TOPIC MODELING

토픽 모델링(Topic Modeling)

- 구조화되지 않은 방대한 문헌집단에서 주제를 찾아내기 위한 알고리즘
 - 의미가 유사한 단어들을 클러스터링(그룹화)하여 주제를 추론(생성)하는 모델

proportion: 비율

assignment: 배치, 배정

토픽 모델링 종류

- LDA(Latent Dirichlet Allocation)
 - 문서들은 토픽들의 혼합으로 구성되어 있고, 토픽들은 확률 분포에 기반하여 단어들을 생성 한다고 가정함. 데이터가 주어지면, 문서가 생성되는 과정을 역추적하는 방식임
- ATM(Author Topic Model)
 - LDA는 문서별 주제분포를 계산하는 반면, ATM은 저자별 주제분포를 계산함
- DMR(Dirichlet Multinomial Regression)
 - LDA를 확장한 기법으로 **문서의 메타데이터(저자, 연도, 발행처)에 따른 주제 분포를 계산**할 수 있음

토픽 모델링 종류

- LDA(Latent Dirichlet Allocation)
 - Latent: 잠재적인, Dirichlet: 수학자 이름, Allocation: 할당
 - 문서들은 토픽들의 혼합으로 구성되어 있고, 토픽들은 확률 분포에 기반하여 단어들을 생성 한다고 가정함
 - 데이터가 주어지면, 문서가 생성되는 과정을 **역추적**하여 토픽을 찾아나가는 방법

- 잠재 디리클레 할당(LDA)은 토픽 모델링의 대표적인 알고리즘
- 코드 없이 실습: https://lettier.com/projects/lda-topic-modeling
- 문서들은 토픽들의 혼합으로 구성되어 있고, 토픽들은 확률 분포에 기반하여 단어들을 생성한다고 가정함

topic

- 문서가 작성되는 (잠재적인) 과정
 - 1) 문서에 사용할 단어의 개수 N을 정함
 - 5개의 단어 선택: 뼈다귀, 말티즈, 생선, 야옹이, 집사
 - 2) 문서에 사용할 토픽의 혼합을 결정
 - 토픽을 2개라고 정했으면 강아지 관련된 토픽 60%, 고양이 관련 토픽 40%을 정함
 - 3) 문서에 사용할 각 단어를 아래와 같이 정함
 - 3-1) 토픽 분포에서 토픽 T를 확률적으로 선택
 - 2)에서 정한 토픽 확률을 기반하여 60% 강아지, 40% 고양이 토픽 선택
 - 3-2) 선택한 토픽 T에서 단어의 출현 확률 분포에 기반해 문서에 사용할 단어를 고름
 - 강아지 토픽이 선택되었다면, 강아지 토픽내에서 단어별로 확률을 기반하여 선택
 - Ex) 강아지 토픽인 경우, 강아지: 30%, 뼈다귀: 20%, 말티즈: 30%, ...

- LDA 알고리즘
 - 1) 사용자는 **토픽의 개수 k**를 제공
 - 토픽 k가 M개의 문서에 걸쳐 분포되어 있다고 가정
 - 2) 모든 단어를 K개 중 하나의 토픽에 각각 무작위로 할당
 - 3) 모든 문서내의 모든 단어에 대해 아래의 알고리즘을 반복 진행
 - 3-1) 어떤 문서의 각 단어 w는 자신은 잘못된 토픽에 할당되어져 있지만, 다른 단어들은 전부 올바른 토픽에 할당되어져 있는 상태라고 가정
 - 이에 따라 단어 w는 아래의 두 가지 기준에 따라 토픽이 재할당
 - p(topic t | document d): 문서 d의 단어들 중 토픽 t에 해당하는 단어의 비율
 - p(word w | topic t): 단어 w를 갖고 있는 모든 문서들 중 토픽 t가 할당된 비율

- 단어 w는 아래의 두 기준에 따라 토픽을 재할당
 - 1. p(topic t | document d): 문서 d의 단어들 중 토픽 t에 해당하는 단어들의 비율
 - 2. p(word w | topic t): 단어 w를 갖고 있는 모든 문서들 중 토픽 t가 할당된 비율
- Ex) doc1의 apple의 토픽을 할당한다면?

doc1

	word	apple	banana	apple	dog	dog
I	topic	В	В	???	Α	Α

doc2

word	cute	book	king	apple	apple
topic	В	В	В	В	В

- Ex) doc1의 apple의 토픽을 할당한다면?
 - 1. p(topic t | document d): 문서 d의 단어들 중 토픽 t에 해당하는 단어들의 비율
 - doc1의 모든 단어들은 토픽 A와 토픽 B 50대 50의 비율로 할당됨
 - => 기준 1을 가지고 doc1 apple의 토픽을 할당할 수 없음

aocı	d	o	c	1
------	---	---	---	---

word	apple	banana	apple	dog	dog
topic	В	В	???	Α	Α

doc2

word	cute	book	king	apple	apple
topic	В	В	В	В	В

- Ex) doc1의 apple의 토픽을 할당한다면?
 - 2. p(word w | topic t): 단어 w를 갖고 있는 모든 문서들 중 토픽 t가 할당된 비율
 - apple이 전체 문서에서 어떤 토픽에 할당되어 있는지를 관찰
 - => 기준 2를 가지고 LDA는 doc1의 apple을 B 토픽에 할당할 수 있음

			_
_	_	_	-
п	റ		•
•	v	•	

word	apple	banana	apple	dog	dog
topic	В	В	???	Α	Α

doc2

word	cute	book	king	apple	apple
topic	В	В	В	В	В

- 모델 아키텍쳐
 - D: 말뭉치 전체 문서 개수
 - K: 전체 토픽 수
 - N: d번째 문서의 단어 수
 - 하이퍼 마라미터: α, β, **κ**
 - 하이퍼 파라미터는 모델의 성능에 영향을 줄 수 있는 매개변수로 분석가가 정해야 됨

- 하이퍼 파라미터
 - 모델의 성능에 영향을 줄 수 있는 매개변수로 분석가가 정해야 됨
 - α : 문서-토픽분포를 위한 Hyper-parameter
 - 작을수록 적은 수의 토픽으로 쏠림
 - β : 토픽-단어분포를 위한 Hyper-parameter
 - 작을수록 적은 수의 단어로 쏠림
 - K: 전체 토픽 수
 - https://lettier.com/projects/lda-topic-modeling

- 하이퍼 파라미터
 - α : 문서-토픽분포를 위한 Hyper-parameter
 - 작을수록 토픽이 한 쪽으로 쏠림
 - α가 작은 경우

- 하이퍼 파라미터
 - α : 문서-토픽분포를 위한 Hyper-parameter
 - 클수록 토픽이 여러 개로 쏠림
 - α가 큰 경우

Docume	ent 0			20		25	
Docume	ent 1			1		44	
Docume	ent 2			26		19	
Docume	ent 3			9		36	
				_		5	
	Topic 0	Topic 1	Topic 2		Topic 0	Topic 1	Topic 2
_	0.057	0.964	0.023	Document 0	0.333	0.392	0.275
5	0.943	0.036	0.977	Document 1	0.333	0.059	0.608
	Topic 0	Topic 1	Topic 2	Document 2	0.412	0.529	0.059
				Document 3	0.745	0.216	0.039
					Topic 0	Topic 1	Topic 2

- 하이퍼 파라미터
 - β : 토픽-단어분포를 위한 Hyper-parameter
 - 작을수록 단어가 **한 쪽 토픽으로** 쏠림
 - β가 작은 경우

- 하이퍼 파라미터
 - β : 토픽-단어분포를 위한 Hyper-parameter
 - 클수록 단어들이 여러 개의 토픽으로 쏠림

• β가 큰 경우

						5		
Docume	nt 0			20	20		25	
Docume	ent 1			1	1			
Docume	nt 2			26		19		
Docume	nt 3			9		36	36	
				_		5		
				_				
	Topic 0	Topic 1	Topic 2		Topic 0	Topic 1	Topic 2	
_	0.068	0.743	0.435	Document 0	0.083	0.083	0.834	
5	0.932	0.257	0.565	Document 1	0.938	0.041	0.021	
	Topic 0	Topic 1	Topic 2	Document 2	0.083	0.521	0.396	
				Document 3	0.729	0.083	0.187	
					Topic 0	Topic 1	Topic 2	

- 하이퍼 파라미터
 - K: 전체 토픽 수

- 모델 아키텍쳐
 - D: 말뭉치 전체 문서 개수
 - K: 전체 토픽 수
 - N: d번째 문서의 단어 수
 - 하이퍼 마라미터: α, β, **K**
 - 하이퍼 파라미터는 모델의 성능에 영향을 줄 수 있는 매개변수로 분석가가 정해야 됨

- 모델 아키텍쳐
 - β 를 인자로 받아 K개 만큼 반복하여 $w_{d,n}$ 으로 보냄
 - $ullet \phi_k$: k번째 토픽에 해당하는 벡터
 - 각 열의 합은 1

	φ_1	ϕ_2	ϕ_3
Terms	Topic 1	Topic 2	Topic 3
Baseball	0.000	0.000	0.200
Basketball	0.000	0.000	0.267
Boxing	0.000	0.000	0.133
Money	0.231	0.313	0.400
Interest	0.000	0.312	0.000
Rate	0.000	0.312	0.000
Democrat	0.269	0.000	0.000
Republican	0.115	0.000	0.000
Cocus	0.192	0.000	0.000
President	0.192	0.063	0.000

- θ_d : d번째 문서가 가진 토픽 비중을 나타내는 벡터
 - θ_d 는 확률이기 때문에 모든 요소의 합이 $\mathbf{1}$
 - 하이퍼파라미터 α에 영향을 받음

	Docs	Topic 1	Topic 2	Topic 3
$ heta_1$	Doc 1	0.400	0.000	0.600
	Doc 2	0.000	0.600	0.400
	Doc 3	0.375	0.625	0.000
	Doc 4	0.000	0.375	0.625
θ_5	Doc 5	0.500	0.000	0.500
	Doc 6	0.500	0.500	0.000

- $z_{d,n}$: d번째 문서 n번째 단어가 어떤 토픽에 해당하는지 할당해주는 역할
- $w_{d,n}$: 문서에 등장하는 단어를 할당해주는 역할
 - 그림과 같이 ϕ_k 와 $z_{d,n}$ 에 같이 영향을 받음

- 1_cut_file.py
 - 지도학습 시간이 오래 걸려서 전체 데이터의 **10**%(**100**,**000**개)만 사용하여 실습

```
1    num = 100000
2    with open('abcnews-date-text.csv', 'r') as fr:
3         data = fr.readlines()[:num+1]
4    with open('abcnews-date-text_%s.csv' % num, 'w') as fw:
5    fw.writelines(data)
```

- 2_main2.py
 - NLTK를 이용하여 LDA 알고리즘 실습
 - NLTK: Natural Language Toolkit
 - Natural Language: 자연어(영어, 한국어, 일본어, 중국어)
 - Toolkit: 도구
 - NLTK 강의 자료 참조
 - 자연어 처리 및 텍스트 분석용 Python Package

- pd.read_csv('abcnews_date-text_100000.csv', error_bad_lines=False)
 - csv 형태로 데이터를 읽는 함수
 - error_bad_lines = False: csv 형식이 아닌 줄은 건너뛰는 옵션
- data.head(5)
 - 전체 데이터에서 맨 위에 있는 5개 데이터를 출력함(column 정보도 같이 출력)

1	import pandas as pd	1000	00	
2	<pre>import nltk</pre>	р	ublish_date	headline_text
3	from nltk.corpus import stopwords	0	20030219	aba decides against community broadcasting lic
4		1	20030219	act fire witnesses must be aware of defamation
5	<pre>data = pd.read_csv('abcnews-date-text_100000.csv', error_bad_lines=False)</pre>	2	20030219	a g calls for infrastructure protection summit
6	<pre>print(len(data))</pre>	3	20030219	air nz staff in aust strike for pay rise
7	<pre>print(data.head(5))</pre>	4	20030219	air nz strike to affect australian travellers

- Topic Modeling을 수행할 때, publish_date 컬럼은 필요 없기 때문에 제거함
 - publish_date는 출판 날짜이기 때문에 텍스트 마이닝에 관계 없음
 - 열은 사라지고 행 단위로 집계하고 싶은 경우 axis=1

```
10    text = data[['headline_text']]
10    print(text.head(5))
11    text2 = text.copy()
12    text2['headline_text'] = text.apply(lambda row: nltk.word_tokenize(row['headline_text']), axis=1)
13    print(text2.head(5))
```

```
headline_text
```

```
aba decides against community broadcasting lic...
act fire witnesses must be aware of defamation
a g calls for infrastructure protection summit
air nz staff in aust strike for pay rise
air nz strike to affect australian travellers
```



```
headline_text
```

- 0 [aba, decides, against, community, broadcastin...
- 1 [act, fire, witnesses, must, be, aware, of, de...
- 2 [a, g, calls, for, infrastructure, protection,...
- 3 [air, nz, staff, in, aust, strike, for, pay, r...
- 4 [air, nz, strike, to, affect, australian, trav...

- pandas의 apply() 함수
 - 행 또는 열 또는 전체 원소에 대해 특정 연산을 적용시킬 때 사용하는 함수
 - 행은 사라지고 열 단위로 집계하고 싶은 경우 axis=0
 - 열은 사라지고 행 단위로 집계하고 싶은 경우 axis=1

```
text = data[['headline_text']]
text.head(5)
text2 = text.copy()
text2['headline_text'] = text.apply(lambda row: nltk.word_tokenize(row['headline_text']), axis=1)
print(text2.head(5))
```

pandas/ex1.py

- pandas의 apply() 함수
 - 행 또는 열 또는 전체 원소에 대해 특정 연산을 적용시킬 때 사용하는 함수

```
import numpy as np
import pandas as pd

a = pd.DataFrame({'국어': [51,65,78], \
'수학': [80,90,100]}, \
index=['Kim','Lee','Choi'])

print(a)
b = a.apply(np.sqrt)
print(b)
```


pandas/ex2.py

- pandas의 apply() 함수
 - 행 또는 열 또는 전체 원소에 대해 특정 연산을 적용시킬 때 사용하는 함수
 - 행은 사라지고 열 단위로 집계하고 싶은 경우 axis=0
 - 열은 사라지고 행 단위로 집계하고 싶은 경우 axis=1

```
<sup>™</sup> ex2.py ×

        import numpy as np
        import pandas as pd
        |a = pd.DataFrame({'국어': [51,65,78], \
                            '수학': [80,90,100]}, \
 5
 6
                           index=['Kim','Lee','Choi'])
        print(a)
        b = a.apply(np.average, axis=0)
 9
        print(b)
        c = a.apply(np.average, axis=1)
10
11
        print(c)
```

```
국머 수학
Kim
     51
          80
Lee
     65
          90
Choi
     78 100
국어
       64.666667
                  axis=0
수학
       90.000000
dtype: float64
Kim
       65.5
       77.5
Lee
                   axis=1
Choi
       89.0
dtype: float64
```

- 불용어 제거(stopwords)
 - a, in, for와 같은 단어가 제거되는 것을 볼 수 있음
 - 전치사와 같은 단어는 데이터 분석에 거의 도움이 되지 않고 분석하기가 어려움

```
stop = stopwords.words('english')
text3 = text2.copy()
text3['headline_text'] = text2['headline_text'].apply(lambda x: [word for word in x if word not in stop])
print(text3.head(5))
```

```
headline_text

0 [aba, decides, against, community, broadcastin...

1 [act, fire, witnesses, must, be, aware, of, de...

2 [a, g, calls, for, infrastructure, protection,...

3 [air, nz, staff, in, aust, strike, for, pay, r...

4 [air, nz, strike, to, affect, australian, trav...
```



```
headline_text

[aba, decides, community, broadcasting, licence]

[act, fire, witnesses, must, aware, defamation]

[g, calls, infrastructure, protection, summit]

[air, nz, staff, aust, strike, pay, rise]

[air, nz, strike, affect, australian, travellers]
```

- 표제어 추출(lemmatize)
 - broadcasting => broadcast
 - calls => call

```
from nltk.stem import WordNetLemmatizer
text4 = text3.copy()
text4['headline_text'] = text3['headline_text'].apply(lambda x: [WordNetLemmatizer().lemmatize(word, pos='v') for word in x])
print(text4.head(5))
```

```
headline_text

[aba, decides, community, broadcasting, licence]

[act, fire, witnesses, must, aware, defamation]

[g, calls, infrastructure, protection, summit]

[air, nz, staff, aust, strike, pay, rise]

[air, nz, strike, affect, australian, travellers]
```



```
headline_text

[aba, decide, community, broadcast, licence]

[act, fire, witness, must, aware, defamation]

[g, call, infrastructure, protection, summit]

[air, nz, staff, aust, strike, pay, rise]

[air, nz, strike, affect, australian, travellers]
```

- 길이가 짧은 단어 제거
 - 길이가 짧은 단어는 유용한 정보가 담겨 있지 않다고 가정하여 제거함
 - Ex) g, nz

```
25 #길이가 짧은 단어 제거
26 tokenized_doc = text4['headline_text'].apply(lambda x: [word for word in x if len(word) > 3])
27 print(tokenized_doc[:5])
```

- 역토큰화(Detokenize)
 - 길이가 짧은 단어를 제거하기 위해 토근화했던 작업을 다시 되돌리기 위해 역토큰화 작업 수

```
detokenized doc = []
30
       |for i in range(len(text4)):
31
           t = ' '.join(tokenized doc[i])
32
           detokenized_doc.append(t)
33
       text4['headline_text'] = detokenized_doc # 다시 text['headline_text']에 재저장
34
```

```
0
        [decide, community, broadcast, licence]
1
       [fire, witness, must, aware, defamation]
2
     [call, infrastructure, protection, summit]
                    [staff, aust, strike, rise]
       [strike, affect, australian, travellers]
4
```


0

Name: headline text, dtype: object decide community broadcast licence fire witness must aware defamation 2 call infrastructure protection summit staff aust strike rise strike affect australian travellers

- TfidfVectorizer
 - 1,000개의 단어를 가지고 행렬을 만들기 위해 TF-IDF 행렬 만들기

```
37
      from sklearn.feature_extraction.text import TfidfVectorizer
       vectorizer = TfidfVectorizer(stop words='english', max features=1000) # 상위 1,000개의 단어를 보존
38
       X = vectorizer.fit transform(text4['headline_text'])
39
40
      from sklearn.decomposition import LatentDirichletAllocation
41
       lda model = LatentDirichletAllocation(n components=10, max iter=1)
42
      lda top = lda model.fit transform(X)
43
      terms = vectorizer.get feature names() # 단어 집합. 1,000개의 단어가 저장됨.
44
45
46
      def get_topics(components, feature_names, n=10):
47
          for idx, topic in enumerate(components):
              print("Topic %d:" % (idx+1), [(feature_names[i], topic[i].round(2)) for i in topic.argsort()[:-n - 1:-1]])
48
49
50
       get_topics(lda_model.components_, terms)
```

- LDA 적용
 - n_componenets: 토픽의 개수
 - max_iter: 반복 횟수

```
37
       from sklearn.feature extraction.text import TfidfVectorizer
       vectorizer = TfidfVectorizer(stop_words='english', max_features=1000) # 상위 1,000개의 단어를 보존
38
      X = vectorizer.fit transform(text4['headline text'])
39
40
       from sklearn.decomposition import LatentDirichletAllocation
41
42
       lda model = LatentDirichletAllocation(n_components=10, max_iter=1)
43
      lda top = lda model.fit transform(X)
44
       terms = vectorizer.get_feature_names() # 단어 집합. 1,000개의 단어가 저장됨.
45
      def get topics(components, feature names, n=10):
46
47
           for idx, topic in enumerate(components):
               print("Topic %d:" % (idx+1), [(feature_names[i], topic[i].round(2)) for i in topic.argsort()[:-n - 1:-1]])
48
49
      get topics(lda model.components , terms)
50
```

- get_topics()
 - enumerate 함수를 이용하여 LDA 수행 결과 출력

```
Topic 4: [('iraq', 207.87), ('make', 194.72), ('minister', 139.31), ('
                                                                                                      Topic 5: [('iraq', 179.29), ('welcome', 109.91), ('govt', 100.15), ('s
      from sklearn.feature extraction.text import TfidfVectorizer
37
                                                                                                      Topic 6: [('miss', 198.88), ('claim', 188.31), ('warn', 179.98), ('urg
      vectorizer = TfidfVectorizer(stop_words='english', max_features=1000) # 상위 1,000개의 단어를 보존
38
39
      X = vectorizer.fit transform(text4['headline text'])
                                                                                                      Topic 7: [('govt', 361.31), ('kill', 197.64), ('arrest', 186.69), ('cc
40
                                                                                                      Topic 8: [('face', 167.35), ('council', 146.31), ('support', 136.18),
      from sklearn.decomposition import LatentDirichletAllocation
41
                                                                                                      Topic 9: [('urge', 195.58), ('concern', 181.4), ('australia', 152.56),
      lda model = LatentDirichletAllocation(n components=10, max iter=1)
42
                                                                                                      Topic 10: [('police', 269.05), ('murder', 167.72), ('deal', 147.74), (
      lda top = lda_model.fit_transform(X)
43
      terms = vectorizer.get feature names() # 단어 집합. 1,000개의 단어가 저장됨.
44
45
      def get topics(components, feature names, n=10):
46
47
          for idx, topic in enumerate(components):
              print("Topic %d:" % (idx+1), [(feature names[i], topic[i].round(2)) for i in topic.argsort()[:-n - 1:-1]])
48
49
50
      get_topics(lda_model.components_, terms)
```

Topic 1: [('lead', 214.92), ('seek', 172.07), ('plan', 171.75), ('clai Topic 2: [('charge', 441.5), ('police', 248.42), ('seek', 166.38), ('v Topic 3: [('plan', 424.79), ('court', 292.06), ('police', 190.35), ('£

- get_topics() 분석 1
 - get_topics() 함수를 호출하기 전 변수 값 확인
 - Ida_model.componenets_
 - terms

```
get_topics(lda_model.components, terms)
                   53
                            #n_componenets: topic パ수
                            #max iter: The maximum number of iterations
= | 4 ± ± ± ± | = |
+ 🔻 🗏 Ida_model.components_ = {ndarray} [[32.09096241 2.78792493 5.38320531 ... 6.05714111 5.01728644\nabel{he}n 7.50055209]\nabel{he}n [1.5797632 5.5970029]
          on min = {float64} 0.10059404529698444
          on max = {float64} 366.4361975713806
       shape = {tuple} <class 'tuple'>: (10, 1000)
       dtype = {dtype} float64
          o1 size = {int} 10000
          = array = {NdArrayItemsContainer} < pydevd_plugins.extensions.types.pydevd_plugin_numpy_types.NdArrayItemsContainer object at 0x0000018C563A45C0>
         terms = {|list} <class 'list'>: ['2004', 'abbott', 'aboriginal', 'abuse', 'accc', 'accept', 'access', 'accident', 'accuse', 'aceh', 'action', 'address', 'adelaide', 'admit', 'affec
          01 0000 = {str} '2004'
          01 0001 = {str} 'abbott'
          01 0002 = {str} 'aboriginal'
          01 0003 = {str} 'abuse'
          01 0004 = {str} 'accc'
          01 0005 = {str} 'accept'
          01 0006 = {str} 'access'
          01 0007 = {str} 'accident'
          01 0008 = {str} 'accuse'
```

main2.py

- get_topics() 분석 2
 - tuple, argsort(), for문, list comprehension으로 복잡하게 구성되어 있음
 - idx: 0
 - topic: [32.09096241 ...]

```
get_topics(lda_model.components, terms)
```

```
| Ida_model.components_ = {ndarray} [[32.09096241 2.78792493 5.38320531 ... 6.05714111 5.01728644\| 7.50055209]\| [ 1.5797632 5. ] | terms = {list} <class 'list'>: ['2004', 'abbott', 'aboriginal', 'abuse', 'accc', 'accept', 'access', 'accident', 'accuse', 'aceh', 'action', 'address', 'adelaide', 'accc' | components = {ndarray} [[32.09096241 2.78792493 5.38320531 ... 6.05714111 5.01728644\| 7.50055209]\| n [ 1.5797632 5.5970029 1 ] | feature_names = {list} <class 'list'>: ['2004', 'abbott', 'aboriginal', 'abuse', 'accc', 'accept', 'access', 'accident', 'accuse', 'aceh', 'action', 'address', 'adelaide', 'accc' | idx = {int} 0 | n = {int} 10 | topic = {ndarray} [32.09096241 2.78792493 5.38320531 12.24528302 6.23928561 0.76320207\| n 5.44842603 33.86424847 46.92285926 | idx = {int} 10 | idx = {int}
```

main2.py

- get_topics() 분석 3
 - 코드를 하나씩 쪼개어 출력 값을 확인하면서 분석하는 것이 공부에 많은 도움이 됨
 - PyCharm의 Debug 기능 활용하기
 - artsort() => https://stml.tistory.com/12

```
Topic 1: ('iraq', 264.67)('probe', 233.91)('police', 206.32)(
def get topics(components, feature names, n=10):
                                                                       Topic 2: ('police', 304.9)('plan', 250.17)('urge', 176.39)('he
    for idx, topic in enumerate(components):
                                                                       Topic 3: ('report', 239.73)('govt', 168.81)('police', 168.76)
        topic_list = topic.argsort()
                                                                       Topic 4: ('continue', 294.8)('boost', 205.41)('fund', 195.24)
        #print(topic list)
                                                                       Topic 5: ('kill', 221.4)('attack', 180.97)('govt', 166.6)('app
        topic list2 = topic list[:-(n+1):-1]
                                                                       Topic 6: ('govt', 210.01)('police', 198.62)('charge', 192.63)
        print("\nTopic %d:" % (idx+1), end=' ')
                                                                       Topic 7: ('plan', 207.24)('govt', 166.54)('concern', 166.48)(
        for i in topic list2:
                                                                       Topic 8: ('charge', 253.88)('court', 231.5)('plan', 167.68)('
            print_tuple = (feature_names[i], topic[i].round(2))
                                                                       Topic 9: ('consider', 207.57)('claim', 170.9)('plan', 144.07)
            print(print tuple, end='')
                                                                       Topic 10: ('play', 133.8)('police', 118.92)('kill', 114.38)('
```

- 토픽 모델링의 토픽 개수(K)를 지정하는 방법
 - 분석을 하고자 하는 문서에 대해 자세히 알고 문서의 개수가 적은 경우, 적절한 토픽 개수를 정할 수 있음
 - 하지만 대부분의 연구에서 적절한 토픽 개수를 정하기 어렵기 때문에, 통계적인 방법으로 최적의 토픽 개수를 구해야 함
 - 통계적 지표
 - Perplexity
 - Topic coherence

- Perplexity
 - 혼란도(사전적 의미: 당혹, 혼란, 곤혹)
 - 토픽 개수를 늘릴수록 perplexity는 감소하는 경향이 보이며, 특정 토픽 개수 지점을 지나면 더 이상 perplexity는 감소하지 않고 수렴하는 지점이 나타남
 - 수렴하는 지점 => 최종 perplexity
 - Perplexity가 작으면 작을수록 토픽 모델이 실제 문서 내용을 잘 분류한다는 뜻으로 해석할 수 있음

- Topic Coherence
 - coherence => 일관성
 - 실제로 사람이 해석하기에 적합한 평가 척도를 만들기 위해 제시된 척도
 - 토픽 모델링 결과로 나온 주제들에 대해 각각의 주제에서 상위 N개의 단어 추출
 - 모델링이 잘 될수록 한 주제 안에는 의미론적으로 유사한 단어가 많이 모여있음
 - 따라서 상위 단어 간의 유사도를 계산하여 평균을 구하면 실제로 해당 주제가 의미론적으로 일치하는 단어들끼리 모여있는지 파악할 수 있음

- calc_topic_cnt1.py
 - RegexpTokenizer('[\w]+'): a-z, A-Z, 0-9, _을 찾는 정규식
 - PorterStemmer(): 단어의 접미사를 제거하는 라이브러리
 - Ex) cats => cat, conflated => conflate, troubling => trouble, relational => relate

```
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from gensim import corpora
import gensim
from nltk.tokenize import RegexpTokenizer

tokenizer = RegexpTokenizer('[\w]+')
stop_words = stopwords.words('english')
p_stemmer = PorterStemmer()
```

- calc_topic_cnt1.py
 - 빈 리스트 doc_set에 **10**개의 문장 저장

```
doc_a = "Brocolli is good to eat. My brother likes to eat good brocolli, but not my mother."
doc_b = "My mother spends a lot of time driving my brother around to baseball practice."
doc_c = "Some health experts suggest that driving may cause increased tension and blood pressure."
doc_d = "I often feel pressure to perform well at school, but my mother never seems to drive my brodoc_e = "Health professionals say that brocolli is good for your health."
doc_f = "Big data is a term used to refer to data sets that are too large or complex for traditional doc_g = "Data with many cases offer greater statistical power, while data with higher complexity madec_h = "Big data was originally associated with three key concepts: volume, variety, and velocity.
doc_i = "A 2016 definition states that 'Big data represents the information assets characterized by doc_j = "Data must be processed with advanced tools to reveal meaningful information."

doc_set = [doc_a, doc_b, doc_c, doc_d, doc_e, doc_f, doc_g, doc_h, doc_i, doc_j]
```

- calc_topic_cnt1.py
 - lower(): 소문자 변환 함수
 - tokenize, stopwords, stemming을 통해 데이터 전처리 수행

```
for w in doc_set:
    raw = w.lower()
    tokens = tokenizer.tokenize(raw)
    stopped_tokens = [i for i in tokens if not i in stop_words]
    stemmed_tokens = [p_stemmer.stem(i) for i in stopped_tokens]
    texts.append(stemmed_tokens)
```

- calc_topic_cnt1.py
 - texts 리스트들을 dictionary 형태로 변환

```
calc topic cnt
C:\Users\ktw13\AppData\Local\Programs\Python\Python37\python.exe C:/Users/ktw13/Desktop/data_analysis/3.Crawling_TextMining/Topic
[['brocolli', 'good', 'eat', 'brother', 'like', 'eat', 'good', 'brocolli', 'mother'], ['mother', 'spend', 'lot', 'time', 'drive'
Dictionary(85 unique tokens: ['brocolli', 'brother', 'eat', 'good', 'like']...)
[[(0, 2), (1, 1), (2, 2), (3, 2), (4, 1), (5, 1)], [(1, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)], [(1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1,
[(0, '0.030*"good" + 0.028*"mother" + 0.027*"brocolli" + 0.025*"brother" + 0.023*"eat"'), (1, '0.071*"data" + 0.040*"big" + 0.026
 [(0, 0.042102076), (1, 0.033707727), (2, 0.9241902)]
                                                          print(texts)
                                                           dictionary = corpora.Dictionary(texts)
                                                          print(dictionary)
                                                           corpus = [dictionary.doc2bow(text) for text in texts]
                                                           print(corpus)
                                                           ldamodel = gensim.models.ldamodel.LdaModel(corpus, num topics=3,
                                                                                                                                                                                                                id2word=dictionary)
                                                           print(ldamodel.print topics(num words=5))
                                                           print(ldamodel.get document topics(corpus)[0])
```

- calc_topic_cnt1.py
 - doc2bow(): (단어, 빈도수) 형태로 리스트로 변환하는 함수

```
calc_topic_cnt ×

C:\Users\ktw13\AppData\Local\Programs\Python\Python37\python.exe C:/Users/ktw13/Desktop/data_analysis/3.Crawling_TextMining/Topic
[['brocolli', 'good', 'eat', 'brother', 'like', 'eat', 'good', 'brocolli', 'mother'], ['mother', 'spend', 'lot', 'time', 'drive',
Dictionary(85 unique tokens: ['brocolli', 'brother', 'eat', 'good', 'like']...)

[[(0, 2), (1, 1), (2, 2), (3, 2), (4, 1), (5, 1)], [(1, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)], [
[(0, '0.030*"good" + 0.028*"mother" + 0.027*"brocolli" + 0.025*"brother" + 0.023*"eat"'), (1, '0.071*"data" + 0.040*"big" + 0.026
[(0, 0.042102076), (1, 0.033707727), (2, 0.9241902)]
```

- calc_topic_cnt1.py
 - LdaModel을 통해 토픽 모델링 수행

```
calc_topic_cnt ×

C:\Users\ktw13\AppData\Local\Programs\Python\Python37\python.exe C:/Users/ktw13/Desktop/data_analysis/3.Crawling_TextMining/Topic
[['brocolli', 'good', 'eat', 'brother', 'like', 'eat', 'good', 'brocolli', 'mother'], ['mother', 'spend', 'lot', 'time', 'drive',
Dictionary(85 unique tokens: ['brocolli', 'brother', 'eat', 'good', 'like']...)

[[(0, 2), (1, 1), (2, 2), (3, 2), (4, 1), (5, 1)], [(1, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1)], [
[(0, '0.030*"good" + 0.028*"mother" + 0.027*"brocolli" + 0.025*"brother" + 0.023*"eat"'),
[(0, 0.042102076), (1, 0.033707727), (2, 0.9241902)]
```

- calc_topic_cnt2.py
 - Topic coherence를 구하기 위한 라이브러리를 불러온 후 perplexity와 topic coherence 계산
 - CoherenceModel
 - topn 파라미터는 상위 N개의 단어를 이용하여 유사도를 계산하라는 의미

- calc_topic_cnt2.py
 - 토픽의 개수를 달리하여 Perplexity score 계산
 - Topic 수가 4, 7, 9 일 때 낮음

```
import matplotlib.pyplot as plt
perplexity_values = []

for i in range(2, 10):
    ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=i, id2word=dictionary)
    perplexity_values.append(ldamodel.log_perplexity(corpus))

x = range(2, 10)
plt.plot(x, perplexity_values)
plt.xlabel("Number of topics")
plt.ylabel("Perplexity score")
plt.show()
```


- calc_topic_cnt2.py
 - 토픽의 개수를 달리하여 Coherence score 계산
 - 4, 6, 8 지점에서 높은 수치를 보임

