Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34

Experimento VI

Resistividade de um fio de níquel-cromo e ponte de fio de níquel-cromo

I. Resistividade de um Fio de Níquel-Cromo (Ni-Cr)

A influência do comprimento e da área da seção reta do fio resistivo em sua resistência é expressa por:

$$R = \rho \cdot \frac{L}{A} \tag{1}$$

Sendo ρ a resistividade, em $\Omega \cdot m$, L o comprimento e A área da seção do fio resistivo.

1. Anote a área de seção reta (A) da barra:

$$A = 4,015 \times 10^{-7} m^2$$

2. Monte o sistema indicado na Fig. 1;

Figura 1: Sistema para a medida da resistência do fio de NiCr em função do comprimento do fio.

3. Meça a resistência do fio de Ni-Cr a cada 10 *cm* até 100 *cm* do comprimento do fio, e anote os valores na Tabela 1 (vídeo "I.Resistividade_A_cte.mp4");

Tabela 1. Medidas da resistência em função do comprimento do fio de Ni-Cr.

$R \pm \Delta R (\Omega)$	<i>L</i> (<i>m</i>)
0.91 ± 0.05	0,1
$1,01 \pm 0,05$	0,2
$1,26 \pm 0,05$	0,3
$1,66 \pm 0,05$	0,4
$1,92 \pm 0,05$	0,5
$2,21 \pm 0,05$	0,6
$2,51 \pm 0,05$	0,7
$2,88 \pm 0,05$	0,8
$3,17 \pm 0,05$	0,9
$3,59 \pm 0,05$	1,0

4. Meça a resistência para o comprimento total do fio ($L = 118 \, cm$) para diferentes espessuras de fios de Ni-Cr, e anote suas respectivas áreas e as resistências medidas na Tabela 2 (vídeo "II.Resistividade_L_cte.mp4");

Tabela 2. Medidas da resistência em função da área de seção dos fios de Ni-Cr para um comprimento fix	Tabela 2. Medidas	da resistência em fun-	nção da área de seção dos fios	s de Ni-Cr para um con	nprimento fixo.
--	--------------------------	------------------------	--------------------------------	------------------------	-----------------

$A(m^2)$	$A^{-1}\left(m^{-2}\right)$	$R \pm \Delta R(\Omega)$
$1,222 \times 10^{-7}$	0.818×10^7	10,91 ± 0,05
$1,494 \times 10^{-7}$	$0,669 \times 10^7$	$8,82 \pm 0,05$
$2,421 \times 10^{-7}$	$0,413 \times 10^7$	5,33 ± 0,05
$3,006 \times 10^{-7}$	$0,333 \times 10^7$	4,21 ± 0,05
$3,723 \times 10^{-7}$	$0,269 \times 10^7$	$3,48 \pm 0,05$

II. Ponte de Fio de Ni-Cr (Ponte de Wheastone)

Na condição de equilíbrio da ponte de Wheatsone a corrente elétrica que atravessa o galvanômetro (i_G) é nula. Desta forma o valor da resistência desconhecida (R_y) , em função do resistor padrão (R_P) é dado por:

$$R_{y} = R_{p} \cdot \frac{L - x}{x} \tag{2}$$

sendo L o comprimento do fio de Ni-Cr e x a distância, com relação a extremidade do fio, na qual $i_G = 0$, como ilustra a Fig. 2.

- 1. Meça a resistência dos três resistores R_{y_i} e do resistor padrão R_p (vídeo "III.a.Resistência.mp4", o multímetro se encontra na escala de $k\Omega$). Anote as resistências na Tabela 3;
- 2. Monte o sistema indicado na Fig. 2, posicionando o resistor R_P e um dos outros resistores como R_y e ajuste a fonte para uma tensão de 0,7 V (vídeo "IV.b.Montagem.mp4");
- 3. Meça o valor de *x* para a condição de equilíbrio para cada um dos três resistores e anote o valor do comprimento total do fio de Ni-Cr (*L*) na Tabela 3 (vídeo "V.c.Ponte_de_Wheastone.mp4");

Figura 2. Sistema para medidas utilizando a ponte de Wheastone, no qual *G* representa o galvanômetro.

Tabela 3. Determinação do valor de resistores com a ponte de Wheatstone.

	$R \pm \Delta R (\Omega)$	<i>x</i> (<i>cm</i>)	L-x(cm)	$R_y^{calculado}\left(\Omega ight)$
R_1	999,0 ± 0,1	76	42	1002,47
R_2	3901,0 ± 0,1	38,5	79,5	3745,79
R_3	$4694,0 \pm 0,1$	34 84		4481,65
R_P	$1814,0 \pm 0,1$			L = 118 cm

III. Discussão dos Resultados Obtidos:

1) Construa o gráfico da resistência (R) em função do comprimento do fio de Ni-Cr (L), obtenha, por meio do gráfico, o valor da resistividade para o fio de Ni-Cr, e compare com o valor da resistividade nominal $(\rho_n = 1, 14 \times 10^{-6} \ \Omega \cdot m)$. Justifique a construção do gráfico utilizando a equação (1).

Temos a seguinte proporção:

$$R \propto \frac{L}{A}$$

A resistência R do material é proporcional a fatores geométricos, sendo L o comprimento e A a área da seção transversal do fio. Podemos equacionar a relação acima ao incluir uma constante de proporcionalidade p que recebe o nome resistividade, assim obtemos:

$$R = \rho \cdot \frac{L}{A} \quad (*)$$

Se tomarmos $\alpha = \rho/A$, a equação acima se torna uma equação de reta:

$$R = \alpha \cdot L$$

Do gráfico temos, uma equação da reta ajustada:

$$R = A \cdot x + B$$

Substituindo os dados:

$$R = (3.04 \ \Omega/m) \cdot L + 0.44$$

Comparando com (*), podemos obter o coeficiente angular da reta:

$$3.04 = \frac{\rho}{A} \Rightarrow \rho = 3.04 \cdot A$$

Substituindo $A = 4{,}015 \times 10^{-7} \text{ m}^2$, temos:

$$\rho = 1.22 \times 10^{-6} \,\Omega \cdot m$$

Calculando o desvio percentual, temos:

$$\Delta = \left| \frac{\rho_n - \rho}{\rho_n} \right| \times 100$$

Substituindo os valores:

$$\Delta = \left| \frac{1,14 \times 10^{-6} - 1,22 \times 10^{-6}}{1,14 \times 10^{-6}} \right| \times 100 \approx 7\%$$

2) Construa o gráfico da resistência (R) em função do inverso da área da seção reta dos fios de Ni-Cr (A^{-1}) , obtenha, por meio do gráfico, o valor da resistividade para o fio de Ni-Cr, e compare com o valor da resistividade nominal $(\rho_n = 1, 14 \times 10^{-6} \ \Omega \cdot m)$. Justifique a construção do gráfico utilizando a equação (1).

Da mesma forma de antes, partindo da equação da resistividade:

$$R = \rho \cdot \frac{L}{A} \quad (*)$$

Tomando $β = ρ \cdot L$ *e substituindo na equação:*

$$R = \beta \cdot \frac{1}{A}$$

Do gráfico temos, uma equação da reta ajustada:

$$R = A \cdot x + B$$

Substituindo os dados:

$$R = (1 \times 10^{-7} \, m^2 \cdot \Omega) A^{-1} + 0$$

Lembrando que:

$$1 \times 10^{-7} m^2 \cdot \Omega = \rho \cdot L$$

Substituindo L = 1,18 m:

$$\rho = \frac{1 \times 10^{-7} \ m^2 \cdot \Omega}{1{,}18 \ m} = 0{,}847 \times 10^{-7} \ \Omega \cdot m$$

3) Calcule $R_y^{calculado}$ para todos os resistores utilizados. Anote os valores calculados na Tabela 3. Compare os valores experimentais com os calculados.

Os valores calculados foram bem próximos, bem condizentes com a realidade e com a leitura do multímetro, fazendo o desvio percentual temos:

$$\Delta = \left| \frac{R - R_y^{calculado}}{R} \right| \times 100$$

$$\Delta = \left| \frac{R_1 - R_y^{calculado}}{R_1} \right| \times 100 \Rightarrow \Delta = \left| \frac{999,0 - 1002,47}{999,0} \right| \times 100 \approx 0,3\%$$

$$\Delta = \left| \frac{R_2 - R_y^{calculado}}{R_2} \right| \times 100 \Rightarrow \Delta = \left| \frac{3901,0 - 3745,79}{3901,0} \right| \times 100 \approx 4,0\%$$

$$\Delta = \left| \frac{R_3 - R_y^{calculado}}{R_3} \right| \times 100 \Rightarrow \Delta = \left| \frac{4694,0 - 4481,65}{4694,0} \right| \times 100 \approx 4,5\%$$

4) Demonstre a equação (2).

Note que o sentido da corrente é do maior potencial para o menor, ou seja, no sentindo horário. Neste caso, é fácil perceber que R_1 está em série com R_2 , assim como R_3 está em série com R_4 . Aplicando a teoria de associação de resistores, obtemos:

$$V_1 = V_3$$

Sendo V_1 e V_3 o potencial relacionado aos resistores.

Pela lei de Ohm:

$$V = R \cdot i$$

Na qual i é a corrente elétrica a qual o resistor é submetido. Assim:

$$R_1 \cdot i_1 = R_3 \cdot i_3$$

$$i_1 = \frac{R_3 \cdot i_3}{R_4}$$

$$i_1 = \frac{R_3 \cdot i_3}{R_1} = i_2$$

Fazendo o mesmo para os potenciais V2 e V4:

$$V_2 = V_4$$

$$R_2 \cdot i_2 = R_4 \cdot i_4$$

Substituindo a corrente i_2 encontrada anteriormente e chegando a conclusão que i_3 é igual a i_4 , têm-se

$$\frac{R_2}{R_1} = \frac{R_4}{R_3}$$

Comparando a equação acima com a figura abaixo (retirada da apostila):

Identificando $R_1 = R_y$, $R_2 = R_p$, $R_3 = R_L - x$ e $R_4 = R_x$, na qual as parcelas do fio são identificadas como resistores, temos:

$$\frac{R_p}{R_y} = \frac{R_x}{R_{L-x}}$$

Lembrando-se da equação (1), podemos escrever as resistências em termos do comprimento, da resistividade e da área de seção transversal, de modo que encontramos:

$$R_{L-x} = \rho \cdot \frac{L-x}{A}$$

 \boldsymbol{E}

$$R_{x} = \rho \cdot \frac{x}{A}$$

Substituindo os resultados acima, finalmente chegamos a seguinte equação:

$$R_{y} = R_{p} \cdot \left(\frac{L - x}{x}\right)$$

Anotações	 	 	