第1章 随机事件与概率

- 1.1 随机事件
- 1.2 事件的关系与运算
- 1.3 随机事件的概率

1.3 随机事件的概率

- 古典概率
- 几何概率
- 统计概率
- 概率的公理化定义

1.3 随机事件的概率

研究随机现象,不仅要知道可能出现哪些事件, 还要知道各事件出现的可能性大小。

定义 随机事件A发生可能性大小的度量(数值),

对于一个给定的随机事件,它发生的可能性大小的度量——概率,究竟是多大呢?

历史上概率的三次定义

① 古典定义 ——— 概率的最初定义

② 统计定义 ——— 基于频率的定义

③ 公理化定义 ——— 1930年后由前苏联数学家 柯尔莫哥洛夫给出

■古典概率

1. 古典概率模型

◆ 样本空间的有限性

试验的样本点只有有限多个,即样本空间 Ω 是个

有限集
$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$$

◆ 基本事件发生的等可能性

每次试验中,每一种可能结果的发生的可能性相同,即

$$P(A_1) = P(A_2) = \cdots = P(A_n) = \frac{1}{n}$$

其中 $A_i = \{\omega_i\}, \quad i = 1, 2, \cdots, n$

2. 古典概型的概率

定义 设试验 E 共有 n 个基本事件,且这些基本事件的发生是等可能的,若事件 A 由其中的m 个基本事件组成,则

$$P(A) = \frac{\text{事件}A包含的基本事件数}{试验的基本事件总数} = \frac{m}{n}$$

- ◆ 确定试验的基本事件总数 n;
- ◆ 确定事件A包含的基本事件数 m;
- ◆ 计算事件A的概率P(A).

3. 古典概率的性质

$$P(A) = \frac{\text{事件}A包含的基本事件数}{试验的基本事件总数} = \frac{m}{n}$$

$$(1) \quad 0 \le P(A) \le 1$$

(2)
$$P(\Omega) = 1, P(\phi) = 0$$

(3) 若A, B互不相容,则

$$P(A \cup B) = P(A) + P(B)$$

4. 古典概率的计算

例1: 抛掷一颗匀质骰子,观察出现的点数,求事件"出现的点数是不小于3的偶数"的概率.

- 试验抛掷一颗匀质骰子,观察出现的点数
- 样本空间 $\Omega = \{1, 2, 3, 4, 5, 6\}$, n=6
- 事件A A="出现的点数是不小于3的偶数"={4, 6}, m=2
- 事件A的概率 $P(A) = \frac{m}{n} = \frac{2}{6} = \frac{1}{3}$

为了计算更复杂形式的概率,复习乘法原理、排列组合等计算台典概率的重要方法,

加法原理: 设完成一件事可有两种途径,第一种途径有 n_1 种方法,第二种途径有 n_2 种方法,则完成这件事共有 n_1+n_2 种方法。

乘法原理: 设完成一件事需分两步,第一步有 n_1 种方法,第二步有 n_2 种方法,则完成这件事共有 n_1n_2 种方法。

加龄原理

做一件事共有n类方法

第一类方法有 m_1 种方法第二类方法有 m_2 种方法……第n 类方法有 m_n 种方法

完成这件事的方法总数

 $N = m_1 + m_2 + \cdots + m_n$

聚烷原型

做一件事共有 n 个步骤 \

第一步有 m_1 种方法第二步有 m_2 种方法……

第n步有 m_n 种方法

完成这件事的方法总数

 $N = m_1 \cdot m_2 \cdot \cdot \cdot m_n$

排列与组合

选排列 从n个不同的元素中, 任取 $k(\le n)$ 个元素, 按 照一定的顺序排成一列,全部排列个数为

$$P_n^k = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

金排列 当 k = n 时,称为全排列,计算公式为

$$P_n^n = n!$$

 $P_n^n = n!$ 排列数与次序有关

劉 今 从 n 个不同的元素中, 任取 k (≤ n) 个元素并成 一组,全部组合数为

组合数与次序无关

$$C_n^k = \frac{P_n^k}{P_k^k} = \frac{n!}{k!(n-k)!}$$
$$= \frac{n(n-1)\cdots(n-k+1)}{k!}$$

随机抽样:有放回抽样与无放回抽样

例2:设在10件产品中,有2件次品,8件正品.求 A="第一次抽取正品,第二次抽取次品"的概率.

■有放回抽样:第一次抽取后,产品放回去。

$$n = 10 \times 10$$
 $m_A = 8 \times 2$ $P(A) = \frac{8 \times 2}{10 \times 10} = 0.16$

■ 无放回抽样:第一次抽取后,产品不放回去。

$$n = 10 \times 9$$
 $m_A = 8 \times 2$ $P(A) = \frac{8 \times 2}{10 \times 9} = 0.1778$

例3:设在100件产品中,有4件次品,其余均为正品.

◆ 求次品率. A="任取一件产品为次品"

$$n=100$$
 $m_A=4$ $P(A)=\frac{4}{100}=0.04$

◆求 B="任取3件,全是正品"的概率

$$n = C_{100}^3$$
 $m_B = C_{96}^3$ $P(B) = \frac{C_{96}^3}{C_{100}^3}$

$$lack$$
 χ C="任取3件,刚好两件正品"的概率
$$n = C_{100}^3 \qquad m_C = C_{96}^2 C_4^1 \qquad P(C) = \frac{C_{96}^2 C_4^1}{C_{100}^3}$$

例4(**四配问题**):某人写了4封信和4个信封,现随机 地将信装入信封中,求全部装对的概率。

解 设"全部装对"为事件A 基本事件的总数为 4!

A所包含的基本事件数为 1

所以
$$P(A) = \frac{1}{4!} = \frac{1}{24} \approx 0.042$$

练习: 求最多装对一个的概率。

例5(抽签问题):10个学生,以抽签的方式分配3张音乐会入场券:依次抽取10张外观相同的纸签,其中3张代表入场券.求 **A**={第五个抽签的学生抽到入场券}的概率。

解: ◆基本事件总数

$$n = 10!$$

◆A中基本事件总数

$$m_A = C_3^1 \cdot 9$$

 $P(A) = \frac{m_A}{n} = \frac{C_3^1 \cdot 9!}{10!} = \frac{3}{10!}$

第五个学生抽 到入场券纸签

另外9个学生抽 到其余9张纸签

与抽取次序无关

例6(摸球问题):袋中有a只白球,b只黑球,若随 机地把球一个接一个地摸出来,求 A_k = "第 $k(k \le a+b)$ 次摸出的球是白球"的概率.

解法1. 把a只白球和b只黑球分别看成是无区别的。

设想把取出的球依次放在排列成一直线的a+b个位置上,因 为a只白球的位置一经排定,则剩下的位置必然是放黑球的, 故黑白球的一切可能排列方式,即总的基本事件数

$$n = C_{a+b}^a$$

在考虑事件 A_k 包含的基本事件个数时,注意到第k个位置必 须是白球,而剩下的白球可以放在其它a+b-1个位置上的任意 a-1个位置上.不同的排列方式,即 A_k 包含的基本事件个数共有

$$m = C_{a+b-1}^{a-1}$$

从而

$$P(A_k) = \frac{C_{a+b-1}^{a-1}}{C_{a+b}^{a}} = \frac{a}{a+b}$$

例6(摸球问题): 袋中有a只白球,b只黑球,若随机地把球一个接一个地摸出来,求 A_k ="第 $k(k \le a + b)$ 次摸出的球是白球"的概率.

解法2. 把a只白球和b只黑球分别看成是不同的(如设想把它们编号).

设想把取出的球仍依次放在排列成一直线的*a+b*个位置上,则总的基本事件数就等于*a+b*个位置的所有排列的种数,即

$$n = (a+b)!$$

在考虑事件 A_k 包含的基本事件个数时,注意到第k个位置必须是白球,可以是a个白球中的任意一个,有a种排法;剩余a+b-1个位置上的排列种数为 (a+b-1)!,即

 A_k 包含的基本事件个数共有 $m = a \cdot (a + b - 1)!$

$$P(A_k) = \frac{a \cdot (a+b-1)!}{(a+b)!} = \frac{a}{a+b}$$

例7(投球入盒): 把r个小球随机地投入n个盒内($r \le n$)。设球与盒都是可识别的。

■ A="某指定的r个盒内各有一球

$$n^r$$
 $m_A = r!$

$$P(A) = \frac{r!}{n^r}$$

■ B ="恰有r个盒,其中各有一球

$$m_R^r \qquad m_R = C_n^r \cdot r!$$

$$P(B) = \frac{C_n' \cdot r!}{n^r}$$

■ C = "某指定的盒中恰有 $k(k \le r)$ 个球.

1 n^r $m_C = C_r^k \cdot (n-1)^{r-k}$ $P(C) = \frac{C_r^k \cdot (n-1)^{r-k}}{n^r}$

例8(生日问题):某班有50个学生,求他们的生日各不相同的概率(设一年365天)

◆分析 此问题可以用投球入盒模型来模拟

$$P(A) = \frac{C_{365}^{50} \cdot 50!}{365^{50}} \approx 0.03$$

相似地有分房问题

■ 几何概率 Geometric Probability

将古典概型中的有限性推广到无限性,而保留等可能性,就得到几何概型。

1. 几何概型

若一个试验具备以下特点

- ①可度量性:样本空间 Ω 充满某个几何区域,其度量(长度、面积、体积)为 S_{Ω} ;
- ②等可能性:点落在 Ω 中的任一子区域 A的概率,只与子区域的度量 S_A 有关,而与子区域的位置无关.则称这样的试验是几何概型.事件A的概率为:

2. 几何概率

$$P(A) = S_A / S_{\Omega}$$

3. 几何概率的性质

$$P(A) = S_A / S_{\Omega}$$

(1)
$$0 \le P(A) \le 1$$

(2)
$$P(\Omega) = 1, P(\Phi) = 0$$

(3) 若A,B互斥,则

$$P(A \cup B) = P(A) + P(B)$$

若 A_1, A_2, \cdots 两两互斥,则

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

4. 几何概率的计算

例9(**会面问题**): 甲乙二人相约定6:00-6:30在预定地点会面,先到的人要等候另一人10分钟后,方可离开。求甲乙二人能会面的概率,假定他们在6:00-6:30内的任意时刻到达预定地点的机会是等可能的。

解 设甲乙二人到达预定地点的时刻分别为x及y(分钟),则 $0 \le x \le 30$, $0 \le y \le 30$ 二人会面 $\Leftrightarrow |x-y| < 10$

解 设针的中点离较近直线的距离为d,针与较近直线的交角为 θ (如图). 则 d与 θ 的可取值为

$$0 < d < a$$
, $0 < \theta < \pi$

针与直线相交 \longrightarrow $0 < d < l \sin \theta$

所求概率为
$$P(A) = \frac{\int_0^{\pi} l \sin \theta d\theta}{\pi a} = \frac{2l}{\pi a}$$

■ 统计概率

1. 频率

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数 n_A 称为事件A发生的频数.比值 $\frac{n_A}{n}$ 称为事件A发生的频率,并记成 $f_n(A)$.

实例 将一枚硬币抛掷 5 次、50 次、500 次,各做 7 遍,观察正面出现的次数及频率.

试验	n=5		n = 50		n = 500	
序号	n_H	f	n_H	f	n_H	f
1	2	0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512
4	5	1.0	25	0.50	247	0.494
5	1	0.2	24	0.48	251	0.502
6	2	0.4	18	0.36	262	0.524
7	4	0.8	27	0.54	258	0.516

发现了什么?

Experiment of tossing coin

◆历史纪录

试验者	抛掷次数n	出现正面的次数m	出现正面的频率m/n
德.摩 根	2048	1061	0.518
蒲丰	4040	2048	0.5069
皮尔逊	12000	6019	0.5016
皮尔逊	24000	12012	0.5005
维尼	30000	14994	0.4998

◆ 程序模拟

抛掷硬币模拟试验

2. 频率的特征

从上述数据可得知

◆频率的随机波动性

频率具有随机波动性,即对于同样的 n, 所得的 f 不一定相同;

◆频率的统计稳定性

随机事件A在相同条件下重复多次时,事件A发生的频率在一个固定的数值 p 附近摆动,且随试验次数的增加更加明显.

3. 频率的性质

$$(1) \quad 0 \le f_n(A) \le 1$$

(2)
$$f_n(\Omega) = 1, f_n(\phi) = 0$$

(3) 若A, B 互斥,则
$$f_n(A \cup B) = f_n(A) + f_n(B)$$

注: (3) 可推广到有限个两两互斥事件的和事件.

显然,由频率的稳定性知,概率是可以通过频率来"测量"的,或者说,频率可以作为概率的一个近似。因此,我们可以利用频率及其性质来研究概率。

4. 概率的统计定义

频率
$$f_n(A) = \frac{m}{n}$$
 稳定于概率 $p = P(A)$

定义 在随机试验中, 若事件A出现的频率 f 随着试验次数n的增加, 趋于某一常数 p, $0 \le p \le 1$,则 定义事件A的概率为 p, 记作 P(A) = p .

概率应具有的性质(由频率的性质)

- (1) 对任一事件A,有 $0 \le P(A) \le 1$;
- (2) $P(\Omega) = 1, P(\emptyset) = 0;$
- (3)对于两两互斥的有限多个事件 A_1, A_2, \dots, A_m , $P(A_1 + A_2 + \dots + A_m) = P(A_1) + P(A_2) + \dots + P(A_m)$

■概率的公理化定义

定义 给定一个随机试验E, Ω 是它的样本空间,对于任意一事件A,赋予一个实数P(A),如果 $P(\bullet)$ 满足下列三条:

- ◆ 非负性: $P(A) \ge 0$
- ◆ 规范性: $P(\Omega)=1$
- \bullet 可列可加性: 设 A_1, A_2, \cdots 两两互斥时, $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$

那么,称 P(A) 为事件 A 的概率.

● 概率的性质

由概率的定义,可推出如下性质

$$(1) P(\emptyset) = 0.$$

证明
$$\Omega = \Omega + \emptyset + \emptyset + \emptyset + \cdots$$

由概率的可列可加性得

$$P(\Omega) = P(\Omega) + P(\emptyset) + P(\emptyset) + P(\emptyset) + \cdots$$
$$P(\emptyset) \ge 0 \implies P(\emptyset) = 0.$$

不可能事件的概率为零,但反之不一定成立。

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$$

概率的有限可加性

$$\Rightarrow A_i A_j = \emptyset, i \neq j, i, j = 1, 2, \cdots$$

由概率的可列可加性得

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$$

$$= \sum_{k=1}^{n} P(A_k) + 0 = P(A_1) + P(A_2) + \dots + P(A_n).$$

古典概率满足概率的三条公理, 即古典概率是概率.

(3) 设 A, B 为两个事件,且 $A \subset B$,则

$$P(B-A) = P(B) - P(A)$$
. $P(A) \le P(B)$,

证明 因为 $A \subset B$,

所以
$$B = A \cup (B - A)$$
.

$$\nabla (B-A) \cap A = \emptyset$$

得
$$P(B) = P(A) + P(B-A)$$

于是
$$P(B-A) = P(B) - P(A)$$
.

又因
$$P(B-A) \ge 0$$
, 故 $P(A) \le P(B)$.

推论 设 A, B 为两个事件,则

$$P(B-A) = P(B) - P(AB)$$

(4) 设 \overline{A} 是 A 的对立事件,则 $P(\overline{A}) = 1 - P(A)$.

证明

因为
$$A \cup \overline{A} = \Omega, A \cap \overline{A} = \emptyset, P(\Omega) = 1,$$
所以 $1 = P(\Omega) = P(A \cup \overline{A})$

$$= P(A) + P(\overline{A})$$

$$\Rightarrow P(\overline{A}) = 1 - P(A).$$

(5) (加法公式)对于任意两事件A,B有 $P(A \cup B) = P(A) + P(B) - P(AB).$

 \boldsymbol{A}

证明 由图可知

$$A \cup B = A \cup (B - AB),$$

且 $A\cap(B-AB)=\emptyset$,

故
$$P(A \cup B) = P(A) + P(B - AB)$$
.

又由性质3得

$$P(B-AB) = P(B) - P(AB),$$

因此得

$$P(A \cup B) = P(A) + P(B) - P(AB)$$
.

推广 ----- 三个事件和的情况

$$P(A_1 \cup A_2 \cup A_3) = ?$$

$$= P(A_1) + P(A_2) + P(A_3)$$

$$- P(A_1 A_2) - P(A_1 A_3) - P(A_2 A_3)$$

$$+ P(A_1 A_2 A_3).$$

n 个事件和的情况

$$P(A_{1} \cup A_{2} \cup \dots \cup A_{n}) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} P(A_{1}A_{2} \cdots A_{n}).$$

例11 设 A 与 B 是两个互不相容的事件,已知 P(A) = 0.2, P(B) = 0.7, 求 $P(\bar{A}), P(A + B), P(\bar{A}\bar{B}), P(\bar{A}\bar{B})$ 和 $P(\bar{A} \cup \bar{B})$.

解
$$P(\bar{A}) = 1 - P(A) = 1 - 0.2 = 0.8$$

因 A 与 B 互不相容,故 P(AB) = 0,于是有

$$P(A + B) = P(A) + P(B) = 0.2 + 0.7 = 0.9$$

$$P(A\overline{B}) = P(A - B) = P(A - AB) = P(A) - P(AB) = 0.2 - 0 = 0.2$$

$$P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.9 = 0.1$$

$$P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1 - P(AB) = 1 - 0 = 1$$

在例11中,将条件"设A和B互不相容"改为设 A,B 为两个事件 ,且 $A \subset B$ 应怎样计算各事件的概率?

够后行业

P24: 4, 5, 6, 7, 14,

16, 17, 19, 20, 23, 24, 26.