Часть I: Случайные графы

Исследование мощности характеристик графов при различии распределений

Постановка задачи

Провести исследование чувствительности различных характеристик случайных графов к отличию двух распределений:

- Гипотеза $H_0: X_i \sim N(0, \sigma_0)$.
- Гипотеза $H_1: X_i \sim t(\nu_1)$.

Рассматриваются два типа графов:

- КNN-граф: число компонент связности.
- DIST-граф: размер максимального независимого множества.

Проводятся два типа экспериментов:

- Перебор по параметрам графа (n, k, d).
- Перебор по параметрам распределений (σ_0, ν_1) .

Результаты и анализ

Анализ при изменении параметров графа (n, k, d)

• Рассмотрим тепловые карты, которые показывают значение параметра мощность, которое получилось определеить при выборе множества А.

• Для KNN-графа не удалось получить качественного разделения гипотез. При всех рассмотренных параметрах мощности оставались ниже 0.1.

• Для DIST-графа результаты были лучше: при n>100 и всех рассмотренных d мощность превышала 0.98. Получается, что в DIST-графе размер выборки влияет сильнее, чем параметр d, ведь для всех d удалось найти выборку подходящего размера с максимальной мощностью.

Анализ при изменении параметров распределений (σ_0, ν_1)

• Снова построим тепловые карты и сделаем выводы по ним Power Heatmap for KNN

• Для KNN-графа результаты остались слабыми — мощность едва превышала 0.1. Не получилось определить хоть какую-то зависимость. Тепловая карта выглядит максимально хаотичной.

- Для DIST-графа наблюдается сильная зависимость от σ_0 и ν_1 :
 - Чем меньше σ_0 и ν_1 , тем выше мощность.

- При $\sigma_0 = 0.2/0.5/0.7$ мощность всегда достигает 1.
- При $\sigma_0=2$ высокая мощность достигается только при $\nu_1=1.5.$
- Параметр σ_0 влияет сильнее, чем ν_1 .

Тепловая карта похожа на верхнетреугольную: чем ближе к левому верхнему углу, тем выше мощность.