Bioinformática e o sequenciamento de genomas

Waldeyr Mendes Cordeiro da Silva

Uma visão geral

Agenda

1. Conceitos Básicos de Biologia Molecular

Aspectos biológicos do curso

2. Alinhamentos de Sequências

Tipos de alinhamentos

3. Dados de sequenciamento de alto desempenho

Formatos de arquivos

Filtragem e montagem de fragmentos

Controle de qualidade Montagem *de novo*

Anotação

Significado biológico das sequências montadas

4. Prática (Genoma Sars-Cov-2)

Conceitos Básicos de Biologia Molecular

Dogma

Fonte: https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology

DNA

Copyright © 2012 University of Washington

Fonte: https://www.my46.org/intro/what-is-dna

DNA

Copyright © 2012 University of Washington

Fonte: https://www.my46.org/intro/what-is-dna

DNA

Fonte: https://www.khanacademy.org

Sequenciamento de DNA

- Obter string(s) representando as moléculas que compõem o DNA
- Ainda não é possível sequenciar toda a molécula diretamente
- Sequenciar pedaços da molécula, começando em alguma posição na direção 5' → 3'
- Fragmento (read): substring de uma das fitas da molécula alvo de DNA
- Não sabemos:
 - A que fita pertence
 - A posição relativa ao início da fita

Alinhamentos de Sequências

Alinhamentos de Sequências

Posicionamento das sequências, preservando a ordem dos nucleotídeos ou aminoácidos e indicando as posições em que as sequências são iguais ou diferentes

- Ferramenta básica da Bioinformática
- Alfabeto
 - DNA/RNA 4 nucleotídeos (ACGT/ACGU)
 - Proteínas 20 aminoácidos (A, R, N, D, E, C, G, Q, H, I, L, K, M, F, P, S, Y, T, W, V)
- Interesse no alinhamento ótimo: o máximo de similaridade e o mínimo de diferenças

Alinhamentos de Sequências

- Identidade → Porcentagem de aminoácidos (ou nucleotídeos) com um match direto no alinhamento
- Similaridade → Porcentagem de matches idênticos e similares (substituição conservativa)

Exemplo: $arginina \leftrightarrow lisina$

Homologia → Similaridade entre sequências que dividem ancestral comum

Tipos de alinhamento

Quanto à quantidade de entradas

- a) Pairwise pareamento de 2 sequências
- b) Alinhamento múltiplo múltiplas sequências

Quanto à estratégia de alinhamento

- a) Global
- b) Local

Quanto ao tipo de entrada

DNA x RNA x Proteína

Exemplo

ROSAVERMELHA AMOROSOVERME

8% de identidade (1 em 12).

Exemplo

→ → → ROSA VERMEL H A
AMO ROSOVERME → →

53% de identidade (8 em 15).

Erros

```
- - A C C G T - -
- - - C G T G C
T T A C - - - -
- T A G C G T - -
```

erro de substituição C/G

T T A C C G T G C consenso: votação da maioria

Alinhamento de sequências

Erros

Alinhamento de sequências

Erros

```
- - A C C G T - -
- - - C G T G C
T T A C - - - -
- T A C - G T - -
```

TTACCGTGC

erro de remoção de C no último fragmento

consenso: votação da maioria

Alinhamento de sequências

Modelos de pontuação

- Substituições
- Gaps (inserções/deleções)
- Matriz de substituição

Modelos de pontuação

- ➡ Tomando as sequências: GACGGATTAG e GATCGGAATAG
- Match = +1
- ▶ Mismatch = -1
- **₽** *Gap* = -2

Dbs: Valores das penalidades podem ser escolhidos

Matrizes de susbstituição

	Α	С	G	Т
Α	+20	+5	+10	+5
С	+5	+20	+5	+10
G	+10	+5	+20	+5
Т	+5	+10	+5	+20

Dados de sequenciamento de alto desempenho

Formatos (FASTQ)

```
@SEQ_ID
TTCAACTCGTTAGTAAATATCAAACGATCAGTACCATTTTGGGGTTCAAAGTGACAGTTT
+
!'>>>CCC'*((((***(***-+*'')+))%%%++))**55CCF>>%%%).1CCCC65
```

Exemplo Illumina: @HWUSI-EAS100R:6:73:941:1973#0/1

- ► HSWUSI-EAS100R → Unique instrument name
- ▶ 6 → Flowcell lane
- ▶ $73 \rightarrow \text{Tile number within the flow cell lane}$
- ▶ 941 \rightarrow x-coordinate of the cluster within the tile
- 1973 → y-coordinate of cluster within the tile
- ightharpoonup #0 ightharpoonup Index number for multiplexed sample
- $1 \rightarrow \text{Member of a pair}$

Formatos (FASTQ)

A qualidade (varia de 33 a 126) de cada nucleotídeo sequenciado é representado pelo caractere correspondente da tabela ASCII. Os valores *shifted down* para 0 a 93 por compatibilidade com a escala PHRED de qualidade (0 a 60)

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Formatos (FASTQ)

Formatos (FASTA)

>gi|13959657|sp|Q9PTU8|VSP3_BOTJA Venom serine proteinase A precursor MVLIRVIANLLILQLSNAQKSSELVIGGDECNITEHRFLVEIFNSSGLFCGGTLIDQEWVLSAAHCDMRN MRIYLGVHNEGVQHADQQRRFAREKFFCLSSRNYTKWDKDIMLIRLNRPVNNSEHIAPLSLPSNPPSVGS VCRIMGWGTITSPNATFPDVPHCANINLFNYTVCRGAHAGLPATSRTLCAGVLQGGIDTCGGDSGGPLIC NGTFQGIVSWGGHPCAQPGEPALYTKVFDYLPWIQSIIAGNTTATCPP

1. Cabeçalho

- GenBank/EMBL → gi|gi_number|*|accession.version|locus
- NCBI refseq → ref|accession|locus
- ▶ PRF Protein Research Foundation → pir|entry
- SWISS-PROT → sp|accesion|locus
- ▶ PDB Protein Data Bank → pdb|entry|chain

2. Sequência

nucleotídeos ou aminoácidos

Formatos (FASTA)

- .fasta, .fa → arquivo fasta genérico
- ♣ .fna → FASTA nucleotídeos
- ∴ ffn → FASTA regiões codificadoras (nucleotídeos)
- Ifaa → FASTA aminoácidos
- .frn \rightarrow FASTA RNA não codificador
- lacktriangle Multi-fasta ightarrow múltiplas sequências em um único arquivo

Formatos (SAM, BAM)

SAMTools fazem pós-processamento de alinhamentos de *reads*, as quais são sequências de DNA em formato FASTQ.

- SAM (Sequence Alignment/MAP) guarda o alinhamento das reads e pode ser lido por diversos softwares como o IGV (Integrated Genome Viewer).
- ▶ BAM (Binary Alignment/MAP) é uma versão comprimida de um alinhamento das reads. Pode ser obtido diretamente do alinhamento ou convertido a partir de um arquivo SAM.

Formatos (SAM, BAM)

Formatos (BED)

- BED é um arquivo organizado em colunas separadas por tabulação (tab) com anotações da sequência
- Pode ser aberto em um genome browser

Formatos (BED)

- Arquivos BED têm 12 colunas, 1-3 obrigatórias, 4-12 opcionais
 - 1. **chrom** \rightarrow nome do cromossomo no qual a *feature* existe
 - 2. **start** → posição inicial na sequência
 - 3. **end** \rightarrow posição final na sequência
 - 4. name \rightarrow nome da feature
 - 5. score \rightarrow 0 and 1000 (nível de cinza¹)
 - 6. strand → direção da fita "+" ou "-"
 - 7. thickStart → posição inicial onde a *feature* é desenhada
 - 8. thickEnd → posição final onde a *feature* é desenhada
 - 9. itemRgb → determina a cor dos dados
 - 10. blockCount → número de bloco (exons)
 - 11. blockSizes → lista de blocos separados por vírgula
 - 12. blockStarts → lista de posições iniciais dos blocos

¹⁾ Pode ser usado para outras medidas como p-value, up/down, ...

Formatos (GFF)

- GFF são similares aos BED e têm 9 colunas obrigatórias
 - 1. seqname → nome da sequência
 - 2. source \rightarrow origem da *feature*
 - feature → tipo de feature, equivalente ao campo name do BED
 - 4. start → posição inicial
 - end → posição final
 - score → assim como o arquivo BED permite níveis de valores representando a expressividade da anotação
 - 7. strand → direção da fita "+" ou "-"
 - frame → frame da sequência codificadora: "0","1","2" ou
 "."
 - attribute → muda conforme a versão do GFF (GFF1, GFF2, GFF3) e denota texto livre com algum significado biológico

Prática

Prática 30/34

Prática...

Genoma do vírus Sars-Cov-2

Prática 31/34

Prática...

Montagem com genoma de referência

Prática 32/34

Prática...

Montagem com genoma do Sars-Cov-2 (Maranhão)

Prática 33/34