

Lecture 2: List algorithms using recursion and list comprehensions

Søren Haagerup

Department of Mathematics and Computer Science University of Southern Denmark, Odense

October 31, 2016

Expressions, patterns and types

	Type	Value constructors	Pattern / expression
Tuple	(<i>a</i> , <i>b</i>)	$(,)$:: $a \rightarrow b \rightarrow (a,b)$	(x,y)
List	[a]	[] :: [a]	[]
		$(:)::a \to [a] \to [a]$	(x:xs)
Bool	Bool	True :: Bool	True
		False :: Bool	False
Maybe	Maybe a	Nothing :: Maybe a	Nothing
		Just:: $a o Maybe$ a	(Just x)

- Capitalized words: Specific type
- Lowercase words: Type variable

When "specializing" a type, all occurrences of a type variable in the type expression must be replaced with the same type.

Tuples - e :: (a, b)

Value constructor

$$(,) :: a \rightarrow b \rightarrow (a,b)$$

Pattern matching (destructing)

$$fst(x, _) = x$$

 $snd(_, y) = y$
 $add(x, y) = x + y$

Pattern matching is the *only* way to get values out of the tuple - functions from the standard library does this too.

Lists - *e* :: [*a*]

Value constructors

$$(:) :: a \rightarrow [a] \rightarrow [a]$$

$$[] :: [a]$$

Pattern matching (destructing)

$$sum :: [Integer] \rightarrow Integer$$

 $sum [] = 0$
 $sum (x : xs) = x + sum xs$
 $head (x: _) = x$
 $tail (_: xs) = xs$

How can we define a function *length* :: $[a] \rightarrow Int$ to compute the length of a list?

Lists - *e* :: [*a*]

You are given two definitions of a function $isEmpty :: [a] \rightarrow Bool$ Which is better?

```
isEmpty :: [a] \rightarrow Bool
isEmpty [] = True
isEmpty _ = False
```

$$isEmpty' :: [a] \rightarrow Bool$$

 $isEmpty' xs = length xs \equiv 0$

Booleans

Not language primitives – Booleans and their operations are defined in the standard library! **Constructors**

True :: Bool False :: Bool

Pattern matching (destructing)

True $\wedge a = a$ False $\wedge _ =$ False False $\vee a = a$

 $True \lor = True$

We could define our own inline-if:

$$iif :: Boolean \rightarrow a \rightarrow a \rightarrow a$$

How would the definition look? Haskell also provides special syntax: if (a < 5) then "Hello" else "World".

Maybe - e :: Maybe a

Value constructors

Just :: $a \rightarrow Maybe \ a$ *Nothing* :: Maybe a

Pattern matching (destructing)

```
maybeAdd\ Nothing = Nothing
maybeAdd = Nothing = Nothing
maybeAdd\ (Just\ x)\ (Just\ y) = Just\ (x + y)
```

Brush up: Types

- Monomorphic types:
 - Int, Integer, Bool, Char, Float, Double, String
- Polymorphic types:
 - [*a*], Maybe *a*, (*a*, *b*)
 - lowercase letters are type variables which can be replaced by any other type to construct a new type
 - [[a]], [[[a]]], [Maybe a], Maybe (a, b), Maybe Int etc. are valid types

An n-argument function is a one-argument function which returns a (n-1)-argument function.

$$add :: Int \rightarrow (Int \rightarrow Int)$$

$$add x y = x + y$$

Evaluate by calling add 40 2.

The same function in JavaScript would look like this:

```
function add(x) {
    return function(y) {
        return x+y;
    }
}
```

Evaluate by calling add (40) (2).

Brush up: Function types

- Monomorphic functions: $words :: String \rightarrow [String]$
- Polymorphic functions:
 - $length :: [a] \rightarrow Int$
 - (:) :: $a \rightarrow [a] \rightarrow [a]$
 - This type signature ensures that lists can only be constructed with elements of the same type.
 - Can we make the following functions?
 - $sum :: [a] \rightarrow a$
 - $sort :: [a] \rightarrow [a]$

Type classes - Constraining the type of a function

- *Eq a* all types *a* for which (\equiv) is defined
- *Ord a* all types *a* for which (\leq) is defined
- Num a all types a for which
 (+), (*), abs, signum, from Integer, negate are defined

```
sum, product :: Num \ a \Rightarrow [a] \rightarrow a

sum \ [] = 0

sum \ (x:xs) = x + sum \ xs

product \ [] = 1

product \ (x:xs) = x * product \ xs
```

Type classes - Constraining the type of a function

Read

RECURSIVE LIST FUNCTIONS

Prelude: take and drop


```
take :: Int \rightarrow [a] \rightarrow [a]
take n \mid n \leq 0 = []
take _{[]} = []
take \ n \ (x:xs) = x:take \ (n-1) \ xs
take 3[1,2,3,4,5] \equiv 1: take 2[2,3,4,5]
                       \equiv 1: (2: take \ 1 \ [3,4,5])
                       \equiv 1: (2: (3: take \ 0 \ [4,5]))
                       \equiv 1:(2:(3:[]))
                       \equiv [1.2.3]
```

If the input list has length *m*, how many reductions are made?

Prelude: take and drop


```
drop :: Int \to [a] \to [a]

drop \ n \ xs \mid n \le 0 = xs

drop \ _{-}[] = []

drop \ n \ (_{-}: xs) = drop \ (n-1) \ xs

drop \ 3 \ [1,2,3,4,5] \equiv drop \ 2 \ [2,3,4,5]

\equiv drop \ 1 \ [3,4,5]

\equiv drop \ 0 \ [4,5]

\equiv [4,5]
```

If the input list has length *m*, how many reductions are made?


```
takeWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
takeWhile _[] = []
takeWhile p(x:xs)
| p x = x : takeWhile p xs
| otherwise = []
dropWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
dropWhile _{-}[] = []
dropWhile p(x:xs)
| p x = dropWhile p xs
 | otherwise = xs
```

How many reductions are made?

Prelude: (++), *concat* and *reverse*

- $(++) :: [a] \to [a] \to [a]$ [] + ys = ys(x : xs) + ys = x : (xs + ys)
- $concat :: [[a]] \rightarrow [a]$ concat [] = []concat (xs : xss) = xs + concat xss

• reverse :: $[a] \rightarrow [a]$ reverse [] = []reverse $(x : xs) = reverse \ xs + [x]$

(#) - running the algorithm


```
(++) :: [a] \to [a]
[] ++ys = ys
(x:xs) ++ys = x:(xs ++ ys)
[1,2,3] ++ys \equiv 1:([2,3] ++ ys)
\equiv 1:(2:([3] ++ ys))
\equiv 1:(2:(3:([] ++ ys)))
\equiv 1:(2:(3:ys))
```

How many reductions?


```
reverse :: [a] \rightarrow [a]
reverse[] = []
reverse (x:xs) = reverse xs + [x]
reverse [1,2,3] \equiv reverse [2,3] + [1]
                 \equiv (reverse [3] + [2]) + [1]
                 \equiv ((reverse [] + [3]) + [2]) + [1]
                 \equiv (([] + [3]) + [2]) + [1]
                 ≡ ...
                 \equiv [3, 2, 1]
```

How many reductions?

Example: trim


```
ltrim \ xs = dropWhile \ (\equiv ' \ ') \ xs

rtrim \ xs = reverse \ (ltrim \ (reverse \ xs))

trim \ xs = rtrim \ (ltrim \ xs)
```

Example: trim

Application operator. This operator is redundant, since ordinary application $(f \ x)$ means the same as $(f \ x)$. However, $\$ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted

Example: trim


```
ltrim = dropWhile (\equiv ' ')

rtrim = reverse \circ ltrim \circ reverse

trim = rtrim \circ ltrim
```

Point-free style. Sometimes it makes the code mode readable. Sometimes it doesn't (this is the reason, that some people call it *pointless style*).

Example: left, right, mid (inspired by VBScript) SUMMERSTER STATES OF THE STATES OF TH

```
left n = take n
right \ n = reverse \circ take \ n \circ reverse
mid \ s \ n = take \ n \circ drop \ s
```

Examples:

```
left 3 "abcde" = "abc"
right 3 "abcde" = "cde"
mid 2 2 "abcde" = "cd"
```

Example: *substr* (inspired by PHP)

Description

```
string substr ( string $string , int $start [, int $length ] )
```

Returns the portion of **string** specified by the **start** and **length** parameters.

```
substr :: [a] \rightarrow Int \rightarrow Maybe Int \rightarrow [a]

substr xs s Nothing = drop s xs

substr xs s (Just l) = take l (substr xs s Nothing)
```

```
substr "abracadabra" 5 Nothing = "adabra"
substr "abracadabra" 5 (Just 4) = "adab"
```

Example: *substr* (inspired by PHP)

But *substr* should work with negative offsets/lengths as well.

```
substr "abcdef" (-1) Nothing = "f" substr "abcdef" (-2) Nothing = "ef" substr "abcdef" (-3) (Just 1) = "d" substr "abcdef" (-3) (Just (-1)) = "abcde" substr "abcdef" (-3) (Just (-1)) = "cde" substr "abcdef" (-3) (Just (-1)) = "de"
```

Example: *substr* (inspired by PHP)

But *substr* should work with negative offsets/lengths as well.

```
substr :: [a] \rightarrow Int \rightarrow Maybe Int \rightarrow [a]

substr \ xs \ s \ Nothing = drop \ (nonneg \ xs \ s) \ xs

substr \ xs \ s \ (Just \ l) = take \ (nonneg \ xs' \ l) \ xs'

where \ xs' = substr \ xs \ s \ Nothing

nonneg :: [a] \rightarrow Int \rightarrow Int

nonneg \ xs \ n

| \ n < 0 = max \ 0 \ (length \ xs + n)

| \ otherwise = n
```

Prelude: zip


```
zip :: [a] \rightarrow [b] \rightarrow [(a,b)]
zip [] \_ = []
zip \_[] = []
zip (x : xs) (y : ys) = (x,y) : zip xs ys
```

> zip [1..5] "abcd" [(1,'a'),(2,'b'),(3,'c'),(4,'d')]

Prelude: zipWith

$$zipWith :: (a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]$$
 $zipWith = [] = []$
 $zipWith = [] = []$
 $zipWith f (x:xs) (y:ys) = f x y:zipWith f xs ys$
 $zip = zipWith (,)$
 $> zipWith (+) [1..5] [5,4..1]$
 $[6,6,6,6,6]$

Insertion sort


```
insert :: Ord a \Rightarrow a \rightarrow [a] \rightarrow [a]

insert x [] = [x]

insert x (y : ys) | x \le y = x : y : ys

| otherwise = y : insert x ys
```

isort :: Ord
$$a \Rightarrow [a] \rightarrow [a]$$

isort [] = []
isort $(x:xs) = insert \ x \ (isort \ xs)$

Merge sort


```
merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge xs []
                                      = xs
merge [] ys
                                      = ys
merge(x:xs)(y:ys) \mid x \leq y = x:merge(xs)(y:ys)
                         | otherwise = y : merge(x : xs) ys
msort :: Ord \ a \Rightarrow [a] \rightarrow [a]
msort[] = []
msort [x] = [x]
msort xs = merge (msort ys) (msort zs)
  where
      (ys, zs) = splitAt (length xs 'div' 2) xs
```

Lab this Friday: Polynomials

A polynomial $p : \mathbb{R} \to \mathbb{R}$ with degree n is a function

$$p(x) = a_0 x^0 + a_1 x^1 + \ldots + a_n x^n$$

where $a_0 \dots a_n$ are constants in \mathbb{R} , $a_n \neq 0$. In Haskell we define a type synonym

type
$$Poly a = [a]$$

and let a polynomial be defined by the list of its coefficients

$$p :: Num \ a \Rightarrow Poly \ a$$

 $p = [a0, a1 ... an]$

Lab this Friday: Polynomials

Examples:

- $5 + 2x + 3x^2$ is represented by [5, 2, 3]
- $-2 + x^2$ is represented by [-2, 0, 1]
- 0 is represented by []

Lab this Friday: Polynomials

Think about this in the break:

1. We discover that $-2 + x^2$ can be represented by infinitely many lists:

$$[-2,0,1],[-2,0,1,0],[-2,0,1,0,0],[-2,0,1,0,0,0]...$$

Inspired by *trim*, write a function *canonical* that converts a polynomial to its smallest representation.

2. We want to define addition of polynomials, such that

$$(5 + 2x + 3x^2) + (-2 + x) = 3 + 3x + 3x^2$$

i.e.

add
$$[5,2,3]$$
 $[-2,1] = [5+(-2),2+1,3] = [3,3,3]$
Modify *zip* to implement *add*.

LIST COMPREHENSIONS

Introduction

In mathematics, the set of square numbers up to 5^2 is

$${x^2 \mid x \in \{1, \dots, 5\}}$$

In Haskell, the list of square numbers up to 5^2 can be written

$$[x * x \mid x \leftarrow [1..5]]$$

We say

- | "such that"
- ← "is drawn from"
- $x \leftarrow xs$ is a "generator"

Cartesian product

cartesian
$$xs \ ys = [(x,y) \mid x \leftarrow xs, y \leftarrow ys]$$

```
> cartesian [1..3] "abc"

[(1,'a'),(1,'b'),(1,'c'),

(2,'a'),(2,'b'),(2,'c'),

(3,'a'),(3,'b'),(3,'c')]
```

Ordering matters!

cartesian'
$$xs \ ys = [(x,y) \mid y \leftarrow ys, x \leftarrow xs]$$
> cartesian' $[1..3]$ "abc"
 $[(1,'a'),(2,'a'),(3,'a'),(1,'b'),(2,'b'),(3,'b'),(1,'c'),(2,'c'),(3,'c')]$

elemIndices :: Eq
$$a \Rightarrow a \rightarrow [a] \rightarrow [Int]$$

elemIndices $xs \ y = [i \mid (i,x) \leftarrow zip \ [0 . . length \ xs] \ xs, x \equiv y]$

The boolean expression $x \equiv y$ is called a **guard**.

```
> elemIndices [3, 4, 2, 1, 4, 5] 4 [2, 5]
```



```
pythags \ n = [\ (x,y,z) |z \leftarrow [1 \dots n], x \leftarrow [1 \dots z], y \leftarrow [x \dots z], x * x + y * y \equiv z * z]
```

> pythags 15 [(3,4,5), (6,8,10), (5,12,13), (9,12,15)]

Prelude functions

- here implemented using list comprehensions

- $zipWith f xs ys = [f a b | (a,b) \leftarrow zip xs ys]$ **Example:** zipWith (+) [2,1,3] [3,1,2] = [5,2,5]
- concat $xss = [x \mid xs \leftarrow xss, x \leftarrow xs]$ **Example:** concat [[1], [1, 2], [1, 2, 3]] = [1, 1, 2, 1, 2, 3]
- $map f xs = [f x | x \leftarrow xs]$ **Example:** map (*3) [1,2,3,4] = [3,6,9,12]
- filter $p \ xs = [x \mid x \leftarrow xs, p \ x]$ **Example:** filter even [6, 2, 7, 5, 2] = [6, 2, 2]

sorted
$$xs = and [x \leqslant y \mid (x, y) \leftarrow zip \ xs \ (tail \ xs)]$$

sorted
$$[2,3,1] \equiv and [True, False]$$

 $\equiv False$

Pascal's triangle

$$\begin{pmatrix} \binom{0}{0} & 1 \\ \binom{1}{0} \binom{1}{1} & 11 \\ \binom{2}{0} \binom{2}{1} \binom{2}{2} & 121 \\ \binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3} & 1331 \end{pmatrix}$$

$$(a+b)^{n} = \sum_{i=0}^{n} \binom{n}{i} a^{i} b^{n-i}$$
$$(a+b)^{3} = \binom{3}{0} b^{3} + \binom{3}{1} a b^{2} + \binom{3}{2} a^{2} + a^{2} b + \binom{3}{3} a^{3}$$
$$= b^{3} + 3ab^{2} + 3ba^{2} + a^{3}$$

Pascal's triangle

$$\begin{pmatrix} \binom{0}{0} & 1 \\ \binom{1}{0} \binom{1}{1} & 11 \\ \binom{2}{0} \binom{2}{1} \binom{2}{2} & 121 \\ \binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3} & 1331 \end{pmatrix}$$

$$pascal \ xs = [1] + [x + y \mid (x, y) \leftarrow zip \ xs \ (tail \ xs)] + [1]$$

```
\begin{array}{lll} \textit{pascal} \ [1] & = [1,1] \\ \textit{pascal} \ [1,1] & = [1,2,1] \\ \textit{pascal} \ [1,2,1] & = [1,3,3,1] \\ \textit{pascal} \ [1,3,3,1] & = [1,4,6,4,1] \\ \textit{pascal} \ [1,4,6,4,1] & = [1,5,10,10,5,1] \end{array}
```

Prime numbers

A *prime number* p is a number where its only divisors are 1 and p.

```
divisors n = [x \mid x \leftarrow [1..n], n \text{ 'mod' } x \equiv 0]

prime n = \text{divisors } n \equiv [1, n]

primes n = [x \mid x \leftarrow [2..n], \text{prime } x]
```

Caesar cipher


```
import Data.Char (ord, chr, isLower)
char2int :: Char \rightarrow Int
char2int c = ord c - ord 'a' -- a=0, b=1 ...
int2char :: Int \rightarrow Char
int 2 char n = chr (ord 'a' + n) - 0 = a, 1 = b ...
shift n c \mid isLower c = int2char((char2int c + n) 'mod' 26)
         | otherwise = c
encode n xs = [shift n x | x \leftarrow xs]
decode n \ xs = [shift (-n) \ x \mid x \leftarrow xs]
encode 3 "haskell er fantastisk"
          "kdvnhoo hu idqwdvwlvn"
```

Generating bitstrings


```
bitstrings 0 = [[]]

bitstrings n = [b:bs \mid b \leftarrow [0,1], bs \leftarrow bitstrings \ (n-1)]

bitstrings 0 \equiv []

bitstrings 1 \equiv [[0,1]]

bitstrings 2 \equiv [[0,0],[0,1],[1,0],[1,1]]

bitstrings 3 \equiv [[0,0,0],[0,0,1],[0,1,0],[0,1,1],

[1,0,0],[1,0,1],[1,1,0],[1,1,1]]
```

Finding the transpose of a matrix


```
transpose :: [[a]] \rightarrow [[a]]
transpose [] = []
transpose ([] : xss) = transpose xss
transpose xss = [x | (x: \_) \leftarrow xss]
: transpose [xs | (\_: xs) \leftarrow xss]
```

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Finding the transpose of a matrix

```
\begin{array}{ll} transpose :: [[a]] \rightarrow [[a]] \\ transpose [] &= [] \\ transpose ([]:xss) = transpose \ xss \\ transpose \ xss &= [x \mid (x: \_) \leftarrow xss] \\ &\quad : transpose \ [xs \mid (\_:xs) \leftarrow xss] \end{array}
```

```
transpose [[1,2,3],[4,5,6]]
\equiv [1,4]: transpose [[2,3],[5,6]]
\equiv [1,4]:[2,5]: transpose [[3],[6]]
\equiv [1,4]:[2,5]:[3,6]: transpose [[],[]]
\equiv [1,4]:[2,5]:[3,6]: transpose [[]]
\equiv [1,4]:[2,5]:[3,6]: transpose []
\equiv [1,4]:[2,5]:[3,6]:[]
\equiv [[1,4],[2,5],[3,6]]
```



```
permutations [] = [[]]
permutations (x:xs) = [ys' + x:ys'']
  ys \leftarrow permutations xs,
  i \leftarrow [0...length ys],
  let (ys', ys'') = splitAt i ys]
> permutations []
[[]]
> permutations [1]
[[1]]
> permutations [1,2]
[[1,2],[2,1]]
> permutations [1,2,3]
[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]
```


Solving the n-queens problem

The **eight queens puzzle** is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that **no two queens share the same row, column, or diagonal**. The eight queens puzzle is an example of the more general **n-queens problem** of placing n queens on an $n \times n$ chessboard.

Backtracking - n-queens problem

```
validExtensions \ n \ qs = [q:qs \mid q \leftarrow [1..n] \setminus qs, q \ 'notDiag' \ qs]
   where
      a' not Diag' as = and [abs (a - ai) \not\equiv i
                                 |(qi,i) \leftarrow qs'zip'[1..n]|
queens' n = 0
queens' n i = [qs']
                   | qs \leftarrow queens' \ n \ (i-1),
                    qs' \leftarrow validExtensions \ n \ qs
queens n = queens' n n
```