Dokumentacja Projektu z przedmtiotu Metody Inteligencji Obliczeniowej

$Analiza \ SHAP \ istotności \ poszczególnych \ elementów \\ wektora \ wejściowego \ SSN$

20 czerwca 2025

Spis treści

1	Wst	sęp	2			
2	Wykorzystane zbiory danych					
3	Zbiór danych dotyczący sukcesu akademickiego uczniów					
	3.1	Preprocessing	2			
	3.2	Sieć neuronowa	2			
	3.3	Analiza SHAP	2			
	3.4	Ponowny trening po redukcji cech	2			
	3.5	Otrzymane wyniki	3			
	3.6	Wnioski	4			
	3.7	Podsumowanie	4			
4	Zbiór danych dotyczący przewidywania upadłości polskich firm 4					
	4.1	Preprocessing	4			
	4.2	Sieć	4			
	4.3	Analiza SHAP	4			
	4.4	Ponowny trening po redukcji cech	4			
	4.5	Wyniki	4			
	4.6	Wnioski	4			
	4.7	Podsumowanie	4			

1 Wstęp

Projekt obejmował tematykę analizy SHAP istotności poszczególnych elementów wektora wejściowego SSN. Postanowiliśmy wykonać cztery modele korzystające z czterech zbiorów danych i na nich przeprowadzić analizę.

2 Wykorzystane zbiory danych

Pierwszy zbiór dotyczył problemu przewidywania sukcesu akademickiego uczniów, natomiast drugi - przewidywania upadłości polskich firm.

3 Zbiór danych dotyczący sukcesu akademickiego uczniów

3.1 Preprocessing

W tym zbiorze należało przekształcić na początku etykiety na liczby, aby działał poprawnie w sieci neuronowej. Następnie podzieliliśmy zbiór na cechy oraz na zbiór uczący i testujący w proporcjach 80/20. Pamiętaliśmy o stratyfikacji, żeby dane były równomiernie podzielone oraz przeskalowaliśmy zbiór za pomocą StandardScaler.

3.2 Sieć neuronowa

Zbudowaliśmy model MLP; pierwsza wartswa ma 128 neuronów oraz funkcję aktywacji "relu". Warstwa ukryta posiada 64 neurony, a warstwa wyjściowa ma tyle neuronów, ile mamy klas, czyli 3. Została użyta funkcja aktywacji softmax. Zastosowaliśmy również dropout, żeby nie dopuścić do przeuczenia.

Wykonaliśmy kompilację modelu, a później trening, w którym liczba epok wynosiła 50. Następnie zrobiliśmy wykresy sprawdzające nasz model - zrobiliśmy historię treningu, sprawdziliśmy accuracy i macierz pomyłek.

3.3 Analiza SHAP

Shap umożliwił nam zobaczenie, jak model wygląda w środku. Za pomoca KernelExplainer można było zobaczyć, co wpływa na predykcję konkretnych klas.

3.4 Ponowny trening po redukcji cech

Wybraliśmy 5 najmniej istotnych cech i usunęliśmy je. Zrobiliśmy ponowne skalowanie, ponieważ rozkład mogł ulec zmianie. Następnie wytrenowaaliśmy model na zredukowanym zbiorze i porównaliśmy wyniki.

3.5 Otrzymane wyniki

	precision	recall	f1-score
Dropout	0.81	0.72	0.76
Enrolled	0.48	0.43	0.45
Graduate	0.80	0.89	0.84
accuracy			0.75
macro avg	0.70	0.68	0.68
weighted avg	0.74	0.75	0.75

- 3.6 Wnioski
- 3.7 Podsumowanie
- 4 Zbiór danych dotyczący przewidywania upadłości polskich firm
- 4.1 Preprocessing
- 4.2 Sieć
- 4.3 Analiza SHAP
- 4.4 Ponowny trening po redukcji cech
- 4.5 Wyniki
- 4.6 Wnioski
- 4.7 Podsumowanie