A polynomial expansion to approximate the ultimate ruin probability in the Cramer-Lundberg ruin model

P.O. Goffard¹ X. Guerrault² S. Loisel³ D. Pommerêt⁴

¹Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille

²Axa France

³Institut de Sciences financières et d'assurance Université de Lyon, Université de Lyon 1

⁴Institut de mathématiques de Luminy Université de Aix-Marseille

January 2013 / Perspectives on Actuarial Risks in talks of Young Researcher

Outlines

- Introduction
- Natural Exponential Family with Quadratic Variance Function (NEF-QVF)
- 3 The Cramer-Lundberg Ruin Model
- Simulation Results

Executive summary

Main Goal

Work out a new numerical method to approximate ruin probabilities

Main Idea

Polynomial expansion of a function though orthogonal projection

- Change of measure via Natural Exponential Family with Quadratic Variance Function
- Construction of a polynomial orthogonal system w.r.t this probability measure

Achievement

Approximation of the ultimate ruin probability in the Cramer-Lundberg ruin model with phase type claim size

Notations

dF is an univariate Probability Measure (UPM). Denote by :

- *F* its Cumulated Distribution Function (CDF).
- f = F' its Probability Density Function (PDF) w.r.t. to a positive measure.
- $\widehat{F}(\theta) = \int e^{\theta x} dF(x)$ its Moment Generating Function (MGF).
- $\kappa(\theta) = ln(\widehat{F}(\theta))$ its Cumulant Generating Function (CGF).

Denote by $L^2(dF)$ the function space such that :

• If $f \in L^2(dF)$ then $\int f^2(x)dF(x) < \infty$.

 $L^2(F)$ is a normed vector space with:

$$||f||^2 = \langle f, f \rangle = \int f^2(x) dF(x).$$

Natural Exponential Family

Let *F* be an univariate CDF possessing a MGF in a neighborhood of 0.

• $\{F_{\theta}; \theta \in \Theta\}$ is the NEF generated by F, with :

$$dF_{\theta}(x) = exp(\theta x - \kappa(\theta))dF(x),$$

and Θ the definition domain of κ .

• The mean of F_{θ} is

$$\mu = \int x dF_{\theta}(x) = \kappa'(\theta),$$

where

- $\kappa': \theta \to \kappa'(\theta)$ is a bijection. $\hookrightarrow \phi: \mu \to \phi(\mu) = \kappa'^{-1}(\mu) = \theta$ its inverse function.
- $\{F_{\mu}; \mu \in \kappa'(\Theta) = M\}$ is an equivalent definition for NEF with :

$$dF_{\mu}(x) = exp(\phi(\mu)x - \kappa(\phi(\mu)))dF(x).$$

Quadratic Variance Function

The Variance Function (VF) of a NEF F_{μ} is :

$$V(\mu) = \int (x - \mu)^2 dF_{\mu}(x) = \kappa''(\mu).$$

The VF is said Quadratic if:

$$V(\mu) = a + b\mu + c\mu^2.$$

The NEF-QVF contains six types of distributions:

- Normal
- Gamma
- Hyperbolic

- Binomial
- Negative Binomial
- Poisson

Orthogonal polynomials for NEF-QVF Distributions

Define by $\{F_{\mu}; \mu \in M\}$ a NEF-QVF generated by F with mean μ_0 .

• $f(x, \mu)$ a NEF-QVF PDF proportional to $exp(\phi(\mu)x - \kappa(\phi(\mu)))$ w.r.t. F:

$$Q_n(x,\mu) = V^n(\mu) \left\{ \frac{\partial^n}{\partial \mu^n} f(x,\mu) \right\} / f(x,\mu),$$

is a polynomial of degree n both in μ and x.

• Note that $f(x, \mu_0) = 1$. Then

$$Q_n(x) = Q_n(x, \mu_0) = V^n(\mu_0) \left\{ \frac{\partial^n}{\partial \mu^n} f(x, \mu) \right\}_{\mu = \mu_0}.$$

 $\{Q_n\}$ is an orthogonal polynomials system such that :

$$< Q_n(x), Q_m(x) > = \int Q_n(x)Q_m(x)dF(x) = ||Q_n||^2 \delta_{nm}.$$

For a full description of the NEF-QVF see Morris [1982] [1].

Polynomial Expansion and Truncations

- The polynomials are dense in $L^2(F)$.
 - $\hookrightarrow \{Q_n\}$ is therefore an orthogonal basis of $L^2(F)$.
- dF_X a probability measure associated to some random variable X. $\hookrightarrow \frac{dF_X}{dE}$ PDF w.r.t. dF
- If $\frac{dF_X}{dF} \in L^2(F)$ we have :

$$\frac{1}{dF} \in L^2(F)$$
 we have:

$$\frac{dF_X}{dF}(x) = \sum_{n \in \mathbb{N}} \left\{ \frac{dF_X}{dF}, \frac{Q_n}{||Q_n||} > \frac{Q_n(x)}{||Q_n||} = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{Q_n(x)}{||Q_n||^2}.$$

• The CDF F_X is then :

$$F_X(x) = \sum_{n \in \mathbb{N}} E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

Approximations are then obtained by truncation:

$$F_X^K(x) = \sum_{n=0}^K E(Q_n(X)) \frac{\int_{-\infty}^x Q_n(y) dF(y)}{||Q_n||^2}.$$

Definition and hypothesis

Denote by $\{R(t); t \ge 0\}$ the Risk Reserve Process :

$$R(t) = u + pt - \sum_{i=1}^{N(t)} U_i,$$

where

- *u* is the initial reserve.
- p is the constant premium rate per unit of time.
- N(t) is a Poisson process with intensity β .
- $\{U_i\}_{i\in\mathbb{N}^*}$ are **i.i.d**. non-negative random variables with CDF F_U and mean μ .

Let $\{S(t); t \ge 0\}$ be the Surplus process :

$$S(t) = u - R(t).$$

 $\eta > 0$ is the safety loading such that :

$$p = (1 + \eta)\beta\mu.$$

Ultimate ruin probability

We denote by $M = Sup\{S(t); t > 0\}$ and we define the ultimate ruin probability by :

$$\psi(u) = P(M > u) = \overline{F_M}(u).$$

Theorem: Pollaczek-Khinchine formula

In the Cramer-Lundberg model, the ruin probability can be written as:

$$\psi(u) = (1 - \rho) \sum_{n=0}^{+\infty} \rho^n \overline{F_{U^I}^{*n}}(u),$$

$$M \stackrel{D}{=} \sum_{i=1}^{N} U_i^I,$$

where *N* is geometric with parameter $\rho = \frac{\beta \mu}{p} < 1$ and $F_{U^I}^{*n}$ denotes the *n*th convolution of F_{U^I} .

See Ruin probabilities by Asmussen and Albrecher [2001] [2].

Phase Type Distribution for Claim amounts

- $\{J(t)\}$ is a continuous time Markov process with state space $E = \{1, \dots, d\}$ and generator **T**.
- $\{\tilde{J}(t)\}$ is a terminating Markov process with state space $E_{\Delta} = \{E \cup \Delta\}$. Δ is an absorbing state and the Markov process' generator is :

$$\left(\begin{array}{c|c} \mathbf{T} & \mathbf{t} \\ \hline 0 & 0 \end{array}\right).$$

 F_U is of phase-type with representation (α, \mathbf{T}, E) if:

$$F_U(x) = P_{\alpha}(\zeta \le x) = 1 - \alpha e^{\mathbf{T}x}\mathbf{e},$$

where

- $\zeta = \inf\{t; \tilde{J}(t) = \Delta\}.$
- α is a vector of size d such as $\alpha_i = P(J(0) = j)$.
- **e** is a vector of size *d* with all components equal to 1.

Ultimate ruin probability with phase type claim size

Theorem: An exponential matrix expression

Assume that F_U is of phase-type with representation (α, \mathbf{T}) then :

- M is zero-modified phase-type with representation $(\alpha_+, \mathbf{T} + t\alpha_+)$, where $\alpha_+ = -\beta . \alpha . \mathbf{T}^{-1}$.
- $\psi(u) = \alpha_+ . e^{(\mathbf{T} + \mathbf{t}.\alpha_+)u}.\mathbf{e}.$

In this case the ruin probability is asymptotically exponential:

$$\psi(u) \sim Ce^{-\lambda u}$$
,

with
$$-\lambda = max\{Sp(\mathbf{T} + \mathbf{t}.\alpha_+)\}.$$

Polynomial Expansion for the ruin probability

Recall that $M = \sum_{i=1}^{N} U_i^I$. Then:

$$dF_M(x) = (1 - \rho)\delta_0(dx) + (1 - \rho)\sum_{n=1}^{+\infty} \rho^n dF_{U^n}^{*n}(x)$$

= $(1 - \rho)\delta_0(dx) + dG_M(x).$

If $\frac{dG_M}{dF} \in L^2(F)$ then:

$$\frac{dG_M}{dF}(x) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{Q_n(x)}{||Q_n||}.$$

From this we deduce a polynomial expansion for the ruin probability:

$$\psi(u) = \sum_{n \in \mathbb{N}} \left\langle \frac{dG_M}{dF}, \frac{Q_n}{||Q_n||} \right\rangle \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||}.$$

Approximation of the ruin probability though truncation of the polynomial expansion

Theorem: Approximation of the ultimate ruin probability

Let $\{F_{\mu}; \mu \in M\}$ be a NEF-QVF generated by F of mean μ_0 and $f(x, \mu)$ a NEF-QVF PDF proportional to $exp(\phi(\mu)x - \kappa(\phi(\mu)))$ w.r.t F.

• If $\frac{dG_M}{dF} \in L^2(dF)$ then:

$$\psi^{K}(u) = \sum_{n=0}^{K} V_{F}(\mu_{0})^{n} \left[\frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \left(\widehat{G}_{M}(\phi(\mu)) \right) \right]_{\mu=\mu_{0}}$$

$$\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}(x)||^{2}}$$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF the only one supported on $[0, +\infty]$ is generated by the exponential distribution. Then:

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones see Szegö [1939] [3]

- Which value for ξ to complete the integrability condition?
- $\frac{dG_M}{dF}(u) \sim De^{-u(\lambda \xi)}$ $\hookrightarrow \xi < 2\lambda$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF the only one supported on $[0, +\infty]$ is generated by the exponential distribution. Then:

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones see Szegö [1939] [3]

- Which value for ξ to complete the integrability condition?
- $\frac{dG_M}{dF}(u) \sim De^{-u(\lambda \xi)}$ $\hookrightarrow \xi < 2\lambda$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF the only one supported on $[0, +\infty]$ is generated by the exponential distribution. Then:

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones see Szegö [1939] [3]

• Which value for ξ to complete the integrability condition?

•
$$\frac{dG_M}{dF}(u) \sim De^{-u(\lambda - \xi)}$$

 $\hookrightarrow \xi < 2\lambda$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF the only one supported on $[0, +\infty]$ is generated by the exponential distribution. Then:

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones see Szegö [1939] [3]

- Which value for ξ to complete the integrability condition?
- $\frac{dG_M}{dF}(u) \sim De^{-u(\lambda-\xi)}$

 dG_M is a defective probability measure supported on $[0, +\infty]$. Among NEF-QVF the only one supported on $[0, +\infty]$ is generated by the exponential distribution. Then:

$$dF(x) = \xi e^{-\xi x} d\lambda(x)$$

The orthogonal polynomials linked to the exponential measure are the Laguerre ones see Szegö [1939] [3]

- Which value for ξ to complete the integrability condition?
- $\frac{dG_M}{dF}(u) \sim De^{-u(\lambda-\xi)}$ $\hookrightarrow \xi < 2\lambda$

Simulation studies setting

For the ruin model we assume that:

- the premium rate p is equal to 1
- the safety loading η is equal to 33% and consequently $\rho = 0.75$
- ullet The distributions of claim amount are of phase type given by ${f T}$ and lpha

A graphic visualization is proposed, we plot the quantity:

$$\Delta \psi(u) = \psi(u) - \psi^K(u),$$

for an initial reserve u and based on the truncation of order K.

 \hookrightarrow Different values for ξ are tested with one equal to λ .

Exponentially distributed claim size

$$f_U(x) = e^{-x} 1_{[0,+\infty]}(x)$$
 $\lambda = 0,25$

Mixture of Erlang distributed claim size

$$\mathbf{T} = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{2}{3} & \frac{2}{3} \\ 0 & 0 & 0 & 0 & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix}, \quad \alpha = \begin{pmatrix} \frac{2}{5} & 0 & 0 & \frac{3}{5} & 0 \end{pmatrix}, \quad \lambda = 0.1205$$

HyperExponentially distributed claim size

$$\mathbf{T} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}, \ \alpha = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}, \ \lambda = 0.1495$$

Conclusion

- + A method quite efficient
 - → An approximation as precise as one might want
- Easy to understand and to implement
- + No discretization of the claim size is needed
- Limited to light tailed distribution

Outlooks:

- Theoritical sensitiveness study of the parameters
- Agregate claim amount distribution
- Finite time ruin probability

References

Carl N. Morris.

Natural exponential families with quadratic variance functions.

The Annals of Mathematical Statistics, 10(1):65–80, 1982.

S.Asmussen and H.Albrecher.

Ruin Probabilities, volume 2 of Adavanced Series on Statistical Science Applied Probability.

World Scientific, 2001.

G. Szegö.

Orthogonal Polynomials, volume XXIII.

American mathematical society Colloquium publications, 1939.

Proof for the ruin probability approximation

Let's start from:

$$\psi(u) = \sum_{n \in \mathbb{N}} \langle \frac{dG_M}{dF}, Q_n \rangle \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}$$

$$= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} Q_n(x) \frac{dG_M}{dF}(x) dF(x) \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}$$

$$= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} Q_n(x) dG_M(x) \frac{\int_u^{+\infty} Q_n(y) dF(y)}{||Q_n||^2}$$
(1)

recall that:

$$\begin{split} Q_n(x) &= V_F(\mu_0)^n \left\{ \frac{\partial^n}{\partial \mu^n} f(x, \mu) \right\}_{\mu = \mu_0} \\ &= V_F(\mu_0)^n \left\{ \frac{\partial^n}{\partial \mu^n} exp(\phi(\mu)x - \kappa(\phi(\mu))) \right\}_{\mu = \mu} \end{split}$$

Proof for the ruin probability approximation

Re-injecting in (1), one gets:

$$\begin{split} \psi(u) &= \sum_{n \in \mathbb{N}} \int_{\mathbb{R}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} exp(\phi(\mu)x - \kappa(\phi(\mu))) \right\}_{\mu = \mu_{0}} dG_{M}(x) \\ &\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \\ &= \sum_{n \in \mathbb{N}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \int_{\mathbb{R}} exp(\phi(\mu)x) dG_{M}(x) \right\}_{\mu = \mu_{0}} \\ &\times \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \\ &= \sum_{n \in \mathbb{N}} V_{F}(\mu_{0})^{n} \left\{ \frac{\partial^{n}}{\partial \mu^{n}} e^{-\kappa(\phi(\mu))} \widehat{G}_{M}(\phi(\mu)) \right\}_{\mu = \mu_{0}} \frac{\int_{u}^{+\infty} Q_{n}(y) dF(y)}{||Q_{n}||^{2}} \end{split}$$