CURSUL 10: CONSTRUCȚII IMPORTANTE DE INELE

G. MINCU

1. Inel produs

Exemplul 1. Fie R_1, R_2, \ldots, R_n inele. Pe produsul cartezian $R \stackrel{\text{not}}{=} R_1 \times R_2 \times \ldots \times R_n$ considerăm operațiile de adunare și înmulțire definite pe componente. În raport cu aceste operații, R capătă o structură de inel. (Temă: demonstrați această afirmație!)

Definiția 2. Inelul din exemplul anterior se numește **produsul direct** al inelelor R_1, R_2, \ldots, R_n .

Observația 3. Inelul $R_1 \times R_2 \times ... \times R_n$ este comutativ dacă și numai dacă $R_1, R_2, ..., R_n$ sunt comutative.

Inelul $R_1 \times R_2 \times \ldots \times R_n$ este unitar dacă şi numai dacă R_1, R_2, \ldots, R_n sunt unitare; în caz că există, elementul unitate al lui $R_1 \times R_2 \times \ldots \times R_n$ este $(1, 1, \ldots, 1)$.

(Temă: demonstrați aceste afirmații!)

2. Inele de matrice

În acest paragraf, R va desemna un inel, iar $m, n \in \mathbb{N}^*$.

Definiția 4. Numim matrice de tip m, n cu elemente din inelul R orice funcție definită pe $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ cu valori în R.

Notații:

- Vom nota cu $\mathcal{M}_{m,n}(R)$ mulţimea matricelor de tip m, n cu elemente din R.
- Prin $\mathcal{M}_n(R)$ vom desemna mulţimea $\mathcal{M}_{n,n}(R)$.
- Dacă $A \in \mathcal{M}_{m,n}(R)$, $A(i,j) = a_{ij}$, A este freevent prezentată sugestiv

sub formă de tablou astfel:
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

- Vom folosi şi următoarele variante mai economicoase de notație: $A = (a_{ij})_{\substack{i=1,2,...,m\\j=1,2,...,n}}$, sau, dacă nu este pericol de confuzie, $A = (a_{ij})_{i,j}$.

G. MINCU

Pe $\mathcal{M}_{m,n}(R)$ definim operația $(a_{ij})_{i,j} + (b_{ij})_{i,j} \stackrel{\text{def}}{=} (a_{ij} + b_{ij})_{i,j}$. Se vede uşor că $\mathcal{M}_{m,n}(R)$ este grup abelian în raport cu această operație. Elementul neutru al acestui grup este matricea nulă de tip m, n, iar simetrica în acest grup a matricei $(a_{ij})_{i,j}$ este matricea $(-a_{ij})_{i,j}$.

simetrica în acest grup a matricei $(a_{ij})_{i,j}$ este matricea $(-a_{ij})_{i,j}$. Dacă $A = (a_{ij})_{\substack{i=1,2,\dots,m\\j=1,2,\dots,n}} \in \mathcal{M}_{m,n}(R)$ și $B = (b_{jk})_{\substack{j=1,2,\dots,n\\k=1,2,\dots,p}} \in \mathcal{M}_{n,p}(R)$, definim produsul lor astfel: $AB = \left(\sum_{j=1}^n a_{ij}b_{jk}\right)_{\substack{i=1,2,\dots,m\\k=1,2,\dots,p}}$. Se constată

că, dacă $m, n, p, q \in \mathbb{N}^*$, $A = (a_{ij})_{i,j} \in \mathcal{M}_{m,n}(R)$, $B = (b_{jk})_{j,k} \in \mathcal{M}_{n,p}(R)$, iar $C = (c_{kl})_{k,l} \in \mathcal{M}_{p,q}(R)$, atunci

$$(AB)C = \left(\left(\sum_{j=1}^{n} a_{ij} b_{jk} \right)_{\substack{i=1,2,\dots,m\\k=1,2,\dots,p}} \cdot C = \right)$$

$$= \left(\sum_{k=1}^{p} \left(\sum_{j=1}^{n} a_{ij} b_{jk} \right) c_{kl} \right)_{\substack{i=1,2,\dots,m\\l=1,2,\dots,q}} = \left(\sum_{j,k=1}^{n,p} a_{ij} b_{jk} c_{kl} \right)_{\substack{i=1,2,\dots,m\\l=1,2,\dots,q}} = A \cdot \left(\sum_{k=1}^{p} b_{jk} c_{kl} \right)_{\substack{j=1,2,\dots,m\\l=1,2,\dots,q}} = A(BC).$$

În consecință, $(\mathcal{M}_n(R), \cdot)$ este semigrup.

Cu calcule similare celor de mai sus, se arată că pentru orice $A, B, C \in \mathcal{M}_n(R)$ au loc relațiile A(B+C) = AB + AC și (B+C)A = BA + CA. În urma acestor considerații obținem:

Propoziția 5. Dacă R este un inel, iar $n \in \mathbb{N}^*$, atunci $\mathcal{M}_n(R)$ are o structură de inel în raport cu adunarea și înmulțirea introduse mai sus.

Observația 6. Dacă inelul R este unitar, inelul $\mathcal{M}_n(R)$ este de asemenea unitar, având drept element unitate matricea

$$I_n \stackrel{def}{=} \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right).$$

Definiția 7. Matricea I_n definită mai sus se numește matricea unitate de ordin n (sau matricea identică de ordin n).

3. Inele de polinoame

În acest paragraf, R va desemna un inel comutativ şi unitar. Pe mulţimea $R^{\mathbb{N}}$ a şirurilor (a_0, a_1, \ldots) de elemente din R introducem operațiile

$$(a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots, a_n + b_n, \ldots)$$

 $(a_0, a_1, \ldots) \cdot (b_0, b_1, \ldots) = (a_0 b_0, a_0 b_1 + a_1 b_0, \ldots, \sum_{i+j=n} a_i b_j, \ldots).$

 $R^{\mathbb{N}}$ are în raport cu aceste operații o structură de inel comutativ și unitar (temă: demonstrați această afirmație!); notând $X=(0,1,0,0,\ldots)\in R^{\mathbb{N}},\ X^0=1,$ și identificând R cu $\phi(R)$, unde ϕ este morfismul injectiv de inele de la R la $R^{\mathbb{N}}$ dat prin $a\mapsto (a,0,0,\ldots),$ constatăm că $(a_0,a_1,\ldots)=\sum_{i>0}a_iX^i.$ Această construcție justifică următoarele:

Definiția 8. Inelul definit mai sus se numește **inelul seriilor formale** în nedeterminata X cu coeficienți în R.

Notația standard pentru inelul seriilor formale în nedeterminata X cu coeficienți în inelul R este R[[X]]. Din acest moment, vom folosi și noi această notație.

Definiția 9. Prin **ordinul** seriei formale nenule $f = \sum_{i\geq 0} a_i X^i \in R[[X]]$ înțelegem cel mai mic număr natural j pentru care $a_j \neq 0$. Convenim că ordinul seriei formale nule este $+\infty$.

Vom nota ordinul seriei formale $f \in R[[X]]$ cu ord f.

Propoziția 10. Dacă $f, g \in R[[X]]$, atunci

- a) $\operatorname{ord}(f+g) \ge \min\{\operatorname{ord} f, \operatorname{ord} g\}$
- b) $\operatorname{ord}(fg) \ge \operatorname{ord} f + \operatorname{ord} g$.

Dacă, în plus, R este domeniu de integritate, atunci

b') $\operatorname{ord}(fg) = \operatorname{ord} f + \operatorname{ord} g$.

Observația 11. Dacă R este domeniu de integritate, atunci și R[[X]] este domeniu de integritate.

Propoziția 12.
$$U(R[[X]]) = \{a_0 + a_1X + \cdots \in R[[X]] : a_0 \in U(R)\}.$$

Demonstrație: Fie $f=a_0+a_1X+\cdots\in R[[X]]$. Dacă f este inversabilă, atunci există $g=b_0+b_1X+\cdots\in R[[X]]$ astfel încât fg=1. Rezultă $a_0b_0=1$, deci $a_0\in U(R)$. Reciproc, dacă $a_0\in U(R)$, punem $b_0=a_0^{-1}$ și, presupunând construite b_0,b_1,\ldots,b_n , definim $b_{n+1}=-a_0^{-1}(a_1b_n+a_2b_{n-1}+\cdots+a_{n+1}b_0)$. Este clar că $b_0+b_1X+\ldots$ este inversa lui f. \square

Este imediat faptul că submulțimea lui R[[X]] alcătuită din acele serii formale care au un număr finit de coeficienți nenuli este subinel al lui R[[X]]. Conform observației 2 din primul curs, această submulțime are o structură de inel în raport cu legile induse de adunarea și înmulțirea din R[[X]].

G. MINCU

4

Definiția 13. Inelul definit mai sus se numește **inelul de polinoame** în nedeterminata X cu coeficienți în R. Elementele acestui inel se numesc **polinoame** în nedeterminata X cu coeficienți în R.

Notația standard pentru inelul polinoamelor în nedeterminata X cu coeficienți în inelul R este R[X].

Observația 14. Orice polinom $f \in R[X] \setminus \{0\}$ se reprezintă în mod unic sub forma $a_0 + a_1X + \cdots + a_nX^n$ cu $a_0, a_1, \ldots, a_n \in R$ și $a_n \neq 0$. Două polinoame $f = \sum_{i=0}^m a_iX^i, g = \sum_{j=0}^n b_jX^j \in R[X]$ sunt egale dacă și numai dacă $a_0 = b_0, a_1 = b_1, \ldots, a_{\max\{m,n\}} = b_{\max\{m,n\}}$.

Definiția 15. Dat fiind polinomul $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ cu $a_n \neq 0$, a_0 se numește **termenul liber** al lui f, iar a_n se numește **coeficientul dominant** al lui f. Dacă $a_n = 1$, polinomul f se numește **monic**. Dacă f nu are alți coeficienți nenuli decât (eventual) pe a_0 , el se numește **constant**.

Definiția 16. Prin **gradul** polinomului nenul $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ înțelegem numărul natural $\max\{j \in \mathbb{N} | a_j \neq 0\}$. Convenim că gradul polinomului nul este $-\infty$.

Vom nota gradul polinomului $f \in R[X]$ cu grad f.

Propoziția 17. Dacă $f, g \in R[X]$, atunci

- a) $grad(f+g) \le max\{grad f, grad g\}$
- b) $\operatorname{grad}(fg) \leq \operatorname{grad} f + \operatorname{grad} g$.

Dacă, în plus, R este domeniu de integritate, atunci

b') $\operatorname{grad}(fg) = \operatorname{grad} f + \operatorname{grad} g$.

Propoziția 18. Fie R un inel comutativ și unitar și $f \in R[X]$. Atunci: i) f este nilpotent dacă și numai dacă toți coeficienții săi sunt nilpotenți. ii) f este inversabil dacă și numai dacă termenul său liber este inversabil, iar toți ceilalti coeficienți ai săi sunt nilpotenți.

- iii) f este idempotent dacă și numai dacă este element idempotent al lui R.
- iv) f este divizor al lui zero dacă și numai dacă există $a \in R \setminus \{0\}$ astfel încât af = 0.

Observația 19. Funcția $j: R \to R[X]$, j(a) = a este morfism unitar de inele. Acest morfism se numește **injecția canonică** a lui R în R[X].

Dacă R este un inel comutativ și unitar, iar j este injecția canonică a lui R în R[X], are loc:

Propoziția 20. (Proprietatea de universalitate a inelului de polinoame într-o nedetereminată) Pentru orice inel comutativ unitar S, orice morfism unitar de inele $u: R \to S$ și orice $s \in S$ există un

unic morfism de inele unitare $v:R[X]\to S$ cu proprietățile v(X)=s și $v\circ j=u.$

Demonstrație: Presupunând mai întâi că există un morfism v ca în concluzia propoziției, constatăm că, dat fiind $f = a_0 + a_1X + \cdots + a_nX^n \in R[X]$, condițiile din enunț implică $v(f) = u(a_0) + u(a_1)s + \cdots + u(a_n)s^n$, de unde unicitatea lui v. Definind acum v prin formula anterioară, constatăm cu uşurință că el este morfism de inele, ceea ce justifică și afirmația de existență din enunț. \square

Definiția 21. Prin valoarea polinomului $f = \sum_{i=0}^{n} a_i X^i \in R[X]$ în elementul $r \in R$ înțelegem elementul $\sum_{i=0}^{n} a_i r^i \in R$. Vom nota acest element cu f(r).

Definiția 22. Prin funcția polinomială asociată polinomului $f \in R[X]$ înțelegem funcția $\widetilde{f} : R \to R$, $\widetilde{f}(x) = f(x)$.

Observația 23. La polinoame egale corespund funcții polinomiale egale. Reciproca nu este numaidecât adevărată.

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebră, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebră, Ed. Universității din București, 1981.
- [3] C. Năstăsescu, C. Niţă, C. Vraciu, *Bazele algebrei*, Ed. Academiei, Bucureşti, 1986.