HIGHLY CORROSION RESISTANT AND HIGH STRENGTH Fe-Cr BASE BULK AMORPHOUS ALLOY

Patent number:

JP2001303218

Publication date:

2001-10-31

Inventor:

INOUE AKIHISA; CHO TO

Applicant:

JAPAN SCIENCE & TECH CORP

Classification:

- international:

C22C45/02; C23C26/00

- european:

Application number:

JP20000126277 20000420

Priority number(s):

JP20000126277 20000420

Abstract of JP2001303218

PROBLEM TO BE SOLVED: To solve such a problem that, the conventional Fe-Cr series amorphous alloy, because of its small amorphous formability, the obtained amorphous alloy shape is limited to the thin strip one, filamintary one and powdery one, and the alloy has not been provided with dimensions applicable to general industrial materials. SOLUTION: This highly corrosion resistant and high strength Fe-Cr base bulk amorphous alloy excellent in amorphous formability has a composition expressed by the formula of Fe100-a-b-cCra TMb (C1-xBxPv)c [wherein, TM=at least one or more kinds selected from V, Nb, Mo, Ta, W, Co, Ni and Cu, and as to (a), (b), (c), (x) and (y), respectively, 5 atomic %<=a<=30 atomic %, 5 atomic %<=b<=20 atomic %, 10 atomic % <=c<=35 atomic %, 25 atomic %<=a+b<=50 atomic %, 35 atomic %<=a+b+c<=60 atomic %, 0.11<=x<=0.85 and 0<=y<=0.57 are satisfied], containing an amorphous phase combining a super cooled liquid region of >=50 K and a glass transition temperature of >=850 K at >=50% by volume percentage and excellent in amorphous formability.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-303218 (P2001 - 303218A)

(43)公開日 平成13年10月31日(2001.10.31)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

C22C 45/02

C 2 3 C 26/00

C 2 2 C 45/02

4K044

C23C 26/00

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願2000-126277(P2000-126277)

(22)出願日

平成12年4月20日(2000.4.20)

(71)出願人 396020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 井上 明久

宮城県仙台市青葉区川内元支倉35 川内住

宅11-806

(72)発明者 張 濤

宮城県仙台市太白区金剛沢3-17-30

(74)代理人 100108671

弁理士 西 義之

Fターム(参考) 4KO44 AA01 AB03 AB05 AB10 BA01

BB01 BC01 BC02 BC07 CA24

CA27

高耐蝕性・高強度Fe-Cr基パルクアモルファス合金 (54) 【発明の名称】

(57) 【要約】

【目的】従来のFe-Cr系アモルファス合金は、アモ ルファス形成能が小さいために、得られるアモルファス 合金形状が薄帯状、フィラメント状、粉粒体状に限られ ており、一般的な工業材料へ応用できる寸法を有してい るとは言えなかった。

【構成】 式:Fe_{100-a-b-c}Cr_a TM_b (C_{1-X}B_XP _v)。[ただし、式中、TM=V, Nb, Mo, Ta, W, Co, Ni, Cuの少なくとも一種以上、a, b, c, x, yは、それぞれ5原子% ≤a≤30原子%, 5原子%≦b≦20原子%, 10原子%≦c≦35原子 %, 25原子%≤a+b≤50原子%, 35原子%≤a $+b+c \le 60$ 原子%, 0. $11 \le x \le 0$. 85, 0 \le y ≤ 0. 57] で示される組成を有し、50 K以上の過 冷却液体領域と850K以上のガラス遷移温度を兼備し た非晶質相を体積100分率で50%以上含む非晶質形 成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモ ルファス合金。

【特許請求の範囲】

【請求項1】 式: $Fe_{100-a-b-c}Cr_a TM_b$ ($C_{1-x}B_xP_y$)。 [ただし、式中、TM=V,Nb,Mo,Ta,W,Co,Ni,Cuの少なくとも一種以上、a,b,c,x,yは、それぞれ5原子% $\leq a \leq 30$ 原子%,5原子% $\leq b \leq 20$ 原子%,10原子% $\leq c \leq 35$ 原子%,25原子% $\leq a+b \leq 50$ 原子%,35原子% $\leq a+b+c \leq 60$ 原子%,0.11 $\leq x \leq 0$.85,0 $\leq y \leq 0$.57]で示される組成を有し、50K以上の過冷却液体領域と850K以上のガラス遷移温度を兼備した非晶質相を体積100分率で50%以上含む非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金。

【請求項2】 TMがMoであることを特徴とする請求 項1記載の高耐蝕性・高強度Fe-Cr基バルクアモル ファス合金。

【請求項3】 0.5 mm² 以上の断面積と2,500 MPa以上の圧縮強度を有していることを特徴とする請求項1記載の非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金。

【請求項4】 請求項1記載のFe-Cr基バルクアモルファス合金を被覆した耐蝕性基材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金に関するものである。

[0002]

【従来の技術】最近、結晶化に対する過冷却液体の優れた安定性によって、厚みが数mmを上回るバルクアモルファス合金の形成を可能にすることが認識され、過冷却液体領域の幅が広いアモルファス合金が非常に注目されている。50Kを超える広い温度範囲の過冷却液体領域が、Mg系、ランタニド(Ln)系、Zr系、Fe系、PdーCu系、Co系、またはTi系合金など種々のアモルファス合金で得られることが報告されている。

【0003】この経験則に従って、Fe系、Co系、およびTi系バルクアモルファス合金がここ数年の間に開発されてきた。例えば、特開平10-265917 号公報には、 ΔTx が60 K以上であり、式(Fe_{1-a-b} CoaNib) $_{100-x-y-z}$ $_{Mx}B_y$ $_{Tz}$ [式中、 $_{Mi}$ 、 $_{Z}$ $_{T}$ 、 $_{X}$ Nb, $_{X}$ Ta, $_{X}$ Hf, $_{X}$ Mo, $_{X}$ Croop 5 $_{X}$ の $_{X}$ Hf, $_{X}$ Mo, $_{X}$ Croop 5 $_{X}$ Croop 6 $_{X}$ Croop

【0004】また、特開平11-71602号公報に

は、 $\Delta T \times \% 60$ K以上であり、式($F e_{1-a-b}$ Co_a N i_b) $_{100-x-y-z}$ M_x B_y T_z [ただし、 $0 \le a \le 0$. 29, $0 \le b \le 0$. 43, 5 原子% $\le x \le 20$ 原子%、10 原子% $\le y \le 22$ 原子%、0 原子% $\le z \le 5$ 原子%であり、Mは、Z r, Nb, T a, H f, M o, T i, V o o b o 1 種又は2種以上からなる元素、T i に C r, W, R u, R h, P d, O s, I r, P t, A l, S i, G e, C, P o o b o 1 種又は2種以上の元素である]で示される合金粉末を焼結して微細な凹凸部を有する部品の製造方法が開示されている。

【0005】本発明者らは、先に、30 K以上の過冷却液体領域と800 K以上のガラス遷移温度を兼備したアモルファス相を体積百分率で50%以上含む高強度・高耐蝕性Ni 基アモルファス合金を発明し、特許出願した(特願平11-163045号)。また、式:Ni 80-w-x-y Nb_w Cr_x Mo_y $P_{20-z}B_z$ [ただし、式中のw, x, y, z は原子比率であり、0. $1 \le w \le 1$ 0, $0 \le x \le 20$, $0 \le y \le 15$, $4 \le z \le 6$] で示される組成を有し、過冷却液体領域 ΔTx が50 K以上である高強度・高耐蝕性Ni 基アモルファス合金を発明し、特許出願した(特願平11-230951号)。

[0006]

【発明が解決しようとする課題】 $Fe_{72}-Cr_8-P_{13}-C_7$ 、 $Fe_{45}-Cr_{25}-Mo_{10}-P_{13}-C_7$ 、 $Fe_{50}-Cr_{16}-Mo_{16}-C_{18}$ の組成のアモルファス合金は優れた耐蝕性を有することが知られている。しかし、これらのFe-Cr系アモルファス合金は、アモルファス形成能が小さいために、得られるアモルファス合金形状が薄帯状、フィラメント状、粉粒体状に限られており、一般的な工業材料へ応用できる寸法を有しているとは言えなかった。

[0007]

【課題を解決するための手段】そこで、本発明者らは、Fe-Cr系アモルファス合金においてバルクアモルファス合金が得られる条件を探索し、Fe-Cr-TM(TM=V,Nb,Mo,Ta,W, Co, Ni, Cu)からなる 3 成分以上を基本成分とする合金系にC おびB を加えた 5 成分以上の合金系、さらに、これにP を加えた 6 成分以上の合金系において 5 0 K 以上の過冷却液体領域を有する非晶質形成能に優れ、かつ耐蝕性にも優れた高強度のFe-Cr 基バルクアモルファス合金を見出した。

 成を有し、50 K以上の過冷却液体領域と850 K以上のガラス遷移温度を兼備した非晶質相を体積100分率で50%以上含む非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金である。

【0009】また、本発明は、0.5mm²以上の断面積と2,500MPa以上の圧縮強度を有していることを特徴とする上記の非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金である。

【0010】また、本発明は、上記の非晶質形成能に優れた高耐蝕性・高強度Fe-Cr基バルクアモルファス合金を被覆した耐蝕性基材である。

【0011】なお、本明細書中の「過冷却液体領域」とは、毎分40℃の加熱速度で示差走査熱量分析を行うことにより得られるガラス遷移温度Tgと結晶化温度Txの差ΔTx(=Tx-Tg)で定義される。「過冷却液体領域」ΔTxの値は、加工性を示す数値である。

[0012]

【発明の実施の形態】本発明のFe-Cr基バルクアモルファス合金において、Crは耐蝕性の基本となる元素である。Crは、5原子%以上30原子%以下とする。5原子%未満では、高い耐食性が得られない。30原子%を超えると、非晶質形成能が低くなる。より好ましい範囲は、<math>10原子%以上20原子%以下である。

【0013】TM群の元素であるV, Nb, Mo, Ta, W, Co, Ni, Cuの少なくとも1種以上は、Crと同時に含有させることにより相乗的に耐蝕性を向上

する。TM群の元素は、5原子%以上20原子%以下とする。5原子%未満または20%を超えると非晶質形成能が低くなる。より好ましい範囲は、10原子%以上20原子%以下である。

【0014】C、B、Pの合計含有量は10原子%以上 35原子%以下とし、各成分の割合は、 $C_{1-x}B_xP_y$ で 示される。Bの含有量xは、 $0.11 \le x \le 0.85$ (すなわち c=35のとき $4\sim30$ 原子%) で示される 範囲とする。より好ましくは、 $0.11 \le x \le 0.29$ である。CおよびBは併用することにより高い非晶質形成能を有するとともにBは高い耐蝕性をもたらす元素である。BおよびCがこの範囲外では $\Delta T x$ が50 K未満となる。

【0015】Pは、B、Cと併用することにより非晶質形成能を高くする元素であり、本発明の合金に必要に応じて含有させることができる。Pの含有量は $0 \le y \le 0$. 57の範囲、より好ましくは、 $0 \le y \le 0$. 29の範囲とする。

【0016】図1は、具体例として、(C_{1-x} B $_x$ P $_y$) = 25原子%の場合、すなわち、F $_{23}$ Cr $_{16}$ M $_{016}$ (C_{1-x} B $_x$ P $_y$) $_{25}$ のアモルファス合金の Δ T $_x$ Δ B, C, P組成依存性を示す。また、表 $_{14}$ CF $_{23}$ Cr $_{16}$ M $_{016}$ (C_{1-x} B $_x$ P $_y$) $_{25}$ のガラス遷移温度T $_{25}$ の結晶化温度T $_x$ 、過冷却液体領域 Δ T $_x$ を示す。【 $_{10017}$

【表1】

No.	合金組成	Тg	Тх	ΔТх
1	Fe ₄₃ Cr ₁₆ Mo ₁₆ C ₂₀ B ₅	890	949	59
2	Fe ₄₃ Cr ₁₆ Mo ₁₆ C _{17.5} B _{7.5}	886	963	77
3	Fe ₄₃ Cr ₁₆ Mo ₁₆ C ₁₅ B ₁₀	885	979	94
4	Fe ₄₃ Cr ₁₆ Mo ₁₆ C ₁₀ B ₁₅	896	965	69
5	Fe43Cr16Mo16C15B5 P5	867	938	71
6	Fe43Cr16Mo16C10B10P5	883	956	73
7	Fe ₄₃ Cr ₁₆ Mo ₁₆ C ₁₀ B ₅ P ₁₀	873	943	70
8	F e 43 C r 16 M O 16 C 25	850	894	44
9	Fe ₄₃ Cr ₁₆ Mo ₁₆ C ₂₀ P ₅	848	901	53
10	Fe49Cr16Mo16C15P10	855	907	5 2
11	Fe43Cr16Mo16C10P15	876	912	36

【0018】図1に示すように、60Kを超える大きな Δ T x が $C:5\sim23$ 原子%, $B:2\sim18$ 原子%, $P:0\sim14$ 原子%の組成範囲で得られる。 $C:7\sim2$ 0原子%, $B:3\sim17$ 原子%, $P:0\sim12$ 原子%の 組成範囲で60Kを超える Δ T x が得られる。C:12 ~17 原子%, $B:8\sim12$ 原子%, $P:0\sim5$ 原子% では、80Kを超える大きな Δ T x が得られる。表1に

 $\frac{1}{1}$ 示すように、 $\frac{1}{1}$ $\frac{1}{1$

【0019】No. 9とNo. 10では、Bを含有しなくても Δ T x が 50 K以上であるが、No. 5, 6, 7と対比するとCとともにBを含有させることにより Δ T x を顕著に増大させることができ、かつ耐蝕性を顕著に向上させることができることが分かる。

【0020】本発明のFe基アモルファス合金は、公知のアモルファス合金と同様、溶融状態から公知の片ロール法、双ロール法、回転液中紡糸法、アトマイズ法等の種々の方法で冷却固化させ、薄帯状、フィラメント状、粉粒体状のアモルファス固体を得ることができる。また、本発明のFe基アモルファス合金は、大幅にアモルファス形成能が改善されているため、上述の公知の製造方法のみならず、好ましくは、溶融合金を金型に充填鋳造することにより0.5 mm²以上の断面積の任意の形状のバルクアモルファス合金を得ることができる。

【0021】例えば、代表的な金型鋳造法においては、合金を石英管中でアルゴン雰囲気中で溶融した後、溶融合金を噴出圧0. $5\sim3.0~k~g/c~m^2$ で鋼製の金型内に充填凝固させることにより1.2~mm径(1.13 mm^2 の断面積)までの丸棒状などのバルクアモルファス合金塊を得ることができる。さらには、アーク溶解法、石英管水焼き入れ法、ダイカストキャスティング法およびスクイズキャスティング法等の製造方法を適宜用いることもできる。

【0022】メルトスピンした合金は、全組成範囲で結晶性を示さず、アモルファス相の形成を確認した。さらに、ΔTxが50Kを超える上記の限定された組成範囲では銅鋳型鋳造法によりバルクアモルファス合金を容易に形成できることを確かめた。本発明のFe-Cr基バルクアモルファス合金は、非晶質相を体積100分率で50%以上含んでいればその所定の特性が得られる。

【0023】本発明の合金は、例えば、強度と耐摩耗性が要求される小型精密機器の部品および耐蝕性が要求される配管等に適する特性を有している。粉末形態で得られた本発明の合金粉末あるいは粉末状以外の形態で得られた合金を粉末化したものを成型用型に充填し、焼結する方法により特定の形状の部品を製造することもできる。

【0024】本発明のFe基バルクアモルファス合金は、例えば、 $Fe_{42}Cr_{16}Mo_{16}C_{18}B_8$ 合金で、3500MPaの高い圧縮強度(σ f),240GPaのヤング率(E)、1.7%の破断伸び(ϵ f)および 1300のビッカース硬さ(Hv)を示す。降伏伸び(ϵ y)~9.8Hv/3Eおよび ϵ f= σ f/Eの比は、対応する単ロールアモルファスリボンの値とほぼ同じで

ある。

[0025]

【実施例】以下、本発明の実施例について説明する。 実施例1~5

Fe, Cr, Moの純金属および純結晶B、Cの混合物をAr雰囲気中で高周波誘導加熱により溶解し下記の組成のFe基合金のプレアロイインゴットを調製した。

実施例1···Fe₄₇Cr₁₆Mo₁₆C₁₈B₃

実施例2・・・Fe₄₆Cr₁₆Mo₁₆C₁₈B₄

実施例3・・・Fe₄₄Cr₁₆Mo₁₆C₁₈B₆

実施例4・・・Fe₄₂Cr₁₆Mo₁₆C₁₈B₈

実施例5・・・Fe₄₀Cr₁₆Mo₁₆C₁₈B₁₀

プレアロイインゴットから丸棒材を銅鋳型鋳造法により 製造した。銅鋳型の内部空隙は、長さは約45mmで一 定であり、直径は1.2mmとした。

【0026】アモルファス構造は、X線回折法および光学顕微鏡により観察した。熱的安定性は、0.67K/sの加熱速度で示差走査熱量分析を用いて評価した。結晶化した構造は、X線回折法および透過電子顕微鏡によって観察した。機械的性質は室温で4.4×10⁻⁴s⁻¹の歪み速度でインストロン型試験機を用いて測定した。破断面は走査電子顕微鏡で観察した。

【0027】図2は、実施例の丸棒材(直径1.2mm、長さ45mm)の形状と外観を示す。丸棒材は良好な金属光沢を有している。結晶相の析出に基づく表面のでこぼこはもちろん、ガスの混入に基づく空隙も丸棒材の外面に見られない。

【0028】図3は、実施例1~5の各丸棒材のX線回 折パターンを示す。各実施例の合金は、結晶のピークの ない広いピークから明らかなようにアモルファス相のみ からなる。

【0029】図4は、実施例2、3、4のアモルファス合金のDSC曲線を示す。各合金は、矢印で示す温度のガラス遷移、続いて過冷却液体領域、次いで結晶化を示した。表2にこれらの実施例のガラス遷移温度Tg、結晶化温度Tx、過冷却液体領域ΔTx、融点Tm、ガラス遷移温度/融点Tg/Tmの具体的数値を示す。

[0030]

【表2】

	合金組成	Тg	Тх	ΔТх	Tm	Tg/Tm	
実施例:	2 Fe ₄₆ Cr ₁₆ Mo ₁₆ C ₁₈ B ₄	862	915	53	1389	0.62	
実施例:	3 F e 44 C r 16 M O 16 C 18 B 6	870	932	62	1414	0.62	
実施例4	1 Fe ₄₂ Cr ₁₆ Mo ₁₆ C ₁₈ B ₈ x は、B含有量の増加に伴い、	887	947	60 で、Bカ	1405	0.63 では60Kに4	氐下す;

62Kから887Kおよび915Kから947Kの範囲でそれぞれ増加する。過冷却液体領域ΔTxは、Bが4原子%では53Kであり、Bが6原子%で62Kを示

/Tmは0.62 \sim 0.63であり、TmからTgまでの温度域は小さい。

【0032】図5は、実施例2、3、4の合金を大気中

で298 Kの1 M、6 M,12 Mの塩酸溶液中で測定した定電位分極曲線である。各実施例のFe-Cr基アモルファス合金は、いずれも不働態化している。また、1000 m V の高電位まで分極しても孔食が発生しない優れた耐蝕性を示していることが明らかである。

【0033】図6は、同様の条件で測定した電位の時間変化曲線である。図7は、同様の条件で168時間測定した結果による1年当たりの腐食速度(mm)を示している。B含有量が8原子%の実施例4は最も耐蝕性が優れている。

【0034】実施例2の丸棒材とメルトスピンしたリボン材の圧縮破断強度(σ f)、ヤング率(E)、および弾性伸(ϵ f)を含む全伸は、実施例2の丸棒材では、それぞれ、3500MPa,240GPa,および1.7%、リボン材では、それぞれ、3400MPa,240GPa,および2.0%であり、機械的性質については明瞭な差はないことを示している。丸棒材のビッカース硬さは、Hv1300であり、ゆえに9.8Hv/3Eおよび σ f/Eはそれぞれ、0.07と0.014である。これらの比は、良好な延性をもつ他のアモルファス合金のこれまでの値とほぼ同様である。

[0035]

【発明の効果】以上説明したように、本発明は、非晶質 形成能に優れた高耐蝕性・高強度の新規なFe基バルク

【図1】

アモルファス合金を提供するものであり、F e 基アモルファス合金の構造材料、化学材料等の分野への実用化に寄与するところ大である。

【図面の簡単な説明】

【図1】図1は、 $Fe_{43}Cr_{16}Mo_{16}(C_{1-X}B_XP_y)$ 25バルクアモルファス合金の $\Delta Tx OB$, C, P組成依存性を示す。

【図2】図2の(a)は、実施例1の丸棒材、同じく (b)は、実施例2の丸棒材の形状と外観を示す図面代 用写真である。

【図3】図3は、実施例 $1\sim5$ の各丸棒材のX線回折パターンを示すグラフである。

【図4】図4は、実施例2、3、4のバルクアモルファス合金のDSC曲線を示すグラフである。

【図5】図5は、実施例2、3、4の合金を大気中で2 98Kの1M、6M, 12Mの塩酸溶液中で測定した定 電位分極曲線を示すグラフである。

【図6】図6は、実施例2、3、4の合金を大気中で2 98Kの1M、6M, 12Mの塩酸溶液中で測定した電 位の時間変化曲線を示すグラフである。

【図7】図7は、実施例2、3、4の合金を大気中で298Kの1M、6M,12Mの塩酸溶液中で168時間 測定した結果による1年当たりの腐食速度(mm)を示すグラフである。

[図2]

[図4]

