МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	O	Естественнонаучный
Vadavaa	шифр	наименование
Кафедра	<u>O6</u>	Высшая математика
	шифр	наименование
Дисциплина	Математ	гическая статистика и случайные процессы

ЛАБОРАТОРНАЯ РАБОТА №9

на тему «Регрессионный анализ в пакетах STATGRAPHICS и MATHCAD»
Вариант №4

Выполнил студент группы	И967
Васильев Н.А.	
Фамилия И.О.	
ПРЕПОДАВАТЕЛЬ	
<u>Мартынова Т.Е.</u> Фамилия И.О.	Подпись
« »	2019 г.

САНКТ-ПЕТЕРБУРГ 2019 г.

КРАТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ

Оценка параметров линейной регрессии методом наименьших квадратов

Перепишем уравнение регрессии в несколько ином виде

$$y = \alpha + \beta \left(x - \overline{x}\right),\tag{7.2.1}$$

где $\frac{1}{n}\sum_{i=1}^n x_i$. Эта прямая называется теоретической линией регрессии

или прямой отклика. Уравнение

$$\hat{y} = a + b(x - \overline{x}) \tag{7.2.2}$$

определяет кривую, которая является оценкой для прямой регрессии.

Суть метода наименьших квадратов состоит в выборе таких оценок a и b, которые бы минимизировали сумму квадратов отклонений наблюденных значений y_i от прогнозируемых величин \hat{y}_i , полученных подстановкой значений x_i в уравнение (7.2.2), т.е.

$$R=\sum_{i=1}^n (y_i-\hat{y_i})^2=\sum_{i=1}^n \left[y_i-a-big(x_i-\overline{x}ig)
ight]^2\Rightarrow \min$$
 . Чтобы найти значения a

и b , минимизирующие R , продифференцируем это уравнение по a и b и приравняем производные нулю:

$$\begin{cases} \frac{\partial R}{\partial a} = -2\sum_{i=1}^{n} \left[y_i - a - b \left(x_i - \overline{x} \right) \right] = 0, \\ \frac{\partial R}{\partial b} = -2\sum_{i=1}^{n} \left[y_i - a - b \left(x_i - \overline{x} \right) \right] \left(x_i - \overline{x} \right) = 0. \end{cases}$$

Раскроем здесь члены под знаком суммы: $\sum_{i=1}^{n} y_i - an - b \sum_{i=1}^{n} \left(x_i - \overline{x} \right) = 0 ,$ $\sum_{i=1}^{n} y_i \left(x_i - \overline{x} \right) - a \sum_{i=1}^{n} \left(x_i - \overline{x} \right) - b \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 = 0 . \text{ Ho } \sum_{i=1}^{n} \left(x_i - \overline{x} \right) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = 0 .$

 $=n\overline{x}-n\overline{x}=0$. Тогда $na=\sum\limits_{i=1}^{n}y_{i},\ b\sum\limits_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}=\sum\limits_{i=1}^{n}\left(x_{i}-\overline{x}\right)y_{i}$. Отсюда лег-

ко получить оценки параметров a и b:

$$a = \hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}, \quad b = \hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$
 (7.2.3)

Вторую оценку часто видоизменяют и переписывают в следующем

виде
$$\sum_{i=1}^{n} (x_{i} - \overline{x}) y_{i} = \sum_{i=1}^{n} (x_{i} - \overline{x}) y_{i} + \overline{y} \sum_{i=1}^{n} (x_{i} - \overline{x}) = \sum_{i=1}^{n} (x_{i} - \overline{x}) y_{i} + \sum_{i=1}^{n} (x_{i} - \overline{x}) \overline{y} = \sum_{i=1}^{n} (x_{i} - \overline{x}) (y_{i} - \overline{y}).$$
 Тогда

$$b = \frac{\sum_{i=1}^{n} \left[(x_i - \overline{x})(y_i - \overline{y}) \right]}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$
 (7.2.4)

Рассмотрим теперь свойства полученных оценок. Они являются несмещенными, состоятельными и эффективными в классе линейных (относительно наблюдений) оценок. Действительно,

$$\begin{split} M(\alpha) &= M\left(\frac{1}{n}\sum_{i=1}^{n}y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}M(y_{i}) = \frac{1}{n}\sum_{i=1}^{n}M\left[\alpha + \beta\left(x_{i} - \overline{x}\right) + \varepsilon_{i}\right] = \\ &= \frac{1}{n}\left[\alpha n + \beta\sum_{i=1}^{n}\left(x_{i} - \overline{x}\right)\right] = \alpha \;, \end{split}$$

$$M(b) = M\left(\frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) M(y_i)}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} \left[(x_i - \overline{x}) (\alpha + \beta (x_i - \overline{x})) \right]}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} \left[(x_i - \overline{x}) (\alpha + \beta (x_i - \overline{x})) \right]}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$= \alpha \frac{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)}{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}} + \beta \frac{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{\sum\limits_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}} = \beta. \ \ \text{Здесь учтено, что переменные } \ \ x_{i} - \text{ не-}$$

случайные, а y_i - случайные величины. Кроме того, математическое ожидание y_i есть теоретическая линия регрессии (7.2.1).

Найдем теперь дисперсии оценок а и в предположении, что наблюдения у; независимы и нормально распределены, причем $D(y_i) = D = \sigma^2$ (предположения 3, 4 и 5 предыдущего подраздела).

Имеем:
$$D(a) = D\left(\frac{1}{n}\sum_{i=1}^{n}y_i\right) = \frac{1}{n^2}\sum_{i=1}^{n}D(y_i) = \frac{D}{n^2}n = \frac{D}{n}$$
,

$$D(b) = D\left(\frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \sum_{i=1}^{n} (x_i - \overline{x})^2 D(y_i) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 D}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} = \frac{D}{\sum_{i=1}^{n} (x_i - \overline{x})^2}.$$

Состоятельность оценок а и в немедленно следует после применения к ним неравенства Чебышева. Например, для оценки $\,a\,$ получим

$$P(a-\alpha|\geq \varepsilon) \leq \frac{D(a)}{\varepsilon^2} = \frac{D}{n\varepsilon^2}$$
. Отсюда $\lim_{n\to\infty} P(a-\alpha|\geq \varepsilon) = 0$.

тов дает оценки с наименьшей дисперсией в классе всех несмещенных оценок, довольно сложно. Приведем его для оценки b параметра β. Предположим, что существует еще одна линейная оценка b' параметра β ,

отличная от оценки b и пусть, например, $b' = \sum\limits_{i=1}^{n} c_i y_i$. Очевидно, что

$$M(b') = \sum_{i=1}^{n} c_i M(y_i) = \sum_{i=1}^{n} c_i \left[\alpha + \beta \left(x_i - \overline{x} \right) \right] = \alpha \sum_{i=1}^{n} c_i + \beta \sum_{i=1}^{n} \left(x_i - \overline{x} \right) c_i$$
. Оценка b'

будет несмещенной, если $M(b') = \beta$, т.е.

$$\begin{cases} \sum_{i=1}^{n} c_i = 0, \\ \sum_{i=1}^{n} (x_i - \overline{x}) c_i = 1. \end{cases}$$
 (7.2.5)

$$\begin{split} \mathbf{B} & \text{ этих условиях } & D(b') = \sum_{i=1}^n c_i^2 D(y_i) = D\sum_{i=1}^n c_i^2 = \\ & = D\sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} + \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 = D \left[\sum_{i=1}^n c_i^2 + \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \frac{2\sum\limits_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} + \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \\ & = \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 + \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \\ & = \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 + \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} \right]^2 - \sum_{i=1}^n \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n (x_i - \overline{x})^2} - \sum_{i=1}^n c_i - \sum_{i=1}^n$$

Но $\sum_{i=1}^{n} (x_i - \overline{x})^2$ - это константа, т.е. выражение под этой суммой уже не зависит от индекса внешнего суммирования. Тогда $\sum_{i=1}^{n} c_i \frac{x_i - \overline{x}}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} = \frac{1}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} \sum_{i=1}^{n} c_i (x_i - \overline{x}) = \frac{1}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2}$ с учетом условий

$$\sum_{i=1}^{n} \left[c_i - \frac{x_i - \overline{x}}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right] \frac{x_i - \overline{x}}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \right]^2} \sum_{i=1}^{n} \left[c_i (x_i - \overline{x}) \sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 \right] = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \right]^2} \sum_{i=1}^{n} \left[c_i (x_i - \overline{x}) \sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 \right] = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 \right]} = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 - (x_i - \overline{x})^2 \right]} = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 - (x_i - \overline{x})^2 - (x_i - \overline{x})^2 \right]} = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2 - (x_i - \overline{x})^2 -$$

$$= \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \left[\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} c_i (x_i - \overline{x}) - \sum_{i=1}^{n} (x_i - \overline{x})^2\right] =$$

$$= \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \left[\sum_{i=1}^{n} (x_i - \overline{x})^2 - \sum_{i=1}^{n} (x_i - \overline{x})^2\right] = 0.$$
 Поэтому

$$D(b') = D \sum_{i=1}^{n} \left[c_i - \frac{x_i - \overline{x}}{\sum\limits_{i=1}^{n} \left(x_i - \overline{x} \right)^2} \right]^2 + \frac{D}{\sum\limits_{i=1}^{n} \left(x_i - \overline{x} \right)^2} \, .$$
 Последний член в получен-

ном выражении является константой. Следовательно, минимизировать D(b') можно только за счет уменьшения первого члена. Полагая $c_i = \frac{x_i - \overline{x}}{\sum\limits_{i=1}^n \left(x_i - \overline{x}\right)^2}$, мы обратим первый член в нуль (меньше он не может

быть) и тем самым минимизируем D(b'). Но если в формулу $b' = \sum_{i=1}^{n} c_i y_i$

подставить значения c_i , при которых D(b') минимальна, то альтернатив-

ная оценка
$$b'$$
 примет вид $b' = \sum_{i=1}^n c_i y_i = \frac{\sum\limits_{i=1}^n \left(x_i - \overline{x}\right) y_i}{\sum\limits_{i=1}^n \left(x_i - \overline{x}\right)^2},$ что совпадает с

оценкой наименьших квадратов. Поэтому b - линейная несмещенная оценка параметра β с минимальной дисперсией.

Интервальные оценки параметров линейной регрессии и кривой регрессии

Построим теперь доверительные границы для параметров α и β и кривой регрессии. Так как $\hat{y}=a+b\left(x-\overline{x}\right)$ и $D(a)=\frac{D}{n},\ D(b)=\frac{D}{\sum\limits_{i=1}^{n}\left(x_{i}-\overline{x}\right)},$ то $M(\hat{y})=M\left[a+b\left(x-\overline{x}\right)\right]=M(a)+\left(x-\overline{x}\right)M(b)=\alpha+\beta\left(x-\overline{x}\right)=y\,,$ $D(\hat{y})=D\left[a+b\left(x-\overline{x}\right)\right]=D(a)+\left(x-\overline{x}\right)^{2}D(b)=\frac{D}{n}+\frac{\left(x-\overline{x}\right)^{2}D}{\sum\limits_{i}\left(x_{i}-\overline{x}\right)^{2}}=\frac{D(a)}{\sum\limits_{i}\left(x_{i}-\overline{x}\right)^{2}}$

$$=D\left[\frac{1}{n}+\frac{(x-\overline{x})^2}{\sum\limits_{i=1}^n(x_i-\overline{x})^2}\right] \text{- выражение для дисперсии }D(\hat{y}) \text{ в текущей точке }x \;.$$

Очевидно, что \hat{y} - кроме того линейная функция от оценок a и b, которые в свою очередь являются линейными оценками от нормально распределенных наблюдений y_i . Следовательно, \hat{y} - нормально распределенная случайная величина, и для нее может быть построен доверительный интервал стандартным образом. То же можно сказать и об оценках коэффициентов регрессии.

Заметим, что a и b независимы друг от друга, так же как независима от них оценка \hat{D} дисперсии D. Это можно доказать, рассмотрев, например, $M(a \cdot b)$. После непродолжительных вычислений будет видно, что

 $M(a \cdot b) = K(a,b) = 0$. Следовательно a и b - некоррелированы, а поскольку мы остаемся в рамках гауссовской модели, то и независимы.

В предыдущих разделах было показано, что дробь $n\hat{D}/D\in\chi^2_{n-1},\;\hat{D}=D^*.$ В нашем случае $\hat{D}=D^*=\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2=$

 $=\frac{1}{n}\sum_{i=1}^n (y_i-a-b(x-\overline{x}))^2$. Так как на случайные величины y_i , входящие в

эту формулу, наложены два условия связи вида $\frac{\partial R}{\partial a}=0$ и $\frac{\partial R}{\partial b}=0$, то число степеней свободы уменьшается на число связей и $n\bar{D}/D\in\chi^2_{n-2}$.

Составим дроби Стьюдента для а и b. В нашем случае

$$a\in N\left(\alpha,\frac{D}{n}\right),\ b\in N\left(\beta,\frac{D}{\sum\limits_{i=1}^{n}\left(x_{i}-\frac{-i}{x}\right)^{2}}\right),$$
 а по теории $t=\frac{z\sqrt{n}}{\sqrt{v}},$ где

 $z\in N(0,1),\ v\in\chi^2_n$, причем в этой дроби под корнем в числителе стоит число степеней свободы случайной величины V. Выберем в качестве стандартной нормальной случайной величины Z сначала выражение $\frac{a-\alpha}{\sqrt{D/n}} = \frac{(a-\alpha)\sqrt{n}}{\sigma} \in N(0,1), \text{ затем } \frac{b-\beta}{\sigma} \sqrt{\sum_{i=1}^n \left(x_i-\overline{x}\right)^2} \in N(0,1). \ \text{Подставлял}$ эти результаты в дробь Стьюдента, будем иметь $t_a = \frac{(a-\alpha)\sqrt{n}\sqrt{n-2}}{\sqrt{D}\left(\sqrt{n}\overline{D}/\sqrt{D}\right)} = \frac{(a-\alpha)\sqrt{n-2}}{\sqrt{\overline{D}}} \in t_{n-2}.$ Аналогично

$$t_{\hat{D}} = \frac{(b-\beta)\sqrt{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}\sqrt{n-2}}{\sqrt{D}\sqrt{n\hat{D}/D}} = \frac{(b-\beta)\sqrt{(n-2)\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}}{\sqrt{n\hat{D}}} \in t_{n-2} \ . \quad \text{Hako-}$$

нец, получим в явном виде доверительные интервалы для коэффициентов линейной регрессии. $P(|a-a| < s) = \beta'$ по определению, где β' - довери-

тельная вероятность.
$$P\left(\frac{\left|a-\alpha\right|\sqrt{n-2}}{\sqrt{\bar{D}}}<\frac{\varepsilon\sqrt{n-2}}{\sqrt{\bar{D}}}\right)=P\left(\left|\frac{(a-\alpha)\sqrt{n-2}}{\sqrt{\bar{D}}}\right|< t_{\bar{B}'}\right)=$$

 $=P(t|< t_{eta'})=eta'$, величина $t_{eta'}$ может быть найдена из уравнения

$$\begin{split} & \sum_{0}^{t_{\beta'}} s_{n-2}(t)dt = \beta' \,. & \text{Torma} & \epsilon = t_{\beta',n-2} \sqrt{\frac{\hat{D}}{n-2}} & \text{ if } \\ & I_{\alpha} = \left(a - t_{\beta',n-2} \sqrt{\frac{\hat{D}}{n-2}}, \ a + t_{\beta',n-2} \sqrt{\frac{\hat{D}}{n-2}}\right) \,. \end{split}$$

Точно такие же преобразования дают интервал для второго коэффициента.

$$P(|b-\beta|<\varepsilon)=\beta'\;,\quad\text{тогда}\quad P\left|\frac{(b-\beta)\sqrt{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}}{\sqrt{n}\widehat{D}/(n-2)}\right|<\frac{\varepsilon\sqrt{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}}{\sqrt{n}\widehat{D}/(n-2)}\right|=\\ =P(|t|< t_{\beta'})=\beta'\;.\quad \text{Отеюда}\qquad \varepsilon=t_{\beta',n-2}\sqrt{\frac{n}{n-2}\frac{\widehat{D}}{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}}$$
 и
$$I_{\beta}=\left(\varepsilon-t_{\beta',n-2}\sqrt{\frac{n}{n-2}\frac{\widehat{D}}{\sum\limits_{i=1}^{n}(x_{i}-\overline{x})^{2}}}\right).$$

На практике часто возникает вопрос об оценке отклонения истинной прямой $y=\alpha+\beta \left(x-\overline{x}\right)$ от ее оценки $\hat{y}=a+b\left(x-\overline{x}\right)$ при некотором заданном значении x. Особенно важен этот вопрос при построении прогноза. Оценкой точности здесь также может служить интервальная оценка y.

Используя обычные рассуждения, приводящие к t - статистикам, получаем:

$$M(\hat{y}) = \alpha + \beta(x - \overline{x}) = y, \ D(\hat{y}) = D\left[\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}\right], \quad \hat{y} \in N(M(\hat{y}), D(\hat{y})).$$

Тогда $z=rac{\hat{y}-y}{\sqrt{D(\hat{y})}}\in Nig(0,1ig),$ а $t=rac{z\sqrt{n-2}}{\sqrt{n\hat{D}/D}}\in t_{n-2}$. В нашем случае дробь

Стьюдента равна

$$t = \frac{(\hat{y} - y)}{\sqrt{D}} \sqrt{n - 2} = \frac{(\hat{y} - y)\sqrt{n - 2}}{\sqrt{D}} = (\hat{y} - y)d \in t_{n - 2}.$$

$$\sqrt{D} \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_{i = 1}^{n} (x_i - \overline{x})^2}\right) \sqrt{\frac{n\tilde{D}}{D}}} \sqrt{\frac{n\tilde{D}}{D}}$$

$$\sqrt{1 + \frac{n(x - \overline{x})^2}{\sum_{i = 1}^{n} (x_i - \overline{x})^2}} \tilde{D}$$

$$P(|\hat{y} - y| < \varepsilon) = \beta' \quad \text{if} \quad P(|(\hat{y} - y)d| < \varepsilon d) = P(|(\hat{y} - y)d| < t_{\beta'}) = P(|t| < t_{\beta'}) = \beta'.$$

Тогда
$$\varepsilon = \frac{t_{\beta'}}{d} = t_{\beta',n-2} \sqrt{\frac{\hat{D}}{n-2}} \sqrt{1 + \frac{n(x-\bar{x})^2}{\sum\limits_{i=1}^n (x_i-\bar{x})^2}}, \quad I_y = (\hat{y} - \varepsilon, \ \hat{y} + \varepsilon)$$
 для

любого конкретного x, так как s=s(x). Очевидно, что длина доверительного интервала минимальна в точке $x=\overline{x}$. По мере удаления от \overline{x} точность оценки будет заметно снижаться. Наименее надежная оценка по

МНК будет получаться для ординат, отвечаюшим очкам, наиболее удаленным от х (рис. 7.1). Вертикальные отрезки на рисунке представляют собой доверительные интервалы в соответствую-

ФОРМУЛИРОВКА ЗАДАНИЯ

Найти в пакетах STATGRAPHICS и MATCHAD оценки параметров линейной регрессии у на х, доверительные интервалы для параметров и линии регрессии и проверить согласие линейной регрессии с результатами наблюдений. Принять уровень доверительной вероятности равным 0.90.

СКРИНШОТЫ

Решение в пакете STATGRAPHICS

Рисунок 1 — Графики линейной регрессии и предсказанных наблюдений; стьюдентизированных остатков модели линейной регрессии

Dependent vari Independent va						
Parameter	Estimate			T Statistic	 0,0000	
				32,4574 29,0968		
		Analysis	of Va	riance		
Source	Sum of S	quares	Df	Mean Square	F-Ratio	P-Valu
Model Residual	1 0,			13,8666 0,0163787	846,62	0,000
Total (Corr.)	1	4,0304	11			
Correlation Co R-squared = 98 R-squared (adj Standard Error Mean absolute Durbin-Watson :	,8326 percent usted for d.f of Est. = 0, error = 0,096	.) = 98,3 127979 2005 ,52372 (1	P=0,10	43)		

Рисунок 2 – Результаты расчета модели простой линейной регрессии

Analysis of Variance with Lack-of-Fit							
Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value		
Model	13,8666	 1	13,8666	846,62	0,0000		
Residual	0,163787	10	0,0163787				
Lack-of-Fit	0,163787	 10	0,0163787				
Pure Error	0,0	0	-				
Total (Corr.)	14,0304	11					

Рисунок 3 – Результаты анализа адекватности линейной модели

		95,	00%	95,	00%
	Predicted	Prediction Limits		Confidence Limits	
х	Y	Lower	Upper	Lower	Upper
0,0	2,25564	1,93115	2,58013	2,1008	2,41049
0,55	5,68103	5,35654	6,00551	5,52618	5,83587

Рисунок 4 – Предсказанные по умолчанию наблюдения и их доверительные границы

Mode1	Correlation	R-Squared		
Sauzuo woot-II	 0 00E7			
Square root-Y	0,9957			99,15%
Exponential	0,9943			98,86%
Linear	0,9941			98,83%
Reciprocal-Y	-0,9822			96,48%
Square root-X	0,9350			87,41%
Reciprocal-X	<	Cno	fit>	
Double reciprocal	<	۲no	fit>	
Logarithmic-X	<	۲no	fit>	
Multiplicative	<	۲no	fit>	
S-curve	<	۲no	fit>	
Logistic	<	(no	fit>	
Log probit		(no	fit>	

Рисунок 5 – Результаты анализа альтернативных моделей

Unusual Residu	als				
		Pr	edicted		Studentized
Row	X	Y	Y	Residual	Residual

Рисунок 6 – Результаты анализа резко выделяющихся наблюдений

Решение в пакете МАТНСАD

Вывод: В ходе выполнения данной лабораторной работы была проведена проверка согласия линейной регрессии с результатом наблюдений. По данным пакета STATGRAPHICS после сравнения альтернативных моделей можно сказать, что линейная модель лучше всего согласуется с результатами наблюдений. По данным пакета MATCHAD при доверительной вероятности равной 0.90 в доверительный интервал из 12 наблюдений не попало только 3, то есть 25%. Это значит, что линейная модель удовлетворительно аппроксимирует исходные данные.