タイトル

2131701 齋藤悠希

1 Preparation

1.1 Banach Space

定義 1 (線形空間の公理). 空でない集合 X が,係数体 $\mathbb K$ 上の線形空間であるとは,任意の $u+v\in X$ とスカラー $\alpha\in\mathbb K$ に対して,加法 $u+v\in X$ とスカラー乗法 $\alpha u\in X$ が定義されていて,任意の $u,v,w\in X$ とスカラー $\alpha,\beta\in\mathbb K$ に対して次のことが成り立つことである.

- 1. (u+v) + w = u + (v+w)
- 2. u + v = v + u
- 3. u + 0 = u となる $0 \in X$ が一意に存在
- 4. u + (-u) = 0 となる $-u \in X$ が一意に存在
- 5. $\alpha(u+v) = \alpha u + \alpha v$
- 6. $(\alpha + \beta)u = \alpha u + \beta u$
- 7. $(\alpha\beta)u = \alpha(\beta u)$
- 8. $1u = u, 1 \in \mathbb{K}$

定義 2 (ノルムとノルム空間の定義). X を係数体 \mathbb{K} 上の線形空間とする. X で定義された関数 $||\cdot||: X \to \mathbb{K}$ 上で定義された関数が X のノルムであるとは

- 1. $||u|| \ge 0, \quad u \in X$
- 2. $||u|| = 0 \Leftrightarrow u = 0$
- 3. $||\alpha u|| = |\alpha|||u||, \quad (\alpha \in \mathbb{K}, u \in X)$
- 4. $||u+v|| \le ||u|| + ||v||$

が成立することである. さらに X に 1つのノルムが指定されているとき, X はノルム空間という.

定義 ${\bf 3}$ (ノルム空間の収束と極限). X をノルム空間とする. X の点列 $(u_n) \subset X$ は

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall N \geq N$$
 に対して $||u_n - u|| < \epsilon$

のとき, 点 $u \in X$ に収束するといい,

$$||u_n - u|| \to 0, \ (n \to \infty)$$

と表す. このとき, u を u_n の極限といい,

$$u_n - u, \ (n \to \infty)$$

と表す.

定義 4 (Cauchy 列). X をノルム空間とする. そのとき X が Cauchy 列であるとは

$$u_n - u_m \to 0, \ (n, m \to \infty)$$

が成立することである. 即ち

$$||u_n - u_m|| \to 0, \ (n, m \to \infty)$$

が成立することである.

定義 ${\bf 5}$ (完備). X をノルム空間とする. X が完備であるとは、任意の Cauchy 列 (u_n) が X の中で極限をもつことである. すなわち、任意の Cauchy 列 $(u_n\subset X)$ が

$$||u_n-u||\to 0, (n\to 0)$$

となる極限 u を X 内に持つことである.

定義 6 (Banach 空間). ノルム空間 X が Banach 空間であるとは、X が完備であることである.

定理 1 (逆三角不等式). X をノルム空間とする. 任意の $u,v \in X$ について次の不等式を満たす.

$$|||u|| - ||v||| \le ||u - v||$$

証明. 任意の $u, v \in X$ について

$$||u|| = ||u - v + v|| \le ||u - v|| + ||v||$$
$$||v|| = ||v - u + u|| \le ||v - u|| + ||u|| = ||u - v|| + ||u||$$

となる. よって

$$||u|| - ||v|| \le ||u - v|| ||v|| - ||u|| \le ||u - v||$$

となるため,

$$|||u|| - ||v||| \le ||u - v||$$

を持つ.

定義 $\mathbf{7}$ (有界列). X をノルム空間とする. そのとき X の点列 (u_n) が有界列とは任意の $n \in \mathbb{N}$ に対して

$$||u_n|| \leq M$$

となる定数 M > 0 が存在することである.

定理 2 (Cauchy 列ならば有界列). X をノルム空間とする. そのとき X の点列 (u_n) が Cauchy 列ならば有界列でもある.

証明. X の点列 (u_n) が Cauchy 列であるために, $\epsilon - N$ 論法を用いた表記で

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N$$
に対して $||u_n - u_m|| < \epsilon$

を満たす. $\epsilon = 1$ としても、それに対応した N が存在し、任意の $n \ge N$ に対して

$$||u_n - u_N|| < 1$$

を満たす.

任意の $n \geq N$ に対して $\|u_n\|$ が $\|u_N\|$ で評価できることを示す.逆三角不等式である定理 1 を用いると

$$|||u_n|| - ||u_N|| \le ||u_n - u_N|| < 1$$

となる. 絶対値の性質より $|||u_n - u_N||| < 1$ は

$$||u_N|| - 1 \le ||u_n|| < ||u_N|| + 1$$

となる. よって

$$M = \max\{\|u_1\|, \|u_2\|, \cdots, \|u_{N-1}\|, \|u_N\| + 1\}$$

とすると、任意の $n \in \mathbb{N}$ について

$$||u_n|| \leq M$$

が成り立つため、点列 (u_N) は有界列である.

定義 8 (線形部分空間). 線形空間 X の空でない集合 M が任意の元 $u,v\in M$ と任意の係数体 $\alpha\in\mathbb{K}$ に対して

$$u + v \in M\alpha u \in M$$

を満たすとき,M は線形空間 X の線形部分空間と呼ぶ.

定義 9 (ノルム空間の開球). X をノルム空間とする. $x \in X$ とし, r > 0 を正実数とする. そのとき、集合

$$B_X(x,r) := \{ y \in X \mid ||x - y||_X < r \}$$

を中心 x, 半径 r の開球という. X が明らかな場合は $B_X(x,r)$ を省略して B(x,r) と表記する.

定義 10 (ノルム空間の開集合). X をノルム空間とし,M を X の部分集合とする.任意の $x \in M$ に対して, $B_X(x,r) \subset M$ となる r>0 が存在する場合,M が開集合であるという.

定義 11 (ノルム空間の閉集合)。Xをノルム空間とし,Mを Xの部分集合とする。Mが閉集合 であるとは,Mの任意の点列 (u_n) の極限 $u\in X$ が M にも属することである。すなわち,点列 $(u_n)\subset M$ について

$$u_n \to u, \quad (n \to \infty) \Rightarrow u \in M$$

であるとき,Mは閉集合であるという.

定義 12 (閉部分空間). X をノルム空間とし,M を X の線形部分空間が閉集合であるとき,M を 閉部分空間である.

1.2 Operator

定義 13 (作用素). ある線形空間 X から別の線形空間 Yへの作用素 A とは、

$$\mathcal{D}(A) := \{ u \in X \mid Au \in Y \}$$

としたとき, $\mathcal{D}(A)$ のどんな元に対しても,それぞれ集合 Yのただ一つの元を指定する規則のことである. また, $\mathcal{D}(A)$ は A の定義域と呼ばれ

$$\mathcal{R}(A) := \{ Au \in Y \mid u \in \mathcal{D}(A) \}$$

を値域と呼ぶ

定義 14 (単射). 線形空間 Xから線形空間 Yへの作用素 A が

$$u_1 \neq u_2, \quad \forall u_1, u_2 \in \mathcal{D}(A) \Rightarrow A(u_1) \neq A(u_2)$$

定義 15 (全射). 線形空間 Xから線形空間 Yへの作用素 A が

$$Y = \mathcal{R}(A)$$

を満たすときに作用素 A は全単射であるという.

定義 16 (全射). 線形空間 X から線形空間 Yへの作用素 A とし,その定義域を $\mathcal{D}(A) \subset X$,値域 を $\mathcal{R}(A) \subset Y$ とする.そのとき,

$$A^{-1}(A(u)) = u, \ u \in \mathcal{D}(A)$$

$$A(A^{-1}(u)) = u, \ u \in \mathcal{R}(A)$$

かつ

$$\mathcal{D}(A^{-1}) = \mathcal{R}(A)$$

$$\mathcal{R}(A^{-1}) = \mathcal{D}(A)$$

となる Yから Xへの作用素 A^{-1} を A の逆作用素と呼ぶ.

定理 $\mathbf 3$ (単射と逆作用素の環境). 線形空間 Xから線形空間 Yへの作用素 Aとすると.

A が逆作用素を持つ $\Leftrightarrow A$ が単射である

証明. (A) が逆作用素を持つ $\Rightarrow A$ が単射である」の証明

単射の定義 14 の待遇「任意の $u_1,u_2\in\mathcal{D}(A)$ に対し $A(u_1)=A(u_2)\Rightarrow u_1=u_2$ 」を満たすことを確かめる。A の逆作用素を A^{-1} とすると,任意の $u_1,u_2\in\mathcal{D}(A)$ に対し

$$A(u_1) = A(u_2)$$

 $\Rightarrow A^{-1}(A(u_1)) = A^{-1}(A(u_2))$
 $\Rightarrow u_1 = u_2$

「A が単射である $\Rightarrow A$ が逆作用素 A^{-1} をもつ」の証明

A の値域の定義 $\mathcal{R}(A) = \{A(u) \in Y \mid u \in \mathcal{D}(A)\}$ より、任意の $v \in \mathcal{R}(A)$ に対し、

$$A(u) = v$$

となる $u \in \mathcal{D}(A)$ が存在する.その上,A が単射であるため,単射の定義の対偶より $u \in \mathcal{D}(A)$ は どんな $u \in \mathcal{R}(A)$ に対してもただ一つの元である.そのため,作用素の定義より,上記の $u \in \mathcal{R}(A)$ に対してただ一つの元 $u \in \mathcal{D}(A)$ を指定する規則として

$$B(v) = u$$

となる定義域 $\mathcal{D}(B)=\mathcal{R}(A)$ と値域 $\mathcal{R}(B)=\mathcal{D}(A)$ となる Y から X への作用素 B が定義できる. その上,B(v)=u の v=A(u) を代入すると

$$B(A(u)) = u$$

となる. 同様に、 $A(u) = v \circ u$ に u = B(v) を代入すると

$$A(B(v)) = v$$

となる. よって、定義域 $\mathcal{D}(B)=\mathcal{R}(A)$ と値域 $\mathcal{R}(B)=\mathcal{D}(A)$ となる Y から X への作用素 B は A の逆作用素であるため、A は逆作用素を持つ.

定義 17 (作用素の等号). 線形空間 X から線形空間 Y への作用素 A と B が等しいとは

$$\mathcal{D}(A) = \mathcal{D}(B)$$

かつ

$$Au = Bu, \ \forall u \in \mathcal{D}(A) = \mathcal{D}(B)$$

が成立することであり,

$$A = B$$

と表記する.

定義 18 (作用素の連続). ノルム空間 Xからノルム空間 Yへの作用素 A が $u \in \mathcal{D}(A)$ で連続であるとは

$$u_n \to u, \ (n \to \infty)$$

となる任意の $u_n \in \mathcal{D}(A) \subset X$ に対して

$$Au_n \to Au, \ (n \to \infty)$$

を満たすときである. さらに, A が任意の $u \in \mathcal{D}(A)$ において連続であるとき, A は連続であるという.

定義 19 (線形作用素). 線形空間 X から線形空間 Y への作用素 A が,任意の $u,v\in\mathcal{D}(A)\subset X$ と $\alpha\in\mathbb{K}$ に対し,

$$\mathcal{D}(A)$$
 が X の線形部分空間 $A(u+v)=Au+Av$ $A(\alpha u)=\alpha Au$

を満たすとき、Aを作用素と呼ぶ.