

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Semiconductor Memories

December 20, 2002

Chapter Overview

- Memory Classification
- Memory Architectures
- ☐ The Memory Core
- □ Periphery
- □ Reliability
- ☐ Case Studies

Semiconductor Memory Classification

Read-Write Memory		Non-Volatile Read-Write Memory	Read-Only Memory
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

Memory Timing: Definitions

Memory Architecture: Decoders

Intuitive architecture for N x M memory
Too many select signals:
N words == N select signals

Decoder reduces the number of select signals $K = log_2N$

Array-Structured Memory Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Hierarchical Memory Architecture

Advantages:

- 1. Shorter wires within blocks
- 2. Block address activates only 1 block => power savings

Block Diagram of 4 Mbit SRAM

Contents-Addressable Memory

Memory Timing: Approaches

DRAM Timing Multiplexed Adressing

SRAM Timing Self-timed

Read-Only Memory Cells

MOS OR ROM

MOS NOR ROM

MOS NOR ROM Layout

MOS NOR ROM Layout

MOS NAND ROM

All word lines high by default with exception of selected row

MOS NAND ROM Layout

NAND ROM Layout

Decreasing Word Line Delay

(a) Driving the word line from both sides

- (b) Using a metal bypass
 - (c) Use silicides

Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

Non-Volatile Memories The Floating-gate transistor (FAMOS)

Device cross-section

Schematic symbol

Floating-Gate Transistor Programming

Avalanche injection

Removing programming voltage leaves charge trapped

Programming results in higher V_T .

A "Programmable-Threshold" Transistor

FLOTOX EEPROM

FLOTOX transistor

Fowler-Nordheim *I-V* characteristic

EEPROM Cell

Absolute threshold control is hard Unprogrammed transistor might be depletion

⇒ 2 transistor cell

Flash EEPROM

Many other options ...

Cross-sections of NVM cells

Flash

Courtesy Intel

EPROM

Memories

Basic Operations in a NOR Flash Memory— Erase

Basic Operations in a NOR Flash Memory— Write

Basic Operations in a NOR Flash Memory— Read

NAND Flash Memory

NAND Flash Memory

Characteristics of State-of-the-art NVM

Table 12-1 Comparison between nonvolatile memories ([Itoh01]). $V_{DD} = 3.3$ or 5 V; $V_{PP} = 12$ or 12.5 V.

	Cell Area		Mechanism		External Power Supply		Drawam/
	Cell— Nr. of Transistors	(ratio wrt EPROM)	Erase	Write	Write	Read	Program/ Erase Cycles
MASK ROM	1 T (NAND)	0.35-5	_	_	_	V_{DD}	0
EPROM	1 T	1	UV Exposure	Hot electrons	V_{PP}	V_{DD}	~100
EEPROM	2 T	3–5	FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$
Flash Memory	1 T	1–2	FN Tunneling	Hot electrons	V_{PP}	V_{DD}	$10^4 - 10^5$
			FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$

Read-Write Memories (RAM)

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

□ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

$$k_{n,\,M5}\!\!\left((V_{DD}-\Delta V-V_{Tn})V_{DSATn}-\frac{V_{DSATn}^2}{2}\right) = k_{n,\,M1}\!\!\left((V_{DD}-V_{Tn})\Delta V-\frac{\Delta V^2}{2}\right)$$

$$\Delta V \, = \, \frac{V_{DSATn} + CR(V_{DD} - V_{Tn}) - \sqrt{V_{DSATn}^2(1 + CR) + CR^2(V_{DD} - V_{Tn})^2}}{CR}$$

CMOS SRAM Analysis (Read)

$$CR = \frac{W_1/L_1}{W_5/L_5}$$

CMOS SRAM Analysis (Write)

$$k_{n,\,M6}\!\!\left((V_{DD}-V_{Tn})V_{\mathcal{Q}}-\frac{V_{\mathcal{Q}}^{\,2}}{2}\right) = k_{p,\,M4}\!\!\left((V_{DD}-\left|V_{Tp}\right|)V_{DSATp}-\frac{V_{DSATp}^{\,2}}{2}\right)$$

$$V_{Q} = V_{DD} - V_{Tn} - \sqrt{(V_{DD} - V_{Tn})^{2} - 2\frac{\mu_{p}}{\mu_{n}}PR\left((V_{DD} - |V_{Tp}|)V_{DSATp} - \frac{V_{DSATp}^{2}}{2}\right)},$$

CMOS SRAM Analysis (Write)

6T-SRAM — Layout

Resistance-load SRAM Cell

Static power dissipation -- Want R_L large Bit lines precharged to V_{DD} to address t_p problem

SRAM Characteristics

Table 12-2 Comparison of CMOS SRAM cells used in 1-Mbit memory (from [Takada91])

	Complementary CMOS	Resistive Load	TFT Cell
Number of transistors	6	4	4 (+2 TFT)
Cell size	58.2 μm ² (0.7-μm rule)	40.8 μm ² (0.7-μm rule)	41.1 μm ² (0.8-μm rule)
Standby current (per cell)	10 ⁻¹⁵ A	10^{-12} A	10 ⁻¹³ A

3-Transistor DRAM Cell

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL} - V_{Tn}

3T-DRAM — Layout

1-Transistor DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL.

Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

DRAM Cell Observations

- □ 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- □ DRAM memory cells are single ended in contrast to SRAM cells.
- □The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- ☐ Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design.
- \Box When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

Sense Amp Operation

1-T DRAM Cell

Uses Polysilicon-Diffusion Capacitance Expensive in Area

SEM of poly-diffusion capacitor 1T-DRAM

Advanced 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell

Static CAM Memory Cell

CAM in Cache Memory

Periphery

- **□** Decoders
- □ Sense Amplifiers
- ☐ Input/Output Buffers
- ☐ Control / Timing Circuitry

Row Decoders

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_0 = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$$

$$WL_{511} = \bar{A}_{0}A_{1}A_{2}A_{3}A_{4}A_{5}A_{6}A_{7}A_{8}A_{9}$$

NOR Decoder

$$\begin{split} WL_0 &= \overline{A_0 + A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9} \\ WL_{511} &= \overline{A_0 + \overline{A_1} + \overline{A_2} + \overline{A_3} + \overline{A_4} + \overline{A_5} + \overline{A_6} + \overline{A_7} + \overline{A_8} + \overline{A_9}} \end{split}$$

Hierarchical Decoders

Multi-stage implementation improves performance

Dynamic Decoders

 V_{DD} WL_3 V_{DD} WL_1 V_{DD} WL_1 V_{DD} WL_0

2-input NOR decoder

2-input NAND decoder

4-input pass-transistor based column decoder

Advantages: speed (t_{pd} does not add to overall memory access time)

Only one extra transistor in signal path

Disadvantage: Large transistor count

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders Solutions: buffers

progressive sizing combination of tree and pass transistor approaches

Decoder for circular shift-register

Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sense Amplifier

Differential Sensing — SRAM

(a) SRAM sensing scheme

(b) two stage differential amplifier

Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQ

Once adequate voltage gap created, sense amp enabled with SE Positive feedback quickly forces output to a stable operating point.

Reliability and Yield

 Semiconductor memories trade off noise-margin for density and performance

Highly Sensitive to Noise (Crosstalk, Supply Noise)

High Density and Large Die size cause Yield Problems

$$\boldsymbol{Y} = \left[\frac{1 - e^{-AD}}{AD}\right]^2$$

Increase Yield using Error Correction and Redundancy

Sensing Parameters in DRAM

Noise Sources in 1T DRam

Alpha-particles (or Neutrons)

1 Particle ~ 1 Million Carriers

Yield curves at different stages of process maturity (from [Veendrick92])

Redundancy

Error-Correcting Codes

Example: Hamming Codes

$$P_1 P_2 B_3 P_4 B_5 B_6 B_7$$

with

$$P_1 \oplus B_3 \oplus B_5 \oplus B_7 = 0$$

$$P_2 \oplus B_3 \oplus B_6 \oplus B_7 = 0$$

$$P_4 \oplus B_5 \oplus B_6 \oplus B_7 = 0$$

e.g. B3 Wrong

Redundancy and Error Correction

Case Studies

- □ Programmable Logic Array
- □ SRAM
- □ Flash Memory

PLA versus ROM

□ Programmable Logic Array

structured approach to random logic "two level logic implementation" NOR-NOR (product of sums) NAND-NAND (sum of products)

IDENTICAL TO ROM!

■ Main difference

ROM: fully populated

PLA: one element per minterm

Note: Importance of PLA's has drastically reduced

- 1. slow
- 2. better software techniques (mutli-level logic synthesis)

But ...

Programmable Logic Array

Pseudo-NMOS PLA

AND-plane

OR-plane

Dynamic PLA

Clock Signal Generation for self-timed dynamic PLA

PLA Layout

4 Mbit SRAM Hierarchical Word-line Architecture

Bit-line Circuitry

Sense Amplifier (and Waveforms)

1 Gbit Flash Memory

Writing Flash Memory

Evolution of thresholds

Final Distribution

125mm² 1Gbit NAND Flash Memory

125mm² 1Gbit NAND Flash Memory

```
Technology
             0.13μm p-sub CMOS triple-well
             1poly, 1polycide, 1W, 2AI
Cell size
             0.077μm2
Chip size 125.2mm2
Organization 2112 x 8b x 64 page x 1k block
Power supply 2.7V-3.6V
           50ns
Cycle time
Read time
             25μS
Program time 200µs / page
Erase time 2ms / block
```

Semiconductor Memory Trends (up to the 90's)

Memory Size as a function of time: x 4 every three years

Semiconductor Memory Trends (updated)

Trends in Memory Cell Area

Semiconductor Memory Trends

Technology feature size for different SRAM generations