of the high-pass analysis filter and of the synthesis filters?

> Answer:

- $h_0[n] = [h_0[0], h_0[1], h_0[2], h_0[3]] = [0.483, 0.837, 0.224, -0.129]$
- $\checkmark h_1[n]=[h_0[3], -h_0[2], h_0[1], -h_0[0]] = [-0.129, -0.224, 0.837, -0.483]$
- $\checkmark \gamma_0[n]=[h_0[3], h_0[2], h_0[1], h_0[0]] = [-0.129, 0.224, 0.837, 0.483]$
- $\checkmark \gamma_1[n] = [-h_0[0], h_0[1], -h_0[2], h_0[3]] = [-0.483, 0.837, -0.224, -0.129]$

Low-pass analysis Scaling Function

Low-pass synthesis

High-pass analysis Wavelet function

High-pass synthesis

As the order increases, the wavelets become more and more smooth with more oscillations.

They do not have a linear phase response.

Daubechies Wavelet Transform

Calculating the dbk-2 transform is performed by taking the inner product (dot product) of the filter coefficients and 4 input data values of s[n].

If the output of the low pass filter is a c coefficient and the output of the high pass filter is a d coefficient:

$$c_i = h_0[0]s_{2i} + h_0[1]s_{2i+1} + h_0[2]s_{2i+2} + h_0[3]s_{2i+3}, \quad i = 0,1,...$$

$$d_i = h_1[0]s_{2i} + h_1[1]s_{2i+1} + h_1[2]s_{2i+2} + h_1[3]s_{2i+3}, \quad i = 0,1,...$$

Daubechies Wavelet Transform Matrix – Forward

$$\begin{bmatrix} h_0[0] & h_0[1] & h_0[2] & h_0[3] & 0 & 0 & 0 & 0 \\ h_1[0] & h_1[1] & h_1[2] & h_1[3] & 0 & 0 & 0 & 0 \\ 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] & 0 & 0 \\ 0 & 0 & h_1[0] & h_1[1] & h_1[2] & h_1[3] & 0 & 0 \\ 0 & 0 & 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] \\ 0 & 0 & 0 & 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] \\ 0 & 0 & 0 & 0 & 0 & 0 & h_1[0] & h_1[1] & h_1[2] & h_1[3] \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7 \end{bmatrix} = \begin{bmatrix} c_0 \\ d_0 \\ c_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \\ s_7 \end{bmatrix} = \begin{bmatrix} c_0 \\ d_0 \\ c_1 \\ c_2 \\ d_2 \\ c_3 \\ d_3 \end{bmatrix}$$

The problem of not being able to calculate the final values could be solved by assuming that the input sequence is periodic, that is, assuming that s_0 and s_1 will be the next two input values, that is, putting $s_8 = s_0$, and $s_9 = s_1$

Daubechies Wavelet Transform Matrix – Inverse

$$\begin{bmatrix} h_0[2] & h_1[2] & h_0[0] & h_1[0] & 0 & 0 & 0 & 0 & 0 & 0 \\ h_0[3] & h_1[3] & h_0[1] & h_1[1] & 0 & 0 & 0 & 0 & 0 & 0 \\ & & h_0[2] & h_1[2] & h_0[0] & h_1[0] & 0 & 0 & 0 & 0 & 0 \\ & & h_0[3] & h_1[3] & h_0[1] & h_1[1] & 0 & 0 & 0 & 0 & 0 \\ & & 0 & 0 & h_0[2] & h_1[2] & h_0[0] & h_1[0] & 0 & 0 & 0 \\ & & 0 & 0 & 0 & h_0[3] & h_1[3] & h_0[1] & h_1[1] & 0 & 0 & 0 \\ & & 0 & 0 & 0 & 0 & h_0[3] & h_1[3] & h_0[1] & h_1[1] \end{bmatrix} \begin{bmatrix} c_1 \\ d_1 \\ c_2 \\ d_2 \\ c_3 \\ d_3 \\ c_4 \\ d_4 \end{bmatrix} = \begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \\ s_7 \end{bmatrix}$$

Daubechies vs. Haar – Summary

- > The Daubechies family is an orthogonal set of wavelet functions.
 - ❖ When k=1, we have the Haar Function
 - ❖ When k=2, we have the dbk-2 Function
- ➤ For the Haar Forward Transform, there is no overlap between successive pairs of scaling and wavelet functions
- ➤ With the dbk-2 Forward Transform there is an overlap
- ➤ The Haar high-pass filter produces a result depending on the difference between an even element and an odd element. But will not produce a result depending on the difference between an odd element and its even successor. This change will, however, be picked up in later steps.
- For the dbk-2 high-pass filter, there is an overlap so change between any two elements will be detected.

Daubechies vs. Haar – Summary

- ➤ Since the dbk-2 Wavelet Transform detects any change in the input data at every transform step, then it is more accurate in detecting changes in the input data
- ➤ However, the dbk-2 has a higher computation cost than the Haar Transform
- ➤ The trade-off depends on the application.....accuracy versus speed.
- ➤ Daubechies transforms are used for detecting discontinuities and also for "self-similarity", that is, feature extraction. They are not so useful for image processing because the phase is not linear.

Daubechies Wavelet – Exercise

The forward transform matrix for the dbk-2 transform is:

$$\begin{bmatrix} h_0[0] & h_0[1] & h_0[2] & h_0[3] & 0 & 0 & 0 & 0 \\ h_1[0] & h_1[1] & h_1[2] & h_1[3] & 0 & 0 & 0 & 0 \\ 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] & 0 & 0 \\ 0 & 0 & h_1[0] & h_1[1] & h_1[2] & h_1[3] & 0 & 0 \\ 0 & 0 & 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] \\ 0 & 0 & 0 & 0 & 0 & h_0[0] & h_0[1] & h_1[3] & \\ 0 & 0 & 0 & 0 & 0 & h_0[0] & h_0[1] & h_0[2] & h_0[3] \\ 0 & 0 & 0 & 0 & 0 & 0 & h_1[0] & h_1[1] & h_1[2] & h_1[3] \end{bmatrix} \begin{bmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \\ S_7 \end{bmatrix} = \begin{bmatrix} c_1 \\ d_1 \\ c_2 \\ d_2 \\ c_3 \\ d_3 \\ c_4 \\ d_4 \end{bmatrix}$$

Calculate the first 2 c coefficients and the first 2 d coefficients if the input sequence is: S[n] = [3, 7, 1, 4, 6, 9, 2, 5]

Daubechies Wavelet – Exercise Solution

$$c_1 = 3x0.483 + 7x0.837 + 1x0.224 + 4x(-0.129) = 7.016$$

$$> d_1 = 3x(-0.129) + 7x(-0.224) + 1x0.837 + 4x(-0.483) = -3.05$$

$$c_2 = 1 \times 0.483 + 4 \times 0.837 + 6 \times 0.224 + 9 \times (-0.129) = 4.014$$

$$> d_2 = 1x(-0.129) + 4x(-0.224) + 6x0.837 + 9x(-0.483) = -0.35$$

