

QUÍMICA ORGÂNICA

"QUÍMICA DO CARBONO"

Ácido tartárico $C_4H_6O_6$

Glicerina C₃H₈O₃

Ácido lático $C_3H_6O_3$

Friedrich Wohler, em 1828:

1) O CARBONO É TETRAVALENTE:

2) O CARBONO FORMA LIGAÇÕES DUPLAS E TRIPLAS:

Ligação dupla carbono-carbono	
Ligação dupla carbono-oxigênio	
Ligação tripla carbono-carbono	—C≡C—
Ligação tripla carbono-nitrogênio	—C≡N

3) O CARBONO LIGA-SE A VÁRIAS CLASSES DE ELEMENTOS:

- Compostos binários: dois elementos (C e H);
- Compostos ternários: três elementos (C, H e O);
- Compostos quaternários: quatro elementos (C, H, O e N);

- ...

4) O CARBONO FORMA CADEIAS:

Estas cadeias vão constituir o "esqueleto" das moléculas orgânicas.

CLASSIFICAÇÃO DOS ÁTOMOS DE CARBONO EM UMA CADEIA:

Conforme posição em que se encontram na cadeia:

Carbono	Carbono	Carbono	Carbono
primário	secundário	terciário	quaternário
	C_C_C		

EXEMPLO:

1) Quanto ao fechamento da cadeia:

Cadeia aberta ou acíclica	Cadeia fechada ou cíclica
H H H H H H H H H H H	

2) Quanto à disposição dos átomos:

Cadeia normal – possui apenas	Cadeia ramificada- possui
átomos de carbonos primários e	pelo menos um carbono
secundários	terciário ou quarternário
H H H H-C-C-H H H H	H ₃ C—CH-CH ₃ CH ₃

3) Quanto aos tipos de ligação:

Cadeia saturada- há somente	Cadeia insaturada- há pelo
ligação simples entre os átomos	menos uma ligação dupla ou
de carbono	tripla entre os carbonos
H H H H	H-C=C-C-C-H H H H H

4) Quanto à natureza dos átomos:

Cadeia homogênea- não possui	Cadeia heterogênea- possui pelo
heteroátomo (O,S,N) entre os	menos um heteroátomo entre os
carbonos	carbonos
H ₃ C—CH-CH ₃ OH	H ₃ C—O—CH ₃

EXEMPLOS:

$$CH_3$$
 CH
 H_2C
 CH_2
 H_2C
 CH_2
 CH_2

COMPOSTOS AROMÁTICOS

BENZENO

COMPOSTOS AROMÁTICOS

1) MONONUCLEARES:

2) POLINUCLEARES:

2.1) POLINUCLEARES ISOLADOS:

2.2) POLINUCLEARES CONDENSADOS:

SIMPLIFICAÇÃO DE FÓRMULA ESTRUTURAL

Fórmula ESTRUTURAL da gasolina.

Fórmulas ESTRUTURAIS CONDENSADAS

3-
$$CH(CH_3)_3-CH_2-CH_2(CH_3)_2$$

SIMPLIFICAÇÃO DE FÓRMULA ESTRUTURAL

Fórmulas ESTRUTURAIS CONDENSADAS

$$^{3-}$$
 $H_3C^-[CH_2]_2^-CH_3$

E-mail

• ieiff2016@googlegroups.com