## The Math Behind Transformer

# **Training Transformer LLMs**

#### Learning goals

- Learn to calculate Transformer number of parameters
- Understand Transformer computation and memory load
- Learn about Flash Attentions
- Understand Scaling Laws and Chinchilla

### LLM PARAMETERS: MAIN COMPONENTS

#### ➤ Source: Kipply's Blog, 2023

- Model parameters are half-precision (bfloat16) numbers of 2 bytes
- One block (decoder unit) consists of:
  - $W_q$ ,  $W_k$ ,  $W_v$  matrices which are each  $d_{model} \cdot n_{heads} \cdot d_{head}$  and project the input into the query, key, and value used in self-attention.
  - A W<sub>0</sub> matrix which is also d<sub>model</sub> · n<sub>heads</sub> · d<sub>head</sub> used on the output of self-attention, before the MLP (feedforward) layer
  - MLP weights, which are two matrices each of  $d_{model}^2 \cdot 4$ . Here the 4 is based on calculations and means that the MLP is 4 times the size of the model embedding dimension.
- In most architectures,  $d_{model} = n_{heads} \cdot d_{head}$

#### LLM PARAMETERS: FORMULA

Combining the above, for one layer/block we get this formula:

$$P_{layer} = 3 \cdot d_{model} \cdot n_{heads} \cdot d_{head} + \cdot d_{model} \cdot n_{heads} \cdot d_{head} + 2 \cdot 4 \cdot d_{model}^2$$

$$= 4 \cdot d_{model} \cdot n_{heads} \cdot d_{head} + 8 \cdot d_{model}^2$$

$$= 4 \cdot d_{model} \cdot d_{model} + 8 \cdot d_{model}^2$$

$$= 12 \cdot d_{model}^2$$

For a LLM of *n* layers, we get:

total # parameters 
$$P = 12 \cdot n_{layers} \cdot d_{model}^2$$

### **LLM PARAMETERS: EXAMPLE**

#### GPT-3 Small has:

$$n_{params} = 125 M$$
 ;  $n_{layers} = 12$  ;  $d_{model} = 768$  ;  $n_{heads} = 12$  ;  $d_{head} = 64$ 

#### GPT-3 Medium has:

$$n_{params} = 350 \, M$$
 ;  $n_{layers} = 24$  ;  $d_{model} = 1024$  ;  $n_{heads} = 16$  ;  $d_{head} = 64$ 

Applying the above formula we get  $\sim$ 85 M parameters for GPT-3 Small and  $\sim$ 302 M parameters for GPT-3 Medium.

What are we missing ... ?!

### LLM PARAMETERS: OTHER COMPONENTS

#### Numeric illustration as in BERT-base

- Word Embedding parameters 30522 x 768 = 23440896
- Position Embedding parameters 512 x 768 = 393216
- Token Type Embedding parameters 2 x 768 = 1536
- Embedding Layer Normalization, weight and Bias 768 + 768 = 1536
- Other model-specific parameters...

Total Embedding parameters = 23837184

They do not scale with model size.

### **COMPUTE REQUIREMENTS**

Basic equation: Cost to train a transformer (decoder) model:

$$C \approx \tau T = 6PD$$

➤ Source: Quentin et al., 2023

### **COMPUTE REQUIREMENTS**

#### where:

- C: No. of floating-point operations (FLOPs) to train the model:
   C = C<sub>forward</sub> + C<sub>backward</sub>
- $C_{forward} \approx 2PD$
- $C_{backward} \approx 4PD$
- $\tau$  is throughput of hardware: (No. GPUs) x (FLOPs/GPU)
- T is the time spent training the model, in seconds
- P is the number of parameters in the model
- D is the dataset size (in tokens)

#### **COMPUTE UNITS**

#### C can be measured in different units:

- FLOP-seconds which is [Floating Point Ops / Second]
  - We also use multiples GFLOP-seconds, TFLOP-seconds etc.
  - Other multiples like PFLOP-days are used in papers
  - 1 PFLOP-day =  $10^{15} \cdot 24 \cdot 3600$  FLOP-seconds
- GPU-hours which is [No. GPUs] x [Hours]
  - GPU model is also required, since they have different compute capacities
  - For any GPU model, its Actual FLOPs are always lower than the advertised theoretical FLOPs

#### PARAMETER VS DATASET

- Model performance depends on number of parameters P, but also on number of training tokens D
- We need to decide about P and D, so that we get the best performance within the compute budget
- Recommended tradeoff between P and D is: D = 20P
  - This is usually true for Chinchilla models ► Hoffmann et al., 2022, but not for all LLMs
- Training a LLM for less than 200 billion tokens is not recommended
- Rule of thumb: First determine the upmost inference cost, and then train the biggest model within that boundary.

## **MEMORY REQUIREMENTS**

#### Common questions:

- How big is this model in bytes?
- Will it fit/train in my GPUs?

#### Model size components:

- Model parameters
- Optimizer states
- Gradients
- Activations

### NUMBER REPRESENTATIONS

- Pure fp32: single precision floating point number as defined by
   IEEE 754 standard, takes 32 bits or 4 bytes
- fp16: half precision float number as defined by ►IEEE\_754-2008, occupying 16 bits or 2 bytes
- bf16 or brain floating point 16, developed by Google Brain project, occupying 16 bits or 2 bytes
- int8: integer from -128 to 127, occupying 8 bits or 1 byte

### **MODEL PARAMETERS**

Parameter size depends on chosen representation:

- Pure fp32:  $Mem_{model} = 4 \ bytes/param \cdot N_{params}$
- fp16 or bf16:  $Mem_{model} = 2 \ bytes/param \cdot N_{params}$
- int8:  $Mem_{model} = 1 \ byte/param \cdot N_{params}$

It is practically common to use mixed representations:

- fp32 + fp16
- fp32 + bf16

#### **OPTIMIZER STATES**

AdamW:  $Mem_{AdamW} = 12 \ bytes/param \cdot N_{params}$ 

fp32 copy of parameters: 4 bytes/param

Momentum: 4 bytes/param

Variance: 4 bytes/param

bitsandbytes (8-bit optimizer):  $Mem_{AdamW} = 6 \ bytes/param \cdot N_{params}$ 

• fp32 copy of parameters: 4 bytes/param

Momentum: 1 byte/param

Variance: 1 byte/param

For AdamW, memory = 12  $bytes/param \cdot N_{params}$ 

fp32 copy of parameters: 4 bytes/param

Momentum: 4 bytes/param

#### **GRADIENTS**

They are usually stored in the same datatype as the model parameters.

Their memory overhead contribution is:

- fp32: Mem<sub>grad</sub> = 4 bytes/param ⋅ N<sub>params</sub>
- fp16 or bf16:  $Mem_{grad} = 2 \ bytes/param \cdot N_{params}$
- int8:  $Mem_{grad} = 1 \ byte/param \cdot N_{params}$

#### **ACTIVATIONS**

- GPUs are bottlenecked by memory, not FLOPs
- Save GPU memory by recomputing activations of certain layers
- Various schemes for selecting which layers to clear
- They take some extra memory, but save even more

Total memory when training without activations:

$$\textit{Mem}_{\textit{training}} = \textit{Mem}_{\textit{params}} + \textit{Mem}_{\textit{opt}} + \textit{Mem}_{\textit{grad}}$$

Total memory when training **using** activations:

$$Mem_{training} = Mem_{params} + Mem_{opt} + Mem_{grad} + Mem_{activ}$$

In the latter case,  $Mem_{params}$ ,  $Mem_{opt}$  and  $Mem_{grad}$  are significantly smaller than in the former.

### DISTRIBUTED TRAINING

- Training LLMs faster on many GPUs
- Avoiding OOM issues
- Data parallelism: split the data on different model replicas
- Tensor parallellism: split model parameters accross GPUs
- Sharded optimizers: reduce optimizer overhead by No. GPUs
  - ZeRO (Zero Redundancy Optimizer)
  - Requires low extra communication between GPUs
  - Decreases optimizer memory requirement
  - Improves training speed

### **DATA PARALELISM**



Source: Nvidia

### **TENSOR PARALELISM**



Source: Nvidia

### ZERO REDUNDANCY OPTIMIZER



**Figure:** Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations.

► Rajbhandari et al., 2020

### **FlashAttention**

#### Fast and Memory-Efficient Exact Attention with IO-Awareness

- Fast
  - 15% faster than BERT
  - 3x faster than GPT-2
  - 2.4x faster than Megatron-LM
- Memory-efficient
  - Reducing from  $O(n^2)$  to O(n)
- Exact
  - Same as "vanilla attention", not an approximation
- IO aware
  - Reducing memory load/store operations

## **GPU MEMORY HIERARCHY**



Source: Dao et al. (2022)

### **COMPUTING CONSIDERATIONS**

- GPU compute has been growing faster than memory bandwidth
  - GPU has to wait for data
- Transformer operations are memory-bound
  - Elementwise operations with high memory access
- IO aware means reducing memory load/store operations
- FlashAttention implements the following:
  - Operation fusion to reduce memory access
  - Tiling or chunking the softmax matrix into blocks
  - Recomputation for better memory utilization

### **OPERATION FUSION**



Source: https://horace.io/brrr\_intro.html

### LIMITATIONS AND PROSPECTS

- FlashAttention requires writing attention to CUDA language
  - A new CUDA kernel for each new attention implementation
  - CUDA is lower-level than PyTorch
  - Implementation may not be transferable accross GPUs
- Towards IO-Aware Deep Learning
  - Extending beyonde attention
- Multi-GPU IO-Aware Methods
  - FlashAttention computation may be parallelizable accross multiple GPUs

### **SCALING LAWS**



- Performance depends strongly on scale, weakly on model shape
  - Scale means: parameters N, data D, and compute C
  - Shape means: depth and width
- Smooth power laws ?!?
  - Performance has power-law relation with each factor N, D, C
  - When not bottlenecked by the other two
  - Trend spanning more than six orders of magnitude
- Universality of overfitting ?!?
  - Performance enters regime of diminishing returns if N or D held fixed while the other increases

#### **SCALING LAWS**

- Universality of training ?!?
  - Training curves follow predictable power-laws
  - Their parameters are roughly independent of model size
  - It is possible to predict by extrapolating the early part of the training curve
- Transfer improves with test performance ?!?
  - When evaluating on text with different distribution from training text, results are strongly correlated to those on the validation set
  - Transfer to different distribution incurs a constant penalty but improves in line with performance on training set
- Sample efficiency ?!?
  - Large models are more sample-efficient than small models
  - They reach same performance with fewer optimization steps

### **SCALING LAWS**

- Convergence is inefficient
  - When C is fixed but N and D are not, optimal performance is achieved by training very large models and stopping significantly short of convergence (QUESTION: why?)
- Optimal batch size ?!?
  - Ideal size is a power of the loss only
  - ullet It is  $\sim$ 1-2 million tokens for the largest models we can train

Larger language models will perform better and be more sample efficient than current models.

## SCALING LAW FOR NEXT WORD PREDICTION

- $L(N, D) = 1.61 + \frac{406.4}{N^{0.34}} + \frac{410.7}{D^{0.28}}$
- L(N, D) is cross entropy on new text.

Larger language models will perform better and be more sample efficient than current models.

#### **COMPUTE-OPTIMAL LLMs**

Given a fixed FLOPs budget, how should we trade-off model size and text size to optimize performance? • Hoffmann et al., 2022

- Find N and D so that FLOPs(N, D) = C and L(N, D) is minimal
- Empirically estimated N and D based on 400 models.
  - Ranging from 70 M to 16 B parameters
  - Trained on 5 B to 400 B tokens
- Different results from those of ► Kaplan et al., 2020
- Results verified using Chinchilla
  - Chinchilla has 70 B parameters and is trained on 1.4 T tokens
  - 4x less parameters and 4x more tokens than Gopher
  - Chinchilla outruns Gopher and has reduced memory footprint and inference cost

### **COMPUTE-OPTIMAL LLMs**



### **CHINCHILLA AND THE OTHER LLMs**

| Model                            | Size (# Parameters) | Training Tokens |
|----------------------------------|---------------------|-----------------|
| LaMDA (Thoppilan et al., 2022)   | 137 Billion         | 168 Billion     |
| GPT-3 (Brown et al., 2020)       | 175 Billion         | 300 Billion     |
| Jurassic (Lieber et al., 2021)   | 178 Billion         | 300 Billion     |
| Gopher (Rae et al., 2021)        | 280 Billion         | 300 Billion     |
| MT-NLG 530B (Smith et al., 2022) | 530 Billion         | 270 Billion     |
| Chinchilla                       | 70 Billion          | 1.4 Trillion    |

► Source: Hoffmann et al., 2022

| Model          | Layers | Number Heads | Key/Value Size | $\mathbf{d}_{\mathrm{model}}$ | Max LR             | Batch Size                          |
|----------------|--------|--------------|----------------|-------------------------------|--------------------|-------------------------------------|
| Gopher 280B    | 80     | 128          | 128            | 16,384                        | $4 \times 10^{-5}$ | $3M \rightarrow 6M$                 |
| Chinchilla 70B | 80     | 64           | 128            | 8,192                         | $1 \times 10^{-4}$ | $1.5\text{M} \rightarrow 3\text{M}$ |

## **CHINCHILLA ON MMLU**

| Random                           | 25.0% |
|----------------------------------|-------|
| Average human rater              | 34.5% |
| GPT-3 5-shot                     | 43.9% |
| Gopher 5-shot                    | 60.0% |
| Chinchilla 5-shot                | 67.6% |
| Average human expert performance | 89.8% |
| June 2022 Forecast               | 57.1% |
| June 2023 Forecast               | 63.4% |
|                                  |       |

## **CHINCHILLA ON QA**

|                             | Method  | Chinchilla | Gopher | GPT-3  | SOTA (open book) |
|-----------------------------|---------|------------|--------|--------|------------------|
| Natural Questions (dev)     | 0-shot  | 16.6%      | 10.1%  | 14.6%  |                  |
|                             | 5-shot  | 31.5%      | 24.5%  | -      | 54.4%            |
|                             | 64-shot | 35.5%      | 28.2%  | 29.9%  |                  |
| TriviaQA (unfiltered, test) | 0-shot  | 67.0%      | 52.8%  | 64.3 % |                  |
|                             | 5-shot  | 73.2%      | 63.6%  | -      | -                |
|                             | 64-shot | 72.3%      | 61.3%  | 71.2%  |                  |
| TriviaQA (filtered, dev)    | 0-shot  | 55.4%      | 43.5%  | -      |                  |
|                             | 5-shot  | 64.1%      | 57.0%  | -      | 72.5%            |
|                             | 64-shot | 64.6%      | 57.2%  | -      |                  |