

Kindly amend Claims 1, 3, 5, 8, 9 and 14 as follows:

1. (Amended three times) A monocyclic compound having the formula (1):

in which:

 X_1 , X_2 , X_3 , X_4 , which may be the same or different from one another, is selected from the group consisting of -CONR-, -NRCO-, -OCO-, -COO-, -CH₂NR- and -NR-CH₂-, where R is H or a C_{1-3} alkyl or benzyl;

f, g, h, m, which may be the same or different from one another, may be 0 or 1;

 R_1 and R_2 which may be the same or different from one another, represent the side chain of a natural amino acid selected from the group consisting of tryptophan, phenylalanine, tyrosine and histidine, or the side chain

of a non-natural amino acid selected from the group consisting of:

tryptophan and phenylalanine, either mono- or disubstituted with residues selected from the group consisting of C_{1-3} alkyl or halo-alkyl, C_{1-3} alkoxyl or amino-alkoxyl, halogen, OH, NH₂ and NR₁₃R₁₄, where R₁₃ and R₁₄, which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group;

 R_3 is selected from the group consisting of:

- linear or branched alkyl having the formula C_nH_{2n+1} with n=1-5 (selected from the group consisting of methyl, ethyl, propyl, isopropyl, n-butyl and t-butyl) cycloalkyl or alkylcycloalkyl of formula C_nH_{2n-1} with n=5-9 (selected from the group consisting of: cyclopentyl, cyclohexyl and methylcyclohexyl)
- $-(CH_2)_r-Ar_1$, where r=1 or 2 and where Ar_1 is an aromatic group selected from the group consisting of: α -naphthyl, β -naphthyl, phenyl, indole, said Ar_1 group being possibly substituted with a maximum of two residues selected from the group consisting of: C_{1-3} alkyl, CF_3 , C_{1-3} alkoxyl, Cl, F, OH and NH_2 ;

R₄ represents an L-Q group where:

- L is a chemical bond of CH2, and
- Q is selected from the group consisting of:
- OH, NH_2 , NR_9R_{10} , OR_{11} , and where R_9 and R_{10} , which may be the same or different from one another, represent a hydrogen or C_{1-3} alkyl group, C_{1-3} hydroxy alkyl,
- C_{1-3} dihydroxyaklyl, C_{1-3} alkyl-CONH R_{12} (wherein R_{12} is a monoglycosidic group derived from D or L pentoses or hexoses (selected from the group consisting of ribose, arabinose, glucose, galactose, fructose, glucosamine, galactosamine N-acetylglucosamine and

N-acetylgalactosamine)), $C_{1\text{--}3}$ alkyltetrazole, $C_{1\text{--}3}$ alkyl-COOH or wherein R_9R_{10} are joined together to form with the N atom a morpholine or a piperidine ring and where R_{11} is a $C_{1\text{--}3}$ alkyl chain, or a $C_{2\text{--}4}$ amino-alkyl chain;

NHCOR₈ wherein R_8 is a cyclohexane containing from 2 to 4 OH groups, C_{1-6} alkyl chain containing a polar group (chosen in the group consisting of NH₂, COOH, CONHR₁₂, (wherein R_{12} is as hereabove defined) or [1,4'] bipiperidine))

- COOH, COOR $_{17}$ or CONHR $_{12}$, wherein R $_{12}$ is as hereabove defined and R $_{17}$ is as R $_{12}$ or a group 4-nitrobenzyl
- R_5 , R_6 , R_7 are H_2 in which the carbon atom that carries the substituents R_3 and R_7 has configuration R_7 ; wherein when $R_1=R_2=$ a side chain of trytophan and $R_4=$ CH_2OH then R_3 is not isopropyl.

- 3. (amended three times) A compound according to Claim 1 selected from:
- (a) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]}
- (b) Cyclo{-Suc-Trp-Phe-[(S)-NH-CH($CH_2C_6H_5$)-CH₂-NH]}
- (c) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₁₁)-CH₂-NH]\}$
- (d) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄(4-OCH₃))-CH₂-NH]\}$
- (e) Cyclo $\{-Suc-Trp(5F)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (f) Cyclo $\{-Suc-Trp(Me)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (g) $Cyclo\{-Suc-Phe(3,4-Cl)-Phe-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (h) $Cyclo\{-Suc-Trp-Phe(3,4-Cl)-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (i) Cyclo $\{-Suc-Trp-Tyr-[(R)-NH-CH(CH₂C₆H₅)-CH₂-NH]\}$
- (j) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₃-3,4-diCl)-CH₂-NH]\}$
- (k) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂C₆H₄-4-OH)-CH₂-NH]\}$
- (1) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-CH₂-CG₆H₅)-CH₂-NH]\}$
- (m) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-2-napthyl)-CH_2-NH]\}$
- (n) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-indol-3-yl)-CH₂-NH]}
- (o) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-5-F-indol-3-yl)-CH₂-NH]}

- (p) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH($CH_2-C_6H_4-3-F$)- CH_2-NH]}
- (q) Cyclo{-Suc-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₃-3,4-diF-CH₂-NH]-}
- (r) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_4-4-CF_3-CH_2-NH]-\}$
- (s) Cyclo $\{-Suc-Trp-Phe-[(R)-NH-CH_2-CH(CH_2C_6H_5)-NH]\}$
- (t) Cyclo $\{-Suc-Trp-Phe-[(S)-NH-CH_2-CH(CH_2C_6H_5)-NH]\}$
- (u) Cyclo $\{-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-(CH_2)_3CO-\}$
- (v) Cyclo{-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-N(CH₃)]- (CH₂)₃CO-}
- (w) Cyclo{-Suc[1(S)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (x) Cyclo{-Suc[1(R)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (y) Cyclo{-Suc[2(S)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (z) Cyclo{-Suc[2(R)-NH₂]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (aa) Cyclo{-Suc[1(S)-NH(CH $_3$)]-Trp-Phe-[(R)NH-CH(CH $_2$ -C $_6$ H $_5$)-CH $_2$ NH]-}
- (ab) Cyclo{-Suc[1-COO(CH₂-C₆H₄-4-NO₂)]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (ac) $Cyclo\{-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]\}$ $[Cyclo\{-Suc(1-COOH)-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]\}]$
- (ad) Cyclo $\{-Suc(1-OH)-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]\}$
- (ae) Cyclo{-Suc(2-COOH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]}
- (af) Cyclo $\{-Suc(2-OH)-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]\}$
- (ag) Cyclo{-Suc[1(S)-(2H-tetrazolyl-5-ylmethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (ah) $Cyclo\{-Suc[1(S)-(morpholin-4-yl)]-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$ trifluoroacetic acid

- (ai) Cyclo $\{-Suc[1(S)-N(CH_3)_2]-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$ trifluoroacetic acid
- (aj) $Cyclo\{-Suc[1(S)-(piperidin-4-yl]-Trp-Phe-[(R)-NH-CH(CH_2-C_6H_5)-CH_2-NH]-\}$ trifluoroacetic acid
- (ak) Cyclo{-Suc[1(S)-(N(CH₂CH₂OH)₂)}-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]} trifluoroacetic acid
- (al) Cyclo{-Suc[1(S)-(N(CH₂CH(OH)CH₂OH)]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid
- (am) Cyclo{-Suc[1(S)-(3-carboxypropanoyl)amino]-Trp-Phe- [(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}
- (an) Cyclo{-Suc[1(S)-[3-N'-ß-D-glucopyranos-1-yl)-carboxamidopropanoyl]amino]-Trp-Phe-[(R)NH-CH(CH₂-C₆H₅)-CH₂NH]-}
- (ao) Cyclo $\{-Suc[1(S)-[(carboxymethyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-\}$ trifluoroacetic acid
- (ap) $Cyclo\{-Suc[1(S)-[N'-B-D-glucopyranos-1-yl)-carboxyamideomethyl]amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-} trifluoroacetic acid$
- (aq) Cyclo{-Suc[1(S)-(quinyl)amine]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-}
- (ar) $Cyclo\{-Suc[1(S)-(4-aminobutanoyl)amino]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-\}$ trifluoroacetic acid
- (as) $Cyclo\{-Suc[1(S)-[1,4')bipiperidin-1-yl]acetamido]-Trp-Phe-[(R)-NH-CH(CH₂-C₆H₅)-CH₂-NH]-\}$ trifluoroacetic acid
- (at) Cyclo{-Suc[1-N-(ß-D-glucopyranos-1-yl)-carboxyamido]- $\label{eq:cyclo} Trp-Phe-\ [\ (R)-NH-CH\ (CH_2-C_6H_5)-CH_2-NH\]-\ \}$
- (au) Cyclo{-Suc[1(S)-[N'-(2-N-acetyl- \pounds -D-glucopyranos-1-yl)-carboxyamido]-Trp-Phe-[(R)-NH-CH(CH₂-C_{\pounds}H₅)-CH₂-NH]-}.
- 5. (Amended three times) A composition comprising a compound of formula (I) according to Claim 1 in combination with a suitable carrier or excipient.

05

8. (twice amended) A method of inhibiting bronchoconstriction comprising administering a compound according to Claim 7 for a time and under conditions effective to treat the bronchospastic and inflammatory component of asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the ureter during cystitis, kidney infections and colics.

P4

9. (twice amended) A method of inhibiting bronchoconstriction comprising administering a compound according to Claim 7 for a time and under conditions effective to produce an anxiolytic effect.

(<u>)</u> 7

14. (amended three times) A method of inhibiting bronchoconstriction comprising administering quantities of between 0.02 and 10 mg/kg of body weight of active principle consisting of a compound of formula(I), according to Claim 1, to a patient afflicted with asthma, coughing, pulmonary irritation, intestinal spasms, spasms of the biliary tract, local spasms of the bladder and of the uterer during cystitis, and kidney infections and colics for a time and under conditions effective to antagonize NK-2 receptors.