数据通信原理

信号传输及处理的线性代数基础

全字晖 二零一九年秋

线性模型 (传输例子)

- 1. 假设要发送方要传输消息 $\alpha_1,\alpha_2,\cdots,\alpha_N$,该模型意味着什么? 离散码 \rightarrow 连续波
- 2. 接收方(采集方)拿到f,然后要做什么? 连续波 \rightarrow 离散码: 求解出 $\{\alpha_i\}_i$

线性模型(处理例子)

通常,信号在原域难以刻画其特性,而在变换域会出现明显的统计特性,如系数 $\{\alpha_i\}_i$ 稀疏。Then?

- 1. 根据输入信号求解出 $\{\alpha_i\}_i$;
- 2. 对 $\{\alpha_i\}_i$ 进行处理,如稀疏化;
- 3. 对 $\{\alpha_i\}_i$ 进行逆变换,得到处理后的信号。

线性模型

$$\boldsymbol{f} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_N \boldsymbol{v}_N$$

注意在信号传输和信号处理中模型处理对象原域和变换域的差异!

传输:处理对象是 $\{\alpha_i\}$,原域由 $\{v_i\}_i$ 定义。

处理:处理对象是f,变换域由 $\{v_i\}_i$ 定义。

核心和基础

• f的特性(在什么空间)

• $\{v_1, v_2, \cdots, v_N\}$ 的定义(用什么变换)

• $\{\alpha_1, \alpha_2, \cdots, \alpha_N\}$ 的求解

数字信号的线性代数基础

离散信号的向量表示

3	144	109	115	176
5	233	194	181	121
8	121	47	40	41
13	98	241	221	162
21	219	32	5	203

[1,2,3,2,-1,5,3,2,3,-1,0,0]

[3,5,8,13,21,144,233,121,98,219,...]

向量表示有什么好处?

向量空间 (Vector Space)

粗略说,向量空间V是一个定义了加法和数乘的集合,满足:

- 加法闭合: If $u, v \in \mathbb{V}$, then $u + v \in \mathbb{V}$.
- 数乘闭合: If $a \in \mathbb{C}$ and $v \in \mathbb{V}$, then $av \in \mathbb{V}$.
- 可交换性: If $u, v \in V$, then u + v = v + u.
- 可结合性: If $u, v, w \in \mathbb{V}$, then u + (v + w) = v + u + w.
- 存在零元: $\exists 0, \forall v \in \mathbb{V}, v + 0 = v$.
- 加法可逆: If $v \in \mathbb{V}$, then $\exists -v \in \mathbb{V}, v + (-\mathbb{V}) = 0$.
- 数乘结合: If $\alpha, \beta \in \mathbb{C}, \boldsymbol{v} \in \mathbb{V}$, then $\alpha(\beta \boldsymbol{v}) = (\alpha \beta) \boldsymbol{v}$.
- 加法分配: If $\alpha \in \mathbb{C}$, $u, v \in \mathbb{V}$, then $\alpha(u + v) = \alpha u + \alpha v$.
- 数乘分配: If $\alpha, \beta \in \mathbb{C}, \boldsymbol{v} \in \mathbb{V}$, then $(\alpha + \beta)\boldsymbol{v} = \alpha\boldsymbol{v} + \beta\boldsymbol{v}$.
- 存在幺元: If $v \in V$, then 1v = v.

线性子空间 (Linear Subspace)

$$\mathbb{U}\subseteq\mathbb{V}$$

U: 具有与V相同的加法和数乘定义的向量空间

线性子空间对信号处理和分析有什么意义?

矩阵与子空间

如何理解一个矩阵A? (三种理解方式)

1. 线性方程组

[消元]

- 2. 行/列向量的集合 span(A) $\rightarrow \{w_1 a_1 + w_2 a_2 + \dots + w_N a_N\}$
- 3. 线性变换

[像空间]和[零空间]

零空间(Null Space)和像空间(Range)

$$null(A) = \{x : Ax = 0\}$$

range $(A) \rightarrow \{Ax : x \in \Re^N\}$

零空间和像空间是向量空间吗?是线性子空间吗? span(A)和range(A)有什么联系?

向量的内积和范数

• 内积

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T \mathbf{u} = \sum_{n=1}^N u_n v_n = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$$

• *l*₂范数

$$\|\mathbf{u}\|_{2}^{2} = \langle \mathbf{u}, \mathbf{u} \rangle = \mathbf{u}^{T} \mathbf{u} = \sum_{n=1}^{N} \mathbf{u}_{n}^{2}$$

• 投影

$$\mathbf{v}_{\mathbf{u}} = \frac{\|\mathbf{u}\| \cos \theta}{\|\mathbf{v}\|} \mathbf{v} = \frac{\mathbf{v}^{T} \mathbf{u}}{\mathbf{v}^{T} \mathbf{v}} \mathbf{v} = \mathbf{v} \frac{\mathbf{v}^{T} \mathbf{u}}{\mathbf{v}^{T} \mathbf{v}}$$

向量的其他范数

- *l*₀ 范数
- *l*₁范数
- *l*₂范数

- l∞范数
- l_p 范数

$$\|x\|_0 = \#\{j: x_j \neq 0\}$$

$$||x||_1 = \sum_i |x_i|$$

$$\|\boldsymbol{x}\|_2 = \sqrt[2]{\sum_i x_i^2}$$

$$\|\boldsymbol{x}\|_{\infty} = \max_{i} |\boldsymbol{x}_{i}|$$

$$\|\mathbf{x}\|_p = (\sum_{i=1}^N |\mathbf{x}_i|^p)^{\frac{1}{p}}$$

等高线图像?

