Lucerne University of Applied Sciences

Time Series Analysis
Final Exam

Last name:	
Cirron manage	
Given name:	

 ${\rm mscbf}_{\text{-}} \ {\rm rm}01_{\text{-}} \ {\rm tsa}, \ {\rm Fall} \ {\rm term}$

1/10	ODE	RM01	TCA
CIVI	しわじ	RAVIUL	15A

Course 9.3: Research Methods III

MOCK EXAM

Time Series Analysis Fall term

Final Exam

Last name:

 $mscbf_- rm01_- tsa$

 ${\bf Question} \,\, {\bf 0}$

1. Hi

Question 1 (27 points)

1. I have simulated 1000 observations $\{y_t\}$ from an ARMA(p, q) model. Figure 2 on Page 11 shows a plot of the correlogram. Based on it, what do you think p and q are, and why?

 $6\,\mathrm{pts}$

2. The 11th sample autocorrelation (not shown in the graph) is $\hat{\tau}_{11} = -0.045$. Test if $\hat{\tau}_{11}$ is significantly different from zero.

3. The output in Figure 3 on Page 11 shows the results of regressing Δy_t (y) on y_{t-1} (x1) and Δy_{t-1} (x2). Use it to test if the data are integrated.

6 pts

4. I have estimated a particular ARMA model. The estimation output is shown in Figure 4 on Page 12. Write down the estimated model in equation form.

5. Use the estimated model from the previous question to forecast the value of the series at t=1001. You may need some of the values below.

t	y_t	u_t
999	-0.77	-4.18
1000	-0.75	-1.41

Question 2 (27 points) In this exercise, we analyze the daily returns on Tesla stock between 6/29/2010 and 12/14/2022. The returns are shown in Figure 1.

Figure 1: Returns on Tesla stock

The data clearly display volatility clustering, which we want to model using a GARCH model. The output is shown in Figure 5 on Page 12.

1. Write the model down as an equation (only the volatility equation).

3 pts

 ${\bf 2.}$ Does your model incorporate a leverage effect? Justify your answer.

3. Explain what the standardized residuals from a GARCH model are, ideally with an equation. Also, explain what their properties should be if the volatility model is correct.

6 pts

4. Regressing the squared standardized residuals on an intercept and 5 of their own lags results in an \mathbb{R}^2 of 0.00364. Use this to test if the GARCH model has successfully removed the volatility clustering.

5 .	Use the model to predict the variance σ_{t+1}^2 for $12/15/2022$, using the following values
	on $12/14/2022$: $\hat{u}_t = -2.72$ and $\sigma_t^2 = 15.198$.

Question 3 (18 points) We now turn our attention to Value at Risk forecasting.

1.	Use the model from the previous question to predict the 1% Value at Risk for	
	12/15/2022. Note: If you weren't successful in predicting the variance in the previous	
	question, you can use the value $\hat{\sigma}_{t+1}^2 = 15.00$.	L

 $12\,\mathrm{pts}$

6 pts

(a) (6 pts) Explain how the hit series is defined, and how many times you expect it to equal 1 if the VaR model is correct.

(b) (6 pts) Figure 6 on page 13 shows the result of regressing $(I_t-0.01)$ on an intercept and I_{t-1} . Use it to test the independence of the VaR violations.

Quest	ion 4 (18 points) Answer t	the questions below.	
1.			
(a)) (3 pts) Spurious regression	ns can occur between cointegrated variables.	18
	True	☐ False	
(b)) (3 pts) In a stationary time of the series.	he series, shocks U_t have a transitory effect on the future	
	☐ True	☐ False	
(c)) (3 pts) An ARCH (q) mo squared returns.	del for the returns corresponds to an $AR(q)$ for the	
	True	☐ False	
(d)) (3 pts) The order q of an	MA(q) model can be determined from the correlogram.	
	☐ True	☐ False	
(e)	(3 pts) In the presence of the right of the origin tha	the leverage effect, the news impact curve is steeper to an to the left.	
	☐ True	☐ False	
(f)) (3 pts) A VaR model is co	prrectly specified if no VaR violations occur.	
	True	False	

End of exam.

Figure 2: Correlogram of simulated data.

OLS Regression Results

=======================================	========	=======			========
Dep. Variable:		y R-s	quared:		0.208
Model:		OLS Adj	. R-squared:		0.207
Method:	Least Squa	res F-s	statistic:		130.9
Date:	Mon, 16 Oct 2	023 Pro	b (F-statistic	c):	3.47e-51
Time:	15:04	:00 Log	-Likelihood:		-2086.9
No. Observations:		998 AIC	:		4180.
Df Residuals:		995 BIC	: :		4195.
Df Model:		2			
Covariance Type:	nonrob	ust			
=======================================					
coe	f std err	t	P> t	[0.025	0.975]
x1 -0.116	0.018	-6.520	0.000	-0.151	-0.081
x2 -0.359	4 0.030	-12.164	0.000	-0.417	-0.301
const 0.030	9 0.062	0.497	0.619	-0.091	0.153
		====== 529 Dur	bin-Watson:	========	2.023
Prob(Omnibus):	0.	768 Jar	que-Bera (JB):	:	0.404
Skew:	0.		b(JB):		0.817
Kurtosis:	3.		d. No.		3.76

Figure 3: Output for ADF test.

SARIMAX Results

=======================================			=========			
Dep. Variable:		y No.	Observations	:	1000	
Model:	ARIMA(2, 0	, 0) Log	Likelihood		-2091.958	
Date:	Mon, 16 Oct	2023 AIC	,		4191.917	
Time:	15:1	0:43 BIC	;		4211.548	
Sample:		O HQI	C		4199.378	
	_	1000				
Covariance Type:		opg				
coe	std err	Z	P> z	[0.025	0.975]	
const 0.2158	3 0.528	0.409	0.683	-0.818	1.250	
ar.L1 0.5236	0.032	16.396	0.000	0.461	0.586	
ar.L2 0.3595	0.032	11.326	0.000	0.297	0.422	
sigma2 3.8369	0.169	22.770	0.000	3.507	4.167	
======================================		0.13	Jarque-Bera	(IB) ·		0.36
Prob(Q):		0.13	Prob(JB):	(00).		0.83
Heteroskedasticity (I	1) ·	0.86	Skew:			0.00
Prob(H) (two-sided):	-, -	0.18	Kurtosis:			3.09
y .	1):					

Figure 4: Estimated ARMA model.

Constant Mean - GARCH Model Results

======	========	======	-=======	=======================================
	TS	SLA R-s	squared:	0.000
	Constant Me	ean Adj	j. R-squared	0.000
	GAI	RCH Log	g-Likelihood	-8267.70
	Norn	nal AIO	: :	16543.4
Max	imum Likelih	ood BIO	: :	16567.6
		No	Observatio	ns: 3138
M	on, Oct 16 20	023 Df	Residuals:	3137
	15:33	:03 Df	Model:	1
	Me	ean Model	L	
	========			
	5.774e-02	1.936	5.281e-02	
	Volat	tility Mo	odel	
coef	std err	 1	: ; P> t	95.0% Conf. Int.
0.1400	0.117	1.196	0.232	[-8.938e-02, 0.369]
0.0323	1.341e-02	2.409	1.599e-02	[6.024e-03,5.859e-02]
	coef 0.1118 coef 0.1400 0.0323 0.9564	Constant Me GAN Norr Maximum Likeliho Mon, Oct 16 20 15:33 Me coef std err O.1118 5.774e-02 Volate coef std err 0.1400 0.117 0.0323 1.341e-02 0.9564 2.205e-02	Constant Mean Add GARCH Log Normal AIC Normal AIC No. Maximum Likelihood BIC No. Mon, Oct 16 2023 Df 15:33:03 Df Mean Model Coef std err to Volatility Model Coef Std err to C	Constant Mean Adj. R-squared GARCH Log-Likelihood Normal AIC:

Figure 5: Estimated GARCH model.

OLS Regression Results

=========	======	:=======					========
Dep. Variable:	np.	subtract(I	, 0.01)	R-so	quared:		0.000
Model: OLS			Adj	R-squared:		0.000	
Method:		Least	Squares	F-st	tatistic:		1.409
Date:		Mon, 16 0	ct 2023	Prol	(F-statist	ic):	0.235
Time:		18	8:54:56	Log-	-Likelihood:		1976.8
No. Observation	ns:		3137	AIC			-3950.
Df Residuals:			3135	BIC	:		-3938.
Df Model:			1				
Covariance Typ	e:	no	nrobust				
=========	======	=======	======				=======
	coef	std err		t	P> t	[0.025	0.975]
b0	0.0065	0.002	2.	.817	0.005	0.002	0.011
<pre>I.shift(1)</pre>	0.0212	0.018	1.	. 187	0.235	-0.014	0.056
 Omnibus:	======	406	====== 9.691	 Durbin	======== n-Watson:		2.001
Prob(Omnibus):			0.000		e-Bera (JB):		412759.104
Skew:			7.492	Prob(0.00
Kurtosis:		5	7.160	Cond.	No.		7.76

Figure 6: Test regression for the Value at Risk backtest.