UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		2 Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2012	9701	23
Í	(a)	(i)	from Na to C1 nuclear charge increases electrons are in the same shell/have the same shielding nuclear attraction increases	3	(1) (1) (1)
		(ii)	argon does not form any bonds/compounds or		

(b) (i)

radi	us of cation	/nm	radius of anion/nm		
Na⁺	Mg ²⁺	A1 ³⁺	P ³⁻	S ²⁻	C1 ⁻
0.095	0.065	0.050	0.212	0.184	0.181

argon exists as single atoms/is monatomic

(1)

(1) [4]

(ii) cations contain fewer electrons than the corresponding atoms **or** cations contain fewer electrons than they do protons (1) nucleus has a greater attraction (1)

(iii) anions contain more electrons than the corresponding atoms **or**anions contain more electrons than they do protons
(1)
nucleus has a smaller attraction
(1) [5]

(c) (i) $Na_2O + H_2O \rightarrow 2NaOH$ (1) $SO_2 + H_2O \rightarrow H_2SO_3$ (1)

(ii) for Na_2O 10 to 14 (1) for SO_2 1 to 4 (1)

(iii) NaOH + $H_2SO_3 \rightarrow NaHSO_3 + H_2O$ or $2NaOH + H_2SO_3 \rightarrow Na_2SO_3 + 2H_2O$ (1) [5]

[Total: 14]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	23

2 (a) (i)
$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$
 (1)

(ii)
$$n(HCl) = \frac{35.8}{1000} \times 0.100 = 3.58 \times 10^{-3}$$
 (1)

(iii)
$$n(\text{Na}_2\text{CO}_3) = \frac{35.8}{2} \times 10^{-3} = 1.79 \times 10^{-3} \text{ mol in } 25.0 \text{ cm}^3$$
 (1)

(iv)
$$n(\text{Na}_2\text{CO}_3) = 1.79 \times 10^{-3} \times 10 = 1.79 \times 10^{-2} \text{ mol in } 250 \text{ cm}^3$$
 (1)

(v) mass of Na₂CO₃ =
$$1.79 \times 10^{-2} \times 106 = 1.90g$$

 M_r of Na₂CO₃ = $1.90 g$ (1) (1) [6]

(b)
$$n(H_2O)$$
 in 5.13 g of washing soda = $\frac{5.13 - 1.90}{18} = 1.79 \times 10^{-1}$ mol (1)

$$n(\text{Na}_2\text{CO}_3)$$
 in 5.13 g of washing soda = 1.79 × 10⁻² mol
 $n(\text{H}_2\text{O})$: $n(\text{Na}_2\text{CO}_3)$ = 10 : 1 (1)

or

1.90 g Na₂CO₃ are combined with 3.23.g H₂O

106 g Na₂CO₃ are combined with
$$\frac{3.23 \times 106}{1.90}$$
 = 180.2 g H₂ (1)

this is 10 mol of
$$H_2O$$
 (1)

or

 1.79×10^{-2} mol Na₂CO₃.xH₂O $\equiv 5.13$ g of washing soda

1 mol Na₂CO₃.
$$x$$
H₂O $\equiv \frac{5.13}{1.79 \times 10^{-2}} = 286.6 g$ (1)

$$Na_2CO_3 = 106$$
 and $H_2O = 18$ hence $x = 10$ (1) [2]

[Total: 8]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	23

3 (a)
$$CH_3OCH_3(I) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$
 (1) the enthalpy change/heat change/heat evolved when one mole of CH_3OCH_3/a compound (1) is completely burned or burned in an excess of air/oxygen (1) [3]

(b)
$$2CH_3OH(I) \rightarrow CH_3OCH_3(g) + H_2O(I)$$

 $\Delta H^{\text{e}}_{\text{f}}/\text{kJ mol}^{-1} \quad 2(-239) \quad -184 \quad -286$
 $\Delta H^{\text{e}}_{\text{reaction}} = -184 + (-286) - 2(-239) \quad (1)$
 $= +8 \text{ kJ mol}^{-1} \quad (1)$
correct sign

- (ii) structural isomerism **or** functional group isomerism (1) [2]
- (d) (i) hydrogen bonds (1)
 - (ii) lone pair on O atom of C_2H_5OH (1)
 - correct dipole O^{δ^-} — H^{δ^+} on bond in one molecule of ethanol (1)

hydrogen bond shown between lone pair of an O atom and a hydrogen atom, i.e.

[Total: 12]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	23

4 (a) high temperature and high pressure (1) high temperature and catalyst (1) [2]

(b)
$$C_{12}H_{26} \rightarrow C_4H_8 + C_8H_{18}$$
 or $C_{12}H_{26} \rightarrow 2C_4H_8 + C_4H_{10}$ (1) [1]

(d) (i) (1)

(ii) compound B (1) (2) (3)

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	23

(e)

allow any orientation of CH₃- groups

(1) [1]

(1)

(ii) CH₂BrCHBrCHBrCH₂Br allow CH₃CBr₂CBr₂CH₃ from CH₃CHOHCH=CH₂ allow CH₃CHOHCHBrCH₂Br from CH₃C≡CCH₃

(1)

(iii) electrophilic addition **both** words required

(1) [3]

[Total: 14]

Page 7		7		me: Teachers' version	Syllabus	Paper	,
			GCE AS/A L	_EVEL – May/June 2012	9701	23	
5	(a) (i)	CO ₂	/carbon dioxide		(1)		
	(ii)	carb	oxylic acid or –CO₂⊦		(1)	[2]	
	(b) (i)	dehy	ydration or eliminatio	n		(1)	
	(ii)	H co H co H is		(1) (1) (1)	[4]		
	(c) n(F			(1)			
	her <i>n</i> (F	F contains one –OH group and one –CO ₂ H group hence one mole of F produces one mole of H ₂ with Na $n(H_2) = 6.67 \times 10^{-3}$ mol vol. of H ₂ = 6.67 × 10 ⁻³ × 24000 cm ³					
	= 1	. от п <u>а</u> 160 сп	n ³ at room temperatu		(1)	[4]	
	(d) (i)						
		F	HOCH ₂ CH ₂ CO ₂ H	CH₃CH(OH)CO₂H			
			J	K			
		one	isomer correct			(1)	
	(ii)						
			HO ₂ CCH ₂ CO ₂ H	CH₃COCO₂H			
		ı	product from J	product from K			

one oxidation product correct

[Total: 12]

(1) [2]