Nom, Prénom : CORRECTION 26 mai 2023

Évaluation probabilités (sujet A)

Exercice 1:

- 1. Compléter les phrases suivantes :
 - A est l'évènement contraire de A.
 - A ∩ B est l'évènement A ET B.
 - A ∪ B est l'évènement A ou B.
- 2. Si on sait que P(A) = 0.4, P(B) = 0.3 et $P(A \cap B) = 0.1$, quelle est la probabilité de $A \cup B$? 0.6

Exercice 2:

1.

2. La probabilité d'obtenir un 1 au premier lancé et un 3 au deuxième lancé est

$$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$$

3. Les issues donnant au moins un 2 sur les deux lancés sont : (1;2), (2;1), (2;2), (2;3), (3;2). La probabilité est donc

$$\frac{1}{3} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{3} + \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6} = \frac{11}{36}$$

Exercice 3:

1.

Succès Traitement	Réussi	Échoue	TOTAL
Traitement A	130	10	140
Traitement B	390	20	410
Traitement C	340	110	450
TOTAL	860	140	1000

2.
$$P(C \cap E) = \frac{110}{1000} = 0.11 \text{ et } P(A \cap R) = \frac{130}{1000} = 0.13.$$

3. Le traitement A a $\frac{130}{140} \approx 93\%$ de chances de réussite;

Le traitement B a $\frac{390}{410} \approx 95\%$ de chances de réussite;

Le traitement C a $\frac{340}{450} \approx 75\%$ de chances de réussite.

Le traitement B semble donc meilleur.

Nom, Prénom : CORRECTION 26 mai 2023

Évaluation probabilités (sujet B)

Exercice 1:

- 1. Compléter les phrases suivantes :
 - A est l'évènement contraire de A.
 - A ∩ B est l'évènement A ET B.
 - A ∪ B est l'évènement A ou B.
- 2. Si on sait que P(A) = 0.5, P(B) = 0.4 et $P(A \cap B) = 0.2$, quelle est la probabilité de $A \cup B$? 0.7

Exercice 2:

1.

2. La probabilité d'obtenir un 1 au premier lancé et un 3 au deuxième lancé est

$$\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$$

3. Les issues donnant au moins un 2 sur les deux lancés sont : (1;2), (2;1), (2;2), (2;3), (3;2). La probabilité est donc

$$\frac{1}{6} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{1}{3} + \frac{1}{3} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{3} = \frac{5}{9}$$

Exercice 3:

1.

Succès Traitement	Réussi	Échoue	TOTAL
Traitement A	120	10	130
Traitement B	400	30	430
Traitement C	330	110	440
TOTAL	850	150	1000

2.
$$P(A \cap E) = \frac{10}{1000} = 0.01 \text{ et } P(C \cap R) = \frac{330}{1000} = 0.33.$$

3. Le traitement A a $\frac{120}{130} \approx 92\%$ de chances de réussite;

Le traitement B a $\frac{400}{430} \approx 93\%$ de chances de réussite;

Le traitement C a $\frac{330}{440}$ = 75% de chances de réussite.

Le traitement B semble donc meilleur.