9.2 Time-dependent perturbation theory

Slides: Video 9.2.5 Transition probabilities

Text reference: Quantum Mechanics for Scientists and Engineers

Section 7.2 (second part)

In this model the probability P(j)of finding the system in state $|\psi_j\rangle$ is $P(j) = |a_i^{(1)}|^2$

of finding the system in state
$$|\psi_{j}\rangle$$
 is $P(j) = |a_{j}^{(1)}|^{2}$
i.e.,
$$= \left[\left[\frac{\sin[(\omega_{jm} - \omega)t_{o}/2]}{(\omega_{jm} + \omega)t_{o}/2} \right]^{2} + \left[\frac{\sin[(\omega_{jm} + \omega)t_{o}/2]}{(\omega_{jm} + \omega)t_{o}/2} \right]^{2} \right]^{2}$$

$$\frac{t_{o}^{2}}{\hbar^{2}} \left| \left\langle \psi_{j} \middle| \hat{H}_{po} \middle| \psi_{m} \right\rangle \right|^{2} \left\{ \frac{\sin \left[\left(\omega_{jm} - \omega \right) t_{o} / 2 \right] \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right\} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right\} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right] + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right] \right]^{2}}{\left(\omega_{jm} - \omega \right) t_{o} / 2}$$

 $\sin(x)/x$ falls off rapidly for arguments $\gg 1$

Hence, for sufficiently long t_o

either one or the other of the two $\sin(x)/x$ functions in the last term will be small

$$P(j) \approx \frac{t_o^2}{\hbar^2} |\langle \psi_j | \hat{H}_{po} | \psi_m \rangle|^2 \begin{cases} \left[\frac{\sin\left[\left(\omega_{jm} - \omega\right)t_o / 2\right]}{\left(\omega_{jm} - \omega\right)t_o / 2}\right]^2 + \left[\frac{\sin\left[\left(\omega_{jm} + \omega\right)t_o / 2\right]}{\left(\omega_{jm} + \omega\right)t_o / 2}\right]^2 \\ + 2\cos\left(\omega t_o\right) \frac{\sin\left[\left(\omega_{jm} - \omega\right)t_o / 2\right]}{\left(\omega_{jm} - \omega\right)t_o / 2} \frac{\sin\left[\left(\omega_{jm} + \omega\right)t_o / 2\right]}{\left(\omega_{jm} + \omega\right)t_o / 2} \end{cases}$$

As the time t_o is increased these two $\sin(x)/x$ line functions get sharper and they will eventually not overlap for ω

$$P(j) \simeq \frac{t_{o}^{2} \left| \left\langle \psi_{j} \middle| \hat{H}_{po} \middle| \psi_{m} \right\rangle \right|^{2} \left\{ \frac{\sin \left[\left(\omega_{jm} - \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} - \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o} / 2 \right]}{\left(\omega_{jm} + \omega \right) t_{o} / 2} \right]^{2} + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_{o$$

Presuming we take t_o sufficiently large, we are left with

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

We now have some finite probability that the system

has changed state from its initial state $|\psi_{\scriptscriptstyle m}\rangle$ to another "final" state $|\psi_{\scriptscriptstyle j}\rangle$

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

This probability depends on

the strength of the perturbation squared, and the modulus squared of the perturbation matrix element between the initial and final states

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

With an oscillating electric field acting on an electron this probability is ∞ the square of the field amplitude E_o^2 which is proportional to the intensity I (Power/Area) so the probability of making a transition is proportional to the intensity I

In $P(j) \simeq \frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$

what is the meaning of the two different terms?

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

The first term above is significant if $\omega_{jm} \approx \omega$ i.e., if $\hbar \omega \approx E_{j} - E_{m}$

Since we chose ω to be a positive quantity this term is significant if we are absorbing energy raising from a lower energy state $|\psi_{\scriptscriptstyle m}\rangle$ to a higher energy state $|\psi_{\scriptscriptstyle j}\rangle$

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

We note that

the amount of energy we are absorbing is $\hbar\omega$

This first term behaves as we would require for absorption of a photon

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \middle| \hat{H}_{po} \middle| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

The second term above is significant if $-\omega_{jm} \approx \omega$ i.e., if $\hbar\omega \approx E_m - E_i$

Since we chose ω to be a positive quantity

this term is significant if we are emitting energy

falling from a higher energy state $|\psi_m\rangle$ to a lower energy state $|\psi_j\rangle$

$$\frac{P(j) \approx}{\frac{t_o^2}{\hbar^2} \left| \left\langle \psi_j \left| \hat{H}_{po} \left| \psi_m \right\rangle \right|^2 \left\{ \left[\frac{\sin \left[\left(\omega_{jm} - \omega \right) t_o / 2 \right]}{\left(\omega_{jm} - \omega \right) t_o / 2} \right]^2 + \left[\frac{\sin \left[\left(\omega_{jm} + \omega \right) t_o / 2 \right]}{\left(\omega_{jm} + \omega \right) t_o / 2} \right]^2 \right\}$$

We note that the amount of energy we are emitting is $\hbar\omega$

This second term corresponds to

stimulated emission of a photon

the process used in lasers

The spontaneous emission of normal light requires quantizing the electromagnetic field as well

