

并行计算 Parallel Computing

主讲人 %广中 Spring, 2016 第三篇 并行数值算法 第九章 稠密矩阵运算 第十章 线性方程组的求解 第十一章 快速傅里叶变换 第十二章 数值计算的基本支撑技术

- 9.1 矩阵的划分
 - 9.1.1 带状划分
 - 9.1.2 棋盘划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

划分方法

- 帯状划分(striped partitioning):
 one dimensional, row or column,
 block or cyclic
- 棋盘划分(checkerboard partitioning):
 two dimensional, block or cyclic

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
 - 9.1.1 带状划分
 - 9.1.2 棋盘划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

带状划分 (1)

■ 16×16阶矩阵, p=4

P ₀				F	1			I	2			F	3			
	O	1	2	3	4	5	6	7	8	9	10	111	12	13	14	15
	(a)															

 0	
4	 1
 8	 J
 12	
 1	
 5	 1
9]
 13	
 2	
 6	 1
10]
 14	
 3	
7	 1
 11	 J
15	

列块带状划分

图9.1

行循环带状划分

(b)

国家高性能计算中心(合肥)

带状划分 (2)

■ 示例: p=3,27×27矩阵的3种带状划分

Striped row-major mapping of a 27×27 matrix on p = 3 processors.

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
 - 9.1.1 带状划分
 - 9.1.2 棋盘划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

棋盘划分 (1)

■ 8×8阶矩阵, p=16

(0,0)	(0, 1)	(0, 2)	(0, 3)	(0, 4)	(0, 5)	(0, 6)	(0,7)
	P_0		P_1		P_2		P_3
(1,0)	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)	(1,7)
(2,0)	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)	(2, 7)
	P_4		P_5		P_6		P_7
(3, 0)	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)	(3, 7)
(4, 0)	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)	(4, 7)
	P_8		P_9		P ₁₀		P ₁₁
(5,0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5,7)
(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
	P ₁₂		P ₁₃		P ₁₄		P ₁₅
(7, 0)	(7, 1)	(7, 2)	(7, 3)	(7, 4)	(7, 5)	(7, 6)	(7,7)

(0,0) $(0,4)$	(0, 1) (0, 5)	(0,2) $(0,6)$	(0,3) $(0,7)$
P ₀	P_1	P_2	P_3
(4,0) $(4,4)$	(4, 1) $(4, 5)$	(4,2) $(4,6)$	(4,3) $(4,7)$
(1,0) $(1,4)$	(1, 1) (1, 5)	(1, 2) (1, 6)	(1,3) $(1,7)$
P_4	P_5	P_6	P_7
(5,0) $(5,4)$	(5,1) $(5,5)$	(5,2) $(5,6)$	(5,3) $(5,7)$
(2,0) $(2,4)$	(2, 1) (2, 5)	(2,2) $(2,6)$	(2,3) $(2,7)$
P ₈	P_9	P ₁₀	P ₁₁
(6,0) $(6,4)$	(6,1) $(6,5)$	(6,2) $(6,6)$	(6,3) $(6,7)$
(3,0) $(3,4)$	(3, 1) (3, 5)	(3,2) $(3,6)$	(3,3) $(3,7)$
P ₁₂	P ₁₃	P ₁₄	P ₁₅
(7,0) $(7,4)$	(7, 1) (7, 5)	(7,2) $(7,6)$	(7,3) $(7,7)$

块棋盘划分

图9.2

(b) 循环棋盘划分

棋盘划分 (2)

■ 示例: p=4, 16×16矩阵的3种棋盘划分

Checkerboard mapping of a 16×16 matrix on $p = 2 \times 2$ processors.

- 9.1 矩阵的划分
- 9.2 矩阵转置
 - 9.2.1 棋盘划分的矩阵转置
 - 9.2.2 带状划分的矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

棋盘划分的矩阵转置 (1)

- 网孔连接
 - 情形1: p=n²。

(0, 0)	(1, 0)	(2, 0)	(3, 0)
P ₀	P_1	P_2	P_3
(0, 1)	(1, 1)	(2, 1)	(3, 1)
P_4	P_5	P ₆	P ₇
(0, 2)	(1, 2)	(2, 2)	(3, 2)
P ₈	P ₉	P ₁₀	P ₁₁
(0, 3)	(1, 3)	(2, 3)	(3, 3)
P ₁₂	P ₁₃	P ₁₄	P ₁₅

通讯步

转置后

图9.3

棋盘划分的矩阵转置 (2)

■ 情形2: p<n²。

- 划 分: $A_{n \times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} imes \frac{n}{\sqrt{p}}$ 子块

- 算法: ①按mesh连接进行块转置(不同处理器间)

②进行块内转置(同一处理器内)

 $T_p = \frac{n^2}{2n} + 2t_s \sqrt{p} + 2t_w n^2 / \sqrt{p} L L$ 运行时间

F	8 4	F	! } •	F	, 10	····• [) 11
(5, 0)	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)	(5, 7)
(6, 0)	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)	(6, 7)
F	12 ⋖	F	13	F	14 4	F	15

$(0,0)$ $\blacktriangledown (0,1)$	(2,0) $(2,1)$	$(4,0)$ \blacktriangledown $(4,1)$	(6,0) $(6,1)$
	P_1		
$(1,0) \triangleq (1,1)$	$(3,0) \triangleq (3,1)$	$(5,0) \triangleq (5,1)$	$(7,0) \triangleq (7,1)$
(0,2) $(0,3)$	(2,2) $(2,3)$	(4, 2) ▼ (4, 3)	(6, 2) (6, 3)
P_4	P_5	P_6	P_7
$(1,2) \triangleq (1,3)$	$(3,2) \triangleq (3,3)$	$(5,2) \triangleq (5,3)$	$(7,2) \triangleq (7,3)$
(0,4) $(0,5)$	(2, 4) (2, 5)	(4, 4) (4, 5)	(6, 4) (6, 5)
P_8	P_9	P ₁₀	P_{11}
$(1,4) \triangleq (1,5)$	$(3,4) \triangleq (3,5)$	$(5,4) \triangleq (5,5)$	$(7,4) \triangleq (7,5)$
(0,6) $(0,7)$	(2.6) (2,7)	(4, 6) (4, 7)	(6, 6) (6, 7)
P ₁₂	P_{13}	P_{14}	$\left \left\langle P_{15} \right\rangle \right $
$(1,6) \triangleq (1,7)$	$(3,6) \triangleq (3,7)$	$(5,6) \triangleq (5,7)$	$(7,6) \triangleq (7,7)$

 $// 2\sqrt{p(t_s + t_w n^2/p)}$ L 通讯

// <u>n²</u>L L 计算

通讯步

|(7,0) (7,1)| (7,2) (7,3) |(7,4) (7,5)| (7,6) (7,7)

转電后

国家高性能计算中心(合肥)

棋盘划分的矩阵转置 (3)

- ■超立方连接
 - 划分: $A_{n\times n}$ 划分成p个大小为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 子块
 - 算法:

①将
$$A = \begin{pmatrix} A_{II} & A_{I2} \\ A_{2I} & A_{22} \end{pmatrix}$$
转置为 $\begin{pmatrix} A_{II} & A_{2I} \\ A_{I2} & A_{22} \end{pmatrix}$

- ②对Aij递归应用①进行转置,直至分块矩阵的元素处于同一处理器;
- ③进行同一处理器的内部转置。
- 运行时间:

$$T_{p} = \frac{n^{2}}{2p} + 2(t_{s} + t_{w} \frac{n^{2}}{p}) \log \sqrt{p} \quad // \text{内部转置} \frac{n^{2}}{2p}, 选路: 2(t_{s} + t_{w} \frac{n^{2}}{p}), 递归步: \log \sqrt{p}$$

$$= \frac{n^{2}}{2p} + (t_{s} + t_{w} \frac{n^{2}}{p}) \log p$$

棋盘划分的矩阵转置 (4)

■ 超立方连接:示例

- 9.1 矩阵的划分
- 9.2 矩阵转置
 - 9.2.1 棋盘划分的矩阵转置
 - 9.2.2 带状划分的矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法

带状划分的矩阵转置

■划分: A_{n×n}分成p个(n/p)×n大小的带

■算法:

图9.7

- ①Pi有p-1个(n/p)×(n/p)大小子块发送到另外p-1个处理器中;
- ②每个处理器本地交换相应的元素;
- ③时间分析?

中日科学技术文学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法
 - 9.3.3 矩阵-向量的脉动乘法
- 9.4 矩阵乘法

矩阵-向量乘法

■ 求Y=AX

$$\begin{pmatrix} y_0 \\ y_1 \\ M \\ y_{n-1} \end{pmatrix} = \begin{pmatrix} a_{0,0} & a_{0,1} & L & a_{0,n-1} \\ a_{1,0} & a_{1,1} & a_{1,n-1} \\ M & M & M \\ a_{n-1,0} & a_{n-1,1} & L & a_{n-1,n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ M \\ x_{n-1} \end{pmatrix}$$

$$y_i = \sum_{j=0}^{n-1} a_{ij} \cdot x_j$$

串行算法计算时间†(n)=O(n2)

中國科学技术文学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法
 - 9.3.3 矩阵-向量的脉动乘法
- 9.4 矩阵乘法

带状划分的矩阵-向量乘法 (1)

- 划分(行带状划分): Pi存放Xi和ai,0,ai,1,...,ai,n-1, 并输出Yi
- ■算法: 对p=n情形
 - ①每个Pi向其他处理器播送Xi(多到多播送);
 - ②每个Pi做相应计算;
- ■注:对p<n情形,算法中P;要播送X中相应的n/p个分量
 - (1)超立方连接的计算时间

$$T_p = \frac{n^2}{p} + t_s \log p + \frac{n}{p} t_w(p-1) // 前1项是乘法时间,后2项是多到多的播送时间$$
$$= \frac{n^2}{p} + t_s \log p + nt_w // p 充分大时$$

(2)网孔连接的计算时间

$$T_p = \frac{n^2}{p} + 2(\sqrt{p} - 1)t_s + \frac{n}{p}t_w(p - 1)$$
 // 前1项是乘法时间,后2项是多到多的播送时间
$$= \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w$$
 // p 充分大时 国家高性能计算中心(合肥)

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China

状划分的矩阵-向量乘法 (2)

■示例

P_0	0	1	p-1
P_1	0	1	p-1
•	0	1	p-1
•	0	1	p-1
P_{p-1}	0	1	p-1

(c)

	矩阵 A	向量y
P_0		0
P_1		1
•		
•		
P_{p-1}		p-1

(d)

国家高性能计算中心(合肥)

图9.8

中國科学技术文学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法
 - 9.3.3 矩阵-向量的脉动乘法
- 9.4 矩阵乘法

棋盘划分的矩阵-向量乘法

- ■划分(块棋盘划分): Pij存放ai,i, Xi置入Pij中
- ■算法: 对p=n²情形
 - ①每个Pi,i向Pi,i播送Xi(一到多播送);
 - ②按行方向进行乘-加与积累运算,最后一列Pin-1收集的结 果为Yi;
- 注: 对p<n²情形,p个处理器排成 \sqrt{p} × \sqrt{p} 的二维网孔, 算法中 $P_{i,i}$ 向 $P_{j,i}$ 播送X中相应的 \sqrt{p} 个分量
 - (1) 网孔连接的计算时间 $T_p(C.T)T_p \approx \frac{n^2}{p} + t_s \log p + \frac{n}{\sqrt{p}} t_w \log p + 3t_h \sqrt{p}$.X中相应分量置入 $P_{i,i}$ 的通讯时间: $t_s + \frac{n}{\sqrt{p}}t_w + t_h\sqrt{p}$

 - .接列一到多播送时间: $(t_s + \frac{n}{\sqrt{p}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$.接行单点积累的时间: $(t_s + \frac{n\sqrt{p}}{\sqrt{p}}t_w)\log\sqrt{p} + t_h(\sqrt{p}-1)$

棋盘划分的矩阵-向量乘法 (2)

■示例

	9	矩阵 /	A		向量	у
P ₀	P ₁	•	•	P 1		
$\frac{P}{\sqrt{p}}$						
$P_{2\sqrt{p}}$				•		
				•		
				P_{p-1}		

(d)

带状与棋盘划分比较

- ■以网孔链接为例
 - ■网孔上带状划分的运行时间

$$T_p = \frac{n^2}{p} + 2t_s(\sqrt{p} - 1) + nt_w \tag{9.5}$$

■网孔上棋盘划分的运行时间

$$T_p \approx \frac{n^2}{p} + t_s \log p + \frac{n}{\sqrt{p}} t_w \log p + 3t_h \sqrt{p}$$
 (9.6)

■棋盘划分要比带状划分快。

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
 - 9.3.1 带状划分的矩阵-向量乘法
 - 9.3.2 棋盘划分的矩阵-向量乘法
 - 9.3.3 矩阵-向量的脉动乘法
- 9.4 矩阵乘法

矩阵-向量乘法的脉动算法 (1)

■示例

国家高性能计算中心(合肥)

矩阵-向量乘法的脉动算法 (2)

■示例

国家高性能计算中心(合肥)

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

矩阵乘法符号及定义

设
$$A = (a_{ij})_{n \times n}$$
 $B = (b_{ij})_{n \times n}$ $C = (c_{ij})_{n \times n}$, $C = A \times B$

$$\begin{pmatrix} c_{0,0} & c_{0,1} & \mathsf{L} & c_{0,n-1} \\ c_{1,0} & c_{1,1} & & c_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} = \begin{pmatrix} a_{0,0} & a_{0,1} & \mathsf{L} & a_{0,n-1} \\ a_{1,0} & a_{1,1} & & a_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ b_{1,0} & b_{1,1} & & b_{1,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \\ b_{n-1,0} & b_{n-1,1} & \mathsf{L} & b_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \\ b_{n-1,0} & b_{n-1,1} & \mathsf{L} & b_{n-1,n-1} \end{pmatrix} \cdot \begin{pmatrix} b_{0,0} & b_{0,1} & \mathsf{L} & b_{0,n-1} \\ \mathsf{M} & \mathsf{M} & & \mathsf{M} \\ b_{n-1,0} & b_{n-1,1} & \mathsf{L} & b_{n-1,n-1} \end{pmatrix}$$

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$
 A中元素的第1下标与B中元素的第2下标相一致(对准)

矩阵乘法并行实现方法

- 计算结构: 二维阵列
- 空间对准(元素已加载到阵列中) Cannon's , Fox's , DNS
- 时间对准(元素未加载到阵列中)

Systolic

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

简单并行分块乘法 (1)

- 分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的分块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小均为 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$ $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$ 。
- ■算法:
 - ①通讯:每行处理器进行A矩阵块的多到多播送(得到 $A_{i,k}$, $k=0 \sim \sqrt{p-1}$) 每列处理器进行B矩阵块的多到多播送(得到 $B_{k,j}$, $k=0 \sim \sqrt{p-1}$)
 - ②乘-加运算: $P_{i,j}$ 做 $C_{ij} = \sum_{k=0}^{\sqrt{p-1}} A_{ik} \cdot B_{kj}$
- ■运行时间
 - (1)超立方连接:

①的射间
$$t_1 = 2(t_s \log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1))$$

②的射间
$$t_2 = \sqrt{p} \times (\frac{n}{\sqrt{p}})^3 = n^3 / p$$

$$T_p = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}$$

国家高性能计算中心(合肥)

中国科学技术文学计算机科学与技术系

University of Science and Technology of China

简单并行分块乘法 (2)

■运行时间

- (1)超立方连接:
- (2)二维环绕网孔连接:
- ①的射间: $t_1 = 2(t_s + \frac{n^2}{p}t_w)(\sqrt{p} 1) = 2t_s\sqrt{p} + 2t_w\frac{n^2}{\sqrt{p}}$
- ②的时间: t₂=n³/p

$$T_p = \frac{n^3}{p} + 2t_s \sqrt{p} + 2t_w \frac{n^2}{\sqrt{p}}$$

■ 注

- (1)本算法的缺点是对处理器的存储要求过大 每个处理器有 $2\sqrt{p}$ 个块,每块大小为 n^2/p , 所以需要 $O(n^2/\sqrt{p})$, p个处理器共需要 $O(n^2\sqrt{p})$, 是串行算法的\p 倍
- (2)p=n²射,t(n)=O(n), c(n)=O(n³)

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

Cannon乘法 (1)

■ 分块: A、B和C分成 $p = \sqrt{p} \times \sqrt{p}$ 的分块阵 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$,大小 $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ 均为p个处理器编号为 $(P_{0,0},...,P_{0,\sqrt{p-1}},...,P_{\sqrt{p-1},\sqrt{p-1}})$, $P_{i,j}$ 存放 $A_{i,j}$ 、 $B_{i,j}$ 和 $C_{i,j}$ (n > > p)

$\frac{n}{\sqrt{p}}$	P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	
	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	$\rightarrow n$
	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	
	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	
) /

 \sqrt{p}

Cannon乘法 (2)

- 算法原理(非形式描述,1969年)
 - ①所有块 $A_{i,j}(0 \le i,j \le \sqrt{p}-1)$ 向左循环移动i步(按行移位); 所有块 $B_{i,j}(0 \le i,j \le \sqrt{p}-1)$ 向上循环移动j步(按列移位);
 - ②所有处理器 $P_{i,j}$ 做执行 $A_{i,j}$ 和 $B_{i,j}$ 的乘-加运算;
 - ③A的每个块向左循环移动一步; B的每个块向上循环移动一步;
 - ④转②执行 \sqrt{p} -1次;

Cannon乘法 (2)

■ 示例: A_{4×4}, B_{4×4}, p=16

Initial alignment of A

Initial alignment of B

B _{0,0}	, B _{0,1}	. B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

Cannon乘法 (3)

■ 示例: A_{4×4}, B_{4×4}, p=16

A and B after initial alignment and shifts after every step

\$			
A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{1,1}	A _{2,2}	A _{3,3}
S			
A _{1,1}	A _{1,2}	A _{1,3}	A _{1,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
£			************
A _{2,2}	A2,3	A2,0	A _{2,1}
B _{2,0}	B3,1	B0,2	B _{1,3}
400000			**********
A _{3,3}	A _{3,0}	A _{3,1}	A _{3,2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}

Cannon乘法 (4)

■ 示例: A_{4×4}, B_{4×4}, p=16

After first shift

After second shift

After third shift

diam.	**********		
A _{0,1} B _{1,0}	A _{0,2} B _{2,1}	A _{0,3} B _{3,2}	A _{0,0} B _{0,3}
A _{1,2} B _{2,0}	A _{1,3} B _{3,1}	A _{1,0} B _{0,2}	A _{1,1} B _{1,3}
A _{2,3} B _{3,0}	A _{2,0} B _{0,1}	A _{2,1} B _{1,2}	A _{2,2} B _{2,3}
A _{3,0} B _{0,0}	A _{3,1} B _{3,1}	A _{3,2} B _{2,2}	A _{3,3} B _{3,3}

	Parana			111111
	A _{0,2} B _{2,0}	A _{0,3} B _{3,1}	A _{0,0} B _{0,2}	A _{0,1} B _{1,3}
	A _{1,3} B _{3,0}	A _{1,0} B _{0,1}	A _{1,1} B _{1,2}	A _{1,2} B _{2,3}
	A _{2,0} B _{0,0}	A _{2,1} B _{1,1}	A _{2,2} B _{2,2}	A _{2,3} B _{3,3}
-	A _{3,1} B _{1,0}	A _{3,2} B _{2,1}	A _{3,3} B _{3,2}	A _{3,0} B _{0,3}

	A. Carre			111111
*******	A _{0,3} B _{3,0}	A _{0,0} B _{0,1}	A _{0,1} B _{1,2}	A _{0,2} B _{2,3}
1111111111111111111	A _{1,0} B _{0,0}	A _{1,1} B _{1,1}	A _{1,2} B _{2,2}	A _{1,3} B _{3,3}
1	A _{2,1} B _{1,0}	A _{2,2} B _{2,1}	A _{2,3} B _{3,2}	A _{2,0} B _{0,3}
	A _{3,2} B _{2,0}	A _{3,3} B _{3,1}	A _{3,0} B _{0,2}	A _{3,1} B _{1,3}

Cannon乘法 (5)

■ 算法描述: Cannon 分块乘法算法

```
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin
     (1) for k=0 to \sqrt{p}-1 do
             for all P<sub>i,i</sub> par-do
                (i) if i>k then
                       A_{i,j} \leftarrow A_{i,(j+1) \mod \sqrt{p}}
                    endif
                (ii)if j>k then
                       B_{i,j} \leftarrow B_{(i+1) \mod \sqrt{p}}, j
                    endif
             endfor
         endfor
     (2) for all P_{i,i} par-do C_{i,i}=0 end for
```

```
(3) for k=0 to \sqrt{p}-1 do for all P_{i,j} par-do (i) C_{i,j}=C_{i,j}+A_{i,j}B_{i,j} (ii) A_{i,j} \leftarrow A_{i,(j+1)\text{mod}\sqrt{p}} (iii) B_{i,j} \leftarrow B_{(i+1)\text{mod}\sqrt{p}} endfor endfor
```

初步的时间分析:

$$T_{p}(n) = T_{1} + T_{2} + T_{3}$$

$$= O(\sqrt{p}) + O(1) + O(\sqrt{p} \cdot (n/\sqrt{p})^{3})$$

$$= O(n^{3}/p)$$

Cannon乘法 (6)

■时间分析

(1)超立方连接:

$$t_1 = 2(t_s + t_w \frac{n^2}{p} + t_h \log \sqrt{p}), \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = 2(t_s + t_w \frac{n^2}{p})$$

②和③执行 \sqrt{p} -1次,所以运行时间为

$$T_p = t_1 + \sqrt{p}(t_2 + t_3) = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}$$

(2)二维网孔连接, CT选路模式:

$$t_1 = 2(t_s + t_w \frac{n^2}{p}) \sqrt{p}, \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = 2(t_s + t_w \frac{n^2}{p})$$

②和③执行 $\sqrt{p}-1$ 次,所以运行时间为

$$T_p = t_1 + \sqrt{p}(t_2 + t_3) = \frac{n^3}{p} + 4\sqrt{p}t_s + 4t_w \frac{n^2}{\sqrt{p}}$$

中岛科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

Fox乘法 (1)

- 分块:同Cannon分块算法
- 算法原理 (1987年)
- ①A_{i,i}向所在行的其他处理器 进行一到多播送;
- ②各处理器将收到的A块与原有的B块进行乘-加运算;
 - ③B块向上循环移动一步;

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

- ④如果 $A_{i,j}$ 是上次第i行播送的块,本次选择 $A_{i,(j+1) \text{mod} \sqrt{p}}$ 向所在行的其他处理器进行一到多播送;
- 5转②执行 \sqrt{p} -1次;

Fox乘法 (2)

■ 示例: A_{4×4}, B_{4×4}, p=16

A _{0,0}	∧ B _{0,1}	∧ B _{0,2}	△ B _{0,3}
B _{1,0}	A _{1,1} B _{1,1}	B _{1,2}	▶ B _{1,3}
B _{2,0}	B _{2,1}	A2,2 B2,2	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	A _{3,3} B _{3,3}

(a)

(b)

Fox乘法 (3)

■ 示例: A_{4×4}, B_{4×4}, p=16

(c)

(d)

Fox乘法 (4)

- 运行时间
 - (1)超立方连接:

$$t_1 = t_4 = (t_s + t_w \frac{n^2}{p}) \log \sqrt{p}, \quad t_2 = (n/\sqrt{p})^3, \quad t_3 = t_s + t_w \frac{n^2}{p}$$

②、③和④(含①)执行 \sqrt{p} 次,所以运行时间为

$$T_p = \sqrt{p}(t_2 + t_3 + t_4) = \frac{n^3}{p} + \frac{1}{2}(t_s + t_w \frac{n^2}{p})\sqrt{p}\log p$$

当p=n²时, t(n)=O(nlogn)

(2)二维网孔连接,CT选路模式(思考?)

中面科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

University of Science and Technology of China

Systolic乘法 (3)

Systolic乘法 (4)

Systolic乘法 (5)

Systolic乘法 (6)

Systolic乘法 (7)

Systolic乘法 (8)

Systolic乘法 (9)

Systolic乘法 (10)

Systolic 乘 法 (11) $c_{1,1} = a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} + a_{1,4}b_{4,1}$

$$c_{1,1} = a_{1,1} b_{1,1} + a_{1,2} b_{2,1} + a_{1,3} b_{3,1} + a_{1,4} b_{4,1}$$

$$c_{1,2} = a_{1,1} b_{1,2} + a_{1,2} b_{2,2} + a_{1,3} b_{3,2} + a_{1,4} b_{4,2}$$

Over

Systolic乘法 (12)

```
■ Systolic 算法 (H.T. Kung)
//输入: A<sub>m×n</sub>, B<sub>n×k</sub>; 输出: C<sub>m×k</sub>
 Begin
     for i=1 to m par-do
          for j=1 to k par-do
            (i) c_{i,i} = 0
           (ii) while P<sub>i,j</sub> 收到a和b时 do
                c_{i,j} = \tilde{c}_{i,j} + ab
if i < m then 发送b给P_{i+1,j} endif
                if j < k then 发送a给Piji+1 endif
               endwhile
           endfor
       endfor
 End
```

中國科学技术文学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

第九章稠密矩阵运算

- 9.1 矩阵的划分
- 9.2 矩阵转置
- 9.3 矩阵-向量乘法
- 9.4 矩阵乘法
 - 9.4.1 简单并行分块乘法
 - 9.4.2 Cannon 乘法
 - 9.4.3 Fox乘法
 - 9.4.4 Systolic乘法
 - 9.4.5 DNS乘法

DNS乘法 (1)

Motivation: From a good and common idea

DNS乘法 (2)

Motivation: From a good and common idea(Cont.)

How to use processors more effectively and practically?

DNS乘法 (3)

- ■背景: 1981年由Dekel、Nassimi和Sahni提出的SIMD-CC上的矩阵乘法,处理器数目为n³,运行时间为O(logn),是一种速度很快的算法。
- 基本思想:通过一到一和一到多的播送办法,使得处理器(k,i,j)拥有a_{i,k}和b_{k,j},进行本地相乘,再沿k方向进行单点积累求和,结果存储在处理器(0,i,j)中。
- 处理器编号:处理器数p=n³=(2q)³=2³q,处理器Pr位于位置(k,i,j),
 这里r=kn²+in+j,(0≤i, j, k≤n-1)。位于(k,i,j)的处理器Pr的三个寄存器Ar,Br,Cr分别表示为A[k,i,j], B[k,i,j]和C[k,i,j], 初始时均为0。
- 算法: 初始时a_{i,j}和b_{i,j}存储于寄存器A[0,i,j]和B[0,i,j];
 - ①数据复制:A,B同时在k维复制(一到一播送);

A在j维复制(一到多播送); B在i维复制(一到多播送);

- ②相乘运算:所有处理器的A、B寄存器两两相乘;
- ③求和运算:沿k方向进行单点积累求和;

中國科学技术文学 计算机科学与技术系 University of Science and Technology of China

■示例

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$B = \begin{pmatrix} -5 & -6 \\ 7 & 8 \end{pmatrix}$$

求
$$C = A \times B$$

$$C00=1\times(-5)+2\times7=9$$

$$C01=1\times(-6)+2\times8=10$$

$$C10=3\times(-5)+4\times7=13$$

$$C11=3\times(-6)+4\times8=14$$

(a) 初始加载

(b)A,B沿k维复制

(c)A沿j维复制

(f)沿k维求和

DNS乘法 (5)

■算法描述:

```
//令r<sup>(m)</sup>表示r的第m位取反;
//\{p, r_m=d\}表示r(0 \le r \le p-1)的集合, 这里r的二
//进制第m位为d;
                                                           (3)for m=2q-1 to q do //按i维复制B,m=1
                                                                        for all r in \{p, r_m = r_{q+m}\} par-do//r_1 = r_2 \pitchforkr
//输入: A_{n\times n}, B_{n\times n}; 输出: C_{n\times n}
Begin //以n=2, p=8=2<sup>3</sup>举例, q=1, r=(r<sub>2</sub>r<sub>1</sub>r<sub>0</sub>)<sub>2</sub>
                                                                           B_{r(m)} \leftarrow B_{r} //B(010) \leftarrow B(000), B(100) \leftarrow B(110)
                                                                        endfor
    (1)for m=3q-1 to 2q do //按k维复制A,B, m=2
                                                                                          //B(011) \leftarrow B(001), B(101) \leftarrow B(111)
                                                             endfor
           for all r in \{p, r_m=0\} par-do \frac{1}{r_2=0} in
              (1.1) A<sub>r(m)</sub> ← A<sub>r</sub> //A(100)←A(000)等 (4)for r=0 to p-1 par-do //相乘, all P<sub>r</sub>
              (1.2) B_{r(m)} \leftarrow B_r //B(100) \leftarrow B(000)
                                                                       C_r = A_r \times B_r
           endfor
                                                                   endfor
        endfor
                                                                (5)for m=2q to 3q-1 do //求和,m=2
    (2)for m=q-1 to 0 do //按j维复制A, m=0 for r=0 to p-1 par-do
           for all r in \{p, r_m = r_{2q+m}\} par-do //r_0 = r_2 for C_r = C_r + C_{r(m)}
                                                                       endfor
               A_{r(m)} \leftarrow A_{r} //A(001) \leftarrow A(000), A(100) \leftarrow A(101)
                                                            endfor
           endfor
                        //A(011) \leftarrow A(010), A(110) \leftarrow A(111)
        endfor
```


DNS乘法 (6)

DNS乘法 (7)

