Отчёт по лабораторной работе №6

Евгения Владимировна Великоднева

Содержание

Цель работы	٠
Задание	6
Теоретическое введение	7
Выполнение лабораторной работы	Ć
Код в julia	Ĝ
Код в OpenModelica	11
Графики для первого случая	14
Графики для первого случая без учёта $S(t)$	15
Графики для второго случая	16
Выводы	17

Список иллюстраций

1	Подключение библиотек	9
2	Начальные параметры для первого случая	9
3	Начальные параметры для второго случая	10
4	Система уравнений для первого случая	10
5	Система уравнений для второго случая	10
6	Решение системы уравнений для первого случая	11
7	Решение системы уравнений для второго случая	11
8	Построение графиков	11
9	Код в OpenModelica для первого случая	12
10	Код в OpenModelica для второго случая	12
11	Параметры времени для первого случая	13
12	Параметры времени для второго случая	13
13	График в julia	14
14	График в OpenModelica	14
15	График в julia	15
16	График в OpenModelica	15
17	График в julia	16
18	График в OpenModelica	16

Список таблиц

1 Значения переменных		- 1
-----------------------	--	-----

Цель работы

Цель данной работы - рассмотреть простейшую модель эпидемии, решить задачу по данной теме.

Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=12400) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=150, А число здоровых людей с иммунитетом к болезни R(0)=55. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1. если $I(0) \leq I^*$ 2. если $I(0) > I^*$

Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы.

В табл. 1 приведены значения всех переменных.

Таблица 1: Значения переменных

Переменная	Значение переменной
$\overline{S(t)}$	восприимчивые к болезни, но пока здоровые особи
I(t)	число инфицированных особей, которые также при этом являются
	распространителями инфекции
R(t)	здоровые особи с иммунитетом к болезни.
I^*	критическое значение I
α	коэффициент заболеваемости
β	коэффициент выздоровления
N	количество особей в популяции

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(0) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, I(t) > I^* \\ 0, I(t) \le I^* \end{cases}$$

Скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \le I^* \end{cases}$$

 $\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, I(t) > I^* \\ -\beta I, I(t) \leq I^* \end{cases}$ Скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I$$

Выполнение лабораторной работы

Код в julia

Подключила необходимые библиотеки (рис. 1).

```
using Plotsusing DifferentialEquations
```

Рис. 1: Подключение библиотек

Задала начальные параметры (рис. 2, 3).

```
4 a = 0.01

5 b = 0.02

6 N = 12400

7 I0 = 150

8 R0 = 55

9 S0 = N - I0 - R0

10 t = (0, 200)

11 x0 = [S0,I0,R0]

12 dt = 0.01
```

Рис. 2: Начальные параметры для первого случая

```
4 a = 0.01

5 b = 0.02

6 N = 12400

7 I0 = 150

8 R0 = 55

9 S0 = N - I0 - R0

10 t = (0, 400)

11 x0 = [S0,I0,R0]

12 dt = 0.01
```

Рис. 3: Начальные параметры для второго случая

Записала систему уравнений (рис. 4, 5).

```
function eqb(du, u, p, t)

du[1] = 0

du[2] = - b*u[2]

du[3] = b*u[2]

end
```

Рис. 4: Система уравнений для первого случая

```
function eqa(du, u, p, t)

du[1] = -a*u[1]

du[2] = a*u[1] - b*u[2]

du[3] = b*u[2]

end
```

Рис. 5: Система уравнений для второго случая

Вызвала функции для решения дифференциальных уравнений

```
prob_sde = ODEProblem(eqb, x0, t)
sol = solve(prob_sde, dt=dt)
```

Рис. 6: Решение системы уравнений для первого случая

```
prob_sde = ODEProblem(eqa, x0, t)
sol = solve(prob_sde, dt=dt)
```

Рис. 7: Решение системы уравнений для второго случая

Написала функции для составления графиков

```
plot(sol, vars=1, label="S(t)")
plot!(sol, vars=2, label="I(t)")
plot!(sol, vars=3, label="R(t)")
```

Рис. 8: Построение графиков

Код в OpenModelica

Создала новые модели для обоих случаев (стр.1,12, рис. 9,10). Задала начальные параметры (стр. 2-7). Записала систему дифференциальных уравнений(стр.8-11).

```
model lab61
 1
    parameter Real a = 0.01;
 2
 3
    parameter Real b = 0.02;
   parameter Real N = 12400;
 4
 5
   Real I(start=150);
   Real R(start=55);
 6
 7
   Real S(start=N-150-55);
   equation
   der(S) = 0;
 9
10 der(I) = -b*I;
11 \operatorname{der}(R) = b*I;
12
    end lab61;
```

Рис. 9: Код в OpenModelica для первого случая

```
1
    model lab62
   parameter Real a = 0.01;
 2
 3
   parameter Real b = 0.02;
   parameter Real N = 12400;
 4
 5
   Real I(start=150);
6
   Real R(start=55);
7 Real S(start=N-150-55);
   equation
9
   der(S) = -a*S;
10 der(I) = a*S - b*I;
11 der(R) = b*I;
12
    end lab62;
```

Рис. 10: Код в OpenModelica для второго случая

Изменила параметры времени с помощью setup и запустила программу (рис. 11, 12).

Рис. 11: Параметры времени для первого случая

Рис. 12: Параметры времени для второго случая

Графики для первого случая

Рис. 13: График в julia

Рис. 14: График в OpenModelica

Графики для первого случая без учёта S(t)

Рис. 15: График в julia

Рис. 16: График в OpenModelica

Графики для второго случая

Рис. 17: График в julia

Рис. 18: График в OpenModelica

Выводы

Рассмотрела простейшую модель эпидемии. Построила графики для решения задачи при $I(0) \leq I^*$ и $I(0) > I^*$