What is

 in biomolecular simulations, internal energy is modeled by the molecular mechanics force field

• ΔU is the change in average internal energy.

internal energy can be computed for individual structures

• $\Delta H = \Delta U + \Delta(pV)$ is the change in enthalpy in biomolecular simulations, change in pV is usually negligible

in biomolecular simulation, interest in free energy differences between
conformations of a macromolecule
thermodynamic states with different temperature, pressure, volume, or other parameters

ΔG is the Gibbs free energy

equilibrium constant of process

spontaneity and

at constant pressure and temperature, dictates

• $\Delta G = \Delta H + T\Delta S$, but ΔS is very challenging to compute

What is AG?

- ΔU is the change in average internal energy.
 - internal energy can be computed for individual structures
 - in biomolecular simulations, internal energy is modeled by the molecular mechanics force field
- $\Delta H = \Delta U + \Delta(pV)$ is the change in enthalpy
 - in biomolecular simulations, change in pV is usually negligible
- ΔG is the Gibbs free energy
 - at constant pressure and temperature, dictates
 - spontaneity and
 - equilibrium constant of process
 - in biomolecular simulation, interest in free energy differences between
 - conformations of a macromolecule
 - thermodynamic states with different temperature, pressure, volume, or other parameters
 - $\Delta G = \Delta H + T\Delta S$, but ΔS is very challenging to compute

What is ΔA ?