PATENT ABSTRACTS OF JAPAN

(11) Publication number:

07-280583

(43) Date of publication of application: 27.10.1995

(51)Int.CI.

G01C 21/00 G08G 1/005 G08G 1/0969 // G01S 5/02 G01S 5/14

(21)Application number: 06-099360

(71)Applicant: AQUEOUS RES:KK

(22)Date of filing:

13.04.1994

(72)Inventor: SUZUKI SEIICHI

MORI TOSHIHIRO

(54) PORTABLE NAVIGATION SYSTEM

(57) Abstract:

PURPOSE: To provide a portable navigation system which allows easy azimuth identification.

CONSTITUTION: A map drawing part 28, according to azimuth of device detected by a azimuth sensor 40, draws map drawing data 243 and character data 244, etc., of a map information storing part 24 on a display 12 as map screen conforming to actual azimuth. A guide information generating part 20, when device's azimuth conforms to that of destination or recommended path, outputs guide sound from a speaker 13, and in addition, an arrow mark indicating the direction of destination, etc., is displayed on a display 12.

LEGAL STATUS

[Date of request for examination]

11.04.2001

[Date of sending the examiner's decision of

31.10.2002

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

特開平7-280583

(43)公開日 平成7年(1995)10月27日

(51) Int.Cl. ⁶ G01C 21/0 G08G 1/0		庁内整理番号 ,	FΙ	技術表示箇所
// G01S 5/0	02 Z	:		
			審查請求	未請求 請求項の数2 FD (全 10 頁)
(21)出願番号	特顯平6-99360		(71)出顧人	591261509 株式会社エクォス・リサーチ
(22)出顧日	平成6年(1994)4	月13日		東京都千代田区外神田2丁目19番12号
			(72)発明者	鈴木 誠一 東京都千代田区外神田2丁目19番12号 株 式会社エクォス・リサーチ内
			(72)発明者	森 俊宏 東京都千代田区外神田2丁目19番12号 株 式会社エクォス・リサーチ内
			(74)代理人	弁理士 川井 隆 (外1名)

(54) 【発明の名称】 携帯用ナビゲーション装置

(57)【要約】

【目的】 方向認識を容易にすることができる携帯用ナビゲーション装置を提供する。

【構成】 地図描画部28は、方位センサ40が検出した装置の方位に応じて、地図情報記憶部24の地図描画データ243や文字データ244等を、実際の方位と一致した地図画面として、ディスプレイ12上に描画する。案内情報発生部20は、装置の方位が、目的地や推奨経路の方位と一致したときに、案内音をスピーカ13から出力させると共に、目的地等の方向を示す矢印をディスプレイ12に表示させる。

【特許請求の範囲】

--【請求項-1-】---目的地の位置情報と目的地までの経路情報の、少なくとも一方が案内の対象として記憶された案内対象情報記憶手段と、

装置本体の現在位置を検出する現在位置検出手段と、 この現在位置検出手段で検出された現在位置に対する、 前記案内対象情報記憶手段に記憶された前記案内対象の 方位を判断する案内対象方位判断手段と、

前記装置本体が向いている方位を検出する本体方位検出 手段と、

この本体方位検出手段で検出された装置本体の方位と、 前記案内対象方位判断手段で判断された前記案内対象の 方位とから、前記案内対象の方位に対する前記装置本体 の向きを判断する本体向き判断手段と、

この装置本体向き判断手段で判断された前記装置本体の向きに応じて案内音を出力する案内音出力手段とを具備することを特徴とする携帯用ナビゲーション装置。

【請求項2】 地図情報を記憶した地図情報記憶手段と、

前記装置本体に固定され、画像情報を出力する表示手段と、

前記地図情報記憶手段に記憶された地図情報を、前記本体方位検出手段で検出された前記装置本体の方位に基づいて、実際の方位と一致させて前記表示手段に描画する地図描画手段とを備えたことを特徴とする請求項1記載の携帯用ナビゲーション装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、携帯用ナビゲーション 装置に関する。

[0002]

【従来の技術】ナビゲーション装置は、地理に不案内な者に対して、現在の位置や目的地の方向、あるいは目的地までの経路等を案内するものであり、近年、徒歩等で移動する者のために、携帯用のナビゲーション装置は、ディスが見るされている。携帯用ナビゲーション装置は、ディスはに現在地周辺の地図や現在位置を示すマーク、目的地までの経路等を描画する。また、現在位置の案内や目的地に行くための進路方向の案内等を音声で出力したりする。ディスプレイに表示される地図は、例えば、ディスプレイの上方が北になるように描画され、この地案内ることで携帯用ナビゲーション装置の携帯者(被案内者)は、自分が実際に向いている方向や進むべき方向等を認識することができる。

[0003]

【発明が解決しようとする課題】従来の携帯用ナビゲーション装置では、例えば、描画されたディスプレイ上の地図において、目印となる建物が右斜め前にある場合でも、その建物が実際に自分の見ている景色の中でどの方向に位置するのかは容易に認識できない場合がある。こ

のような場合、自分が向いている方向を変えて、自分の 周りの実際の建物や道の状況を、地図上の建物等と照ら し合わせたり、また、コンパスを所持して、実際の方位 と描画された地図上での方位とを合わせなければならな かった。このように、被案内者が実際の道の状況におい て、目標物の方向や進むべき方向を認知するのは、困難 であった。

【0004】そこで、本発明の目的は、方向認識を容易にすることができる携帯用ナビゲーション装置を提供することにある。

[0005]

【課題を解決するための手段】請求項1記載の発明で は、目的地の位置情報と目的地までの経路情報の少なく とも一方が案内の対象として記憶された案内対象情報記 憶手段と、装置本体の現在位置を検出する現在位置検出 手段と、この現在位置検出手段で検出された現在位置に 対する前記案内対象情報記憶手段に記憶された前記案内 対象の方位を判断する案内対象方位判断手段と、前記装 置本体が向いている方位を検出する本体方位検出手段 と、この本体方位検出手段で検出された装置本体の方位 と前記案内対象方位判断手段で判断された前記案内対象 の方位とから前記案内対象の方位に対する前記装置本体 の向きを判断する本体向き判断手段と、この装置本体向 き判断手段で判断された前記装置本体の向きに応じて案 内音を出力する案内音出力手段とを携帯用ナビゲーショ ン装置に具備させて前記目的を達成する。請求項2記載 の発明では、請求項1記載の携帯用ナビゲーション装置 に、地図情報を記憶した地図情報記憶手段と、前記装置 本体に固定され画像情報を出力する表示手段と、前記地 図情報記憶手段に記憶された地図情報を前記本体方位検 出手段で検出された前記装置本体の方位に基づいて、実 際の方位と一致させて前記表示手段に描画する地図描画 手段とを具備させて前記目的を達成する。

[0006]

【作用】請求項1記載の携帯用ナビゲーション装置では、案内対象方位判断手段が、現在位置検出手段で検出された現在位置に対する、案内対象情報記憶手段に記憶された案内対象の方位を判断する。本体向き判断手段は、本体方位検出手段で検出された装置本体の方位と、案内対象方位判断手段で判断された案内対象の方位に対する装置本体の向きを判断手段で判断された装置本体の向きに応じて、案内音を出力手段は、装置本体向き判断手段で判断された装置本体の向きに応じて、案内音を出力する。請求項2記載の携帯用ナビゲーション装置では、地図描画手段が、地図情報記憶手段に記憶された地図情報を、本体方位検出手段で検出された装置本体の方位に基づいて、実際の方位と一致させて表示手段に描画する。【0007】

【実施例】以下、本発明の携帯用ナビゲーション装置に おける一実施例を図1ないし図12を参照して詳細に説

明する。図1は、本実施例による携帯用ナビゲーション装置10の外観を表したものである。携帯用ナビゲーション装置10は、手のひらに載せられる程度の重量と大きさであり、現在地周辺の地図や矢印等の案内情報が表示されるディスプレイ12と、案内音声や「ピッピッピッ」といった案内音が出力されるスピーカ13、電源スイッチや各種操作を行うための入力キー14等を有している。案内音声等は、イヤホン16からも出力できるようになっている。

【0008】図2は、携帯用ナビゲーション装置10の 構成を表したものである。この携帯用ナビゲーション装置10は、装置の携帯者に対する各種案内情報を発生させる案内情報発生部20と、地図情報が記憶された地図情報記憶部24と、携帯用ナビゲーション装置10の現在位置を測定する現在位置測定部26とを備えている。また、携帯用ナビゲーション装置10は、地図等を描画する地図描画部28と、入力キー14等によって各種データが入力されるデータ入力部30と、案内音声等を出力する案内音声信号出力部32とを備えている。

【0009】地図情報記憶部24は、地図情報として、道路データ241、交差点データ242、地図描画データ243、文字データ244、及び特徴的な地点の写真情報や各地域のホテル、観光案内等の各種地域毎の情報、及び音声案内する際の音声データ等が格納されているその他のデータ245を有している。この地図情報記憶部24は、各地図情報を案内情報発生部20や地図描画部28に供給するようになっている。地図情報記憶部24の記憶媒体としては、例えば、CD-ROM(リード・オンリ・メモリ)やICカード、あるいは、磁気ディスク、光磁気ディスク等を用いる。

【0010】ここで、道路データ241は、経路案内に必要なデータとしての、各道路の太さ、道路の長さ、その道路の始点や終点となる交差点番号、始点と終点間の各地点における座標位置(経度、緯度)等で構成されている。交差点データ242は、交差点の名称及びその座標位置、その交差点を構成している道路のデータ等である。地図描画データ243は、ディスプレイ12において、河川水系や山等の地形、建築物、線路、道路等を描画するためのデータであり、各々のデータが経度と緯で特定される絶対座標を有している。この地図描画で中タ243は、地図のスケール毎に階層化され、最下で層のデータは、例えば、1万分の1のスケールの地図を描画するためのデータで、細かな路地や商店名等を含んだ詳細データとなっている。

【0011】文字データ244は、図1に示すようなデパートや学校等の目印となる特徴物の略記号、あるいは特徴物の名称及び地名(以下、「地名等」という)等を地図上に表示するためのデータである。文字データ244は、各地名等に対応した文字列データと、地図上に表示する全ての文字のフォントデータで構成される辞書デ

ータとを有している。文字列データは、文字列の中心 点、すなわち、文字列の上下幅と長さにより決定された 長方形の対角線の交点、の絶対座標(緯度、経度)を示 す座標データと、文字列を構成する各文字(略記号は、 1文字)のフォントデータを特定するためのコードデー タとを有している。各文字列データは、座標データによって地図描画データ 2 4 3 とリンクしている。

【0012】現在位置測定部26は、GPS(グローバル・ポジショニング・システム)受信機34、ビーコン受信機36、距離センサ38、方位センサ40にそれぞれ接続されている。GPS受信機34は、GPS衛星の電波を受信するものであり、現在位置測定部26は、このGPS受信機34の受信データを基に、携帯用ナビゲーション装置10の絶対位置を算出するようになれたビーション装置10の絶対位置を関出するように配置されたビーコンからの位置情報を受信するものである。方位センサ40は、地磁気を検出して携帯用ナビゲーション装置10の向き、すなわち方位を求める地磁気センサ401や、回転角速度を検出するガスレートジャイロや光ファイバジャイロ等のジャイロセンサ402等を有している。

【0013】ここで、2種類のセンサが使用されるのは、地磁気センサ401が、例えば、携帯用ナビゲーション装置10自体の帯磁や、橋等の鉄でできた構造物、あるいは高圧線等の影響で、地磁気以外の外部磁場を検出してしまい、方位検出を誤ることがあるからである。従って、方位センサ40では、通常、外部磁場の影響を受けないジャイロセンサ402を用いて方位検出を行い、その検出値の誤差を地磁気センサ401の検出値を基に補正することで正確な方位検出を行うようになっている。

【0014】方位センサ40で検出した方位データは、現在位置測定部26のみならず、案内情報発生部20や地図描画部28に供給されるようになっている。距離センサ264は、例えば、携帯用ナビゲーション装置10の加速度を検出すると共に、2回積分して移動距離を得るものである。現在位置測定部26は、GPS受信機34とビーコン受信機36とから、単独で位置測定をすることができるが、GPS衛星やビーコンからの受信が不可能な場所では、距離センサ264や方位センサ263を用いた推測航法によって絶対位置を算出するようになっている。

【0015】地図描画部28は、ディスプレイ12上に地図や推奨経路、写真、進路方向や目的地の方向を示す矢印等を描画するための各種処理を行う描画用CPU(中央処理装置)と、地図情報記憶部24から読み込んだ各種データがそれぞれ格納される描画データ用RAM(ランダム・アクセス・メモリ)を備えている。この地図描画部28は、描画した地図上の方位が実際の方位と一致するように、現在位置を中心に地図を回転させてデ

ィスプレイ12上に描画するようになっている。すなわち、現在位置測定部26で測定された現在位置と方位センサ40で検出された方位とに応じて、地図描画データ243と文字データ244とにおける座標データを変換し、座標変換後の地図及び文字をディスプレイ12上に描画するようになっている。地図描画部28の描画データ用RAMは、座標変換後の地図描画データ243や文字データ244等の描画データを格納する格納エリアや、地図上に表示される他の描画データ、例えば、現在位置を示す矢印やコマンド等の描画データを格納する格納エリアを有している。

【OO16】図3は、描画データ用RAMにおける各描 画データの格納エリアを模式的に表したものである。各 描画データの格納エリアは、それぞれの描画データ24 3、244等が持つ座標データによって互いにリンクし ており、図3に示すようなレイヤ構造を有している。す なわち、描画データ用RAMは、座標変換後の地図描画 データ243や文字データ244がそれぞれ格納される 格納エリアとして、地図レイヤ50や文字レイヤ52と を有している。また、携帯用ナビゲーション装置10の 位置及び方位を示す矢印等の描画データが格納される現 在位置レイヤ54や、各種コマンドの描画データが格納 されるコマンドレイヤ56を有している。以上の各レイ ヤ50、52、54、56のデータが、ディスプレイ1 2のビットマップメモリ上に重なって展開されること で、例えば、図1に示した画面が表示されるようになっ ている。ディスプレイ12としては、液晶ディスプレ イ、あるいはプラズマディスプレイ等を使用する。

【0017】データ入力部30は、目的地(到着地点)や携帯用ナビゲーション装置10への各種操作指令を携帯者が入力するためのものである。本実施例においてデータ入力部30は、図1に示した複数の入力キー14や、ディスプレイ12の表示画面に触れることで入力動作が行われるタッチパネルから主に構成されるが、キーボード、マウス、ライトペン、ジョイスティック、音声認識装置等を使用してもよい。案内音声信号出力部32は、案内情報発生部20の指令に従って、所定の音声や案内音を合成し、その信号を音声信号出力端子42に供給するものである。例えば、「次の交差点を右に曲がって下さい」等の案内音声や「ピッピッピッ」といった案内音を、音声信号出力端子42に接続されたスピーカ13やイヤホン16から出力するようになっている。

【0018】案内情報発生部20は、携帯者に対して各種案内情報を出力するための処理を行うCPUや、所定のプログラムが格納されたROM(リード・オンリ・メモリ)、及び入力データやCPUの処理結果等を格納するナビゲーション用RAM等を備えている。案内情報発生部20は、現在位置測定部26で測定された現在位置とデータ入力部30に入力された目的地、及び地図情報記憶部24の道路データ241や交差点データ242等

から、ROMに格納されたナビゲーションプログラムに基づいて、目的地までの推奨経路を探索するようになっている。また、探索した経路データと、現在位置測定部26で測定した現在位置とから、携帯者が推奨経路に沿って進むべき方向を判断するようになっている。

【0019】案内情報発生部20は、入力された目的地 の座標データから目的地の方向も判断するようになって いる。そして、判断結果である各種案内情報を、地図描 画部28や案内音声信号出力部32に供給することで、 ディスプレイ12に矢印を表示させたり、スピーカ13 から「次の交差点を右に曲がって下さい」等の案内音声 を出力させる。案内情報発生部20は、方位センサ40 の検出値を基に、推奨経路の方向、すなわち経路となる 道路の進行方向や目的地の方向に対する携帯用ナビゲー ション装置10の向きを判断して、両者の方向の差に応 じて、案内音の出力や矢印等を表示を案内音声信号出力 部32や地図描画部28に指令するようになっている。 なお、探索した経路のデータは、目的地までの道路デー タや交差点データ等で構成されるが、これらは、目的地 のデータと共にナビゲーション用RAMに格納され、地 図描画部28によって読みだされることによって地図と 共にディスプレイ12の地図上に描画されるようになっ ている。

【0020】次に、このように構成された実施例の動作について説明する。

(1)動作の概要

携帯用ナビゲーション装置10では、ディスプレイ12上の地図が、表示地図上の現在位置を中心として、携帯用ナビゲーション装置10の向きの変化に応じて回転するように描画され、地図上の方位と実際の方位とが一致するようになっている。携帯用ナビゲーション装置10による案内は、携帯者の必要に応じて、地図や現在位置をディスプレイ12に表示するのみの案内と、探索した推奨経路に沿って携帯者を誘導する案内と、目的地の方位のみを知らせる案内とに大別される。以下、各案内での携帯用ナビゲーション装置10の動作をそれぞれ説明する。

【0021】図4は、実際の道路上での携帯者mの向きの変化を表したものであり、図5は、地図や現在位置の表示のみで案内する場合において、図4で示す携帯者mの向き変化に対応してディスプレイ12に描画される画面の変化を表したものである。図4に示すように携帯からの方向からBの方向に向きを変えると、すなわち、携帯用ナビゲーション装置10の向きがAからBに変わると、図5の(A)で示す画面が、(B)で示けで変わると、図5の(A)で示す画面が、(B)で示けでし変わると、図5の(A)で示す画面が、(B)で示けでし変わると、図5の(A)で示す画面が、(B)にような画面に書き換えられる。すなわち、携帯用ナビゲーション装置10が向きを変えた角度分、地図が現在位置を中心に回転して描画される。(A)(B)いずれの画面でも、ディスプレイ12上での北の方位を示す矢口には、実際の北の方位と一致している。また、携帯用ナビ

ゲーション装置10の位置と向きを示す矢印はディスプ レイ12に対して常に同じ方向(画面上方)を向いてい る。なお、ディスプレイ12上には、通常、図示するよ うな略記号化された文字のみが表示されるが、所定の入 カキー14を押下してモードを変更することで、略記号 の代わりに正式な名称や地名(番地)等が表示される。 【0022】図6は、推奨経路に沿って携帯者を誘導す る場合におけるディスプレイ12の画面の変化を表した ものである。携帯者が、推奨経路Kに沿って移動する場 合、図6(A)で示す携帯者の向きを矢印Dで示すよう に変えて、図6(B)で示すように推奨経路Kの方向と 一致させたとき、向きを変えた分地図が回転表示される と共に、画面上に大きな矢印が表示され、かつ、スピー カ13、あるいはイヤホン16から、例えば、「ピッピ ッピッ」という案内音が出力される。携帯者は、この矢 印を見たりや案内音を聞くことにより、実際に見ている 景色において、推奨経路の方向がどの方向かを容易に認 識することができる。

【0023】図7は、目的地の方位のみを知らせる案内を行う場合におけるディスプレイ12の画面の変化を表したものである。特定の経路に沿って移動するのではなく、目的地nの方向を頼りに移動する場合、携帯者が矢印Eで示すように向きを変えて、目的地nの向きとが一致した場合に、大きな矢印の向きとが一致した場合に、大きな矢印の出力が行われる。図8は、ディスプレイ12と携帯者mとの位置関係を表したものである。図5~図7は、ディスプレイ12と携帯者mとが、図8に示す位置関係にあるときのディスプレイ12回面の変化を表したもので、地図上の文字(略記号)は、通常、図8の(A)~(C)で示すように、ディスプレイ12に対して一定の方向に描画される。すなわち、携帯者mから見

【0024】図9は、携帯者mが、携帯用ナビゲーショ ン装置10を手のひらで回転させた場合のディスプレイ 12画面の変化である。携帯用ナビゲーション装置10 は、携帯者が、所定の入力キー14を押下する等して、 文字の描画モードを変更すると、地図上の文字の向きを 地図の回転表示と一緒に回転させて描画する。すなわ ち、図9の(A)~(C)で示すように、携帯者mが、 手のひらの上で携帯用ナビゲーション装置10を回転さ せた場合、地図上の文字は、その向きが描画地図に対し て常に一定になるよう描画される。この場合携帯者は、 自分に対し常に同じ方向を向いた文字を見ることができ る。例えば、道を歩いているときに、自分自身の向きを 変えずに携帯用ナビゲーション装置10の向きのみを変 えて、「ピッピッピッ」といった案内音を頼りに目的地 の方向等を確認する場合、携帯者mにとって文字が見や すくなる。

【0025】(2)動作の詳細

て常に同じ角度で描画される。

図10~図12は、本実施例の携帯用ナビゲーション装置10の動作の流れを表したものである。案内情報発生部20は、先ず、目的地を有するか否かをたずねるメッセージをディスプレイ12上に表示させ、携帯者によて、目的地がある旨を入力された場合(ステップ11、ソ)、目的地設定の処理を行う(ステップ2)。すなわち、ディスプレイ12上に目的地の地名リスト、あるいは50音配列の平仮名等を表示する。そして、携帯やは50音配列の平仮名等を表示する。そして、携帯・は50音配列の平仮名等を表示する。そして、携帯・は50曲の地のでの地名を選択したり、あるいは50曲の地のでの地名を選択したり、あるいは50曲の地のであると、案内情報発生部20は、この目的地が入力されると、案内情報発生部20は、この目的地データをナビゲーション用RAMに格納して目的地の設定を行う(ステップ2)。

【0026】次に、案内情報発生部20は、所定の推奨 経路に沿って目的地まで案内する必要があるか否かをた ずねるメッセージをディスプレイ12に表示させ、必要 であると携帯者が入力したら(ステップ3)、ステップ 2で設定された目的地までの経路を探索する (ステップ 4)。すなわち、地図情報記憶部24の道路データ24 1及び交差点データ242、現在位置測定部26の測定 値、及び設定した目的地のデータを基に、現在位置から 目的地までの経路を探索する(ステップ4)。なお、現 在位置は、携帯者が、目的地と同様にデータ入力部30 を介して入力してもよい。目的地までの経路探索が終了 したら、地図上に表示する文字の向きを、図8で示すモ ードで描画するか、あるいは図9に示すモードで描画す るかをたずねるメッセージをディスプレイ12に表示す る。そして、携帯者が選択したモードを設定する(ステ ップ5)。

【0027】次に、案内情報発生部20は、方位センサ40の検出値から所定時間内での携帯用ナビゲーション装置10の方位変化を求める(ステップ6)。そして、方位変化が所定角度以上、例えば、5°、あるいは10°以上であった場合には(ステップ6:Y)、地図描画部28が、方位センサ40で検出した方位分、地図がディスプレイ12に対し回転して描画されるように、地図情報記憶部24から読み込んだ地図描画データ243を座標変換する(ステップ7)。座標変換した地図描画データ243は、地図描画部28の描画データ用RAMの地図レイヤ50(図3)に格納する。

【0028】次に、地図描画部28は、ステップ5で設定された描画モードに合わせて文字データ244を座標変換する(ステップ8)。すなわち、図8に示すように文字をディスプレイ12に対し一定角度で描画するモードが選択された場合には、文字データ244の各文字列データにおける座標データのみを変換する。一方、図9に示すように文字の向きも地図と共に回転して表示するモードが選択された場合には、文字データ244の座標データのみならず、各文字のフォントデータに対しても変換処理を行う。地図描画部28は、座標変換した文字

データ 2 4 4 を描画データ用 R A M の文字 レイヤ 5 2 に 格納する。

【0029】そして、現在位置レイヤ54、コマンドレイヤ56のデータと共に、座標変換後の地図描画データ243、文字データ244を重ねてディスプレイ12上に描画する(ステップ9)。これにより、ディスプレイ12上には、例えば、図1に示すような地図画面が表示される。なお、ステップ1において目的地がなかった場合(N)、及びステップ4において経路案内を必要としていないと入力された場合(N)は、ステップ5に移った場合(N)は、ステップ5に存った場合(N)、各レイヤ50~56に格納された空標変換(ステップ8、9)後の描画データを基に、地図等を描画する(ステップ9)。すなわち、ディスプレイ12上の地図は回転表示されない。

【0030】次に、案内情報発生部20は、ナビゲーション用RAMに経路データがあるか否かを判断し(ステップ10)、経路データがある場合には(ステップ10:Y)、矢印や案内音の出力を求める所定の入力キー14が携帯者によって押下されたか否かを判断する(ステップ11)。押下された場合(ステップ11:Y)、現在位置測定部26の測定データやナビゲーション開入と経路データから、現在の位置が探索といる場合(ステップ12:Y)、案内情報発生部20は、経路データを構成する交差点データや道路データ、及び方位センサ40の検出データから、携帯用ナビゲーション装置10の向きが経路の方向と一致するかを判断する(ステップ13)。

【0031】携帯用ナビゲーション装置10の向きが経路の方向と一致していたら(ステップ13:Y)、地図描画部28が、図6の(B)で示すように、ディスプレイ12上に大きい矢印を表示し(ステップ14)、案内音声信号出力部32が、例えば、「ピッピッピッ」といった案内音をスピーカ13あるいはイヤホン16から大きい音量で出力させる(ステップ15)。そして、例えば、携帯者がディスプレイ12上の案内中止のコマンド(図3)にタッチして、案内中止の指示をしたか否かを判断する(ステップ16)。案内中止が指示されていなかったら(ステップ16;N)、ステップ5に移行し、案内中止が指示されたら処理を終了させる。

【0032】ステップ13において、経路の方位と装置の方位が一致してないと判断した場合(N)、案内情報発生部20は、経路の方向と装置の方位の角度差が一定角、例えば、10°以内であるか否かを判断する(ステップ17)。そして、一定角以内であると判断した場合には(ステップ17; Y)案内音を小さい音量で出力し(ステップ18)、一定角以内でないと判断した場合には(ステップ18; N)ステップ16に移行する。この

ように、装置の方位が経路の方位に近づいたとき(ステップ17:Y)と、一致したとき(ステップ13:Y)とで、出力する案内音の音量を変えることで、経路の方向を容易に知ることができる。なお、ステップ11において所定の入力キー14が押下されなかった場合には(N)、ステップ16に移行し、ステップ12において現在位置が経路上にないと判断した場合(N)には、経路から外れていることを知らせるメッセージを、ディスプレイ12に表示したり、あるいはスピーカ13等から音声出力して(ステップ19)、ステップ16に移行する

【0033】一方、ステップ10において、経路データがなかった場合(N)、案内情報発生部20は、ナビゲーション用RAMに目的地データがあるか否かを判断する(ステップ20)。目的地データがある場合(ステップ20; Y)、案内情報発生部20は、その目的地データに含まれる座標データと、現在位置測定部26の測定データとから、目的地の方位を算出する(ステップ21)。そして、方位センサ40の検出値を基に、目的地の方位と装置の方位が一致しているか否かを判断し(ステップ22)、一致していた場合には(ステップ22; Y)、図7(B)で示すように大きい矢印をディスプト12に表示させる(ステップ23)。そして、案内音を大きい音量で出力させ(ステップ24)、ステップ16に移行する。

【0034】ステップ22において、目的地の方位と装置の方位とが一致していないと判断した場合(N)、目的地の方位と装置の方位の角度が一定角以内、例えば、10°あるいは15°以下であるか否かを判断する(ステップ25)。一定角以内であった場合には(ステップ25; Y)、案内音を小さい音量で出力させ(ステップ26)、一定角以内でなかった場合、ステップ16に移行する。なお、ステップ20において、目的地データがなかった場合(N)、ステップ16に移行して案内音の出力や図6(B)図7(B)に示したような大きな矢印の表示を行うことなく、図5に示すような地図の回転表示のみを行う。

【0035】以上説明したように、本実施例では、ディスプレイ12上の地図が携帯用ナビゲーション装置10の向きの変化に応じて回転するように描画され、地図上の方位と実際の方位とが一致するようになっているので、携帯者は、地図上での方位を実際の方位として容易に認識することができる。また、本実施例では、携帯用ナビゲーション装置10の方位と目的地や経路の方位が一致したときに、ディスプレイ12上に大きな矢印を表示するので、案内音のみで知らせる場合に比べて、携帯者は、明確に目的地や経路の方位を認識することができる

【0036】また、地図上の文字の向きが地図の回転に 関係なくディスプレイ12に対して一定になる文字描画 モードと、地図と共に回転する文字描画モードを選べるので、適当なモードを選択することで、携帯者は、常に自分に対して一定の向きで表示された文字を見ることがてき、地図上の文字を容易に認識することができる。本実施例では、地図や文字の回転表示は、携帯用ナビゲーション装置10の向きが一定角度以上変化したときにのみ行うので、手振れ等によって頻繁に地図が書き換えられることがなく画面のちらつきを防止することができる。なお、地図等の回転表示は、携帯用ナビゲーション装置10の向きが30°以上変化したときに行ってもよく、また、しきい値を設けることなく、携帯用ナビゲーション装置10の回転に合わせてリアルタイムに地図を回転表示してもよい。

【0037】また、案内音は、「ピー、ピー、ピー」や 「プップップッ」、あるいは「ピンポン」等でもよく、 「もう少し右側/左側です」や、「今向いている方向が 目的地/経路の方向です」といった音声を案内音として 出力してもよい。また、案内情報発生部20が、設定し た目的地のデータや現在地置測定部26で測定した現在 位置のデータから、目的地までの距離を算出して、目的 地への接近に伴って、案内音の音量を大きくするように してもよい。更に、所定の入力キーを押下(ステップ1 1) しなくても案内音を常に出力するようにしてもよ い。以上の実施例では、案内音の音量が2段階で変わる ようになっていたが、例えば、目的地あるいは経路の方 向と、装置の方向との角度が、30°のときと、15° のときと、O°のとき(一致したとき)とで、案内音の 大きさが3段階に変わるようにしてもよい。また、地図 の回転表示は、常に行われるようなっていたが、所定の キーを押下したときのみ、行われるようにしてもよい。

【0038】 【発明の効果】本発明の携帯用

【発明の効果】本発明の携帯用ナビゲーション装置によれば、携帯者は、容易に方向を認識することができる。 【図面の簡単な説明】

【図1】本発明の実施例による携帯用ナビゲーション装置の外観を示した図である。

【図2】同装置の構成を示したブロック図である。

【図3】同装置の描画データのレイヤ構造を示す説明図 である。

【図4】同装置の携帯者の道路上における方向の変化を 示した説明図である。

【図5】同装置のディスプレイ画面の変化を示した説明 図である。 【図 6 】同装置のディスプレイ画面の変化を示した説明 図である。

【図7】同装置のディスプレイ画面の変化を示した説明 図である。

【図8】同装置のディスプレイ画面と携帯者との位置関係を示した説明図である。

【図9】同装置のディスプレイ画面と携帯者との位置関係を示した説明図である。

【図10】同装置の動作の流れを示したフローチャートである

【図11】同装置の動作の流れを示したフローチャートである。

【図 1 2】同装置の動作の流れを示したフローチャートである。

【符号の説明】

- 10 携帯用ナビゲーション装置
- 12 ディスプレイ
- 13 スピーカ
- 14 入力キー
- 16 イヤホン
- 20 案内情報発生部
- 22 ダイヤルゲージ
- 24 地図情報記憶部
- 26 現在位置測定部
- 241 道路データ
- 242 交差点データ
- 243 地図描画データ
- 244 文字データ
- 245 その他のデータ
- 28 地図描画部
- 30 データ入力部
- 32 案内音声信号出力部
- 34 GPS受信機
- 36 ビーコン受信機
- 38 距離センサ
- 40 方位センサ
- 401 地磁気センサ
- 402 ジャイロセンサ
- 42 音声信号出力端子
- 50 地図レイヤ
- 52 文字レイヤ
- 54 現在位置レイヤ
- 56 コマンドレイヤ

