Name Entity Recognition

Gao Xin Wang Han Wu Xin Yun Xiong Mai He

01

Introduction

NER: A recipe for unstructured data

Our Data

47,959 **sentences** &

35,178 **words**

Background Knowledge

	Sentence #	Word	POS	Tag
0	Sentence: 1	Thousands	NNS	О
1	Sentence: 1	of	IN	О
2	Sentence: 1	demonstrators	NNS	О
3	Sentence: 1	have	VBP	0
4	Sentence: 1	marched	VBN	О
5	Sentence: 1	through	IN	0
6	Sentence: 1	London	NNP	B-geo
7	Sentence: 1	to	TO	0
8	Sentence: 1	protest	VB	О
9	Sentence: 1	the	DT	О

BIO & POS

Tag	Label meaning	Example Given
geo	Geographical Entity	London
org	Organization	ONU
per	Person	Bush
gpe	Geopolitical Entity	British
tim	Time indicator	Wednesday
art	Artifact	Chrysler
eve	Event	Christmas
nat	Natural Phenomenon	Hurricane
О	No-Label	the

Lexical Term	Tag	Example
Noun	NN	Paris, France, Someone
Verb	VB Work, train, learn	
Determiner	DT	The, a

Preprocessing

Techniques

Create a Vocabulary:

Word2idx: This dictionary has all the **unique words**(terms) as keys with a corresponding unique **ID** as values

Tag2idx: This is the **reverse** of Word2ldx. It has the unique IDs as keys and their corresponding words (terms) as values

Padding:

sequence_pad_sequences:It helps to ensure the **max length** and padding methods(**post padding**)

02

Model

Bi-Istm without pretrained weights

Bi-LSTM model structure

In this project, we used two models to classify named entities in text into pre-defined categories.

Firstly, we implemented a similar bidirectional LSTM model based on Zhiheng. H's sequence tagging paper.

Bi-LSTM model structure

Bi-LSTM model results

Bi-LSTM model results

			_		
	precision	recall	f1-score	support	
B-art	0.00	0.00	0.00	0	
B-eve	0.36	0.02	0.04	861	
B-geo	0.89	0.81	0.85	8172	
B-gpe	0.91	0.97	0.94	2963	
B-nat	0.19	0.16	0.18	44	
B-org	0.70	0.74	0.72	3766	
B-per	0.80	0.80	0.80	3357	
B-tim	0.87	0.90	0.88	3981	
I-art	0.00	0.00	0.00	125	
I-eve	0.20	0.18	0.19	44	
I-geo	0.81	0.67	0.73	1778	
I-gpe	0.47	0.79	0.59	19	
I-nat	0.50	0.35	0.41	17	•
I-org	0.78	0.20	0.32	12852	
I-per	0.84	0.03	0.05	106360	
T-tim	0.76	0.78	0.77	1289	_
0	0.99	0.31	0.47	573772	╝
PAD	0.00	0.00	0.00	0	_
accuracy			0.28	719400	
macro avg	0.56	0.43	0.44	719400	
weighted avg	0.96	0.28	0.41	719400	

$$\begin{aligned} & \text{Precision} = \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Positive}} \\ & \text{Recall} = \frac{\textit{True Positive}}{\textit{True Positive} + \textit{False Negative}} \end{aligned}$$

The testing accuracy we was 96.58 %.

However, the model has a low F1 score.

Try pretrained model to improve the performance.

03

Model

Bert

BERT Basic

BERT (Bidirectional Encoder Representations from Transformers) is a by model proposed by researchers at Google Al Language. It presents state-of-the-art results in a wide variety of <u>NLP tasks</u>.

BERT's key technical innovation is applying the <u>bidirectional training of Transformer</u>, a popular attention model, to language modelling. This is in contrast to previous efforts which looked at a text sequence either from left to right or combined left-to-right and right-to-left training.

BERT Keypoints

- Large amounts of training data
 Wikipedia (~2.5B words) + Google Books Corpus (~800M words)
- 2. Masked Language Model Making word in sentence + Force bidirectionally
- 3. Next Sentence Prediction Sentence relationships
- 4. Transformers
 Attention + Massive parallelization

BERT model size & architecture

BERT Size & Architecture

We used the BERT-base model for our task

Pre-trained BERT model results

Continue drop in training loss Vs Fluctuate (Growth) trend in validation loss

- → A sign of overfitting
- 1. Model too complex
- 2. Pre-trained model
- 3. Too little dataset

Improved BERT

- 1. Without pre-trained
- 2. Only 3 layers

```
] model = BertForTokenClassification.from_pretrained("bert-base-uncased", num_labels=len(tag2idx)) model.to(device)
```

```
[ ] config = BertConfig(vocab_size_or_config_json_file= 30522, num_hidden_layers=3)
    model = BertForTokenClassification(config=config, num_labels=len(tag2idx))
    model.to(device)
```

Result Comparison

Test Loss: 0.169 | Test Acc: 92.40%

Test Loss: 0.276 | Test Acc: 95.11%

F1 Result Comparison

			_		
	precision	recall	f1-score	support	
B-art	0.00	0.00	0.00	0	
B-eve	0.36	0.02	0.04	861	
B-geo	0.89	0.81	0.85	8172	
B-gpe	0.91	0.97	0.94	2963	
B-nat	0.19	0.16	0.18	44	
B-org	0.70	0.74	0.72	3766	
B-per	0.80	0.80	0.80	3357	
B-tim	0.87	0.90	0.88	3981	
I-art	0.00	0.00	0.00	125	
I-eve	0.20	0.18	0.19	44	
I-geo	0.81	0.67	0.73	1778	
I-gpe	0.47	0.79	0.59	19	
I-nat	0.50	0.35	0.41	17	
I-org	0.78	0.20	0.32	12852	
I-per	0.84	0.03	0.05	106360	
I-tim	0.76	0.78	0.77	1289	
0	0.99	0.31	0.47	573772	
PAD	0.00	0.00	0.00	0	
accuracy			0.28	719400	
macro avg	0.56	0.43	0.44	719400	
weighted avg	0.96	0.28	0.41	719400	
			3000-00-7030030		

	precision	recall	f1-score	support	
B-art	0.12	0.41	0.18	22	
B-eve	0.17	0.34	0.23	32	
B-geo	0.61	0.46	0.52	9968	
B-gpe	0.77	0.28	0.41	8533	
B-nat	0.24	0.48	0.32	23	
B-org	0.55	0.30	0.39	7267	
B-per	0.68	0.61	0.64	3752	
B-tim	0.64	0.49	0.55	5305	
I-art	0.00	0.00	0.00	12	
I-eve	0.16	0.60	0.25	15	
I-geo	0.52	0.44	0.48	1743	
I-gpe	0.30	0.81	0.44	16	
I-nat	0.12	0.33	0.18	3	
I-org	0.51	0.43	0.47	3941	
I-per	0.75	0.61	0.67	4230	
I-tim	0.48	0.32	0.38	1909	
0	0.97	0.99	0.98	672629	
accuracy			0.95	719400	
macro avg	0.45	0.46	0.42	719400	
weighted avg	0.94	0.95	0.95	719400	

04

GUI

Tkinter

Design of GUI

The design choice:

Only have the function that get the output from pre-trained model with input sentence.

Elements:

The GUI is developed with the built- in package Tkinter. It has 4 main elements. Input box, 2 buttons and output space. After inputting the sentence to the box, with the left button, the output is displayed with predictions from our LSTM model.

After inputting the sentence to the box, with the right button, the output is displayed with predictions from our LSTM model. Besides, a text file output.txt is generated within the same folder of GUI.py, the content inside is the output.

Sample output from the GUI

The left site is the sample output.

Note that only one sentence at each time. The space, "\n" and "\r" at the end of the sentence will be automatically removed before passing to the model.

DEMO

THANKS