Choosing the Metric in Subgradient Methods

John Duchi

Outline

- Mirror descent methods
 - 1. Bregman divergence
 - 2. Motivation via gradient method
 - 3. Convergence proof
 - 4. Example
- II Adaptive metric methods
 - 1. Motivation
 - 2. Examples
 - 3. Convergence guarantees (overview)

Motivation

Consider usual problem

minimize f(x) subject to $x \in C \subset \mathbb{R}^n$.

Assume that n is very large (high-dimensional). Then

Norm of gradient scales as

$$\|\nabla f(x)\|_2 = \sqrt{\sum_{i=1}^n [\nabla f(x)]_i^2} \approx \sqrt{n}$$

► Can we do better?

Bregman divergences

Let $h:C\to\mathbb{R}$ be a differentiable convex function. The *Bregman* divergence associated with h is

$$D_h(x,y) = h(x) - h(y) - \langle \nabla h(y), x - y \rangle$$

Mirror descent (non-Euclidean gradient descent)

- ▶ Compute subgradient $g_k \in \partial f(x_k)$
- Update

$$x_{k+1} = \underset{x \in C}{\operatorname{argmin}} \left\{ \langle g_k, x \rangle + \frac{1}{\alpha_k} D_h(x, x_k) \right\}$$

Convergence analysis

Main assumption (recall homework): $h:C\to\mathbb{R}$ is strongly convex with respect to some norm $\|\cdot\|$ on C,

$$h(y) \ge h(x) + \langle \nabla h(x), y - x \rangle + \frac{1}{2} \|x - y\|^2$$

Not strictly necessary assumption: divergence is upper bounded,

$$D_h(x^*, x) \le R^2$$

for all $x \in C$ (or that stepsize α is constant)

Dual norms

Recall dual norm

$$||y||_* = \sup_{x:||x|| \le 1} \langle x, y \rangle$$

which satisfies $\|x\| = \sup_{y:\|y\|_* \le 1} \langle x, y \rangle$ (in finite dimensions)

Convergence analysis

Progress of a single update:

$$f(x_k) - f(x^*) \le \langle g_k, x_k - x^* \rangle$$

Convergence analysis II

Single update progress:

$$f(x_k) - f(x^*) \le \frac{1}{\alpha_k} \left[D_h(x^*, x_k) - D_h(x^*, x_{k+1}) - D_h(x_{k+1}, x_k) \right] + \langle g_k, x_{k+1} - x_k \rangle$$

Convergence analysis III

Telescope the sum

$$\sum_{k=1}^{K} [f(x_k) - f(x^*)] \le \sum_{k=1}^{K} \frac{1}{\alpha_k} [D_h(x^*, x_k) - D_h(x^*, x_{k+1})] + \sum_{k=1}^{K} \frac{\alpha_k}{2} \|g_k\|_*^2$$

Convergence guarantee

with fixed stepsize $\alpha_k = \alpha$,

$$\frac{1}{K} \sum_{k=1}^{K} [f(x_k) - f(x^*)] \le \frac{1}{\alpha K} D_h(x^*, x_1) + \frac{\alpha}{2K} M^2$$

where we assume $||g_k||_* \leq M$ for all k In general, convergence if

- $D_h(x^{\star}, x_1) < \infty$
- \blacktriangleright subgradients are bounded, i.e. $\|g\|_* \leq M$ for $g \in \partial f(x)$ where $x \in C$

Example: entropic mirror descent

Suppose we wish to solve problem over probability simplex,

$$C = \{ x \in \mathbb{R}^n_+ : \langle \mathbf{1}, x \rangle = 1 \}.$$

Use negative entropy

$$h(x) = \sum_{i=1}^{n} x_i \log x_i$$

- ▶ Strongly convex with respect to ℓ_1 -norm over simplex
- $D_h(x,y) = \sum_{i=1}^n x_i \log \frac{x_i}{y_i},$

$$D_h(x, \mathbf{1}/n) \le \log n$$

▶ Need only $||g||_{\infty} \leq M_{\infty}$

Entropic mirror descent update

Solve update for
$$C=\{x\in\mathbb{R}^n_+:\langle \mathbf{1},x\rangle=1\}$$

$$\operatorname*{argmin}_{x\in C}\{\langle g,x\rangle+D_h(x,y)\}.$$

Entropic mirror descent versus projected gradient descent

min
$$f(x) = \frac{1}{m} \|Ax - b\|_1$$
 s.t. $x \in C = \{x \in \mathbb{R}^n_+ : \langle \mathbf{1}, x \rangle = 1\}$

where
$$A = [a_1 \cdots a_m]^{\top} \in \mathbb{R}^{m \times n}$$
.

Projected gradient

- $\|x_1 x^*\|_2^2 \le 1$
- $\|g\|_2 \approx \max_i \|a_i\|_2$

Convergence

$$f(x_K) - f(x^*) \le \frac{\|a\|_2}{\sqrt{K}}$$

Mirror descent

- $D_h(x^*, x_1) \le \log n$
- $\|g\|_{\infty} \approx \max_i \|a_i\|_{\infty}$

Convergence

$$f(x_K) - f(x^*) \le \frac{\|a\|_{\infty} \sqrt{\log n}}{\sqrt{K}}.$$

Example

Robust regression problem (an LP):

minimize
$$f(x) = \|Ax - b\|_1 = \sum_{i=1}^m |a_i^Tx - b_i|$$
 subject to $x \in C = \{x \in \mathbb{R}^n_+ \mid \mathbf{1}^Tx = 1\}$

subgradient of objective is $g = \sum_{i=1}^{m} \operatorname{sign}(a_i^T x - b_i) a_i$

- ▶ Projected subgradient update $(h(x) = (1/2) ||x||_2^2)$: annoying
- ▶ Mirror descent update $(h(x) = \sum_{i=1}^{n} x_i \log x_i)$:

$$x_i^{(k+1)} = \frac{x_i^{(k)} \exp(-\alpha g_i^{(k)})}{\sum_{j=1}^n x_j^{(k)} \exp(-\alpha g_j^{(k)})}$$

Example

Robust regression problem with $a_i \sim N(0, I_{n \times n})$ and $b_i = (a_{i,1} + a_{i,2})/2 + \varepsilon_i$ where $\varepsilon_i \sim N(0, 10^{-2})$, m = 20, n = 3000

stepsizes chosen according to best bounds (but still sensitive to stepsize choice)

Variable metric subgradient methods

Back to Euclidean case, use a metric based on matrix $H_k \succ 0$

- (1) Get subgradient $g_k \in \partial f(x_k)$ (or stochastic subgradient with $\mathbb{E}[g_k] \in \partial f(x_k)$)
- (2) update (often diagonal) matrix H_k
- (3) update

$$x_{k+1} = \underset{x \in C}{\operatorname{argmin}} \left\{ \langle g_k, x \rangle + \frac{1}{2} (x - x_k)^\top H_k (x - x_k) \right\}$$

So H_k generlizes stepsize and metric

Variable metric subgradient methods (projection)

Projected gradient variant (same procedure) with projection in ${\cal H}_k$ metric

- (1) Get subgradient $g_k \in \partial f(x_k)$ (or stochastic subgradient with $\mathbb{E}[g_k] \in \partial f(x_k)$)
- (2) update (often diagonal) matrix H_k
- (3) update

$$x_{k+1} = \pi_C^{H_k} (x_k - H_k^{-1} g_k)$$

where

$$\pi_C^H(x) = \underset{y \in C}{\operatorname{argmin}} \{ \|y - x\|_H^2 \}$$

and
$$||x||_H^2 = x^\top H x$$

Convergence analysis

$$\frac{1}{2} \|x_{k+1} - x^{\star}\|_{H_k}^2$$

Convergence analysis II

$$f(x_k) - f(x^*) \le \frac{1}{2} \left[\|x_k - x^*\|_{H_k}^2 - \|x_{k+1} - x^*\|_{H_k}^2 \right] + \frac{1}{2} \|g_k\|_{H_k^{-1}}^2.$$

Final guarantee (homework)

With choice $\overline{x}_K = \frac{1}{K} \sum_{k=1}^K x_k$,

$$f(\overline{x}_K) - f(x^*) \le \frac{1}{2K} \left[\|x_1 - x^*\|_{H_1}^2 + \sum_{k=1}^K \|g_k\|_{H_k^{-1}}^2 \right] + \frac{1}{2K} \sum_{k=2}^K \left(\|x_k - x^*\|_{H_k}^2 - \|x_k - x^*\|_{H_{k-1}}^2 \right).$$

Convergence if differences $\|\cdot\|_{H_k}^2 - \|\cdot\|_{H_{k-1}}^2$ go to zero and $\sum_{k=1}^K \|g_k\|_{H_k^{-1}}^2$ grows slower than K

AdaGrad

AdaGrad — adaptive subgradient method

- (1) get subgradient $g^{(k)} \in \partial f(x^{(k)})$
- (2) choose metric H_k :
 - ightharpoonup set $S_k = \sum_{i=1}^k \operatorname{diag}(g_i)^2$
 - $\blacktriangleright \ \operatorname{set} \ H_k = \tfrac{1}{\alpha} S_k^{\frac{1}{2}}$
- (3) update $x_{k+1} = \pi_C^{H_k}(x_k H_k^{-1}g_k)$

where $\alpha > 0$ is step-size

Convergence: homework!

Example

Classification problem:

- ▶ **Data**: $\{a_i, b_i\}$, i = 1, ..., 50000
 - $a_i \in \mathbb{R}^{1000}$
 - ▶ $b \in \{-1, 1\}$
 - ▶ Data created with 5% mis-classifications w.r.t. w = 1, v = 0
- ▶ **Objective**: find classifiers $w \in \mathbb{R}^{1000}$ and $v \in \mathbb{R}$ such that
 - $a_i^{\top} w + v > 1 \text{ if } b = 1$
 - $a_i^{\top} w + v < -1 \text{ if } b = -1$
- Optimization method:
 - ▶ Minimize hinge-loss: $\sum_{i} [1 b_i \langle a_i, w \rangle + v]_+$
 - Choose example uniformly at random, take sub-gradient step w.r.t. that example

Best subgradient method vs best AdaGrad

Often best AdaGrad performs better than best subgradient method

AdaGrad with different step-sizes α :

Sensitive to step-size selection (like standard subgradient method)

Prof. John Duchi