1. Plain TeXnology

Theorem T. All things are not necessarily the same

2. Permutations

TAoCP in chapter 1.2.5 gives two methods to generate all permutations of a given ordered set. Quantities of permutations are considered with relevance to computing efficiencies.

3. The Wide-Awake example Group

We re-think, re-word, and re-start with a set of attributes, elements or objects, $W=\{\text{woozy, vacuous, sleepy, wide-awake}\}$. These elements are used to generate all possible arrangements η which are orderd n-tuples with $1 \leq n \leq 4$. For example, $\eta=(\text{woozy, wide-awake})$ is a 2-tuple. Now the set Woozy is the set of all permutations that jumble such elements like η .

Let $(Woozy, \circ, 0, -)$ be the group with the set Woozy, a binary operation \circ , a neutral elment 0, and for each element $\pi \in Woozy$ there is an inverse element $-\pi \in Woozy$ such that $\pi \circ -\pi = 0$.

For now, here, we call this group's binary operation composition. Given two elements $\pi, \eta \in Woozy$, then $\pi \circ \eta \in Woozy$ and $\eta \circ \pi \in Woozy$.

Permutations 1

4. Creating the Woozy set

Theorem X. An ordered set of n elements has n! arrangements.

This has been give a little consideration. Here, we convey our current understanding of the Permutations and Factorials section.*

Given a set of objects $W = \{a_1, a_2, ..., a_n\}$. P_n is the set of arrangements given n objects $a_1, ..., a_n \in W$, such as $\{(a_1, a_2, ...a_n), (a_2, a_1, ...), ...\}$. For example, with $W = \{1, 2, 3\}$, we have

$$P_3 = \{(123), (231), (312), (132), (321), (213)\}.$$

Method 1, now, moves from n = 3 to n = 4 as follows. For each element in $P_{n-1} = P_3$, place element a_n in each possible vacuous position to arrive at $P_n = P_4$, that is

$$P_4 = \{(a_n a_1 a_2 a_3), (a_1 a_n a_2 a_3), (a_1 a_2 a_n a_3), (a_1 a_2 a_3 a_n), ..., (a_n a_2 a_1 a_3), (a_2 a_n a_1 a_3), (a_2 a_1 a_n a_3), (a_2 a_1 a_3 a_n)\}$$

Adding up all permutations that are so generated we have p_n the number of all elements in P_n to be

$$p_n = \sum_{k=1}^n p_k.$$

With $p_k = k!$ for $1 \le k \le n$ this equates to

$$p_n = \sum_{k=1}^n k!$$

. (To be confirmed.)

^{*} TAoCP chapter 1.2.5, https://www-cs-faculty.stanford.edu/%7Eknuth/taocp.html