Rachel C. Kurchin

Carnegie Mellon University 3404 Wean Hall, Hamerschlag Drive Pittsburgh, PA 15213 rkurchin@cmu.edu rkurchin.github.io Google Scholar

EDUCATION

2019	Massachusetts Institute of Technology Cambridge, MA, USA Ph.D., Materials Science and Engineering, GPA 4.6/5.0
2014	University of Cambridge Cambridgeshire, UK MPhil, Materials Science & Metallurgy (research-based)
2013	Yale University New Haven, CT, USA B.S., Physics (Intensive), with distinction (magna cum laude, GPA 3.9/4.0)

RESEARCH POSITIONS

2019 – pres.	Carnegie Mellon University Depts. of Mechanical Engineering, Materials Science and Engineering MFI, MolSSI Postdoctoral Fellow with Venkat Viswanathan and Jay Whitacre
2014 - 2019	Massachusetts Institute of Technology Dept. of Mechanical Engineering Ph.D. student with Tonio Buonassisi (committee: V. Stevanović, J. Grossman, B. Yildiz)
2016 - 2017	National Renewable Energy Laboratory Solar Energy Research Facility Summer Visiting Graduate Student with Vladan Stevanović
2013 - 2014	University of Cambridge Dept. of Materials Science & Metallurgy Master's Student with Stoyan Smoukov, advised by Dame Athene Donald
2012 - 2013	Yale University Dept. of Electrical Engineering Undergraduate researcher (senior thesis) with Minjoo Larry Lee
2012	Colorado School of Mines Dept. of Physics Summer REU Student with Thomas Furtak
2012	Yale University Dept. of Chemical Engineering Undergraduate researcher with Chinedum Osuji
2011	Weizmann Institute of Science Dept. of Earth and Planetary Sciences Undergraduate summer researcher with Ilan Koren
2008	University of Rochester Laboratory for Laser Energetics High school summer researcher with R. Stephen Craxton

TEACHING EXPERIENCE, PREPARATION, AND RECOGNITION

2020	Guest lecture CMU Course 12-623/24-623: Molecular Simulation of Materials
	Future Faculty Program CMU Eberly Center for Teaching Excellence
	Guest lectures CMU Course 24-786: Bayesian Machine Learning
2019	Graduate Student Teaching Award MIT Department of Materials Science and Engineering
	Graduate Student Teaching Award MIT School of Engineering

- 2018 **Teaching Assistant** MIT Dept. of Materials Science and Engineering TA 3.23: Electronic, Optical, and Magnetic Properties of Materials
- 2011 2013 Science and Quantitative Reasoning Tutor Yale University Dean's Office

FELLOWSHIPS AND AWARDS

2020	MolSSI Software Fellowship Molecular Sciences Software Institute
	Rising Star in Computational and Data Sciences Oden Institute at UT Austin
2019	MFI Postdoctoral Fellowship CMU Manufacturing Futures Initiative
	CCE Symposium Poster Prize MIT Center for Computational Engineering
2018	Materials Day Best Poster Award MIT Materials Research Laboratory
2017	Blue Waters Graduate Fellowship National Center for Supercomputing Applications
2016	Total Energy Fellowship MIT Energy Initiative
	Second Place, de Florez Award Competition MIT Dept. of Mechanical Engineering
2014	GRFP Honorable Mention National Science Foundation
2013	Gates Cambridge Scholarship Cambridge Gates Trust
	Howard L. Schultz Prize Yale Physics Department
2012	Mellon Grant Pierson College at Yale University
	REMRSEC REU Technical Achievement Award Colorado School of Mines Renewable Energy Materials Research Science and Engineering Center
2009	Robert C. Byrd Honors Scholarship US Department of Education
	Intel STS Semifinalist Intel Science Talent Search

PUBLICATIONS

- 2020 [15] **R. Kurchin**, V. Viswanathan. "Marcus-Hush-Chidsey kinetics at electrode-electrolyte interfaces." *The Journal of Chemical Physics* 153, 134706 (2020)
 - [14] R. C. Kurchin, J. .. Poindexter, V. Vahanissi, et al. "How Much Physics Is in a Current-Voltage Curve? Inferring Defect Properties from Photovoltaic Device Measurements." *IEEE Journal of Photovoltaics* 10, 1532–1537 (2020)
- 2019 [13] R. C. Kurchin, G. Romano, T. Buonassisi. "Bayesim: a tool for adaptive grid model fitting with Bayesian inference." *Computer Physics Communications* 239, 161–165 (2019)
- 2018 [12] **R. C. Kurchin**, P. Gorai, T. Buonassisi, V. Stevanović. "Structural and chemical features giving rise to defect tolerance of binary semiconductors." *Chemistry of Materials* 30, 5583–5592 (2018)
 - [11] J. Correa-Baena, L. Nienhaus, **R. C. Kurchin**, et al. "A-site cation in inorganic A₃Sb₂I₉ perovskite influences structural dimensionality, exciton binding energy, and solar cell performance." *Chemistry of Materials* 30, 3734–3742 (2018)
- 2017 [10] S. S. Shin, J. Correa-Baena, R. C. Kurchin, et al. "Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics." *Chemistry of Materials* 30, 336–343 (2017)
 - [09] R. Brandt, R. C. Kurchin, V. Steinmann, et al. "Rapid semiconductor device characterization through Bayesian parameter estimation." *Joule* 1, 843–856 (2017)
 - [08] R. Hoye, L. C. Lee, **R. C. Kurchin**, et al. "Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxylodide (BiOI)." *Advanced Materials* 29, (2017)

- [07] R. E. Brandt, J. Poindexter, P. Gorai, R. Kurchin, et al. "Searching for "defect-tolerant" photovoltaic materials: combined theoretical and experimental screening." Chemistry of Materials 29, 4667–4674 (2017)
- [06] J. R. Poindexter, R. Hoye, L. Nienhaus, R. C. Kurchin, et al. "High tolerance to iron contamination in lead halide perovskite solar cells." *ACS Nano* 11, 7101–7109 (2017)
- 2016 [05] R. Hoye, P. Schulz, L. T. Schelhas, A. M. Holder, K. H. Stone, J. D. Perkins, D. Vigil-Fowler, S. Siol, D. O. Scanlon, A. Zakutayev, A. Walsh, I. C. Smith, B. C. Melot, R. C. Kurchin, et al. "Perovskite-inspired photovoltaics: best practices in materials characterization and calculations." Chemistry of Materials 29, 1964–1988 (2016)
 - [04] D. B. Needleman, J. R. Poindexter, R. C. Kurchin, et al. "Economically sustainable scaling of photovoltaics to meet climate targets." *Energy & Environmental Science* 9, 2122–2129 (2016)
 - [03] A. Gufan, Y. Lehahn, E. Fredj, C. Price, R. C. Kurchin, et al. "Segmentation and tracking of marine cellular clouds observed by geostationary satellites." *International Journal of Remote* Sensing 37, 1055–1068 (2016)
- 2015 [02] R. Hoye, R. E. Brandt, A. Osherov, V. Stevanović, S. D. Stranks, M. Wilson, H. Kim, A. J. Akey, **R. C. Kurchin**, et al. "Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber." *Chemistry A European Journal* 22, 2605–2610 (2015)
 - [01] R. E. Brandt, R. C. Kurchin, R. Hoye, et al. "Investigation of bismuth triiodide (BiI₃) for photovoltaic applications." *The Journal of Physical Chemistry Letters* 6, 4297–4302 (2015)

TALKS

2020 Graph Convolutional Networks for Atomic Structures
Cambridge Machine Learning Discussion Group

Cambridge Machine Dearning Discussion Group

Marcus-Hush-Chidsey Kinetics at Solid Surfaces Battery Modeling Webinar Series

Accelerating Energy Materials Discovery with Computation

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Accelerating Energy Materials Discovery with Computation

University of Illinois Urbana-Champaign Electrical & Computer Engineering Department

2019 Bayesim Workshop

Helmholtz Institute for Renewable Energy Erlangen Nuremberg

2018 Semiconductor Parameter Extraction (and more!) with Bayesian Inference

MIT Society of Industrial and Applied Mathematics

Computational Screening for Defect-Tolerant Semiconductors

Gordon Research Seminar on Defects in Semiconductors

Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Blue Waters Research Symposium

- 2017 Toward Quantitative Metrics to Screen for Defect Tolerance in Novel Semiconducting Materials
 Materials Research Society Fall Meeting and Exhibit
- 2013 Cross-Sectional EBIC Characterization of III-V Semiconductors for Photovoltaic Applications
 Yale Physics Department
- 2012 Improving Active Layer Performance of Hybrid Photovoltaics by Nano Imprinting with Bulk Metallic Glass Yale Physics Department

POSTER PRESENTATIONS

2019 Measuring Real-World Quantities from Computer Simulation with Bayesian Inference

MIT de Florez Award Competition

Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian

Inference Methods
MIT CCE Symposium

2018 Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian

Inference Methods
MIT Materials Day

Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors

Gordon Research Seminar on Defects in Semiconductors

Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian

 $Inference\ Methods$

World Conference on Photovoltaic Energy Conversion

Design Principles for Defect-Tolerant Photovoltaic Absorbers

MIT de Florez Award Competition

2016 Quantitative Metrics for Defect Tolerance in Semiconductors

Materials Research Society Fall Meeting and Exhibit

Photovoltaics R&D: Thin Film Materials

MIT Energy Night

Bayes-Sun Inference: Next-Generation Photovoltaics through Advanced Probabilistic Modeling

MIT de Florez Award Competition

Statistical Inference of Materials Properties from Solar Cell Measurements

Beyond 2016: MIT's Frontiers of the Future Symposium

2015 Improving the Accuracy of Novel Materials Screening: Growing Defect-Tolerant Photovoltaic

Absorbers

MRS Fall Meeting and Exhibit

Solar Energy Technology & Innovation in Mexico

MIT Energy Initiative Solar Day

Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials

NREL HOPE workshop

2013 Raman Spectroscopy of Silicon Quntum Dots

Northeast Conference for Undergraduate Women in Physics

2012 Raman Spectroscopy of Silicon Quntum Dots

REMRSEC REU Poster Session

REVIEWING

2020 – present NPJ Computational Materials Springer Nature

2019 – present NeurIPS ML4PS Workshop

2019 - present Applied Energy Materials American Chemical Society

2017 - present Energy & Environmental Science Royal Society of Chemistry

SERVICE

2019 - 2020	Conference Organizer Pittsburgh Conference for Undergraduate Women in Physics
2018 - 2019	Member, Graduate Student Advisory Group for Engineering $\it MIT$ $\it School$ of $\it Engineering$
2018 - 2019	Co-President, Women of Materials Science MIT Department of Materials Science
Spring 2017	Graduate Student Mentor, Solar Spring Break MIT Energy Initiative
2016 - 2019	Student Representative, Energy Education Task Force MIT Energy Initiative
2016 - 2019	${\bf Graduate~Student~Representative,~Solar~Test~Bed~Steering~Committee~\it MIT~Office~of~Sustainability}$
2015	Conference Organizer Solar Energy Technology & Innovation in Mexico Workshop
2015 - 2017	Solar/Grid Community Co-Leader MIT Energy Club
January 2015	Graduate Student Panelist Northeast Conference for Undergraduate Women in Physics
March 2014	Science Demonstrator Cambridge Hands-On Science
2012 - 2013	Project Bright Co-Leader Yale University
2012	SPS Co-President Yale Society of Physics Students
2011 - 2012	Conference Organizer Northeast Conference for Undergraduate Women in Physics

COMPUTATIONAL SKILLS

Simulation	VASP, PC1D, SCAPS-1D
$Languages/\\ Environments$	Python (incl. numpy, scipy, pandas, matplotlib), Julia (incl. Differential Equations, Flux, and other SciML packages), Jupyter, MATLAB, Mathematica, \LaTeX , Unix
HPC	Have earned allocations on and used both Intel and Cray systems including Peregrine (NREL), NERSC (LBL), Blue Waters (UIUC), Supercloud (MIT)

OTHER SKILLS AND ACTIVITIES

2013 - 2014

2009 - 2012

Foreign Languages	
Spanish	Proficient
Hebrew	Intermediate
Music – Violinist	
2018 - 2019	MIT Musical Theater Guild
2014-2017	MIT Gilbert & Sullivan Players
2014 - 2016	MIT Chamber Music Society
2009 - 2013	Jonathan Edwards College Philharmonic, Pit orchestras for the Yale Dramat, Yale Gilbert & Sullivan Society, Opera Theatre of Yale College, and various independent theatrical productions
Athletics	
2019	Finisher, Pumpkinman Half Iron Triathlon
2018 - 2019	Treasurer, MIT Triathlon Team
2014, 2018	Finisher, Stockholm and Marine Corps Marathons

Rower, Churchill College Boat Club (1st women's VIII in May Bumps 2014) Member (2009 – 2012), Manager (2010 – 2011), Yale Bulldog Cycling Team