Modern Time Series Analysis

tps://github.com/AileenNielsen/TimeSeriesAnalysisWithPython

1. Dates & Times.ipynb
2. Time Zone Handling.ipynb
3. Reading in data and making sensible data frames.ipynb
4. Resampling.ipynb
■ 5. Moving Window Functions.ipynb
T. Forecasting.ipynb
8. Spectral Analysis.ipynb
9. Clustering & Classification.ipynb

Outline

- Brief overview of time series
- State space models for time series
- Machine learning methods for time series
- Deep learning for time series

Time series generally

What are time series?

Tasks for time series analysis

- Visualization and exploratory data analysis
 - Understanding temporal behavior of data: seasonality, stationarity
 - Identifying underlying distributions and nature of temporal process producing data
- Estimation of past, present, and future values
 - filtering vs forecasting
- Classification of time series
- Anomaly detection of outlier points within time series

Time series data versus crosssectional data

- More opportunities for missing data points
 - Quite challenging following the same samples (or people) through time
- Often, there is a high degree of correlation between data points
 - Values in the past predict values in the future
 - This is good for prediction but bad for models that assume independent inputs
- Time stamps or other measures of distance travelled along the temporal axis introduce all kinds of data messiness
 - Time zones, frequency irregularities, etc

Characteristics of time series data

- Data is collected sequentially; one axis is monotonically increasing
- Structure is characterized across data points:
 - Seasonality & cycles
 - Autocorrelation
 - Trends
- Stochastic behavior even as to behavioral regime
 - Change points / regime shifts v. drift / gradual change

Autocorrelation

Registered Marriages in Accra

https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc624.htm

Special concerns for time series data

- Correlated errors
- Cross-validation
- Lookahead (forecasting)
- Stationarity

https://www.itl.nist.gov/div898/handbook/pmc/section6/pmc624.htm

https://robjhyndman.com/hyndsight/tscv/

State space models

Box-Jenkins ARIMA modeling (background)

- Remarkably successful; remain quite close to cutting edge performance
- Excellent performance on small data sets

https://www.mathworks.com/help/econ/check-model-for-airline-passenger-data.htm

Box-Jenkins ARIMA modeling (background)

- L = lag operator (moves a variable in time)
- Alphas = autoregressive components
- Thetas = moving average components

$$\left(1-\sum_{i=1}^{p'}lpha_iL^i
ight)X_t=\left(1+\sum_{i=1}^q heta_iL^i
ight)arepsilon_t$$

ARIMA(p, d, q)

$$\left(1-\sum_{i=1}^p \phi_i L^i
ight)(1-L)^d X_t = \left(1+\sum_{i=1}^q heta_i L^i
ight)arepsilon_t$$

What's missing from ARIMA

- Not especially intuitive
- No way to build in our underlying understanding about how it works
 - Random walk element
 - Cyclical element
 - External regressors
- Some systems cycle more slowly or stochastically than can be easily described with an ARIMA model

Structural time series

Structural time series

- Can also be expressed in ARIMA form
- Fit via maximum likelihood/Kalman filter
- Largely developed in econometrics
- Offer insights into underlying structure
- Also possible to inject Bayesian analysis via priors on parameters

State space models offer three solutions

- Filtering: the distribution of the current state at time t given all previous measurements up to and including time t
- Prediction: the distribution of the future state at time t + k given all previous measurements up to and including time t
- Smoothing: the distribution of a given state at time k given all previous and future measurements from 0 to T (last time)

Kalman filter

Kalman filter cont'd

$$\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k$$

$$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

Kalman filter cont'd

Predict [edit]

Predicted (a priori) state estimate $\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$

Predicted (a priori) error covariance $\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^\mathsf{T} + \mathbf{Q}_k$

Update [edit]

Innovation or measurement pre-fit

residual

Innovation (or pre-fit residual)

covariance

Optimal Kalman gain

Updated (a posteriori) state estimate

Updated (a posteriori) estimate

covariance

Measurement post-fit residual

$$ilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$$

$$\mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^\mathsf{T} + \mathbf{R}_k$$

$$\mathbf{K}_k = \mathbf{P}_{k|k-1}\mathbf{H}_k^\mathsf{T}\mathbf{S}_k^{-1}$$

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \tilde{\mathbf{y}}_k$$

$$\mathbf{P}_{k|k} = \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k
ight) \mathbf{P}_{k|k-1}$$

$$ilde{\mathbf{y}}_{k|k} = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k}$$

Akaike information criterion (AIC)

$$AIC = 2k - 2\ln(\hat{L})$$

Models we will fit

Local linear trend	'local linear trend'	'Iltrend'	$y_t = \mu_t + \varepsilon_t$ $\mu_t = \mu_{t-1} + \beta_{t-1} + \eta_t$ $\beta_t = \beta_{t-1} + \zeta_t$
Smooth trend	'smooth trend'	'strend'	$y_t = \mu_t + \varepsilon_t$ $\mu_t = \mu_{t-1} + \beta_{t-1}$ $\beta_t = \beta_{t-1} + \zeta_t$

Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs)

- State space model: observations are an indicator of underlying state
- Markov process: past doesn't matter if present status is known
- Parameter estimation: Baum-Welch algorithm
- Smoothing/state labeling: Viterbi algorithm

Baum-Welch Algorithm for Determining Parameters

- Expectation-maximization parameter estimation:
 - Initialize parameters (with informative priors or randomly)
 - EM iterations:
 - Compute the expectation of the log likelihood given the data
 - Choose the parameters that maximize the log likelihood expectation
 - Exit when desired convergence is reached
- Guaranteed that the likelihood increases with each iteration
- BUT converges to a **local** maximum not a global maximum
- BUT can overfit the data

Baum-Welch Algorithm Details

Problem

$$\theta = (A, B, \pi)$$

Forward step

$$lpha_i(t) = P(Y_1 = y_1, \ldots, Y_t = y_t, X_t = i \mid heta) \ lpha_i(1) = \pi_i b_i(y_1), \ lpha_i(t+1) = b_i(y_{t+1}) \sum_{j=1}^N lpha_j(t) a_{ji}.$$

$$\beta_i(t) = P(Y_{t+1} = y_{t+1}, \dots, Y_T = y_T \mid X_t = i, \theta)$$

Backward step

$$eta_i(T)=1,$$
 $eta_i(t)=\sum_{j=1}^Neta_j(t+1)a_{ij}b_j(y_{t+1}).$

<u>https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algo</u> hm

Baum-Welch Algorithm Details cont'd

$$\gamma_i(t) = P(X_t = i \mid Y, \theta) = \frac{P(X_t = i, Y \mid \theta)}{P(Y \mid \theta)} = \frac{\alpha_i(t)\beta_i(t)}{\sum_{i=1}^N \alpha_i(t)\beta_i(t)},$$

$$\xi_{ij}(t) = P(X_t = i, X_{t+1} = j \mid Y, heta) = rac{P(X_t = i, X_{t+1} = j, Y \mid heta)}{P(Y \mid heta)} = rac{lpha_i(t) a_{ij} eta_j(t+1) b_j(y_{t+1})}{\sum_{i=1}^N \sum_{j=1}^N lpha_i(t) a_{ij} eta_j(t+1) b_j(y_{t+1})},$$

Baum-Welch Algorithm Details cont'd

$$\pi_i^* = \gamma_i(1),$$

$$a_{ij}^* = rac{\sum_{t=1}^{T-1} \xi_{ij}(t)}{\sum_{t=1}^{T-1} \gamma_i(t)},$$

$$b_i^*(v_k) = rac{\sum_{t=1}^T 1_{y_t=v_k} \gamma_i(t)}{\sum_{t=1}^T \gamma_i(t)}, \quad 1_{y_t=v_k} = \left\{egin{matrix} 1 & ext{if } y_t=v_k, \ 0 & ext{otherwise} \end{aligned}
ight.$$

Viterbi Algorithm for Determining Sequence

Dynamic programming

Machine learning for time series

Time series feature generation

Time series features: catch22

hctsa feature name	Description
Distribution	
DN_HistogramMode_5	Mode of z-scored distribution (5-bin histogram)
DN_HistogramMode_10	Mode of z-scored distribution (10-bin histogram)
Simple temporal statistics	
SB_BinaryStats_mean_longstretch1	Longest period of consecutive values above the mean
DN_OutlierInclude_p_001_mdrmd	Time intervals between successive extreme events above the mean
DN_OutlierInclude_n_001_mdrmd	Time intervals between successive extreme events below the mean
Linear autocorrelation	
CO_flecac	First $1/e$ crossing of autocorrelation function
CO_FirstMin_ac	First minimum of autocorrelation function
SP_Summaries_welch_rect_area_5_1	Total power in lowest fifth of frequencies in the Fourier power spectrum
SP_Summaries_welch_rect_centroid	Centroid of the Fourier power spectrum
FC_LocalSimple_mean3_stderr	Mean error from a rolling 3-sample mean forecasting
Nonlinear autocorrelation	
CO_trev_1_num	Time-reversibility statistic, $\langle (x_{t+1} - x_t)^3 \rangle$
CO_HistogramAMI_even_2_5	Automutual information, $m=2, \tau=3$
IN_AutoMutualInfoStats_40_gaussian_fmmi	First minimum of the automutual information function
Successive differences	
MD_hrv_classic_pnn40	Proportion of successive differences exceeding 0.04σ [20]
SB_BinaryStats_diff_longstretch0	Longest period of successive incremental decrease
SB_MotifThree_quantile_hh	Shannon entropy of two successive letters in equiprobable 3-letter symbolization
FC_LocalSimple_mean1_tauresrat	Change in correlation length after iterative differencing
CO_Embed2_Dist_tau_d_expfit_meandiff	Exponential fit to successive distances in 2-d embedding space
Fluctuation Analysis	
SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1	Proportion of slower timescale fluctuations that scale with DFA (50% sampling
SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 Others	Proportion of slower timescale fluctuations that scale with linearly rescaled range fit
SB_TransitionMatrix_3ac_sumdiagcov PD_PeriodicityWang_th0_01	Trace of covariance of transition matrix between symbols in 3-letter alphabe Periodicity measure of [31]

Table 1 The catch22 feature set spans a diverse range of time-series characteristics representative of the diversity of interdisciplinary methods for time-series analysis. Features in catch22 capture time-series properties of the distribution of values in the time series, linear and nonlinear temporal autocorrelation properties, scaling of fluctuations, and others.

Time series features: discipline specific

Classification

Trees $X_1 < t_1$ $X_2 < t_2$ $X_1 < t_3$ X2 < t4 $X_2 < t_5$ R_2 R_1 R_5 R₆ Rз R4

Random Forest

xgboost

Clustering

Clustering: the reality

Time series clustering

- Surprisingly difficult
 - Conceptually
 - Computational costs
 - Pitfall: Euclidean distance
- Used across many disciplines
 - Medicine
 - Finance
 - Chemistry
 - Etc

A Practical Example

http://ofdataandscience.blogspot.com/2013/03/capital-bikeshare-time-series -clustering.html

Dynamic time warping

Deep learning for time series

Fully connected (FC)

hidden layer 1 hidden layer 2

Recurrent neural networks (RNNs)

GRU

Convolutional neural networks (CNNs)

LSTNet

More options

- Anomaly detection
- New and old libraries (more R than Python)
- Automated forecasting at scale
- Combining machine learning and statistical approaches