COMPUTER TECHNOLOGY PRACTICAL SESSION P5 (LOGISIM) DESIGN OF SEQUENTIAL CIRCUITS

Given the state diagram of Figure 1:

Figure 1

Design the sequential circuit using the following flip flops:

- T FF for the most significant flip-flop (T_2) .
- D FF for the middle flip-flop (D_1) .
- JK FF for the least significant flip-flop (J_0K_0) .

Implement T_2 using logic gates, D_1 at the discretion of the student, and J_0K_0 using an active-high output DEC 4x16. The output S must be implemented using a MUX 4x1. Design and simulate the circuit with Logisim.

Check that if x=0 the state sequence is:

$$q0 \rightarrow q5 \rightarrow q3 \rightarrow q4 \rightarrow q2 \rightarrow q1 \rightarrow q0$$

Check that if x=1 the state sequence is:

$$q0 \rightarrow q1 \rightarrow q4 \rightarrow q3 \rightarrow q5 \rightarrow q2 \rightarrow q0$$

COMPUTER TECHNOLOGY PRACTICAL SESSION P5 (LOGISIM) DESIGN OF SEQUENTIAL CIRCUITS

REMARK 1: The state encoding is shown in Table 1.

61118 12 2110 WILLIA 1 60010 1 .									
	\mathbb{Q}_2	\mathbf{Q}_1	Q ₀						
q_0	0	0	0						
q_1	0	0	1						
q_2	0	1	0						
q ₁ q ₂ q ₃ q ₄	0	1	1						
q ₄	1	0	0						
q ₅	1	0	1						

Table 1

REMARK 2: The state of the circuit must be visualized using 3 orange LEDs and a display (take *Hex Digit Display*), corresponding to the outputs of the three flip-flops. These LEDs must be placed horizontally, in the following order: Q₂Q₁Q₀. The output S must be visualized using a green LED.

FILL OUT THE TABLE BELOW:

E	$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	T_2	$\mathbf{D_1}$	J_0	$\mathbf{K_0}$	S
0	0	0	0	1	0	1	1	0	1	X	1
0	0	0	1	0	0	0	0	0	Χ	1	1
0	0	1	0	0	0	11	0	0	1	X_	0
0	0	1	1	11	0	0	1	0	<u>X</u>	_1_	0
0	1	0	0	0	0	1	1	0	0	_X_	0
0	1	0	1	0	1	11	1	1	<u>X</u>	_0_	0
0	1	1	0	X	X	X	_X	X	X	X_	<u>X</u>
0	1	1	1	X	X	X	_X	X	X	X_	<u>X</u>
1	0	0	0	0	0	1	0	0	1	X_	0
1	0	0	1	0	0	0	_1_	0	X	_1_	_1_
1	0	1	0	0	0	0	0	0	0	X_	1
1	0	1	1	0	0	1	_1_	0	LX	_0_	1
1	1	0	0	1	1	1	_1_	1	1	_X_	_1_
1	1	0	1	1	1	0	_1_	1	X	_1_	0
1	1	1	0	X	X	X	_X	Χ	X	_X_	_X_
1	1	1	1	X	X	Χ	_X	X	X	_X_	X