

Mathematics Department

COLLEGE ALGEBRA Learning Module #3

Topic	SPECIAL PRODUCTS AND FACTORING
Duration	3 hours
Lesson	Types of Special Products
Proper	1. Product of Two Binomials
	$(ax + by)(cx + dy) = acx^2 + (ad + bc)xy + bdy^2$
	Example #1: Find the product: $(2x-3y)(4x+5y)$
	$(2x-3y)(4x+5y) = (2)(4)x^2 + (2\cdot 5 - 3\cdot 4)xy - (3)(5)y^2 = 8x^2 - 2xy - 5y^2$
	2. Square of Binomials
	$(x+y)^2 = x^2 + 2xy + y^2$ $(x-y)^2 = x^2 - 2xy + y^2$
	> The result of the square of a binomial is a perfect square trinomial
	It is important to emphasize that in $(x+y)^2$: x refers to first term, and y refers to second term
	Example#2: $(3x-7)^2 = (3x)^2 - 2(3x)(7) + 7^2 = 9x^2 - 42x + 49$
	Example#3: $(5x^3 - 9y^4)^2 = (5x^3)^2 - 2(5x^3)(9y^4) + (9y^4)^2 = 25x^2 - 90x^3y^3 + 81y^8$
	3. Product of the Sum and the Difference of the Same Two Terms:
	$(x+y)(x-y) = x^2 - y^2$
	Example#4: $(4x + 5y)(4x - 5y) = (4x)^2 - (5y)^2 = 16x^2 - 25y^2$
	4. Cube of a Binomial
	$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
	$(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$
	Example#5: $(a^2 - 4)^3 = (a^2)^3 - 3(a^2)^2(4) + 3(a^2)(4)^2 - (4)^3$
	5. Special Case Of Product of Binomial and Trinomial
	$(x+y)(x^2-xy+y^2)=x^3+y^3$
	$(x-y)(x^2 + xy + y^2) = x^3 - y^3$
	Example#6: $(7a-4b)(49a^2+28ab+16b^2)=(7a)^3-(4b)^3=343a^3-64b^3$
	Example#7: $(3c^2 - 5d^4)(9c^4 + 15c^2d^4 + 25d^8) = (3c^2)^3 - (5d^4)^3 = 27c^6 - 125d^{12}$

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$
 Examples: $(3x+y-5)^2 = (3x)^2 + (y)^2 + (-5)^2 + 2(3x)(y) + 2(3x)(-5) + 2(y)(-5)$
$$= 9x^2 + y^2 + 25 + 6xy - 30x - 10y$$

Exercises

Determine the product by identifying the type of special product to be used in the following:

1.
$$(4x^3 - 9y^5)(4x^3 + 9y^5)$$

2.
$$(2a^4 - y^5)(2a^4 - y^5) =$$

3.
$$(2x - 5y)^3$$

4.
$$(2x^3 - 3y^5)(x^3 + 4y^5)$$

5.
$$(5c - 2d^3)(25c^2 + 10cd^3 + 4d^6)$$

6.
$$(6x - y - 2z)^2$$