2. Discrete Time Signal Operations

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.

Today's Lesson:

DT Signal Manipulation

- a. Amplitude scaling
 - i. Amplify/Boost
 - ii. Attenuate/Cut
 - iii. Invert
- b. Time shifting
 - i. Delay
 - ii. Advance
- c. Time scaling
 - i. Upsample
 - ii. Downsample
 - iii. Reversal

DT Signal Operation

- a. Discrete Math Operations
 - i. Addition/Subtraction
 - ii. Modulation
- b. Signal Decomposition
 - i. Even component
 - ii. Odd component
- c. Complex Operations
 - i. DTS Convolution
- d. Signal Reconstruction
 - i. Interpolation (D2A)

Amplitude scaling & inversion

$$x[n] \rightarrow Ax[n]$$

$$x[n] \xrightarrow{A} w_2[n]$$

$$w_2[n] = Ax[n]$$

$$x[n]$$
 $w_2[n]$ $w_2[n]$ $|A| > 0 \rightarrow \text{amplify/boost}$ $0 < |A| < 1 \rightarrow \text{gain reduction/attenuate}$ $A < 0 \rightarrow \text{invert}$

Amplitude scaling

Attenuated step, 0.3u(n)

Time shifting

$$x[n] \to x [n-n_0]$$

$$x[n] \longrightarrow \begin{bmatrix} z^{-1} \end{bmatrix} \longrightarrow w_4[n]$$

$$w_4[n] = x[n-1]$$

$$n_0 > 0 \rightarrow \text{time delay}$$

 $n_0 < 0 \rightarrow \text{time advance}$

Time shifting

Time scaling & reversal

$$x[n] \rightarrow x [kn]$$

$$|\mathbf{k}| > 1 \rightarrow \text{compress}$$

 $0 < |\mathbf{k}| < 1 \rightarrow \text{stretch}$
 $\mathbf{k} < 0 \rightarrow \text{time reversal/fold}$

Time scaling

Up-sampling & Down-sampling

Time reversal

Time-reversed unit ramp, *r(-n)*

Notes on Signal Manipulation

> Time Delay and Folding are **NOT** commutative

$$TD[x(n)] = x(n-k), k > 0$$

$$FD[x(n)] = x(-n)$$

$$TD \{FD[x(n)]\} = TD[x(-n)] = x(-n+k)$$

$$FD \{TD[x(n)]\} = FD[x(n-k)] = x(-n-k)$$

 Describe the following DTS signal using elementary functions

$$g(n) = \begin{cases} -2, & \text{for } -4 \le n \le -2 \\ 4, & \text{for } -1 \le n \le 1 \\ 2, & \text{for } 2 \le n \le 4 \\ 0, & \text{elsewhere} \end{cases}$$

12

> Answer:

$$-2\delta[n+4] - 2\delta[n+3] - 2\delta[n+2]$$

$$+4\delta[n+1] + 4\delta[n] + 4\delta[n-1] +$$

$$2\delta[n-2] + 2\delta[n-3] + 2\delta[n-4]$$
or
$$-2u[n+4] + 6u[n+1] - 2u[n-2]$$

$$-2u[n-5]$$

Describe the following DTS signal using elementary functions

> Answer:

$$x(n) = 0.3u(n+4) - 0.4u(n+2) + 0.2\delta(n-1) + 0.1u(n-4)$$

Even & Odd Signal Decomposition

A discrete time signal can be decomposed into its even and odd components:

$$x_{even}[n] = \frac{x[n] + x[-n]}{2}$$
 $x_{odd}[n] = \frac{x[n] - x[-n]}{2}$

Example:

```
x[n] = \{1,\underline{2},3,4,5\}
x_{even}[n] = \{2.5,2,2,\underline{2},2,2,2,5\}
x_{odd}[n] = \{-2.5,-2,-1,\underline{0},1,2,2.5\}
```

```
>> x = [0 0 1 2 3 4 5];
>> x_fold = fliplr(x)
>> x_even = 0.5*(x+x_fold)
>> x_odd = 0.5*(x-x_fold)
```

Mathematical Operations on DTS

Addition/Subtraction: $x[n] \pm y[n]$

Modulation: $x[n] \cdot y[n]$

$$x[n] \longrightarrow w_1[n]$$

$$y[n] \longrightarrow w_1[n]$$

$$w_1[n] = x[n]y[n]$$

How about Division, Integration and Differentiation?

Notes on Addition and symmetry

Sum of two even DTS:

$$z[n] = x[n] + y[n]$$

$$= x[-n] + y[-n]$$

$$= z[-n] \rightarrow even$$

Sum of two odd DTS:

$$z[n] = x[n] + y[n]$$

$$= -x[-n] - y[-n]$$

$$= -z[-n] \rightarrow \mathbf{odd}$$

Sum of even + odd? \rightarrow NO SYMMETRY

Convolutional Sum of 2 DTS, x[n] and h[n]:

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) \qquad x[n] \longrightarrow h[n] \qquad y[n]$$

- > Denoted as y[n] = x[n]*h[n] or y[n] = h[n]*x[n]
- > Involves 1) Folding, 2) Shifting, 3) Multiplication, and 4) Addition
- Convolution is commutative as well as associative

Convolve the following signals:

$$h[n] = {0, 1, -1, 2, 1}$$
 and $x[n] = {1, 2, -1, 3, -2, 1}$

20

Shift:

Note that when $n_0 < 0$, there are no overlapping signals: y(-1), y(-2),... = 0

Shift: Note that when $n_0 = 0$,

$$y(0) = 1$$

Shift: Note that when $n_0 = 1$,

$$y(1) = -1(1) + 1(2) = 1$$

Shift: Note that when $n_0 = 2$,

$$y(2) = 2(1) - 1(2) + 1(-1) = -1$$

Shift: Note that when $n_0 = 3$,

$$y(3) = 1(1) + 2(2) + -1(-1) + 1(3) = 9$$

Shift: Note that when
$$n_0 = 4$$
,

$$y(4) = 1(2) + 2(-1) + -1(3) + 1(-2) = -5$$

$$y(n) = \{ 1, 1, -1, 9, -5, 8, -2, 0, 1 \}$$

```
>> h = [1 -1 2 1];
    % 1<n<4
>> x = [1 2 -1 3 -2 1];
    %-1<n<4
>> y = conv(h,x)
    % 0<n<8
```

Table method:

n	-1	0	1	2	3	4	5	6	7	8
x[n]	1	2	-1	3	-2	1				
h[n]		0	1	-1	2	1				
		1	2	-1	3	-2	1			
			-1	-2	1	-3	2	-1		
				2	4	-2	6	-4	2	
					1	2	-1	3	-2	1
y[n]		<u>1</u>	1	-1	9	-5	8	-2	0	1

Cajote, Lucas EE 274 / COE 197E

Signal Reconstruction

x_a(**t**) can be exactly recovered from its sample values **x**(**n**) using the **interpolation function**:

 \rightarrow B = bandwidth

$$g(t) = \frac{\sin 2\pi Bt}{2\pi Bt}$$

Let x(n) be samples of $x_a(t)$

$$x_{a}(t) = \sum_{n=-\infty}^{\infty} x(n) * g\left(t - \frac{n}{F_{s}}\right)$$

Signal Reconstruction

Interpolation function (Reconstruction filter)

$$g(t) = \frac{\sin 2\pi Bt}{2\pi Bt}$$

Reconstruct the sampled signal on the right

Cajote, Lucas

Cajote, Lucas

Cajote, Lucas

Cajote, Lucas

38

Cajote, Lucas EE 274 / COE 197E

Summary

- Discrete signals can be manipulated in several ways such as amplitude scaling, time shifting, and time scaling
- Mathematical operations such as addition and multiplication still applies to discrete time signals
- Convolution operation is applicable to discrete time signals
- In order for a DTS to be reconstructed back into CTS, it must be convolved with an interpolation function

For further reading...

Chapters 1.4.6, 2.1.3, 2.3.3
"Digital Signal Processing, 3rd ed. By Proakis, J. & Manolakis, D."

Chapter 1.2 "Digital Signal Processing: A Computer-Based Approach by Mitra, S."

Discrete Time Signal Operations

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.