-123-

WE CLAIM:

1. The compounds of Formula I:

5

15

20

25

where:

A is $-CHR^{13}$ or a bond;

R is hydrogen, halo, cyano, $-C(0)NR^6R^7$, C_1-C_6 alkyl, C_1-C_4 alkoxycarbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C_1-C_4 alkyl, and C_1-C_4 alkoxy;

 R^1 is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or C_1 - C_6 alkyl;

 $\rm R^2$ and $\rm R^3$ are independently hydrogen, halo, amino, nitro, $\rm C_1\text{-}C_4$ alkoxy, cyano, carboxamido, $\rm -C(0)NR^8R^9$, $\rm -NR^{10}R^{11}$, $\rm -NHC(0)NHR^{14}$, $\rm C_1\text{-}C_4$ alkoxycarbonyl, carboxyl, trifluoromethyl, or $\rm C_1\text{-}C_6$ alkyl optionally substituted with a substituent selected from the group consisting of $\rm C_1\text{-}C_4$ alkoxy, hydroxy, phenoxy, and phenyl;

 R^4 and R^4 ' are independently hydrogen, C_1 - C_4 alkyl, or benzyl; or R^4 and R^4 ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^5 is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^5 ' is hydrogen, or R^5 and R^5 ' together with the carbon atom to which they are attached form a cyclopropyl moiety; R^6 and R^7 are independently hydrogen or C_1 - C_4 alkyl;

-124-

 R^8 is hydrogen or C_1 - C_4 alkyl;

 R^9 is C_1 - C_8 alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C_1 - C_4 alkyl, or C_1 - C_4 alkoxy;

 R^{10} is hydrogen or C_1 - C_4 alkyl;

 R^{11} is C_1-C_4 alkyl or C_1-C_4 acyl;

 R^{12} is hydrogen, halo, or C_1 - C_4 alkyl;

 R^{13} is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{14} is hydrogen, C_1 - C_4 alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C_1 - C_4 alkyl, and C_1 - C_4 alkoxy;

15 or pharmaceutically acceptable acid addition salts thereof.

2. A pharmaceutical formulation which comprises, in association with a pharmaceutically acceptable carrier, diluent or excipient, a compound of Formula I:

20

10

where:

A is $-CHR^{13}$ or a bond;

R is hydrogen, halo, cyano, $-C(0)NR^6R^7$, C_1-C_6 alkyl, C_1-C_4 alkoxycarbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C_1-C_4 alkyl, and C_1-C_4 alkoxy;

20

25

 $\rm R^1$ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or $\rm C_1\text{--}C_6$ alkyl;

 $\rm R^2$ and $\rm R^3$ are independently hydrogen, halo, amino, nitro, $\rm C_1$ - $\rm C_4$ alkoxy, cyano, carboxamido, - $\rm C(O)NR^8R^9$, - $\rm NR^{10}R^{11}$, -NHC(O)NHR¹⁴, $\rm C_1$ - $\rm C_4$ alkoxycarbonyl, carboxyl, trifluoromethyl, or $\rm C_1$ - $\rm C_6$ alkyl optionally substituted with a substituent selected from the group consisting of $\rm C_1$ - $\rm C_4$ alkoxy, hydroxy, phenoxy, and phenyl;

10 R^4 and R^4 ' are independently hydrogen, C_1 - C_4 alkyl, or benzyl; or R^4 and R^4 ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^5 is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{5} ' is hydrogen, or R^{5} and R^{5} ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 ${\tt R}^6$ and ${\tt R}^7$ are independently hydrogen or ${\tt C}_1{\tt -C}_4$ alkyl;

 R^8 is hydrogen or C_1-C_4 alkyl;

 R^9 is C_1 - C_8 alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C_1 - C_4 alkyl, or C_1 - C_4 alkoxy;

 R^{10} is hydrogen or C_1-C_4 alkyl;

 R^{11} is C_1-C_4 alkyl or C_1-C_4 acyl;

 R^{12} is hydrogen, halo, or C_1-C_4 alkyl;

 R^{13} is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{14} is hydrogen, C_1 - C_4 alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C_1 - C_4 alkyl, and C_1 - C_4 alkoxy; or pharmaceutically acceptable acid addition salts thereof.

3. A method for increasing activation of the $5-\mathrm{HT}_{2C}$ receptor in mammals, comprising administering to a mammal in

need of such activation a pharmaceutically effective amount of a compound of Formula I:

5 where:

10

A is $-CHR^{13}$ - or a bond;

R is hydrogen, halo, cyano, $-C(0)NR^6R^7$, C_1-C_6 alkyl, C_1-C_4 alkoxycarbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C_1-C_4 alkyl, and C_1-C_4 alkoxy;

 $\rm R^1$ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or $\rm C_1\text{-}C_6$ alkyl;

 R^2 and R^3 are independently hydrogen, halo, amino, nitro, C_1 - C_4 alkoxy, cyano, carboxamido, - $C(0)NR^8R^9$, - $NR^{10}R^{11}$, - $NHC(0)NHR^{14}$, C_1 - C_4 alkoxycarbonyl, carboxyl, trifluoromethyl, or C_1 - C_6 alkyl optionally substituted with a substituent selected from the group consisting of C_1 - C_4 alkoxy, hydroxy, phenoxy, and phenyl;

20 R^4 and R^4 ' are independently hydrogen, C_1 - C_4 alkyl, or benzyl; or R^4 and R^4 ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^5 is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^5 ' is hydrogen, or R^5 and R^5 ' together with the carbon atom to which they are attached form a cyclopropyl moiety; R^6 and R^7 are independently hydrogen or C_1 - C_4 alkyl; R^8 is hydrogen or C_1 - C_4 alkyl;

-127-

 R^9 is C_1 - C_8 alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C_1 - C_4 alkyl, or C_1 - C_4 alkoxy;

 R^{10} is hydrogen or C_1-C_4 alkyl;

 R^{11} is C_1-C_4 alkyl or C_1-C_4 acyl;

 R^{12} is hydrogen, halo, or C_1-C_4 alkyl;

 R^{13} is hydrogen, C_1-C_4 alkyl, or benzyl;

 $$\rm R^{14}$ is hydrogen, $\rm C_{1}\text{--}C_{4}$ alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, $\rm C_{1}\text{--}C_{4}$ alkyl, and $\rm C_{1}\text{--}C_{4}$ alkoxy; or pharmaceutically acceptable acid addition salts thereof.

15

10

5

4. A method for the treatment of obesity in mammals, comprising administering to a mammal in need of such treatment an effective amount of a compound of Formula I:

20

where:

A is $-CHR^{13}$ or a bond;

R is hydrogen, halo, cyano, $-C(0)NR^6R^7$, C_1-C_6 alkyl, C_1-C_4 alkoxycarbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C_1-C_4 alkyl, and C_1-C_4 alkoxy;

-128-

 $\rm R^1$ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or $\rm C_1-C_6$ alkyl;

 R^2 and R^3 are independently hydrogen, halo, amino, nitro, C_1 - C_4 alkoxy, cyano, carboxamido, - $C(0)NR^8R^9$, - $NR^{10}R^{11}$, - $NHC(0)NHR^{14}$, C_1 - C_4 alkoxycarbonyl, carboxyl, trifluoromethyl, or C_1 - C_6 alkyl optionally substituted with a substituent selected from the group consisting of C_1 - C_4 alkoxy, hydroxy, phenoxy, and phenyl;

10 R^4 and R^4 ' are independently hydrogen, C_1 - C_4 alkyl, or benzyl; or R^4 and R^4 ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^5 is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{5} ' is hydrogen, or R^{5} and R^{5} ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^6 and R^7 are independently hydrogen or C_1-C_4 alkyl;

 R^8 is hydrogen or C_1-C_4 alkyl;

5

20

25

30

 R^9 is C_1 - C_8 alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C_1 - C_4 alkyl, or C_1 - C_4 alkoxy;

 R^{10} is hydrogen or C_1-C_4 alkyl;

 R^{11} is C_1-C_4 alkyl or C_1-C_4 acyl;

 R^{12} is hydrogen, halo, or C_1-C_4 alkyl;

 R^{13} is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{14} is hydrogen, C_1 - C_4 alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C_1 - C_4 alkyl, and C_1 - C_4 alkoxy; or pharmaceutically acceptable acid addition salts thereof.

5. A method for the treatment of depression in mammals, comprising administering to a mammal in need of

such treatment an effective amount of a compound of Formula I:

5

10

where:

A is $-CHR^{13}$ or a bond;

R is hydrogen, halo, cyano, $-C(0)NR^6R^7$, C_1-C_6 alkyl, C_1-C_4 alkoxycarbonyl, carboxy, or phenyl optionally substituted with one or two substituents selected from the group consisting of halo, C_1-C_4 alkyl, and C_1-C_4 alkoxy;

 $\rm R^1$ is hydrogen, halo, cyano, carboxamido, formyl, trimethylsilyl, trifluoromethyl, pentafluoroethyl, or $\rm C_1\text{--}C_6$ alkyl;

15 R^2 and R^3 are independently hydrogen, halo, amino, nitro, C_1 - C_4 alkoxy, cyano, carboxamido, $-C(0)NR^8R^9$, $-NR^{10}R^{11}$, $-NHC(0)NHR^{14}$, C_1 - C_4 alkoxycarbonyl, carboxyl, trifluoromethyl, or C_1 - C_6 alkyl optionally substituted with a substituent selected from the group consisting of C_1 - C_4 alkoxy, hydroxy, phenoxy, and phenyl;

 R^4 and R^4 ' are independently hydrogen, C_1 - C_4 alkyl, or benzyl; or R^4 and R^4 ' together with the carbon atom to which they are attached form a cyclopropyl moiety;

 R^5 is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^5 is hydrogen, or R^5 and R^5 together with the carbon atom to which they are attached form a cyclopropyl moiety; R^6 and R^7 are independently hydrogen or C_1 - C_4 alkyl; R^8 is hydrogen or C_1 - C_4 alkyl;

-130-

 R^9 is C_1 - C_8 alkyl where the alkyl chain is optionally substituted with a substituent selected from the group consisting of carboxy, phenyl, or pyridyl, said phenyl or pyridyl substituent optionally substituted with one or two substituents selected from the group consisting of halo, C_1 - C_4 alkyl, or C_1 - C_4 alkoxy;

 R^{10} is hydrogen or C_1-C_4 alkyl;

 R^{11} is C_1-C_4 alkyl or C_1-C_4 acyl;

 R^{12} is hydrogen, halo, or C_1 - C_4 alkyl;

 R^{13} is hydrogen, C_1-C_4 alkyl, or benzyl;

 R^{14} is hydrogen, C_1 - C_4 alkyl, or phenyl optionally substituted with a substituent selected from the group consisting of halo, C_1 - C_4 alkyl, and C_1 - C_4 alkoxy; or pharmaceutically acceptable acid addition salts thereof.

15

10

6. A method of any of Claims 3, 4, or 5 where the mammal is human.