Thomas R. Cameron

Davidson College Mathematics and Computer Science

Phone: 509-330-0195

E-mail: thcameron@davidson.edu URL: www.thomasrcameron.com

Current Position

Visiting Assistant Professor, Mathematics and Computer Science, Davidson College

Areas of Specialization

Discipline: linear algebra, matrix polynomials, functional analysis, numerical analysis, and the

eigenvalue problem

Additional interests: spectral theory of operators, programming, and dynamical systems

Programming Experience

 $Languages:\ C,\ C++,\ Fortran,\ HTML,\ JavaScript,\ Mathematica,\ MATLAB,\ PHP,\ Python,\ SML,\ and$

SQL

Currently Learning: AWS, OpenCL API, scikit-learn, and TensorFlow

Appointments Held

current	Visiting Assistant Professor, Davidson College
2016-2017	Visiting Assistant Professor, The College of Idaho

Education

2013-2016	Рн.D. in Mathematics, Washington State University
2012-2013	M.Sc. in Mathematics, Washington State University
2009-2012	B.Sc. in Mathematics, University of Minnesota Duluth

Honors & Awards

2015	MSRI Summer Graduate School on Spectral Geometry, University of Montreal
2015	Radziemski Fellowship, Washington State University
2012	Sylvan D. Burgstahler Memorial Scholarship, University of Minnesota Duluth
2011	Math Student of the Year, Century College

Publications & Presentations

Cameron, T. R. A practical parallelizable fourth order modification of Laguerre's method. *In Progress* Cameron, T. R., Psarrakos, P. J. On Descartes' rule of signs for matrix polynomials. Submitted 2018 Cameron, T. R. The determinant from signed volume to the Laplace expansion. To Appear in Amer. 2018 Math. Monthly, accepted on 2/12/2018 Cameron, T. R., Steckley, N. I., On the application of Laguerre's method to the polynomial eigen-2017 value problem. Working Paper. arXiv:1703.08767 [math.NA] Cameron, T. R. On the reduction of matrix polynomials to Hessenberg form. ELA, 31: 321-334. 2016 doi.org/10.13001/1081-3810.3011 Cameron, T. R. Spectral bounds for matrix polynomials with unitary coefficients. ELA, 30: 585-591. 2015 doi.org/10.13001/1081-3810.2911 **TALKS** On Descartes' Rule of Signs for matrix polynomials, JMM 2018, San Diego, CA 2018 On Descartes' Rule of Signs for matrix polynomials, Coffee Talk, Davidson College 2017 On Descartes' Rule of Signs for matrix polynomials, AMS Spring Western Sectional Meeting, Wash-2017 ington State University A conjecture on Descartes' Rule of Signs for matrix polynomials, CLaN Seminar, Washington State 2016 University Spectral bounds for unitary matrix polynomials, Analysis Seminar, Washington State University Constructive proof of Hessenberg form for matrix polynomials, CLaN Seminar, Washington State 2015 Another approach to Jordan form, CLaN Seminar, Washington State University 2015 How do we really find eigenvalues?, Colloquium, University of Minnesota Duluth 2015 Hyman's method for matrix polynomials, CLaN Seminar, Washington State University 2014 Factorization of matrix polynomials, CLaN Seminar, Washington State University 2014

Posters

2013

2013

2014

On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem, PNWNAS 17, Corvallis, OR

The Ehrlich-Aberth method for matrix polynomials, CLaN Seminar, Washington State University

Hessenberg form for matrix polynomials, SIAM LA 15, Atlanta, GA

Eigenvalue computation for tridiagonal matrix polynomials, PNWNAS 14, Portland, OR

The nonlinear eigenvalue problem, Colloquium, University of Minnesota Duluth

When does Newton's method fail?, CLaN Seminar, Washington State University

Referee Experience

LAA: Linear Algebra and Applications ELA: Electronic Journal of Linear Algebra

MAA: Mathematical Association of America: Mathematics Magazine

REVIEW EXPERIENCE

Macmillan: J. Holt, Linear Algebra with Applications Springer Nature: M. T. Nair and A. Singh, Linear Algebra

Teaching

Courses Taught

2017-2018	MAT-150: Linear Algebra, CSC/MAT-220: Discrete Structures, MAT-112: Calc I & Modeling, MAT-450: Advanced Linear Algebra, <i>Davidson College</i>
2016-2017	MAT-101: Survey of Algebra and Probability, MAT-102: Functions, CSC-150: Computer Science 1, MAT-252: Discrete Mathematics, CSC-270: Applied Databases, MAT-498: Upper Division Seminar,
2015-2016	MAT-494: Independent Study, <i>The College of Idaho</i> Math-273: Calc 3, Math-220: Linear Algebra, Math-103 (online): Algebra Methods, <i>Washington</i>
3	State University
2014-2015	Math-220: Linear Algebra, Math-105: Exploring Mathematics, Washington State University
2013-2014	Math-106: Pre-Calc, Math-202: Business Calc 2, Math-220: Linear Algebra, Washington State University
2012-2013	Math-201: Business Calc 1, Math-106: Pre-Calc, Washington State University
	Supervised Undergraduate Research
current	Supervised Undergraduate Research Hüseyin Altinisik, Max Li, Pasha Sonkin, and Jenny Zhong, Heterogeneous Computing and OpenCL
current 2017	
	Hüseyin Altinisik, Max Li, Pasha Sonkin, and Jenny Zhong, Heterogeneous Computing and OpenCL Nick Steckley, On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem, pre-
2017	Hüseyin Altinisik, Max Li, Pasha Sonkin, and Jenny Zhong, <i>Heterogeneous Computing and OpenCL</i> Nick Steckley, <i>On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem</i> , presented at the 2017 PNWNAS Leo Trujilo, <i>The numerical range of a matrix polynomial</i> , presented at the 2016-2017 College of Idaho Undergraduate Research Conference, The College of Idaho
2017	Hüseyin Altinisik, Max Li, Pasha Sonkin, and Jenny Zhong, Heterogeneous Computing and OpenCL Nick Steckley, On Modifications to Laguerre's Method and the Polynomial Eigenvalue Problem, presented at the 2017 PNWNAS Leo Trujilo, The numerical range of a matrix polynomial, presented at the 2016-2017 College of

Grant Hutchings, Numerical algorithms for matrix computations and applications, Washington State

Michael Newsham, Bernstein polynomials and companion matrices, Washington State University

Professional Service

2015-2016

2014-2015

2017	Virginia Tech Regional Math Contest: Proctored at Davidson College
2017	The Charlotte Mathematics Club: Assisted in the events and activities planned for the club
2016	The Bird Stop: Developed website for a local business