২য় অধ্যায়

ভেক্টর (Vector)

Part:01 তত্ত্বীয় আলোচনা

ভেক্টর রাশিকে দুই উপায়ে প্রকাশ করা যায় ।

विश्व मानादक पूर्य जनादन या	71 77 17 17 17
১। রেখা দারা	পাদবিন্দু — শীর্ষবিন্দু
২ । অক্ষর দ্বারা	অক্ষর দ্বারা চার উপায়ে ভেক্টর কে প্রকাশ করা যায় ।
	যেমন A একটি ভেক্টর রাশি যাকে \overrightarrow{A} , \overline{A} , \overline{A} , A (মোটা হরফে) এই চার উপায়ে প্রকাশ করা যায় ।
	\overrightarrow{A} ভেক্টর এর মানকে $ \overrightarrow{A} ,\; \overline{A} ,\; \overline{A} ,\;A$ এই চার উপায়ে প্রকাশ করা যায় ।

বিশেষ ভেক্টর সমূহ:

সম রৈখিক ভেক্টর	যদি দুই বা ততোধিক ভেক্টর একই সরল রেখা বরাবর ক্রিয়া করে।	
সমান ভেক্টর	একাধিক ভেক্টরের মান ও দিক একই । অম্ভূর্ভুক্ত কোণ = 0^0	
	১. সকল সমরেখ ভেক্টর সমান ভেক্টর নয়— ব্যাখ্যা কর।	[কু. বো. ২০১৯]
	সমান ভেক্টরসমূহের প্রত্যেকটির মান একটি কিন্তু সমরেখ (
	সকল সমান ভেক্টরই সমরেখ ভেক্টর কিন্তু সকল সমরেখ ভে	স্টের সমান ভেক্টর নয়। দুটি সমরেখ ভেক্টর তখন
	সমান হবে যদি তাদের দিক ও মান উভয়ই পরস্পর সমান হ	ह्य ।
বিপরীত ভেক্টর	মান একই দিক ভিন্ন 180^0	—
স্বাধীন ভেক্টর	যে ভেক্টরের পাদবিন্দু নির্দিষ্ট নয় বা যে ভেক্টরের পাদবিন্দু	
১. [য.বো.১৭]	ইচ্ছানুযায়ী পরিবর্তন করা যায়, তাকে স্বাধীন ভেক্টর বলে।	
	 স্বাধীন ভেক্টরের পাদবিন্দু মূলবিন্দুতে নয় কেন ব্য ভেক্টরের পাদবিন্দু সুনির্দিষ্ট নয়, তাকে স্বাধীন ভেক্টর বলে তাই এই পাদবিন্দু মূলবিন্দুতে অবস্থিত হওয়ার প্রয়োজন মূলবিন্দুতে নয়। 	। যেহেতু স্বাধীন ভেক্টরের পাদবিন্দু সুনির্দিষ্ট নয়,
একক ভেক্টর'		â _
[রা. বো. ১৭]	যে ভেক্টরের মান 1 একক ।একক ভেক্টর $=rac{A}{A}$, $[A] eq 0$	
	[A] শূন্য ভেক্টরের একক ভেক্টর নির্ণয় সম্ভব নয়।	যে কোন ভেক্টর ও তার একক ভেক্টরের মধ্যবর্তী কোণ 0^0
আয়তাকার	ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থায় তিনটি ধনাত্বক অক্ষের দিকে কল্পিত একক	A
একক ভেক্টর	ভেক্টর ।	
	যেমন: $\hat{\imath},\hat{\jmath}$ এবং \hat{k} কে আয়তাকার একক ভেক্টর বলে।	
	[চ. বো. ১৯; আলিম-১৮; ব. বো. ১৬]	r
নাল ভেক্টর	যে ভেক্টরের মান শূন্য। <i>[ব. বো. ১৭]</i> নাল ভেক্টরের শীর্ষ বিন্দু ও পাদবিন্দু একই	←
	৩. নাল ভেক্টরের সুনির্দিষ্ট দিক নেই কেন? [রা. বো. ১৫]	
	নাল ভেক্টর হলো শূন্য ভেক্টর। এর মান শূন্য বলে এর কো	নো সুনির্দিষ্ট দিক নির্ণয় করা সম্ভব নয়। তাই এর
	দিক যেকোনো দিকেই বিবেচনা করা যেতে পারে।	
অবস্থান ভেক্টর/	মূল বিন্দুর সাপেক্ষে অন্য কোন বিন্দুর অবস্থান নির্ণয় করার জন্য যে ভে	ক্টও ব্যবহার করা হয় তাকে অবস্থান ভেক্টর বা ব্যাসার্ধ
	ভেক্টর বলে । <i>[চ. বো.</i> ১৭; ব. ঢা. বো.১৬]	
সরণ ভেক্টর	আদি অবস্থান হতে শেষ অবস্থান নির্দেশ করে। [ব. বো. ১৫]	
সম রৈখিক ভেক্টর	যদি দুই বা ততোধিক ভেক্টর একই সরল রেখা বরাবর ক্রিয়া করে।	
সমতলীয় ভেক্টর	যে সকল ভেক্টর একই সমতলে থাকে	
বিপ্রতীপ ভেক্টর	দুটি সমান্তরাল ভেক্টরের একটি মান অপরটির বিপ্রতীপ হলে ভেক্টরদ্বয়কে	পরস্পর পরস্পরের বিপ্রতীপ ভেক্টর বলে ।
[রা. বো. ১৯]	$5\hat{ ext{i}}$ এর বিপ্রতীপ ভেক্টর $\frac{1}{\hat{ ext{i}}}\hat{ ext{i}}$	
	্	
	<u>, </u>	

Physics A+ Confirm Batch 2021

ROKON SIR 01720674569

সীমাবদ্ধ ভেক্টর	যে ভেক্টরের পাদবিন্দু নির্দিষ্ট বা যে ভেক্টরের পাদবিন্দু ইচ্ছানুযায়ী পরিবতন করা যায় না, তাকে সীমাবদ্ধ ভেক্টর
[য. বো. ১৯]	বলে।একটি পাদবিন্দু বিশিষ্ট ভেক্টর ।
	8. অবস্থান ভেক্টর রাশি একটি সীমাবদ্ধ ভেক্টর— ব্যাখ্যা কর। <i>[দি. ৰো. ১৭]</i> আমরা জানি, কোনো ভেক্টরের পাদবিন্দু যদি সর্বদাই নির্দিষ্ট অবস্থানে থাকে এবং প্রান্ত বিন্দু যদি পরিবর্তন হতে পারে তবে একে সীমাবদ্ধ ভেক্টর বলে। দ্বিমাত্রিক বা ত্রিমাত্রিক ভেক্টর স্থানাংক ব্যবস্থায়, যেকোনো বিন্দুর অবস্থান ভেক্টরের পাদবিন্দু সর্বদাই মূল বিন্দুতে অবস্থিত। তাই অবস্থান ভেক্টর একটি সীমাবদ্ধ ভেক্টর।

পোলার ভেক্টর	বস্তুর ঘূর্ণনের সঙ্গে যুক্ত নয় এমন ভেক্টরকে পোলার ভেক্টর বলে। তীর চিহ্নযুক্ত সরলরেখা দ্বারা প্রকাশ করা
Polar vector	হয়। এই রেখার দৈর্ঘ্য ভেক্টরের মান এবং তীর চিহ্ন দিক নির্দেশ করে।
	উদাহরণ : বল, ভরবেগ, সরণ, গতিবেগ প্রভৃতি।
অক্ষীয় ভেক্টর	বস্তুর ঘূর্ণনের সঙ্গে যুক্ত ভেক্টরকে অক্ষীয় ভেক্টর বলে। এই ভেক্টরগুলিকে বস্তুর ঘূর্ণন অক্ষ বরাবর রেখা দ্বারা
Axial vector	প্রকাশ করা হয়। রেখা ভেক্টরটির দৈর্ঘ্য রাশির মান নির্দেশ করে এবং দিক ব্রু নিয়ম অনুযায়ী নির্ণয় করা
	হয়।
	উদাহরণ : কৌণিক বেগ, কৌণিক ত্বরণ, কৌণিক ভরবেগ প্রভৃতি।

Technique

ভেক্টর রাশির উদাহারণ : **

সকল বেগ,তুরণ,প্রাবল্য,সরণ,ভ্রামক ভেক্টর রাশি ।

বল	তড়িৎ বল , চুম্বক বল ,মহাকর্ষ বল ,ওজন, টান ভেক্টর রাশি । মাথায় রেখ পৃষ্ঠটান ,চাপ স্কেলার রাশি ।
ভ্রামক	তড়িৎ ভ্রামক ,চুম্বক ভ্রামক ,বলের ভ্রামক (টর্ক) , দ্বন্দ্বের ভ্রামক ভেক্টর রাশি ।ব্যতিক্রম জড়তার ভ্রামক স্কেলার রাশি
প্রাবল্য	তড়িত প্রাবল্য ,চৌম্বক প্রাবল্য ভেক্টও রাশি । সকল বিভব স্কেলার রাশি
বেগ	বেগ, ভরবেগ ,কৌণিক ভরবেগ ভেক্টর রাশি ।
সরণ	সরণ ভেক্টর । তড়িৎ ও চুম্বকবিজ্ঞানে ক্ষেত্রফল, ভেক্টর রাশি । ক্ষেত্রফল ভেক্টরের দিক তলের উপর লম্ব বরাবর ।
	দুরত্ব,দৈর্ঘ্য ,প্রস্থ এগুলো স্কেলার রাশি ।

ভেক্টর রাশি হওয়ার শর্ত ঃ

১। মান থাকতে হবে ২। দিক থাকতে হবে ৩। ভেক্টও যোগ এর নিয়ম মেনে চলতে হবে।

মান ও অভিমুখ যুক্ত সকল রাশিই ভেক্টর রাশি নয়। যেমন তড়িৎ প্রবাহ,পৃষ্ঠটান,চাপ রাশি গুলোর মান ও অভিমুখ থাকলেও দুটি নির্দিষ্ট ভেক্টর যোগের বিনিময় সূত্র মেনে চলে না। তাই এই রাশিগুলোর মান ও অভিমুখ থাকলেও এটি ভেক্টর রাশি নয়। (অনুধাবন)

মাথায় রেখঃ তড়িৎ ও চুম্বকবিজ্ঞানে ক্ষেত্রফল ভেক্টর রাশি । ক্ষেত্রফল ভেক্টরের দিক তলের উপর লম্ব বরাবর ।

ভেক্টর যোগের ৫ টা সূত্র আছে ।

সাব্বাস উত্তর

সা	ব্বা	স	উ	ত্তর
সাধারণ সূত্র	বহুভূজ সূত্ৰ	সামান্তরিত সূত্র	উপাংশ সূত্র	ত্রিভুজ সূত্র

ভেক্টর বিশ্লেষণ/ভেক্টর বিভাজনঃ একটি ভেক্টরকে যদি দুই বা ততোধিক ভেক্টরে এমনভাবে বিভক্ত করা হয়, যাদের লব্ধি হবে মূল ভেক্টর, তবে এ বিভক্তিকরণ প্রক্রিয়াকে ভেক্টরের বিশ্লেষণ বলে। ক্রি.বো.১৬,১৫; রা.বো.১৫]

ভেক্টর রাশির যোজন	ভেক্টর রাশির বিভাজন
১. নৌকা চালানো ২. চলন্ত গাড়িতে বৃষ্টির পতন(শুধু সামনের কাঁচ ভেজায়)	১. নৌকার গুণ টানা ২. লন রোলার ঠেলা অপেক্ষা টানা সহজতর
৩. পাখির উড়া ৪. স্রোতযুক্ত নদীতে নৌকা চলাচল ।	৩. পায়ে হাঁটা ৪. সাইকেলের ক্র্যাঙ্কের ক্রিয়া
	৫. প্রান্তীয় অবস্থানে সরল দোলকের ববের গতি

Physics A+ Confirm Batch 2021

ROKON SIR 01720674569

	$ \vec{P} $
প্রকাশ করা হয় তাহলে তৃতীয় বাহু দ্বারা বিপরীত ক্রমে ঐ ভেক্টরদ্বয়ের লব্ধি নির্দেশ	$ \vec{R} $
করে।	
যদি সামন্তরিকের দুটি সন্নিহিত বাহু দ্বারা মান ও দিকে দুটি ভেক্টরকে প্রকাশ করা হয়	A / B
201 4 11 2 (30 4)(10 1140)(114 1 1 COONGAN 114(116)(1 1 16)	
	$\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OB}$
	যদি একটি ত্রিভুজের দুটি সন্নিহিত বাহু দ্বারা মান ও দিকে একইক্রমে দুটি ভেক্টরকে প্রকাশ করা হয় তাহলে তৃতীয় বাহু দ্বারা বিপরীত ক্রমে ঐ ভেক্টরদ্বয়ের লব্ধি নির্দেশ করে। যদি সামন্তরিকের দুটি সন্নিহিত বাহু দ্বারা মান ও দিকে দুটি ভেক্টরকে প্রকাশ করা হয় তবে ঐ বিন্দু হতে অংকিত সামন্তরিকের কর্ণ ভেক্টরদ্বয়ের লব্ধি নির্দেশ করে।

১১ গুণটানা নৌকা ভেক্টর যোজন না বিভাজনের উদাহরণ গাণিতিক ব্যাখ্যা

উত্তরঃ নৌকার গুণটানা বল দুটি উপাংশে বিভাজিত হয় । একটি আনুভূমিক দিকে যার কারণে নৌকা সামনের দিকে চলে । আরেকটি উলম্ব বরাবর উপরের দিকে যা নৌকার ওজনকে প্রশমিত করে । অর্থাৎ গুণ টানা ভেক্টর বিভাজনের উদাহরণ ।

Technique ত্রিভুজ/বহুভুজ সূত্র:

সবগুলো একদিকে 🛶 যোগফল শূন্য

সবগুলো একদিকে, একটি বিপরীতে 🍑 যেটি বিপরীতে সেটিই লদ্ধি

সামান্তরিক সুত্রে সাধারণ কর্ণ সন্নিহিত বাহুদ্বয়ের যেমন তাদের লব্ধি নির্দেশ করে তেমনি অপর কর্ণ তাদের অন্তরফল নির্দেশ করে।

ΔABC এ ত্রিভুজ সূত্র হতে

$$\overline{Q} + \overline{X} = \overline{P}$$

$$\therefore \overline{X} = \overline{P} - \overline{Q}$$

এখানে, \overline{X} এর দিক উল্টা করলে $x=\overline{Q}-\overline{P}$ হত।

 \therefore অপর কর্ণ $x = \overline{P} \sim \overline{O}$

Problem $|\overline{P} + \overline{Q}| = |\overline{P} - \overline{Q}|$ হলে $\overline{P} \widehat{Q} = ?$

Solve: ছবি দেখে বোঝা যাচ্ছে, $\overline{R}=|\overline{P}+\overline{\mathbf{Q}}|$ আর $\overline{X}=|\overline{\mathbf{P}}-\overline{\mathbf{Q}}|$ তখনই সমান হবে যখন \overline{P} ও \overline{Q} vector দিয়ে আয়ত তৈরি করা যায়।তাই \overline{P} ও \overline{Q} vector দুটির মধ্যবর্তী কোণ 90^0

গাণিতিক পদ্ধতিতে ভেক্টর যোগের ৩টি সূত্র:

১. বিনিময় সূত্র $ightarrow ec{P} + ec{Q} = ec{Q} + ec{P}$

২. সংযোগ সূত্র ightarrow $\left(\vec{P} + \vec{Q} \right) + \vec{R} = \vec{P} + (\vec{Q} + \vec{R})$

৩. বন্টন সূত্র $\rightarrow \longrightarrow (m+n)\vec{P} = m\vec{P} + n\vec{P}$ $\rightarrow \vec{P} \times (\vec{Q} + \vec{R}) = \vec{P} \times \vec{Q} + \vec{P} \times \vec{R}$

ত্রিভূজ,সামন্তরিক ,বহুভূজ সূত্র ভালভাবে বুঝতে নিচের চিত্রগুলো প্রাকটিস করঃ

ক্ষেলার ও ভেক্টর গুণন সংক্রান্ত ঃ

কেলার × কেলার = কেলার

ক্ষেলার × ভেক্টর = ভেক্টর

ভেক্টর × ভেক্টর = কখন ও স্কেলার , কখনও ভেক্টর

ভেক্টর × ভেক্টর = ক্ষেলার হলে ডট ং	<u> </u> ওপন	ভেক্টর × ভেক্টর = ভেক্টর হলে	ক্রস গুণন	
$\mathbf{a} \cdot \mathbf{b}$ $\mathbf{a} \cdot \mathbf{b}$ $\ \mathbf{b}\ = \ \mathbf{a}\ \cos \theta$	$ec{a}.ec{b}=abcos heta$ $ec{a}.ec{b}=a imesec{a}$ এর দিকে $ec{b}$ এর লম অভিক্ষেপ $ec{a}.ec{b}=b imesec{b}$ এর দিকে $ec{a}$ এর লম অভিক্ষেপ	$ \begin{array}{c c} a \times b \\ b \\ \theta \\ a \end{array} $	$ec{a} imes ec{b} = absin heta \hat{\eta} \ ert ec{a} imes ec{b} ert = absin heta \ ert ec{a} imes ec{b} ert = a imes n$ মন্তরিকের উচ্চতা $ert ec{a} imes ec{b} ert = n$ মন্তরিকের ক্ষেত্রফল	
			দ্বারা গঠিত সমতলের উপর লম্ব যর সাথে লম্ব ভাবে অবস্থান করে। ভূক্ত কোন= 90 ⁰	
বিনিময় সূত্র মানে । $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$		বিনিময় সূত্র মেনে চলে না । $\vec{A} \times \vec{B} \neq \vec{B} \times \vec{A}$, $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$ এর অম্ডুর্ভুক্ত কোণ = 180^0 $\vec{A} \times \vec{B} = - \vec{B} \times \vec{A}$		
ভট গুণন করতে হয়ঃ লম্ব অভিমে সাথে উৎপন্ন কোণ, ভেক্টরদ্বয় পরস্পর			ও ক্ষেত্রফল , গঠিত সমতলে লম্ব ভেক্টর , ক্টের ,ভেক্টরদ্বয় পরস্পর সমান্তরাল প্রভৃতি	

$\widehat{oldsymbol{\eta}}$ এর অভিমুখ

র্ডান হাতি স্কু নিয়মঃ প্রথম ভেক্টর এর দিকে ডান হাত রেখে দ্বিতীয় ভেক্টরের দিকে ক্ষুদ্রতম কোণে ঘুরালে বৃদ্ধা আংগুলের দিক হবে ভেক্টর গুণফলের দিক। [কু. বো. ১৯]

সহজ কথায় ঃ ১ম ভেক্টর ডান পাশে থাকলে - লম্ব বরাবর উপরের দিকে ।

১ম ভেক্টর বাম পাশে থাকলে- লম্ব বরাবর নিচের দিকে ।

ব্যাক্ষাঃ ১ম ভেক্টর \vec{a} ডান পাশে -তাই $\vec{a} imes \vec{b}$ লম্ব বরাবর উপরের দিকে

ব্যাক্ষাঃ \vec{b} বাম পাশে -তাই $\vec{b} imes \vec{a}$ লম্ব বরাবর নিচের দিকে

- $$\begin{split} \hat{i}.\hat{i} &= \hat{j}.\hat{j} = \hat{k}.\hat{k} = 1 \;; & \hat{i}.\hat{i} = 1.1\cos0^{\circ} = 1 \;; & \hat{A}.\hat{A} = A.A\cos0^{\circ} = A^{2} \\ \hat{i}.\hat{j} &= \hat{j}.\hat{k} = \hat{k}.\hat{i} = 0 \;; & \hat{i}.\hat{j} = 1.1\cos90^{\circ} = 0 \;; \end{split}$$
- $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0;$ $\hat{i} \times \hat{j} = \hat{k}; \hat{k} \times \hat{i} = \hat{j}; \hat{j} \times \hat{k} = \hat{i};$ $\hat{i} \times \hat{j} = \hat{k}; \hat{k} \times \hat{i} = \hat{j}; \hat{j} \times \hat{k} = \hat{i};$
- � \vec{A} , \vec{B} , \vec{C} ভেক্টর ৩টি একই সমতলে অবস্থিত হওয়ার শর্ত হল \vec{A} . ($\vec{B} \times \vec{C}$) = 0 ।

 $\vec{A} \times \vec{B} = 0$; when $\alpha = 0^{\circ}$ $\vec{A} \times \vec{B} = 0$; when $\alpha = 180^{\circ}$

when $|\vec{A} + \vec{B}| = |\vec{A} - \vec{B}|$ then $\alpha = 90$

৬. $\hat{\mathbf{k}}$, $\hat{\mathbf{i}}=0$ কেন ব্যাখ্যা কর।

[অনুরূপ সি. বো. ১৯; কু. চ. ব , বো. ১৮]

- \hat{i} , \hat{j} ও \hat{k} হলো আয়তাকার ত্রিমাত্রিক স্থানাঙ্ক ব্যবস্থার যেকোনো ভেক্টরকে প্রকাশ করার জন্য পরস্পর লম্ব তিনটি একক ভেক্টর। যেহেতু এরা পরস্পর লম্ব অর্থাৎ এদের মধ্যবর্তী কোণ 90° তাই, \hat{k} , $\hat{i}=|\hat{k}||\hat{i}|\cos 90^\circ=1.1.0=0$ ।
- ৭. বল ও সরণ ভেক্টর রাশি হলেও তাদের দ্বারা সৃষ্ট কাজ ক্ষেলার রাশি ব্যাখ্যা কর।

[ज. त्रा. त्रि. पि. य. त्वा. ३४]

সংজ্ঞানুযায়ী বল ও বলের দিকে বস্তুর সরণের গুণফলই কাজ। অর্থাৎ কোন কণার উপর t সময় ধরে F বল প্রয়োগ করায় যদি তার \overrightarrow{F} এর সাথে θ কোণ ঐ সময়ে \overrightarrow{S} সরণ হয়। তবে, সংজ্ঞানুসারে কাজ, $W=\mathrm{FScos}\theta=\overrightarrow{F}.\overrightarrow{S}$ [ডট গুণনের সংজ্ঞাুসারে] অতএব, কাজ হলো বল ও সরণ ভেক্টরের ডট বা স্কেলার প্রোডাক্ট যা সর্বদা ভেক্টর রাশি হলেও এদের দ্বারা সৃষ্ট কাজ স্কেলার রাশি।

৮. \overrightarrow{A} ও \overrightarrow{B} এর মধ্যবর্তী কোণ 45° হলে দেখাও যে $\overrightarrow{A}.\overrightarrow{B}=|\overrightarrow{A}\times\overrightarrow{B}|$ ।

[সি. ব. বো. ১৬]

দেওয়া আছে. \overrightarrow{A} ও \overrightarrow{B} এর মধ্যবর্তী কোণ 45°

$$\vec{A} \cdot \vec{A} \cdot \vec{B} = ABcos45^\circ = \frac{AB}{\sqrt{2}}$$
 আবার, $|\vec{A} \times \vec{B}| = ABsin45^\circ = \frac{AB}{\sqrt{2}}$ $\vec{A} \cdot \vec{A} \cdot \vec{B} = |\vec{A} \times \vec{B}|$

ডট গুণঃ	ভেক্টরদ্বয়	नम	উপাংশ	ভেক্টরদ্বয়ের মধ্যবর্তী	অক্ষের সাথে উৎপন্ন কোণ
$\vec{A}.\vec{B}$	পরস্পর	অভিক্ষেপ		কোণ	
$= ABcos\theta$	লম্ব				
	ডট গুণ=0	যার দিকে	অভিম্ফেপ ×একক	$\vec{A} \cdot \vec{B}$	ু ঐ অক্ষের সহগঐ
		সে নিচে	ভেক্টর	$\theta = \cos^{-1} \frac{d}{ \vec{A} \vec{B} }$	$ heta=\cos^{-1}rac{}{$ ভেক্টরের মান
		লম্ব অভিক্ষেণ	প=উপাং শে র মান	θ	যে অক্ষেও একক ভেক্টর নেই ঐ
				$ \vec{A} \times \vec{B} $	ভেক্টরের ঐ অক্ষের সাথে উৎপন্ন
				$= tan^{-1} \frac{ \overrightarrow{A} \times \overrightarrow{B} }{\overrightarrow{A} \cdot \overrightarrow{B}}$	কোণ $=90^0$

ক্রস	ভেক্টরদ্বয় পরস্পর	গঠিত সমতলে	গঠিত সমতলে	ক্ষেত্ৰফল
গুণঃ	সমান্তরাল	লম্ব ভেক্টর	লম্ব একক ভেক্টর	
$\vec{A} \cdot \vec{B}$	ক্রসগুণ=()	$\vec{A} \times \vec{B}$	$\vec{A} \times \vec{B}$	$oldsymbol{A}$ ও $oldsymbol{B}$ বাহু হলে সামান্তরিক বা রম্বসের ক্ষেত্রফল $= \left ec{A} imes ec{B} ight $
$= ABcos\theta$			$ \vec{A} \times \vec{B} $	${f A}$ ও ${f B}$ কর্ণ হলে সামান্তরিক বা রম্বসের ক্ষেত্রফল $=rac{1}{2}\left {f ar A} imes {f ar B} ight $
				${f A}$ ও ${f B}$ বাহু হলে ত্রিভুজের ক্ষেত্রফল $=rac{1}{2}\left {f A} imes {f B} ight $

$A_{v} A_{v} A_{z}$	$\vec{A} \times \vec{B} = 0$	ভেক্টরদ্বয়	পরস্পর	ভেক্টরদ্বয়ের	অন্তর্ভূক্ত	ভেক্টরদ্বয়	দ্বারা গঠিত	সামন্তরিক/রম্বসের
$\frac{x}{B_x} = \frac{y}{B_y} = \frac{1-z}{B_z}$		সমান্তরাল		কোণ 0^0		ক্ষেত্রফল 🤊	ণ্ডন্য (0)	

Type:05	লব্ধির মান ও দিক নির্ণয় সংক্রান্ত

২. **লব্ধি ভেক্টর** [য. বোর. ১৯; রা. বো. ১৬] ঃ দুই বা ততোধিক একই জাতীয় ভেক্টর যোগ করলে যে ভেক্টর পাওয়া যায় তাকে ভেক্টরগুলোর লব্ধি ভেক্টর

	লব্ধির মান ও দিক নির্ণয় সংক্রান্ত				
	বিশেষ ক্ষেত্ৰ	লব্ধির মান	লব্ধির দিক		
Q R P	ভেক্টরদ্বয়ের মধ্যবর্তী কোণ α লিক্কি \vec{R} , ও \vec{P} এর মধ্যবর্তী কোণ θ লিক্কি সর্বদা \vec{P} এর সাথে কোণ তৈরি করবে ।	$R = \sqrt{P^2 + Q^2 + 2PQ\cos\alpha}$	$ heta= an^{-1}rac{Q\sinlpha}{P+Q\coslpha}$ যার সাথে কোণ তৈরি করবে ঐটা মুক্ত থাকবে।		
P Q R	∝=0 হলে ভেক্টরদ্বয় একই দিকে ক্রিয়া করলে	$R_{\text{max}} = P + Q$	$\theta = 0^{0}$		
P Q R →	$lpha=180^\circ$ হলে ভেক্টরদ্বয় বিপরীত দিকে ক্রিয়া করলে	$R_{min} = P \sim Q$	$ heta=0^0$ [যখন $P>Q$ $ heta=180^0$ [যখন $Q>P$]		
মনে রেখঃ	লব্ধি অবশ্যই R _{max ও} R _{min} এর মধ্যে থাক	$R_{max} = P + Q$; $R_{min} = P \sim 0$	nux nut 1		
Q R	∝= 90^0 হলে ভেক্টরদ্বয় পরস্পর লম্বভাবে ক্রিয়া করলে	$R = \sqrt{P^2 + Q^2}$ $ \overline{P} + \overline{Q} = \overline{P} - \overline{Q} $ $[BUTex02]$ $R_P = \sqrt{\frac{R_{max}^2 + R_{min}^2}{2}}$	$\theta = \tan^{-1} \frac{Q}{p}$		
Q P	$ heta=90^0 হলে $ লব্দি ভেক্টরের সাথে লম্ব ভাবে ক্রিয়া] করলে	$R = \sqrt{Q^2 - P^2}$	$\alpha = \cos^{-1}\left(-\frac{P}{Q}\right)$		
	$P=Q$ হলে $ heta=rac{lpha}{2}$ $P=$	$=Q=R$ হলে $\propto=120^{0}$, ϵ	$\theta = 60^{\circ}$		

৯. দুটি ভেক্টরের লব্ধি সর্বোচ্চ মান ভেক্টরদ্বয়ের মানের যোগফল অপেক্ষা বড় হতে পারে না— ব্যাখ্যা কর।

[চ.বো.১৭]

 \overrightarrow{A} ও \overrightarrow{B} দুইটি ভেক্টর হলে, এদের লব্ধি $|\overrightarrow{R}|=R=\sqrt{A^2+B^2+2ABcos\alpha}$ যেখানে α ভেক্টরদ্বয়ের মধ্যবর্তী কোণ। লব্ধি R এর মান সর্বোচ্চ হবে যদি $cos\alpha$ এর মান সর্বোচ্চ হয়।

আমরা জানি, $\cos \alpha$ এর মান সর্বোচ্চ মান 1 \therefore $R_{max} = \sqrt{A^2 + B^2 + 2AB.1} = \sqrt{(A+B)^2}$ \therefore $R_{msx} = A + B$

এখন, যেহেতু $\cos\alpha$ এর মান 1 এর থেকে বেশি হওয়া সম্ভব নয়। তাই R এর সর্বোচ্চ মানও (A+B) এর চেয়ে বেশি হওয়া সম্ভব নয়। অনুরূপঃ দুটি ভেক্টরের লব্ধির সর্বন্দি মান তাদেও বিয়োগফল অপেক্ষা কম হতে কম হতে পারে না ব্যাক্ষা কর উপাংশ সত্র এর প্রয়োগঃ

১০. দুটি অসমান বলের লব্ধি শূন্য হতে পারে না— ব্যাখ্যা কর।

[চ. বো. ১৬]

 \overrightarrow{P} ও \overrightarrow{Q} ভেক্টর যদি α কোনে নত থাকে, তবে এদের লব্ধি মান হবে $R=-\sqrt{P^2+Q^2+2PQ\cos\alpha}$ যখন $\alpha=180^\circ$ তখন R ন্যূনতম হয়। অর্থাৎ লব্ধি ভেক্টরের ন্যূনতম মান, $R=\sqrt{P^2+Q^2-2PQ}=\sqrt{(P-Q)^2}=P-QA$ । দেখা যাচ্ছে, কেবল এবং কেবল যদি P=Q হয় তবে R এর মান শূন্য হবে। অন্যথায় লব্ধির ন্যূনতম একটি মান থাকবে। সুতরাং দুটি অসমান ভেক্টরের লব্ধি কখনোই শূন্য হতে পারে না।

১১. ট্রলি ব্যাগের হাতল লম্বা রাখা হয় কেন? ব্যাখ্যা কর।

[কু. বো. ১৬]

ট্রলি ব্যাগের হাতল দ্বারা ট্রলি ব্যাগকে সামনের দিকে টেনে নিয়ে যাওয়ার সময় হাতলে প্রযুক্ত বল F দুইটি উপাংশে বিভক্ত হয়। একটি $Fsin\theta$ এবং অপরটি $Fcos\theta$ । $Fsin\theta$ উপাংশটি উপরের দিকে কার্যরত হয় এবং $Fcos\theta$ উপাংশটি ব্যাগকে সামনের দিকে এগিয়ে নিয়ে যায়। হাতল লম্বা হলে θ এর মান কম হয়। এ অবস্থায় $cos\theta$ এর মান বেশি হয় এবং ট্রলির বেগ ধ্রুব রেখে টানতে কম বল লাগে। এ কারণে ট্রলি ব্যাগের হাতল লম্বা রাখা হয়।

দৌড় প্রতিযোগিতায় দৌড়বিদরা দৌড়ের শুরুতে সামনের দিকে ঝুঁকে থাকে — ব্যাখ্যা কর।

ঢো. বো. ১৬1

[ব. বো. ১৯]

১২. সমুদ্র সৈকতে বালির উপর হাঁটা কষ্টকর কেন? ব্যাখ্যা কর।

আমরা যখন সাধারণত মাটিতে হাঁটি, তখন আমাদের পা মাটিকে যদি \overrightarrow{F} বল প্রয়োগ করে বা ধাক্কা দেয়, মাটি এ বলের প্রতিক্রিয়া হিসেবে \overrightarrow{R}

বল প্রয়োগ করে । R এর উল্লম্ব উপাংশ, $R\sin\theta$ আমাদের ওজনের সাথে সাম্যাবস্থায় থাকে এবং অনুভূমিক উপাংশ $R\sin\theta$ এর জন্য আমরা সামনে এগিয়ে চলি। কিন্তু সমুদ্রের তীরে বালিতে হাঁটার সময় আমরা বালিতে বল প্রয়োগ করলে বালি মাটির ন্যায় দৃঢ় নয় বলে সরে যায় এবং কম প্রতিক্রিয়া বল দেয়। ফলে আমাদের সামনে যাওয়ার জন্য এ প্রতিক্রিয়া বলের অনুভূমিক উপাংশ কম হয়। এ কারণে সমুদ্র সৈকতের বালিতে হাঁটা কষ্টকর।

১০.লন রোলার ঠেলা সহজ না টানা→গাণিতিক ব্যাখ্যা

লন রোলারের ক্ষেত্রে যদি আনুভূমিকের সাথে $heta^0$ কোণে ঠেলা বা টানা হয়।

	ঠেলার ক্ষেত্রে	টানার ক্ষেত্রে
ওজন বৃদ্ধি বা <u>্</u> থাস	বৃদ্ধি = $F\cos(90 - \theta)$	ওজনহ্রাস = $Fcos(90 - \theta)$
আপাত ওজন	$W + F\cos(90 - \theta)$	$W-F\cos{(90-\theta)}$

এখানে ঠেলার ওজন> টানার ওজন । তাই টানা অপেক্ষাকৃত সহজ ।

প্রশ্ন ১২ঃ টান বল অপরিবর্তিত রেখে নৌকার গতি বাড়াতে হলে কি ব্যবস্থা গ্রহন করতে হবে?

উত্তরঃ গুণ টানা বলের আনুভূমিক উপাংশ তথা গতি সৃষ্টি কারী বল বাড়াতে হবে। অর্থাৎ টানবলের আনুভূমিক এর সাথে উৎপন্ন কমাতে হবে অর্থাৎ গুণ টানা রশির দৈর্ঘ্য বাড়াতে হবে।

প্রশ্ন১৩ঃ টানবল অপরিবর্তিত রেখে কি ব্যবস্থা গ্রহণ করলে ট্রলি সহজে টানা যাবে।

টানা বলের আনুভূমিক উপাংশ তথা গতি সৃষ্টি কারী বল বাড়াতে হবে। অর্থাৎ টানবলের আনুভূমিক এর সাথে উৎপন্ন কোণ কমাতে হবে অর্থাৎ ট্রলির হাতলের দৈর্ঘ্য বাড়াতে হবে ।

৪র্থ অধ্যায়

নিউটনিয়ান বলবিদ্যা (Newtonian Mechanics)

Part:01

তত্ত্বীয় আলোচনা

চার ধরনের মৌলিক বলের তুলনাঃ

বল	আবিশ্বারক/সাল	দায়ীকণা	কারণ ও ফলাফল	তীব্ৰতা	পাল্লা	
মহাকর্ষ বল	নিউটন	গ্লেভিটন	মহাবিশ্বের দুটি বস্তুর মধ্যে যার ফলে পরস্পর পরস্পরকে আকর্ষণ করে।	1	অসীম	নক্ষত্ৰগুলো মিলে গ্যালাক্সি গঠন
দুর্বল নিউক্লীয় বল	এনরিকো ফার্মি ১৯৩৩	W & Z Boson	নিউক্লিয়াসে যার ফলে ক্ষয় β হয়। নিউট্রন ভেংগে প্রোটন ও β কণিকায় পরিণত হয়।	10 ³⁰	30 ⁻³⁶	
তড়িৎ চুম্বকীয় বল	ম্যাক্স ওয়েল	ফোটন	তড়িৎ ও চৌম্বক ক্ষেত্রে যুগপৎ ভাবে অবস্থান করছে	10 ⁴⁰		ইলেকট্রন নিউক্লিয়াসের সাথে আবদ্ধ হয়ে পরমাণু গঠন
সবল নিউক্লীয় বল	জেমস বিয়র্কন ও পি ফাইম্যান	মেসন, Gluon	নিউক্লিয়াসে যার ফলে নিউক্লিয়াসগুলো পরস্পরের সাথে দৃঢ় ভাবে আবদ্ধ থাকে	10 ⁴²	10 ⁻¹⁵ m	প্রোটন ও নিউট্রন মিলে নিউক্লিয়াস গঠন

তীব্রতার অনুপাত $: 1: 10^{30}: 10^{40}: 10^{42}$ or $10^{-42}: 10^{-12}: 10^{-2}: 1$

বলের একীভূত করণ :বিজ্ঞানীদের ধারণা চারটি মৌলিক বল একটি বল হতে সৃষ্টি হতে পারে। সালাম, ওয়াইনবার্গ ও গ্লাসগো দুর্বল নিউক্লিয় বল ও তড়িৎচুম্বকীয় বল একীভূত করণের জন্য নোবেল পুরষ্কার পান।

স্থিতিস্থাপক বল , আণবিক গঠন , রাসায়নিক বিক্রিয়া ইত্যাদিতে তড়িত চুম্বকীয় বলের প্রকাশ ঘটে ।

নিউটনের গতি সূত্র:

	বিবৃতি:	বাহ্যিক বল ক্রিয়াশীল না হলে, স্থির বস্তু স্থির থাকবে, গতিশীল বস্তু সমবেগে চলবে।
১ম সূত্র:	ধারণা পাওয়া যায়	জড়তা ও বলের
	অন্য নাম	বলের সংজ্ঞা নির্দেশক সূত্র
		ভরবেগের পরিবর্তনের হার প্রযুক্ত বলের সমানুপাতিক। বল যেদিকে ক্রিয়া করে ভরবেগের পরিবর্তন
	বিবৃতিঃ	ও সেদিকে ঘটে। F=ma
	· ·	বল থাকলে তুরণ থাকবে, বল শূন্য হলে তুরণ শূন্য । অর্থাৎ বস্তুটি সমবেগে চলবে
২য় সূত্র:	ধারণা পাওয়া	বলের অভিমুখ, পরিমাপ, গুণগত বৈশিষ্ট্য, ত্বরণের সঙ্গে বলের সম্পর্ক, একক বল, বলের একক এবং
	যায়	বলের নিরপেক্ষনীতি সম্পর্কে জানতে পারা যায়
	অন্য নাম	বল পরিমাপের ও প্রকৃতি নির্দেশের সূত্র
	বিবৃতিঃ	প্রত্যেক ক্রিয়ারই সমান ও বিপরীত প্রতিক্রিয়া আছে।
	treatte the tre	১। ভরবেগের নিত্যতা সূত্র/ ভরবেগের সংরক্ষণ বিধি
	ধারণা পাওয়া	২। বিভিন্ন প্রকার ক্রিয়া প্রতিক্রিয়া: টান-টেনসন-ধাক্কা-আকর্ষণ বা বিকর্ষণ-ঘর্ষণ।
৩য় সূত্র:	যায়	৩। রকেটের উড্ডয়ন
·	অন্য নাম	বলের পারস্পারিক ক্রিয়ার সূত্র
	উদাহরণঃ	i. টেবিলের উপর বই থাকা ii. বন্দুক হতে গুলি ছোঁড়া iii.নৌকা থেকে লাফ দেয়া iv.পায়ে হাঁটা
		v.ব্যাটে বলে আঘাত vi.ভূমির উপর দাঁড়ানো vii. ঘোড়ার গাড়ি টানা

অনুধাবণঃ

অ্যাথলেটের লং জাম্প দেওয়া :

একজন অ্যাথলেট লং জাম্প দেওয়ার পূর্বে বেশ কিছু দূর থেকে দৌড় দেয়। এর উদ্দেশ্য হলো গতি জড়তা অর্জন করা যায় দরুন সে জাম্প দেওয়ার পর বেশ খানিকটা দূরত্ব অতিক্রম করতে সক্ষম হয়।

অনুধাবনমূলক কাজ: বায়ুশূন্য স্থানে পাখি উড়তে পারে না কেন? উড়োজাহাজ দিয়ে মহাশূন্যে যাওয়া যায় না কেন? (কারণ বায়ুমন্ডল নেই)

•
ষ্ট যে অবস্থায় আছে চিরকাল সেই অবস্থায় থাকতে চাওয়া যে প্রবণতা তাকে জড়তা বলে।
🕨 ভর হল বস্তুর জড়তার পরিমাপ।
একটি স্থির বেবি ট্যাক্সি ও স্থির ট্রাককে গতিশীল করতে ট্রাককে বেশি বল প্রয়োগ করতে হয় কারণ ট্রাক এর
ভর তথা জড়তা বেশি (অনুধাবন)
তি জড়তা ঃ স্থির বস্তুর চিরকাল স্থির থাকতে চাওয়ার যে প্রবণতা বা ধর্ম তাকে স্থিতি জড়তা বলে
উদাহরণ ঃ স্থির বাস চলতে শুরু করলে যাত্রীর পিছের দিকে হেলে যাওয়া (অনুধাবন)
তি জড়তা ঃ গতিশীল বস্তুর আজীবন গতিশীল থাকতে চাওয়ার যে প্রবণতা বা ধর্ম তাকে গতি জড়তা বলে ।
নাহরণঃ চলস্ত বাস হঠাত ব্রেক করলে যাত্রীর সামনের দিকে ঝুকে যাওয়া । <mark>(অনুধাবন)</mark>
স্থির বস্তুকে গতিশীল বা গতিশীল বস্তুর অবস্থার পরিবর্তন ঘটায় বা ঘটাতে চেষ্টা করে তাকে বল বলে।
ণ গতির কারণ। ত্বরণের দিক নীট বলের দিক বরাবর
পাউন্ডাল বল এর সংজ্ঞা দাও <i>৷[রা. বো. ১৬]</i>
এক পাউন্ড ভরের কোনো বস্তুর ওপর এক ফুট/সেকেন্ড ^২ ত্বরণ সৃষ্টি করতে যে বল প্রযুক্ত হয় তাকে এক পাউন্ডাল
বল বলা হয়।
<u></u>

১. ভরকে জাড্যভর বলা হয় কেন? ব্যাখ্যা কর।

[সি. বো. ২০১৯]

'কোনো বস্তুরি মধ্যকার মোট পদার্থের পরিমাপকে এর ভর বলে। ভর দুই প্রকার: অভিকর্ষীয় ভর ও জাড্যভর। দাড়িপাল্লা বা নিক্তির সাহায্যে আমরা যে ভর মাপি, সেটি হলো অভিকর্ষীয় ভর। কিন্তু যে স্থানে অভিকর্ষ নেই, (যেমন— মহাশূন্যে) সেখানে অভিকর্ষীয় ভরের বিষয়টি অকার্যকর হয়ে পড়ে। তখন বস্তুর ভর মাপা হয় F=ma সূত্র ব্যবহারে; অর্থাৎ কোনো বস্তুতে নির্দিষ্ট মানের বল প্রয়োগ করে এতে সৃষ্ট ত্বরণ মাপা হয়। তখন F ও a এর অনুপাতের দ্বারা বস্তুর জাড্যভর মাপা হয়। তবে যেকোনো বস্তুর বৈশিষ্ট্য এমন যে, এর অভিকর্ষীয় ভর ও জাড্যভর সর্বদা সমান হয়। তাই ভরকে জাড্যভর বলা হয়।

01. পাশের চিত্রে কখন বল প্রয়োগ করা হয়েছে?

A. $0 < t < t_1$

B. t₁ ও t₂ মুহুর্তে

C. $t_1 < t < t_2$

D. $0 < t < t_1$ এবং $t_2 < t < t_3$

[S.U: 10-11]

নিউটনের গতিসূত্রের সীমাবদ্ধতা সমূহ:-

- ভর খুবই কম যেমন: ইলেকট্রন, প্রোটন, নিউট্রন ইত্যাদির ক্ষেত্রে নিউটনের গতিসূত্র প্রযোজ্য নয়।
- কণার বেগ যখন অনেক বেশি হয়, অর্থাৎ প্রায় আলোর বেগের কাছাকাছি হয় ফলে গতিশীল অবস্থায় তরঙ্গরূপ আচরণ করে। এ সকল বস্তুর ক্ষেত্রে নিউটনের গতিসূত্র প্রযোজন্য নয়। এসব ক্ষেত্রে আপেক্ষিক তত্র প্রযোজ্য।
- আবার বস্তুর ত্বরণ যখন খুব কম ($< 10^{-10}~{
 m ms}^{-2}$) হয় তখন নিউটনের গতিসূত্র প্রয়োগে ভালো ফল পাওয়া যায় না। এক্ষেত্রে বল তুরণের বর্গের সমানুপাতিক হয়। নিউটনের গতিসূত্র কেবলমাত্র বল তুরণের সমানুপাতিক ক্ষেত্রে প্রযোজ্য।
- শুধুমাত্র জড় প্রসঙ্গ কাঠামো (স্থির কাঠামো, সহযোগ গতিশীল প্রসঙ্গ কাঠামো) এর জন্য নিউটনীয় বলবিদ্যা প্রযোজ্য। ঘূর্ননরত কাঠামো, তড়িত কাঠামো এর জন্য প্রযোজ্য নয়।

নিউটনের গতিসূত্রের সীমাবদ্ধতা

সীমাবদ্ধতা	ব্যাক্ষা করা যায় যে তত্ত্ব দিয়ে
অতি অল্প ভর	কোয়ান্টাম বলবিদ্যা
অতি উচ্চ বেগ	আপেক্ষিকতা তত্ত্ব
প্রবাহীর গতি তরল, গ্যাস	প্রবাহী বলবিদ্যা
চার্জের গতি, অণুর গতি	কুলম্বের সূত্র, লরের সূত্র

ঘাত বলঃ

সংজ্ঞাবি. বো. ১৬; চ. বো. ১৫]ঃ যে বলের মান খুব বেশি, ক্রিয়াকাল খুব কম তাকে ঘাতবল বলে

উদাঃ ক্রিকেট বলের উপর ব্যাট কর্তৃক প্রযুক্ত বল, ট্রেনে ট্রেনে সংঘর্ষ

বলের ঘাত: [কু. বো. ১৯; য. বো. ১৭] সংঘাত বল ও ক্রিয়াকালের গুণ ফল $J=F \times \Delta t$

মাত্রাঃ MLT⁻¹ এককঃ kgms⁻¹

বলের ঘাত= ভর বেগের পরিবর্তন

J= Δp=mv-mu

বলের ঘাতের বৈশিষ্ট্য কি কি?[কু. বো. ১৫] (অনুধাবন)

২. বলের ঘাত ভরবেগের পরিবর্তনের সমান— মাত্রা সমীকরণের সাহায্যে ব্যাখ্যা কর।

[কু. বো. ১৫]

বলের ঘাত = $F \times t$ = এবং ভরবেগের পরিবর্তন = $m\Delta v$

বলের ঘাতের মাত্রা = F এর মাত্রা \times t এর মাত্রা = $MLT^{-2} \times MLT^{-1}$

ভরবেগের পরিবর্তনের মাত্রা = m এর মাত্রা $imes \Delta v$ এর মাত্রা $M imes LT^{-1}$

সুতরাং বলের ঘাত ভরবেগের পরিবর্তনের সমান।

নিউটনের গতিসত্র গুলোর মধ্যকার সংগতি:

২য় সূত্র হতে ১ম সূত্র (অনুধাবন)	$F=ma=rac{m(v-u)}{t}$ যদি $F=0$ হয়, $0=ma=rac{m(v-u)}{t}\Rightarrow v=u$ অর্থাৎ নীটবল শূন্য হলে বস্তুর বেগের কোন পরিবর্তন হয় না।	
	ঘটনাঃ বাস চলা শুরু করলে আরোহীর পিছনে হেলে পড়া	
	৩য় সূত্রের মাধ্যমে	১ম সূত্রের মাধ্যমে
১ম ও ৩য় সূত্রের সঙ্গতি	বাস চলা- ক্রিয়া	জড়তা ধর্ম ব্যবহার করে
	আরোহীর পিছে হেলে পড়া- প্রতিক্রিয়া	
২য় ও ৩য় সূত্রের সংগতি	ঘাত এর ধারনা এসেছে ২য় সূত্র হতে। $A \ earline{B}$ সংঘর্ষ হল। B	এর উপর A কর্তৃক প্রযুক্ত বলের কারণে ঘাত
	সৃষ্টি হয়। ${f A}$ এর উপর ${f B}$ কর্তৃক প্রযুক্ত বলের কারণে প্রা	তঘাত সৃষ্টি। ঘাত ক্রিয়া হল প্রতিঘাত

৩. ক্রিকেট খেলায় ক্যাচ ধরার সময় খেলোয়াড় হাতটাকে পিছনে টেনে নেয় কেন?

রা. বো. ১৯

F=ma সূত্রানুসারে, ত্বরণ কম হলে প্রযুক্ত বল কম হবে। বেগের পরিবর্তন ধ্রুব হলে, এই পরিবর্তনে যত বেশি সময় নেওয়া হবে, ত্বরণের মান তত কম হবে। তাই ক্রিকেট খেলায় ক্যাচ ধরার সময় খেলোয়াড় হাতটাকে পিছনে টেনে নেয়, যাতে বেগের নির্দিষ্ট পরিবর্তনে (যেমন 5 ms^{-1} হতে $0ms^{-1}$) বেশি সময় লাগে। ফলে তুরণ এবং প্রতিক্রিয়া বল কম মানের হয়।

8. বলের একককে মৌলিক এককের মাধ্যমে প্রকাশ কর।

চি.বো.১৫

বল = ভর
$$\times$$
 ত্বরণ = ভর \times সময় হ

∴ নিউটন (বলের একক) = কেজি
$$\times \frac{$$
মিটার $}{ \overline{ সময়}^{ 2} } = কেজি \times মিটার/সে. $^{ 2}$$

বা
$$N = kg.m.s^{-2}$$

অনুধাবন: গাড়ির টায়ারের বাইরের দিক খাঁজ যুক্ত করে তৈরি করা হয় কেন?

গাড়ির টায়ারের বাইরের দিকে খাঁজযুক্ত করে তৈরি করা হয়। কারণ এতে গাড়িটি এর সঠিক গতির জন্য প্রয়োজনীয় ঘর্ষণ বল লাভ করে। এই খাঁজের ফলে টায়ার রাস্তাকে যথাযথভাবে আঁকড়ে ধরতে সমর্থ হয়। এভাবে আঁকড়ে ধরতে না পারলে গাড়িটি স্থিতিশীল অবস্থা হতে গতিশীল হতে পারত না। আবার গতিশীল অবস্থায় ব্রেক করা হলে টায়ার পিছলে যেত। তাই গাড়িটিকে যথাযথভাবে চালনা করার জন্য টায়ারের বাইরের দিক খাঁজযুক্ত করে তৈরি করা হয়।

অনুধাবন :মাঝে মাঝে বোলার কর্তৃক নিক্ষিপ্ত ক্রিকেট বল নিক্ষেপ বেগের চেয়ে বেশি বেগে ভূমি থেকে প্রতিফলিত হয়– ব্যাখ্যা কর। ভূমি স্পর্শ করার সময় যদি ক্রিকেট বলটির স্পিন (spin) বা ঘূর্ণন থাকে তবে বলের স্পিন বা ঘূর্ণন গতিশক্তি ওর রৈখিক গতিশক্তির সঙ্গে যুক্ত হয়। ফলে সম্মিলিত গতিশক্তির জন্য ক্রিকেট বলটি নিক্ষেপ বেগ অপেক্ষা বেশি বেগে ভূমি থেকে প্রতিফলিত হয়।

রকেটের গতি:

জ্বালানী নির্গমনের হার বেশি হলে,ত্বরণ বেশি হয়। রকেটের ভর বেশি হলে,ত্বরণ কম হয়।

রকেটের জ্বালানী তরল হাইড্রোজেন এবংজ্বালানী দহনের জন্য অক্সিজেন ব্যবহৃত হয়।

ভরবেগঃ	সঙ্গা: ভর ও বেগের গুণফল p=mv একক kgms ⁻¹ মাত্রাঃ MLT ⁻¹
ভরবেগের সংরক্ষণ/ভরবেগের নিত্যতা সূত্রঃ	বাহ্যিক বল প্রযুক্ত না হলে, সংঘর্ষের পূর্বে ও পরে ভরবেগের সমষ্টি সমান থাকে।
[য. বো. ১৬]	ঘটনার আগের ভরবেগ = ঘটনার পরের ভরবেগ
অনুধাবনঃ ভরবেগের সংরক্ষণসূত্রের মাধ্যমে	১। বন্দুক থেকে গুলি ছোড়ার পর বন্ধুকের পশ্চাত বেগ
ব্যাক্ষা কর	২। নৌকা থেকে লাফ দেয়া ৩। রকেটের চলাচল

অনুধাবনমূলক: জানালের কাচে ঢিল মারলে কাচটি টুকরো হয়ে ভেঙ্গে যায়; কিন্তু বন্দুকের গুলি দিয়ে ওই অংশে আঘাত করলে একটি ছোট গর্ত হয় কেন? ব্যাখ্যা কর।

একটি গুলির গতিবেগ ঢিলের গতিবেগ অপেক্ষা অনেক বেশি। ঢিলটির গতিবেগ কম হওয়ায় ঢিলের সঙ্গে কাচের সংঘর্ষের সময় অপেক্ষাকত বেশি হয়। ফলে এর গতিশক্তি সমগ্র কাচে ছড়িয়ে পড়ে। এই কারণে, কাচটি টুকরো টুকরো হয়ে ভেঙ্গে যায়। পক্ষান্তরে গুলির গতিবেগ অনেক বেশি হওয়ায় কাচের সঙ্গে গুলির সংঘর্ষের সময় অনেক কম হয়। তাই এটির গতিশক্তি শুধুমাত্র সংঘর্ষের জায়গায় সীমাবদ্ধ থাকে। ফলে কাচে গুলির পরিমাণ অনুযায়ী ছোট গর্ত হয়।

সমতল হতে উচু রাস্প্রয় রিক্সা চালিয়ে ওঠার সময় আরোহী সামনের দিকে ঝুকে বসলে রিক্সা আগের চেয়ে বেশি গতিতে চলে কেন? অতিওজনহীনতা বলতে কী বুঝ?

লিফট অভিকর্ষজত্বরণ অপেক্ষা বেশি তুরণে নিচেরদিকে গতিশীল হলে আরোহী বা বস্তুর সাথে বস্তুর মেঝের সংযোগ বিচ্ছিন্ন হয় এবং ব্যাক্তি উর্ধমুখীবল অনুভব করে । ব্যাক্তির মাথা লিফট এর ছাদ স্পর্শ করে । এই অবস্থাকে অতিওজনহীনতা বলে । (Superweightlessness)

			Keai & Frobable	Questions		
01.	চারটি মৌলিক বলের ম	ধ্য সবচেয়ে শক্তিশালী হয়ে	₹- (SUST 07-08)			
	A. ইলেকট্রোস্ট্যাটিক ব	ল B. অভিকৰ্ষ বল	C. দুৰ্বল নি	উক্লিয় বল D. নিউব্লি	ম্যার বল	
02.	মহাকর্ষীয় বল সবল নিউ	ক্লীয় বলের তুলনায় কতগু	ন তীব্ৰ ?			
	(a) 10^{42}	(b) 10^{30}	(c) 10^{-42}	(d) 10^{40}	0	
03.	39.2N ভরের একটি বস্তুর	র উপর হঠাৎ বল প্রয়োগ কর	ায় বস্তুটি 4ms ⁻² সমত্বরণে	ণ যাত্রা শুরু করে। বস্তুটির উপর	া প্রযুক্ত বলের মান–	
	A. 0	B. 39.2N		D. 78.4	-N	
04.	একটি বস্তু 39.2N ওজন	মুক্ত ভাবে পড়ার সময় এর গ	গতির বিপরীতে 39.2N ব	ন প্রয়োগ করা হল। বস্তুটি–		
	A. থেমে যাবে	-1		াকবে D. সমবে		
05.		র দুটি ভিন্ন দিক হতে 10	N ও 20N মানের দুটি ব	বল প্রযুক্ত হওয়ায় বস্তুটি সমবে	াগে চলতে থাকে। বস্তুটির উ	গপর প্রযুক্ত
	বলগুলোর লব্ধি–					
	A. 30 N	B. 10 N	C. 0 N	D. ∝		
Ans	wer Key 1.D	2.C 3.C	4.D 5.C			

কৌণিক বেগ	কোনো বস্তু প্রতি একক সময়ে যে কৌণিক সরণ অতিক্রম করে তাকে কৌণিক ভরবেগ বলে।
[ঢা , রা. য. সি. দি. বো. ১৮]	
কৌণিক ভরবেগ	ঘূর্ণায়মান বস্তুর ঘূর্ণন অক্ষের সাপেক্ষে ঘূর্ণন জড়তা বা জড়তার ভ্রামক ও কৌণিক বেগের গুণফলকে ঐ
[ঢা. বো. ১৭; ব. রা. বো. ১৫]	অক্ষের সাপেক্ষে ঘূর্ণায়মান বস্তুর কৌণিক ভরবেগ বলে।
	ঘূর্ণনরত বস্তুর কৌণিক ভরবেগ কোন শর্তে শূন্য হয়— ব্যাখ্যা কর ॥দি. বো. ২০১৯।
	আমরা জানি, ঘূর্ণনরত কোনো কণার কৌণিক ভরবেগের মান, $L = ext{mvr sin} heta$ । এখন,
	বাস্তবিকভাবে কোনো একটি অক্ষের সাপেক্ষে ঘূর্ণনরত কণার ভর (m), রৈখিক বেগ (v), ঘূর্ণন
	অক্ষ সাপেক্ষে কণাটির অবস্থান ভেক্টরের মান (\mathbf{r}) এবং $ec{\mathbf{r}}$ ও $ec{\mathbf{v}}$ এর মধ্যবর্তী কোণ $ heta_0$ এদের
	কোনোটিই শূন্য হয় না বিধায় কৌণিক ভরবেগ শূন্য হওয়া সম্ভব না। তবে অতিকায় ক্ষুদ্র কোনো
	কণা যদি নিজ অক্ষের সাপেক্ষে আবর্তন করে, সেক্ষেত্রে r এর মান শূন্যের কাছাকাছি হওয়ায় এর
	কৌণিক ভরবেগের মানও শূন্যের কাছাকাছি হলেও শূন্য হয় না।
কৌণিক ভরবেগ এর	নিজ অক্ষের চারদিকে ঘূর্ণায়মান কোনো ব্যক্তির জড়তার ভ্রামক অর্ধেক হলে কৌণিক গতি দ্বিগুণ হয়—
সংরক্ষণ সূত্র	এর তাৎপর্য লিখ।
	কৌণিক ভরবেগের সংরক্ষণশীলতার সূত্রানুসারে, $L_1=L_2$ বা, $I_1\omega_1=I_2\omega_2$ বা, $\dfrac{\omega_1}{\omega_2}=\dfrac{I_1}{I_2}$
	এখন, $I_2=rac{I_1}{2}$ হলে $\therefore rac{\omega_2}{\omega_1}=rac{I_1}{I_1/2}=2$ বা, $\omega_2=2\omega_1$
	সমকৌণিক বেগে ঘূর্ণায়মান বস্তুও জড়তার ভ্রামক তার কৌণিক ভরবেগের সমান [চা. বো. ১৫]

	আমরা জানি, ঘূর্ণন গতির ক্ষেত্রে, কৌণিক ভরবেগ $=$ জড়তার দ্রামক $ imes$ কৌণিক বেগ বা $L=\mathrm{I}\omega$
	কৌণিক বেগ একক মানের অর্থাৎ $\omega = \!\! I$ হলে, $L = I imes I = I$
	সুতরাং একক সমকৌণিক বেগে ঘূর্ণনরত কোনো বস্তুর জড়তার ভ্রামক এর কৌণিক ভরবেগের
	সমান।
কৌণিক ত্বরণ	সময়ের সাপেক্ষে বস্তুর কৌণিক বেগের বৃদ্ধির হারকে কৌণিক ত্বরণ বলে। কোনো বস্তুর কৌণিক
[য. বো. ১৭]	ত্বরণ $3{ m rads}^{-2}$ বলতে বুঝায় আবর্তনরত বস্তুটির প্রতি সেকেন্ডে কৌণিক বেগের পরিবর্তন হয়
	3rads^{-2}

৫. বৃত্তাকার পথে আবর্তনরত কোন দৃঢ় বস্তুর প্রত্যেকটি কণার গতিশক্তি সমান হলেও রৈখিক গতিশক্তি ভিন্ন ভিন্ন হয় কেন? [ঢা. বো. ১৯] বৃত্তাকার পথে আবর্তনরত কোনো বস্তুর দুই ধরনের গতিশক্তি বিদ্যমান; রৈখিক গতিশক্তি এবং কৌণিক গতিশক্তি।

কোনো বস্তুর রৈখিক গতিশক্তি,
$$E_{t}=\frac{1}{2}mv^{2}$$
 এবং এর কৌণিক গতিশক্তি, $E_{c}=\frac{1}{2}I\omega^{2}$

প্রথম সমীকরণে গতিশক্তি রৈখিক বেগ (v) এর উপর এবং দ্বিতীয় সমীকরণে গতিশক্তি কৌণিক বেগ (ω) এর উপর নির্ভরশীল। এখন, কোনো বস্তুর ঘূর্ণনের ফলে বস্তুর প্রতিটি কণার কৌণিক সরণ সমান হয় ফলে প্রতিটি কণার কৌণিক বেগ সমান হয় অর্থাৎ প্রতিটি কণার গতিশক্তি সমান হয়।

অপরদিকে, ঘূর্ণনের ফলে বস্তুর প্রতিটি কণার ব্যাসার্ধ-ভেক্টরের মান সমান হয় না। ফলে প্রতিটি কণার রৈখিক বেগ সমান হয় না। তাই আবর্তনরত বস্তুর ভিন্ন কণার রৈখিক গতিশক্তি ভিন্ন হয়।

জডতার ভ্রামক:

	কণার ভর ও ঘূর্ণন অক্ষ হতে দূরত্বের বর্গের গুণফলকে কণার জড়তার দ্রামক বলে।	
সংজ্ঞা	বস্তু মধ্যস্থিত কণা সমূহের জড়তার ভ্রামকের সমষ্টিকে বস্তুর জড়তার ভ্রামক বলে। $I{=}mr^2$	
চি. বো. ১৯; কু. চ. ব.	এককঃ kgm^2 মাত্রাঃ ML^2	
বো. ১৮]	"জড়তার ভ্রামক 50kgms²'' বলকে কি বুঝ? [রা. বো. ১৭]	
	কোনো নির্দিষ্ট অক্ষের সাপেক্ষে বস্তুর জড়তার ভ্রামক $50 { m kgm}^{-2}$ বলতে বুঝায় বস্তুর প্রত্যেকটি কণার ভর এবং এ	
	অক্ষ থেকে তাদের প্রত্যেকের লম্ব দূরত্বের বর্গের গুণফলের সমষ্টি $50 { m kgm}^2$ ।	
Note:	রেখিক গতিতে ভরের যে ভূমিকা কৌণিক গতিতে সেই ভূমিকা জড়তার ভ্রামকের ।	
	অক্ষ হতে এমন একটি দুরত্ব আছে যেখানে বস্তুর সমস্ত ভর কেন্দ্রীভূত আছে বলে মনে করলে মোট জড়তার শ্রামকের কোন	
চক্রগতির ব্যাসার্ধ	পরিবর্তন হয় না। তাকে চক্রগতির ব্যাসার্ধ বলে। $ m I{=}mk^2$	
	মাত্রাঃ L এককঃ m	
	একটি ঘূর্ণায়মান বস্তুর চক্রগতির ব্যাসার্ধ 0.15m বলতে কী বুঝায়? [ঢা. বো. ১৯]	
	কৌনো ঘূর্ণায়মান বস্তুর চক্রগতির ব্যাসার্ধ 0.15m বলতে বুঝায় ঐ বস্তুর অক্ষ হতে 0.15m দূরে একটি বিন্দুতে	
	বস্তুটির সমগ্র ভর পুঞ্জীভূত আচে ধরে জড়তার ভ্রামক হিসেব করলেই ঐ অক্ষের সাপেক্ষে সমগ্র বস্তুটির জড়তার	
	ভ্রামক পাওয়া যাবে	

৬. ভর ও জড়তার ভ্রামকের মধ্যে পার্থক্য ব্যাখ্যা কর।

[ঢা. বো. ১৫]

ভর হচ্ছে বস্তুর জড়তার পরিমাপ। বস্তু যে ধর্মের কারণে কোনো নির্দিষ্ট অক্ষের সাপেক্ষে তার কৌণিক গতির পরিবর্তনে বাধা দেয় তাকে তার ঘূর্ণনে জড়তা বা দ্রামক বলে। অর্থাৎ রৈখিক গতির ক্ষেত্রে ভর যে ভূমিকা পালন করে কৌণিক গতির ক্ষেত্রে ঘূর্ণন জড়তা বা জড়তার দ্রামক সে ভূমিকা পালন করে। কোনো বস্তুর ভর সকল ক্ষেত্রে ধ্রুব অপরপক্ষে নির্দিষ্ট অক্ষের সাপেক্ষে কোনো বস্তুর ঘূর্ণন জড়তা নির্দিষ্ট কিন্তু ভিন্ন অক্ষের সাপেক্ষে ভিন্ন ভিন্ন।

৭. জড়তার ভ্রামকের সাথে চক্রগতির ব্যাসার্ধের সম্পর্ক ব্যাখ্যা কর।

[চ.বো.১৬]

একটি বস্তুর সমগ্র ভরকে যদি এমন একটি বিন্দুতে পুঞ্জীভূত কল্পনা করা যায়, যেন একটি নির্দিষ্ট অক্ষের সাপেক্ষে বস্তুটির ঘূর্ণন জড়তা বা জড়তার ভ্রামকের কোনো পরিবর্তন না হয়, তখন ঐ অক্ষ হতে উক্ত বিন্দুর দূরত্বকে চক্রগতির ব্যাসার্ধ বলে। M ভরের একটি বস্তুর নির্দিস্ট অক্ষের সাপেক্ষে চক্রগতির ব্যাসার্ধ K হলে ঘূর্ণন জড়তা বা জড়তার ভ্রামক- $1=MK^2$

একটি ঘূর্ণন জড়তা বা জড়তার ভ্রামকের কোনো নির্দিষ্ট অক্ষের সাথে সাপেক্ষে চক্রগতির ব্যাসার্ধের সম্পর্ক।

ঘূর্ণন গতির ক্ষেত্রে জড়তার ক্ষেত্রে ভ্রামক বস্তুর ভরের সমতুল্য- ব্যুখ্যা কর।

[কু. বো. ১৭]

বস্তু তার গতীয় অবস্থা অক্ষুণ্ণ রাখতে চাওয়ার ধর্ম হচ্ছে জড়তা। ঠিক তেমনি কোনো নির্দিষ্ট অক্ষের সাপেক্ষে বস্তুর ঘূর্ণন গতীয় অবস্থা অক্ষুণ্ণ রাখতে চাওয়ার ধর্ম হচ্ছে ঐ অক্ষের সাপেক্ষে ঘূর্ণন জড়তা ঐ অক্ষের বা জড়তার দ্রামক। জড়তার জন্য বস্তু তার ওপর বল প্রয়োগ বেগের পরিবর্তনকে বাধা দেয়, নির্দিষ্ট অক্ষের সাপেক্ষে ঘূর্ণন জড়তা ঐ অক্ষের সাপেক্ষে তার উপর টর্ক প্রয়োগে কৌণিক বেগের পরিবর্তন বাধা দেয়। জড়তার পরিমাপকে ভর বলে, ঘূর্ণন জড়তার পরিমাপকে ঘূর্ণন ভরও বলা যায়। রৈখিক গতির ক্ষেত্রে ভর ভূমিকা পালন করে ঘূর্ণন গতির ক্ষেত্রে ঘূর্ণন জড়তা সেই ভূমিকা পালন করে। অতএব, বলা যায় যে, ঘূর্ণন গতির ক্ষেত্রে জড়তার দ্রামক ভরের সমতুল্য।

জডতার ভ্রামক নির্ণয়:

अञ्चात्र यामक । भग	A•		
সমান্তরাল অক্ষ উপপাদ্য	কোন অক্ষের (A) সাপেক্ষে কোন সমতল পাতলা পাতের জড়তার ভ্রামক, পাতটির ভারকেন্দ্রগামী এবং উক্ত অক্ষের সমান্তরাল কোন অক্ষের (B) সাপেক্ষে জড়তার ভ্রামক এবং পাতটির সমস্ত ভর ভারকেন্দ্রে জমা আছে মনে করে A এর সাপেক্ষে জড়তার ভ্রামক-এ দু'য়ের সমষ্টির সমান।	$I_{\mathbf{Z}} = I_{\mathbf{X}} + I_{\mathbf{Y}}$ for any planar object	$I_{Z} = \frac{1}{2}MR^{2}$ Since by this theorem $I_{Z} = I_{X} + I_{Y}$ and since the x and y axes are identical by symmetry $I_{X} = I_{Y} = \frac{1}{4}MR^{2}$
লম্ব অক্ষ উপপাদ্য	কোন সমতল পাতলা পাতের লম্বদিকে অবস্থিত কোন অক্ষের সাপেক্ষে উক্ত পাতের জড়তার দ্রামক, পাতের সমতলে অবস্থিত, অভিলম্বের পাদবিন্দু হতে অংকিত এবং পরস্পর লম্ব দুটি অক্ষের সাপেক্ষে জড়তার দ্রামকদ্বয়ের সমষ্টির সমান।	Parallel D A Figure 14.11 According to the parallel-axis theorem, $I_{DD} = I_{AA} + mr_c^2$.	Axis Theorem $I = I_c + mr_c^2$ $I_{DD} = I_{AA} + mr_c^2 = \frac{1}{2}mr^2 + mr_c^2$ r_c = shortest distance between the two axes How to calculate the moment of inertia about EE – an axis parallel to BB through C? Ozkaya & Nordin

টৰ্ক :

 $ec{ec{ au}} = ec{r} imes ec{F} = rfsin heta$ টক্=প্রযুক্ত বলimesবলের বাহু

সংজ্ঞাঃ	বলের ভ্রামক কে টর্ক ব	ালে। প্রযুক্ত বল ও ঘূর্ণন বিন্দু	বা অক্ষ হতে বলের ক্রিয়ারেখার লম্ব দূরত্বের
[চ. সি. য. বো. ১৯; ঢা. সি. দি. য. বো. ১৮;	গুণফল		
কু. সি. চ. বো. ১৭; সি. বো. ১৬]	মাত্রাঃ ML ² T ⁻²	এককঃ Nm বা J	ঘূর্ণন সৃষ্টির কারণ টর্ক

প্রশ্নঃ টর্কের তাতপর্য লিখ ? দেখাও যে টর্ক কৌণিক ভরবেগের পরিবর্তনের হারের সমান । নিউটনের কৌণিক গতিসূত্র ৩ টি লিখ

কেন্দ্রমুখী ত্বরণ	বৃত্তাকার পাথে ঘূর্ণায়মান কোনো বস্তুর কেন্দ্র বরাবর যে তুরণ কাজ করে তাকে কেন্দ্রমুখী তুরণ বলে।
দি. বো. ১৯; কু. বো. ১৭]	\(\frac{1}{2}\cdots\cdot\cdots\cdots\cdots\cdots\cdot\cdots\cdots\cdots\cdot\cdots\cdots\cdot\cdots\cdot\cdots\cdot\cdots\cdot\cdots\cdot\cdot\cdots\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot
কেন্দ্রমুখী বল	বৃত্তপথে ঘূর্ণায়মান বস্তুর কেন্দ্র অভিমুখে সর্বদা যে বল ক্রিয়া করে তাকে কেন্দ্রমুখী বল বলে ।
	বৃত্তাকার পথে ঘূর্ণনশীল বস্তুর কেন্দ্রগামী বল ব্যাসার্ধের পরিবর্তনের সাথে পরিবর্তিত হয়— ব্যাখ্যা কর।
	আমরা জানি, কেন্দ্রমুখী বল, $F=m\omega^2 r$ । এখানে m বস্তুর ভর, ω কৌণিক বেগ এবং r
	বৃত্তাকার পথের ব্যাসার্ধ। একটি নির্দিষ্ট ভরের বস্তু একটি নির্দিষ্ট কৌণিক বেগে বৃত্তাকার পথে
	পরিভ্রমণ করলে, $F\propto r$ অর্থাৎ বৃত্তাকার পথে ঘূর্ণনশীল বস্তুর কেন্দ্রমুখী বল ব্যাসার্ধের
	পরিবর্তনের সাথে পরিবর্তিত হয়।
	পৃথিবীর ঘূর্ণনের কারণে আমরা ছিটকে পড়ি না কেন? [য. বো. ১৭]
	পৃথিবী ও বস্তুর মধ্যে পারস্পরিক বলই অভিকর্ষ বল। অভিকর্ষ বলের কারণেই আমরা পৃথিবীতে
	স্থির আছি। নতুবা আমরা পৃথিবীতে ভেসে থাকতাম। অন্যদিকে, পৃথিবীর ঘূর্ণনের জন্য সৃষ্ট
	কেন্দ্রমুখী বল অভিকর্ষ বলের সমান ও বিপরীতমুখী হওয়ায় এই বল দুটি পরস্পরের ক্রিয়াকে
	নাকট করে দেয়। তাই পৃথিবীর ঘূর্ণনের কারণে আমরা ছিটকে পড়ি না।

কেন্দ্রবিমুখী বল কাল্পনিক বল :

❖কেন্দ্রবিমুখী বল একটি কাল্পনিক বল । স্পর্শকীয় বলের কারণে বস্তু স্পর্শক বরাবর চলে যেতে চায় ।কিন্তু কেন্দ্রমুখী বল বস্তুকে কক্ষপথে ধরে থাকে । তাই বস্তু বৃত্তপথে ঘুরতে থাকে ।

❖কোন বস্তু বৃত্তপথে ঘুরতে কেন্দ্রমুখী বলের প্রয়োজন হয়। আর কেন্দ্রমুখী বল আপনা-আপনি তৈরি হয় না । কাউকে না কাউকে এই কেন্দ্রমুখী বলের যোগান দিতে হয় ।

ঘূর্ণন	কেন্দ্রমুখী বলের যোগান দাতা
সূর্যের চারদিকে পৃথিবীর ঘূর্ণন	সূর্য ও পৃথিবীর মধ্যকার মহাকর্ষ বল
সমতল রাস্তায় গাড়ির বাক নেয়	পথ ও বাহনের (গাড়ির) ঘর্ষণ বল
আঙ্গুলে রশি বেঁধে বস্তুকে ঘোরানো	আঙ্গুল
ব্যাংকিং যুক্ত রাস্তার গাড়ির বাক	
সাইকেল আরোহীর বাক নেয়া	

- ব্যাংকিং কোণ ঃ বক্রপথে চলার সময় কেন্দ্রমুখী বলের যোগান দেওয়ার জন্য যানবাহনকে যে কোণে উল্লম্বের সাথে কেন্দ্রের দিকে হেলতে হয়
 তাকে ব্যাংকিং কোণ বলে।
- ২. রাষ্টার ব্যাংকিংঃ

বৃত্তাকার পথে গাড়ি টার্ন নেওয়ার জন্য কেন্দ্রমুখী বলের প্রয়োজন। এই বলের যোগান দেওয়ার জন্য প্রতিটি বাঁকে রাস্তার বাইরের দিক ভিতেরর দিকের চেয়ে উঁচু করা হয়। অর্থাৎ রাস্তাটি বাঁকের কেন্দ্রের দিকে একটু ঢালু করা থাকে। একে রাস্তার ব্যাংকিং বলে।

৯. রাম্ভার বাকে ব্যাংকিং করা হয় কেন? ব্যাখ্যা কর।

[চ. বো. ১৭; ঢা. বো. ১৬]

কোনো সাইকেল আরোহী বা কোনো দৌড়বিদকে যখন বাঁক নিতে হয় তখন সাইকেলসহ আরোহীকে বাঁকের ভিতরের দিকে অর্থাৎ বৃত্তাকার পথের কেন্দ্রের দিকে কাত হয়ে বাঁক নিতে হয়। সোজাভাবে বাঁক নিতে গেলে উল্টে পড়ে যাওয়ার সম্ভাবনা থাকে। এর কারণ হলো, বৃত্তাকার পথে সাইকের চালানোর জন্য বৃত্তাকার পথের কেন্দ্রের দিকে অনুভূমিক বরাবর একটা একটা কেন্দ্রমুখী বলের প্রয়োজন হয়। এ সময় উল্লেম্ব তলের সাথে সাইকেল আরোহী বা দৌড়বিদ যে কোণে হেলে থাকেন তাকে ব্যাংকিং কোণ বলে। তবে চার চাকার যানবাহনের পক্ষে কাত হওয়া সম্ভব নয়। তাই চার রাস্তার মোড়ে বা বাঁকে রাস্তা সামান্য কাত করে তৈরি করা হয়। রাস্তার উক্ত ঢালুতা বা আনতি কোণকে এর ব্যাংকিং বলে। এর উদ্দেশ্য হলো, মোড় বা বাঁক ঘোরার সময় প্রয়োজনীয় কেন্দ্রমুখী বলের যোগান দেওয়া।

১০. রাস্তার বাঁকযুক্ত অংশ কোনদিকে কত কোণে ঢালু রাখা হয় তা কারণসহ ব্যাখ্যা কর। σ নাজার বাঁকযুক্ত অংশ বাইরের দিকে উঁচু বা ভেতরের দিকে ঢালু রাখা হয় যাতে করে গাড়ি বাঁক নেওয়ার সময় প্রয়োজনীয় কেন্দ্রমুখী বল সৃষ্টি করতে পারে এবং কেন্দ্রবিমুখী বলের কারণে বাইরের দিকে ছিটকে না পড়ে। বাঁকের ব্যাসার্ধ r, গাড়ির বেগ v এবং ব্যাংকিং কোণ θ হলে, আমরা পাই, $\tan\theta = \frac{v^2}{rg}$; \therefore $\theta = \tan^{-1}\!\left(\frac{v^2}{rg}\right)$ অর্থাৎ রাস্তার বাঁকযুক্ত অংশে বাইরের দিক থেকে ভেতরের দিকে $\tan^{-1}\!\left(\frac{v^2}{rg}\right)$ কোণে ঢালু রাখা হয়।

$$\rightarrow \tan \theta = \frac{v^2}{rg}$$
 Here, $\tan \theta \alpha \frac{1}{r}$

- ♦ ব্যাসার্ধ কম→বাক বেশি→বেশি কোণে হেলতে হবে।

ঘর্ষন বলঃদুটি তলের স্পর্শতলে বস্তুর গতির বিপরীতে যে বল তৈরি হয়।

ঘর্ষনের প্রকারভেদঃ		
স্থিতি ঘৰ্ষণ	দুটি বস্তু একে অন্যের সাপেক্ষে স্থির থাকা অবস্থায় যে ঘর্ষণ বল তৈরি হয়।	
(Static Friction) 8	উদাহরণঃ - পা কিংবা জুতার তলা মাটিতে স্থির থাকা।	
গতিঘৰ্ষণ	একটি বস্তুর সাপেক্ষে অন্য বস্তু যখন চলমান হয় তখন যে ঘর্ষণ বল তৈরি হয়।	
(Sliding Friction) 8	উদাহরণঃ গতিশীল সাইকেলের ব্রেক চেপে ঘুরন্ত চাকাকে থামানো।	
আবর্তঘর্ষণ	একটি তলের উপর দিয়ে যখন একটি বস্তু ঘুরতে থাকে/গড়িয়ে চলে তখন যে ঘর্ষণ বল তৈরি হয়।	
(Rolling Friction) 8	উদাহরণঃ চাকা লাগানো স্যুটকেস টানা।	
প্রবাহীঘর্ষণ	বস্তু যখন তরল বা বায়বীয় পদার্থের মধ্য দিয়ে যায় তখন যে ঘর্ষণ বল তৈরি হয়।	
(Fluid Friction) 8	উদাহরণঃ প্যারাসুট দিয়ে প্লেন থেকে ঝাপিয়ে পরা	

শ্মে অধ্যায়

কাজ,শক্তি ও ক্ষমতা (Work, Power & Energy)

Part:01 তত্ত্বীয় আলোচনা

কাজ	বল ও বলের অভিমুখে সরণের উপাংশের স্কেলার গুণফলকে কাজ বলে		
	মাত্রাঃ $[ML^2T^{-2}]$ এককঃ $\mathrm{J,Nm}$		
পরিবর্তনশীল বলঃ	পরিবর্তনশীল বলঃ যদি বলের মান বা দিক বা উভয়েই সময়ের সাথে সাথে পরিবর্তিত হয় তবে উক্ত বলকে		
	পরিবর্তনশীল বল বলে।		
	পরিবর্তনশীল বল দ্বারা সম্পাদিত কাজ = আবদ্ধ ক্ষেত্রের ক্ষেত্রফল		
	পরিবর্তনশীল বল দ্বারা কৃত কার্যের উদাহরণ: মহাকর্ষীয় ক্ষেত্রে কোন বস্তুর স্থান পরিবর্তন, স্প্রিং প্রসারণ/সংকোচন		
	$W = GMm \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$		
	$(r_1 r_2)$		
ক্ষমতা	কোনো উৎস কর্তৃক একক সময়ে কৃত কাজকে তার ক্ষমতা বলে।		
[ব. বো. ১৬]	অশৃক্ষমতা ৪ রা. বো. ১৯; সি. চ. বো. ১৭; ব. বো. ১৮; দি. বো. ১৭]		
	কোনো ব্যক্তি বা যন্ত্র যদি প্রতি সেকেন্ডে 746J পরিমাণ কাজ করতে বা 746J পরিমাণ শক্তি ব্যয়		
	করতে পারে, তবে তার ক্ষমতাকে এক অশ্ব ক্ষমতা বলে।		
কর্মদক্ষতা	কোনো যন্ত্র সরবরাহকৃত শক্তির যত অংশ কাজে রূপান্তরিত করতে পারে তাকে ঐ যন্ত্রের কর্মদক্ষতা বলে।		
াসি. বো. ১৯ , ১৬; ঢা. সি.	অথবা কোনো যন্ত্র কৃতকাজ ও সরবরাহকৃত শক্তির অনুপাতকে ঐ যন্ত্রের কর্মদক্ষতা বলে।		
বো. ১৫]			
কাজ শক্তি উপপাদ্য	কোনো বস্তুর ওপর প্রযুক্ত বল দ্বারা কৃতকাজ বস্তুর গতির পরিবর্তনের সমান।		
[য. বো. ১৯; সি. দি. বো. ১৮;			
সি. বো. ১৬; য. ব. বো. ১৫]			

- ১. একটি ইঞ্জিনের দক্ষতা 60% বলতে কী বুঝায়? [ব. বো. ১৬] একটি ইঞ্জিনের কর্মদক্ষতা 60% বলতে বুঝায়, যদি এই ইঞ্জিন 100J শক্তি দেয় তাহলে সেই ইঞ্জিন থেকে প্রাপ্ত মোট কার্যকর শক্তি হবে 60J
- ১. ঋণাত্মক কাজ কাকে বলে?/ব. বো. ১৯; দি. বো. ১৫/ কোনো বস্তুর ওপর বল প্রয়োগের ফলে বলের বিপরীত দিকে বস্তুর সরণ ঘটলে বা বলের বিপরীত দিকে সরণের উপাংশ থাকলে তাহলে বল ও সরণের উপাংশের গুণফলকে ঋণাত্মক কাজ বলে।
- ২. প্রত্যায়নী বল দ্বারা কৃতকাজ কখন ঋণাত্মক হবে— ব্যাখ্যা কর।
 আমরা জানি, বলের বিপরীতে দিকে বস্তুর সরণ হলে ঋণাত্মক কাজ হয়। স্থিতিস্থাপক বস্তুর বিকৃতি ঘটালে প্রযুক্ত বলের বিপরীতে বস্তুর অভ্যন্তরে উদ্ভূত বলই প্রত্যয়নী বল। সংকোচন বা প্রসারণ যাই হোক না কেন এ বল সর্বদা সাম্যাস্থান থেকে সরণের বিপরীতে ক্রিয়া করে। তাই যখন কোনো বস্তুর বিকৃতি ঘটানো হয় তখন প্রত্যয়নী বল দ্বারা কৃতকাজ ঋণাত্মক হয়।
- ৩. বলের দ্বারা কাজ বলতে কী বুঝায়? ব্যাখ্যা কর।

সি.বো.১৫

কোনো বস্তুর ওপর বল প্রয়োগের ফলে বলের দিকে সরণের উপাংশ থাকলে বলের দ্বারা কাজ বা ধনাত্মক কাজ হয়। বলের দ্বারা কাজের ফলে বস্তুর গতিশক্তি বৃদ্ধি পায়। কোনো বস্তু অভিকর্ষের প্রভাবে নিচে নেমে আসা-বলের দ্বারা কাজের উদাহরণ।

8. পড়ন্ত বন্তুর উপর অভিকর্ষজ বল কর্তৃক কৃতকাজ ধনাত্মক— ব্যাখ্যা কর।

क्ति. त्वा. ३६।

অভিকর্ষ বল কর্তৃক কৃতকাজের ক্ষেত্রে প্রযুক্ত বল ও সরণ একই দিকে হয় বলে অভিকর্ষ বল কর্তৃক কৃতকাজ ধনাত্মক হয়। আমরা জানি, যদি বল প্রয়োগের ফলে বলের প্রয়োগ বিন্দু বলের দিকে সরে যায় বা বলের দিকে সরণের উপাংশ থাকে, তাহলে সেই বল ও বলের দিকে সরণের উপাংশের গুণফলকে ধনাত্মক কাজ বলে। একটি বস্তুর উপর থেকে মাটিতে ফেলে দিলে বস্তুটি অভিকর্ষ বলের দিকে পড়বে। এক্ষেত্রে প্রযুক্ত বল তথা বস্তুর ওজন mg এবং সরণ s এর দিক একই তথা নিচের দিকে হয়। ফলে অভিকর্ষ বল কর্তৃক কৃতকাজ ধনাত্মক হয়।

৫. কাজ ও টর্ক এর মান এবং একক সমান হরেও এরা ভিন্ন রাশি— ব্যাখ্যা দাও।

[ঢা. বো. ২০১৯]

কাজ হচ্ছে বল প্রয়োগে যদি কোনো বস্তুর সরণ ঘটে, তবে সেই বলের মান ও উক্ত বল বরাবর সরণের উপাংশের গুণফল। অপরদিকে টর্ক হলো নির্দিষ্ট অক্ষ সাপেক্ষে ঘূর্ণনশীল কোনো বস্তুর ওপর ক্রিয়াশীল বল ও ঐ অক্ষ হতে উক্ত বলের লম্ব দূরত্বের গুণফল। কাজ ও টর্ক এর মাত্রা ও একক সমান (একক Nm বা J) কিন্তু এরা ভিন্ন রাশি। কারণ, এদের সংজ্ঞা ও ব্যবহারিক প্রয়োগ ভিন্ন। তদুপরি, কাজ ক্ষেলার রাশি হলেও টর্ক ভেক্টর রাশি। কাজ, চলন গতি এবং ঘূর্ণন গতি উভয় প্রকার গতির ক্ষেত্রে প্রযোজ্য হলে, টর্ক কেবল ঘূর্ণন গতির ক্ষেত্রে প্রযোজ্য।

৬. কোনো বন্তুর উপর ক্রিয়াশীল টর্ক কখন শূন্য হয়? ব্যাখ্যা কর।

[কু. বো. ২০১৯]

নির্দিষ্ট অক্ষের সাপেক্ষে কোনো বস্তুর ওপর ক্রিয়াশীল বল এবং ঐ অক্ষ হতে বলের ক্রিয়ারেখার লম্ব দূরত্বের গুণফলকে টর্ক বলে।

 \therefore টর্ক $\tau=$ বল imes ঘূর্ণন অক্ষ হতে বলের ক্রিয়ারেখার লম্ব দূরত্ব = $Frsin \theta$

এখন, যদি $\theta = 0^{\circ}$ হয় তবে, $\tau = Frsin0^{\circ} = 0$

অর্থাৎ, ব্যাসার্ধ ভেক্টর ও বলের ক্রিয়ারেখা একই হলে ঐ বস্তুতে ক্রিয়াশীল টর্ক শূন্য হবে।

আবার, ঠিক ঘূর্ণন অক্ষে বল ক্রিয়া করলে, r=0। এক্ষেত্রেও টর্ক au=F imes 0 sin heta=0

আবার, বস্তুটির উপর দুই বা ততোধিক বলের লব্ধি শূন্য হলে, F=0, এক্ষেত্রে টর্ক au=0 imes r sin heta=0 হবে।

অতএব , কোনো বস্তুর উপর ক্রিয়ারত বলগুলোর লব্ধি শূন্য অথবা বল ঠিক ঘূর্ণন অক্ষে ক্রিয়াশীল হলে অথবা ব্যাসার্ধ ভেক্টর ও বলের ক্রিয়ারেখা একই হলে বস্তুটির ওপর ক্রিয়াশীল টর্ক শূন্য হবে।

৭. পৃথিবী সূর্যের চারদিকে ঘুরছে কিন্তু কোনো কাজ করছে না কেন? ব্যাখ্যা কর।

[কু. চ. ব. বো. ১৮]

কোন সংরক্ষণশীল বলক্ষেত্রে একটি বস্তু কোনো বিন্দু থেকে যাত্রা শুরু করে আবার ঐ বিন্দুতে ফিরে আসলে ঐ বল কর্তৃক মোট কৃতকাজ শূন্য হয়। অর্থাৎ সংরক্ষণশীল বলক্ষেত্রে যে কোনো বদ্ধ পথে ভ্রমণশীল বস্তুর সম্পূর্ণ ভ্রমণে কোনো কাজ হয় না। সূর্য ও পৃথিবীর মধ্যবর্তী বল মহাকর্ষ একটি সংরক্ষণশীল বল এবং পৃথিবী সূর্যের চারপাশে ঘুরলেও কোনো কাজ করছে না।

৮. কোনো যন্ত্রের 10H.P ক্ষমতা বলতে কী বোঝায়?

[ঢা. রা. য. সি. দি. বো. ১৮]

এককের আন্তজার্তিক পদ্ধতি চালু করার পূর্বে ক্ষমতার একটি ব্যবহারিক একক ছিল অশ্বক্ষমতা (HP) ওয়াটের সাথে এর সম্পর্ক। HP = 746W

∴ 10HP = 746W কোনো যন্ত্রের ক্ষমতা 10HP বলতে বোঝায় প্রতি সেকেন্ড 7460J কাজ করতে পারবে।

৯. কাজ একটি ক্ষেলার রাশি— ব্যাখ্যা কর।

[ঢা. সি. য. দি. বো. ১৮]

ধরা যাক, কোনো বস্তুর ওপর F বল প্রয়োগ করায় বস্তুটি বলের সাথে heta কোণ করে s পরিমাণ সরে যায়।

তাহলে, কাজ, $\mathbf{W} =$ বল imes বলের সরণের উপাংশ $\mathbf{F} \times \mathbf{x}$

কিন্তু $\triangle ABC$ - এ, $x = scos\theta$: $W = Fcos\theta = \overrightarrow{F} \cdot \overrightarrow{s}$

সুতরাং বল ভেক্টর এবং সরণ ভেক্টরের স্কেলার গুণফলই হলো কাজ। এ কারণে কাজ একটি স্কেলার রাশি।

১০. বৃত্তাকার পথে ঘূর্ণায়মান বস্তু কর্তৃক কৃতকাজ শূন্য — ব্যাখ্যা কর।

[ব. চ. বো. ১৭]

কোনো বস্তুকে বৃত্তাকার পথে ঘোরার যে কেন্দ্রমুখী বল, তা দ্বারা কোনো কাজ হয় না। কেননা, প্রতি মুহূর্তে বল ব্যাসার্ধ বরাবর কেন্দ্রের দিকে ক্রিয়া করে কিন্তু বস্তুর সরণ হয় বৃত্তের স্পর্শক বরাবর। আমরা জানি, বৃত্তের ব্যাসার্ধ এবং স্পর্শক পরস্পরের উপর লম্ব অর্থাৎ বল এবং সরণের মধ্যবর্তী কোণ 90°।

আবার, কাজ $W=\overrightarrow{F}.\overrightarrow{s}=Fs\,cos\theta=Fscos90^\circ=0$ সুতরাং, বৃত্তাকার পথে ঘূর্ণায়মান বস্তু কর্তৃক কৃত কাজ শূন্য ।

- ২. বল ধ্রুবক কাকে বলে?[রা. চ. ব. দি. বো. ১৯; দি. বো. ১৭; ঢা. বো. ১৬; কু. বো. ১৫] কোনো স্প্রিংয়ের দৈর্ঘ্য একক পরিমাণ বৃদ্ধি করতে যে পরিমাণ বল প্রয়োগ করতে হয় তাকে স্প্রিংয়ের বল ধ্রুবক বলে।
- ১১. কোনো শ্প্রিং এর স্প্রিং ধ্রুবক $10 {
 m Nm}^{-1}$ বলতে কী বুঝ?
 একটি স্প্রিং এর স্প্রিং ধ্রুবক $10 {
 m Nm}^{-1}$ বলতে বুঝায়, একে এর সাম্যাবস্থান থেকে $1 {
 m m}$ প্রসারিত করতে $10 {
 m N}$ বল প্রয়োজন হবে।

শক্তির সংরক্ষনশীলতা নীতি

৩. যান্ত্রিক শক্তির নিত্যতা কাকে বলে?[য. বো. ১৭] পড়ন্ত বস্তুর ক্ষেত্রে যেকোনো বিন্দুতে বস্তুর অভিকর্ষজ বিভব শক্তি ও গতিশক্তি ধ্রুব থাকে। এটাই যান্ত্রিক শক্তির নিত্যতা।

 $E_p = mgh, E_k = 0, E_T = mgh$

B বিন্দুতে

$$E_p = mgx$$
,

$$E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}m(u^{2} + 2gh) = \frac{1}{2}m(0 + 2g \times (h - x))$$
$$= mgh - mgx$$

${f A}$ বিন্দুতে

 $E_p = mg \times AO = mg \times ACsin\theta$

 $E_k=0, E_T=mg \times AO$

B বিন্দুতে

 $E_p = mg \times OD = mg \times BCsin\theta$

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m \times (0^2 + 2g \times AD) = mg \times AD = mg \times AB\sin\theta,$$

 $E_T=mg \times AO$

C বিন্দুতে

$$E_p=0$$
, $E_k=\frac{1}{2}mv^2$ $=\frac{1}{2}m(u^2+2gh)=\frac{1}{2}m(0+2g\times AO)=mg\times AO$, $E_T=mg\times AO$

$$h=OB-OD=OB-OB\cos\theta = OB(1-\cos\theta)$$

$$= l(1 - cos\theta)$$

$$h = OB - OD = l - \sqrt{l^2 - x^2}$$

B বিন্দুতে বেগ

$$v = \sqrt{2gh} = \sqrt{2gl(1 - \cos\theta)} = 2\sqrt{gl}\sin\frac{\theta}{2}$$

A বিন্দুতে E_p=mgh,E_k=0,E_T=mgh

B বিন্দুতে $E_p=0$,

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m(u^2 + 2gh) = \frac{1}{2}m(0 + 2gh) = mgh,$$
 $E_T = mgh$

C বিন্দুতে

 $E_p = mgy$,

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}m(u^2 + 2gH) = \frac{1}{2}m(0 + 2g(h - y))
 = mgh - mgy,$$

 $E_T = mgh$

আপনি জানেন কি?

সূর্যের চারদিকে পৃথিবীর ঘূর্ণনে কত বেশি পরিমাণ কাজ করতে হয়??

Sample Question

01. 50 kg ভরের একটি বস্তুকে $50 \mathrm{ms}^{-1}$ বেগে $10 \mathrm{m}$ ব্যাসার্ধের বৃত্তাকার পথে $10 \mathrm{min}$ ধরে ঘুরানো হচ্ছে। কৃতকাজের পরিমান কত? Ans: $0 \mathrm{\ Joule}$

শক্তি:

শক্তির রূপান্তর:

- পানির উঁচু হতে নিচু স্থানে প্রবাহ (বিভব শক্তি → গতিশক্তি)
 এই গতিশক্তির সাহায্যে টারবাইন ঘুরিয়ে বিদ্যুৎ তৈরি। (যান্ত্রিক→ বিদ্যুৎ)
- বৈদ্যুতিক ইস্ত্রি (বিদ্যুৎ → তাপ → যান্ত্রিক শক্তি) বৈদ্যুতিক পাখা → (বিদ্যুৎ → যান্ত্রিক)
- কাঁচা লোহার পাতে তামার তার পেচিয়ে বিদ্যুৎ চালনা (বিদ্যুৎ 🔿 চুম্বক)
- আলোর ফটো তড়িৎ ক্রিয়া (আলোক শক্তি → বিদ্যুৎ শক্তি)
- দুই হাতের তালু পরস্পরের সাথে ঘষলে → (যান্ত্রিক শক্তি→তাপশক্তি)

- ফটোগ্রাফির ফিল্মে আলোক সত করে রাসায়নিক ফিল্ম তৈরি→(আলোক শক্তি →রাসায়নিক শক্তি) বৈদ্যুতিক ঘন্টা (বিদ্যুৎ শক্তি→শব্দ শক্তি)
- কয়লা পোড়ানো (রাসায়নিক শক্তি → তাপশক্তি)

বিভব শক্তিঃ

2	रखों	সূত্ৰ
7	কানো বস্তুকে এর স্বাভাবিক অবস্থান বা আকৃতি থেকে অন্য কোন অবস্থানের পরিবর্তন করলে কিছু পরিমাণ শক্তি সঞ্চিত হয় এই সঞ্চিত শক্তি বিভব শক্তি।	$U = \frac{1}{2}kx^2$

কোন বস্তু সবসময় সেই অবস্থায় থাকতে চায় যে অবস্থায় এর বিভব শক্তির মান ন্যূনতম। তাই উচু স্থান হতে পানি সুযোগ পেলে নিচে গড়িয়ে পড়ে। অভিকর্ষীয় কাজের উদাহরণ:

(i) বস্তু উপরে উঠানো (ii) বস্তু নিচে নামানো (iii) আনত তল বেয়ে বস্তুর উপরে উঠা (iv) আনত তল বেয়ে বস্তুর নিচে নামা।

বিভবশক্তি → অবস্থানের পরিবর্তনের জন্য→ mgh → অবস্থানের পরিবর্তন

অভিকর্ষজ বিভবশক্তি
→ প্রসঙ্গ তল ভূপৃষ্ঠ
→ h → ভূপৃষ্ঠ থেকে উচ্চতা

অভিকর্ষজ বিভব শক্তি ধনাত্মক/ঋণাত্মক উভয়ই হতে পাওে । বিভবশক্তি ও অভিকর্ষজ বিভবশক্তি সমান নাও হতে পারে। অভিকর্ষজ বিভব শক্তি পথের উপর নির্ভর করে না।

খ্রিতিশক্তির প্রকারভেদ: (১) অভিকর্ষীয় স্থিতিশক্তি/অভিকর্ষীয় বিভবশক্তি (২) স্থিতিস্থাপক বিভবশক্তি (৩) তড়িৎ বিভবশক্তি।

অভিকর্ষজ বিভব শক্তি বিশেষ ধরনের বিভব শক্তি। এক্ষেত্রে প্রসঙ্গ তল পৃথিবী পৃষ্ঠ। অভিকর্ষজ বিভব শক্তি ধনাত্মক/ঋনাত্মক দুই ধরনেরই হতে পারে। গতি শক্তি কখনো ঋণাত্মক হতে পারে না।

১২. গতিশক্তি কি ঋণাত্মক হতে পারে?

[য.বো.১৫]

কোনো সচল বস্তুর ভর m এবং বেগ v হলো বস্তুর গতিশক্তি $\frac{1}{2} \, m v^2$ । বস্তুর m কখনোই ঋণাত্মক হতে পারে না। বস্তুর বেগ ধনাত্মক বা ঋণাত্মক হতে পারে, কিন্তু বেগের বর্গ সবসময় ধনাত্মক হবে। অতএব বস্তুর গতিশক্তি কখনো ঋণাত্মক হতে পারে না।

১৩. অভিকর্ষীয় স্থিতিশক্তি কেবলমাত্র h-এর ওপর নির্ভর করে কিন্তু পথের ওপর নির্ভর করে না কেন?
কোনো বস্তুকে খাড়াবাবে H উচ্চতায় কোনো পথে নেওয়া হলে স্থিতিশক্তি তার ওপর নির্ভর করে না। অর্থাৎ বস্তুটিকে খাড়াভাবে H উচ্চতায় না তুলে অন্য যে কোনো পথে যদি এই উচ্চতায় নিয়ে যাওয়া হয়, তাহলেও স্থিতিস্থাপক মান একই থাকে। যেমন m ভরের বস্তুকে C বিন্দু হতে খাডা B বিন্দুতে নিলে বস্তুটির স্থিতিশক্তি = mgh [চিত্র]।

আবার মনে করি, m ভরের বস্তুটি একটি ঘর্ষণহীন নততল AB এর উপর দিয়ে টেনে h উচ্চতায় তোলা হলো। নততল বরাবর নিচের দিকে বস্তুর ওজন mg-এর উপাংশ হলো $mgsin\theta$ । নততল বরাবর বস্তুকে উপরে টেনে তুলতে এই উপাংশের বিরুদ্ধে কাজ করতে হয়। বস্তুর ওজনের অন্য উপাংশ $mgcos\theta$ । বস্তুর ওজনের অন্য উপাংশ $mgcos\theta$ বস্তুর সরণের লম্ব দিকে ক্রিয়া করে বলে কোনো কাজ করে না। নততল বরাবর বস্তুর সরণ হলো AB। অতএব, মোট কাজ = বল \times সরণ = $mgsin\theta \times AB = mg \times ABsin\theta = mg \times BC = mgh$ সংজ্ঞা অনুযায়ী এই কাজ হলো বস্তুটির স্থিতিস্থাপক। অতএব কোনো বস্তুকে যে পথেই উপরে তোলা যাক না কেন, নির্দিষ্ট উচ্চতায় এর অভিকর্ষীয় স্থিতিশীল মান একই হয়।

❖হুকের সূত্র: স্থিতি স্থাপক সীমার মধ্যে বল বিকৃতির সমানুপাতিক। F=kx

গতিশক্তি (Kinetic Energy)

"" (Innette Energy)	
সংজ্ঞা	সূত্র
গতিশীল বস্তু তার গতির জন্য যে শক্তি অর্জন করে তাকে গতিশক্তি বলে।	$E_k = \frac{P^2}{2m} = \frac{1}{2}mv^2$

গতিশক্তি → $\frac{1}{2}$ mv²→কখনো ঋণাত্মক হয় না।

কোন বস্তুর গতি চলন ও ঘূর্ণন অথবা চলন ও ঘূর্ণন মিলিয়ে জটিল গতিও হতে পারে। বস্তুর গতিশক্তি রৈখিক অথবা ঘূর্ণন বা এই দুই ধরণের গতিশক্তি একত্রে হতে পারে।

বিনা বাধায় পড়ন্ত বস্তুর গতিশক্তি →রৈখিক গতিশক্তি

ঘুরস্ত বৈদ্যুতিক পাখায় গতিশক্তি→আবর্ত বা ঘূর্ণন গতিশক্তি

গাড়ির চাকার গতিশক্তি→রৈখিক ও ঘূর্ণন উভয় গতিশক্তি।

ভরবেগ ও গতিশক্তির মধ্যে সম্পর্ক:

$$E_k = rac{p^2}{2m} \implies E_k \propto rac{1}{m}$$
[যখন ভরবেগ সমান] ভর বেগ সমান হলে \longrightarrow হালকা বস্তুর গতিশক্তি বেশি

$$E_k=rac{p^2}{2m}$$
 \Rightarrow $E_k \propto p^2$ [যখন ভর সমান] গতিশক্তি সমান হলে o ভারী বস্তুর ভরবেগ বেশি

১৪. একটি হালকা বস্তু এবং একটি ভারী বস্তুর ভরবেগ সমান। কোনটির গতিশক্তি বেশি? [য. বো. ১৯; ব. বো. ১৫] মনে করি, ভারী বস্তুর ভর = M এবং বেগ v_1 এবং হালকা বস্তুর ভর m এবং বেগ v_2 । বস্তু দুটির ভরবেগ সমান হলে, $Mv_1 = mv_2 = P$

$$\therefore \frac{\text{হালকা বস্তুর গতিশক্তি}}{\text{ভারী বস্তুর গতিশক্তি}} = \frac{\frac{1}{2}mv_2^2}{\frac{1}{2}Mv_1^2} = \frac{P^2/2m}{P^2/2M} = \frac{M}{m}$$

- ∴ m অপেক্ষা M বড় হলে (M > m) হালকা বস্তুর গতিশক্তি ভারী বস্তুর গতিশক্তির চেয়ে বেশি হবে।
- ১৫. স্প্রিংযুক্ত খেলনা গাড়িকে পেছন দিকে টেনে ছেড়ে দিলে গাড়িটি সামনের দিকে অগ্রসর হয়-ব্যাখ্যা কর। [য. বো. ১৯; কৃ. বো. ১৬] স্প্রিংযুক্ত খেলনা গাড়িকে পেছন দিকে টানলে হাত কর্তৃক প্রয়োগকৃত যান্ত্রিক শক্তি স্প্রিং-এর সংকোচনের মাধ্যমে এর মধ্যকার বিভব শক্তিতে পরিণত হয়। এই বিভব শক্তি পরবর্তীতে অবমুক্ত হলে অর্থাৎ স্প্রিং এর পূর্বাবস্থায় ফিরে আসার মাধ্যমে তা প্রায় সমপরিমাণ যান্ত্রিক শক্তি বা গাড়ির গতিশক্তিতে পরিণত হয়। এ কারণে স্প্রিংযুক্ত খেলনা গাড়ি পিছন দিকে টেনে ছেড়ে দিলে গাড়িটি সামনের দিকে অগ্রসর হয়। শক্তির নিত্যতা সূত্রঃ শক্তির বিকাশ বা সৃষ্টি নেই। শক্তি শুধুমাত্র একরূপ হতে অন্যরূপে পরিবর্তিত হয়। মহাবিশ্বে মোট শক্তির পরিমাণ নির্দিষ্ট ও অপরিবর্তনীয়।
- 8. সংরক্ষণশীল বল কাকে বলে?/ঢা. বো. ১৭/ যে বল কোনো বস্তুর ওপর ক্রিয়া করলে তাকে যেকোনো পথে ঘুরিয়ে পুনরায় প্রাথমিক অবস্থানে আনলে বল কর্তৃক কৃত কাজ শূন্য হয় তাকে সংরক্ষণশীল বল বলে।
- ৫. অসংরক্ষণশীল বল কাকে বলে?[য.বো.১৯; ব.বো.১৫]

একটি বলকে অসংরক্ষণশীল বলা হবে যদি একটি বস্তু পূর্ণ চক্র সম্পন্ন করে পূর্বের অবস্থানে ফিরে এলে ঐ বল দ্বারা কৃতকাজ শূন্য না হয়। যদি কোনো বস্তুকে এক বিন্দু থেকে অপর এক বিন্দুতে নিতে ঐ বল দ্বারা কৃতকাহ বস্তুকে কোন পথে নেওয়া হয়েছে তার উপর নির্ভর করে তবে ঐ বল একটি অসংরক্ষণশীল বল।

সংরক্ষণশীল বল	অসংরক্ষণশীল বল
(১) এই বল শুধু অবস্থানের উপর নির্ভর করে	(১) শুধু অবস্থানের উপর নির্ভর করে না
(২) কৃতকাজ শূণ্য হয়	(২) কৃতকাজ শূণ্য হয় না।
(৩) শক্তির নিত্যতা সূত্র মেনে চলে	(৩) শক্তির নিত্যতা সূত্র মেনে চলে না
(৪) কাজ স্থানান্তরের পথের উপর নির্ভর করে না	(৪) স্থানান্তরের পথের উপর নির্ভরশীল
উদাহরণ: অভিকর্ষ বল, তড়িৎ বল, আদর্শ স্প্রিং এ বি	কৃতি উদাহরণ: ঘর্ষণ বল, সান্দ্রবল
প্রতিরোধী বল।	

১৬. অভিকর্ষ বল সংরক্ষণশীল বল কেন? ব্যাখ্যা কর।

[কু. চ. ব. বো. ১৮; ঢা. ি.বো. ১৬; য. বো. ১৫]

অভিকর্ষ বল একটি সংরক্ষণশীল বল। আমরা যদি একটি বস্তুকে অভিকর্ষের বিরুদ্ধে খাড়া উপরের দিকে নিক্ষেপ করি, তবে এটি পুনরায় আমাদের হাতে ফিরে আসবে। এক্ষেত্রে বস্তুটির হাত থেকে নিক্ষিপ্ত হয়ে পুনরায় হাতে ফিরে আসা এই পূর্ণ চক্রে কণাটির উপর অভিকর্ষ বলের সম্পাদিত কাজের পরিমাণ শূন্য। m ভরের একটি বস্তুকে ভূপৃষ্ঠের A বিন্দু থেকে h উচ্চতায় B বিন্দুতে ওঠালে অভিকর্ষের বলের বিরুদ্ধে কৃতকাজ mgh হয়। বস্তুটিকে যে পথেই (চিত্র) উঠানো হোক না কেন সকল ক্ষেত্রেই এই কাজের মান হয় mgh। অতএব অভিকর্ষ বল দ্বারা সম্পন্ন কাজের পরিমাণ কেবল বিন্দু দুটির অবস্থানের উপর নির্ভরশীল, কণাটির গতি পথের উপর নয়। তাই অভিকর্ষ বল একটি সংরক্ষণশীল

১৭. ঘর্ষণ বল অসংরক্ষণশীল বল কেন ব্যাখ্যা কর।

[ज. त्रा. य. त्रि. त्रि. त्वा. ১৮; पि. त्वा. ১৭; ठ. त्वा. ১৬]

ঘর্ষণ বল একটি অসংরক্ষণশীল বল। আমরা জানি, ঘর্ষণ বল সর্বদা গতির বিরুদ্ধে ক্রিয়া করে। তাই একটি পূর্ণ চক্রের প্রতিটি অংশে ঘর্ষণ বল দারা কৃতকাজ ঋণাত্মক। ফলে একটি পূর্ণ চক্রে ঘর্ষণ বল দারা সম্পাদিত কাজের পরিমাণ কখনো শূন্য হতে পারে না। আবার ঘর্ষণ বলের ক্ষেত্রে দুটি নির্দিষ্ট বিন্দুর মধ্যে সম্পন্ন কাজের পরিমাণ কণাটির গতিপথের উপর নির্ভর করে। কেননা একটি অমসৃণ টেবিলের উপরে যে কোনো দুটি বিন্দুর সংযোগকারী ভিন্ন ভিন্ন পথে একটি বস্তুকে ঠেলে নিয়ে গেলে অতিক্রান্ত দূরত্বের পরিবর্তন হয় এবং তার ফলে ঘর্ষণ বল দারা সম্পন্ন কাজের পরিমাণও পরিবর্তিত হয়। এ মান পথের উপর নির্ভর করে। তাই ঘর্ষণ বল একটি অসংরক্ষণশীল বল। এছাড়াও সান্দ্রবল, সরল ও দুর্বল নিউক্লিয় বল, সাইক্লোটন যন্ত্রে যে ত্বরক বল কাজ করে ইত্যাদি বলও সংরক্ষণশীল বল। প্রমাণঃ ধরি, একটি বস্তুকে অমসৃণ অনুভূমিক মেঝের উপর দিয়ে 1নং পথে A বিন্দু থেকে B বিন্দুতে এনে পুনরায় 2নং পথে A বিন্দুতে আনা হলো। উভয় ক্ষেত্রে ঘর্ষণ বল f পথের ক্ষুদ্র সরণ dx-এর বিপরীত দিকে ক্রিয়া করে।[চিত্র]

 \therefore মোট কৃতকাজ, $W=W_1+W_2=-\int_1 f dx-\int_2 f dx \neq 0$ তাই ঘর্ষণ বল অসংরক্ষণশীল

৮ম অধ্যায়

পর্যাবৃত্তিক গতি (Periodic Motion)

Part:01 তত্ত্বীয় আলোচনা

স্থানিক পর্যায়ক্রম: যখন কোন কিছুর পুনরাবৃত্তি স্থানের সাপেক্ষে হয়, তখন তাকে স্থানিক পর্যায়ক্রম বলে। যেমন-সরল দোলকের গতি, কঠিন পদার্থের কেলাসের মধ্যে অণু, ডোরাকাটা শার্টের ডোরাগুলোর অবস্থান, ধান ক্ষেতে বাতাস বইলে সৃষ্ট ধান ক্ষেত্রে টেউয়ের গতি ইত্যাদি। কালিক পর্যায়ক্রম: পর্যাবৃত্তির পর্যায়কাল যদি একটি নির্দিষ্ট সময় সাপেক্ষে হয়, তবে তাকে কালিক পর্যায়ক্রম বলে। যেমন-ঘড়ির সেকেন্ড বা মিনিটের কাঁটা যথাক্রমে 60 সেকেন্ড বা 60 মিনিট পর পর, ঘন্টার কাঁটা 12 ঘন্টা পর পর পুনরাবৃত্তি ঘটে এবং পৃথিবী সূর্যের চারদিকে ৩৬৫ দিনে একবার ঘুরে আসে ইত্যাদি।

কোন গতিশীল বস্তু কণার গতি যদি এমন হয় যে, এটি তার গতিপথে কোন নির্দিষ্ট বিন্দুকে নির্দিষ্ট সময় পর পর একই দিক থেকে অতিক্রম করে, তাহলে সেই গতিকে পর্যাবৃত্ত গতি বলে।

পর্যাবৃত্ত গতির গতিপথ বৃত্তাকার উপবৃত্তাকার, সরলরৈখিক ও আরো জটিল হতে পারে।

পর্যাবৃত্ত গতিসম্পন্ন কণা যদি পর্যায়কালের অর্থেক সময় কোন নির্দিষ্ট দিকে এবং বাকি অর্থেক সময় একই পথে তার বিপরীত দিকে চলে তবে তার গতিকে স্পন্দন গতি বলে।

উদাহরণ: সরল দোলকের গতি, গীটারের তারের গতি, শব্দ সঞ্চালনের সময় বায়ুর কণার স্পব্দন ইত্যাদি।

সরল ছন্দিত স্পন্দনের বৈশিষ্ট্য:

একটি পর্যায় গতি

একটি নির্দিষ্ট সময় অন্তর অন্তর এই গতি বিপরীতমুখী হয়

এর গতি একটি সরলরেখায় ঘটে

ত্বরণ বস্তুর সরণের সমানুপাতিক
ত্বরণ বস্তুর সরণের বিপরীতমুখী
ত্বরণ বস্তু কণাটির মধ্য অবস্থান অভিমুখী

क्ष्मेन्द्रनाव भीभा राधर राधरक ग्रिका विटक भागीन विटक वार्वास्था	
স্পন্দনের সামা মধ্য থেকে উভয় দিকে সমান দূরত্বে অবস্থিত	
~ 1	

সরল ছন্দিত স্পন্দন স্পন্দন সংক্রান্ত কতিপয় রাশি

ঞ্দশা: $x = A\sin(\omega t + \delta)$

আদি সরণের জন্য t=0

 \therefore আদি সরণ $x_0 = A\sin\delta$

 $\delta=0^{\circ}$ হলে, $x_0=Asin0=0$ অর্থাৎ বস্তুর গতি শুরু হয়েছে সাম্যাবস্থান হতে।

 $\delta=rac{\pi}{2}$ হলে, $x_0=A\sinrac{\pi}{2}=A,$ অর্থাৎ বস্তুর গতি শুরু হয়েছে বিস্তারের সর্বোচ্চ বিন্দু হতে।

 $\cdot\cdot$ δ এর ভিন্ন ভিন্ন মানের জন্য ভিন্ন ভিন্ন আদি সরণ নির্দেশিত হয়।

পর্যায়কাল (T)	এক কম্পন/এক ঘূর্ণন এর সময় । এককঃ সেকেন্ড <i>[ঢা. বো. ১৬]</i>
তরঙ্গদৈর্ঘ্য (λ)	এক কম্পন/এক ঘূর্ণন এর অতিক্রাম্ভ দূরত্ব । একক ঃ মিটার
তরঙ্গবেগ (v)	এক সেকেন্ডে তরঙ্গ কতৃক অতিক্রাম্ণ্ড় দূরতৃ । এককঃ ms ⁻¹
কম্পাঙ্ক (f)	এক সেকেন্ড এর কম্পন সংখ্যা । একক ঃ Hz
	তরঙ্গান্থিত কোন কণার যে কোন মুহূর্ত এর সম্যক অবস্থা । দশা পরিমাপ করা হয় কোণ এর মাধ্যমে।দশা পার্থ্যক্য নির্ণয় অর্থ
	কোণ এর পার্থ্যক্য নির্ণয় ।
	সমদশায় অবস্থিত দুটি কণার মধ্যবর্তী দূরত্বকে তরঙ্গদৈর্ঘ্য বলে ।
	সমদশায় অব ছিত দুটি কণার মধ্যকার দূরত্ব ঃ λ বিপরীত দশায় অবস্থিত দুটি কণার মধ্যকার পথ পার্থক্য $\frac{\lambda}{2}$
দশা	এক বার ঘূর্ণন এর ফলে দশা পার্থক্য 2π
· (()	সাইন ও কোসাইন তরঙ্গের মধ্যকার দশা পার্থ্যক্য $\frac{\pi}{2}$
বিস্তার (A)	সাম্যাবস্থা হতে যেকোন একদিকের সর্বোচ্চ সরণকে বিস্তার বলে ।
আদি দশা	যাত্রা শুরুর মুহূর্তে অর্থাৎ , t = 0 সময়ে কণাটির দশাকে আদি দশা বলে ।

১. পর্যাবৃত্ত গতি কী? যদি কোনো একটি বস্তু নির্দিষ্ট সময় পর পর একই স্থানে ফিরে আসে অথবা এতই স্থান দিয়ে নির্দিষ্ট সময় অন্তর অতিক্রম করে তবে তাকে পর্যাবৃত্ত গতি বলে।

২. সরল ছন্দিত স্পন্দন কাকে বলে? কোনো দোলনরত কণার ত্বরন সাম্যাবস্থান থেকে সরণের সমানুপাতিক ও সব সময় সাম্যাবস্থানের অভিমুখী হলে ঐ কণার গতিকে সরল ছন্দিত গতি বলে।

্বি. বো. ২০১৯।

হাতঘড়ির কাঁটার গতি কি দোলন গতি? ব্যাখ্যা কর।

হাতঘড়ির কাটার গতি একটি পর্যাবৃত্ত গতি, এটি দোলন গতি নয়। কারণ দোলন গতির ক্ষেত্রে আমরা জানি, পর্যাবৃত্ত গতিসম্পন্ন কোনো কণা যদি পর্যায়কালের অর্ধেক সময় কোনো নির্দিষ্ট দিকে এবং বাকি অর্ধেক সময় একই পথে তার বিপরীত দিকে চলে, তবে গতিকে স্পন্দন গতি বলে।

যেমন— সরল দোলকের গতি, গীটারের তারের গতি ইত্যাদি। কিন্তু হাতঘড়ির কাঁটা এর গতির অর্ধেক সময় একদিকে, বাকি অর্ধেক বিপরীত দিকে অবস্থান করে না না বিধায় এটি দোলন গতি নয়।

২. সরল দোলন গতির অন্তরক সমীকরণটি ব্যাখ্যা কর।

দি. বো. ১৯: ১৫।

সরল দোলন গতির ক্ষেত্রে সাম্যাবস্থান হতে কণার সরণ x হলে যদি এর ওপর ক্রিয়াশীল বল F হয় তবে, $F \propto -x$ বা, F = -kx এখানে, k হচ্ছে বল ধ্রুবক। কণাটির ভর m হলে F = ma \therefore ma = -kx

ত্বরণ a কে ব্যবকলনের সাহায্যে লিখলে পাই, $m \frac{d^2x}{dt^2} = -kx \Rightarrow \frac{d^2x}{dt^2} + \frac{k}{m} + \omega^2x = 0$ এখানে, $\omega = \sqrt{\frac{k}{m}}$ উপরের সমীকরণটিই সরল ছন্দিত অন্তরক সমীকরণ।

৩. একই স্প্রিং ধ্রুবক বিশিষ্ট দুটি স্প্রিংকে সমান্তরাল সমবায়ে যুক্ত করলে সমবায়ের স্প্রিং ধ্রুবক পরিবর্তন হবে কি না? ব্যাখ্যা কর 🕼 বো. ১৭]

ধরা যাক, একই আকৃতির দুটি স্প্রিংয়ের প্রতিটি স্প্রিং প্রবক k। সূতরাং যে কোনো একটিতে F বল প্রয়োগে x পরিমাণ প্রসারিত হলে $k=\frac{F}{x}$ । এখন স্প্রিংঘ্রেকে সমান্তরাল যুক্ত করে x পরিমাণ প্রসারিত করতে হলে প্রতিটির জন্য F করে মোট 2F বল প্রয়োগ করতে হবে। সূতরাং সমবায়ের তুল্য স্প্রিং প্রবক হবে, $k_e=\frac{2F}{x}=2k$ ।

অতএব, একই স্প্রিং ধ্রুবক বিশিষ্ট দুটি স্প্রিংকে সমান্তরালে যুক্ত করলে তুল্য স্প্রিং ধ্রুবক হবে স্প্রিং দ্বয়ের প্রত্যেকের স্প্রিং ধ্রুবকের দ্বিগুণ।

- 8. পর্যায়বৃত্ত গতিতে আদি দশা কোণ কেন ধ্রুব থাকে? ব্যাখ্যা কর।
 পর্যায়বৃত্ত গতি সম্পন্ন কণার দশা সময়ের সাথে পরিবর্তিত হতে থাকে, কিন্তু আদি দশা ধ্রুব কারণ সময় গণনার শুরুতে অর্থাৎ যখন t=0 তখন কণাটি একটি নির্দিষ্ট দশায় ছিল। আমরা জানি, সরল ছন্দিত স্পন্দন সম্পন্ন কণার সরণ $y=a\sin{(\omega+\delta)}$ । এখানে $\delta=$ আদি দশা কোণ। এখন সময়ের পরিবর্তনে ω t পরিবর্তিত হলেও আদি দশা δ এর কোনো পরিবর্তন হয় না। তাই বলা যায়, পর্যায়বৃত্ত গতিতে আদি দশা কোণ ধ্রুব থাকে।

আদর্শ সরল দোলকের নিলখিত বৈশিষ্ট্য থাকা প্রয়োজন	সরল দোলকের গতি সরল ছন্দিত স্পন্দন গতি কারণ
(ক) বৰ্বটি ক্ষুদে এবং কিছুটা ভারী হতে হবে।	(১) ববের গতিপথ সরল রৈখিক
(খ) সুতার ভর নগণ্য হবে	(২)বল সর্বদা সাম্যাবস্থা অভিমুখী
(গ) সুতা পাকহীন,নমনীয় ও অপ্রসারণীয় হতে হবে ।	(৩)বল সাম্যাবস্থা হতে সরণের সামানুপাতিক এবং বিপরীত মুখী
(ঘ) দোলক পিন্ড বিনা বাধায় দুলবে ।	
(৬) দোলকের গতি হবে সরল ছন্দিত গতি ।	

 $T = 2\pi \sqrt{\frac{L}{g}}$

💳> ববের ভর এবং বিস্তার এর উপর নির্ভবশীল নয়।

 \Longrightarrow কৌনিক বিস্তার 4^0 অপেক্ষা বেশি হলে এ সূত্র গুলো প্রযোজ্য হবে না।

Sample MCQ

01. একটি আদর্শ স্প্রিং-এর শেষ প্রান্তে ঝুলানো একটি ভর T পর্যায়কাল নিয়ে উলম্বভাবে স্পন্দিত হয়। এখন স্পন্দনের বিস্তার দ্বিগুণ করা হলে, নতুন দোলনকাল হবে- [DU:15-16]

A. T

B. 2T

C. T/2

D. 4T

02. একটি সরল দোলকের কৌণিক বিষ্ণার $\mathbf{10}^0$ ।নিচের কোনটি সত্য-

A. $T \propto \sqrt{L}$

B. $T \propto \frac{1}{\sqrt{g}}$

C. Both

D. None

03. 2g ভরের বব ঝুলানোয় একটি সেকেন্ড দোলকের দোলনকাল 2 সেকেন্ড। 4g ভরের বব ঝুলালে সেকেন্ড দোলকের দোলনকাল কত হবে?

A.4 sec

B. 8 sec

C. 1 sec

D 2 sa

Answer Key 1.A 2.D

5. 0 3cc C. 1 3cc D. 2 3cc

সেকেন্ড দোলক কী?
 যে সরল দোলকের দোলনকাল দুই সেকেন্ড, তাকে সেকেন্ড দোলক বলে।

[ব. বো , ১৭ , ১৬]

 $T \propto \sqrt{L} \propto rac{1}{\sqrt{g}} \propto rac{1}{ ext{ঘড়ি}}$ অর্থাৎ $\, ext{g} \,$ এবং $\, ext{T} \,$ ব্যস্তানুপাতিক এবং ঘড়ি সমানুপাতিক-

ক্ষেত্র	g (অভিকর্ষজ ত্বরণ/ওজন)	T (দোলন কাল)	ঘড়ি	কম্পাঙ্ক
মেরু হতে বিষুবে	কমে	বাড়ে	ধীরে চলে	কমে
বিষুব হতে মেরুতে	বাড়ে	কমে	দ্রুত চলে	বাড়ে
পৃথিবী পৃষ্ঠ হতে উঁচুতে (পাহাড়ে)	কমে	বাড়ে	ধীরে চলে	কমে
পৃথিবী পৃষ্ঠ হতে নিচে (খনিতে)	কমে	বাড়ে	ধীরে চলে	কমে
পৃথিবীর কেন্দ্রে	क्रिंगा	অসীম $\left(rac{1}{0} ight)$	বন্ধ হয়ে যাবে	শুন্য
লিফট a ত্বরণে উপরে উঠলে	বাড়ে	কমে	দ্রুত চলে	বাড়ে
লিফট নিচে নামলে	কমে	বাড়ে	ধীরে চলে	কমে
লিফট g ত্বরণে নিচে নামলে	<u> भृन्ग</u>	অসীম	বন্ধ হয়ে যাবে	শুন্য
চন্দ্রে	কমে	বাড়ে	ধীরে চলবে	কমে
কৃত্রিম উপগ্রহে	क्रिना	অসীম $\left(rac{1}{0} ight)$	বন্ধ হয়ে যাবে	শুন্য
মহা শূ ণ্যথানে	क्वा	অসীম $\left(rac{1}{0} ight)$	বন্ধ হয়ে যাবে	শুন্য

ক্ষেত্র	L(কার্যকরী দৈর্ঘ্য)	T (দোলন কাল)	ঘড়ি
নিরেট/ফাপা গোলক	একই থাকবে	একই থাকবে	একই ভাবে চলবে
বব পারদ দ্বারা অর্ধপূর্ণ করলে	বাড়বে	বাড়বে	ধীরে চলে
একটি পূর্ণ গোলক হতে অনবরত তরল পড়তে থাকলে	প্রথমে বাড়তে থাকবে শেষে পূর্বের অবস্থায়	প্রথমে বাড়তে থাকবে শেষে পূর্বের অবস্থায়	প্রথমে ধীরে চলে শেষে পূর্বের অবস্থায়
গ্রীষ্ম কালে	বাড়বে	বাড়বে	ধীরে চলে
শীতকালে	কমবে	কমবে	দ্রুত চলে

- ৬. দোলনরত একটি সরল দোলক সাম্যাবস্থায় এসে থেমে যায় না কেন? ব্যাখ্যা কর।

 স্পন্দন গতিসম্পন্ন কোনো বস্তুর গতিপথের একটি নির্দিষ্ট বিন্দু রয়েছে, যে বিন্দুতে কোনো লব্ধি বল ক্রিয়া করে না। এ বিন্দুকে সাম্যাবস্থান বা মধ্যাবস্থান বলে। এ বিন্দু হতে বস্তুটিকে বল প্রয়োগে বিচ্যুত করলে বস্তুটির উপর সাম্যাবস্থানের দিকে একটি প্রত্যয়নী বল ক্রিয়া বস্তুটিকে সাম্যাবস্থানে ফিরিয়ে আনতে চেষ্টা করে। কিন্তু ফেরার সময় গতি জড়তার জন্য বস্তুটি সাম্যাবস্থানে না থেমে বিপরীত দিকে চলে যায়। বিপরীত দিকে যাবার পর আবার প্রত্যয়নী বল ক্রিয়া করে। এভাবে বস্তুটি সাম্যাবস্থানে অভিমুখী এবং এর মান সরণের সমানুপাতিক হয়। ফলে সরল ছন্দিত গতির আবির্ভাব ঘটে। সুতরাং প্রযুক্ত বলের কারণে, প্রত্যয়নী বলের কারণে সরল ছন্দিত স্পন্দনের উদ্ভব হয়।
- ৭. দোলায়মান সেকেন্ড দোলক কোনো শব্দ উৎপন্ন করে না কেন? $f = \frac{1}{T} = \frac{1}{2s} = 0.5$ Hz মানুষের শ্রাব্যতার ন্যূনতম সীমা 20Hz অর্থাৎ কোনো শব্দের কম্পাঙ্ক 20Hz এর চেয়ে কম হলে তা মানুষ শুনতে পাবে না। সেকেন্ড দোলকের কম্পাঙ্ক 20Hz এর চেয়ে অনেক কম হওয়ায়, সেকেন্ড দোলক কর্তৃক উৎপন্ন শব্দ মানুষ শুনতে পায় না। এ কারণে মনে হয়, সেকেন্ড দোলক কোনো শব্দ উৎপন্ন করে না।

- ৯. একটি ফোঁটা গোলক দ্বারা তৈরি সেকেন্ড দোলককে অর্ধেক পানি দ্বারা পূর্ণ করলে দোলনকালের কোনো পরিবর্তন হবে কি? ব্যাখ্যা কর । lরা. বো. ১৭৷ বো. ১৭৷ দোলকের দোলনকাল নির্ভর করে কার্যকরী দৈর্ঘ্য L এর উপর । একটি ফাঁপা গোলক দ্বারা সেকেন্ড দোলক তৈরি করলে এর কার্যকর দৈর্ঘ্য সুতার ঝুলন বিন্দু থেকে ববের ভরকেন্দ্র পর্যান্ত ৷ কিন্তু অর্ধেক পরিমাণ পানি দ্বারা গোলকটি পূর্ণ করলে এর ভার কেন্দ্র নিচে নেমে যাবে অর্থাৎ পরিবর্তিত হয়ে যাকে ৷ কার্যকর দৈর্ঘ্য, L = l + r এখানে r হচ্ছে গোলকের পৃষ্ঠ থেকে ভারকেন্দ্র পর্যন্ত দ্বত্ব ৷ r বৃদ্ধি পেলে L বৃদ্ধি হবে ৷ আবার $T \propto \sqrt{L}$ অর্থাৎ, দোলনকাল বৃদ্ধি পাবে ৷ এই কারণেই গোলকটি ধীরে চলবে ৷
- ১০. সব দোলক সরল দোলক নয়— ব্যাখ্যা কর।

 একটি ক্ষুদ্র ভারী বস্তুকে ওজনহনি পাকহীন অপ্রসারণশীল নমনীয় সুতার সাহায্যে কোনো দৃঢ় অবলম্বন হতে ঝুলিয়ে দিলে যদি কা বিনা বাধায় অল্প বিস্তারে এদিক ওদিক দুলতে পারে তবে তাকে সরল দোলক বলে। একটি দোলক এ সকল শর্ত পূরণ হলেই সেটি সরল দোলক হবে, অন্যথায় সেটি সরল দোলক হলেও সরল গোলক হবে না
- ১১. পৃথিবীর কেন্দ্রে সরল দোলকের দোলনকাল কীরূপ হবে— ব্যাখ্যা কর।
 পৃথিবীর কেন্দ্রে অভিকর্ষজ ত্বরণের মান শূন্য। তাই পৃথিবীর কেন্দ্রে যে কোনো সরল দোলকের দোলনকাল, T = 2π√√(\frac{L}{g}) = 2π √√(\frac{L}{0}) = ∞
 দোলনকাল অসীম হওয়ায় পৃথিবীর কেন্দ্রে সরল দোলকটি কোনো দোলক দিবে না এবং স্থির হয়ে থাকবে।
- ১৩. সকল সেকেন্ড দোলকই সরল দোলক কিন্তু সকল সরল দোলক সেকেন্ড দোলক সেকেন্ড দোলক নয় কেন? [দি. বো. ১৬]
 একটি ক্ষুদ্র ভারী বস্তুকে ওজনহীন পাকহীন অপ্রসারণশীল নমনীয় সুতার সাহায্যে কোনো দৃঢ় অবলম্বন হতে ঝুলিয়ে দিলে যদি বিনা বাধায় অল্প
 বিস্তারে এদিক ওদিক দুলতে পারে তবে তাকে সরল দোলক বলে। সরল দোলকের দোলনকাল নির্দিষ্ট নয়।
 কিন্তু যে দোলকের দোলনকাল দুই সেকেন্ড তাতে সেকেন্ড দোলক দোলক বলে। সেকেন্ড দোলকের দোলনকাল নির্দিষ্ট এবং তা দুই সেকেন্ড।
 সুতরাং বলা যায় সকল সেকেন্ড দোলক সরল দোলক। কিন্তু সকল সরল দোলক সেকেন্ড দোলক নয়।

আদর্শ গ্যাস ও গ্যাসের গতিতত্ত্ব (Ideal Gas and Kinetics of Gases)

Part:01 তত্ত্বীয় আলোচনা

গ্যাসের সূত্রসমূহঃ		
বয়েলের সূত্র (১৬৬২)	$V \propto \frac{1}{P}$ [When T Constant] PV = k	P V P
		1/V Slope = K (0.137 yellows blooms 1/V)
		PV PV V
চার্লস এর সূত্র	$V \propto T [When P Constant]$	P
	V = kT	
	চার্লস এর সূত্র হতে পরমশূন্য তাপমাত্রার ধারণা পাওয়া যায় ।	° T/K -273°C ° T/C
তথ্য সত্য	পরমশূন্য তাপমাত্রাঃ $0 ext{K}$,- $273^0 ext{C}$	P AT AP
	পরমশূন্য তাপমাত্রায় তাত্ত্বিকভাবে গ্যাসের আয়তন শূন্য হয় ।বাস্তবে $0 { m K}$ তাপমাত্রায়	· · · · · · · · · · · · · · · · · · ·
	পৌছানো সম্ভব নয় । $10^{-4} \mathrm{K}$ তাপমাত্রা পর্যন্ত পৌছানো সম্ভব হয়েছে ।	
		0 T 0 P
আদর্শ গ্যাস	PV = nRT [বয়েল ও চার্লস এর সূত্রের সমন্বিত রূপ।এটি আদর্শ গ্যাস সমীকরণ]	

সমীকরণ আদর্শ গ্যাসঃ যে সকল গ্যাস সকল তাপমাত্রা ও চাপে আদর্শ গ্যাস সমীকরণ মেনে চলে (বয়েল ও চার্লস এর সূত্র) তাদেরকে আদর্শ গ্যাস বলে ।

১. আদর্শ গ্যাস কাকে বলে?

[রা. বো. ১৯; দি. বো. ১৭; কু. দি. বো. ১৬; সি. চ. কু. ি.বো. ১৫]

যে সকল গ্যাস সকল তাপমাত্রা ও চাপে বয়েলের সূত্র ও চার্লসের সূত্র মেনে চলে তাদেরকে আদর্শ গ্যাস বলে।

[য. বো. ১৯; ১৫]

- গ্যাসের ক্ষেত্রে বয়েলের সূত্র বিবৃত কর।
 বয়েলের সূত্র: স্থির তাপমাত্রায় কোনো গ্যাসের চাপ এর আয়তনের ব্যাস্তানুপাতিক।
- ৩. প্রমাণ চাপ কী?

[ঢা. দি. সি. য. বো. ১৮; চ. বো. ১৬; ঢা. ব. বো. ১৫]

সমুদ্র পৃষ্ঠে 45° অক্ষাংশে $0^\circ\mathrm{C}$ তাপমাত্রায় উল্লম্বভাবে অবস্থিতি $760\mathrm{mm}$ উচ্চতা বিশিষ্ট শুষ্ক ও বিশুদ্ধ পারদ স্তম্ভের চাপকে প্রমাণ চাপ বলা হয়।

8. এক মোলের সংজ্ঞা দাও।

[চ. বো. ১৭]

যে পরিমাণ পদার্থে $0.012 {
m kg}$ কার্বন 12-তে অবস্থিত পরমাণুর সমান সংখ্যক প্রাথমিক ইউনিট থাকে তাকে এক মোল বলে।

৫. সার্বজনীন গ্যাস ধ্রুবক কাকে বলে?

কা. বো. ১

এক মোল আদর্শ গ্যাসের জন্য PV/T একটি ধ্রুব সংখ্যা। সকল আদর্শ গ্যাসের জন্য এর মান একই হয় বলে একে সার্বজনীন গ্যাস ধ্রুবক বলে। এর মান $8.3114 J mol^{-1} K^{-1}$ ।

১. বোল্টজম্যান ধ্রুবক $K=1.38 \times 10^{-23} \ {
m J/K}$ বলতে কী বোঝায়— ব্যাখ্যা কর।

[রা. বো. ২০১৯]

বোল্টজম্যান ধ্রুবক $K=1.38 imes 10^{-23}~J/K$ বলতে বুঝায়, প্রমাণ তাপমাত্রা ও চাপে 1টি আদর্শ গ্যাস অণুর তাপমাত্রা 1K বাড়াতে $1.38 imes 10^{-23}~J$ তাপের প্রয়োজন হয়।

২. নির্দিষ্ট ভরের গ্যাসের ঘনতু তার পরম তাপমাত্রার উপর নির্ভরশীল— ব্যাখ্যা কর।

[চ.বো.২০১৯]

ধরি, কোনা নির্দিষ্ট পরিমাণ গাসের ভর m, স্থির চাপে গ্যাসটির T_1 পরম তাপমাত্রায় আয়তন V_1 ও ঘনত্ব ho_1 এবং T_2 পরম তাপমাত্রায় আয়তন V_1 ও ঘনত্ব ho_2 ।

এখন, ঘনত্বের সূত্রানুসারে, $V_1=rac{m}{
ho_1}$ এবং $V_2=rac{m}{
ho_2}$

চার্লসের সূত্রানুসারে,
$$\dfrac{V_1}{T_1}=\dfrac{V_2}{T_2}$$
; $\therefore \dfrac{m}{\rho_1T_1}=\dfrac{m}{\rho_2T_2}$; বা, $\rho_1T_1=\rho_2T_2$; $\therefore \ \rho_1T_1=$ ধ্রুবক

অর্থাৎ, কোনো গ্যাসের বেলুনের ঘনত্ব তাপমাত্রার ব্যাস্তানুপাতিক।

৩. একটি হাইড্রোজেন গ্যাস বেলুন ভূমি হতে নির্দিষ্ট উচ্চতায় ওঠার পরে ফেটে যায় কেন— ব্যাখ্যা কর।

বায়ুমণ্ডলের নিমু স্তরে বায়ুচাপ অনেক বেশি থাকায় (প্রায় $1 ext{atm}$ বা $10^5 ext{ Nm}^{-2}$ এর কাছাকাছি) বেলুনের অভ্যন্তরস্থ গ্যাস অল্প আয়তন দখল করে। কিন্তু বেলুন যতোই ওপরের দিকে উঠতে থাকে ততই এর ওপর বায়ুমণ্ডলীয় চাপ কমতে থাকে, এতে বেলুনের তথা এর অভ্যন্তরস্থ গ্যাসের আয়তন ক্রমেই বাড়তে থাকে। এভাবে এক সময় নির্দিষ্ট উচ্চতায় গ্যাসের আয়তন এতই বেশি হতে চায় য, তখন বেলুনের রাবার অভ্যন্তরস্থ অতিরিক্ত চাপ সহ্য করতে না পেরে ফেটে যায়।

8. Boltzman ধ্রুবক ব্যাখ্যা কর।

প্রতি অণু গ্যাসের জন্য মোলার ধ্রুবক মানকে Boltzman ধ্রুবক (K) বলে, গাণিতিকভাবে, $K=\dfrac{R}{N_A}[R=$ মোলার গ্যাস ধ্রুবক]

[N_A = অ্যাভোগেড্রোর সংখ্যা]

৫. চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায় কেন?

[য. বো. ১৫]

চলমান অবস্থায় গাড়ির চাকার অভ্যন্তরে সমআয়তন প্রক্রিয়া চলে। এতে চাকার অভ্যন্তরে গ্যাসের আয়তন বৃদ্ধি পায় না। চাকার সাথে রাস্তার ঘর্ষণের ফলে চাকায় যে তাপ উৎপন্ন হয় তার কিছু অংশ গ্যাসে প্রবেশ করে, এছাড়া গাড়ির গতিশক্তির সামান্য অংশ গাসের তাপশক্তিরূপে

দেখা দেয়। এই তাপশক্তির কারণে গ্যাসের তাপমাত্রা বৃদ্ধি পায়। তখন স্থির আয়তনে চাপের সূত্রানুসারে $\left(\frac{P_1}{T_1} = \frac{P_2}{T_2}\right)$ গ্যাসের চাপ বৃদ্ধি পায়। এ কারণে চলমান অবস্থায় গাড়ির চাকার চাপ বৃদ্ধি পায়।

৬. গ্যাসের ক্ষেত্রে ঘনত্ব বনাম তাপমাত্রা লেখচিত্রের প্রকৃতি কেমন ব্যাখ্যা কর।

কি কো ১৬

স্থির চাপে গ্যাসের ঘনত্ব এর পরম তাপমাত্রার ব্যাস্তানুপাতিক। গ্যাসের ঘনত্ব ho এবং পরম তাপমাত্রা T এর মধ্যে সম্পর্ক হলো, $ho \propto rac{1}{T}$ । এই সমীকরণ হতে দেখা যায় তাপমাত্রা বৃদ্ধি পেলে ঘনতু কমে। লেখচিত্রটি হবে নিমুরূপ :

৭. একই আয়তনের দুটি বায়ুপূর্ণ বেলুনকে ভিন্ন তাপমাত্রায় রাখলে কি ঘটবে? ব্যাখ্যা কর।

[রা. বো. ১৫]

একই আয়তনে দুটি বায়ুপূর্ণ বেলুনকে ভিনন তাপমাত্রায় রাখলে $\frac{V_2}{T_2}=\frac{V_1}{T_1}$ সূত্রানুসারে বেশি তাপমাত্রার বেলুনের আয়তন বেশি হবে, কারণ উভয়ক্ষেত্রে চাপ বায়ুমণ্ডলীয় চাপের সমান হবে।

মালার গ্যাস ধ্রুবক	গ্যাস ধ্রুবক R এ বিভিন্ন মান: S.I এককে R=8.31 Jk∼¹ mole⁻¹; C.G.S পদ্ধতিতে R = 8.31×10⁻ ergk⁻¹
	$mole^{-1}$
বোল্টজম্যান ধ্রুবক	অণু প্রতি গ্যাস ধ্রবকের মান $+k=rac{R}{N_A}=rac{R}{6.023 imes10^{23}}=1.38 imes10^{23}\mathrm{JK^{-1}}$
	বোল্টজম্যান ধ্রুবক এর মান $1.38 imes 10^{23}\mathrm{JK^{-1}}$
প্রমাণ চাপ:	সমুদ্রপৃষ্ঠে 45° অক্ষাংশে 273K তাপমাত্রায় উলম্ব ভাবে অবস্থিত 760 mm উচ্চতা বিশিষ্ট শুষ্ক ও বিশুদ্ধ পারদ স্তম্ভ
	যে চাপ দেয় তাকে প্রমাণ চাপ বলে। প্রমাণ চাপ = 760 mm পারদ স্তম্ভ চাপ = 0.76×13596 Kgm~³ × 9.80
	$ms^{-2} = 1.013 \times 10^5 \text{ Nm}^{-2} [p = h\rho g] = 1.013 \times 10^5 \text{ Pa} = 760 \text{ mm Hg P} = 76 \text{ cm HgP}$
গড় মুক্ত পথ	প্রমাণ বায়ুমন্ডলিয় চাপে হাইড্রোজেন অণুর গড় মুক্ত পথ প্রায় $10^{-7}\mathrm{m}$

৮. একই তাপমাত্রায় ভিন্ন ভিন্ন এক মোল গ্যাসের গড় গতিশক্তি ধ্রুব হবে— ব্যাখ্যা কর। কোনো নির্দিষ্ট ভরের গ্যাসের অণুগুলোর গতিশক্তির গড় গতিশক্তি বলে।

[রা. বো. ১৭]

আমরা জানি, T তাপমাত্রায় গ্যাসের অণুগুলো গতিশক্তি- ${
m KE}=rac{3}{2}\,{
m RT}$ ।

আবার, T তাপমাত্রা 1 মোল গ্যাসের গতিশক্তি, $\overrightarrow{E}=rac{3}{2}$ KT; এখানে K হলো বোল্টজম্যানের ধ্রুবক $|\overrightarrow{E}$ দ্বারা অণুসমূহের গড় গতিশক্তি বুঝায় | \therefore দেখা যাচ্ছে যে, তাপমাত্রা একই হলে ভিন্ন ভিন্ন এক মোল গ্যাসের জন্য গড় গতিশক্তি একই হবে |

৯. পরম শূন্য তাপমাত্রায় গ্যাসের স্কল অণু ছির থাকে— ব্যাখ্যা কর।

[সি. বো. ১৭]

পরমশূন্য তাপমাত্রা গ্যাসের গতিশক্তি শূন্য হয় বলে পরমশূন্য তাপমাত্রায় গ্যাসের সকল অণু স্থির থাকে। আমরা জানি, T কেলভিন

তাপমাত্রায় প্রতি মোল গ্যাসের গতিশক্তি $=\frac{3}{2}\,\mathrm{RT}$ । প্রমশূন্য তাপমাত্রায় $V=0\mathrm{K}$, এক্ষেত্রে গতিশক্তি $=\frac{3}{2}\times\mathrm{R}\times0=0\mathrm{J}$ । অর্থাৎ প্রমশূন্য $(0\mathrm{K})$ তাপমাত্রায় গ্যাসের সকল অণু স্থির থাকে।

১০. গ্যাসের গতিতত্ত্ব বয়েলের সূত্রকে সমর্থন করে— ব্যাখ্যা কর।

[দি. বো. ১৭]

এখানে, P= গ্যাসের চাপ, V= গ্যাসের আয়তন, $m=\,$ মোট অণুর সংখ্যা

 $\overrightarrow{c}=$ অণুর মূল গড় বর্গবেগ

গ্যাসের গতিতত্ত্ব অনুসারে, $PV=rac{1}{3}mNc^2$ যেহেতু $c^2\propto T$ সেহেতু স্থির তাপমাত্রার নির্দিষ্ট ভরের গ্যাসের জন্য, $rac{1}{3}\,mnc^2=$ ধ্রুব।

$$PV =$$
ধুৰ্ব । ∴ $P \propto \frac{1}{V}$

অর্থাৎ, স্থির তাপমাত্রায় নির্দিষ্ট ভরের গ্যাসের চাপ এর আয়তনের ব্যাস্তানুপাতিক। এটাই বয়েলের সূত্র। অতএব, গ্যাসের গতিতত্ত্ব বয়েলের সূত্রকে সমর্থন করে।

১১. গ্যাসের ক্ষেত্রে অণুসমূহের বেগের গড় বর্গমূল নিতে হয় কেন?

[কু. বো. ১৫]

পরীক্ষায় দেখা গেছে, দেওয়ালের গাঁয়ে অণুসমূহের ধাক্কার ফলে চাপের সৃষ্টি হয় এবং গ্যাসের এই চাপ অণুগুলোর গড় বর্গবেগের ওপর নির্ভর করে। গাসের গতি নির্ণয়ের জন্য অণুগুলোর গড় বর্গবেগের বর্গমূল বা মূল গড় বর্গবেগকে বিবেচনা করা হয়। কারণ গড় বেগ অপেক্ষা মূল গড় বর্গবেগ পরীক্ষালব্ধ ফলাফলের সঙ্গে অধিক সংগতিপূর্ণ।

Keep Confidence, Keep Patience & Keep Your Face Always Smiling.

শক্তির সমবিভাজন নীতি ঃ	কোনো গতীয় সংস্থার মোট শক্তি তাপীয় সাম্যাবস্থায় প্রতিটি স্বাধীনতার মাত্রার মধ্যে সমভাবে বন্টিত হয় এবং প্রতিটি স্বাধীনতার মাত্রার শক্তির পরিমাণ $= \frac{1}{KT}$ ।
স্বাধীনতার মাত্রা ঃ	2 একটি বস্তুর গতিশীল অবস্থা বা অবস্থান সম্পূর্ণরূপে প্রকাশ করার জন্য যত সংখ্যক স্বাধীন চলরাশির প্রয়োজন হয় তাকে স্বাধীনতার মাত্রা বলে। H_2 , N_2 , CO_2 ইত্যাদি দ্বি-পরমাণুক গ্যাস অণুর স্বাধীনতার মাত্রা 5 । দ্বি-পরমাণুক গ্যাস অণুর
	শক্তির পরিমাণ $=rac{5}{2}KT$ । এক-পরমাণুক গ্যাস অণুর স্বাধীনতার মাত্রা 3 । এক-পরমাণুক গ্যাস অণুর শক্তির পরিমাণ
	$=rac{3}{2}KT$ । ত্রি পারমাণবিক গ্যাস এর জন্য স্বাধীনতার মাত্রা 6 রৈখিক গতির জন্য স্বাধীনতার মাত্রা ঃ 3 আবর্তন গতির জন্য স্বাধীনতার মাত্রা ঃ 2 চলন ঘূর্ণন গতির জন্য স্বাধীনতার মাত্রাঃ 5

ক্রান্তি তাপমাত্রা	শর্বোচ্চ যে তাপমাত্রায় থাকলে একটি গ্যাসকে শুধু চাপ প্রয়োগে তরলে পরিণত করা যায় তাকে ক্রান্তি			
	তাপমাত্রা বলে।			
ক্রান্তি চাপ	❖ ক্রান্তি তাপমাত্রায় যে চাপ প্রয়োগ করলে কোন গ্যাসকে তরলে পরিণত করা যায় তাকে ক্রান্তি চাপ বলে।			
বাষ্প			ত্রা অপেক্ষা কম হলে তাকে বাষ্প ব	
	অসম্পৃক্ত: প্রয়োজনের তুলনায় কম।		সমপরিমান। অতিপৃক্ত:প্রয়োজনে	র চেয়ে বেশি।
	তাপমাত্রা বৃদ্ধিতে বায়ুর জলিয়বাষ্প			
গ্যাস	কোনো পদার্থ এর ক্রান্তি তাপমাত্রা অপেক্ষা অধিক তাপমাত্রায় থাকলে তাকে গ্যাস বলে।			
শিশিরাঙ্ক	💠 যে তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ু তার ভিতরের জলীয় বাষ্প দ্বারা সম্পূক্ত হয় তাকে ঐ বায়ুর শিশিরাঙ্ক			
	বলে।		·	
	কোনো নির্দিষ্ট তাপমাত্রায়	। একটি নির্দিষ্ট আয়ত	নর বায়ুতে যে পরিমাণ জলীয় বাষ্প	া থাকে ঐ তাপমাত্রায় ঐ
	আয়তনের বায়ুকে সম্পৃত্ত	^চ করতে যে পরিমাণ জ	ললীয় বাম্পের প্রয়োজন হয় তাদের [*]	অনুপাতকে আপেক্ষিক
	আর্দ্রতা বলে।			
	f		2	
	আপেক্ষিক আর্দ্রতা $= \frac{f}{F} \times 100\%$, $\theta_1 - \theta = G(\theta_1 - \theta_2)$			
আপেক্ষিক আর্দ্রতা	বায়ুতে জলীয়বাঙ্গেপর পরিমাণ			
আগোশক আপ্রভা	প্রেক্ষিত	আপেক্ষিক আদ্রতা	বায়ুতে জলীয়বাল্প এর অবস্থা	শিশির
	শিশিরাংক=বায়ুর তাপমাত্রা		সম্পৃক্ত	পড়বে না
	শিশিরাঙ্ক< বায়ুর তাপমাত্রা	<\$00%	অসম্পৃক্ত	পড়বে না
	শিশিরাঙ্ক> বায়ুর তাপমাত্রা	>>0%	সম্পৃক্ত হওয়ার পর ও	পড়বে
			অতিরিক্ত জলীয় বাষ্প থাকবে	
	আপেক্ষিক আদ্রতা নির্ণয়ের ক্ষেত্রে-			
	अथार्ट्या कि निर्मा के प्रति क			
	❖কম হলে পূর্বাভাসে আর্দ্র আবহাওয়া উল্লেখ করা যায়			
	❖খুব বেশী হলে, পূৰ্বাভাসে বলা যায় আবহাওয়া শুষ্চ।			
	♦ शेति शेति कम्मण वृष्टित সভাবনা থাকে।			
	❖হঠাৎ হ্রাস পেলে ঝড়ের সম্ভাবনা থাকে।			
পরম আর্দ্রতাঃ	❖ কোনো সময় কোনো স্থানের একক আয়তনের বায়ুতে যে পরিমাণ জলিয় বাষ্পথাকে তাকে ঐ বায়ুর পরম			
	আর্দ্রতা বলে। পরম অদ্রতার একক kgm ⁻³			

ভেবে বল তো!!

শীতকালে শিশির পড়ে কিন্তু গ্রীষ্মকালে শিশির পড়ে না কেন? তুমি কিভাবে আপেক্ষিক আদ্রতার মান জানার মাধ্যমে আবহাওয়ার পূর্বাভাস দেবে ? ৬. স্বাধীনতার মাত্রা কাকে বলে?

[ঢা. বো. ১৯; রা. বো. ১৭]

কোন গতিশীল সিস্টেমের অবস্থান সম্পূর্ণরূপে প্রকাশ করতে যতগুলো স্থানাঙ্কের প্রয়োজন হয় তার সংখ্যাই হচ্ছে স্বাধীনতার মাত্রা।

৭. সম্পক্ত বাষ্পচাপ কী?

[চ.বো.১৯; ঢা.বো.১৬]

নির্দিষ্ট তাপমাত্রায় বাষ্প সর্বোচ্চ যে চাপ দিতে পারে বা নির্দিষ্ট তাপমাত্রায় কোনা আবদ্ধ স্থানে সর্বোচ্চ যে পরিমণ বাষ্প ধারণ করতে পরে সেই পরিমাণ বাষ্প যে চাপ দেয় তাকে সম্পুক্ত বাষ্পচাপ বলে।

৮. পরদ আর্দ্রতা কাকে বলে?

[কু. চ. ব. বো. ১৮; ব. বো. ১৫]

কোনো স্থানের বাতাসে প্রতি ঘনমিটারে যে পরিমাণ জলীয় বাষ্প আছে ঐ স্থানের পরম আর্দ্রতা বলে।

৯. মূল গড় বৰ্গবেগ কী?

[সি. বো. ১৭]

গ্যাস অণুগুলোর বেগের বর্গের গড়মানের বর্গমূলকে মূল গড় বর্গবেগ বলে।

১০. মূল গড় বর্গ বেগ কাকে বলে?

সি. বো. ১৭

দুই বা ততোধিক বেগের বর্গের গড় মানের বর্গমূলকে গড় বর্গবেগের বর্গমূল বা মূল গড় বর্গ বেগ বলে।

১১. আপেক্ষিত আর্দ্রতা কাকে বলে?

[কু. চ. বো. ১৭; রা. বো. ১৬]

কোনো নির্দিষ্ট তাপমাত্রায় একটি নির্দিষ্ট আয়তনের বায়ুতে যে পরিমাণ জলীয় বাষ্প থাকে এবং ঐ তাপমাত্রায় ঐ আয়তনের বায়ুকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্পের প্রয়োজন হয় তাদের অনুপাতকে আপেক্ষিক আর্দ্রতা বলে

১২. কোনো স্থানের তাপমাত্রার 25°C এবং শিশিরাঙ্ক 15°C বলতে কী বুঝ?

[ঢা. বো. ১৯ , ১৮; কু. বো. ১৭ অনুরূপ]

কোনো স্থানের তাপমাত্রা 25°C বলতে বুঝায় উক্ত স্থানে 25°C এর বেশি তাপমাত্রার কোনো বস্তু তাপ হারাবে এবং এর কম তাপমাত্রার কোনো বস্তু পরিবশে থেকে তাপ গ্রহণ করবে।

কোনো স্থানের শিশিরাঙ্ক 15°C বলতে বোঝায় ঐ স্থানের তাপমাত্রা 15°C করা হলে উক্ত স্থানে বিদ্যমান জলীয় বাষ্প দ্বারা ঐ স্থান সম্পৃক্ত হবে। সম্মিলিতভাবে কোনো স্থানের তাপমাত্রা ও শিশিরাঙ্ক যথাক্রমে 25°C ও 15°C বলতে বুঝানো যায় যে, ঐ স্থানের আপেক্ষিক আর্দ্রতা 100% এর কম এবং তাপমাত্রা (25–15)°C নিচে নামলে ঐ স্থানের বায়ু জলীয় বাষ্প্প দ্বারা সম্পৃক্ত হবে।

১৩. সম্পক্ত বাষ্পচাপই কোনো স্থানে সর্বাপেক্ষা বেশি এর যথার্থতা লিখ।

वि तो ५०

নির্দিষ্ট তাপমাত্রায় সম্পৃক্ত বাষ্প যে চাপ দেয় তাকে সম্পৃক্ত বাষ্পচাপ বলে। কোনো স্থানে বাষ্প দ্বারা সম্পৃক্ত হলে সেখানে নতুন করে বাষ্প বায়ুর সাথে মিশে যেতে পারে না। অর্থাৎ কোনো স্থান বাষ্প চাপ দ্বারা সম্পৃক্ত হলে সেখানে সর্বাধিক পরিমাণ জলীয় বাষ্প উপস্থিত থাকে তথা সর্বাধিক চাপ প্রয়োগ করে। অর্থাৎ সম্পৃক্ত বাষ্পচাপই কোনো স্থানে সর্বাপেক্ষা বেশি।

১৪. কোনো ছানে বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে কী বুঝায়?

[ঢা. বো. ১৬; সি. বো. ১৫]

কোনো স্থানে বাতাসের আপেক্ষিক আর্দ্রতা 70% বলতে বুঝায় ঐ তাপমাত্রায় ঐ স্থানের বাতাসকে সম্পৃক্ত করতে যে পরিমাণ জলীয় বাষ্প্র দরকার তার শতকরা 70 ভাগ জলীয় বাষ্প্র ঐ মুহূর্তে ঐ স্থানের বায়ুতে রয়েছে।

১৫. গ্যাস ও বাষ্পের দুটি পার্থক্য লেখ।

[চ. বোা. ১৬; য. বো. ১৫]

কোনো পদার্থের তাপমাত্রা এর ক্রান্তি তাপমাত্রা অপেক্ষা কম হলে তাকে বাষ্প বলে। আর কোনো পদার্থের তাপমাত্রা এর ক্রান্তি তাপমাত্রা অপেক্ষা অধিক হলে তাকে গ্যাস বলে। তাপমাত্রা ঠিত রেখে গ্যাসকে শুধু চাপ প্রয়োগে তরলে পরিণত করা যায় না, বাষ্পকে তরলে পরিণত করা যায়।

১৬. বায়ুতে জলীয় বাষ্পের পরিমাণ কমে গেলে সিক্ত বাল্ব থার্মোমিটারের পাঠ হ্রাস পায়— ব্যাখ্যা কর।

অর্দ্রিতামাপক যন্ত্রে সিক্ত মসলিন/লিলেন থেকে পানির বাষ্পায়নের জন্য সিক্ত বাল্বে কম তাপমাত্রা দেখা যায়। বায়ুতে জলীয় বাষ্পের পরিমাণ কমে গেলে পানির বাষ্পায়নের হার বেড়ে যায়। ফলে সিক্ত বাল্ব থার্মোমিটারের তাপমাত্রা,হ্রাস পায়।

- ১৭. কোনো স্থানের পরম আর্দ্রতা ও আপেক্ষিক আর্দ্রতা একই নয় কেন?
 - কোনো স্থানের পরম আর্দ্রতা হলো ঐ স্থানের বায়ুতে প্রতি ঘনমিটারে কী পরিমাণ জলীয় বাষ্প আছে সেটা। অর্থাৎ পরম আর্দ্রতার একক $m khm^{-3}$ । অপরদিকে, আপেক্ষিক আর্দ্রতা হলো একটি আনুপাতিক হিসাব। নির্দিষ্ট তাপমাত্রায় কোনো স্থানে যে পরিমাণে জলীয় বাষ্প আছে এবং সর্বোচ্চ যে পরিমাণ জলীয় বাষ্প থাকতে পারে- এ দু'য়ের অনুপাতকে ঐ স্থানের আপেক্ষিক আর্দ্রতা দ্বারা সংশ্লিষ্ট স্থানের আবহাওয়ার পূর্বাভাস দেওয়া যায়।
- ১৮. একটি থার্মোমিটারের বাল্পকে পানিতে ডুবালে অথবা ভেজা কাপড় দিয়ে পেচিয়ে রাখলে কোন ক্ষেত্রে তাপমাত্রা সবচেয়ে বেশি কমবে- ব্যাখ্যা কর।

একটি থার্মোমিটারের বাল্বকে পানিতে ডুবালে এটি কেবল পরিবহন/পরিচলন প্রক্রিয়ায় পানিতে তাপ সঞ্চালন করবে এবং নির্দিষ্ট সময়কালে উক্ত বর্জিত তাপের পরিমাণ পানির আপেক্ষিক তাপের সমানুপাতিক হয়। কিন্তু থার্মোমিটারের বাল্বকে ভেজা কাপড় দিয়ে পেচিয়ে রাখলে তা কাপড়ের পানিকে বাষ্পীভবনের সুপ্ততাপের সমানুপাতিক হবে। যেহেতু পানির বাষ্পীভবনের সুপ্ততাপ এর আপেক্ষিক তাপের তুলনায় অনেক বেশি, তাই ভেজা কাপড় দিয়ে পেঁচিয়ে রাখার বেলায় তাপমাত্রা অধিকহারে কম্বে।

১৯. শীতের রাতে শিশির পড়ে কেন? ব্যাখ্যা কর।

শীতের সকালে ঘাসের ওপর বিন্দু বিন্দু পানি জমে থাকতে দেখা যায়। এগুলোকে শিশির বলে। শীতকালে দিন ও রাতে যথেষ্ট তাপমাত্রার পার্থক্য পরিলক্ষিত হয়। দিনের বেলায় সূর্যের তাপে ভূ-পৃষ্ঠ ও সংলগ্ন বায়ু উত্তপ্ত হয়। এ সময় বায়ু জলীয় বাষ্প দ্বারা অসম্পৃক্ত থাকে। কিন্তু রাতের বেলায় ভূ-পৃষ্ঠ তাপ বিকিরণ করে ধীরে ধীরে শীতল হতে থাকে। তাপ বিকিরণের হার সব বস্তুর সমান নয়। ঘাস পাতা ইত্যাদির তাপ বিকিরণের হার বেশি বলে এগুলো বেশি শীতল হয় এবং সাথে সাতে সংলগ্ন বায়ুকে শীতল করে। এগুলোর তাপমাত্রা শিশিরাঙ্কের নিচে নেমে গেলে জলীয় বাষ্প ঘনীভূত হয়ে এগুলোর গায়ে বিন্দু বিন্দু আকারে জমা হয়।

২০. শীতকালে আমাদের শরীরের কোমল অংশ ফেটে যায় কেন তা ব্যাখ্যা কর।

শীতকালে বায়ুর আপেক্ষিক আর্দ্রতা কম থাকে অর্থাৎ বায়ুতে জলীয় বাষ্পের পরিমাণ কম থাকে। তাই শরীরের চামড়ার জলীয় অংশ শুকিয়ে যায়। কোমল অংশ সব সময় ভেজা থাকে। ফলে সেখানে বাষ্পায়ন বেশি হয় এবং দ্রুত শুকিয়ে যায় এবং চামড়া সংকুচিত হয়। সংকুচিত হবার জন্য শরীরের কোমল অংশের ভেতর ও বাইরের চাপের বৈষম্যের জন্য ফেটে যায়।

২১. মেঘলা রাত্রি অপেক্ষা মেঘহনি রাত্রি শিশির জমার জন্য সহায়ক কেন?

দিনের বেলায় সূর্যের তাপে ভূ-পৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাষ্প দ্বারা অসম্পৃক্ত থাকে। মেঘহীন রাত্রিতে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাষ্প সম্পৃক্ত হয় এবং জলীয় বাষ্প ঘনীভূত হয়ে শিশির কণা জমে। কিন্তু আকাশ মেঘাচ্ছন্ন থাকলে ভূ-পৃষ্ঠ তাপ বিকিরণ করে ঠান্ডা হতে পারে না। কারণ মেঘ তাপরোধী পদার্থ বলে ভূ-পৃষ্ঠ হতে বিকিরণজনিত তাপ পরিবাহিত হতে পারে না। ফলে ভূ-পৃষ্ঠ ঠান্ডা হয় না এবং শিশির জমে না।

২২. আকাশ মেঘলা থাকলে শিশির পড়ে না কেন?

দিনের বেলায় সূর্যের তাপে ভূ-পৃষ্ঠ সংলগ্ন বাতাস গরম থাকে এবং জলীয় বাষ্প দ্বারা অসম্পৃক্ত থাকে। মেঘহীন রাত্রিকে ভূ-পৃষ্ঠ তাপে বিকিরণ করে ঠান্ডা হতে থাকে এবং পরিশেষে এমন একটি তাপমাত্রায় উপনীত হয় যখন বাতাস জলীয় বাষ্প দ্বারা সম্পৃক্ত হয় এবং জলীয় বাষ্প ঘনীভূত হয়ে শিশির জমে। এই তাপমাত্রাকে ঐ স্থানের বায়ুর শিশিরাঙ্ক বলে।

২৩. গরমের দিনে কুকুর জিহ্বা বের করে দৌড়ায় কেন?

গরমের দিনে কুকুরের শরীর উত্তপ্ত থাকে এবং কুকুর অস্বস্তিবোধ করে। কিন্তু কুকুরের জিহ্বার উপর এক প্রকার লালা থাকে। সেই লালা কুকুরের শরীর থেকে বাষ্পীভবনের সুপ্ততাপ শোষণ করে ক্রমাগত বাষ্পীভূত হয় এবং কুকুরের শরীর ঠান্ডা হয়্ কুকুর স্বস্তি অনুভব করে। সেজন্য কুকুর জিহ্বা বের করে দৌড়ায়।