Approximations for λ-colorings of graphs

Simone Bianco - 1986936 Network Algorithms Sapienza University of Rome

Introduction

Article: "Approximations for λ -colorings of graphs" by Bodlaender et al. (2004)

Focus: Upper and lower bounds for L(2,1), L(1,1) and L(0,1) labelings in various graph classes

Introduction

Article: "Approximations for λ -colorings of graphs" by Bodlaender et al. (2004)

Focus: Upper and lower bounds for L(2,1), L(1,1) and L(0,1) labelings in various graph classes

We will focus on Graphs with Treewidth k

Our objective

General upper bounds for L(2,1), L(1,1) and L(0,1) labelings are:

$$\lambda_{0,1} \leq \lambda_{1,1} \leq \lambda_{2,1} \leq \Delta^2 + \Delta$$

We will show that for any graph G of treewidth k it holds that:

$$\lambda_{2,1} \le k\Delta + 2k$$
 $\lambda_{1,1} \le k\Delta$

$$\lambda_{1.1} \leq k\Delta$$

$$\lambda_{0,1} \leq k\Delta - k$$

Note: k is generally very small compared to Δ

Tree decomposition

Given a graph G, a **tree decomposition** of G is a tree T whose vertices $X_1, ..., X_k$ are subsets of V(G) that satisfy the following properties:

- 1) $X_1, ..., X_k$ are a cover of V(G)
- 2) If $v \in X_i \cap X_j$ then each subset X_h in the path from X_i to X_j contains v
- 3) For each edge (u,v) of G at least one subset X_i contains u and v

Tree decomposition

Given a graph G, a **tree decomposition** of G is a tree T whose vertices $X_1, ..., X_k$ are subsets of V(G) that satisfy the following properties:

- 1) $X_1, ..., X_k$ are a cover of V(G)
- 2) If $v \in X_i \cap X_j$ then each subset X_h in the path from X_i to X_i contains v
- 3) For each edge (u,v) of G at least one subset X_i contains u and v

Tree decomposition

Given a graph G, a **tree decomposition** of G is a tree T whose vertices $X_1, ..., X_k$ are subsets of V(G) that satisfy the following properties:

- 1) $X_1, ..., X_k$ are a cover of V(G)
- 2) If $v \in X_i \cap X_j$ then each subset X_h in the path from X_i to X_i contains v
- 3) For each edge (u,v) of G at least one subset X_i contains u and v

Treewidth

Width of a tree decomposition: size of the largest vertex of T, minus 1

Treewidth of a graph: smallest width of all its tree decompositions

Width = 2

The problem with Treewidth

Lots of graph problems that are NP-Hard can be solved in polynomial time if an optimal tree decomposition is known

The problem with Treewidth

Lots of graph problems that are NP-Hard can be solved in polynomial time if an optimal tree decomposition is known

If an upper bound on the treewidth of a graph is known, an optimal tree decomposition can be computed in linear time

Critical Problem: finding such upper bound is also NP-Hard!

The problem with Treewidth

Lots of graph problems that are NP-Hard can be solved in polynomial time if an optimal tree decomposition is known

If an upper bound on the treewidth of a graph is known, an optimal tree decomposition can be computed in linear time

Critical Problem: finding such upper bound is also NP-Hard!

The fastest way to get an upper bound on the treewidth of a graph is through k-trees

k-Trees

Inductive definition:

- The complete graph K_{k+1} is a k-tree
- A k-tree with n > k+1 nodes can be built from a k-tree G' with n-1 nodes by adding a new node and connecting it to k vertices that form a k-clique in G'

k-Trees

Inductive definition:

- The complete graph K_{k+1} is a k-tree
- A k-tree with n > k+1 nodes can be built from a k-tree G' with n-1 nodes by adding a new node and connecting it to k vertices that form a k-clique in G'

Partial k-tree

Partial k-tree: any graph that is a subgraph of a k-tree

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

(Cor) k is the smallest integer such that G is a partial k-tree if and only if $tw(G) \le k$

We will use this fact to construct an algorithm based on k-trees

Induced subgraph

(Def.) Given a graph G = (V,E) and a subset of vertices $S \subseteq V$, the subgraph of G induced by G is the graph G[S] = (S, E') such that $G(u,v) \in E'$ if and only if $G(u,v) \in S$

Induced subgraph

(Def.) Given a graph G = (V,E) and a subset of vertices $S \subseteq V$, the subgraph of G induced by G is the graph G[S] = (S, E') such that $G(U,V) \in E'$ if and only if $G(U,V) \in E'$

Induced subgraph

(Def.) Given a graph G = (V,E) and a subset of vertices $S \subseteq V$, the subgraph of G induced by G is the graph G[S] = (S, E') such that $G(U,V) \in E'$ if and only if $G(U,V) \in E'$

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \implies) Let G = (V,E) be a partial k-tree and let H = (V, E') be the k-tree that contains G

Clearly $tw(G) \le tw(H)$

We show by induction that $tw(H) \le k$

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

$$\Longrightarrow$$
)

If |V| = k+1 then $H = K_{k+1}$

Hence $T = (\{V\}, \emptyset)$ is a tree decomposition of H of width k.

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \Longrightarrow)

If |V| > k+1 then there is a $v \in V$ such that:

- The induced subgraph $H' = H[V \{v\}]$ is a k-tree
- H[N(v)] has a k-clique $K = \{u_1, ..., u_k\}$ in H'

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \Longrightarrow)

H' has a tree decomp. $T = (\{X_1, ..., X_t\}, F)$ of width at most k

Since $K = \{u_1, ..., u_k\}$ is a k-clique in H', it must be contained inside some X_i

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

$$\Longrightarrow$$
)

Let $X_{t+1} = K \cup \{v\}$

 $T' = (\{X_1, ..., X_t, X_{t+1}), F \cup (X_i, X_{t+1}))$ is a tree decomp. of H that has width at most k

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \leftarrow) Let T = ({X₁, ..., X_t), F) be a tree decomp. of G = (V,E) with width at most k

If |V| = k+1 then K_{k+1} is a k-tree that contains G

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \longleftarrow

If |V| > k+1, let X_i be a leaf of T and let X_j be its neighbor

We assume that $X_i \nsubseteq X_j$ since otherwise X_i can be removed

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

←)

We assume that $X_i \cap X_j = \{x\}$ since otherwise we can split X_i into multiple leaves in order to get a new decomposition for which the assumption holds

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \longleftarrow

We assume that $X_i \cap X_j = \{x\}$ since otherwise we can split X_i into multiple leaves in order to get a new decomposition for which the assumption holds

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

←

Since T is has width at most k, X_i has at most k nodes

Moreover, all the nodes adjacent to v must be inside X_i

(Thm) G is a partial k-tree if and only if $tw(G) \le k$

 \longleftarrow

Since T is has width at most k, X_i has at most k nodes

Moreover, all the nodes adjacent to v must be inside X_i

By inductive hypothesis, G[V - {v}] is contained inside a k-tree H

By adding v to H and connecting it to the nodes in X_i we get a k-tree that contains G

Chordal graphs

K-trees are a special type of **cordal (or triangulated)** graph.

Chordal graphs

K-trees are a special type of **cordal (or triangulated)** graph.

A graph is **chordal** when all cycles of 4+ vertices have a **chord** — an edge that is not part of the cycle but connects two vertices of the cycle.

Chordal graphs

K-trees are a special type of **cordal (or triangulated)** graph.

A graph is **chordal** when all cycles of 4+ vertices have a **chord** — an edge that is not part of the cycle but connects two vertices of the cycle.

Equivalently, a chordal graph can be defined as a graph in which every induced cycle in the graph has **exactly three vertices** (hence the alternative name).

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

A **perfect elimination ordering** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(1,3,5,7,4,2,8,6)

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

A **perfect elimination ordering** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(1,3,5,7,4,2,8,6)

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

A **perfect elimination ordering** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(1,3,5,7,4,2,8,6)

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

A **perfect elimination ordering** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

A **perfect elimination ordering** is an ordering of the vertices such that for each node all of its neighbors that occur after it in the sequence form a clique with it.

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

⇒) **Claim:** G is chordal if and only if each induced subgraph of G is also chordal

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

 \Longrightarrow)

Let G = (V,E) be a chordal graph

If |V| = 1 then G is trivially chordal

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

 \Longrightarrow)

If |V| > 1 then there is a vertex v who is part of a clique K

The graph $G[V - \{v\}]$ is chordal hence by inductive hypothesis it has a PEO $(v_1, ..., v_m)$

The ordering $(v, v_1, ..., v_m)$ is a PEO for G

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

 \leftarrow) Let β be a PEO for G and let C = {v₁, ..., v_h} be a cycle in G where h > 3

Let v_i be the first element of C in β

(Thm) A graph is chordal if and only if it has a perfect elimination ordering

 \leftarrow) Let β be a PEO for G and let C = {v₁, ..., v_h} be a cycle in G where h > 3

Let v_i be the first element of C in β

Since v_{i-1} and v_{i+1} come after v_i in β and $v_{i-1} \sim v_i \sim v_{i+1}$, they must form a clique in G

Hence, there is a chord separating C

Given (G, λ, p, q) in input:

- 1) Build a k-tree H that contains G
- 2) Construct a PEO $v_1, ..., v_n$ on H
- 3) For i=n,...,1: Color v_i using the smallest color in $\{0,...,\lambda\}$ that satisfies the L(p,q)-constraints in G

Treewidth: 3

Sequence: (8,1,7,2,6,5,3,4)

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: ---

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: {0,1}

Sequence: (8,1,7,2,6,5,3,4)

Forbidden Colors: {0,1,2}

Sequence: (8,1,7,2,6,5,3,4) $\lambda \geq 7$ in order to work

(Thm) Given any graph G of treewidth k, the previous algorithm can find:

- An L(2, 1)-labeling using the set $\{0, ..., k\Delta + 2k\}$.
- An L(1, 1)-labeling using the set $\{0, ..., k\Delta\}$.
- An L(0, 1)-labeling using the set $\{0, ..., k\Delta k\}$.

(Cor) Given any graph G of treewidth k it holds that:

$$\lambda_{2,1} \leq k\Delta + 2k$$

$$\lambda_{1,1} \leq k\Delta$$

$$\lambda_{0,1} \leq k\Delta - k$$

Dim. For each v_i there are 3 types of already-colored nodes that forbid colors to v_i :

- a vertices at distance 1 from v_i in G
- 2) β vertices at distance 2 from v_i in G that have a common neighbor with v_i in G that has not yet been colored
- 3) γ vertices at distance 2 from v_i in G that have a common neighbor with v_i in G that has already been colored

Dim. (cont.)

Let v_i be a node with i < j:

1) If v_i is a type 1 node than it is one of v_i 's at most k clique-neighbors that are already colored

Dim. (cont.)

2) If v_j is a type 2 node and v_h is the common neighbor that has not yet been colored

$$\Longrightarrow$$
 h < i < j and $v_i \sim v_h \sim v_j$

Dim. (cont.)

2) If v_j is a type 2 node and v_h is the common neighbor that has not yet been colored

$$\implies$$
 h < i < j and $v_i \sim v_h \sim v_j$

- \Rightarrow v_i, v_j are in v_h's at most k clique-neighbors
- \Rightarrow v_j is one of v_i's at most k clique-neighbors that are already colored

Dim. (cont.)

- 3) If v_i is a type 3 node and v_h is the common neighbor that has already been colored
 - \implies v_h is one of v_i 's at most k clique-neighbors that are already colored

Dim. (cont.)

- 3) If v_i is a type 3 node and v_h is the common neighbor that has already been colored
 - \implies v_h is one of v_i 's at most k clique-neighbors that are already colored
 - \implies i < h hence v_h may have at most Δ 1 already colored neighbors (v_i included)

Dim. (cont.)

Each case has at least one of v_i 's at most k clique-neighbors $\implies \alpha + \beta + \gamma \le k$

Dim. (cont.)

Each case has at least one of v_i 's at most k clique-neighbors $\Longrightarrow \alpha \,+\, \beta \,+\, \gamma \,\leq \, k$

Let $x_{p,q}$ denote the number of colors needed to color v_i for L(p,q).

Dim. (cont.)

Each case has at least one of v_i 's at most k clique-neighbors $\implies \alpha + \beta + \gamma \le k$

Let $x_{p,q}$ denote the number of colors needed to color v_i for L(p,q).

$$X_{2,1} \le 1 + 3\alpha + \beta + \gamma(\Delta - 1) \le 1 + k\Delta + 2k \implies \{0, ..., k\Delta + 2k\}$$
 suffices for L(2,1)

$$X_{1,1} \le 1 + \alpha + \beta + \gamma(\Delta - 1) \le 1 + k\Delta$$
 $\Longrightarrow \{0, ..., k\Delta\}$ suffices for L(1,1)

$$X_{0,1} \le 1 + \beta + \gamma(\Delta - 1)$$
 $\le 1 + k\Delta - k$ $\Longrightarrow \{0, ..., k\Delta - k\}$ suffices for L(0,1)

Recap

We proved that for any graph G of treewidth k the following **upper bounds** hold:

$$\lambda_{2,1} \le k\Delta + 2k$$
 $\lambda_{1,1} \le k\Delta$ $\lambda_{0,1} \le k\Delta - k$

$$\lambda_{1,1} \leq k\Delta$$

$$\lambda_{0,1} \leq k\Delta - k$$

However, the algorithm that we used requires time $O(kn\Delta)$ which is **exponential**

Polynomial time algorithms are known for L(1,1) and L(0,1) labelings in graphs of treewidth k, but no algorithms are known for L(2,1) labelings

Main references

- Hans L. Bodlaender, Ton Kloks, Richard B. Tan, et al. "Approximations for Lambda-Colorings of Graphs". In: The Computer Journal (2004)
- Jerrold R. Griggs and Roger K. Yeh. "Labelling Graphs with a Condition at Distance 2". In: SIAM Journal on Discrete Mathematics (1992)
- Frederic Havet, Bruce Reed, and Jean-Sebastien Sereni. "L(2,1)-labelling of graphs".
 In: ACM-SIAM symposium on Discrete algorithms (2008)
- H. P. Patil. "On the structure of k-trees". In: Journal of Combinatorics, Information and System Sciences, (1986)

Thank you for the attention!

