Chapter 8 Operational Amplifiers and Comparators

8.1 Construction and Basic Features of Operational Amplifiers

Construction of the op-amp:

- Input stage
- Middle stage
- Output stage
- DC bias

Symbol of the op-amp:

Note that the Op-amp has two inputs and one output.

8.2 Characteristics and Analyses on Ideal Operational Amplifiers

Characteristics of ideal op-amps:

- Infinite gain for the differential signal: $A_{ud} = \infty$, $A_{uc} = 0$
- Infinite Common Mode Rejection Ratio: $K_{CMRR} = \infty$
- Infinite input resistance: $R_i = \infty$
- Zero output resistance: $R_o = 0$
- Infinite bandwidth

Transfer characteristics of ideal op-amps:

In the linear region, "virtue short" and "virtue open" are features for ideal op-amps

$$u_{id} = \frac{u_o}{A_{ud}} \Rightarrow$$
 virtual short: $u_{id} = 0$, or $u_+ = u_ i_{id} = \frac{u_{id}}{R_i} \Rightarrow$ virtual open: $i_{id} = 0$

8.3.1 Multiplication with a Constant

(1) Inverting amplifiers

$$\frac{u_i}{R_1} = -\frac{u_o}{R_f}$$

$$\frac{u_i}{R_1} = -\frac{u_o}{R_f}$$
 $u_o = -\frac{R_f}{R_1}u_i$ $A_{uf} = -\frac{R_f}{R_1}$ $R_{if} = R_1$ $R_{of} = 0$

- The input signal is applied to the inverting (-) input.
- The **non-inverting input** (+) is grounded.
- The resistor R_F is the feedback resistor.

The non-inverting input pin is at ground. The inverting input pin is also at 0V for an AC signal due to virtual short concept. The inverting input is at virtual ground.

$$A_{uf} = -\frac{R_f}{R_1}$$

$$R_{if}=R_1$$

$$R_{of} = 0$$

(2) Non-inverting amplifiers

$$u_{+} = u_{i} \qquad u_{-} = \frac{R_{1}}{R_{1} + R_{f}} u_{o}$$

$$u_{+} = u_{-}$$

$$u_i = \frac{R_1}{R_1 + R_f} u_o$$

$$u_o = \left(1 + \frac{R_f}{R_1}\right)u_i \quad A_{uf} = 1 + \frac{R_f}{R_1}$$

For symmetric requirements: $(R_2 = R_1 || R_f)$

8.3.2 Summing Amplifiers

(1) Inverting Summing amplifiers

$$u_{-} = u_{+} = 0$$

$$i_1 + i_2 = -i_f$$

$$\frac{u_1}{R_1} + \frac{u_2}{R_2} = -\frac{u_o}{R_f}$$

$$u_o = -\left(\frac{R_f}{R_1}u_1 + \frac{R_f}{R_2}u_2\right)$$

$$(R_3 = R_1 \parallel R_2 \parallel R_f)$$

(2) Non-inverting Summing

$$u_{_{+}} = u_{_{-}}$$

$$u_{+} = \frac{R_{2} \parallel R_{3}}{R_{1} + R_{2} \parallel R_{3}} u_{1} + \frac{R_{1} \parallel R_{3}}{R_{2} + R_{1} \parallel R_{3}} u_{2}$$

$$u_{-} = \frac{R_4}{R_4 + R_f} u_o$$

$$\frac{R_4}{R_4 + R_f} u_o = \frac{R_2 \parallel R_3}{R_1 + R_2 \parallel R_3} u_1 + \frac{R_1 \parallel R_3}{R_2 + R_1 \parallel R_3} u_2$$

$$u_o = \left(1 + \frac{R_f}{R_4}\right) \left(\frac{R_2 \parallel R_3}{R_1 + R_2 \parallel R_3} u_1 + \frac{R_1 \parallel R_3}{R_2 + R_1 \parallel R_3} u_2\right)$$

8.3.3 Subtraction Amplifiers

$$u_1 = 0$$
 $u_{o2} = \left(1 + \frac{R_f}{R_1}\right) \left(\frac{R_3}{R_2 + R_3}\right) u_2$

$$u_2 = 0$$
 $u_{o1} = -\frac{R_f}{R_1}u_1$

$$u_o = \left(1 + \frac{R_f}{R_1}\right) \left(\frac{R_3}{R_2 + R_3}\right) u_2 - \frac{R_f}{R_1} u_1$$

Example 8.1 $(R_4 = R_5 = R_6 = R_7)$

$$u_{o1} = -\frac{R_3}{R_1} u_1$$

$$u_o = \frac{R_4 + R_5}{R_4} \bullet \frac{R_7}{R_6 + R_7} u_2 - \frac{R_5}{R_4} u_{o1} = u_2 - u_{o1}$$

$$u_o = u_2 + \frac{R_3}{R_1} u_1$$

$$(R_2 = R_1 \parallel R_3)$$

8.3.4 Integrators

(1) Inverting Integrators

$$u_{\scriptscriptstyle{-}}=u_{\scriptscriptstyle{+}}=0$$

$$i_i = -i_f$$

$$\frac{u_i}{R} = -C \frac{du_o(t)}{dt}$$

$$u_{o}(t) = -\frac{1}{RC} \int_{t_{0}}^{t} u_{i}(t)dt + u_{o}(t_{0})$$

(2) Non-inverting Integrators

$$u_{+}(j\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} u_{i}(j\omega)$$

$$u_{-}(j\omega) = \frac{R}{R + \frac{1}{j\omega C}} u_{o}(j\omega)$$

$$u_{+} = u_{-}$$
 $u_{o}(j\omega) = \frac{1}{j\omega CR}u_{i}(j\omega)$

$$u_{o}(t) = \frac{1}{CR} \int_{t_{0}}^{t} u_{i}(t)dt + u_{o}(t_{0})$$

8.3.5 Differentiators

(1) Inverting Differentiators

$$u = u_{\perp} = 0$$

$$i_f = -i_i$$

$$u_{-} = u_{+} = 0$$

$$i_{f} = -i_{i}$$

$$\frac{u_{o}}{R} = -C \frac{du_{i}(t)}{dt}$$

$$u_o(t) = -RC \frac{du_i(t)}{dt}$$

(2) Non-inverting Differentiators

$$u_{-}(j\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} u_{o}(j\omega)$$

$$u_{+}(j\omega) = \frac{R}{R + \frac{1}{j\omega C}} u_{i}(j\omega)$$

$$u_{+} = u_{-} \quad u_{o}(j\omega) = j\omega CR \cdot u_{i}(j\omega)$$

$$u_o(t) = RC \frac{du_i(t)}{dt}$$

Example 8.2:

Sketch the output waveform

$$u_o(t) = -\frac{1}{RC} \int_{t_0}^t u_i(t) dt + u_o(t_0)$$

In the time duration of
$$0 \sim 1$$
s $u_i = 2$ V $u_o(0) = 2$ V $u_o(t) = -2t + 2$ $u_o(1) = 0$ V

In the time duration of 1~2s
$$u_i = -2V$$
 $u_o(1) = 0V$ $u_o(t) = 2t$ $u_o(2) = 2V$

8.4 Comparators

Symbol and voltage transfer characteristics of comparators

The operation is a basic comparator. The output swings between its maximum and minimum voltage, depending upon whether one input is greater or less than the other.

8.4.1 Basic Comparators with a single threshold

For non-inverting input comparator:

- $u_o = U_{oH}$, if $u_i > V_{th}$
- $u_o = U_{oL}$, if $u_i < V_{th}$

For inverting input comparator:

- $u_o = U_{oH}$, if $u_i < V_{th}$
- $u_o = U_{oL}$, if $u_i > V_{th}$

(a) network

(b) transfer characteristics

- (a) network
- (b) transfer characteristics

Examples of Comparators

Example 8.3: Sketch the transfer characteristics and the waveform of the output.

(b)

11

Summary

- Characteristics of op-amps and comparators
 - Ideal assumptions
 - Virtual short and Virtual open
- Application of op-amps in the linear region
 - Inverting vs. non-inverting
 - Summing
 - Subtraction
 - Integrator
 - Differentiator
- Comparator: application of op-amps in the nonlinear region
 - Basic comparator with single threshold