CS150: Database & Datamining Lecture 25: Analytics & Machine Learning VI

Xuming He Spring 2019

Acknowledgement: Slides are adopted from the Berkeley course CS186 by Joey Gonzalez and Joe Hellerstein, Toronto CSC411 by Rich Zemel, Caltech CS155 by Yisong Yue.

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Regression

Classification

Dimensionality Reduction

Clustering

Dimensionality Reduction

- ➤ Given images under different viewing conditions
 - What are the intrinsic latent dimensions in these two datasets?

• How can we find these dimensions from the data?

Dimensionality Reduction:

>Given images under different viewing conditions

➤ Machine Learning Approach:

Embedding(Image; θ) \rightarrow {x₁, x₂, x₃, x₄}

Recovery($\{x_1, x_2, x_3, x_4\}; \theta$) \rightarrow Reconstructed Image

>Use common structure in data to identify embedding

Principal Component Analysis

original data space

Big Ideas

- ➤ Identify dimensions of maximum variance
- ➤ Project data onto those dimensions

Principal Component Analysis

- Handle high-dimensional data
 - Avoid overfitting
- > Data live in much lower dimensional space
- Useful for
 - Visualization
 - Preprocessing
 - Modeling prior for new data
 - Compression

Finding Principal Components

- To find the principal component directions, we center the data (subtract the sample mean from each variable)
- Calculate the empirical covariance matrix:

$$C = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \bar{\mathbf{x}}) (\mathbf{x}^{(n)} - \bar{\mathbf{x}})^{T}$$

with $\bar{\mathbf{x}}$ the mean

- What's the dimensionality of *C*?
- Find the *M* eigenvectors with largest eigenvalues of *C*: these are the principal components
- Assemble these eigenvectors into a $D \times M$ matrix U
- We can now express D-dimensional vectors x by projecting them to M-dimensional z

$$z = U^T x$$

Scaling Principal Component Analysis

>PCA Algorithm

Computes eigenvectors of of covariance matrix

$$\mathbf{Cov}(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T = \frac{1}{n} X^T X - \bar{x}\bar{x}^T$$

• The covariance matrix $d \times d$ is generally smaller than $X(n \times d)$

➤ We therefore only need to compute:

$$X^TX = \operatorname{d} \times \operatorname{d} \times \operatorname{d} = \operatorname{d} \times \operatorname{d} = \sum_{i=1}^n x_i x_i^T$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = |d|$$
 In summation form

- Only one pass required!

PCA to faces

- Run PCA on 2429 19x19 grayscale images (CBCL data)
- Compresses the data: can get good reconstructions with only 3 components

- PCA for pre-processing: can apply classifier to latent representation
 - ▶ PCA with 3 components obtains 79% accuracy on face/non-face discrimination on test data vs. 76.8% for GMM with 84 states
- Can also be good for visualization

PCA for Anomaly Detection

 \succ Run PCA and get top k eigenvectors: $V_{(k)}$

$$\mathbf{Proj}(x) = V_{(k)}^{T}(x - \bar{x})$$
$$\mathbf{Recv}(q) = V_{(k)}q + \bar{x}$$

➤ Compute the error in approximate recovery:

$$\mathbf{Error}(x) = \|x - \mathbf{Recv}\left(\mathbf{Proj}\left(x\right)\right)\|_{2}^{2}$$

 Outliers are those points far from their embedding

