SRT 创新计划专项结题报告 倒立摆控制

刘锦坤

2024年5月9日

目录

1	摘要	2
2	PD 控制参数的理论计算	2
	2.1 动力学模型	2
	2.2 实验仪器 2	2
3	实验原理	2
	3.1 xxx 方程	2
	3.2 xxx 情况下的边界条件和 xx 现象	2
	3.3 xx 在 xxx 条件下的 xxx 现象	2
4	实验过程与数据分析	2
	4.1 A. 在 xx 条件下测量 xxx	2
	4.1.1 $a1$. 计算出 xx 的电阻和电感	2
	4.1.2 a 2.Complete by yourself!	3
	4.1.3 a 3.Complete by yourself!	3
	4.2 展示一下行间公式	3
	4.2.1 行间公式	3
	4.2.2 相对于行内公式	3
5	分析与讨论	3
	5.1 误差分析	3
	5.1.1 实验中的系统系统误差	3
	5.1.2 实验中的偶然误差	3
	5.2 实验后的思考	3
6	原始数据	4

1 摘要

本文主要总结了本次倒立摆项目中所做的工作。

PD 控制参数的理论计算

在本次 SRT 项目中,选用 PD 方法来完成对倒立摆的控制,可以建立动力学模型,对 PD 控 制器的参数进行理论计算。

2.1 动力学模型

在倒立摆控制在倒立的稳定状态时,由于水平转动角度较小,因此可以认为稳定态附近进行稳 定控制时,水平旋转杆的外端点可以视为一个平动参照系

2.2 实验仪器 2

实验仪器 2 使用方法可参考说明书。

3 实验原理

3.1 xxx 方程

在 xx, xxx, xxxx 条件下, 考察条件为 xx 的 xx 的情况, 利用 xxxx 定律在无位移的水平方 向和有位移的竖直方向分别列出以下方程:

$$\int T_2 cos\alpha_2 - T_1 cos\alpha_1 = 0 \tag{1}$$

$$\begin{cases} T_2 cos\alpha_2 - T_1 cos\alpha_1 = 0 \\ T_2 sin\alpha_2 - T_1 sin\alpha_1 = \rho dx \frac{\partial^2 y}{\partial x^2} \end{cases}$$
 (1)

3.2 xxx 情况下的边界条件和 xx 现象

xxxx 时发生 xxxx 现象。由 xxx 方程可知,xxx 波形为 $y^+ = f(vt+x)$,xxx 波形为 $y^- = f(vt-x)$ 。

3.3 xx 在 xxx 条件下的 xxx 现象

Complete by yourself!

4 实验过程与数据分析

4.1 A. 在 xx 条件下测量 xxx

4.1.1 a1. 计算出 xx 的电阻和电感

在 xx 上将 xx 的两端串联 xx 和 xx 相连,将 xx 的两端串联进 xx,分别将 xx 接在 L_1 , L_2 , xx 的两端测量 xx 并记录。

4.1.2 a2.Complete by yourself!

Complete by yourself!

4.1.3 a3.Complete by yourself!

实验得到的数据如下:

线圈名称	$R'(\Omega)$	Va(V)	V(V)	Vr'(V)	Vo(V)
线圈 1(空气芯)	123	456	789	012	345
线圈 2(空气芯)	123	456	789	012	345
线圈 3(铝芯)	123	456	789	012	345
线圈 4(铝芯)	123	456	789	012	345

4.2 展示一下行间公式

4.2.1 行间公式

这是一个不确定度计算。

$$U_k = tinv(x, y) \times s_k = xxx$$

4.2.2 相对于行内公式

这是一个不确定度计算: $U_k = tinv(x, y) \times s_k = xxx$

5 分析与讨论

5.1 误差分析

5.1.1 实验中的系统误差

来自 xxx 的精度影响。 受空间内 xx 与 xx 的干扰。

5.1.2 实验中的偶然误差

接线时可能有 xxx 情况,导致 xxx。xx 上的 xx 在某情况下有 xx 的问题存在,经反复调整后得以正常测量。

5.2 实验后的思考

可说明自己做本实验的总结、收获和体会,对实验中发现的问题提出自己的建议。

6 原始数据

Change the picture by yourself!