Laplace Transform

Tristan Slater

September 26, 2022

1 Laplace Transform

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t)dt \tag{1}$$

2 Transfer Functions

$$a_2\ddot{x} + a_1\dot{x} + a_0x = b_2\ddot{y} + b_1\dot{y} + b_0y$$

$$\mathcal{L}\{a_2\ddot{x} + a_1\dot{x} + a_0x\} = \mathcal{L}\{b_2\ddot{y} + b_1\dot{y} + b_0y\}$$

$$a_2s^2X(s) + a_1sX(s) + a_0X(s) = b_2s^2Y(s) + b_1sY(s) + b_0Y(s)$$

$$G(s) = \frac{Y(s)}{X(s)} = \frac{b_2s^2 + b_1s + b_0}{a_2s^2 + a_1s + a_0}$$

Notes:

- All initial conditions are zero
- $X(s) \neq a_2 s^2 + a_1 s + a_0$
- $Y(s) \neq b_2 s^2 + b_1 s + b_0$

$$G(s) = \frac{Y(s)}{X(s)}$$

$$Y(s) = G(s)X(s)$$

$$\mathcal{L}^{-1}{Y(s)} = \mathcal{L}^{-1}{G(s)X(s)}$$

$$y(t) = (g * x)(t)$$

$$= \int_{-\infty}^{\infty} g(\tau)x(t - \tau) d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau)g(t - \tau) d\tau$$

3 Impulse Response

$$Y(s) = G(s)$$

$$\mathcal{L}^{-1}{Y(s)} = \mathcal{L}^{-1}{G(s)}$$

$$y(t) = g(t)$$

Table 1: Laplace Lookup

	$f(t) = \mathscr{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
Multiplying by a Constant	af(at)	aF(s)
Time Scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$
Frequency Scaling	$\frac{1}{a}f\left(\frac{t}{a}\right)$	F(as)
Time Shifting	f(t-a)u(t-a)	$e^{-at}F(s)$
Frequency Shifting	$e^{at}f(t)$	F(s-a)
Convolution	(f*g)(t)	F(s)G(s) = G(s)F(s)
	1	$\frac{1}{s}$
	t^n	$\frac{n!}{s^{n+1}}$
	$\sin at$	$\frac{a}{s^2 + a^2}$
	$\cos at$	$\frac{s}{s^2 + a^2}$
	$\sinh at$	$\frac{a}{s^2 - a^2}$
	$\cosh at$	$\frac{s}{s^2 - a^2}$