LAPORAN

PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DALAM KLASIFIKASI PENYAKIT DIABETES

Sebagai TUGAS UJIAN AKHIR SEMESTER KECERDASAN BUATAN

DISUSUN OLEH: KELOMPOK IV

INTAN SUHARTINA	(20.01.013.038)
NATASYA AWRA FADILAH	(20.01.013.065)
NURUL HIDAYAT	(20.01.013.057)
YUNI SUKANA	(20.01.013.031)
WIDIYA LIS SUSANA	(211001002)

FAKULTAS REKAYASA SISTEM
UNIVERSITAS TEKNOLOGI SUMBAWA

KATA PENGANTAR

Puji syukur kehadirat Tuhan YME. yang menjadi pelindung dalam segala aktifitas penulis dan menguatkan daya semangat penulis sehingga dapat menyelesaikan laporan ini sebagai salah satu persyaratan dalam menyelesaikan Tugas Mata Kuliah Kecerdasan Buatan (Artificial Inteligent) pada Program Studi Teknik Informatika, Universitas Teknologi Sumbawa.

Meskipun dalam penyusunan laporan ini, banyak menghadapi berbagai macam hambatan, rintangan dan tantangan yang harus dilalui, tetapi berkat pertolongan Tuhan YME. dan berbagai pihak sehingga laporan ini dapat terselesaikan.

Dengan segala keterbatasan waktu dan kemampuan yang ada, penulis menyadari bahwa penulisan ini masih sangat jauh dari kesempurnaan. Oleh karena itu, kritikan dan saran sangat Penulis harapkan. Semoga hal ini dapat bermanfaat bagi seluruh rekan-rekan pembaca. Amin.

Sumbawa, Desember 2021

Penyusun

ABSTRAK

Diabetes merupakan permasalahan yang serius yang dapat menyebabkan penyakit komplikasi hingga berakhir pada kematian. Word Health Organization (WHO) diabetes membunuh 1,5 juta jiwa di tahun 2012. Dari permasalahan tersebut banyak penelitian di bidang data mining yang menerapkan metode klasifikasi menggunakan untuk melakukan diagnosis atau identifikasi terhadap penyakit diabetes. Penelitian ini bertujuan untuk mengetahui penerapan dan tingkat akurasi yang diperoleh algoritma KNN dalam klasifikasi penyakit diabetes serta mengetahui tingkat akurasi algoritma KNN setelah diterapkan BPSO sebagai seleksi fitur.

Penelitian ini dilakukan dengan tahapan-tahapan yaitu pengumpulan *dataset* pima indian diabetes sebagai dataset pengujian, pre-processing data menggunakan min-max normalization, pembagian dataset menggunakan metode 10-fold cross validation, klasifikasi menggunakan algoritma KNN hingga prosess pengujian untuk mengetahui tingkat akurasi yang diperoleh.

Hasil penelitian menunjukkan bahwa klasifikasi menggunakan algoritma KNN memperoleh akurasi terbaik yaitu sebesar 77,214% dengan diperoleh fitur yang berpengaruh pada *dataset pima* yaitu *Glucose*, *Blood Pressure*, *Skin Thickness*, *Insulin*, *BMI*, *Diabetes Pedigree Function*, dan. Dengan demikian algoritma KNN dapat digunakan untuk melakukan identifikasi penyakit diabetes karena memiliki tingkat akurasi yang jauh lebih baik.

Kata kunci: Klasifikasi Penyakit Diabetes, *K-Nearest Neighbor*

DAFTAR ISI

KATA 1	PENGANTARi
BAB I	PENDAHULUAN 1
1.1	Latar Belakang1
1.2	Rumusan Masalah
1.3	Batasan Masalah
1.4	Tujuan dan Manfaat Penulisan
1.4	.1 Tujuan Penulisan
1.4	.2 Manfaat Penulisan
1.5	Metodologi Penelitian
1.5	.1 Metode Pengumpulan Data
1.5	.2 Metode Pengolahan Data
1.5	.3 Metode yang digunakan 5
BAB II	LANDASAN TEORI 7
2.1	Penelitian Terkait
2.2	Penyakit Diabetes
2.3	Data mining
2.3	.1 Tahapan KDD
2.3	.2 Teknik <i>Data mining</i>
2.4	K-Nearest Neighbor (KNN)
2.5	Pre-Processing Data
2.5	.1 Normalisasi Data
2.6	Uji Akurasi
2.7	Python
2.7	.1 Jupyter Notebook

2.8	RapidMiner	21
BAB	III METODOLOGI PENELITIAN	22
3.1	Tahapan Penelitian	22
3.2	Pengumpulan Data	22
3.3	Tahapan Pre-Processing Data	23
3	3.3.1 Tahapan Normalisasi	23
3.4	Pengujian Nilai K Optimal	24
3.5	Klasifikasi KNN	24
3	3.5.1 Contoh Proses Klasifikasi KNN Manual	25
3.6	Pengujian Kinerja	29
3	3.6.1 Tujuan Pengujian	29
3	3.6.2 Metode Pengujian	30
BAB	IV HASIL DAN PEMBAHASAN	51
4.1	Pengumpulan dataset	51
4.2	Normaslization	52
BAB	V PENUTUP	75
5.1	Kesimpulan	75
5.2	Saran	76

DAFTAR GAMBAR

Gambar 2.1. Tahap – Tahap KDD (Mediana Aryuni, 2016)	. 12
Gambar 2.2 Ilustrasi algoritma KNN	. 17
Gambar 3.1 Proses Klasifikasi KNN	. 23
Gambar 4.1 Tahapan Pertama Proses Import Data	. 52
Gambar 4.2 Tahapan Kedua Proses Import Data	. 53
Gambar 4.3 Tahapan Ketiga Proses Import Data	. 53
Gambar 4.4 Tahapan Keempat Proses Import Data	. 53
Gambar 4.5 Tahapan Terakhir Proses Import Data	. 54
Gambar 4.6 Hasil Import Data	. 54
Gambar 4.7 Proses Normalisasi dengan Fiture Normalize pada RapidMiner	. 55
Gambar 4.9 Grafik Pengujian	. 56

DAFTAR TABEL

Tabel 2.1. Penelitian terkait	
Tabel 2.2 Confussion matrix	19
Tabel 3.1 Sampel Data Training	24
Tabel 3.2 Sampel Data Testing	25
Tabel 3.3 Hasil Perangkingan Nilai Euclidean	27
Tabel 3.4 Nilai Euclidean Terbaik	28
Tabel 3.5 Hasil Klasifikasi Data Testing	28
Tabel 3.6 Confussion Matrix	29
Tabel 4.1 Dataset pima indian diabetes	51

DAFTAR LAMPIRAN

LAMPIRAN SAMPLE DATASET A	.1
---------------------------	----

BAB I

PENDAHULUAN

1.1 Latar Belakang

Diabetes merupakan masalah yang menyebabkan kadar gula darah dalam tubuh manusia meningkat pada tingkat yang lebih tinggi secara berkelanjutan (Choubey et al., 2020). Selain itu diabetes juga menjadi penyebab terjadinya penyakit komplikasi, seperti penyakit stroke, ginjal, jantung koroner, gangguan pada mata dan saraf, bahkan hingga mengakibatkan amputasi dan kematian (Maulida, 2020).

Menurut organisasi kesehatan dunia atau yang dikenal sebagai *Word Health Organization* (WHO) diabetes membunuh 1,5 juta jiwa di tahun 2012. WHO juga memprediksi bahwa di tahun 2030 penyakit diabetes akan menjadi salah satu dari 7 faktor penyebab utama terjadinya kematian didunia (KEMENKES RI, 2019). Maka untuk mengurangi angka kematian tersebut, yaitu dengan melakukan deteksi secara dini terhadap penderita diabetes untuk mengantisipasi terjadinya komplikasi yang disebabkan diabetes yang berujung pada kematian.

Menurut (Hairani et al., 2018) *Data mining* atau penambangan data menjadi salah satu metode yang bisa digunakan untuk melakukan prediksi atau identifikasi masalah. Dalam *data mining* terdapat beberapa metode yang dapat dimanfaatkan untuk melakukan prediksi atau identifikasi terhadap pasien penderita penyakit diabetes, salah satunya adalah metode klasifikasi.

Dalam laporan ini metode klasifikasi yang akan digunakan merupakan algoritma *lazy learning* yaitu algoritma *K-Nearest Neighbor* (KNN). Algoritma KNN merupakan salah satu algoritma untuk melakukan klasifikasi dari suatu kumpulan data. Dimana algoritma KNN melakukan klasifikasi objek berdasarkan nilai k atau tetangga terdekat (Saxena et al., 2014). Dalam laporan ini algoritma KNN akan digunakan untuk melakukan klasifikasi pada *dataset pima indian diabetes* yang diperoleh, karena algoritma KNN memiliki

beberapa kelebihan yaitu memiliki ketangguhan terhadap *training* data yang memiliki banyak noise dan efisien bila data yang digunakan besar (Yunus, 2018). Selain memiliki kelebihan seperti yang sudah dijelaskand algoritma KNN juga memiliki kelemahan yaitu kurang optimal dalam menentukan nilai k yang merupakan jumlah tetangga terdekat dan harus menentukan atribut yang akan dipilih atau seleksi fitur guna mendapat hasil terbaik (Mahardika et al., 2018). Dari adanya permasalah tersebut maka dalam laporan ini permasalahan yang akan diatasi oleh penulis adalah seleksi fitur, guna meningkatkan kinerja algoritma KNN dalam melakukan klasifikasi penyakit diabetes.

Beberapa penelitian dibidang *data mining* juga telah dilakukan untuk mengatasi permasalahan penyakit diabetes. penelitian yang dilakukan (Maulida, 2020), dalam penelitianya maulida mengukur kinerja algoritma *k-Nearest Neighbor* (KNN) dalam menangani *dataset* penderita diabetes. Penelitian (Wijanarto & Puspitasari, 2019) yang membahas tentang optimasi pada algoritma pengklasifikasian biner dengan menggunakan tuning parameter pada dataset penyakit diabetes mellitus. Penelitian (Yunita, 2016) yang melakukan klasifikasi penyakit diabetes menggunakan *k-Nearest Neighbor* (KNN). Penelitian (Mirqotussa'adah et al., 2017) yang menerapkan *discretization* dan teknik *bagging* untuk meningkatkan algoritma C4.5 dalam diagnosis penyakit diabetes. Dari beberapa penelitian yang sudah dilakukan khususnya yang menerapkan algoritma KNN, masih memiliki kekurangan yaitu tidak menerapkan metode seleksi fitur untuk memilih atribut yang relevan yang dapat mengurangi waktu komputasi pada metode klasifikasi.

Sedangkan penelitian yang menerapkan seleksi fitur dilakukan oleh (Yunus, 2018) dalam penelitianya yunus menggunakan algoritma KNN untuk prediksi penyakit ginjal kronik.

Dari uraian di atas, maka dalam laporan ini penulis bertujuan untuk meningkatkan kinerja algoritma KNN dalam klasifikasi penyakit diabetes.

Dalam laporan ini data yang penulis gunakan untuk melakukan pengujian dalam laporan ini merupakan data pasien diabetes yang diperoleh dari situs kaggle.com pada *UCI Machine Learning PIMA Indians* Diabetes.

1.2 Rumusan Masalah

Adapun rumusan masalah dalam laporan ini berdasarkan pemaparan pada latar belakang diatas adalah sebagai berikut:

- a. Bagaiman tingkat akurasi yang diperoleh algoritma KNN dalam klasifikasi penyakit diabetes?
- b. Fitur apa saja yang diperoleh pada *dataset pima indian diabetes* yang akan berpengaruh terhadap hasil klasifikasi algoritma KNN?
- c. Bagaimana tingkat akurasi yang diperoleh algoritma KNN dalam klasifikasi penyakit diabetes?

1.3 Batasan Masalah

- a. Dataset yang digunakan dalam laporan ini adalah dataset public yaitu Pima Indian Diabetes yang penulis peroleh dari situs kaggle.com UCI Machine Learning PIMA Indians Diabetes dengan 8 variabel independen dan 1 variabel dependen.
- b. Dalam laporan ini algoritma KNN digunakan untuk melakukan klasifikasi berdasarkan dataset yang didapat.
- c. Proses validasi akan dilakukan dengan menggunakan metode 10-fold cross validation.

1.4 Tujuan dan Manfaat Penulisan

1.4.1 Tujuan Penulisan

- a. Untuk mengetahui tingkat akurasi yang diperoleh algoritma KNN dalam klasifikasi penyakit dibetes.
- b. Untuk mengetahui fitur-fitur yang mempengaruhi hasil klasifikasi algoritma KNN.
- c. Untuk mengetahui tingkat akurasi algoritma KNN.

1.4.2 Manfaat Penulisan

- a. Dapat menambah pemahaman penulis terkait implementasi data mining khususnya penerapan metode klasifikasi menggunakan algoritma KNN serta dapat memahami proses pre-processing data.
- d. Bagi pengembangan ilmu, hasil dari laporan ini bisa menjadi bahan rujukan untuk pengembangan berikutnya tentang penerapan *data mining* khususnya metode klasifikasi.

1.5 Metodologi Penelitian

1.5.1 Metode Pengumpulan Data

Dalam laporan ini penulis menggunakan data public atau data sekunder yaitu data dari *PIMA Indian Diabtes* yang diperoleh dari *UCI Repository*.

1.5.2 Metode Pengolahan Data

Metode pengolahan data atau Pre-Processing data perlu dilakukan untuk menghilangkan atribut yang kurang lengkap, data noise, serta menangani data yang tidak konsisten.

1.5.3 Metode yang digunakan

Metode yang digunakan adalah algoritma K-Nearest Neighbor (KNN) dalam klasifikasi penyakit diabetes.

BAB II

LANDASAN TEORI

Landasan teori merupakan serangkain teori yang relevan yang dijadikan sebagai landasan dalam penelitian. Sehingga dalam bab ini akan dibahas hal-hal atau teori-teori yang berkaitan dengan permasalahan atau ruang lingkup pada laporan ini.

2.1 Penelitian Terkait

Berikut adalah beberapa penelitian terdahulu yang membahas tentang diabetes maupun algoritma KNN.

Tabel 2.1. Penelitian terkait

No	Nama Peneliti	Topik	Metode yang digunakan
1	Andi Maulida	Penerapan Metode	K-Nearest Neighbor
	Argina	Klasifikasi K-Nearest	(KNN)
		Neigbor pada Dataset	
		Penderita Penyakit	
		Diabetes	
2	Wijanarto &	Optimasi Algoritma	Logistic Regression,
	Puspitasari, 2019	Klasifikasi Biner dengan	Linear Discriminant
		Tuning Parameter pada	Analysis, K-Nearest
		Penyakit Diabetes	Neighbor, Decision
		Mellitus	Tree, Naïve Bayes, dan
			Support Vector
			Machine.

3	Yunita, 2016	Sistem Klasifikasi	K-Nearest Neighbor
		Penyakit Diabetes	
		Mellitus Menggunakan	
		Metode K-Nearest	
		Neighbor	
4	Haerani et al.,	Komparasi Akurasi	Correlated Naive
	2018	Metode Correlated Naive	Bayes Classifier Dan
		Bayes Classifier Dan	Naive Bayes Classifier
		Naive Bayes Classifier	
		Untuk Diagnosis	
		Penyakit Diabetes	
5	Mirqotussa'adah	Penerapan Dizcretization	C.45
	et al., 2017	dan Teknik Bagging	
		Untuk Meningkatkan	
		Akurasi Klasifikasi	
		Berbasis Ensemble pada	
		Algoritma C4.5 dalam	
		Mendiagnosa Diabetes	
6	Liklikwatil et al.,	Optimasi K-Nearest	K-Nearest Neighbor
	2018	Neighbor Dengan	dan Particle Swarm
		Particle Swarm	Optimization
		Optimization Untuk	
		Memprediksi Harga	
		Komoditi Karet	

7	Hasanuddin, 2016	Perbandingan Algoritma	K-Nearest Neighbor
		Knn Dan Knn-Pso Untuk	dan Particle Swarm
		Klasifikasi Tingkat	Optimization
		Pengetahuan Ibu Dalam	
		Pemberian Asi Eksklusif	

Penelitian yang dilakukan oleh (Maulida, 2020) yang berjudul Penerapan Metode Klasifikasi K-Nearest Neighbor Pada Dataset Penderita Penyakit Diabetes. Penelitian ini membahas tentang pengukuran performa metode klasifikasi KNN dalam mengelola *dataset* penderita diabetes. Hasil perhitungan nilai *accuracy* yang diperoleh dalam penelitian ini yaitu 39% pada k=3.

Penelitian yang dilakukan (Wijanarto & Puspitasari, 2019) yang berjudul Optimasi Algoritma Klasifikasi Biner dengan Tuning Parameter pada Penyakit Diabetes Mellitus. Penelitian ini membahas tentang optimasi algoritma klasifikasi biner pada penyakit diabetes melitus mulai dari observasi, visualisasi, *statistic* deskriptif *dataset*, *pre-processing dataset*, penentuan baseline model, tuning parameter model dan finalisasi model. Dimana algoritma yang digunakan adalah 3 algoritma linier yaitu *Logistic Regression*, *Linear Discriminant Analysis*, *K-Nearest Neighbor* dan 3 algoritma non-linier yaitu *Decision Tree*, *Naïve Bayes*, *Support Vector Machine*.

Penelitian yang dilakukan oleh (Yunita, 2016) yang berjudul Sistem Klasifikasi Penyakit Diabetes Mellitus Menggunakan Metode K-Nearest Neighbor. Penelitian ini membahas tentang implementasi algoritma KNN utuk klasifikasi data penyakti diabetes mellitus. Hasil perhitungan nilai *accuracy* yang diperoleh dalam penelitian ini yaitu 96%.

Penelitian yang dilakukan oleh (Haerani et al., 2018) yang berjudul Komparasi Akurasi Metode Correlated Naïve Bayes Classifier Dan Naïve Bayes Classifier Untuk Diagnosis Penyakit Diabetes. Penelitian ini membahas tentang komparasi metode Correlated-Naïve Bayes Classifier dan Naïve Bayes Classifier untuk mendapatkan akurasi terbaik dalam 10uclidea penyakit diabetes. Dalam penelitian ini diperoleh hasil akurasi metode NBC sebesar 64,33% dan metode CNBC sebesar 67,15%.

Penelitian yang dilakukan oleh (Mirqotussa'adah et al., 2017) yang berjudul Penerapan Dizcretization dan Teknik Bagging Untuk Meningkatkan Akurasi Klasifikasi Berbasis Ensemble pada Algoritma C4.5 dalam Mendiagnosa Diabetes. Penelitian ini membahas tentang penerapan metode 10uclidean1010ion untuk menangani data *10uclidean10* dan 10uclid bagging pada algoritma C.45. Hasil nilai *accuracy* yang diperoleh dalam penelitian ini adalah 74,87%.

Penelitian yang dilakukan oleh (Liklikwatil et al., 2018) yang berjudul Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Memprediksi Harga Komoditi Karet. Penelitian ini membahas tentang penerapan algoritma PSO pada algoritma KNN untuk prediksi time series harga komoditi karet spesifikasi teknis. Hasil yang diperoleh dalam penelitian ini, dengan menerapkan algoritma KNN, memperoleh nilai RMSE sebesar 0,082.

Penelitian yang dilakukan oleh (Hasanuddin, 2016) yang berjudul Perbandingan Algoritma Knn Dan Knn-Pso Untuk Klasifikasi Tingkat Pengetahuan Ibu Dalam Pemberian Asi Eksklusif. Penelitian ini membahas tentang prediksi tingkat pengetahuan ibu terhadap pemberian asi eksklusif dengan menggunakan algoritma KNN berbasis PSO. Hasil *accuracy* K-NN berbasis PSO yang diperoleh dalam penelitian ini adalah adalah 74,36%.

Dari beberapa penelitian diatas terkait penyakit diabetes, belum ada penelitian yang menerapkan algoritma PSO untuk optimasi metode

klasifikasi yaitu algoritma KNN dalam menangani penyakit diabetes. Sehingga dalam laporan ini penulis akan menerapkan algoritma PSO untuk meningkatkan kinerja algoritma KNN dalam melakukan klasifikasi pada dataset *Pima Indians Diabetes*.

2.2 Penyakit Diabetes

Diabetes atau dikenal dengan penyakit kencing manis merupakan penyakit kronis serius yang disebabkan oleh meningkatnya kadar glukosa atau kadar gula diatas normal. Penyakit diabetes juga menjadi salah satu penyakit yang banyak diderita oleh manusia (Wijanarto & Puspitasari, 2019).

Dibetes melitus merupakan sesuatu yang tidak dapat dituangkan dalam satu jawaban yang jelas dan singkat, tapi secara umum dapat diakatakan sebagai suatu kumpulan problema 11uclidea dan kimiawi yang merupakan akibat dari sejumlah 11uclid (Dr. dr. Eva Decroli, 2019).

2.3 Data mining

Data mining merupakan proses untuk menemukan korelasi baru yang bermakna, pola dan tren dengan memilah-milah sejumlah besar data yang tersimpan dalam repositori, menggunakan teknologi penalaran pola serta 11uclid-teknik 11uclidean dan matematika. Menurut (Hairani et al., 2018) data mining, juga merupakan suatu proses untuk menggali pengetahuan yang dibutuhkan dari sejumlah data besar (Yunus, 2018).

Data mining, sering juga disebut sebagai knowledge discovery in database (KDD). KDD adalah kegiatan yang meliputi pengumpulan, pemakaian data, historis untuk menemukan keteraturan, pola atau hubungan dalam set data berukuran besar (Santoso, 2007).

Dari dua pendapat diatas penulis dapat menyimpulkan bahwa *data mining* merupakan serangkaian proses yang menggunakan 11uclid matematis untuk menggali suatu informasi atau pengetahuan yang berguna untuk permasalahan di berbagai bidang dari suatu kumpulan data yang besar (*Big data*).

2.3.1 Tahapan KDD

Data mining dibagai menjadi beberapa tahapan yang di ilustrasikan pada Gambar 2.1.

Gambar 2.1. Tahap – Tahap KDD (Mediana Aryuni, 2016)

Tahap-tahap tersebut bersifat interaktif, pemakai terlibat langsung atau dengan perantaraan knowledge base Tahap-tahap *data mining* ada 6 yaitu (Mediana Aryuni, 2016):

1. Pembersihan data (data cleaning)

Pada umumnya data yang diperoleh, baik dari database suatu perusahaan maupun hasil eksperimen, memiliki isian-isian yang tidak sempurna seperti data yang hilang, data yang tidak valid atau juga hanya sekedar salah ketik. Selain itu, ada juga atribut-atribut data yang tidak relevan dengan hipotesa *data mining* yang kita miliki. Data-data yang tidak relevan itu juga lebih baik dibuang karena keberadaannya bisa mengurangi mutu atau akurasi dari hasil *data mining* nantinya.

2. Integrasi data (*data integration*)

Integrasi data dilakukan pada atribut-aribut yang mengidentifikasikan entitas-entitas yang unik seperti atribut nama, jenis produk, nomor pelanggan. Integrasi data perlu dilakukan secara cermat karena kesalahan pada integrasi data bisa menghasilkan hasil yang menyimpang dan bahkan menyesatkan pengambilan aksi nantinya

3. Transformasi data

Beberapa teknik *data mining* membutuhkan format data yang khusus sebelum bisa diaplikasikan. Sebagai contoh beberapa teknik standar seperti analisis asosiasi dan klastering hanya bisa menerima input data kategorikal. Karenanya data berupa angka numerik yang berlanjut perlu dibagi-bagi menjadi beberapa interval. Proses ini sering disebut *binning*. Disini juga dilakukan pemilihan data yang diperlukan oleh teknik *data mining* yang dipakai. Transformasi dan pemilihan data ini juga menentukan kualitas dari hasil *data mining* nantinya karena ada beberapa karakteristik dari teknik-teknik *data mining* tertentu yang tergantung pada tahapan.

4. Teknik data mining

Teknik *data mining* sendiri hanya merupakan salah satu bagian dari proses KDD. Ada beberapa teknik *data mining* yang sudah umum dipakai. Kita akan membahas lebih jauh mengenai teknik-teknik yang ada di seksi berikutnya. Perlu diperhatikan bahwa ada kalanya teknik-teknik *data mining* umum yang tersedia di pasar tidak mencukupi untuk melaksanakan *data mining* di bidang tertentu atau untuk data tertentu. Sebagai contoh akhir-akhir ini dikembangkan berbagai teknik *data mining* baru untuk penerapan di bidang bioinformatika seperti analisa hasil microarray untuk mengidentifikasi DNA dan fungsi-fungsinya.

5. Evaluasi pola yang ditemukan

Dalam tahap ini hasil dari teknik *data mining* berupa pola-pola yang khas maupun model prediksi dievaluasi untuk menilai apakah hipotesa yang ada memang tercapai. Bila ternyata hasil yang diperoleh tidak sesuai hipotesa ada beberapa alternatif yang dapat diambil seperti: menjadikannya umpan balik untuk memperbaiki proses *data mining*, mencoba teknik *data mining* lain yang lebih sesuai, atau menerima hasil ini sebagai suatu hasil yang di luar dugaan yang mungkin bermanfaat.

6. Interpretasi hasil

Tahap terakhir dari proses *data mining* adalah bagaimana memformulasikan keputusan atau aksi dari hasil analisa yang didapat. Ada kalanya hal ini harus melibatkan orang-orang yang tidak memahami *data mining*. Karenanya presentasi hasil *data mining* dalam bentuk pengetahuan yang bisa dipahami semua orang adalah satu tahapan yang diperlukan dalam proses *data mining*. Dalam presentasi ini, visualisasi juga bisa membantu mengkomunikasikan hasil *data mining*.

2.3.2 Teknik Data mining

Menurut Pramudiono, 2003 ada tiga Teknik dalam *data mining* yang 14uclide yaitu:

1. Association Rule Mining

Association Rule Mining merupakan suatu teknik yang digunakan untuk menemukan aturan assosiasi antara suatu kombinasi item.

2. Clustering

Clustering merupakan pengelompokan data tenpa berdasarkan kelas data tertentu. Prinsip dari clustering adalah memaksimalkan kesamaan antar anggota dalam satu kelas dan meminimumkan kesamaan antar kelas.

3. Klasifikasi (*Classification*)

Klasifikasi merupakan suatu proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Dalam melakukan klasifikasi dataset yang digunakan harus memiliki label atau atribut tujuan. Meramal objek kelas

pada setiap persoalan dalam data merupakan tujuan dari klasifikasi (Putra and Chan, 2018).

Klasifikasi data terdiri dari 2 langkah proses. Pertama adalah learning (fase training), dimana algoritma klasifikasi dibuat untuk menganalisa data training lalu direpresentasikan dalam bentuk rule klasifikasi. Proses kedua adalah klasifikasi, dimana data tes digunakan untuk memperkirakan akurasi dari rule klasifikasi (dalam Rohman, 2012).

Algoritma klasifikasi menggunakan *data training* untuk membuat sebuah model. Model yang sudah dibangun tersebut kemudian digunakan untuk memprediksi label kelas data baru yang belum diketahui (Yunita, 2016). Selain itu dalam klasifikasi terdapat metodemetode atau model-model yang telah dikembangkan oleh peneliti untuk menyelesaikan kasus klasifikasi antara lain (Mardi & Yulia, 2014):

- a. Pohon keputusan
- b. Pengklasifikasi bayes / naive bayes
- c. Jaringan saraf tiruan
- d. Analisis statistik
- e. Algoritma genetika
- f. Rough sets
- g. Pengkalasifikasi K-Nearest Neighbor (KNN)
- h. Metode bebasis aturan
- i. Memory based reasoning

Setiap algoritma dalam klasifikasi *data mining* tersebut memiliki kelebihan dan kekurangan. Tetapi prinsip dari masing-masing algoritma tersebut sama, yaitu melakukan suatu pelatihan sehingga di akhir pelatihan model dapat memprediksi setiap 15uclid masukan ke label kelas *output* dengan tepat (Yunita, 2016).

Dari penjelasan 16uclid-teknik *data mining* diatas, yang digunakan sebagai pengujian dalam laporan ini adalah 16uclid klasifikasidengan metode atau algoritma *K-Nearest Neighbor* (KNN).

2.4 K-Nearest Neighbor (KNN)

K-Nearest Neighbor (KNN) termasuk dalam kelompok instance-based learning dan merupakan salah satu lazy learning (Yunus, 2018). KNN juga merupakan salah satu metode klasifikasi dengan mengklasifikasikan objek yang jaraknya paling dekat. Prinsip kerja algoritma KNN adalah mencari jarak terdekat antara data yang akan di evaluasi dengan k tetangga (neighbor) dalam data pelatihan (Whidhiasih et al., 2013). K-Nearest Neighbor dapat memberikan keputusan untuk mengklasifikasikan data dari data latih dan mendapatkan hasil yang baik jika menggunakan data dalam jumlah yang besar (Saxena et al., 2014).

K-Nearest Neighbor memiliki kelebihan yaitu dapat menghasilkan data yang kuat atau jelas dan efektif jika digunakan pada data yang besar. Selain itu KNN juga memiliki kekurangan yaitu membutuhkan nilai k, jarak dari data percobaan tidak jelas dengan tipe jarak yang digunakan, untuk memperoleh hasil yang terbaik, maka harus menggunakan semua atribut atau hanya satu atribut yang telah pasti. Pemilihan nilai K (jumlah data/tetangga terdekat) ditentukan oleh peneliti. Pemilihan nilai K ini bisa mempengaruhi tingkat akurasi prediksi yang dikerjakan (Yunita, 2016).

Secara umum langkah-langkah algoritma KNN untuk mengklasifikasikan suatu data yaitu (Fernanda et al., 2017):

- a. Mendefinisikan nilai k.
- b. Melakukan perhitungan nilai jarak antara data latih dengan data uji.
- c. Mengelompokan data berdasarkan perhitungan jarak.
- d. Mengelompokan data berdasarkan nilai tetangga terdekat.
- e. Memilih nilai yang sering muncul dari tetangga terdekat sebagai hasil prediksi.

Berdasarkan uraian diatas maka algoritma KNN dapat diilustrasikan sebagai berikut:

Gambar 2.2 Ilustrasi algoritma KNN

2.5 Pre-Processing Data

Dalam *data mining* tahapan processing data merupakan tahapan yang perlu dilakukan sebelum melakukan tahapan pemodelan guna mendapatkan data yang berkualitas. Berikut adalah tahapan processing data yang akan dilakukan dalam laporan ini.

2.5.1 Normalisasi Data

Normalisasi data merupakan tahapan dalam metode transformasi data untuk melakukan penskalaan nilai atribut dari sekumpulan data sehingga memiliki rentang nilai tertentu. Dalam normalisasi data terdapat beberapa metode normalisasi yang dapat digunakan diantaranya adalah:

a. Min-max normalization

Min-max normalization merupakan metode normalisasi dengan melakukan transformasi linier terhadap data asli sehingga menghasilkan keseimbangan nilai perbandingan antar data saat sebelum dan sesudah prosess.

b. Z-score Normalization

Z-score normalization merupakan metode normalisasi berdasarkan mean (nilai rata-rata) dan standar deviation (devisi standar) dari data. Metode ini akan sangat berguna jika nilai actual minimum dan maksimum dari data tidak diketahui.

c. Decimal Scaling Normalization

Decimal scaling merupakan metode normalisasi dengan menggerakkan nilai decimal data ke arah yang diinginkan.

2.6 Uji Akurasi

Akurasi klasifikasi merupakan ukuran ketepatan klasifikasi yang menunjukkan performansi teknik klasifikasi secara keseluruhan (Nugroho, dkk, 2003). Semakin tinggi akurasi klasifikasi berarti performansi teknik klasifikasi juga semakin baik. Kinerja metode klasifikasi dalam melakukan pengkasifikasian menggambarkan seberapa baik metode tersebut dalam mengkasifikasikan data.

Evaluasi model klasifikasi didasarkan pada pengujian untuk memperkirakan obyek yang benar dan salah, urutan pengujian ditabulasikan dalam *Confusion matrix* dimana kelas yang diprediksi ditampilkan dibagian atas matriks dan kelas yang diamati disisi kiri. Setiap sel berisi angka yang menunjukan berapa banyak kasus yang sebenarnya dari kelas yang di amati untuk di prediksi (Yunus, 2018).

Confusion matrix merupakan salah satu metode yang dapat digunakan untuk mengukur kinerja suatu metode kalsifikasi. Pada dasarnya confusion matrix mengandung informasi yang membandingkan hasil kalsifikasi yang dilakukan oleh sistem dengan hasil klasifikasi yang seharusnya (Prasetyo 2012). Confussion matrix berisi tentang perhitungan jumlah objek data testing yang diprediksikan kedalam sebuah kelas dengan klasifikasi yang sebenarnya (Kurniawan & Ivandari, 2017).

Secara umum bentuk *Confussion matrix* dapat dilihat pada Tabel 2.2 berikut:

Tabel 2.2 Confussion matrix

	Tuber 212 Community						
classification		Predicted Class					
		Class = Yes	Class = No				
Obevered Class	Class = Yes	TP	FN				
	Class = No	FP	TN				

Dalam confusion matrix terdapat total record yang dipakai dalam dataset baik yang diprediksikan kedalam kelas positif ataupun negatif. Tupel atau record dengan prediksi klasifikasi pesitif, prediksi klasifikasi negatif, serta kesalahan dalam klasifikasi dapat terlihat dalam matrix ini (Kurniawan & Ivandari, 2017). Untuk menghitung nilai accuracy, precision, dan recall dengan rumus perhitungan sebagai berikut:

$$Accurasi = \left(\frac{TP + TN}{TP + TN + FP + RN}\right) \tag{4}$$

$$Precision = \frac{TP}{TP + FP} \tag{5}$$

$$Recall = \frac{TP}{TP + FN} \tag{6}$$

Keterangan:

- a. TP merupakan *True Positve*, yaitu jumlah keseluruhan data positif yang terklasifikasi dengan benar.
- b. TN adalah True Negative, yaitu jumlah keseluruhan data negatif yang terklasifikasi dengan benar.
- c. FN merupakan False Negative, yaitu jumlah data negatif namun terklasifikasi salah.
- d. FP merupakan False Positive, yaitu jumlah data positif namun terklasifikasi salah.

2.7 Python

Menurutu Hudaya (2013), Pyhton adalah salah satu bahasa pemrograman *Open Source* yang ringkas, sederhana, dan bisa digunakan di beberapa sistem operasi. Python bersifat gratis dan bisa diunduh siapa saja melalui www.python.com dengan berbagai versi yang ada. Python sebenarnya sangat cocot untuk dipelajari oleh programmer pemula karena sifatnya yang mudah dan ringkas. Dikatakan mudah karena tidak perlu mendeklarasikan variabel seperti pemrograman Java, C, Pascal, dan sebagainya. Ia juga sangat ringkas. Untuk pemecahan masalah dengan Python dibutuhkan jumlah baris kode yang lebih sedikit dibandingkan dengan bahasa pemrograman lain. Salah satu ciri khas pemrograman Python adalah indentasi. Secara sederhana, indentasi adalah blok program yang ditandai dengan kesamaan jarak permulaan huruf kode dari ujung kiri layar. Secara asal, kode pada python harus dimulai penulisan hurufnya dari ujung kiri layer (Hudaya,2013).

2.7.1 Jupyter Notebook

Jupyter membutuhkan Python untuk diinstal karena didasarkan pada bahasa Python. Terdapat beberapa alat yang akan mengotomatisasi instalasi Jupyter dari GUI, salah satunya software Anaconda. Jupyter Notebook pada dasarnya adalah file JSON dengan sejumlah anotasi. Bagian utama Jupyter Notebook yaitu metadata untuk mengatur dan menampilkan Notebook, nomor versi software yang digunakan untuk membuat Notebook, dan daftar sel (Toomey, 2016).

2.8 RapidMiner

RapidMiner adalah sebuah aplikasi atau *Sofware* perangkat lunak yang berfungsi sebagai alat pembelajan pada ilmu data mining. *platfrom* dikembangkan oleh suatu perusahaan yang bertujuan untuk bisnis komersial, penelitian, pendidikan, pelatihan, serta semua langkah dalam pembelajaran yang menyangkut pada suatu data yang besar.

RapidMiner telah membuktikan telah sukses mencapai dan memberikan dampak bisnis yang cepat bagi lebih dari 40.000 organisasi di setiap industri untuk mendorong pendapatan, dan menghindari resiko.

- 1. Transparansi Penuh & Tata Kelola untuk Pembelajaran Mesin yang satu diantaranya memeiliki peran *Easy to Tune* yang berarti Buka, periksa dan konfigurasi Ulang dari 1.500 + blok bangunan visual algoritma *Machine Learning* dan operator ilmu data.
- Mudah Dijelaskan Platform otomatis membangun alur kerja analitik visual yang dikisahkan untuk berkolaborasi dengan pemangku kepentingan bisnis dan menawarkan metode yang kaya untuk penjelasan model
- 3. *End-to-end* merupakan hal yang mengenai tentang mengubah data dari sumber apapun, mengoptimasikan pemilihan dan validasi model *Machine Learning* terbaik.

BAB III

METODOLOGI PENELITIAN

Dalam bab ini akan dijelaskan tahapan-tahapan penelitian yang akan dilakukan dalam laporan ini. Dimulai dari pengumpulan data yang digunakan, hingga pada tahapan metode validasi yang digunakan untuk melakukan pengujian algoritma.

3.1 Tahapan Penelitian

Tahapan penelitian merupakan langkah-langkah atau gambaran yang akan digunakan penulis dalam laporan ini. tahapan penelitian ini dibuat dengan tujuan untuk memberikan kemudahan dalam melakukan penelitian.

3.2 Pengumpulan Data

Pada tahapan ini, dilakukan pengumpulan dataset yang sesuai dengan permasalahan pada laporan ini. Dataset yang digunakan dalam laporan ini merupakan data public yang diproleh dari situs kaggle.com pada UCI Machine Learning Pima Indians Diabetes. Dataset Pima Indians Diabetes merupakan dataset yang berasal dari National Institute Of Diabetes and Digestive and Kidney Diseasses, dimana data ini berisi tentang 768 wanita dari suatu populasi. Dari hasil analisis terdapat 258 dinyatakan positif diabetes dan 500 dinyatakan negative. Selain itu dataset ini juga sangat umum digunakan oleh peneliti dibidang data mining. Dataset ini terdiri dari 768 record atau contoh data pasien terkena diabetes dan tidak terkena diabetes. Selain itu dataset ini memiliki 8 variabel prediktor yang merupakan faktor resiko penyakit diabetes yaitu pregnancies, glucose, blood pressure, skin thickness, insulin, body mass index (BMI), diabetes pedigree function dan age. Dataset pima juga memiliki 1 variabel hasil atau label yaituOutcome.

Dataset pima yang diperoleh akan dibagi menjadi dua bagian, yaitu data training dan data testing. Data training adalah data yang sudah diberikan pelabelan atau sudah memiliki kelas sebelumnya dan digunakan sebagai data pembelajaran, sedangkan data testing adalah data yang akan digunakan untuk melakukan pengujian atau merupakan data baru yang tidak diketahui kelas atau lebelnya sehingga akan ditentukan label atau kelasnya dengan melakukan klasifikasi.

3.3 Tahapan Pre-Processing Data

Pre-processing merupakan tahapan awal yang akan dilakukan dalam laporan ini setelah dataset diperoleh, dengan tujuan untuk memperoleh dataset yang berkualitas dan siap untuk dilakukan klasifikasi menggunakan algoritma KNN. Dataset pima yang diperoleh sebenarnya dapat digunakan langsung untuk klasifikasi, namun karena dataset pima yang diperoleh dari situs kaggle.com memilik rentang nilai yang berbeda pada setiap atribut atau variabel independen, maka tahapan pre-processing data perlu dilakukan untuk mengatasi permasalahan tersebut sehingga dapat meningkatkan kinerja metode klasifikasi yang digunakan. Pre-processing data yang akan digunakan dalam laporan ini adalah normalisasi data dengan harapan dapat meningkatkan kinerja metode klasifikasi yang digunakan.

3.3.1 Tahapan Normalisasi

Tahapan *pre-processing* data yang akan dilakukan pertama kali adalah normalisasi data. Normalisasi data merupakan proses penskalaan nilai dari sekumpulan data agar berada pada rentang nilai tertentu. Normaliasi data dapat dilakukan menggunakan beberapa metode, salah satunya *min-max normalization*. *Min-max normalization* merupakan metode normalisasi dengan melakukan transformasi linier pada data asli. Penggunaan metode *min-max normalization* untuk melakukan penskalaan data pada laporan ini didasarkan pada penelitian yang dilakukan oleh (Nasution et al., 2019) dengan judul perbandingan normalisasi data untuk klasifikasi wine menggunakan algoritma KNN, dimana dalam penelitian tersebut hasil pengujian klasifikasi menggunakan algoritma KNN dengan normalisasi data menggunakan metode *min-max normalization* memperoleh hasil akurasi yang lebih baik dibandingkan dengan hasil klasifikasi menggunakan metode normalisai yang lain, oleh karena itu dalam laporan ini penulis menggunakan metode *min-max normalization* dengan harapan akan memperoleh hasil yang baik juga.

Dalam laporan ini keseluruhan atribut atau fitur pada dataset pima akan dilakukan normalisasi menggunakan metode *min-max normalization*, atribut tersebut terdiri dari *Pregnancies* (X1), *Glucose* (X2), *Blood Pressure* (X3), *Skin Thickness* (X4), *Insulin* (X5), *BMI* (X6), *Diabetes Pedigree Function* (X7), dan *Age* (X8).

3.4 Pengujian Nilai K Optimal

Dalam algoritma KNN penentuan nilai k sangat berpengaruh terhadap klasifikasi yang diperoleh, hal ini dikarenakan nilai k sangat sensitif terhadap hasil klasifikasi (Ulya et al., 2021). Dalam penelitian ini penetapan nilai k akan dilakukan dengan melakukan pengujian skor akurasi pada nilai k 5 sampai dengan nilai k 30. Dimana proses pencarian nilai k optimal akan dimulai dengan melakukan pembagian dataset menjadi data training dan data testing sebesar 70% dan 30% dari jumlah keseluruhan data, kemudian akan dilanjutkan dengan melakukan pemodelan meggunaka algoritma KNN dengan menetapkan nilai 5 sampai dengan 30 kemudian akan dilakukan pengujian skor akurasi yang diperoleh secara berulang sesuai dengan jumlah k yang ditetapkan. Dari perulangan akurasi tersebut maka akan diperoleh nilai atau skor akurasi pada masing-masing k yang digunakan. Nilai k yang memiliki skor akurasi tertinggi nantinya akan ditetapkan sebagai nilai k optimal yang akan digunakan untuk melakukan pengujian pada algoritma KNN. Hasil pengujian nilai akan dibahas pada babselanjutnya.

3.5 Klasifikasi KNN

Pada tahap ini akan dilakukan proses klasifikasi menggunakan algoritma KNN dengan menggunakan nilai k optimal yang sudah diperoleh pada tahapan sebelumnya. Berikut adalah proses klasifikasi menggunakan algoritma KNN:

Gambar 3.1 Proses Klasifikasi KNN

Pada Gambar 3.1 menunjukan bahwa tahapan awal klasifikasi menggunakan algoritma KNN dimulai dari penetapan dataset dimana dataset yang digunakan untuk melakukan proses klasifikasi menggunakan algoritma KNN merupakan dataset pima yang sudah melalui proses normalisasi data menggunakan min-max normalization, dimana dataset tersebut disimpan dalam bentuk csv. Pada tahapan kedua dalam proses klasifikasi menggunakan algoritma KNN akan dilakukan penentuan nilai k atau bisa juga disebut jumlah tetangga terdekat. Nilai k yang akan digunakan adalah nilai k optimal yang diperoleh pada tahapan sebelumnya. Nilai k yang menghasilkan kinerja terbaik nantinya akan digunakan untuk dijadikan sebagai pembanding antara algoritma KNN. Pada tahapan ketiga yaitu melakukan perhitungan jarak euclidean distance pada keseluruhan dataset dengan dataset baru yang akan dilakukan klasifikasi dengan menggunakan rumus pada persamaan 1 yang ada di bab sebelumnya. Kemudian tahapan selanjutnya yaitu melakukan perangkingan pada perhitungan euclidean yang didapatkan dan dilanjutkan dengan memilih kelas dengan jumlah kemunculan terbanyak berdasarkan jumlah k tetangga.

3.5.1 Contoh Proses Klasifikasi KNN Manual

Berikut adalah proses klasifikasi KNN secara manual dengan menghitung jarak ketetanggaan antara data *testing* dan data training. Proses klasifikasi secara manual akan dilakukan dengan menggunakan 10 data sebagai sampel untuk data *training* dan 1 data sebagai data *testing*. Berikut adalah data sampel yang digunakan:

Tabel 3.1 Sampel Data Training

	Tabei 3.1 Sampei Data Training								
No	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	Y
1	0.353	0.744	0.590	0.354	0.000	0.501	0.234	0.483	1
2	0.059	0.427	0.541	0.293	0.000	0.396	0.117	0.167	0
3	0.471	0.920	0.525	0.000	0.000	0.347	0.254	0.183	1
4	0.059	0.447	0.541	0.232	0.111	0.419	0.038	0.000	0
5	0.000	0.688	0.328	0.354	0.199	0.642	0.944	0.200	1
6	0.294	0.583	0.607	0.000	0.000	0.382	0.053	0.150	0
7	0.176	0.392	0.410	0.323	0.104	0.462	0.073	0.083	1
8	0.588	0.578	0.000	0.000	0.000	0.526	0.024	0.133	0

9	0.118	0.990	0.574	0.455	0.642	0.455	0.034	0.533	1
10	0.471	0.628	0.787	0.000	0.000	0.000	0.066	0.550	1

Berdasarkan pada Tabel 3.1, dataset yang akan digunakan sebagai sampel data *training* merupakan 10 data awal pada dataset pima yang sebelumnya sudah dilakukan proses normaliasi menggunakan metode *minmax normalization* terlihat bahwa dari *dataset* tersebut sudah memilik rentang nilai yang sama pada setiap atribut atau fitur.

Tabel 3.2 Sampel Data Testing

No	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	Y
15	0.294	0.834	0.590	0.192	0.207	0.385	0.217	0.500	?

Berdasarkan pada Table 3.1, dataset yang akan dijadikan sebagai data testing merupakan data ke 15 dari *dataset* pima yang sebelumnya sudah dilakukan normalisasi juga. Dari *dataset* tersebut akan dilakukan proses klasifikasi untuk mengetahui yang dijadikan sebagai data *testing* merupakan data pasien positif diabetes atau data pasien negatif diabetes menggunakan algoritma KNN dengan mencari jarak ketetanggan menggunakan *euclidean distance*.

- 1. Nilai k=3 akan digunakan sebagai contoh untuk menentukan jumlah ketetanggaan terdekat.
- 2. Menghitung jarak ketetanggaan data *testing* dengan data training ke 1 d(1,15) =

$$=\sqrt{0.09464}$$

= 0.30763

3. Menghitung jarak ketetanggaan data *testing* dengan data training ke 2 d(2,15) =

4. Menghitung jarak ketetanggaan data *testing* dengan data training ke 3

$$d(3,15) =$$

$$(0.471 - 0.294)^2 + (0.920 - 0.834)^2 + (0.525 - 0.590)^2 + \sqrt{(0.000 - 0.192)^2 + (0.000 - 0.207)^2 + (0.347 - 0.385)^2 + (0.254 - 0.217)^2 + (0.183 - 0.500)^2}$$

- $=\sqrt{0.22535}$
- = 0.47471
- 5. Menghitung jarak ketetanggaan data *testing* dengan data training ke 4 d(4,15) =

$$\frac{(0.059 - 0.294)^2 + (0.447 - 0.834)^2 + (0.541 - 0.590)^2 + \sqrt{(0.232 - 0.192)^2 + (0.111 - 0.207)^2 + (0.419 - 0.385)^2 + (0.038 - 0.217)^2 + (0.000 - 0.500)^2 }$$

- $=\sqrt{0.50164}$
- =0.70826
- 6. Menghitung jarak ketetanggaan data *testing* dengan data training ke 5 d(5,15) =

$$(0.000 - 0.294)^2 + (0.688 - 0.834)^2 + (0.328 - 0.590)^2 + \sqrt{(0.354 - 0.192)^2 + (0.199 - 0.207)^2 + (0.642 - 0.385)^2 + (0.944 - 0.217)^2 + (0.200 - 0.500)^2}$$

- $=\sqrt{0.88671}$
- = 0.94165
- 7. Menghitung jarak ketetanggaan data testing dengan data training ke 6

$$d(6,15) =$$

$$(0.294 - 0.294)^2 + (0.583 - 0.834)^2 + (0.607 - 0.590)^2 + \sqrt{(0.000 - 0.192)^2 + (0.000 - 0.207)^2 + (0.382 - 0.385)^2 + (0.053 - 0.217)^2 + (0.150 - 0.500)^2}$$

8. Menghitung jarak ketetanggaan data *testing* dengan data training ke 7 d(7,15) =

$$(0.176 - 0.294)^2 + (0.392 - 0.834)^2 + (0.410 - 0.590)^2 + \sqrt{(0.323 - 0.192)^2 + (0.104 - 0.207)^2 + (0.462 - 0.385)^2 + (0.073 - 0.217)^2 + (0.083 - 0.500)^2}$$

- $=\sqrt{0.47030}$
- = 0.68578
- 9. Menghitung jarak ketetanggaan data *testing* dengan data training ke 8 d(8,15) =

$$(0.588 - 0.294)^2 + (0.578 - 0.834)^2 + (0.000 - 0.590)^2 + \sqrt{(0.000 - 0.192)^2 + (0.000 - 0.207)^2 + (0.526 - 0.385)^2 + (0.024 - 0.217)^2 + (0.133 - 0.500)^2}$$

 $=\sqrt{0.77201}$

= 0.87864

10. Menghitung jarak ketetanggaan data *testing* dengan data training ke 9 d(9,15)

11. Menghitung jarak ketetanggaan data *testing* dengan data training ke 10 d(10,15)

$$\overline{(0.471 - 0.294)^2 + (0.628 - 0.834)^2 + (0.787 - 0.590)^2 +}$$

$$= \sqrt{(0.000 - 0.192)^2 + (0.000 - 0.207)^2 + (0.000 - 0.385)^2 +}$$

$$(0.066 - 0.217)^2 + (0.550 - 0.500)^2$$

$$= \sqrt{0.36523}$$

$$= 0.60435$$

12. Melakukan perangkingan nilai *euclidean*

Setelah proses perhitungan *eculidean* dan jarak ketetanggaan antara data *testing* dengan data training diperoleh, maka proses selanjutnya yaitu melakukan pengurutan nilai *euclidean* dengan cara melakukan perangkingan secara *ascending* dimana nilai *euclidean* terkecil akan diberikan nilai 1. Berikut adalah hasil perangkingan nilai *euclidean* disajikan dalam Tabel 3.2.

Tabel 3.3 Hasil Perangkingan Nilai Euclidean

Data	Jarak Euclidean Distance	Ranking	Y
1	0.30763	1	1
2	0.63076	6	0
3	0.47471	2	1
4	0.70826	8	0
5	0.94165	10	1
6	0.54102	3	0

7	0.68578	7	1
8	0.87864	9	0
9	0.59450	4	1
10	0.60435	5	1

13. Memilih kelas mayoritas

Dari Tabel 3.2 diperoleh 3 nilai *eulidean* terbaik berdasarkan nilai k = 3 yaitu 0.30763, 0.63076 dan 0.47471. Oleh karena itu maka selanjutnya akan dilakukan proses memilih kelas mayoritas untuk dijadikan sebagi hasil klasifikasi.

Tabel 3.4 Nilai *Euclidean* Terbaik

Data	Jarak Euclidean Distance	Ranking	Y
1	0.30763	1	1
3	0.47471	2	1
6	0.54102	3	0

14. Hasil klasifikasi

Pada Tabel 3.4 diperoleh mayoritas kelas yang muncul yaitu kelas 1 (positive). Maka hasil klasifikasi terhadap data *testing* adalah kelas positive diabetes. Berikut adalah hasil klasifikasi *dataset pima indian diabetes* pada baris ke-15.

Tabel 3.5 Hasil Klasifikasi Data Testing

No	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	Y
15	0.294	0.834	0.590	0.192	0.207	0.385	0.217	0.500	1

Berdasarkan Tabel 3.9 menunjukan bahwa hasil klasifikasi dataset pima inidian diabetes pada baris ke-15 adalah pasien positif diabetes.

3.6 Pengujian Kinerja

3.6.1 Tujuan Pengujian

Pada tahap ini akan dilakukan proses pengujian kinerja untuk mengetahui kinerja yang diproleh pada algoritma KNN dalam melakukan klasifikasi penyakit diabetes berdasarkan pada dataset yang diperoleh. Pengujian dilakukan dengan mengevaluasi perbandingan hasil *Accuracy*,

diamana semakin tinggi nilai *Accuracy* yang diperoleh maka semakin baik pula metode ataualgoritma yang digunakan.

3.6.2 Metode Pengujian

3.6.2.1 Confussion Matrix

Terdapat 4 istilah untuk mempresentasikan hasil proses klasifikasi Dalam *confussion matrix*, terlihat pada Tabel 3.4.

Tabel 3.6 Confussion Matrix

classification	Predicted Class					
		positive	negative			
Obevered Class	positive	TP	FN			
	negative	FP	TN			

Keterangan:

TP: True Positive (Jumlah prediksi benar pada kelas positif) FP: False Positive (Jumlah prediksi salah pada kelas positif) FN: False Negative (Jumlah prediksi salah pada kelas negatif) TN: True *Negative* (Jumlah prediksi benar pada kelas negatif)

Berdasarkan dari 4 nilai klasifikasi tersebut, akan diperoleh nilai akurasi, presisi, dan recall. Nilai akurasi merupakan nilai yang digunakan untuk menggambarkan seberapa akurat metode klasifikasi yang digunakan dalam melakukan klasifikasi dengan benar.

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini akan dijelaskan mengenai hasil dari penelitian yang dilakukan serta pembahasan penelitian. Pembahasan penelitian meliputi hasil *pre-processing* data menggunakan *min-max normalization*, hasil klasifikasi algoritma KNN, hasil akurasi algoritma KNN yang.

4.1 Pengumpulan dataset

Seperti yang sudah dijelaskan pada bab sebelumnya dataset yang digunakan untuk penelitian dalam laporan ini merupakan dataset yang diperoleh dari situs kaggle.com yang berjumlah 768 data dengan 8 variabel *independen* dan 1 variabel dependen. Dimana data ini akan digunakan untuk melakukan pengujian menggunakan algoritma *K-Nearest*. Berikut adalah penampakan dataset pima yang akan digunkan untuk pengujian.

Tabel 4.1 Dataset pima indian diabetes

No	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	Y
1	6	148	72	35	0	33.6	0.627	50	1
2	1	85	66	29	0	26.6	0.351	31	0
3	8	183	64	0	0	23.3	0.672	32	1
4	1	89	66	23	94	28.1	0.167	21	0
5	0	137	40	35	168	43.1	2.288	33	1
6	5	116	74	0	0	25.6	0.201	30	0
7	3	78	50	32	88	31	0.248	26	1
8	10	115	0	0	0	35.3	0.134	29	0
9	2	197	70	45	543	30.5	0.158	53	1
•••	•••	•••	•••	•••	•••	•••	•••		•••
764	10	101	76	48	180	32.9	0.171	63	0
765	2	122	70	27	0	36.8	0.34	27	0

No	<i>X</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	Y
766	5	121	72	23	112	26.2	0.245	30	0
767	1	126	60	0	0	30.1	0.349	47	1
768	1	93	70	31	0	30.4	0.315	23	0

Dari Tabel 4.1 terlihat bahwa dataset pima yang diperoleh belum dilakukan tahapan normalisasi dimana pada kolom X7 pada data tersebut memiliki rentang nilai yang berbeda dengan data pada kolom lain, sehingga hal ini akan berpengaruh terhadap akurasi klasifikasi oleh algoritma KNN. Selain itu dataset tersebut masih memiliki fitur atau atribut yang lengkap yaitu berjumlah 8 atribut dan 1 label atau variabel dependen dimana hal ini akan berpengaruh terhadap waktu komputasi dan akurasi yang dihasilkan oleh algoritma KNN dikarenakan algoritma KNN akan melakukan training keseluruh data yang ada yang berjumlah 768 data dan 8 atribut tersebut.

4.2 Normaslization

Dalam laporan ini tahapan pengujian baik *processing* data, klasifikasi hingga prosess uji validasi atau uji akurasi akan dilakukan dengan memanfaatkan tools *rapid miner*, oleh karena itu untuk mempermudah penulis dalam melakukan pengujian pada laporan ini, penulis akan memanfaatkan rapid miner sebagai berikut:

Gambar 4.1 Tahapan pertama proses import data

Gambar 4.2 Tahapan kedua proses import data

Gambar 4.3 Tahapan ke tiga proses import data

Gambar 4.4 Tahapan ke empat proses import data

Gambar 4.5 Tahapan terakhir proses import data

Dari Gambar 4.1 sampai 4.5 terlihat bahwa banyak fungsi dari *rapid miner* yang dapat digunakan. Berikut adalah hasil dari input data menggunakan *rapid miner*.

Row No.	Name	Pregnancies	Glucose	Blood Press	Skin Thickn	Insulin	BMI	Diabetes Pe
1	John	6	148	72	35	0	33.600	0.627
2	John	1	85	66	29	0	26.600	0.351
3	Camela	8	183	64	0	0	23.300	0.672
4	Alex	1	89	66	23	94	28.100	0.167
5	Diego	0	137	40	35	168	43.100	2.288
6	Cristiano	5	116	74	0	0	25.600	0.201
7	Mihail	3	78	50	32	88	31	0.248
8	Kathy	10	115	0	0	0	35.300	0.134
9	Nicole	2	197	70	45	543	30.500	0.158
10	Ray	8	125	96	0	0	0	0.232
11	Fredric	4	110	92	0	0	37.600	0.191
12	Yul	10	168	74	0	0	38	0.537
13	Joan	10	139	80	0	0	27.100	1.441
14	Jane	1	189	60	23	846	30.100	0.398
< -		-						

Gambar 4.6 Hasil Import Data

Beradasarkan Gambar 4.6 data yang diproleh dari situs kaggle.com terdiri dari 8 variabel *independen*. Variabel *independen* pada data tersebut merupakan faktor terjadinya diabetes sedangkan variabel dependen merupakan variabel hasil atau prediksi dimana pasien tersebut positif daiabetes atau tidak. Variabel *independen* pada data tersebut masih memiliki rentang nilai yang berbeda sehingga akan berpengaruh terhadap hasil klasifikasi yang diperoleh. Oleh karena itu penulis akan melakukan tahapan normalisasi menggunkan metode *min-max normalization* dengan memanfaatkan salah satu fungsi yang tersedia pada rapid miner yaitu *Normalize*.

Berikut adalah proses normalisasi menggunakan fitur *normalize* pada *RapidMiner*.

Gambar 4.7 Proses normaliasasi dengan fitur normalize pada rapidminer

Berikut adalah hasil normalisasi dari prosess yang ditunjukan oleh Gambar 4.6, disajikan dalam Tabel 4.1 berikut:

Row No.	Pregnancies	Glucose	Blood Press	Skin Thickn	Insulin	BMI	Diabetes Pe	Age
1	0.640	0.848	0.150	0.907	-0.692	0.204	0.468	1.425
2	-0.844	-1.123	-0.160	0.531	-0.692	-0.684	-0.365	-0.191
3	1.233	1.942	-0.264	-1.287	-0.692	-1.103	0.604	-0.106
4	-0.844	-0.998	-0.160	0.154	0.123	-0.494	-0.920	-1.041
5	-1.141	0.504	-1.504	0.907	0.765	1.409	5.481	-0.020
6	0.343	-0.153	0.253	-1.287	-0.692	-0.811	-0.818	-0.276
7	-0.251	-1.342	-0.987	0.719	0.071	-0.126	-0.676	-0.616
8	1.827	-0.184	-3.570	-1.287	-0.692	0.420	-1.020	-0.361
9	-0.548	2.380	0.046	1.534	4.019	-0.189	-0.947	1.680
10	1.233	0.128	1.389	-1.287	-0.692	-4.058	-0.724	1.765
11	0.046	-0.341	1.183	-1.287	-0.692	0.711	-0.848	-0.276
12	1.827	1.473	0.253	-1.287	-0.692	0.762	0.197	0.065
13	1.827	0.566	0.563	-1.287	-0.692	-0.621	2.925	2.020

Gambar 4.8 Hasil normaliasasi data dengan fitur normalize pada rapidminer

Berdasarkan Gambar 4.8 merupakan dataset pima setelah dilakukan normalisasi terlihat bahwa pada setiap kolom atau setiap variabel *independent* pada *dataset pima* setelah dilakukan tahapan normalisasi menggunakan rapidminer dengan memanfaatkan fungsi *Normalize* pada rapidminer, memiliki rentang nilai yang sama yaitu berada pada rentang nilai 0 sampai 1, dimana sebelumnya pada datset pima memiliki rentang nilai yang berbeda pada setiap atribut atau variabel *independent*.

normalization untuk memperoleh data yang memiliki rentang nilai yang sama pada setiap data sudah tercapai dan kemungkinan akan meningkatkan akurasi yang diproleh oleh algoritma KNN dalam melakukan klasifikasi pada dataset tersebut.

Dari tabel 4.1 diatas maka diperoleh nilai k optimal yaitu 19 dengan score akurasi sebesar 77,489%. Berikut adalah grafik perbandingan akurasi dalam pencarian nilai k optimal yang disajikan dalam Gambar 4.8.

Gambar 4.9 Grafik Pengujian

Berdasarkan Tabel 4.1 dan Gambar 4.6 memperlihatkan hasil pengujian dengan algoritma KNN dan menghasilkan akurasi tertinggi sebesar 77,489% pada k=19. Selain itu tampak pada grafik yang ditunjukan oleh gambar 4.6 bahwa semakin tinggi nilai k yang digunakan hasil yang diperoleh atau akurasi yang diperoleh cenderung menurun, walaupun nilai k terendah didapatkan pada nilai k=6 dengan score akurasi sebesar 72,294%. Hal ini menunjukan bahwa penggunaan nilai k yang digunakan mempengaruhi tingkat akurasi yang dihasilkan, hal ini juga selaras dengan beberapa penelitian yang mengatakan bahwa nilai k terbaik atau k optimal yaitu berada pada k=3 hingga k=19. Selain itu secara umum, penggunaan nilai k yang tinggi akan mengurangi efek noise pada klasifikasi, namun akan menyebabkan Batasan antar setiap klasifikasi menjadi lebih kabur. Berdasarkan hasil pengujian yang sudah dilakukan pada nilai k=19 yang merupakan nilai k optimal yang diperoleh dalam penelitian, nilai k tersebut akan penulis tetapkan untuk melakukan klasifikasi *pada dataset pima indian* diabetes yang sudah dilakukan menggunakan algoritma KNN dan rapidminer.

BAB V

PENUTUP

5.1 Kesimpulan

Berdasarkan hasil dan pembahasan pada proses klasifikasi pada *dataset pima indian diabetes* menggunakan algoritma KNN diperoleh hasil klasifikasi 192 data terklasifikasi positif diabetes dan 576 data terklasifikasi negatif diabetes dan diperoleh tingkat akurasi atau tingkat korelasi antara nilai prediksi dari sistem dengan nilai sesungguhnya yang mencapai 75%.

Dari hasil pengujian menggunakan *confussion matrix* diperoleh peningkatan akurasi klasifikasi pada algoritma menjadi 77,214% sehingga tampak selisih akurasi yang diperoleh yaitu sebesar 2,214%. Algoritma KNN dapat digunakan untuk melakukan identifikasi penyakit diabetes.

5.2 Saran

Adapun saran-saran pengembangan lebih lanjut dari laporan ini yang dapat penulis berikan adalah sebagai berikut:

- 1. Pada penelitian lebih lanjut diharapkan selain menggunakan algoritma KNN kita dapat menggunakan algoritma algoritma yang lain salah satunya PSO, hal ini disebabkan nilai k pada algoritma KNN sangat berpengaruh terhadap keakuratan klasifikasi algoritma KNN.
- 2. Diharapkan pada pengembagan lebih lanjut dapat menggunakan PSO untuk optimasi pada algotima klasifikasi lain seperti SVM, *Naïve Bayes*, C.45, dan lain-lain guna mendapatkan algoritma yang lebih akurat dan efesien dalam melakukan klasifikasi penyakit diabetes. Selain itu juga dapat menggunakan beberapa algoritma untuk optimasi seperti GA,
- 3. Diharapkan dapat menggunakan metode yang lebih spesifik untuk mengukur dan memvalidasi kinerja algoritma yang dihasilkan, seperti menggunakan kurva AUC atau ROC.

DAFTAR REFERENSI

- Achyani, Y. E. (2018). Penerapan Metode Particle Swarm Optimization Pada Optimasi Prediksi Pemasaran Langsung. *Jurnal Informatika*, *5*(1), 1–11. https://doi.org/10.31311/ji.v5i1.2736
- Aziz, F. A., Malik, R. F., Prasteyo, A. P. P., Komputer, F. I., & Sriwijaya, U. (2021). Estimasi Posisi Objek Menggunakan Particle Swarm Optimization dan K – Nearest Neighbour. 29–33.
- Choubey, D. K., Kumar, P., Tripathi, S., & Kumar, S. (2020). Performance evaluation of classification methods with PCA and PSO for diabetes. *Network Modeling Analysis in Health Informatics and Bioinformatics*, *9*(1). https://doi.org/10.1007/s13721-019-0210-8
- Dr. dr. Eva Decroli, S.-K. F. (2019). *Diabetes Melitus Tipe 2* (S. dr. Alexander Kam & S. dr. G. P. D. dr. A. R. dr. Yanne Pradwi Efendi (eds.)). Pusat Penerbitan Bagian Ilmu Penyakit Dalam Fakultas Kedokteran Universitas Andalas.
- Fernanda, S. I., Ratnawati, D. E., & Adikara, P. P. (2017). Identifikasi Penyakit Diabetes Mellitus Menggunakan Metode Modified K- Nearest Neighbor (MKNN). *Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer*, 1(6), 507–513.
- Haerani et al. (2018). Komparasi Akurasi Metode Correlated Naive Bayes Classifier Dan Naive Bayes Classifier Untuk Diagnosis Penyakit Diabetes Hairani , Gibran Satya Nugraha , Mokhammad Nurkholis Abdillah , Muhammad Innuddin InfoTekJar (Jurnal Nasional Informatika dan Teknolog. *InfoTekJar (Jurnal Nasional Informatika Dan Teknologi Jaringan)*, 3(1), 6–11.
- Hasanuddin, H. (2016). Perbandingan Algoritma Knn Dan Knn-Pso Untuk Klasifikasi Tingkat Pengetahuan Ibu Dalam Pemberian Asi Eksklusif.

- *Technologia: Jurnal Ilmiah*, 7(1), 34–40. https://doi.org/10.31602/tji.v7i1.610
- Hermawan, Y. D. (2017). Implementasi Algoritma K-Nearest Neighbors dengan Particle Swarm Optimization dalam Klasifikasi Trouble pada Base Transceiver Station (BTS).
- KEMENKES RI. (2019). Hari Diabetes Sedunia Tahun 2018. *Pusat Data Dan Informasi Kementrian Kesehatan RI*, 1–8.
- Khanesar, M. A., Teshnehlab, M., & Shoorehdeli, M. A. (n.d.). *A Novel Binary Particle Swarm Optimization*. *1*(1).
- Kurniawan, F., & Ivandari. (2017). Komparasi Algoritma Data Mining Untuk Klasifikasi Penyakit Kanker Payudara. *Jurnal Stmik*, *XII*(1), 1–8.
- Liklikwatil, R. D., Noersasongko, E., & Supriyanto, C. (2018). Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Memprediksi Harga Komoditi Karet. 7(2), 172–182.
- Mahardika, K. W., Sari, Y. A., & Arwan, A. (2018). Optimasi K-Nearest Neighbour Menggunakan Particle Swarm Optimization pada Sistem Pakar untuk Monitoring Pengendalian Hama pada Tanaman Jeruk. 2(9), 3333–3344.
- Maulida, A. (2020). Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes. *Indonesian Journal of Data and Science*, 1(2), 29–33.
- Mirqotussa'adah, M., Muslim, M. A., Sugiharti, E., Prasetiyo, B., & Alimah, S. (2017). Penerapan Dizcretization dan Teknik Bagging Untuk Meningkatkan Akurasi Klasifikasi Berbasis Ensemble pada Algoritma C4.5 dalam Mendiagnosa Diabetes. *Lontar Komputer : Jurnal Ilmiah Teknologi Informasi*, 8(2), 135. https://doi.org/10.24843/lkjiti.2017.v08.i02.p07
- Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78.

- https://doi.org/10.24114/cess.v4i1.11458
- Pradana, A. C., & Aditsania, A. (2018). Implementasi Algoritma Binary Particle Swarm Optimization (BPSO) dan C4. 5 Decision Tree untuk Deteksi Kanker Berdasarkan Klasifikasi Microarray Data. 5(3), 7665–7682.
- SHAILENDRA, D. Y. (2017). Seleksi Fitur Menggunakan Metode Hybrid Particle
 Swarm Optimization Dengan Operasi Local Search (Hpso-Ls) Untuk
 Klasifikasi Data.
- Ulya, S., Soeleman, M. A., & Budiman, F. (2021). Optimasi Parameter K Pada Algoritma K-NN Untuk Klasifikasi Prioritas Bantuan Pembangunan Desa. *Techno.Com*, 20(1), 83–96. https://doi.org/10.33633/tc.v20i1.4215
- Wijanarto, W., & Puspitasari, R. (2019). Optimasi Algoritma Klasifikasi Biner dengan Tuning Parameter pada Penyakit Diabetes Mellitus. *Eksplora Informatika*, 9(1), 50–59. https://doi.org/10.30864/eksplora.v9i1.257
- Yunita, F. (2016). Sistem Klasifikasi Penyakit Diabetes Mellitus Menggunakan Metode K-Nearest Neighbor (K-Nn). 223–230.
- Yunus, W. (2018). Algoritma K-Nearest Neighbor Berbasis Particle Swarm Optimization Untuk Prediksi Penyakit Ginjal Kronik. 2(2), 51–55.
- Saxena, K., Khan, Z., & Singh, S. (2014). Diagnosis of Diabetes Mellitus using K Nearest Neighbor Algorithm. International Journal of Computer Science Trends and Technology (IJCST), 2(4), 36–43.

LAMPIRAN

SAMPEL DATA

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0
10	168	74	0	0	38	0.537	34	1
10	139	80	0	0	27.1	1.441	57	0
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
7	100	0	0	0	30	0.484	32	1
0	118	84	47	230	45.8	0.551	31	1
7	107	74	0	0	29.6	0.254	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0
8	99	84	0	0	35.4	0.388	50	0
7	196	90	0	0	39.8	0.451	41	1
9	119	80	35	0	29	0.263	29	1
11	143	94	33	146	36.6	0.254	51	1
10	125	70	26	115	31.1	0.205	41	1
7	147	76	0	0	39.4	0.257	43	1
1	97	66	15	140	23.2	0.487	22	0
13	145	82	19	110	22.2	0.245	57	0
5	117	92	0	0	34.1	0.337	38	0
5	109	75	26	0	36	0.546	60	0
3	158	76	36	245	31.6	0.851	28	1
3	88	58	11	54	24.8	0.267	22	0
6	92	92	0	0	19.9	0.188	28	0
10	122	78	31	0	27.6	0.512	45	0
4	103	60	33	192	24	0.966	33	0
11	138	76	0	0	33.2	0.42	35	0
9	102	76	37	0	32.9	0.665	46	1
2	90	68	42	0	38.2	0.503	27	1
4	111	72	47	207	37.1	1.39	56	1
3	180	64	25	70	34	0.271	26	0
7	133	84	0 B.1	0	40.2	0.696	37	0

B.1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
7	106	92	18	0	22.7	0.235	48	0
9	171	110	24	240	45.4	0.721	54	1
7	159	64	0	0	27.4	0.294	40	0
0	180	66	39	0	42	1.893	25	1
1	146	56	0	0	29.7	0.564	29	0
2	71	70	27	0	28	0.586	22	0
7	103	66	32	0	39.1	0.344	31	1
7	105	0	0	0	0	0.305	24	0
1	103	80	11	82	19.4	0.491	22	0
1	101	50	15	36	24.2	0.526	26	0
5	88	66	21	23	24.4	0.342	30	0
8	176	90	34	300	33.7	0.467	58	1
7	150	66	42	342	34.7	0.718	42	0
1	73	50	10	0	23	0.248	21	0
7	187	68	39	304	37.7	0.254	41	1
0	100	88	60	110	46.8	0.962	31	0
0	146	82	0	0	40.5	1.781	44	0
0	105	64	41	142	41.5	0.173	22	0
2	84	0	0	0	0	0.304	21	0
8	133	72	0	0	32.9	0.27	39	1
5	44	62	0	0	25	0.587	36	0
2	141	58	34	128	25.4	0.699	24	0
7	114	66	0	0	32.8	0.258	42	1
5	99	74	27	0	29	0.203	32	0
0	109	88	30	0	32.5	0.855	38	1
2	109	92	0	0	42.7	0.845	54	0
1	95	66	13	38	19.6	0.334	25	0
4	146	85	27	100	28.9	0.189	27	0
2	100	66	20	90	32.9	0.867	28	1
5	139	64	35	140	28.6	0.411	26	0
13	126	90	0	0	43.4	0.583	42	1
4	129	86	20	270	35.1	0.231	23	0
1	79	75	30	0	32	0.396	22	0
1	0	48	20	0	24.7	0.14	22	0
7	62	78	0	0	32.6	0.391	41	0
5	95	72	33	0	37.7	0.37	27	0
0	131	0	0	0	43.2	0.27	26	1
2	112	66	22	0	25	0.307	24	0
3	113	44	13	0	22.4	0.14	22	0
2	74	0	0	0	0	0.102	22	0
7	83	78	26	71	29.3	0.767	36	0
0	101	65	28	0	24.6	0.237	22	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
5	137	108	0	0	48.8	0.227	37	1
2	110	74	29	125	32.4	0.698	27	0
13	106	72	54	0	36.6	0.178	45	0
2	100	68	25	71	38.5	0.324	26	0
15	136	70	32	110	37.1	0.153	43	1
1	107	68	19	0	26.5	0.165	24	0
1	80	55	0	0	19.1	0.258	21	0
4	123	80	15	176	32	0.443	34	0
7	81	78	40	48	46.7	0.261	42	0
4	134	72	0	0	23.8	0.277	60	1
2	142	82	18	64	24.7	0.761	21	0
6	144	72	27	228	33.9	0.255	40	0
2	92	62	28	0	31.6	0.13	24	0
1	71	48	18	76	20.4	0.323	22	0
6	93	50	30	64	28.7	0.356	23	0
1	122	90	51	220	49.7	0.325	31	1
1	163	72	0	0	39	1.222	33	1
1	151	60	0	0	26.1	0.179	22	0
0	125	96	0	0	22.5	0.262	21	0
1	81	72	18	40	26.6	0.283	24	0
2	85	65	0	0	39.6	0.93	27	0
1	126	56	29	152	28.7	0.801	21	0
1	96	122	0	0	22.4	0.207	27	0
4	144	58	28	140	29.5	0.287	37	0
3	83	58	31	18	34.3	0.336	25	0
0	95	85	25	36	37.4	0.247	24	1
3	171	72	33	135	33.3	0.199	24	1
8	155	62	26	495	34	0.543	46	1
1	89	76	34	37	31.2	0.192	23	0
4	76	62	0	0	34	0.391	25	0
7	160	54	32	175	30.5	0.588	39	1
4	146	92	0	0	31.2	0.539	61	1
5	124	74	0	0	34	0.22	38	1
5	78	48	0	0	33.7	0.654	25	0
4	97	60	23	0	28.2	0.443	22	0
4	99	76	15	51	23.2	0.223	21	0
0	162	76	56	100	53.2	0.759	25	1
6	111	64	39	0	34.2	0.26	24	0
2	107	74	30	100	33.6	0.404	23	0
5	132	80	0	0	26.8	0.186	69	0
0	113	76	0	0	33.3	0.278	23	1
1	88	30	42	99	55	0.496	26	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
3	120	70	30	135	42.9	0.452	30	0
1	118	58	36	94	33.3	0.261	23	0
1	117	88	24	145	34.5	0.403	40	1
0	105	84	0	0	27.9	0.741	62	1
4	173	70	14	168	29.7	0.361	33	1
9	122	56	0	0	33.3	1.114	33	1
3	170	64	37	225	34.5	0.356	30	1
8	84	74	31	0	38.3	0.457	39	0
2	96	68	13	49	21.1	0.647	26	0
2	125	60	20	140	33.8	0.088	31	0
0	100	70	26	50	30.8	0.597	21	0
0	93	60	25	92	28.7	0.532	22	0
0	129	80	0	0	31.2	0.703	29	0
5	105	72	29	325	36.9	0.159	28	0
3	128	78	0	0	21.1	0.268	55	0
5	106	82	30	0	39.5	0.286	38	0
2	108	52	26	63	32.5	0.318	22	0
10	108	66	0	0	32.4	0.272	42	1
4	154	62	31	284	32.8	0.237	23	0
0	102	75	23	0	0	0.572	21	0
9	57	80	37	0	32.8	0.096	41	0
2	106	64	35	119	30.5	1.4	34	0
5	147	78	0	0	33.7	0.218	65	0
2	90	70	17	0	27.3	0.085	22	0
1	136	74	50	204	37.4	0.399	24	0
4	114	65	0	0	21.9	0.432	37	0
9	156	86	28	155	34.3	1.189	42	1
1	153	82	42	485	40.6	0.687	23	0
8	188	78	0	0	47.9	0.137	43	1
7	152	88	44	0	50	0.337	36	1
2	99	52	15	94	24.6	0.637	21	0
1	109	56	21	135	25.2	0.833	23	0
2	88	74	19	53	29	0.229	22	0
17	163	72	41	114	40.9	0.817	47	1
4	151	90	38	0	29.7	0.294	36	0
7	102	74	40	105	37.2	0.204	45	0
0	114	80	34	285	44.2	0.167	27	0
2	100	64	23	0	29.7	0.368	21	0
0	131	88	0	0	31.6	0.743	32	1
6	104	74	18	156	29.9	0.722	41	1
3	148	66	25	0	32.5	0.256	22	0
4	120	68	0	0	29.6	0.709	34	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
4	110	66	0	0	31.9	0.471	29	0
3	111	90	12	78	28.4	0.495	29	0
6	102	82	0	0	30.8	0.18	36	1
6	134	70	23	130	35.4	0.542	29	1
2	87	0	23	0	28.9	0.773	25	0
1	79	60	42	48	43.5	0.678	23	0
2	75	64	24	55	29.7	0.37	33	0
8	179	72	42	130	32.7	0.719	36	1
6	85	78	0	0	31.2	0.382	42	0
0	129	110	46	130	67.1	0.319	26	1
5	143	78	0	0	45	0.19	47	0
5	130	82	0	0	39.1	0.956	37	1
6	87	80	0	0	23.2	0.084	32	0
0	119	64	18	92	34.9	0.725	23	0
1	0	74	20	23	27.7	0.299	21	0
5	73	60	0	0	26.8	0.268	27	0
4	141	74	0	0	27.6	0.244	40	0
7	194	68	28	0	35.9	0.745	41	1
8	181	68	36	495	30.1	0.615	60	1
1	128	98	41	58	32	1.321	33	1
8	109	76	39	114	27.9	0.64	31	1
5	139	80	35	160	31.6	0.361	25	1
3	111	62	0	0	22.6	0.142	21	0
9	123	70	44	94	33.1	0.374	40	0
7	159	66	0	0	30.4	0.383	36	1
11	135	0	0	0	52.3	0.578	40	1
8	85	55	20	0	24.4	0.136	42	0
5	158	84	41	210	39.4	0.395	29	1
1	105	58	0	0	24.3	0.187	21	0
3	107	62	13	48	22.9	0.678	23	1
4	109	64	44	99	34.8	0.905	26	1
4	148	60	27	318	30.9	0.15	29	1
0	113	80	16	0	31	0.874	21	0
1	138	82	0	0	40.1	0.236	28	0
0	108	68	20	0	27.3	0.787	32	0
2	99	70	16	44	20.4	0.235	27	0
6	103	72	32	190	37.7	0.324	55	0
5	111	72	28	0	23.9	0.407	27	0
8	196	76	29	280	37.5	0.605	57	1
5	162	104	0	0	37.7	0.151	52	1
1	96	64	27	87	33.2	0.289	21	0
7	184	84	33	0	35.5	0.355	41	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
2	81	60	22	0	27.7	0.29	25	0
0	147	85	54	0	42.8	0.375	24	0
7	179	95	31	0	34.2	0.164	60	0
0	140	65	26	130	42.6	0.431	24	1
9	112	82	32	175	34.2	0.26	36	1
12	151	70	40	271	41.8	0.742	38	1
5	109	62	41	129	35.8	0.514	25	1
6	125	68	30	120	30	0.464	32	0
5	85	74	22	0	29	1.224	32	1
5	112	66	0	0	37.8	0.261	41	1
0	177	60	29	478	34.6	1.072	21	1
2	158	90	0	0	31.6	0.805	66	1
7	119	0	0	0	25.2	0.209	37	0
7	142	60	33	190	28.8	0.687	61	0
1	100	66	15	56	23.6	0.666	26	0
1	87	78	27	32	34.6	0.101	22	0
0	101	76	0	0	35.7	0.198	26	0
3	162	52	38	0	37.2	0.652	24	1
4	197	70	39	744	36.7	2.329	31	0
0	117	80	31	53	45.2	0.089	24	0
4	142	86	0	0	44	0.645	22	1
6	134	80	37	370	46.2	0.238	46	1
1	79	80	25	37	25.4	0.583	22	0
4	122	68	0	0	35	0.394	29	0
3	74	68	28	45	29.7	0.293	23	0
4	171	72	0	0	43.6	0.479	26	1
7	181	84	21	192	35.9	0.586	51	1
0	179	90	27	0	44.1	0.686	23	1
9	164	84	21	0	30.8	0.831	32	1
0	104	76	0	0	18.4	0.582	27	0
1	91	64	24	0	29.2	0.192	21	0
4	91	70	32	88	33.1	0.446	22	0
3	139	54	0	0	25.6	0.402	22	1
6	119	50	22	176	27.1	1.318	33	1
2	146	76	35	194	38.2	0.329	29	0
9	184	85	15	0	30	1.213	49	1
10	122	68	0	0	31.2	0.258	41	0
0	165	90	33	680	52.3	0.427	23	0
9	124	70	33	402	35.4	0.282	34	0
1	111	86	19	0	30.1	0.143	23	0
9	106	52	0	0	31.2	0.38	42	0
2	129	84	0	0	28	0.284	27	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
2	90	80	14	55	24.4	0.249	24	0
0	86	68	32	0	35.8	0.238	25	0
12	92	62	7	258	27.6	0.926	44	1
1	113	64	35	0	33.6	0.543	21	1
3	111	56	39	0	30.1	0.557	30	0
2	114	68	22	0	28.7	0.092	25	0
1	193	50	16	375	25.9	0.655	24	0
11	155	76	28	150	33.3	1.353	51	1
3	191	68	15	130	30.9	0.299	34	0
3	141	0	0	0	30	0.761	27	1
4	95	70	32	0	32.1	0.612	24	0
3	142	80	15	0	32.4	0.2	63	0
4	123	62	0	0	32	0.226	35	1
5	96	74	18	67	33.6	0.997	43	0
0	138	0	0	0	36.3	0.933	25	1
2	128	64	42	0	40	1.101	24	0
0	102	52	0	0	25.1	0.078	21	0
2	146	0	0	0	27.5	0.24	28	1
10	101	86	37	0	45.6	1.136	38	1
2	108	62	32	56	25.2	0.128	21	0
3	122	78	0	0	23	0.254	40	0
1	71	78	50	45	33.2	0.422	21	0
13	106	70	0	0	34.2	0.251	52	0
2	100	70	52	57	40.5	0.677	25	0
7	106	60	24	0	26.5	0.296	29	1
0	104	64	23	116	27.8	0.454	23	0
5	114	74	0	0	24.9	0.744	57	0
2	108	62	10	278	25.3	0.881	22	0
0	146	70	0	0	37.9	0.334	28	1
10	129	76	28	122	35.9	0.28	39	0
7	133	88	15	155	32.4	0.262	37	0
7	161	86	0	0	30.4	0.165	47	1
2	108	80	0	0	27	0.259	52	1
7	136	74	26	135	26	0.647	51	0
5	155	84	44	545	38.7	0.619	34	0
1	119	86	39	220	45.6	0.808	29	1
4	96	56	17	49	20.8	0.34	26	0
5	108	72	43	75	36.1	0.263	33	0
0	78	88	29	40	36.9	0.434	21	0
0	107	62	30	74	36.6	0.757	25	1
2	128	78	37	182	43.3	1.224	31	1
1	128	48	45	194	40.5	0.613	24	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
0	161	50	0	0	21.9	0.254	65	0
6	151	62	31	120	35.5	0.692	28	0
2	146	70	38	360	28	0.337	29	1
0	126	84	29	215	30.7	0.52	24	0
14	100	78	25	184	36.6	0.412	46	1
8	112	72	0	0	23.6	0.84	58	0
0	167	0	0	0	32.3	0.839	30	1
2	144	58	33	135	31.6	0.422	25	1
5	77	82	41	42	35.8	0.156	35	0
5	115	98	0	0	52.9	0.209	28	1
3	150	76	0	0	21	0.207	37	0
2	120	76	37	105	39.7	0.215	29	0
10	161	68	23	132	25.5	0.326	47	1
0	137	68	14	148	24.8	0.143	21	0
0	128	68	19	180	30.5	1.391	25	1
2	124	68	28	205	32.9	0.875	30	1
6	80	66	30	0	26.2	0.313	41	0
0	106	70	37	148	39.4	0.605	22	0
2	155	74	17	96	26.6	0.433	27	1
3	113	50	10	85	29.5	0.626	25	0
7	109	80	31	0	35.9	1.127	43	1
2	112	68	22	94	34.1	0.315	26	0
3	99	80	11	64	19.3	0.284	30	0
3	182	74	0	0	30.5	0.345	29	1
3	115	66	39	140	38.1	0.15	28	0
6	194	78	0	0	23.5	0.129	59	1
4	129	60	12	231	27.5	0.527	31	0
3	112	74	30	0	31.6	0.197	25	1
0	124	70	20	0	27.4	0.254	36	1
13	152	90	33	29	26.8	0.731	43	1
2	112	75	32	0	35.7	0.148	21	0
1	157	72	21	168	25.6	0.123	24	0
1	122	64	32	156	35.1	0.692	30	1
10	179	70	0	0	35.1	0.2	37	0
2	102	86	36	120	45.5	0.127	23	1
6	105	70	32	68	30.8	0.122	37	0
8	118	72	19	0	23.1	1.476	46	0
2	87	58	16	52	32.7	0.166	25	0
1	180	0	0	0	43.3	0.282	41	1
12	106	80	0	0	23.6	0.137	44	0
1	95	60	18	58	23.9	0.26	22	0
0	165	76	43	255	47.9	0.259	26	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
0	117	0	0	0	33.8	0.932	44	0
5	115	76	0	0	31.2	0.343	44	1
9	152	78	34	171	34.2	0.893	33	1
7	178	84	0	0	39.9	0.331	41	1
1	130	70	13	105	25.9	0.472	22	0
1	95	74	21	73	25.9	0.673	36	0
1	0	68	35	0	32	0.389	22	0
5	122	86	0	0	34.7	0.29	33	0
8	95	72	0	0	36.8	0.485	57	0
8	126	88	36	108	38.5	0.349	49	0
1	139	46	19	83	28.7	0.654	22	0
3	116	0	0	0	23.5	0.187	23	0
3	99	62	19	74	21.8	0.279	26	0
5	0	80	32	0	41	0.346	37	1
4	92	80	0	0	42.2	0.237	29	0
4	137	84	0	0	31.2	0.252	30	0
3	61	82	28	0	34.4	0.243	46	0
1	90	62	12	43	27.2	0.58	24	0
3	90	78	0	0	42.7	0.559	21	0
9	165	88	0	0	30.4	0.302	49	1
1	125	50	40	167	33.3	0.962	28	1
13	129	0	30	0	39.9	0.569	44	1
12	88	74	40	54	35.3	0.378	48	0
1	196	76	36	249	36.5	0.875	29	1
5	189	64	33	325	31.2	0.583	29	1
5	158	70	0	0	29.8	0.207	63	0
5	103	108	37	0	39.2	0.305	65	0
4	146	78	0	0	38.5	0.52	67	1
4	147	74	25	293	34.9	0.385	30	0
5	99	54	28	83	34	0.499	30	0
6	124	72	0	0	27.6	0.368	29	1
0	101	64	17	0	21	0.252	21	0
3	81	86	16	66	27.5	0.306	22	0
1	133	102	28	140	32.8	0.234	45	1
3	173	82	48	465	38.4	2.137	25	1
0	118	64	23	89	0	1.731	21	0
0	84	64	22	66	35.8	0.545	21	0
2	105	58	40	94	34.9	0.225	25	0
2	122	52	43	158	36.2	0.816	28	0
12	140	82	43	325	39.2	0.528	58	1
0	98	82	15	84	25.2	0.299	22	0
1	87	60	37	75	37.2	0.509	22	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
4	156	75	0	0	48.3	0.238	32	1
0	93	100	39	72	43.4	1.021	35	0
1	107	72	30	82	30.8	0.821	24	0
0	105	68	22	0	20	0.236	22	0
1	109	60	8	182	25.4	0.947	21	0
1	90	62	18	59	25.1	1.268	25	0
1	125	70	24	110	24.3	0.221	25	0
1	119	54	13	50	22.3	0.205	24	0
5	116	74	29	0	32.3	0.66	35	1
8	105	100	36	0	43.3	0.239	45	1
5	144	82	26	285	32	0.452	58	1
3	100	68	23	81	31.6	0.949	28	0
1	100	66	29	196	32	0.444	42	0
5	166	76	0	0	45.7	0.34	27	1
1	131	64	14	415	23.7	0.389	21	0
4	116	72	12	87	22.1	0.463	37	0
4	158	78	0	0	32.9	0.803	31	1
2	127	58	24	275	27.7	1.6	25	0
3	96	56	34	115	24.7	0.944	39	0
0	131	66	40	0	34.3	0.196	22	1
3	82	70	0	0	21.1	0.389	25	0
3	193	70	31	0	34.9	0.241	25	1
4	95	64	0	0	32	0.161	31	1
6	137	61	0	0	24.2	0.151	55	0
5	136	84	41	88	35	0.286	35	1
9	72	78	25	0	31.6	0.28	38	0
5	168	64	0	0	32.9	0.135	41	1
2	123	48	32	165	42.1	0.52	26	0
4	115	72	0	0	28.9	0.376	46	1
0	101	62	0	0	21.9	0.336	25	0
8	197	74	0	0	25.9	1.191	39	1
1	172	68	49	579	42.4	0.702	28	1
6	102	90	39	0	35.7	0.674	28	0
1	112	72	30	176	34.4	0.528	25	0
1	143	84	23	310	42.4	1.076	22	0
1	143	74	22	61	26.2	0.256	21	0
0	138	60	35	167	34.6	0.534	21	1
3	173	84	33	474	35.7	0.258	22	1
1	97	68	21	0	27.2	1.095	22	0
4	144	82	32	0	38.5	0.554	37	1
1	83	68	0	0	18.2	0.624	27	0
3	129	64	29	115	26.4	0.219	28	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
1	119	88	41	170	45.3	0.507	26	0
2	94	68	18	76	26	0.561	21	0
0	102	64	46	78	40.6	0.496	21	0
2	115	64	22	0	30.8	0.421	21	0
8	151	78	32	210	42.9	0.516	36	1
4	184	78	39	277	37	0.264	31	1
0	94	0	0	0	0	0.256	25	0
1	181	64	30	180	34.1	0.328	38	1
0	135	94	46	145	40.6	0.284	26	0
1	95	82	25	180	35	0.233	43	1
2	99	0	0	0	22.2	0.108	23	0
3	89	74	16	85	30.4	0.551	38	0
1	80	74	11	60	30	0.527	22	0
2	139	75	0	0	25.6	0.167	29	0
1	90	68	8	0	24.5	1.138	36	0
0	141	0	0	0	42.4	0.205	29	1
12	140	85	33	0	37.4	0.244	41	0
5	147	75	0	0	29.9	0.434	28	0
1	97	70	15	0	18.2	0.147	21	0
6	107	88	0	0	36.8	0.727	31	0
0	189	104	25	0	34.3	0.435	41	1
2	83	66	23	50	32.2	0.497	22	0
4	117	64	27	120	33.2	0.23	24	0
8	108	70	0	0	30.5	0.955	33	1
4	117	62	12	0	29.7	0.38	30	1
0	180	78	63	14	59.4	2.42	25	1
1	100	72	12	70	25.3	0.658	28	0
0	95	80	45	92	36.5	0.33	26	0
0	104	64	37	64	33.6	0.51	22	1
0	120	74	18	63	30.5	0.285	26	0
1	82	64	13	95	21.2	0.415	23	0
2	134	70	0	0	28.9	0.542	23	1
0	91	68	32	210	39.9	0.381	25	0
2	119	0	0	0	19.6	0.832	72	0
2	100	54	28	105	37.8	0.498	24	0
14	175	62	30	0	33.6	0.212	38	1
1	135	54	0	0	26.7	0.687	62	0
5	86	68	28	71	30.2	0.364	24	0
10	148	84	48	237	37.6	1.001	51	1
9	134	74	33	60	25.9	0.46	81	0
9	120	72	22	56	20.8	0.733	48	0
1	71	62	0	0	21.8	0.416	26	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
8	74	70	40	49	35.3	0.705	39	0
5	88	78	30	0	27.6	0.258	37	0
10	115	98	0	0	24	1.022	34	0
0	124	56	13	105	21.8	0.452	21	0
0	74	52	10	36	27.8	0.269	22	0
0	97	64	36	100	36.8	0.6	25	0
8	120	0	0	0	30	0.183	38	1
6	154	78	41	140	46.1	0.571	27	0
1	144	82	40	0	41.3	0.607	28	0
0	137	70	38	0	33.2	0.17	22	0
0	119	66	27	0	38.8	0.259	22	0
7	136	90	0	0	29.9	0.21	50	0
4	114	64	0	0	28.9	0.126	24	0
0	137	84	27	0	27.3	0.231	59	0
2	105	80	45	191	33.7	0.711	29	1
7	114	76	17	110	23.8	0.466	31	0
8	126	74	38	75	25.9	0.162	39	0
4	132	86	31	0	28	0.419	63	0
3	158	70	30	328	35.5	0.344	35	1
0	123	88	37	0	35.2	0.197	29	0
4	85	58	22	49	27.8	0.306	28	0
0	84	82	31	125	38.2	0.233	23	0
0	145	0	0	0	44.2	0.63	31	1
0	135	68	42	250	42.3	0.365	24	1
1	139	62	41	480	40.7	0.536	21	0
0	173	78	32	265	46.5	1.159	58	0
4	99	72	17	0	25.6	0.294	28	0
8	194	80	0	0	26.1	0.551	67	0
2	83	65	28	66	36.8	0.629	24	0
2	89	90	30	0	33.5	0.292	42	0
4	99	68	38	0	32.8	0.145	33	0
4	125	70	18	122	28.9	1.144	45	1
3	80	0	0	0	0	0.174	22	0
6	166	74	0	0	26.6	0.304	66	0
5	110	68	0	0	26	0.292	30	0
2	81	72	15	76	30.1	0.547	25	0
7	195	70	33	145	25.1	0.163	55	1
6	154	74	32	193	29.3	0.839	39	0
2	117	90	19	71	25.2	0.313	21	0
3	84	72	32	0	37.2	0.267	28	0
6	0	68	41	0	39	0.727	41	1
7	94	64	25	79	33.3	0.738	41	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
3	96	78	39	0	37.3	0.238	40	0
10	75	82	0	0	33.3	0.263	38	0
0	180	90	26	90	36.5	0.314	35	1
1	130	60	23	170	28.6	0.692	21	0
2	84	50	23	76	30.4	0.968	21	0
8	120	78	0	0	25	0.409	64	0
12	84	72	31	0	29.7	0.297	46	1
0	139	62	17	210	22.1	0.207	21	0
9	91	68	0	0	24.2	0.2	58	0
2	91	62	0	0	27.3	0.525	22	0
3	99	54	19	86	25.6	0.154	24	0
3	163	70	18	105	31.6	0.268	28	1
9	145	88	34	165	30.3	0.771	53	1
7	125	86	0	0	37.6	0.304	51	0
13	76	60	0	0	32.8	0.18	41	0
6	129	90	7	326	19.6	0.582	60	0
2	68	70	32	66	25	0.187	25	0
3	124	80	33	130	33.2	0.305	26	0
6	114	0	0	0	0	0.189	26	0
9	130	70	0	0	34.2	0.652	45	1
3	125	58	0	0	31.6	0.151	24	0
3	87	60	18	0	21.8	0.444	21	0
1	97	64	19	82	18.2	0.299	21	0
3	116	74	15	105	26.3	0.107	24	0
0	117	66	31	188	30.8	0.493	22	0
0	111	65	0	0	24.6	0.66	31	0
2	122	60	18	106	29.8	0.717	22	0
0	107	76	0	0	45.3	0.686	24	0
1	86	66	52	65	41.3	0.917	29	0
6	91	0	0	0	29.8	0.501	31	0
1	77	56	30	56	33.3	1.251	24	0
4	132	0	0	0	32.9	0.302	23	1
0	105	90	0	0	29.6	0.197	46	0
0	57	60	0	0	21.7	0.735	67	0
0	127	80	37	210	36.3	0.804	23	0
3	129	92	49	155	36.4	0.968	32	1
8	100	74	40	215	39.4	0.661	43	1
3	128	72	25	190	32.4	0.549	27	1
10	90	85	32	0	34.9	0.825	56	1
4	84	90	23	56	39.5	0.159	25	0
1	88	78	29	76	32	0.365	29	0
8	186	90	35	225	34.5	0.423	37	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
5	187	76	27	207	43.6	1.034	53	1
4	131	68	21	166	33.1	0.16	28	0
1	164	82	43	67	32.8	0.341	50	0
4	189	110	31	0	28.5	0.68	37	0
1	116	70	28	0	27.4	0.204	21	0
3	84	68	30	106	31.9	0.591	25	0
6	114	88	0	0	27.8	0.247	66	0
1	88	62	24	44	29.9	0.422	23	0
1	84	64	23	115	36.9	0.471	28	0
7	124	70	33	215	25.5	0.161	37	0
1	97	70	40	0	38.1	0.218	30	0
8	110	76	0	0	27.8	0.237	58	0
11	103	68	40	0	46.2	0.126	42	0
11	85	74	0	0	30.1	0.3	35	0
6	125	76	0	0	33.8	0.121	54	1
0	198	66	32	274	41.3	0.502	28	1
1	87	68	34	77	37.6	0.401	24	0
6	99	60	19	54	26.9	0.497	32	0
0	91	80	0	0	32.4	0.601	27	0
2	95	54	14	88	26.1	0.748	22	0
1	99	72	30	18	38.6	0.412	21	0
6	92	62	32	126	32	0.085	46	0
4	154	72	29	126	31.3	0.338	37	0
0	121	66	30	165	34.3	0.203	33	1
3	78	70	0	0	32.5	0.27	39	0
2	130	96	0	0	22.6	0.268	21	0
3	111	58	31	44	29.5	0.43	22	0
2	98	60	17	120	34.7	0.198	22	0
1	143	86	30	330	30.1	0.892	23	0
1	119	44	47	63	35.5	0.28	25	0
6	108	44	20	130	24	0.813	35	0
2	118	80	0	0	42.9	0.693	21	1
10	133	68	0	0	27	0.245	36	0
2	197	70	99	0	34.7	0.575	62	1
0	151	90	46	0	42.1	0.371	21	1
6	109	60	27	0	25	0.206	27	0
12	121	78	17	0	26.5	0.259	62	0
8	100	76	0	0	38.7	0.19	42	0
8	124	76	24	600	28.7	0.687	52	1
1	93	56	11	0	22.5	0.417	22	0
8	143	66	0	0	34.9	0.129	41	1
6	103	66	0	0	24.3	0.249	29	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
3	176	86	27	156	33.3	1.154	52	1
0	73	0	0	0	21.1	0.342	25	0
11	111	84	40	0	46.8	0.925	45	1
2	112	78	50	140	39.4	0.175	24	0
3	132	80	0	0	34.4	0.402	44	1
2	82	52	22	115	28.5	1.699	25	0
6	123	72	45	230	33.6	0.733	34	0
0	188	82	14	185	32	0.682	22	1
0	67	76	0	0	45.3	0.194	46	0
1	89	24	19	25	27.8	0.559	21	0
1	173	74	0	0	36.8	0.088	38	1
1	109	38	18	120	23.1	0.407	26	0
1	108	88	19	0	27.1	0.4	24	0
6	96	0	0	0	23.7	0.19	28	0
1	124	74	36	0	27.8	0.1	30	0
7	150	78	29	126	35.2	0.692	54	1
4	183	0	0	0	28.4	0.212	36	1
1	124	60	32	0	35.8	0.514	21	0
1	181	78	42	293	40	1.258	22	1
1	92	62	25	41	19.5	0.482	25	0
0	152	82	39	272	41.5	0.27	27	0
1	111	62	13	182	24	0.138	23	0
3	106	54	21	158	30.9	0.292	24	0
3	174	58	22	194	32.9	0.593	36	1
7	168	88	42	321	38.2	0.787	40	1
6	105	80	28	0	32.5	0.878	26	0
11	138	74	26	144	36.1	0.557	50	1
3	106	72	0	0	25.8	0.207	27	0
6	117	96	0	0	28.7	0.157	30	0
2	68	62	13	15	20.1	0.257	23	0
9	112	82	24	0	28.2	1.282	50	1
0	119	0	0	0	32.4	0.141	24	1
2	112	86	42	160	38.4	0.246	28	0
2	92	76	20	0	24.2	1.698	28	0
6	183	94	0	0	40.8	1.461	45	0
0	94	70	27	115	43.5	0.347	21	0
2	108	64	0	0	30.8	0.158	21	0
4	90	88	47	54	37.7	0.362	29	0
0	125	68	0	0	24.7	0.206	21	0
0	132	78	0	0	32.4	0.393	21	0
5	128	80	0	0	34.6	0.144	45	0
4	94	65	22	0	24.7	0.148	21	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
7	114	64	0	0	27.4	0.732	34	1
0	102	78	40	90	34.5	0.238	24	0
2	111	60	0	0	26.2	0.343	23	0
1	128	82	17	183	27.5	0.115	22	0
10	92	62	0	0	25.9	0.167	31	0
13	104	72	0	0	31.2	0.465	38	1
5	104	74	0	0	28.8	0.153	48	0
2	94	76	18	66	31.6	0.649	23	0
7	97	76	32	91	40.9	0.871	32	1
1	100	74	12	46	19.5	0.149	28	0
0	102	86	17	105	29.3	0.695	27	0
4	128	70	0	0	34.3	0.303	24	0
6	147	80	0	0	29.5	0.178	50	1
4	90	0	0	0	28	0.61	31	0
3	103	72	30	152	27.6	0.73	27	0
2	157	74	35	440	39.4	0.134	30	0
1	167	74	17	144	23.4	0.447	33	1
0	179	50	36	159	37.8	0.455	22	1
11	136	84	35	130	28.3	0.26	42	1
0	107	60	25	0	26.4	0.133	23	0
1	91	54	25	100	25.2	0.234	23	0
1	117	60	23	106	33.8	0.466	27	0
5	123	74	40	77	34.1	0.269	28	0
2	120	54	0	0	26.8	0.455	27	0
1	106	70	28	135	34.2	0.142	22	0
2	155	52	27	540	38.7	0.24	25	1
2	101	58	35	90	21.8	0.155	22	0
1	120	80	48	200	38.9	1.162	41	0
11	127	106	0	0	39	0.19	51	0
3	80	82	31	70	34.2	1.292	27	1
10	162	84	0	0	27.7	0.182	54	0
1	199	76	43	0	42.9	1.394	22	1
8	167	106	46	231	37.6	0.165	43	1
9	145	80	46	130	37.9	0.637	40	1
6	115	60	39	0	33.7	0.245	40	1
1	112	80	45	132	34.8	0.217	24	0
4	145	82	18	0	32.5	0.235	70	1
10	111	70	27	0	27.5	0.141	40	1
6	98	58	33	190	34	0.43	43	0
9	154	78	30	100	30.9	0.164	45	0
6	165	68	26	168	33.6	0.631	49	0
1	99	58	10	0	25.4	0.551	21	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
10	68	106	23	49	35.5	0.285	47	0
3	123	100	35	240	57.3	0.88	22	0
8	91	82	0	0	35.6	0.587	68	0
6	195	70	0	0	30.9	0.328	31	1
9	156	86	0	0	24.8	0.23	53	1
0	93	60	0	0	35.3	0.263	25	0
3	121	52	0	0	36	0.127	25	1
2	101	58	17	265	24.2	0.614	23	0
2	56	56	28	45	24.2	0.332	22	0
0	162	76	36	0	49.6	0.364	26	1
0	95	64	39	105	44.6	0.366	22	0
4	125	80	0	0	32.3	0.536	27	1
5	136	82	0	0	0	0.64	69	0
2	129	74	26	205	33.2	0.591	25	0
3	130	64	0	0	23.1	0.314	22	0
1	107	50	19	0	28.3	0.181	29	0
1	140	74	26	180	24.1	0.828	23	0
1	144	82	46	180	46.1	0.335	46	1
8	107	80	0	0	24.6	0.856	34	0
13	158	114	0	0	42.3	0.257	44	1
2	121	70	32	95	39.1	0.886	23	0
7	129	68	49	125	38.5	0.439	43	1
2	90	60	0	0	23.5	0.191	25	0
7	142	90	24	480	30.4	0.128	43	1
3	169	74	19	125	29.9	0.268	31	1
0	99	0	0	0	25	0.253	22	0
4	127	88	11	155	34.5	0.598	28	0
4	118	70	0	0	44.5	0.904	26	0
2	122	76	27	200	35.9	0.483	26	0
6	125	78	31	0	27.6	0.565	49	1
1	168	88	29	0	35	0.905	52	1
2	129	0	0	0	38.5	0.304	41	0
4	110	76	20	100	28.4	0.118	27	0
6	80	80	36	0	39.8	0.177	28	0
10	115	0	0	0	0	0.261	30	1
2	127	46	21	335	34.4	0.176	22	0
9	164	78	0	0	32.8	0.148	45	1
2	93	64	32	160	38	0.674	23	1
3	158	64	13	387	31.2	0.295	24	0
5	126	78	27	22	29.6	0.439	40	0
10	129	62	36	0	41.2	0.441	38	1
0	134	58	20	291	26.4	0.352	21	0

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
3	102	74	0	0	29.5	0.121	32	0
7	187	50	33	392	33.9	0.826	34	1
3	173	78	39	185	33.8	0.97	31	1
10	94	72	18	0	23.1	0.595	56	0
1	108	60	46	178	35.5	0.415	24	0
5	97	76	27	0	35.6	0.378	52	1
4	83	86	19	0	29.3	0.317	34	0
1	114	66	36	200	38.1	0.289	21	0
1	149	68	29	127	29.3	0.349	42	1
5	117	86	30	105	39.1	0.251	42	0
1	111	94	0	0	32.8	0.265	45	0
4	112	78	40	0	39.4	0.236	38	0
1	116	78	29	180	36.1	0.496	25	0
0	141	84	26	0	32.4	0.433	22	0
2	175	88	0	0	22.9	0.326	22	0
2	92	52	0	0	30.1	0.141	22	0
3	130	78	23	79	28.4	0.323	34	1
8	120	86	0	0	28.4	0.259	22	1
2	174	88	37	120	44.5	0.646	24	1
2	106	56	27	165	29	0.426	22	0
2	105	75	0	0	23.3	0.56	53	0
4	95	60	32	0	35.4	0.284	28	0
0	126	86	27	120	27.4	0.515	21	0
8	65	72	23	0	32	0.6	42	0
2	99	60	17	160	36.6	0.453	21	0
1	102	74	0	0	39.5	0.293	42	1
11	120	80	37	150	42.3	0.785	48	1
3	102	44	20	94	30.8	0.4	26	0
1	109	58	18	116	28.5	0.219	22	0
9	140	94	0	0	32.7	0.734	45	1
13	153	88	37	140	40.6	1.174	39	0
12	100	84	33	105	30	0.488	46	0
1	147	94	41	0	49.3	0.358	27	1
1	81	74	41	57	46.3	1.096	32	0
3	187	70	22	200	36.4	0.408	36	1
6	162	62	0	0	24.3	0.178	50	1
4	136	70	0	0	31.2	1.182	22	1
1	121	78	39	74	39	0.261	28	0
3	108	62	24	0	26	0.223	25	0
0	181	88	44	510	43.3	0.222	26	1
8	154	78	32	0	32.4	0.443	45	1
1	128	88	39	110	36.5	1.057	37	1

Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	BMI	Diabetes Pedigree Function	Age	Outcome
7	137	90	41	0	32	0.391	39	0
0	123	72	0	0	36.3	0.258	52	1
1	106	76	0	0	37.5	0.197	26	0
6	190	92	0	0	35.5	0.278	66	1
2	88	58	26	16	28.4	0.766	22	0
9	170	74	31	0	44	0.403	43	1
9	89	62	0	0	22.5	0.142	33	0
10	101	76	48	180	32.9	0.171	63	0
2	122	70	27	0	36.8	0.34	27	0
5	121	72	23	112	26.2	0.245	30	0
1	126	60	0	0	30.1	0.349	47	1
1	93	70	31	0	30.4	0.315	23	0