GROUP THEORY, SUMMER 2025

ANON

Contents

1. I	Introduction	1
2. (Groups and Homomorphism	1
2.1.	${\bf Semigroups} \oplus {\bf Groups}$	1
2.2.	Homomorphisms	3
3. T	The Isomorphism Theorems	3
3.1.	Subgroups	3
3.2.	Lagrange's Theorem	3
3.3.	Cyclic Subgroups	3
3.4.	Normal Subgroups	3
3.5.	Quotient Subgroups	3
3.6.	The Isomorphism Theorems	3
3.7.	Correspondence Theorem	3
3.8.	Direct Product	3
References		3

1. Introduction

Theoretical problems primarily from [1].

Computational problems primarily from [2]. See the url in the bibtex to find the actual uploads of the homework. Contest problems are from various sources.

2. Groups and Homomorphism

2.1. Semigroups \oplus Groups.

Problem 1. (1.23) If G is a group and $a_1, a_2, \ldots, a_n \in G$, then

$$(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}.$$

Conclude that if $n \geq 0$, then

$$(a^{-1})^n = (a^n)^{-1}.$$

Proof. Let P(n):

$$(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}, \ n \in \mathbb{N}$$

Strategy: Involves $n \in \mathbb{N}$ so induction.

P(1): $(a_1)^{-1} = a_1^{-1}$ is true.

Assume P(k): $(a_1 \cdots a_k)^{-1} = a_k^{-1} \cdots a_1^{-1}$.

Then

$$(a_1 \cdots a_{k+1})^{-1} = a_{k+1}^{-1} (a_1 \cdots a_k)^{-1} = a_{k+1}^{-1} a_k^{-1} \cdots a_1^{-1}$$

Thus P(n) is true for all $n \in \mathbb{N}$. Now, if $n \ge 0$, let $a_1 = a_2 = \dots = a_n = a$

Then, we get
$$(a^n)^{-1} = (a^{-1})^n$$

Problem 2. (1.26) A group in which $x^2 = e$ for every x must be abelian.

Proof.
$$x, y \in G \implies x^2y^2 = e \implies xy = x^{-1}y^{-1}$$

Now, $(xy)(yx)^{-1} = (xy)(x^{-1}y^{-1}) = (xy)(xy) = e \implies xy = yx$

Problem 3. (1.27)

(i) Let G be a finite abelian group containing no elements $a \neq e$ with $a^2 = e$. Evaluate

$$a_1a_2\cdots a_n$$
,

where a_1, a_2, \ldots, a_n is a list, with no repetitions, of all the elements of G.

(ii) Prove Wilson's Theorem: If p is prime, then

$$(p-1)! \equiv -1 \pmod{p}$$
.

Proof. (i) Claim: $a_1...a_n = e$

For n being odd, $\forall a_i \in G, \exists a_i^{-1} \in G, i \in \{1,..,n\}$. As the group is abelian and finite so only one element say $a_k \in G, k \in \{1,..,n\}$ remains. Now it is clear that $a_k = a_k^{-1} \implies a_k = e$ is the only possibility. Thus, $a_1...a_n = e$

For *n* being even, as each element is distinct and each of their inverse is unique, so we get, for $e \in G$, $\exists a_k \in G, k \in \{1,..,n\}$ such that $ea_k = e \implies a_k = e$ but *e* is unique so there is no group with order even satisfying the given conditions.

Or we can use **Cauchy's theorem**, Let G be a finite group and p be a prime. If p divides the order of G, then G has a non identity element of order p. If |G| was even then Cauchy's theorem implies that there is a non identity element of order 2 which contradicts the hypothesis.

(ii) We have $U(p) = \{1, 2, ..., p-1\}$. U(p) is a finite abelian group. Now, each element of U(p) has an inverse. |U(p)| is even so there is a non identity element of order 2.

For some
$$x \in U(p), x^2 = 1 \implies x = x^{-1} \implies x = 1, -1 (= p-1) \implies x^{-1} = -1 (= p-1), 1.$$

Strategy: Using the idea of $ab^{-1}=e \implies a=b$ along with the given information which is not there for no reason. $x^2=e \implies x=x^{-1}$ so we can definitely try leveraging this property.

Strategy:For P3 (i) Let's start with small cases??? For \mathbb{Z}_n when n is odd, the evaluation yields 0, when n is even, the evaluation yields $1, 2, 3, \ldots$ The even case also seems to have an element whose order is 2 which violates the condition. The odd case doesn't.So the naive conjecture seems that the evaluation would yield the

identity element.

As, we already know for a group with order even, eventually after pairing and cancellation, $1 \cdot y = 1 \implies y = -1 = p - 1$.

$$1.2...(p-1) = 1.(p-1)$$
 Thus,

$$(p-1)! = p-1 = -1$$

Problem 4. Show that $\alpha: \mathbb{Z}_{11} \to \mathbb{Z}_{11}$, defined by $\alpha(x) = 4x^2 - 3x^7$, is a permutation of \mathbb{Z}_{11} , and write is as a product of disjoint cycles. What is the parity of α ? What about α^{-1} ?

We ignore the repeated use of \equiv (mod p) as it is clear that we are working in mod p environment due to the way U(p) is defined.

Proof.

Contest 5. Is there a finite abelian group G such that the product of all the orders of its elements is 2^{2009} ?

Proof.

2.2. Homomorphisms.

3. The Isomorphism Theorems

- 3.1. Subgroups.
- 3.2. Lagrange's Theorem.
- 3.3. Cyclic Subgroups.
- 3.4. Normal Subgroups.
- 3.5. Quotient Subgroups.
- 3.6. The Isomorphism Theorems.
- 3.7. Correspondence Theorem.
- 3.8. Direct Product.

References

- Joseph J. Rotman, An Introduction to the Theory of Groups, 4th ed., Graduate Texts in Mathematics, Springer New York, NY, 1995. Originally published by Allyn & Bacon, 1965, 1973 and 1984.
- [2] Han-Bom Moon, Homework, 2014. MATH 3005.