44: Fast and Accurate Uncertainty Quantification for the ECG With Random Electrodes Location

Michael Multerer, Pezzuto Simone

michael.multerer@usi.ch, simone.pezzuto@usi.ch

Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, via la Santa 1, CH-6900 Lugano, Switzerland.

Download this poster! (PDF format, ~ 0.3 MB)

MOTIVATIONS

The standard **surface ECG** is a valuable tool for assessing the electric activity of the heart. Routinely acquired and **non-invasive**, the ECG is also the perfect candidate for individualizing **patient-specific models**. As most clinical data, however, the ECG is unavoidably subject to **uncertainty**.

A simulated ECG is a point-wise evaluation of the potential on the chest. Therefore, when the location of the electrodes is not precise, the signal is a random variable. Here we show how to estimate the statistical moments of the ECG in a very efficient manner and suitable for model personalization.

METHODS

PROBLEM STATEMENT

► Source of uncertainty

The **electrode locations** on the chest. Their position is a random vector $\Xi = \{\xi_1, \dots, \xi_L\}$ with density $\rho(X)$.

► Quantity of interest

The statistics of the ECG $V(t,\Xi)$, specifically the expectation $\mathbb{E}[V](t)$ and correlation Cor[V](t,s).

► Forward model

Given the transmembrane potential $V_{\rm m}({\bf x},t)$ on the heart $\Omega_{\rm H}$, we compute the ECG with the forward bidomain model

$$-\operatorname{div}(\mathbf{G}\nabla u) = \begin{cases} \operatorname{div}(\mathbf{G}_{i}\nabla V_{m}), & \text{on } \Omega_{H}, \\ 0, & \text{otherwise.} \end{cases}$$

An ECG lead is a zero-sum linear combination of $u(\xi_{\ell}, t)$.

► Isn't it a simple integration problem?

Yes, but a rather expensive one as the cost grows linearly with the number of evaluations of the transmembrane potential $V_{\rm m}({\bf x},t)$, each requiring the solution of the elliptic PDE.

LEAD FIELD FORMULATION AND EXPECTATION

► Equivalent formulation

The ECG is exactly represented by the formula

$$V(t,\Xi) = \int_{\Omega_{H}} \mathbf{G}_{i}(\mathbf{x}) \nabla V_{m}(\mathbf{x},t) \cdot \nabla Z(\mathbf{x},\Xi) \, d\mathbf{x},$$

where $Z(x, \Xi)$ is the lead field.

The formula is linear in Z, the only random field. Hence, we focus on statistics of Z.

$$\begin{cases} -\operatorname{div}(\mathbf{G}\nabla Z) = 0, & \text{in torso,} \\ -\mathbf{G}\nabla Z \cdot \mathbf{n} = \sum_{i}^{L} a_{i} \delta(\mathbf{x} - \boldsymbol{\xi}_{i}), & \text{on chest.} \end{cases}$$

Note: the function $Z(x, \Xi)$ is computed once!

► Expectation

By linearity, we solve as above by replacing

$$V(\mathbf{x}, \mathbf{\Xi}) \longrightarrow \mathbb{E}[V](t)$$
 $Z(\mathbf{x}, \mathbf{\Xi}) \longrightarrow \mathbb{E}[Z](\mathbf{x})$

 $\delta(\mathbf{x} - \boldsymbol{\xi}_i) \rightsquigarrow \rho_i(\mathbf{x})$ (marginal distribution)

COMPUTATION OF ECG TIME CORRELATION

► Tensor product

Lead Field

The correlation of the ECG is obtained by tensor product:

$$\operatorname{Cor}[V](t,s) = \int_{\Omega_{H}^{2}} (\mathbf{G}_{i} \nabla \otimes \mathbf{G}_{i} \nabla) V_{m}(\mathbf{x},t) V_{m}(\mathbf{x}',s) : (\nabla \otimes \nabla) \operatorname{Cor}[Z] \, d\mathbf{x} d\mathbf{x}'.$$

The correlation Cor[Z](x,x') of the lead field will satisfy a problem obtained again from the tensor product of the lead field equation. The problem size is squared.

► Low-rank approximation

Since electrodes distribution is highly localized, we approximate the correlation with a low-rank tensor

Cor[Z](x,x')
$$\approx \sum_{k=1}^{K} \zeta_k(x)\zeta_k(x')$$
, K small.

► Numerical solution

In total, computing Cor[Z] amounts to the solution of K elliptic problems equivalent to the lead field problem (with different Neumann data.)

Numerical assessment

Problem setup: Idealized 2-D torso and an 2-lead ECG:

Lead II = VF – VL, Lead V1 = V1 –
$$\frac{1}{3}$$
 (VL + VR + VF)

▲ Activation map via eikonal

ECG results for all tests. In the plots, the dashed black curve is the deterministic ECG, the solid blue curve is the average ECG, and the shaded blue area corresponds to the 95 % confidence interval, that is $\mathbb{E}[V](t) \pm 1.96 \sqrt{\text{Var}[V](t)}$.

- ► Low-rank modes were 17 (lead II) and 33 (lead V1).
- ► Max std deviation was 0.83 mV (lead II) and 2.07 mV (lead V1).
- ► High accuracy to bidomain (error < 0.01 mV).
- ► Computational cost was 2- to 8-fold lower than bidomain.

FINAL REMARKS

- ► We have solved the problem of quantifying the uncertainty in the ECG when electrode positions is uncertain.
- ➤ Our method recasts the problem into a fully deterministic setting by using the lead field theory and a low-rank approximation for the correlation.
- ▶ Computationally cheaper than bidomain model, cost independent of number of evaluations of $V_{\rm m}$.
- ► Suitable to compute ECGs for long simulations, e.g., arrhythmic events, and inverse problems involving the ECG.

Try yourself on Jupyter!
https://github.com/pezzus/fimh2021.
(Full paper also available.)

