MATH 8090: Spectral Analysis of Time Series I

Whitney Huang, Clemson University

11/2/2021

Contents

An example of periodic proces
An example from Cryer and Chan Cryer and Chan (2008), Chapter 13
Illustration of aliasing
Example 4.3 from Shumway (n.d.)
Periodogram
Spectral Density of MA(1) Process with $\theta = 0.5 \dots \dots$
Spectral Density of AR(1) Process with $\phi = 0.9 \dots \dots$
Spectral Density of AR(2) Process with $\phi_1 = 1.5, \phi_2 = -0.95$
Spectral Density of SARMA\$
The periodogram is not a consistent estimator!
Spetral ANOVA example
Leakage and Tapering
SOI example
References

An example of periodic proces

```
source("curlyBraces.R")
A = 2
omega = 1
phi = 1
t \leftarrow seq(-phi / (2 * pi), 3, len = 200)
y <- A * cos (2 * pi * omega * t + phi)
par(mgp = c(2.2, 1, 0), mar = c(3.5, 4, 0.8, 0.6), las = 1)
fu \leftarrow expression(y(t) == paste("A", cos(2 * pi * omega * t + phi)))
plot(t, y, type = "l", yaxt = "n", bty = "n", ylab = fu)
abline(h = 0, lty = 2, col = "gray")
segments(1 - phi / (2 * pi), 0, 2 - phi / (2 * pi), col = "blue")
segments(1 - phi / (2 * pi), 0, y1 = A, col = "red")
CurlyBraces(1 - phi / (2 * pi), 0.5 * A, A, pos = 1, direction = 2, col = "red")
text(x = 1 - phi / (2 * pi) - 0.5, y = 0.5 * A, "A", family = "serif",
     col = "red", cex = 2)
CurlyBraces(0, 1.5 - phi / (2 * pi), omega, pos = 2, direction = 2, col = "blue")
text(x = 1.5 - phi / (2 * pi), y = -0.65, expression(omega), family = "serif",
    col = "blue", cex = 2)
abline(v = - phi / (2 * pi), col = "gray")
axis(1, at = -phi / (2 * pi), labels = expression(-phi/2*pi), cex = 0.5,
las = 2)
```


An example from Cryer and Chan Cryer and Chan (2008), Chapter 13

```
t = 1:400
cos1 <- cos(2 * pi* t * 10 / 200)
cos2 <- cos(2 * pi * (t * 32 / 200 + .3))
plot(t, cos1, type = 'o', ylab = 'Cosines', col = "red", cex = 0.2)
lines(t, cos2, lty = 'dotted', type = 'o', pch = 4, col = "blue", cex = 0.2)</pre>
```

```
library(astsa)
y < -3 * cos1 + 2 * cos2
par(mgp = c(2.7, 1, 0), mar = c(3.5, 4.5, 0.8, 0.6), las = 1, mfrow = c(3, 1))
tsplot(y, ylab = expression(y[t]))
acf(y)
library(TSA)
##
## Attaching package: 'TSA'
## The following objects are masked from 'package:stats':
##
       acf, arima
##
## The following object is masked from 'package:utils':
##
##
       tar
periodogram(y, ylab = ""); abline(h = 0)
axis(1, at = c(10 / 200, 32 / 200))
```


Illustration of aliasing

Example 4.3 from Shumway (n.d.)

Periodogram

```
par(mfcol = c(2, 1), las = 1, mgp = c(2, 1, 0), mar = c(4, 4, 1, 0.6))
# one frequency:
y = cos(2 * pi * (0.1) * (1:144))
ts.plot(y); spectrum(y, log = "no", main = "")
```



```
P <- Mod(2 * fft(y) / 144)
Fr <- 0:143 / 144
plot(Fr, P, type = "l", xlab = "Frequency", ylab = "Scaled periodogram")
abline(v = 0.5, lty = 2)
# and a second frequency:
y = y + 2 * cos(2 * pi * (0.234) * (1:144))
ts.plot(y); spectrum(y, log = "no", main = "")</pre>
```


Spectral Density of MA(1) Process with $\theta = 0.5$

Spectral Density of AR(1) Process with $\phi = 0.9$

```
phi = .9
par(las = 1, mar = c(4, 4, 1, 0.6))
ARMAspec(model = list(ar = phi))
```


Spectral Density of AR(2) Process with $\phi_1 = 1.5, \phi_2 = -0.95$

```
phi = c(1.5, -0.95)
par(las = 1, mar = c(4, 4, 1, 0.6))
ARMAspec(model = list(ar = phi))
```


Spectral Density of SARMA\$

The periodogram is not a consistent estimator!

```
n = 200; phi= -0.6; N = 1000
y = replicate(N, arima.sim(model = list(ar = phi), n = n))
spec <- apply(y, 2, function(x) spec(x, log = "no", plot = F)$spec)

freq <- 1:(0.5 * n) / n
plot(freq, apply(spec, 1, mean), type = "l")
lines(freq, ARMAspec(model = list(ar = phi), freq = freq, plot = F)$spec, col = "blue")
lines(freq, apply(spec, 1, sd), col = "red")</pre>
```



```
par(las = 1, mar = c(4, 4, 1, 0.6), mgp = c(2, 1, 0))
sp <- spec(y[, 1], log = 'no', xlab = 'Frequency',</pre>
           ylab = 'Sample Spectral Density', sub = '', main = "",
           col = "red")
lines(sp$freq, ARMAspec(model = list(ar = phi), freq = sp$freq,
                         plot = F)$spec, lwd = 1.5)
abline(h = 0, col = "gray")
k = kernel("daniell", m = 5)
sp1 \leftarrow spec(y[, 1], kernel = k, log = 'no', plot = F)
lines(sp1$freq, sp1$spec, col = "blue")
k = kernel("daniell", m = 15)
sp2 \leftarrow spec(y[, 1], kernel = k, log = 'no', plot = F)
lines(sp2$freq, sp2$spec, col = "green")
legend("topleft", legend = c(0, 5, 15),
       col = c("red", "blue", "green"), title = "m",
       lty = 1, bty = "n")
```


Spetral ANOVA example

```
x \leftarrow c(1, 2, 3, 2, 1)
c1 \leftarrow cos(2 * pi * (1:5) * (1 / 5)); s1 \leftarrow sin(2 * pi * (1:5) * (1 / 5))
c2 \leftarrow cos(2 * pi * (1:5) * (2 / 5)); s2 \leftarrow sin(2 * pi * (1:5) * (2 / 5))
omega1 <- cbind(c1, s1); omega2 <- cbind(c2, s2)</pre>
anova(lm(x ~ omega1 + omega2))
## Warning in anova.lm(lm(x ~ omega1 + omega2)): ANOVA F-tests on an essentially
## perfect fit are unreliable
## Analysis of Variance Table
##
## Response: x
              Df Sum Sq Mean Sq F value Pr(>F)
##
## omega1
               2 2.74164 1.37082
                                              NaN
## omega2
               2 0.05836 0.02918
                                       NaN
                                              NaN
## Residuals 0 0.00000
Mod(fft(x))^2 / 5
## [1] 16.20000000 1.37082039 0.02917961 0.02917961 1.37082039
```

Leakage and Tapering

```
t = 1:96; f1 = 0.088; f2 = 19/96
y <- 3 * cos(f1 * 2 * pi * t) + sin(f2 * 2 * pi * t)
```

```
par(las = 1, mar = c(4, 4, 1, 0.6), mgp = c(2.4, 1, 0))
periodogram(y)
abline(h = 0)

200 -

EE

BO
150 -

EU

BO
100 -

Lian

BO
100 -

Lian
```

50

0

0.0

0.1

```
source("plotspectrum.R")

w <- rnorm(128, sd = 0.01)
x5 <- cos(2 * pi * (5 / 128) * (1:128)) + w

par(mfcol = c(2, 1), mar = c(2, 2, 1, 1), las = 1)
#spectrum(x5, taper = 0, ylim = c(1e-7, 1e2), main = "")
x5h <- cos(2 * pi * (5.5 / 128) * (1:128)) + w

spectrum(x5h, taper = 0, ylim = c(1e-7, 1e2), main = "")
abline(v = 5.5 / 128, col = "red")
spectrum(x5h, taper = 0.5, ylim = c(1e-7, 1e2), main = "")
abline(v = 5.5 / 128, col = "red")</pre>
```

Frequency

0.3

0.4

0.5

0.2

SOI example

Series: x Smoothed Periodogram

plotspectrum(soiAdj.md, log = "n", ci = 0.95, ci.type = "chisquare",
unit.time = "year")

References

Cryer, Jonathan D, and Kung-Sik Chan. 2008. Time Series Analysis: With Applications in r. Vol. 2. Springer.

Shumway, Robert H. n.d. Time Series Analysis and Its Applications. Vol. 3. Springer.