Review of Chapter 2—Square n by n matrices A

- 1. 3 possibilities for Ax = b
 - (a) A has rank n A^{-1} exists \Leftrightarrow always $\mathbf{x} = A^{-1}\mathbf{b}$
 - (b) A has rank $\langle n \Leftrightarrow Ax = b \text{ has no solutions for most } b$
 - (c) A has rank $< n \Leftrightarrow Ax = b$ has ∞ solutions if b is in $\mathbf{C}(A)$
- **2.** Computational steps when A has full rank n
 - (a) Elimination matrix E_{ij} subtracts a multiple of row j from row i > j
 - (b) Steps $E_{21}, E_{31}, \ldots, E_{n1}$ produce zeros in column 1 below pivot $u_{11} = a_{11}$
 - (c) Steps E_{32}, \ldots, E_{n2} produce zeros in column 2 below new pivot u_{22}
 - (d) Lower triangular E (product of $E_{ij}, i > j$) produces EA = U = upper triangular
 - (e) Lower triangular $L = E^{-1} = \text{product of } E_{ij}^{-1} \text{ in reverse order } j = n-1, \dots, 1$
 - (f) A = LU = (lower triangular) (upper triangular) (2 proofs)
- 3. Row exchanges \rightarrow Permutation matrices P
 - (a) P has the rows of I in any of the n! possible orders
 - (b) P is **even** or **odd**: product of even or odd number of simple row exchanges
 - (c) Use exchanges to get nonzero pivots (and larger pivots). Now PA = LU
- 4. Inverse matrix $A^{-1}A = I$ and $AA^{-1} = I$ and $x = A^{-1}b$
 - (a) **Invertible matrix** \Leftrightarrow *n* independent columns (and rows)
 - (b) Ax = b has 1 solution $x = A^{-1}b$ for every $b : A^{-1}$ is a slow way to x!
 - (c) A and B are invertible n by $n \Rightarrow (AB)^{-1} = B^{-1}A^{-1}$
 - (d) Elimination on A has n pivots $\neq 0$ (possibly after row exchanges)
 - (e) Determinant of $A = \pm$ product of the n pivots (not zero!)
- **5.** By hand: Add **b** as column n+1; elimination gives Ux=c; backsubstitution gives x.

Ax = b is solved by $x = b \setminus A = \text{backslash in MATLAB}$

Operation count for L and $U: \frac{1}{3}n^3$ multiply-subtract steps

Operation count for $x : n^2$ steps for each right side b

6. Transpose matrix $(A^{\mathrm{T}})_{ij} = A_{ji} \ (n \text{ by } m) \text{ and } (AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$

Symmetric matrix $S^{T} = S$. Note $S = A^{T}A$ is always symmetric!