

En 2:

Quando um processo está em execução e o so decida que é hora de dor tempo da CPU para outro processo, é necessários que abuns passos sejon seguidos:

1-0 SO executa uma mterupção e a processo atual para de

ser executab

z-SB salva o PCB do processo em exeucas

3 - PCB de novo processo é corregado

4-50 micio a exercucas do novo processo

Ex 3:

Para miminizar a tempo de execução de vários processos escabnados um uma CPU, o algoritimo étimo é o 'SJE" ou sega, executa os processos de acardo com o sun tempo de execucio, de monor para o maior. O problema deste abordagem é que é pretion ente impossivel saber exatemente qual serà o timpo de execução de um processo sontem do mesmo ser executado.

H					FCFS		SOF		RP		MLFQ	
3		Ĺ	A	TC	1 TE	TC	46	TC	T6	TC	musecuma a antipological	
	1	50	0	50	(O)	150	700	150	140	150	100	
	2	40	0	90	SO	100	60	140	120	143	103	
	ત્રે	30	0	120	90	30	0	120	90	155	92	
	Ц	20	5	135	415	55	35	88	68	94	74	
	5	10	70	149	130	30	20	47	37	44	34	

 $P_{1} = 3.5 + 4.5 + 5.10 + 4.5 + 3.5 + 2.10 + 10$ $P_{2} = 5$ $P_{3} = 90$ $P_{5} = 5.10 = 50$

Os quatro requisitos para a existência de dead lock são:

a) exclusão mútua: um processo deve reter um recurso no modo i eperplifications occu

b) Monter e esperar: O processo que tem a posse do recurso mutuamente exclusiva duce estar es perando ou tro recurso;
c) Não preempção: Samente o processo de posse do recurso pode libera

o mesmo d) Espera crimbr: 0 processo po depende que pa liber um recursa

e Pr espes que po liber outro recurso.

(6)
$$P = \{P_1, P_2, P_3\}$$

 $R = \{R_1, R_2, R_3\}$
 $A = \{R_1 \rightarrow P_1, R_1 \rightarrow P_3, R_2 \rightarrow P_2, R_3 \rightarrow P_2, R_3 \rightarrow P_3, R_2 \rightarrow P_3, R_2 \rightarrow P_3, R_3 \rightarrow P_3$

a) PJ-bR2-bP2

6) P3-0 R3-0 P2

O grafice mão apresenta duad lock pois ete mão possui esperas que é uma condición necessaira para a existência de deadlock

Quando P2 liberar R2 e R3 es processes P1 e P3 pedevão continua sua execução