

nimero de onda $\Psi(x,t) = A \cdot Sen(K(x = vt))$ $\Rightarrow \Psi(x,t) = A \cdot sen(2\pi(\frac{x}{\lambda} \mp \frac{t}{\tau}))$ $\Rightarrow Y(x,t) = A_{\text{Sen}}(2\pi(K_{X} + vt))$ => Y(x, t) = A. sen(Kx + wt) } Formu convencional tqm, 23 Cristo $\Rightarrow \Upsilon(x,t) = A \cdot sen(2\pi x)\Upsilon(x+t)$ ONDA ARMÓNICA SIMPLE UNIDIMENSIONAL Definimos la fase de una onda como elargumento de la función seno o coseno: $P(x,t) = Kx + \omega t$ $\Psi(x,t) = A \cdot Sen(\Psi(x,t))$ Veamos su comportumiento: $\Upsilon(\chi,\xi)|_{\chi=0}=A.Sem(K.0\pm\omega.0)=0$ i e la ondu arminica simple valdrá siempre cero en el origen espacial y temporal. Para el coseno, el valor aqui será de A. Por tunto su máx:mo se alcunzará en t=0 y x=0. Si queremos que no inicie en 0, definimos la fase inicial de la onda: ((x,t) = Kx + w+ + € } ← Por lo tanto: Y(x,+)= A. sen (Kx=w+E) Vermos su comportamiento: Tusa de cumbio de la fase = 2= respecto al tiempo. la la se respecto a la posición.

$$\frac{\partial Y}{\partial t} = -\frac{\partial t}{\partial t} = \pm \frac{\omega}{K} = \pm \frac{2\pi v\lambda}{2\pi} = \pm v^{2} \text{ Velocidad de propagación}$$

$$\frac{\partial Y}{\partial t} = -\frac{\partial V}{\partial t} = \pm \frac{2\pi v\lambda}{2\pi} = \pm v^{2} \text{ Velocidad de propagación}$$

$$\frac{\partial Y}{\partial t} = -\frac{\partial V}{\partial t} = \pm \frac{2\pi v\lambda}{2\pi} = \pm v^{2} \text{ Velocidad de propagación}$$

SVELOCIDAD de PROPAGACIÓN de la CONDICIÓN FASE CONSTANTE.

Fase constante implica que $\ell(x,t)=k_{x+w}t+\varepsilon$ NO CAMBIA (para $\varepsilon=0$ c?) i.e., usamus x, t tales que $\ell(x,t)$ se mantiene constante. Ya no nos fijamos en la onda, sino en puntos x, t donde $\ell(x,t)$ es constante.

 $\left(\frac{\partial x}{\partial t}\right)_{q} = \sigma^{2}$ A esta velocidad tambiém se le lama velocidad de fase.

Sobre la noción de propagación de fase constante.

 $Y(x,t) = A \cdot \text{gen}(K(x \neq ut))$

 $\frac{f(x)^{9}}{f(x)^{9}} = 0 = v \pm c = 0 = \frac{f(x)^{9}}{f(x)^{9}} = 0 = v \pm c = 0 = \frac{f(x)^{9}}{f(x)^{9}}$

Principio de Superposición		
Sean 1, (x,t) y 12(x,t) dos funciones que representan undas, i.e umbas satisfacen la ecuación diferencial de onda:		
	$\partial \chi^2$ ∇^2 ∂y^2	
La suma de las mismas 4,(x,	f(x,t) tumbién satisfo	ce la ecuación de onda. Si dos
ondus se encuentran en un	punto P, la superposición	de les mismos está dada po-
r su SUMA ALGEBRAICA		