COMS 4701 Artificial Intelligence

Homework 4 - Conceptual

Due date: SUNDAY November 21st, 2021

1. Decision Trees

Consider the task of spam prediction using this dataset of four training examples (emails), each described by two features, word1 and word2, and a label spam to denote whether the email is a spam or not.

word1	word2	spam
T	F	T
T	F	T
F	T	T
F	F	F

1. Calculate the gini index at the root.

$$Gini = 1 - p_{\oplus}^2 - p_{\ominus}^2$$

2. What feature is picked at the root? Justify your work.

2. Linear regression

Consider the problem of predicting student scores in the final exam in function of their scores in the midterm exam. Let feature x denote the midterm scores and label y denote the final scores. Consider the training set pairs (x, y) as follows: (55, 67), (60, 63), (66, 72), (72, 90), (85, 93), (90, 92).

- 1. Suppose we learned a linear classifier and the weights are $\beta_0 = -8$ and $\beta_1 = 1.2$. what is the predicted final score if the midterm grade is 80? Show your work.
- 2. Recall the cost function R seen in class that depends on the regression weights. Calculate the cost for $\beta_0 = -8$ and $\beta_1 = 1.2$.
- 3. Suppose we managed to train a linear regression on the training data and we found β_0 and β_1 such that R=0. Which of the following is correct/incorrect. Explain each answer.
 - (a) We must have $\beta_0 = 0$ and $\beta_1 = 0$.
 - (b) We have found a linear regressor that perfectly fit the data.
 - (c) We will do a perfect prediction in the test set.

3. Naive Bayes classifier

Consider the following dataset with three binary features taking their values in $\{0,1\}$, and the label taking its values in $\{TRUE, FALSE\}$.

Α	В	С	Label
0	1	1	TRUE
1	1	0	TRUE
1	0	1	FALSE
1	1	1	FALSE
0	1	1	TRUE
0	0	0	TRUE
0	1	1	FALSE
1	0	1	FALSE
0	1	0	TRUE
1	1	1	TRUE

Using a Naive Bayes classifier, predict the label of the new example: (A = 1, B = 0, C = 1).

No smoothing needed and no need to calculate all probabilities of the NB classifier, calculate only the probabilities you need to make this prediction.