Kali ini kita akan melakukan uji optimum masalah dualitas menggunakan metode simpleks. Silakan dibuka kembali handout pertemuan 12 lalu, tentang pembentukan masalah primal – dual. Penyelesaian masalah primal – dual dengan metode simpleks, tidak berbeda dengan penyelesaian masalah PL yang sudah dipelajari sebelumnya. Inti dalam masalah dualitas (masalah primal – dual) adalah:

- 1. Pembentukan masalah primal dualnya.
- 2. Keputusan penyelesaian menggunakan masalah primal atau masalah dualnya.
- 3. Pengambilan keputusan.

Pembentukan masalah primal – dual sudah dibahas, selanjutnya perhatikan teorema berikut:

Teorema

Diberikan masalah program linear:

Memaksimumkan
$$Z = \bar{c}^T.\bar{x}$$
 dengan kendala $A\bar{x} \leq \bar{b}$ dengan $\bar{x} \geq \bar{0}$ (1) dan

Meminimumkan
$$P = \bar{b}^T . \bar{y}$$
 dengan kendala $A^T \bar{y} \ge \bar{c}$ dengan $\bar{y} \ge \bar{0}$ (2)

Kedua masalah (1) dan (2) adalah *masalah dualitas*. Jika masalah (1) adalah primal, maka (2) adalah dualnya, dan sebaliknya jika masalah (2) adalah primal, maka (1) adalah dualnya.

Pengambilan keputusan penyelesaian apakah menggunakan masalah primal atau masalah dualnya, jika pada soal tidak ada perintah tertentu, maka menjadi kebijaksanaan kita, cara mana yang akan dipilih, masalah primalkah atau masalah dualkah.

Pilihan penyelesaian pada masalah primal ataupun masalah dual, maka penyelesaian masalah tersebut akan menggunakan metode simpleks sama persis seperti yang sudah kita lakukan sebelum-sebelumnya, yang langkah-langkahnya adalah:

- 1. Ubah masalah ke bentuk kanonik.
- 2. Bawa ke tabel awal simpleks.
- 3. Lakukan uji optimal, jika sudah optimal, masalah selesai, namun jika belum optimal, perbaiki tabel, dengan mencari variabel basis baru dan membentuk tabel baru.
- 4. Ulangi langkah 3, hingga optimal dipenuhi.

Namun jangan lupa, syarat nilai ruas kanan non negatif ($b_i \ge 0$ pada masalah primal atau $c_j \ge 0$ untuk masalah dual) harus tetap kita pegang. Jadi ada tambahan langkah:

- 1. Ubah kendala yang nilai ruas kanannya negatif, yaitu mengalikan kendala dengan -1.
- 2. Ubah masalah ke bentuk kanonik.
- 3. Bawa ke tabel awal simpleks.
- 4. Lakukan uji optimal, jika sudah optimal, masalah selesai, namun jika belum optimal, perbaiki tabel, dengan mencari variabel basis baru dan membentuk tabel baru.
- 5. Ulangi langkah 3, hingga optimal dipenuhi.

Mengapa penyelesaian boleh memilih melalui masalah primalnya atau masalah dualnya? Karena dalam masalah dualitas, solusi masalah primal akan menjadi solusi masalah dual, sebaliknya solusi masalah masalah dual akan menjadi solusi masalah primal.

Sebagai ilustrasi, perhatikan contoh berikut: (contoh ini untuk mengilustrasi solusi masalah primal adalah solusi masalah dual, sebaliknya solusi masalah dual adalah solusi masalah primal)

Contoh 1. Carilah masalah dual dari masalah PL memaksimumkan berikut ini:

$$Memaksimumkan P = 5x_1 + 4x_2 + 6x_3$$

dengan kendala

$$x_1 + x_2 + x_3 \le 25$$

 $2x_1 + x_2 + 3x_3 \le 51$
 $x_1, x_2, x_3 \ge 0$.

Jawab.

Masalah primal:

 $Memaksimumkan P = 5x_1 + 4x_2 + 6x_3$

dengan kendala

$$x_1 + x_2 + x_3 \le 25$$
$$2x_1 + x_2 + 3x_3 \le 51$$
$$x_1, x_2, x_3 \ge 0$$

yaitu soal asli sama dengan masalah primal, atau dapat ditulis

Memaksimumkan
$$c^T$$
. $x = \begin{bmatrix} 5 & 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 5x_1 + 4x_2 + 6x_3$,

dengan kendala
$$Ax^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \le \begin{bmatrix} 25 \\ 51 \end{bmatrix}$$
 dengan $x \ge 0$,

sehingga kita mempunyai matriks dan vektor dari masalah primal sebagai berikut

$$c^{T} = \begin{bmatrix} 5 & 4 & 6 \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}, b = \begin{bmatrix} 25 \\ 51 \end{bmatrix}.$$

Dapat dirumuskan masalah dualnya adalah

Meminimumkan
$$b. y = \begin{bmatrix} 25 \\ 51 \end{bmatrix} [y_1 \ y_2] = 25y_1 + 51y_2,$$

dengan kendala
$$A^T y^T = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \ge \begin{bmatrix} 5 \\ 4 \\ 6 \end{bmatrix}$$
 dengan $y \ge 0$.

Sehingga kendala masalah dualnya adalah

$$y_1 + 2y_2 \ge 5$$
,
 $y_1 + y_2 \ge 4$,
 $y_1 + 3y_2 \ge 6$,

$$y_1, y_2 \ge 0$$

yang meminimumkan $C = 25y_1 + 51y_2$.

Setelah masalah primal kita bawa ke bentuk kanonik (karena $b_i \ge 0, \forall i$) dengan menambah variabel slack $s_1, s_2 \ge 0$, yaitu menjadi

Memaksimumkan $P = 5x_1 + 4x_2 + 6x_3 + 0s_1 + 0s_2$

dengan kendala

$$x_1 + x_2 + x_3 + s_1 + 0s_2 = 25$$
$$2x_1 + x_2 + 3x_3 + 0s_1 + s_2 = 51$$
$$x_1, x_2, x_3 \ge 0, s_1, s_2 \ge 0$$

Sekarang perhatikanlah tabel awal pada masalah primal (dalam contoh ini hanya sebagai ilustrasi saja, variabel slack s_1 , s_2 ditulis sebagai y_1 , y_2):

	c_j	5	4	6	0	0	b_i	R_i
\bar{c}_i	$\bar{x}_i x_j$	<i>x</i> ₁	x_2	<i>x</i> ₃	y_1	<i>y</i> ₂	\mathcal{D}_l	Tt l
0	y_1	1	1	1	1	0	25	
0	y_2	2	1	3	0	1	51	
	z_j	0	0	0	0	0	0	
	$z_j - c_j$	- 5	-4	-6	0	0	V	

Kemudian perhatikanlah entri-entri yang diberi kotak berwarna, dengan mengabaikan kolomkolom pada variabel slack dan koefisien x_1, x_2, x_3 dibuat nol dulu, maka kita memperoleh **tabel ringkas berikut:** (Sekali lagi, ini hanya untuk ilustrasi saja)

	c_j	0	0	0	b_i	R_i
\bar{c}_i	$\bar{x}_i x_j$	x_1	x_2	x_3	Σį	
0	y_1	1	1	1	25	
0	y_2	2	1	3	51	
	z_j	0	0	0	0	
	$z_j - c_j$	- 5	-4	-6	V	

Dari tabel awal masalah primal ini bisa kita baca:

- 1. Masalah Primal (Baca dari atas ke bawah):
 - a. Variabel x_1, x_2, x_3 merupakan variabel non basis masalah, dengan koefisiennya $c_j = (0, 0, 0)$ (dijadikan nol dulu, ingat hanya untuk ilustrasi)
 - b. Variabel y_1,y_2 yaitu variabel slack merupakan variabel basis masalah, dengan koefisiennya $\bar{c}_i=(0,0)$
 - c. Matriks utama adalah $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$
 - d. Nilai ruas kanan adalah $\begin{bmatrix} 25\\ 51 \end{bmatrix}$
 - e. Solusi (awal) masalah adalah $P = 5x_1 + 4x_2 + 6x_3 + 0y_1 + 0y_2 = 5.0 + 4.0 + 6.0 + 0.25 + 0.51 = 0$ pada plb $(x_1, x_2, x_3, y_1, y_2) = (0,0,0,25,51)$.
- 2. Masalah Dual (Baca dari kiri ke kanan):
 - a. Variabel y_1, y_2 merupakan variabel non basis masalah, dengan koefisiennya $\bar{c}_i = (0,0)$
 - b. Variabel x_1, x_2, x_3 yaitu variabel artifisial merupakan variabel basis masalah, dengan koefisiennya $c_j = (0, 0, 0)$, sedang variabel surplus t_1, t_2, t_3 merupakan variabel non basis dan nilainya nol (pada ilustrasi ini tidak dituliskan)
 - c. Matriks utama adalah $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$

- d. Nilai ruas kanan adalah $\begin{bmatrix} 5\\4\\6 \end{bmatrix}$ (pada tabel bertanda negatif, karena meminimumkan, pada tabel ringkas masih dinolkan, yaitu pada baris c_j)
- e. Solusi (awal) masalah adalah $C = 25y_1 + 51y_2 + 0x_1 + 0x_2 + 0x_3 = 25.0 + 51.0 + 0.5 + 0.4 + 0.6 = 0$ pada plb $(y_1, y_2, x_1, x_2, x_3) = (0,0,5,4,6)$.

Melalui ilustrasi ini diperoleh:

- 1. Dalam suatu tabel simpleks, bisa dibaca kedua persoalan, primal dan dual.
- 2. Baris pada masalah primal menjadi kolom pada dualnya. Sebaliknya kolom pada primal menjadi baris pada dualnya.
- 3. Variabel basis pada primal menjadi variabel non basis pada dualnya. Sebaliknya variabel non basis pada primal menjadi variabel basis pada dualnya. (Hati-hati pada masalah dengan variabel surplus dan artifisial).
- Koefisien fungsi tujuan pada primal menjadi nilai ruas kanan pada dualnya (perhatikan maksimum-minimum fungsi tujuannya). Sebaliknya nilai ruas kanan pada primal menjadi nilai fungsi tujuan pada dualnya.

Selebihnya untuk penyelesaian dengan metode simpleks tetap mengikuti alur metode simpleks yang telah dipelajari. Sekali lagi Contoh 1 hanya untuk mengilustrasikan, bahwa hasil pada tabel masalah primal, bisa digunakan untuk membaca hasil masalah dualnya. Sebaliknya hasil pada tabel masalah dual, bisa digunakan untuk membaca hasil masalah primalnya.

Berikutnya ada contoh sesungguhnya

Contoh 2.

Meminimumkan
$$3x_1 + 2x_2$$

dengan kendala $x_1 + 2x_2 \le 10$
 $5x_1 + x_2 \ge 10$
 $x_1 + 10x_2 \ge 20$
 $x_1, x_2 \ge 0$.

Rumuskan masalah dualnya dan kemudian selesaikanlah dengan metode simpleks.

Jawab:

Karena masalah meminimumkan, maka pada penyelesaian ini dibentuk masalah primalnya sebagai masalah minimum baku, yaitu dengan mengubah kendala pertama menjadi pertidaksamaan ≥ sebagai berikut

$$-x_1 - 2x_2 \ge -10$$
.

Diperoleh masalah Primal adalah

Meminimumkan $C = 3x_1 + 2x_2$

dengan kendala
$$-x_1 - 2x_2 \ge -10$$

$$5x_1 + x_2 \ge 10$$

$$x_1 + 10x_2 \ge 20$$

$$x_1, x_2 \ge 0$$
.

an masalah dualnya adalah

Memaksimumkan
$$P = -10y_1 + 10y_2 + 20y_3$$

dengan kendala
$$-y_1 + 5y_2 + y_3 \le 3$$

$$-2y_1 + y_2 + 10y_3 \le 2$$

$$y_1, y_2, y_3 \ge 0.$$

Menyelesaikan masalah primalnya

Meminimumkan
$$C = 3x_1 + 2x_2$$

dengan kendala
$$-x_1 - 2x_2 \ge -10$$

$$5x_1 + x_2 \ge 10$$

$$x_1 + 10x_2 \ge 20$$

$$x_1, x_2 \ge 0$$
.

Penyelesaian:

Ubah tujuan menjadi memaksimumkan $C^* = -C = -3x_1 - 2x_2$.

Ubah kendala pertama sehingga nilai batasan menjadi positif $x_1 + 2x_2 \le 10$.

Ubah masalah ke bentuk kanonik. Tambahkan variabel slack $s_1 \ge 0$, variabel surplus $t_1, t_2 \ge 0$, dan variabel artifisial $q_1, q_2 \ge 0$, sehingga kendala menjadi

$$x_1 + 2x_2 + s_1 = 10$$

$$5x_1 + x_2 - t_1 + q_1 = 10$$

$$x_1 + 10x_2 - t_2 + q_2 = 20$$

$$x_1, x_2, s_1, t_1, t_2, q_1, q_2 \geq 0,$$

yang memaksimumkan $C^* = -3x_1 - 2x_2 + 0s_1 + 0t_1 + 0t_2 - Mq_1 - Mq_2$.

Tabel awal

	c_j	-3	-2	0	0	0	-M	-M	b_i	R_i
\bar{c}_i	$\bar{x}_i \setminus x_j$	x_1	x_2	s_1	t_1	t_2	q_1	q_2	\mathcal{D}_l	111
0	s_1	1	2	1	0	0	0	0	10	5
-M	q_1	5	1	0	-1	0	1	0	10	10
-M	q_2	1	10	0	0	-1	0	1	20	2
L	Z_j	-6M	-11 <i>M</i>	0	М	М	-M	-M	-30 <i>M</i>	
	$z_j - c_j$	-6M + 3	-11M + 2	0	М	М	0	0	501.1	

Uji optimal: tabel belum optimal, masih ada nilai $z_j - c_j < 0$

Pilih $z_2 - c_2 = -11M + 2$ sebagai nilai terkecil diperoleh x_2 sebagai variabel masuk, dan rasio 2 sebagai rasio terkecil, diperoleh q_2 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_3' = \frac{1}{10}B_3$$

$$B_1' = B_1 - 2B_3'$$

$$B_2' = B_2 - B_3'$$

Tabel Kedua (bantu cek ya)

	c_{j}	-3	-2	0	0	0	-M	-M	b_i	R_i
\bar{c}_i	$\bar{x}_i \setminus x_j$	x_1	x_2	s_1	t_1	t_2	q_1	q_2	Σį	
0	s_1	$\frac{4}{5}$	0	1	0	<u>1</u> 5	0	$-\frac{1}{5}$	5	$\frac{25}{4}$
-M	q_1	$\frac{49}{10}$	0	0	-1	$\frac{1}{10}$	1	$-\frac{1}{10}$	8	$\frac{80}{49}$
-2	x_2	$\frac{1}{10}$	1	0	0	$-\frac{1}{10}$	0	$\frac{1}{10}$	2	20
	z_j	$-\frac{49}{10}M - \frac{2}{10}$	-2	0	М	$-\frac{1}{10}M + \frac{2}{10}$	- <i>M</i>	$\frac{1}{10}M-\frac{2}{10}$	-8 <i>M</i>	
	$z_j - c_j$	$-\frac{49}{10}M + \frac{28}{10}$	0	0	М	$-\frac{1}{10}M + \frac{2}{10}$	0	$\frac{11}{10}M$	- 4	

Uji optimal: tabel belum optimal, masih ada nilai $z_j - c_j < 0$

Pilih $z_1-c_1=-\frac{49}{10}M+\frac{28}{10}$ sebagai nilai terkecil diperoleh x_1 sebagai variabel masuk, dan rasio $\frac{80}{49}$ sebagai rasio terkecil, diperoleh q_1 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_2'' = \frac{10}{49} B_2'$$

$$B_1'' = B_1' - \frac{4}{5} B_2''$$

$$B_3^{\prime\prime} = B_3^{\prime} - \frac{1}{10}B_2^{\prime\prime}$$

Tabel ketiga

	c_{j}	-3	-2	0	0	0	-M	-M	b_i	R_i
\bar{c}_i	$\bar{x}_i \setminus x_j$	x_1	x_2	s_1	t_1	t_2	q_1	q_2	\mathcal{L}_l	111
0	s_1	0	0	1	8 49	9 49	$-\frac{8}{49}$	$-\frac{9}{49}$	181 49	
-3	x_1	1	0	0	$-\frac{10}{49}$	$\frac{1}{49}$	$\frac{10}{49}$	$-\frac{1}{49}$	$\frac{80}{49}$	
-2	x_2	0	1	0	$\frac{1}{49}$	$-\frac{5}{49}$	$-\frac{1}{49}$	$\frac{5}{49}$	$\frac{90}{49}$	
	Z_j	-3	-2	0	28 49	$\frac{7}{49}$	$-\frac{28}{49}$	$-\frac{7}{49}$	_60	
	$z_j - c_j$	0	0	0	$\frac{28}{49}$	$\frac{7}{49}$	$M-\frac{28}{49}$	$M - \frac{7}{49}$	7	

Uji optimal: tabel sudah optimal, $z_j - c_j \ge 0$, $\forall j$.

Kesimpulan: diperoleh nilai maksimum
$$Z^* = -\frac{60}{7} = -3x_1 - 2x_2 + 0s_1 + 0t_1 + 0t_2 - Mq_1 - Mq_2 = -3.\frac{80}{49} - 2.\frac{90}{49} + 0.\frac{181}{49} + 0.0 + 0.0 - M.0 - M.0$$
, pada plb $(x_1, x_2, s_1, t_1, t_2, q_1, q_2) = (\frac{80}{49}, \frac{90}{49}, \frac{181}{49}, 0,0,0,0)$. Atau meminimumkan $C = -C^* = -(\frac{60}{7}) = \frac{60}{7}$.

Menyelesaikan masalah dualnya

Memaksimumkan
$$P = -10y_1 + 10y_2 + 20y_3$$
 dengan kendala $-y_1 + 5y_2 + y_3 \le 3$
$$-2y_1 + y_2 + 10y_3 \le 2$$

$$y_1, y_2, y_3 \ge 0.$$

Penyelesaian:

Masalah diubah ke bentuk kanonik. Tambahkan variabel slack $s_1, s_2 \geq 0$ sehingga kendala menjadi

$$-y_1 + 5y_2 + y_3 + s_1 \le 3$$
$$-2y_1 + y_2 + 10y_3 + s_2 \le 2$$
$$y_1, y_2, y_3, s_1, s_2 \ge 0,$$

yang memaksimumkan $P = -10y_1 + 10y_2 + 20y_3 + 0s_1 + 0s_2$.

Tabel awal

		b_{j}	-10	10	20	0	0	c_i	R_i
	\overline{b}_i	$\bar{y}_i \setminus y_j$	y_1	y_2	y_3	s_1	s_2		\mathbf{r}_{l}
	0	s_1	-1	5	1	1	0	3	3
	0	<i>S</i> ₂	-2	1	10	0	1	2	<u>1</u> 5
L		Z_j	0	0	0	0	0	0	
		$z_j - b_j$	10	-10	-20	0	0		

Uji optimal: tabel belum optimal, masih ada nila
i $z_j-b_j<0\,$

Pilih $z_3 - b_3 = -20$ sebagai nilai terkecil diperoleh y_3 sebagai variabel masuk, dan rasio $\frac{1}{5}$ sebagai rasio terkecil, diperoleh s_2 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_2' = \frac{1}{10}B_2$$

$$B_1' = B_1 - B_2'$$

		b_j	-10	10	20	0	0	c_i	R_i
	\overline{b}_i	$\bar{y}_i \setminus y_j$	y_1	y_2	y_3	s_1	s_2	\circ_l	111
	0	s_1	$-\frac{8}{10}$	$\frac{49}{10}$	0	1	$-\frac{1}{10}$	$\frac{28}{10}$	$\frac{4}{7}$
	20	y_3	$-\frac{2}{10}$	$\frac{1}{10}$	1	0	$\frac{1}{10}$	$\frac{2}{10}$	2
_		z_j	-4	2	20	0	2	4	
		$z_j - b_j$	6	-8	0	0	2	·	

Uji optimal: tabel belum optimal, masih ada nilai $z_j - b_j < 0$

Pilih $z_2 - b_2 = -8$ sebagai nilai terkecil diperoleh y_2 sebagai variabel masuk, dan rasio $\frac{4}{7}$ sebagai rasio terkecil, diperoleh s_1 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_1' = \frac{10}{49} B_1$$

$$B_2' = B_2 - \frac{1}{10}B_1'$$

Tabel ketiga

	b_j	-10	10	20	0	0	c_i	R_i
\overline{b}_i	$\bar{y}_i \ y_j$	y_1	y_2	y_3	<i>S</i> ₁	s_2	σ_l	r_l
10	y_2	$-\frac{8}{49}$	1	0	10 49	$-\frac{1}{49}$	$\frac{4}{7}$	
20	y_3	$-\frac{9}{49}$	0	1	$-\frac{1}{49}$	5 49	$\frac{1}{7}$	
	z_j	$-\frac{260}{49}$	10	20	80 49	90 49	60	
	$z_j - b_j$	$\frac{230}{49}$	0	0	80 49	90 49	7	

Uji optimal: tabel sudah optimum, semua nilai $z_i - b_i \ge 0$

Kesimpulan: diperoleh nilai maksimum $P = \frac{60}{7} = -10y_1 + 10y_2 + 20y_3 + 0s_1 + 0s_2 = -10.0 + 10.\frac{4}{7} + 20.\frac{1}{7} + 0.0 + 0.0$, pada plb $(y_1, y_2, y_3, s_1, s_2) = (0, \frac{4}{7}, \frac{1}{7}, 0, 0)$.

Tolong dicek ya, seharusnya hasil pada tabel optimum $z_1 - b_1 = \frac{181}{49}$!

Contoh 3.

Meminimumkan fungsi $C = 2x_1 + x_2$, terhadap kendala

$$10x_1 + x_2 \ge 10$$

$$2x_1 + x_2 \ge 8$$

$$x_1 + x_2 \ge 6$$

$$x_1 + 2x_2 \ge 10$$

$$x_1 + 12x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

Penyelesaian:

Tentukan dulu primal dualnya.

Primalnya adalah

Meminimumkan fungsi $C = 2x_1 + x_2$, terhadap kendala

$$10x_1 + x_2 \ge 10$$

$$2x_1 + x_2 \ge 8$$

$$x_1 + x_2 \ge 6$$

$$x_1 + 2x_2 \ge 10$$

$$x_1 + 12x_2 \ge 12$$

Sedangkan dualnya adalah

 $x_1, x_2 \ge 0$.

Memaksimumkan $P = 10y_1 + 8y_2 + 6y_3 + 10y_4 + 12y_5$, terhadap kendala

$$10y_1 + 2y_2 + y_3 + y_4 + y_5 \le 2$$
$$y_1 + y_2 + y_3 + 2y_4 + 12y_5 \le 1$$
$$y_1, y_2, y_3, y_4, y_5 \ge 0.$$

Agar kita bekerja dengan tabel yang lebih kecil, kita memilih mengerjakan dualnya.

Penyelesaian masalah dualnya

Memaksimumkan $P = 10y_1 + 8y_2 + 6y_3 + 10y_4 + 12y_5$, terhadap kendala

$$10y_1 + 2y_2 + y_3 + y_4 + y_5 \le 2$$
$$y_1 + y_2 + y_3 + 2y_4 + 12y_5 \le 1$$
$$y_1, y_2, y_3, y_4, y_5 \ge 0.$$

Jawab:

Ubah masalah ke bentuk kanonik, dengan menambahkan variabel slack $s_1, s_2 \ge 0$ sebagai berikut

$$10y_1 + 2y_2 + y_3 + y_4 + y_5 + s_1 = 2$$

$$y_1 + y_2 + y_3 + 2y_4 + 12y_5 + s_2 = 1$$

$$y_1, y_2, y_3, y_4, y_5, s_1, s_2 \ge 0,$$

yang memaksimumkan $P = 10y_1 + 8y_2 + 6y_3 + 10y_4 + 12y_5 + 0s_1 + 0s_2$.

Tabel awal

	b_j	10	8	6	10	12	0	0	c_i	R_i
$ar{b}_i$	$\bar{y}_i \ y_j$	y_1	<i>y</i> ₂	<i>y</i> ₃	y_4	y_5	<i>s</i> ₁	s_2	Cl	Ti.
0	s_1	10	2	1	1	1	1	0	2	2
0	S_2	1	1	1	2	12	0	1	1	$\frac{1}{12}$
	z_j	0	0	0	0	0	0	0	0	
	$z_j - b_j$	-10	-8	-6	-10	-12	0	0	V	

Uji optimal: tabel belum optimal, masih ada nila
i $z_j-b_j<0\,$

Pilih $z_5 - b_5 = -12$ sebagai nilai terkecil diperoleh y_5 sebagai variabel masuk, dan rasio $\frac{1}{12}$ sebagai rasio terkecil, diperoleh s_2 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_2' = \frac{1}{12}B_2$$

$$B_1' = B_1 - B_2'$$

Tabel kedua

	b_j	10	8	6	10	12	0	0	c_i	R_i
\overline{b}_i	$\bar{y}_i \setminus y_j$	y_1	y_2	y_3	y_4	y_5	<i>S</i> ₁	s_2	c_l	Ti l
0	s_1	$\frac{119}{12}$	$\frac{23}{12}$	$\frac{11}{12}$	$\frac{10}{12}$	0	1	$-\frac{1}{12}$	$\frac{23}{12}$	$\frac{23}{119}$
12	y_5	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{2}{12}$	1	0	$\frac{1}{12}$	$\frac{1}{12}$	1
	Z_j	1	1	1	2	12	0	1	1	
	$z_j - b_j$	- 9	- 7	-5	-8	0	0	1	1	

Uji

optimal: tabel belum optimal, masih ada nila
i $z_j-b_j<0\,$

Pilih $z_1 - b_1 = -9$ sebagai nilai terkecil diperoleh y_1 sebagai variabel masuk, dan rasio $\frac{23}{119}$ sebagai rasio terkecil, diperoleh s_1 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_1' = \frac{12}{119} B_1$$

$$B_2' = B_2 - \frac{1}{12}B_1'$$

TD 1 1	1
Tabel	ketiga

	b_j	10	8	6	10	12	0	0	c_i	R_i
\overline{b}_i	$\bar{y}_i \setminus y_j$	y_1	y_2	y_3	y_4	<i>y</i> ₅	s_1	s_2	c_l	κ_l
10	y_1	1	23 119	11 119	10 119	0	12 119	$-\frac{1}{119}$	23 119	$\frac{23}{10}$
12	y_5	0	$\frac{8}{119}$	$\frac{9}{119}$	19 119	1	$-\frac{1}{119}$	$\frac{10}{119}$	$\frac{8}{119}$	$\frac{8}{19}$
	z_j	1	134 119	218 119	328 119	12	108 119	110 119	134	
	$z_j - b_j$	0	$-\frac{818}{119}$	$-\frac{496}{119}$	$-\frac{862}{119}$	0	108 119	110 119	119	

Uji optimal: tabel belum optimal, masih ada nilai $z_j - b_j < 0$

Pilih $z_4 - b_4 = -\frac{862}{119}$ sebagai nilai terkecil diperoleh y_4 sebagai variabel masuk, dan rasio $\frac{8}{19}$ sebagai rasio terkecil, diperoleh y_5 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_2' = \frac{119}{19}B_2$$

$$B_1' = B_1 - \frac{10}{119} B_2'$$

Tabel keempat

	b_j	10	8	6	10	12	0	0	c_i	R_i
\overline{b}_i	$\bar{y}_i \setminus y_j$	y_1	y_2	y_3	y_4	y_5	<i>S</i> ₁	s_2		111
10	y_1	1	$\frac{3}{19}$	$\frac{1}{19}$	0	$-\frac{10}{19}$	$\frac{2}{19}$	$-\frac{1}{19}$	$\frac{3}{19}$	1
10	y_4	0	$\frac{8}{19}$	$\frac{9}{19}$	1	119 19	$-\frac{1}{19}$	$\frac{10}{19}$	$\frac{8}{19}$	1
	Z_j	10	38 19	100 19	10	1090 19	10 19	90 19	110	
	$z_j - p_j$	0	$-\frac{74}{19}$	$-\frac{14}{19}$	0	862 19	10 19	90 19	19	

Uji optimal: tabel belum optimal, masih ada nilai $z_j - b_j < 0$

Pilih $z_2 - b_2 = -\frac{74}{19}$ sebagai nilai terkecil diperoleh y_2 sebagai variabel masuk, dan rasio 1 sebagai rasio terkecil, diperoleh y_4 sebagai variabel keluar. Perbaiki tabel.

Rumus OBE

$$B_2' = \frac{8}{19}B_2$$

$$B_1' = B_1 - \frac{3}{19}B_2'$$

	b_j	10	8	6	10	12	0	0	c_i	R_i
$ar{b}_i$	$\bar{y}_i \setminus y_j$	y_1	<i>y</i> ₂	<i>y</i> ₃	y_4	y_5	<i>s</i> ₁	s_2		Ti l
10	y_1	1	0	$\frac{1}{8}$	$-\frac{3}{8}$	$-\frac{23}{8}$	1 8	$-\frac{2}{8}$	0	
8	y_2	0	1	9 8	$\frac{19}{8}$	$\frac{119}{8}$	$-\frac{1}{8}$	10 8	1	
	z_j	10	8	82 8	122 8	722 8	$\frac{2}{8}$	60 8	8	
	$z_j - b_j$	0	0	34 8	42 8	626 8	$\frac{2}{8}$	60 8		

Uji optimal: tabel sudah optimum, semua nilai $z_i - b_i \ge 0$

Kesimpulan: diperoleh nilai maksimum $P = 8 = 10y_1 + 8y_2 + 6y_3 + 10y_4 + 12y_5 + 0s_1 + 0s_2 = 10.0 + 8.1 + 6.0 + 10.0 + 12.0 + 0.0 + 0.0$, pada plb $(y_1, y_2, y_3, y_4, y_5, s_1, s_2) = (0,1,0,0,0,0,0)$.

Latihan. Uji Optimum Masalah Dualitas. Silakan selesaikan melalui primal dan dualnya. Kesimpulan apa yang bisa diambil dari penyelesaian kedua soal berikut.

- 1. Memaksimumkan $Z=3x_1+x_2+4x_3$ dengan kendala $3x_1+3x_2+x_3\leq 18$ $2x_1+2x_2+4x_3=12$ $x_1,x_2,x_3\geq 0.$
- 2. Meminimumkan $Z = 5x_1 + 2x_2 + 6x_3$ dengan kendala $4x_1 + 2x_2 + x_3 \ge 18$ $3x_1 + 2x_2 + 3x_3 \le 6$ $x_1, x_2 \ge 0$.