

XPS 16550 UART (v3.00a)

DS577 May 03, 2010 **Product Specification**

Introduction

This document provides the specification for the XPS 16550 UART (Universal Asynchronous Receiver/Transmitter) Intellectual Property (IP).

The XPS 16550 UART described in this document has been incorporating features described in National Semiconductor PC16550D UART with FIFOs data sheet.

The National Semiconductor PC16550D data sheet is referenced throughout this document and should be used as the authoritative specification. Differences between the National Semiconductor PC16550D and the XPS 16550 UART are highlighted in "Specification Exceptions" section.

Features

- Connects as a 32-bit Slave on PLB V4.6 bus of 32, 64 and 128 bits data width
- Hardware and software register compatible with all standard 16450 and 16550 UARTs
- Implements all standard serial interface protocols
 - 5, 6, 7 or 8 bits per character
 - Odd, Even or no parity detection and generation
 - 1, 1.5 or 2 stop bit detection and generation
 - Internal baud rate generator and separate receiver clock input
 - Modem control functions
 - Prioritized transmit, receive, line status and modem control interrupts
 - False start bit detection and recover
 - Line break detection and generation
 - Internal loop back diagnostic functionality
 - 16 byte transmit and receive FIFOs

Lawicoppin Facto				
Log	iCORE™ Facts			
C	ore Specifics			
Supported Device Family	See EDK Supporte	ed Device Families		
Version of Core	xps_uart16550	v3.00a		
Resources Used				
	Min	Max		
Slices				
LUTs	Refer to the Table Table 19, Table 20			
FFs				
Block RAMs	N/A			
Special Features N/A				
Pro	vided with Core			
Documentation	Product Specifica	tion		
Design File Formats	VHDL			
Constraints File	N/A			
Verification	N/A			
Instantiation Template	N/A			
Reference Designs & Application notes	N/A			
Design Tool Requirements				
Xilinx Implementation Tools				
Verification	See Tools for requi	rements.		
Simulation				
Synthesis				
	Support			
Provided by Xilinx, Inc.				

© 2010 Xilinx, Inc. Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Functional Description

The XPS 16550 UART implements the hardware and software functionality of the ubiquitous National Semiconductor 16550 UART, that works in both 16450 and 16550 UART modes. For complete details please refer the National Semiconductor data sheet.

The XPS 16550 UART performs parallel to serial conversion on characters received from the CPU and serial to parallel conversion on characters received from a modem or microprocessor peripheral.

The XPS 16550 UART is capable of transmitting and receiving 8, 7, 6, or 5 bit characters, with 2, 1.5 or 1 stop bits and odd, even or no parity. The XPS 16550 UART can transmit and receive independently.

The device can be configured and it's status monitored via the internal register set. The XPS 16550 UART is capable of signaling receiver, transmitter and modem control interrupts. These interrupts can be masked, are prioritized and can be identified by reading an internal register.

The device contains a 16 bit, programmable, baud rate generator and independent 16 byte transmit and receive FIFOs. The FIFOs can be enabled or disabled through software control.

The top-level block diagram for the XPS 16550 UART is shown in Figure 1.

Figure 1: XPS 16550 UART Top-level Block Diagram

The top level modules of the XPS 16550 UART are:

- PLB Interface Module
- IPIC IF
- UART16550

The detailed block diagram for the XPS 16550 UART is shown in Figure 2.

Figure 2: XPS 16550 UART Detailed Block Diagram

PLB Interface Module

PLB Interface Module provides bidirectional interface between UART 16550 module and the PLB. The base element of the PLB Interface Module is slave attachment, which provides the basic functionality of PLB slave operation.

IPIC_IF

IPIC_IF module incorporates logic to acknowledge the write and read transactions initiated by the plbv46 slave single module to write into the UART 16550 module registers and read from UART 16550 module registers.

UART 16550

UART 16550 provides all the core features for transmission, reception of data and modem features of UART. The UART 16550 module of XPS 16550 UART can be configured for 16450 or 16550 mode of operation. This is accomplished by the usage of generic C_IS_A_16550.

If C_IS_A_16550 set to one, the UART 16550 module has FIFOs instantiated to support 16550 mode of operation. When C_IS_A_16550 is set to zero, the UART 16550 module works without FIFOs in 16450 mode. In 16550 mode, the FIFOs can be enabled by configuring FCR register.

XPS 16550 UART I/O Signals

The XPS 16550 UART I/O signals are listed and described in Table 1.

Table 1: XPS 16550 UART I/O Signals

Port	Signal Name	Interface	I/O	Initial State	Description
		System	Signal	s	
P1	Freeze	System	I	-	Freezes UART for software debug (active high)
P2	IP2INTC_Irpt	System	0	0	Device interrupt output to microprocessor interrupt input or system interrupt controller (active high)
P3	SPLB_Clk	System	I	-	PLB clock
P4	SPLB_Rst	System	ı	-	PLB reset (active high)
		PLB Master In	terface S	Signals	
P5	PLB_ABus[0 : C_SPLB_AWIDTH-1]	PLB	I	-	PLB address bus
P6	PLB_PAValid	PLB	I	-	PLB primary address valid indicator
P7	PLB_masterID[0 : C_SPLB_MID_WIDTH - 1]	PLB	I	-	PLB current master identifier
P8	PLB_RNW	PLB	I	-	PLB read not write
P9	PLB_BE[0 : [C_SPLB_DWIDTH/8] - 1]	PLB	I	-	PLB byte enables
P10	PLB_size[0:3]	PLB	I	-	PLB transfer size
P11	PLB_type[0:2]	PLB	I	-	PLB transfer type
P12	PLB_wrDBus[0 : C_SPLB_DWIDTH - 1]	PLB	I	-	PLB write data bus
	Un	used PLB Mast	er Interfa	ice Signals	
P13	PLB_UABus[0:31]	PLB	I	-	PLB upper address bits
P14	PLB_SAValid	PLB	I	-	PLB secondary address valid
P15	PLB_rdPrim	PLB	I	-	PLB secondary to primary read request indicator
P16	PLB_wrPrim	PLB	I	-	PLB secondary to primary write request indicator
P17	PLB_abort	PLB	I	-	PLB abort bus request
P18	PLB_busLock	PLB	I	-	PLB bus lock
P19	PLB_MSize[0:1]	PLB	I	-	PLB data bus width indicator
P20	PLB_TAttribute[0 : 15]	PLB	I	-	PLB transfer attribute
P21	PLB_lockerr	PLB	I	-	PLB lock error
P22	PLB_wrBurst	PLB	I	-	PLB burst write transfer
P23	PLB_rdBurst	PLB	I	-	PLB burst read transfer
P24	PLB_wrPendReq	PLB	I	-	PLB pending bus write request
P25	PLB_rdPendReq	PLB	I	-	PLB pending bus read request
P26	PLB_rdPendPri[0 : 1]	PLB	ı	-	PLB pending read request priority
P27	PLB_wrPendPri[0 : 1]	PLB	I	-	PLB pending write request priority
P28	PLB_reqPri[0 : 1]	PLB	I	-	PLB current request priority

Table 1: XPS 16550 UART I/O Signals (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
		PLB Slave In	terface S	ignals	
P29	SI_addrAck	PLB	0	0	Slave address acknowledge
P30	SI_SSize[0:1]	PLB	0	0	Slave data bus size
P31	SI_wait	PLB	0	0	Slave wait indicator
P32	SI_rearbitrate	PLB	0	0	Slave rearbitrate bus indicator
P33	SI_wrDack	PLB	0	0	Slave write data acknowledge
P34	SI_wrComp	PLB	0	0	Slave write transfer complete indicator
P35	SI_rdBus[0 : C_SPLB_DWIDTH-1]	PLB	0	0	Slave read data bus
P36	Sl_rdDack	PLB	0	0	Slave read data acknowledge
P37	SI_rdComp	PLB	0	0	Slave read transfer complete indicator
P38	SI_MBusy[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave busy indicator
P39	SI_MWrErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave write error indicator
P40	SI_MRdErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave read error indicator
	Ur	nused PLB Slav	e Interfa	ce Signals	
P41	SI_wrBTerm	PLB	0	0	Slave terminate write burst transfer
P42	SI_rdWdAddr[0 : 3]	PLB	0	0	Slave read word address
P43	SI_rdBTerm	PLB	0	0	Slave terminate read burst transfer
P44	SI_MIRQ[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Master interrupt request
		UART	Signals		
P45	baudoutN	Serial	0	1	16 x clock signal from the transmitter section of the UART
P46	rclk	Serial	I	-	Receiver 16x clock (Optional, may be driven externally under control of the C_HAS_EXTERNAL_RCLK parameter)
P47	sin	Serial	I	-	Serial data input
P48	sout	Serial	0	1	Serial data output
P49	xin	Serial	I	-	Baud rate generator reference clock (Optional, may be driven externally under control of the C_HAS_EXTERNAL_XIN parameter)
P50	xout	Serial	0	-	If C_HAS_EXTERNAL_XIN = 0, xout will be 0, if C_HAS_EXTERNAL_XIN = 1 xout can be used as Baud rate generator reference feedback clock
P51	ctsN	Modem	I	-	Clear to send (active low). When low, this indicates that the MODEM or data set is ready to exchange data.
P52	dcdN	Modem	I	-	Data carrier detect (active low). Then low, indicates that the data carrier has been detected by the MODEM or data set.
P53	dsrN	Modem	I	-	Data set ready (active low). When low, this indicates that the MODEM or data set is ready to establish the communications link with the UART.

Table 1: XPS 16550 UART I/O Signals (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description
P54	dtrN	Modem	0	1	Data terminal ready (active low). When low, this informs the MODEM or data set that the UART is ready to establish a communications link.
P55	riN	Modem	I		Ring indicator (active low). When low, this indicates that a telephone ringing signal has been received by the MODEM or data set.
P56	rtsN	Modem	0	1	Request to send (active low). When low, this informs the MODEM or data set that the UART is ready to exchange data.
P57	ddis	User	0	1	Driver disable. This goes low when CPU is reading data from UART.
P58	out1N	User	0	1	User controlled output
P59	our2N	User	0	1	User controlled output
P60	rxrdyN	User	0	1	DMA control signal
P61	txrdyN	User	0	0	DMA control signal

XPS 16550 UART Design Parameters

To allow the user to create a XPS 16550 UART that is uniquely tailored for the user's system, certain features are parameterizable in the XPS 16550 UART design. This allows the user to have a design that utilizes only the resources required by the system and runs at the best possible performance. the features that are parameterizable in the XPS 16550 UART core are as shown in Table 2.

Table 2: Design Parameters

Generic	Parameter Description	Parameter Name	Allowable Values	Default Value	VHDL Type
		System Parameters			
G1	XILINX FPGA Family	C_FAMILY	See C_FAMILY paramete	r values	string
PLB Parameters					
G2	XPS 16550 UART Base Address	C_BASEADDR	Valid Word Aligned Address ⁽¹⁾	None ⁽²⁾	std_logic_v ector
G3	XPS 16550 UART High Address	C_HIGHADDR	C_HIGHADDR - C_BASEADDR must be a power of 2 >= to C_BASEADDR+1FFF ⁽¹⁾	None ⁽²⁾	std_logic_v ector
G4	PLB Data Bus Width	C_SPLB_DWIDTH	32, 64, 128	32	integer
G5	PLB Address Bus Width	C_SPLB_AWIDTH	32	32	integer
G6	PLB Point-to-Point or shared topology	C_SPLB_P2P	0 : PLB shared topology 1 : Reserved	0	integer
G7	PLB master ID bus width	C_SPLB_MID_WIDTH	log ₂ (C_SPLB_NUM_MAST ERS) with a minimum value of 1	1	integer
G8	Number of PLB masters	C_SPLB_NUM_MASTERS	1 - 16	1	integer

Table 2: Design Parameters (Cont'd)

Generic	Parameter Description	Parameter Name	Allowable Values	Default Value	VHDL Type
G9	Width of slave data bus	C_SPLB_NATIVE_DWIDTH	32	32	integer
G10	Burst support	C_SPLB_SUPPORTS_BURST	0	0	integer
	16550 UART Interface				
G11	External xin	C_HAS_EXTERNAL_XIN	0 : xin is open ⁽³⁾ 1 : xin is externally driven ⁽⁴⁾	0	integer
G12	External rclk	C_HAS_EXTERNAL_RCLK	0 : rclk is open 1 : rclk is externally driven	0	integer
G13	Select 16450/16550 UART	C_IS_A_16550	0 : 16450 mode 1 : 16550 mode	1	integer
G14	External xin clock frequency in Hz.	C_EXTERNAL_XIN_CLK_HZ ⁽⁵⁾	Valid xin clock frequency in Hz.	25000000	integer

Notes:

- 1. Address range specified by C_BASEADDR and C_HIGHADDR must be at least 0x2000 and must be a power of 2.
- 2. No default value will be specified to insure that the actual value is set, i.e. if the value is not set, a compiler error will be generated.
- 3. When C_HAS_EXTERNAL_XIN=0, this core uses SPLB_Clk as an reference clock for the baud calculation. User must use SPLB_Clk frequency to calculate baud divisor value for DLL and DLM register configuration.
- 4. The external xin input clock must be less than half of SPLB_Clk.
- 5. External xin clock frequency. User must configure this parameter when external xin is used. (C_HAS_EXTERNAL_XIN is '1').

Parameter - Port Dependencies

The dependencies between the XPS 16550 UART core design parameters and I/O signals are described in Table 3. In addition, when certain features are parameterized out of the design, the related logic will no longer be a part of the design. The unused input signals and related output signals are set to a specified value.

Table 3: Parameter-Port Dependencies

Generic or Port	Name	Affects	Depends	Relationship Description
	Des	sign Param	eters	
G4	C_SPLB_DWIDTH	P9, P12, P35	-	Affects the size of the PLB data bus
G5	C_SPLB_AWIDTH	P5	-	Affects the size of the PLB address bus
G7	C_SPLB_MID_WIDTH	P7	G8	Affects the width of the PLB master ID
G8	C_SPLB_NUM_MASTERS	P38, P39, P40	-	Identify the specific master on the PLB
G11	C_HAS_EXTERNAL_XIN	P49, P50	-	Affects the generation of baud rate
G12	C_HAS_EXTERNAL_RCLK	P46	-	Affects the usage of 16x receiver clock
		I/O Signals		
P5	PLB_ABus[0:C_SPLB_AWIDTH - 1]	-	G5	Width varies with the size of the PLB address bus
P7	PLB_masterID[0: C_SPLB_MID_WIDTH - 1]	-	G7	Width varies with the size of the number of masters on the PLB
P9	PLB_BE[0:[C_SPLB_DWIDTH/8] - 1]	-	G4	Width varies with the size of the PLB data bus
P12	PLB_wrDBus[0:C_SPLB_DWIDTH - 1]	-	G4	Width varies with the size of the PLB data bus
P35	SI_rdBus[0:C_SPLB_DWIDTH - 1]	-	G4	Width varies with the size of the PLB data bus

Table 3: Parameter-Port Dependencies (Cont'd)

Generic or Port	Name	Affects	Depends	Relationship Description
P38	SI_MBusy[0:C_SPLB_NUM_MASTERS - 1]	-	G8	Width varies with the number of masters on the PLB
P39	SI_MWrErr[0:C_SPLB_NUM_MASTERS - 1]	-	G8	Width varies with the number of masters on the PLB
P40	SI_MRdErr[0:C_SPLB_NUM_MASTERS - 1]	-	G8	Width varies with the number of masters on the PLB
P46	rclk	-	G12, P45	If C_HAS_EXTERNAL_RCLK = 0 baudoutN is used as 16x receiver clock, C_HAS_EXTERNAL_RCLK = 1, rclk is used as 16x receiver clk
P49	xin	-	G11	When C_HAS_EXTERNAL_XIN = 0, xin is unconnected, C_HAS_EXTERNAL_XIN = 1, xin is driven externally

XPS 16550 UART Register Definition

XPS 16550 UART Interface

The internal registers of the XPS 16550 UART are offset from the base address C_BASEADDR. Additionally, some of the internal registers are accessible only when bit 7 of the Line Control Register (LCR) is set. The XPS 16550 UART internal register set is described in Table 4.

Table 4: XPS 16550 UART Registers

Register Name	LCR(7)+ C_BASEADDR + Address	Access
Receiver Buffer Register (RBR)	0 + C_BASEADDR + 0x1000	Read
Transmitter Holding Register (THR)	0 + C_BASEADDR + 0x1000	Write
Interrupt Enable Register (IER)	0 + C_BASEADDR + 0x1004	Read/Write
Interrupt Identification Register (IIR)	0 + C_BASEADDR + 0x1008	Read
FIFO Control Register (FCR) ⁽³⁾	X + C_BASEADDR + 0x1008	Write
FIFO Control Register ^{(2), (3)}	1 + C_BASEADDR + 0x1008	Read
Line Control Register (LCR)	X ⁽¹⁾ + C_BASEADDR + 0x100C	Read/Write
Modem Control Register (MCR)	X ⁽¹⁾ + C_BASEADDR + 0x1010	Read/Write
Line Status Register (LSR)	X ⁽¹⁾ + C_BASEADDR + 0x1014	Read/Write
Modem Status Register (MSR)	X ⁽¹⁾ + C_BASEADDR + 0x1018	Read/Write
Scratch Register (SCR)	X ⁽¹⁾ + C_BASEADDR + 0x101C	Read/Write
Divisor Latch Register (DLL)	1 + C_BASEADDR + 0x1000	Read/Write
Divisor Latch Register (DLM)	1 + C_BASEADDR + 0x1004	Read/Write

Notes:

- 1. X denotes a don't care
- 2. FIFO Control Register is write only in the National PC16550D
- 3. 16450 UART mode implementation does not include this register

XPS 16550 UART Register Logic

This section tabulates the internal XPS 16550 UART registers, including their reset values (if any). Please refer to the National Semiconductor PC16550D UART with FIFOs data sheet (June, 1995) for a more detailed description of the register behavior.

Receiver Buffer Register

This is an 8-bit read register as shown in Figure 3. The Receiver Buffer Register contains the last received character. The bit definitions for the register are shown in Table 5. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 3: Receiver Buffer Register (RBR)

Table 5: Receiver Buffer Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-31	RBR	Read	"0000000"	Last received character

Transmitter Holding Register

This is an 8-bit write register as shown in Figure 4. The Transmitter Holding Register contains the character to be transmitted next. The bit definitions for the register are shown in Table 6. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 4: Transmit Holding Register (THR)

Table 6: Transmitter Holding Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-31	THR	Write	"11111111"	Holds the character to be transmitted next

Interrupt Enable Register

This is an 8-bit read/write register as shown in Figure 5. The Interrupt Enable Register contains the bits which enable interrupts. The bit definitions for the register are shown in Table 7. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 5: Interrupt Enable Register (IER)

Table 7: Interrupt Enable Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-27	N/A	Read/Write	"0000"(1)	Always returns "0000"
28	EDSSI	Read/Write	'0'	Enable Modem Status Interrupt '0' = Disables Modem Status Interrupts '1' = Enables Modem Status Interrupts
29	ELSI	Read/Write	'0'	Enable Receiver Line Status Interrupt '0' = Disables Receiver Line Status Interrupts '1' = Enables Receiver Line Status Interrupts
30	ETBEI	Read/Write	'0'	Enable Transmitter Holding Register Empty Interrupt '0' = Disables Transmitter Holding Register Empty Interrupts '1' = Enables Transmitter Holding Register Interrupts
31	ERBFI	Read/Write	'0'	Enable Received Data Available Interrupt '0' = Disables Received Data Available Interrupts '1' = Enables Received Data Available Interrupts

^{1.} Reading these bits always return "0000"

Interrupt Identification Register

This is an 8-bit read register as shown in Figure 6. The Interrupt Identification Register contains the priority interrupt identification. The bit definitions for the register are shown in Table 8. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 6: Interrupt Identification Register (IIR)

Table 8: Interrupt Identification Register Bit Definition

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-25	FIFOEN ⁽³⁾	Read	"00"	FIFOs Enabled. Always zero if not in FIFO mode
26-27	N/A	Read	"00" <rd red="">(1)</rd>	Always returns "00"
28 <rd Red>(3)_ 30</rd 	INTID2	Read	"000"	Interrupt ID "011" = Receiver Line Status (Highest) "010" = Received Data Available (Second) "110" = Character Timeout (Second) "001" = Transmitter Holding Register Empty (Third) "000" = Modem Status (Fourth)
31	INTPEND ⁽²⁾	Read	'1'	Interrupt Pending. Interrupt is pending when cleared

Notes:

- 1. Reading these bits always return "00"
- 2. If INTPEND = '0', interrupt is pending. See National Semiconductor PC16550D data sheet for more details
- 3. Bits are always zero in 16450 UART mode

FIFO Control Register

This is an 8-bit write/read register as shown in Figure 7. The FIFO Control Register contains the FIFO configuration bits. The bit definitions for the register are shown in Table 9. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 7: FIFO Control Register (FCR)

Table 9: FIFO Control Register Bit Definitions(1)

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-25	RCVR FIFO Trigger Level	Read/Write	"00"	RCVR FIFO Trigger Level. "00" = 1 byte "01" = 4 bytes "10" = 8 bytes "11" = 14 bytes
26-27	Reserved	Read/Write	"00"(2)	Always returns "00"
28	DMA Mode Select	Read/Write	'0'	DMA Mode Select '0' = Mode 0 '1' = Mode 1

Bit	Name	Access	Reset Value	Description
29	XMIT FIFO Reset	Read/Write	'0'	Transmitter FIFO Reset '1' = Resets XMIT FIFO
30	RCVR FIFO Reset	Read/Write	'0'	Receiver FIFO Reset '1' = Resets RCVR FIFO
31	FIFOEN	Read/Write	'0'	FIFO Enable '1' = Enables FIFOs

Notes:

- 1. FCR is not included in 16450 UART mode
- 2. Reading these bits always return "00"

Line Control Register

This is an 8-bit write/read register as shown in Figure 8. The Line Control Register contains the serial communication configuration bits. The bit definitions for the register are shown in Table 10. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 8: Line Control Register (LCR)

Table 10: Line Control Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24	DLAB	Read/Write	'0'	Divisor Latch Access Bit. '1' = Allows access to the Divisor Latch Registers and reading of the FIFO Control Register '0' = Allows access to RBR, THR, IER and IIR registers
25	Set Break	Read/Write	'0'	Set Break '1' = Enables break condition. Sets SOUT to '0' '0' = Disables break condition.
26	Stick Parity	Read/Write	'0'	Stick Parity '1' = When bits 28, 27 are logic1 the Parity bit is transmitted and checked as a logic 0. If bit 27 is a logic 0 and bit 28 is logic 1 then the Parity bit is transmitted and checked as a logic 1. '0' = Stick Parity is disabled
27	EPS	Read/Write	'0'	Even Parity Select '1' = Selects Even parity '0' = Selects Odd parity

12 <u>www.xilinx.com</u>

Bit	Name	Access	Reset Value	Description
28	PEN	Read/Write	'0'	Parity Enable '1' = Enables parity '0' = Disables parity
29	STB	Read/Write	'0'	Number of Stop Bits '0' = 1 Stop bit '1' = 2 Stop bits or 1.5 if 5 bits/character selected
30-31	WLS	Read/Write	"00"	Word Length Select "00" = 5 bits/character "01" = 6 bits/character "10" = 7 bits/character "11" = 8 bits/character

Modem Control Register

This is an 8-bit write/read register as shown in Figure 9. The Modem Control Register contains the modem signalling configuration bits. The bit definitions for the register are shown in Table 11. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 9: Modem Control Register (MCR)

Table 11: Modem Control Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-26	N/A	Read/Write	"000" <rd red="">(1)</rd>	Always "000"
27	Loop	Read/Write	'0'	Loop Back '1' = Enables loop back
28	Out2	Read/Write	'0'	User Output 2 '1' = Drives OUT2N low '0' = Drives OUT2N high
29	Out1	Read/Write	'0'	User Output 1 '1' = Drives OUT1N low '0' = Drives OUT1N high

Table 11: M	Modem Control	Register Bit	Definitions	(Cont'd)
-------------	---------------	--------------	-------------	----------

Bit	Name	Access	Reset Value	Description
30	RTS	Read/Write	'0'	Request To Send '1' = Drives RTSN low '0' = Drives RTSN high
31	DTR	Read/Write	'0'	Data Terminal Ready '1' = Drives DTRN low '0' = Drives DTRN high

Notes:

1. Reading these bits always return "000"

Line Status Register

This is an 8-bit write/read register as shown in Figure 10. The Line Status Register contains the current status of receiver and transmitter. The bit definitions for the register are shown in Table 12. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 10: Line Status Register (LSR)

Table 12: Line Status Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24	Error in RCVR FIFO	Read/Write	'0'	Error in RCVR FIFO ⁽¹⁾ RCVR FIFO contains at least one receiver error
25	TEMT	Read/Write	'1'	Transmitter Empty
26	THRE	Read/Write	'1'	Transmitter Holding Register Empty
27	ВІ	Read/Write	'0'	Break Interrupt Set when SIN is held low for an entire character time
28	FE	Read/Write	'0'	Framing Error Character missing a stop bit. Receiver resynchronizes with next character, if possible
29	PE	Read/Write	'0'	Parity Error
30	OE	Read/Write	'0'	Overrun Error RBR not read before next character is received
31	DR	Read/Write	'0'	Data Ready

^{1.} The error will be reported until the last character containing error in the FIFO gets read out of the FIFO.

Modem Status Register

This is an 8-bit write/read register as shown in Figure 11. The Modem Status Register contains the current state of the Modem Interface. The bit definitions for the register are shown in Table 13. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 11: Modem Status Register (MSR)

Table 13: Modem Status Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24	DCD	Read/Write	'X'	Data Carrier Detect Complement of DCDN input
25	RI	Read/Write	'X'	Ring Indicator Complement of RIN input
26	DSR	Read/Write	'X'	Data Set Ready Complement of DSRN input
27	CTS	Read/Write	'X'	Clear To Send Complement of CTSN input
28	DDCD	Read/Write	'0'	Delta Data Carrier Detect Change in DCDN since last MSR read
29	TERI	Read/Write	'0'	Trailing Edge Ring Indicator RIN has changed from a low to a high
30	DDSR	Read/Write	'0'	Delta Data Set Ready Change in DSRN since last MSR read
31	DCTS	Read/Write	'0'	Delta Clear To Send Change in CTSN since last MSR read

Notes:

1. X represents bit driven by external input

Scratch Register

This is an 8-bit write/read register as shown in Figure 12. The Scratch Register can be used to hold user data. The bit definitions for the register are shown in Table 14. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 12: Scratch Register (SCR)

Table 14: Scratch Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-31	Scratch	Read/Write	"0000000"	Hold the data temporarily

Divisor Latch (Least Significant Byte) Register

This is an 8-bit write/read register as shown in Figure 13. The Divisor Latch (Least Significant Byte) Register holds the least significant byte of the baud rate generator counter. The bit definitions for the register are shown in Table 15. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 13: Divisor Latch (Least Significant Byte) Register

Table 15: Divisor Latch (Least Significant Byte) Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-31	DLL	Read/Write	"0000000"	Divisor Latch Least Significant Byte

Divisor Latch (Most Significant Byte) Register

This is an 8-bit write/read register as shown in Figure 14. The Divisor Latch (Most Significant Byte) Register holds the most significant byte of the baud rate generator counter. The bit definitions for the register are shown in Table 16. The offset and accessibility of this register from C_BASEADDR value is as shown in Table 4.

Figure 14: Divisor Latch (Most Significant Byte) Register

Table 16: Divisor (Most Significant Byte) Register Bit Definitions

Bit	Name	Access	Reset Value	Description
0-23	Reserved	N/A	N/A	Reserved
24-31	DLM	Read/Write	"0000000"	Divisor Latch Most Significant Byte

User Application Hints

The use of the XPS 16550 UART in 16550 mode is outlined in the steps below.

- 1. The system programmer specifies the format of the asynchronous data communications exchange i.e Data bits (5,6,7 or 8), setting of parity ON and selecting on the even or odd parity, setting of the number stop bits for the transmission and set the Divisor latch access bit by programming the Line Control Register.
- 2. Write Interrupt Enable Register to activate the individual interrupts
- 3. Write to the FIFO Control Register to enable the FIFO's, clear the FIFO's, set the RCVR FIFO trigger level.
- 4. Write to Divisor Latch least significant byte first and Divisor Latch most significant byte second for proper setting of the baud rate of the UART.
- 5. Service the interrupts when ever an interrupt is triggered by the XPS 16550 UART.

An example use of the XPS 16550 UART with the operating mode set to the following parameters in 16550 mode explained below.

- Baud rate: 56Kbps
- System clock: 100 Mhz (C_HAS_EXTERNAL_XIN = 0)
- Enabled and Threshold settings for the FIFO receive buffer.
- Format of asynchronous data exchange 8 data bits, Even parity and 2 stop bits
- 1. Write 0x0000_0080 to Line Control Register. This configures DLAB bit which allows the writing into the Divisor Latch's Least significant and Most significant bytes.
- 2. Write 0x0000_006F to Divisor Latch's Least significant byte and write 0x0000_0000 to Divisor Latch's Most significant byte in that order. This configures the baud rate setup of UART to 56Kbps operation.
- 3. Write 0x0000_001F to Line Control Register. This configures word length to 8 bits, Number of stop bits to 2, Parity is enabled and set to Even parity and DLAB bit is set to value 0 to enable the use of Transmit Holding register and Receive buffer register data for transmitting and reception of data.
- 4. Write 0x0000_0011 to Interrupt Enable Register. This enables the Transmitter holding register empty interrupt and Receive data available interrupt.
- 5. Write the buffer to Transmit Holding register and read the data received from Receive Holding register by servicing the interrupts generated.

An example use of the XPS 16550 UART when external xin clock is used (C_HAS_EXTERNAL_XIN = 1) with the operating mode set to the following parameters in 16550 mode explained below.

Baud rate: 56KbpsSystem clock: 100 Mhz

- External xin clock: 1.8432 Mhz

- Enabled and Threshold settings for the FIFO receive buffer.
- Format of asynchronous data exchange 8 data bits, Even parity and 2 stop bits
- 1. Write 0x0000_0002 to Divisor Latch's Least significant byte and write 0x0000_0000 to Divisor Latch's Most significant byte in that order. This configures the baud rate setup of UART to 56Kbps operation. Other steps remains same as show in the example above.

Design Implementation

Target Technology

The target technology is an FPGA listed in EDK Supported Device Families.

Device Utilization and Performance Benchmarks

Core Performance

Because the XPS 16550 UART core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the XPS 16550 UART core is combined with other designs in the system, the utilization of FPGA resources and timing of the XPS 16550 UART design will vary from the results reported here.

The XPS 16550 UART resource utilization for various parameter combinations measured with Virtex®-4 as the target device are detailed Table 17.

Table 17: Performance and Resource Utilization Benchmarks on Virtex-4 (xc4vlx40-ff1148-10)

	ı	Paramete	er Values	\$		Device Resources			Performance
C_IS_A_16550	C_SPLB_NUM_MASTERS	C_SPLB_P2P	C_SPLB_DWIDTH	C_HAS_EXTERNAL_XIN	C_HAS_EXTERNAL_RCLK	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	1	1	32	0	0	307	263	419	125
0	4	0	64	0	1	362	282	413	125
0	8	0	128	1	0	373	283	436	125
0	8	0	128	1	1	454	334	603	125
1	8	0	64	0	0	470	332	617	125
1	1	0	128	0	1	452	331	593	125
1	1	0	128	1	0	459	331	612	125
1	16	0	128	1	1	447	335	617	125

The XPS 16550 UART resource utilization for various parameter combinations measured with Virtex-5 as the target device are detailed Table 18.

Table 18: Performance and Resource Utilization Benchmarks on Virtex-5 (xc5vlx50-ff1153-1)

	ı	Paramete	er Values	\$		Device R	esources	Performance
C_IS_A_16550	C_SPLB_NUM_MASTERS	C_SPLB_P2P	C_SPLB_DWIDTH	C_HAS_EXTERNAL_XIN	C_HAS_EXTERNAL_RCLK	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	1	1	32	0	0	324	411	150
0	4	0	64	0	1	286	300	150
0	8	0	128	1	0	282	307	150
0	8	0	128	1	1	335	420	150
1	8	0	64	0	0	332	412	150
1	1	0	128	0	1	332	408	150
1	1	0	128	1	0	331	406	150
1	16	0	128	1	1	336	424	150

The XPS 16550 UART resource utilization for various parameter combinations measured with Spartan $^{\$}$ -3E as the target device are detailed Table 19.

Table 19: Performance and Resource Utilization Benchmarks on Spartan-3E (xc3s1600e-fg484-4)

		Paramete	er Values	•		Dev	vice Resour	ces	Performance
C_IS_A_16550	C_SPLB_NUM_MASTERS	C_SPLB_P2P	C_SPLB_DWIDTH	C_HAS_EXTERNAL_XIN	C_HAS_EXTERNAL_RCLK	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	1	1	32	0	0	287	257	367	100
0	4	0	64	0	1	340	281	379	100
0	8	0	128	1	0	368	282	387	100
0	8	0	128	1	1	466	333	549	100
1	8	0	64	0	0	445	331	547	100
1	1	0	128	0	1	470	330	539	100
1	1	0	128	1	0	447	330	543	100
1	16	0	128	1	1	454	334	560	100

The XPS 16550 UART resource utilization for various parameter combinations measured with Spartan-6 as the target device are detailed Table 20.

Table 20: Performance and Resource Utilization Benchmarks on Spartan-6 (xc6slx45t-fgg484-2)

	l	Paramete	er Values	6		Dev	ice Resour	ces	Performance
C_IS_A_16550	C_SPLB_NUM_MASTERS	C_SPLB_P2P	C_SPLB_DWIDTH	C_HAS_EXTERNAL_XIN	C_HAS_EXTERNAL_RCLK	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	1	1	32	0	0	168	314	397	160
0	4	0	64	0	1	148	268	314	160
0	8	0	128	1	0	145	273	321	160
0	8	0	128	1	1	202	332	430	160
1	8	0	64	0	0	162	322	397	160
1	1	0	128	0	1	180	314	393	160
1	1	0	128	1	0	179	314	416	160
1	16	0	128	1	1	194	314	440	160

The XPS 16550 UART resource utilization for various parameter combinations measured with Virtex-6 as the target device are detailed Table 21.

Table 21: Performance and Resource Utilization Benchmarks on Virtex-6 (xc6vlx130t-ff1156-1)

	l	Paramete	er Values	S		Dev	vice Resour	ces	Performance
C_IS_A_16550	C_SPLB_NUM_MASTERS	C_SPLB_P2P	C_SPLB_DWIDTH	C_HAS_EXTERNAL_XIN	C_HAS_EXTERNAL_RCLK	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
0	1	1	32	0	0	183	314	429	160
0	4	0	64	0	1	135	268	305	160
0	8	0	128	1	0	139	273	328	160
0	8	0	128	1	1	196	326	446	160
1	8	0	64	0	0	182	322	429	160

20 <u>www.xilinx.com</u>

1	1	0	128	0	1	176	344	422	160
1	1	0	128	1	0	186	315	434	160
1	16	0	128	1	1	196	335	457	160

System Performance

To measure the system performance (F_{MAX}) of this core, this core was added to a Virtex-4 system, a Virtex-5 system, and a Spartan-3A system as the Device Under Test (DUT) as shown in Figure 15, Figure 16, and Figure 17.

Because the XPS 16550 UART core is used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When this core is combined with other designs in the system, the utilization of FPGA resources and timing of the design will vary from the results reported here.

Figure 15: Virtex-4 FX System

Figure 16: Virtex-5 FXT System

Figure 17: Spartan 3ADSP System

Figure 18: Virtex-6 LXT System

Figure 19: Spartan-6 LXT System

22 <u>www.xilinx.com</u>

The target FPGA was then filled with logic to drive the LUT and BRAM utilization to approximately 70% and the I/O utilization to approximately 80%. Using the default tool options and the slowest speed grade for the target FPGA, the resulting target F_{MAX} numbers are shown in Table 22.

Table 22: XPS 16550 UART System Performance

Target FPGA	Target F _{MAX} (MHz)
S3ADSP3400 -4	90
S6LX45T-2	92
V4FX60 -10	100
V5FXT70 -1	120
V6LX130T-1	136

The target F_{MAX} is influenced by the exact system and is provided for guidance. It is not a guaranteed value across all systems.

Specification Exceptions

FIFO Control Register

The FIFO control register has been made read/write. Read access is controlled by setting Line Control Register bit 7.

System Clock

The asynchronous microprocessor interface of the National Semiconductor PC16550D is synchronized to the system clock input of the UART.

XIN Clock

If the xin input is driven externally, then the xin clock must be less than or equal to half of the system clock. (i.e. $xin \le (SPLB_Clk/2)$). This is mandatory for the proper functioning of the core.

Register Addresses

All internal registers reside on a 32- bit word boundary not on 8-bit byte boundaries.

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Reference Documents

The following documents contain reference information important to understand the UART design:

- 1. National Semiconductor PC16550D UART with FIFOs data sheet (June, 1995) (http://www.national.com/pf/PC/PC16550D.html)
- 2. IBM CoreConnect 128-Bit Processor Local Bus: Architecture Specifications version 4.6

Revision History

Date	Version	Revision
10/10/2006	1.0	Initial Xilinx Release.
4/20/2007	1.1	Added Spartan-3 support.
9/26/2007	1.2	Added F _{MAX} Margin "System Performance" section.
11/27/2007	1.3	Added SP-3A DSP support.
12/14/2007	1.4	Modified the version from v1.00a to v2.00a to make the core license free.
4/21/2008	1.5	Added Automotive Spartan-3E, Automotive Spartan-3A, Automotive Spartan-3 and Automotive Spartan-3A DSP support.
7/16/2008	1.6	Added QPro Virtex-4 Hi-Rel and QPro Virtex-4 Rad Tolerant FPGA support.
9/25/2008	1.7	Updated to version v2.01.a. Removed Virtex2p support.
10/08/2008	1.8	Updated resource utilization and LSR(7) bit description.
4/24/2009	1.9	Replaced references to supported device families and tool name(s) with hyperlink to PDF file.
7/15/2009	1.10	Updated to version v3.00.a. Updated utilization and Fmax numbers for S6 and V6.
5/03/2010	1.11	Updated utilization and Fmax numbers for S6 and V6

Notice of Disclaimer

Xilinx is providing this design, code, or information (collectively, the "Information") to you "AS-IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.