UM 204 - MIDTERM EXAMINATION

Instructor: Purvi Gupta

February	23,	2024
----------	-----	------

2:00 pm - 5:00 pm (3 hours)

Name of the student:	
Student number:	

Instructions

- 1. This booklet has **16 pages** and **5 questions**. The first question has 4 parts.
- 2. **Read** every question carefully before attempting to answer it. **Partial credit** is available for partial (but correct) ideas.
- 3. You may use without proof any results or examples discussed in class or homework assignments. If you do not cite what you are using, you will be penalized.
- 4. The answer to each question must be written below it. If you run out of space, you may use Pages 14-16, or even attach extra sheets, but these will only be graded if you clearly **tell the reader** to turn to these pages.
- 5. All the blank spaces can also be used for **scrapwork**.
- 6. Do not separate any pages from this booklet.

Grading table

Problem #	Points	Score
1	24	
2	10	
3	12	
4	12	
5	12	
Total	70	

Problem 1. (24 points) For each of the statements below, determine whether it is (necessarily) true or (sometimes) false. If you circle TRUE, you must provide a proof. If you circle FALSE, you must provide a counterexample and justify it.

(a) In any complete metric space, a bounded sequence always admits a convergent subsequence.

(b) The function $d: \mathbb{R}^k \times \mathbb{R}^k \to [0, \infty)$ given by

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - 2\mathbf{y}\|, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^k,$$

is a metric on \mathbb{R}^k .

(c) In any metric space, the closure of a connected set is connected.

(d) Given subsets E_1, E_2, \dots of a metric space (X, d),

$$\bigcap_{j=1}^{\infty} E_j^{\circ} = \left(\bigcap_{j=1}^{\infty} E_j\right)^{\circ}.$$

(Here, E° denotes the interior of E.)

Problem 2. (10 points) Recall the construction of \mathbb{Q} as the set of equivalence classes of the relation R on $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ given by $(a,b)R(c,d) \iff ad = bc$. We say that $[(a,b)] \leq [(c,d)]$ if $(bc - ad)(bd) \geq 0$. Using only the arithmetic and order properties of integers, show that the relation \leq is well-defined.

UM 204 - Midterm I		2023-24
	EXTRA SPACE FOR PROBLEM 2.	

Problem 3. (12 points) Let $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ be the sequence given by

$$x_0 = 0; x_1 = 1;$$

 $x_n = \frac{1}{2}(x_{n-1} + x_{n-2}), n \ge 2.$

Show that $\{x_n\}_{n\in\mathbb{N}}$ is a convergent sequence. (You may cite limits of standard sequences and series without proof.)

EXTRA SPACE FOR PROBLEM 3.	UM 204 - Midterm I		2023-24
		EXTRA SPACE FOR PROBLEM 3.	

Problem 4. (12 points) Let \mathscr{R} denote the set of equivalence classes¹ of Cauchy sequences of rational numbers. The equivalence class of $\{a_n\}_{n\in\mathbb{N}}$ is denoted by $[\{a_n\}_{n\in\mathbb{N}}]$. We say that $\alpha = [\{a_n\}_{n\in\mathbb{N}}]$ is positive if there is some positive rational c > 0 and some $N \in \mathbb{N}$ such that

$$a_n > c$$
, $\forall n \ge N$.

We say that α is negative if there is some negative rational c < 0 and some $N \in \mathbb{N}$ such that

$$a_n < c, \quad \forall n \ge N.$$

Assume that these are well-defined notions. Show that, for any $\alpha \in \mathcal{R}$, one and only one of the following holds:

- (a) α is the equivalence class of the constant 0 sequence;
- (b) α is positive;
- (c) α is negative.

You may not use the fact that \mathscr{R} is the set of real numbers. You may use the properties of the ordered field $(\mathbb{Q}, +, \cdot, \leq)$.

Recall that two rational sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ are said to be equivalent if, for every rational $\varepsilon>0$, there is an $N\in\mathbb{N}$ such that $|a_n-b_n|<\varepsilon$ for all $n\geq N$.

EXTRA SPACE FOR PROBLEM 4.	UM 204 - Midterm I		2023-24
		EXTRA SPACE FOR PROBLEM 4.	

Problem 5. (12 points) Let (X,d) be a metric space. A function $f:X\to\mathbb{R}$ is said to be upper semicontinuous at $p\in X$ if, for any sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ converging to p,

$$\limsup_{n \to \infty} f(x_n) \le f(p).$$

A function is said to be upper semicontinuous on X if it is upper semicontinuous at each point of X. Prove that if f is upper semicontinuous on X, then

$$U_a = \{ x \in X : f(x) < a \}$$

is open for any $a \in \mathbb{R}$.

UM 204 - Midterm I					2023-24
	EXTRA	SPACE FO	R PROBLE	EM 5.	

<u>UM 204 - M</u>	idterm I						2023-24
	EXTRA	SPACE FO	OR ANSWE	RS OR RO	UGH WOR	LK	

<u>UM 204 - Mi</u>	dterm I					2023-24
	EXTRA SP	PACE FOR A	NSWERS C	R ROUGH	WORK	

<u>UM 204 - Mi</u>	dterm I					2023-24
	EXTRA SP	PACE FOR A	NSWERS C	R ROUGH	WORK	