Adopted Levels

 $Q(\beta^{-})=-21910 \text{ syst}; S(n)=17770 \text{ syst}; S(p)=1.03\times10^{3} 11; Q(\alpha)=-8.94\times10^{3} 11$ 2021Wa16

S(p),Q(α): Deduced by the evaluator using mass excesses of 4777 105 for 35 Ca measured by 2023La09, -1487 17 for 34 K measured by 2024Dr01, and 11290 16 for 31 Ar measured by 2024Yu13. Values from 2021Wa16: S(p)=880 280 (syst), Q(α)=-8560 280 (syst).

 $\Delta Q(\beta^{-})=450$, $\Delta S(n)=360$ (syst,2021Wa16).

 $S(2p)=417\ 105,\ Q(\varepsilon)=15950\ 105,\ Q(\varepsilon p)=15866\ 105,\ from\ mass\ excesses\ of\ 4777\ 105\ for\ ^{35}Ca\ measured\ by\ 2023La09;\ -9384.3\ 4$ for $^{33}Ar,\ -11172.9\ 5$ for $^{35}K,\ and\ -18378.29\ 8$ for $^{34}Ar\ from\ 2021Wa16.\ Values\ from\ 2021Wa16:\ S(2p)=00\ 200\ (syst),\ Q(\varepsilon)=16360\ 200\ (syst),\ Q(\varepsilon p)=16280\ 200\ (syst).$

S(2n)=41980 450 (syst) (2021Wa16).

Isotope discovery (2011Am01): 40 Ca(3 He, $\alpha 4$ n) 35 Ca at Berkeley (1985Ay01).

1999Tr04,1998Le45: 35 Ca produced via the fragmentation of 40 Ca on Ni target at GANIL. Measured $T_{1/2}$ and $\varepsilon+\beta^+$ -delayed 1p/2p emissions. 35 Ca isotope production at GANIL: 1986La17, 1986AnZV.

Mass measurements: 2023La09, 1985Ay01.

Theoretical calculations: 2003Sm02, 1998Co30, 1997Co19, 1991De26, 1990Br26.

35Ca Levels

Cross Reference (XREF) Flags

E(level)	J^{π}	$T_{1/2}$	XREF	Comments
0.0	1/2+	25.7 ms 2	AB	$%ε+%β^{+}=100; %εp=95.8 3; %ε2p=4.2 3$
				$T_{1/2}$: from implant-decay correlation in 1999Tr04. Other: 50 ms 30 estimated by
				comparison with the ²² Al yield from 1985Ay01.
				J^{π} : L(36 Ca, 35 Ca)=0 from 0 ⁺ .
				$\%\varepsilon p$ and $\%\varepsilon 2p$ are derived from the renormalization of $\%\Sigma I(1p) + \%\Sigma I(2p) = 100.6$
				in 1999Tr04 to 100. The original decay branching ratios in 1999Tr04:
				$\%\Sigma I(1p) = 96.4 \ 18 \text{ and } \%\Sigma I(2p) = 4.2 \ 3.$
$2.09 \times 10^3 \ 10$	3/2+		A C	E(level): weighted average of 2.24E3 33 from ${}^{1}\text{H}({}^{37}\text{Ca,t})$ and 2.08E3 10 from $({}^{37}\text{Ca,X})$.
				J^{π} : L=0 from 3/2 ⁺ in ${}^{1}H({}^{37}Ca,t)$.

1