Übungen zur Analysis 1 Blatt 1

Aufgabe 1. Bestimmen Sie alle $n \in \mathbb{N}$, für die gilt:

- (a) $n^5 n$ ist durch 5 teilbar.
- (b) $\prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right) = \frac{n+1}{2n}$.
- (c) $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.
- (d) $n^3 \leq 2^{n+1}$.

Aufgabe 2. Zeigen Sie mittels vollständiger Induktion $(n \in \mathbb{N}, n \ge 1)$:

- (a) $\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}$.
- (b) $\sum_{k=1}^{n} (-1)^k k^2 = (-1)^n \binom{n+1}{2}$.

Aufgabe 3. Beweisen Sie:

- (a) Für alle $n, k \in \mathbb{N}$ gilt: $\binom{n}{k} \frac{1}{n^k} \leqslant \frac{1}{k!}$
- (b) Für $n \ge 4$ gilt: $2^n \le n!$
- (c) Für $n \ge 1$ gilt: $\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} < 3$
- (d) Für $n \ge 1$ gilt: $\left(\frac{n}{3}\right)^n \le \frac{1}{3}n!$

Aufgabe 4. Es sei $M = \{A_1, \ldots, A_n\}$ eine n-elementige Menge. Beweisen Sie, dass die Potenzmenge $\mathfrak{P}(M) := \{N \mid N \subset M\}$ 2^n Elemente hat.