Lenguaje Matematico

La matematica se escribe en un lenguaje que:

- Utiliza formulas para representar objetos matematicso. e.j. $x^3 \forall \psi$
- Se utiliza una jerga matematica en ocasiones especiales: "si y solo si", "por lo tanto", "Para todo"
- Se clasifican los enunciados por su proposito: Definicion, Lemma, Teorema, Demostración, Ejemplo

Lenguaje Matematico

- Se utiliza "∧" y "∨" en ves de "y" y "o"
- Se utiliza "¬" para negar un enunciado
- $\forall x.P \ (\forall x \in S.P)$ significa que "la condicion P la cumple para todos los elementos (que pertenecen a S)"
- $\exists x.P \ (\exists x \in S.P)$ significa que "existe al menos un elemento (que pertenece a S) que cumple con la condición P"
- $\neg \exists x.P \ (\neg \exists x \in S.P)$ significa "no existe un x (que pertenece a S) que cumple la condicion P"
- $\exists^1 x.P \ (\exists^1 x \in S.P)$ significa "existe exactamente un objeto (en S) que cumple la condicion P"
- "ssi" es abreviación para "si y solo si"
- El simbolo ⇒ significa "implica"

Ejemplos

• $\forall x \exists y. x = y \Leftrightarrow \neg(x \neq y)$ significa "Para todo x, existe un y, tal que x = y, ssi (si y solo si) no se cumple que $x \neq y$ "

Axiomas de Peano en lenguaje matematico

Los aximoas de Peano en lenguaje matematico: Si escribimos " $n \in \mathbb{N}_1$ " para "n es un numero natural unario", y "P(n)" "n tiene la propiedad P", podemos escribir:

- **1** El cero es un numero natural unario: $o \in \mathbb{N}_1$
- ② Todo numero tiene un sucesor diferente de $el \forall n \in \mathbb{N}_1.s(n) \in \mathbb{N}_1 \land n \neq s(n)$
- **3** El cero no es un succesor $\neg(\exists n \in \mathbb{N}_1.o = s(n))$
- **③** Diferentes numeros tienen diferentes sucesores $\forall n \in \mathbb{N}_1. \forall m \in \mathbb{N}_1. n \neq m \Rightarrow (n) \neq s(m)$
- **③** Inducción: $\forall P.(P(p) \land (\forall n \in \mathbb{N}_1.P(n) \Rightarrow P(s(n)))) \Rightarrow (\forall m \in \mathbb{N}_1.P(m))$

Definiciones

- Se utiliza el simbolo := para definir un objeto
- Por ejemplo, podemos definir el simbolo "1" asi: 1 := s(o)
- Asi se define la union de conjuntos: $A \cap B := \{x | x \in A \land x \in B\}$

Letras Griegas

Las letras griegas se utilizan a menudo como variables en lenguaje matematico:

α	A	alpha	β	B	beta	γ	Γ	gamma
δ	Δ	delta	ϵ	E	epsilon	ζ	Z	zeta
η	H	eta	θ, ϑ	Θ	theta	ι	I	iota
κ	K	kappa	λ	Λ	lambda	μ	M	mu
ν	N	nu	ξ	[1]	Xi	0	0	omicron
π, ϖ	П	Pi	ρ	P	rho	σ	Σ	sigma
τ	Т	tau	v	Υ	upsilon	φ	Φ	phi
χ	X	chi	ψ	Ψ	psi	ω	Ω	omega