CSE 4207 CT 4 Assignment Roll No: 1903113

Assignment Problem:

Category: C Word Size = 6

ALU Operations = ADD, OR_XOR_AND

Solution:

Video:

Have you uploaded the video?	YES	
Check List 1: Have you explained the design using testbenches to prove that your circuit is working correctly and giving correct results?	YES	
Check List 2: Have you shown full synthesis results showing all the required info including RTL Synthesis, RTL Floorplan, RTL Power Analysis, GDS and Heatmap (for details, see assignment template doc)?	YES	
NB: Failing to upload video will cause heavy point penalty (5-6 Marks)		
NB: Failing to add any required info will cause point penalty (1-2 Marks)		

HDL Code:

NB: Failing to add any required info will cause point penalty (1-2 Marks)		
Check List: Have you added all the modules ALU, ALU_OP1, ALU_OP2, CONTROLLER, ALU_TESTBENCH, CONTROLLER_TESTB	TOP, TOP_TESTBENCH,	YES

Google Drive link for the files:

▶ 19CT4Assignment codes 1903113

alu.v

```
module ALU
(
    input wire [5:0] A, B,
    input wire [1:0] OP,
    output wire [5:0] R,
    output wire alu_flag
);

reg [5:0] result;
    wire [5:0] R_ADD, XOR;
```

```
wire CF ADD;
    // Instantiate modules
    ALU ADD SUB Nbit ADD SUB1(A,B,R ADD,CF ADD);
    OR_XOR_AND_Nbit OR_XOR_AND1 (A,B,XOR);
    always @(*)
    begin
        case (OP)
            2'b00: // Addition
                begin
                    result = R ADD;
                end
            2'b01: // OR_XOR_AND
                begin
                    result = XOR;
                end
            default:
                begin
                    result = 6'b000000;
                end
        endcase
    end
    assign R = result;
    assign alu flag = (result > 6'b0);
endmodule
```

alu op1.v

```
module OR_XOR_AND_Nbit
(
    input wire [5:0] A,B,
    output wire [5:0] R
);
assign R = ((A|B)^(A&B));
endmodule
```

alu op2.v

```
module ALU_ADD_SUB_Nbit
(
   input wire [5:0] A,B,
   output wire [5:0] R,
   output wire CF
```

```
);
assign {CF, R} = A + B;
endmodule
```

controller.v

```
module controller
    input wire clk, reset, start,
    input wire [5:0] a, b,
    input wire [1:0] op,
    input wire [5:0] alu out,
    input wire alu flag,
    output wire [5:0] alu_in1, alu_in2,
    output wire [1:0] alu op,
    output reg [5:0] result,
    output reg flag
);
reg [2:0] pstate, nstate;
parameter [2:0] START = 3'b000,
                 ONE = 3'b001,
                 TWO = 3'b010,
                 THREE = 3'b011,
                 FINISH = 3'b100;
//Memory
always @(posedge clk, posedge reset)
begin : PSR
    if (reset)
    begin
        pstate <= START;</pre>
    end
    else
    begin
        pstate <= nstate;</pre>
    end
end
//Next State Logic
always @(*)
```

```
begin: NSOL
   // Monitor output
    if(pstate == START)
       $monitor("pstate = START -> clk = %b, reset = %b,
start = %b, a = %d, b = %d, op = %b, result = %d, flag =
%b\n********************************\n", clk, reset,
start, a, b, op, result, flag);
    else if(pstate == ONE)
       $monitor("pstate = ONE -> clk = %b, reset = %b, start
= %b, a = %d, b = %d, op = %b, result = %d, flag =
%b\n****************************\n", clk, reset,
start, a, b, op, result, flag);
   else if(pstate == TWO)
       $monitor("pstate = TWO -> clk = %b, reset = %b, start
= %b, a = %d, b = %d, op = %b, result = %d, flag =
%b\n********************************\n", clk, reset,
start, a, b, op, result, flag);
   else if(pstate == THREE)
       $monitor("pstate = THREE -> clk = %b, reset = %b,
start = %b, a = %d, b = %d, op = %b, result = %d, flag =
%b\n******** n", clk, reset,
start, a, b, op, result, flag);
   else if(pstate == FINISH)
       $monitor("pstate = FINISH -> clk = %b, reset = %b,
start = %b, a = %d, b = %d, op = %b, result = %d, flag =
%b\n******\n", clk, reset,
start, a, b, op, result, flag);
   nstate = pstate;
   // Next State Logic and Output Logic
   begin: NSL
   case (pstate)
       START:
       begin
           if (start)
               nstate = ONE;
       end
       ONE:
       begin
           nstate = TWO;
       end
       TWO:
       begin
           nstate = THREE;
```

```
end
        THREE:
        begin
            nstate = FINISH;
        end
        FINISH:
        begin
            nstate = FINISH;
        end
        default:
            nstate = START;
    endcase
end
    result = 6'b000000;
    flag = 1'b0;
begin: OL
    case (pstate)
        START:
        begin
            result = 6'b0;
            flag = 0;
        end
        ONE:
        begin
            result = alu out;
            flag = alu flag;
        end
        TWO:
        begin
            result = alu out;
            flag = alu flag;
        end
        THREE:
        begin
            result = alu_out;
            flag = alu flag;
        end
        FINISH:
        begin
            result = alu_out;
```

```
flag = alu_flag;
end
default:
    nstate = START;
endcase
end
end
assign alu_in1 = a;
assign alu_in2 = b;
assign alu_op = op;
endmodule
```

top.v

```
module top
    input wire clk, reset, start,
    input wire [5:0] a, b,
    input wire [1:0] op,
    output wire [5:0] result,
    output wire flag
);
wire [5:0] alu in1, alu in2;
wire [1:0] alu op;
wire [5:0] alu out;
wire alu_flag;
controller controller1
    .clk(clk),
    .reset(reset),
    .start(start),
    .a(a),
    .b(b),
    .op(op),
    .alu in1(alu in1),
    .alu in2(alu in2),
    .alu op(alu op),
    .alu out(alu out),
    .alu flag(alu flag),
    .result(result),
    .flag(flag)
);
```

```
ALU datapath1
(
    .A(alu_in1),
    .B(alu_in2),
    .OP(alu_op),
    .R(alu_out),
    .alu_flag(alu_flag)
);
endmodule
```

top_testbench.v

```
`timescale 1ns/1ns
module top tb;
reg clk, reset, start;
reg [5:0] a, b;
reg [1:0] op;
wire [5:0] result;
wire flag;
top top1
    .clk(clk),
    .reset(reset),
    .start(start),
    .a(a),
    .b(b),
    .op(op),
    .result(result),
    .flag(flag)
);
initial begin
    clk = 0;
    forever #5 clk = ~clk; // Toggle clk every 5 time units
end
initial begin
    $dumpfile("top_test.vcd");
    $dumpvars(0, top tb);
    clk <= 0;
    reset <= 0;
```

```
start <= 0;
    a <= 0;
    b <= 0;
    op <= 0;
    @(negedge clk);
    reset <= 1;
    @(negedge clk);
    reset <= 0;
    start <= 1;
    a <= 5;
    b <= 3;
    op <= 2'b00; // Addition: 5 + 3 = 8 (flag = 1)
    #15;
    a <= 0;
    b <= 0;
    op <= 2'b00; // Addition: 0 + 0 = 0 (flag = 0)
    #10;
    a <= 10;
    b <= 7;
    op <= 2'b01; // OR XOR AND: (10 | 7) ^ (10 \& 7) = 15 ^ 2
= 13 (flag = 1)
    #20;
    reset <= 1;
    #30;
    $finish();
end
endmodule
```

alu testbench.v

```
.B(B),
        .OP(OP),
        R(R)
        .alu flag(alu flag)
    );
    initial begin
        $dumpfile("alu tb.vcd");
        $dumpvars(0, alu tb);
        A = 6'b000100; B = 6'b000011; OP = 2'b00;
        #10;
        A = 6'b000100; B = 6'b000010; OP = 2'b01;
        #10;
        A = 6'b000111; B = 6'b000010; OP = 2'b10;
        #10;
        A = 6'b000110; B = 6'b000001; OP = 2'b11;
        #10;
        A = 6'b000111; B = 6'b000111; OP = 2'b00;
        A = 6'b000001; B = 6'b000111; OP = 2'b01;
        #10;
        $finish;
    end
    initial begin
        $monitor("Time=%0t A=%b B=%b OP=%b -> R=%b
alu flag=%b", $time, A, B, OP, R, alu flag);
    end
endmodule
```

controller testbench.v

```
`timescale 1ns/1ns

module controller_tb;
   reg clk;
   reg reset;
   reg start;
```

```
reg [5:0] a;
reg [5:0] b;
reg [1:0] op;
reg [5:0] alu out;
reg alu flag;
wire [5:0] alu_in1;
wire [5:0] alu in2;
wire [1:0] alu_op;
wire [5:0] result;
wire flag;
controller dut (
    .clk(clk),
    .reset(reset),
    .start(start),
    .a(a),
    .b(b),
    .op(op),
    .alu out(alu out),
    .alu flag(alu flag),
    .alu in1(alu in1),
    .alu in2(alu in2),
    .alu op(alu op),
    .result(result),
    .flag(flag)
);
initial begin
    clk = 0;
    forever #5 clk = ~clk;
end
// Stimulus
initial begin
    reset = 0;
    start = 0;
    a = 6'd0;
    b = 6'd0;
    op = 2'b00;
    alu out = 6'd0;
    alu flag = 0;
    #10;
    reset = 1;
```

```
#10;
        reset = 0;
        start = 1;
        a = 6'd5;
        b = 6'd3;
        op = 2'b00;
        alu_out = 6'd8; // Addition: 5 + 3
        alu flag = 1;
        #15;
        a = 6'd0;
        b = 6'd0;
        op = 2'b00;
        alu out = 6'd0; // Addition: 0 + 0
        alu flag = 0;
        #10;
        a = 6'd10;
        b = 6'd7;
        op = 2'b01;
        alu_out = 6'd13; // OR_XOR_AND: (10 | 7) ^ (10 & 7) =
15 ^ 2 = 13
        alu_flag = 1;
        #20;
        $finish;
    end
    initial begin
        $monitor("Time=%0t | clk=%b | reset=%b | start=%b |
a=%d | b=%d | op=%b | alu out=%d | alu flag=%b | alu in1=%d |
alu in2=%d | alu op=%b | result=%d | flag=%b",
                 $time, clk, reset, start, a, b, op, alu out,
alu flag, alu in1, alu in2, alu op, result, flag);
    end
    initial begin
        $dumpfile("controller tb.vcd");
        $dumpvars(0, controller tb);
    end
```

endmodule

RTL Timing Diagram:

Check List: Have you added all the timing diagrams of ALU_TESTBENCH, CONTROLLER_TESTBENCH, TOP_TESTBENCH?

YES

NB: Failing to add any required info will cause point penalty (1-2 Marks)

alu tb.v

controller_tb.v

top tb.v

RTL Synthesis (130nm Skywater PDK with OpenLane toolchain):

Check List: Have you added RTL synthesis summary, RTL	synthesized YES
design figure and Standard cell usage in synthesized design	?

NB: Failing to add any required info will cause point penalty (1-2 Marks)

RTL synthesis summary (Following table is showing what info need to be shown /Just copy paste these info from terminal here)

post_dff.rpt:

Metric	Count
Number of Wires	103
Number of wire bits	123
Number of public wires	10
Number of public wire bits	30
Number of ports	8
Number of port bits	24
Number of memories	0
Number of memory bits	0
Number of processes	0
Number of cells	106

stat.rpt:

Metric	Count
Number of Wires	58
Number of wire bits	74
Number of public wires	11
Number of public wire bits	27
Number of ports	8
Number of port bits	24
Number of memories	0
Number of memory bits	0
Number of processes	0
Number of cells	57

RTL synthesized design figure (Following figure is showing what info need to be shown /Just copy paste these figures)

There will be 2 figures in 2 .dot files in the synthesis folder. Show them both.

xdot primitive_techmap.dot :

xdot hierarchy.dot:

Standard cell usage in synthesized design (Following table is showing what info need to be shown /Just copy paste these info from terminal here)

	Cell na	ame		Count
sky130	fd sc	hd	a211o 2	1
sky130	fd sc	hd	a21o_2	1
sky130	fd_sc	hd	a21oi_2	2
sky130	fd_sc	hd	a22o_2	2
sky130	fd_sc	hd	a311o_2	1
sky130_	fd_sc_	hd	a31o_2	2
sky130_	fd_sc_	hd	a32o_2	1
_	fd_sc_		_a41o_2	1
sky130_	fd_sc_	hd	and2_2	3
sky130_	fd_sc_	hd	_and3_2	4
sky130_	fd_sc_	hd	and3b_2	2
sky130_			_and4_2	1
sky130_			_dfrtp_2	3
sky130_			_inv_2	8
sky130_			mux2_1	1
-	fd_sc_		_nand2_2	4
sky130_	fd_sc_	hd	nand4_2	1
sky130_		hd	_nor2_2	2
sky130_	fd_sc_	hd	o211a_2	1
sky130_		hd	_o21a_2	1
_	fd_sc_	hd	_o21ai_2	1
sky130_		hd	_o31ai_2	1
sky130_		hd	or2_2	5
-	fd_sc_		or4_2	1
sky130_	fd_sc_	hd	or4bb_2	1
-	fd_sc_		xnor2_2	4
sky130_	fd_sc_	hd	_xor2_2	2

RTL Floorplan (130nm Skywater PDK with OpenLane toolchain)

Check List: Have you added RTL Floorplan info?	YES	
NB: Failing to add any required info will cause point penalty (1-2 Marks)		

(Following table is showing what info need to be shown /Just copy paste these info from terminal here)

General RTL Floorplan Information				
Parameter Value Unit				
Database Units(DBU) ?				
Site Size	(2.72, 0.46)	μm		
Die Area (BBox)	(0.0 0.0) to (48.14 58.86)	μm		
Core Area(BBox)	(5.52 10.88) to (42.32 46.24)	μm		

Core Area	1301.25	μm2
Placement Utilization	?	%

Openroad_floorplan.log:

```
| Reading Library file at '/foss/pdks/sky190A/libs.ref/sky130 fd sc hd/lib/sky130 fd sc hd .tt 025C lv80.lib'.
| Pealing technology LEF file at '/foss/pdks/sky190A/libs.ref/sky130 fd sc hd/rebief/sky130 fd sc hd nom.tlef'.
| Pealing technology LEF file at '/foss/pdks/sky190A/libs.ref/sky130 fd sc hd/rebief/sky130 fd sc hd nom.tlef'.
| Abeding coll LEF file at '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd/lef/sky130 fd sc hd lef'.
| S [MARNINO 000-0220] MANINO (LEFPARS-2000): NOWIREDXTENSIONATPIN statement is obsolete in version 5.6 or later.
| Abeding coll LEF file at '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 fd sc hd.lef'.
| S [MIGO 000-0227] LEF file: '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 fd sc hd.lef'.
| S [MIGO 000-0227] LEF file: '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 fd sc hd.lef'sky130 fd sc hd.lef'.
| NAMININO 000-0220] MANNINO (LEFPARS-2000): NOWIREDXTENSIONATPIN statement is obsolete in version 5.6 or later.
| The NOWIREDXTENSIONATPIN statement vill be ignored. See file /foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 ef sc hd.lef'.
| NAMININO 000-0220] LEF file: '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 ef sc hd.lef'.
| NAMININO 000-0227] LEF file: '/foss/pdks/sky130A/libs.ref/sky130 fd sc hd.lef'sky130 ef sc hd.lef'.
| NAMININO SHOP of the state of the stat
```

Or_metrics_out.json:

```
or_metrics_out.json
    Open
                           \oplus
                                                                                                                                                       Save
                                          /foss/designs/assignment/runs/RUN_2025-06-13_04-36-13/13-openroad-floorplan
  1 {
                     "design__die__bbox": "0.0 0.0 48.14 58.86",
"design__core__bbox": "5.52 10.88 42.32 46.24",
  3
                     "design_io": 24,
  4
                     "design_die_area": 2833.52,
"design_core_area": 1301.25,
  5
  6
                    "design__instance__count": 57,

"design__instance__area": 550.528,

"design__instance__count__stdcell": 57,
  7
  8
  9
                     "design_instance_area_stdcell": 550.528,
"design_instance_count_macros": 0,
10
11
                    "design_instance_area_macros": 0,
"design_instance_utilization": 0.423077,
"design_instance_utilization_stdcell": 0.423077,
"design_instance_utilization_stdcell": 0.423077,
12
13
14
                    "design_instance_count_class:inverter": 8,
"design_instance_count_class:sequential_cell": 3,
"design_instance_count_class:multi_input_combinational_cell": 46,
15
16
17
                     "flow_warnings_count": 6,
"flow_errors_count": 0
18
19
20 }
```

RTL Power Analysis (130nm Skywater PDK with OpenLane toolchain)

Check List: Have you added RTL Power Analysis info?	YES	
NB: Failing to add any required info will cause point penalty (1-2 Marks)		

(Following table is showing what info need to be shown /Just copy paste these info from terminal here)

Group	Internal Power	3	Leakage Power	Total Power	(Watts)
C	4 042015- 05		2.760016- 11		10.00
Sequential	4.842016e-06	5.543969e-06	3.768916e-11	1.038602e-05	13.2%
Combinational	2.520306e-05	4.297765e-05	2.475429e-10	6.818095e-05	86.8%
Clock	0.000000e+00	0.000000e+00	2.041229e-10	2.041229e-10	0.0%
Macro	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.0%
Pad	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	0.0%
Total	3.004508e-05	4.852161e-05	4.893550e-10	7.856718e-05	100.0%
	38.2%	61.8%	0.0%		

Check List: Have you added the GDS Layout figure?	YES	
NB: Failing to add any required info will cause point penalty (1-2 Marks)		

(Following figure is showing what info need to be shown /Just copy paste these figures)

Check List: Have you added the heatmap?	YES
NB: Failing to add any required info will cause point penalty (1-2 Marks)	

(Following figure is showing what info need to be shown /Just copy paste these figures)

