Department of Mathematics, Bennett University Engineering Calculus (EMAT101L)

Tutorial Sheet 7 (Power series and Taylor series)

1. Find radius and interval of convergence of following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^n} (x-5)^n$$

(c)
$$\sum_{n=1}^{\infty} 4^n x^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{4^n} x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1} x^n$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{n!} (x-3)^n$$

$$(\mathbf{g}) \quad \sum_{n=1}^{\infty} \frac{1}{n^p} x^n$$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{n^p} x^n$$
 (h) $\sum_{n=1}^{\infty} \frac{n!}{n^n} (x+3)^n$

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{4^n} (x+3)^n$$

(j)
$$\sum_{n=1}^{\infty} \frac{2^n}{n} (4x-8)^n$$

(k)
$$\sum_{n=1}^{\infty} n! (2x+1)^n$$

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{4^n} (x+3)^n$$
 (j)
$$\sum_{n=1}^{\infty} \frac{2^n}{n} (4x-8)^n$$
 (k)
$$\sum_{n=1}^{\infty} n! (2x+1)^n$$
 (l)
$$\sum_{n=1}^{\infty} \frac{(-4)^n}{(n+2)!} (x+3)^n$$

(m)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{10^n}$$

(m)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{10^n}$$
 (n) $\sum_{n=1}^{\infty} (-1)^n (4x+1)^n$

1

2. Find Taylor series of following functions about given points.

- (a) $\sin x$ about c = 0
- (b) $\cos x$ about c = 0
- (c) e^{-x} about c = 0
- (d) $\ln x$ about c=2
- (e) $\frac{1}{r^2}$ about c=-1
- (f) e^{-x} about c = -4