

Исследование и реализация взвешенного алгоритма честного обслуживания на основе классов

Автор: Куклина Мария Дмитриевна Научный руководитель: Шинкарук Дмитрий Николаевич Санкт-Петербург, 2018

Цели и задачи

Цель – реализация дисциплины обслуживания Class-Based Weighted Fair Queueing (CBWFQ) в ядре Linux.

Задачи

- ▼ Провести сравнительный анализ CBWFQ с рядом выбранных дисциплин обслуживания.
- У Настроить среду для реализации и тестирования.
- ▼ Реализовать CBWFQ в ядре Linux.

Дисциплины обслуживания

Дисциплина обслуживания (qdisc, ДО) — набор алгоритмов, определяющий метод организации очереди, способы выбора пакета из очереди, политику отбрасывания пакетов и способы выделения канала.

Priority Queueing

Преимущества

- Низкое время отклика.
- ♥ Простая реализация.
- Небольшая вычислительная нагрузка.

- ✓ Проблема простоя канала.
- Избыточный трафик увеличивает задержку.
- Простой низкоприоритетного трафика при избытке высокоприоритетного.

Class Based Queueing

Преимущества

У Разделение канала.

 Решение проблемы застоя канала.

- Честное выделение канала только для пакетов сравнительно одинакового размера.
- Слабо оптимизирована для большинства типичных ситуаций.
- ▼ Сложность реализации.

Hierarchy Token Bucket

Преимущества

- У Гикая конфигурация.
- У Разделение канала.
- Более простая реализация, чем у CBQ.
- ✔ Используется для ограничения клиентской скорости.

- Честное выделение канала только для пакетов сравнительно одинакового размера.
- ▼ Сложность реализации.

HFSC

Вогнутая (concave) кривая.

Преимущества

 Основан на формальной модели с доказанными нижними границами.

Выпуклая (convex) кривая.

Недостатки

Высокая сложность реализации.

Weighted Fair Queueing

General Processor Sharing (GPS) – математическая модель планировщика, позволяющая максимально точно разделить пропускную способность между классами трафика в соответствии с назначенными весами.

WFQ — взвешенный алгоритм честного обслуживания, представляющий собой аппрокисмацию модели GPS; он оперирует пакетами, предоставляя максимально честное обслуживание, которое возвомжно для данного алгоритма при работе с пакетами.

WFQ Drop Policy

Flow-based Weighted Fair Queueing

Преимущества

- Простая конфигурация.
- Гарантированная полоса пропускания для всех потоков.
- Отбрасывание пакетов из агрессивных потоков.
- У Честное обслуживание.

- Нельзя разделять трафик по классам обслуживания.
- Не предоставляет фиксированную пропускную способность.

Class-Based Weighted Fair Queueing

Преимущества

- 🗸 Гибкая конфигурация классов.
- Выделение заданной пропускной способности для классов.

- Ограничение на количество пользовательских классов.
- Плохо работает с интерактивным трафиком.

Сравнительная таблица ДО

Свойство	PQ	CBQ	HTB	HFSC	FWFQ	CBWFQ
Метод планирования	RR	WRR	RR	RT/LS	WFQ	WFQ
Честность	-	-	-	+	+	+
Отбрасывание	TD	TD	TD	TD	ED/AD	TD/WRED
Разделение канала	-	+	+	+	-	-
Сложность реализации	Низкая	Высокая	Средняя	Высокая	Средняя	Средняя

Обозначения:

RR – Round Robin, RT/LS – на основе Real Time/Link Sharing критериев.

TD - Tail Drop, ED - Early Dropping, ED - Aggressive Dropping.

Тестирование модуля

Схема тестовой среды

```
tc qdisc add dev eth1 cbwfq default limit 200
tc class add dev eth1 parent 1: classid 1:2\
cbwfq bandwidth 30 percent
tc class add dev eth1 parent 1: classid 1:3\
cbwfq bandwidth 60 percent
tc filter add dev ens3 parent 1: protocol ip\
u32 match ip sport $TESTPORT1 flowid 1:2
tc filter add dev ens3 parent 1: protocol ip\
u32 match ip sport $TESTPORT2 flowid 1:3
```

Тестирование модуля

График распределения пропускной способности по типам трафика в течение времени.

Вывод

- Проведён сравнительный анализ классовых дисциплин обслуживания.
- ▼ Проведено исследование модели WFQ в среде Anylogic.
- У Реализован интерфейс для системы tc.
- У Реализован алгоритм CBWFQ в ядре Linux.

Спасибо за внимание!