Notes of "Elementary Facts about Series"

Jinxin Wang

1 Overview

- The sum of a series and the Cauchy criterion for convergence of a series
 - Def: A (infinite) series
 - Def: The terms of a series and the n-th term
 - Def: The (n-th) partial sum of a series
 - Def: A convergent or divergent series
 - Def: The sum of a series
 - Thm: The Cauchy convergence criterion for a series
 - Cor: The equivalence of the convergence between two series with only finite terms different
 - Cor: A necessary condition for a series to be convergent in terms of the limit of its terms
- Absolute convergence, the comparison theorem and its consequences
 - Def: A series is absolutely convergent
 - Rmk: Absolute convergence implies convergence, but the opposite is not true
 - Thm: Criterion for convergence of series of nonnegative terms in terms of bounds
 - Thm: (Comparison theorem) Test for convergence of series of nonnegative terms in terms of comparison with another nonnegative series
 - Cor: (The Weierstrass M-test for absolute convergence)
 - Cor: (Cauchy's test)
 - Cor: (d'Alembert's test)
 - Prop: (Cauchy) A necessary and sufficient condition for a monotonic nonnegative series to be absolutely convergent in terms of the generated series $\sum_{k=0}^{\infty} 2^k a_{2^k}$
 - Cor: The convergence of the series $\zeta(p) = \sum_{n=1}^{\infty} \frac{1}{n^p}$
- The number e as the sum of a series

2 The sum of a series and the Cauchy criterion for convergence of a series

3 Absolute convergence, the comparison theorem and its consequences

Definition 1 (A series is absolutely convergent). The series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the series $\sum_{n=1}^{\infty} |a_n|$ is convergent.

Remark 1 (Absolute convergence implies convergence, but the opposite is not true).

Theorem 1 (Criterion for convergence of series of nonnegative terms in terms of bounds).

Theorem 2 ((Comparison theorem) Test for convergence of series of nonnegative terms in terms of comparison with another nonnegative series).

Corollary 1 ((The Weierstrass M-test for absolute convergence)). Let $\Sigma_{n=1}^{\infty} a_n$ and $\Sigma_{n=1}^{\infty} b_n$ be series. Suppose there exists an index $N \in \mathbb{N}$ such that $|a_n| \leq b_n$ for all n > N. Then a sufficient condition for absolute condition of the series $\Sigma_{n=1}^{\infty} a_n$ is that the series $\Sigma_{n=1}^{\infty} b_n$ converge.

4 The number e as the sum of a series