Apellidos y Nombre	DNI	Grupo

1 (1 punto) Se desea incluir la instrucción sll rd, rt, desp5, con formato R, como una instrucción más del juego de instrucciones básico del MIPS visto en clase. La instrucción desplaza a la izquierda el contenido del registro rt, la cantidad de bits establecido en el campo desp de la instrucción, introduciendo ceros por la derecha, y dejando el resultado en rd. Por ejemplo, la instrucción s11 \$2, \$3, 6 se codificaría como muestra la Figura 1:

COP	RS	RT	RD	desp5	Función	
000000	00000	00011	00010	00110	000000	1

Figura 1 Codificación s/l \$2, \$3,6, de tipo R

Para ello se ha modificado la ruta de datos tal y como muestra la Figura 2 incluyendo un componente DESPLAZADOR (SLL), basado internamente en un *Barrel Shifter*, que efectúa la operación de la instrucción sll. Además, el Multiplexor de escritura en registro se ha ampliado por lo que requiere una señal de control de 2 bits.

Figura 2. Ruta de los datos, con componente SLL.

Complete la tabla correspondiente a las señales de control para ejecutar sobre la misma las instrucciones que se piden.

Instrucción	Form	EReg	OpALU	LMem	EMem	MxPC	MxALU	MxDst	MxER
sll rd, rt, desp	R								
and rd, rs, rt	R								
lw rt, desp(rs)	I								
beq rs, rt, etiq	ı								

2	sup lect	25 puntos) Considérese la ruta de datos segmentada de cinco etapas (LI, DI, EX, M, ER) estudiada en clase y póngase que las etapas tienen los siguientes retardos: 49 ns las memorias, 45 ns el banco de registros para tura y escritura, y 40 ns la unidad aritmético-lógica. Los registros de segmentación tienen un retardo de 1ns. sto de unidades funcionales tienen un tiempo despreciable.
	a)	(0.25 puntos) ¿Cuál es la productividad máxima que se puede alcanzar con esta ruta de datos segmentada?
	b)	(0.25puntos) ¿Cuál es la aceleración máxima conseguida respecto a la versión no segmentada?
_	c)	(0.25 puntos) Indique para la ruta indicada cuál sería la aceleración ideal, y bajo qué condiciones se llegaría a obtener.
	d)	(0.25 puntos) Un programa ejecuta 100 instrucciones en este computador y tarda 6200 ns. ¿Cuántos ciclos de parada han tenido lugar?
_	e)	(0.25 puntos) Si utilizáramos esta ruta como base para hacer un procesador superescalar de 2 vías, ¿cuál sería la productividad máxima?

3 (1.5 puntos) En el procesador segmentado en cinco etapas del ejercicio anterior se va a ejecutar el siguiente fragmento de código en ensamblador del MIPS R2000. Asuma que <u>los conflictos por dependencias de datos y control se solucionan mediante la inserción de ciclos de parada y la <u>latencia de salto es 1</u>.</u>

(1) (2) (3) (4) (5) (6) (7) (8) (9)	bucle:	<pre>lh \$t5, 0(\$t0) lh \$t6, 0x200(\$t0) sh \$t5, 0x200(\$t0) sh \$t6, 0(\$t0) addi \$t4,\$t4,-1 addi \$t0,\$t0,2</pre>
(8)		addi \$t4,\$t4,-1
(10)		j bucle
(11)	fin:	

	Registro	instrucción en que se escribe	instrucción en que se lee
Riesgo			

Tabla 1. Riesgos de datos

- a) **(0.5 puntos)** Indique los riesgos por dependencias de datos que existe utilizando la Tabla 1 (el número de riesgos no tiene por qué ser igual al número de filas)
- b) (0.5 puntos) Indique para dicho código (justifique las respuestas)

Número de Instrucciones ejecutadas (I)	
Número de ciclos de parada (P)	
Número de ciclos totales de ejecución (T)	
СРІ	

c) (0.5 puntos) Rellene el diagrama de ejecución solo para las tres instrucciones que se indican:

ori \$t4,\$0,100					
beqz \$t4,fin					
lh \$t5,0(\$t0)					

4 (1 punto) El circuito de la Figura 3 es multiplicador combinacional para números de 3 bits (X e Y) basado en sumadores completos FA implementados a según las funciones lógicas para la Suma y el Acarreo vistas en clase. Cada puerta lógica (independientemente de la función que realice) introduce un retardo de 0.5 ns.

Figura 3. Multiplicador combinacional

a)	(0.75 puntos) Tiempo necesario para realizar el producto de X*Y. Justifíquelo indicando los tiempos de los
	resultados parciales indicados en la figura mediante un recuadro.

h)	(0.25 nuntos)	Productividad	del circuito	expresada en	MOPS

5 (1. punto) Se dispone de un circuito multiplicador secuencial basado en el **algoritmo de Booth** para números enteros de 4 bits tal y como se muestra en la figura. Supóngase que el retardo de las diferentes operaciones involucradas en la multiplicación es el que se indica en la tabla adjunta:

Inicializar registros y circuito de control	5 ns
Inspeccionar q _i , q _{i-1}	2 ns
Sumar y actualizar HI	8 ns
Restar y actualizar HI	11 ns
Desplazar S-HI-LO-X 1 bit	2 ns
Evaluar el número de ciclo actual	1 ns

	a)	(0.75 puntos) Indique paso a paso como se realiza el producto de los números de 4 bits M=2 y Q= -7.	
	•		
		/o N.o. / . /	
	D)	(0.5 puntos) ¿Cuál sería la productividad que podría alcanzar dicho multiplicador, en MOPS? Consider inicialización se realiza en un ciclo de reloj independiente. Justifique la respuesta.	e que la
<u>_</u>			
6	(1	L punto) Escriba una función <i>areaT</i> en lenguaje ensamblador del MIPS R2000 que calcule el área de un t	iángulo
		$=\frac{b*a}{2}$). La base b del triángulo y la altura a son dos variables reales que se pasan a la función en los i	
	\$f1	0 y \$f12 respectivamente. El área se devuelve en el registro \$f0.	
		.text 0x00400000	
		_start:	

- **7** (1.5 puntos) Un determinado chip comercial de memoria SDRAM tiene un ancho de palabra de 64 bits y trabaja a una frecuencia de reloj de 100 MHz ($t_{ciclo} = 10$ ns).
 - a) (0.5 puntos) Complete la siguiente tabla expresando los parámetros temporales en los ciclos de reloj correspondientes:

PARAMETRO	TIEMPO	Ciclos
PARAIVIETRO	Min. (ns)	FRECUENCIA 100MHz
t _{RCD}	18	
t _{RAS}	42	
t _{RC}	60	
t _{RP}	18	
CL		2

b) (0.5 puntos) Calcule el tiempo de acceso y el ancho de banda:

FRECUENCIA	TIEMPO DE ACCESO (ns) (Latencia de lectura)	ANCHO de BANDA (MBps)
100 MHz		

a	0.5 puntos) En una versión actualizada el mismo chip se oferta utilizando tecnología DDR3. Indique cómo fectaría esta nueva versión al tiempo de acceso y al ancho de banda. Suponga que se mantienen los mismos arámetros temporales y la misma frecuencia de trabajo.

- **8** (1.5 puntos) A un computador basado en una CPU MIPS R2000 se le ha dotado de un primer módulo (M1) de 1GB a partir de la dirección 0x00000000. Posteriormente se le ha añadido a continuación de éste un segundo módulo (M2) de 512MB. A partir de la dirección 0x80000000 se ha incluido el módulo M3 de 2GBytes de capacidad
 - a) (0.75 puntos) Complétese el mapa de memoria resultante, indicando la dirección inicial y final de cada uno de los módulos, y especificando el tamaño y dirección del espacio libre disponible.

		M1 (1GB)	0x0000000		ense las funciones de selecció ódulos M1 y M2 utilizando lógic (0.25 puntos)	
		M2 (512MB)				
		M3 (2GB)	0x80000000			
c)	de p	oalabra de 8 bits	ódulo M2 está constituido por una ú s y se organiza internamente en cua cidad de cada chip y el número de o	atro bancos	con 4096 (2 ¹²) filas cada uno.	una longitud .25 puntos)
	c2)	Indique cuánta	es patillas de dirección tiene cada ch	nip de memo	oria (0.25 puntos)	
	c3)	Indique cuánta	s líneas de selección de octeto tien	e el módulo	(0.25 puntos)	