ADSP-BF518F EZ-Board™ Evaluation System Manual

Revision 1.0, January 2009

Part Number 82-000217-01

Analog Devices, Inc. One Technology Way Norwood, Mass. 02062-9106

Copyright Information

© 2009 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices icon bar and logo, VisualDSP++, the VisualDSP++ logo, Blackfin, the Blackfin logo, the CROSSCORE logo, EZ-KIT Lite, and EZ-Extender are registered trademarks of Analog Devices, Inc. EZ-Board is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

Regulatory Compliance

The ADSP-BF518F EZ-Board is designed to be used solely in a laboratory environment. The board is not intended for use as a consumer end product or as a portion of a consumer end product. The board is an open system design which does not include a shielded enclosure and therefore may cause interference to other electrical devices in close proximity. This board should not be used in or near any medical equipment or RF devices.

The ADSP-BF518F EZ-Board is currently being processed for certification that it complies with the essential requirements of the European EMC directive 89/336/EEC amended by 93/68/EEC and therefore carries the "CE" mark.

The EZ-Board evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-Board boards in the protective shipping package.

CONTENTS

PREFACE

Purpose of This Manualxv
Intended Audience xv
Manual Contentsxvi
What's New in This Manual xvi
Technical or Customer Supportxvii
Supported Processors xvii
Product Information xviii
Analog Devices Web Sitexviii
VisualDSP++ Online Documentation xix
Technical Library CDxix
Related Documentsxx
Notation Conventions
USING ADSP-BF518F EZ-BOARD
Package Contents
Default Configuration
EZ-Board Installation
EZ-Board Session Startup

CONTENTS

Evaluation License Restrictions	. 1-8
Memory Map	. 1-9
SDRAM Interface	1-11
Parallel Flash Memory Interface	1-11
eMMC Interface	1-12
SD Interface	1-13
SPI Interface	1-13
Parallel Peripheral Interface (PPI)	1-15
Rotary Encoder Interface	1-15
Ethernet Interface	1-16
Audio Interface	1-17
ADC Interface	1-18
UART Interface	1-19
RTC Interface	1-20
LEDs and Push Buttons	1-21
JTAG Interface	1-22
Land Grid Array	1-22
Expansion Interface II	1-23
Power Measurements	1-24
Power-On-Self Test	1-24
Example Programs	1-25
Background Telemetry Channel	1-25
Reference Design Information	1-25

ADSP-BF518F EZ-BOARD HARDWARE REFERENCE

System Architecture
Programmable Flags
Push Button and Switch Settings
Boot Mode Select Switch (SW1)
PB Enable Switch (SW2)
Flash Enable Switch (SW3)
SPORT1 Enable Switch (SW4)
MIC Gain Switch (SW5)
Mic/HP LPBK, Audio Mode Switch (SW6) 2-10
Ethernet Port 1 Configuration Switch (SW7) 2-11
Ethernet Configuration Switch (SW8)
UART Setup Switch (SW10)
Reset Push Button (SW11)
Programmable Flag Push Buttons (SW12–13) 2-12
Rotary Encoder with Momentary Switch (SW14) 2-13
SPORT0 ENBL Switch (SW15)
SPI/TWI Switch (SW16)
Ethernet Mode Switch (SW17)
Ethernet Port 2 Configuration Switch (SW18) 2-14
Encoder Enable Switch (SW19)
eMMC Enable Switch (SW20-21)
ADC Loopback Switches (SW22–23)
Jumpers

CONTENTS

	Flash WP Jumper (JP3)	2-17
	ADC Range Jumper (JP4)	2-17
	LED Select Jumpers (JP11-12)	2-17
	Ethernet Power Down Jumper (JP13)	2-17
	OTP Flag Enable Jumper (JP14)	2-18
	MIC Select Jumper (JP15)	2-18
	SPI FLASH CS Enable Jumper (JP16)	2-18
	ADC Channel Select Jumpers (JP17–28)	2-19
	VDDINT Power Jumper (P8)	2-19
	VDDEXT Power Jumper (P9)	2-19
	VDDMEM Power Jumper (P10)	2-20
	VDDFLASH Power Jumper (P11)	2-20
LE	Ds	2-21
	GPIO LEDs (LED1-3)	2-22
	Ethernet LEDs (LED4-8, LED10-12)	2-22
	Reset LED (LED9)	2-22
	Power LED (LED13)	2-23
Со	nnectors	2-24
	Expansion Interface II Connector (J1)	2-25
	RS-232 Connector (J2)	2-25
	Power Connector (J3)	2-25
	Dual Audio Connectors (J4-5)	2-26
	SMA Connectors (J7, J16–26)	2-26
	Battery Holder (J12)	2-26

SD Connector (J13)
Ethernet Connectors (J14–15)
JTAG Connector (P1)
Expansion Interface II Connectors (P2 and P4) 2-27
Expansion Interface II Connector (P3)
DMAX Land Grid Array Connectors (P5-7) 2-28
Standalone Debug Agent Connector (ZP1) 2-29
ADSP-BF518F EZ-BOARD BILL OF MATERIALS
ADSP-BF518F EZ-BOARD SCHEMATIC
Title Page B-1
Processor EBIU and Control B-2
Processor Power, Bypass Caps B-3
External Memory B-4
ADC B-5
Audio Codec B-6
Ethernet Switch B-7
Ethernet Config/LEDs
Ethernet Jacks B-9
Rotary Encoder, JTAG, RS-232, RSI
Logic Analyzer Conn B-11
Push Buttons, Reset, LEDs B-12
Expansion Interface B-13
OTP and Dual Power B-14

CONTENTS

	Power	B-15
	Series Terminators	B-16
I	NDEX	

PREFACE

Thank you for purchasing the ADSP-BF518F EZ-BoardTM, Analog Devices, Inc. evaluation system for Blackfin[®] processors.

Blackfin processors embody a new type of embedded processor designed specifically to meet the computational demands and power constraints of today's embedded audio, video, and communications applications. They deliver breakthrough signal-processing performance and power efficiency within a reduced instruction set computing (RISC) programming model.

Blackfin processors support a media instruction set computing (MISC) architecture. This architecture is the natural merging of RISC, media functions, and digital signal processing (DSP) characteristics. Blackfin processors deliver signal-processing performance in a microprocessor-like environment.

Based on the Micro Signal Architecture (MSA), Blackfin processors combine a 32-bit RISC instruction set, dual 16-bit multiply accumulate (MAC) DSP functionality, and eight-bit video processing performance that had previously been the exclusive domain of very-long instruction word (VLIW) media processors.

The evaluation board is designed to be used in conjunction with the VisualDSP++® development environment to test the capabilities of the ADSP-BF518F Blackfin processors. The VisualDSP++ development environment aids advanced application code development and debug, such as:

- Create, compile, assemble, and link application programs written in C++, C, and ADSP-BF518F assembly
- Load, run, step, halt, and set breakpoints in application programs
- Read and write data and program memory
- Read and write core and peripheral registers
- Plot memory

Access to the ADSP-BF518F processor from a personal computer (PC) is achieved through a USB port or an external JTAG emulator. The USB interface of the standalone debug agent gives unrestricted access to the ADSP-BF518F processor and evaluation board's peripherals. Analog Devices JTAG emulators offer faster communication between the host PC and target hardware. To learn more about Analog Devices emulators and processor development tools, go to http://www.analog.com/dsp/tools/.

The ADSP-BF518F EZ-Board provides example programs to demonstrate the capabilities of the product.

The ADSP-BF518F EZ-Board installation is part of the VisualDSP++ installation. As an EZ-KIT Lite, an EZ-Board is a licensed product that offers an unrestricted evaluation license for the first 90 days. For details about evaluation license restrictions after the 90 days, refer to "Evaluation License Restrictions" on page 1-8 and the VisualDSP++ Installation Quick Reference Card.

The board features:

- Analog Devices ADSP-BF518F Blackfin processor
 - ✓ Core performance up to 400 MHz
 - ✓ External bus performance up to 80 MHz
 - 176-pin LQFP package
 - 25 MHz crystal
- Programmable VDDINT core power
 - Analog Devices AD5258 TWI digital potentiometer
 - Analog Devices ADP1715 low dropout linear regulator
- Synchronous dynamic random access memory (SDRAM)
 - ✓ Micron MT48LC32M16A2TG 64 MB (32M x 16-bits)
- Parallel flash memory
- eMMC flash memory
 - ✓ Micron MTFC2GDKDM 2 GB
- SPI flash memory
 - √ Numonyx M25P16 16 Mb
- Analog audio interface
 - → Analog Devices SSM2602 low-power audio codec
 - ✓ One stereo LINE OUT jack
 - One headphone LINE IN
 - One input MIC jack
 - ✓ One input stereo LINE IN jack

- Ethernet interface
 - → Micrel KSZ8893M PHY device
 - ▼ 10-BaseT and 100-BaseTX Ethernet controller
 - Auto-MDIX
- ADC interface
 - Analog Devices AD7266 2 MSPS, 12-bit, 3-channel SAR analog-to-digital converter
- Thumbwheel
 - Panasonic EVQ-WKA001 rotary encoder
- Universal asynchronous receiver/transmitter (UART)
 - → ADM3202 RS-232 line driver/receiver
 - DB9 female connector
- LEDs
 - Thirteen LEDs: one board reset (red), three general-purpose (amber), eight configurable ethernet LEDs (amber) and one power (green)
- Push buttons
 - Three push buttons: one reset, two programmable flags with debounce logic
- Expansion interface IITM
 - Next generation of the expansion interface design, provides access to most of the ADSP-BF518F processor signals
- Land grid array
 - Easy probing of all port pins and most EBIU signals

- Other features
 - → JTAG ICE 14-pin header
 - Blackfin power measurement jumpers

For information about the hardware components of the EZ-Board, refer to "ADSP-BF518F EZ-Board Hardware Reference" on page 2-1.

Purpose of This Manual

The ADSP-BF518F EZ-Board Evaluation System Manual provides instructions for installing the product hardware (board). The text describes operation and configuration of the board components and provides guidelines for running your own code on the ADSP-BF518F EZ-Board. Finally, a schematic and a bill of materials are provided as a reference for future designs.

The product software installation is detailed in the *VisualDSP++ Installation Quick Reference Card*.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors. This manual assumes that the audience has a working knowledge of the appropriate processor architecture and instruction set. Programmers who are unfamiliar with Analog Devices processors can use this manual, but should supplement it with other texts (such as the ADSP-BF51x Blackfin Processor Hardware Reference and Blackfin Processor Instruction Set Reference) that describe your target architecture.

Programmers who are unfamiliar with VisualDSP++ should refer to the VisualDSP++ online Help and user's or getting started guides. For the locations of these documents, see "Related Documents".

Manual Contents

The manual consists of:

- Chapter 1, "Using ADSP-BF518F EZ-Board" on page 1-1
 Describes EZ-Board functionality from a programmer's perspective
 and provides an easy-to-access memory map.
- Chapter 2, "ADSP-BF518F EZ-Board Hardware Reference" on page 2-1 Provides information on the EZ-Board hardware components.
- Appendix A, "ADSP-BF518F EZ-Board Bill Of Materials" on page A-1
 Provides a list of components used to manufacture the EZ-Board.
- Appendix B, "ADSP-BF518F EZ-Board Schematic" on page B-1 Provides the resources to allow EZ-Board board-level debugging or to use as a reference design. Appendix B is part of the online Help.

What's New in This Manual

This is the first revision of the ADSP-BF518F EZ-Board Evaluation System Manual.

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following ways:

- Visit the Embedded Processing and DSP products Web site at http://www.analog.com/processors/technical_support
- E-mail tools questions to processor.tools.support@analog.com
- E-mail processor questions to

```
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)
```

- Phone questions to 1-800-ANALOGD
- Contact your Analog Devices, Inc. local sales office or authorized distributor
- Send questions by mail to:

```
Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA
```

Supported Processors

This evaluation system supports Analog Devices ADSP-BF518F Blackfin embedded processors.

Product Information

Product information can be obtained from the Analog Devices Web site, VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site

The Analog Devices Web site, www.analog.com, provides information about a broad range of products—analog integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to http://www.analog.com/processors/technical_library. The manuals selection opens a list of current manuals related to the product as well as a link to the previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page to display only the latest information about products you are interested in. You can choose to receive weekly e-mail notifications containing updates to the Web pages that meet your interests, including documentation errata against all manuals.

MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

VisualDSP++ Online Documentation

Online documentation comprises the VisualDSP++ Help system, software tools manuals, hardware tools manuals, processor manuals, Dinkum Abridged C++ library, and FLEXnet License Tools software documentation. You can search easily across the entire VisualDSP++ documentation set for any topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf) files for all manuals are provided on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File	Description
.chm	Help system files and manuals in Microsoft help format
.htm or .html	Dinkum Abridged C++ library and FLEXnet License Tools software documentation. Viewing and printing the .html files requires a browser, such as Internet Explorer 6.0 (or higher).
.pdf	VisualDSP++ and processor manuals in PDF format. Viewing and printing the .pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Technical Library CD

The technical library CD contains seminar materials, product highlights, a selection guide, and documentation files of processor manuals, VisualDSP++ software manuals, and hardware tools manuals for the following processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and ADSP-219x.

To order the technical library CD, go to http://www.analog.com/processors/technical_library, navigate to the manuals page for your processor, click the request CD check mark, and fill out the order form.

Product Information

Data sheets, which can be downloaded from the Analog Devices Web site, change rapidly, and therefore are not included on the technical library CD. Technical manuals change periodically. Check the Web site for the latest manual revisions and associated documentation errata.

Related Documents

For information on product related development software, see the following publications.

Table 1. Related Processor Publications

Title	Description
ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP- BF518 Blackfin Embedded Processor Preliminary Data Sheet	General functional description, pinout, and timing of the processor.
ADSP-BF51x Blackfin Processor Hardware Reference	Description of internal processor architecture and all register functions.
Blackfin Processor Programming Reference	Description of all allowed processor assembly instructions.

Table 2. Related VisualDSP++ Publications

Title	Description
ADSP-BF518F EZ-Board Evaluation System Man- ual	Description of the hardware capabilities of the evaluation system; description of how to access these capabilities in the VisualDSP++ environment.
VisualDSP++ User's Guide	Description of VisualDSP++ features and usage.
VisualDSP++ Assembler and Preprocessor Manuals	Description of the assembler function and commands.
VisualDSP++ C/C++ Complier and Library Man- ual for Blackfin Processors	Description of the complier function and commands for Blackfin processors.

Table 2. Related VisualDSP++ Publications (Cont'd)

Title	Description
VisualDSP++ Linker and Utilities Manual	Description of the linker function and commands.
VisualDSP++ Loader and Utilities Manual	Description of the loader/splitter function and commands.
VisualDSP++ Device Drivers and System Services Manual for Blackfin Processors	Description of the device drivers' and system services' functions and commands.

Notation Conventions

Text conventions used in this manual are identified and described as follows.

Example	Description
Close command (File menu)	Titles in reference sections indicate the location of an item within the VisualDSP++ environment's menu system (for example, the Close command appears on the File menu).
{this that}	Alternative required items in syntax descriptions appear within curly brackets and separated by vertical bars; read the example as this or that. One or the other is required.
[this that]	Optional items in syntax descriptions appear within brackets and separated by vertical bars; read the example as an optional this or that.
[this,]	Optional item lists in syntax descriptions appear within brackets delimited by commas and terminated with an ellipse; read the example as an optional comma-separated list of this.
.SECTION	Commands, directives, keywords, and feature names are in text with letter gothic font.
filename	Non-keyword placeholders appear in text with italic style format.

Notation Conventions

Example	Description
(i)	Note: For correct operation, A Note provides supplementary information on a related topic. In the online version of this book, the word Note appears instead of this symbol.
×	Caution: Incorrect device operation may result if Caution: Device damage may result if A Caution identifies conditions or inappropriate usage of the product that could lead to undesirable results or product damage. In the online version of this book, the word Caution appears instead of this symbol.
\Diamond	Warning: Injury to device users may result if A Warning identifies conditions or inappropriate usage of the product that could lead to conditions that are potentially hazardous for the devices users. In the online version of this book, the word Warning appears instead of this symbol.

1 USING ADSP-BF518F EZ-BOARD

This chapter provides specific information to assist you with development of programs for the ADSP-BF518F EZ-Board evaluation system.

The following topics are covered.

- "Package Contents" on page 1-3
- "Default Configuration" on page 1-4
- "EZ-Board Installation" on page 1-4
- "EZ-Board Session Startup" on page 1-6
- "Evaluation License Restrictions" on page 1-8
- "Memory Map" on page 1-9
- "SDRAM Interface" on page 1-11
- "Parallel Flash Memory Interface" on page 1-11
- "eMMC Interface" on page 1-12
- "SPI Interface" on page 1-13
- "Parallel Peripheral Interface (PPI)" on page 1-15
- "Rotary Encoder Interface" on page 1-15
- "Ethernet Interface" on page 1-16
- "Audio Interface" on page 1-17

- "ADC Interface" on page 1-18
- "UART Interface" on page 1-19
- "RTC Interface" on page 1-20
- "LEDs and Push Buttons" on page 1-21
- "JTAG Interface" on page 1-22
- "Land Grid Array" on page 1-22
- "Expansion Interface II" on page 1-23
- "Power Measurements" on page 1-24
- "Power-On-Self Test" on page 1-24
- "Example Programs" on page 1-25
- "Background Telemetry Channel" on page 1-25
- "Reference Design Information" on page 1-25

For information about VisualDSP++, including the boot loading, target options, and other facilities, refer to the online Help.

For more information about the ADSP-BF518F Blackfin processor, see documents referred to as "Related Documents".

Package Contents

Your ADSP-BF518F EZ-KIT Lite evaluation system package contains the following items.

- ADSP-BF518F EZ-Board
- VisualDSP++ Installation Quick Reference Card
- CD containing:
 - VisualDSP++ software
 - → ADSP-BF518F EZ-Board debug software
 - USB driver files
 - Example programs
 - → ADSP-BF518F EZ-Board Evaluation System Manual
- Universal 5.0V DC power supply
- 256 MB SD card
- 7-foot Ethernet patch cable
- Two 6-foot 3.5 mm male-to-male audio cables
- 18-inch SMA to SMA coaxial cable

If any item is missing, contact the vendor where you purchased your EZ-Board or contact Analog Devices, Inc.

Default Configuration

The ADSP-BF518F EZ-Board board is designed to run outside your personal computer as a stand-alone unit. You do not have to open your computer case.

The EZ-Board evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-Board in the protective shipping package.

When removing the EZ-Board from the package, handle the board carefully to avoid the discharge of static electricity, which can damage some components. Figure 1-1 shows the default jumper and switch settings, connector locations, and LEDs used in installation. Confirm that your board is in the default configuration before using the board.

EZ-Board Installation

For correct operation, install the software in the order presented in the *VisualDSP++ Installation Quick Reference Card*. Substitute instructions in step 3 with instructions in this section.

There are two options to connect the EZ-Board hardware to a personal computer (PC) running VisualDSP++ 5.0: via an Analog Devices emulator or via a standalone debug agent module. The standalone debug agent allows a debug agent to interface to the ADSP-BF518F EZ-Board. The standalone debug agent is shipped with the kit.

Figure 1-1. Default EZ-Board Hardware Setup

EZ-Board Session Startup

To connect the EZ-Board to a PC via an emulator:

- 1. Plug the 5V adaptor into connector J3 (labeled 5V).
- 2. Attach the emulator header to connector P1 (labeled JTAG) on the back side of the EZ-Board.

To connect the EZ-Board to a PC via a standalone debug agent:

The debug agent can be used only when power is supplied from the wall adaptor.

- 1. Attach the standalone debug agent to connectors P1 (labeled JTAG) and ZP1 on the backside of the EZ-Board, watching for the keying pin of P1 to connect correctly. Plug the 5V adaptor into connector J3 (labeled 5V).
- 2. Plug one side of the provided USB cable into the USB connector of the standalone debug agent. Plug the other side of the cable into a USB port of the PC running VisualDSP++ 5.0 update 5 or later.
- 3. Verify that the yellow USB monitor LED on the standalone debug agent (LED4, located on the back side of the board) is lit. This signifies that the board is communicating properly with the host PC and ready to run VisualDSP++.

EZ-Board Session Startup

1. If you are running VisualDSP++ for the first time, navigate to the VisualDSP++ environment via the **Start**->**Programs** menu. The main window appears. Note that VisualDSP++ is not connected to any session. Skip the rest of this step to step 2.

If you have run VisualDSP++ previously, the last opened session appears on the screen. You can override the default behavior and force VisualDSP++ to start a new session by pressing and holding

down the Ctrl key while starting VisualDSP++. Do not release the Ctrl key until the Session Wizard appears on the screen. Go to step 3.

- 2. To connect to a new EZ-KIT Lite session, start **Session Wizard** by selecting one of the following.
 - From the Session menu, New Session.
 - From the Session menu, Session List. Then click New Session from the Session List dialog box.
 - From the Session menu, Connect to Target.
- 3. The Select Processor page of the wizard appears on the screen. Ensure Blackfin is selected in Processor family. In Choose a target processor, select ADSP-BF518F. Click Next.
- 4. The Select Connection Type page of the wizard appears on the screen. For standalone debug agent connection, select EZ-KIT Lite and click Next. For emulator connection select Emulator, and click Next
- 5. The Select Platform page of the wizard appears on the screen. For standalone debug agent connection, ensure that the selected platform is ADSP-BF518F EZ-KIT Lite via Debug Agent. For emulator connection, choose the type of emulator that is connected. Specify your own Session name for the session or accept the default name.

The session name can be a string of any length; although, the box displays approximately 32 characters. The session name can include space characters. If you do not specify a session name, VisualDSP++ creates a session name by combining the name of the selected platform with the selected processor. The only way to change a session name later is to delete the session and open a new

Evaluation License Restrictions

session.

Click Next.

6. The Finish page of the wizard appears on the screen. The page displays your selections. Check the selections. If you are not satisfied, click **Back** to make changes; otherwise, click **Finish**. VisualDSP++ creates the new session and connects to the EZ-Board. Once connected, the main window's title is changed to include the session name set in step 5.

To disconnect from a session, click the disconnect button or select Session->Disconnect from Target.

To delete a session, select **Session** -> **Session** List. Select the session name from the list and click Delete. Click OK.

Evaluation License Restrictions

The ADSP-BF518F EZ-Board installation is part of the VisualDSP++ installation. The EZ-Board is a licensed product that offers an unrestricted evaluation license for the first 90 days. Once the initial unrestricted 90-day evaluation license expires:

- VisualDSP++ restricts a connection to the ADSP-BF518F EZ-Board via the USB port of the standalone debug agent interface only. Connections to simulators and emulation products are no longer allowed.
- The linker restricts a user's program to 20 KB of memory for code space with no restrictions for data space.
- The EZ-Board hardware must be connected and powered up to use VisualDSP++ with a valid evaluation or permanent license.

Refer to the VisualDSP++ Installation Quick Reference Card for details.

Memory Map

The ADSP-BF518F processor has internal static random access memory (SRAM) used for instructions and data storage. See Table 1-1. The internal memory details can be found in the ADSP-BF51x Blackfin Processor Hardware Reference.

The ADSP-BF518F EZ-Board includes four types of external memory: synchronous dynamic random access memory (SDRAM), serial peripheral interconnect (SPI) flash, parallel flash, and eMMC. See Table 1-2. For more information about a specific memory type, go to the respective section in this chapter.

Table 1-1. EZ-Board Internal Memory Map

Start Address	Content	
0xEF00 0000	BOOT ROM (32K BYTE)	
0xEF00 8000	Reserved	
0xFF80 0000	DATA BANKA SRAM (16K BYTE)	
0xFF80 4000	DATA BANKA SRAM/CACHE (16K BYTE)	
0xFF80 8000	Reserved	
0xFF90 0000	DATA BANKB SRAM (16K BYTE)	
0xFF90 4000	DATA BANKB SRAM/CACHE (16K BYTE)	
0xFF90 8000	Reserved	
0xFFA0 0000	INSTRUCTION BANK A SRAM (16K BYTE)	
0xFFA0 4000	Reserved	
0xFFA0 8000	INSTRUCTION BANK B SRAM (16 BYTE)	
0xFFA0 C000	Reserved	
0xFFA1 0000	INSTRUCTION SRAM/CACHE (16K BYTE)	
0xFFA1 4000	Reserved	

Memory Map

Table 1-1. EZ-Board Internal Memory Map (Cont'd)

Start Address	Content	
0xFFB0 0000	SCRATCHPAD SRAM (4K BYTE)	
0xFFB0 1000	Reserved	
0xFFC0 0000	SYSTEM MMR REGISTERS	
0xFFE0 0000	CORE MMR REGISTERS	

Table 1-2. EZ-Board External Memory Map

Start Address	End Address	Content
0x0000 0000	0x03FF FFFF	SDRAM (SDRAM)
0x0800 0000	0x1FFF FFFF	Reserved
0x2000 0000	0x200F FFFF	ASYNC memory bank 0 (flash)
0x2010 0000	0x201F FFFF	ASYNC memory bank 1 (flash)
0x2020 0000	0x202F FFFF	ASYNC memory bank 2 (flash)
0x2030 0000	0x203F FFFF	ASYNC memory bank 3 (flash)
0x2040 0000	OxEEFF FFFF	Reserved

SDRAM Interface

The ADSP-BF518F processor connects to a 64 MB Micron MT48LC32M16A2TG-75 chip through the external bus interface unit (EBIU). The SDRAM chip can operate at a maximum clock frequency of 80 MHz, which is the ADSP-BF518F processor limitation.

With a VisualDSP++ session running and connected to the EZ-Board via the USB standalone debug agent, the SDRAM registers are configured automatically each time the processor is reset. The values are used whenever SDRAM is accessed through the debugger (for example, when viewing memory windows or loading a program).

To disable the automatic setting of the SDRAM registers, select **Target Options** from the **Settings** menu in VisualDSP++ and uncheck **Use XML reset values**. For more information on changing the reset values, refer to the online Help.

An example program is included in the EZ-Board installation directory to demonstrate how to setup and access the SDRAM interface. For more information on how to initialize the registers after a reset, search the VisualDSP++ online Help for "reset values".

Parallel Flash Memory Interface

The parallel flash memory interface of the ADSP-BF518F EZ-Board contains a 4 MB (2M x 16 bits) Numonyx M29W320EB chip. Flash memory connects to the 16-bit data bus and address lines 1 through 19. Chip enable is decoded by the AMS0-3 select lines through NAND and AND gates. The address range for flash memory is 0x2000 0000 to 0x203F FFFF.

Flash memory is pre-loaded with boot code for the power-on-self test (POST) program. For more information, refer to "Power-On-Self Test" on page 1-24. Flash memory also is preloaded with configuration flash information, which contains board revision, BOM revision, and other data.

By default, the EZ-Board boots from the 16-bit parallel flash memory. The processor boots from flash memory if the boot mode select switch (SW1) is set to position 1 (see "Boot Mode Select Switch (SW1)" on page 2-8).

Flash memory code can be modified. For instructions, refer to the online Help and example program included in the EZ-Board installation directory.

For more information about the parallel flash device, refer to the Numonyx Web site: http://www.numonyx.com/.

eMMC Interface

The ADSP-BF518F processor is equipped with a removable storage interface (RSI), which allows the 2 Gb Micron eMMC device to be attached gluelessly to the processor. The eMMC device is attached via the processor's specific RSI control and data lines. The eMMC device shares pins with the secure digital (SD) interface, push buttons, analog-to-digital converter (ADC) and expansion interface II.

The RSI signals can be disconnected from the eMMC device by turning switches SW20 and SW21 all OFF. See "eMMC Enable Switch (SW20-21)" on page 2-15 for more information.

For more information about the eMMC device, refer to the Micron Web site: http://www.micron.com/.

An example program is included in the EZ-Board installation directory to demonstrate how to setup and access the eMMC device.

SD Interface

The ADSP-BF518F processor has a secure digital interface. The SD interface consists of a clock pin, a command pin, and a four-bit data bus. The SD interface of the processor connects gluelessly to the on-board SD connector. The SD interface is attached via the processor's specific RSI control and data lines. The interface shares pins with the eMMC interface, codec, and expansion interface II. The memory can be written to in both one-bit and four-bit modes. For more information, refer to "SD Connector (J13)" on page 2-26. An example program is included in the EZ-Board installation directory to demonstrate how to setup and access the SD interface.

SPI Interface

The ADSP-BF518F processor has two serial peripheral interface (SPI) ports with multiple chip select lines. The SPI0 port connects directly to serial flash memory, audio codec, Ethernet IC, and the expansion interface II.

Serial flash memory is a 16 Mb ST M25P16 device, which is selected using the SPISEL2 line of the processor.

SPI flash memory is factory programmed with Das U-Boot—the universal boot loader. Das U-Boot (*U-Boot* for short) is open source firmware for embedded processors, including the ADSP-BF518F Blackfin processors. U-Boot can load files from a variety of peripherals, such as a serial connection, an Ethernet network connection, or flash memories. U-Boot is executed at system reset, which automatically loads up another application (such as the Linux kernel or a stand alone application). U-Boot can parse many types of files on many types of storage devices.

SPI Interface

U-Boot is controlled via a serial connection. The default setting is 56700 baud, 8 data bits, No parity, 1 stop bit. See "RS-232 Connector (J2)" on page 2-25 for information on the serial connector.

For more information about U-Boot, refer to the online documentation at:

http://docs.blackfin.uclinux.org/doku.php?id=bootloaders:u-boot. For U-Boot support on the Blackfin processors, refer to the online help forums at:

 $\label{lem:http://black-fin.uclinux.org/gf/project/u-boot/forum/?action=ForumBrowse\&forum_id=51.$

SPI flash can be modified. For instructions, refer to the VisualDSP++ online Help, example program included in the EZ-Board installation directory, and U-Boot documentation. U-Boot includes an SPI flash driver and can be used to download a new file over Ethernet or serial connection, and write the file to SPI flash.

By default, the EZ-Board boots from the 16-bit flash parallel memory. SPI flash can be selected as the boot source by setting the boot mode select switch (SW1) to position 3. See "Boot Mode Select Switch (SW1)" on page 2-8.

The audio codec is set up to use the SPISEL3 signal as the SPI chip select. The chip select is shared with the CUD signal. For more information, refer to "Audio Interface" on page 1-17.

The Ethernet IC is set up to use the SPISEL1 signal as the SPI chip select. For more information, refer to "Ethernet Interface" on page 1-16.

Parallel Peripheral Interface (PPI)

The ADSP-BF518F processor provides a parallel peripheral interface (PPI), supporting data widths up to 16 bits. The PPI interface provides three multiplexed frame syncs, a multiplexed clock, and 16 multiplexed data lines. The full PPI port is accessible on the expansion interface II connector (P3). See "Expansion Interface II Connector (P3)" on page 2-28.

The PPI signals connect to multi-functional pins. The PPI is shared with the on-board codec, eMMC, SD, and Ethernet IC. To use the PPI on the expansion interface, disable the codec by turning switch SW15 to all OFF (see "SPORTO ENBL Switch (SW15)" on page 2-13). The eMMC is disabled by turning switches SW20 and SW21 to all OFF, and the SPI flash is disabled by removing the jumper from JP16. See "eMMC Enable Switch (SW20–21)" on page 2-15 and "SPI FLASH CS Enable Jumper (JP16)" on page 2-18.

The PPI is not used on the EZ-Board, the PPI is intended for use on the expansion interface II.

Rotary Encoder Interface

The ADSP-BF518F processor has a built-in, up-down counter with support for a rotary encoder. The three-wire rotary encoder interface connects to the thumbwheel rotary switch (SW19) and expansion interface II. The rotary encoder can be turned clockwise for the up function, counter clockwise for the down function, or can be pushed towards the center of the board to clear the counter.

The rotary switch is a two-bit quadrature (gray code) counter with a detent, meaning that both the down signal (CDG) and up signal (CUD) toggle when the count register increases on a rotation to the right. Upon rotating to the left, CDG and CUD toggle, and the overall count decreases.

Ethernet Interface

If the processor pins are needed for the expansion interface II, disconnect the rotary encoder switch via the three-position rotary enable switch (SW19). For more information, see "Encoder Enable Switch (SW19)" on page 2-14.

An example program is included in the EZ-Board installation directory to demonstrate how to set up and access the rotary encoder interface.

Ethernet Interface

The ADSP-BF518F processor has an integrated Ethernet MAC with media independent interface (MII) which connects to an external PHY. The EZ-Board provides a Micrel KSZ8893M Integrated 3-Port 10/100 Managed Switch with PHYs, fully compliant with IEEE 802.3u standards. The KSZ8893M chip supports 10BASE-T and 100BASE-TX operations. The part is attached gluelessly to the processor.

The Ethernet signals are shared with the PPI signals connected to the expansion interface II.

The Ethernet mode is set by three switches. Switch SW7 controls the configuration of the port 1 connector. SW7 configures the flow control, duplex, speed, and auto-negotiation. Switch SW18 controls the configuration of the port 2 connector. SW18 configures the flow control, duplex, speed, auto-negotiation, auto MDI/MDI-X, and MDI/MDI-X settings. Switch SW8 controls the Ethernet IC configuration. SW8 configures the flow control, hardware pin overwrite, and serial bus mode. See "Ethernet Port 1 Configuration Switch (SW7)" on page 2-11, "Ethernet Port 2 Configuration Switch (SW18)" on page 2-14, and "Ethernet Configuration Switch (SW8)" on page 2-11 for more information.

The Ethernet chip is pre-loaded with a MAC address. The MAC address for the EZ-Board is stored in the configuration flash section of the parallel flash memory and can be found on a sticker on the bottom side of the board.

The PHY portion of the Ethernet chip connects to a Pulse HX1188 magnetics, then to standard RJ-45 Ethernet connectors (J14 and J15). For more information, see "Ethernet Connectors (J14–15)" on page 2-27.

Example programs are included in the EZ-Board installation directory to demonstrate how to use the Ethernet interface.

Audio Interface

The audio interface of the EZ-Board consists of a low-power stereo codec, SSM2602, with an integrated headphone driver and associated passive components. There are two inputs, a stereo line in, and a mono microphone, as well as two outputs, a headphone, and a stereo line out. The codec has integrated stereo ADCs, digital-to-analog converters (DACs), and requires minimal external circuitry.

The codec connects to the ADSP-BF518F processor via the processor's serial port 0. The SPORTO is disconnected from the codec by turning switch SW15 OFF, which enables SPORTO for the SD/eMMC interface or the expansion interface II. See "SPORTO ENBL Switch (SW15)" on page 2-13 for more information.

The control interface of the codec is selected by switching SW16 between the 2-wire interface (TWI) and SPI. The board's default is SPI mode. Refer to "SPI/TWI Switch (SW16)" on page 2-13 for more information.

Mic gain values of 14 dB, 0 dB, or -6 dB are selectable through switch SW5. For more information, see "MIC Gain Switch (SW5)" on page 2-10.

Microphone bias is provided through a low-noise reference voltage. A jumper on positions 2&3 of JP15 connects the MICBIAS signal to the audio jack. Placing a jumper on positions 1&2 of JP15 connects the bias directly to the mic signal. For more information, see "MIC Select Jumper (JP15)" on page 2-18.

ADC Interface

J4 and J5 are 3.5 mm connectors for the audio portion of the board. J5 connects the mic on the top portion and line-in on the bottom. J4 connects the headphone on the top portion and line-out on the bottom. If there is no 3.5 mm cable plugged into the bottom of either J4 or J5, the signals are looped back inside the connector. For more information, see "Dual Audio Connectors (J4–5)" on page 2-26.

For testing, SW6 positions 1&2 connect the MICIN signal to either the left or right headphone. Do not connect the left and right to the MICIN signal at the same time—only position 1 or 2 of SW6 should be 0N at the same time. For more information, see "Mic/HP LPBK, Audio Mode Switch (SW6)" on page 2-10.

The EZ-Board is shipped with two 3.5 mm cables, which allow you to run the example programs provided in the EZ-Board installation directory and learn about the audio interface.

ADC Interface

The ADC interface of the EZ-Board consists of a dual, 12-bit, high-speed, low-power, successive approximation analog-to-digital converter. The device contains two converters, each preceded by a 3-channel multiplexer, a low-noise, wide-bandwidth track, and holds an amplifier that can handle input frequencies in excess of 30 MHz. There are four differential and four single-ended inputs on the EZ-Board that are accessed via SMA connectors.

The ADC connects to the ADSP-BF518F processor via the processor's serial port 1. SPORT1 is disconnected from the ADC by turning switch SW4 OFF, which enables SPORT1 for the expansion interface II or for the multi-function pins, in which case the port's signals can be used for the RSI or as push buttons. See "SPORT1 Enable Switch (SW4)" on page 2-9 for more information.

The ADC range is controlled by jumper JP4. This jumper selects whether the input range for the ADC is 2.5V or 5 V. The max voltage range for a signal connected to the SMA connector is 0–5V. Any voltage outside of this range can damage the EZ-Board. For more information, see "ADC Range Jumper (JP4)" on page 2-17.

Jumpers JP17-28 are used to connect the SMA connector to the ADC input. When there is no input connected to the SMA connector, the jumper should have the shunt installed on pins 2&3. This setting connects the signal going to the ADC input to ground and keeps the noise level low. When an input signal is connected to the SMA connector, the shunt should be installed on position 1&2. For more information, see "ADC Channel Select Jumpers (JP17–28)" on page 2-19.

For testing, switches SW22-23 connect an audio output signal from the codec to the input channels of the ADC. Do not connect to the SMA connectors and have these switches 0N at the same time. For more information, see "Mic/HP LPBK, Audio Mode Switch (SW6)" on page 2-10.

UART Interface

The ADSP-BF518F processor has two built-in universal asynchronous receiver transmitters (UARTs). UART0-1 share the processor's pins with other peripherals on the EZ-Board.

UARTO has full RS-232 functionality via the Analog Devices 3.3V ADM3202 line driver and receiver (U21). When using UARTO, do not set switch SW10 position 4 to 0N. This setting enables UART loopback and should be installed only when running the POST program.

UARTO and UARTO are connected to the expansion interface II connectors. For more information, see "Expansion Interface II Connectors (P2 and P4)" on page 2-27.

Example programs are included in the EZ-Board installation directory to demonstrate UART and RS-232 operations.

For more information on the UART interface, refer to the ADSP-BF51x Blackfin Processor Hardware Reference.

RTC Interface

The ADSP-BF518F processor has a real-time clock (RTC) and a watchdog timer. Typically, the RTC interface is used to implement a real-time watchdog or a life counter of the time elapsed since the last system reset. The EZ-Board is equipped with a Panasonic CR1632 lithium coin and 3V battery supplying 125 mAh. The 3V battery and 3.3V supply of the board connect to the RTC power pin of the processor. When the EZ-Board is powered, the RTC circuit uses the board power to supply voltage to the RTC pin. When the EZ-Board is not powered, the RTC circuit uses the lithium battery to maintain power to the RTC pin. After removing the mylar, the battery lasts for about one year with the EZ-Board unpowered.

Example programs are included in the EZ-Board installation directory to demonstrate the RTC features.

The EZ-Board is shipped with a protective Mylar sheet placed between the coin battery and positive pin of the battery holder. Remove the Mylar sheet before using the RTC in the processor.

For more information on the RTC and watchdog timer, refer to the ADSP-BF51x Blackfin Processor Hardware Reference.

LEDs and Push Buttons

The EZ-Board provides two push buttons and three LEDs for general-purpose I/O, as well as two additional push buttons intended for power down and wake functionality, which also can be used as GPIO flag pins.

The three LEDs, labeled LED1 through LED3, are accessed via the PH3, PH5, and PH6 pins of the processor (respectively). For information on how to program the flag pins, refer to the ADSP-BF51x Blackfin Processor Hardware Reference.

LED1 is shared with the ADC_AO, MMC_D7, and OTP_EN signals. LED2 is shared with the CDG and ADC_A1 signals. LED3 is shared with the CZM and ADC_A2 signals.

The LED1-3 signals also connect to the expansion interface II connectors. See "Expansion Interface II Connector (J1)" on page 2-25 and "Expansion Interface II Connectors (P2 and P4)" on page 2-27 for more information.

The two general-purpose push buttons are labeled PB1 and PB2. The status of each individual button can be read through programmable flag inputs PH0 and PH1. The flag reads '1' when a corresponding switch is being pressed. When the switch is released, the flag reads '0'. A connection between the push buttons and processor inputs is established through positions 1&2 of the DIP switch SW2.

Push buttons 1 and 2 of SW2 are used as GPIO signals on the expansion interface II connectors (J1, P2, P4). To use the PHO and PH1 port pins as GPIO signals on the expansion interface II, turn SW2 to all OFF.

PB1 is shared with the DR1PRI and MMC_D4 signals. PB2 is shared with the RFS1 and MMC_D5 signals.

An example program is included in the ADSP-BF518F installation directory to demonstrate functionality of the LEDs and push buttons.

JTAG Interface

The JTAG connector (P1) allows the standalone debug agent to connect a debug session to the ADSP-BF518F processor. The debug agent operates only when the external 5V wall adaptor is used (J3). When operating the EZ-Board from a battery or USB bus power, the debug agent is not powered.

The standalone debug agent can be removed, and an external emulator can be attached to the EZ-Board. Be careful not to damage the connectors when removing the debug agent. The emulator connects to P1 on the back side of the board. See "EZ-Board Installation" on page 1-4 for more information.

For more information about emulators, contact Analog Devices or go to: http://www.analog.com/processors/blackfin/evaluationDevelop-ment/crosscore/.

Land Grid Array

The ADSP-BF518F EZ-Board has provisions for probing every port pin and the EBIU interface of the processor on connectors P5–7. The connector locations are intended for use with a Tektronix DMAX logic analyzer connector, but can be probed with any oscilloscope or logic analyzer. For pinout information, refer to "ADSP-BF518F EZ-Board Schematic" on page B-1.

For more information on the Tektronix DMAX logic analyzer interface, go to the Tektronix Web site.

Expansion Interface II

The expansion interface II allows an Analog Devices EZ-Extender or a custom-design daughter board to be tested across various hardware platforms that have the same expansion interface.

The expansion interface II implemented on the ADSP-BF518F EZ-Board consists of four connectors, three of which are 0.1 in. shrouded headers (P2-4), and the last of which is a Samtec QMS series header (J1). The connectors contain a majority of the ADSP-BF518F processor signals. For pinout information, go to "ADSP-BF518F EZ-Board Schematic" on page B-1. The mechanical dimensions of the expansion connectors can be obtained by contacting Technical or Customer Support.

For more information about daughter boards, visit the Analog Devices Web site at:

http://www.analog.com/processors/blackfin/evaluationDevelop-ment/crosscore/.

Limits to current and interface speed must be taken into consideration when using the expansion interface II. Current for the expansion interface II is sourced from the EZ-Board; therefore, the current should be limited to 1A for 5V and 500 mA for the 3.3V planes. If more current is required, then a separate power connector and a regulator must be designed on a daughter card. Additional circuitry can add extra loading to signals, decreasing their maximum effective speed.

Analog Devices does not support and is not responsible for the effects of additional circuitry.

Power Measurements

Several locations are provided for measuring the current draw from various power planes. Precision 0.1 ohm shunt resistors are available on the VDDINT, VDDEXT, VDDMEM, and VDDFLASH voltage domains. For current draw measuments, the associated jumper (P8–11) should be removed. Once the jumper is removed, the voltage across the resistor can be measured using an oscilloscope. Once voltage is measured, current can be calculated by dividing the voltage by 0.1. For the highest accuracy, a differential probe should be used for measuring voltage across the resistor.

For more information, see "VDDINT Power Jumper (P8)" on page 2-19, "VDDEXT Power Jumper (P9)" on page 2-19, "VDDMEM Power Jumper (P10)" on page 2-20, and "VDDFLASH Power Jumper (P11)" on page 2-20.

Power-On-Self Test

The power-on-self-test program (POST) tests all EZ-Board peripherals and validates functionality as well as connectivity to the processor. Once assembled, each EZ-Board is fully tested for an extended period of time with a POST. All EZ-Boards are shipped with the POST preloaded into one of its on-board flash memories. The POST is executed by resetting the board and pressing the proper push button(s). The POST also can be used as a reference for a custom software design or hardware troubleshooting. Note that the source code for the POST program is included in the VisualDSP++ installation directory along with the readme text file, which describes how the EZ-Board is configured to run a POST.

Example Programs

Example programs are provided with the ADSP-BF518F EZ-Board to demonstrate various capabilities of the product. The programs are installed with the VisualDSP++ software and can be found in the <install_path>\Blackfin\Examples\ADSP-BF518F EZ-Board directory. Refer to the readme file provided with each example for more information.

Background Telemetry Channel

The USB debug agent supports the background telemetry channel (BTC), which facilitates data exchange between VisualDSP++ and the processor without interrupting processor execution.

The BTC allows you to read and write data in real time while the processor continues to execute. For increased performance of the BTC, including faster reading and writing, please check our latest line of processor emulators at:

http://www.analog.com/en/embedded-processing-dsp/sharc/USB-EMU-LATOR/products/product.html. For more information about BTC, see the online help.

Reference Design Information

A reference design info package is available for download on the Analog Devices Web site. The package provides information on the design, layout, fabrication, and assembly of the EZ-KIT Lite and EZ-Board products.

The information can be found at:

http://www.analog.com/en/embedded-processing-dsp/content/reference_designs/fca.html.

2 ADSP-BF518F EZ-BOARD HARDWARE REFERENCE

This chapter describes the hardware design of the ADSP-BF518F EZ-Board board.

The following topics are covered.

- "System Architecture" on page 2-2
 Describes the ADSP-BF518F EZ-Board configuration and explains how the board components interface with the processor.
- "Programmable Flags" on page 2-3 Shows the locations and describes the programming flags (PFs).
- "Push Button and Switch Settings" on page 2-7
 Shows the locations and describes the push buttons and switches.
- "Jumpers" on page 2-16
 Shows the locations and describes the configuration jumpers.
- "LEDs" on page 2-21
 Shows the locations and describes the LEDs.
- "Connectors" on page 2-24
 Shows the locations and provides part numbers for the on-board connectors. In addition, the manufacturer and part number information is provided for the mating parts.

System Architecture

This section describes the processor's configuration on the EZ-Board (Figure 2-1).

Figure 2-1. System Architecture

This EZ-Board is designed to demonstrate the ADSP-BF518F Blackfin processor capabilities. The processor has an I/O voltage of 3.3V. The core voltage of the processor is controlled by an Analog Devices ADP1715 low dropout regulator (LDO) and an Analog Devices AD5258 digipot, which

is configurable over the 2-wire interface (TWI) signals. Refer to the power-on-self test (POST) example in the ADSP-BF518F installation directory of VisualDSP++ for information on how to set up the TWI interface.

The core voltage and clock rate can be set on the fly by the processor. The input clock is 25 MHz. A 32.768 kHz crystal supplies the real-time clock (RTC) inputs of the processor. The default boot mode for the processor is external parallel flash boot. See "Boot Mode Select Switch (SW1)" on page 2-8 for information on how to change the default boot mode.

Programmable Flags

The processor has 40 general-purpose input/output (GPIO) signals spread across three ports (PF, PG, and PH). The pins are multi-functional and depend on the ADSP-BF518F processor setup. The following tables show how the programmable flag pins are used on the EZ-Board.

- PF programmable flag pins Table 2-1
- PG programmable flag pins Table 2-2
- PH programmable flag pins Table 2-3

Table 2-1. PF Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-Board Function
PF0	ETxD2/PPIDO/SPI1_SSEL2/TA CLK6	Default: ETXD2 Land grid array, expansion interface II
PF1	ERxD2/PPID1/PWM_AH/TACLK7	Default: ERXD2 Land grid array, expansion interface II
PF2	ETxD3/PPID2/PWM_AL	Default: ETXD3 Land grid array, expansion interface II
PF3	ERxD3/PPID3/PWM_BH/TACLKO	Default: ERXD3 Land grid array, expansion interface II

Programmable Flags

Table 2-1. PF Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-Board Function
PF4	ERx- CLK/PPID4/PWM_BL/TACLK1	Default: ERXCLK Land grid array, expansion interface II
PF5	ERXDV/PPID5/PWM_CH/TACIO	Default: ERXDV Land grid array, expansion interface II
PF6	COL/PPID6/PWM_CL/TACI1	Default: COL Land grid array, expansion interface II
PF7	SPIO_SSEL1/PPID7/PWM_SYNC	Default: SPI0_SSEL1 Land grid array, expansion interface II
PF8	MDC/PPID8/SPI1_SSEL4	Default: MDC Land grid array, expansion interface II
PF9	RMIIMDIO/PPID9/TMR2	Default: MDIO Land grid array, expansion interface II
PF10	ETxD0/PPID10/TMR3	Default: ETXD0 Land grid array, expansion interface II
PF11	ERXDO/PPID11/PWM_AH/TACI3	Default: ERXD0 Land grid array, expansion interface II
PF12	ETxD1/PPID12/PWM_AL	Default: ETXD1 Land grid array, expansion interface II
PF13	ERXD1/PPID13/PWM_BH	Default: ERXD1 Land grid array, expansion interface II
PF14	ETXEN/PPID14/PWM_BL	Default: ETXEN Land grid array, expansion interface II
PF15	RMII_PHYINT/PPID15/ PWM_SYNC	Default: RMII_PHYINT Land grid array, expansion interface II

ADSP-BF518F EZ-Board Hardware Reference

Table 2-2. PG Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-Board Function
PG0	MIICRS/RMII- CRS/HWAIT/SPI1_SSEL3	Default: MIICRS HWAIT, land grid array, expansion interface II
PG1	ERXER/DMAR1/PWM_CH	Default: ERXER Land grid array, expansion interface II
PG2	MIITxCLK/RMIIREF_CLK/ DMARO/PWM_CL	Default: MIITXCLK Land grid array, expansion interface II
PG3	DROPRI/RSI_DATAO/ SPIO_SSEL5/TACLK3	Default: DROPRI SD_DO, land grid array, expansion interface II
PG4	RSCLKO/RSI_DATA1/TMR5/ TACI5	Default: RSCLK0 SD_D1, land grid array, expansion interface II
PG5	RFSO/RSI_DATA2/PPICLK_1/ TMRCLK	Default: RFS0 SD_D2, land grid array, expansion interface II
PG6	TFSO/RSI_DATA3/TMRO/ PPIFS1_1	Default: TFS0 SD_D3, land grid array, expansion interface II
PG7	DTOPRI/RSI_CMD/TMR1/ PPIFS2_1	Default: DTOPRI SD_CMD, land grid array, expansion interface II
PG8	TSCLKO/RSI_CLK/TMR6/TAC16	Default: TSCLK0 SD_CLK, land grid array, expansion interface II
PG9	DTOSEC/UARTO_TX/TMR4	Default: UARTO_TX Land grid array, expansion interface II
PG10	DROSEC/UARTO_RX/TACI4	Default: UARTO_RX Land grid array, expansion interface II
PG11	SPIO_SS/AMS[2]/SPI1_SSEL5/ TACLK2	Default: AMS2 Land grid array, expansion interface II
PG12	SPIO_SCK/PPICLK_2/TMRCLK	Default: SPIO_SCK Land grid array, expansion interface II
PG13	SPIO_MISO/TMRO/PPIFS1_2	Default: SPIO_MISOI Land grid array, expansion interface II

Programmable Flags

Table 2-2. PG Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-Board Function	
PG14	SPIO_MOSI/TMR1/PPIFS2_2/ PWM_TRIPB	Default: SPIO_MOSI Land grid array, expansion interface II	
PG15	SPIO_SSEL2/PPIFS3/AMS[3]	Default: AMS3 SPIO_SEL2, land grid array, expansion interface II	

Table 2-3. PH Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-Board Function	
PHO	DR1PRI/SPI1_SS/RSI_DATA4	Default: PB1 DR1PRI, MMC_D4, land grid array, expansion interface II	
PH1	RFS1/SPI1_MISO/RSI_DATA5	Default: PB2 RFS1, MMC_D5, land grid array, expansion interface II	
PH2	RSCLK1/SPI1_SCK/RSI_DATA6	Default: not used RSCLK1, MMC_D6, land grid array, expansion interface II	
PH3	DT1PRI/SPI1_MOSI/RSI_DATA7	Default: LED1 ADC_A0, MMC_D7, OTP_EN, land grid array, expansion interface II	
PH4	TFS1/A0E/SPIO_SSEL3/CUD	Default: SPIO_SSEL3 CUD, land grid array, expansion interface II	
PH5	TSCLK1/ARDY/ECLK/CDG	Default: LED2 CDG, ADC_A1, land grid array, expansion interface II	
PH6	DT1SEC/UART1_TX/ SPI1_SSEL1/CZM	Default: LED3 CZM, ADC_A2, land grid array, expansion interface II	
PH7	DR1SEC/UART1_RX/TMR7/TACI2	Default: not used DR1SEC, land grid array, expansion interface II	

Push Button and Switch Settings

This section describes operation of the push buttons and switches. The push button and switch locations are shown in Figure 2-2.

Figure 2-2. Push Button and Switch Locations

Boot Mode Select Switch (SW1)

The boot mode select switch (SW1) determines the boot mode of the processor. Table 2-4 shows the available boot mode settings. By default, the ADSP-BF518F processor boots from the on-board parallel flash memory.

The selected position of SW1 is marked by the notch down the entire rotating portion of the switch, not the small arrow.

Table 2-4. Boot Mode Select Switch (SW1)

SW1 Position	Processor Boot Mode
0	Reserved
1	Boot from 8- or 16-bit external flash memory (default)
2	Boot from 16-bit asynchronous FIFO
3	Boot from serial SPI memory
4	Boot from SPI host device
5	Boot from serial TWI memory
6	Boot from TWI host
7	Boot from UARTO host

PB Enable Switch (SW2)

The PB enable switch (SW2) disconnects the associated push buttons from the GPIO pins of the processor and allows the signals to be used for other purposes (see Table 2-5).

Table 2-5. Push Button Enable Switch (SW2)

SW2 Position (Default)	From	То	Function
1 (ON)	Push button 1 (SW12)	Processor (U12, PH0)	ON (PB1) OFF (ADC DR1PRI, eMMC, expansion interface II)
2 (ON)	Push button 2 (SW13)	Processor (U12, PH1)	ON (PB2) OFF (ADC RFS1, eMMC, expansion interface II)

Flash Enable Switch (SW3)

The flash enable switch (SW3) disconnects the ~AMSx signals from parallel flash memory (U5) and allows other devices to utilize the signals via the expansion interface II. For each switch listed in Table 2-6 that is turned OFF, the size of available flash memory is reduced by 1 MB. ~AMS3 is shared with ~SPIO_SEL2 of the external SPI flash. When using the external SPI flash, the available size for parallel flash is 3 MB.

Table 2-6. Flash Enable Switch (SW3)

SW3 Switch Position (Default)	Processor Signal
1 (ON)	~AMSO
2 (ON)	~AMS1
3 (ON)	~AMS2
4 (ON)	~AMS3

SPORT1 Enable Switch (SW4)

The SPORT1 enable switch (SW4) connects the SPORT1 interface of the processor to the ADC7266 (U2) device. When the SPORT1 interface is used on the expansion interface II, turn SW4 all OFF. SW4 is set to all OFF by default.

Push Button and Switch Settings

The SPORT1 interface is shared with other on-board components, such as the eMMC device and push buttons.

MIC Gain Switch (SW5)

The microphone gain switch (SW5) sets the gain of the MIC signal, which is connected to the top 3.5 mm jack (J5). The gain can be set to 14 dB, 0 dB, or –6 dB by turning position 1, 2, or 3 of SW5 0N (see Table 2-7). When the corresponding position for the desired gain is 0N, the remaining positions must be 0FF. Refer to "Audio Interface" on page 1-17 for more information about the audio codec.

Table 2-7. MIC Gain Switch (SW5)

Gain	SW5 Switch Settings	
5 (14 dB)	ON, OFF, OFF, OFF	
1 (0 dB)	OFF, ON, OFF, OFF	
0.5 (-6 dB)	OFF, OFF, ON, OFF (default)	
Unused	OFF, OFF, OFF	

Mic/HP LPBK, Audio Mode Switch (SW6)

The SW6 switch places the EZ-Board in a loopback to test the board for signal/circuit continuity and functionality. SW6 positions 1&2 connect the MICIN signal to the headphone's left and right outputs for audio loopback. Do not turn SW6 positions 1&2 0N at the same time. See "Power-On-Self Test" on page 1-24 for more information.

SW6 positions 3&4 select the control interface for the audio codec. SW6 positions 3 ON and 4 OFF select the SPI interface, while position 3 OFF and position 4 ON select TWI mode. By default, SW6 is OFF, OFF, ON, OFF. See "SPI/TWI Switch (SW16)" on page 2-13 for more information.

Ethernet Port 1 Configuration Switch (SW7)

The Ethernet port 1 configuration switch (SW7) is used to configure certain Ethernet settings related to port 1 via hardware, instead of software (see Table 2-8).

Table 2-8. Ethernet Port 1 Configuration Switch (SW7)

SW7 Position (Default)	Description	Position	Function
1 (ON)	Force flow control	OFF ON	Disable Enable
2 (ON)	Force full/half	OFF ON	Half duplex Full duplex
3 (ON)	Force speed	OFF ON	10BaseT 100BaseTX
4 (OFF)	Auto-negotiation	OFF ON	Enable Disable

Ethernet Configuration Switch (SW8)

The Ethernet configuration switch (SW8) is used to configure certain Ethernet settings via hardware, instead of software (see Table 2-9).

Table 2-9. Ethernet Configuration Switch (SW8)

SW8 Position (Default)	Description	Position	Function
1 (ON)	Advertise flow control	OFF ON	Disable Enable
2 (ON)	Hardware pin overwrite	OFF ON	Enable Disable
3, 4 (ON, OFF)	Serial bus mode	OFF OFF OFF ON ON OFF ON ON	Not used TWI slave SPI slave Not used

UART Setup Switch (SW10)

The UART setup switch (SW10) configures the UARTO signals from the GPIO pins of the processor. Position 4 is used to place the UARTO port of the processor in a loopback condition. The jumper connects the UARTO_TX line of the processor to the UARTO_RX signal of the processor. This is required when a POST program is run to test the serial port interface. By default, SW10 is ON, OFF, ON, OFF.

Reset Push Button (SW11)

The reset push button (SW11) resets the following ICs.

• Processor (U12), parallel flash (U5), and Ethernet IC (U4)

The reset push button does not reset the following ICs.

- SDRAM (U14), eMMC (U16)
- Audio codec (U1), UARTO (U21), schmitt trigger hex inverter (U6)
- Digipot (U7), power (VR1-5)

The reset push button does not reset the standalone debug agent once the debug agent is connected to a personal computer (PC). After communication between the debug agent and PC is initialized, pushing a reset button does not reset the USB chip on the debug agent. The only way to reset the USB chip on the debug agent is to power down the EZ-Board.

Programmable Flag Push Buttons (SW12-13)

Two momentary push buttons (SW12 and SW13) are provided for general-purpose user input. The buttons connect to the PH0 and PH1 GPIO pins of the processor. The push buttons are active high and, when pressed,

send a high (1) to the processor. The GPIO enable switch (SW2) disconnects the push buttons from the corresponding push button signals. Refer to "PB Enable Switch (SW2)" on page 2-8 for more information.

Rotary Encoder with Momentary Switch (SW14)

The rotary encoder (SW14) can be turned clockwise for an up count or counter-clockwise for a down count. The encoder also features a momentary switch, activated by pushing the switch towards the processor, which resets the counter to zero. The rotary encoder is a two-bit quadrature (gray code) encoder. Refer to the Rotary Counter section of the *ADSP-BF51x Blackfin Processor Hardware Reference* for more information.

The rotary encoder is disconnected from the processor by setting SW19 positions 1, 2, and 3 to OFF. See "Encoder Enable Switch (SW19)" on page 2-14 for more information.

SPORTO ENBL Switch (SW15)

The SPORTO enable switch (SW15) connects the SPORTO interface of the processor to the audio codec, SSM2602 (U1). When the SPORTO interface is used on the expansion interface II, turn SW15 all OFF. By default, SW15 is set to all ON.

SPI/TWI Switch (SW16)

The SPI/TWI switch (SW16) selects the control interface for the SSM2602 audio codec. By default, SW16 is ON, OFF, ON, OFF, ON, OFF and selects the SPI interface. TWI is selected by setting SW16 to OFF, OFF, OFF, ON, OFF, ON.

Ethernet Mode Switch (SW17)

The Ethernet mode switch (SW17) selects the control interface for the KSZ8893M device. By default, SW17 is ON, ON, ON, OFF, ON, OFF and selects the SPI interface. TWI is selected by setting SW17 to OFF, OFF, ON, OFF, ON.

Ethernet Port 2 Configuration Switch (SW18)

The Ethernet port 2 configuration switch (SW18) is used to configure certain Ethernet settings related to port 1 via hardware, instead of software (see Table 2-10).

Table 2-10. Ethernet Port 2 Configuration Switch (SW18)

SW18 Position (Default)	Description	Position	Function
1 (ON)	Force flow control	OFF ON	Disable Enable
2 (ON)	Force full/half	OFF ON	Half duplex Full duplex
3 (ON)	Force speed	OFF ON	10BaseT 100BaseTX
4 (OFF)	Auto-negotiation	OFF ON	Enable Disable
5 (OFF)	Auto MDI/MDI-X	OFF ON	Enable Disable
6 (OFF)	MDI/MDI-X setting	OFF ON	MDI-X MDI

Encoder Enable Switch (SW19)

The encoder enable switch (SW19) disconnects the rotary encoder signals from the GPIO pins of the processor. When SW19 is OFF, its associated GPIO signals can be used on the expansion interface II (see Table 2-11).

ADSP-BF518F EZ-Board Hardware Reference

Table 2-11. Encoder Enable Switch (SW19)

SW19 Position (Default)	From	То
1 (OFF)	Encoder (SW14)	Processor (U1, PF13)
2 (OFF)	Encoder (SW14)	Processor (U1, PF12)
3 (OFF)	Encoder (SW14)	Processor (U1, PF11)

eMMC Enable Switch (SW20-21)

The eMMC enable switches (SW20 and SW21) connect the RSI signals to the on-board eMMC memory device. The eMMC interface and the SD interface share the same signals; therefore, no card should be inserted into the SD connector when the eMMC device is used. The default for the switches is all OFF so that the SD connector can be used.

ADC Loopback Switches (SW22-23)

The ADC loopback switches (SW22 and SW23) are used for testing only. The switches are used to send an analog signal generated from the codec to the ADC circuit for evaluation.

Jumpers

This section describes functionality of the configuration jumpers. Figure 2-2 shows the jumper locations.

Figure 2-3. Configuration Jumper Locations

Flash WP Jumper (JP3)

The flash WP jumper (JP3) is used to write-protect block 70 of the parallel flash chip. Block 70 contains 64 KB of configuration data at address range 0x203 F0000-0x203 FFFFF. When the jumper is installed on JP3, and the parallel flash driver from Analog Devices is used, block 70 is read-only. By default, JP3 is installed.

ADC Range Jumper (JP4)

The ADC range jumper JP4 is used to select the range of the input signal to the ADC. The jumper determines whether the input range for the ADC is 2.5V or 5 V. The max voltage range for a signal connected to the SMA connector is 0–5V. Any voltage outside of this range can damage the EZ-Board. By default, JP4 is installed.

LED Select Jumpers (JP11-12)

The LED select jumpers (JP11 and JP12) are used to configure how Ethernet status is reported on the LEDs. By default, JP11 is installed, and JP12 is not installed. The LEDs can be used to report the status of the link, activity on the line, duplex mode speed, and collisions. For more information about the LEDs, refer to the KSZ8893M data sheet provided by the product manufacturer.

Ethernet Power Down Jumper (JP13)

The Ethernet power down jumper (JP13) is used to put the KSZ8893M PHY into a power down mode. In this mode, the entire chip is powered down, and the register configuration is not saved. By default, JP13 is not installed.

OTP Flag Enable Jumper (JP14)

The OTP flag enable jumper (JP14) controls the precise 7V OTP voltage regulator. When installed, JP14 allows OTP writes.

JP14 must be installed for OTP writes to be successful. The nominal 2.5V for OTP is temporarily raised to 7V when PH3 is set high. Care must be taken when using the OTP_FLAG signal in order to avoid driving 7V for an extended amount of time.

There is a limited amount of time 7V can be applied to the processor's OTP interface. Violating the specifications listed in the ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP-BF518 Blackfin Embedded Processor data sheet can damage the processor.

Configured properly, JP14 connects the processor's PH3 flag pin to the shut-down pin of the ADP1611 switching converter. Refer to the ADSP-BF51x Blackfin Processor Hardware Reference Manual and the ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP-BF518 Blackfin Embedded Processor data sheet for more information about OTP writes.

MIC Select Jumper (JP15)

The microphone select jumper (JP15) connects the MICBIAS signal to the MICIN signal (JP15 on positions 1&2) or connects the MICBIAS signal to the 3.5 mm connector J5 (JP15 on positions 2&3). By default, JP15 is installed on positions 2&3.

SPI FLASH CS Enable Jumper (JP16)

The SPI flash CS enable jumper (JP16) connects the SPI0_SSEL2 signal to the SPI flash. When installing JP16, position 3 of SW3 needs to be turned OFF since the SPI0_SSEL2 signal is shared with the ~AMS3 signal connected

to parallel flash. When using SPI flash, the available memory that is accessible on parallel flash is reduced from 4 MB to 3 MB. By default, JP16 is not installed.

ADC Channel Select Jumpers (JP17-28)

The ADC channel select jumpers JP17–28 are used to connect the SMA connector to the ADC input. When there is no input connected to the SMA connector, the jumper should have the shunt installed on pins 2&3. This connects the signal going to the ADC input to ground and keeps the noise level low. When an input signal is connected to the SMA connector, the shunt should be installed on position 1&2. By default, JP17–28 are installed on positions 2&3.

VDDINT Power Jumper (P8)

The VDDINT power jumper (P8) is used to measure the core voltage and current supplied to the processor core. P8 is 0N by default, and the power flows through the two-pin IDC header. To measure power, remove P8 and measure voltage across the 0.1 ohm resistor. Once voltage is measured, power can be calculated. For more information, refer to "Power Measurements" on page 1-24.

VDDEXT Power Jumper (P9)

The VDDEXT power jumper (P9) is used to measure the processor's I/O voltage and current. By default, P9 is 0N, and the power flows through the two-pin IDC header. To measure power, remove the jumper and measure voltage across the 0.1 ohm resistor. Once voltage is measured, power can be calculated. For more information, refer to "Power Measurements" on page 1-24.

VDDMEM Power Jumper (P10)

The VDDMEM power jumper (P10) is used to measure the voltage and current supplied to the memory interface of the processor. By default, P10 is 0N, and the power flows through the two-pin IDC header. To measure power, remove P10 and measure voltage across the 0.1 ohm resistor. Once voltage is measured, power can be calculated. For more information, refer to "Power Measurements" on page 1-24.

VDDFLASH Power Jumper (P11)

The VDDFLASH power jumper (P11) is used to measure the flash voltage and current supplied to the processor core. P11 is 0N by default, and the power flows through the two-pin IDC header. To measure power, remove P11 and measure voltage across the 0.1 ohm resistor. Once voltage is measured, power can be calculated. For more information, refer to "Power Measurements" on page 1-24.

LEDs

This section describes the on-board LEDs. Figure 2-4 shows the LED locations.

Figure 2-4. LED Locations

GPIO LEDs (LED1-3)

Three LEDs connect to three general-purpose I/O pins of the processor (see Table 2-12). The LEDs are active high and lit by writing a '1' to the correct programmable flag signal.

Table 2-12. GPIO LEDs

LED Reference Designator	Processor Programmable Flag Pin
LED1	PH3
LED2	PH5
LED3	PH6

Ethernet LEDs (LED4-8, LED10-12)

The Ethernet LEDs LED4–8 and LED10–12 are used to report the status of port 1 and port 2 of the KSZ8893M switch. The status displayed by the LEDs is controlled by jumpers JP11 and JP12. The LEDs can be used to report the status of the link, activity on the line, duplex mode speed, and collisions. For more information on the LEDs, refer to the KSZ8893M data sheet provided by the product manufacturer. For more information, see "LED Select Jumpers (JP11–12)" on page 2-17.

Reset LED (LED9)

When LED9 is lit, it indicates that the master reset of all major ICs is active. The reset LED is controlled by the Analog Devices ADM708 supervisory reset circuit. You can assert the reset push button (SW11) to assert the master reset and activate LED9. For more information, see "Reset Push Button (SW11)" on page 2-12.

ADSP-BF518F EZ-Board Hardware Reference

Power LED (LED13)

When LED13 is lit solid, it indicates that the board is powered.

Connectors

This section describes connector functionality and provides information about mating connectors. The connector locations are shown in Figure 2-5.

Figure 2-5. Connector Locations

Expansion Interface II Connector (J1)

J1 is a board-to-board connector providing signals from the external bus interface unit (EBIU) of the processor. The connector is located on the left edge of the board. For more information, see "Expansion Interface II" on page 1-23. For availability and pricing of the connector, contact Samtec.

Part Description	Manufacturer	Part Number
104-position 0.025", SMT header	SAMTEC	QMS-052-11-L-D-A
Mating Connector		

RS-232 Connector (J2)

Part Description	Manufacturer	Part Number
DB9, female, vertical mount	NORCOMP	191-009-213-L-571
Mating Cable		
2m female-to-female cable	DIGI-KEY	AE1020-ND

Power Connector (J3)

The power connector (J3) provides all of the power necessary to operate the EZ-Board.

Part Description	Manufacturer	Part Number
0.65 mm power jack	CUI	045-0883R
Mating Power Supply (shipped with the EZ-Board)		
5.0VDC@2.5A power supply	CUI STACK	DMS050260-P12P-SZ

Dual Audio Connectors (J4-5)

Part Description	Manufacturer	Part Number
3.5 mm dual stereo jack	SWITCHCRAFT	35RAPC7JS
Mating Cable (shipped with the EZ-Board)		
3.5 mm male/male 6' cable	RANDOM	10A3-01106

SMA Connectors (J7, J16-26)

Part Description	Manufacturer	Part Number
SMA straight jack receptacle	JOHNSON COMPONENTS	142-0701-201
Mating Cable (shipped with the EZ-Board)		
SMA male/male 18" cable	CRYSTEK CORPORATION	CCMA-MM-18

Battery Holder (J12)

Part Description	Manufacturer	Part Number
16 mm battery holder	MEMORY PROTECTION	BH600
Mating Battery (shipped with the EZ-Board)		
3V 125MAH 16 mm LI-COIN	PANASONIC	CR1632

SD Connector (J13)

Part Description	Manufacturer	Part Number
SD 9-pin connector	ITT CANON	CCM05-5777LFT T50
Mating Memory Card (shipped with the EZ-Board)		
256 MB	SANDISK STACK	SDSDB-256-A10

Ethernet Connectors (J14-15)

Part Description	Manufacturer	Part Number
RJ-45 Ethernet jack	STEWART	SS-6488-NF
Mating Cable (shipped with the EZ-Board)		
Cat 5E patch cable	RANDOM	PC10/100T-007

JTAG Connector (P1)

The JTAG header is the connecting point for a JTAG connection to the ADSP-BF518F processor. The standalone debug agent requires both connectors P1 and 7P1.

Pin 3 is missing to provide keying. Pin 3 in the mating connector should have a plug.

When using an emulator with the EZ-Board, the standalone debug agent must be removed. Follow the installation instructions provided in "EZ-Board Installation" on page 1-4, using P1 as the JTAG connection point.

Expansion Interface II Connectors (P2 and P4)

P2 and P4 are board-to-board connectors providing signals for the SPI, TWI, UART, SPORT interfaces and GPIO signals of the processor. The connectors are located on the upper and lower edges of the board. For more information, see "Expansion Interface II" on page 1-23. For availability and pricing of the connectors, contact Samtec.

Part Description	Manufacturer	Part Number
50-position 0.1", SMT header	SAMTEC	TSSH-125-01-L-DV-A

Connectors

Part Description	Manufacturer	Part Number
Mating Connector		
50-position 0.1", SMT socket	SAMTEC	SSW-125-22-F-D-VS

Expansion Interface II Connector (P3)

P3 is a board-to-board connector providing signals for the PPI, TWI, and GPIO signals of the processor. The connector is located on the upper edge of the board. For more information, see "Expansion Interface II" on page 1-23. For availability and pricing of the connector, contact Samtec.

Part Description	Manufacturer	Part Number
70-position 0.1", SMT header	SAMTEC	TSSH-135-01-L-DV-A
Mating Connector		
	8	

DMAX Land Grid Array Connectors (P5-7)

The land grid array areas (P5-7) are intended for the probing of the processor signals. The pads are exposed and designed to attach a Tektronix logic analyzer to the connectors listed in the following table. For more information about the land grid array, consult the Tektronix Web site.

Part Description	Manufacturer	Part Number
Primary retention	TEKTRONIX	020290800
Alternate retention	TEKTRONIX	020291000

Standalone Debug Agent Connector (ZP1)

ZP1 connects the standalone debug agent to the EZ-Board. The standalone debug agent requires both the ZP1 and P1 connectors. For more information, see "EZ-Board Installation" on page 1-4.

Connectors

A ADSP-BF518F EZ-BOARD BILL OF MATERIALS

The bill of materials corresponds to "ADSP-BF518F EZ-Board Schematic" on page B-1.

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
1	1	74LVC14A SOIC14	U6	TI	74LVC14AD
2	1	IDT74FCT3244A PY SSOP20	U10	IDT	IDT74FCT3244APYG
3	1	32.768KHZ OSC008	U3	EPSON	MC-156-32.7680KA-A0: ROHS
4	1	25MHZ OSC003	U19	EPSON	SG-8002CA MP
5	4	SN74LVC1G08 SOT23-5	U23-26	TI	SN74LVC1G08DBVR
6	1	MT48LC32M16A 2TG-75 TSOP54	U14	MICRON	MT48LC32M16A2P-75
7	1	SI4411DY SO-8	U8	VISHAY	Si4411DY-T1-E3
8	2	HX1188 ICS007	U27-28	DIGI-KEY	553-1340-ND
9	1	12MHZ OSC003	U20	EPSON	SG-8002CA-MP
10	1	SN74AUC1G00 SOT23-5	U13	TI	SN74AUC1G00DBVR
11	1	KS8893M PQFP128	U4	MICREL	KSZ8893MQL
12	1	BF518 M25P16 "U9"	U9	ST MICRO	M25P16-VMW6G

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
13	1	BF518 M29W320EB "U5"	U5	STMICRO	M29W320EB70ZE6E
14	1	MTFC2GDKDM FBGA169	U16	MICRON	MTFC2GDKDM-WT
15	1	ADM708SARZ SOIC8	U22	ANALOG DEVICES	ADM708SARZ
16	1	ADM3202ARNZ SOIC16	U21	ANALOG DEVICES	ADM3202ARNZ
17	1	ADSP-BF518F LQFP176	U12	ANALOG DEVICES	ADSP-BF518BSWZ-4F4
18	1	ADP1864AUJZ SOT23-6	VR1	ANALOG DEVICES	ADP1864AUJZ-R7
19	1	ADP1611 MSOP8	VR6	ANALOG DEVICES	ADP1611ARMZ-R7
20	1	ADP1715 MSOP8	VR5	ANALOG	ADP1715ARMZ-R7
21	1	ADP1710 TSOT5	VR3	ANALOG DEVICES	ADP1710AUJZ-R7
22	1	ADR550B SOT23-3	U11	ANALOG DEVICES	ADR550BRTZ-REEL7
23	1	AD5258 MSOP10	U7	ANALOG DEVICES	AD5258BRMZ10
24	1	SSM2602 ICS009	U1	ANALOG DEVICES	SSM2602CPZ-R2
25	1	ADP1715 MSOP8	VR4	ANALOG DEVICES	ADP1715ARMZ-1.8R7
26	6	AD8022 MSOP8	U29-34	ANALOG DEVICES	AD8022ARMZ
27	1	AD7266 LFCSP32	U2	ANALOG DEVICES	AD7266BCPZ

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
28	1	ADP1610 MSOP8	VR2	ANALOG DEVICES	ADP1610ARMZ-R7
29	1	DIP3 SWT015	SW19	DIGI-KEY	CKN6114-ND
30	1	DIP8 SWT016	SW20	C&K	TDA08H0SB1
31	6	DIP6 SWT017	SW15-18,SW22- 23	CTS	218-6LPST
32	7	DIP4 SWT018	SW3-8,SW10	ITT	TDA04HOSB1
33	12	SMA XPINS CON043	J7,J16-26	JOHNSON COMP	142-0701-201
34	1	DB9 9PIN CON038	J2	NORCOMP	191-009-213-L-571
35	2	DIP2 SWT020	SW2,SW21	C&K	CKN9064-ND
36	4	IDC 2X1 IDC2X1	P8-11	FCI	90726-402HLF
37	5	IDC 2X1 IDC2X1	JP3,JP11-14	FCI	90726-402HLF
38	13	IDC 3X1 IDC3X1	JP15,JP17-28	FCI	90726-403HLF
39	1	3A RESETABLE FUS004	F1	TYCO	SMD300F-2
40	24	IDC 2PIN_JUMPER_ SHORT	SJ1-24	DIGI-KEY	S9001-ND
41	1	PWR .65MM CON045	J3	CUI	045-0883R
42	2	3.5MM DUAL_STEREO CON050	J4-5	SWITCHCRAFT	35RAPC7JS
43	1	SD_CONN 9PIN CON051	J13	DIGI-KEY	401-1954-ND

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
44	2	RJ45 8PIN CON_RJ45_12P	J14-15	DIGI-KEY	380-1022-ND
45	3	MOMENTARY SWT024	SW11-13	PANASONIC	EVQ-Q2K03W
46	1	ROTARY_ENC_ EDGE SWT025	SW14	PANASONIC	EVQ-WKA001
47	1	QMS 52x2 QMS52x2_SMT	J1	SAMTEC	QMS-052-06.75-L-D-A
48	2	IDC 25x2 IDC25x2_SMTA	P2,P4	SAMTEC	TSSH-125-01-L-DV-A
49	1	IDC 35x2 IDC35x2_SMTA	Р3	SAMTEC	TSSH-135-01-L-DV-A
50	1	IDC 7x2 IDC7x2_SMTA	P1	SAMTEC	TSM-107-01-T-DV-A
51	1	BATT_HOLDER 16MM BATT_COI	J12	MEMORY PRO- TECTI	BH600
52	2	IDC 2X1 IDC2X1_SMT	JP4,JP16	SAMTEC	TSM-102-01-T-SV
53	1	ROTARY SWT027	SW1	COPAL	S-8010
54	3	YELLOW LED001	LED1-3	PANASONIC	LN1461C
55	2	100 1/10W 5% 0805	R165,R167	VISHAY	CRCW0805100RJNEA
56	11	600 100MHZ 200MA 0603	FER2-9,FER12- 14	DIGI-KEY	490-1014-2-ND
57	2	600 100MHZ 500MA 1206	FER15-16	STEWARD	HZ1206B601R-10
58	2	10UF 16V 20% CAP002	CT1-2	PANASONIC	EEE1CA100SR

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
59	1	0 1/10W 5% 0805	R69	VISHAY	CRCW08050000Z0EA
60	1	190 100MHZ 5A FER002	FER17	MURATA	DLW5BSN191SQ2
61	8	YELLOW LED009	LED4-8,LED10- 12	PANASONIC	LNJ416Q8YRA
62	2	0.47UF 16V 10% 0805	C59-60	AVX	0805YC474KAT2A
63	2	1UF 10V 10% 0805	C123-124	AVX	0805ZC105KAT2A
64	18	10UF 6.3V 10% 0805	C7,C10,C15- 16,C37,C41,C61, C64,C66,C71, C75,C88,C90, C94-95,C98, C101,C106	AVX	08056D106KAT2A
65	1	4.7UF 6.3V 10% 0805	C145	AVX	08056D475KAT2A
66	47	0.1UF 10V 10% 0402	C4-6,C9,C11- 14,C25,C39,C42- 45,C47-48,C62- 63,C65,C72,C76, C86-87,C89, C108-110,C113, C115-118,C140, C152,C188-194, C211-216	AVX	0402ZD104KAT2A
67	59	0.01UF 16V 10% 0402	C1,C8,C17-24, C26-36,C38,C46, C49-58,C73,C92- 93,C96-97,C99- 100,C102-105, C119-122,C139, C154,C179-187	AVX	0402YC103KAT2A

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
68	48	10K 1/16W 5% 0402	R1,R11,R18-21, R26,R56-59,R85- 87,R89,R106- 108,R110-115, R117,R143-145, R152,R154-156, R161-164,R168, R170-173,R203, R245,R268,R270, R353-355	VISHAY	CRCW040210K0FKED
69	9	4.7K 1/16W 5% 0402	R6-8,R13-17, R269	VISHAY	CRCW04024K70JNED
70	27	0 1/16W 5% 0402	R9,R202,R205- 206,R209-212, R214-215,R217- 218,R221-222, R224-225,R227- 228,R230-233, R235-236,R238- 239,R267	PANASONIC	ERJ-2GE0R00X
71	10	22 1/16W 5% 0402	R146-151,R241- 244	PANASONIC	ERJ-2GEJ220X
72	3	33 1/16W 5% 0402	R313-314,R325	VISHAY	CRCW040233R0JNEA
73	7	33 1/16W 5% 0402	R3,R12,R60,R66- 67,R78,R199	VISHAY	CRCW040233R0JNEA
74	2	18PF 50V 5% 0805	C2-3	AVX	08055A180JAT2A
75	2	2.2UF 10V 10% 0805	C150-151	AVX	0805ZD225KAT2A
76	24	10PF 50V 5% 0805	C155-178	AVX	08055A100JAT2A
77	2	0.1UF 16V 10%0603	C40,C136	AVX	0603YC104KAT2A

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
78	5	1UF 16V 10% 0603	C79-81,C199, C208	PANASONIC	ECJ-1VB1C105K
79	1	68PF 50V 5% 0603	C144	AVX	06035A680JAT2A
80	3	4.7UF 6.3V 20% 0603	C137-138,C141	PANASONIC	ECJ-1VB0J475M
81	1	470PF 50V 5% 0603	C143	AVX	06033A471JAT2A
82	3	220UF 6.3V 20% D2E	CT3-4,CT6	SANYO	10TPE220ML
83	1	10M 1/10W 5% 0603	R10	VISHAY	CRCW060310M0FNEA
84	5	330 1/10W 5% 0603	R153,R157-160	VISHAY	CRCW0603330RJNEA
85	4	0 1/10W 5% 0603	R52-53,R195, R346	РНҮСОМР	232270296001L
86	34	49.9 1/16W 1% 0603	R68,R71-77,R79- 84,R118-126, R128-135,R137- 139	VISHAY	CRCW060349R9FNEA
87	15	10 1/10W 5% 0603	R166,R169,R207- 208,R213,R216, R219-220,R223, R226,R229,R234, R237,R240,R349	VISHAY	CRCW060310R0JNEA
88	1	10.0K 1/10W 1% 0603	R183	DIGI-KEY	311-10.0KHRTR-ND
89	8	100PF 50V 5% 0603	C67-70,C82-85	AVX	06035A101JAT2A
90	1	1000PF 50V 5% 0603	C207	PANASONIC	ECJ-1VC1H102J

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
91	1	2200PF 50V 5% 0603	C130	PANASONIC	ECJ-1VB1H222K
92	2	75.0 1/10W 1% 0603	R127,R136	DALE	CRCW060375R0FKEA
93	3	100 1/16W 5% 0402	R49,R54,R70	DIGI-KEY	311-100JRTR-ND
94	1	4.99K 1/16W 1% 0603	R347	VISHAY	CRCW06034K99FKEA
95	1	24.9K 1/10W 1% 0603	R192	DIGI-KEY	311-24.9KHTR-ND
96	3	511.0 1/16W 1% 0402	R140-142	DIGI-KEY	311-511LCT-ND
97	2	10UF 10V 10% 0805	C107,C111	PANASONIC	ECJ-2FB1A106K
98	1	2.0K 1/16W 1% 0603	R182	PANASONIC	ERJ-3EKF2001V
99	6	0.05 1/2W 1% 1206	R190-191,R194, R196,R198,R204	SEI	CSF 1/2 0.05 1%R
100	11	10UF 16V 10% 1210	C125-127,C135, C146,C149,C200 -203,C205	AVX	1210YD106KAT2A
101	1	GREEN LED001	LED13	PANASONIC	LN1361CTR
102	1	RED LED001	LED9	PANASONIC	LN1261CTR
103	2	1000PF 50V 5% 1206	C147-148	AVX	12065A102JAT2A
104	1	255.0K 1/10W 1% 0603	R197	VISHAY	CRCW06032553FK
105	1	80.6K 1/10W 1% 0603	R193	DIGI-KEY	311-80.6KHRCT-ND
106	8	270 1/10W 5% 0603	R95-102	PANASONIC	ERJ-3GEYJ271V

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
107	2	22000PF 25V 10% 0402	C131,C197	DIGIKEY	490-3252-1-ND
108	2	5A MBRS540T3G SMC	D7-8	ON SEMI	MBRS540T3G
109	1	20MA MA3X717E DIO005	D1	PANASONIC	MA3X717E
110	1	2.5UH 30% IND013	L3	COILCRAFT	MSS1038-252NLB
111	1	33.0K 1/16W 1% 0402	R201	ROHM	MCR01MZPF3302
112	5	47.0K 1/16W 1% 0402	R46,R48,R50- 51,R55	ROHM	MCR01MZPF4702
113	1	3.01K 1/16W 1% 0402	R63	ROHM	MCR01MZPF3011
114	1	5.6K 1/16W 5% 0402	R247	PANASONIC	ERJ-2GEJ562X
115	15	1.0K 1/16W 1% 0402	R61-62,R64-65, R88,R91,R93-94, R103,R105,R109, R116,R189,R271- 272	PANASONIC	ERJ-2RKF1001X
116	2	1000PF 2000V 10% 1206	C112,C114	AVX	1206GC102KAT1A
117	3	220PF 50V 10% 0402	C153,C195-196	DIGI-KEY	311-1035-2-ND
118	4	5.6K 1/16W 0.5% 0402	R40,R43-45	SUSUMU	RR0510P-562-D
119	1	680 1/16W 1% 0402	R42	BC COMPO- NENTS	2312 275 16801

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
120	1	90.9K 1/16W 5% 0402	R41	DIGI-KEY	541-90.9KLCT-ND
121	1	40.2K 1/16W 5% 0402	R47	DIGI-KEY	541-40.2KLCT-ND
122	2	100K 1/16W 5% 0402	R200,R350	DIGI-KEY	541-100KJTR-ND
123	4	2.2UF 25V 10% 0805	C129,C132, C204,C206	DIGIKEY	490-3331-1-ND
124	1	21.5K 1/10W 1% 0603	R179	DIGI-KEY	311-21.5KHRCT-ND
125	6	1A MBR130LSFT1G SOD-123FL	D2-5,D9-10	ON SEMI	MBR130LSFT1G
126	1	22UH 20% IND018	L1	COILCRAFT	MSS4020-223MLB
127	3	1UH 20% IND019	L2,L6-7	COILCRAFT	ME3220-102MLB
128	13	33 1/32W 5% RNS005	RN4-13,RN17-19	PANASONIC	EXB-28V330JX
129	3	1.2K 1/16W 1% 0402	R4-5,R186	PANASONIC	ERJ-2RKF1201X
130	2	4.3 1/4W 5% 1206	R185,R188	PANASONIC	ERJ-8GEYJ4R3V
131	1	2.67K 1/16W 1% 0402	R187	PANASONIC	ERJ-2RKF2671X
132	3	1.0M 1/16W 1% 0402	R248-250	VISHAY	CRCW04021M00FKED
133	2	22UH 20% IND024	L8-9	COILCRAFT	MSD7342-223MLC
134	4	330 100MHZ 1.5A 0805	FER1,FER19-21	MURATA	BLM21PG331SN1D

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
135	8	22 1/32W 5% RNS005	RN1-3,RN14-16, RN20-21	PANASONIC	EXB-28V220JX
136	1	3300PF 50V 5% 0603	C198	PANASONIC	ECJ-1VB1H332K
137	1	24.0K 1/10W 1% 0603	R176	PANASONIC	ERJ-3EKF2402V
138	1	140.0K 1/10W 1% 0603	R181	PANASONIC	ERJ-3EKF1403V
139	1	44.2K 1/10W 1% 0603	R348	PANASONIC	ERJ-3EKF4422V
140	1	1.91K 1/10W .1% 0603	R180	SUSUMU	RG1608P-1911-B-T5
141	1	3.01K 1/10W .1% 0603	R184	SUSUMU	RG1608P-3011-B-T1
142	1	20.0K 1/16W 1% 0402	R344	VISHAY	CRCW040220K0FKED

I INDEX

Numerics 2-wire interface (TWI), 2-3	audio interface, 1-17 codec (U31), 1-13, 1-15, 1-17, 2-10
A AD5258 digipot, 2-2 ADC7266 (U2), 2-9 ADC_A0-2 signal, 1-21 ADC channel select jumpers (JP17-28), 2-19 ADC range jumper (JP4), 2-17 ADM3202 line driver/receiver (U21), 1-19 ADP1715 low dropout regulator (LDO), 2-2 AMS0-3 select lines, 1-11, 2-9, 2-18 analog audio interface, <i>See</i> audio analog-to-digital converter (ADC), 1-12, 1-17, 1-18, 2-15, 2-17 architecture, of this EZ-Board, 2-2 ASYNC (asynchronous memory control) external memory banks 0-3, 1-10	dual connectors (J4-5), 1-18, 2-26 SPI/TWI select switch (SW16), 2-13 SPORT0 enable (SW15), 1-17, 2-13 test switches (SW22-23), 1-19, 2-15 B background telemetry channel (BTC), 1-25 battery holder connector (J12), 2-26 supply, 1-20 bill of materials, A-1 board schematic (ADSP-BF518F), B-1 boot modes, 2-8 mode select switch (SW1), 1-12, 1-14
	C CDG signal, 1-21 audio codec, <i>See</i> audio configuration, of this EZ-Board, 1-4

INDEX

diagram of locations, 2-24 J12 (battery holder), 2-26 J13 (SD), 2-26 J14-15 (Ethernet), 1-17 J14 (Ethernet), 2-27 J15 (Ethernet), 2-27 J16-26 (SMA), 2-26 J1 (expansion interface II), 1-21, 2-25, 2-26 J2 (RS-232), 2-25 J3 (power), 1-6, 2-25 J4-5 (dual audio), 1-18, 2-26 J7 (SMA), 2-26 P1 (JTAG), 1-6, 1-22, 2-27 P2 (expansion interface II), 1-21, 2-27 P3 (expansion interface II), 1-15, 2-28 P4 (expansion interface II), 1-21, 2-27 P5-7 (DMAX land grid array), 1-22, 2-28 ZP1 (debug agent), 2-29 contents, of this EZ-Board package, 1-3 core voltage, 2-2	Ethernet interface, xiv, 1-13, 1-16 configuration switch (SW8), 2-11 connectors (J14-15), 1-17, 2-27 LEDs (LED4-8, LED10-12), 2-22 mode switch (SW17), 2-14 PHY IC (U29), 1-13 port 1 config switch (SW7), 1-16, 2-11 port 2 config switch (SW18), 1-16, 2-14 power down jumper (JP13), 2-17 reset push button (SW11), 2-12 example programs, 1-25 expansion interface II J1 connector, 1-21, 1-23, 2-25, 2-26 P2 connector, 1-19, 1-21, 1-23, 2-27 P3 connector, 1-19, 1-21, 1-23, 2-27 external memory, 1-9, 1-10
CUD (up) signal, 1-14, 1-15 customer support, xvii CZM signal, 1-21	features, of this EZ-Board, xiii flag pins, See programmable flags by name (PFx PGs, PHx) flash memory enable switch (SW6), 2-9 flash WP jumper (JP3), 2-17
Das II Boot, universal boot loader, 1, 13	
Das U-Boot, universal boot loader, 1-13 lebug agent connector (ZP1), 2-29 lefault configuration, of this EZ-Board, 1-4 lown signal (CDG), 1-15 DR1PRI signal, 1-21	G general-purpose IO pins (GPIO), 1-21, 2-8, 2-12, 2-14, 2-22 general-purpose push buttons (PB1-2), 1-21 GPIO enable switch, <i>See</i> SW2
EMMC enable switches (SW20-21), 1-12 enable switch (SW20-21), 2-15 interface, 1-12	I installation, of this EZ-Board, 1-4 IO voltage, 2-2

J	M
JTAG interface, 1-22 connector (P1), 1-6, 1-22, 2-27 jumpers diagram of locations, 2-16 JP11-12 (LED select), 2-17 JP13 (Ethernet power down), 2-17 JP14 (OTP flag enable), 2-18	MAC address, 1-16 media independent interface (MII), 1-16 Media Instruction Set Computing (MISC), xi memory map, of this EZ-Board, 1-9 MICBIAS signal, 2-18 MICIN signal, 2-18 microphone gain switch (SW5), 2-10
JP15 (mic select), 1-17, 2-18 JP16 (SPI flash CS enable), 1-15, 2-18 JP17-28 (ADC channel select), 2-19 JP3 (flash WP), 2-17 JP4 (ADC range), 1-19, 2-17 JP6 (mic select), 1-17	headphone select (SW6), 1-18, 2-10 select jumper (JP15), 1-17, 2-18 SPI/TWI switch (SW8), 1-17 Micro Signal Architecture (MSA), xi MMC_Dx signals, 1-21
P10 (VDDMEM power), 1-24, 2-20 P11 (VDDFLASH power), 1-24, 2-20 P17-28 (ADC channel select), 1-19 P8 (VDDINT power), 1-24, 2-19	N notation conventions, xxi
P9 (VDDEXT power), 1-24, 2-19	O
K KSZ8893M PHY device, 2-14	oscilloscope, 1-24 OTP_EN signal, 1-21 OTP flag enable jumper (JP14), 2-18 OTP memory writes, 2-18
L land grid array connectors (P5-7), 1-22, 2-28 LEDs diagram of locations, 2-21 LED10-12 (Ethernet), 2-22 LED1-3 (PH3, PH5-6), 1-21, 2-22 LED4-8 (Ethernet), 2-22 LED4 (USB monitor), 1-6 LED9 (reset), 2-22 power (LED13), 2-23 LED select jumpers (JP11-12), 2-17 license restrictions, xii, 1-8	P package contents, 1-3 parallel flash memory, xiii, 1-11 See also NAND, flash memory parallel peripheral interface (PPI), See PPI interface PF0-7 programmable flags, 2-3 PF8 programmable flag, 2-3 PF9-15 programmable flags, 2-3 PG0-10 programmable flags, 2-5 PG11 programmable flag, 2-5 PG12 programmable flag, 2-5 PG13-15 programmable flags, 2-5 PH0-1 programmable flags, 1-21, 2-6, 2-12

INDEX

PH2 programmable flag, 2-6	secure digital (SD) interface, 1-12, 1-13
PH3 programmable flag, 1-21, 2-6, 2-18, 2-22	serial peripheral interconnect (SPI) ports, See
PH4 programmable flag, 2-6	SPI interface
PH5-6 programmable flags, 1-21, 2-6, 2-22	session startup procedure, 1-6
PH7 programmable flag, 2-6	SMA connectors (J7, J16-26), 2-26
POST (power-on-self test) program, 1-12, 1-19,	SPI0_SSEL2 signal, 2-18
1-24, 2-12	SPI flash CS enable jumper (JP16), 2-18
power	SPI interface
5V wall adaptor (P14), 1-3	connections, 1-13
connector (J3), 1-6, 2-25	SPI/TWI switch (SW16), 1-17
LED (LED13), 2-23	SPISEL1 signal, 1-14
measurements, 1-24	SPISEL2 signal, 1-13
PPI interface	SPISEL3 signal, 1-14
connections, 1-15	SPORT0 enable switch (SW15), 1-17, 2-13
expansion interface II connector (P3), 1-15,	SPORT1 enable switch (SW4), 1-18, 2-9
2-28	SRAM memory, 1-9
programmable flag inputs PH0 -1, 1-21	SSM2602 audio codec (U1), 2-13
	standalone debug agent, xii, 1-4, 1-6, 1-8, 1-11,
R	1-22
	SW10 (UART0 setup) switch, 2-12
real-time clock (RTC), 1-20, 2-3	SW11 (reset) push button, 2-12
Reduced Instruction Set Computing (RISC), xi	SW12-13 (IO) push buttons, 2-12
reference design info, 1-25	SW14 (rotary encoder with momentary) switch,
removable secure interface (RSI), 1-12	2-13
reset	SW15 (SPORT0 enable) switch, 1-17, 2-13
LED (LED9), 2-22	SW16 (SPI/TWI config) switch, 1-17, 2-13
push button (SW11), 2-12	SW17 (Ethernet mode) switch, 2-14
restrictions, of evaluation license, 1-8	SW18 (Ethernet port 2 config) switch, 1-16,
RFS1 signal, 1-21	2-14
rotary encoder	SW19 (encoder enable) switch, 1-16, 2-14
interface, 1-15	SW1 (boot mode select) switch, 1-12, 1-14, 2-8
enable switch (SW19), 1-15, 2-14	SW20-21 (eMMC enable) switches, 1-12
with momentary switch (SW14), 2-13 RS-232 connector (J2), 2-25	SW20 (eMMC enable) switch, 2-15
	SW21 (eMMC enable) switch, 2-15
RTC pin, 1-20	SW22-23 (test) switches, 1-19, 2-15
	SW2 (push button enable) switch, 1-21, 2-8,
S	2-13
schematic, of ADSP-BF518F EZ-Board, B-1	SW3 (flash enable) switch, 2-9
SD connector (J13), 2-26	SW4 (SPORT1 enable) switch, 1-18, 2-9
SDRAM interface, 1-10, 1-11	SW5 (mic gain) switch, 1-17, 2-10

universal asynchronous receiver transmitter, <i>See</i> UART0, UART1 USB monitor LED (LED4), 1-6
V
VDDEXT power jumper (P9), 2-19 voltage domain, 1-24 VDDFLASH
power jumper (P11), 2-20 voltage domain, 1-24 VDDINT
power jumper (P8), 2-19 voltage domain, 1-24 VDDMEM power jumper (P10), 2-20 voltage domain, 1-24 VisualDSP++ environment, 1-6 voltage planes, 1-23
W
wall adaptor connector (J3), 1-6, 1-22 watchdog timer, 1-20