Linear Feedback Shift Registers

Angelo Panariti

February 15, 2024

1 Introduction to Linear Feedback Shift Registers

- Goal: Stream ciphers that is small and low power in hardware.
- Example: A5-1 Cipher in GSM
 - consists of 3 LFSRs

Atomic elements: flip-flop, stores a single bit

Clock input (determines when the bit is to be stored or not depending on the input signal).

Let's try to build a PRNG. Connect 3 flip-flops (1,0,0). We generate a clock

1	0	0
0	1	0
1	0	1
1	1	0
1	1	1
0	1	1
0	0	1
1	0	0

1.1 Mathematical description

We run into a cycle after group of 7 output bits $(S_0, S_1, S_2, ..., S_7)$.

$$S_3 \equiv S_1 + S_0 \mod 2$$

$$S_4 \equiv S_2 + S_1 \mod 2$$

$$S_{i+3} \equiv S_{i+1} + S_i \mod 2$$

Instead of a period of length 7 bits, we would need a few billion/trillion bits and then it starts to repeat.

2 General LFSRs

m numbers of flip-flops. Every flip-flop becomes a switch. We introduce a multiplier that acts like a switch

$$\begin{split} A \to [X] \to B \\ P_i &= 1, B = p_i, A = A \\ P_i &= \emptyset, B = p_i, A = \emptyset \\ S_m &\equiv S_{m-1}P_{m-1} + S_{m-2}P_{m-2} + \ldots + S_1P_1 + S_0P_0 \ mod \ 2 \\ S_{m+1} &\equiv S_mP_{m-1} + S_{m-1}P_{m-2} + \ldots + S_2P_1 + S_1P_0 \ mod \ 2 \end{split}$$

2.1 Equation

$$S_{m+1} = \sum_{i=0}^{m-1} S_{i+j} \cdot P_j \mod 2$$

$$i = 0, 1, 2, 3$$

2.2 Theorem

The maximum period (or sequence length) generated by an LFSR is $2^m - 1$.

2.3 Theorem

Only certain feedback configurations $(p_{m-1},...,p_0)$ yield maximum length sequences m = flip-flops, 0 open, 1 close

Ex:
$$m = 4$$
, $p_3 = p_2 = 0$, $p_1 = p_0 = 1$

Ex:
$$m = 4$$
, $p_3 = p_2 = p_1 = p_0 = 1$

2.4 Notation

LFSRs are often specified by the polynomial

$$P(x) = x^m + p_{m-1}x^{m-1} + \dots + p_1x + p_0$$

Only LFSRs with primitive polynomials yield maximum length sequences.

3 Attacks against single LFSRs

Given:
- all y_i - degree m- $x_0, ..., x_{2m-1}$

1. First step

$$y_i \equiv x_i + s_i \mod 2$$

 $s_i \equiv y_i + x_i \mod 2$

2. Second step

Goal: recover $S_{2m}, S_{2m+1}, S_{2m+2}, \dots$

Q: What is $p_0, p_1, ..., p_{m-1}$?

Using what we mentioned in Equation [2.1], we can solve for

$$S_m \equiv S_{m-1}P_{m-1} + ... + S_0P_0 \ mod \ 2$$

$$S_{m+1} = S_mp_{m-1} + ... + S_1p_0mod 2$$

$$S_{2m+1} = S_{2m-2}p_{m-1} + ... + S_{m-1}p_0 \ mod \ 2$$

System of m linear equations with m unknowns. \rightarrow can easily be solved with Gaussian elimination (or matrix inversion). If an attacker knows (at least) 2m output values of an LFSR, he can recover the entire LFSR configuration.

- 3. Third step
 - Using $(p_{m-1},...,p_0)$ build LFSR
 - compute $s_0,...,s_{2m-1},s_{2m},s_{2m+1}...$
 - decipher

$$x_i \equiv y_i + s_i \bmod 2$$