Adding Conditional Control to Text-to-Image Diffusion Models

Presented By- Rittik Panda(MT2022090)

Adding Conditional Control to Text-to-Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala Stanford University

{lvmin, anyirao, maneesh}@cs.stanford.edu

Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges (top), human pose (bottom), *etc.*, to control the image generation of large pretrained diffusion models. The default results use the prompt "a high-quality, detailed, and professional image". Users can optionally give prompts like the "chef in kitchen".

Original Paper: https://openaccess.thecvf.com/content/ICCV2023/papers/Zhang_Adding_Conditional_Control_to_Text-to-Image Diffusion Models ICCV 2023 paper.pdf

Key Contributions

- **ControlNet Introduction**: Integrates spatial controls into large text-to-image diffusion models using robust pretrained encoding layers.
- "Zero Convolutions" Implementation: Initiates convolution layers from zero, progressively expanding parameters to prevent noise during fine-tuning.
- Exploration of Conditioning Controls: Experimentation with edges, depth, segmentation, and human poses, both singularly and combined with Stable Diffusion, with and without prompts.
- Robust Training Demonstrations: Exhibits robustness in training with small (<50k) and large (>1m) datasets.
- **Enhanced Model Potential**: Suggests ControlNet's capability to significantly enhance image diffusion models by enabling effective control mechanisms.

Example

Prompt: "dog in a room"

Prompt: "dog in a room"

Condition:

Abstract

- To control pretrained large diffusion models to support additional input conditions.
- End-to-end architecture
- Robust on small dataset(<50k)
- As fast as fine-tuning
- Can be trained on personal devices
- Can scale to large amounts of data(millions to billions)

Introduction

- Can large models be applied to facilitate specific tasks?
- What kind of framework should we build to handle the wide range of problem conditions and user controls?
- Three findings:
 - The available data scale in a task-specific domain is not always as large as that in the general image-text domain
 - Large computation clusters are not always available
 - Various image processing problems have diverse forms of problem definitions, user controls or image annotations

Method

ControlNet

 Manipulated the input conditions of neural network blocks to further control the overall behavior of an entire neural network

•
$$y = F(x, \Theta) \Rightarrow y = F(x; \Theta) + Z(F(x + Z(c; \Theta_{z1}); \Theta_c); \theta_{z2})$$

- x: input feature map
- y: output feature map
- c: external condition vector
- Θ_c : Trainable copy
- Z: Zero convolution, 1 x 1 convolution layer with both weights and bias initialized with zeros

(a) Before

(b) After

MethodControlNet

$y = F(x; \Theta) + Z(F(x + Z(c; \Theta_{z1}); \Theta_c); \theta_{z2})$

 Before any optimization, it will not cause any influence to the deep neural features

Because both the weight and bias of a zero convolution layer are initialized as zeros, in the first training step, we have

$$\begin{cases}
\mathcal{Z}(\boldsymbol{c};\Theta_{z1}) = \mathbf{0} \\
\mathcal{F}(\boldsymbol{x} + \mathcal{Z}(\boldsymbol{c};\Theta_{z1});\Theta_{c}) = \mathcal{F}(\boldsymbol{x};\Theta_{c}) = \mathcal{F}(\boldsymbol{x};\Theta) \\
\mathcal{Z}(\mathcal{F}(\boldsymbol{x} + \mathcal{Z}(\boldsymbol{c};\Theta_{z1});\Theta_{c});\Theta_{z2}) = \mathcal{Z}(\mathcal{F}(\boldsymbol{x};\Theta_{c});\Theta_{z2}) = \mathbf{0}
\end{cases} (3)$$

(b) After

and this can be converted to

$$y_{c} = y \tag{4}$$

MethodControlNet

 Zero convolutions progressively grow from zeros to optimized parameters in a learned way

(b) After

We briefly deduce the gradient calculation of a zero convolution layer. Considering an 1×1 convolution layer with weight W and bias B, at any spatial position p and channel-wise index i, given an input map $I \in \mathbb{R}^{h \times w \times c}$, the forward pass can be written as

$$\mathcal{Z}(I; \{W, B\})_{p,i} = B_i + \sum_{j=1}^{c} I_{p,i} W_{i,j}$$
(5)

and since zero convolution has W = 0 and B = 0 (before optimization), for anywhere with $I_{p,i}$ being non-zero, the gradients become

$$\begin{cases}
\frac{\partial \mathcal{Z}(\boldsymbol{I}; \{\boldsymbol{W}, \boldsymbol{B}\})_{p,i}}{\partial \boldsymbol{B}_{i}} = 1 \\
\frac{\partial \mathcal{Z}(\boldsymbol{I}; \{\boldsymbol{W}, \boldsymbol{B}\})_{p,i}}{\partial \boldsymbol{I}_{p,i}} = \sum_{j}^{c} \boldsymbol{W}_{i,j} = 0 \\
\frac{\partial \mathcal{Z}(\boldsymbol{I}; \{\boldsymbol{W}, \boldsymbol{B}\})_{p,i}}{\partial \boldsymbol{W}_{i,j}} = \boldsymbol{I}_{p,i} \neq \boldsymbol{0}
\end{cases} (6)$$

and we can see that although a zero convolution can cause the gradient on the feature term I to become zero, the weight's and bias's gradients are not influenced. As long as the feature I is non-zero, the weight W will be optimized into non-zero matrix in the first gradient descent iteration. Notably, in our case, the feature term is input data or condition vectors sampled from datasets, which naturally ensures non-zero I. For example, considering a classic gradient descent with an overall loss function \mathcal{L} and a learning rate $\beta_{lr} \neq 0$, if the "outside" gradient $\partial \mathcal{L}/\partial \mathcal{Z}(I; \{W, B\})$ is not zero, we will have

$$W^* = W - \beta_{lr} \cdot \frac{\partial \mathcal{L}}{\partial \mathcal{Z}(I; \{W, B\})} \odot \frac{\partial \mathcal{Z}(I; \{W, B\})}{\partial W} \neq 0$$
 (7)

where W^* is the weight after one gradient descent step; \odot is Hadamard product. After this step, we will have

$$\frac{\partial \mathcal{Z}(\boldsymbol{I}; \{\boldsymbol{W}^*, \boldsymbol{B}\})_{p,i}}{\partial \boldsymbol{I}_{p,i}} = \sum_{j}^{c} \boldsymbol{W}_{i,j}^* \neq \boldsymbol{0}$$
(8)

Method

ControlNet in Image Diffusion Model

- Computationally efficient
- Overall learning objective:

$$\mathcal{L} = E_{z_0, t, c_t, c_t, \epsilon \sim \mathcal{N}(0, 1)} [\epsilon - \epsilon_{\theta}(z_t, t, c_t, c_f) \|_2^2]$$

- z_0 : original images
- z_t: noisy images
- *t*: time step
- c_t : text prompts
- c_f : task-specific conditions

Figure 3: ControlNet in Stable Diffusion 1.5 (or SD V2.1, since they use the same U-Net architecture), while the blue blocks are ControlNet.

MethodImproved Training

- · Small-Scale Training
 - Disconnecting the link to decoder 1,2,3,4 and only connecting the middle block
- Large-Scale Training
 - First train ControlNets for a large enough number of iterations
 - Then unlock all weights of the Stable Diffusion and jointly train the entire model as a whole

Figure 3: ControlNet in Stable Diffusion. The gray blocks are the structure of Stable Diffusion 1.5 (or SD V2.1, since they use the same U-Net architecture), while the blue blocks are ControlNet.

Experiment

- Large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional input like:
 - Edge maps
 - Human scribbles
 - Segmentation maps
 - Keypoints

• ...

Figure 6: Controlling Stable Diffusion with Human scribbles. The "automatic prompts" are generated by BLIP based on the default result images without using user prompts. These scribbles are from [58].

Experiment

Figure 9: Controlling Stable Diffusion with Openpose. See also the Appendix for source images for Openpose pose detection.

Stable Diffusion V2 Depth-to-Image resumed from SD 2.0, continued training on Large-scale Nvidia A100 Clusters, more than 12M training data, more than 2000 GPU-hours (estimation)

Stable Diffusion with **Depth-based ControlNet** controlling **SD 1.5**, trained on **one single Nvidia RTX 3090TI**, with **200K** training data, trained **less than one week**

Figure 14: Comparison of Depth-based ControlNet and Stable Diffusion V2 Depth-to-Image. Note that in this experiment, the Depth-based ControlNet is trained at a relatively small scale to test minimal required computation resources. We also provide relatively stronger models that are trained at relatively large analysis.

Figure 21: The sudden converge phenomenon. Because we use zero convolutions, the neural network always predict high-quality images during the entire training. At a certain point of training step, the model suddenly learns to adapt to the input conditions. We call this "sudden converge phenomenon".

Figure 22: Training on different scale. We show the Canny-edge-based ControlNet trained on different experimental settings with various dataset size.

Figure 28: Limitation. When the semantic of input image is mistakenly recognized, the negative effects seem difficult to be eliminated, even if a strong prompt is provided.

Results & Comparison With Prev. Methods

Figure 9: Comparison to previous methods. We present the qualitative comparisons to PITI [88], Sketch-Guided Diffusion [87], and Taming Transformers [19].

Method Stable Diffusion	FID ↓ 6.09	CLIP-score ↑ 0.26	CLIP-aes. ↑ 6.32
LDM [71](seg.)*	25.35	0.18	5.15
PIPT [88](seg.)	19.74	0.20	5.77
ControlNet-lite	17.92	0.26	6.30
ControlNet	15.27	0.26	6.31

Table 3: Evaluation for image generation conditioned by semantic segmentation. We report FID, CLIP text-image score, and CLIP aesthetic scores for our method and other baselines. We also report the performance of Stable Diffusion without segmentation conditions. Methods marked with "*" are trained from scratch.

Ablative Study

Figure 8: Ablative study of different architectures on a sketch condition and different prompt settings. For each setting, we show a random batch of 6 samples without cherry-picking. Images are at 512×512 and best viewed when zoomed in. The green "conv" blocks on the left are standard convolution layers initialized with Gaussian weights.

THANK YOU