Теория вероятностей для специальности ИУ7, 3-й курс, 5-й семестр. Вопросы для подготовки к экзамену

1. Случайные события

- 1.1. Определение пространства элементарных исходов, примеры. Понятие события (нестрогое), следствие события, невозможное и достоверное событие, примеры. Операции над событиями. Сформулировать классическое определение вероятности и доказать его следствия.
- 1.2. Определение пространства элементарных исходов, примеры. Понятие события (нестрогое). Сформулировать геометрическое и статистическое определения вероятности. Достоинства и недостатки этих определений.
- 1.3. Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Доказать простейшие свойства сигма-алгебры. Сформулировать аксиоматическое определение вероятности.
- 1.4. Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Сформулировать аксиоматическое определение вероятности и доказать простейшие свойства вероятности.
- 1.5. Сформулировать определение условной вероятности. Доказать, что при фиксированном событии B условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности.
- 1.6. Сформулировать определение условной вероятности. Доказать теорему (формулу) умножения вероятностей. Привести пример использования этой формулы.
- 1.7. Сформулировать определение пары независимых событий. Доказать критерий независимости двух событий. Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Обосновать связь этих свойств.
- 1.8. Сформулировать определение полной группы событий. Доказать теоремы о формуле полной вероятности и о формуле Байеса. Понятия априорной и апостериорной вероятностей.
- 1.9. Сформулировать определение схемы испытаний Бернулли. Доказать формулу для вычисления вероятности реализации ровно k успехов в серии из n испытаний по схеме Бернулли. Доказать следствия этой формулы.

2. Случайные величины

- 2.1. Сформулировать определение случайной величины и функции распределения вероятностей случайной величины. Доказать свойства функции распределения.
- 2.2. Сформулировать определения случайной величины и функции распределения случайной величины. Сформулировать определения дискретной и непрерывной случайной величины. Доказать свойства плотности распределения вероятностей непрерывной случайной величины.
- 2.3. Сформулировать определение нормальной случайной величины, указать геометрический смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вычисления вероятности попадания нормальной случайной величины в интервал.

Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать предельные свойства.

2.5. Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать формулу для вычисления $P\left\{a_1 \leqslant X_1 < b_1, \ a_2 \leqslant X_2 < b_2\right\}$.

2.6. Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировть определение непрерывного случайного вектора и доказать свойства плотности распределения вероятностей для двумерного случайного вектора.

- 2.7. Сформулировать определение пары независимых случайных величин. Доказать свойства независимых случайных величин. Понятия попарно независимых случайных величин и случайных величин, независимых в совокупности.
- 2.8. Понятие функции скалярной случайной величины. Доказать теорему о формуле для вычисления плотности $f_Y(y)$ случайной величины $Y=\varphi(X)$, если X непрерывная случайная величина, а φ монотонная непрерывно лифференцируемая функция. Сформулировать аналогичную теорему для кусечно-монотонной функции φ .
- 2.9. Понятие скалярной функции случайного вектора. Обосновать формулу для вычисления функции распределения случайной величины Y, функционально зависящей от случайных величин X_1 и X_2 , если (X_1, X_2) непрерывный случайный вектор. Доказать теорему о формуле свертки.
- 2.10. Сформулировать определение математического ожидания для дискретной и непрерывной случайных величин. Механический смысл математического ожидания. Доказать свойства математического ожидания. Записать формулы для вычисления математического ожидания функции случайной величины и случайного вектора.
- 2.11. Сформулировать определение дисперсии случайной величины. Механический смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной величины.

- 2.12. Сформулировать определение математического ожидания и дисперсии. Записать законы распределения биномиальной, пуассоновской, равномерной, экспоненциальной и нормальной случайной величин. Найти математические ожидания и дисперсии этих случайных величин.
- 2.13. Сформулировать определение ковариации и записать формулы для ее вычисления в случае дискретного и непрерывного случайных векторов. Доказать свойства ковариации.
- 2.14. Сформулировать определение ковариации и коэффициента корреляции случайных величин. Сформулировать свойства коэффициента корреляции. Сформулировать определения независимых и некоррелированных случайных величин, указать связь между этими свойствами. Понятия ковариационной и корреляционной матриц. Записать свойства ковариационной матрицы.

Образец билета

БИЛЕТ №0

- 1. Сформулировать определение полной группы событий. Доказать теоремы о формуле полной вероятности и о формуле Байеса. Понятия априорной и апостериорной вероятностей.
- **2.** Сформулировать определение дисперсии случайной величины. Механический смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной величины.
- **3.** Среди изделий некоторого массового производства содержится 5% брака. Найти вероятность того, что среди 5-ти взятых наугад изделий:
- а) будет ровно два бракованных;
- б) нет ни одного бракованного.
- 4. Исследования показали, что время в минутах, проводимое покупателем в супермаркете, является нормально распределенной случайной величиной с параметрами $\mu=100$ мин. и $\sigma=20$ мин. Найдите вероятность того, что среди трех случайных покупателей, помеченных краской на входе в супермаркет, хотя бы один проведет там более двух часов.

№ вопроса	1	2	3	4	доп.	$\Sigma = \max$	min
Баллы	6	6	6	6	6	30	18