Streckenanalyse und Reglerentwurf für die Aktive Dämpfung einer Ladefläche

EINLEITUNG

ZIELE DES PROJEKTS

Modellieren des Systems in Simulink

$$m \cdot \ddot{x} = F_S + K \cdot x - \mu \cdot \dot{x} - m \cdot g$$

$$\ddot{x} = \frac{F_S + K \cdot x - \mu \cdot \dot{x} - m \cdot g + F_{FederRuhe}}{m}$$

Sprungantwort

$$K = \frac{Endwert\ der\ Sprungantwort}{Eingangssprung}$$

$$d = \frac{\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)}{\sqrt{4 \cdot \pi^2 + \ln^2\left(\frac{\Delta h_1}{\Delta h_2}\right)}}$$

Abtastrate

$$f_s = \frac{\omega_0}{2\pi} \cdot 20 = 20,75 \,\mathrm{Hz}$$

$$f_s = 10 \,\mathrm{kHz}$$

Anti-Aliasing Filter

$$f_{max} < \frac{f_S}{2}$$

$$f_G = \frac{f_S}{4} = 2.5 \,\text{kHz}$$

Stabilitätsrandverfahren

$$K_{p,Krit} = 6,668 \cdot 10^6$$

	K_p	K_i	K_d
PID	$0.6 \cdot K_{pKrit}$	$K_p/(0.5 \cdot T_U)$	$K_p \cdot 0.12 \cdot T_U$

Regelverhalten nach Ziegler-Nichols

D-Anteil * 10

Limitierung der Stellgröße

$$F_{s,max} = F_a = m \cdot a_{max} = 2300 \,\mathrm{kg} \cdot 5 \,\frac{\mathrm{m}}{\mathrm{s}^2} = 11.5 \,\mathrm{kN}$$

$$x_{max} = \frac{F_{s,max}}{K_{Feder}} = \frac{11,5 \text{ kN}}{98,1 \frac{\text{kN}}{\text{m}}} = 0,12 \text{ m}$$

Trennen der Kräfte

Beobachtungen und andere Effekte

• Maximieren der Abtastrate!!

Schlussfolgerungen

- Gut gelungen
- Genaues definieren des Ziels

Aufbauen des Modells als Differentialgleichung

Presented to you by

Dustin Walker