

CIRCUITOS ELÉTRICOS Comportamento de Circuitos RLC Paralelo em Regime Permanente Senoidal

Professor : Adélio José de Morais Engenharia Elétrica

Grupo: Kaio Saramago 11511EEL013

Gustavo de Oliveira Machado 11511EEL014
Matheus Henrique Marconi 11511EEL005
Raoni Exaltação Masson 11511ETE005

Sumário

1	Materiais Utilizados:													2
2	Procedimento Experimental													2
2.1	Circuito RC													2
2.2	Circuito RL													5
3	Conclusão													8

1 Materiais Utilizados:

- 1 Protoboard
- 1 Gerador de sinal
- 1 Resistores (10K Ω ;)
- 1 Osciloscópio
- 1 Indutor Ajustável(1H)
- \bullet 1 Multímetro
- 1 Capacitor Ajustável (0,01uF)
- Fios de ligação

2 Procedimento Experimental

Objetivo: Verificar experimentalmente as respostas de circuitos transitórios de primeira ordem(circuitos RC e RL) quando excitados por uma tensão degrau.

2.1 Circuito RC

Primeiramente, ajustamos o gerador de função para gerar uma tensão quadrada v(t) com valor máximo $V_m = 3V$ e com uma frequência f = 1000Hz. Em seguida, utilizando um resistor de $10k\Omega$ e um capacitor de 0.01uF, montamos o seguinte circuito RC em série:

Figura 1: Representa o Circuito RC montado experimentalmente.

Pela teoria estudada de circuitos em regimes transitórios de 1ª ordem , temos as seguintes relações para este circuito RC:

$$i(t) = \frac{(V - V_0)}{R} e^{-\frac{1}{RC}t}$$

$$v_c(t) = V + (V_0 - V)e^{-\frac{1}{RC}t}$$

$$v_R(t) = R \cdot i(t)$$
 ; $V_0 = v_c(0)$

Após essa constatação, começamos as medições. Inicialmente, efetuamos as medidas da tensão no resistor de $10k\Omega$ usando o osciloscópio, de tal forma que anotamos os valores iniciais e finais de $V_R(t)$ em cada semiciclo da onda. A tabela a seguir mostra esses valores obtidos:

Semiciclo Tensão v _R (V)	Positivo	Negativo
Inicial	5,84	-5,84
Final	0	0

Tabela 1: Medidas da tensão no resistor em cada semiciclo da onda

Após analisarmos a tensão no resistor, efetuamos as medidas da tensão no capacitor de 0.01uF usando o osciloscópio, de tal forma que anotamos os valores iniciais e finais de $V_C(t)$ em cada semiciclo da onda. A tabela a seguir mostra esses valores obtidos:

Semiciclo Tensão v _C (V)	Positivo	Negativo
Inicial	-2,98	2,98
Final	2,98	-2,98

Tabela 2: Medidas da tensão no capacitor em cada semiciclo da onda

Finalmente, com base no valor da tensão de pico(máxima) na onda do resistor que é $V_{RM}=2{,}92V$, calculamos o valor da tensão no tempo em que a tensão no resistor é 36,67% da tensão de pico, ou seja:

$$v_R(\tau) = 0.367 v_{RM}$$

$$v_R(\tau) = 0.367 *2.92$$

$$v_R(\tau) = 1,072V$$

Assim, com base nessa tensão calculada, utilizando os cursores do osciloscópio encontramos o valor da constante de tempo correspondente, sendo:

$$\tau = 100~\mu s$$

2.2 Circuito RL

Após analisarmos o circuito RC , começamos a análise do circuito RL. Assim, utilizando os mesmos valores de tensão e frequência ajustados no gerador de função para o circuito RC e utilizando um resistor de $10k\Omega$ e um indutor de 1H, montamos o seguinte circuito RL em série:

Figura 2: Representa o Circuito RL montado experimentalmente.

Pela teoria estudada de circuitos em regimes transitórios de 1ª ordem, temos as seguintes relações para este circuito RL:

$$i(t) = \frac{V}{R} + (I_0 - \frac{V}{R})e^{\frac{-R}{L}t}$$

$$v_L(t) = (V - RI_0)e^{-\frac{1}{L}t}$$

$$v_R(t) = Ri(t)$$
 ; $I_0 = i_L(0)$

Após essa constatação, começamos as medições. Inicialmente, efetuamos as medidas da tensão no resistor de $10k\Omega$ usando o osciloscópio, de tal forma que anotamos os valores iniciais e finais de $V_R(t)$ em cada semiciclo da onda. A tabela a seguir mostra esses valores obtidos:

Semiciclo Tensão v _R (V)	Positivo	Negativo
Inicial	-3,02	-3,02
Final	3,02	-3,02

Tabela 3: Medidas da tensão no resistor em cada semiciclo da onda

Após analisarmos a tensão no resistor, efetuamos as medidas da tensão no indutor de 1H usando o osciloscópio, de tal forma que anotamos os valores iniciais e finais de $V_L(t)$ em cada semiciclo da onda. A tabela a seguir mostra esses valores obtidos:

Semiciclo Tensão v _L (V)	Positivo	Negativo
Inicial	5,12	-5,12
Final	0	0

Tabela 4: Medidas da tensão no indutor em cada semiciclo da onda

Finalmente, com base no valor da tensão de pico(máxima) na onda do indutor que é $V_{LM}=2,\!56V,$ calculamos o valor da tensão no tempo em que a tensão no indutor é $36,\!67\%$ da tensão de pico,
ou seja: $0,\!93$

3 Conclusão

No regime transitório é perceptível, por meio do osciloscópio, o comportamento da corrente (quando medimos Vr) e da tensão no capacitor ou indutor (medindo Vc e Vl respectivamente). Decorrente desse fato analisamos com clareza o comportamento do capacitor, que se opõe a variação de tensão, e do indutor, que se opõe a variação de corrente.

Portanto, nas análises tanto do circuito RC quanto do RL, foi constatado que a constante de tempo do circuito $\acute{\rm e}$ de aproximadamente 100us.