PATTERN RECOGNITION LECTURE 4 PROXIMITY MEASURES

LECTURE NOTES 10-01-2019

Proximity Measures

- In order to classify patterns they need to be compared against each other and against a standard.
- To determine this similarity/dissimilarity, proximity measures are used.
- The distance between two patterns is used as a proximity measure.
- It is necessary to classify a new pattern.

Distance Measures

- A distance measure is used to find the dissimilarity between pattern representations.
- Patterns which are more similar should be closer.
- The distance function could be a metric or a non-metric.

Properties

- A metric is a measure for which the following properties hold:
 - \Box Positive Reflexivity : $D(X,X) = 0 \ \forall X$
 - \square Symmetry: $D(X,Y) = D(Y,X) \ \forall X,Y$ and
 - Triangular Inequality:

$$D(X,Z) + D(Z,Y) \ge D(X,Y) \forall X,Y,Z$$

where D(X,Y) gives the distance between X and Y.

Metric Similarity Function

- Uquadratic Form Distance

1. Minkowski Metric/ L_p Norm

Hinkowski Metric is of the form:

$$L_p(X,Y) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{\frac{1}{p}} - ----eqn(1)$$

$$where \ p = 1,2,..., \infty \ and$$

$$d \ is \ the \ dimension$$

- $lue{}$ This is also called the L_p norm.
- \square Depending on the value of p, we get different distance measures.

Lp norm (contd)

												(i, j + 2)												
											(i-1, j+1)	(i, j + 1)	(i+1, j+1)		1									
										(i - 2, j)	(i-1,j)	(<i>i</i> , <i>j</i>)	(i + 1, j)	(i + 2, j)										
											(i-1, j-1)	(i, j - 1)	(i + 1, j - 1)	(i + 2, j - 1)	ĺ									
												(i, j - 2)												
							(i, j + 2)				100	(i, j + 2)					(i, j + 2)							
						(1-1/+1)	(((+ 1)	(i+1, j+1)			(i-1, j+1)	(((+ 1)	(i+1, j+1)			(i = 1 / + 1)	(((+1)	(i+1, j+1)						
						(1.) (1)	(1,) 1 2)	(1 1,) (1)			(1.) (1)	(6,) (1)	(1 1 1,) 1 1)			(1.), (1)	(6,) (1)	(6 + 1,) + 1)						
					(i-2,j)	(i - 1, j)	(i,j)	(i + 1, j)	(i + 2, j)	(i-2,j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j)	(i-2,j)	(i-1,j)	(i, j)	(i + 1, j)	(i + 2, j)					
						(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i+2, j-1)		(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i + 2, j - 1)		(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i+2, j-1)					
							(i, j - 2)					(i, j - 2)					(i, j - 2)							
		(i, j + 2)					(i, j + 2)					(i, j + 2)					(i, j + 2)					(i, j + 2)		
	(i-1, j+1)	(i, j + 1)	(i + 1, j + 1)			(i-1, j+1)	(i, j + 1)	(i+1, j+1)			(i-1, j+1)	(i, j + 1)	(i+1, j+1)			(i-1, j+1)	(i, j + 1)	(i+1, j+1)			(i-1, j+1)	(i, j + 1)	(i+1, j+1)	
					1 (322 - 132					1 (1881) 198					- (480 - 150 - (480 - 150					- 683	li el estiti			177
- 2,j)	(i - 1, j)	(i,j)	(i + 1,j)	(i + 2, j)	(i - 2, j)	(i - 1,j)	(i,j)	(i + 1, j)	(i + 2, j)	(i-2,j)	(i - 1, j)	(i,j)	(i + 1, j)	(i + 2, j)	(i - 2, j)	(i - 1, j)	(i,j)	(i + 1, j)	(i + 2, j)	(i - 2, j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j
	(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i + 2, j - 1)		(i-1, j-1)	(i, j - 1)	(i + 1, j - 1)	(i+2, j-1)		(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i+2, j-1)		(i-1, j-1)	(i, j - 1)	(i+1, j-1)	(i+2, j-1)		(i-1, j-1)	(i, j - 1)	(i + 1, j - 1)	(i + 2, j -
		(i, j - 2)					(i, j - 2)					(i, j - 2)					(i, j - 2)			148 -		(i, j - 2)		
							(i, j + 2)			7-9		(i, j + 2)					(i, j + 2)			200		(i, j + 2)		
						(i-1, j+1)	(i, j + 1)	(i + 1, j + 1)			(i-1, j+1)	(i, j + 1)	(i + 1, j + 1)			(i-1, j+1)	(i, j + 1)	(i+1, j+1)			(i-1, j+1)	(i, j + 1)	(i + 1, j + 1)	
					(i - 2, j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j)	(i - 2, j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j)	(i - 2, j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j)	(i-2,j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2,,
					33000	(1 (1)		(i+1, j-1)	((12/12)		<i>(</i> : 1 : 1)	6	(i+1, j-1)	(() 2 ()		6 1 1	61.1	(i+1, j-1)	(121.0)		(i-1, j-1)	// A	(i+1, j-1)	(1.2.1
						((-1,)-1)	(1,) - 1)	(1+1,)-1)	(1+2, j-1)		(1-1,)-1)	(1,) - 1)	((+1,)-1)	(1+2, 1-1)		(1-1, 1-1)	(1,) - 1)	((+1,)-1)	(1+2, j-1)		((-1,)-1)	(1,) - 1)	((+1,)-1)	(1 + 2,)
							(i, j - 2)					(i, j - 2)					(i, j - 2)					(i, j - 2)		
					Sin An							(i, j + 2)								Since and				- 100 6172
											(i-1, j+1)	(i, j + 1)	(i + 1, j + 1)											
										(i-2,j)	(i-1,j)	(i,j)	(i + 1, j)	(i + 2, j)										
										EYestes				(1.21.3)										
											(1-1, 1-1)	(1,)-1)	(i+1, j-1)	(1 + 2, 1 - 1)										
												(i, j - 2)			1									
										Mark Services														

Manhattan Distance/ L_1 Norm

- When p = 1 is substituted in eqn(1) we get the Manhattan or the city block distance.
- $lue{}$ This is also called the L_1 norm.
- This can be written as:

$$D(X,Y) = (\sum_{i=1}^{d} |x_i - y_i|)$$

L1 norm called as City Block Distance/ taxi-cab distance: Based on 4-connectivity

L1 norm called as Chessboard Distance: Based on 8-connectivity

Euclidean Distance/ L_2 Norm

- \Box When p=2 is substituted in Minkowski metric, we get the *Euclidean distance*.
- \square This is also called the L_2 norm.

$$D(X,Y) = \left(\sum_{i=1}^{d} |x_i - y_i|^2\right)^{\frac{1}{2}}$$

Taxicab or city block distance vs Euclidean Distance

An illustration comparing the taxicab metric to the Euclidean metric on the plane: According to the taxicab metric the red, yellow, and blue paths have the same length which is 12. According to the Euclidean metric, the green path has length $6\sqrt{2} \approx 8.49$, and is the unique shortest path.

L_{∞} Norm and $L_{-\infty}$ Norm

 $\frac{1}{2}$ The L_{∞} norm is:

$$D(X,Y) = max|x_i - y_i|$$

where $i = 1,2,...,d$.

 \square The $L_{-\infty}$ norm is:

$$D(X,Y) = min|x_i - y_i|$$

where $i = 1,2,...,d$.

Lp norm (contd)

 \exists Is L_p norm a metric? Yes, \forall $1 \leq p \leq \infty$

Histogram distance

 https:// stats.stackexchange.com/questions/740 0/how-to-assess-the-similarity-of-two-hi stograms

 https://mpatacchiola.github.io/blog/201 6/11/12/the-simplest-classifier-histogra m-intersection.html

2. Quadratic Form Distance

- It allows comparison across different bin locations.
- Quadratic form metrics consider the cross relation of the bins.
- In a naïve implementation, the color histogram quadratic distance is computationally expensive.
- lacktriangle The quadratic form distance between color histograms h_q and h_t is given by:

$$D(h_q, h_t) = (h_q - h_t)^T A(h_q - h_t)$$

where A is the transform matrix.

Image

Histogram of the given image

Bin by bin relation

Cross bin relation

Histogram L_1 Distance

- If histograms are normalized,

$$D(h_q, h_t) = \sum_{i=1}^{d} [h_q(i) - h_t(i)]$$

where *d* is the dimension

Cases of Quadratic Form Distance

Squared Euclidean Distance

$$D(h_q, h_t) = (h_q - h_t)^T A(h_q - h_t)$$
where $A = I$, Identity matrix
$$D_{L_2}(h_q, h_t) = (h_q - h_t)^T (h_q - h_t)$$

Here, cross bin relations are not considered.

$$D_{L_2}(h_q, h_t) = (h_q - h_t)^2$$

$$= (\sum_{i=1}^d [h_q(i) - h_t(i)])^2$$

Cases of Quadratic Form Distance

☐ Squared Mahalanobis Distance

- lacktriangle Another special case of the quadratic form metric in which the transform matrix A is given by the covariance matrix
- \square i.e. $A = \Sigma^{-1}$
- $\square D(h_q, h_t) = (h_q h_t)^T \Sigma^{-1} (h_q h_t)$

Intuition of Mahalanobis Distance (MD)

When X and Y are uncorrelated, the Euclidean distance from the Centroid can be useful to infer if a point is member of the distribution. The farther it is, the less likely it is a member.

Both Point 1 and Point 2 have the same Euclidean distance from centroid. But only Point 1 is a member of the distribution. To detect Point 2 as outlier, dist[Point 2, centroid) should be much higher than dist[Point 1, Centroid). Mahalanobis distance can be used here instead.

Intuition of MD: Classification

Intuition of MD: Finding Outliers

Mahalanobis Distance: Example 1

Suppose you have data for five people, and each person vector has a height, score on some test, and an age.

X		Y	Z			
Height		Score	Age			
64		580	29			
66		570	33			
68		590	37			
69		660	46			
73		600	55			
Mean	68	600	40			

- \Box The mean of the data is (68.0, 600.0, 40.0).
- □ Now suppose you want to know how far another person, v = (66, 640, 44), is from this data.
- It turns out the Mahalanobis Distance is 5.33 (no units).

□ Find the covariance matrix

$$\square \Sigma = \frac{1}{N-1} Z^T Z$$

$$\Sigma = \frac{1}{4} \begin{bmatrix} -4 & -2 & 0 & 1 & 5 \\ -20 & -30 & -10 & 60 & 0 \\ -11 & -7 & -3 & 6 & 15 \end{bmatrix} \begin{bmatrix} -4 & -20 & -11 \\ -2 & -30 & -7 \\ 0 & -10 & -3 \\ 1 & 60 & 6 \\ 5 & 0 & 15 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 46 & 200 & 139 \\ 200 & 5000 & 820 \\ 139 & 820 & 440 \end{bmatrix}$$

$$\frac{1}{2} \Sigma^{-1} = \begin{bmatrix} 3.6885 & 0.0627 & -1.2821 \\ 0.0627 & 0.0022 & -0.0240 \\ -1.2821 & -0.0240 & 0.4588 \end{bmatrix}$$

$$\square D(h_q, h_t) = (h_q - h_t)^T A(h_q - h_t) - - - Eqn(1)$$

 \square Here $A = \Sigma^{-1}$

- Eqn(1) becomes

$$\begin{bmatrix} -2 & 40 & 4 \end{bmatrix} \begin{bmatrix} 3.6885 & 0.0627 & -1.2821 \\ 0.0627 & 0.0022 & -0.0240 \\ -1.2821 & -0.0240 & 0.4588 \end{bmatrix} \begin{bmatrix} -2 \\ 40 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} -9.9964 & -0.1325 & 3.4413 \end{bmatrix} \begin{bmatrix} -2 \\ 40 \\ 4 \end{bmatrix}$$

$$= \sqrt{28.4573}$$

$$= 5.33$$

Example 2

Given the histogram of a pure red image

$$h_q = [1, 0, 0]^T$$

and a pure orange image:

$$h_t = [0, 1, 0]^T$$

- Find the quadratic form distance and the Euclidean distance between them.

Quadratic form distance-Example 2

$$\begin{array}{c} \Box D(h_q, h_t) = (h_q - h_t)^T A(h_q - h_t) - - - Eqn(1) \\ \Box h_q = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \\ = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ \Box h_t = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$$

$$= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Quadratic form distance-Example 2

$$\begin{array}{c} \square \\ \square \\ h_q - h_t = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$[h_q - h_t]^T = [1 - 1 \quad 0] - -Eqn(2)$$

 \square Substituting Eqn (2) and value of A in Eqn (1),

$$D(h_q, h_t) = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0.9 & 0 \\ 0.9 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Quadratic form distance-Example 2

$$D(h_q, h_t) = \begin{bmatrix} 1 & 0.9 & 0 \\ 0.9 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0.1 - 0.1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

$$= (0.1) + (0.1) + 0$$

$$= 0.2$$

Euclidean Distance-Example 2

3. Edit Distance

Here The popularly used distance metric, called the Minkowski Metric is of the form:

$$L_p(X,Y) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{\frac{1}{p}} - ----eqn(1)$$

$$where \ p = 1,2,..., \infty \ and$$

$$d \ is \ the \ dimension$$

- \square This is also called the L_p norm.
- \square Depending on the value of p, we get different distance measures.

Example

		(i, j + 2)		
	(i-1,j+1)	(i, j + 1)	(i+1,j+1)	
(i-2,j)	(i-1,j)	(i,j)	(i+1,j)	(i+2,j)
	(i-1,j-1)	(i, j - 1)	(i+1,j-1)	(i+2,j-1)
		(i, j - 2)		

So, we get the edit distance to be 3.

THANK YOU