

Performing Deep Recurrent Double Q-Learning for Atari Games

Felipe Moreno-Vera

Content

- Motivation
- Dataset
- Experiments
- Conclusions

Motivation

Deep Q-Learning

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 according to equation 3
    end for
end for
```

This approach is in some respects limited since the memory buffer does not differentiate important transitions and always overwrites with recent transitions due to the finite memory size N.

Deep Double Q-Learning (DDQN)

DQN Model:

$$Y_t = R_{t+1} + \gamma \max_{t} Q(S_{t+1}; a_t; \theta_t)$$

DDQN Model:

$$Y_{t} = R_{t+1} + \gamma Q(S_{t+1}; argmaxQ(S_{t+1}; a_{t}; \theta_{t}); \theta_{t}^{1})$$

Where:

- • a_t represents the agent.
- • θ_t are the parameters of the network.
- Q is the vector of action values.
- Y_t is the target updated resembles stochastic gradient descent.
- •
 γ is the discount factor that trades off the importance of immediate and later rewards.
- S_t is the vector of states.
- • R_{t+1} is the reward obtained after each action.

Dataset

Atari Games

Why Atari Games?

Atari 2600 games (from the Arcade Learning Environment) are a **benchmark suite** in RL because they offer:

- High-dimensional pixel-based inputs (visual challenges).
- Sparse and delayed rewards—perfect for testing learning efficiency.
- A wide range of game mechanics, such as:
 - Reaction time (e.g., Pong)
 - Strategic planning (e.g., Breakout)
 - Exploration vs. exploitation (e.g., Montezuma's Revenge)

Atari Games

OpenAl Gym is a popular toolkit for developing and comparing reinforcement learning algorithms. It provides:

- A standardized interface for a wide range of environments.
- **Benchmarking** tools for RL research.
- Lightweight simulations with easy-to-use APIs for training agents.

Gym is designed to support multiple types of environments, such as:

- Classic control (e.g., CartPole, MountainCar)
- Box2D physics-based tasks (e.g., LunarLander)
- Robotics simulations
- Atari games (via the Atari environment)

Experiments

Hyperparameters

List of Hyperparameters					
Iterations	10 000000	number of batch iterations to the learning process			
miniBatch size	32	number of experiences for SGD update			
Memory buffer size	900000	SGD update are sampled from this number of most recent frames			
Learning Rate	0.00025	learning rate used by RMS Propagation			
Training Frequency	4	Repeat each action selected by the agent this many times			
Y Update Frequency	40000	number of parameter updates after which the target network updates			
Update Frequency	10000	number of actions by agent between successive SGD updates			
Replay start size	50000	The number of Replay Memory in experience			
Exploration max	1.0	Max value in exploration			
Exploration min	0.1	Min value in exploration			
Exploration Steps	850000	The number of frames over which the initial value of e reaches final value			
Discount Factor	0.99	Discount factor γ used in the Q-learning update			

Our proposed model

12

Model benchmarks

RESULTS SCORES OF SPACE INVADERS, ENDURO, PONG AND BEAM RIDER.

Models and respective Scores							
Model	SpaceInvaders	Enduro	Pong	Beam Rider			
DQN	1450	1095	65	349			
DRQN	1680	885	39	594			
DDQN	2230	1283	44	167			
DRDQN	2450	1698	74	876			

Model history training

Conclusions

Conclusions

- We were able to analyze Atari games using Reinforcement Learning
- It is feasible to train an anget to infer the best positions and rewards in Space invader game.
- Black-box CNN models help to classify images.
 - It performs better than for image-based games.
 - We won't be able to perform a deep benchmark, due to limited computational resources.

Thanks! Any questions?

felipe.moreno@ucsp.edu.pe

THANKS!