MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 – FEBRUARY 2008 SOLUTION KEY

Team Round - continued

C) Let $A = \cos^{-1}(2x)$ and $B = \sin^{-1}(x)$.

It was not necessary to specify that x must be negative.

For
$$x = 0$$
, $A - B = \pi/2 - 0 = \pi/2 < 5\pi/6$

Positive values of x must be $\leq \frac{1}{2}$.

As x increases from 0 to $\frac{1}{2}$,

 $Cos^{-1}(2x)$ decreases from $\pi/2$ to 0 and

 $Sin^{-1}(x)$ increases from 0 to $\pi/6$.

Thus, there are <u>no</u> positive values for which the difference can be $5\pi/6$.

For x < 0, A is in quadrant 2 ($\pi/2 < A < \pi$) and B is in quadrant 4 ($-\pi/2 < B < 0$) as indicated in the diagram at the right

Taking the sin of both sides,

$$Sin(A - B) = sin A cos B - sin B cos A = 1/2$$

$$\rightarrow \sqrt{1-4x^2} \cdot \sqrt{1-x^2} - (2x)(x) = 1/2$$

$$\rightarrow ((1-4x^2)\cdot(1-x^2)) = (1/2+2x^2)^2$$

$$\rightarrow 1 - 5x^2 + 4x^4 = 1/4 + 2x^2 + 4x^4$$

$$\Rightarrow$$
 7 $x^2 = 3/4 \Rightarrow x^2 = \frac{3 \cdot 7}{4 \cdot 7 \cdot 7} \Rightarrow x = -\frac{\sqrt{21}}{14}$ (the positive root is rejected)

D)
$$(18+c) + \frac{c}{2} = (18-c)H \implies 36 + 2c + c = 2(18-c)H \implies H = \frac{36+3c}{36-2c} = 1 + \frac{5c}{36-2c}$$

Therefore, the positive integer possibilities for c are 1 ... 17. $c = 1 \dots 17 \implies 8$, $1 + 40/20 = (8, 3)$; 12 , $1 + 60/12 = (12, 6)$; 16 , $1 + 80/4 = (16, 21)$ Other values of c produce fractional values of d .