1. Take the results from our first step mapping to UniProt functional annotation and copy the 73 UniProt identifiers from your Excel file.

2. Paste them into the Enrichment Analysis box on the Gene Ontology home page at www.geneontology.org.

The tool should be set to "Biological Process" Ontology and "Homo sapiens."

Click "Submit."

3. Here is the top part of the results page that you should see.

Databases change over time, so it is possible there might be small differences in the results on this page from what was seen in the demo video, these slides, and your results. These are probably not significant changes, but improvements in the databases and tools over time.

Scroll down the page.

4. Initial results are presented in GO hierarchy with more specific nodes on the left and parental nodes indented.

On the right side of the page, we see

- The number of all human proteins annotated with that term
- The number of proteins in our list with that term
- The expected number if random
- A fold increase and P-Value

By default, all displayed nodes are at the p<0.05 threshold. Formally the p-value tests if a null-hypothesis can be rejected or not at a particular significance level (commonly set at p< 0.05). In this case and similar cases

with pathway tools and genetic tests, the null-hypothesis is that the result was a random event. A result less than 0.05 means that either the null-hypothesis is false or we happened to see a very improbable but not impossible result.

See the demo video for additional discussion.

	Homo sapiens (Ri	F)	F) upload_1 (▼ Hierarchy I		KEW! (P)	
30 biological process complete	ž.	#	expected	Fold Enrichment	+/-	P val
positive regulation of calcidiol 1-monooxygenase activity	3	3	.01	> 100	+	1.52E-
*positive regulation of monooxygenase activity	<u>26</u>	5	.09	55.25	٠	3.45E
positive regulation of oxidoreductase activity	45	5	.16	31.92	*	5.08E
*regulation of metabolic process	6214	44	21.63	2.03	+	4.668
regulation of biological process	11037	66	38.42	1.72	+	3.29E
^{la} biological regulation	<u>11663</u>	67	40.60	1.65	*	1.04E
*regulation of catalytic activity	2397	27	8.34	3.24	٠	1.10E
regulation of molecular function	2918	30	10.16	2.95	+	9.648
apositive regulation of metabolic process	3064	37	10.67	3.47	*	3.67
*positive regulation of biological process	5301	55	18.45	2.98	*	3.86
opositive regulation of catalytic activity	1582	19	5.51	3.45	*	1,178
*positive regulation of molecular function	1874	23	6.52	3.53	*	4.17
*regulation of monooxygenase activity	<u>57</u>	5	.20	25.20	*	1.618
*positive regulation of biosynthetic process	1784	28	6.21	4.51	+	2.37
regulation of biosynthetic process	4356	35	15.16	2.31	+	1.778
regulation of calcidiol 1-monooxygenase activity	Z	3	.02	> 100		1.916
*regulation of vitamin D biosynthetic process	9	3	.03	95.76	*	4.04
regulation of cellular biosynthetic process	4305	34	14.98	2.27	*	4.64
*regulation of cellular metabolic process	5895	43	20.52	2.10	*	3.18
*regulation of cellular process	10453	65	36.39	1.79	*	1.138
*regulation of lipid biosynthetic process	<u>137</u>	Z	.48	14.68	*	4.77
^{la} regulation of lipid metabolic process	300	9	1.04	8.62		8.96
*regulation of primary metabolic process	5845	42	20.35	2.06	*	8.88
*positive regulation of vitamin D biosynthetic process	3	3	.01	> 100	*	1.52
positive regulation of steroid metabolic process	25	5	.09	57.46	*	2.84
*positive regulation of lipid metabolic process	136	8	.47	16.90		2.43

5. Now, look at the sorted p-value table.

The hierarchy is destroyed, but all terms are here and we see a lot of very significant parental terms near the top with their still significant children down the table.

We see lots of related terms: Response to bacterium; Immune system processes; Defense responses.

As we look through the list, it seems that this set of proteins is definitely related to an immune response, probably to some external stimulus like a bacterial or other infectious agent stimulating cytokines and other defense responses.

This is still very general, but you have quickly narrowed the options while knowing nothing about the origin of the data.

6. Go back to the home page and try the Molecular Function Ontology.

7. A much smaller list of results here.

You see more immunoglobin binding, cytokine-related functions, and "lipopolysaccharide receptor activity," which is commonly seen in response to bacterial infections.

Now go back and try the cellular component.

 Results ^③

 Mapped IDs:
 20972 out of 20972
 73 out of 73

 Unmapped IDs:
 0
 0

 Multiple mapping information:
 0
 0

Bonferroni count: 2788

Export results

	Homo sapiens (REF)	upload_1 (▼ Hierarchy NEW! ③)				
GO molecular function complete	<u>#</u>	#	expected	Fold Enrichment	+/-	P value
ipopolysaccharide receptor activity	<u>5</u>	3	.02	> 100	+	2.32E-0
4-signaling pattern recognition receptor activity	<u>17</u>	4	.06	67.60	+	1.25E-0
pattern recognition receptor activity	<u>17</u>	4	.06	67.60	+	1.25E-0
lgG binding	<u>12</u>	3	.04	71.82	+	3.15E-0
^L immunoglobulin binding	24	4	.08	47.88	+	4.89E-0
protein complex binding	<u>769</u>	12	2.68	4.48	+	3.76E-0
protein binding	11027	66	38.38	1.72	+	1.04E-0
→ <u>binding</u>	14535	68	50.59	1.34	+	2.02E-0
hmacromolecular complex binding	1361	16	4.74	3.38	+	4.11E-0
cytokine activity	221	<u>13</u>	.77	16.90	+	2.64E-0
4-receptor binding	1550	29	5.40	5.38	+	3.18E-1
cytokine receptor binding	280	<u>15</u>	.97	15.39	+	1.49E-1
protein homodimerization activity	752	<u>12</u>	2.62	4.58	+	3.01E-0
4-protein dimerization activity	1174	<u>17</u>	4.09	4.16	+	1.25E-0
^L identical protein binding	1396	20	4.86	4.12	+	1.10E-0
Unclassified	3745	1	13.04	< 0.2	-	0.00E0

8. Here is a partial list of the Cellular Component results sorted by p-value. Please look at the entire list in the hierarchy and p-value sorted displays. Most of the proteins seem to be membrane bound, external side or extracellular. Also, many located in vesicles related to the immune response or to transport to the extracellular region.

Please click on the terms to educate yourselves to some of the meanings.

Also note the "lipopolysaccharide receptor complex," which functions as a lipopolysaccharide (LPS) receptor that primes the innate immune response against bacterial pathogens.

Also, see "myelin sheath," an electrically insulating fatty layer that surrounds the axons of many neurons.

We did not notice a nerve system connection before though. If you go back to biological process you will see a neuron projection regeneration term listed closer to the bottom of the sorted list.

So is this all helpful in any way...?

Displaying only results with P<0.05; click here to display all results

	Homo sapiens (REF)	upload_1 (Hierarchy) NEW! (3)				
GO cellular component complete	<u>#</u>	#	expected	Fold Enrichment	<u>+/-</u>	△ P value
extracellular space	1495	32	5.20	6.15	+	6.99E-15
extracellular region	4578	<u>49</u>	15.94	3.07	+	1.98E-13
extracellular region part	3852	43	13.41	3.21	+	2.20E-11
cell surface	786	<u>21</u>	2.74	7.68	+	2.40E-10
external side of plasma membrane	<u>253</u>	14	.88	15.90	+	3.43E-10
side of membrane	454	15	1.58	9.49	+	6.24E-08
myelin sheath	<u>181</u>	<u>10</u>	.63	15.87	+	1.13E-06
vesicle	4071	37	14.17	2.61	+	2.83E-06
cytoplasmic vesicle	1799	22	6.26	3.51	+	1.49E-04
intracellular vesicle	1808	<u>22</u>	6.29	3.50	+	1.62E-04
extracellular exosome	2750	<u>27</u>	9.57	2.82	+	3.02E-04
extracellular vesicle	2765	<u>27</u>	9.62	2.81	+	3.37E-04
extracellular organelle	2766	<u>27</u>	9.63	2.80	+	3.40E-04
cell body	<u>550</u>	<u>12</u>	1.91	6.27	+	5.75E-04
cytoplasmic vesicle part	939	15	3.27	4.59	+	9.33E-04
lipopolysaccharide receptor complex	<u>6</u>	3	.02	> 100	+	1.88E-03
endocytic vesicle	266	8	.93	8.64	+	5.65E-03
secretory granule	<u>375</u>	9	1.31	6.89	+	8.44E-03
neuronal cell body	485	<u>10</u>	1.69	5.92	+	9.39E-03
plasma membrane part	2703	24	9.41	2.55	+	1.10E-02
membrane raft	302	8	1.05	7.61	+	1.41E-02
membrane microdomain	303	8	1.05	7.59	+	1.45E-02
neuron projection	1042	14	3.63	3.86	+	1.67E-02