Derandomization

- Power of Randomness
 - Identity Testing
 - Probabilistic Method
 - "Finding Hay in a Haystack"
 - Approximation Algorithms for NP Hard Problems
 - Max Cut and MAX 3-SAT CNF
- Quick Review of Properties of Expectations
 - Linearity of Expectations
 - Method of Iterated Expectations
 - Markov's Inequality
 - Chernoff Bounds
- Review 3-CNF MAX SAT Approximation Algorithm
 - Expectation of Random Guessing is 7k/8
 - o Algorithm
 - Guess Randomly
 - Stop when you satisfy >= 7k/8
 - o Expected Runtime:

Proof.

Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\frac{7}{8}k = E[Z] = \sum_{0 \le j \le k} j \, p_j = \sum_{0 \le j < 7k/8} j \, p_j + \sum_{7k/8 \le j \le k} j \, p_j \\
\le \left(\frac{7}{8}k - \frac{1}{8}\right) \sum_{0 \le j < 7k/8} p_j + k \sum_{7k/8 \le j \le k} p_j \\
\le \left(\frac{7}{8}k - \frac{1}{8}\right) \cdot 1 + kp$$

Solving for p yields $p \ge 1/(8k)$.

- Run time is at most 8k²
- Derandomizing 3-CNF MAX SAT
 - Raw Enumeration
 - Method of Conditional Expectations

- Pessimistic Estimators
- Pairwise Independence
 - Strongly 2-Universal Hash Functions
 - 2-Universal Hash Functions
- Complexity Results and Questions:
 - RP (Randomized Polynomial Time)
 - Always runs in Polynomial Time
 - If not in the Language always output 0
 - If in Language output 1 with probability at least ½
 - BPP (Bounded Error Probabilistic Polynomial Time)
 - Always run is polynomial time for all inputs
 - If not in the language output 1 with probability at most 1/3
 - If in the language output 1 with probability at least ¾
 - RP \subset BPP \subset EXP
 - EXP just takes in with the extra random bits
 - P \subset RP \subset NP
 - Certificate is the coin flips
 - \circ P = RP?
 - o BPP \subseteq NP?
 - O P = BPP?
 - Can we always use O(log(n)) random bits?
 - Possible approach to proving this.
 - AKS was in BPP for a while until 2002 when AKS moved it to P.