DNA C4.5

Rafał Kwiatkowski, Franciszek Sioma 26 maja 2020

1 Opis projektu

1.1 Cel projektu

Celem projektu *DNA C4.5* było stworzenie aplikacji wykorzystującej algorytm C4.5 do klasyfikacji sekwencji DNA na podstawie zadanych zbiorów.

1.2 Przyjęte założenia

Przy tworzeniu drzewa przyjęliśmy kolejne znaki w kodzie genetycznym jako atrybuty drzewa.

1.3 Wkład autorów

- Algorytm C4.5 Rafał Kwiatkowski
- Testy i eksperymenty Franciszek Sioma
- Dokumentacja Franciszek Sioma

1.4 Decyzje projektowe

Zdecydowaliśmy się zaimplementować algorytm wykorzystując drzewo dowolne(niebinarne). Dzięki temu, ograniczyliśmy głębokość drzewa, co za tym idzie klasyfikacja powinna średnio przebiegać szybciej. Minusem tej decyzji jest klasyfikacja drzewa o wartościach dotąd nieznanych w procesie uczenia. Rozwiązaniem tego problemu jest dodanie klasy domyślnej dla przykładów, które drzewo nie jest w stanie sklasyfikować. W związku z tym, że w naszej przestrzeni możliwych klas znajdują się tylko dwie, mówiące czy dany wycinek kodu genetycznego jest akceptorem(lub donorem w zależności od problemu), zdecydowaliśmy się w takich przypadkach stwierdzać, że dany przykład nie jest akceptorem(bądź też donorem).

W ramach eksperymentów postanowiliśmy użyć walidacji krzyżowej, dzięki której jesteśmy pewni, że przetestowaliśmy cały zbiór danych. Wykorzystaliśmy K-krotną walidację z parametrem k równym 10.

1.5 Wykorzystane narzędzia i biblioteki

Do napisania aplikacji użyliśmy języka Python w wersji: 3.8, dokumentacja została stworzona przy użyciu języka Latex, a IDE z którego korzystaliśmy to Visual Studio Code. Użyliśmy również systemu kontroli wersji Git. Link do repozytorium: https://github.com/Rolfrider/C4.5-Gene-Splicing

2 Uruchamianie aplikacji i odtworzenie wyników testów

W przypadku tego projektu pracowaliśmy na konkretnym zbiorze danych i nasza aplikacja służy tylko do przeprowadzenia testów, dlatego jest tylko jeden sposób jej uruchomienia. W celu odtworzenia przeprowadzonych testów należy wykonać komendę:

python app.py

3 Eksperymenty

W naszym projekcie przeprowadziliśmy walidacji krzyżowej dla parametru k równego 10 dla drzewa utworzonego przez algorytm ID3 oraz dla drzewa utworzonego prze C4.5. Test został powtórzony 100 razy, a uśrednione wyniki zostały przedstawione poniżej.

3.1 Wyniki

Algorytm	Dopasowanie
ID3	81,5%
C4.5	81,4%

Tablica 1: Wyniki walidacji krzyżowej dla akceptorów

Algorytm	Dopasowanie
ID3	83,2%
C4.5	81,7%

Tablica 2: Wyniki walidacji krzyżowej dla donorów

Z wyników walidacji wynika, że drzewo przed zastosowaniem algorytmu C4.5 daje lepszą dokładność wyników niż po. Algorytm C4.5 przyśpiesza działanie programu na utworzonym drzewie oraz pozwala uniknąć nadmiernego dopasowania. Wyniki świadczą o tym, że w naszym przypadku zjawisko to nie występowało na tyle często by polepszyć końcowy wynik, a wręcz przeciwnie.