

Prever Resultados de Futebol

Aprendizagem Supervisionada - Classificação

João Abelha - up201706412

João Varela - up201706072

Vítor Barbosa - up201703591

Inteligência Artificial

Definição do Problema

Objetivo:

- Prever o resultado de jogos de futebol, construindo classificadores que calculam a probabilidade do resultado de cada jogo (vitória, empate ou derrota).
- Comparar o desempenho de diferentes algoritmos de aprendizagem e compreender a influência dos dados no mesmo.

Dados Iniciais:

- Estatísticas retiradas de jogos de futebol.
- Atributos dos jogadores (retirado do jogo FIFA).
- odds de cada jogo (retiradas de 10 sites de apostas diferentes).

Algoritmos e Técnicas

Ferramentas

Python - não só é uma linguagem com uma grande simplicidade e legibilidade, mas contém também poderosas frameworks e bibliotecas que tornam mais simples o desenvolvimento de projetos de aprendizagem supervisionada, cujos algoritmos associados são normalmente bastante complexos.

- Scikit-learn extensa biblioteca com um enorme leque de algoritmos úteis à aprendizagem computacional.
- **Keras** biblioteca dedicada a redes neuronais.
- Pandas biblioteca usada para análise de dados.
- Numpy biblioteca usada para análise de dados.
- Matplotlib biblioteca para visualização de dados.

Jupyter Notebooks - ambiente de desenvolvimento ideal para o desenvolvimento de projetos, permitindo um *workflow* rápido graças às suas funcionalidades que permitem intercalar código com visualização de dados e correr rapidamente *snippets* de código.

Seleção e Exploração

Fig 1 - Número de Jogos por Liga

Fig 2 - Peso dos Atributos no Overall dos Jogadores

Pre-processing: Data Aggregation

Match

home_team_goals_difference away_team_goals_difference games won home team games_won_away_team games_against_home games_against_away home player 1 overall rating home_player_2_overall_rating away_player_1_overall_rating away_player_2_overall_rating odds win odds_draw odds_lose label

Pre-processing: Dimensionality Reduction

Fig 3 - **Univariate Selection**

Fig 5 - Feature Weighting

Fig 4 - Principal Component Analysis

Juntando os

overalls de cada

jogador

Fig 6 - Feature Weighting with Team's Overall

Pre-processing: Data Normalization

home_player_1_overall_rating	home_player_2_overall_rating	home_player_3_overall_rating
58.0	57.0	67.0
64.0	64.0	63.0
67.0	72.0	69.0
58.0	57.0	67.0
61.0	66.0	61.0

home_player_1_overall_rating	home_player_2_overall_rating	home_player_3_overall_rating
0.3125	0.319149	0.500000
0.4375	0.468085	0.409091
0.5000	0.638298	0.545455
0.3125	0.319149	0.500000
0.3750	0.510638	0.363636

Data Mining

K-Fold Cross Validation:

Algoritmos Utilizados:

Support Vector
Machine

Árvores de Decisão

Redes Neuronais

K-Nearest Neighbor

Decision Tree

Fig 6 - **Decision Tree Accuracy**

Fig 7 - **Decision Tree Accuracy** ("Minified dataset)

Decision Tree	
Accuracy	0.52541
Precision	0.36483
Recall	0.43538
F1-Score	0.37805
Loss	1.0333
Time (s)	31.0

Tab 1 - **Decision Tree Metrics**

Random Forest

Fig 8 - Random Forest Accuracy

Random Forest	
Accuracy	0.52479
Precision	0.42584
Recall	0.43116
F1-Score	0.41177
Loss	1.05146
Time (s)	878.8

Tab 2 - Random Forest Metrics

Fig 9 - Random Forest vs Decision Tree

K Nearest Neighbors and Support Vector Machine

Fig 10 - KNN Accuracy

KNN	
Accuracy	0.50210
Precision	0.4181
Recall	0.4282
F1-Score	0.40796
Loss	1.0568
Time (s)	876.8

Tab 3 - KNN Metrics

Fig 11 - **SVM Accuracy**

SVM	
Accuracy	0.46505
Precision	0.39528
Recall	0.41329
F1-Score	0.38881
Loss	1.02189
Time (s)	2001.3

Tab 4 - **SVM Metrics**

Neural Network

Fig 12 - Neural Network Training

Fig 13 - **Neural Network Confusion Matrix**

Neural Network	
Accuracy	0.521983
Precision	0.59201
Recall	0.2678
F1-Score	0.2485
Loss	1.00876
Time (s)	31.3

Tab 5 - Neural Network Metrics

Classifiers Comparison

Fig 14 - Classifier Metrics Comparison

Odds Predictions

Fig 15 - Odds Confusion Matrix

Odds	
Accuracy	0.5124
Precision	0.4738
Recall	0.5223
F1-Score	0.4719
Loss	0.8912

Tab 6 - Odds Predictions Metrics

Fig 16 - Odds vs Decision Tree

Conclusões

- O projecto foi desenvolvido com sucesso e de uma forma robusta.
- Comparando os diferentes algoritmos de aprendizagem supervisionada, o Decision Tree resultou na melhor performance.
- A replicabilidade e robustez dos resultados foi assegurada graças ao K-Cross Fold Validation.
- A abordagem realizada pode ser facilmente aplicada a outros tipos de problemas de classificação com sucesso, dado termos seguido cuidadosamente uma pipeline que tenta derrubar problemas que surgem na aprendizagem supervisionada.
- Atingiu-se uma *accuracy* acima dos 50% o que é relativamente alto, tendo em conta o número de fatores que afetam o resultado de um jogo de futebol.
- Compreensão e consolidação de vários conteúdos relacionados com aprendizagem supervisionada, bem como aquisição de conhecimentos sobre as ferramentas que o Python fornece ligadas à aprendizagem computacional.

Trabalho Futuro

- Testar a criação de features diferentes (p.e. diferença de golos na época em questão)
- Incluir outros datasets sem ser do jogo FIFA.
- Investigar mais técnicas e algoritmos de aprendizagem supervisionada.

Referências

- A machine learning framework for sport result prediction https://www.sciencedirect.com/science/article/pii/S2210832717301485
- Feature Selection Techniques https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e
- Classification with Keras https://www.pluralsight.com/guides/classification-keras
- Working with Categorical Data https://towardsdatascience.com/understanding-feature-engineering-part-2-categorical-data-f54324193e63
- Machine Learning Notebook
 https://github.com/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipvnb
- Dataset Usado https://www.kaggle.com/hugomathien/soccer

Prever Resultados de Futebol

Aprendizagem Supervisionada - Classificação

João Abelha - up201706412

João Varela - up201706072

Vítor Barbosa - up201703591

Inteligência Artificial