Single-molecule sequencing

Quantitative Biology 2022 10/28/22

The history of sequencing

Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC, Scorilas A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life (Basel). 2021 Dec 26;12(1):30.

Single-molecule sequencing (SMS)

Advantages

- No PCR
- Small input sample size
- Real-time sequencing
- More uniform genome coverage
- Longer read lengths (Kb to Mb)
- Faster data production

Disadvantages

- Higher error rates
- Fresh samples and careful handling needed to preserve ultralong reads
- Lack of database/analysis tools

PacBio - sequencing

PacBio - basecalling

https://wp.unil.ch/gtf/technology/

PacBio

Advantages

- No PCR
- Small input sample size
- Real-time sequencing
- More uniform genome coverage
- Longer read lengths (up to 300Kb, ~15Kb average)
- Faster data production

Disadvantages

- Higher error rate (~90% accurate, HiFi ~99.9% accurate)
- Requires fresh samples
- Immature database/analysis tools

PacBio

A single run on a PacBio Sequel IIe (~\$500K/machine)

- Yields ~4 million reads
- Takes about 30 hours
- Sequences fragments with an average size of 15Kb
- Generates ~60Gbp of sequence
- Costs ~\$2-3K

For comparison, an Illumina run for the same amount of data would cost ~\$1-1.5K

Oxford Nanopore Technologies (ONT)

Nanopore sequencing

Advantages

- No PCR
- Portable
- Low equipment cost
- Can directly sequence RNA
- Small input sample size (~order magnitude less than PacBio)
- Real-time sequencing
- More uniform genome coverage
- Longer read lengths (up to 4Mb, ~50-100Kb average)
- Faster data production
- Reusable flowcells

Disadvantages

- Higher error rate (90-95% accurate)
- Requires fresh samples
- Immature database/analysis tools

Nanopore Sequencing

A single run on a MinIon (~\$1K/machine)

- Yields ~200 thousand reads
- Takes about 24-72 hours
- Sequences fragments with an average size of 50-100Kb
- Generates ~10-20Gbp of sequence
- Costs ~\$500

For comparison, an Illumina run for the same amount of data would cost ~\$300

"Read until" Adaptive Read Selection

Sequence-based read acceptance/rejection allows enrichment of target templates at the time of sequencing

Duplex Sequencing

Forward-reverse sequencing allows joint basecalling, vastly improving read accuracy (~99.9% accurate on average)

Multiple offset sensors improve resolution of homopolymers

Direct peptide sequencing

Helicases ratchet peptides peptides through pores repeatedly for a high quality consensus protein sequence

From voltage to base calls

- Voltage is determined by 5 bases currently in pore
- Each 5-mer yields (semi-)unique voltage
- Dwell time in pore is variable

Guppy - a recurrent neural network basecaller

Let's take a step back and look at the simple case of 2 category classification

We want to determine if a likely active using H3K4me3 and ATAC-seq signal

We start with known examples

This is easy to classify with a simple linear relationship

This is easy to classify with a simple linear relationship

We can create a simple linear combination (regression) of the inputs to define the line

This is easy to classify with a simple linear relationship

We can create a simple linear combination (regression) of the inputs to define the line

We can add a sigmoid function to change the output to 0-1. This turns it into a logistic regression.

The perceptron

This is easy to classify with a simple linear relationship

The "neural" in neural network

This is easy to classify with a simple linear relationship

When a perceptron isn't enough

What if it's not a linear relationship?

A simple neural network

By combining multiple perceptrons, we can create non-linear functions.

This is a 2-layer network (inputs are not counted)

A universal approximator

Given enough hidden nodes (neurons), any nonlinear function can be approximated

Activation functions

A "deep" neural network

- Each node in a hidden layer can be thought of as learning a specific feature
- Nodes closer to the inputs learn lower level features
- Nodes closer to the outputs learn more complex features

Features (filters)

Let's say our inputs are signal intensity across a window of base positions and we want to classify peaks

Features (filters)

Given the input signal

Training a neural network

- Requires a large high-quality training set of ground-truth labels/values
- Need to define a loss function (how well is each prediction?)

Information only flows forward (each node in a layer is independent of every other node in that layer)

Guppy - a recurrent neural network basecaller

- Different low-level features are captured in the first layer across multiple windows
- Higher level features are compiled from low-level features
- Information is shared between high-level features
- Base predictions (probabilities) output for multiple positions
- All probabilities for a given base position contribute to determining base call

DNA/RNA base modification

Although DNA and RNA have a simple 4 letter alphabet, both have a number of possible chemical modifications that impact regulation and function

5mC

• The most common DNA base modification is methylation of the fifth carbon of cytosine (5mC)

~1% of the human genome is composed of 5mC

- 5mC has multiple functions
 - Silencing retroviral elements
 - Tissue-specific gene regulation
 - X-inactivation
 - Genomic imprinting

Suppression of Transposable Elements (TEs)

TEs are mobile repetitive sequences that can replicate and integrate into the genome

Two classes:

Class 1 - RNA intermediate

Class 2 - DNA intermediate

Make up ~45% of the human genome

CpG Methylation

Methylation reinforces differentiation

X Chromosome Inactivation

Imprinting

Direct sequencing of DNA methylation

Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010 Jun;7(6):461-5. doi: 10.1038/nmeth.1459. Epub 2010 May 9.

Direct sequencing of DNA methylation

Nanopore

M = 5mC MSssl = CpG Methyltransferase