1.4 Position, momentum, and truslation

Until now, all explicit examples involved finite - dimensional matrices.

Generalize to continuous degrees of Greedom

Want to describe particle in 3D by wavefunction $\psi(x,y,z)$

Simplify to 1D: 4(x)

Want $1/(x)|^2 dx = probability particle is in region dx$

Natural Hilbert space: $\mathcal{L}^2(\mathbb{R})$: $\int_{-\infty}^{\infty}$ Square integrable functions $\int_{-\infty}^{\infty} |\psi(x)|^2 < \infty$.

[To precisely define, reed Lebesque reasure,...]

Can do QM in this Francuark. Z2(R) is a separable Hilbert space.

Typical observables on Z121(IR):

Pears projection on interval [a, b]

 $(P_{ca,b}, f)(x) = \begin{cases} f(x), & a \leq x \leq b \\ 0, & otherwise \end{cases}$

QM breaks down	good operators evalues 1 or (of some scale > 10 ⁻³⁸ cm	ond diagonalize into on busis to busis to busis on use Prant for only respects.
Problem:	This approach introduces uphysical point	h while mathematically correct, innecessory complications from nt of view.
Most o	perators of int	erest cannot be diagonalized in H.
Ex.	position momentum Energy	$P = -i\hbar \frac{\partial}{\partial x}$ $H = \frac{P^2}{2m} + V(x) (\text{for example})$
estates of X -	→ <u> </u>	support at a point, $ 4 ^2 = 0$ except at x. support everywhere, $\int (4 ^2 = \infty)$
Solution (D these e eigenveet	irac): I gnown peraturs as acrows formally,	ne this problem. Theat all ceptable and include their ever if not in II.
	Duote from Var	
Dirac's app	roach:	
Replaye 13>	discrete basis, 3 in Contin	lai) with continuous basis nuous domain (like (-00,00)).

A lai) = a; lai)
$$\Longrightarrow = |3| = 3|3|$$

(a; laj) = Sij $\Longrightarrow \langle 2|3' \rangle = S(3-3')$

2 |a; \times ai| = I $\Longrightarrow \int_{\delta} d^{2}_{\delta} |3 \times 2| = I$.

Brief review of Dirac δ function: I "distribution"

 $\delta(3) = 0$, when $3 \neq 0$
 $\int_{-\delta}^{a} S(3) d^{2}_{\delta} = 1$, $\forall a > 0$

Therefore δ is a limit of smooth functions in the series δ is a limit of smooth functions in the series δ is δ in δ in

ENotation: X is always operator. X', X'' are eigenvalues. $Y' = X' \times X'' \times X''$

1x'> is not in Il, but can still treat as state for most operations; justifiable in terms of appropriate limits.

Note: X is not measurable to arbitrary precision experimentally enough so not really an observable, but a convenient formal tool.

Working with X, P:

Write

14> = [dx 1xxx114>

= Jdx' \$(x') 1x'>

 s_0 $\psi(x') = \langle x' | \psi \rangle$

The probability that $0 \le X \le D$ is given by $\int_{a}^{b} dx' \left| \psi(x') \right|^{2} = \int_{a}^{b} dx' \left| \psi(x') \right|^{2}.$

= < 41 Pra, 107

Momentum operator

$$P = -ih \frac{\partial}{\partial x}$$

Pis generator of translation

Commutation relation [X, P] = ih [recoll [A, 0] = 1 Imp. for brake dim]
[Related to {X, p} = 1 through classical - quantum correspondent foundation of "matrix mechanics" of Bohn Jardan, etc
From general uncertainty relation. $ \left[\langle \Delta X^2 \rangle \langle \Delta p^2 \rangle \ge K^2/4 \right] $
Soundunctions cont be localized in X and in p.
Momentum basis
Construct a basis of states with
$ p p'\rangle = p' p'\rangle.$ $ x_{now} - i \frac{\partial}{\partial x'} \langle x' p'\rangle = p' \langle x' p'\rangle$
want $\langle p' p''\rangle = Ne^{ip'x'/k}$
want $\langle p' p'' \rangle = S(p' - p'')$ So $\int dx' \langle p' x' \times x' p'' \rangle = \left(dx' N ^2 e^{ix'(p'' - p')/k} \right)$
= INI2. 2πh. S(p'-p")
$\langle x' p'\rangle = \frac{1}{2\pi\kappa} e^{ip'x'/\kappa}$

$$\int dp' |p' \times p'|$$
= $\int dx' dx'' dp' |x' \times x'| |p' \times p'| \times x'' \times x''|$
= $\int dx' dx'' dp' |x' > \frac{1}{2\pi k} e^{-\frac{1}{2\pi k}} (x'' - x'') / (x''' - x''') / (x''' - x'$

Former tondoms

$$|\psi\rangle = \int dp' |p' \times p'| \psi\rangle$$

$$= \int dp' |\phi(p')| |p'\rangle$$

$$\phi(p') = \langle p'|\psi\rangle$$

$$= \int dx' \langle p'|x'\rangle \langle x'|\psi\rangle$$

$$= \frac{1}{\sqrt{2\pi\kappa}} \int dx' e^{-ip'x'/\kappa} \psi(x')$$

similarly

Uncertainty principle $\langle \Delta x^2 \times \Delta p^2 \rangle = k^2/4$ relates with of wavefunction $\psi(x')$ and Fourier transform $\psi(p')$

Generalize to 3D

H = 11(x) @ 11(9) @ 12(6)

14) = fdxdydz 4(x,y,z) 1x,y,z)

1x, y, 2) = 1x> @ 1y> @ 1Z> is bosis for 1e

Translation group

 $T(\vec{a}) | \vec{x} \rangle = | \vec{x} + \vec{a} \rangle$, $\vec{a} \in \mathbb{R}^{2}$.

R's forms a group under addition \$\vec{a} + 5\vec{b}\$ (closed, associative, identity \$\phi\$, inverses -\vec{a}).

A representation of a group G on Il is a map R from G1 to linear operators on Il so that R (Identif) = 1, R (ab) . R (a) R (b).

T is a representation of the 3D travelation group on Il.

丁[†](は) = 丁[†](は) = 丁(-は) 丁(はもら) = 丁(は)丁(ら) 丁(の) = 1

Realization: T(ā) = e -iā. P/K [p:,pj]=0 → Tā)T6)=T6)Tā

Active picture:

Passine picture: $\psi(\vec{x}) \Rightarrow \psi(\vec{x} - \vec{a})$ (penk at \vec{a})

 $T(\vec{a}) \int \psi(\vec{x}') |\vec{x}'\rangle d\vec{z}' = \int \psi(\vec{x}') |\vec{x}'+\vec{a}\rangle d\vec{z}'$ $= \int \psi(\vec{x}''\vec{a}) |\vec{x}'\rangle d\vec{x}''$