

Signal Isolated CAN Transceiver With Integrated DC to DC Converter

Datasheet (EN) 1.0

Product Overview

NSiP1042 is a high reliability isolated controller area network(CAN) physical layer transceiver with integrated DC to DC converter. The isolated DC-DC converter provides output power using on-chip transformer. The feedback PWM signal is sent to primary side by a digital isolator based on Novosense capacitive isolation technology. Both devices are safety certified by UL1577, supporting 5kVrms insulation withstand voltage, while the high integrated solution can help to simplify system design and improve reliability.

The Bus pins of NSiP1042 are protected from $\pm 5kV$ system level ESD to GND₂ on Bus side. The data rate of the NSiP1042 is up to 5Mbps. The NSiP1042 provides thermal protection and transmit data dominant time out function.

Key Features

- Up to 5000Vrms Insulation voltage
- Isopower integrated isolated DC-DC converter
- Power supply voltage:

VDD₁:4.5V to 5.5V

VDDL:1.8V to 5.5V

- Over current and over temperature protection
- High CMTI: ±150kV/us

Data rate: 5Mbps

Operation temperature: -40°C~105°C

RoHS-compliant packages: SOW20

Safety Regulatory Approvals

- UL recognition: up to 5000Vrms for 1 minute per UL1577
- CQC certification per GB4943.1-2022
- CSA component notice 5A
- DIN VDE V 0884-11:2017-01

Applications

- Industrial automation system
- Smart electric meter and water meter
- Security and protection monitoring

Device Information

Part Number	Package	Body Size
NSiP1042-DSWTR	SOW20	12.80mm × 7.50mm

Functional Block Diagrams

Figure 1. NSiP1042 Block Diagrams

INDEX

1. PIN CONFIGURATION AND FUNCTIONS	3
2. ABSOLUTE MAXIMUM RATINGS	4
3. RECOMMENDED OPERATING CONDITIONS	4
4. THERMAL INFORMATION	5
5. SPECIFICATIONS	5
5.1. DC ELECTRICAL CHARACTERISTICS	5
5.2. SWITCHING ELECTRICAL CHARACTERISTICS	7
5.3. PARAMETER MEASUREMENT INFORMATION	8
6. HIGH VOLTAGE FEATURE DESCRIPTION	11
6.1. INSULATION AND SAFETY RELATED SPECIFICATIONS	
6.2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 INSULATION CHARATERISTICS	11
6.3. REGULATORY INFORMATION	
7. FUNCTION DESCRIPTION	13
7.1. DEVICE FUNCTIONAL MODES	
7.2. TXD DOMINANT TIME-OUT FUNCTION	
7.3. CURRENT PROTECTION	
7.4. OVER TEMPERATURE PROTECTION	14
8. APPLICATION NOTE	15
8.1. LAYOUT CONSIDERATIONS	15
8.2. TYPICAL APPLICATION	
9. PACKAGE INFORMATION	16
10. ORDER INFORMATION	16
11. DOCUMENTATION SUPPORT	16
12. TAPE AND REEL INFORMATION	17
13. REVISION HISTORY	17

1. Pin Configuration and Functions

Figure 1.1 NSiP1042 Package

Table1.1 NSiP1042 Pin Configuration and Description

NSiP1042 PIN NO.	SYMBOL	FUNCTION
1	GND_1	Ground 1, the ground reference for Isolator Side 1
2	VDD ₁	Power Supply for Isolator Side 1
3	GND ₁	Ground 1, the ground reference for Isolator Side 1
4	RXD	Receiver output
5	TXD	Driver transmit data input
6	VDDL	I/O Power Supply input. Side1 I/O logic level.
7	GND ₁	Ground 1, the ground reference for Isolator Side 1
8	NC	Not connected
9	GND_1	Ground 1, the ground reference for Isolator Side 1
10	GND_1	Ground 1, the ground reference for Isolator Side 1
11	GND ₂	Ground 2, the ground reference for Isolator Side 2
12	V _{ISOIN}	Isolated power supply input. This pin must be connected externally to V_{ISOOUT} . It is recommended this pin have a 0.1 μ F capacitor to GND $_2$ (Pin11). Connect this pin through a ferrite bead and short trace length to V_{ISOOUT} for operation.
13	GND ₂	Ground 2, the ground reference for Isolator Side 2
14	NC	Not connected
15	CANL	Low-level CAN bus line, when VDD is powered down, Pin CANL is put into a high impedance state to avoid overloading the bus
16	GND ₂	Ground 2, the ground reference for Isolator Side 2
17	CANH	High-level CAN bus line, when VDD is powered down, Pin CANH is put into a high impedance

		state to avoid overloading the bus
18	NC	Not connected
19	V _{ISOOUT}	Isolated Power Supply Output. This pin must be connected externally to V_{ISOIN} . It is recommended this pin have a 0.1 μ F and 10uF capacitor to GND $_2$ (Pin20). Connect this pin through a ferrite bead and short trace length to V_{ISOIN} for operation.
20	GND ₂	Ground 2, the ground reference for Isolator Side 2

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Power Supply Voltage	VDD ₁	-0.5		6	V	
Maximum Input Voltage	TXD	-0.4		VDDL+0.4	V	
Driver Output/Receiver Input Voltage	CANH, CANL	-70		70	V	
RXD Output current	Io	-15		15	mA	
Ambient Temperature	Ta	-40		105	$^{\circ}$	
Storage Temperature	T _{stg}	-40		150	$^{\circ}$	
Flootis static dischause	НВМ			±8000	V	
Electrostatic discharge	CDM			±2000	V	

3. Recommended Operating Conditions

Parameters	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	VDD	4.5		5.5	V
	VDDL	1.8		5.5	V
Operating Temperature	T _{opr}	-40		105	$^{\circ}$
High Level Input Voltage	V _{IH}	0.7*VDDL			V
Low Level Input Voltage	V _{IL}			0.3*VDDL	V
Data rate	DR			5	Mbps

4. Thermal Information

Parameters	Symbol	Value	Unit
IC Junction-to-Air Thermal Resistance	θ_{JA}	68.5	°C/W
Junction-to-top characterization parameter	Ψлτ	17.1	°C/W
Junction-to-board characterization parameter	ΨЈВ	50.9	°C/W

5. Specifications

5.1. DC Electrical Characteristics

(VDD=4.5V~5.5V, VDDL=1.8~5.5V,Ta=-40 $^{\circ}$ C to 105 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD=VDDL = 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Dower supply voltage	VDD	4.5		5.5	V	
Power supply voltage	VDDL	1.8		5.5	V	
	100		100	180	mA	VDD=5V, TXD=0,R _{load} =60 Ω
	IDD		12.9	25	mA	VDD=5V, TXD=VDD
Supply current	IDDL		153	1000	uA	VDD=VDDL=5V, RL=60Ω TXD=0
Thormal Shutdown Throchold	IDDL		57	500	uA	VDD=VDDL=5V, RL=60Ω TXD=VDD
Thermal-Shutdown Threshold	T _{TS}		165		$^{\circ}$	
Isolated supply voltage	V _{ISOOUT}		5		V	
Common Mode Transient Immunity	CMTI	±100	±150		kV/us	See Fig 5.3.10
Logic Side						
High level input voltage	V _{IH}	0.7*VDDL			V	TXD pin
Low level input voltage	V _{IL}			0.3*VDDL	V	TXD pin
High level input current	I _{IH}	-1		1	uA	TXD pin
Low level input current	I _{IL}	-15			uA	TXD pin
Output Voltage High	V _{OH}	VDDL-0.4			V	I _{OH} = -4mA, RXD pin
Output Voltage Low	V _{OL}			0.4	V	I _{OL} = 4mA, RXD pin
Input Capacitance	C _{IN}		2		pF	TXD pin
Driver						
CANH output voltage (Dominant)	$V_{OH(D)}$	2.8	3.44	4	V	V_i =0V, R_{Load} =60 Ω ,see <u>Figure</u> 5.3.1 and <u>Figure 5.3.2</u>
CANL output voltage	V _{OL(D)}	0.8	1.33	2	V	V_{I} =0V, R_{Load} =60 Ω ,see <u>Figure</u>

(Dominant)						5.3.1 and Figure 5.3.2
CAN bus output voltage (Recessive)	$V_{O(R)}$	2	2.5	3	V	TXD=VDD ₁ , R_{Load} =60 Ω ,see Figure 5.3.1 and Figure 5.3.2
Differential output voltage (Dominant)	$V_{\text{OD(D)}}$	1.5		3	V	TXD=0, RLoad =60 Ω , see Figure 5.3.1 and Figure 5.3.2
		1		3	V	TXD=0, R_{Load} =45 Ω ,
Differential output voltage	$V_{\text{OD(R)}}$	-0.12		0.12	V	TXD=VDD ₁ , R_{Load} =60 Ω
(Recessive)		-0.5		0.5	V	TXD=VDD ₁ , NO Load
Common-mode output voltage	V_{oc}	2	2.5	3	V	
Peak-to-peak Common-mode output voltage	$V_{\text{OC(PP)}}$		250		mV	See <u>Fig 5.3.6</u>
		-105	-44.1		mA	CANH=-30V, CANL open, see Figure 5.3.9
	I _{os}	0		10	mA	CANH=30V, CANL open, see Figure 5.3.9
Short- circuit output current		-5		0	mA	CANL=-30V, CANH open, see Figure 5.3.9
			42.5	105	mA	CANL=30V, CANH open, see Figure 5.3.9
Receiver						
Positive-going differential bus input threshold voltage	V_{TH+}		750	900	mV	V _{IC} =0 see <u>Figure 5.3.4</u>
Negative-going differential bus input threshold voltage	$V_{TH ext{-}}$	500	650		mV	V _{IC} =0 see <u>Figure 5.3.4</u>
Bus Differential input threshold Hysteresis	V _{HYS}		100		mV	
Input capacitance to ground	Cı		13		pF	CANH or CANL
Differential input capacitance	C _{ID}		6.5		pF	
Differential input resistance	R_{ID}	30		80	kΩ	
Input resistance	R _{IN}	15	30	40	kΩ	
Input resistance matching	R_{Imatch}	-3		+3	%	CANH=CANL
Common-mode voltage range	V_{IC}	-30		+30	V	

5.2. Switching Electrical Characteristics

(VDD=4.5V~5.5V, VDDL=1.8~5.5V, Ta=-40 $^{\circ}$ C to 105 $^{\circ}$ C. Unless otherwise noted, Typical values are at VDD=VDDL = 5V, Ta = 25 $^{\circ}$ C)

Parameters	Symbol	Min	Тур	Max	Unit	Comments
Loop delay1	T _{Loop1}		104	180	ns	Driver input to receiver output, Recessive to Dominant, see Figure 5.3.7
Loop delay2	T _{Loop2}		122	210	ns	Driver input to receiver output, Dominant to Recessive, see Figure 5.3.7
Driver						
Propagation delay time, recessive -to- dominant output	t _{PLHD}		77		ns	Figure 5.3.3
Propagation delay time, dominant -to- recessive output	t _{PHLD}		72		ns	Figure 5.3.3
Differential output signal rise time	t _{rD}		26		ns	Figure 5.3.3
Differential output signal fall time	t _{fD}		40		ns	Figure 5.3.3
Bus dominant time-out time	t _{TXD_DTO}	600	2000	4000	us	See Figure 5.3.8
Receiver					•	
Propagation delay time, low-to- high-level output	t _{PLHR}		50		ns	Figure 5.3.5
Propagation delay time, high- to-low-level output	t _{PHLR}		27		ns	Figure 5.3.5
RXD signal rise time	t _{rR}		3		ns	Figure 5.3.5
RXD signal fall time	t _{rF}		3		ns	Figure 5.3.5

5.3. Parameter Measurement Information

Figure 5.3.1. Driver Voltage, Current and Test Definitions

Figure 5.3.2. Bus Logic State Voltage Definitions

Note: A. The input pulse is supplied by a generator having the following characteristics: Pulse Repeat Rate \leq 125 kHz, 50% duty cycle $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_0 =$ 50 Ω .

B. CL includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 5.3.3. Driver Test Circuit and Voltage Waveform

Figure 5.3.4. Receiver Voltage and Current Definitions

Note: A. The input pulse is supplied by a generator having the following characteristics: Pulse Repeat Rate \leq 125 kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $t_g \leq$ 50 Ω .

B. C_L includes instrumentation and fixture capacitance within ±20%.

Figure 5.3.5. Receiver Test Circuit and Voltage Waveform

Figure 5.3.6. Peak-to-Peak Output Voltage Test Circuit and Waveform

Figure 5.3.7. t_{LOOP} Test Circuit and Voltage Waveform

- A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle,
- $t_r \leqslant$ 6 ns, $t_f \leqslant$ 6 ns, Z_0 = 50 $~\Omega$.
- B. C_L includes instrumentation and fixture capacitance within ±20%.

Figure 5.3.8. Dominant Time-out Test Circuit and Voltage Waveform

Figure 5.3.9. Driver Short-Circuit Current Test Circuit and Waveform

Figure 5.3.10 Common-Mode Transient Immunity Test Circuit

6. High Voltage Feature Description

6.1. Insulation And Safety Related Specifications

Parameters	Symbol	Value	Unit	Comments
Minimum External Air Gap (Clearance)	CLR	8.0	mm	Shortest terminal-to-terminal distance through air
Minimum External Tracking (Creepage)	CPG	8.0	mm	Shortest terminal-to-terminal distance across the package surface
Minimum internal can	DTI	16	um	Minimum internal gap (internal clearance – capacitive signal isolation)
Minimum internal gap	DTI	100	um	Minimum internal gap (internal clearance – transformer power isolation)
Tracking Resistance (Comparative Tracking Index)	СТІ	>600	V	DIN EN 60112 (VDE 0303-11); IEC 60112
Material Group		I		

6.2. DIN VDE V 0884-11 (VDE V 0884-11) :2017-01 INSULATION CHARATERISTICS

Description	Test Condition	Symbol	Value	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150Vrms			I to IV	
For Rated Mains Voltage ≤ 300Vrms			I to IV	
For Rated Mains Voltage ≤ 600Vrms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum repetitive isolation voltage	AC voltage(bipolar)	V _{IORM}	1166	V_{peak}
Marian and the first latin and the	AC Voltage (TDDB) test	V _{IOWM}	824	V_{rms}
Maximum working isolation voltage	DC Voltage	V _{IOWM}	I to IV I to IV I to III 40/105/21 2 1166 824 1166	V _{DC}
Input to Output Test Voltage Method P1	$V_{IORM} \times 1.5 = V_{pd (m)}$, 100% production test,	V	1740	Vacale
Input to Output Test Voltage, Method B1	t _{ini} = t _m = 1 sec, partial discharge < 5 pC	$V_{pd (m)}$	1749	Vpeak
Input to Output Test Voltage, Method A				
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t m = 10$ sec, partial	V _{pd (m)}	1399	Vpeak

	discharge < 5 pC			
After Input and /or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t m = 10$ sec, partial discharge < 5 pC	V _{pd (m)}	1399	Vpeak
Maximum transient isolation voltage	$V_{TEST} = V_{IOTM}$; t = 60 s (qualification);	V _{IOTM}	7000	Vpeak
	$V_{TEST} = 1.2 \times V_{IOTM}$; t = 1 s (100% production)			
Maximum Surge Isolation Voltage	Test method per IEC60065,1.2/50us waveform, V _{TEST} =1.3×V _{IOSM}	V _{IOSM}	5384	Vpeak
Isolation resistance	V _{IO} =500V	R _{IO}	>109	Ω
Isolation capacitance	f=1MHz	C _{IO}	0.6	pF
Total Power Dissipation at 25 ℃		Ps	1459	mW
Safety input, output, or supply current	$\theta_{JA} = 68.5^{\circ}\text{C/W}, V_{I} = 5.5 \text{ V}, T_{J} = 125^{\circ}\text{C}, T_{A} = 25^{\circ}\text{C}$	ls	265	mA
Maximum safety temperature		Ts	125	°C

Figure 6.1 NSiP1042 Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

6.3. Regulatory Information

The NSiP1042 are approved or pending approval by the organizations listed in table.

cu	L	VDE	cqc
UL 1577 Component Recognition Program ¹	Approved under CSA Component Acceptance Notice 5A	DIN VDE V 0884-11(VDE V 0884-11):2017-01 ²	Certified by CQC11- 471543-2022 GB4943.1-2022
Single Protection, 5000V _{RMS} Isolation voltage	Single Protection, 5000V _{RMS} Isolation voltage	Basic Insulation 1166V _{PEAK} , V _{IOSM} =5384V _{PEAK}	Basic insulation
File (pending)	File (pending)	File (pending)	File (pending)

7. Function Description

The NSiP1042 is an isolated CAN transceiver which is fully compatible with the ISO11898-2 standard. The NSiP1042 is a high reliability isolated controller area network(CAN) physical layer transceiver with integrated DC to DC converter. The digital isolator is SiO₂ isolation based on Novosense capacity isolation technology. The high integrated solution can help to simplify system design and improve reliability. The NSiP1042 device is safety certified by UL1577, supporting 5kVrms insulation withstand voltages. The NSiP1042 provides high electromagnetic immunity and low emission. The data rate of the NSiP1042 is up to 5Mbps. The NSiP1042 provides thermal protection and transmit data dominant time out function.

7.1. Device Functional Modes

TXD	CANH	CANL	BUS STATE
L	Н	L	Dominant
Н	Z	Z	Recessive
Open	Z	Z	Recessive

¹ H= high level; L=low level; Z= common mode(recessive) bias to V_{ISOIN}/2

Table 7.1. Driver Function Table

V _{ID} =CANH-CANL	RXD	BUS STATE
V _{ID} ≥0.9V	L	Dominant
0.5< V _{ID} <0.9V	X	Uncertain
V _{ID} ≤ 0.5V	Н	Recessive
Open	Н	Recessive

¹ H= high level; L=low level; X= uncertain

Table 7.2. Receiver Function Table

7.2. TXD dominant time-out function

A 'TXD dominant time-out' timer circuit prevents the bus lines from being driven to a permanent dominant state (blocking all network communication) if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TXD.

If the duration of the LOW level on pin TXD exceeds the internal timer value (t_{TXD_DTO}), the transmitter is disabled, driving the bus lines into a recessive state. The timer is reset by a positive edge on pin TXD.

7.3. Current Protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

7.4. Over Temperature Protection

The NSiP1042 is protected against over-temperature conditions. When the chip is over 165° C, it will be shut down until the temperature of below 145° C.

8. Application Note

8.1. Layout Considerations

The NSiP1042 require a 10 μ F + 0.1 μ F bypass capacitor between VDD₁ and GND₁, 10 μ F bypass capacitor between V_{ISOOUT} and GND₂. The capacitor should be placed as close as possible to the package. To eliminate line reflections, each cable end is terminated with a resistor, whose value matches the characteristic impedance of the cable. It's good practice to place the bus connectors and termination resistor as close as possible to the CANH and CANL pins.

8.2. Typical Application

Figure 8.1 NSiP1042 typical application circuit

9. Package Information

Figure 9.1 SOW20 Package Shape and Dimension in millimeters

10. Order Information

Part Number	Isolation Rating (kVrms)	Max Data Rate (Mbps)	MSL	Temperature	Package Type	Package Drawing	SPQ
NSiP1042-DSWTR	5	5	3	-40 to 105°C	SOP20(300mil)	SOW20	1000

11. Documentation Support

Part Number	Product Folder	Datasheet	Application Note
NSiP1042	Tbd	Tbd	Tbd

12. Tape And Reel Information

Figure 12.1 Tape and Reel Information of SOW20

13. Revision History

Revision	Description	Date
1.0	Initial version	2022/12/28

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

You are solely responsible for your use of Novosense' products and applications, and for the safety thereof. You shall comply with all laws, regulations and requirements related to Novosense's products and applications, although information or support related to any application may still be provided by Novosense.

The resources are intended only for skilled developers designing with Novosense' products. Novosense reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Novosense authorizes you to use these resources exclusively for the development of relevant applications designed to integrate Novosense's products. Using these resources for any other purpose, or any unauthorized reproduction or display of these resources is strictly prohibited. Novosense shall not be liable for any claims, damages, costs, losses or liabilities arising out of the use of these resources.

For further information on applications, products and technologies, please contact Novosense (www.novosns.com).

Suzhou Novosense Microelectronics Co., Ltd