Statistical Analysis of Networks

Projection and Weighted Networks

Learning Goals

- * Understand *projection* of bipartite graphs to unipartite graphs.
- * Examine dichotomized projections.
- * Examine summation weighted and Newman weighted projections.

Projection

- * The process by which we map the connectivity between modes to a single mode.
 - * Example
 - * Two-mode network is people in groups.
 - * By projecting, we get:
 - * One-mode network of people connected to people by groups.
 - * One-mode network of groups connected by people.

Empirical Example

Diffusion of Ideas and Technology: The Role of Networks in Influencing the Endorsement and Use of On-Officer Video Cameras

Journal of Contemporary Criminal Justice 2015, Vol. 31 (3) 243–261 © 2014 SAGE Publications Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1043986214553380 ccj.sagepub.com

SSAGE

Jacob T. N. Young and Justin T. Ready

https://journals.sagepub.com/doi/10.1177/1043986214553380

Empirical Example

Diffusion of Ideas and Technology: The Role of Networks in Influencing the Endorsement and Use of On-Officer Video Cameras

Journal of Contemporary Criminal Justice 2015, Vol. 31 (3) 243–261 © 2014 SAGE Publications Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/1043986214553380 ccj.sagepub.com

SSAGE

Jacob T. N. Young and Justin T. Ready

* Questions:

- * How do police officers "frame" body-worn cameras?
- * Is the meaning officers attribute to cameras created and transmitted in groups?

Bipartite Graph of Incidents and Officers by Treatment or Control Condition

Figure 5. One-mode network of officers.

Note. Node size is proportional to change in legitima

Note. Node size is proportional to change in legitimacy: darker = more negative; white = no change. Line size is proportional to number of shared incidents.

So where does this network come from?

Projection

* Breiger (1974)

- * We can build the adjacency matrix for each projected network through matrix algebra.
 - * Specifically, multiplying an adjacency matrix by it's transpose.
 - * The transpose of a matrix simply reverses the columns and rows:

$$A^{T}_{ij} = A_{ji}$$

Projection

- * Breiger (1974)
 - * The two-mode, *NxM*, adjacency matrix, when multiplied by it's **transpose**, produces either:
 - * An *MxM* matrix (ties among *M* nodes via *N*).
 - * An NxN matrix (ties among N nodes via M).

Transposition

Matrix A

	1	2	3	4	5
Α	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
Е	0	0	1	0	0
F	0	0	1	0	1

Matrix AT

	А	В	С	D	Е	F
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	0	0	0	1	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1

order is 6x5

order is 5x6

Projection

- Matrix Multiplication Rules
 - * To multiply two matrices, the number of columns in the first matrix must match the number of rows in the second matrix.
 - * Example: 5x6 X 6x5 works, but not 5x6 X 5x6
 - * The **product** matrix has the number of rows equal to the first matrix and the number of columns equal to the second matrix.
 - * Example: $5x6 \times 6x5 = 5x5$

Projection

* Product Matrix

- * The product matrix is the projected graph.
 - * Recall that there are two:
 - * A X A^t (the "people" matrix P)
 - * And the A^t X A (the "group" matrix G)
 - * What does each one mean?

Matrix Multiplication

Matrix A

	1	2	3	4	5
А	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
Е	0	0	1	0	0
F	0	0	1	0	1

order is 6x5

Matrix Multiplication

Matrix A

N /		AT
I\ /I	latrix	Λ I
I V I		A '

	1	2	3	4	5
А	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
Е	0	0	1	0	0
F	0	0	1	0	1

X

	Α	В	С	D	Е	F
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	0	0	0	1	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1

order is 6x5

order is 5x6

Matrix Multiplication

Matrix A

Matrix AT

	1	2	3	4	5
А	1	1	0	0	0
В	1	0	0	0	0
С	1	1	0	0	0
D	0	1	1	1	1
Е	0	0	1	0	0
F	0	0	1	0	1

X

	А	В	С	D	Е	F
1	1	1	1	0	0	0
2	1	0	1	1	0	0
3	0	0	0	1	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1

order is 6x5

order is 5x6

The product matrix is 6x6

Projection by Multiplication

$$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

Projection by Multiplication

We want to know how people are connected by groups (i.e. the rows of our two-mode adjacency matrix)

$$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

$$6x5 X 5x6 = 6x6$$

$$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

The diagonal is the count of ties **the person** has with two-mode vertices

For example, D is in 4 groups

$$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

What statistic does the diagonal give us?

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

Note, that the projection forces the product matrix to be symmetric (i.e. undirected graph)

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	Α	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the first mode are connected by vertices in the second mode

A and B are linked through a single vertex, 1

 $\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$

	А	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

A and C are linked through two vertices, 1 and 2

So, if these are groups, A and C are members of 2 of the same groups

$$\mathbf{A} \times \mathbf{A}^{\mathsf{T}} = \mathbf{P}$$

	А	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

NOTE: these are counts of shared vertices, not edge counts

$$6x5 X 5x6 = 6x6$$

	Α	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

	А	В	С	D	Е	F		А	В	С	D	Е	F
А	2	1	2	1	0	0	А	0	1	1	1	0	0
В	1	1	1	0	0	0	В	1	0	1	0	0	0
С	2	1	2	1	0	0	С	1	1	0	1	0	0
D	1	0	1	4	1	2	D	1	0	1	0	1	1
Е	0	0	0	1	1	1	Е	0	0	0	1	0	1
F	0	0	0	2	1	2	F	0	0	0	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

	А	В	С	D	Е	F			А	В	С	D	Е	F
А	2	1	2	1	0	0		А	0	1	1	1	0	0
В	1	1	1	0	0	0	_	В	1	0	1	0	0	0
С	2	1	2	1	0	0		С	1	1	0	1	0	0
D	1	0	1	4	1	2		D	1	0	1	0	1	1
Е	0	0	0	1	1	1		Е	0	0	0	1	0	1
F	0	0	0	2	1	2		F	0	0	0	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

Projection by Multiplication

We want to know how groups are connected by people (i.e. the columns of our two-mode adjacency matrix)

$$A^T \times A = G$$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

$$5x6 \times 6x5 = 5x5$$

 $A^T \times A = G$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The diagonal is the count of ties the **group** has with two-mode vertices

For example, 2 has 3 people

$$A^{\mathsf{T}} \times A = G$$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

What statistic does the diagonal give us?

 $A^T \times A = G$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

Note, that the projection forces the product matrix to be symmetric (i.e. undirected graph)

 $A^T \times A = G$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

The off-diagonal entries indicate the number of ways that vertices in the second mode are connected by vertices in the first mode

1 and 2 are connected by 2 vertices, A and C

$$A^T \times A = G$$

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

NOTE: these are counts of shared vertices, not edge counts

	1	2	3	4	5
1	3	2	0	0	0
2	2	3	1	1	1
3	0	1	3	1	2
4	0	1	1	1	1
5	0	1	2	1	2

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

	1	2	3	4	5		1	2	3	4	5
1	3	2	0	0	0	1	0	1	0	0	0
2	2	3	1	1	1	2	1	0	1	1	1
3	0	1	3	1	2	3	0	1	0	1	1
4	0	1	1	1	1	4	0	1	1	0	1
5	0	1	2	1	2	5	0	1	1	1	0

If we treat any tie greater than 0 as binary, *called dichotomizing*, and recode the diagonal as 0, we get an undirected, one-mode network

- * To project, or not to project?
 - * As noted by many scholars, there is data loss when we project and binarize the data.
 - * Sometimes, this can be misleading.

Are these bipartite graphs the same?

- * To project, or not to project?
 - * As we have seen, and as noted by many scholars, there is data loss when we project.
 - * So what to do?
 - * When you can, "keep it real" by keeping it two-mode.
 - * If you must project, minimize data loss by weighting edges.

Weighted Edges

- * We can use the information from the bipartite graph to weight the edges in the network.
 - * This can be the same of the ties between two actors (i.e. *summation method*).

	Α	В	С	D	Е	F
А	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

The off-diagonal entries are the tie weights

	А	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1		0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	4	1	2

The weight corresponds to the number of nodes in the second mode that the two actors share in the bipartite graph.

	А	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1_	1		0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

The weight corresponds to the number of nodes in the second mode that the two actors share in the bipartite graph.

	Α	В	С	D	Е	F
Α	2	1	2	1	0	0
В	1	1	1	0	0	0
С	2	1	2	1	0	0
D	1	0	1	4	1	2
Е	0	0	0	1	1	1
F	0	0	0	2	1	2

These weights are returned as the product matrix.

Weighted Edges

- * We can use the information from the bipartite graph to weight the edges in the network.
 - * This can be the sum of the ties between two actors (i.e. *summation method*).
 - * We can also take into account the degrees for the second mode in the projection (i.e. *Newman method*).

Newman Method

- * Being connected to a node in the second mode that has few people may be more important than being connected to a node in the second node with many people.
 - * For example: Co-authorship network
 - * If I share a paper I wrote only with you, should we have the same edge weight as two people who share a paper that has five total authors?
 - * In the weighted projection, the edges are the same weight, 1.

Newman Method

- * Newman (2001: 5) and scientific collaboration
 - * "it is probably the case...that two scientists whose names appear on a paper together with many other coauthors know one another less well on average than two who were the sole author of a paper"
 - * What argument is he making?

Newman Method

- * The weight of a tie is then just:
 - * 1/n-1 where n is the number of authors
 - * If there are 5 authors on 1 paper, then the tie weight is 1/4 or 0.25.
 - * If there are 2 authors on 1 paper, then the tie weight is 1/1 or 1.00.
 - * Then, the projected edge weight between two authors is the sum of these weights.

Newman Method

- * Note that we can generalize this past papers to any two-mode network.
 - * For example, being arrested with 1 person in a cooffending network versus being arrested with 49 people in a co-offending network.
- * Also, note that compared to the *summation* method, the *Newman* method shows how nodes in the first mode are connected by **different** modes in the second mode.

Using the Newman method, what are the edge weights for this graph?

Node 2 has degree 3, so the weight is 1/3-1 = 1/2 = 0.5

Using the *Newman* method, what are the edge weights for this graph?

Node 1 has degree 2, so the weight is 1/2-1 = 1/1 = 1.0

Node 2 has degree 2, so the weight is 1/2-1 = 1/1 = 1.0

Node 3 has degree 2, so the weight is 1/2-1 = 1/1 = 1.0

Learning Goals

- * Understand *projection* of bipartite graphs to unipartite graphs.
- * Examine dichotomized projections.
- * Examine summation weighted and Newman weighted projections.

Questions?