– Partie 1 -

Documents

• Base 10:

Figure 1 - 234

• Base 2

Figure 2 - 101

Tableau comparatif, incluant la base hexadécimale :

	decimale	binaire	hexadécimale
base	10	2	16
chiffres utilisés	0,1,2,3,4,5,6,7,8,9	0, 1	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
poids du chiffre le plus à droite	1 (unité)	1 (unité)	1 (unité)
poids du chiffre à gauche des unités	10 (dizaines)	2 (paire)	16
poids du chiffre encore plus à gauche	100 (dizaine de dizaine)	4 (paire de paire)	256

Figure 3 – Conversion de 1101 1001 en hexadecimal

Multiples binaires

unité	valeur approchée en bits
kilobits (kb)	1000
megabits (Mb)	10^{6}
gigabits (Gb)	10^{9}
terabits (Tb)	10^{12}
petabits (Pb)	10^{15}

Multiples de l'octet

unité	valeur approchée en octets
kilooctets (ko)	10^{3}
megaoctets (Mo)	10^{6}
gigaoctets (Go)	10 ⁹
teraoctets (To)	10^{12}
petaoctets (Po)	10 ¹⁵

Valeurs exactes

le Kibibit (Kibit), vaut 1024 bits (soit 210).

unité	valeur exacte, en octets
Kibioctets (Kio)	2 ¹⁰
Mébioctet (Mio)	2^{20}
Gibioctet (Gio)	2^{30}
Tébioctet (Tio)	2^{40}
Pébioctet (Pio)	2^{50}

Rappels et remarques :

- 8 bits = 1 octet
- $10^3 = 1000$
- $2^{10} = 1024$

1.1 Convertir de la base 10 vers la base 2

La conversion utilise le principe de la division euclidienne :

Figure 4 – division euclidienne de 4 par 2

Figure 5 – conversion 4(10) = 100(2)