

STATISTICAL COMPUTATION

WEEK 7 - RESAMPLING

Annisa Auliya I Melda Puspita

GET TO KNOW US

ANNISA AULIYA R.

082334174749

I MELDA PUSPITA L.

085257113961

https://intip.in/KomstatC2023

MATERIALS

- Bootstrap
- Jackknife

• • •

ALGORITHM

- Generate a large number of "bootstrap" samples by resampling (with replacement)
 from the dataset
- Resample with the same structure (dependence, sample sizes) as used in the original sample
- Compute your estimator, $\hat{ heta}$, (here, $\hat{ heta}=\overline{X}$), for each of the bootstrap samples
- Compute the the estimator and "standard deviation" from the statistics calculated above.

$$\hat{\theta}_{bootstrap} = \hat{\theta}_b = \frac{1}{REP} \sum_{i=1}^{REP} \hat{\theta}_{b,i} \qquad \widehat{se}_{boot} \left[\overline{X} \right] = \sqrt{\widehat{\sigma}_b^2} \qquad \widehat{\sigma}_b^2 = \frac{\sum_{j=1}^{B} (\overline{X}^{(j)} - \overline{X}^{(j)})^2}{B - 1}$$

For other estimators, simply replace \overline{X} with the $\hat{\theta}$ of your choice.

Bootstrap sample

Bootstrap estimates

1:
$$(X_1^{(1)}, X_2^{(1)}, ..., X_n^{(1)}) \rightarrow \hat{\theta}(X_1^{(1)}, X_2^{(1)}, ..., X_n^{(1)}) = \overline{X}^{(1)}$$

2: $(X_1^{(2)}, X_2^{(2)}, ..., X_n^{(2)}) \rightarrow \hat{\theta}(X_1^{(2)}, X_2^{(2)}, ..., X_n^{(2)}) = \overline{X}^{(2)}$
 \vdots

B:
$$(X_1^{(B)}, X_2^{(B)}, ..., X_n^{(B)}) \rightarrow \hat{\theta}(X_1^{(B)}, X_2^{(B)}, ..., X_n^{(B)}) = \overline{X}^{(B)}$$

$$\hat{\theta}_{bootstrap} = \hat{\theta}_b = \frac{1}{REP} \sum_{i=1}^{REP} \hat{\theta}_{b,i}$$

$$\overline{\overline{X}}^{(.)} = \frac{1}{B} \sum_{j=1}^{B} \overline{X}^{(j)}$$

$$\widehat{se_{boot}}\left[\overline{X}\right] = \sqrt{\widehat{\sigma}_b^2}$$

$$\hat{\sigma}_b^2 = \frac{\sum_{j=1}^{B} (\overline{X}^{(j)} - \overline{X}^{(j)})^2}{B - 1}$$

• • •

ALGORITHM

- Resampling by removing the ith sample elements, i = 1, 2, ..., n, so we get the ith resample (i = 1, 2, ..., n)
- Compute your estimator, $\hat{\theta}$, (here, $\hat{\theta} = \overline{X}$), for each of the jackknife samples
- Compute the the estimator and "standard deviation" from the statistics calculated above.

$$\hat{\theta}_{jackknife} = \hat{\theta}_j = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_{j,i} \qquad \widehat{se}_{jack} = \sqrt{\frac{n-1}{n} \sum_{i=1}^n (\hat{\theta}_{(i)} - \overline{\hat{\theta}}_{(.)})^2}$$

For other estimators, simply replace \overline{X} with the $\widehat{\theta}$ of your choice.

ALGORITHM

χ_1	x_2	<i>x</i> ₃	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈		x_N
x_1	*2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈		x_N
x_1	x_2	23	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈		x_N
:	:	:	:	:	:	:	:	٠.	:
x_1	x_2	x_3	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈		XN

$$\hat{\theta}_{jackknife} = \hat{\theta}_j = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_{j,i} \qquad \widehat{se}_{jack} = \sqrt{\frac{n-1}{n} \sum_{i=1}^n (\hat{\theta}_{(i)} - \overline{\hat{\theta}}_{(.)})^2}$$

THANKS

https://intip.in/KomstatC2023