N741: Homework 5

Valerie Mac, PhD. March 14, 2017

Homework 5 - DUE March 15, 2017

For this homework, we'll work with the "Wong" dataset built in to the car package. The "Wong" data frame has 331 row and 7 columns. The observations are longitudinal data on recovery of IQ after comas of varying duration for 200 subjects. The data are from Wong, Monette, and Weiner (2001) and are for 200 patients who sustained traumatic brain injuries resulting in comas of varying duration. After awakening from their comas, patients were periodically administered a standard IQ test, but the average number of measurements per patient is small (331/200 = 1.7). To get more info type ??Wong.

The 7 variables in the dataset are:

- id
 - patient ID number.
- days
 - number of days post coma at which IQs were measured.
- duration
 - duration of the coma in days.
- sex
 - a factor with levels Female and Male.
- age
 - in years at the time of injury.
- piq
 - performance (i.e., mathematical) IQ.
- viq
 - verbal IQ. ## Install needed packages

```
install.packages("car",repos = "http://cran.us.r-project.org")
```

```
## Installing package into 'C:/Users/gneis/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
```

```
## package 'car' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\gneis\AppData\Local\Temp\Rtmpy8Vfhj\downloaded_packages
```

```
install.packages("dyplr",repos = "http://cran.us.r-project.org")
```

```
## Installing package into 'C:/Users/gneis/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
```

```
## Warning: package 'dyplr' is not available (for R version 3.3.2)
```

```
install.packages("DT",repos = "http://cran.us.r-project.org")
```

```
## Installing package into 'C:/Users/gneis/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)

## package 'DT' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\gneis\AppData\Local\Temp\Rtmpy8Vfhj\downloaded_packages
```

Load dataset in from car package

```
library(car)
## Warning: package 'car' was built under R version 3.3.3
data(Wong)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.3.3
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
##
       recode
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
```

```
# add an age group variable
Wong$agegrp <- case_when(</pre>
  (Wong\$age > 0 & Wong\$age <= 10) ~ 1,
  (Wong$age > 10 \& Wong<math>$age <= 20) \sim 2,
  (Wong\$age > 20 & Wong\$age <= 30) ~ 3,
  (Wong\$age > 30 & Wong\$age <= 40) \sim 4,
  (Wong\$age > 40 & Wong\$age <= 50) ~ 5,
  (Wong\$age > 50 & Wong\$age <= 60) ~ 6,
  (Wong\$age > 60 & Wong\$age <= 70) ~ 7,
  (Wong\$age > 70 \& Wong\$age <= 100) \sim 8)
# convert to factor, add code levels and labels
Wong$agegrp <- factor(Wong$agegrp,</pre>
                    levels = c(1,2,3,4,5,6,7,8),
                    labels = c("Ages 1-10")
                                "Ages 11-10",
                                "Ages 21-10",
                                "Ages 31-10",
                                "Ages 41-10",
                                "Ages 51-10",
                                "Ages 61-70",
                                "Ages 71-100"))
```

Using this dataset, and today's demos complete the following tasks:

1. Make a table of non-parametric statistics (median and IQR) for the number of days and duration grouped by sex. You'll be using summarise() from the dplyr package. For a given variable x you'll use median(x, na.rm=TRUE), quantile(x, 0.25, na.rm=TRUE), and quantile(x, 0.75, na.rm=TRUE). Give the table a title using the caption= option and update the column names with something nice using the col.names= option in the knitr::kable() command.

Making a table of non-parametric statistics (median and IQR) for the number of days and duration grouped by sex

Days and Duration: Nonparametric Stats by Sex

Sex	Median	1st Quartile	3rd Quartile	Median	1st Quartile	3rd Quartile
	Days	Days	Days	Duration	Duration	Duration
Female	135	58.50	361.00	4	1	11

Sex	Median	1st Quartile	3rd Quartile	Median	1st Quartile	3rd Quartile
	Days	Days	Days	Duration	Duration	Duration
Male	163	59.75	431.25	7	1	18

2. Make a table of parametric statistics (mean and SD) for the performance outcomes piq and viq grouped by sex. Like the table above, you'll be using summarise() from the dplyr package. Now you'll use mean(x, na.rm=TRUE) and sd(x, na.rm=TRUE). Give the table a title using the caption= option and update the column names with something nice using the col.names= option in the knitr::kable() command.

Making a table of parametric statistics (mean and SD) for the performance outcomes piq and viq grouped by `sex'

```
T2 <- Wong %>%
   group_by(sex)%>%
   summarise(meanpiq= mean(piq, na.rm=TRUE),
        stddevpiq= sd(piq, na.rm=TRUE),
        meanvic= mean(viq, na.rm=TRUE),
        stdvic= sd(viq, na.rm=TRUE))
knitr::kable(T2,
        col.names=c("Sex","Mean PIQ","SD PIQ","Mean VIQ","SD VIQ"),
        caption="Performance Outcomes Piq and Vic: Parametric Stats by Sex")
```

Performance Outcomes Pig and Vic: Parametric Stats by Sex

Sex	Mean PIQ	SD PIQ	Mean VIQ	SD VIQ
Female	89.18310	17.99866	94.35211	14.24690
Male	87.11154	14.25658	95.13077	14.02281

3. Make a table containing the frequencies and relative percentages for agegrp. Use the example we did in class to help guide you.

Making a table containing the frequencies and relative percentages for agegrp

Frequency Table for Age Group

Age Group	Frequency	Percent
Ages 1-10	1	Inf
Ages 11-10	53	Inf
Ages 21-10	144	Inf
Ages 31-10	48	Inf
Ages 41-10	42	Inf
Ages 51-10	27	Inf
Ages 61-70	14	Inf
Ages 71-100	2	Inf

4. Make a regression model (Model 1) for the performance IQ (piq) using age and sex. Put the regression model results into a table. ##Making a regression model (Model 1) for the performance IQ (piq) using age and sex

Model 1: piq~age+sex

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	86.8868114	2.5796740	33.681314	0.0000000
age	0.0743977	0.0600527	1.238874	0.2162781
sexMale	-2.1651531	2.0258169	-1.068780	0.2859546

5. Make a second regression model (Model 2) for performance IQ (piq) using age and sex plus days and duration. Put the regression model results into a table.

Model 2 : piq~age+sex+days+duration

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	88.0961373	2.6462149	33.2913764	0.0000000
age	0.0542142	0.0604989	0.8961181	0.3708509

	Estimate	Std. Error	t value	Pr(> t)
sexMale	-1.7252891	2.0152576	-0.8561135	0.3925638
days	0.0011534	0.0007457	1.5468461	0.1228705
duration	-0.1026657	0.0328189	-3.1282468	0.0019172

6. Finally, make a table showing the results from the anova() command comparing Model 1 and Model 2 you made above using the example we did in class as a guide.

Compare models using the anova() function

```
## Analysis of Variance Table
##
## Model 1: piq ~ age + sex
## Model 2: piq ~ age + sex + days + duration
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 328 74968
## 2 326 72586 2 2381.9 5.3489 0.00518 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Put comparison in a table

Comparing Mod1 and Mod2

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
Model 1	328	74967.59	NA	NA	NA	NA
Model 2	326	72585.66	2	2381.933	5.348922	0.0051796

7. STUDENT CHOICE - pick either a htmlwidget from http://gallery.htmlwidgets.org/ (http://gallery.htmlwidgets.org/) or do a "flexdashboard" using the templates at http://rmarkdown.rstudio.com/flexdashboard/ (http://rmarkdown.rstudio.com/flexdashboard/) as a guide.

Making an interactive datatable with the ANOVA

DT::datatable(M1M2, options = list(pageLength = 2, caption="Comparing Mod1 and Mod2"))								
Show 2 ▼ entries				Search:				
Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)			

Model 1	328	74967.5898509986					
Model 2	326	72585.6571162971	2	2381.93273470152	5.34892224140485	0.00517957	386964677
Showing 1 to	o 2 of 2 er	ntries			Pre	evious 1	Next

Repository at: https://github.com/valerie-mac/N741interactive (https://github.com/valerie-mac/N741interactive) https://github.com/valerie-mac/N741interactive (https://github.com/valerie-mac/N741interactive)

References

Wong, P. P., Monette, G., and Weiner, N. I. (2001) Mathematical models of cognitive recovery. Brain Injury, 15, 519–530.

Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edition. Sage.