Math Camp Session I

Notation, sets and intervals, functions, sequences

Sanghoon Kim

Department of Political Science University of Illinois at Urbana-Champaign

August 13, 2018

Organization of Math Camp

Camp Schedule

- ► **Fundamentals** (notation, sets and intervals, functions, sequences)
- ► Calculus (limits, continuity, derivative, intervals)
- Probability (set theory, distributions, random variables, hypothesis testing)
- ► Lab sessions with R
- + Fun time (mentoring sessions with faculty, graduate students + food + coffee)

This session

- 1. Sets and intervals
- 2. Functions
- 3. Sequences
- 4. \sum , \prod
- 5. R prep session & break (10:40)

Sets

A set is a collection of objects (elements).

$$A = \{1, 2, 3\}$$

 $B = \{a, b, c, d\}$
 $C = \{\text{Natural numbers}\}$
 $D = \{\text{UIUC PSGSA}\}$

Sets

Elements

If A is a set, we say that x is an element of A by writing, $x \in A$. If x is not an element of A then, we write $x \notin A$.

- **▶** 3 ∈ {1, 2, 3}
- ▶ $3 \notin \{a, b, c, d\}$
- ▶ $10 \in \{Natural numbers\}$
- ► Sanghoon ∉ {UIUC PSGSA}

A=B

If A and B are sets, then we say that A = B if, for all $x \in A$ then $x \in B$ and for all $y \in B$ then $y \in A$.

Subset

If A and B are sets, then we say that $A \subset B$ if, for all $x \in A$, then $x \in B$.

- $A = \{a, b, c\}, B = \{a, b, c, d, e\}$
- ▶ Then, $A \supset B$, or $A \subset B$?
- ▶ If two sets are equal (A=B), then $A \subset B$ and $B \subset A$.

Set Builder Notation

- Some famous sets
 - ► $N = \{1, 2, 3, \dots\}$
 - $Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
 - $ightharpoonup \mathbb{R} = \text{real numbers}$
- Set builder notation to identify subsets
 - ▶ $[a, b] = \{x : x \in \mathbb{R} \text{ and } a < x < b\}$
 - ▶ $(a, b) = \{x : x \in \mathbb{R} \text{ and } a < x < b\}$
 - $[a,b) = \{x : x \in \mathbb{R} \text{ and } a \le x < b\}$
 - $(a,b] = \{x : x \in \mathbb{R} \text{ and } a < x \le b\}$
- Practice questions
 - ► Let $A = \{1, 2, 3, 4, 5\}$
 - (1,4) =
 - ► [1,4) =
 - **▶** [2,3] =
 - (2,3) =

Set Operations

We can build new sets with set operations.

Union

Suppose A and B are sets. Define the **Union** of sets A and B as the new set that contain all elements in set A **or** in set B. In notation,

$$C = A \cup B$$
$$= \{x : x \in A \text{ or } x \in B\}$$

► $A = \{a, b, c\}, B = \{c, d, e\}$, then, $A \cup B = \{a, b, c, d, e\}$

Intersection

Suppose A and B are sets. Define the **Intersection** of sets A and B as the new set that contains all elements in set A **and** in set B. In notation,

$$C = A \cap B$$
$$= \{x : x \in A \text{ and } x \in B\}$$

► $A = \{a, b, c\}, B = \{c, d, e\}, \text{ then, } A \cap B = \{c\}$

Functions

Definition

Functions map one variable to another

$$F(X): X \to Y$$

where A is domain and B is codomain.

- Functions can also map multiple variables onto a single variable.
 - ► $F(x) = x^2$
 - $F(x) = x^2 + 2x + 4$
 - $F(x,y) = x^2 + 2xy + y^2$

Functions

- $F(x,y) = x^2 + 2xy + y^2$
- ► Variables on the right side of the equation are called *input* variables, and the variable on the left side is the *output*.
- ► The input variables are also called Independent variables, and the output is called a Dependent variable.

Functions

- $F(x,y) = x^2 + 2xy + y^2$
- ► Variables on the right side of the equation are called *input* variables, and the variable on the left side is the *output*.
- ► The input variables are also called Independent variables, and the output is called a Dependent variable.
- ► For example...
 - Acemoglu, Johnson, and Robinson (2001) argued that the quality of institutions leads to economic growth. There is a positive relationship between the quality of institutions and economic growth.
 - \rightarrow Growth_i = f(institution quality_i)
 - $\Rightarrow \log y_i = \mu + \alpha R_i + X_i' \gamma + \epsilon_i$

FIGURE 2. OLS RELATIONSHIP BETWEEN EXPROPRIATION RISK AND INCOME

So far...

- 1. Sets and intervals
- 2. Functions
 - ► Definition, plotting functions
 - Exponents
 - ► Logarithms
 - ► Inverse functions
 - ▶ Functions and estimation
- 3. Sequences
- **4**. ∑, ∏

Exponental Function

$$f(x) = 2^x$$
$$g(x) = e^x$$

Some rules of exponents

$$a^{x} \times a^{y} = a^{x+y}$$

$$(a^{x})^{y} = a^{xy}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{1}{a^{y}} = a^{1-y}$$

$$a^{x} \times b^{x} = (ab)^{x}$$

$$a^{0} = 1$$

$$a^{1} = a$$

Exponental Function

Before we move on, what is *e*?

Mathematical constant e

The number e is a mathematical constant, approximately equal to 2.718. e rises as the limit of $(1+\frac{1}{n})^n$ as n approaches infinity. Also, e can be calculated as the sum of the infinite series,

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \dots \approx 2.718$$

The function $f(x) = e^x$ is called the **(natural) exponential function**, and is the unique exponential function equal to its own derivative.

The **natural logarithm**, or logarithm to **base** e, is the inverse function to the natural exponential function ($log_e = log$).

Composite and Inverse Functions

Log and exponents are inverse functions to each other. We start with the concept of Composite Functions.

Composite Functions

Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$. Then, define,

$$g\circ f=g(f(x))$$

- $f(x) = x, g(x) = x^2$. Then, $g \circ f = g(f(x)) = x^2$
- $f(x) = \sqrt{x}, g(x) = e^x$. Then, $g \circ f = e^{\sqrt{x}}$
- ► $f(x) = \sin(x), g(x) = |x|$. Then, $g \circ f = |\sin(x)|$

Composite and Inverse Functions

Inverse function

Suppose a function f is 1-1. Then, we'll define f^{-1} as its inverse if,

$$f^{-1}(f(x)) = x$$

- $f(x) = x^2$. Then, $f^{-1}(f(x)) = \sqrt{x}$
- f(x) = 2x + 3. Then, $f^{-1}(f(x)) = \frac{x-3}{2}$
- f(x) = log(x). Then, $f^{-1}(f(x)) = e^x$

Logarithms

Logarithm is a class of functions and is the **inverse function** to the exponential function.

- ▶ This means that $log_e z = x$ solves $e^x = z$
- e.g. $6^x = 216 \rightarrow x = log_6 216 = log_6 6^3 = 3log_6 6 = 3$
- ▶ Once again, we call log_e natural logarithm and often we note $log_e = log$.
- ▶ $log(e) = log_e e = 1(because e^1 = e)$
- $log_{10}1000 = 3$

Logarithms

Some rules of logarithms

$$\log(a \times b) = \log(a) + \log(b)$$

$$\triangleright \log(a^b) = b\log(a)$$

▶
$$log(1) = 0$$
 why?

Some rules of exponents

$$a^{x} \times a^{y} = a^{x+y}$$
$$\frac{a^{x}}{a^{y}} = a^{x-y}$$
$$(a^{x})^{y} = a^{xy}$$
$$a^{x} \times b^{x} = (ab)^{x}$$

"We use log GDP per capita as our dependent variable..."

(150, 298, 600, 1,000, 2,000, 6,000, 15,000) \rightarrow (log150, log298, log600, log1000, log2000, log6000, log15000) = (5.01, 5.70, 6.40, 6.99, 7.60, 8.70, 9.62)

Log transformation can make the data to look similar to the nomal distribution. Why is it important to a bell curve?

→ Stay tuned for the second half of Math Camp!

Functions and estimation

$$F(x) = 2 + 3x + x^2$$

$$\log y_i = \mu + \alpha R_i + X_i' \gamma + \epsilon_i$$

- ► In a mathematical calculation, we know the **coefficients**, and we are interested in the **output**.
- ▶ In a statistical estimation, we know the values of variables, and we are interested in *estimating the coefficient* (α) .

We start with the sequence.

Sequence

A sequence is a function whose domain is the set of positive integers.

We write a sequence as,

$$\{a_n\}_{n=1}^{\infty} = (a_1, a_2, a_3, \dots, a_N, \dots)$$

Examples:

- $a_n = \{n\} = (1, 2, 3, 4, \ldots, n, \ldots)$
- $b_n = \left\{ \frac{1}{n^2} \right\} = \left(\frac{1}{1^2}, \frac{1}{2^2}, \frac{1}{3^2}, \frac{1}{4^2}, \dots \right)$
- $c_n = \{\frac{1}{2^n}\} = (\frac{1}{2^1}, \frac{1}{2^2}, \frac{1}{2^3}, \frac{1}{2^4}, \dots)$

$$\sum$$
, \prod

Summations and products

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

\sum , \prod

Summations and products: Examples

- ► Sequence: $a_n = \{n\} = (1, 2, 3, 4, ..., n, ...)$
- ► Summation: $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + \cdots$
- ► Product: $\prod_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n = 1 \cdot 2 \cdot 3 \cdot 4 \cdots$

How about...

$$b_n = x^2$$

$$\sum_{i=1}^{n} b_i = ?$$

$$\prod^n b_i = ?$$

Practice?

 $log(\prod_{i=1}^{n} x_i) =$