As famílias dos agrupamentos combinatórios

AGRUPAMENTOS COMBINATÓRIOS

A análise dos diversos tipos de problemas de contagem sugere que há padrões úteis, e que é possível, em casos mais simples, usar uma tipologia agrupamentos para tipificar inúmeros problemas. Destacamos a família dos arranjos, das permutações e a das combinações. No módulo anterior já abordamos algumas dessas situações utilizando os chamados arranjos, permutações e combinações simples, em que as duas situações a seguir são claramente percebidas:

- Se, ao criar um agrupamento com os objetos disponíveis, a mudança da ordem dos objetos gera um agrupamento diferente, ou seja, a ordem em que os objetos formam o particular agrupamento é relevante, temos o caso clássico de filas, senhas etc., e os agrupamentos utilizados são os arranjos e as permutações;
- Se, ao criar um agrupamento com os objetos disponíveis, a mudança da ordem dos objetos não gera um agrupamento diferente, ou seja, a ordem em que os objetos formam o agrupamento é irrelevante, temos o caso clássico de formar subconjuntos ou comissões de pessoas: São as chamadas combinações.

Mas há situações adicionais, quando podemos repetir objetos nos agrupamentos. Por exemplo, determinar o número de anagramas de uma palavra, em que haja letras repetidas; ou, por exemplo, escolher um sorvete "casquinha" em que podemos escolher 3 dentre os 5 sabores disponíveis, sendo permitido repetir um sabor. Nesse módulo, trataremos de algumas dessas situações, em especial, as situações de agrupamentos com repetição.

AGRUPAMENTOS ESPECIAIS

Agrupamentos que apresentam repetições de elementos. Vamos apresentá-los:

Arranjo com repetição

Arranjos com repetição de **n** objetos tomados **p** a **p**, cuja quantidade é representada por AR^n_p , são agrupamentos da seguinte natureza:

Dispomos de **n** objetos e queremos saber de quantas maneiras podemos escolher **p** desses elementos de tal forma que possa haver repetição dos objetos no agrupamento formado.

Ora, para escolher o primeiro dos objetos, dispomos dos $\bf n$ objetos originais. Mas na escolha dos demais objetos, como pode haver repetição, há sempre $\bf n$ objetos disponíveis. Ou seja:

$$AR_p^n = n \times n \times \ldots \times n = n^p$$

Uma situação clássica é a formação de senhas de 6 caracteres, por exemplo, dispondose das letras (em que maiúsculas são contadas como diferentes das minúsculas) e dos 10 algarismos, não sendo permitidos caracteres especiais. Naturalmente, como o total de caracteres disponíveis é 26 + 26 + 10 = 62, o número de senhas possíveis com 6 caracteres é 62⁶ (superior a 60 bilhões, quase 10 vezes a quantidade de habitantes do planeta).

Permutação com repetição

Uma situação típica que esse agrupamento descreve são anagramas de uma palavra, quando a palavra original possui letras repetidas.

Exemplo

O cálculo do número de anagramas das palavras ARARAQUARA e da palavra MATEMÁTICA.

Note que, nas situações em que há objetos repetidos, podemos imaginar, inicialmente, que as letras repetidas são diferentes e analisar a consequência dessa abordagem. Imaginemos que as letras da palavra ARARAQUARA são, na verdade, $A_1R_1A_2R_2A_3QU_1A_4R_3A_5$.

Ora, se ordenarmos de todas as formas as 10 letras, obteremos um total de P_{10} situações, ou seja, P_{10} = 10!

Mas, na verdade, muitos desses agrupamentos formados são o mesmo anagrama. Isso porque as letras **A**₁ até **A**₅, por exemplo, são, na verdade, a mesma letra A. Então,

imagine tais letras em suas posições nos anagramas anteriores.

Se você trocar de posição qualquer uma delas entre si (nas 5 posições que elas ocupam), você continuará com o mesmo anagrama. Então, é necessário dividir o total de 10! por $P_5 = 5!$ para evitar contagem múltipla. Da mesma forma, devemos dividir o total anterior por 3! (repetições da letra R).

Então, a quantidade desejada é, na verdade:

$$\frac{10!}{5!3!} = \frac{6.7.8.9.10}{3!} = 7.8.9.10 = 5040$$

Esse tipo de situação é chamado Permutação com Repetição.

Nessa situação, escrevemos: $PR^{10}_{5,3}$, ou seja, dispomos de **10** objetos, dos quais **5** são iguais a **A** e **3** iguais a **B**.

No caso geral, em que dispomos de $\bf n$ objetos em que há $\bf p, q,, t$ objetos repetidos, escrevemos ${\bf PR}^n_{\bf p,q,...t}$.

Utilizando o mesmo raciocínio desse exemplo, concluímos que precisamos dividir **n!** pelas repetições, que são **r!**, **s!**, ..., **t!**, ou seja:

$$PR_{p,\,q,\,r,\,..t}^n=rac{n!}{p! imes q! imes ... imes t!}$$

Como consequência, calcular o número de anagramas da palavra MATEMÁTICA é imediato (em geral, os acentos não são considerados na análise de anagramas).

Há duas letras **M**, três letras **A** e duas letras **T** na palavra matemática (E, I e C ocorrem apenas uma vez). Logo, a quantidade desejada é:

$$PR_{2,3,2}^{10} = \frac{10!}{2! \times 3! \times 2!} = \frac{\cancel{10}.9.8.7.\cancel{6}.5.4.3.\cancel{2.1}}{\cancel{(1.2)}\cancel{(1.2.3)}\cancel{(1.2)}} = 5.9.8.7.5.4.3 = 151.200$$

Permutação circular

Normalmente, os agrupamentos são sequências de objetos dispostos em **linha**. Entretanto, um tipo especial de agrupamento ocorre quando desejamos dispor **n** objetos ou pessoas em volta de uma mesa – ou de um círculo.

Vejamos um exemplo: Desejamos dispor quatro amigos – Antônio, Bernardo, Carlos e Daniel em volta de uma mesa. Note que as posições **A**, **B**, **C** e **D** representam

permutações diferentes, mas a disposição dos amigos na mesa é a mesma. Imagine que você apenas rodou a mesa, claro, com os amigos juntos.

Figura 18

Assim, diferentemente das permutações usuais de 4 objetos, que geram 4! = 24 permutações simples, nesse caso, temos apenas a quarta parte dessa quantidade como posições diferentes possíveis em volta da mesa. Dessa forma, na verdade, o número de permutações circulares é, então, 4!/4 = 3! = 6.

Representando por PC_n o número de permutações circulares de n objetos, é imediato perceber que:

$$PC_n = rac{n!}{n} = (n-1)!$$

Combinação com repetição

Os agrupamentos combinações simples foram analisados no módulo anterior:

Atenção

São caracterizados por serem formados com **p** objetos, a partir de **n** objetos disponíveis, em que a ordem **não** é relevante e **não** há repetição de nenhum objeto no mesmo agrupamento.

Quando permitimos que objetos em um mesmo agrupamento possam ser repetidos, temos as chamadas combinações com repetição de **n** objetos tomados **p** a **p**.

Vamos analisar um exemplo curioso: Suponha que uma loja possui tabletes (barras) de chocolate de **três** marcas diferentes e você deseja comprar **oito** tabletes. De quantas formas diferentes podem ser escolhidos os tabletes em sua compra? Vejamos alguns exemplos de "escolhas" diferentes:

Tipo 1	Tipo 2	Tipo3	Total
	+ = = =	+ = = =	8
	+ = = =	+ ■ ■	8
	+ = = =	+ ==	8

Figura 19

A estratégia clássica para realizarmos a contagem total de agrupamentos desse tipo é muito interessante. Dispomos de **dois** tipos de objetos: O **sinal de adição** (usado 2 vezes – porque há 3 tipos de tabletes) e **quadradinhos** que simbolizam os **tabletes** de chocolate de qualquer tipo. Então, cada sequência de sinais de adição e de quadradinhos representa uma situação de compra. Veja:

Assim, o problema de determinar a quantidade de combinações com repetição de **n** objetos **p** a **p** recai na contagem de quantas permutações com repetição de 10 objetos (**2** sinais de adição e **8** quadradinhos), o que pode ser calculado como:

$$CR_5^8 = PR_{2,8}^{10} = \frac{10!}{2!8!} = 45$$

Note que, no caso geral de dispormos de $\bf n$ objetos e desejarmos calcular o número de combinações com repetição escolhendo $\bf p$ objetos, a expressão da quantidade desses agrupamentos será dada por:

$$CR_p^n = PR_{n,p-1}^{n+p-1}$$

que corresponde, também, ao número de combinações (simples) de **n + p - 1** tomados **n** a **n**...

A discussão anterior mostra que a **invenção** dos diversos tipos de agrupamentos e as expressões para o cálculo do quantitativo de cada um deles é, na prática, decorrente diretamente de estratégias e do Princípio da Multiplicação. Portanto, é perfeitamente possível — e diríamos, desejável —, que possamos resolver problemas de contagem sem que sequer saibamos o que são arranjos, permutações e combinações!

SÍNTESE DOS TIPOS DE AGRUPAMENTOS

Explicitamos, a seguir, as principais categorias de agrupamentos abordados, bem como as notações de seus quantitativos e as fórmulas associadas:

Arranjos	Simples	$A_p^n = n(n-1)\dots(n-p+1) = \frac{n!}{(n-p)!}$
	Com Repetição	$m{A}m{R}^{m{n}}_{m{p}}=n^{m{p}}$
Permutações	Simples	$P_n = n.(n-1)(n-2)1 = n!$

	Circular	$\boldsymbol{P_n} = (n-1)(n-2)\dots 1 = (n-1)!$
	Com Repetição	$P^n_{p,q,\ldots,s}=\;rac{n!}{p!q!\ldots r!}$
Combinações	Simples	$C_p^n = \frac{A_p^n}{p!} = \frac{n!}{(n-p)!p!}$
	Com repetição	$CR_p^n = P_{n-1,p}^{n+p-1} = C_{n-1}^{n+p-1}$