Extraction des demandes dans les décisions jurisprudentielles

séminaire LGI2P, IMT Mines Alès - 15 mars 2018

Début de thèse: 15 Décembre 2015

Doctorant: Gildas Tagny Ngompé

Direction de thèse:

- Jacky Montmain (École des mines d'Alès, LGI2P)
- Stéphane Mussard (Université de Nîmes, CHROME)

Encadrement de proximité:

- Sébastien Harispe (Ecole des Mines d'Alès, LGI2P)
- O Guillaume Zambrano (Université de Nîmes, CHROME)

Plan

- 1. Motivations et objectifs
- 2. Extraction d'information sur les demandes et résultats
- 3. Une approche basée sur la pondération de termes et le zonage
- 4. Expérimentations et résultats
- 5. Conclusion
- 6. Questions et suggestions

Motivations et objectifs

Les juristes analysent les décisions

Pourquoi?

- comprendre et comparer l'application loi (contentieux, ville, ...)
- o estimer le risque judiciaire
- O ...

Motivation: documents non-structurés, langage complexe

ARRÊT N°

R.G: 11/03924

COUR D'APPEL DE NÎMES

CHAMBRE CIVILE 1ère Chambre A

ARRÊT DU 20 MARS 2012

APPELANTE:

Madame Michéle A. ... assistée de la SELARL VAJOU, ...

INTIMES: Monsieur Martial B ...

SERVAIS, ...

assisté de la SCP MARION GUIZARD PATRICIA

COMPOSITION DE LA COUR LORS DU

DÉLIBÉRÉ: M. Dominique BRUZY, Président

M. Serge BERTHET, Conseiller

FAITS, PROCEDURE, ...

Madame Michèle A. demande :

- de condamner Madame JONES-B. à lui payer la somme de 2.500 euros au titre de l'article 700 du

Code de Procédure Civile,

PAR CES MOTIFS, LA COUR:

Vu l'article 809 du Code de Procédure Civile,

Déboute Madame A. de sa demande de provision sur dommages-intérêts.

Vu l'article 700 du Code de Procédure Civile, Condamne Madame JONES-B. à verser à Madame

A. la somme de 2.500 euros.

Motivation : grand volume de décisions

Plus de 4 millions de décisions prononcées / an

	2010	2011	2012	2013	2014
Justice civile	2 673 131	2 654 179	2 647 813	2 761 554	2 618 374
Justice pénale	1 173 242	1 180 586	1 251 979	1 303 469	1 203 339
Justice admi- nistrative	224 787	225 608	228 680	221 882	230 477

 $Source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice.gouv.fr/budget-et-statistiques-10054/chiffres-cles-de-la-justice-10303/source: \verb|http://www.justice-gouv.fr/budget-et-statistiques-fr/budget-$

Table – Nombre de décisions prononcées en France par an

Motivation : recherches et analyses sémantiques difficiles

Moteurs de recherche juridique à mots-clés

Pas d'analyse synthétique des décisions

	Recherche simple Recherche avancée		
Mots ou expressions		Recherche	
	Ex : gérant et pouvoir, bail s/5 résil! Aide à la recherche		
	Gestion automatique des :		
	Singulier / Pluriel W Masculin / Féminin		
	Verbes conjugués avoir cherche ayons		
Sources	Toutes les sources ▼	6	
	Répertoire des sources		
	ou		
	Encyclopédies	Revues	Autorités administratives
	Codes et Lois	Bibliographies	Parlement
	JurisData	Actualités	Europe
	Toute la jurisprudence	Bulletins Officiels	Conventions Collectives
Période	Pas de restriction de date ▼		

Source: LexisNexis.com

Proposition : Moteur d'analyse sémantique de corpus

Stage été 2017 [PRYSIAZHNIUK Anastasiia]

Pipeline d'analyse sémantique

Phase actuelle: extraction d'information

Extraction d'information sur les demandes

et résultats

Tâche: extraire les quanta et le sens du résultat

Table – Tableau des informations sur les demandes

EXEMPLE: INFORMATIONS PERTINENTES à EXTRAIRE

- O Catégorie prédéfinie : Dommages-intérêts pour procédure abusive
 - o Objet: Dommages-intérêts
 - Fondement : Articles 1382 code civil et 32-1 code de procédure civile
- O Quantum demandé: 20 000 euros
- O Sens du résultat : "rejette"
- Ouantum accordé : o euros

Difficultés (1)

Expressions non structurées, par référence, par agrégation

EXEMPLE (SUITE): EXPRESSION DE DEMANDE

La société A. conclut à la confirmation du jugement entrepris sauf à former appel incident sur la disposition du jugement l'ayant déboutée de sa demande de **dommages-intérêts pour abus de procédure** et elle demande à la cour de condamner l'appelante à lui payer la somme de **20 000 euros** à titre de dommages intérêts ...

EXEMPLE (SUITE): EXPRESSION DE RESULTAT

La cour, ...

Confirme la décision entreprise en toutes ses dispositions,

Difficultés (2)

- Présence de plusieurs demandes de catégories similaires et/ou différentes dans une même décision
- Toutes les catégories ne sont pas connues d'avance (+500 catégories)
- O Difficile d'annoter une base d'évaluation pour toutes les couvrir

Il faut une approche:

- qui s'adapte à la catégorie à extraire
- O qui permette de rajouter de nouvelles catégories

Une approche basée sur la pondération de termes et le zonage

Architecture du pipeline d'extraction

Identification des passages et des informations

Demande dans la section *Litige* (Faits, procédures, et moyens des parties) Résultat dans la section *Dispositif*

Demande	Résultat (organisé par polarité)					
	accepte	sursis à sta-	rejette			
		tuer				
accorder, admettre, admission, allouer, condamnation, condamner, fixer, laisser, prononcer, ramener, surseoir	accorde, accordons, admet, admettons, alloue, allouons, condamne, condamnons, déclare, déclarons, fixe, fixons, laisse, laissons, prononce, prononçons	réserve, réservons, surseoit, sursoyons	déboute, dé- boutons, re- jette, rejet- tons			

Table - Mots introduisant les énoncés de demandes et de résultats

- le **<demande categorie="acpa">** <u>condamner</u> à payer une <trigger categorie="acpa">**amende civile**</trigger> de <argent> **1.500 euros** </argent> pour procédure abusive ...
- le</demande> condamner à payer la somme ..."

Figure – Exploiter la proximité entre triggers et sommes d'argent

Identification des passages et des informations(2)

- Identification des passages :
 - 1. Soit par la seule **présence d'un trigger** : on zone autour des triggers
 - 2. Soit par pondération des zones à argent :
 - 2.1 on zone autour des sommes d'argent
 - 2.2 on pondère les zones (par ex. somme des poids des triggers)
 - 2.3 on sélectionne une zone si elle a un poids ≥ POIDS SEUIL
- Identification des informations :
 - 1. quantum : somme d'argent près d'un trigger
 - 2. sens du résultat :
 - o soit en fonction du verbe introductif de l'énoncé du résultat
 - o soit "rejette" si pas d'énoncé du résultat
- O Résolution des références :
 - matching des énoncés (similarité textuelle)
 - o matching des quanta (Hypothèse d'apparition dans le même ordre)

Phase d'entrainement

Catégorie c_i , Corpus d'entrainement $D = D_{c_i} \cup D_{\overline{c_i}} = \{D_j\}_{1 \le j \le |D|}$

1. Détecteur de catégorie :

- o vectoriser les décisions de la base d'entrainement :
 - $w(t_k, D_j) = lw(t_k, D_j) \times gw(t_k) \times nf(D_j)$ [?]
- o entrainer un algorithme de classification (SVM, Naïf Bayésien, K plus proches voisins ...)

2. Extracteur de triplets de quanta et sens du résultat :

- Apprendre les triggers sur la base d'entrainement (passages à quanta vs. passages sans quanta)
 - 2.1 pondération des termes t_k avec une métrique de RI par ex. :

Métrique non supervisée :
$$idf(t_k) = \log_2(\frac{N}{N_{t_k}})$$
 [?]

Métriques supervisées :

$$\begin{split} gss(t_k,c_i) &= (N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}) \, [?] \\ ngl(t_k,c_i) &= \frac{\sqrt{N}((N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}))}{\sqrt{N_{t_k}N_{\overline{t_k}}N_{c_i}N_{\overline{c_i}}}} \, [?] \end{split}$$

2.2 ranking puis sélection

Expérimentations et résultats

Données

Figure – Répartitions des demandes dans les documents annotées pour chaque catégorie.

Métriques d'évaluation

Catégorie c_i , tuple d'information $I \subseteq \{Q_{DMD}, S_{RST}, Q_{RST}\}$

Corpus d'évaluation $D = D_{c_i} \cup D_{\overline{c_i}} = \{D_i\}_{1 \le i \le |D|}$, où D_i est un document

Nombre de vrais positifs (bons) :
$$TP_{c_i,I,D} = \sum_{j=1}^{|D|} TP_{c_i,I,D_j}$$

Nombre de faux positifs (en trop) : $FP_{c_i,I,D} = \sum_{j=1}^{|D|} FP_{c_i,I,D_j}$
Nombre de faux négatifs (manqués) : $FN_{c_i,I,D_j} = \sum_{j=1}^{|D|} FN_{c_i,I,D_j}$

$$\begin{split} Precision_{c_i,I,D} &= \frac{TP_{c_i,I,D}}{TP_{c_i,I,D} + FP_{c_i,I,D}} \\ Rappel_{c_i,I,D} &= \frac{TP_{c_i,I,D}}{TP_{c_i,I,D} + FN_{c_i,I,D}} \end{split}$$

$$F1_{c_i,I,D} = 2 \times \frac{Precision_{c_i,I,D} \times Rappel_{c_i,I,D}}{Precision_{c_i,I,D} + Rappel_{c_i,I,D}}$$

Evaluation de la détection des catégories

 T_{ABLE} – Resultats d'une 5-fold cross-validation sur D pour la detection categorie à l'aide de Weka [?] (P= Precision, R=Rappel, F1 = F1-mesure)

	N	aïf Bayés	ien	Arbre o	le décisio	on (J48)		KNN			SVM	
Category	P	R	F1	P	R	F1	P	R	F1	P	R	F1
асра	1.0	1.0	1.0	0.996	0.955	0.972	1.0	1.0	1.0	0.996	0.955	0.97
concdel	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.995	0.967	0.97
danais	0.988	0.989	0.988	0.996	0.995	0.995	0.995	0.995	0.995	0.993	0.993	0.99
dcppc	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
doris	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
styx	1.0	1.0	1.0	0.984	0.983	0.983	1.0	1.0	1.0	1.0	1.0	1.0

Quelle pondération des triggers et quel zonage?

Table – Comparaison des métriques de pondération et des stratégies de zonage sur le corpus D (F1-mesure sur l'extraction du tuple $(Q_{DMD}, S_{RST}, Q_{RST})$)

Métrique	ac	pa	con	cdel	daı	nais	dcj	ррс	do	oris	st	yx
	tp	zw										
CHI2	0.683	0.698	0.061	0.061	0.443	0.411	0.259	0.264	0.187	0.071	0.321	0.366
DBIDF	0.683	0.698	0.076	0.033	0.461	0.416	0.254	0.264	0.084	0	0.331	0.358
DELTADF	0.683	0.698	0.144	0.082	0.443	0.41	0.259	0.264	0.143	0.142	0.334	0.281
DSIDF	0.678	0.698	0.076	0.052	0.399	0.152	0.014	0	0.019	0	0.343	0.33
GSS	0.683	0.698	0.144	0.082	0.443	0.41	0.259	0.264	0.143	0.142	0.334	0.281
IDF	0.067	0	0.033	0	0.04	0	0	0	0	0	0	0
IG	0.011	0.049	0.05	0.034	0.304	0.073	0	0	0.019	0	0.058	О
KLD	0.432	0.398	0.146	0.124	0.459	0.409	0.252	0.254	0.158	0.154	0.243	0.42
MAR	0.683	0.698	0.144	0.091	0.443	0.42	0.259	0.264	0.156	0.146	0.334	0.281
NGL	0.683	0.698	0.061	0.034	0.443	0.411	0.259	0.264	0.122	0.02	0.321	0.347
RF	0.683	0.698	0.202	0.043	0.491	0.367	0.242	0.21	0.101	0.058	0.387	0.351
Max	0.683	0.698	0.202	0.124	0.491	0.42	0.259	0.264	0.187	0.154	0.387	0.42

tp = zonage par la seule présence d'un trigger

 $zw = zonage \ par \ pondération \ des \ passages \ à \ somme \ d'argent$

La métrique et la stratégie de zonage dépendent de la catégorie

Exemple de termes sélectionnés

	concdel	danais				
NGL	DSIDF	NGL	DSIDF			
déloyale	concurrence déloyale	procédure abusive	procédure abusive et injusti-			
			fiée			
perte	déloyale	32-1	fondement de l'article 32-1			
actes		abusive	dommages-intérêts pour			
			procédure abusive			
50.000	agissements	intérêts pour procédure	titre de dommages-intérêts			
			pour procédure abusive			

$$\begin{split} ngl(t_k,c_i) &= \frac{\sqrt{N}((N_{t_k,c_i}N_{\overline{t_k},\overline{c_i}}) - (N_{t_k,\overline{c_i}}N_{\overline{t_k},c_i}))}{\sqrt{N_{t_k}N_{\overline{t_k}}N_{c_i}N_{\overline{c_i}}}} \\ \\ dsidf(t_k,c_i) &= \log(\frac{(N_{\overline{c_i}}N_{t_k,c_i}) + 0.5}{(N_{c_i}N_{t_k,\overline{c_i}}) + 0.5} \end{split}$$

Entrainement avec sélection de la meilleure métrique (1)

c_i	Tuple d'info (I)	$P_{c_i,I,D_{c_i}}$	$R_{c_i,I,D_{c_i}}$	$F1_{c_i,I,Dc_i}$	Docs. Parfaits	#extraits/#attendus/ $ D_{c_i} $
	(Q_{DMD})	0.709	0.73	0.705	0.47	
асра	(S_{RST})	0.691	0.7	0.683	0.48	
	(Q_{RST})	0.72	0.74	0.716	0.48	5.2/4.6/4.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.651	0.65	0.638	0.43	
	(Q _{DMD})	0.461	0.393	0.376	0.233	
concdel	(S_{RST})	0.544	0.442	0.427	0.2	
concaer	(Q_{RST})	0.595	0.482	0.465	0.2	11.6/11.6/6.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.337	0.299	0.28	0.167	
	(Q_{DMD})	0.548	0.516	0.527	0.346	
danais	(S_{RST})	0.69	0.646	0.661	0.454	36.6/38.8/37.0
uanais	(Q_{RST})	0.714	0.666	0.682	0.465	30.07 30.07 37.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.482	0.46	0.466	0.314	
	(Q_{DMD})	0.334	0.392	0.358	0.217	
deppe	(S_{RST})	0.665	0.798	0.721	0.544	26.8/22.2/16.6
исррс	(Q_{RST})	0.62	0.744	0.672	0.509	20.07 22.27 10.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.22	0.26	0.237	0.181	
	(Q _{DMD})	0.279	0.373	0.314	0.033	
doris	(S_{RST})	0.391	0.524	0.439	0.146	26.8/20.0/12.4
dons	(Q _{RST})	0.329	0.414	0.361	0.131	20.8/ 20.0/ 12.4
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.177	0.229	0.197	0.017	
	(Q_{DMD})	0.762	0.642	0.695	0.46	
styx	(S_{RST})	0.701	0.593	0.64	0.34	15.0/17.8/10.0
Styx	(Q_{RST})	0.824	0.696	0.752	0.46	15.0/ 1/.8/ 10.0
	$(Q_{DMD}, Q_{RST}, S_{RST})$	0.44	0.372	0.402	0.28	

Table – Zonage par la seule présence d'un trigger (sur le corpus D_{c_i})

Entrainement avec sélection de la meilleure métrique (2)

c_i	Tuple d'info (I)	$P_{c_i,I,D_{c_i}}$	$R_{c_i,I,D_{c_i}}$	$F1_{c_i,I,Dc_i}$	Docs. Parfaits	#extraits/#attendus/ $ D_{c_i} $
	(Q_{DMD})	0.753	0.61	0.672	0.57	
асра	(S_{RST})	0.92	0.74	0.818	0.7	
	(Q_{RST})	0.92	0.74	0.818	0.7	3.8/4.6/4.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.753	0.61	0.672	0.57	
	(Q _{DMD})	0.343	0.128	0.11	0.067	
concdel	(S_{RST})	0.535	0.15	0.17	0.067	
concaer	(Q_{RST})	0.543	0.17	0.182	0.067	5.6/11.6/6.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.135	0.098	0.079	0.033	
	(Q_{DMD})	0.66	0.296	0.395	0.227	
danais	(S_{RST})	0.732	0.328	0.438	0.27	
danais	(Q_{RST})	0.77	0.348	0.464	0.276	17.8/38.8/37.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.61	0.276	0.367	0.216	
	(Q_{DMD})	0.391	0.363	0.372	0.252	
dcppc	(S_{RST})	0.732	0.688	0.703	0.532	
асррс	(Q_{RST})	0.665	0.624	0.638	0.471	21.4/22.2/16.6
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.275	0.248	0.259	0.204	
	(Q _{DMD})	0.211	0.146	0.171	0.064	
doris	(S_{RST})	0.418	0.217	0.268	0.114	
uons	(Q _{RST})	0.342	0.166	0.211	0.096	9.8/20.0/12.4
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.095	0.067	0.078	0.017	
	(Q_{DMD})	0.838	0.632	0.718	0.52	
styx	(S_{RST})	0.772	0.571	0.654	0.36	
Styx	(Q_{RST})	0.786	0.583	0.666	0.38	13.2/17.8/10.0
	$(Q_{DMD}, S_{RST}, Q_{RST})$	0.573	0.44	0.496	0.32	

Table – Zonage par pondération des passages à somme d'argent (sur le corpus D_{c_i})

Conclusion

L'extraction des demandes est une tâche difficile :

- texte non structuré
- extraction dans des documents de plusieurs pages
- O complexité du langage : référence, agrégation, implicite

Proposition d'une baseline (pondération des termes et zonage) :

- O Détection facile de la présence d'une catégorie
- La métrique et la stratégie de zonage dépendent de la catégorie
- Le sens et le quantum résultat plus faciles à identifier que le quantum demandé
- O Difficultés : identification des termes-clés
- Voies d'amélioration : Section des motifs et références aux jugements antérieurs, résolution des références

Questions et suggestions

References I

Frank, E., Hall, M., and Witten, I. (2016).

The weka workbench.

Data mining: Practical machine learning tools and techniques. Burlington: Morgan Kaufmann.

Galavotti, L., Sebastiani, F., and Simi, M. (2000).

Experiments on the use of feature selection and negative evidence in automated text categorization.

 $In \ {\it International \ Conference \ on \ Theory \ and \ Practice \ of \ Digital \ Libraries, pages \ 59-68. \ Springer.}$

Ng, H. T., Goh, W. B., and Low, K. L. (1997). Feature selection, perceptron learning, and a usability case study for text categorization. In *ACM SIGIR Forum*, volume 31, pages 67–73. ACM.

Salton, G. and Buckley, C. (1988).

 $Term\mbox{-weighting approaches in automatic text retrieval.}$

Information processing & management, 24(5):513-523.

Sparck Jones, K. (1972).

A statistical interpretation of term specificity and its application in retrieval.

 $Journal\ of\ documentation,\ 28(1): 11-21.$