Week 2 - Problem Set

8/9 分 (88%)

测验, 9个问题

✔ 恭喜!您通过了!

下一项

1/1分

1.

Consider the following five events:

- 1. Correctly guessing a random 128-bit AES key on the first try.
- 2. Winning a lottery with 1 million contestants (the probability is $1/10^6\,$).
- 3. Winning a lottery with 1 million contestants 5 times in a row (the probability is $(1/10^6)^5$).
- 4. Winning a lottery with 1 million contestants 6 times in a row.
- 5. Winning a lottery with 1 million contestants 7 times in a row.

What is the order of these events from most likely to least likely?

- 2, 3, 1, 5, 4
- 2, 3, 4, 1, 5

正确

- The probability of event (1) is 1/2^128.
- The probability of event (5) is 1/(10⁶)⁷ which is about 1/2¹³⁹. Therefore, event (5) is the least likely.
- The probability of event (4) is 1/(10⁶)⁶ which is about 1/2^{119.5} which is more likely than event (1).
- The remaining events are all more likely than event (4).
- 3, 2, 5, 4, 1
- 2, 3, 5, 4, 1

1/1分

2。

$Week\ 2-Problem _{c}^{Suppose\ that\ using\ commodity\ hardware\ it\ is\ possible\ to\ build\ a}$

8/9 分 (88%)

测验, 9个问题

for about \$200 that can brute force about 1 billion AES keys per second.

Suppose an organization wants to run an exhaustive search for a single

128-bit AES key and was willing to spend 4 trillion dollars to buy these

machines (this is more than the annual US federal budget). How long would

it take the organization to brute force this single 128-bit AES key with

these machines? Ignore additional costs such as power and maintenance.

More than a billion (10^9) years

正确

The answer is about 540 billion years.

- # machines = 4*10^12/200 = 2*10^10
- # keys processed per sec = 10^9 * (2*10^10) = 2*10^19
- # seconds = $2^128 / (2^10^19) = 1.7^10^19$

This many seconds is about 540 billion years.

More than a month but less than a year
More than a week but less than a month
More than a 100 years but less than a million years
More than a year but less than 100 years

0/1分

3。

Let $F:\{0,1\}^n imes\{0,1\}^n o\{0,1\}^n$ be a secure PRF (i.e. a PRF where the key space, input space, and output space are all $\{0,1\}^n$) and say n=128.

Which of the following is a secure PRF (there is more than one correct answer):

 $F'(k,x) = F(k, x) \bigoplus F(k, x \oplus 1^n)$

Week 2 - Problem Set

8/9 分 (88%)

测验, 9个问题

Not a PRF. A distinguisher will query at $x=0^n$ and $x=1^n$ and output not random whenever the two responses are equal. This is unlikely to happen for a truly random function.

$$F'((k_1,k_2), x) = F(k_1,x) \bigoplus F(k_2,x)$$

正确

Correct. A distinguisher for F' gives a distinguisher for F.

$$F'(k,\,x) = egin{cases} F(k,x) & ext{when } x
eq 0^n \ 0^n & ext{otherwise} \end{cases}$$

未选择的是正确的

$$igcup F'(k,x) = F(k,\, x igoplus 1^n)$$

正确

Correct. A distinguisher for F' gives a distinguisher for F.

未选择的是正确的

$$F'((k_1,k_2),\,x)=F(k_1,x)\,\parallel\,F(k_2,x)$$
 (here \parallel denotes concatenation)

正确

Correct. A distinguisher for F^\prime gives a distinguisher for F.

1/1分

Recall that the Luby-Rackoff theorem discussed in <u>The Data Encryption</u>

Standard lecture states that applying a **three** round Feistel network to a

Week 2 - Problems tes a secure block cipher. Let's see what goes wrong if we only use a **two** round Feistel.

8/9 分 (88%)

测验, 9个问题

Let
$$F:K imes\left\{ 0,1
ight\} ^{32}
ightarrow\left\{ 0,1
ight\} ^{32}$$
 be a secure PRF.

Recall that a 2-round Feistel defines the following PRP

$$F_2:K^2 imes\{0,1\}^{64} o\{0,1\}^{64}:$$

Here R_0 is the right 32 bits of the 64-bit input and L_0 is the left 32 bits.

One of the following lines is the output of this PRP F_2 using a random key, while the other three are the output of a truly random permutation $f:\{0,1\}^{64} o \{0,1\}^{64}$. All 64-bit outputs are encoded as 16 hex characters.

Can you say which is the output of the PRP? Note that since you are able to distinguish the output of F_2 from random, F_2 is not a secure block cipher, which is what we wanted to show.

Hint: First argue that there is a detectable pattern in the xor of $F_2(\cdot, 0^{64})$ and $F_2(\cdot, 1^{32}0^{32})$. Then try to detect this pattern in the given outputs.

On input 0^{64} the output is "290b6e3a 39155d6f".

On input $1^{32}0^{32}$ the output is "d6f491c5 b645c008".

正确

Observe that the two round Feistel has the property that

the left of
$$F(\cdot,0^{64})\bigoplus F(\cdot,1^{32}0^{32})\,$$
 is 1^{32} .

The two outputs in this answer are the only ones with this property.

On input 0^{64} the output is "5f67abaf 5210722b".

On input $1^{32}0^{32}$ the output is "bbe033c0 0bc9330e".

Week 2 – Problem Set 0^{64} the output is "9d1a4f78 cb28d863".

8/9 分 (88%)

测验, 9个问题

On input $1^{32}0^{32}$ the output is "75e5e3ea 773ec3e6".

On input 0^{64} the output is "7b50baab 07640c3d".

On input $1^{32}0^{32}$ the output is "ac343a22 cea46d60".

1/1分

5。

Nonce-based CBC. Recall that in <u>Lecture 4.4</u> we said that if one wants to use CBC encryption with a non-random unique nonce then the nonce must first be encrypted with an **independent** PRP key and the result then used as the CBC IV.

Let's see what goes wrong if one encrypts the nonce with the **same** PRP key as the key used for CBC encryption.

Let $F:K imes\{0,1\}^\ell o\{0,1\}^\ell$ be a secure PRP with, say, $\ell=128$. Let n be a nonce and suppose one encrypts a message m by first computing IV=F(k,n) and then using this IV in CBC encryption using $F(k,\cdot)$. Note that the same key k is used for computing the IV and for CBC encryption. We show that the resulting system is not nonce-based CPA secure.

The attacker begins by asking for the encryption of the two block message $m=(0^\ell,0^\ell)$ with nonce $n=0^\ell$. It receives back a two block ciphertext (c_0,c_1) . Observe that by definition of CBC we know that $c_1=F(k,c_0)$.

Next, the attacker asks for the encryption of the one block message $m_1=c_0\bigoplus c_1$ with nonce $n=c_0$. It receives back a one block ciphertext c_0' .

What relation holds between c_0, c_1, c_0' ? Note that this relation lets the adversary win the nonce-based CPA game with advantage 1.

$$c_1=c_0'$$

正确

This follows from the definition of CBC with an encrypted nonce

as defined in the question.

$$igcup_0 = c_0'$$

Week 2 – Problem₂Set₀ $\oplus c'_0$

8/9 分 (88%)

测验, 9个问题

$$\bigcirc \quad c_1 = 0^\ell$$

1/1分

6。

Let m be a message consisting of ℓ AES blocks

(say $\ell=100$). Alice encrypts m using CBC mode and transmits

the resulting ciphertext to Bob. Due to a network error,

ciphertext block number $\ell/2$ is corrupted during transmission.

All other ciphertext blocks are transmitted and received correctly.

Once Bob decrypts the received ciphertext, how many plaintext blocks

will be corrupted?

2

正确

Take a look at the CBC decryption circuit. Each ciphertext

blocks affects only the current plaintext block and the next.

$$\bigcirc$$
 1 + $\ell/2$

$$\ell/2$$

1/1分

7。

Let m be a message consisting of ℓ AES blocks (say $\ell=100$). Alice encrypts m using randomized counter mode and

Week 2 - Problem Set

8/9 分 (88%)

测验, 9个问题

transmits the resulting ciphertext to Bob. Due to a network error,

ciphertext block number $\ell/2$ is corrupted during transmission.

All other ciphertext blocks are transmitted and received correctly.

Once Bob decrypts the received ciphertext, how many plaintext blocks

will be corrupted?

		^
Ų.)	0
-		

 $\ell/2$

1

O

正确

Take a look at the counter mode decryption circuit. Each ciphertext block affects only the current plaintext block.

1/1分

8.

Recall that encryption systems do not fully hide the length of

Week 2 - Pr 测验, 9 个问题	Problems Setessages. Leaking the length of web requests hasbeen used to eavesdrop on encrypted HTTPS traffic to a number of	
	web sites, such as tax preparation sites, Google searches, and	
	healthcare sites.	

Suppose an attacker intercepts a packet where he knows that the

packet payload is encrypted using AES in CBC mode with a random IV. The

encrypted packet payload is 128 bytes. Which of the following messages is plausibly the decryption of the payload:

'In this letter I make some remarks on a general principle relevant to enciphering in general and my machine.'

正确

The length of the string is 107 bytes, which after padding becomes 112 bytes,

and after prepending the IV becomes 128 bytes.

'We see immediately that one needs little information to
begin to break down the process.'
'The most direct computation would be for the enemy to try
all 2^r possible keys, one by one.'
'To consider the resistance of an enciphering process to being broken we should

assume that at same times the enemy knows everything but the key being used and

to break it needs only discover the key from this information.'

1/1分

9.

Let $R:=\{0,1\}^4$ and consider the following PRF $F:R^5 imes R o R$ defined as follows:

Week 2 – Problem Set

8/9 分 (88%)

测验, 9个问题

$$F(k,x) := egin{cases} t = k[0] \ ext{for i=1 to 4 do} \ ext{if } (x[i-1] == 1) \ ext{output } t \end{cases}$$

That is, the key is k=(k[0],k[1],k[2],k[3],k[4]) in R^5 and the function at, for example, 0101 is defined as $F(k,0101)=k[0]\oplus k[2]\oplus k[4]$.

For a random key k unknown to you, you learn that

$$F(k,0110) = 0011$$
 and $F(k,0101) = 1010$ and $F(k,1110) = 0110$.

What is the value of F(k,1101)? Note that since you are able to predict the function at a new point, this PRF is insecure.

1111

正确回答

