Almost everything in this problem is a bitwise operation, except the subtraction in F(x, y, z).

However, notice that $(x \mid y)$ will contain all the set bits of x, while (x & z) cannot contain any bits that aren't set in x.

So, (x & z) is a *submask* of $(x \mid y)$, and this means the subtraction operation is really just bitwise XOR. That is, we can rewrite the function as $F(x,y,z) = (x \mid y) \oplus (x \& z)$.

Now that everything we're dealing with is bitwise operation, it helps to look at what's going on bit-by-bit.

Let's fix a bitk and see what happens.

Let x_k denote the value of the k-th bit of x (which is either 0 or 1). Similarly define A_k , B_k , F_k (x, A, B). We already know A_k and B_k , our aim is to find out what values x_k can possibly take.

We have $F_k(x, A, B) = (x_k \mid A_k) \oplus (x_k \& B_k)$, and we'd like to maximize $F_k(x, A, B)$.

There are 4 cases depending on their values:

- $A_k = B_k = 1$ Here, $(x_k \mid A_k) = 1$, and $(x_k \& B_k) = x_k$. So, $F_k(x, A, B) = 1 \bigoplus x_k$, which is maximized when $x_k = 0$.
- $A_k = B_k = 0$ Here, $(x_k \mid A_k) = x_k$, and $(x_k \& B_k) = 0$. So, $F_k(x, A, B) = x_k \oplus 0$, which is maximized when $x_k = 1$.
- $A_k = 1$ and $B_k = 0$ Here, $F_k(x, A, B) = 1 \oplus 0 = 1$, and is independent of x_k . So, we can choose x_k to be either 0 or 1• $A_k = 0$ and $B_k = 1$ Here, $F_k(x, A, B) = x_k \oplus x_k = 0$, once again we can choose x_k freely.

Putting the above together:

- If $A_k = B_k, x_k$ is fixed and we have no choice.
- If $A_k = B_k, x_k$ can be chosen freely.

So, the answer is simply 2^d , where d is the number of bits where A and B differ in their binary representations.

dcan be computed by iterating over each bit independently; or you can notice that it's just the number of set bits in($A \oplus B$) for an O(1) solution.