Multivariable Calculus and Linear Algebra

Sarang Mohaniraj

Contents

Ι	Mult	tivariable Calculus	1
11	Parametric Equations and Polar Coordinates		
	11.1	Curves Defined by Parametric Equations	2
	11.2	Calculus with Parametric Curves	3
	11.3	Polar Coordinates	9
	11.4	Areas and Lengths in Polar Coordinates	11
	11.5	Conic Sections	13
	11.6	Conic Sections in Polar Coordinates	17
12	Infinit	te Sequences and Series	20
	12.1	Sequences	20
	12.2	Series	26
	12.3	The Integral Test and Estimates of Sums	26
	12.4	The Comparison Tests	26
	12.5	Alternating Series	26
	12.6	Absolute Convergence and the Ratio and Root Tests	26
	12.7	Strategy for Testing Series	26
	12.8	Power Series	26
	12.9	Representation of Functions as Power Series	26
	12.10	Taylor and Maclaurin Series	26
	12.11	The Binomial Series	26
	12.12	Applications of Taylor Polynomials	26
13	Vector	rs and the Geometry of Space	27
	13.1	Three-Dimensional Coordinate Systems	27
	13.2	Vectors	27
	13.3	The Dot Product	27
	13.4	The Cross Product	27
	13.5	Equations of Lines and Planes	27
	13.6	Cylinders and Quadric Surfaces	27
	13.7	Cylindrical and Spherical Coordinates	27
14	Vector	r Functions	28
	14.1	Vector Functions and Space Curves	28
	14.2	Derivatives and Integrals of Vector Functions	28

ii
ii

	14.3	Arc Length and Curvature	28
	14.4	Motion in Space: Velocity and Acceleration	28
15	Partia	l Derivatives	29
	15.1	Functions of Several Variables	29
	15.2	Limits and Continuity	29
	15.3	Partial Derivatives	29
	15.4	Tangent Planes and Linear Approximations	29
	15.5	The Chain Rule	29
	15.6	Directional Derivatives and the Gradient Vector	29
	15.7	Maximum and Minimum Values	29
	15.8	Lagrange Multipliers	29
16	Multir	ole Integrals	30
	16.1	Double Integrals over Rectangles	30
	16.2	Iterated Integrals	30
	16.3	Double Integrals over General Regions	30
	16.4	Double Integrals in Polar Coordinates	30
	16.5	Applications of Double Integrals	30
	16.6	Surface Area	30
	16.7	Triple Integrals	30
	16.8	Triple Integrals in Cylindrical and Spherical Coordinates	30
	16.9	Change of Variables in Multiple Integrals	30
17	Vector	· Calculus	31
	17.1	Vector Fields	31
	17.2	Line Integrals	31
	17.3	THe Fundamental Theorem for Line Integrals	31
	17.4	Green's Theorem	31
	17.5	Curl and Divergence	31
	17.6	Parametric Surfaces and Their Areas	31
	17.7	Surface Integrals	31
	17.8	Stokes' Theorem	31
	17.9	The Divergence Theorem	31
	17.10	Summary	31
18	Second	d-Order Differential Equations	32
	18.1	Second-Order Linear Equations	32
	18.2	Nonhomogenous Linear Equations	32
	18.3	Applications of Second-Order Differential Equations	32
	18.4	Series Solutions	32
II	Line	ear Algebra	33
1	Vector	-	34
_	4 66 601	lo .	• • • •

CONTENTS	iii

	1.1	The Geometry and Algebra of Vectors	34
	1.2	Length and Angle: The Dot Product	34
	1.3	Lines and Planes	34
	1.4	Code Vectors and Modular Systems	34
2	System	ns of Linear Equations	35
	2.1	Introduction to Systems of Linear Equations	35
	2.2	Direct Methods for Solving Linear Systems	35
	2.3	Spanning Sets and Linear Independence	35
	2.4	Applications	35
	2.5	Iterative Method for Solving Linear Systems	35
3	Matrio	ces	36
	3.1	Matrix Operations	36
	3.2	Matrix Algebra	36
	3.3	The Inverse of a Matrix	36
	3.4	The LU Factorization	36
	3.5	Subspaces, Basis, Dimension, and Rank	36
	3.6	Introduction to Linear Transformations	36
	3.7	Applications	36
4	Eigenvalues and Eigenvectors 37		
	4.1	Introduction to Eigenvalues and Eigenvectors	37
	4.2	Determinants	37
	4.3	Eigenvalues and Eigenvectors of $n \times n$ Matrices	37
	4.4	Similarity and Diagonalization	37
	4.5	Iterative Methods for Computing Eigenvalues	37
	4.6	Applications and the Perron-Frobenius Theorem	37
5	Ortho	gonality	38
	5.1	Orthogonality in \mathbb{R}^n	38
	5.2	Orthogonal Complements and Orthogonal Projections	38
	5.3	The Gram-Schmidt Process and the QR Factorization	38
	5.4	Orthogonal Diagonalization of Symmetric Matrices	38
	5.5	Applications	38
6	Vector	Spaces	39
	6.1	Vector Spaces and Subspaces	39
	6.2	Linear Independence, Basis, and Dimension	39
	6.3	Change of Basis	39
	6.4	Linear Transformation	39
	6.5	The Kernel and Range of a Linear Transformation	39
	6.6	The Matrix of a Linear Transformation	39
	6.7	Applications	39
7	Distan	ace and Approximation	40

CONTEN	VTS	iv
7.1	Inner Product Spaces	40
7.2	Norms and Distance Function	40
7.3	Least Squares Approximation	40
7.4	The Singular Value Decomposition	40
7.5	Applications	40
7.5	Applications	4

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

11.1 Curves Defined by Parametric Equations

Suppose that x and y are both given as functions of a third variable t (called a **parameter** by the equations)

$$x = f(t)$$
 $y = g(t)$

(called **parametric equations**). Each value of t determines a point (x,y). As t changes, (x,y) = (f(t),g(t)) changes and traces out a curve C, which is called a **parametric curve**. The direction of the arrows on curve C show the change in the position of the equation as t increases.

We can also restrict t to a finite interval. In general, the curve with parametric equations

$$x = f(t)$$
 $y = g(t)$ $a \le t \le b$

has initial point (f(a), g(a)) and terminal point (f(b), g(b)).

The Cycloid

Example 11.1.1. A circle with radius r rolls along the x-axis. The curve traced out by a point P on the circumference of the circle is called a **cycloid**. Find parametric equations for the cycloid.

Solution. We will use the angle of rotation θ as the parameter ($\theta = 0$ when P is at the origin).

Suppose the circle has rotated θ radians. Using the figure, the distance it has rolled from the origin is

$$|OT| = arc \ PT = r\theta$$

because P starts at the origin. Therefore, the center of the circle is $C(r\theta, r)$. Let the coordinates of P be (x, y). Then from the figure,

$$x = |OT| - |PQ| = r\theta - r\sin\theta = r(\theta - \sin\theta)$$
$$y = |TC| - |QC| = r - r\cos\theta = r(1 - \cos\theta)$$

Definition 11.1.1. Paremetric equations of the cycloid are

$$x = r(\theta - \sin \theta)$$
 $y = r(1 - \cos \theta)$

11.2 Calculus with Parametric Curves

We will mainly solve problems involving tangents, area, arc length, and surface area.

Tangents

In the previous section, we saw that some curves defined by parametric equations x = f(t) and y = g(t) can also be expressed, by eliminating the parameter, in the form y = F(x). If we substitute x = f(t) and y = g(t) in the equation y = F(x), we get

$$g(t) = F(f(t))$$

If g, f, and F are differentiable, the Chain Rule gives

$$g'(t) = F'(f(t))f'(t) = F'(x)f'(t)$$

If $f'(t) \neq 0$, we can solve for F'(x):

Definition 11.2.1. The slope of the tangent to the parametric curve y = F(x) is F'(x).

 $F'(x) = \frac{g'(t)}{f'(t)}$

This enables us to find tangents to parametric curves without having to eliminate the parameter. We can rewrite the previous equation in an easily remembered form.

Definition 11.2.2. We can use this to find tangents to parametric curves without having to eliminate the parameter.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

The curve has a

- \bullet horizontal tangent when $\frac{dy}{dt}=0$ (provided that $\frac{dx}{dt}\neq 0)$
- vertical tangent when $\frac{dx}{dt} = 0$ (provided that $\frac{dy}{dt} \neq 0$)

This is useful when sketching parametric curves.

Definition 11.2.3. We can also find $\frac{d^2y}{dx^2}$ by replacing y with $\frac{dy}{dx}$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Proof. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ considering y(t) and g(t).

1.

Chain rule:
$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} \implies \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 (\implies means "implies")

2.

Chain rule:
$$\frac{d}{dt} \left(\frac{dy}{dx} \right) = \left(\frac{d}{dx} \frac{dy}{dx} \right) \frac{dx}{dt} = \frac{d^2y}{dx^2} \frac{dx}{dt}$$

Substitute: $\frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \right)$

Quotient rule: $= \frac{\frac{d^2y}{dt^2} \frac{dx}{dt} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt} \right)^2}$

Set equation from line 1 and line 3 equal and divide both sides by $\frac{dx}{dt}$

$$\frac{d^2y}{dx^2} = \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^2\left(\frac{dx}{dt}\right)}$$
$$= \frac{\frac{d^2y}{dt^2}\frac{d^x}{dt} - \frac{dy}{dt}\frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$$

Example 11.2.1. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

- 1. Show that C has two tangents at the point (3,0) and find their equations.
- 2. Find the points on C where the tangent is horizontal or vertical.
- 3. Determine where the curve is concave upward or downward.

Solution. A curve C is defined by the parametric equations $x = t^2$, $y = t^3 - 3t$.

1. Rewrite $y = t^3 - 3t = t(t^2 - 3) = 0$ when t = 0 or $t = \pm \sqrt{3}$. This indicates that C intersects itself at (3.0).

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2 - 3}{2t} = \frac{3}{2}\left(t - \frac{1}{t}\right)$$
$$t = \pm\sqrt{3} \rightarrow dy/dx = \pm 6/(2\sqrt{3})$$

so the equations of the tangents at (3,0) are

$$y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$

- 2. C has a horizontal tangent when dy/dx = 0. In other words, when dy/dt = 0 and $dx/dt \neq 0$. $dy/dt = 3t^2 3 = 0$ when $t^2 = 1$ so $t = \pm 1$. This means there are horizontal tangents on C at (1,-2) and (1,2). C has a vertical tangent when dx/dt = 2t = 0, so t = 0. This means C has a vertical tangent at (0,0).
- 3. To determine concavity we calculate the second derivative:

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{\frac{3}{2}\left(1 + \frac{1}{t^2}\right)}{2t} = \frac{3(t^2 + 1)}{4t^3}$$

The curve is concave upward when t > 0 and concave downward when t < 0.

Area

We already know that area under a curve y = F(x) from a to b is $A = \int_a^b F(x) dx$. We can apply this to parametric equations using the Substitution Rule for Definite Integrals.

Definition 11.2.4. If the curve C is given by parametric equations x = f(t) and y = g(t) and t increases from α to β ,

$$A = \int_{a}^{b} y dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

(Switch α to β if the point on C at β is more left than α .

Example 11.2.2. Find the area under one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.

Solution. One arch of the cycloid is given by $0 \le \theta \le 2\pi$. Using the Substitution Rule with $y = r(1 - \cos \theta)$ and $dx = r(1 - \cos \theta)d\theta$, we have

$$A = \int_0^{2\pi} y dx = A = \int_0^{2\pi} r(1 - \cos \theta) r(1 - \cos \theta) d\theta$$

$$= r^2 \int_0^{2\pi} (1 - \cos \theta)^2 d\theta = r^2 \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta) d\theta$$

$$= r^2 \int_0^{2\pi} \left[1 - 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right] d\theta$$

$$= r^2 \left[\frac{3}{2} \theta - 2\sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{2\pi}$$

$$= r^2 \left(\frac{3}{2} \cdot 2\pi \right) = 3\pi r^2$$

Arc Length

We already know how to find length L of a curve C given in the form y = F(x), $a \le x \le b$.

Definition 11.2.5. If F' is continuous, then

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx}$$

If C can describe the parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$, where dx/dt = f'(t) > 0. Using the substitution rule, we obtain

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2} dx} = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^{2} \frac{dx}{dt} dt}$$

Since dx/dt > 0, we have

Theorem 11.2.1. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

This is consistent with the general formula $L = \int ds$ and $(ds^2) = (dx^2) + (dy^2)$.

Proof. Prove the length formula of a parametric curve

$$\overrightarrow{ds} = \overrightarrow{i} dx + \overrightarrow{j} dy$$

$$ds^2 = \overrightarrow{ds} \cdot \overrightarrow{ds} = \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) \cdot \left(\overrightarrow{i} dx + \overrightarrow{j} dy\right) = dx^2 + dy^2$$

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$L = \int_{\alpha}^{\beta} ds = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.3. Find the length of the unit circle as (x,y) moves both once and twice around the circle.

Solution. For one traversal around the unit circle,

$$x = \cos t$$
 $y = \sin t$ $0 \le t \le 2\pi$

so $dx/dt = -\sin t$ and $dy/dt = \cos t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{\sin^2 t + \cos^2 t} dt$$
$$= \int_0^{2\pi} dt = 2\pi$$

For two traversals around the unit circle,

$$x = \sin 2t$$
 $y = \cos 2t$ $0 \le t \le 2\pi$

so $dx/dt = 2\cos 2t$ and $dy/dt = -2\sin 2t$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt = \int_0^{2\pi} \sqrt{4\cos^2 2t + 4\sin^2 2t} \ dt = \int_0^{2\pi} 2 \ dt = 4\pi$$

Surface Area

We can also adapt the surface area formula to a parametric curve.

Definition 11.2.6. If a curve C is described by the parametric equations $x = f(t), y = g(t), \alpha \le t \le \beta$, is rotated about the **x-axis**, where f', g' are continuous and $g(t) \ge 0$, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

If the curve C is rotated about the **y-axis**, the surface area is

$$S = \int_{\alpha}^{\beta} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

The generic formulas $S = \int 2\pi y \ ds$ for rotation about the x-axis and $S = \int 2\pi x \ ds$ for rotation about the y-axis are still valid, but for parametric curves we use

$$ds = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Example 11.2.4. Show that the surface area of a sphere of radius r is $4\pi r^2$

Solution. The sphere is obtained by rotating the semicircle

$$x = r \cos t$$
 $y = r \sin t$ $0 \le t \le \pi$

about the x-axis.

$$S = \int_0^{\pi} 2\pi r \sin t \sqrt{(-r\sin t)^2 + (r\cos t)^2} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \sqrt{r^2 (\sin^2 t + \cos^2 t)} dt$$

$$= 2\pi \int_0^{\pi} r \sin t \cdot r dt = 2\pi r^2 \int_0^{\pi} \sin t dt$$

$$= 2\pi r^2 (-\cos t) \Big|_0^{\pi} = 4\pi r^2$$

11.3 Polar Coordinates

In addition to Cartisian coordinates, we can also use a **polar coordinate system**.

Point P is represented by the ordered pair (r, θ) , where r is the distance to the point from the center and θ is the angle from the polar axis to the point.

The points (r, θ) and $(-r, \theta)$ are on the same line and have the same distance |r| from the center but are on opposite sides of the center. Additionally, $(-r, \theta)$ and $(r, \theta + \pi)$ are also on the same line.

This means a complete counterclockwise rotation is given by an angle 2π , so (r,θ) is also represented by

$$(r, \theta + 2n\pi)$$
 and $(-r, \theta + (2n+1)\pi)$

Relationship Between Cartesian and Polar Coordinates

Example 11.3.1. Convert the point $(2, \pi/3)$ from polar to Cartesian coordinates.

Solution.

$$r=2,\;\theta=\pi/3$$

$$x=r\cos\theta=2\cos\frac{\pi}{3}=2\cdot\frac{1}{2}=1$$

$$y=r\sin\theta=2\sin\frac{\pi}{3}=2\cdot\frac{\sqrt{3}}{2}=\sqrt{3}$$

So the point is $(1, \sqrt{3})$ in Cartesian coordinates.

Example 11.3.2. Represent the Cartesian coordinates (1, -1) in polar coordinates.

Solution.

$$r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
$$\tan \theta = \frac{y}{x} = -1$$

Since the point (1,-1) lies in the fourth quadrant, we can choose $\theta = -pi/4$ or $\theta = 7pi/4$. So the possible answers are either $(\sqrt{2}, -\pi/4 \text{ or } (\sqrt{2}, 7\pi/4.$

Polar Curves

The graph of a polar equation $r = f(\theta)$, or $F(r, \theta) = 0$, consists of all of the points where (r, θ) satisfies the equation.

Tangents to Polar Curves

To find a tangent line to a polar curce $r = f(\theta)$, we regard θ as a parameter and write the parametric equations as

$$x = r\cos\theta = f(\theta)\cos\theta$$
 $y = r\sin\theta = f(\theta)\sin\theta$

So

Definition 11.3.1.

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dy}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

- horizontal tangent when $\frac{dy}{d\theta}=0$ (provided that $\frac{dx}{d\theta}\neq 0$)
- vertical tangent when $\frac{dx}{d\theta} = 0$ (provided that $\frac{dy}{d\theta} \neq 0$)

Note tangent lines at the pole have r=0 and the slope of the tangent simplifies to

$$\frac{dy}{dr} = \tan\theta \text{ if } \frac{dr}{d\theta} \neq 0$$

Example 11.3.3. For the cardiod $r = 1 + \sin \theta$, find the slope of the tangent line when r=3

Solution.

$$\begin{split} r &= 1 + \sin \theta \\ \frac{dy}{dx} &= \frac{\frac{dy}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta} = \frac{\cos \theta \sin \theta + (1 + \sin \theta) \cos \theta}{\cos \theta \cos \theta - (1 + \sin \theta) \sin \theta} \\ &= \frac{\cos \theta (1 + 2 \sin \theta)}{1 - 2 \sin^2 \theta - \sin \theta} = \frac{\cos \theta (1 + 2 \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)} \end{split}$$

The slope of the tangent where $\theta = \pi/3$ is

$$\frac{dy}{dx} \Big|_{\theta=\pi/3} = \frac{\cos(\pi/3)(1+2\sin(\pi/3))}{(1+\sin(\pi/3))(1-\sin(\pi/3))}$$

$$= \frac{\frac{1}{2}(1+\sqrt{3})}{(1+\sqrt{3}/2)(1-\sqrt{3})} = \frac{1+\sqrt{3}}{(2+\sqrt{3})(1-\sqrt{3})}$$

$$= \frac{1+\sqrt{3}}{-1-\sqrt{3}} = -1$$

NOTE Instead of memorizing the equation, we can instead use the same method we used to derive it.

$$x = r\cos\theta = (1 + \sin\theta)\cos\theta = \cos\theta + \frac{1}{2}\sin 2\theta$$

$$y = r\sin\theta = (1 + \sin\theta)\sin\theta = \sin\theta + \sin^2\theta$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\cos\theta + 2\sin\theta\cos\theta}{-\sin\theta + \cos 2\theta} = \frac{\cos\theta + \sin 2\theta}{-\sin\theta + \cos 2\theta}$$

This is equivalent to the previous equation.

11.4 Areas and Lengths in Polar Coordinates

Area

We can determine the formula for the area of a region whose boundary is given by a polar equation by taking the limit of a Riemann Sum starting with the formula for the area of a sector of a circle $A = \frac{1}{2}r^2\theta$.

Definition 11.4.1. The formula for the area A of the polar region \mathcal{R} is

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 \ d\theta = \int_a^b \frac{1}{2} r^2 d\theta$$

with the understanding that $r = f(\theta)$.

Example 11.4.1. Find the area enclosed by one loop of the four-leaved rose $r = 2\cos 2\theta$.

Solution. The right loop rotates from $\theta = -\pi/4$ to $\theta = \pi/4$.

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} r^2 d\theta = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos^2 2\theta \ d\theta$$
$$= \int_0^{\pi/4} \cos^2 2\theta \ d\theta = \int_0^{\pi/4} \frac{1}{2} (1 + \cos 4\theta) \ d\theta$$
$$= \frac{1}{2} [\theta + \frac{1}{4} \sin 4\theta] = \pi/8$$

We can also adapt the formula to find the area of a region bounded by two polar curves.

Definition 11.4.2. Let \mathcal{R} be a region that is bounded by curves with polar equations $r = f(\theta)$, $r = g(\theta)$, $\theta = a$, and $\theta = b$, where $f(\theta) \geq g(\theta) \geq 0$ and $0 < b - a \leq 2\pi$. The area A of \mathcal{R} is found by subtracting the area inside $r = g(\theta)$ from the area inside $r = f(\theta)$, so

$$A = \int_{a}^{b} \frac{1}{2} [f(\theta)]^{2} d\theta - \int_{a}^{b} \frac{1}{2} [g(\theta)]^{2} d\theta$$
$$= \int_{a}^{b} \frac{1}{2} ([f(\theta)]^{2} - [g(\theta)]^{2}) d\theta$$

Arc Length

To find the length of a polar curve $r=f(\theta),\ a\leq \theta\leq b,$ we regard θ as a parameter and write the parametric equations of the curve as

$$x = r \cos \theta = f(\theta) \cos \theta$$
 $y = r \sin \theta = f(\theta) \sin \theta$

Using the projecut Rule and differentiating with respect to θ , we obtain

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \qquad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

so, using $\cos^2 \theta + \sin^2 \theta = 1$, we have

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = \left(\frac{dr}{d\theta}\right)^2 \cos^2\theta - 2r\frac{dr}{d\theta}\cos\theta\sin\theta + r^2\sin^2\theta$$
$$+ \left(\frac{dr}{d\theta}\right)^2 \sin^2\theta + 2r\frac{dr}{d\theta}\sin\theta\cos\theta + r^2\cos^2\theta$$
$$= \left(\frac{dr}{d\theta}\right)^2 + r^2$$

Assuming that f' is continuous, we can use the theorem from 11.2 about the arc length of a curve defined by parametric equations to write the arc length as

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} \ d\theta$$

Definition 11.4.3. The length of a curve with polar equation $r = f(\theta), \ a \le \theta \le b$, is

$$L = \int_{a}^{b} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \ d\theta$$

Example 11.4.2. Find the arc length of the cardiod $r = 1 + \sin \theta$.

Solution. The full length of the cardiod is given by the parameter interval $0 \le \theta \le 2\pi$.

$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta = \int_0^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} d\theta$$
$$= \int_0^{2\pi} \sqrt{2+2\sin\theta} d\theta = 8 \text{ (by rationalizing the integrand by } \sqrt{2-2\sin\theta})$$

11.5 Conic Sections

Parabolas, ellipses, and hyperbolas are called **conic sections**, or **conics**, because they result from intersecting a cone with a plane.

Parabolas

A **parabola** is the set of points in a plane that are equidistant from a fixed point F (called the **focus**) and a fixed line (called the **directrix**). The halfway point between the focus and directrix is on the parabola and is called the **vertex**. The line through the focus and the vertex and perpendicular to the directrix is the **axis** of the parabola.

As seen in the figure, the focus is always inside the region of the parabola and the directrix is the same distance away on the opposite side.

Definition 11.5.1. An equation of the parabola with focus (0, p) and directrix y = -p is

$$x^2 = 4py$$

. If we set $a=\frac{1}{4p}$, then the standard equation of a parabola is $y=ax^2$. This opens upward if p>0 and downard if p<0, and is symmetric with respect to the y-axis.

Definition 11.5.2. If we switch x and y, we get

$$y^2 = 4px$$

(reflection about the diagonal line y=x). This parabola opens to the right if p > 0 and to the left if p < 0.

Definition 11.5.3. The vertex form of a parabola is

$$y = a(x - h)^2 + k$$

where (h, k) is the vertex of the parabola and x = h is the axis of symmetry. We can also switch x and y to get the vertex form of the rotated parabola.

Example 11.5.1. Find the focus and directrix of the parabola $y^2 + 10x = 0$.

Solution. We rewrite the equation as $y^2=-10x$. We know $y^2=4px$, so 4px=-10x and $p=-\frac{5}{2}$. Thus, the focus is $(p,0)=-\frac{5}{2},0)$ and the directrix is $x=\frac{5}{2}$.

Ellipses

An **ellipse** is the set of points in a plane surrounding two fixed focal points F_1 and F_2 such that the <u>sum</u> of the two distances to the focal points is a constant. Imagine tracing a line along the furthest path of a string stretched across two different points.

Definition 11.5.4. The ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad a \ge b \ge 0$$

has foci $(\pm c, 0)$, where $c^2 = a^2 - b^2$, and vertices $(\pm a, 0)$ (lies on x-axis).

The **vertices** are on the **major axis**, where a is the distance to the center of the ellipse from each vertex. This distance is greater than the distance from a **co-vertex** to the center of the ellipse, b. The co-vertices lie on the **minor axis**. Because the sum of the two distances from a point on the ellipse to the foci is a constant, the distance from a co-vertex to a focal point is also a. If the foci coincide, then c = 0, so a = b and the ellipse becomes a circle with radius r = a = b.

Definition 11.5.5. The ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad a \ge b \ge 0$$

has foci $(0, \pm c)$, where $c^2 = a^2 - b^2$, and vertices $(0, \pm a)$ (lies on y-axis).

Definition 11.5.6. The general form of a horizontal ellipse is

$$\frac{(x-h)^2}{h^2} + \frac{(y-h)^2}{a^2} = 1$$

where (h, k) is the center of the ellipse. The same transformation can be done to the standard form of a vertical ellipse.

Example 11.5.2. Find an equation of the ellipse with foci $(0, \pm 2)$ and vertices $(0, \pm 3)$.

Solution. This equation represents a vertical ellipse because the foci and vertices lie on the y-axis. The distance from a focal point to the center is c=2 and the distance from a vertex to the center is a=3. Then we obtain $b^2=a^2+c^2=9-4=5$, so the equation of the ellipse is

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = \frac{x^2}{5} + \frac{y^2}{9} = 1$$

Hyperbolas

An **ellipse** is the set of points in a plane surrounding two fixed focal points F_1 and F_2 such that the <u>difference</u> of the two distances to the focal points is a constant. The **transverse axis** is the axis of a hyperbola that passes through the two foci. The **conjugate axis** is perpendicular to the transverse axis and passes through the center of the hyperbola.

Definition 11.5.7. The hyperbola along a horizontal transverse axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

has foci $(\pm c,0)$, where $c^2=a^2+b^2$, vertices $(\pm a,0)$ (lies on x-axis), and asymptotes $y=\pm \frac{b}{a}x$.

Definition 11.5.8. The hyperbola along a vertical transverse axis

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

has foci $(0, \pm c)$, where $c^2 = a^2 + b^2$, vertices $(0, \pm a)$ (lies on y-axis), and asymptotes $y = \pm \frac{a}{b}x$.

Definition 11.5.9. The general form of a hyperbola along a horizontal transverse axis is

$$\frac{(x-h)^2}{h^2} - \frac{(y-h)^2}{a^2} = 1$$

where (h, k) is the center of the ellipse. The same transformation can be done to the standard form a hyperbola along a vertical transverse axis.

Example 11.5.3. Find the foci and asymptotes of the hyperbola $9x^2 - 16y^2 = 144$.

Solution. If we divide both sides of the equation by 144, it becomes

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

which is a hyperbola along a horizontal transverse axis. Therefore, we get a=4 and b=3. Since $c^2=a^2+b^2=16+9=25, c=5$. The foci are $(\pm 5,0)$, and the asymptotes are $y=\pm \frac{3}{4}x$.

Example 11.5.4. Find the foci and asymptotes of the hyperbola $ax^2 - by^2 = r$ in terms of a, b, r.

Solution. We first put the equation in standard form to get

$$\frac{x^2}{\left(\sqrt{\frac{r}{a}}\right)^2} - \frac{y^2}{\left(\sqrt{\frac{r}{b}}\right)^2} = 1$$

which is a hyperbola along a horizontal transverse axis. The foci are at

$$(\pm c, 0) = \left(\pm \sqrt{\frac{r}{a} + \frac{r}{b}}, \ 0\right) = \left(\pm \sqrt{\frac{r(a+b)}{ab}}, \ 0\right)$$

the vertices are at $\left(\pm\sqrt{\frac{r}{a}},\ 0\right)$, and the asymptotes are at $y=\pm\left(\sqrt{\frac{a}{b}}\right)x$.

11.6 Conic Sections in Polar Coordinates

Theorem 11.6.1. Let F be a fixed point (called the **focus**) and l be a fixed line (called the **directrix**). Let e be a fixed positive number (called the **eccentricity**). The set of all points P in the plane such that

$$\frac{|PF|}{|Pl|} = e \quad \text{(the ratio of the distance from } F \text{ to the distance from } l \text{ is the constant e})$$

is a conic section. The conic is

- 1. an ellipse if e < 1
- 2. a parabola if e=1
- 3. a hyperbola if e > 1

Theorem 11.6.2. A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e and distance d from the center to the directrix, with the focus at the origin. The conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola is e > 1.

Polar Equation for a Conic with Eccentricity e

To use these polar equations, a focus is located at the origin.

Use " $\cos \theta$ " when the conic section opens rightward or leftward, and use " $\sin \theta$ " when the conic section opens upward or downward. Use "+" if the conic section opens leftward or downward, and use "-" if the conic section opens rightward or upward.

Example 11.6.1. Find a polar equation for a parabola that has its focus at the origin and whose directrix is the line y = -6.

Solution. The eccentricity e=1 because the conic section is a parabola, and the distance from the center to the directrix is d=6. The directrix is on the y-axis and is underneath the center, so the parabola opens upward. Therefore, we use the "sin θ " equation and use "-" in the denominator. The polar equation of the parabola is

$$r = \frac{6}{1 - \sin \theta}$$

Example 11.6.2. A conic is given by the polar equation

$$r = \frac{10}{3 - 2\cos\theta}$$

Find the eccentricity, identify the conic, and locate the directrix.

Solution. Divide the numerator and denominator by 3 to get

$$r = \frac{\frac{10}{3}}{1 - \frac{2}{3}\cos\theta}$$

This represents an ellipses with eccentricity $e = \frac{2}{3}$. Since $ed = \frac{10}{3}$,

$$d = \frac{\frac{10}{3}}{e} = \frac{\frac{10}{3}}{\frac{2}{3}} = 5$$

so the directrix has Cartesian equation x=-5. When $\theta=0,\ r=10$; when $\theta=\pi,\ r=2$, so the vertices have polar coordinates (10,0), and $(2,\pi)$.

Infinite Sequences and Series

12.1 Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \ldots, a_n, \ldots$$

The number a_1 is the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal with infinite sequences exclusively so each term a_n will have a successor $a_n + 1$.

Notice that for every positive integer n there is a corresponding number a_n so a sequence can be defined as a function whose domain is the set of positive integers. We usually write a_n instead of the function notation f(n).

NOTATION The sequence a_1, a_2, a_3, \ldots is also denoted by

$$a_n$$
 or $a_{n} = 1$

Example 12.1.1. Some sequences can be defined by giving a formula for the nth term. In this example, we will describe a sequence in 3 ways: the previous notation, defining a formula, and writing out the terms of the sequence. Note that n doesn't have to start at 1.

1.
$$\left\{ \frac{n}{n+1} \right\}_{n=1}^{\infty} \quad a_n = \frac{n}{n+1} \quad \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots \right\}$$

2.

$$\left\{ \frac{(-1)^n(n+1)}{3^n} \right\} \quad a_n = \frac{(-1)^n(n+1)}{3^n} \quad \left\{ -\frac{2}{3}, \ \frac{3}{9}, \ -\frac{4}{27}, \ \frac{5}{81}, \dots, \ \frac{(-1)^n(n+1)}{3^n}, \dots \right\}$$

3.

$$\{\sqrt{n-3}\}_{n=3}^{\infty}$$
 $a_n = \sqrt{n-3}, \ n \ge 3 \ \{0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots\}$

4.

$$\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty} \quad a_n = \cos\frac{n\pi}{6}, \ n \ge 0 \quad \left\{1, \ \frac{\sqrt{3}}{2}, \ \frac{1}{2}, \ 0, \dots, \ \cos\frac{n\pi}{6}, \dots\right\}$$

Example 12.1.2. Find a formula for the general term a_n of the sequence

$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \ldots\right\}$$

Solution. We are given the first five terms. The numerator of the fractions start at 3 and increase by 1, so the nth term will have numerator n + 1. The demoninators are the powers of 5, so a_n has denominator 5^n . The signs of the terms alternate between positive and negative, so we need to multiply by a power of 1. The factor $(-1)^n$ means we start with a negative term, so here we use $(-1)^{n-1}$ or $(-1)^{n+1}$ because we start with a positive term. Therefore,

$$a_n = (-1)^{n-1} \frac{n+2}{5^n}$$

Definition 12.1.1. A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n \to \infty} a_n = L \qquad \text{or} \qquad a_n \to L \text{ as } n \to \infty$$

if we can make the terms a_n as close to L as wel like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

The figure below graphs examples of two sequences that have the limit L.

A more precise version of the previous definition is

Definition 12.1.2. A sequence $\{a_n\}$ has the **limit** L and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

$$|a_n - L| < \varepsilon$$
 whenever $n > N$

No matter how small an interval $(L - \varepsilon L + \varepsilon)$ is chosen, there exists an N such that all terms of the sequence from a_{N+1} onward must lie in that interval.

The points on the graph of a_n must lie between the horizontal lines $y = L + \varepsilon$ and $y = L - \varepsilon$ if n > N. This picture must be valid no matter how small ε is chosen, but usually a smaller ε requires a larger N.

The only difference between $\lim_{n\to\infty} a_n = L$ and $\lim_{x\to\infty} f(x) = L$ is that n is required to be an integer.

Theorem 12.1.1. If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an interger, then $\lim_{n\to\infty} = a_n = L$.

Since we know that $\lim_{x\to\infty}(1/x^r)=0$ when r>0, we can use the previous theorem to get

Definition 12.1.3.

$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \quad \text{if } r > 0$$

If a_n grows as n grows, we use the notation $\lim_{n\to\infty} a_n = \infty$. We say that a_n diverges to ∞ .

Definition 12.1.4. $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that

$$a_n > M$$
 whenever $n > N$

Definition 12.1.5 (Limit Laws for Sequences (similar to original Limit Laws)). If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \quad \text{if } b_n \neq 0$$

$$\lim_{n \to \infty} (a_n^p) = \left[\lim_{n \to \infty} a_n\right]^p \quad \text{if } p > 0 \text{ and } a_n > 0$$

Theorem 12.1.2 (The Squeeze Theorem for Sequences (same as original)). If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Theorem 12.1.3. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Example 12.1.3. Evaluate $\lim_{n\to\infty} \frac{(-1)^n}{n}$ if it exists.

Solution.

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0 \quad \text{so } \lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

Example 12.1.4. Find $\lim_{n\to\infty}\frac{n}{n+1}$.

Solution. Divide the number aro and denominator by the highest power of n and then use the Limit Laws.

$$\lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n}}$$
$$= \frac{1}{1+0} = 1$$

Example 12.1.5. Calculate $\lim_{n\to\infty} \frac{\ln n}{n}$.

Solution. Both the numerator and demoninator approach infinity as $n \to \infty$. We can't apply l'Hospital;s Rule directly because it applies to functions, not sequences. However, we can apply it to the related function.

$$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{1/x}{1}=0\quad\text{so }\lim_{n\to\infty}\frac{\ln n}{n}=0$$

Example 12.1.6. Determine whether the sequence $a_n = (-1)^n$ is convergent or divergent.

Solution. If we write out the terms of the sequence, we get $\{-1, 1, -1, 1, -1, 1, -1, \ldots\}$. Since the terms oscillate between 1 and -1, a_n does not approach any number. Thus, $\lim_{n\to\infty} (-1)^n$ does not exist so the sequence $\{(-1)^n\}$ is divergent.

Example 12.1.7. Discuss the convergence of the sequence $a_n = n!/n^n$.

Solution. Both the numerator and denominator approach infinity as $n \to \infty$, but we have no corresponding functions to use l'Hospital's Rule because x! is not defined when x is not an integer. if we write the general forumula for the sequence, we get

$$a_n = \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n}{n \cdot n \cdot n \cdot n \cdot \ldots \cdot n} = \frac{1}{n} \left(\frac{2 \cdot 3 \cdot \ldots \cdot n}{n \cdot n \cdot n \cdot \ldots \cdot n} \right)$$

The expression in the parenthesis is at most 1 because the numerator is less than (or equal) to the denominator, so

$$0 < a_n \le \frac{1}{n}$$

We can use the squeeze theorem because both 0 and $1/n \to 0$ as $n \to \infty$, so $a_n \to \infty$ as $n \to \infty$.

Example 12.1.8. Determine if the sequences below converge. If they do, find the limits as $n \to \infty$.

- 1. $\frac{\sin n}{n}$
- $2. ne^{-n}$

Solution. 1. $\frac{\sin n}{n}$ converges to 0 by the squeeze theorem

$$-\frac{1}{n} \le \frac{\sin n}{n} \le -\frac{1}{n} , \lim_{n \to \infty} \frac{1}{n} = 0 , \text{ so}$$
$$0 \le \frac{\sin n}{n} \le 0 \implies \lim_{n \to \infty} \frac{\sin n}{n} = 0$$

2. $ne^{-n} = \frac{n}{e^n}$. The denominator e^n converges faster than the numerator n does. Use l'Hospital's Rule to get

$$\lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0 \text{ so } \lim_{n \to \infty} ne^{-n} = 0$$

Example 12.1.9. Show that if $\lim_{n\to\infty} a_{2n} = L$ and $\lim_{n\to\infty} a_{2n+1} = L$, $\{a_n\}$ is convergent and $\lim_{n\to\infty} a_n = L$.

Solution. The solution uses the symbols \exists ("exists") and \Longrightarrow ("implies").

Since
$$\lim_{n\to\infty} a_{2n} = L$$
, $\exists N_1 \implies |a_{2n} - L| < \varepsilon \text{ for } n > N_1$
Since $\lim_{n\to\infty} a_{2n+1} = L$, $\exists N_2 \implies |a_{2n+1} - L| < \varepsilon \text{ for } n > N_2$

Let $N = \max\{2N_1, 2N_2 + 1\}$ and let n > N.

If n is even,
$$n = 2m, m > N_1, |a_n - L| = |a_{2m} - L| < \varepsilon$$

If n is odd, $n = 2m + 1, m > N_2, |a_n - L| = |a_{2m+1} - L| < \varepsilon$

Therefore, $\{a_n\}$ is convergent and $\lim_{n\to\infty} a_n = L$.

Definition 12.1.6. The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 0 & \text{if } r = 1 \end{cases}$$

Definition 12.1.7. A sequence $\{a_n\}$ is **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$ $(a_1 < a_2 < a_3 < \cdots)$. It is **decreasing** is $a_n < a_{n+1}$ for all $n \ge 1$. It is **monotonic** if the is either increasing or decreasing.

Example 12.1.10. The sequence $\left\{\frac{3}{n+5}\right\}$ is decreasing because

$$\frac{3}{n+5} < \frac{3}{(n+1)+5} = \frac{3}{n+6}$$

for all $n \ge 1$ (the right side is smaller because it has a larger denominator).

Example 12.1.11. Show that the sequence $a_n = \frac{n}{n^2+1}$ is decreasing.

Solution (1). We must show that $a_{n+1} < a_n$.

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1}$$

We can simplify this by cross-multiplying. \iff means "if and only if".

$$\frac{n+1}{(n+1)^2+1} < \frac{n}{n^2+1} \iff (n+1)(n^2+1) < n[(n+1)^2+1]$$

$$\iff n^3+n^2+n+1 < n^3+2n^2+2n$$

$$\iff 1 < n^2+n$$

Since $n \geq 1$, we know that the inequality $n^2 + n > 1$ is true. Therefore, $a_{n+1} < a_n$ so $\{a_n\}$ is decreasing.

Solution (2). Consider the function $f(x) = \frac{x}{x^2+1}$:

$$f'(x) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2} < 0$$
 whenever $x^2 > 1$

This, f is decreasing on $(1, \infty)$ so f(n) > f(n+1). Therefore, $\{a_n\}$ is decreasing.

Theorem 12.1.4 (Monotonic Sequence Theorem). Every bounded, monotonic sequence is convergent.

- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

- 15.1 Functions of Several Variables
- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- 17.10 Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions

Part II Linear Algebra

Vectors

- 1.1 The Geometry and Algebra of Vectors
- 1.2 Length and Angle: The Dot Product
- 1.3 Lines and Planes
- 1.4 Code Vectors and Modular Systems

Systems of Linear Equations

- 2.1 Introduction to Systems of Linear Equations
- 2.2 Direct Methods for Solving Linear Systems
- 2.3 Spanning Sets and Linear Independence
- 2.4 Applications
- 2.5 Iterative Method for Solving Linear Systems

Matrices

- 3.1 Matrix Operations
- 3.2 Matrix Algebra
- 3.3 The Inverse of a Matrix
- 3.4 The LU Factorization
- 3.5 Subspaces, Basis, Dimension, and Rank
- 3.6 Introduction to Linear Transformations
- 3.7 Applications

Eigenvalues and Eigenvectors

- 4.1 Introduction to Eigenvalues and Eigenvectors
- 4.2 Determinants
- 4.3 Eigenvalues and Eigenvectors of $n \times n$ Matrices
- 4.4 Similarity and Diagonalization
- 4.5 Iterative Methods for Computing Eigenvalues
- 4.6 Applications and the Perron-Frobenius Theorem

Orthogonality

- 5.1 Orthogonality in \mathbb{R}^n
- 5.2 Orthogonal Complements and Orthogonal Projections
- 5.3 The Gram-Schmidt Process and the QR Factorization
- 5.4 Orthogonal Diagonalization of Symmetric Matrices
- 5.5 Applications

Vector Spaces

- 6.1 Vector Spaces and Subspaces
- 6.2 Linear Independence, Basis, and Dimension
- 6.3 Change of Basis
- 6.4 Linear Transformation
- 6.5 The Kernel and Range of a Linear Transformation
- 6.6 The Matrix of a Linear Transformation
- 6.7 Applications

Distance and Approximation

- 7.1 Inner Product Spaces
- 7.2 Norms and Distance Function
- 7.3 Least Squares Approximation
- 7.4 The Singular Value Decomposition
- 7.5 Applications