1월 월간 보고서

1. 기간: 2020년 1월 2일 ~ 2020년 1월 31일

2.장소 : DNA 본사

1. OHLC를 활용한 LSTM 모델 생성.

• 단순 Close만 사용한 모델보다, OHLC를 전부 사용한 모델이 정확도면에서는 성능이 좋은 것으로 나타남. OHLC를 그대로 사용할경우 Correlation이 매우 높아 **다중공선성**의 문제 등이 우려됨. 따라서 PCA나 새로운 지표들을 통하여 다중공선성 문제 해결이 필요해 보임.

2. DGX Station을 활용한 모델 심화 구조

- **DGX**를 사용하면, 심화된 구조의 딥러닝 모형을 사용할 수 있고, 빠른 학습시간이라는 장점이 있음. 하지만, 성능이 기존의 다른 모델들에 비해 현저하게 뛰어난 것은 아님.
- 일반적으로 요리사가 뛰어난 것보다는 재료 자체가 좋은 식재료이면 기본은 하듯이, DGX를 활용 한 모델 최적화도 중요하지만, **데이터가 더 중요한 것**으로 여겨진다.
- 또한 시계열 모델에서 성능이 뛰어나다고 알려진 LSTM이나 GRU 모형을 사용하는 것도 좋지만, 단순히 코드 사용법만 이해하는 것이 아닌 수학적인 알고리즘 방식을 이해하는 것도 모델 최적화를 위해선 중요한 부분이라 판단 됨.

3. 전체 종목 모델에 대한 이상값 확인

- 전체 2500여개 종목을 하나의 종목으로 간주하고, 통합 모델 생성.
- 5일전 데이터들로 5일 뒤의 종가를 예측하는 모형.
- KOSPI, KOSDAQ 기준 상위, 하위 10, 1주 당 가격 50만 이상 우량주, 1주 당 가격 1000원 이하 소형 주 등을 이상값으로 판단.
- 각 이상값 종목들에 대하여 모델 성능 비교. -> 전체 평균과 큰 차이를 보이는 종목은 없었음.
- 이렇게 전체 종목에 대하여 모델을 만들 경우 어떤 종목이 오더라도 일반화를 잡을 수는 있지만, 개별 종목에 대하여 핏팅한 모델보다는 성능이 조금씩은 떨어진다.

4. 중간 과정 정리

- 4.1 <u>중간 과정 정리</u>
- 4.2 향후 모델 진행 방향
 - o 4.2.1 Regression -> Classification : 단순 주가 예측에서 -> 변화율을 분류
 - 4.2.2 Feature Engineering: 각 종목별 특성을 반영할 수 있는 Feature 추가 ex) 시장구분 (코스피,코스닥), 거래정지여부, 관리구분, 락구분, 시장경보구분, 불성실공시지정여부, 증거금, 신용증거금, ETF, 소속
 - o 4.2.3 Feature Engineering : 기술적 지표 구현
 - o 4.2.4 Algorithm Optimization : 다양한 기법의 머신러닝, 딥러닝 알고리즘 적용 및 최적화

업무 5 : 환율 프로젝트

환율 관련 프로젝트

• 5.1. DB 구축

- o 한국수출입은행의 Open API를 활용하여 2010년 ~ 2019년까지의 환율 데이터 DB 구축.
- o DB Code

• 5.2 EDA

- o 탐색적 데이터 분석을 통한 데이터 특성 파악.
- EDA Code

• 5.3 Many to One Model

- o 선형회귀를 이용해 many to one Modeling
- o 예측 시점이 뒤로 갈수록 RMSE가 매우 높아짐.
- INPUT 5 DAYS -> FEATURE 1 DAYS
- INPUT 10 DAYS -> FEATURE 5 DAYS
- INPUT 20 DAYS -> FEATURE 20 DAYS
- INPUT 120 DAYS -> FEATURE 120 DAYS

• 5.4 Virtual Data Model

- o 가상 데이터를 사용한 Modeling
- ex) 2019년 10월 ~ 2019년 12월의 60개의 데이터를 이용하여 2020년 1월 1일을 맞춤. 2019년 10월 ~ 2019년 12월의 59개의 데이터와 가상의 1월 1일 데이터를 이용해 1월 2일을 맞춤.
 2019년 10월 ~ 2019년 12월의 58개의 데이터와 가상의 1월 1일, 2일 데이터를 이용해 1월 3일을 맞춤. 이렇게 60일까지 예측
- o 1년까지 가기에는 성능이 매우 떨어지나, 3개월(시장일 기준 60일) 정도는 흐름을 파악할 수 있음.
- Virtual Model

• 5.5 Many to Many Model

- ㅇ 과거 60개의 데이터를 이용해 1~60일을 각각 60개의 모델로 예측
 - o 10일이 지난 시점부터 예측력이 현저하게 떨어짐.
 - o 1 ~ 60 Model

5.6 예정

- o (예정) PCA 진행
- o (예정) 알고리즘 변경: LightGBM, XGBoost
- (예정) 하이브리드 신경망 (SVM + NN)
- ㅇ (예정) 데이콘 우승자 코드 확인
- ㅇ (예정) 오토인코더
- o (예정) Self-Attention
- ㅇ (예정) 모든 데이터를 전일 대비 등락률로
- o (예정) CNN, DNN 적용 고민...
- o (예정) 주기를 변경...일주일 10일 2일 5일...
- ㅇ (예정) 모델은 최대한 빠르고 쉽게 단층 구조...