Assignment - 01 (Part - A)

Submitted by: TASNIM RAHMAN MOUMITA

ID: 22301689

Course code: CSE331

Course Title: Automata & Computability

Section: 20

No. of group member : 01 (50lo)

Date of submission: 18.02.2025

Amo. to the g. NO - 01 (a)

Givens

"Draw a DFA for the set of strings that have three consecutive 05. $\Sigma = \{0,1\}$

Am. to the g. NO - 01 (b) (on)

Given,

"Draw a DFA for the set of strings that don't have $000 \cdot \Sigma = \{0,1\}$ "

com. to the g. NO-02 (a)

Given,

L= {w = {a,b}*: w stards and ends with

different symbols: 2

two oplions:

- -> ab
- -> ba

rough & fore (ab)

- aab /
- aaaaabv
 - abbbby
 - abab/

rough: for (ba)

- bbar
- bbbar
- 1 1
- baaaaa
- babar

[p. 1.0.7

Am. to the g. NO-03 (a)

Given,

DFA of strangs that ends with "0101". $\Sigma = \{0,1\}$

Am. to the Q. NO-03 (b)

Given,

L = $\{\omega | \omega \text{ ends with the substraing "yxxy"}\}$ over the alphabet $\{x,y\}$.

coms. to the g. NO-04 (a)

Given, $L = \{ \omega \in \{0,1\}^{*} : \text{ the length of } \omega \text{ is two }$ more than multiple of four $\}$ 4n+2

P. T.O.

Amwere to the 9. NO-05

Given, $L = \{ \omega \in \{0,1\}^* : \omega, \text{ when interpreted as a binary number, is divisible by 5.} \}$

Trough: divisible by 5 (0,1,2,3,4) $5 \rightarrow 101$ $10 \rightarrow 1010$ $15 \rightarrow 1111$ $20 \rightarrow 10100$ $25 \rightarrow 11001$ $75 \rightarrow 1001011$ If we add 0, number gets doubled

if we add 1, numbers gets doubled and added with 1.

P. 1.0.

Am. to the g. NO - 06 (a)

Given,

L= {\omega \in \{0,1,#}\}*: w does not contain. # and
the number of 0s in w is not a
multiple of 3}'

10100011EL

[6.4.0.]

Am. to the g. NO-07

Given,

L= {w|w does not contain "ba" and ends with "cb"}

L over the alphabet $\Sigma = \{a,b,c\}$

Am. to the g. NO-08

Given,

L = DFA of strings that contains at least three Os on exactly two 1s. $\Sigma = \{0,1\}$.

DFA forc strangs that contains at least three 05:

DFA for strings that contains exactly two 15:

DFA fore given L:

Please turn Overs]

Am. to the g. NO - 09 (a)

Given,

"DFA of strangs where the 2nd last symbol

We Know,

Total no. of states

$$(n=2)$$
, $= 2^2$
= 4.

P.T.O.

Am. to the g. NO-10

Given,

 $L = \{ \omega \in \{a,b\}^* : \text{ the last letters of } \omega \}$ appears at least twice in $\omega \}$.

