Valuation Dynamics

in Models with Financial Frictions

Lars Peter Hansen (University of Chicago)

Paymon Khorrami (University of Chicago)

Fabrice Tourre (Northwestern University)

Open Source Macroeconomics Lab July 11, 2018

Research Objective

Compare/contrast implications of DSGE models with financial frictions through the study of their nonlinear transition mechanisms

▶ Environment

Continuous time with Brownian shocks Financial intermediaries Heterogeneous productivity or market access

▶ Comparison Targets

Macroeconomic quantity implications Asset pricing implications Macro- and micro-prudential policies

Challenges

Model features:

- > Nonlinear transition mechanism
- ▷ Some shock configurations have big consequences
- ▷ Endogenous transitions across two regimes: (one where sector wide constraints are binding and another when they are not)

Model assessments:

- ▶ Alter or extend linear methods of analysis
- > Perform cross model comparisons

Approaches

- Opening the black box: structural approach hold fixed some aspects of the economic environment (including parameters) while changing others and exploring implications
- ▶ Imposing observational constraints: holding fixed some implications and changing parameters accordingly to match these while altering the economic environment

"Nesting" Model

▶ Technology

Technology

- A-K production function with $a_e \ge a_h$ and adjustment costs
- o (total factor) productivity shocks
- o growth rate and stochastic vol shocks (long-run risk)
- idiosyncratic shocks

▶ Markets

- \circ capital traded with shorting constraint at a price Q_t
- experts face a skin-in-the-game constraint where the fraction of held capital, χ_t , is restricted ($\chi_t \ge \chi$)

> Preferences

- \circ recursive utility, discount rate δ , IES $\frac{1}{\rho}$, and risk aversion γ
- \circ different preferences with $\gamma_h \geq \gamma_e$
- OLG for technical reasons

Models Nested

Complete markets with long run risk

Bansal & Yaron (2004) Hansen, Heaton & Li (2008)

Eberly & Wang (2011)

▶ Complete markets with heterogeneous preferences

Longstaff & Wang (2012) Garleanu & Panageas (2015)

▶ Incomplete market/limited participation

Basak & Cuoco (1998)

Kogan & Makarov & Uppal (2007)

He & Krishnamurthy (2012)

▶ Incomplete market/capital misallocation

Brunnermeier & Sannikov (2014)

Complete markets for aggregate risk and stochastic volatility
 Di Tella (2017)

Diagnostic Tools I

▶ Quantities

- o consumption/wealth ratio
- o investment rate
- output growth

▶ Prices

- risk-free rate
- risk-price vectors (one per agent)
- o capital price

▶ State dynamics

- drift and diffusion of the aggregate state vector
- ergodic density of state vector

Models of Asset Valuation

Two channels:

- ▷ Stochastic growth modeled as a process $G = \{G_t\}$ where G_t captures growth between dates zero and t.
- ▷ Stochastic discounting modeled as a process $S = \{S_t\}$ where S_t assigns risk-adjusted prices to cash flows at date t.

Date zero prices of a payoff G_t are

$$\pi = \mathbb{E}\left(S_t G_t | \mathcal{F}_0\right)$$

where \mathcal{F}_0 captures current period information.

Stochastic discounting reflects investor preferences through the intertemporal marginal rate of substitution for marginal investors.

Impulse Problem

Ragnar Frisch (1933):

There are several alternative ways in which one may approach the impulse problem One way which I believe is particularly fruitful and promising is to study what would become of the solution of a determinate dynamic system if it were exposed to a stream of erratic shocks that constantly upsets the continuous evolution, and by so doing introduces into the system the energy necessary to maintain the swings.

Irving Fisher (1930):

The manner in which risk operates upon time preference will differ, among other things, according to the particular periods in the future to which the risk applies.

Impulse Response Functions for Linear Models

▶ Model:

$$Y_{t+1} - Y_t = \mathbb{D} \cdot Z_t + \mathbb{F} \cdot W_{t+1}$$
$$Z_{t+1} = \mathbb{A}Z_t + \mathbb{B}W_{t+1}$$

where W_{t+1} is a multivariate standard normal independent of date t information.

 \triangleright What is the impact of W_1 on the future of Y.

$$\mathbb{R}_{j+1}^{y} = \mathbb{R}_{j}^{y} + \mathbb{D}' \mathbb{R}_{j-1}^{z} + \mathbb{F}'$$
$$\mathbb{R}_{j+1}^{z} = \mathbb{A} \mathbb{R}_{j}^{z}$$

with initializations $\mathbb{R}_0^y = \mathbb{F}', \mathbb{R}_0^z = \mathbb{B}$ and j denotes the time gap.

Diagnostic Tools II

Transition dynamics and valuation through altering cash flow exposure to shocks.

- Study implication on the price today of changing the exposure tomorrow on a cash flow at some future date.
- ▶ Represent shock price elasticities by normalizing the exposure and studying the impact on the logarithms of the expected returns.
- ▶ Construct pricing counterpart to impulse response functions.

Unpack the Term Structure of Risk Premia!

Counterparts to impulse response functions pertinent to valuation:

These are the ingredients to risk premia, and they have a term structure induced by the changes in the investment horizons.

Hansen-Scheinkman (*Finance and Stochastics*), Borovička and Hansen ((*Journal of Econometrics*), Borovička-Hansen-Scheinkman (*Mathematical and Financial Economics*)

Construct Elasticities

- Construct shock elasticities as counterparts to impulse response functions
- \triangleright Use (exponential) martingale perturbation $D_{(\tau,\tau+s)}$ to an underlying positive (multiplicative) process M where:

$$d \ln M_t = \mu_m(X_t) dt + \sigma_m(X_t) \cdot dW_t$$

$$\epsilon_m(x, t, \tau) := \lim_{s \downarrow 0} \frac{d}{ds} \log \mathbb{E} \left[\frac{M_t}{M_0} D_{(\tau, \tau + s)} | X_0 = x \right]$$

where dW_t is a vector of Brownian increments.

- \triangleright Apply to a cash-flow G_t and stochastic discount factor S_t
 - \circ shock exposure elasticity $\epsilon_g(x, t, \tau)$;
 - shock cost elasticity $\epsilon_{sg}(x, t, \tau)$;
 - \circ shock price elasticity $\epsilon_g(x,t,\tau) \epsilon_{sg}(x,t,\tau)$

In what follows $\tau = 0$ or $\tau = t$.

Interpret Elasticities

Recall

$$\epsilon_m(x,t,\tau) = \lim_{s\downarrow 0} \frac{d}{ds} \log \mathbb{E}\left[\frac{M_t}{M_0} D_{(\tau,\tau+s)} | X_0 = x\right]$$

where $D_{(\tau,\tau+s)}$ is an exponential martingale perturbation.

Two interpretations:

Depend on current state, horizon, and date when the perturbation occurs.

What do These Elasticities Contribute?

- ▶ What shocks investors do care about as measured by expected return compensation?
- ▶ How do these compensations vary across states and over horizons?
- ▶ How do the shadow compensation differ across agent type?

Overview of Solution Method

- \triangleright Markov equilibrium aggregate state vector X_t :
 - exogenous states: Z_t (growth), V_t (agg. stochastic vol.), and ς_t (idio. stochastic vol.)

endogenous state: $W_t := \frac{N_{e,t}}{N_{e,t} + N_{b,t}}$ (wealth share)

- ightharpoonup "Value function" approach: $U_i(N_{i,t},X_t)=N_{i,t}^{1-\gamma_i}\xi_i(X_t)$ and $N_{i,t}$ is the individual net wealth
- \triangleright (ξ_e, ξ_h) solutions to second order non-linear PDEs implicit FD scheme with artificial time derivative
- ▶ Each time-step: compute aggregate state dynamics and prices using the value functions from the previous time-step
- ▶ Endogenous state partition due to occasionally-binding constraints
- ▷ Implementation in C++ allowing for HPC

Computation: Value Functions

Scaled value functions ξ_i solve PDEs like

$$0 = K_i + A_i \xi_i + B_i \cdot \partial_x \xi_i + \operatorname{trace}[C_i C_i' \partial_{xx'} \xi_i], \quad x = (w, z, v, \varsigma),$$

where the coefficients are:

$$K_{i} = K_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$A_{i} = A_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$B_{i} = B_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

$$C_{i} = C_{i}(x, \xi_{e}, \xi_{h}, \partial_{x}\xi_{e}, \partial_{x}\xi_{h})$$

The dependence of A, B, C on (ξ_e, ξ_h) arises due to general equilibrium.

We solve this PDE system with an iterative approach with two steps:

- \triangleright given coefficients, we solve the linear PDE and obtain $\{\xi_i\}_{i=e,h}$
- \triangleright given PDE solution $\{\xi_i\}_{i=e,h}$, we update coefficients using equilibrium constraints

Computation: Constraints

Capital distribution $\kappa \in [0, 1]$ and expert equity issuance $\chi \in [\underline{\chi}, 1]$ determine the occasionally-binding constraints of the models:

$$0 = \min(1 - \kappa, -\alpha_h)$$

$$0 = \min(\chi - \chi, \alpha_e),$$

where α_i is agent *i*'s endogenous premium on capital.

Economic intuition.

- Experts hold all capital ($\kappa = 1$) if and only if households obtain no premium for holding it ($\alpha_h < 0$)
- \triangleright Experts issue as much equity as possible ($\chi = \underline{\chi}$) if and only if their inside equity compensation exceeds the outside equity compensation ($\alpha_e > 0$)

Computation: Constraints

Variational inequalities. Algebraic equations on part of the state space (when constraints bind) and first-order non-linear elliptic PDEs on the complement (when constraints are slack).

$$0 = \min(1 - \kappa, -\alpha_h)$$

$$0 = \min(\chi - \chi, \alpha_e),$$

where

$$\alpha_h = F_h(x, \kappa, \partial_x \kappa, \chi, \partial_x \chi)$$

$$\alpha_e = F_e(x, \kappa, \partial_x \kappa, \chi, \partial_x \chi).$$

Solution method. Use "explicit" first difference scheme with false transient. See Oberman (2006)

$$\frac{\kappa^{t+\Delta} - \kappa^t}{\Delta} = \min \left[1 - \kappa^t, F_h(x, \kappa^t, \partial_x \kappa^t, \chi^t, \partial_x \chi^t) \right]$$

Binding Constraints

- ▶ When is does the constraint always bind?
- ▶ Economic setting
 - experts are the only producers
 - \circ skin-in-the-game constraint $\chi \geq \chi = .5$
 - o TFP shocks only
 - \circ EIS = 1
- ▷ Compare homogeneous RRA ($\gamma_e = \gamma_h$) to heterogeneous RRA ($\gamma_e < \gamma_h$)

Binding Constraints

Expert's skin-in-the-game χ in the two models.

Binding Constraints

Expert's shadow risk prices π_e in the two models.

Shocks and Financial Frictions

- ▶ How do financial frictions affect agents' attitudes about shocks?
- - o experts are the only producers
 - shocks to producitivity, growth rate, and volatility
 - \circ RRA = 3, EIS = 1
- ▷ Compare model with a skin in the game constraint ($\chi \ge \underline{\chi} = .5$) vs. model without frictions ($\chi = 0$)

Shocks and Financial Frictions

Expert's and household's productivity risk prices π_e , π_h .

- ▷ "Expert" agents in the economy are either more productive or less risk averse?
- - o experts and households can both produce
 - \circ no equity-issuance $\chi \equiv \chi = 1$
 - o shocks to TFP level, growth rate, and volatility
 - \circ EIS = 1
- ▷ Compare an economy with differences in productivity ($a_e > a_h$ but $\gamma_e = \gamma_h = 3$) to one in with differences in risk aversion ($\gamma_e = 2, \gamma_h = 8$ but $a_e = a_h$)

$$a_e > a_h, \gamma_e = \gamma_h$$

$$\gamma_e < \gamma_h, a_e = a_h$$

Relative capital distribution κ .

Expert's TFP risk price π_e in the two models.

Expert's productivity risk price π_e in the two models.

Productivity shock-exposure elasticities

Productivity shock price elasticities for experts.

Productivity shock price elasticities for households.

Growth-rate shock exposure elasticities for aggregate consumption.

Growth-rate shock price elasticities for experts.

Household growth-rate shock price elasticities.

Conclusion / Next Steps

- Compare to smooth within regime models that target different time periods
- ▶ Provide user-friendly web application to compare and contrast models...

Web Application

Inverse of EIS (Experts)
□ 0.5 🕜 0.75 🕜 1 🕑 1.25 □ 1.5
Inverse of EIS (Households)
□ 0.5 □ 0.75 🗷 1 □ 1.25 □ 1.5
Equity Issuance Constraint
□ 0.25 □ 0.5 □ 0.75 🗷 1
Risk Aversion (Experts)
☑ 1 ☑ 3 ☑ 5
Risk Aversion (Households)
№ 1 □ 3 □ 5

Select your desired constellation of models...

Web Application

Tabs separating outcomes for prices, dynamics, etc...

Technology

Efficiency units of capital K_t follow

$$dK_{t} = K_{t} \left[\left(Z_{t} + \iota_{t} - \delta \right) dt + \sqrt{V_{t}} \sigma \cdot dW_{t} \right]$$

Exogenous state variables (S_t, Z_t) follow

$$dZ_t = \lambda_z(\overline{z} - Z_t)dt + \sqrt{V_t}\sigma_v \cdot dW_t$$

$$dV_t = \lambda_v(\overline{v} - V_t)dt + \sqrt{V_t}\sigma_v \cdot dW_t$$

Adjustment costs: investment $\iota_t K_t dt$ costs $\Phi(\iota_t) k_t dt$ in output

