§ 11.8-1 **HISTORIES**

号斯定律

机械横波与纵波的检验实验:

一、线偏振光与非偏振光

振动面:电矢量产与传播方向构成的面。

称:线偏振光(或平面/完全偏振光)

Fig. 1 振动面平行于屏幕

Fig. 2 振动面垂直于屏幕

/////////////////////>

Fig. 3 振动面不在屏幕内

自然光: 光矢量 产沿任意方向概率相同!

属非偏振光!

表示法:

0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

Fig. 2 振动面垂直于屏幕

-///////////////////>

Fig. 3 振动面不在屏幕内

自然光: 光矢量 产沿任意方向概率相同!

属非偏振光!

表示法:

──┤

$$I_x = I_y = \frac{1}{2}I_0$$

部分偏振光: 光矢量 产沿某一方向占优势!

表示法:

Fig. 1 部分偏振光 $I_{\parallel} > I_{\perp}$

Fig. 2 部分偏振光 $I_{\parallel} < I_{\perp}$

二、偏振光的起偏与检偏

具有二项色性的物质(如硫酸金鸡纳硷)能吸收某方向

的光振动。

起偏:

检偏:

三、马吕斯定律

光强:
$$I \propto A^2 \longrightarrow \frac{I_1}{I_2} = \frac{A_1^2}{A_2^2}$$

$$A_2 = A_1 \cdot \cos \alpha$$

$$I_2 = I_1 \cdot \cos^2 \alpha$$

当 $\alpha: 0^{\circ} \rightarrow 90^{\circ} \rightarrow 180^{\circ} \rightarrow 270^{\circ} \rightarrow 360^{\circ}$

出射光强: 明→黑→明→照→明

例 自然光光强 I_0 , $P_1 \perp P_3$, 现以与 P_1 成 30° 角插入 P_2 , 求出射光强。

例自然光光强 I_0 , $P_1 \perp P_3$,现以与 P_1 成 30° 角插入 P_2 ,求出射光强。

$$I_{1} = \frac{1}{2}I_{0}$$

$$I_{2} = I_{1} \cdot \cos^{2}30^{\circ}$$

$$= \frac{3}{8}I_{0}$$

$$I_{3} = I_{2} \cdot \cos^{2}60^{\circ}$$

$$= \frac{3}{32}I_{0}$$

(the end)

归纳:

- 1. 自然光、部分偏振光、线偏振光:
- 2. 线偏振光的起偏与检偏:

$$= \frac{3}{8}I_0$$

$$I_3 = I_2 \cdot \cos^2 60^\circ$$

$$= \frac{3}{32}I_0$$
 (the end)

- 1. 自然光、部分偏振光、线偏振光:
- 2. 线偏振光的起偏与检偏:
- 3. 马吕斯定律:

$$I_2 = I_1 \cdot \cos^2 \alpha$$

(The end)