Exercise sheet 3: Sequence Alignment

Exercise 1 - Alignments
For the given examples which ones can be called alignments:
1a)
AGTTTTT AGGTTTTT
Hide
Solution True
1b)
CCGTTTTTT -AGGTTTTT
Hide
Solution True
1c)
CCCGTTTTTGC -CGGTTTTT
Hide
Solution False. In an alignment both strings must have the same length

1d)

AG-TTTTTT AG-GTTTTTT

Hide

Solution False. Gaps cannot be aligned with gaps

Exercise 2 - Hands on Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm enables the calculation of the optimal pairwise sequence alignment with linear gap cost. Given the following two sequences S1, S2 and the given cost function complete the tasks A-D.

$$S1 = TACCGCGC \tag{1}$$

$$S2 = TCCGA \tag{2}$$

$$w(x,y) = \begin{cases} +1 & if \ x = `-` \lor \ y = `-` \\ -1 & if \ x = y \\ 0 & else \end{cases}$$

2a)

Complete the provided table with the correct initialization step.

Hide

Hint1: Formulae

$$D_{0,0} = 0 (3)$$

$$\forall i \le |S1| : D_{i,0} = \sum_{k=1}^{i} w(S1_i, -) \tag{4}$$

$$\forall j \le |S2| : D_{0,j} = \sum_{k=1}^{j} w(-, S2_j)$$
 (5)

Solution

2b)

Hide Using dynamic programming technique fill in all values in the matrix.

Hint1: Formulae

$$\forall i, j > 0 : D_{i,j} = min \begin{cases} D_{i-1,j-1} + w(S1_i, S2_j) \\ D_{i,j-1} + w(-, S2_j) \\ D_{i-1,j} + w(S1_i, -) \end{cases}$$

Solution

2c)

Using the matrix from 1B) find the optimal alignment of the given sequences.

Hide

Solution

TACGCGC | | | | | : T-C-CGA

2d)

Find an optimal alignment of the given sequences, while assuming that the first G character in each sequence has to be matched/aligned.

Hide

Hint1: You can split the alignment at the G and treat it as two separate alignments

Solution

```
TACGCGC TACGCGC TACGCGC |:|| :|| : |:|| : |:|| : TCCGA-- TCCG-A- TCCG-A
```

Exercise 3 - Hirschberg recursion

Which statements about Needleman-Wunsch and the Hirschberg recursion are True and which are False.

3a)

Statements
\square Hirschberg computes global alignment in $O(n^2)$ space. \square Needleman-Wunsch computes global alignment in $O(n^2)$ time. \square The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. \square Hirschberg computes global alignment in $O(n)$ time.
Solution
$ \begin{tabular}{ll} \square Hirschberg computes global alignment in $O(n^2)$ space. \\ \square Needleman-Wunsch computes global alignment in $O(n^2)$ time. \\ \square The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. \\ \square Hirschberg computes global alignment in $O(n)$ time. \\ \\ \hline \end{tabular} $

Exercise 4 - Programming assignment

Programming assignments are available via Github Classroom and contain automatic tests.

We recommend doing these assignments since they will help you to further understand this topic.

Access the Github Classroom link: Programming Assignment: Sheet 03.

Preparing for the Exam

Below you find an interactive tool that allows you to create dynamic programming matrices to practice for the exam. You can fill in the table and check which values are correct via the Check Matrix button. Correctly filled cells will turn green.

For now this tool only supports the maximization approach.

Warning

This tool is in beta and might contain bugs.