Aluna: Mariana Soares Oliveira

Matrícula: 231013663

Turma 01 18/01/2024

Relatório Experimento 7

1. Introdução

O intuito do seguinte experimento é desenvolver uma máquina de estado síncrona do tipo Moore para controlar uma máquina de refrigerantes, utilizando a linguagem de descrição de hardware VHDL, e simular o seu comportamento por meio de um *testbench* realizado no *software* ModelSim.

2. Teoria

2.1 Máquinas de Estado: tipo Moore e Mealy

Figura 1. Estrutura da Máquina de Moore e Mealy

As máquinas de estado finito são modelos usados em sistemas digitais, onde o comportamento é determinado por entradas, estados e saídas. Existem dois tipos principais: Máquina de Moore e Máquina de Mealy, que diferem em como geram suas saídas.

Na máquina de Moore, as saídas dependem exclusivamente do estado atual. Isso significa que, para um dado estado, a saída será sempre a mesma, independentemente do valor das entradas. Essa característica garante maior estabilidade, pois a saída só muda quando há uma transição de estado. Na Figura 1, podemos observar que, na máquina de Moore, a lógica de saída (output logic) está conectada diretamente ao estado armazenado (state). Assim, as entradas não influenciam diretamente as saídas, apenas definem a próxima transição de estado.

Já na máquina de Mealy, as saídas dependem tanto do estado atual quanto das entradas. Essa arquitetura permite que o sistema responda mais rapidamente a alterações nas entradas, já que as saídas podem mudar sem que ocorra uma transição de estado. Na Figura 1, a máquina de Mealy mostra que a lógica de saída (output logic) recebe tanto o estado atual (state) quanto as entradas (inputs). Essa conexão direta torna as máquinas de Mealy mais dinâmicas, mas também mais sensíveis a variações nas entradas.

2.2. Máquina de Refrigerante

Esse experimento consiste na implementação de uma máquina de estados do tipo Moore para controlar uma máquina de refrigerantes que aceita moedas de R\$ 0,25 e R\$ 0,50. A máquina soma os valores inseridos e, ao atingir ou exceder R\$ 1,00, libera automaticamente o refrigerante e o troco, se necessário. Ela também permite o cancelamento da compra, devolvendo o valor inserido. A lógica segue a Tabela 1, que define os estados, transições e saídas.

Estados	Saídas			Entradas			
	R	0,25 C	0,50 C	A = 00	A = 01	A = 10	A = 11
INIT	0	0	0	INIT	e0,25	e0,50	INIT
e0,25	0	0	0	e0,25	e0,50	e0,75	d0,25
e0,50	0	0	0	e0,50	e0,75	e1,00	d0,50
e0,75	0	0	0	e0,75	e1,00	e1,25	d0,75
e1,00	1	0	0	INIT	e0,25	e0,50	INIT
e1,25	1	1	0	INIT	e0,25	e0,50	INIT
d0,25	0	1	0	INIT	e0,25	e0,50	INIT
d0,50	0	0	1	INIT	e0,25	e0,50	INIT
d0,75	0	1	1	INIT	e0,25	e0,50	INIT

Tabela 1. Tabela de transição de estados da Máquina de Refrigerante

3. Códigos

Neste experimento utilizamos a linguagem de descrição de hardware VHDL por meio do software Modelsim para desenvolver uma máquina de estados conforme a figura 2. Posteriormente, foi desenvolvido um código auxiliar chamado *testbench* para cada circuito, descrito na figura 3.

Departamento de Engenharia Elétrica

— C:/Users/maria/Desktop/231013663 Projeto7/questao1/maquinarefri.vhd - Default == 🕸 📅 🛗 🌊 🏋 Ln# 1 -- biblioteca 2 library IEEE; use IEEE.STD_LOGIC_1164.ALL; 3 4 -- entidade 5 entity maquinarefri is 6 Ė port (7 clk :in std_logic; 8 moeda :in std logic vector(1 downto 0); 9 r, c25, c50 :out std logic -); 10 11 end maquinarefri; 12 -- arquitetura 13 architecture rtl of maquinarefri is 14 type state is (idle, e25c, e50c, e75c, e1, e125, d25c, d50c, d75c); 15 signal currentstate, nextstate : state; 16 □ begin 17 sync proc: process(clk) 18 begin 19 阜 if rising edge(clk) then 20 currentstate <= nextstate; 21 end if; 22 end process; 23 comb proc: process (currentstate, moeda) 24 begin 25 白 case currentstate is 26 when idle => 27 r <= '0'; c25 <= '0'; 28 c50 <= '0'; 29 if (moeda = "01") then nextstate <= e25c; 30 31 elsif (moeda = "10") then nextstate <= e50c; 32 elsif (moeda = "11") then nextstate <= idle;</pre> 33 白 else nextstate <= idle;</pre> 34 end if; 35 when e25c => r <= '0'; 36 37 c25 <= '0'; 38 c50 <= '0'; if (moeda = "01") then nextstate <= e50c; 39 40 elsif (moeda = "10") then nextstate <= e75c; 41 elsif (moeda = "11") then nextstate <= d25c; 42 卓 else nextstate <= e25c; 43 end if; 44 when e50c =>

Universidade de Brasília


```
45
                                 r <= '0';
                                 c25 <= '0';
46
47
                                 c50 <= '0';
48
                                 if (moeda = "01") then nextstate <= e75c;
                                 elsif (moeda = "10") then nextstate <= el;</pre>
49
                                 elsif (moeda = "11") then nextstate <= d50c;</pre>
50
     中
                                 else nextstate <= e50c;
51
52
                                 end if:
53
                        when e75c =>
                                 r <= '0';
54
55
                                 c25 <= '0';
                                 c50 <= '0';
56
57
                                 if (moeda = "01") then nextstate <= el;</pre>
58
                                 elsif (moeda = "10") then nextstate <= e125;
                                 elsif (moeda = "11") then nextstate <= d75c;
59
60
     中
                                 else nextstate <= e75c;
                                 end if;
61
62
                        when el =>
                                 r <= '1';
63
64
                                 c25 <= '0';
65
                                 c50 <= '0';
                                 if (moeda = "01") then nextstate <= e125;</pre>
66
67
                                 elsif (moeda = "10") then nextstate <= e50c;
                                 elsif (moeda = "11") then nextstate <= idle;
68
69
     中
                                 else nextstate <= idle;</pre>
70
                                 end if;
71
                        when e125 =>
72
                                 r <= '1';
73
                                 c25 <= '1';
                                 c50 <= '0';
74
75
                                 if (moeda = "01") then nextstate <= e25c;</pre>
                                 elsif (moeda = "10") then nextstate <= e50c;</pre>
76
                                 elsif (moeda = "11") then nextstate <= idle;
77
78
                                 else nextstate <= idle;
79
                                 end if;
80
                        when d25c =>
                                 r <= '0';
81
                                 c25 <= '1';
82
                                 c50 <= '0';
83
84
                                 if (moeda = "01") then nextstate <= e25c;</pre>
85
                                 elsif (moeda = "10") then nextstate <= e50c;
                                 elsif (moeda = "11") then nextstate <= idle;
86
87
                                 else nextstate <= idle;</pre>
     中
                                 end if;
88
```

Universidade de Brasília


```
89
                           when d50c =>
                                    r <= '0';
 90
 91
                                    c25 <= '0';
                                    c50 <= '1';
 92
 93
                                    if (moeda = "01") then nextstate <= e25c;</pre>
 94
                                    elsif (moeda = "10") then nextstate <= e50c;</pre>
 95
                                    elsif (moeda = "11") then nextstate <= idle;</pre>
 96
                                    else nextstate <= idle;
 97
                                    end if;
 98
                           when d75c =>
                                    r <= '0';
 99
100
                                    c25 <= '1';
                                    c50 <= '1';
101
                                    if (moeda = "01") then nextstate <= e25c;</pre>
102
103
                                    elsif (moeda = "10") then nextstate <= e50c;</pre>
                                    elsif (moeda = "11") then nextstate <= idle;
else nextstate <= idle;</pre>
104
105
       白
106
                                    end if;
107
108
                           end case;
109
                  end process;
       end rtl;
110
```

Figura 2. Codificação da questão 1


```
- C:/Users/maria/Desktop/231013663_Projeto7/questao1/tb_maquinarefri.vhd (/tb_maquinarefri) - Default
 B + 🚅 🗐 🛸 🍜 | X 🗣 🖺 🗘 🕮 🗘 🕒 | 🔘 + 🙌 🏗
                                                   🕸 📅 🛗 🌊 🏋
  1
         -- biblioteca
   2
         library IEEE;
         use IEEE.STD_LOGIC_1164.ALL;
   3
        use IEEE.NUMERIC_STD.ALL;
   4
   5
        -- entidade
   6
      Fentity to maquinarefri is
   7
       Lend tb maquinarefri;
  8
         -- arquitetura
  9
      Farchitecture testbench of the maquinarefri is
  10
            -- sinais do testbench
             signal clk : std logic := '0';
  11
 12
             signal moeda : std_logic_vector(1 downto 0) := "00";
 13
             signal r : std logic;
 14
             signal c25 : std_logic;
 15
             signal c50 : std logic;
 16
            constant clk period : time := 10 ns;
 17
            -- componente maquinarefri
      Ė
  18
            component maquinarefri is
  19
       白
                 port (
  20
                     clk : in std logic;
  21
                     moeda : in std logic vector(1 downto 0);
  22
                     r : out std_logic;
  23
                     c25 : out std logic;
  24
                     c50 : out std logic
  25
                 );
 26
             end component;
 27
        begin
  28
             -- instancia
  29
             uut: maquinarefri
  30
             port map (
  31
                clk => clk,
  32
                moeda => moeda,
 33
                r => r,
  34
                c25 => c25,
  35
                 c50 => c50
  36
 37
             -- processo para gerar o clock
       白
  38
            clk_process: process
  39
            begin
       40
                while true loop
  41
                     clk <= '0';
  42
                     wait for clk period / 2;
  43
                     clk <= '1';
  44
                     wait for clk period / 2;
```



```
end loop;
 46
             end process;
  47
 48
             stim proc: process
                 type input_array is array (0 to 3) of std_logic_vector(1 downto 0);
 49
                 constant inputs : input_array := ("00", "01", "10", "11");
 50
  51
 52
 53
      中
                 for i in inputs'range loop
 54
                    moeda <= inputs(i); wait for clk_period;
 55
                end loop;
 56
 57
                moeda <= "01"; wait for clk_period;
  58
                for i in inputs'range loop
 59
                    moeda <= inputs(i); wait for clk_period;</pre>
 60
                end loop;
  61
                moeda <= "10"; wait for clk_period;</pre>
 62
      中
  63
                for i in inputs'range loop
  64
                    moeda <= inputs(i); wait for clk_period;
 65
                end loop;
 66
  67
                moeda <= "01"; wait for clk_period;
      中
 68
                for i in inputs'range loop
  69
                    moeda <= inputs(i); wait for clk_period;</pre>
  70
                 end loop;
  71
                moeda <= "01"; wait for clk_period;</pre>
 72
      þ
  73
                 for i in inputs'range loop
  74
                   moeda <= inputs(i); wait for clk period;
                end loop;
  75
  76
 77
                moeda <= "01"; wait for clk_period;
 78
79
                for i in inputs'range loop
                    moeda <= inputs(i); wait for clk_period;
 80
                 end loop;
 81
                moeda <= "11"; wait for clk_period;</pre>
 82
      中
 83
                for i in inputs'range loop
 84
                    moeda <= inputs(i); wait for clk period;
 85
                end loop;
 86
  87
                 moeda <= "11"; wait for clk_period;
      中
 88
                for i in inputs'range loop
 89
                    moeda <= inputs(i); wait for clk period;
 90
                end loop;
 91
                moeda <= "11"; wait for clk_period;</pre>
 92
 93
                 for i in inputs'range loop
 94
                    moeda <= inputs(i); wait for clk_period;
 95
                end loop;
 96
                moeda <= "01"; wait for clk_period;</pre>
 97
                moeda <= "11"; wait for clk_period;</pre>
 98
 99
                 for i in inputs'range loop
100
                    moeda <= inputs(i); wait for clk period;
101
                 end loop;
102
103
                moeda <= "10"; wait for clk_period;
                 moeda <= "11"; wait for clk_period;
104
                 for i in inputs'range loop
105
106
                    moeda <= inputs(i); wait for clk_period;</pre>
107
                 end loop;
108
                wait:
109
             end process;
110
111
       end testbench;
```

Figura 3. Testbench da questão 1

4. Compilação

Os códigos gerados anteriormente foram submetidos a uma compilação com o intuito de garantir seu funcionamento, como mostrado na figura 4, não apresentando erros de sintaxe.

Figura 4. Compilação da questão 1

5. Simulação

Figura 5. Simulação de onda do banco de testes da questão 1

Figura 6. Simulação de onda do banco de testes da questão 1 (Cont)

Figura 7. Simulação de onda do banco de testes da questão 1 (Cont)

Figura 8. Simulação de onda do banco de testes da questão 1 (Cont)

Figura 9. Simulação de onda do banco de testes da questão 1 (Cont)

Para idle

- Cursor 1 (3.928 ns): clk = 0, moeda = 00, r = 0, c25 = 0, c50 = 0, currentstate = idle, nextstate = idle
- Cursor 2 (87.51 ns): clk = 1, moeda = 11, r = 0, c25 = 0, c50 = 0, currentstate = idle, nextstate = idle
- Cursor 3 (13.53 ns): clk = 0, moeda = 01, r = 0, c25 = 0, c50 = 0, currentstate = idle, nextstate = e25c
- Cursor 4 (92.966 ns): clk = 0, moeda = 10, r = 0, c25 = 0, c50 = 0, currentstate = idle, nextstate = e50c

Para E25C

- Cursor 5 (17.895 ns): clk = 1, moeda = 01, r = 0, c25 = 0, c50 = 0, currentstate = e25c, nextstate = e50c
- Cursor 6 (23.132 ns): clk = 0, moeda = 10, r = 0, c25 = 0, c50 = 0, currentstate = e25c, nextstate = e75c
- Cursor 7 (53.466 ns): clk = 0, moeda = 00, r = 0, c25 = 0, c50 = 0, currentstate = e25c, nextstate = e25c
- Cursor 8 (452.968 ns): clk = 0, moeda = 11, r = 0, c25 = 0, c50 = 0, currentstate = e25c, nextstate = d25c

Para E50C

- Cursor 9 (67.87 ns): clk = 1, moeda = 01, r = 0, c25 = 0, c50 = 0, currentstate = e50c, nextstate = e75c
- Cursor 10 (72.889 ns): clk = 0, moeda = 10, r = 0, c25 = 0, c50 = 0, currentstate = e50c, nextstate = e1

Universidade de Brasília

Departamento de Engenharia Elétrica

- Cursor 11 (103.441 ns): clk = 0, moeda = 00, r = 0, c25 = 0, c50 = 0, currentstate = e50c, nextstate = e50c
- Cursor 12 (512.793 ns): clk = 0, moeda = 11, r = 0, c25 = 0, c50 = 0, currentstate = e50c, nextstate = d50c

Para E75C

- Cursor 13 (27.933 ns): clk = 1, moeda = 10, r = 0, c25 = 0, c50 = 0, currentstate = e75c, nextstate = e125
- Cursor 14 (32.298 ns): clk = 0 , moeda = 11 , r = 0 , c25 = 0 , c50 = 0 , currentstate = e75c, nextstate = d75c
- Cursor 15 (115 ns): clk = 1, moeda = 01, r = 0, c25 = 0, c50 = 0, currentstate = e75c, nextstate = e1

Para E1

- Cursor 16 (77.69 ns): clk = 1, moeda = 10, r = 1, c25 = 0, c50 = 0, currentstate = e1, nextstate = e50c
- Cursor 17 (81.4 ns): clk = 0, moeda = 11, r = 1, c25 = 0, c50 = 0, currentstate = e1, nextstate = idle

Para E125

- Cursor 18 (128.064 ns): clk = 1, moeda = 10, r = 1, c25 = 1, c50 = 0, currentstate = e125, nextstate = e50c
- Cursor 19 (131.92 ns): clk = 0, moeda = 11, r = 1, c25 = 1, c50 = 0, currentstate = e125, nextstate = idle

Para D25C

- Cursor 20 (455 ns): clk = 1, moeda = 11, r = 0, c25 = 1, c50 = 0, currentstate = d25c, nextstate = idle
- Cursor 21 (460.714 ns): clk = 0, moeda = 00, r = 0, c25 = 1, c50 = 0, currentstate = d25c, nextstate = idle

Para D50C

- Cursor 22 (517.186 ns): clk = 1, moeda = 11, r = 0, c25 = 0, c50 = 1, currentstate = d50c, nextstate = idle
- Cursor 23 (522.205 ns): clk = 0, moeda = 00, r = 0, c25 = 0, c50 = 1, currentstate = d50c, nextstate = idle

Para D75C

• Cursor 24 (559.304 ns): clk = 1, moeda = 11, r = 0, c25 = 1, c50 = 1, currentstate = d75c, nextstate = idle

Universidade de Brasília Departamento de Engenharia Elétrica

- Cursor 25 (502.128 ns): clk = 0, moeda = 10, r = 0, c25 = 1, c50 = 1, currentstate = d75c, nextstate = e50c
- Cursor 26 (42.337 ns): clk = 0, moeda = 01, r = 0, c25 = 1, c50 = 1, currentstate = d75c, nextstate = e25c

6. Análise

Neste experimento, foi analisada uma estrutura: a máquina de estados do tipo Moore . Com base na Tabela 1 na simulação de de onda apresentada nas Figuras 5 a 9, é possível compreender o funcionamento esperado do circuito. Dessa forma, pode-se afirmar que os códigos desenvolvidos correspondem ao comportamento esperado, uma vez que os valores obtidos coincidem com aqueles descritos nas tabelas verdade

7. Conclusão

No experimento, foi possível descrever o comportamento da estrutura proposta e entender suas características. As simulações geraram os dados esperados, que foram comparados com a Tabela 1. Não houveram erros ou divergências observados durante a realização do experimento.