DT01 Rec'd PCT/PTO 1 3 OCT 2004

In the Claims

- 1. (original): A method of curing a composition comprising
- (a) at least one free-radical-polymerisable compound or
- (b) at least one compound that, under the action of an acid, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or
- (c) at least one compound that, under the action of a base, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or a mixture of components (a) and (b), or a mixture of components (a) and (c); and
- (d) at least one photolatent compound that is activatable by plasma discharge; wherein

the composition is applied to a three-dimensional substrate and the curing is carried out in a plasma discharge chamber.

- 2. (original): A method of curing a composition comprising
- (a) at least one free-radical-polymerisable compound or at least one compound that, under the action of an acid, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or
- (c) at least one compound that, under the action of a base, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or a mixture of components (a) and (b), or a mixture of components (a) and (c);
- (d) at least one photolatent compound that is activatable by plasma discharge; and
- (e) at least one light stabiliser compound or UV absorber compound; wherein

the curing is carried out in a plasma discharge chamber.

- 3. **(currently amended):** A method according to either claim 1 or claim 2, wherein component (d) in the composition is selected from the group consisting of a free-radical photoinitiator, a photolatent acid and or a photolatent base.
- 4. (currently amended): A method according to either claim 1 or claim-2, wherein component (d) in the composition is at least one compound selected from the group consisting of benzophenones,

benzophenone derivatives, acetophenone, acetophenone derivatives, halomethylbenzophenones, halomethylarylsulfones, dialkoxyacetophenones, anthracene, anthracene derivatives, thioxanthone, thioxanthone derivatives, 3-ketocoumarin, 3-ketocoumarin derivatives, anthraquinone, anthraquinone derivatives, α-hydroxy- or α-amino-acetophenone derivatives, α-sulfonylacetophenone derivatives, 4-aroyl-1,3-dioxolanes, benzoin alkyl ethers and benzilketals, phenyl glyoxalates and derivatives thereof, dimeric phenyl glyoxalates, peresters, monoacylphosphine oxides, bisacylphosphine oxides, trisacylphosphine oxides, halomethyltriazines, titanocenes, borate compounds, O-acyloxime compounds, camphorquinone derivatives, iodonium salts, sulfonium salts, iron aryl complexes, oximesulfonic acid esters and photolatent amines.

5. (currently amended): A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula I, II, III or/_ and IV

$$R_{4a}$$
 $C - C - R_2$ (I), wherein

 R_1 is C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy;

 R_2 is phenyl, OR_5 or NR_7R_8 ;

 R_3 has one of the definitions given for R_1 or is C_3 - C_{12} alkenyl, phenyl- C_1 - C_6 alkyl or C_1 - C_6 alkyl;

or R_1 and R_3 , together with the carbon atom to which they are bonded, form a cyclohexyl ring; R_2 being phenyl when R_1 and R_3 are both alkoxy;

 $\textbf{R}_{4} \text{ and } \textbf{R}_{4a} \text{ are each independently of the other hydrogen, } \textbf{C}_{1}\textbf{-}\textbf{C}_{12} \text{alkyl, } \textbf{C}_{1}\textbf{-}\textbf{C}_{12} \text{hydroxyalkyl, } \textbf{OR}_{5}, \textbf{SR}_{6}, \textbf{CR}_{12} \text{hydroxyalkyl, } \textbf{OR}_{5}, \textbf{CR}_{5}, \textbf{CR}$

a monovalent linear or branched siloxane radical;

n is a number from 1 to 10;

 R_5 and R_6 are each independently of the other hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkenyl, phenyl, benzyl, $Si(CH_3)_3$ or $-[C_aH_{2a}X]_b^-R_{10}$;

PCT/EP 03/04036 - 2 - CO/2-22659

 R_7 and R_8 are each independently of the other hydrogen, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl, or R_7 and R_8 , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR_{11} group;

a and b are each independently of the other a number from 1 to 12;

X is S, O or NR₁₁;

$$R_{10}$$
 is hydrogen, C_1 - C_{12} alkyl or C_1 - C_2 - C_3

 R_{11} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl; and R_{12} , R_{13} and R_{14} are each independently of the others hydrogen or methyl;

$$R_{19}$$
 R_{19}
 R_{19}
 R_{19}
 R_{18}
 R_{18}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}

 R_{15} and R_{16} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy; phenyl which is unsubstituted or substituted by one or more OR_{22} , SR_{23} , $NR_{24}R_{25}$, C_1 - C_{12} alkyl or halogen substituents;

or
$$R_{15}$$
 and R_{16} are biphenylyl, naphthyl, phenyl- C_1 - C_4 alkyl or R_{17} R_{20}

 R_{17} and R_{18} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen; R_{19} , R_{20} and R_{21} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen;

 R_{22} , R_{23} , R_{24} and R_{25} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl, or C_2 - C_{20} alkyl which is interrupted by O atoms and is unsubstituted or substituted by OH or/and SH; or R_{24} and R_{25} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O or S atoms or an NR_{26} group; and R_{26} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkyl or C_1 - C_{12} hydroxyalkyl;

PCT/EP 03/04036 - 3 - CO/2-22659

$$R_{28}$$
 R_{29} R_{30} (III), wherein

 R_{27} , R_{28} , R_{29} , R_{30} , R_{31} and R_{32} are each independently of the others hydrogen, C_1 - C_4 alkyl, phenyl, naphthyl, -OR₃₅, -SR₃₅, -(CO)O(C₁-C₄alkyl), halogen, NR₃₃R₃₄ or a monovalent linear or branched siloxane radical, or R_{29} and R_{30} , each in the o-position to the carbonyl group, together form a S atom; and

 R_{33} and R_{34} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{33} and R_{34} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR_{11} group; and

R₃₅ is C₁-C₁₂alkyl, C₂-C₆hydroxyalkyl or phenyl;

 R_{36} , R_{37} , R_{38} , R_{39} and R_{40} are each independently of the others hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, naphthyl, halogen, CN and/or by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{36} , R_{37} , R_{38} , R_{39} and R_{40} are OR_{42} , SR_{43} , $NR_{44}R_{45}$, halogen, a monovalent linear or branched siloxane radical, or phenyl unsubstituted or substituted by one or two C_1 - C_4 alkyl or/and one or two C_1 - C_4 alkoxy substituents, it being possible for the substituents OR_{42} , SR_{43} , $NR_{44}R_{45}$ to form 5- or 6-membered rings by way of the radicals R_{42} , R_{43} , R_{44} and/or R_{45} with further substituents on the phenyl ring or with one of the carbon atoms of the phenyl ring;

 R_{41} is C_1 - C_8 alkyl, or phenyl unsubstituted or substituted by from one to three C_1 - C_4 alkyl and/or one to three C_1 - C_4 alkoxy substituents;

 R_{42} and R_{43} are each independently of the other hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, phenoxy or/and by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{42} and R_{43} are phenyl unsubstituted or substituted by C_1 - C_4 alkoxy, phenyl or/and by C_1 - C_4 alkyl, or R_{42} and R_{43} are C_3 - C_6 alkenyl, cyclopentyl, cyclopexyl or naphthyl;

 R_{44} and R_{45} are each independently of the other hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy or/and by phenyl, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{44} and R_{45} are phenyl, -COR₄₁ or SO₂R₄₆, or R₄₄ and R₄₅, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered ring, which may also be interrupted by -O- or -NR₄₇-;

PCT/EP 03/04036 - 4 - CO/2-22659

R₄₆ is C₁-C₁₂alkyl, phenyl or 4-methylphenyl;

 R_{47} is hydrogen, C_1 - C_8 alkyl unsubstituted or substituted by OH or by C_1 - C_4 alkoxy, or is phenyl unsubstituted or substituted by OH, C_1 - C_4 alkyl or by C_1 - C_4 alkoxy;

Y is
$$-Y_1 - O - C - C - C - R_{38}$$
 R_{38} , $C_1 - C_{20}$ alkyl, phenyl, naphthyl, phenyl- $C_1 - C_4$ alkyl or a

monovalent linear or branched siloxane radical;

 Y_1 is C_1 - C_{12} alkylene, C_4 - C_8 alkenylene, C_4 - C_8 alkynylene, cyclohexylene, C_4 - C_{40} alkylene interrupted by one or more -O-, -S- or -NR₄₈-, or is phenylene or Y_1 is a group

divalent linear or branched siloxane radical;

 $\mathbf{Y_2}$ has the same definitions as $\mathbf{Y_1}$ with the exception of the formula

-CH₂CH(OH)CH₂O-Y₂-OCH₂CH(OH)CH₂-;

 R_{48} is hydrogen, C_1 - C_{12} alkyl or phenyl; and

 R_{49} is hydrogen, CH_2OH or C_1 - C_4 alkyl.

- 6. (currently amended): A method according to claim 5 [[4]], wherein component (d) in the composition is at least one compound selected from the group consisting of formula I er/ and II [[,]] especially a mixture of a compound of formula I and a compound of formula II.
- 7. (currently amended): A method according to either claim 1-or-claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula V, VI, VII er/_ and VIIa

$$R_{50}$$
 I R_{51} I (V), wherein

 R_{50} and R_{51} are each independently of the other hydrogen, C_1 - C_{20} alkyl, C_1 - C_{20} alkoxy, OH-substituted C_1 - C_{20} alkoxy, halogen, C_2 - C_{12} alkenyl, cycloalkyl, especially methyl, isopropyl or isobutyl; and

Z is an anion, especially PF₆, SbF₆, AsF₆, BF₄, (C₆F₅)₄B, Cl, Br, HSO₄, CF₃-SO₃, F-SO₃,

$$H_3C$$
 \longrightarrow SO_3^- , CH_3 - SO_3 , CIO_4 , PO_4 , NO_3 , SO_4 , CH_3 - SO_4 , H_3C \longrightarrow SO_4^- ;

$$R_{52} - \stackrel{+}{S} - R_{54} - Z^{-}$$
 (VI), wherein

 R_{52} , R_{53} and R_{54} are each independently of the others unsubstituted phenyl, or phenyl substituted by –

Z is as defined above;

$$R_{55}$$
 C=N-O-R₅₇ (VII), or R_{55} R_{58} N -O-R₅₇ (VIIa), wherein

PCT/EP 03/04036 - 6 - CO/2-22659

$$R_{55}$$
 is $\begin{array}{c} \hline { 0 \\ || \\ C \\ \hline ||_q} \\ R_{58} \end{array}$, (CO)O-C₁-C₄alkyl, CN or C₁-C₁₂haloalkyl;

$$R_{56}$$
 has one of the definitions given for R_{55} or is $-C \cdot (CH_2)_3 - C \cdot (CH_2)_3 - (CH_2)_3 - C \cdot (C$

 R_{57} is C_1 - C_{18} alkylsulfonyl, C_1 - C_{10} haloalkylsulfonyl, camphorylsulfonyl, phenyl- C_1 - C_3 alkylsulfonyl, C_3 - C_{30} cycloalkylsulfonyl, phenylsulfonyl, naphthylsulfonyl, anthracylsulfonyl or phenanthrylsulfonyl, the groups cycloalkyl, phenyl, naphthyl, anthracyl and phenanthryl of the radicals C_3 - C_{30} cycloalkylsulfonyl, phenyl- C_4 - C_3 alkylsulfonyl, phenylsulfonyl, naphthylsulfonyl, anthracylsulfonyl and phenanthrylsulfonyl-being-unsubstituted or substituted by one or more halogen, C_1 - C_4 haloalkyl, C_1 , C_1 - C_4 alkylthio, C_1 - C_4 alkoxy, phenoxy, C_1 - C_4 alkyl-O(CO)-, C_1 - C_4 alkyl-O(CO)-, C_1 - C_4 alkyl-O(CO)-, O(CO)-, O(C

-NR₆₀R₆₁ substituents; or R₅₇ is C₂-C₆haloalkanoyl, halobenzoyl,
$$\begin{array}{c} X_1 \\ | 1 \\ |$$

$$\begin{array}{c}
X_1 \\
Y_1 \\
Y_2 \\
X_2 \\
X_3 \\
X_65
\end{array}$$

 X_1 , X_2 and X_3 are each independently of the others O or S;

q is 0 or 2; and

 R_{58} is C_1 - C_{12} alkyl, cyclohexyl, camphoryl, unsubstituted phenyl, or phenyl substituted by one or more halogen, C_1 - C_{12} alkyl, OR_{59} , SR_{59} or $NR_{60}R_{61}$ substituents;

 R_{59} is C_1 - C_{12} alkyl, phenyl, phenyl- C_1 - C_4 alkyl or C_1 - C_{12} hydroxyalkyl;

 R_{60} and R_{61} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{60} and R_{61} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or an NR_{62} group;

 R_{62} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl;

 R_{63} , R_{64} , R_{65} and R_{66} are each independently of the others C_1 - C_6 alkyl, C_1 - C_6 haloalkyl; or phenyl unsubstituted or substituted by C_1 - C_4 alkyl or by halogen; and

R₆₇ is hydrogen, C₁-C₄alkyl, phenyl or tolyl.

8. (currently amended): A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula VIII

PCT/EP 03/04036 - 7 - CO/2-22659

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

r is 0 or 1;

 X_4 is CH_2 or O;

R₆₈ and R₆₉ are each independently of the other hydrogen or C₁-C₂₀alkyl; and

 R_{70} is unsubstituted or C_1 - C_{12} alkyl- or C_1 - C_{12} alkoxy-substituted phenyl, naphthyl or biphenylyl.

- 9. (currently amended): A method according to either claim 1 or claim 2, wherein the composition comprises, in addition to the photolatent component (d), other additives (h), sensitiser compounds (f) or/and dyes or pigments (g).
- 10. (original): A method according to claim 1, wherein the composition comprises at least one light stabiliser or/and at least one UV absorber compound.
- 11. (currently amended): A method according to either claim 1 or claim 2, wherein the composition is a surface coating.
- 12. (currently amended): A method according to either claim 1 or claim 2, wherein the composition is a printing ink.
- 13. (currently amended): A method according to either claim 1 or-claim-2, wherein the composition comprises as polymerisable component solely free-radical-polymerisable compounds (a).
- 14. (currently amended): A method according to claim 13, wherein the free-radical-polymerisable compound comprises at least one compound selected from the group consisting of mono-, di-, tri- or tetra-functional acrylate monomers and/or at least one mono-, di-, tri- or tetra-functional acrylate-functional oligomers.

PCT/EP 03/04036 - 8 - CO/2-22659

- 15. (currently amended): A method according to either claim 1-or claim 2, wherein the composition comprises as polymerisable component solely cationically polymerisable or crosslinkable compounds (b).
- 16. (currently amended): A method according to either claim 1-or-claim 2, wherein the composition comprises as polymerisable component a mixture of at least one free-radical-polymerisable compound (a) and at least one cationically polymerisable compound (b).
- 17. (currently amended): A coated substrate which is coated on at least one surface by means of the method according to either-claim 1-or-claim-2.
- 18. (currently amended): A coating obtainable by a method according to either claim 1 or claim 2.
- 19. (currently amended): A method of curing a composition comprising
- (1) a combination of at least one electron acceptor compound, especially a maleimidecompound, and at least one electron donor compound, especially a vinyl ether compound; and
- (2) optionally at least one free-radical-polymerisable compound (a), wherein the curing is carried out in a plasma discharge chamber.
- 20. (currently amended): A method of curing a composition comprising
- (a) at least one free-radical-polymerisable component having at least one ethylenically unsaturated double bond, the free-radical-polymerisable component optionally additionally being functionalised with OH, NH₂, COOH, epoxy or NCO groups; and
- (a1) <u>a mixture of at least one compound selected from the group consisting of polyacrylates or/</u> and polyester polyols,

and at least one compound selected from the group consisting of _in combination with melamine, or with a melamine derivatives, or in combination with a and blocked or non-blocked polyisocyanates;

or

(a2) <u>a mixture of at least one compound selected from the group consisting of carboxyl-,</u> anhydride- or amino-functional polyester<u>s or/</u> and at least one carboxyl-, anhydride- or amino-functional polyacrylate<u>s</u>,

and at least one compound selected from the group consisting of in-combination with an epoxy-functional polyesters or and polyacrylates;

or

- (a3) a mixture of (a1) and (a2); and
- (d) at least one photolatent compound that is activatable by plasma discharge; wherein

the curing of the composition is carried out in a plasma discharge chamber and, optionally, thermal pre- or after-treatment is carried out.

- 21. **(original):** A method of producing mouldings from composite materials, wherein a support is impregnated with a composition comprising
- (a) at least one free-radical-polymerisable compound or
- (b) at least one compound that, under the action of an acid, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or
- (c) at least one compound that, under the action of a base, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or a mixture of components (a) and (b), or a mixture of components (a) and (c); and
- (d) at least one photolatent compound that is activatable by plasma discharge; and is introduced into a mould; wherein the curing is carried out in a plasma discharge chamber and, optionally, thermal aftertreatment is carried out.
- 22. **(new):** A method according to claim 2, wherein component (d) in the composition is selected from the group consisting of a free-radical photoinitiator, a photolatent acid or a photolatent base.
- 23. (new): A method according to claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of benzophenones, benzophenone derivatives, acetophenone, acetophenone derivatives, halomethylbenzophenones, halomethylarylsulfones, dialkoxyacetophenones, anthracene, anthracene derivatives, thioxanthone, thioxanthone derivatives, 3-ketocoumarin, 3-ketocoumarin derivatives, anthraquinone, anthraquinone derivatives, α -hydroxy- or α -amino-acetophenone derivatives, α -sulfonylacetophenone derivatives, 4-aroyl-1,3-dioxolanes, benzoin alkyl ethers and benzilketals, phenyl glyoxalates and derivatives thereof, dimeric phenyl glyoxalates, peresters, monoacylphosphine oxides, bisacylphosphine oxides, trisacylphosphine oxides, halomethyltriazines, titanocenes, borate compounds, O-acyloxime compounds,

PCT/EP 03/04036 - 10 - CO/2-22659

camphorquinone derivatives, iodonium salts, sulfonium salts, iron aryl complexes, oximesulfonic acid esters and photolatent amines.

24. (new): A method according to claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula I, II, III or/and IV

$$R_{4a}$$
 $C - C - R_2$ (I), wherein

 R_1 is C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy;

R₂ is phenyl, OR₅ or NR₇R₈;

 R_3 has one of the definitions given for R_1 or is C_3 - C_{12} alkenyl, phenyl- C_1 - C_6 alkyl or C_1 - C_6 alkyl;

or R_1 and R_3 , together with the carbon atom to which they are bonded, form a cyclohexyl ring; R_2 being phenyl when R_1 and R_3 are both alkoxy;

R₄ and R_{4a} are each independently of the other hydrogen, C₁-C₁₂alkyl, C₁-C₁₂hydroxyalkyl, OR₅, SR₆,

a monovalent linear or branched siloxane radical;

n is a number from 1 to 10;

 R_5 and R_6 are each independently of the other hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkenyl, phenyl, benzyl, $Si(CH_3)_3$ or $-[C_aH_{2a}X]_b^-R_{10}$;

R₇ and **R**₈ are each independently of the other hydrogen, C₁-C₁₂alkyl or C₂-C₅hydroxyalkyl, or R₇ and R₈, together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR₁₁ group;

$$R_9$$
 is a single bond, O, S, NR_{11} , $-CH_2CH_2$ - or $-C$;

a and b are each independently of the other a number from 1 to 12;

X is S, O or NR₁₁;

 R_{10} is hydrogen, C_1 - C_{12} alkyl or C_1 - C_2 - C_3 - C_4 - C_5 -C

 R_{11} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl; and R_{12} , R_{13} and R_{14} are each independently of the others hydrogen or methyl;

$$R_{19}$$
 R_{19}
 R_{19}
 R_{19}
 R_{18}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{16}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{18}

 R_{15} and R_{16} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy; phenyl which is unsubstituted or substituted by one or more OR_{22} , SR_{23} , $NR_{24}R_{25}$, C_1 - C_{12} alkyl or halogen substituents;

or R_{15} and R_{16} are biphenylyl, naphthyl, phenyl- C_1 - C_4 alkyl or R_{17} R_{20}

 R_{17} and R_{18} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen; R_{19} , R_{20} and R_{21} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen;

 R_{22} , R_{23} , R_{24} and R_{25} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_3 - C_8 cycloalkyl, phenyl, benzyl, or C_2 - C_{20} alkyl which is interrupted by O atoms and is unsubstituted or substituted by OH or/and SH; or R_{24} and R_{25} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O or S atoms or an NR_{26} group; and R_{26} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkyl or C_1 - C_{12} hydroxyalkyl;

$$R_{28}$$
 R_{29} R_{30} (III), wherein

 R_{27} , R_{28} , R_{29} , R_{30} , R_{31} and R_{32} are each independently of the others hydrogen, C_1 - C_4 alkyl, phenyl, naphthyl, -OR₃₅, -SR₃₅, -(CO)O(C₁-C₄alkyl), halogen, NR₃₃R₃₄ or a monovalent linear or branched siloxane radical, or R_{29} and R_{30} , each in the o-position to the carbonyl group, together form a S atom; and

PCT/EP 03/04036 - 12 - CO/2-22659

 R_{33} and R_{34} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{33} and R_{34} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR₁₁ group; and

 R_{35} is C_1 - C_{12} alkyl, C_2 - C_6 hydroxyalkyl or phenyl;

 R_{36} , R_{37} , R_{38} , R_{39} and R_{40} are each independently of the others hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, naphthyl, halogen, CN and/or by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{36} , R_{37} , R_{38} , R_{39} and R_{40} are OR_{42} , SR_{43} , $NR_{44}R_{45}$, halogen, a monovalent linear or branched siloxane radical, or phenyl unsubstituted or substituted by one or two C_1 - C_4 alkyl or/and one or two C_1 - C_4 alkoxy substituents, it being possible for the substituents OR_{42} , SR_{43} , $NR_{44}R_{45}$ to form 5- or 6-membered rings by way of the radicals R_{42} , R_{43} , R_{44} and/or R_{45} with further substituents on the phenyl ring or with one of the carbon atoms of the phenyl ring;

 R_{41} is C_1 - C_8 alkyl, or phenyl unsubstituted or substituted by from one to three C_1 - C_4 alkyl and/or one to three C_1 - C_4 alkoxy substituents;

 R_{42} and R_{43} are each independently of the other hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, phenoxy or/and by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{42} and R_{43} are phenyl unsubstituted or substituted by C_1 - C_4 alkoxy, phenyl or/and by C_1 - C_4 alkyl, or R_{42} and R_{43} are C_3 - C_6 alkenyl, cyclopentyl, cyclohexyl or naphthyl;

 R_{44} and R_{45} are each independently of the other hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy or/and by phenyl, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{44} and R_{45} are phenyl, -COR₄₁ or SO₂R₄₆, or R_{44} and R_{45} , together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered ring, which may also be interrupted by -O- or -NR₄₇-;

 R_{46} is C_1 - C_{12} alkyl, phenyl or 4-methylphenyl;

 R_{47} is hydrogen, C_1 - C_8 alkyl unsubstituted or substituted by OH or by C_1 - C_4 alkoxy, or is phenyl unsubstituted or substituted by OH, C_1 - C_4 alkyl or by C_1 - C_4 alkoxy;

monovalent linear or branched siloxane radical;

PCT/EP 03/04036 - 13 - CO/2-22659

 Y_1 is C_1 - C_{12} alkylene, C_4 - C_8 alkenylene, C_4 - C_8 alkynylene, cyclohexylene, C_4 - C_{40} alkylene interrupted by one or more -O-, -S- or -NR₄₈-, or is phenylene or Y_1 is a group

divalent linear or branched siloxane radical;

 Y_2 has the same definitions as Y_1 with the exception of the formula $-CH_2CH(OH)CH_2O-Y_2-OCH_2CH(OH)CH_2-$;

 R_{48} is hydrogen, C_1 - C_{12} alkyl or phenyl; and

R₄₉ is hydrogen, CH₂OH or C₁-C₄alkyl.

- 25. **(new):** A method according to claim 24, wherein component (d) in the composition is at least one compound selected from the group consisting of formula I or/and II.
- 26. (new): A method according to claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula V, VI, VII and VIIa

$$R_{50}$$
 Z^{-} (V), wherein

 R_{50} and R_{51} are each independently of the other hydrogen, C_1 - C_{20} alkyl, C_1 - C_{20} alkoxy, OH-substituted C_1 - C_{20} alkoxy, halogen, C_2 - C_{12} alkenyl, cycloalkyl, especially methyl, isopropyl or isobutyl; and

Z is an anion, especially PF₆, SbF₆, AsF₆, BF₄, (C₆F₅)₄B, Cl, Br, HSO₄, CF₃-SO₃, F-SO₃,

$$R_{52} = \overset{+}{\underset{R_{53}}{=}} R_{54} = Z^{-}$$
 (VI), wherein

R₅₂, R₅₃ and R₅₄ are each independently of the others unsubstituted phenyl, or phenyl substituted by -

Z is as defined above;

$$R_{55}$$
 C=N-O-R₅₇ (VII), or R_{55} C=N-O-R₅₇ (VIIa), wherein

$$\textbf{R}_{55} \text{ is } \quad \frac{\left[\begin{array}{c}O\\I\\C\end{array}\right]_{q}R_{58}}{C} \text{ , (CO)O-C}_{1}\text{-C}_{4}\text{alkyl, CN or C}_{1}\text{-C}_{12}\text{haloalkyl;}$$

$$R_{56}$$
 has one of the definitions given for R_{55} or is $O^{-(CH_2)_3-O} = C_{R_{55}} = N-O-R_{57}$;

 R_{57} is C_1 - C_{18} alkylsulfonyl, C_1 - C_{10} haloalkylsulfonyl, camphorylsulfonyl, phenyl- C_1 - C_3 alkylsulfonyl, C_3 - C_{30} cycloalkylsulfonyl, phenylsulfonyl, naphthylsulfonyl, anthracylsulfonyl or phenanthrylsulfonyl, unsubstituted or substituted by one or more halogen, C_1 - C_4 haloalkyl, C_1 , C_1 - C_1 - C_2 alkylthio, C_1 - C_4 alkylthio, C_1 - C_4 alkoxy, phenoxy, C_1 - C_4 alkyl- C_1 - C_4 - C_1 - C_2 - C_1 - C_2 - C_1 - C_2 - C_3 - C_4

PCT/EP 03/04036 - 15 - CO/2-22659

 X_1 , X_2 and X_3 are each independently of the others O or S;

q is 0 or 2; and

 R_{58} is C_1 - C_{12} alkyl, cyclohexyl, camphoryl, unsubstituted phenyl, or phenyl substituted by one or more halogen, C_1 - C_{12} alkyl, OR_{59} , SR_{59} or $NR_{60}R_{61}$ substituents;

 R_{59} is C_1 - C_{12} alkyl, phenyl, phenyl- C_1 - C_4 alkyl or C_1 - C_{12} hydroxyalkyl;

 R_{60} and R_{61} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{60} and R_{61} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or an NR_{62} group;

R₈₂ is hydrogen, phenyl, phenyl-C₁-C₄alkyl, C₁-C₁₂alkyl or C₂-C₅hydroxyalkyl;

 R_{63} , R_{64} , R_{65} and R_{66} are each independently of the others C_1 - C_6 alkyl, C_1 - C_6 haloalkyl; or phenyl unsubstituted or substituted by C_1 - C_4 alkyl or by halogen; and

R₆₇ is hydrogen, C₁-C₄alkyl, phenyl or tolyl.

27. (new): A method according to claim 2, wherein component (d) in the composition is at least one compound selected from the group consisting of formula VIII

$$R_{68}$$
 R_{69}
 R_{69}
 R_{70}
 R_{70}
(VIII), wherein

r is 0 or 1;

 X_4 is CH_2 or O;

R₆₈ and R₆₉ are each independently of the other hydrogen or C₁-C₂₀alkyl; and

 R_{70} is unsubstituted or C_1 - C_{12} alkyl- or C_1 - C_{12} alkoxy-substituted phenyl, naphthyl or biphenylyl.

PCT/EP 03/04036 - 16 - CO/2-22659

- 28. (new): A method according to claim 2, wherein the composition comprises, in addition to the photolatent component (d), other additives (h), sensitiser compounds (f) or/and dyes or pigments (g).
- 29. (new): A method according to claim 2, wherein the composition is a surface coating.
- 30. (new): A method according to claim 2, wherein the composition is a printing ink.
- 31. **(new):** A method according to either claim 2, wherein the composition comprises as polymerisable component solely free-radical-polymerisable compounds (a).
- 32. **(new):** A method according to claim 31, wherein the free-radical-polymerisable compound comprises at least one compound selected from the group consisting of mono-, di-, tri- or tetra-functional acrylates monomer and mono-, di-, tri- or tetra-functional acrylate-functional oligomers.
- 33. **(new):** A method according to claim 2, wherein the composition comprises as polymerisable component solely cationically polymerisable or crosslinkable compounds (b).
- 34. **(new):** A method according to claim 2, wherein the composition comprises as polymerisable component a mixture of at least one free-radical-polymerisable compound (a) and at least one cationically polymerisable compound (b).
- 35. (new): A coated substrate which is coated on at least one surface by means of the method according to claim 2.
- 36. (new): A coating obtainable by a method according to claim 2.
- 37. (new): A method of curing a composition comprising
- (1) a combination of at least one electron acceptor maleimide compound, and at least one electron donor vinyl ether compound; and
- (2) optionally at least one free-radical-polymerisable compound (a), wherein the curing is carried out in a plasma discharge chamber.

PCT/EP 03/04036 - 17 - CO/2-22659