Unidad VI: Funciones y Cardinalidad

Funciones: operaciones y palomar

Clase 16 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Operaciones sobre relaciones

Definición:

Sea R una relación de A en B. La relación inversa R^{-1} de B en A se define como:

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$$

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c\}$.

$$R = \{(1,c), (2,a), (3,c)\}$$

$$R^{-1} = \{(c,1), (a,2), (c,3)\}$$

Operaciones sobre relaciones

Definición:

Sea R una relación de A en B. La relación inversa R^{-1} de B en A se define como:

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$$

Sea R una relación de A en B y S una relación de B en C. La relación composición R ∘ S de A en C se define como:

$$R \circ S = \{(a, c) \in A \times C \mid \text{existe } b \in B \text{ tal que } (a, b) \in R \text{ y } (b, c) \in S\}$$

Ejemplos:

Sea $A = \{1, 2, 3\}$, $B = \{5, 6\}$, $C = \{a, b, c\}$.

$$R \circ S = \{(1,b), (1,c), (2,a), (3,a)\}$$

Inverso y composición de funciones

Sea $f: A \rightarrow B$ una función.

- f^{-1} es su relación inversa.
- Recordar que toda función f es una relación, luego la relación f^{-1} siempre está bien definida.
- $= f^{-1}$ podría **no** ser una función.

¿Cuándo sucede que f^{-1} es una función?

Inverso y composición de funciones

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

- $f \circ g$ es la composición de f y g.
- $f \circ g$ siempre es una función.

Inverso y composición de funciones

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

- $f \circ g$ es la composición de f y g.
- $f \circ g$ siempre es una función.

Proposición:

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones. Entonces para todo $a \in A$ y $c \in C$:

$$(a,c) \in f \circ g \iff g(f(a)) = c$$

OJO: escribiremos $f \circ g$ y **no** $g \circ f$ (que es lo usual en cálculo).

Caracterización de funciones

Proposición:

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si y sólo si f^{-1} es una función parcial.
- 2. f es sobreyectiva si y sólo si img(f) = B.

Demostración:

Item (1): (\Rightarrow)

Supongamos que $(b, a_1) \in f^{-1}$ y $(b, a_2) \in f^{-1}$.

Por demostrar: $a_1 = a_2$.

Por definición de f^{-1} , tenemos que $(a_1, b) \in f$ y $(a_2, b) \in f$.

Es decir: $f(a_1) = b \ y \ f(a_2) = b$.

Como f es inyectiva, concluimos que $a_1 = a_2$.

Caracterización de funciones

Proposición:

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si y sólo si f^{-1} es una función parcial.
- 2. f es sobreyectiva si y sólo si img(f) = B.

Demostración:

Item (1): (←) Ejercicio.

Caracterización de funciones

Proposición:

Sea $f: A \rightarrow B$ una función. Entonces:

- 1. f es inyectiva si y sólo si f^{-1} es una función parcial.
- 2. f es sobreyectiva si y sólo si img(f) = B.

Corolario:

Sea $f: A \rightarrow B$ una función. Entonces:

f es biyectiva si y sólo si f^{-1} es una función.

Composición de funciones

Teorema:

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

- 1. Si f y g son inyectivas, entonces $f \circ g$ es inyectiva.
- 2. Si f y g son sobreyectivas, entonces $f \circ g$ es sobreyectiva.

Demostración:

Item (1):

Sean $a_1, a_2 \in A$ tal que $a_1 \neq a_2$.

Por demostrar: $g(f(a_1)) \neq g(f(a_2))$.

Como f es inyectiva, tenemos que $f(a_1) \neq f(a_2)$.

Como g es inyectiva, concluimos que $g(f(a_1)) \neq g(f(a_2))$.

Composición de funciones

Teorema:

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

- 1. Si f y g son inyectivas, entonces $f \circ g$ es inyectiva.
- 2. Si f y g son sobreyectivas, entonces $f \circ g$ es sobreyectiva.

Demostración:

Item (2): Ejercicio.

Composición de funciones

Teorema:

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

- 1. Si f y g son inyectivas, entonces $f \circ g$ es inyectiva.
- 2. Si f y g son sobreyectivas, entonces $f \circ g$ es sobreyectiva.

Propuesto: demuestre que el reverso de cada implicación es falso.

Corolario:

Sean $f: A \rightarrow B$ y $g: B \rightarrow C$ funciones.

Si f y g son biyectivas, entonces $f \circ g$ es biyectiva.

¿Cómo demostrarían estas afirmaciones?

- En esta sala hay dos estudiantes que nacieron en el mismo año.
- En Santiago, hay dos personas que tienen la misma cantidad de pelos en la cabeza.
- Si 5 elementos son seleccionados del conjunto $\{1, 2, \dots, 8\}$, tiene que haber por lo menos un par que suma 9.
- Sea $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1. Siempre hay dos números en S tal que uno divide al otro.

Notación: |S| denota la cardinalidad del conjunto S.

Principio del palomar:

"Si N palomas se distribuyen en M palomares y tengo más palomas que palomares (N > M), entonces al menos habrá un palomar con más de una paloma"

Principio del palomar (en términos de funciones):

Si $f: A \rightarrow B$ y |B| < |A|, entonces f **no** puede ser inyectiva, es decir:

existen $a_1, a_2 \in A$ tal que $a_1 \neq a_2$ y $f(a_1) = f(a_2)$.

Principio muy útil y usado en matemáticas y computación!!

Ejemplos:

 En esta sala hay dos estudiantes que nacieron en el mismo año.

Demostración: cantidad de estudiantes > 40

posibles edades entre 17 y 50,

luego, cantidad de años de nacimiento = 34.

 En Santiago, hay dos personas que tienen la misma cantidad de pelos en la cabeza.

Demostración: cantidad de personas > 6.500.000

cantidad de pelos en un cabeza < 300.000

Ejemplos:

Si 5 elementos son seleccionados del conjunto {1,2,...,8}, tiene que haber por lo menos un par que suma 9.

Demostración:

Sean a_1, a_2, a_3, a_4, a_5 los cinco números distintos seleccionados.

Palomas: a_1, a_2, a_3, a_4, a_5

Palomares: $\{1,8\}, \{2,7\}, \{3,6\}, \{4,5\}$

Función: $f(a_i) = \text{el conjunto que contiene a } a_i$.

Ejemplos:

Sea $A = \{1, 2, ..., 2n\}$ y $S \subseteq A$ tal que |S| = n + 1. Siempre hay dos números en S tal que uno divide al otro.

Demostración:

- Sea $a_1, a_2, \ldots, a_{n+1}$ los números seleccionados.
- Para todo $a \in A$, sea $a = 2^k \cdot m$ donde m es un número impar.

Palomas: $a_1, a_2, \ldots, a_{n+1}$

Palomares: 1, 3, 5, ..., 2n - 3, 2n - 1

Función: $F(a_i) = m$