Heart Failure Death Prediction

Badger Analysts Shaonan Wang & Yumian Cui

Content

- Thesis statement
- Motivation for models
- Data processing/modeling
- Model performance evaluation
- Feature Selection/Analysis

Thesis statement

- Found <u>Random Forest</u> to be the model with optimal performance applied to this dataset (<u>Logistic Regression</u> also works well)
- <u>Serum_Creatinine</u>, <u>Age</u>, <u>Ejection_Fraction</u>, <u>and</u>
 <u>Time</u> most correlated to the Death Event

Logistic Regression

- Estimate dependent binary variables
- Provide magnitude & direction of the association
- Limitations: linearity assumption

Random Forest

- Improved upon the decision tree: higher accuracy and lowered variance
- Insensitive to outliers
- Nonlinear nature

Source from medium(top right), Wikipedia (bottom right)

Data processing/modeling

- Data preprocessing
- import the classifiers from sklearn -> get 5-fold cross validation score -> the hyperparameter tuning by GridSearchCV
- In the mid of data modeling,
 went back to remove outliers
 -> accuracy increased by
 2-3%.

	5 fold cross validation accuracy score	After Hyperparameter Tuning
RF	0.8746 N =	-55 ► 0.8748
LR	0.8357 <u>L</u>	:1 1 0.8619
KNN	0.7505	N/A

Model evaluation

- Confusion Matrix + ROC curve
- Both models do well, but Random Forest is slightly better.
- The limitation may be...not sure model performance after removing outliers

	RF***	LR
Accuracy	0.8823	0.8627
Precision	0.7857	0,7692
Recall	0.7857	0.7142

Feature Selection/Analysis

General Procedures

- Identify the correlations between DEATH_EVENT and other features
- Choose highly correlated features as different independent variable (x) combinations
 - Match with Random Forest feature importance
- Evaluate based on the accuracy scores of the confusion matrix in testing and training sets

Feature selection/Analysis

- Choose features with high positive correlations
- Divide the testing and training sets into 50/50
 - Should increase the sample size
- Choose features with high negative correlations
- Combine features
- More accurately predict factors preventing the heart failure death, and identify features highly correlated to the death

Test	Training sets accuracy	Diff of accuracy btw training and testing sets
1&2	75%	5%~7%
3	76%	1%
4	82%	8%
5&6	83%	12%~13%

Conclusion

Related Features

- Older people with higher levels of serum creatinine in the blood
 - o more likely to die of heart failure
- People with a higher percentage of blood leaving the heart at each contraction and follow-up more frequently
 - less likely to induce heart failure death
- Other features like high blood pressure and smoking
 - likely to cause heart-failure death

Health Suggestion

- Older people keep the levels of serum creatinine and blood pressure low
- Exercise more to strengthen the heart muscles to push more blood out of the heart

Thanks for listening

Questions?