Задача 1. Треугольник Паскаля

Этот исследовательский проект состоит из нескольких шагов. Если у вас не получается до конца разобраться в каком-то шаге, пропустите его и изучайте следующий.

- Найдите сумму чисел в каждой строке треугольника Паскаля.
- Найдите сумму первого, третьего, пятого, . . . (и так далее) элемента в какой-нибудь строке треугольника Паскаля. Найдите закономерность.
- Найдите сумму второго, четвёртого, шестого, ... (и так далее) элемента в строке треугольника Паскаля. Найдите закономерность.
- Найдите сумму квадратов чисел в каждой строке треугольника Паскаля.
- Выясните, где в треугольнике Паскаля спрятались треугольные числа $T_n = 1 + 2 + \ldots + n$.
- А где спрятались пирамидальные числа $P_n = T_1 + T_2 + \ldots + T_n$? А где квадратные числа $S_n = n^2$?
- Выясните, как связаны числа $1, 11, 11^2, 11^3, 11^4, \dots$ с треугольником Паскаля.
- Что будет если взять самый левый элемент в строке треугольника Паскаля, вычесть из него следующий (по-горизонтали), прибавить следующий за ним, затем вычесть следующий, ... (и т.д.) до тех пор, пока не кончатся числа в строке? Какое число получится? Найдите закономерность.
- Ответьте на предыдущий вопрос, если брать не сами элементы треугольника Паскаля, а их квадраты.
- Выясните, делятся ли все элементы (кроме крайних двух единиц) в строке на номер этой строки (нумерация строк начинается с нуля)? А когда делятся?
- Выберите число 1 у края треугольника Паскаля и идите по диагонали вниз. Начните складывать все встречающиеся числа и в какойнибудь момент остановитесь. Какое число получилось в сумме? А что получится в общем случае?

- Что получится, если заштриховать все четные числа в треугольнике? Какой будет узор?
- А если зашриховать все числа, делящиеся на 3?
- Где спрятались числа Фибоначчи в треугольнике Паскаля?
- Чему равна сумма чисел в каком-нибудь параллелограмме треугольника Паскаля? Найдите закономерность.
- Откройте свои собственные закономерности в треугольнике и назовите их в свою честь

Задача 2. Задача о разрезании пиццы

Три разреза через центр круглой пиццы дают шесть кусочков. Если же сделать третий разрез не через центр, то мы получим семь кусочков разной формы и размера. Немного поэкспериментировав, вы убедитесь в том, что наибольшее число кусков, которое вы можете получить с помощью трёх разрезов — это семь. Но сколько кусочков вы можете получить с помощью большего числа разрезаний?

- Какое наибольшее число кусочков пиццы вы можете получить с помощью четырёх разрезов?
- Опишите принцип максимизации для разрезания пиццы. А именно, ответьте на вопрос: как должен проходить новый разрез, чтобы получилось как можно больше кусочков?
- Пицца Якоба Штейнера имеет бесконечный радиус, а потому о ней можно мыслить просто как о плоскости. Как связан ответ на общую задачу о пицце с ответом на задачу о разрезании пиццы Якоба Штейнера?

Сборник задач олимпиады «Математика НОН-СТОП»

- Через P_n (от слова pieces кусочки) обозначим максимальное число кусков, на которое можно разрезать пиццу с помощью n разрезов. Например, $P_1=2$ и $P_2=4$. Выразите P_n через P_{n-1} и найдите P_{137} .
- Стандартный кусочек пиццы очень похож на треугольник. А как связана задача о разрезании пиццы с треугольными числами?
- Предположим, что мы получили P_n кусочков пиццы за n разрезаний. Обозначим через C_n (от слова crust корка) число тех кусочков пиццы, граница которых не содержит корочки пиццы. Найдите явную формулу для C_n .
- Сложим первые три числа на каждой строчке треугольника Паскаля. Какое число получается?
- Решите аналогичную задачу о разрезании прямой. Как вы думаете, а как будет связан ответ на новую задачу с треугольником Паскаля?
- Решите аналогичную задачу о разрезании арбуза. Как вы думаете, а как будет связан ответ на новую задачу с треугольником Паскаля? Уже догадались, какой ответы мы получим, если будем разрезать n-мерный шар?

• Выпишем элементы последовательности P_n в строчку, а под ней запишем её *производную последовательность* ΔP_n (вычитаем из элемента его предыдущий)

последовательность	1		2		4		7		11		16		22	
последовательность разностей		1		2		3		4		5		6		
последовательность разностей разностей			1		1		1		1		1		٠	
последовательность разностей разност	зно	сте	й	0		0		0		0				

Как видите, четвёртая строка состоит из нулей. Напишите такую же табличку для последовательности каких–нибудь фигурных чисел.

последовательность a_0	<i>a</i> ₁		a ₃		a ₄		as		as		
последовательность разностей b_0	1	b_1	5	b_2		b_3	3	b_4	0		
последовательность разностей разностей	c_0		c_1		c_2		c_3				
последовательность разностей разностей разностей		0		0		0		٠		٠	

Докажите, что если есть произвольная последовательность a_n обладает тем свойством, что $\Delta c_n=0$, где $\Delta a_n=b_n$ и $\Delta b_n=c_n$, то

$$a_n=a_0inom{n}{0}+b_0inom{n}{1}+c_0inom{n}{2}.$$

А что можно сказать про последовательности, у которых $c_n=0$? А $b_n=0$?

Задача 3. Знакомство с простыми числами

Этот исследовательский проект состоит из нескольких шагов. Если у вас не получается до конца разобраться в каком-то шаге, пропустите его и изучайте следующий.

• Начните писать натуральные числа последовательно вдоль извивающейся линии, как показано на рисунке.

 $^{^{1}}$ Через $\binom{n}{k}$ всегда обозначается биномиальный коэффициент — элемент в n – ой строчке треугольника Паскаля на позиции k .

Найдите на полученной спирали закономерность, связанную с простыми числами, и объясните её.

- Сколько делителей имеют числа $1, 2, 4, 8, 16, 32, \ldots$? А когда число вида $2^n 1$ является простым? Составьте таблицу чисел такого вида и найдите закономерность.
- Выясните, для каких чисел n число (n-1)!+1 делится на n. Найдите закономерность.
- Выясните, для каких чисел n число n^2-1 делится на 24. Найдите закономерность.
- Выясните, для каких чисел n число n^2+1 является простым. Найдите закономерность.
- Выясните, для каких чисел n число 2^n-2 делится на n. Найдите закономерность.
- Посмотрим на числа вида n^2-n . Получаем $0,2,6,12,20,\ldots$ Все эти числа делятся на два. Посмотрим на числа вида n^3-n . Получаем $0,6,24,60,120,210,336,\ldots$ Все эти числа делятся на три! А что дальше? Будут ли числа вида n^4-n делится на четыре? А числа вида n^5-n на пять? Найдите закономерность.

Задача 4. Закопеременные представления

- Представьте число 1 в виде произведения нескольких чисел, сумма которых равна нулю.
- Решите ту же самую задачу для чисел 2,4,6.
- Решите эту задачу для числа 3. Сможете ли вы найти разложение, в котором все числа являются именно целыми, а не рациональными?
- Исследуйте вопрос представимости для произвольных натуральных чисел.

Задача 5. Как же я люблю разрезать!

Возможно ли разрезать на равнобедренные треугольники: а) квадрат;
б) прямоугольник? Если — да, то покажите как.

- Ответьте на тот же вопрос, если нужно разрезать а) параллелограмм; б) равнобокую трапецию. Если можно, то покажите как.
- Попытайтесь разрезать фигуры на наименьшее возможное число равнобедренных треугольников.
- Попробуйте изменить формул фигур из списка выше. Как тогда изменится Ваше разбиение на треугольники? Рассмотрите экстремальные ситуации.

Задача 6. Геометрическая миниатюра

• Как вы думаете, какую часть (по площади) составляет треугольник внутри прямоугольника на картинке ниже?

• А какую часть составляет такой треугольник?

• Как вы думаете, какую часть (по площади) составляет выделенная область от всего правильного шестиугольника?

Сборник задач олимпиады «Математика НОН-СТОП»

• Выясните, какую часть (по площади) составляет такой треугольник в прямоугольнике

Задача 7. Треугольные числа

- Можно ли представить число 201745 в виде суммы двух треугольных чисел?
- Какие натуральные числа можно представить в виде суммы не более двух треугольных чисел? Найдите закономерность.
- Какие натуральные числа можно представить в виде суммы не более трёх треугольных чисел? Найдите закономерность.
- (Золотая теорема). Какие числа можно представить в виде суммы не более n n–угольных чисел?

Задача 8. Шарики в коробках

Перед вами бесконечный набор коробок, на каждой из которых написано простое число.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 ...

Вам дали несколько белых шариков и вы решили положить их все в какието коробки (в одну коробку можно положить сразу много шириков). После этого пришёл эксперт, многозначно посмотрел на вашу расстановку шариков по ящикам и выдал вам число следующим образом: он возвёл число 2 в степень α_2 , равную количеству шариков в коробке с надписью 2, потом возвёл число 3 в степень α_3 , равную количеству шариков в коробке с надписью 3, потом возвёл число 5 в степень α_5 , равную количеству шариков в коробке с надписью 5, и так далее. Затем он умножил все эти числа между собой. Получись число $n=2^{\alpha_2}\cdot 3^{\alpha_3}\cdot 5^{\alpha_5}\cdot \ldots$

- В коробке 2 лежит 3 шарика, а в коробках 3 и 11 лежат по одному шарику. Какое число назовёт эксперт?
- Сколько шариков вам понадобится и куда их нужно положить, чтобы эксперт назвал вам число 6? А число 12? А число 21?
- В каком случае эксперт назовёт вам простое число? А составное?
- Вы расположили шарики в коробках и эксперт назвал число n. Что нужно сделать, чтобы он назвал число np, где p простое число?
- Известно, что число n, которое назвал эксперт, делится на простое число p. Что нужно сделать, чтобы эксперт назвал число n/p?
- Вы положили несколько белых шариков в коробки и эксперт назвал Вам число n, а потом то же самое происходит с расстановкой чёрных шариков вашего друга он получает число m. Что нужно сделать, чтобы эксперт назвал число nm? А что нужно сделать, чтобы эксперт назвал HOJ(n,m)? А HOK(n,m)? А что можно сказать про расположения белых и чёрных шариков, если числа n,m взаимно просты?
- Оказалось, что все m шариков положили в одну коробку. Сколько делителей у числа, которое назвал эксперт?
- Оказалось, что m шариков положили в одну коробку, а k- в другую. Сколько делителей у числа, которое назвал эксперт?

- Как определить количество простых делителей числа, которое назовёт эксперт?
- Правда ли, что можно заставить эксперта назвать любое натуральное число, если правильно подобрать шарики?

Задача 9. Конфигурации точек

В 2014 г. на Санкт-Петербургской олимпиаде школьников по математике была предложена следующая задача:

На двух параллельных прямых отмечено по 40 точек. Их разбивают на 40 пар так, чтобы отрезки, соединяющие точки в одной паре, не пересекались друг с другом. (В частности, конец одного из отрезков не может лежать на другом отрезке). Докажите, что число способов это сделать не превосходит числа 3³⁹.

Последовательность, возникающая в этой задаче, обладает богатыми комбинаторными реализациями, их разнообразие просто изумляет. Опишем общую ситуацию: пусть даны две параллельные прямые, на одной отмечено k точек, на другой n точек.

Отмеченные точки разбивают на пары так, чтобы отрезки, соединяющие точки в одной паре, не пересекались друг с другом. В частности, конец одного из отрезков не может лежать на другом отрезке.

Полученную картинку будем называть конфигурацией (точек и отрезков на двух прямых) или разбиением (точек на пары). Количество разбиений обозначим через [k,n]. Например, [2,4]=4, как показывает рисунок выше.

Кроме того, если n+k нечётно, то [k,n]=0, а также [k,n]=0, если n,k<0. Если n или k равно нулю, то [k,n]=1 просто по-определению.

- Заполните треугольник выше и найдите в нём закономерности, аналогичные закономерностям в треугольнике Паскаля.
- Выясните, какую последовательность образуют суммы элементов в строках треугольника.
- Правда ли, что в каждой строчке числа [k,n] обязательно возрастают при движении от краёв к центру?
- Выясните, как выразить [n,n] через суммы квадратов чисел на диагоналях в треугольнике Паскаля.

Задача 10. Двойственность

Как известно, линейная функция задаётся уравнением y=kx+b, а графиком линейной функции является прямая. Каждая такая прямая определяется парой чисел (k,b). Построим новую координатную плоскость (k,b), точки на которой обозначают прямые на исходной координатной плоскости (x,y).

- Нарисуйте на плоскости (x,y) какие-нибудь четыре прямые и отметьте их в виде четырёх точек на плоскости (k,b).
- Обратно: выберите три точки на плоскости (k,b) и нарисуйте соответствующие три прямые на плоскости (x,y). Что будет, если выбирать точки на (k,b) лежащими на одной вертикальной прямой? А горизонтальной?
- Рассмотрим на плоскости (k,b) прямую b=k. Каждая точка этой прямой задаёт на плоскости (x,y) какую-то прямую, а вся прямая b=k задаёт на плоскости (x,y) набор прямых. Каким свойством обладает этот набор прямых?

- На координатной плоскости (k,b) проведено три прямые, проходящие через одну точку. Каждая такая прямая изображает некоторый набор прямых на плоскости (x,y). Как эти три набора прямых связаны между собой?
- Аналогичный вопрос для трёх параллельных прямых на (k,b).
- Рассмотрим набор всех прямых плоскости (x,y), которые проходят через точку (0,0). Как этот набор изображается на плоскости (k,b)? Тот же самый вопрос при замене точки (0,0) на (m,n).
- Рассмотрим на плоскости (k,b) прямую b=uk+v. Какой набор прямых на плоскости (x,y) изображает эта прямая?
- Прямые b=uk+v на плоскости (k,b) задают точки на новой плоскости (u,v). Как новая плоскость связана с плоскостью (x,y)?

Задача 11. Задача Иосифа Флавия

В книге «Иудейская война» Иосифа Флавия есть история о том, как он в составе отряда из 41 иудейского воина был загнан римлянами в пещеру. Предпочитая самоубийство плену, воины решили выстроиться в круг и последовательно убивать каждого третьего из живых, до тех пор пока не останется ни одного человека. Однако Иосиф наряду с одним из своих единомышленников счел подобный конец бессмысленным — он быстро вычислил спасительные места в порочном круге, на которые поставил себя и своего товарища. И лишь поэтому мы знаем его историю.

В нашем варианте мы начнём с того, что выстроим в круг n человек, пронумерованных числами от 1 до n, и будем исключать каждого второ-20 из оставшихся до тех пор, пока не уцелеет только один человек. Например, если n=10, то порядок исключения будет такой: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остаётся номер 5. Убедитесь в этом!

- Обозначим через J(n) номер последнего уцелевшего человека. Мы только что выяснили, что J(10)=5. Можно было предположить, что J(n)=n/2 при чётном n. Верно ли это? Начните с $n=2,3,4,\ldots$
- Выпишите табличку, в которой для малых n указаны порядки исключения чисел. Правда ли, что J(n) всегда нечётно? Почему?
- Пусть n чётно. Выясните, что происходит в тот момент, когда из круга исключается последнее чётное число. Как связаны J(n) и J(n/2)?

1997 год, 100 класс

- Найдите аналогичную закономерность для нечётного *n*.
- Пусть $n = 2^m$. Найдите J(n).
- Выпишите таблицу значений J(n) для n от 1 до 16 и найдите для J(n) явную формулу.