Modulbegleitende Aufgabe II

Shanshan Huang, Florian Starke

28. November 2015

Gegeben seien $N \in \mathbb{N}$, eine Zerlegung Δ_N des Intervalls [-1,1] durch die Stützstellen $-1 \le x_0 \le x_1 \le \cdots \le x_N \le 1$, und die Funktionen $f_R, f_1 \colon \mathbb{R} \to \mathbb{R}$ mit

$$f_R(x) := \frac{1}{1 + 25x^2},$$

$$f_1(x) := (1 + \cos(\frac{3}{3}\pi x))^{2/3}.$$

1 Polynominterpolation

1.1 Gleichverteilte Stützstellen

Die N+1 Stützstellen sind äquidistant verteilt. Es folgt $x_i := -1+2i/N$ für $i=0,\ldots,N$.

In Abbildung 1 ist f_R und das interpolierte Polynom g_{12} abgebildet. Wie erwartet ist bei einer Gleichverteilung der Stützstellen

1.2 Tschebyschow-Stützstellen

Als Stützstellen werden die Nullstellen des Tschebyschow-Polynoms T_{N+1} gewählt. Also definieren wir $x_i:=\cos(\frac{2k-1}{2N+2}\pi)$ für $i=0,\dots,N$.

2 Spline-Interpolation

Fehler für $N_1=2,\;N_2=4,\;\mathrm{und}\;N_3=8.$

Abbildung 7: N_1

Abbildung 8: N_2

Abbildung 9: N_3

k	$E(h_{N_k})$	$EOC(h_{N_k}, h_{N_{k+1}})$
1	4.8928×10^{-1}	1.1572
2	2.1938×10^{-1}	2.6272
3	3.5509×10^{-2}	4.3901
4	1.6935×10^{-3}	2.1237
5	3.8860×10^{-4}	3.5334
6	3.3560×10^{-5}	3.8869
7	2.2686×10^{-6}	3.9719
8	1.4917×10^{-7}	3.9930
9	9.0802×10^{-9}	3.9982
10	5.6820×10^{-10}	3.9996
11	3.5523×10^{-11}	3.9999
12	2.2204×10^{-12}	_