Modelli di Programmazione Lineare Intera

Variabili binarie come Variabili Indicatrici

Costi fissi

L'uso di variabili binarie come variabili indicatrici è necessario nella modellazione di **costi fissi**

È possibile che il costo di un' attività abbia un costo iniziale, detto costo di set-up, che esiste solo se quell'attività viene svolta

Esempio:

Un prodotto può essere fabbricato usando tre macchinari: il costo del funzionamento di un macchinario deve essere considerato solo se tale macchinario viene usato per la fabbricazione del prodotto

Variabili binarie come Variabili Indicatrici

Costi fissi

Sia $x_i \ge 0$ la variabile continua associata alla quantità di prodotto da fabbricare

Sia c_i il costo per la produzione di $x_i \ge 0$

Sia $f_i \ge 0$ il costo di SET-UP associato a x_i

Il costo associato alla produzione di x_i è dato da:

$$\begin{cases} c_i x_i + f_i & \text{se } x_i > 0 \\ 0 & \text{se } x_i = 0 \end{cases}$$

Variabili binarie come Variabili Indicatrici Costi fissi

Introduciamo la variabile binaria $\delta_i \in \{0, 1\}$ associata alla produzione di x_i :

$$\delta_i = \begin{cases} 1 & \text{se} \quad x_i > 0 \\ 0 & \text{se} \quad x_i = 0 \end{cases}$$

Considerando δ_i , il costo associato alla produzione di x_i può essere modellato come:

$$c_i x_i + f_i \delta_i$$

Per introdurre correttamente la variabile δ_i , occorre inserire vincoli per **esplicitare il legame logico tra** δ_i **e** x_i

Costi fissi

Legame tra δ_i e x_i

Per poter esplicitare all'interno del modello il legame tra δ_i e x_i dobbiamo inserire i vincoli:

$$(1) x_i > 0 \Rightarrow \delta_i = 1$$

(2)
$$x_i = 0 \Rightarrow \delta_i = 0$$

Il vincolo (1) si realizza come

$$x_i - M_i \delta_i \leq 0$$

con $M_i > 0$ limite su x_i

Costi fissi

Legame tra δ_i e x_i

Per realizzare l'implicazione (2), si dovrebbe introdurre un vincolo del tipo

$$x_i - \epsilon \delta_i \ge 0$$
 con $\epsilon > 0$

In realtà, non è necessario introdurre tale vincolo

Dalla struttura della funzione obiettivo e dal fatto che vogliamo minimizzare i costi, discende che

se $x_i = 0$, all'ottimo deve valere $\delta_i = 0$, essendo $f_i \geq 0$;

ovvero la condizione logica (2) è automaticamente verificata

Costi fissi

Formulazione Generale

Supponiamo di dover fabbricare *n* prodotti con:

- $c_i \ge 0$ costo di produzione i-esimo
- $f_i \ge 0$ costo fisso i-esimo
- **Variabili:** $x_i \geq 0$ quantità di prodotto i-esimo $i = 1, \ldots, n$ $\delta_i \in \{0,1\}$ $i = 1, \ldots, n$

$$\delta_i = \begin{cases} 1 & \text{se il prodotto } i \text{ viene fabbricato } (x_i > 0) \\ 0 & \text{altrimenti} \end{cases}$$

• Funzione Obiettivo: minimizzare il costo

$$\sum_{i=1}^{n} (c_i x_i + f_i \delta_i)$$

• Vincoli $(x_i > 0 \Rightarrow \delta_i = 1)$:

$$x_i - M_i \delta_i \leq 0, \quad i = 1, \ldots, n$$

In una centrale elettrica sono a disposizione tre generatori e ogni giorno si deve decidere quali usare di giorno e quali di notte per assicurare una produzione di almeno 4000 megawatts di giorno e di almeno 2800 megawatts di notte.

L'uso di un generatore comporta la presenza di personale tecnico che sorvegli il suo funzionamento

Il personale tecnico viene retribuito in maniera diversa tra il giorno e la notte e a seconda del tipo di generatore

Nella tabella che segue sono riportati la retribuzione del personale tecnico (in euro), il costo (in euro) per ogni megawatt prodotto e la massima capacità di produzione in megawatts per ogni singolo periodo (giorno/notte)

	Retribu	zione personale	Costo per	Capacità					
	giorno	notte	megawatt	max					
Generatore A	750	1000	3	2000					
Generatore B	600	900	5	1700					
Generatore C	800	1100	6	2500					

Formulare un modello di PLI che permetta di rappresentare il problema in analisi

Variab	ulı	:	χ;	د ز	0				ì =	= <i> </i>	4 , B	, (-															
									j	=	G,	N																
									qu (ne!	hta iah	` pei	rod Gal	N 0 0	reg jene	aw 2a	a H toz	s e i										
	dii	ϵ	{o	, 1	}																							
	_	j =	\	Ĺ		Se	ıl	g	ene	2at	oze		i١	nen	e	att	v a-1	Го	nel	P	ezua	odo	j					
	d:,	j =		0				·	Λħ																			
MIU		X																			_							
	- 0	me	ht	a' Wa Cla	dı Hs	ρι	odo	H		Mé	ega	wa da	Hs	ри В	odo	th_		Me	ga	Wa da	tts C	pı	odoł	h				
	+	75	૦ ત	۸,		†	10	00	fa.	,	+	60	00 r	∫ _R r		+ 4	300	٦,	NI									
		. 800												י טט				U 15	14									
											w.																	
		XAG																										
		XAN																										
		Χių						_		1																		
		Xiú	_	M	ن 5	i id	4	0				٧i	de	apa Lg	cita ene	' M	as h	me ;										

Una casa automobilistica produce quattro modelli differenti di automobili (Mod1, Mod2, Mod3, Mod4) dispondendo di tre catene di montaggio (C1, C2, C3)

Una casa automobilistica produce quattro modelli differenti di automobili (Mod1, Mod2, Mod3, Mod4) dispondendo di tre catene di montaggio (C1, C2, C3)

Per ottenere un modello finito di ciascun tipo di automobile è necessaria la lavorazione su una sola catena di montaggio

Una casa automobilistica produce quattro modelli differenti di automobili (Mod1, Mod2, Mod3, Mod4) dispondendo di tre catene di montaggio (C1, C2, C3)

Per ottenere un modello finito di ciascun tipo di automobile è necessaria la lavorazione su una sola catena di montaggio

La tabella che segue riporta per ciascuna catena di montaggio i costi (in migliaia di euro) necessari per produrre un modello di automobile insieme ai costi di attivazione (in migliaia di euro) e alla quantità minima di automobili che devono essere prodotte

	C1	C2	C 3	quantità minima di automobili
Mod1	10	12	11	15000
Mod2	9	10	9	10000
Mod3	13	14	12	7500
Mod4	15	16	15	5000
Costi attivazione	50	60	55	

Costruire un modello che permetta di determinare le quantità di ciascun modello da fabbricare su ciascuna catena di montaggio minimizzando i costi complessivi di produzione,

Costruire un modello che permetta di determinare le quantità di ciascun modello da fabbricare su ciascuna catena di montaggio minimizzando i costi complessivi di produzione,

tenendo conto che per motivi tecnici possono essere utilizzate al più due catene di montaggio

Costruire un modello che permetta di determinare le quantità di ciascun modello da fabbricare su ciascuna catena di montaggio minimizzando i costi complessivi di produzione,

tenendo conto che per motivi tecnici possono essere utilizzate al più due catene di montaggio

e che le tre catene di montaggio hanno rispettivamente le seguenti capacità massime di produzione: 10000 automobili C1, 20000 automobili C2 e 25000 automobili C3