

Practical Assignment № 4

Adaptive and Robust Control

STATE FEEDBACK ROBUST AND ROBUST ADAPTIVE CONTROL

variant number: 16

Student Name: Xu Miao, Zhou Haojie

HDU Number: 19322103, 19322233

ITMO number: 293687, 293806

A.Problem statement

Consider the plant presented in the "state-space" form

$$\dot{x} = Ax + bu, x(0) \tag{3.1}$$

$$y = c^T x (3.2)$$

where $x \in \mathbb{R}^n$ is the state vector, $u \in \mathbb{R}$ is the control variable, $y \in \mathbb{R}$ is the regulated variable,

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b_0 \end{bmatrix}, c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 a_i , $i = \overline{0, n-1}$ are unknown parameters, b_0 is the coefficient which is known for the sake of simplicity.

B. Experimental part

Experimental parameters (Group 16)

Var.	Matrix	Transmis	Transient	Overshoot	Input signal $g(t)$
	A	sion	time,	$\bar{\sigma}$,%	
		coef.	$ t_{tr} $		
		b_0			
16	$\begin{bmatrix} 0 & 1 \\ -7 & 6 \end{bmatrix}$	7	0.5	15	$3sign\left(\cos 0.2t\right) + 3$

> state of the system

From the previous theoretical background we can obtain the equation of state of the system as follows:

where $x \in R^n$ is the state vector, u is the control, $y \in R$ is the adjustable variable,

Robust controller

1. design the Robust controller

From the theoretical background we can obtain the Robust controller as follows:

$$\dot{x}_{M} = A_{M}x_{M} + b_{M}g$$

$$y_{M} = c_{M}^{\top}x_{M}$$

$$A_{M} = A + b\theta^{\top}, b = \kappa b_{M}$$

$$A_{M}^{T}P + PA_{M} = -Q$$

$$\hat{\theta} = \gamma x b^{T} P e$$

$$u = \hat{\theta}^{T} x + \frac{1}{\kappa} g$$
(5.2)

The simulink scheme is constructed from (5.1) and (5.2) as follows:

Figure 1: Robust controller simulation scheme

```
function g = fcn(t)

g = 3*sign(cos(0.2*t)) + 3;
```

Figure 2: Robust controller simulation scheme (g(t))

```
function [u, theta_hat] = fcn(g, r, gamma, P, e, x)
b = [0;7];
theta_hat = gamma*x*b'*P*e;
u = theta_hat'*x + 1/r*g;
```

Figure 3: Robust controller simulation scheme (controller(fcn))

2. Simulation

Make experiments for robust controllerfor three different gains γ assuming $\|\delta(t)\|\equiv 0$. The simulation results are shown in the following figure:

1) $\gamma = 0.01$

Figure 4 : Robust controller simulation result $(x(t),x_m(t))$

Figure 5 : Robust controller simulation result $(\epsilon(t))$

Figure 6: Robust controller simulation result $(\tilde{ heta}(t))$

The simulation results are shown in the following figures:

Figure 7 : Robust controller simulation result $(x(t),x_m(t))$

Figure 8 : Robust controller simulation result $(\epsilon(t))$

Figure 9: Robust controller simulation result $(ilde{ heta}(t))$

The simulation results are shown in the following figures:

Figure 10 : Robust controller simulation result $(x(t),x_m(t))$

Figure 11 : Robust controller simulation result $(\epsilon(t))$

Figure 12: Robust controller simulation result $(ilde{ heta}(t))$

➤ Robust Adaptive Controller

1. design the Robust Adaptive controller

From the previous theoretical background we can obtain the Adaptive Controller as follows:

$$\dot{x}_{M} = A_{M}x_{M} + b_{M}g$$
 $y_{M} = c_{M}^{\top}x_{M}$
 $A_{M} = A + b\theta^{\top}, b = \kappa b_{M}$
 $A_{M}^{T}P + PA_{M} = -Q$
 $\dot{\hat{\theta}} = -\sigma\hat{\theta} + \gamma x b^{T}Pe$
 $u = \hat{\theta}^{T}x + \frac{1}{\kappa}g$

$$(5.3)$$

The simulink scheme is constructed from (5.1) and (5.3) as follows:

Figure 13: Robust Adaptive controller simulation scheme

Figure 14: Robust Adaptive controller simulation scheme (reference signal g(t))

```
function [u, dtheta_hat] = fcn(g, r, gamma, P, e, x, theta_hat,sigma)
b = [0;7];
dtheta_hat = -1*sigma*theta_hat + gamma*x*b'*P*e;
u = theta_hat'*x + 1/r*g;
```

Figure 15: Robust Adaptive controller simulation scheme (controller)

```
function delta = fcn(t)
delta = [0.6*sin(10*t)+0.1*sin(50*t); 0.5*cos(12*t)+0.2*sin(30*t)];
```

Figure 16: Robust Adaptive controller simulation scheme (disturbance delta)

2. Simulation

A. Make experiments for robust adaptive control for a certain parameter σ and two different γ used before without $\delta(t)$

1)
$$\sigma = 1\gamma = 1$$

Figure 17: Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 18: Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 19: Robust Adaptive controller simulation result $(\tilde{ heta}(t))$

2) $\sigma = 1\gamma = 100$

Figure 20 : Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 21 : Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 22: Robust Adaptive controller simulation result $(ilde{ heta}(t))$

B. Make experiments for robust adaptive control for a certain parameter σ and two different γ used before with $\delta(t)$

1)
$$\sigma=1\gamma=1$$

Figure 23 : Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 24 : Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 25: Robust Adaptive controller simulation result $(ilde{ heta}(t))$

Figure 26 : Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 27 : Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 28: Robust Adaptive controller simulation result $(ilde{ heta}(t))$

- C. Decrease σ and repeat this experiment for one of the selected gain γ .
- 1) without $\delta(t)$, $\sigma=0.01\gamma=1$

Figure 29 : Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 30 : Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 31: Robust Adaptive controller simulation result $(ilde{ heta}(t))$

2) with $\delta(t)$, $\sigma=0.01\gamma=1$

Figure 32 : Robust Adaptive controller simulation result $(x(t),x_m(t))$

Figure 33 : Robust Adaptive controller simulation result $(\epsilon(t))$

Figure 34: Robust Adaptive controller simulation result $(ilde{ heta}(t))$

C.Conclusions

Robust Controller

From the simulation results we can show the following properties of the robust controller:

- Boundedness of all the signals in the closed-loop system;
 (Figure 4-12)
- Exponential convergence of the norm $\parallel e \parallel$ to residual set including zero origin $e^*=0$. The radius of the set can be decreased by increasing gain γ ; (Figure 5,8,11)
- Even in the disturbance-free case the steady state control error is not zero. (Figure 5,8,11)

Robust Adaptive Controller

From the simulation results we can show the following properties of the adaptive robust controller:

- Boundedness of all the signals in the closed-loop system ;(Figure 17-34)
- Exponential convergence of the norms $\|e\|$ and $\|\tilde{\theta}\|$ to residual sets including origins $e^*=0$ and $\tilde{\theta}^*=0$, respectively. Radius of the sets can be reduced by increasing γ and decreasing σ ; (Figure 18,19,21,22,24,25,27,28,30,31,33,34)
- In general case steady state values of e and $\tilde{\theta}$ are not zero, however they can be decreased by decreasing σ .

(Figure 18,19,21,22,24,25,27,28,30,31,33,34)