Placement of Controllers in Software Defined Networking using Affinity Propagation

Amalchithra Stanly

Roll no.: TCR15CSCE02

Guided By: Mr. Sminesh C N

Government Engineering College Thrissur Department of Computer Science and Engineering

23-12-2016

Overview

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Software Defined Networking

- Emerging network architecture.
- Separates control plane from data plane.
- Control plane provides a global view and is programmable.

Software Defined Networking Architecture

Fig. 1: SDN architecture*

^{*} adapted from Jammal et al.

Software Defined Networking

- For large scale network, single controller is not enough.
- Multiple controllers were introduced.
- Leads to some research challenges
 - Maintaining global view of the network
 - Optimal placement of controllers

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Controller Placement Problem

Given a network topology

- How many controllers are needed?
- Where in the topology should they go?

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Current Methods and Their Issues

- K- center based approaches
- Clustering based approaches
- Issue
 - All methods need to specify the number of controllers as input.

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Problem Statement

Problem Statement

To determine the number of controllers and their location in software defined networking using affinity propagation

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Overview of Proposed System

- Create network topology.
- Partition the network into sub networks using affinity propagation algorithm
 Affinity propagation clustering automatically determines the number of sub networks
- Balance the number of nodes in subnetwork
- Placement of controller in each sub network

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Modules

Creation of network topology

- Select a network like cernet, internet2 OS3E (Here we use internet2 OS3E network)
- Collect longitude, latitude and location(city) of nodes in that network
- Create network topology

Clustering and Load balancing

- Partition the network into sub networks using affinity propagation.
- There are exemplars in the sub network which represents it.
- Check the number of nodes in sub networks.
- If it is greater than a predefined threshold value allocate it to neighbouring sub networks.
- Place controllers in the location of exemplars.

Why Affinity Propagation??

- Automatically determines the number of controllers
- Exemplar based message passing algorithm
- Input:Shortest distance between nodes (measure of latency)

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Evaluation Measure

- Average case latency
- Worst case latency
- Imbalance metric

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Progress So Far

- Completed literature survey.
- Completed module designing.
- Studied papers in network which uses clustering methods.
- Chose evaluation metrics
- Included load balancing module.
- Created network topology.
 - Chose Internet2 OS3E network as input
 - Collected details about Internet2 OS3E(longitude and latitude of nodes, city in which node is located)
 - Wrote code to select topology

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

Gantt Chart

CONTENTS

Software Defined Networking

Controller Placement Problem

Current Methods and Their Issues

Problem Statement

Proposed System

Modules

Evaluation Measure

Progress So Far

Gantt Chart

- Proposed system for controller placement problem is discussed.
- Different modules of the system are discussed.
- Progress of the work done is discussed.

References

Brandon Heller, Rob Sherwood, Nick McKeown" The Controller Placement Problem"; ACM conference paper,2012

- Hemant Kumar Rath, Vishvesh Revoori, SM Nadaf, and Anantha Simha, " Optimal Controller Placement in Software Defined Networks (SDN) using a Non-Zero-Sum Game". IEEE letter. 2015
- Yannan Hu, Wang Wendong, Xiangyang Gong;" Reliability-aware Controller Placement for Software -Defined Networks" IEEE Symposium Paper, 2013
- Manar Jammal, Taranpreet Singh, Abdallah Shami, Rasool Asal, Yiming Li," Software defined networking: State of the art and research challenges"; Science Direct; 2014;
- Frey, B. J. and Dueck, D, "Clustering by passing messages between data points"Science, 305(5814), 972-976,(2007)

References

Campus Networks," SIGCOMM CCR, 2008.

- B.J. Frey and D. Dueck, Clustering by Passing Messages between Data Points, Science, vol. 315, no. 5814, pp. 972-976, Feb. 2007
- Stanislav Lange, Steffen Gebert, Thomas Zinner, Phuoc Tran-Gia: Heuristic Approaches to the Controller Placement Problem in Large Scale SDN Networks; IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 12, NO. 1, MARCH 2015
- A. Jalili, V. Ahmadi, M. Keshtgari and M. Kazemi:"Controller placement in software-defined WAN using multi objective genetic algorithm"; IEEE; 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran, 2015, pp. 656-662.
- Guodong Wang, Yanxiao Zhao, Jun Huang, Qiang Duan, Jun Li: "A K-means-based Network Partition Algorithm for Controller Placement in Software Defined Network", IEEE, 2016
- Peng Xiao, Wenyu Qu, Heng Qi, Zhiyang Li, Yujie Xu:"The SDN

Thank you!