

TD STM32F411- GPIOs et IRQ

1.	Configuration des broches	1
2.	Le coupleur d'interruption externe	1
3.	Le contrôleur d'interruption	1
4.	Synthèse	2
An	nexe A. Brochage du connecteur Arduino, synoptique d'une GPIO, table des vecteurs	3
An	nexe B. Schéma de la carte d'extension + extrait de datasheet	5

Le but est d'étudier comment une GPIO en entrée peut permettre de générer des demandes d'interruption externe au microcontrôleur. C'est également l'occasion de parler du contrôleur d'interruption NVIC (Nested Vectored Interrupt Controller).

Pour illustrer le propos, on souhaite écrire un programme qui permet d'allumer/éteindre la led bleue à partir du bouton central du joystick de la carte d'extension dont le schéma est fourni en annexe.

1. Configuration des broches

- a. Retrouver à l'aide du schéma et du brochage du connecteur Arduino, les broches à configurer pour commander la led bleue et récupérer l'état du bouton central.
- b. Rappeler le rôle des différents registres de l'interface de registres des GPIOs.
- c. Donner le code C permettant de configurer le bouton central.
- d. Donner le code C permettant de configurer et de contrôler la led bleue.

2. Le coupleur d'interruption externe

- a. Indiquer le rôle des registres IMR, EMR, RTSR, FTSR.
- b. Indiquer comment interviennent les registres EXTICR[] du bloc SYSCFG dans le choix des broches susceptibles de déclencher un demande d'interruption externe. Ecrire le code C pour permettre au signal issu du bouton central du joystick d'arriver à l'entrée du bloc EXTI.
- c. Ecrire le code C permettant de configurer le bloc EXTI pour qu'il génère une demande d'interruption sur l'appui du bouton central du joystick.
- d. Indiquer le rôle du registre PR.

3. Le contrôleur d'interruption

- a. Déterminer le nom et "l'IRQ number" correspondant à l'entrée du NVIC qui permet de capturer les demandes d'interruption en provenance du bloc d'interruptions externes. La priorité est choisie par le programmeur. La demande d'IRQ utilisera le niveau de priorité 6.
- Identifier les registres du NVIC permettant de fixer le niveau de priorité et d'autoriser les demandes d'interruption sur un canal d'entrée particulier. Ecrire le code permettant de configurer le NVIC pour prendre en compte les IRQ du bloc EXTI du microcontrôleur.
- Indiquer les fonctions équivalentes de la couche CMSIS. Donner le code C permettant de configurer le bloc EXTI.

- a. Donner la strucure de la fonction main et de l'ISR permettant le traitement de l'interruption généré par le bouton par l'intermédiaire du bloc EXTI.
- b. Indiquer la séquence d'actions qui résultent de l'appui sur le bouton.

Annexe A. Brochage du connecteur Arduino, synoptique d'une GPIO, table des vecteurs

Brochage du connecteur Arduino

Synoptique d'une GPIO


```
g_pfnVectors:
       .word
                                                /* MSP reset value */
               estack
               Reset_Handler
                                               /* Reset handler */
        .word
       .word NMI_Handler
                                               /* Non Maskable Interrupt */
                                               /* Hardware fault */
       .word HardFault_Handler
               MemManage_Handler
       .word
        .word
               BusFault Handler
       .word UsageFault_Handler
        .word
               0
        .word
               Ω
       .word
        .word 0
        .word
               SVC Handler
       .word
               DebugMon_Handler
        .word 0
        .word
               PendSV_Handler
        .word
               SysTick_Handler
       /* External Interrupts */
        .word WWDG_IRQHandler
                                                /* Window WatchDog
       .word PVD_IRQHandler
                                                 /* PVD through EXTI Line detection */
                                               /st Tamper and TimeStamps through the EXTI line st/
        .word TAMP_STAMP_IRQHandler
                                                /* RTC Wakeup through the EXTI line */
/* FLASH
               RTC_WKUP_IRQHandler
        .word
        .word FLASH_IRQHandler
                                                /* RCC
       .word RCC IROHandler
                                               /* EXTI Line0
/* EXTI Line1
/* EXTI Line2
        .word EXTIO_IRQHandler
        .word
               EXTI1_IRQHandler
       .word EXTI2_IRQHandler
                                               /* EXTI Line3
/* EXTI Line4
/* DMA1 Stream 0
/* DMA1 Stream 1
        .word EXTI3_IRQHandler
        .word
               EXTI4_IRQHandler
       .word DMA1_Stream0_IRQHandler
        .word DMA1_Stream1_IRQHandler
                                                /* DMA1 Stream 2
/* DMA1 Stream 3
       .word
               DMA1_Stream2_IRQHandler
               DMA1 Stream3 IROHandler
                                                /* DMA1 Stream 4
       .word DMA1_Stream4_IRQHandler
                                                /* DMA1 Stream 5
        .word
               DMA1_Stream5_IRQHandler
               DMA1_Stream6_IRQHandler
                                                 /* DMA1 Stream 6
        .word
       .word
                                                 /* ADC1, ADC2 and ADC3s
               ADC IROHandler
                                                 /* Reserved
        .word
               Ω
        .word
                                                 /* Reserved
                                                 /* Reserved
        .word
               Ω
                                                 /* Reserved
        .word 0
                                                /* External Line[9:5]s
/* TIM1 Break and TIM9
       .word EXTI9_5_IRQHandler
.word TIM1_BRK_TIM9_IRQHandler
.word TIM1_UP_TIM10_IRQHandler
                                                /* TIM1 Update and TIM10
        .word TIM1_TRG_COM_TIM11_IRQHandler /* TIM1 Trigger and Commutation and TIM11 */
               TIM1_CC_IRQHandler
                                                 /* TIM1 Capture Compare
        .word
                                                 /* TIM2
       .word TIM2_IRQHandler
                                                /* TIM3
        .word TIM3_IRQHandler
                                                 /* TIM4
        .word
               TIM4_IRQHandler
                                                /* I2C1 Event
       .word
              I2C1_EV_IRQHandler
        .word I2C1_ER_IRQHandler
                                                /* I2C1 Error
                                               /* I2C2 Event
/* I2C2 Error
/* SPI1
        .word I2C2_EV_IRQHandler
               I2C2_ER_IRQHandler
        .word
       .word SPI1_IRQHandler
                                                /* SPI2
        .word
               SPI2_IRQHandler
                                                /* USART1
/* USART2
               USART1_IRQHandler
        .word
               USART2_IRQHandler
       .word
                                                /* Reserved
        .word 0
                                                /* External Line[15:10]s */
/* RTC Alarm (A and B) through EXTI Line */
        .word
               EXTI15_10_IRQHandler
        .word
               RTC_Alarm_IRQHandler
                                                 /* USB OTG FS Wakeup through EXTI line */
       .word OTG_FS_WKUP_IRQHandler
                                                 /* Reserved
        .word
               Ω
                                                  /* Reserved
        .word
               Ω
                                                  /* Reserved
        .word
                                                  /* Reserved
        .word 0
        .word
                                                  /* DMA1 Stream7
               DMA1_Stream7_IRQHandler
```


6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	d				DMA2EN	DMA1EN		De	eserved		
				Reserve	u				rw	rw		RE	serveu		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		CRCEN		Res	erved		GPIOH EN	Rese	erved	GPIOEEN	GPIOD EN	GPIOC EN	GPIOB EN	GPIOA EN
			rw					rw			rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DMA2EN: DMA2 clock enable

Set and cleared by software.

0: DMA2 clock disabled

1: DMA2 clock enabled

Bit 21 **DMA1EN:** DMA1 clock enable

Set and cleared by software.

0: DMA1 clock disabled

1: DMA1 clock enabled

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 CRCEN: CRC clock enable

Set and cleared by software.

0: CRC clock disabled

1: CRC clock enabled

Bits 11:8 Reserved, must be kept at reset value.

Bit 7 GPIOHEN: IO port H clock enable

Set and reset by software.

0: IO port H clock disabled

1: IO port H clock enabled

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 GPIOEEN: IO port E clock enable

Set and cleared by software.

0: IO port E clock disabled

1: IO port E clock enabled

Bit 3 **GPIODEN:** IO port D clock enable

Set and cleared by software.

0: IO port D clock disabled

1: IO port D clock enabled

Bit 2 GPIOCEN: IO port C clock enable

Set and cleared by software.

0: IO port C clock disabled

1: IO port C clock enabled

6.3.12 RCC APB2 peripheral clock enable register (RCC_APB2ENR)

Address offset: 0x44

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				ſ	Reserved						SPI5EN	Reser- ved	TIM11 EN	TIM10 EN	TIM9 EN
											rw	V	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser-	SYSCF G EN	SPI4EN	SPI1 EN	SDIO EN	Reser	ved	ADC1 EN	Rese	erved	USART6 EN	USART1 EN		Reserved	l	TIM1 EN
Ved	rw	rw	rw	rw			rw			rw	rw				rw

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 SPI5EN:SPI5 clock enable

This bit is set and cleared by software

0: SPI5 clock disabled

1: SPI5 clock enabled

Bit 19 Reserved, must be kept at reset value.

Bit 18 TIM11EN: TIM11 clock enable

Set and cleared by software.

0: TIM11 clock disabled

1: TIM11 clock enabled

Bit 17 **TIM10EN:** TIM10 clock enable Set and cleared by software.

0: TIM10 clock disabled

1: TIM10 clock enabled

Bit 16 TIM9EN: TIM9 clock enable

Set and cleared by software.

0: TIM9 clock disabled

1: TIM9 clock enabled

Bit 15 Reserved, must be kept at reset value.

Bit 14 SYSCFGEN: System configuration controller clock enable

Set and cleared by software.

0: System configuration controller clock disabled

1: System configuration controller clock enabled

Bit 13 SPI4EN: SPI4 clock enable

Set and reset by software.

0: SPI4 clock disabled

1: SPI4 clock enable

Bit 12 SPI1EN: SPI1 clock enable

Set and cleared by software.

0: SPI1 clock disabled

1: SPI1 clock enabled

7.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI	3[3:0]			EXTI	2[3:0]			EXTI	1[3:0]			EXTI	0[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **EXTIx[3:0]**: EXTI x configuration (x = 0 to 3)

These bits are written by software to select the source input for the EXTIx external interrupt.

0000: PA[x] pin

0001: PB[x] pin

0010: PC[x] pin

0011: PD[x] pin

0100: PE[x] pin

0101: Reserved

0110: Reserved 0111: PH[x] pin

7.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI	7[3:0]			EXTI	6[3:0]			EXTI	5[3:0]			EXT	4[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **EXTIx[3:0]**: EXTI x configuration (x = 4 to 7)

These bits are written by software to select the source input for the EXTIx

external interrupt.

0000: PA[x] pin

0001: PB[x] pin

0010: PC[x] pin

0011: PD[x] pin

0100: PE[x] pin

0101: Reserved

0110: Reserved

0111: PH[x] pin

7.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI1	11[3:0]			EXTI1	0[3:0]			EXT	9[3:0]			EXT	8[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **EXTIX[3:0]**: EXTI x configuration (x = 8 to 11)

These bits are written by software to select the source input for the EXTIx external interrupt.

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: Reserved 0110: Reserved 0111: PH[x] pin

7.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI1	5[3:0]			EXTI1	4[3:0]			EXTI1	3[3:0]			EXTI1	2[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **EXTIX[3:0]**: EXTI x configuration (x = 12 to 15)

These bits are written by software to select the source input for the EXTIx external interrupt.

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: Reserved 0110: Reserved 0111: PH[x] pin

47/

8.4 **GPIO** registers

This section gives a detailed description of the GPIO registers.

For a summary of register bits, register address offsets and reset values, refer to Table 26.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODE	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODE	R12[1:0]	MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **MODERy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

8.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	ОТ0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **OTy**: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.

0: Output push-pull (reset state)

1: Output open-drain

8.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..E and H)

Address offset: 0x08

Reset values:

- 0x0C00 0000 for port A
- 0x0000 00C0 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]		EDR12 :0]	OSPEI [1:	EDR11 :0]		EDR10 :0]	OSPE [1:	EDR9 :0]		EDR8 :0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	DR7[1:0]	OSPEE	DR6[1:0]	OSPEE	DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPE [1:	EDR1 :0]		EDR0 0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 2y:2y+1 **OSPEEDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.

00: Low speed

01: Medium speed

10: Fast speed

11: High speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus V_{DD} range and external load.

8.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..E and H)

Address offset: 0x0C

Reset values:

- 0x6400 0000 for port A
- 0x0000 0100 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDF	R13[1:0]	PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPD	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPD	R7[1:0]	PUPD	R6[1:0]	PUPDI	R5[1:0]	PUPDI	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPDI	R1[1:0]	PUPDE	R0[1:0]
rw	rw	rw	rw	rw	rw										

Bits 2y:2y+1 **PUPDRy[1:0]:** Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down

00: No pull-up, pull-down

01: Pull-up 10: Pull-down 11: Reserved

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy**: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port.

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy**: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the $GPIOx_BSRR$ register (x = A..E and H).

8.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..E and H)

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	W	w	W	w	W	W	W	W	W	W	W	W	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
w	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Bits 31:16 **BRy:** Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000.

0: No action on the corresponding ODRx bit

1: Sets the corresponding ODRx bit

8.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..E and H)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU or peripheral reset.

Note:

A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this write sequence.

Each lock bit freezes a specific configuration register (control and alternate function registers).

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
) a a a m s a d								LCKK
						r	Reserved								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK[16]: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset or a peripheral reset occurs.

LOCK key write sequence:

WR LCKR[16] = '1' + LCKR[15:0]

WR LCKR[16] = '0' + LCKR[15:0]

WR LCKR[16] = '1' + LCKR[15:0]

RD LCKR

RD LCKR[16] = '1' (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will return '1' until the next CPU reset.

Bits 15:0 **LCKy:** Port x lock bit y (y= 0..15)

These bits are read/write but can only be written when the LCKK bit is '0.

0: Port configuration not locked

1: Port configuration locked

8.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..E and H)

Address offset: 0x20

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRL	.7[3:0]			AFRL	6[3:0]			AFRL	5[3:0]			AFRL	4[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRL	.3[3:0]			AFRL	2[3:0]			AFRL	1[3:0]		AFRL0[3:0]			
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRLy:** Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:

0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

8.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..E and H)

Address offset: 0x24

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRH	15[3:0]			AFRH′	14[3:0]			AFRH	13[3:0]			AFRH	12[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRH	11[3:0]			AFRH′	10[3:0]			AFRH	RH9[3:0] AFRH8[3					
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 **AFRHy:** Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:

0000: AF0	1000: AF8
0001: AF1	1001: AF9
0010: AF2	1010: AF10
0011: AF3	1011: AF11
0100: AF4	1100: AF12
0101: AF5	1101: AF13
0110: AF6	1110: AF14
0111: AF7	1111: AF15

8.4.11 GPIO register map

The following table gives the GPIO register map and the reset values.

Table 26. GPIO register map and reset values

Offset	Register	31	30	29	28	27	25	24	23	22	21	20	19	18	17	٥	15	13	12	11	10	6	8	7	9	5	4	ю С	7 7	0
0x00	GPIOA_ MODER	MODER15[1:0]		MODER14[1:0]	[o].	MODER13[1:0]		MODER12[1:0]	MODER 11[1:0]	[o:.]	MODER10[1:0]		MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODER6[1:0]	[o.,]o.,	MODER5[1:0]		MODER4[1:0]	[o]	MODER3[1-0]	[6:1]	MODER2[1-0]	5]	MODER1[1:0]		MODER0[1:0]
	Reset value	0	0	0	0	1 1	0	0	0	0	0	0	0	0	0 0)	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0
0x00	GPIOB_ MODER	MODER15[1:0]		MODER 14[1:0]		MODER13[1:0]		MODER12[1:0]	MODER 11[1-0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODER6[1:0]		MODER5[1:0]	,	MODER4[1:0]	[o]	MODER3[1-0]	[o:.]o:	MODER 2[1-0]		MODER1[1:0]		MODER0[1:0]
	Reset value	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0)	0 0	0	0	0	0	1	0	1	0	0	0	0 0	0	0
0x00	GPIOx_MODER (where x = CE and H)	MODER15[1:0]		MODER14[1:0]		MODER13[1:0]		MODER12[1:0]	MODER11[1-0]		MODER10[1:0]		MODER9[1:0]		MODER8[1:0]		MODER7[1:0]	MODER6[1:0]		MODER5[1:0]		MODER4[1:0]		MODER3[1:0]		MODER2[1:0]		MODER1[1:0]		MODER0[1:0]
	Reset value	0	0	0	0	0 0	0	0	0	0	0 (0	0	0	0 0)	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0

161/844 DocID026448 Rev 2

Table 26. GPIO register map and reset values (continued)

Offset	Register	31	5	29 28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	, &	7	9	4	0 4	3	7	7	0
Onset		3	ી	7 7	2 2	2	7	7	2	7	7	_	_	_	_	1	1	_	1	1	1	٥,	w			Ĭ	7	(,,	,,	`	_
0x04	GPIOx_ OTYPER (where x = AE and H)					F	Rese	erved	d							OT15	OT14	OT13	OT12	OT11)	010	0T8	OT7	OT6	OT5					ОТО
	Reset value		-			T _		1		· _	. 1		1			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	GPIOx_ OSPEEDR (where x = CE andH)	OSPEEDR15[1:0]		OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSDEED012[1:0]	OSFEEDN12[1.0]	OSPEEDR11[1:0]		OSPEEDR10[1:0]		OSPEEDR9[1:0]	•	OSPEEDR8[1:0]		OSPEEDB7[1:0]		OSPEEDR6[1:0]		OSPEEDR5[1:0]		OSPEEDB4[1:0]	OG! LEDIX#[1:0]	10.170001	USPEEDR3[1:0]		OSPEEDR2[1:0]	OSPEEDR1[1:0]		OSPEEDR0[1:0]	, , , , , , , , , , , , , , , , , , , ,
	Reset value	0 0)	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	GPIOA_ OSPEEDER	OSPEEDR15[1:0]		OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDB12[1:0]	OSF EEDNIZ[1:0]	OSPEEDR11[1:0]		OSPEEDR10[1:0]	1	OSPEEDR9[1:0]	•	OSPEEDR8[1:0]		OSPEFDR7[1:0]		OSPEEDB6[1-0]		OSPEEDB5[1-0]		OSPEEDB4[1:0]	001 FEDIN	10.52	USPEEDR3[1:0]		OSPEEDR2[1:0]	OSPEEDR1[1:0]		OSPEEDR0[1:0]	,
	Reset value	0 0)	0 0	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	GPIOB_ OSPEEDR	OSPEEDR15[1:0]		OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDB 12[1:0]	OSF EEDN (2[1:0]	OSPEEDR11[1:0]		OSPEEDR10[1:0]	1	OSPEEDR9[1:0]		OSPEEDR8[1:0]		OSPEFDR7[1:0]		OSPEEDR6[1-0]		OSPEEDR5[1:0]		OSPEEDR4[1-0]	OSI EEDIVI :0]	10. 17.00	OSPEEDR3[1:0]		OSPEEDR2[1:0]	OSPEEDR 1[1:0]	,	OSPEEDR0[1:0]	,
	Reset value	0 0)	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
0x0C	GPIOA_PUPDR	PUPDR15[1:0]		PUPDR14[1:0]	PUPDR13[1:0]	[0:1261.0]	. [0.1]21.NUTUT	PUPDR11[1:0]	[o::]::::	PUPDR10[1:0]	1	PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1-0]		PI IPDR6[1-0]		PI IPDR5[1-0]		PI IPDRA11-01	[o:-]t	וסיום	PUPUR3[1:0]		PUPDR2[1:0]	PUPDR1[1:0]		PUPDR0[1:0]	;
	Reset value	0 1		1 0	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0C	GPIOB_PUPDR	PUPDR15[1:0]		PUPDR14[1:0]	PUPDR13[1:0]	DI IDDB1211-01	נטיוקאיאטיי	PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1-0]		PHPDR611-01		PHPDR5[1-0]		PI IPDR411-01	[6:1]	נטינונים	PUPURS[1:0]		PUPDR2[1:0]	PUPDR1[1:0]		PUPDR0[1:0]	
	Reset value	0 0)	0 0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0x0C	GPIOx_PUPDR (where x = CE and H)	PUPDR15[1:0]		PUPDR14[1:0]	PUPDR13[1:0]	10.1761.00	r Or DN 12[1.0]	PUPDR11[1:0]		PUPDR10[1:0]		PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1-0]		PI IPDR6[1-0]		PUPDR511-01		PI IPDR411-01	0:11	10.12	PUPURS[1:0]		PUPDR2[1:0]	PUPDR1[1:0]		PUPDR0[1:0]	
	Reset value	0 0)	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	GPIOx_IDR (where x = AE and H) Reset value		_			F	Rese	erved	d		_					× IDR15	× IDR14	× IDR13	× IDR12	× IDR11	× IDR10	× IDR9	x IDR8	× IDR7	× IDR6	× IDR5			× IDR2	× IDR1	x IDR0
0x14	GPIOx_ODR (where x = AE and H)					F	Rese	erved	d															o ODR7 ×	o ODR6 ×	o ODR5 ×	ODR4				o ODR0 ×
0x18	GPIOx_BSRR (where x = AE and H)	BR15 BR14		BR13 BR12	BR11 BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0		BS14 c		~		_		BS8	BS7 c	BS6 o	BS5			CI		BS0 c
	Reset value	0 0		0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 26. GPIO register map and reset values (continued)

		_		_	т —			_			_	_		- 1		_	_		_	_	_	_			_		т —		1	т —	_		$\overline{}$
Offset	Register	31	30	53	28	27	26	25	24	23	22	21	20	19	18	17	16	15	4	13	12	11	10	6	8	7	9	2	4	က	2	-	0
0x1C	GPIOx_LCKR (where x = AE and H)							Res	serv	ed							LCKK	LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x20	GPIOx_AFRL (where x = AE and H)	Al	FRL	.7[3:	:0]	Al	FRL	6[3:	0]	AF	FRL	5[3:	0]	AF	RL	4[3:	[0	AF	FRL	.3[3:	0]	Al	FRL	2[3:	0]	A	FRL	.1[3:	:0]	Al	FRL	0[3:	0]
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x24	GPIOx_AFRH (where x = AE and H)	AF	RH	15[3	3:0]	AF	RH ⁻	14[3	:0]	AF	RH	13[3	:0]	AF	RH′	2[3	:0]	AF	RH	11[3	:0]	AF	RH	10[3	3:0]	Al	FRH	19[3	:0]	AF	RH	8[3:	.0]
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Refer to Section 2.3: Memory map for the register boundary addresses.

RM0383 Interrupts and events

10 Interrupts and events

10.1 Nested vectored interrupt controller (NVIC)

10.1.1 NVIC features

The nested vector interrupt controller NVIC includes the following features:

- 52 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M4 with FPU)
- 16 programmable priority levels (4 bits of interrupt priority are used)
- low-latency exception and interrupt handling
- power management control
- implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to programming manual PM0214.

10.1.2 SysTick calibration value register

The SysTick calibration value is fixed to 10500, which gives a reference time base of 1 ms with the SysTick clock set to 10.5 MHz (HCLK/8, with HCLK set to 84 MHz).

10.1.3 Interrupt and exception vectors

See *Table 37*, for the vector table for the STM32F411xC/E devices.

10.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 23 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests.

Table 37. Vector table for STM32F411xC/E

Position	Priority	Type of priority	Acronym	Description	Address
	-	-	-	Reserved	0x0000 0000
	-3	fixed	Reset	Reset	0x0000 0004

Table 37. Vector table for STM32F411xC/E (continued)

Position	Priority	Type of priority	Acronym	Description	Address
	-2	fixed	NMI	Non maskable interrupt, Clock Security System	0x0000 0008
	-1	fixed	HardFault	All class of fault	0x0000 000C
	0	settable	MemManage	Memory management	0x0000 0010
	1	settable	BusFault	Pre-fetch fault, memory access fault	0x0000 0014
	2	settable	UsageFault	Undefined instruction or illegal state	0x0000 0018
	-	-	-	Reserved	0x0000 001C - 0x0000 002B
	3	settable	SVCall	System Service call via SWI instruction	0x0000 002C
	4	settable	Debug Monitor	Debug Monitor	0x0000 0030
		-	-	Reserved	0x0000 0034
	5	settable	PendSV	Pendable request for system service	0x0000 0038
	6	settable	Systick	System tick timer	0x0000 003C
0	7	settable	WWDG	Window Watchdog interrupt	0x0000 0040
1	8	settable	EXTI16 / PVD	EXTI Line 16 interrupt / PVD through EXTI line detection interrupt	0x0000 0044
2	9	settable	EXTI21 / TAMP_STAMP	EXTI Line 21 interrupt / Tamper and TimeStamp interrupts through the EXTI line	0x0000 0048
3	10	settable	EXTI22 / RTC_WKUP	EXTI Line 22 interrupt / RTC Wakeup interrupt through the EXTI line	0x0000 004C
4	11	settable	FLASH	Flash global interrupt	0x0000 0050
5	12	settable	RCC	RCC global interrupt	0x0000 0054
6	13	settable	EXTI0	EXTI Line0 interrupt	0x0000 0058
7	14	settable	EXTI1	EXTI Line1 interrupt	0x0000 005C
8	15	settable	EXTI2	EXTI Line2 interrupt	0x0000 0060
9	16	settable	EXTI3	EXTI Line3 interrupt	0x0000 0064
10	17	settable	EXTI4	EXTI Line4 interrupt	0x0000 0068
11	18	settable	DMA1_Stream0	DMA1 Stream0 global interrupt	0x0000 006C
12	19	settable	DMA1_Stream1	DMA1 Stream1 global interrupt	0x0000 0070
13	20	settable	DMA1_Stream2	DMA1 Stream2 global interrupt	0x0000 0074
14	21	settable	DMA1_Stream3	DMA1 Stream3 global interrupt	0x0000 0078

201/844 DocID026448 Rev 2

Table 37. Vector table for STM32F411xC/E (continued)

	,		T	or STM3214TTXC/L (Continued)	
Position	Priority	Type of priority	Acronym	Description	Address
15	22	settable	DMA1_Stream4	DMA1 Stream4 global interrupt	0x0000 007C
16	23	settable	DMA1_Stream5	DMA1 Stream5 global interrupt	0x0000 0080
17	24	settable	DMA1_Stream6	DMA1 Stream6 global interrupt	0x0000 0084
18	25	settable	ADC	ADC1 global interrupts	0x0000 0088
23	30	settable	EXTI9_5	EXTI Line[9:5] interrupts	0x0000 009C
24	31	settable	TIM1_BRK_TIM9	TIM1 Break interrupt and TIM9 global interrupt	0x0000 00A0
25	32	settable	TIM1_UP_TIM10	TIM1 Update interrupt and TIM10 global interrupt	0x0000 00A4
26	33	settable	TIM1_TRG_COM_TIM11	TIM1 Trigger and Commutation interrupts and TIM11 global interrupt	0x0000 00A8
27	34	settable	TIM1_CC	TIM1 Capture Compare interrupt	0x0000 00AC
28	35	settable	TIM2	TIM2 global interrupt	0x0000 00B0
29	36	settable	TIM3	TIM3 global interrupt	0x0000 00B4
30	37	settable	TIM4	TIM4 global interrupt	0x0000 00B8
31	38	settable	I2C1_EV	I ² C1 event interrupt	0x0000 00BC
32	39	settable	I2C1_ER	I ² C1 error interrupt	0x0000 00C0
33	40	settable	I2C2_EV	I ² C2 event interrupt	0x0000 00C4
34	41	settable	I2C2_ER	I ² C2 error interrupt	0x0000 00C8
35	42	settable	SPI1	SPI1 global interrupt	0x0000 00CC
36	43	settable	SPI2	SPI2 global interrupt	0x0000 00D0
37	44	settable	USART1	USART1 global interrupt	0x0000 00D4
38	45	settable	USART2	USART2 global interrupt	0x0000 00D8
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000 00E0
41	48	settable	EXTI17 / RTC_Alarm	EXTI Line 17 interrupt / RTC Alarms (A and B) through EXTI line interrupt	0x0000 00E4
42	49	settable	EXTI18 / OTG_FS WKUP	EXTI Line 18 interrupt / USB On-The-Go FS Wakeup through EXTI line interrupt	0x0000 00E8
47	54	settable	DMA1_Stream7	DMA1 Stream7 global interrupt	0x0000 00FC
49	56	settable	SDIO	SDIO global interrupt	0x0000 0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000 0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000 010C

Table 37. Vector table for STM32F411xC/E (continued)

Position	Priority	Type of priority	Acronym	Description	Address
56	63	settable	DMA2_Stream0	DMA2 Stream0 global interrupt	0x0000 0120
57	64	settable	DMA2_Stream1	DMA2 Stream1 global interrupt	0x0000 0124
58	65	settable	DMA2_Stream2	DMA2 Stream2 global interrupt	0x0000 0128
59	66	settable	DMA2_Stream3	DMA2 Stream3 global interrupt	0x0000 012C
60	67	settable	DMA2_Stream4	DMA2 Stream4 global interrupt	0x0000 0130
67	74	settable	OTG_FS	USB On The Go FS global interrupt	0x0000 014C
68	75	settable	DMA2_Stream5	DMA2 Stream5 global interrupt	0x0000 0150
69	76	settable	DMA2_Stream6	DMA2 Stream6 global interrupt	0x0000 0154
70	77	settable	DMA2_Stream7	DMA2 Stream7 global interrupt	0x0000 0158
71	78	settable	USART6	USART6 global interrupt	0x0000 015C
72	79	settable	I2C3_EV	I ² C3 event interrupt	0x0000 0160
73	80	settable	I2C3_ER	I ² C3 error interrupt	0x0000 0164
81	88	Settable	FPU	FPU global interrupt	0x0000 0184
84	91	settable	SPI4	SPI 4 global interrupt	0x0000 0190
85	92	settable	SPI5	SPI 5 global interrupt	0x0000 0194

10.2.1 EXTI main features

The main features of the EXTI controller are the following:

- independent trigger and mask on each interrupt/event line
- dedicated status bit for each interrupt line
- generation of up to 23 software event/interrupt requests
- detection of external signals with a pulse width lower than the APB2 clock period. Refer
 to the electrical characteristics section of the STM32F4xx datasheets for details on this
 parameter.

203/844 DocID026448 Rev 2

RM0383 Interrupts and events

10.2.2 EXTI block diagram

Figure 29 shows the block diagram.

AMBA APB bus PCLK2 -Peripheral interface 23 23 23 23 23 Rising Software Falling Pending Interrupt interrupt trigger trigger request mask event selection selection register register register register register To NVIC interrupt 23 23 23 controller <u>ź</u>3 Edge detect Pulse Input circuit <u>ź</u>3 generator **2**3 **2**3 line **Event** mask register MS32662V1

Figure 29. External interrupt/event controller block diagram

10.2.3 Wakeup event management

The STM32F4xx are able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated either by:

- enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
 the SEVONPEND bit in the Cortex[®]-M4 with FPU System Control register. When the
 MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC
 IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
 cleared.
- or configuring an external or internal EXTI line in event mode. When the CPU resumes
 from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
 IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 10.2.4: Functional description.

10.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a '1' to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is

generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a '1' in the pending register.

To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a '1' to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set.

An interrupt/event request can also be generated by software by writing a '1' in the software interrupt/event register.

Hardware interrupt selection

To configure the 23 lines as interrupt sources, use the following procedure:

- Configure the mask bits of the 23 interrupt lines (EXTLIMR)
- Configure the Trigger selection bits of the interrupt lines (EXTI_RTSR and EXTI_FTSR)
- Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
 external interrupt controller (EXTI) so that an interrupt coming from one of the 23 lines
 can be correctly acknowledged.

Hardware event selection

To configure the 23 lines as event sources, use the following procedure:

- Configure the mask bits of the 23 event lines (EXTI_EMR)
- Configure the Trigger selection bits of the event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

The 23 lines can be configured as software interrupt/event lines. The following is the procedure to generate a software interrupt.

- Configure the mask bits of the 23 interrupt/event lines (EXTLIMR, EXTLEMR)
- Set the required bit in the software interrupt register (EXTL SWIER)

205/844 DocID026448 Rev 2

10.2.5 External interrupt/event line mapping

Up to 81 GPIOs (STM32F411xC/E) are connected to the 16 external interrupt/event lines in the following manner:

EXTI0[3:0] bits in the SYSCFG_EXTICR1 register PA0 □ PB0 □ EXTI0_ PC0 __-PD0 🗀 PE0 🗅 PH0 □ EXTI1[3:0] bits in the SYSCFG_EXTICR1 register PA1 □-PB1 □-PC1 □ EXTI1 PD1 □-PE1 □-PH1 □ EXTI15[3:0] bits in the SYSCFG_EXTICR4 register PA15 □-PB15 □-EXTI15 PC15 □-PD15 □-PE15 🗅 MS31425V1

Figure 30. External interrupt/event GPIO mapping

The five other EXTI lines are connected as follows:

- EXTI line 16 is connected to the PVD output
- EXTI line 17 is connected to the RTC Alarm event
- EXTI line 18 is connected to the USB OTG FS Wakeup event
- EXTI line 21 is connected to the RTC Tamper and TimeStamp events
- EXTI line 22 is connected to the RTC Wakeup event

10.3 EXTI registers

Refer to Section 1.1: List of abbreviations for registers for a list of abbreviations used in register descriptions.

10.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	Ч				MR22	MR21	Rese	nyod	MR18	MR17	MR16
				I/C2CIVC	u				rw	rw	Nese	i veu	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8	MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 MRx: Interrupt mask on line x

0: Interrupt request from line x is masked1: Interrupt request from line x is not masked

10.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	Ч				MR22	MR21	Rese	nvod	MR18	MR17	MR16
				I/C2CIVC	u				rw	rw	1/636	i veu	rw	rw	rw
15	14	13	12	12 11 1		9	8	7	6	5	4	3	2	1	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8	MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 MRx: Event mask on line x

0: Event request from line x is masked1: Event request from line x is not masked

10.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	4				TR22	TR21	Poor	erved	TR18	TR17	TR16
				Reserve	u				rw	rw	Rese	erveu	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 TRx: Rising trigger event configuration bit of line x

0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line

Note:

The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a rising edge occurs on the external interrupt line while writing to the EXTI_RTSR register, the pending bit is be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition.

10.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	4				TR22	TR21	Rese	nuod	TR18	TR17	TR16
				Reserve	u				rw	rw	Rest	erveu	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4 3		2	1	0
TR15	TR14	TR13	TR12	TR11	TR10	TR9	TR8	TR7	TR6	TR5	TR4	TR3	TR2	TR1	TR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 TRx: Falling trigger event configuration bit of line x

0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line.

Note:

The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a falling edge occurs on the external interrupt line while writing to the EXTI_FTSR register, the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition.

10.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10 Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	d				SWIER 22	SWIER 21	Rese	erved	SWIER 18	SWIER 17	SWIER 16
									rw	rw			rw	rw	rw
15	14	13	12	2 11 10		9	8	7	6	5	4	3	2	1	0
SWIER 15	SWIER 14	SWIER 13	SWIER 12	SWIER SWIER		SWIER 9	SWIER 8	SWIER 7	SWIER 6	SWIER 5	SWIER 4	SWIER 3	SWIER 2	SWIER 1	SWIER 0
rw	rw	rw	rw	rw rw		rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 SWIERx: Software Interrupt on line x

If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an interrupt request generation.

This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit).

10.3.6 Pending register (EXTI_PR)

Address offset: 0x14 Reset value: undefined

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Reserve	4				PR22	PR21	Rese	nuod	PR18	PR17	PR16
				Reserve	u				rc_w1	rc_w1	Rese	erveu	rc_w1	rc_w1	rc_w1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR15	PR14	PR13	PR12	PR11	PR10	PR9	PR8	PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0
rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1	rc_w1

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 PRx: Pending bit

0: No trigger request occurred

1: selected trigger request occurred

This bit is set when the selected edge event arrives on the external interrupt line.

This bit is cleared by programming it to '1'.

10.3.7 EXTI register map

Table 38 gives the EXTI register map and the reset values.

Table 38. External interrupt/event controller register map and reset values

Offset	Register	31	30	29	28	27	56	25	24	23	22	21	20	19	18	41	91	15	14	13	12	11	10	6	80	7	9	5	4	ဗ	2	_	0
0x00	EXTI_IMR				Re	serv	/ed				M [22	IR :21]	Re	ser ed									MF	R[18	3:0]								
	Reset value										0	0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
0x04	EXTI_EMR			Reserved								MR 22:21] Reser ved				MR[18:0]																	
	Reset value										0 0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	EXTI_RTSR		Reserved								T [22	R :21]	Re	ser ed									TF	R[18	:0]								
	Reset value		Reserved						0	0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											0									
0x0C	EXTI_FTSR		Reserved									TR 22:21] Reser ved						TR[18:0]															
	Reset value										0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	EXTI_SWIER		Reserved							SW [22	IER :21]	Re	eser			SWIER[18:0]																	
	Reset value										0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	EXTI_PR		Reserved								R :21]	Re																					
	Reset value										0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Refer to Section 2.3: Memory map for the register boundary addresses.