Beauty of

VEDIC SPEED MATHEMATICS

(Journey from Limited Intelligence to Human Bio-Calculator)

Sample Pages of Book

HIGHLY USEFUL FOR Standard/Grade **3rd** to **Ph.D** Students; Parents, Mathematics Teachers, Math Lovers, Placement & Job Interviews; All Entrance & Competitive Exams.

Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm

+91-97640-58-654; **Say Hi to me on WhatsApp**

eBooks & Video Courses: www.Speed16.com/books/vm; +91-97640-58-654

Contents

Level-1	
1. Multiplication	001
2. Division	031
3. Addition	044
4. Subtraction	048
Level-II	
5. Squares	052
6. Square Roots	061
7. Cubes	070
8. Cube Roots	074
9. Digit Sums	082
10. Divisibility	087
11. Decimals, Fractions and Percentages	095
Level-III	
12. Polynomials	108
13. Factorization	116
14. HCF	123
15. Simple Equations	126
16. Quadratic Equations	130
17. Cubic Equations	135
18. Biquadratic Equations	141
19. Simultaneous Equations	146
20. Miscellaneous Topics	149
21. Introduction to Vedic Speed Mathematics	152

Contents

1.	Multiplica	ation	001
	1.1 Base I	Method	001
	1.2 Criss	Cross Method	016
	1.3 Specia	al Cases	024
	1.3.1	Multiplying numbers with repeating 9's	025
	1.3.2	When final digits added up gives power of 10.	026
	1.3.3	Multiplication by 11	027
	1.3.4	Multiplication by 12	028
	1.3.5	Multiplication by 5, 25 and 125	029
2.	Division.		031
	2.1 Base M	Method	031
	2.2 Transp	pose and Apply	037
	2.3 FLAG	Method	041
3.	Addition.		044
	3.1 Right	to Left Addition using Purification	044
	3.2 Left to	Right Addition using Purification	045
	3.3 Other	Scenarios	046
4.	Subtraction	on	048
	4.1 Subtra	action Using All from 9 and the last from 10	048
	4.2 Subtra	action using Purification	049
	4.3 Other	Scenarios	050
5.	Squares		052
	5.1 Square	e Using One More than the Previous One	052
	5.2 Square	e Using Complements and Surpluses	053
	5.3 Square	e Using Proportionately	056
	5.4 Square	e Using Criss Cross Method	057

6.	Square Roots	061
	6.1 Case 1 (Square Roots of Perfect Square Numbers)	062
	6.2 Case 2 (Square Roots of Perfect & Imperfect Square Numbers).	064
7.	Cubes	070
	7.1 Cube Using Complements and Surpluses	070
	7.2 Cube Using Proportionately	072
8.	Cube Roots.	07 4
	8.1 Case 1 (Cube Roots of Perfect Cube Numbers)	075
	8.2 Case 2 (Cube Roots of Perfect & Imperfect Cube Numbers)	077
9.	Digit Sums.	082
	9.1 Addition	083
	9.2 Subtraction.	084
	9.3 Multiplication	084
10.	Divisibility	087
	10.1 Divisibility Rules.	087
	10.2 The Positive Osculators	090
	10.3 The Negative Osculators	092
11.	Decimals, Fractions and Percentages	095
	11.1 Conversion.	096
	11.2 Basic Operations on Decimals	096
	11.3 Basic Operations on Fractions	100
	11.4 Percentages.	102
	11.5 Types of Decimals	104
	11.6 Reciprocals.	104
12.	Polynomials	108
	12.1 Multiplication using Criss Cross Method	109
	12.2 Division using Transpose and Apply	114

13.	Factorization.	116
	13.1 Type I: Simple Quadratic Polynomials	
	13.2 Type II: Homogeneous Quadratic Polynomials	118
	13.3 Type III: Difficult Homogeneous Quadratic Polynomials.	
	13.4Type IV: Cubic Polynomials	
14.	Highest Common Factor (HCF)	123
	14.1 Finding HCF using Sutra	.123
15.	Simple Equations.	.126
	15.1 Solution to Different Types of Examples	126
	15.2 Solution using "If the Set is same, it is ZERO"	.128
16.	Quadratic Equations	130
	16.1 Solution using Calculus	130
	16.2 Verification using Calculus	131
	16.3 Reciprocals "By Mere Observation"	132
	16.4 Solution using "If the Set is same, it is ZERO"	.133
17.	Cubic Equations.	.135
	17.1 Solution using "By the Completion Non Completion"	135
	17.2 Solution using "by Mere Observation"	137
	17.3 Different Cases.	138
18.	Biquadratic Equations	141
	18.1 Solution using "By the Completion/Non Completion"	141
	18.2 Solution using "By Mere Observation"	.143
	18.3 Different Cases.	
19.	Simultaneous Equations	146
	19.1 Solution using Cross Method	.146
	19.2 Solution using "If one is in Ratio, the other is ZERO"	147
	19.3 Solution using "By Addition and Subtraction"	147

20. Miscellaneous Topics	149
20.1 Number System	149
20.2 Raising to 2 nd , 3 rd ,4 th and 5 th Power	150
21. Introduction to Vedic Speed Mathematics	152
21.1 List of Sutras and their Meaning	152
21.2 List of Sub Sutras and their Meaning	154
21.3 Sutras: Meaning and Usage	
21.4 Sub Sutras: Meaning and Usage	

Video Course on "Vedic Speed Mathematics"

Link: www.Speed16.com/books/vm

WhatsApp us on +91-97640-58-654 for any queries.

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.Speed16.com/books/vm
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

Unit 1: MULTIPLICATION

Multiplication means times or repeated addition.

Ex.1: 13×3=39 (or 13+13+13=39)

Ex.2: 24×4=96 (or 24+24+24+24=96)

1.1 Multiplication using Base Method

- 1. Sutra Used is: 2. Nikhilam Navataścaramam Daśatah (निखिलं नवतश्चरमं दशतः) **Meaning:** All from 9 and the last from 10.
- 2. Bases are any positive numbers ending with 0's (zeroes).

Ex: 70, 80, 90, 100, 140, 1300, 5600 etc.

- 3. Working (or functional) Base is always power of 10. Ex: 10 (10¹), 100 (10²), 1000 (10³), 10000 (10⁴) etc.
- 4. Complement = Number Base
- 5. **Surplus** = Number Base
- 6. **Note:** In multiplication, Base method is preferred if given numbers are nearer (closer) to Working Bases. Otherwise Criss Cross method is preferred.

Number	Base	Complement
8	10	-2
93	100	-7
974	1000	-26
845	1000	-155
57	60	-3
1846	1900	-54

Number	Base	Surplus
12	10	+2
107	100	+7
1145	1000	+145
12364	10000	+2364
57	50	+7
1846	1800	+46

In Vedic Speed Mathematics we get answers quickly if we choose Working Bases. So Prefer Working Bases over Bases. Ex. For 93 Base is both 90 and 100. Choose 100 over 90 because 100 is Working Base.

Abbreviations	D: Digit	B: Base	C: Complement
used	S: Surplus	BM: Base Multiple	BR: Base Ratio

Case 1: When both numbers (multiplicand and multiplier) are less than the working base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write complements of multiplicand and multiplier to its right side with signs.
- 3. Answer consists of two parts. Left and Right.
- 4. Left Part: Evaluating any of the cross values.
- 5. Right Part: Product of both complements (right side values).
- 6. **Caution:** Total number of digits in the Right Part should be equal to total number of zeroes in the base. If lesser, add required number of zeroes before the right part. If greater then pass the carry (left most excess digits of right part) to left part.

Ex.1: 7×8	Ex. 1: Here we need to multiply 7 and 8. We
Base $= 10$	choose base as 10, as both the numbers (7 and 8)
7 -3	are nearer to 10. Numbers 7 and 8 are written one
8 -2	below the other. Their complements are -3 and -2
	respectively and they are written at right side. Left
5 6	Part is 5 {7+(-2) or 8+(-3)}. Right Part is product of
56	complements i.e3×-2=6. So final answer is: 56.

Ex.2: 6×7	Ex. 2: 6×7; complements are -4 and -3. Left Part
B = 10	is 3 (6-3 or 7-4) and Right Part is 12 (-4×-3).
6 -4	Here base is having only one zero, so right part
7 -3	should be of single digit. Pass 1 (leftmost excess
	bit of right part) as carry to Left Part. Left Part:
3 12	3+1=4 Right Part: 2. So final answer is: 42.
3+1 2	
4 2	
42	

Ex.3: 94×96	Ex.3: 94×96; Base is 100 as both the given
B = 100	numbers (94 and 96) are closer to 100;
94 -6	complements are -6 and -4. Left Part is 90 (94-4
96 -4	or 96-6). Right Part is 24 (-6*-4). So final
	answer is: 9024.
90 24	
9024	

Ex.4: 90×89	Ex.4: 90×89; complements are -10 and -11. Left
B = 100	Part is 79 (90-11 or 89-10). Right Part: 110 (-
90 -10	10*-11). Here base is having two zeroes, so right
89 -11	part should be of two digits. But, Right Part is of
	three digits. So 1 is passed as carry to Left Part.
79 110	So Left Part becomes 79+1=80 and Right Part
79+1 ¦ 10	becomes 10. So final answer is: 8010.
80 10	
8010	

Ex.5: 997×993	Ex.5: 997×993; Base is 1000. Complements
B = 1000	are -3 and -7. Left Part is 990 (997-7 or 993-3).
997 -3	Right Part is 021 (-3*-7). So final answer is:
993 -7	99021. Note: Result of product of
	complements is 21. But we need to add one
990 021	ZERO before 21. Because base is 1000 &
990021	having THREE zeroes.

- 7. 3D Printers (Sales & Service; Anywhere in the World).
- 8. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 9. IT Solutions and Services
- 10. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 11. Contact: Chaitanya Patil; info@speed16.com

Ex.6: 950×930	Ex.6: 950×930: complements are -50 and -70.
B = 1000	Left Part is 880 (950-70 or 930-50). Right Part
950 -50	is 3500 (-50*-70). Here base is 1000 (Three
930 -70	Zeroes) and Right Part is of 4 digits. So 3 is
	passed as carry to Left Part. So Left Part
880 3500	becomes 880+3=883 and Right Part becomes
880+3 500	500. So final answer is: 883500.
883 500	
883500	

Ex.7: 81×92?	Ex.8: 76×95?	Ex.9: 985×960?
(Base = 100)	(Base = 100)	(Base = 1000)
81 -19	76 -24	985 -15
92 -8	95 -5	960 -40
73 152	71 120	945 600
73+1 52	71+1 20	945600
74 52	72 20	
7452	7220	

Ex.10: 9800×9784?	Ex. 11: 84×94?	Ex.12: 996×975?
(Base = 10000)	(Base = 100)	(Base = 1000)
9800 -200	84 -16	996 -4
9784 -216	94 -6	975 -25
9584 43200	78 96	971 ¦ 100
9584+4 3200	7896	971100
9588 3200		
95883200		

[&]quot;Success is not final; failure is not fatal: It is the courage to continue that counts."

[&]quot;It is better to fail in originality than to succeed in imitation."

[&]quot;The road to success and the road to failure are almost exactly the same."

[&]quot;Success usually comes to those who are too busy to be looking for it."

Case 2: When both numbers are greater than the working base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write surpluses of multiplicand and multiplier to its right side with signs.
- 3. Left Part: Adding any of the cross values.
- 4. Right Part: Product of both surpluses (right side values).
- 5. **Caution:** Total number of digits in the Right Part should be equal to total number of zeroes in the base. If lesser, add required number of zeroes before the right part. If greater then pass the carry (left most excess digits of right part) to left part.

Ex.1:12×14	Ex.1: 12×14; here we need to multiply 12 and 14.
B = 10	Numbers 12 and 14 are written one below the other.
12 +2	Their surplus +2 and +4 respectively and they are
14 +4	written at right side. Left Part is 16 (12+4 or 14+2).
	Right Part is product of surplus i.e. 2×4=8. Here
16 8	base is 10 (Single Zero). Right part is of single
168	digit. So final answer is 168.

Ex.2:16×17	Ex. 2: 16×17; surplus: +6 and +7. Left Part is 23
$\mathbf{B} = 10$	(16+7 or 17+6). Right Part is 42 (6×7). Base is 10
16 +6	(Single Zero). But Right part is having two digits.
17 +7	Leftmost digit of right part (here it is 4) is taken to
	Left part as carry. So Left part becomes 27 (23+4)
23 42	and Right part becomes 2. So final answer is 272.
23+4¦2	
27 2	
272	

It always seems impossible until it's done --Nelson Mandela

Ex.3:109×111	Ex. 3: 109×111; surplus: +9 and +11. Left Part is
B = 100	120 (109+11 or 111+9). Right Part is 99 (9×11).
109 +9	Here base is 100 (Two Zeroes). Right part is
111 +11	having two digits. So no any further calculations
	are required. The final answer is 12099.
120 99	

Ex.4:117×110	Ex. 4: 117×110; surplus: +17 and +10. Left Part
B = 100	is 127 (117+10 or 110+17). Right Part is 170
117 +17	(17×10). Here base is 100 (Two Zeroes). But
110 +10	Right part is having three digits. Leftmost digit
	of right part (here it is 1) is taken to Left part as
127¦170	carry. So Left part becomes 128 (127+1) and
127+1¦70	Right part becomes 70. So final answer is 12870.
128 70	

Ex. 5: 1020×1033	Ex. 5: 1020×1033; surplus: +20 and +33.
B = 1000	Left Part is 1053 (1020+33 or 1033+20).
1020 +20	Right Part is 660 (20×33). Here base is
1033 +33	1000 (Three Zeroes). Right part is having
	three digits. So no any further calculations
1053 ¦ 660	are required. The final answer is 1053660.
1053660	_

Ex.6: 1050×1030	Ex. 6: 1050×1030; surplus: +50 and +30.	
B = 1000	Left Part is 1080 (1050+30 or 1030+50).	
1050 +50	Right Part is 1500 (50×30). Here base is	
1030 +30	1000 (Three Zeroes). But Right part is	
	having four digits. Leftmost digit of right	
1080¦1500	part (here it is 1) is taken to Left part as	
1080+1\;500	carry. So Left part becomes 1081 (1080+1)	
1081 500	and Right part becomes 500. So final	
1081500	answer is 1081500.	

Ex.7: 112×128?	Ex.8: 126×104?	Ex.9: 1048×1040?
(Base = 100)	(Base = 100)	(Base = 1000)
112 +12	126 +26	1048 +48
128 +28	104 +4	1040 +40
140 336	130 104	1088 1920
140+3 36	130+1 04	1088+1 920
143 36	131 04	1089 920
14336	13104	1089920

Ex.10: 12745×10200?	Ex.11: 1024×1006?	Ex.12: 113×107
(Base = 10000)	(Base = 1000)	(Base = 100)
12745 +2745	1024 +24	113 +13
10200 +200	1006 +6	107 +7
12945 549000	1030 144	120 91
12945+54 9000	1030144	12091
12999 9000		
129999000		

Case 3: When one number is lesser and other is greater than the working base:

Working Procedure:

- 1. Write multiplicand and multiplier one below the other.
- 2. Write complement / surplus of multiplicand and multiplier to its right side with signs.
- 3. Left Part: Evaluating any of the cross values as per the sign (adding or subtracting).
- 4. Right Part: Product of both complement and surplus (right side values).
- 5. **Additional Step:** In this case, in the Right Part we always get negative value. Let 'n' be the total number of zeroes in the base. To get 'n' digit positive number in the Right Part, Add 'x' times

of Base to the Right Part and Parallely Subtract 'x' from Left Part.

Ex.1: 8×13	Ex.1: 8×13; Complement of 8 is -2 and Surplus of
B = 10	13 is +3. Left Part is 11 (8+3 or 13-2). Right Part is
08 -2	product of complement and surplus. i.e. $-2\times3=-6$.
13 +3	Here base is 10 & there is only one zero in the base.
	So, in the Right Part we should have one digit
11 ¦ -6	postitive number but having negative value. To get
11-1¦ -6+10	one digit positive number, we need to add ONE
10 ¦ 4	time of base to Right Part. Parallely we need to
=104	subtract 1 from Left Part. Right Part is 4 (:-
	6+10=4) and Left Part is 10 (:11-1=10). So final
	answer is 104.

Ex.2: 106×76	Surplus of 106 is +6 and Complement of 76 is -
B = 100	24. Left Part is 82 (106-26 or 76+6). Right Part
106 +6	is product of surplus and complement. i.e. 6x-
76 -24	24=-144. Here base is 100 & there are two
	zeroes in the base. So, in the Right Part we
82 -144	should have two digit postitive number but
82-21-144+200	having negative value. To get two digit positive
80 56	number, we need to add TWO times of base to
= 8056	Right Part. Parallely we need to subtract 2 from

Left Part. Right Part is 56 (:-144+200=56) and Left Part is 80 (:82-2=80). Final answer is 104. **Note:** If we add one time of base to Right Part; we get -44 (:-144+100=-44). We don't want negative value in the Rigt Part. If we add three times of base; we get 156 (:-144+300=156). We don't want three digit number in the Right Part as our base is 100 and having two zeroes. That's why we choose two times of base. After chosing we get required two digit positive number in the Right Part.

Ex.3: 109×94	Surplus of 109 is +9 and Complement of 94 is -
B = 100	6. Left Part is 103 (109-6 or 94+9). Right Part is
109 +9	product of surplus and complement. i.e. 9x-6=-
94 -6	54. Here base is 100 & there are two zeroes in
	the base. So, in the Right Part we should have
103 -54	two digit postitive number but having negative
103-1;-54+100	value. To get two digit positive number, we
102 46	need to add ONE time of base to Right Part.
=10246	Parallely we need to subtract 1 from Left Part.
	Right Part is 46 (:-54+100=46) and Left Part is
	102 (::103-1=102). Final answer is 10246.

Ex.4: 97×124
B = 100
97 -3
124 +24
121 -72
121-1 -72+100
120 28
=12028

Complement of 97 is -3 and Surplus of 124 is +24. Left Part is 121 (97+24 or 124-3). Right Part is product of complement and surplus. i.e. -3×24=-72. Here base is 100 & there are two zeroes in the base. So, in the Right Part we should have two digit positive number but having negative value. To get two digit positive number, we need to add **ONE** time of base to Right Part. Parallely we need to subtract 1 from Left Part. Right Part is 28 (:-72+100=28) and Left Part is 120 (:121-1=120). Final answer is 12028.

Note: There is an alternative for additional step. Multiply Left Part with base. Add Right Part to it. We will get answer. For example:

Ex.2: Left Part is 82. Base is 100. Multiply both. Product is 8200. Add Right Part (-144) to it. So final answer is 8200 + (-144) = 8200 - 144 = 8056.

Ex.4: Left Part is 121. Base is 100. Multiply both. Product is 12100. Add Right Part (-72) to it. So final answer is 12100 + (-72) = 12100 - 72 = 12028.

Ex.5: 1020×989
B = 1000
1020 +20
989 -11
1009 ¦ -220
1009-1 -220+1000
1008 780
=1008780

Surplus of 1020 is +20 and Complement of 989 is -11. Left Part is 1009 (1020-11 or 989+20). Right Part is product of surplus and complement. i.e. $20\times-11=-220$. Here base is 1000 & there are three zeroes in the base. So, in the Right Part we should have three digit postitive number but having negative value. To get three digit positive number, we need to add **ONE** time of base to Right Part. Parallely we need to subtract 1 from Left Part. Right Part is 780 (:-220+1000=780) and Left Part is 1008 (:1009-1=1008). Final answer is 1008780.

Ex.6: 1250>	<975
Base = 100 0)
1250 +25	0
975 -25	
1225 -6250)
1225-7 -62	250+7000
1218 750	
=1218750	

Surplus of 1250 is +250 and Complement of 975 is -25. Left Part is 1225 (1250-25 or 975+250). Right Part is product of surplus and complement. i.e. 250x-25=-6250. Here base is 1000 & there are three zeroes in the base. So, in the Right Part we should have three digit postitive number but having negative value. To get three digit positive number, we need to add **SEVEN** times of base to Right Part. Parallely we need to subtract 7 from Left Part. Right Part is 750 (::-6250+7000=750) and Left Part is 1218 (:1225-7=1218). Final answer is 1218750

Gratitude is heaven itself - William Blake

"Have the courage to follow your heart and intuition. They somehow already know what you truly want to become. Everything else is secondary." Steve Jobs

Ex.7:	Ex.8:	Ex.9:	Ex.10:
89×112?	92×116?	976×1030?	870×1026?
(Base = 100)	(Base = 100)	(Base = 1000)	(Base =
89 -11	92 -8	976 -24	1000)
112 +12	116 +16	1030 + 30	870 -130
			1026 +26
101 -132	108 -128	1006 -720	
101-2 -132+200	108-2 -128+200	1006-1 -720+1000	896 -3380
99 ¦ 68	106 72	1005 280	896-4 -3380+4000
9968	10672	1005280	892 620
			892620

1.2 Multiplication using Criss Cross Method

Sutra Used: 3. Ūrdhva – tiryagbhyām (ऊर्ध्वतिर्यग्भ्याम्)

Meaning: Vertically & Crosswise

How to Remember? Here you no need to remember any formulas, just you need to understand pattern. Go through graphical representation of various cases and understand pattern. The first part will be multiplication of respective first digits of both multiplier and multiplicand. Last Part will be multiplication of respective last digits of both multiplier and multiplicand. Second Part will be applying criss cross on first two digits of both multiplier and multiplicand. Second last Part will be applying criss cross on second last digits of both multiplier and multiplicand AND SO ON...

Case 1: Two Digit Numbers (2D×2D and 2D×1D) {D: Digit} Answer consists of three parts.

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
$(\mathbf{a} \times \mathbf{c})$	$(\mathbf{a} \times \mathbf{d}) + (\mathbf{b} \times \mathbf{c})$	$(\mathbf{b} \times \mathbf{d})$

Ex. 1: 42 × 57	Ex. 2: 84 × 36
(4×5) $(4\times7 + 2\times5)$ (2×7)	$(8\times3) \mid (8\times6 + 4\times3) \mid (4\times6)$
20 28+10 14	24 48+12 24
20 38 14	24 60 24
20 38+1 4	24 60+2 4
20 39 4	24 62 4
20+3 9 4	24+6 2 4
23 9 4	30 2 4
2394	3024

Ex.1: Put values as per formula. Evaluate all parts. All Parts except first one should contain only one digit. Start observation from Right to Left. If you find more than one digit, then pass excess digits (leftmost) to its immediate left part.

±
Ex. 4: 76 × 59
(7×5) ¦ $(7\times9 + 6\times5)$ ¦ (6×9)
35 63+30 54
35 93 54
35 93+5 4
35 98 4
35+9 8 4
44 8 4
4484

Ex. 5: 78×08	Ex. 6: 83×07
(7×0) ¦ $(7\times8 + 8\times0)$ ¦ (8×8)	(8×0) ¦ $(8\times7 + 2\times0)$ ¦ (3×7)
0 56+0 64	0 56+0 21
0 56 64	0 56 21
0 56+6 4	0 56+2 1
0 62 4	0 58 1
0+6 2 4	0+5 8 1
6 2 4	5 8 1
624	581

Unit 2: DIVISION

Division undoes Multiplication.

Ex. $39 \div 13 = 3(Q)$; 0(R)

Dividend = 39; Divisor = 13; Quotient (Q) = 3; Remainder (R) = $0.39 \div 3 = 13$

∴ 13×3=39 (∵ Division undoes Multiplication.)

2.1 Division Using Base Method

Sutra Used is: 2. Nikhilam Navataścaramam Daśatah

(निखिलं नवतश्चरमं दशतः)

Meaning: All from 9 and Last from 10.

Note: This Formula is preferred when divisor is below the Working base (9, 8, 7, 74, 88, 649, 8463, 9874 etc.).

Keywords: Divisor, Dividend, Quotient, Remainder, Division, Complement, Left Part, Right Part, Vertical Line (†).

In Ex. 1: Divisor (9), Dividend (12), Quotient (1), Remainder (3), Division (Operation), Complement (1), Left Part (1), Right Part (2), Vertical Line (1).

Working Procedure:

- 1. **First Line:** Split the dividend into two parts (Left and Right) using vertical line (i). Total number of digits in the Right Part should be equal to total number of zeroes in the Base.
- Second Line: Left Part = Blank; Right Part = (p*C); where 'p' is Left Part of First Line and 'C' is Complement of Divisor.
 Note: Here, Ignore Negative Sign of Complement.
- 3. Third Line or Answer Line: Left Part: Fetch Left Part Value of First Line to Third Line as it is; Right Part: Add Right Part Values of First and Second Lines. Left Part is Quotient and Right Part is Remainder.

4. **Note:** If Remainder is greater than divisor, then divide Remainder by same divisor using above process. For Quotient: Add Quotient Parts of all Iterations and for Remainder just consider Remainder Part of Last Iteration.

Ex.1:12÷9	Ex.1: Here divisor is 9 and Dividend is 12. As
B:10; C:1	divisor is of one digit, right part contains only one
9) 1 ¦ 2	digit. So left part is 1 and right part is 2. In the
¦ 1	second line, left part is blank and right part is
	$1\times1=1$ (Left Part is 1 and complement is 1). In the
1 3	third line we add left and right parts. Left part
Q:1; R:3	becomes 1 (1+0) and right part becomes 3 (2+1).
	Left part is quotient and right part is Remainder. So
	1 is quotient and 3 is Remainder.

Ex.2: 21÷8	Ex.3: 12÷7	Ex.4: 10÷6	Ex.5: 11÷6
B: 10; C: 2	B: 10; C: 3	B: 10; C: 4	B: 10; C: 4
8) 2 ¦ 1	7) 1 ¦ 2	6) 1 ¦ 0	6) 1 ¦ 1
¦ 4	13	¦ 4	¦ 4
2 5	1 5	1 ¦ 4	1 5
Q: 2; R: 5	Q: 1; R: 5	Q: 1; R: 4	Q:1; R:5

Ex.6: 74÷9 (B: 10; C: 1)			
9) 7 ¦ 4 9) 1 ¦ 1 (a+b) ¦ b			
17	1	(7+1) ¦ 2	
		8 2	
7 ¦ 11 (a) 1 ¦ 2 (b) Q: 8; R: 2			

Books, eBooks, **Video Course**, FREE Workbook & FREE Online Training on Vedic Speed Mathematics:

www.Speed16.com/books/vm

2.2 Division using Transpose and Apply

Sutra: 4. Parāvartya Yojayet (परावर्त्य योजयेत्)

Meaning: Transpose and Apply

Note: This Sutra is used in division when divisor is both below and above the base.

Ex: Below Base (9; 8; 74; 69; 849; 736; 9746; 6478; 71255 etc.) Ex: Above Base (12; 104; 246; 4264; 24364; 42361, 36431 etc.) First we will understand about Vinculum Numbers Concept.

2.2.1 Vinculum Numbers

A number that has atleast one vinculum digit is called vinculum number. Notation: Either dotted or dash above the number or Strikethrough.

```
Ex. 132; 9681; 223; 6238; 84; 23; 7326; 8; 3

132 = 100-30+2 = 72

9681 = 9000-600-80+1 = 8321

223 = 200+20-3 = 217

6238 = -6000+200+30-8 = -5778

84 = -80+4 = -76

23 = 20-3 = 17

7326 = 7000-300+20-6 = 6714

8 = -8

3 = -3
```

2.2.2 Division using Transpose & Apply (Above Working Base) Working Procedure:

- 1. Split the dividend into two parts (left and right) using vertical line (| or |). Total number of digits in right part should be equal to total number of zeroes in Base. Write divisor to the left of dividend and Kiles just below the divisor.
- 2. Bring down the first digit of left part.

- 3. Multiply first digit with each digit of Kiles and go on placing the product from second spot of second line onwards.
- 4. Calculate the value of column (addition or subtraction, as per signs) and write the result on third line (answer line).
- 5. Again multiply the next number of answer line with each digit of Kiles and go on placing the product from third spot and so on until you reach an end.

About Kiles:

- 1. Kiles are negation of complements/surpluses separted by semicolons.
- 2. Total number of Kiles should be Equivalent to total number of Zeroes in the Base.
- 3. If lesser, add required number of Zeroes before Kiles.
- 4. If Greater, multiply/divide the Divisor by suitable number to get new Divisor (which should be nearer to Working Base). To get final Quotient multiply/divide the intermediate Quotient Part by the same number. Remainder is Constant.

Note:

- 1. Left Part is Quotient and Right Part is Remainder.
- 2. If Right Part (Remainder) is negative then add divisor to Right Part and Parallely Subtract Quotient by 1.
- 3. If you encounter vinculum numbers, convert them to regular numbers.

Ex.1:123÷11; Here Base=10 and Surplus=1; Kiles=-1

Step 1:	Step 2:	Step 3:	Step 4:	Step 5:
11) 1 2 3	11) 1 2 3	11) 1 2 3	11) 1 2 3	11) 1 2 3
-1	-1	-1 +1	-1 -1 1 1	1 1 2

So, Answer is = 11 (Q); 2 (R)

Ex.2: 1793÷163	Ex.3: 147÷12	Ex.4: 1232÷114
B: 100; S: 63	B: 10; S: 2	B: 100; S: 14
163) 1 7 9 3	12) 1 4 7	114) 1 2 3 2
-6;-3 -6 -3	-2 -2 -4	-1;-4 -1 -4
1-6 -3		¦-1-4
	1 2 3	
1 1 0 0	Q: 12; R: 3	1 1 2 2
11 ¦ 0		1 1 -20-2
Q: 11 ; R: 0		1 1 1-22
		(11-1) ¦ (-22+114)
		10 92
		Q: 10; R: 92

In Ex.4: In the right part, after converting Vinculum number to regular number, we get -22. We got negative value in the right part. So add divisor (114) to -22. Parallely subtract 1 from left part. In Ex. 5 to 10: Vinculum numbers are generated. Convert them to regular numbers.

Ex.5: 248÷16	Ex.6: 241÷11	Ex.7: 1179÷123
B: 10; S: 6	B: 10; S: 1	B: 100; S: 23
16) 2 4 8	11) 2 4 1	123) 1 1 7 9
-6 -12 48	-1 -2 -2	-2;-3 -2 -3
		12 3
2 -8 56	2 2 1	1
(20-8) 56	22 -1	1 + 17 2
12 56	(22-1) (11-1)	(10-1) ¦ 72
12+3 56-48	21 10	9 ¦ 72
Q: 15; R: 8	Q: 21; R: 10	Q: 9; R: 72
(: 16*3=48)		

Unit 5: SQUARES

What is Square: a square is the result of multiplying a number by itself.

For example Square of 3 is $9(3\times3)$

Square of 12 is 144 (12×12)

Square of -12 is $144 (-12 \times -12)$

Square of -45 is $2025 (-45 \times -45)$.

5.1 Square Using One More than the Previous One

Sutra: 1. Ekādhikena Pūrvena

एकाधिकेन पूर्वेण

Meaning: One More than the Previous One

Note: This sutra is used to obtain squre of given number which ends with digit 5 (Ex. 15, 125, 345, 4585, 6485, 9745 etc.).

Working Procedure:

- 1. Split the given number into two parts (left and right) using vertical line (¦) or using any other symbol. Right part is last digit i.e 5 and Left part is remaining digits.
- 2. Multiply left part with its next number in the number line. Right part is 25 (Square of 5).
- 3. Remove vertical line, the obtained number is required square of given number.

$Ex.1:15^2$	Ex.2:25 ²	$Ex.3:75^2$	$Ex.4:95^2$	Ex.5:115 ²
1 5	2 5	7 5	9 5	11 ¦ 5
1×2 ¦ 25	2×3 ¦ 25	7×8 ¦ 25	9×10 ¦ 25	11×12 ¦ 25
2 25	6 25	56 25	90 25	132 25
225	625	5625	9025	13225

eBooks & Video Courses: www.Speed16.com/books/vm; +91-97640-58-654

Ex.6:-145 ²	$Ex.7:-205^2$	Ex.8: 795 ²	Ex.9: 1015 ²	$10:7995^2$
14 5	20 5	79 ¦ 5	101 5	799 ¦ 5
14×15 ¦ 25	20×21 ¦ 25	79×80 ¦ 25	101×102 ¦25	799×800¦25
210 25	420 25	6320 25	10302 25	39200¦25
21025	42025	632025	1030225	3920025

Ex.3: Left part is 7 and right part is 5. Multiply 7 with its next number in the nuber line (8). It gives 56. Right part is 25 (square of 5). After removing vertical line we get 5625, which is square of 75.

Ex.8: Left part is 79 and right part is 5. Multiply 79 with its next number in the number line (80). It gives 6320. Right part is 25 (square of 5). After removing vertical line we get 632025, which is square of 795.

Note: For negative numbers; ignore sign.

5.2 Square Using Complements/Surpluses

Sub Sutra 7: Yāvadūnam Tāvadūnīkrtya Vargaňca Yojayet Meaning: Lessen by the Deficiency and set up the square of that deficiency.

Note: This sutra is used to obtain squre of given numbers which are nearer to working (functional) base (Ex 87, 76, 112, 980, 1021 etc).

Case 1: When Number is below the Working Base. Working Procedure:

- 1. Note down given number, its Base and Complement.
- 2. Answer consists of Two Parts (Left Part and Right Part)
- 3. Right Part is square of Complement.
- 4. Left Part = (Given Number + Complement).

5. **Note:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser add required number of zeroes, if greater pass the carry (leftmost excess digits of right part) to left part.

Ex.1: 94 ²	Ex.2: 97 ²	Ex.3: 87 ²
Base: 100	Base: 100	B:100; C: -13
Complement: -06	Complement: -03	87-13 -13 ²
94-6¦-6 ²	$97-3 \mid -3^2$	74 ¦ 169
88 36	94 09	74+1 ¦ 69
8836	9409	75 ¦ 69
		7569

Ex.4: 893 ²	Ex.5: 9790 ²	Ex.6: 98930 ²
B:1000; C:-107	B:10000; C:-210	B:100000; C: -1070
893-107 ¦ -107 ²	$9790-210 \mid -210^2$	98930-1070 ¦-1070 ²
786 11449	9580 44100	97860 1144900
786+11 449	9580+4 4100	97860+11 44900
797 ¦ 449	9584 4100	97871 44900
797449	95844100	9787144900

Case 2: When Number is above the Working Base. Working Procedure:

- 1. Note down given number, its Base and Surplus.
- 2. Answer consists of Two Parts (Left Part and Right Part)
- 3. Right Part is Square of Surplus.
- 4. Left Part = (Given Number + Surplus).
- 5. **Note:** Total number of digits in the Right Part should be same as total number of zeroes in the base. If lesser add required number of zeroes, if greater pass the carry (leftmost excess digits of right part) to left part.

Ex.1: 108 ²	Ex.2: 103^2	Ex.3: 1104 ²	Ex.4: 1250^2
Base: 100	Base: 100	B:1000; S:+104	B:1000; S:+250
Surplus:+08	Surplus: +03	$1104+104 \mid 104^2$	$1250+2501250^2$
$108+8 \mid 8^2$	$103+3 \mid 3^2$	1208 10816	1500 62500
116 ¦ 64	106 ¦ 09	1208+10 816	1500+62 500
11664	10609	1218 816	1562 500
		1218816	1562500

Ex.5: 1205 ²	Ex.6: 1301 ²	Ex.7: 11320 ²
B:1000; S:+205	B:1000; S:+301	B:10000; S:+1320
$1205+205 \mid 205^2$	$1301+301 \mid 301^2$	11320+1320¦1320 ²
1410¦42025	1602 90601	12640¦1742400
1410+42 025	1602+90 ¦ 601	12640+174 2400
1452 025	1692 601	12814 2400
1452025	1692601	128142400

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: www.speed16.com/books/vm
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

Unit 12: POLYNOMIALS

Polynomials: Polynomial is addition /subtraction /multiplication /division of constants (coefficients), variables and exponents, but

- 1. Division by variable is not allowed (but division by constant is allowed).
- 2. Variable's exponents can only be whole numbers (0,1,2,3,...).
- 3. Number of terms should be finite.
- Constants: 14, 36, -74, -963 etc.
- Variables: x, y, z, a, b, c, p, q, r, s etc.
- Exponents: x^2 , x^3 etc.
- If p(x) is a polynomial in x, the highest power of x is called degree of polynomial.
- Polynomials with 1 term is called monomial, 2:binomial; 3:Trinomials

Ex.1: $x^2 + 7x + 12$ (Degree: **2**)

Ex.2: $x^3-13x^2+2x-87$ (Degree: **3**);

Ex.3: x^4-8x^2+12x (Degree:**4**); etc.

Types of Polynomials:

- A polynomial of degree 1 is called linear polynomial.
- A polynomial of degree 2 is called quadratic polynomial.
- A polynomial of degree 3 is called cubic polynomial.
- A polynomial of degree 4 is called biquadratic (or quartic) polynomial.

Books, eBooks, **Video Course**, FREE Workbook & FREE Online Training on Vedic Speed Mathematics:

www.Speed16.com/books/vm

12.1 Multiplication using Criss Cross Method

Sutra 3: Ūrdhva – tiryagbhyām; Meaning: Vertically & Crosswise

Note: Read Multiplication using Criss Cross Method from Multiplication Unit

Steps:

- 1. Write coefficients of given polynomials one below the other separated by space or vertical bar.
- 2. Multiply coefficients using formula (refer formula OR graphical representation).
- 3. Last part is constant. Go on incrementing powers of variable by 1 from right. Second last is x, then x², x³, x⁴, x⁵ and so on. **Note:** Write coefficient as zero if any term is absent.

CASE 1: $(2 \times 2; 2 \times 1)$

First Part:	Second Part:	Third Part:
a b	a b	a b
c d	c d	c d
(a×c)	$(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})$	(b × d)

Ex.1: (x+3) (x+5)	Ex.2: (x+3) (x-5)	Ex.3: (x-3) (x-5)
1 3	1 3	1 -3
1 5	1 -5	1 -5
$(1\times1) (1\times5+1\times3) (3\times5)$	$(1\times1) (1\times-5+1\times3) (3\times-5)$	$(1\times1) (1\times-5+1\times-3) $
1 8 15	1 -2 -15	(-3×-5)
$x^2 + 8x + 15$	$x^2-2x-15$	1 -8 15
		$x^2-8x+15$
$x^2 + 8x + 15$	$x^2-2x-15$	$x^2-8x+15$

Never think there is anything impossible for the soul-Swami Vivekananda

Ex.4: (x+3) (x)	Ex.5: (-x+3) (-x+5)	Ex.6: (-x-3) (-x-5)
1 3	-1 3	-1 -3
1 0	-1 5	-1 -5
(1×1) (1×0+1×3)	(-1×-1) (-1×5+-	(-1×-1) (-1×-5+-
(3×0)	1×3) (3×5)	1×-3) (-3×-5)
1 3 0	1 -8 15	1 8 15
$x^2 + 3x + 0$	$x^2-8x+15$	$x^2 + 8x + 15$
x^2+3x	$x^2-8x+15$	$x^2 + 8x + 15$

CASE 2: (3×3; 3×2; 3×1)

First Part:	Second	Third Part:	Fourth	Fifth Part:
	Part:		Part:	
a b c d e f	a b c d e f	a b c d e f	a b c d e f	a b c d e f
(a×d)	$(\mathbf{a} \times \mathbf{e} + \mathbf{b} \times \mathbf{d})$	$(\mathbf{a} \times \mathbf{f} + \mathbf{b} \times \mathbf{e})$	$(\mathbf{b} \times \mathbf{f} + \mathbf{c} \times \mathbf{e})$	(c×f)
		+ c × d)		

Ex.1: $(x^2+5x+1)(3x^2-10x+15)$	Ex.2: $(2x^2-4x-7)(4x^2+20x-12)$
1 5 1	2 -4 -7
3 -10 15	4 20 -12
(1×3) (1×-10+3×5)	(2×4) (2×20+4×-4) (2×-12+-
(1×15+5×-10+1×3) (5×15+-	4×20+4×-7) (-4×-12+20×-7)
10×1) (1×15)	(-7×-12)
3 5 -32 65 15	8 24 -132 -92 84
$3x^4 + 5x^3 - 32x^2 + 65x + 15$	$8x^4 + 24x^3 - 132x^2 - 92x + 84$
$3x^4 + 5x^3 - 32x^2 + 65x + 15$	$8x^4 + 24x^3 - 132x^2 - 92x + 84$

The greatest sin is to think that you are weak.--Swami Vivekananda

CASE 3: $(4 \times 3; 4 \times 3; 4 \times 2; 4 \times 1)$

First Part:	Second Part:	Third Part:	Fourth Part:
a b c d e f g h	a b c d e f g h	a b c d e f g h	a b c d e f g h
(a×e)	$(\mathbf{a} \times \mathbf{f}) + (\mathbf{b} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{g}) + (\mathbf{b} \times \mathbf{f}) + (\mathbf{c} \times \mathbf{e})$	$(\mathbf{a} \times \mathbf{h}) + (\mathbf{b} \times \mathbf{g}) + (\mathbf{c} \times \mathbf{f}) + (\mathbf{d} \times \mathbf{e})$

Fifth Part:	Sixth Part:	Seventh Part:
a b c d	a b c d	a b c d
e f g h	e f g h	e f g h
$(\mathbf{b} \times \mathbf{h}) + (\mathbf{c} \times \mathbf{g}) + (\mathbf{d} \times \mathbf{f})$	$(\mathbf{c} \times \mathbf{h}) + (\mathbf{d} \times \mathbf{g})$	(d×h)

Ex.1:
$$(x^3+5x^2+3x+2) (2x^3-4x^2-7x+3)$$

1 5 3 2
2 -4 -7 3
 $(1\times2) \mid (1\times-4)+(5\times2) \mid (1\times-7)+(5\times-4)+(3\times2) \mid (1\times3)+(5\times-7)+(3\times-4)+(2\times2) \mid (5\times3)+(3\times-7)+(2\times-4) \mid (3\times3)+(2\times-7) \mid (2\times3)$
2 \left| 6 \left| -21 \right| -40 \right| -14 \right| -5 \right| 6
 $2x^6+6x^5-21x^4-40x^3-14x^2-5x+6$
 $2x^6+6x^5-21x^4-40x^3-14x^2-5x+6$

[&]quot;As long as one keeps searching, the answers come." - Joan Baez

[&]quot;Whatever you can do or dream you can, begin it. Boldness has genius, power and magic in it." - Johann von Goethe

[&]quot;They say that time changes things, but you actually have to change them yourself." - Andy Warhol

12.2 Division using Transpose and Apply

Sutra: 4. Parāvartya Yojayet (परावर्त्य योजयेत)

Meaning: Transpose and Apply

Steps:

- 1. At the right side of #: Write dividend
- 2. At the left side of #: Write negation of coefficients of all terms of divisor except first one (separate coefficients using |).
- 3. Now write the coefficient of first term of dividend below the dotted lines.
- 4. Individually go on multiplying left part of # with coefficients (which are present below dotted lines) and go on placing the product below the second term onwards of dividend.
- 5. Evaluate columns and write the value below the line.
- 6. Continue Step 4& 5 till end.

Now separate Quotient and Remainder parts using !. Left side is Quotient Part and Right side is Remainder Part. Total number of values in the reminder part is same as that of degree of divisor or the total number of values present at the left of #.

For Final Quotient and Remainder: Last is constant, go on incrementing powers of variable by 1. Second last is x, then x^2 , x^3 , x^4 , x^5 and so on.

eBooks & Video Courses: www.Speed16.com/books/vm; +91-97640-58-654

eBooks & Video Courses: www.Speed16.com/books/vm; +91-97640-58-654

3:
$$(3x^4-2x^3+x^2-2x+3)$$
; (x^2-2x+6)
+2|-6 # $3x^4$ -2 x^3 + x^2 -2 x +3
+6 -18
8 -24
-18 54
-18 54
-18 54
-216 -288
-216 -288
-216 -288
-227 -24 19 -72 | 290 -286
-23 x^2 +4 x -9 R:-44 x +57
Q: $3x^2$ +4 x -9 R:-44 x +57

Exercise:

1.
$$(2x^3-3x^2+2x+3) \times (x^3-2x^2-3x+4)$$

2. $(3x^3+4x^2+2) \times (2x^3+6x^2-7x-2)$
3. $(3x^4-2x^3-2x^2+4) \times (3x^3+2x^2-4x-3)$
4. $(2x^4+3x^3+x^2) \times (2x^3-5x^2-x-7)$
5. $(2x^6+x^4-x^3+x^2-2x-2) \div (x^2-3x+5)$
6. $(x^6+2x^4-3x^3+x^2-2x-4) \div (x^3-2x+6)$
7. $(x^5+2x^4-3x^3-4) \div (x^2+3)$
8. $(3x^6+4x^5-3x^3+x^2-4) \div (2x^3-2x+6)$

Answers:

1. $(2x^6-7x^5+2x^4+16x^3-24x^2-x+12)$
2. $(6x^6 + 20x^5 + 3x^4 - 30x^3 + 4x^2 - 14x - 4)$
3. $(9x^7 - 22x^5 - 5x^4 + 26x^3 + 14x^2 - 16x - 12)$
4. $(4x^7 - 4x^6 - 15x^5 - 22x^4 - 22x^3 - 7x^2)$
5. Q: $(2x^4+6x^3+9x^2-4x-56)$ R: $(-150x+278)$
6. Q: (x^3+4x-9) R: $(9x^2-44x+50)$
7. Q: (x^3+2x^2-6x-6) R: $(18x+14)$
8. Q: $(3/2.x^3+2x^2+3/2.x-4)$ R: $(-8x^2-17x+20)$

We need silence to be able to touch souls. - Mother Teresa

Unit 13: FACTORIZATION

It is the decomposition of a mathematical object (number / polynomial) into a product of other objects (factors) which when multiplied together gives the original.

$$12 = 3\times4$$
 (3 and 4 are the factors of 12)
 $144 = 16\times9$ (16 and 9 are the factors of 144)
 $x^2+7x+12 = (x+3)(x+4)$
Factors of $(x^2+7x+12)$ are $(x+3)$ and $(x+4)$
 $x^2-38x+48 = (x-6)(5x-8)$
Factors of $(x^2-38x+48)$ are $(x-6)$ and $(5x-8)$

13.1 Type I: Factorization of Simple Quadratic Polynomials using "Proportionately" and "The First by the First & Last by the Last"

Sub Sutra 1 and 3

General Form of Quadratic Equation: ax^2+bx+c

Step 1: Spit the middle coefficient (b) into two parts (say i and j) such that

b=i+j and $a\times c=i\times j$

Step 2: First Factor: ax+i (and REDUCE if Possible)

Step 3: Second Factor: ax+j (If possible reduce only if you haven't reduced in above Step. Don't reduce here if you have reduced in above step)

Note: Verification of answer is done using Sub Sutra "The Sum of the Product is equal to the Product of the Sum" {Sub Sutra 13: Gunitasamuccayah Samuccayagunitah (गुणितसमुच्चयः समुच्चयगुणितः) sutra} Refer Introduction Unit to know more.

Read 'F' as: Factor V as: Verification of Answers using sub sutra 13.

eBooks & Video Courses: www.Speed16.com/books/vm; +91-97640-58-654

	Ex.1: $x^2+7x+12$	Ex.2: $5x^2 + 24x + 27$
a;b;c	1; 7; 12	5; 24; 27
i & j	3 & 4	15 & 9
••	7=3+4; 1×12=3×4	24=15+9; 5×27=15×9
1 st F	(x+3)	5x+15 => 5(x+3) => (x+3)
$2^{\text{nd}} \mathbf{F}$	(x+4)	(5x+9)
Final	(x+3) and (x+4)	x+3 and 5x+9
V	(1+3)(1+4)=(1+7+12)	(1+3)(5+9)=(5+24+27)
	20=20	56=56

Ex.2: Here in 1^{st} Factor, we got (5x+15). 5 is common in the both the terms. We remove that common 5 and factor becomes (x+3).

	Ex.3: $5x^2-38x+48$	Ex.4: $3x^2 + 18x + 15$
a;b;c	5; -38; 48	3; 18; 15
i & j	-30 & -8	3 & 15
••	-38=-30-8; 5×48=-30×-8	18=3+15; 3×15=3×15
$1^{\mathrm{st}}\mathbf{F}$	5x-30 => 5(x-6) => (x-6)	3x+3 => 3(x+1) => (x+1)
$2^{\text{nd}} \mathbf{F}$	(5x-8)	(3x+15)
Final	(x-6) and (5x-8)	(x+1) and (3x+15)
V	(1-6)(5-8)=(5-38+48)	(1+1)(3+15)=(3+18+15)
	15=15	36=36

Ex.3: Here in 1^{st} Factor, we got (5x-30). 5 is common in the both the terms. We remove that common 5 and factor becomes (x-6).

Ex.4: Here in 1^{st} Factor, we got (3x+3). 3 is common in the both the terms. We remove that common 3 and factor becomes (x+1). Our 2^{nd} Facor is (3x+15). Here common term is 3, but here we are not reducing as we have reduced in step 2. So keep 2^{nd} factor as it is.

- Books, eBooks, Video Course, FREE Workbook & FREE Online Training on Vedic Speed Mathematics, C & Python Programming: <u>www.Speed16.com/books/vm</u>
- 2. 3D Printers (Sales & Service; Anywhere in the World).
- 3. eBook Creation (epub/mobi) & Publishing (Amazon Kindle, iBooks, Kobo etc.) Services.
- 4. IT Solutions and Services
- 5. Reach us for **FREE Home Delivery** of Vedic Speed Mathematics (Anywhere in the World)
- 6. Contact: Chaitanya Patil; info@speed16.com

+91-97640-58-654 **Say Hi to me on WhatsApp**