The Steenrod Algebra and Its Dual

David Wiedemann

October 11, 2023

These are notes for the seminar "Advanced Topics in Homotopy Theory" given by Prof. Stefan Schwede and Dr. Jack Davies in Bonn during the WS2023/24. Our goal is to present the main results of Milnor's paper "The Steenrod Algebra and its Dual".

1 Hopf Algebras

1.1 Bi-Algebras

We start by studying Hopf algebras independently. Throughout, let k be a field.

Definition 1 (Algebra) An **Algebra** is a triple (\mathcal{A}, μ, η) with \mathcal{A} a k-vector space together with two maps $\mu \colon A \otimes A \to A$ (multiplication), $\eta \colon k \to A$ (unit) making the following diagrams commute

$$\begin{array}{c} \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} & \xrightarrow{\text{Id} \otimes \mu} & A \otimes \mathcal{A} \\ & \mu \otimes \text{Id} \Big\downarrow & & \downarrow \mu \\ & \mathcal{A} \otimes \mathcal{A} & \xrightarrow{\mu} & \mathcal{A} \end{array}$$

$$k \otimes \mathcal{A} \xrightarrow{i \otimes \eta} \mathcal{A} \otimes \mathcal{A} \xleftarrow{\eta \otimes i} \mathcal{A} \otimes k$$

Dualizing these definitions, we unsurprisingly obtain

Definition 2 (Coalgebra) A coalgebra is a triple (C, Δ, ϵ) where C is a k-vector space togethere with two maps $\Delta \colon C \to C \otimes C$ (comultiplication) and $\epsilon \colon C \to k$ (augmentation) making the following diagrams commute

$$\begin{array}{ccc} C & \xrightarrow{\Delta} & C \otimes C \\ \Delta \!\!\! \downarrow & & & \downarrow \!\!\! \operatorname{Id} \otimes \Delta \\ C \otimes C & \xrightarrow{\Delta \otimes \operatorname{Id}} & C \otimes C \otimes C \end{array}$$

Since taking duals commutes with tensor products, notice that the dual C^{\vee} naturally gets an algebra structure.

We define (co-)algebra morphisms in the obvious way.

Definition 3 (Bialgebra) A bialgebra is a tuple $(A, \mu, \eta, \Delta, \varepsilon)$ such that (A, μ, ε) is an algebra, (A, Δ, ε) is a coalgebra and such that Δ and ε are algebra morphisms

Equivalently, one can also require μ and ε to be coalgebra morphisms. If $\mathcal{A} = \bigoplus_{n \in \mathbb{N}} \mathcal{A}_n$ is a graded algebra, we define the **dual algebra** by

$$A^* := A_n^*$$
, with $A_n^* = hom(A_{-n}, k)$

We call a graded algebra \mathcal{A} **graded commutative** if for all homogeneous elements $\alpha, \beta \in \mathcal{A}$, we have $\alpha\beta = (-1)^{\dim \alpha \dim \beta}\beta\alpha$. (omitting μ for sanity reasons)

1.2 Antipode maps

Let C be a bi-algebra as above and let f, g: C \rightarrow C be linear maps, we define the convolution f * g of f with g as the composition

$$C \xrightarrow{\Delta} C \otimes C \xrightarrow{f \otimes g} C \otimes C \xrightarrow{\mu} C.$$

Definition 4 (Antipode) *An antipode* $S: C \rightarrow C$ *is an endomorphism such that*

$$S * Id = Id * S = \eta \circ \epsilon$$
.

Definition 5 (Hopf Algebra) A Hopf Algebra is a bi-algebra with an antipode

It can be shown that * makes the set of endomorphisms of C into a group whose identity is $\eta \circ \varepsilon$.

2 The Steenrod Algebra

Let p be a prime and let $H\mathbb{F}_p$ be the spectrum representing mod p cohomology.

Definition 6 (Steenrod Algebra) The mod p Steenrod Algebra is the cohomology ring $\mathcal{A}_p \coloneqq H\mathbb{F}_p^*(H\mathbb{F}_p) \coloneqq \bigoplus_{\mathfrak{n}} \varprojlim_{\mathfrak{b}} H^{n+k}(K(\mathbb{F}_p,\mathfrak{n}),\mathbb{F}_p).$

This ring comes with a natural grading, we denote its i-th graded component \mathcal{A}_p^i .

Recall that an element $\theta \in \mathcal{A}_i^*$ defines a stable cohomology operation $\theta \colon H^n(-,\mathbb{F}_p) \to H^{n+i}(-,\mathbb{F}_p)$. Thus, \mathcal{A}^* is the ring of all stable mod p cohomology operations with composition.

2.1 Steenrod powers

From now, $H^*(-)$ will always denote mod p cohomology for a fixed prime p.

Definition 7 (Steenrod Powers) The **Steenrod powers** are the cohomology operations

$$P^{i}: H^{q}(-, \mathbb{F}_{p}) \to H^{q+2i(p-1)}(-, \mathbb{F}_{p})$$

uniquely determined by the following properties

- 1. $P^0 = Id$
- 2. if $x \in H^{2n}(X, A, \mathbb{F}_p)$, then $P^n x = x^p$
- 3. if $x \in H^n(X, A)$, then $P^ix = 0$ for all 2i > n
- 4. $\delta P^i = P^i \delta$ where δ is the boundary homomorphism
- 5. $P^{i}(xy) = \sum_{i+k=i} P^{i}xP^{k}y$

The natural transformation $\beta\colon H^n(-)\to H^{n+1}(-)$ induced by the short exact sequence $0\to \mathbb{Z}_p\to \mathbb{Z}_{p^2}\to \mathbb{Z}_p\to 0$ is also stable.

It is a famed result of Steenrod that these operations generate the Steenrod algebra.

2.2 The Diagonal Morphism

The main goal of this talk is to present a proof that A_p has the structure of a Hopf algebra and to make its structure more explicit.

Throughout, let X be a space. We start by constructing the diagonal morphism $\psi^* \colon \mathcal{A}^* \to \mathcal{A}^* \otimes \mathcal{A}^*$.

Proposition 1 *There is a unique diagonal morphism* $\psi^* : \mathcal{A}^* \to \mathcal{A}^* \otimes \mathcal{A}^*$ *such that*

1. For all $\theta \in \mathcal{A}^*$, $\psi^*(\theta) = \sum_i \theta_i' \otimes \theta_i$ " and α , $\beta \in H^*(X)$ we have

$$\theta(\alpha \cup \beta) = \sum_{i} (-1)^{\dim \theta_{i}'' \dim \alpha} \theta_{i}'(\alpha) \cup \theta_{i}''(\beta)$$

2. The morphism ψ^* is a ring morphism.

Proof Let $A^* \otimes A^*$ act on $H^*(X) \otimes H^*(X)$ by

$$(\theta'\otimes\theta'')(\alpha\otimes\beta)=(-1)^{\dim\theta''\dim\alpha}\theta'(\alpha)\otimes\theta''(\beta)$$

and we let $c:H^*(X)\otimes H^*(X)\to H^*(X)$ denote the coproduct. ψ^* exists

Let $R \subset \mathcal{A}^*$ be the set of all θ such that

$$\theta(\alpha \cup \beta) = c\rho(\alpha \otimes \beta)$$

for some $\rho \in \mathcal{A}^* \otimes \mathcal{A}^*$. We want to show that $R = \mathcal{A}^*$. Notice that R is closed under multiplication and addition. If $\theta_1, \theta_2 \in R$, then

$$\theta_1\theta_2(\alpha \cup \beta) = c\rho_1\rho_2(\alpha \otimes \beta)$$
 and $(\theta_1 + \theta_2)(\alpha \cup \beta) = c((\rho_1 + \rho_2)(\alpha \otimes \beta))$

Hence, it suffices to show that R contains the Bockstein and the Steenrod powers which follows from the formulas

$$\delta(\alpha \cup \beta) = \delta\alpha \cup \beta + (-1)^{\dim \alpha}\alpha \cup \delta(\beta)$$
$$P^{n}(\alpha \cup \beta) = \sum_{i+j=n} P^{i}(\alpha) \cup P^{j}(\beta)$$

 ψ^* is unique

Let $K := K(\mathbb{F}_p, n+1)$ and $\gamma \in H^{n+1}(K)$ correspond to the identity map, the map

$$\label{eq:ev:alpha} \begin{split} \underset{\gamma}{\text{ev}} \colon \mathcal{A}_i^* &\to H^{n+1+i}(K) \\ \theta &\mapsto \theta \gamma \end{split}$$

is an isomorphism for all $i \le n$, it follows that

$$\begin{split} j\colon \left(\mathcal{A}^*\otimes\mathcal{A}^*\right)_i &\to H^{2n+2+i}(K\times K) \\ \theta\otimes\theta' &\mapsto (-1)^{\dim\theta'\dim\gamma}\theta(\gamma)\otimes\theta'(\gamma) \end{split}$$

is too.

Let $\theta \in \mathcal{A}_i^*$, suppose ρ, ρ' both satisfy the required equality, then

$$j(\rho) = c\rho\left((\gamma \otimes 1) \otimes (1 \otimes \gamma)\right) = c\rho'\left((\gamma \otimes 1) \otimes (1 \otimes \gamma)\right) = j(\rho')$$

The unicity of ψ^* implies that it is a ring morphism.

Remark 2 From this proof, we can in particular single out the action of ψ^* on generators, namely, it follows that

$$\psi^*(\delta) = \delta \otimes 1 + 1 \otimes \delta$$

$$\psi^*(P^n) = \sum_{i+j=n} P^i \otimes P^j.$$

Theorem 3 (The Steenrod Algebra is a Hopf Algebra) The maps

$$\mathcal{A} \xrightarrow{\psi^*} \mathcal{A} \otimes \mathcal{A} \xrightarrow{\varphi^*} \mathcal{A}$$

Give A the structurre of a Hopf algebra. Furthermore ϕ^* is associative and ψ^* is associative and commutative.

Proof It suffices to show that ψ^* is associative and commutative.

Associativity

It suffices to check the identity

$$(\psi^* \otimes 1)\psi^* = (1 \otimes \psi^*)\psi^*$$

This identity clearly holds on generators, namely

$$(\psi^* \otimes 1) (\delta \otimes 1 + 1 \otimes \delta) = \delta \otimes 1 \otimes 1 + 1 \otimes \delta \otimes 1 + 1 \otimes 1 \otimes \delta$$

=
$$(1 \otimes \psi^*) (\delta \otimes 1 + 1 \otimes \delta)$$

and

$$\begin{split} (\psi^* \otimes 1) \left(\sum_{i+j=n} P^i \otimes P^j \right) &= \sum_{i+j=n} \left(\sum_{i'+j'=i} P^{i'} \otimes P^{j'} \right) \otimes P^j \\ &= \sum_{i+j+k=n} P^i \otimes P^j \otimes P^k \\ &= (1 \otimes \psi^*) \left(\sum_{i+j=n} P^i \otimes P^j \right). \end{split}$$

Commutativity

Let

$$T \colon \mathcal{A} \otimes \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$$
$$\theta \otimes \theta' \mapsto (-1)^{\dim \theta \dim \theta'} \theta' \otimes \theta.$$

We have to check that $\psi^* = T\psi^*$, which one can check again on generators:

$$T(1 \otimes \delta + \delta \otimes 1) = 1 \otimes \delta + \delta \otimes 1$$

and

$$T(\sum_{i+j=n}P^i\otimes P^j)=\sum_{i+j=n}(-1)^{4ij(p-1)^2}P^j\otimes P^i$$

3 The dual Steenrod Algebra

For the rest of this talk, we focus on the dual Steenrod algebra $\mathcal{A}_* := \mathcal{A}^\vee$, whose multiplication is induced by ψ^* . Our goal is to fully determine the structure of \mathcal{A}_* . To single out an appropriate set of generators for \mathcal{A}_* , we analyze how \mathcal{A}_* (co-)acts on the cohomology ring of a specific space. We start by describing this co-action formally and then introduce the relevant space.

3.1 The coaction of A_*

Given that we are working over a vector space, cohomology and homology are dual. Hence, given $\theta \in \mathcal{A}$ and $\mu \in H_*$, the rule

$$\theta \cdot \mu(\alpha) := \mu(\theta(\alpha))$$
 for all $\alpha \in H^*$

gives a well defined action

$$\lambda_* \colon \mathcal{A} \otimes H_* \to H_*$$

We denote the dual of this action by $\lambda^* \colon H^* \to \mathcal{A}_* \otimes H^*.$ The restriction of λ_*

$$\lambda_i : \mathcal{A} \otimes H^{n+i} \to H^n$$

also gives rise to dual morphisms $\lambda^i \colon H^n \to \mathcal{A}_* \otimes H^{n+i}$ which satisfy

$$\lambda^* = \lambda^1 + \lambda^2 + \dots^1$$

We can also understand the action of A better in terms of λ^* .

Lemma 4 Let $\lambda^*(\alpha) = \sum_i \alpha_i \otimes \omega_i$ and $\theta \in \mathcal{A}$, then

$$\theta\alpha = \sum_{i} (-1)^{\dim\alpha_{i}\dim\omega_{i}} \langle \theta, \omega_{i} \rangle \alpha_{i}$$

Proof By definition of the action, we have

$$\begin{split} \langle \mu, \theta \alpha \rangle &= \langle \mu \theta, \alpha \rangle \\ &= \langle \mu \otimes \theta, \lambda^* \alpha \rangle \\ &= \sum_i (-1)^{\dim \alpha_i \dim \omega_i} \langle \mu, \alpha_i \rangle \langle \theta, \omega_i \rangle \end{split}$$

And the general equality follows.

3.2 Generators for A_*

Fix some large integer N and let $X = S^{2N+1}/\mathbb{Z}_p = sk_{2N+1}K(\mathbb{F}_p, 1)$. The (mod p) cohomology ring of X has the following properties

$$H^1(X)=\langle \alpha \rangle, H^2(X)=\langle \beta \rangle, H^{2i}(X)=\langle \beta^i \rangle, H^{2i+1}(X)=\langle \alpha \beta^i \rangle,$$

where $\beta = \delta \alpha$ and $i \leq N$

Notation 5 We define

$$M^k \coloneqq P^{p^{k-1}} \cdots P^p P^1$$

¹Elements in H* are always finite sums, so this sum should be understood as $\bigoplus_i \lambda^i$

Lemma 6 For all $\theta \in A$

$$\theta\beta = \begin{cases} \beta^{p^k} & \textit{if } \theta = M_k \\ 0 & \textit{else}. \end{cases}$$

Proof Let $\mathcal{P}=1+P^1+P^2+\ldots$, from the properties of the Steenrod powers, we notice that

$$\mathcal{P}\beta = \beta + \beta^p \text{ thus } \mathcal{P}\left(\beta^{p^r}\right) = \beta^{p^r} + \beta^{p^{r+1}}.$$

Hence $P^{p^r}(\beta^{p^r}) = \beta^{p^{r+1}}$ and $P^j(\beta^{p^r})$ for $j \neq p^r$ and j > 0. From this, we deduce the statement.

We will now explicitly determine a basis for A_* .

Lemma 7 There exist elements $\tau_i \in \mathcal{A}^{2p^k-1}_*$ such that

$$\lambda^*\alpha=\alpha\otimes 1+\beta\otimes \tau_0+\ldots+\beta^{\mathfrak{p}^r}\otimes \tau_r.$$

Similarly, there exist elements $\xi_i \in \mathcal{A}_*^{2p^i-2}$ with $\xi_0=1$ such that

$$\lambda^*\beta=\beta\otimes\xi_0+\beta^p\otimes\xi_1+\ldots+\beta^{p^r}\otimes\xi_r$$

Proof From the above, it follows that

$$\lambda^*\beta = \lambda^0\beta + \lambda^{2p-2}\beta + \ldots + \lambda^{2p^k-2}\beta.$$

As the cohomology of X is one-dimensional in all degrees, we deduce that $\lambda^{2p^k-2}(\beta) = \beta^{p^k} \otimes \xi^k$. The exact same argument works for $\lambda^* \alpha$.

We now study the evaluation pairing $\mathcal{A}_* \times \mathcal{A} \to \mathbb{F}_p$. We easily establish the following lemma

Lemma 8 We have $\xi_k(M_k)=1$ but $\xi_k(\theta)$ for any other monomial. Furthermore

$$\langle M_k \delta, \tau_k \rangle = 1$$

and $\langle \theta, \tau_k \rangle$ for any other monomial.

Proof We know that

$$M_k\beta = \beta^{\mathfrak{p}^k} = \sum_i (-1)^{2\mathfrak{p}^i \, dim \, \xi^i} \langle M_k, \xi_i \rangle \beta^{\mathfrak{p}^i}$$

Proving the equality. The second equality follows from the same argument applied to α and $M_k\delta$.

We are ready to prove the main structure theorem for the dual Hopf algebra.

Theorem 9 There is an isomorphism

$$\mathcal{A}_* \simeq \Lambda[\tau_0,\tau_1,\ldots] \otimes \mathbb{F}_{\mathfrak{p}}[\xi_1,\xi_2,\ldots].$$

where $\Lambda[\tau_0,...]$ denotes the exterior algebra and $\mathbb{F}_p[\xi_1,\xi_2,...]$ is the polynomial algebra. This isomorphism respects the grading. define weights on generators

Proof Let \mathcal{I} be the set of finite sequences $(\varepsilon_0, r_1, \varepsilon_1, ...)$ with $\varepsilon_i = 0, 1$ and $r_i \in \mathbb{N}$. Given $I \in \mathcal{I}$, we define

$$\omega(I) \coloneqq \tau_0^{\varepsilon_0} \xi_1^{r_1} \tau_1^{\varepsilon_1} \xi_2^{r_2} \cdots.$$

We claim it is sufficient to show that the set of $\omega(I)$ form a basis for \mathcal{A}_* . Indeed, the τ_i , ξ_j then don't observe any additional identities and the graded commutativity gives the desired isomorphism.

We may order the set \mathcal{I} colexicographically, ie. $(a_1, \varepsilon_1, a_2, \cdots) < (b_1, \varepsilon_1', b_2, \cdots)$ if $a_i < b_i$ for the largest i such that a_i and b_i differ (remember that the sequences are finite).

We also associated to a $J = (\epsilon_0, r_1, \epsilon_1, ...) \in \mathcal{I}$ an element of \mathcal{A} .

$$\theta(I) = \delta^{\epsilon_0} P^{s_1} \delta^{\epsilon_1} P^{s_2} \cdots$$

where $s_i = \sum_{i=k}^{\infty} (\varepsilon_i + r_i) p^{i-k}$.

One can check that the $\theta(J)$ are the basic monomials of the Cartan basis for A.

To show the isomorphism, we show that the basic monomials in \mathcal{A} form an "almost dual" basis to the set of $\omega(I)$.

More precisely, we will show the following lemma.

Let
$$I < J \in \mathcal{I}$$
, then $\langle \theta(J), \omega(I) \rangle = 0$ if $I < J$, furthermore $\langle \theta(I), \omega(I) \rangle = \pm 1$. (\star)

The proof of (\star) will constitute the main part of the proof, let us see how to conclude given (\star) .

Let $\mathcal{I}_n \subset \mathcal{I}$ be the set of sequences such that $\dim \omega(I) = \dim \theta(I) = n$. The matrix $(\langle \theta(J), \omega(I) \rangle_{I,J \in \mathcal{I}_n}$ is upper-triangular with ± 1 on the diagonal, hence, the pairing is non-degenerate and the $\omega(I)$ generate the n-th graded part of \mathcal{A}_* .