Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Теорема Муавра-Лапласа

(ФОРМУЛИРОВКА, ДОКАЗАТЕЛЬСТВО ТОЛЬКО ЛОКАЛЬНОЙ ТЕОРЕМЫ И ТОЛЬКО ДЛЯ СИММЕТРИЧНОГО СЛУЧАЯ)

Замечание 1. (Формула Стирлинга)

$$n!=\sqrt{2\pi}n^{n+rac{1}{2}}e^{-n+rac{arepsilon_n}{12n}},$$
 где $arepsilon_n\in(0,1).$

Определение 1. Функция

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

называется функцией Гаусса.

Теорема 1. (Теорема Муавра-Лапласа)

У нас есть схема Бернулли:

N подбрасываний k - число успехов p - вероятность успеха q=1-p

$$X_{N,k} = \frac{k - Np}{\sqrt{Npq}}$$

1 случай. (Локальная теорема Муавра-Лапласа)

Если к выбирается так, что

$$|X_{N,k}| \leqslant C$$
, где C не зависит от N ,

mo
$$P_{N,k} = \frac{1}{\sqrt{Npq}} \varphi(X_{N,k}) \cdot (1 + O(\frac{1}{\sqrt{N}})).$$

2 случай. (Интегральная теорема Муавра-Лапласа)

Для любых чисел a < b имеем

$$P\left(a\leqslant \frac{k-Np}{\sqrt{Npq}}\leqslant b\right)\xrightarrow[N\to\infty]{b}\varphi(x)dx.$$

Здесь в левой части написана вероятность того, что число единиц k лежит в диапазоне от $Np+a\sqrt{Npq}$ до $Np+b\sqrt{Npq}$.

Отметим, что во втором случае разница между вероятностью и интегралом оценивается через $\frac{p^2+q^2}{\sqrt{Npq}}$ и эта оценка точна. Следовательно, если p близко κ нулю или κ единице, то вероятность плохо приближается интегралом от φ .

Доказательство. (Доказательство локальной теоремы только для симметричного случая) Пусть N=2n. Найдем вероятность того, что в последовательности длины N ровно n единиц (ровно

половина):

$$P_{2n,n} = C_{2n}^n \cdot \frac{1}{2^{2n}} = \frac{(2n)!}{(n!)^2 \cdot 2^{2n}}$$

Раскрываем по формуле Стирлинга и получаем следующее:

$$\frac{\sqrt{2\pi} \cdot (2n)^{2n+\frac{1}{2}} \cdot e^{-2n+O(\frac{1}{2n})}}{(\sqrt{2\pi})^2 \cdot n^{2n+1} \cdot e^{-2n+O(\frac{1}{n})} \cdot 2^{2n}} = \frac{1}{\sqrt{\pi n}} e^{O(\frac{1}{n})} = \frac{1}{\sqrt{\pi n}} \left(1 + O\left(\frac{1}{n}\right)\right)$$

Таким образом, $P_{2n,n}\sim \frac{1}{\sqrt{\pi n}}=\frac{1}{\sqrt{2n\cdot \frac{1}{4}}}\cdot \frac{1}{\sqrt{2\pi}}e^{-\frac{(n-n)^2}{(2n\cdot \frac{1}{4})}}$ (что и требовалось).

Найдем теперь $P_{2n,k}$.

Заметим, что

$$P_{2n,n+a} = P_{2n,n-a}$$
 (следует из равенства $C_N^k = C_N^{N-k}$).

Тогда будет достаточно найти одну из этих вероятностей. Найдем $P_{2n,n+a}$.

$$\frac{P_{2n,n+a}}{P_{2n,n}} = \frac{C_{2n}^{n+a} \cdot (\frac{1}{2})^{2n}}{C_{2n}^{n} \cdot (\frac{1}{2})^{2n}} = \frac{C_{2n}^{n+a}}{C_{2n}^{n}} = \frac{n! \cdot n!}{(n+a)!(n-a)!} =$$

$$= \frac{(n-a+1)\cdot(n-a+2)\cdot\ldots\cdot(n-1)\cdot n}{(n+1)\cdot(n+2)\cdot\ldots\cdot(n+a)} =$$

$$= \frac{(1-\frac{a-1}{n})\cdot(1-\frac{a-2}{n})\cdot\ldots\cdot(1-\frac{1}{n})\cdot 1}{(1+\frac{1}{n})\cdot(1+\frac{2}{n})\cdot\ldots\cdot(1+\frac{a}{n})} =$$

$$= e^{\ln(1-\frac{a-1}{n})+\ln(1-\frac{a-2}{n})+\ldots+\ln(1-\frac{1}{n})-\ln(1+\frac{1}{n})-\ldots-\ln(1+\frac{a}{n})}$$

Вспомним, что $ln(1+x) = x + O(x^2)$ при $-1 < x \leqslant 1$. Тогда найдем оценку степени, которую мы нашли:

$$\ln\left(1 - \frac{a-1}{n}\right) + \ln\left(1 - \frac{a-2}{n}\right) + \dots + \ln\left(1 - \frac{1}{n}\right) - \ln\left(1 + \frac{1}{n}\right) - \dots - \ln\left(1 + \frac{a}{n}\right) =$$

$$= \left(-\frac{a-1}{n} - \frac{a-2}{n} - \dots - \frac{1}{n}\right) + \left(-\frac{1}{n} - \frac{2}{n} - \dots - \frac{a-1}{n} - \frac{a}{n}\right) + O\left(\frac{a^3}{n^2}\right) =$$

$$= -\frac{2(1+2+\dots+(a-1))+a}{n} + O\left(\frac{a^3}{n^2}\right) = -\frac{a(a-1)+a}{n} + O\left(\frac{a^3}{n^2}\right) = -\frac{a^2}{n} + O\left(\frac{a^3}{n^2}\right)$$

Итак,

$$P_{2n,n+a} = P_{2n,n} \cdot e^{-\frac{a^2}{n} + O\left(\frac{a^3}{n^2}\right)} = \frac{1}{\sqrt{\pi n}} \cdot e^{-\frac{a^2}{n} + O\left(\frac{a^3}{n^2}\right)}$$

Пусть $|a| \leqslant c \cdot \sqrt{n}$.

$$P_{2n,n+a} = \frac{1}{\sqrt{\pi n}} e^{\frac{-a^2}{n}} \left(1 + O\left(\frac{1}{\sqrt{N}}\right) \right)$$