Link Prediction Problem

- A fundamental problem in networks
- Here, given a snapshot of a network, need to infer:
 - Which interactions among members is likely
 - Which existing interactions we are missing
- Challenge: Combining information from network with rich node and edge attribute data

10 of 77

How do we combine network structure with node and edge features?

14 of 77

Supervised Link Prediction

- Combination of PageRank with supervised learning
 - PageRank: Can capture importance of nodes based on network structure
 - Supervised learning: Uses node and edge features to adjust PageRank
- Idea: To "guide" random walk using supervised learning

Supervised Random Walk: Graph + Nodes + Edge Features

- Algorithm developed based on supervised random walks
 - Naturally combines information from the network with node and edge attributes
- Achieved through using attributes to guide a random walk on the graph
- Problem formulated as part supervised machine learning and part random walking with restarts

30 of 77

Friend Graphs: Random Walk With Restarts

- Set teleportation factor to always teleport back to user.
- Reweight edges using supervised machine learning approach.
- To distribute probability mass, use weighted sum distribution.

Supervised Learning

• Goal: Given a user *s*, recommend friends

Positive: Nodes to which s links to in the future

Negative: Nodes to which s does not link during this future time period

42 of 77

Social Network Paper

By Lars Backstrom and Jure Leskovic (link)

- Sample: 200 users
 - With a couple hundred friends
 - Active at connecting
- Looked at time sequence of links
 - Positive and negative links selected
- Further partitioned positive and negative examples by time
- Pooled all positive and negative examples for users, put in training and test set

Facebook Study Features

- Seven features generated around each edge (i, j)
 - Edge age: T–t–β, where T is time cutoff November 1, and t is edge creation time. Three features where β =0.10.30.5.
 - Edge initiator: Individual making friend request encoded as +1 or -1
 - Communication and observation features:
 Probability within a one-week period
 - Common friends: Between j and s
- All features rescaled to have mean 0 and standard deviation 1; also constant feature of value 1

52 of 77

Hybrid Model

- Random walk with restarts algorithm combined with supervised learning
- · Extremely complex, with billions of nodes
- Individual with positive and negative examples to reweight links and social graph

Supervised Random Walk: Process

- Assume N individuals (N = 100) → 100 social network graphs.
- Weight edges applying weight vector W (seven dimensions) to all existing edges.
- Run random walk with restarts (RWR) algorithm (PPR with one node of interest).

$$Q_{uv} = (1 - \alpha)Q'_{uv} + \alpha \mathbf{1}(v = s)$$

- Generate steady-state distribution using RWR.
- Teleport to s (our node of interest) at every opportunity.

65 of 77

Supervised Random Walk: Process (cont.)

- Steady-state distribution, where each node is scored
- Leads to a list of nodes and corresponding scores
- Take labels and scores and use in training:
 - If node is positive, then positive example
 - If node is negative, then negative example

$$\underset{\text{nodes}}{arg\ min_{\theta}} \sum_{\substack{p \in P\\ \text{Negative}\\ \text{nodes}}} \delta \frac{(r_p < r_n)}{|r_p|} + \lambda \big| |\theta| \big|^2$$

$$\underset{\text{nodes}}{\underset{\text{Penalty for violating}\\ \text{constraint } r_p > r_n}}$$

$$r_x \dots \text{score of node } x \text{ on a weighted}$$

$$\underset{\text{graph with edge weights } f_{\theta}(x, y)}{\underset{\text{odd}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}}}{\underset{\text{result}}}{\underset{\text{result}}}{\underset{\text{result}}}}}}}}}}}}}}}}$$

- Ideal: Score for positive examples > Score for negative examples (rp>rn)
- Error: Score for negative examples > Score for positive examples (rprn)

Supervised Portion of Algorithm

Optimization function:

$$\min_{w} F(w) = \left|\left|w
ight|
ight|^{2} + \lambda \sum_{d \in D, l \in L} h(p_{l} - p_{d})$$

- λ trades off between complexity (i.e., norm of w) for the fit of model (i.e., how much constraints can be violated).
- Apply gradient descent to objective function.
- Learn a set of weights that can be applied to each edge in our graph.
- Begin another iteration over newly rerated graph.
- Generate new steady-state distribution; revisit problem.
 Readjust weights if needed.
- Repeat process many times.

77 of 77

Implementation: Two Parts

$$Q'_{uv} = \begin{cases} rac{a_{uv}}{\sum_{w} a_{uw}} & ext{if } (u, v) \in E, \\ 0 & ext{otherwise} \end{cases}$$

- Supervised personalized random walk can be done on MapReduce
 - o Or using specialized libraries for graphs
- Use gradient descent algorithm on a single server

$$\underset{\text{nodes}}{\operatorname{arg\ min}_{\theta}} \sum_{\substack{p \in P\ n \in N\\ \text{Negative}\\ \text{nodes}}} \delta(r_p < r_n) + \lambda \big| \big| \theta \big| \big|^2$$

$$\underset{\text{constraint}\ r_p > r_n\\ \text{nodes}\ r_x \dots \text{score of node x on a weighter}\\ \text{graph with edge weights } f_{\theta}(x,y)$$