A. Mth Method

Mth teats each sample as a capture (or recapture). It predicts the total number of bugs based on Equation 1, 2 [1]. Table I shows the meaning of each variable, how to compute its value based on the bug arrival lookup table in Table II.

$$N = \frac{D}{C} + \frac{f_1}{C} \gamma^2, C = 1 - \frac{f_1}{\sum_{k=1}^t k f_k}$$
 (1)

$$\gamma^2 = \max\{\frac{\frac{D}{C}\sum_k k(k-1)f_k}{2\sum\sum_{j < k} n_j n_k} - 1, 0\}$$
 (2)

TABLE I: Example of bug arrival lookup table

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	
Sample #1	1	1	1	0	0	0	0	0	0	0	0	0	
Sample #2	0	0	1	1	0	0	0	0	0	0	0	0	
Sample #3	0	0	1	0	1	0	0	0	0	0	0	0	
Sample #4	0	0	0	1	1	1	1	1	0	0	0	0	
Sample #5	0	0	1	1	0	0	0	1	1	1	1	0	
Sample #6	1	0	1	0	1	0	0	0	0	0	0	1	
Sample #7													

TABLE II: Variables meaning and computation

Var.	Meaning	Computation based on	Example	
		bug arrival lookup table	value	
N	Predicted total number of		predicted	
	bugs		value: 24	
D	Actual number of bugs	Number of columns	12	
	captured so far			
t	Number of captures	Number of rows	6	
n_j	Number of bugs detected	Number of cells with 1 in	3, 2, 2, 5,	
-	in each capture	row j	6, 4	
f_k	Number of bugs captured	Count the number of cells	1=7, 2=2,	
	exactly k times in all	with 1 in each column, and	3=2, 5=1	
	captures, i.e., $\sum f_i =$	denote as r_i ; f_k is the num-		
	D	ber of r_i with value k		
Z_i	Number of bugs detected	For row i , count the number	1=1, 2=0,	
	only in the i_{th} capture,	of column which only have	3=0, 4=2,	
	i.e., $\sum Z_i = f_1$	1 in row i	5=3, 6=1	
n_1	Number of bugs in the	For row 1 to 3, count the	5	
	capture (e.g., 1-3 sample)	number of columns with 1		
n_2	Number of bugs in the	For row 4 to 6, count the	11	
	recapture (e.g., 4-6 sam-	number of columns with 1		
	ple)			
m	Number of bugs con-	The number of columns	4	
	tained in both captures	which have 1 in both row		
		1-3 and row 4-5		

B. MhJK Method

MhJK method is similar with *Mth* method, except its equation for estimating the total number of bugs in Equation 3 [2] (with the value assignments in Table II).

$$N = D + \frac{t-1}{t}f_1\tag{3}$$

Note that, the *MhJK* estimation has three other expressions. We use all four expressions, and choose the right estimator through hypothesis testing as suggested in [2]. Please refer to [2] for more details.

C. MhCH Method

MhCH method is similar with Mth method, except its equation for estimating the total number of bugs in Equation 4, 5 [3] (with the value assignments in Table II).

$$N = D + \frac{f_1^2}{2f_2} \tag{4}$$

٥r

$$N=D+\frac{[\frac{f_1^2}{2f_2}][1-\frac{2f_2}{tf_1}]}{1-\frac{3f_3}{tf_2}}, \text{ if } tf_1>2f_2, tf_2>3f_3, 3f_1f_2>2f_2^2 \quad (5)$$

D. MtCH Method

MtCH method is also similar with *Mth* method, except its equation for estimating the total number of bugs in Equation 6 [4] (with the value assignments in Table II).

$$N = D + \frac{\sum_{i=1}^{t} \sum_{j=i+1}^{t} Z_i Z_j}{f_2 + 1}$$
 (6)

E. M0 Method

Method M0 treats the first half samples as the capture, and treats the second half samples as the recapture. The total number of bugs is estimated as Equation 7 [5] (with the value assignments in Table II). Note that, we simply treat $n_1 \times n_2$ as the total number when m is 0.

$$N = \frac{n_1 \times n_2}{m} \tag{7}$$

REFERENCES

- [1] S.-M. Lee, "Estimating population size for capture-recapture data when capture probabilities vary by time, behavior and individual animal," Communications in Statistics-Simulation and Computation, vol. 25, no. 2,
- pp. 431–457, 1996.
 [2] K. P. Burnham and W. S. Overton, "Estimation of the size of a closed population when capture probabilities vary among animals," Biometrika,
- vol. 65, no. 3, pp. 625-633, 1978.
- [3] A. Chao, "Estimating animal abundance with capture frequency data,"
- The Journal of Wildlife Management, pp. 295–300, 1988.

 [4] ——, "Estimating the population size for capture-recapture data with unequal catchability," Biometrics, pp. 783–791, 1987.

 [5] P. S. Laplace, "Sur les naissances, les mariages et les morts," Histaire de
- l'Academie Royale des Sciences, p. 693, 1783.