Metody numeryczne 1 Lista nr 5

1. Gęstość powietrza zmienia się z wysokością h w następujący sposób:

<i>h</i> (km)	0	3	6
ρ (kg/m ³)	1.225	0.905	0.652

Wyraź $\rho(h)$ jako funkcję kwadratową h.

2. Oblicz y'(x) w x=2.1 oraz pierwiastki y(x) korzystając z następujących danych

Х	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3
У	-0.5403	-0.0104	0.9423	1.7445	1.3073	-0.7718	-2.4986	-0.7903	2.7334

3. W poniższej tabeli przedstawiony jest współczynnik oporu c_D sfery w cieczy jako funkcja liczby Reynoldsa Re. Korzystając z naturalnych funkcji sklejanych, znajdź c_D dla Re = 5.50 i 5000.

L		0.2		_			20000
	c_{D}	103	13.9	2.72	8.0	0.401	0.433

Wskazówka. Użyj podwójnie logarytmicznej skali

- 4. Rozwiąż zad.3 za pomocą interpolacji wielomianowej.
- 5. Dopasuj linię prostą i funkcję kwadratową do poniższych danych

X	1.0	2.5	3.5	4.0	1.1	1.8	2.2	3.7
y	6.008	15.722	27.13	33.772	5,257	9.549	11.098	28.828

Która funkcja jest lepiej dopasowana do tych danych?

6. Wykorzystaj pomiary względnej gęstości powietrza ρ na wysokości h (km)

		1.525				7.625	
ρ	1	0.8617	0.7385	0.6292	0.5328	0.4481	0.3741

do obliczenia ρ na wysokości h=10.5 km. Wskazówka. Dopasuj do tych danych funkcję kwadratową metodą najmniejszych kwadratów.