NAME: MOHANAVEL K

REGISTER NO: 611219106046

DATE: 24/09/2022

Assignment 2

1. Download the dataset from the source here.

About the dataset:

This dataset is all about churn modelling of a credit company. It has the details about the end user who are using credit card and also it has some variables to depicit the churn of the customer.

RowNumber - Serial number of the rows **CustomerId** - Unique identification of customer **Surname** - Name of the customer **CreditScore** - Cipil score of the customer **Geography** - Location of the bank **Gender** - Sex of the customer **Age** - Age of the customer **Tenure** - Repayment period for the credit amount **Balance** - Current balance in thier creidt card **NumOfProducts** - Products owned by the customer from the company **HasCrCard** - Has credit card or not (0 - no , 1 - yes) **IsactiveMember** - Is a active member or not **EstimatedSalary** - Salary of the customer **Exited** - Churn of the customer

import warnings
warnings.filterwarnings("ignore")

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

2. Load the dataset

df = pd.read_csv("Churn_Modelling.csv")
df.head()

١	RowNumbe	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	-

1 2 3 4	8 1 1	83807.8 59660.8 0.0 25510.8	30 00		1 3 2 1	0 1 0 1		1 0 0 1
Est 0 1 2 3 4	112 113 93	Salary 348.88 542.58 931.57 826.63 084.10	Exite	d 1 0 1 0				
df.tail(()							
Age	RowNur r	mbe C	ustome	erId	Surname	CreditSco	re Geography	/ Gender
9995	9	996	15606	229	Obijiaku	7	71 France	e Male
39 9996	9	997	15569	892	Johnstone	5:	L6 France	e Male
35 9997	9	998	15584	532	Liu	70)9 France	e Female
36 9998	9	999	15682	355	Sabbatini	7	72 Germany	/ Male
42 9999 28	10	000	15628	319	Walker	79	92 France	e Female
9995 9996 9997 9998 9999	Tenure 5 10 7 3 4	573 750	lance 0.00 69.61 0.00 75.31 42.79	Num	OfProducts 2 1 1 2 1	HasCrCard 1 1 0 1 1	IsActiveMer	nber \ 0 1 1 0 0
9995 9996 9997 9998 9999	Estimat	edSalar 96270 101699 42085 92888 38190	.64 .77 .58 .52	xited ((1 1 () L L			

3 a). Univariate analysis

#checking for categorical variables

category = df.select_dtypes(include=[np.object])
print("Categorical Variables: ",category.shape[1])

#checking for numerical variables

numerical = df.select_dtypes(include=[np.int64,np.float64])
print("Numerical Variables: ",numerical.shape[1])

Categorical Variables: 3
Numerical Variables: 11

df.columns

df.shape

(10000, 14)

credit = df['CreditScore']
credit.plot(kind="hist",figsize=(8,5))

<matplotlib.axes._subplots.AxesSubplot at 0x7f5aff578ad0>

geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af91209d0>

sns.countplot(df['Gender'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8ff5f10>

sns.distplot(df['Age'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8b08450>

plt.figure(figsize=(10,8))
sns.countplot(df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8a5fbd0>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af89fe350>

cr = df['HasCrCard'].value_counts()
cr.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8969490>

plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af891f2d0>

sns.distplot(df['EstimatedSalary'],hist=False)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af892a550>

plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af880ff90>

Inference:

- 1. The data has 11 numerical variables and 3 categorical variables.
- 2. It has 10000 rows and 14 columns
- 3. The normalized credit score is around 700, More than 500 people have credit score greater than 800.
- 4. France occupies 50% of customers, where as Germany and Spain shared equal.
- 5. Dataset is dominated by Male Customers.
- 6. Median age is around 40 to 45.
- 7. Highest number of customer has thier tenure period for 2 years.
- 8. Credit company has maximum customers, who uses single product.
- 9. Most of the customer has credit card.
- 10. More than 40% of the population is not an active member.
- **11.** The Churn is less compared to the satisfaction. **Dataset is imbalanced**.

3 b). Bivariate analysis

sns.barplot(x='Gender',y='CreditScore',hue='Geography',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af87e39d0>

sns.violinplot(x='Geography',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8700650>

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af868dcd0>

sns.violinplot(x='Gender',y='Balance',data=df)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5af8608290>

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5af85f9b90>

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5af85627d0>

sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=d f)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5af88c0190>

sns.barplot(x='Exited',y='Tenure',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af87d2550>

Inference:

1. Credit score for Male is higher in Spain.

- 2. Average bank salary lies in the range of 100k to 150k.
- 3. Estimated salary is normalized and same for all country.
- 4. Credit score for churn is low.
- 5. Churn in Germany is higher compared to other countries.
- 6. Exited people tenure period is around 6 years.

3 c). Multivariate analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

Gender	Geography	
Female	France	2261
	Germany	1193
	Spain	1089
Male	France	2753
	Spain	1388
	Germany	1316

Name: Geography, dtype: int64

gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)

Gender

Female 39.238389 Male 38.658237 Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean()
print(gp3)

Gender Geography

Female France 4.950022 Germany 4.965633 Spain 5.000000 Male France 5.049401 Germany 5.050152

Spain 5.057637

Name: Tenure, dtype: float64

```
gp4 = df.groupby('Geography')
['HasCrCard','IsActiveMember'].value_counts()
gp4.plot(kind="bar",figsize=(8,5)) print(gp4)
AttributeError
                                                Traceback (most recent call
<ipython-input-29-869056562afd> in <module>
----> 1 gp4 = df.groupby('Geography')
['HasCrCard','IsActiveMember'].value_counts()
       2 gp4.plot(kind="bar",figsize=(8,5))
       3 print(gp4)
/usr/local/lib/python3.7/dist-packages/pandas/core/groupby/groupby.py in
     _getattr____(self, attr)
    910
    911
         raise AttributeError(
--> 912
                      f"'{type(self).____name_}' object has no attribute
'{attr}'"
    913
                  )
    914
AttributeError: 'DataFrameGroupBy' object has no attribute
'value_counts'
gp5 = df.groupby(['Gender','HasCrCard','IsActiveMember'])
['EstimatedSalary'].mean() gp5.plot(kind="line",figsize=(10,8))
print(gp5)
qp6 = df.groupby(['Gender','IsActiveMember'])['Exited'].value counts()
gp6.plot(kind='bar',figsize=(10,8))
print(gp6)
gp7 = df.groupby('Exited')['Balance','EstimatedSalary'].mean()
print(gp7)
gp8 = df.groupby('Gender')['Geography','Exited'].value_counts()
gp8.plot(kind='bar',figsize=(10,8))
print (gp8)
```

Inference:

- 1. Germany has more female customers compared to male customers.
- 2. Average age of Male is 38, whereas average age of Female is 39.
- 3. Tenure period for both male and female is high in Spain.
- 4. It is observed that, those who have credit card are very active member in the company.

- The estimated salary for a person who is not having credit card is highwhen 5. compared to those having them.
- Churn for inactive member is high compared to active member. 6.
- Those who churn has thier estimated salary very low. 7.
- France has the more churn rate. 8.

4. Descriptive statistics df.describe().T

RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited	10000.0 1 10000.0 6 10000.0 3 10000.0 7 10000.0 1 10000.0 7 10000.0 5 10000.0 1	.56 .50 .89 .01 .64 .53 7.0	mean 00500e+03 59094e+07 05288e+02 02180e+01 .2800e+00 8589e+04 00200e+00 55000e-01 51000e-01 00902e+05 37000e-01	719 623	std 86.895680 36.186123 96.653299 10.487806 2.892174 97.405202 0.581654 0.455840 0.499797 10.492818 0.402769	155	min 1.00 350.00 18.00 0.00 0.00 1.00 0.00 11.58 0.00	\
	25°	%	5	0%	-	75%	r	max
RowNumber	2500.7	'5	5.000500e-	+03	7.500250e	+03	10000	0.00
CustomerId	15628528.2	:5	1.569074e-	+07	1.575323e	+07	15815690	0.00
CreditScore	584.0	0	6.520000e-	+02	7.180000e	+02	850	0.00
Age	32.0	0	3.700000e-	+01	4.400000e	+01	92	2.00
Tenure	3.0	0	5.000000e-	+00	7.000000e	+00	10	0.00
Balance	0.0	0	9.719854e-	+04	1.276442e	+05	250898	.09
NumOfProducts	1.0	0	1.000000e-	+00	2.000000e	+00	4	1.00
HasCrCard	0.0	0	1.000000e-	+00	1.000000e	+00	1	.00
IsActiveMember	0.0	0	1.000000e-	+00	1.000000e	+00	1	.00
EstimatedSalary	51002.1	1	1.001939e-	+05	1.493882e	+05	199992	.48
Exited	0.0	0	0.000000e	+00	0.000000e	+00	1	.00

5. Handling the missing values

df.isnull().sum()

RowNumber 0 0 CustomerId 0 Surname CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 0 IsActiveMember EstimatedSalary 0 0 Exited dtype: int64

There is no missing value in the dataset

6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint') Q3 =
    np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi =
    Q3+1.5*IQR mini =
    Q1-1.5*IQR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore']) plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'CreditScore')
sns.boxplot(df['CreditScore']) plt.show()</pre>
```

Before removing outliers


```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
```

sns.boxplot(df['Age'])
plt.show()

Before removing outliers

After removing outliers

sns.boxplot(df['Balance'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af810e490>

sns.boxplot(df['EstimatedSalary'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af807c810>

Outliers from Age and Credit Score columns are removed

7. Check for categorical column and perform encoding.

from sklearn.preprocessing import LabelEncoder le =
LabelEncoder()

df['Gender'] = le.fit_transform(df['Gender']) df['Geography']
= le.fit_transform(df['Geography'])

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
Ag 0 42	1	15634602	Hargrave	619.0	0	0
1	2	15647311	Hill	608.0	2	0
41 2 42	3	15619304	Onio	502.0	0	0
3	4	15701354	Boni	699.0	0	0
39 4 43	5	15737888	Mitchell	850.0	2	0

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	\
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

	EstimatedSalary	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)

df.head()

	editScore fProducts	Geography	Gender	Age	Tenure	Balance
0	619.0	, 0	0	42.0	2	0.00
1 1 1	608.0	2	0	41.0	1	83807.86

2	502.0	0	0	42.0	8	159660.80
3	699.0	0	0	39.0	1	0.00
2 4 1	850.0	2	0	43.0	2	125510.82

	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	1	101348.88	1
1	0	1	112542.58	0
2	1	0	113931.57	1
3	0	0	93826.63	0
4	1	1	79084.10	0

```
plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")
df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f5af85d82d0>

1. The Removed columns are nothing to do with model building. 2. Feature importance also checked using pearson correlation.

8. Data Splitting target = df['Exited'] data = df.drop(['Exited'],axis=1) print(data.shape) print(target.shape)

```
(10000, 10)
(10000,)
```

9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler se = StandardScaler()
```

```
data['CreditScore'] =
se.fit_transform(pd.DataFrame(data['CreditScore'])) data['Age'] =
se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] =
se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
```

data.head()

N.I.	CreditScore	、Geography	Gender	Age	Tenure	Balance
INU	ımOfProducts	\				
0	-0.326878	0	0	0.342615	2	-1.225848
1						
1	-0.440804	2	0	0.240011	1	0.117350
1						
2	-1.538636	0	0	0.342615	8	1.333053
3						
3	0.501675	0	0	0.034803	1	-1.225848
2						
4	2.065569	2	0	0.445219	2	0.785728
1						

	HasCrCard	IsActiveMember	EstimatedSalary
0	1	1	0.021886
1	0	1	0.216534
2	1	0	0.240687
3	0	0	-0.108918
4	1	1	-0.365276

10. Train test split

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test =
train_test_split(data,target,test_size=0.25,random_state=101)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(7500, 10)
(2500, 10)
```

(7500,) (2500,)

Conclusion:

- 1. The model is scaled using StandarScaler method.
- 2. The train and test split ratio is 15:5.
- 3. As it is a classification problem, basic algorithms can be used to build ML models.