

STN Search

by Patent Examiner Shart
9/11/07

FILE 'REGISTRY' ENTERED AT 10:27:27 ON 11 SEP 2007
 L15 STRUCTURE UPLOADED
 L16 39 SEARCH L15 SSS SUB=L13 FULL

FILE 'CAPLUS' ENTERED AT 10:28:29 ON 11 SEP 2007
 L17 24 S L16

=> d 115
 L15 HAS NO ANSWERS
 L15 STR

Lue
9/11/07

Structure attributes must be viewed using STN Express query preparation.

=> d bib abs hitstr 1-24

L17 ANSWER 1 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 2007:332826 CAPLUS

DN 146:358579

TI Preparation of conformationally constrained 3-(4-hydroxyphenyl)-
 substituted propanoic acids useful for treating metabolic disorders
 IN Akerman, Michelle; Brown, Sean; Houze, Jonathan B.; Liu, Jingqian; Ma,
 Zhihua; Medina, Julio C.; Qiu, Wei; Schmitt, Michael J.; Wang, Yingcai;
 Zhu, Liusheng

PA Amgen Inc., USA

SO PCT Int. Appl., 228pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2007033002	A1	20070322	WO 2006-US34995	20060908
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW				
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,				

CAS ONLINE PRINTOUT

IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,
 CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,
 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
 KG, KZ, MD, RU, TJ, TM
 US 2007066647 A1 20070322 US 2006-517992 20060908
 PRAI US 2005-717432P P 20050914
 OS MARPAT 146:358579
 AB QL1PL2MXL3A [Q = H, aryl, heteraryl, alkyl, heteroalkyl; L1 = bond, alkylene, heteroalkylene, O, S, SO, SO₂, NR_a, carbonylhetereocycloalkylene, alkylenesulfonylamino, alkyleneaminosulfonyl, carbonylamino; P = cyclohexyl, benzocycloalkyl; L2 = bond, alkylene, heteroalkylene, oxymethylene, O, S, SO, SO₂, NR_a, alkylenesulfonylamino, etc.; M = aryl, heteroaryl, cycloalkyl, arylalkylene, heteroarylalkylene; X = CR₁R₁₁, NR₁, O, S, SO₂; L3 = alkylene, heteroalkylene; A = CO₂H, tetrazol-5-yl, SO₃H, PO₃H₂, CONHSO₂Me, CHO, thiazolidinedionyl, hydroxyphenyl, pyridyl; Ra = H, alkyl, aralkyl, heteroalkyl; R1 = cyano, aryl, heteroaryl, alkenyl, alkynyl, carboxamide; R11 = H, cyano, aryl, heteroaryl, alkyl, alkenyl, alkynyl, were prepared. Thus, (3S)-3-[4-(5-(3-trifluoromethylphenyl)-2,3-dihydro-1H-inden-1-yl)oxy]phenyl]hex-4-ynoic acid [preparation from 5-bromo-1-indanone, Me (S)-3-(4-hydroxyphenyl)hex-4-ynoate, and 4-trifluoromethylboronic acid given] showed an EC₅₀ of <0.01 μM in a cell-based aequorin assay for relative activation of GPR40.
 IT 916219-96-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation of conformationally constrained hydroxyphenylpropanoates for treating metabolic disorders).
 RN 916219-96-0 CAPLUS
 CN Benzenepropanoic acid, β-(aminocarbonyl)-4-[(4'-trifluoromethyl)[1,1'-biphenyl]-3-yl)methoxy]-, methyl ester, (βS)- (CA INDEX NAME)

Absolute stereochemistry.

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 2 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 2006:1256706 CAPLUS
 DN 146:27822
 TI Preparation of benzylxylophenyl(azolyl)alkanoates as modulators of G-protein coupled receptor GPR40 for treatment of metabolic disorders.
 IN Houze, Jonathan; Liu, Jiwen; Ma, Zhihua; Medina, Julio C.; Schmitt, Michael J.; Sharma, Rajiv; Sun, Ying; Wang, Yingcui; Zhu, Liusheng
 PA Amgen Inc., USA
 SO PCT Int. Appl., 88pp.
 CODEN: PIXXD2
 DT Patent
 LA English

CAS ONLINE PRINTOUT

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2006127503	A2	20061130	WO 2006-US19545	20060518
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	US 2006270724	A1	20061130	US 2006-436732	20060517
PRAI	US 2005-683331P	P	20050520		
	US 2006-436732	A	20060517		
OS	MARPAT 146:27822				
GI					

AB Title compds. [I; Q = (substituted) Ph; L = bond, O; P = phenylene, (substituted) thiazolylene; R1 = (substituted) oxazolyl, imidazolyl, triazolyl, tetrazolyl, carboxamide], were prepared. Thus, title compound (II) (prepared via coupling of the corresponding thiazolyl chloride and phenol derivs.) showed an EC50 <0.01 μ M in a cell based aequorin assay for modulatory activity on the GPR40 signaling pathway.

IT 916219-96-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation of benzyloxyphenyl(azolyl)alkanoates as modulators of GPR40 for treatment of metabolic disorders)

RN 916219-96-0 CAPLUS

CN Benzenepropionic acid, β -(aminocarbonyl)-4-[(4'-trifluoromethyl)[1,1'-biphenyl]-3-yl]methoxy]-, methyl ester, (β S)- (CA INDEX NAME)

Absolute stereochemistry.

L17 ANSWER 3 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 2005:1026833 CAPLUS

DN 143:326090

TI Preparation of arylmethoxyphenyl-alkylcarboxylic acids and related derivatives for use in treating metabolic disorders

IN Akerman, Michelle; Houze, Jonathan; Lin, Daniel C. H.; Liu, Jiwen; Luo, Jian; Medina, Julio C.; Qiu, Wei; Reagan, Jeffrey D.; Sharma, Rajiv; Shuttleworth, Stephen J.; Sun, Ying; Zhang, Jian; Zhu, Liusheng

PA Amgen Inc., USA; et al.

SO PCT Int. Appl., 163 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN. CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005086661	A2	20050922	WO 2005-US5815	20050224
	WO 2005086661	A3	20060504		
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2005220728	A2	20050922	AU 2005-220728	20050224
	AU 2005220728	A1	20050922		
	CA 2558585	A1	20050922	CA 2005-2558585	20050224
	EP 1737809	A2	20070103	EP 2005-723623	20050224
	R: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LI, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, AL, BA, HR, LV, MK, YU				
	CN 1946666	A	20070411	CN 2005-80012709	20050224
	BR 2005008098	A	20070717	BR 2005-8098	20050224
	JP 2007525516	T	20070906	JP 2007-500959	20050224
	US 2006004012	A1	20060105	US 2005-67377	20050225
	MX 2006PA09793	A	20061030	MX 2006-PA9793	20060828
	US 2007142384	A1	20070621	US 2006-591214	20060828
	IN 2006DN05525	A	20070817	IN 2006-DN5525	20060922
	NO 2006004362	A	20061122	NO 2006-4362	20060926
PRAI	US 2004-548741P	P	20040227		
	US 2004-601579P	P	20040812		

WO 2005-US5815
OS MARPAT 143:326090
GI

W 20050224

II

AB Title compds. Q-L1-P-L2-M-X-L3-A [Q = H, (hetero)aryl, alkyl, etc.; L1 = bond, alkylene, heteroalkylene, O, etc.; P = (hetero)aromatic, cycloalkylene, etc.; L2 = bond, alkylene, heteroalkylene, etc.; M = (hetero)aromatic, cycloalkylene, arylalkylene, etc.; X = divalent alkyl, (un)substituted-N; O, SOO-2; L3 = bond, alkylene, heteroalkylene, etc.; A = COOH, tetrazolyl, SO3H, PO3H2, etc.; I] are prepared. For instance, (S)-3-[(4'-(trifluoromethyl)-1,1'-biphenyl-3-yl)methoxy]phenylhexan-4-ynoic acid (II) is prepared in 5 steps from (S)-3-(4-hydroxyphenyl)hexan-4-ynoic acid Me ester (preparation given), 4-(trifluoromethyl)phenylboronic acid and 3-bromobenzoic acid. II has an EC50 < 0.1 μ M for human G protein-coupled receptor GPR40. I are useful for the treatment of type II diabetes.

IT 865233-31-4P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of arylmethoxyphenyl-alkylcarboxylic acids and related derivs. as GPCR40 ligands for use in treating metabolic disorders)

RN 865233-31-4 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-[(4'-(trifluoromethyl)[1,1'-biphenyl]-3-yl)methoxy]- (9CI) (CA INDEX NAME)

IT 865233-79-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of arylmethoxyphenyl-alkylcarboxylic acids and related derivs. as GPCR40 ligands for use in treating metabolic disorders)

RN 865233-79-0 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-[(4'-(trifluoromethyl)[1,1'-biphenyl]-3-yl)methoxy]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

ANSWER 4 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN				
AN	2005:158625 CAPLUS			
DN	142:261292			
TI	Preparation of (hetero)aryl-substituted succinate derivatives as matrix metalloproteinase inhibitors			
IN	Holmes, Ian; Watson, Stephen Paul			
PA	Glaxo Group Limited, UK			
SO	PCT Int. Appl., 36 pp.			
CODEN: PIXXD2				
DT	Patent			
LA	English			
FAN.CNT	1			
	PATENT NO.	KIND	DATE	APPLICATION NO.
PI	WO 2005016868	A2	20050224	WO 2004-EP9087
	WO 2005016868	A3	20050519	20040812
W:	AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW, BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG			
EP	1654218	A2	20060510	EP 2004-764084
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, HR			20040812
JP	2007502259	T	20070208	JP 2006-522996
US	2006235074	A1	20061019	US 2006-569812
PRAI	GB 2003-19069	A	20030814	20040812
	WO 2004-EP9087	W	20040812	20060210
OS	CASREACT 142:261292; MARPAT 142:261292			
GI				

AB Title compds. represented by the formula I, $R_1ZQCH(R_2)CH_2X$, [wherein R_1 = (un)substituted alkyl(cycloalkyl), alkylheterocycloalkyl, alkylaryl, etc.;

CAS ONLINE PRINTOUT

Z = a bond, CH₂, O, S, etc.; Q = (un)substituted (hetero)aryl; X = COR₃;
 R₂ = CONH₂, CO₂H, sulfonylamino, etc.; R₃ = OH, oxyalkyl or
 (un)substituted amino; with a proviso; and physiol. functional derivs.
 thereof] were prepared as matrix metalloproteinase (MMP) inhibitors.
 Coupling reaction of 4-amino-3-(4-bromophenyl)-4-oxobutanoic acid with
 p-nitrilephenylboronic acid gave II in 100% yield. I showed inhibition of
 MMP-12 with IC₅₀ values of below 100 μ M. Thus, I and their
 pharmaceutical compns. are useful as matrix metalloproteinase inhibitors
 for the treatment of inflammation or autoimmune disease (no data).

IT 845786-15-4P 845786-16-5P 845786-17-6P

845786-18-7P 845786-19-8P 845786-20-1P

845786-21-2P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
 (Uses)

(preparation of (hetero)aryl-substituted succinate derivs. as matrix
 metalloproteinase inhibitors)

RN 845786-15-4 CAPLUS

CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-4'-cyano- (9CI)
 (CA INDEX NAME)

RN 845786-16-5 CAPLUS

CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-4'-
 (trifluoromethyl)- (9CI) (CA INDEX NAME)

RN 845786-17-6 CAPLUS

CN [1,1'-Biphenyl]-4-propanoic acid, 3'-acetyl- β -(aminocarbonyl)- (9CI)
 (CA INDEX NAME)

CAS ONLINE PRINTOUT

RN 845786-18-7 CAPLUS
CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

RN 845786-19-8 CAPLUS
CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-3'-cyano- (9CI) (CA INDEX NAME)

RN 845786-20-1 CAPLUS
CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(3-thienyl)- (9CI) (CA INDEX NAME)

RN 845786-21-2 CAPLUS
CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(1H-indol-5-yl)- (9CI) (CA INDEX NAME)

CAS ONLINE PRINTOUT

IT 845785-99-1P 845786-00-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation of (hetero)aryl-substituted succinate derivs. as matrix metalloproteinase inhibitors)

BN 845785-99-1 CAPTUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-bromo-, phenylmethyl ester (9CI) (CA INDEX NAME)

RN 845786-00-7 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-bromo- (9CI) (CA INDEX NAME)

L17 ANSWER 5 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 2002:960925 CAPLUS

DN 138:321520

TI A convenient synthesis of chiral β 3-amino acids

AU Chakraborty, Tushar K.; Ghosh, Animesh

CS Indian Institute of Chemical Tech

SO *Synlett* (2002), (12)

CODEN: [REDACTED]

PB Georg T.

DT Journal

LA

AB A novel method for the synthesis of chiral β -amino acids is developed where the acid functionality was built by oxidative cleavage of an α -allylic group that was introduced by Evans' asym. alkylation of an appropriate acid substrate and the amino part came from the amide of the original carboxyl group following a modified Hofmann rearrangement reaction. Thus, amino acids I (R = Ph, Me, CHMe₂, C₈H₁₇, C₁₆H₃₃) were prepared in six steps from starting material oxazolidinones II.

IT 511550-50-8

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation of chiral β -amino acids from (benzyl)oxazolidinone derivs.)

RN 511550-50-8 CAPLUS

CN Benzenepropionic acid, β -(aminocarbonyl)-, methyl ester, (β S)-
(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RE.CNT 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L17 ANSWER 6 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1988:486102 CAPLUS

DN 109:86102

TI Succinimide derivatives: chemical structure-anticonvulsant activity relation

AU Avetisyan, S. A.; Nesunts, N. S.; Buyukyan, N. S.; Mndzhoyan, O. L.; Dzhatagsapanyan, I. A.; Nazaryan, I. M.; Akopyan, N. E.

CS Inst. Tonkoi Org. Khim. im. Mndzhoyana, Yerevan, USSR

SO Khimiko-Farmatsevticheskii Zhurnal (1988), 22(4), 433-8

CODEN: KHFZAN; ISSN: 0023-1134

DT Journal

LA Russian

OS CASREACT 109:86102

GI

AB Succinimides (I, R = 4-isopropylphenyl, or 4-cyclopropylphenyl) were prepared by the conversion of the corresponding benzyl chlorides to aldehydes, Knoevenagel reaction with di-Et malonate, HCN addition to the resulting ylidene malonates, hydrolysis, amidation-hydrolysis and cyclization. Treatment of I (R = 4-isopropoxyphenyl) with N2H4 gave N,N'-bis(p-isopropoxyphenylsuccinimide) (II, R = p-isopropoxyphenyl, n = 0). Similarly, other II (R = p-isopropoxyphenyl and n = 1-10) were prepared. Of all the compds. studied, I (R = 4-isopropylphenyl, or 4-cyclopropylphenyl) and II (R = 4-isopropoxyphenyl and n = 0, 1, 2, 3, or 4) were completely devoid of the ability to prevent nicotinic hyperkinesis and arecoline tremors, as shown in mice. However, I and pufamide showed anticonvulsant activity in relation to corazole and elec. shock. Antagonism to corazole was observed in 50% of the animals at 68 and 90 mg/kg for I (R = 4-isopropylphenyl and 4-cyclopropylphenyl), resp., and to elec. shock at doses 92 and 94 mg/kg. Structure-activity relations are discussed.

discussed.

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and cyclization of)

RN 115906-13-3 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(1-methylethyl)- (9CI)
(CA INDEX NAME)

RN 115906-14-4 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-cyclopropyl- (9CI) (CA INDEX NAME)

CAS ONLINE PRINTOUT

L17 ANSWER 7 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1988:406374 CAPLUS
 DN 109:6374
 TI Synthesis and anticholinergic activity of 8-methyl-8-azabicyclo[3.2.1]octane analogs of atropine
 AU Amin, K. M.; Hassan, A. B.
 CS Fac. Pharm., Cairo Univ., Egypt
 SO Egyptian Journal of Pharmaceutical Sciences (1987), 28(1-4), 149-61
 CODEN: EJPSBZ; ISSN: 0301-5068
 DT Journal
 LA English
 OS CASREACT 109:6374
 GI

AB Monoesterification of $\text{HO}_2\text{CCH}_2\text{CHPhCO}_2\text{H}$ with ROH ($\text{R} = \text{Me, Et, Me}_2\text{CH, Bu, Me}_2\text{CHCH}_2, \text{cyclohexyl, PhCH}_2$) followed by esterification with tropine gave diesters I ($\text{R}^1 = \text{CO}_2\text{R}$). Amidation of I ($\text{R}^1 = \text{CO}_2\text{Me}$) with $\text{NH}_4\text{OH, MeNH}_2\text{PhCH}_2\text{NH}_2$, and PhNH_2 gave I ($\text{R}^1 = \text{CONHR}^2; \text{R}^2 = \text{H, Me, CH}_2\text{Ph, Ph}$). I and their methiodide salts were tested for anticholinergic activity. I ($\text{R}^1 = \text{CO}_2\text{CH}_2\text{CHMe}_2$) showed antispasmodic activity comparable to that of atropine.
 IT 114649-01-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and antispasmodic activity of)
 RN 114649-01-3 CAPLUS
 CN 8-Azoniabicyclo[3.2.1]octane, 3-(4-amino-1,4-dioxo-3-phenylbutoxy)-8,8-dimethyl-, iodide (9CI) (CA INDEX NAME)

● I -

IT 114648-98-5P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation, quaternization, and anticholinergic activity of)
 RN 114648-98-5 CAPLUS
 CN Benzenepropanoic acid, β -(aminocarbonyl)-, 8-methyl-8-azabicyclo[3.2.1]oct-3-yl ester (9CI) (CA INDEX NAME)

L17 ANSWER 8 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1987:102756 CAPLUS

DN 106:102756

TI Aliphatic polyimides from phenylene bis(succinic anhydride) and bis(glutaric anhydride)

AU Teshirogi, Takuma

CS Macromol. Res. Lab., Yamagata Univ., Yonezawa, 992, Japan

SO Journal of Polymer Science, Part A: Polymer Chemistry (1987), 25(1), 31-6
 CODEN: JPACEC; ISSN: 0887-624X

DT Journal

LA English

AB m- And p-derivs. of phenylene bis(succinic anhydride) and bis(glutaric anhydride) were obtained from 1,3- [77104-43-9] and 1,4-bis(β -cyano- β -carbethoxyvinyl)benzene [47375-13-3] with KCN or Meldrum's acid followed by hydrolysis with concentrated HCl and dehydration with Ac2O.

Aliphatic

polyimides were prepared from these anhydrides with 6 aromatic diamines through thermal ring closure of polyamic acids obtained by solution polymerization in AcNMe2, and thermal stability of these polyimides was examined by thermogravimetric anal.

IT 107039-92-9P 107039-93-0P 107039-94-1P

107040-11-9P 107040-12-0P 107065-64-5P

RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation)
 (preparation and reduced viscosity of)

RN 107039-92-9 CAPLUS

CN Poly[imino-1,3-phenyleneimino[2-(carboxymethyl)-1-oxo-1,2-ethanediyl]-1,3-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

RN 107039-93-0 CAPLUS

CN Poly[imino-1,4-phenyleneimino[2-(carboxymethyl)-1-oxo-1,2-ethanediyl]-1,3-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

RN 107039-94-1 CAPLUS

CN Poly[imino(3,3'-dimethoxy[1,1'-biphenyl]-4,4'-diyl)imino[2-(carboxymethyl)-

1-oxo-1,2-ethanediyl]-1,3-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

RN 107040-11-9 CAPLUS

CN Poly[imino(3,3'-dimethoxy[1,1'-biphenyl]-4,4'-diyl)imino[2-(carboxymethyl)-1-oxo-1,2-ethanediyl]-1,4-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

RN 107040-12-0 CAPLUS

CN Poly[imino-1,3-phenyleneimino[2-(carboxymethyl)-1-oxo-1,2-ethanediyl]-1,4-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

RN 107065-64-5 CAPLUS

CN Poly[imino-1,4-phenyleneimino[2-(carboxymethyl)-1-oxo-1,2-ethanediyl]-1,4-phenylene[1-(carboxymethyl)-2-oxo-1,2-ethanediyl]] (9CI) (CA INDEX NAME)

L17 ANSWER 9 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1979:611103 CAPLUS
 DN 91:211103
 TI Antispasmodic
 IN Mndzhoyan, O. L.; Avetisyan, S. A.; Akopyan, N. E.; Gerasimyan, D. A.
 PA Institute of Fine Organic Chemistry, Academy of Sciences, Armenian S.S.R.,
 USSR
 SO Ger. Offen., 26 pp.
 CODEN: GWXXBX
 DT Patent
 LA German
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 2759051	A1	19790712	DE 1977-2759051	19771230
PRAI	DE 1977-2759051	A	19771230		

GI

AB The phenylsuccinimide I, useful as a muscle relaxant in treating epilepsy with mild seizures, was prepared. Thus, 4-Me₂CHOC₆H₄CH(CO₂H)CH₂CO₂H was warmed 2-3 h with Ac₂O to give the corresponding succinic anhydride, which, in EtOAc, was treated with NH₃-Et₂O to give the 2 isomeric α -(4-isopropoxyphenyl)succinamidic acids. These were cyclized by heating to 200-20° with H₂O removal to give 68-70% I. Tests of I with mice and rats gave ED₅₀ 86, 110, 77, and 90 mg/kg as a muscle relaxant in the korasol, strychnine, electroshock, and camphor tests, resp.

IT 72058-22-1P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and cyclization of)
 RN 72058-22-1 CAPLUS
 CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(1-methylethoxy)- (9CI)
 (CA INDEX NAME)

L17 ANSWER 10 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1977:534195 CAPLUS
 DN 87:134195

CAS ONLINE PRINTOUT

TI Preparation of o-nitrophenylsuccinic acid and of some functional derivatives
 AU Cuiban, F.; Lupea, Alfa; Silasi, Marcela; Sora, Mariana
 CS Chem. Eng. Fac., Politech. Inst. "Traian Vuia", Timisoara, Rom.
 SO Revue Roumaine de Chimie (1977), 22(6), 869-75
 CODEN: RRCHAX; ISSN: 0035-3930
 DT Journal
 LA English
 OS CASREACT 87:134195
 AB Nitration of HO₂CCHPhCH₂CO₂H with HNO₃ gave 17% o-nitrophenylsuccinic acid (o-I) and 83% p-I. The nitration of phenylsuccinic anhydride with AcONO₂ gave 35% o-I and 65% p-I. o-I was also prepared from o-O₂NC₂H₂CHO via o-O₂NC₆H₄CH₂C(CO₂Et)₂.
 IT 63508-60-1P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 63508-60-1 CAPLUS
 CN Benzenepropionic acid, β -(aminocarbonyl)-2-nitro- (9CI) (CA INDEX NAME)

L17 ANSWER 11 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1977:439351 CAPLUS
 DN 87:39351
 TI Studies of semisynthetic penicillins. XI. The 6-aminopenicillane derivatives of p-alkoxyphenyl- and p-alkoxybenzylsuccinic acids. Ester penicillins
 AU Mndzhoyan, Sh. L.; Manucharyan, I. Z.; Bil'bulyan, S. Z.; Ter-Zakharyan, Yu. Z.; Paronikyan, R. V.; Kazaryan, E. V.; Mndzhoyan, A. L.
 CS Inst. Tonkoi Org. Khim. im. Mndzhoyana, Yerevan, USSR
 SO Khimiko-Farmatsevticheskii Zhurnal (1977), 11(3), 49-53
 CODEN: KHFZAN; ISSN: 0023-1134
 DT Journal
 LA Russian
 GI

AB Penicillanic acid derivs. I and II [R₁ = p-(C₁₋₄ alkoxy)phenyl, p-(C₁₋₄ alkoxy)benzyl] were obtained in 40-64% yields by treating 6-aminopenicillanic acid with the corresponding Me esters of succinic acid. I and II are effective bactericides.
 IT 38499-25-1

CAS ONLINE PRINTOUT

RL: RCT (Reactant); RACT (Reactant or reagent)
(esterification of)
RN 38499-25-1 CAPLUS
CN Benzenepropanoic acid, β -(aminocarbonyl)-4-methoxy- (9CI) (CA INDEX NAME)

IT 63151-92-8P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
(Reactant or reagent)
(preparation and deamidation of)
RN 63151-92-8 CAPLUS
CN Benzenepropanoic acid, β -(aminocarbonyl)-4-methoxy-, methyl ester
(9CI) (CA INDEX NAME)

L17 ANSWER 12 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
AN 1977:67459 CAPLUS
DN 86:67459
TI Colorimetric hydroxylamine-iron(III) methods for studies of the enzymic hydrolyses of cyclic imides and of amic acids
AU Maguire, James H.; Dudley, Kenneth H.
CS Sch. Med., Univ. North Carolina, Chapel Hill, NC, USA
SO Analytical Chemistry (1977), 49(2), 292-7
CODEN: ANCHAM; ISSN: 0003-2700
DT Journal
LA English
AB An application of the hydroxylamine-Fe(III) method for the colorimetric determination of amides as hydroxamic acids is described. The method was developed for studies of the enzymic hydrolysis of a cyclic imide to its ring-opened product, an amic acid. The method, in which the derivatization reaction between an amic acid and hydroxylamine is performed at pH 7 and 94°, permits observation of the appearance of an amic acid in an incubation mixture of a cyclic imide with enzyme (e.g., dihydropyrimidinase, EC 3.5.2.2). The method also permits observation of the disappearance of an amic acid in an incubation mixture of an amic acid with enzyme (e.g., α -amidase, EC 3.5.1.3). Assays were developed for studies of the enzymic hydrolysis of the following compds.: succinimide and succinamic acid, α -phenylsuccinimide and 2- and 3-phenylsuccinamic acid, glutarimide and glutaramic acid,

CAS ONLINE PRINTOUT

α -phenylglutarimide and 2- and 4-phenylglutaramic acid, and adipimide and adipamic acid.

IT 712-56-1

RL: RCT (Reactant); RACT (Reactant or reagent)

(hydrolysis of, enzymic, hydroxylamine-iron methods in study of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L17 ANSWER 13 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1972:539560 CAPLUS

DN 77:139560

TI Ammonolysis of p-alkoxyphenylsuccinic acid anhydrides

AU Avetisyan, S. A.; Midzhoyan, O. L.

CS Inst. Tonkoi Org. Khim. im. Mndzhoyana, Erevan, USSR

SO Armyanskii Khimicheskii Zhurnal (1972), 25(6), 512-17

CODEN: AYKZAN; ISSN: 0515-9628

DT Journal

LA Russian

AB Ammonolysis of p-alkoxy-phenylsuccinic acid anhydrides gave an α -isomer, p -ROC₆H₄CH-(CONH₂)CH₂CO₂H (R = Me, Et, Br), and larger amts. of a β -isomer, p -ROC₆H₄CH(CO₂H)CH₂CONH₂, compared with the unsubstituted phenyl analogs which gave the opposite ratio of α - and β -isomers. The increase in the β -isomer with alkoxy substitution was explained by its resonance effect.

IT 38499-25-1P 38499-26-2P 38499-27-3P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

RN 38499-25-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-methoxy- (9CI) (CA INDEX NAME)

RN 38499-26-2 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-ethoxy- (9CI) (CA INDEX NAME)

CAS ONLINE PRINTOUT

RN 38499-27-3 CAPLUS
 CN Benzenepropanoic acid, β -(aminocarbonyl)-4-propoxy- (9CI) (CA INDEX NAME)

L17 ANSWER 14 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1972:107806 CAPLUS
 DN 76:107806
 TI Metabolic fates of N-methyl- α -phenylsuccinimide (phensuximide, Milontin) and of α -phenylsuccinimide in the dog
 AU Dudley, Kenneth H.; Bius, Daniel L.; Grace, Michael E.
 CS Sch. Med., Univ. North Carolina, Chapel Hill, NC, USA
 SO Journal of Pharmacology and Experimental Therapeutics (1972), 180(1), 167-79
 CODEN: JPETAB; ISSN: 0022-3565
 DT Journal
 LA English
 AB 2-Phenylsuccinamic acid (I) [34367-66-3] isolated from urine of dogs receiving either RS-phensuximide (II) [34367-67-4] or RS- α -phenylsuccinimide (III) [34367-68-5] was essentially the optically pure levo-form which had the R-configuration. No α -(p-hydroxyphenyl)succinimide [32856-94-3] nor 3-phenylsuccinic acid [34367-69-6] was found as a metabolite of II or III. The same absolute configuration of R(-)-I and of R(-)-phenylhydantoic acid [6489-76-5] suggested that the same enzyme may be responsible for these stereospecific reactions of opening of the succinimide and hydantoin rings.
 IT 712-56-1P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 712-56-1 CAPLUS
 CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

CAS ONLINE PRINTOUT

L17 ANSWER 15 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
 AN 1971:448634 CAPLUS

DN 75:48634

TI Derivatives of dibasic carboxylic acids. XXXV. Addition to hydrogen cyanide to the double bond of *p*-substituted benzylidene malonates, and the preparation of succinimides

AU Avetisyan, S. A.; Mndzhyan, O. L.

CS Inst. Tonkoi Org. Khim., Erevan, USSR

SO Armyanskii Khimicheskii Zhurnal (1971), 24(3), 252-8
 CODEN: AYKZAN; ISSN: 0515-9628

DT Journal

LA Russian

GI For diagram(s), see printed CA Issue.

AB Title compds. were prepared as potential anticonvulsive agents. A mixture of 0.2 mole of *p*-ROC₆H₄CH:C(CO₂Et)₂ in 500 ml EtOH and 0.202 mole KCN in 50 ml H₂O heated 18 hr at 65° gave *p*-ROC₆H₄CH(CN)CH₂CO₂Et (I) (R = alkyl). *p*-O₂NC₆H₄CH:C(CO₂Et)₂ and KCN in aqueous EtOH heated 18 hr at 65° gave *p*-O₂NC₆H₄CH(CN)CH₂CO₂H, (II) and *p*-O₂NC₆H₄CH(CN)CH₂CO₂H, and with HCl, *p*-O₂NC₆H₄CH(CO₂H)CH₂CO₂H (III). I kept with NaOMe in MeOH 24 hr at room temperature gave *p*-ROC₆H₄CH(CN)CH₂CO₂H. III reduced with Sn and HCl gave *p*-H₂NC₆H₄CH(CO₂H)CH₂CO₂H (IV). III, N₂H₄·H₂O, EtOH, and Raney Ni heated 6 hr at 65° and filtered gave III·N₂H₄. A mixture 6N NH₄OH and III saturated with H₂S at 5° gave IV. III, MeOH, C₆H₆, and H₂SO₄ refluxed 5 hr gave *p*-O₂NC₆H₄CH(CO₂Me)CH₂CO₂Me (V). V reduced with Ni and N₂H₄ as above gave *p*-H₂NC₆H₄CH(CO₂H)CH₂CO₂H·N₂H₄, and *p*-H₂NC₆H₄CH(CO₂Me)CH₂CO₂Me. *p*-HOC₆H₄CH(CO₂H)CH₂CO₂H treated with Ac₂O gave the cyclic anhydride, which treated with NH₄OH gave *p*-HOC₆H₄CH(CO₂H)CH₂CO₂H. This heated 30 min at 200° gave VI (R = OH). III and Ac₂O refluxed 6 hr and worked up via NH₃ in ether gave II·NH₃, which gave II. II and Ac₂O heated 6 hr at 100° gave VI (R = NO₂). IV and Ac₂O heated 2 hr at 100° gave a solid, m. 155°, which dissolved in ether, treated with NH₃, evaporated and heated 1 hr at 200° gave a solid, which treated with ethereal HCl gave VI·HCl (R = NH₂) (VII·HCl), which in acetone treated with ethereal NH₃ gave VII.

IT 32856-83-0P 32856-93-2P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)

RN 32856-83-0 CAPLUS

CN Succinamic acid, 3-(*p*-nitrophenyl)- (7CI, 8CI) (CA INDEX NAME)

RN 32856-93-2 CAPLUS

CN Succinamic acid, 3-(*p*-hydroxyphenyl)- (8CI) (CA INDEX NAME)

CAS ONLINE PRINTOUT

L17 ANSWER 16 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1965:2846 CAPLUS

DN 62:2846

OREF 62:474a-b

TI The action of ammonia on α,α -disubstituted succinoyl chlorides. Preparation of succinoyl acid nitriles.

AU Foucaud, Andre; Plusquellec, Paul

CS Fac. Sci. Rennes, Fr.

SO Compt. Rend. (1964), 259(11), 1875-7

DT Journal

LA French

AB cf. CA 59, 5069d. Reaction of phenylsuccinoyl chloride with NH₃ according to Wideqvist (CA 49, 6121a) and acid hydrolysis of the nitrile formed gave a mixture, which was separated by chromatography or recrystn. from 80% EtOH into

75% PhCH(CO₂H)CH₂CONH₂, m. 168-9°, and 25% PhCH(CONH₂)CH₂CO₂H, m. 171°. Treatment of α,α -benzylphenylsuccinoyl chloride with NH₃ gave 90% PhCH₂CPh(CO₂H)CH₂CN, 0.5H₂O, m. 175°, v 1708 (CO), 2241 cm.⁻¹ (CN) (Nujol). The isomeric PhCH₂CPh(CN)CH₂CO₂H showed v 1727 and 2259 cm.⁻¹ α,α -Diphenylsuccinoyl chloride and NH₃ gave 40% Ph₂C(CO₂H)CH₂CN, m. 176-8°, v 1718, 1168 cm.⁻¹ (Nujol), (the isomeric compound has v 1699, 2237 cm.⁻¹), and 40% Ph₂C:C(CN)CONH₂, m. 240° (95% EtOH). The reaction mechanism is discussed.

IT 712-56-1P, Succinamic acid, 3-phenyl-

RL: PREP (Preparation)
(preparation of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L17 ANSWER 17 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1963:428315 CAPLUS

DN 59:28315

OREF 59:5069d-h,5070a-c

TI Cleavage of α - and α,α -disubstituted succinic anhydrides. Action of ammonia and amines

AU Foucaud, Andre

CS Univ. Rennes

SO Bulletin de la Societe Chimique de France (1963), (4), 873-6
CODEN: BSCFAS; ISSN: 0037-8968

DT Journal

LA Unavailable

GI For diagram(s), see printed CA Issue.

AB PhCH₂Ac and NCCH₂CO₂Me condensed according to Cope, et al. (CA 36, 10118)

gave 70% PhCH₂CMe:C(CN)CO₂Me (I), b4 148-53°, n_{20D} 1.5460. I (15 g.) in 20 ml. MeOH treated with 5 g. KCN in 20 ml. H₂O, the mixture acidified with dilute HCl and extracted with Et₂O, and the dried (Na₂SO₄) extract

distilled yielded 70% colorless, oily PhCH₂CMe(CN)CH(CN)CO₂Me, b2 166-70°, n_{20D} 1.5190, refluxed (5 g.) 4 hrs. in 100 ml. 2N aqueous Na₂CO₃ and the cooled solution extracted with Et₂O to yield 90% PhCH₂CMe(CN)CH₂CN (II), b2 163-5°. II (5 g.) refluxed 3 hrs. in 120 ml. 0.5N NaOH in EtOH-H₂O, the cooled solution acidified with dilute HCl and the precipitate taken up in Et₂O and filtered gave 44% Et₂O-insol. PhCH₂CMe(CO₂H)CH₂CONH₂ (III), m. 183-4° (80% alc.). The Et₂O solution extracted with aqueous N NaHCO₃ and the extract acidified gave 20% of the corresponding diacid, PhCH₂CMe(CO₂H)CH₂CO₂H (IV), m. 144° (alc.). The residual Et₂O evaporated and the residue crystallized from alc. yielded 10% imide (V), m. 77-8°. IV (3 g.) refluxed 1 hr. in 20 ml. SOCl₂, excess SOCl₂ evaporated, the residue distilled, and the oil (2.2 g., b2 138-40°) refrigerated yielded 72% anhydride (VI) (R = PhCH₂, R' = Me) (VII), m. 58-9° (CCl₄). III (5 g.) neutralized with 2N Na₂CO₃ and shaken 5 hrs. at 0° with Me₂SO₄ yielded 50% PhCH₂CMe(CO₂Me)CH₂CONH₂ (VIII), m. 110-12°. The Na₂CO₃ solution acidified gave unreacted III and a small amount of V. VIII (2.6 g.) in 16 g. H₂SO₄ at 0° stirred at 0° with addition of 6 ml. aqueous 4M NaNO₂ and the mixture stirred 30 min., poured onto ice, and extracted with Et₂O gave PhCH₂CMe(CO₂Me)CH₂CO₂H, taken up (1.5 g.) at 0° in 7 ml. fuming HNO₃ and poured onto ice, filtered and crystallized from 50% AcOH to give p-O₂NC₆H₄CH₂CMe(CO₂Me)CH₂CO₂H, m. 103°. VI (R = R' = Me) (IX) was obtained by the action of AcCl on the corresponding diacid and the acid RR'C(CN)CH₂CO₂H (X) (R = R' = Me) (XI) by the procedure of Wideqvist (CA 45, 10217e). XI kept 4 days in H₂O at 0° and the product washed with Et₂O to remove unchanged XI yielded 30% RR'C(CONH₂)CH₂CO₂H (XII) (R = R' = Me) (XIII), m. 134-5°. VI (RPhCH₂, R' = H) (XIV) and X (R = PhCH₂, R' = H) (XV) were obtained by standard procedures. XV (1 g.) in 5 ml. 65% H₂SO₄ at 0° poured onto 20 g. ice and the precipitate crystallized from 80% alc. gave XII (R = PhCH₂, R' = H) (XVI). VI (R = R' = Ph; R = Ph, R' = Et) (XVI), (XVII), (XVIII) were prepared according to the literature. VI (600 mg.) in dry Et₂O at 20° saturated with dry NH₃ or treated with H₂NR in Et₂O, the Et₂O evaporated and the residue treated with dilute HCl, filtered and the precipitate dried gave 98-9% crude mixture of acid amides. Hyflosuperel (50 g.) kept 24 hrs. in 300 ml. 15% HCl, filtered, washed thoroughly with H₂O and Me₂CO, and the acid-free product dried 24 hrs. at 100°, mixed with K phosphate buffer (2M at a determined pH), and dried gave a powder containing 33% fixed phase. The powder was transformed to a paste with the mobile phase (CHCl₃-BuOH saturated with buffer) and added to a column (30 ± 1 cm.) and washed with 50 ml. mobile phase. The acid amide mixture (7-13 mg.) in 2-3 ml. mobile phase chromatographed and eluted, IV bubbled through the fractions (4-5 ml.) and the frac-ions titrated with 0.01N NaOMe (cresol red) gave values from which an elution curve was traced. The chromatographic separation gave the 2 isomeric acid amides. Action of NH₃ on VI gave a mixture of RR'C(CO₂H)CH₂CONH₂ (XIX) and XII [anhydride, % XIX (pK), and % XII (pK) given]: XVII, 46.5 (4.71), 53.5 (4.95); XVI, 53 (4.65), 47 (5.21); XIV, 55.5 (-), 44.5 (4.80); VI (R = p-NO₂C₆H₄, R' = H), 60 (4.23), 40 (4.53); VI (R = p-O₂NC₆H₄, R' = Et), 67 (4.28), 33 (4.52); XVIII, 70 (4.79), 30-(4.91); VI (R = p-O₂NC₆H₄, R' = Me), 69.5 (4.36), 30.5 (4.66); VI (R = PhCH₂, R' = Ph), 72 (4.95), 28 (5.14); IX, 76 (5.25), 24-(5.20); VI (R = Ph, R' = Me), 78 (4.89), 22 (4.97); VII, 96-(5.21), (-). With the exception of XVII, the XIX predominated. The following RR'C(CO₂H)CH₂CONR₂R₃ were isolated: R = R' = Me, R₂ = R₃ = H, m. 125°; R = Et, R₁ = Ph, R₂ = R₃ = Me, m. 163-4°; R = Ph, R₁ = H, R₂ = R₃ = Me, m. 160-2°. The mechanism of the ring opening of the anhydrides was discussed.

CAS ONLINE PRINTOUT

Succinamic acid, 3-(p-nitrophenyl)-
 RL: PREP (Preparation)
 (preparation of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

RN 32856-83-0 CAPLUS

CN Succinamic acid, 3-(p-nitrophenyl)- (7CI, 8CI) (CA INDEX NAME)

L17 ANSWER 18 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1961:17767 CAPLUS

DN 55:17767

OREF 55:3516e-i,3517a-g

TI Synthesis and study of the cleavage of asymmetrically disubstituted succinic anhydrides and imides

AU Foucaud, Andre

CS Univ. Rennes, Fr.

SO Bulletin de la Societe Scientifique de Bretagne (1960), 35, 88 pp.

CODEN: BSSBAS; ISSN: 0037-9581

DT Journal

LA Unavailable

AB cf. Le Moal, CA 50, 14547b. Certain α -phenyl- α -(R-substituted)succinic anhydrides (I) and imides (II) were prepared, hydrolyzed, and the ratio of the resulting isomeric amide-acids was determined by partition chromatography. Condensation of PhCOR and NCCH₂CO₂R' gave PhCR:C(CN)CO₂R' (III) (R, R', m.p. or b.p./mm. of one isomer given): PhCH₂CPh:CHCONH₂, m. 186°. IIIa heated at 250° gave 2-cyano-3-phenyl-1-naphthol, m. 183° (xylene). III was refluxed with dilute alc. KCN solution and acidified to give NCCRPhCH(CN)CO₂R' (IV) (R, R', m.p. or b.p./mm., % yield given): PhCH₂, Et, 86°, 60; PhCH₂, Me, 114°, -; Et, Et, 175-8°/1 (m. 52°), 67; Et, Me, 190-2°/3 (m. 62°), 60; Me, Me, 65°, 100. IV (R = Et) was hydrolyzed in cold concentrated H₂SO₄ to give quant. H₂NCOCPH₂RCH(CONH₂)CO₂Et

(V) (R = PhCH₂) (Va), m. 175-6°; V (R = Et) m. 165°. Alkaline hydrolysis of V gave 3-phenyl-3-(R-substituted)-4-carbamoylsuccinimide (R = PhCH₂) (VI), m. 198-200°; VI (R = Et) (VIIa) m. 180°. VI was also obtained by fusion of Va. IV refluxed 0.5 hr. in dilute alc. N Na₂CO₃ yielded quant. NCC-PhRCH₂CN (VII) (R and m.p. or b.p./mm. given): PhCH₂ (VIIa), 103°; Et (VIIb), 165-70°/3 (m. 38°);

Me, 29°. When the above basic solution of IV was acidified it yielded 3-phenyl-3-(R-substituted)-4-cyanosuccinimides with R = PhCH₂, m. 169°, and R = Et (VIII), m. 117°. VIII hydrolyzed in concentrated H₂SO₄ gave VIA. VII was hydrolyzed in aqueous alc. KOH, acidified, and the precipitate extracted with Et₂O to obtain quant. from dilute AcOH HO₂CCPhRCH₂CO₂H (IX)

(R and m.p. given): PhCH₂, 220°; Et, 156°; Me, 167°. VIIa (5 g.) refluxed 8 hrs. with 20.4 g. concentrated H₂SO₄, 12.9 g. AcOH, and 4.1 g. H₂O gave 80% 3-carboxy-3-phenyl-1-tetralone, m. 192°; 2,4-dinitrophenylhydrazone m. 280°. VIIa in cold concentrated H₂SO₄ 24 hrs. gave 80% H₂NCOOC(CH₂Ph)PhCH₂CONH₂ (X), m. 200°, which hydrolyzed quant in dilute NaOH to II (R = PhCH₂). VII refluxed in dilute alc. 0.25N NaOH 0.5 hr. yielded 70% NCCPhRCH₂CONH₂ (XI) (R = PhCH₂) (XIa), m. 245-75; XI (R = Et) m. 228°. XIa formed an HCl salt, m. 170° (decomposition). XIa was also prepared by heating NCC(CH₂Ph)PhCH₂CO₂NH₄ to 250°. VIIb heated 1 hr. with dilute alc. N NaOH and acidified gave 70% II (R = Et), m. 99°. II (R = Me), m. 88°, was similarly prepared. The IX and II were treated with ice-cold concentrated HNO₃ 15 min. to give 4-O2NC₆H₄CR(CO₂H)CH₂CO₂H (XII) and 4-O2NC₆H₄CR.CO.NH.CO.CH₂ (XIII), resp. (compound, R, m.p., and % yield given): XII, Et, 218-20°, 60; XII, Me, 168°, 56; XIII, Et, 132-3°, 75; XIII, Me, 156°, 60. By heating IX and XII with SOCl₂, I and 4-O2NC₆H₄CR.CO.O.CO.CH₂ (XIV), resp., were obtained (compound, R, and m.p. or b.p./mm. given): I, PhCH₂, 112°; I, Et, 165-70°/6; I, Me, 140°/2; XIV, Et, 104-5°; XIV, Me, 123-4°; XIV, H, unrectifiable oil. To prepare asym. disubstituted succinamic acids of known structure, 18 g. PhCH₂CHPhCN was treated with a solution of tert-BuONa (XV) (from 2.3 g. Na and 16 g. tert-BuOH in 300 ml. benzene) and 17 g. BrCH₂CO₂Et to give NCCPhRCH₂CO₂R' (XVI) (R = PhCH₂, R' = Et), m. 62°, which was saponified to XVI (R = PhCH₂, R' = H) (XVIa), m. 163°, in 51% over-all yield. XVI (R = R' = Et), b1 145-50°, was prepared analogously in 74% yield but with NaNH₂ in lieu of XV, and saponification in cold alkaline 93% MeOH solution led to XVI (R = Et, R' = H), m. 75°, via the Na salt. XVI (R = Me, R' = H), m. 84°, was similarly prepared (XVI (R = Ph or H, R' = H) were hydrolyzed in cold concentrated H₂SO₄ to H₂NCOCPH₂CH₂CO₂H (XVII) (R = Ph), m. 159°, and XVII (R = H), m. 172°. XVI (R = Et or Me, R' = H) were hydrolyzed in dilute neutral alc. to XVII (R = Et), m. 198°, and XVII (R = Me), m. 172°. HO₂CCPhRCH₂CO₂HNH₂ (XVIII) (R = H), m. 162°, was obtained from the corresponding nitrile in H₂SO₄. XVIa did not hydrolyze to the amide-acid but in H₂SO₄ formed I (R = PhCH₂). XVIa with SOCl₂ then NH₄OH gave a compound, C₁₇H₁₆N₂O, m. 143°, presumably 2,5-diimino-3-phenyl-3-benzyltetrahydrofuran, which formed XIa in cold alc. N NaOH. XVII and XVIII gave on nitration 4-O2NC₆H₄C(CONH₂)RCH₂CO₂H (XVIIIa) (R = H), m. 188°, XVIIIa (R = Et), m. 184-6°, XVIIIa (R = Me), m. 189-90°, and 4-O2NC₆H₄C(CO₂H)RCH₂CONH₂ (XIX) (R = H), m. 200°, resp. The I were converted to mixts. of isomeric amide-acids by passage of NH₃ through an Et₂O solution followed by acidification of an aqueous solution of the resulting salts, extraction with Me₂CO, and evaporation. Partition chromatography on kieselguhr at 20° with BuOH-CHCl₃ as the mobile phase afforded separation of the isomers (anhydride, R, % α -substituted- β -amide formed, and pH of stationary phase given): I, H, 46.6, 6.40; XIV, H, 60.3, 6.17; I, Ph, 53.2, 7.35; I, PhCH₂, 72.2, 6.20; I, Et, 70.2, 7.35; I, Me, 78, 6.17; XIV, Et, 67, 6.39; XIV, Me, 69.6, 6.00. Similar results were obtained by hydrolysis of the II in hot alkaline solution. From the chromatographic eluates the following succinamic acids were isolated and characterized (compound, R, and m.p. given): XVIII, Ph, 146°; XVII, PhCH₂, 202-5°; XVIII, PhCH₂, 230-2°;

XVIII, Et, 140°; XVIII, Me, 153-5°; XIX, Et, 170° (decomposition); XIX, Me, 180-2°. The *pK* of the succinic α -ester- β -acids was higher than that of the isomeric β -ester- α -acids when either was substituted at α by (a) one or (b) two Ph or (c) by Ph and PhCH₂. The amide-acids behaved similarly in cases (a) and (b) and presumably also in (c). An interpretation of the results on the basis of inductive and steric effects of the substituents was presented. 41 references.

IT of the substituents was presented. 11 references:
712-56-1P, Succinamic acid, 3-phenyl- 32856-83-0P,
Succinamic acid, 3-(*p*-nitrophenyl)-

RL: PREP (Preparation)
(preparation of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

RN 32856-83-0 CAPLUS

CN Succinamic acid, 3-(*p*-nitrophenyl)- (7CI, 8CI) (CA INDEX NAME)

L17 ANSWER 19 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN
AN 1952:5424 CAPLUS

AN 1952.54.

BN 46.936i
ORFF 46:936i

REF 48:9381,937a

II Hydrolysis of β -phenyl- β -cyanopropionic acid
NU Wideqvist Sigvard

AU Widedqvist, Sigvard
CS Umeå Umeåla, Swe

CS UHIV. Uppsala, swed.
60 Nukin san Kuni (195

SU Arkiv foer Remi (1951), 3, 147-52
COPEN: ARKEND: ISSN: 0365-6128

CODEN: ARKEAD; ISSN: 0365-6128

DF Journal

LA English
LR 5-Sub

AB cf. C.A

37, 5046.4), hydrolyzes spontaneously in aqueous solution at room temperature to

PhCH₂(CONH₂)CH₂CO₂H. A formula is derived for the calcn. of the hydrolysis velocity constant from conductivity data with the assumption that the hydrolysis is

partly catalyzed and partly uncatalyzed by H⁺ ion, and that the undissociated cyano acid hydrolyzes. The velocity consts. for the uncatalyzed ($k_1 = 1.10 \times 10^{-4}$) and the catalyzed ($k_2 = 1.13 \times 10^{-2}$) reactions were determined by conductivity measurements at 25°.

IT 712-56-1P, Succinamic acid, 3-phenyl-

RL: PREP (Preparation)
(preparation of)

RN 712-56-1 CAPIUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L17 ANSWER 20 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1943:31434 CAPLUS

DN 37:31434

OREF 37:5046d-i

TI Phenylcyno-substituted carboxylic acids

AU Wideqvist, Sigvard

SO Svensk Kem. Tid. (1942), 54, 34-8

From: Chem. Zentr. II, 889-90(1942).

DT Journal

LA Unavailable

AB A new general method is described for the preparation of substituted carboxylic acids in which a Ph and a CN group are attached to the same C atom. The starting material is Ph(NC)CHCO2Et (I), prepared from PhCH2CN and Et2CO3 with Na (Hessler, Am. Chemical J. 32, 127(1904)). The Na salt (II) of I can be condensed with haloaliph. esters (e. g., ClCH2CO2Et) to give succinic esters which with alc. alkali are decarboxylated to 53-89% of the Ph(NC)CH(CH2)xCO2H. Those acids which contain the CN group in the β -position are easily hydrolyzed to the corresponding amides. Warming II and ClCH2CO2Et in EtOH on the water bath, dilution with H2O and extraction with ether-CSH6 give 81% of di-Et α -phenyl- α -cyanosuccinate, b8 190-3°; hydrolysis with alc. KOH on the water bath and acidification give 89% of β -phenyl- β -cyanopropionic acid (III), m. 75°; the dissociation constant (k25) is 1.62 + 10-4 (graphically extrapolated). The action of H2O upon III at room temperature gives the amide, PhCH(CONH2)CH2CO2H, m. 158-9°, k25 3.76 + 10-5. Reduction of an aqueous suspension of PhCH:C(CN)CO2Et with Na-Hg in a

CO2

atmospheric gives 86% of β -phenyl- α -cyanopropionic acid, m. 101°, k25 5.70 + 10-3. II and MeCHBrCO2Et give 60% of di-Et α -methyl- β -phenyl- β -cyanosuccinate, b8 185-9°; hydrolysis gives 85% of a mixture of the 2 diastereomeric α -methyl- β -phenyl- β -cyanopropionic acids (IV); hydrolysis of the mixture with concentrated H2SO4 and addition of NaNO2 gives a mixture, fractional crystallization from H2O yielding α -methyl- β -phenylsuccinic acid (V), m. 172-3° and 192-3° (cf. Zelinsky and Buchstab, Ber. 24, 1879 (1891)). In NH4OH IV yields a difficultly soluble Ca salt which crystallizes from dilute MeOH in fine needles and gives a IV m. 99-100°, k25 2.0 + 10-4, which is hydrolyzed to a V m. 191°; the more easily soluble Ca salt of IV yields a IV m. 77-80°. II and Me2CBrCO2Et give 53% of di-Et α , α -dimethyl- β -phenyl- β -cyanosuccinate, b9 187-92°; this gives 75% of α , α -dimethyl- β -phenyl- β -cyanopropionic acid (VI), m. 116-17°, k25 1.12 + 10-4. Concentrated HCl and VI at 115° give α , α -dimethyl- β -phenylsuccinic acid (VII), m. 165°. Concentrated H2SO4 at room temperature converts VI into the monoamide of VII, m. 163-4°, k25 about 1.6 + 10-5. II and ClCH2CH2CO2Et give 82% of Et α -phenyl- α -cyanoglutarate, b8 197-8°; alc. KOH gives 75% of γ -phenyl- γ -cyanobutyric acid, m. 61°, k25 3.94 + 10-5; hydrolysis with concd. H2SO4 gives α -phenylglutaric acid monoamide, m. 168°, k25 2.31 + 10-5.

IT 712-56-1P, Succinamic acid, β -phenyl-

CAS ONLINE PRINTOUT

RL: PREP (Preparation)
 (preparation of)
 RN 712-56-1 CAPLUS
 CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L17 ANSWER 21 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1941:25260 CAPLUS

DN 35:25260

OREF 35:3993g-i

TI β -Phenyl- β -cyanopropionic acid

AU Wideqvist, Sigvard

SO Arkiv. Kemi, Mineral. Geol. (1940), 14B(No. 19), 6 pp.

DT Journal

LA German

AB PhCH(CN)CH₂CO₂H (I) has been prepared according to Bredt and Kallen (Ann. 293, 338(1896)) and Anschutz (C. A. 1, 2702) by treating PhCH:C(CO₂Et)₂ (II) with 2 mols. KCN. The m. p. found for I differs from that reported by the previous investigators. To 62 g. II in 375 ml. alc. is added 33 g. KCN in 150 ml. H₂O and the mixture is heated for 7 hrs. on the water bath. KHCO₃ is filtered off and I, liberated by concentrated HCl, is obtained as an oil. I is purified through its Ca salt (III) which is crystallized from hot H₂O in the presence of animal charcoal whereby 25 g. of pure III is obtained. III is decomposed with HCl, I extracted with ether, the ether evaporated,

and the oily acid transformed into crystals by rubbing with a glass rod.

I, crystals from C₆H₆, m. 75°. From dilute alc. I seps. as an oil.

(B. and K. and A. obtained crystals from dilute alc., m. 150°.) By

heating I with concentrated HCl for 3 hrs. in a sealed tube at 115° is obtained more than 90% PhCH(CO₂H)CH₂CO₂H, m. 167°. By treating I with H₂O at 25° for several days it is transformed into

PhCH(COOH)CH₂CO₂H, m. 157-8°.

IT 712-56-1P, Succinamic acid, β -phenyl-

RL: PREP (Preparation)

(preparation of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L17 ANSWER 22 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1914:4524 CAPLUS

DN 8:4524

OREF 8:703c-i,704a-h

TI Unsaturated compounds. X. Action of free hydroxylamine on coumarins

AU Posner, Theodor; Hess, Rudolf

CS Univ. Greifswald

SO Berichte der Deutschen Chemischen Gesellschaft (1914), 46, 3816-33

CODEN: BDCGAS; ISSN: 0365-9496

DT Journal

LA Unavailable

GI For diagram(s), see printed CA Issue.

AB cf. C. A., 3, 2566; Francesconi and Cusmano, C. A., 4, 1741. Whether P.'s tri- (a) or F. and C.'s dihydroxylamino compound (b) is formed does not depend on the temperature, as believed by F. and C., but on the nature of the solvent and on whether there is present a slight excess of NaOH or of NH₂OH.HCl. In the presence of alkaline in EtOH, only (b) is formed, even at 0°, while in the absence of alkaline in EtOH or MeOH (a) is always formed at low temps. After 8 days in EtOH (a) passes into (b); in McOH, into the NH₂ acid (c). P.'s former views as to the structure of (a) and (c) have been confirmed, and since (b) is formed as a secondary product from (a), it probably has the structure HOCH₄CH(NH₂)CH₂C(:NOH)OH and not the cyclic structure given by F. and C. Of the 3 methylcoumarins with the Me in the o-, m- and p-positions to the O, none reacts with NH₂OH nearly so easily and smoothly as with coumarin itself. 4-o-Hydroxyphenyldihydouracil, from o-HOC₆H₄CH(NH₂)CH₂CO₂H, KCNO and HCl, decomps. 239-41°, insol. in acids, NH₂ and Na₂CO₃, soluble in NaOH. That in (c), m. 220°, the NH₂ is in the β -position is shown by the fact that (c) depresses the m. p. (248°) of Blum's α -acid (Arch. exp. Path. Pharm., 59, 273) to 216°. (In the following, the notation is used.) 3-Methylcoumarin, obtained in 60% yield of the aldehyde by heating 27 g. 3,2-Me(HO)C₆H₃CHO with 20.8 g. CH₂(CO₂H)₂ and 4 g. PhNH₂.HCl at 100° and finally at 130-5° and decomposing the resulting acid (b18 240-5°) at 300°, b26 180-5°; with NH₂OH in cold MeOH it yields a compound, probably β -hydroxyliminobis-o-hydroxy-m-methyl- β -phenylpropionhydroxamic acid, {Me(HO)C₆H₃CH[CH₂C(:NOH)OH]}₂NOH, decompose about 90-5°, easily soluble in NH₃ and alks., less in H₂O and dilute acids, does not reduce cold Fehling solution, gives a red-brown color with FeCl₃. B. 8 hrs. with NH₂OH in EtOH, the coumarin gives β -amino- β -2-hydroxy-3-methylphenylpropionic acid, powder, soluble in dilute acids, alks. and carbonates, begins to decompose 176° m. 184-5°; hydrochloride, decomps. 130-5°; silver salt, very unstable precipitate B. 1 hr. with 10 parts Ac₂O, the acid gives the acetyl anhydride (2-acetylaminom-3-methylidihydrocoumarin), powder, decompose 135-7°, insol. in NaOH, Na₂CO₃, and dilute acids. Benzoyl derivative of the acid, from 2 g. of the acid and 15 g. BzCl in excess of concentrate NaOH without cooling, crystalline powder, decompose 166-9°, soluble in alks. and soda, insol. in dilute acids. If 3 g. acid and 15 g. BzCl in 30 cc. cold H₂O and 30 cc. dilute NaOH are used, the product is the benzoyl benzoate, crystalline powder, sinters 71-6°, decompose 100°. β -Ureino derivative, from 3 g. of the acid and 1.8 g. KCNO in 60 cc. H₂O heated 1 hr. and evaporated on the H₂O bath, dissolved in H₂O and heated to b. with an equal volume of concentrate HCl, decompose 210-7°, soluble in alks., insol. in dilute acids. Ethyl ester of the NH₂ acid, from the acid in absolute alc. treated 15 min. without cooling with HCl gas, seps. as the hydrochloride, decomps. 99-140°. 4-Methylcoumarin, obtained in 60% yield of the cresol from 40.3 g. m-MeC₆H₄OH and 50 g. malic acid gradually heated to 135° in 180 g. H₂SO₄, m. 126-7°, does not react with alc. NH₂OH in the cold but when heated 5 hrs. it gives β -amino- β -2-hydroxy-4-methylphenylpropionic acid, m. 215-6° (decompose), soluble in dilute acids, alks. and NH₃, does not reduce Fehling solution; hydrochloride, powder, decomps. 180-6°; benzoyl derivative, m. 186-7° (decompose), soluble in alks. and soda, insol. in dilute acids; benzoyl benzoate, m. 145-8° (decompose), soluble in alks. and soda, insol. in acids (both of the last 2 compds., when b. 5 hrs. with 10% alc. H₂SO₄, yield a benzoyl ethyl ester, softens 150°, m. 155-9° (decompose), soluble in alkaline); β -phenylureino derivative, from the acid and PhNCO in NaOH, m. 169-71° (decompose), soluble in alks. and carbonates, insol. in acids. In the prepare of the NH₂ acid there is regularly obtained a by-product, probably 2-bz-methylbenzisoxazole- β -acetic acid (I), needles, m.

167-71° (decompose), soluble in alks., NH₃ and soda, insol. in dilute acids, does not reduce hot Fehling solution, gives only a faint yellow-red color with FeCl₃, is unchanged by dissolving in NaOH, adding NaNO₃ and cautiously acidifying, whereas, if it were the isoxazolone (II) it should have formed a NO compound soluble in alks. with pink color. 5-Methylcoumarin with cold alc. NH₃OH yields a hygroscopic yellow substance, decomp. 80-5°, cannot be purified, gives an oily precipitate with dilute acids, reduces cold Fehling solution, gives a brown-violet color with FeCl₃; it is probably hydroxylanine 5-methyl-2-hydroxycinnamhydroxamate, Me(OH)C₄H₃CH:CHC(:NOH)OH.NH₂OH. An addition product of NH₂OH to the C:C bond was obtained, by short b., as a white tar which, on b. with alc., yielded β -amino- β -2-hydroxy-5-methylphenylpropionic acid (also obtained by b. the coumarin 10 hrs. with alc. NH₂OH), needles, m. 198-202° (decompose), easily soluble in alks. and acids; hydrochloride, yellowish needles, decompose 157°; silver salt, precipitate exceedingly sensitive to light; diacetyl anhydride(?), obtained by b. the acid with Ac₂O and pouring into cold H₂O, m. 130-2°, cannot be recrystd.; benzoyl derivative, m. 170-5° (decompose), soluble in alks., insol. in dilute acids; benzoyl benzoate, softens 100°, m. 105-9° (decompose), soluble in alks. and soda, insol. in dilute acids; benzoyl ethyl ester, m. 120-1°, soluble in alks., insol. in acids; β -urcino derivative, m. 149° (decompose), soluble in alks., insol. in dilute acids, converted by heating to incipient b. with concentrate HCl into 4[-2-hydroxy-5-methylphenyl]dihydrourocil, begins to decompose 235°, m. 245°, soluble in alks., insol. in dilute acids; ethyl ester hydrochloride of the NH₃ acid, decompose 149-50°. In the prepare of the NH₂ acid is formed a by-product, darkens 149°, m. 155° (decompose), soluble in alks., insol. in dilute acids, gives a deep red color with FeCl₃, does not reduce Fehling solution. It is probably 3-bz-methyl-benzisoxasole- β -acetic acid, although the FeCl₃ reaction makes it not impossible that it is 2-hydroxy-5-methylcinnamhydroxamic acid.

IT 861544-97-0P, Melilotic acid, β -carbamido-3-methyl-
861589-95-9P, Melilotic acid, β -carbamido-5-methyl-

RL: PREP (Preparation)
(preparation of)

RN 861544-97-0 CAPLUS

CN Melilotic acid, β -carbamido-3-methyl- (ICI) (CA INDEX NAME)

RN 861589-95-9 CAPLUS

CN Melilotic acid, β -carbamido-5-methyl- (ICI) (CA INDEX NAME)

L117 ANSWER 23 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1908:10697 CAPLUS

DN 2:10697

OREF 2:2382b-d

TI On the Amic Acids of Phenylsuccinic Acid

AU Anschutz, Richard; Walter, Paul

CS Univ. Bonn.

SO Ann. (1908), 361, 73-8

DT Journal

LA Unavailable

AB It had been shown that NH₃ and phenylsuccinic anhydride reacted so that the NH₂ was added to the weaker carboxyl (Ibid., 354, 117; C. A., 1907, 2702). Luttgen (Dissertation, Bonn, 1899) found the opposite. Ethyl phenylcyanopropionate and concentrate H₂SO₄ yielded ethyl phenylsuccinamate, m. 173° (Luttgen, m. 167°). The product obtained from NH₃ and phenylsuccinic anhydride was converted into the Ag salt and with EtI yielded a small amount of α -phenylsuccinamic- β -ethylester, m. 173°, but as main product the isomeric β -amico-ester, m. 148-50°. The methyl esters were prepared similarly and separated quantitatively by ether. α -Amide- β -methyl ester, m. 145°; β -amide- α -methyl ester, m. 119°. The main product formed therefore contains the NH₂ on the weaker carboxyl although at the same time some of the isomer is obtained.

IT 712-56-1, Succinamic acid, β -phenyl-
(and esters)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

L117 ANSWER 24 OF 24 CAPLUS COPYRIGHT 2007 ACS on STN

AN 1907:11153 CAPLUS

DN 1:11153

OREF 1:2702f-i,2703a-i

TI On the Ester and Amide Acids of Phenylsuccinic Acid

AU Anschutz, Richard

CS Univ. Bonn

SO Ann. (1907), 354, 117-51

DT Journal

LA Unavailable

OS CASREACT 1:11153

GI For diagram(s), see printed CA Issue.

AB The effect of the negative phenyl group on the acidity of the carboxyl

group attached to the same carbon atom of phenylsuccinic acid was studied. The chlorides of the two phenyl succinic acid monomethyl esters with benzene and aluminium chloride yielded the methyl ester of desylacetic acid in the one case and of phenylphenacylactic acid in the other, fixing the structures of the two mono-esters. These were also determined by syntheses from benzalmalonic ester by adding hydrocyanic acid saponifying the cyanogen compound and then hydrolyzing to form the α -amide- β -acid, and by hydrolyzing the cyanogen compound directly to the β -ester- α -acid. Ammonia with amines unites with phenylsuccinic acid anhydride, the amidyl group combining with the carbonyl of the weaker (β) carboxyl group. On esterification of the anhydride, 75% β -ester- α -acid and 25% α -ester- β -acid were formed. Partial saponification of the neutral methyl ester yielded the weaker ester acid (α -ester- β -acid). Experimental. A. THE TRANSFORMATION OF PHENYL CYANOPROPIONIC ACID AND ITS METHYL ESTER INTO PHENYLSUCCINIC- α -AMIDE- β -ACID AND PHENYLSUCCINIC- β -METHYLESTER- α -ACID (with Paul Walter). Phenylcyanopropionic acid, m. 150°, prepared from benzalmalonic acid ethyl ester (Bredt and Kallen, *Ibid.*, 293, 345) with concentrated H_2SO_4 at the ordinary temperature for 12-hours gave phenylsuccinic- α -amide- β -acid. $C_8H_6.CH(COCH_2)CH_3.CO_2H$, m. 158-159°. Ag salt. Methyl benzalmalonate, b16 170-171°, m. 44-45°, with potassium cyanide in methyl alcoholic solution yielded phenylcyanopropionic acid methyl ester, m. 55°, from which the methyl ester of the α -amide- β -acid, m. 145°, was prepared. The same ester was obtained from the above silver salt and methyl iodide. This ester when treated with sodium nitrate in a cold solution containing strong H_2SO_4 yielded phenylsuccinic- β -methyl ester- α -acid, $C_6H_5.CH(CO_2H).CH_2.CO_2CH_3$, m. 92°, identical with the main product obtained by the action of methyl alcohol on phenylsuccinic acid anhydride. B. THE FORMATION OF THE PHENYLSUCCINIC-METHYL ESTER ACIDS AND THEIR CHLORIDES (with Carl Hahn and Paul Walter). Phenylsuccinic acid, m. 167°, was prepared, starting with benzyl chloride, by methods already described (*Ber.*, 14, 1645; 19, 1949; 24, 1877; *Ann.*, 219, 30; 258, 74). Phenylsuccinylchloride, b12 150-151°, $C_6H_5.CH(COCl).CH_2.COCl$. Phenylsuccinic acid anhydride, b12 191-192°. Dimethyl ester, b12 160-162°, m. 57-58°, on partial saponification with the calculated amount of alcoholic potash yielded the α -methyl ester- β -acid, m. 102-103°, $C_6H_5CH(CO_2CH_3).CH_2CO_2H$, whose constitution follows from the fact of the isomeric β -ester- α -acid, m. 92°, having the other structure as proved before. (Part A). Methyl alcohol and the anhydride yielded 25% α -ester- β -acid and 75% β -ester- α -acid. The chlorides of the ester acids were not obtained pure. C. THE ISOMERIC PHENYLSUCCINAMIDE-ANILIDE, p-TOLUIDINE-, AND PIPERIDIIDE-ACIDS (with Carl Hahn and Paul Walter). The action of ammonia on the anhydride produced the β -amide- α -acid, m. 144-145°, $C_6H_5.CH(CO_2H).CH_2CONH_2$. Ag salt Methyl ester, m. 119°, with nitrous acid yielded the α -ester- β -acid, m. 102°. This amide acid was insoluble in ether, the α -amide- β -acid, m. 119°, easily soluble. By this means the mixture obtained by the action of ammonia on the acid chloride was separated. Similarly the following substances were prepared. Phenylsuccinic- β -anilide- α -acid, $C_6H_5.CH(CO_2H).CH_2CONHC_6H_5$, m. 169-170°. Ag salt. Methyl ester, m. 149°. α -Anilide- β -acid, $C_6H_5.CH(CONHC_6H_5).CH_2.CO_2H$, m. 175°. Methyl ester, m. 96°. From either anilide acid on heating with acetyl chloride, phenylsuccinianil, $C_6H_5.CH.CO.N(C_6H_5).CO.CH_7$, m. 138°, was prepared. The anilide acid chloride and aniline yielded the dianilide, $C_3H_3.CH(CONHC_6H_5).CH_2.CONHC_6H_3$ m. 222°. Phenylsuccinic- β -p-toluidide- α -acid, m. 168-169°, $C_6H_5.CH(CO_2H).CH_2.CONH(4)C_4H_4(2)CH_3$. Ag salt. Methyl ester, m.

118°. α -p-Toluidide- β -acid, m. 175°. Methyl ester, m. 118° (same m. as the isomer, but mixed m. 105°). Phenylsuccin-p-tolil, C₆H₃.CH.CO.NH(4)C₆H₄(1)CH₆.CO.CH₂, m. 139°. Phenylsuccinic- β -piperide- α -acid, C₆H₃.CH(CO₂H).CH₂.CONC₆H₃. m. 95°. Ag. salt. Methyl ester m. 109°, α -Piperide- β -acid, m. 165° Methyl ester, m. 97°. D. SYNTHESIS OF DESYLACETIC ACID AND PHENYLPHENACYLACETIC ACID FRON PHENYLSUCCINIC ACID (with Paul Walter). By the action of benzene and aluminium chloride on phenylsuccinic- β -methyl ester α -acid chloride, desylacetic acid methyl ester (or β -phenyl- β -benzoyl-propionic acid methyl ester), C₆H₅.CH(COC₆H₅).CH₂.CO₂CH₅, m. 49° (Ber., 21, 1305, 1349) was obtained; free acid, m. 162°. The same reaction with the β -ester- α -acid chloride produced phenylphenacylactic acid methyl ester (or α -phenyl- β -benzoylpropionic acid methyl ester), m. 104°, C₆H₆CH(CO₂CH₅).CH₂.COC₆H₅ (Ann., 284, 3)); free acid, m. 153°. This reaction also proved the structures of the two ester acids of phenylsuccinic acid. The results obtained with mesaconic and phenylsuccinic acids are summoned up at the close. Partial esterification yielded both ester acids but in different amounts. Partial saponification of the neutral esters replaced the alkyl group of the weaker carboxyl by hydrogen. The melting points of the isomeric derivatives of the ester acids of phenylsuccinic acid are given in a table.

IT 712-56-1P, Succinamic acid, β -phenyl- 859961-47-0P,

Succinamic acid, β -phenyl-, Me ester

RL: PREP (Preparation)
(preparation of)

RN 712-56-1 CAPLUS

CN Benzenepropanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

RN 859961-47-0 CAPLUS

CN Succinamic acid, β -phenyl-, Me ester (1CI) (CA INDEX NAME)

=>

chain nodes :

1 2 5 6 7 9 19 20 21 22 23 24 26 28

ring nodes :

13 14 15 16 17 18

chain bonds :

2-5 6-7 6-9 14-26 19-23 19-20 20-21 22-23

ring bonds :

13-14 13-18 14-15 15-16 16-17 17-18

18-14 18-18 18-18
exact/norm bonds :

2-5 6-7 6-9 14-26 22-23 23-24 26-28

2-5 8-1
exact bonds:

19-33 19-30 30-31

19-23 19-20 20
normalized bands

maximized bonds :

13-14 13-

G1: H, CH₃, CH₂, Et, n-Pr, i-Pr, n-Bu, i-Bu, s-Bu, t-Bu, Ph, Cy

G2:CH2,O,S,[*1],[*2],[*3]

G3:Cb,Cy,Hy,Ak

Match level :

1:CLASS2:CLASS5:CLASS6:CLASS7:CLASS9:CLASS13:Atom 14:Atom 15:Atom 16:Atom 17:Atom
18:Atom 19:CLASS20:CLASS21:CLASS22:CLASS23:CLASS24:CLASS26:CLASS28:CLASS29:Atom

10/569812 MMP - UPDATED SEARCH REG NUMBERS

=> s 845786-15-4/RN or 845786-16-5/RN or 845786-17-6/RN or 845786-18-7/RN or 845786-19-8/RN or 845786-20-1/RN or 845786-21-2/RN or 845786-22-3/RN or 845786-23-4/RN or 845786-24-5/RN or 845786-25-6/RN or 845786-26-7/RN or 845786-27-8/rn

1 845786-15-4/RN
1 845786-16-5/RN
1 845786-17-6/RN
1 845786-18-7/RN
1 845786-19-8/RN
1 845786-20-1/RN
1 845786-21-2/RN
1 845786-22-3/RN
1 845786-23-4/RN
1 845786-24-5/RN
1 845786-25-6/RN
1 845786-26-7/RN
1 845786-27-8/RN

L12 13 845786-15-4/RN OR 845786-16-5/RN OR 845786-17-6/RN OR 845786-18-7/RN OR 845786-19-8/RN OR 845786-20-1/RN OR 845786-21-2/RN OR 845786-22-3/RN OR 845786-23-4/RN OR 845786-24-5/RN OR 845786-25-6/RN OR 845786-26-7/RN OR 845786-27-8/RN

=> d 112 1-13 ide

L12 ANSWER 1 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
RN 845786-27-8 REGISTRY
ED Entered STN: 17 Mar 2005
CN Benzeneacetic acid, α -(2-amino-2-oxoethyl)-4-(2-cyclohexylethoxy)- (9CI) (CA INDEX NAME)
MF C18 H25 N O4
SR CA
LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 2 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
RN 845786-26-7 REGISTRY
ED Entered STN: 17 Mar 2005
CN [1,1'-Biphenyl]-4-acetic acid, α -(2-amino-2-oxoethyl)-4'-methoxy- (9CI) (CA INDEX NAME)
MF C17 H17 N O4
SR CA
LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 3 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
 RN 845786-25-6 REGISTRY
 ED Entered STN: 17 Mar 2005
 CN [1,1'-Biphenyl]-4-acetic acid, 3'-acetyl- α -(2-amino-2-oxoethyl)-
 (9CI) (CA INDEX NAME)
 MF C18 H17 N O4
 SR CA
 LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 4 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
 RN 845786-24-5 REGISTRY
 ED Entered STN: 17 Mar 2005
 CN [1,1'-Biphenyl]-4-acetic acid, 4'-acetyl- α -(2-amino-2-oxoethyl)-
 (9CI) (CA INDEX NAME)
 MF C18 H17 N O4
 SR CA
 LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 5 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
 RN 845786-23-4 REGISTRY
 ED Entered STN: 17 Mar 2005
 CN [1,1'-Biphenyl]-4-acetic acid, α -(2-amino-2-oxoethyl)-4'-(trifluoromethoxy)- (9CI) (CA INDEX NAME)
 MF C17 H14 F3 N O4
 SR CA
 LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 6 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
 RN 845786-22-3 REGISTRY
 ED Entered STN: 17 Mar 2005
 CN [1,1'-Biphenyl]-4-acetic acid, α -(2-amino-2-oxoethyl)-4'-cyano- (9CI) (CA INDEX NAME)
 MF C17 H14 N2 O3
 SR CA
 LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
 1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 7 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
 RN 845786-21-2 REGISTRY
 ED Entered STN: 17 Mar 2005
 CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(1H-indol-5-yl)- (9CI) (CA INDEX NAME)

10/569812 MMP - UPDATED SEARCH REG NUMBERS

MF C18 H16 N2 O3

SR CA

LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 8 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN

RN 845786-20-1 REGISTRY

ED Entered STN: 17 Mar 2005

CN Benzenepropanoic acid, β -(aminocarbonyl)-4-(3-thienyl)- (9CI) (CA INDEX NAME)

MF C14 H13 N O3 S

SR CA

LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 9 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN

RN 845786-19-8 REGISTRY

ED Entered STN: 17 Mar 2005

CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-3'-cyano- (9CI) (CA INDEX NAME)

10/569812 MMP - UPDATED SEARCH REG NUMBERS

MF C17 H14 N2 O3

SR CA

LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 10 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN

RN 845786-18-7 REGISTRY

ED Entered STN: 17 Mar 2005

CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

MF C16 H15 N O3

SR CA

LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)

1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 11 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN

RN 845786-17-6 REGISTRY

ED Entered STN: 17 Mar 2005

CN [1,1'-Biphenyl]-4-propanoic acid, 3'-acetyl- β -(aminocarbonyl)- (9CI) (CA INDEX NAME)

MF C18 H17 N O4

SR CA

LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 12 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
RN 845786-16-5 REGISTRY
ED Entered STN: 17 Mar 2005
CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-4'-(trifluoromethyl)- (9CI) (CA INDEX NAME)
MF C17 H14 F3 N O3
SR CA
LC STN Files: CA, CAPLUS, CASREACT, USPATFULL

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

1 REFERENCES IN FILE CA (1907 TO DATE)
1 REFERENCES IN FILE CAPLUS (1907 TO DATE)

L12 ANSWER 13 OF 13 REGISTRY COPYRIGHT 2007 ACS on STN
RN 845786-15-4 REGISTRY
ED Entered STN: 17 Mar 2005
CN [1,1'-Biphenyl]-4-propanoic acid, β -(aminocarbonyl)-4'-cyano- (9CI) (CA INDEX NAME)
MF C17 H14 N2 O3
SR CA
LC STN Files: CA, CAPLUS, CASREACT, USPATFULL