LÝ THUYẾT ĐỒ THỊ Cây có hướng & Cây khung tối thiểu

Phạm Nguyên Khang BM. Khoa học máy tính, CNTT pnkhang@cit.ctu.edu.vn

Cần Thơ, 8/2021

Nội dung

- Bài toán xây dựng hệ thống dẫn nước
- Cây có hướng
- Cây khung có hướng
- Cây khung có hướng nhỏ nhất
- Thuật toán Chu-Liu/Edmonds

4

5

- Đỉnh: nhà/nhà máy nước, gọi tắt là địa điểm
- Cung: đường ống nối giữa các địa điểm với nhau.
 Nước chỉ chảy 1 chiều => cung có hướng
- Trọng số cung: chi phí xây dựng đường ống tương ứng
- Đồ thị có hướng, có trọng số

Cây có hướng

- Định nghĩa:
 - Đồ thị có hướng G = <V, E> là một cây có hướng,
 gốc r khi và chỉ khi:
 - G không có chu trình vô hướng
 - Luôn có đường đi từ r đến các đỉnh khác

Cây có hướng

- Các tính chất (định lý): G là cây có hướng gốc r
 - Tồn tại đỉnh r được nối với mỗi một đỉnh khác bằng một đường đi duy nhất xuất phát từ r.
 - 2. Gần liên thông mạnh và cực tiểu đối với tính chất này.
 - Liên thông và tồn tại một đỉnh r có bậc trong bằng không và bậc trong của những đỉnh khác r là bằng 1.
 - 4. Không có chu trình và tồn tại một đỉnh r có bậc trong bằng không và bậc trong của những đỉnh khác r là bằng 1.
 - 5. Gần liên thông mạnh và không có chu trình.
 - 6. Gần liên thông mạnh và có n-1 cung.
- Xem thêm Giáo trình Toán rời rạc

Cây khung có hướng

- Cây khung của đồ thị G
 - Cây có hướng
 - Gồm tất cả các đỉnh của đồ thị G

Cây khung có hướng nhỏ nhất

- Cây khung có hướng nhỏ nhất
 - Cây khung có hướng có tổng số trọng số các cung nhỏ nhất

- Pha co
 - Gọi đồ thị gốc là G_0 , t = 0
 - Lặp
 - Xây dựng đô thị xấp xỉ H_t từ G_t
 - Nếu H_t không chứa chu trình => thoát vòng lặp chuyển sang pha giãn
 - Ngược lại co G_t thành G_{t+1}
 - t = t + 1
- Pha giãn

- Xây dựng đồ thị xấp xỉ H_t từ G_t
 - Trừ gốc ra, với mỗi đỉnh còn lại giữ lại 1 cung đi đến nó có trọng số nhỏ nhất (bỏ các cung khác đi).
- Bài tập:
 - Bước lặp 0
 - Xây dựng đồ thị H₀ từ G₀

 H_0

1

27

- Co đồ thị G_t thành G_{t+1}
 - Gom các đỉnh trong chu trình thành đỉnh mới
 - Điều chỉnh trọng số của các cung có liên quan (cung từ ngoài đi đến 1 đỉnh trong chu trình)

- Co đô thị G_t thành G_{t+1}
 - Gom các đỉnh trong chu trình thành đỉnh mới
 - Điều chỉnh trọng số của các cung có liên quan (cung từ ngoài đi đến 1 đỉnh trong chu trình)

29

- Bài tập:
 - Co đồ thị G_0 thành G_1 (theo 2 chu trình tìm được ở H_0)

33

- Bước lặp 1
 - Xây dựng đồ thị xấp xỉ H₁

35

H₁

1

- Bài tập:
 - Co đồ thị G₁ thành G₂ (theo 1 chu trình tìm được ở H₁)

 G_2

- Bước lặp 2
 - Xây dựng đồ thị xấp xỉ H₂

 G_2

 H_2

H₂ không chứa chu trình => thoát vòng lặp, chuyển sang pha giãn

- Giãn cây khung T_{t+1} thành cây khung T_t của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Giãn H_{t+1} thành cây khung của đô thị G_t
 - Mở đỉnh (được gom lại trong pha co) => chu trình
 - Điều chỉnh trọng số của cung đi đến chu trình
 - Xoá bỏ 1 cung trong chu trình

- Bài tập:
 - Giãn cây $T_2 = H_2$ thành T_1 (cây khung của G_1)
 - Giãn cây T_1 thành T_0 (cây khung của G_0) = cây khung cần tìm

$$T_2 = H_2$$
 $T_2 = H_2$ là cây khung của G_2
 $Giãn T_2$ để có cây khung T_1 của G_1

6+7=13

(1,4)

 $T_1 => T_0$ Mở 23 thành 2 và 3

1

6+7=13

(1,4)

 $T_1 = T_0$ Mở 23 thành 2 và 3

1

6+7=13 (1,4)

6+7=13

(1,4)

1

6+7=13

(1,4)

(1,4)

 $T_1 = > T_0$ Mở 456 thành 4,5,6

 $T_1 => T_0$ Mở 456 thành 4,5,6

1

13+2=15 (1,4)

Tổng trọng số: 15+4+6+5+3 = 33

Xây dựng hệ thống dẫn nước

Bài tập

- Cho đồ thị
 - Áp dụng Thuật toán Chu-Liu/Edmonds tìm cây khung có hướng có trọng lượng nhỏ nhất. Vẽ cây KQ. Tính tổng trọng số các cung
 - 2. Áp dụng thuật toán Dijkstra tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh khác. Vẽ cây đường đi ngắn nhất.
 - 3. So sánh 2 cây kết quả.
 - 4. Có thể dung thuật toán Dijkstra để tìm cây khung có hướng có trọng lượng nhỏ nhất được không?

