

# Grade for homework: Dimensional Data Modeling Homework Submission

**bootcamp@techcreator.io** <bootcamp@techcreator.io> To:

# FINAL GRADE: A

\*\* This feedback is auto-generated from an LLM \*\*

Thank you for submitting your SQL scripts for review. Let's go through the individual tasks:

#### Task 01:

- 1. **Composite Type film\_struct:** Correctly defines a composite type for films.
- 2. Enum quality\_class\_enum: Correctly creates an enum type for quality classes.
- 3. **Actors Table:** Thetable is well defined with a composite type array and enum. However, after Task 02, the primarykeychanges, which is acceptable given the requirements.

#### Task 02:

- 1. Adding snapshot\_year Column:Successfully adds the required column to the actors table.
- 2. Primary Key Adjustment: Properly adjusts the primary key to include snapshot\_year.
- 3. **Data Insertion:** The insertion logic using aggregations and conditions for determining quality\_class handles thetransformations correctly, reflecting historical actor data per snapshot year.

#### Task 03:

1. DDL for actors\_history\_scd: Successfully creates actors\_history\_scd table with a suitable primary key.

### Task 04:

- 1. Inserting into actors\_history\_scd:
- Proper use of LAG to identify changes in actor data across snapshots.
- Manages grouping of data periods with change detection using a window function for summation.
- Accurately computes start and tentative end dates using window functions.
- Correctly prepares the final SELECT for inserting historical records by leveraging conditional window functions to predict end dates effectively.

## Task 05:

1. **Step 1: Update Changed Rows:** The update operation correctly marks the end\_date for changed historical 2. records.

#### Step 2: Insert New Rows:

- Handles insertion for new records effectively, ensuring that changes are captured.
- The operations are repeated twice, once with TO\_DATE and once with DATE for start\_date. This is duplicative but doesn't affect the correctness. However, it signals a need for optimization by consolidating into a single operation if no additional logic distinctions were required.

Overall, your implementation of Slowly Changing Dimensions Type 2 (SCD Type 2) logic is done effectively with correct use of SQL features like window functions. The scripts align well with intended outcomes and efficiently process changes across snapshots.

## Feedback Recap:

- Redundancy in Task 05 could be optimized to avoid repetitive operations.
- Ensure clear comments accompany your scripts when duplicated logic is necessary.

### **Final Grade:**

```
"letter_grade": "A",
```

```
"passes": true
```

Excellent work! Your submission demonstrates a solid understanding of SQL operations necessary for managing historical data capture in a relational database. Keep up the great work!