UDC

SL

中华人民共和国水利行业标准

Ρ

SL265-2001

水闸设计规范

Design specification for sluice

2001-02-28 发布

2001-04-01 实施

前 言

根据水利部水利水电规划设计总院水规设字 (1995) 0037 号 "关于开展《水闸设计规范》(SD133—84) 修订工作的意见"、水利部水利水电规划设计管理局水规局技 [1997] 7 号 "关于印发水利水电勘测设计技术标准修订工作会议有关文件的通知",对 SD133—84 (以下简称原规范) 进行修订。

修订后的 SL265—2001《水闸设计规范》(以下简称本规范)主要包括下列技术内容:

- ——水闸的等级划分及洪水标准;
- ——水闸的闸址选择和总体布置:
- ——水闸的水力设计和防渗排水设计:
- ---水闸的结构设计:
- ——水闸的地基计算及处理设计;
- ——水闸的观测设计等。

对原规范进行修订的主要技术内容如下:

- ——拓宽了原规范的适用范围,在各章节中增加了有关山区、 丘陵区水闸及建于岩石地基上水闸设计的若干规定;
 - 一一增加了有关水闸等级划分及洪水标准的规定:
- ——对有关水闸闸址选择方面的规定内容进行了修改和 增订:
- 一增加了有关水闸枢纽布置的规定,并对有关水闸闸室结构、防渗排水设施、消能防冲设施和两岸连接结构等选型布置方面的规定内容进行了修改和增订(包括增加了闸室胸墙结构、冻胀土地基上和地震区的水闸结构、垂直防渗体和排水设施、大型多孔水闸消能防冲设施的选型布置等);
- ——对有关水闸闸孔总净宽计算、消能防冲设施的设计计算 和闸门控制运用方式的拟定等方面的规定内容进行了修改和增订

(包括修改了以堰上水头为主要因素的闸孔总净宽计算公式和系数表、消力池深度和底板厚度的计算公式等,增加了以流速水头为主要因素的闸孔总净宽计算公式、上游护底首端的河床冲刷深度计算公式和跌坎面流式消能计算公式等);

- 一对有关闸基渗透压力计算、闸基抗渗稳定性验算、滤层设计和永久缝止水设计等方面的规定内容进行了修改和增订(包括增加了岩石地基上水闸闸基防渗帷幕和排水孔设计的规定以及岩石地基上闸基渗透压力计算公式等);
- 一对有关水闸荷载计算及组合、闸室和岸墙、翼墙的稳定 计算、结构应力分析等方面的规定内容进行了修改和增订(包括 修改了荷载类别及荷载组合表、闸室底板应力分析中对底板自重 和边荷载的取值等,增加了水闸结构对材料的要求、土压力计算 公式、岩石地基上闸室抗滑稳定计算公式、闸室检修时抗浮稳定 计算公式和岩石地基上翼墙抗倾覆稳定计算公式等);
- 一对有关岩土分类及其试验方法、水闸地基整体稳定计算、 地基沉降计算和地基处理设计等方面的规定内容进行了修改和增 订(包括修改了土的分类方法和水闸地基沉降计算公式等,增加 了岩石分类方法、岩石与碎石土地基允许承载力指标、计算土质 地基允许承载力的汉森公式、土质地基附加应力计算公式、岩石 地基的处理方法和土质地基强力夯实处理方法等);
- ——对有关水闸观测项目的设置、观测设施的布置、观测方 法的拟定和整理分析观测资料的技术要求等方面的规定内容进行 了修改和增订。

本规范解释单位:水利部水利水电规划设计总院本规范主编单位:江苏省水利勘测设计研究院本规范参编单位:水利部四川水利水电勘测设计研究院本规范主要起草人:陈登毅 张平易 许宗喜 吴明全 袁文健

目 次

Ⅰ 尽则·······	• • • • • • • • • • • • • • • • • • • •	(1)
2 水闸等级划分及洪水标准	• • • • • • • • • • • • • • • • • • • •	(2)
2.1 工程等别及建筑物级别	• • • • • • • • • • • • • • • • • • • •	(2)
2.2 洪水标准	• • • • • • • • • • • • • • • • • • • •	(3)
3 闸址选择	• • • • • • • • • • • • • • • • • • • •	(6)
4 总体布置	• • • • • • • • • • • • • • • • • • • •	(8)
4.1 枢纽布置	• • • • • • • • • • • • • • • • • • • •	(8)
4.2 闸室布置	••••••	(9)
4.3 防渗排水布置	•••••	(14)
4.4 消能防冲布置 ······	••••••	(17)
4.5 两岸连接布置	••••••	(18)
5 水力设计	••••••	(20)
6 防渗排水设计	••••••	(22)
7 结构设计		(25)
7.1 一般规定		(25)
7.2 荷载计算及组合		(26)
7.3 闸室稳定计算		(29)
7.4 岸墙、翼墙稳定计算		(35)
7.5 结构应力分析		(36)
8 地基计算及处理设计		(39)
8.1 一般规定		(39)
8.2 地基整体稳定计算		(41)
8.3 地基沉降计算		(42)
8.4 地基处理设计		(44)
9 观测设计		(49)
附录 A 闸孔总净宽计算 ······		(51)

•	
附录 B 消能防冲计算 ····································	···· (56)
附录 C 渗透压力计算 ····································	(60)
附录 D 土压力计算 ····································	(66)
附录 E 浪压力计算	(70)
附录 F 岩土分类 ····································	(76)
附录 G 土质地基划分 ····································	(82)
附录 H 地基允许承载力计算 ······	(83)
附录 J 地基附加应力计算	·· (109)
本规范的用词和用语说明	(121)
条文说明	(123)

1 总 则

- 1.0.1 为了适应水闸工程建设的需要,统一水闸设计标准和技术要求,提高水闸设计水平,做到技术先进、安全可靠、经济合理、实用耐久、管理方便,特制定本规范。
- 1.0.2 本规范适用于新建、扩建的大、中型水闸设计。大、中型水闸的加固、改建设计以及小型水闸设计可参照使用。

对于特殊重要的大型水闸设计,应进行专门研究。

- 1.0.3 水闸设计应认真搜集和整理各项基本资料。选用的基本资料应准确可靠,满足设计要求。
- 1.0.4 水闸设计应从实际出发,广泛吸取工程实践经验,进行必要的科学试验,积极采用新结构、新技术、新材料、新设备。
- 1.0.5 水闸设计除应符合本规范外,尚应符合国家现行的有关标准的规定。

2 水闸等级划分及洪水标准

2.1 工程等别及建筑物级别

2.1.1 平原区水闸枢纽工程应根据水闸最大过闸流量及其防护 对象的重要性划分等别,其等别应按表 2.1.1 确定。

规模巨大或在国民经济中占有特殊重要地位的水闸枢纽工程,其等别应经论证后报主管部门批准确定。

X 2. 1. 1 WEST 12 X 4.18 W							
工程等别	I	1	II	IV	V		
规 模	大(1)型	大(2)型	中型	小(1)型	小(2)型		
最大过闸流量 (m³/s)	≥5000	5000~1000	1000~100	100~20	<20		
防护对象的重要性	特别重要	重要	中等	一般	_		

表 2.1.1 平原区水闸枢纽工程分等指标

2.1.2 水闸枢纽中的水工建筑物应根据其所属枢纽工程等别、作用和重要性划分级别,其级别应按表 2.1.2 确定。

T 49 M DI	永久性建	16-11-41-7 4 -65-45-67 DI	
工程等别	主要建筑物	次要建筑物	临时性建筑物级别
Ι .	1	3	4
I	2	3	4
I	3	4	5
IV	4	5	5
V	5	5	_

表 2.1.2 水闸枢纽建筑物级别划分

注: 永久性建筑物指枢纽工程运行期间使用的建筑物;主要建筑物指失事后将造成下游灾害或严重影响工程效益的建筑物;次要建筑物指失事后不致造成下游灾害或对工程效益影响不大并易于修复的建筑物;临时性建筑物指枢纽工程施工期间使用的建筑物。

注: 当按表列最大过闸流量及防护对象重要性分别确定的等别不同时,工程等别 应经综合分析确定。

- 2.1.3 山区、丘陵区水利水电枢纽中的水闸,其级别可根据所属枢纽工程的等别及水闸自身的重要性按表 2.1.2 确定。山区、丘陵区水利水电枢纽工程等别应按国家现行的 SL252—2000《水利水电工程等级划分及洪水标准》的规定确定。
- **2.1.4** 灌排渠系上的水闸,其级别可按现行的 GB 50288—99《灌溉与排水工程设计规范》的规定确定。
- 2.1.5 位于防洪(挡潮)堤上的水闸,其级别不得低于防洪(挡潮)堤的级别。
- 2.1.6 对失事后造成巨大损失或严重影响,或采用实践经验较少的新型结构的 2~5 级主要建筑物,经论证并报主管部门批准后可提高一级设计;对失事后造成损失不大或影响较小的 1~4 级主要建筑物,经论证并报主管部门批准后可降低一级设计。

2.2 洪 水 标 准

2.2.1 平原区水闸的洪水标准应根据所在河流流域防洪规划规定的防洪任务,以近期防洪目标为主,并考虑远景发展要求,按表2.2.1 所列标准综合分析确定。

水闸级别 2 1 3 5 洪水重现期 设计 $100 \sim 50$ 50~30 $30 \sim 20$ 20~10 10 (a) 校核 300~200 200~100 $100 \sim 50$ 50~30 30~20

表 2.2.1 平原区水闸洪水标准

2.2.2 挡潮闸的设计潮水标准应按表 2.2.2 确定。兼有排涝任务的挡潮闸,其设计排涝标准可按表 2.2.4 确定。

表 2.2.2 挡潮闸设计潮水标准

挡潮闸级别	1	2	3	4	5
设计潮水位重现期 (a)	≥100	100~50	50~20	20~10	10

注: 若确定的设计潮水位低于当地历史最高潮水位时,应以当地历史最高潮水位 作为校核潮水标准。

- 2.2.3 山区、丘陵区水利水电枢纽中的水闸,其洪水标准应与所属枢纽中永久性建筑物的洪水标准一致。山区、丘陵区水利水电枢纽中永久性建筑物的洪水标准应按国家现行的 SL252—2000 的规定确定。
- 2. 2. 4 灌排渠系上的水闸,其洪水标准应按表 2. 2. 4 确定。

表 2.2.4 灌排渠系上的水闸设计洪水标准

灌排渠系上的水闸级别	1	2	3	4	5
设计洪水重现期 (a)	100~50	50~30	30~20	20~10	10

注, 灌排渠系上的水闸校核洪水标准, 可视具体情况和需要研究确定。

- 2.2.5 位于防洪(挡潮)堤上的水闸,其防洪(挡潮)标准不得低于防洪(挡潮)堤的防洪(挡潮)标准。
- **2.2.6** 按本规范 2.1.6条规定提高或降低一级设计的水闸,其洪水标准可按提高或降低后的级别确定。
- 2.2.7 平原区水闸闸下消能防冲的洪水标准应与该水闸洪水标准一致,并应考虑泄放小于消能防冲设计洪水标准的流量时可能出现的不利情况。

山区、丘陵区水闸闸下消能防冲设计洪水标准,可按表 2.2.7 确定,并应考虑泄放小于消能防冲设计洪水标准的流量时可能出现的不利情况。当泄放超过消能防冲设计洪水标准的流量时,允许消能防冲设施出现局部破坏,但必须不危及水闸闸室安全,且易于修复,不致长期影响工程运行。

表 2. 2. 7 山区、丘陵区水闸闸下消能防冲设计洪水标准

水闸级别	1	2	3	4	5
闸下消能防冲设计洪水重现期 (a)	100	50	30	20	10

2.2.8 4、5 级临时性建筑物的洪水标准应根据其结构类别按表 2.2.8 的规定幅度,结合风险度综合分析合理选定。对失事后果严重的重要工程,应考虑遭遇超标准洪水的应急措施。

表 2.2.8 临时性建筑物洪水标准

	建筑物	匆 级 别
建筑物类型	4	5
	洪水重	现 期 (a)
土 石 结 构	20~10	10~5
混凝土、浆砌石结构	10~5	5~3

3 闸 址 选 择

- 3.0.1 闸址应根据水闸的功能、特点和运用要求,综合考虑地形、 地质、水流、潮汐、泥沙、冻土、冰情、施工、管理、周围环境等因素, 经技术经济比较后选定。
- 3.0.2 闸址宜选择在地形开阔、岸坡稳定、岩土坚实和地下水水位较低的地点。

闸址宜优先选用地质条件良好的天然地基,避免采用人工处理地基。

- **3.0.3** 节制闸或泄洪闸闸址宜选择在河道顺直、河势相对稳定的河段,经技术经济比较后也可选择在弯曲河段裁弯取直的新开河道上。
- 3.0.4 进水闸、分水闸或分洪闸闸址宜选择在河岸基本稳定的顺直河段或弯道凹岸顶点稍偏下游处,但分洪闸闸址不宜选择在险工堤段和被保护重要城镇的下游堤段。
- 3.0.5 排水闸(排涝闸)或泄水闸(退水闸)闸址宜选择在地势低洼、出水通畅处,排水闸(排涝闸)闸址且宜选择在靠近主要涝区和容泄区的老堤堤线上。
- 3.0.6 挡潮闸闸址宜选择在岸线和岸坡稳定的潮汐河口附近,且闸址泓滩冲淤变化较小、上游河道有足够的蓄水容积的地点。
- 3.0.7 若在多支流汇合口下游河道上建闸,选定的闸址与汇合口之间宜有一定的距离。
- 3.0.8 若在平原河网地区交叉河口附近建闸,选定的闸址宜在距离交叉河口较远处。
- 3.0.9 若在铁路桥或 I、I级公路桥附近建闸,选定的闸址与铁路桥或 I、I级公路桥的距离不宜太近。
- 3.0.10 选择闸址应考虑材料来源、对外交通、施工导流、场地布置、基坑排水、施工水电供应等条件。

- 3. 0. 11 选择闸址应考虑水闸建成后工程管理维修和防汛抢险等条件。
- 3.0.12 选择闸址还应考虑下列要求:
 - ——占用土地及拆迁房屋少;
 - ——尽量利用周围已有公路、航运、动力、通信等公用设施;
 - ——有利于绿化、净化、美化环境和生态环境保护;
 - ——有利于开展综合经营。

4 总 体 布 置

4.1 枢 纽 布 置

- **4.1.1** 水闸枢纽布置应根据闸址地形、地质、水流等条件以及该枢纽中各建筑物的功能、特点、运用要求等确定,做到紧凑合理、协调美观,组成整体效益最大的有机联合体。
- 4.1.2 节制闸或泄洪闸的轴线宜与河道中心线正交,其上、下游河道直线段长度不宜小于 5 倍水闸进口处水面宽度。

位于弯曲河段的泄洪闸,官布置在河道深泓部位。

4.1.3 进水闸或分水闸的中心线与河(渠)道中心线的交角不宜超过30°,其上游引河(渠)长度不宜过长。

位于弯曲河(渠)段的进水闸或分水闸,宜布置在靠近河(渠)道深泓的岸边。

分洪闸的中心线宜正对河道主流方向。

- 4.1.4 排水闸或泄水闸的中心线与河(渠)道中心线的交角不宜超过 60°,其下游引河(渠)宜短而直,引河(渠)轴线方向宜避开常年大风向。
- **4.1.5** 滨湖水闸的轴线宜与上游来水方向正交。当上、下游水面较宽阔时,可根据需要设一定长度的导水堤。
- 4.1.6 水闸枢纽中的船闸、泵站或水电站宜靠岸布置,但船闸不宜与泵站或水电站布置在同一岸侧。船闸、泵站或水电站与水闸的相对位置,应能保证满足水闸通畅泄水及各建筑物安全运行的要求。
- 4.1.7 多泥沙河流上的水闸枢纽,应在进水闸进水口或其他取水建筑物取水口的相邻位置设冲沙闸(排沙闸)或泄洪冲沙闸,并应注意解决进水闸进水口或其他取水建筑物取水口处可能产生的泥沙淤堵问题。
- 4.1.8 上、下游平水机会较多,且有一般通航要求的水闸,可设置

通航孔。通航孔位置应根据过闸安全和管理方便的原则确定,但不 宜紧靠泵站或水电站。

- **4.1.9** 上、下游水位差不大,且有一般过木要求的水闸,可设置过木孔或在岸边设过木道。过木孔或岸边过木道位置应根据水流条件和漂木特点确定,但不宜紧靠泵站或水电站。
- 4.1.10 经常有水流下泄,且有过鱼要求的水闸,可结合岸墙、翼墙的布置设置鱼道。鱼道下泄水流宜与河道水流斜交,其出口位置不宜紧靠泄洪闸。
- 4.1.11 平原区上游有余水可以利用,且有发电要求的水闸,可结合岸墙、翼墙的布置设置小型水力发电机组或在边闸孔内设置可移式发电装置。
- 4.1.12 水流流态复杂的大型水闸枢纽布置,应经水工模型试验 验证。模型试验范围应包括水闸上、下游可能产生冲淤的河段。

4.2 闸 室 布 置

- 4.2.1 水闸闸室布置应根据水闸挡水、泄水条件和运行要求,结合考虑地形、地质等因素,做到结构安全可靠、布置紧凑合理、施工方便、运用灵活、经济美观。
- 4.2.2 闸室结构可根据泄流特点和运行要求,选用开敞式、胸墙式、涵洞式或双层式等结构型式。整个闸室结构的重心应尽可能与闸室底板中心相接近,且偏高水位一侧。
- 1 闸槛高程较高、挡水高度较小的水闸,可采用开敞式;泄洪闸或分洪闸宜采用开敞式;有排冰、过木或通航要求的水闸,应采用开敞式。
- 2 闸槛高程较低、挡水高度较大的水闸,可采用胸墙式或涵洞式,挡水水位高于泄水运用水位,或闸上水位变幅较大,且有限制过闸单宽流量要求的水闸,也可采用胸墙式或涵洞式。
- 3 要求面层溢流和底层泄流的水闸,可采用双层式,软弱地基上的水闸,也可采用双层式。
- 4.2.3 开敞式闸室结构可根据地基条件及受力情况等选用整体

式或分离式。

涵洞式和双层式闸室结构不宜采用分离式。

4.2.4 水闸闸顶高程应根据挡水和泄水两种运用情况确定。挡水时,闸顶高程不应低于水闸正常蓄水位(或最高挡水位)加波浪计算高度与相应安全超高值之和;泄水时,闸顶高程不应低于设计洪水位(或校核洪水位)与相应安全超高值之和。水闸安全超高下限值见表 4.2.4。

运用情况	水闸级别	1	2	3	4,5
hit Jan h	正常蓄水位	0.7	0.5	0.4	0.3
挡水时	最高挡水位	0.5	0.4	0.3	0. 2
MIL Janua	设计洪水位	1.5	1.0	0.7	0.5
泄水时 -	校核洪水位 .	1.0	0. 7	0.5	0.4

表 4.2.4 水闸安全超高下限值(m)

位于防洪(挡潮)堤上的水闸,其闸顶高程不得低于防洪(挡潮)堤堤顶高程。

闸顶高程的确定,还应考虑下列因素:

- ——软弱地基上闸基沉降的影响;
- —— 多泥沙河流上、下游河道变化引起水位升高或降低的 影响:
 - ——防洪(挡潮)堤上水闸两侧堤顶可能加高的影响等。
- **4.2.5** 闸槛高程应根据河(渠)底高程、水流、泥沙、闸址地形、地质、闸的施工、运行等条件,结合选用的堰型、门型及闸孔总净宽等,经技术经济比较确定。

建造在复式河床上的水闸,当闸基为岩石或坚硬的粘性土时,可选用高、低闸槛的布置型式,但必须妥善布置防渗排水设施。

- 4.2.6 闸孔总净宽应根据泄流特点、下游河床地质条件和安全泄流的要求,结合闸孔孔径和孔数的选用,经技术经济比较后确定。
- 4.2.7 闸孔孔径应根据闸的地基条件、运用要求、闸门结构型式、 启闭机容量,以及闸门的制作、运输、安装等因素,进行综合分析

确定。

选用的闸孔孔径应符合国家现行的 SL74—95《水利水电工程 钢闸门设计规范》所规定的闸门孔口尺寸系列标准。闸孔孔数少于 8 孔时, 官采用单数孔。

- 4.2.8 闸室底板型式应根据地基、泄流等条件选用平底板、低堰底板或折线底板。
- 1 一般情况下,闸室底板宜采用平底板;在松软地基上且荷载较大时,也可采用箱式平底板。
- 2 当需要限制单宽流量而闸底建基高程不能抬高,或因地基 表层松软需要降低闸底建基高程,或在多泥沙河流上有拦沙要求 时,可采用低堰底板。
- 3 在坚实或中等坚实地基上,当闸室高度不大,但上、下游河 (渠)底高差较大时,可采用折线底板,其后部可作为消力池的一 部分。
- 4.2.9 闸室底板厚度应根据闸室地基条件、作用荷载及闸孔净宽等因素,经计算并结合构造要求确定。
- **4.2.10** 闸室底板顺水流向长度应根据闸室地基条件和结构布置要求,以满足闸室整体稳定和地基允许承载力为原则,进行综合分析确定。
- 4.2.11 闸室结构垂直水流向分段长度(即顺水流向永久缝的缝距)应根据闸室地基条件和结构构造特点,结合考虑采用的施工方法和措施确定。对坚实地基上或采用桩基的水闸,可在闸室底板上或闸墩中间设缝分段;对软弱地基上或地震区的水闸,宜在闸墩中间设缝分段。岩基上的分段长度不宜超过20m,土基上的分段长度不宜超过35m。当分段长度超过本条规定数值时,宜作技术论证。永久缝的构造型式可采用铅直贯通缝、斜搭接缝或齿形搭接缝,缝宽可采用2~3cm。
- 4. 2. 12 闸墩结构型式应根据闸室结构抗滑稳定性和闸墩纵向刚度要求确定,一般宜采用实体式。

闸墩的外形轮廓设计应能满足过闸水流平顺、侧向收缩小、过

流能力大的要求。上游墩头可采用半圆形,下游墩头宜采用流线形。

- 4.2.13 闸墩厚度应根据闸孔孔径、受力条件、结构构造要求和施工方法等确定。平面闸门闸墩门槽处最小厚度不宜小于 0.4m。
- **4.2.14** 工作闸门门槽应设在闸墩水流较平顺部位,其宽深比宜 取 $1.6 \sim 1.8$ 。

根据管理维修需要设置的检修闸门门槽,其与工作闸门门槽 之间的净距离不宜小于 1.5m。

当设有两道检修闸门门槽时,闸墩和底板必须满足检修期的结构强度要求。

- **4.2.15** 边闸墩的选型布置应符合本规范 4.2.12~4.2.14 条的规定。兼作岸墙的边闸墩还应考虑承受侧向土压力的作用,其厚度应根据结构抗滑稳定性和结构强度的需要计算确定。
- 4.2.16 闸门结构的选型布置应根据其受力情况、控制运用要求、制作、运输、安装、维修条件等,结合闸室结构布置合理选定。
- 1 挡水高度和闸孔孔径均较大,需由闸门控制泄水的水闸宜采用弧形闸门。
- 2 当永久缝设置在闸室底板上时,宜采用平面闸门;如采用 弧形闸门时,必须考虑闸墩间可能产生的不均匀沉降对闸门强度、 止水和启闭的影响。
- 3 受涌浪或风浪冲击力较大的挡潮闸,宜采用平面闸门,且闸门面板宜布置在迎潮侧。
- 4 有排冰或过木要求的水闸,宜采用平面闸门或下卧式弧形闸门;多泥沙河流上的水闸,不宜采用下卧式弧形闸门。
- 5 有通航或抗震要求的水闸,宜采用升卧式平面闸门或双扉 式平面闸门。
 - 6 检修闸门应采用平面闸门或叠梁式闸门。
- **4.2.17** 露顶式闸门顶部应在可能出现的最高挡水位以上有 0.3 ~0.5m 的超高。
- 4.2.18 启闭机型式可根据门型、尺寸及其运用条件等因素选定。

选用启闭机的启闭力应等于或大于计算启闭力,同时应符合国家现行的 SL41—93《水利水电工程启闭机设计规范》所规定的启闭机系列标准。

当多孔闸门启闭频繁或要求短时间内全部均匀开启时,每孔 应设一台固定式启闭机。

4. 2. 19 闸室胸墙结构可根据闸孔孔径大小和泄水要求选用板式或板梁式。孔径小于或等于 6m 时可采用板式,孔径大于 6m 时宜采用板梁式。

胸墙顶宜与闸顶齐平。胸墙底高程应根据孔口泄流量要求计算确定。胸墙上游面底部宜做成流线形。胸墙厚度应根据受力条件和边界支承情况计算确定。对于受风浪冲击力较大的水闸,胸墙上应留有足够的排气孔。

胸墙与闸墩的连接方式可根据闸室地基、温度变化条件、闸室 结构横向刚度和构造要求等采用简支式或固支式。当永久缝设置 在底板上时,不应采用固支式。

4. 2. 20 闸室上部工作桥、检修便桥、交通桥可根据闸孔孔径、闸门启闭机型式及容量、设计荷载标准等分别选用板式、梁板式或板拱式,其与闸墩的连接型式应与底板分缝位置及胸墙支承型式统一考虑。有条件时,可采用预制构件,现场吊装。

工作桥的支承结构可根据其高度及纵向刚度选用实体式或刚架式。

工作桥、检修便桥和交通桥的梁(板)底高程均应高出最高洪水位 0.5m 以上;若有流冰,应高出流冰面以上 0.2m。

- 4.2.21 松软地基上的水闸结构选型布置尚应符合下列要求:
 - 1 闸室结构布置匀称、重量轻、整体性强、刚度大;
 - 2 相邻分部工程的基底压力差小;
 - 3 选用耐久、能适应较大不均匀沉降的止水型式和材料;
 - 4 适当增加底板长度和埋置深度。
- 4.2.22 冻胀性地基上的水闸结构选型布置尚应符合下列要求:
 - 1 闸室结构整体性强、刚度大;

- **2** ■级冻涨土地基上的 1、2、3 级水闸和 IV、V 级冻涨土地基上的各级水闸,其基础埋深不小于基础设计冻深;
- **3** 在满足地基承载力要求的情况下,减小闸室底部与冻涨土的接触面积;
- 4 在满足防渗、防冲和水流衔接条件的情况下,缩短进出口 长度:
- 5 适当减小冬季暴露的大、中型水闸铺盖、消力池底板等底部结构的分块尺寸。
- 4.2.23 地震区水闸结构选型布置尚应符合下列要求:
 - 1 闸室结构布置匀称、重量轻、整体性强、刚度大;
- **2** 降低工作桥排架高度,减轻其顶部重量,并加强排架柱与 闸墩和桥面结构的抗剪连接:
- **3** 在闸墩上分缝,并选用耐久、能适应较大变形的止水型式和材料;
 - 4 加强地基与闸室底板的连接,并采取有效的防渗措施;
 - 5 适当降低边墩(岸墙)后的填土高度,减少附加荷载;
 - 6 上游防渗铺盖采用混凝土结构,并适当布筋。

4.3 防渗排水布置

- 4.3.1 水闸防渗排水布置应根据闸基地质条件和水闸上、下游水位差等因素,结合闸室、消能防冲和两岸连接布置进行综合分析确定。
- **4.3.2** 均质土地基上的水闸闸基轮廓线应根据选用的防渗排水设施,经合理布置确定。

在工程规划和可行性研究阶段,初步拟定的闸基防渗长度应满足公式(4.3.2)要求:

$$L = C\Delta H \tag{4.3.2}$$

式中 L——闸基防渗长度,即闸基轮廓线防渗部分水平段和垂直 段长度的总和(m);

 ΔH ——上、下游水位差(m);

C——允许渗径系数值,见表 4.3.2。当闸基设板桩时,可采用表 4.3.2 中所列规定值的小值。

地基类别排水条件	粉砂	细砂	中砂	粗砂	中砾、细砾	粗砾 夹卵石	轻粉质 砂壤土	轻砂 壤土	壤土	粘土
有滤层	13~9	9~7	7~5	5~4	4~3	3∼2 . 5	11~7	9~5	5~3	3~2
无滤层		_	_	-			_	_	7~4	4~3

表 4.3.2 允许渗径系数值

注: 地基土分类见本规范附录 F。

- 4.3.3 当闸基为中壤土、轻壤土或重砂壤土时,闸室上游宜设置 钢筋混凝土或粘土铺盖,或土工膜防渗铺盖,闸室下游护坦底部应 设滤层。粘土铺盖的渗透系数应比地基土的渗透系数小 100 倍 以上。
- 4.3.4 当闸基为较薄的壤土层,其下卧层为深厚的相对透水层时,除应符合本规范 4.3.3 条的规定外,尚应验算覆盖土层抗渗、抗浮的稳定性。必要时可在闸室下游设置深入相对透水层的排水井或排水沟,并采取防止被淤堵的措施。
- 4.3.5 当闸基为粉土、粉细砂、轻砂壤土或轻粉质砂壤土时,闸室上游宜采用铺盖和垂直防渗体(钢筋混凝土板桩、水泥砂浆帷幕、高压喷射灌浆帷幕、混凝土防渗墙、土工膜垂直防渗结构等)相结合的布置形式。垂直防渗体宜布置在闸室底板的上游端。在地震区粉细砂地基上,闸室底板下布置的垂直防渗体宜构成四周封闭的形式。

粉土、粉细砂、轻砂壤土或轻粉质砂壤土地基除应保证渗流平均坡降和出逸坡降小于允许值外,在渗流出口处(包括两岸侧向渗流的出口处)必须设置级配良好的滤层。

4.3.6 当闸基为较薄的砂性土层或砂砾石层,其下卧层为深厚的相对不透水层时,闸室底板上游端宜设置截水槽或防渗墙,闸室下游渗流出口处应设滤层。截水槽或防渗墙嵌入相对不透水层深度不应小于 1.0m。

当闸基砂砾石层较厚时,闸室上游可采用铺盖和悬挂式防渗墙相结合的布置形式,闸室下游渗流出口处应设滤层。

当闸基为粒径较大的砂砾石层或粗砾夹卵石层时,闸室底板上游端官设置深齿墙或深防渗墙,闸室下游渗流出口处应设滤层。

- **4.3.7** 当闸基为薄层粘性土和砂性土互层时,除应符合本规范 4.3.3、4.3.5条的规定外,铺盖前端宜加设一道垂直防渗体,闸室 下游宜设排水沟或排水浅井,并采取防止被淤堵的措施。
- **4.3.8** 当闸基为岩石地基时,可根据防渗需要在闸室底板上游端设水泥灌浆帷幕,其后设排水孔。
- 4.3.9 闸室底板的上、下游端均宜设置齿墙,齿墙深度可采用 0.5~1.5m。
- **4.3.10** 铺盖长度可根据闸基防渗需要确定,一般采用上、下游最大水位差的 3~5 倍。

混凝土或钢筋混凝土铺盖最小厚度不宜小于 0.4m,其顺水流向的永久缝缝距可采用 8~20m,靠近翼墙的铺盖缝距宜采用小值。缝宽可采用 2~3cm。

粘土或壤土铺盖的厚度应根据铺盖土料的允许水力坡降值计 算确定,其前端最小厚度不宜小于 0.6m,逐渐向闸室方向加厚。铺 盖上面应设保护层。

防渗土工膜厚度应根据作用水头、膜下土体可能产生裂隙宽度、膜的应变和强度等因素确定,但不宜小于 0.5mm。土工膜上应设保护层。

在寒冷和严寒地区,混凝土或钢筋混凝土铺盖应适当减小永久缝缝距,粘土或壤土铺盖应适当加大厚度,并应避免冬季暴露于大气中。

4.3.11 钢筋混凝土板桩最小厚度不宜小于 0.2m,宽度不宜小于 0.4m,板桩之间应采用梯形榫槽连接。

水泥砂浆帷幕或高压喷射灌浆帷幕的最小厚度不宜小于 0.1m,混凝土防渗墙最小厚度不宜小于 0.2m。

地下垂直防渗土工膜厚度不宜小于 0.25mm;重要工程可采

用复合土工膜,其厚度不宜小于 0.5mm。

- 4.3.12 排水沟断面尺寸应根据透水层厚度合理确定,沟内应按 滤层结构要求铺设导渗层。
- 4.3.13 排水井的井深和井距应根据透水层埋藏深度及厚度合理确定,井管内径不宜小于 0.2m。滤水管的开孔率应满足出水量要求,管外应设滤层。
- **4.3.14** 侧向防渗排水布置(包括刺墙、板桩、排水井等)应根据上、下游水位、墙体材料和墙后土质以及地下水位变化等情况综合考虑,并应与闸基的防渗排水布置相适应。
- **4.3.15** 承受双向水头的水闸,其防渗排水布置应以水位差较大的一向为主,合理选择双向布置形式。

4.4 消能防冲布置

- **4.4.1** 水闸消能防冲布置应根据闸基地质情况、水力条件以及闸门控制运用方式等因素,进行综合分析确定。
- **4.4.2** 水闸闸下宜采用底流式消能。其消能设施的布置型式可按下列情况经技术经济比较后确定:
- 1 当闸下尾水深度小于跃后水深时,可采用下挖式消力池消能。消力池可采用斜坡面与闸底板相连接,斜坡面的坡度不宜陡于1:4。
- 2 当闸下尾水深度略小于跃后水深时,可采用突槛式消力池消能。
- 3 当闸下尾水深度远小于跃后水深,且计算消力池深度又较深时,可采用下挖式消力池与突槛式消力池相结合的综合式消力 池消能。
- 4 当水闸上、下游水位差较大,且尾水深度较浅时,宜采用二级或多级消力池消能。
- 5 下挖式消力池、突槛式消力池或综合式消力池后均应设海 漫和防冲槽(或防冲墙)。
 - 6 消力池内可设置消力墩、消力梁等辅助消能工。如用于大

型水闸时,其布置型式和尺寸应通过水工模型试验验证。

- **4.4.3** 当水闸闸下尾水深度较深、且变化较小,河床及岸坡抗冲能力较强时,可采用面流式消能。
- **4.4.4** 当水闸承受水头较高,且闸下河床及岸坡为坚硬岩体时,可采用挑流式消能。
- **4.4.5** 在夹有较大砾石的多泥沙河流上的水闸,不宜设消力池,可采用抗冲耐磨的斜坡护坦与下游河道连接,末端应设防冲墙。在高速水流部位,尚应采取抗冲磨与抗空蚀的措施。
- **4.4.6** 对于大型多孔水闸,可根据需要设置隔墩或导墙进行分区消能防冲布置。
- **4.4.7** 海漫应具有一定的柔性、透水性、表面粗糙性,其构造和抗冲能力应与水流流速相适应。海漫宜做成等于或缓于1:10的斜坡,末端应设防冲槽(或防冲墙)。海漫下面应设垫层。
- **4.4.8** 水闸上、下游护坡和上游护底工程布置应根据水流流态、河床土质抗冲能力等因素确定。护坡长度应大于护底(海漫)长度。护坡、护底下面均应设垫层。必要时,上游护底首端宜增设防冲槽(或防冲墙)。

4.5 两岸连接布置

4.5.1 水闸两岸连接应能保证岸坡稳定,改善水闸进、出水流条件,提高泄流能力和消能防冲效果,满足侧向防渗需要,减轻闸室底板边荷载影响,且有利于环境绿化等。

两岸连接布置应与闸室布置相适应。

4.5.2 水闸两岸连接宜采用直墙式结构; 当水闸上、下游水位差不大时, 也可采用斜坡式结构, 但应考虑防渗、防冲和防冻等问题。

在坚实或中等坚实的地基上,岸墙和翼墙可采用重力式或扶壁式结构;在松软地基上,宜采用空箱式结构。岸墙与边闸墩的结合或分离,应根据闸室结构和地基条件等因素确定。

4.5.3 当闸室两侧需设置岸墙时,若闸室在闸墩中间设缝分段, 岸墙宜与边闸墩分开;若闸室在闸底板上设缝分段,岸墙可兼作边 闸墩,并可做成空箱式。对于闸孔孔数较少、不设永久缝的非开敞 式闸室结构,也可以边闸墩代替岸墙。

- 4.5.4 上、下游翼墙宜与闸室及两岸岸坡平顺连接。上游翼墙的平面布置宜采用圆弧式或椭圆弧式,下游翼墙的平面布置宜采用圆弧(或椭圆弧)与直线组合式或折线式。在坚硬的粘性土和岩石地基上,上、下游翼墙可采用扭曲面与岸坡连接的型式。
- 4.5.5 上游翼墙顺水流向的投影长度应大于或等于铺盖长度。

下游翼墙的平均扩散角每侧宜采用 7°~12°,其顺水流向的投影长度应大于或等于消力池长度。

在有侧向防渗要求的条件下,上、下游翼墙的墙顶高程应分别高于上、下游最不利的运用水位。

4.5.6 翼墙分段长度应根据结构和地基条件确定。建筑在坚实或中等坚实地基上的翼墙分段长度可采用 15~20m;建筑在松软地基或回填土上的翼墙分段长度可适当减短。

5 水力设计

- 5.0.1 水闸的水力设计内容应包括:
 - 1 闸孔总净宽计算;
 - 2 消能防冲设施的设计计算;
 - 3 闸门控制运用方式的拟定。
- 5.0.2 进行水力设计时,应考虑到水闸建成后上、下游河床可能发生淤积或冲刷,以及闸下水位的变动等情况对过水能力和消能防冲设施产生的不利影响。
- 5.0.3 水闸闸孔总净宽应根据下游闸槛型式和布置,上、下游水位衔接要求,泄流状态等因素计算确定。平底闸的闸孔总净宽计算公式见附录 A。
- 5.0.4 水闸的过闸单宽流量应根据下游河床地质条件,上、下游水位差,下游尾水深度,闸室总宽度与河道宽度的比值,闸的结构构造特点和下游消能防冲设施等因素选定。
- 5.0.5 水闸的过闸水位差应根据上游淹没影响、允许的过闸单宽流量和水闸工程造价等因素综合比较选定。一般情况下,平原区水闸的过闸水位差可采用 0.1~0.3 m。
- 5. 0. 6 挡潮闸闸孔的总净宽应以可能出现的最不利潮型作为设计潮型,并考虑上游河道调蓄能力、潮汐河口回淤对挡潮闸泄流的影响等因素按水库调节计算确定。
- 5.0.7 水闸闸下消能防冲设施必须在各种可能出现的水力条件下,都能满足消散动能与均匀扩散水流的要求,且应与下游河道有良好的衔接。
- 5.0.8 底流式消能设计应根据水闸的泄流条件(特别是始流条件)进行水力计算,确定消力池的深度、长度和底板厚度等。消力池计算公式见附录 B。
- 5. 0.9 面流式消能设计应根据水闸的各级流量和可能组合的相 20

应水位进行水力计算,选定跌坎高度、坎顶仰角、反弧半径和跌坎 长度等,并研究解决防止闸基淘刷和下游两岸岸坡冲刷问题。跌坎 面流式消能计算方法见附录 B。

- 5.0.10 挑流式消能设计应根据水闸的各级流量进行水力计算, 选定挑流鼻坎坎顶高程、反弧半径和挑角等,计算下泄水流的挑射 距离及最大冲坑深度,并采取必要的防护措施。
- 5.0.11 海漫的长度应根据可能出现的不利的水位、流量组合情况进行计算确定。海漫长度计算公式见附录 B。
- 5.0.12 下游防冲槽的深度应根据河床土质、海漫末端单宽流量和下游水深等因素综合确定,且不应小于海漫末端的河床冲刷深度。海漫末端河床冲刷深度计算公式见附录 B。
- 5.0.13 上游防冲槽的深度应根据河床土质、上游护底首端单宽流量和上游水深等因素综合确定,且不应小于上游护底首端的河床冲刷深度。上游护底首端河床冲刷深度计算公式见附录 B。
- 5.0.14 闸门的控制运用应根据水闸的水力设计或水工模型试验成果,规定闸门的启闭顺序和开度,避免产生集中水流或折冲水流等不良流态。闸门的控制运用方式应满足下列要求:
- 1 闸孔泄水时,保证在任何情况下水跃均完整地发生在消力 池内。
- 2 闸门尽量同时均匀分级启闭。如不能全部同时启闭,可由中间孔向两侧分段、分区或隔孔对称启闭,关闭时与上述顺序相反。
- 3 对分层布置的双层闸孔或双扉闸门应先开底层闸孔或下 扉闸门,再开上层闸孔或上扉闸门,关闭时与上述顺序相反。
- 4 严格控制始流条件下的闸门开度,避免闸门停留在振动较大的开度区泄水。
- 5 关闭或减小闸门开度时,避免水闸下游河道水位降落 过快。
- 5.0.15 在大型水闸的初步设计阶段,其水力设计成果应经水工模型试验验证。

6 防渗排水设计

- 6.0.1 水闸的防渗排水设计应根据闸基地质情况、闸基和两侧轮廓线布置及上、下游水位条件等进行,其内容应包括。
 - 1 渗透压力计算;
 - 2 抗渗稳定性验算;
 - 3 滤层设计:
 - 4 防渗帷幕及排水孔设计:
 - 5 永久缝止水设计。
- 6.0.2 岩基上水闸基底渗透压力计算可采用全截面直线分布法,但应考虑设置防渗帷幕和排水孔时对降低渗透压力的作用和效果。土基上水闸基底渗透压力计算可采用改进阻力系数法或流网法;复杂土质地基上的重要水闸,应采用数值计算法。水闸基底渗透压力计算公式见附录 C。
- 6.0.3 当岸墙、翼墙墙后土层的渗透系数小于或等于地基土的渗透系数时,侧向渗透压力可近似地采用相对应部位的水闸闸底正向渗透压力计算值,但应考虑墙前水位变化情况和墙后地下水补给的影响;当岸墙、翼墙墙后土层的渗透系数大于地基土的渗透系数时,可按闸底有压渗流计算方法进行侧向绕流计算。复杂土质地基上的重要水闸,应采用数值计算法进行计算。
- 6.0.4 验算闸基抗渗稳定性时,要求水平段和出口段的渗流坡降 必须分别小于表 6.0.4 规定的水平段和出口段允许渗流坡降值。
- 6.0.5 验算砂砾石闸基出口段抗渗稳定性时,应首先判别可能发生的渗流破坏形式(流土或管涌):当 $4P_i(1-n)>1.0$ 时,为流土破坏;当 $4P_i(1-n)<1.0$ 时,为管涌破坏。

砂砾石闸基出口段防止流土破坏的允许渗流坡降值即表 6.0.4 中所列的出口段允许渗流坡降值。

砂砾石闸基出口段防止管涌破坏的允许渗流坡降值可按公式

表 6.0.4 水平段和出口段允许渗流坡降值

	允许渗流	i. 坡 降 值
地基类别	水平段	出口段
粉砂	0.05~0.07	0.25~0.30
细砂	0.07~0.10	0.30~0.35
中砂	0.10~0.13	0.35~0.40
粗砂	0.13~0.17	0.40~0.45
中砾、细砾	0.17~0.22	0.45~0.50
粗砾夹卵石	0.22~0.28	0.50~0.55
砂壤土	0.15~0.25	0.40~0.50
壤土	0.25~0.35	0.50~0.60
软粘土	0.30~0.40	0.60~0.70
坚硬粘土	0.40~0.50	0.70~0.80
极坚硬粘土	0.50~0.60	0.80~0.90

注: 当渗流出口处设滤层时,表列数值可加大 30%。

(6.0.5-1)、(6.0.5-2)计算:

$$[J] = \frac{7d_5}{Kd_4} [4P_f(1-n)]^2$$
 (6. 0. 5-1)

$$d_{\rm f} = 1.3 \sqrt{d_{15}d_{85}} \tag{6.0.5-2}$$

式中 [J] 一防止管涌破坏的允许渗流坡降值;

 d_i 一 闸基土的粗细颗粒分界粒径(mm);

 P_i ——小干 d_i 的土粒百分数含量(%);

n——闸基土的孔隙率;

 d_5 、 d_{15} 、 d_{85} — 闸基土颗粒级配曲线上小于含量 5%、15%、85%的粒径(mm);

K——防止管涌破坏的安全系数,可采用 1.5 \sim 2.0。

- 6.0.6 当翼墙墙后地下水位高于墙前水位时,应验算翼墙墙基的 抗渗稳定性。必要时可采取有效的防渗排水措施。
- 6.0.7 滤层的级配应能满足被保护土的稳定性和滤料的透水性要求,且滤料颗粒级配曲线应大致与被保护土颗粒级配曲线平行。

滤层的级配宜符合公式(6.0.7-1)~(6.0.7-3)的要求:

$$\frac{D_{15}}{d_{85}} \leqslant 5 \tag{6.0.7-1}$$

$$\frac{D_{15}}{d_{15}} = 5 \sim 40 \tag{6.0.7-2}$$

$$\frac{D_{50}}{d_{50}} \leqslant 25 \tag{6.0.7-3}$$

式中 D_{15} 、 D_{50} — 滤层滤料颗粒级配曲线上小于含量 15%、50% 的粒径(mm);

d₅₀ 被保护土颗粒级配曲线上小于含量 50%的粒径(mm)。

滤层的每层厚度可采用 20~30cm。滤层的铺设长度应使其末端的渗流坡降值小于地基土在无滤层保护时的允许渗流坡降值。

- 6.0.8 当采用土工织物代替传统砂石料作为滤层时,选用的土工织物应有足够的强度和耐久性,且应能满足保土性、透水性和防堵性要求。
- 6.0.9 岩基上水闸基底帷幕灌浆孔宜设单排,孔距宜取 1.5~3.0m,孔深宜取闸上最大水深的 0.3~0.7倍。帷幕灌浆应在有一定厚度混凝土盖重及固结灌浆后进行。灌浆压力应以不掀动基础岩体为原则,通过灌浆试验确定。防渗帷幕体透水率的控制标准不宜大于 5Lu。
- 6.0.10 帷幕灌浆孔后排水孔宜设单排,其与帷幕灌浆孔的间距 不宜小于 2.0m。排水孔孔距宜取 2.0~3.0m,孔深宜取帷幕灌浆 孔孔深的 0.4~0.6倍,且不宜小于固结灌浆孔孔深。
- 6.0.11 位于防渗范围内的永久缝应设一道止水。大型水闸的永久缝应设两道止水。止水的型式应能适应不均匀沉降和温度变化的要求,止水材料应耐久。垂直止水与水平止水相交处必须构成密封系统。

永久缝可铺贴沥青油毡或其他柔性材料,缝下土质地基上宜铺设土工织物带。

6.0.12 设计烈度为8度及8度以上地震区大、中型水闸的永久缝止水设计,应作专门研究。

7 结 构 设 计

7.1 一 般 规 定

- 7.1.1 水闸结构设计应根据结构受力条件及工程地质条件进行, 其内容应包括:
 - 1 荷载及其组合;
 - 2 闸室和岸墙、翼墙的稳定计算;
 - 3 结构应力分析。
- 7.1.2 水闸混凝土结构除应满足强度和限裂要求外,还应根据所在部位的工作条件、地区气候和环境等情况,分别满足抗渗、抗冻、抗侵蚀、抗冲刷等耐久性的要求。
- 1 各部位的混凝土强度等级应根据计算或耐久性要求确定。 但处于二类环境条件下的混凝土强度等级不宜低于 C 15,处于三 类环境条件下的混凝土强度等级不宜低于 C 20,处于四类环境条件下的以及有抗冲耐磨要求的混凝土强度等级不宜低于 C 25。
- 2 混凝土的限裂要求应根据所处的环境条件确定。但处于二类环境条件下的混凝土最大裂缝宽度计算值不应超过 0.20mm;处于三类环境条件下的混凝土最大裂缝宽度计算值不应超过 0.15mm;处于四类环境条件下的混凝土最大裂缝宽度计算值不应超过 0.10mm。
- 3 混凝土的抗渗等级应根据所承受的水头、水力梯度、水质条件及渗流水的危害程度等情况确定。但防渗段水力梯度小于 10 的混凝土抗渗等级不得低于 W4,水力梯度等于或大于 10 的混凝土抗渗等级不得低于 W6;寒冷和严寒地区水闸防渗段水力梯度小于 10 和等于或大于 10 的混凝土抗渗等级应分别不低于 W6 和 W8。
- 4 混凝土的抗冻等级应根据气候分区、年冻融循环次数、结构构件的重要性及其检修条件等情况确定。但温和地区和长期处

于水下的混凝土抗冻等级不应低于 F50;寒冷地区年冻融循环次数少于 100 次和等于或多于 100 次的混凝土抗冻等级分别不应低于 F100 和 F150;严寒地区年冻融循环次数少于 100 次和等于或多于 100 次的混凝土抗冻等级分别不应低于 F200 和 F300。

7.1.3 当水闸部分结构采用砌石时,选用的条石或块石应能抗风化,冻融损失率应小于 1%,单块重量不宜小于 30kg,砌筑砂浆强度等级不应低于 M7.5。

砌石结构应采取有效的防渗排水措施;严寒、寒冷地区水闸砌石结构还应采取保温防冻措施。

7.1.4 7 度及 7 度以上地震区的水闸除应认真分析地震作用和做好抗震计算外,尚应采取安全可靠的抗震措施。当地震烈度为 6 度时,可不进行抗震计算,但对 6 度地震区的 1 级水闸仍应采取适当的抗震措施。

7.2 荷载计算及组合

- 7.2.1 作用在水闸上的荷载可分为基本荷载和特殊荷载两类。
 - 1 基本荷载主要有下列各项:
 - 1)水闸结构及其上部填料和永久设备的自重;
 - 2)相应于正常蓄水位或设计洪水位情况下水闸底板上的水重;
 - 3)相应于正常蓄水位或设计洪水位情况下的静水压力;
 - 4)相应于正常蓄水位或设计洪水位情况下的扬压力(即浮 托力与渗透压力之和):
 - 5)土压力;
 - 6)淤沙压力;
 - 7)风压力;
 - 8)相应于正常蓄水位或设计洪水位情况下的浪压力;
 - 9)冰压力;
 - 10)十的冻胀力:
 - 11)其他出现机会较多的荷载等。

- 2 特殊荷载主要有下列各项:
 - 1)相应于校核洪水位情况下水闸底板上的水重;
 - 2)相应于校核洪水位情况下的静水压力;
 - 3)相应于校核洪水位情况下的扬压力;
 - 4)相应于校核洪水位情况下的浪压力;
 - 5)地震荷载;
 - 6)其他出现机会较少的荷载等。
- 7.2.2 水闸结构及其上部填料的自重应按其几何尺寸及材料重度计算确定。

闸门、启闭机及其他永久设备应尽量采用实际重量。

- 7.2.3 作用在水闸底板上的水重应按其实际体积及水的重度计算确定。多泥沙河流上的水闸,还应考虑含沙量对水的重度的影响。
- 7.2.4 作用在水闸上的静水压力应根据水闸不同运用情况时的上、下游水位组合条件计算确定。多泥沙河流上的水闸,还应考虑含沙量对水的重度的影响。
- 7.2.5 作用在水闸基础底面的扬压力应根据地基类别、防渗排水布置及水闸上、下游水位组合条件计算确定。
- 7.2.6 作用在水闸上的土压力应根据填土性质、挡土高度、填土内的地下水位、填土顶面坡角及超荷载等计算确定。对于向外侧移动或转动的挡土结构,可按主动土压力计算;对于保持静止不动的挡土结构,可按静止土压力计算。土压力计算公式见附录 D。
- 7.2.7 作用在水闸上的淤沙压力应根据水闸上、下游可能淤积的厚度及泥沙重度等计算确定。
- 7.2.8 作用在水闸上的风压力应根据当地气象台站提供的风向、风速和水闸受风面积等计算确定。计算风压力时应考虑水闸周围 地形、地貌及附近建筑物的影响。
- 7.2.9 作用在水闸上的浪压力应根据水闸闸前风向、风速、风区长度(吹程)、风区内的平均水深以及闸前实际波态的判别等计算确定。浪压力计算公式见附录 E。

- 7.2.10 作用在水闸上的冰压力、土的冻胀力、地震荷载以及其他荷载,可按国家现行的有关标准的规定计算确定。施工过程中各个阶段的临时荷载应根据工程实际情况确定。
- 7.2.11 设计水闸时,应将可能同时作用的各种荷载进行组合。荷载组合可分为基本组合和特殊组合两类。基本组合由基本荷载组成,特殊组合由基本荷载和一种或几种特殊荷载组成,但地震荷载只应与正常蓄水位情况下的相应荷载组合。

计算闸室稳定和应力时的荷载组合可按表 7.2.11 的规定采用。必要时还可考虑其他可能的不利组合。

荷 载 荷 载 自水水 重重压 地 前 ìΫ 眀 计算情况 震荷他 组 \overline{T}_1 슴 必要时,可考虑地下水产生 完建情况 的扬压力 按正常蓄水位组合计算水 正常蓄水位 基 情况 重、静水压力、扬压力及浪压力 本 组 设计洪水位 按设计洪水位组合计算水 合 重、静水压力、扬压力及浪压力 情况 按正常蓄水位组合计算水 冰冻情况 重、静水压力、扬压力及冰压力 应考虑施工过程中各个阶段 施工情况 的临时荷载 按正常蓄水位组合(必要时 可按设计洪水位组合或冬季低 特 检修情况 水位条件)计算静水压力、扬压 殊 力及浪压力 组 台 校核洪水位 按校核洪水位组合计算水 重、静水压力、扬压力及浪压力 情况 按正常蓄水位组合计算水 地震情况 重、静水压力、扬压力及浪压力

表 7.2.11 荷载组合表

7.2.12 计算岸墙、翼墙稳定和应力时的荷载组合可按本规范表

7.2.11 的规定采用,并应验算施工期、完建期和检修期(墙前无水和墙后有地下水)等情况。

7.3 闸室稳定计算

- 7.3.1 闸室稳定计算宜取两相邻顺水流向永久缝之间的闸段作为计算单元。
- 7.3.2 土基上的闸室稳定计算应满足下列要求:
- 1 在各种计算情况下,闸室平均基底应力不大于地基允许承载力,最大基底应力不大于地基允许承载力的 1.2 倍;
- **2** 闸室基底应力的最大值与最小值之比不大于本规范7.3.5条规定的允许值;
- **3** 沿闸室基底面的抗滑稳定安全系数不小于本规范 7.3.13 条规定的允许值。
- 7.3.3 岩基上的闸室稳定计算应满足下列要求:
- 1 在各种计算情况下,闸室最大基底应力不大于地基允许承载力;
- 2 在非地震情况下,闸室基底不出现拉应力;在地震情况下, 闸室基底拉应力不大于 100kPa;
- **3** 沿闸室基底面的抗滑稳定安全系数不小于本规范 7.3.14 条规定的允许值。
- 7.3.4 闸室基底应力应根据结构布置及受力情况,分别按下列规定进行计算:
 - 1 当结构布置及受力情况对称时,按公式(7.3.4-1)计算:

$$P_{\text{max}\atop \text{min}} = \frac{\sum G}{A} \pm \frac{\sum M}{W}$$
 (7. 3. 4-1)

式中 P_{max}——闸室基底应力的最大值或最小值(kPa);

 ΣG ——作用在闸室上的全部竖向荷载(包括闸室基础底面上的扬压力在内,kN);

∑M——作用在闸室上的全部竖向和水平向荷载对于基础

底面垂直水流方向的形心轴的力矩(kN·m);

A——闸室基底面的面积(m²);

W——闸室基底面对于该底面垂直水流方向的形心轴的 截面矩(m³)。

2 当结构布置及受力情况不对称时,按公式(7.3.4-2)计算:

$$P_{\text{max}} = \frac{\sum G}{A} \pm \frac{\sum M_{x}}{W_{x}} \pm \frac{\sum M_{y}}{W_{y}}$$
 (7. 3. 4-2)

式中 $\sum M_x \setminus \sum M_y$ 作用在闸室上的全部竖向和水平向荷载对于基础底面形心轴 $x \setminus y$ 的力矩($kN \cdot m$);

 W_x 、 W_y — 闸室基底面对于该底面形心轴 x、y 的截面矩(m^3)。

7.3.5 土基上闸室基底应力最大值与最小值之比的允许值,见表 7.3.5。

地 甘 上 時	荷载	组合
地基土质	基本组合	特殊组合
松软	1.50	2. 00
中等坚实	2.00	2. 50
堅 实	2. 50	3. 00

表 7.3.5 土基上闸室基底应力最大值与最小值之比的允许值

- **注**: 1. 对于特别重要的大型水闸,其闸室基底应力最大值与最小值之比的允许值 可按表列数值适当减小;
 - 2. 对于地震区的水闸,闸室基底应力最大值与最小值之比的允许值可按表列 数值适当增大;
 - 对于地基特别坚实或可压缩土层甚薄的水闸,可不受本表的规定限制,但要求闸室基底不出现拉应力。
- **7.3.6** 土基上沿闸室基底面的抗滑稳定安全系数,应按公式 (7.3.6-1)或公式(7.3.6-2)计算:

$$K_{\rm c} = \frac{f \sum G}{\sum H} \tag{7.3.6-1}$$

$$K_{\rm c} = \frac{{\rm tg}\phi_0 \sum G + C_0 A}{\sum H}$$
 (7. 3. 6-2)

式中 K_c —沿闸室基底面的抗滑稳定安全系数;

f——闸室基底面与地基之间的摩擦系数,可按本规范7.3.10条的规定采用;

 ΣH ——作用在闸室上的全部水平向荷载(kN);

♠──闸室基础底面与土质地基之间的摩擦角(°),可按本规范 7.3.11 条的规定采用;

 C_0 ——闸室基底面与土质地基之间的粘结力(kPa),可按本规范 7. 3. 11 条的规定采用。

粘性土地基上的大型水闸,沿闸室基底面的抗滑稳定安全系数宜按公式(7.3.6-2)计算。

- 7.3.7 对于土基上采用钻孔灌注桩基础的水闸,若验算沿闸室底板底面的抗滑稳定性,应计入桩体材料的抗剪断能力。
- **7.3.8** 岩基上沿闸室基底面的抗滑稳定安全系数,应按公式 (7.3.6-1)或公式(7.3.8)计算:

$$K_{\rm c} = \frac{f' \sum G + C' A}{\sum H}$$
 (7.3.8)

式中 f'——闸室基底面与岩石地基之间的抗剪断摩擦系数,可按本规范 7.3.12 条的规定采用;

C'——闸室基底面与岩石地基之间的抗剪断粘结力 (kPa),可按本规范 7.3.12 条的规定采用。

- 7.3.9 当闸室承受双向水平向荷载作用时,应验算其合力方向的 抗滑稳定性,其抗滑稳定安全系数应按土基或岩基分别不小于本 规范 7.3.13 条或 7.3.14 条规定的允许值。
- 7.3.10 在没有试验资料的情况下,闸室基底面与地基之间的摩擦系数 f 值,可根据地基类别按表 7.3.10 所列数值选用。
- 7.3.11 闸室基底面与土质地基之间摩擦角 % 值及粘结力 C。值可根据土质地基类别按表 7.3.11 的规定采用。

表 7.3.10 f值

地基	类 别	f	
	软 弱	0. 20~0. 25	
粘 土	中等坚硬	0.25~0.35	
	坚 硬	0.35~0.45	
壤土、粉	}质壤土	0.25~0.40	
砂壤土	、粉砂土	0.35~0.40	
细砂、	0.40~0.45		
中砂	中砂、粗砂		
砂石	砂砾石		
砾石	、 卵石	0.50~0.55	
碎石	5土	0.40~0.50	
	极软	0.40~0.45	
软质岩石	软	0.45~0.55	
	较 软	0.55~0.60	
毎氏出て	较 坚 硬	0.60~0.65	
硬质岩石	坚 硬	0.65~0.70	

注: 地基岩土分类见本规范附录 F。

土质地基类别	• 0	C_0
粘 性 土	0.9∳	(0.2~0.3)C
砂性土	(0.85~0.9)¢	0

注:表中 φ 为室内饱和固结快剪(粘性土)或饱和快剪(砂性土)试验测得的内摩擦 角(°);C 为室内饱和固结快剪试验测得的粘结力(kPa)。

按表 7.3.11 的规定采用 ϕ 。值和 C。值时,应按公式(7.3.11) 折算闸室基底面与土质地基之间的综合摩擦系数。

$$f_0 = \frac{\lg \phi_0 \sum G + C_0 A}{\sum G}$$
 (7. 3. 11)

式中 f。——闸室基底面与土质地基之间的综合摩擦系数。

对于粘性土地基,如折算的综合摩擦系数大于 0.45,或对于砂性土地基,如折算的综合摩擦系数大于 0.50,采用的 ϕ 。值和 C。值均应有论证。

对于特别重要的大型水闸工程,采用的 ϕ_0 值和 C_0 值还应经现场地基土对混凝土板的抗滑强度试验验证。

7.3.12 闸室基底面与岩石地基之间的抗剪断摩擦系数 f'值及抗剪断粘结力 C'值可根据室内岩石抗剪断试验成果,并参照类似工程实践经验及表 7.3.12 所列数值选用。但选用的 f'、C'值不应超过闸室基础混凝土本身的抗剪断参数值。

岩石地	基 类 别	f'	C' (MPa)
硬质岩石	坚 硬	1.5~1.3	1.5~1.3
使灰石石	较坚硬	1.3~1.1	1.3~1.1
软质岩石	较 软	1.1~0.9	1.1~0.7
	软	0.9~0.7	0.7~0.3
	极软	0.7~0.4	0.3~0.05

表 7.3.12 f'、C'值(岩石地基)

7.3.13 土基上沿闸室基底面抗滑稳定安全系数的允许值,见表7.3.13。

荷载组合	_		水闸	级 别	
何我知言		1	2	3	4,5
基本组合	<u> </u>	1.35	1.30	1. 25	1.20
杜拉加人	I	1.20	1. 15	1.10	1.05
特殊组合	I	1.10	1. 05	1.05	1.00

表 7.3.13 土基上沿闸室基底面抗滑稳定安全系数的允许值

7.3.14 岩基上沿闸室基底面抗滑稳定安全系数的允许值,见表

注:如岩石地基内存在结构面、软弱层(带)或断层的情况, f'、C'值应按现行的GB50287—99《水利水电工程地质勘察规范》的规定选用。

注: 1. 特殊组合 I 适用于施工情况、检修情况及校核洪水位情况;

^{2.} 特殊组合 I 适用于地震情况。

		按么	De the Bree and a		
荷载组	荷载组合 水 1		水 闸 级 别		按公式(7.3.8) 计算时
1		2,3	4,5	· / / / / / / / / / / / / / / / / / / /	
基本组	合	1. 10	1.08	1.05	3.00
	I	1. 05	1.03	1.00	2.50
恃殊组合	I	·	1.00		2.30

表 7.3.14 岩基上沿闸室基底面抗滑稳定安全系数的允许值

注: 1. 特殊组合 I 适用于施工情况、检修情况及校核洪水位情况;

- 2. 特殊组合 Ⅱ 适用于地震情况。
- 7.3.15 当沿闸室基底面抗滑稳定安全系数计算值小于允许值时,可在原有结构布置的基础上,结合工程的具体情况,采用下列一种或几种抗滑措施:
- 1 将闸门位置移向低水位一侧,或将水闸底板向高水位一侧加长:
 - 2 适当增大闸室结构尺寸;
 - 3 增加闸室底板的齿墙深度;
- 4 增加铺盖长度或帷幕灌浆深度,或在不影响防渗安全的条件下将排水设施向水闸底板靠近;
- 5 利用钢筋混凝土铺盖作为阻滑板,但闸室自身的抗滑稳定安全系数不应小于 1.0(计算由阻滑板增加的抗滑力时,阻滑板效果的折减系数可采用 0.80),阻滑板应满足抗裂要求;
 - 6 增设钢筋混凝土抗滑桩或预应力锚固结构。
- 7.3.16 当闸室设有两道检修闸门或只设一道检修闸门,利用工作闸门与检修闸门进行检修时,应按公式(7.3.16)进行抗浮稳定计算。

$$K_{\rm f} = \frac{\sum V}{\sum U} \tag{7.3.16}$$

式中 K_i — 闸室抗浮稳定安全系数;

 $\sum V$ ——作用在闸室上全部向下的铅直力之和(kN);

 ΣU ——作用在闸室基底面上的扬压力(kN)。

不论水闸级别和地基条件,在基本荷载组合条件下,闸室抗浮稳定安全系数不应小于 1.10;在特殊荷载组合条件下,闸室抗浮稳定安全系数不应小于 1.05。

7.4 岸墙、翼墙稳定计算

- 7.4.1 岸墙、翼墙稳定计算宜取单位长度或分段长度的墙体作为 计算单元。
- 7.4.2 土基上的岸墙、翼墙稳定计算应满足下列要求:
- 1 在各种计算情况下,岸墙、翼墙平均基底应力不大于地基允许承载力,最大基底应力不大于地基允许承载力的 1.2 倍;
- **2** 岸墙、翼墙基底应力的最大值与最小值之比不大于本规范 7.3.5 条规定的允许值:
- 3 沿岸墙、翼墙基底面的抗滑稳定安全系数不小于本规范 7.3.13 条规定的允许值。
- 7.4.3 岩基上的岸墙、翼墙稳定计算应满足下列要求:
- 1 在各种计算情况下,岸墙、翼墙最大基底应力不大于地基允许承载力:
- **2** 翼墙抗倾覆稳定安全系数不小于本规范 7.4.8 条规定的允许值:
- 3 沿岸墙、翼墙基底面的抗滑稳定安全系数不小于本规范 7.3.14条规定的允许值。
- 7.4.4 岸墙、翼墙的基底应力应按本规范公式(7.3.4-1)计算。
- 7.4.5 土基上沿岸墙、翼墙基底面的抗滑稳定安全系数,应按本规范公式(7.3.6-1)或公式(7.3.6-2)计算。
- 7.4.6 岩基上沿岸墙、翼墙基底面的抗滑稳定安全系数,应按本规范公式(7.3.6-1)或公式(7.3.8)计算。
- 7.4.7 当沿岸墙、翼墙基底面的抗滑稳定安全系数计算值小于允许值时,可采用下列一种或几种抗滑措施:
 - 1 适当增加底板宽度;

- 2 在基底增设凸榫;
- 3 在墙后增设阻滑板或锚杆;
- 4 在墙后改填摩擦角较大的填料,并增设排水;
- 5 在不影响水闸正常运用的条件下,适当限制墙后的填土高度,或在墙后采用其他减载措施。
- 7.4.8 岩基上翼墙的抗倾覆稳定安全系数,应按公式(7.4.8) 计算:

$$K_0 = \frac{\sum M_{\rm V}}{\sum M_{\rm H}} \tag{7.4.8}$$

式中 K。——翼墙抗倾覆稳定安全系数;

 $\sum M_{\rm V}$ 一 对翼墙前趾的抗倾覆力矩(kN・m);

 $\sum M_{\rm H}$ — 对翼墙前趾的倾覆力矩(kN·m)。

不论水闸级别,在基本荷载组合条件下,岩基上翼墙的抗倾覆安全系数不应小于 1.50;在特殊荷载组合条件下,岩基上翼墙的抗倾覆安全系数不应小于 1.30。

7.5 结构应力分析

- 7.5.1 水闸结构应力分析应根据各分部结构布置型式、尺寸及受力条件等进行。
- 7.5.2 开敞式水闸闸室底板的应力分析可按下列方法选用:
- 1 土基上水闸闸室底板的应力分析可采用反力直线分布法或弹性地基梁法。相对密度小于或等于 0.50 的砂土地基,可采用反力直线分布法;粘性土地基或相对密度大于 0.50 的砂土地基,可采用弹性地基梁法。
- 2 当采用弹性地基梁法分析水闸闸室底板应力时,应考虑可压缩土层厚度与弹性地基梁半长之比值的影响。当比值小于 0.25时,可按基床系数法(文克尔假定)计算;当比值大于 2.0 时,可按半无限深的弹性地基梁法计算;当比值为 0.25~2.0 时,可按有限深的弹性地基梁法计算。
 - 3 岩基上水闸闸室底板的应力分析可按基床系数法计算。

- 7.5.3 开敞式水闸闸室底板的应力可按闸门门槛的上、下游段分别进行计算,并计入闸门门槛切口处分配于闸墩和底板的不平衡剪力。
- 7.5.4 当采用弹性地基梁法时,可不计闸室底板自重;但当作用在基底面上的均布荷载为负值时,则仍应计及底板自重的影响,计及的百分数则以使作用在基底面上的均布荷载值等于零为限度确定。
- 7.5.5 当采用弹性地基梁法时,可按表 7.5.5 的规定计及边荷载计算百分数。

地基类别	边荷载使计算闸段底板内力减少	边荷载使计算闸段底板内力增加			
砂性土	50%	100%			
粘性土	0	100%			

表 7.5.5 边荷载计算百分数

- 注: 1. 对于粘性土地基上的老闸加固,边荷载的影响可按本表规定适当减小,
 - 2. 计算采用的边荷载作用范围可根据基坑开挖及墙后土料回填的实际情况 研究确定,通常可采用弹性地基梁长度的1倍或可压缩层厚度的1.2倍。
- 7.5.6 开敞式或胸墙与闸墩简支连接的胸墙式水闸,其闸墩应力分析方法应根据闸门型式确定。平面闸门闸墩的应力分析可采用材料力学方法,弧形闸门闸墩的应力分析宜采用弹性力学方法。
- 7.5.7 涵洞式、双层式或胸墙与闸墩固支连接的胸墙式水闸,其闸室结构应力可按弹性地基上的整体框架结构进行计算。
- 7.5.8 受力条件复杂的大型水闸闸室结构宜视为整体结构采用空间有限单元法进行应力分析,必要时应经结构模型试验验证。
- 7.5.9 水闸底板和闸墩的应力分析,应根据工程所在地区的气候 特点、水闸地基类别、运行条件和施工情况等因素考虑温度应力的 影响。
- 7.5.10 为减少水闸底板或闸墩的温度应力,宜采用下列一种或几种防裂措施:
 - 1 适当减小底板分块尺寸及闸墩长高比;
 - 2 在可能产生温度裂缝的部位预留宽缝,两侧增设插筋或构

造补强钢筋,回填微膨胀性混凝土;

- 3 结合工程具体情况,采取控制和降低混凝土浇筑温度的工程措施,并加强混凝土养护;
- 4 对于严寒、寒冷地区水闸底板和闸墩,其冬季施工期和冬季运用期均应采取适当的保温防冻措施。
- 7.5.11 闸室上部工作桥、检修便桥、交通桥以及两岸岸墙、翼墙等结构应力,可根据各自的结构布置型式及支承情况采用结构力学方法进行计算。

8 地基计算及处理设计

8.1 一 般 规 定

- 8.1.1 水闸地基计算应根据地基情况、结构特点及施工条件进行,其内容应包括:
 - 1 地基渗流稳定性验算;
 - 2 地基整体稳定计算;
 - 3 地基沉降计算。

在各种运用情况下,水闸地基应能满足承载力、稳定和变形的要求。

- 8.1.2 岩石可按其坚硬程度分类。碎石土可按砾的含量分类。土可按颗粒级配及塑性指数分类,砂土也可按砂粒含量分类,粘性土也可参照塑性图分类。岩石、碎石土和土的分类见附录 F。
- 8.1.3 对于土质地基,初步划分松软地基和坚实地基的特性指标见附录 G。
- 8.1.4 土质地基的计算应根据地基土和填料土的物理力学性质试验指标进行。地基土的专门试验项目(如地基土对混凝土板的抗滑强度试验、砂砾石地基的管涌试验等)应根据工程具体情况确定。
- 8.1.5 地基土的剪切试验方法可按表 8.1.5 的规定选用。室内试验应尽量减少取样和试验操作过程中可能造成的误差,试验指标的取值宜采用小值平均值。
- 8.1.6 岩基物理力学性指标的试验方法可按国家现行的 DL5006—92《水利水电工程岩石试验规程》的规定选用。
- 8.1.7 地基计算的荷载组合可按本规范表 7.2.11 的规定采用。
- **8.1.8** 地基渗流稳定性验算应按本规范 6.0.4~6.0.6 条的规定进行。
- 8.1.9 凡属下列情况之一者,可不进行地基沉降计算。

表 8.1.5 剪切试验适用条件

剪切试验方法 地基土类别	饱和快剪	饱和固结快剪
N _{63.5} ≥4 击的粘土和 壤土	验算施工期不超过一年 的完建期地基强度	验算运用期和施工期超 过一年的完建期地基强度
N _{63.5} <4 击的软土和 软土夹薄层砂等	验算尚未完全固结状态 的地基强度	验算完全固结状态的地 基强度
N _{63.5} >8 击的砂土和砂壤土	验算施工期不超过一年 或土层较厚的完建期地基 强度(直接快剪)	验算运用期和施工期超 过一年或土层较薄的完建 期地基强度
N _{63.5} ≤8 击的松砂、砂壤土和粉细砂夹薄层软土等	验算施工期不超过一年 或土层较厚的完建期地基 强度(三轴不排水剪)	验算运用期和施工期超 过一年或土层较薄的完建 期地基强度

- 注: 1. 重要的大型水闸的粘性土地基应同时采用相应排水条件的三轴剪切试验 方法验证:
 - 2. 软粘土地基可辅以采用野外十字板剪切试验方法;
 - 3. 回填土可采用饱和快剪试验方法。
 - 1 岩石地基:
 - 2 砾石、卵石地基:
 - 3 中砂、粗砂地基;
- 4 大型水闸标准贯入击数大于 15 击的粉砂、细砂、砂壤土、 壤土及粘土地基;
 - 5 中、小型水闸标准贯入击数大于10击的壤土及粘土地基。
- 8.1.10 当水闸天然地基不能满足承载力、稳定或变形的要求时, 应根据工程具体情况, 因地制宜地作出地基处理设计。
- 8.1.11 地基处理设计方案应针对地基承载力或稳定安全系数的不足,或对沉降变形不适应等,根据地基情况(尤其要注意考虑地基中渗流作用的影响)、结构特点、施工条件和运用要求,并综合考虑地基、基础及其上部结构的相互协调,经技术经济比较后确定。
- 8.1.12 采用的地基设计方案除应符合本规范 8.1.11 条的规定外, 尚应符合环境保护的要求,避免因地基处理污染地面水和地下水或损 坏周围已有建筑物,防止振动噪音对周围环境产生不良影响。

8.1.13 水闸不宜建造在半岩半土或半硬半软的地基上;否则,必须采取严格的工程措施。

8.2 地基整体稳定计算

8. 2. 1 岩石地基的允许承载力可根据岩石类别及其风化程度按表 8. 2. 1 确定。

			_ , _ , , , , , , , , , , , , , , , , ,	, (
岩石类别	未风化	微风化	弱风化	强风化	全风化
硬质岩石	≥4000	4000~3000	3000~1000	1000~500	<500
软质岩石	≥2000	2000~1000	1000~500	500~200	<200

表 8.2.1 岩石地基允许承载力(kPa)

- 注: 1. 岩石风化程度的鉴别见本规范附录 F:
 - 2. 强风化岩石改变埋藏条件后,如强度降低,宜按降低程度选用较低值。
- **8.2.2** 碎石土地基的允许承载力可根据碎石土的密实度按表 8.2.2 确定。

密实度颗粒骨架	密实	中 密	稍密
卵 石	1000~800	800~500	500~300
碎石	900~700	700~400	400~250
圆砾	700~500	500~300	300~200
角砾	600~400	400~250	250~150

表 8.2.2 碎石土地基允许承载力(kPa)

- 注: 1. 碎石土密实度的鉴别见本规范附录 F;
 - 2. 表中数值适用于骨架颗粒孔隙全部由中砂、粗砂或坚硬的粘性土所充填的情况;
 - 3. 当粗颗粒为弱风化或强风化时,可按其风化程度适当降低允许承载力,当颗粒间呈半胶结状时,可适当提高允许承载力。
- 8.2.3 在竖向对称荷载作用下,可按限制塑性区开展深度的方法计算土质地基的允许承载力;在竖向荷载和水平向荷载共同作用下,可按 C_K 法验算土质地基的整体稳定,也可按汉森公式计算土质地基的允许承载力。地基允许承载力的计算方法见附录 H。

- 8.2.4 当土质地基持力层内夹有软弱土层时,还应采用折线滑动法(复合圆弧滑动法)对软弱土层进行整体抗滑稳定验算。
- 8.2.5 岸墙、翼墙地基的整体抗滑稳定及上、下游护坡工程的边坡稳定可采用瑞典圆弧滑动法或简化毕肖普圆弧滑动法计算。
- 8.2.6 按瑞典圆弧滑动法或折线滑动法计算的整体抗滑稳定安全系数或边坡稳定安全系数均不应小于本规范 7.3.13 条规定的允许值;按简化毕肖普圆弧滑动法计算的整体抗滑稳定安全系数或边坡稳定安全系数均不应小于表 8.2.6 规定允许值的 1.1 倍。

左共 40			水闸	级 别	
荷载组	Π	1	2	3	4,5
基本组	合	1.30	1. 25	1.20	1. 15
de sar va	I	1.20	1. 15	1.10	1.05
特殊组合	1	1.10	1.05	1.05	1.00

表 8.2.6 整体抗滑(或边坡)稳定安全系数的允许值

注: 1. 特殊组合 I 适用于施工情况、检修情况及校核洪水位情况;

- 2. 特殊组合 I 适用于地震情况。
- 8.2.7 当岩石地基持力层范围内存在软弱结构面时,必须对软弱结构面进行整体抗滑稳定验算。
- 8.2.8 对于地质条件复杂的大型水闸,其地基整体抗滑稳定计算 应作专门研究。

8.3 地基沉隆计算

- 8.3.1 水闸土质地基沉降可只计算最终沉降量,并应选择有代表性的计算点进行计算,计算时应考虑结构刚性的影响。
- 8.3.2 土质地基最终沉降量可按公式(8.3.2)计算:

$$S_{\infty} = m \sum_{i=1}^{n} \frac{e_{1i} - e_{2i}}{1 + e_{1i}} h_{i}$$
 (8.3.2)

式中 S_{∞} ——土质地基最终沉降量(m);

n——土质地基压缩层计算深度范围内的土层数;

 e_{ii} ——基础底面以下第 i 层土在平均自重应力作用下,由

压缩曲线查得的相应孔隙比:

- e_{2i} 基础底面以下第 *i* 层土在平均自重应力加平均附加 应力作用下,由压缩曲线查得的相应孔隙比;
- h_i 基础底面以下第 i 层土的厚度(m);
- *m* ── 地基沉降量修正系数,可采用 1.0~1.6(坚实地基 取较小值,软土地基取较大值)。
- 8.3.3 对于一般土质地基,当基底压力小于或接近于水闸闸基未 开挖前作用于该基底面上土的自重压力时,土的压缩曲线宜采用 e—p 回弹再压缩曲线;但对于软土地基,土的压缩曲线宜采用 e—p 压缩曲线。对于重要的大型水闸工程,有条件时土的压缩曲线也可采用 e—lgp 压缩曲线。
- 8.3.4 土质地基压缩层计算深度可按计算层面处土的附加应力与自重应力之比为 0.10~0.20(软土地基取小值,坚实地基取大值)的条件确定。地基附加应力的计算方法见附录 I。
- 8.3.5 高饱和度软土地基的沉降量计算,有条件时可采用考虑土体侧向变形影响的简化计算方法。
- 8.3.6 土质地基允许最大沉降量和最大沉降差,应以保证水闸安全和正常使用为原则,根据具体情况研究确定。天然土质地基上水闸地基最大沉降量不宜超过15cm,相邻部位的最大沉降差不宜超过5cm。
- 8.3.7 对于软土地基上的水闸,当计算地基最大沉降量或相邻部位的最大沉降差超过本规范8.3.6条规定的允许值时,宜采用下列一种或几种措施:
- 1 变更结构型式(采用轻型结构或静定结构等)或加强结构 刚度:
 - 2 采用沉降缝隔开;
 - 3 改变基础型式或刚度;
 - 4 调整基础尺寸与埋置深度;
 - 5 必要时对地基进行人工加固;
 - 6 安排合适的施工程序,严格控制施工速率。

8.4 地基处理设计

- 8.4.1 岩基处理设计应满足下列规定:
- 1 对岩基中的全风化带宜予清除,强风化带或弱风化带可根据水闸的受力条件和重要性进行适当处理。
- 2 对裂隙已发育的岩基,宜进行固结灌浆处理。固结灌浆孔可按梅花形或方格形布置,孔距、排距宜取 3~4m,孔深宜取 3~5m,必要时可加深加密。灌浆压力应以不掀动基础岩体和混凝土盖重为原则,无混凝土盖重时不宜小于 100kPa,有混凝土盖重时不宜小于 200kPa。
- 3 对岩基中的泥化夹层和缓倾角软弱带应根据其埋藏深度 和对地基稳定的影响程度采取不同的处理措施。在埋藏深度较浅 且不能满足地基稳定要求时,应予全部清除;在埋藏深度较深或埋 藏深度虽较浅但能满足地基稳定要求时,可全部保留或部分保留, 但应有防止恶化的工程措施。
- 4 对岩基中的断层破碎带应根据其分布情况和对水闸工程安全的影响程度采取不同的处理措施,通常以开挖为主,开挖深度可取破碎带宽度的 1~1.2 倍,并用混凝土回填,必要时可铺设钢筋。在灌浆帷幕穿过断层破碎带的部位,帷幕灌浆孔应适当加密。
- 8.4.2 对地基整体稳定有影响的溶洞或溶沟等,可根据其位置、 大小、埋藏深度和水文地质条件等,分别采取压力灌浆、挖填等处 理方法。
- **8.4.3** 土基常用的处理方法见表 8.4.3,可根据水闸地基情况、结构特点和施工条件等,采用一种或多种处理方法。
- 8.4.4 对于地基中的液化土层,可采用挖除置换、强力夯实、振动水冲、板桩(连续墙)围封或沉井基础等常用处理方法。当采用板桩(连续墙)围封或沉井基础处理时,桩(墙、井壁)体必须嵌入非液化土层。
- 8.4.5 垫层法设计应满足下列规定:

表 8.4.3 土基常用处理方法

处理方法	基本作用	适用范围	说:明
垫层法	改善地基应力分布,减少沉降量,适当提高地基稳定性和抗渗稳定性	厚度不大的软土地 基	用于深厚的软土地基 时,仍有较大的沉降量
强力夯实法	增加地基承载力, 减少沉降量,提高抗 振动液化的能力	透水性较好的松软 地基,尤其适用于稍密的碎石土或松砂地	用于淤泥或淤泥质土地 基时,需采取有效的排水 措施
振动水冲法	增加地基承载力,减少沉降量,提高抗振动 波化的能力	松砂、软弱的砂壤 土或砂卵石地基	1. 处理后地基的均匀 性和防止渗透变形的条件 较差 2. 用于不排水抗剪强 度小于 20kPa 的软土地 基时,处理效果不显著
桩基础	增加地基承载力, 减少沉降量,提高抗 滑稳定性	较深厚的松软地基,尤其适用于上部 为松软土层、下部为 硬土层的地基	1. 桩尖未嵌入硬土层的 摩擦桩,仍有一定的沉降量 2. 用于松砂、砂壤土地基 时,应注意渗透变形问题
沉井基础	除与桩基础作用相 同外,对防止地基渗 透变形有利	适用于上部为软土 层或粉细砂层、下部 为硬土层或岩层的地 基	

注: 深层搅拌法、高压喷射法等其他处理方法,经论证后也可采用。

- 1 垫层厚度应根据地基土质情况、结构型式、荷载大小等因素,以不超过下卧土层允许承载力为原则确定,但不宜大于 3.0 m。
- 2 垫层材料应就地取材,采用性能稳定、压缩性低的天然或人工材料,但不宜采用粉砂、细砂、轻砂壤土或轻粉质砂壤土。垫层材料中不应含树皮、草根及其他杂质。
 - 3 壤土垫层宜分层压实,土料的含水量应控制在最优含水量

附近,大型水闸垫层压实系数不应小于 0.96;中、小型水闸垫层压 实系数不应小于 0.93。

- **4** 砂垫层应有良好的级配,宜分层振动密实,相对密度不应小于 0.75;强地震区水闸垫层相对密度不应小于 0.8。
- 5 对于重要的大型水闸工程,垫层压密效果应根据地基土质条件及选用的垫层材料等进行现场试验验证。
- 8.4.6 强力夯实法设计应满足下列规定:
- 1 锤重和落距应根据地基土质情况和施工设备条件等因素确定,锤重可采用100~250kN,落距可采用10~20m。锤的重心位置应在锤的半高度以下,锤底面积可按锤底面静压力为30~40kPa 计算确定,锤体中宜均匀设置若干个上下贯通的通气孔。
- **3** 夯点夯击遍数、每遍击数和前、后两遍的间歇时间等,均应 经现场最佳夯击能试验确定。当地下水位较高时,应适当延长间歇 时间,并应有良好的排水措施。
- 4 强力夯实的有效加固深度应根据现场试夯结果或当地已 建工程经验确定。
- **5** 强力夯实法设计应有防止对周围已有建筑物产生有害影响的措施。
- 8.4.7 振动水冲法设计应满足下列规定:
- 1 振冲孔添加填料挤扩成桩的桩径宜采用 0.6~0.8m。振冲孔孔距宜采用 1.5~2.5m,按梅花形或方格形布置,孔深应根据设计要求和施工条件确定。当松软土层不厚时,振冲孔宜打穿松软土层。
- 2 振冲孔添加的填料宜采用有良好级配的砂、碎石等。碎石最大粒径不宜大于 5cm,含泥量不宜大于 5%。
- **3** 采用振动水冲法加固的地基,当添加与天然地基土质不同的填料时,应按复合地基设计;当不添加填料或添加与天然地基土质相同的填料时,可按均质地基设计。

- 4 对于地基土质条件复杂的大型水闸工程,采用的振冲孔孔 距、孔深、选用的填料及挤扩成桩的桩径等设计数据以及振冲效果 应经现场试验验证。
- 8.4.8 桩基础设计应满足下列规定:
- 1 水闸桩基础通常宜采用摩擦型桩(包括摩擦桩和端承摩擦桩)。
- 2 桩的根数和尺寸宜按承担底板底面以上的全部荷载确定。 对于摩擦型桩,经论证后可适当考虑桩间土承担部分荷载。
- **3** 预制桩的中心距不应小于 3 倍桩径或边长,钻孔灌注桩的中心距不应小于 2.5 倍桩径。
- 4 桩的平面布置宜使桩群形心与底板底面以上基本荷载组合的合力作用点相接近,单桩的竖向荷载最大值与最小值之比不宜大于本规范 7.3.5 条规定的允许值。
- 5 在同一块底板下,不应采用直径、长度相差过大的摩擦型桩,也不应同时采用摩擦型桩和端承型桩(包括端承桩和摩擦端承桩)。
- 6 当防渗段底板下采用端承型桩时,应采取防止底板底面接触冲刷的措施。
- 7 单桩的竖向荷载和水平向荷载以及允许的竖向承载力和水平向承载力,可按现行的 GBJ7—89《建筑地基基础设计规范》等有关专业规范计算确定。如采用钻孔灌注桩,桩顶不可恢复的水平位移值宜控制不超过 0.5cm;如采用预制桩,宜控制不超过 1.0cm。
- 8.4.9 深厚的松软土基上的水闸桩基础,当桩的中心距小于 6 倍桩径或边长、桩数超过 9 根(含 9 根)时应作为群桩基础,其桩尖平面处的地基压应力和沉降量不应大于该平面处地基土的允许承载力和允许沉降量。
- 8.4.10 沉井基础设计应满足下列规定:
 - 1 沉井平面布置应简单对称,其长宽比不宜大于3。
 - 2 沉井分节浇筑高度应根据地基条件、控制下沉速度等因素

确定。

3 沉井应按均衡下沉设计。下沉系数(即沉井自重与井壁摩阻力之比)可采用 1.15~1.25。井壁单位面积摩阻力可根据地基土类别由表 8.4.9 查得。

地基土类别	井壁单位面积摩阻力
泥浆套	3~5
软 土	10~12
较软粘性土	12~25
较硬粘性土	25~50
砂性土	12~25
砂砾石	15~20
砂卵石	18~30

表 8.4.9 井壁单位面积摩阻力(kPa)

注: 泥浆套即灌注在沉井井壁外侧的触变泥浆,作为助沉材料。

- **4** 沉井宜下沉到下卧硬土层或岩层,是否封底应根据工程具体情况研究确定。
- 5 当地基存在承压水层且影响地基抗渗稳定性时,不宜采用 沉井基础。
- 8. 4. 11 沉井井壁及隔墙厚度应根据结构强度和刚度、下沉需要的重量以及施工要求等因素确定。井壁外侧面应尽量做到平整 光滑。

隔墙与井壁所分隔的井口尺寸应满足施工要求。隔墙底面应 高于井壁刃脚 0.5m 以上。

井壁刃脚底面宽度不宜小于 0.2m,刃角内侧斜面与底平面的夹角宜采用 45°~ 60°。

9 观 测 设 计

- 9.0.1 水闸的观测设计内容应包括:
 - 1 设置观测项目;
 - 2 布置观测设施;
 - 3 拟定观测方法:
 - 4 提出整理分析观测资料的技术要求。
- 9.0.2 水闸应根据其工程规模、等级、地基条件、工程施工和运用条件等因素设置一般性观测项目,并根据需要有针对性地设置专门性观测项目。

水闸的一般性观测项目应包括:水位、流量、沉降、水平位移、 扬压力、闸下流态、冲刷、淤积等。

水闸的专门性观测项目主要有:永久缝、结构应力、地基反力、 墙后土压力、冰凌等。

当发现水闸产生裂缝后,应及时进行裂缝检查。对沿海地区或附近有污染源的水闸,还应经常检查混凝土碳化和钢结构锈蚀情况。

- 9.0.3 水闸观测设施的布置应符合下列要求:
 - 1 全面反映水闸工程的工作状况;
 - 2 观测方便、直观;
 - 3 有良好的交通和照明条件;
 - 4 有必要的保护设施。
- 9.0.4 水闸的上、下游水位可通过设自动水位计或水位标尺进行观测。测点应设在水闸上、下游水流平顺、水面平稳、受风浪和泄流影响较小处。
- 9.0.5 水闸的过闸流量可通过水位观测,根据闸址处经过定期律定的水位—流量关系曲线推求。

对于大型水闸,必要时可在适当地点设置测流断面进行观测。

9.0.6 水闸的沉降可通过埋设沉降标点进行观测。测点可布置在 闸墩、岸墙、翼墙顶部的端点和中点。工程施工期可先埋设在底板 面层,在工程竣工后、放水前再引接到上述结构的顶部。

第一次的沉降观测应在标点埋设后及时进行,然后根据施工期不同荷载阶段按时进行观测。在工程竣工放水前、后应立即对沉降分别观测一次,以后再根据工程运用情况定期进行观测,直至沉降稳定时为止。

9.0.7 水闸的水平位移可通过沉降标点进行观测。水平位移测点 宜设在已设置的视准线上,且宜与沉降测点共用同一标点。

水平位移应在工程竣工前、后立即分别观测一次,以后再根据 工程运行情况不定期进行观测。

9.0.8 水闸闸底的扬压力可通过埋设测压管或渗压计进行观测。 对于水位变化频繁或透水性甚小的粘土地基上的水闸,其闸底扬 压力观测应尽量采用渗压计。

测点的数量及位置应根据闸的结构型式、闸基轮廓线形状和 地质条件等因素确定,并应以能测出闸底扬压力的分布及其变化 为原则。测点可布置在地下轮廓线有代表性的转折处。测压断面 不应少于 2 个,每个断面上的测点不应少于 3 个。对于侧向绕流的 观测,可在岸墙和翼墙填土侧布置测点。

扬压力观测的时间和次数应根据闸的上、下游水位变化情况 确定。

- 9.0.9 水闸闸下流态及冲刷、淤积情况可通过在闸的上、下游设置固定断面进行观测。有条件时,应定期进行水下地形测量。
- 9.0.10 水闸的专门性观测的测点布置及观测要求应根据工程具体情况确定。
- 9.0.11 在水闸运行期间,如发现异常情况,应有针对性的对某些观测项目加强观测。
- 9.0.12 对于重要的大型水闸,可采用自动化观测手段。
- 9.0.13 水闸的观测设计应对观测资料的整理分析提出技术要求。

附录 A 闸孔总净宽计算

A. 0. 1 对于平底闸, 当为堰流时, 闸孔总净宽可按公式(A. 0. 1-1)~(A. 0. 1-6)计算(计算示意图见图 A. 0. 1):

图 A. 0. 1

$$B_0 = \frac{Q}{\sigma \epsilon_m \sqrt{2\varrho} H_0^{\frac{3}{2}}} \tag{A. 0. 1-1}$$

$$\epsilon = 1 - 0.171 \left(1 - \frac{b_0}{b_*} \right) \sqrt[4]{\frac{b_0}{b_*}}$$
 (A. 0. 1-2)

多孔闸,闸墩墩头为圆弧形时

$$\varepsilon = \frac{\varepsilon_{z}(N-1) + \varepsilon_{b}}{N}$$
 (A. 0. 1-3)

$$\varepsilon_{z} = 1 - 0.171 \left(1 - \frac{b_{0}}{b_{0} + d_{z}} \right) \sqrt[4]{\frac{b_{0}}{b_{0} + d_{z}}}$$
 (A. 0. 1-4)

$$\epsilon_{\rm b} = 1 - 0.171 \left[1 - \frac{b_0}{b_0 + \frac{d_z}{2} + b_{\rm b}} \right] \sqrt[4]{\frac{b_0}{b_0 + \frac{d_z}{2} + b_{\rm b}}}$$

(A. 0. 1-5)

$$\sigma = 2.31 \frac{h_s}{H_0} \left(1 - \frac{h_s}{H_0} \right)^{0.4}$$
 (A. 0. 1-6)

式中 B_0 ——闸孔总净宽(m);

Q——过闸流量(m^3/s);

 H_0 — 计入行近流速水头的堰上水深(m);

g---重力加速度,可采用 9.81(m/s²);

m — 堰流流量系数,可采用 0.385;

ε— 堰流侧收缩系数,对于单孔闸可按公式(A. 0. 1-2) 计算求得或由表 A. 0. 1-1 查得;对于多孔闸可按公 式(A. 0. 1-3)计算求得;

b₀──闸孔净宽(m);

b. ——上游河道一半水深处的宽度(m);

N——闸孔数;

 ϵ_z —中闸孔侧收缩系数,可按公式(A. 0. 1-4)计算求得或由表 A. 0. 1-1 查得,但表中 b_s 为 b_o+d_z ;

d_z---中闸墩厚度(m);

 ϵ_b 一边闸孔侧收缩系数,可按公式(A. 0. 1-5)计算求得或由表 A. 0. 1-1 查得,但表中 b_s 为 b_o + $\frac{d_z}{2}$ + b_b ;

*b*_b——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m);

σ— 堰流淹没系数,可按公式(A. 0. 1-6)计算求得或按表 A. 0. 1-2 查得;

h。——由堰顶算起的下游水深(m)。

表 A. 0. 1-1 ε值

b	$_0/b_{\mathrm{s}}$	€0.2	0.3	0.4	0.5	0.6	0. 7	0.8	0.9	1.0
	ε	0. 909	0.911	0.918	0. 928	0.940	0. 953	0. 968	0. 983	1.000

表 A. 0. 1-2 宽顶堰σ值

h_s/H_0	≤0.72	0.75	0. 78	0.80	0.82	0.84	0.86	0.88	0. 90	0. 91
σ	1.00	0. 99	0. 98	0. 97	0. 95	0. 93	0. 90	0.87	0. 83	0.80
$h_{\rm s}/H_0$	0. 92	0.93	0.94	0. 95	0.96	0.97	0.98	0. 99	0. 995	0. 998
σ	0. 77	0.74	0.70	0.66	0. 61	0.55	0.47	0.36	0. 28	0.19

A. 0. 2 对于平底闸,当堰流处于高淹没度($h_s/H_o \ge 0.9$)时,闸孔总净宽也可按公式(A. 0. 2-1)和公式(A. 0. 2-2)计算(计算示意图见图 A. 0. 2);

图 A. 0. 2

$$B_0 = \frac{Q}{\mu_0 h_s \sqrt{2g(H_0 - h_s)}}$$
 (A. 0. 2-1)

$$\mu_0 = 0.877 + \left(\frac{h_s}{H_0} - 0.65\right)^2$$
 (A. 0. 2-2)

表 A. 0. 2 均值

7	h_s/H_0	0.90	0. 91	0. 92	0. 93	0.94	0.95	0.96	0. 97	0.98	0. 99	0. 995	0. 998
Γ	μ_0	0.940	0. 945	0. 950	0. 955	0.961	0. 967	0. 973	0. 979	0. 986	0. 993	0. 996	0. 998

A. 0. 3 对于平底闸, 当为孔流时, 闸孔总净宽可按公式(A. 0. 3-1)~(A. 0. 3-4)计算(计算示意图见图 A. 0. 3):

图 A.O.3

$$B_0 = \frac{Q}{\sigma' \, \mu h_e \, \sqrt{2gH_0}} \tag{A. 0. 3-1}$$

$$\mu = \varphi \varepsilon' \sqrt{1 - \frac{\varepsilon' h_e}{H}}$$
 (A. 0. 3-2)

$$\epsilon' = \frac{1}{1 + \sqrt{\lambda \left[1 - \left(\frac{h_e}{H}\right)^2\right]}}$$
 (A. 0. 3-3)

$$\lambda = \frac{0.4}{2.718^{16\frac{r}{h_*}}} \tag{A. 0. 3-4}$$

式中 he---孔口高度(m);

μ——孔流流量系数,可按公式(A. 0. 3-2)计算求得或由表A. 0. 3-1 查得;

 φ ——孔流流速系数,可采用 0.95 \sim 1.0;

 ϵ' ——孔流垂直收缩系数,可由公式(A. 0. 3-3)计算求得;

 λ — 计算系数,可由公式(A. 0. 3-4)计算求得,该公式适用于 $0 < \frac{r}{h} < 0.25$ 范围;

r——胸墙底圆弧半径(m):

σ'——孔流淹没系数,可由表 A. 0. 3-2 查得,表中 h。为跃 后水深(m)。

表 Α. 0. 3-1 μ値

h_e/H γ/h_e	0	0. 05	0.10	0. 15	0. 20	0. 25	0.30	0. 35	0.40	0. 45	0. 50	0.55	0. 60	0. 65
0	0. 582	0. 573	0. 565	0. 557	0. 549	0.542	0. 534	0. 527	0. 520	0.512	0. 505	0.497	0. 489	0. 481
0.05	0. 667	0. 656	0. 644	0. 633	0. 622	0. 611	0. 600	0. 589	0. 577	0. 566	0. 553	0. 541	0. 527	0. 512
0.10	0. 740	0. 725	0.711	0. 697	0. 682	0.668	0. 653	0. 638	0. 623	0. 607	0.590	0. 572	0. 553	0. 533
0. 15	0. 798	0. 781	0. 764	0. 747	0. 730	0. 712	0. 694	0. 676	0. 657	0. 637	0.616	0. 594	0. 571	0. 546
0. 20	0.842	0. 824	0. 805	0. 785	0. 766	0.745	0. 725	0. 703	0. 681	0. 658	0.634	0.609	0. 582	0. 553
0. 25	0. 875	0. 855	0. 834	0. 813	0. 791	0.769	0.747	0.723	0. 699	0. 673	0. 647	0. 619	0. 589	0. 557

表 A. 0. 3-2 σ值

	$\frac{h_{\rm s}-h_{\rm c}''}{H-h_{\rm c}''}$	≤ 0	0.1	0. 2	0. 3	0.4	0.5	0.6	0.7	0.8	0. 9	0. 92	0. 94	0. 96	0. 98	0. 99	0. 995
Γ	ď	1.00	0. 86	0. 78	0. 71	0. 66	0. 59	0. 52	0. 45	0. 36	0. 23	0. 19	0. 16	0. 12	0. 07	0. 04	0. 02

附录 B 消能防冲计算

B.1 消力池计算

B. 1.1 消力池深度可按公式(B. 1.1-1)~(B. 1.1-4)计算(计算示意图见图 B. 1.1):

图 B.1.1

$$d = \sigma_0 h_{\rm c}^{"} - h_{\rm s}^{'} - \Delta Z$$
 (B. 1. 1-1)

$$h_{c}^{*} = \frac{h_{c}}{2} \left(\sqrt{1 + \frac{8\alpha q^{2}}{gh_{c}^{3}}} - 1 \right) \left(\frac{b_{1}}{b_{2}} \right)^{0.25}$$
 (B. 1. 1-2)

$$h_c^3 - T_0 h_c^2 + \frac{\alpha q^2}{2g\varphi^2} = 0$$
 (B. 1. 1-3)

$$\Delta Z = \frac{\alpha q^2}{2g\varphi^2 h_s^{'2}} - \frac{\alpha q^2}{2gh_c^{'2}}$$
 (B. 1. 1-4)

式中 d——消力池深度(m);

 σ_0 — 水跃淹没系数,可采用 1.05~1.10;

h"---跃后水深(m);

h。——收缩水深(m);

 α ——水流动能校正系数,可采用 1.0~1.05;

q---过闸单宽流量(m²/s);

 b_1 ——消力池首端宽度(m);

b2---消力池末端宽度(m);

 T_0 ——由消力池底板顶面算起的总势能(m);

 ΔZ —出池落差(m);

h's—出池河床水深(m)。

B. 1.2 消力池长度可按公式(B. 1. 2-1)和公式(B. 1. 2-2)计算(计算示意图见图 B. 1. 1):

$$L_{\rm si} = L_{\rm s} + \beta L_{\rm i}$$
 (B. 1. 2-1)

$$L_{\rm i} = 6.9(h_{\rm c}'' - h_{\rm c})$$
 (B. 1. 2-2)

式中 $L_{\rm si}$ ——消力池长度(m);

 L_s —消力池斜坡段水平投影长度(m);

 β ——水跃长度校正系数,可采用 0.7 \sim 0.8;

L_i—水跃长度(m)。

B. 1. 3 消力池底板厚度可根据抗冲和抗浮要求,分别按公式(B. 1. 3-1)和公式(B. 1. 3-2)计算,并取其大值。

抗冲
$$t = k_1 \sqrt{q \sqrt{\Delta H'}}$$
 (B. 1. 3-1)

抗浮
$$t = k_2 \frac{U - W \pm P_{\text{m}}}{\gamma_{\text{b}}}$$
 (B. 1. 3-2)

式中 t---消力池底板始端厚度(m);

 $\Delta H'$ — 闸孔泄水时的上、下游水位差(m);

 k_1 ——消力池底板计算系数,可采用 0.15~0.20;

k2---消力池底板安全系数,可采用 1.1~1.3;

U——作用在消力池底板底面的扬压力(kPa);

W——作用在消力池底板顶面的水重(kPa);

P_m—作用在消力池底板上的脉动压力(kPa),其值可取跃 前收缩断面流速水头值的 5%;通常计算消力池底板 前半部的脉动压力时取"+"号,计算消力池底板后半 部的脉动压力时取"-"号;

γ_b——消力池底板的饱和重度(kN/m³)。

消力池末端厚度,可采用 $\frac{t}{2}$,但不宜小于 0.5m。

B.2 海漫长度计算

B. 2. 1 当 $\sqrt{q_s}\sqrt{\Delta H'} = 1\sim 9$,且消能扩散良好时,海漫长度可按公式(B. 2. 1)计算:

$$L_{\rm p} = K_{\rm s} \sqrt{q_{\rm s} \sqrt{\Delta H'}} \tag{B. 2. 1}$$

式中 L,——海漫长度(m);

 q_s ——消力池末端单宽流量 (m^2/s) ;

K。──海漫长度计算系数,可由表 B. 2.1 查得。

表 B. 2. 1 K. 值

河床土质	粉砂、细砂	中砂、粗砂、粉质壤土	粉质粘土	坚硬粘土
K _s	14~13	12~11	10~9	8~7

B.3 河床冲刷深度计算

B. 3.1 海漫末端的河床冲刷深度可按公式(B. 3.1)计算:

$$d_{\rm m} = 1.1 \frac{q_{\rm m}}{[v_{\rm o}]} - h_{\rm m}$$
 (B. 3.1)

式中 dm 海漫末端河床冲刷深度(m);

qm——海漫末端单宽流量(m²/s);

 $[v_0]$ — 河床土质允许不冲流速(m/s);

h_m——海漫末端河床水深(m)。

B. 3. 2 上游护底首端的河床冲刷深度可按公式(B. 3. 2)计算:

$$d'_{\rm m} = 0.8 \frac{q'_{\rm m}}{|v_0|} - h'_{\rm m}$$
 (B. 3. 2)

式中 d'm---上游护底首端河床冲刷深度(m);

 $q_{\rm m}^{\prime}$ ——上游护底首端单宽流量(${\rm m}^2/{\rm s}$);

h'm——上游护底首端河床水深(m)。

B.4 跌 坎 计 算

B. 4.1 跌坎计算示意图见图 B. 4.1,选定的跌坎高度应符合公

图 B. 4.1

式(B. 4.1-1)~(B. 4.1-3)的要求(计算示意图见图 B. 4.1):

$$P \geqslant 0.186 \frac{h_{k}^{2.75}}{h_{dr}^{1.75}}$$
 (B. 4. 1-1)

$$P < \frac{2.24h_{\rm k} - h_{\rm ds}}{1.48 \frac{h_{\rm k}}{P_{\rm d}} - 0.84}$$
 (B. 4. 1-2)

$$P > \frac{2.38h_{\rm k} - h_{\rm ds}}{1.81 \frac{h_{\rm k}}{P_{\rm d}} - 1.16}$$
 (B. 4. 1-3)

式中 P——跌坎高度(m);

h_k----跌坎上的临界水深(m);

 h_{dc} — 跌坎上的收缩水深(m);

 h_{ds} — 跌坎后的河床水深(m);

P_d——闸坎顶面与下游河底的高差(m)。

- **B. 4. 2** 选定的跌坎坎顶仰角 θ 宜在 $0^{\circ} \sim 10^{\circ}$ 范围内。
- **B. 4. 3** 选定的跌坎反弧半径 R 不宜小于跌坎上收缩水深的 2. 5 倍。
- **B. 4. 4** 选定的跌坎长度 L_m 不宜小于跌坎上收缩水深的 1.5 倍。

附录 C 渗透压力计算

C.1 全截面直线分布法

C. 1. 1 当岩基上水闸闸基设有水泥灌浆帷幕和排水孔时,闸底板底面上游端的渗透压力作用水头为 $H-h_s$,排水孔中心线处为 $a(H-h_s)$,下游端为零,其间各段依次以直线连接(见图 C. 1. 1)。作用于闸底板底面上的渗透压力可按公式(C. 1. 1)计算:

图 C.1.1

$$U = \frac{1}{2} \gamma (H - h_s) (L_1 + \alpha L)$$
 (C. 1. 1)

式中 U--作用于闸底板底面上的渗透压力(kN/m);

L₁—— 排水孔中心线与闸底板底面上游端的水平距离 (m);

α---渗透压力强度系数,可采用 0.25;

L——闸底板底面的水平投影长度(m)。

C. 1. 2 当岩基上水闸闸基未设水泥灌浆帷幕和排水孔时,闸底板底面上游端的渗透压力作用水头为 $H-h_s$,下游端为零,其间以直线连接(见图 C. 1. 2)。作用于闸底板底面上的渗透压力可按公

图 C.1.2

式(C.1.2)计算:

$$U = \frac{1}{2}\gamma(H - h_s)L \tag{C.1.2}$$

C. 2 改进阻力系数法

C. 2. 1 土基上水闸的地基有效深度可按公式(C. 2. 1-1)或公式(C. 2. 1-2)计算:

当
$$\frac{L_0}{S_0} > 5$$
 时 $T_e = 0.5L_0$ (C. 2. 1-1)

当
$$\frac{L_0}{S_0}$$
<5时 $T_e = \frac{5L_0}{1.6\frac{L_0}{S_0} + 2}$ (C. 2. 1-2)

式中 Te--土基上水闸的地基有效深度(m);

 L_0 —地下轮廓的水平投影长度(m);

 S_0 —地下轮廓的垂直投影长度(m)。

当计算的 T_e 值大于地基实际深度时, T_e 值应按地基实际深度采用。

C. 2. 2 分段阻力系数可按公式(C. 2. 2-1)~式(C. 2. 2-3)计算:

1 进、出口段(见图 C. 2. 2-1);

$$\xi_0 = 1.5 \left(\frac{S}{T}\right)^{\frac{3}{2}} + 0.441$$
 (C. 2. 2-1)

式中 ξ_0 —进、出口段的阻力系数;

S---板桩或齿墙的入土深度(m);

T——地基透水层深度(m)。

2 内部垂直段(见图 C. 2. 2-2):

$$\xi_{y} = \frac{2}{\pi} \ln \operatorname{ctg} \left[\frac{\pi}{4} \left(1 - \frac{S}{T} \right) \right]$$
 (C. 2. 2-2)

式中 ξ, 一内部垂直段的阻力系数。

图 C. 2, 2-1

$$\xi_{x} = \frac{L_{x} - 0.7(S_{1} + S_{2})}{T}$$

(C. 2. 2-3)

Lx---水平段长度(m);

 S_1 、 S_2 —— 进、出口段板桩或齿墙的 入土深度(m)。

C. 2. 3 各分段水头损失值可按公式 (C. 2. 3)计算:

图 C. 2. 2-2

图 C. 2. 2-3

$$h_{i} = \xi_{i} \frac{\Delta H}{\sum_{i=1}^{n} \xi_{i}}$$
 (C. 2. 3)

式中 *h_i*——各分段水头损失值(m); *ξ_i*——各分段的阻力系数; *n*——总分段数。 以直线连接各分段计算点的水头值,即得渗透压力的分布图 形。

C. 2. 4 进、出口段水头损失值和渗透压力分布图形可按下列方法进行局部修正:

1 进、出口段修正后的水头损失值可按公式(C. 2. 4-1)~式(C. 2. 4-3)计算(见图 C. 2. 4-1):

$$h_0' = \beta' h_0$$
 (C. 2. 4-1)

$$h_0 = \sum_{i=1}^{n} h_i$$
 (C. 2. 4-2)

$$\beta' = 1.21 - \frac{1}{\left[12\left(\frac{T'}{T}\right)^2 + 2\right]\left(\frac{S'}{T} + 0.059\right)}$$
 (C. 2. 4-3)

式中 h'0---进、出口段修正后的水头损失值(m);

h₀——进、出口段水头损失值(m);

 β' —— 阻力修正系数,当计算的 β' $\geqslant 1.0$ 时.采用 $\beta' = 1.0$:

S'——底板埋深与板桩入土深度之 和(m);

T'——板桩另一侧地基透水层深度 (m)。

图 C. 2. 4-1

2 修正后水头损失的减小值,可按公式(C. 2. 4-4)计算:

$$\Delta h = (1 - \beta')h_0$$
 (C. 2. 4-4)

式中 Δh 修正后水头损失的减小值(m)。

3 水力坡降呈急变形式的长度可按公式(C. 2. 4-5)计算:

$$L_{x}' = \frac{\Delta h}{\Delta H} T \qquad (C. 2. 4-5)$$

$$\sum_{i=1}^{n} \xi_{i}$$

式中 L'x——水力坡降呈急变形式的长度(m)。

4 出口段渗透压力分布图形可按下列方法进行修正(见图 C. 2. 4-2)。即图 C. 2. 4-2 中的 QP'为原有水力坡降线,根据公式

(C. 2. 4-4)和公式(C. 2. 4-5)计算的 Δh 和 L_x 值,分别定出 P 点和 O 点,连接 QOP,即为修正后的水力坡降线。

图 C. 2, 4-2

C. 2. 5 进、出口段齿墙不规则部位可按下列方法进行修正(见图 C. 2. 5-1 和图 C. 2. 5-2):

图 C. 2. 5-1

图 C. 2. 5-2

1 当 h_x ≥ Δh 时,可按公式(C. 2. 5-1)进行修正:

$$h_{x}^{'} = h_{x} + \Delta h$$
 (C. 2. 5-1)

式中 h_x——水平段的水头损失值(m);

h'x——修正后的水平段水头损失值(m)。

- 2 当 $h_x < \Delta h$ 时,可按下列两种情况分别进行修正:
 - 1) 若 $h_x + h_y \gg \Delta h$,可按公式(C. 2. 5-2)和公式(C. 2. 5-3)进行修正:

$$h_{x}' = 2h_{x}$$
 (C. 2. 5-2)

$$h'_{y} = h_{y} + \Delta h - h_{x}$$
 (C. 2. 5-3)

式中 hy——内部垂直段的水头损失值(m);

h'v——修正后的内部垂直段水头损失值(m)。

2) 若 $h_x + h_y < \Delta h$,可按公式(C. 2. 5-2)、公式(C. 2. 5-4)和公式(C. 2. 5-5)进行修正:

$$h_{y}^{'} = 2h_{y}$$
 (C. 2. 5-4)

$$h'_{cd} = h_{cd} + \Delta h - (h_x + h_y)$$
 (C. 2. 5-5)

式中 h_{cd} 图 C. 2. 5-1 和图 C. 2. 5-2 中 CD 段的水头损失值(m); h'_{cd} 一 修正后的 CD 段水头损失值(m)。

以直线连接修正后的各分段计算点的水头值,即得修正后的 渗透压力分布图形。

C. 2. 6 出口段渗流坡降值可按公式(C. 2. 6)计算:

$$J = \frac{h_0'}{S'}$$
 (C. 2. 6)

式中 J——出口段渗流坡降值。

附录 D 土压力计算

- **D. 0.1** 作用在水闸挡土结构上的主动土压力可根据填土性质、挡土高度、填土内的地下水位、填土顶面坡角及超荷载等因素,分别按下列规定进行计算:
- 1 对于重力式挡土结构,当墙后填土为均质无粘性土时,主动土压力宜按库仑公式,即公式(D. 0. 1-1)和公式(D. 0. 1-2)计算(计算示意图见图 D. 0. 1-1);

$$F_{\rm a} = \frac{1}{2} \gamma_{\rm t} H_{\rm t}^2 K_{\rm a}$$
 (D. 0. 1-1)

$$K_{a} = \frac{\cos^{2}(\phi_{t} - \epsilon)}{\cos^{2}\epsilon\cos(\epsilon + \delta)\left[1 + \sqrt{\frac{\sin(\phi_{t} + \delta)\sin(\phi_{t} - \beta)}{\cos(\epsilon + \delta)\cos(\epsilon - \beta)}}\right]^{2}}$$

(D. 0. 1-2)

式中 F_s —作用在水闸挡土结构上的主动土压力(kN/m),其作用点距墙底为墙高的 $\frac{1}{3}$ 处,作用方向与水平面成(δ + ϵ)夹角:

γ,——挡土结构墙后填土重度(kN/m³),地下水位以下取

浮重度:

H,—_挡土结构高度(m);

 K_a ——主动土压力系数;

♠──挡土结构墙后填土的内摩擦角(°);

ε---挡土结构墙背面与铅直面的夹角(°);

β——挡土结构墙后填土表面坡角(°)。

挡土结构墙背面排水状况	δ值
墙背光滑,排水不良	(0.00~0.33) ∮ t
墙背粗糙,排水良好	(0. 33∼0. 50) ∮ t
墙背很粗糙,排水良好	(0.50~0.67) ∮ t
墙背与填土之间不可能滑动	(0.67~1.00) ∳t

表 D. 0.1 δ值

2 对于扶壁式或空箱式挡土结构,当墙后填土为砂性土时,主动土压力宜按朗肯公式,即公式(D. 0. 1-1)和公式(D. 0. 1-3)计算(计算示意图见图 D. 0. 1-2,主动土压力 F。的作用方向与水平面呈 β 夹角,即与填土表面平行).

67

$$K_{s} = \cos\beta \frac{\cos\beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi_{t}}}{\cos\beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi_{t}}}$$
 (D. 0. 1-3)

3 对于扶壁式或空箱式结构,当墙后填土为砂性土,且填土 表面水平时,主动土压力可按公式(D. 0. 1-1)和公式(D. 0. 1-4) 计算:

$$K_a = tg^2 \left(45^\circ - \frac{\phi_t}{2} \right)$$
 (D. 0. 1-4)

- 4 当挡土结构墙后填土为粘性土时,可采用等值内摩擦角法(又称等代内摩擦角法)计算作用于墙背或 AB 面上的主动土压力。等值内摩擦角可根据挡土结构高度、墙后所填粘性土性质及其浸水情况等因素,参照已建工程实践经验确定,挡土结构高度在6m以下者,墙后所填粘性土水上部分等值内摩擦角可采用 28°~30°,水下部分等值内摩擦角可采用 25°~28°;挡土结构高度在6m以上(含6m)者,墙后所填粘性土采用的等值内摩擦角应随挡土结构高度的增大而相应降低。
- 5 当挡土结构墙后填土表面有均布荷载作用时,可将均布荷载换算成等效的填土高度,计算作用于墙背或 AB 面上的主动土压力。此种情况下,作用于墙背或 AB 面上的主动土压力应按梯形分布计算。
- 6 当挡土结构墙后填土表面有车辆荷载作用时,可将车辆荷载近似地按均布荷载换算成等效的填土高度,计算作用于墙背或AB面上的主动土压力。
- D. 0. 2 对于墙背铅直、墙后填土表面水平的水闸挡土结构,静止土压力可按公式(D. 0. 2-1)和公式(D. 0. 2-2)计算(计算示意图见图 D. 0. 2):

$$F_0 = \frac{1}{2} \gamma_t H_t^2 K_0$$
 (D. 0. 2-1)

$$K_0 = 1 - \sin\phi_t'$$
 (D. 0. 2-2)

式中 F_0 —作用在水闸挡土结构上的静止土压力(kN/m);

K₀——静止土压力系数,应通过试验确定;在没有试验资料

的情况下,也可按表 D. 0. 2 选用; 4——墙后填土的有效内摩擦角(°)。

表 D. 0. 2 Ko 值

墙后填土类别	<i>K</i> ₀值
碎 石 土	0.22~0.40
砂土	0.36~0.42
壤 土	0.60~0.62
粘 土	0.70~0.75

附录 E 浪压力计算

- E. 0.1 波浪要素可根据水闸闸前风向、风速、风区长度、风区内的平均水深等因素,分别按下列规定进行计算:
- **1** 平均波高和平均波周期可按莆田试验站公式,即公式(E. 0. 1-1)和公式(E. 0. 1-2)计算:

$$\frac{gh_{\rm m}}{v_0^2} = 0.13 \text{th} \left[0.7 \left(\frac{gH_{\rm m}}{v_0^2} \right)^{0.7} \right] \text{th} \left\{ \frac{0.0018 \left(\frac{gD}{v_0^2} \right)^{0.45}}{0.13 \text{th} \left[0.7 \left(\frac{gH_{\rm m}}{v_0^2} \right)^{0.7} \right]} \right\}$$
(E. 0.1-1)

$$\frac{gT_{\rm m}}{v_0} = 13.9 \left(\frac{gh_{\rm m}}{v_0^2}\right)^{0.5}$$
 (E. 0. 1-2)

式中 hm 平均波高(m);

- v₀— 计算风速(m/s),当浪压力参与荷载的基本组合时,可采用当地气象台站提供的重现期为 50 年的年最大风速;当浪压力参与荷载的特殊组合时,可采用当地气象台站提供的多年平均年最大风速;
- D——风区长度(m),当闸前水域较宽广或对岸最远水面 距离不超过水闸前沿水面宽度 5 倍时,可采用对岸 至水闸前沿的直线距离;当闸前水域较狭窄或对岸 最远水面距离超过水闸前沿水面宽度 5 倍时,可采 用水闸前沿水面宽度的 5 倍;
- H_m——风区内的平均水深(m),可由沿风向作出的地形剖面图求得,其计算水位应与相应计算情况下的静水位一致;

 $T_{\rm m}$ —平均波周期(s)。

2 波列累积频率可由表 E. 0. 1-1 查得。表 E. 0. 1-1 中的 *p* 为波列累积频率(%)。

表 E. O. 1-1 p值

水闸级别	1	2	3	4	5
p(%)	1	2	5	10	20

3 波高与平均波高的比值可由表 E. 0. 1-2 查得。表 E. 0. 1-2 中的 h_p 为相应于波列累积频率 p 的波高(m)。

表 E. O. 1-2 h_p/h_m 值

$\frac{h_{ m m}}{H_{ m m}}$	p(%)						
	1	2	5	10	20		
0.0	2. 42	2. 23	1.95	1. 71	1.43		
0. 1	2. 26	2. 09	1. 87	1.65	1.41		
0.2	2. 09	1. 96	1.76	1.59	1. 37		
0.3	1. 93	1. 82	1.66	1. 52	1. 34		
0.4	1.78	1.68	1.56	1.44	1.30		
0.5	1.63	1.56	1. 46	1. 37	1. 25		

4 平均波长与平均波周期的关系可按公式(E. 0. 1-3)换算:

$$L_{\rm m} = \frac{gT_{\rm m}^2}{2\pi} {\rm th} \, \frac{2\pi H}{L_{\rm m}}$$
 (E. 0. 1-3)

式中 L_{m} 平均波长(m);

H──-闸前水深(m)。

平均波长与平均波周期的换算值也可由表 E. 0. 1-3 查得。

E. 0. 2 作用于水闸铅直或近似铅直迎水面上的浪压力,应根据闸前水深和实际波态,分别按下列规定进行计算:

1 当 $H \geqslant H_k$ 和 $H \geqslant \frac{L_m}{2}$ 时,浪压力可按公式(E. 0. 2-1)和公式(E. 0. 2-2)计算(计算示意图见图 E. 0. 2-1),临界水深可按公式(E. 0. 2-3)计算:

$$P_1 = \frac{1}{4} \gamma L_{\rm m} (h_{\rm p} + h_z)$$
 (E. 0. 2-1)

表 E. O. 1-3 Lm 值

Н		$T_{\mathfrak{m}}(s)$									•••				
(m)	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
1.0	1.56	5. 22	8. 69	12.00	15. 24	18.44	21.62	24.79	27. 96	31.11	37.41	43.70	49.98	56, 26	62.54
2.0	_	6.05	11.31	16. 23	20. 95	25. 58	30. 16	34.69	39. 20	43.70	52.66	61.59	70.50	79.40	88. 29
3.0	_	6.22	12.68	18. 96	24.93	30.72	36. 41	42.03	47.61	53.16	64.19	75.17	86. 12	97.04	107.95
4.0	_	_	13.41	20.86	27. 95	34.77	41.44	48.01	54.51	60.96	73. 77	86.50	99.18	111.82	124.44
5.0	-	_	13.76	22. 20	30. 31	38. 09	45.66	53.08	60.41	67.68	82.08	96. 37	110.59	124.76	138. 90
6.0		_	13.93	23.13	32.19	40.87	49. 27	57.50	65.61	73.62	89. 49	105.20	120.82	136.38	151.90
7.0	. –	_	_	23. 78	33. 69	43. 22	52. 42	61.41	70. 24	78. 96	96. 19	113.23	130.15	147.00	163. 79
8.0		_		24. 21	34.89	45. 22	55. 19	64.90	74.43	83. 82	102.33	120.62	138.77	156. 82	174.80
9.0	-	_		24.49	35.84	46.94	57.65	68.05	78.24	88, 27	108.01	127. 49	146.79	165. 98	185.09
10.0		_		24.68	36.59	48. 41	59. 82	70.90	81.73	92. 37	113.30	133.91	154.31	174.58	194.76
12.0	_	_	_	24.87	37.64	50. 73	63. 49	75.85	87.90	99.73	122.89	145.64	168. 13	190.44	212.62
14.0	-	_			38. 25	52. 42	66.40	79.98	93. 20	106. 14	131.42	156. 18	180.61	204.82	228. 87
16.0	_	_			38. 61	53. 62	68. 72	83. 45	97.78	111. 78	139.09	165.76	192.02	218.02	243.83
18.0	_			_	38.80	54.47	79. 55	86.35	101.75	116.79	146.03	174.53	202.55	230. 25	257.72
20.0	-	_	_	1	-	55.05	71. 98	88.79	105. 21	121.24	152. 36	182.62	212. 33	241.66	270.72
22. 0		_	_	***	1	55.44	73. 10	90.83	108. 22	125. 21	158. 15	190. 12	221. 45	252. 35	282. 95
24.0	-	_	_		_	55.71	73.96	92.53	110.85	128. 75	163. 47	197.10	230.00	262. 42	294.49
26.0	_	_				55. 88	74.61	93. 94	113. 13	131.93	168. 36	203. 61	238.05	271. 94	305.44
28.0	_	_				_	75.10	95.10	115.10	134. 76	172. 87	209.70	245.64	280.96	315. 85
30.0	-	_	_	_	_	_	75. 47	96.05	116. 82	137. 29	177.04	215.41	252. 81	289. 54	325.78

图 E. 0. 2-1

$$h_z = \frac{\pi h_{\rm p}^2}{L_{\rm m}} {\rm cth} \, \frac{2\pi H}{L_{\rm m}}$$
 (E. 0. 2-2)

$$H_{\rm k} = \frac{L_{\rm m}}{4\pi} \ln \frac{L_{\rm m} + 2\pi h_{\rm p}}{L_{\rm m} - 2\pi h_{\rm p}}$$
 (E. 0. 2-3)

式中 P_1 —作用于水闸迎水面上的浪压力(kN/m);

 h_z ——波浪中心线超出计算水位的高度(m);

H_k——使波浪破碎的临界水深(m)。

2 当 $H \geqslant H_k$ 和 $H < \frac{L_m}{2}$ 时,浪压力可按公式(E. 0. 2-4)和公 式(E. 0. 2-5)计算(计算示意图见图 E. 0. 2-2):

$$P_{1} = \frac{1}{2} [(h_{p} + h_{z})(\gamma H + p_{s}) + H p_{s}] \quad (E. 0. 2-4)$$

$$p_{s} = \gamma h_{p} \operatorname{sech} \frac{2\pi H}{L_{m}} \quad (E. 0. 2-5)$$

式中 ps----闸墩(闸门)底面处的剩余浪压力强度(kPa)。

3 当 $H < H_k$ 时,浪压力可按公式(E. 0. 2-6)和公式(E. 0. 2-7)计算(计算示意图见图 E. 0. 2-3):

图 E. 0. 2-3

$$P_{1} = \frac{1}{2} P_{j} [(1.5 - 0.5\eta)(h_{p} + h_{z}) + (0.7 + \eta)H]$$

(E, 0, 2-6)

$$P_{i} = K_{i} \gamma (h_{p} + h_{z})$$
 (E. 0. 2-7)

式中 P:----计算水位处的浪压力强度(kPa);

 η — 闸墩(闸门)底面处的浪压力强度折减系数,当 $H \le 1.7(h_p+h_z)$ 时,可采用 0.6; 当 $H > 1.7(h_p+h_z)$ 时,可采用 0.5;

K:——闸前河(渠)底坡影响系数,可按表 E. 0. 2 采用。表 E. 0. 2 中的 *i* 为闸前一定距离内河(渠)底坡的平均 值。

表 E. O. 2 K_i 值

i	1/10	1/20	1/30	1/40	1/50	1/60	1/80	≤ 1/100
K _i	1.89	1.61	1. 48	1. 41	1. 36	1. 33	1. 29	1. 25

附录 F 岩 土 分 类

F.1 岩 石 分 类

F.1.1 岩石按坚硬程度分类见表 F.1.1。

表 F. 1.1 岩石按坚硬程度分类

	₹ F. E. T. 和 T. X E. X E. X . X . X . X . X . X . X .							
岩石类别		饱和单轴极 限抗压强度 (MPa)	主要地质特征	代表性岩石				
硬质	坚硬	>60	锤击声清脆,有回弹, 震手,难击碎;浸水后无 吸水反应	未风化或微风化的花岗岩、 正长岩、闪长岩、辉绿岩、玄武 岩、安山岩、片麻岩、石英片岩、 硅质板岩、石英岩、硅质胶结的 砾岩、石英砂岩、硅质石灰岩等				
岩石	较坚硬	60~30	锤击声较清脆,有轻微 回弹,稍震手,较难击碎; 浸水后有轻微吸水反应	1. 弱风化的坚硬岩石; 2. 未风化或微风化的熔结凝 灰岩、大理岩、板岩、白云岩、石 灰岩、钙质胶结的砂岩等				
	较软	30~15	锤击声不清脆,无回弹,较易击碎,浸水后用 指甲可刻出印痕	1. 强风化的坚硬岩石; 2. 弱风化的较坚硬岩石; 3. 未风化或微风化的凝灰岩、千枚岩、砂质泥岩、泥灰岩、泥质砂岩、粉砂岩、页岩等				
软质岩石	软	15~5	锤击声哑,无回弹,锤 击处有凹痕,易击碎;浸 水后用手可掰开					
	极软	<5	锤击声哑,无回弹,锤 击处有较深凹痕,用手可 捏碎;浸水后用手可捏成 团	1. 全风化的各种岩石;				

F. 1. 2 岩石风化程度鉴别见表 F. 1. 2。

表 F. 1.2 岩石风化程度鉴别

风化程度	波速比	主 要 地 质 特 征
未风化	>0.9	结构构造未变,矿物色泽新鲜;裂隙面紧密或呈焊接状充填,锤击声清脆,开挖需爆破
微风化	0.9~0.8	结构构造和矿物色泽基本未变;部分裂隙面有锈膜浸染; 锤击声较清脆,开挖需爆破
弱风化	0.8~0.6	结构构造部分破坏,矿物色泽有较明显变化;裂隙面出现 风化矿物或存在风化夹层;锤击声不清脆,开挖需爆破
强风化	0.6~0.4	结构构造大部分破坏,矿物色泽有明显变化;除石英外, 长石、云母等多风化成次生矿物;锤击声哑,易击碎,用镐或 橇棍可开挖
全风化	<0.4	结构构造全部破坏,矿物色泽全部改变,除石英外,大部分矿物成分风化成土状或砂状,锤击声哑,锤击处有凹坑,用手可捏碎,用锹可开挖

注: 波速比为风化岩石与新鲜岩石的弹性纵波速度之比。

F.2 碎石土分类

F.2.1 碎石土按砾的含量分类见表 F.2.1。

表 F. 2.1 碎石土按砾的含量分类

	44 MH Urt JE.	砾(60~2mm)的含量(%)		
碎石土类别	骨架颗粒形状	>60mm	>2mm	
漂 石	圆形或亚圆形为主	>75	_	
卵 石	圆形或亚圆形为主	75~50		
碎 石	角棱状为主	50~15		
砾 类 土	圆形或角棱状为主	_	>50	
砂类土	圆形为主	_	€50	

F. 2. 2 碎石土密实度鉴别见表 F. 2. 2。

表 F. 2. 2 碎石土密实度鉴别

密实度	骨架颗粒含量及排列	开挖情况	钻探情况
密实	骨架颗粒含量大于总 重的 70%,呈交错排列, 连续接触	用锹镐很难挖掘,用 撬棍方能松动,坑壁一 般较稳定	钻进极困难,冲击钻探时,钻杆、吊锤跳动剧烈,孔壁较稳定
中密	骨架颗粒含量等于总 重的 60%~70%,呈交 错排列,大部分接触	可用锹镐挖掘;坑壁 有掉块现象,从坑壁取 出大颗粒后,该处坑壁 仍保持凹面状况	钻进较难;冲击钻探时,钻杆、吊锤跳动不甚 剧烈;孔壁有坍塌现象
稍密	骨架颗粒含量小于总 重的 60%,排列乱,大部 分不接触	可用锹挖掘;坑壁易坍塌,从孔壁取出大颗粒后,该处的砂土立即塌落	钻进较容易;冲击钻探时,钻杆稍有跳动;孔壁易坍塌

注: 骨架颗粒指碎石土中含有的卵石、碎石、圆砾或角砾。

F.3 土 的 分 类

F. 3.1 土按颗粒级配分类见图 F. 3.1。

图 F. 3.1 三角坐标图

注: 若土中含有砾,但其含量不超过10%,在土名前加"含少量砾的"5个字。

F. 3. 2 土按塑性指数分类见表 F. 3. 2。表 F. 3. 2 中的 I_p 为土的 塑性指数。

表 F. 3. 2 土按塑性指数分类

土的名称	$I_{ m p}$
砂土	≤1
砂壤土	1~7
壤 土	7~17
粘土	>17

F. 3. 3 砂土按砂粒含量分类见表 F. 3. 3。

表 F. 3.3 砂土按砂粒含量分类

砂土名称	砂粒(2~0.075mm)含量(%)						
砂工石杯	>2mm	>0.5mm	>0.25mm	>0.075mm	>0.075mm		
砾 砂	25~50	_	_	_	_		
粗砂	_	>50	_	_	-		
中砂	_	_	>50	_	_		
细砂	-	_	_	>85	_		
粉砂	_	_	_	_	50~85		

F. 3. 4 砂土密实度划分见表 F. 3. 4。表 F. 3. 4 中的 D_7 为砂性土的相对密度。

表 F. 3. 4 砂土密实度划分

密实度	密实	中密	稍松	极松
D7(%)	>67	67~33	33~20	<20

F. 3. 5 粘性土状态划分见表 F. 3. 5。表 F. 3. 5 中的 I_L 为粘性土的液性指数。

表 F. 3.5 粘性土状态划分

状 态	坚 硬	硬 塑	可塑	软 塑	流塑
$I_{ m L}$	≤ 0	0~0.25	0. 25~0. 75	0.75~1	>1

F. 3. 6 细粒土按塑性图分类见图 F. 3. 6-1 和图 F. 3. 6-2。图 F. 3. 6-1 中液限 W_L 为质量 76g、锥角 30° 的液限仪锥尖入土深度 17mm 时测得的含水量(%),图 F. 3. 6-2 中液限 W_L 为质量 76g、锥角 30° 的液限仪锥尖入土深度 10mm 时测得的含水量(%)。图中符号说明见表 F. 3. 7。

图 F. 3. 6-1

图 F. 3. 6-2

F.3.7 细粒土的分类名称对照,见表 F.3.7。

表 F. 3.7 细粒土分类名称对照

《土工试验操作规程》 (1962)三角坐标图分类	SD128-84《土工试验规程》 塑性图分类	GBJ145—90《土的分类标准》 塑性图分类		
砂壤土,粉质砂壤土, 轻、中壤土	低液限粘质土	CL—低液限粘土		
粉质壤土、重壤土	中液限粘质土			
粘土、重粘土	高液限粘质土	CH一高液限粘土		
	低液限粉质土	NAT OF STREET WALL		
砂质粘土,粉质粘土	中液限粉质土	ML—低液限粉土		
粉质粘土,砂质粘土	高液限粉质土	MH—高液限粉质土		
	在 中鄉州小民士	CLO-低塑性粘土		
有机质土	低、中塑性粉质土	MLO-低塑性粉土		
17000000000000000000000000000000000000	中、高塑性粉质土	CHO高塑性粘土		
	一 	MHO-高塑性粉土		

附录 G 土质地基划分

- G. 0.1 松软地基包括松砂地基和软土地基。坚实地基包括坚硬的粘性土地基和紧密的砂性土地基。介于松软地基和坚实地基之间者,为中等坚实地基。
- **G. 0.2** 松软地基和坚实地基可按下列规定的主要特性指标进行 初步划分:
- 1 松砂的特性指标见表 G. 0. 2-1。表 G. 0. 2-1 中的 $N_{63.5}$ 为标准贯入击数。

表 G. 0. 2-1 松砂特性指标

2 软土的特性指标见表 G. 0. 2-2。表 G. 0. 2-2 中的 *e* 为孔隙 比, w 为天然含水量(%), w_L 为液限。

软土类别	N _{63.5} (击)	e	w (%)
软弱粘性土	2~4	0.75~1.00	$\geqslant \! w_{\rm L}$
淤泥质土	1~2	1.00~1.50	$>$ $w_{\rm L}$
淤泥	≤1	≥1.50	$>$ $w_{ m L}$

表 G. 0. 2-2 软土特性指标

- 3 坚硬粘性土的特性指标:标准贯入击数大于 15 击。
- 4 密实砂土的特性指标:相对密度大于 0.67,标准贯入击数 大于 30 击。

附录 H 地基允许承载力计算

H. 0.1 在竖向对称荷载作用下,可按限制塑性区开展深度的方法计算土质地基允许承载力:

$$[R] = N_{\rm B} \gamma_{\rm B} B + N_{\rm D} \gamma_{\rm D} D + N_{\rm C} C$$
 (H. 0. 1-1)

$$N_{\rm B} = \frac{\pi}{4\left(\operatorname{ctg}\phi - \frac{\pi}{2} + \phi\right)}$$
 (H. 0. 1-2)

或

$$N_{\rm B} = \frac{\pi}{3\left(\operatorname{ctg}\phi - \frac{\pi}{2} + \phi\right)} \tag{H. 0. 1-3}$$

$$N_{\rm D} = \frac{\pi}{{\rm ctg}\phi - \frac{\pi}{2} + \phi} + 1$$
 (H. 0. 1-4)

$$N_{\rm C} = \frac{\pi}{\operatorname{ctg}\phi\left(\operatorname{ctg}\phi - \frac{\pi}{2} + \phi\right)}$$
 (H. 0. 1-5)

式中

[R]——按限制塑性区开展深度计算的土质地基允 许承载力(kPa):

 γ_B ——基底面以下土的重度 (kN/m^3) ,地下水位以下取浮重度;

 γ_D ——基底面以上土的重度 (kN/m^3) ,地下水位以下取浮重度;

B---基底面宽度(m);

D---基底埋置深度(m);

C——地基土的粘结力(kPa);

N_B、N_D、N_C — 承载力系数,可分别按公式(H. 0. 1-2) ~ (H. 0. 1-5) 计算求得或由表 H. 0. 1 查得;

π----圆周率。

表 H. 0.1 承载力系数

	Λ	$r_{ m B}$		
φ(°)	$[Y] = \frac{1}{4}B$	$[Y] = \frac{1}{3}B$	$N_{ m D}$	N _C
0	0.000	0.000	1.000	3. 142
1	0.014	0.019	1.056	3. 229
2	0.029	0. 039	1.116	3. 320
3	0.045	0.060	1. 179	3. 413
4	0.061	0. 082	1. 246	3. 510
5	0. 079	0. 105	1.316	3.610
6	0.098	0.130	1. 390	3. 714
7	0. 117	0.156	1.469	3. 821
8	0.138	0. 184	1.553	3. 933
9	0.160	0. 214	1.641	4. 048
10	0. 184	0. 245	1.735	4.168
11	0. 209	0. 278	1.834	4. 292
12	0. 235	0.313	1.940	4. 421
13	0. 263	0. 351	2.052	4. 555
14	0. 293	0.390	2. 170	4. 694
15	0. 324	0.432	2. 297	4. 839
16	0. 358	0. 477	2. 431	4. 990
17	0.393	0.524	2. 573	5. 146
18	0.431	0.575	2. 725	5. 310
19	0.472	0.629	2. 887	5. 480
20	0.515	0.686	3. 059	5. 657
21	0.561	0.748	3. 243	5. 843
22	0.610	0.813	3. 439	6. 036
23	0. 662	0. 883	3. 648	6- 238
24	0.718	0.957	3. 872	6. 449
25	0.778	1.037	4. 111	6. 670

续表 H. 0.1

	Ν	В		
φ(°)	$[Y] = \frac{1}{4}B$	$[Y] = \frac{1}{3}B$	$N_{ m D}$	N _C
26	0.842	1.122	4. 366	6. 902
27	0.910	1. 213	4. 640	7. 144
28	0. 984	1. 311	4. 934	7. 399
29	1.062	1. 416	5. 249	7. 665
30	1. 147	1. 529	5. 588	7. 946
31	1. 238	1.650	5. 951	8. 240
32	1. 336	1. 781	6. 343	8. 550
33	1. 441	1. 922	6. 765	8. 876
34	1. 555	2. 073	7. 219	9. 220
35	1. 678	2. 237	7. 710	9. 583
36	1.810	2. 414	8. 241	9. 966
37	1. 954	2. 605	8. 815	10. 371
38	2. 109	2. 812	9. 437	10.799
39	2. 278	3. 038	10. 113	11. 253
40	2. 462	3. 282	10. 846	11.734
41	2. 661	3. 548	11. 645	12. 245
42	2. 879	3. 838	12. 515	12. 788
43	3. 116	4. 155	13. 464	13. 366
44	3. 376	4. 501	14. 503	13. 982

注:[Y]为地基土的容许塑性区开展深度(m)。

H. 0.2 在竖向荷载和水平向荷载共同作用下,可按 C_K 法验算土质地基整体稳定:

$$C_{\rm K} = \frac{\sqrt{\frac{(\sigma_{\rm y} - \sigma_{\rm x})^2}{2} + \tau_{\rm xy}^2} - \frac{\sigma_{\rm y} + \sigma_{\rm x}}{2} \sin\phi}{\cos\phi} \qquad (\text{H. 0. 2})$$

式中 C_K——满足极限平衡条件时所需的地基土最小粘结

力(kPa):

∮──地基土的内摩擦角(°);

σ_y、σ_x、τ_{xy}—— 计算点处的地基竖向应力、水平向应力和剪应力(kPa),可分别按本附录 H. 0. 3~H. 0. 6 条计算。

当计算 C_{K} 值小于计算点的粘结力 C 值时,表示该点处于稳定状态;当 C_{K} 值等于或大于 C 值时,表示该点处于塑性变形状态。经多点计算后,可绘出塑性变形区的范围。

大型水闸土质地基的容许塑性变形区开展深度(塑性变形区最大深度一般在基础下游边缘下垂线 ab 附近,见图 H. 0. 2)可取 $\frac{B}{4}$,中型水闸可取 $\frac{B}{3}$,B 为闸室基础底面宽度(m)。

图 H. 0. 2 塑性变形区示意图 P_{v}', P_{v}'' - 竖向荷载; P_{H} - 水平向荷载; q_{h} - 边荷载

H. 0. 3 竖向均布荷载作用下的地基应力计算示意图见图 H. 0. 3; 地基竖向应力、水平向应力和剪应力可分别按公式 (H. 0. 3-1)~(H. 0. 3-3)计算求得; 地基应力系数可分别按公式 (H. 0. 3-4)~(H. 0. 3-6)计算求得,也可由表 H. 0. 3 查得。

图 H. 0. 3

$$\sigma_{\rm y} = k_{\rm y} P_{\rm v} \tag{H. 0. 3-1}$$

$$\sigma_{\rm x} = k_{\rm x} P_{\rm v} \tag{H. 0. 3-2}$$

$$\tau_{xy} = k_{xy} P_{v}$$
 (H. 0. 3-3)

$$k_{y} = \frac{1}{\pi} \left[\operatorname{arctg} \frac{x}{y} - \operatorname{arctg} \frac{x - B}{y} + \frac{xy}{x^{2} + y^{2}} - \frac{(x - B)y}{(x - B)^{2} + y^{2}} \right]$$
 (H. 0. 3-4)

$$k_{x} = \frac{1}{\pi} \left[\operatorname{arctg} \frac{x}{y} - \operatorname{arctg} \frac{x - B}{y} - \frac{xy}{x^{2} + y^{2}} + \frac{(x - B)y}{(x - B)^{2} + y^{2}} \right]$$
 (H. 0. 3-5)

$$k_{xy} = -\frac{1}{\pi} \left[\frac{y^2}{x^2 + y^2} - \frac{y^2}{(x - B)^2 + y^2} \right]$$
 (H. 0. 3-6)

式中 $k_y \ k_x \ k_{xy}$ ——地基竖向应力系数、水平向应力系数和剪应力系数;

 P_{v} ——竖向均布荷载(kPa);

x——应力核算点距 y 轴的水平距离(m);

y——应力核算点距 x 轴的深度(m)。

表 H. 0. 3 坚向均布荷载

$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{y}{B}$	0.01	0.05	0.10	0.15	0. 20	0. 25	0. 33	0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{x}{B}$	系数								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ky	0.000	0.000	0.000	0.001	0.001	0, 003	0.006	0.010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.00	k _x	0.003	0.016	0.031	0.047	0.061	0.074	0.093	0.107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k_{xy}	0.000	-0.001	-0.002	-0.005	0. 009	-0.014	-0.023	-0.032
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		k _y	0.000	0.000	0.002	0.005	0.011	0.019	0.037	0.056
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.50	k _x	0.008	0.042	0.082	0.117	0.147	0.171	0.196	0. 208
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	0.000	- 0. 003	-0.011	<u>-0.023</u>	− 0 . 038	-0.055	-0.082	-0.103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k_{y}	0.000	0.002	0.011	0.031	0.059	0.089	0.137	0.173
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.25	k _x	0.020	0.099	0.180	0. 237	0.270	0. 285	0. 286	0. 274
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	0.000	<u>-</u> 0.012	-0.042	-0.080	-0.116	-0.147	-0.182	-0.199
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.000	0.020	0.091	0.165	0.224	0. 267	0.313	0. 338
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.10	k _x	0.057	0.245	0.352	0.374	0.366	0.349	0.314	0. 284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		kxy	<u> — 0. 003</u> -	-0.063	-0.157	-0.215	-0.224	-0.259	<u> — 0. 265 </u>	-0.262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.500	0.500	0.500	0.499	0.498	0.497	0.493	0.489
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	k _x	0.494	0.468	0.437	0.406	0.376	0.347	0.304	0.269
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k_{xy}	−0.318 -	-0.318	-0.315	-0.311	- 0. 306	-0.300	-0.287	-0.274
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	1.000	0.980	0. 909	0. 833	0.773	0.727	0.673	0.638
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10	k _x	0. 930	0.690	0.521	0.436	0. 383	0.343	0. 291	0. 252
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	- 0. 003	-0.063	−0.155	<u>-0.212</u>	<u> — 0. 240</u>	-0.252	−0.254	-0.247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	1.000	0.998	0. 988	0.967	0.937	0. 902	0.845	0.797
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.25	k _x	0.966	0.843	0.685	0.564	0.468	0.393	0.304	0.247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k_{xy}	0.000	-0.011	−0.038	-0.072	-0.103	-0.127	-0.151	-0.158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	1.000	1.000	0. 997	0. 990	0.977	0.959	0.921	0.881
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.50	k _x	0.975	0.874	0.752	0.639	0.538	0.450	0.336	0.260
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	1.000	0.998	0. 988	0.967	0.937	0.902	0.845	0.797
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.75	k _x	0.966	0.834	0.685	0.564	0,468	0.393	0.304	0.247
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	0,000	0.011	0.038	0.072	0.103	0.127	0. 151	0.158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$]					+				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	k _x						0.347		0.269
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									0. 287	0. 274
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			+							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. 25									
1.50										
k _{xy} 0.000 0.003 0.011 0.023 0.038 0.055 0.082 0.103 k _y 0.000 0.000 0.000 0.001 0.001 0.003 0.003 0.010										
ky 0.000 0.000 0.000 0.001 0.001 0.003 0.006 0.010	1.50									
	\vdash									
$2.00 \mid k_{x} \mid 0.003 \mid 0.016 \mid 0.031 \mid 0.047 \mid 0.061 \mid 0.074 \mid 0.093 \mid 0.107 \mid 0.074 \mid 0.093 \mid 0.107 \mid 0.074 \mid 0.093 \mid 0.107 \mid 0.093 \mid 0.107 \mid 0.093 \mid 0.107 \mid 0.093 \mid 0.107 \mid 0.093 \mid 0.093$				-						
	2.00									
k _{xy} 0.000 0.001 0.002 0.005 0.009 0.014 0.023 0.032	L	k _{xy}	0.000	0. 001	0.002	0.005	0, 009	0.014	0.023	0.032

作用下的地基应力系数

11 713 1 113	心坐江人							
0.50	0.60	0. 80	1.00	1. 20	1.40	1.60	1.80	2.00
0.017	0.026	0.048	0.071	0.091	0.107	0.120	0.128	0.134
0. 122	0.132	0.139	0.134	0.123	0.109	0.095	0.082	0.071
-0.045	-0.058	-0.080	-0.095	-0.104	-0.106	-0.105	-0.101	-0.095
0.084	0.111	0, 155	0.185	0. 202	0.210	0.212	0.209	0.205
0. 211	0. 205	0.177	0.146	0.117	0.094	0.075	0.060	0.049
-0.127	-0.144	-0.158	-0.157	-0.147	-0.134	-0.121	-0.108	-0.096
0. 214	0.243	0.276	0. 288	0. 287	0.279	0.268	0.255	0.242
0. 249	0. 221	0.168	0.127	0.096	0.073	0.056	0.044	0.034
-0.211	-0.212	-0.197	-0.175	-0.152	-0.131	-0.131	-0.098	-0.085
0.360	0.371	0.373	0.360	0.342	0.321	0.301	0. 281	0.263
0. 243	0. 206	0.148	0.107	0.077	0.057	0.043	0.033	0.026
-0.252	-0.237	-0.203	-0.171	-0.143	-0.120	-0.101	-0.086	-0.073
0.480	0.468	0.440	0.409	0.378	0.348	0.321	0.297	0.275
0. 225	0.188	0.130	0.091	0.065	0.047	0.035	0.026	0.020
-0.255	-0.234	-0.194	-0.159	-0.130	-0.108	-0.089	-0.075	-0.064
0.598	0.564	0.506	0.455	0.410	0.372	0.339	0.310	0. 285
0. 205	0.167	0.111	0.075	0.052	0.037	0.027	0.020	0.016
-0.231	-0.212	-0.173	-0.139	-0.112	-0.091	-0.075	-0.063	-0.053
0.735	0.679	0.586	0.510	0.450	0.400	0.360	0.326	0.298
0.186	0.143	0.087	0.055	0.037	0.025	0.018	0.013	0.010
-0.157	-0.147	-0.121	-0.096	-0.076	-0.061	-0.050	-0.041	-0.034
0.818	0.755	0.642	0.550	0.477	0.420	0.374	0.337	0.306
0.182	0.129	0.069	0.041	0.025	0.017	0.012	0.008	0.006
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.735	0.679	0.586	0.510	0.450	0.400	0.360	0.326	0. 298
0.186	0.143	0.087	0.055	0.037	0.025	0.018	0.013	0.010
0.157	0.147	0.121	0.096	0.076	0.061	0.050	0.041	0.034
0.480	0.468	0.440	0.409	0.378	0.348	0.321	0.297	0. 275
0. 225	0. 188	0.130	0.091	0.065	0.047	0.035	0.026	0.020
0.255	0. 234	0.194	0.159	0.130	0.108	0.089	0.075	0.064
0.214	0. 243	0.276	0. 288	0. 287	0. 279	0. 268	0. 255	0. 242
0.249	0. 221	0.168	0.127	0.096	0.073	0.056	0,044	0.034
0.211	0. 212	0. 197	0.175	0.152	0.131	0.113	0.098	0.085
0.084	0.111	0. 155	0. 185	0. 202	0.210	0. 212	0.209	0.205
0. 211	0. 205	0.177	0.146	0.117	0.094	0.075	0.060	0.049
0.127	0.144	0.158	0.157	0.147	0.134	0. 121	0.108	0.096
0.017	0.026	0.048	0.071	0.091	0.107	0. 120	0.128	0.134
0. 122	0. 132	0.139	0.134	0. 123	0.109	0.095	0.082	0.071
0.045	0.058	0.080	0.095	0.104	0.106	0.105	0.101	0, 095

H. 0. 4 竖向三角形分布荷载作用下的地基应力计算示意图见图 H. 0. 4; 地基竖向应力、水平向应力和剪应力可分别按公式 (H. 0. 4-1)~式(H. 0. 4-3)计算求得; 地基应力系数可分别按公式 (H. 0. 4-4)~式(H. 0. 4-6)计算求得,也可由表 H. 0. 4 查得。

$$\sigma_{y} = k_{y} P_{s}$$
 (H. 0. 4-1)

$$\sigma_{x} = k_{x} P_{s} \tag{H. 0. 4-2}$$

$$\tau_{xy} = k_{xy} P_s \tag{H. 0. 4-3}$$

$$k_{y} = \frac{1}{\pi B} \left[(x - B) \operatorname{arctg} \frac{x - B}{y} - (x - B) \operatorname{arctg} \frac{x}{y} + \frac{Bxy}{x^{2} + y^{2}} \right]$$
(H. 0. 4-4)

$$k_{x} = \frac{1}{\pi B} \left\{ (x - B) \arctan \frac{x - B}{y} - (x - B) \arctan \frac{x}{y} + y \ln[(x - B)^{2} + y^{2}] + y \ln(x^{2} + y^{2}) - \frac{Bxy}{x^{2} + y^{2}} \right\}$$
(H. 0. 4-5)

$$k_{xy} = \frac{1}{\pi B} \left[y \operatorname{arctg} \frac{x}{y} - y \operatorname{arctg} \frac{x - B}{y} - \frac{By^2}{x^2 + y^2} \right]$$
(H. 0. 4-6)

式中 Ps---竖向三角形分布荷载(kPa)。

H. 0. 5 水平向均布荷载作用下的地基应力计算示意图见图 H. 0. 5; 地基竖向应力、水平向应力和剪应力可分别按公式 (H. 0. 5-1)~式(H. 0. 5-3)计算求得;地基应力系数可分别按公式 (H. 0. 5-4)~式(H. 0. 5-6)计算求得;也可由表 H. 0. 5 查得。

图 H. 0.5

$$\sigma_{\rm v} = k_{\rm v} P_{\rm H} \tag{H. 0. 5-1}$$

$$\sigma_{\rm x} = k_{\rm x} P_{\rm H} \tag{H. 0. 5-2}$$

$$\tau_{xy} = k_{xy} P_{H}$$
 (H. 0. 5-3)

$$k_{y} = -\frac{1}{\pi} \left[\frac{y^{2}}{(x-B)^{2} + y^{2}} - \frac{y^{2}}{x^{2} + y^{2}} \right]$$
 (H. 0. 5-4)

$$k_{x} = -\frac{1}{\pi} \left\{ \ln(y^{2} + x^{2}) - \ln[y^{2} + (x - B)^{2}] + \frac{y^{2}}{x^{2} + y^{2}} - \frac{y^{2}}{(x - B)^{2} + y^{2}} \right\}$$
(H. 0. 5-5)

$$\tau_{xy} = \frac{1}{\pi} \left[\arctan \frac{x - B}{y} - \arctan \frac{x}{y} + \frac{xy}{x^2 + y^2} - \frac{(x - B)y}{(x - B)^2 + y^2} \right]$$
 (H. 0. 5-6)

式中 PH-水平向均布荷载(kPa)。

表 H. 0.4 竖向三角形荷载

<u>x</u>	y B	0. 01	0.05	0.10	0.15	0. 20	0. 25	0.33	0.40
$B \setminus B$	系数			1					
	k _y	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.007
-1.00	k _x	0.002	0.010	0.019	0.028	0.037	0.045	0.056	0.064
	k _{xy}	0.000	0.000	-0.002	-0.003	-0.006	-0.009	-0.015	-0.021
	k _y	0.000	0.000	0.001	0.004	0.009	0.015	0.029	0.042
-0.50	k _×	0.006	0.028	0.055	0.078	0.097	0.111	0.124	0.127
	k _{xy}	0.000	-0.002	-0.008	-0.017	−0. 028	-0.040	-0.058	-0.071
	ky	0.000	0.001	0.010	0.027	0.050	0.075	0.111	0.136
-0.25	k _x	0.015	0.073	0.131	0.168	0.186	0.189	0.178	0.162
	k _{xy}	0.000	-0.010	 0. 034	-0.064	-0.091	-0.112	-0.132	<u>0.139</u>
	k_y	0.000	0.019	0.084	0.150	0.197	0. 229	0. 257	0. 267
-0.10	k _x	0.048	0. 201	0. 272	0.270	0.247	0. 220	0.181	0. 151
	k_{xy}	-0.003	-0.057	−0.137	-0.180	0.196	-0.197	−0.188	 0. 175
	k_y	0.497	0.484	0.468	0.453	0.437	0.422	0.399	0.379
0	k _x	0.467	0.389	0.321	0.270	0.230	0.197	0.155	0.127
i [k_{xy}	-0.313	- 0 . 294	-0.271	0. 250	 0. 231	-0.213	−0.187	-0.167
	k _y	0.900	0.879	0.802	0.718	0.648	0.591	0.522	0.475
0.10	k _x	0.823	0.558	0.366	0.269	0.212	0.174	0.130	0.104
	k_{xy}	0.006	-0.294	-0.088	-0.125	 0. 139	-0.141	— 0. 133	-0.122
	k_{y}	0.750	0.748	0.737	0.714	0.682	0.645	0.584	0.534
0. 25	k_{x}	0.718	0.591	0.452	0.341	0. 259	0.198	0.134	0.098
	kxy	0.009	0.034	0.040	0.031	0.016	0.003	-0.013	0. 020
	k_{y}	0.500	0.500	0.498	0.495	0.489	0.480	0.461	0.440
0.50	k _x	0.487	0.437	0.376	0.320	0. 269	0. 225	0.168	0.130
	k_{xy}	0.010	0.044	0.075	0.096	0.108	0.113	0.111	0.104
	k_{y}	0.250	0.250	0.251	0. 252	0, 255	0. 257	0.261	0.263
0.75	k _x	0.249	0.242	0. 233	0. 222	0. 209	0.194	0.170	0.148
	k_{xy}	0.010	0.044	0.078	0.103	0.119	0.130	0.138	0.138
	k _y	0.003	0.016	0.032	0.047	0.061	0.075	0.095	0.110
1.00	k _x	0.026	0.080	0.115	0.136	0.146	0.151		0.142
	k _{xy}	0.005	0.023	0.044	0.061	0.075	0.087	0.100	0.108
	k y	0.000	0.000	0.001	0.004	0.009	0.014	0.026	0.036
1. 25	k _x	0.005	0.025	0.049	0.069	0.084	0.096	0.108	0.112
	k _{xy}	0.000	0.002	0.008	0.016	0.025	0.035	0.049	0.060
	, k _y	0.000	0.000	0.000	0.001	0.002	0.004		0.013
1.50	k _x	0.003	0.014		0.039	0.050	0.060		0.080
	k _{xy}	0.000	0.001				0.015	t	0.032
	k _y	0.000	0.000	0.000	0.000	0.000	0.001	_	0.003
2.00	k _x	0.001	0.006	0.012	·		0.029	-	0.043
L	k _{xy}	0.000	0.000	0.001	0, 002	0.003	0, 005	0.008	0.011

作用下的地基应力系数

נפיז מל זו	70 4E/11/	7 /N XX						
0.50	0.60	0.80	1.00	1. 20	1.40	1.60	1.80	2.00
0.012	0.018	0.032	0.046	0.057	0.066	0.072	0.076	0.073
0.072	0.076	0.078	0.072	0.064	0.055	0.047	0.039	0.033
-0.029	-0.037	-0.049	-0.057	-0.060	-0.059	-0.057	-0.054	-0.050
0.062	0.080	0.106	0.121	0.126	0.127	0.124	0.120	0.115
0.124	0.116	0.092	0.071	0.054	0.041	0.032	0.025	0.020
-0.085	-0.093	-0.096	-0.089	-0.080	-0.070	-0.061	-0.053	-0.046
0.162	0.177	0.187	0.184	0.175	0.165	0.154	0.143	0.134
0.137	0.113	0.078	0,054	0.038	0.028	0.020	0.015	0.012
-0.139	− 0.132	-0.112	-0.092	-0.076	-0.062	0, 052	-0.044	-0.037
0.270	0. 266	0. 247	0. 225	0. 204	0.186	0.169	0.155	0.143
0.118	0.093	0.059	0.039	0, 027	0.019	0.014	0.010	0.008
-0.155	−0.137	-0. 105	-0.082	-0.064	-0.052	-0.042	-0.035	-0.029
0.352	0.328	0. 285	0.250	0. 221	0.197	0.178	0.161	0.148
0.096	0.074	0.046	0.029	0.020	0.014	0.010	0.007	0.006
-0.142	-0.122	-0.090	-0.068	-0.053	-0.042	-0.034	-0.028	-0.023
0.422	0.380	0.317	0.270	0. 235	0.207	0.184	0.166	0. 151
0.076	0.057	0.034	0.021	0.014	0.010	0.007	0.005	0.004
-0.105	-0.090	-0.067	-0.050	-0.039	-0.030	-0.024	-0.020	-0.017
0.473	0.421	0.343	0. 287	0.246	0. 215	0.190	0.171	0.155
0.066	0.046	0.025	0.014	0.009	0.006	0.004	0.003	0.002
-0.024	-0.025	-0.021	-0.017	-0.013	-0.011	-0.009	-0.007	-0.006
0.409	0. 378	0.321	0.275	0.239	0.210	0.187	0.168	0.153
0.091	0.065	0.035	0.020	0.013	0.008	0.006	0.004	0.003
0.091	0.078	0.056	0.041	0.030	0.023	0.019	0.015	0.012
0. 262	0, 258	0.243	0. 223	0.204	0.186	0.170	0.155	0.143
0.120	0.097	0.062	0.041	0.027	0.019	0.014	0.010	0.008
0.132	0.122	0.100	0.079	0.063	0.051	0.041	0.034	0.029
0.127	0.140	0.155	0.159	0.157	0.151	0.143	0.135	0.127
0.129	0.113	0.084	0.061	0.045	0.033	0.025	0.019	0.015
0.113	0.113	0.104	0.091	0.078	0.066	0.056	0.047	0.041
0.052	0.066	0.089	0.103	0.111	0.114	0.114	0.112	0.109
0.112	0.107	0.091	0.073	0.058	0.045	0.036	0, 028	0.022
0.072	0.080	0.085	0.083	0.077	0.069	0.061	0,054	0.048
0. 022	0.031	0.049	0.064	0.075	0.083	0.087	0.089	0.089
0. 087	0.089	0.085	0.075	0.063	0.053	0.043	0. 036	0.029
0.042	0.051	0.062	0.067	0.067	0.064	0.060	0.055	0, 050
0.005	0.008	0.016	0.025	0.034	0.041	0, 048	0.053	0.057
0.050	0.056	0.061	0.062	0.059	0.054	0.049	0.043	0. 038
0.016	0.021	0.031	0.039	0.044	0.047	0.048	0.047	0.046

表 H. 0.5 水平向均布荷载

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K .									
$\frac{x}{B}$ 奏数		<u>y</u> B	0, 01	0. 05	0.10	0. 15	0. 20	0. 25	0. 33	0.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{x}{B}$	系数	0.01	0.00	0.10	0.20				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.000	0.001	0.002	0.005	0.009	0.014	0.023	0.032
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.00	k _x	0.441	0.440	0.437	0.431	0.423	0.413	0.394	0. 375
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	-0.003	-0.016	0. 031	-0.047	-0.061	-0.074	-0.093	-0.107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		kν	0.000	0.003	0.011	0.023	0. 038	0.055	0.082	0.103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.50	k _x	0.699	0.694	0.677	0. 652	0.619	0. 582	0.517	0.461
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xv}		-0.042		-0.117	-0.147	0. 171	-0.196	-0.208
$ \begin{array}{c} -0.25 \\ k_x \\ k_{xy} \\ \end{array}{c} \begin{array}{c} 1.024 \\ 0.020 \\ -0.099 \\ -0.180 \\ -0.237 \\ -0.270 \\ -0.270 \\ -0.285 \\ -0.286 \\ -0.274 \\ -0.020 \\ -0.099 \\ -0.180 \\ -0.237 \\ -0.270 \\ -0.270 \\ -0.285 \\ -0.285 \\ -0.286 \\ -0.274 \\ -0.259 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.265 \\ -0.274 \\ -0.010 \\ -0.100 \\ $			0,000	0.012	0.042	0.080	0.116	0.147	0.182	0.199
$\begin{array}{c} -0.10 \\$	-0.25		1.024	1.001	0. 938	0.852	0.759	0.670	0.543	0. 452
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xv}	-0.020	-0.099	-0.180	0.237	-0.270	-0.285	-0.286	-0.274
$\begin{array}{c} -0.10 \\ \hline \\ k_x \\ \hline \\ k_y \\ \hline \\ -0.057 \\ -0.246 \\ -0.352 \\ -0.374 \\ -0.366 \\ -0.349 \\ -0.314 \\ -0.284 \\ \hline \\ k_y \\ \hline \\ 0.318 \\ \hline \\ 0.318 \\ \hline \\ 0.318 \\ \hline \\ 0.318 \\ \hline \\ 0.315 \\ \hline \\ 0.311 \\ \hline \\ 0.306 \\ \hline \\ 0.300 \\ \hline \\ 0.274 \\ \hline \\ 0.300 \\ \hline \\ 0.274 \\ \hline \\ 0.000 \\ \hline \\ 0.274 \\ \hline \\ 0.000 \\ \hline \\ 0.003 \\ \hline \\ 0.000 \\ 0.000 \\ \hline \\ 0.000 \\ \hline$			0.003	0.063		0. 215	0.244	0. 259	0. 265	0. 262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.10			1. 393	1.152	0.943	0.780	0.653	0.501	0.402
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	-0.057	-0.246	−0.352	-0.374	-0.366	-0.349	−0.314	-0.284
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.318	0.318	0.315	0.311	0.306	0.300	0. 287	0.274
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		2.613			0.904	0.731	0.602	0.452	0.356
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	-0.494	-0.468	-0.437	0. 406	-0.376	-0.347	0. 304	-0.269
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.003	0.063	0.155	0. 212	0. 240	0.252	0.254	0. 247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.10	k _x	1.393	1.266	1.027	0.821	0.662	0.540	0.397	0.307
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	−0.930	-0.690	-0.521	-0.436	0. 383	-0.343	-0.291	-0.252
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _y	0.000	0.011	0.038	0.072	0.103	0.127	0.151	0.158
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0. 25	k _x	0.698	0.677	0.619	0.542	0.461	0.385	0.284	0.216
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	-0.966	-0.834	-0.685	-0.564	-0.468	-0.393	-0.304	-0.247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ky	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\begin{array}{c} k_y & 0.000 - 0.011 - 0.038 - 0.072 - 0.103 - 0.127 - 0.151 - 0.158 \\ k_x & -0.698 - 0.677 - 0.619 - 0.542 - 0.461 - 0.385 - 0.284 - 0.216 \\ k_{xy} & -0.966 - 0.834 - 0.685 - 0.564 - 0.468 - 0.393 - 0.304 - 0.247 \\ k_y & -0.318 - 0.318 - 0.315 - 0.311 - 0.306 - 0.300 - 0.287 - 0.274 \\ k_x & -2.613 - 1.590 - 1.154 - 0.904 - 0.731 - 0.602 - 0.452 - 0.356 \\ k_{xy} & -0.494 - 0.468 - 0.437 - 0.406 - 0.376 - 0.347 - 0.304 - 0.269 \\ k_y & 0.000 - 0.012 - 0.042 - 0.080 - 0.116 - 0.147 - 0.182 - 0.199 \\ 1.25 & k_x & -1.024 - 1.001 - 0.938 - 0.852 - 0.759 - 0.670 - 0.543 - 0.452 \\ k_{xy} & -0.020 - 0.099 - 0.180 - 0.237 - 0.270 - 0.285 - 0.286 - 0.274 \\ k_y & 0.000 - 0.003 - 0.011 - 0.023 - 0.038 - 0.055 - 0.082 - 0.103 \\ 1.50 & k_x & -0.699 - 0.694 - 0.677 - 0.652 - 0.619 - 0.582 - 0.517 - 0.461 \\ k_{xy} & -0.008 - 0.042 - 0.082 - 0.117 - 0.147 - 0.171 - 0.196 - 0.208 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 - 0.014 - 0.023 - 0.032 \\ k_y & 0.000 - 0.001 - 0.002 - 0.005 - 0.009 $	0.50	k _x	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\begin{array}{c} 0.75 \\ \hline k_x \\ \hline \\ k_{xy} \\ \hline \\ -0.698 \\ \hline \\ -0.698 \\ -0.677 \\ \hline \\ -0.619 \\ \hline \\ -0.619 \\ \hline \\ -0.542 \\ \hline \\ -0.468 \\ \hline \\ -0.468 \\ \hline \\ -0.393 \\ \hline \\ -0.304 \\ \hline \\ -0.247 \\ \hline \\ -0.247 \\ \hline \\ -0.318 \\ \hline \\ -0.318 \\ \hline \\ -0.318 \\ \hline \\ -0.318 \\ \hline \\ -0.315 \\ \hline \\ -0.311 \\ \hline \\ -0.306 \\ \hline \\ -0.300 \\ \hline \\ -0.300 \\ \hline \\ -0.300 \\ \hline \\ -0.287 \\ \hline \\ -0.274 \\ \hline \\ -0.274 \\ \hline \\ -0.249 \\ \hline \\ -0.468 \\ \hline \\ -0.468 \\ \hline \\ -0.437 \\ \hline \\ -0.406 \\ \hline \\ -0.376 \\ \hline \\ -0.376 \\ \hline \\ -0.347 \\ \hline \\ -0.304 \\ \hline \\ -0.347 \\ \hline \\ -0.304 \\ \hline \\ -0.347 \\ \hline \\ -0.304 \\ \hline \\ -0.347 \\ \hline \\ -0.248 \\ $		k _{xy}	-0.975	−0.874	0. 752	-0.639	−0.538	-0.450	− 0.336	-0.260
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ky	0.000	-0.011	-0.038	-0.072	−0.103	-0.127	-0.1 51	-0.158
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.75	k _x	-0.698	-0.677	-0.619	-0.542	0.461	-0.385	-0.284	-0.216
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		k _{xy}	-0.966	-0.834	0. 685	-0.564	0. 468	-0.393	- 0. 304	-0.247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ky	-0.318	0. 318	-0.315	-0.311	-0.306	-0.300	-0.287	-0.274
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.00	k _x	-2.613	-1.590	1. 154	-0.904	-0.731	-0.602	- 0. 452	-0.356
1. 25 k_x		k _{xy}	-0.494	-0.468	-0.437	-0.406	-0.376	-0.347	-0.304	-0.269
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ky	0.000	-0.012	-0.042	-0.080	-0.116	-0.147	− 0.182	-0.199
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.25	k _x	-1.024	-1.001	−0.938	-0.852	 0, 759	-0.670	-0.543	-0.452
1. 50 k_x -0. 699 -0. 694 -0. 677 -0. 652 -0. 619 -0. 582 -0. 517 -0. 461 k_{xy} -0. 008 -0. 042 -0. 082 -0. 117 -0. 147 -0. 171 -0. 196 -0. 208 k_y 0. 000 -0. 001 -0. 002 -0. 005 -0. 009 -0. 014 -0. 023 -0. 032		k _{xy}	- 0. 020	-0.099	-0.180	-0.237	-0.270	-0.285	-0.286	-0.274
k_{xy}		kу	0.000	-0.003	-0.011	-0.023	-0.038	-0.055	-0.082	-0.103
k_y 0.000 -0.001 -0.002 -0.005 -0.009 -0.014 -0.023 -0.032	1.50	k _x	− 0. 699	-0.694	-0.677	-0.652	-0.619	-0.582	- 0. 517	-0.461
		k _{xy}	- 0. 008	-0.042	-0.082	-0.117	-0.147	-0.171	-0.196	-0.208
$2.00 \mid k_{\star} \mid -0.441 \mid -0.440 \mid -0.437 \mid -0.431 \mid -0.423 \mid -0.413 \mid -0.394 \mid -0.375$		k _y	0.000	-0.001	-0.002	-0.005	-0.009	-0.014	-0.023	-0.032
	2.00	k _x	-0.441	-0.440	-0.437	-0.431	-0.423	-0.413	-0.394	-0.375
$k_{xy} = 0.003 - 0.016 - 0.031 - 0.047 - 0.061 - 0.074 - 0.093 - 0.107$		k_{xy}	- 0. 003	-0.016	- 0. 031	-0.047	-0.061	-0.074	- 0. 093	-0.107

作用下的地基应力系数

0. 50	0. 60	0.80	1.00	1. 20	1.40	1.60	1.80	2.00
0.045	0.058	0.080	0.095	0.104	0.106	0.105	0.101	0.095
0. 345	0. 313	0. 251	0.196	0.152	0.117	0.090	0.070	0.054
-0.122		-0.139	-0.134	-0.123	-0.109	-0.095	-0.082	-0.071
0. 127	0. 144	0.158	0. 157	0.147	0.134	0. 121	0.108	0.096
0. 385	0.319	0.216	0.147	0.102	0.071	0.051	0.037	0.027
-0.211	−0. 205	-0.177	-0.146	-0.117	-0.094	-0.075	-0.060	-0.049
0. 211	0. 212	0.197	0.175	0.152	0.131	0.113	0.098	0.085
0.349	0. 271	0.166	0.105	0.068	0.045	0.031	0.022	0.016
-0.249	-0.221	-0.168	-0.127	-0.096	-0.073	-0.056	-0.044	-0.034
0. 252	0. 237	0. 203	0.171	0.143	0.120	0.101	0.086	0.073
0. 298	0. 223	0.130	0.078	0.049	0.032	0.021	0.014	0.010
-0.243	−0.206	-0.148	-0.107	-0.077	-0.057	-0.043	-0.033	-0.026
0. 255	0. 234	0.194	0.159	0.130	0.108	0.089	0.075	0.064
0. 258	0.189	0.105	0.061	0.037	0.024	0.016	0.011	0.007
-0.225	-0.188	-0.130	-0.091	-0.065	-0.047	-0.035	-0.026	-0.020
0. 231	0.212	0.173	0.139	0.112	0.091	0.075	0.063	0.053
0. 216	0.155	0.082	0.046	0.027	0.017	0.011	0.007	0.005
-0.205	-0.167	−0.111	-0.075	-0.052	-0.037	-0.027	-0.020	-0.016
0.157	0.147	0.121	0.096	0.076	0.061	0,050	0.041	0.034
0.147	0.102	0.051	0.027	0.015	0.009	0.006	0.004	0.003
−0.186	-0.143	-0.087	-0.055	-0.037	-0.025	-0.018	-0.013	-0.010
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-0.182	-0.129	-0.069	-0.041	-0.025	-0.017	-0.012	-0.008	-0.006
-0.157	-0.147	−0.121	-0.096	-0.076	-0.061	-0.050	-0.041	-0.034
<u>-0.147</u>	-0.102	-0.051	-0.027	-0.015	-0.009	-0.006	-0.004	-0.003
-0.186	-0.143	-0.087	-0.055	-0.037	-0. 025	-0.018	-0.013	-0.010
-0.255	-0.234	-0.194	−0. 159	-0.130	-0.108	-0.089	-0.075	-0.064
-0.258	-0.189	-0.105	-0.061	-0.037	-0.024	-0.016	-0.011	-0.007
-0.225	0. 188	-0.130	−0.091	-0.065	-0.047	−0.035	-0.026	-0.020
-0.211	-0.212	-0.197	-0.175	-0.152	−0.131	-0.113	-0.098	0. 085
-0.349	-0.271	-0.166	−0.105	-0.068	-0.045	-0.031	-0.022	-0.016
-0.249	-0.221	-0.168	-0.127	-0.096	-0.073	-0.056	-0.044	-0.034
<u>−0.127</u>	-0.144	-0.158	−0.157	-0.147	-0.134	-0.121	-0.108	-0.096
-0.385	-0.319	-0.216	−0.147	-0.102	-0.071	-0.051	-0.037	-0.027
-0.211	-0.205	-0.177	-0.146	-0.117	-0.094	0. 075	-0.060	-0.049
-0.045	-0.058	-0.080	<u>-0.095</u>	-0.104	-0.106	0. 105	-0.101	−0.095
-0.345	−0.313	-0.251	-0.196	-0.152	-0.117	-0.090	-0.070	-0.054
-0.122	-0.132	-0.139	-0.134	-0.123	−0.109	-0.095	-0.082	-0.071

H. 0. 6 竖向半无限均布荷载作用下的地基应力计算示意图见图 H. 0. 6; 地基竖向应力、水平向应力和剪应力可分别按公式 (H. 0. 6-1)~式(H. 0. 6-3)计算求得; 地基应力系数可分别按公式 (H. 0. 6-4)~式(H. 0. 6-6)计算求得, 也可由表 H. 0. 6 查得。

图 H. 0. 6

$$\sigma_{\rm v} = k_{\rm v} P_{\rm v}^{'}$$
 (H. 0. 6-1)

$$\sigma_{\mathbf{x}} = k_{\mathbf{x}} P_{\mathbf{y}}' \tag{H. 0. 6-2}$$

$$\tau_{xy} = k_{xy} P'_{v}$$
 (H. 0. 6-3)

$$k_{y} = \frac{1}{\pi} \left[\frac{\pi}{2} + \arctan \frac{x}{y} + \frac{xy}{x^{2} + y^{2}} \right]$$
 (H. 0. 6-4)

$$k_{x} = \frac{1}{\pi} \left[\frac{\pi}{2} + \arctan \frac{x}{y} - \frac{xy}{x^{2} + y^{2}} \right]$$
 (H. 0. 6-5)

$$k_{xy} = -\frac{1}{\pi} \left(\frac{y^2}{x^2 + y^2} \right)$$
 (H. 0. 6-6)

式中 Pv- 竖向半无限均布荷载(kPa)。

H. 0.7 在竖向荷载和水平向荷载共同作用下,也可按汉森公式 计算土质地基允许承载力:

$$[R'] = \frac{1}{K} (0.5 \gamma_{\rm B} B N_{\gamma} S_{\gamma} i_{\gamma} + q N_{\rm q} S_{\rm q} d_{\rm q} i_{\rm q} + C N_{\rm c} S_{\rm c} d_{\rm c} i_{\rm c})$$

$$(\text{H. 0. 7-1})$$

$$N_{\gamma} = 1.5(N_{q} - 1) \text{tg}\phi$$
 (H. 0. 7-2)

$$N_{\rm q} = {\rm e}^{\pi {\rm g}\phi} {\rm tg}^2 \left(45 + \frac{\phi}{2} \right)$$
 (H. 0. 7-3)

$$N_{\rm c} = (N_{\rm q} - 1) \operatorname{ctg} \phi$$
 (H. 0. 7-4)

$$S_7 = 1 - 0.4(B/L)$$
 (H. 0.7-5)

$$S_{\rm q} = S_{\rm c} = 1 + 0.2(B/L)$$
 (H. 0. 7-6)

$$d_q = d_c = 1 + 0.35(D/B)$$
 (H. 0.7-7)

$$i_{\gamma} = i_{q}^{2}$$
 (H. 0. 7-8)

$$i_{q} = \frac{1 + \sin\phi\sin(2\alpha - \phi)}{1 + \sin\phi} e^{-\left(\frac{\pi}{2} + \phi - 2\alpha\right) \operatorname{tg}\phi} \quad (\text{H. 0. 7-9})$$

$$i_{c} = i_{q} - \frac{1 - i_{q}}{N_{q} - 1}$$
 (H. 0. 7-10)

$$\alpha = \frac{\phi}{2} + tg^{-1} \frac{\sqrt{1 - (tg\delta ctg\phi)^2} - tg\delta}{1 + \frac{tg\delta}{\sin\phi}}$$

(H. 0, 7-11)

$$tg\delta = \frac{\tau}{p + Cctg\phi}$$
 (H. 0. 7-12)

式中

[R']——按汉森公式计算的土质地基允许承载力(kPa);

K—— 地基承载力安全系数,可取 2~3(大型水闸或松软地基取大值,中、小型水闸或坚实地基取小值);

q—基底面以上的有效边荷载(kPa):

N₇、N_q、N_c — 承载力系数,可按公式(H. 0. 7-2)~(H. 0. 7-4) 计算,也可由表 H. 0. 7-1 查得;

 S_Y 、 S_q 、 S_c 形状系数,对于矩形基础,可按公式(H. 0. 7-5)和公式(H. 0. 7-6)计算;对于条形基础, S_Y = S_c = S_c = 1;

 d_q 、 d_c ——深度系数,可按公式(H. 0. 7-7)计算,但式中D/B 应小于 1;

i_γ, *i_q*, *i_c* — 倾斜系数,可按公式(H. 0. 7-8)~(H. 0. 7-12) 计算,也可由表 H. 0. 7-2~表 H. 0. 7-4 查得;

表 H. 0. 6 竖向半无限均布荷载

$\frac{x}{B}$	<u>y</u> B	0. 01	0.05	0.10	0.15	0. 20	0. 25	0. 33	0.40
		0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.011
1	k _y		0.032	0.063	0.001	0.124	0.153		0. 231
-1.00	k _x	0.006	-0.001	0. 003	-0.007	-0.012	-0.019		-0.044
	k _{xy}	0.000	0.000	0.002	0.005	0.011	0.020	0.039	0.060
-0.50	k _y	0.000	0.063	0. 124	0. 180	0. 231	0. 275	0.332	0.370
-0.50	k _{xy}	0.000	-0.003	-0.012	-0.026	-0.044	-0.064		-0.124
		0.000	0.002	0.011	0.032	0.060	0.091	0.140	0.179
$ _{-0.25}$	k _y k _x	0.000	0.124	0. 231	0.312	0.370	0.409	0.447	0.465
-0.25	k _{xv}	-0.023	-0.012	-0.044	-0.084	-0.124	-0.159		-0.229
	k _y	0.000	0. 020	0.091	0.166	0. 225	0. 269		0. 347
-0.10	$\frac{k_y}{k_x}$	0.063	0. 275	0.409	0.460		0, 489	0.495	0.497
1-0.10	k _{xy}	-0.003	-0.064	-0.159	-0.220		-0.274		-0.300
<u> </u>	k _v	0.500	0.500	0.500	0.500		0.500		0.500
0	k_{x}	0.500	0.500	0.500	0.500		0.500		0.500
1 "	k _{xy}	-0.318	-0.318			-	-0.318		-0.318
	k _y	1.000	0. 998		0.834		0.731	0.682	0.653
0.10	k _x	0.937	0. 725		0.540		0.51		0.503
0.10	k _{xy}	-0.003	-0.064		-0.220		-0.274		-0.300
-	k _v	1.000	0.998		0.968		0.909	0.860	0. 821
0. 25	$\frac{k_{y}}{k_{x}}$	0.975	0.876				0.59	0.553	0.535
0.23	k _{xv}	-0.001	-0.012			+	-0.159	0. 202	0. 229
	k _v	1.000	1.000				0. 98		0.940
0.50	k _x	0.987					0.72	+	0.630
0.30	k _{xy}	0.000				+	-0.06	4-0.097	-0.124
	k _v	1.000					0.99	3 0.985	0.976
0.75	$\frac{k_{y}}{k_{x}}$	0. 992					0.80	2 0.751	0.712
0.75	k _{xy}	0.000				+	-0.03	2-0.052	-0.070
	k _y	1.000				0.998	0.99	7 0.993	0.989
1.00	k _x	0.994				6 0.876	0.84	7 0.804	0.769
1.00	k _{xy}	0.000			-0.00	7 - 0.012	-0.01	9-0.031	-0.044
\vdash	ky	1.000			1.00	0.999	0.99	8 0.996	0.994
1. 25	k _x	0. 995	+		0.92	4 0.900	0.87	6 0.839	0.809
1.50	k_{xy}	0.000	+	-0.00	-0.00	5-0.008	-0.01	2 - 0.021	-0.030
1.50	k _y	1.000		-	1.00	0 1.000	0.99	9 0.998	0.996
	k _x	0.996			0.93	7 0.916	0.89	6 0.864	0.838
	kxy	0.000		0-0.00	1 - 0.00	3-0.006	-0.00	9-0.01	-0.021
	k _y	1.000		0 1.00	0 1.00	0 1.000	1.00	0.999	0.998
2.00	- k _x	0.99			8 0.95	2 0.937	0.92	0.89	0.876
1	k _{xy}	0.000		0-0.00	1 - 0.00	2-0.00	-0.00	-0.008	-0.012

作用下的地基应力系数

_									
	0. 50	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00
_	0.020	0.032	0.060	0.091	0.122	0. 152	0.179	0. 203	0, 225
-	0. 275	0.312	0.370	0.409	0. 435	0.453	0.465	0.474	0.480
-	-0.064	-0.084	-0.124	-0.159	-0.188		-0.229	T	-0.255
-	0.091	0. 122	0.179	0. 225	0. 261	0.290	0.313	0.332	0.347
_	0.409	0.435	0.465	0.480	0.487	0.492	0.494	0.496	0.497
_	-0.159	-0.188	-0.229	-0.255	-0.271	-0.282	-0.290	-0.296	-0.300
_	0. 225	0.261	0.313	0.347	0.371	0.389	0.402	0.413	0.421
_	0.480	0.487	0.494	0.497	0.498	0.499	0.499	0.499	0.500
	-0.255	-0.271	-0.290	-0.300	-0.305	-0.308	-0.311	-0.312	-0.313
	0.376	0.396	0.421	0.437	0.447	0.455	0.460	0.465	0.468
_	0.498	0.499	0.500	0.500	0.500	0.500	0.500	0.500	0.500
_	−0.306	-0.310	-0.313	-0.315	-0.316	-0.317	-0.317	-0.317	-0.318
	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
_	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	−0.318	-0.318	-0.318	-0.318	-0.318	-0.318	-0.318	-0.318	-0.318
_	0.624	0.604	0.579	0.563	0.553	0.545	0.540	0.535	0.532
	0.502	0.501	0.500	0.500	0.500	0.500	0.500	0.500	0.500
_	-0.306	-0.310	-0.313	0. 315	-0.316	-0.317	-0.317	-0.317	-0.318
	0.775	0.739	0.687	0.653	0.629	0.611	0.598	0.587	0.579
_	0.520	0.513	0.506	0, 503	0.502	0.501	0.501	0.501	0.500
	-0.255	-0.271	-0.290	-0.300	-0.305	-0.308	-0.311	-0.312	-0.313
_	0.909	0.878	0.821	0.775	0.739	0.710	0. 687	0.668	0.653
_	0.591	0.565	0.535	0.520	0.513	0.508	0.506	0.504	0, 503
_	-0.159	-0.188	-0.229	-0.255	-0.271	-0.282	-0.290	-0.296	-0.300
_	0.960	0.940	0.899	0.858	0.821	0.789	0.762	0.739	0.719
_	0.666	0.630	0.581	0.552	0.535	0.524	0.517	0.513	0.510
_	-0.098	-0.124	-0.169	-0.204	-0.229	-0.247	-0.261	-0.271	-0.279
_	0.980	0.968	0.940	0.909	0.878	0.848	0.821	0.797	0.775
_	0.725	0.688	0.630	0.591	0.565	0.547	0.535	0.526	0.520
_	−0.064	<u>−</u> 0.084	-0.124	-0.159	−0.188	-0.211	-0.229	-0.243	<u>- 0. 255</u>
_	0. 989	0. 982	0.963	0.940	0.916	0.890	0.866	0.842	0.821
	0.769	0. 733	0.674	0.630	0.597	0.574	0.557	0.544	0.535
_	-0.044	-0.060	-0.092	<u>-0.124</u>	-0.153	<u>−0.177</u>	-0.198	-0.215	-0.229
_	0. 993	0. 989	0.976	0.960	0.940	0.920	0, 899	0.878	0.858
_	0.802	0.769	0.712	0.666	0.630	0, 602	0.581	0, 565	0. 552
	<u>-0.032</u>	-0.044	-0.070	<u>-0.098</u>	-0.124	-0.148	-0.169	<u>−0.188</u>	-0.204
_	0.997	0. 995	0.989	0. 980	0.968	0. 955	0.940	0. 925	0.909
_	0.847	0. 820	0.769	0. 725	0.688	0.656	0.630	0.608	0. 591
_	0. 019	0. 026	-0.044	-0.064	0. 084	-0.105	-0.124	-0.142	-0.159

L--基底面长度(m);

p——作用在基底面上的竖向荷载(kPa);

τ—作用在基底面上的水平向荷载(kPa)。

当 $\phi = 0$ 时, $N_{\gamma} = 0$, $N_{q} = i_{\gamma} = i_{q} = 1$; $N_{c} = \pi + 2$, i_{c} 可按公式 (H. 0. 7-13)计算, 也可由表 H. 0. 7-5 查得。

$$i_{c} = \frac{\pi - \sin^{-1}\frac{\tau}{C} + 1 + \sqrt{1 - \left(\frac{\tau}{C}\right)^{2}}}{\pi + 2}$$
 (H. 0. 7-13)

表 H. 0. 7-1 承载力系数

φ(°)	Nγ	$N_{ m q}$	N_{c}
0	0.000	1.000	5. 142
1	0.002	1.094	5. 379
2	0.010	1.197	5. 632
3	0.024	1. 309	5. 900
4	0.045	1. 433	6. 185
5	0. 075	1. 568	6. 489
6	0.113	1. 716	6. 813
7	0.162	1.879	7. 158
8	0. 223	2. 058	7. 527
9	0. 298	2. 255	7. 922
10	0. 389	2. 471	8. 345
11	0.499	2. 710	8. 798
12	0.629	2. 974	9. 285
13	0.784	3. 264	9. 807
14	0.967	3. 586	10. 370
15	1. 182	3. 941	10. 977
16	1. 434	4. 335	11. 631
17	1.730	4. 772	12. 338

续表 H. 0. 7-1

#(*) N ₇ N _q N _c 18 2.075 5.258 13.104 19 2.478 5.798 13.934 20 2.948 6.399 14.835 21 3.496 7.071 15.815 22 4.134 7.821 16.883 23 4.878 8.661 18.049 24 5.746 9.603 19.324 25 6.758 10.662 20.721 26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33			24 II. 0. 7 I			
19 2. 478 5. 798 13. 934 20 2. 948 6. 399 14. 835 21 3. 496 7. 071 15. 815 22 4. 134 7. 821 16. 883 23 4. 878 8. 661 18. 049 24 5. 746 9. 603 19. 324 25 6. 758 10. 662 20. 721 26 7. 941 11. 854 22. 254 27 9. 324 13. 199 23. 942 28 10. 942 14. 720 25. 803 29 12. 841 16. 443 27. 860 30 15. 070 18. 401 30. 140 31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 <t< th=""><th>ø(°)</th><th>Nγ</th><th>$N_{ m q}$</th><th>N_c</th></t<>	ø (°)	Nγ	$N_{ m q}$	N _c		
20 2.948 6.399 14.835 21 3.496 7.071 15.815 22 4.134 7.821 16.883 23 4.878 8.661 18.049 24 5.746 9.603 19.324 25 6.758 10.662 20.721 26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867 <td>18</td> <td>2. 075</td> <td>5. 258</td> <td>13. 104</td>	18	2. 075	5. 258	13. 104		
21 3. 496 7. 071 15. 815 22 4. 134 7. 821 16. 883 23 4. 878 8. 661 18. 049 24 5. 746 9. 603 19. 324 25 6. 758 10. 662 20. 721 26 7. 941 11. 854 22. 254 27 9. 324 13. 199 23. 942 28 10. 942 14. 720 25. 803 29 12. 841 16. 443 27. 860 30 15. 070 18. 401 30. 140 31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	19	2. 478	5. 798	13. 934		
22 4. 134 7. 821 16. 883 23 4. 878 8. 661 18. 049 24 5. 746 9. 603 19. 324 25 6. 758 10. 662 20. 721 26 7. 941 11. 854 22. 254 27 9. 324 13. 199 23. 942 28 10. 942 14. 720 25. 803 29 12. 841 16. 443 27. 860 30 15. 070 18. 401 30. 140 31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	20	2. 948	6. 399	14.835		
23 4.878 8.661 18.049 24 5.746 9.603 19.324 25 6.758 10.662 20.721 26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	21	3. 496	7. 071	15. 815		
24 5.746 9.603 19.324 25 6.758 10.662 20.721 26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	22	4. 134	7. 821	16. 883		
25 6.758 10.662 20.721 26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	23	4. 878	8. 661	18. 049		
26 7.941 11.854 22.254 27 9.324 13.199 23.942 28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	24	5. 746	9. 603	19. 324		
27 9. 324 13. 199 23. 942 28 10. 942 14. 720 25. 803 29 12. 841 16. 443 27. 860 30 15. 070 18. 401 30. 140 31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	25	6. 758	10. 662	20. 721		
28 10.942 14.720 25.803 29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	26	7. 941	11.854	22. 254		
29 12.841 16.443 27.860 30 15.070 18.401 30.140 31 17.693 20.631 32.671 32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	27	9. 324	13. 199	23. 942		
30 15. 070 18. 401 30. 140 31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	28	10.942	14. 720	25. 803		
31 17. 693 20. 631 32. 671 32 20. 786 23. 177 35. 490 33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	29	12. 841	16. 443	27. 860		
32 20.786 23.177 35.490 33 24.442 26.092 38.638 34 28.774 29.440 42.164 35 33.921 33.296 46.124 36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	30	15. 070	18. 401	30. 140		
33 24. 442 26. 092 38. 638 34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	31	17. 693	20. 631	32. 671		
34 28. 774 29. 440 42. 164 35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	32	20. 786	23. 177	35. 490		
35 33. 921 33. 296 46. 124 36 40. 053 37. 752 50. 585 37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	33	24. 442	26. 092	38. 638		
36 40.053 37.752 50.585 37 47.383 42.920 55.630 38 56.174 48.933 61.352 39 66.755 55.957 67.867	34	28. 774	29. 440	42. 164		
37 47. 383 42. 920 55. 630 38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	35	33. 921	33. 296	46. 124		
38 56. 174 48. 933 61. 352 39 66. 755 55. 957 67. 867	36	40. 053	37. 752	50. 585		
39 66. 755 55. 957 67. 867	37	47. 383	42. 920	55. 630		
	38	56. 174	48. 933	61. 352		
40 79.541 64.105 75.212	39	66. 755	55. 957	67. 867		
75.511	40	79. 541	64. 195	75. 313		
41 95. 052 73. 897 83. 858	41	95. 052	73. 897	83. 858		
42 113. 956 85. 374 93. 706	42	113. 956	85. 374	93. 706		
43 137. 100 99. 014 105. 107	43	137. 100	99.014	105. 107		
44 165. 579 115. 308 118. 369	44	165. 579	115. 308	118. 369		

表 H. O. 7-2

$-$ tg δ													
ø(°)	0.01	0.04	0.08	0.12	0.16	0. 20	0. 24	0. 28	0.32	0.36	0.40	0.44	0.48
1	0. 972		_			_			_	_	_	_	_
2	0.976		_	-		_	_	_	_		_	_	
3	0.977	0.875	_		_						_		
4	0.977	0.889					-	_	_			_	-
5	0.977	0.895	0.721	-	-		_				_		_
6	0. 977	0.897	0.756		-	1	_	-	_		-	_	
7	0.977	0.899	0.771	0.565				_	_	_	_		
8	0.976	0.899	0.778	0.624	-				_				
9	0.976	0.899	0.783	0.646	_			_	-				
10	0.976	0.899	0.785	0.658	0.502			-	-				
11		0.898										_	
12		0.897									_		
13		0.896								-			-
14		0.895				_					<u> </u>		
15	+	0.894								↓			
16		0.892					_				_	 -	-
17		0.891										<u> </u>	-
18	+	0.890			•						 -	<u> </u>	-
19		0.888									<u> </u>	<u> </u>	
20		0.886											-
21	0.971	0.885	0.773	0.666	0.565	0.471	0.384	0.305	0.231	0. 159	ļ —	<u>↓</u> =_	-
22		0.883											
23		0.881											-
24	0.969	0.879	0.764	0.656	0.557	0.465	0.383	0.310	0. 244	0.186	0.133	0.077	-
25												0.094	
26												0.103	
27												0.108	
28												0.112	
29												0.114	
30												0. 115	
31	0.965	0.864	0.740	0.627	0.527	0.439	0.301	0. 295	0. 235	0.190	0.149	0.115	0.087
32												0.113	
33												0.114	
1												0.113	
35												0.112	
36												0. 108	
38												0. 105	
39													0.080
40													0.078
41					*				T				0.076
42													0.073
43													0.071
44													0.068
44	10. 304	10.023	10.010	10.000	10.444	10.001	10. 400	10. 661	100 100	10. 147	10.111	10. 001	10.000

倾斜系数 i,

	1									1	·
0.52	0.56	0.60	0.64	0. 68	0.72	0.76	0.80	0.84	0.88	0.92	0.96
					_	_	_		-		
			_								L
					_				_		
											
										ļ <u> —</u>	
							H <u></u>				
											=
											-
	_	_	_		_			_	_	_	
		_	_	_				_	_		
	_	_	_	_	_	_	_	_	_	_	
	_		-					_			
		_	_	-	-				_		_
	_					_	_	_			_
						_	_				
					_	_		<u> </u>			
				_				_	_		
					-			_	_		
	_										
											
		-					_			_	_
			_	_					_	_	_
0.048			_	_	_				_		_
0.056		_				_	-	_	_	_	_
0.060	0.038	_	_	_		_	_	_	_		
0.063	0.043	0.021		_		-	_	_	_		
0.065	0.046	0.029	_								
0.066	0.048	0.033	0.019	_					_		-
0.066	0.049	0.035									
0.066		0.036					_	_			
0.066		0.037		0.018					_		
0.065		0.037				_	-				
0.064		0.037					- 005		_		-
0.062		0.036				0.010					
0.061		0.036		0.020		0.010	0.007	0.005		-	_
0.059	0.044			0. 020				0.005	0. 003		
0.057	0.044							0.006		0, 002	
0.053	0.043									0.003	0, 001
0.000	0.041	0.002	0.024	0.013	V+ V14	0. 011	0.000	0.000	0.004	0.000	0.001

表 H. O. 7-3

			_	F	1								$\overline{}$
φ(°)	0. 01	0.04	0. 08	0.12	0. 16	0. 20	0. 24	0. 28	0. 32	0.36	0.40	0.44	0.48
1	0.986	_	_	_					_		_	_	_
2	0.988	_	_		_	_			-	_	_	_	-
3	0.988	0.935	_	_	_	_	_	-	-	_	-	_	_
4	0. 989	0.943	_	-	-	-	_	_	_	_	-		_
5	0.989	0.946	0.849		_		_	_	_	_	-	_	-
6	0. 988	0.947	0.870							-	-	_	_
7	0. 988	0.948	0.878	0.752	_			-					
8	0.988	0.948	0.882	0.790									
9	0.988	0.948	0.885	0.804				-					
10	0. 988	0.948	0.886	0.811	0.709							_	
11	0.988	0.948	0.887	0.816	0.728								
12	0. 987	0.947	0.887	0.819	0.739	0.629			_				
13	0.987	0.947	0.887	0.820	0.745	0.653				_			
14		0.946		_									
15	0.987	0.945	0.886	0.822	0.752	0.675	0.582	_	-				
16	0.987	0.945	0.885	0.821	0.753	0.680	0.597	0.482					
17		0.944											
18		0.943									-		
19		0.942										_	
20	 	0.941			_	_					_		
21		0.941							1				
22	-	0.940					-				+	}	_
23	-	0.939			_								-
24	+	0.938			†		t						<u> </u>
25		0.937											
26		0.936											
27		0.934					1						
28		0. 933			-						-		
29		0.932											
30		0.931											
31		0. 930											
32		0.928											
33		0. 927 0. 925											
34	 	0. 925		† 				· · · · · · · · · · · · · · · · · · ·	-		_	•	
36		0. 923	•	t			†	_					_
37	_	0. 921					-						
38		0. 919			+								
39		0.918											
40		0.916											
41	0. 978	0.914	0. 832	0. 755	0. 683	0.615	0. 553	0.495	0.443	0. 395	0. 351	0.311	0. 275
42		0. 912											
43		0.910											
44		0.908					•		1				
	1	12.000	1 020	1	1			0	1 1	1 0 - 0	1		,

倾斜系数 iq

										···	,
0.52	0.56	0.60	0.64	0. 68	0. 72	0. 76	0.80	0.84	0.88	0. 92	0. 96
	-	-		_		_	-	_	-		_
	-		_	_		_	_	I –	_	_	_
_	_			_		_	-	T -		_	
		-	_	_		_		T -		_	_
_	_		_	_	_	_	_		-	_	_
			-	_		-		_ ·	_		_
					_			_	_	-	_
				-		-			_		_
			_		_	_	_		_	_	_
				_	_	_	_				_
			_	_		_	_	_	_		-
	-		_	_		_				_	
	_		_	-		_		_		_	_
	_		_			_	_				
	-			_			_	_		_	-
				_			-	_	_	_	-
		-			-		_	_		_	_
		_			_			_		+	_
				-		-		_	_	1	_
								_	_	-	_
			-	_					_	_	
		_				-	_	-	_	_	
	_			_			_		_	_	_
	_			_			-		_		_
	_			_	_		_		1	_	
					****	_	_	_	-		
				_	-			_	_	_	
0.218			_	_			_	_		_	
0.236						_		-			_
0.246	0.194					_					
0.251	0. 207	0.144			_			_			
0.255	0.215	0.172			_						
0.257	0.219	0.181	0.137		_						
0. 258	0. 222	0. 187	0.152								
0.257	0. 223	0.190	0.159	0.124			_		_		
0.256	0. 223	0.192	0.162	0.133	0.098			_			
0.254	0. 222	0.192	0.165	0.138	0.111		_		_	_	
0. 252	0. 221	0. 192	0.166	0.141	0.117	0.091					
0.249	0.219	0. 191	0.165	0.142	0.120	0.098	0.074				
0.246	0.216	0. 189	0.165	0.142	0. 121	0.102	0.082				
0. 243	0. 213	0. 187	0.163	0.141	0.122	0. 103	0.086	0.068			
0. 239	0. 210	0.184	0.161	0.140	0.121	0. 104	0.088	0.073	0.056		
0. 234	0. 206	0. 181	0.159	0.138	0.120	0.104	0.089	0.075	0.061	0.046	
0.230	0. 202	0.178	0.156	0.136	0.119	0.103	0.088	0.075	0.063	0.051	0. 037

表 H. O. 7-4

32													
¢(°)	0.01	0.04	0. 08	0.12	0.16	0. 20	0.24	0. 28	0. 32	0.36	0.40	0.44	0. 48
1	0.838	_	_	_		_	-		_				
2	0. 927	_	_	_			-				_		
3	0.951	0.726	_	_		-			_				
4	0.962	0.811	_	_					_	_			
5	0.968	0.850	0.584	-									
6	0.972	0.874	0.687	-	_		-						
7			0.739	0.469									
8	0.977	0.899	0.771	0.591		-							
9	0.978	0.907	0.793	0.647									
10	0. 980	0. 913	0.809	0.683	0.511			-					
11	0.980		0.821										
12	0. 981	0. 920	0.830	0.727	0.606	0.441							
13	0.982	0. 923	0.837	0.741	0.632	0.500							
14	0. 982	0. 925	0.843	0.752	0.652	0.537	0.380	<u> </u>	<u> </u>		<u> </u>		
15	0.982	0.927	0.847	0.761	0.667	0.564	0.440		 -				
16	0.983	0. 928	0.851	0.768	0.679	0. 584	0.476	0. 327		_=_			
17	0. 983	0. 929	0.853	0.773	0.689	0. 599	0.502	0. 387		_	├		
18	0.983	0. 930	0.856	0.778	0.696	0.611	0. 521	0. 421	0. 282		 -	-	_
19	0. 983	0. 930	0.857	0. 781	0. 702	0.621	0. 536	0.446	0.340	_	 -		
20	0.983	0. 931	0.858	0. 784	0.707	0. 628	0. 548	3 0. 464	0. 373	0. 245	 - -	 - -	
21	0.983	0.93	0.859	0. 785	0. 711	0.634	0. 557	0.478	0. 395	0.300		<u> </u>	
22	0. 983	0.93	0.860	0. 787	0.713	0.639	0. 565	0.489	0.412	0. 329	0. 216		
23	0. 983	3 0. 93	0.860	0. 788	0. 715	0.64	3 0. 570	0.498	0.425	0. 350	0. 265	- 104	
24	0. 983	3 0. 930	0.860	0. 788	0. 716	0.64	5 0. 575	0.50	0.435	0.365	0. 291	0.194	
25	0. 98	3 0. 930	0 859	0. 788	3 0. 717	7 0. 64	7 0. 578	3 0. 510	0.443	0. 377	0.310	0. 250	0 177
26	0. 98	2 0. 93	0.859	0. 788	3 0. 717	7 0. 64	3 0. 580	0.51	4 0. 450	0. 380	0. 323	0. 274	0.177
27	0. 98	2 0. 92	9 0. 858	3 0 78	0.71	7 0. 64	9 0. 58	2 0. 51	7 0. 454	0. 393	0. 334	0.274	0. 209
28	0. 98	2 0. 92	8 0 85	7 0. 780	0.710	0.64	8 0. 58	3 0. 51	9 0. 458	0. 39	0. 341	0. 200	0. 242
29	0. 98	2 0. 92	8 0 85	10. 78	0.71	1 0 64	7 0 50	20.52	0 0. 460	0.40	0.34	20. 201	0. 252
30	0.98	2 0. 92	10.85	10.78	0. 71	20.04	5 0 50	1 0 52	0 0.461 0 0.462	0. 40	7 0. 356	0. 306	0. 259
31	0.98	1 0. 92	5 0 05	10.77	0.71	0 0 64	3 0 57	0 0 51	9 0. 462	0. 40	3 0. 353	7 0. 300	0, 264
32	0. 98	1 0. 92	10.85	0.0.77	7 0 70	7 0 64	1 0 57	7 0. 51	7 0. 461	0. 40	3 0. 358	3 0. 312	0. 268
33	0.98	1 0. 92	20.85	0 0 77	5 0 70	5 0 63	8 0 57	5 0. 51	5 0. 459	0, 40	7 0. 358	3 0. 313	3 0. 271
34	0.98	1 0. 92	20.84	60.77	2 0 70	2 0 62	5 0. 57	2 0. 51	3 0. 457	0.40	6 0, 35	3 0. 313	0. 272
35	0.98	0 0 92	00.04	3 0 75	010.60	90.63	2 0. 56	9 0. 51	0 0. 45	0.40	4 0. 35	5 0. 31	0. 273
36	0. 38	0 0 92	0 0 04	1 0 76	6 0. 60	5 0 62	8 0. 56	5 0. 50	6 0, 45	0, 40	1 0. 35	5 0. 31	0. 273
37	0.98	0 0 01	80.04	8 0 76	3 0 60	1 0. 62	4 0. 56	1 0, 50	2 0. 44	0.39	8 0. 35	20.31	0. 272
38	0.97	0 0 01	60 83	60.75	9 0. 68	7 0. 62	0 0, 55	7 0, 49	8 0. 44	0.39	5 0. 34	9 0. 30	0. 270
40	0.97	8 0 01	50.83	3 0. 75	60.68	3 0, 61	5 0. 55	2 0. 49	3 0. 44	0. 39	1 0. 34	6 0. 30	0. 268
41	0.97	8 0. 01	3 0. 83	0 0. 75	2 0. 67	9 0, 61	0 0. 54	7 0. 48	9 0. 43	0. 38	6 0.34	2 0. 30	2 0. 265
42	0. 97	7 0. 91	1 0, 82	7 0, 74	8 0, 67	4 0.60	5 0.54	2 0.48	3 0.43	0 0.38	1]0.33	8 0. 29	B[0. 262
43	0. 97	7 0. 90	9 0, 82	4 0, 74	4 0.66	9 0. 60	0 0. 53	6 0. 47	8 0.42	5 0.37	6 0. 33	3 0. 29	4 0. 258
44	0. 97	6 0. 90	8 0, 82	0 0. 73	9 0. 66	4 0. 59	4 0. 53	0 0. 47	2 0. 41	9 0. 37	1 0. 32	8 0. 28	9 0. 254
	10.01	010.00	010.00	-10.10	- 1 - 1 - 0 0	-1- 55							

倾斜系数i。

0. 52	0.56	0.60	0. 64	0. 68	0. 72	0.76	0. 80	0. 84	0. 88	0. 92	0.96
		_	-		_	_		<u> </u>	_	_	-
	_	_		_		<u> </u>		T -		-	_
	_			_		_	_	_	_	_	
	_					_	_	_	_	_	_
_	_		_	_	_	_		_	_	_	_
						-			_	_	
						•					
		_			_			<u>i – </u>			_
			-					_			
				<u> </u>		_					
	<u> </u>										
	<u> </u>										
	<u> </u>										
	-	<u> </u>									
	-			_							_
			_	_			-		-		_
			-								
	-								-		_
											-
							_			_	
0. 161							_				
0. 187							_				
0. 202	0.147									_	
0. 213	0. 167	0. 101									
0. 221	0. 179	0.134					_				
0. 227	0. 188	0.149	0.103		_	_		-			
0. 231	0.194	0. 158	0. 122								
0. 234	0. 199	0. 165	0.132	0.097	_	_	_	_	_	_	
0. 236	0. 202	0.170	0.140	0.110	0.074		_	_	_		_
0. 237	0. 204	0.173	0.145	0.118	0.090	_	_			_	
0. 237	0. 205	0.175	0.148	0. 123	0.098	0.072		_		_	_
0. 236	0. 205	0.176	0.150	0.126	0.104	0.082	0.057	_	_	_	. –
0. 234	0. 204	0.176	0.151	0.128	0.107	0.087	0.068		_	_	
0. 232	0. 203	0.176	0.152	0.130	0.110	0.091	0.074	0.056	-	_	_
0. 230	0. 201	0.175	0.151	0.130	0.111	0.093	0.077	0.062	0.045	_	_
0. 227	0.198	0.173	0.150	0.130	0.111	0.095	0.079	0.065	0.052	0.037	_
0. 223	0. 195	0.171	0.148	0.129	0.111	0.095	0.081	0.067	0.055	0.043	0.029

表 H. 0. 7-5 倾斜系数 i_c(φ=0°)

τ/C	0.00	0. 05	0.10	0.15	0.20	0. 25	0.30	0. 35	0.40	0.45	0.50
ic	1.000	0. 990	0. 980	0.969	0. 957	0.945	0. 932	0. 918	0. 904	0. 888	0.872
τ/C	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0. 90	0.95	0. 98	1.00
ic	0.855	0.836	0.816	0.794	0.769	0.742	0. 710	0. 672	0. 622	0. 578	0.500

附录 J 地基附加应力计算

J. 0. 1 条形基础受竖向均布荷载作用时的附加应力计算示意图 见图 J. 0. 1;附加应力可按公式(J. 0. 1-1)计算;附加应力系数可按 公式(J. 0. 1-2)计算求得,也可由表 J. 0. 1 查得。

图 J. 0.1

$$\sigma_{z} = K_{1}P_{v} \qquad (J. \ 0. \ 1-1)$$

$$K_{1} = \frac{1}{\pi} \left[\operatorname{arctg} \frac{m}{n} + \frac{mn}{m^{2} + n^{2}} - \operatorname{arctg} \frac{m-1}{n} - \frac{(m-1)n}{(m-1)^{2} + n^{2}} \right] \quad (J. \ 0. \ 1-2)$$

式中 σ₂— 附加应力(kPa);

*K*₁ — 条形基础受竖向均布荷载作用时的附加应力系数;*m* — 附加应力计算点距 z 轴的水平距离与基底面宽度之比;

n——附加应力计算点距 x 轴的深度与基底面宽度之比。 **J. 0. 2** 条形基础受竖向三角形分布荷载作用时的附加应力计算

表 J. 0.1 附加应力系数 K1

z					;	$m = \frac{x}{B}$					
$n = \frac{z}{B}$	+0.50	+0.25 +0.75	0 +1.00	-0.10	-0.20	-0.30 $+1.30$	-0.50 $+1.50$	-0.80	-1.00	-2.00	-3.00 $+4.00$
0.01		1.000									
0.10	0. 997	0. 988	0.500	0.091	0.020	0.007	0.002	0.000	0.000	0.000	0.000
0.20	0.977	0. 937	0.498	0. 224	0.090	0.040	0. 011	0.003	0.001	0.000	0.000
0.40	0.881	0. 797	0.489	0.338	0. 218	0.137	0.056	0.018	0.010	0.001	0.000
0.60	0.755	0.679	0.468	0.371	0. 282	0. 209	0.111	0.045	0.026	0.004	0.001
0.80	0.642	0.586	0.440	0.373	0.307	0. 248	0.155	0.076	0.048	0. 008	0.002
1.00	0. 550	0.510	0.409	0.360	0.311	0. 265	0.185	0.104	0.071	0.013	0.004
1. 20	0. 477	0.450	0.378	0.342	0.305	0. 268	0. 202	0. 126	0.091	0. 020	0.006
1.40	0.420	0.400	0.348	0. 321	0. 293	0. 265	0. 210	0.141	0. 107	0. 028	0.009
1.60	0. 374	0.360	0.321	0. 301	0. 279	0.256	0. 212	0. 152	0.120	0. 036	0.012
1.80	0. 337	0. 326	0. 297	0. 281	0.264	0. 246	0. 209	0.158	0.128	0.043	0.016
2.00	0.306	0. 298	0. 275	0.263	0. 249	0. 235	0. 205	0.161	0.134	0.051	0. 020
3.00	0. 208	0. 206	0.198	0. 194	0.189	0. 183	0.171	0. 150	0.136	0. 075	0. 039
4.00	0. 158	0.156	0. 153	0. 151	0.149	0.146	0. 140	0. 130	0. 122	0. 083	0.052
5.00	0.126	0. 126	0. 124	0. 123	0. 122	0.120	0. 117	0.111	0.107	0.082	0.058
6.00	0.106	0. 105	0.104	0.104	0. 103	0. 102	0. 100	0.096	0.094	0. 077	0.059

示意图见图 J. 0. 2;附加应力可按公式(J. 0. 2-1)计算;附加应力系数可按公式(J. 0. 2-2)计算求得,也可由表 J. 0. 2 查得。

$$\sigma_{z} = K_{2}P_{s} \qquad (J. 0. 2-1)$$

$$K_{2} = \frac{1}{\pi} \left[(m-1)\operatorname{arctg} \frac{m-1}{n} - (m-1)\operatorname{arctg} \frac{m}{n} + \frac{mn}{m^{2} + n^{2}} \right] \qquad (J. 0. 2-2)$$

式中 K_2 ——条形基础受竖向三角形分布荷载作用时的附加应力系数。

图 I.O.2

J. 0. 3 条形基础受水平向均布荷载作用时的附加应力计算示意图见图 J. 0. 3;附加应力可按公式(J. 0. 3-1)计算;附加应力系数可按公式(J. 0. 3-2)计算求得,也可由表 J. 0. 3 查得。

图 J. 0. 3

$$\sigma_{\rm z} = K_3 P_{\rm H} \qquad (J. 0. 3-1)$$

$$K_3 = -\frac{1}{\pi} \left[\frac{n^2}{(m-1)^2 + n^2} - \frac{n^2}{m^2 + n^2} \right] \quad (J. 0. 3-2)$$

式中 K_3 ——条形基础受水平向均布荷载作用时的附加应力系数。

表 J. 0. 2 附加应力系数 K₂

z											m =	$\frac{x}{B}$									
$n = \frac{z}{B}$	-3.00	-2.00	-1.00	−0.80	-0.50	-0.30	-0.20	-0.10	0	+0.25	+0.50	+0.75	+1.00	+1.10	+1.20	+1.30	+1.50	+1.80	+2.00	+3.00	+4.00
0.01	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0. 497	0.750	0.500	0. 250	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.10	0.000	0.000	0.000	0.000	0.001	0.006	0.018	0.084	0.468	0.737	0.498	0. 251	0.032	0. 007	0.002	0.001	0.000	0.000	0.000	0.000	0.000
0. 20	0.000	0.000	0.001	0. 002	0.009	0.033	0.078	0.197	0. 437	0.682	0.489	0. 255	0.061	0.027	0.012	0.006	0.002	0.001	0.000	0.000	0.000
0.40	0.000	0.001	0.007	0.013	0.042	0.107	0.173	0. 267	0.379	0.534	0.440	0. 263	0. 110	0.071	0.045	0.029	0.013	0.005	0.003	0.000	0.000
0.60	0.001	0. 002	0.018	0.032	0.080	0.152	0. 205	0. 266	0. 328	0.421	0.378	0. 258	0.140	0.105	0.077	0.057	0. 031	0.014	0.008	0.001	0.000
0.80	0.001	0.005	0. 032	0.051	0.106	0.169	0. 207	0. 247	0. 285	0.343	0.321	0. 243	0. 155	0.125	0.100	0.079	0.049	0.025	0.016	0.003	0. 001
1.00	0.002	0.008	0.046	0.068	0. 121	0.170	0.198	0. 225	0. 250	0. 287	0. 275	0. 223	0.159	0. 135	0.113	0.094	0.064	0.036	0.025	0.005	0.002
1.20	0.004	0.012	0.057	0.079	0.126	0.165	0.185	0. 204	0. 221	0.246	0. 239	0. 204	0. 157	0.138	0.120	0.103	0.075	0.046	0.034	0.008	0.003
1.40	0.005	0.017	0.066	0.087	0. 127	0.157	0. 172	0.186	0. 197	0.215	0. 210	0.186	0.151	0.136	0. 121	0. 107	0.083	0.055	6.041	0.011	0.004
1.50	0.007	0.021	0.072	0.091	0.124	0.148	0.159	0.169	0.178	0.190	0.187	0.170	0.143	0.131	0.120	0.108	0.087	0.061	0.048	0.015	0.005
1.80	0.009	0.025	0.076	0.092	0.120	0.139	0.147	0. 155	0.161	0.171	0.168	0. 155	0.135	0. 126	0.117	0.107	0.089	0.066	0.053	0.018	0.007
2.00	0.011	0.029	0.073	0.092	0.115	0.130	0.137	0.143	0.148	0.155	0. 153	0.143	0.127	0.120	0.112	0.105	0.089	0.069	0.057	0.021	0.009
3.00	0.022	0.042	0.074	0.081	0.091	0.096	0.099	0.101	0.102	0.105	0.104	0.101	0. 095	0.093	0.090	0.087	0.080	0.069	0.062	0.033	0.017
4.00	0.028	0.044	0.064	0.068	0.073	0.075	0.076	0.077	0.078	0.079	0.079	0.077	0.075	0.074	0.072	0.071	0.067	0.062	0.058	0.038	0.024
5.00	0. 031	0.043	0.055	0.057	0.060	0.061	0.062	0.062	0.063	0.063	0.063	0.063	0.061	0.061	0.060	0.059	0.057	0.054	0.051	0.039	0.027
6.00	0.031	0.040	0.048	0.049	0.051	0.052	0.052	0.052	0.053	0.053	0.053	0.052	0.052	0. 951	0.051	0.050	0.049	0.047	0.046	0.037	0.028

表 J. 0. 3 附加应力系数 K₃

$n = \frac{z}{B}$											m =	$\frac{x}{B}$									
l B	-3.00	-2.00	-1.00	-0.80	-0.50	-0.30	-0.20	-0.10	0	+0.25	+0.50	+0.75	+1.00	+1.10	+1.20	+1.30	+1.50	+1.80	+2.00	+3.00	+4.00
0.01	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.318	0.000	0.000	0.000	-0.318	- 0. 003	-0.001	0.000	0.000	0.000	0.000	0.000	0.000
0.10	0.000	0.000	0.002	C. 004	0. 011	0.006	0.061	0. 157	0. 315	0.038	0.000	-0.038	−0.315	−0.157	-0.061	-0.030	-0.011	-0.004	-0.002	0.000	0.000
0. 20	0.001	0.002	0.009	0.015	0. 038	0. 091	0. 151	0. 244	0. 306	0.103	0.000	-0.103	-0.306	-0.244	-0.151	-0.091	-0.038	-0.015	-0.009	-0.002	-0.001
0.40	0.002	0.007	0.032	0.049	0.103	0.176	0. 223	0. 262	0. 274	0.158	0.000	-0.158	-0.274	-0.262	- O. 223	-0.176	-0.103	-0.049	-0.032	-0.007	-0.002
0.60	0.005	0.014	0.058	0.083	0. 144	0. 199	0.223	0. 237	0. 234	0.147	0.000	-0.147	-0.234	-0.237	0. 223	-0.199	-0.144	-0.083	-0.058	-0.014	-0.005
0.80	0.009	0. 023	0.080	0.107	0. 158	0. 192	0. 202	0. 203	0. 194	0. 121	0.000	-0.121	-0.194	-0.203	-0.202	-0.192	-0.158	-0.107	-0.080	-0.023	-0.009
1.00	0.013	0.032	0.095	0.119	0. 157	0.174	0.176	0. 171	0. 159	0.096	0.000	-0.096	-0.159	-0.171	-0.176	-0.174	-0.157	-0.119	-0.09 5	0.032	-0.013
1.20	0.018	0.040	0.104	0.122	0.147	0. 153	0. 151	0.143	0.130	0.076	0.000	-0.076	-0.130	-0.143	-0.151	-0.153	-0.147	-0.122	-0.104	-0.040	-0.018
1.40	0.022	0.048	0.106	0.120	0.134	0. 133	0.128	0.120	0.108	0.061	0.000	-0.061	-0.108	-0.120	-0.1 <i>2</i> 8	-0.133	-0.134	-0.120	-0.106	-0.048	-0.022
1.60	0.027	0.054	Q. 105	0.114	0. 121	0.116	0.110	0. 101	0.089	0.050	0.000	-0.050	-0.089	-0.101	-0.110	-0.116	-0.121	-0.114	0.105	-0.054	-0.027
1.80	0.031	0.058	0. 101	0.107	0.108	0. 101	0.094	0.086	0.075	0.041	0.000	0. 041	-0.075	-0.086	-0.104	0. 101	-0.108	-0.107	-0.101	−0.058	-0.031
2.00	0.034	0.061	0. 095	0.099	0.096	0. 088	0.081	0.073	0.064	0.034	0.000	-0.034	-0.064	-0.073	-0.081	-0.088	-0.096	-0.099	0. 095	-0.061	−0.034
3.00	0.045	0.061	0.066	0.063	0.055	0.047	0.042	0.037	0.032	0.017	0.000	-0.017	-0.032	-0. ú37	-0.042	- 0. 047	-0.055	-0.063	-0.066	-0.061	0. 045
4.00	0.045	0.051	0.045	0.041	0.034	0. 029	0.025	0. 022	0.019	0.010	0.000	-0.010	-0.019	-0.022	-0.025	-0.029	-0.034	-0.041	-0.045	-0.051	-0.045
5.00	0.040	0.040	0.032	0. 029	0. 023	0.019	0.017	0.015	0.012	0.006	0.000	-0.006	-0.012	-0.015	-0.017	-0.019	-0.023	-0.029	-0.032	−0.040	-0.040
6.00	0.034	0.032	0.023	0. 021	0.017	0.013	0. 012	0.010	0.009	0.004	0.000	-0.004	-0.009	0.010	-0.012	-0.013	0.017	-0.021	-0.023	-0.032	-0.034

J. 0. 4 矩形基础受竖向均布荷载作用时角点下的附加应力计算示意图见图 J. 0. 4-1,附加应力可按公式(J. 0. 4-1)计算;附加应力系数值可按公式(J. 0. 4-2)计算求得,也可由表 J. 0. 4 查得。

图 I. 0. 4-1

$$\sigma_{z} = K_{4}P_{v} \qquad (J. \ 0. \ 4-1)$$

$$K_{4} = \frac{1}{2\pi} \left[\frac{m_{1}n}{\sqrt{1 + m_{1}^{2} + n^{2}}} \left(\frac{1}{m_{1}^{2} + n^{2}} + \frac{1}{1 + n^{2}} \right) + \operatorname{arctg} \frac{m_{1}}{n \sqrt{1 + m_{1}^{2} + n^{2}}} \right] \qquad (J. \ 0. \ 4-2)$$

式中 K_4 一矩形基础受竖向均布荷载作用时角点下的附加应力系数;

m1 ——基底面长边长度与短边长度之比。

计算任意点 M 下的附加应力时应遵守下列规定:

- 1 矩形荷载面内任意点 M 下的附加应力系数等于矩形荷载面 I 、I 、I 、I 、I A 用点 A 下的附加应力系数之和(见图 I .0 .4-2);
- 2 矩形荷载边上任意点 *M* 下的附加应力系数等于矩形荷载面 I、I 角点 *M* 下的附加应力系数之和(见图 J. 0. 4-3 和图 J. 0. 4-4);
 - 3 矩形荷载面外任意点 M 下的附加应力系数等于矩形荷载

表 J. 0. 4 附加应力系数 K4

$n = \frac{z}{B}$							m	$_{1}=\frac{L}{B}$						
" B	1.00	1. 20	1.40	1.60	1.80	2.00	3.00	4.00	5.00	6.00	7.00	8. 00	9.00	10.00
0.00	0.250	0.250	0. 250	0. 250	0. 250	0.250	0.250	0.250	0. 250	0. 250	0. 250	0.250	0.250	0. 250
0.20	0.249	0.249	0. 249	0. 249	0. 249	0.249	0.249	0. 249	0.249	0. 249	0.249	0. 249	0. 249	0.249
0.40	0.240	0.242	0.243	0.243	0. 244	0.244	0.244	0. 244	0. 244	0. 244	0. 244	0.244	0.244	0.244
0.60	0. 223	0. 228	0.230	0. 232	0. 232	0.233	0.234	0.234	0. 234	0. 234	0. 234	0. 234	0. 234	0. 234
0.80	0. 200	0.208	0.212	0.215	0. 217	0.218	0. 220	0. 220	0. 220	0. 220	0. 220	0. 220	0. 220	0. 220
1.00	0.175	0.185	0.191	0.196	0.198	0. 200	0.203	0. 204	0. 204	0. 205	0. 205	0. 205	0. 205	0. 205
1. 20	0. 152	0.163	0.171	0.176	0.179	0.182	0.187	0.188	0. 189	0.189	0.189	0. 189	0. 189	0.189
1.40	0.131	0.142	0.151	0. 157	0.161	0.164	0.171	0. 173	0.174	0. 174	0.174	0. 174	0.174	0.174
1.60	0.112	0.124	0.133	0.140	0.145	0.148	0.157	0.159	0.160	0.160	0.160	0.160	0.160	0.160
1.80	0.097	0.108	0. 117	0.124	0.129	0.133	0.143	0.146	0.147	0.148	0.148	0. 148	0.148	0.148
2.00	0.084	0.095	0.103	0.110	0.116	0.120	0.131	0. 135	0.136	0. 137	0. 137	0. 137	0.137	0.137
3.00	0.045	0.052	0.058	0.064	0.069	0.073	0.087	0.093	0.096	0.097	0.098	0.098	0.099	0.099
4.00	0.027	0.032	0.036	0.040	0.044	0.047	0.060	0.067	0.071	0.073	0.074	0.075	0.076	0.076
5.00	0.018	0.021	0.024	0.027	0.030	0.033	0.044	0.050	0.055	0.057	0.059	0.060	0.061	0.061
6.00	0.013	0.015	0.017	0.020	0.022	0.024	0.033	0.039	0.043	0.046	0.048	0.049	0.050	0.050
7.00	0.009	0.011	0.013	0.015	0.016	0.018	0.025	0.031	0. 035	0. 038	0.040	0.041	0.042	0.042
8.00	0.007	0.009	0.010	0.011	0.013	0.014	0.020	0. 025	0.028	0. 031	0. 033	0. 035	0.036	0.036
9.00	0.006	0.007	0.008	0.009	0.010	0.011	0.016	0.020	0.024	0.026	0.028	0.030	0.031	0. 031
10.00	0.005	0.006	0.007	0.007	0.008	0.009	0.013	0.017	0.020	0. 022	0.024	0.026	0. 027	0.027

面 *Mhbf*、*Mfcg* 之和与 *Mhae*、*Medg* 之和的差值(见图 J. 0. 4-5 和图 J. 0. 4-6)。

J. 0. 5 矩形基础受竖向三角形分布荷载作用时角点下的附加应力计算示意图见图 J. 0. 5-1 或图 J. 0. 5-2;附加应力可按公式(J. 0. 5-1)或公式(J. 0. 5-2)计算;附加应力系数可按公式(J. 0. 5-3)或公式(J. 0. 5-4)计算求得,也可由表 J. 0. 5-1 或表 J. 0. 5-2 查得。

表 J. 0. 5-1 附加应力系数 Ks

$n = \frac{z}{R}$									m_1 =	$=\frac{L}{B}$							•	
B	0. 20	0.40	0.60	0.80	1.00	1. 20	1.40	1.60	1.80	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0. 20	0. 022	0.028	0.030	0.030	0.030	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
0.40	0.027	0.042	0.049	0.052	0.053	0.054	0.054	0.055	0.055	0.055	0.055	0.055	0.055	0. 055	0.055	0.055	0. _U 55	0.055
0.60	0.026	0.045	0.056	0.062	0.065	0.067	0.068	0.069	0.069	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
0.80	0.023	0.042	0.055	0.064	0.069	0.072	0.074	0.075	0.076	0.076	0.077	0.078	0.078	0.078	0.078	0.078	0.078	0.078
1.00	0.020	0.038	0.051	0.060	0.067	0.071	0.074	0.075	0.077	0.077	0.079	0.079	0.079	0.080	0.080	0.080	0.080	0.080
1. 20	0.017	0.032	0.045	0.055	0.062	0.066	0.070	0.072	0.074	0.075	0.077	0.078	0.078	0.078	0.078	0.078	0.078	0.078
1.40	0.015	0.028	0.039	0.048	0.055	0.061	0.064	0.067	0.069	0.071	0.074	0.075	0.075	0.075	0.075	0.075	0.075	0.075
1.60	0.012	0.024	0.034	0.042	0.049	0.055	0.059	0.062	0.064	0.066	0.070	0.071	0.071	0.071	0.071	0.072	0.071	0.072
1.80	0.011	0.020	0.029	0.037	0.044	0.049	0.053	0.056	0.059	0.060	0.065	0.067	0.067	0.067	0.067	0.068	0.068	0.068
2.00	0.009	0.018	0.026	0.032	0. 038	0.043	0.047	0.051	0.053	0.055	0.061	0.062	0.063	0.063	0.063	0.064	0.064	0.064
3.00	0.005	0.009	0.014	0.018	0.021	0.025	0.028	0. 031	0. 033	0.035	0.042	0.045	0.046	0.047	0.047	0.047	0.048	0.048
4.00	0.003	0.005	0.008	0.011	0.013	0.015	0.018	0. 020	0.022	0.023	0.029	0. 033	0. 035	0.036	0.036	0.037	0. 037	0.037
5.00	0.002	0.004	0.005	0.007	0.009	0.010	0.012	0.013	0.015	0.016	0.021	0.025	0. 027	0.028	0.029	0.030	0. 030	0. 030
6.00	0. 001	0.003	0.004	0.005	0.006	0.007	0.009	0.010	0.011	0.012	0.016	0.019	0. 021	0.023	0.024	0.024	0.025	0.025
7.00	0. 001	0.002	0.003	0.004	0.005	0.006	0.006	0.007	0.008	0.009	0.012	0.015	0.017	0.019	0.020	0.020	0.021	0. 021
8.00	0.001	0.001	0.002	0.003	0.004	0.004	0.005	0.006	0.006	0.007	0.010	0.012	0.014	0.015	0.017	0.017	0.018	0.018
9.00	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.005	0.006	0.008	0.010	0.012	0.013	0.014	0.015	0.015	0.016
10.00	0.000	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.004	0.005	0.007	0.008	0.010	0.011	0.012	0.013	0.013	0.014

表 J. 0. 5-2 附加应力系数 K's

$n = \frac{z}{R}$									$m_1 =$	$=\frac{L}{B}$								
B	0.20	0.40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
0.00	0. 250	0. 250	0. 250	0.250	0. 250	0. 250	0. 250	0. 250	0.250	0.250	0.250	0. 250	0. 250	0.250	0. 250	0.250	0. 250	0. 250
0. 20	0. 182	0. 212	0.217	0. 218	0. 218	0. 218	0.218	0.219	0. 219	0.219	0.219	0. 219	0. 219	0. 219	0. 219	0.219	0. 219	0. 219
0.40	0.109	0.160	0.178	0. 184	0. 187	0. 188	0.189	0.189	0.189	0.189	0.189	0.189	0.189	0. 189	0.189	0.189	0. 189	0.189
0.60	0.070	0.116	0.141	0.152	0.157	0.160	0.162	0.163	0.163	0.163	0.164	0.164	0.164	0.164	0.164	0.164	0.164	0.164
0.80	0.048	0. 085	0. 109	0.123	0.131	0.136	0.138	0.140	0.141	0.141	0.142	0. 143	0.143	0.143	0.143	0.143	0.143	0.143
1.00	0. 035	0.064	0.085	0.100	0.109	0.114	0.118	0.120	0.122	0.123	0.124	0.125	0.125	0.125	0.125	0.125	0.125	0. 125
1.20	0.026	0.049	0.067	0.081	0.090	0.096	0.101	0.104	0.106	0.107	0.110	0.110	0.110	0.110	0.111	0.111	0.111	0.111
1.40	0.020	0.039	0.054	0.066	0.075	0.082	0.086	0. 090	0.092	0.094	0.097	0.098	0.098	0. 099	0.099	0.099	0.099	0. 099
1.60	0.016	0.031	0.044	0. 055	0.063	0.070	0.074	0.078	0.081	0.083	0.087	0.088	0.089	0.089	0.089	0.089	0.089	0.089
1.80	0.013	0.025	0.036	0.046	0.053	0.060	0.064	0.068	0.071	0.073	0.078	0.080	0.080	0.080	0.081	0.081	0.081	0.081
2.00	0.011	0.021	0.030	0.039	0.046	0.051	0.056	0.060	0.063	0.065	0.071	0.073	0.073	0.073	0.074	0.074	0.074	0.074
3.00	0.005	0.010	0.015	0.019	0.023	0.027	0.030	0. 033	0.036	0.038	0.045	0.048	0.050	0.050	0.051	0.051	0.051	0.051
4.00	0.003	0.006	0.009	0.011	0.014	0.016	0.019	0.021	0.023	0.024	0.031	0.034	0.036	0. 037	0.038	0.038	0.039	0.039
5.00	0.002	0.004	0.006	0.007	0.009	0.011	0.012	0.014	0.015	0.017	0.022	0.026	0.028	0.029	0.030	0.030	0.031	0.031
6.00	0.001	0.003	0.004	0.005	0.006	0.008	0.009	0.010	0.011	0.012	0.016	0.020	0. 022	0.023	0.024	0.025	0. 025	0.026
7. 00	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.007	0.008	0.009	0.013	0.015	0.017	0.019	0.020	0.021	0.021	0.022
8.00	0.001	0.001	0.002	0.003	0.004	0.004	0.005	0.006	0.006	0.007	0.010	0.012	0.014	0.016	0.017	0.017	0.018	0.018
9.00	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.005	0.005	0.006	0.008	0.010	0.012	0.013	0.014	0.015	0.016	0.016
10.00	0.000	0.001	0.001	0.002	0.002	0.003	0.003	0.004	0.004	0.005	0.007	0.008	0.010	0.011	0.012	0.013	0.014	0.014

或
$$K_5' = \frac{1}{2\pi} \left[\frac{m_1 n}{\sqrt{1 + m_1^2 + n^2}} \left(\frac{1}{m_1^2 + n^2} + 1 \right) + \operatorname{arctg} \frac{m_1}{n\sqrt{1 + m_1^2 + n^2}} - \frac{m_1 n}{\sqrt{m_1^2 + n^2}} \right]$$
 (J. 0. 5-4)

式中 K₅、K'₅——矩形基础受竖向三角形分布荷载作用时角点下的附加应力系数。

J. 0.6 矩形基础受水平向均布荷载作用时角点下的附加应力计算示意图见图 J. 0.6;附加应力可按公式(J. 0.6-1)计算;附加应力系数可按公式(J. 0.6-2)计算求得,也可由表 J. 0.6 查得。

式中 K₆——矩形基础受水平向均布荷载作用时角点下的附加 应力系数。

表 J. 0. 6 附加应力系数 K。

										I.								$\overline{}$
$n = \frac{z}{R}$									$m_1 =$	\overline{B}								
В	0.20	0.40	0.60	0.80	1.00	1. 20	1.40	1.60	1.80	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
0.00	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0. 159	0.159	0.159	0.159	0. 159	0.159	0. 159	0. 159	0.159	0.159	0.159
0.20	0.111	0.140	0.148	0.151	0.152	0.152	0.153	0. 153	0. 153	0. 153	0. 153	0. 153	0.153	0.153	0. 153	0.153	0. 153	0. 153
0.40	0.067	0.105	0.122	0.129	0.133	0.136	0.136	0.136	0.137	0. 137	0. 137	0.137	0.137	0.137	0.137	0. 137	0.137	0.137
0.60	0.043	0.075	0.093	0.104	0.109	0.112	0.114	0.115	0.116	0.116	0.117	0.117	0.117	0. 117	0.117	0.117	0.117	0. 117
0.80	0.029	0.053	0.069	0.080	0.086	0. 090	0.092	0.094	0.095	0.096	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097
1.00	0.020	0.038	0.051	0.060	0.067	0.071	0.074	0. 075	0.075	0.077	0.079	0.079	0.079	0.080	0.080	0.080	0.080	0.080
1. 20	0.014	0.027	0.038	0.046	0.051	0.055	0.058	0.060	0.062	0.062	0.065	0.065	0.064	0.065	0.065	0.065	0.065	0.065
1.40	0.010	0.020	0. 028	0.035	0.040	0.043	0.046	0.048	0.049	0.051	0.053	0. 053	0.054	0.054	0.054	0.054	0.054	0.054
1.60	0.008	0.015	0.021	0.027	0.031	0.034	0.037	0. 039	0.040	0.041	0.044	0.044	0.045	0.045	0.045	0.045	0.045	0.045
1.80	0.006	0.011	0.017	0.021	0.024	0.027	0.029	0.031	0. 033	0.034	0.036	0.037	0.037	0.037	0.037	0.038	0.038	0.038
2.00	0.005	0.009	0.013	0.016	0.019	0.022	0.024	0.025	0.027	0.028	0.030	0.031	0.032	0.032	0.032	0.032	0.032	0.032
3.00	0.002	0.003	0.005	0.006	0.007	0.008	0.009	0.010	0.011	0.012	0.014	0.015	0.015	0.016	0.016	0.016	0.016	0.016
4.00	0.001	0.001	0.002	0.003	0.003	0.004	0.004	0.005	0.005	0.006	0.007	0.008	0.009	0.009	0.009	0. 009	0.009	0.009
5.00	0.000	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.005	0.005	0.006	0.006	0.006	0.006	0.006
6.00	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004
7.00	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.003
8.00	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002
9.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002
10.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

本规范的用词和用语说明

为便于执行本规范,对要求严格程度不同的用词说明如下:

——表示很严格,非这样做不可的:

正面词采用"必须",反面词采用"严禁"。

——表示严格,在正常情况下均应这样做的:

正面词采用"应",反面词采用"不应"或"不得"。

——表示允许稍有选择,在条件许可时首先应这样做的:

正面词采用"宜",反面词采用"不宜";表示有选择,在一定条件下可以这样做的,采用"可"。

用语说明如下:

条文中的"条"、"款"之间承上启下的连接用语,采用"符合下列规定"、"遵守下列规定"或"符合下列要求"等。

条文中引用本规范中的其他条文时,采用"符合本规范×·×· ×条的规定"或"按本规范×·×·×条的规定采用"等典型用语。

条文中引用本规范中的其他表、公式时,分别采用"按本规范 表×.×.×的规定取值"或"按本规范公式(×.×.×)计算"等典 型用语。

相关标准采用"……,除应符合本规范外,尚应符合国家现行的有关标准的规定"典型用语。