TREE-BASED MULTIPLE IMPUTATION METHODS

Michael Dellermann, Anatol Sluchych, and Jonah Wermter

1. Motivation

- Parametric MICE methods: conditional models to be specified for *all* variables with missing data (van Buuren & Groothuis-Oudshoorn, 2011)
- Still may fail to capture interactive and nonlinear relations among variables as well as non-standard distributions
- Tree-based methods *automatically* capture interactions, nonlinear relations, and complex distributions with no parametric assumptions or data transformations needed (Burgette & Reiter, 2010)
- Implementation in R: mice, miceRanger, and missRanger packages

2. Tree-based methods

Classification and regression trees (CART):

- seek to approximate conditional distribution of univariate outcome from multiple predictors
- segment predictor space into non-overlapping regions with relatively homogeneous outcomes
- segments found by recursive binary splits of predictors
- prediction for observations that fall into the same region is mean (or mode) of response values for training observations in region
- may be very non-robust and have relatively low predictive accuracy

Figure 1: Example of tree structure. Source: Hastie, Tibshirani, & Friedman (2009)

Random forest:

- ensemble method that addresses non-robustness and low predictive accuracy
- ullet average predictions from B non-pruned trees constructed using B bootstrapped training sets
- decorrelates trees by performing each split on randomly chosen subset of predictors
- accurate model to impute missing values (Stekhoven & Bühlmann, 2011)

3. Imputation algorithm

4-steps algorithm:

- 1. Initial values for the missing values filled in as follows:
- (a) Define a matrix Z equal to Y_c (ordered matrix according to missingness)
- (b) Impute missing values in Y_i , $i = 1, ...p_1$, using tree-based method on Z and append the completed version of Y_i to Z prior to incrementing i
- 2. Replace the originally missing values of Y_i , $i = 1, ...p_1$, with tree-based methods on Y_{-i}
- 3. Repeat step 2 l times (l iterations)
- 4. Repeat steps 1–3 m times and obtain m imputed sets
- 5. Pool m datasets to one completed according to Rubin's rules

4. Comparison mice, miceRanger & missRanger

- Packages *mice* and *miceRanger* implement van Buuren's multivariate imputation by chained equations, *missRanger* by default single imputations (based on *missForest*)
- mice supports variety of imputation methods, miceRanger & missRanger only random forest
- All by default use *ranger* package for random forests (van Buuren, 2023; Mayer, 2023; Wilson, 2022), which claims to be faster and more efficient with larger data sets and complex settings than common R packages (Wilson, 2022)
 - ⇒ core functions written in C++ (faster than R, compiled vs. interpreted code) (Wright & Ziegler, 2017)
- main differences in default values and variety of analytical functions

5. Empirical simulation study

Empirical data set:

• RAND's Health Insurance Experiment: n = 20185, k = 46

Missing data mechanisms:

- p=25% and 50%
- MAR with $\rho = 0, \tau = 0$: $P(mdvis_miss \mid xage < 25) = p$, $P(mdvis_miss \mid mhi > 74) = p$
- MCAR: $P(income_miss) = p$, $P(educdec_miss) = p$

Monte Carlo simulation: R = 100, M = 5, n = 1000, niter = 10, nrtree = 10

• six subsets: three focus on data types, three on dataset size

6. Results

Table 1: Simulation results				
Metric	Method	Bias	MSE	Coverage
mean(income)	BD	6.66	15,728	0.98
mean(income)	CART	7.87	17,240	0.98
mean(income)	RandomForest	8.19	20,813	0.95
mean(income)	miceRanger	17.45	18,957	0.97
mean(income)	missRanger	3.12	17,711	0.95
mean(mdvis xage>25)	BD	0.01	0.042	0.96
mean(mdvis xage>25)	CART	0.01	0.042	1
mean(mdvis xage>25)	RandomForest	0.01	0.042	1
mean(mdvis xage>25)	miceRanger	0.01	0.042	0.96
mean(mdvis xage>25)	missRanger	0.01	0.042	0.96
reg. intercept (ghindx)	BD	0.05	4.85	0.91
reg. intercept (ghindx)	CART	0.67	6.90	0.95
reg. intercept (ghindx)	RandomForest	1.34	6.17	0.96
reg. intercept (ghindx)	miceRanger	1.76	10.96	0.89
reg. intercept (ghindx)	missRanger	3.38	21.98	0.73

imice_cart imice_randomForest imiceRanger imiceRanger

7. Conclusion

- Speed: miceRanger and missRanger are significantly faster: about 11 times quicker than mice-CART and X times than mice-random forest
- Accuracy & efficiency: *mice* demonstrates superior accuracy and efficiency in imputing missing data
- Robustness: *mice* exhibits robust performance against various levels of missing data, others less so
- User-friendliness: *mice* offers in depth analytical functions that streamline the analysis process after multiple imputation. *miceRanger* and *missRanger* lack this feature, focusing purely on completing one dataset
- Practical recommendation: For applications where time and computational resources are of the essence, miceRanger is recommended. For research, mice is preferred for its robustness and built-in analysis features

References

Burgette, L. F., & Reiter, J. P. (2010). Multiple imputation for missing data via sequential regression trees. American Journal of Epidemiology, 172(9), 1070–1076. https://doi.org/10.1093/aje/kwq260

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R. New York: Springer.

Mayer, M. (2023). *Package 'missranger'*. https://cran.r-project.org/web/packages/missRanger/missRanger.

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. Cambridge: MIT Press. Stekhoven, D. J., & Bühlmann, P. (2011). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597

van Buuren, S. (2023). *Package 'mice'*. https://cran.r-project.org/web/packages/mice/mice.pdf van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained equa-

tions in R. Journal of Statistical Software, 45(3), 1–67. https://doi.org/10.18637/jss.v045.i03 Wilson, S. (2022). Package 'miceranger'. https://cran.r-project.org/web/packages/miceRanger/