

Syllabus of Machine Learning

Prof. Chia-Yu Lin Yuan Ze University

2021 Spring

Goal

- Learn the basic knowledge and implementation techniques of machine learning.
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Create a wonderful final project so you can tell your son(s)/daughter(s), this is your project.
 - Make contributions on what you care

Prerequisite

- Basic python programming ability
- Data structure
- Algorithms

Books

- Introduction to Machine Learning, Fourth Edition
 - Ethem Alpaydin
- Fundamentals of Machine Learning for Predictive Data Analytics
 - John D. Kelleher, Brian Mac
 Namee, Aoife D'Arcy

Slides

Portal system

Roll call and Participation

- Zuvio
- Finish roll call before 9:20 a.m.

Syllabus

週次	上課日期	課程主題	内容
1	2月27日	說明課程	
2	3月6日	機器學習與競賽簡介	機器學習課程與競賽內容簡介
3	3月13日	機器學習基礎概念	機器學習基礎概念介紹(矩陣、線性代數、微積分等)
4	3月20日	學習模型	何謂監督式學習、非監督式學習、半監督式學習與強化式 學習
5	3月27日	迴歸	線性迴歸與羅吉斯迴歸
6	4月3日	最佳化模型:梯度下降與正 規化	梯度下降法、隨機梯度下降法、小批次梯度下降法、 Normal Equation的正規化、羅吉斯迴歸的正規化
7	4月10日	口頭報告提案投影片 競賽能力介紹	提案申請書撰寫介紹、投影片製作邏輯介紹、口頭報告技巧介紹
8	4月17日	資料處理技術介紹	資料處理技術(資料分析常用的函式庫介紹、Numpy的基礎、 Pandas的基礎、資料前處理)
9	4月24日	期中考	
10	- H . H	分群模型	決策邊界、貝氏分類器、支持向量機、決策樹、隨機森林、
	5月1日		K-means演算法、K-近鄰演算法
11	5月1日	資料分析應用範例實作	
11 12	, ,		K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模
	5月8日	資料分析應用範例實作	K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模 型實作教學
12	5月8日 5月15日	資料分析應用範例實作 深度學習模型-DNN	K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模 型實作教學 DNN模型概念介紹
12 13	5月8日 5月15日 5月22日	資料分析應用範例實作 深度學習模型-DNN 深度學習模型-CNN 深度學習模型實作-DNN與	K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模 型實作教學 DNN模型概念介紹 CNN模型概念介紹
12 13 14	5月8日 5月15日 5月22日 5月29日	資料分析應用範例實作 深度學習模型-DNN 深度學習模型-CNN 深度學習模型實作-DNN與 CNN	K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模 型實作教學 DNN模型概念介紹 CNN模型概念介紹 DNN與CNN實作教學
12 13 14	5月8日 5月15日 5月22日 5月29日 6月5日	資料分析應用範例實作 深度學習模型-DNN 深度學習模型-CNN 深度學習模型實作-DNN與 CNN 深度學習模型實作-物件辨識	K-means演算法、K-近鄰演算法 以鐵達尼號生存預測為範例題目,從資料前處理到建置模 型實作教學 DNN模型概念介紹 CNN模型概念介紹 DNN與CNN實作教學 物件辨識YOLO模型實作教學

Join Competition

- To improve your skill of data analytics, you have to choose one of the competitions to join:
- Practice your data analytics skill: Kaggle/Aidea
- Using data to create a service: 資料創新競賽
- Help Industry solve the problem: AIGO
- Of course, you can join all competitions.

Kaggle

• https://www.kaggle.com/competitions

All Competitions

Active	Completed InClass	All Categories ▼ Default Sort ▼
	HuBMAP - Hacking the Kidney	
	Identify glomeruli in human kidney tissue images	\$60,000
	Research • a month to go • Code Competition • 1106 Teams	
	RANZCR CLiP - Catheter and Line Position Challenge	
 	Classify the presence and correct placement of tubes on chest x-rays to save lives	\$50,000
	Featured • 17 days to go • Code Competition • 1161 Teams	
	VinBigData Chest X-ray Abnormalities Detection	
	Automatically localize and classify thoracic abnormalities from chest radiographs	\$50,000
	Featured • a month to go • 777 Teams	
	Human Protein Atlas - Single Cell Classification	
	Find individual human cell differences in microscope images	\$25,000
	Featured • 3 months to go • Code Competition • 222 Teams	

Aldea

https://aidea-web.tw/about

2021-Intracranial Tum...

2021/01/18 ~ 2021/03/31

267

水稻無人機全彩影像植...

2021/01/04 ~ 2021/06/01

313

2021-自動光學瑕疵檢測

2020/12/22 ~ 2021/04/28

322

香水百合價量預測

2020/11/25 ~ 2021/03/03

動態足壓影像辨識

2020/11/25 ~ 2021/03/03

348

資料創新競賽

https://opendata-contest.tca.org.tw/

AIGO

https://aigo.org.tw/zh-tw/competitions

中揚光電

多樣性物料設備AI 取料分析優化

由我司自製開發物管設備,進行AI分析取料並加速取料流程,將內部放置物依據 MES特殊需求,以AI提示推薦該次應使用的刀具或製具,並透過圖號及刀號這 些資料訓練演算法,提高人員倉庫加工 製程上的效率,與自我判斷排序整理模

● 593 營 隊伍申請: 0-3 歡迎投件

台塑旭

彈性纖維橫斷面外觀AI品質辨識

目前彈性纖維橫斷面品質檢測是以顯微 鏡放大顯像於螢幕上,以人工目視計算 纖維條數後,再以尺規量測螢幕上之纖 維直徑是否於管制範圍,整廠平均每天 約有300張橫斷面影像需藉由上述方法以 人工判讀,非常耗費人力及時間。本案

● 779 👺 隊伍申請:0-3 歡迎投件

Lab and HW

- Please hand in Lab and HW on time.
- If you submit your homework late within 7 days, you will only get 85% of your score.
- If you submit your homework late within 14 days, you will only get 70% of your score.
- If you submit your homework late more than 14 days, you will get 0.

Grades

- Lab and HW (35%): 5% each for Labs
- Proposal and First presentation (7%)
- Midterm (20%)
- Quiz (3%): randomly happens, 1 pts each
- Final project (35%)
- Bonus: Off-campus competition (Up to 10 points.)
 - When you join more than one competitions and you don't win the prize, you can get registration point and final contest point.
 - +1: Registration (Except Aidea.)
 - +2: Final Contest
 - +10: Award (1st prize)
 - +8: Award (2st prize)
 - +6: Award (3rd prize)
 - +4: Other prize

Final Project

Important Information

- Abstract (After midterm)
- Presentation (Slides and 2-min video)
- Report (English/Chinese)

Final Project Grade

- Abstract & Report (25%)
- Presentation score (20%-ranked by peers)
- Originality (15%)
- Performance (20%)
- 2-min video (20%)
- 10, 7, and 3 extra pts for the 1st, 2nd, and 3rd place of Most Popular Award (MPA), respectively
- Notice that the average scores BEFORE adding bonus for each project will be adjusted to approximately the same value.

Final Project Report

- A 5-page document describing your:
 - Motivation
 - Goal
 - State-of-the-art
 - Proposed Architecture and Methods
 - Uniqueness and Novelty
 - Dataset
 - Experiment Results/Interface
 - Conclusion
 - The job assignments between members
- Not include cover.
- Show that your ideas are worth efforts.

About the 2-min video

- Let viewers understand the novelty and contribution easily
- Target audience: non-ECE bachelor students
 - Please DO NOT stuff the video with technical terms
- An example: Please refer to the videos
- https://www.youtube.com/watch?time_continue=97&v=Gomu_ki7YM
- https://www.youtube.com/watch?v=hUnRCxnydCc

Spotlight Video List (1/2)

- [1] RL for dodging game: https://youtu.be/4oz-mub4Dgk
- [2] Arrhythmia detection using 12 lead ECG based on Deep Learning: https://youtu.be/ZNf5X_f1CBo
- [3] DeepFont: Identify Your Font from An
- Image: https://youtu.be/WRzvHUN6aMQ
- [4] Intelligent Fault Detection of Rolling-Element
- Bearing with Deep
- Learning: https://youtu.be/WzKL3XS6pkQ
- [5] Short Text Understanding Through Lexical
- Semantic Analysis for Keyword
- Search: https://youtu.be/c0e4luqp3rE

Spotlight Video List (2/2)

- [6] Dope Learning: A Computational Approach to Rap Lyrics
- Generation: https://youtu.be/ghvE6JLVi08
- [7] How FER makes money?: https://youtu.be/grT_-0Yc_mE
- [8] Deep Recurrent Q-Learning for Partially Observable
- MDPs: https://youtu.be/zhrFWtADUo0
- [9] Product recommendation with face
- recognition: https://youtu.be/bf0609NDQYM
- [10] Deep Learning for Event-Driven Stock
- Prediction: https://youtu.be/cgyurMRSBuA
- [11] Self-driving cars Simulation with
- EANN: https://youtu.be/1tUFju-aoj8
- [12] Hate Speech Writer Mapper based on Political Views
- Motive: https://youtu.be/I87G5USDJg4
- [13] Beautification: https://youtu.be/p78Y5tC2rUg

Should I take?

Pros

Cons

Familiar with Machine Learning Heavy?

Your Own Final Projects

Exhausted?

Participation

Pop Quiz

Lab

Programing

Quiz, homework, project, please...

- Do not copy the others' homework
- Write your own code, please
- In project, please:
 - Work as a team
 - Contribute your ideas
 - Implement your part
 - Do join the discussions
- You can always come knock my door
 - I would be glad to help you

Questions