Título del Tema

Subtítulo o Capítulo

Prof. Arnoldo Del Toro Peña

4 de agosto de 2025

Introducción a Ecuaciones Diferenciales

¿Qué es una Ecuación Diferencial?

Una ecuación diferencial es una ecuación que contiene una función desconocida (variable dependiente) y una o más de sus derivadas. Estas ecuaciones relacionan una función con sus derivadas y describen cómo cambia una cantidad con respecto a otra.

Forma general:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

Donde:

- x es la variable independiente
- y es la variable dependiente (función desconocida)
- $y', y'', ..., y^{(n)}$ son las derivadas de y respecto a x

Clasificación de Ecuaciones Diferenciales

Por el Orden

El orden de una ecuación diferencial es el orden de la derivada mayor que aparece en la ecuación.

Ejemplos:

- Primer orden: $\frac{dy}{dx} + 2y = x^2$
- $\begin{array}{l} \bullet \quad \text{Segundo orden:} \ \frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0 \\ \bullet \quad \text{n-\'esimo orden:} \ y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = f(x) \end{array}$

Por el Grado

El **grado** es la potencia de la derivada de mayor orden cuando la ecuación está en forma polinomial.

Ejemplo:

- Grado 1: y'' + 3y' + 2y = 0
- Grado 2: $(y')^2 + y = x$

Por la Linealidad

Ecuaciones Lineales Una ecuación diferencial es lineal si puede escribirse como:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = f(x)$$

Características:

- $\bullet\,$ La variable dependiente y y todas sus derivadas aparecen elevadas a la primera potencia
- ullet No hay productos entre y y sus derivadas
- ullet Los coeficientes dependen solo de la variable independiente x

Ecuaciones No Lineales Cualquier ecuación que no cumpla las condiciones de linealidad.

Ejemplos:

- $y \cdot y' + x = 0$ (producto de y y y')
- $(y')^2 + y = x$ (derivada al cuadrado)

Por el Número de Variables

Ecuaciones Diferenciales Ordinarias (EDO) Contienen derivadas de una función respecto a una sola variable independiente.

Ejemplo:
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^x$$

Ecuaciones Diferenciales Parciales (EDP) Contienen derivadas parciales de una función respecto a dos o más variables independientes.

Ejemplo:
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 (Ecuación de Laplace)

Soluciones de Ecuaciones Diferenciales

Solución General

Es una familia de funciones que contiene constantes arbitrarias (tantas como el orden de la ecuación) y satisface la ecuación diferencial.

Para una EDO de orden n: $y = f(x, c_1, c_2, ..., c_n)$

Solución Particular

Se obtiene al asignar valores específicos a las constantes arbitrarias de la solución general, generalmente mediante condiciones iniciales o de frontera.

Solución Singular

Es una solución que no puede obtenerse de la solución general para ningún valor de las constantes arbitrarias.

Condiciones Iniciales y de Frontera

Condiciones Iniciales

Especifican los valores de la función y sus derivadas en un punto particular.

Para una EDO de segundo orden:

- $\quad \bullet \ y(x_0) = y_0$
- $\quad \bullet \ y'(x_0) = y_1$

Condiciones de Frontera

Especifican los valores de la función (y posiblemente sus derivadas) en dos o más puntos diferentes.

Ejemplo: $y(a) = \alpha \ y \ y(b) = \beta$

Ejemplos Básicos

Ejemplo 1: EDO de Primer Orden Lineal

$$\frac{dy}{dx} + 2y = 6$$

Solución general: $y = 3 + Ce^{-2x}$

Con condición inicial y(0) = 5: Solución particular: $y = 3 + 2e^{-2x}$

Ejemplo 2: EDO de Segundo Orden Homogénea

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$$

Ecuación característica: $r^2-5r+6=0$ Raíces: $r_1=2, r_2=3$ Solución general: $y=C_1e^{2x}+C_2e^{3x}$

Métodos de Solución Básicos

- 1. Separación de variables (para EDO de primer orden)
- 2. Factor integrante (para EDO lineales de primer orden)
- 3. Ecuaciones homogéneas (sustitución apropiada)
- 4. Ecuaciones exactas (verificación de condición de exactitud)
- 5. Método de coeficientes indeterminados (para EDO lineales no homogéneas)
- 6. Variación de parámetros (método general para EDO no homogéneas)

Puntos Clave para Recordar

- El orden determina el número de constantes arbitrarias en la solución general
- Las condiciones iniciales/frontera permiten encontrar soluciones particulares
- La linealidad facilita significativamente los métodos de solución
- Las EDO son más simples de resolver que las EDP
- La verificación de la solución siempre debe realizarse sustituyendo en la ecuación original