MATH3332 Tutorial Sheet 1

Question 1

Let $\mathcal{F}(\mathbb{R}, \mathbb{R})$ be the set of all functions from \mathbb{R} to \mathbb{R} with addition and scalar multiplication as follows:

$$(f+g)(x) = f(x) + g(x)$$
$$(kf)(x) = kf(x)$$

for all $k \in \mathbb{R}$ and $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$. Show that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is a vector space.

Question 2

Let $V = \mathbb{R}^2$, and let $u, v \in V$ such that $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Define the addition and scalar multiplication for all $u, v \in V$ and $k \in \mathbb{R}$ as follows:

$$u + v = (u_1 + v_1, u_2 + v_2)$$
$$ku = (ku_1, 0)$$

Determine whether or not this set under these operations is a vector space.

Question 3

Let $V = \mathbb{R}^2$, and let $u, v \in V$ such that $u = (u_1, u_2)$ and $v = (v_1, v_2)$. Define the addition and scalar multiplication for all $u, v \in V$ and $k \in \mathbb{R}$ as follows:

$$u + v = (u_1v_1, u_2v_2)$$
$$ku = (ku_1, ku_2 + 1)$$

Determine whether or not this set under these operations is a vector space.

Question 4

Let V be a normed vector space and let $x, y \in V$. Show that

$$|||x|| - ||y||| \le ||x - y||$$

Question 5

Let $x \in \mathbb{R}^n$ be an arbitrary vector. Recall the *p-norm* of x is defined to be:

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$$

1

Prove the following results:

- $||x||_1 \le \sqrt{n}||x||_2$
- $\bullet ||x||_2 \le \sqrt{n}||x||_{\infty}$
- $||x||_p \ge ||x||_q$ whenever $1 \le p \le q < +\infty$