Neural Network For Handwrites Recognition

Chen Yuxuan 1W15BG12

mis title should be a "take-home" message,
eg. "Neural networks can be used to recognise handwriting."

Definition and Engine of Recognition

Signature of country star, Tex Williams

Numbers of Recognition

OCH software

Artificial Neural Network

Neural Networks as the Brain

- Basic Concepts
- Configuration
- · Cost Function

Each circular node represents an artificial neuron and an arrow represents a connection from the output of one neuron to the input of another

Take your time covering there two slides.
Whether your presentation is understandable.
Depends strongly on these slides.

Neural Networks and Common Algorithm

- Backpropagation, is a common method of training artificial neural networks
- 2. Optimization method such as gradient descent

Take-home message: "A neural network can be trained to solve an XCR

A simple example of Neural Network: XOR problem

 A neural network that can learn to produce the correct output given the XOR problem.

Given th	nis input	Produce this output
x ₁	x ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

put the XCR table on here too.

Successfully Trained XOR problem

Iterations	Result of 0,0	Deviation J
1000	0.47689	0.69423
68000	0.026558	0.037856
100000	0.019090	0.025859

- Network guesses small numbers (close to 0) for the first and last XOR examples and high (close to 1)
- Result is more accurate when Iterations is larger.
- Successfully trained!

Handwritten Digits Recognition

3573476593 WADTE V S W H I H W T S P P P T S W H I Y T W T R V T X S O E S P W S R O S P X 1037 5 6 0 7 1 1 P 1043 7 5 6 0 7 1 1 P 2 7 7 7 7 7 8 0 0 7 7 3 9 0 7 7 7 7 9 8 8 8

 AIM: Build a neural network that can successfully learn to produce the correct output given the MNIST handwritten digits.

Put the XXX table on have too

Trained Handwritten Digits Recognition

Accuracy	Samples	Hidden Neruons
23.3%	120	4
66.7%	120	16
95,5%	5000	25

TRAINLM, Epoch 0/200, MSE 0.902926/0, Gradient 600.48/le-010
TRAINLM, Epoch 21/200, MSE 0.0738405/0, Gradient 0.0262333/le-010
TRAINLM, Validation stop.

not needed

SIMULATION...

Training Set Accuracy: 23,333333

- Training set accuracy is around 63% with the small sample (120) and small hidden neurons (16).
- While, larger sample (5000), and more hidden neurons (25) yields 95%.
- · Sucessfully Trained!

What we learned so far... And more

So Far:

- Basic Concepts of Neural Network
- A Neural Network For XOR problem
- A Neural Network For Handwrites Recognition

Future:

- More Difficult Recognition
- Possibilities of solving any problems.
- Neural Network that can exceed human beings.

Overall, this is becoming a nice presentation. Just remember

- · speak slowly
- · don't rush the start (explain the fundamental concepts clearly)
- · don't assume the audience are specialists

* Your mission with this presentation is to make people think
" That is interesting - I'd like to know more".

A Number Memoria

Overall, this is becoming a nice preparation. Inst remember a speck slowly a don't rush the start (explain the transacratal concepts clearly) and in a don't rush the audience one specialists.

I have mission with this presentation is to rule people thank the time more.