On se propose d'étudier en détail les caractéristiques de résonance d'un circuit RLC série : résonance en tension, en intensité et en impédance. La résonance est caractérisée par un maximum de ces grandeurs à une fréquence spécifique du circuit.

#### Exercice 1. Résonance en tension

Soit le circuit RLC suivant, alimenté par une tension sinusoïdale  $e(t) = E\cos(\omega t)$ .



## 1. Expression de $U_{C0}$ et $\varphi$

- a) Déterminer l'équation différentielle vérifiée par la tension aux bornes du condensateur.
- b) Exprimer la tension complexe  $\underline{u_C(t)}$  associée. Montrer qu'on peut aussi l'obtenir directement à partir des impédances complexes en utilisant le théorème du diviseur de tension.
- c) En déduire l'expression de l'amplitude complexe  $U_C$ .
- d) Déterminer l'expression de l'amplitude  $U_{C0}$  du signal réel de  $u_{C}(t)=U_{C0}cos(\omega t+\varphi)$ .
- e) Montrer que  $U_{C0} = \frac{E}{\sqrt{(1-x^2)^2 + \left(\frac{x}{Q}\right)^2}}$  en utilisant les variables réduites usuelles :

pulsation propre  $\omega_0=1/\sqrt{LC}$ , pulsation réduite  $x=\omega/\omega_0$ , facteur de qualité  $Q=\frac{1}{R}\sqrt{\frac{L}{C}}$ .

- f) Déterminer l'expression de la phase  $\varphi$ .
- g) Montrer qu'on peut l'écrire sous la forme :  $\varphi = -\frac{\pi}{2} + arctan\left(\frac{(1-LC\omega^2)}{RC\omega}\right)$ .
- h) Réexprimer  $\varphi$  en fonction de x et Q.

## 2. Comportement de $U_{C0}$ et $\varphi$ en fonction de la pulsation réduite et phénomène de résonance.

- a) Etudier la fonction  $U_{C0}(x)$  pour déterminer l'allure de  $U_{C0}$  en fonction de x. On distinguera 2 cas :  $Q > 1/\sqrt{2}$  et  $Q < 1/\sqrt{2}$ .
- b) Calculer les valeurs limites et maximum  $U_{C0}(x)$  et tracer la courbe.
- c) Comment évolue la courbe en fonction du facteur de qualité ?
- d) Etudier la fonction  $\varphi(x)$  pour déterminer son allure en fonction de x.
- e) Calculer les valeurs limites et maximum  $\varphi(x)$  et tracer la courbe.
- f) quelle est la valeur du déphasage à la résonance ?

Electronique TD7
Régime sinusoïdal : résonance RLC série

#### **Exercice 2.** (Bonus) Résonance en intensité (voir aussi TD6 ex2 et ex3)

On continue à étudier le circuit RLC série en régime sinusoïdal.

- 1. Déterminer l'expression de l'amplitude complexe de l'intensité  $\underline{I}$  à partir de celle de la tension aux bornes du condensateur déterminée dans l'exercice précédent.
- 2. En déduire l'expression de l'amplitude réelle  $I_0$  et montrer qu'en fonction des variables réduites usuelles :

pulsation propre  $\omega_0 = 1/\sqrt{LC}$ , pulsation réduite  $x = \omega/\omega_0$ , facteur de qualité  $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$  elle vaut :

$$I = \frac{\frac{E}{R}}{\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}}$$

- 3. Etudier la fonction  $I_0(x)$  pour déterminer l'allure de  $I_0$  en fonction de x.
- 4. Calculer les valeurs limites et maximum et tracer la courbe.
- 5. Comment évolue la courbe en fonction du facteur de qualité ?
- 6. Déterminer l'expression du déphasage  $\varphi'$  de l'intensité par rapport au déphasage de la tension aux bornes du condensateur.
- 7. Calculer les valeurs limites et maximum de  $\varphi'(x)$  et tracer la courbe. Que vaut le déphasage à la résonance ?

# Exercice 3. (Bonus) Résonance en impédance

Soit un circuit RLC série en régime sinusoïdal.

- 1. Quelle est l'expression de l'impédance complexe totale du circuit ?
- 2. Quelle est l'expression de l'impédance réelle ? Pour quelle pulsation est-elle minimale ?