#### Aim

To recover accidentally or intentionally deleted files from a storage device or disk image using forensic tools such as **Autopsy**, **FTK Imager** and verify the integrity of recovered data.

## Algorithm / Steps

# 1. Prepare the Evidence Source

- Acquire a forensic image of the target disk/USB drive (using FTK Imager or dd).
- Alternatively, mount the storage device in read-only mode.

#### 2. Open Forensic Tool

• Launch Autopsy / FTK Imager .

#### 3. Load Data Source

• Select Add Data Source → Provide the acquired image file or physical drive.

#### 4. Scan for Deleted Files

- Enable file system analysis and data recovery modules.
- Locate "Unallocated Space" or "Deleted Files" sections.

#### 5. Recover Files

- Select identified deleted files.
- Export/recover them to a safe forensic folder.

### 6. Verify Recovered Data

 Compare file hashes (MD5/SHA1) before and after recovery to ensure integrity.

### 7. Generate Report

• Document the recovered files, metadata (file name, size, location), and verification details.

### **Step-by-Step Procedure**

# A. With FTK Imager

- 1. Run FTK Imager (as Administrator).
- 2. File → Create Disk Image.
- 3. Select **Physical Drive**  $\rightarrow$  choose the USB stick.
- 4. Format: choose **E01** (preferred forensic format).
- 5. Destination: save in a folder like C:\Case\01\_Images\.
- 6. Tick Verify images after creation.
- 7. FTK will output MD5 & SHA1  $\rightarrow$  copy/save these hash values.















### **B.Open Evidence in Autopsy**

- 1. Launch Autopsy.
- 2. Create New Case:
  - o Case Name: USB Deleted File Recovery.
  - Base Directory: C:\Case\02\_Working\.

- 3. Add Data Source → Disk Image / VM File.
  - o Browse to your .E01 or .dd image file from step 2.
  - o Select **Time Zone**.
- 4. **Configure Ingest Modules** → tick:
  - File Type Identification
  - Deleted Files / Carved Files
  - o (Optional) Keyword Search, Hash Lookup
- 5. Start ingest  $\rightarrow$  wait for Autopsy to process.



# **EXP NO:3** Recover Deleted Files using Forensics Tools Madhan kumar b 231901028



# **C.Locate & Recover Deleted Files**

- 1. Left panel → Views → Deleted Files.
- 2. Browse recovered entries (e.g., confidential.docx, image1.jpg).
- 3. Right-click file → Extract File(s).
- 4. Save to: C:\Case\03\_Recovered\_Files\.

# **EXP NO:3** Recover Deleted Files using Forensics Tools Madhan kumar b 231901028



#### D. Verify Integrity with Hashes

- 1. Open Command Prompt in C:\Case\03 Recovered Files\.
- 2. Run:
- 3. certutil -hashfile confidential.docx MD5
- 4. certutil -hashfile confidential.docx SHA1

Save results into a text file in C:\Case\04\_Hashes\.

5. Repeat for all recovered files.

```
E:\CASE\03_recovered files>certutil -hashfile _est.png SHA1
SHA1 hash of _est.png:
bc853316e2ef76d5361d48a9bbf9b0eec2b82629
CertUtil: -hashfile command completed successfully.
E:\CASE\03_recovered files>certutil -hashfile _est.png MD5
MD5 hash of _est.png:
b5d60c2a399fbde54bb235410123494e
CertUtil: -hashfile command completed successfully.
E:\CASE\03_recovered files>certutil -hashfile _otes.txt MD5
MD5 hash of _otes.txt:
2a2c01936cd5959d11bc7d8c8727b9d7
CertUtil: -hashfile command completed successfully.
E:\CASE\03_recovered files>certutil -hashfile _otes.txt SHA1
SHA1 hash of _otes.txt:
a091448a6d996187bac217b4e6ab29fe925acf6d
CertUtil: -hashfile command completed successfully.
```



#### **CONCLUSION:**

The deleted-files recovery was completed successfully from a verified forensic image (E01) using Autopsy/FTK Imager. Recovered files were exported to 03\_Recovered\_Files/ and

# **EXP NO:3** Recover Deleted Files using Forensics Tools Madhan kumar b 231901028

MD5/SHA1 hashes recorded in 04\_Hashes/ to preserve integrity. No changes were made to the original media; some files may be partially unrecoverable if overwritten prior to imaging.