

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF MECHANICAL ENGINEERING Guwahati – 781 039, Assam, India

BY **Nishant Nanasaheb Jagtap** 234103329

(j.nishant@iitg.ac.in)

ME 543 Computational Fluid Dynamics

Computer Assignment - 3

Guided By
Prof. Amaresh Dalal
October 2023

Table of Contents

St	tream-Vorticity Equations3				
	1.1.	Question and Data	3		
	1.2.	Discretised Equation	4		
	1.3.	Results	5		
	Reynolds Number (Re) = 100				
Reynolds Number (Re) = 400			6		
	1.4.	Comparison Table	7		
	1.5.	Comparison of Experimental and Numerical Simulation Data	8		
	1.6.	Conclusion:	9		

Table of Figures

Figure 1: Flow inside a lid-driven cavity	. 3
Figure 2 : Re = 100 (Results)	. 5
Figure 3: Re = 400 (Results)	. 6
Figure 4: U velocity (Centreline)	. 8
Figure 5: V velocity (Centreline)	. 9

Stream-Vorticity Equations

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega$$

$$u\frac{\partial\omega}{\partial x} + v\frac{\partial\omega}{\partial y} = \frac{1}{\text{Re}}\left(\frac{\partial^2\omega}{\partial x^2} + \frac{\partial^2\omega}{\partial y^2}\right)$$

$$u = \frac{\partial \psi}{\partial y}$$
, $v = -\frac{\partial \psi}{\partial x}$

1.1. Question and Data

Given:

Length – L = 1 units, Height – H = 1 units $\epsilon < 10^{-6}$

(Boundary Conditions are as shown below)

Input Parameters:

M=101 (Number of points on Horizontal Side)

N=101 (Number of points on Vertical Side)

$$\Delta x = L/(M-1) = 0.01 \qquad (\beta = \frac{(\Delta x)}{(\Delta y)})$$

$$\Delta y = H/(N-1) = 0.01$$

$$Re_{H} = 100, 400$$

$$H=1$$

$$u=v=0$$

$$L=1$$

Figure 1: Flow inside a lid-driven cavity

1.2. Discretised Equation

Non-Dimensional Equation $(\beta = \frac{1}{\gamma})$

Streamline Equation:

$$\Psi_{i,j}^{k+1} = \frac{1}{2*(1+\beta^2)} \left(\left[(\Delta x)^2 * \omega_{i,j}^{k+1} \right] + \beta^2 * \Psi_{i,j-1}^{k+1} + \Psi_{i-1,j}^{k+1} + \Psi_{i+1,j}^{k} + \beta^2 * \Psi_{i,j+1}^{k} \right)$$

Vorticity Equation:

$$\begin{split} \omega_{i,j}^{k+1} &= \frac{1}{2*(1+\beta^2)} \left[-\left(\Psi_{i,j+1}^{k+1} - \Psi_{i,j-1}^{k+1}\right) * \left(\frac{\beta*Re}{4}\right) \right] * \omega_{i+1,j}^k \\ &+ \left\{ 1 + \left(\Psi_{i,j+1}^{k+1} - \Psi_{i,j-1}^{k+1}\right) * \left(\frac{\beta*Re}{4}\right) \right\} * \omega_{i-1,j}^{k+1} \\ &+ \left\{ 1 + \left(\Psi_{i+1,j}^{k+1} - \Psi_{i-1,j}^{k+1}\right) * \left(\frac{Re}{4*\beta}\right) \right\} * \beta^2 * \omega_{i,j+1}^k \\ &+ \left\{ 1 - \left(\Psi_{i+1,j}^{k+1} - \Psi_{i-1,j}^{k+1}\right) * \left(\frac{Re}{4*\beta}\right) \right\} * \beta^2 * \omega_{i,j-1}^k \quad \, \right] \end{split}$$

Velocity Equations:

$$u_{i,j} = \frac{\Psi_{i,j+1} - \Psi_{i,j-1}}{2*\Delta y}$$
 $v_{i,j} = -\frac{\Psi_{i+1,j} - \Psi_{i-1,j}}{2*\Delta x}$

(The velocities are calculated at last after our psi (Streamlines) and omega (Vorticity) values Converge)

1.3. Results

Reynolds Number (Re) = 100

Figure 2 : Re = 100 (Results)

Reynolds Number (Re) = 400

Streamline Vorticity

Figure 3: Re = 400 (Results)

1.4. Comparison Table

Reynold's Number	Re = 100	Re 400
Kinematic Viscosity (γ)	0.01	0.0025
Streamlines	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.11 _0.00 0.00
Vorticity	0.500844 1.20077 0.8497762 0.96571 0.96571 0.96571	2 38752 2 38752 2 38752 0 4 15721 0 4 15721 0 4 15721 0 5776 0 5776
Velocity		
Number of Iterations	6536	7657
Computational Convergence Time (seconds)	52.641576	64.732577

1.5. Comparison of Experimental and Numerical Simulation Data **U velocity (Centreline)**

Figure 4: U velocity (Centreline)

V velocity (Centreline)

Figure 5: V velocity (Centreline)

1.6. Conclusion:

- The Numerical Data and the Experimental Data (Ghia et. Al.) are in Sync with each other.
- The Streamline Contour depict the magnitude (intensity) of velocity and shows how it is low near the boundaries, moderate in centre and maximum at the top surface.
- The Vorticity Contour depicts the rotational tensor which signifies the fluids shear strain and its variation in the flow leading to a vortex in centre.
- The Vortex is significant for high Reynolds number (low viscosity).
- The Streamlines are more symmetric for high Reynolds number (low viscosity) about centre.
- The Centreline Velocities shift show more variation away from average velocity for high Reynolds number
- The Vortex becomes more predominant for high Reynolds number.