Math 137 Notes

Thomas Liu

December 31, 2022

Contents

1	Sequence and Convergence				
	1.1	Absolute Value and Distance	3		
	1.2	Sequence	4		
	1.3	Monotone Convergence Theorem	7		
2	Limits and Continuity				
	2.1	Limits of Functions	8		
	2.2	Infinite limits			
	2.3	Continuity	2		
3	Deri	vatives 1	4		
	3.1	Extreme Value Theorem	4		
	3.2	Instantaneous Velocity	5		
	3.3	Differentiability vs. Continuity	6		
	3.4	Higher Derivatives and some Basic Derivatives	6		
	3.5	More derivatives and differentiation Rules	7		
	3.6	More derivatives and the chain rule	8		
	3.7	Linear Approximation	8		
	3.8	Newton's Method	9		
	3.9	Algorithm (Newton-RHapson Method for approximating root) 19	9		
	3.10	Inverse Functions and their derivatives	0		
	3.11	Implicit Differentiation	0		
		Extreme Value			

4	The	e Mean Value Theorem	21
	4.1	Functions of bounded derivative	23
	4.2	L'Hôpital's Rule	23
	4.3	The Second Derivatives	23
	4.4	Curve Sketching	24
5	Tay	lor Polynomials and Taylor's Theorem	25

1 Sequence and Convergence

1.1 Absolute Value and Distance

Definition 1

For a real number x, the absolute value of x, denoted |x| is defined by

$$|x| = \begin{cases} x \text{ if } x \ge 0\\ -x \text{ if } x < 0 \end{cases}$$

Proposition 2

For all real number x, |x| = |-x|

Proposition 3

For all real nubers u and v, the distance from u and v is |u-v|

Theorem 5 (Triangle Inequality I)

For all real numbers, $x \ y$ and $z, |x - z| \le |x - y| + |y - z|$

Theorem 7 (Triangle Inequality II)

For all real numbers a and b, $|a+b| \leq |a| + |b|$

Definition 9

The symbol \cup means "union" and roughly correspond to "or" The symbol \cap means "intersect" and roughly represent "and"

Fact 11

If
$$a < b$$
, then $a \le b$
 $a < b$, $c > 0$, $ac < bc$
 $a < b$, $c < 0$, $ac > bc$
 $a < a < b$, then $0 < \frac{1}{b} < \frac{1}{a}$
 $|ac| = |a||c|$, $|ac + bc| = |c||a + b|$

1.2 Sequence

Definition 13

An infinite sequence is an infinite ordered list of numbers

Notation

```
\{a_n\}_{n=1}^{\infty} the term indexing starts at 1 \{a_n\}_{n=5}^{\infty} a_n = ln(n-4) \{a_n\} the starting point either doesn't matter or is clear from context \{a_1, a_2, a_3, a_4, \cdots\} \iff (a_1, a_2, a_3, a_4, \cdots)
```

Definition 16

Let $A = (a_1, a_2, a_3, a_4, \cdots)$ be a sequence

- 1. If n_1, n_2, n_3, \cdots is a sequence of positive integers, then $a_{n_1}, a_{n_2}, a_{n_3}, \cdots$ is a subsequence of $A, (n_1 < n_2 < n_3 < \cdots)$
- 2. A tail of A is a subsequence of the form $a_k, a_{k+1}, a_{k+2}, \cdots$

Definition 18

The sequence $A = (a_1, a_2, a_3, a_4, \cdots)$ converges to L if for any error (positive number), there is a tail of the sequence, each term of which within that error of L

Definition 19

Let $A = \{a_n\}$ be s sequence. We say taht A converges to L and write $\lim_{n \to \infty} a_n = L$ of for every number $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|a_n - L| = \epsilon$, $a_n \in (L - \epsilon, L + \epsilon)$

Proposition 20

The harmonic sequence converges, eg: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots$

Proposition 21

The sequence $(-1, 1, -1, 1, \cdots)$ does not converge $a_n = (-1)^n$

Example 22

Show that $\{a_n\}$ with $a_n = \frac{n+1}{2n+3}$ converges and finds the limit

Guess
$$L = \frac{1}{2}$$
, want $|a_n - \frac{1}{2}| < \epsilon$

Guess
$$L = \frac{1}{2}$$
, want $|a_n - \frac{1}{2}| < \epsilon$
 $|a_n - \frac{1}{2}| = |\frac{n+1}{2n+3} - \frac{1}{2}| = |\frac{-1}{4n+6}| = \frac{1}{4n+6} < \frac{1}{4n}$
 $|a_n - \frac{1}{2}| < \frac{1}{4n} < \epsilon$, choose N such that $\frac{1}{4N} < \epsilon \iff \frac{1}{4\epsilon} < N$
 $n \ge N, \frac{1}{4n} \le \frac{1}{4N}$

Proof:

Froon: Let
$$\epsilon > 0$$
 be arbitrary and set $N = \lceil \frac{1}{4\epsilon} \rceil + 1$ so that $N > \frac{1}{4\epsilon}$ which implies $\frac{1}{4N} < \epsilon$ For any $n \geq N$, $\frac{1}{4n} \leq \frac{1}{4N}$ $|a_n - \frac{1}{2}| = |\frac{n+1}{2n+3} - \frac{1}{2}| = \frac{1}{4n+6} < \frac{1}{4n} \leq \frac{1}{4N} < \epsilon$ so $\lim_{n \to \infty} \frac{n+1}{2n+3} = \frac{1}{2}$

Theorem 23

A sequence has at most one limit

Definition 24

A sequence is said to diverge if it does not converge

Definition 25

Let $\{a_n\}$ be a sequence. We say that $\{a_n\}$ diverges to infinity and write $\lim a_n = \infty$ if for every real number M > 0, there exists $N \in \mathbb{N}$ such that if $n \geq N$, $a_n > M$

* $\lim_{n\to\infty} a_n = \infty$ DOES NOT mean the sequence "converge to ∞ "

Theorem 27 (Arithmetic of limits)

Let $\{a_n\}$ and $\{b_n\}$ be sequence with limits L and M respectively

- 1. For any $c \in \mathbb{R}$, if $a_n = c$ for all n, L = c
- 2. For any $c \in \mathbb{R}$, $\lim_{n \to \infty} c \ a_n = cL$
- $3. \lim_{n \to \infty} a_n + b_n = L + M$

$$4. \lim_{n \to \infty} a_n b_n = LM$$

5.
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{M}, M \neq 0$$

6. If
$$a_n > 0$$
 for all n and $a > 0$, $\lim_{n \to \infty} a_n^x = L^x$

7. For any
$$k \in \mathbb{N}$$
, $\lim_{n \to \infty} a_{n+k} = L$

8. If
$$a > 0$$
, then $\lim_{n \to \infty} n^a = \infty$

9. If
$$a < 0$$
, then $\lim_{n \to \infty} n^a = 0$

Theorem 30

Suppose $\lim_{n\to\infty} b_n = 0$ and $b_n \neq 0$ for all n. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists, then $\lim_{n\to\infty} a_n = 0$

Fact

If $a_n \geq 0$ for all n and $\lim_{n \to \infty} a_n = L$, then $L \geq 0$

Theorem 33 (Squeeze theorem for sequence)

Suppose $\{a_n\}$, $\{b_n\}$, and $\{c_n\}$ are sequences with $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, and $a_n \leq b_n \leq c_n$ for all but finite n, then $\lim_{n\to\infty} b_n = L$

Definition 37

We say $\{a_n\}$ is

- 1. increasing if $a_n < a_{n+1}$ for all n
- 2. non-decreasing if $a_n \leq a_{n+1}$ for all n
- 3. decreasing if $a_n > a_{n+1}$ for all n
- 4. non-increasing if $a_n \ge a_{n+1}$ for all n
- 5. monotonic if either non-increasing or non-decreasing

1.3 Monotone Convergence Theorem

Definition 38

Let $S \subseteq \mathbb{R}$, S is

- 1. bounded above if $\exists \alpha \in \mathbb{R}$ such that $\forall a \in S, a \leq \alpha$, called "upper bound"
- 2. bounded below if $\exists \beta \in \mathbb{R}$ such that $\forall a \in S, a \geq \beta$, called "lower bound"

We say S is bounded if S is bounded above AND bounded below

Fact

Any finite subset of \mathbb{R} is bounded

Definition 39

Let $S \subseteq \mathbb{R}$ then α is a lowest upper bound if:

- 1. α is a upper bound
- 2. $\alpha \leq k$ for every $k \in \mathbb{R}$ that is also an upper bound

Definition 40

Greatest Lower Bound (GLB) is called the inf(S) (unique) Lowest Upper Bound (LUB) is called the sup(S) (unique)

Definition 41

Let $\{a_n\}_{n=0}^{\infty}$ be a non-decreasing sequence in \mathbb{R} , then

- 1. if $\{a_n\}_{n=0}^{\infty}$ is bounded above, then $\lim_{n\to\infty} a_n = \sup(A)$
- 2. if $\{a_n\}_{n=0}^{\infty}$ is not bounded above, then $\lim_{n\to\infty} a_n = \infty$

2 Limits and Continuity

2.1 Limits of Functions

Definition 48

Let f(x) be a function and a be a real number. We say that the limits as x approaches a of f(x) is L and write $\lim_{x\to a} f(x) = L$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - L| < \epsilon$

Fact

The value and existence of $\lim_{x\to a} f(x)$ has nothing to do with f(a). In fact, f(a) need not exist to talk about $\lim_{x\to a} f(x)$

Example

Prove
$$\lim_{x\to 3} 3x + 1 = 10$$

 $|3x + 1 - 10| < \epsilon$
 $|3x - 9| < \epsilon$
 $3|x - 3| < \epsilon$
 $|x - 3| < \frac{\epsilon}{3}$
 $0 < |x - 3| < \delta$
So $\delta = \frac{\epsilon}{3}$
Proof:

Let $\epsilon > 0$ be arbitrary and choose $\delta = \frac{\epsilon}{3}$. Suppose $0 < |x-3| < \delta$. Then $|3x+1-10| = |3x-9| = 3|x-3| < 3\delta = \epsilon$ $\therefore \lim_{x\to 3} 3x+1=10$

Theorem 53

Suppose f(x) is defined on some open interval containing a, but possibly not at a. The following are equivalent:

$$1. \lim_{x \to a} f(x) = L$$

2. For any sequence $\{a_n\}_{n=1}^{\infty}$ with $\lim_{n\to\infty} x_n = a$ and $x_n = a$ for all n, $\lim_{n\to\infty} f(x_n) = L$

Sequential Characterization of Limits

Useful for showing that limits do not exist if you can construct $\{x_n\}$ and $\{y_n\}$ so that $x_n \neq a$ and $y_n \neq a$ for all n, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$, but $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$, then $\lim_{x \to a} f(x)$ DNE

Theorem 57

Let f(x) be a function and $a \in \mathbb{R}$. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$, then L = M

Theorem 58 (arithmetic of limits)

Let f(x) and g(x) be functions and $a \in \mathbb{R}$. Assume $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$

- 1. If f(x) = c for all $x \in \mathbb{R}$, then c = L $(\lim_{x \to a} c = c)$
- 2. For any $c \in \mathbb{R}$, $\lim_{x \to a} cf(x) = cL$
- 3. $\lim_{x \to a} (f(x) + g(x)) = L + M$
- 4. $\lim_{x \to a} f(x)g(x) = LM$
- 5. If $M \neq 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$
- 6. If L > 0, then $\lim_{x \to a} (f(x))^{\alpha} = L^{\alpha}$

Theorem 59

Suppose $\lim_{x\to a} g(x) = 0$ and $\lim_{x\to a} \frac{f(x)}{g(x)}$ exists, then $\lim_{x\to a} f(x) = 0$

Theorem 60

If p(x) is a polynomial then $\lim_{x\to a} p(x) = p(a)$

Theorem 61

If p(x) and q(x) are polynomials with $q(a) \neq 0$, then $\lim_{x \to a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)}$

Definition 63

Let f(x) be a function and $a \in \mathbb{R}$. We say that the limit as x approaches a from the left of f(x) equals L and write $\lim_{x \to a^-} f(x) = L$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < a - x < \delta$ then $|f(x) - L| < \epsilon$. The "limit" from the right, denoted $\lim_{x \to a^+} f(x) = L$ is defined similarly

Fact

The arithmetic rule for limits apply to one sided limit

Theorem 67 (The sequeeze theorem for functions)

Let f(x), g(x), and h(x) be functions, $a \in \mathbb{R}$, and I be an open interval containing a. Suppose f, g and h are defined on I except possibly at a. Further suppose the following:

- 1. $f(x) \le g(x) \le h(x)$ for all $x \in I$ (except possibly a)
- 2. $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \in \mathbb{R}$

Then $\lim_{x\to a} g(x) = L$ as well

This holds for one-sided limits as well

Theorem 69

The fundamental trig limit

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

2.2Infinite limits

Definition 71

Let f(x) be a function and $L \in \mathbb{R}$. We say that the limit as x approaches ∞ of f(x) equals L and write $\lim_{x \to \infty} f(x) = L$ if for every $\epsilon > 0$, there exists $N \in \mathbb{R}$ such that x > N implies $|f(x) - L| < \epsilon$ Similarly, we can define $\lim_{x \to -\infty} f(x) = L$

Definition 72

Let f(x) be a function and $L \in \mathbb{R}$. We say that the line with equation y = Lis a horizontal asymptote of f(x) if $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$

Definition 74

Let f(x) be a function. We say that f(x) approaches infinity as x approaches ∞ if for every $M \in \mathbb{R}$ there exists $N \in \mathbb{R}$ such that if x > N then f(x) > M. We write $\lim_{x\to\infty} f(x) = \infty$ Similarly for $\lim_{x\to\infty} f(x) = -\infty$, $\lim_{x\to-\infty} f(x) = \infty$, $\lim_{x\to-\infty} f(x) = -\infty$

Similarly for
$$\lim_{x \to \infty} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -\infty$

Fact

- 1. $\lim_{x\to\infty} x^{\alpha} = \infty$ if $\alpha > 0$ and equals 0 if $\alpha < 0$
- 2. Suppose p(x) and q(x) are polynomials of degree m and n respectively
 - if n > m, then $\lim_{x \to \infty} \frac{p(x)}{q(x)} = \lim_{x \to -\infty} \frac{p(x)}{q(x)} = 0$
 - if m < n, then $\lim_{x \to \infty} \frac{p(x)}{q(x)} = \pm \infty$, $\lim_{x \to -\infty} \frac{p(x)}{q(x)} = \pm \infty$

To determine the sign, you need to consider the signs of the leading coefficients

• if m = n, then $\lim_{x \to \infty} \frac{p(x)}{g(x)}$ and $\lim_{x \to -\infty} \frac{p(x)}{g(x)}$ are both equal to the ratio of the leading coefficients

Theorem 78 Fundamental log limit

$$\lim_{x \to \infty} \frac{\ln x}{x} = 0, \ln x < x$$

Fact

1.
$$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0$$
 for all $p > 0$

2.
$$\lim_{x \to \infty} \frac{\ln x^p}{x} = 0$$
 for all $p \in \mathbb{R}$

Definition 82

Let f(x) be a function and $a \in \mathbb{R}$

- 1. We say that f approaches infinity as x approaches a from the right and write $\lim_{x\to a^+} f(x) = \infty$ if for every M>0, there exists $\epsilon>0$ such that if $0 < x-a < \epsilon$, then f(x) > M
- 2. We can similarly define $\lim_{x\to a^-}f(x)=\infty, \lim_{x\to a^+}f(x)=-\infty, \lim_{x\to a^-}f(x)=-\infty$
- 3. We say that $\lim_{x\to a} f(x) = \infty$ if both $\lim_{x\to a^+} f(x) = \infty$ and $\lim_{x\to a^-} f(x) = \infty$
- 4. Similarly, we define $\lim_{x\to a} f(x) = -\infty$

Definition 83

We say that f(x) has a vertical asymptote at x = a if any of $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a^+} f(x) = \pm \infty$, and $\lim_{x \to a^-} f(x) = \pm \infty$ are true

2.3 Continuity

Definition 87

Let f(x) be a function and $a \in \mathbb{R}$ such that f(a) is defined We say that f is continuous at x = a if

- 1. $\lim_{x\to a} f(x)$ exists
- $2. \lim_{x \to a} f(x) = f(a)$

Definition 88

Let f(x) be a function and $a \in \mathbb{R}$ such that f(a) is defined. We say that f(x) is continuous at x = a if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$

Theorem 89 (Sequential Characterization of Continuity)

Let f(x) be a function and $a \in \mathbb{R}$. f(x) is continuous at x = a if and only if for every sequence $\{x_n\}$ with $\lim_{n \to \infty} x_n = a$, we have $\lim_{n \to \infty} f(x_n) = f(a)$

Theorem 90

Suppose f(x) and g(x) are continuous at x = a

- 1. f(x) + g(x) is continuous at x = a
- 2. f(x)g(x) is continuous at x = a
- 3. If $g(x) \neq 0$, then $\frac{f(x)}{g(x)}$ is continuous at x = a

Theorem 91

The following are continuous at x = a for all a in the domain

- 1. polynomial
- 2. rational function
- 3. $\sin x$ and $\cos x$
- 4. e^x and $\ln x$

Fact

$$f(x)$$
 is continuous at $x = a$ iff $\lim_{h \to 0} f(a+h) = f(a)$

Theorem 93

Suppose g(x) is the inverse of f(x) and that f is continuous at x = a. Then g(x) is continuous at x = f(a)

Theorem 94

If f(x) is continuous at x = a and g(x) is continuous at x = f(a), then g(f(x)) is continuous at x = a

Definition 95

We say that f is continuous on the open interval I if f is continuous at x = a for every $a \in I$. If $I \in \mathbb{R}$, we might sometimes say "f is continuous"

Definition 97

We say that f(x) is continuous on [a, b] if

- 1. f(x) is continuous on (a, b)
- 2. $\lim_{x \to a^+} f(x) = f(a)$
- 3. $\lim_{x \to b^{-}} f(x) = f(b)$

Theorem 99 (The Intermediate Value Theorem)

Suppose f(x) is a function that is continuous on a closed interval [a, b]. If there is $\alpha \in \mathbb{R}$ such that $f(a) < \alpha < f(b)$ or $f(b) < \alpha < f(a)$, then there exists $c \in (a, b)$ such that $f(c) = \alpha$

3 Derivatives

3.1 Extreme Value Theorem

Definition 103

Suppose f(x) is a function that is defined on an interval I

- 1. We say that f(x) has a global max on I at $c \in I$ if $f(x) \leq f(c)$ for all $x \in I$
- 2. We say that f(x) has a global min on I at $c \in I$ if $f(x) \geq f(c)$ for all $x \in I$
- 3. We say that f(x) has a global extremum on I at $c \in I$ if f has a global max or min at c

Theorem 104 (Extreme Value Theorem)

Let f(x) be function that is continuous on the closed interval [a, b]. Then f has a global min and a global max on [a, b]. In symbols, there exists $c_1, c_2 \in [a, b]$ such that $f(c_1) \leq f(x) \leq f(c_2)$ for all $x \in [a, b]$

3.2 Instantaneous Velocity

Imagine some object has position f(t) at time t

We can compute the average velocity from time t_1 to time t_2 , as $\frac{f(t_2) - f(t_1)}{t_2 - t_1}$

Definition 110

Let f(x) be a function and $a \in \mathbb{R}$. We say f(x) is differentiable at x=a if $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ exists. If it exists, we denote f'(x) and call it the derivatives of f at a

Theorem 111

f(x) is differentiable at x=a iff $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$ exists. If it does exist, then the limit equals f'(a)

Definition 113

Suppose f(x) is differentiable at x = a. We define the tangent line to the (graph of) f(x) at (a, f(a)) to be the line with equation y = f'(a)(x - a) + f(a). This is precisely the line through (a, f(a)) with slope f'(a)

3.3 Differentiability vs. Continuity

Theorem 116

If f(x) is differentiable at x = a then it is continuous at x = a

Definition 117

Let f(x) be a function defined on an open interval I. We say that f(x) is differentiable on I if it is differentiable at x = a for each $a \in I$. In this case, we define a function f'(x) called derivative of f(x) by $f'(a) = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h}$

3.4 Higher Derivatives and some Basic Derivatives

Definition 118

If f(x) is differentiable at x = a for $a \in \mathbb{R}$, we say that f is differentiable

Leibniz Notation

Sometimes we denote f'(x) by $\frac{d}{dx}f(x)$ or $\frac{df}{dx}$

Definition 119

Let f(x) be a function that is differentiable on an open interval I

- 1. If f'(x) is differentiable on I, then its derivative is called the second derivative of f(x) on I. It is denoted $f''(x), f'(2)(x), \frac{d}{dx}f(x), \frac{d^2f}{d^2x}$
- 2. Inductively, if the (n-1) derivative of f(x) is differentiable on I, the n derivative of f(x) is the derivative of the (n-1) derivative, $\frac{d}{dx}f^{(n-1)}(x) = f^{(n)}(x)$

Some common derivatives

1. Let $c \in \mathbb{R}$ and f(x) = c be a constant function. f'(x) is the constant 0 function

- 2. Let $m, b \in \mathbb{R}$ with $m \neq 0$ and set f(x) = mx + b. f'(x) of a non-vertical line is always its slope
- 3. Power rule: $\frac{d}{dx}x^n = nx^{n-1}$
- 4. Let $f(x) = \sin x$, then $f'(x) = \cos x$

3.5 More derivatives and differentiation Rules

Fact

- 1. With $f(x) = \cos x$, $f'(x) = -\sin x$
- 2. If a > 0, $\frac{d}{dx}a^x = \ln(a)a^x$. In particular, if a = e, $\ln e = 1$, so $\frac{d}{dx}e^x = e^x$

Fact

- f(x) is differentiable at x=0, and hence differentiable everywhere
- The derivative is a scalar multiple of f(x) and that scale is f'(0) which happens to be $\ln a$

Theorem 128 (Differentiation Rule)

Suppose f(x) and g(x) are differentiable at x = a

- 1. Let w(x) = cf(x) for some $c \in \mathbb{R}$. Then w(x) is differentiable at x = a and w'(a) = cf'(a)
- 2. Let w(x) = f(x) + g(x). Then w is differentiable at x = a and w'(a) = f'(a) + g'(a)
- 3. Product Rule: Let w(x) = f(x)g(x). Then w is differentiable at x = a and w'(a) = f'(a)g(a) + f(a)g'(a)
- 4. Let $w(x) = \frac{1}{f(x)}$. Then if $f(a) \neq 0$, then w is differentiable at x = a and $w'(a) = \frac{-f'(a)}{(f(a))^2}$

5. Quotient Rule: Let $w(x) = \frac{f(x)}{g(x)}$. Then if $g(a) \neq 0$, w is differentiable at x = a and $w'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$

3.6 More derivatives and the chain rule

Using the power rule when $n \in \mathbb{R}$

Fact

- 1. Polynomials and rational functions are differentiable on their domains. In particular, if $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$, then $p'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \cdots + 2a_2 + a_1$
- 2. $\tan x$ is differentiable on its domain, which is all $x \in \mathbb{R}$ except $\{\frac{\pi}{2} + 2\pi k : k \in \mathbb{Z}\}$. $\frac{d}{dx} \tan x = \sec^2 x$
- 3. $\sec x$ is differentiable on its domain, which is the same as $\tan x$. $\frac{d}{dx} \sec x = \sec x \cdot \tan x$

Chain Rule

Suppose f(x) is differentiable at x = a and g(x) is differentiable at x = f(a). Then the composition $g \circ f$ is differentiable at x = a with $[g \circ f]'(a) = g'(f(a))f'(a)$

Logarithmic Differentiation

Let $g(x) = \ln(f(x))$ where f(x) is some positive function. Then $g'(x) = \frac{f'(x)}{f(x)}$

3.7 Linear Approximation

$$\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=f'(a) \text{ where } |x-a| \text{ is small } \frac{f(x)-f(a)}{x-a}\approx f'(a)\Rightarrow f(x)-f(a) \approx f'(a)(x-a) \text{ if } |x-a| \text{ is small, then } f(x)\approx f'(a)(x-a)+f(a)$$

Definition 137

Let f(x) be differentiable at x = a. The linear approximation or linearization of f(x) at x = a is the line with equation $L_a^f(x) = f'(a)(x - a) + f(a)$

- a tangent line
- superscript f will often be omitted

Definition 140

Let f(x) be a function that is differentiable at x = a and $L_a(x)$ be its linearization at x = a. The error in approximating f(x) be $L_a(x)$ at x is $|f(x) - L_a(x)|$

Theorem 141 (Error in linear approximation)

Suppose f(x) is twice differentiable on some interval I, $a \in I$, and $L_a(x)$ is the linearization of f at x = a. If M is a constant such that $|f''(x)| \leq M$ for all $x \in I$, then $|f(x) - L_a(x)| \leq \frac{M}{a}(x-a)^2$

3.8 Newton's Method

Need a formula for the root of $L_a(x)$

$$0 = f'(a)(x - a) + f(a)$$
$$-f(a) = f'(a)(x - a)$$
$$x = a - \frac{f(a)}{f'(a)}$$

3.9 Algorithm (Newton-RHapson Method for approximating root)

Given f(x) differentiable on an interval I and have a root on I

- 1. choose x_0 in I as an initial estimate
- 2. recursively compute for $n \geq 0$

a new estimate $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

3.10 Inverse Functions and their derivatives

Theorem 146 (Inverse function theorem)

Suppose f(x) is continuous and inversible on [c,d] (this is the domain). Let g(x) be its inverse and suppose $a \in [c,d]$ is such that f is differentiable at x = a. Then g(x) is differentiable at b = f(a) and $g'(b) = \frac{1}{f'(a)}$. Moreover, $(L_a^f(x))^{-1} = L_b^g(x)$

3.11 Implicit Differentiation

Example 153

Find the slope of tangent to curve with equation $x^2 + y^3 + 2xy + x + y = 0$ at (0,0)

Differentiate both side: y = y(x)

$$2x + 3y^{2}y' + 2y + 2xy' + 1 + y' = 0$$

$$y'(3y^{2} + 2x + 1) = -2x - 2y - 1$$

$$y' = \frac{-2x - 2y - 1}{3y^{2} + 2x + 1}$$

$$x = y = 0$$

$$y' = -1$$

3.12 Extreme Value

Theorem 155

Suppose f(x) is a positive differentiable function. Then $\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}$ (logarithmic differentiation)

Definition 157

Suppose f(x) is a function with domain D. We say that f has a local min/max at a = c if there exists an open interval (a, b) such that $c \in a, b \subseteq D$ satisfying $f(x) \geq f(c)$ or $f(x) \leq f(c)$ for all $x \in (a, b)$. If f has a local min/max at x = c, then we say it has a local extrema at x = c

Fact

Suppose f(x) is defined on [a, b] and has a globa max at c with $c \in (a, b)$. Then f has a local max at x = c. Similar for global/local min

Theorem 159

Suppose f(x) is a function with local extrema at x = c. If f'(c) exists, then f'(c) = 0

Definition 162

Let f(x) be a function. We say that a point c in the domain of f is a critical point if f'(c) = 0 or f'(c) DNE

Fact

Suppose f(x) is a function that is continuous on [a, b]. If f(x) has an extreme value at x = c, then c = a, c = b or c is a critical point

4 The Mean Value Theorem

Theorem 166 (Rolle's Theorem)

Suppose f(x) is continuous on [a, b], differentiable on (a, b) and f(a) = f(b) = 0. Then there is $c \in (a, b)$ such that f'(c) = 0

Theorem 167 (Mean Value Theorem)

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). Then there is $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Theorem 168 (Constant Function Theorem)

Suppose f(x) is differentiable on an open interval I and that f'(x) = 0 for all $x \in I$. Then f is a constant on I

Definition 170

Suppose f(x) and F(x) are defined on interval I. We say that F(x) is an anti-derivatives of f(x) on I if F'(x) = f(x) for all $x \in I$

Theorem 171 (The Anti-Derivative Theorem)

Suppose f'(x) = g'(x) for all $x \in I$ where I is open interval. Then there exists $c \in \mathbb{R}$ such that f(x) = g'(x) + c for all $x \in I$

Definition 172

Suppose f(x) is defined on an interval I

- 1. if $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in I$, we say f(x) is increasing on I
- 2. if $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ for all $x_1, x_2 \in I$, we say f(x) is non-decreasing on I
- 3. if $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ for all $x_1, x_2 \in I$, we say f(x) is decreasing on I
- 4. if $x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ for all $x_1, x_2 \in I$, we say f(x) is non-increasing on I

Theorem 173

Suppose f(x) is differentiable on an open interval I

- 1. if f'(x) > 0 for all $x \in I$, then f is increasing on I
- 2. if $f'(x) \geq 0$ for all $x \in I$, then f is non-decreasing on I
- 3. if f'(x) < 0 for all $x \in I$, then f is decreasing on I
- 4. if $f'(x) \leq 0$ for all $x \in I$, then f is non-increasing on I

4.1 Functions of bounded derivative

Theorem 175 (Bounded Derivative Theorem)

Suppose f(x) is continuous on [a, b] and differentiable on (a, b). Also suppose there are $m, M \in \mathbb{R}$ such that $m \leq f'(x) \leq M$ for all $x \in (a, b)$. Then, $f(a) + m(x - a) \leq f(x) \leq f(a) + M(x - a)$ for all $x \in (a, b)$

Theorem 177

Suppose f and g are continuous at x = a and f(a) = g(a)

- 1. If f and g are differentiable on (a, ∞) and $f'(x) \leq g'(x)$ for all $x \in (a, \infty)$, then $f(x) \leq g(x)$ for all $x \in (a, \infty)$
- 2. If f and g are differentiable on $(-\infty, a)$ and $f'(x) \leq g'(x)$ for all $x \in (-\infty, a)$, then $f(x) \geq g(x)$ for all $x \in (-\infty, a)$

4.2 L'Hôpital's Rule

Theorem 179 (L'Hôpital's Rule)

Suppose f(x) and g(x) differentiable in some open interval containing a and that $g'(x) \neq 0$ for all x in the interval, with possible exception of x = a. If $\lim_{x \to a} \frac{f(x)}{g(x)}$ is indeterminate of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists or equal $\pm \infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. This works when $a = \infty$, for one-sided limits

4.3 The Second Derivatives

Definition 185

Suppose f(x) is defined on some interval I. We say that

- 1. f is concave up on I if for any $a, b \in I$, the line segement connecting a, f(a) to (b, f(b)) lies above the graph of f on (a, b)
- 2. f is concave down on I if for any $a, b \in I$, the line segement connecting a, f(a) to (b, f(b)) lies below the graph of f on (a, b)

Theorem 187 (Second Derivative Test for Concavity)

Suppose f(x) is twice differentiable on an open interval I

- 1. if f''(x) < 0 for all $x \in I$, then f is concave down on I
- 2. if f''(x) > 0 for all $x \in I$, then f is concave up on I

Definition 190

Suppose f(x) is continuous on x = c. The point (c, f(c)) is called inflection point for f if the concavity of f change at x = c

Theorem 191

If f''(x) is continuous at x = c and (c, f(c)) is an inflection popint for f, then f''(c) = 0

4.4 Curve Sketching

Theorem 194

Assume that f has a cv at x = c

- 1. If there is an interval (a,b) containing c such that f'(x) < 0 on (a,c) and f'(x) > 0 on (c,b), then c has a local min at x = c
- 2. similar for local max

Theorem 195

Suppose f'(c) = 0 and that f''(x) is continuous at x = c

- 1. If f''(c) < 0, then f has a local max at x = c
- 2. If f''(c) > 0, then f has a local min at x = c

Curve Sketching Checklist

- 1. Domain
- 2. Intercepts (x and y)
- 3. Asymptotes (vertical and horizontal)
- 4. The first derivatives, critical values, local extrema
- 5. The second derivatives, inflection points
- 6. Intervals of increase/decrease, concavity
- 7. label stuff from 2, 3, 4, 5

5 Taylor Polynomials and Taylor's Theorem

Fact

The n^{th} degree Taylor polynomial for e^x centered at 0 is

$$T_{n,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$$
$$= \sum_{k=0}^n \frac{x^k}{k!}$$

The n^{th} degree Taylor polynomial of $\ln x$ centered at x=1 is

$$T_{n,1}(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} + \dots + (-1)^{n-1} \frac{(x-1)^n}{n}$$

Definition 202

Suppose f(x) is n times differentiable at x = a. The n^{th} degree Taylor polynomial centered at x = a is

$$T_{n,a}(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \frac{f(3)(a)}{3!}(x - a)^3 + \cdots + \frac{f(k)(a)}{k!}(x - a)^k + \cdots + \frac{f(n)(a)}{n!}(x - a)^n$$
or

$$T_{n,a}(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n$$
 where $a_k = \frac{f(k)(a)}{k!}$

Definition 206

Suppose f(x) is n times differentiable on an interval I containing a. The n^{th} degree Taylor polynomial remainder centered at a is $R_{n,a}(x) = f(x) - T_{n,a}(x)$, $x \in I$

Theorem 207 (Taylor's Remainder Theorem)

Suppose f(x) is n+1 times differentiable on an interval I containing a. For any $x \in I$, there exists c between x and a such that

$$R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{(n+1)}$$

Theorem 208

Suppose f(x) is n+1 times differentiable on an interval I containing a. Suppose $f^{(n+1)}(x)$ is continuous on I. For any $x_0 \in I$, if M is a constant/real satisfying $|f^{(n+1)}(x)| \leq M$ for all x between x, and a, then

$$|R_{n,a}(x_a)| \le \frac{M}{(n+1)!} |x_0 - a|^{n+1}$$