Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Исследование динамических топологий
Отчет по лабораторной работе №7 дисциплины «Высокопроизводительные вычислительные комплексы»
Вариант 8
Выполнил студент группы ИВТ-41/Крючков И. С./

Проверил______/Мельцов В. Ю./

Задание №1 Вычислите адрес узла-получателя в сети

Функция	Формула	Адрес	Адрес
		узла-	узла-
		источник	получател
		a	Я
Идеальное	$S(b_m, b_{m-1}, \dots, b_1)$	00101	01010
тасование	$=(b_{m-1},b_{m-2},,b_1,b_m)$		
Отсутствие	$U(b_m, b_{m-1}, \dots, b_1)$	111001	111100
тасования	$= (b_1, b_m, \dots, b_2)$		
Субтасование	$S_i(b_m, b_{m-1}, \dots, b_i, \dots, b_1)$	1110110	1111100
по 4-му биту	$=(b_m,, b_{i+1}, b_{i-1},, b_1, b_i)$		
Супертасован	$S^{i}(b_{m}, b_{m-1},, b_{i},, b_{1})$	111101	111101
ие по 3-му	$=(b_{m-1},,b_{m-i+1},b_m,b_{m-1},,b_1)$		
биту			
Баттерфляй	$B(b_m, b_{m-1}, \dots, b_1)$	0010001	1010000
	$=(b_1,b_{m-1},,b_2,b_m)$		
Реверсирован	$R(b_m, b_{m-1}, \dots, b_1)$	001101	101100
ие битов	$= (b_1, b_2, \dots, b_m)$		

2. Задание №2

Необходимо нарисовать сеть с топологией «Баньян» 8*8

Параметры сети: n = 8, число ступеней $m = \log_2 8 = 3$, количество БКЭ

$$\frac{m*n}{2} = 12$$

Рисунок 1 – Топология «Баньян» 8*8

Данная сеть относится к сетям с самомаршрутизацией (тип 1), поскольку адрес пункта назначения не только определяет маршрут сообщения к нужному узлу, но и используется для управления прохождением сообщения по этому маршруту. Каждый БКЭ, куда попадает пакет, просматривает один бит адреса и в зависимости от его значения направляет сообщение на выход 1 или 2. Если значение бита равно 0, то сообщение пропускается через верхний выход БКЭ, а при единичном значении — через нижний. На рисунке 1 показан маршрут сообщения со входного узла 0112 к выходному узлу 0112.

Преимущества:

Топология «Баньян» весьма популярна из-за того, что коммутация обеспечивается простыми БКЭ, работающими с одинаковой скоростью, сообщения передаются параллельно. Кроме того, большие сети могут быть построены из стандартных модулей меньшего размера.

Недостатки:

Поскольку данная топология относится к блокирующим сетям, если какое-либо соединение уже установлено, это может стать причиной невозможности установления других соединений. Кроме того, между каждым входным и выходным узлами существует только один путь.

3. Задание №3

Необходимо нарисовать сеть с топологией «Омега» 16*16.

Параметры сети:

$$n=16$$
, число ступеней $m=\log_2 16=4$, количество БКЭ $\frac{m*n}{2}=32$

Рисунок 2 – Топология «Омега» 16*16

Данная сеть относится к сетям с самомаршрутизацией по типу 2: адреса пункта отправки и пункта назначения определяют маршрут сообщения к нужному узлу, а также используются для управления прохождением сообщения по этому маршруту.

Состояние, в которое переключается БКЭ на i-й ступени, определяется с помощью операции сложения по модулю 2 значений i-го бита в адресах входного и выходного терминальных узлов. Если аі \bigoplus bi = 0, то БКЭ, расположенный на i-й ступени сети, обеспечивает прямую связь входа с выходом, а при аі \bigoplus bi = 1 — перекрестное соединение. На рисунке 2 показан маршрут сообщения со входного узла 1011_2 к выходному узлу 0100_2 .

Преимущества:

Коммутация обеспечивается простыми БКЭ, работающими с одинаковой скоростью, сообщения передаются параллельно. Кроме того,

большие сети могут быть построены из стандартных модулей меньшего размера.

Недостатки:

Поскольку данная топология относится к блокирующим сетям, если какое-либо соединение уже установлено, это может стать причиной невозможности установления других соединений. Кроме того, между каждым входным и выходным узлами существует только один путь.

4. Задание №4

Необходимо нарисовать сеть с топологией «Дельта» с 3 ступенями кроссбаров 3*2.

Параметры сети: количество ступеней: $n=3,\ a=3,\ b=2,$ количество входов $a^n=3^3=27,$ количество выходов $b^n=2^3=8.$

Адрес получателя задается в заголовке сообщения числом в системе счисления с основанием b, а для прохождения сообщения по сети организуется самомаршрутизация. Входы не подвергаются тасованию. В сеть «Дельта» могут быть введены дополнительные ступени, чтобы обеспечить более чем один маршрут от входа к выходу.

Для внутренней связи между БКЭ используется функция «Идеальное тасование».

Достоинства:

От входа к выходу возможно более одного маршрута, что позволяет изменять трафик сообщения с целью устранения конфликтов. Самомаршрутизация.

Недостатки:

Использует в качестве коммутирующих элементов кроссбары, которые значительно сложнее БКЭ, поэтому и стоимость сети, содержащей кроссбары, выше.

Рисунок 3 — Сеть с топологией «Дельта» с 3 ступенями кроссбаров 3*2

5. Задание №5

Необходимо нарисовать сеть с топологией «Бенеша» 4*4.

Параметры сети: n = 4, число ступеней $m=2*\log_2 4-1=3,$ количество БКЭ $\frac{mn}{2}=6.$

Сеть Бенеша с п входами и п выходами имеет симметричную структуру, в каждой половине которой (верхней и нижней) между входными и выходными БКЭ расположена такая же сеть Бенеша, но с n/2 входами и n/2 выходами. Относится к типу неблокирующих сетей с реконфигурацией.

Рисунок 4 – Сеть с топологией «Бенеша» 4*4

Для данной задачи (4*4) на двух последних слоях используется самомаршрутизация. Для маршрутизации на первом слое необходимо использовать дополнительное оборудование.

На рисунке 4 приведены возможные маршруты из узла 01 в 10. Основной маршрут показан для случая, при котором БКЭ на первом слое будет скоммутирован на «1».

Достоинства:

От входа к выходу возможно более одного маршрута, что позволяет изменять трафик сообщения с целью устранения конфликтов. Коммутация обеспечивается простыми БКЭ, работающими с одинаковой скоростью, сообщения передаются параллельно. Кроме того, большие сети могут быть построены из стандартных модулей меньшего размера.

Недостатки:

В случае возникновения блокировок необходима реконфигурация маршрутов с разрывом уже существующих соединений. Для реализации соединения между произвольными входными и выходными узлами необходимо изменить настройку коммутаторов сети и маршрут связи между соединенными узлами.

6. Задание №6

Необходимо нарисовать сеть с трехступенчатой топологией «Клоша» с:

- $r_1 = 7$ кроссбарами во сходной ступени;
- m = 6 кроссбарами в промежуточной ступени;
- $r_2 = 4$ кроссбарами в выходной ступени;
- $n_1 = 5$ входами кроссбаров во входной ступени;
- $n_2 = 6$ выходами кроссбаров в выходной ступени.

Число входов сети $N=r_1n_1=7*5=35,$ число выходов $M=r_2n_2=4*6=24$

Будет ли сеть неблокирующей, зависит от числа промежуточных звеньев. Клош доказал, что подобная сеть является неблокирующей, если количество кроссбаров в промежуточной ступени m удовлетворяет условию: m = n1 + n2 - 1. При условии m = n2 сеть Клоша можно отнести к неблокирующим сетям с реконфигурацией. Во всех остальных случаях данная топология становится блокирующей. m = 5 + 6 - 1 = 10 != 6 = > сеть является блокирующей.

На рисунке 5 приведены возможные маршруты из узла 53 в 15. Основной маршрут показан для случая, при котором БКЭ на первом слое будет скоммутирован на «2».

Переключение БКЭ контролирует УУ. Возможных путей из одного узла в другой равно количеству кроссбаров в промежуточной ступени (m), т.к. они обеспечивают соединение кроссбаров входной ступени и выходной.

Рисунок 5 – Сеть с топологией «Клоша»

7. Задание №7

Необходимо нарисовать сеть с топологией п-кубической сети с косвенными связями 16*16.

Параметры сети: n = 16, число ступеней $m = \log_2 16 = 4$, количество БКЭ $\frac{mn}{2} = 32$

Рисунок 6 – Сеть с топологией п-кубической сети

Ступени коммутации связаны по топологии «Баттерфляй», а на последней ступени используется функция идеального тасования. Фактически сеть представляет собой обращенную матрицу сети «Омега».

Состояние, в которое переключается БКЭ определяется с помощью операции сложения по модулю 2 адресов входного и выходного терминальных узлов, анализ битов результата выполняется в обратном порядке, если очередной бит равен «0» – прямая связь, если «1» – перекрестное соединение

На рисунке 6 показан маршрут сообщения со входного узла 0110_2 к выходному узлу 1011_2 .

Преимущества:

Коммутация обеспечивается простыми БКЭ, работающими с одинаковой скоростью. Кроме того, большие сети могут быть построены из стандартных модулей меньшего размера. Самомаршрутизация по типу 2.

Недостатки:

Поскольку данная топология относится к блокирующим сетям, если какое-либо соединение уже установлено, это может стать причиной невозможности установления других соединений. Кроме того, между каждым входным и выходным узлами существует только один путь.

Выводы

Для сравнения различных конфигурация необходимо, чтобы размерности сетей были одинаковыми. Таким образом, размерность сети равна 16x16.

Стоимость сети S складывается из следующих компонентов: количество и тип КЭ, количество связей (I). За стоимость КЭ примем сумму числа его входов и выходов. Стоимость линии связи примем за 2.

Время передачи сообщения от передатчика до получателя определяется суммой времени передачи сообщения по линии (0.1 сек) и скоростью переключения КЭ (1 сек).

Производительность обратно пропорциональна времени передачи сообщения.

Коэффициент эффективности определяется по формуле:

$$E = \frac{\sqrt{K} * P}{S}$$

где K – количество путей, P – производительность, S – стоимость.

1) Топология «Баньян»

Число КЭ =
$$\frac{n*m}{2} = \frac{16*4}{2} = 32$$

Число связей:
$$I = n * (m - 1) = 16 * (4 - 1) = 48$$

Стоимость:
$$S = N_{K9} * S_{K9} + I * S_I = 32 * (2 + 2) + 48 * 2 = 224$$

Время передачи:
$$V = N_{V_{\text{ЛИН}}} * V_{\text{ЛИН}} + N_{V_{\text{K}\Im}} * V_{\text{K}\Im} = 5 * 0.1 + 4 * 1 = 4.5$$

Производительность:
$$P = \frac{1}{4.5} = 0.22$$

Эффективность:
$$E = \frac{\sqrt{1}*0.22}{224} = 0,000982$$

2) Топология «Омега»

Число КЭ =
$$\frac{n*m}{2} = \frac{16*4}{2} = 32$$

Число связей:
$$I = n * (m - 1) = 16 * (4 - 1) = 48$$

Стоимость: S =
$$N_{\text{K}\Im} * S_{\text{K}\Im} + I * S_I = 32 * (2 + 2) + 48 * 2 = 224$$

Время передачи: $V = N_{V_{\text{ЛИН}}} * V_{\text{ЛИН}} + N_{V_{\text{K}9}} * V_{\text{K}9} = 5 * 0.1 + 4 * 1 = 4.5$

Производительность: $P = \frac{1}{4.5} = 0.22$

Эффективность: $E = \frac{\sqrt{1}*0.22}{224} = 0,000982$

3) Топология «Дельта»

Число КЭ зависит от размера КЭ. В данном случае $4x4 \Rightarrow N_{K9} = 8$

Число связей:
$$I = N_{\text{вых}} * \frac{N_{\text{K9}}}{2} = 4 * \frac{8}{2} = 16$$

Стоимость:
$$S = N_{K9} * S_{K9} + I * S_I = 8 * (4 + 4) + 16 * 2 = 96$$

Время передачи:
$$V = N_{V_{\text{ЛИН}}} * V_{\text{ЛИН}} + N_{V_{\text{K}\Im}} * V_{\text{K}\Im} = 3 * 0,1 + 2 * 1 = 2,3$$

Производительность:
$$P = \frac{1}{2.3} = 0.44$$

Эффективность:
$$E = \frac{\sqrt{1}*0.44}{96} = 0,004583$$

4) Топология «Бенеша»

Число КЭ =
$$\frac{n}{2}(2m-1) = \frac{16}{2}(2*4-1) = 56$$

Число связей:
$$I = n * (2m - 2) = 16 * (2 * 4 - 2) = 96$$

Стоимость:
$$S = N_{K9} * S_{K9} + I * S_I = 56 * (2 + 2) + 96 * 2 = 416$$

Время передачи:
$$V = N_{V_{\mathrm{ЛИН}}} * V_{\mathrm{ЛИН}} + N_{V_{\mathrm{K}\Im}} * V_{\mathrm{K}\Im} = 8 * 0.1 + 7 * 1 = 7.8$$

Производительность:
$$P = \frac{1}{7.8} = 0.13$$

Эффективность:
$$E = \frac{\sqrt{8}*0.13}{416} = 0,000884$$

5) Топология «Клоша»

Число КЭ = 12, т.к размерность сети 16x16 (первы слой 4 + второй слой 4 + третий слой 4)

Число связей:
$$I = n * (m - 1) = 16 * (3 - 1) = 32$$

Стоимость:
$$S = N_{K9} * S_{K9} + I * S_I = 12 * (4 + 4) + 32 * 2 = 160$$

Время передачи:
$$V = N_{V_{\text{ЛИН}}} * V_{\text{ЛИН}} + N_{V_{\text{K}\ni}} * V_{\text{K}\ni} = 4 * 0.1 + 3 * 1 = 3.4$$

Производительность:
$$P = \frac{1}{3.4} = 0.29$$

Эффективность:
$$E = \frac{\sqrt{4}*0.29}{160} = 0,003625$$

6) Топология п-куб

Число КЭ =
$$\frac{n*m}{2} = \frac{16*4}{2} = 32$$

Число связей:
$$I = n * (m - 1) = 16 * (4 - 1) = 48$$

Стоимость:
$$S = N_{K3} * S_{K3} + I * S_I = 32 * (2 + 2) + 48 * 2 = 224$$

Время передачи:
$$V = N_{V_{ЛИН}} * V_{ЛИН} + N_{V_{K9}} * V_{K9} = 5 * 0.1 + 4 * 1 = 4.5$$

Производительность:
$$P = \frac{1}{4.5} = 0.22$$

Эффективность:
$$E = \frac{\sqrt{1}*0.22}{224} = 0,000982$$

Таблица 1 – Сравнение топологий

Топология	Число	Размер	Ι	S	Время	K	P	E*10 ⁶	Блокирующая
	КЭ	КЭ			передачи				
Баньян	32	2x2	48	224	4.5	1	0.22	982	Да
Омега	32	2x2	48	224	4.5	1	0.22	982	Да
Дельта	8	4x4	16	96	2.3	1	0.44	4583	Да
Бенеша	56	2x2	96	416	7.8	8	0.13	884	Нет
Клоша	12	4x4	32	160	3.4	4	0.29	3625	Нет
п-куб	32	2x2	48	224	4.5	1	0.22	982	Да

Таким образом, наиболее эффективной топологией оказалась топология Дельта. Данная топология имеет 1 путь от адреса источника до адреса получателя. КЭ в данной топологии сложны в построении и дороже, чем обычный БКЭ, но при 11 сравнительно малом их числе строится сеть размерностью, не уступающей остальным топологиям. Наиболее высокой скоростью передачи сообщения имеют ВС с топологией Дельта. Топология Баньян, Омега и п-кубической сети дешевы, просты в построении, но имеют только один путь.

Топология Клоша немного уступает по эффективности топологии Дельта, но она более надежна, т.к имеет 4 пути от адреса источника до адреса получателя.