Tsung-Sheng (Stephen) Huang

204 153rd Place Southeast, Bellevue, WA 98007 · (806) 252-0371 · stephen0620.huang@gmail.com

Summary

- ♦ Software Engineer of Computer Vision & AI at Net2source (Contractor at Huawei)
- Super Resolution using Convolutional Neural Network (CNN) and Generative Adversarial Network
- ♦ Built automatic deployment pipeline for models from Caffe, Tensorflow and Keras
- ♦ Experienced in Machine Learning, Computer Vision and Image Processing
- Highly skilled in C++, Python, JAVA and Android Application Development

Experience

Net2Source (Contractor at Huawei) - Software Engineer of Computer Vision & AI

Aug.2018 - present

Super Resolution using Convolutional Neural Network and Generative Adversarial Network

- Compared to traditional interpolation algorithms like bicubic or bi-linear, Super Resolution using CNN can reconstruct more details and present a better and sharper quality of videos to customers. In this project, I helped the team deploy, evaluate and solve the artifact of different models.
- Evaluated different CNN models trained with different hyper-parameters using objective metrics.
- Developed the metrics for blurriness and blocking effect estimation of videos to further select the best model for the best visual experience.
- In charge of setting up the training environment for Caffe on Ubuntu for team members.
- Solved the issue of the inconsistency between PCs (**Keras**) and Phone's (GPU) result. Increased the PSNR between PCs and Phones from **35 dB** to around **60 dB**.
- Resolved Moire and shadowing artifact of recurrent frame Super Resolution models in Python.
- Increased the efficiency of conversion of models between different platforms like Caffe, Keras and Tensorflow.
- Built a tool for automatic deployment of models from different platforms using C++ and NDK-build.
- Investigated data augmentation of training data and post-processing (e.g. contrast enhancement) of label data.
- Research on ensemble CNN Super Resolution using Attention Mechanism. This further enhanced the performance of models when dealing with different scenarios. (in-door, out-door, human face)

Brigham Young University - Intern

June. 2015 – Aug. 2015

Self-driving Remote Car

- Enhanced the efficiency of the remote car by increasing the obstacle recognition rate.
- Developed an app using OpenCV in **Android** (Open Source Computer Vision).
- Programmed an app to guide vehicles to run on tracks and detect/avoid obstacles using image processing.

Relevant Coursework & Skills

- **♦** Image Processing
- ♦ Machine Learning
- ◆ Computer Vision
- ◆ Tensorflow, Keras, Caffe, OpenCV, Scikit-learn
- ◆ Super Resolution
- Android Application Development

- Digital Signal Processing
- ◆ Python, C++, JAVA, Android, MATLAB
- ◆ Programming Algorithm & Data Structure
- Generative Adversarial Network.
- ◆ Attention based Neural Network

Relevant Technique

Computer Vision	Super Resolution , HoG, LoG, SIFT, Restoration, SIFT, Disparity Estimation, Image Compression, 3d point cloud processing, Histogram Equalization, Edge Detection, Segmentation, SIFT
Machine Learning	Neural Network, Convolutional Neural Network, Natural Language Processing (NLP),
	Generative Adversarial Network, Attention based Neural Network, SVM, Bayes Classifier, PCA,
	Clustering, Regression, Logistic Regression, Expectation Maximization

Relevant Projects

Texas Tech University

Quail Call Segmentation and Localization – Individual Study (MATLAB)

Aug. 2017 - Aug. 2018

- Helped government manage quail hunting by measuring the quail population density.
- Calculated correlation between template and spectrum by using Normalized Cross Correlation.
- Applied envelope detection on 1-D signal to correlation values to detect peaks and remove the background noise.

Tsung-Sheng (Stephen) Huang

204 153rd Place Southeast, Bellevue, WA 98007 · (806) 252-0371 · stephen0620.huang@gmail.com

- Implemented logistic regression on envelope signal to detect the quail calls (F1-score: 89%).
- Reduced the manual work by 90% via automatic image and signal processing solutions.

Hand-Written Digits Recognition – Machine Learning Project

April 2018 - May 2018

- Implemented MSER algorithm to detect the hand-written digits in real time.
- Trained own Convolutional Neural Network with MNIST dataset to recognize digits (Accuracy: 98%).

Image Stitching - Computer Vision and Image Reconstruction Project

February 2018 - March 2018

- Used SIFT, SURF and MSER algorithm to detect features in images automatically.
- Estimated geometric transform matrix by matching features of images to construct panorama view.

Orthopedic Diseases Classification - Machine learning Project

March 2018 – April 2018

• Classified the disease of patients using the biomechanical attributes of pelvis lumbar spine with logistic regression.

Musical Tutoring App – Technology Startup Laboratory Project

January 2017 - May 2017

- Developed an app on Android platform to help the students look for tutors on smart phones.
- Collaborated with business students to draft business plans and market strategies for the pricing of the app.

National Kaohsiung First University of Science and Technology

Self-directed Remote Car – Lab Project (**JAVA**)

June 2013 – September 2014

- Utilized smart phones as the pilot of remote car to do surveillance patrol.
- Designed a system that transit images from phone in real time to assist safe controls more effectively.
- Automated self-directed vehicles to arrive at destination via setting start and end points.

Education & Certification

Texas Tech University - Lubbock, TX

May 2018

M.S. Electrical Engineering, GPA – 3.9

NCEES - Fundamental Exams of Electrical and Computer Engineering

March 2018

National Kaohsiung First University of Science and Technology - Kaohsiung, Taiwan

June 2015

B.S. Computer and Communication Engineering

Publication

License Plate Localization and Recognition under Different Illumination Conditions

Thesis on ICCE-TW 2016 - Second Author (C++ with OpenCV)

- Improved detection rate of license plate using HDR (High Dynamic Range).
- Implemented Bernsen Binarization to enhance visibility of local details to improve accuracy of plate recognition.
- Applied Support Vector Machine (SVM) for character recognition after segmentation of license plate.