

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Kruskal's MST Algorithm

MST Review

Input: Undirected graph G = (V, E), edge costs c_e .

Output: Min-cost spanning tree (no cycles, connected).

Assumptions: *G* is connected, distinct edge costs.

Cut Property: If e is the cheapest edge crossing some cut (A, B), then e belongs to the MST.

Example

Kruskal's MST Algorithm

- Sort edges in order of increasing cost [Rename edges $1, 2, \ldots, m$ so that $c_1 < c_2 < \ldots < c_m$]
- *T* = ∅
- For i = 1 to m
 - If $T \cup \{i\}$ has no cycles
 - Add i to T
- Return T

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Proof of the Cut Property

The Cut Property

Assumption: Distinct edge costs.

CUT PROPERTY: Consider an edge e of G. Suppose there is a cut (A, B) such that e is the cheapest edge of G that crosses it. Then e belongs to the MST of G.

Proof Plan

Will argue by contradiction, using an exchange argument. [Compare to scheduling application]

Suppose there is an edge e that is the cheapest one crossing a cut (A, B), yet e is not in the MST T^* .

Idea: Exchange e with another edge in T^* to make it even cheaper (contradiction).

Question: Which edge to exchange e with?

Attempted Exchange

Note: Since T^* is connected, must construct an edge $f(\neq e)$ crossing (A, B).

Idea: Exchange e and f to get a spanning tree cheaper than T^* (contradiction).

Exchanging Edges

Question: Let T^* be a spanning tree of G, $e \notin T^*$, $f \in T^*$. Is $T^* \cup \{e\} - \{f\}$ a spanning tree of G?

- A) Yes always
- B) No never
- C) If e is the cheapest edge crossing some cut, then yes
- D) Maybe, maybe not (depending on the choice of e and f)

Smart Exchanges

Hope: Can always find suitable edge e' so that exchange yields bona fide spanning tree of G.

How? Let C = cycle created by adding e to T^* .

By the Double-Crossing Lemma: Some other edge e' of C [with $e' \neq e$ and $e' \in T^*$] crosses (A, B).

You check: $T = T^* \cup \{e\} - \{e'\}$ is also a spanning tree.

Since $c_e < c_{e'}$, T cheaper than purported MST T^* , contradiction.

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Correctness of Kruskal's Algorithm

Correctness of Kruskal (Part I)

Theorem: Kruskal's algorithm is correct.

Proof: Let $T^* = \text{output of Kruskal's algorithm on input graph } G$.

- (1) Clearly T^* has no cycles.
- (2) T^* is connected. Why?
- (2a) By Empty Cut Lemma, only need to show that T^* crosses every cut.
- (2b) Fix a cut (A, B). Since G connected at least one of its edges crosses (A, B).

Key point: Kruskal will include first edge crossing (A, B) that it sees [by Lonely Cut Corollary, cannot create a cycle]

Correctness of Kruskal (Part II)

(3) Every edge of T^* satisfied by the Cut Property. (Implies T^* is the MST)

Reason for (3): Consider iteration where edge (u, v) added to current set T. Since $T \cup \{(u, v)\}$ has no cycle, T has no u - v path.

- $\Rightarrow \exists$ empty cut (A, B) separating u and v. (As in proof of Empty Cut Lemma)
- \Rightarrow By (2b), no edges crossing (A, B) were previously considered by Kruskal's algorithm.
- \Rightarrow (u, v) is the first (+ hence the cheapest!) edge crossing (A, B).
- \Rightarrow (u, v) justified by the Cut Property. QED

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

Implementing
Kruskal's Algorithm
via Union-Find

Kruskal's MST Algorithm

```
- Sort edges in order of increasing cost. (O(m \log n), \text{ recall } m = O(n^2) assuming nonparallel edges)
- T = \emptyset
- For i = 1 to m(O(m) \text{ iterations})
- If T \cup \{i\} has no cycles (O(n) \text{ time to check for cycle [Use BFS or DFS in the graph } (V, T) \text{ which contains } \leq n - 1 \text{ edges]})
- Add i to T
```

Running time of straightforward implementation: (m = # of edges, n = # of vertices) $O(m \log n) + O(mn) = O(mn)$

Plan: Data structure for O(1)-time cycle checks $\Rightarrow O(m \log n)$ time.

The Union-Find Data Structure

Raison d'être of union-find data structure: Maintain partition of a set of objects.

FIND(X): Return name of group that X belongs to. UNION(C_i , C_i): Fuse groups C_i , C_i into a single one.

Why useful for Kruskal's algorithm: Objects = vertices

- Groups = Connected components w.r.t. chosen edges T.
- Adding new edge (u, v) to $T \iff$ Fusing connected components of u, v.

Union-Find Basics

Motivation: O(1)-time cycle checks in Kruskal's algorithm.

Idea #1: - Maintain one linked structure per connected component of (V, T).

- Each component has an arbitrary leader vertex.

Invariant: Each vertex points to the leader of its component ["name" of a component inherited from leader vertex]

Key point: Given edge (u, v), can check if u & v already in same component in O(1) time. [if and only if leader pointers of u, v match, i.e., $\mathsf{FIND}(u) = \mathsf{FIND}(v)$] $\Rightarrow O(1)$ -time cycle checks!

Maintaining the Invariant

Note: When new edge (u, v) added to T, connected components of u & v merge.

Question: How many leader pointer updates are needed to restore the invariant in the worst case?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$ (e.g., when merging two components with n/2 vertices each)
- D) $\Theta(m)$

Maintaining the Invariant (con'd)

Idea #2: When two components merge, have smaller one inherit the leader of the larger one. [Easy to maintain a size field in each component to facilitate this]

Question: How many leader pointer updates are now required to restore the invariant in the worst case?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$ (for same reason as before, i.e., when merging two components with n/2 vertices each)
- D) $\Theta(m)$

Updating Leader Pointers

But: How many times does a single vertex v have its leader pointer updated over the course of Kruskal's algorithm?

- A) $\Theta(1)$
- B) $\Theta(\log n)$
- C) $\Theta(n)$
- D) $\Theta(m)$

Reason: Every time v's leader pointer gets updated, population of its component at least doubles \Rightarrow Can only happen $\leq \log_2 n$ times.

Running Time of Fast Implementation

Scorecard:

```
O(m \log n) time for sorting O(m) times for cycle checks [O(1)] per iteration
```

 $O(n \log n)$ time overall for leader pointer updates

 $O(m \log n)$ total (Matching Prim's algorithm)

Minimum Spanning Trees

Algorithms: Design and Analysis, Part II

State-of-the-Art and Open Questions

State-of-the-Art MST Algorithms

Question: Can we do better than $O(m \log n)$? (Running time of Prim/Kruskal.)

Answer: Yes!

O(m) randomized algorithm [Karger-Klein-Tarjan JACM 1995]

 $O(m \alpha(n))$ deterministic [Chazelle JACM 2000]

"Inverse Ackerman Function": In particular, grows much slower than $\log^* n := \#$ of times you can apply \log to n until result drops below 1 (inverse of "tower function" $2^{2^{2\cdots^2}}$)

Open Questions

Weirdest of all: [Pettie/Ramachandran JACM 2002] Optimal deterministic MST algorithm, but precise asymptotic running time is unknown! [Between $\Theta(m)$ and $\Theta(m\alpha(n))$, but don't know where]

Open Questions:

- Simple randomized O(m)-time algorithm for MST [Sufficient: Do this just for the "MST verification" problem]
- Is there a deterministic O(m)-time algorithm?

Further reading: [Eisner 97]

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Lazy Unions

The Union-Find Data Structure

Raison d'être: Maintain a partition of a set X.

FIND: Given $x \in X$, return name of x's group. UNION: Given x & y, merge groups containing them.

Previous solution (for Kruskal's MST algorithm)

- Each $x \in X$ points directly to the "leader" of its group.

- O(1) FIND [just return x's leader]
- O(n log n) total work for n UNIONS [when 2 groups merge, smaller group inherits leader of larger one]

Lazy Unions

New idea: Update only one pointer each merge!

In array representation: (Where $A[i] \leftrightarrow$ name of i's parent)

How to Merge?

In general: When two groups merge in a UNION, make one group's leader (i.e., root of the tree) a child of the other one.

Pro: UNION reduces to 2 FINDS $[r_1 = FIND(x), r_2 = FIND(y)]$ and O(1) extra work [link r_1, r_2 together]

Con: To recover leader of an object, need to follow a <u>path</u> of parent pointers [not just one!]

 \Rightarrow Not clear if FIND still takes O(1) time.

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Union by Rank

The Lazy Union Implementation

New implementation: Each object $x \in X$ has a parent field.

Invariant: Parent pointers induce a collection of directed trees on X. (x is a root \iff parent[x]=x)

Initially: For all x, parent[x]=x

FIND(x): Traverse parent pointers from x until you hit the root.

UNION(x, y): $s_1 = FIND(x)$; $s_2 = FIND(y)$; Reset parent of one of s_1, s_2 to be the other.

Quiz on Lazy Unions

Question: Suppose, in the UNION operation, we choose the new root arbitrarily from the two old ones. What is the worst-case running time of the FIND and UNION operations, respectively?

- A) $\Theta(1), \Theta(1)$
- B) $\Theta(\log n), \Theta(1)$
- C) $\Theta(\log n), \Theta(\log n)$
- D) $\Theta(n), \Theta(n)$

Issue: Scraggly trees:

Union by Rank

Ranks: For each $x \in X$, maintain field rank[x].

[In general rank[x]=1+(max rank of x's children)]

Invariant (for now): For all $x \in X$, rank[x]=maximum number of hops from some leaf to x.

[Initially, rank[
$$x$$
]=0 for all $x \in X$]

To avoid scraggly trees ("Union by Rank"): Given x & y:

- s_1 =FIND(x), s_2 =FIND(y)
- If $rank[s_1] > rank[s_2]$ then set $parent[s_2]$ to s_1 else set $parent[s_1]$ to s_2 .

To-do: Update ranks to restore Invariant.

Quiz on Rank Updates

Question: Recall s_1 =FIND(x), s_2 =FIND(y). How do the ranks of $s_1 \& s_2$ change after UNION(x, y)?

- A) Unchanged
- B) The one with larger rank goes up by 1
- C) The one with smaller rank goes up by 1
- D) No change unless ranks of s_1 , s_2 were equal, in which case s_2 's rank goes up by 1

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Union by Rank -Analysis

Properties of Ranks

Recall: Lazy Unions.

Invariant (for now): $\operatorname{rank}[x] = \max \# \text{ of hops from a leaf to } x$. [Note $\max_x \operatorname{rank}[x] \approx \text{worst-case running time of FIND.}]$

Union by Rank: Make old root with smaller rank child of the root with the larger rank.

[Choose new root arbitrarily in case of a tie, and add 1 to its rank.]

Immediate from Invariant/Rank Maintenance:

- (1) For all objects x, rank[x] only goes up over time
- (2) Only ranks of roots can go up [once x a non-root, rank[x] frozen forevermore]
- (3) Ranks strictly increase along a path to the root

Rank Lemma

Rank Lemma: Consider an arbitrary sequence of UNION (+FIND) operations. For every $r \in \{0, 1, 2, ...\}$, there are at most $n/2^r$ objects with rank r.

Corollary: Max rank always $\leq \log_2 n$

Corollary: Worst-case running time of FIND, UNION is $O(\log n)$. [With Union by Rank.]

Proof of Rank Lemma

Claim 1: If x, y have the same rank r, then their subtrees (objects from which can reach x, y) are disjoint.

Claim 2: The subtree of a rank-r object has size $\geq 2^r$. [Note Claim 1 + Claim 2 imply the Rank Lemma.]

Proof of Claim 1: Will show contrapositive. Suppose subtrees of x, y have object z in common $\Rightarrow \exists$ paths $z \rightarrow x, z \rightarrow y$ \Rightarrow One of x, y is an ancestor of the other \Rightarrow The ancestor has strictly larger rank. [By property (3)] QED (Claim 1)

Proof of Claim 2

Rank $r \Rightarrow$ Subtree size $\geq 2^r$

Base case: Initially all ranks = 0, all subtree sizes = 1

Inductive step: Nothing to prove unless the rank of some object changes (subtree sizes only go up).

Interesting case: UNION(x, y), with s_1 =FIND(x), s_2 =FIND(y), and rank[s_1]=rank[s_2]= $r \Rightarrow s_2$'s new rank = r+1 $\Rightarrow s_2$'s new subtree size = s_2 's old subtree size + s_1 's old subtree size (each at least 2^r by the inductive hypothesis) $\geq 2^{r+1}$. QED!

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Path Compression

Path Compression

Idea: Why bother traversing a leaf-root path multiple times? Path compression: After FIND(x), install shortcuts (i.e., revise parent pointers) to x's root all along the $x \to root$ path.

In array representation:

Con: Constant-factor overhead to FIND (from "multitasking").

Pro: Speeds up subsequent FINDs. [But by how much?]

On Ranks

Important: Maintain all rank fields EXACTLY as without path compression.

- Ranks initially all 0
- In UNION, new root = old root with bigger rank
- When merging two nodes of common rank r, reset new root's rank to r+1

Bad news: Now rank[x] is only an upper bound on the maximum number of hops on a path from a leaf to x (which could be much less)

Good news: Rank Lemma still holds $(\le n/2^r)$ objects with rank r) Also: Still always have rank[parent[x]]>rank[x] for all non-roots x

Hopcroft-Ullman Theorem

Theorem: [Hopcroft-Ullman 73] With Union by Rank and path compression, m Union+Find operations take $O(m \log^* n)$ time, where $\log^* n =$ the number of times you need to apply \log to n before the result is < 1.

Quiz on log*

Question: What is $\log^*(2^{65536})$?

- A) 2
- B) 5
- C) 16
- D) 65536

In general: $\log^*(2^{2\cdots t \text{ times } ...^2}) = t$

Measuring Progress

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Path Compression: The Hopcroft-Ullman Analysis

Hopcroft-Ullman Theorem

Theorem: [Hopcroft-Ullman 73] With Union by Rank and path compression, m UNION+FIND operations take $O(m \log^* n)$ time, where $\log^* n =$ the number of times you need to apply \log to n before the result is < 1.

[Will focus on interesting case where $m = \Omega(n)$]

Measuring Progress

Intuition: Installing shortcuts should significantly speed up subsequent FINDs+UNIONs.

Question: How to track this progress and quantify the benefit?

Idea: Consider a non-root object $x \longrightarrow \text{Recall: } \text{rank}[x] \text{ frozen}$

Progress measure: rank[parent[x]] - rank[x]

Path compression increases this progress measure: If x has old parent p, new parent $p' \neq p$, then rank[p'] > rank[p].

Proof Setup

Note: There are $O(\log^* n)$ different rank blocks.

Semantics: Traversal $x \to \operatorname{parent}(x)$ is "fast progress" \iff rank[parent[x]] in larger block than rank[x]

Definition: At a given point in time, call object x good if

- (1) x or x's parent is a root OR
- (2) rank[parent[x]] in larger block than rank[x]

x is bad otherwise.

Proof of Hopcroft-Ullman

Point: Every FIND visits only $O(\log^* n)$ good nodes $[2 + \# \text{ of rank blocks} = O(\log^* n)]$

Upshot: Total work done during m operations = $O(m \log^* n)$ (visits to good objects) + total # of visits to bad nodes (need to bound globally by separate argument)

Consider: A rank block $\{k+1, k+2, \dots, 2^k\}$.

Note: When a bad node is visited

its parent is changed to one with strictly larger rank \Rightarrow Can only happen 2^k times before x becomes good (forevermore).

Proof of Hopcroft-Ullman II

Total work: $O(m \log^* n) + O(\# \text{ visits to bad nodes })$.

 $\leq n$ for each of $O(\log^* n)$ rank blocks \checkmark

Consider: A rank block $\{k+1, k+2, \dots, 2^k\}$.

Last slide: For each object x with final rank in this block, # visits

to x while x is bad is $\leq 2^k$.

Rank Lemma: Total number of objects x with final rank in this rank block is $\sum_{i=k+1}^{2^k} n/2^i \le n/2^k$.

 $\leq n$ visits to bad objects in this rank block.

Recall: Only $O(\log^* n)$ rank blocks.

Total work: $O((m+n)\log^* n)$.

Advanced Union-Find

Algorithms: Design and Analysis, Part II

The Ackermann Function

Tarjan's Bound

Theorem: [Tarjan 75] With Union by Rank and path compression, m UNION+FIND operations take $O(m\alpha(n))$ time, where $\alpha(n)$ is the inverse Ackerman function (will define in this video)

Proof in next video.

The Ackermann Function

Aside: Many different definitions, all more or less equivalent.

Will define $A_k(r)$ for all integers k and $r \ge 1$. (recursively)

Base case:
$$A_0(r) = r + 1$$
 for all $r \ge 1$.

In general: For $k, r \ge 1$:

$$A_k(r) = \text{Apply } A_{k-1} \ r \text{ times to } r$$

$$= (A_{k-1} \circ A_{k-1} \circ \dots \circ A_{k-1})(r)$$

r-fold composition

Quiz: A_1

Quiz: $A_1(r)$ corresponds to what function of r?

- A) Successor $(r \mapsto r + 1)$
- B) Doubling $(r \mapsto 2r)$
- C) Exponentation $(r \mapsto 2^r)$ D) Tower function $(r \mapsto 2^{2\cdots r \text{ times } \dots^2})$

$$A_1(r) = (A_0 \circ A_0 \circ \ldots \circ A_0)(r) = 2r$$

(r-fold composition, add 1 each time)

Quiz: A₂

Quiz: What function does $A_2(r)$ correspond to?

A)
$$r \mapsto 4r$$

B)
$$r \mapsto 2^r$$

B)
$$r \mapsto r2^r$$

D)
$$r \mapsto 2^{2\cdots r \text{ times } \dots^2}$$

$$A_2(r) = (A_1 \circ A_1 \circ \ldots \circ A_1)(r) = r2^r$$

(r-fold composition, doubles each time)

Quiz: A_3

Quiz: What is $A_3(2)$? Recall $A_2(r) = r2^r$

- A) 8
- B) 1024
- B) 2048 «
- D) Bigger than 2048

$$A_3(2) = A_2(A_2(2)) = A_2(8) = 82^8 = 2^{11} = 2048$$

In general: $A_3(r) = (A_2 \circ A_2 \circ \dots (r \text{ times}) \dots \circ A_2)(r) \ge a$ tower of r 2's = $2^{2 \dots r \text{ times} \dots^2}$

A_4

$$A_4(2) = A_3(A_3(2)) = A_3(2048) \geq 2^{2 \cdot \cdot \cdot \cdot \text{ height 2048 } \cdot \cdot \cdot \cdot^2}$$

In general: $A_4(r) = (A_3 \circ \dots r \text{ times } \dots \circ A_3)(r) \approx \text{iterated tower function (aka "wowzer" function)}$

The Inverse Ackermann Function

Definition: For every $n \ge 4$, $\alpha(n) = \min \max$ value of k such that $A_k(2) \ge n$.

$$\begin{array}{lll} \alpha(n) = 1, \ n = 4 \ (A_1(2) = 4) & \log^* n = 1, \ n = \underline{2} \\ \alpha(n) = 2, \ n = 5, \dots, 8 \ (A_2(2) = 8) & \log^* n = 2, \ n = 3, \underline{4} \\ \alpha(n) = 3, \ n = 9, 10, \dots, 2048 & \log^* n = 3, \ n = 5, \dots, \underline{16} \\ \alpha(n) = 4, \ n \ \text{up to roughly a tower} & \log^* n = 4, \ n = 17, \underline{65536} \\ \text{of 2's of height } \ 2048 \longleftarrow & \log^* n = 5, \ n = 65537, \underline{2^{65536}} \\ \alpha(n) = 5 \ \text{for } n \ \text{up to } ??? & \log^* n = 2048 \ \text{for such } n \end{array}$$

Advanced Union-Find

Algorithms: Design and Analysis, Part II

Tarjan's Analysis

Tarjan's Bound

Theorem: [Tarjan 75] With Union by Rank and path compression, m UNION+FIND operations take $O(m\alpha(n))$ time, where $\alpha(n)$ is the inverse Ackerman function

Acknowledgement: Kozen, "Design and Analysis of Algorithms"

Building Blocks of Hopcroft-Ullman Analysis

Block #1: Rank Lemma (at most $n/2^r$ objects of rank r)

Block #2: Path compression \Rightarrow If x's parent pointer updated from p to p', then rank(p') \geq rank(p)+1

New idea: Stronger version of building block #2. In most cases, rank of new parent $\underline{\text{much}}$ bigger than rank of old parent (not just by 1).

Quantifying Rank Gaps

```
Definition: Consider a non-root object x (so rank[x] fixed
forevermore)
Define \delta(x) = \max \text{ value of } k \text{ such that }
rank[parent[x] \ge A_k(rank[x])
(Note \delta(x) only goes up over time)
Examples: Always have \delta(x) \geq 0
\delta(x) \ge 1 \iff \operatorname{rank}[\operatorname{parent}[x]] \ge 2 \operatorname{rank}[x]
\delta(x) \ge 2 \iff \operatorname{rank}[\operatorname{parent}[x]] \ge \operatorname{rank}[x] 2^{\operatorname{rank}[x]}
Note: For all objects x with rank[x] \ge 2, then \delta(x) \le \alpha(n)
[Since A_{\alpha(n)}(2) \geq n]
```

Good and Bad Objects

Definition: An object x is bad if all of the following hold:

- (1) x is not a root
- (2) parent(x) is not a root
- (3) $\operatorname{rank}(x) \geq 2$
- (4) x has an ancestor y with $\delta(y) = \delta(x)$

x is good otherwise.

Quiz

Question: What is the maximum number of good objects on an object-root path?

- A) $\Theta(1)$
- B) $\Theta(\alpha(n))$
- C) $\Theta(\log^* n)$
- $D) \Theta(\log n)$

```
\leq 1 \text{ root} + 1 \text{ child of root}
+ 1 object with rank 0
+ 1 object with rank 1
+ 1 object with \delta(x) = k
for each k = 0, 1, 2, ..., \alpha(n)
```

Proof of Tarjan's Bound

Upshot: Total work of m operations = $O(m\alpha(n))$ (visits to good objects)+ total # of visits to bad objects (will show is $O(n\alpha(n))$)

Main argument: Suppose a FIND operation visits a bad object x:

Path compression: x's new parent will be p' or even higher. $\Rightarrow \operatorname{rank}[x'] \operatorname{sew} \operatorname{parent}] \geq \operatorname{rank}[p'] \geq A_k(\operatorname{rank}[p]) \geq A_k(\operatorname{rank}[p])$ ranks only go up since $\delta(y) = k$ ranks only go up

Proof of Tarjan's Bound II

Point: Path compression (at least) applies the A_k function to rank[x's parent]

Consequence: If $r=\operatorname{rank}[x]\ (\geq 2)$, then after r such pointer updates we have

$$rank[x's parent] \ge (A_k \circ \dots r times \dots \circ A_k)(r) = A_{k+1}(r)$$

Definition of Ackermann function

Thus: While x is bad, every r visits increases $\delta(x)$ $\Rightarrow \leq r\alpha(n)$ visits to x while it's bad

Proof of Tarjan's Bound III

Recall: Total work of m operations is $O(m\alpha(n))$ (visits to good objects) + total # of visits to bad objects.

$$\leq \sum_{\text{objects } x} rank[x]\alpha(n)$$

$$= \alpha(n) \sum_{r \geq 0} r \quad (\text{# of objects with rank } r)$$

$$\leq n/2^r \text{ for each } r \text{ by the Rank Lemma}$$

$$= n\alpha(n) \sum_{r \geq 0} r/2^r \longrightarrow = O(1)$$

$$= O(n\alpha(n)). \qquad \text{QED!}$$

Epilogue

"This is probably the first and maybe the only existing example of a simple algorithm with a very complicated running time. ... I conjecture that there is <u>no</u> linear-time method, and that the algorithm considered here is optimal to within a constant factor."

-Tarjan, "Efficiency of a Good But Non Linear Set Union Algorithm", Journal of the ACM, 1975.

Conjecture proved by [Fredman/Saks 89]!