SMAI-M20-L15: Perceptron Algorithm

C. V. Jawahar

IIIT Hyderabad

September 11, 2020

Class Review

Propeties of SVD

 \bullet What are the properties of U, D, V

• How SVD and EV are related?

• What do we say about SVD of square matrix?

• What can we say about rank deficiency and SVD?

Announcements

Serious Observation

- Unethical collaborations and Practices:
 - Open collaboration. If you want to create any unofficial channels/models/groups make sure that a TA or official representative is there. Talk to the instructor. Take permission.
 - Reposting/sharing class videos/slides/notes without permission
- Please inform these/similar and anything else that is going on and take corrective actions in next 48 Hrs.

Recap:

- Problem Space:
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - Dimesnionality Reduction and Representation (Feature Selection, PCA, Neural Embeddings)
 - Matrix Factorization for Data Matrices: (LSI, Matrix Completion, Recommendation Systems)
- Supervised Learning:
 - Notions of Training, Validation and Testing; Loss Function and Optimization
 - Generalization, Overfitting, Occam's razor, Model Complexity, Bias and Variance, Regularization.
 - Performance Metrics, Estimating error using validation set.
- Algorithms:
 - Nearest Neighbour, Linear Classification; Linear Regression
 - Optimal Decision as ω_1 if $P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$ else ω_2
 - PCA, Eigen Face
 - Gradient Descent Optimization

This Lecture:

- MSE using GD (Delta Rule) $\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta y_i \mathbf{x}_i$
 - Appreciate that perceptrons and this are different.
- Variations in GD (Stochastic and Mini Batch)
 - Single sample, mini batch, batch
 Stochastic versions
- Neuron Models
 - $y = \phi(\mathbf{w}^T \mathbf{x})$
 - Step, sigmoid, tanh etc.

Questions? Comments?

Discussion Point - I

W+ 2 0 - 12 (7)

We know there are better update rules than gradient descent?

- Write the newton's update rule?
- Why is still Newton's method not preferred? ¹

dxd MxN

 $^{^{1}} https://stats.stackexchange.com/questions/253632/why-is-newtons-method-not-widely-used-in-machine-learning$

Discussions Point - II

We know the AND and OR logic in $\{-1,+1\}$ as

- Which is AND? which is OR?
- ② Design a two input neuron with $\phi(z)$ as sign(z) for both AND and OR Draw pictorially.
- Can we do NAND and NOR similarly? (Try later)
- Can we do ExOR? (draw and see). Is it Linearly seperable? Ans: NO

Discussions Point - III

Consider the following three samples and their labels $((x_1, x_2), y)$:

$$\{((1,1),+), ((2,2),-), ((0,0),+)\}$$

Look at the perceptron update rule with $\eta=0.1$

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}^k + \eta \sum_{\mathbf{x}_i \in \mathcal{E}} v_i \mathbf{x}_i$$

Start with line equations given below and do two iterations. Did it converge? If not, how many more iterations will it take?

- line $x_1 = x_2$
- line that pass through (0,2) and (2,0)
- line that pass through (0,4) and (4,0)

What Next:?

- More about Gradient Descent
- Neuron Model and Perceptrons
- Analysis of Perceptron Algorithm