In dieser Aufgabe wird der bürstenlose Gleichstrommotor (BLDC) mit der Spannung U_{AP} und dem Strom I_{AP} betrieben. Der BLDC ist starr über eine Welle mit dem Gleichstrommotor (GM) verbunden. Der GM dient hierbei als Last für den BLDC. Der GM fungiert als Generator und wird durch den Antrieb des BLDC in Bewegung versetzt und erzeugt somit eine Spannung U_{AL} , welche dann einen Strom I_{AL} verursacht. Wir wollen diesen Strom I_{AL} messen. Zu beachten ist, dass U_{AL} nur Werte im Bereich [0V bis 24V] annehmen kann.

Vom Hersteller sind für die Belastungsmaschine folgende Daten gegeben:

$$R_{AL} = 0, 4\Omega \tag{1.1}$$

$$C_E \Psi_{PML} = 0,4Vs \tag{1.2}$$

a) Skizzieren Sie die Leerlaufspannung der Belastungsmaschine in Abhängigkeit von der Drehzahl N_P des bürstenlosen Gleichstrommotors im Bereich 0-3000 min $^{-1}$.

Zur Ermittlung der Kennlinie ziehen wir folgende Formel heran:

$$U_i = C_E \Psi N \tag{1.3}$$

Wir ermitteln anhand der Umdrehungen pro min die Anzahl der Umdrehungen pro s: $3000min^{-1} = 50s^{-1}$

Wir setzen nun die beiden Drehzahlen in die Formel 1.3 ein. Einmal berechnen wir den Wert, wenn der Motor stillsteht (0 Umdrehungen pro Sekunde macht), sowie ein weiteres Mal, wenn der Motor 50 Umdrehungen pro Sekunde macht, (also der maximal geforderten Drehzahl). Da wir in den Berechnungen der beiden Werte nur N ändern ist die Änderung des Ergebnisses proportional, also direkt abhängig von der eingesetzten Drehzahl. Dies bedeutet es handelt sich bei dem in Abbildung 1.1 zu skizzierenden Graphen um eine Gerade.

$$U_i[N=0] = 0, 4Vs * 0 = 0$$

 $U_i[N=50s^{-1}] = 0, 4Vs * 50s^{-1} = 20V$

b) Für die Belastung des BLDC wird an die Ankerklemmen des konventionellen Gleichstrommotors anstelle einer Spannungsquelle ein veränderlicher Widerstand R_L angeschlossen. Welchen Wert muss dieser Widerstand haben, um bei einer Drehzahl von $N_P = 2000 min^{-1}$ des BLDC ein Lastmoment von $M_L = 0,25Nm$ zu erzeugen?

Zur Ermittlung des Wertes des Widerstands ziehen wir folgende Formel zur Bestimmung des Lastmomentes heran

$$M_L = C_M \Psi_{PML} I_A \tag{1.4}$$

Da der BLDC starr gekoppelt ist mit dem GM gilt: Lastmoment (M_L) = Inneres Motormoment (M_{Mi}) .

Aufgrund dieser Erkenntnis gilt:

$$M_{Mi} = M_L = C_M \Psi_{PML} I_A = C_M \Psi_{PML} * \frac{U_i}{R_{AL} + R_L} = \frac{C_E}{2\pi} * \Psi_{PML} * \frac{U_i}{R_{AL} + R_L}$$
(1.5)

Wir erinnern uns an die vom Hersteller gegebenen Daten der Belastungsmaschine: $R_{AL}=0,4\Omega$

Abbildung 1.1: Leerlaufspannung der Belastungsmaschine

 $C_E \Psi_{PML} = 0,4Vs$

Formel 1.5 wird nach R_L umgestellt, so ergibt sich folgender Zusammenhang:

$$R_L = \frac{C_E \Psi_{PML} U_i}{2\pi M_L} - R_{AL} \tag{1.6}$$

Damit wir R_L bestimmen können, müssen wir zuerst U_i ermitteln, was wir im Folgenden getan haben.

$$\begin{array}{l} U_i[N=33,3s^{-1}]=0,4Vs*33,3s^{-1}=13,3V\\ R_L=\frac{0.4Vs*13,3V}{2\pi*0.25Nm}-0,4\Omega \end{array}$$

Zum Schluss dieser Berechnung haben wir eine Einheitenprüfung durchgeführt, die erhaltene Einheit soweit plausibel.

c) Bestimmen Sie den Zusammenhang $N_P(ML)$ für einen fest vorgegebenen Lastwiderstand R_L . Die Gleichung 1.3 aus Aufgabenteil a) wird im Folgenden mit einbezogen. Wir ersetzen U_i durch diese Formel. Daraus ergibt sich für R_L nun folgender Zusammenhang:

$$R_L = \frac{C_E \Psi_{PML} C_E \Psi_{PML} N_P}{2\pi M_L} - R_{AL} \tag{1.7}$$

Nach entsprechender Umstellung der Formel ergibt sich für N_P :

$$N_P(M_L) = \frac{2\pi (R_{AL} + R_L)M_L}{C_F^2 \Psi_{PML}^2}$$
 (1.8)

In dieser Aufgabe sind die Signale der Hallsensoren, sowie die idealisierten Stromverläufe des BLDC im Linkslauf gegeben.

- a) Skizzieren Sie die entsprechenden Signale der Hallsensoren und die idealisierten Stromverläufe bei Rechtslauf.
- b)
- c)
- d)

d 5

${\bf Abbildungs verzeichn is}$

1.1	Leerlaufspannung der	Belastungsmaschine																					2
-----	----------------------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---