

On the Convergence of the Random Walk Metropolis Algorithm

Sam Power

University of Bristol

30 March, 2023

Links & Acknowledgements

- ✓ Main paper today: arXiv 2211.08959;
- ✓ All joint work with
 - Christophe Andrieu (Bristol)
 - Anthony Lee (Bristol)
 - ► Andi Q. Wang (Bristol ~> Warwick)

Talk Goals

- In recent work, we resolve (to a large extent) the convergence behaviour of the Random Walk Metropolis MCMC algorithm.
- ✓ In this talk, I hope to convey conceptual messages rather than technical details.
- I want to enable your understanding of how our results can be used to deduce convergence estimates for concrete sampling problems.

Setting: Task

- Motivating task: making sense of structured probability distributions in high-dimensional spaces
 - posterior inference in Bayesian statistics
 - latent variable models, hidden Markov models
 - generative modeling
 - non-convex optimisation
 - **...**

Markov Chain Monte Carlo (MCMC)

- k Task: Generate approximate samples from a probability distribution π to which we have *limited access*.
- MCMC: An iterative approach to this task.
 - Simulate a time-homogeneous Markov chain $(X_n)_{n>0}$ such that

$$\text{Law}(X_n) \to \pi \text{ as } n \to \infty.$$

(and hopefully, quickly)

 \checkmark Use samples to 'understand' π .

Random Walk Metropolis

- ✓ Today: Study the Random Walk Metropolis (RWM) algorithm
 - \triangleright Only requires access to density of π , up to a multiplicative constant (typical).
 - Widely-used, simple, 'representative' difficulties
- 1. At x.
 - 1.1 Propose $x' \sim \mathcal{N}(x, \sigma^2 \cdot I_d)$.
 - 1.2 Evaluate $r(x, x') = \frac{\pi(x')}{\pi(x)}$.
 - 1.3 With probability min $\{1, r(x, x')\}$, move to x'; otherwise, remain at x.
- \checkmark Leaves π invariant; ergodic under mild conditions.

Some Notation

- u $Q\left(x,\mathrm{d}x^{'}
 ight):=\mathcal{N}\left(\mathrm{d}x^{'};x,\sigma^{2}\cdot I_{d}
 ight).$
- $\kappa \alpha(x, x') := \min \{1, r(x, x')\}.$
- $lacksquare lpha(x) := \int Q\left(x, \mathrm{d}x'
 ight) lpha(x, x').$
- $\bowtie \alpha_0 := \inf \{ \alpha(x) : x \in \mathbb{R}^d \}$
- k The Random Walk Metropolis kernel P is given by

$$egin{aligned} P\left(x, \mathrm{d}x^{'}
ight) &= Q\left(x, \mathrm{d}x^{'}
ight) \cdot lpha(x, x^{'}) \ &+ (1 - lpha(x)) \cdot \delta(x, \mathrm{d}x^{'}) \end{aligned}$$

Headlines

- ✓ Our main results take the (stylised) form
 - If $\alpha_0 \gtrsim 1$, then

Mixing (RWM
$$(\pi, \sigma^2)$$
) $\gtrsim \sigma^2 \cdot \text{Mixing (OLD }(\pi))$,

where OLD is the continuous-time 'Overdamped Langevin Diffusion' process.

- ∠ Can all be made precise via 'L² convergence', 'mixing times', etc.
- - 1. Control worst-case acceptance rates (i.e. bound α_0 from below).
 - 2. Understand how 'nice' the target π is (i.e. understand mixing of OLD (π)).

The Overdamped Langevin Diffusion

- \bigvee Let $\pi \propto \exp(-U)$ be our target; call U the 'potential'.
- \swarrow OLD (π) is the SDE given by

$$\mathrm{d}X_t = -
abla\,U\left(X_t
ight)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}\,W_t.$$

- \swarrow 'The canonical π -reversible diffusion'.
- κ Fundamental tool for analysing { geometry, concentration, \cdots } of π .
- Many aspects are well-understood by now.

Crash-Course in Convergence of Langevin Diffusions

- 1. If U is convex,
 - then $OLD(\pi)$ converges at some exponential rate.
- 2. If U is uniformly quadratically convex,
 - then $OLD(\pi)$ initially converges at a *doubly-exponential* rate.
 - (intuition: 'burn-in' phase is very quick)
- 3. If U has slower-than linear growth in the tails,
 - then $OLD(\pi)$ can only converge at slower-than-exponential rates.
 - (intuition: time-consuming to get in and out of the tails)

Crash-Course in Convergence of Langevin Diffusions

- 1. KLS *Conjecture*: if *U* is convex,
 - ► then the exponential rate satisfies

$$\gamma_{\pi} \gtrsim \|\operatorname{Cov}_{\pi}\left(\operatorname{id}\right)\|_{\operatorname{op}}^{-1}$$

independently of the dimension.

- \blacktriangleright (intuition: only bottleneck is the 'worst' one-dimensional marginal of π)
- 2. Various transfer principles (change of measure, transport, ...).
 - lacktriangle (intuition: convergence behaviour is robust to various classes of perturbation to π)

Back to the Random Walk Metropolis

- Rough intuition: when the dimension is high (small moves) and the target is nice (not too rough), the RWM 'looks like' OLD.
- We can show that (again, glossing over details)

Mixing (RWM
$$(\pi, \sigma^2)$$
) $\gtrsim \alpha_0^4 \cdot \sigma^2 \cdot \text{Mixing (OLD }(\pi))$.

- ► (Actually, this is an instance of a surprisingly general result; can discuss offline.)
- $\normalfont{\normalfont{\mbox{κ}}}$ For RWM, we know that it is not $\{$ interesting, relevant $\}$ to consider $\alpha_0 \to 0$.
- \checkmark So, how do we control $\alpha_0 \gg 0$?

Regularity Assumptions on Potential

- Ke Recall that $\alpha(x, x') = \min \left\{ 1, \frac{\pi(x')}{\pi(x)} \right\}$: natural to control $U = -\log \pi$.
- \checkmark Smoothness assumption: for some $p \in [1, 2], \psi : R_+ \to R$, it holds that

$$U\left(x+h
ight)-U\left(x
ight)-\left\langle
abla U\left(x
ight)$$
 , $h
angle \leqslant \psi\left(\left\|h
ight\|_{p}
ight)$.

- w e.g. abla U is α-Hölder w can take p = 2, $abla (r)
 abla r^{1+\alpha}$.
- \not p=2 is typically the easiest case to handle.
- \swarrow Other p correspond to forms of heterogeneity, roughness.

Acceptance Rate Control for RWM

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\int\mathcal{N}\left(\mathrm{d}z;0,I_{d}
ight)\cdot\psi\left(\sigma\cdot\left\Vert z
ight\Vert _{p}
ight)
ight),$$

and taking $\sigma = v \cdot d^{-1/p}$ gives that

$$\alpha(x) \geqslant \frac{1}{2} \cdot \exp(-\psi(c_p \cdot v) + o(1)).$$

- k For p=2, consistent with usual optimal scaling results on step-size.
 - ▶ n.b. here, we treat *worst-case* rather than *average-case*.
- k For p < 2, smaller step-sizes are needed to stabilise α_0 .

Taking Stock

- ✓ So, to 'know' the convergence of Random Walk Metropolis on a given target . . . ,
 - 1. Examine regularity of U, extract a step-size σ which will control α_0 .
 - 2. Examine global structure of π , characterise the convergence of OLD (π) .
 - 3. 'Multiply these two things together'.
- This is the punchline, particularly if you don't want to get your hands too dirty.

'Similarity' of RWM, OLD

- \checkmark Morally, the key principle is that RWM \approx OLD somehow.
- In what sense is this true?
- ✓ Not pathwise, nor uniformly (tails).
- - ▶ If $A \subseteq \mathbb{R}^d$, and $\pi(A)$ is not too tiny, then RWM and OLD both require similar amounts of effort to exit A; cross the boundary between A, A^{\complement} .
 - ► Mathematically: isoperimetry, conductance,
- ✓ For L² convergence, this is a sufficient 'resemblance' between the processes.

Some Examples

- Throughout,
 - Assume that initial distance to stationarity is $\exp \Omega(d)$ (typical; achievable).
 - Drop log factors (forgive me).
- Model problems:
 - $U(x) = ||x||_2^2$: take $\sigma \sim d^{-1/2}$, gives $T_{\text{mix}} \lesssim d$
 - $U(x) = ||x||_{\alpha}^{\alpha}$: take $\sigma \sim d^{-1/2}$, gives $T_{\text{mix}} \lesssim d^{2/\alpha}$ for $\alpha \in [1, 2)$.
 - $U(x) = \|x\|_p^{\alpha}$: take $\sigma \sim d^{-1/p}$, gives $T_{\text{mix}} \lesssim d^{2/p+2/\alpha-1}$ for $\alpha \in [1,2)$, $p \in [1,2]$.
 - One factor for roughness, one factor for tails.
 - One factor for step-size, one factor for diffusion.
- Main example in paper:
 - Suppose that U is convex, with eigs $(U'') \in [m, L]$ ('well-conditioned').
 - ightharpoonup Take $\sigma \sim (L \cdot d)^{-1/2}$.
 - ▶ This gives $T_{\text{mix}} \lesssim \kappa \cdot d$, where $\kappa = L/m$.

Recap

- Random Walk Metropolis for MCMC sampling.
- Analysis reduces to:
 - Am I accepting my proposed moves? (roughness)
 - ► How would the corresponding Langevin diffusion mix? (concentration)