(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-350065

(43)公開日 平成11年(1999)12月21日

(51) Int.Cl. ⁶		識別記号	I	FI		
C 2 2 C	38/00	301	С	2 2 C	38/00	301M
•	38/38				38/38	·
•	38/60				38/60	

審査請求 未請求 請求項の数4 OL (全 7 頁)

	· · · · · · · · · · · · · · · · · · ·	11 -111-11	不明不 明不久の数子 しし (主) 具/	
(21)出願番号	特願平10-155515	(71)出顧人	000003713 大同特殊網株式会社	
(22)出顧日	平成10年(1998) 6月4日	愛知県名古屋市中区錦一丁目11番18号		
		(72)発明者	井上 幸一郎 大阪府吹田市昭和町27—20	
		(72)発明者		
		(74)代理人	弁理士 荒崎 勝美	

(54) 【発明の名称】 旋削加工性に優れた熱間鍛造用非調質鋼

(57)【要約】

【課題】 靱性を大幅に低下することなく、また鋳造性 および熱間加工性を低下することなく旋削加工性に優れ た熱間鍛造用非調質鋼を提供すること。

【解決手段】 重量%で、C:0.2~0.6%、Si:0.05~2.0%、Mn:0.1~2.0%、Cr:0.05~1.5%、V:0.05~0.5%、S:0.005~0.4%、s-A1:0.001~0.1%、Ca:0.005~0.02%、O:0.005~0.01%およびN:0.001~0.04%を含有し、残部Feおよび不可避不純物からなる組成を有し、熱間鍛造後の組織がフェライト+パーライトであり、さらにCa含有量が40%を超える硫化物をA、Ca含有量が0.3%より少ない硫化物をCとするとき、面積率でA/(A+B+C)≤0.3、かつB/(A+B+C)≤0.1であるような介在物を含有することを特徴とする旋削加工性に優れた熱間鍛造用非調質鋼。

【特許請求の範囲】

【請求項1】 重量%で(以下同じ)、C:0.2~0.6%、Si:0.05~2.0%、Mn:0.1~2.0%、Cr:0.05~1.5%、V:0.05~0.5%、S:0.005~0.4%、s-Al:0.001~0.1%、Ca:0.0005~0.02%、O:0.0005~0.01%およびN:0.001~0.04%を含有し、残部Feおよび不可避不純物からなる組成を有し、熱間鍛造後の組織がフェライト+パーライトであり、さらにCa含有量が40%を超える硫化10物をA、Ca含有量が0.3~40%の硫化物をB、Ca含有量が0.3%より少ない硫化物をCとするとき、面積率でA/(A+B+C)≦0.3、かつB/(A+B+C)≧0.1であるような介在物を含有することを特徴とする旋削加工性に優れた熱間鍛造用非調質鋼。

【請求項2】 C:0.2~0.6%、Si:0.05~2.0%、Mn:0.1~2.0%、Cr:0.05~1.5%、V:0.05~0.5%、S:0.005~0.4%、s-A1:0.001~0.1%、Ca:0.0005~0.02%、O:0.0005~0.02%、O:0.0005~0.0201%およびN:0.001~0.04%を含有し、さらにCu:1.5%以下、Ni:1.5%以下、Mo:1.0%以下、Ti:0.5%以下およびNb:0.5%以下の1種または2種以上を含有し、残部Feおよび不可避不純物からなる組成を有し、熱間鍛造後の組織がフェライトパーライトであり、さらにCa含有量が40%を超える硫化物をA、Ca含有量が0.3~40%の硫化物をB、Ca含有量が0.3%より少ない硫化物をCとするとき、面積率でA/(A+B+C)≤0.3、かつB/(A+B+C)≥0.1であるような介在30

物を含有することを特徴とする旋削加工性に優れた熱間

鍛造用非調質鋼。

【請求項3】 C:0.2~0.6%、Si:0.05 ~2.0%, Mn:0.1~2.0%, Cr:0.05 ~1.5%, V:0.05~0.5%, S:0.005 ~0. 4%, s-A1:0. 001~0. 1%, Ca: 0.0005~0.02%, O: 0.0005~0.0 1%およびN: 0.001~0.04%を含有し、さら にPb:0.4%以下、Bi:0.4%以下、Se: 0.5%以下およびTe:0.1%以下の1種または2 種以上を含有し、残部Feおよび不可避不純物からなる 組成を有し、熱間鍛造後の組織がフェライト+パーライ トであり、さらにCa含有量が40%を超える硫化物を A、Ca含有量が0.3~40%の硫化物をB、Ca含 有量が0.3%より少ない硫化物をCとするとき、面積 率でA/(A+B+C)≦0.3、かつB/(A+B+ C) ≥ 0.1であるような介在物を含有することを特徴 とする旋削加工性に優れた熱間鍛造用非調質鋼。

【請求項4】 C:0.2~0.6%、Si:0.05 系の保護膜が形成され、その結果として工具寿命が大幅 ~2.0%、Mn:0.1~2.0%、Cr:0.05 50 に向上するとの知見を得て本発明をなしたものである。

~1.5%, V:0.05~0.5%, S:0.005 ~0.4%, s-A1:0.001~0.1%, Ca: $0.0005\sim0.02\%, 0:0.0005\sim0.0$ 1%およびN: 0.001~0.04%を含有し、さら にCu:1.5%以下、Ni:1.5%以下、Mo: 1.0%以下、Ti:0.5%以下およびNb:0.5 %以下の1種または2種以上を含有し、またPb:0. 4%以下、Bi: 0.4%以下、Se: 0.5%以下お よびTe:0.1%以下の1種または2種以上を含有 し、残部Feおよび不可避不純物からなる組成を有し、 熱間鍛造後の組織がフェライト+パーライトであり、ま たCa含有量が40%を超える硫化物をA、Ca含有量 が0.3~40%の硫化物をB、Ca含有量が0.3% より少ない硫化物をCとするとき、面積率でA/(A+ B+C) ≤ 0.3 , $h \cap B/(A+B+C) \geq 0.1$ で あるような介在物を含有することを特徴とする旋削加工 性に優れた熱間鍛造用非調質鋼。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、旋削加工性に優れた熱間鍛造用非調質鋼に関する。

[0002]

【従来の技術】熱間鍛造用非調質鋼は、熱間加工後の調質処理を省略することができるため、自動車産業、産業機械用などに広く機械構造用部品に適用されている。これらの部品は熱間で塑性加工後、切削加工によって目的とした最終形状に仕上げるのが一般的である。このため、被削性の優れていることが重要である。従来、この熱間鍛造用非調質鋼の被削性を改善する方法として、S、Pb、Bi、Se、TeまたはCaを含有させることが知られている。しかし、最近、熱間鍛造用非調質鋼の強度および靱性がますます高くなり、また被削性がより優れたものが要請されており、従来のように単にS、Pb、Bi、Se、Te、Caなどを含有させるだけでは、これらの要請にこたえることができなくなってきた。

[0003]

【発明が解決しようとする課題】本発明は、靱性が大幅 に低下することなく、また鋳造性および熱間加工性を低 下することなく切削加工性の中でもほとんどの部品で適 用される旋削加工性に優れた熱間鍛造用非調質鋼を提供 することを課題としている。

[0004]

【課題を解決するための手段】上記課題を解決するため、本発者達は、旋削加工性に優れた熱間鍛造用非調質鋼を開発すべく成分組成、硫化物の形態、製造方法などについて研究していたところ、鋼中の硫化物系介在物中のCa量を調整すると、旋削加工用工具の表面に硫化物系の保護膜が形成され、その結果として工具寿命が大幅に向してストルルのできる。

【0005】すなわち、本発明の熱間鍛造用非調質鋼に おいては、C:0.2~0.6%、Si:0.05~ 2. 0%, Mn: 0. 1~2. 0%, Cr: 0. 05~ 1.5%, V:0.05~0.5%, S:0.005~ 0. 4%, s-A1:0.001~0.1%, Ca: 0.0005~0.02%, O:0.0005~0.0 1%およびN: 0.001~0.04%を含有し、さら に必要に応じてCu:1.5%以下、Ni:1.5%以 下、Mo:1.0%以下、Ti:0.5%以下およびN b:0.5%以下の1種または2種以上を含有し、また 10 必要に応じてPb:0.4%以下、Bi:0.4%以 下、Se: 0.5%以下およびTe: 0.1%以下の1 種または2種以上を含有し、残部Feおよび不可避不純 物からなる組成を有し、熱間鍛造後の組織がフェライト +パーライトであり、さらにCa含有量が40%を超え る硫化物をA、Ca含有量が0.3~40%の硫化物を B、Ca含有量が0.3%より少ない硫化物をCとする とき、面積率でA/(A+B+C)≦0.3、かつB/ (A+B+C)≥0.1であるような介在物を含有する ものとすることである。

[0006]

【作用】次に、上記本発明の熱間鍛造用非調質鋼を構成 する成分組成を上記のように限定している理由を説明す

 $C:0.2\sim0.6\%$

Cは、強度を向上させるために含有させる元素で、O. 2%より少ないと必要な強度が得られず、0.6%を超 えると被削性および靱性が低下するので、その含有量を 0.2~0.6%とする。

 $Si:0.05\sim2.0\%$

Siは、脱酸させるため、および初析フェライトを強化 させるために含有させる元素で、0.05%より少ない とこれらの効果が得られず、2.0%を超えると熱間加 工性および靱性が低下するので、その含有量を0.05 ~2.0%とする。

[0007] Mn: 0. 1~2. 0%

Mnは、靱性を向上させるために含有させる元素で、 0.1%より少ないと必要な靱性が得られず、2.0% より多いと熱間加工後の空冷でベイナイトが生成して靱 性が低下するので、その含有量を0.1~2.0%とす 40

 $Cr: 0.05\sim 1.5\%$

Crは、靱性を向上させるために含有させる元素で、 0.05%より少ないと必要な靱性が得られず、1.5 %より多いと熱間加工後の空冷でベイナイトが生成して **靱性が低下するので、その含有量を0.05~1.5%** とする。

[0008] V: 0. 05~0. 5%

Vは、熱間加工後の冷却中に炭窒化物として微細に析出 させて強度を高くするために含有させる元素で、0.050る元素で、0.4%より多いと熱間加工性および靱性を

5%より少ないとその効果が得られず、0.5%より多 くしてもその効果が飽和し、経済的に不利であるので、 その含有量を0.05~0.5%とする。

 $S:0.005\sim0.4\%$

Sは、被削性を向上させるために有効な元素で、0.0 05%より少ないと必要な被削性が得られず、0.4% より多いと靱性を低下し、またCaと高融点のCaSを 形成して鋳造時にノズルを閉塞させるので、その含有量 を0.005~0.4%とする。

 $[0009] s-A1:0.001\sim0.1\%$ sーAl(酸可溶性Alのこと)は、脱酸させるために 含有させる元素で、0.001より少ないとその効果が 得られず、0.1%より多いと硬質のアルミナクラスタ ー (高融点)が生成して鋳造時にノズルを閉塞させるの で、その含有量を0.001~0.1%とする。

Ca0. 0005~0. 02%

Caは、硫化物中にCaSとして存在させることによ り、旋削加工時に工具に保護膜を形成させ、工具寿命を 大幅に向上させるために含有させる元素で、0.000 5%より少ないとそのその効果が得られず、O.02% より多いと高融点のCaSを形成して鋳造時にノズルを 閉塞させるので、その含有量を0.0005~0.02 %とする。

 $[0010]0:0.0005\sim0.01\%$ Oは、CaOを生成せるために必要な元素で、O.OO 05より少ないと高融点のCaSを多量に生成して鋳造 時にノズルを閉塞させ、また0.01%より多いと過剰 のCaOが生成して被削性を低下するので、その含有量 を0.0005~0.01%とする。好ましい量は0.

30 0015%以上である。

 $N: 0.001 \sim 0.04\%$

Nは、結晶粒の粗大化を防止するために必要な元素で、 0.001より少ないと結晶粒の粗大化を防止する効果 が得られず、0.04%より多くてもその効果が飽和す るので、その含有量を0.001~0.04%とする。 【0011】Cu:1.5%以下、Ni:1.5%以 下、Mo:1.0%以下

Cu、NiおよびMoは、靱性を向上させるために含有 させる元素で、Cuを1.5%、Niを1.5%および Mo:1.0%より多くしてもその効果が飽和するの で、その含有量を上記の通りとする。

Ti:0.5%以下、Nb:0.5%以下

TiとNbは、Vと同様に炭窒化物を形成して微細に析 出させて強度を向上させるとともに、結晶粒を微細化す るために含有させる元素で、0.5%より多くしてもそ の効果が飽和するので、その含有量を上記の通りとす

【0012】Pb:0.4%以下、Bi:0.4%以下 PbおよびBiは、被削性を向上させるために含有させ 5

低下するので、その含有量を 0.4%以下とする。

Se: 0.5%以下、Te: 0.1%以下

SeおよびTeは、被削性を向上させるために含有させる元素で、Seを0.5%、Teを0.1%より多いと熱間加工性を低下するので、その含有量をSeを0.5%以下、Teを0.1%以下とする。

【0013】さらに、本発明において、熱間鍛造後の組織をフェライト+パーライトにしているのは、熱間鍛造後の組織がベイナイトになったり、ベイナイトが混合されると靱性が低下するからである。

【0014】また、本発明において、介在物の組成およ び面積率をCa含有量が40%を超える硫化物をA、C a含有量が0.3~40%の硫化物をB、Ca含有量が 0.3%より少ない硫化物をCとするとき、面積率でA / (A+B+C) ≦0.3、かつB/ (A+B+C) ≧ 0.1にするのは、次のとおりである。一般に鋼中の硫 化物は、その主成分がMnSであり、Caを含有させる とMnの一部がCaに置換される。この硫化物中のCa 含有量が40%を超えると硫化物の融点が高くなり、鋳・ 造性を悪化するとともに旋削工具の寿命を長くする効果 も少ない。したがって、このような硫化物は全体の30 %以下にする必要がある。これに対し、硫化物中のCa 含有量が0.3~40%になると、旋削加工中に旋削工 具の表面に工具保護膜を生成し、旋削工具の寿命を大幅 に長くする。したがって、このような硫化物を10%存 在させる必要がある。

【0015】本発明の熱間鍛造用非調質鋼の用途は、コネクティングロッド、フロントハブ、キャリアハブ、ナックルアーム、キャブ、バランスウエイト、クランクシャフトなどである。また、本発明の熱間鍛造用非調質鋼の製造方法は、この種の鋼の製造方法と同様であるが、A/(A+B+C)≤0.3、かつB/(A+B+C)≥0.1になるようにO、S、CaおよびAlの量のコントロールが重要である。

[0016]

10 【発明の実施の形態】次に、本発明の実施例を説明する。

【実施例】下記表1に示す成分組成の鋼を5 t アーク炉または150kg真空高周波誘導炉で溶製した後、鋳造して鋳塊を製造した。得られた鋳塊は熱間圧延あるいは熱間鍛造をしてφ50mmにした。これをさらに1200℃でφ25mmまでワンヒートで鍛造し、冷却速度を一定にするため適当な間隔を空けて空冷して供試材を製造した。この製造過程において、鋳造性および熱間加工性を調査してその結果を表1に示した。このうち鋳造性は鋳造ノズルが高融点物質により閉塞し、鋳造量全体の10%以上残して鋳造続行が不能になった場合を劣とした。また熱間加工性は、熱間鍛造または熱間圧延時に割れが発生した場合を劣とした。

【0017】 【表1】

5/11/2007, EAST Version: 2.1.0.14

No C S4 Nn Cr V S S-A1 Ca C N \(\infty \) \(\	伯
2	
5	
7	
本 9	
11	
13	· ·
\$\frac{70}{15} \ \ \begin{pmatrix} 14 \ 0.47 \ 0.25 \ 0.70 \ 0.89 \ 0.20 \ 0.10 \ 0.048 \ 0.065 \ 0.065 \ 0.0661 \ 0.0021 \ 0.0020 \ 0.011 \ \end{pmatrix} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qqqqq \qqqqq \qqqqq \qqqqq \qqqqqq \qqqqq \qqqqqq	
, , , , , , , , , , , , , , , , , , ,	
16 0.45 0.25 0.70 0.21 0.10 0.048 0.004 0.0033 0.0022 0.010	•
18	
18 0.46 0.25 0.70 0.20 0.10 0.052 0.005 0.0045 0.0023 0.012	
19 0,46 0.25 0.68 0.20 0.11 0.048 0.005 0.0028 0.0028 0.011	
21 0.45 0.25 0.70 0.20 0.10 0.051 0.004 0.0031 0.0021 0.011 Cu:0.6 22 0.46 0.25 0.70 0.20 0.10 0.055 0.004 0.0029 0.0022 0.0009 Ni:0.5 23 0.45 0.25 0.69 0.20 0.10 0.050 0.050 0.002 0.0022 0.002 0.009 Ni:0.5 24 0.45 0.25 0.70 0.21 0.10 0.05 0.05 0.002 0.002 0.002 0.009 Ni:0.2 24 0.45 0.25 0.70 0.21 0.10 0.00 0.00 0.00 0.00 0.00 0.0	
PH 26 0.45 0.25 0.70 0.21 0.10 0.052 0.004 0.0022 0.0022 0.011 11:0.04 0.05 0.06 0.0027 0.0020 0.002 0.005 0.05	
26 0.45 0.25 0.70 0.20 0.10 0.050 0.004 0.003 0.0018 0.011 Pb:0.22 27 0.45 0.20 0.70 0.20 0.10 0.056 0.005 0.003 0.0018 0.011 Pb:0.22 28 0.45 0.25 0.71 0.20 0.10 0.054 0.005 0.003 0.003 0.0019 0.010 Bi:0.18 28 0.45 0.25 0.71 0.20 0.10 0.054 0.005 0.003 0.002 0.0019 0.011 Se:0.21 29 0.46 0.25 0.70 0.20 0.10 0.049 0.048 0.008 0.002 0.002 0.012 Te:0.043	
30 0.44 0.25 0.70 0.20 0.10 0.051 0.005 0.0028 0.0020 0.011 Ni :0.2 Pb:0.31 0.45 0.25 0.70 0.20 0.10 0.052 0.005 0.0028 0.0019 0.011 No:0.1, No:0.2 No:0.1 No:0.1 No:0.1, No:0.2 No:0.1 No:0.1 No:0.1, No:0.2 No:0.1 No:0.1 No:0.1, No:0.1 No:0.1 No:0.1, No:0.1	0. 1. Bi : 0. 1 : 0. 8
A 0.70 0.25 0.70 0.20 0.10 0.00 0.00 0.00 0.001 0.001	·
E 0.44 0.25 0.70 0.20 0.10 0.002 0.004 0.0023 0.0019 0.009	
I 0.45 0.25 0.70 0.20 0.10 0.056 0.005 0.025 0.0020 0.009 J 0.46 0.26 0.71 0.20 0.10 0.052 0.008 0.0031 0.0150 0.011	
K	
O 0 45 0.25 0.70 0.10 0.10 0.015 0.005 - 0.0010 0.008 -	

比较例No. O: 從來例

【0018】また、上記供試材から試験片を切り出し、 の結果を下記表立に示した。これらのうち被削性は、P 10種の超硬工具を用いて切削速度200m/min、 送り0.1mm/rev. 乾式で横逃げ面平均工具摩耗 幅がO.2mmまでの加工時間を測定して、比較例Oの 従来鋼の加工時間を100としたときの工具寿命比で表 した。さらに、硫化物の形態の評価は、EPMAにより*

*視野〇.05平方ミリメートル以上の硫化物を分析し、 被削性、硫化物の形態、硬さおよび衝撃値を測定し、そ 40 Ca含有量が40%を超える硫化物をA、Ca含有量が 0.3~40%の硫化物をB、Ca含有量が0.3%よ り少ない硫化物をCとしてA、B、C各々の面積率を求 めた。また、硬さはロックウエルCスケールで測定し、 衝撃値はJIS3号衝撃試験片を用いて測定した。 [0019] 【表2】

N	No.	A/(A+B+C)	B/(A+B+C)	硬き (ARC)	新撃位 (J/ca²)	跨遊性	熱間加工性	被削性
本	1 2 3 4 5 6 7 8 9	0 0 3 0 0 4 0 0 0 0 0 8 0 0 5 0 0 1 0 0 0 0 0 0	0.28 0.31 0.25 0.39 0.28 0.29 0.21	1 0.3 1 5.9 2 0.8 2 9.1 2 5.7 2 6.8 2 9.0 2 9.5 2 1.2	198 145 114 68 85 77 65 63	6 医食食色色食食	良臭良臭良臭臭	
発明	10 11 12 13 14 15 16 17 18 19 20	0 0 2 0 0 0 1 0 0 1 7 0 1 2 8 0 0 9 0 0 8 0 2 9 0 0 0	0.18 0.15 0.17 0.21 0.34 0.34 0.22 0.23 0.21 0.21 0.16	2 2. 4 2 3. 0 2 0. 2 2 1. 3 2 1. 7 2 0. 9 2 1. 5 2 0. 9 3 0. 8 2 1. 0	1 0 5 9 9 1 1 8 1 1 0 1 0 9 1 1 3 1 1 1 1 1 2 1 1 8 1 1 2	鱼员民党员员国党员员	克克奥克森民奥克森岛岛	8 0 6 7 4 6 7 4 6 8 1 6 8 8 8 9 5 1 8 2 4 8 1 3 8 7 5 6 8 9 7 1 0
91	21 22 23 24 25	0 0 8 0 0 0 0 0 0	0.21 0.19 0.20 0.20 0.19	2 5. 2 2 4. 1 2 3. 8 2 6. 5 2 4. 3	8 9 9 4 9 7 8 1 9 3	负良良良良	克奥奥 奥	<u>-</u> - -
	26 27 28 29	0 0 3 0 0 0 0 0 0 0 0 0	Q 2 3 Q 2 1 Q 2 1 Q 1 9	2 0, 4 2 1, 1 2 0, 4 2 2, 0	1 1 5 1 1 3 1 1 9 1 0 8	皮 皮皮良 良	良良良良	1 3 0 9 1 5 4 9 1 2 4 5 1 1 6 4
	30 31 32 33	0 0 0 0 0 0 0 0 0 0 0	Q 1 9 Q 1 8 Q 1 8 Q 2 1	2 2.7 2 5.2 2 1.8 3 2.1	1 0 5 8 9 1 0 9 1 0 7	臭臭臭	奥岛	784 619 — 1273
比	ABCD	0 0 0 0 0 0 0 0 0 0 0	0.2.1 0.2.2 0.1.8 0.1.6	3 1.2 2 7.7 3 4.3 8 6.4	3 1 4 5 3 2 1 9	良良良良	良 良 良	= =
軟	R F G H I J	0 0 5 0 3 3 0 0 0 0 0 0 0 0 0	0.17 0.18 0.19 0.00 0.42 0.23	2 0.0 2 2.1 3 1.6 2 2.5 2 1.4 2 2.8	1 1 9 5 8 1 0 8 1 9 3 1 0 9 1 0 4	良奥劣奥劣劣	良劣劣良劣劣	1 6 1 8 4 9 2 6 7 2 4 9 3 1 2 6 1 1
PI)	K L M N	0 0 0 0 0 0 0 0 0 0 0 0	0 1 9 0 1 8 0 1 9 0 2 0	2 0.1 2 1.2 1 9.8 2 0.5	5 7 8 1 7 2 6 9	奥奥克克	 良 良 生 劣 劣	1 6 3 4 1 7 9 8 1 2 5 8 1 3 6 4
	0	0.00	0.00	1 9.2	1 2 5	臭	典	100

比較例No.O:從染例

【0020】これらの結果より、本発明の熱間鍛造用非 40*O含有量が高いJは、鋳造性と熱間加工性が劣ってい 調質鋼は、靱性値がいずれも63J/cm²以上であ り、鋳造性および熱間加工性が良であった。また、被削 性は、比較例Oの従来鋼に比較していずれも6倍以上で あった。これに対して、C含有量が高い比較例AとSi 含有量が高い比較例Bは、靱性が非常に低くなってい た。さらにMn含有量が高い比較例CとCr含有量が高 い比較例Dは、ベイナイトが生成して靱性が非常に低く なっていた。またS含有量が低い比較例Eは、被削性が 劣っており、S含有量が高い比較例Fは靱性と熱間加工 性が劣っていた。またs-Al含有量が高い比較例Gと*50

た。またCa含有量が無添加の比較例Hは、被削性が低 く、Сa含有量が高い比較例 I は、鋳造性と熱間加工性 が劣っていた。またPb含有量が高い比較例KとBi含 有量が高い比較例しは、靱性が低くなっていた。またS e含有量が高い比較例MとTe含有量が高い比較例N は、靱性が低いとともにく、熱間加工性も劣っていた。 [0021]

【発明の効果】本発明の熱間鍛造用非調質鋼は、上記構 成にしたことにより、靱性を大幅に低下することなく、 また鋳造性および熱間加工性を低下することなく旋削加 1.1

工性を高くすることができるという優れた効果を奏す