

ອີເລັກ ໂຕຣນິກຂັ້ນສູງ

Advanced Electronics

ສອນໂດຍ: ອຈ. ປທ. ແກ້ວກັນລະຍາ ສີຫາລາດ

Tel & WhatsApp: 020 55607618

Email: ke.sihalath.nuol.edu.la

ບົດທີ 3 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງເຟດ (FET Small Signal Analysis)

- ເພື່ອສຶກສາຄຸນລັກສະນະຂອງວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງ FET
 - ວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງ JFET
 - ວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງ D-MOSFET
 - ວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງ E-MOSFET
 - ວົງຈອນຂະຫຍາຍແບບເກດຮ່ວມ (CG)
 - ວົງຈອນຂະຫຍາຍແບບຊອດຮ່ວມ (CS)
 - ວົງຈອນຂະຫຍາຍແບບເດຣນຮ່ວມ (CD)

3.1 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງ FET:

- ຄ່າພາຣາມີເຕີຂອງວົງຈອນຂະຫຍາຍ
 - Voltage gain : Av
 - Input Impedance : Zi (Ri)
 - Output Impedance : Zo (Ro)

3.1 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງ FET:

- ຄຸນສົມບັດຂອງວົງຈອນຂະຫຍາຍທີ່ໃຊ້ FET
 - ມີອັດຕາແຮງດັນສູງ
 - ມີອິນພຸດອິມພີແດນສູງ
 - ສິ້ນເປືອງກຳລັງພະລັງງານນ້ອຍ
 - ຕອບສະໜອງຄວາມຖີ່ໄດ້ດີກວ່າ

3.1 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງ FET:

- ເຟດທີ່ນຳມາໃຊ້ໃນວົງຈອນຂະຫຍາຍສັນຍານຂະໜາດນ້ອຍ ເພື່ອໃຫ້ໄດ້ອັດຕາຂະຫຍາຍແຮງດັນ ແລະ Zi ທີ່ມີຄ່າສູງ (ເຊິ່ງເປັນຄຸນສົມບັດທີ່ດີຂອງວົງຈອນຂະຫຍາຍ) ທັງເຈເຟດ ແລະ ດີມອດ ສະເຟດ ມີວົງຈອນທຽບເທົ່າຂອງວົງຈອນຂະຫຍາຍຄືກັນ ແຕ່ດີມອດສະເຟດມີ Zi ສູງກວ່າເຈເຟດ
- ເຮົາຄວບຄຸມກະແສເອົ້າພຸດ (I_C) ຂອງທຣນຊິດເຕີ BJT ໄດ້ໂດຍໃຊ້ I_B ແຕ່ໃນກໍລະນີຂອງເຟດ ຈະຄວບຄຸມກະແສເອົ້າພຸດ (I_D) ໄດ້ໂດຍໃຊ້ V_{GS} ອັດຕາຂະຫຍາຍກະແສຂອງທຣານຊິດເຕີ BJT ຄື β ແຕ່ເຟດຈະມີອັດຕາຂະຫຍາຍຄວາມນຳ (Transconductance, g_m) ແລະຄວາມຕ້ານທານ ລະຫວ່າງຂົ້ວ D ກັບຂົ້ວ S (Resistance Between Drain to Source, r_d) ເປັນອົງປະກອບສຳຄັນ ຂອງຕົວປະກອບການຂະຫຍາຍ (Amplification Factor) ການຫາຄ່າ g_m ແລະ r_d ຈະງ່າຍຂຶ້ນ ຖ້າເຮົາໃຊ້ແບບຈຳລອງເຟດມາຮ່ວມພິຈາລະນາ

• ວົງຈອນທູງບເທົ່າຫຼືແບບຈຳລອງຂອງວົງຈອນຂະຫຍາຍສັນຍານຂະໜາດນ້ອຍມີອັດຕາ ການຂະຫຍາຍຄວາມນຳ (g_{m)} ປະກອບນຳຫາໄດ້ຈາກສົມຜົນ

$$g_{\scriptscriptstyle m} = g_{\scriptscriptstyle m0} \left(1 - rac{V_{\scriptscriptstyle GS}}{V_{\scriptscriptstyle P}}
ight)$$
 នេខ $g_{\scriptscriptstyle m0} = rac{2I_{\scriptscriptstyle DSS}}{|V_{\scriptscriptstyle P}|}$

• ຄ່າ g_{m0} ເປັນຄ່າອັດຕາການຂະຫຍາຍຄວາມນຳທີ່ຈຸດ $V_{GS}=0$ ເຊິ່ງເປັນຄ່າສູງສຸດຂອງ g_m ດັ່ງນັ້ນຄ່າ g_m ຕ້ອງຕ່ຳກວ່າຄ່າ g_{m0} ສະເໝີ

- ການຫາຄ່າ g ຈາກເສັ້ນຖ່າຍໂອນ
- ການຫາຄ່າ g_m ທີ່ຈຸດ Q ເຮັດໄດ້ໂດຍໃຊ້ສົມຜົນຂອງ g_m ມາພິຈາລະນາຄວາມຊັນທີ່ຈຸດ Q (Slop at Q-Point) ຂອງສັ້ນຖ່າຍຖ່າຍໂອນລຸ່ມນີ້:

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

ເມື່ອ ΔI_D : ອັດຕາການປ່ຽນແປງຂອງກະແສທີ່ຈຸດ Q ΔV_{GS} : ອັດຕາການປ່ຽນແປງຂອງແຮງດັນທີ່ຈຸດ Q

ຕົວຢ່າງທີ່ 3.1: ຈົ່ງໃຊ້ເສັ້ນຖ່າຍໂອນຫາຄ່າ g_m ຂອງເຈເຟດທີ່ $I_{DSS} = 8mA$ ແລະ $V_P = -\frac{1}{2}$

4V ທີ່ຈຸດ Q Point ມີຄ່າ V_{GSQ} ດັ່ງນີ້:

• (a)
$$V_{GSO} = -0.5V$$

• (b)
$$V_{GSO} = -1.5V$$

• (c)
$$V_{GSO} = -2.5V$$

ຕົວຢ່າງທີ່ 3.2: ຈາກຕົວຢ່າງທີ່ 3.1 ຈົ່ງໃຊ້ວິທີທາງຄະນິດສາດຫາຄ່າ g_m ຂອງເຈເຟດ

ແລະປງບທຸງບຜົນຮັບກັບຕົວຢ່າງທີ່ 3.1
$$g_{m0} = \frac{2I_{DSS}}{\left|V_{P}\right|} = \frac{2(8mA)}{\left|-4V\right|} = 4mS$$

(a)
$$\dot{\mathfrak{H}}$$
 $V_{GSQ} = -0.5V$

$$g_{\rm m} = g_{\rm m0} \left(1 - \frac{V_{\rm GS_Q}}{V_{\rm p}} \right) = 4 \, \text{mS} \left(1 - \frac{-0.5 \, \text{V}}{-4 \, \text{V}} \right) = 3.5 \, \text{mS}$$

(b) ທີ່
$$V_{GSQ} = -1.5V$$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS_{Q}}}{V_{P}} \right) = 4mS \left(1 - \frac{-1.5V}{-4V} \right) = 2.5mS$$

(c)
$$\dot{\mathfrak{H}}$$
 $V_{GSQ} = -2.5V$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS_{Q}}}{V_{QS_{Q}}} \right) = 4mS \left(1 - \frac{-2.5V}{-4V} \right) = 1.5mS$$
Lecture by Keckanlaya Sihalam P

Mathematic Determination of gm

$$\begin{split} g_m &= \left. \frac{\Delta I_D}{\Delta V_{GS}} \right|_{Q-pt} = \left. \frac{\partial I_D}{\partial V_{GS}} \right|_{Q-pt} \\ &= \left. \frac{\partial \left. I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2}{\partial V_{GS}} \right|_{Q-pt} \\ &= \frac{2I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2}{\partial V_{GS}} \\ &= \frac{2I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right) \partial \left(1 - \frac{V_{GS}}{V_P} \right)}{\partial V_{GS}} \\ &= \frac{2I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right) \partial \left(1 - \frac{V_{GS}}{V_P} \right)}{\partial V_{GS}} \\ &= \frac{2I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right) \partial \left(1 - \frac{V_{GS}}{V_P} \right)}{\partial V_{GS}} \\ &= g_{m0} \left(1 - \frac{V_{GS}}{V_P} \right) \\ &= g_{m0} \sqrt{\frac{I_D}{I_{DSS}}} \end{split}$$

ຄ່າ
$$g_m$$
 ທີ່ $V_{GS} = 0V$:
$$g_{m0} = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{0}{V_P}\right) = \frac{2I_{DSS}}{|V_P|}$$
 ຕັ້ງນຳຄ່າ σ ມີສີເກີນເກັນ

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS}}{V_{P}} \right)$$
$$= g_{m0} \sqrt{\frac{I_{D}}{I_{DSS}}}$$

• Input Impedance (Zi)

$$Z_i = \infty \Omega$$

• Output Impedance (Zo)

$$Z_o = r_d = \frac{1}{y_{os}} \Omega$$

• Y_{os} : admittance equivalent circuit parameter ${\it lu}$ FET specification sheets.

• Output Impedance (Zo)

$$r_d = \frac{\Delta V_{DS}}{\Delta I_D}$$

- ການແທນວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງເຟດໃນວົງຈອນຂະຫຍາຍສາມາດ ແທນວົງຈອນທຸງບເທົ່າສັນຍານຂະໜາດນ້ອຍຂອງທຣານຊິດເຕີສະໜາມໄຟຟ້າໃນວົງຈອນ ຂະຫຍາຍທີ່ແບ່ງໄດ້ດັ່ງນີ້:
 - Common Source (CS.) Amplifier
 - Common Gate (CG.) Amplifier
 - Common Drain (CD.) Amplifier

• ການຈັດວົງຈອນໄບແອັດເກດ

• Input Impedance (Zi)

• Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

• Voltage Gain

$$V_o = -g_m V_{gs} \left(r_d \| R_D \right)$$

$$V_i = V_{gs}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m} \left(r_{d} \| R_{D} \right)$$

$$\cong -g_{m} R_{D} \Big|_{r_{d} \ge 10R_{D}}$$

Lecture by Keokanlaya Sihalat

ຕົວຢ່າງທີ່ 3.3: ຈາກວົງຈອນຈົ່ງຊອກຫາ g_m, r_d, Z_i, Z_o, A_v

$$\begin{split} V_{GS} &= -V_{GG} = -2V \\ I_D &= I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2 = 10 \text{mA} \left(1 - \frac{-2V}{-8V}\right)^2 = 5.625 \text{mA} \\ g_{m0} &= \frac{2I_{DSS}}{|V_P|} = \frac{2(10 \text{mA})}{|-8V|} = 2.5 \text{mS} \\ & \\ \mathfrak{g}_m &= g_{m0} \left(1 - \frac{V_{GS}}{V_P}\right) = 2.5 \text{mS} \left(1 - \frac{-2V}{-8V}\right) = 1.875 \text{mS} \\ g_m &= g_{m0} \sqrt{\frac{I_D}{I_{DSS}}} = 2.5 \text{mS} \sqrt{\frac{5.625 \text{mA}}{10 \text{mA}}} = 1.875 \text{mS} \end{split}$$

ຄຳຕອບ

$$r_{d} = \frac{1}{y_{OS}} = \frac{1}{40\mu S} = 25k\Omega$$

$$Z_i = R_G = 1M\Omega$$

$$Z_o = r_d \mid R_D = 25k\Omega \mid 2k\Omega = 1.85k\Omega$$

$$A_v = -g_{m0} (r_d | R_D) = -2.5 \text{mS} \times 1.85 \text{k}\Omega = -4.625$$

• ການຈັດວົງຈອນຂອງການໄບແອັດຢ້ອກັບ

ac and small signal Equivalent Circuit

• Input Impedance (Zi)

• Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

21/03/2022

• Voltage Gain

$$\begin{aligned} &V_o = - g_m V_{gs} \left(r_d \, \middle\| R_D \right) \\ &V_i = V_{gs} \end{aligned}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m} \left(r_{d} \| R_{D} \right)$$

$$\cong -g_{m} R_{D} \Big|_{r_{d} \ge 10R_{D}}$$
₂₉

• Unbypass R_S

• Unbypass R_S ເມື່ອ $r_d = \infty$

ac and small signal Equivalent Circuit

- Unbypass R_S ເມື່ອ $r_d = \infty$
- Input Impedance (Zi):

$$Z_i = R_G$$

- Unbypass R_S ເມື່ອ $r_d = \infty$
- Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

 $\frac{n v}{\text{Unbypass } R_S}$ ເມື່ອ $r_d = \infty$

• Voltage Gain

$$\begin{split} V_i &= V_{gs} + V_{R_s} \\ &= i_g Z_{gs} + g_m V_{gs} R_S \\ &= 0 + g_m V_{gs} R_S \quad ; \ i_g = 0 \end{split}$$

$$V_{gs} = \frac{V_i}{g_m R_S}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{R_{D}}{R_{s}}$$

ຕົວຢ່າງທີ່ 3.4: ຈາກວົງຈອນຈົ່ງຊອກຫາ g_m, r_d, Z_i, Z_o, A_v

• ໃຊ້ວິທີການຄຳນວນທາງຄະນິດສາດ ຄຳຕອບ

$$a = \frac{I_{DSS}R_{S}}{|V_{P}|^{2}} = \frac{8mA \times 1k\Omega}{6^{2}} = 0.22$$

$$b = \frac{2I_{DSS}R_{S}}{|V_{P}|} + 1 = \frac{2 \times 8mA \times 1k\Omega}{6} = 3.67$$

$$c = I_{DSS}R_S = 8mA \times 1k\Omega = 8$$

$$V_{GS}\big|_{n-channl} = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-(3.67) + \sqrt{(3.67)^2 - (4 \times 0.22 \times 8)}}{2 \times 0.22}$$

$$=-2.59V$$
 Lecture by Keokanlaya Sihalath

3.4 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງ FET: JFET: CS: *ໄບແອັດຢ້ອນກັບ*

• ໃຊ້ວິທີການຄຳນວນທາງຄະນິດສາດ ຄຳຕອບ

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{P}} \right)^{2} = 8mA \left(1 - \frac{-2.59V}{-6V} \right)^{2} = 2.59mA$$

$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2 \times 8mA}{|-6V|} = 2.66mS$$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS}}{V_{P}} \right) = 2.66 \text{mS} \left(1 - \frac{-2.59 \text{V}}{-6 \text{V}} \right) = 1.51 \text{mS}$$

$$r_{d} = \frac{1}{y_{OS}} = \frac{1}{20\mu S} = 50k\Omega$$

3.4 ການວິເຄາະສັນຍານຂະໜາດນ້ອຍຂອງ FET: JFET: CS: *ໄບແອັດຢ້ອນກັບ*

bypass R_S

ຄຳຕອບ

$$Z_i = R_G = 1M\Omega$$

$$Z_{0} = r_{d} | R_{D} = 50k\Omega | 3.3k\Omega = 2.83k\Omega$$

$$A_v = -g_{m0} (r_d \mid R_D) = 2.66 \text{mS} \times 2.83 \text{k}\Omega = -7.52$$

Unbypass R_S

$$Z_o \cong R_D = 3.3k\Omega$$

$$A_{v} = -\frac{R_{D}}{R_{S}} = \frac{3.3k\Omega}{1k} = -3.3$$

• ການຈັດວົງຈອນຂອງການໄບແອັດຢ້ອນກັບ

• Input Impedance (Zi)

$$Z_i = R_1 R_2$$

• Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

Voltage Gain

• ການຈັດການວົງຈອນເດຣນຮ່ວມ

• Input Impedance (Zi)

$$Z_i = R_G$$

• Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

ເມື່ອໃຊ້ KVL ທີ່ໂນດຂາ S

$$I_o + g_m V_{gs} = I_{r_d} + I_{R_S}$$

Output Impedance (Zo) : โดยใต้
$$V_i$$
 = 0
$$I_o + g_m V_{gs} = I_{r_d} + I_{R_S} = \frac{V_o}{r_d} + \frac{V_o}{R_S}$$

$$I_o = V_o \left(\frac{1}{r_d} + \frac{1}{R_S}\right) - g_m V_{gs}$$

$$= V_o \left(\frac{1}{r_d} + \frac{1}{R_S}\right) - g_m \left(-V_o\right)$$

$$= V_o \left(\frac{1}{r_d} + \frac{1}{R_S} + g_m\right)$$

$$Z_{o} = \frac{V_{o}}{I_{o}} = \frac{1}{\frac{1}{r_{d}} + \frac{1}{R_{S}} + g_{m}}$$

$$= \frac{1}{\frac{1}{r_{d}} + \frac{1}{R_{S}} + \frac{1}{\frac{1}{f_{g_{m}}}}}$$

$$= r_{d} \|R_{S}\| \frac{1}{g_{m}}\|_{r_{s} \ge 10R_{S}}$$

$$\stackrel{\cong}{=} R_{S} \| \frac{1}{g_{m}}\|_{r_{s} \ge 10R_{S}}$$

$$V_{o} = g_{m} (V_{i} - V_{o}) (r_{d} \| R_{S})$$

$$= g_{m} V_{i} (r_{d} \| R_{S}) - g_{m} V_{o} (r_{d} \| R_{S})$$

$$V_{o} \left[1 + g_{m} (r_{d} \| R_{S}) \right] = g_{m} V_{i} (r_{d} \| R_{S})$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{g_{m} \left(r_{d} \| R_{S}\right)}{1 + g_{m} \left(r_{d} \| R_{S}\right)}$$

$$\approx \frac{g_{m} R_{S}}{1 + \sigma R_{S}}$$

2

ຕົວຢ່າງທີ່ 3.5: ຈາກວົງຈອນຈົ່ງຊອກຫາ g_m, r_d, Z_i, Z_o, A_v

ຄຳຕອບ

• ຈາກການວິເຄາະໄບແອັດ dc ເຮັດໃຫ້ໄດ້ $V_{\rm GSQ}$ = -2.86V

$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2(16mA)}{|-4V|} = 8mS$$

$$g_{m} = g_{m0} \left(1 - \frac{V_{GS_{Q}}}{V_{P}} \right) = 8mS \left(1 - \frac{-2.86V}{-4V} \right) = 2.28mS$$

$$r_{d} = \frac{1}{y_{os}} = \frac{1}{25\mu S} = 40k\Omega$$

ຄຳຕອບ

$$A_{V} = \frac{g_{m}(R_{S} | r_{d})}{1 + g_{m}(R_{S} | r_{d})} = \frac{2.28mS(2.2k\Omega | 40k\Omega)}{1 + 2.28mS(2.2k\Omega | 40k\Omega)} = 0.83$$

$$Z_i = R_G = 1M\Omega$$

$$Z_{o} = R_{S} | \frac{1}{g_{m}} = 2.2k\Omega | \frac{1}{2.28mS} = 366.87\Omega$$

ac and small signal Equivalent Circuit

- I_{D} ເປັນໄປຕາມສົມຜົນ Shocklay
- V_{GS} ສາມາດເປັນໄດ້ທັງຄ່າບວກແລະລົບ
- ค่า g_m สามาถมิค่าฆายทอ่าค่า g_{m0} ได้

ຕົວຢ່າງທີ່ 3.6: ຈາກວົງຈອນຈົ່ງຊອກຫາ g_m, r_d, Z_i, Z_o, A_v

• **ຕົວຢ່າງທີ່ 3.6:** ຈາກວົງຈອນຈົ່ງຊອກຫາ g_m, r_d, Z_i, Z_o, A_v

ຄຳຕອບ

$$g_{m0} = \frac{2I_{DSS}}{|V_P|} = \frac{2 \times 6mA}{3V} = 4mS$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS_Q}}{V_P} \right) = 4mS \left(1 - \frac{0.35V}{(-3V)} \right) = 4.47mS$$

$$r_d = \frac{1}{y_{os}} = \frac{1}{10\mu S} = 100k\Omega$$

ຄຳຕອບ

$$Z_i = R_1 || R_2 = 10M\Omega || 110M\Omega = 9.17k\Omega$$

$$Z_o = r_d \| R_D = 100k\Omega \| 1.8k\Omega = 1.77k\Omega$$

$$A_{v} = -g_{m}R_{D} = -4.47mS \times 1.8k\Omega = 8.05$$

- E-MOSFETs ມີ 2 ຊະນິດຄື
 - nMOS ซื้ n-channel MOSFETs
 - pMOS 🖞 p-channel MOSFETs

n-channel

p-channel

ac and small signal Equivalent Circuit

$$I_D = k \left(V_{GS} - V_{GS(Th)} \right)^2$$

$$g_m = \frac{\Delta I_D}{\Delta V_{GS}}$$

$$g_{m} = \frac{\Delta I_{D}}{\Delta V_{GS}} \Big|_{Q-pt} = \frac{\partial I_{D}}{\partial V_{GS}} \Big|_{Q-pt}$$

$$\partial k \left(V_{GS} - V_{GS(Th)} \right)^{2}$$

$$= \frac{\partial k \left(V_{GS} - V_{GS(Th)} \right)^2}{\partial V_{GS}}$$

$$= \ \frac{2k \Big(V_{GS} - V_{GS(Th)}\Big) \ \partial \Big(V_{GS} - V_{GS(Th)}\Big)}{\partial V_{GS}}$$

$$= 2k \left(V_{GS} - V_{GS(Th)} \right)$$

ຄ່າ k ຫາຄ່າໄດ້ຈາກການໄບແອັດ

ການຖາຍໂອນຄຸນລັກສະນະ Enhancement MOSFET

$$\boldsymbol{I}_{\text{D}} = k \left(\boldsymbol{V}_{\text{GS}} - \boldsymbol{V}_{\text{GS(Th)}}\right)^2$$

$$I_{D(on)} = k \left(V_{GS(on)} - V_{GS(Th)} \right)^2 \qquad_{I_{D(on)}} -$$

$$k = \frac{I_{D(on)}}{\left(V_{GS(on)} - V_{GS(Th)}\right)^2}$$

21/03/2022

Lecture

• ການຈັດການການວົງຈອນໄບແອັດແບ່ງແຮງດັນ

21/03/2022

small signal Equivalent Circuit

• Input Impedance (Zi)

$$Z_i = R_1 \| R_2$$

• Output Impedance (Zo) : ໂດຍໃຫ້ $V_i = 0$

$$Z_o = r_d R_D$$

• Voltage Gain

$$\begin{aligned} V_o &= -g_m V_{gs} \left(r_d \, \middle\| R_D \right) \\ V_i &= V_{gs} \end{aligned}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = -g_{m} \left(r_{d} \| R_{D} \right)$$

$$\cong -g_{m} R_{D} \Big|_{r_{d} \ge 10R_{D}}$$

ຈົບບົດຮຸງນທີ 3