



# MATLAB and its application in Engineering

Assoc. Prof. Kirin Shi

施圣贤

上海交通大学 机械与动力工程学院





# 上海交通大学 Applications in Fluid Research

- Image Processing in Particle Image Velocimetry
- Ray Tracing in Light Field Imaging
- Data Processing in Pressure Sensitive Paint



# **Image Processing in PIV**

### Saguaro (tree-sized cactus 仙人掌)

- Over 20m height
- Root depth < 0.3m
- Average wind speed 16Km/h



2.5 cm

30 cm

90 cm

200 cm

450 cm

Full height



### Saguaro (tree-sized cactus 仙人掌)

- ➤ Over 20m height
- ➤ Root depth <0.3m
- ➤ Average wind speed 16Km/h
- ➤ Average wind gust speed 30Km/h
- ➤ Max wind gust speed 130Km/h













# Why measure flow velocity

The Tacoma Narrows Bridge disaster (state of Washington, USA)



Why a concrete-steel build bridge being destroyed by mild wind?

Why a shallow-rooted cactus can survive from strong wind?







Why a concrete-steel build bridge being destroyed by mild wind? Why a shallow-rooted cactus can survive from strong wind?

Karman Vortex Street (卡门涡街)

- ➤ When fluid (water/air) flow pass a body, it sheds (脱落) alternating (交替的) vortex (漩涡) into the wake (尾流) with certain frequency
- Periodical shedding vortex imposes a periodical force on the body
- The body resonates with vortex if the natural frequency of the body matches to the vortex shedding frequency



- ➤ Human beings reply on <u>seeing</u>, <u>feeling</u>, <u>hearing</u> and <u>tasting</u> to understand new things
- Flow measurement is a technique to help people to **SEE**:
  - How does wind flow pass an automobile







- ➤ Human beings reply on <u>seeing</u>, <u>feeling</u>, <u>hearing</u> and <u>tasting</u> to understand new things
- Flow measurement is a technique to help people to **SEE**:
  - How does wind flow pass an automobile
  - How the performance of an aircraft is affected by airflow around it







- ➤ Human beings reply on seeing, feeling, hearing and tasting to understand new things
- Flow measurement is a technique to help people to **SEE**:
  - How does wind flow pass an automobile
  - How the performance of an aircraft is affect by airflow around it
  - Why insects (e.g. dragonfly) can fly so agilely









Flow measurement of a tethered flying dragonfly



A tethered flying UAV





- ➤ Human beings reply on <u>seeing</u>, <u>feeling</u>, <u>hearing</u> and <u>tasting</u> to understand new things
- Flow measurement is a technique to help people to **SEE:** 
  - How does wind flow pass an automobile
  - How the performance of an aircraft is affect by airflow around it
  - Why insects (e.g. dragonfly) can fly so agilely
  - How air and oil is mixed inside a combustion chamber







### Flow visualisation

- Most fluids, gaseous or liquid, are transparent media
- Their motion is invisible to the human eye
- > Techniques made the flow motion visible is referred to as

### **Flow Visualisation**







### Flow visualisation

- > tracer particles are added into the fluid of interest
- > motion of tracer particles are made visible to eyes or camera by illumination
- right methods are taken to ensure the tracer motion is identical to that of the fluid

#### Making liquid flow (water) visible

- Tracer particlesFood coloring, ink, fluorescent tracersHydrogen bubble
- ➤ Releasing methods

  Direct injection by syringe (注射器) (D<1mm)

  Releasing rate close to the average flow speed

  Releasing location

  Disturbance to the flow

Use milk to retard (减缓) diffusion of the dye







# Flow visualisation



# **Art of Flow visualisation**

Vortex ejected into cross flow



#### Collision of two vortex





# **Art of Flow visualisation**

#### Oscillation of vortex break down



#### Stories behind the vortex

- ➤ Mix enhancement
- ➤ Noise reduction
- ➤ Infrared stealth





 $\bullet$   $\bullet$ 



# **Art of Flow visualisation**

Open field experiment: smoke visualization of vortex formation during the start of an airplane



Karman vortex street formed in the wind downstream of an island





# **Particle Image Velocimetry**





# **Particle Image Velocimetry**

### **Basic Principle (2D PIV)**





### **2D cross correlation**

### **Basic principle**

➤ Similarity of a particle image group between two frames

#### **Procedure**

> two frames are divided into small windows (e.g. 32X32 pixel)

#### PIV recording



Interrogation grid (M<sub>g</sub>×N<sub>g</sub>)

Interrogation window (M×N)



### **2D cross correlation**

#### **Basic principle**

➤ Similarity of a particle image group between two frames

#### **Procedure**

- > two frames are divided into small windows (e.g. 32X32 pixel)
- > each interrogation windows are cross correlated





### **2D cross correlation**

### **Basic principle**





### **2D cross correlation**

#### **Basic principle**

➤ Similarity of a particle image group between two frames

#### **Procedure**

#### PIV recording





# **Matlab Codes**

