

N-channel 200 V, 0.29 Ω typ., 9 A, STripFET™ Power MOSFET in a TO-220 package

Features

- Extremely high dv/dt capability
- · Very low intrinsic capacitance
- · Gate charge minimized

Applications

Switching applications

This Power MOSFET series realized with STMicroelectronics unique STripFET™ process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency isolated DC-DC converters.

Product status link IRF630

Product summary				
Order code	IRF630			
Marking	IRF630			
Package	TO-220			
Packing	Tube			

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DDS}	Drain-source voltage (V _{GS} = 0 V)	200	V
V_{DGR}	Drain-gate voltage (R_{GS} = 20 k Ω)	200	V
V _{GS}	Gate-source voltage	±20	V
I_	Drain current (continuous) at T _C = 25 °C	9	Α
l _D	Drain current (continuous) at T _C = 100 °C	6.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	36	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	120	W
E _{AS} ⁽²⁾	Single pulse avalanche energy	110	mJ
dv/dt ⁽³⁾	Drain-body diode dynamic dv/dt ruggedness	5.8	V/ns
T _{stg}	Storage temperature range	-65 to 175	°C
T _J	Operating junction temperature range		

- 1. Pulse width is limited by safe operating area.
- 2. Starting $T_J = 25$ °C, $I_D = 4.5$ A
- 3. I_{SD} = 9 A, di/dt = 520 A/ μ s, V_{DD} = 50 V, T_J < T_{Jmax}

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.26	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

DS0668 - Rev 10 page 2/13

2 Electrical characteristics

 T_{CASE} = 25 °C unless otherwise specified

Table 3. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	200			V
		V _{GS} = 0 V, V _{DS} = 200 V			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 200 \text{ V},$ $T_C = 125 ^{\circ}\text{C}^{(1)}$			100	μA
I _{GSS}	Gate body leakage current	V _{DS} = 0 V, V _{GS} = 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 4.5 A		0.29	0.40	Ω

^{1.} Defined by design, not subject to production test.

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 25 V, f = 1 MHz,	-	370	-	pF
C _{oss}	Output capacitance	V _{DS} = 23 V, 1 = 1 Wil 12,	-	77	-	pF
C _{rss}	Reverse transfer capacitance	VGS - U V	-	14	-	pF
Qg	Total gate charge	V _{DD} = 160 V, I _D = 9 A	-	11.6	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	2.2	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13. Test circuit for gate charge behavior)	-	5.5	-	nC

Table 5. Switching times

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ſ	t _{d(on)}	Turn-on delay time	V _{DD} = 100 V, I _D = 4.5 A,	-	5.6	-	ns
	t _r	Rise time	R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 12. Test circuit for resistive load switching times and Figure 17. Switching time waveform)	-	2.6	-	ns

DS0668 - Rev 10 page 3/13

Table 6. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 9 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 9 A, di/dt = 100 A/μs,	-	118.5		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 50 V	-	393		nC
I _{RRM}	Reverse recovery current	(see Figure 17. Switching time waveform)	-	6.6		Α

^{1.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

DS0668 - Rev 10 page 4/13

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics

GADG2211201811070CH

(A)

VGS = 8, 9, 10 V

VGS = 7 V

VGS = 6 V

VGS = 5 V

VGS = 4 V

VGS = 6 V

VGS = 6 V

DS0668 - Rev 10 page 5/13

Figure 7. Capacitance variations

C
(pF)

10 3

10 2

Coss
10 1

Coss
Coss
Coss
VDS (V)

Figure 8. Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG221120181109VTH 1.1 $I_D = 250 \, \mu A$ 1.0 0.9 8.0 0.7 0.5 -25 25 75 125 175 T_j (°C)

Figure 9. Normalized on-resistance vs temperature

RDS(on) (norm.)

2.6 VGS = 10 V, ID = 4.5 A

2.2 1.8 1.4 1.0 0.6 0.2 -75 -25 25 75 125 175 Tj (°C)

DS0668 - Rev 10 page 6/13

3 Test circuits

Figure 12. Test circuit for resistive load switching times

Figure 13. Test circuit for gate charge behavior

Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclamped inductive load test circuit

Figure 16. Unclamped inductive waveform

Figure 17. Switching time waveform

DS0668 - Rev 10 page 7/13

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS0668 - Rev 10 page 8/13

4.1 TO-220 type A package information

Figure 18. TO-220 type A package outline

DS0668 - Rev 10 page 9/13

Table 7. TO-220 type A package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.55		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10.00		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13.00		14.00		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
øΡ	3.75		3.85		
Q	2.65		2.95		

DS0668 - Rev 10 page 10/13

Revision history

Table 8. Document revision history

Date	Version	Changes
09-Sep-2004	8	Complete version
03-Aug-2006	9	New template, no content change
12-Dec-2018	10	Part number IRF630FP has been moved to a separate datasheet and the document has been updated accordingly. Minor text changes

DS0668 - Rev 10 page 11/13

Contents

1	Elec	trical ratings	2
2	Elec	trical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	7
4	Pac	kage information	8
	4.1	TO-220 type A package information	8
Rev	vision	history	11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS0668 - Rev 10 page 13/13