vectors corresponding to the largest eigenvalues. Now we can find the eigenvalues as the roots of the characteristic polynomial $|\mathbf{S}_{\mathbf{B}} - \lambda_i \mathbf{S}_{\mathbf{w}}| = 0 \tag{61}$

Now $\mathbf{S_{BW_i}} = \lambda_i \mathbf{S_{WW_i}}$, since the columns of an optimal W are the generalized eigen-

and solve $(\mathbf{S}_{\mathbf{B}} - \lambda_i \mathbf{S}_{\mathbf{W}}) \vec{w_i} = 0 \tag{62}$

 $(\mathbf{S}_{\mathbf{B}} - \lambda_i \mathbf{S}_{\mathbf{W}}) \vec{w_i} = 0 \tag{}$

for the eigenvectors $\vec{w_i}$.