8. Fourier Series/Transform for DT systems

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.

Today's Lesson:

- Dirichlet Conditions for DTFS/DTFT
- 2. Discrete Time Fourier Series
- 3. Discrete Time Fourier Transform
- 4. DT Operations in the Frequency Domain
- 5. DT Systems in the Frequency Domain

Frequency Response

- Frequency Response of DT systems can be directly obtained from their Fourier Transform:
 - a. Discrete Time Fourier Series (for periodic signals)
 - b. Discrete Time Fourier Transform (for aperiodic signals)

- > There are specific conditions for the existence of the Fourier Series also known as **Dirichlet Conditions**
 - → derived for CT signals

Dirichlet Conditions

- 1. The DT signal should be absolutely summable
- 2. There should be finite discontinuities within the signal duration
- 3. There should be finite extrema (minimum and maximum) within the signal duration

Discrete Time Fourier Series

- DT signals can be expressed as a combination of harmonically related complex exponentials (or sinusoids)
- ➤ This is the **synthesis equation** for the discrete-time Fourier series (DTFS) → inverse transform

$$x[n] = \sum_{\langle N \rangle} c_k \phi_k[n]$$

$$x[n] = \sum_{\langle N \rangle} c_k e^{jk\omega_0 n} = \sum_{\langle N \rangle} c_k e^{jk(2\pi/N)n}$$

Discrete Time Fourier Series

- Manipulating the synthesis equation will give us the analysis equation of the DTFS
 - analysis = "time to frequency"

$$c_k = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

ightharpoonup Consider the signal: $x[n] = \sin(\omega_0 n)$

 \triangleright Determine the Discrete Time Fourier Series of x[n].

Using the Euler's formula:

$$x[n] = \sin(\omega_0 n), \ \omega_0 = \frac{2\pi}{N}$$

$$= \frac{1}{j2} e^{j\frac{2\pi}{N}n} - \frac{1}{j2} e^{-j\frac{2\pi}{N}n}$$

$$= \frac{1}{j2} e^{j\frac{2\pi}{N}n} - \frac{1}{j2} e^{j\frac{2\pi}{N}(N-1)n} = \sum_{\langle N \rangle} c_k e^{jk(2\pi/N)n}$$

→ No need to use Analysis Equation!

$$x[n] = \frac{1}{j2} e^{j\frac{2\pi}{N}n} - \frac{1}{j2} e^{j\frac{2\pi}{N}(N-1)n} = \sum_{\langle N \rangle} c_k e^{jk(2\pi/N)n}$$

k	0	1	2		N-2	N-1
c _k	0	1/(j2)	0	•••	0	-1/(j2)

Use the analysis equation of DTFS to determine the spectrum of the discrete-time periodic pulse train below.

$$egin{aligned} c_k &= rac{1}{N} \sum_{< N>} x[n] e^{-jk(2\pi/N)n}, \ N = 10 \end{aligned} \ egin{aligned} &= rac{1}{10} \sum_{n=-5}^4 x[n] e^{-jk(2\pi/10)n} \ &= rac{1}{10} \sum_{n=-2}^2 (1) e^{-jk(2\pi/10)n} \ &= rac{1}{10} \sum_{n=-2}^4 (1) e^{-jk(2\pi/10)(m-2)}, \ m = n+2 \end{aligned}$$

-5

5

10

15

$$c_{k} = \frac{1}{10} \sum_{m=0}^{4} (1) e^{-jk(2\pi/10)(m-2)}$$

$$= \frac{e^{jk(4\pi/10)}}{10} \sum_{m=0}^{4} \left[e^{-jk(2\pi/10)} \right]^{m}$$

$$= \frac{e^{jk(4\pi/10)}}{10} \cdot \frac{1 - \left[e^{-jk(2\pi/10)} \right]^{5}}{1 - \left[e^{-jk(2\pi/10)} \right]}$$

$$= \frac{ik(4\pi/10)}{10} \cdot \frac{-ik(2\pi/10)(5/2)}{1 - \frac{ik(2\pi/10)(5/2)}{1 - \frac{ik(2\pi/10)(5/2)$$

$$\frac{1}{\frac{\Xi}{\aleph}} 0.5 - \frac{1}{10} -$$

$$e_k = \frac{e^{jk(4\pi/10)}}{10} \cdot \frac{e^{-jk(2\pi/10)(5/2)}}{e^{-jk(2\pi/10)/2}} \cdot \frac{\sin\left[\frac{2\pi}{10}k \cdot \frac{5}{2}\right]}{\sin\left[\frac{2\pi}{10}k \cdot \frac{1}{2}\right]}$$

$$c_k = \frac{e^{jk(4\pi/10)}}{10} \cdot \frac{e^{-jk(2\pi/10)(5/2)}}{e^{-jk(2\pi/10)/2}} \cdot \frac{\sin\left[\frac{2\pi}{10}k \cdot \frac{5}{2}\right]}{\sin\left[\frac{2\pi}{10}k \cdot \frac{1}{2}\right]}$$

$$c_k = \frac{1}{10} \cdot \frac{\sin\left[\frac{2\pi}{10}k \cdot \frac{5}{2}\right]}{\sin\left[\frac{2\pi}{10}k \cdot \frac{1}{2}\right]}, k \notin \{0, \pm N, \pm 2N, \cdots\}$$

Notes on Sampling Period

 \triangleright What happens when **N** is increased?

$$c_{k} = \frac{e^{jk(4\pi/10)}}{10} \cdot \frac{e^{-jk(2\pi/10)(5/2)}}{e^{-jk(2\pi/10)/2}} \cdot \frac{\sin\left[\frac{2\pi}{10}k \cdot \frac{5}{2}\right]}{\sin\left[\frac{2\pi}{10}k \cdot \frac{1}{2}\right]}$$
$$c_{k} = \frac{1}{10} \cdot \frac{\sin\left[\frac{2\pi}{10}k \cdot \frac{5}{2}\right]}{\sin\left[\frac{2\pi}{10}k \cdot \frac{1}{2}\right]}, k \notin \{0, \pm N, \pm 2N, \cdots\}$$

Notes on Sampling Period

As **N** is increased, the spacing between frequency domain samples becomes narrower. If $N \rightarrow \infty$, then the DT signal becomes aperiodic, and the frequency domain becomes, continuous

Notes on Sampling Period

As **N** is increased, the spacing between frequency domain samples becomes narrower. If $N \rightarrow \infty$, then the DT signal becomes aperiodic, and the frequency domain becomes, continuous

Discrete Time Fourier Transform

- \triangleright For an aperiodic sequence x[n]:
 - Analysis equation:

$$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- ightharpoonup The spectrum $X(e^{j\omega})$ is continuous and periodic
 - $\circ~$ Period of the spectrum is 2π

Discrete Time Fourier Transform

- Discrete Time Fourier Transform (aperiodic)
 - Analysis equation:

$$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Discrete Time Fourier Series (periodic)

$$c_k = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-jk(2\pi/N)n}$$

Discrete Time Fourier Transform

- Discrete Time Fourier Transform (aperiodic)
 - Synthesis equation:

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega$$

→ Integration over a single period (continuous) spectrum

> Determine the spectrum of a three-point pulse sequence.

$$x[n] = \delta[n+1] + \delta[n] + \delta[n-1]$$

ightharpoonup Use the analysis equation: $x[n] = \delta[n+1] + \delta[n] + \delta[n-1]$

$$egin{aligned} X\left(e^{j\omega}
ight) &= \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \ &= \sum_{n=-1}^{1} x[n]e^{-j\omega n} \ &= e^{-j\omega} + 1 + e^{j\omega} \ X\left(e^{j\omega}
ight) &= 1 + 2\cos\omega \end{aligned}$$

ightharpoonup Use the analysis equation: $x[n] = \delta[n+1] + \delta[n] + \delta[n-1]$

Properties of DTFT

	Property	Sequence	Transform
		x[n]	$\mathcal{F}\{x[n]\}$
1.	Linearity	$a_1x_1[n] + a_2x_2[n]$	$a_1 X_1(e^{j\omega}) + a_2 X_2(e^{j\omega})$
2.	Time shifting	x[n-k]	$e^{-jk\omega}X(e^{j\omega})$
3.	Frequency shifting	$e^{j\omega_0 n}x[n]$	$X[e^{j(\omega-\omega_0)}]$
4.	Modulation	$x[n]\cos\omega_0 n$	$\frac{1}{2}X[e^{j(\omega+\omega_0)}] + \frac{1}{2}X[e^{j(\omega-\omega_0)}]$
5.	Folding	x[-n]	$X(e^{-j\omega})$
6.	Conjugation	$x^*[n]$	$X^*(e^{-j\omega})$

Properties of DTFT

	Property	Sequence	Transform
		x[n]	$\mathcal{F}\{x[n]\}$
7.	Differentiation	nx[n]	$-\mathrm{j}\frac{\mathrm{d}X(\mathrm{e}^{\mathrm{j}\omega})}{\mathrm{d}\omega}$ $X(\mathrm{e}^{\mathrm{j}\omega})H(\mathrm{e}^{\mathrm{j}\omega})$
8.	Convolution	x[n] * h[n]	$X(e^{j\omega})H(e^{j\omega})$
9.	Windowing	x[n]w[n]	$\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta}) W \left[e^{j(\omega - \theta)} \right] d\theta$
10.	Parseval's theorem	$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] =$	$= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega$

Frequency shifting

Cajote, Lucas EE 274 / COE 197E 25

Modulation

Cajote, Lucas EE 274 / COE 197E 26

Convolution

Cajote, Lucas

EE 274 / COE 197E

Notes on DTFS and DTFT

- 1. The frequency domain representation of DT signals are periodic (duality of time-frequency)
- 2. Fourier Series of periodic DT signals are discrete
- 3. Fourier Transform of aperiodic DT signals are continuous
- 4. The Fourier transform of the impulse response is the Frequency Response
- 5. The Fourier transform is also the z-transform evaluated at the unit circle r=1

Notes on DTFS and DTFT

Figure 4.4.2 Summary of symmetry properties for the Fourier transform.

 \triangleright Determine y(n) when

$$x(n) = Ae^{0.5j\pi n}$$
, $-\infty < n < +\infty$

and
$$h(n) = (0.5)^n u(n)$$

>
$$h(n) = (0.5)^n u(n)$$

$$H(\omega) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

- > $Y(\omega) = X(\omega)H(\omega)$ Since x(n) contains one frequency component, we just need to evaluate $H(\omega)$ at $\omega = 0.5\pi$
- \rightarrow Y(ω) = |H(ω =0.5 π)|Ae^{0.5j π n + \angle H(ω =0.5 π)}

>
$$h(n) = (0.5)^n u(n)$$

$$H(\omega) = \frac{1}{1 - \frac{1}{2} e^{-j\omega}}$$

$$> y(n) = |H(\omega = 0.5\pi)|Ae^{0.5j\pi n + \angle H(\omega = 0.5\pi)}$$

$$H(\frac{\pi}{2}) = \frac{1}{1 - \frac{1}{2}e^{-j\pi/2}} = \frac{2}{\sqrt{5}}e^{-j26.6^{\circ}}$$
$$y(n) = \frac{2}{\sqrt{5}}Ae^{j(\pi n/2 - 26.6^{\circ})}, \quad -\infty < n < \infty$$

Summary

- DTFS and DTFT allows us to transform signals into the frequency domain
- ➤ The Frequency Response of Systems can be derived from the Fourier Transform of the impulse response
- ightharpoonup Sinusoidal steady-state responses can be easily computed by evaluating $H(\omega)$ at the input frequency

For further reading...

Chapter 4.3-4.5
"Applied Digital Signal Processing, by Manolakis, D. & Ingle, V."

Chapters 3.6-3.7, 5
"Signals and Systems by Oppenheim, A & Willsky, A."

8. Fourier Series/Transform for DT systems

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.