금융 수치 해석 기법

20184122 MFE 한승표 2018-10-12

1. 종목 선정

종목 선정에 있어서 최근에 만료되었고, 큰 손실을 입은 ELS를 선정하였다. 최근에 만료된 ELS일수록 주가 Path의 전체에 대한 정보가 주어지기 때문이다. 또한 큰 손실은 입은 ELS일 경우 Pricing이 잘못 되었거나, Hedge를 잘못하였을 가능성이 높다고 판단하였다. 과제를 통해 직접 Pricing을 해보며 가격 및 Hedge를 정확하게 해보기 위해서 이와 같은 기준을 선정하였다. 이러한 기준으로 선정한 ELS 상품은 한화 스마트 ELS 제 3735호 파생결합증권이다. 이 상품에 대한 간단한 설명은 다음 표와 같다.

상품은 한화 스마트 ELS 제 3735호 파생결합증권					
기초 자산	KOSPI 200 지수, EuroStoxx50 지수				
발행일	2015년 10월 2일				
만기일	2018년 10월 2일				

구분	내용	투자 수익률
	1차: 두 기초자산의 가격이 모두 각각의 최초	3.5%
	기준가격의 90% 이상일 때	
	2차: 두 기초자산의 가격이 모두 각각의 최초	7%
	기준가격의 90% 이상일 때	
 자동 조기상환	3차: 두 기초자산의 가격이 모두 각각의 최초	10.5%
76 2762	기준가격의 85% 이상일 때	
	4차: 두 기초자산의 가격이 모두 각각의 최초	14%
	기준가격의 85% 이상일 때	
	5차: 두 기초자산의 가격이 모두 각각의 최초	17.5%
	기준가격의 80% 이상일 때	
	두 기초자산의 가격이 모두 각각의 최초 기준가	21%
	격의 80 % 이상일 때	
	위에 해당하지 않고, 투자 기간 동안 두 기초 자	21%
U기상환	산 중 어느 하나라도 최초 기준가격의 60%보다	
	작은 적이 없었던 경우	
	위에 해당하지 않고, 투자 기간 동안 두 기초 자	(기준 종목의 만기
	산 중 어느 하나라도 최초 기준가격의 60%보다	평가가격/최초기준
	작은 적이 있었던 경우	가격) -1)*100%

위의 두 표는 상품의 조기상환과 만기 시점에서 상환되는 조건과 상환 구조를 보여주고 있다.

2. Parameter 설정 및 시나리오 분석

1) ELS 가격 산출

간이 투자 설명서 및 투자 설명서에는 가격 산출에 사용된 두 기초 자산의 변동성 및 상관관계에 대한 명시가 없었다. 하지만 역사적 변동성(Historical volatility)를 사용한다고 되어 있으므로 과거 1년치 자료를 통해 추정하였다. 그 결과, 코스피200의 변동성은 13.3%, EuroStoxx50 의 변동성은 24.9%, 두 기초 자산의 상관관계는 0.165 값을 얻을 수 있었다. 무위험이자율에 대한 값은 91일 CD금리를 사용하였으며 2014년 10월에는 2.2%였으므로 이 값을 사용하도록 한다. 두 기초자산의 최소값 설정은 0으로, 최대값 설정은 현재 지수의 2배로 정하였다. OSM을 적용하기 위해서는 Knock-IN Barrier를 건드릴 확률을 도출해야 한다. 이를 위해서 시뮬레이션 방법을 활용하였으며 도출한 결과는 24%였다. Mesh는 기초 자산에 대해서 100개씩, 시간에 대해서는 300개로 설정하였다. Parameter에 대한 요약은 다음과 같다.

두 기초 자산의 변동성	12.7%, 23.8%
두 기초 자산의 상관관계	0.17
무위험이자율	2.2%
KOSPI200 지수 최소, 최대값	0, 474.3
EuroSoxx50 지수 최소, 최대값	0, 6176.36
Knock-IN barrier 도달 확률	24%
기초 자산의 MESH	각 100개
시간에 대한 MESH	300개

이와 같은 Paramter로 <u>OSM을 통하여 ELS 가격은 9839</u>원이 도출되었다. 동일한 Parameter로 <u>Monte Carlo simulation 방법을 통하여 산출한 ELS 가격은 9852</u>원 이었다. 시뮬레이션의 경우 1000번씩 10번 돌린 결과의 평균치를 사용하였다.

2) 다양한 시나리오 분석

주어진 Parameter 외로 다양한 시나리오를 설정하여 OSM 방법 과 Monte Carlo simulation 방법을 시행하여 ELS 가격이 어떻게 바뀌는지 확인해 보았다. 무위험이자율, 상품 만기, 각지수들의 최소/ 최대값들은 변화시키지 않고 변동성, 상관관계, 각 노드 개수에 대하여 시나리오를 설정하였다.

	시나리오1: KOSPI200 지수의 변동성이 변할 때								
Vol1	Vol2	Rho	Time	Assets1	Asset2	OSM	Simulation		
			steps	steps	steps	price	price		
0%	24.9%	0.167	300	100	100	9914.19	9912.43		
12.5%	24.9%	0.167	300	100	100	9856.35	9811.3		
13%	24.9%	0.167	300	100	100	9839	9852		
25%	24.9%	0.167	300	100	100	+	9321		
37.5%	24.9%	0.167	300	100	100	=	8745.67		
50%	24.9%	0.167	300	100	100		8296.44		

(+는 값이 매우 큰 값을 의미하며, -는 값이 매우 작다는 것을 의미한다. Parameter 값이 크게 바뀜에 따라 정확한 가격이 측정되지 않다고 볼 수 있다.)

첫 번째 시나리오는 KOSPI200의 변동성이 변하는 상황이다. 변동성이 0부터 50% 범위 내에서 변할 때 OSM으로 구한 ELS 가격과 Simulation을 통해 얻은 가격이 어떻게 변하는지확인해 보았다. 그 결과 변동성이 증가할수록 두 방법을 통한 가격 모두 감소하는 것을 알수 있다. 하지만 변동성이 25%를 넘어서면서 OSM에서 가격이 제대로 측정되지 않는 것을알수 있었다.

	시나리오2: EuroStoxx50 지수의 변동성이 변할 때								
Vol1	Vol2	Rho	Time	Assets1	Asset2	OSM	Simulation		
			steps	steps	steps	price	price		
13%	0%	0.167	300	100	100	10405.33	10209.32		
13%	12.5%	0.167	300	100	100	10349.92	10154.34		
13%	24.9%	0.167	300	100	100	9839	9852		
13%	25%	0.167	300	100	100	9838.58	9703.87		
13%	37.5%	0.167	300	100	100	9156.95	9177.56		
13%	50%	0.167	300	100	100	+	8661.1		

(+는 값이 매우 큰 값을 의미하며,-는 값이 매우 작다는 것을 의미한다. Parameter 값이 크게 바뀜에 따라 정확한 가격이 측정되지 않다고 볼 수 있다.)

두 번째 시나리오에서는 EuroStoxx50 지수의 변동성이 변하는 상황이다. 시나리오1과 마찬가지로 0부터 50% 범위 내에서 시행하였다. EuroStoxx50 지수의 변동성이 낮을 때의 가격은 원래의 가격보다 높게 측정 된다는 것을 확인하였다. 또한 두 시나리오 분석을 통해서변동성이 증가할수록 ELS의 가격은 감소한다는 것을 발견할 수 있었다.

시나리오3: 상관관계가 변할 때								
Vol1	Vol2	Rho	Time	Assets1	Asset2	OSM	Simulation	
			steps	steps	steps	price	price	
13%	24.9%	-1	300	100	100	+	9916.26	
13%	24.9%	-0.5	300	100	100	+	9831.03	
13%	24.9%	0	300	100	100	9823.25	9800.43	
13%	24.9%	0.167	300	100	100	9839	9852	
13%	24.9%	0.5	300	100	100	+	9893.92	
13%	24.9%	1	300	100	100	+	9785.36	

(+는 값이 매우 큰 값을 의미하며, -는 값이 매우 작다는 것을 의미한다. Parameter 값이 크게 바뀜에 따라 정확한 가격이 측정되지 않다고 볼 수 있다.)

세 번째 시나리오에서는 두 기초자산의 상관관계가 바뀔 때 가격이 어떻게 바뀌는지 관측하였다. 이는 평상시에는 상관관계가 일정하게 유지되지만, 경제 상황이 급변할 때 상관관계 또한 같이 급변하기 때문이다. 따라서 상관관계의 값을 -1부터 1까지 값을 바꿔가며 가격을 관측하였다. 상관관계가 적절한 수준에 있을 경우 가격은 크게 변하지 않지만, <u>상관계</u>수가 극단 치에 가까울수록 가격이 변하는 것을 관찰 할 수 있다.

시나리오4: Assets Node가 변할 때								
Vol1	Vol2	Rho	Time	Assets1	Asset2	OSM	Simulation price	
			steps	steps	steps	price		
13%	24.9%	0.167	300	50	50	9860.87	9852	
13%	24.9%	0.167	300	100	100	9839	9852	
13%	24.9%	0.167	300	200	200	9740	9852	

ELS 가격을 산출하는데 있어서 기초자산의 노드를 100개로 선정하였다. 하지만 노드 수가 많아질수록 보다 정확한 값을 도출할 수 있으므로 노드의 수를 다양하게 설정하여 가격을 산출해 보았다. Simulation방법의 경우 기초자산의 노드와는 상관이 없으므로 동일한 값이 도출된다.

시나리오5: Time step이 변할 때								
Vol1	Vol2	Rho	Time	Assets1	Asset2	OSM	Simulation price	
			steps	steps	steps	price		
13%	24.9%	0.167	100	100	100	10145.79	10070.95	
13%	24.9%	0.167	300	100	100	9839	9852	
13%	24.9%	0.167	500	100	100	9650.4	9524.28	

Time step의 경우 크기가 증가할수록 값이 더 작아지는 것을 알 수 있다. 이는 상품마다 다르겠지만, 본 상품에서는 보다 정확한 가격을 산출해보면 현 가격보다 낮게 나올 것이라 판단된다.

3. Greek 값 도출

1) Delta

기초자산 별로 델타 값을 구하기 위해 EuroStoxx50 지수 고정 후 KOSPI200 지수가 변할때 ELS 가격은 어떻게 변하는지 확인해 보았다. 동일한 방법으로 KOSPI200 지수를 고정시킨 후 EuroStoxx50 지수와 ELS 가격 간의 관계를 살펴 보았다. 그래프에서 볼 수 있듯이 barrier 근처에서 delta가 가장 높은 것을 볼 수 있다. KOSPI200을 기준으로 한 Delta 값이 높고 EuroStoxx50의 Delta 값이 작은 것을 발견하였다. 현재 가격에서 Delta 값을 산출해 보면,

KOSPI200의 지수 기준 delta =
$$\frac{u_{i+\Delta,j}-u_{i,j}}{\Delta x} = \frac{9886.97-9839.17}{4.743} = 10.1$$

EuroStoxx50의 지수 기준 delta =
$$\frac{u_{i,j+\Delta}-u_{i,j}}{\Delta x}=\frac{9850.3-9839.17}{61.7}=0.18$$

즉 코스피가 4.743 증가하면 ELS는 47.8원 움직인다. 이는 코스피가 2%움직일 때 ELS 가격은 1%정도 움직인다는 의미이다. 마찬가지로 EuroStoxx50이 61.7 증가하면 ELS가격은 11.13원 움직인다. 즉, EuroStoxx50이 2% 움직일 때 ELS는 0.01%움직인다는 의미이다. 이는 ELS의 가격이 KOSPI200지수의 가격 변화에 큰 영향을 받는 다는 것을 알 수 있다. KOSPI200지수 기준 Delta의 Scale이 큰 이유는 코스피의 KOSPI200의 단위와 ELS가격의 단위가 다르기 때문이다. 단위 차이를 고려하여 그린 그래프는 다음과 같다.

2) Gamma

기초자산의 reference price 기준으로 Gamma 산출 결과는 다음과 같다.

KOSPI200의 지수 기준 Gamma=
$$\frac{delta_{i+\Delta,j}-delta_{i,j}}{\Delta x} = \frac{10.079-11.1415}{4.743} = -0.22$$

EuroStoxx50의 지수 기준 Gamma =
$$\frac{delta_{i,j+\Delta}-delta_{i,j}}{\Delta x}$$
 = $\frac{11.1224-11.1775}{61.7}$ = $-8.9e^{-4}$

Cross Gamma = =
$$\frac{(u_{i,j+\Delta x} - u_{i,j}) + (u_{i,j+\Delta y} - u_{i,j})}{\Delta x * \Delta y} = \frac{\frac{\Delta x}{(9886.97 - 9839.17) + (9850.3 - 9839.17)}}{4.743 * 61.7} = 0.2$$

3) Vega

KOSPI200의 지수 기준 Vega=
$$\frac{u_{i,j,\Delta\sigma_1}-u_{i,j,\sigma_1}}{\Delta\sigma}=\frac{9816.62-9839}{1\%}=-23$$

EuroStoxx50의 지수 기준 Vega =
$$\frac{u_{i,j,\Delta\sigma^2}-u_{i,j,\sigma^2}}{\Delta\sigma} = \frac{9785.36-9839}{1\%} = -53.64$$

Vega의 경우 코드 상으로 그래프를 그리기가 어려워 보이지 못하였다. <u>두 기초자산의 Vega값이 음수인 것을 통해 위의 시나리오에서 보였던 결과와 동일한 결과를 보이고 있다는 것을 알 수 있다</u>. 즉 KOSPI200의 변동성이 1%증가하면, ELS가격은 -23원만큼 감소하며, EuroStoxx50의 변동성이 1% 증가하면 ELS가격은 -53.64원만큼 감소한다.

(Python 속도 문제로 코드가 돌아가지 않습니다)

4) Rho의 Sensitivity

Rho의 Sensitivity =
$$\frac{u_{i,j,\Delta rho} - u_{i,j,rho}}{\Delta rho} = \frac{9840 - 9839}{0.01} = 100$$

Rho가 0.01움직일 때 ELS의 가격은 1원이 움직인다. 하지만 두 기초자산의 상관관계가 양 극단 값과 가까워질수록 ELS의 가격은 더 크게 움직인다. 따라서 위에서 시행한 시나리오 분석을 참고해야 한다.

4. Graph ELS price and Underlying Assets

기초자산인 KOSPI200, EuroStoxx50과 ELS가격을 그래프로 그린 결과와 Delta 그래프는 다음과 같다. KOSPI200 축을 기준으로 그래프가 좀더 가파른 것을 알 수 있다. 이는 한화 ELS 상품이 KOSPI200에 대하여 많이 민감하기 때문이라고 생각한다. 이는 델타의 값으로 보다 명확해진다. 아래의 그래프에서 보듯이 KOSPI200에 대한 Delta값이 EuroStoxx50에 대한 delta값보다 훨씬 크므로, 보다 민감하다고 볼 수 있다.

