Translation		
Größe	Formelzeichen	Einheit
Ortsvektor	x	m
Masse	m	kg
Kraft	F	$\frac{\text{kg m}}{\text{s}^2} = \text{N}$
Federkonstante	D	$\frac{kg}{s^2} = \frac{N}{m}$
Geschwindigkeit	$v = \dot{x}$	<u>m</u> s
Beschleunigung	$a = \dot{v} = \ddot{x}$	$\frac{\mathrm{m}}{\mathrm{s}^2}$
Impuls	p = mv	$\frac{\text{kg m}}{\text{s}} = \text{Ns}$
Bewegungsgleichung	$F = \dot{p} = ma$	$\frac{\text{kg m}}{\text{s}^2} = \text{N}$
kinetische Energie	$E_{\rm kin} = \frac{1}{2}mv^2$	$\frac{\text{kg m}^2}{\text{s}^2} = \text{Nm} = \text{J}$
Hookesches Gesetz	F = -Dx	$\frac{\text{kg m}}{\text{s}^2} = \text{N}$
Periodendauer	$T = 2\pi \sqrt{\frac{m}{D}}$	S

Rotation		
Größe	Formelzeichen	Einheit
Drehwinkel	arphi	1 (rad)
Trägheitsmoment	$J = \int r^2 dm$	kg m²
Drehmoment	$M = r \times F$	$\frac{\text{kg m}^2}{\text{s}^2} = \text{Nm}$
Direktionsmoment	D^*	Nm
Winkelgeschwindigkeit	$\omega = \dot{\varphi}$	$\frac{1}{s}$
Winkelbeschleunigung	$\alpha = \dot{\omega} = \ddot{\varphi}$	$\frac{1}{s^2}$
Drehimpuls	$L = J \omega$	$\frac{\text{kg m}^2}{\text{s}} = \text{Nms} = \text{Js}$
Bewegungsgleichung	$M = \dot{L} = J \dot{\omega}$	$\frac{\text{kg m}^2}{\text{s}^2} = \text{Nm} = \text{J}$
Rotationsenergie	$E_{\rm rot} = \frac{1}{2}J\omega^2$	$\frac{\text{kg m}^2}{\text{s}^2} = \text{Nm} = \text{J}$
Hookesches Gesetz	$M = -D^*\varphi$	$\frac{\text{kg m}^2}{\text{s}^2} = \text{Nm} = \text{J}$
Periodendauer	$T = 2\pi \sqrt{\frac{J}{D^*}}$	S