TMDB Movie Data Analysis using Pandas and APIs

Project Overview

This project challenges you to build a **movie data analysis pipeline** using Python and Pandas. You will fetch movie-related data from an API, clean and transform the dataset, and implement **key performance indicators (KPIs)**.

This is **not** a **group project**, meaning you will design the workflow, structure the analysis, and implement the required calculations independently.

Project Objectives

- API Data Extraction: Fetch movie data from a movie database API.
- Data Cleaning & Transformation: Process and structure the data for analysis.
- Exploratory Data Analysis (EDA): Perform an initial exploration to understand trends.
- Advanced Filtering & Ranking: Identify the best and worst movies based on financial and popularity metrics.
- Franchise & Director Analysis: Assess how franchises and directors perform over time.
- Visualization & Insights: Present key findings using visualizations.

Project Steps

Step 1: Fetch Movie Data from API

Choose a movie database API (e.g., TMDb).

```
Fetch movies with ID: movie_id = [0, 299534, 19995, 140607, 299536, 597, 135397, 420818, 24428, 168259, 99861, 284054, 12445, 181808, 330457, 351286, 109445, 321612, 260513]
```

Store the data as a Pandas DataFrame.

NB: Read the API documentation to understand the nature of the data and how it's organized.

Step 2: Data Cleaning and Preprocessing

Data Preparation & Cleaning

- 1. **Drop** irrelevant columns: ['adult', 'imdb_id', 'original_title', 'video', 'homepage'].
- 2. **Evaluate** JSON-like columns (['belongs_to_collection', 'genres', 'production_countries', 'production_companies', 'spoken_languages']).
- 3. Extract and clean key data points:
 - Collection name (belongs_to_collection)

- o Genre names (genres → separate multiple genres with "|").
- Spoken languages (spoken_languages → separate with "|").
- o Production countries (production_countries → separate with "|").
- o Production companies (production_companies → separate with "|").
- 4. **Inspect** extracted columns using value_counts() to identify anomalies.

Handling Missing & Incorrect Data

- 5. **Convert** column datatypes:
 - o 'budget', 'id', 'popularity' → Numeric (set invalid values to NaN).
 - o 'release_date' → Convert to **datetime**.
 - o etc

6. Replace unrealistic values:

- Budget/Revenue/Runtime = 0 → Replace with NaN or infer from similar movies.
- Convert 'budget' and 'revenue' to million USD.
- Movies with vote_count = 0 → Analyze their vote_average and adjust accordingly.
- o 'overview' and 'tagline' → Replace known placeholders (e.g., 'No Data') with NaN.
- 7. **Remove duplicates** and drop rows with unknown 'id' or 'title'.
- 8. Keep only rows where at least 10 columns have non-NaN values.
- 9. **Filter** to include only 'Released' movies, then drop 'status'.

Reorder & Finalize DataFrame

10. Reorder columns:

```
['id', 'title', 'tagline', 'release_date', 'genres', 'belongs_to_collection',
'original_language', 'budget_musd', 'revenue_musd', 'production_companies',
'production_countries', 'vote_count', 'vote_average', 'popularity', 'runtime',
'overview', 'spoken_languages', 'poster_path', 'cast', 'cast_size', 'director', 'crew_size']
```

11. Reset index.

Step 3: KPI Implementation & Analysis

Identify the Best/Worst Performing Movies

- 1. Filter and rank movies based on:
 - Highest Revenue
 - Highest Budget
 - o **Highest Profit** (Revenue Budget)
 - Lowest Profit (Revenue Budget)
 - o **Highest ROI** (Revenue / Budget) (only movies with Budget ≥ 10M)
 - o **Lowest ROI** (only movies with Budget ≥ 10M)
 - Most Voted Movies
 - o **Highest Rated Movies** (only movies with ≥10 votes)
 - o **Lowest Rated Movies** (only movies with ≥10 votes)
 - Most Popular Movies

Define a User-Defined Function (UDF) to streamline ranking operations.

Advanced Movie Filtering & Search Queries

- 2. Filter the dataset for specific queries:
 - Search 1: Find the best-rated Science Fiction Action movies starring Bruce Willis (sorted by Rating - highest to lowest).
 - Search 2: Find movies starring Uma Thurman, directed by Quentin Tarantino (sorted by runtime - shortest to longest).

Franchise vs. Standalone Movie Performance

- 3. Compare movie franchises (belongs_to_collection) vs. standalone movies in terms of:
 - o Mean Revenue
 - o Median ROI
 - Mean Budget Raised
 - Mean Popularity
 - Mean Rating

Most Successful Franchises & Directors

- 4. Find the Most Successful Movie Franchises based on:
 - o Total number of movies in franchise
 - Total & Mean Budget
 - o Total & Mean Revenue
 - Mean Rating
- 5. Find the Most Successful Directors based on:
 - o Total Number of Movies Directed
 - o Total Revenue
 - Mean Rating

Step 4: Data Visualization

Use Pandas, Matplotlib to visualize:

- Revenue vs. Budget Trends
- ROI Distribution by Genre
- Popularity vs. Rating
- Yearly Trends in Box Office Performance
- Comparison of Franchise vs. Standalone Success

Project Deliverables

- **Complete Workflow**: Jupyter Notebook or Python script covering data processing, analysis, and results.
- Final Report: Summary of key insights, methodology, and conclusions.
- Efficient Code: Clean, modular, and optimized for performance.
- **Git Best Practices**: Proper version control with clear commits and organized structure.