

MAT1161 – Cálculo de Uma Variável P1 - Gabarito – 08 de abril de 2017

Nome Legível	÷	
Assinatura	:	
Matrícula	:	Turma :

Questão	Valor	Grau	Revisão
1^a	1,5		
2^a	1,5		
3^a	2,0		
Total	5,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Considere dois números reais positivos a, b tais que

$$ab = 16$$
.

Queremos minimizar a quantidade 4a + b. Para isso:

(a) Determine uma função f de uma variável tal que o valor mínimo de f corresponda à solução do problema acima. Indique também o domínio dessa função.

$$a.b = 16 \Rightarrow b = \frac{16}{a} \Rightarrow 4a + b = 4a + \frac{16}{a}$$

$$f(x) = 4x + \frac{16}{x}$$
 e Dom $(f) = (0, +\infty)$

(b) Determine o valor mínimo de f, justificando sua resposta.

$$f'(x) = 4 - \frac{16}{x^2} = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm 2$$

x=-2 será descartado, pois não faz parte do domínio.

Vamos analisar o crescimento:

$$f'(x) \ge 0 \Leftrightarrow 4 - \frac{16}{x^2} \ge 0 \Leftrightarrow \frac{16}{x^2} \le 4$$
.

Como $x^2 \ge 0$, $\forall x \in \mathbb{R}$, segue que $f'(x) \ge 0 \Leftrightarrow 4x^2 \ge 16 \Leftrightarrow x^2 \ge 4 \Leftrightarrow x \in (-\infty, -2] \cup [2, +\infty)$. Como $\text{Dom}(f) = (0, +\infty)$, segue que $[2, +\infty)$ é o intervalo de crescimento de f.

Analogamente, $f'(x) \leq 0 \Leftrightarrow x \in [-2,2]$. Como $\mathrm{Dom}(f) = (0,+\infty)$, segue que (0,2] é o intervalo de decrescimento de f.

Logo, x=2 é um mínimo local de f pois f decresce antes de x=2 e cresce depois.

Valor mínimo de f: $f(2) = 4.2 + \frac{16}{2} = 16$.

Questão 2

Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por:

$$f(x) = \frac{x^5}{5} - \frac{x^4}{2} - 3x^3 + 5$$

- (a) Determine, caso exista(m):
 - (a.1) O(s) intervalo(s) de crescimento e decrescimento de f.

$$f'(x) = x^4 - 2x^3 - 9x^2 = x^2(x^2 - 2x - 9) = 0 \Leftrightarrow x = 0, x = 1 - \sqrt{10}, x = 1 + \sqrt{10}$$

Estudo do sinal de f':

Observe que f' tem o mesmo sinal de $g(x) = x^2 - 2x - 9$, pois $x^2 \ge 0$, $\forall x \in \mathbb{R}$. Como o gráfico de $g(x) = x^2 - 2x - 9$ é uma parábola de concavidade para cima que corta o eixo x em $x = 1 - \sqrt{10}$, $x = 1 + \sqrt{10}$, segue que:

Intervalos de crescimento de f: $(-\infty, 1 - \sqrt{10}]$, $[1 + \sqrt{10}, +\infty)$

Intervalo de decrescimento de f: $[1 - \sqrt{10}, 1 + \sqrt{10}]$

(a.2) O(s) ponto(s) de máximo local e de mínimo local de f.

Utilizando o item acima, sabe-se que os únicos canddidatos a extremo local de f são $x=1-\sqrt{10},0,1+\sqrt{10}.$

- $x = 1 \sqrt{10}$ é um máximo local de f, pois f cresce em $(-\infty, 1 \sqrt{10}]$ e decresce em $[1 + \sqrt{10}, +\infty)$
- x=0 não é máximo nem mínimo local de f, pois f decresce em $[1-\sqrt{10},1+\sqrt{10}]$
- $x=1+\sqrt{10}$ é um mínimo local de f, pois f decresce em $[1-\sqrt{10},1+\sqrt{10}]$ e cresce em $[1+\sqrt{10},+\infty)$

(a.3) O(s) intervalo(s) onde o gráfico de f tem concavidade voltada para cima e onde tem concavidade voltada para baixo.

$$f''(x) = 4x^3 - 6x^2 - 18x = 2x(2x^2 - 3x - 9) = 0 \Leftrightarrow x = 0, 3, -\frac{3}{2}$$

Estudo de sinal da função f''(x):

	$x < -\frac{3}{2}$	$\left -\frac{3}{2} < x < 0 \right $	0 < x < 3	3 < x
2x	_	_	+	+
$2x^2 - 3x - 9$	+	_	_	+
f''(x)	_	+	_	+

Intervalos de concavidade para cima do gráfico de f: $\left[-\frac{3}{2},0\right],\left[3,+\infty\right)$

Intervalos de concavidade para baixo do gráfico de $f\colon \left(-\infty\,,\,-\frac{3}{2}\right],[0,3]$

(a.4) O(s) ponto(s) de inflexão do gráfico de f.

Como o gráfico de f muda de concavidade em $x = -\frac{3}{2}, 0, 3$, os pontos de inflexão são $\left(-\frac{3}{2}, f\left(-\frac{3}{2}\right)\right), (0, 5), (3, f(3)).$

(b) Faça um esboço do gráfico de f indicando explicitamente o(s) ponto(s) de máximo, de mínimo e de inflexão determinado(s) nos itens anteriores. Esboce também a(s) reta(s) tangente(s) ao gráfico de f no(s) ponto(s) em que a derivada é zero e no(s) ponto(s) de inflexão.

Questão 3

Considere a região $\mathcal R$ delimitada por uma reta e uma parábola, conforme o esboço abaixo:

Sabendo que:

• a parábola possui vértice na origem e passa pelo ponto (1, 2)

 \bullet a reta passa pelos pontos $\left(\frac{1}{2},0\right)$ e (0,-1)

(a) Determine a equação da parábola e a equação da reta.

Substituindo o ponto (1,2) na equação $x=ay^2$ (equação de uma parábola deitada com vértice na origem), temos que $1=4a \Leftrightarrow a=\frac{1}{4}$. Logo, $x=\frac{y^2}{4}$.

Substituindo o ponto $\left(\frac{1}{2},0\right)$ na equação y=ax-1 (equação de uma reta de coeficiente linear -1), temos que $0=\frac{a}{2}-1 \Leftrightarrow a=2$. Logo, y=2x-1.

(b) Descreva a região $\mathcal R$ através de um conjunto de desigualdades.

$$\mathcal{R} = \begin{cases} x \ge \frac{y^2}{4} \\ y \ge 2x - 1 \end{cases}$$

(c) Escreva a área da região \mathcal{R} através de uma integral ou de uma soma de integrais.

Atenção: Neste item não é necessário calcular a integral.

Primeiro vamos encontrar as interseções entre as curvas substituindo a equação da parábola na equação da reta:

$$y = 2\left(\frac{y^2}{4}\right) - 1 \Leftrightarrow y = \frac{y^2}{2} - 1 \Leftrightarrow y^2 - 2y - 2 = 0 \Leftrightarrow y = 1 \pm \sqrt{3}$$

Logo, os pontos de interseção são
$$\left(\frac{(1-\sqrt{3})^2}{4},1-\sqrt{3}\right)$$
 e $\left(\frac{(1+\sqrt{3})^2}{4},1+\sqrt{3}\right)$.

A área da região \mathcal{R} pode ser escrita de duas formas diferentes:

 1° modo: através de uma integral na variável y

Reescrevendo a equação da reta: $y = 2x - 1 \Leftrightarrow x = \frac{y+1}{2}$.

Logo,
$$A(\mathcal{R}) = \int_{1-\sqrt{3}}^{1+\sqrt{3}} \left(\frac{y+1}{2} - \frac{y^2}{4} \right) dy$$

 2° modo: através de uma soma de integrais na variável x

Reescrevendo a equação da parábola $x = \frac{y^2}{4} \Leftrightarrow y = \pm 2\sqrt{x}$.

Logo,
$$A(\mathcal{R}) = \int_0^{\frac{(1-\sqrt{3})^2}{4}} (2\sqrt{x} - (-2\sqrt{x})) dx + \int_{\frac{(1-\sqrt{3})^2}{4}}^{\frac{(1+\sqrt{3})^2}{4}} (2\sqrt{x} - (2x-1)) dx$$

(d) Calcule a área da região \mathcal{R} .

Utilizando o 1° modo (integral na variável y):

$$A(\mathcal{R}) = \left(\frac{y^2}{4} + \frac{y}{2} - \frac{y^3}{12}\right) \Big|_{y=1-\sqrt{3}}^{1+\sqrt{3}} = \sqrt{3}$$

Utilizando o 2° modo (soma de integrais na variável x):

$$A(\mathcal{R}) = \left(\frac{8}{3}x^{\frac{3}{2}}\right) \bigg|_{x=0}^{\frac{(1-\sqrt{3})^2}{4}} + \left(\frac{4}{3}x^{\frac{3}{2}} - x^2 + x\right) \bigg|_{x=\frac{(1-\sqrt{3})^2}{4}}^{\frac{(1+\sqrt{3})^2}{4}} = \left(2\sqrt{3} - \frac{10}{3}\right) + \left(-\sqrt{3} + \frac{10}{3}\right) = \sqrt{3}$$