BESARAN PENGUKURAN VEKTOR

Sains bersifat: sistematis dan rasional

Pengelompokkan sains atau ilmu:

1. Ilmu Sosial

FISIKA (alam)

ilmu tentang semua gejala alam (definisi sampai akhir abad 18)

ilmu yang mempelajari komponen materi dan energi dengan segala antar-aksinya (definisi sekarang)

Cabang ilmu fisika

- ➤ Mekanika → berkaitan dengan gerak benda
- ➤ Optika → berkaitan dengan cahaya
- ➤ Akustik → berkaitan dengan bunyi
- ➤ Termodinamika → berkaitan dengan kalor
- ➤ Elektromagnetik → tentang listrik dan magnet

> Fisika Modern

Fisika klasik

Peran fisika:

- ✓ Mendefinisikan besaran-besaran fisis secara tepat serta pengukuran besaran fisis tersebut secara akurat
- ✓ Mencari hubungan antara besaranbesaran fisis tersebut

Nilai tiap besaran fisis harus dinyatakan dengan bilangan dan sebuah satuan

Besaran pokok dan satuan (sistem SI) berdasarkan konferensi umum ke 14 mengenai berat dan ukuran

Besaran	Satuan	Simbol
panjang	meter	m
massa	kilogram	kg
waktu	sekon	S
arus listrik	Ampere	Α
temperatur	Kelvin	K
intensitas cahaya	candela	cd
jumlah zat	mole	mol

satuan besaran fisis harus bersifat standart, tetap dan berlaku universal

Definis satuan:

- 1 m = 1.650.763,73 panjang gelombang cahaya merah hasil radiasi EM dari isotop ⁸⁶Kr yang bertransisi antara 2P₁₀ dan 5d₅.
 - = jarak tempuh cahaya dalam ruang vakum selama 1/(299.729.458) sekon
- 1 kg = massa sebuah balok platina yang disimpan di Biro Internasional Bagi Berat dan Ukuran, Sevres, Paris.
 - = massa satu liter air murni pada suhu 4º C
- 1 s = selang waktu yang diperlukan oleh atom ¹³³Cs untuk melakukan getaran sebanyak 9.192.631.770 kali

Awalan-awalan untuk SI

Faktor	Awalan	Simbol
10 ¹⁸	eksa	E
10 ¹⁵	peta	P
10 ¹²	tera	Т
10 9	giga	G
10 ⁶	mega	М
10 ³	kilo	K
10 ²	hekto	Н
10¹	deka	da

Faktor	Awalan	Simbol
10-1	desi	d
10-2	senti	С
10 -3	mili	m
10 -6	mikro	μ
10-9	nano	n
10-12	piko	р
10-15	femto	f
10-18	atto	a

Pengukuran besaran fisis

membandingkan besaran fisis dengan beberapa nilai satuan dari besaran fisis tersebut

Dalam melakukan pengukuran, pasti terjadi ketidakpastian (kesalahan)

tertentu: kesalahan akibat performansi alat kesalahan random: kesalahan akibat pengukuran berulang

Cara menyatakan hasil pengukuran:

- Pengukuran tunggal :

 pengukuran yang hanya dilakukan satu kali $\Delta p = \frac{1}{2}$ kali last count (skala terkecil)
- Pengukuran berulang : pengukuran yang dilakukan lebih dari satu kali (lebih banyak lebih baik)

$$\overline{p} = \frac{\sum_{i=1}^{n} p_i}{n} \qquad \Delta p = \sqrt{\frac{\sum_{i=1}^{n} p_i^2 - n\overline{p}^2}{n(n-1)}}$$

Contoh:

No.	p _i (cm)	p _i ² (cm ²)
1	10,1	102,01
2	10,2	104,04
3	10,0	100,00
4	9,8	96,04
5	10,0	100,00
6	10,1	102,01
7	10,0	100,00
8	9,8	96,04
9	10,0	100,00
10	10,0	100,00
n = 10	$\Sigma p_i = 100,0$	$\sum p_i^2 = 1000,14$

$$\overline{p} = \frac{\sum p_i}{n} = 10,0 \text{ cm}$$

$$\Delta p = \sqrt{\frac{\sum p_i^2 - n\overline{p}^2}{n(n-1)}}$$

$$= \sqrt{\frac{1000,14 - 1000,00}{90}}$$

$$= 0,03944$$

$$p = (10,00 \pm 0,04) \text{ cm}$$

jumlah angka hasil pengkuran yang harus ditulis/dilaporkan bergantung pada ketelitian alat atau kesalahan hasil pengukuran

```
misal:

p = 5,2345678 \text{ mm}

\Delta p = 0,01 \text{ mm}

maka: p = (5,23 \pm 0,01)
```

mistar

jangka sorong

Gambar 1.15 Bagian-Bagian Jangka Sorong

$$20 \text{ sn} = 1 \text{ mm}$$

$$1 \text{ sn} = 1/20 \text{ mm} = 0.05 \text{ mm}$$

last count = 0,05 mm
$$\Delta p = 0,025 mm$$

Cara membaca hasil pengukuran:

Mikrometer skrup

Gambar 1.17 Bagian-Bagian Mikrometer Sekrup

Cara membaca hasil pengukuran:

$$p = su + (sp x last count)$$

$$p = 10 \text{ mm} + (41 \times 0.01 \text{ mm}) = 10.41 \text{ mm}$$

$$p = (10,410 \pm 0,005)mm$$

Hasil pengukuran:

mistar :
$$p=(10,0\pm0,5)mm$$
 3 angka penting pasti diragukan jangka sorong : $p=(10,400\pm0,025)mm$ 5 angka penting diragukan pasti mikrometer skrup : $p=(10,410\pm0,005)mm$

BESARAN:

▲ SKALAR:

besaran yang hanya menunjukkan besarnya/nilainya saja

✓ VEKTOR:

besaran yang menunjukkan nilai dan arah sekaligus

lambang vektor : \overrightarrow{V}

nilai vektor : V atau $|\overrightarrow{V}|$

√ gaya

Penjumlahan Dua Vektor

Penjumlahan Banyak Vektor

Pengurangan Vektor

$$A - B = \sqrt{A^2 + B^2 - 2AB\cos\theta}$$

 θ : sudut antara vektor \overrightarrow{A} dan Vektor \overrightarrow{B}

Contoh soal:

Seekor siput berjalan 4 m ke arah timur dan kemudian berjalan 3 m ke arah utara. Tentukan resultan perpindahannya dalam satuan m dan cm

Solusi:

sudut antara timur dengan utara sebesar 90°.

$$|\vec{T} + \vec{U}| = \sqrt{T^2 + U^2 + 2TU \cos 90^0} = \sqrt{16 + 9 + 2 \cdot 4 \cdot 3 \cdot \cos 90^0} = 5 m$$

$$|\vec{T} + \vec{U}| = 5 \ m = 5 \times 10^2 \ cm = 500 \ cm$$

Perkalian Vektor Dengan Skalar

TRIGONOMETRI

$$\cos\theta = \frac{x}{r}$$

$$\sin \theta = \frac{y}{r}$$

$$\tan \theta = \frac{y}{x}$$

Komponen Vektor

$$v_x = v \cos \theta$$

$$v_v = v \sin \theta$$

$$\mathbf{v} = \sqrt{\mathbf{v}_{\mathbf{x}}^2 + \mathbf{v}_{\mathbf{y}}^2}$$

Penjumlahan Vektor Berdasarkan Komponennya

Vektor Satuan

Penulisan vektor:

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

 A_x , A_y dan A_z adalah nilai vektor A pada sumbu x, y, dan z

Penjumlahan:

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j} + (A_z + B_z)\hat{k}$$

Contoh soal:

Sebuah perahu berjalan menyeberangi sungai dengan kecepatan $4\hat{j}$ m/s. Jika kecepatan arus sungai $3\hat{i}$ m/s. Tentukan kecepatan perahu setelah terkena arus sungai serta arahnya!

Solusi:

Kecepatan resultan perahu + arus sungai :

$$\vec{v}_{rpa} = \vec{v}_p + \vec{v}_a = \left(3\hat{i} + 4\hat{j}\right) \, m \, / \, s$$

arah:

$$\theta = arctg\left(\frac{4}{3}\right) = arctg \ 1,333 = 53,1^{\circ}$$

Perkalian Skalar

$$\overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$$
 hasilnya SKALAR

$$\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$$
$$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

$$\vec{A} \cdot \vec{B} = (\hat{i} \cdot \hat{i}) A_x B_x + (\hat{j} \cdot \hat{j}) A_y B_y + (\hat{k} \cdot \hat{k}) A_z B_z$$

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

Contoh soal:

Jika dua buah gaya $2\hat{i} + \hat{j} + 2\hat{k}$ N dan $3\hat{i} + 4\hat{j}$ N dikenakan pada benda, tentukan sudut yang dibentuk dua buah gaya tersebut!

Solusi:
$$|\vec{F}_1| = \sqrt{4+1+4} = 3 N$$
 $|\vec{F}_2| = \sqrt{9+16} = 5 N$

$$\vec{F}_1 \cdot \vec{F}_2 = 6(\hat{i} \cdot \hat{i}) + 4(\hat{j} \cdot \hat{j}) + 0(\hat{k} \cdot \hat{k}) = 10$$

$$\vec{F}_1 \cdot \vec{F}_2 = |\vec{F}_1| |\vec{F}_2| \cos \theta$$

$$10 = 15 \cos \theta$$

$$\theta = arccos(0,666) = 48,2^{\circ}$$

Perkalian Vektor

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} - (A_x B_z - A_z B_x)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

Thank You!

www.themegallery.com