Таблица 1: Mol. & vib. params. H_2O

	Values		Freqs	
	Calc.	Exp.	Calc.	Exp.
r(O-H)	0.965	0.958	3931	3657 (asym.)
∠ HOH	105.754	104.478	3809	3756 (sym.)
μ (D)	2.195	1.855	1603	1595
	B3LYP; 6-31+G**	NIST	B3LYP; 6-31+G**	NIST

		Табли	ща 2: Mol. &	z vib. params	s. D_2O		
		Values			Freqs		
	Ca	dc.	Exp.	Calo	·.	Exp.	
r(O-D)	0.0	065	0.956	2882	2	2671 (asym.)
\angle DOD	105	.754	105.200	2748	õ	2788 (sym.))
μ (D)	2.1	.95	1.855	117^{2}	4	1178	
	B3LYP; 6	6-31+G**	NIST	B3LYP; 6-3	31+G**	NIST	
Г	Габлица 3: <i>I</i>	H_2O F-matr	ix		Габлица 4:	H_2O G-matri	X
$q(OH)_1$	8.3806			$q(OH)_1$	1.7902		
$q(OH)_2$	-0.1159	8.3806		$q(OH)_2$	-0.0288	1.7902	
(HOH)	0.243	0.243	0.6724	(HOH)	-0.1058	-0.1058	3.906
,	$q(OH)_1$	$q(OH)_2$	(HOH)	,	$q(OH)_1$	$q(OH)_2$	(HOH)
Т	Габлица 5: <i>1</i>	O_2O F-matr	ix	7	Габлица 6:	D_2O G-matri	x
$q(OH)_1$	8.3805			$q(OH)_1$	0.9488		
$q(OH)_2$	-0.1159	8.3805		$q(OH)_2$	-0.0288	0.9488	
(HOH)	0.243	0.243	0.6724	(HOH)	-0.1058	-0.1058	2.0992
, ,	$q(OH)_1$	$q(OH)_2$	(HOH)	, ,	$q(OH)_1$	$q(OH)_2$	(HOH)

	Apostolo			
Exp. ν , cm ⁻¹	Calc. ν , cm ⁻¹	Desc.	Symm.	Assign.
3534.8/3530.6sh/3529.4/3526.6sh/3525.9/3522.6/3521.0	3525.7	$\nu({ m OH})$	Α'	S1(100)
$1796.5/1795.9 \mathrm{sh}/1794.6 \mathrm{sh}/1793.7$	1802.6	$\nu(CO)$	Α'	S2(89)
1350.1/1344.8	1345.0	$\delta(\text{COH}), \nu(\text{CO})$	Α'	${ m S8(44) + S3(28) + S9(16)}$
$1162.0/1160.4\mathrm{sh}/1158.6/1155.9\mathrm{sh}/1151.2/1149.8\mathrm{sh}/1147.5$	1170.0	$\nu({\rm CO}), \delta({\rm COH})$	Α'	S8(43) + S3(41)
941.6/940.8/939.2/937.3	943.6	$\nu(CC)$	Α'	S4(48) + S3(17) + S13(17) + S7(13)
868-832(d); max.: 865.1/855.9	834.9	$\nu({\rm CO})$	A''	${ m S14}(53) + { m S16}(20) + { m S6}(15)$
868-832(d); max.: 845.9/833.7	834.1	$\nu({\rm CCl}_3)$, as	Α'	S5(53) + S10(16) + S15(15) + S11(11)
$700.5/699.1 \mathrm{sh}/696.5/695.7 \mathrm{sh}/694.9/692.8 \mathrm{sh}$	706.4	$\nu({\rm CCl}_3)$, as	A''	S6(53)+S17(32)+S14(11)
658.2/657.3	674.5	$\delta(OCO)$	Α'	m S9(61) + S7(10)

	0	Calc.; B3LYP, 6-31+G**
Calc. ν , cm ⁻¹	Symm.	Assign.
3762.6	Α'	$100 \text{ q}(\text{OH})_1$
1845.3	Α'	89 q(CO)_1
1357.3	Α'	$42 \text{ a}1 + 29 \text{ q(CO)}_2 + 11 \text{ a}2 + 10 \text{ q(CC)}_1$
1172.1	Α'	$44 \text{ a} 1 + 40 \text{ q(CO)}_2 + 6 \text{ q(CO)}_1 + 5 \text{ q(CC)}_1$
935.3	Α'	$48 \text{ q(CC)}_1 + 17 \text{ q(CO)}_2 + 9 \text{ q(CC)}_1$
819.8	A''	$56 \text{ x} + 20 \text{ a} 6 + 16 \text{ q} (\text{C-Cl})_2 + 6 \text{ a} 8$
823.5	Α'	$32 \text{ q(C-Cl)}_1 + 21 \text{ q(C-Cl)}_2 + 13 \text{ a5} + 10 \text{ a10}$
681.8	A''	$53 \text{ q(C-Cl)}_2 + 23 \text{ t2} + 18 \text{ x} + 7 \text{ a8}$
649.5	Α'	44 a 2 + 15 a 3 + 8 a 1 + 8 a 4
545.5	A''	$75 ext{ t2} + 15 ext{ q(C-CI)}_2 + 9 ext{ x}$
428.2	A'	$60 \; q(\text{C-C1})_2 + 14 \; q(\text{C-C1})_1 + 13 \; q(\text{CC})_1 + 5 \; a3$