Norms

Dr. ALIANE Mohamed

University of Yahia Fares Medea

April 22, 2024

Plan

- Vector Norms
- Matrix Norms

Plan

- Vector Norms
- Matrix Norms

Definition

A vector norm $\| \cdot \|$ is a function from \mathbb{C}^n to \mathbb{R} with three properties:

- N1: $||x|| \ge 0$, for all $x \in \mathbb{C}^n$, and ||x|| = 0 if and only if x = 0.
- N2: $||x+y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{C}^n$ (Triangle inequality)
- N3: $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{C}, x \in \mathbb{C}^n$.

The vector p-norms below are useful for computational purposes, as well as analysis.

Fact

Vector p-norms Let $x \in \mathbb{C}^n$ with elements $x = (x_1, x_2, \dots, x_n)^T$ the p – norm

$$\|x\|_{\rho} = \left(\sum_{j=1}^{n} |x_{j}|^{\rho}\right)^{\frac{1}{\rho}}, \rho \geq 1.$$

is a vector norm.

Example

If e_j is a canonical vector, then $\parallel e_j \parallel_p = 1$ for $p \geq 1$. If $e = (1, 1, \dots, 1)^T \in \mathbb{R}^n$, then

$$\|e\|_{1} = n, \|e\|_{\infty} = 1, \|e\| = n^{\frac{1}{p}}, 1$$

The three p-norms below are the most popular, because they are easy to compute.

- One norm $\parallel x \parallel_1 = \sum_{j=1}^n \mid x_j \mid$
- Two(or Euclidean)norm: $||x||_2 = \sqrt{\sum_{j=1}^n |x_j|^2} = \sqrt{x^*x}$
- Infinity (or maximum)norm: $||x||_{\infty} = \max_{1 \le j \le n} |x_j|$

Example

If $x = (1, 2, ..., n)^T \in \mathbb{R}^n$, then

$$\| x \|_1 = \frac{1}{2} n(n+1), \| x \|_2 = \sqrt{\frac{1}{2} n(n+1)(2n+1)}, \| x \|_{\infty} = n$$

Fact

Let $x, y \in \mathbb{C}^n$. Then

- Holder inequality: $|x^*y| \le ||x||_1 ||y||_{\infty}$
- Cauchy-Schwarz inequality: $|x^*y| \le ||x||_2 ||y||_2$

Example

Let $x \in \mathbb{C}^n$ with elements $x = (x_1, \dots, x_n)^T$. The Holder inequality and Cauchy-Schwartz inequality imply respectively

$$|\sum_{i=1}^{n} x_i| \le n \max |x_i|, |\sum_{i=1}^{n} x_i| \le \sqrt{n} ||x||_2$$

Matrix Norms

We need to separate matrices from vectors inside the norms. To see this let Ax=b be a nonsingular linear system and let $A\overline{x}=\overline{b}$ be a perturbed system.

The normwise absolute error is $\|x - \overline{x}\| = \|A^{-1}(b - \overline{b})\|$. In order to isolate the perturbation and derive a bound of the form $\|A^{-1}\|$, $\|b - \overline{b}\|$, we have to define a norm for matrices.

Definition

A matrix norm $\| \ . \ \|$ is a function from $\mathbb{C}^{m \times n}$ to \mathbb{R} with three properties:

- N1: $||A|| \ge 0$, for all $A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 if and only if A = 0.
- N2: $||A+B|| \le ||A|| + ||B||$ for all $A, B \in \mathbb{C}^{m \times n}$ (Triangle inequality)
- N3: $\|\alpha A\| = |\alpha| \|A\|$ for all $\alpha \in \mathbb{C}$, $A \in \mathbb{C}^{m \times n}$.

Because of the triangle inequality, matrix norms are well-conditioned in the absolute sens and in the relative sens.

Fact

If
$$A, E \in \mathbb{C}^{m \times n}$$
, then $|||A + E|| - ||A|| \le ||E||$.

Proof.

The triangle inequality implies $||A + E|| \le ||A|| + ||E||$, hence $||A + E|| - ||A|| \le ||E||$. Similarly $||A|| = ||(A + E) - E|| \le ||A + E|| + ||E||$, so that $-||E|| \le ||A + E|| - ||A||$.

The result follows from

$$- \parallel E \parallel \leq \parallel A + E \parallel -A \parallel \leq \parallel E \parallel$$
.

The matrix p-norms below are based on the vector p-norms and measure how much a matrix can stretch a unit-norm vector

Fact (Matrix p-Norms)

Let $A \in \mathbb{C}^{n \times m}$. the p-norm

$$||A||_{p} = \max_{x \neq 0} \frac{||Ax||_{p}}{||x||_{p}} = \max_{||x||_{p} = 1} ||Ax||_{p}$$

is a matrix norm.

Remarque

The matrix p-norms are extremely useful because they satisfy the following submultiplicative inequality

Let $A \in \mathbb{C}^{m \times n}$ and $y \in \mathbb{C}^n$. Then

$$|| Ay ||_p \le || A ||_p || y ||_p$$

This is clearly true for y = 0, and for $y \neq 0$ it follow from

$$||A||_{p} = \max_{x \neq 0} \frac{||Ax||_{p}}{||x||_{p}} \ge \frac{||Ay||_{p}}{||y||_{p}}$$

The matrix one norm is equal to the maximal absolute column sum

Fact (Infinity Norm)

Let $A \in \mathbb{C}^{m \times m}$. Then

$$\parallel A \parallel_{\infty} = \max_{\mathbf{1} \leq i \leq m} \parallel A^* e_i \parallel_{\mathbf{1}} = \max_{\mathbf{1} \leq i \leq m} \sum_{j=1}^n \mid \alpha_{ij} \mid$$

Proof.

Denote the rows of A by $r_i^* = e_i^* A$, and let r_k have the largest one norm, $||r_k||_{1} = \max_{1 \le i \le m} ||r_i||_{1}$.

• Let y be a vector with $||A||_{\infty} = ||Ay||_{\infty}$ and $||y||_{\infty} = 1$. Then

$$\parallel A \parallel_{\infty} = \parallel Ay \parallel_{\infty} = \max_{1 \leq i \leq m} \parallel r_i \parallel_1 \parallel y \parallel_{\infty} = \parallel r_k \parallel_1,$$

where the inequality follows from Fact. Hence $\parallel A \parallel_{\infty} \leq \max_{1 \leq i \leq n} \parallel r_i \parallel_1$

• For any vector y with $||y||_{\infty} = 1$ we have $||A||_{\infty} \ge ||Ay||_{\infty} \ge ||r_k^*y||$. Now we show how to choose the elements of r_k^* . Choose the elements of y such that $\rho_i y_i = ||\rho_i||$.

Then $||y||_{\infty} = 1$ and $|r_k^*y| = \sum_{i=1}^n \rho_i y_i = \sum_{i=1}^n |\rho_i| = ||r_k||_1$. Hence

$$\parallel A \parallel_{\infty} \geq \mid r_k^* y \mid = \parallel r_k \parallel_1 = \max_{1 \leq i \leq m} \parallel r_i \parallel_1.$$

The p-norms satisfy the following submultiplicative inequality.

Fact (Norm of Product)

If $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$, then

$$\parallel AB \parallel \leq \parallel A \parallel_p \parallel B \parallel_p$$

Proof.

Let $x\in\mathbb{C}^p$ such that $\parallel AB\parallel_p=\parallel ABx\parallel_p$ and $\parallel x\parallel_p=1$. Applying Remark... twice gives

$$||AB||_{p} = ||ABx||_{p} \le ||A||_{p} ||Bx||_{p} \le ||A||_{p} ||B||_{p} ||x||_{p} = ||A||_{p} ||B||_{p}.$$

