Online Reinforcement Learning

1. 语言模型的强化学习:

- 2. 在线强化学习工作机制: 让模型自主探索更好的响应,流程如下
 - a. 准备一批Prompt
 - b. 将这批Prompt输入模型
 - c. 模型生成相应的Response
 - d. 将(prompt,response)对输入**奖励函数(Reward Function)**
 - e. 奖励函数为每对(prompt,response)打分
 - f. 获得(prompt,response,reward) 三元组
 - g. 使用这些数据来更新语言模型

更新语言模型的方法很多,本课重点为PPO(Proximal Policy Optimization 近端策略优化)和GRPO(Group Relative Policy Optimization 群体相对策略优化)

3. 奖励函数(Reward Function):

训练好的奖励 • 收集多个模型响应,由人类标注选 特点: 模型 择更优的响应 通常基于已有的Instruct模型优化 • 使用这些人类偏好数据训练奖励模 (Reward 通过大规模人类或机器生成偏好数据训练 Model) • 可应用于开放式任务,如聊天能力、安全性提升 奖励模型通过优化以下损失函数学 在"正确性导向"的任务,如代码、数学、函数 调用中可能不够精确 $L = \log(\sigma(r_i - r_k))$ 。 若人类认为响应i优于k,则鼓 励模型提升\$r_j\$,降低\$r_k\$ 更适用于"正确性导向"任务 特点:

可验证性奖励 (Verifiable Reward)

- 数学任务:验证输出是否与标准答案匹配
- 编程任务:通过单元测试(Unit Tests)检验代码执行结果是否正确
- 需提前准备真值(Ground Truth)或测试集
- 准备成本较高,但奖励信号更精确可靠
- 更适合训练推理类模型(Reasoning Models), 如代码、数学领域

4. PPO VS GRPO

Policy Training in Online RL

方法	工作流程	总结
方法 PPO (Proximal Policy Optimizatio n)	 输入一组查询(queries)(q) 通过策略模型(Policy Model)(语言模型本身)生成响应 相应被送入以下3个模块: 参考模型(Reference Model):计算KL散度,限制模型不偏离原始分布 奖励模型(Reward Model):计算奖励 	总结 $PPO的目标函数:$ $I_{PPO}(\theta) = E_{q \sim P(Q), o \sim \pi_{\theta s s s}}(o \mid e) \left[\frac{1}{ o } \sum_{t=1}^{ o } \min \left[\frac{\pi_{\theta}(o_t \mid q, o < t)}{\pi_{\theta s s s}(o_t \mid q, o < t)} A_t, \operatorname{clip}\left(\frac{\pi_{\theta}(o_t \mid q, o < t)}{\pi_{\theta s s s}(o_t \mid q, o < t)}, 1 - \varepsilon, 1 + \varepsilon\right) A_t\right]\right]$ • 每个token拥有独立的优势值 • 反馈粒度更细 • 需额外训练价值模型——>占用更多GPU内存
	c. 价值模型(Value Model)或评价 者模型(Critic Model) : 为每个 token分配价值	

	4. 使用 广义优势估计(Generalized Advantage Estimation,GAE)来计算 每个token的 优势函数 (Advantage),反映该token的贡献	
GRPO (Group Relative Policy Optimizatio n)	 对每个prompt模型生成多个响应 (O1, O2,, Og) 对每个响应计算奖励(Reward)和参 考模型的KL散度 	 不再需要价值模型(Value Model) 所有token在同一响应中共享相同优势值 更节省显存,但优势估计较粗糙
	3. 对同一组(Group)响应计算 相对奖励 (Relative Reward)	
	4. 将相对响应作为整个响应的优势值	
	5. 使用此优势更新策略模型	

特征	PPO	GRPO
优势估计	基于价值模型 (Value Model) 的精细估计	基于响应组的相对奖励 (Relative Rev
计算粒度	每个 Token 拥有独立优势	整个响应共享同一优势
显存需求	较高(需训练 Critic)	较低(无 Critic)
样本效率	高(样本利用率好)	较低 (需更多样本)
奖励适配	适合连续或模型化奖励	适合二元/可验证奖励
应用场景	聊天、对齐、安全优化	数学、代码、推理任务

5. 代码解析

→ 在线强化学习(Online RL)实践.md