CS1231 Review 10

1. A <u>function</u> f from X to Y, $f: X \to Y$, is an assignment of exactly one element of Y to each element of X.

Are the followings functions from X to Y?

• $X = \{1, 2, 3\}$. $Y = \{a, b, c, d\}$. f is defined in the arrow diagram below.

Not function 26X has no image

• $X = \{1, 2, 3\}$. $Y = \{a, b, c, d\}$. f is defined in the arrow diagram below.

Yes, it is a function.

- $X = \mathbb{R}$. $Y = \mathbb{R}$. $f(x) = x^2$.
- $\bullet \ \ X=\mathbb{R}. \ \ Y=\mathbb{R}^*. \ \ f(x)=x^2. \qquad \ \mbox{Yes.}$
- $X = \mathbb{R}$. $Y = \mathbb{R}$. $f(x) = \sqrt{x}$. h. f(-1) has no value
- $X = \mathbb{R}^*$. $Y = \mathbb{R}$. $f(x) = \sqrt{x}$. Yes $f(9) = \sqrt{9} = 3$ 2. Identity function $i_A : A \to A$. $i_A(x) = \underline{x}$.
- 3. A function $f: X \to Y$ is <u>one-to-one</u> or <u>injective</u> if $\forall a,b \ (f(a) = f(b) \to a = b)$

Are the followings one-to-one functions from X to Y?

• $X = \{1, 2, 3\}$. $Y = \{a, b, c, d\}$. f is defined in the arrow diagram below.

f is not
$$1-1$$

 $f(2) = f(3) \rightarrow 2=3$
T

 \bullet $X = \{1, 2, 3\}$. $Y = \{a, b, c, d\}$. f is defined in the arrow diagram below.

- $X = \mathbb{R}$. $Y = \mathbb{R}^*$. $f(x) = x^2$. No. f(1) = f(-1) but $| \neq |$ $X = \mathbb{R}^*$. $Y = \mathbb{R}$. $f(x) = x^2$. Tes, $X = \mathbb{R}^*$. $Y = \mathbb{R}$. $f(x) = \sqrt{x}$. Tes | | $X = \mathbb{R}^*$. $Y = \mathbb{R}$. $f(x) = \sqrt{x}$. Tes | | $X = \mathbb{R}^*$. $Y = \mathbb{R}^*$. $f(x) = \sqrt{x}$. Tes | | $X = \mathbb{R}^*$. $Y = \mathbb{R}^*$. Y =

- 4. A function $f: X \to Y$ s onto or surjective if $\forall y \in Y \exists x \in X \exists x$

Are the followings onto functions from X to Y?

• $X = \{1, 2, 3\}$. $Y = \{a, b, c, d\}$. f is defined in the arrow diagram below.

• $X = \{1, 2, 3, 4\}$. $Y = \{a, b, c\}$. f is defined in the arrow diagram below.

Are the followings bijections from X to Y?

			outo
1	No.	• $X = \mathbb{R}$. $Y = \mathbb{R}$. $f(x) = x^2$.	X -1 is not an image
ia	No	• $X = \mathbb{R}$. $Y = \mathbb{R}^*$. $f(x) = x^2$. $f(x) = f(x)$	of any x
	No	• $X = \mathbb{R}^*$. $Y = \mathbb{R}$. $f(x) = \sqrt{x}$.	X -1 is not an image of any x
	Yes.	• $X = \mathbb{R}^*$. $Y = \mathbb{R}^*$. $f(x) = \sqrt{x}$.	of any x
	Yes	• $X = Y = A$. Identity function i_A .	\checkmark

6. Let $f: X \to Y$ be bijection. Its **inverse function** f^{-1} is defined by

$$f^{-1}(y) = x \Leftrightarrow \underline{f(\alpha)} = y$$
.

7. Composition Function.

 $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ are defined by f(x) = x - 1, g(x) = 2x. Then

$$\frac{(f \circ g)(x)}{(g \circ f)(x)} = \frac{f(g(x))}{g(f(x))} = \frac{g(x)}{g(x)} = \frac{g(x)}{g$$

8. Find the **inverse** of the function $f: \mathbb{R} \to \mathbb{R}$, where f(x) = 2x - 1 for all $x \in \mathbb{R}$, if

it exists.

bijection (1)
$$|-1|$$
 $f(a) = f(b)$
 $\Rightarrow 2a + = 2b - 1$
 $\Rightarrow 2a = 2b$
 $\Rightarrow 2a = 2b$

- 9. Floor and Ceiling Functions.
 - [-2] = -2 [-2] = -2
 - $\lfloor 0.5 \rfloor = \bigcirc \quad \lceil 0.5 \rceil = \bigcirc$
 - [-0.5] = -[-0.5] = 0
 - Given $n \in \mathbb{Z}$. $\lfloor x \rfloor = n \Leftrightarrow h \leq \chi < h + \rfloor$
 - Given $n \in \mathbb{Z}$. $\lceil x \rceil = n \Leftrightarrow \bigwedge \subset X \leq \bigwedge$