11.2 Displaying Data

Goals for the Day

1

Frequency Tables (Distributions)

Frequency Tables (Distributions)

Summarize datasets by counting the number of observations for each category, distinct value or interval.

Grouped Frequency Distribution

Frequency

Can be used for categorical data and quantitative (numerical) data.

Relative Count Frequency

Type of Computer	Frequency	Percent
Desktop	11	11/50 = 22%
Laptop	23	23/50 = 46%
Notebook	9	9/50 = 18%
Tablet	7	7/50 = 14%

Number of Pets	Frequency		
1	4	<u> </u>	Number of Pet
2	3	├	1-2
3	2		3-4
-	2		
4	1		5-6
5	2		7-8
6	1		
7	1)	

Total = 50

Find count between 4 and 7 inclusive: 4, 5, 6, and 7

Example 1

Construct a frequency table using the data below.

38, 33, 5, 5, 47, 29, 24, 42, 3, 18, 30, 46, 25, 44, 40, 42, 39, 44, 29, 13

Lower class limit = 0 ▼	Class	Frequency	Relative Frequency
Upper class limit = 9	> 0-9	3	3/20 = 0.15
	10-19	2	2/20 = 0.1
Class width = $Lower_2 - Lower_1$ $10 = 40 - 30$	20-29	4	4/20 = 0.2
	30-39	4	4/20 = 0.2
	40-49	7	7/20 = 0.35
	Total:	20	20/20 = 1

2

Graphical Displays of Data

Pie Charts

Pie Charts

- Compare parts to a whole.
- Slices represent the proportion of a category

Type of Data: Categorical

Advantages:

* Simple and common

- * Harder to compare area than heights
- * Not useful when there are lots of categories
- * Easy to be misleading if visually distorted (3D, one slice is larger) or labels are not clear)

Bar Graphs

Bar Graphs

- Height of the bar represents the amount of data in each category.
- Can be counts or relative frequencies.

Type of Data: Categorical

Advantages:

* Simple and common and easy to read

- * Misleading if:
 - Bars are not equal width
 - Inconsistent vertical scale
 - Vertical scale is truncated (not start at 0)

Histograms

Histograms

- Height of the bar represents the amount of data in each class.
- Can be counts or relative frequencies.

Type of Data: Quantitative

Advantages:

- * Simple
- * Can show lots of data very concisely
- * Shows "shape" or distribution of data

- * Class width impacts the plot drastically
- * Misleading if:
 - Bars are not equal width
 - Inconsistent horizontal / vertical scale
 - Vertical scale is truncated (not start at 0)

Line Graphs

Line Graphs

Shows changes in a numerical variable over time.

Type of Data: Quantitative

Advantages:

* Shows trends over time

- * Misleading if:
 - Inconsistent horizontal / vertical scale
 - Vertical scale is truncated (not start at 0)

Good Graphs

Good Graphs: A clear graph should have a title, labels on the vertical and horizontal axis, and should reference the source of the data.