Hawking Radiation as Seen by Observers

Bachelor thesis

Friedrich Hübner Universität Bonn

4. September 2018

Introduction

- Consider star collapsing to black hole
- Hawking[1]: black hole radiates at $\beta_{\rm H}=8\pi M$
- Minkowski space:
 - Inertial observer: no particles
 - Accelerating observer: heat bath (Unruh effect)
- Observers around the black hole:
 - Freely falling: no particles?
 - Static observer: heat bath?

- QFT in curved spacetime
- Unruh detector in static spacetimes
- Black holes
- Conclusion

Massless scalar field in curved spacetime

- Spacetime metric: $g_{\mu\nu}$
- Lagrangian: $\mathcal{L} = -\frac{1}{2} \sqrt{|g|} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$
- Klein-Gordon equation: $\nabla_{\mu}\nabla^{\mu}\phi=\frac{1}{\sqrt{|g|}}\partial_{\mu}\Big(\sqrt{|g|}g^{\mu\nu}\partial_{\nu}\phi\Big)=0$
- Scalar product: $(\phi|\psi) := i \int_{\Sigma} dS^{\mu} \, \phi^* \nabla_{\mu} \psi \psi \nabla_{\mu} \phi^*$
- Orthonormal basis: $(u_i|u_j)=\delta_{ij},\;(u_i|u_j^*)=0,\;(u_i^*|u_j^*)=-\delta_{ij}$
- Quantisation: $\phi(\mathbf{x}) = \sum_i u_i a_i + u_i^* a_i^{\dagger}$

State of the QFT

- Vacuum: $a_i |0\rangle = 0$
- Problem: $u_i \rightarrow v_j, a_i \rightarrow b_j$: $b_i |0\rangle \neq 0$
 - → Need to guess state!
- Static spacetime: choose vacuum w.r.t. positive frequency modes: $u_i \sim e^{-i\omega t}$
- What does an observer see?

Greens functions

- Vacuum:
 - Wightman function $D^+(\mathbf{x}, \mathbf{x}') := \langle 0 | \phi(\mathbf{x}) \phi(\mathbf{x}') | 0 \rangle$
 - $iD(\mathbf{x}, \mathbf{x}') := [\phi(\mathbf{x}), \phi(\mathbf{x}')] = 2i \operatorname{Im} D^{+}(\mathbf{x}, \mathbf{x}')$
 - $D^{(1)}(\mathbf{x}, \mathbf{x}') := \langle 0 | \{ \phi(\mathbf{x}), \phi(\mathbf{x}') \} | 0 \rangle = 2 \operatorname{Re} D^{+}(\mathbf{x}, \mathbf{x}')$
- Thermal:
 - replace $\langle 0| \dots |0 \rangle$ by $\frac{1}{7} \text{Tr } e^{-\beta H} \dots$
 - D is c-number: $D_{\beta} = D$
 - $D_{\beta}^{(1)}(t, \vec{x}; t', \vec{x}') = \sum_{n} D^{(1)}(t i\beta n, \vec{x}; t', \vec{x}')$

Unruh detector

• Detector model: $\mathcal{H}_{\mathrm{detector}} = c \cdot m(\tau) \cdot \phi(\mathbf{x}(\tau)), \ c \ll 1$

Transition rate

$$\frac{\mathrm{d} F_E}{\mathrm{d} \tau} = 2 \mathrm{Re} \, \int_{-\infty}^0 \mathrm{d} \tau' \, e^{-i E \tau'} D^+(\mathbf{x}(\tau + \tau'), \mathbf{x}(\tau))$$

Constant rate

$$\frac{\mathrm{d}F_E}{\mathrm{d}\tau} = \int_{-\infty}^{\infty} \mathrm{d}\tau \, e^{-iE\tau} D^+(\mathbf{x}(\tau), \mathbf{x}(0))$$

• Interpretation: F_F is particle population for observer

Minkowski space

- Wightman function: $D^+(\mathbf{x}, \mathbf{x}') = -\frac{1}{4\pi^2} \frac{1}{(t-t'-i\varepsilon)^2 |\vec{x}-\vec{x}'|^2}$
- Static observer: $t(\tau) = \tau, \vec{x}(\tau) = const$
 - $D^+(\mathbf{x}(\tau),\mathbf{x}(0)) = -\frac{1}{4\pi^2} \frac{1}{(\tau i\varepsilon)^2}$
 - Fourier transform: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau}=0$
 - → Inertial observer: vacuum contains no particles

Abbildung: Pole structure

Unruh effect

- Accelerating observer: $t(\tau) = 1/\alpha \sinh \alpha \tau$, $x(\tau) = 1/\alpha \cosh \alpha \tau$
 - $\bullet \ D^+(\mathbf{x}(\tau),\mathbf{x}(\tau')) = -\tfrac{\alpha^2}{16\pi^2} \tfrac{1}{\sinh^2 \frac{\alpha(\tau-\tau')}{2}}$
- Thermal state: $D_{\beta}^{+}(\mathbf{x},\mathbf{x}')=-rac{1}{4eta^{2}}rac{1}{\sinh^{2}\left(rac{\pi}{eta}\sqrt{(t-t'-iarepsilon)^{2}-|ec{x}-ec{x'}|^{2}}
 ight)}$
 - Static observer: $D^+_{eta}(\mathbf{x}(au),\mathbf{x}(au')) = -rac{1}{4eta^2}rac{1}{\sinh^2\left(rac{\pi}{eta}(au- au')
 ight)}$
- Set $\beta = 2\pi/\alpha$
- Accelerating observer: vacuum is a thermal state

Static spactimes

- Metric: $ds^2 = -\beta(\vec{x}) dt^2 + g_{ij}(\vec{x}) dx^i dx^j$
- Positive frequency solutions: $u_i(t, \vec{x}) = \frac{1}{\sqrt{2\omega_i}} e^{-i\omega_i t} A_i(\vec{x})$
- State of QFT vacuum: $a_i |0\rangle = 0$
- Normal coordinates $(a = \beta(0))$:

$$D^{+}(\mathbf{x},0) = -\frac{1}{4\pi^2} \frac{1}{a(t-i\varepsilon)^2 - |\vec{x}|^2} + \mathcal{O}(x^2)$$

Pole at $\mathbf{x} = \mathbf{x}'$

- Consider trajectory $\mathbf{x}(\tau)$, $\mathbf{x}(0) = 0$
- D^+ has second order pole at $\tau=0$: $\frac{1}{a(t(\tau)-i\varepsilon)^2-|\vec{x}(\tau)|^2}$
- ε shift pole to upper half:
 - $a(t(\tau_{\varepsilon}) i\varepsilon)^2 |\vec{x}(\tau_{\varepsilon})|^2 = 0$
 - $\delta \tau = \frac{\mathrm{d} \tau_{\varepsilon}}{\mathrm{d} \varepsilon} \Big|_{\varepsilon=0} = i a \dot{t}(0) \pm \sqrt{-a^2 \dot{t}(0)^2 + 1}$ $\rightarrow \delta \tau$ has positive imaginary part
- Only poles in the lower half contribute
 - \rightarrow drop pole at $\tau = 0$

Abbildung: Pole shift

Other singularities of D^+

- $D^+(\mathbf{x},\mathbf{x}')=\left<0\right|\phi(\mathbf{x})\phi(\mathbf{x}')\left|0\right>$ satisfies $\nabla_{\mu}\nabla^{\mu}D^+(\mathbf{x},\mathbf{x}')=0$
- Define $A=1/D^+ \Rightarrow A \nabla_\mu \nabla^\mu A = 2 \nabla_\mu A \nabla^\mu A$
- $D^+ = \infty \Rightarrow A = 0 \Rightarrow \nabla_{\mu} A \nabla^{\mu} A = 0$ $\rightarrow D^+ = \infty$ is a lightlike hypersurface
- D⁺ is singular on lightcone

- Other singularities appear at t = const
 - → no singularities on timelike trajectories
- $D = [\phi(\mathbf{x}), \phi(\mathbf{x}')]$ is only non zero on lightcone
 - $\rightarrow D^+$ is real for all trajectories

Abbildung: Singularities on trajectories

Static observers

Lemma 1

In a static spacetime a static observer does not observe any particles

•
$$t(\tau) = \frac{\tau}{\sqrt{a}}$$

•
$$u_i = \frac{1}{\sqrt{2\omega_i}} e^{-i\omega_i t} A_i(\vec{x})$$

•
$$D^{+}(\mathbf{x}(\tau), \mathbf{x}(0)) = \sum_{i} \frac{1}{2\omega_{i}} e^{-i\omega_{i}\tau/\sqrt{a}} A_{i}(\vec{x}_{0}) A_{i}^{*}(\vec{x}_{0})$$

$$\begin{split} \frac{\mathrm{d}F_E}{\mathrm{d}\tau} &= \sum_i \frac{1}{2\omega_i} A_i(\vec{x}_0) A_i^*(\vec{x}_0) \bigg(\int_{-\infty}^{\infty} \mathrm{d}\tau \, e^{-iE\tau} e^{-i\omega\tau/\sqrt{a}} \bigg) \\ &= \sum_i \frac{1}{2\omega_i} A_i(\vec{x}_0) A_i^*(\vec{x}_0) \delta \big(E + \omega/\sqrt{a} \big) = 0 \end{split}$$

Observers along Killing vectors

Lemma 2

An observer moving along a Killing vector \mathbf{k} will see excitations if and only if there exists at least one solution u: $\frac{A}{|B|} < \frac{|m|}{\omega_m}$

- $\dot{\mathbf{x}} = A\partial_t + B\mathbf{k}$
- \bullet $\mathbf{k}u = im u$
- $u_{m,i} = \tilde{A}_i(y_1, y_2)e^{-i\omega_{m,i}t}e^{im\xi}$
- Schwarzschild/Minkowski circular orbit: $\mathbf{k} = \partial_{\phi}, \frac{|m|}{\omega_m}$ unbound
- Geodesic observers see particles!

Observers along Killing vectors

Lemma 3

An observer moving along a Killing vector \mathbf{k} will see excitations if and only if there exists at least one solution u: $\frac{g_{\xi\xi}(\mathbf{x})}{|g_{tt}(\mathbf{x})|} < \frac{m^2}{\omega_{\infty}^2}$

- Minkowski inertial: $\mathbf{k} = \partial_x$, $\frac{A}{|B|} > 1 = \frac{|m|}{\omega}$
- Flat space: All inertial observers not encounter particles.
- Global effect: equivalence principle does not apply
- Depends on whole history of observer

General observers

- Transition rate not constant: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau} = 2\mathrm{Re} \int_{-\infty}^0 \mathrm{d}\tau' \, e^{-iE\tau'} D^+(\mathbf{x}(\tau+\tau'),\mathbf{x}(\tau))$
- How to handle pole at $\tau' = 0$?

→ can not use residuum theorem

- Expansion: $D^+(\mathbf{x}(\tau'),0) = -\frac{1}{4\pi^2\tau'^2} + W(\tau')$
- $\frac{1}{\tau'^2}$ term does not contribute
- $W(\tau')$ is non-singular

Black holes

- Consider star
- $\mathrm{d}s^2 = -f(r)\,\mathrm{d}t^2 + \frac{1}{f(r)}\,\mathrm{d}r^2 + r^2\,\mathrm{d}\Omega$ where f(r) = 1 2M/r
- QFT in vacuum state
- ullet Collapse to black hole: thermal state with temperature $eta_{
 m H}=8\pi M$
- What spectrum will observers see before and after the collapse?

Solutions of Klein-Gordon equation

- $u_{\omega lm} = Ae^{-i\omega t} \frac{R_{\omega l}}{r} Y_l^m(\theta, \varphi)$
- $\bullet \ \frac{\mathrm{d}^2 R_{\omega I}}{\mathrm{d} r_*^2} + \omega^2 R_{\omega I} \left(\frac{I(I+1)}{r^2} + \frac{f'(r)}{r} \right) f(r) R_{\omega I} = 0$
- Asymptotic: $R_{\omega I} = e^{\pm i\omega r_*}$
- $u_{\omega lm} \approx \frac{1}{\sqrt{\pi \omega}} e^{-i\omega t} \frac{\sin(\omega r_* l\frac{\pi}{2})}{r} Y_l^m(\theta, \varphi)$

Wightman function

• Wightman function: $D^+(\mathbf{x}, \mathbf{x}') = \int_0^\infty \frac{\mathrm{d}\omega}{\pi\omega} \sum_{I,m} e^{-i\omega(t-t')} \frac{\sin(\omega r_* - l\frac{\pi}{2})}{r} \frac{\sin(\omega r_*' - l\frac{\pi}{2})}{r'} Y_I^m(\theta, \varphi) Y_I^{m*}(\theta', \varphi')$

- Problems:
 - IR divergence: $\int_0^\infty \frac{d\omega}{\pi\omega} e^{i\omega...}$
 - Angular dependence: $\sum_{l,m} Y_l^m(\theta,\varphi) Y_l^{m*}(\theta',\varphi') \sim \delta(\theta-\theta') \delta(\varphi-\varphi')$

Intermezzo: Minkowski space spherical modes

- $u_{\omega,l,m}^{\mathrm{M}} = \frac{\sqrt{\omega}}{\sqrt{\pi}} e^{-i\omega t} j_l(\omega r) Y_l^m(\theta,\varphi)$
- Asymptotic: $u_{\omega,l,m}^{\mathrm{M}} \to \frac{1}{\sqrt{\pi\omega}} e^{-i\omega t} \frac{\sin\left(\omega r l\frac{\pi}{2}\right)}{r} Y_l^m(\theta,\varphi)$
- Wightman function: $D^{+}(\mathbf{x}, \mathbf{x}')$

$$\rightarrow \int_{0}^{\infty} \frac{\mathrm{d}\omega}{\pi\omega} \sum_{l,m} e^{-i\omega(t-t')} \frac{\sin(\omega r - l\frac{\pi}{2})}{r} \frac{\sin(\omega r' - l\frac{\pi}{2})}{r'} Y_{l}^{m}(\theta,\varphi) Y_{l}^{m*}(\theta',\varphi')$$

Abbildung: Spherical Bessels: $x \cdot i_l(x)$

- Replace $\frac{\sin(\omega r_* l\frac{\pi}{2})}{\omega r} \approx F(r)j_I(\omega r_*)$
- Fix F(r) for limit $\mathbf{x} \to \mathbf{x}'$

Wightman function

$$D^{+}(\mathbf{x}, \mathbf{x}') \approx -\frac{1}{4\pi^{2}\sqrt{f(r)f(r')}} \frac{1}{(t-t'-i\varepsilon)^{2}-r_{*}^{2}-r_{*}'^{2}+2r_{*}r_{*}'\cos{\alpha}}$$

- Static observer: $r = \text{const}, \alpha = 0$
 - $\bullet \ D^+(\mathbf{x}(\tau),\mathbf{x}(\tau')) = -\tfrac{1}{4\pi^2} \tfrac{1}{(\tau-\tau'-i\varepsilon)^2}$
 - → No particles

Circular Observer before collapse

- Circular observer: $r = \text{const}, t = A\tau, \phi = B\tau$
 - $D^+(\mathbf{x}(\tau), \mathbf{x}(\tau')) = -\frac{1}{4\pi^2 f(r)} \frac{1}{(A(\tau \tau') i\varepsilon)^2 2r_c^2 (1 \cos B(\tau \tau'))}$
 - Small velocities $\frac{A}{Br_0} > 1$: $\frac{\mathrm{d}F_E}{\mathrm{d}\tau} \sim e^{-E/Bx_0}$
 - High velocities $\frac{A}{Br_n}$ < 1: Poles on real axis \rightarrow not possible
- Problem:

$$D^+_{\beta}(\mathbf{x}(\tau),\mathbf{x}(0)) = -\frac{1}{4\pi^2\tau^2}\frac{1}{f(r)A^2 - f(r)r_*^2B^2} + \mathcal{O}(\tau^0) \neq -\frac{1}{4\pi^2\tau^2} + \mathcal{O}(\tau^0)$$

• Approximation only valid for $r^2 \approx f(r)r_*^2$ (r > 200M)

After collapse

- 1. Find thermal Wightman function
- 2. How to determine observed temperature?
- 3. Apply on different observers:
 - static
 - circular geodesic
 - infalling geodesic (E = 1)

Thermal Wightman function

Thermal Wightman function:

$$D_{\beta}^{+}(t(\tau')) = \sum_{n=-\infty}^{\infty} D^{+}(t(\tau') - i\beta n)$$

$$= \sum_{n=-\infty}^{\infty} -\frac{1}{4\pi^{2}(\tau' - i\beta\sqrt{a}n)^{2}} + W(\tau'(t - i\beta n))$$

$$= -\frac{1}{4\beta^{2}a} \frac{1}{\sinh^{2}\left(\frac{\pi}{\beta\sqrt{a}}\tau'\right)} + W_{\beta}(\tau')$$

- Static observers: $T = \frac{T_0}{\sqrt{a}}$ (Tolman relation)
- General: Corrections from $W_{\beta}(\tau')$
 - temperature shift?
 - non thermal?

Determining the temperature

- Expect thermal spectrum + non thermal spectrum
- Fit temperature: Minimize $\int_0^\infty \mathrm{d}E \left| \frac{\mathrm{d}F_E}{\mathrm{d}\tau} \left(\frac{\mathrm{d}F_E}{\mathrm{d}\tau} \right)_\beta \right|^2$

Abbildung: Observed and thermal spectrum

Determining the temperature

- Minimize instead $\int_{-\infty}^{0} d\tau' \left| D^{+}(\mathbf{x}(\tau + \tau'), \mathbf{x}(\tau)) D_{\beta}^{\mathrm{M}}(\tau') \right|^{2}$
- Expect small shift:

$$D_{eta}^{M}(au') pprox D_{eta_{
m H}}^{M}(au') + lpha {
m g}(au')$$
 where $lpha = rac{\Delta eta}{eta_{
m H}} = -rac{\Delta T}{T_{
m H}}$

• Minimize $\int_{-\infty}^{0} d\tau' |h(\tau') - \alpha g(\tau')|^2$ where $h(\tau') = D^+(\mathbf{x}(\tau + \tau'), \mathbf{x}(\tau)) - D^{\mathrm{M}}_{\beta_{\mathrm{T}}}(\tau')$

$$\alpha = \frac{\int_{-\infty}^{0} \mathrm{d}\tau' \, h(\tau') \cdot g(\tau')}{\int_{-\infty}^{0} \mathrm{d}\tau' \, g(\tau')^2}$$

Static observer

Abbildung: Relative temperature shift

Static observer

Abbildung: Difference to Tolman relation

Circular observer

Abbildung: Relative temperature shift

Circular observer

Abbildung: Difference to Tolman relation

Infalling radial observer

Abbildung: Relative temperature shift

Infalling radial observer

Abbildung: Difference to Tolman relation

Conclusion

- Equivalence principle not applicable
- Approximated D^+ for r > 200M
- Determined the temperature out of a spectrum
- For all observers temperature follows Tolman relation
- Deviations not significant enough

Hawking Radiation as Seen by Observers

Bachelor thesis

Friedrich Hübner Universität Bonn

4. September 2018

Sources

S. W. Hawking. "Particle creation by black holes". In:

Communications in Mathematical Physics 43.3 (1975), S. 199-220.

ISSN: 1432-0916. DOI: 10.1007/BF02345020. URL:

https://doi.org/10.1007/BF02345020.