HW3 MATH 4540

Anthony Jones

February 2022

1 Exercises

1. Given a metric space X and real valued functions $f_k: X \to \mathbb{R}$ for k=1,...,n, let $\hat{f}: X \to \mathbb{R}^n$ be given by $\hat{f}(x):=(f_1(x),...,f_n(x))$. Show that \hat{f} is continuous if and only if the component functions f_k for k=1,...,n are all continuous.

Suppose the component functions f_k for k=1,...,n are all continuous. Then, for every $\epsilon>0$, there exists some $\delta_k>0$ such that $|f_k(x)-f_k(p)|<\epsilon$ whenever $d_X(x,p)<\delta_k$ (for each $x,p\in X$ and k=1,...,n). Observe that

$$d_{\mathbb{R}^n}(\hat{f}(x), \hat{f}(p)) = |\hat{f}(x) - \hat{f}(p)| = \sqrt{\sum_{k=1}^n |f_k(x) - f_k(p)|^2}.$$

Suppose $\hat{\epsilon} > 0$ was another arbitrary real number. Then, for each k, there exists $\hat{\delta}_k > 0$ such that $|f_k(x) - f_k(p)| < \frac{\hat{\epsilon}}{\sqrt{n}}$ whenever $d_X(x,p) < \hat{\delta}_k$, as $\frac{\hat{\epsilon}}{\sqrt{n}} > 0$; and hence

$$|\hat{f}(x) - \hat{f}(p)| = \sqrt{\sum_{k=1}^{n} |f_k(x) - f_k(p)|^2} < \sqrt{\sum_{k=1}^{n} (\frac{\hat{\epsilon}}{\sqrt{n}})^2} = \sqrt{n(\frac{\hat{\epsilon}^2}{n})} = \hat{\epsilon}$$

whenever $d_X(x,p) < \min(\delta_1,\ldots,\delta_n)$. Thus \hat{f} is continuous whenever the component functions f_k for k=1,...,n are all continuous.

We now prove the reverse assertion. Suppose \hat{f} is continuous. Then

$$|f_{\alpha}(x) - f_{\alpha}(p)| \le \sqrt{\sum_{k=1}^{n} |f_{k}(x) - f_{k}(p)|^{2}} = |\hat{f}(x) - \hat{f}(p)|$$

for all $1 \le \alpha \le n$. Additionally, for every $\epsilon > 0$, there exists some $\hat{\delta} > 0$ such that $|\hat{f}(x) - \hat{f}(p)| < \epsilon$ whenever $d_X(x,p) < \hat{\delta}$, and hence $|f_{\alpha}(x) - f_{\alpha}(p)| \le |\hat{f}(x) - \hat{f}(p)| < \epsilon$ as well. Thus f_{α} is also continuous.

2. Let $f:[0,1]\to R$ be given by

$$f(x) := \begin{cases} 0 & \text{if } x = 0\\ 1/\ln(\frac{x}{2}) & \text{otherwise} \end{cases}$$

Note that the functions $g(x) = \ln(x)$ and $h(x) = \frac{x}{2}$ are continuous for all x > 0, and hence their composition $(g \circ h)(x)$ is as well. Then it follows that the reciprocal $1/(g \circ h)(x) = 1/\ln(\frac{x}{2})$ is continuous everywhere that it is defined, which is for values x > 0 and $x \neq 2$. To see that f(x) is also continuous at zero, consider that x = 0 is a limit point of (0, 1], and that

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 1/\ln(\frac{x}{2}) = 0 = f(0).$$

Hence f(x) is (uniformly) continuous on [0,1]. Now consider the derivative of f given by $f':(0,1)\to R$, where

$$f'(x) = \frac{-1}{x \ln^2(\frac{x}{2})}.$$

Observe that because

$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{-1}{x \ln^2(\frac{x}{2})} = -\infty,$$

then, for any real number $M \in R$, there exists some value $y \in (0,1)$ close to zero where |f'(y)| > M. Therefore f(x) is a uniformly continuous function on [0,1] that has an unbounded derivative on (0,1).

3. Let $f:[a,b] \to [a,b]$ be a function that is differentiable on [a,b] such that $|f'(x)| \le c$ for some given constant 0 < c < 1 and $x \in [a,b]$. We first show that f has at least one fixed point. Suppose $f(a) \ne a$ and $f(b) \ne b$. Then it follows that a < f(a) and f(b) < b, as $f([a,b]) \subset [a,b]$. Consider now all $f(a+\delta)$ for $\delta \in (0,b-a)$, and suppose $f(a+\delta) \ne a+\delta$ as well. Then, similarly, we either have that

$$f(a+\delta) < a+\delta$$

or

$$a + \delta < f(a + \delta).$$

4. Consider the following:

$$\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (x+b) = b - 2$$

and

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{-}} (-x^{2} \lfloor x \rfloor) = \lim_{x \to -2^{-}} (-x^{2}) \lim_{x \to -2^{-}} (\lfloor x \rfloor) = (-4)(-3) = 12.$$

Thus for b = 14, $\lim_{x \to -2^+} f(x) = \lim_{x \to -2^-} f(x) \neq f(-2)$, and hence f has a removable singularity at x = 2.

5. Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b] and suppose f'(a) > 0. Assume, for the sake of contradiction, that there are no $\delta > 0$ such that f(x) > f(a) whenever $a < x < a + \delta$. Then, for every $\delta > 0$, there is at least one point $c \in (a,a+\delta)$ where $f(c) \leq f(a)$. Let (c_n) be some sequence contained in [a,b] such that $c_n \in (a,a+\frac{|a+b|}{n})$ and $f(c_n) \leq f(a)$ for $n \in N$. Then

$$f(c_n) - f(a) \le 0$$

and

$$c_n - a > 0,$$

and so

$$\frac{f(c_n) - f(a)}{c_n - a} \le 0.$$

Letting $n \to \infty$ (and thus $(c_n) \to a$), we get by definition that $f'(a) \le 0$; which is a contradiction, as f'(a) > 0. Therefore our assumption must be false, and there does exist some $\delta > 0$ such that f(x) > f(a) whenever $a < x < a + \delta$.