Aljabar Linier [KOMS120301] - 2023/2024

3.2 - Algoritma Penyelesaian Sistem Persamaan Linier

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 4 (September 2023)

Tujuan pembelajaran

Setelah kuliah ini, Anda diharapkan mampu:

- menerapkan algoritma eliminasi dan algoritma substitusi untuk menyelesaikan sistem linear dua variabel;
- memahami ciri-ciri sistem persamaan linier yang berbentuk segitiga, bentuk eselon baris, atau bentuk eselon baris tereduksi.
- memverifikasi jika sistem persamaan linier memiliki solusi tunggal, tidak memiliki solusi, atau memiliki banyak solusi tak terhingga.

Bagian 1: Algoritma untuk menyelesaikan sistem sistem persamaan linier dalam dua variabel

1. Algoritma Eliminasi (1)

Diberikan SPL:

$$\begin{cases} L_1: \ x - y = -4 \\ L_2: \ 3x + 2y = 12 \end{cases}$$

Selesaikan SPL tersebut!

• Kalikan persamaan pertama dengan 2.

$$\begin{cases} 2L_1: \ 2x - 2y = -8 \\ L_2: \ 3x + 2y = 12 \end{cases}$$

• Eliminasi variabel y, dengan menambahkan dua persamaan.

$$2L_1 + L_2: 5x = 4 \Leftrightarrow x = \frac{4}{5}$$

• Substitusi $x = \frac{4}{5}$ kembali ke L_1 atau L_2 untuk menemukan y.

$$x - y = -4 \Leftrightarrow y = x + 4 = \frac{4}{5} + 4 = \frac{24}{5}$$

1. Algoritma Eliminasi (2)

Asumsikan bahwa sistem yang diberikan memiliki solusi tunggal.

Input: Persamaan linier non-degenerasi L_1 dan L_2 dalam dua variabel.

Langkah 1: Eliminasi maju

- Kalikan setiap persamaan dengan konstanta s.t. koefisien yang dihasilkan dari satu variabel adalah sama (atau negatif dari yang lain).
- Kurangi (atau tambah) kedua persamaan untuk mengeliminasi salah satu variabel.

Langkah 2: Substitusi mundur

 Substitusikan nilai variabel ke persamaan sistem linier, untuk mendapatkan nilai variabel lainnya.

2. Algoritma substitusi

Diberikan:

$$\begin{cases} L_1: \ x - y = -4 \\ L_2: \ 3x + 2y = 12 \end{cases}$$

Selesaikan sistem berikut!

• Nyatakan x dalam y, dalam persamaan L_1 .

$$x = y - 4 \tag{1}$$

• Substitusi nilai x dalam persamaan (1) ke L_2

$$3(y-4) + 2y = 12 \Leftrightarrow 5y = 24 \Leftrightarrow y = \frac{24}{5}$$

• Substitusikan $y = \frac{24}{5}$ ke persamaan (1)

$$x = \frac{24}{5} - 4 = \frac{4}{5}$$

2. Algoritma substitusi

Input: Persamaan linear non-degenerasi L_1 dan L_2 .

Untuk penyederhanaan, misalkan variabelnya adalah x dan y.

Langkah 1:

• Nyatakan satu variabel, misalnya x, sebagai persamaan dalam y dalam persamaan L_1 . Kemudian substitusikan nilai x ke dalam L_1 ke L_2 , untuk mendapatkan nilai y.

Langkah 2:

• Substitusikan nilai variabel y ke persamaan L_1 atau L_2 , untuk mendapatkan nilai variabel x.

Latihan

Selesaikan sistem linear berikut menggunakan algoritma eliminasi dan substitusi.

Selesaikan:

$$\begin{cases} L_1: \ x - 3y = 4 \\ L_2: \ -2x + 6y = 5 \end{cases}$$

Selesaikan:

$$\begin{cases} L_1: \ x - 3y = 4 \\ L_2: \ -2x + 6y = -8 \end{cases}$$

Latihan solution (1)

Pada Latihan 1, kita dapat menyederhanakan persamaan kedua, dan memperoleh:

$$\begin{cases} L_1: \ x - 3y = 4 \\ L_2: \ x - 3y = 5 \end{cases}$$

Hasilnya adalah 4=5 (tidak benar). Jadi, tidak ada nilai x dan y yang memenuhi sistem.

Latihan solusi (2)

Pada Latihan 2, dapat disederhanakan persamaan kedua, dan diperoleh:

$$\begin{cases} L_1: x - 3y = 4 \\ L_2: x - 3y = 4 \end{cases}$$

Kedua persamaan linier tersebut ekuivalen, yang berarti bahwa garis-garis yang mewakilinya berpotongan (berpotongan di semua titik pada sistem koordinat), dan semua titik pada garis memenuhi kedua persamaan.

Bagaimana cara merepresentasikan himpunan solusi?

$$x - 3y = 4$$

Misalkan y = t untuk $t \in \mathbb{R}$. Maka x = 3y + 4 = 3t + 4.

Jadi himpunan penyelesaiannya adalah $\{x=3t+4,y=t, \text{ where } t\in\mathbb{R}\}$

Bagian 2: Sistem dalam bentuk segitiga dan bentuk eselon (*echelon form*)

Bentuk segitiga

Sistem berikut dikatakan dalam bentuk segitiga.

$$\begin{cases}
2x_1 - 3x_2 + 5x_3 - 2x_4 = 9 \\
5x_2 - x_3 + 3x_4 = 1 \\
7x_3 - x_4 = 3 \\
2x_4 = 8
\end{cases} \tag{1}$$

Ingat bahwa matriks segitiga (triangular matrix) memiliki salah satu bentuk berikut:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

a ₁₁	0	0		0]
a ₂₁	a ₂₂	0		0
a ₃₁	a ₃₂	a ₃₃		0
			٠	
a_{n1}	a_{n2}	a_{n3}	• • •	a _{nn}

Bentuk segitiga

Suatu sistem persamaan linear berbentuk segitiga jika matriks koefisien yang bersesuaian adalah matriks segitiga atas atau matriks segitiga bawah, yaitu:

- Matriks adalah matriks persegi;
- Entri di bawah diagonal utama (atau, di atas diagonal utama, untuk matriks segitiga atas) adalah 0;

Remark:

 Dalam hal ini, ingatlah bahwa nilai di diagonal utama tidak ditentukan (boleh bernilai 0)

Sistem penyelesaian dalam bentuk segitiga (atas)

$$\begin{cases}
2x_1 - 3x_2 + 5x_3 - 2x_4 = 9 \\
5x_2 - x_3 + 3x_4 = 1 \\
7x_3 - x_4 = 3 \\
2x_4 = 8
\end{cases} \tag{2}$$

Algoritma untuk menyelesaikan sistem:

- lacktriangle Selesaikan persamaan terakhir untuk mendapatkan x_4 ;
- ② Substitusikan x_4 ke persamaan ketiga untuk mendapatkan x_3 ;
- 3 Substitusikan x_3 dan x_4 ke persamaan kedua untuk mendapatkan x_2 ;
- **3** Substitusikan x_2 , x_3 , dan x_4 ke persamaan pertama untuk mendapatkan x_1 .

Latihan: Temukan solusi dari sistem!

Solusi soal latihan

- Dari persamaan terakhir, kita mendapatkan: $x_4 = 4$
- Dari persamaan ketiga:

$$x_3 = \frac{x_4 + 3}{7} = \frac{4 + 3}{7} = 1$$

Dari persamaan kedua:

$$x_2 = \frac{x_3 - 3x_4 + 1}{5} = \frac{1 - 3(4) + 1}{5} = \frac{-10}{5} = -2$$

Dari persamaan pertama:

$$x_1 = \frac{3x_2 - 5x_3 + 2x_4 + 9}{2} = \frac{3(-2) - 5(1) + 2(4) + 9}{2}$$
$$= \frac{-6 - 5 + 8 + 9}{2} = \frac{6}{2} = 3$$

Jadi, solusinya adalah: $x_1 = 3, x_2 = -2, x_3 = 1, x_4 = 4$

Bentuk eselon (echelon form)

Nah, bagaimana jika matriks koefisiennya bukan matriks persegi ???

Bentuk eselon (echelon form)

$$\begin{cases} 2x_1 - 4x_2 + 5x_3 - 2x_4 + x_5 = 9 \\ 2x_2 - 2x_3 + 4x_4 - 2x_5 = 1 \\ x_3 - x_4 = 3 \end{cases}$$

Sistem dikatakan dalam bentuk eselon (echelon form), yakni:

- Semua baris yang hanya terdiri dari nol ada di bagian bawah.
- Woefisien paling depan (juga disebut pivot, atau koefesien utama) dari baris bukan nol selalu tepat di sebelah kanan koefisien utama dari baris di atasnya.
- Oalam beberapa literatur), koefesien utama adalah 1 (yang disebut dengan leading one atau satu utama).

.

Karakteristik

- Variabel utama (x_1, x_2, x_3) dalam sistem disebut pivot;
- Variabel lainnya $(x_4 \text{ dan } x_5)$ adalah variabel free.
 - *Perhatikan bahwa di dalam buku Howard Anton, koefesien utama selalu 1 17/32 © Dewi Sintiari/Ilkom Undiksha

Bentuk eselon (echelon form) (bentuk umum)

dimana $1 < j_2 < \cdots < j_r$ and $a_{11}, a_{2j_2}, \ldots, a_{rj_r} \neq 0$.

Variabel **pivot** adalah: $x_1, x_{j_2}, \ldots, x_{j_r}$

Catatan: agar sistem memiliki solusi, maka haruslah $r \leq n$.

Lalu...apakah ada perbedaan antara bentuk segitiga (*triangular form*) dan bentuk eselon (*echelon form*)?

Klarifikasi

Matriks berikut adalah dalam bentuk eselon, tetapi bukan segitiga

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$$

Matriks berikut adalah dalam bentuk **segitiga tetapi tidak eselon**

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 5 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Matriks berikut adalah dalam bentuk **eselon dan segitiga** (KIRI), dan bukan eselon dan bukan segitiga (KANAN)

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$

Catatan. Untuk matriks bujur sangkar non-tunggal, "baris eselon" dan "segitiga atas" adalah ekuivalen.

Latihan

Berikan sebuah contoh matriks yang merupakan:

- bentuk eselon, tetapi bukan segitiga
- bentuk segitiga tetapi tidak eselon
- bentuk eselon dan segitiga
- bukan eselon dan bukan segitiga

Bagian 3: Bagaimana cara menentukan banyaknya penyelesaian?

Bagaimana cara menentukan banyaknya penyelesaian?

Diberikan sistem persamaan linier dengan r persamaan dengan n variabel.

Tentukan kondisi sedemikian sehingga:

- sistem memiliki solusi tunggal?
- sistem tidak memiliki solusi?
- sistem memiliki tak hingga banyaknya solusi?

Bagaimana cara menentukan banyaknya penyelesaian?

Diberikan sistem persamaan linier dengan r persamaan dan n variabel.

Maka:

- sistem memiliki solusi tunggal
 - when r = n (dalam hal ini, tidak ada persamaan yang merupakan kombinasi linier dari persamaan lain)
- sistem tidak memiliki solusi?
 - ketika r > n, dan tidak ada persamaan yang merupakan kombinasi linier dari persamaan lain
- sistem memiliki tak hingga banyaknya solusi?
 - ketika r < n

Bagaimana cara menulis solusi jika jumlahnya tak terhingga? (jika r < n)

Diberikan:

$$\begin{cases} x_1 - 4x_2 + 5x_3 - 2x_4 + x_5 = 9 \\ x_2 - 2x_3 + 4x_4 - 2x_5 = 1 \\ x_3 - x_4 = 3 \end{cases}$$

- Variabel pivot: x_1, x_2, x_3
- Variabel bebas: x₄, x₅

Algoritma untuk penyelesaian SPL:

1 Tetapkan parameter ke variabel bebas;

$$x_4 = a$$
 and $x_5 = b$

2 Substitusi variabel kembali untuk mendapatkan nilai variabel pivot.

1. Solusi dalam bentuk parametrik

Dari persamaan ketiga:

$$x_3 = x_4 + 3 = a + 3$$

Dari persamaan kedua:

$$x_2 = 2x_3 - 3x_4 + 2x_5 + 1$$

= $2(a+3) - 4a + 2b + 1 = -2a + 2b + 7$

Dari persamaan pertama:

$$x_1 = 3x_2 - 5x_3 + 2x_4 - x_5 + 9$$

= $3(-2a + 2b + 7) - 5(a + 3) + 2a - b + 9$
= $-9a + 5b + 15$

Himpunan solusi:

$$\{-9a+5b+15, -2a+2b+7, a+3, a, b\}$$

2. Solusi dalam bentuk variabel bebas

Gunakan substitusi kembali untuk menyelesaikan sistem, dan dapatkan variabel pivot.

$$\begin{cases} x_1 &= 4x_2 - 5x_3 + 2_4 - x_5 - 9 \\ x_2 &= 2x_3 - 4x_4 + 2x_5 + 1 \\ x_3 &= x_4 + 3 \\ x_4 &= \text{free variable} \\ x_5 &= \text{free variable} \end{cases}$$

Himpunan solusi:

$$\{(4x_2-5x_3+2_4-x_5-9), (2x_3-4x_4+2x_5+1), (x_4+3), x_4, x_5\}$$

Bagian 4: Bentuk eselon baris tereduksi (*reduced row echelon form*)

Bentuk eselon baris tereduksi (reduced row echelon form)

Suatu matriks merupakan bentuk baris eselon tereduksi (*reduced row echelon form*) (juga disebut row canonical form), jika memenuhi kondisi berikut ini:

- Bentuk eselon baris (row echelon form).
- ② Entri utama di setiap baris bukan nol adalah 1 (disebut *leading* 1).
- Setiap kolom yang berisi leading 1 memiliki nol di semua entri lainnya.

Matriks manakah yang berada pada baris tereduksi bentuk eselon (eselon form)?

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\bullet B = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\bullet \ D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Bagaimana cara mengubah matriks koefisien menjadi bentuk baris segitiga atau (diperkecil) bentuk eselon (bentuk eselon)?

Terapkan operasi baris elementer.

Pada kuliah berikutnya, kita akan mempelajari

cara menyelesaikan sistem persamaan linier dengan mentransformasikan matriks koefisien ke dalam bentuk eselon baris tereduksi (reduced row echelon form). bersambung...