Unidad IV: Inducción Inducción fuerte.

Clase 12 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Inducción fuerte: motivación

Demostremos que para todo $n \ge 2$ se cumple la siguiente propiedad:

P(n): n se puede escribir como el producto de números primos.

Recordatorio: Un número p es primo si $p \ge 2$ y sus únicos divisores son 1 y p.

Caso base: P(2) es verdadero.

Paso inductivo: $\forall n \ge 2 (P(n) \rightarrow P(n+1)).$

Sea $n \ge 2$. Suponga que P(n) es verdadero:

n se puede escribir como un producto de primos $p_1 \cdots p_m$. (HI)

Por demostrar: P(n+1) es verdadero.

Hay dos posibles casos:

n+1 es primo:

En este caso estamos listos. (¿por qué?)

= n + 1 no es primo:

Podemos escribir n + 1 como $n + 1 = c \cdot d$, donde 1 < c, d < n + 1.

¿Cómo aplicamos la hipótesis inductiva en el segundo caso?

Inducción fuerte

Principio de inducción fuerte:

Sea P(n) una propiedad de los números naturales.

Si la propiedad *P* cumple lo siguiente:

- Caso base:
 - P(0) es verdadero.
- Paso inductivo:

Para todo n > 0,

si P(k) es verdadero para todo k < n, entonces P(n) es verdadero.

Entonces, para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Inducción fuerte: variante caso base mayor a 0

Principio de inducción fuerte (variante):

Sea P(n) una propiedad de los números naturales y $b \ge 0$ un natural.

Si la propiedad P cumple lo siguiente:

- Caso base:
 - P(b) es verdadero.
- Paso inductivo:

Para todo n > b,

si P(k) es verdadero para todo $b \le k < n$, entonces P(n) es verdadero.

Entonces, para todo $n \ge b$ se tiene que P(n) es verdadero.

Demostremos usando inducción fuerte que para todo $n \ge 2$ se cumple la siguiente propiedad:

P(n): n se puede escribir como el producto de números primos.

También se puede probar que esta descomposición es única para todo $n \ge 2$.

■ Esto se conoce como el teorema fundamental de la aritmética.

Demostremos usando inducción fuerte que para todo $n \ge 2$ se cumple la siguiente propiedad:

P(n): n se puede escribir como el producto de números primos.

Caso base: P(2) es verdadero.

Paso inductivo:

Sea n > 2. Suponga que P(k) es verdadero, para todo $2 \le k < n$. (HI)

Por demostrar: P(n) es verdadero.

Hay dos posibles casos:

- \underline{n} es primo: En este caso estamos listos. (¿por qué?)
- n no es primo: Podemos escribir n como $n = c \cdot d$, donde $2 \le c$, d < n.

 Podemos aplicar la **H1** a c y d, luego ambos se pueden escribir como producto de primos:

$$c = p_1 \cdots p_m$$
 $d = q_1 \cdots q_\ell$.

Luego n se puede escribir como producto de primos $n = p_1 \cdots p_m \cdot q_1 \cdots q_\ell$.

Inducción simple implica inducción fuerte

El principio de inducción fuerte es consecuencia de inducción simple.

Suponga que P(n) es una propiedad de los naturales y se cumple que:

- P(0) es verdadero.
- Para todo n > 0, si P(k) es verdadero para todo k < n, entonces P(n) es verdadero.

Inducción fuerte nos dice que para todo n se cumple P(n).

¿Cómo podemos derivamos esto usando inducción simple?

Podemos tomar la siguiente propiedad P'(n) sobre los naturales:

$$P'(n)$$
: $P(k)$ es verdadero para todo $k \le n$.

Basta aplicar inducción simple a la propiedad P'. (¿por qué?)

Inducción fuerte: variante general

Principio de inducción fuerte (variante general):

Sea P(n) una propiedad de los números naturales y $b \le \ell$ naturales.

Si la propiedad *P* cumple lo siguiente:

- Caso base:
 - $P(b), \ldots, P(\ell)$ es verdadero.
- Paso inductivo:

Para todo $n > \ell$,

si P(k) es verdadero para todo $b \le k < n$, entonces P(n) es verdadero.

Entonces, para todo $n \ge b$ se tiene que P(n) es verdadero.

La sucesión de Fibonacci se define como:

$$F(0) = 0$$

$$F(1) = 1$$

$$F(n) = F(n-1) + F(n-2) \text{ para todo } n \ge 2$$

Demuestre que para todo $n \ge 2$ se cumple $F(n) \le 2^n$.

Caso base: P(0) y P(1) son verdaderos.

$$F(0) = 0 \le 1 = 2^0$$
 $F(1) = 1 \le 2 = 2^1$

Paso inductivo:

Sea $n \ge 2$ y supongamos que $F(k) \le 2^k$, para todo $0 \le k < n$. (HI)

Por demostrar: $F(n) \le 2^n$

Como $n \ge 2$, tenemos que:

$$F(n) = F(n-1) + F(n-2) \stackrel{\mathsf{HI}}{\leq} 2^{n-1} + 2^{n-2} \leq 2^{n-1} + 2^{n-1} = 2^n$$

Demuestre que todo natural $n \ge 8$ se puede escribir como la suma de los números 3 y 5.

Caso base: P(8) es verdadero:

$$8 = 3 + 5$$

Paso inductivo:

Sea $n \ge 9$ y supongamos que P(k) se cumple, para todo $8 \le k < n$. (HI)

Por demostrar: P(n) es verdadero.

Como n-3 < n, podemos aplicar la **HI** a n-3 y obtenemos que n-3 se puede escribir como la suma de números 3 y 5.

Como n = (n-3) + 3 concluimos que n cumple la propiedad.

¿Algún problema con este argumento?

Demuestre que todo natural $n \ge 8$ se puede escribir como la suma de los números 3 y 5.

Caso base: P(8), P(9) y P(10) son verdaderos:

$$8 = 3 + 5$$
 $9 = 3 + 3 + 3$ $10 = 5 + 5$

Paso inductivo:

Sea $n \ge 11$ y supongamos que P(k) se cumple, para todo $8 \le k < n$. (HI)

Por demostrar: P(n) es verdadero.

Como $8 \le n-3 < n$, podemos aplicar la **HI** a n-3 y obtenemos que n-3 se puede escribir como la suma de números 3 y 5.

Como n = (n-3) + 3 concluimos que n cumple la propiedad.

El paso inductivo asume que $n \ge 11$, luego hay que probar los casos base 8, 9 y 10.

Demuestre que $\sqrt{2}$ no es racional.

Es decir, no existen dos naturales $a, b \ge 1$ tal que $\sqrt{2} = \frac{a}{b}$.

¿Cómo formulamos esto en términos de una propiedad P(n)?

Demuestre que para todo $n \ge 1$ se cumple que:

$$\sqrt{2} \neq \frac{n}{b}$$
 para todo $b \ge 1$

Necesitaremos las siguientes proposiciones:

Proposición: Si a es impar, entonces a^2 es impar.

Corolario: Si a^2 es par, entonces a es par.

Ejercicio: demuestre las proposiciones y que $\sqrt{2}$ no es racional.

Demuestre que para todo $n \ge 1$ se cumple que:

$$\sqrt{2} \neq \frac{n}{b}$$
 para todo $b \ge 1$

Caso base: P(1) es verdadero.

Por contradicción, supongamos que existe un $b \ge 1$ tal que

$$\sqrt{2} = \frac{1}{b}$$

Elevando al cuadrado a ambos lados, y multiplicando por b^2 a ambos lados, obtenemos:

$$2b^2 = 1$$

Esto es una contradicción, ya que $b \ge 1$ y entonces $2b^2 \ge 2$.

Demuestre que para todo $n \ge 1$ se cumple que:

$$\sqrt{2} \neq \frac{n}{b}$$
 para todo $b \geq 1$

Paso inductivo:

Sea n > 1 y supongamos que P(k) se cumple, para todo $1 \le k < n$. (HI)

Por demostrar: P(n) es verdadero.

Por contradicción, supongamos que existe un $b \ge 1$ tal que

$$\sqrt{2} = \frac{n}{b}$$

Elevando al cuadrado a ambos lados, y multiplicando por b^2 a ambos lados, obtenemos:

$$2b^2=n^2$$

Concluimos que n^2 es par, y por la proposición anterior, n es par también.

Demuestre que para todo $n \ge 1$ se cumple que:

$$\sqrt{2} \neq \frac{n}{b}$$
 para todo $b \ge 1$

Paso inductivo:

Sea n > 1 y supongamos que P(k) se cumple, para todo $1 \le k < n$. (HI)

Por demostrar: P(n) es verdadero.

Como n es par, existe un natural $1 \le \ell < n$, tal que $n = 2\ell$.

Reemplazando en la igualdad anterior $2b^2 = n^2$ y desarrollando, obtenemos:

$$b^2=2\ell^2$$

Concluimos que b^2 es par, y por la proposición anterior, b es par también.

Luego, existe un natural $c \ge 1$ tal que b = 2c. Juntando todo lo anterior, obtenemos:

$$\sqrt{2} = \frac{n}{b} = \frac{2\ell}{2c} = \frac{\ell}{c}$$

Podemos aplicar la **HI** a $1 \le \ell < n$, y obtener que $\sqrt{2} \ne \frac{\ell}{c}$. Esto es una contradicción.

El principio del mínimo

Principio del mínimo:

Todo subconjunto no vacío A de $\mathbb N$ tiene un elemento mínimo.

En otras palabras:

Para todo subconjunto no vacío A de \mathbb{N} , existe un $a \in A$ tal que $a \le b$, para todo $b \in A$.

Este principio es muy útil para hacer demostraciones.

El principio de inducción fuerte y el principio del mínimo son equivalentes. (inducción simple, inducción fuerte y principio del mínimo son equivalentes)

Antes de ver esta equivalencia, veamos cómo aplicar este principio.

El principio del mínimo: ejemplos

Demuestre que para todo $n \ge 2$ se cumple la siguiente propiedad:

P(n): n se puede escribir como el producto de números primos.

Por contradicción, suponga que existen naturales $n \ge 2$ tal que P(n) es falso.

Obtenemos que el siguiente subconjunto A de $\mathbb N$ es no vacío:

$$A = \{n \in \mathbb{N} \mid P(n) \text{ es falso}\}.$$

Por el principio del mínimo, A tiene un elemento mínimo $m \ge 2$.

m no puede ser primo:

si m fuera primo, P(m) sería verdadero y obtendríamos $m \notin A$.

Tenemos que m se puede escribir como $m = c \cdot d$, para $2 \le c, d < m$.

Como m es el mínimo de A, deducimos que c, $d \notin A$, es decir, c y d se pueden escribir como producto de números primos.

Esto implica que m también se puede escribir como producto de números primos.

Concluimos que P(m) es verdadero, es decir, $m \notin A$. Esto es una contradicción.

Ejercicios propuestos

Utilizando el principio del mínimo demuestre lo siguiente:

- $\sqrt{2}$ no es racional.
- Todo natural $n \ge 8$ se puede escribir como la suma de números 3 y 5.

Inducción fuerte implica principio del mínimo

Por contradicción, asumamos que el principio del mínimo es falso.

■ Existe un subconjunto no vacío A de N que **no** tiene mínimo.

Demostraremos por inducción fuerte que para todo $n \ge 0$, se cumple $n \notin A$.

Esto es una contradicción, ya que implica que $A = \emptyset$.

Caso base: $0 \notin A$.

Por contradicción, supongamos que $0 \in A$.

Obtenemos que 0 es el mínimo de A.

Concluimos que $0 \notin A$.

Inducción fuerte implica principio del mínimo

Por contradicción, asumamos que el principio del mínimo es falso.

Existe un subconjunto no vacío A de \mathbb{N} que **no** tiene mínimo.

Demostraremos por inducción fuerte que para todo $n \ge 0$, se cumple $n \notin A$.

■ Esto es una contradicción, ya que implica que $A = \emptyset$.

Paso inductivo: $k \notin A$, para todo $0 \le k < n$. (HI)

Por demostrar: $n \notin A$.

Por contradicción, supongamos que $n \in A$.

Por HI, obtenemos que n es el mínimo de A.

Concluimos que $n \notin A$.

Principio del mínimo implica inducción fuerte (propuesto)

Sea P(n) una propiedad de los números naturales tal que

- **CB:** P(0) es verdadero.
- **PI:** Para todo n > 0, si P(k) es verdadero para todo $0 \le k < n$, entonces P(n) es verdadero.

Por demostrar: P(n) es verdadero para todo $n \ge 0$.

Por contradicción, suponga que existen naturales $n \ge 0$ tal que P(n) es falso.

Esto implica que el siguiente subconjunto A de $\mathbb N$ es no vacío:

$$A = \{n \in \mathbb{N} \mid P(n) \text{ es falso}\}.$$

Por el principio del mínimo, A tiene un elemento mínimo $m \ge 0$.

Por la hipótesis CB, P(0) es verdadero y luego $0 \notin A$. Esto implica que m > 0.

Como m es el mínimo de A, tenemos que $k \notin A$ para todo $0 \le k < m$.

Esto implica que P(k) es verdadero para todo $0 \le k < m$.

Por la hipótesis **PI**, concluimos que P(m) es verdadero, es decir, $m \notin A$.

Esto es una contradicción.