(3) $\langle \operatorname{seg} a, \prec_A^0 \rangle \cong \langle B, \prec_B \rangle, a \in A.$

其中, \prec_A^0 , \prec_B^0 分别为 \prec_A 在 $\operatorname{seg} a$ 上的限制和 \prec_B 在 $\operatorname{seg} b$ 上的限制.

定理 6.8 设 \prec 为集合 A 上的良序,则惟一存在一个以 A 为定义域的函数 E,使得对于任意的 $t \in A$, $E(t) = \operatorname{ran}(E \mid \operatorname{seg} t) = \{E(x) \mid x \prec t\}.$

定理 **6.9** 设 $\langle A, \prec \rangle$ 为良序集, E 为前段值域函数, α 是 $\langle A, \prec \rangle$ 的 \in -象,则

- (1) $\forall t \in A, E(t) \notin E(t)$;
- (2) E 为 A 与 α 之间的双射函数;
- (3) $\forall s, t \in A, s \prec t \Leftrightarrow E(s) \in E(t)$;
- (4) $\alpha = \operatorname{ran} E$ 是传递集.

定理 6.10 两个良序集是同构的当且仅当它们具有相同的 ∈-象.

定理 6.11 同构的良序集具有相同的序数.

定理 **6.12** 设 α 按属于关系是良序的,并且 α 是传递集,则 α 是一个序数(即, α 是 $\langle \alpha, \in_{\alpha} \rangle$ 的 ϵ -象).

定理 6.13 设 α, β, γ 为三个序数,则

- (1) α的元素为序数(即任何序数的元素还是序数);
- (2) α ∉ α (反自反性);
- (3) $\alpha \in \beta \land \beta \in \gamma$, 则 $\alpha \in \gamma$ (传递性);
- (4) $\alpha \in \beta$, $\alpha = \beta$, $\beta \in \alpha$ 有且仅有一式成立(序数之间具有三歧性);
- (5) 由序数构成的非空集,按属于关系有最小元.

定理 **6.14** 设 α, β 为任意两个序数, $\alpha < \beta, \alpha = \beta, \alpha > \beta$, 三式有且仅有一式成立.

定理 6.15

- (1) 任何以序数为元素的传递集合是序数;
- (2) 0 是序数;
- (3) 若 α 是序数,则 $\alpha^+ = \alpha \cup \{\alpha\}$ 为序数;
- (4) 若集合 A 是以序数为元素的集合,则 ∪A 为序数.

定理 6.16

- (1) 一切自然数都序数.
- (2) 自然数集合 \mathbb{N} 是序数(当 \mathbb{N} 作为序数时,将它记为 ω), $\omega,\omega^+,\omega^{++},\omega^{+++},\cdots$ 是序数.
- (3) 设A是以序数为元素的集合,则 $\cup A$ 为A的关于属于等于关系的最小上界.
- (4) 设 α 为一序数,则 α ⁺是大于 α 的最小序数.
- (5) 设 α 为一序数,则 $\alpha = \{x \mid x \in \mathbb{Z} \}$ 人 $x < \alpha\}$.

定理 6.17 (Hartogs 定理) 对于任何集合 A, 都存在序数 α , 使得 $A \preceq \alpha$.

定理 6.18 (良序定理) 对于任意的集合 A, 都存在 A 上的良序.

定理 6.19 (命数定理) 对于任何集合 A, 都存在序数 α , 使得 $A \approx \alpha$.

定理 6.20

- (1) 对于任意的集合 $A \rightarrow B$, $card A = card B \Leftrightarrow A \approx B$;
- (2) 对于任意的有穷集合 A, card A 是与 A 等势的惟一的自然数.