TEST REPORT

Reference No. WTU16S0755914E

FCC ID.....: : 2AARJ-WD50UK4550

Applicant: Avision Technology (changzhou)Co., Ltd.

Address: No. 28 Xinsi Road, Xinbei District, Changzhou, China.

Manufacturer: Avision Technology (changzhou)Co., Ltd.

Address: No. 28 Xinsi Road, Xinbei District, Changzhou, China.

Product Name: LED TV

Model No. : WD50UK4550, WD50UT4490

Standards..... FCC CFR47 Part 15 C Section 15.247:2015

Date of Receipt sample....: Jul. 15, 2016

Date of Test: Jul. 16 – 30, 2016

Date of Issue: Aug. 09, 2016

Test Result: **Pass**

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033

Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Philo Zhong / Manager

Reference No.: WTU16S0755914E Page 2 of 90

2 Test Summary

Test Items	Test Requirement	Result	
Conducted Emissions	15.207(a)	PASS	
	15.247		
Radiated Emissions	15.205(a)	PASS	
	15.209(a)		
6dB Bandwidth	15.247(a)(2)	PASS	
Maximum Peak Output Power	15.247(b)(3),(4)	PASS	
Power Spectral Density	15.247(e)	PASS	
Band Edge	15.247(d)	PASS	
Antenna Requirement	15.203	PASS	
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS	

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T.	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	6
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	8
	5.1 EQUIPMENTS LIST	
	5.2 DESCRIPTION OF SUPPORT UNITS	
	5.4 TEST EQUIPMENT CALIBRATION	
6	CONDUCTED EMISSION	
Ū	6.1 E.U.T. OPERATION	
	6.2 EUT SETUP	
	6.3 MEASUREMENT DESCRIPTION	
	6.4 CONDUCTED EMISSION TEST RESULT	
7	RADIATED EMISSIONS	-
	7.1 EUT OPERATION	
	7.2 TEST SETUP	
	7.4 TEST PROCEDURE	
	7.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	16
	7.6 SUMMARY OF TEST RESULTS	
8	BAND EDGE MEASUREMENT	
	8.1 TEST PRODUCE	
	8.2 TEST RESULT	
9	6 DB BANDWIDTH MEASUREMENT	
	9.1 Test Procedure:	
40		
10	MAXIMUM PEAK OUTPUT POWER	
	10.1 TEST PROCEDURE:	
11	POWER SPECTRAL DENSITY	
	11.1 Test Procedure:	
	11.2 Test Result:	
12	ANTENNA REQUIREMENT	74
13	RF EXPOSURE	75
	13.1 REQUIREMENTS	
	13.2 THE PROCEDURES / LIMIT	75
	13.3 MPE CALCULATION METHOD	76
14	PHOTOGRAPHS – MODEL WD50UK4550 TEST SETUP	77
	14.1 RADIATED EMISSION	77
	14.2 CONDUCTED EMISSION AT TEST SITE 1#	78

Reference No.: WTU16S0755914E Page 4 of 90

15	PHOT	OGRAPHS - CONSTRUCTIONAL DETAILS		
	15.1	MODEL WD50UK4550-EXTERNAL PHOTOS	79	
	15.2	MODEL WD50LIK4550_INTERNAL PHOTOS	82	

Reference No.: WTU16S0755914E Page 5 of 90

4 General Information

4.1 General Description of E.U.T.

Product Name: LED TV

Model No.: WD50UK4550, WD50UT4490

Model Description:

Only the base model name is different, The model WD50UK4550 is the

tested sample.

IEEE 802.11b/g/n(HT20):2412MHz ~ 2462MHz

Operation Frequency: IEEE 802.11n(HT40):2422MHz~2452MHz

The Lowest Oscillator: 16MHz

ANT 0

2.4GHz WIFI:3.2 dBi

Antenna Gain: ANT 1

2.4GHz WIFI:3.2 dBi

IEEE 802.11b DSSS(CCK/QPSK/BPSK)

Type of modulation: IEEE 802.11g OFDM(BPSK/QPSK/16QAM/64QAM)

IEEE 802.11n OFDM(BPSK/QPSK/16QAM/64QAM)

Number of

WIFI:2*2 (MIMO)

transmitter chains:

The device supports MIMO 2*2, and the MIMO works with STBC(Space-Time Block Coding). The antenna is omnidirectional, does not support any directional gain in any modes.

TX power for MIMO rate, the wifi chip has a power/rate table that controls TX power from chipout, it's preset in nvram, FW don't need to calculate it again when MIMO rate is fixed. Of course the real radiation power is also related to antenna efficient.

Two transmitter signals are not correlated with each other.

4.2 Details of E.U.T.

Technical Data: AC 120V~60Hz, 110W

4.3 Channel List

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	ı

Reference No.: WTU16S0755914E Page 6 of 90

4.4 Test Mode

Test Mode Description:

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Transmitting duty cycle is no less 98%.

The software is installed in operation system, named "RFTestTool.apk", Version 1,date 20160518.

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
Maximum Feak Output Fower	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Devices Connected Demoits	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/11	TX
Dand Edge	802.11g	54 Mbps	1/11	TX
Band Edge	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmittor Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Table 2 Tests Carried Out Under FCC part 15.207

Test Item	Test Mode
Conduction Emission, 0.15MHz to 30MHz	Communication

Reference No.: WTU16S0755914E Page 7 of 90

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#— Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipments List

	5.1 Equipments L					
Condu	cted Emissions Test S	Site 1#		1		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.14,2015	Sep.13,2016
2.	LISN	R&S	ENV216	101215	Sep.14,2015	Sep.13,2016
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.14,2015	Sep.13,2016
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.14,2015	Sep.13,2016
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.14,2015	Sep.13,2016
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.14,2015	Sep.13,2016
4.	Cable	LARGE	RF300	-	Sep.14,2015	Sep.13,2016
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	1 EMC Analyzer Agilent		E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.14,2015	Sep.13,2016
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Sep.14,2015	Sep.13,2016
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.14,2015	Sep.13,2016
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Sep.14,2015	Sep.13,2016
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Sep.14,2015	Sep.13,2016
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Sep.14,2015	Sep.13,2016
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Sep.14,2015	Sep.13,2016
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#		-
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Sep.14,2015	Sep.13,2016
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.14,2015	Sep.13,2016
3 Amplifier Compliance pirection systems inc		PAP-0203	22024	Sep.14,2015	Sep.13,2016	
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.14,2015	Sep.13,2016
RF Co	nducted Testing					

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.14,2015	Sep.13,2016
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.14,2015	Sep.13,2016
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.14,2015	Sep.13,2016

5.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

5.3 Measurement Uncertainty

Parameter	Uncertainty	
Radio Frequency	± 1 x 10 ⁻⁶	
RF Power	± 1.0 dB	
RF Power Density	± 2.2 dB	
De dieta de Occasiona Francisco de de	± 5.03 dB (30M~1000MHz)	
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)	
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)	

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTU16S0755914E Page 10 of 90

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Reference No.: WTU16S0755914E Page 12 of 90

Neutral line:

Reference No.: WTU16S0755914E Page 13 of 90

Radiated Emissions 7

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

PASS Test Result: Measurement Distance: 3m

I imit

LITHL						
_	Field Strength		Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C Humidity: 52.1 % RH 101.2kPa

Atmospheric Pressure:

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTU16S0755914E Page 15 of 90

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

Spectrum

Analyzer

Combining

Network

The test setup for emission measurement above 1 GHz.

PC

System

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTU16S0755914E Page 16 of 90

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level

EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis.so the worst data were shown as follow.

8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

7.6 Summary of Test Results

Test Frequency: 16MHz~30MHz

	Measurement	Detector	Correct	Extrapolation	Measurement results	FCC 15.247/2	
Frequency (MHz)	results	20.00.0	factor	factor	(calculated)	Limit	Margin
(***: 12)	dBµV/m@3m	PK/QP	dB/m	dB	dBµV/m @30m	dBµV/m @30m	dB
26.531	27.95	QP	20.55	40.00	8.50	29.54	-21.04

Test Frequency : 30MHz ~ 18GHz

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		Δ	NT0 11b:	Low Cha	nnel 24	12MHz			
469.74	12.59	PK	142	1.9	Н	-11.36	1.23	46.00	-44.77
469.74	11.36	PK	288	1.7	V	-11.36	0.00	46.00	-46.00
4824.00	48.54	PK	147	1.8	V	-1.04	47.50	74.00	-26.50
4824.00	47.32	Ave	147	1.8	V	-1.04	46.28	54.00	-7.72
7236.00	45.71	PK	220	1.9	Н	1.34	47.05	74.00	-26.95
7236.00	46.27	Ave	220	1.9	Н	1.34	47.61	54.00	-6.39
2319.54	45.72	PK	206	1.0	V	-13.19	32.53	74.00	-41.47
2319.54	39.14	Ave	206	1.0	V	-13.19	25.95	54.00	-28.05
2388.37	43.45	PK	220	1.2	Н	-13.15	30.30	74.00	-43.70
2388.37	38.11	Ave	220	1.2	Н	-13.15	24.96	54.00	-29.04
2485.25	43.90	PK	248	1.6	V	-13.08	30.82	74.00	-43.18
2485.25	36.37	Ave	248	1.6	V	-13.08	23.29	54.00	-30.71

	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	⊢actor I	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN	NT0 11b: N	Middle Ch	nannel 2	437MHz			
469.74	14.27	PK	52	1.8	Н	-11.36	2.91	46.00	-43.09
469.74	11.52	PK	267	1.7	V	-11.36	0.16	46.00	-45.84
4874.00	48.36	PK	118	2.0	V	-0.63	47.73	74.00	-26.27
4874.00	47.75	Ave	118	2.0	V	-0.63	47.12	54.00	-6.88
7311.00	45.93	PK	258	1.9	Н	2.21	48.14	74.00	-25.86
7311.00	44.21	Ave	258	1.9	Н	2.21	46.42	54.00	-7.58
2324.23	45.98	PK	42	1.0	V	-13.19	32.79	74.00	-41.21
2324.23	39.76	Ave	42	1.0	V	-13.19	26.57	54.00	-27.43
2366.87	42.64	PK	179	1.7	Н	-13.14	29.50	74.00	-44.50
2366.87	36.87	Ave	179	1.7	Н	-13.14	23.73	54.00	-30.27
2499.15	43.62	PK	17	1.6	V	-13.09	30.53	74.00	-43.47
2499.15	37.28	Ave	17	1.6	V	-13.09	24.19	54.00	-29.81

_	Receiver	D 1 1	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT0 11b:	High Ch	annel 2	462MHz			
469.74	13.78	PK	114	1.8	Н	-11.36	2.42	46.00	-43.58
469.74	12.38	PK	48	1.6	V	-11.36	1.02	46.00	-44.98
4924.00	50.34	PK	118	1.4	V	-0.25	50.09	74.00	-23.91
4924.00	48.75	Ave	118	1.4	V	-0.25	48.50	54.00	-5.50
7386.00	48.22	PK	163	1.4	Н	2.85	51.07	74.00	-22.93
7386.00	47.31	Ave	163	1.4	Н	2.85	50.16	54.00	-3.84
2314.85	45.57	PK	355	1.3	V	-13.19	32.38	74.00	-41.62
2314.85	37.88	Ave	355	1.3	V	-13.19	24.69	54.00	-29.31
2380.36	43.15	PK	305	1.6	Н	-13.14	30.01	74.00	-43.99
2380.36	36.91	Ave	305	1.6	Н	-13.14	23.77	54.00	-30.23
2498.92	43.84	PK	165	1.9	V	-13.09	30.75	74.00	-43.25
2498.92	38.17	Ave	165	1.9	V	-13.09	25.08	54.00	-28.92

Froguess	Receiver	Detector	Turn	RX Ant	tenna	Corrected	Corrected	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		A	NT1 11b:	Low Cha	innel 24	12MHz			
469.74	22.07	QP	107	1.4	Н	10.59	32.66	46.00	-13.34
469.74	20.84	QP	322	1.0	V	10.59	31.43	46.00	-14.57
4844.00	51.14	PK	42	1.8	V	-1.08	50.06	74.00	-23.94
4804.00	42.72	Ave	42	1.8	V	-1.08	41.64	54.00	-12.36
7266.00	50.54	PK	288	1.0	Н	1.34	51.88	74.00	-22.12
7266.00	42.84	Ave	288	1.0	Н	1.34	44.18	54.00	-9.82
2315.84	46.88	PK	323	1.4	V	-13.20	33.68	74.00	-40.32
2315.84	38.67	Ave	323	1.4	V	-13.20	25.47	54.00	-28.53
2363.22	44.32	PK	98	1.7	Н	-13.12	31.20	74.00	-42.80
2363.22	38.12	Ave	98	1.7	Н	-13.12	25.00	54.00	-29.00
2492.15	43.32	PK	219	1.8	V	-13.02	30.30	74.00	-43.70
2492.15	36.95	Ave	219	1.8	V	-13.02	23.93	54.00	-30.07

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		AN.	NT1 11b: ľ	Middle Ch	nannel 2	437MHz			
469.74	20.24	QP	164	1.5	Н	10.59	30.83	46.00	-15.17
469.74	20.29	QP	205	2.0	V	10.59	30.88	46.00	-15.12
4874.00	54.80	PK	236	1.9	V	-0.62	54.18	74.00	-19.82
4874.00	41.50	Ave	236	1.9	V	-0.62	40.88	54.00	-13.12
7311.00	50.70	PK	324	1.6	Н	2.21	52.91	74.00	-21.09
7311.00	43.55	Ave	324	1.6	Н	2.21	45.76	54.00	-8.24
2333.11	46.36	PK	256	1.6	V	-13.19	33.17	74.00	-40.83
2333.11	37.33	Ave	256	1.6	V	-13.19	24.14	54.00	-29.86
2384.66	43.67	PK	115	1.8	Н	-13.14	30.53	74.00	-43.47
2384.66	36.03	Ave	115	1.8	Н	-13.14	22.89	54.00	-31.11
2486.70	42.28	PK	238	1.8	V	-13.08	29.20	74.00	-44.80
2486.70	36.21	Ave	238	1.8	V	-13.08	23.13	54.00	-30.87

	Receiver	Datastan	Turn	RX An	tenna	Corrected	Camantad		FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
		А	NT1 11b:	High Ch	annel 2	462MHz				
469.74	21.01	QP	223	1.9	Н	10.59	31.60	46.00	-14.40	
469.74	18.18	QP	255	1.5	V	10.59	28.77	46.00	-17.23	
4904.00	50.60	PK	256	1.4	V	-0.24	50.36	74.00	-23.64	
4904.00	44.85	Ave	256	1.4	V	-0.24	44.61	54.00	-9.39	
7356.00	50.19	PK	258	1.6	Н	2.84	53.03	74.00	-20.97	
7356.00	41.05	Ave	258	1.6	Н	2.84	43.89	54.00	-10.11	
2343.08	46.44	PK	290	1.9	V	-13.19	33.25	74.00	-40.75	
2343.08	38.26	Ave	290	1.9	V	-13.19	25.07	54.00	-28.93	
2360.00	43.04	PK	66	1.4	Н	-13.14	29.90	74.00	-44.10	
2360.00	38.72	Ave	66	1.4	Н	-13.14	25.58	54.00	-28.42	
2493.51	42.13	PK	105	1.5	V	-13.08	29.05	74.00	-44.95	
2493.51	36.15	Ave	105	1.5	V	-13.08	23.07	54.00	-30.93	

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.247/20	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
ANT0+ANT1 n20: Low Channel 2412MHz									
469.74	14.14	PK	108	1.8	Н	-11.36	2.78	46.00	-43.22
469.74	13.29	PK	22	1.9	V	-11.36	1.93	46.00	-44.07
4824.00	50.58	PK	319	1.1	V	-1.06	49.52	74.00	-24.48
4824.00	48.90	Ave	319	1.1	V	-1.06	47.84	54.00	-6.16
7236.00	47.07	PK	333	1.4	Н	1.34	48.41	74.00	-25.59
7236.00	45.54	Ave	333	1.4	Н	1.34	46.88	54.00	-7.12
2347.35	45.47	PK	257	1.9	V	-13.19	32.28	74.00	-41.72
2347.35	38.09	Ave	257	1.9	V	-13.19	24.90	54.00	-29.10
2379.59	44.65	PK	208	1.9	Н	-13.14	31.51	74.00	-42.49
2379.59	37.44	Ave	208	1.9	Н	-13.14	24.30	54.00	-29.70
2489.34	43.17	PK	204	1.4	V	-13.08	30.09	74.00	-43.91
2489.34	37.86	Ave	204	1.4	V	-13.08	24.78	54.00	-29.22

F	Receiver	Datastan	Turn	RX An	tenna	Corrected	Carra ata d	FCC F 15.247/2	.
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		ANT0	+ANT1 n2	20: Middle	e Chann	el 2437MHz			
469.74	14.15	PK	11	1.7	Н	-11.36	2.79	46.00	-43.21
469.74	12.27	PK	50	1.6	V	-11.36	0.91	46.00	-45.09
4874.00	50.64	PK	268	1.4	V	-0.61	50.03	74.00	-23.97
4874.00	47.02	Ave	268	1.4	V	-0.61	46.41	54.00	-7.59
7311.00	43.01	PK	29	1.4	Н	2.21	45.22	74.00	-28.78
7311.00	43.14	Ave	29	1.4	Н	2.21	45.35	54.00	-8.65
2337.36	45.36	PK	151	1.0	V	-13.19	32.17	74.00	-41.83
2337.36	38.30	Ave	151	1.0	V	-13.19	25.11	54.00	-28.89
2357.53	42.80	PK	58	1.6	Н	-13.14	29.66	74.00	-44.34
2357.53	37.26	Ave	58	1.6	Н	-13.14	24.12	54.00	-29.88
2485.21	43.80	PK	353	1.5	V	-13.09	30.71	74.00	-43.29
2485.21	38.26	Ave	353	1.5	V	-13.09	25.17	54.00	-28.83

_	Receiver	5	Turn	RX An	tenna	Corrected		FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		ANT	0+ANT1 n	20: High	Channe	el 2462MHz			
469.74	13.10	PK	292	1.2	Н	-11.36	1.74	46.00	-44.26
469.74	11.45	PK	115	1.2	V	-11.36	0.09	46.00	-45.91
4924.00	50.14	PK	247	1.4	V	-0.24	49.90	74.00	-24.10
4924.00	48.17	Ave	247	1.4	V	-0.24	47.93	54.00	-6.07
7386.00	48.72	PK	232	1.8	Н	2.83	51.55	74.00	-22.45
7386.00	45.55	Ave	232	1.8	Н	2.83	48.38	54.00	-5.62
2342.11	45.11	PK	151	1.8	V	-13.19	31.92	74.00	-42.08
2342.11	39.03	Ave	151	1.8	V	-13.19	25.84	54.00	-28.16
2357.69	43.14	PK	216	1.7	Н	-13.14	30.00	74.00	-44.00
2357.69	37.83	Ave	216	1.7	Н	-13.14	24.69	54.00	-29.31
2489.62	44.43	PK	11	1.8	V	-13.08	31.35	74.00	-42.65
2489.62	38.18	Ave	11	1.8	V	-13.08	25.10	54.00	-28.90

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTU16S0755914E Page 26 of 90

Band Edge Measurement 8

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

> frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting

Test Produce 8.1

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.2 Test Result

Test result plots shown as follows:

ANT1 TX 11b: Band edge-left side

ANT1 TX 11b: Band edge-right side

Reference No.: WTU16S0755914E Page 35 of 90

9 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

9.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

9.2 Test Result:

ANIT	Operation		Bandwidth (MHz)	
ANT	mode	Low	Middle	High
	11b	10.092	10.092	10.092
	11g	16.617	16.617	16.617
ANT0	11n HT20	16.653	16.653	16.653
	11n HT40	35.560	35.560	35.560
	11b	10.092	10.092	10.092
	11g	16.567	16.567	16.567
ANT1	11n HT20	17.784	17.784	17.784
	11n HT40	36.230	36.230	36.230

Reference No.: WTU16S0755914E Page 48 of 90

10 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

10.2 Test Result:

Operation	ANT	Maximum Peak Output Power (dBm)				
mode		Low	Middle	High		
11b	ANT0	9.48	9.4	9.41		
	ANT1	9.36	9.37	9.31		
11g	ANT0	9.3	9.16	9.25		
	ANT1	9.2	9.25	9.45		
11n HT20	ANT0	9.48	9.19	9.18		
	ANT1	9.03	9.3	9.31		
	ANT0+ANT1	12.27	12.26	12.26		
11n HT40	ANT0	9.43	9.21	9.07		
	ANT1	9.01	9.12	9.11		
	ANT0+ANT1	12.24	12.18	12.10		
Limit						
1W/30dBm						

Reference No.: WTU16S0755914E Page 61 of 90

11 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure:

KDB558074 D01 DTS Meas Guidance v03r05 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result:

Operation	ANT	Maximum Peak Output Power (dBm per 3kHz)					
mode		Low	Middle	High			
11b	ANT0	-23.31	-23.71	-23.59			
	ANT1	-23.51	-23.73	-23.56			
11g	ANT0	-26.91	-27.09	-27.03			
	ANT1	26.97	-27.02	-26.69			
11n HT20	ANT0	-27.48	-27.33	-27.54			
	ANT1	-27.19	-27.44	-26.72			
	ANT0+ANT1	-24.32	-24.37	-24.10			
11n HT40	ANT0	-29.9	-29.51	-29.93			
	ANT1	-29.56	-29.35	-28.98			
	ANT0+ANT1	-26.72	-26.42	-26.42			
Limit							
(8 dBm per 3kHz)							

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

This device uses of two antennas that uses a specified coupling to the intentional radiator. Antenna connectors complied with the requirement.

Reference No.: WTU16S0755914E Page 75 of 90

13 RF Exposure

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTU16S0755914E Page 76 of 90

13.3 MPE Calculation Method

$$\mathsf{E} \, (\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d} \qquad \qquad \mathsf{Power \, Density:} \, \, \mathit{Pd} \, (\mathsf{W/m^2}) = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\textit{Pd} = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Directional gain (dBi)	Directional gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
3.20	2.089	9.48	8.87	0.003687	1

^{*}Directional gain = Directional gain = 10 log[(10G1 /10 + 10G2 /10 + ... + 10GN /10)/NANT] dBi = 3.2dBi

14 Photographs – Model WD50UK4550 Test Setup

14.1 Radiated Emission

Test frequency below 30MHz at Test Site 2#

Test frequency from 30MHz to 1GHz at Test Site 2#

Test frequency above 1GHz at Test Site 1#

14.2 Conducted Emission at Test Site 1#

15 Photographs - Constructional Details

15.1 Model WD50UK4550-External Photos

Reference No.: WTU16S0755914E Page 80 of 90

Reference No.: WTU16S0755914E Page 81 of 90

Reference No.: WTU16S0755914E Page 82 of 90

15.2 Model WD50UK4550– Internal Photos

Reference No.: WTU16S0755914E Page 83 of 90

Reference No.: WTU16S0755914E Page 84 of 90

Reference No.: WTU16S0755914E Page 85 of 90

Reference No.: WTU16S0755914E Page 86 of 90

Reference No.: WTU16S0755914E Page 87 of 90

Reference No.: WTU16S0755914E Page 88 of 90

Reference No.: WTU16S0755914E Page 89 of 90

Reference No.: WTU16S0755914E Page 90 of 90

=====End of Report=====