Galanto Prova I
Amostragen
1. l'embremos de definição de prososilidade
conditional, i.e. PCAIB) = PCAIB) / PCB).
Também lembumos que un planejamento amostral
é aleatoño simples sem substituição se
todos as possíveis amostras de tamanho
n tem a mesma probabilidade de serem selectorada
i. e,
1 Se #5 = n
$P(S=s) = {\binom{N}{s}}$
0) caso contrário
em que The = n pover to do K=1, N
N '
Agua, nma amostragem Bernoull com
The TI VICEU temos que
P(S==) = The (1-11) None (xx)
Se consideramos que o tomanho no = n
(prado) então
P (S=s Ins=n) = P(S=s = Ms=n)
P (Ns=n)

Note também que parais plane amostral Bemoult
J, c(1) = { 1 se o elemento KES
logo In (s) ~ Benoull (Tix) = Busanli (TT)
Z Ic(s) ~ Binomial (N, Tiz), KEU Binomial (N, Tiz), Binomial (N, Tr) Shipotese
Binomial (N, TT) Shipotese
un get ja en engelle het en de la france
1050, N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/N/
logo, P(n,=n) = (N) T" (1-TT) N-n
Agora. Note que
P(5= s e ns=n) = P((s=s)n(ns=n))
= -11"(1-17)N-1
- 11 (1 11)
Dai
P(5=s ns=n)= T(1=1)N-n = 1
(") +(" (1-11)N-" (N)
[tilibra] que cancide com (7), logo queda verificado.

20			11, 1		
,		2	3	A	- S
	4	~	~~	~	~
	9-10	10-11	11-12	12-13	13-14

A primeira hara é selecionada com probabilidade
1/5 mas a segunda hara é extraida de forma condicional

si a primeira hora foi I ou 5 a probabilidade ¿ igual a 113 pela hipókise, e probabilidade 1/2 no resto dos casos.

1 ha se levonada

		\ ,	2	3	4	5)
	1	0	0	1/15	Vis	1115 E IN	5
	2	0	O	0	110	1.10	P(s)
29	3	1/10	0	0	0	1/10	
hor	4	1110	110	0	0	0	
	5	1/1	5 115	1/15	0	0	J

As amostrus sou de famon ha ?

A amostu = (1,2) > P(16=1,1=2)=0 horas controj ses Z P(s), en que 3 é o conjunto de todas as amostras, i. +, (1, 7, 3, 4, 5 \ x 41, 2, 3, 4, 57. TI, = \(\sum_{\section} \rightarrow \rightarrow \limits + \frac{2}{10} = \frac{8+6}{30} = \frac{12}{30} $\Pi_2 = \sum_{s \in S} P(s) = \frac{3}{10} + \frac{1}{15} = \frac{11}{30}$ $\Pi_3 = \frac{7}{568} (P(5)) = \frac{2}{15} + \frac{7}{10} = \frac{10}{30}$ TA: 2 (P(S) = 30 + 15 = 30 $T_{5} = \frac{2}{565} p(s) = \frac{4}{15} + \frac{2}{10} = \frac{12}{30}$

Note que
C1 11 / C2
E(ns)= Z TTK= TT, +TL+ TT3 1 TT4 + TT5
公 号十岁十号十号一
= 1,8667 2 2.
Acres
Agora Tes = Z P(S)
b) ses
The 0:0= The Trad = To + To = 30
This = 15 + 10 = 30 = This The Tree = 30 = =
The = 1/10 = 5/30 = 1741
This = 1/15 = 2/30 = TTSI TISS = 0
TO 0 5/30 5/30 2/30 T
(TI) = 0 0 0 6/30 5/30 = TT
5/30 0 0 5/30
5/30 6/30 0 0
7/30 5/30 5/30 0
logo o plano amustal é não mensuraivel pois tem Thex = 0.
c)
Δ = C (]x,]1) = / Πκι - Πκ. Πίκ , κ. \$1
TIK (1-11K), K=1
(tilibra)

Δ11: Th. (1-77.) = 136 (1-13) = 137 = 132
DIZ = TIZ + TITZ = 0 - 12 130 = - 13 = - 132
ALZ = The TITTS = 30 - 12/30 × 30 = 300
114 = TI4 - TI TI4 = 5/30 - 730 30 2 900
105 = 11,5- 71,75 = 30 - 30 = -30
$\Delta_{22} = W_2(1-T_2) = \frac{1}{30}(1-\frac{1}{30}) = \frac{1}{30} \times \frac{19}{30} = \frac{209}{900}$
122 - TIZZ - TISTIZ = 0 - \(\frac{1}{20}\) = - \(\frac{1}{200}\)
7 /11 / 11 \ 100 - 121 - 59
$\Delta_{25} = \pi_{25} - \pi_{2}\pi_{4} = \pi_{0} - (\pi_{0}^{2}\pi_{0}^{2}\pi_{0}^{2}) = \pi_{00}^{200} = \pi_{00}^{200} = \pi_{00}^{200}$ $\Delta_{25} = \pi_{25} - \pi_{2}\pi_{5} = \pi_{00}^{200} - (\pi_{00}^{2}\pi_{00}^{2}\pi_{00}^{2}) = \pi_{00}^{200} - \pi_{00}^{200} = \pi_{00}^{200}$
A33 = T3 (1-T3) = 10 × (1- 場) = 場・(場) = 200
124 = 1134 - Tata = 0 - (15 × 15) = -15
$D_{35} = \Pi_{35} - \Pi_{3}\Pi_{5} = 9_{30} - (\frac{10}{30} + \frac{12}{30}) = \frac{120}{900} - \frac{120}{900} = \frac{30}{900}$
Dat = TI4 (1-TI4) = 30 (1-30) = 30 ~ (19) = 209
Δ4 = Π4 (1- Π4) = 30 (1-30) = 30 ~ (19/30) = 209/400 Δ45 = Π45 - Π4 Π5 = 0 - 30 × 30 = - 1300
155 = TI = (1-TIs) = 30 (1-30) = 30 × 30 = 216

	T 216	- 132	30	18	-84	7
$\Delta = \frac{1}{1}$	-132	209	-110	29	18	
900	30	-110	200	-110	30	
	1.8	59	-100	209	- 132	
	-84	18	30	-132	216	
	No.			The second secon		

3)	
a) Com sase nos in formações da tasela pode-se	
obter estimações para o gastro medio da população	20
e 1.C.	
Sya N = 20000 entre o gasto midro estimado	<u>€</u>
$E_{H} = Y_{est} = 0,3(1,2) + 0,2(2,4) + 0,5(0,6)$	
E = Yest = 0,3(1,2) + 0,2(2,4) + 0,5(0,6).	
= 1,19 'satérios mínimos (média ipopulación	<u>a])</u>
E = Pest = N(Fest) = 20.000 (1,14) = 22800	,
E = Yest = N (Fest) = 20.000 (1,14) = 22800	
Salurio minimo	_
	7
	3.
Var (4ex) = (0,3) (0,36) + (0,2) (1,21) + (0,5) (0,04)	
$\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$	
$\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$	
$ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5)^{2} (0.04)}{40} - (0.3) (0.36) + (0.2) (0.2) (0.21) + (0.5) (0.04) $	
$\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$	
$ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5)^{2} (0.04)}{40} - (0.3) (0.36) + (0.2) (0.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $	
$ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5)^{2} (0.04)}{40} - (0.3) (0.36) + (0.2) (0.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5) (0.04) $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} + \sqrt{(v_{est})^{2} (0.36)} $ $ \frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} $ $\frac{\sqrt{(v_{est})} = \sqrt{(v_{est})^{2} (0.36)} $	
$ \sqrt{(40)} = (0.3)^{2} (0.36) + (0.2)^{2} (1.21) + (0.5)^{2} (0.04) $ $ - (0.3) (0.36) + (0.2) (1.21) + (0.5) (0.04) $ $ 20000 $	
$ \frac{1}{40} \left(\frac{1}{36} \right) = \frac{(0.3)^{2} (0.36)}{40} + \frac{(0.2)^{2} (1.21)}{36} + \frac{(0.5)^{2} (0.04)}{44} - \frac{(0.3)(0.36)}{36} + \frac{(0.2)(0.21)}{44} + \frac{(0.5)(0.04)}{20000} $ $ \frac{1}{20000} \left(\frac{1}{40} \right) = \frac{3}{20000} \frac{1}{100} + \frac{3}{100} \frac{1}$	

d.P(Yest) = Vvar(Yest) = P,0 3552 selivio)
logo em intenalo de confraça de 95%.
Test = ton-joine > d.p (Yest)
[1114 + Fild x 0103225) 1'16 + Pild x 0103225]
0 valor de ting & 1,98 (que não et milo de tente de Zind que seria 1,96),
(\$,06967; 1,21033) em salatos mínimos.
Agon para a total temos que Var (En) = Var (N Yest) = N2 Var (Yest)
Var (km) = Var (N Yest) = No Var (Yest) Logo
d., (2n) = NVVa(qest) = N, d., p(qest)
(tilibra)

limberds que a forçato uslo pade ser diner , i.e. H H= número total de estratos.
dinear, i.e. H- número total
dinear, i.e. H H= número total de estrados. Les
C= Co + Z Chy
401
1 1 1 1 ble de 5 Luma cão
(= or camento total para a coesa de montro de
(= orcamento total para a coleta de informação Co= costo fixo que não depende do número de elementos a selecionar e
elementos a silecionar e
Cha costo de realitar a amos ingers
estat h.
Vino au o tamanho de amestra o dimo por
Vino que o tamanho de amostra o dimo por estrato é propresent en n e é dado
200
nh = n Ph , el Word, em que har
Z ph
421
- Wh Sh & Ph & una vericiel
Ph = Wh Sh & Ph & una vericice) Ph = VCh de propriema li dade
, , , , , , , , , , , , , , , , , , ,
Uhlizando (ii) temo
n= 2500000 4.000 10,36 + 6000 VI,21 + 10000 VO,04
V5000 V3000 V1000
(tilibra) M

4000 V0,36 V5000 +6000 V1,21 V6000 + 10000 V0,04 V1000 217,6856 x 25000 594448.1 n = 915, 4948 tomanho global n. = 915,4948 x (4.000 VO,36) = 142,7422 V3000 = 506,7682 hz = 915, 4948 x 217,6856 265,9843 n3= 915, 4948 > £ 266 Questão 4 desenvolvida em The largarvo tilibra

Amostragem (MATD44)

Prova - 01 (gabarito) - Questão 4

Raydonal Ospina (mailto:raydonal@castlab.org)

a)

```
dados <- read.table("~/Github/matd44/Scripts/dadosTabela.txt", quote="\"", comment.char="")

colnames(dados) <- c("ID", "Sexo", "Renda")

# Código para calcular a renda média e intervalo de confiança
media_renda <- mean(dados$Renda)
desvio_padrao <- sd(dados$Renda)
n <- nrow(dados)
erro_padrao <- desvio_padrao / sqrt(n)

# Intervalo de confiança de 95% para a média
intervalo_confianca_media <- qt(c(0.025, 0.975), df = n - 1) * erro_padrao + media_renda

cat("A renda média dos trabalhadores é:", round(media_renda, 2), "mil reais.\n")</pre>
```

A renda média dos trabalhadores é: 1994.54 mil reais.

```
cat("Intervalo de confiança (95%) para a renda média:", round(intervalo_confianca_media, 2), "a", round (intervalo confianca media[2], 2), "mil reais.\n")
```

Intervalo de confiança (95%) para a renda média: 1845.68 2143.4 a 2143.4 mil reais.

b)

A renda total dos trabalhadores é: 111694.1 mil reais.

```
cat("Intervalo de confiança (95%) para a renda total:", round(intervalo_confianca_renda_total[1], 2), "
a", round(intervalo_confianca_renda_total[2], 2), "mil reais.\n")
```

Intervalo de confiança (95%) para a renda total: 103358.1 a 120030.2 mil reais.

C)

```
# Código para calcular a proporção e número total de mulheres
proporcao_mulheres <- sum(dados$Sexo == "Fem") / n
numero_total_mulheres <- round(proporcao_mulheres * 1000)

# Intervalo de confiança de 95% para a proporção de mulheres
erro_padrao_proporcao <- sqrt(proporcao_mulheres * (1 - proporcao_mulheres) / n)
intervalo_confianca_proporcao <- prop.test(sum(dados$Sexo == "Fem"), n)$conf.int

# Intervalo de confiança de 95% para o número total de mulheres
intervalo_confianca_numero_mulheres <- round(intervalo_confianca_proporcao * 1000)
cat("A proporção de mulheres na empresa é:", round(proporcao_mulheres, 2), ".\n")</pre>
```

A proporção de mulheres na empresa é: 0.12 .

cat("Intervalo de confiança (95%) para a proporção de mulheres:", round(intervalo_confianca_proporcao [1], 2), "a", round(intervalo_confianca_proporcao[2], 2), ". \n ")

Intervalo de confiança (95%) para a proporção de mulheres: 0.06 a 0.25 .

cat("O número total estimado de mulheres na empresa é:", round(numero_total_mulheres), "com intervalo de confiança (95%):", round(intervalo_confianca_numero_mulheres[1]), "a", round(intervalo_confianca_numero_mulheres[2]), ". \n ")

0 número total estimado de mulheres na empresa é: 125 com intervalo de confiança (95%): 56 a 247 .

d)

```
# Toda a a mostra independente do Sexo
library(ggplot2)
ggplot(dados, aes(x=Renda)) +
  geom_density()
```



```
# Segmentado por subpopulação
ggplot(dados, aes(x=Renda, color=Sexo)) +
  geom_density()
```



```
# teste de normalidade não paramétrico de Shapiro-Wilk
# Global
shapiro.test(dados$Renda)

##
## Shapiro-Wilk normality test
##
## data: dados$Renda
## W = 0.99134, p-value = 0.9587
```

```
# teste de normalidade não paramétrico de Shapiro-Wilk
# Subpopulação de mulheres
shapiro.test(dados$Renda[dados$Sexo=="Fem"])
```

```
##
## Shapiro-Wilk normality test
##
## data: dados$Renda[dados$Sexo == "Fem"]
## W = 0.88161, p-value = 0.2337
```

```
# teste de normalidade não paramétrico de Shapiro-Wilk
# Subpopulação de homens
shapiro.test(dados$Renda[dados$Sexo=="Mas"])
```

```
##
## Shapiro-Wilk normality test
##
## data: dados$Renda[dados$Sexo == "Mas"]
## W = 0.98807, p-value = 0.8971
```

Como n é grande (n = 56), podemos considerar a aproximação pela distribuição normal. cat("Sim, podemos considerar aproximações pela distribuição normal, pois a amostra é grande (n = 56).\n e os testes de Shapiro não rejeitam a hipótese nula ao níveis usuais de significância estatística")

```
## Sim, podemos considerar aproximações pela distribuição normal, pois a amostra é grande (n = 56).
## e os testes de Shapiro não rejeitam a hipótese nula ao níveis usuais de significância estatística
```

e)

cat("Sim, as amostras podem ser consideradas como amostras aleatórias simples, pois foram selecionadas n ão há argumentos para se pensar que foram selecionadas por uma mecanismo mais sofisticado, adicionalment e pelos gráficos de densidade as distribuiç oes apresentam caudas semelhantes e simetria próxima o que é um bom indicativo de que não houve mecanismo que favoreça mais um grupo ou outro.\n")

Sim, as amostras podem ser consideradas como amostras aleatórias simples, pois foram selecionadas não há argumentos para se pensar que foram selecionadas por uma mecanismo mais sofisticado, adicionalmente p elos gráficos de densidade as distribuiç oes apresentam caudas semelhantes e simetria próxima o que é um bom indicativo de que não houve mecanismo que favoreça mais um grupo ou outro.


```
# Código para calcular a renda média e o total das mulheres
media_renda_mulheres <- mean(dados$Renda[dados$Sexo == "Fem"])
total_renda_mulheres <- sum(dados$Renda[dados$Sexo == "Fem"])
cat("A renda média das mulheres na empresa é:", round(media_renda_mulheres, 2), "mil reais.\n")</pre>
```

A renda média das mulheres na empresa é: 2113.95 mil reais.

cat("O total estimado da renda das mulheres na empresa é:", round(total_renda_mulheres, 2), "mil reais.\
n")

O total estimado da renda das mulheres na empresa é: 14797.64 mil reais.

A questão aqui não tem problemas em termos do estimador pontual. Contudo o verdadeiro problema está na variância do estimador.

Neste sentido pode se pensar em estimadores (condicionais), i.e

$$ext{Var}({ar y}_k) = rac{N_k - n_k}{N_k n_k} s_k^2,$$

em que N_k (Número total de elementos na subpopulação é conhecido), com n_k o número de elementos na amostra pertencendo a subpopulação k e s_k^2 a variância amostral.

Por outro lado,

$$ext{Var}({ar y}_k) = rac{N-n}{Nn_k} s_k^2,$$

se N_k é desconhecido, sendo n o tamanho total da amostra

g)

```
##
ggplot(dados, aes(y=Renda, color=Sexo)) +
  geom_boxplot()
```



```
# Código para calcular os coeficientes de variação
cv_homens <- sd(dados$Renda[dados$Sexo == "Mas"]) / mean(dados$Renda[dados$Sexo == "Mas"])
cv_mulheres <- sd(dados$Renda[dados$Sexo == "Fem"]) / mean(dados$Renda[dados$Sexo == "Fem"])
# Verificar qual subpopulação tem o menor coeficiente de variação
subpopulação mais_homogenea <- ifelse(cv_homens < cv_mulheres, "Homens", "Mulheres")
cat("O coeficiente de variação para homens é:", round(cv_homens, 4), "\n")</pre>
```

```
## 0 coeficiente de variação para homens é: 0.2775
```

cat("O coeficiente de variação para mulheres é:", round(cv mulheres, 4), "\n")

0 coeficiente de variação para mulheres é: 0.3007

cat("Portanto, a subpopulação mais homogênea em relação à renda é:", subpopulacao mais homogenea, "\n")

Portanto, a subpopulação mais homogênea em relação à renda é: Homens