1	What is claimed is:
2	
3	1. A washing machine comprising:
4	a cabinet;
5	a tub suspended in the cabinet;
6	a drum rotatably provided in the tub;
7	a motor in the cabinet to rotate the drum;
8	a sensor assembly in the cabinet to sense a transient vibration of the tub; and
9	a control unit controlling the motor, the control unit stopping the motor if the tub is in
10	the transient vibration.
11	
12	2. The washing machine as claimed in claim 1, wherein the sensor assembly
13	comprises:
14	a bracket attached to an inside of the cabinet;
15	an arm hinge-coupled with the bracket wherein one end of the arm is disposed to
16	leave a predetermined distance from the tub so that the arm is contacted with the tub to rotate
17	when the tub is in the transient vibration; and
18	a sensor mounted on the arm, the sensor senses the transient vibration of the tub to
19	output a sense signal to the control unit when the arm rotates.
20	
21	3. The washing machine as claimed in claim 2, wherein the bracket comprises:
22	a first hole provided at a lateral side wherein a coupling member penetrating into the
23	cabinet is inserted in the first hole; and
24	a second hole provided at one end to have the arm hinge-coupled thereto.

25	
26	4. The washing machine as claimed in claim 3, wherein the bracket further
27	comprises a first hook protruding from the lateral side to be inserted in a second aperture of
28	the cabinet so that the bracket is temporarily fixed to the cabinet.
29	
.30	5. The washing machine as claimed in claim 2, wherein the arm comprises:
31	a hinge shaft protruding to be fitted to the bracket; and
32	a wall body on an upper surface to have the sensor fitted thereto.
33	
34	6. The washing machine as claimed in claim 5, wherein the arm further
35	comprises a second hook protruding from the wall body to be caught on a top end of the
36	sensor fitted to the wall body.
37	
38	7. The washing machine as claimed in claim 5, wherein the arm further
39	comprises a protrusion protruding from an upper surface to catch a bottom end of the sensor
40	fitted to the wall body thereon to prevent the sensor from being separated.

- 8. The washing machine as claimed in claim 5, wherein the sensor assembly further comprises:
 - a bolt coupled with an end of the hinge shaft fitted to the bracket; and a washer provided between a head of the bolt and the end of the hinge shaft.

9. The washing machine as claimed in claim 2, wherein the sensor comprises: a housing having a cavity inside to be mounted on the arm;

49	a transmitting unit installed at one side of the housing;
50	a ball provided in the cavity to move when the arm rotate; and
51	a receiving unit installed at the other end of the housing to confront the transmitting
52	unit and to receive a signal of the transmitting unit to output to the control unit.
53	
54	10. The washing machine as claimed in claim 9, wherein the housing comprises
55	a pair of separable pieces.
56	
57	11. The washing machine as claimed in claim 9, wherein the ball lies between
58	the transmitting unit and the receiving unit so that the receiving unit is unable to receive the
59	signal of the transmitting unit when the arm fails to rotate.
60	
61	12. The washing machine as claimed in claim 9, wherein a bottom inside is
62	formed concave so that the ball fails to move when the arm fails to rotate.
63	
64	13. The washing machine as claimed in claim 12, wherein one of the transmitting
65	and receiving units is provided to an upper side of the housing and the other one of the
66	transmitting and receiving units is provided to a lower side of the housing.
67	
68	14. The washing machine as claimed in claim 2, wherein the sensor further
69	comprises a third hook protruding from one side to be inserted in a third aperture provided in
70	the arm to prevent the sensor from being separated from the arm.
71	
72	15. The washing machine as claimed in claim 2, wherein the sensor assembly

73	further comprises an elastic member absorbing a shock transferred to the arm when the tub is
74	in the transient vibration, the elastic member returning the arm having been rotated by the tub
75	to an original position.
76	
77	16. The washing machine as claimed in claim 15, wherein the elastic member
78	comprises a spring having both ends engaged with the arm and the bracket, respectively.
79	
80	17. The washing machine as claimed in claim 2, wherein the bracket further
81	comprises a stopper protruding from an upper surface to prevent a reverse rotation of the arm.
82	
83	18. The washing machine as claimed in claim 17, wherein the bracket further
84	comprises a reinforcement rib protruding from the upper surface in rear of the stopper to
85	prevent the stopper from being pushed by the arm.
86	
87	19. A transient vibration sensor assembly of a washing machine, comprising:
88	a bracket attached to an inside of a cabinet of the washing machine;
89	an arm hinge-coupled with the bracket wherein one end of the arm is disposed to
90	leave a predetermined distance from the tub so that the arm is contacted with the tub to rotate
91	when the tub is in the transient vibration; and
92	a sensor mounted on the arm, the sensor senses the transient vibration of the tub to
93	output a sense signal to the control unit when the arm rotates.
94	
95	20. The transient vibration sensor assembly as claimed in claim 19, wherein the
96	bracket comprises a first hole provided at a lateral side wherein a coupling member

penetrating into the cabinet is inserted in the first hole, and a second hole provided at one end to have the arm hinge-coupled thereto, wherein the arm comprises a hinge shaft protruding to be fitted to the second hole and a wall body on an upper surface to have the sensor fitted thereto, and wherein the sensor comprises a housing having a cavity inside to be mounted on the arm, a transmitting unit installed at one side of the housing, a ball provided in the cavity to move when the arm rotate, and a receiving unit installed at the other end of the housing to confront the transmitting unit and to receive a signal of the transmitting unit to output to the control unit.