Olli Saarela

More on proportional hazards models

Elimination nuisance parameters

Cox partia likelihood

Survival Analysis I (CHL5209H)

Olli Saarela

Dalla Lana School of Public Health University of Toronto

olli.saarela@utoronto.ca

February 5, 2019

Olli Saarela

More on proportional hazards models

Elimination nuisance parameters

Cox partia

More on proportional hazards models

Call:

hisdiab

cvdrugs

bmi

1.082912

0.131201

0.012835

A Cox model for CVD incidence

Olli Saarela

More on proportional hazards models

Elimination of nuisance parameters

Cox partia likelihood

```
n= 2235, number of events= 227
                                             z Pr(>|z|)
              coef exp(coef)
                              se(coef)
                                         2.462 0.013815 *
agestart
          0.057685
                    1.059381
                              0.023430
hdla
         -0.727299
                    0.483212
                              0.248552 -2.926 0.003432
                    1.237495
                              0.065036
nonhdl
          0.213089
                                         3.276 0.001051
          0.013459
                    1.013550
                              0.003123
                                         4.310 1.63e-05 ***
systm
dsmoker
          0.653927
                    1.923078
                              0.141063
                                         4.636 3.56e-06 ***
```

2.953267

1.140196

1.012917

coxph(formula = Surv(evtime, cvd) ~ agestart + hdla +

nonhdl + systm + dsmoker + hisdiab + cvdrugs + bmi)

0.311534

0.201610

0.020518

3.476 0.000509 ***

0.651 0.515199

0.626 0.531613

Elimination o nuisance parameters

Cox partial likelihood

Proportional hazards model

▶ In the model fitted here, the CVD hazard for individual *i* at time *t* is given by

$$\lambda_{i}(t) = \lambda_{0}(t) \exp\{\beta_{1} \times \text{age at baseline}_{i} + \beta_{2} \times \text{HDL cholesterol}_{i} + \beta_{3} \times \text{non-HDL cholesterol}_{i} + \beta_{4} \times \text{systolic blood pressure}_{i} + \beta_{5} \times \text{daily smoker}_{i} + \beta_{6} \times \text{history of diabetes}_{i} + \beta_{7} \times \text{BP or cholesterol medication}_{i} + \beta_{8} \times \text{BMI}_{i} \}.$$

- $ightharpoonup \lambda_0(t)$ is a baseline hazard function which may depend on time, but not on any individual-level characteristics.
- ▶ In turn, the regression coefficients $\beta = (\beta_1, \dots, \beta_8)$ may not depend on time.

More on proportional hazards models

Elimination on nuisance

Cox partial

Proportional hazards are proportional

► For example, if we compare two hypothetical individuals *i* who is a smoker and *l* who is a non-smoker, with otherwise same covariate values, we have that

$$\frac{\lambda_i(t)}{\lambda_I(t)} = \exp\{\beta_5\} \iff \beta_5 = \log\left(\frac{\lambda_i(t)}{\lambda_I(t)}\right).$$

- ► This log-hazard ratio interpretation applies to every regression coefficient, keeping the other covariates constant.
- For continuous covariates the interpretation corresponds to a one unit increase in the covariate level.
- ► Such proportionality of hazards is a modeling assumption and is not always appropriate.
- ► However, when appropriate, it very much simplifies the model, as the covariate effects can be characterized with a single parameter.

More on proportional hazards models

Elimination on nuisance parameters

Cox partia

- If we are mainly interested in the proportional covariate effects, we probably do not wish to specify a parametric form for $\lambda_0(t)$. (Why?)
- This is now a nuisance parameter, while the log-hazard ratios β are parameters of interest.
- ► However, the general likelihood function for a parametric survival model is a function of both, namely

$$\prod_{i=1}^{n} \left[(\lambda_0(t_i) \exp(\beta' x_i))^{e_i} \exp\left\{ - \int_0^{t_i} \lambda_0(u) \exp(\beta' x_i) du \right\} \right],$$

where x_i is the covariate vector for individual i.

▶ How to avoid specification and estimation of $\lambda_0(t)$?

Olli Saarela

More on proportional hazards models

Elimination of nuisance parameters

Cox partial

Elimination of nuisance parameters

Olli Saarela

More on proportiona hazards

Elimination of nuisance parameters

Cox partial likelihood

Alternative estimating functions

- ▶ Instead of the likelihood function for both $\lambda_0(t)$ and β , we have to obtain an estimating function that depends on β alone.
- ► Two possible means to eliminate nuisance parameters are conditional likelihood and profile likelihood.
- Neither is generally applicable; closed form profile and conditional likelihoods exist only in special cases.
- Let's first recall the general definitions.

Elimination of nuisance parameters

Conditional likelihood

- Let the parameter vector of interest be θ , while the nuisance parameters are denoted ψ .
- Suppose that the data vector can be partitioned as y = (v, w).
- ▶ If there exist a partition such that

$$p(v, w \mid \theta, \psi) = p(w \mid v, \theta)p(v \mid \theta, \psi),$$

where the conditional distribution $p(w \mid v, \theta)$ does not depend on the nuisance parameters, $p(w \mid v, \theta)$ w.r.t. θ is a conditional likelihood function.

If it is also true that

$$p(v, w \mid \theta, \psi) = p(w \mid v, \theta)p(v \mid \psi),$$

the conditioning statistic ν is ancillary, and conditioning does not lose information on the parameters of interest.

Example: conditioning on the covariates in a regression model.

More on proportiona hazards models

Elimination of nuisance parameters

Cox partial likelihood

How to condition?

- If the conditioning statistic is not ancillary, we may lose information, but can still use the conditional likelihood for the estimation of θ .
- ▶ The benefit of this is that ψ need not be estimated, and the corresponding model components need not be specified.
- ightharpoonup How to choose the conditioning statistic v?
- ➤ There are no general rules for this; C&H (1993, p. 129) say

However, the conditional approach is not an automatic method, but relies on our ingenuity in recognizing a suitable conditional argument. Such arguments are not always possible. For example, it has not proved possible to find an argument which leads to a conditional likelihood for the rate difference.

Elimination of nuisance parameters

Cox partial likelihood

Profile likelihood

In the profile likelihood approach, we first try to maximize the likelihood function w.r.t. to the nuisance parameters ψ , keeping θ fixed, to get

$$\hat{\psi}(\theta) \equiv \arg\max_{\psi} p(y \mid \theta, \psi).$$

- If this has a closed form solution, $\hat{\psi}$ is a function of the parameters of interest θ and the data y.
- We can now substitute this expression back to the original likelihood function, to the get the profile likelihood expression

$$p(y \mid \theta, \hat{\psi}(\theta)).$$

This can in turn be maximized w.r.t. θ to obtain the profile likelihood estimate.

Olli Saarela

More on proportional hazards

Elimination nuisance parameters

Cox partial likelihood

Cox partial likelihood

Application to the proportional hazards model

More on proportiona hazards models

Elimination nuisance parameters

Cox partial

- Previously the baseline hazard function $\lambda_0(t)$ was left unspecified.
- ➤ To apply the profile likelihood argument, we need to specify this.
- However, using the piecewise constant model, we can do this in a flexible way, specifying a separate baseline rate parameter λ_{0k} for pre-specified time intervals $(s_{k-1}, s_k]$, where $k = 1, \ldots, K$.
- ► Following the earlier notation for the piecewise constant model, let *d_{ik}* indicate whether an individual *i* experienced an event in the interval *k*, and *y_{ik}* the follow-up time contributed by individual *i* in interval *k*.

More on proportional hazards models

Elimination of nuisance parameters

Cox partial likelihood

Interpretation

▶ We have now specified a piecewise constant hazard model

$$\lambda_{ik} = \lambda_{0k} \exp(\beta' x_i).$$

For example, if n = 3 and K = 3, the observed outcome data are

time interval:
$$(0, s_1]$$
 $(s_1, s_2]$ $(s_2, s_3]$ interval number: $k = 1$ $k = 2$ $k = 3$ $i = 1$ (y_{11}, d_{11}) (y_{12}, d_{12}) (y_{13}, d_{13}) $i = 2$ (y_{21}, d_{21}) (y_{22}, d_{22}) (y_{23}, d_{23}) $i = 3$ (y_{31}, d_{31}) (y_{32}, d_{32}) (y_{33}, d_{33})

If the observed event times and types are $(t_1, e_1) = (3, 1)$, $(t_2, e_2) = (5, 1)$, and $(t_3, e_3) = (6, 0)$, and the intervals are specified through $(s_1, s_2, s_3) = (2, 4, 6)$, how does the above table look like?

More on proportiona hazards models

Elimination of nuisance parameters

Cox partial likelihood

Long format data

In statistical software, such split follow-up data could be represented as multiple rows per individual:

More on proportional hazards models

Elimination o nuisance parameters

Cox partial likelihood

In the example, this would become:

	_					_
individual	interval	lower	upper	length	event	covariate
1	1	0	2	2	0	<i>x</i> ₁
1	2	2	4	1	1	x_1
1	3	4	6	0	0	x_1
2	1	0	2	2	0	<i>X</i> ₂
2	2	2	4	2	0	x_2
2	3	4	6	1	1	x_2
3	1	0	2	2	0	<i>X</i> 3
3	2	2	4	2	0	<i>X</i> 3
3	3	4	6	2	0	<i>X</i> 3

The third row for individual 1 could be omitted as there is no likelihood contribution.

More on proportional hazards models

Elimination on nuisance parameters

Cox partial likelihood

Fitting the model

▶ The piecewise constant model could be fitted as

```
glm(event ~ as.factor(interval) + covariate,
    offset=log(length),
    family=poisson(link='log'))
```

► However, now we want to avoid estimation of the interval-specific baseline log-rates.

More on proportiona hazards models

nuisance parameters

Cox partial likelihood

Likelihood construction

- ▶ Here each $d_{ik} \in \{0,1\}$, so they are not really Poisson counts, but the resulting likelihood function is of the familiar Poisson form.
- The rows in the previous long format data have a separate likelihood contribution, and the likelihood expression becomes

$$\prod_{i=1}^{n} \prod_{k=1}^{K} \left[\left(\lambda_{0k} \exp(\beta' x_i) \right)^{d_{ik}} \exp\left\{ -y_{ik} \lambda_{0k} \exp(\beta' x_i) \right\} \right]. \tag{1}$$

- ► There are now as many nuisance parameters as time intervals.
- ▶ How to eliminate $\lambda_0 = (\lambda_{01}, \dots, \lambda_{0K})$ using the profile likelihood approach?

More on proportional hazards models

Elimination on nuisance

Cox partial likelihood

Profiling

► The corresponding log-likelihood is

$$I(\beta, \lambda_0) = \sum_{i=1}^n \sum_{k=1}^K \left[d_{ik} \log(\lambda_{0k} \exp(\beta' x_i)) - y_{ik} \lambda_{0k} \exp(\beta' x_i) \right].$$

▶ Differentiating w.r.t. each λ_{0k} separately gives

$$\frac{\partial I(\beta, \lambda_0)}{\partial \lambda_{0k}} = \sum_{i=1}^n \frac{d_{ik} \exp(\beta' x_i)}{\lambda_{0k} \exp(\beta' x_i)} - \sum_{i=1}^n y_{ik} \exp(\beta' x_i)$$
$$= \frac{d_k}{\lambda_{0k}} - \sum_{i=1}^n y_{ik} \exp(\beta' x_i),$$

where we denoted $d_k \equiv \sum_{i=1}^n d_{ik}$.

▶ Setting $\partial I(\beta, \lambda_0)/\partial \lambda_{0k} = 0$ and solving w.r.t. λ_{0k} gives

$$\hat{\lambda}_{0k}(\beta) = \frac{d_k}{\sum_{i=1}^n y_{ik} \exp(\beta' x_i)}.$$
 (2)

More on proportional hazards models

Elimination o nuisance parameters

Cox partial likelihood

Finally, substituting (2) back into (1) gives the profile likelihood

$$\prod_{i=1}^{n} \prod_{k=1}^{K} \left[(\hat{\lambda}_{0k}(\beta) \exp(\beta' x_i))^{d_{ik}} \exp\left\{ -y_{ik} \hat{\lambda}_{0k}(\beta) \exp(\beta' x_i) \right\} \right] \\
= \prod_{i=1}^{n} \prod_{k=1}^{K} \left[\left(\frac{d_k \exp(\beta' x_i)}{\sum_{l=1}^{n} y_{lk} \exp(\beta' x_l)} \right)^{d_{ik}} \exp\left\{ -\frac{y_{ik} d_k \exp(\beta' x_i)}{\sum_{l=1}^{n} y_{lk} \exp(\beta' x_l)} \right\} \right] \\
= \prod_{i=1}^{n} \prod_{k=1}^{K} \left(\frac{d_k \exp(\beta' x_i)}{\sum_{l=1}^{n} y_{lk} \exp(\beta' x_l)} \right)^{d_{ik}} \prod_{k=1}^{K} \exp\left\{ -d_k \right\} \\
\stackrel{\beta}{\propto} \prod_{i=1}^{n} \prod_{k=1}^{K} \left(\frac{\exp(\beta' x_i)}{\sum_{l=1}^{n} y_{lk} \exp(\beta' x_l)} \right)^{d_{ik}} .$$

More on proportional hazards models

Elimination of nuisance parameters

Cox partial likelihood

The limiting case

- Note that the last form depends on β only and can be maximized to obtain the profile likelihood estimates $\hat{\beta}$.
- ▶ We could imagine repeating the same profiling argument for nuisance parameters corresponding to infinitely many time intervals of infinitesimal length.
- Now the follow-up times y_{ik} become either zero (i no longer at risk), or a small constant (does not affect the likelihood).
- ➤ Since only the intervals with an observed outcome event have a profile likelihood contribution, the resulting expression is of the form

$$\prod_{i=1}^{n} \left(\frac{\exp(\beta' x_i)}{\sum_{l=1}^{n} Y_l(t_i) \exp(\beta' x_l)} \right)^{e_i},$$

where $Y_i(t) \equiv \mathbf{1}_{\{T_i \geq t\}}$ is the indicator for individual i being at risk (that is, without event and uncensored) at t.

Cox partial likelihood

More on proportiona hazards models

Elimination of nuisance parameters

Cox partial likelihood

- ► The resulting expression is known as the Cox partial likelihood (Cox, 1975).
- It can also be obtained as a partial likelihood, a generalization of conditional likelihood, hence the name.
- It avoids the piecewise constant hazard assumption by letting the length of the time bins go towards zero.
- ▶ We note that the Cox partial likelihood contributions can be interpreted as a conditional probabilities, namely the probabilities of event occurring to individual i, given that we know that one event occurred among those at risk at time t_i.
- Check: what is this probability if the covariates have no effect on the hazard?

More on proportiona hazards models

Elimination on nuisance

Cox partial likelihood

Fitting Cox models in R

coxph function in R survival package:

```
coxph(formula, data=, weights, subset,
    na.action, init, control,
    ties=c('efron','breslow','exact'),
    singular.ok=TRUE, robust=FALSE,
    model=FALSE, x=FALSE, y=TRUE, tt, method, ...)
```

▶ In the formula the response is a survival object returned by

Olli Saarela

More on proportion hazards models

Elimination nuisance parameters

Cox partial likelihood

References

- ► Clayton, D. and Hills, M. (1993). Statistical models in epidemiology. Oxford University Press, Oxford.
- Cox, D. R. (1975). Partial likelihood. Biometrika, 62:269–276.