SAMPLE PROJECT PROPOSAL

1	PROJECT TITLE	:	Scaling up the conversion of CO2 to methanol and value- added chemicals
2	Name and address of principal implementing agency(s) Name of Project Leader/Coordinator/ Principle Investigator		Jawaharlal Nehru Centre for Advanced Scientific Research(JNCASR), Jakkur, Bangalore, Karnataka Dr.Anirban Roy, Senior Scientist,JNCASR
3	Name and address of Sub-Implementing Agency(s) Name of Co- Investigator(s)	••	Singareni Collieries Company Limited (SCCL), Kothagudem, Telangana BREATHE Applied Sciences Pvt. Ltd., Bangalore, Karnataka Dr. Priya Das, SCCL Dr. Vikas Kulkarni, BREATHE Applied Sciences
4	Definition of the issue	••	Rising CO2 emissions from industrial activities are a major contributor to climate change, demanding urgent mitigation efforts. The capture and conversion of CO2 into methanol and other value-added chemicals present a sustainable and scalable solution. Methanol, a versatile chemical, is widely used as a fuel and feedstock in various industries. However, current CO2 conversion technologies lack commercial viability due to inefficient processes and low yields. This project aims to develop an industrially relevant, integrated technology to convert 500 kg of CO2/day into methanol and other chemicals with improved efficiencies and scalability.
5	Objectives		 Develop and scale up an integrated technology for converting CO2 to methanol and value-added chemicals with commercially viable efficiencies. Establish a robust end-to-end system integrating CO2 capture, hydrogen generation, CO2 reduction, and product purification processes. Achieve a sustainable, economically viable solution for industrial adoption in the coal sector.
6	Justification for subject area	:	This project aligns with India's commitment to reducing carbon emissions under the Paris Agreement. It leverages abundant CO2 resources and transforms them into economically valuable products, contributing to sustainable development goals. The coal industry, a significant source of CO2 emissions, will directly benefit from the adoption of this technology by turning a waste product into a resource.

7	How the project is	:			sions by converting waste into				
	beneficial to coal		commercially viable products.						
	industry?		Enhances environmental compliance and sustainability for coal-based industries.						
			Opens avenues for alternative revenue streams						
			•		f methanol and by-products.				
			tinough	the sale of	i methanor and by products.				
8	Work Plan	:			hased approach with clear				
			milestones for R&D, pilot implementation, and industrial						
			scaling. Each phase includes testing and validation to ensure commercial viability and scalability.						
	NA - I I I - I								
8.	Methodology	:		lives the in	ntegration of four key sub-				
1			technologies:						
			1. CO2 Cap	ture: Emp	loying advanced adsorption				
			=	-	e CO2 from industrial emissions.				
			2. Hydroge	n Generat	ion: Using electrolysis powered				
			by renev	vable ener	gy to produce green hydrogen.				
					ermo-catalytic reduction of CO2				
					other chemicals using				
				ary catalys					
					n: Separating and purifying				
			industria		er value-added chemicals for				
			muustiid	ii use.					
8.	Organization of work	:	Phase 1 (6 mont	:hs): Resea	arch and development of				
2	elements		advanced cataly	sts and CC	02 capture methods.				
			•	•	-scale implementation and				
			integration of su		_				
			•	•	strial-scale testing and				
			optimization of	the compl	ete system.				
8.	Time schedule of			Timelin					
3	activities giving		Activity	e	Milestone				
	Milestones		Catalyst	0-6					
			development	months	Advanced catalyst prepared				
			Pilot-scale	6-18					
			testing	months	Sub-technologies integrated				
			Industrial-	18-30	System operational at 500 kg				
			scale testing	months	CO2/day capacity				
9	Details of proposed	:	(Rs in lakhs)						
<u></u>	outlay		Tatal and C	-4					
SI	Items		Total cost estim	ated					
N									
0									
		<u> </u>							

		Total project cost	1 st Year	2 nd Year	3 rd Year
	Capital Expenditures	project cost			
9.1	Land & Building	200	100	50	50
9.2	Equipment	600	300	200	100
9.3	Total Capital(9.1+9.2)	800	400	250	150
	Revenue Expenditure				
9.4	Salaries/allowances	300	100	100	100
9.5	Consumables	150	50	50	50
9.6	Travel	60	20	20	20
9.7	Attending or organizing	50	10	20	20
	Workshop/Seminar				
9.8	Total Revenue	560	180	190	190
	expenditure(9.4+9.5+9.6+9.7)				
9.9	Contingency	50	50	0	0
9.10	Institutional Overhead	100	100	0	0
9.11	Applicable	120	120	0	0
	taxes/duties/charges etc.				
9.12	Grand Total	1630	850	440	340
	(9.3+9.8+9.9+9.10+9.11)				

Foreign Exchange Component:

Name of the Foreign Currency: USD (United States Dollar)

Exchange Rate: 1 USD= 83 INR Date: 30.12.2024

10.0 Phasing of fund requirement with respect to activities/milestone

1st Year: 40% - Infrastructure setup, procurement of equipment, and pilot plant

establishment.

2nd Year: 35% - Optimization of the CO2-to-methanol process, testing, and scaling

laboratory procedures.

3rd Year: 25% - Full-scale pilot demonstration, analysis, and submission of findings.

11.0 Outlay for land & Building:

Building

Sl. No	Item	Plinth Area	Type of Bldg.	Estimated Cost
1.	Laboratory	2000 sq. ft.	Research	75
	Space		Facility	
2.	Pilot Plant	3000 sq. ft.	Industrial Setup	120
	Space			
Total				195

12.0 Justification for land & building:

The laboratory space is required for R&D activities, specifically to optimize the catalytic conversion of CO2 to methanol.

The pilot plant space is essential for testing scaled-up processes and analysing economic feasibility before commercialization.

13.0 Outlay for Equipment:

Generic Name of		Number	Imported/Indigenous	Estimated	Foreign
equip	ment and			Cost (Rs. In	Exchange
access	sories with			lakhs)	Component
major	specifications				
1.	High-Pressure	2	Imported	150	100
	Reactor System				
2.	Gas	1	Imported	80	60
	Chromatograph				
	with FID/TCD				
3.	CO2	1	Indigenous	50	0
	Purification &				
Storage System					
Total				280	160

14.0 Justification for Equipment:

The high-pressure reactor is crucial for testing methanol synthesis under varying pressures and temperatures.

Gas chromatographs are required for precise analysis of product composition and yields. The CO2 purification system ensures high-quality input gas, which is vital for experimental consistency and scalability

15.0 Outlay for consumable materials:

Head	Particular	Outlay				
		1 st Year	2 nd Year	3 rd Year	Total	
Catalysts and	Q	100kg	200kg	1200kg	1500kg	
Chemical						
Reagents						
Utilities (Gas,	В	1500 kWh	1000 kWh	1400 kWh	3900 kWh	
Water,						
Electricity)						
Miscellaneous	F	50 sets	55 sets	35 sets	140 sets	
Laboratory						
Supplies						
Safety and	E	25 units	50 units	30 units	105 units	
Maintenance						
Equipment						

16.0 Curriculum Vitae of Project Proponents

Principal Investigator: Dr. Anirban Roy

Educational Qualifications: Ph.D. in Chemical Engineering, IIT Madras

Past Experience: Over 15 years in CO2 capture and conversion technologies

Number of Research Projects Handled: 10

Commercial Application of Research Findings: Developed a commercially viable CO2-to-

ethylene process

Papers Published: 25 (International and National Journals)

Co-Investigator: Dr. Priya Das

Educational Qualifications: Ph.D. in Environmental Science, IISc Bangalore

Past Experience: 12 years in environmental impact assessment and sustainable technologies

Number of Research Projects Handled: 8

Commercial Application of Research Findings: Implemented sustainable waste management

systems in coal mines

Papers Published: 20 (International and National Journals)

17.0 Past Experience

The Principal Implementing Agency (JNCASR) has extensive expertise in catalytic processes and CO2 conversion. Sub-implementing agencies SCCL and BREATHE Applied Sciences have previously collaborated on industrial-scale sustainability projects, ensuring effective execution and timely delivery.

18.0 Others

1. Literature/Web Survey:

Recent advancements in CO2 conversion technologies show promising results globally, particularly in Europe and the US, focusing on green hydrogen integration and efficient catalysts. In India, efforts have centered on low-cost CO2 capture methods, offering a competitive edge in industrial applications.

2. R&D Components:

The project focuses on novel thermo-catalytic processes and advanced adsorption technologies exclusive to this proposal.

Integration of multiple sub-technologies ensures a holistic approach to CO2 conversion.

3. Field Trials and Collaborations:

SCCL's industrial emissions will serve as a field trial source for testing CO2 capture technologies.

Collaborations with national and international experts ensure high-quality execution.

FUND REQUISITION

Name of the project: Scaling up the conversion of CO2 to methanol and value-added chemicals

Project Code: CO2-Methanol-2024

Name of the Company/Institution: XYZ Research Institute

Statement of fund requirement for the (year/period): FY 2024-2025

			- (/ /	,			
Items	Total approve	Total Fund	Interest Earned	Expenditure incurred till	Balance fund	Fund provision	Fund required
	d Cost	Receive		date	available as	in	for the
		d as on			on date	correspo	FY 2024-
		12.12.2			30.12.2024	nding	2025
		024				Year	
	(1)	(2)	(3)	(4)	(5)=(2)+(3)- (4)		
Land &	50.00	10.00	0.50	5.00	45.50		
Building							
Capital	100.00	50.00	1.00	30.00	71.00		
equipment							
Manpower	30.00	15.00	0.20	10.00	20.20		
Consumables	20.00	10.00	0.10	5.00	15.10		
Travel	10.00	5.00	0.05	2.00	8.05		
Contingencies	5.00	2.00	0.01	1.00	4.01		
Attending/org	15.00	5.00	0.02	3.00	12.02		
anizing							
workshop/sem							
inar etc.							
Total	230	97	1.88	56	175.88		

Fund received till date:

₹50,00,000

Signature of Associate Finance Officer:

Name: Rajesh Sharma Designation: Senior Finance Officer

Seal: [Official Seal]

Signature of Project Leader/Coordinator:

Name: Dr. Priya Mehra Designation: Project Leader

Seal: [Official Seal]